From adf4d0e02a176e49d1f0708d9771a34f878d7158 Mon Sep 17 00:00:00 2001 From: "Radu C. Martin" Date: Sat, 24 Apr 2021 12:16:07 +0200 Subject: [PATCH] Updated Notebooks with graphs of multistep predictions (bad) --- Notebooks/10_wdb_from_experimental_data.ipynb | 6 +- Notebooks/1_N_horizon 3/sim_10200.png | Bin 0 -> 16679 bytes Notebooks/1_N_horizon 3/sim_10500.png | Bin 0 -> 16746 bytes Notebooks/1_N_horizon 3/sim_10800.png | Bin 0 -> 16796 bytes Notebooks/1_N_horizon 3/sim_11100.png | Bin 0 -> 16791 bytes Notebooks/1_N_horizon 3/sim_11400.png | Bin 0 -> 16884 bytes Notebooks/1_N_horizon 3/sim_11700.png | Bin 0 -> 17462 bytes Notebooks/1_N_horizon 3/sim_12000.png | Bin 0 -> 17669 bytes Notebooks/1_N_horizon 3/sim_12300.png | Bin 0 -> 17988 bytes Notebooks/1_N_horizon 3/sim_12600.png | Bin 0 -> 18138 bytes Notebooks/1_N_horizon 3/sim_12900.png | Bin 0 -> 18278 bytes Notebooks/1_N_horizon 3/sim_13200.png | Bin 0 -> 18352 bytes Notebooks/1_N_horizon 3/sim_13500.png | Bin 0 -> 18426 bytes Notebooks/1_N_horizon 3/sim_13800.png | Bin 0 -> 18286 bytes Notebooks/1_N_horizon 3/sim_14100.png | Bin 0 -> 18040 bytes Notebooks/1_N_horizon 3/sim_14400.png | Bin 0 -> 18263 bytes Notebooks/1_N_horizon 3/sim_14700.png | Bin 0 -> 18050 bytes Notebooks/1_N_horizon 3/sim_1500.png | Bin 0 -> 16200 bytes Notebooks/1_N_horizon 3/sim_15000.png | Bin 0 -> 18107 bytes Notebooks/1_N_horizon 3/sim_15300.png | Bin 0 -> 18100 bytes Notebooks/1_N_horizon 3/sim_15600.png | Bin 0 -> 18127 bytes Notebooks/1_N_horizon 3/sim_15900.png | Bin 0 -> 17906 bytes Notebooks/1_N_horizon 3/sim_16200.png | Bin 0 -> 18014 bytes Notebooks/1_N_horizon 3/sim_16500.png | Bin 0 -> 18054 bytes Notebooks/1_N_horizon 3/sim_16800.png | Bin 0 -> 18012 bytes Notebooks/1_N_horizon 3/sim_17100.png | Bin 0 -> 17869 bytes Notebooks/1_N_horizon 3/sim_17400.png | Bin 0 -> 18003 bytes Notebooks/1_N_horizon 3/sim_17700.png | Bin 0 -> 18029 bytes Notebooks/1_N_horizon 3/sim_1800.png | Bin 0 -> 14764 bytes Notebooks/1_N_horizon 3/sim_18000.png | Bin 0 -> 17991 bytes Notebooks/1_N_horizon 3/sim_18300.png | Bin 0 -> 18110 bytes Notebooks/1_N_horizon 3/sim_18600.png | Bin 0 -> 18455 bytes Notebooks/1_N_horizon 3/sim_18900.png | Bin 0 -> 18411 bytes Notebooks/1_N_horizon 3/sim_19200.png | Bin 0 -> 19093 bytes Notebooks/1_N_horizon 3/sim_19500.png | Bin 0 -> 19037 bytes Notebooks/1_N_horizon 3/sim_19800.png | Bin 0 -> 20012 bytes Notebooks/1_N_horizon 3/sim_20100.png | Bin 0 -> 20536 bytes Notebooks/1_N_horizon 3/sim_20400.png | Bin 0 -> 19794 bytes Notebooks/1_N_horizon 3/sim_20700.png | Bin 0 -> 20235 bytes Notebooks/1_N_horizon 3/sim_2100.png | Bin 0 -> 14608 bytes Notebooks/1_N_horizon 3/sim_21000.png | Bin 0 -> 20295 bytes Notebooks/1_N_horizon 3/sim_21300.png | Bin 0 -> 19956 bytes Notebooks/1_N_horizon 3/sim_21600.png | Bin 0 -> 20263 bytes Notebooks/1_N_horizon 3/sim_21900.png | Bin 0 -> 20239 bytes Notebooks/1_N_horizon 3/sim_22200.png | Bin 0 -> 20331 bytes Notebooks/1_N_horizon 3/sim_22500.png | Bin 0 -> 20195 bytes Notebooks/1_N_horizon 3/sim_22800.png | Bin 0 -> 20493 bytes Notebooks/1_N_horizon 3/sim_23100.png | Bin 0 -> 20247 bytes Notebooks/1_N_horizon 3/sim_23400.png | Bin 0 -> 20309 bytes Notebooks/1_N_horizon 3/sim_23700.png | Bin 0 -> 20357 bytes Notebooks/1_N_horizon 3/sim_2400.png | Bin 0 -> 14577 bytes Notebooks/1_N_horizon 3/sim_24000.png | Bin 0 -> 20113 bytes Notebooks/1_N_horizon 3/sim_2700.png | Bin 0 -> 14602 bytes Notebooks/1_N_horizon 3/sim_3000.png | Bin 0 -> 14875 bytes Notebooks/1_N_horizon 3/sim_3300.png | Bin 0 -> 14969 bytes Notebooks/1_N_horizon 3/sim_3600.png | Bin 0 -> 15042 bytes Notebooks/1_N_horizon 3/sim_3900.png | Bin 0 -> 15180 bytes Notebooks/1_N_horizon 3/sim_4200.png | Bin 0 -> 15192 bytes Notebooks/1_N_horizon 3/sim_4500.png | Bin 0 -> 15126 bytes Notebooks/1_N_horizon 3/sim_4800.png | Bin 0 -> 15285 bytes Notebooks/1_N_horizon 3/sim_5100.png | Bin 0 -> 14963 bytes Notebooks/1_N_horizon 3/sim_5400.png | Bin 0 -> 15023 bytes Notebooks/1_N_horizon 3/sim_5700.png | Bin 0 -> 15259 bytes Notebooks/1_N_horizon 3/sim_6000.png | Bin 0 -> 15210 bytes Notebooks/1_N_horizon 3/sim_6300.png | Bin 0 -> 15597 bytes Notebooks/1_N_horizon 3/sim_6600.png | Bin 0 -> 15757 bytes Notebooks/1_N_horizon 3/sim_6900.png | Bin 0 -> 15584 bytes Notebooks/1_N_horizon 3/sim_7200.png | Bin 0 -> 15837 bytes Notebooks/1_N_horizon 3/sim_7500.png | Bin 0 -> 16448 bytes Notebooks/1_N_horizon 3/sim_7800.png | Bin 0 -> 16381 bytes Notebooks/1_N_horizon 3/sim_8100.png | Bin 0 -> 16450 bytes Notebooks/1_N_horizon 3/sim_8400.png | Bin 0 -> 17000 bytes Notebooks/1_N_horizon 3/sim_8700.png | Bin 0 -> 16683 bytes Notebooks/1_N_horizon 3/sim_9000.png | Bin 0 -> 16431 bytes Notebooks/1_N_horizon 3/sim_9300.png | Bin 0 -> 16327 bytes Notebooks/1_N_horizon 3/sim_9600.png | Bin 0 -> 16400 bytes Notebooks/1_N_horizon 3/sim_9900.png | Bin 0 -> 16720 bytes Notebooks/20_simulating_carnot_model.ipynb | 12 +- Notebooks/2_N_horizon 5/sim_1500.png | Bin 0 -> 17172 bytes Notebooks/2_N_horizon 5/sim_1800.png | Bin 0 -> 18412 bytes Notebooks/2_N_horizon 5/sim_2100.png | Bin 0 -> 17000 bytes Notebooks/2_N_horizon 5/sim_2400.png | Bin 0 -> 15651 bytes Notebooks/2_N_horizon 5/sim_2700.png | Bin 0 -> 18375 bytes Notebooks/2_N_horizon 5/sim_3000.png | Bin 0 -> 18883 bytes Notebooks/2_N_horizon 5/sim_3300.png | Bin 0 -> 19861 bytes Notebooks/2_N_horizon 5/sim_3600.png | Bin 0 -> 19381 bytes Notebooks/2_N_horizon 5/sim_3900.png | Bin 0 -> 19280 bytes Notebooks/2_N_horizon 5/sim_4200.png | Bin 0 -> 19033 bytes Notebooks/2_N_horizon 5/sim_4500.png | Bin 0 -> 19109 bytes Notebooks/2_N_horizon 5/sim_4800.png | Bin 0 -> 19423 bytes Notebooks/2_N_horizon 5/sim_5100.png | Bin 0 -> 20871 bytes Notebooks/2_N_horizon 5/sim_5400.png | Bin 0 -> 20379 bytes Notebooks/2_N_horizon 5/sim_5700.png | Bin 0 -> 20909 bytes .../30_gaussiandome_identification.ipynb | 1020 +- Notebooks/31_gpflow_first_test.ipynb | 28 +- Notebooks/32_gaussiandome_prbs.ipynb | 3433 +++ Notebooks/33_gaussiandome_prbs_loaded.ipynb | 1493 ++ Notebooks/3_N_horizon 5/sim_1500.png | Bin 0 -> 16958 bytes Notebooks/3_N_horizon 5/sim_1800.png | Bin 0 -> 16922 bytes Notebooks/3_N_horizon 5/sim_2100.png | Bin 0 -> 17502 bytes Notebooks/3_N_horizon 5/sim_2400.png | Bin 0 -> 18317 bytes Notebooks/3_N_horizon 5/sim_2700.png | Bin 0 -> 17840 bytes Notebooks/3_N_horizon 5/sim_3000.png | Bin 0 -> 18496 bytes Notebooks/3_N_horizon 5/sim_3300.png | Bin 0 -> 17738 bytes Notebooks/3_N_horizon 5/sim_3600.png | Bin 0 -> 19817 bytes Notebooks/3_N_horizon 5/sim_3900.png | Bin 0 -> 19757 bytes Notebooks/3_N_horizon 5/sim_4200.png | Bin 0 -> 19665 bytes Notebooks/3_N_horizon 5/sim_4500.png | Bin 0 -> 19747 bytes Notebooks/3_N_horizon 5/sim_4800.png | Bin 0 -> 20363 bytes Notebooks/3_N_horizon 5/sim_5100.png | Bin 0 -> 19464 bytes Notebooks/3_N_horizon 5/sim_5400.png | Bin 0 -> 22487 bytes Notebooks/3_N_horizon 5/sim_5700.png | Bin 0 -> 20905 bytes Notebooks/3_N_horizon 5/sim_6000.png | Bin 0 -> 20983 bytes Notebooks/40_casadi_gaussiandome.ipynb | 20 +- Notebooks/41_casadi_gp_test.ipynb | 918 +- Notebooks/50_mpc_formulation.ipynb | 18772 +--------------- Notebooks/Images/gpr_X.JPG | Bin 0 -> 913818 bytes Notebooks/gp_data.gpf | Bin 0 -> 29249 bytes Notebooks/gp_params.gpf | Bin 0 -> 4016 bytes Notebooks/model/gp_data.gpf | Bin 0 -> 167690 bytes Notebooks/model/gp_params.gpf | Bin 4016 -> 6890 bytes Notebooks/model/gp_trainset.pkl | Bin 11934 -> 0 bytes Notebooks/model/u_scaler.pkl | Bin 0 -> 344 bytes Notebooks/model/w_scaler.pkl | Bin 0 -> 360 bytes Notebooks/model/x_scaler.pkl | Bin 506 -> 506 bytes Notebooks/model/y_scaler.pkl | Bin 0 -> 344 bytes Notebooks/sim_1500.png | Bin 0 -> 15461 bytes Notebooks/test_mat.mat | Bin 0 -> 5688 bytes Notebooks/x_scaler.pkl | Bin 0 -> 506 bytes 129 files changed, 7312 insertions(+), 18390 deletions(-) create mode 100644 Notebooks/1_N_horizon 3/sim_10200.png create mode 100644 Notebooks/1_N_horizon 3/sim_10500.png create mode 100644 Notebooks/1_N_horizon 3/sim_10800.png create mode 100644 Notebooks/1_N_horizon 3/sim_11100.png create mode 100644 Notebooks/1_N_horizon 3/sim_11400.png create mode 100644 Notebooks/1_N_horizon 3/sim_11700.png create mode 100644 Notebooks/1_N_horizon 3/sim_12000.png create mode 100644 Notebooks/1_N_horizon 3/sim_12300.png create mode 100644 Notebooks/1_N_horizon 3/sim_12600.png create mode 100644 Notebooks/1_N_horizon 3/sim_12900.png create mode 100644 Notebooks/1_N_horizon 3/sim_13200.png create mode 100644 Notebooks/1_N_horizon 3/sim_13500.png create mode 100644 Notebooks/1_N_horizon 3/sim_13800.png create mode 100644 Notebooks/1_N_horizon 3/sim_14100.png create mode 100644 Notebooks/1_N_horizon 3/sim_14400.png create mode 100644 Notebooks/1_N_horizon 3/sim_14700.png create mode 100644 Notebooks/1_N_horizon 3/sim_1500.png create mode 100644 Notebooks/1_N_horizon 3/sim_15000.png create mode 100644 Notebooks/1_N_horizon 3/sim_15300.png create mode 100644 Notebooks/1_N_horizon 3/sim_15600.png create mode 100644 Notebooks/1_N_horizon 3/sim_15900.png create mode 100644 Notebooks/1_N_horizon 3/sim_16200.png create mode 100644 Notebooks/1_N_horizon 3/sim_16500.png create mode 100644 Notebooks/1_N_horizon 3/sim_16800.png create mode 100644 Notebooks/1_N_horizon 3/sim_17100.png create mode 100644 Notebooks/1_N_horizon 3/sim_17400.png create mode 100644 Notebooks/1_N_horizon 3/sim_17700.png create mode 100644 Notebooks/1_N_horizon 3/sim_1800.png create mode 100644 Notebooks/1_N_horizon 3/sim_18000.png create mode 100644 Notebooks/1_N_horizon 3/sim_18300.png create mode 100644 Notebooks/1_N_horizon 3/sim_18600.png create mode 100644 Notebooks/1_N_horizon 3/sim_18900.png create mode 100644 Notebooks/1_N_horizon 3/sim_19200.png create mode 100644 Notebooks/1_N_horizon 3/sim_19500.png create mode 100644 Notebooks/1_N_horizon 3/sim_19800.png create mode 100644 Notebooks/1_N_horizon 3/sim_20100.png create mode 100644 Notebooks/1_N_horizon 3/sim_20400.png create mode 100644 Notebooks/1_N_horizon 3/sim_20700.png create mode 100644 Notebooks/1_N_horizon 3/sim_2100.png create mode 100644 Notebooks/1_N_horizon 3/sim_21000.png create mode 100644 Notebooks/1_N_horizon 3/sim_21300.png create mode 100644 Notebooks/1_N_horizon 3/sim_21600.png create mode 100644 Notebooks/1_N_horizon 3/sim_21900.png create mode 100644 Notebooks/1_N_horizon 3/sim_22200.png create mode 100644 Notebooks/1_N_horizon 3/sim_22500.png create mode 100644 Notebooks/1_N_horizon 3/sim_22800.png create mode 100644 Notebooks/1_N_horizon 3/sim_23100.png create mode 100644 Notebooks/1_N_horizon 3/sim_23400.png create mode 100644 Notebooks/1_N_horizon 3/sim_23700.png create mode 100644 Notebooks/1_N_horizon 3/sim_2400.png create mode 100644 Notebooks/1_N_horizon 3/sim_24000.png create mode 100644 Notebooks/1_N_horizon 3/sim_2700.png create mode 100644 Notebooks/1_N_horizon 3/sim_3000.png create mode 100644 Notebooks/1_N_horizon 3/sim_3300.png create mode 100644 Notebooks/1_N_horizon 3/sim_3600.png create mode 100644 Notebooks/1_N_horizon 3/sim_3900.png create mode 100644 Notebooks/1_N_horizon 3/sim_4200.png create mode 100644 Notebooks/1_N_horizon 3/sim_4500.png create mode 100644 Notebooks/1_N_horizon 3/sim_4800.png create mode 100644 Notebooks/1_N_horizon 3/sim_5100.png create mode 100644 Notebooks/1_N_horizon 3/sim_5400.png create mode 100644 Notebooks/1_N_horizon 3/sim_5700.png create mode 100644 Notebooks/1_N_horizon 3/sim_6000.png create mode 100644 Notebooks/1_N_horizon 3/sim_6300.png create mode 100644 Notebooks/1_N_horizon 3/sim_6600.png create mode 100644 Notebooks/1_N_horizon 3/sim_6900.png create mode 100644 Notebooks/1_N_horizon 3/sim_7200.png create mode 100644 Notebooks/1_N_horizon 3/sim_7500.png create mode 100644 Notebooks/1_N_horizon 3/sim_7800.png create mode 100644 Notebooks/1_N_horizon 3/sim_8100.png create mode 100644 Notebooks/1_N_horizon 3/sim_8400.png create mode 100644 Notebooks/1_N_horizon 3/sim_8700.png create mode 100644 Notebooks/1_N_horizon 3/sim_9000.png create mode 100644 Notebooks/1_N_horizon 3/sim_9300.png create mode 100644 Notebooks/1_N_horizon 3/sim_9600.png create mode 100644 Notebooks/1_N_horizon 3/sim_9900.png create mode 100644 Notebooks/2_N_horizon 5/sim_1500.png create mode 100644 Notebooks/2_N_horizon 5/sim_1800.png create mode 100644 Notebooks/2_N_horizon 5/sim_2100.png create mode 100644 Notebooks/2_N_horizon 5/sim_2400.png create mode 100644 Notebooks/2_N_horizon 5/sim_2700.png create mode 100644 Notebooks/2_N_horizon 5/sim_3000.png create mode 100644 Notebooks/2_N_horizon 5/sim_3300.png create mode 100644 Notebooks/2_N_horizon 5/sim_3600.png create mode 100644 Notebooks/2_N_horizon 5/sim_3900.png create mode 100644 Notebooks/2_N_horizon 5/sim_4200.png create mode 100644 Notebooks/2_N_horizon 5/sim_4500.png create mode 100644 Notebooks/2_N_horizon 5/sim_4800.png create mode 100644 Notebooks/2_N_horizon 5/sim_5100.png create mode 100644 Notebooks/2_N_horizon 5/sim_5400.png create mode 100644 Notebooks/2_N_horizon 5/sim_5700.png create mode 100644 Notebooks/32_gaussiandome_prbs.ipynb create mode 100644 Notebooks/33_gaussiandome_prbs_loaded.ipynb create mode 100644 Notebooks/3_N_horizon 5/sim_1500.png create mode 100644 Notebooks/3_N_horizon 5/sim_1800.png create mode 100644 Notebooks/3_N_horizon 5/sim_2100.png create mode 100644 Notebooks/3_N_horizon 5/sim_2400.png create mode 100644 Notebooks/3_N_horizon 5/sim_2700.png create mode 100644 Notebooks/3_N_horizon 5/sim_3000.png create mode 100644 Notebooks/3_N_horizon 5/sim_3300.png create mode 100644 Notebooks/3_N_horizon 5/sim_3600.png create mode 100644 Notebooks/3_N_horizon 5/sim_3900.png create mode 100644 Notebooks/3_N_horizon 5/sim_4200.png create mode 100644 Notebooks/3_N_horizon 5/sim_4500.png create mode 100644 Notebooks/3_N_horizon 5/sim_4800.png create mode 100644 Notebooks/3_N_horizon 5/sim_5100.png create mode 100644 Notebooks/3_N_horizon 5/sim_5400.png create mode 100644 Notebooks/3_N_horizon 5/sim_5700.png create mode 100644 Notebooks/3_N_horizon 5/sim_6000.png create mode 100644 Notebooks/Images/gpr_X.JPG create mode 100644 Notebooks/gp_data.gpf create mode 100644 Notebooks/gp_params.gpf create mode 100644 Notebooks/model/gp_data.gpf delete mode 100644 Notebooks/model/gp_trainset.pkl create mode 100644 Notebooks/model/u_scaler.pkl create mode 100644 Notebooks/model/w_scaler.pkl create mode 100644 Notebooks/model/y_scaler.pkl create mode 100644 Notebooks/sim_1500.png create mode 100644 Notebooks/test_mat.mat create mode 100644 Notebooks/x_scaler.pkl diff --git a/Notebooks/10_wdb_from_experimental_data.ipynb b/Notebooks/10_wdb_from_experimental_data.ipynb index 1aa373d..46b0454 100644 --- a/Notebooks/10_wdb_from_experimental_data.ipynb +++ b/Notebooks/10_wdb_from_experimental_data.ipynb @@ -1627,9 +1627,9 @@ ], "metadata": { "kernelspec": { - "display_name": "venv", + "display_name": "Python 3", "language": "python", - "name": "venv" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -1641,7 +1641,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.2" + "version": "3.9.3" }, "toc-autonumbering": true, "toc-showcode": false, diff --git a/Notebooks/1_N_horizon 3/sim_10200.png b/Notebooks/1_N_horizon 3/sim_10200.png new file mode 100644 index 0000000000000000000000000000000000000000..02df5cab40751a6038790824da7baa52c6049d14 GIT binary patch literal 16679 zcmdseXIN8P+h*(q1wAS#N)ZA`7ij`gR9ZkldWVBZ=rsWZ3}8WyA}w?hKqd4hy@QH^ zKmZ9%x`+@$6$pfuWLEH}K znyLm6$l;q1$N{J0M?p(jw)P~r$RX9tkcOUcq`#ey14PFT>E-5$baQ^d?dRZwaQ5_& z6q6E@5aD)0BE1mu;^OZA?Ex`QA4l=wewH_&lM`N=<_HLc=^W$l03;QA5du+(hpFB+ zdW2mX4@kB$PNT2(R3{csB;gcxnV<7PpT}@VXdYz#QS;{78=leQXSc3;NIt!GP^crj z?Dea&_rKv!)!(c+i#=>!Zg>37@vAY7aY*z8Wm&#idAUf-H>bW2R#)#+Fj+#(%USkW z&NGxl9iq0&5mOPmU^?J)n^nvI(4Sl8^9PRY-yOeoka_>+%%j6s_HVd<9|r^hAC(_x zz4mWHKk)w8zkxi__;6tV?qGE2pPmkL{{Pa^DTri&cEFdeLJ0@@Q)IPgNb<0}YArJiuI?hefm&E+AwG<-3=v!xC zolr%z0o4kY5s!S0b4DxileAG=jS$H3D~zope8t~^`=zB6ZP58>`jVG_W?=q?cjLvR z%Ol|?&T!M@VG&77XSgwZGegkV`T<-#Ww?>{&y(t|MRNSQ8ZGyUkL0KuT={yrSB`6l z3%njW{tzCXJWStS8nJ_~cNKmYr(43Nq0|!PlQS5&%qU*QcPF@ApA+sEm!jwaZ4c{auhaa8?cjOMKXQWAt89t7^qz-#DW_%2Eum>VBxR}$EytF2T+;Gyc>P{4 z8!@YYekWsV@tGJiEZaCdoIl zA>^g9G2t340UbP;hd&18;3qwX`NMXqa4g!XJfvHa3YCV#6lj80ojxJ%p&+}2M5gzq)afIdkN4xIA$r4bho~kRFexCgXg&Yi)NY*QH^4nmhNj zQk3P1v}HsoS$sX;zd4Z`$MzEnt#Ung3@`F4#4iF@5L6@M zjdGVIGVu-g&IdstM=z-F@4#g~)Mq(U>{`dBhT~#%ZyN1F2o@(wBT8ut>1<=~5Uu7b zUUWBKp?_7D>5?6`w+*j1@Kx2d%(l} zXrE|K31GPzFnQR-waAD%=V^6VkN?hkw|}>FiUGfzMGJmyMs%$Q)s?3yLJ&~dccR|38RzqoiP z*E1RCiWhN#6FV#wruDjOeF7HD_rBv#Qorc1kSc;T9FMH2pEODtc7oA+NqaH@dPiZ8 zGz_XzQ2iNxs~oV>WuZw+41Uo{^71rWNj#fLg@17yel~g7NcnzVtgHi{elg;5My%8@ zUW`nC{f_poNFzIb+f;J*O^QSN<=bW7<%VYFPD^&)D0d6^sMl}%TWXbV%A&pVE``GZ z&PU5=^E42nhc(c)YY@eyh68#q`4PO*(h%JmCTy7f{+0-70WLFwSBLGW=hPj5Ttxm^ zVm%-AHlZADB1|$4h(Ilud|6|Kj$ieB`>hA6e(LMxffzoLXuy+?(`fb0`$Ju5_*cux zspvIM%hY)dbknqQ?XSr+#K0P7N?%2?TEZecL%oM9 zPFmB3(S=E;Vf6SR<>tk=X%NW6TlV?<5J<{LyjUzU1+n~$SVVQ|urFE*ix|o-FWP^S3>e_yMPlB%e?pqZq zbnYKtRp6{L^smLkqI^qWne?YCcKmA?GbMV@Be<)X%fuQRVl-o zM624A$avYh%mUY0SgHU_(y<%anJ9Ys{pLaN@`sO~@q;<_r{@&2b01!m6kgZx_=@*| zqRa@RXc{-^LG$-7=yYA}L;Hr!+_Bd`zTV>HQ+x=w3pg;C*VrT8Svy)reHcsL63BvrSK zE2M$ZB90CrkxbBTq!s&*d56QhQnQ@#K8mesl% zSG=E#)i2)QK#_avemrF&k0E+UzvA=;?ZP>-`Lq)?(H?aqe(Oh5Ve(5AeaP>2;Uv@M zodKH##kH@zz5~Xl&aJO6jnsH&7B{SEbz$WU4YTjT66=ZSK@|?2tX(OR8i-jujAkxy zi?%gg_Y18Jg(X?}ylkRvl(=?dgO+PG7=SIRp2){yuN0Y;-dQL14CNaakiYUq&t)aq5MEsn zKF=I39YTAYkd(9lDAW&NfIGs(N)9~PRoClLI?GUf>uIsZ1CbAfx%s!9fC0R2n<7N?#~-@r7CP1FL% zAbv^1+AF~K(m|VxVx4kCesaKPkRm=*4!D;|6~8Ofy_+&rIp-R@~HZ9PMnGum~1 zwyS+Z*Z{1*0Ebhpt*s5*U8>#yQj@<&EmOa;s!E7Ga-Q6$Hw1R0s06j-$}Z!U?6)+M zH8Ns>`f-Tsn`zV9g{84t!?3Whz{S!wBwnIzvC`c!Js{hoX6mT5*T*9a5jNX}xe%#N zA?+$s$$dM6)lFGDJAtAW71!j7vSl|0`}?nni|eVWsf|>*V`zIsW!KHcVKnaP(}M$p zgZylFIFugOm=sxLwXi5#F_3lgAlZFkz57#k<>#QwvqNdETgQ^xK*5Lvpql$$$qnbP*HuN6D6K%msEH0=UR zNO1&jO>ty<;nNgMfg0<3eMwRZFgf+dG39TU9IF9{qfYZpf2s2J!`niXbXAN}2WuMb6|JcyanNvgNd_ zQ-7{LyR?f@$-LrhvON+|&xIkjrJT{aO54AfCwFh#5O-@={eA*v?&qE zp9(#KO{YW4I?cF_iai3PNn${ljgSS$v9EDZ3N^ zM2ts)Nf9AdgEM6r{^pqMI5KW+eSKqvPFo>)bSN#%6Fc#V3PgBz9_+iuEwv*I;6n~` z8XE22pnhg!Jhc4JUH?bo>Hl(k%|4MAfQ6aIw;pzwV6R@+?Hezh~C@aDF{rV(Xh$hO2#Pth3A%D+s}vdXO&*fMb? zUN;Lj7KU7@I~($V$D{$2(}H(MBk%2=K|RlRGSowyt~?Cb4O&r72R7OM7+H8p*F@w* zK>gjQFs4STc{y{ZKh+5Yf z0mWWIrtPjQfSh9P~gOc3m5A4);c!;Z_I)D4l#K2#5w-CSHi{L zhMG2|87egg>!TI!DpohgGwwI)ZUIyuLz!San`-YWBmo&-zg$<)vTEcyRJ?RXYYeQm zF~2@PU#mx%-q5rf=?RUFWS7QjAf`thRri% zh0s|`U0d^EXj+C%hh!Lj_IeNwiG8H2{C>PqfL6A~S!Sxk9Mc6OuLve2X=`u_jz2D^ z%y*DU1Z#g^OY1*Ylvw-akE>tAgZ0Im_sSR?%}_~bGEi79GaU)-y~hUz1{gYzMx!(@ zAToBbfD3?0m({1M;2ynWi`pSB7HisikOq`z z`#KSeh=P)8rlb1md>85pr(^Ci!*uIo8>DXr8d89ooOG|Z2_*3`Y|(aoUWSfIf4l~R z5yIGPay^6BG3{jxL-4}MFl4{JhVy8ZyJE2I-=2R0pbxXre~FKMe}9`@wtG|=lIQA$ z>*(y%_D~=qR~jkvc*&l{`?Go>J8}5Jww*LYkZ8I1gVJQEr+0rHJojA;ad0 zu-$tH3{vH5%F4~1H}WPWdez%^X&;{a(VAy&DZZ}I)Vil#J9U)A)*R!}pr0z4V~gD$ah=|GU~gwR*$ zBr0Wc=<~~Sm99f#r!U=5J#yqoeqP@2bU8q!k%7TGHk(Jc0jORD?~YFLYgk>$rRLQG ze}$OlpYBn=B%_mlODktO)O-pFyJ`X9x)4*e9V!L@NG zQVt=%Oo?Oo7YvpKdf*q<(A+#Fn7%u?V3@HJPXoeJkKsxDYLBZw#njQ!A>}!7D-F>t z_o{80p(R;G%-%$Y>`m|B9hEYHtzto$2=WYfuKt2 z8laUO3D{}t5%>H z;W*42wvI*kV}_A13alfspPwW|97Ctir^+F+wF_rY0YQly1%@l~SFFZn@$aSTAf{K@ zFD@~$X=x{E3A(C4PFPbPrwoHI4PHw6#O^<5ucYMY5M;54k`(hNxEXkr3SkND;nz(a z#?uBSGtyf97|tg(r{D~)1p1JQ`X7hU2R1|VD@rLsOIe`fjON&c(G`4(qK6sEcXzV1hPsT7{5cvMfZWnOtXV;qtj!^#zd<~oG>4%OHS5= zFa%Zn*5!-na!W}OEy&HiSaX!2eHuToKb>RQvvN3kFzVDpxPHJ?>to_r9BnFskFSa= z4*A%0NS-(=M}*50;fVe#Ik^3PL-y-F@Xn`1GA9)UBno0b23@NzQVbWUxIKEC90rc2{b*-U(ze| z_{|$V?P#%h@{5$B-_h3MBp;YR#$44P4p&QZ<^*rP4|&&{%dd+~UWP+%Y63!BB#uR( z3o(6dryp8^-$C^1THzlz5c2;SqQ55zr&>$%uzda7V9cgZs+XIw@*#fKcT!WH;Em53A>|}@G32W6D&!) zZUBUSGe*;!Oc>CGe5+1=hyI9ndy2E?6HSydCkVo;zT?wn%gvqL|3sBgfD0~l;Me#R zuaXM7YuP0uG=*Z3PjTjGPU&)>?uSTqwdh$bLXG$I(VBt%ffu)>4_`D9D_iPg@UOjr@#VL2!Lbt40NeB1n1zC zc61qZ>EiFBf2PU;rW&A|h8I@i#n3KS~=@<50E<2>Kjns zC&-Qkbo{hRhHD)8G;z!oZo=(cntjC8kL~9$a?>{le1}Klm^J~hR5FSYGKF4)+*ADfK3jG-dSkE`&Q)aXS?+{F9 zbS$^4aFT)E<5n;PpYvFaH}(6SKaVl<-nk$BrL|<#6%{h>nP*3zndkV{zv#g+vO-PaCU+YgRoQ*b~H9o{SScJE`E&t z1E4+tAo|V_QkIb-hJ?~SACEdUjSbRAFJbgnfjx`@L9oHsaUU-}e2XqvsIaSs)gB7cOH$XhExMzS2%5V(Ulo%Q0kc zm?(NstFB+pbimO1UoqSTBI`>1qcKt=hp$CxsfDntF=->x*uvPRAaSz>nkS{K-Pd}4 zAz9)}s>~ph@{3;%S+)Ce=4tC6FRh+qjsqw^dpJnkA-e%gj-V5@cW@v_N9&Org2Ss} zXvFeJ`ndJ+sHH)G#ql8mR6Ggd(Kih&9W3G6{hbt4N=X%3Bx*kA4HXjnY zeAeqQQ}dL=MG$$$`GnLD;!R-eOV}WptnUSArMRfgjU+Q@p?z!M)R!=Uz&00*#YRt; zbRfzw!NenZO;cQL}vR*bU%v8VNg7l8kTDLDG?F;h*svyq&FX_9C zoS%d$-uQ8v{qG~g`e~28-Uol*ewDr&fqPnXX1g>tm1;3fjAUyhxof3IKfl+)R4!e1 z&5}0)A(em4S3!d}qFh=^JVIKD0o5PeE$0(XIWWwKBxD3)xjlY*GEvHqAXgmGEnEIy z1$LBWb1)TBc~cRK7^x}HUvVoi4$z6~C}20X83#G8-NE_nUn86+%wuEN0?#`L+>Jh~ z_VPMZBlA_car`;H!;B>yj1m<3c;`dx6TFBJ=@Kl&x0?!`+4_PmjzQKTitRi%4m+QY zqWu-EuvF;TJ2=npp64;f5o)x;e79;)Do=4@RjK3U3+b|(mMu(W(hb+Mr^1HWO=^OI z9^I~baiKMy<8%%Q!x-oL<%3aw+cAt2&+i`&p-p^G%66lXML5Hta~>bgolNOC`9Mhc zALsexcVe9tZE1e}(gGSNTomoQ%_we2#>m-KC(dHzXONX;{JC+CP~7vYEll>o+~}gR zz2q{Uw=`NlgKB4-4qr(jK7_Gp1-9T#w%Ur5kkPng+!0#;OVc!jDK0DQ68~b!s6@kc z%Qip5R=J${RulIE=fSE}esCddj*O3vx};Y6?J~QUxSLo$?$I~CyIv+$c-@lsq&>Sa zHnW#cj@=rYDY1Vkusb3VW_INQ82AIX`iEFMEJ9pseqMH5`83kl$*SD}i=D)YR~ zg=ARE$p^u|V@Iz-E*YXTOYi!av+Vct22_e1h-ZtKdp~tV-tEy)=50Vwp_0uz(cM?S zE?h1kCxs*yR5nf<8B_cY~}?c`YY>3a5xV8_P6 zoabDfgU0hAwv+GreebWAeFC%71GC%VRcU}cG%#;^!Pa_QnbFg!;~-cT^ff{a`RnT) z4!JU~XhfI$l3=D1c#hf~STtc$Ks0e*xW19a&Dx8z+m^2ou?=VL9I|U^pa4o;n9UPs zbhC5jz_C!&UlGrJHO-rt1v@9Ft%An#8tU{H{G{f9m<#l;rv%#Rgrz@nr&J^rYHG%5 zts^zHw!G)wKh_cHvM)7c^s)=0_$nDE!tdE@`ABC&O}TCrR5M^*K8jU-zWoLXzp%xxHp z(G455#tEGh$_@Hl3jG95y~N8VXZpThtrhBwb~dwfqXgZ)*K)Eax3||8aGn@~s6HFsHB3JuaotX9mzKgwKRqV8MOOSEL_Duj>>ojpz>*E>(8r z=Wa{_fHS^GgDhdl+YI2kj3Y;k zhTn80FfO?|#*r3lG%>}-clv3^o}Lo^XFF5LC+@&k#@qzEdw;)kyYQLk##L$ zp@D$t=Cu2%IVZ9LtkXT+qrs$jAkO4NF-P5tUHbpcQ}zeZm0))oMPrSZLm0bfG z#z(3gb7QrpuX~5py~u+w$i7l3T53Ix^B0~c6Y3R=M#rk!D#M1)Ca^xzdm8_p!-i+w!DJ?L`>neAyYQH#ZXx#5!yE9w$a4z=v-KrreXASEJAOtpM6WNz? z-Is41kHw+K<~Xlvk~mk)*;Cud7eNOPnE`{|{QBz)k30^rUi=KjtT?aI`a38aRW^Tq`p|W7N0- zTtc6*f`uM7@{<~yuH(*|$Bb5Fb_c0?{A_$zWv;MbSy9lW#<&E!7WoZS=jNAIw(ug( z85}w*zNP8bCVv>JCZ~S^u3;R1**Mrl_3E9ojKxC0TrVD8dvJE<3lF<;#X`_cT#1)YqS%s!kv1 z&rWSMF_x{$&(1Rjk_TFS*LODSAi^mnusflL z%1WMS<_~VxxL`&aKD4kXf*#QaGHQOB6W#Mj~GwBo2`0Oy)oOyBhPu)C?V1Ds!tDy74j6yAL_jgnGeRQHx1K$b79WPjo zWh!#>-ws$R2?AUz& zQu^61Sme|6V^AdcM)ku1kg)&4WA|mPg%-%WTdcTjG!%bP`e!6}p8Nd8f1rb$FgMeF z>4ip)jo|kLKza{O^Ee*m*~p_LA#TA%eks`N>oBV}&A)(!A_cYxaw^8_t5N)d;stof zO=ABTtErA*!Teq<^yLrUv;QEKOhy-rU}biucW>NtCfPk1e2#T`6dj7o(dRoN;i(|b zY7*?HdZaYBEc5Ch6xddWUH~G7hF+I+&}aejQrc~j)2#3Iyb)%k_)e_uftPIQ70w7_ z`?ax&LEhK~6#-uu2D8sBDh<@V#c|@geEh~I^cDIpT%+Y)Bj{0)5eWP5t^XIA zfvSYVumxxu5nFK26ht#fh&P7rxbf&M9S%i<$+6-(xF-^3-Qnksz=Ra)B%BrF_9^D*o#b#Eg$l zXvSs_`mHn;Db|jUjTFzy(5*23h52uNDFJjdL)Us>LE2VBSx*4dEFUn?g&9?a=Ui&E z)t^^96}%fjBlcSK(W9YMzuhH5p*aC7S062EbxqV-2(^wOxw0LM_#YxNAZoM37Nkkw zVbtLgME+vVyC#5phoxF3;bccfrrWRMN-M3UBi-{|+*Y|RjpgUJvKsG>0@{FvfjW-U z`7VV94tIePP6W&%)J@up$8Zh`k-R2?qRZY0hkkS!6d^UN;}}6)kk#;CIkfvEl=oT6 z@L^b+mIbKT;R^mLXX*iOAq>lanl~-z6`++3Z1D8Sbo2ypw%66eaYuQAkE4%kn6gh-)mpAPs2SKy>8`x=iH&(+9UuAP?klxBuhbfS zb;@|23qhChA7bC)MQjP@&`tB$0@BiN^FM__k(XtQ z>FmcLDv;z9pR!LK?H#>e-(gWrO0YuVml8iYT%Yq>^(Cj1$PeTL`CR&v^U@O-7*B zxwNj_`nSvTS-HxB;1)t|)r3W05#bc09(;=Ac$q`zPV+}#gPD#@>lV@CF{*RD1XjJH zSG)4s459?88l|;H2EP5&8FD61Ubc|;2yz%fw^@t^(db`dU<@s8;G7Pu$Dyk&YmG~G z+w7@H38l?%Or^&lQKP8{q|uD*;9`}Aj~Q^AD#^Vbcn{};TmKWS+wNhGRzSLeHz2z+ht*? zUqTU@uc&%wBVIC|HyiJ(4OEx>LoGHKKJ)^bHwodh2_ zw{K)=BhXVLt!h9@pfl`l_Uc_9={#VIY<<+=fe6Zd$XO?66%FWER0P(u78QTfURk~m z1RBrPKClJkx9tw>vQXJe2B&}t0`o9wK73zcK6PVcXZ%T9hmLW(w2k_CxNGYp@!!c3 zO{#|K7j8HlKbGV^isPc)uUk>_q`wlzEtDjIw8@*0S0{OIGAez>d42$eh03eSGhSKA zT{#n2IBruy@$WClLQ!&~-v*e=KX~{g>WY3YuR81e*I3}ZnSBfui5eN<94hloupoE) zDK^*f$Z6TD+Eu~1Y_f;LlSsI`+Q!M_A$l~DyMk%L5c0U9jIoRs8t^)YV%>GQPxh@_ zf1MV`>$(O>Xd0Vn`Hx*4M^*QaiC72bRd=h04({;&IL>;I85sdo3*^-E&6>X14t4RZ z+}yrYci+Gu*T{(p3k-JouM;WE9El~o)DP2NW5eVhsJ;b${IR|5nSsc5X94lXdP85@ zwaAonT2i~e?NU*XQkc1HyuOw2l{IDyUh-?GYBCU(H5K4OV3TFylKCZ}vh&R==|XWg zGcLydRUxQ)^Pm2KfVZt2{+a^=6GrhE&qQVgk#W&c$HP}Z%;Jd$L*|AeU7{5ln=@?+ zI$RBGDn~5(;zbNox%y&xnUMWo?&KNfaE8cvI!Cw;?^p*0Gw@pcZQdPJ?Z&Es z{|p6K`r5;pjc=!FIA6(4tg4w<(+F_ObLlTuWWDWfY>l8WWw63E3=YP2-_|r5?tPDq z``PXL$lvEx&a#51@+v1Kg#M2}v_OY^*k5{Es~JDz(#q1#ZBVF7*j&oBnfr4;nA49Y zWb=Encd&$9Gd6k@9ZaQBKrtF&yo{>;;jGBvD{~C%6>{^U@nE%+aX{pR5Jf$pP^hFA z5WC%3%zP?_`Eq&*uljlZmgp(9VT-*9v5@#y=7H)8VRo6WE6SfU0&m=l3ny}sGo^Mc z5SI1%>=u+qJDtTl@j0Jxhk1eJD=)$mbp3183-l8WKdr4;_L$E+SHHZw`h|z)2VGoQ zQA!*)u4Nv2etx}E^^Ttxy>Kje_d~IJ?}!j}XUHbG)H#kk#i9-BGRRL@$W+JE*FiLA zN>B*k_INzt?=+-Sp00d_R6rpR3KSu~=*>q34eCA3hHnLcWSbh%R~z2>OzveMKv${4 zXuI?ywYjBK)2xN5Ww%0I!(O}IZ&0?NRw{YBy|WP}$RHGtx~n|SJe9h2RIUZ4i8x%5sy;3U%$I1%|wN<_u_sc9S6-kd+ z4d-40BKrILkFr{af&e5dx9l_!mR4Ow6MlxS9i>%%^hZN87SrC9l?s)WZ3FC-iO~^j zpZd!2ye{#+5l&Ofj@8e>1tB_?V+s=lR#QXEdS6u@ zwLeY&oU-$^kLA&VOGUMI+m-3a?^|;kjbwpm*Prs59l!Za6qw5(tn;@Vv7gmH_zl7P z7cBfkmf;qGKzigfq-*WHtr2f&n^|-3>c(D>tu|Eqv|K=bXS*rNFMYmj-58UWGh&wR zQoe4?(P`}Mo~5)J?RcR_{Qk${B|@?UAmMA?%<~P-kIoY%H|w69Hx+e-NB7)vlaBgDuZhbyj?aEzj8jZbokiW0c!*HEhwgalKq^;wvB!-v4j zH*+7(-sE8neX%f6Z0RB#pEA89Ze2(BZ6c$k{ENw-&k;ncA8mjfJ6ks7*ona(D%EDs z7(ww++>;RU;_au>|3P9yt|v2M%>ODY`hPRG0E(%DzTvAd!^(zHI4>)}hxz`D=8o^IUm5=rf?57$aJBR*-0Rxug z;VXag&=?+4w^Rkw{*;12F+YfHha^=L^i2u#jn89UH#^<9e!pNa9pqc|@ta4(+tIob z7(l+;GC;G!m&Ol+%a|J^;y6fde|8r2l5r>k zPqQSr!Ls00FhV4nGoJj0KKGp!#^x`rxR2S;H-E}IdVCS{O#inrkuFChj32#%!x!Em z>>#T%nX=G+xcal2Ogq89->n=I-wF15H_5pCmN(lCZa@@^j7O@hoblrJ!n>s)Jm7Vs zPo8K@ve=NRKh!2!bjiDniw#+E=ivVg<0@ymwEYjo$ozSl@seuuzuuh=Ej9y1X_hE=leByQ2gzFu+z-)F``=EYSX(KN<84+;texS+94y8O9zk8;k|;0q z81X8#g-51XH7Q^!_JF~jxnS$ttdxQtg%&h5J0 z^dKeFPVEX2GwdR{o0FpG1n>12`GCqeN?HzD-X)WWO(7pj{IeLR7`MkOp6qg3Bf3|A z4v34x_ys2?qks!cIvhgxgAHwu4#Db*A{GR++WsLAG?f=MbBgoOr|vQCVxJENDIi0OJ6!OOeK+ZzfnZD=Iv-H9>EetXk?JG1pkQ2O;cZITdo2Lua zqnM#i9jDO9&zbnBUnYr7%9^;^mD-iQT;<&fe6Xl<0ge|szQ8rzq)~Fl>y51(&^D%FNhl%;}j<|1%V^&k3?aBcf@bl;I=&*7EK%)zsbeU8TsKazM+Z4oqE{ z7Gawvu^dD`dEnU5=ZIo0Pypq)9bUB^lE+8$8J!sLg_~R>MT1jh*q{OBhPwu(DQbIE z33L_Gdz&9-Z@77G2B2g|C3Qz>W4&54(2yXwi%{Iu2Qb``Q(jgU<82{XN7cy*S#A!lc}g80jo5WBI4gauCCjqPBwLe1+d9yJN|A zFwfl_I=5iy&sCrVmw)bv!1Q2&-{mM~KWmh^5N~lkWMm_*SxdeJuZ6e#xP1y1G9JEA znn4(+z-3zLR@z%n9vr3B*gZiZQ4jaAPmNH2sP@b$%Tz^p` zbTADekub6}fXr_#e+E0bO;)#Kk}_`6#=B7~D~L&!Pk^g>8k&+Q(JSJxz?KsKroEhe zugUfKrOrJrMm~fghaS9Qq`(-WY2P{p;nV-@2jIbC|7Vp!yYzvwhUnlhVk?6jFg0D( J;yZso{V%ZIP{05H literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_10500.png b/Notebooks/1_N_horizon 3/sim_10500.png new file mode 100644 index 0000000000000000000000000000000000000000..9fd5de5872ee3d184d7a3c553fa2e3a22a21ecbe GIT binary patch literal 16746 zcmdtJcT`hf*De}+2P-HY38+XBX#xTYQbLv9K}CWA0qN2Lipo!v7HX&hp*QJL0#<4W z5=x}22q9E~1cU&&YvXyp?>*z*aqb!Ck2B8s_85%pvDtg=wdQ)}GoLl*+AnYGX&gJu zaTo@J9Ybi|GK9hQUW37QJvg`@T&c*_9tS^iUTWrEMs7$i-@6_TFx|Uej~=>tJw)B( z^KtO-M7g<2ib;t{i10n|@_OVcFD~x#A2*1(c{qv>_OZSJjU0NUY2gWj9XSR4?Sdtz zo`u0~kP)|T8b3~*AN5PJHc4YHb=M}8jwQlJ2ibS;y{DBZfWSt0ocC7+(S{q@@6gCF0$-mCMieLw$U-GiEZ+85Hi{OyYBiHlJI4Thss zJ$Zz$nd{`1e>$TNPZ+vmUkJ$s_@e%H>~ z?x>JGJ12X2b{*I`Ie2|H%g)L1$9uVUPWXNw1O@}gjqfKO?VND!Tpj&(v{j>4rGRpITFR`P}NE2jD zJE6%Q`GaR|yN%$ZS^t5+B3;?MF+b#rd_^ekYu--82x)HE1=Bu|yB?NeUFMe74YRKk z=Jrbld?TP8kjF4$L#in(l9hQ|-4&w*Qt$`;;3(^6A_vp4;v+#lc~BRlmq4>ab22-d zw>2fL9wHSsd)OWG`sqg`8-|s~r<<9d$HvSssh-UF)Br6*EAc$>IIl9#1!;L8`3np96p5koW1im~q39Y=eMGeo>v{hG^+qdmi2MN9yn z)ktI45?&gXwI=0YEYm#4<7mY`k(hTQgu`&r1e!C`6Rl3tCp@&Y45Dl-Dyop2n$sBf zk{eI(*x1HPkq9sH;)A+b-O^<%>w-pSQ=JoNHFjfWqtuLDu#iv|$p5hPeTZ=yQ?SX# zHsp5!Pp|BDuN-+QH9*C%6328WnlP9i%;Ls7Z?vm%!)c!Glo2<g-L#Po`SUr8@f(U1Djfem4o*k9*|S0w~sohD$s{ zrxT?NNN1TV%4Cf+cfSuUcZqd+lo4TywJI+eeT(Ez8R_2YUa!E7BQ}hOq=UVPiW6(C zvVv)MkP~Y^D%rFO^%WL|#Fy>L5@cN*igC}E)jx3!wc>5o*y-*~wubz(fHPQ-gICth zz(V*^E>aC7wR7XWwK%XojnXd7)rk`yt0r`ba)~~hrHv=fo)T0OG|Aaw;lfn$&kxap zuolm83cqw$E-sgq&6D$HtTqDX3UuufWij{au>Bn=74@<^Mi0<};!@#j z9`m;li?WsVRTcl(wTc1kNUt0Dw9p;|1WUCaaj*B9m)-Cd*H-Xt#s;aAlsh>KNGoHd z3{GDoU!$m|1F-LJJ{|-Vc-1)+7wkcd&vmKWo_-x9QPbM|Q$MDX?iFriPZ6ZV_6*nCe2-}<7X7d2$~tO>tJD(hn&!%4*E%3# zKWp*HgVb&Mi4~qRn>P``ON&9qBm?9sqIug*+j1f`K%iuyENReOl2d?MWaGUD_UJ7X zzW6H9B2;&Tev(BtF7cP>YF$}EyH&JTL*sK5<#?HU-*+SAFt&;8XRnK(Xs$E$1|*5) z0pCB_jjai}jC7pay1v-DFU1<)sF6D+fQoHA!OdA6(BRz5h3F&{BgVR?JBf9^{ss1N z!FHiIErfn&O73|-<#B!N+TLV^RL_WIwyRrJjRxne;Gx`fFoSjgNRBs-%1v)tMfom#_(*X&>188+XIC5|+$} z;=g&F+2d)cIC1TbXE<(RT}sy+2f~3^S0p)T3f&3Ye^}sJ#p@NR^)Q2APYf~6tJx0S zjEg!JG`sWfvs~b9ZG?}=8cV}!+!tb<14ex#YGT%3#7=F0%0cL!_aWi;>vx@f47da# z*;Q;z%0~Ja2QNxj?!&NY8s5D5pxXL0CZE=|JRs7~#!t=7}=BKFA1 z?Y3iBi*yhI{8dR47%`f7!)=oNITRmsFDx|V1lOQr6^_v*A|n3Y|Et{E0m%RZQYdm& z4zY-kzZ@H}7rN~Z--$=}&rwD=5S9Ly%3`E~r>%CbzyJPM_Z&aC^w^qH*45a`$|^VI zsYq-}N|F0S%O#EoWc{UYtbcXW?z9gylw>*2TqH5IAT^asH$%w=YC)Q8T}h_1J|A{#whYWZf{>H3s0%BpA&De> zrIYQ%5thwpeB||IO&gDPLHU{dY_Ekn%1rx(j6TGLG~6dvW$VsFaiH%XeL5!3++6XV zDaf1o{fU*_jb5!(98mC{F%DXKW!ERs%9VYLQ)arNQ>=Gxuu|G(sH)G~cf>tR#%-+F zZ)FNK*63G|;hh-9i#BJs@rr>{vtEgj%$k5?5UZfv|>VvDzY#U^U# z;E;o643E#OQ!>ai{Y7V3!m1zioHsEsp>E8UkypBv%f7r~Ukf6SkZ6x9bua$DlGPa0eTI))KY{t15*<5pSu$N^SWC`EY0+ENflUfRB&OC+DU6YXSR{ zQsq41h?0_$!u6WQ$0sIgW1#l&>r*KKf!!C zxR=|bjXzl_s2+|QszN0z2R9KOCU*NwVI76V#r6IC{E}te(i6n(N-609rQQA)^iuOD zqLh`qnW3yo`OlBA3&&{Y7Zz%jHE-7=2}$K<$_yM%yo5j{eL`X_ZqNp%pq3S z)-IaZ9Ax>sAe;_+bgj6~lj5{6QU|?yp_#dDvpe#ERI>khjfD-~ zw8%DPiUPw=I>8}h$6GHfzK~b ztre64rlej_UVn*c$H}-1#aT9=w+RZucXV{bWn`2=s1(Q33}>vRI83hdm`QQ;Z?3O+ z0~5~_7L^*RsXh0Z`7Es_(PHy!%>`tsksGiOz#MMo-aOe@yR(|YyE-ej9R z&u&Gt=g*&msfx|&nYImT0xYI8{-;H@Z)Bu6M>{b$x1W|b_Tt6r1r*gnKyb)7ExiE4Oc|(&i7= zS^U~qFJvAG`<4fUB#EuUwdw3AzzCI4c+*Y4ZUJ%~hPB;W`b?TWhoXN~f`~;{id&Nf z?|Pet6ngV9w|Acb@QImfMLFV<$`5FGRkuhXHkoAyI z+XtOo;d2E~=*aFmAff(0p9i6-UgH`dU?o9cHK@gvL_=-uP9?H;j~YAmM;LDc9Ev0U zTXZs`(FcSs$oULgeaC}pc^-d%5`OXgm1x_))39j!5=A2kjL+4}Og ze{Xn~mzS&j=}rhz9VNY}VX?`|ZoR|IkfNZV0El_5ehiA#wUk6Lo5GJDRni{+e2Kwn zi{rh@#_iw2Prlq!sCez2#8W5>bYr!SZi;HhEI4Q=;92DMum~Btn$8sQQ8kqMQwSebRrNF_s79!l%O0QoVlZe?@N^WMcWL zBzrFqXPmb;*P$r7(8O@vn$}Pz0qfA`D!Y9+9m>HtxPv#Bk|pe4C~YrA71h+pm{9u7 z>`Epg74(d9b$Tkhl^Vzy?!Ml30rS=JlW|5g5GJnmr-S(5JVn43h;p&aj{1)G13MJ0 zuTY#@UY~>LaV%g_5ixc#;d1Fa6~L)kKsKau^z5Fy{FmDX!BD7kmA)^yz{p!Yr{;Y7 zU*1v)-d@R&4%+ZSkd`Mqy?b?KsXzgc0cwjdn3E;uD50RuF-`=7ad43y|Si_LLUEVe%)j#M53*KL23PrFceWQWCVKD28g}; zzI)W8Qxu9}P%PneYb>`?NCX@XWEtMdufBF1-C%XmeQnftt!SaXULFc~8$iS)3v)^$ zUz?WMmh=~y&8}oH8}Cp z7lc&NYQ=?+g`}+A004ZCOB)TB^Ip+VgtJsyZ%$8kPN6Vr#+cf|i7%0rbkwRHA9M5u z5epKLaJRj!6s0ve{O^xPedTYaW_8RT0s!^{i-0fK8c3%*PleEE7N=C3P7@WRSU)wA3rhKrjxP|fBUZ>2? z+A;lShN6Pz>;d=h0JFrZc42j8cfenX#HSD+@Aso6U=eXj=y5B9Kj>Jb*S>xG3W6x9 z3ymv!Y3L2=Xz6-y#x`7X*ky}Yr)XO#d#^kR?&jWi>%7Dry4I+&XFU+DK?|N4y&$}n ze*E~+whY01ZQ~Nx*v&e}`WIUtDpO+EF4^=NmNw|s&x!$wl;gLuzuF=%16{uWE~NR- z6ojj1`>%A#O8d;22mKD^?b8q5FtT~{VIT0K0U%;%gWc$wVf=;EM^Crs$G3GC8&@L1 z65{y$w{lgWER2AV@oY@&16)6+V}}{(p1C(LwbeBM$J=R3iLV>Umi)+G2IL zASwcpK!B3k(b-97j5BR{nSWa8Z$<=Cz` zuUecn;t;~lizqs7V^ita?PF6U2k{%$)WV{mz$kBZ@u!s=o$a(Pt7L*mjA?N+X&?kv zPg|vQ5=`YNNXLA{H|^Ko+mt{XAb0iVX!?>Ap)N;HGGR<)mJVM*!eDL0t-xOhm2=tVZt7|EUntvQl@9B`sOHSsP1WN+2Y}MB>Xupa?E~`5l%Tv%vK2DW5 zBe-b1S0T<@bsQ4Mcg7<)W%aeQIC}#)fg#fLBGngD3X-Tv7Pkzs zxCz0o7}^`Gt`D(}XH7J^>IOzgC+W)P5~!L6AadoYz!9v4vF*F^Ho3Kb>>3S70>ny? zXeRxWz9vs$lcyjRD9FUbL{^*Zodg4vEwN}J=#cOj;WSTW9R+#-B5#AN6B8$ZVnoXx zhguD}`TlhLoF@jiBDmE>Fl9K9wd(arLC95K1UE)(PEK)0o`t;mH(Ygd{s*r9hBmOY z`!8PVf-Lp#0E-0Ku!*jRFR>=cgU-m+NgfJwl#q&zXfx*AvHaNwF@SIOi1Aa4h;@lw z#hN5xNl+yS7$vl5ZvEBNn(B`;6b&%xjU$Lc(s8B{8Qby*0;LUs}v(q}` z^@)FnPaK>wG7dMv*;Lw+z@4kF|0WnicC{Rg{0pEoCuGsqe1_!c#hvH(pMo--o(pn_ znlNXfW4g{eSI=_1{=Reae|&ut>gB&r`hTW_cl!T7EZwrVd+iCqyOT+^CMM&B7N@kN zoddB#EZvD%hk6U>@sOhe-*3EmnD5eKU-po+N4)7WLbx-^Y2ew_E)F~JK!=ol;LC8& z>~pR=jB+O*>nYaj@*Z}zatXr|Eu{s#9?V!&*Bk?*BwV0M8peqE5c}s#O9v|*8{#jU zv3R^%vvnk)Y`n8={mS&p8qJE##)^9DXM_+Kte3f8rtC+16)aNsV*igbYKOzlPC`hz zvzRmppg5;fyJt)FeT)O)VHK|DUjRn%#!Bgt?9x0BNj9i~N~76gY3Uy6@6)f3K6tC%EHjzD4FSa&T5ldR^A_m{ zP3UMRx%f~{vfS9PP}D_ZciU(5>rm@_Zw_9oNW$u3q_jyDJbBwDB)71}o2qRDDb%ee zLJ=3gwmL?{!mE9}W)@Rsje0E;w(P@rtnhN)`Zx8=?X^}6hrf|Vs0gu2q#a3Dy0B6rCZ=G< z&1CzW?Ok5UkgHLiHbpZ1)!>ygCcPs)^Jq!beS^}LKOb7ZRb9ESgDP!Fm@0sacU;_| z<2Km9Ust6aKm@xJx2}|Isvr`zk{45*2aObOT87$RsrsT&T~}Id^}D>Fv|oIsLqR@v zbb-pT?`pl2zP*-*bRpc#UaPT(*IvsLoa;ZA@KA$nbI?3g!2FNy<<2D8!0)z*c*Tzq zl5iVQYTWiS&S;P9ySifHeZQ7J+IC-v)sybxE_k0E03+p+Wn~`(7%{}w&P=LH)x*uQ zwU_Ig6Bb6q`SwD93BiAKGZ>`65ftr>6l}?AXKB1w7%mC-W&3n^Vyb5%68GHV{OPOl z>|cy+PxtmrXb0eP6?+P1Uii3_I`=2MkO4ov2^*#+{j~*!O}b_D6HiZ5)EnPsOUa&j z`dYNB_s`vR4rLL2fma@9e)iNt6B4ZgfSKyqjhLC29alc)ZN>NH{9Wa^w#Aj?CY9(e zy33H^cy6;>A$c`-VfM+dXQ~`l33=`gejH{~&v_;~8`sX+CFI@RCs(`=T9ti&1J*0| z&4X2AE<4G8M$m`218o_@Y)arUZ zY@0*9xq>@*Ed=(h*Pl;!{*X(tOV0~#g+0;7(6Hs7!_rO*({nySD73M?_KNWj{qjrV z;RTIXa+kA4(puFd&is0I?$FN4@Hl8gd#lO=;rIhVqcv3 z^}zgQB=Ys;d3y4FQbA3Q>TvQaR3aWF7u9?(vWsHZ_0fwLOPKh zZdi6kO+x(%)Y4hts<6|Cu`k$Lq(G+yH0HO5R&V7wCCmF9x>3kEOe3x$MJ*b1SxbhJ z>YL!=g#zkqsE&M<#eP;LtrgGx>qZbjt|c9R1p9WmTodvysa&bDZfB?DA^OyS5WcS3 zz`0gtrb{%!{~;YIT_b2nHa`8uCz5v70(U7p-0QJg=HYvr)sX1Av$&M9H)NMA=*OwU z_VPcz{wTOgNv)BpLd_?ri~srdb06QU1bk7=d%45!dnYlQG7^Db^~ z&ZG)or}~IL7dxYJKSru{9`SylmdSEiyzd+7`g0W#SEyddB?79-T+trq`MD)JtfHlC zu2QQCN~O;PHiD^fGn1VaFLUXSoH|x8>ygc`%VY3Obn_bM&qUay#3-c4+Eg~}ltOMC zdaeU5Id8t*bTzVpqcl8Q#RQaW(PgGl&GmJ|-hMrAU$9R-czjn!;IM}wNDYnBSZ<42cz9`s~(Gz~D;ooQTO@;Bxag0^l9q-M@B&o;$D#*I1eij1t{e!y> zgcK(xo*Jl<5KNZI#dSNUdOAJOe*8njGYmkW8egEQP`|oGt}RTdnoDEpukmW5x2Y0v z%O8`}6Ms1wBTB&!>b|?{kb9{*8%0=_gXfn%v^3)i1jf5DW@M|ioF&};%E@Cry-eRr z$Yl5=aCsjW)B`{$X;vnxDPx0U#q49H2KH9>5(C13Ll~E{`@a@$@1Ope_M|NzV;vz9 zS#X6d=G-eB)Z;C+_q$*WzLP8kjTeEBCgnzoEv(e%u0E^jt3^4hrWDQ$SLHPI2h$_X z-12)Pry^|@I$ymoG2k*%GtfDsRwpbTzTR4Ai*2?`;1xUwAr9J16IytM4WZbcBkr=K zXChlwRM;df&4H^gA06fxGPdY{lQ;g*%!pB%eKYH>k>6dN$uH>NKMtI?`Jq`Ce7!OH ziy>$ydK3(p?-Rt)XVc3LeOmDiu+i2~=|6`4-Sch0CD_WoVXO$%(?M4-9zMB9-zIH7 zm_bMg9JVjG@Wo3s!P52@KJsFC0pA5e8x&*q9tOqFy|>VMw_??Afyns5wQN=sUR~18 zxz!_m^0Spxe}KOZm~`PHjw*bC%`trOiSvkZ%{EpQ5>KX8)rvvA!#+9T*UwFkzsl#k zkoD30*1qz8JkGy93A%a%3E*@iq5b7EsTvTCv{zOiyJ(y*NJcWt>$YR<>(k+t_?`fN z!oUj|d`+FLv@W+6JRmsEbq4>5f3o!>Dl?4z>FJj99o;YIj;h^LP>p%YRaPvbtRb*z z0N)D

I}zl^z}M1TUzE>t}1Pa=o}l>HC`ewI`8FPrCL(Utjv~NCo*V zkFw&NY@-O5F_of%S$X;Xy0AAmxOj51icz`@2Ip+t{!dnt`svS7Sr;|dymfPpuJ zpsz~C|I#qQ@Q#-G1KjGvjds0c_lFw~k7Ujl#K7kZP6)gXgNn;s9IGF3>I#)eb@&=dsJO90R|bc*QDT0XFrK@_i7H z&HnVEvsQ-XgbSde>G(A#pcD9OQ*NGDt2+@trD2ksm`w^4r(NuNmAgBJ)W{Y8E5Jbz zMV?gu#9%^eg!gZt^7UR7k&_E+Udcq9k&AZNjMYS;^UI>9>QBKDdA9g1mj3FN>Vlen z1=om0pA8+6lgk>Rk25vgoq`>&8UBnqjbPOd_YgQN;RNXR&TVKbVujwd`vp|tfKPIH zxvRHo`QY@Sq0Eh{iuwT-D9+8M;P2pavMam&yKp~8((Y;^(2>08TPCUO1_&_px-rd@ zi_%#?t;P8+bwpe|iR>|f$|X?Q(OxFe$QqHLkNLx8VaK$a1`#9i8JA78;8c&UFd zu8sHzUV2Qy(wI!jd{Oh6huucB?a&$r`msZdE9J1g!Q|w#IQEE(;une=^J^!kp2eMF zX@4C92lT7}_4^9!Ud&tJ@Q;NTJ4TBbVD6~X#;R5$tePjC9z+yniY_$!x6%tLo`L8= z?V3?v9IE-_O6EkcvtZeMZhb-@JgLV`p*)LEoXD6R+N@AvmN%)@88G{Y>pLD7gG~|F zjst|lqHiK|pF+UbY#v~zUc!1gEokCC#sIPy`k4m3(W=p?WJ#~u=W&_KHd?#U$OW+O zI(HYhQ^6>`e*4)4xtQqit@qhiWV5o&`-17A(IaCYV;)#){={EB1Clx*zqzx-6jbCx z#o=(c=fpbRl))>A=6ERt$sggUKyi}n*Mq%(fAG1FUQv&&UeRDIO=Cl*#_tD0)yi6T z8=c|ca>(UdPgd?~nnOVH3jqX(2D~r4o(uG(Wg`47EU%ExB*dM$B`u;H7QGj2kvqFf zV-=yfQRungAbA;6)j?p>uGb_P{kIJ)WX*c{(D}VEuJ85AB;Q50hq{zhBdhBLEj8~r zhVih^M>HBQT~qiJ^Nu%ZPNc~7;jmwj#=TkrEds7$lk1pxThH&0;O8|^KU2J|Ku)yU z1r8{PwH>MyIt05%Rpy}n2=us}yHZ%HE>MSqnToII3gYw_+3Y_&I4jx^|~&8js0926|(uJ2#n zwM&CdvJ!zoA}obaI9_y{oS6fXvBFFOeW<(LW_TpM5XW4rz94Th%(WAO+?IDogE;B3 z78;$L%VHv1Q&3TO6LjRv;vA*0WLZ4|$L1RG;>@cT_1qM7)q-gFg_DNx`-j5_!Sn81 z3)$E2hd=Wbje4dk+;-@)@`bFY--zVKivmWly`LNXY?GE=>T5EW#Yq|4Rg!ZssCNlh zD^(E9An)l}n%T_EwnzR)0>F09F4)=gKz(IvedI8ypj;S%*fQa^i)Yx-$+3GyE=#zf z%`ay7iu+Ex$g7XZAB)@jc9*!ITB}95x4jYGUPAp?FD);;kj;!Y9~QCR^LE)j#&%Ei zCRcM~;tIr1lN3m2YOUaWpkz zb?w51c_{6GI3kEzog3W42(|{X{X0QN(9a$Gd>dj`oaM?nBiL} z*F|Fx`ntH&oKTBPLou3ZWzG@KV1;D~sC^{nwst_CynJkfi( z^b7%g6(KNo6Vvaaf8?R%WQM$j zInvI!Fy2*_2ub2}lhA>;i3B=j*V@6OV2>fr5$u&4v%e=uwe*{Pbp0agDQ*p(HkmqH z-cXP1PMsp%}ea6f|duHw2bhwXRKXCOX~+a33% zpg#vh_)m_m35<4RZ`+3hnGPxIBF>pAq&v~`#EM!j*L?AFmQIlY4j+^Oh znVYdQb;zaAE#fkV47al1yD46a%ylCTCm^kF`YleaK1&a9Zb&a2DQs@~5z%)L>oxcJ zDl|DOQN>^Ho_Vf%H8~5c130ZXXfrMTB}<`E-u)3X9Pq2Ta5Co)i80Q3i6Co`%?WcY zJbmTCSP+@Bd?{sI)4oM>oRRJ|=4W^@j+#I}vPHgW4 z`lhb^$~Ds37_dsy*~d~T6gN*cPKc-$-I(R<_phk16vx|SM-p)$g3CK-)hS7N(8pKNF{a&iPRo86qgCP#SN{w^=qTO6pu5%qZtqB*D%cg>r^x9E4nSIz?^z5JPr z>sxX%F2yYY{d<*kJN(~oWI#IR{T+YDfJ(?30FTx8wpau) zde8!5?H`XWWe=RvHHT;6t5?D^C8<^Zs%gqv*_Lh(QE_nYt64W7dleX6mU1M$?W4u) zu>qiWveY)4F0anSlby5g8o9dy*|eR&xwI!bKisn+j9(!NPkw4{-j0jY6pEkr3eOXD zO8K3!dTNdR-Ml>eqE0RwKEhWBKfCFC3XvC$Rd%=#=Wpy`t7pF6^N)w8kCKYq#h@oa zaXS9`x9V0c3ktR5*R0+8TK+6yT?du;zaM1V%|d$_0%X+D_>F;g>3*Im(7*&yMiyhi zZI8M#EHl?NBKw~G7&A@)!7kmV)<)mN6oAF4U&{9)*VQhpaW1PacYzTY7|5O+4bFOE zH2O7H^q7m&1Ks>4>CzW9@79K9n!)O}^%#mWk#=B;N%0kJ89EczpHn8vaL7DY&DFey(`-9^$nV3AYkl5gzZ54gfS9CG zFzZ_k5f}Y`;pO)Dfn%)D-a-x3Z1?Qlh0H`mGRR9R$;EYx_!r%W&;1*b;GrE z$!ce;zm}C2{C@D-)93$k*8@*|os;Rt4%O-Y_C+8M;nfl60Xbo-&c#W)AFStXjO+pV zhhJ#CB(+4u4V^-KQSf!;K17~>r?_RQEQN{+m;{Tk>I)br{Xb>yZq1_UrU{ytUoDCZ z^CE}N`TzNWa219fT2p>JsC!oO;ou5K@Zgsr_r*Oksj~WY-AdV*S45*uarR4cZt3Uw zjoKQ23v*Q{9uULt69QW}Yg<~5h-=3DQ=2qx)+{{9O8oc%d*l5Hk-c2gr*<}*zP(II z1>I8!jecBVbsKY7j}(fjdIS$@wrZxe7eVVZrXj8JTChSxkpQ{^--u866f8Y_6H~~jU$d%yvxChs8 zAHVUS(}2|TUlgU*&l>xXZG;(vHluk-nuY-l#%2_k>gt9@b!X=@B}GQ=W)@i%YF0Ix z8Jjq;LBXP&xWD4SjzMAfQv|hfmE8$EfnSeEPj$_rM+Dho)gx&&+XH^1-Xt4egm&Tr zM-uGZ=RzIm{n0L_#nU`ULJEbu%)H!VMA;mZUCQ~(sdMeEg%bV@aqgJA2cDA&K z+++haj4SZcI2yZTgRX79_dR6FPD$$h`+Iv^Km53gFq5OSXxD3z@If{YkViJX<#!6` zZ5&Wy349R8_x;*6>x(-gDu(lRAE4;nsvukA8x#l z2}1KzU(gd*P!APkf+673|6bP&ommx^oBx|I>CtR3yc^Ay}6lEeqvC zK#lm;d-q34=c)H4t&m9ll)+RT*_}BKd2)IOBj+(4aBgu_BOHzlDYp}OvXFs?<`Uc=Yu@Jj-33bbj{l6<&qXc$3^37~7*MYEcZFv(6;bAzA z3o$G?$OkihqHuK>^`t>{1X&v@RBvb7E5L2O4bx8V-1Rg(M4|IW3e{JA^1aoGRvPb)o%4)w>b-M|jYAQqAJ-1xKnsDNC~C;T_OP({FQuwb%W!8@c-9{ zp72>FQTN|z1NX3RFuwoiTYkSObH8!#*uUzR|5kr}a?>7JhphS6mn|(-o}UO0%dsUZ zcAfrp!MRxc^ms!HfrwD>{Rb<$vdApKPSSc_9NBUnzz#kS2vFX*&>Q4}Jk|9u9u$9O z-+8$$w2qzowcRvA7=u2c6!7WY-!!bs*BjL38!&y;!%qBaWi{AZAlcAO$O@`@vPeJP z?iIW;$|D~-LSEaTmr7KIbrrvjlKDN_^3|PKUVf}Ys2zT0gJFQ^gmW+Qjtf&cf|(qM zTABy*G$M?_u!ox7l z(Zq5;xEmwYzWC`xP^0qrd}vJrm}x|`>OR^s?}5m2Ne`m;mqoLtaPpm;`6~)q(=yEV%@V~|7=|Ows&RM98Ys# zG42?u-^+$f+4|;tZowHl_*l|Ppsd?%i7B9C$BMZ*vp8zg>Z_o7b%Y#P8}{|iTD7vt zk3a;I!n=YezB#%Etivyr1SVZMu}X~;gIS<;{&5wsKX~m*eyV30u@1XTVoVU`^6@2~ z2%SiWs%NI%;;Kk(VL%DM*wuvY#??6cL7~|4L9_SU}HZ zKpnvIj?W)$e`E)Mp`!YgtQ({S6_ z-7H5BQLNK&IT+&aS2Y{K20mNQEk=ifkftKkC`{92YCyaAm{>s{;r#Z}HAG54T~Ib| z3Ds&trmvyrLXXnDHyCaSv}9cD+9Y}|ZP&u$_Rog2UFT+IX={`Q#asKc%evj zfvGn&XaZkL;YTtAs0IkuYZRUt;WdhvSPZRTbX1%wj?t5>yt-ogTuGN?xB3%JGs&4?mcQ53C_O2N@s)7ItL~7bIs`FgKp=Jh#Y8VB_FV?b{KL-HWhRk#D;f zkVjgrzX$G(3EQ`O>kq*_Y`Yf+uI}a9y*TXu--Xb{1B8XuMg81a`4>LbirmE7U7CT(jwz_E&QtOeMA+(B>~f)IvCU2+3vK)Sm z3@wDII8{kjxsSk{B0D!?x)rJ}?QGb>`NXN8L!{%&QwCjRhrcdt<^~2N5BebJL9&hG z1U^ygx2Z}32*j;lu4ntXfH-v(=(sfeIwi5Fzp1FXiZ6!Eu zkMTO>C#=C`8@p8Ty*pc;D#2w?MM}sI>}Ec$R#4yeG*yr?5=pFAg6)V?-&e03gQ|SP zI-`iq=czRG*-Z*Del;7lc%5REikpM#DOAB^<%v~xfxt>-cO)$t15UKEp0v#8n3G&g=j=hKc_(Z&QMV&(L@tqDfm>S?Q&c@ zGy%>hNsYGYY*I5Uw8dwkrDFSLv76yIF;VMj^3o+)@%U;rlKU2I-4muNSJi=>N}CJy zeTGX2QDJ;|5TJ4uogR02gb=>5SqIxl#_%K$o`ccic)gmYY$#S$IC70RgjzViN`pXJ zuSWod3?pom;M{+OzHm?CJ^iqH_-EA4+D_+AG7bUTpLOEb>Wq!*_i zKEVl3e}_O$5m*N4Q;8>9kRD;$2e*(cG$Q@1cCN*_*3sYC#@FII6e%P+xnu5;jJ~0< zq27?gwyuqIIF6IbBU^P3LAMN@(aynbPOUk86{2QTG%5v~*hr&A5%g?Ka8c5wP)Vu~ zI>Z@~x_wX~r`bwbpQId@K?$9%M{`jNqlxurVKvJk;X%bPo9A)yBV$O!89b32b|IdD zl1%b8Vl8%jP-{?cbVv{q_Jo~f4ly;?Nt;-dJ+k~N-tS|}iT;K1Uv{Fdbk%%oLyaLy z{1pl*Le6_<>Q@l60!get3d@M+y|U^XT!ni)8LgV6XeHR6MzN zDj(r{hao-BFs&a`WN^XSJLYmdL!^C1PE%jFsnUcgBe_U2F3>sIJhlmTO~G$xMCE68 z6HF~G4?gq*JN!LKQ4{E#;3Z|~_6-tMWps|aRIyKW%yLkg9W49A?y`N7aQx_F<|*d6 zn6wI^Db6_WdW=T*yhH%X;p!~5I94I!12>`M@1_nt?gjZ!Ex!-Tf$V*osGD22>Q*c# zOAnz}i*Q$EgYe@|ex#zk`XfjCI|#%}RXxlppXK*2iHlRogQsLuXW1@9Er*vt%jay` z@!Ba55R`S*oPvP3TESS~ZYqKyvsrnP^PZrK(tT z3s!<3Y?SBsMpJRBus{OAS7#%pspA@>|9-$Rv|Eyb!Hm}S*d8>w_>2|_zP$Izc$Z~% zwE`Kgq%*d~6`G)c6&__kgL{Q$mv|^vPnzuYX^GV^o0#aRSxZ}=6j5XaMy_M?r1f{K z<*@q6h+ho3PW~S&Pn*79Ml)8n3j)Nyi~ubg*Y;= z>5N2kfbQ7EtO;oMO5M05j98C{H<*)d1gJk7Sf4tZcAk0}HVkb(>t5L}z8wTi!t*Bi zk~oIDaBxd}25h4WM-gp4T^<}Vprx`0@+t7+Z9RZoo?xucQSVbm8ZTKVWnQYX)ft+> zZX)vL_Cg?ZE|vfE^bbyk&eM*{1`#tnnSndM4$E5JML2IUmUYRy03nR|{&0fC#AmE6 zuoKH-{y{n4014jq3CfhR&Ii`J;9y32_1mXQ#NJ7o=5|t?cQ|fyYk~pW z`0|as3lPE{U2lzjMv!nph>N-=RJSVD-645|Dz;2kK5V;mM`IU5Y?wfMdDM1LL?4}$ zdkA~9pnTQ&puloWcfw^eG&=`}L(BGpyHK(Y*aW0?kK6k4)NmRq0aM0CKeR{dIEo0| zn=mXNHgq2$f8iLfl%tVQZVGojSIJCz*JZ5a`sKUmAU3;FUyWb@T)?+nbdsXy;TW_Gl$~5=+tE54hX?w3PyWI`58e{Rc-KK2UK-mtVon*wWH6 zulTVVKW zFcptBP6fy1$&M6x*AxUHIqO3tFB~n^^6P%{Dha;5d~%{ahD=`=-fWs~9N%8FN!skP zWf~?~`BAt(%R@*ut^1v(w)a{I8a2KeY|wKEC>U zW1|Iyg$5cL&%975Q5X*o51*nJ4vM7D4_ef^V4#Hs1=?oTJ_!gSwvf?8QL(6e@B;BU zz4XN~vDsUp8*#Wgdfu;AwriOhk;j{-WK~zQxRKKYOv=@O%IWS@F<8UKY;ph4P|-Vw$Xtg6E(N}I{Y>rU8`wX;@ZQ+~^;K+bH=XS)2<(D;X(}!yURuJ77 zSuNBw0k&Nd7qYWCKKGtOIv#56|NYqpDX9ggh?<@$DlQ|Fx@PEaGuQBRBFPJEwzA{tH68O^| zWjia8fk>1cK5;!dRYxGrQ_VnN8@CDVfKSz*`i z^#18V)|5~rFa=8MlX3P4_jNZ1tY`T0%1S~;MmdlZ#}2e;;A~-jprqf(TTi9wWIIEK z>d)4FDGKiCKbGD)IXMCGlSU3zBZJnel;=vS{^E-0@9V=kqz7m^r1_Z6S_K7d+9W*t z_8+F_FjoX?jos-gmPYyd{lSb;Mq-!|A(KQB#u@uZ{n`@~*nPP<@6o z+Wzd(g9!-(YYRBcqZ zskaiep+LR!`nGtee0+SyHa2CCAMb76TJGBT9LkJS;*HYeiTvhK! zuJB%4cwud=sj}ZhoRSfw_W4j1O97de;JYf{pK%3i*F z31&H~k<-(>5fZvJA+*NYZg+RLMYW@W)1B`0_~EZ#3*NuKk&u|^)Ric?F+9%98?17G zqk*Er?|EA?H#Pz_gpUaLe!W-tLX|PF)Gn04wC7oGaX-uWu`Cu)@(rS2OAgDlytsLz$I)1Iz2lZQL8g6%W$-H6 z1&fb}XwDSmMC<5X8%kn5R%}*20Pc%-@TZ`5wi)85xM)iZWng#LfC}5rk;}<)WUHK5 z5iO_5Pq9J9i>uULpUGG)CzgY|;+YMs>MyDB&0tzkhUTjiS%o;{Dv_-0U)i9W%JZ>Oyytn-tU1o2zggvodm%N9qps46V5|)z>DEO!9 z{$jJa=OWRcyyd<`%#}6jYiMX}begrGsYUZO>C9lvAc%cT!i%0Z|9#;C7yxX-&lA}! zoC2BQC0qMh=M@9A{cpI7^$X;Gl3}5%T{$)I>ZI&tz~(fc0dprLa*$Ff)%5emHef*# z)cWDlhd^p>Qed-hPqs$jG{(Vj({I!#DP*nKc45Uq444w<&iM1z(coZw8m1C0=|xy( z5%(MX9gRO(Q`6N#LRw7Atj@!f7$YbjutX}{cEfP?A#iB#zyGvJ3Sx}l+CZsge%!5V=Dm4(y})djtj&?(%YhYEA?s60!2VzM{PDMO%<;RnzcXZ?u2msm z4jIkjlXu>J8P1S%#z#iCPwZ-7p;5jLI#I$ro8Rs2b?N3+^kO|lkfowjQm#dVcOlEO zJ1-2?1pfLSvDPVGJ_Gy{8Q6^#DRq5xt?O{!=ZDj>8*M_&Okf1`xv%}o{1_ut4wtIG zX=W3U3(l?ZnEsWlE)_~fXp36|^=zp{jSkDWu90oWbJO985fp%4<=d-qZQKu9Q#nQY&C$Zj@Ixm_6tc6U+q!N8d_FcJ%Ul>-ebbY>yJ^MA2Z1!(>ewJw7s3gb^-R;mT0M}03yGu}t7 z&E;0uHE(afzQ(52@c#Y#zFL&N--u^~zRFsk6!|JJRhO!+b@>q&=qb&ysj1=}si))w zV;Gk8hGZJH3@|f;xthP0ueuEbmPExSjwul56W>JRp6C9J#NPF4-HME#d=u|n7Q5JF z)IhgD60v(q2UxyAnbu?k_<_#uDXyx9~f}@^!f~lF--03CM>TNS63TPO-%&?H|6vGpx6u<&-5v3 z|G*qdsj$BUZ+HBTDcs`eAql^O`A@~l3# zz;^2g?>60B4+mX_V|G#+790PI;9Zu znxt~5fbjV<$aK`AylmnFDYwrI;!UPWv^I<%*7IovLu)9e-G* zkmVSdT;Y*b?Ohlz&-TabzFxevtmPuMxbt?xo1~d{vB5vkE%R8*dx#I{#MHsPFa>x6 zNZTmLDvyq5q`eDdIfQ-r`G-XYt=8BN1eYe9h^S=Zss?Q5VwENI8B`#tK4mxN{(`@ODTC|}$MC>5p5UaFC?E-Y zfvQ6pIRP`%X~<97oK6|MBx?x_O6|Mii-6)Awq*6g`yPdw4L%AJ;lP+1+q{(-S7f{n z{k0d?vA`xOFxuNptPdd8UjXjR-hQgp>^Ko-C;n-PS;Bz6TG7ns-e1%#( z4;$#BVxE}ug5M#K{T!(Of0ru29{(p80RpNpT8T1MGKktQ1k=>PNQAG(P`z~Wpg40W zRo490E{`^hSUDAZBz&V1<@OB21GjKPa6mbeK!OJ3Abn-|6MHOnamtsNT^5&V8b;xp zdkLm+K2fSH+Rd9-vq`B%lqK#`Ta^Y06B${4X{t6XQdAG^{TL%DUnNFxG1U|Y8Bkyz zRkPW&5-(K=!$M!LYEZ0lFd85ouB1tlfN>`e-lSmXe8;U|C{g76*NP`r&bvhEoGMo; zUt=_;p7F1wp}5y06m$YV1teR}I%wvmM~ zv@I5}oA-tawV-K}wz4q8XxzdRo9nw&_e0c;D?cxxiE*nC+`mIf}^l^?+^d3kNx+lYJuJS7oxIzK9K*SU?OX=>9Goiq)7$Quepn%YF&i!kr0yM3Xjj@{t{0LGDVRE~fwagumnfo^@ zhEo^Sd%cRqn1K2V@)<^ev~5Efxk|B0K$R6$R(f45=44TCy_N$+R7N(=I|kQJtQXQj zqZR{TZKSfoMB^#!aC+=+ei8EJGs~VwCwZsi;s`FeJ4!0O3A;SFd%EYzKQhx;kJ$Rw zw=0uj@2+$IcdLW~X8iBUOsuXM_Uxb!8uwkaKIE&+P4MKLfQU}~u`IiztaCW!LQqViDrE{`22a57Xz%B^ zr#Rqwh6(eV=xgT+)k$+`DKBC_!^G6YB*7A(FbLV7_Cfhr;CgqOMMaB#7r7s4?vp0p zU#Eli5;>zMWHkLu(5~4=aO#=j$ub$%=1yO#nj+R0>5}&ag#$fL9y|a8nc?4Z3ll4(*vh7nw}`pvU=AtSNN(m^gyXDfBmMrBY|^=D%w3_NWv$Mx^3 z>%161-Tkg71B)the}Oa#E|wpt2?Y6;htL?g>W>X0amNk@Jkm062~V0VY&u=E z{Qgt|&rOrWjGX1i1)c0(#x^HR0~m4Gc~+qw9v? z0grgYpyOTaO{a02%r`%-MoDxTK?%!sta-lh?~R^EHQ`pED((pJZ9Cf}??#*zjAN@F z%ACM9LPg{Vdo}8hG%viq4?aI^%8`*iMOkur4T)U+a_z?Bq^!VDe2Zva!!%ca&EI`r zhO*==Q=3*KEBa=oslsP^lh6Fgr%8}_tZg!1Bs@#GZBX!n zhxLU!nDC6x0Nq~1LadOz&%*Y75~d!*2`biZNmBSN?prkGm^;@gAQx&8EXfC#&K*M* zH8{zrR9?>9z(8H?{X#s?l&ULl+yANfWIcgJ2U$#uXyCgj zCa|ia6ix%h=Z;8R;6rb2HO<5+=R2Nd!V*C&CA%vP!mqCmK;Q&qvTtg=I!9f4*d&`( zsyrNYNDY`rEeG{z(vApjOp@3zF2y>9etdN;M+qvI)h7^H4n=vp_lo399rDjPJSKjNlX> zxYzb_+^Z~Cq>NlEPwkh~v#9dPXN?Ud)1-c#8~EN9dEgot6ZYf~m}#Hsb^V*Ynn}o^ z8E_h@!_D99x(Cjd4pthKyA2ld%r*Qe6bm@>*X)~n8honNx9uX1J8pfs5hY}i+4;i? zQ!%t_VD!NJf9Qkxd)woYfpt@EaqrrTEq(Le$57-4=G>*52JI_*w;aJPk2}u4-WyeZ zZgnhT(PCMiV8~KswQoQ!KJhjGDO5pxD&HTl5>!&|YOqE>URv%tz(1T?Gt=)n`&`VB ztl5?)GxcYoppeZ0!^{eGcAz9JULxPGGfi1spaZE0E8*pgxZIL`dqSLj+)FCf100(k zOXh*8z5hTxzl!zP{XRPa7MBuOxM4l`h>21tUO(Ek3K`r5EODf}b-p`OEgq?S=* z?d4i$xLs=Pyi0H5M_*T0)|Y($wb9knpj zP$gN@oC{76oZAPWK(!zKn)7Z>6bV2*gSJKgcyIuHJPgMs@*#lQ-sHTTb8jyT)SS8v z#PRfLFX61drv<^D#6ro$FT~npzTx{$j#0%Gl6fBoz<+*>ExEPxS=tR*ji(H`(c}Z1 z{9<3{t{sMPXa+7Q{t%Gvj&ahy2mG2u9gy)brUvLFGyh14&p2ipqJO7NXPI93s`gI4 zZ*9PtPx`8>j=EqRJFHe-K6epGotdxN0`jiTj{3(v)}=j^CiJ}COB*>H+E{X0OYz8A zYY^tB(OCU8?y-n7&57n%euIDukQaH6UspaZ&{@g3AoDUi=?By^gOQShFlnsZ>OlWG0VSo zFLVs^1jhSvs5RY%rW}7Y&#rqy6Xf0w10Vqj+o!1y#ohZ5z-QV-QFk7iNON*r3-9c! z^Dp0zuhUj{*5#BGC|uY`Oa@qDV_3l5JYB)s4I0m`+_{W0Mzd>@_QpLvwX;zE#-)?>I@dJhWK|M_KIn|g6{$(P+EP(w zvc_B*UE_lZ-RNy5Ya_24ulKxR_Y%JFQw+UEZ(f*O8qt1k{}A*H{%-1O_Rd`6qY`zk zAIE^>Tvt58E=4{ zm78NES)pI!3;mocK$|hPEHRQ4@T~bo#t)u=r@1daFD_J(B5Rc&g>@c`Xm~2v@y*Wf zo%Y6(cCvj4SV$`?L-qeomhlTy{m>ubMTy?Es4^*|wLc*9X(QTq5%5sYQndjzK&i2c8kQk7e@} zZUtWu8N+<#39J4Pc;F`bUPsx4kEDQw?J%0%NJ;5f<2H8WIXMn@k<4+89VK#sJ|5TR z%8nAg(8-#(L|FC2`A$8-$O51k&lK-XpW73*?_IY79Ax%U)ALHTyScvA{&GZ_%>fC3 z#V0^Nl<|Z+?Q&H=S`((EPIB3)+=NOV1p<^Qbo2cg051!gE;?j%IY#=>zeeKfNBK2- z`xaektK-1KWj^R4%FDS%78f=f=`G0AeDD>DpM2UZ8rH=Dz-;ov&jta@cQ!nCOt8EL z&!p7|Kh3AG5reS zC}F69`~4ZC>z5^e{Y?5p>eJHWtjDZT2ft^JJl9O3%zfz;j*|MUIzzcg)x83YIdI*5 zV}qEX#TniCp=hzbMVjAPEI?aMq&N2iX^?%n6$YTng4+nBwrt{@%g&6nhMf8K=?3C> z0 zYcv7oYuFw&XI$LRQ8WBN)F3kvJKC9merm#T^C8&YS%$0LbZ{&^KMuZ&nB^H8tjDoBH zgqc}$)eE$kgt0=DNAKAjKR@HFk=&SDkqca1 z=PMohdK#8;weltaMDfR#!dEA6-sp_-r*&-G)b+-!Z=R7YEkpK!nAO76y7*anlW+$| zWZtU_{SvA_lR;)dJ(BM3$m4O_9BoCBot=RKw zeoJpxCxqbRTX~@PH9VepUxu1SyP9ccAoFkOiG9t&z+ry-W;i^Or9j#nv%9_pJ&U>= zQMovF@@P_>Y(^0BcJE!&?rqIl)ybkKP*=X*Ev1+y7? zC$nVK_sjRqz=6q^c5%{P`+29fOn)sz4dAvM%tX_h9H*_rdV=QJGuN-Nv2%HKCBab? z9dT3b{0yn>Niou|B}`er;F)i%&Y;zoVZi%p+my%5E_4Tm7(GcJzFkg{m!HW^(e(Md zS@00R8kb$Y3-e;6dRJv~Q{)?Tc{Z=O*nzN0W#eHKv!O^+y5B$R<0~2az@5G$f#ZGZ zVD+dhP1~af^I7p1(kCs^l)7 zaC|qOJp(RLQ?~z+G2?~C*02v0l zsW+Rtx_n6~RW^zXh`!K8UX`(#k#Y6L0IUiqe(uFLSCn>e$fbuG6>s03_*Btx+wQ4m z!W8!adDaa0tt~-8A6CW*TpEw_8Nsz2${ElksFdXMjXm1>L(H<%xXY?V+UIajQC?`q zA{HBWRH~lV-GLr5^TN;hERUmv#|%FNbcnvpX*8YfV8l#mw6V>PNL*>%TK`OIV+WWlyK$kKT_~&Yz?3(5KYIT;GcZ2TO z$L2*z^}dqHRdTsg0T?*jLvdbRPE{6#X+=q{O!p-#-4NNw=QRI+M-05 zA(vg1kJ1^9*2e~YLZJ^(bhHyRX)mfz8x>7aMUneD06cC(W|aqe}c!$5LHe&`{3QbZV}7)&7tK zG$lRm+NL>j={~iYmay2=Yq|IMi3huVJtr#YWwzMP)2p{RAv?yZNyx8t4*H(tE?XY=nagD?0W zX)mnLyx3_GKRw7(dFaH6DMv#{Mj=Zr0%HUxs$q z3;9+e`;*OZ;Z4H*Q#^&&>a=U>pE-RJHw?C^;M+p21vHkW)+1{|w%Yl922YyJeeHSH zutgqEsC9`QV_cISIdKWvraH=OKb&w^@r|%C5CO=i`$zB*H@|1DAp-J^SE^Ts$8|uf z$fpu>K10jmGd@0suBFCiV*RBF17sae&fvuOPtv!A@oM;hZ+zz2M(h!}LfhIKKX}S|^)n3n~}) z?ElvrUx&hS;f>*}hd1F#iRu^(WCSQ#9bsKx$g@idej)cQO%eN5_dRXy{nKo_X8%RBzlG9G%^ zAb+nG2Uv6DW;ZWPf(kx~R&9oTZcSo1^XrT0cZX#)lGjbSmEMcliF-Me3C z$)LKFJh%f(kt}>qkk@H2B{@Jx5r`u&SM)TZEPVH=Rn^^CWYb?dAHn6Mv3u{t&HsxI zW_LyZyTzs7jfbFhj+L1JfB&nmBC?9$LESFJnC34Fzjz7rJhDMO1UI7b_AZqZ2S7wg zNkZ$xRqrBD(6lqi6qH*f&hpZ2>D}M=1BVL=INO$nu61omIt@MGr6=1epD*IOb-h-I z@V6^hbpNf=ohQCqd{hg4`JiF%iNB7(rqI!`m*FJv)?JSxrNPz_ffDUbz=3vKE+^4l zq4{dI3TU{*ufAT9h>d@3+|&E)-zQVdnmnweRuqq zjNO{X{0_7`(fA&MU({NhY6D|zz}tO6DLeoB`Q3f|!Lz%M;HD&_j8lCtckf+%{!bSo zTeZ7yPB5eU3dPDE z{HUVd`lwZ=3bbFcDt7yx(7S&>P$lGw9d#U^*WCPZxAlKim_K}Tg{7|NeiM$OcZXDa z0>V}N3y~%5r~c#p)|q#^%-rR~zK?`ug3AkxiUUGAWpE8i2~Qr}D{DD{PhxoN9Fh$h z!22a&(&BvGKz{?Bwv&dLS~ZN|*m5379{e*XNHs8tN|&qhMAVKDOgHSUDis(x?)yes zk}!kLh-pGec8t=`Ew0zPb<&?{t$g3;Y3_*fg~7S-g>`3a7OU0ANmK_7=JeH_P|llqzTeze={cP0$Y#i-NL zDT+0orm3E$+A-c_z}eqV&4!P5W+S9siWnDtm~7G z!g7KN_5ucV{)<7H=lgBekyCjSCpGUL@wlsoG5<<1?cC&^+e;a_ztiVIv5JDO)7pHE zh&{{9`#&3SS?Jj`l;_T>CM;)bu81)2w)5*8jGy!pW<#Fa{;GV^%@!1#Wi3U^)7+PL zw6OFAv3-3l!Pf07%Fi#2v|PpSbIBYg3pIG8QiI+G=ip?Jn;moX)sXqDLpAOj6!*l{Y}_&WRLE*+ z#<1V5r7bS>?){Z5uFOY{wz7?;Hhv80wdD%1KB)RaDsz38M@;?&>|Fe+GE9j2-8cQ- zAIJBw?SF+aNioOZ)1;{?XdC*i9hjk)<}`Sfsv=?&1yzxtni1>S;@Y=8vp7V9tIIb< zx7A7K5vFcqhkEn1H`;ARVy-=C2<~>N-l<<6X86O(zqD-IWe)jC18vIuN1HwY#fzMZ z`n=;W)a>gY!gf1vIEmu-jnkMvmGWk?7RQ~JkQ(i9;@uQi7)C$9o&qObhV3L&>yS9m zEeXDE1-MWhiwQh8^*i&H&P$jDhMw|0BlVp7axodIQea&bUiGO&2eODLO?(6T?qXY8c1-nN2|CF2D?I`%K8i4-4 dSW(jscj&v)`McaN@>$cvH1uzl-MIVs{{i96oY4RP literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_11100.png b/Notebooks/1_N_horizon 3/sim_11100.png new file mode 100644 index 0000000000000000000000000000000000000000..da2160ecfdf70c28bae2f6cb433ad15aba4712b4 GIT binary patch literal 16791 zcmd^ncT`i`x^L92SWwh07Nkm|0s806bRj^b zqig{o1PGnb6d{Hxy~CTqbI-l^y>rKSf88Nf!e7Lka>pV0ZKgxKfg(J_>%pG0MgmJy#UQ%gWsbqG^SB?Bt4ZvVX|!Y2%Kz zcXbgJ5)%@+!EJ}ZJVr|k3p@Yw0U=j+Tj7CjmcIazV~FE#svOl8BdL?K{U^w7-ej{di3p2pl}Me{%ZCAME=l+`oyWNMCd-5$7x-+SgDMpEz(!)KQ#Zx%znboT%>r zDS_k^h0|=7vPF4D42lKBA5+^Xq{eKMZKmOU|bcGJTa6=lBu zmgm=Vd@EG0ub~2u--7yO#rsOCZkFRyz2vP>4KTUubT-5UHV(0A(FjAs{FEp<*evzU zNPPQj+XV=O+vqfqNu)CB{4GLW+lN5nX6=j(jXBCBYkGitiZua1o5M0qCTg^xgi+^%1NvS#cRihgU3Fp znyYjoNk-ekH+`r&cyx^!!J^6^D;6N>vFVC90gXkl3DColE!B5)LoDm8utHJYGf7*O z_$HXeT;GDbs6b@teTwVO{00IcFGAqEG?6?Vu=*I$<1ZIHc+R^<5elY$4^gz$l#sNe9O=F_}t$hYy~SFYPcbm12`@s4f=e$S2UycmGq`&j+puZF7# zqBIRlt{6r5C{vi)obdQH_08w#!cI65L1BUUT^S!aNv@DdLi5qg3FtX-+K>XxJP++c zz;iX9c)0qdi(C<$jGo1Ydg*23@yD?Dwnq0tkS!W5CnQdJkTa9ft;uMQ8uKk4gkuuA z?pGZRjrA9%k6-HB{sLcnH_B-lk4eIXQR9VcE*yu={`7PT#-}66^O5?^vg|-6CPHuh z4nw$`ud4bqlLke@Ghtz*{?T{E!$S@JR*kzX}DnSMZsMpBqqmL*H4)C1}2Vi^aY&0zB~qu zscHnf>`ybdZ^ZucwVeqQ8TNl8j~sav=ZbKM6_XuDhbE(O4Q!QrkGC!M`Y|-~V!U?i z<#GyjB@DYL?X8{a;ZCj@Puj{yyOdU^2mxs;Rs~qq5nF(k^1?WTi{cwM zYPuH$5fPqSOF|g3MS`2At?Nlqff&iJv{!SfGR;V=AQdW+wi^7PNZzYtxujE%WTU`a61r$|D-_zFDr^0-AHkeu=ZHaxwplq-GV zD2XOg*2Xin zO)M@_WE2l7Q*(gsy8@xugsTa;%Wuxmv3cSdEyi^Z>sym7-|Bl4)My|T5ZW8h)A)Ykjv-hNe;Xr$KD{oLe4m05P z!CyC(U`^|yvI`mcX`p@(2R+utr|S^M-2y6_5h zr9Opctl5fOVJd2NgN{L5ZgYx37dDdaeVrce?2=o8wngJ}bNPu*10_6p!i<+^v`J3R z<H0?I&?2Dfl&nj|qhfW-(^z`3x`rDDyevSqSq%pT|E^bg*;cgb&q_ z>D#oS)V3LW#2RkE7FrOEF_aKE#(1p$&Xuud5po49Hhk{ex*;N)*)NQ79dhyM?||nZ z4^G2jXLH5D-u|nnL8SHBke7|&9C>zP3A4EmxEOE?fgF9gGToQ={=Mp-*R*1AHdWHi zXUK5p;Yx$)zM?)nBD%zaW9HD+OAOJRJ}M|E$R^=*@!OFjF*y7F4_3>}EeHPbsTYqA zy?9n%=w9Bm}eP8%k?lh2IUM_*4410~r;XO9UUbPuTezT5S z=49my7Wg+pm8#ea`8P~URU3j?MrrPAacC_vJV-%qk8`)z%(W+5e#d@-Mw@rT<>;$L z9hG0@y#Djkesox+qo2ELp#PnMQ z+tVqTSp0Nhl@=}8D@E(}#v=~Teyh!acK>p!dxX^YqZXb6HVGouuSR^P1ucB&nYp>S zlo&oe>7uHgRce`4!;vDw_HJ)1l{xhA@637Cbwz96&Y7BW2x_ouOO>}27Z+!+Xa#W2;oIjRU)h(a zPtOmV*7%gg30dTV=YWlyN64+dgVM|TkX^Ax$Q)Jy!=DrJmc6b4TV`?#fB#uI5ocD( zoM=+~FbL>u-A{UUYA>;NMbNqbLt4ALrS}ADa=`9}&+Z0I-0Jfm!;c$InwC4^4D*fC zRJi=~1q|~$SdGlnfZ{lIrYoD4+I70rHRTo6<}w7dxw}?ZRDq^Vh0Dx!EKam~v{mf$|Cftt;_qxo!4G+vhRJ&Ae!<)QS>au*EIm8GdC%V{LW)>CTVRf=j$@b96mQeFELS>&JypXmZ( zsn3eT$;%S?t>Sy@P4cCHzikQP>e%j~q5Lzv_w2r6VF_}+<^25oPy{Ur9gg%{=^6H) ze17;u>4Q%PIe_S}_*buv6d-F%$D1M;&O^+3Pz=FP983#eb~DLy!^Jkq?bYJqVoZE| zHc%2fpoc!+L$3JAQPXj?3`uo=cYaSl=Aj2&le>%Jg zG>AH}-oPSXZRC2yjZDw8+{wMYR?+SOuLTSw&r|xmqCNe1LvSl5E_d(VrR^rV*5;VG zR4BLK-pX%jX~BF8y0E&r*-L7t`)jJ;W@l&l1qBT}JXYpvrQIR>31(nDy&(I`1Mi7g zqjSfD80Lw<=H}%A<#}1d@A&=ikj<~!{^_f$o;ASsl9!Ag4HjDm1JW_6sYSq`Oxk6a zG-wreV!4lQ<$!&Gb5yTCc{*|e}6a}u(u;U z^*+PXjM$|mquFPU4kOF0nFBqVnk9}Jim}c1t!*`M?fzBdzmn$w4D$PzH!{IJGl&Wg z4-fw9*Y6_`ArdY_?^QUxl>ocrpukddYHMrJSGuEkRUCS94Sf2lMlu;TtE{YC6=P&> zo{xyWO5fd@?*pQP(UO2g6srWBKg#(#yY3GIy5qOIlxpPcTyQ1o^(ndK4swY6*7VCi zwSKbCiFi!ux4jdwj(60O-@y!f(~^N&RF13^dU;&>EaEk1u9n0Jgs}>l$Fj za4myWDr?xim2s{;<0eku{KBd^X%4R;H#TvH7!>JUCw#-sQcG?{zreIit%<`c3F>M` zcJ*Jn9MtelZr7jTcWIwH8_UNO>nYqx7;D-#j9#}4%XJvf4|IlyO90yJIovWx^BFn5~3j5_O zJ(W&2lwzOrs_+{1^Gc;%5Ju*I{;a?eu)ToAs|!`&M^io*ss)68GE0_$_B}^{mcPWm>DJa`P}GktREU%?vNRwZpN+zvXDT zm7pa}hYovEos(AvK3Kf~NG=oqSSr8FvCm<4uuOU)Mo$b7N_KDIGbOqtLyIo7GT>o6 zLLSM)_4KiA#Q6uVzl&APas(8@Hnm3dhjD2$HC5a(^^I1huFsDsmEUfblBw>|a8i=t zF)L{)zWTbl>9(nUh73pKze-4@w@Hq616Pj+PC!|>c0HYO(c_Xk#cFA?ZF9y}K5uky zcg+V#9J9Bx#_&6pKd|b{AQ;nOOc(%P)esth+H_W;3ni3Qfbmg_fSnbKsR|5TcNpM@ zMYyfc&Prd^%d>!KG|pHHGqXGf8+`xCP<5kI}X z)ZPb3V&*DnQ=tNdKdZB|vhHciF1*~`rpZrFRdiW)jJaSaVbEadeCvTDt-pw zaCV=M+{TaS%B{I78Q(Bj0L4DPJ~6=%jL@rgF}4VU+=_~LssxY;_)O z7!e3!uJ}#qrB1oeyESoS@2yAdbufSsIDC6*xii18u#t{V)YR0J=SDsjdp0&UmcG!$ z)yFVh%e~FMWI3VLo{^YjjjJB31Gf7L_Ty``OavEj1Dm6JJC?xHcqhmQ)Q&8rtTC%{ zJe&KC_dim?ACK2=Ro}NJClzkJ`0@RXaBqURqnLFgGn}TcqmvfQodHikH0DS0W0qXJaXIl#uCs0aH4Y}#dp5ODBj#X zBq1RI1B5nxp>F+4pkMrM+)lTiHhsW0wFg9rd5%RjhS)yz1S6ONKBR8icXTTSeB?-J z_?@d6m+!lX5Zti-FgiD47CQ;2xrh?f5MF9(s%nTz5}a6CR06_l^Cl-UL%YivV5GwC z_IHZK)1|hNm+3gG#&l&0psthZu{I$2;MelGhnVFbkjUtxQtofjh4*yB>MUGQdC;(^A5hk< z_*m7!$Yi#I;8Dm;P$74JhtrI~l;UC7T5h^4%JU6A5s#SkS0Gos5xunzNeS`s5> zQMwYv$XZ1}ao`>9>vVE)3w-UxTRl*Vh1wV6qhSS{n}duT&DV9Nzu2_Szvid?+h=jA zP%+P$enz(VI*@lQiJLBq5Kb^D3z%`l-WH%sh`v#Eh!T^O>0w0Ht6Cs5-cNZ?Lbmu0 zhO>_+`6^&n+-muKg`dLF(xri-neN%AF=LZO0^gdpraHEBf(s59o_!kQff_jBoscm809 zH^Pm0a~ekrB?$)DM%B%H{N-eH!ES}-Kpu=i4RYuW4?mnlx~e8^N;!*&h9%pf)JZcs zqKUCRE&Eh%2LAjMl|jnCPnn1LeS#a=qRt>}u;HB>gE`sZ&7}0j&tV(n3Z|WgX_(wkS#?;MI@`z&k~SnuGmk|V=BB4V{KW*b6QsFEZ$8okm1M zYaXB+p<%JhNjQ$~|ExaO^M0!jG6NJUMMR@95qJa86;j2b=adn=w+c;ob6Vg;m_Y3B zVq_qg!*3sTEzzW`?kP7lcHb*MxcPf>DUpw=Dp21$x*2_3NMPFC|NHnJ@;|o08RcXI z`5BRV!(VfL#;%ie%qBO%xKJe1d!XwU z*XwzC%Ruvb-h$Ga*tatBs1AoCOwGgP)3@cSje6_xjBpV zz~V#GKcd2g^?HNsJ|7#V@ zc3Oi6_< z1Pg;|e>;F}6`V;LUIjKhmgIYLe7z55fROH5=~zce7*Wg-Z1VowB#;xG(g_P5$*Mdr zw`W+;>tx?O=&Wfi-@uufCaxo@2VyBpite!RsZVHLC=!siGe<;~!O8xVpNoDn{HZ7#_rz zQ4>l%9W#2J9d*@9YL*5cH;Yw@r5&3%%qD-s(z*0CnHw#O)-zo6; z1TtoISF!%g4Q8FMB9md6A5|#1F5epI*g`CZlJfF0Q;D4vKBVD+jVANa$5$i6s-zPMM0^4q@@BR3753tbl)A`O9M zB$tbq^Wo;aFPdCo1K;@Aay-522=}GCs@`|aCk~6SUb~_Z$B+)UEl6ZdPQQ66ZRt$C zKuel3(;MvV$a2^lhC^WCLfKZC^1FHWN*s6QuI*Fd3cuITotG zAv;7(5v#tVd<+?VfxMLss7U*#-u|{l5r~Ep+uZp34JWLb zy&0rFjDn`$sXGg*#=&7XC|100JmE&v?kvf2v8k}OFdww~i;?~rXZdoUH-ow|mQgbK z+*!Q$Sf`sizeqpSj|#tNkgv#poW8&y#Vr8R9E?r^SJ&GGk+zGLy%SG-tGcLVZGcJ! za&+jgc*m)-k}R#drw*F7zs{Tp#`HHUaERpgpOD|qgr>r80~!!!Ay8iPg`T?=CeYsZ zaq(%5m%B1;K_6HEu&&$$>4N;6uG|D4L4O+pr*UoVQbH#z15IP7}&yOO72 zLYj6O_9<$M>7;qaZ2qzYvtbSej)y;#zjAri4v|&nW36cWs~Ain;HlM%DKlM*xweQP z8OscrEU~ms*vRU2c?kSHH0=pgw%d~7zw7 z-olK=*wrVR>bDBKJfD1O0?ZxkIP-kQu2*2bdpcFvmEjUvM4N^eCR<J&IonE8r^_7YO1zpW*D4bQE|)&*n~jd+J+tA@I==E)Hs* z!&K?xo_l4Pl}EU3Hgrx3yv-96&ZTU>Ygx?T7kHfm70$gCPzSBEmdT=QUvGE_=mp9t z)gOTP@&IkVp=I~TO+oZp%&dED&9J??wPXC)IDm-3k?yS7Fhl_uUAzRetR@Gns;GaY zrliQ<+J5xz@pS&LOP?bbpTE0z?iz6Hg;Bc+$SZ)d)cpl{E6Bw^(mKeT+@g*1Y=Ms) zfP&WKXqIVyC9jZY!^aUl5@qyQuc@+(0jf5!%A$q;b&z<8R2tA|2CHGSJas%?0PRxB}H*?<5@BHl%IZ*jrtgI{Fif?$#4`qX-*VoTZvQ`4x z{Q{d4A7zaF|Z~skR65M*HQwXn(83XywdN#M_XWoN5F`i;XKHP}MM~&d;#>NvtBC)il?GE0;#pibI z)7$StmoDB0u}k1CW4WCw_F+^cf9Utz>!E9)xt){{O&5Bm>a3SoE`GJFpxA>}$(Pf1 zvcSi~`UP<0tI`z?&>t&Wmkh@=bEWgS3rollXzt?Yk6uFZSyn+K(&w$#nHfeM9(V}y zL7SwpQT%$*I?BI|mogOB+uLa9?5g45Xq^W@%0q~nI9OWt$*jmHTZ?*`s!vUdna<2m z)samvd2USm@J{H>C>o#t7q3`Ij?`V@Gho2xia_C-L#vIAt*tlMsB7vd=}gMV=>!t@ zBQwT;OYQTxLY*9)x*99bgQ%^mw^5=j(`OEL_7o6FI={d#WQAG6d_n7W3Xe?07k%WI zbNr+-&JNVXAIRSWq>sK-mBL#Ext$akBJhZj;o@bPUdI&6B|UB+oY!7N5zEExzidi? zDdY+cqpx2${yVD`p>%e1l5VK-NcixJo5ISu{AH1316;pS0B zkqrKoq<=c%JvV3P$Hi^A%52_q1HeEAvwjHORh=v@IO*);toMS=OwYkdeQnSTe{Dfk z_3#4VpB3xh)ngg;EQ+4B$yal~&rSbLMw7q-Ku8BGqiI!3y8lQ!n2b@)qV{yh8S0s- zg%w!zoh;x3qS&y z8bZmt^CmhHa5{;>>3YcPSBm^!PXObW=AQ7VE+-b+(DHnyw{292nT7DolVyUYJ?2G~ zlXwt3RORG(9O1^*C`ccSOi_sbuB7i>`~eIdmTncK_y-iQcu%2zKfnA>p?QW4Wf+YJluZvpkR8n=-=!&%@v< z`c?rdVA!Tkuz;ft;XG8ll;owI+ui|XzZHAoZ+)GM^UQLwz$ zvcl5&)s(j6SP-sBXa{wo*Q+aG1tUs@iPL6fnP~=z)1n~stEntTnz5P2YRo5u{{0!* z9`}tAyZY4J0Xo?d;T>J>Bd1hN?EkUhT0;M+Oc5z|ls$U|dLVG;Q@#mhz*c>2m=?tT z=KSms)9S&0&oh)Ls`A^B`|D>O5nRCfx?mh1=P?1!V|f^sc{ei9o)Yz6oi-Muxd2uT zb_@%EDbIF(NI1o_bk)8sVxC!k(HaTCUN|Yhc8rhhmhxvF<%X=s&F7AJIQdSiUdOBU zpQC$Pl#V} zrZyVB)b=%;NPR*DRsmvV1G7qtoKijh;X?f?z1(3woD0bC_+mZP%89Kjy!Yt{sYd`$ zYU(r0)}tzFmduTV++4r+QMTVR+{o7me$Hd_X37xmM9-N>|2^NFa>L3sBt60LsN@H2 zP_m80DNh7lUP?x@Yz9jv3|y~UYrKv~^r`HFOKMYO5um<2*tA!B0CIDkq!IFd%`<-S z`EI*RiR2))<}cpZ)q|0wo6uMnqg%5vE?y3rnLQm-HMc$%i)U{3#xR_N-NM1xSK)pE z1IB%niJ>{4EPzn_ZEMdXKsI#2|A&eJfD&c}>D5+%uPYJP(zjf1Qa}K`(s)GtT9<=n zc^(XB=$O0a;mBVQhbOvddJfMUNAQ2uoA{_}5H8%KW33)MGk+`)DMdSc*~pv+^m9U9 z5_h^%eGV}3Fs+_F0E#C?d5v;dLpaSp(rqdND-?;zsM}RMpUVWfqjfY$W8uE>!rkrE z7_^q)SI-{e)t>$YLq&Bp4?zIh-mbL+ok{utUmOy#xz1V+Dtfv_t}ee;6R|+g*GxTS z&+bKtEcCEwC*(zsy+WoN4vCR`T$TFPlzqa0CfoDq~Kkz1QNZ^YsCT3I1fML|ue zL9X!4SskEhWoC((CV3;TBlrG%H8K6ZI5Rn|DJla%TL)7!pJSie-U8Ri;}}JjST*%b zCaz_LurBR+>1#|K+LNng5wKMO)G8+;LfuDa#PK1F?zlMl?V~p331S+WJds50H8KHR zVV8jtn-|7rz^7jXwyBjR(-1y5DKY!&MdYmJ$f{!^+w$LzX59%6M)v;t+3dG*p_8Rucy4C_$#8j%VZ(1Wrb8=tFHca|6cu`sHNmJAPgd^cdxH&2%lzeo|?kDK2_Z8 zjKJ$;R6iKc;EFxCd>(Wi9`KCaVFd9IsheBF5NT5|4q ztwf*5Q7Vy=-Ph`5-kgy`J0Yp-VAH616*a>ye* za$iXi`K=3u0pT3J_O#8NqypE+zdudNB-FYZV}2d_ao|eq>Y>OO zJxA$+M}rHR#>Xx3z^rd~U82U48ry^{qEWU+2Uf#O!4HQ_7 z@ySo`Yl#hIsDiT8uFkdn*YY?Q6Y6Z|FwfZ0xCc%4AgO6i0HK_%et74lSnCoC)<<`t z?2A`lhaq$^s`4@brPNza+&0C6%r@Kut@4_p_!niUc$SIZ**;sM?rr5{HyJ5FPv!|D zuKIjsE-m~N>~V?h+&rZ!lX^eZu3u)fvlTX25UdW(w;Dgy$HOJBp6I$$Od)6+B3Ew3 zT3~9~0>mvH5d3G4^PMf1J7HQG4D;}y1YJ;Lk-x!#iCnHfM8Vk}aX72<1F#p27V_-u zv0(j+r*dxIUX~|I(WGC5KO$Pme8qq!I!BGE4~vF$c$Gysag)kmW%MjaP&VxNB-?g z2Uw496fuPd`PP9|0rW2u6!AX0zqJE$&&Yo)o=#$ybJKEgjAmo=w3w?@uiWz=Ffcmf z@}TbXnnXMV)7 zFlw@m>Ibhs&2Z?9Ty15BfPCNCX>CnrcikJX-LmW*c?GLK{Y||1Cu>p2Vem|c{dFX~ zDivJ$q)`71`FmlFROIi1I)li6(WTmF;eT5L4&F!teZxf3jOC>!{w8;a8aRPoM6WB`_6eesZ-4HYMbe3mn6KfT4grzM4MBgymnJb zTcRY335a;X!B{QA^y&mu?x*Xha84iMUNU+q2@M)rxuKzG*DONu_$#m7t}P&LV!-df`t&T@#hg}f|26yVQ_*-&yDO?60av3 zT*@fRfa(d)KbE!qKekm5OzmGcME|L3yiM;0+S{C>aXWd`h4#b&5GZ1C!$}33`%m1w z2*Un$VOVmCcRguRb-%klbPhp$l!pAxH@4q>W(`WYOR#V(CIemAQ-|t`Gy=5}U@Lc( z>fIi^yFphHHG7DPNEpa>GTPUzf3)wRSFkNm4gvc({1$2E0WE3TKkfIPh{gymdHg@x zm9CvHfT)p_7i5Ay=%am;v-p{mNK49dCmR^(>oeQKert^xLu-Oz$u|%v2@_onN}QA7 zKR)&M{$7YZUi)(VH&i(i>|FB~qSJQstih(ej;>$l_9yZ@bYG)y547fJv)C)|U%RNl ztn-^s|IOPr_q&H5Qg0F3u)U}%PPvOh_Uh#V&kiUjPI3;4t#xEo1WUBZmDh?*ohJ>l{ggLB*&aM4TYdM4TIEImp>iVy;DKuK>5s&hQiV!B^WjiF)2PP!+K zjK^1fCUM>*d`3>yqmN6`jE#@jL_NYD-+q0cm z2Waf()*52-Wu0F(UfuU&ojK+5ZY60{h}yMfvf3&Uh6vrF24QeCiJy~48S|t&CU9ELBve^}VS+d!m9J;>0o%Zk0F(htzYnd1)WiT-v ziC7X_uhI#izgwPQMyzd8*VHyuS=Q>NlFVjZT_Z~ox8K`w*SOm~JqZX@kV=_8l(C05o_y~qUvnyi2g#{Xo)ZjbON!j#|M ziNyf0?!iA0{2Ag09e)df<*d^G8CNWq6d*HV7oa{@2!Ir{vU2YadYu0NeLs_>7Zm4nvBz5G+-nBr9 zVWt<|S$-BxXz6BfPd59-gAdehuExhH_`RhyZ!IR1IEJK7Goum{285wCy!6Kiul1%U zTF+dLO5J>)gtn)dXI77Lf}KiwTV}6tVc2Cy#05BQaKhuj&_u>|yV+z?)yMH(Wa0FR z{|qvYst-1;CZW4v9Q^cyqL&BycKU1XI&{_Ej-X*8Z7P6lm_D5@rE5dwCX;-J_GDAK z?#4|>Ou#w*crlPgu6Xm~q=gBL&c1iCov#CQR9?MA7aCF?BC@xFB{ug0y|xu=bF#Nc z`NkAWs9yto?QOu5H+WsqH|ty0Fz27&R#&i%HZxx4#O$>U788dqQu`=39fr6z*S6E& z10m8=zQZ|`_OH``5MFdBJ3+Eddo`>VL39ola6$-%Q3wtUQ)! z=i@$jiusCY-c5pTfQ&X}3tBUix|@LyA4nFCTn^@(i$M6OQi_t$YhLVYO))~)<%Qb0 z_+?2%c7h4cn_!U2Pj}t<$Tj?^O0&%=f3ISZy8H*Cs3XhQ^}}E(*MCqGh77(eHqHf< zM5IW|W*@pib#6gR|2mSV*@m`jDhGS4V-iDX=OV#E@76Ivuw~i@NjZ+#!!EbIMK?fq z6e$h?79$Nisc|te`pL!mo3vALl5V|@*ttG3u09VsoUGGWx7AmDwJ0xjvoh6Y&qWWh zHyN;cV%JB=xzdtIXI=Eqh{3K=)5AS~z}vn7v79td%=!_wG%vN=Hs?Gwzmzn2KXEbX zNVew0j>0AaA-p+3j^8t6P0>3aXK?`?&SSjqfVlfFrh@`8IR2kpsPs=<{&#n~KiPlv czXR;blXJsj`9+HFFdjiDYbg~fJb3=U0Ijfy;Q#;t literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_11400.png b/Notebooks/1_N_horizon 3/sim_11400.png new file mode 100644 index 0000000000000000000000000000000000000000..b36ec75a397b0f094323502f58fdfbdfca3ecf10 GIT binary patch literal 16884 zcmdtJcTiJZzbG7g$H%Tzl^_BFDjlRKQZ@)k3(_A%0--}fuNFi>S^zOrfzX?D=_-#j zsi7IFN(rF~1OkDCZw24;e&^2IneTjm+(|?Q{ZLco#8K9xFc|Cv zqYXRNA ztLK@xFzV%Ls$aLW+(mtWi_UbA#-mfu%_v+Kyn49o(}Bfv0hfFDwSaZ)1K6Zk#55wplVD)_Nq-^;T5@R#R)_T7iezYhasfS^{Jrs(jkB`?NPAaNq93e$G9Ib{`Jk`R@W~<`5E*u%hHdRncfcEN3L;YhB;60Q61wBB%RpUi? z{Jc_(Pr?)qUikroT@Gu%@dRm*K$Kya|Khq?`k7I+jGS(tUqx1owY$d?Gmzrn+7URz zSRDO!Mqy}&eGYEa5m~d{z(~Qm*0;1T-Yz{VGHipC7cF%TwhM4X#$pRaN)_AZcedRf zBuayj;w{2EhagKHdW8JZDPyGgaJx8W!@pIV6X~9WlYN4u;tb32p;SVqV#hpcr^a5Q zw9ovvt~~c}5juEB#LyAh*fD<);#H+(j5nFnrcR2KDj^Z%hj>O(j^Dr0P8?MSYJh)F!xL!$nIQw^z|T z^ggM|&r+4z1T7xZk$w^k=6v%q6DM_rG1Rz?Xn3sJ5Z{t8El2JK3X5Om8RaL-U^Qb! zl?Yx)cb(vpB{f!lR6Ra;c<&jAsurRytw+$tYDQxq-a(dV%yW1&#j?RPSe=!7>4Jk4 zNl0%i>beB=_f|3w`3m$LE;yo|;D4D6L0_@T>eY3j(j+zhm0^kdgbXZeB6>WEl8+bI z7B{m%dSTB)wDcWWd2Vt;ySqWDvGqn9P=xn0(a<^9tT7Wxz}3 z*xBGD(WyD(dtiajS(ws9UbBM6mv>H&!-W+#^n%H3^3I)N(xl`VJzjD{655#FFd{D? ze9@*S zOXfo*p%*#;B+X+9ZELU2bu|J0*@iYz0j((L)by|CWQMK=VQpn7vM|`8b4*;=)tnu1Xm-wy#VHu2khDtZZ3U;Fqy- zzZ;W$Aqx?iFH#bUW7QmJ-JvL6@?Q&PT@!9z$KD97QX}*v?EIJl@OKEXVq~{qJloLu z64BDrA~JKZS+;9rHIdMGV%5q(=SCj7@ZOmBd3mwYdjT%JiqiSxJ=#xeqxR|}#nlKB zGKu3?QIFdg#@LdMc}wK^Sc)lRXsTadDUKsnA;pJ;>vhc@^$ZnriX>Pfd$$!bjK*SO zD_l8-H(uadk?yHGA|dgWHgiAutQZ~ba<<4@Ufil?vyWL{x8Fb_i7NvFuW84UUv8tP zQ$jblh{%EU)kl|wKU`lm_fVyU;(O_<5vuXF$P~)lMlxQ%vr2-#+7L%^6JfJLW~>Y> zf6OWs-wSj8@JG!3uQw~rnq)4{O&S^FU2iLOddFR z5@IE4m=3DPUvcsaZfNnbN9A&<(+YPcu{)T~1uV6tPlm@KMk3AfdG(-a0uu6WZMU7G zzp4L~=u;Fet-LX)uWlqrMtSw>!Iwx|e5=U{=md13^4Pu1l(!Q6mZkWFKDk$$>9q%p z1b8?EoqBo-@9;Urce||I3k9l=MrzvJa^MzVoeaAXg)SVEs;pYz5mvRO3`$2e(DAi$ zBYaEa_h-HN8loujShHA4d@W;BLt0;U*)AsvQdDsswJNczM=fJn;^+3g;6RUYcoSk;!*rJ;EHkZ=@|&pi+jUMi^zG90#z`o%%T9 zX~y*e2c>5;w5-wg;0g&_J#On0zrW}6h?z_OWy8Mg{bj{kIVws0?~^{M11ZN_954m zATCvDiKMXo%wg{(PB}lhNE+dXRNP#BgYmkw1|{Zu7)ADvTl2J=Ku9~mCZ1hfd}~zW z?#tHB&ViYp^mAd#y`yK@VgDNR!J_ftxwB_&wl|h?gu6GjxL8~9L4Erin-JsNZk4RLL4ZD&KjiaHF5#>U2yXY-22NVKiSg37U68jXgL*thSZ-R@eS z%xZssIp+QAH7{l5o3Ma@fckKylK~oC3MY5UEX@yAFjpXm4Vs`ot@$!mQwB-$J6@34 zhZ4`_$0smN=ABYfq_aoe7#51i!S5Nsb$UeIHY}a>O zPfJU?rx?tlk3hVIqh`8O`2_`I;T_4c#sY}^Nca?qG?$xKNa#`FD$v!E)&KTZuy>wV zD(3R*zAR&70=v$x;WCZ0wr$1o`1no}ty2opBjk*9GavLkJ8%pR8JPQ(v$C@4ArP6z zggz=@G2?zz@;l3LZGesX?J42B@^XEw#68QE$yRAHKDrD;CU6D}rfg60#*5j#Wny}B zm86axC@{_feET5I#PxNiW>PK_mX_>VOt?J5QzKp!0=tTan|h48RRg@at+evm5%3Ug z!6~3-(EFtPwzH}K=2ZMG%a;R1=0)FxY95GKclO2b>0+lGYZk;EhRPuHbbC*t6dEf( zCw@|v5-C)_@fad}y+f2sLC}1k^d-l*s(@K#(lm!OkylMF_AqsF3#@fmms4$@AAcl9e+X7 zYQ3qcsiVP-MjxG1`T6-p0~o%{m!ancXP3{$^QQRf*bNr;msow%GczlU6)>2^Stm!q z>*(vlv^InKH2pjTxkF;Sk85W`MV2~(uAX{pJfx9eSZ*83Scz+x3A$j`O>Nlm14zjk z_8!bPOb->RR^8bq$%{FTNR9##Fe-i=geWk|$V%}y%0mZa_MUiqBu3 zV9Sg%^M*>TyATlc8ct>|0HmaRu*(cEMpFl7VXB|B(UH_;TH(HJ9=ybNggfYeJ)9&0QoRB2UH*CFt2npU8%uP zNAa>Ls*jPQ0|{|)aU%gsbyUnZ!AhIWl_`E9p#dNdBU2N`y7F0;xC-eruU{NI!HQp5 zS*i1Ld-5N;x3^z4w7vw{!5Vb$3R5z%Og40xXj(8ZooJ3244@AN@I|TG00gzJ3FrXi zs(=0ZwXLJ0AIMV91#{n9UP7#4xfvNsJvMq-iLN1?(sMWb7VOM>fl}8qG|Y*QXZ71? zGZO^!(*3NE? zYiF4&H#Zm1rYAL+Gu~taZO##}z1&LX)XmcDe{)G>{W`kolJ!iu%wji%+`E=~(l2}T zY`E9zG>S$cGnLhOA(Lz_#_wS1g|gllRruL3<+VI>x>_@*Pkv#|qO{*6H&;(f6t|dV z)0@d(>7!C$Sef^lE%SZUq((>8QvKFhmSCT4dbrf|MZbAVuHHjjzVGdd>JS+j89>V~ zXxFK5df~&RXRmAEZY!PP)$Cht<{Dr0*_mr#%Fud+c{w5EZHOHjDvufw~f1sX8g?cY|LzO=(ALbkt4<&LSxs z{TSh+{eB%{gERPOO@grha_AEuU^MY1B_)#r>@0J1>iFQ+QbQ3_D>C=Tmz9`yQf@;5 zD-kl)CQ#Jp(#(mcDCxbIN`ySsc&n;;|v7QOUayGlcx#{OO=c2X}SJe!{ZeR zt_0+8g#(QcSC3~N(|an`fb!${Nn79sRs&yct-Q!j1K3V!faW1nbdS;na%O@fAy+?- z>5!QQ(AO4*s+bFV&lN0$XL*y7Jcfc!1J+Q9m@UlBCG={^7dZJ&u(et;#Yb4!z{{(u zo{}LO966azCatCjeWkfTgH%XH>2YyAdGmRhidTS_2^ zfGPa;UCYDDo8r|oG6>`>b#4{4bLR*@gVhJkm+GW-5!Xh&?c(~yL`Aa!H)AE9O@x|n zrzHn4ympBLG!UHJ%A3*$4uDNR<-RbK0W2QV+V@z?tzHUhw1|ECb{3ejv2+H|tJ=KD zo{vikKR-X@v9-n=oSVy^gdsp!d=;8BJA&@gNR}rhqT!GVmtPs+mO&IpFuSX&>rmKa z!RMan>Mr@6ZK2_E3|VK?igqlau~MHJ74~zdG~8c za0_CGGBZqk3Mg~t>cDkGPg78(n(}lEoi^Ao0PvM>Bbr+|=B=Kt97cG}o18tqJuOi^ zlNMU$HiuyPFe&tT>tWNas0iQtJB+2BLSS{Z&Rl!&(8?;~;7QJWU>o!e43?G+fz@Ez zM5d2&MpN=`05D2eZXuRFM&BriQGlnYB{7PLzNVF&c*lRlrJ1Z1K#LZt{e4f+z;sHHt^=F;{ey*3nN5@&V>x0@H-#3%=`(+8)PHMXp|A=Z z!VT!4-1>SmrkY>!r`DKl32hlsSG(kkroP45F}643i@Q4eOoycKZypBQiezh2KAi!`siq zQBIIXz9A8pQ5iTvET$AcmxK-wDGgYqT4xm}F@&}+!SFGCSQkyAzCiJA%Q4}y@w4~H~+>|;jkIgREz}7 z4MkD4HTh8o3CWM`H{w40ec=oY05k?v|o{2=FY#S5Qx?NoSVYC83WcqD7L>BI;^twEAK&OW~xIwY6PyILG$w z5VNVo-f#|?n53kn#mpbDTS`2Q?{KYbNyS4_)Y2H;1b7l0^%@_|Q?Rfzz)bFMIZ_BJW0peJ1=tLBoV!hUuf$rHMu=H1`kMz&WH9rFTwBt~QVz(%u^rnSs&ZDmFy3b06>kPw-zvnsA5UxA<|Vhl%p1W6eU zk4`Zh@k3d~X(kc_&F+7SvPeXq!}4!a#gG+7gzJzw7L$%HY?ZGR^DFqnksg5H&v8Ug zNConS2u~p1cSLpMdKs=m&2D0s6f;V1ezZJ9z7-~S?Iw@KOJCt1L(OXOJmfth2{Vak zj=}_9R5Cn_L#86d_ylv#CkDtCfpk!It+Qn+deLI%_d)2SOxJDb2&5=uHkWApBQb%T zm|&=*LkI}lEj0ar{RQ$XA|j9nWCZe_hHW`2JW2C$xEp-eP(BS3e=(s3%6&Q;+m5cq zALFUBMNTn_?ck$=WJeJn4V_Ya6-QPUa}ew=z5VQ$nxv?S@VQ?U67AoNmAUI9!Tv9+ zRe=Nle{dLg<2&L-W-ThOW8O_yVwu>)Hg=#fhpxK50LC?8%)>$Ae z;q*}aNy6~`-ErO*K%(poy6}q>wPdGWnP3a0Z}-Z_Q3N3&jgH-X&3i3C!~aljIO0xp zS&tM|&D)siQNR?IEJM^@-Y)fp0^U;ey?PP#+~hJ&6A3NC9SB6R_FNTzXgt<+$kkTaN+n5-Nb?L55e0KsodJ~Dn zE@I1o+7bc9qdI=nBQ=~G7L2UO%82@N*4xU?Pm(8iOs|ulhzL;4cit{4@6PXzyZD(Y zDqT=XUCgC%`GVcI?*smoiGuw%tYR{8{$DE4n!!g;z}CMO#nq;F)Ub-$efgV1#Q(#~ zbI7b3h>5kpJs|D)w8Y=Kj+0JO9^Lw~g~hulx{BG=UT|-Zzxik)c(SdXFrvmBs}LYU zGN~R8G<(A29y7vWAo0NVG~6srQKfyvBcUZ#S}nRTx277|nMejnrJiQNF%Q9lBXz|& zM&AbYZHYdyM)id{GIPdoi06Qz+4o!Zk4mo{AF$v)dXD9kCv%PO9)AL}(FKLBU8TXs zhr**5twaPO%XA1tP<^AxgNjzWBNk2?(I4#>d$=z={PdA5kBWX9Tft-vudllM(#Sdq<30Lq2ae^?mPTzLz%Ya*J=Z{45K2I&s*6& z(GFK;X+z{RILIK3V$#1P9=^iNt2;*mUHbtb;=0JUI7%6wEfIY(i+v{?kHdDlBw^}t z9nqp%*rsp}9|{PC#&i2f&(*N%73cN%=!@B?Yv|tIwuxptW_Le| z%m1vE-Q;`r*z;CC%?G`jkCvpPXyVN6)AsJ!UG1_6s2AKLj3=Sx)urSNK$TO|rL%vj zAo&67=VD=_Gn&SBLwh5X_2+H7uLaB61s23kzscCj2-y(>}-`b@E-Q61e5JOd5 zDS5PUmWdeH-tfOIP5}Eib|<6;UaR7LGF^0w+p2nOxW;Y*c62?LB`wOcoxsdNPP%(7Pp}>(aZ5lT8 zu>XCS3|m=ouGx-BgKmId`MqV9E2=Jz7?0n#u1jqCmo;$2uvxk2F+m?Xu$Sd;*x{fD zir|cJdG+A1nc4@#Lzm5FdfuO4xKDH*tSc?h?5Zs{Jt0`IP}mw4Bf9 zyYSmLj0@XLxxfT<31o;5zv?T$D{Va0B9)c2CfKUY<*=uvdcn=xN)cpUZIxUt`kY%t z{aY4)SQ38wa_Ic3bA9~NpKivS-pzJcGVr(sk~Q%{?~mGdnPEah6TXV*yfGpoud)*4 zCy&8mx<9+bvzcq+14ebF<%q7r(ZcD0`z0eSY4#eNX76*-kBXJ|-*C&yGAi937f;9;t#&ZSB)m ziZ?RKURGQ=d-Rky6UK}=h@qpX6G@U%E}cyDRP5{(iFf?ZArx z$DDpUFm)}gh5}@pjv{)CmE}jnt(5Lb`#wnpNAD{G`_VDNLyfDk=Pd5-!m4XD8MZtZ z$nr0R8MTPK{2qwcl4G6*IFrMK5L0!EX}CaR&oUbUm)kxJS3XDb9==Ot)lW>!Ip>j1QTvfcB5}Sn>TYWTijnLmIwFc&_?U-=0ODxc*PpP; zi)u{-PcOI#ML7>4hVdt4*s!0QGx?Y3Gyr{Lk)@xOE31eD=WbBZy?Gg^*q=c}RCNYsT*jobW}7~WU)vYy?J(4z4a9|V z*Q$=Oz0%~qNA<>O!iy_rGq+Oz8Rpc%W*t#n)lX!zngs0~qgGc67fSrL&1C$-oKizc;Vso;>c-If5%uvwl*Wj{H{!+qvwoJ56y zOxjIj%Y!7F2QGz7#8G~XOm0Of5$`NAjR7+Vf<38Km5edjveXPluXVT-44V~sR1VJ8 zIk*{Brkl-q49sOv`PXc`o}cEMOMa=C2`01ZCg$CGjuw@6GfvF2IAD0Rcyafb=K%#+ zY^#c2ffLSShSbq_Qh`M;2bO!lV8E`i^I*X^*&!~Um{}mEvC!81mw=b(2(9e5R-CeN}62<)LR$Yq4ua<*8~ib4Gn5@iS#| zB0zM896KWWcsnq@a3>eD2hUy8LSA^?5C$@l$^8RF?w3S#E!_2jh&@7FmBUeJ&9#n# z)}AX4x>o#i(s#l#>kZlRSl4Kow)z8Nd3=dO=K zlnyiN>d#()Z0ybV?{F(6SKGdY*tGvhHXrOBnGHJ)g&#*j2e}_r2 z00`Z37?>U9udYCGY6AM$qekmqs?N?t#;B}-6%eMnCSc=wPoBn8%^UMU zT-r{D&5Z8TNYPd$${ej?Y&QQr@p z$2wFY$Pw|iysm<8>XFHsV1cXY@oPtLqLN+5WQOiVj1JqM5NOwdz$wll`6QZl1os3! zZ|jgyFGYeH{JdO+XK|Tt6{Wx_qsa8|4MxiSmoA<9s=2?%2j3AvEDTTLK~^G8@Kw^7h&R zUjl3Z@mhW_9)I~;fLg~QZ{OtCFKrIPO;;B>tyOS{eXysu?cQR>ya@YFdNKF_#`1mf~LcO%UwswVNe;S{*R*5-h;bH)rDV9Rl-keB8<4e2V zg4Djp_dWB6m?b#mCYEu7oCjJ4lNn0i+NYs-UdXaJe4*wbpr27{B+np+l>L3G)v$7~ zr&b)hAwK);~!;BNNDu=NG=Q*}iz^5Z*+iGe-jEu)~Yz z9T#3dl8iYn2Z;Hs!omIireV+MQ&q(MASrE)8?C(?SG+D&Azq_3m+bTO-7HO(5m}yB zf6{A>J*aop)l&X39;QMy^nn+Ncy8tMvmX_MIe+hMfE^6)jv_cKhD4mqRY?;a9I>|BZpVr8?lj*~r8P6)lZjt(&+Q|$r{w~p45#$%;J2RMVnZgl^Xx*4K$a7=jB*p7AWAAxhs zjhYcZs3Qr*XI{=ssJzX^Jgi9j`Or023(jsU!IND|??Wl}IICWX{&gfP!2e-}^`K*~ zh+U;!|4V);-g8J5%yz1x+ZQ}I7iz{V3)-Vv8gwk9)_MH>f!WL;I2krSfN zW^LNGpfI~<*x0U*FiQ`pu=$Qrh3Z+j3}?bNE*fSxs+`TnU(Or9U|4{%?-@5APitzI9V*1)ay_ z#0TLjzGd`#!qD^8$372SaH4n2i9KVc8)bZBxmknuy_Qo6l)hO(+Ynw+5czfT3-lXW zWk_Ql-7WGr(<(2ZF1H&GugwoRcrTBtiItV{vx;|IG|oT68#nV0!~;T*?1u*nJ@y{= zRF6};U~<{v`{j-lVZW_mohLtnBlfd@zW3>=5YzD7`~aMd%42sBPK7=39sRcU%LiRv zK8U|5DlFBOF1USB?7DS|vJd>U=C=X;+2WNj+FV{jd0wiL;>u%bG)*>bVJ;v8_9u^7@GKSDu~woYVTCmgDK}uau~=XnAJlO4J8oBjl{AYo1^e? zV-SWp;qsX5v^_@O(Li&)tzXcv@^W8r2bqW23g4EPZIE){LvvHD9ij zU*h-{_VQB3v!_3kJZgjPgW_nsj6pTsJ?FA)dhPm!|HKSW!sDCHGc!1O0=8H?-+ZD; zI&k1h+P{CUlD5D96vP^{#PZ=Xce{eCS9+mnb0Jxl2M1t;RMwW9>&p$X3ynTBh^+Aik zncF!zJgG0wFGV%4b&Oemr7oXpBKAaH2)s`{u237rpY-Bd>u-2kZT{%eaHqA>mk{L# zw*pQ*QvUc}y%TEKsl$9dHzpb*vl!VaFF#r^B>bNkDw3Fp9(vUOUV`3jSuQ_nH5%^S zaZyIqIyQ{Zpuv{&d5@oo!!=YmZ!Ij-%40@*yjEuaa(G7V(qEDA$|RHViok{Xo6(Og zocOhFoYv_ZukhglR_kYET2y4omzpjQqr%bUhrtt>`QcMvQYW+H=T%=dA2_*R#zQU6 z^x9}Z1LoIj0v7|6f)f@I3lbn7b;N)FN#KRhA0t^onAG#NN_y?p&(?`fDTcKCr?Q|! zN+Ijsqk;vmW4gJMPe+!W)QJCeq`d4}Ut)>F;)ij<>`<(oEd+G@m=&>NqK@Z03!eb% zkZj#`R>#UFwPAmEHC*3nam@Q`(}!+z>`QzkiO*-T(0p-9FgYvbtx)a5-0VpIZA)^( zIE8cHG0K_UF4D3_VcSD-Hj?Cttl)y)M-TLM8+Pj?d4QsKyIE0!fQl zjw1pBn`6Sg?)3{M@DWD5jjG{7;V}W$MT-xvs~v=VLqDqIz}xfW>bcs76Wxj#7tA7& zw`cay|J?ae7QUx6Nb6L245<|fzfOf)R?K-a+W1%yI^7Lu7pdKSzwJ-V=H?=vU@l6400oy<#b3)qVGg3hd zu&PytiB(3KWpKW0fxT%)enrJMBNNH|f!aIt<)>} zub|lt*-boVp`1_@AZUsXv+rbgtA3_}F4Z$6GRiH3^$hv)^7Zf~I^NTl$YB!ryuzy^ zp8}b&GWg*@dynu7&mVi7QhTJ(LrWfKLm_Tu&!WOvpBWGyx3=f3PeCG@oC*0;DNAJZI*R%*kNLzhgK3=95J=$kb48@G>waqpAr{U_&PjaSqEZ6|;q z^zM}Ne$Z~t1oU4lO#H97ImWE6dL$4LB0hpsk8rp;8{`zS;!ArtWX-mVkr@YO6`K>X z#z?yFmin!*^`xcU@>b-nKNagsP%HSRN)5||3CEH^u zA9fgbAyc8-v;Vn9Djc@EfgcK|oY~pMA?enDfD(K;%6_-m9aa}E1`2aHdL^ESeHl+Y z2(9w?K?LFU8&`9*3AL2+f7R7gc5A^Y`WY`v2 zHC*3a z(iewkOG0b-;|l0wH~-B3YftlMixT{q_IVx=pP_bSM$O&b50p%1rPcpbl->>UBd8QE z`#17T61vdxuE@XZ=jLojm_t7?9`6S*p5ud)tZ^XhPE9(8=@fMC?7(z(+~DIQ4=V3+ z-G_$5k}NC{YSM<-cKZ_iJNyFK{tspAUi0x^YHDW~6YL?y4*Tc$P3+=ZOy$nZcM#0V zBqZ-nS9tj6PJ?x|-a~-{BIK0u0%B1ao@q~BH;2F9aEWpMv=!s z%Y)nb(@b-_f;{pd?H0N_4)@f*{W!%Exe>@1iljVM9q7~Gtz-3mD@%koS`tR#CS&3}+$k2BCf(F6GN!o1@pU(~MvACoZ zSI1|#x=HhZ2He+bn?{p{b|aC5nxa8&I^7020m2kq?3SBJweVnLZ!_I92v_I8EY7?4 z9$akR7qjR;=|9imHxhBI!#)gGhXkt2uq;&ES)TJfhRRK~Tp~}@*M2MVh-Kcq+%zqF z>azmNsNt&OJ#?7FE^Owvf_;Krp;NU%uaWe?c!MFKpRtw4Guqd>7R{rvG9IUv8!6f{ z9-u(TqEkIotMjAh4yk(&j-TIJ3ia`pE!xu?aSJkJZ23ZS@K{2`zFe*dtmxQMLaM2+ z9Muv@;igV}T51khos)oeM!yCaRB?%rOp z!G$>N_QHp{KJ=SfJqib;2-lY){bG<$V3jwgknzMM#*U15Nzr|*`$Y~~BmHdct$aNVg zfrsN7*?s3C^$C|MTHaNQ1-74kMi<Hvfud zmCcmOFH#=RaE58j+=@3wsDpl;G~!Jf!9c-k@pj0@ni|fexpe>e#nq2oTMF@8QCr1v z6h(PP9NrqVInYv?>E90#Mj`;(vW2$@QdBQ5T~36$^tgPJEOGZk^gh_0L$n}tp&9{P zyV?k@*w|UN*@|cx=mZyn??C}k6jRbjDC6e>_8`vipK&fhlrC?aQ>5rMtA+v-ts<2} zsM+Seu5mco4dR{eTKi3Lm0v##aG|a%pXm?SM|dXGU$k^{<)wZ=U1-FV|Gd@i1d{(e zkKfujID8&{i^s1d`dbyRk6}FRRyjNMNjwOJyWSbT#+_IhC#g#76A~EYW}c3<@vd0P zBi_Mgxa?IjwX^EbaJUR95&sn{*FU<3WeAZ)MFhm1GA4WBbiY501THS_m~7HLYw==~ ziF$IL|Hz^L#6Trn9rLHXRyXB)J7(Ayn|E2oe_qzFKWC@Iyrq&8)5J3YKvNRnWjO(z=!s-FG$T&XoRiO2T!go`Omq+3Zn) z^Ib6*Yc&q@-`{Elo!;T9Ymx^)&8a{;zXH|;819^O$se?3HLn1_kZ)U|_l?J0CgxP^-B1jR6|&YY?8I-}1`A8_>Nkv<0vpqCS~k2%pp5@(Z7%=zCTn+2D$k6PS=isIGF3UGqC&YHP*kJ^ z2%S(=gb=E92n6N?-}&a9vewLBv)0U)1$q~`cb{|i+56eg-e=$NhgvFUPqUn+qoX?u zQ+=RIM|V_;j_#1%$>ZQJWjX2-;6G_kC1X!LSA?gJm4^+Trj@6gldGqb{bNpV8xN$t zs|!>}Oh`n4)6Ub=4Jjim?ED`$2)TOL3J>=&z5_x|xv82U>FCZ}r2QVEOTk>Bqf^X+ zJ-Daui&+@+dkQze?eA}rG|(jM>ZtDN?CiVkcPg5WEgA$%9pV$cY5XjLdzPvAb%@cW z^GrVjnE2n_^rCz6=NFxlS=;C#_46aTq45kE_NW|mOLEAD_K5Jjw5Zt1fwX;y#p88pTuv)mIaI^!j z;l);GjZp8HU%6MmcNl6$swQX4ZLnD(v{OtH&@~o#=b7bMvGO|9M!FTkv9qwX<8tco z7B&!pn2;=Y*!N0B4?haj2D%La3JKx*foWgxhxuz0!cbL$8eV~NXcGvVy!FX?J~AJy zWUZ_OPI!S5np^n7zJDWB-63%;27)%p!>T~WIP;7Nr(waWGJy?PMs*oof(DEuer=n& zF9QtpV7G2PL2yCq#yiG0_Al(eLo@B{+(<@4%e#_?m7zozgi-P^E7Z&xQHj{tM-_YJ zq2*i=KImbF{gQoK$b#_g@_^35&m9t}!#*7Xqm!c?sV0%w)DEXIG_|>;psnL_ib+QB zt}7%mZY?-y=|u^8*c?jio7~~?_e&nuL~MLO%RNGPp@ha1HT62?ukP3BqfJ(Xw_4L< z$(H3K`)C2l@}CIr2&^82s?hjtpTwci*>M?d5;?K+YZvQCZR=Rv*c{wRS7@m2N`R0? z_hm?XLV4LqfpZw-rka1CV-t2D&U0u4XJ4=}bfs3pG>*Yyv zMdYqaZLql5v@|tpg>s2~f@&ZQdL?5^SAu#Hk&E13 zOW_`73XMxODE37CoAy819Vi?yZ5SU)Oql?m9pgcr-leEP;9Pmb(wk@fo_*>MiZn_! ziNY$Og64v|wACniXie?f@t1qHNouB3gVIAnv1^Vb^TCISSdZyy}Law4^a>}%}A zGewld4Yt&J0qC_GWG%nuJ1e`B)thr>>w??R4gKE1-|JXo1cEqqw)JC4lH;DT#S${xmh2Tv!(Xe1dC8Z&88{@ajlhHP9XM!^K{>kMEPT$^nyyu^Twpo+fe*nvxQjp_m z%|b=pE|1v|aJ{Vl6s+L4<|T?d$-J_0>9Jpe5&3cFd#d;qF} ztWfj20AItl!jATj#&)jwdpZ#o7m9PFQ5F*A$Ndzt9R2AhXGA|MlxPuHU|rv@<#78c zOhl({9!-%=L$0sf5T*W8Z*g@=ozhTyLZmT4@}6TP*7~=m%t%u1@3R+WbO?uoxAlW3 ze1mZXwo2vo(mE(OH~D;H@zG#>Ty(2r^TNuWCZsEA1qs{dC5yxMQG@ad6PjssbXYm- z_c!S1$e%id5TL_~)ZZr>t)*7P6_U%5%I1B32$Y)kK1FJz+L#(73!qt)`=@na5%L3KV4JUprG zzuvj_Lluhe{ZXP!O^Wj@_LhIX7zE>Br_3IN@hhxHS?#}fd`48M0Ss2c*Cg?r-Q;K) zTsLm8x+QR)c2CG5CYaZuE57&|Em(O+;X^_e!uvsRmw5R$YFb@aOA9a3o1=LR!%dsm z54viPsWv{6xk>)q-TiZJSP_zW5n3?TGYVUTkRV7KSs|`ZtuM|jV2+_Ks}kmi%g0_b z@rM>#&<2u9}L;Eex;ToQZCv^3hfY3C!kRSYLqyv`ff9TQeU;xM``yyI@kT; zI`vJwXCwOM)G=d58PeO^<;*;Cc8DZe6!yy#xInutLc2=q^JYD$sx;qW5xoc*sa;dw$QcAmkMY3o0FUtK*yO-=2j){Ahai&%X= zYG7cnu#vnJv{@GrIA%$mHL9h|7SuWKObG|)nUo{!2MSGIe|?-HVjYU;Ov#=rX$&eU zQMk1Dagsq?Ts*s$p0z3YuT^dQ_{wbAcTxLJhLMGz($%Y1^Yim{&CF6ETm0b@>B?H*;We{{4EET8=OjBq?e?oZPZnT;W9amN9Hz`fOUBU{^CNJ-eYzC1mz z5&K;7HYt5+(}((rG3cE%a@uaX16{lP?HUhkYHBJ)!Z}5#ao2;*{mc2-C*0Y=*gU>nnRnz>rlKIlrKo(4)dp6nRZ@ zwvE4}4_LE!AZ6`~yU(~^Zk5w;rr+wc{dm1!c)C|o7)OwCl7)XBgiKHu?oVpmwdqWi z)ETsdIHw`;(lXP@)}C#*a_tsIDye%WoW_6I_#;NV%$$Jp=tmvBT&;csBY3v$ zTfdyaNtSEZ#Azxuuh9jTNtu>x%u|ZEOa}AmuWnc`!cjVQ7VEV6jf(q#gL#tDeDZ5+ zO{>TK3(CsMDjfRx1kFD_bQ~z`;n@3gLT-O|)wI$f;q%WAmxavVzkYps%y%-&OYdSE(x5#UiKn)4;@t(5N zOTqhfG;zSFR8c9Zsp3vUw{g2G?J2T8#cgeE5E!$$+cPlfPPw3IJ#D${+_(N}Dr{cy zki3kHdvk*&gCE@|#oT{A=u8$-M2Q7bJk#92T@@{dHxO$`Zwm?w1#E0=Xy#*D<%9-K zS|eW~3v|U6yt^E}%JKBiJwf9SciGt3^54Jj27r-)hT1OncP-Yh;`O9h4HXq%Sor=t zmIme?9#~XV6yPOz^u*tcZB0>%bzrmxNi!eX*qal<`$C6Q#8@=%#9qI2nkTg4pZi>1 zo}Q{G?$}qqmVJL=#@V%NpR`_}DWA5J32A9XHAvEiKL)9lWbP5(u!&ppBJK@YM=$io z-NPU$OZ$7SG*4Wr!qwN`S%!OWj$z^Hs*e$MI2SD~t;f_cpNam3>WSj1_N0RM?^S_g z*r!LkYVKj)ws^v!?9l}uK0E|=HqvXP!ov9jY$)A1slfG$D*|%^MS3?c(cF_8Mzh#& z(HxE1gEU+YqV%Tou}3?uPIrcH^P?7qN)?rql-lt41G@xH$Frf7rBhj5&Ce1!`v!{d zrYYI61ZUVBdR9+UGjeur&TG`Yg`DD8tmEZXxw5*t-mS<;{(e1r)Y=(XOqI*WpU2_8 zKVP?QKmSELU7Yf(BUOR^rqe7dSl4!^1=W;lp=DX4SJL!PJ6j zd>TKjt-W0@Ffi~jci+$EFh>CSGHcz6>oZx=e8R%6Npn*qk|T&F{xcb2p5uO`R_WaS z0;A12+h;$x4pa~#XJ=>E&D`+kSpUEP--U3yw)k7&;R>4rFy6HID~kZaRAzv%@u_5h zCMrG?fz=2+CQp%3u7Y?j3iyj7Kt37DOjf1a&-;NS*@+$#+q7)oJH>Wl`TNv~{r=?^ zj*?WDS{N_J?YVLkYhG5gyo|{9%p%5Xz{Ip15ve8h^C)b*8*_r)_wG-(j}sG1V8{DU z$p1Nn+Z+$5{TX^q%%Sfl@Y#IJLAjOh*S-35RO~5hoT!30R|HH_^m2v zQEyDcq63_tA1amk_3C7NP1?p7HB$QZlgbADcQ$Ph{AtK?J^c$C7qoT$ z7B8N)oMWOHQ&Y%Ca!#r){4m4gwFA}C{htRU04x-Mh>rvf)q_o_eoSeXhf$SuU zd>Xo=Jh!Kk<{~A>XI6)J)Dvf3GFzw?P6Td_QPxX>ab4+S+4c42Dy;4gs+}drJmY8x ziL1rm?LRUv{5JETIzx>~NXRxQFodCm>i^syqdmHk)QB0H7#_}Zld2ya#F5?xc-I93 zJEN^NocHZbSnaRZ{2LVLadj1ymO}=N3@(2c6cgl9r)gUMai{8Q1a9HTk9a+;9vW7I ziP-^2q4ed-XJ3UP-j|o_?XO$zXa6fOQntH-gYM47N zj@Hm18bWpr-bsy;r`WOi{f?EHd;`_DuqduuYA{pSTaKoMV7Z<7@-cstLeomM7LMS0 znhi!j{e69;Au!-q3N7G8$!!>GrpXv|$?wct1hv)e8xyp?6Tclp@p?-*?p(lL3rP8#Nd)6=AuXsdZ=hfo6)>t)8r7Lq>mj z7NH9xP1q(a(Mw+z-WVWt3@@qsczVvzyb#fm%mt&tsY}h&WgH*@wLq2ua8rOoj@v6! zl&``;8NhLjqU9;?2SAV-vo~xabJ_X3(GMn1TDA`(P?TrnhtIrvp z#fF{5Ab4F>m0{PN)i(_*2_=v!TFj$`*nES6wVJL#EsmX`7BPVP@WA!{S|GR5f8Buw zLzG|4jmc8EnVI)#@%F9nuT$_~>UzNNg}XlV2j+h6jwJ>4n~|B^`(B4IY^#1Fsd1vTYm|^$OF@sTaO1ZIc+BL zgLMl-k!7QWdXi8-ufjI$WwRA+qPgio6rsUja(0p@UV+KzN>8*JDoT3#3J9y4{*kS5yu6`fs^hGz)S3+ti@R;%T?+g4ivXA( zl*BSyKGli7v+@c;&WsQu3^r_3eklc9C5-9xOV6#JVU8dY)KMFn-kv+)oT}PNN){iN z#{&o--Nz|Gs&8LhH=#wEVd>nu#aeZM-`>^Md%&B%cX$VYJe@sy_!^C#*0<`&%E%m_ zuhrdL!W05!Cc(YYdw_@Dl9a3-v_>^r8%3fvsn4kQ4(gwrzTUmP+!>C>ZD%D_6?V{` zlaYjazZa$h!?x)~>C|~!8chU|VSPH))nRR>M`pcGZ+$g=-yE!_l#idk(s%iB;H+Ny ztoPz6Ud+4w-LCyU;5!B37kTq@a+JS*{Yr}waQK)|I?XIIGr4KrBr_GSx0X7wd!uLa zaqvQWC6P$<0^Dp4z-dE{R$9tX(64ab+0Dj%oKWoyH;vfwraxT?={vdh;P0%do-eO4 z%Fn!HS)KN>L%0%S=d!~F>krjZYr1Za+CAKvA>;H_Frd8G}HfAtB+cUF2QStZNVbMaoN2L4x-G zU_WAy;cL>9hXr6h>TU6TTx34dXxSLtabteC*iph3AUJ0~$b7Pz8DtBCPfU2HN@m!3 zB$xV@Ry?hV7dvsZJG(mA5>Z8vmXuZEu@de9nWCpEL4ZlCT+x(_t~;ovRoXctnPtYp*Ej}IKwnwf;&O> zcn8EJ1mYrujfZRlvqY_7(PKilAmlH72DHNjx~8Vn*|l`^4AAz3H5Hhp2fiOxt4pZF z*Oa1)6FglxNS%`9Oo*z-#42Y+qubztZpIF-SD%_13)b#7#e%GtPk7XL1{3gQ;%PXx zcq$CSMkLnYYk*dU!4KetFDwOUPidpk==|d1=_DQcnsOy^edStL`TQ( zb-eK;W=DrmEQr#It9U>lqXrlQy=W6`xCTYMk#HV?__J8Qv-z9!<_R6y2@knW#X!j1 zFi;2P3nmWo1ZokqI|R7%lnA?h@icBdp9%;AFxZ@0db$%gfgUC?0a~c_(w*dt!eiij zx{!>|tp9(XD1b%&Zw^ah5gks2XhDf`al}R~8Xi}%bOup{p9nJJoBLb7;8fCu(;YVt z!)LTr?w<*X4%UDLliapV;{t9@IC2M<+; zkc2^cAuh-2L&&}`Bm`7U;xNeK7Qa=V&Lph+@eIWHVBdBVVmgTMo1;B7EAhb>EN#CuMZaeHttE_ z{NCEbfdhKf^w8=R?eLC{?my4j6<93I(g<(Rk>cfF5mnzhEF{Yv{pa`d(b7j(Sja$oE5^FhnkAr)HUNixbH{=umXT=KQRGcEsK*X zfH4JcM)L$}qSST#{z^LiZ@>oK*@rlL<8dh?`3GNK@dak4he+fnN23}bu0w5-khK2j z)oJw;aU`+-Sa zz@)+r4JG1j4$7V%x@JE8yY--cV*)e@AF$SKJe}TngKVto!5ofXk&_~H0fvn7tVI{C zSnkKpX8xU=#zCF4h6EXAk3!!T`)kCv#b!SJ<^KN<9$bQT{cm9AUrQ54%^nWHEtm7S zIy%B5qEd|ut$8mOKqRmC^Bmm4KzEe&WPBtsb!~<}b-jSOjR&R|Mw;D%@yNJ54v$LJ zFVsEENYkR!O*B%dU;Ggrde|7&m?(B%*PHu&V`G(wuD1(@ zg~lS^nU-)H_>YFJBN<5(MFZ+feRei}kt{?RFhuCo?8or07BeDw#?33Ddgh?YO&9V` zv^)XCu)N|UR7DzGIAO7|_!^@Q0d0aBj3W`8vMFGYY>16OkcPmk>m1qMA5zg~OLM0> zs;61_=b8#P>J?2*5&OGGxL_&zDOr;@5@xnwUug?bzI4u)wu%{!!%>f{Kn>X)Z=jn0 zCuy$JDH7X*ugOI*1i%O_dO8!2Uj3t(B3|{d{M+T(*S$9ivY^G1e6wpSvf}>aGzYm- z|A?UKc{v#2ACwcDWa)zzZJ~kEi|S(eoWS~jxzfg<8?prUc7VCMFcm4%EUIch9jhQk zVjmjYzDNF4%A4k%E6xIWP8@ zN%+FBh{s(Z^v9zIj8TuceyARJ*;QCIkOv#tI}0o43G7=ZY#}5p2~S}xk}jhn*Cd>- zWWEm5y0ciZLG>>hdYBa{t~pYcrDW!iYM?{RELst#z(HaVL zt%N`I^h%%axL*assY)JY{dE5?;UJ%aY0Hp;;wz{ZU`DDk&C-JvxpP=`#wc9R_|?II z+RM&)&N^SC5Y8Jfq6I5E!#S}9n<_~$FtD@YcN7$D_ICd4YMgCfouID&noqvZ71|62 zpu2ak>Ab)iP8&L{dDFcFD=zmr5($Cxk}LN9xptz!P6{icG|ZwGKSmOXEMg1V>dAaP zf+*Q+iMnhsQ0>sWaRaw9?%gj|wcud^dBWG;-u>ahR&2&kKMOih0R_EgsvA~{_gg(D zZKMxL045KBVJ!s!Lv$$f5g0bl|$d&8*k+o$lg0}ey}Rk z(7DJ_#|B=&H)mE+S*&C>XKG+Fkq5I`h~;i zXu}O1JEQ{aOO7|MdLn3Fw6Bu2<8f?^GBd*7(`vva+Hql~uZlvG-d{zzjBCtNN_9-F zw6EJV#pQV?orCbRY#fOmSB%M=zj^2+5Et@-;n0bg`&VQCu!nu=tF8#hP|+-xaCRkp zTNvNTS?Khi!i~VEkG6*U4YHbHitMkic+R}K!zLlBeNoLLnVweFxI4oAgO0(?53Qql z?Rq`_C@q}9@H?-iLC1xibyGc^T-!m{UJlFQc&Qu+Z;qnM zZ?7}*3|A9#3ypnmHXe}QdFI0moRKyUKBvg%-|bal@+4aH4&_uX4ca>^;W&c&$kpu< z@3ZBEV4`t15`WLr%PUXYkG#4QDcClxQ%#!%gX&S%rhD(DcyliDCe40n%?@`4&a~-} zQn5&tDa!kEKU$p0i$a`RYWK@Bk7qmMIP2!B6|ERXvL8_`8C0?I7EqcvU|DyjYlD!7 z{FCJZs?16sE9JM}eJx(;HPcyi*3?WVw=&2z8qBIdf=m{=z5>07^k;46@n^u2t4Q ztz%bbS>cBDe6aV-VD|RSP+1W@FnhP#pt|dJ_qEdf6!XM_R-2l-c}M%DK49=86}Z;m ziJIND6g30!3U66?7Kuo{wHML%6}E0}e2(sUX#(Kjp;*U7OE8TPPSB@xP72-g0l0U6 zyj5K&2dZy$Ag{BsbHu#P@#IRhSHg(lL~XmY(y&g#l+AlF$*jT6vQhek>96{zxQyGl zdo(FWfDeXL#4!;A=?H{zau`SFNIlMkIBRCm-<|KgUNkb$oo{f>v9hSaK+`#`4s%U3 zPl|Wo`qrQEuqj(R020c~q5?D*xZ(gxQ4BKZ9=G&nOO$w(H?WYjL#nBpi>?8-W?5C@ z75PQi#}`KJhQ!J^)w9l&i`CkZcCPFPKDn3p_M^{AI5 z2AS_j?xq3p_;{garA1c^ZF%)LSXc2xP8-Fr2AlginFhzZKd#p$(Lwb5&^`C|LV>8e z6rkl0>JtRt_t*Jg>wy9J%jFbZFMiF|i95>K>F;G-w6{@my3(iCh4dToKrE9}@A?^0 zaqfv=;Xj|FfA0BPdFvzSU((DF7~!LnU$|k>Ulx?^Eb0TW?5rHez6ZdmUz(+~wDf0u z(6va{CNSdH81x*7cR_z*X%TMhaP0YGXka&a^&PLutgW8YKolzuj8Tg2pZhuIgC4qf zY>h{gXWlrPDLPjFn543G`ZpFEEG^j$tgNsA939T)eFb@`m^1q3)r#o#w)QuC!qCj! zj#n$xse1T0Zfdu9v+z|}=06Z1Sjr7_2;IH=;4@dGz@Hm87u3N_$A+d)aCXwRkdnyI zUtO`YH0}Xc50e^`gz0as zH^*F1V7=AZ{?K06HTLs-@@KBlHX!t!EKqZkJQT|GM8zP6t^aq~s2uwQVLUJ8TbkUx zd=^uKex}eZq9oA7dJY?H7+c{<#QhsgJNHzB4E6o4o}WS}$EU`wwT*g73-_LJ^MG=< zg)3d+h5&<5!4EG>^*9}`-178}f zd~anI#$tx!5-(y~4(dl;JhMc9Uo@+&^W;v3Y9FKG=eEvQe3H=2`ZsAmRo@0{MKxm1 zpAy*yT5mc;YqWE_d-|n@lC%iZ)E6-uB>9k26m%jRTa-k&ai%-0dc2W1(LPNx|oiq=#{ zP!nU-wW^XdYT0wc=Vi+kQwF?&`{rk4Ta!E->lzo=S;?j@cI1a}^}6u_d%~>d!pL}E z6_K3>-4nwcv~@^TM@#>hi3rm=y-HaYU)#n86GDY)>XbMbpbj`8-8*JPPNA`}N$H39 zY7h`z=JcJBsa29y1ywbgm6{fRbclV$BRR!huG=6;g*&s=k>yZH=gF6YE+GOkRE>mV zKeO+wP`6dCXn~}Oa20Tn|FLLhQi@ejP2tQlCv4+u7V`2h(lK1NP(@|O9t(KugN;CH zodrbeC!l&32z|g(A_W)s{Xkr&B&NyTcSx-l?mcjtrq$G1N z#>pW^=@<;F$8L0@uXm}=_1v#;{_MGwmRN9jMd&kL{FIjl}|?r*J$#JDECorx)`D9j##{crT?FM!oQ8{eMvGO z7y)ZdMr+1+#$#!nH_eRFB)$$O;kPh=VnhEZ$_B*FM@Qj5vY5*157tBJ^BnC5qo!$; zI4`GEv;VAfzWo~ep7F_do2`0@coP2MI`8#*r1bPlPCqoxRk$N6Uy3&|c|L)6!WY@DFJ57< z=moe#s=h`4`xsa*n`w@Tb;Kox^N>R)j*+nIbJ@Js*#Zv-R{k2|G73KJnb!c z?dsvy4$uu1vxWurr@bmK)HDSrsjO!D3nT04Gl>4n1Hb-Yrl)J7L*nzUFV;6*Z=fOZ zJ(*wbl|KGEM48FinKuPR&_%h8>dM~WP4*+BL$#~1P2<+jea0Gc@9-!Rc01c`(JnDg0wP5X!Z zlICg(_L6%;$$g4#`tjw#(SFC>LWWBfDLWImyOVjj*cA`go%maXHS&0OJb!V_V%<{6 z+$XEQrsysf4-?&jiYTcmiPNidjbt<2C#Z2UD83W0xyrSqHZA&zNf~;% ziR8lOu(|i{CzOT5d`HRD+RF(>0bI&{Ue?^*Ll4LLoPBj5PgsmFMSx+-ct0+^5&y*T zseROq_}?@Vlrkc-K2LF`w2Y|9mAj;}TUIJ@#YM3gVS97W_KqsHdv1My8hYx`z24zl zpn0V{>6^N+A8};`+pE2KqOk2ICpJ%0JaQq3laRBSpSreE*YB|8 z$=4Z4?r093D{81R#&4zHfcP6V8zF=_T?1-GLvd$xIdW? zm5XX+;-45rlrKNwBXs?gUjEoS+bO#iU7287R;*hfxex=1{NB}9Z*P+lFmpTYPPV@E z)!je_)x3tcPgmA@Eu!D>rpI3vL^(J>pyZh>-0jKv^6ZORF_}GbmUDFeuTRTKJqJ85 z5M*w2oa?iuBb86aBn17f3oe%w=_@*h0VhtAsMN64HH zjH^LjZK);-#KB@MjCm%=2`}PAlz-bYsCA**D3=9Isx>194QGef4IJzi9tyA$+~Z!0 zZ+2VB1diO+6c}sFJ$7j51YBEYdu*wGTkNtx40~YTTm~2Hy7D}|82*kPAHTXYj&>jb zI+410Y3*_h0!3_TphChTw@%qHUHfJTvUI)+qHL0R#lpM&{-QBr3^Y zs|(gg%?$kaiue+YBw?t~DVv$!x3XnggClQ#XPqhO69$O_t!}|HSN~JM)j&cObt7@w zZZX3q#b@Srq)?l#w?JW`oiV!SwszB@WLi2!3@BEsXUF@ zI6ZzzC+(vwCC=kqBrL|*m{&un2d1aywGywZc{MTMZs^f#jwux&ao#Jf(iLui7Y$fU zi=INqGo9t2?dN-npj2{{b>{aVPI($||0B zHG6=LjSt@7u#SE2D&m#b{Hb{<=OzBK=GftbCsl(g7j zW?HSqCzL3^V*)y4vK>njitBYL!(9Y_-G`v|#`WWFI<0%{WKLV{WjS1qt~PGD!NRw| z)HzKyK#Eo7PS+VRhFd+Lq!!??Lm59yI#+@hGI$LYkH! zo5fJi$T-u}FBgfXBR-*AMM1X-U}GGC!eu8N=3W(y1-pWOi=f3-45UV%8&#FORenFU z%~WzhvA{WPC$4PmT*N=#8;`>m{ch?E`XdAi=dsqc&smm4dNN$*NMj}x-sjNI(J9uO+Tf}hyKY94i?>Nxr`rnL)jzYNVGj;@pZNlQp`Ogj4 z$VoqhF_@U{{#1l3hF@rYbwM%wmxIfkYGHLnOWnHK2*=Nu1$xB`hhE*feqr3EI6kd8 zlpEF@RvWciHT7iP93S;EAr0iA0#6^&pPA)P-fFk3mlhA&R?n+4l-YF??)x~yo%fE@ zW{UmhNq}ea;ehSZZJ0_u31??gECQ6oNUu)v(tBL5-#s;3^98o$#W@)9!d%*(zslzN zKvY`u>wK1xzP^DzXS<&9qXIo2@*up5JT)Q-(>HJ=PfKBtlDTVXlz!*zd;xku@EMR? z4ELBv#HNF568CwsHOK1nNIh-Mg4}mMe%x=OC8?YbGlN_s>O1Vz3G))TY6HuVRr$Y_3EduhR*p0BR@*BeNrxT)} zq`SDUgyJAk7F+|CK%1=d2>_)4en2I#Y38#4b-K)YU4cXXKETPrVFio)6Gl$@jc?!7 zJgs4N@LV5Cmh3XKY=i2F-L=|sS`QVj*n83E>)QWNP&~OIqc+-ufso9_WT76z5joyht{n>dA z;eJcY0#z@QrWjBi0-unOGhrG=__V_PozJZ-CdqmH%ng~2LHpYM5|!DtVvoN6Z6&#z zBIWtuEjw-&0uPwhr}}xl#8Z}asn!bv`bo#=PtoEaNPDmMxTy|e{9du|bj9goF8106 zSKi-W?=Hx9wAc2sZ+b_I=wL`O&o48F<$~5>lrF!x^%f%uG6u}6e6BjXR^UgD-ueKyCG zM(^I5SZ4R9I!s~oli4)sZKb^&(4i!-(|uej|Bgs*fAZ{|dXcUMWVDwBV>BqHp|F6k z)Yr)7B$AU)DYd=&N6(!6r4dHL1e_}PFE2O9db+WKmy1CRpnn_GM75p#w6IL5((l5htRjXX~zsDkhETFqBF|H8{dgq6AWgfjU7^P@8Denb)NpUQGr_%mO?QV zHmVT^k3EVJInnazr#kAbSUGX(r73St)!&2p67#NJyY6qkx4GEQ~#f7=M(A1@_ z-qM5S5JOIyWV)RfA(KDc!m%p5pciCay7fKMjMaq_A!KFHKd^QY8lmbCE2iMZ^mkPUXUxdOxWIWC zgz6a@hJrGm$b)0Fi-S{vgNy$x=k7pXi_mg4=#EkJg5~XUFIo@BSYkfqKnYjqkFt_U zMkqXN{1IXmlE!bJgLJ9I67?R^D&ll>FG3G`7ZTO-$)($Buxc5SDb<=Utp4`Fx5v*P zYWZZ9j|Hz%+CT%obxdPxIsbm43+X@hNc91P2_|DfV1+TJ3`0nmIlp)4&LlBQ6gXa& z#3~(Z)`yarPws9*5b}AF$&Fh=c@@=1(vW8`$a2u`+TPX{TJiU!e1i#$^iu?utByiz zCR~csPiT97FwzxO+Pg!D4OtkHCn06{224_|R+|vGmt{?azzM|vz6C>mxTRQ|(Vpwz zNqVl(_XijMw_glK;4DL5~6B6Sa^17*95VV8NBEKt>d(xcmNF;R@i4mT%OAcRo}H9NFC-0 z2-y3?*Y9kLnCx`Q2FI5r?qA0-!MCsduBsd97#D@wBC_l9p6$4BWY zn%N@uMay?O1V&WOjt1;-_B*!(RtF!ip)RhMfXCP+%17lLevA`O4yflV2Sl zTA(y^iyK)J*2=Jx)OE1qOTw1Ig+XXw_tctQ%2Sf&7uf3trH&JsR-InKq%PAZdT`&5vcb|NZ`K%G#7UY;&i5 zQ=Q@_Oll-!%$9^*WA$(4b#!QezBTsov27GSvEsY5(Ikc_WFLz~Zv5JPVVF!7}`5=RCse5k_q*@k&)Q! z6_t=w)*zVoK(`24+&qDU5$yIq4kNsy8v`q_k+3APOmWw0sora%7D8g6!?4}4d1+_A zS&6vb%vm|M7&X~&?d~lXg+(0o_K-7)(ev7ruIQct-- z77D($IZg+2C%P|Xa~)=&2k+J8B3%;e8;w~V5i0Ww;xaFEK!JKDtP=f zX>`_PE3IctbBd1_4)_3cKH58L3xYDRn|e1+s1 zyH<s-s3M%0hSVZFhH(Hbpx(xNCZd_plB+8wsJEjLtBj_=NubvzgNt{oWMKrE z5tpvx1q&O8H^+ihy>@_U)O~USGczBT+SgvpQDN8|msj&5x=$>me{xV*)gYTDu4Q27 zZcL67RsQ8|3?XPOzig5^c%OeizQUBy2npo3w+zQNs+%q~GH-h9XjnC}&rqr#3-cevV@`vEIdTWNf>h;Z0TCn(Llz<7{JB?gGQBs-4XGMt!gE zJL<|t0qzsoFfcu~56**JuI7G&8?Nh4vcYKq!XW?*e848wD;!l2CX4Uao|#fWzX%YP w8v!blvz(UXJbd45>OEl z2mwP09Tg#jDiAatV`kQxKQoiHG;fk!p8fQ;`TLf>=FvkOhaeEhQMlF( zBM4-#JOr}q{(-;1Hx;=$W8h7}N8`4Su_waE-~NFkM9<#G%gxir&G{~$pW_3hv!@44 zTv}XGl<&Tej~7x=Lc;yu1H?TaI7tlju)P6`9Q4w%KtdpgPqO~)f}~>3K_E9Cz;9eL z3Bb&a1U^idATXJ0LhS%o#Frl)RM>^`CO<@)N}#h_M&v>TW8h-hz^K( zca^5*=*e_fNh$_F1743sg-7@OdE^q_eQf9Hc)(t+od>>O2LKwtOYPeUubqeR_x#^> z9w3i2-|yOa+8rCdXXjxr&#wJD4+pOP-?GrTy$CbT<@<8DXDMsRpX(Z$>=9PP*^tH3 z@jFDf8nlf}IK|El;kn^no8R6bLUfBp_oi4Bphw&ht&*F|9kT~vMKD|mVzpeHn&F7> zOtB!K#bCIDlAA>0ycF&b)4LiypcY~P&>Rks6n^a+rhPU*YfzB(L~9i$R zT9Q5Qk_eXMNN75rb1s%mYr}{6PylT7H)|t#DI645*GwE;3OmWnM^9{S3Z|lAIFSyw zI<#r(fDA&GLhMVkNJMY*O%mV~mW`IMo(ns0+doQPo6ja7JW`Q$xpy ztJ<|4#26`D*oJRn+5kJOeI=Heh+RZ6ey&|#N1;39aAff@iNW?Jq6Z8&mO4<@QGAn} zrQYLHi7xros8fS(W`y%@o-bg?h-|6Gn<8Y}i1V+c4ajU;9AV#h!-~;jGB`r$LR6GP z>B?bPaMxI4Cv)rINJuGEff_o6*^I<~_E_ESS6C}XmJTRXtCQK`dFvVR7ihcTcK)PZ zMe6H#x+Xk%JugFoCPN)|Al2N2SHl%Q5Mx%>>@LviNHs>x!Lh{3{5-{7kaNdaT>ZR^ z^XIl8;|SbAz_e|%BeZx;EA=9c9loZ$QHWiGrwY>U!j!Vx%RSp?WW0*7ElRsj!eg~u z5`8MMCk4b3d`#u2F$q4A(0ICgW9c~bbo=HtD^g8+PmNI92w|&%3g0NfS_i8B;w{c) z3ekk&fv6Wy<*p`~vR4V?6uIkU859QwX_rVZ#?EYWl&w99$U!k$n6G&g>De)_Pd4am zcZ$ENB$eS*G2%2C=86g2om3MoxoHFg)io63-s-=@+BfQmvzq^Kz)s1fNoL zG>RSyms6llV~}+MA$DZVyQC2sCiuMqWg6q^MRNBeiTRRb6sW6O8?Wp6CbjATMF_}J z8>7_=E-rD>*T}b-o2ry18LOZBI5m~1gBYYM1}US=wYdv!g+Z#WHBv3%jqyJAM9DBe zlJaXHXd8tG;Aj(93Kb>)MRn-Wyn4V-xoox zppV2shbnw)T5@JnX$s}&NPXwaz{Vy8>fKS#M9LnA$Jn>nij<5;@lf|z1=&?R(G82; zoH)AtWhu67wzqoPV%CYPFjt~=23}4kUY21MWKN4Em>R;skpAoP!~d zXQzXJay)J~BtRHbNakGDS_yXIit)AyjZ(EG>obw5(9@qD>Q^Df{cfvMcw-vpJkw~H z_9VJ@V3S#pVuSwZr&JU)Og#Fdc+02P$gWfjazT-*GJ)X~Da&h*CC*Nj+VwA#Jg7s? z2f*{%W^%j(*gDDPK1R0{J@hCJysV>yRGi5*l#ed z4J4$v3*BcPPoiwCaZ_4f`I!8VOrv~>78CQgXh(4uk)-r^COX0A2|A)<_F^E?X{%Ym zT+mY`Y9ZC4O0|Y&XfwGmby>&O;L&9mrw}d5W_1B2tuVQL6JCJuD@8{Lgy}X|)oVXzUPeBI?J> zslqi4P(n~WIo#o`nJ{&75OtW7!LZZbz@VdHxN?+=1nuld?*YhruWLK`|22 z7tY*^fng12Q>%A(Y?Eq2mIS4?pV!--U(l}ANq>^UjFY=IV+%+A)KeUc&-;1wq@pSL zE^~#(Xeet>+oDS_E{o$4tCSRES$u+^=V$^m(WeACF9TnqUae8H46(A1&icW1XNR}RRt zzd}b4-O}qV29g!2wn@@$b}?lR77cOUq9<5Ogoh?_E$r@MVvz1A1lpn$D@1e)^6Zqs z6$#jg!Ox#RkBm`X?SCZ9&Kmseos4T=f)e%6xXu2c$Z-Bg3e-YiwXsO(oD@!yR3ioB zz$k^D_#02Xl&$VFW zwfB#wwfDNSb3sK#g|zpN8)%FA_G^#5NCjD0*K=}mQl*`Z>f1k@xPvle?e?gvzd!#3 z|IOnbZ|uwL3UZO13$yK+G8%JJX9iRb<-`sVEXyYXXsX|j4SCsI$b1&+Sd zE}?@et)0G1U~J56FP%Rrq;C=!xPC2my|22Vmpa4vakjB*gsG&#b=Q*}m-AR=ak1{cefzZG@Hpt{ zQ>X6F_Lrlu>&sNvmFZp-mPphcdAQt>3Ui7XU29l#o@h%ZP9$0NbalP4z#(X49f?Hf_6DV~4=$9B zWqs3~!KfS@9E1icOXupR7s5#L>Yb|0hh>d3{te6A9qCHuEM%8dk6wlkRyalhzP)YZ z+iRMt5>hKppc^S~)4LVtD!Zi}+fJ2O*BGIEhTN-Z7472PXs6c&!p6B%nUOq-KYe4B z=H+etM|@M2gR81M$4Xtx2xbBT0su%$`n%1AMmr_{`JTu74p-j!@OUc2H*$=zT5VZ* zKMv~rHA`b-n5vSu@9>$a$u!SCD^EfWlBA%CoFsm&4_u~y=Jcd*bngCe{f{3X`PS?E zb@#Cb8{<6vUSEn$-f0mtpI~bnoAk-fj4~i;mqbK#>^27}l|D2h<;71YH$KZXe9i0J z8t4qo1wY>hD6eHQHcbr;GnE$Vjh&sHEvr4!lSD1Dj&jOQ$u+J=zYb#rmRMEmXWr7% zNfI@*ut0kdR?L){Tg#TUKF(#4T~}9nj0Y>7ExpRi=eR!|yD{W+T%IVCCwR@7Tj-J)6+= z2|zbS&cTy{Q!z^OT|f!oL$`xUZkJ!5p_EaM$_>9McW7}LsBpBbavQkN*z!4=bA{e* zFjF_SU0T|(;iCNO{T@pkB6_}t%EKZ>h|B)H`$K$LLb#VS7Z#*fwopu?xbmpVT2+U7 zSypdK!C-hq2Z!?JEDkJ*7O(lqJ`zYx|7yF3`(oU4k^+?rP6l$6fI?+?$rqo8A?~*) ziG>tW8Ji1~lLl8Wzy}*b>SWyqu|T|i6eoF^za#sKEwXEnRBaRo2Z!{7pIU^irFIrC zA3A(k0G@39;BQ%v;eaol52p+A=sm^;v`;4u5}>_(eJuHytD_|sZ1I771B+46K|lR5X8uiRVi$aI$H!J z&(YB_XnTbs1NcW}d%(u$tHz;->xCsHy@w_0-$aSmUaBoCC@3(XT=zP@6Dz7oJiUIQ zBSY10nc7JK$EAPakL5b<^|a~x)C(>+9RBr!82I1C-8~U1AS6^oASegv`?tr7+cj7l zsBTxL!Gh)-;>wW#5v>@FUnW3Sf z#I&>`z-ipmMf|(|fPDb-I>_=!g520cV*p;Nl;aDi^GL04>J|Hs_BO6RKK;G%H8vEx zy6QLAU(T->rcpdS?J_YjA*`%y<5|D>%r=OYGt~gdnv`@VqRBqpx6eWmpqUP&#Ef4v zre~B8jQ1Q+CI-VbH;C5>0~2M!7!Tn_W@bsN zb3n{rn3llJyV!#NBii=Km>3)OGU%&Ho=NV9D2XJiilNcoF>k~GWd^F5y zI>jM|CjE4Lx~Qy=h=$1oueym@RNNTbnv}x><$|xS7U4QJ6REnDsjsqrZ^UoNU2!78 zSQoi>;ig%QJRN%gkH(l(7YDygnHSe3AQ56%Bk_ z`#FZY2#D?KbS=QzWBsd(H(2&9UdW)&IWN7B7Tn0(UZA8%I#jw1NU?-(H$Q&d z)yq(^!Q=5GeYktA>^8x3_>D=q#sWaBke~d#7rtrTn#4r;A3c`^+y(0vw=N*#YW42@ zZ?Cm*`&-wyzrQvNpl%})d(JleiU>$1JB@5_OW|ZlH7NPSrz&?(pJr(V$nk(9hC8O8 z9yR1qCpIc@=Unz5;|Td*$c_9F9AI);NY*%OgWcHJXlm%o(ukrDjWNtnKE0;qG+>+; z7W*gKlV>8%+CFax`}JY}O1m9n>8)yAQ<9jKbjSu>AM8CRI|4*Hq*gzycMq4a*$!0U zwpuzm-L<|mP6& z?eO^sKsYVRZYyh&lwQQ*6Cu_0zoD%Pc{62=wk^D2^(5sr>$y>aQc%giZFl4LoF~iX z>C1oL%Mv1%4c&p1xj9B*xiGW1PQPi#a*q+k^oL8WsS3zkm96h=MHLlNK^Kt3VLty})Ba3CG*GBy9Dqp87`MUtE`c?DNDRN(l72bEojI|GIA(G;Z zDBv?a6eVin8K*~ALEh`a)_5V!;7Ukj)K0QX?FU-Py!Q8x?F%gxj-#73$k^ZHl9G}Q zz?p?RYL;cel;+>5mo+kKLpQoJE(-~17MYch3r&mYUFvK!mR=;oK`@aU_EM)~07`)hMFuUk3i-B+RnyA_ z!b#_{b^|`=3-G9gFGWVt@6X<*&Ej$-9k3Nrw0Gm!A?b;}h1m%wp1z!sC zdbkvy(ZjMA@%oDJctJfBR2i6jaDtFZx$C~Zc$U#~dL4L^cY8|n^q~l8zuDXAfs^R{ z)=Z!c$+Wx-9)ekDDC1hAEf@?mlh5b#PFkqacRvoXwAj~eYDQQCl;y+$cG0P($WP~I zXEk|1J&(nVT5qCs#A)TFV2CZ7>Xug}y@)>YUrs>#i7}5LLLZ;M#?2{K; zc*|_+{J80xyCeU2NPLnL6M^49SGkjaFOF{VA6MG1S^VeN8$jGa?5=KTw(7^cYs;a8hA>SO*n1UH_dQ{e14W?tmwz7e6)hP?ED*5$X z3LN8=XaAFReN5$37Ryq6mh*6Xh8!CvIucX_oV)NO-_-%9nHE(>IqB-ME-)?b!|x2o zKSy^1tdwSK{S>MNE&)Dx%|pzpN|z;gis`{^!g*7TjG0C{NonCe84Dk*^DkRkUQSF* z%t=j6-J>D`xH2#>FbJ$H<2ibDd)mD5#p*kGqe$c&(1U31__{2aMRdLvqhf%Y zva&hGwB=>|id+E^g)t04?CL2nt~+`d{Dco!yqg}zSan;t;tUK&Jzkq`)7b$85O1mdJX`X!npTn@fbhaTYI;DoGqORj{DKS2${kU(Hah?d*vE>O z2=BQbpF6Nc&_1%4>);pS$EA45DNY<#T}MWMQ1!TbkCL|9am>-Sw? z#KLX0_4G_NH1?^!%(7FUngI8{r>7?%`7!^eVOYnJyoj{Qi zDxH57vGzM=XJ{A)0$vRR2YPi+kICuNr@s3v|G6$sKMH=#FSt@10fX{6SvO zOR)9?x)Ljy>_QZ^FnW!R7wAX?nG!ueQjIv(MvUeH2jR#TpZQVNocG@|_iOH!!o98c za`+oL?;VCLz_z42EFq5@k~cToHZ_ z$=h~UU`~jAi-mtObBrWbW^Tb!AY@dbx{p`^Es@0KkZLF$#ka{}T7zfC*mpeMDLbGE z0a~S~!ixTs8AuAAV`omTz0mXAk|rtdr{J%TfcV||4GR))Y)S8-b2^}gUn7H9!JHX zq~T-{M3sh792Sp|t(~bM)ijf8*s0cVd;9NqlK!xpefIwU$UX5;>TnV2=4URPhSA^1 z(yQVcJN(ntIrSm#5C6ab|1f`d2AthtnfGd0V7@m=S*Z1xH}TVl0#)Oi-s4_;x2nwhW)|@|8_kEU?g?_M z3R>mq@?;vvaAelRFD0gP#Q6WcgE9FlRBMoYRh7csg*PThTN>420kJlTvq~rxR>ji_ zRq8`B<=!#I9w4u@$J%>Lrn+h-k$jo(+bqI1pvc;_+O(hsZvz+XIG3CqAIp(x9DDgz z>(i@_*jL|Kj3|Hgk8NI1>{0^O?lbYT7RUHM##w9Q74{;W=|jS&4%nc6V(QlKP&f*A zX_`lixm(ti7)cOJGtZ8dcGb?Ax;P`X^`+8pVL0c$OFCVDZPb(*kjyece0&GwA4k}E z3Z0``qp?ze)nP+?&KTr;K}wS?%E$idH0ObW@2~Wg3)S*?O!?r2o*uo^Vu?YEbB9<* z2(AAiwtZ&+p>Z9q=>4!%U%}<6KKkl)p;J`$02YeW9=`#a5r+F4^*T;^M8W(dZrcDA zI*!>~`9NaRW{XiDp!BmJy~@Hw*<5iP5`~tQ647u#c1z33>1i-$SC`ZI1 zV@I-ng!6ELTwmN9mcMWa?k`W}i5*~=g7O>5e?+s>?RNJ}d;94I&xdE5Ow zID*!Vy*nF*6GcU7aCn$MDMSLXc^Xw3=aYmiW!$2`6L`1?y`%FchLqU|9@C?P-&O0^ zq6aN{-@K@u)Tctx(wCJ?`EkZFib@*U6~@`IUk3^}64SE`6$;w4GldR-J&sF*Jw9>) z`qpP;g zkR}B$OC3-Q8#0HENC<0?jT(hM=#Xk$e;C<^=V)A4EWBc@c^a`ApsS8d^Xm=BY^jrp z9<=Gk`fslR(ZTy!<$$fZuW;Q&-E_>$mzS_D zC6sng^QkqN=oj4A&KyGnGOh2@O67e#%ci~ryLjXYOFpi+fsPLEJBYUS=a(e-vm7*? z{DXCou62H9GWUZW2~`Vo0joS=VI?<%>xlbNCk_^TVN+$%TQ^4TLg8BK!JSM3RCf2V zJI`N0g}5t)wA_u0w3R-_5>~$QVJj#$n649t)0LWVZ9&A;CsiWyAG~bcC=!1z|VR7v>&Ndf1 z{h5u+v=o~bGy!XH@yXj?DcTcJ(&d&Z7;sD4(p9CGk7Ou)kUrlWIP zezC`z64k_FEGymg=;b00`kq&RC7K3a_;T3ObZRkd?iCab2Ly9L7{=&dYU_QO#l_NG z1@>kkJBX478L_4Ww6H3F*4E4Cxv}lE)s&?{L4u`a$x2SIrJZGtlWY>udbU$>n0tx{ zpCrVYiTen{Qr6pazUbsSI3MKr*~z=f&XBta2?_6di_BZ+m%o&X-^jVLU84^L=N2+XYSVx&)6u43nw3vK$@)jM893 zwaVaf)8T8=^pBH=lpFjs^BfN2jIxlSHzMnQ6V!lJ`mmwMf+PsE|Ga-2$8ikMUR3XV zqVM~LjY%_i;j-9gJlx8vjP=hRiIgNiML%8rLV%O}OA>ngQpVC3`Lj--Pegyw`dfwS zbmJ6UpQE^pC6`BnK~92CSQ%B!V#?p;1N&!-oZY_mEd>#b!Le3n7uL(SI+O|K|x5Y_!hg!C)VlNK?54s37D~d&~3mYdg52fP4z}Sgcy#tTOGHu^TF^tS&7Wvb_k;-EO*< z^+8kf0Qto80DG-#h!^CGy1BpwxG18WN7Bzjq9Q3##asr6JMaUWMGbAmry4RJ%XNomjWO@ z7Xc{Mx&oIZ+{pFA-PJWe+Tm^sAxlPTx#QYqQcW5<58t@#l4fdYQRX`oJf?K-#!YRX z=fneHQoa2YV9JRHZh%#~!hlHJNzsXVYJ$lq{jo(?=NSU_xwk9p#h~CEZR+%oNd5`D z?ZPYYkzizzvlODdb_@>JpJsnZ=X&JN=m9XVG zCB~hv_L!wE20wRu=$`?g>K$%+T4)p5?juSVk~9%i&CaGgmm9dOGY^>Lh$`T`@LlnM zldU}#CfU46EG)F-_$hsS#cg_&rFIFv9WHbB9V3{^w{n3lH(#6${cW%1=TcE&6rUJ} zDkjEgPBSRyg_kxxY29;i-e1OthSGuA4?3p4HG0u=uAsL~Y;+n{ zx_K2FpYRjvm^06I_3o2bFB9%LHb1>!(-c=qm0Y|GBGzvgzJaozkr7H*Zp7-tME*y0 z-m$)UlcAo%!CbRm8N7>K_S$fHNtGlbgE?G2H8x$y4wvjHt5Gna}7+rP5;>0f3JsAUZi z*0_goMySLaogj|8a^!>;^xS_=fh`Ga-z49FTS0ARF-0%U(;>(2eZOT?x%MT_i!@_u z1YC@^jY<8^O*^@w!c2|C6|q4}!@R z8w5CFO#0+pfktR^O~d1}Y)|9$3TG~y`uiy=D>L%!vjCA^pPodXgTi85MnO;u=QwCi zM110zgTl(}MlSuqh-MBzsSI$?6trG~PZl;=AbP2ZO@Z1*bh~%ebr0l7L&DEjHytB^ zAB(3@rK>6nvPvz29g?O;Sn8-&a4x#Rqc7=&qG=CLeX^E$D?GRI{_zUc-@mE^L}V~n ztp})!na~I&p4PtgkS_@+t~ynC+^gnU10(1F_@wv^kTrfPVmCx>H>+@kND`*`qdXpv zdg-fS--xp=aC04ysvh58ss>Tx!#-07o>#7SjWa>9p*%-Skt;W|M(?PYyJVSFZ`W`s zuo5zUZl1J<)-9`TwSUP}R#^uUNT%vjq5JL3 zKDlb(MH()c$+@sBe2IsNg&uJ;^`>d>LdI`dU_%s6E=hv`Ph0RO?dcEeoM-CZTYo{q zzdr^Xl|nHc&qK+|Qyb3WW@1sLuYB^DTaoe!`yua7z+eKAx~&(4^`5Lf!6Ef!j+P7> z4`G*LS{eisDYBYl3kB|dL&4J~wnNxlkD$~P_&V)G$ECKfAICLkLRw;bz7&tLo#!}E zwJ)!mN7fL|tNc3Pw7bq;Cok zoLZ7-N$@RWtUp_;OYr(49bz2=4&Y3B`VfpWzJ_SK6Q&1wf8`EoQD@`EUBm*b-PC+S z?4$_XE>4cEB^&iw2Q(vJqz;chu_?l0Kb6=Lf*?hp=~B{HbQjlA)zvvRH9v~APC_)l%NQ61WdX0^IdV+%0iAMk2CvUtyf>_{`$mZpLHcDd2JTf+%Wg zxgS$GwF#m^!gO4Db*Y7GwV6wAAAvOmxU9XyliOvj*vBvLv&EwRUI&rWll5DWBk=zi zx=)<|rUbI5Ng+?pf3DlOY>sSP)>ss_@ay_BVSX6iYw(iT)zC`dY}4D>wt-7+W1HtB zI}d*#*_;2E;>18o&`Or zCBddNHuqMYg>!wVvYM020H4R2EFnh@{@ZH?DpX!uWM+jvQ%7H;_&HA`5rAI^Xv1+- zX%wc=XwW|0CtWoa(J^6JUT)p#Hk=KN6$<+|KiPMq=X$zI&MhHcnd@lbMb47p6ZORd zMg^u;t1caV+5m2$R?fEgWFFepWH{o*p^Eyo2+0M_d)P}TuHrzw@Ef-*D8+hpu8HYM ztRShS4zo-B{Rz>%Tz?Ssq^zRUg89&)`gPE@O-cVd&1kW?HhsN5bW2RnN9Szc&pp>2 zeGUo^4yN}do6!dJY~L)Ff%Jx}f1576uRt@ptG*yY(Lp=&bF5ZuclC5Su<#`VmIah{ zmr5tQ7Hgr+$n~C;w@1A7E&J2H$RHxpJ{F&v$kDtfh*zTO9iLIHRuVe9Jlhjkw;UVA z!!OLfl*AbW6%rO0u=^;lKnr&l28GsIqPKQ`@Ug+YxNxLC;CScdc}w>}yg}Mpk4tx{ zrTeH&5%9#|WKDz1ebt>A=c(HJLHzsnxYrv^R%z^$InXSxhpbB*8&^vi<@U*!XRLs$ zO0Lg7TnX3!t;=G<<+OHF)3J*%=g;rBSm@3(5bODS9J$%E?2zwz-(#67wYZyYA&?0z z`>J-&E`C*pTVBDXJ_03LyX6Jqg-Wdo^7h2v-5)PFVxht9r#IW#^E6P2apZDc?}|n- z>`Sc&J{IFK?s2!+ms7sI#aAoM<-2rED&q(1i_Fse7M8C^kKhN-!oGR|M5G6^c%{mkWiV>nTatsTuGP*yNzdJ?``ucRRZrzH+^D zPO{V8#l_j&n7BIG=Lfvn_0G}F&-(4h{6!6i3u^_#taM!SLP9{ODw(NS!JG2?f_6aI zaa0^?cE8{#zYN!l)f@1GLc+}p-t0rL99N0NpHP0?gIB1S*JIY1=GsM-f&T9FuU!?) z1?y{w8=A4ip0E5c8OM7`xxdRmNb<~P=p+dCcI^*hb)>)V>XC#Ov`YJ$OupTGZ+kEv~4 zkmtVex16X@&)nN|(on4}f6sc5P3eihYi?>wDVrT@nHCFPDQR@;8gw^BVI>s`(x1FE zL@U-_F%I0DV+iDyy%C)Q{6DYTMA1y4l_wx4#CV&)V2-U+`JFwglxkVeBUnz*Qw+iY zWzbAF85l$66!>vQ7JFOP%x^yFYhmnzSyp zCZJJV)uuieWcstMPtTwolGotK9Ekw0DtvHxxo@`Din7gT=Fv)v5DPLwN+ z$knP4Mqy4-a$XD#+2pDd(61%s9t z5{FUI&mLL4%OcEkCevxuOvkEDTq*Fe3Ucx*M;w}cfgHZ$QiGtpAFeHxBN%wHL|d7y z_jl)c2Phm^1rRnz_j#1`47w)<(dG_q+mGnOjV$G{Cto15GFxUB1HI8LSve&(%<2be z^P4R!YdJHFcAz&$w1DK+=QotypZ2gcKL{qSYd^TeVXHNID~;v(*Ogr62)g?2hdUl0 ztZpZG_TGIz&2N$y%t69KI6?Z#$!tX`y*jM1sE*0VWu*jy1t(^{i^Oyn{}|r2e)Ud1 zXwsoSH#GqZhmRJ4tn3EarDVj67Rh4@a3TuVj(sZa?p6g13M(Omc-j8-(~0xiiXXci zCX|9#<{CY^8mmm5r}K43mKYBBZz*xbQr!l(H3V+|(^I|82cqS8q1dk0culRPATzgu ze9B-+Vvw&Uo~3yy67HtPMb##rz)fc@4zf)hT-1HM8iCG)Lqf6(qj`0V)!d|p1|5*{ z^jX^n^ZkIy+BGAvd+#n~`7TgmV_{^w2w!58=0|Y}aZUt_&h&Ekf-v@^O|O82a`AbM znpE0;UZGPHE+&53()50t?)(K+0=&@zuXjG~o(+t7Dda~bTsvxSu<%gki=C`6D5rb9zJs!^N-Z;prKH@Ua10JwVe`1vd zVikohf#G@)enwYa_X22-?>~G-i%sPc=wBdzjIe#TIFwpBZ-)}TVZ1`8YK zI9`X@4&pRHb6C)-1?}-+(1;jdzK?!*cg*+ig77g(+#G5?jy~}_iG|cVUB1K`00DUr zPmVaN4LVB+%xxoA*ZQJ8G3R!*{POyb?E;Ej#L`tN?KZ)w^Yt|mR`&Tl#0u}i#Bd@; zXEdU)d9Rlq$L8h+m>=Lefh0B8{Y8ht(k{{9)L|cH2p(%q#lT?kCUcl}m3|p$!9Tv_ zohVk}?6}?9h|q{nJe`;MeP!y)m*@T(>d(+6-lW7&b;sz(l;xjArlUx|>@tL%jk#P| z=e&|I9FR?4&d>p^uhq5Mrl$2EzoGM>{;(QT3dc;8wljK!PSmb7CFem$oDi)j4gnkP z#zU-`M--yYzy}7%nkqj^ikH?Jb+T_Z*Ij;N@TZ9&TX{AWmLCDeK@KD>cP77nXtePw zGN;>MEeXY~sxoT2i}3mQP7hzW)A#EV{rz~IpoQR^XwGq)6FV_Em>9mTuWV}BVC~|T zFxe5`R}$r~p;q>%YZ9WEwnG?Uf#$UM@rbiOY)*J-v0N80YY(6@eHcmp5;w|Tp#v@( zUi|jvPkTOOgj02Nrd87M1^p45mci8%3opX|kw-|7tV=?r8(P{a#^-wknLqYZ-NiRn z|E&0=y?yyvKE^i*w0qOhoj#+DZfKvi5pUt6Q-AIOK;$c59-$e8EhWWne_+FklqF!6 zKSoDMBu$c{{UgpzqQ-4lpn+PJkx{+c_%JfZZtFVeBDKV82hk0kKRgaFkF<~B`2+u` zj(!qj!(3R765OzA`SB>rDP~O$Z?Gu8URV_WIXXUc%c0DC|8b{(ei)reL5>q)gtb_e zX@byCHOwC!0|_c~AVtUPquScAfy?!4MP|))Qb&-wQaj3HiXaiv8a!HW;o`Y=J!aqG zl*m2ant$r6YGbEQ2X+osw^Sc{|Ig*qsk$F`7trB*)c5`|6>k;}$Y1&N4>2~xg*4mR zE`EFeigo)3yyUMoH}B;-C-o27BO}4Y1Aiud`*rFxJSS(dboVQkcN6Li1RV#A*`L*b-g8Zn(u0XGWpfUS3df)f5EKyXjkE|bYwSl zWJFG#V+U^9Mo2yv2g!?N}Q@0%a*n;eL7CO0W|FZ)?HP{zo0}-ng z=#neAnniI|;Y{uECGn)T_MB(W0?Z%V$AmisXeA{G(eA>o~Wv`~msnPOOshb~}+_PJRgAhcLTLGlQ$f(_vw> zegxcHo@%{S$Wp1Vt|$h1UAeK(`zAme2FW{TPifhY-zkqZsavL++)`sZ_K91aWzZoI z&1X4xB|#~A=R?d9aDK?2yU6e3gfD~2#qd8o7^CZ5Zel9X+xNMS{fNUqwB&CBwEP#j zG;{gC-6^>JX(#*yElFR%ofCD)Kiu-=B_~z+q!(YzKeW{pWRJTU4c52**ZS7plDqc* z_|qE)@%qU+?!R`SobZxAyP$nV_rH%VH?a~i1yv#TBgT_jl&(FnA%17q`kASlkFZMt zXCJ9#c07()J;XC88gL)??aznTnS+Rv7-Ynv_-=yw`$z93alL>7tO8N?e;v#-cx3z0 z1(3f4um9mvH{bI!Ep-t3dG|A-mFB;?5Fgaj_ObozgZy3Mzwe3t(E>Y@uiPPu_7cth zb!ChPCox7$N*xenDwL%yJD~@n7&S8;v#6Aic;c)hb89Tc0vpLu`YU$e9>Scyvh^K0 zI_HQu$+}EkvRvk^XGh|V`RiRrsT{5YF-a``#wX(yyK=35=;dbd0{A{DWgrc-?!Y$D z=!oF_N1MgTKSpea9YW;ZyRRBEYr#&{h@=7aqu{IK3$o)XP1h8t0l&_@0ylFLXpP5o zf-K0bj7?y6e>65|kZndVs;1;q%$3`4N7RGuwOH+q=gf_3aEc!?v;kYaO})zWwe{@e z^@zRDWqSfH%$U&ydC}+`!jC?Lkap@+wfZ%-j85e<^omuj7P0M2nV%X_w&_lpGdp-xcY**Veze>{D15rGScB&U?>LZxO zuL{+zVFY8c2Rs6S0J1_KdXg?dbA#)oBf%ZJL{yTtVjdfnO=QtSf@+NeeOqB^7aJqb z&-LOSxxkp)jTofWF~i+!w|SfEI^K0|c!UqlN-$Q^v5BY`wZZ^hZ2v}=8NUW|tNU&# zXH;-;?2i!unf$rk$BtZr9Yzl*1~R?CC11kq0>=bKBp%8P{CS}iiK?$$6@&9bO%!4G_h8Rt>D z?(G4a$2DE)a-U@LeWyzv+gclT(&Qt}H7om_`>UdZI7>y1Ci)a(_iwomJ7``axql9M z229@_H3il!V%*Q|q;a4-Mk%f-1Lxq4D4!f~>)5vX-5!-TW<6l{B1QeV@Baeg0mCSJs(Id;Q$Ji*x=a%%{2fs$C~&m2V$Yhdj=4s z8j*>kPx|?2>|va1{U=@^)4Ve>LCWFWDN@a4c)LLQxaZ&mGrMmwb_nDvVK_HT*rz#(lm)A`#T$WHyn?4@K7o>|YoMH;1YKIv(w5j3U*@!W-j!uF2&gW4Ry6 z<1J>rhn=QCm2uB!;-L;vN?7{NUBzGiOhfW%#*7GbJ2P#WANBebT?gEL=N?K&>XW75 zXL)8H!o!j)yNFA~v=4!q*v7T*TlNAh@zY>X+dRvOIxuEFKn(ot0!nnVa-ZfRATEq6fpa%3eMyTL ziAAFr0?q_%n9jycV#5g(vtaiH}~*Yn*aa+ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_12300.png b/Notebooks/1_N_horizon 3/sim_12300.png new file mode 100644 index 0000000000000000000000000000000000000000..cbb14d99ac830104cf89de7d05841fa7d92e0050 GIT binary patch literal 17988 zcmd^nc{r5s+xN8ZDxwl;8Dy{Qgi4mNW)E3fjGdT4*3m{O+gQh%jD4%@!=NO^7>q5u z3S+Ecm@LD4-Rk>$e$R0{$MJjrectyz>X_la?&~_Qb3Z@Vd3$kFNA1vl&iybL><~iz zhCU3oQw9dxX18}Y_|5xF&0+8%i&nXXHgH9vz3#Z%z_jn6A2_+9o$T+P@w9PA*}J-k zi%N)I5>>L}h>uDoqKxB6L|WA+~o$UNTh=3Ladb8&exk1g4&mGrI} zKJ{f6%FdR#xIbjaYiAoL`?OhX#7bpRX+J+xBdI+k0g@%hs184|j5HeL3@MFJK3_u8tgi zu=ORd?)=Es7uX}Ux@}wEwucA)nQ7D{j z^1qT|6M8!j0q&ELQUabM)|n z*Q>zeycTC^D*I4n_Nc>OUWKo)?TYs&PeF92Ujj{&!?Zilk)<0}o4VosDUL|5RihpKEz|u-j#zJ6+uv;U^IP#@v>M&CuG)gFXNE6(T*MspV#siBhhhq7DO<@>nrV!irGSND!Vo?kr0cy*Z~5ow(bZXsb!k)laFm`pxLd+~lX}Ay%+_ z2!eAU$`UTn<7$2*sz84{)ZVj8x0>ViYs$!JsZ!H*qc z$OnJy=OuF0ek27rA+@oVF@~Zvv5idGgB{c?HMMyRg+*v3I4I{ z{YjP~R;vW|{{ktsa#OUABpPYRM;rgWM6MKq+cf7%cwg1`Qc;V=_bF!OEHP$WeGBly zPKwi+DZ~T!@CMaZtxE0O%JKVb zHF!o077}+pCm?V}7R$LxR{$c}za^4Vqam>xZ?__eTDhOrTGNXr>jGHM-@_e(ITvPq z-IGxB^_;64?&}tqK|jnnQh4(LuHAjLdPAQQuyBlM=&e-$AK|^WiAgB=WK^m8OAW)KvDJd12lm+gG)6S9tydQ(p;BM;XJwhylirVNFI1+_F<63d z$-Fe%g`kD%lGMTTee!!6n-}Sh7WteNF1w_9;d=W?!YV_zxrCBX#9Z?qHS!H4%IGd7JKW7Ea0jbfmyA(a>2e3=ijEZDa~8pK_*VRZpPrn;(Kq1 z3q{gZ5Vg~r{D)w5->!m~b@eV&ol=iIEm`b?Xl+WIUbHTVkUndlQT^h&(r8lNLb=5S z0TqhS!uBU?aP4o6l{LJy6W)vRSI)VHJ%2bHL-)XBH^wEQN*7M!fbW=D5R@ykA71Xt ze1?tF#2*`u2!d-J)cW zE6aHaBG+t?wb3OlvW%r0<-1@ot`ma)72V+{G1GGz;=b*vZX4zstJ}qWNhHg~VGtdS zx1xN|eq}@KDc|WNks3wchUg+!o+3?iB38(id2GG^3}xp+eD>yC57*lq zgC~p7L@`VYEcxV0_g2Di@ycEqY{X_or6kr<(}yHmew`w->E<^WJ|?7N4RRxJozRcG zAq`V*mF*G8=_D<{73`3xJ-+!k3qIOqL=%a0W%>E}uoEe&+rikn3*|mblN!|9!tFD4 zBS#*4oIAA-nzHWZxe@itDh-xD z`P{|5JysavI0=`&vPjJ&X0gw_|P(Z#$rr@M&&cL6EmBdn*3)$K=Pvowyrf> zZRnd=dfOCv)c$S|Gc+^HrBL)U@OZnSYHvXikuJ%e+o(D!&%W{j_m>F?39N$$U)?2r z*kae(JW0HDq7}1IoPyc#&dAKneg9tH+1VM3m!GY;ccXs+ETLw#*4M+bawYDz`wP*^ zQC5WI+xKXiK07-*_k#D~Sd=EJ<~#+qWx zO6($$r1-R8o`72v^E`o}#T15J?|U296*7t}s|F2)*u<+DtBx(K9OsmjmWKF6O~ur} zY0|YTp<(i~GBL5SlO3rWC35oeyx#1b#mE*)PF6~8R*H{9ThA(S&R_Syana88l|_%4 z(jE=0lc>_AOiGC5QdeWLFcJ+}%^V z;i0hn?ViuC4||qcTmu#ZYZj?Wo0Y~zmIX$6#xy{Y5l~l`itoEKva%do5+n(0vsI-o zgL2I8hcRsix(XSRj@=iySf*yH=8V0)D+`IsW(rH420qj88h0x^9dB3T>2fS0X2uAa zIDn_kh(4toOGOw2))K??@SjDccJ!4xE=}eYO_tX(3sU?R5QBb;EySRfe2XgM@GA?? zQ@qDdGFvy-!#$_Jy=z@8w5qi{Zuv0H^5OSg+R1W8kR=!wm}QhY_BenInpJrgD6aLk z<^t8xj1%pmWN0#cxlc(swfziNDxAY?t`Vl+H>3NV%OMUBR>l)O0Bg8zDxHzZ?t=9F zh|KV6N3)NO+F(S=Vm6k`Vr@v4>C)WPM49Z$Tl&PNYe%DG$jwzRqU#Sy(+v-yH4%t* zQ`=--M1r(yioSsXd#I|U>(CYFq3V^uKGak}`Q(Q^JkfCHL4r{caXDfCfdjrXi{Y4c znW^Gq?^69egw}+ zOS=Y5lBtDz1H6YLuwE=)7BxOW@6e6I5y$$-ifc|lPC^O_7Lb}W#Rx5pM(MIV9Lh1s zntaNpGaqK(f!YSf=ZrVKkI=; zt7FeaJ|_?eK4G-Ed3}P<^ce&M)QHyn z{;`c`m~&IXpFvZ!H8F`>SXd}Qwj?ku)6m=zDsWO-@bu@?Gbac1h|kFwg2Oww(g1W$5X-Y)+1gib@9>F*W2n*9ABu zL`~{0w2;qE-Ss&5PgTF14s>U8$!aqrA%Ron+)-}NZ+8^fFsHMlbQLRYD;ftXQ68jA zjny`(#bi0n^5KB0@z&HLum*$kqg$^{oc+f7irjeoJv3v`YpQ>Eql_%`^Pq=^hX7~j z$({t3wGz2HyD-p9r_5q~d?hVw&PLE{R{%XRou9=?IQ+L3{eIrXgm`!%a! zw?^(PuiCZ2zV|jSYvw~;vw_X>^71~Bn*&axVAlZ-J93h2!lipbz_X58_Atp_H3n>a zT5Z6lJ%I5|D9m|>^XaDKSE8u7X=!Q0%LD$5!Bvv2V!A74t=|DeXEnuzquayaHss11 z<=fH?O-*rADTg?LCaaftOm)+~oDbJRi@!bGW8swy1Vhgd^A~8>mbGRw88*ngWR%T5 z2UeCNx_Vo25ca6?2s>m2brBV_gelg+ov-c~{@;Ts2d~R;8Qa@$MGRD{f{C`a_8$Mj zmtr-y07FyZG>WEJmrzml<&hf5Tsm}>1{YVB`(1mA0+#ZgY|OeOO1pLg8Tl4efyE&M z;A!&?%2lXK`yn6*QFU=IjYcyoMux&^>x->DGv&jDVt(HbDD=zA%d@itAO2nKHQ?5$ zST1H>re$hsDo4Xd!4Yv*0V~@ujSpxO6DN#jK73Q%1tCa*qo@vT3MGTsBVsXGz_UFo z$vp(})*|3h$g4CeE?;U%l-5m7PF`JztIdCQ;J5?Oj#Zj2Mi5l}v?igVPCYg5j4jy` zeZ5*MA%6j)2?D#ZTwY59n$ZqP7;Mr4+7?7B&&ID{C=p@Pz0#i7bQhSX-1nz!5||A? z04L1#q$v3MkiD0>Or|P+hIN2|MhBjl>zCy0)Bu!vpeJ*(Ce@Ty^>lqflt`mcC@Cf~ zT-}MTH96A5eg;{o0R%{!p#{y$oFYe!-uZ!W+=bvz#-9{N(hW;sdtPpt$<+nZikqvy zf*CSe>O=}jby`8$b zPAx^Ya3;Gq2@u07e|T0y&?+=F^COdNofLf35&yGV=%5APM zE&-~_sPVx6E3Ax0tuCf+<~xG)2^_S z9!p>C&DEY-dV6?);r9o(fSt?DlynTaZ`h{#8$Kf~mGa#f+E zLE%^34lMqFXvI~ll_nFPWd%^r9ozp54Rq7Kr_f@p+R_^H2Ns2At^0`$e0#5waJga4 zZ|@K4$n!WHuD5tPsl&N^FjKtsN^y@OW~JHcK633!Ey|^Kjq7=5ry*i!G#jL_%AS@v z49P|zF|i(gr4@w2`mcJBdrx|${&t*pNguUPdT`;-GCNxp1x0+&hc#C|OXE}5ZxEKv z?B{>naqh<1rsO~jggA06RJHU@{ci0f89j(AOCT{dgz_EFxuJp#&A7>XJZra#?&)5c zzrmzpHnOCg`|!Z;LqTZQu3aFbGq$i8G_MhomNr>gS@HStf*;)^kTn6NdAbb^X>#$X z^78VjdY+B9F4gm@z|8V&nUEO_Z*DLMBaaVkxp!w*-~Nb_qZ9ww1dT;{wzBbnB!}26 z(>wk)s5APiy^F(S$4|&okG*W5gN$AeO0AYam0++q-U1ou>Y)R7-^IrYo4z^hH?m`L za#G*T?cHhL=}SZgajq*^k$zTz-lj~LDeL#)Mga#*TWA(DF))aNvU#iZAIFtFMfUj2 z0?RdnObf~?EqrH6vDHm6=B`Ae)Zd@@=}>0=?v|5!|K3mHO@Y{#IPF-v5aK7V2g2+} z(pn@gMuT9Xp8()L6B(-U?9^==8=FF3DO=#-&a^`T^nCag_XqOB=qTwlJHPmM=p6b0 zN`HXs$kpNxk}Ih#!sZkQabGQpHnwIgX)O;&Y~HNC z@MvZym@`Nhb5_-hcTXVxMqT9nB-9wTi8UUNKuWtK4XE1 z4V#*~MIB(J-o~K{g*jdx!rTKfE$|vJUQmp(*S@-|E=x5uGRi0^DY+rNEBN_YLBwa0 zmZisMIqJaSA5t?B=v=%FRws(y_oW;961U~ z>nL7}Gc;at^Pfd)33y$^Y9vktUaC$IzSII$c`P~-oL#^}uniuBr61d-hIJz=2z=fB z&2L)041gJctjLdC|8E~#fKC2~6Pd{SB&YW{5y@hYEr?Upr5}Uq^}#T;UpVnYJc20; zU?+B4fALUXeS@0y7H^I%=_8$vlF*^_V#npFW-a+LX$6p0!mRfKk({L7uEe`zDu+nj zh=dC?1FXvfa_MTnCx2lKGzNB1Bq$qxNj#Cy{t=!Xi$usZkc{Jd-Nnu0+dgk4KNp{7 zkErV-V|i%-2oqWABuV(3fE8sQmP3QkNJ7d`Z>RngjY8w#+PKR$Pt6ZObJl%GdwhN$ z&eYJd!mS)NyA87>g*YtJs)4Y;hOC~RN;3bEB!nWzG~9g`=_mm`01FNbJpVNwhaebG z{-_;Ok7B=}SPail&*hrm4S__kiw6P1o~_P^(Z3vBs6sLG$@^gkTl0c++-w*~JruX-aTsgwtO<&kR6k zkTLw|ZD3=$gLXxZr$IAxQ_q|(_b4duwU|->IczNCe6q$Jyn}iZW2!{3B7UM5d zZ`)kw{DbNpNq>BPB}tgJ9g&6W<=k8~W$Yh0hV}0z*$ko?Q1uorB#GE?BQit**5Q}_c zG-#kVGO{UiOh|-N2mMD!_E~RLTgqQZe448<_<1Y=F5*UJej(NH(}>tUxN|fb$PQ^m z6%-Oe-)5-l)>`IdNg2}`3M3~d+%;Z2MNdcjB})|Fv6g;j(9UFyu6PcOux5{%S6k94UdIC?%t~k)G*rS!&@>Po=73UAu|0 zV{l5pVL_H1#|0W^J$e9udRY{^NW|>F?)v5&9nY5>t9_WdPzQaiK=5 z)VwNQ#50_L+y@@A`@)@P3HlLd#kU`Zn5n*dCl`W5$^=J}_A05`sS)(xqpodx1-@vt zS5bA_!2bxibCG>_M}SA8L6OO1Wa$_dUt*`u>rG3Dk1Is146S`yM{ARs+rUR?E5aZ? zWNY5NJO3J2$!!WaklXX4d$SyW8Nu^_iLUtrxF=k;X?o{cvogN7^x=IOYRS7ddaX5j z8Pa*2rNm6reujjjuXeHEsXm{XQ!Kd8RJ{G&00Q6AQy$-8%>@ds^B6?@-Gh4jI6z5# zAE}4H#L~T>^q|`cPIE_O$x{=Sy;5G2K3p<1>yzJ_av2?bT3g|Jy)y(MItibtnGSwB4EKc3YjeH!SDGNf?mhRH?U!8jUjRd%VslC2r8yw7Soj7` zyrjIj)AGv39x0qRJTsGQ(P!FE$(y{V7JA&zslNknzvNP-6peprHMBr+~4%Njlc zYr*Oix5Dl~6n0f;*Y9TaavNcdmqC)H7Yz&!i0>K5%4^Pf|IVn&!MwDXeBgT7oPBq< zf_9(TAYRQ<5TnVfZmHUN;L3vd5bI;DFPa7tT%5C-Q1TS07aF+Z#GSN=92t4-hF<%G ztbqVVj&QAQJEk=U$9NxHm-wA;Be0AI~9no-I$+rF_J1-?o+x? zsYoiZ)D6VN&+R$0;jX%W6H*A+Ua5e*ZQJ>{7RIOIfqJspa@5%PYWik1Ihy+@>_a9h zU7B1pU!DM3?26j~S32Lv7NFJC+BWb)*6gCJ6=23_YwwoVPv_jWC*nR3v9?%KC;iO^ zbsKHkz0YEpvIviNcGG?8o&H9zS=ul=gQ$r;?#HDdtDE6gRQ)PCvU)37JaKG0i}kC0 z!CGwY9g=6IEtm>zRmIKr^@TnKy=Li><_;xD$Iw{UhuUPZ)p)&V+B0s0>bjrL=Vdis zTx{GzJw9Eg4s0+!#v2+Nj{`(GW&&w_EZfz-N3-8y>7%jOuZMRuwOeoVyT!Q z#x4mcC8vo%EVv>Lj?Aa#<{qDTwpZrjne8kGKgnjzNVX7juUPh3=5@2U+Ch3BmJ*%U z`?FZm*RKp2+T2aL#SwEFdi>ay&hHQ0fkY-mr=}rRPWrU2vm*3;ZR0FOih2?XeCZ#% zIhnq`1+lK#6Sy`B*2@r&^5=Wy?%oDdwRTUt^#Tu*cJsNzmMaJj+Rt+E`F<9z+_ErH z=Uk`GRf{FF+G3q4FDW~~5a%41$zFaDPD;L;WlSS@R>6p;0aytND8$w4dLNDo16=Eb zltAQ7UF)=TO`mS*GS7+9!9#s-i!F<0^Lv88Y&B`u83jY##k!WNhQ*(4rr!P#Zn@CZ z`RZ0C@|caiegNUzogf0F9}_@f>z+4jh0?XuIg1GIw5OPL^?9q=Jyw>2CfWwRt%~h$ z?KQ3iWgZ8HO*)_meX0r@0N-io4?TbH*tR`^dg*7xRrtxmoiD@>_!bnoICW$;?RL($ z>&$FYCF-@m){Y5X?Frgn>fyOG9hc0}{wm&TUN1U_7SPp5f1{O=^;B)u9h&SFkPR%| z@)|N^|K$Vd>CVTNQ}R_wo}Cho={ygszwbFCG?YyNF>bEZ72%SA{8arGkou*QbSqY4 zfx?c&8h|;r(y^V!GWQd1N2Gn-b<#|ticvORrXxnrc52HE0rb#_8x_c^Npm@$Wz82) zB?>Oq=h2_rEGNvJR}!~*TC^8TQupE92rMF+V(?Ke7p|rjGfFp`1LuPG60K(1UrVq5 z`dK=-wAz?g)j3qj_^R)HQqMK}rBY*K=f{H$@AZx1V{&g9=ekqQlU5)be#Huo1wS7X zHvl>o@?PI#fIg&bDJNG|;;dUNWhCWrPvyx_wo@mdO<~37*(@fY-<-^TC~?2I0hsB{ z$9zL}n~dxWLPpPU8&#W?;L9$YfX0ho^y6S|>k4oL87RieVsECGnaOVBFn_dxSSDHK zX*ZR^XCzsY^FGZe=8$u)gPoC$a$b4iJMB|m(%Imb1>6?Q6eWIK@4~V7!Y{vi&p3au)(##R@to2Wjadhc2oPV66zzGf~1Tj%Nz`B(v52? z)w)8RC*7H;Lh_Pt9_P=t)%&*20ne^c9SA@F3_}4dxac{*8MMuMFAn!!|9q21sGY-| z@c_o$q_pQUE(onD&vWO7T2tTLA6jHJt!d?Z||OYE|zRJFm+xInLOIyY-1P8*QQFG9dJn4+lp}k< zc7ay6%p@~YggB+fY(E{2q#3YddwtCw@AGWiCY_^x6#b@w^yYXtF)*&cM*1cp9i?_gl0dxX+wz|P7Okw0u&H2GPoOQO8_ z(8ciQ@QkO*O^9$oeuXzcJ-(~Cq%N(T6cB9EG1B7;{|>66x<_Y6U@$tCb>CKO9>X7U z*wn$CjwFnGcC8i>Vk^eR!%}8EL}qfgtnYIQb5Fv3NnWl6o)1+Fx2k8R0wE0|jY>h% zq+ch&jxPbThdogLcy{V!nfq%3^;nK0?WVRt;<7~9nr>q6+OdRL{&tAQrXb@|uNujt zm!kGx)*oW^qwhS|JM`15il-xypoX}}1;Km>AqC!i;1&{Yzunwt+%I2M zlJ!oTJpiWP(U}?4%_3QXemJ+`e$PC3lIa1m3m<15JH^O{-y>!Y-B^8k4wrMsCPOtQ zhI9EzRQ6?qdWAb0NC$>cetze3O1fbz5I*`m=t@9JnNo`2p>dtO_AgMgYDnWVw8Pj; zM4vFNo?NN$!hs+5N~-;VdV{RJ;OWuPTz^?=CuJyOwcAr{uljtp zQ|9u_h)?E)AcY7^KyFq50zIY|ze)^}iiE#v9rFF4)-?31{*)P;UTm!hNS2dIvhT{~ zaKm zi1}1{;NIyic*yNah(0&GCcI<#u19scXn|I-cvE zE+MiNWvYA(QPmQ-Gp8WQrLO_U+odu(XU7z$3_hOCP*wJ&UPipQK#Dj8I}z~mxTe>@ zS#Xd-308yy*mdab4)rt8x!Aw(MVGf34M#7Dmo40YmK5>v#h+yVMh%OYF!gNY`{uws4r5z+7l~ z^hImmS{E--NQ0mpVad+#mWrahX=?tJ(iX+RU1h{imIY3p77E48tr#9+lQsF9_6&r? zVAwwO-FxJ!@$dD0#@OeU7MgwIyk_ZT!`@l+(xRg-)`l0Q<4s9NE&!B(Zi~Qpk(qT? z<(8ClwLbSADVRh1`F#uAfY10WY^JH>t|_vNX~V}}y^bS!wRzq-z?M7)aP z9~b0g;hkiKapnL14xg{r3|KV~P{OzdwsYGV8cr)n32DkrUa%)~3Gk{ArbKfxR0JG>rI03C{-O-196wiY+Iqy{9jF6FZd0}VIf5?O_U+UGMOzpMs4#e9p=j3l zvX0UbdlP?6wbs1MN^ME)nOsMgtz3)RSJApd`i#ACZ~}g@zwXKiPr`9u^5U+4?;8cp%E8CM(bJN`CFjB>=llv4ccujv5fdz zh}DE@Z<*Oh2^9(lf+|PNWq61}y)HhE_HzTL9!iwvWL8>~2K;_kRcN&7=TQ!l9z*zj zxv^j8h(#qgHr+ZO+GMb7W?NH}fYcm%R|lai*0HRco**G5$x3+@&trMa#z9qBQ~aK3 z!s+HKua}KF%N@ot9mMDl)6J&5x-=IAt-^5FqMupECx4&ZC77Hfof*6aOYdtI(?n5y znxps-b3Q#o7k_4_JjVUYBEjxl5dzU=>NQxPq^xL+Lmz z)JP%ibD2U57GEDyj9#a2=eA7hVsnTd%@mS2h_W*Tna%zy-81=7D9ATZzIw~u@p;sg z$!=$MC-d`I=E8k$Yl(;JZnWw}yij3;OD)l4Oa&AiP`=0{`#68=Vmh=X8igvvSb_W; zDXi%_mEGA>yMC>dxnQDEIq`U>W!tZRr~FAz*BE_0R>9|Y1Gmq8=gM5p{%8P@oJ4)5 z`K!fEjMj&+JY+dQO|l#wd~Gu&RN_?cqEK!h-X~WD{7g4O{AG!qr&bm@WQJicTc1;w zW6|ndID4{tVQ!|B7*u}@nQ7gX> z2?|FC{8pyr=CS%()IZ%)JgABTXF94NE~I#;YaA}>O{*nV8!U-%3j&}1%<&aupwY*8`%Y~{#KF@EF$k{ZfM!_ zgV^H}e!9@b$+!7ZuYDx(gWByQ*tnxcwsD>9T^VH2tT6CTCyQJt>VdAT@E|IAt*&|e zUQD&1QG-)~y;MebVd=#7hPsNyXyXhHvMU_qcRVE{b;LgW9j?*1{))TSc)DP~Fe4_BF)=n%3c$ntIJ6-mtSOVjP6rVNmD_h3 zO!rvHO5S-)PhqGlt@XB9)?K((cT{*M*NG!gn^1k;yHe%wqW%meVudmQ8t6MuhB^;f z8HJxnEikZcKu=D`gV|p7S_MH#T~&<{ST-bxv72MaS3UBN3zr-J4a-eSZWaJHU*_z1KqwB28oR9yRO9Y!m4V_#dBv3fOU4Nf59APtUytG zU<#F6Yc=P;D!*Jnom4EGQ~Z7>K6Tgmyy`MjA!#E=;Efc@E6q-MN~&Y^Kc3}QkTq%4 z7Hj)xze~>3q2_(Z8)ZhrB2}{^OY^XT1e(gF0?Bb(7)TuVVR4-8y%}sCp0pcXQl(R_ zVsTR|(vBt88Yw!-+#OE`Mzbk0h9GMMId*Wh18>77uab%K@8*={-TeMfA|74Gf*J!T z!jku#VcuqCVdbFJaPM4zh4L>((}$fR%v~39B5UrvDpv&A9X;EGhMhIZqi=8-o58OL zvkiysBFhr>db6ogU=K*K&WV)!G9aD2mpMK)O?hD^Q*aeT43;^z(2$oIAtB%8l^(#h z4$V~`4ZO-Go6D$BMUp_5?Z}a(o%|=2PbJYCWnEJuYtqyh)NaMpwF7#qr^Ro!>G$*7 z(W+WM91F@)QC9e_=Jo3+&r`hGdAH_4Q$|sXw#<@K|?)(t!7V>9GYxH<22*Y)L1F#YgWWg~i`p z(-8)pIjV>LG|4BY%Z!DC%hXL}M}TnKwGCSh z-v4G?wfm2)F5WG-#WIyh*!TCMxuK~FLU4YQ7QUH$uC+%~8 zhK1=e#(@~Rk))>crTdD~uXyQ8y20Vi`e=Bt&+k4t0=+F^hTy*fB}<*7kI~H9V(P@e z`>*x#ai2egG*mM}_JjWEPi4D6+P($I;Q=1@2V?Q+sosaJZo8-HVW2zm&eOc$w9lR3 zfW`ddK6nrv-LLED#xy<_@J`T+mULoEmjdz8OQ?K;%rBi&U8bV;s6&ow`s+jaE|flJNgsRjf^L_hE@oai&7`$j z0MUeanT^({;m{&?fW-iOxfv1s(onKwvM@_}s?c`G&>2;w6R-DrF2EX?6#IeC@SH(* zt|~A7GVZ`X9Uxb+(g%?~07yA*GYQll+7bX~EWeqh15Z8iOvD%6uVgjlePxbxE0aU( zYY$jP4yjQC+?VmgBSxpq^AgdGY_1cB^U87o3~Eb0nboYDoU_YdA$XBB*wSy;o(Su| z9pZsEzo0>+<5mvQPv%SkyXRTM~Om)s^Eg*0T3)Mfv%Sy;WWz>`py zh6dp3*;VIv#6X4&OFyk_cv0g|gFTGpG}s*PpUuJch;c+sPG!W#-YDOBkLwSCBO~m` zedi3_&V2ZroNK5uT%7*{QE>PLvwiXy4wso-8+Tv7>W6HZ&k&Yy%7#w%p z7byrbSHBFF1V?k~inY;b<5Ul6#A+<6(2yd{Y=suOC;?ai+!oY~vWYbu^eV-3VPruU z%28(sxepwLe99wr&}eehEe2nk*xRyjy&#IUe+y1WWK`U8aEeYyz`uHRqkQ+hW9(e_ z>i@k5r7aB9i%PnUx%)Lp&}s)&g~y4D@;h0d2i|k4P^awJ0Bt9`lkRuQmVc5p8BY>= z>9Khp;7l;s+V#3edVyfnx3e@u%!&k}i1#f7qrsOy8b z6Qj@t|K3I7CIa;}M4$;mGVylD_WfzL;o-LKcz3>UtGnjj9w5tIC*EwGD#%Fm_Udcw zXXjGC@JC(h(k?CL%4CmR-TwDYSQZP&xw1kC9k?D$fLo9Mxy22hyZFy@FMz5dTF z3%7Tjop4DhJ_7HF^uIb0EXuJsl=I{2VF;$Qr)6D=nvHwB|={AlZm+a$M^%&J{)0(ZzVM#d9y>C zJdlZ-h_yZl<#OOU7ljENVERMzaZ5=>iw?=FNFB}m8Z64=>Z06^SB zDoGa)BA4eBr#72O-HE-;NKb<|eUSG*^HuM|qn&5}D);(+adTms6JjwLg@O+z1$sgz zeBuBkE6{Ink~&ZeH)5DFPa>pcsAf$6=LXRIgW-VPR93LdOFMz~3L~=Od%-*|$OCMH zXTW_JA{QvRa||cvKVy_{=-1%c;Qpo*1tgL=V~70PXLZdKV1}SNV}I#AN2-5xRJHDs zlv5Nva4|o+lQ$>3mOB}xnS=tc!~0tdB`s*`i?;@A)qd?Ucy)1m*t_rHpmho^p2#bp zqHlBV6r{gr5Rg9s4(ZNT=S4FqfZsk6e@?ugk7kBYild`8+uwnP7Wc4|7-+hKJA$&$ zT!ZRi)NJ|=r`6xjrJz~rzI_6c-m7c~je#liiyJh30q@eBhrms6T`UQCnKM%N{QL;? z6X+_t^=d!ME1AD4)%FG`++PoQ0yK7<+4fhBm4!GK1!a;n(V7>7{*jq6Q1@=Wt{#4% z?#ll*Zs=s@zUTY*paIMApdbqQ{Q{_V3>M!CHMeAYn4;B`@LV39judJHv1V;Ppyg z0{1uR|6%a!)QbuKW9QG#b}VRocye87*AC_}F1pdhHr)?bw|+QCXHz{iJ_79u2Hue0 zYKw*r`aqq2N?cRC7`%D<21j&44u|v`TO-49y^b5c0ZNT=3BBSQ?;KmEt1Fy4TAZF? z)_F+6Hi1&NN9Pt3a2Dv-jp4gq%<_vTIw12}oI){S&4)*Szq=d1Mgwo`4U&>@>@(?y z26WdVCjx#1a3wWD5^>CaQh*DxeOq50Q)2InS)tjS4=2Y12pvjuX5v+?r1!h+ zb}%{v;DpqQ)QjhmP}L6)HEUuKO$%}9puJG;!=_&p-f?}*5kB~>b-ozRJu4QcE*KY0 z#nh-#)YixPdHpj}e;$Anzt>XNnpd7E1mst%UQ^0Y*I0@xhC9a^URMgWQxb`gXxZ#N ze&`o-K=;E0|7_MLMn~29Vj_O{(671E41))&A-;n1%xJdq;lqU1F6zVC9BVoogRSTe z1{m_4pH~iTG-hv3rqIWn5MC?IUI@9Y)StjwEf?dw)cZsPkVrn71cEU$^$=mJ0p2Dw znMvwDPrHP$<*u8*cm2)USJ|HNB*!JC%%&pY^i-cyg#imnwIfOW)v0_Bln#LbFV^fI z1XZSP{74-}mj@ap-E;N>^Al4-y?#)4<3aENIJ0Gw z#6(B14wwuWJdsFZ-bdC(lo(KsVqF${+;q90?u2Lx;)ZBK6?Vv)2+kFqYsB>q>`(~C zX-Ci<5pgn9!e~qnaV&3r&U`GXs${Kg+w!SjzuyUdV8W>b#?%2n@S;263+eOB)bDo= z@vHV$!;MVz5!M0S0o^AO+nMxxh)s90!gmZ0qvM*!11mS(LzD;0QK(r~Z{>5{2)S0P zMg@;Q!%uhu*L0Lz$%$x&Cyy2Njcxw?#ta{w-3Sve=0b$4uM$wRrWlV5{1x$+zf<`U zeeJE^`{CMQYXih#>u??vYp3q~aIG?>8LJ~3|FbdV>}=MD9|3Y#_f2N~o}&hEKK(wy zFJ5JA*}Hsv_iwY=tS1q#YeF^yW^=BcD8#HKp^~v1XJ}8DTx120KxnQtH>EqEv&{M% z0DVad>tkrdTm(J0cI6J@_)7C}gim(rPXoBZ1)2%D(zmKdo|=Tuz$%s${p4j@P);Ia zU5B*VY}HrSws9%(0W%>vVK<2jYqa}_DO%Q0P+lqvjL~ss%YJs-%B+1QiN;9t)TuG_ z{Of@L{~BCjz~$CEgU#5XQ(i+4fe0fY8~ynFLArIOf#uf~EciPP2e925tL1pt&(1>8 z^uvgvmAPF^u1z<@47U3dQG@9$KB~QUnSl2#^->+bjPUxD{F7}%v8Y)ny`v_K=Vj3i zMihSYSM8e0CiC*D{iiir@xsPx*V#ESzCl39vA2*)e$ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_12600.png b/Notebooks/1_N_horizon 3/sim_12600.png new file mode 100644 index 0000000000000000000000000000000000000000..c9d587832b343eaaa933c6c66927f38274b04b3c GIT binary patch literal 18138 zcmdsfXH=8hx^5H|dsjf3bSct8uPRa!1e7WupdvwfNvIKm4HT3Tnm~Z1gx-`Y9YsYT z1PLW{6oe3}Kmt;8XK<~3_BrF+^7q_ttTpnH%s!vDJ@cJDziy~|sAW(jHyd5A0cTk?L9w=9*yXSo!ypc{G?odfN zNg0Xr_faTMq>7Z3+rJ7(dU!iZ^>-ip3p8@TQ_m6!fgC!;{C^iD8OIKR=;*?(UN-f| z%?$@Uu<=P{EUtOUOKwi7zm>@(l56DtyBqA#h&lSq}8$`(4Yi99O?w z_B?&!hUqQHt~1)A10|=Y_GL=!wVFz(C~L1TUftLj#|@3(VaeYF6)BVS2Ws=pvLK+3W@4P@B>NfrqC*xozOx40h#>&}|HiUxQ-)o$PKrUYeTXl&m$r77nGsB?Qw-V-|rMnq@ za!@2vWwRS*MrdXyj$PB1`Bqh1usNFRxX->A( zBgHa@T+VPo^k9n=O9k3zd4uc3+GlN{ZOa{uOuQ@%vxI*Apofs~%2KOL_^yuliqN&+4x~v}@-5P2qJz zw6zxuECekszA6cJNBI42=GkHo@?3|=i<-77~~mTtYAA9m4>$#3bG-g1>0k2UQpFKa+OERjJ#(mp0$SM z6l_&*I!?}nw1_2QQ7~R|f?o9vENtDQ!M0g1nSUXo0*7SFaWslcVOVOFVqbWY<@2PiUS1VrDXPU%pgdP(->Q;nYQ0!7 zTgy2p`ZHlWGhG%VO7*}7yC7<|4k$Kl;Z)5?u;B$t17!^xIh7wttkQw?ECq)yJWC4F zBN!kMCt%qA9Vv0(X$aqv@TPTKqIPKVV~+ zg%{Y`V&z_~v^xQTjI%S9{Gv}7p0h@zM6UEMRCQIlRXhe2pY*idHL11=x;=&)6!6f9 zV91nmEek8EmykEP>m1rZavLN#?t4Ym(yTYaYfV zEiDacN7qS=LRg~g(Z@aWC0RlW6ZQ{)~0AtdHTe5>&s3K(e9>lWc^kvanVHLG8y>MifsH zd^afF$X*$|wGOA;@~WMA_<`@c-fd!)71Uak$^}EWyS_oXMbjvt13roVT` zDPrG6`>v;UN@&;~!56TrH;7oJOPIBUttRz53e82ANup55s02+rDj=-TtuK z20d4pS;tM0$ z_zlbF`K%Q))}?~xTw$= zR*vKuVb;4^zkX#$C8egO!VM=~7W^+C+X0o*6Ls`TPEL+qZf-6X|K<&Ud_n>on;>EN z2JAHqTT)VjYL_QZJvn9g4L!2VQ)pSLqn{wr`GNyVYu4PpLHbZ9I>Ojqb(v_5XRV`z zY0&smJwF~uhB`*h*Df2vNabYP{Dg$F7jM43L`lcg3sNl_*5eJ;7OyhDN#7WvbocZK zwamPhL9e)`2Cq}C%AI@u(wy;Y*s!^1Ri?L0=^*=%ZA4%L6>ce!8teCMyjz5lRsD*H znv4hP+rP(E=E}O{TzVy#1H+=W=;WD4ha|soIO1MgmLjMknrkh5ZR(S+>}hKq7~4Z^ zlHJ5qRiDpiEOKgVZy_fM&(r({-71|{=ZCGTQMn0{Hs`i1{m|bZvZ5A0v*}|c>wn)3 zT5GfGC1vXSFxR17akN{Rg3CB%sB}4kO{&+WxK3dzeea{Ez^4Gu(H{k+L=xyi9!w`_ zdpVta%1Et~5@29pU{!MOd2g{@@$9T?&^YJlx21_T`Zuj(RO`|8-sq9#`I?2^b^1)X z`>@Ke@1R>=ULMInaTrgdq1^i3US1tR7c008;77OS{lE&vE4cRkb^QV!y-;U?UYYF# zE0k@PZ|=0VH1U|{%5tB5l+*HLyHzRTC9@!XhCI_Ek{&1M)?cD+w>idE?lrDcw=&?e zPA|q3W~T>RRStRUN8N#PD!O+A+&Zdn%$BZqFgA_mM(WUw-gcNR9~=K4PXm8EWs~!n zHXZgKe`!_eo~qzJlp~Vne}!4i%)%yx z)RjRGGMJ%H+r`SMWzbFZz^)IM?YNoC_7K^WZrhn(GZR)$u-8YThFK?R0TSZk`ZMHW zvWby;<{5GGsoG^?7g&;+;Ba_ZAl><*Wy#ggpFd;q%S2Tp zkJ`mAe51?nnt8hHqtvs;qcm-?-F`~A3+#EPG^#1nkZCtsx%cn zUj;WZvIq>U2KdR7cj=v?W~a|r4&|C;PydWHinPUy2CY(wstcx$j@c`-{TUW^L1qBh zyrd5I{t}0SPp>$;x^_c5)G{2}611br%gc}CO6+0%6FnZja^W-yE2Lj`ujM2dh0*E| zvg7hDT_vu_qOUP=ai_US*tj@6k!T1r_VzB}kI|zg*C&YBRC#CeU^cy&I|=0e8)#r% ztwT9GLb6(qu{FvVwr4aQ)7*?S-{(c7YHp8f(yBUwiki2<0%~ivT}n4l@z*{H<$OCt zAP}Zz3au-r6Rh1k2g+UI)6OgMT;iik*CZpIl_qxh8(Mr>93$ zQ`3%vgClURoJ<3A)Q)=EbjJsUy1;dGh5+s8uA-#nO9fH&#Y9DK`1q8cJ9iF6f{9Qg z>^9#3S&55{&DdCIuxsY_8{(VsUFmn6Ng3VDVk!v-2L~t6%fYZFt@Q^O&@GLZvB>M} z>`ZEn7td&N-e=+-6jUb*g~q3( zZl5@wz$rclM@L>$TSLRhETi-yX18q#7h{ozKn}RNJ9dB2`ojc-eFMOedhp{=USXjb z*c${9$C3IQnPaFrS2pDtRfVKD|M>WnH5Exzrc6bu&VSonTlVR`p-X4~=mq4(X?t_c z>b>Xd`MOoxppC)NUQ5T+Og+Ijo=OFbjRr;+km!P$;s)DnoOigeAui|XAvPTmUhc2V zVg@M+)HoBvn4d@5*LsSBGp}Eeo9gfzdoD5^w17_co$Y(=5xkrtcJZQ_lN0r?R`vP! z!C3KFENYFW(?=7N3jK)j&AD)Pe)AiDh?IxT$Imd8L*v``+v_vqHhW*#)4nsm z0Q%zpPPVW=0s4_?b?1kwtSVfSl2cMfy)4=69=zl6|Go=G5=y-F2FPLgDAJ#8Si(`ci~JL408AikawV6&%;z0 zo69}`cvEe5+uk&P3yZ`nufIjN)y)*u>{F}vo`3@cQoBuz;stGj*Cw=rqhd(?{mNO> zj~8F^?9f3cJK7cX#m#9$m3N<3V%Q~YYj0XtxOM_~mZPY~LDMGbB%pMFoy^2ARx#u^ z+7WV??FU=Gn>7;zl_{u+c#CPE@q0E#RyF1ZE2XS@nd$=A5g5siv2Jnk*8A&VbU32g z@--md27W_cVcV-1hQ*IXU@$68RSLCDTy1 zr>R>TsnffoHODVGV1U=r1=L&70*0~Cxjs8mXARnUrg7zUbcM%g5$JzMTA5IuOmcK? zj^xJH+Dcg1_{1Bk(@oo7$p{Q&?Dfz7Lw^aTX-D9rFq@aY0>@=Fu=7omWOZq&NtDKV z&SZOv2#jgK+-nzg>ei?8*QrLByrH36g*G+jF65#fqu`}eZo}1P$JA-jw!lEu(MbC1 zEk?m4`>(Ldt&P*FDM z>cRtErV#_HjA}ZfNXwxl%e$av3M*IocxQmcpFIH|@@nROELKxdVQ!?h_@sU*zWC}Y z@RXc^+G8p<$vT>G5G{kZr#sighq)mi4@q@@dCBRsy+)bI%P$JIEp_bRQQx9<1^$fD zMFAam^qo*h8v7fjAAa7ysNQNREP|F_W~#E`>NIxMse_05${x?@{);Eb^6jN+dT(%q zi<495qrHa&1Jso?fJ-?I%unZYk+d9YSGGQu2R$p}HuPR*fb(@xkztCWM{lf=MlM*R zSYTa%oc92S$m{xAhx#gR1h^2oZDJQLu>TqdYBv{53Ag~&g48z=lB5!cwl~e1OEFP; zSVN^BdjMVvJ7go(mcCBC^Q`AaL1m7e2Pn7c*?2jtLNY_GShTil~uQZ zX=5sohLxkiHAIb#SzxLsq%bi_M{d?5=c6fywVj>w1UTDkQr+~e zSw}k41GTiY3`#q-!BI1FAt0SsiR+I6dgK_AcJ{__lX3l;0aaHMTU28R9K5UfK1|b~ ztGOOSR2n}FEKJ?v7tUlkCoFSSW_4SFsQInBFObe)XZvS7ju zcmNi_{2V-ZFfKKh8HXEm2NHIXCotz25pY> zlKtwJxq%p|Rx^Me=<&d8Slf7h*jo*}I(m^`oy*PX{WP5&qj7!_6~?(bOnG`vKXK)O z`W4BlpC_3@3mn%tq#CA;_cy`DWNUz}yKwS( z4jzBCEm4Zhs_|=A(5yXg7w`5j*5TldIRJP{8XC1Wk(ggqWeG(PzI6nzl-}8p(7L$6 z1Qf9FKEpm_D%jiDpY&T*a}|R$DaMl2`n+F5{@B>qokD@*ZBzT=ZW3I>@pgJDSB$Tc z0PnSs(!U$#rw5Pi7Nsr|tK?bY&1`Mws~wTd^MNt9t}Fu;;DYb-TWVKCp9=pH${}v9 z=R$_dATL3N*Vh-?2)(M5)^Ssz!za|0P8wz70Y#anSn3L!X?Lx{rw9#y$Dz9kBQp)Q zCz}JA5+jgZd_1E@gf-;J)yA0HI3!wdZn2V+;2MjEVR3jaM%gV`&A5pcC<%dt^6t{z z4J~!TMkbb7k$SM(2t=hG9E)<^bY_kY()bG=?zdN3mLQ=|S`f0C!vR|MDPBsMlBKtf z#iy?zhaC_VL_+V}Xaj~Ob{Nz+yc@ayuHdgxv%BZN>s>;eO<;2eTsQjLXiyA(er`i3 zwU1m*tWr%yP7te>z@o(zOMqI^dQMJGz*QM*yAT?`6OqD!6Y6K?`HKAw_BMg=lTPgW ziQBLxydK6HCYBkKIIs#)!E>Nyh@bn?&lV8B9#?-UGejbh_hClKf;M8*4Mc)Ot{KT;F_#Ba{Y8AzbjKiFLw%$NBCYc$y6(ajq&JDYK-hra zArSV9gb)8e9$YZz_W$4}K$vGTfWOFk)qfB=cn?whs-Mk1GUx-rc6D`>t78Xk5NRBC z+-BF|8bg?!7g5~<(U0v->Gy`65=<3$sz(;J6X0W3`pga?p(l3fKJp^Y#gsLVx=WWD zV1;4TrX&Mml>(!${&&wwW|@#5pO44yK_I#Wxuu-S@%`AdDgDk+^hd(k&*k3C0+7Q3 zfCst&ZNt*gFbh@6bi0J5aXmg(=pq)Cp49G1tgQH&BF+LIfTr^~=GU^{w0xym4i1%By!DxG>o*pxEr6!5_(%O28TtQRTIF z#KB2I@A;ydYa|D(skynrBl$n1+wcF39GEUVS(2&^9Tavd!Bg62pZyp3lnyW(htvXR zTu&N-zy^ys#Ukg?*q=Bw%os*c9ux#X6B{>%?Gy{;02;l+2`d?m3QcnR#k=s*FLUPy zcG#cEWefH55t9^D%6F!G8})C@>JAqM`Ja4x%ADzcgB4rA(LxS?jxw*$t)mwPk_r5& zav7KUoqqUR9AH+F-gn&d{B_@6xtR|XaoVzDg=pM8m0)<9VTvW*uU(AvNHpMJ*i_uk z_Kn9VQ^ssq4+}8C!-kEFJ{^O~M$T^_R%~Fr(cO|%16aBjvFE6%c|bswb*208ezO16 zfJ#kSF#4srTW)ukbso)FyO7_o_1XdIPmZUZjrQiS1cJm!&kjX;9Z@l&Y{9b-c-wQo z(#aQq5SHsyUad`X(6^ET2dl#R>tV>EE<(Kkj9BHePt2uYA6H$Eyx&xRr5K%-052Rc z&Mb^Kz~Zs9rgbie8*;y1MaQ0{Bs2BK{*${SZ{GnB{ZIN*nZgsHJf{rfjnLiFx#F&K zlR`+%K~5UR37U1w>7xA#9@sbVJh+o6=mdtz<|~caL5Uz2(3sND6k#e1h6LwnG8+s* zsvoh+?g%RAdZ6cF!INGCG~Xb(UpGt3;f35MV8%Dh!-Xdt?|a);3scZhur+EjF8wtu zfZBRZh{4pTU!Z}Wdkz6@&J-Xcy=pM)+l1|6eX&H^39{~ZO1}eEG8PY_*i#_x(SXbI za1Ss0)xOOzKO=uJFUP63DEX{ecSTMelr%o{h;Z5<{D5ZlFEKWYi_hC@vb3(2U0ABWF+B*DKcDSE_u4K!oBWX?j~=LpxwA)5K7XBxL1vhi znE2OkagPogT%_?h>>aW94h}WO#_DXdFoANZ@gMuLK7I68VrNmCe{3=r>9l6fl#!#w z)%cfl1197*K#~S*2J^y`&(7tzlOm^u)$1HEsFS8JxUAD%_w|S0GNiRk4#~=we?zAa zp(c0j=$q#uEbL}2uLZe(95bOtAPqOp4U}b6TMp(YmuKX`2J=(O!C!55!})nxX-&76 zWIrZPhl!aSl$BG~v@uzNz7hY37Y@@Iw`VqXX$T~R*gs2hx)Q0V+5E<7FDtjl{kd;M z=i=t(l{|!7v3oCZ8sS!u(`9EDY@J&7rQzCF*vox9>MYTR4G8)sN}qnQfo34jABM2( zkDe`i8+q}_OdkpNIMPQOx6)hb>{wno-DZfPC#LqaTh$cmU>@YOXRYf^GtWdnesrOGI~9VJ2Rvj z3P+2EMPaQS`*m5Oo;s|lxWkKNjepab%W!-4JLf?N%oyQZVyIrCm(61-2n)Z88_9F+ z4%GbRAFNxry*;1-v-OCv7n!_&$I`Yeu^C^B3JhQl`WYvZ$h|J{LLX3y?!(nSi$(js zL=Q~**1gS8I2Y*JXPKW6DG3{Sl69zUN#4)62$67)sRvpQ%El3{W`PFwUw~RK;KZZ+ z)TNaGTO@ryfJ4+O5cNEP$A%v^JsUn%Udc(@j7+{iwK&!0q1$0}K*&kQD=U)55@jjW zpDfR(-*pfgkG=M5XDYxnvTVI!WgU4Q+IzIFssU!bBJaFhzt63IFsFUvTzP4hvdVL( z3oUYm(gNrF3ACmtj?YQ(Lt$eZJLuw7S97S$`Hx?b0Y< zO zwMCZbmNgFAHgkc$$bi%iuXrFnH+1jKri$sZrFIP4%00Hg(c+Ehn^;_A;YiI6dy=`UUB)X9~C>SEE_QmN52mJk! zpF@u$b@>f9I0pmw@D2~oRP;<4NzI!JBEnzKmfZu@yFqmWsU@DSa9Q~}X_G3B!#n4R zk0L`@E}a(=N)rBwce-Mj+?suc3sqYOeUmERK49LD2UcXjya(?V-)_}Vr-K=IZ~bmr zoZ|Q-<4$wgtMB$!H$qF2R+)->{~j>I1ENC8Fx|6`)URU&k0Z-{QBICNNV(sAR@A+G z9rb3Jtag1p<3k1A_s%$G^Z4J(%oA)zOA-yuV7|%Wr6y+4NpG&7)Vd8?3-RXzD4NGV z)dJYCE)~AViz+D3&>zgN{bi3fi)AXZ?NEg|kNaI&!}P$C*K>ch7zue$2R{EKKZmYpD@#oS^qs?v(NQ&bE7l&5y+3&0dYHGh_yfXtTvaI1Hv zAtp{>|5dB^DYv@HCjO;cp0nETs=QnSrg{Vm*Ba_ujzZBb4b7cPfOeMS6EV>JnMHl} zigI8Z3G>avYQY2+y#Q=OE`f8@kQ3Ord)wdQx-X}W4vhqO9w+@&UjUOFSvM~nwao~k zyE!jRS6y|-!n7@O)pti9P##(NG{kaQ42P-uurPGrKNi525nyDKUtuOst*Xp39S!_-i_bE*MQo9BAnE(+=7pBUiW(7v)acke zuun-cM$Cxh(PMDVw)+dg^i_P`#{$!K(e}C3+Q}6n%PzejU{#hUS^F&()EjQz$Oq=Y zdF~k($}La{kHwj4LKYuKyDn6n7uQyHx-*d_A}(^V07sKvegaxOKMz2B{;~sJ&_%~9 z0YQ6b>aIw^0YR$!mQioEaqj4o^Jvc6pcG%Si$hR;^1w!#z}2OM3HrxKme;z5RwdqD zHI-=?BZqmnOOA_WdKg_@_b%6XWD|ynlrxKM@Uv5Ib z$ergxy&mKeHf^o4<>)a=oSvNWb>z)&`2;^CvQ~HH=o5i=AN1T&HI#ZVTZgPC?1s#3 z2TeDAzn3NK66jo#C63f1D^t1$PCO6gr56TYIC<(B?WjHg58d3sgm%-eZO&K!kVvjH z)J(fSSFDwm(0j4fQ2A|#oqOd4akBvG9U-9;p`cMgerB`JWTBbaPvX)}lAhqo`0N&N zCMIYLIj&rf#gEYg2}jN3E3_?A`$zk-hJ6YHoh(xGz-k=Uz5>g7G=E%hrV;s?H{??& z-&0G`gQYY{ptEi>&(puiK}`VcN{nO8@@SWBPCZxZDM$J1&wi1p;jG!Su>Hl?tPT7sIyr6;|yJXOM~ zMpn+ATq(K_G4AIMl`G57%e`1#N1Y2aQz)ZXZMs*!h`TQLq6MyRjtF1nswqaRLd#dT zqf3mNTETZZN}sNu1BmD2XNEEg+9WAKZaz_dsv%`)wY}gHX+h8+w#SDFyev$8Y?Ueu`U93x?CW81 zDFN-ZU_c6HK4e>^cB7&1pnrv4Dmq4pF0jiAYsjfxU)w^FLD7# ze>%G8Lf_UqLKvTcU%-ilnAv`UVCdYXCO7Dg0yK81WV+$n?Zbz)#Yi;Tr(O zLs>xEkWMzNez^)0Petk;F*W=ZZ@4vGH8e#N+IYj9% zR^3N3rG7Aw`KrH^@H`%0+>#PDt^soZY0*|7dyXeZA`ocRlLjF88O%#A|9nhsq>r4_ zj^?EGZfEfzUtDX|Cl?&B1e;?G)h|KKe&XVW%ILnv$E0)Of%6hoS8cIcJeZqZY1*nx zwSh*I6+9>*rXfGQy~r3G=**;4lBa-0rp;QL4ZJNi=e99?E!b5Ht5TWxdIe1C`h>}H z^R@3Rx7oRz>9Or8b=Swq4GFdw8@OQtQCWArI~#v2_E?c=Z&FMva06sOLK)dT8ibUHDNRjJEePpN) z{Z*o04|Ur|mHsPq7+B12AYQmAo?Z|oi7OD@%h9x=vE}5nKw5v*IQ}`ceENlwkVw*` zk;ZXyGgRc7UiA`B~Qaz*9CF*U=q8-E4FF2!Nh z${I5&s%$WQZ><}wYfOsgb1i^=CMF@DXxM6KgD5Bme`899ls>s)SUBi={#W148`(wA zOqA}axO=Caz1CuK$2@Oo%i-zr*2LqQ#Ir|BQPR@Bg*W*wS_`K>C{es~UpK6>p?2ty zJjhZ32UeaAK|cj-jiM}UIjYvb0M_~KanHZ(m}g&Hu6A1ay{?75&LG;d_s9?wy@yCbkF8NI}{Jp@F%N^>Qds3I$5Jq@Ix=&DgSUZ zvCi&w&+kQgn9VTZFrBu3e<7j%UZ${aQ{+5lW__U7_;zk8qDdAsu-oJ^SfY=Y9N5$3GbI7XWdHHyw z2Un8S(Nhx-=8+_=W3Y{tBN*;x2w;d_WB34G4RKy zvCj(yZNNHkslX#+GguBn)ZMjUh??k zZi-aQ;0VVJwBuE`Z6w-){BVwE!+zB#w_IRMN_Y06^-y;&k>6j%%1TEa>9GqKyXtjkCq{5?&i%f8 zP7m7m{b!jf2y!@M=*8O+gn!k+la%;u`l#dt2bF#z|$ zQsc1lTTp=bgJIY>}s7r$9(w-c9 zB0j8cB5M*`rwiN#lVh~oi?+Od*Ru-sdxl%!wsrV_E1LREoQOoyy^utP#%9E+_yAGdX4i<9zFbrODpIzGc zZWyg>tqC=t!Y^}K&!WS=bB?7c@GeX2JTlNjvC=QEeEMfo+Y8? zy)xIAG`TZNKE~L=tL@(HVm8fq1YSrVgwsXTFt;#dum0R|uKuek5 zFwd*s9Uh`%SVnJyrO>PnC9>MGqWTC&ebW${EF!gskzQXxBU8`I9ezmf0_#_ zqdL$w4(Krhal$iwsbdtJdHp-P%B`SM+rAt50^TIl7HedWh@r#`k~+2hD#;jI_gZ{f zpz@VTa(;wSYSscHs5H1dFl^q=?zR4iyiH;~I@Ur`H&)bJ@pE*N|Ff#>X zl1>0|l2a4W3eZ;OQnLk}5vnuYeUlfpap@;|ABo!by?ZNRx19a+sIn=?K?*LRq1r<8 z<~wap@o70xDH{t3W#hJ1k*MF{FhJ>`+U$#GIyhG^XbKcyY*b9rH3FuicgHtjQ^ajh zF{nYejOE~rXJ)3%4Ad?D@1XZf(I{vj zXWm*odVUqh6SU?wydBjZI5)S?;3DB$gJe?fF)1AW*9EB`8^+qH?%RVP!bD~YPh`$a zuM$YQXAODQTC5z2aUe7R`C~Cb=}PB;CfI$H7O|85df9?Zdj0ZDuv8SceBd3&Lgy4! zkVTi<0_edsUVkS2^#D*Ahx3Mto^=Uu`pvL1`k0=We1?*VosxZ)hIE5zO9q!Kt-@J9 z(|vo!CGg!FL*QM~794pqF)F?vzaHsVo;WQEH3{5Yj1kq0+z;rrf6e-h7tzVutTb)Z z_Ec)eIH38u&n(unfzAH*v4o{gEmDQQM%U;?WYII8;5&)I@0Scf%t^X&s>El4140rSC>}HO6fR$r7rE1M2goQ^?CQb0XDwZi=Md;o5b~qCR)M_h`_s_r^9`Y5h&5 z1B7xid~_qNyLZyS7ki1>u)|#@TX{Y-3An+b!W73Tmgaak7Mu~$08!I=aIAE5_6Hy} zX;ocO-9SFNqSF0MfQ091y7m>)JoPdIoS6JF@X3I}ce(3sh1z&FRHjw@#rT$l4@!?t z9|;$`g!_|M-^d5}a=CJ8=tz%}YZdiQ5FMA{vzXgO%YKP2%g@rTaj`DTF49g}k;^H0 zH}{tdSUuC^#3IryDcaQ0tJRee2P5JHVH>NbJkJ;X$sxOq6K#QYIgZM2{k2udZEF-i z>~j&E1Drde2_j49wrw5ts(^;%!J5EZ%j0jJ5ff@d>_P7C8srl1pZXAN?Q01p7g?CI zFd{}&2GoqR#oWU*UfrHG%KWHixcuIue{ypm?5Ck7;6SR1;|GiQJJ;o7Cq2&-u}6b; z(g7h`7bI8G4k-PtCqd4JB-8|MB=UXdQ~)e5zC(^4 z+r|2Y$?AZo@dw}cM)pgM%q@W^sqNunXZd@eVcG9*Iy=QACy&{jdSSnlwJ@(x8iZK! zCe-gmtl*N|q)UAezIWATm`vIE52xAC9kj7aTp(mmOV?M)CfDy|(paCTT5r2BTW9C_ z)B4F5$axs7r_N8mb+HmDG{@5eXZEh=%KVv``S2nB6J_^A5CDp4#*?a$syy^ly-TSgTOc1VdZi#@&!RCP#*{e$;-@ z*~p?HWeeM(E&ZLv+lP%6c-pjw>zVlO$i+LA_^z!vsGwV<{Z598;5le98%Ty8d#21h zfZWm{orGy4%=xG)utfNJeUgyAb3Dp&(|Kpod?&!3Fb^t`^RZi8DtAo9nFmO>AMky@ zgp;|tb1d%pd;fpzQj>1uLnVRl%%MWK>c{TpzP{}265(ecZ3x&5=5y4}>)q-tOODaN z+e16rm09i$|3cCoF+e~3y<;=;AHY1708`9-xHNVj{lo#dD)4;&^=ClLcSuzX<33>UMM4~@=&-n3wYBD$9%xtlc^^4Fy<))4*v1dI38k^Y!sQ;3QSBWIXEiT(>_E~JX+ zTM1G%pea9a$T}mr(l$XGVHn8f&9K@@Za4r|#p}wk$i>%JNRNr7I>uLxZ`g_aN3Kl` zMuxdvjkf^?4EHO22@4ZS<%1yQ%24EfQ+?I}&?)%n+^pJCIVn={tZVs64e8&w+~QRf(%d;9d?`2XLx zrVSAP50*es|7q7hSaLwXot%JnF#D%phe`U_`R|Pv{+6G^nqa=N{~$&H`~aogs+|du zX(g=a4}eqy+G{;yhg$K6!JQiRoO4j$P6g&i#lQXvQ|M8);97t)Qxc9Vf#kfM1ckpm z$~yXVHeT42wKG55{`u?3$s<}!rwlko|9)%#((z%Ag@d;*{Zs6}Ryv6MqX0r0GyYu4 z+DSxt!4B1jmdYbm-t0j16PLJj=>(#pA46OiUk6IK05hipRh63TLqV=>$0eQNem zwl#{YLTN;3V9=Xzzrk1irci4S1m~u#ByTJIx%-nr3LH9k7eOS1@5^CXHPjp%))>-c z;ry{uMJCuPmL|5(x0)oSmr5 zqo(tduSL*dZSW2Z+>D%UsJA4QZ?BYN>${rir9$mXmHI++F>#cJdLxp^=A5daO=mNG zFSs|KzPvTJ`N1~*Yn0441yQW=)|>Db99R?>8tA# zDfm&^^2W;zN7u?@t40q7gheK60m;`h6Zof?s@m?wzgSsyUM$P4OEqn0ph<~Hq2Y0l zQ30w}&@DzN(!I2y&YGkF`wY^Eh|#phOJsc&YZACVU5+f$A$h|nhkvX;IkQmV#k|oz zu$h>^R1BT>Zqu1l z9m?uiLpO(1S)TcAcrKj30F3XOor{z|w@%v3~0v!l~!q8Y$6E5*E8`QN)-O3>M3rT`SwO3l4wH;a?+&G(Odo}DHSnD z_iUtlJw6F5DO-Ag#YS`F#r2KDwBR9Ct>cuHAKS`LZro4jg$I(9SK}DLLz;iSkPMnVKDbhuQZ2Y;NYdSSk3%~~ zk9BLjqj)XcCh&i6d?o`fR<|uzb_vz#l3ccbFfW*n*6WdY*WYVsleDnGKX5e-=msPa zX2nOfXR(n2x6_HTr4N=7u^RfM(NNEzk2{igj}bIc+3tk3&3020=+V$>tos9#jz*o5 zAj0g)faN_8yhCgif&4Ln!k~HJ2fnC5Ybu3;&i^}pq=(pFQR8&)Y6!L`(jMVoVr>&> zg|F62=)&#uA#LDK2_*d+p!{iBok2<*Ekqs>80AX7HUUO zTmAu`YTN|3Vi_Y+>m7-m3K_i`7A+g%mf5upZ&8&8Rt+x=gl&iv&2@=-5CT`XJ?QSd z4Efa#b~ga9P7lri%yk<4)c zLLd-!nEq8W2xPA^1hVVy{y)H-$^yeta8mKpx#4H-jqnS+#bPi%bf8OW#OC8iUz@<8sPL`tIMCN4R&f?Og4@wEM`;#nGU>d^;C{KlcNE zfJ5usv3olgQSXGl?OZ_a>%H5xbG17zYR}HaUjF}62rciCFNq1(A-*{~$<$dWqhC+! z|3g01v2o_BfV`at!g_UVg*&a^E+WIB&vi5(Q9~va6Fs8Q!?zGQY0N~z>?p#@8R4DL zADl_bc0qWj+ccr25@5N*F-GGXOB?9 zkrjWgjp(3w%{+ldaT*UyCa^+An@ojr8mKyuFTos91Ne<`R8~@wjB7J?6y1L{GBO9N z2Oa)FcRWioxj@O1q1nS)^wULX4^bM!8IFe`QLoMdsR+grBwGnyvbey_$mfxrghgh! z6M=y4pFq^~6U2$L;_?~Jh!Ubl9GZE4(l!;{zk~>g8saXjxPL>y z;;QzEpypFgCMYno#?PYvpgP_XqHM+y{{_k)=$MIHJ){q@8|EPuo(63Vn8 z9|gqe8`z$s+2X&r6D7^bS73Msp4uYJ z{6r9Gv8SKg#vKwaU7VR^FEj`lcBH#0KZm7%FE>e{s9i<;bw(y^nS`Qu77;yddWm|>HlZiBe6(=sUQHPFfJI<&6b?A?Q*?7NHWZ7pG zhA7M%raDM?A>8Chrecu(q`EVx2tk_D1*#X4G(3)pR;Kb`klt!kE>&te2B{_-?&xq7 zsqElKQlG>`8?>ot8A+jZ4aFDm+sI*ioQ}hv7e?sp6=W6bVPb_qQq_AEhQxMgvn1^n zOdv*OvYb@s!d(4Tj6Fg0=ot%hm2a>&Lu1vLM&51iB{CT{UkRjm29EfX;Q}k3_Ct%q z`iE!BQAwXK@j;^AOCI~uyc=@#PM)y38=@=CvlR8hX~a9u#(U~}xD{cel%&GF6p`1+ ze=1M-v2b$B<`E3k6-lV5n32QfpypGQ2ttFJ&6Rqi#i141KCjZ7&y|aQmXj|@Qi6`B z!tIx87el-^y9BN*sRiel8gjS9rua3Y=bra-EtXf9#E|N2BmXjn6%K?F2&81c1}sB` z8n8z3T&NutqJ;z_JuaOuYSk>Ya)6wa&@(eq+CV~k1KdI(kUuy>fX6)Qm?7LWs-gs) zOrB(rlurt&G9@C4u%25~1(^8DH4Gose)i8NBs^c_;OIr7N~#boaay@5cWJ?YU~tdn zEqflF%-HAZE_g*1>Ijk)-lk%GuDr0_gy0cIm6>H&)%B_bR$&u=tdQSgGkBB?LkhY( z)Y?@7{RtQ5niL6=h9l7ILDfhvleB&tRD`tm`40EYX@@zC8d1gi8%E8XtPE@494>Fq z(5jkKMWbRnN6t#0S>2c^KLm-o{1UkJs9*KgWKYi%Ht9AA=uG4(3a>a#HS+7nwZ%!& zuMA|F{YV(ss637@(zjbkl{ngEQ`4BWJCxw@2rCmffQOIBOnCMg7|7#rL`g}SJIbt~ z;n#gPIouM_0~;BX-}q;4^^!lqqYQ1dvM1RsSlenKcE)}@5haq||9Pw9{H)1KD9}SAo-a<{;^NPw zC|mP-!bTTxala_r_1Iogof4CYPgve3&wC3YjA}lGl!iba9%lj8!iqM`L_egB;0A4i zdRKO6S6hrc!Z!RcI=OC29rB7C6-Jpso6gF}{=zjn7B?VEu;|6fz+WYeEh%5tYp~^O zCemvtWSPN;kU2fE%F-b&R%!sx>{T!%o5`0XGvwFbAicu5DW@j0t)*OJur5E?%@Z24 z>3YP_-Na#19Z&EHbi_4>@|O%~xZatEX`}5Kud1(*D;7o0%#q9&pB%`9y57e}6yxb4 z!HL;h#K;$hrD&%5`b{=PBO3d7Djc|cSU1t*8CH+zVPMjsh+9KV8k!*x zlNEYr{4GXL9$*dLGt`zW5vW3a@g2?<@+3;=z6y0Ut^YR61vcP?_?U^DKwPwUpvRVx zYy@5JLz9z}>o_H>mhGBY&&tN9^?wPXL}fWWGk9ov;(lz^`~%g z+QQqD`&nbP1YWV}eLpQti;y==;l8Opg$X4S9Fmq_q2Xr%(l3qMKv}~eP0yo*-YZkB z4AZ+luMVRoS0Z(G?k}tVj<)W1lF7MJb~UdnDlUxV3%fsCQwEB@HIJB94mN~hnLs#`gN_h z_Z^%O;^)u5a=E@+@EhxuM^8QCojSBxXK?s;c-Oh7b~qqI#3bvDYj=U``ZCS7-meHs zYm+GN;q`9plE}V*Ae@>TsCLJuX)w^AdzrII@EVhcSEVj!?C@NYu z1k9NskvJ%=d1HQtV%xk@>P`E?>wRf<#y( z*;`e%c6P$S>Ix#pnAhFLYDOKJ+hK9|nLzvooS3d?*j-@MO;j3{gbn<8>tU?w^m%yj zL~^>E^9$+vsdMVg$KI{cbaSi3yE>%1AJzA!ZR+wFO;DpE&Rdai7SGk%i z845=d71LFa1sAjsnF)TGZ(xJqv)Xdknl0WF% zuH@9znaK?AzNHS$^2dj`SA+Hw%}vzv{b%}I`zxJotKE{V%Iu3=vcs)V%d3OlGq`N# z8>@1MQl-%_bNn`wzA}XDppn$*v$7tDmFeE~8OQBnZpSdw(O+Mbsyqj4m=286+7YsF zs(r4tL$FSsURRTV5JS?Wp zH_-d?;xxoz1C7DBzEZow2M-<`Y1stpA_D;^y7x)K%(S&1J~?uxINvbUjf7DV7Z*oC z;Xz}MZGoBX(p)Mk%p$XRcv>Ezk8*Q&ul5>NO-@O1oBdjmuIgV5bzS_?ny%!XMexX` z2ar^#=hfBWG#V{kEwC&_%C3N#6yWn+y)XwO$%Rm z(=U1sTxQOafU*mVik8&WSjja0d;orKu7(>K8L|0G?PdF&A1-SFF;5cEc`Spwef_VcL3kM)tpg9KLI0n z;3-4`!6OnM!3-G=re@kUht(}EF8Tq}@Zb2=_qBr-c5P5Guj}=b!>4mCORUaJl?d%R zy5qq1W9CC_my>HpLJVOrSi0=32T<4EVoM(Nkma**cS72Q^;VOJ+`9_JrFOM79gfFJ zii-_`gM-`t`l}O|R8gu!NKv?>GM|;9Vf2TwKY>9NB1tNG+1r~`MZc-*mKGMT3kq~w z1R@(XHu^i<81utzt*u?!9O_u7Se41B>dfFtbUm#g!>>z+TTDX2(5}`C=!nK^I^)-P z+)U&)Bhu2^y6|%}cP&Q=t<}Gzq$C-QE*cuL_Z)48M{aM7D!P#PU}gaUHEwQh1EN=? zq^0}P72W-QBZIURWy(hxNbM^ZIpjD(gK7-bX)#a*iW zcrw50k^A>VeX zwzf8MYV&e_P^xcd{rZwKLLw9C>?3}F?RnvAmP-JEmD4j8Mnhg%v&Jt-?|OJj{eQo} z5+bOgVgvA&k|bvCx3xwsX>Q(%FK2mmT1Vs-z|nt@d#(aNSKlF-#?Gy+kx+WCcf?YL z_SWo0-iscc;8|6VhKUqAKWb(me~*7i3IDfy3nzDix~coi%YLP{)dnb*lF?X?ayS2c zyvi&sEj2JU)|i?Z0noBBj1OA44ZwzmO*95R#=qB+jd?m;`1td~uR~{xtr$3OAO8JBb|-Ley#oWqGLdWTK(;9?P041? zx}cy`Oj*;a?V0f9F4c`$Tr~)AR^5qcc|8fMH}O#BxWINN0WA-5oR+&IjlnDwoo`|| zFu$>Bb}rMptM9a;jxQki$^6UR{MwPSUn8yPsnnbmxuglAh@47@w=bSSKI zdkU>)(5o8+SUHZH-?`g}#NNe;_Uf=TU*;xNld`@tvoe(zH_d`4_wuF!mU}q!1XI;t zhb+`sDKeprJr(E!U|;-{KSbZ@%gZiHYj{48{t^om5gl2>V;Do}x~rpWq(Byg8D*+k z0*B@PR5cYiaS)W1d|bUjZ(K5ddi^^P?_5_kW41rfB`a8$HJQO$U^;h!Ph%0=d7F^H z+B4la{!%a%t5kd6=PZzomaf;QzyskMDj>=VnXjWR|41~MW(9tKr9f0~?`U|`x3wWE zH1e%}t$_hnz9Z=gM`~MpJ}ePy=e^}KhxYlMp5T_2%9`FYXaM*UR)_auB*mva7 z@9_L~Tl><77^4g<*^JJ-^(^zDkQD-f*r-Puvmyl2r6mFY>pAbpMD!eEom97nA1P~Q zZY~_0n5TO#!J(n7XF;t+TtFe)niX`##>NKDe`4dzpj%QSorCYl?@Zx6E<1~B zZs1A&kYD0*ceVkDA&HrTh0ZKwSf`mp7I&Ly!pH92aHo{@K07AF;>xs(<_222?#J=D zuNB(STvB9FjfLk&s98bZpRZ?cuL+bo;vIl_S?cIKUR+vY1#;8V)8QHtN=nuMx@;@& zJO?^eI=Z!5JEtyvgpy<5ke{!^ZGZ26^HL`L?)Oj6=LStwX;9`uTx8E@ZpSxl{6SiU z7+-_(p8bBhJBT5;Q1zIXLu2YO50V-XHmXPH&4m_!5Ssfb zQ@1wg6qXgNuZP6&DjDO~d&@)S8u(_b9fQX9NjWy#gQyVa)x3s)Idmj9(3|bHnWNjK z^aw@+h>@mydG6oPReJU5HX;wo)FsQpOksyGNKFMC4K<&fBqDZ>#zP&dWWr0{ydhK* zCl3SP_Gu8fD+O0FHtS4S%bAf!xfQp*Gc@ZhXp!$}LBv~5P+mfl7$UJDc16ihC#k(0@DvRS(3!I6+HH352;RXlbCAYW*4bX_JL>4VC=qOB#@+JPEO91@Cw#zIPyWF3Zj%v zxfc!-nC|)E1`tki(ar9qoytYsBoKbAkZz1)HX;aRo+#tQsvBe)s&6IIA3XXlhgZcH zTjSAxE`%qqmPH2SyC7413Nqydj3n(gtQ_4h9yu6;(h#OSMR1{d&bvm0wXtC3h!F^j zL4Yz2|08PGi=D(eEAh_otVWHd`_68}E4(b*|7*J$fG_`LqXv3Pp4S->P4I|e6>qX* z`WdI?L)%9q^e)Zp1!EzvlpcSFLqgzJ$=sPpP<^ezCL?ODn^jLlhPs?X;QoipDn9^DPrhon4>X>1pZ?r*=*`xQs zvgKj;_^K}|3}zZU4yHP+iO9vCgf*-;Y3)#5hiF?I?`TCyr!1$VOBZX0&(l&-5w3{s zgdRy6ne@?oXViXiU76_OcWjA)rTouJ)0ahD zY$I@?LG3AYn4mG}x}6F(m27S`y8TwB+W$eBI#n1?&@rfGN7Tj7wO4nz6v7Qe`Vv_- zq{67gI|zY7=&`MN0sZwCQ0~IToe@(ffbSy^zUZf)buB_OHDPv{$nr0>zu6ul0A!bh zc7}!AAX9&^+pQI2j)sI3#{ghSB*@XcyY%hQr&1DCGPxn4Uh51kF-@ zP|y{NO(lBVpdvGoz`Z+@>MC<{bGIaUS#OTg*5!!Z>x2-YaijW_sm(GlQXK`#9;1SI zh?S!bmA(C4Sk#iq1I}E7M70RU)8Gi2Nm<7)-V_s{rHaO_PI%_1Ep7oJO3Ss=?3fZSOko& zUq7T$>k>&3myke$OkisK1&4!^VTqO3n;zUufLrSTJS4Bt7L}BGtgm(akpJ|fbD45E z*M+soq6 z&Y-vhw~IYSsw=#GBos#08#i@yJl|&ATPLqOHFR3&2c~;quG+TJt1t^*YZ!T>rl@^P zGSSdCnQ)JbMNR({@Rc_a7j?-vRDm+J*r{e)hn$T;;s;09F4NvuXb!Wx91zVgc!G7m z<4~_V;T+Vy`Er%<*rtd;WpVMa@A9|(T)=@jBWzGv34R&K`GmAN$7Bl;+Q+i!FG{~F z=B}=^3SK3z*}@kadV}{;YHKKW4V@oewC-^Sr-0sz{>swAN!SE!vZ9>G@-z0!2j$G~ z=t5ZS0#Lc#u{Qztv=Ce=%UEorDz#Yv$25ak!_ujk63tHk<2h`4CW;ERZZlaSo@E}L zT$;;Y?QKT+A6WF&`YCIuW8R?7y7FXYl#SJ~P6fB>XgnHFVq|t1rt0WfR$=|<&Aoi@ zKk$JtsB!dlX4;Rk!)0@nYOC$jha}#K7R83z zVz)55-jMPhiosw}XKCW6Q6qB~;Ex3}#HXu^avj{;+^c@Z%(=PxU!W+&5ZbT1M%Y16 zIbHkEb2F}EKem4DfaB5qd-=39Rj%(R^Y{=W2@(W=L_+e-!#9PE_umVWL` ztPBZe=^AmZBQEVIR7Qx<$qnWLd3bOao2(X86s)?A{Z**y15%bChC* zvfYVjM&{mX&#Csw7a^W+z78%qjnBtwJDO?3R1rN#i9CsgHcpF*NWUy!@&_ik&i5s9PxkUvR}DVYIp4WqGpv`%Z$~#{Z9^-e!X6ls$^N* zTxW?=5Z8p`bgAxrU&C1Q5qeRXMmPy59Egq*x^XIZ_p665lj4ne9A77X;Wj{>D>ZF0 zbts+S6|W8pe+*3AJg%|QlI4=D`qRRaV@TcDF_rWin9}bUiz^(g^)O@k`KGwkl{-19 zn2WPzl*N^i_!LfFiRuVz_{J8dDqe)k#r=v;O{^qoaq^GTDWxCY^e9`g0EX{U$i2OX zcCpp#yt|)O{Mx1T<_%6C!vD_wJOvq;PBjQDIqyew?k%=OXp0y60o_m7DkdJ z@}r!7aUz4?(attL$29n~fyr1!HERiAlWmVywyZom5!T&_Q2!*0X7%4)}*ALfXBozPx~L;^F)zQ>iZWbA-4k$v{wBGF!%t50M;>;}5l8b?@sLi^^sCo`|e|yZY z*3{`_uG7Q<F40e8Sj=lm)*seKn_boxg^yh74sS+SWiYtyka=DM%hMxIyxkXKx^Zsw{& zRn=2LHTU$Yk{VdUOnP-m0SpkU@;AwI7&gm)QIDt&=#qja-8u6h?!y}kPDJ5r*>1-# z9vvOmZsl44qOVSX%82qc7_4BEaB{+>VCwa)4b6)@{>5*+=Z{9r7JK%U4T#JYFK8zW zh?EXG%Dx;s91EwDJ0Be`kLZf}VKeich%sdM(+~2Pkj=b972G&eEbh(D2Kx-=g z1E9-vQ?YKTSa~0QbSURZO6=ulXqLho%rDz0ZI4*=5dqIBNv zf*d#}B#b5RrkmCdyUuVfI#}ibK-|pdj!Lpta{D;1+VpGQt5-pHRYgfL>4&Cb!FadR zi%rqLPC5tQ*T0N-ab-vJTAD)NK-&kj#`>>>kM#oQ%m;rw7F2WNsm6WDQ1;i`s5Au{ z>PlNb2;2(oyFB*6HE*x@92M8L_MaLuqD04nrvsx@Y^~=Z2{lD5bn*~uc4yChgFt45 zBowg#v=t)m_C>_Gzo>Gv_QY|A{fg^|Vb>1mQ*axfSG82CdR>2kJaOXAKpL#SD5oh$ z&$dMtE481-hXTlcNR+V}$5PK-SHN zD{_7Ly5>S|`WG%B6^rhwz$VtO0xruwC3j%7wfG7hqlCM0(}aaR39u@vFn!5alr(rSc zlh1(8TQ(P(4i@t)|F!^DNO*C+j1ol)ZqP_6_;>t$7-lHUxiR(>!)h2&$g182IRe);(APWZOna6)FEDO5c(N-r zV#?H^xAW}LetXk$B_5$-ue+v3-OWvxRoz3wyaTT7N1@Z-TsK2~Xf3#2DF#Z%N!L+V zU3>9a`}x6QLG&RZg$Y`Uud34RJ^8%2DBsd3;WZD_*?Q16&)8gV(#`&s$gX3M zo7X{*%SsBky)J#jgnk-r940*3Xi|D&IMCHwN2=S0;?g&>vFRUUvU5UYzX^+?edRy2 z5%;@W$iTZ*WPUuWQmww4=l1;9S$%gq$Z<=<5_6E+O{d#hQus{a=2wA%k5r0%_w-&A zaV}+yrdlf&gXP#pI%*rbZ@7q{70S*VCO)A~O@Z)A;gX#mM~A6tz;x7>GrqW4C$70t z$E2~|2p~*v&v8rhJKoQ_LiXS4dUlqk>VG@IIOE3a6LIG)yw-C#p6-SS>hA}Iir~oT zjmKC;QXRczHslI9ALYeJjcdud1bHWT6LC;9<3p=i{d$?Tj(d+QQm3ge$=cm0xO(J# zc~?8H#7e4lZMA@TJUSQVd0!7Ok-ekqn2wE4=Dl8(!qkz{&g>L#^61u5R=SWWh>i13 z=RG;EnDnOS9tuRh2JFIs<5e9sJ=am>4QS17b;MGd5yu!{7Dw#tfr() zBLf}f*xGZ>s zxnbX2&vdD!uQ3brk`^8VX6GPG&YQKyFFP>pA^HlSv0BBNi>}%!zZV3-U;|Ci^r~%M zNT4-5bZS92xVkTia@X235h@1KMs(iOsb3ZQKy{%x_Ov3_dUE-0jH-G=K;hQgu*9uu z#M5)8h2vi)XPj`lG^Y6z3HAKQN%kTT79+jsWK^}<%4~h+fWurk9RQIZt2UroalIu@ zYN|E_B6xnkGOOEVm<3kQday#K-mO5qh%aaYvH)py4v|K`ZeKl{x` z-++g!{K6lnl#P~xjuMG!?7d1_T7tIU=G(9{nl)N2u_SYZTT2lEC=|%N8n*uQNX!Zi zO@+FyJ~|g3)_0zmVKGG2zIntF7*$FcV{#t!)?EQ{SK|Q_p)Tn-4q^1-<~yNL4)ud_ zOf9H{P91G*6@o3nyL|ET^@V$x$eG(J!)Rh7P7gs^oy=uy6=F~+x9RM5{`sqYTG>LZ zlEV={mP3~PYN=GSlZAy-4yii~+UEDYHupujPCv6hLubqf1)JydJJjg_OSD8~6fCvt z(l#p-c+jcG=;inRn$8dcd5jf+S`ZhPkU{J7;Cwy8Qn6~;JsdI8nd_(d^XsVGN5_KC zd!eplcbtFiGMHVMyJesp{O*YvWSs+~G)M2fvST&3`B_j-cD2PM+tx?arZn5-Sl7;) z0-tieRl%ElJ$&}9S*B{v-Rl}fP%@9Db9lSPWjznkL++!94UcH`8pY|Jug5L54NG{^ z?Rq=O#Q<7(n2Z&vQa2AT%Of5i*;mDG}*lpFX_*D^6o0h`9N2(gV2>PnAN%iyK z`j}dE8`mwlRaLl#uqXywb-nUKt1buUO;8To&&7WNqywGW=%TYg1@#M!B~egNFPYXH zEM^rEv~k_v?crgMQHd5wnZ>!YJwd5tVJas5Tvt<$KJwZrGP(H4$~!Wm4Y) zc;obQU}6g?tSj5xV)qxXbES*Fa7Efdiwn|LKHe$_|BzTE{UPzl+4czj3qyTQ!t(j0 zg$DYkBjS=l?n?e}cx~6wFc#AwPtU6h+u*+ZXlXdS9EBE>!VF26w9uZ{Xyr@sxwQ2RqTCUZBSXlQ7m7?ZGy94H?=Zt3*nTWCpIt3dM!GsN^rjyk$1lzO>U zpIuBSU|3)v5zXV4Eg%fy)Rz|9X@A!88yjPCG)O8^aK{{cnY48Y(m+nEzj5SZE35#T zh(cY1Aq;Aa>511S1+woHfG|CLDh>5$eGRhkdtY(6GWNc~TSv`7l|ucVYBqrp2_Pr^ zP>$q!;~7uwkbziNyK>JLcU_FSH8zguD)%Sx8(V?EP46&~{L)lgp~>%AL0p@81j0ao zc`^j_xv*?hfVtsW`t=5l@#uiqG=}j)RVVYLzj3LlC>3iJIlA?sAT&EzZ#$55@{DHL ztL^5)@$Ys%kBQoQ`!^)O+6?BH_<6lNTOo&h=wL|Ij_hM4Nt*yoT3PDgI**QkTcjLVn|HB1N+9H;*jre((UM+a)D(8Wf(i zyi43)OaVH!)xmLAo&$N78H}l>XU4BxAMm_?Lz0x|nth;llSU@JkPBV1%O#aivl?hxdSu|GSOwtKX4vTAYJpZ^V z5I}1OTWW`XU1*zB5Aifi=CN(ekp&s&nG+|12c^{BM3UBNuoX~8#|F7epeu5`9Z z)dw!94b&H21_jq;ba%_l%e<#zMcE|cp$8?B4!*2L%E?u+Q3LotAa8cfzB|BQZ<~!1C4quaYV{?rkW05%{aX8mG-~U1p;|+$0Qu*&|g)k{_{q4 zu*rr!KPbttYV;sR?gdqQkd)=B=yA~o>c%ZEifEFO1EqNU*SlX3>zQ=#;xe&Z2}E44 zf1$~BgutaUZ1Dep0`QF)7mzi8&nh{@jrNqbKQa}A)3#jZgN)9gdFjVP?*w`#HZR2~ zt$ceS#nN?(rh<)&u{6JIlhN_h|KZC)pkS0>mH*_(CCwJCs@vL+n^(U^E>DIkrib21 z@M1=qTiC`QqgNj10naQC<6?m$gWQZd;P&<`%-Lyi<%f%L7lo9C1sJ;AEO04LK+?WM zH}cdG*{{DpY17hrgi7?AnDtqwa8suUtsj>^MwWJOG;hDm3Sp{usR=wh10oY}>?Qm; zq%gd+aC-e?q49NHgUZS6fPCrg72ncPOKv(j>Mf`?fg>tPb>Z1==1P74`apjom~TF5 z^F3~TUUSqU9EtVT{1vN))rnU1va9-Q@W>}nZDBpM_r_O&nnk)yW&wvWZyB&QJ^IFo z{Q8Fb1f0W;7IW`*pCs+Up;ZT$u5)ze8=I$FI#C}#nOk&9W#zKU@_RcL**VwO$IDq! zsPSpX*LGW@cVYz6s~J%>vftmc<<}we3$s%+Rxi-z8(3{P#p3j8myWH}!5Y}a1o`D@ za)D83d8$^>3xj__C`3zE$2M=BS!qeR~gH}A)=r3Kzi2S!K%=I_|DCZ2)Tl-XxBzwA+LWpSKSNq_3uJ z?NLewH9~d#4WEkIFnW_l5vTGgR$B-mLJWNI7obcn_%&EySZ{5Xj(vu8#~|CkTY*dw z67@DiRnA(o;qA4I0LqND%p1zXcBPpv;A?+Xtkr){sz_HVy3q=&*^aK-$2VBZ2!H=> zmn_)PT&u?7R6QGZx>9JU=6U>%MuPI=)Fg*dU$hdb+gei=W+%?8uw5(Rzs}&A+2X$V zx=f7BY}L_0omN+t6=ZF`Q-^RUaaHe>r15g9!9ZWR4vWpFeuC2ddQZ{#G9i^Z)smf7 z^nh@3c=OYY>cZeQxpuoocW_lRj|4;@ z%P&C6Ov<`w?_$DR1}gK@+`#9BZ_R)>pVrntt`Oc6-z0jNSNGlhUH7A$?!Dbf{p(`SWEM&o zpDvM)m9~2QHtnqVsiQ&HJa)_BE}*hrqVH50kdIO^^74rm6PWh?QAOxZEC+d&H&F15 z-?qXA9}@8p6qZ?Aa}msC4*yST<*g&(N+T01s{AK-B?<2@D0?LOrQ;*&vHm`907gT! zw4C#w_^q`%RZkfrmvPZ?mN2jSKHGxXCI)nCfzRg)_{hcy5gD(bXO@HZOz^{DOr_$;-`Qw%o?@c@SnFvP*Hn)en(mmWj{}K zD_t(KsrB9+>yqJ1_|1GE>vJSqi@3;T+?=D|ucOUum zw;%oX^CY+Y)qOsHe?P2z2~fvG2MVA1^bfhhw>R88l8Q^l;RpV>@Vocz-I$p4Y6{`w zedTliyyDi!M&YGDg{5qu+x+{pzh@kD@E{foeeznc?4JRmDmFZ- zN&I}zB>s7UgmeKL+xHiLKk@5DGz~21pSLyN`nX^DsP#^m42k+kxp?(+U6A#I%l{hw zggr4mBfq%#zuaUo_C(A%<9}XSF7@pu|G%96x1a31lTzR<%D<5V!lwb4M*7#_S6T+f zBHy%zez%`PjyRg36#UL>TO3vT?G0QJYJ^$M%$mqAgb_I$g*Y1<)XTD6!TapIx*SJ7 zv4d(I%eZeVrS;pxsQT%Xm<&l8Nx6q5cEK)A?(TP`sUcR0(4qW1Ru!-QwR==Q_f68#=vWeh_) z32#dF5Iz3gW!AyNas_+gJ{3LWbCywE^G%#`IT=!@MGMU(f2~EtKtjc=$Ka zzha!^HcWVCVS0>iAp6(9X;#$U;Xkr0|63Qe=%+6d?2g}imHoFxhM3rK91-EsVO8i^ z$1*=qlz+6U$>p!3V#44fyQ#o`ChauIZl1%&wvJYzeuwY*7GNR_gPIcx_ZcjPcF6liS|LwHf@6%Dvo$36S z|1aR^)kC1WZ1r-+;cHdx@3jBh334HAr#~F%1OI=tzQ5{7vq?uw$>Xevv;Oi8iU`MM zw3GtQe@m`BdZ{p@KYFXKggE;lE!+txVdPdeK{7vsM|vgB#s!heKfCr^WW*CRa1uT8 zL0?z7Pw#t7_UrYx@G?bQEfMr8jYYV9b9jD?esRo!W-CzJz6Y_If@Zc5K=0R>*T4SM zZ!J*UDziCLb`htUVPmDFcrV-UI6Yv@;r**I%=qUL69?2avlKjk3TV4Lu(hEE9sX86 zDo9gC_4dn22!n$=;?Zf&p$hZ7v}*5qC|CR>IEk3>_;sVmEySHsw&F2WL$rpv*H zh=N6TWNTrXRqcmiPMg{Ox0JFwn&f^CJPOU<9-P>-wPHjTs9*Cw#b|ryequg(%QF#^ zHr_lMP-;v?W*;ViDUB(fcL4EFwojJrw&&N#YNK`ESnLLKWkWb~@bj8`CURzT#S;~v zFD@sa=vR-`q|?J-E(W$!n38)WO9R{Uv^NixHOD?R7-5h^Qk}@QXYr=PoriTs*k*U` zZKedNj-BoN{m}fxpxOfr0}5c})}-So%vQwp4!7{Va=;eAN*2Fh)jeBFMsamslJkku zpBmtAtz~b38jK0rrV?F>VhD^qCe`I{mEES=*Fo3XbJ*UJd=^pEKq#mF0QkuKS3|8n z&zOKU0>M}t)YBi}L!xWO>(wJ=pCL2;BIu&~-GV)r&TL1LAJ!XTHQZB~XIh$kAwFJ! zCtl0`4Zl7Lf>u6`ZFNT5u1|GFZ>{S)Q-K=bQOjA_Jm~Pa_qYb_zH;p$#=$@K?LM+B zMzt?Ndet{Z`m2x#1$?uL1dq4aQ3KFb#GOp}?42FAsOkL}Ip0=e-k?%8xWx8Qx%N2* znURU?hQ_4&6`?ul^v(CVaRbhg+5a&O?S{>(WE`nZc#G;&&ZmVL1VTI%-Y-I`YoB0G zxFJNl63NSeaeS&{@#Z|>jiWMkRo_;UCK=fsu&vqYxt%l8)fG z1Qjz6;Wb19FFR9vKJrNt{=cCGK-Sw#memid5 z;qr%bK#jnsuJXL!%L@%dvaw3cVH5rO9!I>6;{VK;jW~@>SZQ*w&w(v zY8uPJ21eJOZ@mc2&|jC?#yPH}F0qAXENeH|i_#st&n<506qHK6wf^H?#=Y`S`S5d# zUvRaa+ac6|g;8Yr;a4nYfxno*;K=JR3?bs@_bg_QybqWAIrupAG39138hN;4Cjf)I y|MEY%!5zo=f7ySV0@n0D_lWK+7IL4lz3X~Uy~d&4WuI7gU^>QE%dXsf@V@}BI-f-V literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_13200.png b/Notebooks/1_N_horizon 3/sim_13200.png new file mode 100644 index 0000000000000000000000000000000000000000..bb28671044d647c413eeb11d90a615848998b06b GIT binary patch literal 18352 zcmd_ScT`hb7cUwc*s%dhSAsMFl^T$uNC^l?7Z6a<(3_!S0QDdW0upNICG;j;x>!IU z1PLY50*Vkql`bv3weg(qJ9oT0?tAagdtb(IWN)(fT64`c=Wo{KtJ~UY#}2a{hQVOR zkm@(}V6go%FxVcOgACv=rCFLI;0xiVa>q^I8Rh1A|M4T3)_pe@2WK}2+Xp-zj~=6K zot?x*B}A`W;<0gab3x0Bi8=n~0a542)?)oVOsQayLoVtjXc+9sY3Sb`SbXAH7)*^5 zdGoq~SK{oj_Y;Ga`kjR}{>avbH^|X5+57@VRv7c)XW$e+vdd}ah0_P}Qrbf8bG7@8lV#4*Sisws~Nq5X- zn1?A25-8$j4B}?@P`p-^INY!;%8))SDqhyG0a(3%55$}8_lVeDI<_21;(yTB5#ot4 z$C*67P^YHorAb=BQYKM@?O1Izaa@CqSI~sCw(Z!8mC}^e*DJ!$Yxocdsz@x3S;L29 znIdMJiyvu8^bNxw;o}suEyagx)>N)3u)ttV%3xcRIB+Id-0(xx^j701MHFhCUa5!J!JbtwX3Tk|>Mqm{DjXzxPFXco0_aHjWecp$1XZp|Ci^lSsAA!Koy4l`K_C zhMG>Sw&p90bxUuY=jW@RPV^l@kl{2VWJ^MS34K)1MvWS&iVt&>v>zE8*N-z_-B!{|!<)h7`?=!O zeQxR{)LE8hYsjjRdWSjW?vQ4&w@6IeHO-oA=jT}+5mZrqYO;VQ=P0#aiF6vvfQ+w7 ziKlCl(AY)zu~;`tCTiUc3$d3cv4`R2{JC9-HAkcvvZkqcfkC`IO2U$~v!1e4hV?_C zPCp<@5BksFK(=qoGQGkjIiY&7c6=BOi%s{ckrT)Q#7JWsLbOSssHh;pK3BiX}W zVO1OkbNO_B6b9pID2iTo+!0&oSls)Uj%PJytT7R-MXaX6do?!-(N48Hv750!5A2(* z)U0Vikf#zi>+!u<;+p?cdJevLqn@!+bHf>#@(NKogz!v37j+=WlZn0~2gH15^)6Q0ikBoJG-Mujz>fKL>Dgwf|`(p!lYv0OvVr{T~eHJCDv1m ziCBZ-M`Sx>zq~_nOw?x?4p;!M$%UcK!!V^cp;60GI2Eft75K4NCKML&k#8N3jR=cI z)Wi@Iia;@AvpVuVlKD#GKK@pA#&q+UI)cMnyzlt%M8xcT<8*+6VdsMpD}PChzJ*RO zAF5K5B66;AW+JgMg6uoyNf(g_Z#xodTHEi5$43$zJP9=qcQ|}|Clm9Rocjf7dYji> zi9kOZksC?)(*xuL6YLH}1ncw?f!DTxoe@^E(0MagNmb9ACanUA)17PrD*41QW?7dy zlp1FoKO#4F`{?wd@s=KPoW3ccDfHSqg@bx`#_^cBKZ2gt=v0apRU=Wyhbu|l^cC#Y z0oJV&iQt-<)4l`+`^QAgWMXYI!uUdQc6%pbX0nL;+kD~U1oWH?GP`X$)76_v(kW*7 zM(n&?J7O&}4kPPhA7>I%cU_^qwqgFfdW@R^p<0Wiy!fF&$NkVlO0;x<&1M6RUNY}d zHJsva3RV@ysy z2C)lrHEl6u{d-loW0A|;=9SKoYi@5m?BSWX{&l(|>qtb@KzHk!aU{;%0rhcv*t7MB z@CEZuD^wZ50n44!^QHDtCZ@4SQbE`@5obQ(uXcZl!I6`@tg~gSL|pIZ3XjQ5;&kQO z3tVQLNqpTX{|u8?{7>fuM^xs-IYH;Uk^Y}J=xFcRr9;%aRKJ|+u(%yNGP~Tl7?^R)w1n@$>^N`_UweEV)U{avJ+=gh$sI%w(6b3($4qTgsfFB{4oM*9V#zoO-Qz!8dE?PVHN~3bx?_EfVV?OP#x1mH;0|P@P^|7w$f} z%;Mt$KTFMBV*N;ON7g8jclIgq-BpkBac#r5+bb#VQk_R04VCe-73kvJTVpUZcq1fvg!9zN>Q z9wRdNJyAH=lT+sMevU%~MAaaHMMGAHBqc8FK{SjrDXF7y4s(hdlkOsggoV+Xv7)n8 zJ`geYc&?O%E)?xy41*SjV_uh+eu$!B6)w=^k^WI`fsKRA*yLB5Pj`u0-UHT^`~Vpq zXQFNquo8!!GZFVSBw3+WRgejAbB@jnyX%|O0yH!us&0^aocfHBvb8(Hd!hGJ=l{4< z2mk8pGji-NRngMYS`a;O=%R>-*2f?wV;PPxPeGZZf4s20_rapth{V1e-HeB*1yROB z9}wAjc|y>88EWBSo(P$vN3TN8E6<7e_;`ccx0T*KwRnUQ5)eqWzP*=c6q@nG*}vE) zk8IuLWBB8m$-t^c{Aw@Wic4*cecglyS}X7wocyzQ4Z*Nj_>jqlLSwA}A;rFJX(#x`j(maH^rDc8+k*Ra3bn zB_ux89zA;RH9$V_*<1hvPxV`;^s+nGrSk~l zf7^-fH8iH>8<$(HBys(m)AS}EzX@g$M}R; zSt-TGzhplj@r-NNXMM}f%*-rw>5_q+T^>C5?c3XYe0*3uPTbm#M#{wE3kog`dyR$4 zE_^z@5)uC7re@5gE&@(m5=A(>y%6pnRqp8=9PYn0X8O+MyT!cs_dwREPp5Ty{yKD8 z!gKB}lB6X)jBjpMg_d4s-5CRy-NI*`*x5mb7r?=NC7ap61u?ndvWE*;?wHF7MXv{#IgD z@v!w2l2lkl$!iy_y=9%`9@8Agna{}Ob+3`ispwZ%)JXS9a`|v*pw7FjVL4MQx1iwG z>5I1}zs*y8=MBBRt5F^CnI>f@_b24pWUn8G%)Q5>v3TL)Iz7vs4YH(t-!2nOtDKUE za`V@cyneijzhdar|)Ljd*G2WFa9Tw|0@L$?;grJ}@TJZT=;f%tuWcHqeBCZeyvB!imbZ=pzE2$!@ba)2o?rj-u3xrR+AbN}rX#@^!x zk8eytqJA)OkiJ}G6hmH~LWB#qc8R3KeVwfYVz*0q{W6y2(w$UIv3di~Ay+lE;-?-! zgJkFHmf*<9i&}a>Xg_>^dr>PMe~ev`twc+8qIpE=_;K;_=~ z9R%?o$P^OG#?CJ3_3NI9Mco~7YodX!ZUmf0(iH2Bm$YBqOzxClOHB5iLue(*8e$EM zjk7E4$$91F1^_ww@W@Cw63ES0pqV1#gVSZ^E=>o(E*bmy)Ibu%rx|0@m98S6?D_Lc zgzWmyNVzconUWSr6Dleya?{gq2pbpm{A`V6nyRh+{Ue0=a3C~;v4yt^tK}2dmdc5V ziRZGc&z}DY5RWSfoFPHVhMu^k6)%Adzqa_rVvm{($DG#%H9bAO77-C75@}~|9|`B< z=ND!R_2B3p9z(K<-pzrSU)->fclGL33G@WPX$?)J1q&B_W%B?1QF}VYZ-b`nbM+-! zdt{@p%5AoS>|xq?|Kp3W&eGz}i?iD|Pl*pwy~V}FVf9IJ{)e86NzOV)12ZqMR!eU}N0G@n+TrLmT7rQ$g3HoT~=x8Xz z(Fa&vctrG_lI7+ASpsa^>`=8nV5Te$AGsV|{6xjj(6FtwwQDR~u?YP0Yph7}ovYrM z^K8uTFS8aF7S=SYasuNhsx5o1N6>THEsJ)oJ$+ zhxlhII=!h$*_-o?mXZ8AePEJq8cP@gJz)c|Pxkv?rzL>)V|F%2$Ovj;hK)p?i%h}J z_Q+0eD}PFXnRC5icH-mU;E)h#EVrWyHDVA385Npl>T4rZu%7nBjBtg#+X8OyQ=B)J zX|g+8OBJ@=7cpzKBZf%iD-8{e=CiLR3`eb z=b!WqAQ1xj6W0*PLc>yxhkT|B7ex1{UH+HH1^oj1Uu0A`0&WZ71@*IRetddW0~D?I z>sOaA)SAUM;T2$=)Uibk8+L_vt4mujkg@>%%d}djZ_bm8{kNx;{pLL&a|1R=uCR8c z&&+*o*ps`*+b5rE)MeoeGc>adj7FoGHaw|@+pf;^*X+#cm@r*s9*$WAUP z{2qP2In?0t{l=q5k7xkuqv7VB!|sgRT$s$lLPw?E=e+FlyQw00a_t zu{g-C`0rpu?!LQShUy?u71j`t?gKlyv%tNR_P15s_$=mk9{HF^d%^DX6_|?brA|f5 z!7Ar@88QHj3OAY_k~BhJm4=L-EdBSG`)a?n{l^!_c1axp0u+DsQLu#%EmOPxQjC~o zQKXK72_%0itmb(0S`YWcrDk^Lo@H9Mq|=a0{W3|Dar@kw`y4O=Cf3Q`S$-ScDIPug z78XT-$!>Kw(%wip4dsNgOHa*|b@l;(+nujFOAA|PamkXt80$Wjn{5YVi&Ne-Kv`us z5yrD{E8(K~P?*+w=224MxSa|C6?zG6!b`v?`9}&eP;rqQ?>kiEZn{) zN4I9KW_r1z7^Br5D@J~OPF$7~y*?g04GeluFtf0PEeSsCG3b~yb+`24E8vnPYfoDh znpG9)3%KrVuW^5^_ME2_vRZguANk!ZE!!6z6=ehLFeC#-)e~%(Dg6}Emk3_>kH@4Z zA#({0>AUKHS#P(TlgR?e4_Vr>PKA8P>*F!oJNepdSJL-)8aE29SA{I+;BU&V-OYV> zCoktsb9k&%ZHKSBb=w(QvaioIb1SP1;4ocioo-qH8?Rejw-}tIlTy@`p{9w2j1>T% z^bF}6?(P+RMdtaymguHz&sam|MNcoij3{egywtclU@trNT3nVGos!bn8E$NDUN~Iq zISoKD3U2QDnHka(xk~@V$do8Jg_r7Wj%d;KJVul zl@%2$1Kyd$6oiqAN?^n9&tg-+?aU}GEv*^mUlp$;3wWn+%W(Yh#GYAm%ZtdCkHjnv z&ub{|R0AK0RA7QJ?E~AIpR%(>m7OjqJ99j!0@c9={DxcBiLNjF7D6m{cW!ldu;O0R zUd$XiW!h~9cGDnV%tt3A~Vh&Nx&5>XCl(Yvq}U_J8u0P@mG+eN$UyqDZIXxVETp-RSos6M6R z`)=Wzl|{}Kdn4+&!sC@*V@PEoBLIAP;HD(|ZP=Q-b*XGn6?bxh`(q2d=HV9yR8&;r z)dV=E}mQ=TarbphSJTPs#UOL^f>Ttds!QP9oU{!Q`FPd)h+Hj_~~lR z9zGUv_VY9{_Ju~UM*MW*W-d-E!mSZ6fpo+cc@jnX$<=>=p9o;`Kftf}Hfg@5o&C0i z6yeTWC7*3~LDbQMspg)FmZ(aQ^v#Hb2nbECUd|}o!X=J3}jW*^L|n7I~=0%_pyn14*#mV$nk~T6A(xT zP}JT>yeBwB;d8Mpnj3le#)ST1EEb-`*4PI94x2PbE{MV~9|@)K?dv4tB(x;90Zy|g zR-eQ+T%@IOg(X;_G&>w@0fg@`9|bRPz?x6ov>c@hT{+Qc<$(AyNxF@hSTncysjYUmx#>a>>h59>LD0g2!K@og(1V z_m^I6n;ZeZgVcK9mH)F#6=0434^#hsX?gp7cc9jZ`A%U;os#^ zy&#lIAy*(bUZCfWiMPj;69^NUY!_&Ik&#L04wRHkk>PHB;%mq*i;HgP1u9zFqw?X$ zBHcpqa*5~;dgbgw{wZj*0Lo_(p+itnB3{V01n-JP#q~b`>3%}i=ZZf&;d4@6=2R5! z5pv@>z8Ivt2$xLslJSvzT9M0fxKLMOwP;I6goGMaLsN6J+HRM^~Ar#~qK zdC(W@2|H#aX})TiXb2TxN+~>}>i1Am8YBZ`NXLvN+|iv_&peU`{RW%F45edJ370fU z+;EH`#Zh=9#*Mg#Lt2f*ffN!Enf-Y9&n)s_79|u*4673XO_Ud;2_Q50>K~!lLFHxn z1@74F|0q2vkN!x{7l6|D2n4u1+%_6L$B+G)=xatAjl)Q(3!#a#FEt}}X;{7rW&66} z<`-#~#Lea!6-3g zy#db`mI9~C>noAguZ2mi8Aqa$PX&7-p~VO62?*HtwA9x6dGZsh5H3IO=X%&kH`3&j zq$`!`)?E7dlILYmHuEI(@CnAy#*#zM%-7G zv?D{EXep>wCuJw0%huc-Zto4d;~0@c87MUqE9g&S?K80Z95eh_yG@H}dbuP}7VQv$ zdM(@oD0i}kMER}GevYOae_MK1J}oz5@27&DNc@N#m1~&1aQ&!E&4A%ZdMst6%T=y@ zbpVCb^RO#b{b_A;)2~ML=OZ^l?1Z(Am&FUxhocsU!GIjJgEG$o19-3FOk(h?@Zq^c z->azYD!yps27Wqgp~E2zkH8w3n)>``4rSlW{n0>8?DpmEo9cBp9JpgxtR=@@?roe= zIb(NQ-@d%NL8U*JEh4t)y92<`}pR^kOW_l*N3ZMx;K-5rrU!vxkD<$ z(&rL4k%SFlQ1YZXQ15=E6C)4G%N+j;tsU*&F;G{go8T$sRcwBYvRK4mXdo?kY8aga z=f}O6$jXIFn}2>zGDu7)x=%0ndQ;_hTQ$z?9+)B^fOqsD3)ks{dxXuxjq}L-n!nho z$QoS|j`5Te2a<5>d0DrFjGPvK7-7)f*B+i1Jgnt6`8|-^%u_P2t_JDsFp$ZVFWkdM z<2aKQ7%6*zhp*aJh%2fHEF=1;hH-1E+oR0K>(Fi}Ie(Wf_=Jwfx5MilQSICA(wa5K zdU^PDzs_gmL^Szx=7)eoL4bX4(n!xKfkKC@jY^Pz8|A3%*&JN)hd~a0eb-2>;?4CDGw`jqP|iR-`HhWa=r8HdtO zT>=2Kas9CX@*_j0{kPO*rz+_R)$&Ki&!uK;zP`xwaV%KOf|#IKZ%D~qQ}Zw_Rb_tY zu}nYPfAX(~IRe7bzaV&gfAUqpzOyjWhx45BGG=N_M2fwcrkR16hoswITHQ|W;_;xKBIBrH#Eu# zhy5H%0fEX$Hd+v~b(ru}xyUJZzu(_iet(->+xneaYH`HKI4@H~2-&8sWz?T@O^e$+ zm6ow2X?v##AkU8lS7?;cH=yuxNGR$dTSQ745aIYMl}nX2J+{+xs`Vwdu`vZBxu2&! z?V6_6;NIcyj z-^-p`Z(&352P$U)bRZ$E79}xmPqjI4*#!o48uaevx4+`iienJ3$sT3cIo-Kvn{+Li4depI;mHNor@pWDU+1o59O}{@AABb6w+@3c3d50 zSE|izmebwBqJf3r(@-~~VsNV5$E>i=A-`ACUU(%)y3&m!GAX{mRe5{VO5LdC$$cZc zIt8c^DqufIbd0{i2P(&##%JeddMEYGJK1!_uYMi-Xj(`y%5SVQPa6@no&A>0Bc7QN z+cNp#Ry51Q90^6`k4vQJctSuH7zK75bO{AmNDA<(bgNPAHzv2j+=&RoKB-N4`6=0F z;VrRFMi@=Jm7=(7`$yCg1=C7{n&O*`tg3ye^m z`%@^+*2N>9!8$wF!GLZt$ZmFFpfvwFyVc$|9RT@?fLs|H=k;^{G+1Pi*mLv_P4IjuC$_LexpZxSCDf;0QEDcK%qTZi;pCgt zXV^zeD(u~u9%K$~zQ&U$Bdw*zJbOrSAp3LmwQ)#w)z5&yd9R>gs|1{1OZhR$jTHAx zdoX_R!oZ#0RQJJY*+6cc`Vzy64oA+-%phf;O1VHn*szg#P4x8_Kk+`@GZN!?{?pIE zSg<`x@AvS0$6pMRaC*6>K5%FDc~Vh+0lB747Bi|t2DC)G%Nca{^mSBYWp9Kx`AuGt zARkd;u%0(b`RsTZ44`y(!T%>L>}<*Nq~ym2O@BB8K+I9HW5B2zd}$3>)LQ!)dWW*~ zI2bDvA}t3V;r}v-i_S}*F<`FH**3m!H1p(e_y=fd8!(VY{!P-q0kAJO;s9=QsJN)w zQ3s~iUBF}?U!GBE0<3`_Q-o}NWrId7yJ@Yw0>HNq1!okO)%A6a@(!2kMWx`<>t3H3 zfAm-VI^oPQ4JKhkR1YgRD;Ql}05HzwO{rdFv|&_cMsVqBwIu*5!xf9kF4{Qbd7z>z zt1-g>f`=T7-*_NwTRESq`KbmoJi-eoiVr>NKXMD~|62rEfV}V?hF|Yc;hYVD&cJFid8EykMD189M*nmAe@_hK^D7WaN1O8`8MJ0TslYh+= zIO{%gEUP3-fu=rb4|Q-2N=P>MwIZi#Y3ENJHz9bPxApt=J&4DT=c-H#yE2^M2pQY6 zqdmYxr7C`8E7^lscf`r0xqVt*^Az>3kE90@_L2o^{VF za0D;6RJG4^ryN46-g)vR;($MHdu0`i$w2(V#y{RbK>MW5#amuvJgRN|K9n0$A> zE2n#|xi5^uGkgBaTr-QIba`G)i6Pi!!-iU9zL1^a@VC60iAqeexUgh3?~D!84WFax z4_4bXw6e$t0fA6A3Zs}{Yg7tNzJB~$8l%T8VAJE9jb@#e_r8(8t{#%dK3L}hM{N(x zx^uRRM9eW7MB{H`-4Dw@CVgx}YOZDjD*1)^MG9u(+^gv|iOX;GA|nr~gRxIRf|+Xh zmoif5i-zHKqp9nh)I@!K`<^4pTU-}>1L2{5>ZH*?xS5AkPFAj=WT@ljQ8l&;zIfca4(^bxjnlw&?h)W-9F(iG&9{pmFc|Ep z0d)6DRph1Dv|5t$vidNL@K$7BuBW=TPwC=SJxG6^5za89e7m0&7%-!}yKgaA0nwRs zhdK!es_GjR_%v)fc0!iwXNOwH`ia>_;g4ZOU5T^7#!0ZRmcUwP1}d{9Vr*KZt5ggI zd$LRwVKlaw9x34;iZzYGD+ z?z{Q^|CYZp7o>3$tK|qY7m?D)nk!-MdzE+q!bHV0>wUjYG3A~07Sb{_5Ao>vd~3R% z7FNUJm~TsJTVylrmClzWt+z_FBD21G(}YC6^yEA{8V%gkhu5=IH{HGf$}m7v7+3b z(-j@QN#Yz=`S|$+5f3#Ed3XQB!!zOhf{4~A4h=nxF9{doAOytQv7kxL(w*4LF=@F#_{TLL z@I0^=c03p-C?>ArjS~d+w~D;l9P^UdaQ#cfg_SNhG~ucvg~GZbO=gh;!*?IzQDM@PdO>n@Wi!M>zN8f*a4zgZk!!Zy9417E`!p&!Xo_5@S;}%ETJ{bHZ9at^IJ|d0tU2liM3U7F^~& z^OfV#D(ZSrYPCpuV`HsWctfSGX5YMl%tOfcnTdLH1DW*(Cmo7$uPVY|zMOd_1G$fW zl`ctho7By=TZd@)D+hpcd0V`hWhy8AQnMN800g-L8I(s2J{ELm&0i_Ox|P+r%5X&* z2-!yBLz2*PYwn^@O^^XQQTdWGVv%jg3~02-Fl3g5NS$gn0`0#NR~408qJP?K-4^>D zCvnXfL^>OFmB3S3_Scl6m5`P{lAob_Ud@r#hb27)d-20)+&ck zM$%T~rudM`Xp&nEw@0Ff+x_BtZdd>p$93iRPq`q_W{{;O3gsop9^eudwkt2mOS4MJ z2)^pxrh7ov`}NvXAuLtoRPVFi==drxu=)Cek#4KM&u?tC@=A_P-r!qV5Rm{eolV!K z#kYmUO}X;grXxPhEknes7&nFR(+mM0mENEH+m(g!Nv9Ud!urkP(V4ypUKaa@WAe8H2P#Z7z`M_N)U#cci zM2fpY?1d|AW{-;uzS9(m$N^5jgrh;Swm?UB>g%X_1`kK>AxUw*PmZFnugCU=-8(<3 z6b^y)t8}m$xp7G!ck^g&uNebn&6`*^!W#$0Uth>bkkN?6m68{L2@{^qTb{IMm-O$I zQc2ea`)ap}Sl<@=kHA7GQ7yMh0oJve0uOdPXW-pT-@ z#b}A!M^VX2pQkM)KtO%GUUSE1G&XLgO^8r(ju{?nYd<)REj_t0v#b{?M0mZFE#nfA zqwg5G))OzU^Om-5E7fbB?9)BOGQ5+pd_`PP1OdE{H>8ilw?3W+9$Qq*DRJ(y223Mx z0Oq4f-VL=dMqqM5#$ccPg;C%T37QV1o0dGPve-=3DBgIgHY2vutvYTCt)B8JP3>nK zONZl072hv1$IJBt(Ui5JAr@VXikY_dUH$;o7rH`w;y6v zs=ePxmDUN0Bg0lfzS#Igd_m8{NB9>}IP6R(zi_+d>W34GXBJ}1^px8s<8+KvHPlV~ zY(8W>afN>aQE>LiC9)-@=&KbuIeqB0OP%HvFpo_itU!I@{Yf!C1oBbFqM?+KrF5dC z5g@L+_v&Olt^{1!s*?+-TI>nTTh>Dx(c6P5oII7HMdLhr* zNgqgodxs-*Ro_TVaMs6^RTZXvp6=CasMS5z;Ygv2oK!h}S@KZOrHe-oxgWkx`amf} zlytAI_c&F$C%sV40??lZ*Ow7Qro911!8Z{5E}9WzZ;c6|*QMXpsjoH!@wbRL4d1ms zpgWTIW)CC8a9{>PfLvsS6Uob6>rhSQ3t{Vu!i~1s%-f$4*%OsH+%Io#DLvFt*CP*Q zG5A+w8j297PA8Y=mR6c*6`qu=@R8S#H_foK3vrW6ZcWqBzRDMLs}+f)_ard!;Xa(# z2RVUrf@xt~{O4xR-)c*?5H6X1;5^={u4QDTQCdpEGEa^1AGkkiV;4HPZaBESoM2Yr z;+{E>uHAC9wNHy%-e~9XlUEuHpREHPr3&x15{|;+Ow^o1o)u8!iqYDIC#(2>*$ksK zwILCJC{pQ}2|8css9o5Vb3r$|@}<6+L|$c>H@K=Ql>Bk#m1-}Wd+^Owj&8PBd1-v< zFD72Lc}nM|J)zd_j^zKTpFn}Te29;$=hH7 z>ZnV__@AVndF8S6Si37{ZM(ThxJ{$ilgM4HA1?ZOO>N3OBB$G)+kloUT{Y!A|0Jho zLh4v6vX@ndyYNW%@$TP0cx$cM87?*hP&oS>?8E4nQ=zhw<*Kqi>2CFyY_Rpwr67Mo zq39KQw%f}xOlmO&0lKnzf5k~$GPYv4J$W)zR^(2-d860DJ`oVp_uICD{MhZsSi#oD z&-|@*6ftBaH6}&A7#?_wbMpoER&hZ-sX33q{K*d&%;wetTU5!Ke%!N92nhCleAbQR z%bw&{_DTo~OPX*e$r!L|ab`s}pE(-0IwSVF=|2DpgRSzNa^FZT)fTQan4T@9*gv{8 z84*$HIeDe#t-o?OFeS;}Wp~k*8%p!e#oceO(>6ZPGTdq9C)+gS>yFO?p&4GD zVuWzSHzh7r=a%U4AsGRXpjja-K9=8}FoJ^npYU#i6~pw0T)vGjzt5}v9BrHZ7f8U~ zHwE8J>RV51ku%G$c+l=tSdgQupT8!MOo)1O@o0N*tJPt*iFY?R6`$Nrxt3K0{Qo5u z=bmBy&c)scKj3e$7?=FB`@#I^^f}xsP-Nw7+7L8`5$Q6;39cRsQ5Z14|Xlkshww=N1 zJ+$w!cp z1@PWEDD#zfS4WnkhmVPvF4K?Kzsu4SE9y@JK`$H$GHN7{zi?}QcO&Uq)@Xop_#I&G ztHp}CQ;ZDMu?knJ?~oI(sGin%yg4K8X1zpYz))$P%OB!3I29kfncM2Y?^(*B0rD0y z6Wqxo#`YjaRgkVX7?Gi#^|7DXx0{qsRokt`Pcng)u3?L8kSU)El#Dhl^~;VQOxHka zlYoicexIQ}_Tr)YRN(i-?({WJo4F9~$;=A5DBLNMbyn=uk?ioWX^{&=#P&kr)YQ9 zA4Q3nK@U4t#_YT5xFgxjrmdbR9?3#WMHBbxWdpYzB75wU28ja8vb5Z zA*!sXDMnT;lAs#%vi-3^yLdOMYw>nYcsc+SeLspnMYMW!KsOkH`U-iY56r{h3>s%E?DShv@=m%Prbgf1SxzFW9 z=bS|4O}EY^`{mK}m9}>EuEL$iiNus1>F_A?UlfmRYMF3_pIW`bRlk=Fn+pp^d3;{} zTZ~~oWFWlm-I2n}#6Gqp%*;Iu{bvM-puYa9TmCo~SPI^yPxnV}P<;m_L2_$k^S5if zH(}HwZ|lp=e>33g=D-DAXc^lN>1>jfs&FJq&lM!tj$Ac}Pe}tQ8KDm6l+N2uKJQv6 zT)^~gr1&=!2eDvMfjw$?yn4snbxHsPI4jf^4fTJo8HUNONi(#sBHLLRK9`yuT7r^Q zobDY-s~y^!ed>x^0v(+*2Ni%n=|&!*bc1>YX5-WMjS24-8y64LLQt+F0AVPTx{W#mfrp4{{r-Gn^09ya%QSGW837|afAociFCENWGo zP$P(1jmL>dmt~@)8L5G`Q_Whi90f{?j?y~KmRK${H7D%^YeX~2cu5Sf*4cBaNuFHA8-IJeF+ z1RDSHuSDM>x6jOa?iFhr+w+<6@m|IUIIivuvkaSD1N7LMsaNZ%ll;qpD*VJN8cx%rUMvG>_5?M0 zJL+9x1Mxf(4CDm5@iAtXAX4a_WOGVDdWn_Or8_+Ji@~f8LzpTFhq&eU`zVE%)CB%p zxmzBUxf-P@+nu7QNg9yZEzt8&K$BKI@|kIw)IxRHGP@f*jy`g zFXf%e0r?+)>i?k0ht?*X87-U%&L;RRp0@p(>Sf$3_D+TG4s^T=d?x$LZ7rO`5}afF zw(X0hTP*3P=JNvT|1=T9Rz)NYYqmXT6=ZzfHQLrv{Q|;ccA%{D*#XLErc&bHPaVHy zf-85+1?L+y{da05JPOuc_OG@OwG&w854-Ny4D;NbDFBAliuPM#r!9A9`fnT4#<*h_ zmooX2ziqZ&Qc_H3+^wpQj+*-xO88bv@05g}bmEzVVjb{dbZ**9)A3)NNbznqWBBp% zPiwY|%RtM}?+)j>@lL-!vx`5KIG{ife2x>Ri#5aLC*-yGgf-i~{ED&km#0L3KiJHZ z0sS2Ce5u2E4ksoU(bisnMdobKKG&N}yN8J1rwNP32nqc#KL8TZ(4#U(XXRxAWd1%r z%u%z-#XR)(HKyZ7PyA1BVv|H3p-9j7x&D1nS>_ra-}0!^&_65FalIlha{>fiy9@cK3m3Q7Q|MdVP%^{s7&aWGw<6;z!gfBd3MYcdG$j3#Ys}Eu4!j#P+f=@-`$RW?UI9~Ds0Ut~B)g=){^Bdu`==FOiY+g6h;%H z!I7I4``uoNy#@H2dHIoc_G4fdZ|~<&dyx$qz>p{@ZM|ST=fWijK9rsbimql2Wj&Jt z?bVl2t7gbz4cTTwWn4ci-?kp<>`qrnW29Rkn)ta)8=Cx3)*rTNW5>*4KC$SzGI@uM zCygu+=#73MQJy~s0>S@x&jp8qj|&g+pA8Y?SJTkR1{`?t_m=%8)LC!<=KiB_K5DyC zApQ5oQ?4@|{{(7m(6p(Z5PNR^5xhxGK0ZCiLIY#gc@3BSP+SZ?%V9qrIJY?pz1;Wb zP?gfWfZ#&bevbd%+srpL$^7d+6_E0`%6*l4jLs~V0Mv^9O>O;0!t`f|fTsxR5A%Ht z0^<2mw>~0@PSVKZ@k8VgPy0vecK5X$+E!*mE->$8LUD01>@?cxNAQU zL__NWjmqzs;S}G@#0C21JhfL|a6VELD!=hggln-AOaqRe z7jW5)*4*A2d3v2Kxy{*idOT7(~{sM4Rj!XHLH-x_a$W13SMElII82n9eJNtG<>q=3z|@w(zQe8_-VKXs1~GI+iH+a_qEf-QWiV`A4GtDy#nZ8drvhPqE0>xO5VleN}%iIZ%w^ z*yP@2!d=y3xwRyR)Px_K&)Q#f%(8CqnY~rGf>Q`v?wGGuIKuf-(Glp6(+|YD`ReBr zH{T=37igY~1J{YwpjD@L6G8u*$9s=23yL2BJL|pkvJ-UFu1X(++FY@UoOLNnw_;<7 zMUe(PwpHMm`AD4#>9T+0RdL_1mWsDX6LH<;^W?FGSC@#6=b=_K;hz<)Np$}q+YpL< z2xhj$z3aJ5)d8{!D`uE$V)(c#4&S)mewSVTCECoz@zZ2`<>j&l*EjZdT80gU#egif~n^wt1$f-0=sCwtn9mW zixfhvj@?=t8<@PF2zbY zW1sQ&4+FnedK>kL)i3cQni~evL1=R~UNBNESWc&6LXhvZMqp}pH5?oR=kZrCC#k{f zsm}Bayzth#FkHU7V?hv`j9s>;4vo!DC!w`Tdyy#=@&cAFO5+f37k8GJM#HzadBSwg zE;t<#XP;{<-l~+*BH0b3uMPa*aWVf5lpl!x$|K*n{@%s8So(~DPrr-f?w{FxmkrJ0 zsFSPS$ds4=mbqe0HhaoxO+7e9)k2OV=i_$&#K75{A=p`3l<|WGxK_+^7M>YPiCC_W zb3A~hpSLYk?3kbU-Kl98U4Css^7Dw4DrNNHyr$1xU)5;PcYKe4Xc(PeYN#s;7$7ga z+6eYEQ{V8X`!v^8%`FuPd=W))<)2pTioPY8E z1%W^~p@x^tA&~v55Xc^PHWu*7`+VaG@JkJ;Z;Q0>g&~7o1Kc1cu1G&GU!)iOhG>vm z00Qpoqadd!ckYa+I}+)KP?wkY{;vzgH8_m8QLKr5cVU?|9c>5>Bk@t zgWJ$c7cB3jFN_D@aU9Ip`PCbIIhXXT^}Q@#%ilI$$FHy}-@0cacHrXSi=#ZOOJW!w z(MOPaS3R~@JYP+s5+G2+d;1Mj6w^N{_tf0Da;~a1MWaf>p?!{!J|RLk67EE?3sV?z zq*5~a_TrfG1UlFAivc;^6R)-h7zBYlv=g7*yZZ{l#kYrb_Z6GgUas92JfZsqcVCFE zumO*NAKlqQe!DNCzKBikzJRj56ny$X> zs1VkMOT&3(qGL_J!eDDo3dO%ff?uLJ2gv&&q8v=W9ovtu9m7UrVo{{5cZ)Bwsni}E z!Tg&ROKUeuTLvB?GMbr+e2l>A5>%mZRMWU;78P_JN3(~+@=(I5$VAKysIkPB^0yi_ zl=f+O45kxBlB6hf{?-Na$IJBfp7Z5T(Btkf-}T6+kpsAxE$^E+9D3LaR@I3MdNr&B zQ*Ogqr`eUDx6D4&Vin8DJ@dlN#1;Wqkk5y;y$TzJXm5pbS=gGl!m~B?HC9-aF+mm< z^c=m_Us^nZ6FygdF>=Snuqa_AGJ^J?G;R2d!sr-vIgq||w%h?X9}HVFRwzzIPVezh zAHp5|os~C&I~>_+b~paYPP)=|@cWOrxbx+s;u#W@$W8v8j)|T93a>n2^_#*+MNCwQ zda$6<=El~@oxbqKQgJo%Hc^ev4V4Y|8vT)8Y-&3wMftjoAMB2nXq-t8!>JKZQjS6` zaP#{kH+WIoqiWT|YSsFLNaMOC(Oyo7uF**lm!h`B?hWJ3VN{pILdr^WZk!5<~} z0-1{OH4LrB97Jh*z;4q=f-^AYP!;3Q2AQ)jR^DN_LYi-7ouOz#ZRq~5^U#T3 zRP}3w(;?07-D<(;(6vjoQ=&SwN2mzN!m9)^);AO#2`$+|LxLfczJkEZi1YqlO*X8% zY+jC76hLJTlAI3{(ROi|T2#bzBtG7l@d9mPs5+6i9hPcj|BbjF_i`8wvz9EpKrr}G z>5@bH{jFyirYz&SwLhd$PaKM`y$tnTr_zTP@4dLd(}p#4+wOqlhrd2-RX$ct@#aYs1?4Jb*s15kwBAhN_y9um5%8Bz3__@T7VvY z6TIY_f#_Y=v%GA?$ix&q>{0nFPoM$JK2&*MFygl7{ktzQmG*zVf2nO zgSwSpmU1xCUB3ilweR6V5EnK{cp zmV0%WU7_3+wk8lcYuJc!>7ow$sUDt~(p3t#a+XK6!`9N!TMjzp%}1DKC?gi_y(&5O ze6^hB4lM|3%-YFJHBzrD<z6K6 z{1(2Hfq2@+AG#B;DHJ(=i|p8hG3#O%WQ;anGY=xNN6N*%cis>eE}uwCNBC-xwHMN5 zQi=W32C%AL!J`qr$qpF^NvOJ$vwUp#MxlQq=0IZ;&5=A-d2j7 zi97ki&MDN}lE#il2I0LERkGS6U)eQeGW84INn;VooGS!Ds0RtH4n>aU!K_^~`<7;u z)}xzCzToh5x|ssax|N0^9??f-CMfpdw7+NVIH0W6$)umvJC1}@oYzBivN7X5CYrH< z-2*xH7ZZNjhPWlRt`YiSL!uP@ki_sNi)TMf4DDrUd~@KwO50W45_!g9D#gBF@$i0;xnI0w$BYJtd~H$qvj$ zJjT$*`&UFdf{|*o|KKcm(Lkf0Twc^gR3oq#NSE?O5{WWX-p~oFUeOtwrBm+X67af) z6KA$U>`7-|_fPla_MMS`lYmJSZxodm4|OKpJ)N~y-Tq_zd{99{6(b$PtxmQ!M(L0{ z0ZM%H3DG(7bUANKlCmS-c#>ijvVfR~m;=RT`naCb9*7|)EGQ3CoPoH_;$&=#9@axC zYml3cBV{3w$uD0X{8x!Ki22pAB&S@Sx^z3t zo1Qh5K00Ogb1fayYs`3ual+S*_RL>~>f>t#?!V<_UK(}lHLF34f2P)U_sbnWlw8uv zyXI|IsEFX^+-^_Dj_nte`i#qgRb3=-K@k~fm|ArY?r}GDypMQ}Zd~Vrl9rJfC*&EkmN+wSq>6eu{5adQrS;|$ zqnLB$=bOooac7JP^%9LIDDf!l&*1ut1d+W`JiA8i(dCXCP;ex)!Hy>LUDujR59`7m zH3}WTX-mL!G0z^HIlOz>t&@|6=kT@3DAUE8;jtJ5Yx7Cw=Ma`ZJSgg_yRR>Crsvfl zfp8cpWq1yaM)Ru$U~ZJze#x6W%d<0!TGgjw|Px6jk(ZdwY9JbMuQe_b}%bl9Q6YD4agAbSU}_Z_T6fAM4O3`QF!xEoSM$d*_hWF4v5ASvh17du#}KEoyXlW-+$T$i^u! zSzO*0t>T+$WNgg6(LhT=nBvv+PloRZZ37z!k~-^9x7)WxR@5}q)ss>_l{V@f(AuS; zlaMO!(R>2I-0jvaLlkIjZ9_`Z|%xq z@Ua?y#+1m;Y4`-`Z(7*IhGOLQW;kj2fyicdzF8Lb;E_|a+Z(i0@$oxTu^v7?Lj#2t zft0*dBUHqCx653Tg=ru7WEI_e_i{!?2C6}rf2t#%ID9*+gq#(*ovlNqH_^3vUY^rS zlr$UaQJFXcEh;J^9F$DYE-r1dKO$*5keBLQ)V#ArQ=fXSfE@GhfdBg5j>0(j)as`? z1)=e3WI>_eF@HvP-P(w!m7QH7FcV1&rjG}EQin>? zw8E-jy_w@%PQmM7s0A{m4dy81bh6Eyu?qtQz9|v#skz|WxSAqYGr89!OWWyoMqmmF z4Di9W9FN=|dhZ7zX9Q;|dyim#O?6Pqv$ozIJ!AWY91$BEyX#X~hx~>H&G6+{69Z$l zh}Dlr%w`=X7(*u-$-NP43bGDWSBz8T2FHUZO48E!$0Ifty1KduF}yM>pT*+c2aBv2 z3%-%Xz(>w9)^D#W@(+r|Yvy>5R#9eN`3^1j>Xg`tl{eb| zV)omsx%^z50(?0@*4YUuajZ4>ZTR&#VztEuLr3ir0xgG7`d@f9Zct+MP+7U+2v|xeLRA~n7mSkFN{=5OG#16dUdvcaWn6)0K+ASE2*e> zetqX^U*Y}&){~a^{{49wkZL#v6ON@^-IqMA%b!AnRFrk)5_@9{K z$?1E;G?JNk;O3#fzeUpzsshZT3#pxaVMtF%F%-{%h8hscOPBXj#+tBhgH8rJESE)oQUV}D(k}$Tkw8Vhict0^(eX7Zf7G8%x9^YYQ zYx{;*##(STSL|N^&DajL=SUhXwvjpfbhc(HE>XP1w(MfAL41S(nO_0+JYpqRL`pc` zvpYq0eA!04sJPhT+O-$&%ga{*FwVB~xy+M}K5HK!k+8OB@)5mSHhj)^UN`-2m-hhk z2BssGpPwH&S6DE&oVC;7;o*^#l~vjy9CpPb|BBjmZ;&HRK6R8+PN9@MCWxiTI{f{t zor|)(^^H673$bZUNl97R1NdmX&4X*EVRd!2tF!akg$wtpd?&EYo73{lbQPBZRfLn1 zbNt9_;lP1w_LUyVaXQ;~n6cH>-91XayS~28uMzZCIBfo$)7@X~0eJXyS2F9Wljz+) zi~LE*+Wc^CZ}=jjsHDUS%ubxv+SkRWI^2WDZ>RTZjotkI@o5@B3+)X@zt#hFbW)g7 z$kHvL$jx6`kNt3H1p_AjRlxh1=|4LanbvjHCvM#aD>o?UfL8&N`Q=2#Qa{6X3L^fHNs_E0hXz<`_OL<8rVrNpFbQn~Ii2;H_9J4|5#~zV=54dELRYON(^P#{#-# zFQi7DcrN_^T}EL&!5`}}H&B?S>YpRm^!oP>feCzKw2(*{)5iq z&{XHp!o^0qb2!D=WsXD|9xilO4E;_pEiB4WHDgv1b6rM@j+0ie!|P-bD${`J(%9pwJp{QN-k&PKE6 zr{~AhG(+Am*3-11D1<4|DLBJaog&^yZ=?;z32D^z0w6mh>r`inS|K)XTY;k2pCo00 z1Q-l3(g+N)G~(w25qIF7(6!;)VJq)#%WgbkhEr#vBvns@kq|^9jfdlzC9fboAm&rN zNa^jY@U;Y;scrn$YH6escvltiyGssf&xDlT#;ML*1S65N z@{#M$08p`}gzM_ONzWX78!HVmp7F^KIR%do-VD#FCWRIooc5p;O3*)gw!Ip*9kwr5vsfiPbH12Npo6^^MOT3 zqSIC;wzk#|@W|vJtCPP63bgY8DE^tCI3XEmC~$9Oz;xFli7hZN(7ryXBr{~@c=+a& zh>aq@6{yaD7o~^ecfLQ9pL3#x+R$rbo;{;){FV7&A(!>*OrrK5oq~w>so8;AP<2&MqAH7u#S6F33?5yEPNM2@^S|6aUD}`p^ zMv-8I$**3GlC_^^l@(v^+}LdSCOXMXQ6B9L3cRnx)3(b*1*)@MhFtC;%n$Fg9|DG# zitPLb+DkeD6ov{|4}a{ja~El$#CqgJIGwW8El&h_r07f14F7&4Yu0}rUXYQ$L*LoX z8Y*=uW%2+b)=64U&f3{IbB;=-hm?Z2{+a0(iB3;prJ06BxceJbyAw#py9xUfKG?9R$H`GJ>O z^;6Sk=I!(RrvfsYFLZ66i*53Ta zEdy#RsFZ0M!C2DHHl3RDOpYM3{gZVZo5K5bx?$FSTu(GzU!w#ndG>^(Iv9C0e1XR3r;ckZz>0!=O z*G~;01eApN2SFa))TW3goEI8_J)e#8dotVlB2-;G9LSMlxFvB}h4Na|Vgj-lu_zB) z6W&>U3!&}@lgnc2a^kX$85czAX_Q#ID!B?eG9$0@a#$KFCawlu-}X6xs$#J?!Hfe) zr$Nh$4>+&qm_!L#)XD*9q(ZrdguZx&u%p}V_u@7{ygz#ucg6p6lnJ z1uKDX5sMLI$2oZGeIYX+Ve>#0`KltZ#Nx+yV4*IZp66^0?}i{ep#L z4rnSgv>j*to7yBt=|@Gl!{8`;@t%YEnxN%m#?$s2fTnnTaf7H{JmiNtMjk_;-e&dm zvz8wP-vdXo|5f(nVd}Wu0ISEye=t)?4gN{YuYn?lKUML!%q@|@K{rZ2|Ru>r4{}5lmtzJp!9))r%rcNH-L|iL2lWP31i z3nDs9xGx8R5>HUN@wL;i6iGN5-4lp!^nvAyZ#~1rwx+N#FVhX^d$5aZYUGrSZcdan zl>eLW_B~9gQNW&LCMG~yqC_VRU17?X37x2;=wViIZ-0EFpqCZ%JBYZ5o~3ybdfJH5 zh>`y+P_@JfB@2D@M~L^lz{JGF?0Ne~nfn10$G^^(zijZEIz%3uLdCsMv?g@JtR>(W z%rqnh&{@$@XL5O>Nv`0PSrKym^Tb!-pENa)a29Uj654-ZmO&DA6dqRJ%OS^qK zsqXFg6ff+OZ`Z-y|B{fN-MyN+z zYB22(JgVR@lU~eG$0aDZH}3D7ur>+KV7#nKxhAw*Jp3xyrUQFrfiH)HB|6oD+qUt6 z7#6`sD=QU`R(|<;+Zya;*#&<$jJ_hm@hMD*wz_!Cn6|qW9{nUr%n{VgboAB*!j39= z=G5Db1Ps_dNL{3TeYaomsr`sXrTdm#k4vK-yESc~ZtgOaFpKi);djX|kC*Sq`Ac+} z-bOMjSJal+BpV+v4hFj^t|bP~L149Aw|1b662xNahKBa@JqEr4o@t7aJzStS3;71C zl9aU?amwuG6|28*ds_NeNyn61T|*6S)tyn%gB|soW)A%R<(5N0&XelG1xUyyAYUOC ze?45CNU)Tmv|-~vsg$dsW(>{s_1jlC1(Z3=+xL~`HCh-K1;N)J+k1}nG5X9_ea9*!~AwhYb5JuV1KelhAhk3B z31sgKgbAyM_}cj1lwE29=dJzwXCliLu@pT5Iw>Jzt*WoJr=pRn%~{J52mc z>JN;};n%E8)Zhu)FZk`lrTtQ$8p?Qek}HaAYW(kE1jIAK&wl%K6?OdC+{^clLKZ3Y zy~^bDAf>7h*N(-RMaV5rr}7~$-!Gek8iQjb1qjsanfsj!`CaUrKXd&iM8zc^7&DEA zpq@^=H}5@;l1p5PL6`g_hC30)QRl^bR>`S%`qY9=M0p=SK^Kav=tr-C0;4EKeU_Zja0r{9$sj^py#sV8^^5DOKcU-9}{6`4&!2U)V^ca;eCd5p5!JL z+5&vxs#Rd_&_;aG+~tyDp8*S*>OyR7V_38MN5!Jk#y5?^SVV3b1z0-2%sagt!R+DK z2R7BHsA(7m{{6{b6TvcH?u7AJZ+n;iH>(-~R#sC7M63p5?cYb(#CMwY_n+i@xxsuWR|L@+h8!1;z8x;Cin~K^8m3(H ztueNX`^0E-Ha(VEa3mg2_K{~AV9v6KmFFTX-*p|$pORH*(UH9Jb?A8Th&6Ex+z5=u zdDOh1xrtGwzIEJ;{rwH~K(8`boJ=3cAN6muntOMr^R<4<9?VNH$oHom#Gbtm9P)S5 zs;UhBR0$&3+6O!M%y)tCjOw|vLLHSjbccCcHn2ju&h}JaOg;aMO-Iu7oStNSlDIeU zeomlLsJ~OJvt#wM7A8FDo<<|&X8HXd{)0Z8bsQY;N%uNFIhmj^ALbkHbv!@U&L3%+ zN$9Wf23u+n^IZjKHBjM_;5|0gFYF>Y?KNG85FTQ?at0eNfQ$s`D42 zh@>B|{f1Oes)A-07>%tRqk%mj zRB{$pNz_!8!JuAxU;7nxX?Y8=nD>hBKMQCpFe9QawS4vfbBG*!fEFEhOzk-QpJ`vK zHv@&FidgO5y$JKhdJoNv_mGwrPsxtHb1*9z%g5j8?MyUA^wSS&cd<7*pJ-!0Zi;6TQbhpGS@gju}-|8cR?t_-`m%HFlD?4;2ox?KCQBy`=axNb!lyJ zRdI*`*~Tt0Xa^bytCvg5i>SN_G5!ZY%EZXw6h6yIm}hNmNnd>6lf z+V5TJJGjO;y5K$=>eCm;u$G;uanP7^*xwrjm}v$ z7LXVG#ZCz&PasYXVAn4^<_qm^TRP9{c7sXkISv6s{Pv&z98)MNlb_hNyfH>1kP1r< zzV1jFnOTII+cY|rMmCk{^( zbG)#y3&upm1?$jw;v>6r)3+DKB~`>?Ynkr%yCgaZiTXQ1_3xRF-@@s8{qX?Pog6%Y zo0{}1d%TOhJ#3s1^&YQAtR}{=BQV})rHxum5afuF$~n&~3@;u-k;+-2DSSiooF;^@ho^9|AjP6c%q@eh^9pVS1yUMX zCT;BRxhP*jyuHqAW52*)(`z7x5q(MH7-Cf@_0@pGo!FStpptXrKu)spXKQmTb=Z29D%uH$j5Glb**Kr(WnI@gCCIS7}<__SNOr zDowmS+!wym64G$CmmWpPzrbdm1Z7{k+r-As`LPi~!E#O~b=vKV1Bl$~2~6QZK|q2+ zM#ZK4or-KmEJnku&rqsSpA3soE7!QglwP0@lgIyU54gVl~rx!OPuhH4__M?X$di zs^sfH@G(?|@ZeWMy0!?IW$5NZ;Ge?S|A*Y27)FMDY#@~=9-VV`HeHY7Upx8)%j*&WiP9LWc{P9ZP6Df~;!&|gE>?&!Qvw?v0(R|L=&(o2DNbv}`no05 zfS{K1-*Q>xyQ%s=M@%fQT|4IoipJWD%%gqh+-gC=2+s13EfFdzf?HYzCJx!q`T(a_ zstS6eAlIH@F{T#y=}6|3dD!i-(WAk0Nc3R@P#LyW}eafTLyZ@(fke?gI|ZrdKnpE z_EuK?1C33ECFL7igp*8UR4U0al(hMK?#DHKeyjArkETr{eaDG96JKAu$dld#4#o!H z+0k{GjnQ0XBLX)g0{bIWt6LsFuK*dfQ#)Td09 z!t5(=Sd=)ASQe)$FAjCTnj08fJRp)+OG#7j;?|V@OUdol>wxq3x9V}AK55n6N{py< z&#fA&oCRy9jPq5teNQ^CZ2O7QhH>@9W|*+>-f&!GV`Y_oZ^?M!xXHr##8WAJvrbdS ztJtY7MQ`Mb8yxgKewd989n3R1)C}%L#9Dcyt3k}!ayOtwWm8*PPk;kIu%LX*ZHdN{ zH03hXN?^#cpQd!-MZ#q$p9VQ-f#wJ*O;qau@Y&n~XDIw;3H@t@12st52zBz5P$aTx zqAmAo|7AY77c}nVi+c;x-_rYYR_j-~`BY|0OPfmKYWmTDOeHE9P{$>?jJxiNW%w7^ zR1Z+lN*a~ddrTWE3a!B>Af_^ct~@0vHC?$aVv`?(nis!&5@Lv27;V&@lGJ%IR7xKj zM<%X_>>ToPg8o?|&N7dAi@F0Gv@a{P?p6tH)C7#c3Iv2Wvns-Q9~B8&yrtwmQv_ap zPe@cqH3&DZ&$MmQZ@%mQU}*7c?j}yr$x+QHHPimJe>m<1>PleGg8gsn%A;=!hZH=6 zJixL^91fO7q(H|)rfCWt$@@vU2U>Xkjt^_Qx>#=(`u$*Gu3nm^UFb9~FEc=?q;@=9x@#ih^tS7qevzOP#&w;w zDcm;)aAs=iGv(RN)T%dyB^HSWM`xLS+e++CJen!^7dd^%N@WiCZ55Z65$ZoKr&Jv* zeN@RRPHw1hD#j}9)$7f-FP9YhH_0!T$_YtX$8RoKLpsY41uI|l2wQYx-zF(uK4Tll z6DH`BVB^=^2dn6vh8z#nBL6T11oPX)mU|J*L-8N7s|roJRThT`((*s=gdj@nM;foC z<;IjNHs%=icl=!(fPC>uB)P!7)K#`bD1*^0<4fg}_xbXkvp)I7(LUDvBq}i5v+Kfvv0fkmqbiYYKA^B9i-X%ye)Q?5IbXwc=KfXTJ}#$K zhfD;kaOND#X;oh2GZ85SR3l2Ky%i3pS%xF(=Nv|?03~6h1P!WG7r)N)458Hl+P@f1 zebqSK)+ph3{uV|*DMQ#QC^QX}L?(NX(JGo>dGr28-=dpu7%`wCOigA+_O|##$?HEX#Y;DAi@r`C~bG^LWrk~?=n z9}J9x1nR03IG>$UnERJfpyg|_lbM%QXE>XY^tu>C; zi7aGzcq|J8)dT$U5o@R~GjZ5l1tijAEo-9CcA!o#{yCVR8)5qrcB=qJN>a=u1Ra)& zP-t|PQ`=s1jC3Lfz@7`AW~;@HHf*m|n}^mBk4(`b=~dv6gvy!e@6Yn)_gx8aw3oKB z;l5Mba*ui7FDeNJD>~h2tq-lz*7U}R`=0D2Rt>UW;N6&V-TnobrI z4)&n@{1EqXQtX^29LjNRg#K7ccDy@dyNMKl2y+C5Ze;jNkyeS&cs&01y~Hf{kAU|c z->sc03Nz6suT8@~Zt8w?z;`}j?1^cf*D26%6h3urXRXz#+m(Hc=VJM7@yfe;nO zUm2`!a@>w5?KK=4{HvW1xm^&emL5_yWLgZ--K$_> zU8k~RVCVeFHA4nC(}OmD9JONWV`DHTwV19xWj?0XK4qGLms+d{uBB_^3;SJ&yq^>S zT>zl)Dp;kktkNPjq9q_3f0_b6WFmYmyX#zg+PQqgegnQo-&40hY;D)vD2}MSlN+Q` zCBYF6_O_$>ZV7tTSf(dp9kkD0pk-;^o#oW9Z*uhTK>5@`8NcH5z~Q+SjqD`GJ%1C< zJ*<0yECP(>NHF|xHbqpGJTOM0u!=^^eq$90+aywp1u8KfsS%7Z_3`=^`TkaHhHq!4%5*EJ^YYe@;Z?AfeLEH3)erQCt+C46wDB-P{~BqbBW!K)cmL3F zB0bBwgc`Yp+Wtv68or@-BpUyvGGsZFG!(ct9~|_Gc(~cjDzFkcU$)Oe#*b(BR8iF5 zZdJjy@k?vXzF-ONOtLIy<{xwr;734lMB|-YaX47e!k$YFtpKPwmv0LM6AOE!AKCtm zrw6f@&zjQ8S5#44W>Nqysn$`wRvss>G5>QKchh)va+w-P?k`@IpNPEd64rZ=@%wqq zKo+Z8Co0qR)BG@rDq+keJ2^Yo+IlIM?O63w{pK2zGk^?!;f>cQ8ScxLu&S?o>yesb zxiFM60)v_dg<1mYQxt$KGd=F`7S5~RWhC-4L=)%+v-fTjDK^iPi^@uXU~={f5wCtZ z`DRSwwzGf-|7vB2OCP)M;OszId)<~;qEeNjB!!k3FjSiQDK=5~?$x@buIyr{w9gR% zpw#YSE(CHIMD-AX69^$zzQk@dnsS3=yfguK(?}7K&UZ&}Q7DK>yqgaAQhrT43{cWZ zIw3XMh_!R-{&yl!+9ng}h)^WuRQQHj@xag_BHxZ%16CU`pG~(tnEaSUO2>skqGL+$ zO3ZqoVt|5uEC(#wAd}fid@#zsM|O;sqyVV7o^d_E!xFxUqP`D-N{p;X?BMv$&r@<4 z*4N(je@dRK0LB3DB=mF1iQWk`&WO<5k=K?iBdxYgq*}gUXduh1>D{WW3tqyRZUrW6i}Cpnc6!h!aEDPgtI|$lt-#;jD@$ zQaUpE4LHU2oJ0Cs4%`M}BlYP&1!Ix2v_>m`Vx30wPiMFA$wmS=?@TBV5nN$P4&(+;wd=|?OzU0DGcT07)W2%Ofs7vVFRT^LV**Db?=W0ZJM3dhG zVTU>>(D|9XtQdc+cv(`AcT?~LIa8*x%BWY1&r9e(=_lB|XKo{Tzkw3~rFgJ&U`rG% zt!Bd_9ZI74tP2}NjjO}mb6`R`UM-|vwSwD2*3{Qzq9C`+G5?dV#a}xOc)N!U*#Pj6OY8IR~h!zL+w)*b%`y?H=nkGhla@|s^ zM4B4b*1~`nPGBnGFG^#+&$kIP`o505?r<5&iOzH>tqxKy0t%SRUHYBy?*lQqWC@B5 zyzrwqz>t5A*XID1yjno*C4{pNQJBGEmgP{eW?CA2*BO=u))el9&wEWy_YyxII>7IM z$~FAa^1376$%L`~L3#_;c}l4Q>Av)N@75$rDwKvG*nxw`Vk#<~vKVQ`AN&!Rhiw*K?H&5aiS&0noU_rcPanK}>_D9|Q;8BD`BuZ1vv zR=l{7nyC2{Y$POz-AUO!6`*^X$8VDDANy4`_Y11-{qsZwgv%_bDk)jNg}J<7b_L;b zflK{Yt%RuF-7om>bWZ+EPU7(sy~;clfQx{^G;s5S4+AZF=JgdETw%sN^GTwffKWmb z?$5T~ivr3}X0*7|7te7alusbuBzZ-4hp9tB#LeJ^mKH~lyv)rO^XG`g2L?Jq-;@fi=SML~jZEvr()&h zofo*d_CNU(0||nlSDrtKC#q&-oW}?)ERmfxI=la$iACjB41~dix%Nl>+rViLYnvqx z*qCPat{d==WnkdU_o8ZG79sz({ZBJk^(=Wr|80aRFkW8=ci#U`s}LjOgQ`4i|9ria zlwzc$biwA{iGQusT$$9>{dcH(z(xNK6ztuBX<^nKpIa>M6FYLR$Ad^4>G4I8}IVF+d2789{x`*yz zs}p55mjb7t*>u4%g6mf?P-&E+1%U$^pEj&YPNz2JqW|k)P^IDS#W^yQex~Qy>-aei zt$<)wHVz#NIcgkZEWO}qKpxw|*BX%>-R$g!vyUDG*Nf_diI9~wx3B>D#Kw&N%p_!- zIC}UFl!BU-X91U7zn;X1G;@3T7t0|qgmdLC#`dQvcN9jwU|FaY1?beKL&x@I0&h5{ z88eQfFrt&Xke9nBS+q&L`DR=m%&3PvmfH&g?9XxTs2^Yh5AyF^1BhX6Trq!8#qX}h zT*9QKWy`ekFrNzrKZaO$OKIsGR#ukX2eyI9>&!?x`{v*F2LCZ_+IzV;&i@-1hy0i_ zG_wx~suXxd4#fPWfA3UUVd>!u9xAwx-LLm=h=PtAZ$B=)p78HQ;JN$<&;LmZfOp4k z&Aj}1VC!so21j8~=>7cn&3%=t-e*VDY?LA7b_npu z?8{+u;P)?q9BvgC{#<3iGIHY1zi&W$(Q}uW)fd3mKZyrn{uKeX+>Hlvkc!qrQOaz> z-hQ{Th3*>&?2l)@;n5s{;97T`1o;sEA1CF{UdNs3#~pn&+|4|XG@kaZ1rE(dr)!*;f>o{><6=-k}lXqJU ztClon(F&<<4TP=bqtz5-#?3e#S@%@!A+||a7s^pR@o0 zG6~`HN_@Syjmt07;)g_oFI4)4B{iM;Q^hw$@xw$Z0Vn*E7@trf^-U2xha7fS`mY+! zTd-W5S6)NaZ|siFzKVNfzme;a8~#Eohna@CPmZ=UxE@M{GKzQ7sM)Deqfyirm4t=s zFm9tz2f{(r;xD4V?C!O)D?5lgH66+QOynG(-$|fOP=za@Y^roB$3q z$;p*^e$)1yZk{kFj}1CSua&zrcNFAAjq2iSP4KmysJLY0BeYOu^OQv&q_TCJ6#vg{ zbsrE|bWkgRN7(Ib)o_I#tl_NTy1Q?f3twCOgY%WG1m$p~5b>h?p6Wfs58on(^tRPz z)Q_nHV@{_dDwjSHoF+?07I&gwQ+0SW80vW3lEfC2ppt=*XA~Dp@TS?N?Sx`5CEi5Koijfno*s^wzI=ETjzLYzJ} z5A==(2#K@3;XFJM`Pqe)(6SZwBb}PG;s6z)O!;9S?cY;*;d_MMs{JgD{L?R<9K0VC zh{>0BXf!XQ+YUvNrEo?ri%2+qlXp2m;SLwflA|1i>ICDphAK&FWbvLvWZ!mN>WT`K zjJA6bQhq&4lHwcfcX#%{I15af5b3h+?e`cnSkd~ey7k1QIvdkBELFfbkC3TCou;fz zC6MF5G52m~kF;ub1j!nQMt%r6;xD^@3}iA2BY}!jpv6g0P}-+x^*XlE8wkxGr4N#3 z;-b)|A($CG!Y!yg)Lx2W1)VVZYJHL-f*NAt@}RvpgZ52>D}AQf+M1Z-hPb@%@>iMH`w)vbbO%S z{>ohdx)9y)i{?aa9<1lwB>n?SEmaR1bnLa|DZD!k@t>P>S&1KB3<9givsSfGL%(-| z?uxl?MgQ0euCyWqg|zCqbchgo&k-IlSBJD!(?nnQ_5zs#<{D0sd hash+;e;pcqXOEDVT@~rtmM+r|P<_)&*o)Wi|6jW5@0K-A6CL2UR3`ztWWVRtPvF9?MB81+E|$;g61AlFB= zuU)r*LeW#LqQ>gQ%R(fY=PB5-wFd#d`SFx?- zzPjW@X^rnwi8I;>g4zj5_5lr|SE#Q92{v5rTGUqsJyMe|sqbi~JD}hPmq}v6)ekPR z&!LGv_^3;Xj_vOV0Sw#+ADv%ikvsUvaQ6Qz17YDDY7hP_&#}NSuTz3O%I6h1;E^-% z$kgABu`P$;V_a(Wb`VUMI&^Az%^`5pbrko~b@Y^)DW6)sMC7fXi0w#@c0M(zxf;|- z9cs-CKfX2;>I$`Wgyu;^ipxfdw|3NWs8O7uwnkfxGLak%a|&m*yJ)F`V~cvW;;&m8TU>QIsXFhZC))b>8q)&rWS61h~vi*Hnlba#VJl{i*Jyn#o01vyu+!GmQZ z-wQ=9SwN=};gLJzvAcFqTPb&4=+qyM_6cmGOcaMJ6Z}WP_C6HGxFbV+vhtCmy_BQ9 zc)Yx#DOD3XmBG<2rUq4IgFDlShUH`kMRP3PsIW&s^YCI6<+gl5W&GP}-Pvf4SSENd zliX>_-MiC+*xkZNjzuWkSue=cVrbez6$-b=b)Cow-KXGMIr-6)b=b6Z#H>|q8B)S^ zp|Y4RZESk=+T<(@;f3_Lv?Ofvu#s4U%9lW!+abT9q*2=N$n%7a?r=;8%;XC!mrjM< z0%ww)Ajor=s;*sSeu+CeJMvd}-qTaIT(_G!WCeI4Cu~@^@4i`)t|)ej4GYuZX-w8U7od|yS0H<`W%F`27dyp9KEuRp2XoF1E>5qvGEwMn z(T%MsN$;vo`r1In87L3=@Xahmdh@3lnpq#jNQ54$Kke^ucUn;$I)mat>0{@E1(sfL zwEy76H_7cTPN7~`_tG6z^EZInioECX=jp^$bf-qhMsjqiLGvS0<0H9W?l|)iMkLVn zbp9FHG+#wW`)6_n`L(e}I)Jqnj0K7;#e=;!*P@LaB*_F%@4wma3R8SfM{z`YglvhC z{Spt+Sq{)y$4JzEfrYUtu{8q~INmAto%BLt@u@^PV=J^ducNXAfwX=hQQHB_v_tBD zfsvj{)P9D^Lag}@+p(c{CD7JiV2TmN_;>GEVeCKN42J3R;hhBz%LsMA6z!1A2;}J2 z5cvdZ1vX9YpAUvo&Ms~7Zttj|DdaW$@{vg-NBa<6!w_s*nZS`Ofx?H+D9cP}9KGR8 zcPE}jebczHjCQDTlu%2X9O68|bX$%+T9BZ1AGjq$*B6YgI?;E2(CKJJNpk;0OxOg#A{7mH12k$>$WhOfWTTZcE z$B_J6GgP#&&+l15r}{YB+sGchd^BMUp(oW$v-RrDhB{iOBRG9Sthcf`=>&pGz|at9 zA;(X2DNzPtw4n^0-wUc|%_BS$e0gYtWt0md1R-@%a?n(KayDw}C`s6MlJa|ikM7g!LR)6j0}^uF$(?sJJdH2c?&%B|Jx zv%M;vS64{APITQ~Q@URv{RK9NhD{trlnM|CD?nfF`KsDt&1a5Dpr<3Gv;!S2Ml@fD zL^Sz2kz!!eqd^P(`2vBbE9oBSij zngM|e`7JK`seBp<1p;YQN8jM1y!5X8*+q3|4Ls6>=kw-u2#F1TJc>h>pF zxM~)x5_#)HLZ@yV&Sful+&E$Fc#%H-DTOp%TOkmjpp_~dp1{%G-OqcRk3MEwVRQB8 zakYB>NO7U@5N2)DzRK+YHRuO*sPNl}E|~A^8fl3+gaDa_|j)U+%pey8iO`p8Di2JhBfSsW3^0V&8h`q@56Z=)h?Xq()3Y z>Y_Pn>DXW1+z5EZE13S$TcA_yM}>Y6;}vX49@HNxC{Cg86u7aya(ME1!X{6szGT+x z!hL#`47PPj1#J3GLPu68qkn9HX2*pMS2yWzhj>AFd0E{TWQXhyl<)YuR_`LH9=v#l zOOH-_yH!O{|JCLVq=#bXwYP5kgyhPUd!||#{#jwcW7VzXwz#TiH8($_^s_I%jkdizK0Eb4CIk<^8BGD4hHfxjN2`*trRv zx?rP)Tvl%=HKtx#uxG~}dsRs26gKV&L4>w~*7fG#1hjeUyNNIrL|{?kldwoN=q5Z; z0~I(K3!8q7G9XM-8hN{A&qSZSK^@{p1(T;`_?9)Yk}i!`t%$~z8J_jNq9cl<{80I! zb7EquK3z%Y>5K}f5QJy;q^L!`1llxnUZL8JMUJ5oh6sU9=}iXPSVC=YBRzDXw#T(e zvAEa_l1+X$7@UK{h5~!PjYIqc~QyX-hK^$Tnv982cEv8in14-uN+%9w1^p4BE=kaF@-I^Aima`bxl?vm!^_L7T&IuU$k4DoO#*T5;>8}H z^9sl9Uqi<0X3A7P{CPo0FDq@{)0-pf-fb|jq0nVn zSt;is@lUMlB^V%{>5)2jJaDs3eyyPF7&_EMQp7R zlqi#rAr>BAPAF{*A$C`IjtSkgnMS_|8prqN?yZI9k{MMgG^Aj>qMsRgmlT#u=r5EC z+47EwiIH3Wd@NlhM8U+;=Vxf{{w)eNwe=bTfhh0(ZrdY&fDH)&V`2NdJBxm8(|OUn zuj}j6UYwT2j*Kv&{90GD)$eu}s_r_f>`bxqtp(tAW@T4rW!t#49wj$;;U$A9OOI7Z z5it@+5rSeB&mTwv@2L*npo{n{FE%nRh@@gYk5?hf-|x-ptaj|L-MW&H+p+> zDn_JyGV++-PK4rC zdHu#bnx}b4lSxK;wliJH&AUW52cXC|vlVKB+A4x)L`tn%GKN1mNCj;yEY>crJh$F? z)GgM=9S(kFk=yondvcUB*+c%QEA6iJXNB!;W(Cf@%L>^TzG&I#oja;FZ1)%YW2T!| zdlBFc+(8SK2X`!QTAcG~<5Bb#cN(||3{A`4{w&|_AI*m8SjBo`?I?xPq1tLavDrcj ziF?A#Sp~%1x{_S+-mzauWi=gh>+apI*Ba0332!q^tL`0E-QUDC0Qs0zKRB|vxjE+D zuM74es-&VdBZ$E>$c_F!7P?JT+Wei^lPMdg@%&_^`;^+=9=VNf>4%a2at^sU z`pa|958edB(3QkocZ@RGecWe|DCvBE`PY{na2)hO2nxdbm7rr+HH}C)JnJ}f> zdaoU?x*t&9ymF&;>t{t3mc=u@p&r0PI7Nx(xDJpupic#eYKc=q~|Ld0>6Em|s zFekIt;LXsVtH~9?PexsvSi_S=Ojdp;>PtEgy|>)hoVVWZYJb9`PLk;T93~O+EOA>mZ#-`t~AB9ZO&#kOhui3 z;O6G=Ekl~>C~juTxU`KdK4KQ-S5?i8iedn3R1vM8e6;9t>C&ZbA5r`0zlkI9@y<^0 z{cjmxz$Q~2M#D1tG#M%f*4vc(H9j?UP`Ti&m{{D#hA)JPiRsV6!h*`%x{gF#06u$X zMl5U!Y-C|+DH5!4z0n#O-!0mN+~1wpAGhDF2wg9s3zXDC#_w*%@SlFuYirI?;ude%j>pQ%irj1(0%8g@cDf@@^_7=yns|g;@bqbKU*8oV zMjwoIU;jXvIhW);sJ*>CFsLL(UjJ7?=C-zQ7Z;b~Cr^4VHsDu^O_DCr&7l$GpHmi-YUC zTZ3)0VSD(np-Kd!A1=Uw{5~T@o>c2H3Zi0RV`GNT{J?UD>RvpM8O<#-v(63TXp^v- z@?23q)&9i%KQdFTwy3mpY&zK3*!X6aT)eq!!xLuF`f!-Qb51c_VePFA*a0_yU48K2 z!K5WAkaK-~{rK_Y;sGna7oVw;2hAL^e=3hnQ=J%aNW+L+pv<}R6>T|={co2aaW>ne z!nsYX0?vXUGYu}7dYkF`D=~LR5TEVGo1L8vRMcKdR|Xov84qM|8x_fQi4#%gY-K zbZsOE;r2G_Ry*}W6F^kPEk((~+*u6a=(PD$-f0;Ui0ca(tapKlch#KLNpTbr1OVmZBMV#w}CCta}d&XT9%kq{?`{yven#x8HhQi?O?~h|2t6RnA?yWZ(B% z17Z=p{KX<{cfEOkmqfzh`ueVhhVFsbuQ;*UYgIP^jPdsE+wQaJ4zx?PbuBJ!ZHQOZ zb#;7q*8hCH{}(|%#?%b9k2N%vXDZ5?O|bW>Y&+)!&YfRuUe%*|l}y~4ke<@=H3bC) z3Tc1O?H^H*GEmn_e+3y&MFZSnJIl?$<{fso*2nP~(oQFtPhNyf>W6I|E6nm_63+HM z3jC62cd8hEYrX;x;@g@2LVY}NJh(ThUqFPB1I{X4#^qE+z&EF%DtjHWyy{vWyT^!Q zp~pgHhbNE^i7dTH9HWXy9ztFxx7- zFHHP|FDn4UWJ+O_615YBe8>;t*^&!TVv#3Q*?wZct)$c~fdG`C$r}(!wa~-Igs9?wL3JV*?^ZwkfKdrbMToYn8LDg# zW2!(fql#E%`I-KLAs+Z~Dj=)w-pa`d-6B}3Jp-x{n%iq>ZH=+?8~?(nvJ|lhOvi^h z5(u%&DRs?H23r<=kbJ5+)cvpsB)qw3)tvTRtToNAZF_v2ikG5-78{}`b{G9De0~~l zZzjIU|II^08MS;GL&k{DZy~yDGeO7Ki?%-d?I!k2x3qPf{{=gIdfuLTl zO;Y0aDeTmkp{Gc^4A3kTMXa0X{q^N}Q;>l3cw@3~Zg2v?ETrb;7jA-JV;UP3W_!{< zbZqkZPtsWJ{NnV>b^7x?FQ}!t%)HJJED3BV9m+n{5>3x(@x5iYrXu7Lq%bG&0#Fyy zI=3cYh&TEDX|37Gp;Rwx5Qjqsd`K*~m(0k(rqi;f_W?sSChFjCQHQBlz! zpWK|mA!7l-K`|bdzfgVnLu$^+@y4h(!3&6`Z*J{BO+GCQ)7>4=vEDLl1>cf%=;a1+ zGyvcfm~!A{vC!q`o4}sFyh*j{+FGAa2S~;(us_pRegnACN!9&TRkK=Wu4BS__W;gh z;ZaEH>be1=??)di$<|q9T`s-5~&Z8L7xN zV0YdcQxUf7L`7hWo;@#QabHJq8#1R(pH2t(ePVx)yiL5jK^_Ap&bNxk;O9yzX2F9Y zAxFe|v&)1+4%_!rAva(EOd73_zM)LtM8hfykE}$oN5o$dc2`F(cf%tIsP!v{zq2(9 zpyk}$@P8fuH?x0t{KV1TL95K0=SHM@(iAyoG10tUSF|hxo7&W%fcKK}yq&O-s4T~j z>pMv&fsR&#CZpOp+IdhlC}BHf7z=zyXDi?i+dMTxWYBYiUpLWb(|(*l)4_iXVL?}_ zoeFq}6i9vq^!A%3W4aPAqdaQLsJ)8`M{qF1Z$k7Kcn{&2cjP18d0sMRr8jjQd^~4O zCG_b4<3qD^)ZY#1aeB#jGDHGhiP{b)ZFr0&!z1az&uJNFId6I$Fy1yw{*d(FgfR9h zAXT)Ex{e)3G)r5CaDA@{W_G{p)`5n(J(cJMKSgC_JQO>S`4)uS1}W-W-OL^P+q)Og zU%{($=g)V7WL4{L(i~CXhfaV^a|Sx!WzC`+JKRH)qqO#uI)6sjo-~QlyERNfr%KwA zlaj>m_oP{*<~_cLlAvVKThQ(ZM7}>~Nw%H5gi2M1(qEBsw|DJI1Z!iv3E&gZ)*c_O z1U4fE?#DNg%e?$+m771*&7L2uJvzqg|8ErxAkc(=FU|nvQG=aUOFOM*3aI1DkxMze zqqq}l{z{f%E}{pj2FQpLzZ)UzP5(tJ4NxWFjuPk;j`pWncg|CH%1~8u5_ZoH=@c$a zSlQrcKWcM%>ExsoxW;>QYs~oXHT#}VyZBG4r9rY-l%U+qSv+d~;*stE``p)iPTe)Z zcYMQ-5ignGw;^qZaHkPtC)LhDq9BEIQW2mKk!XkXsGFuTI51h)F?cx@S0xnCAplwQ z@2c3sR4*+wOOuUS8jpJ+f#X1A9YJIP;|=-~lR~`*fgeCLNq8hAnA7wqVn;1bw~cnT zV4IuyIL&GHfC%cKf~*igR;f79q(b(g@QXJFLtqr%r528M)rdQjRpZfx2c@qh_~PqSi6m^9UoB_8)#k*g!hr|| zn|Amj3w-PdA{a33Cn>6^n6Z>|)awlQs~8VF+c9vJC64VP&Go{}HfS)%Q~3+})Nu-E zY*7+VpKu64gz4C$IQCBXi=ru7t|ipZ1mEq;U$g(G66r`f&j_Fbw%x~)QOOX%O`S$D z9k6k8s(_6HG~yG%DYPyq07c|SJVOb9iXI9!na9!o^}i_3x$eKp6HZmo!|+3sO(?3% zg4iMVA=lT29OT6X(Df3+8h`0W%)-aN4yxxcP#^34g!$LhnQ5QW0yhO#LWWEQY^1wC zC_c~>!uR)#|APvp)J^zzz4*t{njcwk@)P6SaGRIs>tv-Ix}bWQa!J1)?O3E9$VPz$ z=6=rTj;rHuPG*zk-Jn#XJ4qO`#AvB)dVw_MHz@``-!zCG?0%BKL4x%oP7R8P;G-3Y z(3^~cO@jcCOJ{YsnpU6AEmmTHM6{5)-}4lt0kFv!vbB*DBU$xBeA^{U%-EaL{^hNQ z!_Nzdq$}GW@_LJ${9P%1{I?=4HN;^fnBfD1USqCW&PMvaJJC69>xz5^S*_cDU!6S#d?|oeFL@)jR(lH>pO<$Ac z<$USWg%~f(VzANzq{QUclTfdCdd!HG2t(&qPWTmU@yjC7QaGbDj%P)@MlC4I1 zsCRRzmR>aDO^M`J?|u&bh~uM*JsuSOy10TCC@BEotU$zK2hH-KHm3P9t$jy1wet)MK^|d&mC5nIM%bvqQJ!1FUL^VV1 zhj5+nut<)RZ{}54g6YpOENVrYDgh^Fu6Lp5WkP#!tbB0-BDQ$JXFE2@&#WlNF2Xz}~hHj4r} z;P}3NhLLCjPYWzZt6O%*ziO@z?-aO@uJoD=Daegy@K^g^krGT#2Q-%{$? z`Qf4O*cLad@ILh$>2l4Fv>lfu;H;`ZKs;Lq6hn|L3eNfptgUFy@VarT=Nv`3&dtdc zv5DrnI9mVMK}L|&ElZr_WUgC~+;lVu<(-aBKHH-FP(-e=HY;EAw)@%=Q*k#F`_w@? zhn?ySSMSOzPEdRM;+^eCT88C72MkQ1tLlZKX>DbMgUq7Ma1@Wy2M`Bp3E?Z46i<{I^v9i(M&@Qcj>n=GtIAsP6OGL?`~%h1SMIhw zE|k5zgx4Ib3ea>ShicFV+&pE~Tfm#wA)#q3ZhtTNBh~d3Tm=>GuCzxxNY} zhIH&yqf9?$hs3m{#%le;BYpMZI>j#{D=TE%(SN#uM9?jr$WiLE_tteh>U)zH&6OA> zRn;iikxUIH4M)^WVTi2wzs0E^!gR3$n#lM<*@ely%M11U>AF8;YiYzC{pB4BS`?`s zb)@STw}}Y2Ezcb{21eGr|HB9(KJ5crDiE@G+!*I z62d3-*_H}mP6e~bReb>k7$RIuOuVK%3y%%K5d{Ua=7%Ee6+`X$C3VYx=E{0P zf|Uu)Z*Hfal&mR_dFNxCC9ZH-S%|G-$?*UQv2lS+6jLIu8fVnOKJ{Z+y>U>w#`nE9 zv33zP-S=~}etFNq(S>yARke8T`TPq_K|#Qg-CudibmRGo7l7?R>I@RmMMe5-27P-E z=l}dBu(Ix~He}~@0H(a}I~LcXuWJSuD7gVMwru}8hh0k#SG>uFlf!LnpVmOTqCaNDw;Ocq)VG;nl+U@`%+R{<)}H&i+^|V z{18|8Z6eDRU>#hF)yT$-qcO}2hpA@bC=6CacLB)7)?fZuR4Tc#rJ?Nc`siKL4>iwf zMzKo>C$E(NCn=plXN0;sv$A656CmUiao-2$5m8AJzFOcZMdChqicXR!Zj5}i)2#0O zgt|~RMo_l%EG`hw_4w2UlPxX9gir-uSC)>iyRJGK! zB-WT`_D|+lYC^GJv*X-sb~jQiH`r+&ip0DtIsc~oZ6t`aot{32^ReWq6JLIB9*2Ro zgHoWJpuLsBRh(5&#N|4l_h3>^wKA2BtPQ4}VAqb{Mb7s)fXx<)1MEc*GJXp!bH~laPB%oVq;7-d zYDQX}v($X8G;oOXMulqOU?RxU8?8W`>IwG(UyUXaIFu^vR9w{rZ;YQt8A%`$*Zh(otMbBlQXVg zN|!jqbEXwox(e%CCsm>C7S;wOZ4#j zmM1==8D>qF4qq7{`z!Q-sQ-SE&*{PZP>rmXwk>adu@0A+aeGn5(Ya!srinzGf}~-a-9O@PFs)KGtWteD^ukRChkFQh=8`&@4{uwaNfQtrO)3-nYeEAqPWS7M zNF*Jfee=l{n1Sclm!z&QE1q48a< zR{iGyl41|)7}0q^LA_&R4Q;e4w!L*@8*829dIqvT*$uep(8g=t8TbG!#;UEPsy@6J zE4WZ3dTB`D&^u9`l;{*riGtFn8C7agNhb{MB#~ZnfkpGk01Y~yAE*}_I961wLUscF zvpZI%R)!et;xt0^TJ81e27$rcNYOlVWWzt$RUbHX7VS^5aC;4w^I`>WOP}T`tG$HJ zDA%T*FfcQ`lB0YbEdDYC4D0w(MD(k}Js%Z;5}l3hp_Gl-%L@0-fL*BOzs$TEo`lPvGrC)!8iAcU~(>J(fLaSZ!Z##7y`fLTUR%8 zXETrelbf%Cb7P-LV24Kfcpf=BI_m~K7o5@>yp^$qzB89OV%k#ktPIm{e&|&_e;if5 zCdZ{-SIGtZa5I*uN$$jtbS12{42fR@_Bu^%Ba-J-qr!ugU$p2omBNP=cF4=s)kYIT z0|JK}^IOleYGA{uS~p);w}kmQI`rdvRfm8-P4NvTn1QjHi-v?iaZJY?kj*(g?k)}lG0XjK`7Al(sw&ocKkE)-mk=AcbJ z`{Z`YaYIy0TlYTwnV` zpKwT^6A!{|FAwm%-cZmIp+ZD4+9BBi42^gKk5mlrj%Y)}RFA3EGu1OuZUJhnAnPlJ z*%4Yv);2*Po!uNAc54M8!`}rU1SXA~;rEXjbB22c-qtF|VwlCNo6`Us1^x~M-Sa-u zXMg-m@(n95JGb#p60|c7f^tMpx_Hn=ua6hLeP?s&Bl~Q*sC~-+jczlc`G6gFJ+$~4 zxQMOeYOjh5UINqueA>`_>m?#j(-S_h*pxLU5Mt5+WNp|d=zH}M=54y_1stX z-Vbybg7ZM=Vy|BK7mYaDs`r#rt^R2J zQJb-P4?2@qf;Y*D{7X;;1_@s-WO!<~q@x=&+#yoa~7&Pi`N_8yOhB zWZ-{t+xJo-$@nb&&Em32ih(h38VW@uB@1uw>vu;KAGpqsO;h7_%0@QnQ}^>U3EOiT z^bBeVKMGk-zsjR&-L|Cs(PWkNzV(kJM7!R@2)R7qz23;tUQ|s+pR)-$U^gMI5YTRe z{2`_fjEe&0L9p3f|Q`j!KcKm96Xlj@47&YHjK8 zRQFQE{FDXQ%KjWvFMN+}zrm=S~vVR$z(bIClX`H}HWUt)&wr z3|z0jrzKrnIj#%gR1099%Z>|SYq4YPPRj8DTTSVX!LxZCzmJ@d=c4T&!FA^HT6V`R zTKDeEn4de}GrfR#`0m2_f_m||ghxAzm;9G+%tNLc&8G#EZubY2^75q`Wwi`kz7*09?>&1yuS-l%C}$- z-Z<4Q4`sM0)dFyuQa*m&%X~%i4#;3SxQ##lXcVN#gFm5c3Afq|vtBR%@O!6~`D z)}2wrOGv&u=(B}!_(w(^hL(4R#3qg)08cQQMxDHQV@|Zmz%c=kn*e^IhPnVw9wQx% z%Kb$_0`&V3)Gg3RasoZ<@Cg)N8t{u_p=rt*pkqQDE%%Z~8gy-&0xA0dfwyyy&7i?BlIgm;k%dhjc#W_gSi{jj_G3bddL3 z1fu<|f^QPT$;H5Pw_EBvPgdv*u9Agi-nTSlx9^~sh1n25x><_$hX7h-f54iMbZma` zlZbWtA(-`^Wb?dbL;0ToF86!SX`;98fexOoWS9Vem>&E6nf3U0FUGciT$gzh(a~2k zGak`F&}7dqzBdtg7kDtQQS}l^A01}pb0Y%)U=0t@rlO%!{%F?G?PKl?H_SDKnRCZM z*EfzwzswC{12S1XnB}+kF=wa&tF-wkHIFJeci&%Q#mXuv%(U0`jCM=lufzVs-8SnF zDFpqgpB2468rz=_D1pC{ntJ^~s>++_yBP9NfUHy#AJ8q+|6_m(%SO^3_Uh5aC3dh5 zBV6MP2i)+{WYz96c4bX<9YtYe`7f-L&{Bo)PXoiW+2X_pV(9vB$jM1J`UR*{2eCKwtFcnG_YJ`#Nl6QmsSFs2?zs9&97S(m;CS9D`y|M z!MqwURggzD;D;j5H#c{Z$H;3!z%%=ARvTD&qW$%F%@g0{uzz#mamMv^y^Xpfv-rT) zNL?hepZtQg%z4gguq!Hx3gL413wB?fQ;ow~wZ~<{wFW(D-e?3Qoj7sJaLC*=q0KAA zK*jzEebVt6gQVQlce#lLDxk^RB3J^+MHjXsa5E=sK4#-N;6z~VMfy~DQ#v&A1N|5y z_{nTB;GqD*6O7hJAs%2;{;8qK%Qd4qsgLxR<3{*og(C_R}9j zBUg>g8FkA#ODfAA&kp3wk2*foQIV}9)`kskt<}f&?rtkOgj)Skgbs&g1Y=U%71F}P^aduMZ%pKJ~3z6)>kk+-c)bRH<^VN^s=M1>1^}<|g1*8b1 zPrcTjY^ULeVwh+FdcEDR8aFX+sp&BGrcT=nsFYxLHprd4+ZsUyd2r;am$|U6<>;uw z1IPJ${jmd!AsKfS9kuIfNDgjEIV-E}q7j-NS3~1w?uD2c(9C?HPvV>@>~3n|oH4p% zaYciSr|pVaJui0QRe^YudJwNw6a!LWS!J08Znr#ukU3Oit(R5OL zajA2=_5KC=fQWbbCGsxq9DtfYrXP#CWpwBAdsa`5M&8k#ng)GOl2In)E3^0h#qQ_K zMd!3rH18w}<~CWK?cC_{ZmW77yw`Y7Sv8$}u}--;#^h$nbhej}*MdQ^d~4U$g%Ky) z*_&y~ikrDgXz5-{hkb(F1Gq8!WmcBuGE4BT^x)OtL2@;k1t6W{;|z&Y?*)TVEC%Yx*A0kDJ# zmVy4ru!U%ua-^a=5v@EVJi-h}t zEYo#qrVQQ1DLY6?39;~eCw+^|Q5L_C(NnQ@rwN{77WchaYLy)c!zkBz1+35g{y9*K z-^4AmQMLxzcYRp+>0+HFz`jybn*@f!-rlc?^QRkw{Cmu6)7MAMAw?HOZAOM3zKtuh z-5P>}ELh!TCPMjsLs@>Jwek-4MDwa+&T#!>KOR%A)<|9C5~LDm|J+su$Q#>7UFAr4$89osq}W2tQF z&mSWn0d-gPz&=FMgAfy#Q{qOOP&jat%Pf6krD*E6hcsYMuL9#%O|N@&dT;OYd~J<* zh%+lGLn>X~=sLIW6!2G!vSOy4vZUY)z?;cCIIf^h*VIuYW&`kkZA4Mgk@U3M@A`;hf)7u2e64qgrb7YPl8rUx>wohR5TP_}8!hU$ zJ+Ja=D68n3RlU?{+qrr&D-15R?=97~l`HmsBT33vzP5I97qH6Mw%_dq8!^c6_|IrX@^nr68_ znI*FCPw|xzvv*eVjDx3p3r!mup26*(G;btHfVj61u43o=Gv&H#PFq4IXQ>^r_I^|f zr-8Y_&8wlW_{DC$%+_CQE@9MN@CjH?@t!wZvExlipH4j4&Bj;dBD(THS9|} z*_;xI{&$_iQfoIk!$YV~A_*vjxtC&UmP$^)(0w;r3?R9b^<93?Zi+PQR@MNa>+za= z(vU*0#3arYfxY=ddH@L23Y~$~51S(O^UqizJqoocvRN{*U}tanKgFLN9yPkHus7e9 z7+#Q{Si4bBsO1!7B6rkpcwpej`5yLWckFw0^L@C@zqyBm*lU@m?$#5h@Du=Jlp0zi zfWNkqFNQ-C+gusso?YWWuMmx{dR9s2mP$(%x&1WudY zq$ADC)gGY6MudmOAlZ=r3)6t0{5tPV_Jo+#H_U9s@2L~($7dOP6+;C%d%3%x3$Y8U zhA8w%ojygK|Bl_%1sUQ4Dj&f4jk}v(3N2pTc)7zQZ`c0c*IZpFJm7-IubOzytCtL6 zhtPjA46Qt{=XlM`FmxDaAyu)Zgy{s_DF;5IQJ&CqLI1vi30nhL+(&C(9U;~h0I!ie zhAC?Uay~2q#Wy@HbG9PD#JP8Fqo{!Ixl1W^~R}O|9@L?{okLurS?FOo^T9AbLA-=SgNC1ePqTb5 zBFOZ=g(H?WY25c*=ga9;KpO>Hu+r{D>L=J&f9p{DY|gk4>08O7CUhn2jt10;2(rEh zmEKqCzgkea>d?XX$h!`+wcH1D+)7oJi)C?R#Bn0HnVZ=uuGWg+NX|_>!SucDrzrJ1 zuMY0Y_$hq)t2>vwQ)4jmcf24toq5_0DFuEWIytdxdmP+@=OU5TB`ki}d&wzupd}E= zNjb^?X!I#(KKS0>z9OEZ^eB!=ZyOGV1#mR%|8-`I^j{ZX>g4ron zTYrW?BM&a>KO1>ogg9^2so#Bi@XhF#>bL(6@qhM&y46#O*+vGQw`$PS;SOGwnqpCO zr@bscAL**a@QkYXId6|u?Rs_m>koO0(a>OIrOcqlg9*?-;RU)0fu(p_cEo@E*ERp~ zg-YU2zJD~9|EH2v{fV;RbU*Zg_>a-+ocG5n|M`cXa}dvE{6PyVwXx}M+jc?{IL?1c z93BadY&LVWgXS4c(1Y=((&YhkDwd-?k+A*JDmIr_tzK2x*8@8Bns-zvii7uN+lEfx49h_xA~D^^z^7qByGlUFC# z)>dm!#)K7PltYmGp6O(ocLSR#-H(D?HwN5GQET?*melEJT1){+9XkWx4h&AQj=nm| zN%Mu^N&lX^=mU|xk*LogR6vw(jw6vl4;1eQ-2~KQpqWVz<)jYg3vHEp9jLnexV`+UI%ZxrGUIMwbqNQ!&V;;@1 zW2}UZ_O+kVgzl2?)BQ82BTUGiJK$WeaR1CtRNyP{9|XeXQDPguN=t^+Gm^8g>64Re zlRLX|Djz(@Hzd#lFoe!lWm!GA|{oQ&Ve^Uy>tfAsD*0L?ED!uC_VJjPM*@Nz#&{FMrND96=` z9;rvpJfcR?YYe^ozN*8qabtd!@=>tEMIUMl{yBm~CuZ^k!J5~3o6c>!g@_Ny?ed^X z*Jd>Op8w~ws9Y=tM}Egmoh+mV9OK+Z-L+v_`stlb4q=yf-51!zk>+uVL({v8t!x=I z(G0hdm7r%g`?qz79`%f98y*Tr(uN*tmPZe1W6yfTRorNEyNXm2qv;^RKwvAD|*R9;!p737+Sdj@mdjZpxzU2`l!fiXiz` zXgw>%7P*{KzAk}=_Rw3k)lEmJ(&3+QL`B})SXd2LC3P&PC(qZi!;#u;sntXbEpHu> zy_raUOjd4i3?gkuI0CCbAvj$&QJ=~y4QBQh7{zuQQQgjSP;#m3zi3(TWZFxm$^xiA zopvUvRVOrIPOQ!oz)Tll^i7zJuyyKOsuZTH4#tM$mb4$JL@Us>wM%^)!-4_cI*CV&Tl?`68&C$4p|6W80bI2r*dEu z1nE8IrE6RJPvh21_fI9LikXM|2!2#|>mUub%(sx7tgYcKM-Jjkf@C-RpC^6}5?g>; m|Idb;|JVGR7ScYQOPJdFxrgqI;D6shv^Dgum8;o2`o92quRPBH literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_14100.png b/Notebooks/1_N_horizon 3/sim_14100.png new file mode 100644 index 0000000000000000000000000000000000000000..04056302cf280f3cd3edab145627f7448c7f9c24 GIT binary patch literal 18040 zcmd_SXIPWV*Ebrsy@0w^*wPgcDS{eWKmp;v-DA!b+50XO{7H;`8) zLOg>|NPj=5qO#%{1qm-SIsm1iq~!ZQUQqN8x~|mMz5fLmWOsm(BMJi9dx-aM3nUHq z7X+d|2ETa0<|b}>DD;+F@X*HG5<{qu>`T+idctpv+;V}ib&I~gOU&baN8|$})%~{1 z1dL?=U9iuv^iH;&=dQ_i_*;RNNy6cYZ8e6pvNmrhagNIkG^fe?((-&U#WG=9;&BUA z)P@GefF5#qnIA>n4G4iiBtGdf6*pUuH*?3o{%+kie6wY<^+#OH*3HH?u`N3{8@tZ^ z!N1u!aC4i;W<%oVF2E)5qx1D(z-A-njpWzO2IT+i1H~v_MwH8%&?u8u6(pn3<=FdJ zUuE(_muu|%Gvw`v5MP<$=vZtiXTy{Pql9gofnG->Bt@#F^;toEPLtg$gW61?&K`)> zwi^vtJ~J2sv8V+dm{tl+#|E<(wm=R@@py#Z!fE3FP02QM>^B=N?p1PX@@WkvW2OHT#OhT=9xm+Z=_*My9l36WcPW5 z0nXO!dq31y9m3y*K~ZX_ZqK2jFb`hpRvJruh%$6PE|eawyi zyl*dJF$Qb9+{n$u2Gw;?#FWXRh>A8!gD>LST_QIDJDq^8#b*4dJom*HaRi}Cr#xO; zh?YnGP1s;m>MlRVnnB5>JGIDLhvYrTT0xq~b^LUlmfZ8UnLqqo5xgF|Tt zQne%t8=k#BVq9ZJvv;aq+|3xwl%Dn*qwR->zlSY7M-km<(-?CV@|pFyVrlLhSY;2a z(u}rW%C*Z5wgob=nP(tDet(2*{ zyVOW$EAcRG2kp+o&yB(ztXycHG3JTr+XNry>IxfL2F8>Y$_;v!tn4tnzdwlTT9|Um za>kFb;C7rD2-nAqi)EQ^$S`H$A2B=N;V+&=xScBOP;&Q&)8R!ZYNRVo7p}JAS=UJk zl5R_6M{K~fPcZWls)}P#_P<7k3~75Bam|yOn5Yv-hNYXDxf|;M9E0-9Bvh_(ABrr| ztuwbkV#FQ-)r(=Tln_X(jgS1}1to6%crhcq!N3)VQnjR!nFMWhMhkajP$@}ppR#N! znuJmu$3(+M)jJr2 zig4{D!4D#FsW?=02vu78h)9;{8MvM_-_OjAW!0IZiGnw9Q#ccKMhc8kG@!l|iBZ*H zM2%@Pg5c2@c0v+reFhgn-B|clLkNA|_cbT-5;XldQ>0v!B4Umw6y064g}3;R-b^N( zYx)L(u&)he&B{X{7gTL%iHH=_zSQ_`HP2cF&w66=bY0T4FBO*hx*qPf_h}X;8xulU z+b4o4lO7xF4#qkb5?0587d|buj|>p=y`3jRMG8&b6X=+$udvg}bm`IfIXNk=og3?! z_KK@ll#G({aG+%`2B;s>l22)nC@RFP(`vGmY2geA1rX86m|jR5L&yc+)FeoDz3@j*7>Zqux~LqlE4AIS*S zOSIJe8g3_$7h4uJ;EsrpS6F@NNIffrvzoRQmNI1p75SY*wx83_a#ArBpM5%C***-d zI%}3(_KD&>*3;QWt>!Bo%*l*)EhqF~@X2&D{rSly$?-NFR3nOLFszd&o=lhX$S2Ge zdLCGa2-{jVlOSm168L;xTbh*K(T5rT#hMMmXP7-9xUMgIQmYN3xx(wql`TG^){NOi z?eWhK$GAsll9$X0v8nSY_=W||2jiBy#8_B(pL7Tkv>T$cbQwW6s_BI-QPHW= z1(Yc|rb2_!kTCNa0*T4d+xuVcc20Ar$$Sy}0tQ!#6`Pis2<2k)JZtmB5~ zw_g~=nHZ&AL+E4h%H+A}`d$hGo+b^iuCC6HI||K1?b(b&WU4${Q*6~4#xz&{vi(~O z)y8qf%H-`BMT`vs!OcKvQc4=@dPPfJp@uXOc-mRd$IdlqWNNY?Zz6LkM1|~-r_O4p zes201@}G@k4=4)Gv}H`M(MmC)nA=56VW*ZIKEQi7#$0D_>`ZC&!gRNddiC+t$MIm#F`hUb^Rj;~Q^VwT>)`X??^}p64aCe}*}|OReMRO;XLy-?5k1 zL(SPb>(QoXT^}ADQbE$BPC1nsVbIg%bnl)bThV#Z_Ye52_4PkqXHlVtfxExY+ zsjz?DtB(!t+)4X1WhCZ=SsLN#(|u;oPhUtpVMZ&h91ibZn%%QB96?%~9m$-z`gL2= zUz-75z&53NHfDXXvJtsFKh{E_*y!uu7ZMhhhBvN_DbV9!``;6Eid%sTV#$l%)Sbueum{=D&UN~ABmW)U-=+&J`0D#g^WPO;^hDQ);x^A z!!x%KNWeDDkf}?V=OdG_SXuaFSAN`%eSb;7(^P%aQWRa~;4Q7KU8gDsv%4&`T^X6t z4FXDTCCIKk@G}G56t$fomPd@nw|-(ASi#iMogCrX-Cx&tG@5i;e2;ZNWo7=9 zd*<&oTo)ET|5=7p>L1A}XjsU4C`Nnj*;boJF~DORZ_Mc#-Gy#z3nX`i<5YL^74Jo$ z=FDmaK2fTEc|5%a{3{O{GcI)`8}N9{SzBml;Ui{{oxX^%mgJSykqu(1TR41UwQ-|( zdZ1E#vB8HJ45GU+lZi8*K>PWhQj`a?E&pCTV$r zAwCD|Ep^V%&x~@?{`GdhvQMvq*3UOvohoi%XQ~-uLjmvk3^|OLuP;h@mNe!~_2@=@ zmhC{XCL5o>?_`JXtT=u0RbAb=Q_dBpdj%D{fmjDGkEODRwKLv+Djiail6t&NkV3w@ zx0|OO%0fN&b{{GW9Bs;xYv(SFkYqA%Sz*dNTLntp8{L3n`vp>=?dNg;Cy+pK zjpURR@6K#}o}3#S8%x1c-J_}j(V-t^Z%r2FvjGp8WnJcpQa!!B-hi1xXRrMY%m;Dz zp%X?JAd2}|==Bx~e^`ZyV)ezozP=VJwU^E8D!(~*Rcm8y!FM=xq9aR#RYFc9MYB5% zRjyM-K8^-Xe|e=>Y*$JHMkKCiMzNl4b^rYpFvH|WLHF+5RJZ)!@BZP1{5x>@6jr?M^?&E0gt9DZ~$$@D}z3F#Y7 z+rC#|f|;M$Yob(7z~MxI)IR3?aj*2zftBqo>fa2HN0HsOD583WZ9qRJ-xz1rT&YlN1HZz`$3;>hUzye19`8{%$+6=K5Kz zjiqG*kg`C6q2YgQXF$IEzF6=S6_b>iNlHsg8^3*N zb#c15r`Xb`W2wH_{F1!O*0w8b+shR57-Ls68r5g)bI57 zJ4Mc*GOay5bB`zdZGL|F$M|jSxLz0o*EKlgvG!{&?OfRWF@_7eQ$I~BqT+-(uAno= zuyW$v8K5j?ICV>&ts1OGai;yFodsP2ZeummF2MRY)rXf4&&7rs&DV^t&4e~utBd$8Eo1~X9j*EG{YiP)0wQuDeWW{P z%U0#fZ(>4*mVlu5AoDZwfb#HcI?tRsom+|+UJ&EVj<_!{+Uc&LL%B=!vynpQZoX`a z6DRfe_uI8XLuXuEqq&?F;G{~yR>eiJbGC^LCBYap*B!VQd8XL!X$E(BC=Sh+Gub1g z8FHiM$?f-5+{J-puqzwOnH%s>%UCC$*;MQ)6x9rFoe+@pTz@-H>LJ_2Tx~WRqTd$> z{4GKccHHf}^M4x^c_I4l+e@Caof~at(M*(j*14;3%WiZR)HAW@wLmznobFa^TWnVz zHgjkDUiSAVN~-=qtehK{+x%mfYtwHGR#}cV$N9gS1(VaYmIhHaOU#0KNb?iNO{!jq zz9y5)uYTMErya3($?79tXFYLWySgxU@i;Kbw}9^lk{0%56v)^mH#a=>{OS!jEf}z| zd!*Cx``oYHwqooXWnXy80Zd9jT3Lo@N;uwufZQyW6AJQQ-J$t~Pu##~e0x*!9-jM>!=W{|0&)vWw?J;Izhd zj*=PvoMS#dya++X6$0h5Pj4e)k0O+q?UxoE%FWUg=)X2u|UN-~Ondcl&EY z{THA;D&(4fQY~> z4Tj3&4Fpuydttl{Q)j23HiS;(t^e6yXR@pH_Xd>w#;wrW*7?S%t|1aXo@DC2#yOIvT zt$}Y=JYqW=lrcIDQ00lo(7Chy0fH>tu4>(hXWVO zeiavK`Ypg=>yCXLAQa-S-e^^7ED5b=xwb7$_7u~vh?9znjFXd-c@dWs+}=I195^G| z_^9|w$3rPNaNISjeuG~owahh`gmFJLjM@&vh?z*>gDV}0f^Ii2@Z!*P=Vx`m_=SIe zBm;(U3(IYoPbMj6uHN2%O9yzRd|c4umX;R&)w(wc2R2d43H;+H^#L9W2;`>&{;TSQ z*tZFCYHF2XL$LgvVmEcbxL2N_)`84_qVPvVGX@W~!-TL{ET-=haheP(>%ap>9 zsV`X;(JNiN;IpW%uFkF<9@&(4)_8bfYxCVr=v3#YNM5c!InPgaWG#SO)}G`As65jSP6}kbmR%xGf0Mn`b=dFRN`auaY36WH zZK4YZbo;9UbAWYMVBkQE!e(f1IEt@*-O0(^STh8Q(otZUGQ8 zz|$~Zq&*Ze;ESnCk>|z5=Q)KIOb`+_fH^eEp6bZu9KE!36>(RZYha}fhr>}g)DpH& z3Qm^xgg-W^c?+xj6|lrRD*6bu9R&hzRLOIlQ(s<9Yc9{!)^E|be*biNAy?XjkaR{O z=0s_|JEDRDQ%NF3qdjm9%}D7@Z}P(9KFt+^=7+W>vSr|zp;TLw8aJ9C4s};L@&fIyuZvnMB_*wo z=2{yP?0OsE^D!Zp_gz5m7%rZ<9g`z`mRwL5;6X&q?2caQ!KC$yC!!5}=o*Z1bw(ce zO-f2aM_t+M1@wS6GgP~L<*;ZAEPtprR37{c>AwxkeqyZVfjB`5Zt`Xf?ziUmO-17g z+c5|urx8vrkH*-c7Z>i91+(lrX@7~Hl9xBRyMxa-^h^K_tUePZmj z8`ZQ^j$!byWi(c z$p6X-1+Y{QF#JEwm2|c}@4F05_eT`BP4Pi%VPjtylpCdu8#Cw>kSYRPj6Dnw-O};x zJEq|W&e;#Kj7h=vor6b8yB_YaU}vdFjoUM4tdS=sA`z5uHZR#~8ph=oA5L9~q&lQhNWlNN(-Claqdye2xe9 zhA~{qvHDU+Of*brHt@K#zFiEQ=0uGn1_7tVAJeO;>fRhwL>M4PdI*7JK|e|`RqNaA zupDzY!%;z2wy^!}f0swstj#QwIzNcjo?@|tozkTtRPO1qj!fycpY2DbW%aD|Qw9G6 z+XyDlFht}m2jF7ZzWWdtl&B^clOS0A;5f%1sK6M4K*Jk5? zJIR_rP;R`$wyBYO5Q`76L$^BSHgi~!G+TpBhG;lR4QWmPO2UumPVC+nUCdAhh2qdE*q@391NEvs44T6%dfHVp~ zPuERos*J&6=BXo_Uy8;7K}*7p!B-Lq?X9ee`CzzU+35ce9gSD_HeW-F{5R1##*~7; zmj-C2urwd0Y>=`ddaD%W7mMkT;#b`tDSg73W=mHm7(`zI1E(JHB&MGk2*U zIPJVRLmzFen9LGXJ*foE4t+M6bJSzSyMN+O&gWLsP@ZvzK#*6d)#%hMqMs-`Oje!| zqA(Z?@H;b5@~laCBf$Xf4__gmi1WYQF%P+wN&Pi3?f;Z@UoDiS?bE`hOa>*>l|PxL zDOVXmo0Ghoo;L^$XuAW=9)W`bTs@;oh+rBvAXkHnr}ZUtGml{l25 zA7Ug?iZOWVVJ-cUPyoUBM26jTK`*qpm6NIB86NDDEQQp$l7e`8s)uqWk`tR4E-x=+ zj)L=+x{Ys(;mZyH9|wZ;NZEUL(iw6OW`_m?Zw#CEgp0!smo=PDUK7%Od1-W~z~uOX zVNqS4+uq(O8Wa%!VcvITs5L$L2p=;;Cc@P*FHY8SPm>s`*4Pr(X0#K zbaKwIdX#cWDDlA})e;$X!qu6_bcvXWY?>L?5l^@-J;cOC9QWLyOPeLIkI`Gi8?bE{ zWfRPUeMf^<09;d3@FAlWmao?8!x>!J<6BVBlQ*9`-`$b@nkZO)+np zGW*yEi*vg1S)l#$q;tY)as_WTt?jNhckcfVGzg9Gl}gmiL)leQ3Oa*;rB-tdYb*{l zeN}gRb$Cm_gTIq{|r^Tsjh(|pk8Nb1T=*tCaWV zED|I8zwQ+GpY6|QjFfntSu~77Tm(b~Tfy<>iky^$+%O@U{KE^IBfS9?9t8LmbDMlV z*ylh`rT|v^a?vB$JcFQZl$7V+|gC{M8=@;L_#`T z4ET^3Jb3x;{Y-}#u_g*nXSP0h9o+dV3RBnNalKqT{06C)HBeL*5P2W((9qUspiwAg z0SNaVgpi)JR^7heBFW~_9dPGs{vpU&C`XB6xAE?V>uI9zMH*X6qYE*|v5o=5qxzaqIp%Qg+1!(khs8 z#IDp{)qc`nK2%v;9B6DOcV4B)zrkRswX2|ES)=eC(uXILXc2%iHkVqs<>ft7>?!Nq zsT-%YDpdc*BOi($a{Pzg#Z4yKfHV#{<^+4H zI62$pd<0Bsm-UD+vO-4X@pLWT4JI@d&Ci^UO!?s{clb3iN{YuJnO$Ig$W$OrYdZcX zQfzF4&(xO}+c_^z(NnZm%lq5~e81$#*x&H+;~axy6FP2pNJ>MF+TcpJ==XsQ`t%gC z4U95D1S`b7+(XVuJ4bLxe0W$qsN@*FW3gpryu+iFXDkPt-RrKzc?*9(MQv|=>UG(& zV#i@mqz?EHxV}0td>xp5k7yo2TR@IqBL1x86~5WT;%|{b`(fia>#_Ccs?&YIMzPB3 zUz-oCc>*)#)@N1N!hIz`zo(ZMwcYWQZag4q(mp;n>i#ggx*i3c*ujhPahuH7MC5%R z+;@b5@S=UqwrlUBAE3t;Y4{E~=T9edKv!wuCGYDTerXKxqe|z?LS=0rX=l^*;<_OO zWCqh8NJ0z|*pwHBEp1Pg_uuSKyGSbpE>g32($;P|a;C)3%gvpfW3ab(hPK}H;TT;2 zVc0|Bi7UCABmwmt+ONBZ+%5mGR{~I^V+ab-V(b9f>-T|Qcs?`^qr!TWKiJyYk}`UB zzKef7xnsIyv6nto&`a!pAh0#tc&F1{w$H&^*DAbrTcu@w?5^SsqY3KK-kdoLJ#tOo zHvUM@r-stXZ3%>%#|vG{`FtyOIM(MlEznac`-P;m<+EwGlzw@wD8RgG%OtE}N7sTu zHYf)FEc)P99hoQh^qRYc2z7ZEYQ5_uc%LR})3#w|cZEhj>k-@ApB4}#tRold-{iW zbv14zzfv2=;QC3AhdYjKcRa{8M>p z$Wa~@oo0MGrRy#9UCsi@_nKUEL9=MGte%!`5c;`EtB4p^S*7^rS&lr#oB!Mn!nR|% z%UHRVM@1(!?_RJ1yWHUk1o_2IlWC!@-lS@bjkS2!VoSI$siaFax^G75iRx4*kQ?ct zEV`$GF0Z4yjNbje&aJE{h!t*hTAo6^6iBQjos=mmIr)~i)>z;`AYcEUCua){DHU~c zo%Ub&{)o`xEmY>~pCRWhY*VeB*HU9Ji;C{LZYnId$V}!Y7Y&MAdwlO8o-uo!oi+Y4 zr%=TxkSKWX<}vu>%I$@-lG`M~z* zV_I|YCxzUiGq9C$h%7;Hom5g&l-Vk;c>@b~-q%6`i00p#j* z90YX{2vrA~zZ54iDM`5*7Mh9WVAy{Xu3%J+YbdZvHP^9i9b_yv=A74E0GkF?Z2Qg)=9x#c0wh zvLggYMsIRYK@pf^Me?5HxA^cegqMz`-NIAoR-kO!o(For<4zs}t16sna8A>(O*_wh z)9@P+Bi)jY9MiqbTP(F&6ch4`rGlt%qUpd>jnc+57he*#0~PJKd-2^dU@{8S)kX_Q zW>Oj6lO9DxA5DqE0uCZG%p;;4?_`_TbhGu0!C6T+HT*gV{VqM9ekkrHL2Ep1QjI<6 zY4EP)@q?tJyPJi4S|t7gavkT8l5$eCuwubroNz ztd9hgCfn0h{bzklMdl-yu?L?`rjmF8LJesNmggQ->s*h{Esa=Wb>=$rthU41!kh18 z@$5+%ypbFp4VK4!MQBv|#*a%kl9Lzeb(G=shUFNe7vc5EnMcf)Jhtfkw6QT_WGa2U zN^4UyAzwFvA`S$7ea;ieaqi001$c1=O4}3$>c8wwYFaneOoSfqgiIVqWq$R0)yJ3qkDda#S>Z*h|Tp?A4mKHpb$qPu&F#ZePySxZiGKx6(i7hPe*& zHNo-)NBTjUzRI$_L@`k+85qz%=WAF%%=LBMBK6X;@2S5r^}Ng_D17OEl)D{*R-?j_ zZPmPd9iM@~sy7X+s+MfPYV}Fq>BfiUoen{0M#sL7K#qTD$mqp*y6d@ED2x<6bnhpC zgI|xlnx1%uhC`;h&xEC!h8V)J1i3=%LBNn>a$MRJO1p$&;M zG!X%CTs#o)!VCn#G1Q8ztC{QMJQuKoUEld4fHWT&yQmV0E<`+)?Wr|LE;wBqIqEEx zXx>g7$lcs(@agr1J-nM6+@tvbIUk>`IIW5?(x|T~w`wO2Om0^Pk{S*u$Osxv^lc?4C z6TbcR?$XQHn(vfjE5DBFfiqw70~uI1KJuAU)$m?Tz@83b+5@}x*0x=%(4W@|LjCdp zHOizV>Vj_kyQzXd*L4ca?lw1B?MU=ZgXf1KGA>%Z`gPkEo5Zv@I;dMx@s(-WDqg(JhW9 z99mVo6Z~xV^f3L!<9>r_qHo7czk%)4!ue3Ts@GCO)7ECdnS^ue(WLu&c}Aap5XR>& z#oB%%0JFU3wIp!LMW;23?vza24vwB%6j#qjrhTIr{e9cvHXhL~rZiYUOc78@dBATL z`l$bYjHJUZ^^OxDh=23wDr=aV*2ohLS^5+IX}|R?T9SX#qBAsf=r}D?fb8T|CuK-t z(I5&c%&xFJQqBkB1C{ppuCi3O(#mrwMRk&bA}bAd78V`oi1Kgv6waw(X5`%O*_b*~Q386*ELt~gIjTdDFEu4_+Qc@93N^E{qC zTC6<#XwxCS&c5P#{pL5r5akln4XCD&U5LRKZJF+thP>%Z3*mN?u!NWIu2_FD&5A#) zYOQ{)Om|EFdzk;8FMZ_PhvF&38o4294Y_S1Z~p{&30^Q~;D@*<_>`3j>IYA!>E5NS zd5CY#J%(48+Eo}QZ6j!+9NnvuN0hM@w5eS-$ng}Im#zaJN|KCvF2ylAU#M+Q;6Rs{x#_s(Ouz|vr(Ofe?+L1%CJ7iOk!6aqPmAt zHR0xZ}Clh3LU`kvPurtgBg{^Jn_#r?!`%C!moW67+PhA z1FsH_RmY`q)}F38lODkBAM*Y?j5B<|LhO}%7w|nRbIlfA&!e`xvbRkHER4g|MifAe zi_9AO<%HNo_8rwuUM@{G(MbWCoub0t;S2HhdS{3w{awuVlfc;2Be{U1dFynDaiRF&di)Sb;& z%b6djV_NtE7r_I$z(%%6*3;?md^{+n+PL=J5=C7AKl4pjrAJ z0HZ)YymzqHTZsM9(BA9Y${yEqS&g9baJL-A-2eIAkp5bG4VHrcc+$rwx!>M*xn_G9 zyg8__O~mUEFS+*SQQ`TNj`_BT@`-7!@a5^Da8Hw5p;0&%?y-7gf^x7PJ^pi819emB zNa#DAI{)dS9v&Z}8!hu_Yo?LkhH}tM=H0{0uSb0`@O;?bkzTD0x8kV#j$j{Te82&i zpUaPadDA7lJ%VsOGZ`Odps_Rvm{9dE`v*C&kMruD+mKbEzHr?e4{(|*iVO2_dCE*B zK_4#7JKfwjn|r?b3=tk?RzDLFUcX*-?aAxo$6P~);VbOw_sNN!)uVS5M(XS{SGn?X z#YDQjqEM;N2uwHYfUBLkQRXU+Jt}Up|NP0wNo%HJTc9L>6aV1nfg1oXc@EZEI_OlG zIx<|UFTCi*Y^pDMA}s}%G+E#;`}tRAu`78U|Ecb>PU)4mx%nae5@lK~L!l<15T+|%{EJ$2L)o=QY73t`T{I&qK!K`T z@iPXVRd+V@*uT6Pq~@W+@j`&5h23r*h$uskicR~l|A;#%UEM}5!@=q*SB@acs}zF~ zNlWGv`AY8U2EaSyjlpoJm7(mmmBz+WE6Wg@r6@FpdcM%YsU_$%17~-mup1a=JB0+B zbKlxtAF`0DZ|7;EwZgZx_HN$|+&ycl8!e0ZPSn^3$r*u{wd92~ylR=aOY*CAvY~P6 zVxZ`l=9voDUdvMRYnmUUMQ>EH(?^U1T_p7RyEO8d{f6SnxWr+upR7pA`rLlz+Ja`q zovwTTWmzFHGqQN2$!F6&ZKuwq-1w3s6y4u{r5?o-D4`xDca)$nZJ>4$Ir;KxB&Xg( zWqB7g2b~PcMT1AhQ+z;N6Y1AvG^9NGgI|0jr+#t9r#q2!qf64H0>o`*3+wUlgaD(2 z_%IV6))i~@!&b^S_N+F4hv(NcZS4|JGqWAMc@G&pKofa-@qJ5+*U>xImM?tzRo=?R zZmgE*e%5Q0Ji137pOAIaAn*H8$Kh~g>qk#bKSIwQE+pB1&f{RP?>^s~`Ye+R>MfqL z7B1@jOJ#K0*``xD7X|D~Rs7=`gN4iKF2L%IVWY1Wy-~+nKWBMBZPm?t zkrF2-J$4Uq+ErFKPlQzp)SUq~SqNa$#%l#q+Sbxx*vZ7%Y5A5|u?peO4<1K`qnQF) z4L6EIdX#zJr{d2WrJ5Zrxq=kBR&I^{p&)07^40mbJ&JjO1=)jWhdM`KRe9MwkVrV0 zqRzgKH~Q4AsgwiTCOdaG4g`gGS9>Bb969lDXj2m4i=J{M`t$A)*PWtqKo9t#j7?;C zTWhTavp6*W>3aa3fEXMELvkeKC4Jur zpSZL9xvJosN6&tj5mkC3ejm~wm@BqvPgPT4w)AFAPl3abjDN0{{ZLy*7)%WDXw^u9e%XK%!H0{Q9YfN14EVrLk1jG~6u$Pi{G zfNF+epNjsSJ@&i%yBI|V+5Wax`p7TVeN06tGHbKn#I*#pAjI|i?_!-#d&{Zj{(-;0 zaVYybag>r;rv#pc$AOi#Z4WAhS8z`0%O;SY+XwZ4(GPZYLY zFvviGA|-3^3rd)32*2~oB1(V6;;+;a7S=dNF}?Y(6n>Me-t-k@@2B=-^5Bym2!QvT zU_vnu$cKA+}lOvFafF(0rD5XY*Od{fW(-DS#3Ge|~$Hx7>f{yLnXr zVrR)g&rjU-KyecJklbVyk53y#c=tqP{)apRY3|z08_cdff znOBB_nt{P1`1>R43AH#B-#To})$R1=*BS@67`C4_rd1;-aa{tLMmUeCu%-E8#4zl5 z?cf_ZgkonFezUvIrQfJsTzTNcAy=p0MAjVmr-=Fg*G5=TPJraM9gW3kI1Hrrw>=(neVw){6$Uj|;G@HI|?ku>a{;x}P z6UvAbPsEe9DO+g7d&-Ovthbdij_nKIAXg=`WUzfE>*exoQ}an4@7r!9L~|t(DV+vK ziHq%y{s?>VY0ibj84WdZ7N{fyRZ2@$GhW2~+2+Ir;kGF=C<@WbIPLjWOFN*Xi-lXN zd(XN>#Fna%>1|WTpie3+ABb`ACQMT3Fo&PCu#>w=R3Wfz2M4FwM$8bQI& zlAo+KZXH%8J6kWhPtx^hlz!a7v6~}Z_(goqUKqo{LBliQ8fJctQvhnZsPmPxDd^(H zsA9rwc@Xy`T$0P#f(bE_o39j4W?M!_RuEXu)eWhHN^bkr==!R9`p!VumdSH^R(Xwh z8DtJ&OZV~_`Z5ypV43qJ|Jf`nkDfF^n;VBGnep{`HNRiq7I)H`Jn5 z*JD6Y=EO~>){O7*`FGulr)x-=2$~v_+Tx5Mq~ETY&8KYRSzmE24M7)%((eU zCu(&MwYuD}Y8^0IYzd#k0%(&p*6|C)?$c^!8@RE1eB+WkV~`&{uWb?+kO}=EP4S0M zo+_ll1ef;vCo6Yo`#;8VX(QT~Xemhp${F-=&d`N4mJ31^4AD}&I=j5_YsI|jygZ&VVm@;eHU-13ER>Rk7@#8#t!<=XP z=G@vFI}<{-iA>l~tM8%wFm)sQGOi#-;}*pbz3w!B=|~zZHHn@y7f+gR^e;rs^yirj zsFT`QwRe^2)i{(h4s}R6LxJfHWkpnhhvr2K?<2+kAqF+MmXE=ssHfPCq~=D3RX-~u zwEiw@5Viyl8#-xcQZqP0A06Q+)59!owZ|>>#ja?LX&KrB;43wNYTLqU4NYh)rfi5? zc5TGBIM-4sd!)FoG&LMbX|+~f>Il~H!-$v^GD1ET@JijYmRYyxChmnSTIik~QDpML z8Dg!R3*B#nhu!KJuI`M&k@kq;Er1o3pM9*>KdLrV81iVE)Z(m$(KRP#1sN{7G)c_) z!Im+t6;})EjC?%ZdU&B?m^@mKkIs>t27nNfQt|=(fdkGBIK#wgRD7LxPm}}xtUzuu z3o4~0%T%LQH>WLXGH`@t%=w@ymNeIywjE)2W4K^I&}e1J(nVaINkoAg(b1$e4Q)f3 z)1(W{vUl0?tJduI-x{Ju_8H?euYbAXL}OPixfn;+FAzgrGSV48@`B;B7S;YmVoSvQ zTAq$5A|DYF#@ie)$Cx?ulQs3ROIp)`v#^?Y%`FBRo=p4`!Xu1ZLYWnfg=t6*Dybw~ zmnvP-jsO}hBlS_L)X4F~aB>y5kf>)Kx=3QgU9cJy-$Irv5P v5-yh|@LzvoJ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_14400.png b/Notebooks/1_N_horizon 3/sim_14400.png new file mode 100644 index 0000000000000000000000000000000000000000..a52cfb37d23bf4091d4fd88767f7c5f4a77313fe GIT binary patch literal 18263 zcmd_SXH=72w>BC;nh3;#1Zn00L_|tJq=Ukvh%}`my{q)zn+C81LhnVCD!qjc5j1pA z1R{hgO?s2w&I;~lzwi6wjIqBzXN>(F1|cN5%UW~IdChChlGl$^6==_1ISYY6XcZs) ztqy^l5raTTo>EbOcgnJr#=(=g>pfjp4F@Y%4^wALh>EGJqpgFh?K88h?v~Cj&m8Q9 z`ET(fZeD%r>gwnsAs}G)-v{tJI9m%0_0zut7om21pyvXC&|D-wNFYfmFbL%SXT`to zYI>$Dk9zqUx}~11<3$hBvhAMK3fvhQR)2TzQsiY8O9KkGzg;8l-TOQAlihtL1&foqnISUcYG`+`s_*4O8c^+QE%&%Oizt< zUHZXt(Ct;ofA8KM}2|G@$|6Fe&LBf z2jy8~;lzWZ)O!Qv|6C!BB=q#?htgzprys?5|8KcaKcyVi)~FFH9Er1E73gsHqvSxA z{DoYbwZ)f;!ja-|WT(&iepLuG&gxiMfY9l5!YKC&j;xnnlDv)ldP%O@uWETN1ZqSD zzlDTag+g&|1V%Y3V|uu4d%gWRII?AbhEwq&6HzYvcTlATo8&pok$uh(7mF?dz zJ+H`qpqHZcCH4H6LncHrIM%r65wusADtxJ$a`%EDOc!!kOMvS@R!LPUvPoAVGVa&` zrKo;13@l5`JvcH2+AIP`&Lob19%qt+r3{J6Z0euT2Sc@kp_pK3(K&b*75pY0ydMcY zE+ZMTY2`P-`&?B3%V@{4rSe`21V20;mBp}yKb5H`)nqxF=6XQZ|sSp%= z?`|?|>dVsb#TneuVdET`2ieO&$?eDAPsmm%KL&oodU#jQX5F#OZiHiF@0g?3jRO?| z^Myo=804;#vqAh5_tMxQjf`?)d4w(g4&UuZCXcgwUT%p@9ANiHJ&@2FfdXXdqb*+C zk-zCkuHvf6bkl~8la3O%R>to}WsKbry|2L$x|;w~IS@i@5y-wo2&^ zIbkp#N!aT?;^6#rCnpSBWriw5;Ec(Xf~rEHA!GrxzBh2y9JuQ9yVur^?dOWZ5dPe_ zAD7K-QHaJ%=Dt^PKUmC1&iKCMd?kKK?K3QZ*?b9dWBaiNuOJ;Paqk$t?bxjyWipij zGxtF`nW9QDq2}Wx1+Ngtw>G8IN&U&{s|bjIR|uJuz0F<5i7hx1LAifVp6Yv$@Vt1! zUH}$tj>_LIDL(h3k$_pg<3)c^MP}L40$04!w%_tYM=`3;mc`M5D&qqI<8Idv9K>=;3*t!ju(kHGWOI(_l(O1P5Cb zmUq9uqJ3Z#40R4%B}qpiFw1F@NN9HC?`H9tN^7!5Y8N1GIwbvDB~7Hc4WQ}jQ*KgdyK5a?^ogT}38a+qLO%xxDZM@9q0j;p#bc?cY^BM*|3 zn)oRX2-oOBFZsuv4JMyL9$Yos?$g;P4rkcT!KGNteVj^o7%c;H06iQ zgf@Rkyxl?Ho>|E4DmiNhM~a3(&pz;u=vp>~QNxihpmOKieYy4$snuK_grHDovMr4q zI#Zml2r^d3a+drW37}b{oG473S|Ps{3O&Br5S9X5x8YewDQsUl8{V=*5}*y4kF!<*%0W0;_$C% z1Wsq$G3S8Ls-n(Z zU|h~RK2QvyZV2M6czR~+(#1tdV{CTUI?qp04*$np_9oj~QP&s9s|c5$}&C~Y`0oh08JW!&Y?7sWY` z{qgd@-L!&iG}D2k0CLThYO)5}yp_28Ql5$)35~Oi(;6z$B6{=8mM`!dN6HVf%>=ro z2Km`NFYR)!v6Fdv z$OrN~V2;1#fm4At|7F6lb_eCeFDSJs*4Wd!LECBe`jk7cYI_aw-w8EFm9i#WmV=!c zVU|m%Zvq~*2vP*O&c`RcygP+nP5p}tTyLJL%5k!}8-ZJ}#b+FuW51!lz-;8GTmm-( zY2nE82%H=E%h@2g?b=g_Erfi}QA5*QzWJ-%`}E`o7vyvkm#WLm`vqGRw5KWn0 z<|*F^jV4i$y=ZQ5E~PAVSwGO_pz*I$`s1B`N{BKwpW4}3ZY>Pl5)rYiyR;>I@7_HW zn{?9Q;h}B(dwG*n9>v3;U2LS{a_@o>)uh(X?2LM_ zt4VKN3Jwmo9ji}_i@OZ*|NVh|>lvT%!7zTenX%Ea4Zrs_ROWN2%y0NrYHh3DwC=AN z^7MPPl)ShHsK}HQ=@YhN{qg&C>HSxfr-M_WhS3UAsrnZyN7eKz0Yz|amnL{R^aJhip80OB%m{dNyB;(xH5 z;=eyn6b9OF$-JVficFC{OfmYJ)Ao?{<_~l9@{Y&RPQZzWRae5N{ydGE?O_`d-BL61 zR`vj?cw>L@Xl}LH_iy=sexhWb?h@{u2B%n#)q6nWYOu(#vp}yrLBvK|N8h9N zV5P2RsjL%H4gTzQSWchAsE|NhE`CX|{}3S0MBOg0C{#K&)b5%7PPq5>vQsOoM~OxI1^=T(W1@IUpMLwx*~O)1 zDqK>x%AOT(#Wx)WJ5Ax%2a5e;$!RW^c&?kVdH;f67BK1>&@t|Ai{wa@_PJed-8(k71)YTHlNjdx4`D?_5VELN#NnZD zwsKdie6Tu4e8gy|lDundOtb8aL%1*LUQ_0{0Sw-zxtW%usM+F<1o<6?ycX&!lN)en-TwJ`OvXUesK3)O*;KhBsrRISNdIHINfknK| z!(%$zmFOeIk88_{H|l6QA~Y?R9aS|QE#H-9;>5Mdo@~l)mZJS^ z4Rc2!q1)c0eSLjJJH_=IXGKR{FK*8D=6wA4rjx&}ptZHi{Ul`+JzsC7pg{SOg4PV^ z*unn7e+pPlNqWMkd;jz9Ms;}+!P107C$-M-20s)+g)PX@}t&`*UinX ze#NbLDmwj;6PQWH`}Z&ER%+jZGriI)8@37^W|WNgFEARqp0~8L1Pc=a`~um&f78L} z>h4^?v9-H!v7LO695ujJVdYfjw85kIp69j{ZcctO44uo;MWfT}I#yr|5?jAW6`(*m@_)Yqg zHTwSkey}*Lh*p;GBI|QO5}RGZbs;{=X;O(A0MSKSQ-FeuICt_Xr%J>ETegpfv*;K& zkptH<)32d66E3+j!E3yCmIx}pe*L-%#IowYQUcwc2oayeM8icU_h8y{c&{atNt*&#r(xN-l6@qS-COx&51Lm_;m zcrnd)qdmpBgD1tcPf@MZWTB1uRszpDhqF@yogr7AXw zw2jYbs9vdEyw1xz#eTBRUT)YyLim2fAg2p6Pf5#)at-u-^X8NQJd_U2Jq?f0ywF0);e z>#gjo-T|F_Rco8+Cx`E3>%IddNs#i|;3pK-tw;dG$|kGrnf$0Ap(%6k9ucs%<(-@m zZ!hzaP7qyCoWA{}aQdDy{&;)a9e^_ZZmsP8H}rOGKu?NzOl<6Wh-f`YATO|_K-mvf zz+PD&Z#^~nGo8%iIUKX;_L5;$cUr2g?71F^#hXUn^IX7cPd!du(}5(wHaQ<3$&=q| zC!bMF!U+;?H)MA|(L-J#oCmaYoPeEgY*#gHS-qT6P0l7@5DhJ+<&41TaW-W-G=sJKy7N1LT zF>*QLPWO!xZJ1Xv#9xu}Tr+AK+g>K*<>gH-mG@Fi^eG9VVIdCi^H7DCIsz3-Rhhd6a+{jyqGT$8x`;^rTv?FaH-{piA19x5r-4Vt5T z=Oo9$?EMz`TMyUK0i4JZ{9-F?$Ez#oI$)wv?T-n=!*m2UQ~c`4Xsz4gsSs8JPJ93* z-S$-8S^c5M!8vX$ap?~M>$4V+=Bst3Q`+l`pEwu~wJ8qPEBCG}Ag-$K$-y`fNDmyq zD5J4&Ou>f1cC)GUC4&K-n0LhRC@0-|hBmzm*b9+gta|nO00&|6qr?ZUXMp(d8c^Qs5>*!4rpmPw9ItBX=&%o7$y#|a8n_=1ZH7(EVISY2bOak$0v!1a%XjDeR|?<1aAFP) z_#_!W@1>M(J)qnj7%rta$7X8orSVUqV+qRFho!p`q?u=XL+xGeJV@Pk4G4x_#=&x| z^Eg?r`Z)fUwZmGQqtt?-9YMixBxN9T(4sji;4HkJZ`0rE@?s2tUGLsBIaE&?OVmCW za5UF&)pWY?dc`#GnO^g5^k;%2dkntRUm=rL`tFGC7cC zf_5lhnfQ5T3okc;JQoBAI|9cc>2DB&r0kS3tmZ6azE^gg=;sX2%jrVpbW6ZSt&vw3 zoH0z_1J50s@Eef*v-9?ia-0f>O-Uzq$CIWmdXVI-&X2&RKyYv#{07SAo zwW)f6f%biB@9nid-QLRgo$mKat$KL zBF3HoVvuz3bDhs)|ESu1plZq}C)N`FawA4LT~ZXO%-IpBxoyu9A)(<0F}|QEQ4eAx z=wK+0EC=Eeq=?mnBWvKuP!R4fdy+!bSH;jsX|a898>Thp2@M2p7%Ip1h&+X)3$k(! zu8cz9MtkZ=t4U3kew6wdRGywe*$RS0kEr13oFgCx?Wtz9`FtWRA%W5rBJUw9iu1HV zIeCL$K$gcD_=vaYg9}dl0(wKTizxY{bpA9c(c)GY9zkqZHc3whx|yvjFGX>Dnruf;02KTWB`7{hmZaP$^7&%r#GhTCdMSG;1F4g zxX-XA5~#T^1#ECRfdTs)HZ@ytiRW~lrdA-nH>W&dHUaWy@4FW5hWH;6hn6{JK~IG2 z-Rsb8r>@<`y!)r`Hk#7^Z_8^EC-Z-pvLyy$C7@MO6)9nr-SvB)O}k*S35N#45~r(1 z5~@BsP)Iw{;3y*NwZw4a%|?RPh~Sv-Psg4#O%+Qge@y3T(AQG&6~d~Hg7rQ~17UlE zJ_OQD48o?WMuSei6dhNZft4!$v@HAnK$$!;j_2d{GJKZ%QOX@_?U9&yH`ZS zUlj9eHtCTz6$@}{cEr)~w7Vw~*Fv2iSt5uNlP0)5Jpn#W7({%ruV7OeaHO*de2w4a z)>;4phk-WZK?*T_oKP9wANZkeJG||^mWWif1zCVmSrDUWKbhb&Po}vv!4%PS!IWp_ z6p_gn%M9{}GOIvLJYWQFn;*F*IU#F~qIV^1+fOtgaBsKW?XQrAj~0%Uy`+q{o$gh- zEw~d~SmE(^NX%u&p7j>79pq$++tQ9qRXZq?-Y zO<`AnB{Of;lF64i)`F2fY#b|J9gArFd&l^%=DycJ?=ENm>c24p1s47r!3#kLjfGR%C(mWi54O1htBtkX%Rbo*=HU}@*N7T2EQFGOx8?;*HBbMDMGjVODjfM$B4t+k#HW(%?8x}r1DjvpCO@^c8=pymXOSxx@X!2OD6{Vr z!f7%@$0vW+F(!ry0Idtn%~c>Xef7}cHKNQ-LFs~j|E;p;HbP65dpOqm`kJ)vEy=m# zwq9BkvwFwpj4T%Ef&v?_-(Q7pC@pOfYbPw<%4_z0VPjDjpn?l#7DT`;gHxoezS?X% zI6Sr7oAr)!D43h+maL5{kGIdP^t1jYR#6c6TE0`v%9ANNBo;BB>m1H()DuzGEOU69 zI3(9;P@Pfsu8cEXqgC5!;m1cqOjV^v$#Z@4YiqgIU{p89HGA1F7f;296&kkEg2n1v za}JmMn4;LynRu%nWgZ%@p=XPx2V+wtizW$mJ=5OVZQA@*{n|M`@(>R@G@>l8C^3t9 z!P7}zTA--dd_F{C@Pq{_V|dke-?4PBTaU-oKJZk4^r`#{O{srA=G96b*gH@8KNGdP<^5}XO_FjoPv z3u6TZ3t(4uNVeXhQB@5aq57=)>jF%}LK5I%>B{wig5lze45Ib!%L3bSdiCa3;LP-y zYufRM(pr>9s?ga7Y13u4=F+_ua_BGlRhv@^#w*^w%MpE~*{Cs*-!N^XnC{}!avQL3 zbdQZsZlUJ5A!hnF`D!wPB5)StZq(K_Q|h_pez|z8r$vDO1IKp~+rKT(Yuwjz-bk?U z?2LIFd+r8L+s`VZ5N~}2LLAO%t~XF+6MhxldTwEO@M|B=#m2_VTZ^{0Kv52TkUsvk zGGHVE1j0VPmHg8Z|k@-?xJ)#x0{xT8a?}*1N(-unA zxzG8sffZeE>MhQ3`I!FxkcFtEP6}K>t?LT0E{Bh2&hhYe^_`BS-&m|Y*L#}tg9OVJ z{b4;!X*lB`e!aO?BF;W{CfLo*cIaE5Ti4gJ=Ax1*patSG-w7Yyi}g~g0A!63Q58z! z-=2u*&j*?&j80>%=-gIu>%M7d+)A@(<7MhcRIK&4+&XbS{HH)Dk?%RN+G@Hiw2rgteoAWT&uBSk>JfrA!Sf$F%Ct58hQiQ*id|LVE zX!&?eG_U=BU_^11c!>ZrESyKH30_=_y~TwyL36k3 zuR)m9pJ0D|G`p|GApE{8;e719cIQXuIe6dZ@eBN>76e!7JKq&3uig|LeNo88G zHGXAWAF=_2e!LnScB^vbO5pVDnUHu!A+tva1+B}7GGR#GO|#GM%A9W&0j@A zVFpjI6MdwrSM+LH%`u`F0M2B^?mliI>;c|ZtahxWi$7kBu-vD+VWtTdj55}>n^LIu zBl5A!#%@E zIOSiFXV`6oF20wkwH0PwNP6XjcX_kvl6Rv$=VL|S$0$;Y*lFSFTTIV2Dhb|NiX>WD zRPGwxccVzg1CE znGq}^5@u`j)YQj((WW^g;Um&q1r|`G_Aui`JqwY4 zj70SLu@S~1r5LRA<&|`(`urNQGlB~xpX5G!I+GQ))!rDQJuJDM@@D#sP;|+xu$VB@ z;zVCh1gDW30OF=EB9z?8S+K}dF9M2<@H5?9M( z9PLn(iy7(`2E!fH79LlWb~SZTgtpMOyTGByVe$*@7IE$$vKm@#;x0|ET<~=b;V5R6 zDBn!DFvk$dsdy!Vm^BZ*M->$HLh9k!4VXx-XH&0@z0K+ZZJC{dRgM1DzM4j$HH0fq zhQ@vjPi>ubcBv)*%O}A=q}=b3qD<_UJ08~08mJw0^KBD8N@9B+M;lx18?TK;( zE=P`P2HOm6Cc|1{)6G$$NN5pB5s6It7YVNUcQZ4y|HU&7{8SZMd%W&FzY=Y9RfLwW z-@TB#b2$v?%Bhv~S^;xe@q($`1)$kM!=!E0wgx~`=hEX;J@!F6@!Zc>|BlMUSFhhs zK#*B=57*dj+a}1egRtt-KvusH*khWZ76aW9w`!ry7fdcW$_NU({IJ8a5Fz8LxOhgs zC@$!^y^XbxId5fHp>3Xnskx!c#z#9ddAp0ui%CRMfNrcvtj)&YQ;Z{$<=wpCEjP|a z!-asnK4fXa}6f*6yD zYcF9_U^FGRgVz+FsVBsDmTVXRF*V*_dJv{5oBhZmk ze;xg%tE>VGy$4D&%dNOfadqRg?7NT=znz{Ec?l{&7&NIe&h65!<-yFCkKM!Q;07cH zB!VE(H^%!YYCrGi3xj{zUQ(hGClgzA7l-=yh;xy7?aD>NHI00mu(3D{-IHO-r*>+C z`UDQX#4R!g(in!7b5c=w8@z(%WrU?B*Ts;yNSmvFDN3YVQx43&Ry}ih_a`H*sOtlu zE*Vfc8O3TR1=M<4*DSGaCUK0JBQVTI0t91t9eJ_8=fC@;g{eikwr#k$z@BKgeI-j! z%H&4eAC~y5aGA9Nb1#WNcxH#Lup*6Q?Y8R|acg{17gt$lN6^K8-cXUOs>G}w=D(}B z8XtXMOUO-=OXI$dklXL8I9h)3pWZ?BC5>_8d{2~A_>m%_p|Ox0Z_8Ur`23(hGn;qXwpB%--R6Wd6bLs!*Ye*S_^J==&)#0~@#bqvYI<`o|2g3CfI(f2_^nAobw=)L zIo}XWZg#+q9m}4s*Sa%%GY8BR&n_J!s&b_xIlR#7@T=cWS0v|h&Rc;HE~N=2;}-$} zOke}TA8qQ6}5o#2<5jp=Wg#9R?GFvU3jq#@L z*S7-?qxy0y8(vy6FL+t0s9f+Z80v{~t2Ato2EKtiqc!&-k;XAiQ3_XAOqAfyn@{KI z*z9f{>eM)_OI&#}Ol0;uy|B(YHKuz5a9=A!4PLascyo(@{m)6uWZlZj^MR!=m1>*A z!SInA@8#)%ySlUgJslKHu6j})?gXrk_#>t7asB&_n@D@3GLHsE27BHvF6z~1hgfSn zSg$WE*H>qRW5TD$nOf<1r+!nv6bIXPBT-W-KqOdyTicC(YnE0koW*bIlmfcTMP75* z-Of?th=XN^F}eQmL4Stn)no;Q#@qdzWE5TB-Qc@bQ4tM1tDCLX1yALVRvT>{9QM`W zoUD<9MZwW(As`90VsM?m$NiqP5OK#&x77y9GF`7HJt26xce~FP{^%HquPSq#!4z?~ zf_+%?{FDa;n>od*pRSUE!gT3O^4`Fq*2u|-_Y(p~4vO{jfi-G!Swlfx`-jH|d;MVv z-D+ojor(34;U^HlIM#6HA)!@Q?E=||{OH>08NL#Z@4fY^!U>+-SW-PEzQ)R*UlC}>@BTbx8Bn1{rkmou?b z;qVYp_O>a=dzSf;GkqsTB8kQtW!ks4aWmk<=h=NLHbacKaEhgH@?!Fir-9;Kel0F? z&DdEFa&|4QRQLlKB0*rB`3_t*YfhoG@H1PV)*fmL0*76qUEy*hrmK`_ydHmVI7cZ^ zF;34sO7LQ^U}H5%NSD8BZ;x+$VSfNH?mB6JA*JjQkAb@$ zCVzKO>_wuqC?eI>S`w-#XN0UnOEcA9~zw9bdE0Jl=Vul zcaE|&;t$?atnR}{e|;z+*Of>%mqx>Ac&2I;<8t{IN5W|!<&P$V0_bTF)-nugEu(cy zk<)x90EJJ85y4a8AfGyPUkmfx9j?k}7uX-WoQNVTF?TXg^lN*43xa za*Fc8YO}Qm?Ht}?N@HuYZ(q?T?CkB;gpo0~Qr7$)52BMjuSyS#eiJq=|5>{=Uf|BAlHHXWdT zOi`SjKmfzQ;jRX5!{&dzl8hf6l>EzQWGrIdOFfy|NTMad&+^8-J#iF^X4m`_r3>ye zyx#t&$$d?>8g$#4T)XEpX~FqkPUg~!Ria$Q!`Cn?PrbTJ0R*yW>3x3H0oWC1Cp;_o z@bEQ5eQjk>z7=cBz#N-W+QlI{7Bv}a>s0c&bb61`*f(CHwJxvzi9GP((&&629{WVNhMwpsM_YCL>X2{TUcFp6`F2N!hNN+O zg{OXVIx;lFj5X2>xzot#f8yggeO_z|Wvk=*=rpb>4{#sEG!~daI0?iKPQlgBi`T_? z2tW$w8ca{GUnFG)^;#Y#S)Hjvinhkv&c%hsZMIquM#e|CjHlgx!#n1B3os?N!Ct*e zAoqYR#^a6Ww2UdYlNOI>IUmxbUMU&h8{3&!Jz=x2KYu)*US`;RSNLDv2E>8@oORwF z6b8sHwdZ`n+qS*S%SrRz`Ql`;>iqatWJVSxtLJB!*TxLU>SxSI9saxqHuBZKP^G@p zUDW6D#eCJahYW3eD98OBnZ{E$FI)_Xao(gl@m$jrGAm@|GHg!VnO}P^3o#2WI;P4|#umvMQ4 zURJ5w_XhQ&7Bx@LYwB3ny_f&byYt}MI+HzIX|2KR_-u1kNYNRVqMb^Qvi|LcXPO_AqoW^6)W^ z(GzID`PN;s5ig(4?0{qvHW@5PC0O-_>}^iEq!UgSKU2jUkTxB19q#oCy3CpiR2DNi zX1*l}^|m0EV8_rQ?rYmWYeTXs3ZN?q$q-`r02s1xX>E*8+LIOlC#o!uKg9~8XYHcV z5`VD`T``~Dt|{J#JxC*R{$zf!#KczG#my_1i$-wEYDLrN-h!O0h7UHzs)6+*EE_Iz zWnHu&v;ti37V)(+>0XUE08j9b9cv^m&KOI(_Q>s}o>NARBb zbO;gm&a|};)v(E_d#DDcK%;g@?jO!5_8j+VN$n4uSS-#vSbWw{bKDnUpPNs%&pM`c z=<@BIu5MRZ<_k6NK4z)f;5KHv<0!zERzb!>AaN6f!mA*bT}C3A}{ z%>6V^uer=D5EOUDeg5R@JBz5F|B>OhZxMG?>FUR-bAmV4t<4BW*E^A>ORkEY-Sn=q zR`hdW-Z{3U^#H6I7~^B3gjOF_)-U4?_AFDOaS`d!F1kLCDli_LrV7@(--cD?JK4rO zXztg_McLm~l&@OL%p-Vp+p&I5_jMO2WQrQAcZXO z;yeNib$cRo+Q8u%A52~FKmPm>M2S9$3Z&pNCuc&BT#R&$JBdp;mNN+A2dUBbwbwog zZ%=3mmSWEgC+U&v|>!GTo4IB=O?a`D!Fi$H;;cOLum8_NU;S+nYQ z&#m|;Rrzk3hQu*A_qCn9hWWP=Tbd#qU7mc?4hpPgi z9?GnrzF4EohZF89SQN*}4~U=R@-S|Al(b-?AniM^H0^(Kph%BO6wWB3!`Qt{O0pQT zleQ(?H=Wxir=e1cZu7mvu|739Iv-$xe@gmUBSW+P~gS{PJ zZ_!YXi%qmCaO&-XZ<^~_RAG-lDRM-ou>sHmSx5#KqmjQMW4_IfGM+fGG0(0?>E~VJ=Qj6S*5DnC3}k$y}hNX zFmb@gLqJqu#B5yG%r2;4JllhxR1j;h~*m>fmmLW2tH94KxG zEyiMpW%&N&xQ&QO{(f#5@`aR`;Gy-$07)m?nYx94)+nqKI7Ptgj?8g7OxLjzzH?I7Bgu z4kSv58TcSJ_te3h;6JrMp)BwJbk_V|(Q`}`_5Uz8|L+Deu>G(pMXZWm?x`AN8i6jU-p??03d{;-ZwgC`z|D3cm=Ed& zPi5^LNz#fHq!!~v3W_4v9#NUz$IzUv)VyOyr#s2QMXx&yjue7q)xt9M-|ME}li^8aN&KU{Ty1F_=hH&|vyO*MdTHMz{qm_IsIxo2 z`lkf@baw&V`2Qz8=QIe=V)u?ilgjjBi4ehU>C+<<7tCAORolfzOP?K9Lhb60LBG!J z6-kWScxmB5+;T&{6R}~9k=U@7(GRMXULjO_-C4_)3>R~yasi6=P>jrp}=PERUp zh_#}73}VzkK>yKd|IF0}Lj$|>|9YdserLLWs#HL7?4Ju{7+sXReiq&Z0EAV}lOO5m zSLOGwravFCfG1Rwue)mA%2P4A6F|qips34nu{;&Ibid=X*#t{CQi=ZeVMUv}KIm-+ zrH~;Y!CvGv6O@vEtzl$PCm3pU_Oybipt#$Vhd7V)!TWvbF5A^nPg88X!AV@ zhsvSVcde)@!2J-Dm4bKf{u&$4*^9 zMqxQNPF*is?oYF}E}bF^^As;H=qS)xUfp}<%}Qct2)Sf6*cr%xeL&a`BzZb`m>jla)o8r>k%5Tm3$4J{cqE*(`z& z$ZD|8CT6ofva~4)Lms4#EP|8?V=a53uEunk2g5qGM!=sIzkYq%8JX|W7rz-q5L&Dv zSsiZK6TrdZEeG+W%s~rKIYw;VftpM?!>BK z3-8dO!GrO^#GQcGh@u|~)L^_JOI1}n+om>)vQ|axL0;Hj(lLT2E6cW3TX$-UGw_7E z%eBKr)daV?%`w&A-um<21n%;L4yPR`1yn>i&CB%20tsV*go!bngWz{mP^En3J|coQTt!AH_bcUXe6g^Qo! zn0wP73&d%^NaAKJzl!mon#{p^Pk2s9Cfbb=hMp}3xjO8)8nZ6!9ZTxxSz$AbK+``O zp~|sG+cytKwo`hCL7S;27_p!~nw4{u-FWkHVy`~byuN<3pDlcG{qR<&vp#6fWH3)T z%R**wMGn?jwfVgue%RX~UDRaNrp+7ZD*HRXimjc%P;(U8LdM}ghJ#v{=WOALgD_fQ zyd11^3Mu;<{Bp@ zdVAMwH})M=&S>`NsmU^%sxd8Ue!FqA`bb(fwyb|}R5pNbjm2^B6ELOFn!+7?V0|&% zW_k2zv!P0S7XxwwN__)|!qUD=f%R48r^kb3`s#DS{u+THYoa)Ir_b?m;NE{)}A-NY@kiEb=S;%E~ke|LfL*+YB!IY!71sVo{XHc%st zg9Qy?eRkYs)|#;Ta#ULI#JmGO>Fg#J&?r3SbiHU zA}|xsa_$_pKFt0@i9QLKgLNH{j~{IVehluUJSVZ%V~=0%@sa$tXeW(bS>D5z!oAEC zN!I+MZjTv%j-o@J=gg^o)KsWNs9miwJAZ?S! zRrrc7kOqj(X*e_TrH83JhfH?CJ&fKu-0O8_GKY_(Y+FWYevFJpG<<>dyyAH%g_7A$^q+X1X?{~%Gr&=_aab>DNI*IY&=+oa}O zd?Y39q#>)zRU`sd$H^!0_JnbjjU9dAk|0jcAK&*VfpPbr8aEtAOi6;|eA1s536KK( wU;G^?U@HGpKJt%)`P0R~`ENC}M*)Yc+=KNbkLC1Pe_%(gj6CIs`(EpaG;Q zy%%Xp?=6%$!Ta6s-Ze98X8xJAzL}*lS$UqEXP zao;<2dCV&{%`)xeWI){7w>77oGbap^#eF8`@`Lkt&H9Xc89yt(ta<)Rw`BQTHQz5S zqwD>oH81tFOM-)|7x*SaO>{1wfnR@~^IElwGr4uk?dVu)SDo8ZCwC^jHa$u{$}OWN ztt(*GB-N+O!`SON;&0U$PSuz=E1v-4VDN!cwfk6fGWzsWo;41BdR3<@Sc!NS=eu;0 zu+vL-RNf;E=q`k)ySmGGz42qx1k#`hn=#`6031{BXB_LKZW?XFd2b$PIgzv8 zlxtZ>4Xmm$-EClHauhBgTd3ehEJ(e$L$2c$`o>9%k*b-ZV-6@>fC_F8g&Q#v zdB4}_8?Urhe4>H7ACot1dR^d|H%csTU7~L+rf;OdG2?=`#E*4LPqg7^N+sxG>^Rfv zvU?#%7`>ww#!0h2XsNTF=`wzA0)cOUL>TuzJZnVh|32T1bDZoG1-qI;1B*8T@2wSH z@>dnRlmgoMe(90uq#`Q34HfPLIXP=opRyXwnP*D0z&s~ojTPZ_Ytk#hG`JwA%C3~) zE5TGDPNXNawd7J4y`7*_?aMnyEO(Vxm=+1cWDJvP=CuHmp3X<&LkwI)*@VA_LIPSr9rSSEM zR&ojs4co)V&@5_i`aK`lv{kZtHl!4$XJ1IOzUEv~VlTF+{+vIh9yaAjh%E3tD!g?b z)w)ef0?dR?;7%rPEf{i;9?S2m`7>Z4Q}QD;6MH9*!XprP%3$9~ zCIr5()pUj93KMm?A&tKne(*f%ka6wY+75lA$mD9U))&|!Dm*{L3Bu$du!O{j1O z1RjgPYZxyPXw6*0*Hv0Q6sShk3MrLq6u-bYG>+wu*`&ZO@O2Wth8AIziYR=VymN$) zwi}R@EfAuVaI9RsmHGD7GE0c-{8Th2Tl+!Npe`_EdjaPlD15}mm<21%JY29)K3W{x zHJhf;@FR~2f;;ajFM=l}zpjxx5waO_#Kvop3Hv+Vr(Slz!b>#5sg z-LjpN#E2Zc?sywd=jGa&5wlpg-ev*q=xTX(OHg*mOJMCiJ<=i9W4~3}^8*5}mq;Hf2J^@*hpt2Dt( zts0kyO;nhj^-2T7mRmPo-Hvgm|Fa*)Xh***ytag9$)KH&15=%Nojssgm(k87SghDF z4D|^vnejC!l%9e!HiaECcE~o8e|g|urUY8#{9ffUric{pb#Tacmlf&l2hD=)$=&Vk zYxUB-2c3FC-}u2|mu9B%C1$w`pu=Ctq@*)^DJ?YmHWN;SOF?w%048F}wQq>pEdEH_ z@iBx>ZP6p)Sa!~?FEFoRzbojwFeEQG)8Pe9hV;4DETW>MNvXBt39O>z-tT+Xb4jnL zrl)te9^qWz=pgmZ6J@i&@by^>f>yBBGx}Sh^tT`x6oIv6m$+1A^kBdV^;XuCAJTeX zMi(=CzZtd2AS^JuGQ<>eNoxP{dlbGHl8N;ldlLf|82*pm+eCTU#dWfIElYChUrT2qH+MH;aL_}7@TF4L+;j+_yIu)`(Q z$z7KT>Ct|q9R&z{#|*b<-E*U&@OYetJ>76nO5H(Q?}4B$S_u2(GPTM z*B?42?dK#Ey+lZO$pF_|pHoQNn#yx>du76z4D0uH)BoxO`7xz8$sRv8C}VZyt)^YKQJCXAL>5jL=S_dce;pllKsBkEK zecUGwuy!KoVi6yX-hqlcL}%S=%=)&wi&Jbqkt?c#AHq(lKwHbA$APLvpq&Lpc=6sE zru}?GkFVoZLaCw{t8V)+(O=-U$zM_#1yPwb4BpnOx;&@XyF?~`g(0EI^o??6;%jE% z>&#|)8&dT<%^Nh!P3O6Y_bfcz2hm2gX?O`u5-So09R*&-Q7eiDZgke@?A?bCC1yWl zM=m7)O}zOxMAB8x7@VKgvfo{VD;!m)>=3^pnjb(>TF`0?Wop_aghza9R%wl?jA?U*?J zYS0Pcs-WQ5v>OJ4iOEEb~Bj`(|x6g<##)k^guM6cExp~B{IfvD?dHZN8tQ-1`V{1$y~n&%}I zR+lqnRvo012a84XF=|3npUOIaKEDz<={G?bckJ@p`k}J?A)b` zf(BoF=F^&q)0++#^WL9L+^rIf6Z#XPm$S^Ly3w{J2%;L%XZ>fca7?{cVITS(xV^ot zo}rM2b(`1G*8V)Nc;dtEzjkA#;Uutr@2l`ipV#qPn4-nXD7HOWEX>fUF5Y9Y-(@;N zQb$LpvDRm^YO%0Juh@*F;h?X``{xUuBuOXsWcARRmFib--drlIS&>Qi{&^M*`B|PF zxrrmAD|VhjT6Mhn3Vxd;>m?MWaKH;Gs@u85akAH(tQe#q+;AwWc(UK+bGY7&olP*r zFiVI99s3idSnIu~wLU8xl+4KgaA~8qsCMIAqKWU-F8N(nRCDBPD2t<6XR362hGK>a zyAOJQbKY&cPgm^G7pPTdYAX=m%a5(7{(z6TFem#NC#~_iCan&YWB5_58}UhdEh-A7 zx+k=E=m-m^+bd1@sOwd2`J;Q4>6=M^kyWj%MveW(Y;3sBb*8nUqU7;lOzc`C6?PrZ zBI`?2&MzP^Q@hzoX7=;T3$P!w@7~3IdBLDx>%DH$=LQzi_2g)mtk`}?^rDba3)sn+ zp?Tq;eJZ#4PRrqP8_2b5*F@ZZ-A(tIV}7rdq3Piv4q-C!h69lo92+)6DA^~8FEoQD zB(tzE@);GAs8u_RR(|U)*sRdgZ9in4p#e1yvy(kJ+`M}AYF17Tnpw^YNoVJXj<`jS`njv0x-ZT zBc1v@YNjmXNPy$udl*K)!F&B@q}@Xw$4Y#F9OM;?yY*^5?P=^dFj zo>m=hwAJ|g+s&^I1!nBHS(WKi(6Y7w3-k2)y+HX7%+=JD7xewcUsQ`UF<~ceO33D1 z2Wn}sgy3H2GL2tfb_zgs{MfoQnqH1bhP-Mc>~D0vC$^Hxz(fPWzWycoB8hD zvnNkTI~54_or)*^3j3{EqF~Ybi%h%bI#PUkQpUeDD;~QL!919RtZF{pPwIGY+RJbR zJD=XhRKG?pRKNEKK$Z{KLO^GO`HKYb;5KVTg8stdqR-w`m~3d@Qmc=o!|+XgedhT1 z_)i8EFHeppPAm_$enalxzhCULIT!ijZWs*<{s}pi)JDq{?8z|!c$2{?e=-W{$?r;Z zv*~^-Q%|UbF5_Dc_cwPx2*xS=2MBn0c=#`&II=OAgu_FBTE)Y)$QO#c{WiI2{fN=& zs_Dq-FAQ3v<{6uvvQZ;W4QZ;e+%7Y(RUF08(?E9?z(`WTHXrpEF!rD2H=Rm#>x8Ft z=m1L(I@t|!+i2x+JK7#_`*t-~#DC9O6QE^etBThwxXt|Y6Y^BoZ&$B7KJM%a+z}H^ zZf7^0P~}PcGBR=OnIL5Rji{Yl;jquo|GKjCtG1aVNRB7fnY5YRPhh$^YQDTjb7Zdi zWM%a@a;hmz40sX8+VxxG0NX`;w;o5zu1GB`EO;7p8GDU=4O2WcuiuC-`rh5$sLW(+ zf%~EL42A-M09kKu-aQn-{yQ<0F*O9ZrNR;5Zkm{7Ty=b~cvV<<-t=VKlu#X4hbbfQ zqeUd~QWa5mx=l8&@)2VM&a2z3Z%-+cg^L5GK>?};yS(}J!`>@Dl%%$)@-1YHRuA&QY6s`c@-FAko%e>bgIW`=5)~`o6iTG?-u=_2Q zIQZ(fr$|P{YAGZG`&%#cs(VGlBH^C8`Npnris+ny3zGvL+%F)aMrLMV7rev{csM&`fQa~ zl6GFpD8-Q{WVsIfj>P!aWsq>0^pXok) z`ed=QG}N9hpRyXT>Q@VlXf){LsCMHUe=Tqf{;PfyBUUY{HR5*tYoF-?qy1Lv66Z65 z!1lz30nBmfd!W1CsudUmwzLbL+1lQ%9U$>H4au=DVBaQ7x%_Q<(4C0MbL;=4@4uNc zF=`cH{pzCNFn3%PSliuSqZJhuasUAQ4|+0I^dy0&0~pi{aBpvtQn7^ytD*q$6%Kwx zx&D5aC<@#t5q%1QLy1J$+S+=9CD=b&4eA05Ta$Qlz8mw$x~~Q(te?Fd`pVtr3sh>? z2&TYlYdiTXdrHmpTb-xXhQ;2TWR0A$k`h@gj~0ciywvfm>G3n34F8x|O_>);bn+L1 zDcQY)f&cZ|x;0qka)pXXXy%6s$1Kng2k~a}25A&d|2^nQ&^>baJ z60R+7t0u-6^(RNGUR#%Z7V>hdfO~^f&BUnfwOcFnl&s25>}zgpY)H)|q4X+j`-F;g zhuQuxm`6RCH?YpA-#Rcc?p+^6_w=XPWu>L1k+ZNXm1CYP0KQiw2!|j{=0q2_Z8pQa zYP!aG`S?g(V*!F<<&r71N%yLEO%2JGXTXdChq)knmJoT z%37~zmz#6|#_e@_O;#_O;ltSl7f0Q?W`T6H)@dFW$;ruU4;J#nS*2r$O7RENp6yl> zw%lImYfqJq4LZmT8lD@xrz!pHWcTElqp0CnCXC&ecX6P|dTsJE(KFceyl1P=FD;F^ z@swhH5EVtVskNSryMIyy-gqBGRIOZzMvX+| z{GFRIE+~Fy(yIO+uhkEnSgIxUpEudi>^rJ1dkFt*B_(m`~P#GvvR+?BptJ1>8@Q`s4&2J-@EECBTE=F8@Pp{yfv0H(FUlF;!cpJFg2PS46ERc5 z@W6+{!j=9@?>e811s^2RH$I-^!NIRzth$2VE1++*nDoqqJtkK;k4mk`chdk_A*O3i z008)Q1v%A4XAp9)4s}XSq^8_0cS}OJakr<_q|F6K4=*nrpM$qYAT*b=W6BekKL0o= zC(VdND6k+uK;}T&dB%~V{sQW7g1&JirmKfg46<>~y!j=8FOOGS;d!Q_lfSGVg^OR; zD6Iu#Fa&n?rrGsUL$2btPJD4h_mM|ncHTn4(Jr{NI58Ygup;0)Nj8G-5eh}YRn?ek zT@zEL%=EvIyp${C3V)$S&-lakEW%x`t*K5@8nb#?Ld`Xy=ACcE?R<;Oz%Oj*q{1?N zpX@$3F~j|!dq#h*ewXrV7@3&FYv=gR@VhX{ye6!_gwb`n%GTPjQt<=>GL9&XyB# zL}Fk$1q4kXR{aj{?k4#boSpFkp+JiklF<6yVL()k>VjbB=l?(I4aDjGk4q^>fYo$| znp;85Z$PKM(l<8CIuP`rQ}Gr@9Rd2er)nCz+E7Gwx6+PWfeqy^fxb)9P6L;NQj>L3 za({)TAfZZx@;gLz##Fy1QBh<-eIl`qneBk1$#J*AqC_C@?=40a>hpDox8$tM0$xM_ zEkY|r;!TkRN&O4y&5d5W4K+8&xcG<8kt_vt592@W5wN6`6eK)kJ;60f&}me-OU-oQ znZh$LF)MXpT|we=yX%Pr(FG*$WhTc_MpUh^ejRI-@LW4->Gi&yW;|^5IYJZcuL7`p z>)xKyLBn(utYG4Bh$7_T7g)o%O^;J>Sxf*o3-2*B(Kqrbir32I!I0@cY{jB8Y0`^r$?n7rH)H$hhYozCJ{cBo~oH z6FIwgL_96Pb=M1O|FIKGIxreuj{%sR{y4P&d841k4;2Je*7u zl71F`NVaw>e0{&Z;FK}TSs}7-eCWHhqg4J+MvLQvC_9Iq{?l&g9`X|HMrZfm?S@W@ zTIzzg0=gImBbQ@AN?8#89m%YQPG_(z=I6X621i2*QvSa|14t-9v@j z5pr%5$BwB^CUSc{!D_)}Na$wFz{o-M=|f|DW55N#=1pH8>`<8Y&AoJbyKmV4K}`Q| zI{&X!6`kGnAn6|8>uh?ZSB8Dz7RiS1EqU6~mGt9O2h>t=qG|(9Q{&c&n@v0>)@C*& z)@NK0Rt_@ltOD5}F;70SSZXPe#I~0rs1c9kV~CxJbhB z9MQkBV0156Gs11I{rA+%U6X)&{89DQp_C>DUr*|4-$c*|UYMJAIhcBo>eepOso)Fi zV^j_>eh=0yCywfmH(rz}w{KPD(N@_s@7Y#`8|B{mjJ${jbG9W%_dx1@>lTs1Iya&By-{`Rm6%ux%PW= z{OK@ce}-vBLZ^dOLZ%;ur^pnXa7^kV@EOYsd*$S;BZk@|I3+4q^X7Z6`hUEMxL~yb z6U&KnQM$t{nG^2vz>?MA0e%qvF8qT4ylahEY}aWFzG4h!oJWt8UV}P=Vq(4K;t5;Q zxmwwk84g9XGnX?LE(w8p4^o_*M7|aMluL%*Gx6ew9$#-=EGn>G9~Kla(bc+Vhe2gD z9?Icqg)EI8=nFye_@=*eo{_e=UNS{2<-12CCT}y5MF#Ss??MjQ_uRtQLDkEY!iYST z4K-R?vzb#z*}P&=_BuZ0l76kD-Q@bgurG1^)&s$7Ugs2FZfwHjtKzhu-hqjKK>v7p zhgtmb;{0dJXJ|7BF;Cv+p*wxktI`uB-O^qw6M!$YE;zMiI9^= z2|_8wT#`hHFq(djYf*u6^xOp!I_`$YifpLbk6L`{A+@!*mJqIRR=q}>Fx}Z?7rZ`JUA!!-H*qiCdz1w@5S=d*T`+iEsNyi_xB z<#V3CAqjI2=56nqes0dlium*>W!qt>CB_45!cGOGnSG;CyN17YyoS_hR+v@ZXZ5-L zRU)hTb=ZB8%&N>v;nR+g1GJm-2er=6E@t_5wzGW?QhcyhV!}nEz3cUPJ!f*m9>%*I zez?OO#on@>P3hYHoaDl+>=)uBh8a3PzZL?8RGp8tyg^}ELWorXB8QMC;}A`hK@QtC5%UA9>!2-+i4FmADoYZnHmMKZ()8A+1`J@B4u1CTQ zZs7m%b9!2B?L^kMZ^ctmk{W6geA--#<`ero)gKucB$@wg0ZLw)X82hb}+S z44dG5zaP=jsv3VR1a2s4w+AMn%SSN zkSjN1Tuy8Hc1{c|yU>!9%vps+gDY%J~wNJQBNjKkpYnSGR{s^-_8q?upCESohsC? zzfdy~!xSckL+ww1&DDzT9^=#u{ruuCT1n-UCYdvSW!2Gd|4yRJDw>(3L~%jP{d#HP z+viWzO(u+zh=xFx0ERO83u)GysdI~lZ&t9GdQq?89X4K9x9?OS@Me4O3csYdsNcHp zLnqs}SizbxAG6!~@Fp2b4zicbCi?9kZg7RO8+`-X-k`Zb9QEl-Fsi}>gQNx}rzlTQ zog0uWbG>&ZUsAjTyzxs)l=`}@1boHcniI^oG!EF5XtvxSZQ_5$EdL?y$5S;}eC@nK zqK>i2%v~4}2r>|p(eAi&aFLwa=kQr&R@t|UM{f*9^eReT%(7sL?VBzp6gb@;uN2vg z7YB$^-f{eF-v>L+o<6^+MMEjINf74AVF}cJ%!pz%7z`t%n;`PY4Dqz>+}Y12 zm%(auhcpH&=``pXMNh3|&9W+#`{#}NE-UZ*uw^x`ac&KALz(q{W;+x2m&uIQL=3Gj5i<~uJY>#d+7amCT)G4;wHQ6sw7{@cg_K>wfl23D7yNps+xzc z_sxbEjqe*>j!vPkIC@ZlLUKyRMg-289{8TDE9mv;P_%TL>4W;Y75o;O(mh4%IUH2Hm5C%QGe`t9?D zmv7~V8%o{@G6nXEd!hd}Y3@I1imNRrSV_2_Q|x!LS%E46Q?gPDa3pkZ8xG!`Xn&6{ zRC@jMNiCc26Y4uiAmlS@fvbbnMg};X#m~M&brUb~r$FF?=frFq38OhYBXy>Q6i_Y= zj7S*u;W-$k0L3^9YV^CV$DQ*ta~m+3%%m)`m%DpO{TP7?u(BVVG?CE>M)ciRsfVJ` zSDbn!?$&Tg4lM|=%PA?l1ggMv^h?DrFdIEgYUkI9YZufR{Ncwrea{*^l$IA{&RYCy zzhTp5aP&DdN9fdzN!LkX1fE3+IzS5kY?-IUlxqQtCtC1>dh5;S5D?6DL=^N&%#cO{ zr=}Dj288J4UbJN~7%YDG%yO}^*j#Pp#Wh(5QZ^;4;S2#Wsk6vojyk{FU{?WnGtjo6 z`%5*(b8arheE1rOKo_f%#msl?0n>U=DD*Djzat&|&3sEo(r`_{1Z8f6h>uT=>Vtrw z*;2H;V&OZ%wopNA`rlZr@*92AfjBvj_gEBZKZu4pX-aG!!yO0iamF&i479%hU=F1d zFuzF@LJfux*;Vj2Lp-olo*BAwGse9*S%PMqU{Xa`F=|1$&GmP6D}XkX(|DXA*gDu; zb?-)a3CM=ah3#T!H1U=6laY!YcrBS&0vq z*UFQhsNeSWj}s|>`~2-8HNfNxR;1*~a$r-)j8lpET(BU0wx2vx7hue;Ozy+BnHk44 zKi+n3lST_z+k0j)S95&LI60H?nceXk@uldU5TKraVN)8@kDOVMRp+bDo3$q)c?KH;BLuj5%|A3-dYkG(IeE^uY5D50(ZVtH-9i^cJA z!ybeBzf(1QXc4*JbqH3yx>MrtPe+Z%M9`ZA&gJ{i5a79}RY{-8$9LQ^D8&|MzZ3L4 z!_nceyjXe-W0B`%`>yb)uWHP7v)^NJ0aJ|a*}-sLKTATJFJ#>fBAUpL79g;RWJUyc zH_X@q3-X zEL3&q22061<(b~3OrbcQjyQ#tb&Ae>SCDlMG|;YuVhb<*lR;VyZVP6K-JRIE;S-Y+ z5SPfr`>pM6T*mJmw`Q0=$aa~=2b25+Ct6TN1+(?@<1GPR!B;{bI*$S=BR=y)C+J%QPzDnWPtgAr;mQn93Ms6A_Zu8R8IdvC)?v!O+ z?L$Iy$)ZSvqy5wcaPuu4O)iom6rkmZ9%a<^tG7Ip0T}~gbGEPD-%{M|qEn_g3-jI7E|BDlO}AvF`dDn6$QP)@ zlrz;6jH?#-s56kdfW!;%$~zux!(tSy3o%5h!`EqtHei_BFDu5`>eszl=Z-J%tMt;LL9TU z*I3c+?;}pvP#p@wV~AAXeXgD;)^Fk2p`tbx?-($5bi9(}Su_>p2h^tNf`Zjocc7yz zAkln;%Mv1XpL>Fx12QwYdS{v_L8G>wAVZY^H%a;r#AYtr7~L^Ww#txj62St=Hh$xRzXFA0QJzT`O00AQ&Qk=BC)XOmyZ>1b5oOC z+q1Ltv7Z7NN)Z=JRxNJ^&`2Y*%6%gF0VsfeM2^Mw`&%o?HL0fU2H!veOfAGe^W1&eC0MB^Ce zVoNAr=G6E0Q#kpt$Q_Ev9ZRXF^basD16;3$fm{!SCOJnHE^1U-LI!Qb-Ba?+P7k9X zDg6ti+Nmx#87mA8ydQt&Gbnp~4?pi~m+EG}y4^o$h`6{Lb*asH0BV^(7c?g=4#u7{ zIOs?b_XTG2*hUQ*C2`4cc(6Ow&*`yacGf1Lv)^NTy!#f)jm6Ml_;K6HSXTyo1{v4g z*e)@pYExRc>1v~0XnjZ7Wu*?-;KomXzL)2Cg~zKqzTaF>e#O-Ef~WD<572CNclbza zY~d=A!m-x_NsN{h$Cr?+=;*D~mavyAib3J86EH^4yV=vr!!9ppR9>re97{lRjtEtH zqJ{V+E9}ea>ht3J<)L>sHjyfmB^sA?jJ_*hk7>}ju9JR-`yF|5?=$x<;rv+^y1F|W z4p;V*zyI*#jUC9d);76~ne}C^*yZ~M9Bi^&XNKGpfNl$mYTB2sNi_P6lMM-s`Z;}U zqjOiXU<7jX_zjc!kbD5=&s2v`>+pZB}7Pd`B9_V`0;Q`7x}(?AZLJ5*q-*^y>Ey0}r;&E9@s+*<0IcqT#Qw z(>0}Wn{RXqq6*^}AL#p#aavW?0Y@t`rILHHKh{2O=ZJ#~nJ%(SzD``lgt ztvL}n_X#K81nFwOp{NEnBB*%89+|1`UMx7CQc--e8bGH&(BBIS`n725PVY=h>(MGr z>=E8ELaDKI360?xz-|Wq*h7vRTXi|gW}3onf%x1#`bakIA^tjcgW=NA?XC0m+lkM5 zCCb-U7;dc>&1;%@&mM>Ug}Aliw?k9EH_{N3(K`J;D7D3>nPxTgW1o}UE^DfWAl;}u0c7kXclC8}t<#ilL_XNpn{hh-TeU}H z59~@%pbMkq(Qiu=Q^T&jFq$bhC)qdCw;plVBkm^D{^1n=y@ua`k zOk=e$c!O2!5#XO{0}dj6+HCh1I4+9Vt@{#b!ufH}3u2M1!`WKlHjW(|+mxoWHBmy3 z{2wq^)~((I5l&`vy%uGa{l!j2j^iyJ?=5Yq*|_?`#|<#&oL3}(wj!Ra>J@twE}&oe zjOSv3<<8<_a-Fx5%A~eV^wi#ucy%_}q^r{uEs98hoRe0=b7Sj@59-?^twC+a~A;&Aw9B1euxrSJvraYWlTk@J7;h1>W070P^d!} z9h#Gny`gj3wjJ`KUO_YS&p7u6FU4J$wdNHXL|g{GC;Ku3NF%t4MqLBBqZ-vOE9y`9 zU;{E5)!E+>!Cef1`aPZR^{H7omzBnMZnU*0gT{+S!AjiTx`-3I|N1NJIE*LlOfvP% z?5xRh+wy9cT=`x7_b!xUmNtDxHa1)D-^bPM z?!0m)1FMGrht~op3m@CtOou88Oy+6{PgT7p+v`{6an|$jsSH%HGfX(~^AT6{v${$w z4XK+<3aZe}9`QuYmN$L$Tq=lmMce`*MFK`Zu;6uqy=U0$`vd_RL5FMCDofsBBLq7N zu3^fBD}Q{CF&y}w`Y!8T1?p&4vF=5s{JP<>>rcbIwz$gkk2r->xV{L$M{c#;Lbk`K z_P_3kd7+OCPd#o#rS5F>tUVLPB{qx>bo4s>tF`HPc~5?g_n#ZzzgA)4vx(*d`ON%U z7IwhAZ#Ir`c6D1?*THrsu`FS|ZAdL|Xs`uN_7eLm=ZDcX2kNl<7k6F0cfCt)aQ!iTK7gWjaTck-E! z>9|i@cC^^|J;eUBI?1m@e|uE#GGze)X`_I#X_sC8qKwI_{$97;R7-ms$3-bCGn*TL zDHqE9_%>RxzBp!JpkM4mc`(1GV%%=pwNOx}3UF6GYFQc@p*SyQHKWj#UPp+26cia> zovd`fmn-Z8sJQ1zT9&BNfz~_Usd#>4)Pjxen}-7U|dK`N~^8P z^rz2I<}$GgL@QuEgFD|jy7HqG5SgKuVmw=K*aF5ThSocjCB~CTwGq|yujTFkty1eR z(9Ht+1U}Ki4=Z}ATjA(jCFmv+>V|~!Y+L@L1};e!c|6~Y^BF0qVcr8rwM5sx&Xf_K zrg{{5%4Yaq&}%rd1)V%bXFvVwBQlAgTg9AshQ;^mpB^4KlWp2?t2q^P0d5(DoX%vKjx6$NlO-;obwmDoVr=-oHAck$JblKn zDFrKK7$YvZbweN5sPO5u`jg{0&q{2Um}0`YXY!$oS*vLGF0U2PBNe_wjfT7!PfPB- zM}H2f5UK~Sz0;*4wuW-%F-hM%9pV36i~rTn0~6I121ob7(G8B3$Dsd87fCz`<+zf6 z@Mkg40v@d^Dr8fp2nuh9oVLDCFb!~w&ialUvRYEF6=`f0iC zKc4faZL0zDp6me}J&W_e(S>kuM@2e-=9ri^}l-f;ZjfcP&6IJZb9@Ox3l^X)mkkpX4aGxqc8)-1cUpjUnfU)SWh;)8KnEl%@G zcNh)8<6-%PYUnaE8SOjJ1E(48Vrx3^V`8XNzDr_-4dd2T7U37RJi2K=J#H?$D>tG? z$$yGRpdj(D2hp>xRc9AbN!=d&pZ|_){-5X8LA8yz#KgkE0s@ZyN#FR1zHt+dW>SKh zE|fbsL#IB|H#W`$eAkT30B7p>q&)+nQ;nJdTBl3jIBUj5`O!`e8hGtR z2)g0A3|e{;wQdeg_?0wFw8^x5fd%X@yk?>g-mt(zyeXul_x;739ZLNLoqNCpAgr$i zq9C@xA+7T@A+KU)M?&aUXZAkhCSrDPv~Fa|%PY_nk!40ug}k-Evg%QX|I%_8rCRnU z6%n$j`6yIB;fI|c8T9ix8QFJe-6vanC3KuJRX4f`=2CmIESK36XzHYxxa(R}x&GNz z*g9Alw>R@9gECST!$!k;R*qVI`RCqIH4|N^-_XG4?NZ7xU-kApHHC|uMLVjdos=u; z39Dzuv9Z&p5eOmm1YJme$O1hQ(n%Uvmp>ii7D9;%2j`nvf+<5bcYf}XnV43(gqKL; z2jlz&{{GF_pD_&cEli8;>iP;}T77?Jb(Y-`wQ6YwgpF$5zal~ftB5^co9I^+QI{BU ze< zILi+D_t>!~+I}MVJ@rx>z3>u>%RU^{DVwP`h5Ag+P?OlA!V6mGW^pYR4S8_%D$k+{ zX`4*i`+x?aD6MP-M-=Fy0S>CQVq2q?4srA`BCC1WN0;Cuyz9u~C+u}kHf*%`g<7y8 zS4Lf;UnP*WCMykC2kApn6_QG>MKFQN2)YD6Y`&jOP}J_cC0iV|RB!ep;-T%;GUQ!0l1EZaK&B*FaY3>9e)^PjWVG8aVJJcD`qO!?{D)j8PX~?_{qwy%jiBa`HOk3N1U@&m z&n_ecjy{~( z&d<|BZq0f!mA)}EI%SN&I@#sta!68CG$Mr-;oCQfkx-!Vey3Q0*fNq`CI1gIQyh^- zJCkEeMps9aSDF9$?XdI=>v%o&VL z9Rko@vNxpNeIY-nK3Em!hV!2+!ZFD@u#g^->m}9Fjkm6^QW^yNq?yFVI!w1}6z^Pe zrZco2NyKXdf$xF28ly;C=qu&Bz9Z3r)~ zEZB7w{(~@X{MhyF<;8|yb)y90>IN;VuS5lDL4-Ny>t4;g;23YK8zEv&s!`WSux{)L zI0dS?IH9}})bJ+w!OWAeG`0ra-JhR5g$XiMCU88lrU$CIZ~ngxK~96dfB8>Rj!tx{ XFLI!QA%5WhgMp|jYu+qGnmze%MQ5MJ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_1500.png b/Notebooks/1_N_horizon 3/sim_1500.png new file mode 100644 index 0000000000000000000000000000000000000000..48f591de3de1f63a54f380a0499aee375511b4e3 GIT binary patch literal 16200 zcmd_RXH=6>)Fw(5B_KwnHw9a$B2uNOGzkI{nt=2sz4xwC6a|6M5flgzkluR)1O=sr z-a?lS()&FDzxn37_s5<2Gi%MvT0|l5c~9AAmuElwoVU-EBM1mc zgb4@;U!Fe)zA4I37zh7}ILkbDR<$#8b~AJ|B~UbUwzsx(wze?3=4$HbWMOB^&vT!L zkL%h?XJ>mSQC?n~|JH!V&e5EA5KHwLbaKJ|iIx)q0ptq)Lr9R2L`Og%Q7SL}NXF8V8m4VKn4x8%p`VMzE+tyTL~6uf zh1`DMd_+vDszm|&E+C-dNciZ5p;_KI>rQ+;eo?|-w4z@!feEJPyh2H+OS^5Y+?yOOzIp#XP zain91ztmX|$%MhDty{&3FP=U^dj0Rxks1+nU8yUVhi#14)AuQQQHL42ZX~^=x*!^J zo9&id(_0(&V+ZKE^B3iCyRy~YkSv?N9rkzIJ7FO@?31G*?l876Ti3&^5O)r?vCt5C zXrZZ2EtP!a-yc9W>6f3tw!YRAo)BK-7!s_*ZVAvr)o0cimT?Za`?x}lZOIoSJ22Ew znS(r%7=lEC7J~YBA&&^4g;0CQn$KsUyTrRr!!@L!x1adlF5Y0{V4GYDahG75m20Ae zc2yVT`$?yV2w!K@3kxY{o5Y6Du|SL2jSQs^Q~$hZk!zBII><Lc4P9+xG%fer|>g++gD&*e3B+ z$y%ok+)fDzc?&K4e0P5`B-QDNhb@m|N&kiWk%pX7Ix_DmY?R8o;BW0kXczG=*V+-X z`vDAv#xP?F18)TrDW@ZCpTc|ylE}R8u}Kti!0x`5Cb{#Q+N(Wzs-HAtNy@0pVfA zvwlI$tciY!Jd9bPC*n@**XaXsx{3<}1a$SU5`0OX5_l3O5^9z>wijad1NQ|5cTk3N?$>SDVo&J4G(`(NX z5uO=Y%Tp#k@QLH~eP$TSEnqHmTOkrVk2fi7VG@zI5bC}VYV*35zy0&#c}7V%%;zH_ zfuII*2t#dp!sn@rc-Mw$OMRFtxKJhcQJdyC3!Hz*0LcKWusCYd7C!HSGsn!m3-b{` zIm^J&w@{nD@cBw)cN4NZ7={w^Ke-7p>T7C*p@tD~7mO!omIbWfW@rA|ab}rgJIdr+ za|;4q3PZ)iP~|!nUf0%);Pd5yJ9~8Y{PxdP5~~q#Dw_SNYD^xqaL=-)pDbYc$17w< zWFTyuV`=dMmt~(Xv|t6k5_<#P!x>ze7kMK(iaS7uJvHy84)kjPl!GeaCLbnAe_KQ?rTM)DS$;5nY#iL-^aUygJ*xAL?#4;eVK=Z8($ zVHq+_Iv8bDc)i6$lHWDP+I7D`*!}*fKv@Nym(@25oTRz9hBVZLTkZ*DAje=&2j~00 zZd1cyN7aAkCD|u~O$b}U1KfTPB^xaghC;$MOY|etl{%onzqxSn5+7tD1@Bb3aK3MU z&YUQ#qW!Q;sW~UGfA7*j)*qKX1sJum$DNC^*ACc{{jbANTmBtUiaHj#N7WB^_HPH4 z-rv7(rRx35(FzPFgmOl}(X4|{V)bR4S`z9f8eT@TrX$NpUD+8?4lg(b>L|oIm*z(K zQJbh#LCQ1%w$$5$Y$^GIextn~Umos>6RXKI^~oGaUJz4pKa`&E@L?AB52snii}g(5 zE6FQ9`(AGg`EvzImj7)}@LU}Yv={0iJUB$}mWiB=$TeT@33;AhP%$r;m^tE{LtI%M%CbPg5*FrY$t2<_=#i-E)>+f;}s-4R6f^&PH@`#!ks1~0$ZB@US6`w$jr;e)~b8(Zx1wxngDAssaBCz6;Y zWVdSWk=RZ71#5hWS$OWNak=$23pTjMD4aXfG(&FTc zFt}TvR~_58hz-b!N?BLf4j$_*wP1G0HF@^T;1t^b{Kd^y!@L;dh{YZXDv}nZtQtn>2F(6Nb{iE1K9!UcaJqG3vzdiw*BnOsvfX4FKo9ugWRPWe38dK4*1s1JvU6Fz&s zFL6xs1h)uB^hat!*B=-Fd-X!)$wc1ZPGSGg z;EIfIcrk7PU3ZrjgF+?mSg$feudq)JHu&Tt`Z@5iw0mgsYVZS7&Y7? z<_qQ(vRek~AlS)?a@K%ZMdPEdg^dG=T)cd|8@X~0q+Gh}@_|d>az9~kiJ!}9lrE(t z4!d_18V%(OwWi*F3q#2TD3ZsH=hRb-H{aw^!M8~-&CbS>zFby-^%6<38xiCBLI!M2 z!#{*X1w;{gZvH8px-GH(whV^AHx{jk=Qpp5M=XF?S>i|`+zK|#Q2Ob)ZDPI9kUAL3 z1KJg9?JTFz@}9Vvkb+T=>vtSq+UNp)uIXVn*z`DDD78J5RABtjuFSiRuS1@b4UoB$ zR}j8MLT%J1Y@S{mJ^68{9o=XdOlf773k7_J-E=O6kWKVoYjmBg+; zrO-&Hy_A)@biqUrqv*XX3c6FU)JoY%SxV}c-}?Ft7v;Wz@KpFedVP-1~8ms2o{BELul zccT<&&rz}b>ii-la~$VAFNInwy>mG z_2=Qc=F%!6@wdvW%+R%}Tx)=c%q2PX?TXz_vM0iSK9X`q-BL74`yi-2wUL*HybQa^ z!J&P8vKFiBN}qCaI5$65djL-<&d3PL=BVFxr3pKgS2}f^kR1!7O$k)D+LhD*yq>CG z?@REWj_(yczZpSivAJ@)=pvWvh=bhrpgC)XVq$X$lzqT5C%0lM?18_joGOz$F5qdh zm`8lS*z`xK0f!c5`ui_0O*MZY#w`_h%pUEGoB!$j!sPUekKl#h(biH)j}l%Os!Ae( zLqpov7{Bn@;~s7gS@E)X{`nH^n=iTdQ<+Y}TUaWHVq(OpgB16jR)6|R$}Y+6WOue< zn{wtBCMSxWQ8(7=)w%~dcC`XM8H&WXnvM3U0poDf)!H4i#oY4Q{`%uB@{a1?g2VPh z7MX>O7ay$sZR6cQ@%p?qYz*Ri+4(uhHCEqOB)@K-gIzAnWco)0rR1Wg(5Um37FIto z0{lPYyUjv$B91rAKe^C!NS=rtESIxBSgBz5TB*FPEWU+>pKu|0&p>hsQJP%%>`bh_ z84eSWieptrlE1q_t1Uz zcVbKBTymQfm3ULr+bf!$<5 zL9s2Y>fw60pUDCi{laq|rI_*iSF(6w^-5J}FspAI>+xD}&Hh48oA_#vvgB{DnJtpX z>r`bUjtV>#I3oNcmj;VHZ~IWj+wSGVj>Y2!t**05V^)BtZk4lP{n0kD!5Z$H^YT#i!h$88Hu9yf?92)UEIr^0(5;f5nOuTk{uv)y{%((F>W0v z_#M}^Z)C;5E(*ZsuH*C*yjft;sygDUF*>$Cd8(JX?GJ%t!BjX*WueiAV>KRPKo}JC z_e`RFU4fj1qobpN#y&VaTJ@V-YoxLp*Z~Hg*IkKZ{ijctIXF4-n!_&p9>3lfZlf-3 zBuu@%y_A~MSy@>x+30!%&KGxE2UlYjZ_jJ7mVNj}|K83i3k zhb|-F@0lOOu%7I;D3*=84%_6on0`cF9^Y$s6P`h;CRqEef2U;}Yx_IK$mJyy8S;F^ z!)x*}BbShl3uD7k6re0}7aBJ>sPLAhS zcFZh|ps|^m&rHckO?{PHKE~j$Rcux`6Qh&YSGm8l+QI9$r?9ZF;64+r$rz4E#kP_`yZWPwh3p)u zUiv9izxNvvThyw(fAlT{r?fMvCNt=5(g&50iGPF2olBoYX(H(l}g`}4Mr%>$3WCdbD+^+ICxU<-DE zJ=PE9>#l;BV^Y0bW>vI|4=lh6bWs~$b3M}qX4KVAr*-oyu>W5P0uX=WFp;2~ysCG0 z-cyW}2Ub>A=&xU2%xvg6{T65&l?2`67i(L+d=7)oOs;Cp@6xcev=mhnUl?Kfh9_ar zhc6s2JWaql52woyZkHN#i0@1Tzi#|@`saHlkw}0u6284AQ`OOFE3ez)4x(ah|9D-h z0{CdcConv~2(&35jUm1$?BB2NS3B_n?=YI*(-RzS<@=ciGrQuVQVwsV$$pr`htceu zyh(G(1A3|8i>9qen4+u}SVE|->tNt@si3v^4(}jfPB{}v_=xvlx#S8l*+mo3F6WRX z)@{Y9T_m`6dngnSCMdV?Q3AyAk_inht)B|KwN3a>mP#64i}AzZ_3YyZqrIX2x@NHY zW(^&i-n*$X+PY_+qP1gf!oCUm;d%>L^~OYF|1MTQKmf#h@l#)G(Ualujg)q6I!f7b zxwOCNcz==KXWuzPIi)?{@5oBeeS*}sc1t7Kci-X|gvP&%`X^OCkx`y@HS6bYe{#Mo zH15qGE_p00H0I8Jbg(mrRaKsO&)<%BS4%*+ieVxv6;lpVgsJdp z&Pwe_c{%X9G+;%*zrX>Xf2#_$|1p?nH1U@aqJ^+XKdX+vWA6o!cL!E`9-SAFq%7dR{h_tD4%- zGcs`ot(ng?vfJTj5XxONXZ6{gGR#QabMvKp5&{5(JcD0xd>~c>$0*(8*pY(JHcV9S zDz(zQro&X4kztnmi8i5b&S+!y_f)9L0e20mW1?r?^8qXEKu*8oF6!}a{(>R2t__j>?O8S9a|)vuqTSL?}V+In?+ z#7P;zCdvEnE1s+7IIW-*VjY{Ha`qss^4sGuLCe6AFrMuAowNWj-?qCxHE0|z-Ut7H z0NxT0gj$t-DjXUqwX*meO?u{Rrkk!PPviX$Fy3n@=@bc{isiE5-CyPsjUbT_!b2WR z0I?1Q1jOY=05F6%JEhPd8c%%?GMj9A%jDeoh{<)paK!gu`Gv!GYQ?b1m8wNy0Q)=u zHpT<@-DNw!>b|kI?BoNyHuYpG&jGue!DH>B2u?gG*57TQ-TkTT`xp$~XZZn9XixXd z<88?AfN^40!UcZ^7%D}s=^2jWGvhPjq!>g(S&b7VNDh1RXSskwiylf6aT)-bnMU6F z%~%u2JDOnns9WDQ=bx3Fd!v?*8qW`ji$^eMq(+v!!zYH8{`{)&aG9nm%&(BR^Dl@F zuc4fkrM;`xyrnNJB7uO0loYPZ9zD4zZ~D_e?N>T-mT-eSoK~)h$w2iQ;UaZHE>(?o z0{Klaw7m8KK8cmyBr79hAypz<`4FNIKyFapt$qvtw0lThWq}AQ2ZXj4WH64>t%&Dz8N@>`9CdnG|&RUIpsLX0H4 zk%r;02u2>$!JbOKOCVf%e+Iv@oXo1K1VZ9-$SMkXW+Wlt5MYX=snMek%FMaJV~|DD z_WvKr{e!jrkCrvU?p=W<$~C2j#9e_ZOE>k0ZutmU^2jl$iPrkkOMtl z-RM(+=jwvZHimYw4zRdir8~bw4-J=XB8KwSq<_bE5m`bb@+$4AjI=V&47Z8w9)_xr zZW6f?1`!KMH)+67*rf_QVN*6>6zZC%jejA%cj`Qz{OL8BXx>G3a|ix*3eZ8AF+3x) z#vTqJyDO001>i@*XTLud^yfGxTLC42$-B@a8Y>&hGUuZ7s0BhvL38m@hKI*TEH zRki=BS$6*8(oOaLH!%aVJ*uaxZRG^rL?IH$r8%o5$CFF(0Bw0TQo&%?o=&950l=2K zKBC?S!>AkuM76^yY)e06lwb-IW`hV^tCpM$v93;6`i7@%K^equ`bovaIpIV5-NQM< z!`&s1^$=j#zfa3h2wxOQxa38*(dg0Hj^LCNrsMGw{*jNO^#9!Z-<4|nlOwIq4m+cF z-E7Nza1Z~CF$)fotW*%!9hz4BZSC&kK#!ggI19Ua?$;srS8A@@QVyb$eB;s|*p)UB zEcs@u@3pG(@9otxowB3Y`Zwj{LE|SZsiiKvH=`kE<1lx0qt-g5KBy|s{`y%)#dJRN z(>XFG0Y8_yp`$m35OJ}RKlw7SL-Wlz$ zc=#tL-|SHn09Ruk_PBt%&VPnJDLM9OY5j0$h21ry070$b+c~S%!$?t*v(?%x?#(gw zcgKm*$8i1Z`%cGyixE|La$K<9Y@^dCf7|p+Ghd6zqBFpggS{FzqAAbbvg+?f-F2~? zQdds)6&*f)tBldCPY7i2TIxDpG-UF1r}@g{`Eq;z%I(J|$ICje(*=!BD~=YwYqzzh zh`wC8WfE(?+)XO`{$M7Tl|u5+kj9dNIl*S}&pE1~V3yXr?xLMB`-A1d+Vqior+yM! zWu9Wggj&ZC5AHK8=8roEbV~TZb!Qd^Epx1MKk^wD?X1s9HeL@#R)MtT-|nT|R4`~o zHb0w+H!oTqwkFO@Ne*PFUhX@FyeW(JJu1S@`V-@dQv$8>0Vi zlZ@Y7FswU{kA1jqKEocX0``5-^QyQfvaEd@n??rU5|bAfsA_RNCy?A%k?6Y;L2{-w zpBjhl%+vT+syG>Q*N3bIV|R3210XyJ|6cVt8!_hIWIm%vAdc1#qR{68LvEk>`LR9 z`<+v|zM@n3b% zSBpX+Z(_Rhs?9q@(!IS;%+}oL3Ssi z(4b6!j>^srobO=-Gnrx?+~zLxFElQGXgvJ{aFpGB=$T>59Ik2LHWrH|k1kvkF9FK= zDVb1i4^7zq6edmsT_oaXHv)CZpO1G7dDl|9WA1>Gz+0{taom?Y=ROT0gM`N4w895$ zgev}|EBSan^bRWN`bs6z*$r(KF+@PsI_8 z9K7P582w|S7M8@^#3BR2B)>X#$MnkpAgV&Uu2j$qf3hBGbqna?bQt-G`AMKt@fl#k zgN=)|B7{aIV1ck?QrQL6XcMe&5XM2Qxu}A+8Gb$XRytTjg#NkI{X@N z-_}M~8~$_+PDUcE>b7#1+@_JL2ID@(pMQM&;!KO!IuPY{yq#Q5-uG>}p zJrG#mbliP3HX6n&aWH7T*$g|2=arz6&K?Y@c3 z`P2G;?0ceqc6=yZ39Ud&C&>b|&i8O?2~nh}cOg0&mG`vu=2hSn^VL8A0X?f>X*(4SE2$9iG-H$pOuq7aw?TI$~hgsrf%29UA%Pc%;aU@va_ z3Ab!GljL86*OUegBy{2oN}?BdD${|Gng6Y5Mg|BOz==Cy#qF<(JA#mS?{!@bWEc1d z*3I#!o3uGRSg#g08EW{A2rtm0A`s$knw~ArLsjcS{h_I=OEiS{O(0}qe-T*XLi(9V zVBu`IR}c^$6UX1kgyLd!iY&Mgx2G9S;Wg6SJo!Su9t3#*gOx-@tq9TUa`tyLSG@iT z=;<61E~;somGcbx?C_|6?LobAsZtYITGY^eB#o>x0W(7{`%FLv)iuII$+w3%tA_xy zjLL&sYMx_ijg}PqdzngXqZwY_(GU)=qHg%O-!fW#pYjRAkPAB9>u5W*Af4|CdOTJ< zKhOCRK5Z8bk)jH$UJZIp6(qjx|MrSuPA*;ywrn2qUy3gOmyi=4l0ra6sNg>ra0LN} z#Jc5y8XXGMA4?p*=gfYhvU1;PWEj&&v>hl|dDzKwvtC^p*VhJrE$sA~h9@rRY}f6r z=VWKICA?uBeJAyCVgF)%EXN@<-&!|)tRZPq9%&mw-DM2?}xDjb|Zdt ze^s2S%V1Z{=4?cZ0X3MJeS6ygaA2#o)@p#qkEu$1aS!){HZu!f1^>?&mw-rkhFyZ< z3J}=-2pN)5a`rnza77!MxT|E>R=LqLuW!l_%5V6zy%+o`o5AI6cVQz&kn+Wtj&@tN zSxhwbqn&+~o4@5E?k6VqswVc_1EFtD#dnvN%EN^jfTi2hp8XPNeeO7`xa57yqxU6P$@ZciBKHGe_@`nix4sld)FTMpxS`q5WQudqS>LQAt@?LKSkf|CZ&#WdSf1 zV~egMF9l2TF`gzx7`T?~*JDosGMp5*o7K|)7ar81u(ctei z7f$%^ljjweltj_^xit8vQOHOOXjSk@pqv%DwhJ)C0fpXnr97 zjy(0vrJ=%O?{p+7YpKhJM^6-Om=z#~aD^{V6d}Vg7hWt3m$@gK4hvjxc-MY(+^uaX z@zT{>w-}Q-ShkH&?{d7;U6A|I&vks$LtSR-eB7)J!wz+Lq?T*CVyF!VN0v2BbICx4 zmd*FMy!)7l8?b8cr8gJs2Mq21{wx6aq;zCvH~q!J^YLdT&1?s;hozV#WcLY;%{Y}X zWPlU3sfS*O8iGrAqBsuNsxR7NCvUW!#-(8lHbgICcQmVT2&-Ql<4W=@^+|X37a+)1Qk$h zj83R(j^N`ivydRqC>7iqPAo@TQFtvhChR-;7L))L7)td~9KL_SZDEn~k-sYRnXcBO z*jDoF91ik&A!=tdhjos%sm>Rh{_K50>c9;W-FM~c>Yb%UuNJcJSgNXEGX^UmbGd$> zc+{zt0>KHGR0Z0KW6wXm5T42#5Rtqpa*npSafXEvU_ejd795@3^=zxQtJ*ivmG9nt ze#KSs<^8KfPZ%obbDHoa3x-!*j7|6HNmYm8iB-}z8xbNh>}D}EE3sIt=}xH&)nQraNDw3Z91#73B zb+S`f)LCP=&{WFghChM@Toj3;XCKK!CVoafcJHRkz!s)=+FBGpoUOenpx8c2H)JBf z1+&)gRWQnbzmWPlosR@IR5sGZl}o~*t|(WG4dzmm?N*b%{?cMZv-fdz_PeFZ*s&O( zemFVFR#``UDymIVK0+k!6;pN3;sYK{rJwuIlg9C942A72$@867=(&{6CuVW}$vdfp zTVE7?D!LzEQ;iC|2UgcmmLMweLc8SwE0*iZ_I)b z-*=T^w~4tr)EmsV1#HIPrG=v4k%heC@KeQC8H-J7-29)i3UGGCXxZO#JIs^ikJz#wq1>?e;6L)j;1P5Hm}(PecFE zLsOY&S}O6O^YE?37Oq?yhU}}sH{0F_v|02I2K~UxiF`Zr&+HN#^c4rT!qb-qjH%*;p%VLDAbZTchsTBKN_p-_ zabaQ{8PAW-$H&kN+AzE?VfxC2Mq3q){pwCt;b~J+fn!k_nolij?3lP!RW*m5y?m;N zuqF``Lqn5JSd~|hy85zZnD``1i7Cg7pN zp$*XqG>tK4%Lz;QoSvf^L%EMDdZuejj4L))A(9{VnmL9nZpYmt1sqaF&WH=`Qkf23 z84}Kzj>n3;Uq&mrct^B`z&wg3!Zew*6^Cshs+ne?VJp>k0IBgA<2MR%hS8#>%`du% zmK+}ye>AQ?!hL>?+h3drVaK<4OpW4s2%>)^_M3GPsQZ#USWVJ3G##k`2sZcQ86dXM zVzmCqEm$?~Yu^g9?~*AQy!k%86mteUu|+GR6J^7=tTfz%@qps?d(+Q?XU@=HdY{XD zWNu?u4(;LeZQ%P~_z0*~xxW*oIRo$Af7R76yuO6BUX6QmjSYc!eZ|iF!MQWwoK79; z&w6wRB2u?b`Ml)3Z7sFuHkXU(W!%5s)g7AY*M`R%#*fb(ED>+a#a6LhI3sgzqdB; z60gQmqp$qCqL5n$@b)*dFWKZ0TQK)OUl5wk;~(LV z>I0dU%$AK@&UhLS?#Fad^!)MR9R6AJzh|y^c_&j;uaL_zlWOYgF1*9OJxk;w`;xc% zJ2JAC>LrsrISzMQJ|fULh}#BdXk5GcEKC7*$f-TR&Zq68luaHuV|jW|q4k-Iz~KZ{ zClL8&=31Z5ATpYxJ}BE}HxZw}%3Cs0Q`>*1?yMF%{3BOje;pjX>MXTFbE?uio}F(% zFH2*n{LX`#{D>oj$)12q@5Ms48ou81RN9&a8pUR$gg;fP&-?#5Rf@hMa^$=_x>}U; zb*Y%@SBn1RD>Ym2o-(C9I8V!HK#OaG7INDQ+WWyRtZ>H-PN(ycG;V45Ez~#_-dHx= zKq+*8RMO(|3rBeiOI2`71P?rGkln_CEujJUqQ*CjOQ0Dzeu_*#trmP5{zld)zJnRI zYgCalg+x52v1M`~pN%u|21x46CgrZ~4Ro@^WQjTEYX_reaK8;2d7x)EIg)g>;>ar++N%ZO)@|6)LG= zC`A9~i{#co_#s<^QK3hu;BEV_Jl+=cn38 zu}?;X#8KlnJ`>Rgm_a=IW`|ielj+&?r{W*UTNM6j2jE70M(YE+>)776D@HCl{Tl{%l5Kx3nv@}Zm5qz zw&`b}i>O%*IK8#3@%i+1D*))7=pZ8qcW?I21-3K*Qf^q z+6K0G5qHEC(BQ|7>=W(B-QkC>-!>pAP?7#c+D@uO<$o1~X^oK~*G zEKU2vmbF7pdt3ei@qf=vExaheB{aOW5<}d@*^Yay4>Z{)=R@4t*mz*-KBwX+ zB_$5~yYaxFev%T(cUhQ@E)u~&@e|^RWn?30KfC_FimWw;(n%Ca6b0XDbV{ruPDjt> zkpn&aXK5AD_+Lt^|E(2qSo?&aft`N{-FauiF)q_bXKyQ>miYfWUGOD7%&?yy0QJXdnJ>!3W#P^-c{Ex$Y|AM+axOezPj6rjOsHAnN*t@X)U+;eZ@kbAX6Xk#0K0G_0 ze&h5V!7I>FHY06mF&2E~p6cE9Rv5UJwr)L9rwM7H`VbNfX=x7&VGrG=3<;5gw48{r zRh1wb2OcMyvl}gCvy8_(uO08}O4nS%JMk}8d&_eOviahA*`|h&isC_6Nn`FmIG@?M zucWAz;?l0UPx54|y!bB(z>1}Rac%y*0(Dr(W*Vn=S(Dgs>KjBMYdox?7%x5SXqd9Z zsTjmIY$*5_L&7`G@z_r624MOETaNraFy{j2ga}eN#p=j+5s;RhbH}#YX{9pS&NVM7EkEzEGLU>?pv*}@8<+67Cm%oqi;47rF zbgkm{8e69wc>g_k-`uxdbT459#lBNa@qOh-PCwGMjf!A36omgYp^N#TOOkB0Ne`FC|(2lQ?FDb!_qB8wQG zva+z%r{!T-{lFIAW>NPPLPnyK>j&M-=3M4J8tyA|U!%s8Qd0$~@mEnG?#yv<2+xuN zt0=%*`8OOja|(ATnOH1unE3sm$v|3?SI-e8(hO0ChFFmg3z6#ah${M2YlN>ZiN5sf zt^R!X{kl1{%f)5fxDw`&Qrg@x;ON{bkuwLjgBjJKvAx@#_j+4X9PGy(mlT<%StwuP z()e}SOr)Of*!n_&k48s_)@?J)7r|&mwjzv@RFK&9UC6S=78A6Kc9+=xF&rJnHL5#{ zBF`6MM>!iEeaS7c+B)r&7USlxOwjlZ@d349t;TMe z#!1WaR!mrE$d-S#|0)W}0<-qLGH{J8o4iAaSkGo+tr9aU)3G?5yR`mEgKUu(0pCE( zO5w^eN;y02t(tH5zY6#^Ydj`fbUwj9qAfL!Q28~ zAq#-6+#o>3l1ZU@^6fB z6SL>NE6V06Q}$}(Ws!$BrRRYoC_w5csetkj@YnxmU4#A?T>oco cc%QIpA^EQV1l0v_tDQhzMoBvFvB9hV2Z%mOSpWb4 literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_15000.png b/Notebooks/1_N_horizon 3/sim_15000.png new file mode 100644 index 0000000000000000000000000000000000000000..48cdc6776ee327397a24dc85988083dc0b48edfe GIT binary patch literal 18107 zcmdtKcT|&Iw=Wt%Akr;J2O}y?N)UJS31&L1Wk~t zfV5D82pAxALWi@0@7dqC?>J+eeg3%jj(r?N9S_f{bI#xV&AH~vi@VxtjC7oI5D0`( z{q_xA2;_t;1VZr?N&}u$mgr1NbQ zzwy@t?{wn0S9*q3#?jG`bd$iV$9=b{Pv41cC7cUu_R@29l|EDhhfQI|{nb0bO?C}%bpB&D|ujPD}!vA^c zg*6&RemVYhZ;Cz+f>JY67FW+j#f-i1!}u(X1oHI`OXeMX=o zbgGU8;SaUYhFaKTnpqIrx1bhoyB_{f*v5~ogo{Ea$(uS)3&%u6vz1Y9=SMo!ST{5; zA)wTCD;x)S8$3VymC|D1)pct=WO`cpa>I2g35Hteb^z4k^mV8ObOnXCHD{6F+xEcJ z=|h}ov?=o_olYnZYfP%g=iHD4@)3H8fcn5fJ|Ljtxkr}{qgh(tY&5&TLf8@BW>5<& zsD&MLN);Az9{~j~R>4A!dTIx)U?JhEP?=Dc>fEEvqp`>XDg;!84pzhnD`JBANr%Kv z6333{VD=Oxj4ZZt7BeAGr|;O55>|D(9{;Zb-*q4-PdXT4r@1{76#BMdHfZ8OTYA?*Y5VT zDs&6XBL`*H$Upr^g%LKEKGDK|u!G#%sDr>U%NX_}x~oe^Iy?yI3>p{o0U7B5$Akwp z1ikDJZ)EkphS^SINAf$1I_pBGwl@wnf{!BMB@yrvn!_`-i`Q+z{tU4LbxtthyR<33 zYE8u-T%2=grPBW)=pk*k*Vq#JbsDlN-tL6ekJ!MLq^{Vh~mlt0jd_&nYc zA0dhJCX?oP)$6K}t1r>d(TN1kQcYU=Es7S+z+Nw^$%Wr?ah~^fE5jl5{T{qU1cLKy zC`;=PjwZd!ln!tVn`E^A>w(^cjlF&z1HnI($+!w~w!Vbi@nB(baPpwx(fB3sOm3q%zaE@@9DqyVPLvtNCE~Il&WyPxhJ8X^XmKueqhNwBE(v(rr@| z?#DWfmpc8Z?CKrX*UGx|+dx|&W5mDe!Qr1 z()(J|zP)c#cC;%#C6nZ(pdX*ZA5Vtq5f3S66YPy7SjcOZ)-(wk+$oq|7d06+fmh6T*x=Pfxs!+9ZJMWv}o9OQx3*wMVun?IL7P??@ ziZ4ngerD34EMg3>$UA(^i4U%S8$6JQg^a*Lgb3HI6bfM?JXnv?RY!A6=+sYlF4nMt zoMM5;-0Qn6tshjOH*O5d0MuQj=SHWMzIYa$PpB+Y)QN%ej)f@k&FP2RU|YKCZBa@`L*3Z-Xxr#NxdBL0DC&N6zSP zBpjnpa*moJtXETM1kv7RydV5vuURQ4^ST={(uKD0h34eV_xc!lJeND8Wq`Wvvq4ex z*PP2d#IH>`VJ9;v#^Ox_w0tM)(C=7Uwed%{t0n^r_sw7X3oVgYctuLnQun z>Ou7e2^S=@73guy4>lR8qPfo^+L>WjE=r5+`NJ{TU<(3v)k87K>FGI*1TuFh)MtI% z0NHG2M{-GshDfl~N`*-H1okq*j46yM?wXngtgT}CCS`8k0X_CvIDUFYon{#+JyN2& zhYjKn|H5vk3Uv#n588x$ONoHwrR>Jn2d2nCs1&blN;_JasXoOc5vj z^hoZ;C2RrO z`ldcs$qp(zUv*NhIdJypX=N7_{4I1pPr_mJYDxY4d#dJuz->}Zi%Vbtsd>*a({D{Z;^oVck2YtzySpJ{z6-?%k2=8sfh(cnep9if>&;tDF-6SB5ikWeXf`G&AWHcdi|H&(*4%HHj=7JttJ|M zx?W4a%#Klh-LOygt;kqG8HTnXQ6TskR`j#g7%JN2Y1^8^RO(e5-8mPT32%P8!6FON z;z(DfQbT32!afkiOhu;{6(0OG{VHq!Vx@KOtXtL|w|LXWX*OeL3V|#?N$U)cbG=Gi zV*xdx@n8NBchXejdJl4@Bayt67{6cqiYsU;l%nHYPX>9rsOit$H8lL1+`MsVsbN`p zsc~Jqd4EQn@0<1EHdf^cFu|@Yl`Jl&#<=b@nf1-mz>K~=-E(5b?ZleNp7=`|+u%`m z8?#DRYbgEK-rhM9&dC}`&DgD5T5*4+ZOm)Ze@`i7b^^6L^M%dqG1!nR#B?|S0FFXiT=#yI}qeoi+xVJo~ao;VADCDcRI2% ztyW(Xn|!;^sOh9BP8H%gV~uUvT^Q_++R)T3cIt>fk{A=FOWR z5{cB~M%wW1t8<%kJv!K0|D7G9tEY!4GOQ$d8%M@zh&Lsa`V;L;s*k3a17!;Yo_}WF z*`HJCrB&JfB!){CH5%M8A(6(-w*=xtSV+F(pzoed09>I!J%R-?y`Rm`+ln$dxNOxw)aOt%x3_E#rxe zJek!OI)2Z9&;SIS^IRPM^ucsfSeaBFQx5R_{rmUZ-A(~*>H--bdq;azj{HiRcWuc) zBP=Xz(Bvx}8X8KwaX>b)wVmF;%nSuDNw1}`9t-I`w{aq_=Dw+EPY?x_K}&#A;Nf~! zD!@Dla2t!m<=Ji*1}xgb${&9{4df_GwpU>h5w8Z*hYwk&u`zQ1p%{VWVDMY#L?3-L zb9nm;ejL*0_!oTmFl~0UX;xTVoC}15j8Up~``Jt7F`H`b$+VRM&`at`*Dx`KUaU4K z&8a!H@P5AQmymU4#rtIIAM-__j6^V^vyMU5}8!!1v^&2~*Km>tPG z`Au_iDEVG}C7_d6QsNl1ITo--^xJOZoBd#RAS@~>+PGk{3_SKd7$$|t>7Mdh&h5!! z3gaW-FFUF)X(Tzfo)mc8z(D*`HDs!B^CorH;YNO?Ne2b4|9}-?z=BLq&5d^t@{5T0 zC+87faGW9WCBL6WJnep>lJ>ux4(SVM@9nh)9#}I|F%_6}?C$RF^X5UTWD|^2;GPjg ztYzQzoVe-Obh+DH&rF;eFTuEFXEtqTq&L9xTh_S6NQD(>S=U)@SK5>WRDUX{q~B=s zc6dkr@ud0!1Vu%yfW||N-M`-)^IPxsTYHtYI5s&rcq<^_5cvB+Bd76&Lturv_wIe- zuui8yhbwQqr8K)Uh1ge_Y(me(Zub9*)fR>Ud zlKsSb=9UBioYB$I?JjHOHlh6V)`7zNJD->XAlD<~L`oau&*&(|$uv$e+7Fk#U4KMI zio^XK2yiHY7C+Sbe-(u@-uyf&j@J$`b5j8h+nR)u?w7{H^VPh_RcCy?r2*pk$olTC!=(K-!Dnr ztY>YeQ*LX_Emht_crFtqCZbma(QPtN-u)iqis7(!25RL+dK$-+^oNy=xpfGwM0+jL z$<21D7iYP4z|86aII0}&^a7Bh4)R%_bs6^r0e*%EUt#yc$ zI?rWzt?jS(uEzxKKPP*5ldyF6;aV4dzHKz^_V{uDwqHjDAi_EqCW;FSb|0n;@Pmv( zJ@N}hVspl>UoQcTo;3gd?j{*nOZ{d}U+8xN3uZiN8iw~t|s{oxTuLLu%RM#{`l_RmPGl}}3*W|LN-!G7nhrD{v%t}w< zBVOO%FfxNXrg{77w@u`3+yr)^yXLn)9m^}$mmSAHwZCrh8EVjQPFt3uc`b3kPA5<6 zxl>>Rwp02KX*&Po`SihZpbFVjkfj5#hZYaKycJkLM$@Tk2OQ?5cys&Y(V^GG!IIaj ztgK$Z-sI-e-8>r(0rp_*OxIuc*fDZmeOhYfgsXNK7#wsZjaXAT6LOPXfhY1@3S2On zq(grd$m#+ROY)9FM$6^74KwD<;)k>BTGlg`7t2ckFH13UYO1OnY6rxxV>$2$1rclB zwp895>GkB@o0VxvZERH3R$RR?SZdZXv@Ak=`H##Wm}Jn&=oJOQk-7`v=iQj1HD_jK zGCJY69P0^}0b=iqVfQDG4)|apO{OZC+Fm5n4Hp-9>}&2S@Moxm-lWAX54g{@!>yJq zz&Bq42B5_IYKKR`He_HcnJM(oFuz7LbY5!nwCR>Kb2cCO*UoaLC^hJG${+2o?|_!Q zU_(?bEMVe|E0k(H9%oB^y6ph@3_xE>Hf{}LcIyd&IQ&2CQ)}l!uf1|FdG+-6T1^^vyXPWP*T}x(sU?v?9hbU(M->L&cLvFwt*8!o;8EWnfHr)g8 zH}ygw6aU(-WD0yJbd~fS8&_`~?qnUM0{ck=!*AF|>E@Zsycs) zLQjAu!j9e#q76aagi5^J@ac+*iQN?4xxSd-MdHfDG3s2sZYKxR}!@m$X zk7R-twq-7rva~*9pYFPnm_zlLIeM(0&QBP#{TTZ8v;hmEmbsR9`%dI)FDzszf5_UZ zT$>!rE-wmw{{8zaOh|yk`Bw`2^doZzUmrE7#YyM0EWz(LEU1E{M+)x(yNb`5utvwV zA)wPi1oSi-8;n9gWgtFij*$_B3HKv-N}?Zoh=mF^z8+GYEsz2=8klE9H^?N1O<6<)(vO`@w&555n!96!RX% z=zPmaoiG;RU}{*%UXTSkEvOKV$zy5#R;2gmMe#pLiYoNz#u_*nIE@#?Q=x~Dky-?Q zt_uBJ@|LSNb;5+@u7pT1r7$TnX`bkzgDLVNyw8U?-_d*diu^_)+sJc%wNMt}ph*h8 z7`P)d>@4I5+6FCz=7EJ|BO}XkKKc-S2na#)vOXk{TM+QW&-rOXS?JV5xoWWNfmsuc zbld)#sk9%dRO_?2kd2oxvQik?N)SyPMf_>O!Vav41px^-apeU(Km<9&7v$E5)jSaq zq;+8W=6It1XqfPSR7O2=V8ZDhYgltSE(n|0JC*Uixo* z(D}d957WQEDKOLLt-0pU7#^*36&rRbEaL?g@y89vLhG{tiS!p0mKsVeMr9FvD*JTL zJ70PePqxWA^-1(7dO|OS?u>}(kheGC(s5ul0FD^5gR>~wf<5s`?9*Nd=;VpRlTT?( zDJR&FMdP@t|CyJ?vhvl|=jqKVw*;dyO?uPkuH79PxZ`tAxiXro!{=2Pd~f^hgT%8> z8Z^m@agyy%3`Ugy7zlivCe-4D#D#zSF{F`$oqAssGt7zDrnw%u>V|3*)ojVQKy%c{KD>I;m@G`zzkc_t>EJ`tvzUOcfOLECYdew zS&Ta*o+BjToLq1r=-WL9{%5*p5rQX{XqJwVcP|$m9s~?+bFW@I9_73kgGsukXJ0s% zsHNaz)vul8F#5HVu*InGx}IC1@qNhm=XW?vOfUt1Sw+6r7LDP3(D64#u5yVU5L?Gz zG~8c*A}!rCZ)-`c@|&yII8RgJ-OwX@XB@dt-l1Dhl`V>Y(I)JL(;ph>sEEW*Cw40s zR#gRKO((iWLq9ZZ>2! zQv+H8zmiqMORl+5Fbf%`=WMS!#>9M0(hsx5?t(WZM!UjZVC(E^fQDX2PnHX->Ae12q7FWYH)R4Tb?I; zU-e!2qV+NFRZL&2Uo_vn5e{#1^XYK?oe(y%J+%g@%3n!1JL|T;^1wW5{a6Og&2t<|u|nB2clCZ9jgv8VMl5hT z?)2pl^lzXvybmzIhP)gn^(I^6Jqo`~^L?mU9f&9fmgWmtTc;!syZd{-2ag=XOY)hC zfc8Sx+hkX{c%w2;N z=GSO)KT2Jig2!?o-^=CYJyXmYyFebDV)4^k-jV0i?PbMpL-X|q^AItKh2M}ys`QY= zFVvb`QW8Hpk@oLvu;_|+SM;xdCY#JC=Zi0uWOMk(g8C4qQsrSonne_Env~W$W-}D4 z-X#h2Hz^*XdUX4AKFs`v&4AuCrKK| zTJg61qIYfCp61O*iLAnG8VQH4>z8A=(J%Nvu*=k@`-NA7WhS8Z;&HySJV?i;4hbdbX=rAk^g zvcBt<3W~K`|6_4viGNNF$h|CKRo$d zB!Xv&yyZ4o;81Ndm4z~!HWBW7mt#(cbE3}Q$X`Qv<2Ef{sr~!uRsHI+02FdgBAJQW zC-`mR7Y43aI;F6OiHmfq@9(fn7er1yycBjGtflW%Pmro^3)fw}VJqzzCL%FTOCimm zrTB#hj?1v77RI0zjd4r(@T;FrBLFn$u1Aw1YO?8wa<^z006cAlH{xBSZMwI z{Uh52qk3+YHy_LFe!~kQ0fNfenhWvMCh6+_{*@0p)a?U-_nq{Pc!aP9ot)>>8Qv`? zCwmJk`4xljJ9oONU6+4)eEjIaLnBq&_;(zY7d0^y+hjef6P%q%8;;Y2u^EVpne zFfqCO_c^iZ{In7_zm}S=kB;&$)X0#1x}7bT!F?Qhe)QJhz_l`WBu`+V3;*VL82T*R zFOQSTVfu-8?>|In-Gobn-7MB@!kxK6UMnx?QY~S>F_uZ>&Q`4oroB4soZis2GG9Ak zh+$=Mxto8_I@id9q0gC_WhREY*R`x%tXJabRPM+p+X+W-$d!dqdo!aH8l3yO=GFXGpDV@5^> z>P5EO**PogtB<`>Ju&K|7uRX9?*&qezbDQ-{)N_k-^oqG51R9nb4gZ)J}wkz!X8Rm z3}CQ#C=?TUS8%>mrI}1o2J(Rc5G3?tv#9*H0ZCH!WHCQ zpL^E5vC)u=Qi6qI;_u$)px;V@PUqRc?zx`;(tPtV7KoVJq;h#0H_C6c;Kh6$bnA8U z_F?(^q;8My#o@Mo%k!HC6Y~{__ni?1V&ax}u_zy3BST@qk*dxDeXkkVR_e(_;jE3tgQ$;ts8ygFwMLUg#A5Cf+ zZKdAtr(3@tGf#vn(j;1+fDyKWtxRf?S!cK+fNAhd{o#>USES5kzcG!03I`Atu&mgb zbC)rAt3|rlRnI3R7~P@s(z2~rkq_%~Kf!0@b*-|hIk$5+DWfpxSLmh(;h?)gNh?qF z-e0EHI&r~Pp$u2FLiwpWBiIe$ z%cF}sjS7mL@~ZM59J3p9Lzt?_OAdwF^z!GOeWk7#CSf3?SiX790v=zguVw72Zn?;N2*y%G)(BPwKYWj+|BO+S!a-s zt=+i5vhN#BA{`6CS==bikY*xh@^*KfK| zWP1g+E;(`#Km(|X8*z^H2+iv_$Pfoh3-e|hlsmm5EbRlDh;Om*ia``t&k z?*+HngSbK(ZHn=&3&p<2eBW0aio-B!JdW5mW0Q*kBOOQUWP~uuDDB zoMaVL4}TjENEP6Q<*Fi{xFKNRqYhD5I-x26;`7UMGf3<*pV?n^2Wt?>)SB(e`y;PNbO)|G2fT&}MM0qLeo=8vz zvAp-}lKN+M8=IF`bE#rx-G2jrU2Ru)smc@(?CP)qKmIC4(SgAlz+8~*Jtdn-)#FEz z;vK!ypW_~C@=3+oWYbFeyGsK%%j@YDWj{XBHJORKZiiCvAxwzx_`L0O9WsRnH!8~4 zFba!X?#HgREuqxoB|k$;eIMHPM8)`B{DGR5Soj3^IQh(s9IpZPfkezZxvEemxrcDs zcu^!%n(4G0!Rcp!17JbCDL8-kL2L~l^XzyHJ3phSL*X}mrK9$|`X`wtO;Kbr_Q6MF z`)gY#gx%Qm^T+RnXyj;0uqKZ*8DpC6ehD^ee4T{YplUrNyXorV?D{?ZH`1tO%MAQls1p5htDY@0jA^t&r4DW+xu8)SLbGA zd-QsgW>y^6@odJ($ERQW{HE-bO*W0Bo3XSM_MzKa%3lnEo!YVd>S~S2rq9l32Yr2I zap>2sam3-4qIB~MFZWkV^jluQ6#C+<0Qr2W_oG6B$5*kcB1u#sjY3eQWA5QJt;=k= zs`q9Hj9aE?EjB!mjGd*k#dx+DQEOuLE#OI93502HY}fZDPDT6oc9w?~#a(9Ap*x*5 zYhCjW8D}uOGDY#Pu(>FoNS@CH^KDMG(HCdZtFNU<)1MQ4W}O-QJ-gE6UJQdQxxhpT z)FbEc8%4$?8gY8t&gf+tREMf1IW8?S!gJpJEfvkt`XPp=l>^K4;S<)HSniE+;7}?VF0x-P>MNW3zm_r^t!>%$4z~BuYs#~*5=DcGM8jOA`$58U z9T&Dn*AVmNnB35v1U9x~R92?|VaN^&M>JyN6YZ8$X}$n%2L_*K;KLJs=vM30rBF z!oux--d%HDOeXL|iIV4%S3kRfv?utbJD5Vx{_;}9cn)PdG^miOm2Lr_&{s+lTV~|J z8R2X?Wb zAo2Yhq(5KP-+%tA5Ebo{hIa=bnR11CMC>}?a$j|0v(#<|@UnjK-_rkDO{$&ymSZHL zn|11)JLxK+dSYPomdSk)Em7jt>gw+UecJc!xU`B3Ew1l%oWL*$BX?7RyV&n{N5X$_ ztGtVEZOf@?CucQk8nR}}lWQa_ub=!eetCPGPpjBrtmUy1fXXSOW!V=U@olI8?n~e1 zRG52Jn71ag3Y=BHBFPs|a@w>5OmAyNj)ueTgb!8&AF5#Lknz`T2Y)i^t^Hbi#OrS( z6=+;b6BOU7n8zy}OF-U#i`{@zaXd2YoAY=w3gVH#i9O1e0847Xjd!+Ww0@4~N6Qsh z$ir_1tgT3v?6q8KoI%AncYYCY``FeoV01{5+3xYe18*_rR%sIDny&g_fd9DcBlj~q z2z27e@#|MsBOlwFqP-;}gK}{T1@nD9Wk|B~;Wqps(4_d<2v-N-ZESmp&E~1i^v{0m z+Nzs?;OL?!|^$p($ybV7hgLl)-@&pOPcvQQw3}sdfiH$qEyL(olTRsXXK2Xpiq}e zPHzO<^(davc&p{5VRc>R2=>Ry7n$_-a#d7K{+ABXP2<&dYQ-8yg)F%vS!F*GJOtm! zEr0uHzZaZ_@&(9ldJq3ei~ggN1awiM1D?EI{7%$Z&10piO;G@jQhT*;jU{|!K_Vq# zjf&fIeZQV(e{cMy&r`zX=t7~nd6~@iqUqfdubZlFTv-R>7Y;WzI42~mPE0mB3tQcc zwjZLXUl8-|Ps6`73n>kd#{J;F`fr#W&t$4$q!8267^X)e<1O4O@FNON;SDo=*wn6S$Jp;+9n*9T-=GEl66p(J@ zGnIVx{dv4h<8{Ld7kJ+s#)_TIzEgBOY|ADNxz^S0nW+U*no zc<;BRBqh5(3_CDY%>&89CDV^d4~@9a-@3rUf8zoif%26*P_bOB<`EQb&%Sujj*stA zqn*3oM^svew~q4(q%Tjqqt5X+9uS?k#w7xkHB;k>5lk=s1+?HCuN35yHr_uvTTYHV%;!Z`=b1|ZGHS~Jr+2vJkC@4!13nfLnh7&YnkJ86tC?F^g7@-l4xiGVJ z|Jx;Q0%!c=6Bh^$)H^GigvL zT+wB|83^={G)5CZ`Yp-p=W-@=Cm2Zb)1~~FnP25U!UwK_kZZP@)T2fzQ5(*tle z(cqS}R=j5hU|%@Ec~vu-(_nNVtJ2C^3c%f^7H@mG4|ZH+&V(|R4)e;8fBiP`Qq!T& zNZ%l@6e7m+(ddO@BC!y1v8hRpr(i&)=KHt4TdHohb`cIlRPN*Cb^$SFVvx{=$*uo+$exRr9#l@_R)TwbVJ4a0W%8fsf;$1Ng zhTU^>hao!6Q?DAGK4r<;jh{x?2<LVN2igW9#GWw%=Kj-GhOjijoDO{n-%87vY^_^2d6GCo{-J+=_h9+{ZZ@AMqwpgm z3*5DWVo=L=e;L$f97^wRmWIRxDq6QPUW)lsBShs2P7MxM#I4uHOfApfjnpw z;E7~{Xp+QMI?^+lWdG)EZd4;=E<-k5Lz}OYfMrm&zx+VSQfc+ZkOY#nIIw$0XHltW zILrLTyg&~~lgk~KMf!q}fEZQ$nVrKxFM;UlUf{d1S`jWZ_ivmB+}i01;x|l>CRen8 z3#$L8r>^aASO{M@%e4@e%&)`OL_<~#z$q`(A^~}TM7cTfiu(47uOGJum0#GnDP8;)VP+Ddq%Fz$ z@5K*h5yu4Nl5g9dA^w|1+{If1ba98b5xr{oR(XfDgIt0!W zk;f%Tfwa}`xP1%!0;r|gfOG9ONgPXZHx@|J;)1gtbPAL=P=On@6()afM>iFo$59uU z{XeQ=_JUy{B0(Y$Q0NMjiF}DC-o0$`lgncR>V4(BE~?RB7)o9O7X=%0m zxmwisNfIwBxlbWWdp<lR8quum7)i zDvq1i*iVw1^WdsM^Exa{_*lgMNgo7XIDYk{kn154jjEj{%N@w0{?iPMx;$JBM(u|8 zfcu=}wx@e}|8*07z#0Js_Z`8->ilCJYK|{=0++v=Sz2Ebw&s=6RRF|1-5t9L3-Nlg z$i;{7R`fqC1veX&2ApknQ`l6Y$-KXJ!Yl1-oWR9!sKsC8niEbw`Pg-4YyYuo{VHq zwXkmiOkjD^zQ&`XXcx5urwm-;#i9u zKjwF*epX`;6Tmty-N^O3{KArVK~JXG2y6?e!k8SxCs>n=^Uy>W0mnCPZ8rHs}N9Lf(q)4!(; ziKd#RltRfK#V$1&H+wO^B6Sn?WRgt{#nD4?tCSr<0>S#ZLs_)9a+1{`y~|kXOq$EF zyHvhs?#508$UFD)MhD8QJdfPu%c&s_?Wp@&W&1Z|D6kv+H7~9x_oKOKqB5VSxl8{ey8#?|296D_pgn+ess$}4qB+<`a7T1KAY9I-QF zO}HjU{5pEBfk!GiGmt_h2PHnVJPzbqV>dH)kftFXUQnPD%Ce>kr4MFAlkYk9H-vp* zAEL~e3}2d-&yT;OZFXUkFL4xHv-aH*231ooQmW9Jyc$00qOMv^tcy}+)>T7CGf+6A z3VnIIYF!3g$0d0N#BbcgEfHmx#}f{pPNp||y}#atoqD3+i(01rigMNcRZ6X?)1W#_0jx=!Mn&oUg8Xr;)}S$aFexdSgxmdv(qF ztDKloPp7Q8CR7m9TYtCRiO>L>$z_Vb7`SrEq2lr+l{*wns)5hf7Tf^eyM6Fs;WR#j z;GouZkTz4@y@}eo+k&N-M5*;PX^?O-L(7xt7U;JDr;tULemE>X+sNA_sGL_gd^1*- zzm9-DL?2O_MZlGlCK^w&vm*p=m&Q;IE>3McME{Q5jGiWK?SF39-Fp&n$cZ<^7d@9d zavtn-XlQBlBJ`8G_xIDAyxuyEg0FI5yi4U*5gxO7n5%=6Szm7o+%h*i^8XuNP0>O# zQ61hN^Y@;NhC`ZqFx&yMeVGS=+Q1-;g0CV;mP?y`qEv=GG+ zxe)A$hsJ$G)a62W!waX$W?LK;zA3FwfSA^~CAQ(P7set++e16ilx!+B(IVvE*9`P= zs2Mgh9BqZqk}OFRvi_eYk3NGAiS>PV>(q*vF0sCaX>+1;1SKQ-frvUW)>6mMOLHc8 zyQ7;;g4LVO;DjQTpBxf=5kV;$z}8>D#+t6vmq|=Zi#9DkHRmlmyUp0}L^|{2*lU-l zKyALtga`U}$hv1b;%J6H%2nATZ0xbt^)&;?0$-m{3N6k#eHcyJm>}kp5vzu8v?g&N zWiOg&Mmi);l8wEVbZIljmznD5w%L|vpU$Byu=zhoMOa?-#fNSj#k8c9ABg50+S^hN z_P1S3p!Hqm5!zas`qr%0dXOek8hiMbd~^*cVAB6TPV4`adH%ou4Ji{x%v(8BHC*MA Sh2V>1AnG@@Z{>x zsnUZq>AknJgU`J0J2PvYb-we*todeK!RVdb``-K7zw39^%^M9h1*!|zE?adZ&m zyUPdXVSDE0=Hz;hpWpspU*L0evF0D@qxk>^Iq#%s;0l3UyiE8Zf+QwGA&`eKr3W(F zUdhX2p2^1UDW~g$p2&8N_o+&XFWDkw71Pg01xjOd81zWBGjd+z!z)%UEL<;}#$@$_JK7uO(|Kq;6jSR*D< ze_eG_JiGC$AU@*k(i>|G?CjfrbqC6weVa4&zso?(=U}K|wc<+J<}kH1{x-MM9R&(= zd5X!-gcaNhik5{MW;7mxYhp*OSsYj+4dU$Mf@z=B9W7bA51(w(%IZ*<8&XVW79CT< zlIdie%+4#${&|Vuu3Yf1DszmI#Rt!aZupq&yq)bc@D)kE}!r<_tK52bJZ>_lC zSW}TKh4;`JGx_IUj6zU0^5@BeximlY`lQ-OBPIGBJeK5?(ie^rU}i%JK&u(5si71+ z=luI^Cb$DVAvhAPz$zlv`NH>Lhu#o&sOqF5NQNlVXVLazy&(Fhr>v~K1F2W>OWcPF_%ljnyA|OZ}N-t0f!!d=3tAZo3T-IQH}n{Dkh=&%-n%uCcoX$~YpOWvY-R z-E`TD59{TLE+wia5|u(ZsUim!LQIk;!{$i%3{9=j$27k0NH2*R`%_KQfo|F=luqetZXWZtwheVkXjLNHUetcxR(r zP*ULiytWU2iPDR{=;I&$3gx#NRE|#C-SF)uSs@~Wc&?CPfMX0A8j zjUxvgTYX(SfAc9n_9rdEmo|swLC=)#8$Io_gv8H=}-g$?aaRBt|`+IIeqm{29xE`lxeF|48CxF@iHB=C1!vRHW%s``iKrT1nd}v7T<5H3hwM6>#j&`Aua_Iw&I0_d{NSo16On7059%;SG6`k}`@_sKIe z;{%^-L7!6^vn8-U_bXo&H8BN88^ z7HHNmxNcOQ+dfe1oFcB|BHbD|){DvMcJA$WD#+hcwq_1->wKYblm6UC3Kb72($Re! zX^XY~tNyQ-?)e+fl)6%f%_%-&8y*ku*{YnY9Z5CuC-4yBk93zYkCrbRyrO-DqU{n7 zoT4I?qL*!@fhDWkuArsALh}_nt=COqsEvrk(XCd#O;5M}aP3S?EN!!5?Wl=NUer_H z>~4M{c^IlHi~HsY$<3vCyw8Fb#pDrfbB^2QHBBNJyTK_y4GaL+T90x1H zn@GX{wI;KCJc>vx-~Op)e{u`u^n@Zku+NBT(*j+mUFCML@`6_OQZD|wwB)3X8gj(2 zr;02xm1*l9K4@z$9fsOP(YDD_)WA@#iet?iRa@z+BsYR-$77^U7y>!rScaaFfD692 zQ37{R8s~kl?K!I>c$Io4F=yLzK(@w+|4iHLfmhOe@3&IyopFO>?1Amy-#u|qk?bmC z;wzBu_ZKKvh#oG@>WdKfDt4}}`DnU6aNDuOOZQYEj||by+_?%_{;c{cd4D6Q>Zrf$CP%8#+Os(RQCDS4Dna-2Aa}ot1DS)Ky4cEg^A!Tgtpld1JK)h zXDlw`0_+H?e;IKUuDUB9#j(uD{cn^0G-0cu38;p8wsmq7yusg$Vlth!xopcvKI`x{ z!MJNWuG7cxyiXNtx{K9MO2se3@lzP_patlZ9w04ZIylzu&XC@j8-NU@V=}mr)t4nb zn{9eYlx9x}d8{7j$#gV+_HmyGrD&PPfwOC95EVuaj`hZrY)$PAv$l)eeQ6v`@F;Ti zW-Mz-7X08?T{Bw>bBL2Eg?Z2T3ZrZ_aW(OW@^ZHWIF6}TB!%$h47t(2-<(AE0B0N;-OKs)1=H|G2uzf%CZ#P zf@9>%l8%qR-GQNC^KDeJ6fKyfAcnvRNL*Hu@db&9NNQz*SJOvcfNzyz4@^VRx+szA zd$vFW7-YSOtGQ8YFf%$Q{~O}B2?dTASO_~c1z z`{v;ImteXx@3fp;M@NT}MIyerSr!6rR<*R`gnY8(;aTWs89UiBjH%~rSm_4UoDGmaTz zr1COXE8FFVJOk0%X4+};Wp#;2aA6}d+!r-4pv$I{?!5Iw!4-SedTnnie096Vf7#9y zG24-#ns6t0vABsPkd9l|sRNF4+MkINwCUmCtNnfbWFxL=4J*&WbdB zt94(Dm-G?-WZk_2UGxBMK24ml$5ja7ue5`{Y{F-QMy^!F^&1!FQhoTq>gKk3)#rj4 zOnxqwYLxv04VGlTouLAghQyEIQi&gjcUt$a zmQcd5;Sw7Z5dNm4JFKUBID@jM=lSc`h@19W_`Q}&an&=ih8{KcR^OsHk4|=*<_L(B zKHZcysB#!{2tWK4%J1@xGj1(B;OHeBfpzMABvR@$DI3dU&^%h>N*Ijw@Fy;(px|j& zvRFrgpmq4%dXEbKdR)^{@G0Zu)X>9}`tr6&M5YgQW%A^HtSq4ro_#P<&}b>;hurl)Oy;Nrzx zZ$QL7mdt*CPX}5XZt%$p{-P^d zqe$4d_go|b&c7aX-CN|5r6?A!+Uyb!|Mkn_ZD?o$fXC)s_gpECWpTY4fkjVFzgJ)R zd0JGr@+(Yya9-Z+)PNK3EY*ZEb%f{1{v6mq74U$7)58g|)1yuCN+Dt4mEO{5 zra!Dx&fwzenjmCHPf)>)>2F8VT+-gg7{G87>kq<`las>?pSZZVJhQPOV&mrzudJ*L z^Q-ldnEyf}-C=sN!I0|p>%6kEa=eh8Zq>2{+6XMqcfZ|q-17K%ccRHuo$L*KW2oCd zHr#iby{^Et)IuItv$Qgb-&W^14_n%)&dkhYPK)C=?c%K(ZGJ&|F()SnU)IjIxV~PP z(v)qNw1cRusDPVcAoTnu_1Ri_^a5vrY_zDP&XcVe22TbmkZG}HtyV69ub?*c)z!YlkS@BOuEI-Ketl1ItwUc0x{7gHpc{Hevd#6 zZEbD(bsoI?`}>D({xlM6khJ3^>)ibOsmT!5mFhw($FMs45n*K&mHCM#>BYg~IRJ2W zAZ+3frcM6OCmI_N*Za)Byef5@*BoDaCE_&Uw+pnlX^^?NzCPJ`3hTT(=IILd@iO8m z&>SBjdS#YB@&543;o&DI+oq>6yoQw#adEiE3e5fR^|?mm6ywBC=Q>=5())N}`{Bjm zWS^CqQUAkb0>g>aPg2#5HaoY_=?Pf2UCDZsgazvTjiG5zzDw%x`S9>?Yj^itz{y;I z=>GKkn#os;qBGH2P`Jf8z-f!|zHXj`uf_5ix82H4CeCo^+~4mGP;+otF-e;M8r=#s zP*=C`NsIfSu>xTBn3xzJ_tB|v>D0?=qCtQM@Aw~ijqhPaR$Rs%z1s~51G~<4OcF@Q z(Pv~t^w(?l_`5cLRa8`r?aXzFuTJOX7ySw~J-QCIs(wy#6^?J!gkj_7rGC>20R{Le z#aK?Tt2Qced^3Q3JKaRe8AV2&NPuD=jWit_X4RE-*VZ-4QiNKd1@H86F0-foeVt(9 zqyFkP)IKxz4ZmJ7I<&emxIsU?_+L(m*zix!&falf(7y2~@$3Fvn!2Cgu|Mk~fbLYP z&k7NKqn&>aTwX0*CTPmU>B(+bch!Wyxb*S7`tD)fNTGh|3#IormdjSa!|{NxhO(!& zbOSO-X0*;`Wy61kf#H+ax&?#)GKZ#P52@{3b@%6v_V%12BA#jChsUb{0aYWc{(I&C zf}-1fT13?wZQQ&2;s*e1?XZ4U=JA3*y5i^1cy+d8$bBqXEO)yBPcSGmai+5XpjJCe zL-nhEs|cX^<&~8itEVTc9m!(vZ)s(%jjj4K1VY*MO#Os#%$`h+ev5`fCFXLtQi4Tp z4!%gV*PC|owcMsx^ki>JY_Z^zeyIg1VTq^56Q`Yhxmw=9&U)sS>DPO~fx_JZZp@_V z$&6`EZtlG3tk9s*7Xn^>D6n<{D^}Y*S6zn)SaD68LJM}`87KB0Dg*$f#es3eO=@at z3XE!^Vz~8OfU3d)ZVBWFU`Cper!Tcr8t%N1n+=e)7xtFkCg4xbt4&JKx|x(=iBfE~ zL&+~yY%`E%tf!|LSSAI)9=15?mYSt4b~(sdi>(Jy{Fc-!2a5>{XZU9P^y${8@^q0kYo*-1!aA zkl687ujkNQlnUP@u%x$DVtLGgd`G>e-qmfno*eCuA{Ptm3Rah5^h}00qpOd1Ms^o| z8dg3xUm30OJ?Kqa(bqFDAPi&xL`Qg-_h8+43-E@k4;J!krlVB!fi+|>cDqEdi1&7K z^YVTHi!eoS-v&*5mZeTOGK{@L-vV%FOz(f?V)Lt048P4ine1xzl_Dqa1tL6{(NVRb zR?z+SDAF!GWTX^94!lKDO*$slgYO}GhZCn=gslOtE5vK#4d_Bu!YI@}5CwfG5olGdeeXWg$RS1UW*jx@EK8a(J@hD3K4fP^v#5^Rp^mDkiN&gWrPm?F zwM%T&W5hn$do}@Bluh87z+I*l$G5UX)`23$sqodHs2GI>fWtfve8uImRY0H3r^ijF zaWn04f)1midHMNQMV;7=54I5_mG;GlMJLCHT8|%p2FlSkpPkm#?Z5LW>}@DXg*48= z!D05rMLs+MT)=a2!yRa;OU3|e97mAUsP|k-vd6GZLytl(_a9R+lr1@0y;!831NYe} zN;_-?+TR5n8DJf*!5_Y&yxI(Gb$8QId(&D~)A2jtfVdJ=myw?G>K&B$O7%<6#?6#+ zV20g(Yp@`H!^Tf`sy0_Vo07;`yaEZlP`9-CKJ5s_U0fe^aDc>yvvw1lQWNnwKgk_H zeV+6@`k3uO({AuXlW|+G5jgW3K<6Tg{g&;(GcxoJZ@Sa-khJl^P#|O@{t_gN4}(sL z$WmwpjRal)K)Uw~?R>Hl_J{D3KK&=*kJVvCCXy31%3b5(*3>-ukd)cLh+%h6zhGMW z7O3^p9F<`OU8kpM^!Q#lHd~hBI1r>iLIRV57!l|IO4yOs!Da#FjutQo3*uwJ(B&AW zsIn*`h1fT6T_T>UbO*AB2Ge4RxgeW?>W~0x*eLNd zB-^UUnqXKswu_QgJ@5Omqcq5lu7T8@GousT+BfLbB@9;(>sHAG9Sju=UW_6R5?;)) z;EtUat`vFvUdEQ>Bw;*PWLvrD97eAq>O~q3G(Y(5JK(>r?7V}IUqU2<7w{w_8dnRz zUFC6a-@g4>@BOI>ou}6V9jf;hl$V!JSb0kwQI+#FfmW7HC#Cc*c5hoPX@JNYLPKIr z+)nMk3hvA}7P0NS3BuEtG1vura1;8P(Cyx_??fOPmU2ADN0xdX#-mnz$h2mTXM~|7 zJ`h!37aV&}n5jDOnx?St+TBDrnEwX30af%moNcSb`{46ZDEOR1i9FQxEGmx5`2R%B z0W9giTuxDlJr85LM5rz3Uz7FXL#?f=jhqO9ss!@5Ghr$FOiT^8_5wbL;-PLPy2`*g-TE)CM2l%E0nQ!MEGgZ zKi}a484(K@suXh`BY}U0-=b}s@r&@`C2V8QN$Csri@~%TO2LetSm^4bViS^4My**A zdkntl5L|c-?*cFAou{pz7YQyH*m+DKdpnAjc#Xu&2ED$RB0NTuoZ#SkR|E3=-f!k; z!gq3Myh4?CyxE=LYpN9H&d9O3KvrUDN|?mOyF_sw4U!^! z=9tJ9SqenZkC$TATtWOYokTa$ihN8pV#OKmBul--qvs8J8p2N-y0Ozt4 z7@ELLIJTJND>RMhm51#o;&_19=t#9cW49C1dIW~*0#z}!rjuK}DTHZrTctVtKd)zSpw|2`U3^&}Wq&E|jX@jrRr8z=!{=%s&{?_50zl=O%f`|~f^z1#QE z>xpB`iyBm-_w1fI%tXcsZ)DGzO!0RYTN}z<@c*JgSmY3nGPB^jEGJ>^hh2f} z21lLz?Vtz}n76gDL))xr_7uJTS*PSoV zc}Je+^KL>~OJ2r=I-6A}-t`96TqlkiVP+$fRmVdZd4U9Y52dut`uIy`nrLUk?CmB} ze>%j`{>qNJEUAL}lacG8x&v$3)}~Y4-3{1bUU3Li*QB-jb0(V62pcJ<+}obX1TXn2 zCPCQ9<>m`vPtQVF)EzTECoS~)xZ0vLO$TKBYTf>12yGFh2m+NvZf${3hb4n$HwDVx zT{MPeZx`NJz}|~>%(L9jx@WtPBtASnbM7Gx&pd?$mgbg9Q{0_$Qy6TooE|)5-U)$; z+$o2UqyBkDa@0v8XMUNAbJOou3#=yi@V`dlhvyO8MRuEpFgvP>zdNuS zzxyI1Z$s3paxq>i%OY;u-aazVo{C3Z&!@huG_1dWyWpo04lJPO`)H-gA?)~qR=R@x zy{+F@UQzP%Ul+kG(42|c4v0B{w%G>r5hIwva{1z#7(VGftVFC~1vpMIb>g~}dQMB> zQ1&F-Bz*wo#6+a7eUY{MBgy={MFZo8mwAQa&lb1BwZTRzP~So{f4>uUEfJX}P=JQN zR8H9>#P#>S0*(NJS%@UUHQG7YBgSHx3yQ`+=Pe+CWM^imDtJaT+7lC*nU^4D8wxy`pR@B zN$5#kf#Wj=%a+;Nu!uQmwtO=SqHgM!RHNs0Z1N<$jhavY4o; zj4ZH{C~7$}rXE;c23z<%g6xi82PVv&sgLa~m1H z_X^wA*!Un-R;|wf9|9jT*tD|GXoLJ6QAjkK{CaJ4ot)_V z0KGSWbf~Vb=Q)-DKXZ}@E?@;%qn^l zP%v&VS?aY-e=SkV)mwXqe<5d$Fi(U+^!v1=_meCt;1=>YI;L+Hq#zx=uMD5P1eL z$Gqt!QBn44Zoq!gOLZAgg!pZV8}F97QR&AwTR*iCpgQyg@I>hgInD6firF>Zx{*)#>yLZvg%>vC;-b5mM6EbxbUmBMRA_qMzo#)Rn$3noR>ix+=7 zP6t|qZW`NfRz+*_>LdTn4f6fe^o<^yj+35__9ehMzzAOcERpn9I)GPOb z;#|97&MhyGG2Pk5>d35tO5>gG_Vbk7{1y*RwegXFh8`fjADmje+T!LIqo_pj^=(9H7rFa{N_MNTqFWkFO{c?^&f{)?uTOY)Zw(4u-I?bHBX` z)DY+^K^uRNsEEg^Ts+oG0!wtOUax{EU48%lGSo=76<;O`c4ERl3CeD`kfik)SE&st ztF$5~kPKiQ$Fw4g#jsi9ovTK=5!8}kw47)-i3)f_5#D-=BWMdw2z^#%Kq)fho=^mV zS>9H@C|XojKO$_nm_!()ZJ}0st+XaJCTY>2IQe3KPnJ}*C?ZpOOlbGLPm z*+Y7IhOu@d*YukTgWioW4wW>(w;Ky1-&MSO{&O7DlV|@t&mL(^ORS+AKX?i0#_*~< zfJI*uKjlmqh{O!^q18pkC4I?xOE5D_mBx048Ci|F?0bsAu)0^*3D_K6e%B{lS?_Q< znvB7hy-3kvvka!>U6s0WtF3!Ezn4%^{i_|Me~>Z`*<8&_N`6`@akde!w1pJ!F?rkD zk#rY~wapGcti5$1-Sn|ZHvVG{&d~C<@`j%U8r(|F2!P}k5p!i4Zl%G3Ad6Wc%;Bl4 z@f4p9Y`J)6A%fGcvc%kwT|Cjyv?{>g;kMg6lRxFWi(SWe|6C1h9xb47&J>UrV*cC3 zm00eO4qk5hgJonuxYEs#s^_FJ%ZfZy&(Yk~_;P7dUc^bu{yf*$D+1L85kZ-xl()If zGz@IVKJ=utABS$H@DrdN!UT4xjo32SJDP45?y$C!FPmsMl2c@t#+?D%ZuGN;Y8nrI z?HR0m4Blc7W*x#KlP&}6?L(pYB;J4Z%4@eLrn>QSg?GSM3$BFKLBDl(n(KRC`qCB} zcmfI$qr(p$8DCCXO#Epy@^!Wr%eVUId6E6}d?K&*pm1qJ(l;&GcFwr5Y`9uKj6~%k zRA2MHyp0qcCn+Tl?}z%<3xqzzWpOY|&8iJoSLhRyuirN$C$5ux|30ehZhX1l{n7Kh zN5O1o?;|z!HIh$Uj~d$M8~;L80~M49Lm6{6}g7yd5cLoN+ATr?MX|@EwZ!FahFst9+G`zEcmEUGUWO)Oi}(@muY93|a!&56dBGVQ?ur+27EJnv%(&{p#F7PvxIW5 zpJKzDW}*onZ|kSq527;soHsiKTyJ!wHn@UX0LXTOtZKqy9MGYEr?brG*Iq&qpjYzQ zjl&yC#AqsEa`cTbQB@&_x zSjBNxwHi-cz5dV(CysAn&`MjaE3+v@bVXlI9zMs7; z1joL0*r@|OCT5^++N)P&6N9ywOIOv#3w(;zsnjU78eHw zD~s(E{T%E=bM?^W?)7qps)ddL>b$)_DswXr#S|bHHeGUV-ZHz742yiLcDaOl(e!Ki z4-!!;uYH)Y&PLC{vc%RA@>-&y&2yWN@Z<6In#_0DSlw$$;=EPmKYorrbhTsb#cDf^ z_bGSXvx*N2=iuyj3`n{la+^Cn9Y*KiR`k2Igtqx_=oDIYSI!3q0$z~pBloBJlk7wK zQJ6odMIz3Xq}TZ&(4G)a2xuPovZWFgSU<`{U~=44 zx-P?yUw-R$Ke?i$jP_Xxf|_?;t6r&kURWls7=VM+{Hh} zU)2nML%PS5>n*xM{E#F+a1(*iNfN{=UjWx)hx_?&C3Iwn>1b=!Tz$viF+!Al+|ysO!>9g!kJHfo z=@VcL;A6QG%IJ-scR!lh-@aQ}4%8OzDBT#fnWgK}vF6`^GyxW}+?k!p@9y&n>VQ3x zWIqqv7e98yM5!Yqz8GppfyPBi;7VmI^?e_06SS-H(DvdndfZw0iXQSRhQZ}mwM??8 z0~^;n##U6i<)N|hIw3#}n62;F)ER*S=H%{%cJB*@eYn}===eU@{`ur*5Mu*BZt90+ z(lh%|CdmTyW>(mAT6pp3V)mM1)PW*8mu+g?XEID2FULAuvrOyr_AQYDXh_LXAlMnN zXLg~4=;?^ApGV)MvwkMYpsDauATV?tOopG|Op!VFR0lDMTkKwr6RxUsK9wGD0f7M_ zXqqCAbLlT&_r{%P7rY~a1?Ku>O_h#@#{}0LBLo3KwDL^g^@m&hS!Ds2*vWu1Y&PfO zs2i&oRlDA9+UzrN(e&hwk&k_r&nH7N;GtvESwQ`-XYv-d6~uM3yv0`I`TZTHr3wB0 z;(>i%GX=4_PCa|tF}Uf-V_+N8(`#bt7>Z_hYKjSv1m1I3|EKU@qe@?B61Zv#a&zaZ z)b-Yvh6@WuYG3B@QWZ>$-yb}sThNPEusr>xP0_>RyTxy%*d+S|k&!9XGddjWFaP8o zuSiwpkDgd0v6{+AmwT{xO*H+qre?f?fjJ*1X)f-3mGqP9^4^cZp_{HL;tw=;^73B1 zxjaeb7^uJ+TrVfCEsR&BC!yYM1+Gn>18~whObH?d%Vkfli37S!)8PI28Q-?I8#f(IP5W&8%nuKI-)^}6wJsRp27PmB z{KR8#(bRnXmv*c3YeBqXteiL>s0f6hfDx{rLPZjOAkRm~TVK$DiKZeS74Xcp35HEi zuajKfR&n=tp#FGU8LIPRvz`gWnZQps)3Rq5gK0!0$@!bG@pFZ|7){oG9SQ!2^P%<@ zn{?NKb{5+AiBtkp3)uUj`=i3#U2N=DtuBbRbL^jIN;Nq6$X%>>m%ICJ#BON3#C0sy zjapgxf~F38?rvW`ur}+#?ld8J0}ank(5Om5%&f-I7o9TsSy8!u`)R zol1f-==EkQ&hS4$A?P$rd@^EjZ|~X46=X(il~BgO>NDHSqS6@VPToGxCq;J8AKBa4 z&U-mN8?Rf4@&FNE-MJgf=B-6C%04%v>Quh>uoSpa>tEP#(JUVAYd3Vu;3;?ER86Jq z&H6lXLMBEYV3KugPO4CLmYs|i08Tq_4!8KbR%50rD&#%xdR~yc7Yy5el-m|{kTpoo zzWu0>Ac%?NynBG;lkcfbbqU)au2+=7;_-5KkORl?8gMD@pT&Gkksb~ji{d~?jTT{KkpTm#O_n8p&^$la? zx!%o=DzV@3yYN?e#bhx*gj(`M6$ILYFNYs3^(2>~K%CHCyI%EdP zd$rGs!1lf4%~di;dZPKhQaE#t*T&ZVW6g0x#k;K7`0)YdM}C(<6g5=&F~Ody^KR9O z)T3|RRM8AGg5~wEwZfUc&R-^T?WvZz!mzdcF?1IP!Ux~wZvKrb2H_>0!?5#qy{jXP zPpUWO)YsE{vChkeVc%M{&>7TKW3hR|)l<|^5x(Ar$Ml=@bla_jz79>zuTT);AbjL* zFa50j$k{O3T*{Aibi>5UUL5ig1d8^}W*~2h>gA%e()a!$GvA#x{IK!3Dz3(LT-ikyPvXdg)3Ih! zI*lT!qnh_r8F22DRJqyFJu`4Idn4;($d+b!X2bX4#0$cy0W7J0^bf;2+`@Mf{!P>% zJ6P&(ND|IF@)g1F_zOIKNIMBBvBvmnTZNp(&sAK-9&vHPXIiK6^mqQ<@^a_T=*PZC z1s|`DH|@TN0pzpsBTc$Rg|Tw8RFG?}^wW(!4kl(M)5B}PlU)0h_W5ukZGL=-frOCd z)CeaWa_O1ODdgP%88NWVhb%tcmp5beJV(1+ntu}|OZd}rg|mJIT&5A-6cD63|mk`r>7j-v-CnRu~DB{NB#>??= z53{s@Vrse0PN%k8xe8yTc9|%d6X#i$MgC*uQ6`Rta)KB2v^S^o`+bp$1|7c8a`S6k&JaqVNj~hgZp%sLA?}Y8wML^pi*wb)o4j6&&4n+7XA8I z5MSHahl-oRdt&_^?NxO8%gg15e-(|m%6<^w4{1JP0Mo^5a6$QHgNYgh_U_KOoCW$sPdH+ePPbzH$4$B%_Q$E6}nd6vwpb|rOx0M#fm0~o8c9Wg_f#ET=j3|Tg8D-DZbSKR3y zF^I+XyX1T0^@p0&n>InRb$?}4uO?vq3GgNzQ#8LRjNeUFV)t3~L7PLS z03dUjl}f(Axl+qb=hBhzX>o4MhDJe6k}gX^;sKdYsqyu%GDbtcoNRezV6!iVdEE9TuQ6b#nTI> z2Y>kNjL-DtCZi4lw?wbMj2ClY(*jBFwwx16-iaoKfyxT` zlY?e5F!u|fYNGKts+%(#J=3FwyHisBA+GyAZ=t=o-v z&x@@!ZR)On!Nq;@H)O}XyE(^hjh-ufudw$tisSdaIc#Ic=O5mu`9;c|P3EK_cQ6z> zV5vQP$`>}`rL5R`agha6! znWHJe4GJUXK+=mIRGe1bYJMgqX5BLKg91-?mH-4ZOh9rQ`IMA!rqsh4ggS&OLR5v} z&yvDO&qs_c(~tcQIp~>RAQvxv3Sr~^k6n*)69w)dz2hrFe+Y-tfBAqZAqES9p};vr zYw^M)&@gcaRU(Qi5kNUv+&H{R7*f+w5LA7o$+|$dq!k_uozli%obLu7fHN~xXWbFL z=WR0ICFrT6-S1eF|UzN39uAOwOuq z|7lEUG{Z#t`BNs3c*|3m3p=q0fFpaCsyRuH&v202O-MjMr`Yei$Mx$GnSvggtdZxU zznRZKnM-pOY-Jdk8V#)DBCLZ7*3sei=kWBxBkzQjK1GEN7gF_OSgz*q1NY@Z<4!Sf7!Qc@7F-y%f;S57Exp2$&qTE!SBgdf1eVDJ0}D zNRUXDLV<)7lcnl$)`^fYKFxdE;09`~3BzONL}5@sk4{8TP5m|>HCzBHp{_Kmh-zHZI}k&b-iIVincj8rScs>gv#n^KCP?_ zjbHWMF)IU#$sWJ4Q;q0(XDS#Pbi!Q#ttPBfZGJ9W=7$Ds4`Gs+(>KqF3k8P-y_HkL6uV@uMsUP8wv zktRhyM~-Rw2Vnw5r1#B{HI({9+V_g;maGW#NRli}g&6{kwo(6@Qr`jfSWbab-$3QJ@w1!yzW4p$G{oRkm%`%}4i5 zkjJ+$X>~TICiuD(sQ{4%hvFUeX70;V!i$FnxXXU~!a zMxgnPY#&$@>YYj~9Lz5^HXZ-_Z;{G6`mJyoANmRF}- zojYy~OutV;4o|;WA&ow5BXvNfb3qG^9RL>3?23~GI9S=p!VWrT_O7l4K@p6((cA8( zF(-{c$=XLem(z{I54q%D;bNdu;H2jj{7pP)7b_WCPP^iFx2Wz=s(7%$4KlT`UCZbL z9bAQke}%F>3P>AVG`Sb(+&R2Rci{0Hfo5gfj{BL32`0?SXC6WT?-0rIsg$W>$hYmp zdFRf7MV%C=)9(+j;SMkz7Y_$y|G`#(>d5KG+Vr|(S&A9VYS8IxxKx5k!+9vJY^zED z3u(ck)vgfcQi@bn)d;|%_tk5IT@y{zUeuy~0Xx##+Z)v@yg)Qp!PV96;cqKgA(WG( zz_~qb8q-Ar4u|&-KW!j`8xK8Y(4};HbZbQp9=nOlNzTiod`U$^sYP)lW2a810Y6p4 z?Lv6!O#0stg&ctXLPZMm`^Xxom*AQ#a?>$TrMEqfn8xi>0Fe{xS}$~JYkFaeC(M}K^jdcE;O3pDw3SX$W4m<1d2?G z52cD=sP-V&z}=OsC)mXbnm=k@S4wqDp@N^pan)_KtKJGA_S0UXF+`Ojm&@)7WECcq z>a%#ixT>JuDq0T7iy>mYu&VPT3r?h>A3sgk7Q37Wek zq2di$Syk`IXG!=;JU_WUoW6?L6=$A$IWNrr{&w9{&qJ=sn0aT?6ZM0-G_@wv$?6qn zBk6|=#nikRC)dAA#eykI5T-0t#GA45+0pcrw0Q8PAV6Hh&dkrK1H{-AMsR*=T|jZyXh^ zKmM;%HD~SkpfLL1=GTe<%llt$@%=xH&Y%AJsQ>uYD<{%&s#arV`D^{)H^@Mg_K#x6mPU?h2lB-}ijuj61&XpKpwN@6d>5@4ePsYdv$$XO`_7O?5?Tifa@Q2!vW$ z>E0s<Za`iBKVF^()b9J(FbhWcFzwU1N!o|kX zL74wGKm6wPXRfYJE|LNQ_W$z+e#aNq0z-YYpTHpGPD%zY5D4XE{D%PYF&PShJdjqt zclWVpGIq=(+1M@RY;(ZFTSF*Oc^w9W1w+Uw$T%h`P;8?2EH6I3SNLU(qKbF%?LX$0 zdKZ1nbS`KyxP49drQAsOP>FyLiQEy2ZQWU4kMa>xZOiDIogb}9jcWEwcG0L#JL)92 z7~eke*LV&8M>&Q=Ip)2U*AV|5{NFg1o-#Tq;s2J=Cp`HM|BZ5vH5zt)+oSG4h4Y)f zrV@mnUwSA*MDuq9ZxZJ7OFX+&;^&thE&uN_P!EhwK6`!VIW5d?W#{zRZouQZJXyN} zSwW{ei_azbge&qD6{H0L+GJ+VTh`vc)sOfoV5Qg{YdOCx#P}6?eR}!9Yx164NT=sn ze%2v$sWh|ut&b&P(|32_airm`26 zRAM~QB~M0NxxpBUMxaB36srf%oEGGcpfkBxDS5IpLSGh7Hcj$m66vJX?*yk1UxI9s zd4l>C*D;mAa!4~_Y>*fM+cL_LQ~41Ee$(IIhaqd|8a}i-t`CILIgrC1b00lG(wUP@ z`N5D33S>+QWbq+%nZa~dL+C_<=}y1*mVqTnL**-A$U=z&>{(*U9*zQb%z-TAMQ%JI zo8p5Zk5jr%+{w&{oZQIFT*;=`l#N&9$;3kGyt$jtD4-D5$xV8khR4i)T!|G;WRhQGldm8Vzp`JD zfjN5^$;KdG!G|n_E%|MBsSg}_kxgMN0*to~8a;585IE*65xl3O^dEE)4C&l@N*Uycf$DKA_+GA9ggk%8!D9`@Z;&w? z_jb~LZ_r)zgUNai$$1?#bW(a!3LO9`Am)OsQ^At!dW*UVMbJ8EHWVorS|Ct&^2Vh2 zq#L@aTB4lIiJC63fYU94G$iKWZW45ccy;jdT$SH(-2$YXur??O_oz33(1Xw~5Qe5U zHrkf|r1!|wbn?+t!|+YHz@wljE)oCRNKKki;$w|1nF(rNIi%p{-rX(@*=iE~cYR); zB2^j^IblcvyY;ddq_}p_FkM42UBg?thJawYhq2pS@0M5y?}R(^ZKxLe#hSnDw(e3 zcSU0v+ls4Cl7c7}rrvR|wBoHxTmBRp+xqLR8v3745goMXk-W9iI(xBoKFQhu9t>2f zHXv1%Hhjv$|C7m|r4oOo`OtN&$*Pe)*=JL-sq)re(YMeAtvk=fp(%0*M-jgeRe=}@ z7?N9oY<+$DV?E(1&9Nx5P$ng>>eXtUN=r3p90A98KP5^O9Tk9MtP$be zoQ)c+q;(y9ciT`FUJBvPI^oVNiI64g);(__0!?e3JH`x0-vbX*PFFdVCBOVdo&aG% z6nt-Ohj-~VL*wbSnqJ4vPy)W#ZX3eql78ws;YHhpAt?dkr%#IQUxXJ??CS{yDd;sj z61So1l|#(>)?8H=T=w*}!#C%kGo*;{S1miP2mWMJ*(vo-J%)2Ca10_482%nlM+T8P zve9a7AHAPYffZL(MaKv_dE!K6S-rL6O492wrKaJ|?1koHyY@JaMDly(16nlU>ZtW% zIfH;p$}y2o@%G$uAObBi!d*-S>kFall6bwcOC-xGe*>t8iq%?pJ%z42m)WnQ(Z@S%vd3e)FhRbw<_)? z5=rVnW~{WR(jP`bXAUhUe1iU&SJu`3*04fazT|AFF)T$%e5XSMt68^?aiJ%5W?MCIC$hwb}X>?2zpx?tR3Us57_1L>(x5X} zhI0SoPIKBw=F7s%vE{+7e1r>-dL`5up=bN&0`>EOQq9oOujI)NU`S&0waI+wjNPYz zE%7>R)Z9vZ(VQ^gBRoz_uy9fjVrJ@zd!^30N@(xCS^{Q1hJ< zegTHGi%)01h_E<0+|AW5dKt~GXjRS3a)F!i0~q%`MMOlz4t8X~Nnwl^d1s=|56k$T z=r1q(8Zs5){Sv3+fJZ!Fd45ivA_IbE4HvjHQaj%BXeY?{h(Z`lec>81yN}C#F|RMO z>z6x>u|^#%>(y6H44fQv2XraQ9sXuPovd2RA==*as3r;pfBEtcm)gglV1SCPHa^_Z zVQ7O#-8Rd$YuAd6Lue3PKh7DX&*nxWtxGeD$HroM)FUIKjw-j6XATY|lg)Cco3OmO z@1`fbX-A_AG>4MwJ`+ct6G!8u7B4>}3R^$Y)^_-g@hdsq@OdNE1><eEgNSQQX=lgQPY1^79ld*#5=3nK`O^;K%4>oztBVJb zU*>Y^RTCp{n){$vY(FBJshZeuu#iTJE(kcWRhQnphyNl}b_X^*JRGP>8&QO4esQ>z zwLSTYc5U0^1S3}WqtvE1LE1}5&)Dq>q&;51dbGmX$ak|zHCa4*yIU@;dc7`5TU{a; zj=%_7cQHfq>kgmuS4EDEFAuthp7;fEg@S2aC>U9QRot!#W$5J6Im> zEOn&GrM0y^ls!A>b{R1Ca6ZD8Z#N0}JJ-u@XUU!L02Rb`Ionsb3g)u)W|i;fEtAv>OtV-F%}_=rkpt>VIf+x)5+0O3LaPxKdE>A8IB{ z$-qA=5O6?AD|aktdb$;FQ2AnxwV>K_(|r7B9JkdSa2h++80vyYzvH;{ReqzETHJVh zLonsRezRQHr@OBbBwV9ObK!UvIC|8GHjPLPLW*UXixu+Hv1g@n<>ee}sk9>`#Z?G_HDI=XbQ` z)FFc#Z9G2MP87Aj1{p!wr<>OMccjWBE%jz;8yZrgy%tiMV>ngz4ioWPhyMVLV}|VR z?&60qYYc(Em{kIkTtFkqFN<$?2$REBx5m087MLHZsPNpnWeK3xktmGc%unqrG;FfT zdi95YSQaK;wBH(a?Nuv9p^BgX;Z5~k<^e{d#?;6_ed_OZjSBxC=!NOicmKHgyLeMOpUa)udPi1 zP(MAYKTE=+%gAr{PqJ%|G8MDQ8s^ zLjzCp0$Vn)l_^&H=CeYmkn{At<&_l=!|qP8i4MznV~k$i)|Dquo_G#ak6WUn)8)hA zBO;4}B5uol6@H@6fP(Xk;4Rnw=1hrk$lm1g_kzqXUtR_rl?SxD^BmcG;PlAM{KK7} z$35)v-{Rpt_wqcu%wNv)EX!B*O#R$YD!(pv{2R-{69MJ_MYiPVx}01Zk9MXY5VlJO zX9RpI&HfVxW7mu2DRAc0jME?cn`$nSQD+`x2(-_G%`Hg(%n6=zH$oe z;rPs{L5Y=?me!9}?ldYifML}{+HdVAhK97?y}sN1;SdPbSV%Yj^rZcPCX-K_Vl}?w^i{=!Y{GB{=^>db5C#+^$G%E#FSSz z07?1S8q2-iUtaeif=SHXXdCb6eqPqVyRgxKvy-C}7Mv@#+i%S!+5d3K7gs%j&9&7aE2N}UFpPhRW2YYt3M zM~YND+sUG$G;Y)dZ{%;9)Fd>s1tjCYlcJIsa=;Fk`EI;on?;Q{%oH`V&H!5@!~P(A zvPVT=E;j9$gYxQ4yw@I^O2*aUYJE>uOs%IHg7I4{;J2hA)h7WcMBR4E`f6cqiFK-% zRjB4PhRJa>%hnO-vCn#KyhgxbFUtsCcYx8;FMLYCc05Vy1;p;!m})#&RFrE2B+LZw z8UfAe#&fht7u~!kO+>WPXcmvrA0PBgD$@ck^+f)~H;*5GJ#);|KgQQ?lXXc_lF%S^ zzCS(o-0z7ODi})?A_lVX3zYvQPJ|ZTPQH^wY?GfuS*P*GGusjk83mr}rcp&&<} zXOcmcD-UkWgAK5R>elXV>tCPlCOcyotBua06uYY@igh z)1N=NyC_YnXgxPK$Fc%{;7~C|(j~c)%My98VtV$F%q(gk3cj|RaH3^oL}kIHXm4+i zMXfYMPE?lYeAnF!qV)}w0}KjK($&3$t_f$Kh<694JwN`^^Y^koi#ET_jtbuk_!9VU z5LGPmCcx7b+rjuH`#)&?(Tvu~cg@UTDseZ>HYR^0yARtOZ-mOt)~@>r*!Jg|&37aM zty>?O8jV$#d=uq6%Z^7I-r7?$iE0`ft65rd8lvom=1RPGm+z;^`c<5r9!c!>X&?M4 z@c;9BX8I{hOPL|ChYL~@t-y%7VIo;ZicV%@HRgfx-C{6uBEYk@0`htp6r~ zUv%#|&BPfBeFj8As%{;I4<`WIT>yNQ8>3`ze+%dlo7alrL>qt2R~3HaQeU%$}VTIu^k z-TwXd6P5u5C%+VE;T~&7`Blrj_|NrTmpK4p*7bn1qXWRe?}F_w@4w-8b(Q43p*)#F zkSQTip!;MdbjCx0OgoS%=+dVv`%dA`U8(v1Vf3y4-RR@6lPme{syBuuIuax<&vyl@ zyWCM4!LFTBz&fJf>Yb02hc)mKVIDdQ5grvn#~TDf+UmfSK!GOc*;RQ@g)M*Yt1I}J z(7S6*J{&6}!7;}{1R`UE5pnLrevncP3;c2C!nc@4Zvws&?a$}FVXQllJv5l^0i>Cr zB&a>8K9nw>bSp5nL@)90Wj=us;%sXq9dF=BAjr2F2DS%kV4$IdX&3x^n!MtXbo0S< z^LfVAd%v#S1dG8EEzmvI*r;ox27xiip(t^UR!Cs>LoK$0(R;fSMBHm@qtF?U?8^ba z%gV}ROmo3JrBM$bJ_H1%RxbRTVH4Bpn5%a|{y zH^>0Zi0)A^O#x53PKHo1HoU#USC~~)WvHx7t`I`i>dq*sM8aITKtD-1xk=aX(qd#G zkd|K-gU*$Tv_)Q@DZ%IhcF)$=F0J;XoPmqJl&99U({x3L7BNrxdH zJ_Y$g{!emFG=dVCL3;Vc_&>aVvl$NnBDgRW6#5@>LBZlG!K)xz!T}64DaOyXSnn$s zibHv<9US*fq#&UJQV=EjH^v}~Vn1CjJ(HX3h zbRR}tD4Ym3Jju-N7Gqt|8bN8GIs^F_MCrkrdQQk5J^43O)w8xeIbVU~h`fyiNDY%GrQo#EGUKCI17w7 z50A1e=RLnzm8S6c#bdJ1gcZ~k$sL6s&LAe`vycOqsp6UhaRo%29a(tYs}?qL|F77wt3RR<=HavuGlAxC@!NmS zYo)Hw24DT3SQ-7VKry+CqI|d49D$QQZI8Vbmr+zJ@RCDQCqjg;4+ER-cN#L>8g+~gpKD~e*`?SG4q!g z0D$j-I<4NuWM&ry#W9}NS&gg&g zuyLN)EfxANW>|gXjOZD$!`gI>N}vh^Bp%$!c(II}!3Q;a38(na?Q+!ir0_~Yxi3+7 z{#cvK3TkVz*zI;1%7fX|;1N1|nBu{}d+yJQT*uJg<)bESc&XnLcKyKT?Ss)Q=m`Yg z5TD3TKAP-+A{xi@V?!jwX&(Fd%zjlH@pK>4O*J;`F0n1&TCM7M@n;?rIU^rv3mUs4((N`m+TdvTnjEpA?3 zL7)F57EbRJl}WAIK66kbj8fe%@*UGP8T^Ho(I_x8_Uol-*1gIg=$f^G@PP_dc;sA8 z#yi6vm^nJyN1cEl!b%Ifsf6;Q*=N%?#Y4iw9)02?)Y%!ilDQT02j?#S$kc` zyspV;VFZKd?Tv;I5);+9_Wu6us3zNIYqwW9(0>TTSKmO_ul!zuLX?BkIQ18R9`fo@Z z_HQ181AW67u(`#qYBDN%14XWGGAjLj&bTikrJSvb3#@FhAv@+hlO5kRytG8?BJsj~ zeM=DPN=DBxEA0RD$_%M4wy-v*EMlSG-m-PsJ1#FD$l`sqAb;j8)wgmc!R(Kv>b0J* z)>l4o8zrknRUPH2&!-f447lopK9S<=itB04MBkudPn#zZ+o-FlzBa;?ro$aGe4-^z zOfU-ojo=0$fzzzT~#lci{(#G&;S^2T_3W(nT$uJ}UVebg5{rK`CFZ6ouo`|XtIDL+`A+t$Y=bWTY%j9^ zgq9e;qS4mQQjY+cxOR8O;a4JV5z4etozf`t%iC!aO2!C2$jSG&iIQJF+B6;sy4@22 zYmZK|p2VXL`<<@g7&_BuH}KgHK}*Babf^>OG{1kTi+O^rMY`3p^`qoG|3pj898<#4 zXh`JeTUVNhnZ3)roaN&D}%Yy(a8V3y0)BL|NOW}0#;?tXu&dPWiXEpNlQ48NN+wj|6w7c=z? zV8WPP1g63tQi>|uJ`N#?%gb5!yk)H2>^NV8M#Z5bx1aOA1>1R_Ye%Ue3PGaF=!^Gf zk~cvCK(XTGvGjuhUBN2U%Mz}d;@Vo7t)5JKDI{xqf8TZ%F`pEd5HVEO7&8m26?a#1 zpl5Po_HLC*K}=b|!p` z#I7tSc}ja3VH>U_ReH2ubMSE`h6Eo3rIS7u@&c03t~J45eS`KE^kh}w*Rw1td;h*M zNXJP+;SY4}9W18assTI*M-{Z}>ann^G?JX*eaW` zA`Y=o?{Fr~`}UU3SL-9dI2ny8GU9!lK2D38L;a(e9uYU`+Hd@qeRIbfrsG%i^(IE0 zRVTLo!S8vlBP07^92^MM7;9P3({NK)06cGGNgL@}L>iir%Xh1-yQ3SPfuk82_#;-d zKgY4-=|$O{H`3;((*MHN7+Akuem)D&i7nL)trT*Z2Yv71xmC#@-~J=-)PlE7?^i(X ziUkFZKS$zQf_CJ$Au}HZ7d`>IXHO5RNK6I`KgnlUJAGrBlM*DXT=4G#nXaI-tku?mU8f75rRQpJk+|&n*N**s$*Ex zUI%4QDlaQEpFwf#4EEcA!jFfX5R0wg$JURg=XaeO|8 zwSLbqr>*tq&eJm=zxVW34T-v)mVSW(II9ml+8zbqOVQZcE#)IkmN_h5h)aohi^8UW3}Z1TO!0l zDNQJ}8;?$MkW!L_08iX%#9}$-k45dZw5g5gqfn{VK+!se^Q22qsnra5^MF9Cis#>u zi;5OW;d3ImBAMvq(GPZq3s zeK`a-WN8XkX}j`K-*DpR$6JYW!?z-Gb8OA+jW63SfAsX$VX<9FdbVF9Ow&z1Xq93zLi`xcDAps+jv8}5p1ZKrHSID|3EIdwNX*gqc= zAp>GG?zQTyBpKBC^MPZu8B~K3YU;k9xcC}SL@nbw1f<8yG;Ql2itTOhNkc%kcn0uA z_o~MxMt1;NV}IU;^Iip1t=|#5W080`-{I}2y;U*BrR(r~b~9cSfF!Yhj4GC3(O6f> z&1+%&`u)f84BGgA+=u_MOnjG7Rr6YQE|{KSPyw$7ATZ@d3exX$3PPTdI=qGZiy<|s zk7=L;H%Z4C5u*utlALp?Jzso7=&>WQmgeDhL;b^>&&H@zh@ve>Rc5r)FVIf`5^e|8*wE4y6U*T6{IR3WJbSF&cz;7k zUS~ngwU0xZX*Xl-zn9-Ge)i{TzoUI-Wtm_6%HueC3&N;xmq@riE1sEfrl3AZzWK(X z9NOkK0IJ!b!psM<{m4p}DdDtM6XS=s{-4P#v;=x*w$Kz(0uq|EZO^$-Y7wwS??7tzjW&_Z&_pAO&a zu^8Vu%#j0H&Ta_sKLxG^*p@2k{Ia~1vRyTnsb(O6mzN8odB)vzxUU5P7>k+hwgX#U z^~oC{z{0-u$iJoBiqVs83NFZvr{@}>*owg>?#49uw!Ph2(s`n^UM$c1mXb=1Ls>C| zQCP?fV>nK@?nOK5y~1Y}>IwmI?tg@`(wGWM)3YLG`HBk_7oH9ln#t&W;$R^GR319` z{e4jFL!76PkBP^fBaO4w3Lv*ielmQc!TI7EY&MQjJfw5Qq_|rbxP-o$Bx_OYjN^xKc$kj?}-X z@3Oaz!t)La*%-@qz7@BKJOJE=dHY*-!~Mwyq88(hb}iCxJ+u`l4X=5m*p+D*z_=sU z+LhC7#VuV;AN0Rx>zBDRJj}iuk=G|ura3V9&`+DsEh1&WQ22<+@R>uHD%0;!MnzmY zAgCync#d7t<0l=!QqR@n}*umuiE>!e+jSbugnM#2?EW*%hd|xn#->9 z!KU=Y0<3MVD4I;JYt(dP+IRMepn86dq6W6NfA@zydgkA*d(D6{=X52!D^9i6! zO=c|9N-=xC6q}WX7Wv<7_TT2IT2=qu6M24xe{&@Xy%i$ngC#l@I z`-{kE$ukjJ*^<=xes|t5N^yI;Th`$#&Ed``G|GYO%F86{K5WO!dWnKF6*I-gYVlO! zJxzfM#zK?tGDd&(^mok&*w25qT=85?-0d)|i=Ich12q+Qwh+mR$eAlGDhtQfpDD_A%=nia_kjA?l$?5$X?CIiB+@15| zj5uegPnF z^E^v7usa53vX)K6cw(jd7;ab@6pImzEv9ZU!WQ88EjB!?{@)5kULr$QO+ud9ME8%q^*(3Ez7HA-+A`j z-iMRSMp^z{zx%b1LQ!M(&&KOkz5Q&p`9_|^V1aCH&;eR*k-=v9A`ptm{U7k3G!Pz4mc<@Z-)MgOaZ{ zp{abG_E?`YC!t1ncN*EYw=usmDgxh5V->ti$kp7blqKyo^0nW^{IUl^mv{I?M^N9I zC2pY%s)4|ek-Nt=?`kHT1MZqU1!}NUAX&3;^PT(3x9?Av9#t%)_92-bvf)dv8SJWL zL4Y!p+hPbaBU+Fw1=kEZK|owARP+4zw_8Rh3*3n(qa+~fG2OnPI=OG=_xj>6 zB16WYZcDc0mizDkE4wY~_GatEt;xi)UEldtXWzwAEt=imQw5cb>f!{V4oL1aq)9DM zVSne>53BxWoI}6X)ck^TSO(OT+Az7Kji7;H7CfrlJ)T(-xnp&yAF%hSpV5iG5N*H4 z-_y_I?kz#=9G*=Xdfb}Vi;~tT=#kI&TDdnaVy~}Q5JPu8%8&L2$a!ouMfhN9MpZyPSRx*LQ#`LBM~oSYlez=(Td_fL~0Gvj)`oUD&+E>bd8 zE^BCP?W-h7INuY|JF6#W7S8@gT1PB>+~F;|m!yaf&BeN8;>1+14YH@Pv%Krq6<^}; zJoWNi=E+uGsDYC(FPWo1^W%ev4E7)MAy=(#88nWC^$V^ni2!c%2w2D*#PjoM;dN{$ zytw1p7?6bWJ#h@H#Qwel;+X3U7^!47eUh3EW#50Y% zFpFG~*$JPjeGT727rOxmbai-m#Ktxh1(oU_L1dKO61I76=#x<<(=*N*i};7&27gCZ z#r3EdKZC3DT8|2kES>MB#ui$&$8b8W7Hu33G}@P2awRMC{L64F_e9^swDbxLIODXx zSNi;Z&T3f182I_m*BW=6q-mY3+L8z7_toTH@Pl%VQcHtb%CgwcXlJE6hSpLcfx=5 z4XbObFoA->?ea3V$Hw=Gz24K$Y8fSHfD}y=v5)E1^+snO3gfq1+bvS6tQs{F`PDR; zYOffDO@>5WtmfebX$Kv3#_6>z>T)u|MT^=RKhUnUDMBDQO+@3?if@oxx&mUR7kEBX z3;4`ULq!)`sm5>Z`_oC0QyrTpG-2a}8u_CgU+Yu5mpj#rcF!WGWVmToepi8uay#Hb$9@)kr-}TtLqX-_a=L z*WMTP-UX{xUcY{{btEQEag>k7kW0AxPkiY5(GqYb=DU-gcqhYg!jJX=jrPAGmIG@7 z2#-eIXag`!-aA?)q~_WR!trMg1SMAs=2*C?ruZBa2eBd!whl8O-!PeZlxq2B{sG=< zu?t5|=aLgu%_-j=>K|vdaTrmd>*-NPtfa=P`3y}Ijk2~d+ZD#7m1}Dj)7I)zY)g4p zg7h-nZpzNecm7qb*RIV@lAm0d+>Wv+tH(dsuX8_(dpe41!u6j#FcG54_TGCHUVr>b z`slzGdK9b?>(Sw};M_zfR>?njNvQ)yggbgGilqET~wg}UXuZ5v+B@j={?44%^f(uuexE7S1J?Yxy7L+3oLG+pvm!{PpY3 zvq1_&Cdq!`c9MtJuC>?>KHUDoeZ%1NCg4XB7aeZ+t^WATKZLJ7@|*yJS~A(BcJql& z^A{aM{nF=@-T5OA4SnVp0*k-+MzU@^Ty*Y0Ka6D6yno-BK)~VIq#{nPeSN-83D^n8 zgxl}hGo!2;KA9Mt>Mma-l_XVMa1p4c^51xs3{556n^XeLPk$lLBPN0>#TOaEbnT~d zICk(;ffAimB;ym~wl=khSz^zlO@;kmOX-XT+Nn+7{>;$q@bHpe4riYK7mEkm`2zHs zR#rye=My$-24(@C?LodC(5XbS$J^=dC7JBjJYz}wU(l;883W8lbPbnNP-^5b=}YqZbn*!d^5XC$@Fox#t8WZM?A_f#B_6}>EE`{; zGxU>Ttv=_|y$B&tjC=zhC$$^&64v~XizC!!?fG&(|FRkW^_0+`bLa^LvVmCgGW9M8 z3H)#zZUR0|%#8d*vWy633g1in%6g`S-rK=v8(>;iwQN$_78}CjZbRSjeMd1FsZT+X(4QuG%u9jHjO4seMx3BRmeTF~82S(Z zAgbY;vQHb;lLUzJBjBQ(&AAe@!GEv5!XFYMNLzudM1c$k-m|r=zJ7kCN*nO(Uob7m z4uJ`^DiL@uH~cLelR`@cGy0Ft28AaXf5Fhk%B&c216ezP*}f{?AwAR{y@v zbPh8aE~F-SN&K?B=S}2>1=*BJ%AO8riJ^eqREzU-cR77e*U;En30~P-a2pmALJCSr zoO!^IU-+L_2ufJlkWDq5$ecOFVE3qCRJ1UVx4o&9@4R%H93Z|tC3^CV%*^1t{bo<| z6>gEQnfbAgchs6k(m1ocKC`^%KX_XvZ^j_v8CCb9<8E0NZqdJdNh4;3p9(e#nsXMv zgd|rg!j9}ersI}|S|_?KVMsnHdpWU#NGuG=pEmAXh||v>OMf>e+S%muc*m3D`q)V7c>2*mrlV3mTi}H2 zCT`rP)MupE$MtNu^joj<#IS#!QJo@ftY~M>5q%43D!~KJ2`qdv!D7O5^4Zg?f@NXb zw9BmRzkP0x*niZ3cNcA)m|PcsUC67vTt8HBz>{|+rh3o zC32f}tXWhI6>zD-N^GQ7vARgcLlWcT$~JP_CXEfEw>rO{T&q~}CsT?g{_x0kK{BYD zFl}rp!NB#TasTcZqS7{xtA7V25lYl&hTm^%oqzFE!Ry>;e6KWa`S0{-i1fbiQ=smFcrC?u` z)eZJ9?A0@k_22xfU)AbqM;Q<`atG4uziY)`1G%vBdiK{4zHEsT9sGn{DyX>~843f( zUZZLaTGZM}U2|mM`5D{dva6yALTSLevs^;Pf4bB~^VCn9t4{*Zw(cG#WS=SaDK`$F zGwiMNZg;1RQSo96@K`-w|acQ7sMT;O*?zss3lguRJX-C z)_NCZz0i$gRa?zbQy|kLC_`se?dz}qPGPq2aXf?bG9>XG_H&5g=Dj2pR4x~}Dxa~4X>_{(2s!wv9s%P~mmEyRfS7bbmxg=bb zL2b|Vbn3Xx-G}fj#&-|Vx)pP~9Ix(Cu?N)m`4T5s?Hm=?f3rRZ2sm-*)fJlADtA2l z0P4sSzdiKcsz3=<2?~iYtwaz;0e8)0|x$k?IYhUGe{r0sz)xNJvcb4@m1OlN` zy9-A^Ag81u5V9wyslX@2A2cSwn~bN5p{K5kji--=yER19!qe5!#naKw^0K$JyN8{N zv$)VrAyI+LPdq(cJ!FN2o&I@)kc+#m@NhrF8_>uZ*Skg@5D3i$(u)j|mcasnsF*E2q!Ajl7yonBU$zbej;r*Zwz3&8B;1J5YY5MTX$jekdaz zEwY)pSam-e_57+@;#IZw;_y15Ti}<(t9BumT!#&lFteAmh9#4VXpL`>#FMS1Ikq+My&A`feYeyluHcqEz#*EH@8Yt0Jo(I+%X>6!ENac z7l=U$Lf4m_@m12?E3rtI*#Js`r%3T?C-hS!*PW&Xr0*5(I!0)u9Q%GLa_E!^6skHC zz~cA}Ne6Yag41@d9-CuMO@?eJTu|hIdT?9L(qpj$9X#BHNTm6lCM_OIHrI8He$U5n zTvB~99rWiR^TA4%PO=jI`vG?57m|euYCxV#HqnjUT|PK!fj2Efi(nJ`Q_ExB+tbJj z$@*H!W8wv$?MetN=lCA%@XV8u%~e@Q3&bi6or4n*h=*M)@X4Jo++9!|AHlZX*EdS#$wBh zMGo>?>Uo^L*Cy)vb`Jar4$rU7Keqygh?wwKS|fr5PH&?;?J{by`~6r0CXs`3rdS9& zz7H$tIG#P?bZ@wo>xIGUsu#d=%pqFj=mew=#vv@>18PB6eK8bG7J^+K(u3u=0Fffp z<6t?ty6WY*s5Edf?D#Ts(^3L8LcRVz%nK4>_U?oJBW@ANkVC?bYq!38!}k}&@pCi? z^-=#J0v)Cp)tj(^C7xd6pL81AAx@xr$B3&f_%K~=%L7G|#jzRk*cTY%wn$i3yNmH( zD*@Yi$m{XQudP8&{2Qa6Lkr|GT==!e8g~kAC2a!7LvKy;BijW}F$Ki8Ova(jx8y`V zjVd}+7f7v41?iO>JkIazf9`#V}Fmbt-+I{ruGz`?J-3F)NWOO|8gXzu@1kl9RbJ z{t`Nl@OOH%!jc@+*9ecFRoV=Ev{h(- z4>mxS-Wo(lP*f>1XWVS4oMl4P9l z?CWH5;5YXI8Dc`H)B|LR8Uu__yh>BW!3xmTQ_FIheB5()nzjPp6vyG7Cv_is=db%< zP{@kQ#}YTIJ-fD2v3mT!A%?p_qXUc0Om2M&r zX5N@zCd{C^t!!rqXe3gL+$xj{FEw%YUM#YFuIE@7^A6RUc(9WN;YvU@a$5>ia$bJj zqMqn^R}93oJeMGfT|rl4ct3f_6{%r-o&R&(-`Q-fnv8p8sNU}fWi(;uC(pQtH3+vI zBF0_{lk+8}Py7mLQz$E`4xv7hQR<(53Ck&%;e546F-hsJAgf;-Q2p6Xa_tek|HVFQ z(AAtRoKUx@YzR)$T{&=tTPlOf-F%{4W#!Dx37}$$>8)F9Q7}i+Uq}(U6R+m5A2ad1C_2Y-DY81+F6Izo*guk^pHc=0{ZuQ7o zeLicy>Y`d=iO*8QKcl);Xj{T;&~bWLw3{%wZT|q;gmFz*{C~PUK}IhRO}Rn z>UJ7%+?foD{5Yg2EN1{J8fCH?Z_44p;mU!@H~QLpK-^?_SWB8!e-^xHGsrYzCqwxG zRVtF@#cJhkIEn&Il?a7|*(rKhCZmwouQERxLm~D|;qnk1 zBXpHAnF7CU{epDY)$MB(@nqL>N={2#FfX%(i8BPNoP5sV`v)C~y)7+GO5!)@?eFi$ z<~#|7@$*~ZD%=>EnF(I75r%)jzb~=RCJJkw9@FROdU=bz&!c`-U24u`Oz~K z)A3f{pIz$Aka#Cj`Fg7(9Q?NM}WPwec-CaINn8*UfOP8=;y?Bei>OIkl+{Oa2iW=}ukphbA6*@tq87ZPgTwoet>ys?Ogkq4 zH9O^t|F(S;1J`{!I~b%fn!$Eys0adv8%^BAQ)uhyHQOp~Ub-(kf7R@8!C>=;GJ~jX zH#@!3fot&o=mfbO;e&4@+c@U6&v<2@ZQZ=4%T)Hu`%^$t(^ZRw6q8@G4h7=k;z%Of z>`~$h%{to3%?R9RBYi-qKRzreFQ=&FWYzs}@7GqJ7QSwOWpvu%u-%~U+tTpYSE5!_ zDdxd4kd9=*=~S!uUx^w*79%Bg86ihRoLdV=%@h-Q^5gsXskhObf-3giwqQtD@>Vuh(D!H>CVu48EreD|z)7Lm3`ev=lT;X%*$+VgzwYj0MKWP#yn zbYyY!A6#$t&B*pO=z%{~%=#?X!6bF%Vqvv+rFl@0g2!B^MMF3xP|MAp+Lz;lHrn_q*S^sZ7tN2`o1R{%+-T>21%?@WQE;lTdd2eRJC(rQMlKtmGbH8n z+nlSN@e(ktLdmUEM4*GWKb!c^=L9YqPgsKKgPtTvOM&~m8d2O>CrdJJF?{UtrnFZ6 z$lzzZy!X;&p^#~}YMee$J0Oq>d}ctZlndvoZ;M>T!l%zw{&b!$c|_^{h%`dxz-^_9L3SgAy%r0ANNb>k{M{C>ZUt^fiJkY5FI@*{Sbk9!?xN{uyn zVNF$yjoCgMpy!_QWj+G_BVfB!Znb9fx`04-VPX9KYJJvbw;bBR*u!Jf?6t+y5c`Qt6E<0g`sERUoJ z8V`C2R#!_75uaX#7L9J|>+5^hhOAWLE9TN1e0P6EUlMzKn%O+iEg`{W`A9}?rO&TB zKAxV6fwL2+nfXGm1cc=z^=;3{^nb{HT}zR86^xJFt6v8~(&DEV_*VKVuW6<=`P6N4 z$jZw4{)%L-nnV9~UK}i-y(IQ`Ow8G20i$o`M;j@HPR-5DC1qu##eHR)*;a|q>}XNk z5xo=7-u6K={bNDFthI2!C6YQ10b7ZnqMMpacbVIrP6%lm=~mo#tXqo|c0D5Eb%7qy z2-nWILMAI(oXd2f*lNccFzufcv=9Xqk?Yk(#C^oddRTmLX)90?3T) zO;uIe$jC_HQ*G5a*5;|^Sed=w?<=JO2)hj$+5Y_b^R}Ct=rJ+txUIwd z$i1*)>g;`)Sw^5zjX<@AB#6IPGQ0+j1k7qub??hiw$gPG=e0uAEi8Ucz?`E!Bqx>Gv(J@qHMfhFQ!WAOVm*GlIQtoK3U}>~(Gk;n23bt;i6bvc~7`5Ag zp22#QR883Wbc?vt$W1UgZ=)WP2clM7BO{IP=g3I=#NpV)C0APQ7l?&L)_$$7GzosM zZYn`iWG@8{Ox$aszfMTG+O3(%fD~8wl!$G0Le}Wzg`*fGB`n7%=t1I6qL$7J5*AQ< zg+IqcdPkruregT_s!nly`!~q--w`P#)MsgENCCI+gXT0?>i2KoT4eQjtv54o0?D2K zXXI`P0)}{hrT+M+kbpG{5ClWg+97_G6ErS+2A0SP>kS6$+9iQq8u0V~%xM=wWIP$w z2*n@gd@dA3wJZm8ZE`}$!L;cp_<{)t;1)NJK&T#C-T`+0^3$gq_Z7AuK!mE7iffOa zQREa96qpaZS58+rp?c`#4b15_=bR=aUCat=nKQgc?Box(`fz^u*QBWAQ@dzNf($!5 z-iq6KTA~3vjy9dC4TL&^0tBHR_*Kb{id{01RnS7MmgCK?)?0V?xMr3s8&J z^%kxkk`)zOcU0_*I1op$b>BgJ2Syc8wrE}C`s*(lo#H)@ zfj(yV&Ak#ZuVZiBwj{1aD|P1OX14!|<{BS(uQFor$3&b_o%kNtF^N1n(>z zDtZAw83MvdD#_I{C~TcGF!STpl3zcibnuHIFE8&GXkw1^0zONzM}fdzKJL#?ax@7F zJ1oGB5z5)zd+iSQwrf^{R;LZ>_m~nC_pVD#1d6}Bra4vIAvA5pwa-GsEHqQncYkyx z6}X1y!Xd;Cfrll?`M%uEX5nDBYFRG--&g96w$U!w@iFlp`LCwe-IhzSD?cmC9f!Y} z`iwR6DXu>)EGx2VDF(8;C}h&QKTc2_-y19!bDM%IZoOr21Fo(3$xrTXrQ<+FFmxY| zuK;7M)Dp~2FdYf`3D;lf-C=*nO~Ro8ihDY(49xRChl*TxhDB^>^UdgVbH6dyrv@yy zcfMNNMiYFizJI?1gneel-?fHNyE=QczltZV4{$;docE{`n8L@;Qr`v(jQtk!aw`B% z@WabZs99KCv1*B*1(0ZH{s7F>+;`x!*??E!Tjl7LosBZ*vG!y^V`-pnWEH>P#YzKX zs4AFkRPEcR^IQ;f)vKGz&0pL`}mbcY~|A3@k%+1Glg>Z&-?APwK)=n^t z;U|9=78e&gDC9Ji*KG>|=e-01_Tg%X7JO;v0G5-2vvmPsp1iV6XLMx5f4Sz%p@dI4 zkmfiL`o`$QQSzrxpG;T!4q4?K{>E)<>^Gi(F~rW&hg_AEZVQ#oVmwRSVyPy}i8Za^ajYjzKSd|wE%#bW^lp~-Wmb=Dq zyv86;z@J&%#nkrLr@&YVJmHQp5;W=nIg#iU%Y!0t*o27&(n!@2T5Ke37j;V}r(qHHMy|ZC}-=$X`f5%S#F#3qhou7JiTXK7{j>;@JaH z?n1J&p}PBpVx+5y{sye8;hf zPGOk&K|jlHi;Kl1opHZ~-!JIFc)@RXjf{-UQ{ElUoJ%6R#vN|5`m7nywZF^km|SID z`CO^i`Ww*q!2m~mK;miz^4Xz2!`g!U{AX^{-?zOkjc9>c_3($%gtl;7TGTCjVD>{@ z;Be@VQzj!)v!t2rf2gQPJ;`=2CGNpavT9G^a|(`%^N$8eE=R4mVd_t+dG&wbjst1w z{ts-Xh+^PPyU0{#XelhZZ6QDbJ%Wm!ktXv!mr9;- z5z26<$rLJDtrh!{bUlxG7!W@($QzRe7*$>MQSNuAS;%YHQ|SOn5}k|crEf7kYjRe^ z;@jU5CZ(hY)b_svP6cdPyrhwGz6TpibTK=FOLXTXmks?T$C-|(63V&BpL5fp2??b} zKOsGkxD!Fv0=WPsJ2+>Uf!IrMP7kKbcrjsnR-4>W`ZuLI=@w6jG~9a9kJ6QF%@8io zSsp}R!C9fmeMD6PVP2M&KjCAt^Tj4v9wF2TOFMShP(?EtwGz9+!f&Tn6|yh7QCD=dwaDc)wIs?*h;@;`YNwqOOL)o7hk-ioAsO6BU^c6`5qg za9f^tB?nyTK?sHh_{se;5|ss9Sr%a7J|aJo2U7;3a9@&oC~TJ-+)~I>$nT|!{DSEJ zp$1ors9PY6(B_$Macp4A0-_3e8K%l(c}axc_bT_DRbNN-`6^UzKKKT{p1rg9M7>9B zcffjcbBA(~$LgvdlRZcH)3OXZWm#jujZum)1gZaQGaH8ZFgz265_1V!By#L;YR-J} zbZ^*W1`?|W{Eu)^Pj-ZE97!f>)X{&?uiF2djZV@u|2N$ZY2kavcUNBbd?_k?h3#T# zJTpyw0UBgVYU^qqm&l~{hx{QNrfbt+Eg~Rm`b)!XjrYit#*n{CAPFc$&f4*&(vTF=b-}_atyJVGWH$<{UJFZKvk7I%NV20L{)xAbk)f$hchn44`x+lhpj802e1>}91-gS$B zT^Cs*?Rt~C0koJEBo?WL8N-yIddr-bk0}ngbGG`%II>DZ-&dPPa?CbIvMatzY*c;V z)`V1#XVFOtP^yX9Nc>hOL_!V-B`eGeLEu^+z#owLkQsnTJ3n~j_vqqUa!IU9Fx=!H z4)J9spaUZwtcQIqElN@nHtMkAFJE7ZlFc+SZ)xv}^Q_-%q)PGdRos%ce9WXui=IKg z(0i6IO!~q!3zp@}-)7ok zv74QHCcl4Hj{oQ#FE!V*gIi{n5aUd~_gEe_{QWk`bTKLC2!CQ>)Uowpbn=rUoqSIJ z<=wY%T%XaM2X5UZ%%jF5vQ={gUwbFe&ft2}g44k-7l*1HnLuA&@$Un!2fHS&?zo}b zJ6og$%Qh96e7<*AP3JcDT+&L}&5|!qX7w)?;J&@*FWBEDB>O6=;`f3KVFAT_47n~ zEWBtWd*ZY@xvn?ryIZL#U*dS7T-dCmi$rNMYUOWQwSQjN=>`>3P$ ztN@n#1~W+t^3j|DBo9NHw&Ur2_g{2*I-=*uTWlwQ(CabvU-wyv@+G8c;ldMKz> zP%sVJ#qIY~Is45-76#qX2Sgk0kxe}M*Y0}6E4QIX_BR6kNq!-_4$!c6e9AX8QcY!0 z!!M(pv2~?ylYl~RlrxuYJUMbJ^${=|Ee+aOQ;+9Lp^=a0QcAUIp?#NMvGyoM7)WIP z++)x}!oUMYafe=Q8!sBgGRd+Hu!izg?lcL7L*EX29A~gJ27taj$1eUMZMvnF#g|>C zxcvu79tgAtJ&>o2bO{=$kmau!L13Pdss_#$KVu5|CCkaQ4bQPF)+7SfW-9gPz&#G# zF46bYL`G)N^R`@f!wW&Mz0<#V2a9sM-}R*Xl_YDcLc?rj+_r#OZ5;1s2cu#ewh+_0 zSI2&ydRWl`Yn6K(3P`Jsuoh9PPcr@wB!G7jCwZ6o9AbJzHbvo^%hHx`Ce>#jr|87Z z947|*+j}KS1Ni$5eAbNYo<&EczeUWt^1w>9#=lCMcrYrK()GFJkgK_!wh z$W;PND{+qp)RY9-Xb*RL_yg9ovhoG*>$fc<50jlf+8z~a_LrCVEE|}xJmX5Fk-tXw z`SHdYGq#0ZDEABImk@Zq_ia5lf7jU7d_$CS}1R-w5h zE5bL zQ&o4gbDS+oGOn;P-t^XbKL5Z7(b{_3`dR)8teA24mN#bs=WNTCAS@dVrCZ0|Md4Sy&PKf4QsfUbC99+na0l==8oV` zZ9gc~?Xs{jXm{i(D0br@=MKMZ-3$WTTP?bfI&8_7Y5uWt(@lhWA? zD=fv+7mR;P=G;x0`u51s8rJyPoEGkmc3#~aje3C6Hhjba^fUXARD`&29@>v$*3~uZ z)Oqhu{}*IL?tD7i!y#>KXVl1n7*}{r#dv4pK&fNC%ZJh+{LSpkkDge!d0%P$@~Jn_ z_>3}tH9AFG&wlkB(D&uElT>m#EDQ2JjD8X%4N}~e*Vkwso&Q4X8=!9IVLkwZ?VqK2 z$DjIWYlWZ*D=H|8+a3!~h#L!kzD*3BA!=?resmh1ZOVHdu(a}{{e09cMS?|=Fcmk? zXN^m86&a!u)&Q{N)?}|iP7>Zdev0_8T)JJj`uq#zN2-gU^bOOD$wH_bs5IGz^^j-H zH_GyI{KXv(l*j&tx01o#-0#WWl7muTftADoE6I1T&<*k^-!|C?1`Ymt`_>wN>#?hf zsFl4eMS|FOdLi4bH)7vug{&MkW!^iqU+0%R_2Oz?k4cb3XC|EozHUg;g;V}OByg`U z$RI_mBNWtWzzV4J@mL2QOHo%AS0NF;`cXQ}YhY;$x$PQfFBu>jDy}dEl!RDm$SvBZ z8jA}`5>AQ;?U5?IA#^x)!Gr3-0_~_lmffz0jtiMSM`cCP}q;m<8 z!+Gio0g`;Rnb52FuN3gI$PKRG=ZJ?KP@er_Nwo#dS>8xsr)^CZNeU}{L%rQ;PMZ1S zy{(@LH1mhkjGaGr(Y-XPu%uzLPtTiBaXA%wJJ@$=W)IyMAg{a#SjBZceA9VuYcq|04iMt93>^I2fkxtc{c(m4W=fk0A(4f`uV^iYH7#h&Fk=vE8d~_CbyH^y&3=`>9R)eK(N`Bj)V3;^`7Mc{9 z`JqT+SGWlmRvE(nu!8gD7!`~jan@z;jl3G`m$NkC?Y-PLGzhC91u)(P;}L-M5^4To zedy=zBv`Ic7j>LLxH+-6*~czfk%47Tr;)SKV*N{pi`K`^*#VCY2?|>sI~3?CMB_oW z$u99JW^jl8;fU;$Cyu$L1rdWg@r7l{JN?^=1b@-iOJ;iCUbQ@%l4yyaN>Zis>As*Q z%NV%qu-2k97nN%gAXqcaG1}91WjW_=n^G^sRp`3pX=n0lkdClT zgnGKSPodFQn;cM6!iBNtRSU4v4Wa=6s>3M({c9yx@<;Dr!}A!+?u;}Vx%+ab8!&_4 z^_>IP{DM6v#0IgF;>%xd*BtAqu8r8eC&)ela&~mEpDoN;tUP>Lirb#?w@)9v&M!1s z^8U_Rnw6^CoG8yFeLers!aIrmwrOdP4t%c*McHPCZETnXC#__wW(aE|Kz1?=I zbok=FgvoxMsO=HgSIK4coPo|flvhEKOJ%>Dj3 zz^(xBGsrpoJtdU+HFg$o8iS70Rn?iZp?5+9$XZCHNlhzYzAch$Nrk=ONLeXXp#Ax>(?OQPEP zB=25$0iuw#7J&00f!Up&cJP}acF9+kC4(f1M?x*Llo!j{^8qD;Ihp4o6?)pxb;Bg%H*0jl_Y=Vgwk@y^R+sEf=9{fq#1*Oej+ zaeFzLXn^MlkEMaRZah%)*HIU-rI+6^6#C5~Q;g;x5&Soaf>OBr&rWk~0I-@GkCvKL zmBoJ_+$lW#P6xyP))@epJBB)Qto2=zF-hN>bMH@$31_uV#?&qn-7b?jl^1xaua$2j zo#F}{ogA$ktoTRM9uAMB1~_%p15A&Y=soJ?8;c7MHI*N-Nr2z-vJ*1N6XLhgHgXQq zHWH0!k7ap~yckw&Wef-drkuzJ$&8m0@3I;e)^m>Uo9!MEKwZ;bRa(m9e~F#WgoEQL zQ#zX&t>WNdk*B6$Pd?h};Kx}Z87DCp1vgx%Z3^|`j7HsV`2i+26NMW%}) zCB=`?c&>RN?y9J){vQD^%gcPOE~J^$-mo=-EZQ1Q%GM&sJ-_$TRSJI zYQ5jug=_oMp|0UM)6K{wH0r$IGRMuE<-lg|C~L@hbvccVuL|94D_zxk(rc<_aa(BX z_r*{Y)VsSc}0lg%p zpkkl?koYsGV|RduA9(yKg9dFi9Wp^D4t6=4a}zSh@N0BvdCY)%(3>LY2d$p%5yO(x z?d^M2?-b_FB{>#RlTMs?!?-sTM9y9+=28yywr#PH9c3N;xGZU|W;?38Xiv;iHCX>j zokF2)s^8QZIOO*2?}koxsol_lp_c$k1#e))3TqcHflOiJ6O1QSJcnDUhEHmVuUr6E zSnw|Ui-R!;cs}w)$y&IB>n^*4wI{w1{bv_vtDo%!M2wYqg22Q#&?=-ohDO?NL&QwM>#FU2 zj%L7a5f;Bb9F^Oh4NnSO)Y2-lceo&&E|1d647v$o`Es1b+tS(y^ufAXVfDUIJewTy zI50(7ALYiuvG&QJA(8isujn(DpID}4iGO(|HN;>x$`=foG-JvhmpKs4NEs(Yw}ln} z9vgQ3uPq+FB|cY!zphc%1-Ix50G6(EJ%ZRjtm?44{oSC7`#*y{5{p| zn0Ee6#fq%&@%}GWrSMqcl|}oVr~jmcKpu3NltqO+tVx!;h_(XRw&zt+@^(ozVWu;W z$8T1rG4J}YpM6z)d=uAESrmG#2$hQ+a9c{f9k{Us>s0WcAqzomw0F@3{01ga}D*j%b*ktdc z@1Qe!CA~DsVC3gGs~>!{<_;3yb1%{Z%Pxn9heFPBBTsX`x$GTmuK(aJz*@7s0MxpX z%{CLurktI4BT-DVJN$w-hH}s4U4B#Y@%hv@>B%c7vu|<}XUcJj0ru@bRS8}a`<->V^U@NpwY6eR61D@YWOIot&dWiDJV4h3Y*hc2r7vjUUE7vcVARk0Y>k7Yi%Mh3ae2 zpNEBk^R>jhfsE`%u*-`r}OF}aY{5=uUd`ov$nh`o(fWQQGW`kTaXApv3JTX z%6a{v?4bB-L20eSFm9xw?jX7M=TD-{^3C$ulmd>MrOUy?xaA;+{iDO+65)nc&gJ^p zFCPM)^zk>e4;VBq4TB<#Sf|aohDL_QT%}su7Kxjf61yLRR4JxZS^Kyn>_9ZwIIzYy zM1d^0_sTVHKo&}<#(i2@M0nfbo}YCNK8BebhG^_I)b^~mZgiP=jIZCjWK=uRXoFCf zuW=M7$yw>hiEbH2!hn@)D7Bi6)?c+^0({)p1#e`71y9=uVo;}#+KDeQoh%wF4sb1w zwcgZlba`TD<)K`DSncFsw>X5Z(ug^Gy(9V>NQO`sw`-PQk6&raWE#}YItlEym-fGQ zXXTlj=qX7sZSR{nx}w=3rE6k%3;1Jz_ZgX~cq1#fd#APD94x!=9Ud?<;)2=a3GDs- z7+CIBuaC-z_zu8&C)I5I$GDwcRz<(f_W;nof0z9nU@4ESk2e6DY}5YHKAzLGt91bs zrp5+?9J1bQms|>0|BTnc9;9S*9A8^DS5h<|fBO;>;VH3D(lO2_CqyWgYIjZ<`zv|n zzF#nO;&`CG7h%}>X3js8Q!>*_PucD|?0wNk)b}Yd)))=D>q75g^^VtttPTcCYit`_ z@}Ahedy~%?e7wIL5dIjY05)+rNfqgcs0=UM6K6K5RItC&(pyRbQXN?-`O_bW{M9?8 z{7@ZiulRd<8SILd6#qTT#QnhWJnmJrj@i`9hkNR`Z)@vo z`~JvE?z@!l8O5Vn;Gq_`d1)`*_(@veDXTjP)_}{Sq)Uel4c@(NMG+ZC$0#9rPT{cV zfa}QO7AeFB0G9ite!V?D&Z`TIhBPP=Hq9Lz+?YvwSSC^GwJcuq>2HwvGv0CSF8OKV zxp37+lYOcw)&FOW-`Y-jBefy~6awKq`wAOlP;V+PEi8JVm5wigI@5}o^SkQ_0g6Ia zOMi$|5Id+4HzJcJPamDtTNc`@x!-WU@_Glj2`%8zCbG_+xWE7 zqda87^b{&-)-3j7L#|>{fWQ*2a;*xx9hl(>`BUu!Hnv0nS@=`JIz!PKZl3b~XysRQ zIRo!pcUNu5?yoUwrhWg6{totc?>GU5AX&uQ&MP;DdzCnsNJW)kn~m##^Ry^w`yZ>? zRE69%E-!lpT~9$8vOqU^re^B$bw~|nkJ|wH{eVTkS1* zPcYf26)MT)AzIpYG#2ui-u~pNs~nF=g%b2J3FINqkPfYp4|8{%WJv9SvWEaycGiEZ zs>$?zhSb>H^z1aR4?euj|L1tfp#{e6NyX_3-uhtiAJbRg!*Ui8>R-V(sCaVIjyc)= zCY`KhXVoXm#bbLQnG217sty*sx*JG!93d1Qp}(L-=PTHKxz^&4*U8gDHTDbtI+2op z7N7)PBK&O`((lWDj66A>>v`^vL;-*B|J7k!lFcWN zXkj2oFN?HZYSiImEtpNK$&3{`s3@~EbLtC(EPcfXhJ};moDUT}DgE%FNcVnn1aZ|< z&y%U|sfsX5{qyj1vX-|NXI&q{Z~wo0Bs&&`Fvq?LzQH|6(L?a!s1{)#`hiusE4NnnAY>*e@2GVj zarlCe<1Z$fbMqZK_D3dQ3FhEU2cSZuu26ZQ`_JV)o>h%))$x>G%;cY<>BRqZpd6)w zCDkDa`I>)H+W1$)tdNX||ERC|w_=RnpbE)@d#a6eE?cp>u`Hz1B|x6LaOKzTF({P+ z1!r*FMW|J^(|+!OU)D3^*8u6G?*}{eDoxu^oeY-*V$iGvV3&lI4)=lVb1Gw$YKj&wsNdnPKn!WI2~JXRFJzb#vS~k zp6}wFredVwP~*BX&(sdm_eMQ?q6^nW=qC3&A?~``^qwqsD8pRBu?ieDGkQowEI7b; z&Fkn}X|A8jB%`NR4^<7b+8muD_krXP2|NMPEpMC`xu^=e&|K+C<}eYNW0}Zm=_9XO zGv>#1fp3iWxi*%CsX3Px(JAPN%>_JR_UXuuR` zOIB7@Zg}i%2Kj{mEA$J?k#`z$nFKbiIak*W1UOyfTv!GujquS?w<5svLYs zHK_?sjqjm)Yj5dlab+qIE@6ayqb0w9=lJn}tSX zkG~;K(O$s@t?FVliSR%?1!6By-A>+>XYH+mG@&q%xyuAc z*K$$kFO)4O2Qt@@oRBa4;JT7%|EiB$T^5Mm9U(+059wIV(^K#I&6%N9SUtEEES{Ns%w2fQJ*i(TCB5^+<1zETy*?QN;SLX zKm^@PR3_u{)V~J7NfqDTbJLXkfMad+pv?RwTm4=5y(>~`{ZXji0E9ZIOhI?J$bA|m z9w|Li3qCBzOsK%^;Ph#kv&Z|;{gH#MfeM}PA+fIi z?dOT{6sRa!1!cwMoRX4qA;VWcvQ|5IU`Thu=u z>{;z7Puy22W_ogJ{AVNHA=K~b{(1MX77aSB${5_2PXuznMaxRTo5b9YxrCk~rO0e^ zP?h8dPh!yj*M)2U^`DOrjwysV Y-?4aS9!G=!zXDNHxeqV=>rwds0(d^Jwg3PC literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_16200.png b/Notebooks/1_N_horizon 3/sim_16200.png new file mode 100644 index 0000000000000000000000000000000000000000..9c7148c97af266812ee1aa8c530e6956440c0e5f GIT binary patch literal 18014 zcmd_ScTkgG_b*BjP-#Y_NL5fEbVQ_s3W$J+1nC{5N$6hS~C^rlEa>Agcj(a=#q zz|gyZ^cq_34&V3pd*6HK%$)Pbow;+)ogo^M=Xv(tYp?ZLpH((*pFLHgyv%r+fPjEf z`LP0wfZ&2S0Rf@SMN;rdd9Lad_)o%JQP*A5$;#c!%+-=W&CK1|-pSqG*8GO2rK_8* zlcR{hT>)Xf8#eCl&Tf)|f)4+Efq;{%wczg|>W|q59(u2bJ7Oq+BLfTh5cmDK8eEOqQ(r7B5NXjW79G zQJF1@90X)NhTc?;yQLflw zOPZMKpBsHhna{t1?of!Ie+65-?)(`4QBIG@|0WO0A-=)BBH4uD$SxaP+VQP#Zh}C_ zIcBS5jL^jj?Gq4}tw4KRScEqxPNvC*YYeT_&H^cuU>{a!7sc)&AX`lly6~y}q=>_Y zwHO%@b~*(Gd4-r9<_ghY%Td4*|E2kQ_j12l4h}|hDLXObDvmDEAs;9DC07V?Z2NK}}jVCU9 zPz0~03c04r8WbTFoD@8_gKj4A=0UjIso0V`-*$eY@TA8HdF4<=#a3Cx7P^^mf(7!o z!K>&{h3vz1!L2-Ej^I61kW)?n6hS!g20=5GKb1GX^WDw;2=Rc10Fw)(#5x2u4wO%V z*$9hJW~egMYH*a7>)$KWJU4=I9U~sMgd)cUF*)!)>#QP((F+ARRuCE3h9xTq=aveSP8~OLaoz zZIBlb7!Ru#!<`;7JHr&-VWR9#8fNU` zbFZ=hj%N$f%yBud^-LI!d6Z#^(S(k%5&KV9F~OfQWJ~^5j@QQbYh}m^szDJ?v*+8UsEW#NzRXngar8ue!0=(`L9pu3S z$*w>~h_bjwm=@oj)W15ZOAAqzVlhw>AXq6R9UcF+&-l@?VWa7mG8wJkxuVe#2PMH) zrk1r5H!{k^sD7`P9DWY5#O~ZBd@Yrc$B7v7(QVsDGUJp2C*W`xQ3PB&2R@kvV|-AY*ImOtTe>DFK4q{#4n=$pj_=$XsQnnlNKbrV zf3R1q0uA^wD9h3$%AOrLek-fHT5iKJxh8(ct0O3@SxKPBchxhbM{}O@%0#`>ZD;Nh z3bWrku>#H!O;dRVW+MNW4Qsq1TN$!)!y^4WCw*Y*Cp$R7lUlG14kI4h(Zht?e8@TwVrpchZL_ z!BnKy04m>xXgm@)g!ZX>*Y7PAWD#&ZYPZ{|3ZT#>?&){J-K*Q^XVO%O9up0a5`wZ% zraIxKf_*Z=O2;qwv$IpZjeww#1ajkg(Q&s}`0zlyqBlhlNI8BTk`@x)skUEN!+KNf z<}#xzO=vSeqVgVcjp*YA?^Hw6O*hj+0n8DRGjko5B~X6743Tk4wuwE7SCvhHVIHr4 z_$o%E+PU{fx3zdJKX(}gM5VNDxBC-5peki+p?g-VHsAW%&wIh8aO#FwUguFntpK7j zWn3Y5?d}r7$50vh;*st>teq6u zVK^M-Ci~-vK!{fNLr|BhkwSWsoTuofw(C^e-u(L8z8!==*`eHY2`YZRS#IjLVn*Dp zJ)fCpYRYj(VG*?#YsC@nFV#olv>;pZrphYIJ2FO5x0Ep=`~UXTKhg8(Gg(H6x3?1?xOc#NXgT4hH%;z{Fyp3qBSC!ypU*J z1u8>C(JL3@v}%D3+ckZQzvPxjL3XCV{Ru(D5b2ZXh%?k0MA+6VHabEzSe1Z>mp3*` z+-3F*3d3LPTPNYRSf~vBweQY?ks)Oc&{eUOR~V;Er!0IIF#|;`K!no`H)1ka+=!it zQI)oX1Al*4Q0q3~?;T20XwS|pe$dc=lPBPb!qB3h;}ysP$}WTiRT4tJ(_nP*Bwy(= z96uvlxl%HvDG}yF4TWoQ&uVvZuuFz{2>IZgvVUZ&cfL~$^=hSS#v34cDK>X;>=af5^mo@XAE__g8C7hm(5?ox) z%UVx#d&eS`C~7zS*EK5$cMvo+=NWX^#^$<=NOG)LCzCrQ1h-hO41I;e;X*#!FLIw| zbXm*pq{ukp?jIhFAfL+1%d01SGVYN$XN1dI(z`$8$6e4Y(r1Tr@WjM&t6s*`v^2un zt?x|KHvG7=4P2kK-0|-K$EBu?0Ktub4Zje>(mQs;e5BN@js0uuMewW8+m|nUo_QUX z1f8xnF3D_s%FZ^g8MAkAKz!*i@uQ~uM}c#6%KWje;I1dOworoCWYkve5fFl&WZ~Dp zE3Ap1X=#14Ofveug=XuwGdb304cOJN>Pc=n+?vDgl>|}#9Zj31bn+(lnhH3eTJj%E zn{3Bl`csLmmr`t;00q`~oso$tMbd+3DZ`7EKn~lfEyCK-Idc8DUgv9lv~mAT9L zBpC(7*hfq)T{<>$l!e1)J;{>IfNJJCf1}kQD0QBB$oVwA;~Tw6PmXfD_(tQ-;T#*T z1DcoKIup*;_c>PfGAcpGxD&gS)qmYOy#@cF7xH*Q$KjxZBX+)x?Mw*G;>8?AFSsbr zc64PhS8eXk=h*epjr!GMi{IszJ?RqhDI(UM{zWxM*#4kCMS7zPDDY1^m+aOhtG@J3 zybQ<%8&SWlvwHChw9U)-{)&X$^Vsf_z3{o(<>+kHk2J-6i=r1XYrPDdToV3@32Yt;{pcHQ330JMObaHlp><3>b%lO?JG4f&oy1KAZ zP?Fo&m|o|$=X6ZBADfiA|uSLr%l9Sy$xrMXijU|j- z$%NHtPovMyVXsqQn>@8lJMK6L7Yi(Gt$e~d(6Z=p92#pQ|&Vp!C34)_fu*@8)zL6NbN@RF?c53hBsQO z_GqO*%9qk!3kGWin?Q-0?~I4?^CN0&lRM+NDx7CpW%8H6ZqDtGIgy!e&3=2{+DI*(2_Q zsi2^wwHP2L8g=QixkCfTx=<#^+K}O4?L=Zm!Hr)!%0S1dt7%N=x5g7qJqu_)fv8p4k%{xcixfC}wtcHipaf+O=!$ z6t+-q?vGVfw87cg?3l4JshHot=ahlO9M2BXa@#-TsWmh-TEM1x)|;rj1-knlcNmKs zwK^3H!ge?L-g&I@Ht2LDXn`1*;k{LQ0mD%j{)YN{qg!upLCU&4d3kxIWRbfAs)l}R zRnq&T78DFZ!BGPBU%JsXp0fS>$My~tO-&hRr^g~*>*G2N?t6s)!sxt$OuFN4k$!3U z2M-9t*#gB0+?M(*0igK(8XhgPzz)|mEBg6KsU``mB_p#dqM5|*n4$=HczAS6O$n*x zPMp!zv$N*<`uf}g0(fE1r@Qsd0BaWq`(`##?_odLn1aNnA!qRF3~U9Fn;T}})RbTm zBeAGuC$(BwQG2r8Edem%OMbrj@&Mu*J^jYdz0(yPLhz24f0G4V6EQN*U6BUaj9J{mR)(%l}K3=QQG%{+E_Y)Nr z1)d}ZKPu3WB=}Wu?O0JsXgT_ypx;;#>@4o2AJ-E`$;8dWGh5n5wVHhBrk>&21!ZZI z;Z#d)2iRWICJXfL-iS$%jArhWnFx-UQLBsS+ewD4KuyHgYv*c#kz)svn%h^64(_~Rj)6JB?nrERaQM|zthEA|R@Ty@%{rOq@~el-R977HvM=VqbN8MpW8`HO z|8e-1nexx^yg_+lwu`sq@A6gmD-~q_%W0GWN3iG@z}Y@Yz55owL1AHGO^&PCQ3A6| zaySVBdJ}(Pb-7dbq~pneg9+)w>DMe-CCD>h$NJ^mCfNgRa(aOmV4Y)y4M4_q`xv`} zFB$9kN*JAgP0v%_$43GvHOX}2PT$>Ip86t z0>nhD`{sc@iUHusEh>su4_MLsmrvZx*zhL{hF?uG_Ju03cwECfc)hBZT1o~YRz0Ts ze}5C;UCL7JT+CduMa&Gap%*i)p@u=Hd;V*7CKf<2<6wZX-STAMA-FQV+40&3Kw4yV zq-4Wpr@UKW?hVaT)7Cea@YnhIM>o7YuE;v&%gYLsoI3n2Cb^y2b-pF0G2EY&gcpapw$cj|cZ;Lk`2Tdd4J1O7F2y6)uz zSXJ%m{+Q2ViuK{D39bw8>K($;?W=tEUQXi94tAnUPF{h9y~0~4pn=;h)Pe6~gHGmp zGNh6QpGrBTSqRil6Ey>`hIeIne5G&R40TxX2S$Jebga4esL$AYCe-2K+tm_eU=3!n z)QlK76l&bIAa0<{5l|%jqkwzf29nOIY2GWsyGK>QCOF<*`s^&aO!_QseTenXnM+>i zPIAMY9=HK3-Aw8Cx1vVU3{*2`vjhEx`pNDKcTm$W4@5wmhxLT~#raIAlvppB96nsH z64A_S9YIc7x9 z%{XqPmh5l&sb^_viFQ?a>lCda&#tZD99id{6bb^&EU*`+u|Z6vKEKJnMU!DI&P>rqL}UoqZE9l;w^IDX@_3bcg*hn@sV=H&KQ znJc4R?sQOYYd}>{*l}EZxX1vF3L*XqoCAP2sq_L9WFX!x9#>Ov8kS~d6^h~QI)ZOGQL9x_LO3db+_qX z_N3RXEuGGT$ifO(Ewk6SOAh=?QPDyY^5iyNP*^}AdjR`M5i)Ci+V%>A(RZw!A)VY# ztoboH+4ugYeC=v+gZCWMRL9ul{=LAx0+TIZ+iqzVfI+Zr;VmI7jP!dfTR(N+=4;1> zL>Y(U7BaT^GBoR4ByaIFcoDeD=oB}sOP+19;XdHqSWb0ywSgU6lDvU%52RBs*Ir^E ztt1x9fj2`SnjxzpcRtb{I;$-IG^!GHz*JUx+_T1ScwTRoToy;HwCjOq^J41wo9v9X zcX}1mW$2HC%vT1qr5cdz=1)~@^{EqbWL{9mH0RMCCcy{hAR3fCZzCFl?Sch!;DPjz zAi$VElYvCAa@>AaMks@UpX=k5cna~OWROxZ^$GNGQ|KY1BE0%6eyWJAw9uO8JmUO% zeBF813?fV?PUn5$kYO`CqLz-E;OTl@*STL=F~%qF_hTcz5CszY^C2oP9bVbof)8*{ z&!Gw%_~e`;Exg9ob-<4>9Bf!4d5N41{A!|sA1UT(XS$y3V4@TUS19&*W-@!koiL0*%2FL{VYkyAK>n`|j5bt>%!_AbnP_NDKO{&Q zD#Hr-g-Va8C1<#tPW(g}DyrE2p0(&aeUjt&0`(J}15YIG-sw)`Fqd_{xEVOT0*7e^ zj^$?-{BzCv!j%MBKKAcKXrfpGn&3h9*$)x5TXx_J#ha9nv;@aI^NyrEX0 zPn&YPVfO()|K{fbKKO4==9+Il~3E}g2e~|OD>IIAZI3*z6!w+@Toy%epYDVZ;l%}1*t_PMFrYT z@@b3tup&^3nQ&zGy5xKb1wz*Yi%|SUw>;Q@l0ATEJP{bLl|Z;NIdcn9d9$gSpNk|*CE1UxTE7tfpd+@Iqd{rJW*K=ykTsaRYsP}cs^e$3Vebe-1)yx zu@k?{|A{7?OX5H3xV!*Aa%5aiWduvD+-RJ{tuCP7{Z&%fbw8Iujxj1&K4p8mp42g; zDVb>_=&c5Ex6kQ3q|vO)IfhlkV)VR&etT_80{*F!LY5blC<@k>ui`Oej}Riv zg}7UkxB6pUc>0e8ySccKG-B6V;W@Eeuox(z%H_fJIcB>FponhIU)oNT;*tg?Q#~75 z`YkLwiCaI&?QGSZ58v|`XHiR0F~NQf-o|fv7dLSXNQeEIW1rPQ1tH+;E0ycLs4-v#E3qRH|0jV!}HT(3c&1^LK_t52Adb7J$pAt8!#dh$rJbw|isHbK;L;Sp!b8 z6{D!0eLLJUxDZ~T3TBDmC?^|9P||?eF@y1+F3ZoP9~mmMaUc%z zeo3+_xpzdsV5k*GE=8&>y{dZ-?##zh8fjeH)<}avY3|^LxUF zvJP1dhM779PP9Q0)a&_0&Eu~voa`|Jt=)D^x|P)-p?0fo-K#5l;OzoajeW&NaHKgW zMUmBP=}S(Eg2jkWznEn!Qv(;i$vg)Yy|^41OX?W=^STDCo^4cbBxH*9kN#0=YPmTl z%RsDh`0kk5SYqP6#6l<2nN-8Wt=1LEOue!c6X|AneeQ6~Y1jd;-|a&N{a#30zJz^* zTL2zE&YLdkALzN<45$1GHviXHp*pn8U7n-Ac)Ul1cg5Rt!HTYMv`1dB5K+fJ(vo|_ z^zTQN7zXX$`46YblKFD+)XPd9DNQnX)3x;i6})2&1tHh_BphVVoxit#Vp%m9!|2sk z-(>T*U;Ler=HrXy3_O^RJaKW>b)ZGRTj>}6d?e!WB8Zc!B)7KoW1hfy?!s4eY5G}G z`s+Cq-e4LLOg`pYq?x*nA$3t=?$QI*IbVX6IbOPkpue0kixkq2i8vz&OS@_j%wk&CQt3!3wdl%u+V^a1O{xPRC*y7RN+#45S3A6DV zF>E5i`7k$790M{Nea&G&AwG1QIOZ>AbhI^Han*bNo8h0W5d@R1o%%Jp3-OPJgaZEF zk73kkdjph0-$2plZId)!CDyJ36A$W2IQj_GBwg6W1|4s(lBSRC?q&i*S4nRVNILp@ zLwbwq&_j<sh7e4;kp*AwNm6_Ls zHnw)wKQX?UMtbN9Ua=j+v(t5J?Vp&;)n8gygsh(34yW!6Wu*zza+@zTjE#Lolr@eI z#lL!iJU-RKZ=od2_i|F(!k+IO#D{woIypL6&)^?cmtw6myfxm{E8XBK5~N=mS?#~6 zp{3sr|8OeFs^jtQNEx?Z)ynhJ*r^U$M-kq;$qh1 z_Jp6w-#=@@*(Q2Q)50FlgE(XVDk;9jHR9D;()ol^VW5DApJ%>fMwD5iF|3AF?rJbU zzk~EI=w@<*w+zzHl?3eV9WxtIbW9%!t5WPAw3&SRAYK&)&Oo$nTLP!0cRfiaWR|nK zkFFQ>Q0p-$52+J$nih-_+f4K6#%3we6F<|v0yd=cLz`W)cwrbvxQ^S)(=qdlS)wrP zZJS#Qm`6T0e|Zf)Rp*-+`?i-3_PBc z3-pGlVU-=S~t>;!}urOSpkp#zNTu)JdZ8b8)}o77ds)o#Vx#Y0B0`0Enl*Ir{~ZYFJ7H9)ePr`^}3YG3^%=4B8SI%wYeg>21a z1Jb~VP-%4HSF`df@-jJtnD~h1+`G49js;FH7Z9R*EG6_hBV{&5#9lH@aiSi*V}A`a zwcGzZkfN4*v@4ibTRKf(oPb})x)tgsw1P)9D%t(996&#(a0d^yB0l30RQD>QZ+h2DZ|3ba*&Zx6YPau*7b9p^B1EZweLmo$lV<%F;671O4*mGK;#RfF*hCWg>tS z(?2jg->Hk|f7}F~2%|!(m3Vk)03N$c0Q%Y7e?a*zg2`Je;Ipy*<*Iwe34=_7-iF1?IIy*ZOs*?M>JQu@;;lhO`*W0T7 z*d|NfeG;wHQT}if?-MJzKpycc)3s|CK5x?`_lcX2Iiyur&OeOR@@TBhjagu-E;S#d zTLkKwMPHa*hHwbqC)G)?rwIhwiZB&?)c8DsPBm@1X?DyPw2?#=)%#__DHp8zNy;K+pA0|O*S%2jQaIOnO$)Y z!-n7*21Z@)S72e!lZ0~?6BfXH4^p?;mmmNTU{;`r3p{$` z!abU{ej5lCCI+@Chhj7>^BUv_GW*RL?d>NF7!PlvI`m3022Oqdo><-#^l=eR%%8x{0>t4l5c}UXm5|bVKtbt^C~Yc ztaT1DD#uHe;XLwuL?}ks7VJ441|JY(H@~qdV#-%~#oJHCHbDIs6q?o*NiM~yIgwE0 z76p8edG8`8AYDs|tEn}52kmi`g++F`#kT0ooA1euNp&39BId)onB#(mHX_a}fkJJ> zb_3gjg|$zVLCkq-x?V##Gx&W4w@RXL{tG zEU}Z|QDN0$5!;d{H{s^taTVeQLT=xBsx?*+XbFSP3Dow<_F@Ex<%rUWdpb7uIi?*= zlR$3)3-`k9h7pkqAFGNoetD?zjg^L4GBHXStL|j61^J-!`mSA|D1d&h&VARCaGRp5 zpZ3m|@;8_j7_iR8kp!XA>~=D5J@1L2*Xr1sGCOo7rSo4U54kJekrev0DjeN^u3Xsua~9; zuids88dJ|XJhU`f6L!OHCDkWTi-oe+;cj*1&*Y#fBgivN?I*ZM^CKO&(8uiLvju}B z)$P?NsYEiZggegP~y4?{fUbis*u$_1HPo?9@v`U|(@2Dds@YF1~V6VK8QU_;S zv28WT403S_iOM8=x~}8&_l6(p1U{f6{LhQS>`QE;|CAiDHN|)Qm<83 zR#klZ6dD~}NAMybK!o?6!_1`hi1X^-+vB@G*nu&L@0GUnq>H~1;iNM2Ms7Pc#7tDZ z2q4Do{OLaVTlNjunALqnVcOe@Iq=ccS57QzsgE-fO@0q&UR_-Q6-TE&S{eX_m` z*6NJa-K_UOJ0Xg`nV`bD4UyEUgG^=0AMklfWlJpq@)k6ZJfZ`_pxXz@y21S*!&O7@ zIRy0dXsWDw{z?R?Mp*yoz`*x5!D7qdS6U~wEj)ncUzi5mCS5{!q`_k4%h|C*VC?>W zdsBbWA{VvbY(Kdx%UNHtIDAK)vCTG|GS^hFuffJa1|Q8JgIq~sk&T4GfFiJ%p#cS! zxT_RL#hE6y6qYwM-1>^-85}p(pss=M26_erdJFh>xHr(NpuTVxH@c#{A{pV*@;BFM zUZzO6T+Cy>mmHFC``Eu2#AV}>*1}?P+jpXd?+MlBzwvs)_O0P5LvIJ+gjnT^g#uS8e5$RoOjg?Y_SEpPS-a?U}{7fXai| z^OFFGEnpiJfcE%h8uS*D6x1H4XchL$UG;iqc?nP+d>AQjS0I_FM8!R|VBw^x(qq&Z z!Y0=kA+^Y#S67um^POs5hAVpJ@8@t0SY;4fO2em5DRO-#-`FzsTblZdbH7$)JV>~G zvZf*Lv-Uw=0>rvpSRdc3kBXlFMCa>T(AnYJa|3^Gtc6RDu zxJ)#?!}K>%kH*saOgxpzEv~c3ifbkMPLbb1!Y0pyr)Bct&xNytu2;|%&Z5CSbt2Nf z@ImMK(a~UXF*6ZnG9qG+0yKFKq#IJFGIi! z;0Ey3xTQDXVsGK5-zmITpx%qu87c)u^zr>+|1Icy4mLLH7p07Kjrz%f%X9Hy0UP=Q z)4YZ|;G!y6Y@|VNE?Q83%C9`=k(mU(ibHU~T8y8l=|MynzTtn-G*&>yEI8C?CDCf==_@F@%oz9DvMZ+IxH09*`~H^TerW(1-rBWXl*b9Tj-uBgbmtK;kmo76{jier4hVj+9s z_rSm-4YOy@uUu1j_WarX2ZUpd^mG?ONlN}|UimSQI64sLH}AA`z|X&S_a1;J(F5-3 z7!Q7jA+efrA64EoMuX9zt;yEh@8hm+2FC@%#u~84ipmfzMCkKGIt@LT!ot1oItN-r zMxtuum#&~ zQR-|f5g<`_YV+Mo#<+RjY{xw$b+<4AjKKJkboIP%ntj)SxUJ30&&6L8j&ikE(#Bjj z)Qa$P%Pme(TxHx|b$!saex{aR`6U?8RUQ@cuRUZpX|bj+>`coC2@n=_5s`5ZRiZ9) z^YDHABE&7g{pVuz(Zd^@U&H;+c1o=%K}kF1q8J?XC<5kltgIK<7jyGiyhvH)?f1lL zmRBFb7K?$Vp9BK*wzs!8`yKX(F;(B~SghvfaI;sFchu!qvqddRW-a%!x+5=pF{BQb zoFp6sVn0cq^0cN3bn~9^kqNYLFx5NA6&ob2v^mXga$ak2;D!!J5_Lkg{Q*kj9 za?z#41JocDThEpS=`(G^+70@;*n9V?H>(;l7jnbtU?Bc{pLz$g6aTB)BeU>c)140v ze%Tfe$BI^216}w{4#Sm?Pv0uQN`@z?Knonjbt01!b9J51vLKiOEdK@#gr!M!|6qq4 zgP}>=X>+fBdU?#Jwy!?S>a5&`SZwluePn8f2%$)lF64LvKNU@CrXGzpJE}hlh0xoM zxNg|lX$`rq!Bo57nH5Er{{&>WfP3<@CuWSsq;B>4ncpxuKC)V!a+5ygRoU141rzj| zi{AY6c{4uiJ~B|oDEdf<>$+A_`itklBXaMl6@j>4e?7>N|3D6z3gT@-A%NBK)GX~^ z!zmX*d@tg9|65>zSxcmv;aNAAkNu2qZp=zQeSb>({DXIlcZSLA7L~q3rBICseIwq=l{ZrxSY&#K#{#u>F89Em`V=<-t; z>5+!H`8HBb&1!2IUQer?M7n0r5x0{+pF)B0yZru5<8xf8F){4+qA%OS&~=bGbqs?Y z_CdQ~W~wFzis6?w{Mg3bX{5I$aZTj;iMCdjAIExEwy+rnDlT8`e%v%RQT_|Ujb*vZnZ^$bY$k@@VKV4J_ciJt5)e= zHjbHm>SiYeJoIcf5gt&WJRd8+ln!q1XOTns1@QT-fmxmE1W%unm}4EdeE=;>=|+5g zi&!%u+cCq*Ed6F;&91wsUoXhJo+r1!sV%rDcpOq-qC*C(B-2_)*lUXvL$k{(xCn0} z6}JBAtL^v_zfrTA)@tLHg0ZK|*0D`JOO8Qt!moJ_CqoB8PGLJZ{h$-URJYYkUuQAt zdR55L`8LQl!LN~mf3Gb}sn+WX2=IL@yI7+ zm3w6ARBuELWD|i5!WV96PI*oQKw=(Mw;3f%<(muGgUA7$N#01QHBJ4;J}y7c!H)V* zyf4+|?!=b%w{^z|_? zr5gj|kjToW^6`PEZU#(h{A>2M4xh{FG60=sOdb2;vv1o33cj>2fg|+X?vtO|cC(+S9(>LsxoaYE-iM8vi`XJ@B$h@RM5_iA&fY0*?~`4qmMB}skd-?RsKwh~3V zRVUb8~+ZH*^CAlNm;R~=JG&QS#OCS z$VUm+Xx%UCNrv9Un#q*Vwg0^_6=5)>;rqdu*zU$@K;F7tPFSqPMn?8TT!1e;U`+ zl$C{M$!_0~^WVG;bkiJU<|l(N-jm)v7gZwDhbpCV;F7*+cdOR*oIVukj}6`n=}ZK1 zeL`aO$z0voL^E zod2@e4tC}>IpH4@jUJGDb1NZSkm92*;S0-<~tu>$sZ-*UG$V()hhzLGzDZGm_Y(|M1=mcF$X(0^s-9iEi9-rK9wF`D4*2A_cz>}&qJp99#(pY8v1#-OQv zndYTLz{9nBt1uON8yhoQ*96XbZoj*Hjir6iL~a>;5|UY7gkObI4P2ch`FX9fyI@l?NkO5VZa+MW%`u=?4L z30W-mj4z>CS0zhFGoC3(5~PDNfGgGcA=Q$6DOUb5RS@6(t0VzPR~(fU*uPn~Z15JO zTmBc%tl|U2sn`f`dgeu*hbG7DOhhshq=IAiO=jW0YUEa^p9d#b#QhpPMhHwm4VvVP zAE$>OFGm)fb-}kAkQa^xiav`sStsL@`lyH>9h6IG_uL63Z^)9K++;5XZBrTJ6$|HO z<)Nm(EiTUg+0KIzW*6w}9~Ac6Tlqy+c>nzV{ZK-5%gjS?Ds;Q(ep39q|6BR{#nKsAD-V? zpLKqa#aD+uEk^ER==r?d2_zK$tGo68$Rojc;rx%Qg1|8IQPs+a2u7H z$#=f1IqUPFyN8qgj4YXuA|~QCiWYScva!U*G6vdaDrTVPbFobLZ*`b-yHEa4*9?K{ z|2JJTQE-_0$VX!yc5UJ)-};yg28zPvW%gT*^uPSP1@mh*jh{QsG<{jW!-;r4HmGQG zz~Id7#%}Hj`r6b-ZuAQ$<_G~D-?C*?`!pX1n zQ&CF`V;S@i>PPLu6Fw6w0lr&J-cR#9t(Drpp8sB7PtP%HjXgGXRN#9TQD?*~C&a!U z8L_mzLA@g*t(hxvv@E4FiB=Yr@Ux3PO?jog-MDxFCsr`trAL+FFI?qAxx z;QTyr?8$WOecQ90_X3zN%atdP>7$cv4eY*3hzoY-+WPzTx z2a2HAROvUkit~bBm)XBR6k{OquNA55xL+5CTa(};}CS> zq{+I;EmS_ZCAJ_YL$MnhF>~x%w(`q&ttlC%p8)fvu=za_^_+8e(Qm5-K5%s6NWIgA zOj=3v-D%QIGN}n@SV{Br5G1P0yoMU=gfdP$$=HId*f zryyy(L}LiU_w(d~zk%b)oh8J{1nG$zRNm?ePd4&F%N!3o9q|$&uA0eVqcGZh+JE}M z&#m!JiP%(>WbKOuV}G_fq<;R!%C7@+g+>W>Iszo&nM+NHie9DELANcc3qIgxR4IHH zQOSG*C;NiBPwwLAd)Ui~PVA|VMi&Dy)tY))yoUkqvgQSf8zU1Nnkatkg#a`$?8s2X z_L{SZ^Ri=QlgJd&x*Bw%CJD_u1{V3{wQ32Hp2M88E_kloh`HeJDi~a4c^^KY;2NZi zn-z%B+F$EC-4>`{Zz_}P-{_BmeP?jC3DPHex3cSVtF&;idTiV1jFkiv(gN9feWCzE zPAL1ykxbSzIXHp83PA8OME$Ro!;0U(#%cy*U3TVh23@mjtVSv2xjIu(2B6J`gep3s zrNK+D>!Z=6AVlLrBgvs&p2yf!6mJa`ODA%}T~~{K_&t*^tTKM*cqbb!Ov;SOVkM^P z?|))M)JSva5jZB;8SQn8o%4O#^OtHW%S}+kS11D6?g4Yz7ZFp9r^EBCp|lM}7DJ#T43N(uW5J-mwcm4u zq+n#F_h8n{!0+9Bmc9lNL+zeXLp?pAv8rSC@7o4C_CbP+2S_2L|IN*U2^pWj<|IAT zn5S!_oS@2e&E1uT$9`OhAx20NQP2%B`TYY;74-$NAhtu$c6aG6F}-K%v%-o3j@gT@ zK{EOZj&$}g6?MgSe$?Q7-c5CIz&?XHDB!F%d|QrpA`x~JgmUWaeRnGTgP^fSs#vc{ z(+MwE1|g;|gcy!li+QWqsml0!aF-^m@h!2S)*I6X*u5es!gj(14<6X2Lv2^&^J;=< zlvKSq@+erRj{YXScOzyKUeHO2@MYV)WxCjYpQLQtGOcV_>;>z_Pd^?xwQW1J+UQs{o&Vhi|NF9gbpPZf$E In!ftK09y_2EC2ui literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_16500.png b/Notebooks/1_N_horizon 3/sim_16500.png new file mode 100644 index 0000000000000000000000000000000000000000..d4005adc01ef280a97a23f80ddbe52167de85f99 GIT binary patch literal 18054 zcmd_ScUV(j*CtF6PysO(deLAD2#AUx)t@vCDiWjUVE*3-K!klJ$<6ge3J7d6%`fp z!v_ioDym}=R8-WK$LYZ*1?eiI;N`B1qPB~=y}66Kv6C6qV`CQw8+#WUE0YUuW=_sl z_I9^~ZwrfFzhLR&;@~VPB4Ya=CkWd+S%?gDvwQ}FoN#!c<4i@xc$RWdQ^h5)Q&B0d zKUDbVnMcCnuzLd1HSut@&%!G`O_g&t@ab8aOAjCq8TeTxt&P zZ^=cS*V0#{bIA#KYj8jH;_-`tAMV|!d3eRuJR)m!lyAHJIpWGC;|M8>H7{A-ZO7$< zBn*~EqmN=OuosWczKIKvKRVki>3^4jc&H$1qf;Hc5WR{jx!OOQ ziy%ae3w=-%9tSgp zN5QDt>3Ll)h`2%nmP9_JeNRUgk=rAjg^1pQYA!hVC4P~HjyI!rG!#g;p?9d+YVSP` zQff%tb=Kj6ApPr>_c+e)%FeGDehPw`cqr)8CD8jw8BUb0@AE+*rHTy|q?wTQijB<) zRN0+cUuW`qlmxW)07?*qVa~%a7J+$_a;gz&ua1=X&E`cX|95gc>~!B4$ksu=1~lCCRUA8# zD^`T_*bb~G#BuM`zAPORT`rZ~-0?>N^MRU#rvwQ?B=&Npgd4lV`O{doHCLV!?=NnL z+<{>j`~5C8i!H$J^Zh!M9K&L{ghIij7S`X8O28(W zM{j*;3Oz-A0n<%&y{UA$NanC&{_cYamp`Jw(z3pf(E3OoM(DE2}YqNJq1@aQGBGY7mo zkNxIOV$HA$gwq5`r!U4=rb;zvx!h;$`JZ;RZH3+|o(EuZ%A5i+=X)gx)1>ZTX6*gX z%@eY)Sg}5)7WyOL(gyi3>C74@@?}yPEbgp{t;-r)D zoE%a;F^I1Wy&v~EmvV%#GBAu>Iyx>;*wBBut%@^(xEBX@CDG;iH@6UZ=3 zZWpH;X=;aYwBEtuOmSczr`0^82C{(<2s+NEJ z509#ZobHq}4D%&G{dZ_*+4p$PXj=EBmCf8Iuoxvs zWaewjx$A6SVbJzaRLAac-zP?@LAQmgP;QZ^C0I4$wB+cX1f#Sjt@n?AXVqqh z(DIMBlE{}oR%)!Y{0>#1F5{560v(B2J}kt(M0ZZ?F3M5MvOax+)Pa zH*OqRO${}PwM-0phnD4o-h#8C%mcfBI*TV+Px`9EvxI9G?|)|Uc&~4?B4{*ex3|ab zAYH!60YMAMR0ZGzZ@PyKE4&ez@M6g@0+QIVK9|5 zrV8Y;$CK$h_@Z)tOp?b!!}u7X{6OYyF=6xU7$$t4m&SjTcYjb^jZ5GTVg)=oEZHTkmi zeX6`tksG~+Bpe1P2l#*3C;PaIyTT*7iEq@!E(f{vRIBG8>Gj7Swt#fI=efQtTt zE9kM-N+KPEK?P=b~K_w5-Q9DiV{?KI-G3dbnD~Ran zvb)f*fi6@2aRdPo@b&B0vtbhBr~~yh%DJ0P>(gy|@rbWNEnf11ye*NVaK-UisfLafgX{dExEtkDfUli=a1m?g8db))+s7#eCldybu%4b zU_wGdE-)|1Upi$*IU_SG%b2vYs-Te4qQ>_Tk(!$uc3x2PhVhTr_oKhC)hQ}b7GUO2{)hX&UzGo zCzOHD=X8LIaQW*-Uhi+pvZml}-;kAVrTZkJKbdH-y+6Ts7{lU2pdBhcm{FE987#7* zTvkwUGyPHQk0PtCGSXVhcEus>*u3GPWN2vU8)5nC80#Y<*vVLSNZ#KaUiNDoC2xs0 zx3uU~x(T(lwNd#T?vKiSE~eb$YVuxphJlORvPYv7_!*&|d>J`VXmQJB<`3KOat#~? zmYr$Y=O1*q*H_yaXf8MPD}3@YhXy$e$U%Ktqu2e zm&zu>5@pvDoZH7LP(f4s~=@q$v?1_;A8|bbo|#%X{*p@)~)&HhCgk zE@`SIdc9`5IvnV+^G1iV`_gusz2B!uL9LtCz1Pj#;(B(AmsYY34}wEPYS;t7ub6P( z1=H3zv5*$w%J-L5q8xg4EF6EFxau%ym9e@r5x%_IcYlE5t$_N95F+z@F1JLBSgcJp zRUIBI6WgVh@l$@x%*+&td9F{ZsjJu59t_nw4%wDEuD6M=58(XV@?_V8W-QtxC%dsBqQFeKL^XEjzqK zZpECybbDe8IJ<1UT}tP>5jEf5pCERz7v~BsaOPVJ10o*0A#5Vkl-&_D+&vj>-~}7q z>n)8Dx92q^uSI(T{jJp+WiSgeb*12sSv!%utj4QXo~67m{ofU%oe&Ev3xta!pWh;#*-mjZrfi1{79ZR~Nid*DkRcFz8vQ>}I@u z4MzZFqZ`hu0+ar*xCK^7{sD%I5jCZ!(krns?*DEqy+e3K*_FXTU8)h%w0NP%>Np#z zRnNXUl5$LhNu3JV+w)5D7(ekVjHl)GiL)^`%}!D&^ZDMkNN}Ww6O)F@bF#9m^7asbC{tp=PTp(6!scL5$}C~(=?({*eaq(@&{0ut zBOkwHW@b9WRn*iVIXO90Xf*oI$jFFiYp$KDS0j(R!~SBa^Wnj^x{gj0Fk|;}L-@N8 z;R=+9&luxS@u*Xa(7ubs2lSa_(&SZ7ocBl}a=*Z=MG|M`PNbI_{dfuLHe|1%p+Vfo zs6?+#iTK9`@p_^Dc}4HI`jgGwd%rg~xo|?3$G4=k^p*qR9#F@_`x&{i*rPZVG3_GW zY2vR_WC>AJROEK+H>PS$mP>Y=__e5RIMEnRr0ABFy*+WjB6(52HZ?nxOZ=wgp9=t* zJV~pKo`gUK$}eV+t&#YVxwkSUn&4hO4XV z#`0(~MYFiQ7xG24hhi;~nk;13Iojn8eZFRAdu|O_0QWGQy}l2WqyDPg?n6#aP5@R? zk{LY<4{PJ^*rtB{8ca<~zXCvIy-|+*G4_@P%~N2h({1rmZ1;I&eIyv!geO<(S%}l| z_UY;A<{9L@?PVNLi5(!ECa`xZ@ON~KtP33g3rzoo1)pnbl34s!UfJ}24~&R7b4q68 zPx~9W?cS`6q`|wx6BG~w@G)wYT-YudVx3nVm8G8Hv@;fDFaBntQ$@rKI2mq#(kkAe zp4o@Io=l`b%i`i9*#0%c!%f2km(GV2z)SF1YkJRpHv)iLjq_^9u;-MZVbhN{jCXe@ zKLz5u6DV*C^lW)`HxYnt)wEdN7!c6dt>j&%FG`^%-I;3M-OKrnye*E6JdGX7d~FTy z&feYZRxg!W)~cSLQ(p8g_BsE_}0V_XgJNDxZx98+X;NmJBry{iwz`koqEw$$= z(A6c`^McT63_6`H^U~tw<@)ic}bsyjNlg+R-&u>$ZO1OOT3@^|ZyX|VA31!PQ`;w!E-iyV+Amj#!xTWtl z12@C&PRA?`=2or2Yk)^t){v9Y2;VUAWIIp6`a#-*y-ibquT%;CLlf&KsK?fq3tp0B-W`im+3Nn*2m?LHFZ zKLEerBV>LF8yCy-WX{&gTUxNDU`C=8TY%ibtSUu^D29>X_>1GZUdelkrserAT2tI_ z<#LU8r5fux5k~}QWdby=ioBU;0T!0%Yd~@N6gQnD9ZNYc59jFa>p!QSJWlb_T%$Wm z7BYfbxz7QqNemw!H%ao_v!WdB5)((Wdcom9&AnUUukN2@x zJc0CEl;!r+0AAs&G7?LMMcE8IE*g@?*(hF2J^j&`bMijk&9y!DR#2Y*!TeCMd-3z8 zh{gNwfY98+_eQ=O)4Gp%UgbO7X_OiQ9O)-%cRg0lUv}AVyV7%lYxH-SY9GP&qhWxEbfJ$Kuq0c(JX#Q}s!89(8WN8!S2=bNYYkmEvBNvD|+8WrZJ53qC2@W#P~?J zVBT)GI#bmfi_kb9`kHl~vhkBKV%D`$uG6s=Yl+J~LD99ODFCGf9;+s&?oOUI*eZx# z1$z_CC{p#ICtK^5_m<7bR!OO?`$E&z5|0ee*soCW>HDENg(d#A$@)%BmnlX|VXo*i#l^*V;JPU` zN(A~T2sG9h5Y0*^#uwJs$ZfRi5m-DgY(l zlsJst50hT|Ei<$mXYIro?8bb{9QQVe_ocA)y$3vQuD*&5ApNyL6PZ>$c|5Ep>Td6enhVO1}=A-^uI1{LdnbftK$p zaN~0j%;b+yE(BbBDqe&}(%|rngrintIyzSc_E;76I4>t>`0ytjT;`pbn))6!A~tSCjLBV_Vir0f;wOZ?3HH!w_|+d$D737#@qkGm@kf8+c?_b9G6|QMu7A7-1MI4oyAQe^OsJW{u)ad?}0=aFdhB zw`m5=0bjx&!iH%T#N$;ZJ`^9-7+gM=(f{98kpMgXpNcITq7cz5P;=#mA1II8P+7d$ z5Cgx7TFpV+{azSFI}oY@Fc<1M#~f^=hP4Mqd|l{DW5$v-V|%tPG46`lpFwRIi)`u7}*yNVc=5Y#Hx5&H`JoKS@FxB*>y zkK&*c`kT<<1*$JA0R0+hNXrNEV!^00MyDOl+@LKJg9TR==2X z(}(-NKrZE}0y=_G-0lHv7;SGrjYm68Q!Qfu@Pt2xA)^s-Nr*TDJw0ziFok|ynpM0( zm@$Py1Nf*I)!~MV1+%P#sa@YIv}V{rT7%Dj2Mq*CoFw%?#sFogiC@j4I+i7nPpLsJ zz?_iElaXr+84C#RKPk{N$6Q9*d~x%D~hnUaqZE}%J+0Va3&S)*O_){= z11wJJ{VQG90`~I}+)4vr-)>)g;2Z44-8Ms7S?V;J$g7kM@ANaqb_6Llcz|L`9ct$) zVF2A(|0ah5FcE1fYlv_f`^5~y z#0NaY9wUsQwCUf|lUX7BZqj!!E=ahQ7x=NYT@1XgcQmx`G|8_T8Ug4| ze(ZPQ{p+;p8R%Ztv*VOZ-)wXypbHX`<(i@ZX6YG#xDqXp4bS@+w0*=h5k> zn3Vrds&#@j{g0GH5Wq+0NZD5Vm~XI1Ft9U|#4z2Q5W`~+V91in8ZT>XN6%cF-tGiH zZgnU~>*n(8CKb1o`GrH5g=+>TMj#Hrbq zvfF4}|3bn=ySVNsvO?Y@{AL9iWr}r31%k}GxU1FS?HfEE@`FFc<)FfJ!gTCXZVM+= z%n462}wtdQ;_cYlwkNRe3q@tonlzo-mEKyYARkc0o~CY4$nhM z-z}O##U}|2*dIJULJI?00=l*@;b&TcgI{*M65x=@jED_lnYU4esrCKAbNEnhV&=*$ zUGn0rzu(4P-J#Mqf#)%b@3|5fWq+}>$q`?D_(;2_X0vk?O*5dWl}DWg9H>_wD74~A zeNXOOd3p*TmF%{94?bH>m-Rh5`1o7R=vze<37@W<8nDx|){_zxw=vT}(yI1}egBsG z5vZ}p3tL+E>jv`9*51S#a4+sV-`>_McRMto@atpzFEVq4-J6em#p2Z`YHFo>bLS$H zdPkBx?9_!x+9f3)uWI!b&g?$E?qzq&dOluin@eBg*I0cii|iGayp*r_1d7_ug(jp% z2$9V%S3gixtji2MU>Ez&m+@%OZ)kAu3adNtXozJd9nfKHrqy z2_F;qh(jhIF1VA{hn1pVXj^*jPQTk=MJYj1&T}d9QbS;iTKdG-JfaB``5N(MoB2d) zR6zY(ja#;@_tHZ-8j3_|W2LL&BF0niC%y$kT-x-aEF>Y-$;j5yW_s*ASL|UcJ-Nn5 zhDBr)yGKGI1zLjdPJf{07B|1p7}`e1$4~$4T$u^DGRxjM7!GtMQ;(keO(bG`wnAwd zTtk}T+Sy+NyXM3%WLth{uDp>)c)j{c!fO2Vleil(@wL}G8ej()`5I%zC+ z&a+aNVyX-$l)((b2r~x=xO8FeM}}nGMp~75kCiM}=}Kcps#gLkcO8F}U?+Y<4w$9E zebcH5$HQzKj|HKPA$4UJHQsX}etO>eMfKeW$73N@;!%sQ~VQlW^5r>$qGRo6q#6rb0)Ul z;M|w=)D3nTzVDV%zF%~&EsfrG-bGHY#FJpPnp2xNl+g` z9e-inoRtG3cFPC3m1Ll`%N+$7rIzpoJ~E{w-^+5o1P&^C&8VBUtyujTQMc1wN-WRs znOUVgp%e@||7i`7N0dTe%F}O6dcmZT>ZZ`#nPoxd!3~LVJJ^NNu4Wa)mvy0N6gf<2;@X}Xs8Oh!HW~$^? zVsB$J2CmdDd!bHT4`0gqQl7&TuoeM5#bwZzHi$Phu|5CkMRx3sqGl^$Fp&timH_!q z>RX=+(4Vd{k4-+5mmJa^9MmaDPioYhrU`FM9%{v#&F{96Y`@4r2|z|}CuPB+)b!Ms z5|4HP^h*hR>l}xMv3Df%D{YMC`l>i{sr23X4m^WuPLqrXkYxg9zQ41xx7_ft=ZUk{ z*#KSv$_j8ur3E{J7xA=+!58%`U`J<-K-M5jYfekERqcxt<0rQs3N&@~F1`%U=)JvC zYSFu1NhfHvTwv#9rXy;~pmo#D;qpX~rl^~P@D96NTJT3&0sUpl&d$k$K;8_lrgr0n zk(?6qLZeksk6md_d2ynJxQ#J@OkB6vnhTO2Am>W=ApMed)!XUbt#)6P;Fon8X5G)w zPu11nj}=cG2!b-Y$Utt+gzI7OnXiIyb^wUKsSmCRJ3U7M@pZ=oBbvL_3=fXEQ51Ya zKHF`uS9EOxKuMBLAGV-EskcYGusrKco1Wf4RdHk_SBXo_k|eXa^3*PFwu1L}!=S*G zUQKo6l3X^JHR9sVr?RwH_xnEbA=&OOJ^={7`MCVMX;&}n+X4Mc+mnkLk zPPoR<;}DLKTAv`om$-NGiD&pJHfaykp@{MFPerD0*G-Mg2JE)2U)WB>RwzY%8}R$5 zd$irKDLp4AasNDBcQ5*u$vruxtvsWK0KDmBz)7WzJfq0~Kc;!Zr9}ryi0}IxjbwuY4{PUwP~T54~38 z6m7UI_3srQs?OD#W~&=uX`N3Ur8tXlmNx zf2_xs6ntGj&;;;JJI@*CE}5I2`WkXj`JRg7PoDFo-yh~~25*h^mc9Dg%&v=6@_fht zfMNrW!J?mC=$X3AE%_}D;In%rt~csV(kPlyCTU2RYT$=6S82h{ZrisJyaIgKEnkZQ z2;b5Z2IHLG_B;a{;$f(#-u|6D)s2omy?;855?<_wfF8e1lk=FL6nrhaC^gEFF0Y~| zWqn6H|HVWvGHl1=;vy`+CMC8fK3==9{9R9cX@QsXSr#F^#<{k~L&FB{dPqg7Hy7&N znC`!5=0G5qgj|78UG4#eLHvqjWpf?5n4W<__ZMLz#WwYHs_|Af^RYhv~uPs?Q?V%*#z%48vd;0A?8E{)>*b>D2zM(*w?Qf7?c!v_j zss=#rNjV_lvs@5S_8qz#yxQ~$(Fk3`Ov%e;@(MSAnNvq%fSAln_w8)0OxvbyFa8E< z)oU|2X!iWU+3>u$nJMTtyBmH&&!wAOR(NlBz(_M- z34khAj*4R%fa-r6EPG?oXK(y-Pe{5lWx|!8QOnlE_F!v141G?K$YV}VRDMla_5%%$ zSJ^EbarP7j^tl-U4-VOy7=TBl*|o(`6B8N4M`9T7n&U>c3~_`w?=SenZggUM&Kkqkr_ijjh$h0Q2sO=>cof@Soqoo8?1G!pI>kKv(WD1C+e65OUE;s{-Y1Z}8vGQ-Pn+wK;_t8(0YU7!ZhY?%7-*n1v zOe8oHa_rw29(w8ZUtFa97s>vc!5Hk?or5^S9AMb~eA8{iz=&>n0eDF4GdlVA6pPLd}4Bqt+4f=Y-*C*q=N^X~S{K3Ob)w$YirAGfT*Mb^> z)zE82iGD9Y|Fa7b0Q7|88ITZZ9*8=TUl|zxT`z@*G^?)97`mE$A!J`=}o!%lfkUFQd~IV8X%pXOVMG>@~zjvCgf$S)hXAPP(AmRzZIT~Z&*;w_ViOfOV!BTDaYr= zWI7lV$l%iq>XrM^-K)hzZ0mmt@Q+KHgF~(f!cvPQt_jY1AQf~RAyYhgl||xrN^e@s zO6m@t31V7k%+7dE&`?*R@aeZa5ow9Ohx_G56AOi7QF-u>9jYgYtAG4KKgO4nS;iFU(Q5e#@x=FZAfgP3lIOE)(WohisQ(8QFQdVWmiKk zF1<3_v31heM-BWz11Fg47y4%_Ut#>7uCfc)oT|?}M8I!2Lci%Ts6_uD)Rk`;xUrq5 z4YLs?JS_#zdKNp_-~R)t`ptMNwFh5r$?VG9rho->Un--3Tjs^R@X)0ga9hJlThVPf zjmGbBPGryClq%0(>;mv@+5Y~>P(9tUgZ!}Xrb2DDi|@Ig)@6rrG*LvglmCiI3UG_f z!sNPLV!dnMl#=5Hf}R_6i=@~A`hplMD!t0<>Be8kmSet^Dt28vKM?H{5}S0}@kYiY z&Su!Bw+=Jk=c<#)qV5BdHE#PROTGnRz4du(T}qK>Pak$Wg4_ zEd(}XPG)W{zHI+pF}^k}Y(Gi2WzAKO3V6JB%2b-uE+$A@9S7{kjmv|y7`y4SSn?A{ zTo-V})se2Nj%1Zz9eE2_vQfFGHKV^yS=^{xL9i5CUP`%ZpL;e;1UAPcO}{1h#Xp)V zO~BB(QB{;juKiNUfqr3*P)6p2ow&vnQ&#hENBV@Cj^={o#R!+r`feQh&X0xh9!)AI zk!?U|&w+capp*}*`_^1T0Yz!jUD87U&sY8v&ce|j{%Jk15lr@`$vwLDXnTTnsnB%$ zPiuCB#xL(D$-jqGIhD~q1i{I0k7X}}Was`yQF9OXByBzh+ia_@1 zcRW;gwXw9J1|;Yt1ylg)3;PaS5|;Ml)|h(3a_8hljDoMaARs1LfCC|Yor&|Cp#Ut! z3v*MfhPK|CbH=;-#*ZdF)#XOs4tf6FZBqA2nk?Ek6uWCsd)1rbS*hV#t#7s3*r(u<4l-r#J<$(LPQ zktIo`$+rVSo^Ysc{=;eG0-_%QcvjXmGyI3IGLq)jDqN3;AEgW=mTW1=s|zx><=nnq zj2P{X@^7!k*$(CBgaRH)AzPgBLy|*!l^m`GUkb)k7hgr>eo>Z`|Fl^DskuEM%_GPZ zerhKt_%hEizjdy%P0gKO;x{37*SxvwQta-6R?D;>a9Bt8;0Q-Rw|H@9KOPcn!}p*(8Q&8-_EDXB%4dNUoDj}Mpy6m-peIwP>2(gXrwc(C{AOoSrNc3NFr zjuJ5;3=j&QR*T4dkqGnZ7R+00UH12Pf4dIlija1 z{qmO!Bm9oC(boX%ham;^IkkvFHQqj}-6133HdaqgYqE;3MQ~~jCeseYai_qmby&pwANA*up+_!@&~bNKSh3Ysn+wjKfi*1x&?Yshn*<> z1cQlNTj=Dsh3lCge@)-HBVN1)(gOJXNnH>c9LE9xGw=d&Uz?l~Q>KK`rZ7MqRniOU zaJkahJ|3xHK|}X*fc0%xBm-DpuS-5iY%VaV@$YZ}0cijFPq=SWC#JlEE6-nsw0y`~ z5m!A9vI76YQcyL~smcB5ovhy?qdLu6kL>%ygiWdcDn%O(vJa0AgFAT-7jlGbeHOQV z`Yh*WP@qL4FZsuz)Qg>vIp+@Ncu!(DUutg3ySyavP%TxC0r?)d@1J=?meS#<%2&-Z z9dB~Y^Vt850uft5VQ(Cq1C@E4qk8j;F^S`;g#Hd%k6Gj5s(3tQ-Gh$+0<`2_T!z&tyA_m8-gKDI$;}^@a)g5I3jN&L#{5{fKJPh zIU1=s^I|LR--df>_MRmOZI*F1Gu&gVD{IU}SJ`DU`7C&4UKWON)UBE_EcPTK=i+tC zr&Yt(KkX-*0|Kjm@HUI$>SYY}L4-h=i{CB(%k~mWr)ySzfhM+d+dISuvEALr)YI=B zyRJ<& z$4@uID{61GAVd0An&Nqlr+x|PyR3PTH(Tqo2E$7qK7p++*2*?%+3B@zIKJ9hqPx1# zHOPxdUI$7v6eH$HEk?ce=jdME6&FZr>?YQ&;=Jq0BS^ zqW+bFrsBj>>tWzOiT;P|wF#v!-xX`@A^Ola?x0tjw$Y|DvJB?{KwOTNyOzZQoUK@_m7H)-cziC;_(DfKqg z)CZ>ONG?aMk(_lL!JEwW@`;_!aR&ih9bv#?Y^8qed|rT_9n3{+zxCf94Ft**@|$$E zca5l=JW=unSD2FjCb$!7;HE9q7|zwevZT`tQYHX!6=Z#W89zhw?qoqJt|MZe*xB9r zs}v`f)OEFw_X93*dqc9uxltWov*Jkw4}KXj{<$a<)foW=?>om+_4QVBM@x&Z#_0~N zm$ur1{6}JX)Yf9s(4Zk{`4r@-hUR^cI{?ArvnV!o9nA=Dq~;?Hof8z7;aWmWDz$G} zj<**S6uxmy(a=?p1vpSk4%2y^G z_ick8S?dYU{C;y`=*Nfj#S!-t58XO|i%bOY!5LpVj3`UViUioo89yj#FN6PsZ%!hA zMIg>0X+HU|Bciz86^PU+dp?AKp!FHrO`1(ztzgl&wiACm(spQV(QIf-5XYBXzA^=x zoPIHZHVnO?g@Khn@}OB{L5I(Ma8OBQsODhg*|~*tuhG%0U3u2`5V~karREYA1PEr<5jJjv=v)^63EkX9^FFKK1eW$c+CW)TEn!*4!68)(u5&2UAfs|CY^(92)2X<2mBBj90Y;YVCOG@F(pNlN~u8g=eZ*bFn8HryA%;iriS#~ zMtWDhx_YD9C*ms>x+=oE0)ssj^{O;Ji%9L<; zT2R=JB~OO4vVxfhvVQ!~@)zh=Lidl4+yoR#FmR7^~2j1o^$+2jw$5@i|K^gl2v zrO`G(Kzb5n8Xra&R3+m)-}+Zh@g>%NKLui3kP8IKMA7_`IFPuCd8YTXzfPmFN~$%k z?J;Sm21CLfs1{mT3tm;_{y|}Fv!ARB#Ww%(#uVoy<{)Vza>tbW0xq*9O)AALa2L1? zTl7(@G_FeJ=B@0K8drU>v>KkR>=K=fxQz4Xx zFFXAa5}4+lVveGNDoR$SVKO;`cP*rmnE%pH_RO_p9N_?V@olRKJ>8Z zx#A~gPbXx%nBcl`e8hS05~vJlmwoD>R!8V7xH>|5_E%XOk;O&D#8;p0?9AKH`!C<^ zts=f++WV=hL!R}|SpCEQU~^N!l(xI?>?SjKRb(zFj{l+$=H!BTks$OUeoV6Kv8_Q| z&AdmCJ6Oqaff~mb`YqbG_I)*uDvT|?cR=0{WWlVAng;2?3n4J0mja{(5zrA2k|n^g z1_NLy%qQ~%<{16QEm7VkIUbd zr-%O^Jp+{d66ivhL+vO>msmko?93PVejO<^3>zG?G_7lfGfhmxD znlc&>@s&{2HR=+YXx7}LGHQfZ(ot`dm$i8O6N%4n{&ww9-BqMy{z1q5|2EG7gUSAn zYUBU2k2w22QXt)cYAQF#xmg|>DO?XmDf5rV-S7F^8bLO~c5IW_C9J7^|8FIT8)eW>M7(HTF5C-XyF%HFPQT|^M~4`u1Xc(Oc*qta`sEKD<@1Q{ zPwyKDwbTCQ`+w~^blOyil21cero#^v70^>d2fM0s^9Z=C z&q6fAQ>N?GS7^+@BkO9rwuJ#hfor6Fb_}1zR2Y~?wAjU3FAoa!xtCU z!Vl?2`Y;FKyIY?E7#I&W*BqZB{p$lbuo~Ffb9>fP6Q3)|PpIjq3~QVH5BEmCL>v0| z*u+C+&U;k-F%;orSlSyhuFa!LUQ7?S4rp1=6Je-{@ki2Co%0Y`SsdPAJ&s$7%37Zp1@gx|2W>1*F?ai1aF$`w9)@$=Nrq%^Ob z5ubx$P%KCuU8F8KsLZVSB5vrvxm&`suQ8fmInVMtG>xjApUrQvc>ue)+t)`+q)J0` zBH-IpdX@VtKBFQGe#H}@^q<^Kwy6BQaXAo<)9 zd^-!g8`aseaM0x@x7f1UoCa>5wcOIYxh?GE-}Y>@Gdr&q<>9L!eTu~ELF7%2EHF{c z{n!;iREMj&fY=e;DG)$f|6aXAx`=&?M$8M#jwT|+ODn2Ku2TW0^{ z)sQ9A&`UH|6dV4?NC}xW*yVi$o@j)Ml&Ufm);GG&qprM$t4x6RgceVxC!rU{*D0Di z!32~-<`{RBVN(T@2jj{RsYLI0TlgjDl}~!FU)aKDd4L;+VYG;)JiVA&e;Qs~Em>$K z3Uw_UbpmTVIlW_d6)H^KeryE%7lP%2*;4GA-JT*7d$PwyBjkZ3LGh35)p zv_WHT!`LMG$Hwh)jlzd88BT~eO*nN9RxSfQ=;lZ&-kn&&9ZI{Z!)HeW=+<*8P z;-RdXQ0Ns7R7kPmxRLN5KFe@a_y;{>zb@gur}UfC^Wk{ilkx$F?WLvZ==ALd3R+C{ zjdC>|yd0php&r4v5e2^(5cXc_6ISncspno1_nkvxZ(+-MxS%E+<%j-JiVb(M;GYYG zFFKISusHtlb?j&$-{cW|O#C?f+mo60%{e&u$eaA%^AAS;Ux>y2A^rWBo_KSf6!1S` Ps2(alQOLb-^zy#|+?Y@E literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_16800.png b/Notebooks/1_N_horizon 3/sim_16800.png new file mode 100644 index 0000000000000000000000000000000000000000..1745dfb972ab23857dc8e9b6bbbc9bbea9e9d1fa GIT binary patch literal 18012 zcmd_SXH=72w>C-<2|bSr1Zn0$L_~pr(u)QakSZu3N{xW@5_$=s0aU7hAksu>QF`wL z5Rf7uAiV@>(t8c%Tfukl{k&tGv&Z-AoUaTCcg&r8mAS4t=QZb=i&vWJiVU>pY01dQ z7?hQ6Ymt$ik{}}^e+D@XJ}F3783z|h=R11N+V zT9j|!df=Y0H0qXM;F5T}*6-%2k+{i-)jWe#`un*O1?>Qf3l*K#lfV4AgI%ax{u*JX zGo{pp3J5wfNB{bm<9E>+LW8}4JB2*c&1dF$d~{Ui7O4CUd$GMeQPe}0JA9*THfg;& zSriQsUD?Cb@_mK9xu_g@QTbj$mMZH7(!0n_b2bMh(wo$;qJ)T(yRR(p@RNIII{g$# zw=VJ~kq4dJx+g=)cycS+{WQnPE&erniIZDezy5b=NQ(&qf8eI4uK;o397~Rx+h@ED zF>!%RaK`1J?2(WSB!tx!MJ&ZaV=`(pSQkx>vC#TzIQBENz7JaO!nqwv2S4D&=E-97 z5ZKj8C{jJ>Fe4Be69BbRfS?s1DCtEyICcdKz0%$00>^e4^z$ogoq+)<_fndM@Y>Sl zopv`0vPFv+j4w+aeN3F{{7v3T9!t@=Si^&jpdMk8fzVUlB`QeoG@E^2=R)RB&uF5+WW5bxl9s_q7T-JVZij zA#fWAyy`r1_bvqPRf_h7A_q=CIg6CIh+Q?V$jOFdCE?hkxyfU880CR|1#4?85>kkS zEVx$IY#VaHvDQe4F9bfqg3LT6=>Fn8BLiF}x+VrZ7FJ7eI|zC19M3$L+tLHarhxDI zNBMDQSRXj5C^$}g!*=1T4+)&97&bX+ti!rpbImFG z(>bS?ZRk|}9{ZaUGzofy>x6pQ1nE;{ED(HYw+knE$fd1dF+>x3u$ZsaWiejVU!LsH zU(#N)$CqM@W;z>--S^*S^z!@^vsu|5H`X^(d zVe?&Ml5?G0^jGiodt3;k)(L_hy=Qzj69B#BHgL>C;DKX5LhF?X2B}C!B_I1_YiZ#o zJ<6&VXQjDr${}l!jLk(meGqtb#QQ1q;c{{%6U)lP#xT9A zZ%25K?9(fLM&v8%E581{r#{-coTCg%Ev>cl^*p4ys4Vr8WY?n~iBtBMs6AyvUS@(P z>|GjSr+C7J{Kf!JxMQ^(Qu`Gq9`U~Omlqsc5b=IwGh%dRWx#+Rmqa1mjlO*_Y)2F) zKPy#bM1Bqn9gAANwYG8-V-Z?=Uk#20hT~IrkUbwWOVQ$(I>f{kV&WvFiMx2?Y1&fR zsC5SJ;I ztOA4w{P+ox)h^_s_)veVh{ z+HkCumeHrquP~!A1@?yS*@uzme{Dc>Wy7`{h$IvRYRKgG5*_G^S%j(du$54gT8PRw?CISZvh%mJ@n^sN>WTzw8q#EscAUlmir1 zN>&9wJJUKxDGo$&D-*6-JGYznv@o;>LaQ>XOj_f~$;)Z#%8~n31Wh$?353>D;R6s& zrDhc|skHEe^LnhPgB{iWzm+4m!)5==#cv|!@@s*%bf#G(9D8~a@zDB1IQH#aKY3iv z!xJ8n^9%Y`?vgAT;~0`JC0jTA32&hkx-rUvI&g(d+%vuzvi4fF?+S@UXzAutD{`OJ z{@i1a?oqjTBY!Y^ZmE=FWo2*vgi_3No#yb-gutb-d5{765pI+>E$lsp!)O?_7x*;q z_6ZTGc%Yt6r`aEjC?V5UfE@Z)A|Z+^3*~TZuwO9Q>)_z<`0JKhJLmXGU#=dh51=b; zg0+bn1Z{_sD{`}-M*c#+qfQ{Vp@q|jBkUk>dcL2PD2>?>iV+H7pZ(1;yr zyl)B76n1n0Suz;VoR}GLhxKWXOLbp@rmXps?%DB4l6ell>uduT08P zmI*#T#YsHnqH?!f+4hjNNvR>Tc4}wLOQ=(3gMM#s&t|mZZBx@-GR)CN^3Jnspab!}R^6KQ z^x?g)d~$Vsa%(gfn6ugwrDN+}P}k16GCc@+1LJx0$m>Y@fXR1PLGEZRT>HU;qE1^e zaq+0A$=qscI!`4q-$~@04t4nI{zXq@xe*2-w{atc4p@EV~2LFmL>6=LqXVbyn z26@@cduxfE5wzrVw6?@zUc>HSCuTcviOccpUr#*e(p2NcLW`~YomzNf0fwE!q~slQ68kH@b04iz3ziWm$Vk8Bj`uo6y|!&~%6`%6Wa~GwStQgs zHgh&B^Cf;QFl*c1vrc)6I0+C^#T|w$GxA-R^e?F=d`pWpY*k>AEoz>$va))2!v5glfsMheg*JmC7~=5w`tMKSPKR6lD^pJI~S>1E0tApf;Ndds5cF)vbOZO1@c7Yo>97|=QA=Cf zWQb@7neqBm%hc>_RD68fR7=#OYR@gqPjmx=xI@2z8+jgB0G*sCEgx>ZaFv`{@jaFX zl7HG1!bV2I;L~r=B+q$%fb2US9+G5Wse>Nnn>MmzW_)%=n@KMqOuCycE;mS01ON=- zmQMnzO6kyhU(s^1gE6a{JFRmclrtVF z?Q0Vs+m#2*%$SSW4B#VqRe-^0#rQ0BNG)6i%ZJO!nOSS*p3N%kup000>dG^+<(K>u zF7-KQO=Yt-i-btPWE%GbQqGcmxE#_$aC9=&*eM{+(=UYN~5!Xb97h z#HAr+KPJQFP9RTm|3&lq^=kmRKCbX!gwxU9>_)b|k9F*l+qlmTxh&horf;#e2WE0W zb5{y{w&s5>^%s;{zv!2La}k@@?;0E&JUm`|u-^8>_i#(*aI=RVChSKiSoWc(xzzO_ zVKm&*y0EzT?a?8z@Y#=#;uX$Y(fuo%p38lu zvWtf$A58HTm6WUl#Flg#{rJ(5D9t8pOm^qaovV*aLim!s3w(_1>;%=+)WB4ofT*2j z;w;w7JAK073W0gH!(yL5e|B$sJXUWZx50Mh%9YCk0+V6V%Y=8RFpq{Ib@@Z*oQnA? zBntx|tcI3Wb(*bab?yJW&NGA1Jas>wCCh z6bDq4EG;eV!NZ5e8dxdk-sO!2oa7$gC5h%$s;@4#2!q>AJHr&gOn?DpqZHJ2b zInhmQ77iQV#YN3p&oRm$tQrJ5JaPVUM>S3)z_KSDVbQ@+vlePkGABQVhVB8O9B&yN zHv+tL-speQ@OXS*Cyv?TzDHd;G)*OTy|1)}S&89$`BKU7w~mgn*@bvX z^raP#PA|Pea|T@l7iONjA;w={{zdFvMl^FY0HC+sSLAHO(wvo8`+C-`eA%sf!GNAy zE}h1liD7XF>aMf47!bA;T zc;e=IGMY;UKk$O2iR$ADXMRNv$J^;`U4~E4-)}@mN3S*tVGuoOi>0!oMsO_PRC8=s zl!+}Fng7bOpkKZwnFX8*>HBelx2O?+oYVhQ3TElW;-XEudSWZdIXtpRykl#-1abv+ zRII?U9+3Od2~|b#s>C>ZE>?MLxF4)F508&~Z+r(Xv{sVPX;%o`OPJjLZ-Wv8&^ZbE z#GmTAKY6Mj$=$g_A_?2KOibXxEY~Oq3FwZAnRxq|jpSo*;!#Wt3sC2s%F*QGgITXp zd7y;=ei9Sdvt(tvzk+v&q7^D=G&=XQBDMIR>CAiOR5H$VjJgbul;f5R2&qx(zZzMM zo&xXLo+KL|?z4zeO_GTN4IeFyABD1snhOJ%VD@{GDWIsSf;Pd)Z#>~svMU};@#6M& z_SV1?U)9Sa^E)Qi9;1eeEIH8ahy>4hT$W+=`*{1BIPL=iwQ8c&TSYF9r?G}CU=F`_ zC&MjTqxroFl-$O|?WHAKL&rwu_5{hOS7-UwLF-24t^`jTjg3D z?r(u+ihWu-I%eML8cvX2z1kXPprMoQ9u=Ne+A=K%mO~QE{++N1(kq;0?&hED*Swc` zyI)}^=GxRdY4I&gQ;7JeGa4;=qIohNB4mJ4%#z#-U{MFZSZhBR)nZ7thx9sFw2+^i zjy0MA9@7+97n$RO4bo@BX5W%-! z>Qa`m=nm->nVOBnl|1(~(@Ppj?ftb!TL$w9z;??YOfb0(j{W%j@QW)AuU*aFjE|L9 za~P-0W|xBZ1f9{daWUZHSgz@R{dgyMw>LwsQT}*CUet9_Pq1=Pgw!sJkYPKCkbqH+ zVLAdC*xiAumjmWjzTPUZvmp&%YK31Rp(t{;Fgak;;f;DIj65Tmu_34-kip^WU#nZW z88NbPQp}j$2KD$aU%sH`dvP~EQ#bR;?@o@nW_^3tRW>zy9IhS zs-y15eMd(}qG!k(cKfO~JsR>pv8W?pm_ZiJnuur;mofJRPMs3haz8#kzB0>TVC%i~ z5MZSwzp>Yod~{n`xrHly&OOxj26BEsO}ybxKkJKW8Fwm6O!##TsKiH4=^8N>V$tLKeWmNi zN8`sNteFElZ!=sH>Q70nrLTX_%xro=?hC*q$rpmTVgaOH9UrY6+pRdRnR6-)1E-bX zvpwiND?M)V>+7qfVGW6iQ-HyaJ1&>ciU6xQwp~){q8!@2{Kv;{$=XgdEtO^gi)-9s1 zPbZL`t^ROlypuS#BPX|+!sOT~yW=n!D!%O0kzG303XF=Xt?jk5msAP5wfhfa4cd-M z4uR@#Z1!lNfqx{uC~-*w;v)`}$Lm7J^=`F9gVwgT%A&itPsZXOYIw22=XV)|>7P;A zy+Rya#tJi+v0Wy6@2`Ri+1Tmp+nnn`4cl}8Tx+FYGpLB>36n4#XRKMS=*52IYzQew zPt0YcG;lz*;{V;?b8+}+h^_{}CPm>`En^eN1co3*SO96vKIOh#D0uuK(P>Nz)LEUX0VJim=pqZ8&{eE3qXdgP?e5jp zQfU3wO%?~_%$2AUhhlAJRzc|@t#xY%=7og{J$Zx#NcI~eaV{v2Na$O}DYGJg-Y!l4>6+%56p)MpO zv~py6^3(%O&6{`b1k{FnR%wLcGBZDX_;8^o?YElK%X{2sk&skRi>sjsOl?EX7QO{9 zLpWz_)~U+}hR<1c|I^)kyHTk{%d8w7O-+2}{ZAqWfnygb!)j)46P^(Ep!FX&OLEDQ zDKKC(je^<-$q-OyOXcz?NuhA#*-T#ye zRsKI>7lSnIe{RqK>>y#B$am~Wz4J(SICeFTk$7|in zXEhD!#6s`+2Y{Tre+oVh9}Pn(KunbGegRtvfSS<#5i$claMSZ4#Drh?%CGZ{3 z@tO9Ae;Vs2tv3r2M$JJdL#293ofa;`jC2Ru!}F=}WKntp7VCZ}20-tD+;4IyLMIUF zmhI>p`A$1X|w>tq1#Aor@*M!Eh`L2}{78KN0=Bm1LaYO@kb^U9jU42SxJd31c06 zLmZVMCf8Thjn&Lm{$R;^@WrR_R|vb82)QW3Tnb> z+C<(=p%DN*qH({`wEM*T%gM6f79?+{h10^L$$U@AsaOrP>iYL=Py8otLYYY>G_u#_ z-*H0`L^kO^i-dgfzmEsT*Q7F;9aY8KBq7@*QC(G4#n%=?TJkwR(#UAwrwFY0ZrJ1w zIZz5p1u2fg^Y6G&Bk$k*{b!n{+l1d<>ZdxW)M?;X?+LARINv`RnhT%Tzbw(}>E@7y zI4e?{%JXd7{}*hd#zxIiq#io{Q}grU zgT*(oahitham^u9$?0Ln2ZUd$v6o1qYW)C3wL3G+BjMN|czZvSn*t6hA!~|Y@04PN z^1S~;JfCTZ^!ADWodhYPit=BFrJqXP)E=RD+~kQ@HgxTI?n;6ie zW{=-*t`6=;cYfTe%BzXYBD0r$3bo)8jqC~Mx?5WhQm&W5p!rkiB_bRBK84f4M<@>@ zn%sSZY`Mwg&Y@&1>}M~*3BP|ge*bweSH3k;`1_$DE|XVCI(RUuRT4d~q#k!2`+Q{a zU+vub(+(3IJcN?#bXXWd$93SS7QccDDP3ARNTuSiH4V9HSQ_QUl0EConror*kaF;m zzvGM763$9AK@9xUc`3XcQmI&lRuy_VlGK;pkSi8|$=-)!&k*2*A=qRhXNfQKJ4SEe z<%xK1WErFkVhj>J&DDUb%RX@2d1e_ZlmGcSpW#qzaQqh!NA!&^0#=rmY6hMVVRPfZ zKpztkC95cdvMfsc`|T-C;WRL7kof%oB)kRr@L_Gal)AmZYF?Y$Q%h1AG@FT zhrg?rT40lnVBK@K2@+6g>v%nb`%(HOeXe@BCSJDML`OJ&_g16odBfIJ6EoHGF`k?^ zK15_?Mbrt93M7hZ7wg_!1x5j78WK+7wXe1>Bx|5z)SY`d7WH}`-TwP1ceo#MpjVt0 zIL$8LVdBH<>w!TL5se;$9CBIF$_;H2rh5EAOahauCTVg_I;5diyd)3WyyU`y>Ailv z&|90iOU5EPFrpy8AjypVvtC7hBmU;}rE% z2#StaT0P-VLjshHIN*C>W4RF%hqQ6BmP*9!L>Dyx!WS0(i-f@&!+XP#p$C{ceX@J& zXbE#?`7q8zTG{ll<<1Y02dW0oNhsX9cbY>>s4G`EHi}VTHnpME|A9vMPv&BoN^`F( zn|hUr@m%_MRIIJE2>CBwzmv4P(5wOb`k0CB>&v5nxT{7aS%`FGWM*p1-AQx9S=&tP z>AI~izF)fPZ6*yA9;LWXBZxZ9;&_1duiA>Z#UXD3Z6LC_lkj67qj6uE1>_!R?!Sxu z-o8c|CyBX0mYw~^jQxxIdKzt#H|}|Db>6FC)+|cnkq>`|B@1Wzu=V9$h)N@o53SNd z>L4jIrm&}$mZ4XN^;*t;xdI-umDzHldbow-D*OceUj@QLLpEvZny_89gQ|wje&~Ke+xEFUlD`f3O za7$ZDtMN}#*DEF`dNm(St~lO3bpBCkb=Y+LXT2KI>V476$Gs-0PeM}Fb#ZB769<|g zCY1oLAf{{6zuz2k`~plR^#zC>3I-Gnq?DeTQ8m$DF>U|w_n602*Y*;__iI%}X@Sh3 zxsv?X)1bNCR@bA=k^ODd-Aw_)KtAO=u}fQ-L!a(Oze$cteAPyRc&e-jA%f9qPjZk0 zQ5C`y80%;rwDfRGEov9h!bLNKXEqAS0O)Ak0o@i0sk9LE!deGsBf%-~KY=xbcx&kx^(8yrt*= z&WDY_sgQ=VA+dlui1F)8tLITZhEJ$Uza^3ZH~seY(DvaAm34`~IbDmWxF@Mu zqY}+X>XSOw$i>lO%EYK_V5RhkJR_Rfp*6Mtl1O%zz3E`!m6)t?@cdhnLokxt7g4*0 z^D7n>kAJ10BJmWMVMhLmuJzu9cm8*#o)QQ2!Q_?g+x--@N(BVIna%9_w{ytn`8-CU z1-_I#*r?yXXQ)>j1y;g+u`zpOul>tX^OTtd!p`Bo*Y6)JejHkc$XhuYj-(Q;&GSJ( z2N>_)zx1F_Jl_g^L&z>?rt#X(r3LGfpWW||X0M!r0h9Pmz`_s0)*Gr1HW22a1vUx9o zMv__sJ_aUUM!K-wz@J#s`7a=v=SAMK6N?Ibi?Gxi6dXo{*x>94Z(r*hj_EfDFyF`; zd#^vPy^F{)BIn(cjGmg+j80Z?G!(nzA$e{#!%$`2&BrJqSNpC>86B zT4cK+lOZ0-~NDnK)2%2deT%?1B1U|DE@}N{XYx@aBi}Uf1fdNUW$d4NeG`Bkc zc;He0*ZJ%lKpTKJ>JvVmwjHT{<`dNE{}-@!nua4>o~p1X_20+?=vQ=&cS)voi?lg9 ze?f>Z7~p)Ld3w3vaO%}`WmT@N&CE2ZCEjYAZ1bNnR(3{tF++?ErevpCW)Yywp@GOO z^6@w)7hHvbM9MoDNMoz!2l;bnve)ZQ5>~h6!_NP(k6l9C6?-VQ+TCZ>w~}em5GK{P zl4a4*A=PL1Wf~VNkonnuY&rq@q3UAt#33D9{$r>}l`lEZKC_nLdkxo^4PTPoO9b0; zseiC1ks_Dm>)il3{VOZeIA)S;dc0TZun66kJuE78M!>y%U z0WqEYv=@1|p z&>RqhG-IK6DQn3C$+Pj-5KY_x(9;yP)J^1H{0mVb!=eu}QpW_mxErEmso?R_RdzX9 zvw-T^WZQkfO>f;&GIZ7P`u&FX=K3&Y#C^)wK%Yn#@Ae!3^zB!`uJ_P;!<%+N;lMdP z7_yAJjBM8{WNjFZ74QfDMD#LJvBUirQf<}WTzklXOY`jS&;A)&Rq-k5jS?)@6l+8t%)wLh}HvS zO*O=kG7nyD$c)sZ4LQ|u$~=v!lKEW_&=amMNA))ymvn4xdv;cQQRM0+0sJZ^AcRBn8zEAL1oAwIR7n(p=?zS#A?!$qg2w!Fm%#st%hZua~5$%v!O+@^EW1YN#mDJ&4a~|?#6cXvL<^saq!ph5<#ej{W9N{tq~&S^$3RsE8UzAl zrDUqfaz5jjq1aTzi+s|-b-Xxb6}Afd*{?9mXLf1nDRJ)uSw6EH(#d^he~+_Ns@4&| zUihix)lxAo@2QFlrGVJO!s?PYLrpR2!^y&B?{KJn^dfM((&l7yOav=a1^&VID*_{>{BV4%x_U_ z*`8`JD|a8oiBiiQIZ7;D-yI%zO?>ew7R&KxOD--)f!GA%I2w2rgZnA>q+XOMc@5Hv zD{R;wfj>{kf=!lG7n=doV!+q*tzyaLs(vMj1{?nvS~@`a@B+#Beh!M6UOD5g$~juA z!u^IF_4KH1xNI)vVf*8nfXD+5In05coP_N~Aiyc}AZNcHC0KRJ*uWVUE`##7UaaRr9c7rIxh{2vH~mvZWNNQZOOFDfelhw5-M`NzJI`m# zbVh?6AAZRkP1{cH?XIEbbl(xvb5m+?0YN%86Jw3+yTop_Ua=D4vWv-X8eC0Y86n2| z1LRNHT$LhScfRqgZkIOn*D@Lr_0zx10g?*h%uH?I%z8Jjd}h}xa;0X<9;hFWwVV0L z=|V;dP*!A2AsJi<5bWF=caTugRuR|{H0=DoVQ9LSe&z1A&{Pkf24QjTQ)Q8blA=rK zHJLISQC|#3*4L;aE^tOCFlKsVxuwBl_KgCYj?T^Fk1~M7aCH2wOkLQg^G@=tnC)1O;^B0yGONG2jy9yb zI)DCgnNOX*oyRV(;pqM5uPMAwL>8c9(q^~A)ot{9y4opK#2r_DF~}5o(}iBku3QxQ z-kFjm9D8)9d~;z{U+105alH&MLR$I}3Xrbz+D5@KeM;8YKA7cFUJbG4V8rINQz3u5 zictCBxiljquVjT=b~@qTz5Z67C-gm@cuq&CJ(j*fttj*-k_L=F=;D@Oyubo!rMUDe zUMU)l-1E^E03@o)=a;d1;`Qjzw_6A6KVos2mQ!WThKtF8%Z+b?p65gjakQzPKGrTY(@%?vhSqDi)@tgI6>Uo8S>`*6bgspZrp?j_+1G z@R>6|T0gi;X3lBY!OO>84`M7YwH0i^^C#xqa!-@PLJ?Zyy{%ytcR$a^)7*skXOV%F zMHUo7UVywH{iVTEX^HaLGs~2m{D6vd7AyA0nf9vHeK*od`o+Yw`+M&hpwL9b!>#X2 zb!}gy=QCAv#fujYnQl>)KLUJGD>7M4`4%JZ9%syRj@KLL%WAbk9i1s)dXWcDUT+k- zJre3@YjKD2D$D)?zVOf!6mc1H+gY`VL@bMO7V?#z`=omk+6AYncg-hI#eIC z&Bf=Uwp7>LQE>^FP@~85Mzw}LU8)Zi(8MUGF{LY~TGWGh=DL8VIY_YC7XQ-9=>N+( z6AWh5#HZBOBiFXAZH<*dc@&haJy;3#-RIjKT@f+(E(Z!53kE>1so1twT2-!}LOo`i zplW{GLnd%bIxl13=Delkjk(oNpKIdYH$8x8y=A=RYP14Nu*v?MmQrq3D_@A?)fyg9 zRa0n_W7=!!Z29PW-;*(#6_T7X1`xmA>No~zqD)%<@sW>*rlHg-Rfh1OwYfV^GG8&b%`UH@0Z_%4mSY)V1RtH<1rzc;md7IZ5lAU$E)I!Xc0Z5!eX zhK#h^Kt#MAL-Rt!hem5$)K_lA_3@P{n6y~W&&+VAm#?L!q0AsI6MJCc<+c0cTgT8P zu-N%_Ue}m%N9yGbvrif8Jt8mUdn>xI3a?t~syjEkvpC-U{;~evXpi+?-Jw8crsY!y z(>uXPlv%DbOCFK$Jw!Feda#J27?#{p0-yQQ2*qufRZIHg>+lL^9c*9mP zjORH|4ASA9v8>`@tGH59m-Z8D4^W)l?|r=uH!K)TAUc6d~$=Nr?qQJwv4Zpvk$_%;p6kPUU%uvwk5nu6%~ zL7Uc$OmUz>Yw+IKpmv;8g>P)pHO>b$Ti145bqRIUCfkdux`pHa<(n=l8{mLb;nR8O zaNG@y@YA#LU(SE)pl#<6k8tCXj3&K)PzG-g-Bm!-)p{H-+qpaNg5WM;BL?9;)7t=h z5IKJBhJ2MNo$i4n0DW)!nZ=XH7B1~=ddxeF+O^Q{ zl{NOm${^oCazTks|#a?T>psj?g%_G^x;pwu)P2y-+C%7kGoD^@n`f1dAUfW?I zd$pbp_kqX%pVE>AiHY;eMg^~kF*c@k^R`7zz1ok)9H*e>VccI6_>3lSv84#dXEa7W zoo^Ck@~fJyy^UKg zzx~+$p;{u@0O5@bt|FH1{AN@{c{WS8awnS%7v(**!@1e614lCUBy-c zIP>6L_W;rdy|*(xst{g6mYNr}6Hq=l-^-Q`l$W%{^#K!S)Bp=stFP%-_7HFT|rJ#9p|_-4$=FEloty9(euvb89M5wT~^ zeb6fc^yk=qJEh94^`#H(-DnvvT4O`HoBBhgJAuMxeFDK{6D7VD)`J&LKeR=)4DbwI ze%+_D-F6ZQOe=lzoa41?(T_ zC^{C?{kie=GcA{wqd<7IUL9aEWH9}h&R0S7Ggt*`Z9p+Kxb++N6Sp{I3qsn=xtlB% z8C{TSE^$5#+C$HyMjN7I-dhPCE(Tp5FN@(kq}JAbaL-VI(}Tg~TyOuI;gNwkixm#U zdrYXyD<*NgACF~)eGDnPGEPHQ1BufvS z>n!F@XwP~zt*(O;WJNyX_H?>A(-ANuRW^TRf86=(p*^uN$K(!Lw6_nb#_&Kl!_eA_ zkRJbA+=B6m%fnv{z_XnkP3ToaLP9tnkhXEW7q6k7*^)BmcTg$<%^~v^c`0L-JCfq& zotQ%o4oOK(ofv(oq@B{*wEEC^JI|#jxF88@Qj)V*p`d_5G3+vG{`XNJ`+Rj0#$=6j$xzqMGXJ)Fk%i-Ti6`cIL^5TE__kAiCOzyET0|Js{ky#MEb z>wkZQ6&$+2uC_tzXTUiiDVumuE+K-=yNu1dfE5;vy76a6`6s9=NHU_dSS(pODcZr| z`@2{EYzT{zN)BL?4fv8#aZ0nfEew92>)Odvsdh17W3-n?j_%+Z)P%|E)+hg{AG*}E`$OH8v;R}Tp9f!Xd?dl=--}89yUGCYRWP6bZBG0CzfSF+C~zG< z%7tU6;aFBAq~Gkb+=)OcKv~rIhBYB14CJf|{YCxx5lx@`7DP4w>~fEi(g&{)av%X_ zyTOYuMTIcTp~QCFO-Manbm5^4d(m*4kP58_=e>fE5K$3>KgX*L`1yLMG8L!DDE%h= z+3-tnEDfTmjOhPg8L3ZqPSD`|VX@B9L63TbO?!qi8&8l0$&`OoF(?L~)K`!yPdPZ2 zPpgwd;3s7-aaT_kHZ^C8bPfx;N(0bhxpqLWrGHY!;)KU9ogOsX53RMbJ3qJF|UAdKB$_FrWtda zw;V&ao?4OKDmtv5Z33sbD!;&7z*$~iaBA>Yh@)rvLRVdbmwFt*CnIS_HbZr_Mq6Ve zX<_*P5#N!&V^mo`ya?M#5UC@o%YOgQ=lX*rss980f9jY|YRWWAY2gWfA@#VB?g*^I zv>hm|s$K~I$H5a5j+5coMo?G;N~w?#9;rp5Q^hDiQjfHxue#^4JUCBH51&d0XTRzh z<~CS^py@8tE&^!JHCb_f?CNa@I0U`gm{VnLrXy4{+o4=qDS=&ehfKW7sj?$|w9>KI zwfr1fKU}e1@m4Z%6b;9YXVi`dgW?tiNU)ToFEArV(E8TR1;5ShTW~Bm`8E%&58qke z1E(N0(mIcQAaJ4T(d4=PJVWpCJ+y&6Gs@XH47 z`q1TtJdC6R+Vk+6v)3MecXRgX%EW;iCA|88$w4`2$yd!@p3D78kC9NUoNp%sxj9)s zg;D!vf9v#zvRQR95S@-s*P?wa=B9THXmT0+lPIpXZT7dNd99R>h7q||i`9q97|TSe zF}$mZo1TbOF@hieIy+kgMHXCw3$+c+P=MIhTw$d@!OZ)-)s(zv3s_ zLlh*h;Y8Vxy+qiJX;UJaS{dzw{Y#Wl9j7p?D4Umv8v3etM^&Sp$119nGnAjC5{~0H zbNKv^K>dgPjOkB-%^@$rrZUN<-RoVO=0aN4_v~wCxxl$U4esrWxrfAzsfF)51}>h% z%S%@Vw_Q8QaY^U!gQ*m`vXW=ZZd79gRxy60bLVUKKhzX5X_WfVt_F>EHUrrf7p1eq9u*6R~E2-d`|?WCb^R2@`DD>plI zO*dz})P1zImdiCF_vteB0}Xw~1E6wHq~7TRw%u5tnk!r8L?@$!Q{bp}&SGk43ZjXD zY_1T@7Xe_-mB3TBK3c6J1=`lNKz6{re#2L%uptq7+G_Kh1H%% zaWJ%#3l0aB?0`Qk&;Uv(8CSh|6@UnO#kcmo1hK;L5AcqSh8+(JHs^_gP42oOj%RSS z&PTK0Bd5hSpSAl^#{!;in1AoCh!HkAad_F-C&2>vJmj!|q=D0qm9}XK zmGl$;#zs(jLw9|GY%9mn@k4=OsYW{z-k;AtR%VcG8Elv(iW-dnj0Z+R>omu_x&~!X zngw?Ur5wcpfAxx;7HSCC#EUl^yZT_0pqNM-6#@=9OJ^x~9iO_Yl6y?Es|10|V}-dS zLV95Y11wbVlsdH>IMTh8x1fRdn2Re7r*OEh^8>@uyom_*Kc>3tInYQ z5{P~AtEQ5|9bUaeL$D=1;k+UnJGNs@_$4mk3te?HHrsbG4)XcpZ+p{a|2W*sQ>*Ee zmdS81p0jE@^@4BuLW2r0MF-_Mv4XbYYbRbp`QFw4f850XdVhkX>X@ljN5B2|9m^f? QmtM$}@2KC-K^i~*9~1P8X8-^I literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_17100.png b/Notebooks/1_N_horizon 3/sim_17100.png new file mode 100644 index 0000000000000000000000000000000000000000..6b7e4d52b5cac4c0ca8f4a73db9b9d6cba9351ff GIT binary patch literal 17869 zcmd_ScT|&Iw=Wt%A@ukng3`r=H%+>WN&rZ+s56) z-qq#0@C{*v;AJ~cPd5)~5fSHqUm)!2ZY%O@fbl&TgxXET*aHHgWg@-EAW12#5Qvhr z>YdyAz9}nXJ}IVNsVD0=p9AYheOK!u!eWt7YTY}3xqYp+Afr{+Irp`BmFE6hMKSru z$jNIhFVsEHp0ReObwIvMzXg4Tgr-NtsU{~{AMEb7)?K{vCUKyBR4M_txh@%lUge)S zlzPKG?$^6}CBCLs;(7D_Hno2VPFnk@Gxe4!?y`0jo&1v8owD3Geh-K^(KfWADd<+j$MnX;c z>qLYdehiBA%ZYGO!}T*2f_+Uev@jI0fOTdfB#DA3lK>%5tU5eiJwmilg}%6{E$_zlo#~xlNYXKfFYE8KbY!b`S>2r>ocMzSh#^@G zD$4vUCsn>G&R0{~&iBlo*MYRc8KP*IXucAfB}<`3q)^m!;k7?k;YHu&%Q0NaIX+Mb zqQ${N$^TIPuzyLY;C5`f1pA*AFkub*gP#}hGGDH3___8nI0iBJjg^ZsCv@T)t3<|$ z`-x<>g++`e))~=qz&hg^YJ-(ggdT-fP+(pn?zgf^keyHm6gF2ap`v`gv9ei3fys%q zvT{8~47RXJP)u+$e`9|x1w@OA(!8}xF`&;#M@5-YaPr)HIPWU66FU>iDGDL{46*98 zFyuoffQo8RF<-cjC4}r&NY2L~T3Y)~IL*&$(ZcEEVk56GHxjS4urhA!=~^h~I?IF< zd+!h+YN-*5v0HcJ=~3pqs%phkSPFPp=7o_B@ikGQA8kP4IDx=pejeXXuCpK~3|J9{PXX`282^Np1Y)RHY5e(|u& zkc=piJgt*hn!a&*LoFCzIE z;VHpqR<(Qu^L6Rfo2Y zw3!FEJt_+)=v3@hFQ0;({nENnw4X9`sv90gt}CaK7L6$Xh2{>s2Sf7x%}kulx+?2@ zbhM~Dnc$p~oFFg3(x!>2$?{pD!0y2s5BpjJD2&dd9wv>S2uyCm!@k19Zev-759q)W zRsJlIK*31H7y-K$8vH70dDBf!(*fBhlzxRKFgWUQub#Bj9Ly$-&LFvaL7j^{lAT+l#NW70wR6Ui?uMe>7sQsTZ212sKC#x{G;^s2{$| zM$xyhawZ-U6MHF>JR3teR9vLKQPIjOpsHzoa9g)d%#6b25#jPYF8zw#7)^?XL*I`b zSq+DG-|^U}tpk&tWjc7uU59@L&?Az&j`*1Z?w>M`eEiw)QrhFnixX~a+31gR0sIP- z$1J{_zM%sRy)nCbSv;!7B9i)gvFXb&WF>p$-z|Id8n{?}c$hi4BjAuuPoY>I{P&?J z|Mtqt@v1QssccAJ;jlG8eaZNhIz?zq7%V=^9Bos5|I}4WzfjaK*6^Pv#%`fjHbSq4 z^g;+{%Uf81IXtA=dVw%YZhyc_x^j_kXR=KUk#X(lrb6AF$$-iHt(}?>TImMq({Z91 zD53?=BircVf@f}$#e8GMP#$D)wN@+?1ssVPeLVH}9M=fg2tIqOsF&Du7*cyO6xO)+ zL{1{ijn|F$ma1xddn<>}=nsBfQk+m-d6xEq({n_;Z8ZZ2I~e-{YLpZCj=q+Dh!x2S zGz3Gks^s`6n=Eue9ziq`#dv!#3Jv{>Z^6Ck`8;8T*ZReOPfFe4?F@r;^vg*=;pZt_ z&&HE8k|ks?*3j(*-ld5nO$yIfNTs}U5jx6@Y~y9N7-K>afiq)p(}qr=unv=r8W;FU z>(f;hBdxwg39IVtQ~>G06JMMzN&4VVfWwOn43u-kpaiQjIeHlZES8{ zH+>NuavC6|-!ZE37P7IiiDE_k14CwZ>cl@o=<4Wv9WHacDCKUQ+4$m4ji8t*3 z(pEUS0Wo~|_-rJL$m*+JR)p0VlX9nD1jNZY*U96ymE(0twU4?a{vv|YA39Va z(OfgWE&QlAt*+PB%&iSt*S` z4tw9O%HKwzxL+-PKzJ`3^++!Xrh!|Z)DIE@7GyM1rQbehy6S$kjiV@ZpHqvLS(VJM zoTh1s;pzn=b(xduI(?a{%u21Y&=-=8IMlDAt)s6VVEZgi57 z{@EukDD(nERP78q8W&lebw!ViNbb+Rk=pFKZd~n&zkMPYC-@)GfGnh;g&ha;ESHCh z0yf@YW`8JiId4`jE;^9p_|I8dJ^_IlNAtr=F|r#_M%gvU#9oU81O9sO@g}Ck;w$-l zFQ#{;VnRzv>8!+=%L3OXE_*Z}e`cAG-Fdw3*Dd0b(;=`?w; zRIt!~6*K!a`(M4B6U7r^sevZ$P+Gq209j_gnbo&VF{YdG|jKwP+P5> zVYnb@g#A)6-T{=*u6W>c&wa>HnPlbD0h__**6RnU9K-X}PpUnRYFf*x3Q9}kNb}yC ziMbAjm0t^GbnDlY5Z}Et^y&Tkkczq$XNbl-(a^?5B(V2HQA=_G!+hCvf0u?MZ%*Gy zGRR<_anr_JC(vfESu1hHH5m2vpR)i;%pqenKK%ve3TZ(H_CO`@<2c5Sy-+I z9(d08q;@iC%l>ewA&F@~Pup4kBn`c432=Gi#*ISDCdvyUW?g_V81c3~Q%_l9latjA z44Ad$w$HPe`C4w)4-XG3I;gi>{z=iO;1UuE_WhX%=iwXR$yigLu`+G!YYb+Bcqcj~ zC1oBiBqb#UMuxmfNKn?()7zACmP_;8S^h=bE(o>(O7vVBdL9&$~E|K z1nnHW_LYipsr@qIZar~MWb?UpfK|Z?5S~+g{E;c!^5LCWSYyzL5I?_t(8*$Mfja<) znCrN#|Mp_@T!Q)d>Wqm=kk%4vr}Wprz@6SSIpa#VsZe3le=+5BDXxFo&KQ6O%r5HU zb;^*Zv@Bu)duvS&j^Cc0Bd$d#q-SS8_gWeh?=}C?7tJB_`)4l8ShW`l-{Q1{Sx>ghLD<5IgHw~qwlWdFqg05$=OdKjz2ot4?SxyN0I)*ISHzt4cA zqUNVKXIf)yH)h)p**D88>R!qaYTuC94Lo91JZz>zpul?i+jEUH*+gLS8-QjbJ$mI5 zfQJJx-!C{h5Ydv`)_19#qSTUExk1Um-ZtC*CiyDY7>0BiX|BWeS!CHCq14CmR-cO^ay-2NG`WHRxwzCMjHXzd9lyYaPe ztk+GSRDb5z%lsx+a$6mkc49f8tZ0SfJ&lA9Mg2N(N8Os}6NPWPTKsWMz(4=5YZuZ`uw;@uU7u<7047!pqJt)v zCBSyh2mFbmqZ z0lu>v_?dlRC0$|EOmDs3eXg3MWlJ2>|;*afv5E)uD9+k+7tozLBi1$t&}$O_$Ft$ z^T^=nd>PKHljM!A=ySN?0`VD51L#{tLB1qs$f{y%w2Op@Nou4mu_<8OA zmj}(@IZc4oP9Fy#_G+9J7|N+EO6U^MD6iH zCM}!23ccXFH+A7D%SC>hkK~WnV>W9hj-r9{jRuC9aE|+~+fM_-^{U>$Xh1;j^NF^r zUOgEJW*yxU6I~ybBHsa*F+rS{*v;_(ZgSLn#2M}EYTx{V8U6GxAhCtpWp#mv-kgD3 zI`wN$MQ*sV0jr^95w@Ocd>Q~~Y9Ww-<|6St22gyIRa-yRc z1Ai+5rH}%)9{I!Nz~K`Bmait`8}aky{=2Jn6P+VPD5{YP*M+>29`ecJPT`qGS`nx5 zlkwepmXJ5v@`-N+49kDD{QmJNIb!UV14Hx^`$Gz@y<0V2av;(n0%SX{ii_Fyu&*|p z1VMzWX8)?+$`BFfLVrEW^6Jf-ChDsxSU@DZ=(@g8*3-IUhgO|`M&rw$xt2qP1Bcw- z-5H|e)zs9IaHy!!$E_SGK+I^4%`AnZ=Om94gWz0yr>J9O1Wmu9>}+TEyU^Q`;OJrx zL>aJ*;+pvo!TGVYw6q)bz-%V%65Q*k@3rV@&>AOuh`0aY)LR%=5X=#@#a(&q|4#ns zbG#SO;`%49qh}?(^2tPEfSEs@my(gQ3&`X`5Ky59aQMJ_u7HrGIYNOrRo5f8Qrf?V z3qCR=LG5ldd;8!Q6Z}|>1V|s2L1c;PUHtKhs?L9V8pM(dUDtbO8%_=zlF<*@vzzQ| z024+ES3gU3txqgMwcd19INIt5R=3YZ64j%gl=fr*H->B-hweWq#m+A#mr)PxYXk4( z0|~pz?aYP`zjnM8NR;&xL)`7??DPYE+OHQq-ZXJ?>_Z9wfLV^v(SqM3B2bhBfIoW& zhmXK1%5JoA*B*`$=7Eb-XaHtfH4`nfBfS7Jis_u(d@EeODJeuZCr-0)cnd`g@91gE zHP`xWRvsTLRe@Kie(&26*M`)Xpsi29O-y{Kt*upbjC(-iP0=9?5Bq>E2qC-0B+A{g zcLZzXnbdj@wS&lCM5WX;lxJ!r{j#B_*XqVI}1@_%-7zVK9~L9;3fd zM6*cKrO=X)U)W#Rjh+H6;8~;t6vOE(SBA@m`i(fgeE$3lt{84zO~(PJh+g)fbfaDi zfLdDmj~Ir;P)snwXUW8|Zxi{oNjJ)ZC@G3vO03^TW$`1Jt47p1_2tr%!`YrZC6dcZ z@0n)*ziC?ltm%Jy$K$mP5~`>OEkQ!nkx-Fvn0&w0L>3a-**D_aZk|` z1{@>+-m<3w{Xk~~L;9Zi&6vWd5rr5GhaK3Is*!*cEB%U0IsQ4q1#&YT2eu>BL%w2L zLzAtd%J6~7Vul%{u~a!afx7<%MpoLCi%4JTur)iVrNiCGH>4}FDSkcSR(}dp3!NYX zHQ-e`pwhY!z0ho|96U@1(K57HD-bF`7EaGL*ls`yq+&gNm%qM#iiGZ`H@-|nv>f&) zO~d{%Hn0aGOqRw77u0Y)q*?QrT!4qMgh)>o4>swYj-z(%)b;|%p)1SB z3IB;I81tz-{x92g0nY!$i;TUA6Ffq<&fi%SHhZbb=iMP_|PoFeC?1!jFNS0P1HKuaQhUHvLm$2zTUD z*j>m~GVKW1@kJvRRDf`a!KvH_)`9La{)5kAFO_c?OpZR0B&bcQg@A08qxnB*Q4-V- zk?^np-Kmx?)|n%$odwU@L#QRM=o#NDVWRK<2k01=pQ=2fo0FYHS0NZOb*rceif0IU z#x2LkU1}C;QIFN{zW6i!Ct&)ADP#}HQ#g=D@65(u6gGzd2aOPRr=|$&@pPbb@izXbXhF0AMO~JIJ4~b zm^VeWnprxX==NZ4yaN|nsT8;*3Tu+|4mJ&2-r+9|gaXzIH7BD8xnglQYW)x%Mt~3~ z7ekn_%2rV$ySTwPe!Xc>mWy$3j&L#Y;s_21qF|J-iQdmGCv)p~HvZ79&te>536ZN| zwys2yK=bQzSm9;hviiM#PqMm^fPBlsB5FMmhP+q^sf4hS6XjZlK$-jEAa{Es&pDRY)C@ptrEdiwFB4igZW!ThL$w}|p!enqqwck3jnK(EUNpb6@9#@E8` z(a6$_vZ87mns*Aw^+I-AZXT~ILJi3c$?4c`F3%d|-uKdNR&HIbzI$Bm$=#bj-m{@; zAUI*v9?l`&eP}|-)w-olb@@o`;&4r}oIIFqx`ZS}v^C<7xlJ-+Pnua9a8`#lSOYBB zyECP7xSA~|$&g;0SueG0RA2NW;ikd*MvK~D1yr79)1CEKMcC^=b=DuGH#Jscv&Lug zyjwy-YwM+8-hFH#WXi>oRLb$x*%P(Fl!ErmF17TP7bKS~8eclyzaQ5-YgzYBHV@+umzhGzdpQ>clLdrXbe-tj`c=iTFQ-DmNyYQAC)VJ z8gE5N24osf77=I3`_wN*zFH(JM(Zgj;_m(X%hQPlBfgKeZ>Aa7rE+!oS5+mnB97Gj z`rF1&uZv#PeVV2p*fwEqRC6m`-v)m?Anqx4!840&c~k=LOAt-e-&PjxPf@Z@gx* z7=6zP9>$mzz1lQzu8v=*^iw=oyQd_bWNdSY;)>X$O7w8}-3!1(^zhi3U*aR5U882_ z&Rk)@f6e}MAnJ0DF`DCE%QN}0w$AQ$&vug55^MooP_jEDkSV*bR@ zaLqSpjNwxM8{hNubE3e6Tj_uIJf`RX)As>`-1STJ@FS^R=%O1>Bw55TU>!M!MK*wV zW_9yiYdp~Qh*5hi{adH(9B27VS9`M7a;U5p>pTDMiV9M{%=mlKtiSH}vE9-M5}u*j zwIEJ%qMZvq=h*ymd@JbpCDsO@27K%a@Mjj^)`Xm2SP*-x!l=bL9{DC>cRJm&?zgG# ztLN$@nWrBC@Qq^+;x4!!AfBcKX-v#JztnvF)5K@Jv6>^hbs&GZ1+e@FxZF1z{fWP> zFcO+)EwjI)G#Yf>-I1BXx4}wcArYVL6xct0l=H@kZxE|F1dYmGp3N;^UtV<9*T<3F zyC2t@{y{Do?Hk25kXoP7vj7@_(q}!MsTG4w$38MfCjN*2~ZfiZ?LR(mJ@Hr zIdL-LzB8LaQO$yIx#!bDzt}_l#2=`_Cw%MLl{096k`Se(!8RI4F^ru1AYSyND>XsJ z4+?oJzAf9}LKTT4%s%y!@qK)x^+;&sj=wdn+>6a*#hAzV?r#ADGAibv<;s1h{OM*dAT7M3jNev9_h^NM^Cn`9#$77Y z{Ms68|H<}R(;retr&#N+xX0>vWvUGC8Gx~QOZil00$*)Rk?elcT z%eP%7RWBzLD$?Tjo&1d9q!Ef;sku7=U1x;>TA*7Rd-;(#s#Sl9WXY)@zt>F|{3MA1 zfSI42LQ`>xZ@Fd>*hI1gf6q9+JI2Q{!-J*`hL^1NkhC82dTLzy@sdEVE+o(dRyOsQ=c}on*2AGfo%o0Z;gwd2YddIYbPYMR{+1s`&Q5 zxY@=-TtFb_*8@{!=RhWt+@;UiuGT(*+yKl20}{F>6L(BedNr7zb$l_e=Q5&JlNXuA za%$sr@MeGSFp!j5O$oYMjI+=>@=Ot1*3+-jr~PvVnaq#ZmC*w z@(LlJlRWdvP+iQ30qzxpY>uCehk*ygoj?@V$BD0cIqiOwrQ8;Lcg0YCsN`%!>~ zKlSV3_#3Ea*$Qmnq^6gO#vqP5S^I-0p6kHH8QbPNhCLz0SyXLHa<_*U&$?Iodv&@p zSW|k6d<@=29_;dc3^qPT;h&CtRnPl$Rx<1^m?1T3FUa(ciiZgHxjunPMS2uy2uwf2FVyv^w6?Tq#M#ctO5MOzde1k|&skY0`I@6IfRV?2 z{lbz=ON>Vi^XyH=K>S4Avml$Nz}@#1I1#p2nPOyWf^M4I6jP=RCN%l4t2* zXaSLDIntWQx z5((t@@B+<&Mle)LEMD5vjhOikWIAji^!V)#SmR$7qHgk{LV-i3SSO1H5=5h6a}0I=E+u1mSz^NhOSm!Wp?jM+CD(zMM3ml1Z#v&@=V&l50)lgZmEQaeHVFC zrutWU_!qjR{+E`4)n!$|t@#IajWIt>a*Yj&BIlBGh8~!IhtCXn`e&Ki+D|XCJcMu^z=*3p1rZ#5 zmZFnwy6`aFNgu2&h|C$itr}pBZ?SJ7pjs>Ae^#yU_U|7;80s;9QA?GWn_z=P$$L59 z*3oOstP@N?Uq8b|@7kKLT#hGabEfkEsf*rjdY#)D>ms9djIR8C2JwzUF z#vQ1pS5Q|y_r{j*Z`HmJiDG9jU7BoF2rmd8b5m6Q7Q#*Y6t-_#+;i+LY;$+tmeD)q z2FdXl*Eq8<|MWVfOSaFptq7pp=6hsEn4W*G7m;pGwJX>&RG4T}V6f4;AW;ZtusZz8 z;w98U+4Jh~mig_2a202i-eRC4cLs>zB!VD>G|6Wl>PA*=xK;bk?c;)i%0)s@)Dm^ZA#2UMJn#DiJCVruuA$XtyJ<&IH-6J_a2r!-l4cOd~!&i@Xdu zOmh1Q@M+x423~n1^)-INuZP2Nm@7==TOtAuX`)`*P_bHV>Nnv#JiC0da*yWX9b68V z)QQJc+mQ2fbFmmUzP8Q`QIUv$YT0Sr^$N0Aq|VRI>Ap%!n$^>c(w(%wk> zc>mk&T94^l2X9wS>}5bbGwyKp39U$&eZTIeYiY`pPmy8lT4G704C+eQ+M~(GlYY7} z&(H4BWcx|3l7*AyhSH*uihI+5VfODvmRpcGaJL@No%)$9lZf|`LW1NyiSU?Wm?S2Tb?qv<9$)|%{(Krz{5w?NnrW^5heqNQ~-?Z z5M$h0FrR1LJnsMuY%Mffv1(7VX@^=c$B}JsPETNe{gc3uaX+@^3d5|&$&L6Qa~Y}k zUG?-pfbJ~2H7b3)MRauflJB@#IZYf5M8>4yant_&&)s!F0PPtBxaJcND}oPQGufqG>F)i&WE>LA-Q_s+n0w-dv~^$qD{TBcWV}t zcg49%a?_H+?+zzfm3>i8sR(??Hu8Yu;`0@G&PtQp!hveEAdXU*kSnms#;yK~{FGHK z%{Kk*EjdAWIg+OnTgruK%+6{&*k0>XzxOZ&|6->zgxi?-<|)Y2?mv|qGvO< zGe$hX8xVU(#bt|qxzGAZ4T#@(eDGVot8&Ze3ggmSygM1lc`WZt#A+n`$WJ=Bdo5?_ zGe|Ym4TMZ`bhYcVKj&n8td0iQ%NsFk`dB9O`E&lKBKwozGc;ssv>SYyRGi%fPn~OB zQRc>$@)=5gap&iy!<75jS_5~#j#jNjntSfMDYl~+8Ol020o2Ms!nTpMAh9;k$y~dT z{uQJoIF6DOPfg9&Ae_z4vwvS)p0+rAH^)Jbkn6zqIp6txPG)GwmZO)c;%0qL(!g=Y z@WA1d{Tzc=35v#%mwA4w^E6ads2Kl9yT=m)!hAKFO}?Jq3_gX3k9B7K>SheUtt+2U z@v26A%xBP&B&+s%VvBh?n$NX5e46vaRdtadliNsp6TSvs*41%&32&Hw8|b%Ielbm2AYb}`t}w_J7b`gf6y(2llRNq+?f}f9{d_qmw|pr zF$?;!yp2-!T6!K|%qo6+wR^;D0#{MG7V>8F5fT^?o6q3AM20sx4!cKHQH~ZYn&sm9!U!=c9(-(|rdTZzs-`f_S0)gMES7-{SNy zLBL#Glm9v?{0c}iO$0TUU5d<1CRDsk7e~MR^a25QDvhqgrO%E|4!a(-?jDlPo?JZ~ zI83l~eQ<=F`<|P)xYDXgVSMsQaoh{x7%&xzjjb-}So}zKoG!KiBgT`>Btld>#gCT^e@8-1_jzX~LlO3!?~XzCRbQ zr`wh=5yVaawZ6ipw-a5a-8im*P{1j~C^08enw~Jn1P{7tFQI9KvCY0QFt*et1 zt^QSt0FNBT06R&nb7G1S9B*5;NhZZ6k_rj^cXus^i{>=gMq(@j8R{aweJmTe4#8yFVN=@lkQZ@a_TzO-OYE!lJOCw`UN zgBpe&ZU3&F05wzPmVY3v?_HTEQ;GR-SI!I5TMm4k#;x(!SB8RW?X3w%JF7$YO+w4BmP(6u1YfGI#5ex_ zYJ~B`{P|b^g>z#Wa3B{Yt+OP-d7i64|K7;=J32uOSuYoxN>PU(HFFQ&Z>Du zj+JvK@w&h%%mLY!xN`LKzX=%}kl1KOV`dm5Z?1jKR@~pEZFw{CT-(UFHt6cEu#uwX zQCilo+T*d>ZQRx%VRMuGY*p3l!dV&*kG9@!xB`eowj3>8dX`#eDQPy`f8T$V6joMw zIl%=Fs3oDXmc5C?tG3~Ye*ED6UXRaYq@7z+4${(AIC zWaL|iCm|ZtPbD3lq)3%7K&6s4)~?4#Krb@y^YoS+9bN~i!T0@+vp>j6H0o~N zT#b|a{A%f*+Jzt&#a)Gw_|I`5650HfH{T5j$3R0#gg_T$6SK3vZ{N0^SiWM2G z%tmyY7#|5ORBR5ykdxCA^fQb0pYVq9U8@JCs-QA1j<-n9RDu?}^7WPOmeW!4qy1w` z8FXnjJ=&zc-Qv0Bfz{Q2rLJS9l{}@cb38u6n8VVUXYBSv$*or|`_-rI!}3x(rTSgD zy+#&YZB2V8*~)wAk)Wn}fdcR@$vf5QIDg5X36C(FZBMAUr(;T$9%Pv+noe~!gCa&% z5si4SJaW5vzT-jA4fI(bg}N84+$@?GJH&0dny{SBseTt1AyiE1z>}@8#j#&jv9J1) z`5}9bSWK0{KZc&a_w-h^q1v_c{0_fR8B*-+mc(M)%H0RRvX84O0z((lMgE7tp6Ew#*Y8C zipu*{ootJ9ngLmcG4MyAwCHr4dmOT=gfIMb^(y^R^DDFFQE^+|27d=;FHpL7-LR1N z+Ija$3=^S0F*LwlSh^b6C;iYq$hpYX$KS-cvoNDsN}*=vn%2_uNCNsu~@1s|5w zNp0@Ng**Vg6`nSEr_YDlf79AGTf}^Jm3b5ih9{JIG8=yYBQcOCm)c5rlNOe6N z%QyR4uJuUObD<7>RzJC9FnCFNxRuHh7IUYR71W4p=fSCnzCTAvq>&(kmRi_5PVoph z(Mb54qsnh{hv6zn#Op8;1xMJAUQn^XgRf8j)};cE7`FM-R7f?a!X-4K1a{5-&6GT< zuGW<7?e2Dr8>Ff|2rB;hb9e&uUH{Kchmv|F6d2)7H1OK*RwL=KMg=64RuQ_X2+guC zzDpV)Ryv7Hd1s$@t^EFo3t2sA1UeJIePl-ZO?sXsmbCR7LuO*)N?DzSLqnEi%J@$2 ziY_MYifgSKPo5y56|ppBTD?wEq?>rW1krA_h==q6!Yz{L_t@7;b{Od34-?a}P{*M4 zPv*<5Klg``wX!wYV2|*i{l@$1#g~YlX9%t52rYgQ5klPb>Dr`qDcN1=KyOXok}XB& zb)(ZwE>(^msncC93G9vcu24%MH@UUPlVCel_B~~#mb8`SRtaIsNE)RGubRNp?T&Y4Z!7 zPi)c`_21fJGHFlm%jTZ5sfKvHkbTeMc1@JI@@kkUII3vE#fq%_tMV@ka5N?LLHenp zBS5<2O6M4Qi0XLwp8EI5VCa8qf%*4UAu}(hZcjRez#5I-Lxy78|2e&TQH8Wq4G)`u z^oP{L!^*JR*xpb~78i#J)x*KTwezQVi|qjYGv8Ph272;?@dL;|H{SWv!ukKI7y19o zCWb!^0ZLC{Hz{((OqJOV$W6pd!^UB?xB+AEx>(zL`fe;eW5&jb5>)8Gd|`O1dTf`3W68ixb5jX`0UUPKkaJf`ELit`JO)l$Ik04eG9Tn!0Wm%=JXwW zwioI7`ma;yAloEKgmkB;{!`fa1*Fjhq_0$%n`v$!MvZ_*gt@89ES#XBmO7ww4LUUi zYkYs)nG%90xQo1)7bBTRWiTKrZn3Bdl>Yy4J-jUpN56!Ge6pg#1ho z4=Ca;Fi!mOlu#DgzamTnmt{sug0DG;b9kH?ekBk|>i;r;hjA@0Y$}Jt(zGxqBQWG`|C))P#VRcIy~O-@ zXR9b-VPzXK_fTdm-+PEJgCxApReH_vz35TBxs0=?Ytga&WY5+CHGYRC^fkV>-Fb%S z1A*5ODJ!d+cNDTJFf_8Mcua!&{c+o)kZkNrEX(zy68H8+^or+uL;s_dV+o;O>MRX7 zHNU`Tn|CbiGlR{9l^4t$y+(aPT}%60gs@)t?WK_9{v}>)a%gS{*K$@kI)pJ3NBBl? zFs|@iKkNeU<-kQK_w!>r5iN#RQC`>+$U@ex>8Y8WeTHyx$PHzk>AB#l9wPUqC54fw z9aVI*W$)UW`@!Y|%t_We%C58FrIIIxc+(Sze>jYiv%UEms(LvPob@}8N}(Fy!Yk#d z|L)iw)p4HdPoC%&;DXx^+sUka%>!W1(klhm_57LxBCD(1sdcs zuw0=roLdIj0@Cjer!*{3QIGv(oVQ{?Q=Ur0j!alDfx;;UakF%NKgh6?({x{6FCH=Z z{m1#?q4EV0Ilo&Xx~2>#^p#gr^H)K?cx57fs(h`_L)H)FFtE&7aXi>EUU!W&gv|I{F=Rffzy`}LSl2zTI z@q-Ye1soc^+RQrfdR!t?34KB*s9B(JCO|ao9ysqw9R(M^>nj2e6A0N1VQgkiez5Eh zt-K+pxSNfQmKz(7lO)O38($3cV#(^J;0F2(Goq_4Y%~n(anZl}Q9S8s4muFl&%C(f zRq>FD*d!J2l{9)V;jQ(A44eo>P;envT3WBog|*|GJ^vP-<}&&9)M{%2(t&b0L8Uu| z`18UDZAeWhONebq$%xd64<2=a?1YxirHGJ=_f8;lbzLBaZy{*=J0X~2rLBE8ev``AgY9Oy-`}w%9z!JnuWlg^0XAh3;nhoF*lI{1$Y~<#8S_xKNh*{ t*OhSUA#|<&e;YIW+adfB#Pm_Ha}tec?(;xL@TXNEs!CdS@{tz*{68^oQKAOcba z>7fK^QbO;c{44nFZ}0!ing5(QXXec8|I8#jneaTT-0LpaeXV=t?PGN%DspCW2n0f< z{O~U=2;_nU1VZ!@dJ%k6`blLPTqIrZ>$z$>Sh#waI-5h(OkEvq9b9d#UR-lGcXqLI zuon@yBY@z$_R`hW(M3v7(C*(i2sk)f3XToZd;pDHa(wvA1p=XIRnu#n1iF6*5jnUJdAgaT$-jggHYp{}Z`1m9)$#nM ztX2_hV&+#U%t}W+nd*BCbLJt%W_ojjwgO`C=&G zbNfMkqclbkIVzc|lVI4aImUO|pK7A+wcII7!cZeT=m$qN&4JVprUa^qN&9$}K#@Ss zz)dthKx1v?`@`rMGr~H}KZe2ugB+hgO*QufH}`{Rk1VRfDB-QNE%)I;=J22}cup_D;&5(;T4l5@=&-f zr0^1)6{c{YUs>n|52{muHk9GduE3~|9o$`8;z6T|(5@=!rbl{8X9y_6-g3DY{7>#7} zbyBZu^h;y&+I$Gjkis8wy6@CL5N&7Sh*O4K%(wj-`h#nZi|#lMA~7QW$+buth~PKa zdKhAuXau4ZOiSHk-vl`@LOFS%oJcohu`Q`X*Oaw12uiADZ+LG(aPtPy>%cIx(~r|r z2y`<#B#ZH^lL_<H?gnm_1(Q^!oQ(s1C)jMzynJm zJ?hVw*bj%a!m1#lr8oynnxTU~bu?GQEDV@njDGrs#-tM!AK666j3Q>TakBu1G(>Hh znow-4z-E(Hjn_DC&{38@Cz*gDZBd9RD!vO-EDA8_G3Uk@Y&H%y%Zw#MD~+?&3AY_& z!jRgi60x>}=cvsn7}6Kz#J}Mye6PFFQ>yLYE~g zs`;@{quW*LuEcG565i6a-=wKngJfJbBTm$mP;ztBqe_J2Hjsa)eT`$d+v7g{N;!H;li(0L3(V2& zNR)UuHLpL;*iwNqkoE{-g@R zja$|rij_V@r4G|0ecs#Nq*d@_+K8uZK_c2lDltWu4|q0uR!3GN%pMd@RK8}8CyHo; zotfhMY;x?%A3!ru-CXIs9;Ii6DKs(+NS_8njE)Ic@g0`67@|DdmKj9bTeOPV1K;vt zO>))*yBm0KE+G;8X@@(8OW9j#i;+P&+IhtSJ3joDPZ1gm4-(nSXd*&0z=K?&Gq%Dm zmdA*;>UZ5fjMEfw9kUzavW|6!(v`aE7Fp;|v@NvQ=}Jr^Gi-A0g!ir{bfy6wbZ0~K zLvd!W#}jSn%qnfmkJUAn??DVbn0-2h1V#l|JeAJpj)~HN+UY&fQ+61gf`lMm^ifE6 zRzXMwW-(m>x=s$KkGy(s%a*JvidNw!6iy$NSj3f@y5WjXFX|=pYc$00n-Paz8k@Jk z(x9!zaQh@mL9}uSxHA@XJ#6;x)jeZKIt`ri5}cApB%*yU9j-he{f-cYYIYTcIr-SB z;W{LJk%_A=4zem13IlFtJme>jQBJ<@n8Uk78^VcbY!&)L>dvm3$@RoTw$r-{CE2)> z8ygj??^POM$O+Yjs62U+r;%6tOHxuX&(yR7EES=mW{nTh-y#}IUdvH;u}gQq-~ zbZW8|5#-34cuA|uOU4%EWP{r58GfT0sS}^N612KP_T7g@Ji3Nwyf1!B8|xp~L?Re{ zczW!5!|hS@;4G=bPz+a|B@}J|HDE>h=oZ>2f2M8e3!F!^70uT&Do2-FvNr!aKxc-0 zpTbLv1Z^llXR>Kq#LIBLiqME4TBDxEz3*-X=i%Fp(Lr;`RKeo*-oPpnH-M%?TL#cT zSYDt;-q02jAGN}Yy3PONP9?`3Aw(t*UM$t{y5mJh%gPgVZ1;(A>UsD#{2Gu+Mh?$X zfVu>VqB#+5mVtp|?VA;HaSnH>RbmMDV`ovQrmv>| zP+smjkP*T@E_(kF7@3y1xMgpO8=|e#U?gJ_iSB>>4JQ7E)&i14lCKDT{Q{M*0Dawo zS{v<0R6(jBs%bKky=k(qnud4@@MKaMYN}jl^J8tBF_xVt=y4)j%{^!a%#)@V;t8$3 zR)--)zm~l9m>_{H0W35;&63s;NcBDsy7orf0iL$yCt4OBqybS0EOU95bw0n;?*W-1 zZxOvD;p6x4-q@HEWGw%c z%Iz~P@yXGyi`ioulXLKO3qdJ9$WUMCeenvzP*i=mr3bai3Wef-v zY)ptZ_N&pBL(X+XebKM7&%qzJ`yaQn@8h@A&r-Ssn|zWhrPr!oU!vm?GHtm)PEHOJ zw`Zl}QN@1FFC3pe-49`LsE;bpuUe?3bVK(3(W|#k5!9EiDSe1^P;g ziX;$u{8-t8%Jqw~>!u6ciK?kmvHh7!+dmX(h#WZ7HXHXFBCd*9)Z;|@ zWVTg#)RJ09OOQ45ar%(z<Plu{+_?y z-l(1lW~r>PvzV&)I-a5N$1dfhFHE1EOh2n}o>#{kRy)EM)BWZ8juMNU|lgQ@+-_Uw40&IrF9PQvV{ z#3#@|Doe6QayKPe^ErX*xaHJ%*d(~Q)%jT+x4qHKU~qC;B0cf+>C-kKEYIW3_Cz^f zDUQ>PkeapHmGK8u<+pF%!~&BbGnuG%qGx1`R?oQ#tSFR8a4OT=zIKUct?A4U634IK zmS5EPsLAi7a%{24|Ag0Nq1&`G<`!gdcv#p34N3Fedj?kIk-0fHgwVRze5|hfVIqzE zu@K>{#O6j15fv4!2YN@zA(x_=`2b-*ApvO%XY0C^lLGv^-J*NjRm;Z)2C7a@2%sED zFh7~iRywvl=@+fgaM``l%GvdrMRxm|dB&uqB!X!PHXRGkwnt277EO*>rmNkK{rKrq za88={yRtsHIy-$|-xK!T>^VXf1H9y9IuQ!c-OCV91M77617_r)L1-H@+Q!~gmgis?1CT)gPue;s)8oRhe?xXK3q*)VZ} zawLe_F!~5WFJ>cb=h5=g}(GYr*<|nGy9&y zp(4Ngw`0d~+tNqBGriVdO?M4ss~jGUH1%SeUtg8++_2w$1^k8cpr#VSeO2#41bfe= z8!5#-UT3rNr<|`ZQoT6ZSuy|)rheUb9XVQT%Ieg5d2n!WwK$F7i!^+fwSDlI=}#pk zQ4v0KoEKSTb^bvt)LwMcet$zFyrAr!3W%vSV*aN-)Y7ZP2JsoG)nL?w7!qoH{Gw20 z3@KgP2$0JQ)O#15=)Fh{%|F5Y?IQo}bC96!)FV1FS9_u1wdCLbw|NgM@hq)dJgN!k z%Sx=xV0n5#tlY0Hq7bZ)oIc&Ff*AO0eycy;>S9}yMz&F=c`xTx?h}@v>EN5--cgx8 zzfpYxXSl?R8A)T728UuF;_8Sgal6#qLBY#yuT^1`a9y{+YV=Y4yuX5Z-8QK|4cun4}ft3 zm?0U$;U@vs=GC(@3pIUXf|meZ8FGBs=Wp?=^)0K{TvUp4=Pf=kqhyE1M2=%D83C!Z zbNKrtYcjel_RfzYBMA5<#clYR?L>7+K_72XeRO7oToMA=ws9~UvA!v}_GP`uXP!63 zbwK%eBShXd-;xj|6NEDCl(V(?o|Oi1tHe2W-pUd3JN8tUoTrZyFeEp7P+|Zg0;~V= zCW>9Q*6y#+@~S`d)~<~9C$!{ZJ%h7qdYYHKd8eGmDakf{>*2gC%L_5F|CV1*P!3M`}320LR>vKS@-XIqH93Iv9X~*Y5MfRUxy`p48-v;!PCNZd zBG!X9A%x%#dK(dAHr-z6A%rIx;1YaxGC8#RtMOrYWJ*Lq;CUAq^_W-(HFnA zvm@p()%{5=Sz;;cJ)|1@H-!X#wG30~k0s%Nm;guz^u#m7m(>#+Xje6P*Md5HatZ&H zb)m;dii6=r$t5$KeuDu zzx{~>eS^73*!*|rV>98j0WmD}wdf_U(d5OCUI9yNVw zH~IK32*1w+$kgq5Q!!4ms>*uk_PGoI#?*ZJwDPO(cskN1EK<_n%9udZa4A1ZOGTBx z{OPUVInqQee|X8jS5!55INLlGM1x}x-DUt@;z?EC2G~`|tb=yyWX*$MMlsuc^68>B z!$Q7CuBY?Hr{>AX2)5j?2WP91))OD_lRH| zE?|APx{Oat?OMMzjwd&=u&_ujrnnsRdNh6o5oUZmLjKg#Z##LKASx$-M(f+xyrJ>Ik^or>0U*QfHFtUH>~w!SgU0tC0C*!gPJSx^Wd|788Tg(O zx0R;^@6P5i(Qma_n&T_KJE+~ABpM3PQ4)AFcc2Uifb-y>UA~t9xNr0FN>@C{YrqP9 zNaGF?qC6mVg!~|$xPm-3g_;sOiafq>hbTQ9(L3?X_>ZfX{GVL?B&Nx0PRYTxONkpxbx@n{|N)Ih&|MXD(yCvB`)w`8Twu zxA1<})GLJSwYE200W}=O8tu(R63))kR!y!KYgj}L?Y}pOeW_hWS`4E zAOPt>O}QNDH~2Q5Vb2tx;t((NW=+28c`)gXjb9-i6jgwlqt^ra+FG6U2`q=8aVxO|9t8v-z5L{ z-dg~({J+>X$qWI+6$MPG{;wP@6~!sxolC25bwe6khG_dtt04D-OoB0i zc!Ev=#)d>;*gS4I-a>E8eBE~$I&Txl2DqTRfC@}>oGpaS`i?EkqkR!bo*%?J)2E}b zS$<$!;1wGii!XY4-p5`bkrEA^0u*hBK8DTiW9+;k5|VX&un!Qus%eTp^bmz-=%YRt zVn_CkecF}@Ta0c1CJ>_t6(puYlVYaR2mwo3OY16ug=)JI@S}Ml0@wGPFh%8Y?@8GCV!2fw8!&xPAGzQI zZ#yu6X0RsEDR^?V9XLZxVH-5)fr+@A=aOA?z5td8X#gl@fjT29;MmN>&mad^XkB#D z&ZTVF0w_KTIO;+;aT?h45h=djcA#LNf8I&nwpZvQ8U}@%Bz|N*aou*j#-!?#VY33H z0;DiGA5W&I|LVgD^g*xi@ckw6wReaqGFB*x*a!;eyBJK|_lA~w^#7ndWww8mCkZHM z0<8kXo@AjN)#JeC&vFew)r2(-*i@|G512wCb2fXG|CfR(|{0rgqk(x?$Qx2CMZ zIViznA6%eyFX`(z(GEMG4L*eP{|By!z_?mzOdS8dK0Gq$GOVd6>En36u%>Z*UqR+*}hG^JNX&ev zok*_a!c)ZdAde_|aD)}W)zP-3z-H(EMeu$NqP<82h+Uuuoq>|*MD$~<1ELLVL3lu3 zpmf*16s<8kmhT^pGqZd8k?!{yHkVRW(C28U__Y$HxDC>(OXSMu)km&eAvi|v7$T)o znB$HkJcumt>>WaGpb*E0RYbJ8c(~hMAr60vcwiwo*5TV%fZgAIs%1FR8nC6%n;?`> z7S7yh`nvN{b1@;y8(0&;K4b*po-at~iYKMS^)|hs!V~|%IwY!Td~8#hTw*-m#&*Gh zV%Txog*TzZkxGp}>fJ{lYRL~NugT&>Ebd-KQs1=fMmrzHGc42^5TrTzuc1AL2MJ>} zvE#sd;>MfERWHiXdTjL2zzxU^$c20kHk4K3_{KCCJi@5-nGd!@9kzaT_S6HqLHFrM zaZP23-K*&V;xgdzM<}P2 z!XxEnXn5*dMCqs6G~H6u_Wb<(XVsut-I2%I(}R`9XQc`cbmN3;{cmNKcKzmP8#wjqe(g83Fg?vy^t^$}HBlT{p zzK)bODyl+sx4uM-&Id>~_%Q#or`MAqv27pJZ{3!e*S973>Ie-qH@x%t912D_*aLiA z=|PUUl^~evVA%kd*{iP0tjm#{5>g{^M?8%6&nCq>XXj%RvomT)J5W0bcj{^Aly*!9 z{*gmn)l=`3lm-1~r2y|)D)G1CxW*%j?Zg-=!RJHbqT9dT-A>aljgnLm+ZxSZsa`*1 zfW$B?xD0Mgsj{X?TC{9T>Ck7pJZS_iaJkupV;_gGHkX`zgFS03iIW^dBYUI6_&m$r z#X;d{I7yeJyQ@6GmfBHkHdw+|k{etJtT|DLlo`5Tc5qO9v!zt6`&nt!vrus%o6U>M z%=#S^LiR5m)Fp)IJXM+dLq59R9+@Y2UfJMtP0Uri$U3R*t1Z$eIN7RQR51Jf{)(6B z7*Epk>!gQXs?1X%bkxi3n`FC|$B{;JIa|(#gG@kcU$6Lc(xJoCl8qkgZd{iVYq*& z%Gw|Do%2Y@>M!GP*5S}-Vi7H{V7mt4VE+EnQG=g8-t6fgd#fyesTBtL=PhG$z}955 zBsO?*iZB+E3RhL4*bJImXA&>7&xY(+=uN-4frur@p6-v9WU!5uR|GD`+rQY0rs_7T zk79~*_*jS#NmugHlvAQy`*vCJw#18vf^F1m-*Qj0v+64dAnX#5o|)5ykSy7Ox-66A zoXR_5RmCPxLCDwiv|(NWKS=L5?1wqSe?LFMv7 z5ZK6aje$IwHY(h=>Wqf*apq)wz4FRnCS9G)U+;SA%bi8`yN%k0gDoKBTiX(5CX&dD zalp*Y$3~o~b8l`jGJ$54UwzZp8H77%YFb+RI;-$(FN1x) zNp)x-5yO4T+?&5zU-M$dk*F^Pd5d8c`kua%j7G-#Usr6Zim^S`?0#ONJ^T(~4_Azz zqC5PuW9S#OBgyIK7NgY7vE-=KwZb)tZAQOkxrRnr6?qCLaMz&FM!#sjOUO z4fnuk%B6c^c6Mg{Z-`C#-dD~0JV(CYX);PM(~v$u%z>gn$<(a+zv0`bap8ID;itEr3{DQi|*5G|AQ zondB9o@OSBRwo7P1N8g~;Vw`2tHU?8$Maij?hy>Xkg&U2m!a#Flo`A~lRM*EY2{#T zZ#uLf6=y#>Udh)b;D3a_EoN^wVQ~gxJRvUnKZBoilK<9yes_AHWz~kr7c)+NlegQ0 znidGtN*q+r4ajw9%vXdBOPG>j@>iIjRc2K3AL!MZ@^*>an;WW;6cyx|p2T?rC+a@x zaqqSuop%i5kEZ&_dkptkf8_sjui+gm!Iw=(Q}uqyy??+c&A=E9bL(&R%)I^yV$;X3 zzLjEkN*X@}Qt1nK9r07yj%uZQ^;CjpEt@~z9v&W~t4gM;kVt*;xJdP&pE&?D>Y04E z^+pR=le`>I)tAM}d#fWS%VA+S*3in<-c-#^*1^7TzNcsR%eX;Ta`KAalPB%q;<>j= z^`-E0rd8dIuk=}4u+e-l#&0-o`jCeri{U1frapFu*VdfTr64EIim&al3QJ?v;(IQNVG%?5krtzuS+W8FiqyuHWVr zE+XM2zY6d~z&nMDX4BH?gz48NooA7-i^s$gke5XEZxN?LK|h$PSzwp=F801f*mplk zjjmO{EhzNi<3GS$SS4-S@vX42>Wa;R%h$kUw4W%=x^v3AXJ_QSsTkS?GXg>PiE7dF zufxF$RXAO($QLH}FUQWmp}ianKWG9Y;KDV~Ry8H+zXg>p7bpR; zWKy_Ewg9mtW+MKtMHBy`qslD%)|R8WcZEcE)j(fJwF$8@4ZhKB}zj&W)~` ze(`w}kA*_3eJSvM-WZ$WS}bm6+6kdZ#~MndF!EOin^vj$l&f{PiR{t3lYD{Eqln4S#au zv)Y;9y|+Lc|1+75w*wRmEQYNC0o5zZL?Th3FonQfpJ)|x;of|7eMjQq#H*U$w!jE% zR(oW0g3)_WOiUB=qh&al$C@QMuh8ZNfV3dC5TdS{KH(BIGBRW~Y{N3WH4%iIW5i5`7vv9>d9XrrKa7O20N^iZ{8L4= zjRe_4)e;;_jICW=c`bQUBii|TYG9CXL$qeL0j>Vk~<3Z4oIo`5n_crDBRiW@)ufCV!HE6;^y*}GP zudFrVg(a$xu~e5AeM2>a1z z#&Uo#+EYhGEg$g=>s0vvttt!PX$R-F?tAt5%?xG5nz`0~)Ut8yNP1b}r!)=?LwOR}Vj=eX$Z-FanSbC6 zDUznpb$MqYlKtynXsFxc}Ue8+dPL~;WwtSaqUI`e!krg<7izxHSMD zC;(L;qo#K20CA$$2;lmr#F`jPn&;~$$tw~&0nTz>123n<{Twl7>26^?$IFS_$7XHU zhaIf2vLRI1?K4Mc2uhRdoQC?LK4 zSw&4aA&p^DmkoOR6+c%#3`6c&i6nl1ifOVRA4j*XYFi4gP}xpIdr7GwT`a6~_egYz zO_M8!)e188TJ)vYJn>?__Y9E~6=6NnU+Q$7jta1u^^u*W3P-VwKkCW@wtz5 z=gZCXtrph>QR#d6TzPbI#K+Hm<||L}a3-~uYOFZuQ+c51RKrCmoLIp1{~O56oGvCfDnuC%G; zxcmLf&d`Av^VgBX8<{e7Mo$xZ*M2g`WKEN+mf~SC53dNl5>rhi)-|RYF?bI;|Nfty zcNQ?k*}bq)6lo7%TbX@c_s|e2GUTQPTGrB@{!7h}?unb)*siL+n<3rMm|fz2m`+uJ zrBSlJ`^mP>LR7<2WpS1aOF%h|MrY_&UdNiYR)U7ry?4LtT&g!&2|2`q{oCC}kU@VZYw#*oCslfe$SLaqs!y0EB7z@SF z?ie=H@IZ4?fXj+X>2oO_jI6ZwbD^ES+DW0(`|{fzeVJS=?&UOhZ@&|vYuLN3uC1Ap z?q&C?$?lbt)Q}xX;HL#fFz~F6=Tk24 zc>1|oA7!?~72}yGB`lfz!@sIC=0J7?a!hdUVh_Nh>K_UFo|&*Kk1dt6S)(hij4CZ$}_Z~3Q@n{r*ZhHZGCXi7 zU*tWCk$X03mXJ0o5q2@%Nb>6M7Omb4?fo%05q(K!S@?bZ(;+c)Bg~X|De#7XGTiE3 zS*h_~duNxXqy0Scg=dr2gPop>94C)p{Z%neim%+BhZTT;TeDj-a=3}Qf2Y0Uusv)J z-KljH$7s=lDkTP2FvQ6joa9gHt7z_~gq{%pqdOjk&Xljc89c1RqWAhw_5t>BY-f9W zNjyg8Pew{8^;H6z)FnP#>iU&2?#py%^sfFh0H{@l9Zbi9pEH+gG~ZIsIY76<4P09u zQZqkp)JVUIoQv@He}8r`>+{t1^E^j{L_pE;Pg5YyQr(jtqx!(mwS@ac(V%x9O3tI$ zHErK$DP?Us6bqS`myiQ{mR3#S%PPsg|7}>&7ZR0aroViiB_OGnYme5_>;49L5TL!} zIs8X%s!LTz*VoI|rOtn2NIu-3ZtCt97jyhgG*2idWA!j;@-5t5?-F;J!u4q-q_-O~ zag_DJQCaGac-+QY4Ycom^E1o&+9cT*=qSF6fFvT6HjhW`itZkJFM!qSzVcLeNCXgc zOld;VH0rF6tY&)G1B`UF`>4*UBI_&#Gc}ZnjAeFdlEshx1Yn}i~vmm06wkn>tWUol`Z(+!0Z zXK7Za=hMfm0fzGEd)^t!`oGkt|kgO$3dBguKe#Lt4-G7ylMgho? z2v${ODPTT3{NUnKdJB7G9^d@Rx^#+F2<2$e?w7pJv&bshE}*3~hsgH{?k`9DPCL~q zCN}3-z;X%$DZ!?yf&l(>_4{xwR_UG}JHS3~4jl@ZvbG*BE>_q%ytMYhX9fa%I9XUw zS>hF8tujygXdtl|K&9*Qv3a-T89Ms9I46&i(v_qH&BnD8cU^Bs07q&5<}ikF!C^b; zS)VO0Z)bTt|!#R!bV!EC65^FYEQu-F%t zsM$Bihs5lyu*Vq7Qf$v{zk{gEgB+*VQYRt{MW25Sw;L^HFg?8zNWci(H^LYGfg6gS zDXFMr73O(iu4QE`*=2OZ9jU?w3h3fd|Ft0K0?>8)(P+dJ5s zf@q6nfdj2yMMGtE042f=SN?UAB41^h+WpEz;$jZP^ zSfZi`jNk&8L5c3LmR961fKfN!dW5}rncnbf(9VMinbny0Ch3T$a!}mdI5{uRA?uSI zT>t<_A8Q4+pJNg(=~%PqE5=y>kV|ep?l8?kUTXRfzme^`F;H7jZ9=y0F#IM$0}La|e_FGg zI$2s-+h~Z5_Oi2`+Lo7KT3D<|mT>P2@98_w9yG=HZauPmP(lAmn|?lLyfV!6+L_NV zS>k5JddXUl6=k~kdt}q`Eu-Tp{=vrDH9OxJ4ks>##T3OZhc%wvP-zj4y+Q4b!@l*+ zL*@S<>A?=I#^C5g3r?fHIp4-w5BS=nq>IBtgCIBX3u&@lApNcX{H`wnRj8@5_lKxV z%O>r!ibcveDE*MLwzc=t|6P(fQtM9i$mSodrVvge;dG|Fu8Viv)Doj^S5PJH9<^0j z6Ci%Km;XH8|Cp#Cy|gA5rS@%p@KfmMcrAT>#Z-P}(mr33vZgi(Jrf-$5&lb#xl;BI z+YES#o$zRow|sw3?W6w+1yBReuw9;|p_?qoxb@NvjrD)tMMag}ph1ES1zEq>Hg-xM0q1?Cw-sK~|+b zcauHu(x>3=&Gb{(Utg)XBhHV0UI?Q74RUo|jZ}!3L=DnbaFl z1odY6q_)F->KewOAXyO^Si zFWfuZtMX`Q8YCqI2yh1`NtBmPt2`VH!pFAX@R!~(<7HxX;m_2P-*dqYSsubSuB!dP zF9aI@e|ch+P>N738&u2_wDF>@@)D?s0Njcqv`i7Iv{?Fp&|9=rGLcf>whML#H(p5A zcomrf@!`Z95&o0K4vxBjqabn@ZATlg=5`eB6F*%W`FK9aECbId;1hRw z2BqYx<_Y{~^k5BZ^JeeHEvyTo%@n;DfRP#p=YXu-)56DWMhYh#NYD4G%LOSVrmhM= z*18I(DO@GKzeH_g?=1(Mmb*1m77jn`+AKsO5fQh8>4=QG@X0E<)Ui2-b2dWT(n8y!0uNeod6IrE5W{A$C3z_6=#3Ai zZMlP`H1R<>@i{6|FQ2!N*9CT2K`Bam02M~mpS)V2O)q`Yvd2&GPnDN|8G5r<=%NH7 zXu}pd(@)zHW59IYs+MJEpBvG*;8vg4N{=J{OP$xeAOD}ihX!-d(+0#*_%76x@-gH~m-)RvtIczMwhP*H@e}b0 zIJ6s>9|#I+$|Az;AOfTPxLfBpamNxURpjwYvShhRV~X>_04w?PQ-ff%{~sR;XL^CE zDZDqS12yF@<{EKZz3XpcSQz>^VtzNfa1Oi|L_eKh2MvpgE)&j%F%iy&Wwc&`cZVa? zd)?TU6YCoXW5IinpC6d2Y|==4Z8Uf%jU=33!RNh1m;X5T4mJb- zZ5nRiu;mgs6b=s>QGn{&RpE@wFh=BXgX!kYX>xcs1-u)aYGze{P1s}N%T5F+;VHw- zn;zy>O)!G5iR`Tmp>0tcn_YZE%j3S_WpnnsZDb?^9+aa9-Gv7Ux-UrDoGpQ`YR3G) zEotO%*0IFJf|E=ZV`Izm6%Tj7W~F*fjmt|BD%CwKo2r1r3RQ%Kr^|VR5&j=jf`yGO}-xneYgePi{7K*n4064S3md!5jG}g%~4aM4Kq0?b+Sg#%}tZ_}gjR72yt7F?u`)QOHZO1+S^?!xIyDVJ!Gp!U>#{fe8k<1Ujrf zn3i7Vq)H(>_Hqc z^fGKVpKS*r1S(Ij;iXJyzXX9zI3{}?`s|KRh1CUNHN z*~N+XYG%`ZcTvV+puBXASYSG=(POS14Gtc+?{9g!$xj|0X>GaTS9pVj!c@^t^XlPG z_6G}!ieR%Rh&ILV$4_?jr6r$E{#-L4;mDqCD)g9N#Bb|vxh<}!2xA||Kc}X&+4s9y zTsm2aFIA+sB<8<+M%%(R_V(>*_3P79vIDIBPD2=N%g|l!jl;<=YTtjHPqwNNsPJrH zI+0~7Y-GJZF;DvU@Q7|cY!-8VKIy&kaL+BI z>XDlXTcW(qIMe`f?BB@(S@2yIC3}|p*CZCrA%?Upkt|Ax7LRpGBY0`LVu~m0eyk2!$rJS zw}yjpMMbNpOlBj35cY{ln!er{VYY)G)ZzcJP;=Tk2DR>R5&b=0GYkDw@M{vpSY31| z+6DccjrFWdnI#^$=Y$ADoZg83-BSdDW zEt;gZorSutZIX4KzEM|eN=gjzs|NlB2Hu0aZrmGMl{hP`Va@4tf(gb>?zvz~4OypY z4tO`L_bMFf>_P*n?yBvbIY@i|-S$$rdE5rwP`|5l&Hr?nNafsJbYI30(pxRjE=0QHn_Ky$BLI zNbgOW^xoUu!T&vH&RKWXnY-4knRRB?XH33i|8{%J^StkVx9^@Q%21MBCnF#rpp=vS zN11@&f-nIAp$UWpe3PFlKLOrE>>sJytDueSo%C%D37+cPTU(&*ElgkEa5S{FGeukR z^W5h_aNRJmx3{(v<>j^fw+1|DTVvj#Uh2=FlS|gJ8g>K(zA)@1AY(E8>;@pq``I6eNkRx7)j1OHexT|EqJuI*H|Uj^FD${4z1`c!4kSvI-fA> zD#b4GyIpKzZ4V1$4Z9@={>Vi|E)bo63Zsf7^gsXfM4Xrk|65puGYR8)GmZ@k;q#xA zf74sb;=fA%$v^r2{Hu4ywea)SS313<&s(!4{CDYyi3E;~6_mGw=sU&j(HWFi`&>q< z(<7aYQ_3etb9e@i6#=#+I^N9T{z-oSK+x=4n;b|od~Q%r9$hdhnJ-!u(|iK zxtv%&AuQkb_G&0{UlF1&k13PHLd%y#+2o!O;kT2@2ZoYsC90&V%xNzciOJ5Xf+7{s z`$6@SB9r{J1uITJVZ7+QwbPnfCd=KDF(Js{SiThY8PzDI8}T1%E&`8{)Pq*9J>o_J z74JQw#Kp~w@LL=Y@nUKD3`M?#Onrye1#Ij7MpMJLmDU)TkZ!*;Zx6nG>9tTxF=o}V$m>PP9*1NUtZ@=b~;|DeJh4vR#RQKyJ!?ET_h?5`Gg9-VK zh{q*77Uv6PmeZ9tge0x-?psQIy)iZywcTmp0nvX3nR+#Ob<%&~y5~np4gBVLkIR$S?ATd7$oz8iANXuNJJ8)-jWT&^(+#b zv#kA4dr%u(JK*g^6z;W!grpUV?W%reEWKV@!Nv#QX?0-bqY}R6OlNIMI!|>W`y$c$ zioG_C_vK`duG=_gxa;0OWgb#Fdlr+5pLzM_pPC)2O?rH0;bYt}e9Sfjx4T^y`u zjs3$S6VZbp8}{6rRVS23Jxi8355tm681Wi(Z%L(gpvUuF4lC^qw{K(X!Jfg0ejIF# z)RE|n0W}(N+IoUYe&c;D&WiyRM2Wyn5CMI`LP-dX2@^vRt3e1WqH0pN()O~Y*FjQm z5rR0FQzI<85ytWs(cb_QB0iJ5`&Q(tQUlDB4rM{oGM=1DqIZ?=zWYh2Q@0Uux*kd^ zD31eI%7;_$YtCD{_!0;6{7~It>|G(d^Vwvh5jOpG!80_67${(na75r-FyZ42Xq~LG z)If2S*b^_N6{<192*-R+(r3TL8Nr(J$N6?u!;)_?TpXoAnphQNz3Yvq;1(>_m>BzU z6ehSfP<+IOp-pFoef84PbB~+wF7WEJ46&>L#&yG*CS9L7WnsExWkA&-d&Rg?t?sW*m>W5EgJ#XdmoQOC)aEa^W2t*V!_5V7Jo<^sYJPk%f5wfreSfmt8I}ttN zMt9qpz9dT&^%who9IfwLzEDNs4fpZS(%@6{?L2j3%A2nVwvQU8hua9 z$)j6x7;?OC<|wct$+nDXx`%ys87X`O9cF-NT}C!h!sF%5R)eG(U<2W?oxi1!5W|J$ zr=cc7o-(c}$rv)=At;EeyRFV1>siF@@e*HzV}TOcdV7*=ikTm`n~}le8IZ69NjHY{ z+%M_wVsPvb9LurrASIypePq=1@PIQ5pCr~=|Ij!hE}_ujbsTD(2`MaseJ}H!w3#1) zqjE)Kp_@p^#pE}MqubcDl^R{`3&;84TS^!Fy5<({n(h&VOGD<9N6v2N3gb%eSDmTV z(n&+=kq~KbUWZ+Jyf9z@gCaC0NLMeeQo~;mD}~1{Z|O-$n<2ZODAV|Q+`*NyRju8; zLGAqRg`PD#p8<=dJNZXNGY@~MFpPz%<^;*9$jM9?ZzIgMW1p!%v8&pn zFc||yQl=+%%@0#fn;?YUb!c-hIAeSHXk|~_q^>F}eJ zxL2afu{t7=z>^?>ROiOd+E%!GFNd6R4jton@U{j;mR=~mk8`$7HJ1a9o!46cf%ELJ z=MKBIP>WYZJn{mVmEjF%J`&@_u4_T28lZJ0-6Kc-P-Y0cGR$Kodf^ot9+wyIQaxWV z?B<`ROJgyQCKso2quRfbD}Zy>hD_c4tQ)k^qR@XA-%wdCk5q=2M#ZcfZPz1zp~I+? z^^Xuv%U{2*w9UhmnVjT?99EW^hiSN@KrEE2=>K${mg zctL?2zI}1^5?o`|oDMh<&U@PayP;qy*HEL( zNN1QZ%^(a3yMoeULBf#Von&O@M~Oy>_)xf@QoSE<>R;yIC$n=4j#Z7xet6UgzgwjM zNxC^^=L1E;*A?|Rta+_%4s!#&CybLH;FlFv?kypVNrcy0!m$?0g#9ZB+z}F@L|Ebv zl_adBijQl)`FHM5NEoXWf`FhbNJmNt(pXLd@FU4Bdi*6pSCW#FyamkrpJ{5wEhzW4 zUcGvi&u!n@*3OP!JAlgjobn|9qh4S{nUazc#4HgDMW(hs=e>+FXpQ2|)F|*npl}A| zj7&uA^pT+B2uM*;5e1B|)>>NoF1FT-ka(HCmmIIzx8$Bs)KfZ;u4Rn>_{*qv>x%|- zT9f6%KZ-is?MZz)9b=q8IN2@FJDU=%vl!M1lfc}MjEp=IpPM*4nV>Em(>>jccH1pT z95Wx`_1GX!eHw==H0^0>ZAG<2a45tH24`fKFM5qgFmx#XPXDUj zr6phjj#eu|jT7CYj*s2$a&o5UE$N16s-sXBeb;peN_`AEY7+$>GAAO{_6OXl8-|Ejvm&9cOsjC&%kD%r3X2 zP8O6V3di2juy4k6y7?{iq!nOx%p}3L{3sm7?WeK5n9-*~V?WCsmOe_j3Kkf5TAgT= zlx}s1mCc076O@9#_J7mWG%XJmlx?F)iMfOg@@tY%S3@tl_U} zjQ^|{-{EF@4ZxELqPQD&9S1Bj&Vf(4VQnrB(XAyIcA6An`1Ql-b$Kb+ybN z?XeX{x*bz8j^QMy<1zU0=HjS*&r^$`eBY()ijcZG(TKF+7s3L?YWlgN)eZOt{1*_6KiO$^TzA!(%)o$R7@?SWp*)Op>aBm zt-LjDKGc#;p2v-z)8_t12N2boiar*?)H7aTb}U5VSQj_VfJ_V z5pj$Oy;==g+5hOtlPBt>*6>h?U6|c`$L#S|=Y086w)u*{ubaHQq5PfVG+rDksqYgL zm8`6IR8kf6XImmkUv%OnDX}+7T)Wtp;W8Vk2IJGK)oB#p{w0my`WSv=qFmQKD-tTk zCeTGaa0B1IeIuB}_dXk~>(SF$d3JhK23{h&gDApp>FHCEYC8HeO&@~j`Tf9n1bjfD z6{Sw>kq~rgaY3hK9FPwgIe84woUOU`X`s<-g=5dZKDMd5#9o--d9+eu*UDY;YjCjX zaA(P7Atf5Pj77qeRVl}?e&btWp+c%0ykLDb#Ne5BLVQ$aqiy}f;V zWhDAh;I*oulngq)^9VFT_|s0|A0FUj!6XBL_FwS=4G?C%-+au>xBqk<|B;dUQdSmI zWIj;bq1)9T!X)-*Acy7AqeooYI#9_0?YK%|tElwhg0hYM+TyF?b%S6JAU{%mb| zE2~vP?TIzdGuP9F#M5`5#GLS6s)QI@@9e$i0A# zf?+h-kxchZpz={%Q{TRZ{7!IPO)4zhrd$EO9bwc4TP>ZY!pre>5SLD+bB)KfC(M5X zbqtMwfWYyz)G6yo37Vaq-QQ*!SEP9C@>x-IA-R8wIhb}7Rvo!NQHEJG<9?s4Hud!B#6h@bxK5QS2!}+Yes9?UUC|DVJC>z!Eo?a zZ7ZiWN*=G*iyzE{XRV>D4~#r^GIW`?jZ4(aY}tT-#?42-WP!UHwSKT-uPV`A|EAO26A}>k@adC#?aJx0vDC=?sXvRyN1%X;;v4@E z@YEb{5}yXGb`K5?eqHR+jFUJ|-|R>Z=u+FwuU1*Ej`r^IShsMb<+>f%GJEXn8+9hM z;L&C7D6 zxTqNKG;NPJ8uWgUtQJq& zV*E$#Q7Bf=)2+mqdxm5LcsDw1o`a`SzvrdSMBERz^-qrv+7hJ_6Hm9(DtCv?fwz?4 z(ku>|PxMT{f9FamVw&f&Wh4o9#&$s4X#+H{0RYX1*){=NZ(F_Y%bN>;P*G$yqN=0p z&zHdc4yWpR0E74uCl32dcE8(=SGtTkPY1hNqRkruXkC4;0MTxF6jiw&IWoJeeIx z!;8mrH$1^3IAcq$68Q(Om4KLtAO893Hp9vS z7ZZz1lJ>V9HchKaIsyJP)~RxuDa&$aZNf7#x&+loRg9kKNKZ>3t8JjuZ7Z8k7%4vk z@O*;+PiZ*SvX^s%Swn=sI1ExI&rJ>{7I#XW9V;$j0PENXD%U@3J_8>9y;`wGGFeB? zJCmV%Vz!irSB&PCmfwHAh8j)df{!Y77TW)k=fzKlJMz8^IW<(QGO6P%Z;I`#3stqW zM$4H|Go(`cgvRkUIGx7h1trg$*xb%tR1g}|=H1lUNva(FRZvjSQKKSvPoSj8;{=1> z1nae`J!NI(?kR+2PF~7mS?wD8JAd(#ty2>7s?dx+YBLyJ8|q1+rb}61>}0M1`X`Y( z-3S#~DeP%#Z=VG?Z#0;z5B6kjl3nWH5}mgFDoMcm%EFd%eJT z?W8(R3$u`tsZ|yRtd|Cr{N>A=iIY_)w@G4_$sErUPCU;!-rr#IyGTn*J8Ij??Y8d2 zk_^BUK;tGLf9t@)L#f^WNFSf>)y#w4{h>2I>NsMl<#8~(JX{o*hicpm)II*vnmzkq z#ACCWJx0n?Qcc%g0RMWwSZ3SvRA^%()H5DWykER{VQ(6&tog(0L6tm2|H3+_9^WsD z(JQE9kTkq*&Hs$xK2hR3M8}AlCcjbJTkZl8d7#-b#Rkn+ZY#!@dXnmTx|<=piuG}$ zWqh8Jg)ziPv#zcaTBJG*75^bA%-(DHN7vDPBHaLlBm?r!#cO_0W`b-|kajt?gG`Mr z>=oQoPXi9O*Ikqh@d{%ryBJ9!jER9wWAxlHRifD33ow#@K6AONv*>9X-HpH_M*0%H z_4aExwyQR;mcMr1y9NujBFOim;a7|K3n-kNJr}>ZVxdpGD!e)yVHsXZ#JX=0Aq3R~ z$Ccq*JmhdL2%KxM(q(IkQyna3n7RZ0ZFSPUPwa23t))DLi-%2*Ews}Sb1yj&G&5%0?&H3c*FktD|K`mbh3GHRGtfw#+gPaVPKP?! z#!kVCe!?^&YT`7)9LCc{FvDaYArQg>%H|^x+}B4&Mh25~b53pj1;01>$6b+#=RyKC zoa+ht==!?c!@_>*+(L2=$=Wf_wrvbvh*MW7plk=?UcD^n^sNWR(sRQk{r`Sn`q<9V%0P zZ6u=XUu|B2R8IpE^3@yVZS1vC%K^t4BO#$!sF6{jFkUEOSb?lz6OT*J-)W1rO(&{9}lO5blfQ-oouCS~{Lk33I!*Ip3iE zCcb>}@2V*ozjPnPU(kYxvmn(Y#&-oKUrzQz>&PESSlb*;ap0$Vi!Jis)#~)mROUHZ zORjH#pVOlMYVZHso=Jg~|F6{wzp1Q92*{?%BO$zgP{{$SvuJ4u0{bi>{rX=WF*{Gc zWnbP`4%!%kA~|yTu=qq>3bYO~x#l&%uleO%rrNDQrXbbj4q9zv1b}0U8b6Vk%y`iD z%;kLR9mt78bhxm5*TE^sZS4A)R}lg?e@_#ix4I>#jnBEgfFxZgCEpiM*XPtF9WP?} zH@&gSe1`8LIU7YCqH_oPUjFXrM;cTmgD??{Sey>2eu;uKff7z(<@p~RS-nQ_dEcb% z_?bcA1X83?;P8j$25w)RFSi}R=}nKowFF(|z)wJ#u7Ff#&F+dd-1-$n|2f9RDK+qX z+Ua6LK3}8XAtb4=LLx@nQ|XV-r&3?f{Qm<_g!d!%H>^AiE^0dU+jVSDF$$F4@0mS6 zt;Ilysn}Y+b61q2ewbOgY^&a;=A8Cvq?%tgm8O3dmblP;zWel7&%-Hga7IP6Ps;~0 zA+dUg@Q}i;YfrjAkjN$4R}Zo|sveF-pdM@G>OB-vbDJ#g?X_96TPi&oDiW`8Bo)!{ z){vo`iC?G}w*38I(=MN18?SQ7I^d|04|s|m2a_`ZZTH|tVa1+gOw>TbVY;gsyrTpBc72k zHovazYW0PBP#^Q*_8-JqvJgmKMOEtQ&fkVlnsg2Jw$X4FTMyI;9M3jT_6i8{7k~L^ zmr6ZP+(?BonW$5UzJs?peF|ZaRQpOt4i6$>zIYpe^{~Ym@%jjCI%m(pBaA4d_`5m7 ze$UoYnfcVKxvWvL+R1z(95v7Ew})&&EH7G~`^eJ^IpA;m7 zt(LVG7*NHC#hEA{@xI>jB#RW*n%#p$5=vOa}j?>@{Ggz{to)Nsrm^zP4DG zLW?S%88y0Nv~sJ6w6XfWfQ-&Wd7vS~cNZ6wK&#-(txZ2Oovcwg6}v@Gav-kf!~rnP z=XHaduW>K0@~2i}^Jp6=?sVAcP=ifb;I8vx)mToPXvOxTCxA^Bk_&ZQ$iARBmT3L8 zq@{x_h=bP%%*j}hd9=JLJMZ1VU8j5tX)w-*_k)|5!^py zTo5SEC$C00+qM?KX$FuV$L={?uoH(8c7|gVxM~Ny;=J7SX2wW@B1@!U{o6oVa ztV_jfR+Qp8W0m|Tujp8q45)Yv860#ngZaEz+g z!s}~72Us`bmzzwTLPiDr&2npeGMRycGr{KVPclli%EwzTgCCBySVW#EpXd*q? z#5XSnKTwI^rr=>?A7L-U+iHvfb%;S8slPpJX4U{FS0h!aFUkbAun;MXX+U8U-yj=CK|rzj`0{gA-qyk(>a$DSi%AHAN#% z1$whDuVoM8-b9Y5mnQ|xK{N=#xYIvbNvyj+%rZ)qOEnzKg@YL=JLQwgPy;x0`3wU;v;TQaN zxDC`NkmD}fpZizDmac0Q=ZVr{GL?Lpow&8?I}UFXkl7W)2!7$^f4qmn{W(?GyIh3V z`757#2#>tvvdTMNOAU%n`c{4<+nX{^l}_!4b=+LFbkUKU(aRh?B7-I!bLyO8^p zrRVWB>Ui=B-Vma%xJ;S>{{k%%dzT+ z^IQ@4=+USsfo%ctG->2LLv@zh)Jydd`tHJJ)*Khh{Fw2pprUpKIqp~HxZ(LTPbgfiZv_(iiyGD@5%*oe6k?gU ze>4_rr~hIVmZtd5?tM{u&VyzU^C}5u`c@G!G z#+~;0w*jw1zTKI68*l|j$u;%Xn~j2l^9E;Y5)YVFx8?^z|77N`E6`{sW{GbOt|%4$ z9Q0U2K)aYmUYQ?loS8a!lM*ip`93TmAqf9c9H*+&4>;*J|!G6%4VvOLm8J^N8Zgj{p+VJ2{oALY8&^(NTQq zq@4i7pUk6I3+Ko~LL#DPRCK~>2A)Olz77KLTH?o4vBWT>J<+!6ciXW~C_kh6oxq6W z#^T(k%5oQWPwn!U5xPuM2`Mp7zAw5{I!TT1B`-2I`RF1c6bmYNxRboAh8H>s*kVi- zl;~pF5b0H}<-xI9^GGq5to&4gef*vPQ&%4Oq-Zgp^op`FJ z@zVc*E<|CVi(YR@-!eR9Fl9YlEvhOL$*=w%6|7oB+N)z{w`fzAV>RBK0XlZDquf%n zGE_TBnBw;>8#;%!M+lh+I)1YU2w-^k3eki(~*Dl_6u%8T7?@*J*PYEcum2{g%1o`uzMr596L>b>*!@AQ@P9TCTvpY!)3~ zAsSB0b|Co(PgT(xpvwq2`~u0I+)jtEjn;wA(c<+u^$JU&C8yqe$0MtLbdKTJ?pWqX zUfgV)x$|~pyX(#=K~p;w#a(${Ch4PO9sfcNmf^Jb`E`u`KY-S!tKFM?pUiwmioIf| z8Nu`ppIkX--6>+7EBh3cy)H$m(( zGA;_ZIDrobl}-lrest_Dbl|iN~?0mb+66mjJBkH z7hQ}S--nF78Ra56lA2)y>I{hGJD*lzaHxof8+}<0!;594Ztg$~q!p)_k0LZio#O?T zt6CqWSgH^E+WJy{f<%kq>!2m?orRr6Xx$Y(7zq41-3Kje>p?biSgGMajevBaV@50M;;on0$5?BNks07OfB|mKjmSLDgDA7sa)*sz?;INrG$!%}E zV*XkIP?0w!nr$h=S+Du=Ys_kI_Z!CBR6Hoz2_oD4e4u(W2L6Ie8Z!ndU5lSJTMgG^$bR{a$K7->TVD*Cvi32K%D$f(0WLawwZ1Y|Y-6-&AW<(YZb z6#7GXhh3-MC%a>g54QcNLXFZ}rxTq&8 zL<6$Zve785LUTOB4o>l4R)60A=foR>G(@_)O305OPE=F~=S*%*UJDMJcGpUXi42_v01$Hdb)8%WFEH#S^=`_t2 z2Q?;ohx>t_t2ADOj`JJJhEj?F8_H4b$1}sq+~R=wfz`XC)i`B|kMJ?WM(3_58rr&&?-b^sgjWHxf9cot;SP zLvX1^02QVV1jL+ev}t)W$9~8!Wei4A83KU$D4ZO`QGdwiV#0Epf@8Lz+a=AdIN;ts-vnC>pk!=Dsw)l+ff@q;9 zKEVpDYpzArZY49*kgp3UZ&{C01zpe~?FdF#jj3q@hq(QC#IfJ*OrD_>y@5&4%JWT~ zYx+a@sM56sY@P!|hI(N($K9Ap5pQ1oIz@Ls;><@rv=A0j>ez(GAM>Eo4C&Ty)xVa7mCcZEI* zau;R!OFU`-;lOz)K_xd_k|nlOcGf_7ym3%fAF`+LbZ7ZbOYYb2#on$7+O6@%FG2Wr z{Rz3PuCSWLEQdCc&zsUg0CsnfZG!us;u=E|AlD7tLdQ*sL5eP^4m-l{wnHLjKZjzD~g6 zd-hj=MNUfeZR;Ms0K-cZYhOJNQ>ytbUQaF8{o|-RdJ@Ml)j$U-wiMKQKoA9@+4Gq! zOagVDPD+V$K8}2npsv##^=XG7h(W!sdAdc!R7-?CXhq5NVIz%Ozu^51|M`Bze9VAG zAw~?uO2;)QzfCYBgoE>hRZdM_dW?Uxyz*I7=PAe&Cn_q3mH2*u&4j-879Lmk0Kmc>OAYi{tc2tD)u+ESZznflY; zbTQdRiRaP0^d~&}Ne_%NYLq9%vPY?H4sJe~t19*#_A|;aAOhrgcE)Bl-pxP+d^FtY z*KTu}b6C|X1q_Bk_{*1%I$Bee^m*I^Hvg!641a|#i70Z_ef3`6^dS{sF#aiz<&@cZY8b7mXmvd3 zABT3>3mh5Le&8YjAsQ$ibEqoE-NwgfG_9O2U}LZ4j6Do`_A#y* z02$41I~Bh?uRcz2PmR>Jo!)6347!dNd|2_bUTA^0g8BK6%-NLhR2fvP2I zUs3u_agJ)%8bf-z>z2+PCf{3tN->%+tA32OVwLg_JMP8EJ>+3K5Q(6jd8Yg;Ut)*; zKt$smdDSgbUOF9!(^w>#s2@eMy#Trem|VG|<2|`B`v-^DW^MW-;PC<}^PbJ}0mtzc zBvD2z_Ro5Ij#N6tjks=W)d|8Ws1WstsP&`&v{OOOw{5r zE1D59XO2tmf#Cll8ok2ATSQ})QqtZc@+*?waRWC!qS^_R86SG~Z|7U8Nwl|HH;9FT z7!M?gI2WE(?%!;SA=W*3aAi>u)o`&p2KCe_>ax;ZXj%4e)_ z{bwHQAyaW$*H2j4UYUc|-h4{t#Pe2=%J_DtInC3C8BYbGJyvuhUa`C%fBEvgG{if) zU)827Ys#;X!Qx1;Dx_pFD-FoAajsz|u8e^M7c$g8`t8M~Z^rLuYkomaK zJNmCjEY@P2oKBlviBk2&pLRxVyC^`+I!@X5WKqyKA%;vu$DOvN<(_uC$9Xc0%Ap06 z#U+oY0cTt$FJyBT$PiOuK?7{yPJ5^RF4j99Vak`rtol&yG%57;xUxzk}(3VZ+}eq!JrJz)`lq+9Pb2kJ?Z9$9em?@Xm|fvo3Nt^p>@g4@z?WXzeY7#7Gvu@Y2#yd)+gna>!E{8d?IfTQenAT)>M%Aks z$-)IRK-tT`k}RMU+5zPE@Ikw@ywJw4u;9$WN*XVqAl>?n4?-CFLgSY^{PV>RH;qnb ztE1Jc)BT)+awg-}J`Hk*zgY#^wy7)C`jrr1V^{*^H z(xg5um{EQF4+G*ML^s;%cMcd4gxn@30oxpHv%MR%@sc(-(n4}Rqn|SqWE3yY=&otj z`N#|2Gkb7(!nv~x{H#|ZnU@0Wgm=99?a{TId6hL-tE%x+VGE_VrdA=x2fmbdY>m|ubyTD5kN&CDA-e;-$6Y`Rs=Clm+h_GV9x%a8`W`(m(t(`zg}zuwYI z^_R}+O@C=Nu1#&mRb6t7L3t>WqQP#}amk=_RRGC20eiCG$q%(VrfHF3N_yfezT(0h-)# zQ|csk#Olmj@+rI6g(qaTKqHe1Z$!V*@_{*k>V~Nyo}O(Oz;^7~vmf^%~@-sxfoV<3(KfxOG!dSXqUd)J3z92XQM;5y}IDcpWrji2Y`6 z@ufH^2B@&3(6WZoiaa_8{iQf>rCOrVz7U_-^-HZkI*}CP1cwFE0MPzAaOE%^Uhbx( z_50EfS!v>@(hDog-}{BFlH2)uG|I`Pb{c^=-EsxToTrcRQP19?v= z&tn0P<8?Aeq5B(MCBZWRJ)s5<T6YHO+hX`!cM~iD%{x8-0I_g}a!vs4}T1`M00VnG=Kk{bhW=%xzwG(my+R*N#@sY)lqdgQ8I?bCbXGJ zR@P=bwMxRewRAIz8o(%ij_E>XRw0$I%EBAWl_kUzGz)wv#mvh7{Cw_qoQ#mb5ItYW zjTMV_9(TF#xoDg3Vas1sbEUKQC)b2=gf&_!2RB+u^$Jg9~ zU#|fzKc2Rp|FoSb!O$V%x+Wr?T>sfv!S%f8U{PeQb3!csqlDOw$LVplh|VI(|71kK z$7Hp^@BV8%aNy(&VoH1l{r~)wy~GbH=nK^`DX@G6nOcC>eSy}!f!1xrWIo3~n4E1? z+jVq&MYv$Bc*z^x081mBP^ba91h8WR_}YipL7_yNBWRMA?j?6G2md1c@gg`K(NIh! z|E0g-GRX_aGRXSAVmB&g{QFCkgz)%vNlG_3PMBz)Xnm`LiUO_`m5_$|G1nePt?7L} zT_!T(kP^Q@?}{E!2=qzu-u3@u?M3cYc6?XeN%tn5&DBZcV|An`o!NYf&QE`PXXC-K z_$Bx;FCY0GYIr7LHi_gVH!19U;$EU?!))Z=N#Ji2(V&iH*(*ZCGJVekZ( z{&%_33l{Ug7VQ7tZDo*)oB{ub1-R)T1Shdh~e}&L6fisNLx2V-{w^u7hDd zKQ4FmpF`28QQwLiNu7Pdgt%jxo;x^_|GV2%H` zyLW#ps^#!ce$(`Yc7U=jP|ZgT*XpyHkV@UFf+0(*!?(@^u(`t6+&frnPl&!rocmdX zl@rjUAjOWv@bNQn_qiX6w8FST;G+?eo;DDDjG9hKxe|4C8mQV!AcOb%LaRq32QpU& zeAY6^yH|Lq;NtX1;Z)8X&9My92{q#qQ>TZJshR9bD~H66)pTeby5}q*5DDRwh6IX= z)Oem>uI5}A@K{(OJ}(^-fMZ!!r?(nG_i~A6BT%FcreY%FN+#&cqomtA5K&%g-%4aa z%;}Z)fO(zK+8#4uG5PR@)QN{4yJbX?Mh#J^NR@|ud6k=hp$ofKQxc|B<`X*=nE^li#K^r!o ziwmfgO5Cqo8y{_fNr&wW9<{8!#GgbhD%OK5%;Pz7Xkr+3eAsHpt}H~~$T%1a&8CEB zlJF2zm$6tn^*-jYhOc{)+ErtM65NzH%ED}Q-QV=;%0^O199EOT-9RbL)qU3Wjg#uT zhTW&f6^TR^;5u-(9D@%yNFeOaA*P<(A|)6>1qCy?RZnDuWw1}Eb%VI*nG+e4h4}&J zbE;pVFNAP81SM%Sqe2PL=>b#_tCvWv@!r>!kYkARecb-w!-SlKB=!lFC)v!Ny1r1O za5CZS(Z;ex4a~MXEvk|oC+yv;`{c}lW&Zp8V4~+<=&u9ap^B}o6P-vciG%7e5H$Li z_gvTeCvLCa+re^o?9*zCFurC`8d4*xWU!q^HGIS}8GmBp3cxVKn`|=hNFxrDeZF4& z5Xg^Y#}vY1xYAj#Y=xNKuWK3C@ZJ=Zzs(*wX|#NHKdtbG+ImqF)mRo}ok$er8UB$y zEUKS+{^{E-f$dvqKAn56sD`gHAxDSg8c3&n-U_I|sE z+s}hd7s941dX7RYddAO)qf!UfE=n>Yn?OY*VaP3kYG*J-d2fEN(4Vllk>zr_(mN7M zdzWfMqOu(pyD*y)DKm?Cd#VuqTh>C>`av7B+2wjn*T5!RALvHiN=|V6KnhFPaXTtc zBN&%6s~Z&HW*DAOS(xTk%+aMd_VAPvmq52_O-eJxukC%GS!~{mw4Z!U{c)i;WsfJ> zsLvy&ceza$T_8cdFR)Iu&Sm|IeSRWR(g?9ms;3_3uB%j1K_Q$GzQxef$n}JGLIF)( z>zT4ALEYB0-PyvnvDd4o?0GSrs5ot)wfuLi_IUSRU#FL)Wic=Q_Y}2JH8mpM)Dnq{ z@$n0Zk$78NaId+*;~5TAh?+1bS@)=9sN~8ZS#R>0ROVN9(;zn5RBqB$z0Pp2W1Yy! zlykpfD>9ifds+V+`sCito`*^QCDHod!{hV5|L*|y{|7tTJ0t80pb_#pY4`{H(=P;a Mj}-sOM(Vx!A0YZoq5uE@ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_1800.png b/Notebooks/1_N_horizon 3/sim_1800.png new file mode 100644 index 0000000000000000000000000000000000000000..32b72bdea16db2bd3ba13a8bd1c3ade2e36bc63e GIT binary patch literal 14764 zcmdtJcTiJb+b&EKRGLvyKp+YtB2A=9RcR7LB!F~6?^UD|ivE;X2#UcVRfT{^Gf0z? zL_t8R(g{@%klsTH<*dN-KIfc2zL_&;o|$jnGm`*&v-WCtyViBz`^lZ#I_yVzkJ8c6 zvFqN{gwxS6Dbmr=yB=l+cZ#y~hQY6^_qELK8~Hfj53;-GM5k|e-`CUUzNef0*+8dz z{%$_rGLo{A(&A@b@89?JSCW$Q`ga3KpL;G+eVv?dK_^FiZ<_nl(XpPOed+0vQn*3K zJi40Kje}F>21639Oj7rj*2_Lte%3H!IDVG?pNs$e!+hM4=R7?NH`ecvv7;eGbmtc%Xmmn-cS3&AuPn@iwgsabcB}6&+Z)umi@ot*?HB z?jSK10$~*z)$f|GCu`Q`p%ih@LUkcQf!4?@ks#$$kflecU?oADAJi-O(T#41pN6J* z97;rRbZ3wZg+Ms9YM-JKc_3rd8ULH{#+tOfGr10PbEGn;9I48;AC~KyM+89(O<5PD z>E;<*ndawy_ezsuqBNrOqbsAKrhI!BKJoSnC<<%@hS42|^fUA@PL6v`G7$f!$DP%M zOVhSq7Nw~vD%cu}suvo4gesR8ENzXOI}Q;QRO5yiXw~XL{6aNv#iBMLOZPOxGe#{$ zbZS!}ep)uti+42n4E@5JP#ZRy;;p$y3CAGg-d@C05GjV!nzbH6qj4d`v^bQ9p#A-b z-MDB!(q2>U9W{PPhoHS-SzC|cI0ORPNePXLK=4e8A^b?Ps-Sm^deaKz*O=4>L|T?O z!Md5)`~)>8G%8r+`}<4?l=w1zZwpl}ENIi5D}~N4@9u*5IYorK?e13Jy`706yn$~a zY@Ik`f)35!6x~6KqZH^*L^}wLe)68&g?^Io zRr5uL*)nV&bEOYtp&UXp-JW_k7f8~&Mz@!+?qOi-QiLeh6-~X?1HWDTqf~7Nhv$Qr+gYOE64=`-Y?xid+5==J# z9yXWz9vL5NXEf9nyX0@Xj!HZRSqo9$Q&yL!chwhFh5PLy9o3DNd#Gg2Ow4P>I8#3C zdAH9rD*}swjQES7uvOzF!b*sz($jZ~H7@HHU|r^LdN<9)Gpf=QrZLy{fp*BzO`QZqeTK#plqeEKJ0U z$kwoE1pPve;$)C0u75ebelqHzp#5a*M&7d@5o(-_h4HFI_W~n4&o9EtRuJ^s`ICOS z@$z9Mi+Q={bxRyod^I$SO=dlWld$LuEvIDBW(N=`(R5 z*5FHC^x`c&JpoqnnJsBtz*5;I4e0kUa9(RXTT8Btd>z{G<*64fua<7@s^vy`i4D0t z!@$RdI1|1ec8tqDZ+j2s##)5<=^!yF#qzk!=a0YJ^QpkwPRS({QQT@7raea#hj&bn z9Da%#tc)C~vKaq{X}2MLbu{4>p|sa$M_E?Jt~X%XdAKI;8+&Nh-Yn8pOP|^$%-BIk zPKN~C)`LyC7u9=F7zF621?}U!C)HmRs=x3lTX$euBtIRCKkr4Md1PLz0wziK^oA>f zb(*#P3co}9>7lWxEtKM8&-v%W*_czWT3nVAP`!fb1FI#26AOR6PnrvVZGzy17JUZM zd;Gom_EdBW#Fp+HTmRvLmgirCU~wA1ofpV6#cMI~ZbF6lK0n7gSL zhCzLpE@;*s+2rn;d{sJc?$??uGzt}bAD#E$PZ|au*L4Q+>lj4i$Ak2(@NXTINS_vZ z^bZjg39Z^Aj$C4KUn9wr@Ky?&o z&XZjdAws1*PZqKlT@)$$p{CHS>Ubhv%|PDpZx|dV^{4(e6K@pD4~B;b2IahQi_;9$ zmn}Ps%0-95HY6a@39)W_T zq^iN=w)DPYeGZpi#4dyhQkj#Qj9_{{E?hxMnVZxNM@jvXLv4!ojR{LJP+#dQk&}~u z2%J#jPJCHNlvbw*7d^R=9EJTcF&qqRYJ7X+4e4@Gh*1P{%1d}C-P!b&KZB0yHQ0vv zCykr%^Sb0&t)BXO!n*K$6zWy95gfL6XO3{vMAM30943k+kbz^<^>8`#??8;^eWgC5 ztSmVH48m;eKOuM5!sZY)W!7Ak7ilpbp8hd6kfn1S4$Hshp!uBH8-=RwDf7}yVNPMb zY+sAoLF{eytQ&|3gT`(zk`;W0Rzz{qUGp*Bar8RudZN{Qkk3&W(L|kE4pH292%gbA zK*zw#nNEf->(-n2iPltQ+noe3nar=}1=BtRLW_54YtyVvth)CQ#m!uGB>3=#gfBdT ztV{Cw*nWKi$pto?9)AH6;BV=F51FE znX}ttB|#X6g%0kg?_-tB8?N5o&cEJkS&Fx#?DvjM|tjjG}Rtj{`dW}L`6TrS0V;kc>K$-`7bO{Mz^m% zVu6N#G8l3I!~NczOh?RIMQo3rR@kU8MIhx|QUmT{k?I>?IbA(HGr?1jA2VOjPttU7 z5SmO2n`cHup0x_>bILQrzb6m=JUhX+kL8Lvf`*X_3PZs{>qB8u8jsm%9lNYechOk| zbeS-cu~HFB&%!C6(+B^|gfBjX{&@)9KKtU3n2bxSW4~7!xa*yVIW8&;!=>%1Z#!YF z>sZtl=^t}K2}3=eZf@@iS`lFir|%xDOG(_ODiJ*N`kcmNx=(YZ{Z|5K&FHf9lj{b) z_|tP=y?1^x#h-(^Kvee$?MO~k4U_N4(sw8u3>+&X?nr!cmiulwymi;PC8?w?j4;N( zV7s@o?lM~Yq&ZQVG0MM96$|zup{`CFt-c#f7qR>*-Iqkq^0T+MK}T&FVqs|+op;0G z+doJ60(o4mAFS`uAW>c?ja{ylIy{Cf7xDc z3i4tw z=rmOQhW|>7!ph%_xGP~4&!nWJL%q0M|aLK$fE zpYk#E*yuB<`47CVJwJbve(6BjNtwE@xUV=K29|#-N%qMj*3;g1A|;92_q@x0Gt;Go zPKyd4R}D-1oRcLdw-@$yrB)_d9Hu*S=&H7+b3MV93;@Nvl`J1C?NCSOJK$Hp)F2d> zx1#Dp*mU*=U&>$*g6_41WgQTBW4Yg0Z$OXr8(FvGbSFe^|3L|%&kA;Lc=|+A`)NX| zdCcyxwK~xDa%t)fIP9&loa_{Do-+JUI9vtJ`R549XG%GB2>qrDct8f42>^ZDB zJu{hz&a!?s(WNo`nu*@pGtpL`FeLlVs&$z7O(QX{mf##MTsgQ|wapa-*1MN!MLA zs9FjzDHKgL`Rl>$fVnCE{``S z$>omWlh(e>#|!ImOWQM9dVdj)+@lVEnaWB|l=tGLqXm(vb{zkScizBz(2TIBdOm<= zy1jPp$iB)b81c>@~6 zc@%tkEEWEnl`rJa%i@v}LjUT$Hvhaz0iNSIzw&FmLw!L{z5&s6jKdg!!qB`f*4`PctrE~8kW zar{bbZ0s!9XqtpToVCv=3|RglvI6}4@qdT!9)FjXr0>>2gI##!c!KFN@M^9Z!7aQlx?K=tXet&5%qNCsOTbs&qb;$d5E%=iGEK83 zO-=z5 zCg!UD#NyyW1eUnFR!B2PmF>lvfylj`a1g`hmK$^{0k%RL8K@>8cBV}S0G6Uz=xkAw zWD0OPG)Dr0sNdgrF@bLWqfbPZaZ<=9n=6wtZtdqKs}{dW?xX;a1K^xFb|*m~a(hYg zU2TG?%@>=Vh|O{Am$h!o%|9aQeR!YQUOedNS7&D}02Ymv!#m!zAZhNB`kfXuw>MX= z?rw~2{?$<@|8fTIAA}kHf#9*&6o4GhY`l6=u?*p&srdJmr8te<@|%Tq=tmjo2mFCi z-=EpFss8@P`WYt@8|&NWRBbcgWs1Pz@sNf~ifSMb_yZj42Vm5vnSx3NUl8;`1m8xx z{{uAekq#7z>GuXlS73)gD0OK5CIE>Db!&U8+3HJm3IzO^g{4pRnuYq1SYg#S0D+qA zV)&U!x+1By()D~De%sayp{MC+fRFXGg#s4Q<3XISTDe_N zG5rz!@nz)#A$g{dC=hkxwqmqFj&Bn<|>HNJ%Ju?btEp_}}4Q;X9Fd}WDSZhn#P z*bfoAfpX8V6UMDy4c%y=W=2%FpnUWwaNQq3$lhHiiU@Xx?qJ%L+WL+G08C%>!_d;g zVr#bI=bDVE1wcLk|HW+1`9wAWv=F9}y)09@4k>Dr@;Z7j&iBu+Vb3_`;&3TJ0^!tt z-`&m2$WUV7%!ds0X#eo8d<--~5ugW^LpI=IT3cPPB4H`oC zHtPAgPA9uN6budwG~??9ny`db;S0ACf8zH>9&%1hs_$JDN%3W%xz4>s&b^-^NKC~6 zS!*0du8H+1Y`GCT)luoa{)%?O05)3$?C&Mq9)RlYtsde;>O#0kOu%7akIsT2E{6hHvv3rn95FXeaa=)3+xdb zP9lD~q&sO8B7s^-yR`DPs_%u%uwWo_ z1XC5WE2A@@2?Zdrqy*BPw}%vEaI#@uJxN!bVD9NH=0LqamL6g~^$A#H!SD~PRlNR1 z3m)g@lq3EV*S_-|gIA`_7orle@FX}+(v8vlt6`W$ltC6|J{Dz2szQ|?DrYLcjJt27 zS#@dj*jfNxLG{xxxnT~(biXgux$#hM<+m9Z| zwy2E9TD6iS0!furAHDYkr5AnN*LN-S0?qK?!Ejz*i%XdH<0EV%vzYc) zQXgqO)Gf$DvpE*^1sos-NC9S`y#;6MxevP|NRu;citcwbJ6}CI)02rQXbVbbDlSB@ z@clIE$Fx5O5e$3)uw0FF0cY&YHQD=r@7M(YJ`~Agk`5DH`o=1C`TpOZ?m=3~4LZi| zw=|i|1L_`N+D*kcR2li0n;AG*1o$_GXcIi+lbsr94^F&hZg~WG&<#KY+3rCa$qi8% z6h4L&x&bIef0NM0kj;RILn+w``&tB4h=3=(Qnt22fv)y|#_eaFNQMq@SPrr$d( zMN*(+z}uXh{C^-f02cCppY}lWo`5Lp)Hb8cjzKszYwItecRVyzQWl7rNjn(Y9_2`N z(e%S#f+S)DTi33=XltW6z~ISQ#h;i0x8Q>Go0MSpH*@VABjAAG7Hs0JJy`8p23wsG zDh<^HP8TZDTVd>_~<+ zg7&9v5hH1+4VRHAOgpk`jz-0u*G0Ag?K0MU&J=MdJY^Q2&_=IQpi|iq)j0?LMFyddDJqSQIC}# zD`0q}Gy6R>_-kS?ZWpmAlzR{@O2*65u_+o~>}f?lwS;cK!@%) z2W#*P@iwwS;XPxUv_G2K#IS7ow9Rz;Bu%qwyv(A|h}^X^mxXYvYp9JYi}JQ|i;9b1 zG3`wzGk>+Wc7GU|<0~F<k|XV?=H2``T$dds9t%Zu>M3QrT(Hc9jEPbXRf z#ghBw|N7_Wk{!)7-as_Et-az8iQG-5xfF60w{K@6rrqAwk3f(WJVmFRh4C&>oHHPW zef&lIdQp(u0^#h6e3P#uyV@6E*$*%5x{!JfW@Fv1SMtMO&otnOL%6^e}8PJus(?-B>gg6qrtZ+`yiPP$Oo^YJ7baw?6W_Z}#x z|C=LUd+ly=9^`eN`|qv^c?*kvS8p$e0FU=y-T4wp7l#HT29h;XEt7TcWZi=L%-bT|0Of zon7nw}aa;ZY$N)S=g#v({glS*nq8cy^9p!ropI%Y`(q^+|CSgR4 zwie3t*)Q!FdKF2N$;TzUQoq(ut6ZMy^>*XD0Vcv2pH@~`Q0V=GT*e}vu<%QuInUkO zp|A0^xs?vsg(tIRs0DgfI1G{B8!6kD`921Rxoeyo z*-pm5u4{J95D5_7I?mm2zydLyeJmDRz9&bYq;=JF8 z3n01}MBiDzmi?}v_C-a}iFE)>+3lJ6N+yquFpcb@TpQPsr^@-b83y9_(mU00nA?Rg zP8=`f*KU(Muq)F_9VttXEzSm|eJM^L^>wmzbF# z52HXE9uP0)ft}uhO>w-P-PW~RNn+Z^9s5{j#~$H`!(R0?Iz zPUSS>mX|V3TDL_pf$Y$*hh4J*?Wz zrcv=&(E0}E-jj1{=8Nq{f7=}v;gE{^#0X@c4k$cnAF&0e{EtU)@XMLT&JAbxlJiR> z0v-$H=ZE;VcQ0A+JT+z(%C)fgyk^rnCs2{+?KU=Unrz-RK=w!`d<>nEyEb+1uvn6;3sTj};2IxAi(vWDV>& z52lN%#-HwoFuAqJS0jkEFYdXV9SfHLqTR2ykvHo5Cs$aTEyr6O4&(pbkVFqVRYB8k zld_+<`lGLH7%-HdPT!|b*;xGA*-G_FvZQ9^;R;U9aJ?;7ztp)lFw|eXfcUK67RN1z z(Nntte4HmOxs>_wDQX)_nKtO|e;p|XUvEqpx`Ca)4qJ$0FA2=?HScP#6DyRTthekb z-~ITyn-KPoYwYITZvMBjolbEK?D=iqFz?o!9+wiku{;*(rsenf#DY?W{RVslz|1ex z&cm5jIVag95?H<~2$d95RzLi-n6RFbKjPhU^mW=~fE#gld0b-fLTd{{N`gdwvT+w2 z!ST2|fd`J@iNY)+aVp$Ddc+>Yp9>glEtCrCQ^>UJZTCx6BHG=Imv`CEmOZ>f71FFZ z^RYj!yR^1(BCpZW$=`$E_`AMwLgnyOM3qDJO7F*s?kfG#g|4prs^Y3QCYuBku6p_L z{>Nl7cts2};p>kVavyJBx`Ey9ebM+7Qvr9mY2;T;xq~whV66CaJW+`&%V1$Z!T&<@ z8^-kA)hq-eUY>D(@M)7TC!ce}72f)n6c?A`i-b;2@#Yyb3n#q0S?^(kY+o}gC4>jC zN{JVKxRZ0((LzDkI7cjh>9B#*og!^580WjD+m_EKM}mkko7nJVr`$Nv@$Uo|`Lb$g$ym;KP0p!ZxH%Y8L!m^v^( z=D`?078=yRNcKx`z0<>9dfj@IrggyuAtqW}dM=;Z<&1cKoYP5bF}SUY?!qZe!^NJJ z_M(L+BhrL5v_CoiMa`BVd6XW2i@d;+c)Bsc?q-gjZTr}+ zWPR9CBf;D&mjXNxHY-)^A;hhFZmPqPEtj($A_;S2u=a@qGCH}M77Ok@G1Oq0*nz`j z%d#Znw(=}?neU2MJ%Owbe1EDca>YG+>AB7FQJiq$o%ME^P6_K9gYCka7GWhnrtO5x zx=S_vJ?>7mlV7_|1$)g5c+XW33okSdnnC&$c)Lni&X1=( zd~r`Jad|>l*>|FNFt^`N_e{$^q0VayxvpXT6S#wC@7DTSsq@kG(CC#`hmA5~%c76X zuYlVeQKj-`6(?;XzW9fXCrI|QZ(jMhobt%vep-KbDWx@*n?6IQ@Qddcr^&6ms(e1` z+3(IRxWAXfdDGvt#71SR%DPP*PjUPWi=+0JS%&ouzjk%=n&~ds*%qJ#g%P9kc;h?Q zx20%gz{k=zGQWErev>^u-vQ~Lg8n%ePF%D1o*uV)M9r{>uvuxI$F-t@ai7SCF#^*A z-d@(!Fg7TMrMIrzsw*r*$7tB-Si7a~l~7qW9?}uS`L2`u#8nP?qIrtf`Br+GSKFJ< z&Rq3bs3^mXBB#kzg(@WMQ}`yC@ufGHu*y20%9iV7pk5Ps*x~QbHBOCCi^tw0{@M`_ zV~u6@wKCIvX6p151&0259`NkVuTulbixknXPq{oeH7lf~s_5d>hrSFBR8iJJCT*wY z#jgyz-pj%3mA{pTql2nhy({xShib#$9b~_GxgmXgP$6v+TG>08im@GUWDl#INH86F z63!8iwRzB$8%Chu>u*@^&iwkNQ&Yp~(slOL1*d3q=JkV$L%6i2BiHGg$6q;=JqP4M zS#L(H3YAY~d3wK6o{u`?GaKHfN{K>JqU-8BK^}rzSzh^q+t17U6h-kSx6(3By{Z4^ zif~J+av6D$RzJDbmKE^~rl%*5&$=N;92_?TV?zkzxRMmWEQ zLwO!=$2|9*wQ!-mF$MG~Vm)X&ZR z0Z#Ap7!H04bH9+%8$oqnD_=}`m|=F1!^ji_f}#woTarskzJ7ZI_GZ57LoC^1Tlg4QQr@a7r@BqJw6Xv_V4j^z>e0&1_3|3bd>|43&gP)*L`@6X|~G06!562RIGS3bz#9`YAN5x=|n1ntSqVa30Nhik3~C9 zU@`7&$!Bnc*R16rfy$XMA^Ve;IfGezuPoZbrbbbUr+Y8q?zfT)oc0TcGC3q978``X z(@9B1g~eWFO_CmW!=6KjSA-<7Rt!ej-&Utmsm`tcT=gI6NT09gEZWT*xp+#92I<_S zKPe&*ybwSUM3*skEO$g4Zf5A_-4_--ra}p*muJW@RcU>1&c`DnV9qDvmFh0Tr}5XR z(K^(b+9&4aezSPrxf1gRX@6&cgCXFIPCEMW{~eEo!z}ajtM{c8FW>l- zYY|JlpTC-@4t*`vhVJS5nilqr(qA(eR3lwaid6`F%>VEoE+7I>yz~_Hl2jNKmyLN{ z8`>Jm2g#<-rhk4$p}|W^6gOtV--Ln zyhVLr@n+f;!L4?M57&^2G3}$_X=rm%Tu=U-(gATWZ7Sp9+;s*d#kOZ%?)tjE!h9U0 zU(0WR$q`t@T{#u*5f9yN>@i@7kok#x1?(%6W6s~(Du~}IBIJ}eUzlepf_(VD!1^Kp z>sSTG(~NuEkT{0DL?0Tv1`lX{(@|m%9J^;&Ysxf5@6ou>rRjvY5Bn$6luZ;2Z}xwl zhWwAvOkh_38NTX2))8QZ2vA6yb}ix(MNYdmUGTlA;DmN9eb;OTZLYe=7C=*5vGWaj z4GWVViQ=?JhF1v25R_>K=MN7Y${C~&bt}$_<9PY(Q`EQaIy&G+ava;JM9mWQ4WHm zE+kpoev}zg3TMjEa8<$Ss05N**UbM+C;*afsHf@O4ok7n{#LS|h5lEv`oD3R{r`<} z(H!W4PVHyN64sl#CnqR?rWHWOyRRJ(mb|Hobin`w(g8fxDdmWd9KrPm!q8#nOO820dI#|{&>Y}}808KgWc|0`)+Nes=?z&t z5Ahwob*LZ~H3*00P@h2jcztnu-{Jg!dZpC;u(2B^+!Gb~^xyHB{E~mUdJ{++ONdO4~b;d0Ee(hSpk?;{JX?>*- zZ4H?4jxo{wA-EFumrz}Z)qryUL?000QU5;?;aad9GVnf#dtk*Qo0bz}fTvPn73)P1Kv-R1SI^)U{7V6A=mr_uP$sh?g7vYKKqfYzH=GNm2 zCF_Zy|Gp5Yw?Tf@F+SLw|Md-%JCK$Sfh_V4Xym_o$BrRX|9uhXP^kZ}sz%@i4{!pg z>Tn^wi#P$%5V8-{95_wOzC7ZpFGZs)1xJ5v2jmKn6|`#yL;5!%epcV{)O z=u<+NdsfA^j3@F28}yPKT_vStzO7gpbV|=C{mD1pT(xHG}I4K36b># zdhYnbIHpq!4n1YaU)X~wDN?w4HkB5QM$T|i-FJtA%&G7-j&e@{*2{e5r-L;JJC{Fc z5D1Kmi=kFyYPNCPoL!UA72$i=NqeilyVR%!W6wyD;WC>!4=0{m4(WwGtB9>G0qWDh zjt?8c{ZvAzL;AuB0UCv0$fammGk5e(&J3+H%2G)3q*snaaqqk9JGN)`!u!LB>GcA= z(2c9US3*emt3y;t4@tH6?<2S%<0w~#v_sy&g};K5)o{h!XCnu_`FpNLiHk<2%u2n) z8o?wse`}G@n;}MmqaVZf(BQ2BEGSLyp_DkjKqD)kEyvduYSq4o-Fg1dB%z+5Ftpxv zh8hT_ahWpHPk7DNj`x{F4#zn_X*s&^BBDPL0}plfn)7Hm%fA;0#3oCD7%~tTwk^w= zyyVvjp){3BfV=C9$}uR@vuM^1oe7Oa_0n%h0}>p5#$2hg&T@P~K>>Fk7S>_YI#Ys_ z;K_90T;v&9BN-Rzn6>u(j9?Em5un;g^;uFauH38_s9NZ0%0llvE-n;)cz^aQHKN+H zu{Rr&1{2k14rICg6gAh=P3UH8Ut(FYTi@m^p{Ng}&E;5YdeU!mY=pz63^wN{qklmRu|5k-DjgatTBKI4{<+C~A8OL& zhPpI>dobpQw&@gY$JF{pOmX;y*mdMu-4Hc`u8u&A2-LdLuz#`F{6maIfR1A@k)oy0 zP&XV#+^gR`JCX+yJ61%&W8oW#=qRTrc7;Z7|vNelPAMOl`p}iQlr50UxD*`y@ z)ahgy^||yMB0LprgwML)?)I zI}y9oQt)b4$C{<_fdwAlj6J&_xQxxz-qUgjy7B)F-=+ie{!ipQ_rqV#;;y>H-x}Q& UHSTHf<|Li2)@{v#8@3Pr2hH#%=Kufz literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_18000.png b/Notebooks/1_N_horizon 3/sim_18000.png new file mode 100644 index 0000000000000000000000000000000000000000..85d88f2af4de7a11cca0c656cfaa13a48324d750 GIT binary patch literal 17991 zcmd_ScTiK`{x%vwAkx1g5~Udtkq#nVKtZL06e-dPMSAaDBd8!<5NQ^QbftG9NRWgapyO8?#!7xL)>xiz54TM&-$#qdZeyEO>u<+0)bE~Dc;wD zK+cInAVg20WZ+Iow#p>9NO(NZ_t18>_V6}$vx2CZd$>3_dpOuyT=lYYbGLPN66U|n zFT{KGsfUM)yQF}Cx^m_2cX7At4OBFWa-eyu{Mh>OB&8w)gtlr)#43AMonm zz5A8qil5SVxFW^*n1_BDZI*|J$FAK}@iFJQge6Kj*M_#17nV!CBZIg<}My$e|^ zA{FDVE5%*sFwo7Gx(dE1#d&<75+~eJ(we^Pa`rUyhcGtg?A9wA6#VR^3q2w7e+#A) zg`YiAzC%KD_9(%JjQQ*l*T#QKMYyX_xK5?PdwHnTXq~J;|1pLQj?981`)`d$OP`0| zxhPjvMc)&w0yWn>^!NM4kCB5;<-?JBa!|wmz~o+Q|24WMX*hBPjc)yJgRuq;gskR?KVj_NzlNB5F}lDXl-bIUu!o}(B%BE zN=Ruadq^7!6B6y!E20#aph&3S>Jb#qgLJWiPPJ^CPOm}X+v?6tta2|w55wqmk#wTr zbo|tCRZ4g#CEVdWJfN|wnx6uGhgELhq{hO`96B{1it$I%1znQUPb=cyw}Zm{lMs#c za>M70=;g$Dk?X}CjiN|8CtCQn>e?xf+0FGF4~F&yd1${pl*hZeVURnTu1N%rlm&IL z$PJSjZA%7TVUY6?59DK#gE|I(cg9~P#ko7F2CG?z(;dE`E8<|_50D*iUCY^%y@Oo8 z3pLlSIh?L{?DjN-PR(!c=4~&~V#XJUf53w25J#MkYE!z{Ls~5&1zKP!A*LiV{TbR+ zbxc*WJLqs347e=Q(VKtc);)b=ut|p?+ z?UVLGBZ;HVsgv_hbbSj9wGV{^NRJo0qUf|5pVA}lWTf$E7EN|6NmK5V^wL)ydme5F zqmJ(imC*K{TNQM8ZjSC)OpNLS-SfxYNB3bH2!BuFOWp%CgRa4Rnk$WFFOjpmJec zPZz}>aiI4V5Ahou*nPUDnB%I!-0`^N=#rGzRzqeNUe6-(TNmCclUp#1s2a5>+DKwU z#51~#@k*nUGsWJ}YQCe~k9VHP&$lzh^!U`v1g7h7v=q=aS!>DPavJZF2!4>~H{*?i z-)_9Ya7ARdap#XFO~eln4{(D!B7Dx;!x`J09iT0{sP{R2iG zm*;U{4mBSrVoWX4Jy4Exz2ich%l(FO6gNYGoic8i;1EK0j4t;-Df~z7CS0U#ALN68mT%X zg!omRPdV0;>6$*!HQmLQq8wKO3ptb|FT#MSOE8$^*x8Q6%R?Wdv@>tu$4oWi-^X~6 z<;AEqWa-TJ1x`C8fcj5M3=;2PBey$7s7f&M3q#_baD?lK>yU~wUBP? z`=8r^nR&McA(LhcSLekt!;&0`qi%@cp8BtHim3iMhfUl*Wa`H>+_T&4Q8uH@JrJ8< zL5#&soCtl08K~oGB;}6~lA(=B-I_`kX`TTi-yWnhx?kwLD% z^&nU~5;(F2H)N8$ntx{eSz6%S_@=;So8>2ys$>ZL`IF6Uj&-*t7}_!Z6; z7|gaWewY?6dCilex$1kbPA4DHFJcT-;H$jgqlNg7o)~m+$mis zQ3JW!GpQ2pG*5y#KvTIq=i$5^9&BZM%%A$YkaXOAZ<&yE6ruegFHnJ~7r1f$bE{p7 zb%_LmZZ%A>Sbzb2XVFDtzLfF0g z8~zdB!S4O_vAX}dR$TvFxpGCn+Kr>UygYgJbxrcKXT)T*tg22*l8TdR`))Tn*2RTJ{OYWkgIF752~?S2gsmyH%i;oy@a znuExx=I~PU<}m5it@7eP$BZ6-jANzi!CcbX!0uMYX(}ioXw`mkb93|EZQBdl*{W0R zJjG)RTWnNf6F%%BA|lDFVKssaXUNJN+L(>k*j$i3O}0t*4Ldpt5Oo;78yF}Jkv+y~ z(At?c?3NdAvws!u`hF+#Gqp#4!WnI$BY8aP^cXc;=1R zrs?U9=|u*Hl^qEtCZ@KwjiCwo7Yt{P=(eP8v5A_muf)N@0VE+QN!SH@7m}@!(G3NQUh_Rr_&`Lcd>#9)DeYKBZ&EW3i+WZ)iAabdO(1~Y+{rE*8>RQpMZJc40CkkWh2)X zhPwUfh*aPCWahx_U#T8_O1wr@F2#+PlrQ~t>it-9GJ+&|bPLQn-w6dQBiLr9!r3NP zf-sfNHiz4|&NQi{zCNv!h2WELa#o)Z|JCYnf#8D<{C0BXgddOlLbnx|>@mI zrJ~xXrY1RV9-ivsU5vq3Gor@R<2B!-jn>?Pg6mRJDH!L*wBPx9?mNHrw)SVDw@@Us z%R6-M@oSA4EfI{u_Jh2jY_gO$fApPAC`2WZcPc*P==#=t7hBqc zs~6nHJ%`G5smp$Lbj)-L_nb59%T$_OScp$a>Bv-y*RS!w$?Pm-r#MZg`>zt2wY+BF zHK}_i6L`2>)+2j*pfTT_)=_5L4;lW3AP>av&f#)0tigil=;%OPK<%4Nlmd0DHWR_8 z$7A5b>^mC^(b3Z@_1UlpqhV%v#k9jZ^j9r7KKK2K9a-TMIol0Ll36a;b$>_n+O}*)=uq zIn#ZfxpzzCcp4fTkIST~w3+`69R1;7eR2Ic!hwe#H`Lz$00JH{bdI^Yy1Gzf_Gf#$ z9ZO%_+qVx82zH2sgv4zzu}ap`+SYiP?Oypi``G7q4rb$lkP8JKZjY}rB4)wxW|vG) z57k$Kk7n5RmfEfgJ#1KiA+Y`{I>;kuH%ld{!lWa;h}r~yKaQ@6wa3uNXzcK0F3EHr zpu=o;d1QO>cSHn#&6n}k%8KJu<2_pm8+UhMY5(2Kl9J6Ge&g|wv+y?ahi!4+r&8W0 zWiJZ~cppZyQs1?*;%E+|#uU3#v&p2goveq0&TavPSJrL%YjCj85cfNu@xg-!K#*c` z(*5#04V|3$si~=F=jYuPb93AV4Qw`W8o}=y0`Vob{WtRR^2B$C5eKuJvTf)$Ok6xX zGu={avoG1Be8wBnT+x?}JbynXsF;L=gmutLOiD_v#*p_~{odvafq>8zOyyRuJZ(8m z{z%G}6Q<(L^t6TF_Mh*g<@N`d$rCg%07N(W__9DVp4SF~jt{??eJ4gov2;l9jmg{E z;_SQibal}H4pm#-QW9VpUkcrFo~Wxod~(zGudTp&0^DqEL=PWKVp^s9-2f1(x5E2Y=EDukq@C4Vj6SWmTl^I@l== zR`c@OH8GtOYGrOVoIKP`6fo_6tY_SU3MIKL?t(Q*+XIt^{mC9}36x+YvqT)d#vRw3 zrJ${p$<7cWl6Sy>3>kZ~IQwHTuv?Z;dQSDsni{{#V}dTKUM}g_U({<E z=FzYm>n|#!3NjBKoVhg|>GC=Rt)Rp*{ocN)&4bYcTKeq&F@a($U}<9`3{2|{_0*qW zb>!95x`Hy6K1J|P(+2O8Kp0H}gn$$}dryY5`n?1T@@eO|OKh@}pn{K2mM^I!@mo#* zcqLVC?A|3Z=F&`!_ehUgjQ02t@cK2OS1T|6s$(MYwYsgUgZY$$P8*s2n)=+_SIf)G zfii0v!H50QPQiaZh7*R0q*sSv`&0zR7kd8izIpS;I8Rox%-}nL7|O+0pZI|(UZ_YG z)?Q)3X2z>qw8e4U0pbe`$8*{MEQ#v-+pn^-Z=B#8Pg89BvxR&&ErWpUlF%V$H#-Du zj`la|fO@qWukkEgcrOzu=|0~{gk1|hl~Q2wyr{tJdJaevHyF{}e2VkD)Z_sT!O{4o zz&4)S{;8xSZYD}93LtN*+q)sYD@Cj_eT!h-2__kI;100e_<%S5l6#De`w!G*4lEn+ z<7*YWHox;8t0v#d@@(twwjL?5;x(*@)Yg!G3o3F4!den=;CA(K%jPSMfM@jT;-SDf zsL(A_#CM!=U|M^^j#ujT>Wjmeg>AAYG*Y}!IZh4^v(CYIruZ9b#Ad*yI5RI9vKbl2 z%QoA8emx&4wGsB;bqLyw&sYbecJGni`}*|PHK5}q2=|t6&t|q9?kpYrRFG*h_8xC3 z?UCt7^PXs1pK7k&?o&C~&XH9E3Wzh!qffn+V8;Sxm?q68>U;^aTO2UQBemlWnjQ0* zc_UR`xicLhuzFE>EMTk4-*Xkn?>aDXTO&O|73GdtRH%-wu9ks8n}W>dKNH8R-oil9 z^EV#3@mFDq=etr`eHYSNIe{@8L;yFc3lS}i&Nw}?DXQCS4?I#=lyZMbz)>4r$*S#kL#UKkA!7^ZU3x<2rz}0JOZ?^z=EHJM1iXP&rXZ`C7 zjcXU1Y0p0wPESt{?!ee5@e_OEGm*kxqYK5s$2@SPbh<2hzXrb? z0UX?`A`*581R^|*(W_y;f-slivPb5twQDlU%F14~8W?*A9D8PwsU+QB{xr^p_U)y@ zCt+Deo(xBS6kK+G3nCuocr8T=cViV~5C6$Yb)x`wvu?eKlIqIsmtqYYZ;tj`W#^w! z@|ywa=}eV~C&-%=i$CzJwoXqbPiKJPv;Oh&ABWMhR}=OA+E1ReS2$u!whW~Gwm;|< zn-Ii<;QSo{6=+vjCH@HSz8V%rHUUPp`Nlcmxex+fR*~V-bpB}7yK&}dt7l;s?0q(tvUMkucchg;TWr$iPHH3-tJzLYHMLM?d;1^kpLd*OCc>y&F^fd`w9~W-QJsE ziXxQaZwOg;z8eoCWnf?!bL-%%TQXkzR9&46?BXWy`_^|W8`Jjc7Np1g*Xjd+PR8Kg znI26u8u{U}1_lNM-DVYoPPQ_ML{4NBArG+#A+&+Nk!(@tu(Sjm~sx$N7+$C(ElR6!6YBLh4Zm7ZZVnNruhXnR)uv zb0fb(VCU|C;H@{LHG6FB_czvU6~_KS%R!q%*+X+eHHc23@G*!b5vOI5&6#2GEGSU* zzMIC5d_+7(8o-UNqOPLa_lR_buG?a5R+zn&pyq(;=?1!l)+8LnshRay=4Xpk6MEy% zi4?>x%KhYEa2jJp)Jcs8z)ckdjMu;MJweH;`ViI%O zPSW)J0%Hf?GCzE{+Hd@e$nB-F7`+@cGf()^4_M>4bw4-O5(~#(G~4*TmIg|eor37K zv;8g4w?2KA!Ve!pzCS0osbP}53qtXpSEvJ&I~>{Wfnf}dhJaO=g_NT>l5y#Tg28U? z?w5ru?q}D+b0hu+&Cx_3)4CMcIvdVHW{t;mBk-k`#^v z+Bi%*bJW#Iv4x_1wmfif7S*IgwRtYT}TEI zC6HdHQd~5O3m1rn_@cs|Pu%-E>`-}~nhg5TttqE;8~V*{{&Vzlz}Rmqk*1FM!z$+OQXuY_dC zkV7Lj``>YI&R!=E|I0O9|L@uK{2w5Nu=KX3M}Iytju>h8_(!pJz6;7qUX3D5L2iT~ z_R*(;VWVc2QazUrb^+HPSk}6QKi}()Uxse;ws&|8oz2wcix!c|tIs7LLCvA-Dj#Hf zsm3lKj+~%VDJV>+ANB$Exe%J~uLUMBv69uTcqe&JmOb5~>23)g{i^KOb<4aHw?DG2 zN%#qJzTxKN#Kh_m7M8{cYVH*2YL|`wSdT#c0(31Igv27U2T7+KT8$b(nPE+Z&}h0Q zF^EN^-ZIX}SOoiY>EN+pwR^YnYGJ^OE)nW&zOIEd1?uV4&*Z{+#q#=u4zI|PL|F=9 z|IEul_lPH>g=BiOSJF`a7Lf}pxZ&&PnE4i&QVxciJb^2xY|Z~fLEGK3JtjRD&KpnO z_xYw+zi|SnB|(skxy=Ig>&*+gFp_8pJz-0%?DYJ8VC2S-zod*3k%Hk;{$f?-Cc|oK zY1{+*d?-=a4!?!NsTO)y0O8O`xLEmQTnjHHSU$TXB83u|i-$HGc>!yV9fi$|JB~J< zQze~X@ZRd8g&PqY5es_!>HVCJ~3?RqsG{(n|hk4 zU;50gEM6DPy$=&3s|-G_Bx9u<()sqZOLWjF-+nx&;A(jDVWMD39Ws`og;`g# z$(*5uYDN2gkh&Kc*d2?zjx)Q3RlLMTkLg0{;J){Skk%rZY>4$BoNH=Tzl<4Xt%Y45 z(cYk0{HBdhe1ACDi}>}P+vG`OT5Dp#LXnMb#cDi*nc~{Dhlz~BC7+PZ+*(9Gf4;Wh zR^BW;B%~^2QUT2#q<*fOJe?A*lZ|PBj-8t&q0J2bCzu=UWBbr=m~@A?eP%c|P~6Kh zBW*O_j>*Tj*^AIZ(xBd!h2L>olBgD@cdW*=_><8Ms^#y+qlm(o>5lvNno zN~i~?r+lxd*@)23>n<;q!CHPXCS%4IeaubfSjzJa`YoDnTK;xH&k^xG&r#>M2ysk2 z1MGJtQt7#$prem-HqBbg%T0^$N&*;+W6r=psDR~jwM2=9dzbph)>58|uhrQ^Au=t# zsw@)`xy@RHmZg7oY;2T+LR#6EU9LyCyC|md^6&^2Xb3eQUffDlA_*B_cQ7?-Op{O% z6Y|Gd&+}q_$flc8-o58^Njq#?RnKR8{>w*cF20{#vmAuRwUTT|!$+-1TfdhVbsy#WN3Sg-nzB5hzxkJKMhm@WyF?O#1385&B4JwwGjG2J{Aua96p9M)` z8^hDocPcDN0Q!h>6$a7;^HSpE)#3XViI?VoRVe)Zk^E5XJ-&YBYmkros{kLNmb&!N4LZm8+d=%p2g_P300$mK`;M^fx9sTkrO%foWq8E-)g!+w;jNn`UYJ zik~X;aPt9Sk*<3x5pd1?$?fTDp%MoKb!noLMR%WCr%6q6l9&VehpS={T=ITyo$C|K zA_a``4<1jpW7dadRb?HBfAzfmkAdYM0*i#h-onOg*KjLu`EF$r)%o^8AbCqyk}EAJ zd+JNdJr6L!gJr9-W#0e9lkJ)HeIOKne*U>%@8{l}3IZw@?|=w;*FY(VhBK0T0jW7x z=xAtvWxpq{u+y;m?SjcjQ{7v`{f@fdg_!U?E{m~{5>XYd=YE$iJd1xvSUO1;P+szW z^d}>A=EvQy9Oa_BFiWO|oBGvnN%JdLba0waVw$T?a=#+RLT=HpJwgu$WnG-NvYEa> zm^zMkMB$n0{rTe2Vo|x+H;(C}B>?3w?DO=$O746a1z+}?$KE;=I}=~!L9K6Eps8;n zR426_?(ms=G+qeX}PyYK4O1K5%#UO#Lyh7x&XI9;}$3|M|L0gjc`*%|U*? zew81_KCH^phLm6`bSC2ltvn{RXqF6BHPcTMKu46qC4+fl5?l=oLd^qTUmnbPC(KFn z)Ui0%c{XbYV^C65<7rS=^g5W&NCB~xA6>;dP#U8dsPe~D_pXV$?owPz+JhkVOTHrp zv)1IBZYBN2xx1+ayt{zEDJVdJAyfU)#E!v1J6eng6g;AF8mtEM03v7i5N)04 zJlZ{7j>94XMIwfDOU-sf7gOHbK6Oy97j5zC4lp}>J11~bdP^Xb$I62&T^c%Ckx5;

NWlF1Nfxt28K(jbt|eC9|JJ9vVQyLitgccBd3BqLzYPFeWN!ek*ybUY z$#37k>&LCaj z5;{UBPzK*WdI7eSr3$QO*rKGa!^HRYE|G$_k*(mQD6s!m)~ut2x-!*l)BC{p$GQ4lU7ABn{ju@%8_i+l$U!yhnz@LTplhZ zTy6?R9QhcOxc+{?3%x^>Quk}T?8QtZdKgRwxwDYy*Uz{H#9O_7m&@X*UwyDasJt~$aO$Axy#~hBDs~39&eVfNe_L7o@Bj8LL+6Ch z>5dhSQ9=z~cY~R9T@)7`etW*DEAb`o5c~brVa6-bvA}#J`%0qoSa*Au)KiC`ozpLM zsk~v^+?M(o7Je7!T8v?gC-AkTewnhsW=d84!#HbjUt1p&c4WF)KCZPuz zPLA`c;&=z2Q~Xp>tqHYM4U`9XjbIA6|IJA`I;%9uLz5s$5GoeQvMtG*N+8KAa>cZL z_#~@%WDpp~#lmu4jD9n)k%sayb17b5EsaHX-gFI!iR75{FX6B8WXd!a2v&-0KRtgB zm<0(ZOSUMMUn!sJI#2aRdIvg39m_AyTWcpI$=`EIl=r=^G~VpmdQY1k5TY)>9~*Oz zJ=z5GL;ZrzEmW4|6hwVe;}y_%tO%pD^qiTGu$f`$v{sO=rE~!ipoaZb(oo;A(HKp*Q0!y_bKeb?<-$BpCJC> z5nFreNK5qEt(2>?GM0w9*OV6X_#2tQ))%1J z_knf6_7Z_8!&+`p!>{qG$j3i9qh-PL!^75bzb1sx(%oYOHTr$^u$r$*=+Iy zPA2gOZ&y~%DDH*KU%6Iyqnp&1n&SnWW|x8uQNYMumi-X9$0n69Kd-13NDrnIH*~|R z%)r@p@>lPV8b{CNr%ykb8py1PTU@nalX$s7(q3>BbKR5Wbf3I#j!)3_8pwF)c6afJ zjcEoR34yGnYhnV~iVKR;H!fi#Q2i(t)FVQ6OQdUmdN(jwN?gE0@eODrV+}MXiRPU^ z0SyNMrfmvzZ!v0yb_p!dE>Z9xrG0+Ysxu`aaH3k)L@ji~I!3g~R@~Gn(gw zAG%JRZ!>aGjX*mC0zaH*1xxb_7&8`Ob0# zZT?ZYEuz3L9weUB1N&|JvH7){$k^U8_sRa6o_<}?`>|zI8{*JyFd;OO>CwXnwlY?v z5;Rt^*FB5aj;@NFqMy??<>pw|h^-K!C=!}-!dBF-n!EdKwO++0>Zp87HkewVppeY$ zDCCxUMsIX~>z>V6h?X4m_HB_Zj6ui2>hp+^s`_+qW}%o<8N~8ECdms3%acXNF~jQD zcy7IK)`pHt6#(q*Dw{V2x^g}NeH9nbuCk?7%yFQTkZnTgR{GQ_EE{HP7j-+w6jLPD zs)*3eaQ8QMzpa+a$eEXLY2m@1?0Lnx z*ImF|KHqulSx{Vrkbf)z_SspKh~wC0v@-ip!8!x~Fb$ zXznC>P(5;S)><Guv2}jIqSv*R{gV90f*zmBiVA(pH zTJmZaDn}z2s(iTCP2C|8t;a)(o*jNEyTI$P zV|xF^@oCU8&FVEVsYkjoDz^8y#kqJoKi-zzX(;%r=ASZDv64k9F>7sTd`*d^sEFoa zblCUjQyZgh$_4>~s8G{>CBSF*8q;A<-c}P~^5jWnoQupnqWh zQjn9m)2=;nY@f#qMT465Oi#lgr<7x@6%Jns{LwZO2#}m=sdWoNGLAAk!kLuMHp*yj z@sRAQLE+N3=TI3p`#*ill`t0S`#H!$T}yqxqP%QKi z?RkvH`Zw*nT0;cneyf%c8L@K**ST_u`jy{%p443q1x4l)?S7&|%M$mw+Il|PX!3(N zSqR}^s?IbNJvG;Y_Z4AT0AAkLr)msBa_)XNJv#iZA79aaE0OC3174Uni^w|%9+S+~ zl?sg6f!qE@bm7FK92XiOuM&g=?Nk`M)Rp(cM*XPyl^us%TQhexX+t}$DFwUwP!Rn) z23qt0-XvADh%F~-sZ~?nKhB*l|4w2-{&aq@0ZKk%aBXO#HF~+ZvPb$Eku-%=l}%g? z^3V?^Om?{QJSSaQ6*a{ScqdXoRcJ9@l(VZ+)-<7c?zei7bi$Bg=i~DI$w{>tOQp=o zE!m)14nKyuTZFN(41vgnE2r#grS@TUR(3iQn^9+R`jdy6PNJrM9pV$716ND>w>puK z(1H79@JtiiEg6XSDW0LIdd+v@Xk4Ls)i_?l-QrXom!C;>I458}a%+EzmY&|}rtjZ4 zI_5f;Z^duX^`DeW2Mf!8g49fpI@%n+e1+`~KBB+FPZ_np+<*Y(&70^Iz$0asw1KtQ{?HO45+SU8g(oZb_$ zR0(JV8Ka$w4d#i)h~Aik_1V-_^t`E5dyc>P`b&$+>=QQz`AIzR z9SPVR_+{jB3pI8&2LX5*P%PCMqi_F2%i0U|ELe2JWj(Jm-7J@=aQ{bMt=3) zca#?{=PQ1rhTExF$=w0USTjhJ<3Qr#!W=N9@=8IXEeE+fea|XZBraAir+_*{a(bvQ*CVL1>>_cR3v!Cl^Y5tcy zM=VJz&0K%Zn~yy~-KF1(Eh3K&bFBh)1SoIv{hSJOk1{(PZb;kpwXgi`c09@GIwZ{F zZP(LA0d&1~ObUo%7e#htQkp#cb)f?TVw%Q7KX%}5c>jKHbz!AxY&q>&Y}}yW z_43&T%h)sq6JxpIgFxM@oIEiM#1bQ+z!JXRbidi%k$qEuA+N0N(!#={gp|NX8D*d4 zA0ZF`ZUt2H-D*Z>n)uDXtVQ2PPV`RzqnwQPl0?95xi^{55#R(|-}kXHd{4AnID_!c zmkJA~W5D%=B(D-e=DhbU3%b~Yxd=)0GOYBiydXLoetBc7mQ8Pd#Di` zn;J1Zfs3LNAK)isKMeE^1l(=JdMAvA-6+Ci$5Q? z-iF8d=BmIj<(Md#bmxCp;NJe3eN!yQv)<9)T+(R7cCyZa!rlFee0(A#3mAZBW4sG4 zZAkP(m@Mn-h^b_o3kLN>WXwvXr>E?INXW%3QB08m?oxE94nfTMhJT@BPo^g)_>`Bl zy2o|2Du_U-rQWHq$jFmC*=pB4+3VR#-r2lCvu4`vEaS$@$*eo^O0QQ!&QDy~=Je6z z@PMkCe1HBuMPobh?uL_ZWgr{?j2b}Hx6dDQJ?pbSx{9s5amdZJ`JI@yH~y=)tmk;L z+5()$$s~zus&jblX6iWUIq8MzCsK9t61+Q-HhFUCl0aDPnz}>P$JuYs4 z{#lUKL0#bH-R}3dUIMxg3V$>-{G%|MZ;o6ziSV_>8TP$ZgGJ5Yo>R7f0{$is&!dEN z#!TVcq9SX|VQ16qDi*3NHKnw4^2Xsy5oTdZT8Q8{X@{!G(^ISAcgb;M%P}+$yjV-N z>>en0JLTz`Q0qL2!bv$WH&43Lq&OWjROh5AN9VAzF9j|%v3QrAPW5Mh_n)LpG9nhJ zgA5rF^8V7JVoQGQjwyMxsc5v}>WM4`(;^`A zbQmvc>pi;f?j$25OS`%C@k2<#Gh#Oi%AZ`^AI$tksx@TP|MZhvsJ>uw%)fg9O%Y`Y zU;;R@aXAoFI?GyIC43C+77y^jgD%c<+)lpR91r*Sru5ik!r~w5S=OZV$+UHKe^M~N z1pI@B(Jxs~u0MWTQj48c9Q=J8-n@E1osU+x9$9a;%^SJbANAzDz5U0csO1&vS?By~ z#jf-RYCE$cqP?8OFHM$)njhyw=M}aXk8wWBBvL& z&Yb8;AOF^>$nq1;ZI|>n&61^^`BNM(;61>LasTJjs|0dt?24Q|qujnmN(C24V*ptK zaHIqriMTbQKxiRO@;#Blo;#DvJip^v5|27jLuwFV?@CFl(j06s{(!L&iLQ)NC1efx zL-J|t2&p}Qo3WHgUJapn{Wn+VF86>WymUO4@F*8y@ZI(4f9B_`z~ri~OKY^I?ko+l zmC+Em=Qxk6RN^$$jKtnKLu=8z#QB+$|nNP>aDkwSM_zry2L&bpt=E^$8#ApPjlJDP-W zI$dHt5|9Ox&BkI#YgAP`#dY=)$6JsJMvn*xmP$EU`rrkqXE3toK%CB={(qd%An*ew zJWlSZ2}karN>uj{V(p>S$*ag3(lrjx>ua2z7r~YANsvD%TrqQ~xJ`C)}^JtRYzxtxFn+t;-nD1lNCk5}@5@`OHdj z7kUWCIKhk%a)B0g;7DP4XoMV8MGmUBTCy^ObLsWlrTOC(^|p3Kts(XYRzZqB9uf#PisT4OxmQCso43>C&m-125=ghGK^b zx_`Y`%i8K&NMn@qxrTJPuV7LsX~Ni$)NSWJ0d$j?$E;_*dzrWF3%a0;6BFGqx}{r8Xl0h+D9^;8BKljO8#la0hR?ZwFo=WeyY zjEy9%h)O~kLu2oaaRp%Q4=?Us|8@>UNcOvGO}s#xmh{EU?tz81&v=Z@5&*Ue=H^IwSc) zwa12kTSl^xWFRniX*igfQshP!3?aQPg)P{w=m=S|i1dUAp*?G*?nSy9rc}1v?Z_0e zA!-E4YArBRvcybT=b@R?EBzs0Ye2O1^j1BN>w^u{92II*Ao)0{KFJ~y)KD54MpCcH za?$v}#P1rqN}?X4U3a+lwkEqMK;Ur>#!I@mrbv2R<8EFYv5!EmpuKlDaZs$uDXEJn zI5y}XxgqqSqMlYG1Ah_x5CdzptT2ZfsQD;aiTpWHxMcrTvj-`AJpGOkL`Zz!oIN2$ zuG||OLMewM8Bo5cq`m2}S}6s77n$|FV+oVXLvPnOI8?M&vuNWFBXVns_yYxA&`n&H z(}y0B?)RFQzP)AT+_1n&WRHl9z(^=Gf~3)qZTrc<{UaGvA`CI(Br}p&M;U~8|0Sk)H=a!xD55x+&2yY`Nb%T5{hx{m^at(6nOOev*x zhsdYdatMMG*xylkqL@|nB&lxV_o16~O+EeeY{#Br3wY}F)q3$gbs#h(3@Dr366Zy~ zn$7x5OI+Wc7S#OKx;C}|HiHhVxy9mOd}w0#49Gjvhg95eZtS#$Q>NHTC|e}&Xx$Qu^dz${QSZeB2vI(fHc3~W6s}JN2NtkQF`MV zt)Sr2=&pw>QR+jxlHs>})U^{DxMKm;VpHf?Z6#ZJda2co_4IM(wI0>BK2RSJM1H~k zT$Mdz#jd(z;@pwc#(`{U+I^9AHtc0=f>%@{PkqlFtOn|XD5fDnX6+ibYlV68-9*l< z`T&V>))2PLN@;S{uI-_Aj&FNf!CJw5BV-Or#Yvt&L~5Dc_WCqJyBtRsED!Aol8U3i z9(Z8lQB1dv%iTs!@m%#QqS(G6i3Zwr4Kvrna_R%#h>x+B`6e4hgEF|v#-{)J-lE1Gj{Wt##2w_P7)6~i1;N<})<_ETc TFTszxK$IS+-!GCgd-i_;7YgTY{o zDtG?YhQUrq!C({*X{o_q3O}iif;VaRTl(%gPS);T=B`$-d*<%W_D=5hwiXvWtz6w~ zogBr5uL+~BUU=y4?(8NbBI5Ax3xu6qZA1pTnbW`^r=0H?xWQobEYOPrmXL&i!EOtx z{C)GjchcgpSCX+u^3iIam-W&{^!3?{XqfGZJ2w(8k+i#6uLcWi8=d}cwJ7*Go1{^2 zA^X|G(3<6pFCp zukOlGF&%&P)|;C1&j_mwQpaCukFz`9f&P^7L;Qb}fijdXU^R)3Dq--s!D`&4zRkr* zc+sqHIQkx~ z`RbC#Q+OL4@+uv2fdSbjein zmM-QQ^_5n_(Kj`A!j(t{BqjW)Y`+(BB_BU~gNJm5WV5&xbP{nIlXGH(+W!jHneqm0 zI*+r+O8G*0QHW`Y?6v@jlB92TX5}B!6Jrmp=u5n>Aw5Z-MK{nRjd;-d2?whC!$_>c zK)^*bEeg9*1FwAnuZ@A%_8_rYNURSMn~TIAIrjCkBC-5v+R?Txg#KByRQB-U7kDjm zVKwzXR(@=g%brV;O0=KwE8D(3^gQWBU)F2`y!PUN-2ejp@Q6N;+RJOyPE3OZy0n(mZiNOon{Oh2KX^$fF3pq}!x^cx}hPK`hk~E5?W&V{~$#&H0v% z$K7amDN$gaS4tJsrbSk5U{6AX@Lry>)0fN`oKen#D+Z){cyH2scrAM+7x~OD<}!-1 zQVCItK+0=W%9QmKHdK0^&W=GOz6(*aR-y3*La z+LVz9IPDGp&B$=FW>_ULmP&VEZ;w)s$^%7cr;McNv$m_cj@6`=JF)MyB{NF3uR%_~ zi02(>U!rMg?JZXfq~K&nBRJ4^tmgN1$W&`;VIra+D**EgJ? z%I&2pB_I+l!f_`|U?XSH2v`!0|20C{MM4?(4&Ta>=S*G%Do~ct&xy%-i2`HzUnca! zF+(u_Cu(rF3n?#9BRm*2s(1N1IxM1`h@|SndRg0|=W1VFEW-<72=rM>_C=ox9?U*b;#G({^LcpDPei5D{3k%s zjG+e*(fTW$S3N}goFLs2u2Ew}T*fr|>6Vub!c{kkO_XAp0tgSO{iE!)wj zIAvr5X?|@r`*{k#nj4O=4Qk`Idx6S(g$letkcv~&h&?)moZ;iTUeBg$q<6Lv6Sbq)j%SAUB9 zw(lrKzd$=KtAT)Z*}+uf)W}OJVJHabUFSVXpL(BPRiXuevCf=UeTWZJqRoQWhFVUy z?I?x2Fvjm*Jru-hvWvY*j2Lk^j2PC9n!WN>0xNoACvtczpXzq89}aPu30cKUd@`;W z^1khSP;~;DmhCD0sWtN`nlIG(f&JI69Daj8kkqWM9Z{DFBa!*UA+^@r?@Ged3mUmxk|HzyIa+6Cr7}ZA^WZlD^>tHI9;c zF+EoVR{th`bZpyl`q{%}L41&Pn6JMWq3l)5MV;jn|Gb{fF-_u|d-oTh`p> zd5#jEPkR+Iunw$o)d$<+e7?ayV3bu%BduJBP?p^C_orpPEagk*OAUEAROParCErmJy*;n^5kVFcZrF&G=!@Fjv!`%GinBFR!3Lx? zMpUN#%0gS@I|6IoE>qx6rckBuuOIA=aL>KHlvPj9)C1mZXpu$~03zjt`id{<(vH>R zn-CL0(-r4bqQ5yUeE&BU_z>0@agfZ8_P#DVvCmdWB!dVEB3@(7R+~reF&FS)4g0(y zIuO6!Y!O~OaB75`MuD=53Sh|oBib?FG_Ua03Zq^Dh(BoS70@U%vxq+`a?%;#rJSKs zY;-(2<@`N8U;UUuJgE!*K+~k)=qUV^+xs$Mhe7lLS*oVDer>be{P~}`vK||;rRA}K zFu)fE_odhlh4U>emLsv*!P&5;rY3c%z26_0)n7vwcel32i`!tr3uO8{9xfxCH_T83 z5ctAE+(JB%*qbPV1o&;~>*em=#)apC>3mXqUS!j*V7Yl0dQ`77Xm9C0iHFP5e}4=+ zg}iU$=Lkn%rWiSKl`@dZC`Eq3l@yY6_A<1r&YNb;5h*tCl{av-LOg7K2{EyZrq!VE z3WJX@S5X?pHUGs6T{m}^np0ja+=biOh=wRhVZ*ie;+R9p?EE29yl8-{f_ixwH8l!- zA3uj(5f--o{VP2~JIg5cJr!i3fV!RjC(lUb)~%BlZ--yNM$Nl+EB!zWe6xk_vz%;r zT`sIlgIBo?&Bu!l2#^mTZ%GVk#?m2wl{%UFQE$Tj5V$jS&Pp^-wsqV8jH=={_9@ZP zVt;2aAjg`slsKC90hZcN84(w9p^ ze)BAjJiNR^9z9am(mKr{>6lSaa5`9axoSPCcMVJt-|jyxPBYX-9@$nH*{<29h&Qt$ zgtKqV_bmq#hfPtpEy5?KJodeI44taqf$yu|#>6anB(}D;o;|x`w>(zMeaurgWO{Q9 zlyHFumjwhU(@b%J4BT>vVB4-wD8DUxSW|Oz`BKHa)EJhfRf z#;d59TDes5Qo^p+xsFkCw1~vY>3O#N_hf zBu~46P4X?;F^N9U!`&GjZEduQ%BikQ4IA*Za=^TjOJx0boJUrkN`6ZY+8*|DtLO6i zH8j+cAYrHf)r*B@yK6cs~{3m z*>$IpmaRpi^lZkP9mtM>bUx?gOs4oPjrC(91BM6Nq-Qu4w#(aH0LW;Xn6!P-&A#(d zo9rIIEVlwnJ>19~D8SG#EABfJza~`MmVWy5w6IX@%a>gR!!*+K<*$ zJN(s6K}G%5c?=yPGk1BZa#=w@K)|HS#L9~IqH@IXq_y-Smk15Oo3`fc(kD^JIekW- zmZ4!Y4)|7)$NWEZbaYa{M~HlfLwdli9ub`*PqFYh@2}S5rsE(SAv)obRo?KqbZaRu zieV>!r&x4msBi}DuMT1ceg!AJuvXl#B}sIe@cVl$l5s*pD9*II4JKG zGiqk;D!oN+zl8!$uOXLk9>o-`54T1%4phjGt6wUD5gUqjw+;gw+fq z!!lTEUY6Ob)eOxGtSjvajCLt!?a=yz5nAEv{9N)FarT@Nl z%t&~_DhWohX?1b(|KH0eTWH`^Z}>H=Yq6&wrvl;B4M(gPe<8TjlOK2z|4z@O@$pG| z8Tl>9Pa64C?frtti>2#bsfX@3#mb(wspfc5^IBmdBx1+%shEIAnb~u%nciw>K}eNR zt*NbD3&x}lpuJs;{4|14)yPI8n%+Lo%YYYDy@_6jzg*`#%CTFmgo~U|((v z1@*4I1~vu$yRMG71J9b>Rwpr^HA_h6#=ZuSQ%Y8iF+v=s6nC&_KT!BFw{xVagpE+uLWRVoj%^S58qIWVT5jy#`fl zO@cQ*u{DP&?wdpFzy0cbPw$6YgQkDTly6Fw&e;2xCXCY7Ee%zvGMmAPj*gDgkwNgtcGu}f#}4h51I{d%@~a}9kaUn}qY;8*A< zaabXJhvZi7HnSGO>>un^v!2YrqmX2mUmepdTp14HCj>kzW6VKii%B3Zuk1`jt^@Cg zn9s)r^59rH^EluC1rbvpg*~kXCbrpb(s$=JY0-!990RI)PAbzKwDoMmWTW$ZZt`_K zJ-zzL#y25q%n{Hsp)ir;J^nnLQ~FFW6yU*Z#hbVLOB^^?(RZ? zSiD_sU1CuYEV*j+m6N?)wnnOgUsaU@v7`W?Qk&ES156mV?|HMlgP5H@ zhyq~_;oR~S4*iUl)1>~y5|NsnarJrM@#p+y>us_`-&b;*-8w^l%hfO=-`S7;b2_Py zWVasE3ttcsi3Fs#z;U=j-Xwp+_YX_oRIB#0sePqq5@KE_w#Qb2 zbP7szYm>H##T>4LDZZO8mQSUGn3@Dv*d+q zj<-os5qM{@I{uS^T?{K(v--+^*>7|L7z5^DZxckRCqcWhK?74m06yb`$fZG;fkG=F z>gd))Nf6t40Q7&(%JONo(bd)MsPu9IUW8ItJa7-(DoQQhER)hCcX@(@gw5Ffv?+P8 z4e=5ZC8g^wa+r#min7s|-QJzbBCO*8) zu_80TX!r?t04>=b4N`OpA`^E3cOn3W!wyCbGrtMG0hmn#X$=I@jpfnQFmB&xP+Xlh zUiM{!Lfz=$Rw=M`e#PBWdZqyqvR+G;-JiAge=94_71|B-m8ANwsX#u(C^>`&FPNoo z-Vh+c`}4R%L5Ou{<>f7Pp8vS@csSS>)Iv|=H9|seoCme9om_aWCCM`l@sL{KEGDTu zv*eRn{24zkF*7c&0g8a72@rBQ?{ z(gG^v25wGy4e^!dh>1}pT2_1#yjBU{if6M34`M)8Ns|K~FwMUOLo%gApu>ApIHP?p zfe6D#D5KVYV?4@@)~98l_)9ZhK8H>}Ig##9#^?(&MtxfI6V99~3@cisb|ls?SdR2| zNS6;vD7E{Vnms6Fq|mfe`23Ja0>UoXE;#ZhA`+%Ry`T1GJ&z9A!h~!Y`D$L5E~pP~ z7^H7Qetzj6JKJv}ryeK3!$ z2rC;~k!=@W5W8;d3sfQa^y1}9H{%yfQA+oHi5Skk zIViRqNV@;l1R3jd`ByzX;3jq%_lF>EQizd$`>3B3KAA#~Y-x2QGptaM43SvMH10A1 z$th@QWd3(|QLd8>MzP4OL~ymaMR+7t`kP^X&ZY-o;7ckp_miIdAH7Wht@3}d0|R7V zdm4#lM`A;dYnhSXh}+9ZEU3~rwOJ(tAw^&E_y`qDg!>r$|03*c!_g;2`LQc-QJ54@ z9H^z!A~)J?-~G7|`TsIT1(?4Cp+9Q4RKZIZs)g#U%{9Lwpy zY~TGhN7E`};nrCAxu@{yFt|b?@lfL_+=4dUH183FT$i%4Stl!C9_7{~78C&&1{VmH z1_d>XaC&ef?C3;QH1W(I+jYpE^-yh3MCJua2_XEL0Q#;QoKK|?e z#p6NK&6)oX+8~8i`ad(CljXuU2H8p#3*WZNo-bd)riZg@zMgkI7R)e~BJ9l6yH?q9 zzh1f}?+xAvj^39qKXHCHUUh3U^=kaCIXD!0Z^KKen#yX!^(J{LaMZNS46)1>Z z@gSv!+%~(iQiGW2l`odCYI-Z>x3%!ZXtjp;wK{}+RPdtGCf}@a@4*WlpDLf)3&KgR zC-`42D4Ccvcsz%U#y9v+;$_sAUX8(b)M4S&6iTj#%cmMHeXRB|+p!VDHU*ORs@wk_9i432(VD*j-i8e$4KC=_P;) zHncZvXBjb}v{+Kj<*gUK8ZDnp9Hxrcnmcc}v%X(EB=2`pLwNXaTIa#n2W1bNPVaY> zQJl?Ob2EmFCj*Nj-8lz9_9|AC()(;29Ft>PdQgfN!GtT0cI~RrNevnn`0#JH7&PY3 zwib3{k7 zO~@6ztOd>JKD_pSAnh1PXB7Ts^{RH4S)1&zG-kY-455v3}QlZ&;iF;c3w)5P`17~ zsPc$8LVlp6==m)>J8$!0&vSVLZS>H`MNiLbCEvKjzj>Ydklie zUw-~j%Rty^stC(fjUIWmhJEToDzh=iF+w@s1JCZq;<#~N_v01y^F6U|Zf`meW7L)Z zamdAV3@%=Mpi?)#SzPrkJtn^Sx=!E5qZKVJqpzwfs4u3{%3C5B{ZuhJ`ZZS zMS9FfjztcybIoy}0GkR8(kv1_7(}(5R#0bbRpDTTlGWT{; z=Nt&bQ0qpg&Qx(ji*!$8kjfA~gErIDJ@w?v-JMJqs=*Sc90#+*xdb(lNL`5*L_oF{diq1ZSKtzRt#xSdK~`F5=GL?WRPM?&XwheulA=e zigB`@UTc*rb>(QCy+iA~fxoLRTPTtlnKk|6b-=7g)OmK3$#Nc~adNL+_?% zZ`BL#Iq2lG78yljR1<0+%c-9q2tD zKE{5sfR{tRD(_tI+>5`|6$^PXBNywll(#+v-ExT#d`)Vp%kFn_}4u6jf7lJw#9k>9-)i z2lobFj6a`Xs9%^Db21y$P5IWn2Se>jbcnwgZrn5>H5^WbbKGw%`yT&mqW|KT%R=9j zV!?xVr%)&t?r^;7t~<**DGtn#<>~!m2i44r`Sv3N=e)1#8`n*UINEazYDcjl6f<7D zxxHl$w5!I|k!bQU^k3Q?wAlh$f?}FO{|J5^*r(sFwY4y@rAV-(n9)fZ_&a~ZLRSgH zXLm{+NI@nG-(O#)=A3&=Q9qVhlND+MGz1xiQBAzGh?BVuh8|W&juG?tn{PpC>6uCR z7h(Ry|@_S*~dfV-!@|AJ)JnQrq(*n`G0Tn4}+ZS)*5BTcz2hUKqL+C6$` z-^O53v*!sNW;Rd-SoK=M;~$fhGj#74-3trm#pmh1W2a5^N)O7l!Qd`@~y@a z7WZd&i!GIZ!YMgBD&L|G#MA4caTj6@sPCVXKK%uZ_SPAcyUyh2e7->LjxnjUcY5e( zzDr2HYJf{->+35KimWaxSZoxDif73PAfXCP*)Q(B1F$@xz#Mxl77lQ`Z_fM2{vgVH z*P;^i97s`D?(Oa_vae%`amcY60AmsLoA-N&J6-$5-!e>-6F+~s^z&IDcyyhnm70$X z^EwHO9@=-0===g9_!$nR2+OEbH!(50lYi#vhQQc2)Pd(fUw@MIR16rZ?1>eJ*GeaW ztE$SDCMd{?9+y~};5k6^GfVF2<`pabR5enE0*rkqJMKN@%sy0dVPXYUj7OPYFGOkq zVSW(~YONtmU&}7(U0wUcRaNN2FXGg675LqE;Bjd+SE`#=sRUjk1}opDSF0AP+7h!V zj-_4<3Pm7iJ~vt1+EGx6xHw-bX-O5CoHM9h-y|e!Q2tSvNXE1ZE19B$4_T=%fR$+L zfkJzRFdS`m!wLn)lywZFoGVz(ae-Gijl~%m9g5ubS{ zWIsHxk$@q;W3y6<9Hxv~useG37u_1;O=#)^u)hu>?Zx0!N~(}+&dTAdAfH#ji-erU zyOQ1`CSr_wuGo%NnZODaJ+EIcvNjC3zR`f?fhO=ZloxU6|IQ-f_`W3FC)RCko$^5N zg&4)1d^M-2@6~q^y2fq4=ftS>-bIy)OxQrrDtyL5?yGS7oC%utNif*S|C5T~PvTke z(})Q@CE7l!YD{?FVpc9xxF0C8;aQ00^}tAM-pgmaQJ4>AE%LSFVr;F3-UG+$PirU9yaG&7xOK6gJ(;h@Js+!~)_u#%-Qm6zuUQc8<(9arP9 ztq6H3-#Em?d9!<-0e-aRNYN7@v5t{n;K$eDxq&f#xvH)uE&3B!yUY*|#|Tpx1^TJ#`DXnai9cPf%AU-qxTkxzqw?CV{7$s*yNut)|J=#%JX?L2 zE}7=<=#09b-C52Zx12$VEedQ(>W!+BzyC)fML}&@$7~U9ho(JnGf2!xL1J$JjN5z1 zRy{q7+Po)}Pt60(Y)%7wekv>Wy4L91rHosb1zR%pY?0N?Vj;?4DgbPNvtAKs_#jn0 z?@M<0nbqQZ%jG7qe2eq-rL4pR1$h>0uoYf4Bfm0liaYOl2YP}qI^?WJ%YlXJ>^ zneZbFo=2HSiMVdx|6Nd1J5n#H$!3Ujm%x}eWaStBy5iHhk_CH<=7`%RJrV_0HWv*& zuNQbIUoyowKd^+SJkJAL%DLR|Mo53;=XdPBm2_N zAL+VKz#KU=yrL3a(a^}RB*QpL=JsE5d&(hm0n`XIX_2@1hROs9-cFwD74X_L`{h?R z@p}<%uTUctLlp7SQcNn}qnQMeC+^bIUlzIwU?e&~L6L9=5Rko3*BI}`|N0QHqt(}6 zyR~Os(rbl|&K>w_X=iL5F#B|{Wb;#u-cdY9XEwH|o|&}ZLKQFb-b+2@oOsaY^_uMl z)vNkCU3oTlxqqG0?dkz=jha zNp$j8plfsoH=pI<{tk;6%ZtEoP(M}T;61THenMG&ykC;#eQk|%7)ua>6CZK-?0vi^ zS7s&@DLiloVI;DjHvmsIe9^esu@Q$kTaBPj<%{VOx)tEz$^q2Yt-^|fSn5iz#`>%F(EYx$WG zq|P_Wn!1Hv@~8yE&TH2)eL!--{orc^%}l=4>{Bk78mIQpfeC8ot(}l?F3qJC4i)X~ z^*k@D>EWFTp0Ob}aiaf=7fitvVKP>DhTwoBldj`AJnX`yo3mN$h)6Ln*^;Y@{fy`h2&OVe*jL?ishp3U5nH! zp%krhvNh~?+5b8+Im7OGC)zcqoIOH@Zf_$bUR*rVX#OdKR5a)SOa|T68R3YF>w0}F zr2S%`Dz2Bkj!s0$9E~e)p8jJMYodnGzU9+l_vFQ=m}}cd7}n7M%PSBZKCAg?B<^s{ zNzw85O}}ePdkMbW56U9K&gD!rvPpLIM}KlMKxT3eL_z?mZ}0;^`JUc6@vnt(fB|bu z$NBvo?T*+RXeSjmlR{`n4o=M;65wI}MMRaNWlD1Mp6_OttS&S;09N(RN3gWuksVjm zE>-vMIak1@#{2C_tNULZhE{*8<_tcl2kdtD*SC%;pYb%M!8aCu0W6VM+Zb^1>ucwF zo$^PmqI-G=L1;jw6+Q!!V`!k}scxn_MbUZs+3P!>`0s8B%`UW`$({E>Y8q(Y02$|( z=-L)LTkv+)Ds-1A_H{;`u_}Ey5A&^CqF$g!x|)KTQw4LJBHZa5A?g$HZi1yK5e{F# z!8kbVI0m;;MXMzH)D@#`m36&dnyz%sHcThK${GHreQ$9yXSf$XnBd#n*9`?w!14|B zblPK*?-}ovpY%a;_*b3xy?-wAvYTK~Ir^p^#jGB3SL^%+;!QuvtV-}Hj+ z@|Bj%9MSa$58|96Syb-6uUvlmQlzcQ#M?YCd*I@~(~wKHM?Vn;hC1z4?})$kOd3|} ze7#@vF5z_cRx?wkI4{Ib$QVgO)2oQh(cB6#f$fp zYe|WJM>Ey9pXbwf`ial`(5FGMOhZ6c6L45pQc*mJlzp^F(a&G7H+35WjqF?mQpdY% zj#dl|k}MuB2OL!)E^gkl1@YJh9Z85`>hrpGO$VS|1mWD=`NX1pp@oK}QBZy1dKHg( z#F3EY@Nfj15VqkQ)0~QVmGeb1B#<<^6hAYd#-f><+Tc=O$-a)p!+M_vfve1?hK+}(qEgugYa^=`d|hsGTirVOmX%f0YJPC7GPg1aZM?vK35v#&cV z4(GPiMBV}Ju<)>DL)ZXUox;T!&wUvnovAp*RXm^)ZS0CsZUpAZ{&d|ixvTvqqd(Y! zN`pc9Dg(gpdIt zx9xj6;2|KRDew3-6n#qWycn`6DYkTFX4ekje(Sf4i&TOyrTz9{ZCr{`V4!r;1&xxu z7S+U^AM)*mfZ*t*q7ou&Z0*A$CDk)83KdAKJp1;|azs%oNXYcC4n3FH2|-Ms8b`IM zQtBmM{cz{Gtgnw)uNqK>hL-0&%$NFCg#(g~hlruq^)-;Z?Se{|T!keSupHlapQPr0 zQzVH8!kjn_hd+M58K6Ty>irNk8nnO*IQA3=8&~tGI`V>^AxDYi%EwU=Qb>6=dry9N z;)ufQH_Bd9Hvo$t96hAANj^Ec%jExCsXWg*|G2DmjN1Uyi;D{4mD!vozwg@ZHrIM| zcT4I-H_e0>^dw2TTyT=HhFRSrkDl~DoOAHsk8NKA<%<1gmAajU#7OD1tq1aj-c(0E zM{YU&M)jfm3{&Dx3QtF@8h2FlGN_!V_ z>+6uHoxeZm?YX82X1zB-y;6dqaU=B4F@?Q#&*0@MKY0CdXfO8XhJeuIw3oWYUdKV@ zw-Hd6a3mAY)Exa*1zx)|WEeU2xKSwydw(t~#hX%Hma%4)ai_oD)wosRxF!hI20*j; zq)O(+BGZvtDmT5=u$kVkRyHiUyjR*1MWaf&WaB_3j8`##;sVIIxctXcY#`(vk#o6V zT4DBA0F%Y?3s8aE*{E(`1>wmR6d-pxPqH97@)yzqQZhKDm#bPP-#5qHG$=geko=D@ zkYQ=}NM(KJCC6^-P>&q23)%CAzfHA%fU51Z!yB4X`B%JzhNCwB(8NGo)P5D7tvwaL z`-X-mnwxdjeKIdT-+7&ft>ahpbe#=%qplNYb)UTYR?iDi243dL?(g`ersS6JDW;{f zKj~8zujf~xqUsBZnsKSh0*aCMZ*qt3hSWY@An(h8EToW3m9;Mi3Q}(~)#DCII*|*_eWM;%pZLAwT-)pI>0UnytPBRFv8Nq9 zRz`l)ud6&d&9sd-uyGy|oBP|NCX;MMCh1wc+DT2+ECbGe^&A!(du!=O0Z>Vk<`Oqo zcFRcTz1QV<6A(uG(v(kD8tpBMe+wvTn%uwP<3cfY>x#f&uXsM|t&@veY?`m-^KvfZ z9IC6zf;;ak_#|(1zGf<4Zx5^IelpdZUMSYrvmpK-K}BUQ9&qE;nVG&dd{MUdqgg)f zT_69wst@H0lc%MRe(vPc_pKHy3R$dHJb+T)rY>dI)o#F4hH$6UOBWtaZYjsCP4LHd zMMoIPZPFedw4fMrWXj%fUN6o7Q$Bzb`Q!oQ4WF^Rv4$GzTUq-zY|SY^o-n{$WTG9XVPH`$kxVAy5T#^HJ+>p$Y+KUgX& ziOU-Lr9e?N?$k}sYc&-$MFrC2gxP}5ftudUr_%xSW-kiYV}QxaE?5CGvoZZEsw(Of z2Gl68w6?wKtf?M;64QI|RLJkEGZK)a)Wd5-?mB>eIQ_eTdM7$#$)d4h(SNxkw(N)} z`x#zQtv_&15V!%;q~LqArTN{LWM;o|zD-KD$)S7I^5UUzjm5!Gix!e%d{pGw@G6 zGq)k(sMSA|>y?n2?3aYD`upp^SPLxNxImG4`i%|GPn8dQ(-rr5@9U^mbfxe+%-^e| z7Feu{De3#v=V&)npN}?mt(cVsrbJ8f!x5+ zLH%C3`tG*qf*oi{6Ma*;+=e|@iCbRSaSCJ+#&M49wzZVBMQFhOljmuB6+76lDEj$I zEBabUCwg83#ed#ZIr8N;gyG_ce|j8>nKcG|KU^!OzTkJhw+n6Dl}9$Disc&EZk@eG zUR~k-BKQI!o0fz+5JZTlB>{qhAmSc>>AXK3%q~tEax?$&tmTcSx&k{j^V5C*%a^@3 zi#-B1AC(;iK0E#83rP=m*S-v5zePb^TF_2`^nKlg@j>x==c(Bb(C!2%Ff(57Ui`SW z{#l^$!M=RQwsBB^G$>7mw$E%PvX%Ty z7!~%`d8)};CEloe0p#xq9+UYG?wP2HfBSaB&CS{t$Bmgjz#SOAuVdtmJZ{@PlP&eG zedoJwxvIZdC5T9Nmnrl$+xVC~-=!TGBhK2z$py>s~ma#wGq{#F<=FL;fHY6`x;wdQx zY4>MRf8R=WeFmM5a7QGfo_KfMvfux%;WO3$=FX7=HH%^(YtY_Mskh_8s{I!SGf-8z zZWDWPrhUBE4_8|}W7;0&RTXcz=P zjiBoWC0wE#cLSROW}8T%%^atK(`Iar_|0&D@+}VgIT7r-(|4R?li?Hm=&d?y1s0|7we<4W3wWmUedX zJm602Qn~$K+AE^Rk4KUL*+W=Z51xHsQ#^!M`d?iU!ZVyu)5X|PuTy!I}MnnZ;! zMbnKGkI?al|I%vkf5VYuXb(CNf!60i zdk2;-9&w|+kyuehtg~C*+#5(Dvu2NIlK428EbBCFtNZ*b1~z>$0?U+Dx+F;1(u9a+$to6wp&(vE$H*OENR z3ds)O+*_@5a#E0<=g~S6%kvbjJ+O$xIvZ~7`yjCsm1`9}5*4clZtk>WS#UHsivGsf zr*-bZ@D6vyCE`*Qy!H(ei-E54s92SE53KaG0S7JTo96%Nn_U2>`}W1i2Z57O42A7dwu*r6%xj>6> zVPP68inWlB_{(WI!Y255<=GEHP2m-BREGvyhLAgd}e3+9dH`?-2XK*)%-Dan^HKp^J zBvMXXZ35R?jV`4RN03EG>&f3-#GL~?4}3{>1Dj%`Yotdc+_q-jFut;AzI37;{ro}2 zF7%kf!;T;GHog(4()IyDFPs$kk^0#9S? zpP_`QOj-g*mS&ES))e9)>5FYgww`@mH$c~a8dbTzN4cZl(GNslJ;H|K9*ys7na>sL z@*9@nE~;B!GkrEk`8-61ce%f`IufgmJw*H}!h+Q_=tzHwQT(F}CWtl$hao9$gu8&< z6PL7_BIfpz0KS#%;r9B}(CGKX5v4=9jHQNPC7Ld{*{#ZL!6G7zK$&S%St)-89XDtI zFdz|4D;TUA+`fE^$W{EBQuyTIH^mu2{)+X350-bD9R?tos0;#Z^%80g#W9Odd=z%3+{WKb(YTcRf z3dFsi2>yD+XwtCcCu2V+s&iI-K~z<;Sk1F&#Hnzk_;nvPBvvrQEqMC}qHEFffV%9e z?2{diV251e?QRG68M1QYF9%37q9hYiCt_keufoiue951gYhVy_$ucESix%#yC!IGbcqkS&e1}k}+4(ayz>5SMoA4i~M}p?2}GxN@Y}h zx*sZjAXSm*=!aZ!Bl(b)@$tz?NAnA)_25xTrNKqAeaSFe@VbmNPTH?!Xkl%4VGHKZ zU%4!8b~g|AkMQ$~AnNGdmvrK*u=Xvu_75p}Q5p_9q$bbjzf&DwN}mtj9dOW~ z$eh}TPWm#Lq7UJi<*{BGV z9rcl86qxs9=VDB6{mbL{cZoOV|5oMzG0p!R97m35Zd=B@bcQ!S2meb3rgBUD?>w~G GL4jSMV14!>+p$O6hq(dS| z=%9265IWL(Z{G?&&s)a$ew-g?oH5>W#z@?8CwuL^)|zu(*SywTym_pyKy~@XWg;RX zDka4SnnXkw#fXTApHq;5GbPz7cyJJReW>rMZ~OG7yVXk< zTPH^${=58e-kZ-|T@fx40s;>I@dJLRmo@^!eKhYuBbN}01};QIl(d95F;Q|Vl!!KFOX}Y#pCv5yaZhv>up`x?R)z8O88` ziH_;vMLIf#`}hA6z1Lpv8l-uPuPp1Rp2IddbGRNYyQ-EPpY5vT?b0*2wILSivu02~ z?-I>6UcYtXukjE3Z>4B}q$Q z{P~YK(uqUQzfzVWq5ji?CmGZESKJ#{#LmCcocf>AP|tmc+-KX0G9+Yi#IOEV@6Jjj zq@f4WU?gPHoQ{OBP{E9U1+U;)B77pF%&`i4Kdnba5oO)g@I!pOfX{E#8TsaBKrxvMX((7=A)%C`u=$2FWs$2C zLKbt5eVIssA(u@eP8=yLgb;odlf{q**!x!-Z)X9*a@gvNsDtqdBNDith$ zboOw>+Y1RPq=6mtBiFw`IRqGH484}`n zlaBxRrpYu-&k-wwoTnJFSbXeg>Xp00i4+oH*b|?6B>1Ucq$cOTSWoWD;K?IMU3n9U!15o} zQ*VH- zb@D|2z#U2Ga|Y2CK8Gjjjb`jh5`9qM%CQElr1hz%D#z}c#0@?k4D}lsaO@#;S{@@Z zarP9o)EiJ0@Jd_o=L_leI;f>3YNG=41%s2PAPEd0m7%j7rMEPu@xAV8R%5Bx40Q^J zi!?!(o}%79MbR`vE1IFAL}&81{}G3D|A3xBEbWQg#xt`YnO_tX^E=US|7p#ZYi_BE z`YMhUlf>$eeXn05ipN3&;_JKSgYYD44i()QmZ->_09G?Hb!ylZT%?_e{Nmo$?Z*l) zTH11Yab!eQ3tQ>bs(_BB=4dWz7@uip6an8MXjbh@* zz*bhb*I$AN4`D3SF0eDxKjdgp!u)b>ItOWHNanE+^6`VkJu-wH%2^HN%$7^EfbUtd zQzX5&5=U$#Ib=%Kx4c=Cz`pSADTu6^)&)eT!q}lNW12r5`9u7KpCzEDXvlSQx=WdV z53WjC!LhrIH{4H}Hv)17)ll$wVpeuKG1sy)k@uf>x1I-2^0F|ky6dv^^x*3+%VZ^YXU2~k#5+pO{) z+*%E`48&*q%-?N-2B^QN?ED4C@?qM>`UYQ^9_|lFgatMBEa8i#PyAV;*_j&%LB1^? z7szPHRdNNUjf8Yb2kst{WKh6nLLgmS!X8+&rzktcPMeK1h@63XzNT`xKKa3oO^nh&Lr)9CyCB3`=E|gC>vrQRWK1_ZoDUqv(~R zpzR4#7S4t76dbJ>PQS(sK^mGCGM+dps*QMS*Z7_CArXcYu*g1RrtT)F$KqJe>ZlhC zc|r5LhNE{w@4%X#P|#K{ZMt$D8+Pp9KDWbUw~Mg&y^pmCz0nZWHFs*eBZN-qa|@o+Gt01 z;U~X+EKw;vIDX>IKs`lLGBgR<%7=m?lIEyn{A70~i_yq<0Ew9r&Cb3t>T6gZo7NhU zZq(whuhG&tEj6vcc{vKvrf#7sV!*kGxbzP|iHL zZ&dLLd3snw&BzxHtUr#E`_`j7F&mj7#jZ0j%|hfQmP+LQ(BhocuGp@EO+U zDJpJZ|+b<;%f;7BcV3j(-9i^Fdo*>-URDv(<$_8==%sXNt-$ueI_V||x>U1?$rGY6dxhav5P#z7E#R-$`O zBP8BRi+Lv|YQ~%3OXUH$O&Yg8PMo~D^u#)4*FVYmR}%cl~~Pz^T{f*4A*PGaD5Z715}3Gc)Hf6Wk`cZQ#UPX@;dc9zLgZW!ISbMFP|6hZnkRXr%;9gwF0XN~dFSJeW+BH>F-P=? zI}zxi;o{;Vq3hR8T>m0MANCiCO(JOtCstbHp5LS`N`a-7PS5!J{>F6G?~iXiXQC9ucKWo$kJlTM;Fe@W zgJuEJ*Ufz4HtAlRp{)L5vIngi<7H!?A|%4>3adhKUf=?Erx8h6zui-by9i((+=_Z)W(fw z*6xLzjILLtl)HyEAD+R_Q-n;>jq-}RaBv4f_htRUs<|61KFeRnRx2EEBH8L`ZNSO6 z`S@me%nmNo$Q}#s;R9sNjz$J|7gA+U7BrHieMCyFJE!7}94)|ujCxLoU!$kLW7Ea7 zT7Tp?*PYSr6mVpe?!Cx8*O4Ue?k?hi_Y(zfI9a_^IGvl5J~bK2I=%$EOC!Avp}fxj z42xpuND>MiF16X(pN=Fce*Wuk8894oJXVeAdG#?x0Vj6pzMD#p^#^llA)Os*k_obB z2i;Oz9YVg-jCk{%#eN_Ay?#Bj*=QC1$>8gz=0E=VYZTE))sZaxw#sFGbI39h4%(90 zc%vccxo)1Vk}2FJHk2?IxXH?#Qg5(x_n^BPya zn`{gfdeL_a+=PhW^kPf-r4+E*$&oJUJ>$!il-#_$&qm5@I}+iqxiWl98r>C8(CLtblTWS$FE85@ET%74D@oAeg2$NKAmfFI(b3Uzu9wfOtiDm%wzjo>%+0+Nn3~FD zXlOVRF+4V{#Ok;GgfQ@gpb-`p20V1paqlhsrhh50Ixy;%imvGD>1i1ot9p5fgI1@3 zJMd`bsFS`gD~l~Kswh`ON|0@L@CJ-mjk?E>Qn4-b!J-{&WzK5KQU0jCE) zph=P*tEMNsu~L7KX`A!Kix>OAcbnCkX(Tg=TVr`m(c`b#x4dyF#f zf+*rrxl)cJz=#5q^AB}-vBKI-Wlr_f77*K;$2{u%-B=y-qswb*Lq^av;GSWHFTibF?+Y(|WR41*$7=Rtpw|3i28T~jmsC9YHq z4u9$%FJRWChd$IHqhaZo`2Kn?Z_F}6Jj60mI^KC23-{iBt}eaPmsWUWcD7^2aQ8W+ zH%DV0%jh&ii0h3ZRF=p48-0C!%jM}cYxOB#it3Y{{I^o>iim91@6~k&ehR$|$Eps# zcYLuq)B4p-W!J;kZs zD`R9K-#e3JR!f_}KWqj56_APetAGFPShFG`vz63c=HTS$$SEo5lYy%P0JB?p0!%C` zGZU$$E>0TwrLg)%M)xnB~`r@6ZAXmTFTbYC|J7)0)fO^dcG-e zr4@)Lz7r&@<_*Y8cSS|FSkE?CRg>-nzoF&YoMt_P2140bkA|AX4u600I>O<*4tJJt zBgp`a0d`!N01&|l42-Fn$>j>cfm9OsXUlPp(>3@Lega#0!<9aio6rQjQfwhJhG2Ya z-h(wmB~~g%Ddz|eU>Pdu&Z{A{@k7RJI(_7{C!zia0hRaAXD8*}x<#g)nMyGu@gP9O z^BG}Ftl9}NkRFTdGMHt{WG#%_Pc5 z?|8Mvk~mi9=DtCn?i8se3K9o02w4Ms5nXTNDMHMrd1#uNb^!!S5_jPw;JALtvr7cX zEUG`eEl{_8m2l4e#><`;z&d?r*jOjQ6G{uz@Bh6w?jyja5HXYYrEsb@S?16G_iP*LHzF_k9w2IpAgP&87QpFi`p znPs{(b%(;o7lyZUE^#6Fz{0l;yC`er_>si~z6@Gtvzt`r!QhR_7;H%hHzNMd7S zm)$dV2Zs#VG7HTlAb&z`v<;0k-$)s?%E6-Eq=M|LrNY;?z13y;rQI?q1a_I~HJ1c% zU~|N-2>z@EG7bi19XQgtG3+c23i%zn%B%;`EW0iff+`w>+0tjNS09DnXqxLxS?JB7 z0Xc-Wo*sJAcy@M{fP`G>p09c}WYf$}HxnGB`KkL(%f^O=T1c-OV=C%*_yCQ?m7m6H zsZW9cPDNm&1frIc=5CnNcWb5XJdM!o?!DnS>Y{PGFHyu{zT0F5BoO8cJy}d1qs~8| zxt~8zfIgEDTyuY3_N*0oiQtsWj*YLv!Y&gi^*9J;y#N-@PEWk{CqupFCGo93_#@L( zfII}cwd&eo;xX2wqi6Ea!GVuJ(`{sr4024`>&s7oD+syFsS-Ff;eE5;WfoA*NqN>o z2>x`p0^Iy}-;J!@S7U+RKpPdDxQ@B^p0rXLyMF>{V4o0qPxSmk;Tw3@kd{#lmqtWE zskjOV-AN(=r@j#qi=XRo2iYl_v|;5mLfIOjNkSjSm>`;8#>UKG$YD6PmEpG1Q40%` zvdyQ@#_g7i3GZz)`BZR^?Cw=}ghy?C05FC7FJV zKUx?m$O^si;5~1hk$AC$5S=msH~J2)h^{c=3GVE2^^MIMi* z+0GR*Ch5l%umtT&XAjgy{q~|t(7@i_1+L}QA?Wl9=nr_&(b1Wh<%6rr5-wl9JXB^I za|YGP34@o|_Hu#~cR)t^PF~wP5h8c9U((VawGlAlU`Ulp4ASdMyi)u9gv9vB>G#hM zAThn_bK^@X-FY_qQ#IiO$urEat<=lLS8A`xCB~TUaZIpb_T(wV?@1%9tlMG;PpSc! z!KX*zZLSQ_)!gUfw9gKa81g;-p8xQ?@2{K0|EDcP5T5&g=NikWP@rE>5|$x4z>5;* zTQXK28458~D?)R}xc#x9q?dP00wqlTyIGnOA@~L1*h*>SPuWj8e}4D|m|7xq`i8mM z;mH7`!PlH({jUiubb5EYd?)FP<{x{Tg~YM&A_cFC(R)%uDO16c36THwDJ+y9y(P>V zdoJzpYe1P`u|#NcATH-q!)A!;f?@)>G14$3P#i1Uo%Js0UAV$3b9_^ek6 zH6IQ-$5Cd>T7f!m4uqL%5^)*PiMzB2*3$=2De!vuu<1LG;rUaLm}7o5A|V$LT!OOL zec2U}6Jjx;x^DfOG((<0DG4sdo=XWNsd;g_N~k9{Qjn`|RRyCFlo0|kCA$%*;=!DL z&c!q}84%lG7`TFdexC#E(U5SZl7#-hsM`P5srsL=t_Gwjq#&4GX{4YmQcwW7-fB`F zz>kE;Q=Ht<`E))wX?$G0q@R0*i8I3CGOTj9NUcL5ED`Yft8!4XW6ENwQjR~yRJHv5 zSK|-p;16hq1{#04gFGZtG~oKa6hufn{k$QQhQLqclrYrA2-0*)*s-j+4r-&RLzjav z1Df+L|0vVY$=xFMr|}KzD~=N&al*ZwF1%QH5h~;Bd0qF`pI`lV!=Vwo0wt}5%IROe zLYhtkyE3}--$EIAsXgJU=-m{80tt~LTD>^e3_T;iiQT{Y6FnxQ5(HviI0N?|Lsz$^ ziAbNS_P$|1TiZG#Wv}8=mu~sQBsyqfR`ycNwsj~b^q0G55y+TX=BzC@l zmoQGDB@oLFSE|JaFr)=WATa12CBg@_aRfs;k*r<35!i&8g=5>KzX|_KhvhHy#24TV zyZyS0rqYvmJpHCcls8>G=i#p_5p9SF219iUSns*PEfNEmvqZ%R{Y&Phm4jXc^6noC zC7CCd4+_9S!2&J*!as0-3k?Ui!N5;Cs3?Q>^7Rx3p8a+eyU%v^bN>)$84FrL*CgC2 z{KB^Gn0y2s%e*Kwp-2z#2gEsr3350#6j$JLeSI7{{m@6EyoQ`<#i77yMnj-*vO*|f zYpU(`W=ZLO!Y6XXWUNK1L^kWN!R{hqmA%aAidb~h8_Iv9d6kKXAI1L4eSy!Ear85r zLA0S;;9Y9&AdF6{dUa%`-;`lyDF4J%#F9MrW#4(V!Bt88Mg&{# zQvz-#9}H0rYz|}u3!&eP&aBMutglw4nE6voDo-c}0-1*uZ9iP{THARZH{RF5R+Miu z*VD=ijhdYVu(WB@1hvEGr?FE#8D@k(8qjgFIURX1SCni0J-L9;{1g@Lxuep_ z+D%!mw~e=z#qt9#h3Z@r$|f9Q1@p|{q*cQV^%n?cK^{Y_P(oNjxRk5#&*-HNJjbXQ z`Thk2b{xql{e&VYXqNN}uYmc;UnjT$C#M(IzYcHE=MT3X3-|MmJZ_|HuUMZL?Jt`P zfMJTqA1+`l71n`aUaCv$&?a=?PFLWk|BeKF_hi-)hw!{^EVQUiF?dYXUtMIHEJ4T- zaiG4mbR*fI#F_D}NMEt1AJtpYzT)S8R2uvvit<`2IDeA%%TU?O)JyVh46>Oha9A+Y zMHCC1M|WylK&n(x8%pLLkyj4dzZY^WT;3`X2kM^!4L{D-&qd`~f4l^}(`Spx!vY`; zCMW3XY($bSjd=TN$Ij(ki2QDaV%6;0hs|EOEpU^W|2(otfaTA!$db|vjYstGTBpBy zBSztUR=8bGQvNbz!PwKg@?d8nnr&V#A^o{RY; zy#0InVm7!!6T5#c4#>xkL$8QYM~sAUn(CXjx~PZHv*QEpZ6bv@lIZx7y4%v+w@I2ILL z&8-CI*X<0Vm8ehT32;Y*_@_g3go2wDDjx*el>boFYL5skXO|6aydB2Si;e~T()_M)b~R*&`z1ew@Nf`w3~b>& zB}}l)<1cxi>))uHhV|f&L0^ZvJC$&1q&y%eW8TU`NcyPPz?X6E;(NC$D%o;3C z!WeX(bbR*bKrI@ndPPOn5Zu7~GLXvOT$6kM@oq*~kFUB+{+c>2Z}Emf?T3(uOLqFT z^&!DacAmCYbOC<0R4WpGKXb$)pMa)@D-wUvH94#)?DBlP)qN&KaAc(^QBNglbuSD4 zW~#ML=SH8kGJhW}As&&zug|7M;_dS-TCs-UFq!+1(PMFkSg<%haMJHBblj%-4)4iG z5qtN648cGhv4QeEFg97P8V7%BXmM}311?3s+LlqJ_e1j%W5w5(F3cMIqb(zghiSWf z9i7(t84YQ2kpouG*Z#h|<$D_i+HfrfWo}m=r)I?X`#KyjmiLQ_l)hA929HuwJ67`4 zg-=6Zyl)pes!Nx3;PiXvSM|0)Cs(_Y24J$8>V(2Nr;j%){JJC4nxMnA1r|9!Kkb}= z(0S09s#6wl!^2da9t?iAkI%I``5w0~+WO(Y+!~w|Ao#aGs3XfHfyljgQj+mg*%WtA z5SJyok!+}MVo-r2nhBnb)9zn6em)v~%oMWAuPSSmUCeh3eXNVAcRjw<(rNwJix|Xj z?nj`lP%Adju!u>nlV!od`nxWTmDe=Wm#RvT+7*bLvWZ)YGNENZ(mRF z(=mM4_|7!=%BoJwgefUF46VArNR+o)Te~FQyAW28#|V{GR*wzt^DEGF&Hnyw!ZXZ_g3+0f8h8k6KJq47855^1gwcadgid(=>R zUIX(~)6#Z%TY&Fsr56CjfHPH;fKcCiJwGScs+rA_F!!M> zSyy;@-s?T#uM2z0EzqG-C(w~qD>x{A59G7jY6NkbXm2#;vUs)ze#2md1`rjHw6lW( zHzvWG%>EEdV_Lc28LcDi9D4U1MF1O|ZV8g?X6zXnZ75O0>6g`K^BoiJokQ>R@k4Ib z>j6#L57`$Ywb!5MCaO4_ijY<Z6o5-CPd<JgsbY6#XuUCq0=*}gCFWFLD~ljE-8;$DkZU=X5Ks1kcRiJYvK1Xhhxl) zmbJ{4%;sQ)DBCQWT3=UJk(~NS)ZhgwYDJB&PgFz;pXl!}vQc07AqhNvxxJkt`7OzY zXufaZy!f(kaL^tU?MYq;C5lnlo?CV%5%(Fr2Lkot51w(!BB#%j3X%NQyPJFq?KQwIp34&Cm`k}f z;^U zmO^gfonD@V{*}n=Z(*8dX$-<#9N~|0-bx<<3oU)Ue7Lgk(7A$Xr>%j_ z<4wLF6l{m|-*%S8-1P-YN+h_J6KhJMS&v=*qNyv1n5wns7q?<(m2v1ZrHXq4?-^ps zwR=uL-($aVLzd)Ak9;A0JgKW&aH>d6+~8FiXs_yF)Z45Xj??@q6U`<+E~%#Ea$w_8f}qzkC$d;N!OyjU#8&5d*JA^iRj{~;#5DyF(Zb+#FSZwA zZY1}p5g6n-d4(zEre7^`%Aaha)9ElVXibgN=`b@%^V#q#YwFe%-nos>7k_- zrL3A&;kaYXR#N?nNJRgGueacsW1h0EjWwL>C7#$===A_z!iI zRo08pahGGrrpukP$m12Y&itbBuIfea0o}pU^4oRVgQbPl>B2fY;Pg2Ch->_DDsS86 z-bsb~)KMEE8vR8QOn~@pC~iPhpEI$D#$H3RM$3^UUT+eA+_;E{%Fad?nlR=RCX2 zJa+|+=v@^%ftW$jfwF=xPNOxZ9A3k@@7ZKUd3Iz(B~OwK%~CVuGd@ZkUYq{~xI%qX z?p}cke#%#w@}^8jnsf>z4eJWpuO*8sg!Uyb(3V#s6ZmbbnFc-9_VqmVUBNIv8&7yVWYGSram zrQPf~_cf#E&tIt5IoVrisgY0)_7{5@k%0JEBdzDI``+Wp?PDN|z`4R#+gm>!-N_DU zy}t(2#Qppsdb)iXomBM-WR7AEs$NEGN!3{GwWLnm;%6t-on+gwfxhTu-#MT<&2c5D zXS3sr5~6n}nyy>SsqUZdeNRU$K0B2Ks*|Q|@wc>=C9nibRx(kkCYQ5XFZTSh$%X_N-q zjn_-uM>JB^(uI8gUp8p-W1$yQNhZrgmn2L;K=>@Auhlm!Ok##m zU?Ac76qP?@+$>b&G?Ubn;yJgYmj7j(8iOf$)YsFgL1l`pU^pXFlnZmT%jfV_2t$YRdb)c)6^18 z$MpCxkGQqIKz+buCjX_IAYE)~@{mzbcc(`muD@Y|7nk*R!?-Qz1w!DK6S8Nt^_y|3 zdZmK|x$@rw%Al(=u+c33rSj|mtjn9po4V8YM&wVJG*erQM4hyDw_10FDa#zBT-X0v z6(5ix5~7jnCRR0UvUj~Nc&Ys5FXrxFKSvt`WLz)MhVCwwxO@}!8MbEe6Yj48L_HWg zM}H&b@9@stZYs3}x6ZE)K7r-U6WOMvx7yl2-1KO+d`USXdq=cl=WA7sS7+y{d*o?c zb+AAHgJbPq@qDj8$P1Ztnx3n)f1-Qlvp4WNPHw_`=;AQhE`v^N@(Pe25Stc$Ue8Xw z0j8{vQF1vqe3l{4N}o-6ae!g&23d29hCoVB*1Udq7@Oxo`dOVouz3kw37*$!2!I*5cTSdSCAoX##sgbf3d{F$(cp;hz{J$r| z#U07Lu)@rokP+kdla-B^`CT?ARE8-+lA6U=u(yAi7DWC(8W||aEzF*yPdBW6BU@V> z7QnCH-N$x&A6qreEg)4Hi7+wJ>3--T)eaJVf8UK~fLi^^T@e+jKn(V(9E`J3+CG0V z$>zk+gw|jLscxQ z-`ZJN>Et`w^^>|d((vv$)xKo!L$e~qzw^7;H+R%-ud?N%D%>;y6H1zaQJzqm%UL?f60&$T%gz`mezSI|Mra^;>;Z@=ET+r*arwb)U#xts3c_YLE_Bhj5l>RrK3CJ@wmhf5DjY zd90odHGDm|YFILqMY1mYRdlUiswk(Zq${+#jQVK!uddAUHI+!{O0ck6wMS{TKnpHBp5;w9EPGS(iiyBLTiK2Ty&gCb^s`r^%hD`(5Q@6f4IB8* z^c5{tX7Yrnr;~F->lU2bP;>D^18iBs+s`SLZzKrzNdd?tuSV zSpFd?B-@Wt&CsWL`7ME;M8+_GZ(fy40EA!iRT5L!%Tn$(jlIXMc4;acT+*q(A!(Ac zSjNe>W=K7=;IEdzJ7r4A|ARe)-2x6k)a`Z|6m(gz1`N6313b z4Ac%>gwM;#M}OaaP zz&K4@^}zV;8YKHlW6W-Id0~;$=w8lV+3nVD3(t&?eLWTbSonoOqfVtN^{qCnkZ4OYTv2%)ADwJxSQ6SzX8}<|}0NxUnJ*Nob0#AA0SD<9Iiw>69_loG+ z=YINNtDqlEXO1Y613h}Gjebfnrs+AALAWpR}FFS*A%j9@oAzX1}^UgAnr^4x^Vr~)Xjritxe8-1LYi^rKn zKVB!K2tZ64b)^N>biLUt&t3nmnMh~&w#WDVjBOVP1!caJMJ0BG+(Y9DLCdL#i=%7l zzBBr6S3y_T+}w+pq@7aC*%hBw{;li*SZtX*m^JdW@Z#tez&BVHIoy0iK}@}7*5I>r zh-j_Bx5qO&S!0H6qIV9TR<6rc&ZmpY9ux&o?d%|$=uBMQdKmvD;S!X<-=7PeWIU96M`m1a*LkeD2uZv%}G9Ilu8}cGMtt`R(~2B)z)w#P zS!yY@deoPCNXt}n6I6fcKea0Wm|h-E(xv))lD=D<-8jT*>GumpHm=sB&^6NJfGnkT z?1>|9^`@?*Hv zwtk0vrX!Vj&^YEdLcY}n!uslbwO1LHB;cGuVghl27v5j01RG_hJ4asrsV=N5w~LH4k>vs< zN6}57(5kyT$i>~jgLZufI?X;|x6lm~$>=_>-K^%&KGIa6dc1+lu*gBHmR`K)J*j8X z_j~;I{1;m*t51pxTs#zk)i!^a{8LjEv-r(L+4|2)cCL%~gV~=5;q?XRwBST9CXIOo zDpz?2DaeBqv;!rX6BW8 zIp8tn`6Bzm%|C+y$in{(`?3lB{9i4H0wo&_8uAoN@)QDVC8yIcq@Fy*mK=qsRh|qO zETEUXB39_$a+yfoAei~lTLssKA}fp$FuUSP|@Yr{;!q$(Y?2TuQ7C!bIagftN9l@eQD zou6M+rGByiRPQr#Rno&?i0*|!Vp&rEWPewC62!u4NY1(4#A*ZG7A!EIFxwwa+~<36 z-m}*&u-oUI_&>ZcU*HE+$mDf3*iTMoZjik+6z-3~s$T!_U~~M}>3aRIQ^N7j=Y<<= zPf>J9{Bl0cf%0!?#B8RPK;PhfiyVvqD#T;vS3JYW~TqLchcJr4{6wj$f;3GlKY6AeFmntFde`s*P>Fi z=c6t<7{11gUb;2>6vfYPQbIJ0d1`+59eFJUQ`)!)mFLA4jeu4BeMYO5@qi1Jd?%;B zU40HPpSQhAJY0^^#IU+!R)ky4PJmjG>?KeBURi;J2cx1VLEIQB%>12`(w9nobuO2G zN}imWoj9rQ8CD9=<};3LVxhnfD-mZ8y?aaV6#-$Lq)Oi{ z+0h3ND#)6lHW$Lly`vVdjvb79Nnk5E>TspY`%Y2Sp{u@YeVKzRBZYUIH1??8Eh-Tk z-@9EllI9Xr)3dgAp^F6Un12hGxzy+3y6K9uxq!y)cpj(sj=AA{n%5+hC4d^31;d27 zXXs@Q5~E1fH9W$7K>1tNr$->LAR)R$*NM$=Z_7OfAMqpL>lG*BrsO&v^-g_t9JAvG zg1PAYyrbU(d%)1Zu1``-Mi9-)j!y2EmCm(YS924Tvjw@sm4D!c#ER%$eCXC5DOlW4 zs}V=zU8*a-PT>_j~N{Ev@CkElhKR#W1L7>KV zZ4l$L`*9@={9y-@+kxH7Rt|0XtG@WpK1+mdTKtV5M>wLKdu2?LstqgZJq(*bK&7UH zZR2X%HLv5Q*TA1JAgN{Ccc^iz85dnL42{S%^N_rlN5ZH?CEYsQd2o{6Tjw_Kqo913 zF!V{7$pwStt-w8En#_umpuQnlISNZ9wc;{>q+TdzP1FXy2S@ERIDSS#pNW?xsue)K z0~^Olnbco&Y^uvq=n>hFtVP1h%W&I72qo|MjhMi^0Z0F~%0G`>PIzQ71S`TBwehX1 z+T1M}j5^A81%6diqoIZ5N=tR9^q44-6NfPOa@znMc;bZ<0W~!G+Wz!-x|FnNyX!<< zjrjPQ_?VGLy+`J=w`1nnS_$bj?~G|IQzMAz;n}Ui+Q;Ld64MlqBy=j1-7&_96NRuwTLqsW3 zl`0)XI-&P^ckr3#ecpS|oH>8pnRCtzm>70hd+oK>XSHwMK30*Zro2K4fk3Dg9^O-f zK+cFlASAC~K+e$-e@P&52?z*8{<*@vyBaPD zgi+@h9nIR4wVk*zPOEPBtC1H;*>B&!uuA&z;gdi+uH$=WEC=k!wz!|Kk{ZetTr<2o zP5IB&mlx06-VA?@L}KAr&(3?A+=`7=(yo{3{C<;*?$&p9)9pV;Zb?T8o=#e`)uzG* zGlCX*%!as!;p__G>>OH8GtPw)-zf~KlQW%u#9>F7t2P@2;}MY{a&vQP;v7H&So%ZJ2P39ksWICxgGVL#u%u8t`U z6bd4-&2q5l<;HCrYGk{rx2nLPi5?8;!HNCMi+%h)-&iUBC;$sTjvd=^gH7gIb;@vI zSIuE5!q}Ta*qfH|Wi~KmuA+d5KfGbAN<|?&91j?l=6SX0d66;67^#X)F(FuKpga#Q ztKz(i^PJ$Acr?+-yd*)f>y2N#BQPO0vGc=?umh#d*wG*VfZw1Xi~;k1ykO ztcL2SMCnAS5VRhUU879hSayZ8XmB-Zw^yAORUW z%v4loybx&1VAL_43wg!O+7nBCYuuVDs>yBQ#l&ZL!;t;lbWmQ+73S$kM#99S=(#=6%LPx4O zZjxA2#Q8vdzWPS^Dmr7V^(MrxLQWF%7vcJ_EWMJqDBYHRsVCMWjf+yy3W_E=n5HHL(ILx_;rq?Oy0%hZl-Ujh2N zf&khYsg-=DF6vnE&_s=-A)x$n-5LRb_Qb87*QZ-;MocYi>MbW5TwuP8VMKyJxnuPGQ56MvO zzbg?_dWJZ@JA)Fvy)Y^$c}Bs>ywi{+JG~`S=rT1*u<7||XCW)(QX|4UqOOy{R|d*z zZQrhk#;Io1v+6;EsgYEJK^8i97Y+njKd}iJO>fM57KHEX9+|?BB3R6=tOBbiZr*1f zmnyq!-Z7In$nm)_I~mGO=&Jhq>lsicO9Vy_mXh94X7WKVekW%rcYrYAsSv-@W{4~7 zIA~0B)2D*k`O;f?QFM|+zlEzAqM33C7<2&59%}2fze)UO}gT1#Zn@$`4mEVLwE4#IH;;qcb=?5SY z-KBYFj+u8&VFpULLSZcCdX_HNv#>byl(oM7{>T+IlE>P{_$H_AXcD1ej};Dup@Ls; zfDLGWL0Tiw^eeSPEp$1tP=efQYQ~tO+4=9?kSHJF~4z7Di#|{$+lQdmM*ip=6TJ zj&8b7=&d;8Vi;fGtbkh!1hcmLVaUkPxIgxLWy#g&XrRlFb~?=hQO8len0UD!$F5*h z5*)q6jFu!roK;dxmJsngjuH>_eKJoNCa4y4-49PYiXj^NSjTgi(Wtk)axi)%R&e`6 zZ5`gU=POGmQpmY!+z`j}u)}oi2rjGTX4ms%xP81ZPfbmVj9U)&#^+?j(_5RBQ$5WLe(<_8R1mLt=^bf(OW35`{B}J_doZdlZtO&2;v5ot7m4-7 zGYlv2D0F*$C)(`xebg#s^&!lFZB;VsyR`GbxwPx-I*R5Wf6z7~2GVzQ&io-M2&JT2 zMs6uOy4Rg$x@+zgP#^AQX{LQbefVtuJBMB%>S>sp(SjBJmYS4!RFSx5{RjT)Xjk!L{>X|G9?$G^xFVVE5JNEWCTehsXN?n|NJZKIKRGR{IqG;~& z-EHEbT10T!?0L1X*kGu&azQ<3?FzYCgm)(?w?aq#S_%Sf>~`XpHZ%X6I^oQrw%ZtO zw|$bwKfOB`XqNj&f(KVU>AZrk+4zj5z6KvCl-rG0%eDCjO znkpIR9?!l*2}9{*VNyN^vM{vs)(E`87;g+|Y;2Tg@mT%hp84=}zuzXE36;W4&%@@$ zODw?Rg@9kMN!tkxeNC9b9h~ibm;oefj9Ef__UXh^pSN_JO_v2tmWtho)MoLVMe=q! zP!BoMJefCJ!zQQj+IX>8UNz#dv`!=Z&yH^hQ)s}7{(<;Jnx|ga>B-%bPhG3Dd#@}l zjpn=4dj|$gt1dbUl97>7u}H>@jEpEnf0WWc^~ku+NAc@CGBe})8bHg54V|~^RsM$1 zDz|1 z#1j|dxrDyM{XACOk=t{Bb8yPZ`57(@!KS4paV&92T>kiI{3P+?$B#PJ#aUTz6PUaS zqk8`m;;}D*^gMGtnY4R*dyvifo&aAc1?f%Kbt9AZ7?L{*3TL0`IMU0rxU#Q!uDHhv zTV09ZR5kh25+=EdhvK(uxujQpX;*irLTq+oO_N-&6Gx((aFhMoHe|#TX5{AwgQH`< zkTF1317r?;Q-j3=iR}BX>J>gSV{)}m4!t?|GXc|ZR&t|Vu-YSU{9tS+=C;{|spgQ` zIE#D|{huH2GXa@>={BE^W0r_I$6w*o%;Ju7u3gk&a+&Z|iWjE#u_&mGIww#QN~bCr z2Bnn@)jM8~Uir0*3}9+_|4jG$d3mNU;T(z;zXN$%K7S-#LqozF&9{!qP$95YSQhbxPQ3=-Z#~5wT+S*VEI}4+p%D7(%4?Z|saZ zvySgJiHL8;)*o*b5dSP_(mp|?XSB-krT5X+#Y>lNS@iQRS4`2&bi_C7IFB|8c1eEC z)hcf3?3@XfSk`Y0qgk07mL6O{doQj*8I0z}vQ z$WeNyvJ2(DZK>=hSpU1gSIAXseLHB;by#M33U!!*9%U;ez#V^3u` zQN~-ELC4|z$^Jk+Lf8^9pySL8h}7R+8kAi7M%SJs72oBxT};I!8k(h^dCPI3*SRKm zK-WEpcr`2DCkHQ`28|E@aLO3Ww8xG(^eDe{oqo@}FMUI7DTfWH9+z$1p0~ZLv8!Wd znd=<>R=${LJI&7f$jF;Sy4@DIGE@>%*ZK^;!Q5soTzSZ6E4nw^=3z@HXPQGU*2(hIO6? z>p*FVvdzuS4G~?b*>EA04veh{vbz2`&jNmFWDYS9b93|OpY=)P0%(ZV0&GI#gF-i9 zx)nIj%l=v(>J*)#qC9twiQ*674(1j7&|{)z!ZicS*O2%_j6z*=)>oFqMRZ%`TL0vS4HMkwaXH`~G@*`EA z)}$kDOC>trni$IgNc>$g&|_#53xo!cN7PD4dz{cagRlOCr`o^{&zi~{T;}8BB!cft|g*nWZJWh)8sViuhZ>PSH1A-p3o8gyHC| z#erhmsRzN*`>%+CTxdNi-rCx_+mn3!%^-kzJGeB_u9eH)8W=xVseD3OU^@{W(Ma6Q9g4|r(dA0|unKDOj!8HaT*nr-Qr5E^xH~$U) z$L=aCQz!4Wn|{j8W#{A!fYOM5aQxjB>^4w6)+auKUiwwYWc%&>FthzaR;FDWU-?b1 zLl>~chdh4_QCEnt!WJz0T4K54&5FmYM1sfq_mYy5(D?Yalf$kPOgpL>1Eke%sj&H$ zJ{}S*`um^$@AA$we#+-(&Bt}mF461{Z+BP#&;HRVY#wNRdX~)II zRcS~K)eoNfjA}dfQ$aT!7y5@YRFth&&NQ=nOBU20i-*V@i>hZRO{TIQ-I!_$O0BGn zCEmJGcbWoGF!T<8Gk`F6Z!=S-BPD>P^uG`R=ukfqUQlRq2(8TFO?f8UGXcy_ z2+l-@3qZAhM`>G60?0)YosF!_q@nESMt~rqGcjm{jF+ToqT?k-Var!m8`(Mezdxl0 z8v-1b1R%#;*OXX#)K}p3o=!#7mlc@Nye(e6x&(mQCH#YfgS@&mF^%sS?14o@0U1^i zpJyL)Tjaai_inm4`G~if*_nw=KG>4*^BRHwZz628D@_5jTxk=)q@I~ErW#k$tSllV zwDv=e7G*sm3IWR5Y_;9a1 zRxp4F?b_60gN7Y(LLR^Ak|%(f5EQ80yx_gxlZ=q|5RKOJ5=%ZgoQ)N-xCHon_;mKA z!_WI8n6K1C)UuswTI;a!vdYu@4Q+wdttPXa0m2D-^^E_SM>`~nS zuA3dvM_83WT6G|~iOy~KtjsaA`|JH7AZEN^5C+_$VE2_;1|On}B>MJ{UhQ&mOxB;%{grL?Vk`J-! zDq_Yt=;Q73dVr^92dE}z$qcsjjSb)4KcAG9l@t5G|@}3vI4)H#mBD$H8k&#QQ zF=Yc4=?@<2)R%Dn-G`$~#qCAO&@JBSMZJLJ6Q=x1@(iWH9AhFF93IZf%mQ{0(S+!f z+uSXNZ?Wj(v#K_H*g2EY(5)d=GGlFZ)}I^L;rC01z~u zJ+s--nx3BCTpEnXOmYhZK$|oUjB1_~|90^_NEtRuLZPX$o__?2{+U2ayBeo-e ze=l7o{YHQts5uy2S&qDtZuK{Ryx>)aWpo}-q!a?A?jPyef%u{5)z53dn!^ln8X6j_ zK;Zp~JH_7t=u0L#I6qV6S8not`t)f6nDObQ;;xMJbU&geGnX1-w?Ch`F-hwkbFfmM zoD7^T?L_+nLb?6kbhNs*c3Vpr+a8eg9beg(hKG`IW_kByGQ z`jefL-LaiId4R>4{WnVKm&ki-v2cG#J#-(+htESbv4V^yq#QzahYn+mvmNRjiW9Xp z9Jv)=3}iae47e{-p>i~XrEhF%P(mrMhHs)5G-9NghuTSyR)whtJlLCpO`<3{j;uFJ zUw$6lCeg#8>JYLw$V~jMo-_ZeTGl_K*Hh^>YDROOTSFM3rs+3GL;(jByY| zHPPb(H}{+14U+nBxNp&>!8CroUE>BAsh~D1I5F2G3;XK()tABN1aizGTXD99G`Q`h zF;U^z9rJUQ7(UdpVIPwoUfvBspoK7Gt9ytk_{0XjU`TAG2;P7LKSCD$OVzJIJea04 z!Ss5Fv8JGk0vc?60~@NyJyOBerjMq%Z|N1*~?p-?$XcinHM|J#Zf;LiVBedcEe5M(So!yi85 z2cPkWOAnZgo65pAdWLPg?C?XjNKtxmq&Um1jb`4=E7h^8Vx?G&2NFc$5psZ<- zn;oy-{~dS@h{W}#3ex9cy5k7h7z!#nq!Tt>TVxP)A}fOmyMBzaetuU}ASvClLA!gnXxsw)UJb_Jb)KqowZ@}zJj zkm!4{o6#bG-XO7%L&_Ki^x@rj9d8m9C04;JEzthu4N_v>Lt*F~p!BHbTm?LaPB!NK z*tX`x0KNc_3#G<44%4WfW?i_lKt?DQG1YVDmFZ6XN*hRh5vM+5`gkf~|7R4wz?uG= z%=}Mkdf@)CH`z~%S_0UcBG}bRt8H&CEL;xec}p|(lsSofoIPZpdW8O)l>=$I3$h5( zL&nvoCW?{7aas0*Z&KsmqVoSi)y3$J!`h+b>CPwc-CJ-$jil3s-2H$~Uy?=8FwxY& zWp}TB=55+lGs!s>qO1+Ed+G6%$ViAc`SF|H&+iLJI9D26qe-GksF=ka1fKrOI2KaK zi(Hg#;h?u3IghSkK#<`ex|B#>QgWz(KYZWD9aM(;5mVp5Pheo6r&ihN#?>7xOruIL zB&42n29zuyaC8E6)5^a6n!X{<*6KmvU-}~e{RgfL7$n9JX7JQajIZZDQ8vO$ME)L3 zni}gYYO-6G^?>+kn&(%R{|ju9-7OuT-t*;>Yvhc=LYT2MBrf;HcL%Xk4)8bl$h}?f z-+!^3REO1*+`BFxGS?^{e5ExDeV`s1pE%!r%Kgh14RNvgcN1@5Z=Ts@{=xc+#5xFd zEQ(!~nsE3);sV`$jw`e?wNg$HMRmrY&;rj!Y;#2V?Yr93M}$1jz8mOM(~W7<3ZVUc znCg$goD?ZVa}vcZ9)@hkp;X!(n1_Tw#HIwYx;L->%if($02R68%Viqc%~aJ6r)YH&Q>|9v@>NZUTV@r=ce1{AFR4_&4}*G*0GK@sZ(#-9#D!O^_&! z_{PE{(KB*EtHhda~|%I*wt!qc%z^Y2x{ha3u0YqUX>e zbZYf}CzLVe$`!WU7Xu0=CNRmDK}&TOKvQ*n(ON6d_Acx zNm$s==tn3bEOtm-^QmBCC7zkHjW^#V+hO_5Yaad(RkKoEuo#mi?>u2UQKT8;(_@ z^SK-?kQlB)D$(#pA34IUiC>Orh0h{O0dZ z=WFMlL`F|$6H$vmWD)}NNr#-tJ)@GN2t&9&!<%E&*=-J9{-mdC-o9N5CuQm_h(tfw zp84c3@iUWMriX(Fqvl^v1)`T98r=D8{8#%@x@OJljJWReilo?gB98}R7N%|Qj9&<5 z`S~tYetRYcY^(h=bkZDbn|2icU)$=*sh_it(nMKJx`DaDm){9LE*9I`jGC-{Cwh#h zR6*!`DNJ=!Pgs!)AzrKJ_kVBeS&&uf_w1>LAefruj%MzvtqdOWH(4(#j=BAjlM|Oe zf&J-ud9(oAOXqufSUz&5?}qpkr^^_lv6&1L6W$>_T|wUD+dYezdUG}iwDnxKfjn6= z^N)b_h7qb~+<-xjGXI|AAjOlt;9_`uCCSB#T2*FuG$Y~t& zbCvs9bWudl#r?0o5ZRNTS6Jys)B`Y=#oJ0qKp@9@bfADYxe(fRS@2T=ctJ>fN+6jg zqp=`*3F7#FAJJ&=`FIOYTaK%%tB`%P=Gyu?HxN%b#eJDI-9}fOLI5+GB1+KU6)pMJ zjdshQU|%%`6MPu2bkyC2>yOUaiMbis1hWiQJ8J9532r>ifQA_N)zs7k4kx)qG|gx% zpejs}&A6qGpKNZn?JZ+e^O})a>qK6eg@Ahh=yL;IVRfXzy4Z-HYBW8)b6?JgKaJ(PaB??^*o>m_{9E>Bw)xGU+5i(qIV(6 zRFbznam!%Gd3@?^nE=~2ZDN)WX|Jb6dl{2m&VLT35zBc0(gAoHX^2R_rD1>gBNM(s zyrN=uO!>#SjLoHVU>Za%ABt}xM&5uWxcFK+FnwTdcM{Ryf+|soI`RxKcnu_;io2^} zZ%97bSkAns@2e?E3y+S{xMiWh;hkK~?J0@NzF~0q!LEsh+jL~Yj)wX11KYZj5n|45 z$o()#PA!1`kF|`enXwgAfG^LSS}MuQlW*tP;xa^Q{s;PH{10?H{#M}nAt!N$+U#oi zIfcZJ@=sX)3M_rz@KenJK~pn&pcHHCMcGbrAt|-*U`zXd(&^Lpn0^&tq1=z=v=Rp9 z2Z%l+mn#U}2|`D$lylCnNLHju^cKsQ{aA8NN?prkQk`vCQoH3|(J0lk{3ypB8v>*|NKCJjk6fnGd&b8N53y!l;SIb0nzyus(W8ation-8^LB_aiu$@ zxv76*Dt2JNZslEDnR%+W775$_MZu3BW6sY{pzqyB$+=w$i;n0s8#tA?aZvc_<-@{1 z-RQ{tcsm&_zcpq)p3$Mq`=b2qeG3b%iZXw{`GJ6$TzxshaIJI^Db=#pw;v8Zw;bZr zYg(GeiCU-go+Kd6xTt*S zD`nzkC09*z@Tpd?Tc71qYGsHPhUyj&1-->5kY}jzZMRe0j|#WQfPQEup%85>$8G=x4>|v%o4P3?Mt9CIR3BfZXK(svE=B zdWwohTTLB#De}W`qlH7E+`)>i2!p_lBJEk4%R@Q;Af?V-9+D`Pt}s1MRylaEP(&og zn%E@ZB=_{`2X9xBqqcLR=JyH++XKS43mxP}pGwJ$y?EC4+cDn7{L7UEM(r~3IvX=D z3!9KH^8>(~7&(3zkhk>`hPq$u9v-_!ym(qbR=4is$mp+gUg@~yXH}zhe5xLU-HU() z>p(Y0L@X}b4kRa3C%zuxCEvbb^f*M8d`GF4W~ z*$HT?blqyw=)~O{%~GByj*hvShVvL+kBIFuk=kWTNrVR zswDVM8f!^a0=xmDe+ReL2$$u$NheBIappNIx<(p{5&9w6%6ZM2ku&y>>(ywMo;9qFH3D}nz2;^# z%YE0Zfrgi@l=j~{i*|qqagE+O!JU7^)0z8EjQAE|r`!572wRAekK|b#*;pWI`&F@x z9M1OO%ZU}JSa)}VTE4Dkmqm{7`cSLJ?%Ggx5byI^+v?13C7LfnBWR?%Ngf)oH0}*v z{9~dX6R+&GUwT!9=cvk9p;n;1&04CUGw5o&Y&a8&94ddaFi&r-x<*jFiYfq~7Gq|DeX=$7;B-z+bPp zCZ*cEz?{g4uA#4>SCbOmR`?QL^*%TE&UiQJe$=I<{ypGP`OjQhxDuCTW1f*OboeTz zt}u4Uf2LnQt*9)lwTfK0H)E_IH-8qmXoI0N%4IizTZjEgpCDc)!^tud0$hpCsu7(c zFLh|W+rIL#uqnr&R!S-7qbF`$?HvlWGwE&xmV-pCZw_7{s9OQ88tC#)q7;$d{nEQ1 z$)%G`5dfeKC`pz)T{ZR1;xHZ}4j9MTpke|u_ zvts{jZKpD)xO^i-qnTcS%$AYrg$%x^?m3Y@KU;2x)rs~6? zl;-_?w?C()yxniQWX>4($?BDfeNVsCb6}@pJurGI%st6m6g%nc<0p=a;Z<+5)F&17 zUMDc^j;>5JGL$Dp$SqtA_(aT=I73xQ>>o;9zci79KZhU1Kc3*5NI*>OCzeiwELv3r z2!<3Dd0btV9~~dBKf08c!*M1?G?z0IH{ZpD-Y=K&o*@I!khRvs zE{L7$yLAOg-Hw#YPW7aKw}RCM7xxh8NimNGXtB)Q)N-iFxOdQ&;{u48$@@gE4*>c) ztHu`)odHL~HNf3DH#d7WigRotq-X477KdFE*4M+ll>|5fgQ;%u+Sdf?N_~kWd=)4l znmjF%V3x3jw|46>UQ{;(MpC;%+0ByO*A+x3&+JaIP9AOu>U7Xt#{A3AL7I6Nx{O{w zmKLFBsVON5oQdi^VWil)@#iygnn}2Vg3f^$8L@x> z_N;UJy_pjt^}c;MDMnq#h|lGS{~$+W;79w&v}XGYwePtc?*UEW9E*!Sz3SQzc6f{% zLRpxE(6<6?Z7L`Ka` z5qh^YXvpz&mV$n9@du6!w|~AN%-;S8_foC}YVHJ!y!1!yX-tG0UrS2v&FJpeOs$l5 zi7?IZUX-%(O^m*Ieo*yttAh{-azJoQQ`!b#QLVqvawa|fJ)pBuasEeYQQ3K)nkC-O z_}kbv&Je@LA?>tugC&)3-}i0hW@nq;*OUTCp%tsErv^j7rJRsJ57Cyj9f&8qz7Zcw0t4YWmjf*T1 zl`#$Zn$QG{UQderf*GnK5BU&;52ZmJy*A|qSzDf-XhEU)_^fOTBj8G9FI>sWwfbPp z$*i_vS5!tR2Q0MO(_JS>cj~Lf&@^^$#g(vf_c$X{f*y&2y8SsuV4mu;d>!M3iw)G- zQui;}pC(nVXGy$z<>S8MC)nxJ(7xlPv2)tKu^l_I#A{bve1orrP$G=R^;%kg1ZFq8 zsyv!+g=g`~C+iI_S7WJ-ry)axx2;3|4v6lDgc*mfFuq#( zD=*3x6x0TOg)jStUvcUQ+iM4kIdiPl#>LYz>4~PmG)+Rq-0rP-_RFz1wdnLjV@CC6 z3vKP`#I$^q8eKQJTT`FevIJ1^0`J|tmOxBDjef}myC zBIOHkW?y=)SSGo8GK281(a|&rZIt|*#&b+jk$Z2!(>|uUCJyjwl_1!(+>=SJut2`B z@Ig;TbmwISp-k!7MsR}BZDNYzv>3geRON4Sytcr-oLrjFJX?@aD0Ztz6~&qmN-6Qc zp_@qnKtE?xq(;EHi|) z1*HB~oCMyA4D@39l1&9Yf07gP2hLqA17;zDx=%ElOKIDufptPv>75;yvS6YM*jb1y z<8VaJCQ_(pHmpyF_H3Cd-TW^bljdn-tSLp?soQx}93^O~MGpy}=ASLGg^F5@_~=kd z#Kmdv_Vt|G`;uA^mK@P2qQd$$AQ(~d%)ef8yOlfNRiD3&dr{Q88=mhq{slN}i<@0x zz0|$EcgE{5-#J!`lZ~t5bPR#*_=`rM{kari0gIa}hj)DO>p?|zgXW66(=|3Py~kv% zAz$5WWN_1c@B2LVk_Ov#Uo?IX*q)Lw4NkWiOp+SgNwgdq`4)0g=%Xi98_MEW=|MOO z!1PbLb3P7>)OQ{`%en^xHF!|Rj?FiT{x5?MgtgGflaIEx=5>9i)^{KRB%%&?F0ZgA zFASnUbT8w5NbM!=NRm!g>9L4I)p(EicwV_xQ&baIFeVZJ5*uRXE&_G7`zbhPjWIKV zh;TV(2gjkLU6BNA$d$Nj%6xpch2*cqX}<#cQYhB_YeZIEalcf|X-+`|c?N_?H+b4p za<4`g5uI2&0GLHd)g5&&12>AfxLUr?rFy5|170O4fJX89<{GsRqyK|lIz8RgrIHED zgKNLF-$RJjPjjG!0yqjnnXHdi!Vhu1{oNNT?e{O#owRuL4+vvA!`|$5b5Z;(ci3?c z13u@mxGCAVw~_R_{=QqEYkYnmGJymSi?}FPi zhc2X;*aNGqtT7;x5w*E5ar7%8p7};+R|-e4AijKCZX;H;yF0#_BC zo!z?{$y0!3J-*q~w{+`2gn3~<>RJEVY8y{%-76_mX6b(-nm4-~6d+*r^$2g?36U<| zk5@(FRg+yHtnLG=G&^?0V9(lRS5sH_X~*58N0ken6sYMBbq9yhCs9!kmF4LA9IYBc zh=>vY3&3C8W|5gaozT|&mcQ^~e7tr!p*3V20M5r6OFQw3`B2qJA?kxx2g5G`bG{*)?Kv%ow&&?WkQFu?LM)L<#yY4@Mz;yEop#e0O<# zX6;u^AJwAHw`Zyn*a%v}PB2O1Qu_Om)zuuyjeT*DruuX4L^w{6mi6AYwe(n74oD9H z|Gu33nvewLLtzp1;>s}P_;|B_;!cPn=weIIeQFcBQ0kd2&Bovu!vi>`{61OxM@%9P(~$#J^KS z;AykO>F)#ms{{%?gD(qLf*JebZ4$h0Q0xc{FIRv}fo%`l#@^x*{U&$kl)5_2#CXW% zg~LmUX&~P?)MR2VlKCdop(}jI|2iN}y?T!@5Vv`(Y^B%pMPb-#D~K7UTvS}PfGXm+ z_`U0U23!65%(RhJpSE%JgmHWlm$qzFLyhIS9hKI0rQ_lUZ*R~QJK@iGOGh~X=%nI+ z_v&X5v|d<|O675xvv0O$r zveX(xdMzmo_)#WRo7Nnh67PzZcw5ES7KcVIWLYtKmG~pGwuXeI9s-(eYNePnH2Q>= z*Jm4J;xJ`ajMU8YvEj8GObT1K%!U<>)Q7pd3Dp&_^wF;^w;V{vz~pbkEd&AAkhnQzdn z8y)TJS&uS+MKB-6a@x@L4T>8L=4ZCjY-bLcjZN>ViF2Qs(~Oi)4)<`2wmcfjWDgl@ zw5cxu$)Ky{jGMaR^J%>i>N8!cy{i{NINSZV)%rjq@ zf!k+K8^4T|U|%qDq?C5WmwQt~?@CcRSI9KAv@W<2%NC5pDnrM0;@b$2*iMR7)D8iO ztTux;?wDVpEJ_HqPVn|eHTxU6y5*{KO~HP0v>h+0hir%scM)^P46^!nT#+CVE_RF$ z%-hxkHmGUg%1qub5UX*!nwfFP9Lb^r=gegP z6%W%D?@xe^dMn5}HVl z7%hnW8nCVZ`*V^KQ~x_;Ev1C_tF}?+Ox-St0{h|jLzC(nz5L0ig>pw$3t?-M?e0gq zAVjGLx!J|MN5UDLB6&ADOu>96v0P4o?1mtW1Fqvl6Qe;ld(5qAf`5jJ-+a$xo8H(S z1&gDG`Ek&h6BV#*c;nw%Y6&aIJu0y6#ku6ju<;z_0f!Lx$~Q(_zMn`1}4Z+B5McFEQ6QBedfsrEY;43|#w>O{(& z@&QybCkOBpK7FXB!g(t?A8jAf4`(ZGHHq?}?-MhukFXzWn1Zu)DGO@P=$(j@$()Fd ztPB1sc}sF~$jO={{@#8@lKhV6iSHlj9r>BW@YZBc{94ew97Qjl9<3ZXg)UY*@FkW7QR}}anb8_}%SKi#) z({o`&w{{}Qy)5a&ZG)vRVZ2(g{C5(0ns(VgdkuHo(Q>P0dS0jc4$v7MsnnBM&unsM zVQaZseVC-EXkzv2}hR z-jpHk-FO!B-+tMJP(CTi{0dU9sH3;X*!P^*u;IZMiL1W)Zrj^+8Re0#PASd(1iUX`2T3pPeSEfe~OvFEvPWT{05@ z35tV&Y5ZCI6#gy#HSQ^~y+7+<@Mo%irjo)YoSx$yu|G+6m+j`|IXc{MFVB|av#dlwe-p$M0-laU`^4XR98F}Vf_u>4 zj<5^Q>pNz6d=}BT_@3t6v01;<$;5R366*tKGguvllsqpR6FL9-bl!rJ7!c8edo(}j zM9E{$j4;b0E~9b7EC|^OstPLoxgRM9C8rOLg*!!q^dqgJuRFT+_6M@L;#4RaSKfr+ z1V2wTG?sd<5vwE$L!eZ95Ks@{B*nrXKwa@eN|#ReQ8Tss=h1%`iNh_Fb=fZs~2;82MK8+LWM zv&Nc`w7nb+Z_t@v>C1&Te1tdTI(4ql%evgge!hA%Bv@Mu8r;Bl0$j(g_9S{7{{wG0 zH@~q0a@^_V2ZBlreSRyKy@P)qvo+2AE_!z9Dx(V&arO_1010@gU73Uhy56&LP}cK6 zD}Jksv^;HqR=GTy7WdFwWt*l`h8i|M9fGH~DwByE^P*an&8XKsIOuL%iLS%5Pl!(_ z#vZ?@bl5wX7X4uAcI0_{&@B|j@6{E#y8U@_4WAQx>_%8=>s*eu3Om`JdbE`$Th+xD3y}cL_jF;QdrNhe^iUK-^No%u+=p&Otih%8mRG)#<2k;qvBzy(C z5Aq@Tply)+A5{L>6DX=_LD=SqqOBI9s{>&$F%v)gMv@QreZy zy&+CO#K(M2uAR1Kg`;%M*n#vFfQmq*p83|3p4dbeJaTW#_fQR?c-n|yDCv1nkC>wL z*|Zp^@$jI!+rdqRF3>;2xDnFS&>(EEPnvRStj+W%BUBL?zJmD@vwZ{;Q z7Yr$by-6w>+Uqg{XyhkTA(6g-wlphVB$@cQsr08AqN!bVh8ul)OPOtB0!VBMz83F? zY8nt22eJ&q(ZhhLfOUiSq^T6%Te4-NtQv+r}pk$M7;fWb*^M zR@;1}{ZOI#lgy<#Ge$NAGUEcM_isYx;V!TsI#sJg5$8YXD4Gs4I>icwx6}V4`}!Aw n{!jlx7jVk|a71=aNDMrJwn8NGQ^6PSKost)+{>5MfBpXeDV-`S literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_19200.png b/Notebooks/1_N_horizon 3/sim_19200.png new file mode 100644 index 0000000000000000000000000000000000000000..cd745e7422aafbd800e48c04887e451454c573a1 GIT binary patch literal 19093 zcmd_SbySqy*Ec?Z!YHW-3{sA?NK2PDs0c_1C?L%c(%pSKz>SU|EiFicAl)zm4j`pS zcO%_7#Crz)-p}*A>s{;j|MOc*!i#gAv(G*|KYO1ERa22Cy?XO11Og#dc>F*e0=Xm# zf#AJ_5`rfsSxS@OhnUMlZ5IuDa~F4GCo_n$v5SL^y^D>d$t^cCCud80J3*d%Jp6ZW zy>xMLa2Ds~wf%PhkG+!x?{FXa2QbMMhsQe35C}0P?h6l+kOYH36!8@v{H5uUv^MVP zGyW|3d~2}1L0CU>o!fQ^-z6+l%&TSl1$8jky8WN!*y$nRm^g!C7KIM@ES z4U)ePP0Q=*y)K($yK~m7Iq1$I3(c2<+AF#;U@2wa)5%tq(2X{7AwS z9fgXK8TU-V5vpGeq7aaUiXbVTvz=e}SB0keJ5Az6Jx_ZzA*lyzmm zD)D2DTt`Q(We3#|e$06&{~1G$wZ*|`po9qu{L>AT2nc8C$q(b7phxI2AZ$YUr6C3Q zDk>>ho~caO?1l--72Smng(GJpvAjeL*ARL%2t9Hif~xe7;;ahdH(@~ZqhF-n-ikYn zN2?jJZ^~flo$v6GdGKy>PrX4W285zn;mCL_J@%&B)v-%swGw=Ieq{IX5P?wvA_Q6$ z&g=K5p5KC;#}ur17+nfAEDPl~z)VOzwOg6nGq`lZ_=|YVHz47Rzytb=h=i!&=U<6& zQNJ$pEUL4Z25rw= z!%oAIks|c4rd!wRB@Gnq5+0|!L*GFk1jMwj*$<`a*?W^lvM{)khyvCA6i#6Ho#? z?s=YuyMH%l4mAQ37K>r3I5677UyAJsp0~pM6Y9Dx0%af@md>4qCa7?>Mkd2cD&%mK zDAL-OqDmO4MlB0_a=R0sm+gS{sHb7y!s#&#VY74QdR>Yy46h{ct*swX_bq<% z7CYO)D{vAP{(>2s>y6qL?|vCOiH`VT0_e>9;K>7rRo1k7n}Idv5uW~j0&GHx~5kt29*N9!a4 z9Xz+#N04bNovn&0Ui%#E>o0azG*`jNkC8?b4STnJZD`f{ndL6)#PhbqH_Xzz+t2zn zzujwozq=UG=m)BC8$lG9b?-0j6L%_GV5*SrTR)U$5BV_*rlWX={Gog+|)hR#n{ft;v$plQkTEUL7M~oM=j3Hjh-YP6ybZqk(F#A`aW0M)^fH8`ftcq zi6Z$VJr7l`8$aA>SVK~nhfuJw6T~Q9mwWEURB8W~95O2hjbm+mGz{mrT-mY>^HhRP z7f{HOg)*}Aw7^E!>aWSRU4hRbRhC{xT?4oHdNB&1ieBRp<@Q?^w(mk!!w&k!q_s}rfuRW!CD!DL#-)`wSEqT-XBdk>)dxN>>#tL1~sPHycgOo zP2Mla!p1WG$mE|EZxhsL6ju7u9E3LtO5#UOGOVgw`Oc%v^71Cl^>A+6l}2E%Q}woo zVTjA2@>yq4ZPj%7R`Gp%f1xf&$`!a~#NkbSI)q-o3f-%y#b@|Rfu1bEx%X#Quqp36 z@VglJG5RcQ0=`V42DFI*MaAwEJ6zZQY9YI>Dpc(vvnTVw^4w z20yZ~cS-U=rXThkjqZHrJc^FXqiD*6w2P@uD9?CTMYTx%aBGNWg7^~}Knz&6PLIC$ zEl0ED4ib~~gCFitxE`J!Ekcs3zdR$KqNyjql^?^KSwpQ5>Ef{Z<=;p^o;QjfDfH6fH;UpJns$JHWK(< z!U_m^D=Za{kd>*m5?ky;prM_95tHcO;p)Gfv+@;|7?=x3HlTgsNQGo65u^i^1J!+F zM>rmGZ5pNCnNb`n2HiTjUp9YdB2bD8H(Sh%ech_HT zB-IAgLb6m-8EJU*JX)4xz)Be@EXYl-JZrT@u?LxPSK!gC-gXqSZA257>hQ%*U+Bw4Yz+kPrV4ZGRnRW4Yk#{uH@wBE4gwmn{97z!=!yghlhuAc^-y*0rJVB zp#DO;(vIQl*RQCXLa!-g^E#gLUPG8-_ty$^E5m+#l+UiAXCP#!#cd&)dU<&n#%B~T z9bBUc4a6fL91_f-;RDJH{w7Q!(#KF&2Qx9Mrcs4bg&}zY&ZK!vUp6cMs{RW zRP$VWRJ^$B9g#7I=D#ZaS$tM>C)2aC*!seHl_z= zek3PH0FgQV5gzuE`}`>Nyq%_DGpN~av6<f4Z0Cv)x{|q-<|;c5>92AoPYGfpIuLJs_}ORo<$otbbeW zyx1@;IJp((?y%j?F6cP(V7+FA2Vz$>O=x9pjoWLSffpyF@noJ?Y(84!J$S%$e%NYh zXGeHl>K-PXsi!ku&~qk~UEKGR;ra1kJU@a^BkRd@R-zrg(cW@Dz5AG>p67hblZ1Pr zO1$;a@{FEH!2T%5Sq#7bnGeLS;mDk)c2%HT>Oc?drj^|Pu$iF3`(&$ir(M-A((-3k zvD?}U>8(&zKHp;(HkG6yuQ3Mqu`j`-bnm6Sg-b1Z>`q^7>|-a-Q@9GN@B_fNzk7TZ z1Uplt5?6{EQ)0NZoW5M9!EMfYf7oK@8&{Fbv31(6$?trCXmdfNF}~b-P{8lRL;9#) zRlt6t&MiE@u+V&ak_A-hj1><+)+?>sQ(pQ8|#BL5S z2XHK9YC42zeU~C3gwgAt`Hnb2zz;C66X>NFXiZPTQ9EpwioPM#-|(h09tj+=GFZl#g?{Ey$b~I>n}3>yDT6CAZs{eP-z4x_VNvF*MvUns;H3B=sDm)qS#g0L`33NS8do-Q#zOX^U3p4B-X25 zVb^QP1HciK_#8PAlE6L>^824-Cw0nRUK2F$gnX!|hz%ql+U^wW;jR5cJ$Og#dwR^IS}phfb3Yy8U=a z6Oo##>gOj7#Ks&bgyh-bEJKBNCx5HMh-G$pihqyPfy1D_`;Wf979fnCNAq#Y9G4%8b|WN=PJPFpo+~OT{+ocB+1*zd78^mgzzV5)2n3h-%%| zX8JT#=SQrI%z!E1UHTa^dAjbNZylcGs>&MBud*duPH#STg&;jwiaW$!1*&CP9UVS#fdGD&VDmSa9UT}gh&OC+=cNMO;* zRitZV?EQ8Ub!uEVvs3-V-@y`gItK#&4q&`@)Y$(u#{Cz=8S_(${PL!=F_{xTp3rTQ$7a;#DjV26fw|-b{M`ldW7H zIjrMOmxzX@W{ZUkc33mc>HA1+qb&4|3F@bYW+Yjp>eJt7i)9b|&PABOgBzb+bBW>W ze+#hwKcSZ7ck%JRa4Nz(6ecA9o_l6YKZ7Ul19nF)4Crh~V zs7fE1u3#lL>Y@x!W@tiAhHF0=)F&uJv8|P_EhO460Ba?a<5rW$xa4qjgX*{EKRLnK zR1$P%oWZwb_lb53>7Dq2)2^;ApskE9wK%7|U+cd-yg#;8Zd@+3hCIvnFr&uuHhF+t}_LuM{mtYp58X z9B$#p5&6EwT4RX~5Ag*py5~kG&)lq~=!9*Iz%-wffcGhCJQK%#Ehf7&;wHi^*Oef2 zKb@u{TY8VPTXdELko|My<3n-H-`JQ}Dy`sDq|!c;-g$v#qUXKikg|x7(ALx|asixi zUFb>e`BXXa4Mb6$;r=HGpqJX8jqr%6?@ootoWS#+f0}8)t|Nv^%<49qh)*^{WX7!9 z+U;~J?dB0oSQzm1Ode-Pi$~)deyurAKUM)Rbc8b;z(9#%S4$7X7v-3aDGaeAgW4sg zR{(n#Vs-6?^Sh6B7I!|``&t*R*?!Wib}CYv0b04LIXXW--9?tePyZ#ypR@=Fcp zO~GVGL#@)7+R0P9FtG(#VfDgI>D@H)V&D*Y>UY(p_i|OsQ%W6YA2Ir$I5K)n;epsE z_|=KZV{hkwUIV4b*mWLveMisJo0cXweX?WRMln=%Elh^du9~&D%wk#daG+A$rVw~3 z5F+A-GSV}h{*w0u;RY^Tf=PMZgOE$@QUD)rx%O7=>C-RU^BtbRyL$o`rwR^5E`)4; z%(=%`4y!72dT%kwS;boS6nikaG5<_cQ_aAj8@N-vs*~-G>cg2gx(AIb`WyIDb5W}1 zKv32y99N55E68dCTj=SNEwMna?L%B~R^sHByo}YF&^EBUjvMs{_zuHnaa+|rzJ+^3 z?sc;arlzJ2O;^}Id+scp8Wg$Q`g7XZey7)`F$qF^PNp-b#xEs^R92>09lIOczT3UsR6 z`^l*Fm_9R0p`kea?{#{6{JdV2jY!>{$Iwk&GekS+S(9%bG9|y ze%ucz|7POkNpJ^GEedBcOS{GMm8_!o%`PIv+=F2TyD?|g+kGJH+&CDY1A(L|ID;pN z!f#>BW@ct5TjBn5INb#PS?0Z@rvPqNk-HpRT(gC>>ofWrUNpcfkkE_13t{qmU)gxN zR<|g%F|F!R}8ZY3JR30qerf~5iIM=LYV^$A+G|drwU=Sm2yyxK#4%f4_6LN zQI2P4BMH*JUSm>;r9iBst(4+;<_~AXH^#nHj>o=NE3(USlx zC7?yq=H@@S@Fs;Z5zF{}QnJv8Xr_P_6I2YEJwUY;CJ#v^^c(x)sTD*)9ZW%OH(s;X zMs*jr^xw|VJP8lOJu!N6*CHF}%b zFd4k*@++8}sT-uTpRjOG|L-025#SOiD7^Cu{4OcH4uEMDT@C)=KT39u+%c}d5to<} zb^U-EJ<81@evE}2^eZ}@qNy2uYwEUc;sfa4hxKoND5!6iYl1YrLWy)zdqUzP=GkojLC z2}j=jz~pd~kD!Vj$;XC)9f)n*nYt4Y!7R@>oyU4{l=r|JL9)9(rngfMHWC&w1u=CokLK*x;ws2bVIml?3 zN8p86xDtfq>`GhU$KmlJDX7^ieen*jY(`Nuy}3`|aMaMOaY3x2)`bdgIo@*ljD00v z0-!JOJnTkD&i@Y!Vqoivpxg%-Yy1FetO7N*yuka)v8(4cP-MTPgjvUe?2}KE{Re+oAZS6ZIx9-@P2n>h4c@ zNKc`mnQ}4FcoRV6h~X%F6?_1Xo(O)H#vJ-sW7*Q#VXnjG!>f=~$ z+zI!>ONjssCksV~2WEn*65&7m4G9RTi&odM z_CLIkkG|v!3=_sg)PxsC>uQ>J5#%qm{Q;aVxOlOL|9wT%3mMS?m1A+3%=^kn1|iZq ze*nY9P-oT9<9MS^Zj4SV+ddAv=~rvSE%W~1rbQS78mmg%o~R0Yq7s|@n^iBVO;EXo zf9Z4JB<3<7>?PhhC}~I_H(jUJ?h|~ze&~QI_VKq>PL-D8(X0BL$R+KeduOG}V)})j zlt1@Mhc&I*`)2Pf@=7gS?v%j;3XeAsNh!c5x~e!m@z{) zWDjrNM{OOSmiKEAgpI#=aXb9e5T+=_Gg&^?F0Gn%B>w_jjpLts%uDuk33wd3z_;yt z`fy|>`ZH`+&X&ykribdCHbn*ugD1;k-mW-v(fbs`NMElFinN;? ze4L;FW{yn_oW#KVs~dN`y~xA%%Leli4ylqVu#phT;N9s%xUZ=3OQx_T!~2gOJ$9|e ziHsMYw?hVvx5KVF9C>?+9PNrl(ivV#2&k11{nu;;D%K7()Qg|hnKJVh7ER5Q#&mkS za&>Ws-Y>ev9yLoy!OP~zY7PDTH+vzl0c$>#;-W5x!)0( zAGl+J5+brUXwh@#VO`Te7_ zn1GnGjh`5&CtlJqp@GI|f)*^Q*De`?^y78M-BXQ{2QQUPOL zaT{R64=0VOtMQ}(EAcPJaNjFmy>cGB*JUyG;Wj3giq(LKTF}kt8tc(;ZqAmJnizOBYjjVza`SlK>bXs>$U) zud#QY+kHxJ$j#iVx^}t~FHpc66%xm1rhSDnBnIY%JFNDzYkwzkjZhyb}theXd8YZUg6R%DNG8=cXv47p@Ts2!nnCimj7u;60ecT zeoKq~=j?KB%_ZC}mt$7Hq>&B3n%%S+e%AU1_a0BNWTiQ~g!Rq9mLx{p=v>6H^YME; zl8rc3lj95CNCo|&-xU3$97uGL-SAhzqP3}|!HS*EJciXAJIM9G)?CE(dI=Reseo&z zq>?y&(G&!96Vflg!;?R-vJ5R4dhzvVk*z9^H-2~;t7no_Axekxo2auMr|))Bl_sE0 zyqDxRpG?t?re9$?#jMvnB&(ey!i$D5g*9v?0{HAqKf`q>2?eZWX2e7M zgqeWMwJm_TJRw2X!%bPtInLI&yX4c|aqTPUDQVBngm1>iT(Loj$IA*ZH_; zWn*XjV?`pq)`knLH65c|`{ICfC9!ADnDxocfe?lE?}+B!jO75z3xcOr}T=5IAP7rnd7SldWP-b2t9tycR`R4c9NxLO9Y_O%jaEde^%ZX|2BUv|?~{EL5Gto6dOC!cB%CE9_-N04TOEiA z!`|wb2m=z)J~%~HPBFzb0&_b4OD1W6t#Wgk2`Tn`Q6OM zs5lVcEpZ^w|9SNzPSblD8k|+9iYt;Z3oVV;n6WetGe9s!>yWw3#{!NouN;ZRa~5jj zL{plOe(9^2C`{~m+d837V49tw zU<%g$?6j} za<1u?Ypm@PjJ~uJyr~qjuk&$`8(GS~a-P=x4}Xc5H)&51xBc4MR&TK4&4d>anA-cF zH{Fs%(~*=R2brlmoZv2?)-jjCR7~OpB;>_1Ex_R2g<*&V|3p2CQs`siIE)S!WgBd?YN-5!pFY(9o z9G2dDh&zx^AkoR}{331c=Fa@^?5@J7jJ;PNcNHCT*{Z!bp4a zWB`rm3y^&jMYu09*<_JybVN`49*i&|OubzR@*}5P^KAPIh7Fn%7=-Q`l$P!lSJv+Fb}9rj+Q#CA z4u0|7ZWH|{R2>)5xsroyPCl6eKl5RAH1)gyLi1c?wJ68Zv@0w@SV_p*t#5N|B>7}M z=kwQ1Ff$g=RrzirrPqWL^M+UfR%geyO% z)wvZxOxMD08cZ5Ar}s-7+&sotdr{`T5q|BISk(N!$zcb2M$g+HXNmM%K;}p$>t;^a zO2RSs9xup#hz607F8l*KySL`u6fPuTrTy89{XnKMP&iqpt^J$PgGL;uADrU@XU5K+ zzmq0!tU}!!C1)l;ssu#gqK6`b=eq0%`@hJ1iJd0+Hi+)a{iO5uUroUx&hi*E*M4GW zjZDoh1@CqtJSOpj4>~M78pn%{NLJ!{fT@(`d<5vKPXL8t2Dq3GE$R-psV0E4WWHJ7 z)G;)u9i(R>Qr8)5t4S^gUM$Mz(|qy#=ulmL*icqHa8K_d>wKHSrQrYI{R8Z|P31VD zpgDSV*t?=Do`9Gdy(k@5Q{&Rd2U6|-8yqxrp`#Le(HDKnJm05;Mw_aga83F)hMkgOkfFj%$;VM;H#*saQqIGCzb?A`_eTV2y zlG?~*MhAR6u*5$T`V*(!koAC7;U9XVw({Xfx&XR>6%Fm|47=#Wm|uGz;=#XYLJEXl6isIomZJII(qti_CU>FOTKHW}cc^1jC#_#QRyVIk`+h~YSyZX9a z-8D89n{y9upPV;AFo{X37fbBOP4=nUcC+UwN6_L1n=@4F1tg|Zwax*f3xaurGE0Xgb1X+T9YW!wjtE1;EG$K=#Q^$)ub;x`p zSe9NocZ+QTINF|0?7E6HZI-I)UG`KGrC67-*^jorB4pu6&~mesTPT-|K>v6XMDYkO z96u^Rh#%8nyT69w-yfYk0s!FtGhk%$6DiZ=Zy)BE4rl4F7Fe!sCZ&(vJ)Scw4`u}6 z(T#btr|+T^{M^_)+gW8KqE3WI-HH}1EYtxxlT9|SolBu#445NX_OzWB&@!hQ=|u9b zLOx4M-+S?iY1m@tI}Ye2yj*S{YFAP4G{6`=KF9~r8KEQW=+k?Zf+$`G$Up|a!nh=` z#D77j|77fLhJlg2>QC*cfjdNuv`HPkL`AIildcxneMqk;cFirY%}B4{EHhW125yx;XX{3@qyC27*1Gxed^zud z=g%p$Pp?Vi1lxM@Eb-uNm-jhSQfhL0!4)$-K1;quMv-?jc6rZ0!;14lyqX3A>fgx^(AuN*GB5=<79Xdet33DB+C zUoeKl`kzrB`YhE8tcnKi44cuMi|OXFNvDD_;*WIMCUSNoj@c*)L)Bm|LoX0 z8CNPWjF_zvapf5jb@(LVxf!HPZ5k z2es6e$f$XQC#wRd({xa1cE(*pviiAP3tZ$CAjcpu_0Hv9PJy*)`^eQ4-O?x!dFj+u zBmv#KZ=!-~Z&niJr1k0(Dc>9y;{vfnp6;u+VFg1aZ-@*ZU&5tyPe+GNf)R>uoM3v9 zty9uRBs}eAj}@c|t~x{U5_CVXJ~Bbwt9nmGRO&-V17Y9o5>6HA zg-TK0H`1QN!5onpB6&FhB?49ZFAk3fHT0D)(&dX(A|&JEQ&dE`gq5eA?d?quJ7qCm z`<#q4G5$|K4*zi=o^t!Ar8+zUENmJMAKStE`g3P<_|8ngeWxD>p%y{=m$3 zySy;s+Z^^=4ckE6U9eR`4V9jT$|sHq}snC#T>i93&PGY)51&&RICMx3h?FHNSfhN%lyeLGsWD zxP{2(6*SB3Z`FR%J&j?2ImWQ7|>*-E-1cHs+9NQ0) z)eQ}GVR0gw>IS2am7D1n?^>!tL7r4g@UH2%kJ?XIit^!BAp6Q`xzmtwYb(L3$oA9B zhEk>4&+kw4H3VJX*2cxw4_HU7D04?BsWP-vS)c@_B3v98Jul_uO(kzUab*?%hP!l- zQ5F@K+`j2|nPfxj`;s#V_j7W_DFgcM-K#uvGECGfvbD)7OsjUCTt5v>;kZz2Gh1e= z^0)WOT_nSYK`yeLV%hA04V44T`AHQwX35PRkt$W4P;|N%GcYYX93NO$@WiQ9u)U-E zC8_;(i6BRJM|v4Y97F#eu8YUh)tTzt@5h4@!Beh+43(M<>0dvIx}`+=V}5a5T$l*E z3c|5yszvqZK8I3DCMZCehE5z*;*QmI=LpR{;gaII*v7ig5p?If*Uz`m>fI84w>DCQ zlj14A)kxjbHZBW=>Kek>=BbX5GoFVrPkIecPOOmfzu84VJ#Qz&tJGSP!IYQ)IXediIwI32!WH z_GpA`uUj_9iQN7>O)0gi&f;vz5Q@GbzKWgUgIwo`Tt^<(@T~)V4OfWTu**DVOuzH@D99A2=(` zVVROJw5_p>&%GnPidFq@Hk|toRgk{+GQ4H=pR^S;4%R&PR3`8@D2b4{`=WKGd>&YR zXB*B^HWJeTqyQ$Gno+apO^Crr3(dNB;I|PrY40-+X|Dm8Khg;#(%uEWdLjMi)049MJ08V@d{hvB@D}vay?6R}c z;*&Z_RA|Rj0VeZaC=G?^cnyVb_I+FP*>~?LEl!VB?Y`NO-AyO2^87&AV5D!XN$ad6 z8Yka7VRUVklm6EqR*#FQo^E&5dKk4ox|yi^GW7d(<}U7tSeT_{XxW38cKYG>Dp}ax zaksTU;n86zT4Wn6rCb5|hWHc1Gl4NLE}M}{W@f<9>i(A}1hHBXFs=aE5^x`;Uf>!1 zw$1$vLIQx6ExFg8rc2ZyXWf3Qq+&YK<|kiJcBOj+KlOw*VblL|W+yVy8BiioyBSN5kAZ;oUJTU0#{&oxCnlp7EOt$#R&YLKGq_f-J!Nx05 zs?_*gJ)GZDV0VLjXCbpD((Ye41jv=T{do7yh5DKp&yI@i)dVM=qm781bO|qBzO+lr73&=ulhx?>a=w}r z6;rG=6#>0p($=-?vw02wlhjj?Z*aDC0qo#NTI5>yjRm%*1Y88_RLarT&C(2ixXi=# z99`wO*=674I+$6L@IQ7{Rz#)iwiS`eZMxQd(>#oKwpSzEcpoWHLS|gmI>I1y(V_^B zijCyX0@p@T3+m}1qIhR`L2I$p(Kcu=)>#o85>k=4<~q`FlUk8ewH z@6cc)St^#k;Kk*SkN$63`%<p&*to%xiNE5kMXw@TIab*K<3zU%>JEQmL_r4}_ zChxZ!CkQcGxWjlNW@}ndUV{A*yU@LIH2|kPlcN;cQ`Thn&eR-a_e$367kT>g`vX_s zbausO+vPP4VxFB7i<%<$evY-LaKi6{u#+gtan54niq1Z%)<^?eMI*lhrwwI=sJkM$ z69|oUiF>3ImlbPb{)Gr}&>s$EKFHLq!p0AJ+8hZB2;!f+oZRA(vSqPg)E!yh{0FG) zEJmiG?c1k*Jw8W1oP8x(OHBQHxm*_&ahw%9FfGw<+Z6Et+FPf^(d)n`rE1jUkajH9 z9PH-by>9FJHrZYfU>bj$hDV2arLCsOv-0b)JKER{e7P)GJ&g5vRAL))_U^qV=-a89 zr>@$hz<~OzmxV`6a{4M}#6o66p zW_vx(kjK*WuEMy3&O2k3%)n|napKx-wW~LI8NR z+trh0|Ccc9WwB2yzEN1kt0kP>U5e+%(x8{41-jv5k;fIWZ$b{xVMY*oEE)BS2<-qn z>v-_f`hBApkyt!!r*t6-X963FgYqrHrlU$*k4>++)-J@h)UnovZ1pibn7W3TF_>Ve z>SOUvTOIvq<~~}xjEhgw)3XA%M=+<-KiCDC`O54WKN8*$$SQmHBQpra!)5Zs5-x{b zh>9nxm*c5|JTF9Q8P0#G`I-U$U3>xfPj1JYxtY_CK4ZOmuCOAziLc|Tjoqg`_C^4_ zA3N!x6ssuU=x1H#h={+&p{SDJl>w;NcslwRfXMUZZ=(nAsT=&f|In6MB9BhHvNZPD zXx>qC=}K;%y_FO%I9^SskftS|O`5w_1r3r3!I<=H-~tN4`gOgCSrzCNLU)cVDu#1%YHHsSa5xWZ1h(J?p8n#7l( zYUL$+x~%1}l({(<<#4Wb(4bV&<1Y3dL1uNmmzcrlgW9XRAA@#t<(45%hVT#<=kEU<0NYWizGHTn=Zmkn^pgsX5qr~7!!L^n1E+T~!tj*v6@zRilI zw)1VBDTm2u zNM!?+lM`8^R4(10E@s|qvQwpts<*&+d+F^vZ@ajCW@jkdze%=;3EI_?ns+|#tS+|I zHSzeCBnEo@eAb=yb?g3 zY&felyC)>yu-A}l%B0u^?hEKST}g5#n_H0m>#vzpsRI|^AHBv-%cB#E7U;`Zn_AK; zR*Wdsq0@Ff02?z5R?oW_J7^}IB>g>&na?-YEdZh=cKFD=CwTHqnExEp7U6I-AL`KT zDcVN>nv4YaG4g>7SUbXFmO-TeQu#6tK#T(CREMvh=G)E` zQl=v)$WT)ck<-CmcL~BiHoKz1O<3!|(ZHVUii=9H{5L9#u!RA4l^LcYn`uO&w#O#C zb*vh+{)tRLC(r#%$jEYu1g1pAeee%mP>z>2EvH%;7+|thcaWd?ke?k^20qCb+{aNd zz6ku*bcMU>^cL0VVOtM1$RPTvDHl731s5@m=iW1WkxC?Deay5D^b9;i>&k`aWTKfL z3I0dpNW?{Riff~iIclnrS1cmiaI~9BM(6%BUv}BB%f$OB&WQch7VKr>no8{@io+W* zADan{*!XBfX|z*%tpG<^GFv26Z>pF-B1}D7GvPUJ_wjS?x5WC_D0+wgoh&s9_y`Et z6@ViR2}%QcDVoHm*rpI@&|9W+pTXhT@?`NZavTm4e!ZN5| z8>7LUDA?rWm%^yNUws*RMBYO^QDIi+>=)5Gy?$8;K*3w(1=d_+TOa0m=IvP z`(dK_cY{-ytY9no94K}Tsq4fotK(+8xW6Tz=8Rzv&XTP0(S6MoQ4{?8S~o*b7}FRo zV_m3U=A*)OgW;BRx$&(Hnk3i|-5O_~SqqZXtA#@WfJkl69KY6#yUif{ zyX8t;FfYCJcU%P1k?$cW0 z5O$WO1#u|5)?t-)rpTWeUMmAEWoGOyqy9P{)qg!TvoLqS4B>&WI0ojcSI`^xXDjpO zVN7kouf;*AuIS3y3;*5vmGN;*Y*q>HeQl@l9Yw=G`-`TVC<;JyT=jIRrhI$H_xIi+ zMJ;@2d+I8ZYcLDAtzG|3#`Q%M@5hGRAdBZ~k8#uf?t*7=9QlPeXKJ?jE5ExrZ5Maf z8gTA5NZmE$4@9QaMgUNQJ0(1a?kWLX4O-6AHcu&n3;6#GuyhXSz$Tox9ta)2=Lt^iyI z*$E5sGb?g)Mtby|72J16ZmL74D>VDr0m-?G5`aJaO$aVP_AZc9>YY=HENYkl)>{6!f2;Tns;2|#WgOfkAN~^ zl2Bo^yy3VaiobvUak2^8(FI1H#31Xz1}=&t`I!4J<2buK48m4KN1+!0+PJ`$FUGau zALC`?ofD3M2A;M5ZZV$Me#E^bpAWE&e2 zK@l7)1Ae2VMS&gYX1~>p8ux8{J*W=V{0SX}oYPdiNpzeD< ze-4!lCjcOp&?&8F1Khy=Zn{-i{@%G2n$6X%yZ%$Nuk?>ti{As~PF&kVrHv9e>HUsB z!jeXTzo-Iho8_ti#yn}+DdQs51vKxkjLi~(XH8LD$u^o&fAq_;QHAbjYE#k^Mjf1~ z(ECHl>9?+LbE}SKCx|6nD-Vyn)t~W80o_u5w-WEHcv#Arfptgz&?x@FIh^h>bkjW~ zHwQFyUT6t}n&nd-0DsK`52519sb2f1e>2%>!jS+}mM?>zA9elLyM%uhRT0}b{0nk2 zO9kdwywV+zABLo;z%RjGr_eq`yPhS$$O)= z2y@^7my4+}uYqFM?`vHm!vkp;>3iK|GLD4S@K9egZ8 z%2jw@2!-@$%wWN*!B-nmO5oiqa7kKO(PG@FBBDtynsQ5bV{kXRu+EMlDQq1yJK9H0 ze*6kY_JcNChNMYwh1UUU?73ZT=!6ZRXiB1xeFi@L0ef`v1CF$aTs#*>zKa@L@8OVo zOx~b+Li^B474_q5rY`j@O6@BsJg0!gK*~t0IYBt2y8VDa;^jxx#649!ceX**#}#qJ zC>79ZB(d0d8QMNSh-M$L@#m{Py*CxF>0ci~&)dS_$7OoxK6-zZ7EkrM4oR>6DT0yBKWFAQnK<5674Uc&XSO5H~} zDtVK(z_>>1xG%Y>-gLgUnF!iiQI1rfZy$MLQ_lVQue>KGv3EY>jjT-}JPxJ^rtki` z{BCau%K|Q%pgjsyLED>C%zGLI72l@#6lt~JOYU7i#To{VbYIlTwbeN?eH=1^2^@J9&ys5H&tX~W_yV6Z}X{RM-;t>2oTd`7m3 z2P=`I5Db9@d+k^kF}(9vP6S2MCpfYkor#W<_~GVlYf2D@=Pwn#)Bnk9+c!OhS${n$ zJo2z3Up-rX5`033doYCo-Wk46#!s!x!h!gW`C;?|Y<8P$1a<>427Twl;6afp1K|kg z7cSp90(^7cox?s*mjIn4$+8loZs+B9h=0kaugo{%9k6IDi=PJCE3nzQ3m;I!U4MO=RXb_TNEr!PD2${t^Z`TFy zBR}!8d>?ne2APk$^ioIC5q)H!7bx2m{g3cQ2m#&5YOTodsgv|~{ODi`zl5ZMrSlQX z4J~x7#E*Rg@ZlwRW@rm>oy4$$6ra?b#a}-T6rjdeH<_o>VYBSx7XICM6GUUFV+Zor5m!MsH9NoK&kERV2m+;nK-nv-(+y_TgA4Qug_GoU zyvTQSvM^E=yFC57gxD$BL3ez1~tzkM;bIRKO8Sr|1oXE9h4{%pX9vm{Lr3ZQk zc9@`w-1;xCyxW`eHd|e1WQK2J5E4Qf^03v&ZqWR}xM6M`8^iS=q+xu!GW+gB#ax?|MTXAo2`K5t)jcO#;k5JDyV223ePlUVu zUpZWPa|ln9^?c*yMmrti@g-BPfXU*;C21gGuVNW}{%B^$x_k`IF@qqQ`~PWUaew+> p-!=Q&i2-Nv$3bV59h~FQtw+b|&iXwA9}xvnc&PHAP}b=0{{vV?J)Zyo literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_19500.png b/Notebooks/1_N_horizon 3/sim_19500.png new file mode 100644 index 0000000000000000000000000000000000000000..8aeddae5ae3b024ed0985f521d734cf3032328ef GIT binary patch literal 19037 zcmd_Sc|6qb`!7CHDMF&J+J3=-4m{_tI5pB$q0kN zm=QPB4PmhT@-P^klE~vX_yzL*L zQSNSV326zb3uhcXJw4Ehl9I0fc|gMbfrI2=FKasJih%Iq*CVby(y7{%1l<>*Rlan&OqU8i;-7tEZKX0seIsN( z%R6KydFFgx9`PByRyRB22}J|OR3;v*tWF9(iE?jiTV4r;6>=pDDGcV$4=m15aOGi@ zjY@+PRAJ|0SCRr9m<$ZIYJO(q!0sy;x8y#S-B;iI_jB*QXj(Z0gaCd*=8t*ozJQJM zf7^S}pxLz7LqK#0{q9?UHxZpT)}!!ev8LLX`qBFX+O_)Rn+Ui- zpgNhd{tW|z{Sk+x-TaZb59wW)M4)U5ZXbqoO}KKoB1yy&neu>AjwWWLY$vfl#XKo# z%e}6uM5=s%IHLj=TiIR@)~%b(M=rlfI+;Ak3*Tr+((qDTc0ihnQoZ3^4#=J5DN)(- zcH)JO;T<3Bg1}bmbl@K^xTPcVKx#>8abj4~s2fr*X>h)yNR2F`nUAVZBFtE8mnBv1 zFa&L&Klr&O_^QU5AZ2@rb1y5dkasXL+ojbz0&vT_$ZVVWh%ZBxOV5%<=Uq!_B-Mh# zMJ+6Pj)PPaj3}7CyQnERI*k+aBJsTREXC{j444XYAcnr-{K*Pt!c=bryu$@sz2$^Z zy-zwRPg%aP9*%d$e3ga4j)en_4EeL3sTLfrYH1jSe~b<4Mx_}E=)Cl-!TSpYYLgiR zbmBdel2S)e<12#pTD3Z4c=5wV-u4?)qYEs3xz7aTqNNnoq1(D^MshH>kf zC8SVt9>CGp2+vLGs?^)~bsY*s<#Zr>poiXw@x+E#P%5vqJWW8Spk-f@N z)g)u=ELMPGRf%7zUkYYIMzlsZZTEqtPWKg_TUa z6C&7?G`q6>pwTMhc6whBVnv?9nTn3q9y&*DLCPAF83Y4ADVWXTh9#*ESe3E4uLM%f z1`e%5sQ>+LB^xtzC4@kA!g`(#aC{_{pxUAmZ^QbsH_x!r;Y);4Z&_|Jf zNi|5y2q(o#LvABTovce4aj&1Y5~HFJi50^XcT$a6{djw|Kq?Z+AN}3J_N8Zel6}(P z#n9#p2(3Rh?lID)5+qh=O3>#Jjudf#` z8oDoi*-*d)Gq2>X7h~K<^Z@AB2~q-@{Vl&ERxU`>Zlj7ulZ!^@9h zw+nlg&xJm{RWT$gLL#cTWVB}lSsJ?dMDi62!Rva74+x{Iq9@2Sa&%smX4v3y) zWHv{QmZBqre8{6(?#~A-H$8J+)wu z0RjqX!npOq&6_kknHhO!?EXotECOSmaYxi}lHwm8`uYmG6kTGN5q?v(M8EV!AT|ge zb(P3>g7KV|V26PtxqGfYuj^t)&&g!XEYpm1HO8fPzM~romqn?j?z|^Oq@^hvSeEm& zy7fnRrc|`0z^9bOpLaup!Wd503J-NAE`;D4Z(uaZb&Oj9ALW$Kk`j z2{~bPrn??~o$;FSxfgQipv;w9b?JCB!O;uUbBJtGjZ(*qDS}F>v1~RM+kG++9EM|U zp~ilEkH;nitkb*pJ1p2pa<5M9emcpwpZnNHVkXfg6~Bc|kf)5rN%#75+fLi9y=}R5 zZm$PX#gPN)K;M%EJ1&(=BRZ1@D_-+DBY`Kh!5(L0quflE&JTXRA3Pj#)vY60rj=Av z)M$5~6ss0SAN!k>I&E5NqkMa5A86ck z`!2Gs*_s{`byoCP8}V)ZYpzS>z6idT73SncY{{~Bodr3q#qiATq_#qMxnmsO;Waxh zXl1~r4^u{LJ6uBX!o(Rk)?2$)8m9qu3F}HcB!BJ&+KqsZt-ED=j*5F&dI)+yWP1-i zHF0oqahd4rr`OijdL%wN#KysqJ2GN*;PHF#zaLk25mpliBO_xR4p-EjrTK-}Y|V1+ z30hZBP*C*z`L0(|cHoUD`q&rHaDPH;YZdM9-8<@*u9uW_>C&ai(KiX6j+9$iSOsuQ|J_H8+ zdCW(v9o6LZQNDReF+m>QnHWnSxIMg1!4E_9WD-rTHak3@>f%9>*1l9KXqIBo>FIh3gqv*d&@G&IDz)%;@bNP=tf ztu`@KJou$0ZuL&zu05)6u~Su&`e*C}-`Ypb3YWpREhNA1p&U*moIp#s#E#vQ`%&a_hVawHX}gnHoiV%oqL$;OdiL4AFF7VkVV`iso7 ze*U}{xG_B5j}_FW&6Iae)s1htm6Fz`ZFel3`-{4#`U<_kgbMI@b)PZ6+=(AQD&0mE zm6yNT4OO6Gd4o6a6PAaZEvns8Gcz-3U+tpv-@MVU9`#NEVv`X!e~WLw=4cb}SHpF< zN=MABq_@^Vc|le9EF zFzp_^kz!hOD`RJSey4wo;2-^UE< zZM3o7oZyI$jm^r|PIRJ@vo#4(#g^4m*@-q}y`Tj)>)@@W+WCeJXdj2Dj6 zZ$55Ngw9m}#Xop3JT4j_9;+s{BWh2A&Gb2_O-URi>avCM6ipKKgWwLO%;}U z56?l8n##|u;@SDYrZ@SXfzQ~;D3+0lsq+4h>%e?unW@%kOA?F?3=9ei3dqx?jV0i} z6|RKYoT@6Dl*_T=cLm1yz>(%yvdpE^>d9K(O~Pz5vU@cw;H zPEJ?>4Nc9$?Ck8>S0%i9wJw8~2sE;`McLiZD;ys;s}nl;|jKh6^CQKX|jTu??%te=WP_GaguNT5OR` zqj^FnVpOG}a?4L~zGn!jtsOxolPlatYqP8s&%yR$*>P$~u14_STl>z9zg)v#W)m|rXD~U}7AFkZO+zCTxWoA5Ww7ul8mGv*k`cnGcwnAPKYjWXR+)&!W=h$$O@0zi>jhda zO2PG)+Ky+X9oP)p3+tmY3ktMsSDQJEO-*wqCmkdCR2y6;I>!`$ynqiq^}m@St5fdK zsp66b*^-s<;6^0zRYt6?Vt&ifD4+{Akky+REMEc#oVqc-(?C*Qv8t@7IDhKM6i4G~ zsIKyo@o3P-tm14%k95GQN5^aBI@g76eub40bS0`sDAjuig;l$T4%*om7ZVjNXdjRZ z-VO*{ZQ<*m8?9SPoe$7dP*C{%=@ZqU4(>qe1?wmR#?WczYZ){{MXMDC)zz!ad@5Gj zi4uLOK4baO0YCXU6&~PobW(DF!b(j0&6Kr!{)m*Df~E)j@zUSuU|a~lS`u1fMCSI( zWF?;x=Tv4+aJ&yy>!iq{fC&cPP19pzwptAAitWbGK(n=0sh3x9(jX^gWaMJ}6PpPU zQOF*^npRF_?jnInw(9X9|99F=hhIR^!R|-@XL3dP=*g4Wz`LM;$*cv(z{JQ1O>~76 z7XwbD0Aj$}Cso#Mh4z(C}@1 zZTI~1?R}N3JLK-uRBhRWb$h{c{(+I2P8%uXn>i$v4VNuoz1<5PfX7UhaW)-34rFaz z=ZzXDu~wwu(9(8oM^eF&9U}Nwf$zZ*PxT`<1u^2C8(m*42&bFSg7Dol&9DBpO!lMsmt%0jL*SQadFIxkL!-G_1Bt zR`D3!x|L^U8)yPyIj`yB>g5GFI?oSBL8K0YZ7*g^BE~#o+ldD@{0-MTFDj}9PC0-=fA7pT{%zw@oGvOK8sfZk@8dDa()xNUuqH*|DFqQ= zc9jyqVN}g>SbN3@pa6aYXv-nd^#zw)iR;(M6UmRWgk5ce)_#rlFAX`DQh|OuP0PH! z+sdfCNQ7hYVx{$lwma(s!^@BbJ$Y!qwEgE3Cr_T_`HOj&b@m&y(xXY_o@?LR=0*)| zY$g})JE}5h`iF;yyUwSgA#C6|=11}RN|_JdsUyxjn^mGj)#|x_Xlv7A)QKAE?d^4# z)#53wApoEn_#2+q4a{aK9*>t;K?O$^%V=dxGej}$`JNpGHN6Pg;ugb(MIP$TwqEV5 zEUG&*NPN0}k<_!ZHNJ!TJJAXd!%(eP;q@1%GRjGc+N_uVgh2Z?JKksu89ZUtwNEVV zuYnO=58j#IfwYYij(nk|tu1r!<559j;lj+!i8pAVl%mSY)?X4O2LKeL0VG#a+}`?E zF`i~Cx&P3zGcNZY0fL*Ntxna44ZHO~KwG32{cFsBzAsmG3$?Y{u4)Q?()tfoIC#=OzkrlAB)bbT z$M&A1UZsq5cDN+qHw0S|PFR{BW#lt|rHs#<)qr9O9NKU<$Zh`o6zgBLXzdd!bi$Pn zdBIw=*g~)}g?^u7U*DEJ(iw+Fw-_JCgoC&+7eO{lMLTy~Fed|6_#9ONF^(n?ZX@{? zR3wksfp8plWrr&I!EyEz-I;U8Jk(E7tTOOw^MTn(u2^X`Y;4@bY=S7t-B%QfX<_Mr zdsn{*=Mo3Bq`THS79X5EIEvke)n&D{hdzhVim$w5y0UYzTmYe`y^ckfsF5SF4Kp|{ z5$YE#@7(Wq(;Y6ANyRE2-6jns zrDrzY2gLu?b17IAF)9VgE}pMTUivP=3R=p`zQ3&xjKg7{)3AdgV75PS{w7$jazE0Q z{$01)bmb1q|KE}pKra6+AM@-YQkG0iNFEe|58p=0RSz#8fDca;H;UoB{zXD$wphc~ ztzz+|ij@9j5Lw9}tJKN*2#y=c-*JU<(T|!ED}jn6E)}H{Ua93AXz-Qr3d}2@BX71M)t&e-F_{w%qTI`0h@GsHn3>9kNFv zu&)znf)uOJBn@q?M9%`eANKXd@-mXb0QKFpptU5z&(DwEN(LGj*8UW*L?4Nd7(=MP=FxATrH);*ZO2{gb<%$lXF@fd`_ct?qj4xDT)!TilsdSg4 znKME3cl_34z9+uh|B(|<^LAhSKbG+VYx-}>v$w{7CiD24Uk%=Xl36K4m&Zw?BdCo5 zA~DGv`Oaz29F=N>)xl^rLI_(gQn5_=J%lsSB^>RRl@u9AOPR){q{PR|ytLmEd;<8ZPX-f-6Deo z+zpH#xsp`#cFzS@W0t0ZO5UwJ7oCDS-MatF?PS6L%2BIGA}ujDx|1s(SF!4m2qm7+ zsJ+^azy8Jj0;_06_MnVdz_k-9u9HK7Mr;i$4BSJig2dX0xTcfyn}giN$;p-#E??-B zmw!u$4`Z$fq5k4CYA1Rxr^=kwHlSnj35PZ^;6+G_?WxS;cW~%XEF)nh9$AGTAEJyz z%zFD@BMW}dE0xsHJV1LWa%~Cx#@kwCsTL0vx10T%&eqZRtP?#T{F_33Tf-k8&&@Sw zxNCK`Kp42I{1^?gG{~dXEd|HW-l6AKG!=v1tbCi)x@HuS;BtX%=RQZCo{ztQz3w33 z=%iba^Aqp*`OgWR4upZ}gCgSOcc`~?f7-V{9Kbz7R@WxMGYmbKS%W-)H|`i!u89|=iNWQi|{;(mP!gg z;tX}%^%N`|m`8BJ1h-7cs;OvI*XnI2gxn3qb_KJZ(Z9u;UmyRtAv(ob`H4wM7E@{& zA=>wqdwu*$z(p;#r$VRzZ>$iDPXCh`0iBP!rf!(}ef#-9zfFh3K*z5h^Ecme9BFOA z%6c)%krF*4@a6u;-PAMV-lglFPRTH8Lsk?!J34hQZGjE`M{m~`Yua+6>Ir<54$2msXeTg4+dWbRk zoC(J@Cm|uO9;FLwyr_O)GV~`{7fE~IlONS}nlr_+qB75Ln(1?8L;6j3O5*fGvoSNY z_W8?1t*AcYh;-^DTcN55LcFk5Ipq0nnyDWP` zJ0yS5Gzg`0eg?EGbx}&6C^&fFX0psBoe15}{h5ft2! zMO<8Wenw<~EWT0cxfn#S)|Wth){Rv=tTkhw6-2U)0 zhETs0lHfL2YF5RoZ*Lv@$RNirD{PW@I4L&Bkoc60rDJlOexTL}jZ+xl1o#^09Dlzv%Df-<@ ze$ey79{K$ObmU=*=|FunSfki1@Awt>&nV`3)qSauXuJvJW)^4^As_-5xegsS=X=S> zU)iYNAEmSZRIr1F>ZhPNE6c+?QNB*~Dwp_e_>yAyMQFZ5;v1q%ra?&@7;cy8Uw4Ee zzi2TY;2pb!x^)Td2Mu}ZA`P6@$@dSlL`q$I!9gYbT3Wc3Xq!WxI*2f|x|mMoHzYLi zOV5gfrYG@VV~eqwEiNo@H_RF+ z{NaehPZVHW$8G!W_@On!r#M+FV`5Ha-5&%;-tH0`FjfXx@Z&O~{8#T^#RNiq#YBbB zH-%_Fk4(7h->~!Y!zmr^SwPE9pKyXt=4C7=2V(dx-6rcb?LaY zBGeC?j3WPukQbkC=&K#sISs+Tb9Cb~bgPDEZgVOKT;&fFaO_45@>InS$U2!JD!mhW z9nJ1fdO08}ZHA1&JfE^`u;_#@Vf>${0iTlb&CdAx-O}HOA>}=46X4Hq^uFPb$H_4% zIj3t-VXlQm&b<aKESPDx9{ z-}mQ#VeV);PsXIYPLH`Z5fA?Ku70~>eH?TK12t|}Qa*fj)cJ(yj>E;ZRP{+q=L6%m zpzW-tJ-zX`(xNiUIDScoXIU?jwTjsv<-de^+_eE2ph>7?u8aP#RCltx^xB(Gx|Z<+ z(xN-JomUOAMzdvxz?!_)?ANE)2~PLJmUW&-nvT7E0yLrb<$l5CyA9D#UY##(zi~Mh z4;gyihST&{_-^PN5|zoA&X8o*5g#%#FCO%; z4KXJkW{y3b^g10^;oGXt5Jh$&Kxr{(+=q^Hr79w4!V^ zti$}&80*i%f%7&suurwBBb}21kKKr#@7l1lGR+iX)iZFzTwZ(v#%VGm*4WK+M!s(+ zKGo)&!&y2bKVkcCfWkK!tX3-8CwZ_KOHM^sbLSV=peeO|g=Q;0pI`@X1R9kua~Cl$ zZU4ap{p2h9tM<|&-c+t)Hiet37|{|dbghiCG1 zL;m&u&cu)pVA(Ns%A$bF;6KO>JE!g98P|psM7fw6CJq-)r9l2Wg-NV3|BYG-qZo}i zq+C!iE{M1k3$U8g!k>FOoC%p_=HXhAtfGPvd2y@hh7+0b+#L7DAZp{u0Xoh7@bYe~ zZUQX_pJB6l7O+4`_F?6+u*Z6aE)_s_KBu-Pa7ORnTew~*a%55gCa7zCd~m>338-=Q z2TeZq0D-paA`+*vf%ddAWS!t+EB2j74`bXdwXF0};a3IQufumYPFbz#SO)O|g4}~` z_=zi=q^cez&R`G&+JM2d**STriGxT?iIcuc(c$T@YN%~MtT8wnn-Ach4_!Cul_|)q z>e;C6+5irlU~5&J{1n+ID_xkAflvdGO+{GTX0iQ< zfs3cH>edOc)Nc&CRUZF{?vn;RN>|!E5F2|;6P_Wvi<_I?@FHv+@glMxe@CR+)?0qL|lehr@-08ROgywevz}Gxz1y)LN3oYIR^GJ%up1vN#-n;JOn{SlrvmG z)*?dKVft~;Q)*GTIlZFUN797T)~4++4Im@I59*amR){F)+1BHMUu%0;(~(g(jhq5J znx=qxd*%ry+NNeL!<$g?NnxeOJLPqvXC+>VFrXTiaT)e9NknMq1RIZjLDVeYDoLSF zR(ATfPFB@SVVCOIXs#ev1dZb5e-fb5?;l(sAIYvqGS#x$d2(niTc&n?e3(WXQf9oK zq@u{L3FtDXd}m{X$z$&mX4Oj%P*c6Gf~V|(lh09+2i`SR@#eMTcI(-?kdhwIgBUjN z9Q-frn8Bn}8J4CK`un@Dn&E5wC|1IY6wjM44l+7TdQdd;Kr`RQ*C%be=1$tOS-%+Q z(=On=`f9XDAltba@xs0xiO~{a(_dmoF9uG<8PwkSe#>6C-OK-`^BE(9Vf^RX>pXcy z18<8NXw7w@pCyY;n(#*L$Vo_?_4zGvspLRQfMKp0Xrw;9-n5hU_r%FvNDOjWt0usw zSgtWFH7jkiIC*ijax=Y>lT(;ABE zBwlAkP<}qG!~IZe`VQ(ACfVs2LT+@asNZ^9cEj?ys9-3sztUMHgmCoDff)moqJpIL zk8A$>tc_nMJfsX3zTdDKKqJuKusg{!kZD|di>veJ@WOiV#`<$iQdUZ5QhJ#=;!a_= zLM{MMvxRv^KnobZOdA{9I@)$hs&gcO$b4;^RJ z7;<&ycq!0&U92m@N&8EU9|;Ig_eGeYmwO=WjO1+ zFt~2`;?i-uYo&;?&o_?{SP(A^EYv3N*InIr40cNTvoq(?hMYH*AO7Inxsi|^sIH+4 zao43nmnY@e+$D^-ijY=~6k$UxiTfmH=7S;&3tRywODJEl-t+u|c|Z5#6#VCPp?KrI zLVUqh!M-KY5~r?&z5zJlcnJ@`PPnGBBzE`l!QUD!HCh*5q{s zp=6K!uyykM_(=BDQ{#&!Zq70DwXhKLACOe)9Z%nRGZiq9}fTw34m{SQpb%;hjP_T>Fh5U&npS)4vHuT3zVXDO_p>-3l*e^IhidU zDgAfkdBP@U3iF(YO?$cmKA=A^WL5mZUr3endd05u+0<#XY~_gpI{+XUkF^bqlh?z2 zbVe?oSERb>=4A?6D7WU(YB%E~(&P*Q{$!{yg~iN&l35eYck7B|Y7eVBfop>1aOHy( zyp*A>EQ}?xL%d+&H!q6sQN=;Q;T1D#YorF|`)D9Aupn&CU(8|Y3%+@}VCLuRFsb&t z8{1leOP`i7N{u&jBRljlclDPd#le{}2(*g;On}Mw*O6rf+E5XYEyOV?doEdZoR-1c zI`8+Ga0GE7y<}slLKa!Z-4pZf%lpGGa`VzHFKZlth44G0?qkFnZ|;n|(Sv^Lw4Cnk z+ATk$Fvw!Adu9@Tv*+42)?QN$x*u`;ZYE8Y<7SVh!*AN^Do<-)?XsL$Wp%yoij|5s zU$RPlrxU%$1ZJ*Sd7b=Yn$~54hA5>LYuz+ZQn0Po^w15uiO~h}(jYwTRUH>6tIEyv zv^6s#$oM;-6oZE@T3>X2(sqw`qw8gAYv1}%th@74$>a5=pBd}#HF~1*b8n!$9;<8& z_gU0!q&KX+|5WSt{#4S^L{bB+D+;Yk885fO(waM%PE2;dn*&33`Jb-cD+W>4Abhv% zjOwdn`K*BQwn>(F9a|Vp{7C(a;{jnhWJ>1(?v!U{-K-AwERaZ6o_MDgUfYHYTnevV zs`g>@`jwyMIjos`@s4PS-9o93#yT;paH;%@!<3yc1z2$v&Hq?&7%VU=FH^UZP^qa` zD&EzfDGETX=UiMyt*>qg`-{#QS*wqd#oYsG7NsZW6DMcF&1)AYsGP5dC~TpN9!T06VO z4Csr3u+rDVg}Hs)5nJ(I>l^E8z(kr^+m$7r-d0Ckx92*35=eIH7x3ku`{^P6V6OJw(+52p zZkgngO@DNZ+j@(omfo{&_mb4y@N2Of62;8w&P&w7dj={Gv!~>iBz@_3iK~O}tV06O~5=j0i zrArorKT|Jz(sc5%s%=SWs*-`6`0Jx{57wFg!wkxOE z()ijvffJohHnthg18^d~PdcyJKiF|JW2Km2STKFx}BFP^{4wNLkP+wQT%pzLC78ke}Ug=jA1d#VuCgT#VJ z^ptv=!-{q1)3MJwdR?({xDu}5#_P6$3$BEB_tP$6@5Y~E%U*rerRp)<$SR((@~biu zgVA}oz3rAU#c3&h-x1re_5D-rpP$D*-+azIEW=ZJrRfBRytHwST+~u6SF**>)1St2 zzAg8sQcR439es5x2kf$IM{E0SE@+(eDkxzkl%gCBwI#P-5012?cHp1ft~(B#4z)u#_b8NI&CLfV)e>Y?EyP}#ecbGSh|i=fPS={;_(%O1&q;l!fGhcb0~gKK64-N-+m;D>$-|gz&qIj%rQ-KD^unk&GHirp zY%Cc>rt1Ii~RB3 ziEx{ox$PQ!m;obt^i7p;|Glv9n@c(!1%IDTSMbgC4E@08qJp@#cVNs(_gHnZjPIjs_;cD`>b31UsJOu6wCJ5AX^z zYxl=}7ipOOYiux(H(vZTn^lLa1mq;XOEAbE*{hA=4ow1qZ?cE?4c2|J5Fs{bmJis# zN+=><0S2IN&2- zNxLKf`ndTD;cX68#lWQl#-*?Wbm+ZuwRp_DK+|S8pTXA87ApMR zl}--%+w03V5ZXYH|Mbdt@F=VAD8O@FcRc)n`&ZOAFHH*$FugSmi+ZwGirFjxV*NF{ zr;cDnST()S!MCM`h29BHzet7~ip zTb_@N!C@L-|8tL!YMY~4{8@FKZtHeO$>Rc7mwsTMnjZwE=kAp=-acCA(SHa^UIfvi zJ48zg`2H+Pj++)uhERL&AJKdN?RpbPz0M3EtHz0AuGMY{N#JtNG!ay&bg()^LX*Uh zh_o%H+F6+WYawcn0Nq`5@L`qumnl^O&^VJj;hC z8K2f?%XxilZL$@!AttC-l>nm|Va8#Vi^<5mw zH(qfE9$>mETDLnPQ)}yYB@g`r(y!s?@d-zdO!GTEe0}blywu2f>K9T?47T9{_4}N+ zbon&FPtlZ5-s5%?Bj6ig9-cc=_IaeFxMF{sp&WvJ}Ou8II~T4uI-~^&chLc;cIf=l>Rj&T9}eO&9=Bm z`#7ysX>a@Mer08Va~X&=rR{yS_)Hj%9N9A$&tSHy^8$kVvuNdlmeDoL6r9bVX%Srb z9x&4?MJ$uSd;J}yBOkx(Ih$k$(JU2r+}ETk%ktkCwwf$iH2paN@{N#s!qlI2;uNlb zy5GINCPiv31BVDfesuWeMaG>yv4$Lq;pFS}a)|1S0L<0g>#>!ITMfmxgqd~vyW-vj z<*`iK{%g3aCCcauKwf%vY76DCtd z;lxI|oxQT$kVA1NxQd}UfgE60vURrRh|gNpT}T4|e8{U0l@$l_Cu!me40ciJ!X_a5K)$N?y0L5#(FPBo$mX#D-aJU`eO+ zn&^W0zd_H09P()u@dH`TKD|Vjcyvii)i28kh`fFq`=i;Irwbfv=&>`+tp~DbYoR|N z#?Q3gCyzr@=US}kyl9^}+a!T*=U<(%HMLVHs9RdNpk;D~4YzxPZ9y9{w_Iq!_tq-k zo}%Dj6ORnmH#6^BR4%654D(L4{{37<|D5Tdw1Y9`RUv)Uzn?n;MdyGCqxA?{{>1ex zxV9?V-+T%hf0tmEciY<Bk>5o0y6M^m-2zPPUl?q}{E1vQZHjmo51xpE(+;+;oHu2SX9NN=-uQ;^V(+5n1Rw8FQZGucvF zTF{j3ZEUmk@h)Ldm(awBgP1yunY-EI*&gHq94deh#64yc!c0g zJ_=XTo`K305a!jG5nViU`{ect+h)syo0y-%oP!WM2sx<9fzT1Lj@*f2wTr)BLYei}bxKfF4DY@9*C||C08C z$y_8~!!WV)(S!dgNosZZ40Q_&J_CBYEQ~4>NE%cJ*G`|em>=E!ATWIQHsbbqR0jSg zTeyp>p_H>kIdx*yH7Rl74GSImQ#)BEg&NezH;E%*?-?b*i)E)R`Kj9 z2kif|0wvGck~)00wo-{@t#k$NseAt#(HdNPtDSj!?QA=^6wtZ&JG5FNo#{7@$%pwA zo;VYNxBgy|#gqhAYrX%V_#7)Y^U9&9CmZyd&07!o!@q9un`rU!M~cU=+`D0}gkSlR z{n=wc=E`*i%G+k^{g|gA^bK~%LQogjV$E<+_#>W=QV_NF`^H-p;wMwtuR?t=PI+h3#OX z3n8f(Ue3{RA$PRO-FMbas(cZ=FXg^bhg^1sGhwDXh;vI(w(iLCjfL87_~X^>SND)& z#G)}`Lx1AHi`QHqR@zV6)J=EHc)?Q!69*z+p9b$7m>sfqMLI11^2(yr)@c%F?$583 zlb~;=sCA3tyNlE&x}>Zm&lPuGEYC)o+9P-TpDad8mCF%+@X3{*a#tR|dhp@ZfZ#to z`{j8_3hW6%<^mcBP*rscDArhlbn9@{4YD@&E}?U9v?7K)x5XhiI!{QOsN@hsz3_RR zClR&tQeZJbRjamabe*GqDOU>vA5kr3b3OfYMY9T&an8M@ReJ0c>3*<(InI}>t+g^1 z{BkGABiOT673=AE=+6;EO3T)w;;}^jQU28Bjd1+DcTbx&)@^BQT$HLgwxN!2(5k&k z-r>!7Dl8B<;vd|&%5upu;c5_=@{`bC^6VIobk&Z;icy7?26V|)a+-kkH`h7?aw@3? zgLpuioiCt+DyE{tu@=ISHCM=KIP?;!h6h{aPnizb98c9GYawc8qjrj`smurzQg+i< zf}J4iIL}HM38IXMA|l)UW8{&K*S38}6@0peXPJ4{=NS)@Za1hF)O)24w>Bw~mCuRv z#;TF+84nm+gAuaEHZ%pT&m%}RPLz>C>{P8%&A{?qgr1j*O#s8`BL`=<-uoQ=whAgx zR3l%;jnAPUR_kJgv@E`PbwI|$YXE%5#U11tw&W#kl(%BkgzGB8Ol!Tpj5|6=>eW2! zlQi48=+5)B#9K#-t_B9b8f+)Jl;ax_>z>i2jDh*WjqL}p&vEGCT9jQLxz^ac1J>K5FSgyf%fV-Oe`z=~Dn1ej!wHHapa8mN^4*H2* zcQ9tbfAdN0&U8TV>$LeZ-{rupVeJn?=(qB(kUx5-p#^7Mt7lJ_`v2BKh+{8x%*c)5 zb%WiE@W_lx6v zFi;N6u-+qzV5>LJv=a!lA}@|rQBH9BpNFU9b?w&!SHhiB(d9Ta-$Ip+(nF*aYhkAL99PPmt>FTPz0@ib=(Uoz%TT>Jw0_1D9e>q=An%i z;(~xOKUIq|(%(>foAwzT7) zk|*4vf`^732;ee5XSdsMb-j1>jrH4d?Q(t_MT-gZm}wodWWDSBjbyI5w7&3nMGj8<@xs$KiCmm^ifT(X;58dX>NYNtvzi= z+_RPe5&t_oyZ71uTi+K1*7T23*#Fgu&hOA4eOO0{_Pn?WEgzwwt6rjZ`_caZ08Rzf literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_19800.png b/Notebooks/1_N_horizon 3/sim_19800.png new file mode 100644 index 0000000000000000000000000000000000000000..c05e359422cf93f41f441c3a9f500942bb04681d GIT binary patch literal 20012 zcmd_Sby$?&_byBbjFO7TAms>(NDhcJD2RlF(nvFeNP~3i2m&LWQYs)RDP1GoC?ee{ z-Cgf~@bisx-t))#`**I35uABu@3r?{aj$!==LvYKC{23l`XwA398y`CN6I)j7X)x{ za9_X(!8?Uto{WQEg0G}BU#ZxbzH&CSH^EUbd}V8C^UBiP=!TPty@R=pH81BqP9*z{ z7q4E~ItX!bS^fJ0P8)kOuEAdNk6@6CwlZ1{I5@o1^8BJS(f?r=Ws;*QvV^Oi zOTrxK$CBe04|kK##J;xucoRjPvm{K5em9v;!bJ@IlvY9$E&=a1)Q2HFn9xs?Jap+LVAYO^ z;mm3H&?X)}z!YSx5abY^R@awkE9;Ku3Y~sV>`MMgltd_YNo26KrroC;`^w-FH_^Vm z|H(MfeS9V#Eo?w*2@FAkYfV&xM}l_^zjn!XRSFx2y^NKgSiwrW%>**b%Bc|2fmxoy z5KL%WE!bq#jQ*4jDS||9m6lQB9Rf}6N72W8*5hplGt`3_YQYSpVUv~gLlrmB>$b2- zuX2;!f z9Awj4BmC@QuXEwixG${{X4nX$?L+Hxww&*cXKR5e5Nj&Cyf4hnQNEUlEkZVdk9V+C z*vklXefUu~Q4I}BhZdzn`c(u%gobN<@!rI^l_w{{6YO5r25}7`Jco{q+2NAAOd*t!nI^BaH)re3B7dAG5ss@tp&pJN;zDTd8waOu6QT(8 zYl^x%6R)lyh?r|il}Z!gs2p6q$sHWy^pn<|;Qkx3JrA3K#isTi!q(Hk>C?(wfUS+0 z>^Ge~IgL8A{z$m5fU$GfEA|iK=j_IMCdf2Cg5;7-U}qoF9Lj zaO~IQ$PU=^26#LQ=Y$%Mlg5G=tmeI%ASzs;?*+djR9>Rs&jHYN>t}h-V z(77%F2S188JMiwvaIUdjmQ%&EkR_2kK-ueGep>Lvo$7%d^%0xT&H2etX8I1uOUZq; z!_v2Yq7wF@dO*ybQ;&=n%ISC9tjVZ90-_E~p4`16%H4!Ji1i~&-jTdg4Ij!`(A0!| zVn?qJ&-@6Jo6ul(<6901PA*9QASV5}zy32tT@g_BREOFNr?|)WnQw1b3B8K#aG;*{ z;V<^o+vM#g@N-s2VG6DfJf5;BE6u%-bn_?i%;hVSQk40E=+Lm71E-In4gHQc*5A*R z|7OPf7%bTVQG7{$~c`4#^r`FF$ zHo%3+ECzOBrt?@zJ2A*;oHes~1a&2Ye*IE4rA${E@>L8HQB|q+$dzh7378b~?E{_KrTJCa zLh6oYBTR}BhSJyGKo(PQYj6%eQQ6ACGmBO7ExoPe9o=x@vz6mjJb&iWT0?L96D?+0 zp?5Ur7Q>IHQKDcRN7rTBL1(BmdL6qrd+!w8Lc5YqYvGP#jo5_SuLEMGuWc8nKf z8(k44aAKZ+x4+DJ#E(lUT;+Yag&0xAG5BVx{eiW{`?bt36m?n%^v~A%(g+yab0;g{ z0&bwWnP@Up!~fj+=`@ndcS;a@MM8kukpCC`&>{kp9z48bPox^z$_me)j&-KMCk z3|~1T&u4Gi_pm?X@=+@FBwVMNFw^z?`XB$$kME4<>`#&9(<~#uTb{?jfid1S6pBRBQ)3l&yhmL&bppCxQegrw-HaFgc4DP%f7{*ui0 zAIUyP8NwJa58i{O-{G(_>qHN4fCcH3I*a;Fma> zf)j@mgJeiveBPr5n>51?!KY(Xbc2{>hlF?kg9cKPWrI(2uS&QG2~HntL<|$XrC7a) zsEX7flXv`jjudvT`e$tOw#ID{qcFc)FOD(bao$39IcsA!vMB0Iuvqx?yoy%#Il2&S zWS~2dm(NhF=~S$_X-gPzu}g-td--Vb{L@8xLb?+W%XrcGR|iN&C{Z4C@MsS@{bAHW zo3iHTza!jb`%REB-w4c8}&T$Tm1Q(~`kA&ZP zQqlzX|58Eb7=kM;ehoDO0u{Lc>A+P9_+``xg#`TJXJ=`%`H>4F7r32QN6K6_ro^%} zpk$RD`Perqj(a9 zL{|GV@yn>xs;Y!yi+&!%I<#s`%E<(C3N&4hgr}$I8zS=iBTqvvA-G-E4crNL@FBne zKJ%OOb9=L=c4mM@Kr)Ql&PHkQSPk7X?Mi6P(JFE|-e|@xTdyN_T`iw?o8fH=VeIbv zs_pFF(Ox9nVbbhk+c6NbTbosoHuI`(gz?$sv0e*N0I zbZ}%uUOl>Ymw|ox`}wlm^9}0>{YYpetgSh5B>hMXXIjE=I+Dec8-u9vpQ@@h%!{A7 z28(RUC<@MAy~gpp;rL)HPQdP_^O!5kdehid8}Fmx^0k_yvGq8!B-h*046e+-z9>w8 ziMPg^01HgX%?$=Cw*z~Gx1Ozk5||P!6bRnf2n+E*M@L_~@lz7j7Rj36G8G_lyk0+A z(`S)e?&rEShjf^e=d3-p$5GGKX*KkxZ+c6u*Rs9vOK@+*p?q)5U2wH*I#$G$C+Hdn z-b5f+v6H@gY>DKcklbuCHeiI}qt#|Ql5qvU<~i(NC{r`!8 zmR6zhMWBry2krWEN$#tY!NRK(-ly~4yNkTun-R(R#;sSbap`rC@{c@lbrsamb)-5t zIAGVUh}5<&e@n%tzFs+g5)9T7oAx9oJT9)4qjaRskCe9Tc(dJgf6~8vKFPg86g{_E zxi*&;qi6KznOd4hv~9g_eUnN#3WfUMEZXTR$Yp?N*BWSMOPx z4i=gm@8o&U{*-2%^*-D4)~fY7u^#rEd`rELB@)A`D2XV}Y>$A;8u^`2hML8p!VPbun+#5E6pAcrlOYV&7^*Q>l5 zayiD`-(kSIBAsdu=gnNLJxxMN1Raep#+)5}Q{1DXqACE}!Qip}@EWI1i{N}hy_$yZ z?=g#y3W|zk>4{F)ad=HTZt(NREH7J{cEo;fi(=c$N`lT(c(n}QhtHyKz2^xR(q(-j zG57#zZYywavHUg+IF62vkx@|_`_m!3-lraZWb~J?(C9&2HD%4+RY$9p<=_=3>V6;R z_wV0T+dWS(^uo~>DQ|P5nn-ZID8x6lvLwsHCQ199nrO^IlarOayu^sFu^WKh7TNwG zsaqm!Jt7b+cKBy^%cgoq-MV7o_J{cR!F)sfZqYqDUbC)|?7UGevqULV)7xMMk=wkB^UiVI^^fNle-}+18ze6?4Wy`!q(W#tW-RViHRx2Q|8Iz z$Aq1oojArOCO?OUhP)KbLRhMS0hR%yaNYhX&3fmK!RhfqA_FyQ=6I`neo6oAP;vNd zzgc|sSHwdjjK?Ig{sa@_L5t$BMy}4F7e{5~eV1uUSqWIBRcU^H{>h0&UUgG(zg|0~ zlE`6|es7EEP3GIo#TbxvCxj@gi81 z2o1mm7+QYotxBW_4GTY-~p6X zdXn2+{ew0Q0pJ=~@7^^6lYk9d`@M6rpyWM8tiO-P$HzC~Jnp$t|FYtjwTa2Cw{PE) zz`1=C;_ut_>pCNWM&JYn1!ZPsy-bEV4&)o=XcoMdBo~bYO7&)HYKs4xhO%-U`XXi7 zO3ARmQclr3BrvB!Yfp|yufOzwIeAug_5s-Au3&oMmbNydo>bWtO7GRL)4{^Io@LFz zaRD#XMH?)*^6gjIMiXtEpu=r{2Dd+ok^-C+e{MoCB|*@kY&KeZzxM1%d~7qi^vBSU zoRic2@uRUlfx|y3MM3nJNV#e^2SX8O`!j>%q! z3m7=^H85oR-)b5gyQQ^>NK_NI=iw``FyXKB(c0FK|C~HKT|0a6^5vB1nkxhssEjZG z01#!AJIptg41T-?LbR%Ofe`_4S1ur)S?ky}QeCB@+894O8PDW2$#Zn_eoGPE0H6Po z!Mt)S`SaiC-jgJ$3VZ^ytSDGxu8iYFp?8CC{_i=K3Is221QcF@v|U0=>@O`W_R7CP zP8?D@937X*w<16_bQ#>oJ@+uHBZM4g{3#y5rSW*St zIHa3Utl6tx^X!O4z5#Jj>}ar?$7W0fQVeqMeMuZ(xXUO;)M9UD)ryr3YHO}@#j5k4 zFulH4dzL8ZFlXCvS=x59m8HmjRt}Q0=48c&7hn$HProO+X+dEjB}D84(8SGP=c+d= z!=?~|RCogDqzB(T55wLHAMTE#D^ zvemy%0bF7_*AWNVD$ud(GTTN64J=~cfho5)1W*pUf0H?C`wPd;cx@OGJa?B6&2?`B z_O|9$oPPoTH3Co%SS!AdRM0g$fUGu09J)8A8P8&I@d?)(D3#7%DU2uYz=6Dn?2uZ| z#do$nW(&OcA|1hERbn|<=P!P2c)IQ{zP|lS$zj;46zO&B!dbI#B({^OQ~*v)QD73C z*mVE}GX9zk(r6CtCJYVl{-Q>0g-Rko4pS9Nxx?n}(s>}lD}HKt&p$TswZwUO;QPtm zc(<9@R@|-?lXS2#aAnZmfpe&@TGCxJ8Y#1b4r3ahaUTbYh(PpN%H;h=M}oBXEhj$t zGfZ)L9}vgrIt}W1v7{ynK9Yje=gOr|KZ@d&3&{LBNG zNY3ubn#a5_t^f!_TIKd8=~i_1Er^wRkf;(#I}eG?Cpc8(EKT||&H=n>y~elsCnd!G zXr&b2cFc8tqrBTQ_hf*#TOH8VujDr@U@2zT|8Fj^T@;^mZDq(W4Y;@UH;mZXnEKZQ z)zACD_-*7~>-dU73(SQ@MXno-)HHlAuiAKR#UD(Pd$$mYt>fOe8SAKfOY91qYw54@ zW;zFwvmO1jMkw+DH$PBfMGN-sb6HtzTU#5yN1qQaK3u@|2D#Y&4VDC3yxQYgu3>kb zb#XMei8tksc_=fR`OW_a6qv`L(d@(4FY6XiNQo4>**+z!NZ}_w>0$qB0yj#f-P{OjxYYXfRFP2&n znfg2vf6M@{<3rlI15)Kn23IM3!)FZfeReW4pMopHQsT*II2I+B7V9CLtMr6#u1}IG_QWl>f9|MHa+TQ-ek#$Ik?Ad~u1kCr*8ioqlWaBtc%ph2({Q&3b4cpB^Xokvw=eLJ%M2WuG6-u!ok25bzP z`!+hC8=Vj6cT3o05806zgMZt7H`8RgogKzvV%4p#`jH6KldD~`uR*(Mr0QYvw9l5$ECQX@YNda{3-6d2y-xB2mQcI2 ze)W9no+yCw0L=u0=`MSD|3|gnfzk??NY4E)S;EY^0`Z`bL4Gs)%a?@rB%OP_|8W=n z>;@b?n&O%tg*uudi4>tz(SCYHhG?Lu3swDn2ig^7rS|`WLK$JYfuF)TBg|2>3V^nX zd57KIcAFR3M2c);iC9v@UNTU%-z)X)#zjh<+jw{{8#u-SiaHmA`|B>SNpT;*{iQV|*nc+LN&KQShM^{0FJJG4%`b(Db=WeFfTC%u zD5w6FpaXD~-F8@4tSqEK{n{$J5Ua>6Tiptgn3xU3jpfPM4NsN#=kI#fGn_MP|KpX# zB&`C++-Ah(jBPo?YHEc4y-CN%*Qzm0(AEe&fZN{rnsYaAwy)7*e-b~B+q>=QnD@58 z9OLuHrjKPD%^}rDy?P1Rq}unpD*ug@Ns9|OWvzCXP@t&tq=V?q8h^jX3tE9A=m?u zT?&r$iwscAKy%{(me+#^{gi|qx9h@V{IfvheSeA?Tng0j@#>J!Q~coj3LIZYjz(^K z9Sq!Ma7{~C?!Yeml3qVeX-3){Kaj}RI45R3&9Gs5!1Hy3IvEaa_>vj|O@+;XPmj`* zxs$j!-(6gi9gL$%5JO!^?}mSGkIycj-B3IBYJI-y;U?-&#x{2%9WvW7m~yA9UC}Y~ zd<*nUf#$NKxfxt=Vi`c$EdQh%yJm!`9U46#aw8A!>b-w|Yd*bytG!u$qoYEOhZirR zJup_N5N*yx#BF7KQAIlXsnH*ZoIi}@!W6Gjs=aMViDkZdypU1d>P)+f>B7uvaZ zy-(V?Q}4vE)(6J&S5bX$)DPPYRpW_vWDZEEg{nReQgBzU2y8pGGf!XxwG6;4;y50i#!}Dt=U9QE_2Y zZ2&(quMp!0ZyRAhanjhn>YmGTi~gE9u~00mSz$`l-lzWbS^tFxdQODDq{$3c_aD-^ zw;0R?Gs-*+W~ztmx!&4E(s5m- z4e3uZIUq^M>u$+fu0>`6k&tAM2%+?A4NX>w3;={eJk zsR_69@q=JdV^}jCPi$NYp+G8>%Rxq*N`2J!#Pj0~mLSS>lGz4UN!*MKi>ZMAl8qL& zS&_{)_1uGIVw|h9rgqy64-;Mua4QPsU?%Z5m9orW^afIW{ z{w5VU9lFop<;u2KTlUsn!;;Wo@!b_gu__FKf0SLrA7vh1iM#F5(6aHPB~^QG`Ddg) z#)QS(*VxLN=ikbsiq|T16Xy6D_WiA3g3F($iei><7I_*8Sv{w$Cs52d5tUa&GS2q2WbyH8-Aqz*kEk`VU=s!(_lES&q4|z+y#p1q8;ZNp7Df` zjwop^T0QA`QA)LQGjV*@(4GRFa!bcg{8(f~WLyelb^#%&&{Vr`aQ|uqi2#|$@XPC3 zHMy^6Eu7c4hb~3ueKkOth~m)T-j1Q-MQ!5*!$p1KQl7-!FKkHv22D6>{O?2E{#IU? zWMaXl8BHP<{q^g|sxOy)rbgJu?%7c^Gw`5METnTk3>(oC4QY@bnvn?f1fBG!d40)Y z4pI3sS1kVNR#VGipj(noarH^TH!CG`8s*6PpOi!nBdG{Tmzv1#a<4;uJ(1BQ0;yh{ zXlzE0$K$BEtu<-P1%s8{=a9>j)@Plcj49oWF`>nQt9|G$@F$rYkbM&;Y)z3uG)H^B zNpi$w&z{B5eYUrKhumz7zRuuk!WL4c19T}`1*kAK^s|m>2#3k;fbtxM9@?^mGF2cl z5h-*e-YQ{a_J|9&qo|OXIq%5nc$1?0S^`OY!6NAnoUe5w`!;xnfuhyp8cx6SA*`S3V8R~AhVzWBX|PdLN+1>whUH{u6@ z(Td)`>_Uh95*c2#d{u)T=uu?Z;mcTl@@woap2Kx-0q3$_-kp}4>k0C-Z6m;0x!=p+ z_KzT=ZIboBb(_=5{C!nbc}2BJ}3DyFIr;Ik@KquL9F(VAIZWb#>s&v&@{F z?fhL;k@mrFu5TCRcXgKA?#0dRSngCGyEnu%;$@-W*YXaCI+2&s6Y$QCS?FAubDo=! zlkL#B+sZ8R5(sL!@5ByX#@`h5c+{#m{QNo7l5_9I=3L1HQ^D~OFYSQd@VE8@R}8IA zD2d1=Frv?fD!tFJ7z?5y3DLN+Az)^?EAwz!RA1dl;{ z96w(7515_!{!}dr#%Ep4w{evUpKOQ6KO^G_&}wgGwef~5FjiE5VPTbDl(xlCKfeaw z@~h?0&vZ@2ZyCYDg`wFuX?XK}5K`r0m%*T!ypE3CPV98fbe3Zz1O&Eg)tR|3YXu(N zss{Vp^YD`ZS3K}A+@8HY{L9(qFBJV4^Y#v1tSm?&t65RX9bOn1$su`6DvzeO`qcb~ zY$=Uk5N&`1a$7Qq+EYHu(MvIUmo#(e>btyLsFLKcQ=$GCVF!Uu>wk|$s;023G3C$WhuVWMpH!$#ugRP8b3*bg~C1v&Q z|9VVjFx0|N=4ozeZ891xq#oVBd~ac4i#Dt5Xi(vvGfaH5kk@J9VB=6l-!EoHa1F$A zp?qC$Q4$)wHFy0fPdlWlMtaF@`d6S5kr^{%Y{G3Q^Vy%!f3+&FJS~cpYNx8C*fhOd zTyIdhzHYws$3Rboig5jt%|F&nVPTiy$QxXON;0^>kFg|)@aAI;c_34(-n?{t(7m3< z^-xdGNZZctGm$hVfPr3_ksAUhFqDrzPQ9=C1mHmcEAbG!=Cgs7n^=ZV@2dW0rC%=O z;T>XhCYE#_>hHNesHs(}k{6;7wexB(P6L3+oZ)BPqTN=Xt4!ycr{~PfoM0kX+9my| zc^w~Jd=q5vJ~stW)%RK9ao-O4vYGJyQYvam2i|-4su# zuY+^U+vEcJGk7L=Cbn2}RFtU!7EF=bqJdm>#BSc#4}PY7)_G4lC<{I3Ta~G+OWrT~ z&F!N6V`h+`^!V#>G&h(UI*5*s9_}78;iUBz9cxK6@Owu(q)fsmRa&qraJWWRa z?`)JUA-A~eK)3G^_eAI+q<&=ddL5tY#|30xV#2KW-dE)p1e)~&a@$WXNn5}5gv;7I znXXuXKd4?h@|(Dcsj9hHqpQ}{c@vdzojGHZ?Hv;+xHl?!e}D(tFQf_Ea4DWHKU0f} zjh9>meF-O;Fhdd0Xa|};NW|YEtzn4Bw8HzcnbZ;nw$C`5729S9Wb@7@o{jg`1;vMd zlIGbjbKJQ8l2%*DiiMwz>9Wg=Gl^K?owm-;0Ja<_$X_btrEE`NzhpnuN11oL+)$AA zcJS)F=^*M6Kvq9{!r@8w9Z1{WXTobsfZO$K@JUI&^lv6@d6kOX%pZq=f#{$Nx-gT;4=?>I5Lo z-h1~{`UfO*RfrWhM&lncvoSq=9$JrmZAo}-2K?3eu`VI8Br0lV^UK9It=+B5X?fVB zM!5O=fXPPy(|$YMEp51vqJK0*yH`y53}8@30OtH9V1vwc@3oCEr7Zk5mk=14-7z?> z9-0Kjv9@%&1CCg*E_T z!b#7Ycg{S*iielrp~)}u_OF$24Wxtc`Bzc%X-dLEE#OSaA_7E zE6e*zPf%vR0*ApL42%fgMQ#JKN1$0UR^YuXf`x8+O0 z+ZDd|IqZ3pN%QwNLd^I#_ssai6KMpjdngp+?3bu0tDBLmdFB(vU-{UzqF|_@Id1ca%M%Kegbs(8$pj%QfqJrxo9qb z?-SyhQ^%IonQ>?Tj5`DpnA5Nt@rwvLauFCi%SNoG4_A1s|FpURJJi+FRA%*`9F;md zD%G=p=(<*g6VaKADU-8kQ5bNctuStz;~R?cNw6!AqvzK8%^Kk4XN?>>?t8={MY-X! zCQ=@A<6mrtwkLJFsCtI3XXe;^uKE%N7981sZ?mJ~(yE&&6PHcy?F+HIPB+q(7`x1W z`SZFNeD?xmjIx}L3*z{&Ki`y;gyFd9giQlfQUX|VJl5ZM>gg$6{I6^nLdBBG6`-_h zBuVA%?ZgDh$Ym*aT>N704=$Yp$U6XVODMpnc|LM7Mjxa%+{Ab0lEk8JZMKc|5OZw1 z+La*svUYCN#axBT`4)a0746+&3lXbBTg7Ct*B~0~m0JM_-qH7!+mys(0)M@p(aE#p z$0yr*()EpyJu6SqmVd+S@Sfk<+F1w9Me$|xa@D zj9y({eXc8{T(_p=wZ*EJFOlAegq9sAqqr;2d5zKe@?yWrq`{W)b(w9 zbBBIjT2_vhxs)yP$*Pp*z1CmP`&Kfh*Salda%X8ZL9$YL`YR#o@*TD=1vJC0auT-I zlpKMWPmSfq=m*R{gKj+zU;1&KDXbx0#^{gya7|)JNb9t|J`r$WMw+q=OoYsOAYgdD z#4um{@WJ5NCH6k)YK{9|^V|&9Oe`Wcok;=8r&(yCn0G8(2jjr*QAh{VUSRer(66ix zX3?;jZ&e$HawhSzGb#YYq{_8)+%}ClMGWy8J-3ao`8-QI@c6TT5qjObSDK%e<*N`y zYMGm3=Aecje|L#;Eql=wLM+u4?*l8oh-H&sQR<;lPiW6Kp7?pqi@7dZgz%cF%7}k$@&$_;^JEL?65+lDiWatrVOLD@)Tx zzq_}|Sd9$~Uoy^rh>vRh<4fS4;PI^{^X=E)qzy0xb1qw`X17c(1jSOPgELxMrg#m*uCDg0x>l09e2^L+b%} zCcMTh5z;ebZ}5HTVGFj7PHv0x2&ATa``kBVmAT4Rgk=qy6uDhpC_!|00@ z03jw{rIcIyt^5Ohae!y%S6%Y=9BrL)=$ox$H}E%$_Fk@r)g{QwZ5FY%w##vXf4k*4 zDc6W*%pzhEf6l7dGRr3Z%~>|L41eC-?{c0vJp#3+35VpRLlFR4kx(Pew|)s&z{Cx% z_}2QsN=HRZ7>M`A>tV1*K#*qzPi_>ZPVauB>mX*KalD%LgLX!i&6mR5fVN!|$|%PGoYc>pms2gjS{s89)ZV}Pv8p00 z%WqC`m{vW!-J1>>&TAH8wD>Muj8qt6()6o51rgZP!ka*wJ2}GU`qV!}EP-J3CAx3d z#M6O|Uwr#IqmVV;ndjoCu7I27XB?V10O}?Od--o*=t=k>tbl6 zDSEuSNb#wn>DuWYSNCSTl!bu($OCJaHA|3NJ1>n4HJR3&md=+SeCl_ZNaOHWTGrAf z;|ou<7GAs)D@M=YO;@uSCF)Nb3KO_*y?ip1%FIZa&3O>3DI0#J1i1bFS=#++l_kxp zm%=#G?-?6tiljG7XqfJB{3&lW*B?=BZ1y@~=CaB?cRdm5@(5vvH5P;FwYQxft9$Jr z#cE+uimPj6VVFwsy0udImYA|$nX~+Y*ZP~)oe6=n;|3jiHjQ1`fa>qf4PX8;Cg2VN z{^vzsqs2LNn?Y_p9mTK1(%jazlU~KF3paYNS$}(by|QMl&HIG?zT0;G z*OH)hk3o%R7kgXamRnAjaI#*v#_2vu=hrZN%z44=6TW}$tC)ceX!$ACuIa37+D5v%}Ct4QD zKY4hz{wLxwuT%rhBV275L_J#Qr3G9x2FIb9bc*AbpWWiONeqqZ158-5SXFr5c=2nX zjw9=1gB`Tvl_5@6R_~9eenxqmcsI3?_Z_#Gs2zWfYn07EIa`;j(olXp6 zF(w+}`_^->zcYqkV=Hr<1L71RI2OVwfChZmUghX~pN9R)DAzim?^I$VWX&Iv4aWH{ zcVHUW*xoE-*8O%mIv%JvOkFPBQQ)|DulVVBubiZVk=FQ#gs1&*($zU*o*Uxv;m4M8 z#D!qpH+h*tqb>`v^ImE1NGzQU^| z@CGTHq?Xr`?JWcC2%bFa%(>ycnug?LJtbMaYt-H1XyRacrH6`pb2k=p;Y_5RUsZqe z11jv1lrC^=AP`ujel7_JtmrRg(R<&^U)(ct-P~M(U0WNq>FICsgbnE3;ar2gGsxwj z6lvBpEGALbTK(~6l&rNAp=+zja7op2Lm@YR(B~2Pz|F!t9kL1fkug$+*4G-#1JWh~ z4iks1pU6M1@Nk{FTx9-V;EH+2TWv?-cr}3Uc;-{Trv9^Tge397`bA1XhusWOvCF0> z!9v#i^G`-fj5!43XwDJ9ekUbOX!5A^@4Xy2lcNF$v=+5wm^{c2AcxIUZt1SCJ1#G& z9TGA3$R@&XPW^hgsN(exdgJOK8Dp@g#NojM=M@$=coNDa%$p*5gSDeGHN#Vs=JU5a zv(<0a+$=#;RsG%VokOMRXEK$bJ8HeJw2mnRi)>D<_~2;-7*V(T>M?-ie9qd{K37M1 z+y1m*`e1mIbYvTwt>biLpId!I&?RmvvL@~}LhIKZslmT~a-=sI6Y}*nY@S{;`0P1% zz^BGUrPL3c60oZ?#?L|{8uP=G;(hpa)JPS2?|pmv>j%ivc=<>>d+*iM=p}j- zJF$@B-uy8zBIhVs_|@-P-&%%^xBh4-%&-EigSjp^q2wuZ#OJEzN8I7R5b%Xm7P*Jk z*W7IJvur@MD_2tBofFOEG_^r(|e1iIvZNgJx7MG(r|Ycu-pk zFtKB(m$PSObM^FmVaIUGRjccLVIHV+G@tjI_GSXU#GzA5dVNrZe0Dx0*LZYSNbJ?| zBU21R=weSK9=-qiwxd#HU*Eo;!ORZBodB!%qjbUeKYom~0XTMFt*@v&%NHUh^4dB< z)u?K6;B|sLpyTcStQ!Feqt38CNbr>lQZlf|T}D0mj-1~|zymS@DhyCF)*u<*0P{X^ zq!D^&VvOEJ+%>7*7yM1yX{qSP0ATT;@^36uLMqD)^cJm+0};_m+)3t{wfn&N@QiwO zGlo*`2?={20mb|murbTNZiq1RyN0xTF<+ktsLJ)arn~Bv88dI+t5xM^25K|tOL?k% z-jjLk11e{6yw-sHj^uG)egF{i$dWYI9<8fuXq-9rlNjosyEUL98zRCUM8eQrE8t5& zrs?V>d5i77YT+v@0&g!j(ONGLJ{$l!^ zz=19n8mKa#GT;<&5)pSdz6FX|NsIPwAr9b*zx^4?mpoR#NkXi0_sOLB%j+LhbQRa~ zfrOz@pNGW0EX>dWHW^1YZ2Fdhff&I~ieM*0&_%UfhbnasA1Yq!PjI|oQQB|!TemyC zB4NxBY`HP^=h-odfK`l@2EP7#WEb8k%Yhz{MLDpOR{R|~gRrl@SV^F?-q;5q3uyK2 z^#`R`aFY){wnUd7|5ob`F7{B21M09*juCTT{3H)oZka#L$1I-SR|Wk3q9mw0`77b| zqbd4u`tkH-tOTK58Jd|lw(qPoE3}rT*FPH$RE_yn6d3fWhT+4JmTd}tIBxUz$tx2o z$R;E<-G|ZH(Ev92c}9djsMK<>$BY1)ji{)6n#gW)gR*RPyUwlA~AF*K`%aaTCN0iqPmb`GKv}A6!(}=15`o+ztTdr-fw^ijvX3J zKWJ-LI(oo-CvUl8=v5y8??FRj*v$f|1kHJG$(~ceQi~V|;L2os#149E6(+~1;>(uF z+xL&s$K*k2Fwdi_n?b8p&3Q#zDGV^~AO$rT`S`lQ-WC@X(GJ{gOM90*-5-z-fOCMB z@(QQ5y=x}kta~bP+&eb!#F0Rw+QKx%8VO{-P?72@GFb@iGTt%@=5P;!FSNeG_-w)C&C zhcm1Z2lIgn9+SJX$0`2)S;wY7ugh%~3V0sAJF#X%V}DHP_+6W~p8@xftc{c*3tqho zJoHg|1{H`?@t+Q>sDW;Z^&JL}tTw>?oo;kI9uqX%UUD$mz6Rlz{_{;x`cwMX#j8v#im9KK#sq$_9k>`2t6P zI~oJ!XUJUu7kxDa=9e%A19aQ3s@k*-O%qN$3LY^=)QrKEoj(-!MFruHaQEm)iedw&gFA_AuC6TxWF0b4a>9oItlou22n9SB65+aKsN<8;0$JbPxez)iKo^N;Af6M9L{iTbwGG`Dc)5n>o&F3ultW0r5m$i{)rPGDkjP< zg3M?gi0fHj10<;5|4u;1YiE1u?h+PwWv0Id7WsvcYHmHr6?O2d#}Slv`fE-Awaos! zoTE4*s08BU|8>s0ll)2-CZx%$#)77um2z&gF|Fqcrl_d(E&W%dHMayM5wnhSJ%=jU z*FR|Q*GDYvmuA+(pC`mGZZ3cScZ@e*ouXt>9`9{~{MTr=HN?^bYqQL1m%GC*&rT}P z+g_-w>jTuB+5AkNLA?VIGfmx$TCIQ|0W^d|T`D4zlMTVdgp_YY++8&JdrNPs*F^Y% zKWIB?0LiGJ*%+LMM_Hu&g|w6u(3d>k^ZFMcye-KPB1P@HA^sG4FoX!WyH-eT2Xfbo z^bSpAGk*f!w7_ipM(_>ne+CBz0a3srdq9-j=Ufje0S}QN_)l}GRPp)uq%>-mV0uG3 zjqh*|z^yW7e|;F#MdwRVx37C&A5Vu0Whui@RNhSt1)$!gCNfTgTr8nfoy_iFsp|LUf1SAgs9 z_P5)gIdcz0;+VH^RF=gLT+lI0pc%C&B!s*$@L}=hE9^$iQ;jPAUYa#x$EG8R#Elw( zviCtqG6l!WpgWH&Es>&b3UryP_J6_;+Iw3uRsE^UML&agjCv8X_cl_D?%#J${awR( zGp?L8KWILr53S?H%A;n zO|7Gi2WMR9e0FsHJ+!Se%+T21Q(vY8JOXC2m$R$(R{2>RMV%5Tv$cXpzt~D{9-AQ0 zf}*aYL)G~EH3Hy?5-(t%5a{)BQP<9)BIqst!PP>FIwk~~$!)Wu*qvzI)9$gq6SY4@ z@LKCqUy`Gv4N#Ss;~IcCb4U>ED^tf0K@&ER>Q)RsxTW47>bK33gpH4O&MN_fOAi&4~}7pw5(FWCE}`)0O!68pIOj?5etat_^D$UnU} z(KK_|YwTW*MFaTgWPhsd8|raFSe9D9TNyqaLdc-B)4yckNi zmwsF?eL7+i`P}5yGp;JG@ZlgA&x|$si33&dYVhgm>U-VbqucA^y5H>hY_;r9cqV9D zcO)iUKoekPW#**%glOvy?S>g9vX*T9s4f}laj^I%23Tc$FrHp8vgSI<@`4v}LfDA& zMO!sY0q%{avhpHABTN+i*fl(>h^7Sa@QtPc3X}(_i{OE4Wztz`>;-nb$Ib$0)UCQ9 zxM>LVD3?`nTCkBtL;z8~Pzk`FvJ7?UiIm?!oslS0H%sXe&v`un_o zz5Kwo;veH$2vzCFj}USb2p|UEuANfURpnm4h|r;t(8Nz5K33u%TFrTHIUzE!c4S}U z*6Zt`f5)+Bwq~Cqptd8+hVI9n6l{_nfu8rR#XB2Z$yQeS)3vvD!9WGGk;XX$2Tvft z3Dt>SX`Ck~bOO&=5kBw$XPk(CP!kH-b#J@`%ka=?T@(Qc^H0Yu;LKWkkKVI1?5Dw} z;S<*;P@^v@dB=$u-XX=xLgusQ>00*QD$o1Wa!J65WiHSqk9U?YY7uRFUPe_hHMzh8 zYJZ&8jwWO$^(U^4yDuE(ZC4*0oMOU+h&DYDnZQ+K@P8#}dgUU1U31)Ue5G|YKFCMi zKn6CM-rAac+9&H?OE~uXeTnlGi84C)C69{u;!J0-%g~fHU`k%!cwb&4%&fbk$q*x$ z6+8}SAIDY(W+=1A`9##9bi5XH|F0`fIMbJ`xY<~~q!kL+aT4mtB-WNC5p7+Z**c+N zawMBMl7Kodp4zzK#U>;u2obrE+nU*rGsDQky>g}TUr_K5x8&Q8uYI0+I)Q~kwOv`*Fh;myg(I^vA` zD$e2}f@f_K6QhXf3AV#DYFv>hwbkNA7B}iKD44Y*DLK2wpSvPJVSo1%LRF7okp- z{}vJc*#$j0P9n#F(klamsw`(5f0kwGC}q(`T==CMhm@YjH1$WHi~ePs8pG3_=K&{QqtrIywu2WpF*@%^dJn#Gco=rcSPg4klRghE8@?woX>&M)zDy930JUZFo5zb8xfW zd+X$6=P1m{Y5kuAIBXrvI7j-)zJQBdwR@rEh=q0SCgv|TRzeaL7M5a$?6aq@-ICTO z+`T5$k}tM~+9y}7qt-<-Zq+E&6f>}M`4P?F3*QfAxW7II=dwY=1w(}IpTBOQz>|6M z^vN@9_LE+`F&y?^I1_S1>2i^#VvQ2(@-O6iA6Q2wCN`u*v?ia_PtAMv2%M2l*6j!_ zQX9cvL^8@oGG>&)U%NiJ{JLat$L{in>EFzd5b!(M$les}Ak0y+FFo;TE)QZ^`~TZP zV)tOhc>{SYFr~iboq(M6DStvpJ~1Te)3VR19O3jdd6UUR|2~YoX#xW4g21dHu*LxL z@L@|tPXM_d8N`YVa>@hyIA$@%EJb)tlCT^C)35w}z660$N)Zk~VAT-V?}CZ|@}^2D zLhY!c6-mNWkwVqTbSFb#V->Ow+_(7~{RWWL1%nd_%jawCu#W?j-M_nD`g{5@_f^%hDs80!!}dNn-a(+pA$}pkT>O% zH${?5nh;K3lv}Lyk~iIiz~~>a;_CrJOj>x#5>8V>U?dQjGX!P}Bj-5~-ai4RK=MIg z&60!{FZL~gr3T3*%^fbLaMJudqtqVi6GJ*lA^8(4$8T~)B?*UMgG;!e*t88|BW8(r=-v{6V$izkw?QBgcQ>T7Bj4IeaUC3W~Qmh0G`j zZ{$TCG8D1n~uL zR^^9539yH7un!T&jp0|MBM+Y^Qq4YJ)e3gdB`7)&MUye+(%VcZBF?GZu>O$2v3!OV z5@WHL+RsU@6k=Hz!S(U!aK+ii5(&$EU)xiD_Bw8K2tzp&P3SL6w##G%4Z42A5PeQe`C#85`vrT*P$! zUY%>vH1!27betCIg_VtS&WWmGIf^}LeQ^c1iywQam1+eFuf*oWwk3lQ<4+QK@uM^; zpySWJ&Y;fiwmVm4IL*wJU?55XJynI5TzxpHh*u3nTE(3F|5c#1DQ@(aWEEdfgF( zz_=XrDJdkWp5Bi;_R1RwK<=v}5@SR62h>Gc`RVohyZ6_gr0xLUL~61mzOM%Mj=?x9j zG0^=M(?QXnUuxw=dqVp|S)7sC>2Z{j+4r~^XXSU)uo{_^>$gtk$P=_*z@+!AS4Hj$ za=?^EEOgaN!vyxYQB|x$#%9BM-nQ2zA2KVOZ_iTAUX+i13w`#XFW=qWOnYtBWCNNQ zF*VY?Z)7l}cd-v(rIL^S$jDMYh-Dkb9aG^k&y>eY+Ok=H9wHIaVjN@X_vTCffO`lO zUJ%5$de*UZ!8jxz#(f)?o{`%sqy8+zl-n)4`@xUGLdTY7@1j4|`%DIKqaw;jvohW=z?5DXMfU7@A_S`I zC4%i{Q>bRkJ*|EGTNuA|h2!&A+-)l5^rT6odE=<*;O%MM=m#Lg^%p|Y=+T8>HYvh+ z2yBP+YyDGXmK5O#_%7R-ycJ6|i+`i>gD)pcDJf}ux43>`V_5ro@Js)n~%nB-`*CaOQf$&-Pegc0LY&2pAv9+z(!k5rdI0z{oQhaieJ&1M?qm zRJzh%5WgaX=zKoCW5UdAEmk@pZhH-qL?hV-QGUAp3ce*jKn;Nzp>2^jxlwteRV`Ck z^rR4)Xky6*oYR_tEiDL4^xn<3R|+wsI=Y^eTtcwTlsR#I+?Wk!Xj$;n>9_r(fa zPb(}&%Fg##s_aF@H_8u zFTK^Cj9#4$ic~Z=_X)%KzIB$xVEc7(&)o)HO5@1MdZqhZuf1v8yA5T zjO)RJI~k|9swmw^-BMZ_dlbi(vcOux&`R>Mk;j4LO&LfNZd8=&M645qwR-i9%1-^iiZ7%m-JCd zLXG#1G;6KU_Gn&Yt-m!l$~J(!5a+m+s_2!8J`?81qd5JJqPJn?&wTL4=CyE93MmqWAoOY1S~<;k*yhHAMdU&0;1 z{@F`gea*&yR2BeR2HOcZGz6Ud8hSnD=Gc52$H4*PNx;o$U>&>gpyh+hkKZl7djg zC_5UFmEsX1adFfmda_zJx3ExZ(s6rvc^T{QsK<9Q&HHFUps_u+VK?Kw&7u_jF**J5 zuOPo?#XPR-IzNB@B(0girGPS`UPw!i`35zfAFmvt2_#Q^qrKLO$j*i$5Sy`dO#fDg&DPoCu*KT7eX==7bYv{GZ@9+xF!g=EaZ0X9( zdQ8Ww?8hB@#E^-3EZstjG;}_P(*nsm$s1nGyr!K7z3H;!PJQxNI?e-X{r&x1)}xO( z>NX{@Y^vvPhl}lNX38g`WF(H2?^09yKMO#?uHF>f>sNK331$}dDwsOzc8%k+yset0 zFu$Bvgl{naGaBIa6UNN#QOu6h0hHUnq{!@hWtr^{r-OKHCq=Oes~7Ha)cm=xAhPzD zRN~amXTJ=wRyn~CAsQLsdpi3HA)d@veasX$EJ3T zKgDh4>TUKn&rD4pR8D%ZQuAA(fpHdsnN!f;3Fuch$rA|Z-2CP{Vlnmr2eyD+?Y{e4 z23xbl2oG`8X{K3fe3i4|@P6aT#D?4HR_oEaYh!I|aXgb;jNO#?!B)Sj;+Fo!o_@Z5 zqYq-OVYgRK$7}1y=?>z;c=yk59nZCLHqBx`aP(#yLqxH0`wj84B}HDVVXlSl_u;=3zE8%bM5OB&BAJ zk4$WZdw;P}p}4C`;uz7jYg$!ykO;ATD#yj{dG8HR`l;i=$~U?A3G;JvcKah{xLhVb zZvmjTcXylq{LGTCQ(dZhRy`d^UA0nJi=|m+O41R_X$H2l=jzTu<3)17HA)`KK{hN4 z3k#~pZ^?T^cZdOgGwbST{0{0jyz9U)PsA2+$wZNuzuc`fxX41?TFnM8p)~0*Bj75) zPQ~++je1~zyp(lQ(ygyN*>%z#vp_y)$J_uO3tfq=vk?-LHnnLo5etX25w=3-`(w6? znTa-EQ&as(sQHVXmQ*qol1Fn86Gw{(MX-XkE^9OG%!s+uogUi}b#3jjoQlul7%~mq zJ1!3|Z@ic%KW3MK366X1blDOKmX?)ir?h?g^yxQGIuirK`@leatkTlbw_sXAnFXy; z;-{OH#1H1)MqC^rymr&* zC!l9Pqgk~JP4tKGZGG+oUyfM2ee2dYFQ2vYp+n4~ogVEhO*Kly>Uo&gM%Y?=r_>*q z+mz+x1o!r;0FZral+*avRjz&0F#oNq=dr}Z!^0y8hJ&s7?d^476Y(z<7{3ViAv7T& zL9^0Ex8szezJ;5TvSDafqhE1zC z6?lP&f4u-e&S8I+_;V8zCM_*3IK4!J$xKhT@KSozn?TQ3DWdU9eOZm>h_W8>L~7f* zPdTbt4&V-}+_2g04o)*nOaYEc+qOR1)@znJ$$cUIF(2Qj+ zz7j}E`*U}xPx}G=L@aNQXcT6sO;?$*f>VVm#~rT4$H&t)G(aQ7Vk#TY*7Ei06N-HH z@`$PV;fBqD&e;>dWC_r4p+JCYZkusI1u#Id!jl49Z&s-wQj_)ZYOfXTshK3lZo|2@ zPncor*1D9BATR@q@Lq+2u}ytxXh;Fu>kOa9`}GIz%o?)g4AbtUJBeoRV*rX(tVc>s zXn+&USr6QwPOvOYEiV4(dvV~a=&T`JP;kNuE9OE8@;=v9VLrM=aT(q}@6&v}kNLKI zV@StQKDYLZRNVhySpRP_OFuT4G$tZrBErHoVHgs{-19URc5-i)>N z6M%u8xhTa7uZArY^--6tk0Wx?rov(V$n323j`6-%-*2 zD$5xDSa ztM4g6nQ0e>Y@F_9N#NZ>wJ}Q^$%YFrKb$<@uPg%uBBsK$C#CBh-ZiX4z%?+S5IX*o zhS@$^)ecMolWq)C7v~4@fOG(#I!vc_JM=dD3~*8yu+^>TZhQs*WpuF?)kR|9a`one z&0%PS^YPt-fqlR&m=whJUi)mmr~kHVc6Pi6>{~D&9UtGGtCpu(Zb6ZS@DavD>D@j> zv%TekCtpM6fs=X6oZ@zW78Pch^Y#A($ir_JBz%&=U$jVz6E||4|d^JuN>zVU>#d!h%>7Q z2y+*|?PRBn`1bYl!&Zq>w=JXfs##Kus{w}pz9@bmgb9Pdyrr$&l=@!WQ@~_eAPA~v zzM2NMI;J~I0%T@L-}j7eMcZ>eT4SG($);`#MOv<_rPU6oLlb4gWCKKrU7Ec9eyjStYnwb z#8F=msoXoXCwqGb{jhQO-QCA3ZL>;CBUKf}DE#C&s$n}l5{)J&wNqy{SQtVBV!)Wy zY;iNG zFhQP}UOcI?Zk`>pk>)YW)|V;YnJf}Z=7q-fr11pab2C`c>mA_tVI|PkQtL5(d}696 z%F5S4sBr76e);m{9}oyJ#3U=pfe5%&TkS_2q=Ww7bU`|TN2!AZuGad&tGHjK=fG-n zz&DCf>N;J=a5ZLxmqYBX@@V2edm&3`yy|TKSvFt~DTvy3lUQ98Sb}(QZ((lfpB)`X zU=Ov_PVRA>Z$U zt=s}rUc4GQ_ILvW18{1AaQ(Ao4P6)ZWa|?^IgHOwk955E1~7l0e07))q_#m%ov%$D zcDpu6xx2f^?kiicYvT7;!pNm@8nFYhv*nfd%}w^b%6Xc>dDcex?3Ctro3TJSAjZRVD}9S38$YLaM{su@d4>plInA> z-d|xQfLQQ24ybqrQV#BBgobyxXbuTC3#g#h4r7`9dny>Srx(tXNB;+taac(=B;6js zHeV1Ls=pLr#;lAAW$C-L2qMTW9N#PAKp4I**@knB+lpJ}Hzq|mYXrA1n&lwiAfV#2 zcujWj=JJ}jP&^s>Tas-LuG@^?h1T&_d$8M?y^14vjBVmcPYtbO0dxu_SXNh8wj#pj5G?!2?bD@P@-dYf9&jNecm!^0au@w-d&4Ca>sS4UuKgcT@dEbze}>eE zBM?~ARTRS}9=S4L-c z;1U6#0s-#Y=aZ2<25t^J2mYKm+|MWe%6-~E?lXkIxRKmQUI@$;YsCm2sycS5zD3rg zNWDJJCYOY4%Am^_0}DWHpbWQFmsE$8%c4KqW;GRa3t8P(qHyttu#fWh$E)~IpyWlx zbz750Qu8VtD}@9?JaRHjH4B`4Jop3LnAnIl=A=kcK)=0#s*Kf$74w7Yg7O~fkcKOJ zK%CVd9LUbHl>YbHokZaci;U>|=x^jrU*}e=bJj2CFFVl=Zu$UqC`i6v))SYq6n1&I zSToV3xE1+%|1VRJRT<^Iq{X24)^i!uL4{Qeqojl5|37?CsmcU)4zG>Z9L1yDl|!_B z+8v>L5(5*TFjm;Rflu?2HLp_5aqN_DeD_aYl1s}y4q?N`wnBADaQMgN!pqsKJZzy- zogi=qMaLIt0VMgCt5qzh!}lP-`8oOvqbbl*+^C;_LvfYC_jfky_KViTdd(XtT3r`i z+RZV#W-T}QmqDv^lf<#o(;ml-4puYut8uiSf6l8Ok(yyDc74{>heY+RAX zy7<7&4^(Uta%i1{zV+UqUz(P#)Xf8lM*k`C@({edM{OP5=(@BZ$KO}e;zjEi2QHEN zd4X84Hx%IUf4N6d)Zvr7i4^?F#E^66jHGQRZ&-&<0Dyt=F2IcLc9icYT+_Wk*s3AG2tV~q;1g5d#anL_g66*}y~ zFz(3_i?dk&cw{Y<`r`1fG%g)>mk&CSt0vYzTR6~v%iZh8Z946S_{E_$^wHkfNOdi? zUp^c;{XR4@Rfan%DAsQ7ml2Tz`&$fHckywZP60G^^ihV?Sil$Ns#Rjd-EY)bSAjn~VJR0$;j|}*f_J`>E;Z!Ou z!=*T-yu2#oo|r|;F+hIOJB@M%8apA9)6c{+fZ7aK11HOcar}>^Bq986Tu-+DQJwQo zrF+*stj3i)c2;hrwuVx>Y;U8IMXQ_`+W55Bjzw_LQ6gXAG=5#9`DBm zm!Q0hsX9PlQU0xdi!VeU+(yeGNuF>N^Hr}eQO#1ESmbf4**T%skEQiS>O$wKK{kd; zW}B*tisfH7?y5+L@jf;&<1ul&+9w_Du=_zJGwhLxrYv2s7iRb>`at{l;6^Lek`DN# ziK&&7$KnoYOyeGTea_-pmJj&GkbUQuf`{brDh7ykM=(r1Kay&McL z9oGaH0E8T8rKdKxWg^(-|9r||Us=AJpjlx^5IUq@`qr5#bWnZ!S7{jgSZg#Tm-lO5 z1yQSe%we2RJ9|AM4-U*Yyb%;M7O@mG1g4(yVseA(rEc=ztk~Dn>GXmZ{elx83>RCbC%e$n;QS|1icU#@jNW8tXwk+M z11l};EJd0Ya~V>j!8mMVGt=~{EO5i#)E|Bf^;CA*y7)9XB^6&2eCw)$gJP^_mNY6< zhK8Tn>)p6mpgXplZB)Bbovbejhtg`o&)hs>Gc(&}%A-%cM;@G?&pe2+9{ycwt>ca@ z6Yxq^jDKm{as=d9nH=O1pVunr*vmA+F$n7tk2^gKj$Z@3Pj=8_3)0-*M;V?=@ zL~G~8H#$%&77jPvEV7!P{IP;fCB}ugNya*xZj9#sf((|!IHe3uRsaM{B16T%%D*+fTyuw@;rNrxh-F3DhMTc~IxhV({bvUN0@)CVdJvO8 z)*Z!Kv3UrfTSNSZSyGEiY8_E8XCoRYIr?`g~kBPSWIW7LZ+`-cq3C=!RBFUbN-wNmgpEDc6Y{>Ir7bJNBdmM zmPwLe1Mv&dg#7__HPKqkMVQ`21nG|wKautemI{d%uX(II&z&oghCg?bej5W|7DGH> zW$?GOJ~QRHFR-aSTl}n(&-ko;4-7(qw+gOJs4E$|Mgq2JhSkVM&;^Ew7gpWa9yYd zSi~ib%Ju7!#1Gr1i??w|SviegX<-OXp4CIf#>H1lqmOrjCP+DhhwnldnL$UDfwFlgM zPu$c1o9QT!9-QX!Ug~vkD41KXp0XZ42ti!#ZtaN`Y6JYm9@>0)73w7pmVB(0ufYd} zVtr|}2tv2AwISnZ1WtE|vWxw6cEauOM4W+OjyGK}qLY~3A44Sf)IoXk_}ja2ws4v^ zou8yar@mRcdNTlqvZ1_HVqwX5O-=|sa^;xr%2S*_n~oIRe$8iEU52}C{-u&Q4Hjds7HAfnaV#W zA!8qFi_!J$K2eTK{PD;C2+q!GVC66w!EJ&EXJ!4;sOW{cSWPleP0Aqxti0S$%|)Wp z)Q9+rE4~Kujpas38RWV<%TdS;+AMPRSbxb;+mn%Pv_gHR;Bqk#hjtL%QH>##1pic8 zO~-gfl~^wH$8_9}h^PUZJ&Z55e3a{M?P$~xF%-Gu)9GnV?fd4NPlR^|k>i_OvHkq> zP5VmBX=aCOT9GxH3hMYl(Ubsc(}@*pg|@~6gBE&Yk;LK^ueU}AAJKWc^ZII5xm=#! z-u3g(FCi&EL#AL^Wf_t-vwoxx{H4OjH+pd^r}w}$mv=B}LGj-9u@9 z%Jq2}lv}s@3d01hOHJw=mE={V&a-f0mKIDuFf&~2XKiXp@ZOl~&K#?D)efTeAnqO? zrwGG!4@TUG-?-cHg5ToO0x3kENrM}DOMfVV>Ze50NfJu=r~V_qNTQRG8ORE%*-A-5 z4eT>0Tw^`20BF!CQ1^9mjb(B!nb->h;5OW=XlcpLt9-C<)!avIh_7N*#MD4MDiB~# z^QtQNFxM=J`uY+CY1av7F3a1U@jECWZX2F^9nMgy4i(|vlGLPvCdDuNWJB{Wb4hAH z5|HdbU?xaAw5WlLLuI0WkiRzoVXvy5i)pQtu@T&AQmvzRPsGjej5I~RGMUMewc55l zFvdGDb|1REY4m`MbsFry&lC$Pak0;p^=?0}9+@*S6PyFB8Rga(u^9)Wv9)o#u2Um2 zY=HBnzb#3HD@ybVU%iz|PTM-~1NZ*a&=zo0LE%4_YhsYIN0_@!xadu&3@kKg-AQHI zeAwBgfKMOXb5yN$YtA?l5%v73&4V+C{nMnWx}>P*vOfGj+_eIkzy{)TTx{~3#EsR# zsT|*y9{v=Fae;y zw&SuU&SE020>xz&{>il~BjvT=gL*jnw2t@4-OO5y&pGV%0KbarRMo}JkA!kBcgmI! z2&s#AG{=i(ykG7yZwXb~7(6BIla3K~k_HW5*BL&?G=vQaVg-{1BIQ43qyKy&m0OMu*)EOe_CR9Oj`iQl$+1n( zE%aX=ZSj=XWl#fS8RAz`8+u{lOiMA~Y?YUrRaz5nt>#=;kr4s{lZvuhW$Tr^_&feu z&|}91WvRp1G<;r%Cq5dw3qA!!`O~oxji?3Pa`u%sLrLEXpImLf;C0-^0=WVFoz8`s zdZZI!%~IyGDsEF^AnOJ%hdnMpD|wUv(d25d?WjOhoYHPt!Jsd}@Tf)PZ)|RqclY)z zIfZP_4XCl1HEy)p9)=J^uupa3a$3!0go$7af(T=#aJMsFhGe=e_4x!(r%6ZQ8z0dF z3LAG}<#zu3$DF?_#g5~>Y|ASu8iM6TELl3cW^`ML7n^2fxb0uq#~vs~rt6un>j*B= zWETcPBLZx_EqjE7df^l_OFw{0c@>gGEQ&8GGs9hirH_+>Z9^c94Z2#O@Ui`Y80?_* zNz?h5M|3(hp9o?ay5Ff$v=A~JAI$29zl712p>~;Bd1t?Lmw*t95IcU<=rzOVG9=(| z4*%qJ3~#=pH(Dgs+Dhf_;>=VjUKS$3Ir0R!FJ760#rLfd3#;u?AR!aYJ_og>JY82> zP(j(;?%=Y&&!)Yg`nn%_$y-Tf>qi!n%TH&2go$o8Nz-YU1k?mR0N8Qdo}N$QX@EzO za<14t#8%QBLKY!(+QY~io5CkZl6ajTB2HqjT8oEeraj7CK5T9(A3yGVq;6AS`s69; zVh`1Kf^cf!z3~Xf3qepDta0Wtx?*gM{FPelVhvEI^dFuEVbKKu-u%;%=x%3ze|5Ny zms=lIRf?k^UI&jt#o9L+;<9vi`1F;OlZ2i6Oy2c5jG(X@QR^_jNw5{b%M6^1Z0uf9 z4$F26aCdu41EN({3}N!0DqlSWYb0$yK8$^9(Io2Abe}PBcSuEFA`KmEvn1@Dh41@o zIqScla{o)GgVLRDLFeYfYTc}kOzHGX0?hO#q~*OC?qG-0Y5imY{Qqdv0T9;dlpiZc z-=#XVG_;!Sp#+;h$|3~O!D=GQduz2vXQu<0LF!GFQ2W8L&UPFhTF@!=JW2Prp6Fej;+<#oSPRXdP%Weo4r1mKw8`@8hC4wc2|jBwimLT z+vX3F+Rt3_4Go)%nYAL*p2;D zOHXz=97`%>C(>VLhOh4NR(0LON+vkK{_<}`JY!C5UhX@8+?y0M%|Xly}`<1c075C+V0ydrUusdl4c7y5PS&o>*Sb5*~ zJs_Q21Qm0a0e&Sd-JXhE;RGX)`Me*`Ck9DwTlddj}sb$1hF;`QOK^c0Q49d^Y@BLPFWR_f#(dA>XL*Dmx)IS@z;I$rw+L z|LmH>!?jpzreMa5s35v`qi+NcbTmuum)Nw1e4Hlc2v4bq}^|IY?TRP>F$M5kv=(yISjqc+i*`I zh_PX01}0u5b|~X%?|S)qb|Zc)AI-D*7^?B}bv0vQ`6luB59jM*1ED-~r0x#2aa z3aL+UERZn6IXUOnRD-rFSfp4uf3Df-lMXHy40!Fv1k@cKlXi=EP@OsO=9T zNjPoJN))LOrXi1I4P-UOZVD2Cu`X=4g1J?6W3zAM`-dI!>WHJg(=o zn=v#=^4wMGPI(NLUO+;xDzDSq{3hb;?7k8FbURY3GhQ&exm6q}B^u}UR~Jt=?HhJ0 z7^)9pzZH%ju{f_+6Y%hYePDnWq|%g?ovkbW{CT8PHpplc)^+PrJSmIJ<_9fGd2ulk zo?`?Zs*#2-?%jCd(U_8|>Rix;=J!2c-*}K=Rd2oTyCYWorEkq@v^tUXq8L`qX}!>Y zb>3^SUiD6YaO$(jev?dv0Bl_JbkI#iEN9Two9N2M05Tu03|$c_@#jqcJN-N$!_?GxaZh?@#C?8I^V$;4IbUfy6X1# zWlx+o>Vpql>t@58NtKm}{w9JD+1`}9cN5)?2du|y-NZ1OByBDA!>*o%f~X*e_1{uL zHmgV%dR5PZug*G0txO;!?95)v;&trwq7=>ceD1TO-vpViC!%+H>T05UrW)dgTvr!V zv%(gm98pmN-ycPVC!F*?SogKTB?yHp0*Q9hts9 z{9tqK_V~^!H)4W~ybniPyOWU`%Ye(OUn$RFrx{vgYQ$0d;@s}{bI?ebv!qSQ1p?k6 zJJ23z{l@cO{gVdAVbp`InFs4yb>Z3wtuD+cKb)Tlnk{ps=&F6Miyk}tB?~?59SdLG zw2OIfKVIcOelen2b-Yelb)Gs8_=CLHk+qBi_&LGE{%DBB`O0L5Xt5ImNHK5Cn|!*C z6A$_L>3SRC$Lo?tx~P;D;arfVsA=bA1LxJc9_Vt=(M|k$w*w-<9Ce!X3J5~lF(>oJ zzd1$TpC;wEKtszChbr~DU)Gs14}#D3PA<_;!ZWtM?~jkgg0dd7K63aF;_>;fiU%_N z$?%Ci(ZeR`b=}gG))-re2=C_F!K?W?^Jdjv1lW~})CcS)v*B+RXq3Atdq4x7RH(>= z0>FWU=c*cD81q+f5W?P~vB{$0N%`v}RsdVs`8gOe8?p@IWyEnob|F;TnO4MNIj7Jv z9eCD+V^n<%H4x;CL592+mVDBk7=Ilk3SR-{zt*u4MRo+ZYu#dsy%ssP?O6KO%(yoZ zhIJ$q?2<6XX*HnddLf#@;kxw$v|I+uJ}=upJ~^6ew`;k+*(#BlX{(DQ!f41CA?`(_ zlO2fOSby|CM)msi_w#M9Fl%f_1!-Usgq?6Y6lJ&QyHB{=B2K3_fs8azi&z}!QcL19 z=h7E(z0oXp;_O&dtL_a|l^a&pjU|+r)U+9gRzJ7{2P6!030;s}sEuuA_6#_O=}z_} z<-^5rBEF8Z5jpU(barHN36z<58|ESB!_M|~rfv>M3b*h*W=#3KT~Ybn)@Ns7jXCLK z_KX|aKV?Ik5<{&>l|i8eO_lLToz8J35rR%ly7PCzmclu zT2K$i6RYGd-<{H&^hCtW12$G6;ckT)HQ0)!!ouxWf!z~Jn{@DRFDR+UC3?*>4l%`s zI_nyvf{@t-MC|^ypU*dc#*yRFYp_=owSJ=69eWJAJsTq1P6{k<=|Sr0y`G zuRqgxQFqI4I^*nc={c|9PWJb6ob20Lx`LfqIV>u=Q&nbyDz%Gt$qNu+wd7pEV5=f? zgO2VudSfa-PNOMazaA<-ikkuDA`~eb`UB*7@DRG?1W;yUr~67m#_al}ob^`_htEz< z1fM+@>%@?#C2|4hXDpREE;Ney!%caKu3IU07}|QaEWg$$O6O(u6R)32c?)L%XJic$ z))B4N!Q3|$tGOl}-NO89<6W$Yd74$Z?>ui8*^V^cV~)C7fD^H>2{kYra~z;4U9T6| znw&hP{z&z;6iUz%=LY-O-*u{wsVQLF^&avl+|`d+wt1oZ2vFUp&)tb1{j_vNfGi&H z0}ee8Z)T9*w*%20ZOd8Ly|GwiK4Ru(E@2wJ)YJL<3}~(rH-m1ux|I%!FQs@I{JcfQ zn|bCP67nVIs)fb9MyR57Bx&H^)*-1kfTr?FADE&3oU?;MFh(TlDB3U@38X!Bl*hve zezlZLxne{PJU|S-h?xz)qc+N;Y>UuP#*UC6)zGWnI1356u_5Am*DhP;@1qjEdXj|f z(e%vpDcM$_bp?n^fHz@m0SbMG(-JX#pK1Kg`a7JK%gyfKKrTr1Z|Qc~j~oXhG6Jn}L)298Bh_T-TX`lRBW|uP6JbhrpnMYT zDdEn8SM9w!RN%QTd*ybS>6&NbAO(#I*`Krv`pZU%iK2&`iK?WWi=Uf2u-&$!*}XOw zdp4sb#Ck6D?3|`NZzy|_GMpQvfapZj@|Y?lp`Q44K4@Q>JB~VPv*~4 zJnsomb_+r;PJ}O!hDr3n)2qcSuuZQ#=RQe7#US$Apuq`79xiV}59$Ny4Q#v&n`Z~| zX;u3C^o@I3VB4uoWE5V9-bV}058DD!QPKO{K{hE77OkCo_!E)BjEY<4pat#i?}4Vaq~f+#-m>`_(>r?bgNSsG3-mvM zGW)|~>y3dYJmMKwG^f&%f#MfQ`jnYY9c9+@2Y1K5GXZp{VGZdc4#yjPXLin0zN#pF zbn_|14)XY*s4Vo@>-M2G;dCvdWWi0O!aAqe-=tP_Y_KYG3I47xmwBTbe;zJ#{J>#YjnsRN8O0r5+NU`-@ zSE9gyCc&k7vU@sPxjkLJ8bO=!4~JX#>1{w%FMTH^hVq;JWp~xi%;AXi%Y>{n6fW?C z$_zA)#l*%Qyja9orXgRkvlTRP7kdeL?d5GoAs83Xe?H6@;garA;f6~!d!YO0w#|{- zxAuVwC@VadzUM{bxcFcJwA;BH7G1oo)3K^FI0@pZ(gQMNY$mr6zI79#9UH4=>NVlAX#&t~!5T>2l z2%6Ta?IsTE#=glj8_g1&7&cjJ2~s6OLqoW|Y3@mCc*#3VuVbXg3oSzqkQZ@J@YA;< zD2uXk3qklJ(b??Fa(9P@>QSgngm=`?Qp-7zX;OQK(X*K8_SG6U*3d?kDf~ zj7_dg@_7qlL4Oiet)($5B_NsuBzyz$SSy{|-Gwu<3Gd$hQgMx0EP534fHxQki(Pkr zDy9}Qq*y5Wrvemtt9C}5lkDdVeiAuq4@S^@>{+81^MCrhTIaOGUG(T@%zJT-tXmXJ zleC#%{~Zg<$Jpfd6SJ_njSl`&Q|-N{<$Dp70;T1-;nz&V-1;gYOzx-WX|23peI>+q z^NvJMdo$k)gR4+7PbR;8Er$Hti=r|I^gmp?72Z6u+~hIJd=oo+4v^y2b*;S***-j* zXXf%zg2Y~!LdfbikDn$NHRu1EJcGx`fo>N8(x4{b@l9R5XR*t-j`t_PjUG&jK(A=U zuU&))e7P4irRyRpL&~}^TPfb*Eyqvuwo;_9`W!M+Co z+VWFDf~O*f#Q`h}jerYgNratVftVt2F;;>pdFxj}xew?JihE0=MkO`g+2lvdtk!=Te-m!kSB5{{vSc^&s&C zP~QRs)_J*VY_TZyp+IP*0^R76wPq-BOv!5FGC$;h9)TV1AVdm ztjF4*FMNVl*tB)s<9z!Rf0El8BO;Lfsk2QK{_HanKVI@Babe~m+p9Y5@2UT;e?9U! zGdweuWxLj$*3)=ZEOfA}wjubMsf&%Fq z+N}Q?rWyqbMf!CwFOcF&}x z(O+j}$}q*?qOr*ZaUdU!@AWvJb|}AJ(*M}UwCLRfzYfE4Wm^q=L<)-6Qh!^oawvs- z7hZs_jSB4_TfchcU#kx}e$U56=s4LnzdXSt?&no@?DFy@9iw4UCh|7!lPP>%8RNgAj^zj^-2HTOQ=Fj{SNcVBsIGp~C67bu}%= z^6g9oh{l?Yg{6TYYg?%2m5GeEw~Gp0U+YZ6S51ojLF<{k^96&zmcIz}z-T8zKI2$E zC;gA^YLnbKnr$j?Aq4pNJ-^u5(LF~Cq=t)~qB5wf_YmJIImI6NKSU&eL&%VL<&ov# zNog3?W4`A$`o)1!C^F+Yzf&8bMNDVZ*sqrQ&>>gdwCB&2w68ha(%CRLGyQw^`F!?w zV)pjgg)DWP&Hg-XEp6pyJl=8XqH4%B)T|&PA`nn@@1uJ){-DsIO2pNK`~vcBqtOn7^qsc*g-Y%e}TWJvVq`> z1gmdzctQjqv{L6d$_4V|+Px$Ul>&vSm0ZCDRza`GkpG^7d(Ba3@lWb_nVT3;iIb+n znpG2`DHeFlX6~IIt_m+xCz3Wi1?vz5nh8PN13jMn0puxDmSzc)&3DaNTwPu`KJ$Vb7bO)NGrKdNUmW=6g?60kJU3j7A1qgn=#E0e3e73e8pq^Ip0vdFB zRgmN!j0?LByCS{xZvby}eMKt`%E*p2>PVREZ~;@~&Mjb!e3nS`$5wd=^c4>>A;fx7>0&2Nfn1h;{{ zid((6q}DIM@7#b5d<^bC?VTrkw#;EBXZsUCzF$d}7?zbD_|LDLM_Zl(H;bl>sDBAB zaU`Imcq&iw__34XBI7@2(*h~!urjK()NRe>c46+H@$b){2fOA8_J{p@z;?<~Gbp(% zEJoB1R^x_--rN9wO8Rf$OD6?F{tQNiu$9v{+Z$XCryth&J{|S?zo)yj2SY)l(dlx# z!fX5gG2ebeAjS*2E_2x+8UulbN-NU#-+-E~a0JGrqBhiKy`$l}iiL@Fe{-owVUz96 z8wykcAN3_lB9Bp-XY@cZ_IUDVcPG@jjSymmubxpuZ~YLrBE9D3GG872H-U|-COf%0-s$#t0s8V0JLiEkxr70CLX}v?D!~I{^#op-%HsAtn2@3 zp3O*01nsALkN$Jq|2)O9`!5neXR=Aj_+CX)8qSn#BX>%4QG zb^W1F9F?ToBbXAk2$vA4sVeldb-xI-$Vc-JVXTggu z<`{=gXz$~BY@MN9KipdSaR8fQP+>v+>CmXG^LvG+FrfK}%Z4BR(k2mC^vc`=2{MbU zuo?9Z1isBH4*F;-PD-joQAJbg)0V{o#mAxJs$~T98>V3 znv0ZW#6ari^87(_@RN(VZSAv-_Xk&$+Nhg7vT!&vj~54q^iOK&_eVE8kwc^Av%=`y zxotIMWmE?qvK>i*ycm0bE_A?WZ}bEL-dckaq|cTZ4t*W8w{SAuP6d7LP?_aE+ep2v zSAUc;9IaF7TDvR`#_jiv3C|8Ym@Aik5nF&c7QAxeDmgSigj<|+)n;R^y+RT9y!c@2 zkoG=>#~Q}cpO?BWE#2lPHDNAToH?*q-tLTb(@!D~}%0BiGs)ce@B$4(F+6U!c{|QD6-068LnW*V)Cdbp;K~@l>p6Xo?I16Jl(L z)2WVt4mf-4iCu@*v7!V&wdnsj_oQ#lwRD=BTGcnd;4GVP_i2>ct()|cc*y5*CN_QW zp&!T%u5Yfvt@hln6gLc1h(ygN@Ay6V!Uo&Sn}a>^HBYOb!roYVGUf>aEXikF#D>9C zznI6)*_RYBWw2vjqyMixKL9+FY3R4ehvOfJb(`zLENp;qB-9IxQ1e z_ek$pdv({|_wBuBo!uwB&*jU_IxZ&U?7!)j#s2$>RdM8=d^R2(iv9*FuGaQnN7U&ut<3B2~{HVnJX?MyhR)4$4xMxPpKK6=w z4n^}812Ky^M=D+d50}wnKF9RW^w^CnS(j}O994W+kx*USIct|M(4H%wfpIV3B*A)z zGe#u2X6I_Xh~HOdzwi8bR#aK> zUH+4~``OmrIRBBkaX<6v$?ut?a-%tOn9EfE&%S@{viPxy9EZXf%0C<&Hz8M>YmI5HV1%x=v%<)2`~#~y9jv4%*Z+;4j33-)&J$o?l(PMJM%U0 Q^gad#Pgg&ebxsLQ0OiEgWB>pF literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_20400.png b/Notebooks/1_N_horizon 3/sim_20400.png new file mode 100644 index 0000000000000000000000000000000000000000..2b3d2ba94005a6518c9cb448b85c31fdba7f3db7 GIT binary patch literal 19794 zcmdtKbzGEP+b&EPEAvF{ARG4PJFx)fD_P}Xp2?3FpG-TwB`z-$#U;78==0wH zWf!G5LXd-93(qK!gF_3acp16tx+qAbFJwG%NobD&wega0s+-Tu&5&^F3{uwwL7Eay zO~6sfd&6@?aFhcaWeG=3pdfZ}ujhY3>T)4lT#c)yQLEaXjtURd-Q;$jS%~82`Ycua6GB4sZ3g_r8jDo@AR0 z_jg5tS>?e@m-2no#~a8p7F0g{Vbnn-l5i}1+0PH6PdH@&M@7I<>~K`81fhxq;Wm;` zQ-V<3w6~uDj!KsxETwlNW+R5Tz5Y>SPB=9HM-{_SeQ?yeAB1~&(6Jnq9?+upVr(&Mw26777rZq?raglUy&gX&&IRyAmI0MXP9HQ?QlnEVbwhR!fj;MRs9YRC;naoh>Y4D*J? zuUO!n6{&5{qnlrK7`hh+3_qh5a;zEa3;KujgM3Mpl7b};eers zsCTPR0-`AoR|zKx3_1pagl}+dG|#wrLJ!ml_2iTHIAmxlnYj4XP2}QnvI7xTiZ!&j zRim#@TOTGJVbP=h;2rR7q%sZ<8%#hA1oP?3tIA8LlHP$K!7hgsjvfg23dp0sao1fp zZ;EOn0I~J~A$H|6uGa^ImCV`fne5G<538@EL-m9D5KY2913pgvkRz=1D`K<;Y@rCN zyIs?h62W^~WCm3XO)tp|Mkx*4>6#8~f(p2s%5EI!+F9Nj=^XK7f$VNigNj34WWmnCVY6jn{;yb z55B>W3)e^G^`oV2?T*>mg|g;&#hT8{j;;kjbX5uUhyvi0wWikH(Vs)*Di{& zpY)7%udY7F5j6=Y1|0k78P}`$4tb850uotkt-duypr;W{PAeW&Qg>X}I; z8P_EU8R+YRYa5|?Bj&s2^o-cmtcRXB`C^AfRUaD~l3By16mNV4=mj%~|2(??SE`x$ zN{9@H_2^!(5mUV-4 zGHB+=&8Gm4+V_WSd0S&|>jx206`wXj>bxOHubbP>y`}83-Fhv61yg#D5CJsgq`r_6 z+|EzYE8DuFO8Urd1$xG7rw@~5IXQ9cybtMd-qm8A?sfGSqv>yM3!l7eu#}@Zrk$i} z5sq>fY%05c@L+>gmp6b0mNi)F(f8oCvluG>T|?)BJ)$X9;YSyLxejGMmUDaq*KL^- zcX7x~r!VE;wuFYqX|(scSPfts9(%<4XEOS4`;~RM17xM+wrUK6Y30UKQ_m34yG;k2 zllZ!f0bh}=;j1?dvfm?ev%EeMhB-3K3&9UhJa5+4v(x7WG;ODz;2a2VT-#s?nCRq; z%}@zTsYlv;PotMjkRY78IoS=Jmd(gz(DH?N5@dfsc+&M1%Y>!i8j${{1`q;hrA?@( zN;owOsWXS8%)?tN0b-ND*%Za1QYut0#DYek#B-sTkI^5hxm+|WEhd>K?a}2AO@lU% zAaySu$_8!ze%{Y=p*YM72&9?F$QjG1U}2vC)YmY+CI#_#1RV&q3ki5|M^sxO3F zg3#XQI=UXwH18wUGP2n>5t-+7P3|*Bt7N<|O0B>uu7Mh`b0JWFu9xwnxJpuw{U98; z9Ju${*y7!Hx}-}LK4IGH{n;MFW1j?!*Pq(VWqd`fYNd}^^N znD{H9W#SBYPc9yWzw)!|a0l0l6mA$sn2!Np2-2Cnj1{$EtBYr&%@TOocV0@HH{6IO z7c@eFZGyP%_4$Vj`DNyY(Fw9)-AD%q-YnG|{efJq3=YWzd2MYPTmlk$VPWCE)CCCC z2BYPk5P>Vcm6b(*mGHlblyMMTqSp_y7_W+Xk)?{T7|eejl`JtypM23?U9MK;LRYf? zl%K{6LLVAY*Fm1|WLy`b?=v4Ue=m7et`Nbc;xqGE&aDhV7&LKto;Wiq#{b&x6emTe zMrr>(Io#Hqg-ZC7814*K#u`*Mrj*WD(j&2^54;icOJp&mh@9xDb9@4bu>v}Y7`+Y^~_BvlRi1f`>- zR5*v7VVb8sU65wJfB&^@94{}gq0wRSzK!0c6Ayb6)~M2?-S?_ z|1fP!6s7Y1_U&G7)z%Y6rNp+8i8Dvz_SnWBrae$GcLA^CkqPh8y)=R4>>}rtg646% zHv0}i|CVqj9^*EsRplxlR&K=-i{sj83mAF%LCbU`x>#uSG$OyaVZmh2xF zz9Q^qWE4erpC@`AEs`fK2lJ2r>djE06!#QS)A8WNYK>%{UPum|>z3m*S{W>OW%CnH zWa}4Qyz}1xYL}T$ZLz#W-sZXGengyAAA1yqgXuy=!gS8IqK++{dcQw&Kk7*`?oN@- zepMc({%4LlhR~KO2plo}U(b z((Pv>)Cvt-Zgz-l%VW&Y!j#lj=S!q{QuNdnap5Q_rvj%tJ?iCl40O^VGd)RX4?@My zoWn;VqM~>#hab$f#YouNA|?)+_?-`?{LA;p-46RpYaAXnpR`+h*2fFlM~k}g@lUw( z#PM6t9WCcEiHj$d+t1rI!<_PUf8wlFZ7TxPn9g-1$Qc_mI*r;Am=EO6E@kD-Ev6^U zP5IMWZ9-!GX^uw z_PFNhQ1K4XR@vVVtP2yh;yflDhG2llqM?$3-z+v__Jf~>9Kj6j!J)~WysouZ`K4)T8o3Eq$J4E{F##6!vH32 z{Ur7LxSUs8^L5~1b$mQE#{5`K!Bo;#Rvbe^LzoaUYK??F6~!11n3NNXRV~+W^KawM zLYG0P<=J-9IhRQXb(&(rHFQUU@Zwk{f2a7l2nf(*wLEPschFD6u5XgZqH_|Yq79f| zL^CxmIs_*CvdS6pj)2s7FkcTmg~S^Z@di!ANJ4AD(xOhWxRVq2t?lg?F%Kc&K7TXP z6U|D-Fh&}+ZRTC^8qjjG9kDEZrlL|mTx=dA?j<(e94h`LY0PClK^jb-u;a>Pj7j2D z)pm#ZOEq*LkT?CeIzd#hEeme$kuNypS6MAGDW~$VtG|zSmt8h~62$OX-oa{YY_yoDsn)yKE9P;8iMbG=rTc5u``RA@11Gw*qd2sn zd=^lr2@n4H1ScAV6bOWYZ%Mx0q1gTydRlD;Zga3=BHr4cquKKNw|>L>8`sIaXugvv zi4^FSH4hdT#5^$V)+`a+ZsRH6?bpO$n>5U!mqtQ>qjH72DU`M|MK-)_Iz;$j&8fB( zgtelU77Q5WWG7vG7JNS)Yo0rGFddq%Q|l=o`yfMatII_`3 z;;_T1J5NX4xFf!0cR;68-6Wy$%cFNtVMjLLt*;9ch1bg7VX)JEzj7kAq9T^mV?hF+ zI^p?yL|O&D!&8hZ*e!Y_2M9Hz1Q<^$_)f$U_Ycy6SN7LIP`e+t>L@xe6J%#Bv!b|| zngkdm85XfzD1d6lV8I^sw|kgRX1Brh3Yl_$^x9}HxE?qb^!(w7w(5q)lYPG}jN6j>DL4Yb11*WcGanzn{;fhIVW@Kb6 zKHXi|Fuvs3gwE^y=(ZR)jyOS{f~wo`?prNYn@v=YpOu z%PXnfE6%e846!v$dtUZ65fB2G?cWAJ40g3fahe=%&9+4&-fd1d^MI!T55uN+EqGf-i zVkFh!_Wbs;&Uq}5Vq0}YoEwM&h{rBg-zpawFfIjj;k7pu1m}`&Xd?c^|egVE~72O}jMf*}{|5B^jitw}S6r88#=H`Zqx;|JQ z$eWlyd~$4X5uF+KEX=YfDppnWESfT3TA)u&-!mc>xfkTNn$}o~~Nox_z6sTw&TiJMYHLc~021 zOC7#wLMzICrv_h_xLOZK?w33{*o3eY_7oo=lQPAc_ZLFN`UXFsi|+)#}oek)&Kqb_qbg) z@JD53vemZf^yHh6coS?@MWFhlOUSbpHXZw_bc82v^WQqblU}&AM0C9pi zgT=q;md#O4{=t9Q=L98>GTQ;IfTspWJE9Y%pX4~JKZ6NCn0ABIWM`=_@OZ5oDJ-=-1U@FBGU6lV`iyHe1( zS~}4&8>OQtDT#*x_R`u@%dCV}pORAmd6bqJ z@ra3#p^RbutG6gI~56>*G!cll=th+c` zVQ~(4{V8ck3{!+@BwiTfwcYk3fK)Jy@NrY&6gr@M;;V+snf}=oTW{8U4%A)oyNMuvUZAcy!Qu`7lS=7bJ#gK zLw#@w(kh5y_i#fx<{wWYCnF$rqceqh*hyHP)W}~rj@VJDX(C{3i<7{yc`i~|c*Z;K z$pu6GASLXtF@519MdTM_9}c`sApb|4`M*T0|7Tx>DMvhlqhf&jz)=H8!X)z_YenEw zc&oLHQ3A$?=!?^`pHqBMRl{{>ZaUB>{0faGLpnnjaO1BBg(6h_Ag<{@o?Mtz;}h^U zGJ{t{*$Oq|G{~1_h3uV@Xj<#R_qR7VuY65w@HBjyiMKo3KRT7sG>uyZ`TzyrH z>7Oh?GYxgZQ$l#$<1$<6pv}aYzc0|D2tD$r1UsW{6VPc(L=!Xksdn8ptNnJ-3!y7O zmB|yrv1;-EalB*ip0JUiD|X%rtJ+^KTD3&OSrR$}(7tF^II6tGNC(#w_k}GpGXrRFIkNEmO+ea>z{r(5i^4~|-)q;ZH z`$CNUAmk{BHWA$2DsNYZ1l|Bac0TXBkFlDvdFvAgY%>R5bd-J&ryt~lk02c7ZxFOC zLHN$w35!)(^V`J?*>lq%523HJm?)D_|#8WTlv*& z=80GjX34C%4W83-2HTwNoz-@1ZFZTeQGhPucoT%B6r1MhN)a5pvD~0Xmri6e~_rq)U z?JJl@i$gA{`1!!sNW{hTo_d4AE`!1Pv03P1Z>4;;qtYm!ZUB?## zTj;9d(X%#gZT0HlzoTs9;x2b7VB)B$>JQ3ViJ;w-2PWuG+9&o-{|=4s5n{csi{`ya zQ@+*oe~wCMAz&n(ISt3(`1>K}kFa+v4vkPD7<2e!-NxcI{a26Zp|7aD!eF~t}px^ z#15F(6Ak?JUe z&EZ(fs*<#z51ATRTZKH(q4ela9v=iVl@N5t(nOrE|(P9x*65;X>AvU z`$#|gTdstV-ephIe581dH42!dmxfrNI}iivNP(-)H=TVOEcLN#@JESfaN@#S69W<2 zHF+gMZs@M~?kyJboQaO*<&y2AqgA#iV%8Hcdh*-9tR2czKd(c)t3cS=@Hg$OBdt`8 zuVqDI+8(}W+dtN!44+yd08!{TlKYr5w0I<@)QpugXYhALp%#{*3BJ_+dMu#`zQc6% z&oSs|HF}C2m{R!;&&6DsMPfIf<&2aBma~>_bpOt2(<+E?$to!*5<=uj@7GZ?k}NfC z*1Or%y{8FU8fnz*$E+%tHh_6B1dAQa3A?MY%`sZXwsV7?5B0fwB$u7IoMu($a!2dp zXEmMQOyS?X;Y{uIm{jpjS9rM8j^We&x6dOvfVpK8K8OnRvbov(2yqy3+-wU|5ZP^F zO!PD$TW-A>9!;{8*eOfrYFBqdRB-A&&CdPb3bv`>uCO~r1k#}X`?QEyKtm_!69ZMN z%Te&-$<5KQc8ffDd2OKz9SY;1rS=i&UAIL>!v0G_`u^aG3j6t>s*9^XN>V>4^Hb z50E{`4eE)(m!P237@m)BQS{N9*seY{ygF_%)Nfti|9(C5pkncgTg zm1Zc4ir{t|BA?41tOH>2Oe^kSU(Y!Y$w4ph!!qqjsm z_v9a+%=Xz4JswYKP;S$+M7cFW~DLTL1D| z34fNRUzzN}L(kNEzO9-s-(!8k`m#`u05hqe>yZ|tk0f7M0?^wk6u3v}O1!N8>mv;w z@#-gMj*eEVEEUlEZoOY1;syy`DaT!fbA5OFiM`6>_;5gUycw!qX{mN^V=!NM$JuUE z>Wtf@k7i`=ew*nn=Ud!AOdkC$m&P8uR@Ik-F+mI{L@xb767H-=DxF&$#=9HliT1yE z-k1OF$6KQ~mX|f<@kViEot>QQv*YDirlXH?%su%e+*U|L?hxD+y$0LE2f9$7itvOs$L_wDFQHyCc4zGLTXC-nU$(UXXsDSYtZM) zXmpr6z60kMuTl}aqAI*xOrN?iefkV$l(MTb`bKr&L}6}bT1cO!6XV-Zg-SP1wwIbs z659jMv?_&939*kHTjZ|LFyIldXrsS?#v*TVrAT9YRL*?*q_<8AddJ)cYIZP3yFzYg zf6+$}np59J2m1OY`=eI%jZE>fN>&VKBd@7OGA1Uu+4Gq1-#H3PN@)3$=u5n={%b=! zfX|EUYZdP+KQQe`)=GL|C6&Ewd4xLLy3uh!RF;5eeF8o6fZVk&5D#b&aYW~Z%L z6zo-95;81hpyPULu8Ltt;F}u!T?K`}iX>>m%m^&`zQMwDD6C4ZRd#38Kab4{?S7-I26ucFTheZ|*DW=%|#;|I39V%=`fa|7GFt7KXu;Sq50 zkFL?$`t`;N0*nNc!tnBcQ)fu0Nk!fJpyUZkS`057p7_UcxD3fddxNjOt5_`%Y5E2D zk8SK_N0`Da=AVwGSn^_ZO$v22)s_=pBaxk9SF=0ULt6mG=~u#qx!|$$7SBIF{S!NxZ0=qh=Ia z#%+uOaU9`@w9eH9R%hi?qt{W(*S8m(eG#C2501W3{Q=7Vg>@SLjnN4@Hwdi5y``1_ zu8>jT-`NO~& z_^paFmh*(KbK_FiChJpX@3V>ft(v%g$O@^G>qUd3tS)1w~%= za8p&^h_g|jDvg^5u2)Ra68o`<@s$sDMfZQVe-p?%`=s#9irlwcea6`6V|c_PMdK|& z)@k-uyCUvioh{$o9+8Y)D_qo$mUtBMGXTVsMksjxZRCBNvuo~RO)vYqIl->Je}v+w zBi@rIzkG+!D$fx3 zH~8PLnQ4)k!$O&6OW%dPpM?slQ@Vj5^cDPk%dn^VuK!n2BEiL9i8~w}=E+5vX*Myq z*xgYG%BW5a&~;f3ZCd0))Jk<1>ENH<8bs5G_sCrYfpq09whReE_@6v;vD1n<+Ba0Z z#SYK=`k$$54M1F<_tPh`W}1Nav1sR$c z+Z-*3$A~y^3ZNS1r z{gImo--1O7Uenn}T7OOBP>v37*_7Uqxk4kor~kUMPF2)OOKT=EO4WY4mZGpGyHL-C z@Z${}O85;NqX$)_sD~2X7>&#!;z>9!PyO(#Q|2f73>BNOt{r_eCNWpUNxY&Bw~c%0 zo%bo)f0{#=D<4OIv*~3;UI{=ohbzJ?=FW~S#)&U~d}^k!G?X;O!+KXqVe|V}V!T)d zCsW9RtZ~!N{X}Oyb>;~dU9oLdON>TwU(S98bV?x&JkM9`0JA6G=MUUh zx`UPurK$rWp0t7yEMvLi{|DWD?7hK0^1OpAkgQrbQN1t*Nd6;-_G#R3f-RpGT*~g` zSy5rtNL8EDcSMKHtmca&456$OF1JjSpbwiKp%@TS+OG;C#6?Quz1lS8URc7KudjE2 zY;tx7;qj}(;&=+A)fo=|(hm~K(rW4|t#sS`HUldWBIV9>4mSY5Cv2w^|J9m4QvTSp z^Yjxeg7?H?j_PD7Bh}Ck&7=hDFiI!3c09%{c9CXqYS(Urb#j{YMJDX9bj;SP5ZIpe zJ|bR-Tz>@vtaTMP1X%g2F`%0#Oy;GlGl>*x_WLUlY$LB8=_xXr1h03xsNnO-V`*qo z9JauTGBn0!gX>gzd;!*jtN=+cSSa z7=+bXJh|pLA(@tP*MH4d@YbC1GZm@~Ma5AKt@G~z*VnVmZgv(s9OtEK>sc}4%572p z$??W!I0QjNRVEYGOZ;CtD2@0*&C5>xmKiw(V$2-rMH5q-cxc`lEs}z= zPUMXZcvn%ZsRbZ$$A62nAw_kjYR4XX{7Tf)Sr9}1lGp&)cbES^Xjub$< z_@8faebE%dt(ZmJrSt|7n+iJnw<`PHof0}(<%)kLG5#rUFySMvqux4Jq=qn8X9l;} z_X&s2WpADey~^{2(gA0@=_BoOdp3gC(8TCtLd+vaiDnR?`R(%vroP2pL;lj ze?KgRq~%{pMwn1|@CfT-Sdt{j)-vT5|2V4l@u6UGC2EDK-&hW1c7%qMwX2&8Gh=a~ zv^_yVSeX2={>>8Y&>PNCSlSyok}*^2Lh9cM_JEHuj?gVslmWEI&s~-d1&6DqaB-$^ zAU&X6m9J|@nxI4KTCI^E%*-?dZpdh%Rx2}|NIRL8h&!1T@EJ9KXT7X;V9LuKmok;? z6T|(Sd$Z?X`RWu^^*o9}R$1d>KNbN4 z3S{J}Sz{i?*1@=+*=GZ^>405Y2Kug7%anXpE6BB=06&zxy97SlZ+BzBjFxqS0%jz zi_1{V&T?#R=g7Ggh#!f(ocW(>19l^1)?3@nkr?k=ryhyIJPc&v#lsEh!dYgA9pZD_ z>wpp1NwDCtnSKcFS)(-oO8Qs>!RC1ZpP}_JdQAJJVROlFV|1}{1MwNDj}1B>(HUU!W|FxdSa|? zrfYTPJ(`KRWmeHv*)^emk;Mzmz~|aqyXaqr+80FD;y1w68LRA zc`=#6OsNv*^br9?ch227T2GsM0C-(wiYe`6l#l;2fIvS>k_-L3Iy75hMXDPh|C=#1 z+Q=>NINT_B2eOxaV>bs3zC^8i#x!eB`~nH~oFA$D7dO4ux1UZIf5D}L3R+~9e*`!!{;$8)(;@3np14+ek63!6^T zOf>?m+Dfg|PP0(soe*;)rl8?Zc~RSNKCp8GYn7WxI_MJ0+)klJ{G&G=E8SD&Xo>w9OOHy5Iq*?ozwT891)%)Agk?&e<&C;V`LN-<=)ZR zB2(4bK`+enE^dxtQty;5eX~$1 z&)%`tx=QJpor`LkPe95XCg&Y|2Rt^z_nKXyfc5XY9dX?6F)^{79dWYT_~K-BmKW>Q zn-fUQUhcCQBa;$SSd!qX43?GaYfzbrK!UP|<#d|A_WY(K)#8iz*3wRzdV+M4d;D3J zo#_RDD*8Vh{Yj4P-g@%eu|FU9!iUT|j?aOy)g@ev^wnKnTpw{%EiztKWVsXBr#w=( zMh}ElrNpOrDQp=lay-G^pE8Uw>x2um7k!n@P=^9 zo?FoEulHwaxAjD7wKjn;P}R^FeP?($XXm-|OMfk{GPW+BP3(M+?(jgi{ys=}i(*HB zC=^U#3{R9SUv*unsF0C#U>A1m115|u)Z%R!2$)}u;I)`|F_v%PHoLYJDyhq=XHY3&EITP{CKVmOZV$mCRi8&6)^ahwIf(@8EK6UfBVYMr_@b6m_pf3vui#)| zmh#naEq+vHY8N|)P1ktRVJ$%C7C4`hs9KM;#O4UA13n@eu$%|66?E(a)(iBwMVfw2})O)xjd*{Ug_TwA|)!nMPMCdna*ITpQMO>Ss$@l$fe9L#_Io2bS6#OLYl>biT zyLZ6d(dEg?8V~+gTu7ST}HGZ?2hgU0PlI5{xQPq9kGW?=klI7Pv`@&-USqrEX zw`rI7c7MoZtp7ZkO$^YZ?R$+DbgY&r`N&~v!L#v=?DmuzY-|n|;l7%v2JNXON|GJ# z*DzDMFkZq-Lii!Y+N-APE3r#T*=Cgd#Kb=7}Sw#vcvFzWJ_|#lrrjx`uTTG7F0jBe}<2_jO4G$1Cfh3trW0s zcvR-KcIRw&SSZ(ZzKgoA6jq5P8+^H?a_KWD+N{P(PvpADi&r?+ZviOL)+tTEGcVl+ z%+jWz`Ww_YaRW3D6ls*}dcTfg%449`-2YdY43^t(Inr3V<`vN*@#LVPrCvoVgv8*o zuOzH^g6h;fWhevusEtph*YR~FK*{oDiLbgG|Mp3@vgg6Cd;0RDyv882#&i^r;IH@N zlFYd^1_21WS)KW3T2zNWUC1=t31AuQmwgpl*##MHW%K^@*z_@We$Kbpp;oz=;_T1r za&m`Y$!KdpFw1$TwI{3;n;e~FoHGO9^Kfs-06JX6)i=AqHSZMz^60Q1QMq_Sm?AP| z@(~tTc43b{E;2b-1af7oEm`H2Rx>C8;7y!1yDNgFr_dTp8L&iUvquf88?wWpvhU=a z&r^I(j#^UL#-1lG*(vAda%|1kR>>O^j&Ar|H57Ot3G=?(gIA1>FrkqI#TAe;d1lJV zmQRROU-Y%#O^WA>rYC3@3pYd&?DvR+)cHZ`vVtQOh~Xj>$Y?5LGz=-g7r~1u(ky;= ziW13`f zYPRfS#!K>tfr;1v6iaKi(Kw*Y4eqbZ%E+0PbE=jH`N@Q^6Ez&uYyZn7ZJhgKZiqh& zhZU^(X#{vCIR7BIh8ux;7umJ~jJd#H#aZYoIYop6D2$1A5~Oa zk|7o#Ax*-mff!I>cTk1-SFzimfxWX7BgdBQK@dTT2{#m}}=E-R+U zef`GY1f`)|GaBvuM0-Y(FDYD1z>EsqlL8{y*oq1@V%J~B*IktE6{mW7r2dr3(WsrT z@|rE{XSSNEoVywUZR`+l-{$>1>K<4^NCrDvPOdtW3xGqEEa1?_BpI3%Nyv#ify*Ih z6bzoPZ1OZZu2F5m;Xz(5$8_!x>&VVaP@gW}oFIy+P0LmY?TL5O(P+<4^p%GW@-j3> zY1Dy60}!49O@o|G(J%vQsKJRt&}Ig7dIma;f=-X<2iYrYr32&iQdT)3y+UBa2~_8& zLL)4hBP#-4&Q^lr3FRnzud@gH)julQLwY{*YC3I=cDKj#*m{@xzVJ7`+%!tSj6(OV z!`k~luz;}q#wREx`Qm!1SPd#eLJlhag(|7mo@3zblsD6Sd3eUztrCEVKFU61ae|{c zoFwwn*I{n~)NFx3pF0POtzdDi)b+SjyeM8lIJ0aiA-Qat%zD~@iDVWdaNp{Pb~dd> zQ=MMTo~DOd4pcMqV$sV5p{bT^Gof4jakjq8*=e zg6rWxrGZ`Xen2JTfNI37XsJk}9Bavs;my4g-Bm}hLN_(@?FrE(7`=J_&On--cFM5@L9v!i!DUGt!c3{;ss$SPf% znUkiVwR5X=T~Yu=G8eh^;3kmNZj8vKZRzxcPIiLq{X|Ek8BjFo;UHFLb$QILQAAbe z6!R0Ze;Ru-&R0b+uSEGPCzNxlrICuXA^|L1dT#eBkBjEgg3b@km&8!|oQqArwmMxf zjI1O5f!6eE;Y{6ilazC~2*1R!D&(coo;dy`W zRyig6dUe;!s49zG&vhty?nuXKC!6qhzBLb1UQi*l9nGg9D6ai{?Vo|-V^;I$6=;4b z8Q1(I3)JAFZ9Xd0I+-e;1^Lfiu)+u1DNv#v^X~~+YbT}EZWy*C;9Fb(;y|S4HQjo` zU{X+!%^zMFuqp`@i)`5NuhLG%w&qP=VNKAIl1a@YOD&OwajIP;;j80uL~pMofaVk2 z;e8($^NgIpaZyRr=6~*#@l<3Kue^((Z8q8Gp>1Bu5k3S-L_EI{1gry4Zxs+Ya84Gb z2TvyDWlt9j@c(eG#bC&HPc4Cp^_unZdkzo&8IqsW4(I~H+>}||HRbS7z;o-h{+Njp zRhL=wSp#!D<#^Ud>#_4Y0Fd@8PceE(t2|;K)>GSO_Hj7yAIC4)SEBiKsDi)M(>y*2 z*6^lZ7L>oOG|Bs0-%Rq&tMo)w*vd+kaYEFM4J<+&3>nDnRi1iq<}hAyUccg>e*g5J zQyju&d({S%LzU5-qk>TmBYW|o)6M7V^2Sn=Jw2Lv`%=|pQadv%0jK4=1q^^>$5$K? zQW!Z;7P9aN=#(67|K9$~{nHt+nR&yl9wJ6ecFB6Dy}7_}ngq=0ZCX()LXV0c3i%tm zPNDbsS>J)Nu^^flOI=K7RYARfGCp8${HZJVr)EI% zKU2<-dh%xO=96o72gg;s?pvSf7SunFq&1%|*h-YSbv&s#-9L;MDx_$18M?j<3IPYl zt>(_n3u10;QQZNe7cW-GNYL6IM^N{rN3Wk5VEYQHgI1<2J=@xX&`zC{%}ua~lZ`3S z^|`HvZ^58iJ?GIZAR@Wg`j6A7pSn|n;{D;y4&8m`Hq)qSMe5$*P-@}m3DKg@1N|1} zFFn^s`#^cn{`W8KRb~HP@=J3voI?lR^)5%v3R)bVg!ov2T;E$IYv~H8*Udn1^-RGtyylr_vCDMNeHBY)F43T zFAo#Gi57I~##)Q74qK*ub-5Jz4BhZ(Oj#@P4M^=Sg4jO>f-@m%!Ul?eZJNcw_92uH z3E_Q4vi=R1gCmikJHBPV*izrpMi|f21t8Ch0x4>D~u#k6v&?} zZ#Vrqwl5?LL%n`rAwxe%1^i$(ALmM9j2wnJGeAPRkDZQT)}J5AAdyK@3&*A^e+Ebd@twj8$im-^xiO3Iu< z5{c6o-h3iavUL47$$bWUA!AQ{a|)FDFl`?s=Y(r3d+NOa{f91uY-o=lqfWF{dw1epS+cbgmOi|R{^xZjuz06hDjIi)YPL*U%jR5MMy`xM z;?f%3KjZkWpKa3)mRx64M1dopox40Hb=Ub*zH!5hFXKqoe{Rr#%t^JS!!Oi}+Nzqj zpz4f-O(i|8L<~lb3_|qret&ljZgC|ty&{Bh=SqB|j5a~$eDU24p+8pIL^yfxJ}+Hs ztk*p-9vsAVW%uPT{keB5!v6a}-AAZFUO$VJB?xp=CKQ)2I4acVaKE^UHmTy$|oZ#D>sQ(L6lx4hP3=4Tv-BHGiIO{rmsi z7yVxjZ}+Bw)B1i8ZBlp@ct40)o(a={HTqmgkQaq9dr~*j$H|- zf{gcS>B`UgAa&N@e1FR<9A#r~ckTj5$>z9>533N=kc5!HMW~S9iQ(?$yq)USeLi{b zh{9Goh~Oe*$ml<@^EstU=z+SS;Nb+21ZD7cYPy-N2@%3aV@_ag*WqkL@HR{1^EI$_ zRDuw^_<^BiRuoCdBS9#PBorTN-t_l{Br2_WnGnL6%11j1SF>?-h&&ZvOT!L?Htdl? z0f?iGE=JP3WG``u3GBS1e7ag3dVHk4M`w=5+kbSWb}h4dYli1ZGmW(3`7wls4>g>v z;~=*-nI=_&BgLa%c~Wn~{UkdpC}LJ}ETWnsKJ?Fegn=OQMMNBrI=Yv6jGp zxA@t?aBbLeImH}V1EP58LwD+uD3+*44 zXWiIIs7+*DO@0zT>44>_D3j$6wq8Ys;EjVrLa;_*KhcW*Oai73@5dur$TW zFYG#g(PD%}=Mx@2hNdBf%UkAtg48*Hm&%~=(4`uG991k0aVc=lg`!U#WQ4XHzU+l_ z4E$`CJ(*RtOqb9BFV5Nbg^=T%W1Z;)c0M7HG;WfYAPeYdpLTG6*7T4 zc*h{y^zVVE)N38sp~ll=*(gjeVDZ@g!^*Gq)lYTm3%zgN)Dl0ZDr1d_uW|5)*3y7v za}?V>4bPH))&xz4XksF@^MX|Ydwf5AbFh3D#g))N5XHJ*kVm5BUqh}RwBG~`W!#La zTwgKJfyG9iCOmf3%ujuR{Q)4d`Vvxh(HT!Q-S?`X6XGDHR^i zW00K^d0=UW^VN&5Yn;|+zx2zhC<>B`?~1Ksp=W8P1v?aadc62&;1Qvo$Oh}=3Uqo7 zSBMApoy3E^HxMC)O%2|iGgR2qjXgZS&Vu@g7f%G<=QA`u@bl>CD_zSxqyGb51G0dx zOzH~M6Tt7Y=yZt8#9>DmuRr3Ne5&b+Ex;{EXG^jHpR{gq*#88bmm<`o4`@O0HA2O~ z*$t?HyPDnDr{G~X&U~)JBWtujlCT_(0vpfho1U$MFlM&F-7Y%+u8`O%Wac=1ksDV((@i4 zqXXP;1gL+i9e?dYvOzHUVp4MQhw9kVOCQL!JM-@AUrvJ&g)F ce(L3xnJxG?5Sa(wZ-yl+srWb-sr&Z-0VjG6ng9R* literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_20700.png b/Notebooks/1_N_horizon 3/sim_20700.png new file mode 100644 index 0000000000000000000000000000000000000000..208feae243e79e9b7e0e48f2a9c00b88696d10c2 GIT binary patch literal 20235 zcmdqJby!s2w+BoJj8bDVwDSeQpph;G5osk=N*F@AyLAMSk(LgXl2*DI=|+(5?(XK@ z2fp`r?|t6)kN5BUJRmZhv(MgZulTIbTKo7tSCAsTLUjcP2ZvPp*%KukoJ;&TIJj?N zgy56h6xlKGL%>e*rJb^+p`D|yjRB6luAP;crJb3v-fag18(U*b3vRZDY@95&-`d$( z*$T3=oB!tmHcJ~L_JMBluV9eNR?lA9;@}WphrV%fqGJ&_I0{bEPadl{#jcDvy7ly& zG;H)WG2z4DK^2$63~v0ic&t%SBbe^6Z>wsWwPUohuUgi9`dY)ZpkPqPG>f*dpypMU zmPwrm;uAj(?!aws3}cY9hv#q%BIu15BOhORd|-q7uxr(no7mWJj?-4Vz#O$6=2-}% zbO>W|9!7=YHu#TpNPZCsKlG8b(jfPE(E0z2JG>+=E)&5gJHIGw_y5>MNe*!FyOx_j z$dP8|o2SbveMQXTFn;@M82C=^4vm>N=-Q6n-E7Iidio1tDhUbFA?N#+qV7CsNhJB268fU;7X`GPUk(OZ~ zqyfA89EM~-TdBfybvM~J9DU&~jD4h+k+tw@0wmf1iOz*r-$A0Kk>~*=`ZE%pz-zp8 z46n{ZqBTNA2xooZ0hYOy8n6je`*}37cq|F3BWD zK0G0)THxFaG0#>!l}qu3AA)P~0|-5$GdEJ3R>)yU;pk<1PIk1FT4BEVk$=u1N4{&8|eK4iH>iQZ^!qziEblqngUvJI31*XN{;H$LIq*U_^JQ$V(f`gFPYjzHG((oOqd>h9nk8Ge6Yb6~7M`ci$s7 z8{gZT(W8^8-id5z?@7tG4|A?ptl0fV$sH@CHBK4w94q)59OF$aziM}Eo7yAyyr8o-&YSV@mx-lc!? z;86k-ZezgQdKm&WJW$D5f8~v?jkB#ep9qn3$gaTo-uD`LTQZ(q(~(<9Hvj&U zP-g-n)J%XYZLI0Uktq#$LC-%?P+U3u4D2ylgBfi#HVhYt8jz8?qryURf z8j||GL7gE`S{Q3XjI}NIkjJH$G^k_wO<^6pRff*@-+zyxFp77?0xfZTec^Yu;5sK z1p8Lmlq-16mh0imk?Eb@xN>&0O%KUXZ5$lgXWLi=i9UWt^f6g1E{kcd`QJV?+y%cV z2r>I2Y`8L0(x|6ArNJpDx>Dvlb6q}MoYD_TSv4vhQ^nlrI@QsHeCT=mDpk+2{?Kpi zkvNPxhNVTOa3h-vg_&tW3Y|FosCWVUhJK(*Bl@Pns5u32IgdT7nIE{C!1 zgy!uj%e_>FHzVY>8^XAvy!;zjy$LJ6C<3)SIvpIb9QTX)aBW@v_%XJ5+B)4!TRz|~ zPkq1L%bI{H8c(qjGdIky2kSbFK3NZo+zEol)|mt%o;HyUJsdHL;Hg851#o&W)%OQJ zQH)6V0N)+kK!;YSR??zqNNFB_kEkzc>n{|9%WvPm_v(@N`T3APV#U?6+;nXEPxM67Ok2T;Aeed$7?d)3ri>rR| zc+?WG6YsMD-4l~*j)cbROhFXl`&KX{^*&ROEca+e3cNb1=^K5}yudZ-ZHoZ~n63;= zSCi}cfSg{VOpSw3?>+|y7urf;(QPYGaKwHn^Z~p{5xTaaf=ae3m)EUs(&7A3z0Jb;$d1ayGNa z@21UHa=neb*l|+vfkW=|g=gb^LSfWXa@Ec;!)t#Le!-~7=kabaac)n>Z;X}@jKpEn zR&?Ud$1$(*O1yprsqX_f#5MJjLSfkP+(U|{Op94{)^3E~Jx3%N%`*15ChnZ|f?pq^ z|Ij+!MspMsV>*B3yh7F_jJ%*SS_9_O<6$I2|h`|-9KYn~fO8CIVpV`OwI>$Mp3*#l>>%LWd{14=zQ>|yjLxF+!0`Tq2g+JLf*f<_PfprfKi=xt zTCXAB>XKy-j)`e0wO{&?olQ6%Ahi0n?{(!~#oESBj;DLhP|5f^;$raa_2eg){i2G? z&SF8|%4!;df%7RBm&2*!evD;h)Y)Oq**{`pRdwdQy}cn{W^yWyuDG6ys>}6dfyvDZ zmz{t3_$a)zD_lBrbi{C&6ysYll-xLXSy-lmEQ;sbVD=8J56de2=8<&M{(%lq3SUcyF->l%L;g z-V)>@VO?EHqDKQAO6uxFj4p36Gy);0K#_2x1oy(axx*Uz(;(?kCQcyY?2=h3oLlVL zt++%qSV;=4+WucCfurR-=jC4w{F{vol$?5({-(&|j}MyW%*5KZPZUoDplUx}J>HC{ za_ev)7hZqFRTXVs{m6WtSFQiyGg~MRj7t$rKk_;X=+F zYlYVm&Wf6D4Ayj6NESYr4iy^7{{H=4Qz$dH?X29VPoMT@`Kp={14Wzh$%U~!>N*t~ z4aZ>r+FGNyqc~B7MZ-44OMN+Whf6uBvJq^p(LDZTtEK(|wzKOIRmUHIXu@CR83sp1 zHEB7H)TOIt6wgMRIsu_NZ+A**2%~3%rRa1|j}PQxct3*+Il)8YT^8@*++ul&rKnsd zFzkqL8!oXun4&*xmnd4}=bFAxX zN%`?+3kjWYB&76|+=d*kyJqojo6^u&GZ8upRURjig7){7Qx)7hww$)w_@HemUPy^4 z-k1nGjX=Ypwi(!5nTid4gcEjOfYZmQt zr=rCYu#HaR-b6Sr3(Y9E<~mZ1I^u`Sw-U~deWSRIxQx3PaSAO)WY$J2AY+XZcILWs z=MIkB@f7`B8{e2)2TBy^kudnCaa;e56BZG{?Rn}(NJ>@v=bHp2p9KvLq|EzMfz0Uj zY+Iq3Fy;BKWMZvSJ4k0BVH?Ferwlj{k<+#6`qK6mpN%+8ypum;v^M-!C>lL<{tfJ>eyc-F(ZfSD zlv#0f!GZHBxLddq*sNvIagOK765R+TV|`;^u zzF<3(^8aco`WJFpjtX;eaUp<7;^Y~&>8+3dcJ1yBLQ3opba*^U)}e z4DSm~O*t@A+qw3c4;0#OH6!BU`Cxd{je?3Q{z_hhJVb$FhJ0vpADuA)*4JOmZ9_{!f@a@*Nf z-R>VRgx9h7H*Vgn$fy8M=JU{wI55Ro0UoBlgq5QoLk)2q6a+UmBanvOg20tpZmd zHS6`?L?DJEd`PM5f!`<@arRt)PoHEtRtZ_&QchKTpxZP92@QYHFI0n)wsz%Tm(|iG zHqpJ3j*XEukBI1KD$xx;MTC`|60$yWk*fQ#d@MgFZz~}y(BkAl04Ml?=s+}cm;jDB z`RC7|9JiSVX>0~XE6ayhkgXU_1-Tc}gYu)2l28O@OcwF|aZazit}E!%j#<2xPo75v zsTK(2|3-brdn=UZ;R>jm(S@~ybj6?RA7jBILqn$I-;IW9hUo7!nIsi3Wh->FY8e- z?O|A9UHksexmEs2mZdOkizdJh7$vkpcSclhC)e-T+uQ3K8m>B&ISyMlu=R;;)Ly@F z>y}OJRVf^+raKYKyPShE=H}+U=~73$7om31&7v4LMPbBapgYZPCTn~?G0^b$I|5;F zr(6`*2SxWqWehc6KxwJq>73`O@4rFN1DFC195tQW!iL(O?{wR*p$D_!`D`u^0x@vQ zIP1W?{Uyi*(C^6vKTZXT#e)^u4w)Bi0B0WwLT$Xq;lhf`D=4PakO^TnrW$MqjZd=3yhbqZ(Gy29x4OVi_EhQ_+~DhV}j<}WG#{L~BH%U(2;>Gvz6 zit9FVanVj<#$DQcS{fQHVrK`600R+W^Ns%&1Kon~(|%8mhh&k(NTjH{;NMimIS}{m z_}^lk^d_Qv0|HX{;bI09*M}_{rQa8r_H9OWxcMBdmIZ&&Vi@)v7$KCjI^tv1h&}AfkhfojOeZ;!aMs+G=a# zEwW!y15);WLLNZOULFL62nZ>Clkmk`Z)6Arv3I$C6c)p4t_Pw#1hm}1<}h+|hXTvC z1`1e_aYCW(;u-lKq_vbl1tZdau6P>ndFs4cb>@KsI8d6(!=4;o3)jW8 z)R5rd-}9Y`uK;Rf>ri)Lzd+`KsgsjWihtSNBcTd&s-lQ)|J|wb`0?YZB?Lp!sLKNg zBRUL$zPY*Mie5fR6HcI2fan(b7H=x+1~e*2lF#Q7z_qse~t#&BZvT7V1K)+ zJUs&hW)YAHSpn~zYuHAWq7c`dD!P-lvMX}DUUP6fC)V*@(jOsccbA&i?5k8D9dP-- zoVR8jX)`p6EN)OxY;FHlv<1qvbu@NX`KzIBbTG8g)Wn2;DKl^XH@OEEm=1LWJy8AQ zgAUJG2!&>stxo<(3^4gZl}vl#wHDo|sy~;lDWIv8Q_RjPKWo}`N&@^630W{G24G^FRNcqY(wB?IJcLpcJOp=kcD7eXVx;KZ!$K8Bqqy7o-xJZh z1!-7T*q6DlmTxJrl}uj)NdzUY83IZ+Uax366seG_&*bh7K5UH?yqTit%VhiL8L5MV`vOHNdIpByno;# z3)3b0L;vwn-?ZU~*O#=k=TNvv>NUc4`h9@=;1J=n~A04b1K8zAE>T7L9o1Rq@DQ4l9GZ4_<;BOmOGmDjMsh zi!>nl{RS83^|PAFMogVF)y?6O=B(k8jX;DU5Xp7$B`YH{Sosn>C+)-L=H|;PkBTZx zx@sNbRh5T`v$HcuNL`ztG#`cxnvdgTuHR2&%22~=z*EF&z}*_E5(IY|caS1Dyg(v~ zQbZLLmX`|?k|2T>x$+~x;}aOXZN1bbV0j@em1J&&`_eEZaX+DEZ1g6yaFNisxHf=G zL1axLYxYVE_2U%9M;odszU_E@9xYAS+W}_=3E{tDx9-Ut%G@m>venJte{TfC1@)epbY%@<7lZ+*;pdvV7*Tq)-3;xKHEmjGuyJr`KfrUP(bSH0h&3V~dDd1`IhlIO~hq?nqvY-3-P)pt&52PXh?g zFK%vkdn7NW9S;6*t~J%JX52~c=@(k#{y%8a|DzSrbFHb!1ZClsfT4KJ#` zQa#;UX+Dr5n@A+uVPF^H?m1VbMMiNLH;7rvTE4IALA1Dx+$K1zM*trG1}?X^GSG%8 z&iX-6Z3QH``f7Ss0F~9l{?}R!I!0OJMICI0ql>KDcN-@{eaWV)$f)JUEXZ`AP0e>C z;qUSXzJ@~F3BGTP+2~|yQNVBi$QfUe;V$HY?Yv#zxMi6&2ZosK6v$|Td6Nf>1QG|( zR3qPix{ORJeF76$yZN0|Fp`&*@y1jl{fXjPYeZ%!c)ZS1L|&>drXae zGQM3LN-l=B`q!;8fy^Z-?!JZAm!1OQ%!}%nE&fATnP`w*Ngt z1xRbfk!Z7V-SM$=H|jxWb=eA(mNqK}r6Z8{S$}1v1PEmCZVi5tFE7>ms~{1GzxzP1 z+d~qw80thfkoxhRrjP)%#H0K80o#+7mT_{=>?HPYav1qqO)-wkjQ5A5spI6e9hiv7 z@6V1uuKU~)?L(K7)!#bYqp`o0Z(x>{W;$&6Jkagwih91*K4-oMLgnK#ck`NNrEf zpSW@s8&wviK~7Z=0d`3*!8wg|#=yvC`{T6$x)*rZ!_E8g8pV~I>-&96en?he%oD}< zE?eH6?)+vi6>W0MW&I(st&q7|{dl!I{#JwY>8+fc>8Jx!XOmOG`1q=DbDo_WGltg7 zKdy;#l#+)^?WAZ#EUQG^hwci6<_gN2$w1e?Ra`*~W_a0>(N_b}$46BKNR7R0^PJ6| zofybyY=+VBW-`+wMtt`IS0&C?wUo39p$FSP+Z}(N2Zj-}-wA%z((E+-xkvc0-UMtN zE;iCbOW@RNl!mJ~vdep9AwD5=QU-vTq;?Q{7V5kt+PKE&`EO;j&UNbdZ*+BWQJv<| zc5x?wYwywa$Gs^tSCm}1{&TO(N6yXNS@X}j4d7;H`#Prk z8A~{bVeW*)-L<+-1{r=gCq-sfXiHv0z5xLQOGvYjQJ5WnVA|}wk+mZ%;z`S1UJ(Cj zQIHESjBL661-QxZ2|F28f84U1rSt03|7fv7=5JUqP2VEf5<0kIi*gm#z)vgRa zgncM^MI&0yEEPCkH&NrlRh|@t!2~VZK;j|${h!Ci^`$gZ0R;$1rO2FGI52%xsQUnC zWGgR5S3VZ)^91@#0DxmRCBz^ChVx ze-&dEWO>*7V|j3<^$ng2eigdzdxP8f895oH<}%H>3ln6#P@{gwEcP6|`VcNdmQn0> zok4k_-t~f=VE7xAgzxoO)MOCd_S)#3o*5_G9I8zCZNjH(o)EU zlGc0Hf~li+vb8^;E9glzWvh|B5*mo-v!_tLI>Z_XU#0|9TGB3x9GDt8nY1e_8jGbn zAXyIXFeW0$d4n?G@$Xg5e|rYY98#*QF1X2}snK3tFmr6*d!^7U!+e-Yj5$>I4gm@K zJ^g1Lcs|?BMpn=dmaqI`L+g<19&7-Kw#oI8En9x4=k0WB^eBBTXM5E6FDvY`>bTtB&U(+@}A{SLqao4tcqQrb0S?ake%3I(Dl zNtQc5AVr9&eEUgQR;#@x-3WK*C()_UP*j}bLEUNk28JAW2PE)i3N_Sq=$&0{CH7x5 zfdN^xbeg`~-z;D6b-ACuR5(=W>cNZusf^<%|5cBN<#b&cUfy+Djm@oZ8@NNk=H)*C zY|SpHBY1m^l>NzZr3gS&o|GaOs2`ZVR8wopCDnMPtv0ZK*w&-r!D)butO14!85$gRZU+rE?UXzI!5PqP745o|xB%JM*# z#L?MQi-5Q&h+LkM)?FrDR}hs=~u@-VHd|X zRP{LBP*z4-hS7kJ%&qLK@hqRR%FL|sgq$orl!5$|gTO0Fk|otYPGv(+Is%`-l_HnK z8i1&}M%Sqe7*~>)TS99IpNUYv?CIa;; zeKBnJrpOhW`4@lQOG^~4?YvOcXz1GU)21ix3(s@eD!f%d!C>|y(-7#4Aq!h#d3vF> z)>E(3I;}!tQ3$LRk8o(Ed=e7EN*Kjl1*BoUGy22Q9o@t_M%!U2JLhs`Bx?Vp~bbmNjZ0D5hnGog z^0=<$m zT{`#0VHEfj_#{*hf2>>y>s}Ry0f+kGbfjz@cx~Jt8G+>mg|U3<5qTiY&8QZb4XDXV zsXHSYpm;vK$W{dwb)AH`xD~rYW*%(~8eiqcp$7 zrlQ)~cRzEEk`0sj(b23Z{Y(mLYK39um1{qWO1kEIy1OTpX2+*TKN)}Vg+#QlryIXK?^FfZDge1?>gY;KA+HF3c?)R#zK$ZtS=vPxFf28*GO*3wV0IC`%1+zG^>WEHD z%Sg@4jn4f<#jB#iO!uWHjHf*NM+*38u(UCaXm2X4>vY;cDA12ldMN7Q<#s{h)k>kO zfXhE@cTM{YSdY-le%VxxA(79wKQXmX*Z+XWv10^8J zzGRcJHAH_?O|@fs?t*sPD8ZZU!q*i&Mv2dt8pc<0A$JAYl#r;t~66#C$us#7IP__gopR3 zTTDh1=@@|+48e-2r#mT9k9mQm-(zc3xI}dzVAs(xkj*EJ38okw#O5Su)uL?GLMid+ zDaRr}iqi~iq3E?cpb-j!8FWwGK-GUjXiVCk$F=o8*dj#97{ohr5RY7q*o<~JVbf!eHU&lr!JOmL;!Lot8NyT9Xnn=1)6xB zkYa0r!PjOoQdHlda1BlkOdO+O`Jshfv3zyl`f5o72+$PgxXm{yKyP$Nqj)WOX85e@ zO79o-P9AoD^3O{xQnE)ImES~~%pUW<(4jAJt>?1X-xKClQ?p&2kl3F*lImg=bIn;A z%FXftvjsUFE0~4Mp?%BLFoTbkjIo%^62P!ve+z5Z#oKZZfgCivnNb=WA1O2E5)Hh$Iw(fJK&ic2`I3Zp2SkL1RcWo zwsY0ZUyNNTZbB&l_M0KV5Q~k4YJD61u|2~4rgs!8OMIeB8-Ir2DX^||NRcl#1Zfjw zvgb_tp2aul7_ua)>#~jQ|M3PIZJCOEW*T#}YnZ}17*uX6XTPbyrTTfT<$gxm*!wdA zBZEs^uU~q~yNk%5@zLXL-)m0vw5A}u!E8Y({FOfe1cv?`Q@T2Wfg5vkLFR$irMu#P zWW4WE>MtY(#jE}PhHJm;Yq#5o&QovSXyBvoX@#k(Y<2XF&i;P&z{&cB-s$vvLOWDv z=@o#hi^m(0njXinPn)|Q{4%C#8G&YluWJrBYt3y@=-5oigElrb-)81M7~Xa_thZ>p zsidslF%(nyD>F0XrU8HegrtUK7WVT#(Pa&9t8iL~?aMm|k+7xusH zpsTa_vxc+Nt_+mm#}f#+ok$RIeOG*u-m(}3HavsR66HLg)@zZbCt<*2&@{?K{UBrD z`K!PCmB2qWFP2t_8a^G5!!nAc{_1NKTC<&h5hTBN>^SP!)?yN&%@>kX@m!T4@#!6= zn{lGF+8zR(wo|`}CKBo8?d{LaQ6CU?AlXo^TGcAvkDSnSYh71~=$bGvymV;4CJsJ* zoqqySGG4Xb=NeER@%YnL-ooe|-&KO9xnncvm)?EBjo65|(u1e>(@jcdHV(=wj5YiV*_&G?i5miw zl78%1d|;7YSu7lS({!!)#G$d#>-#i41+S%oxz=DR)YF!9tEr`3A9&2`RJDkEIqAun z-wn&+84bRykx2n?nv`h+Avgzt1ru!tLJ5~!9OaJ4qlg>4qT~4oUg5hcq@ z<@T?12dsleGb!d!LREFPeT3-FGdOytUnRq2mqN;E2g8> z!=Gjf)k3?`E6xhC!taf8d^5gz~wg?)3J_N!EEXIm}$2A4cMCyw}S&a_zv*FdW8 zc3AXR;AF1DdM=f@K!!D>+rpysa&OlAr5wd$24X@QnadFW92PDP1Bf6=Rsk6I&<;n8 zIgdSyw$5)5Ggvg0f4?i3ftCuKg|ceQJb_JDCY|BUlbkwiXRh?^lG z@cUWgC9%>7o%XPIaUO`G`KhB$)}OQF(6Y3|@POB12H52Oz;$BhV=2?(_4#jZ9?hpW zW(${1m4M^csdT+{=Hbqh8ooPqlp2^S+rCQfJy7L%bGj*p~b|&mJ zNM#GRcdo!cRYv(KQbWm9+SwjUVB4#jB2lhrde3sZ!0OM0C#8-P@f~#S!1?_>WM2K6%YaW-zu+_pMl%o8GYf zpMRw9S?}}&MP2UG%-h*yYViS1htNp5J=Pb5`vPh((iD+jk zot*9w;6Hxk1P*WRyIFXciGmD#hGI@G$&=W!U`Xje;MMWwu%D*$nwf>mwtR26y7fvE zsmzCz;DiH&u{0|jcKO%n98+~xPklMf|71H&D`9dqMyjn`EYvTSos<7Rqf}! z4h})VSNV6wPh&Y!$csb{ZdEziAOkBmcq!<)WBJr9W`7A}2%H3+x~=6~n>(}&fE2|- zc=hdIoXwo2CNHlaiYW?C2$i-_BXk}Z5}PwL>H<-_ z{JSRPy<1^sS=lI4dD@$*1pxMa&n*pTUVME&{aTC0{Y%$$o67Kl^qoS6rtL$`uh?+k zYXwW<^RJ#x1pj_7X8|LS$S3Wt@8n1nSy;_{X|qIOzd0B}jWykv<5-r;ZSUY%9&4Pw zGh4QzVmDk7FJ7sZog7W)0xqYJmo3Af zrSNsHS+-1mux4RaN~L5&M=K1<0m35UVCK2pjV;ZL>_VaC5cCge$>k1hx!wY;s=4Jm z2cHn|tdcK4ir_qOWA=_qB7pzWiXsGO`%;sIKkMq+Ec*%`WNHn00KiQ_^EYi)4)iLu zM{+Xs7(5H<)&;ala4Q_a_f?~e{%AC+rDU^mfMhkQc+?-*O_9H#nO@kGr3~S{%=^)+n`IKJEOZvOf zp~k{w5nyjc)v5IuL6gPNqa!QW!`)j=W)si9Vc^$}9{Swz>mx)l3v~{geCtwMocYPz9?9Va$c@UgKmoTY@4o$0v00nJ-zNe`KOe7^o~*QI4&;8$ zI6D+Pb2%}u-&w0)V|Sw`+I3$$5&YDO2_nJGUHIE<-q#~_KmEFQQ@D8npp*nIM+afRU@QAZEkW&(8b+aC%Ua*0Co3ux1=AYn-iIp4v{nQM2gCSMH zhH~oF4F6@cLXsX{6Ms`ZuE#{eHXB1v*;c_FVcq91TQbR>w?F1<%Wpf0(=KYq@!n-N z&t^)k@)VmP%xTGborq%VJ$F5Kc@jrY>g{K(1WJ+8In~1s0@@hAk{6?w6{xDeMAME| zT~B&=iJ^s8#e$+dpYcr-z_z#fLR)X`@-{WYZct2vT-_Js>YqDAV#-%lBV_~M#pWZF zdW?IzA8FB=_2Yp4$m|-@XWQdH(!A5}H<~AyY8~-HPCe;iPvUJ~|3J!iNh#8)fe%aj zHN>*TQwx&ElTAhZZZ8$JwSM`P9yS&*2hI-H_~tj68-Ae^hc%UT>vtNlKV_;zq@`z# zvE3Nxf`>eex}N-PPnuXL=DD(l;wu9l)0PZpQ*(l)kRsO6s8Puh%wW#P7w(@BB|2A$ zmep%Nj!N1!{px!b)6(*Obz~y91vK+0UZN?xBJksoP+iP*E?yH2N;KC!=sL{HNibKSdVQl|3~g;7!I`&C)~3D8i$ zJ1PiUrWr2y$c$=Md>E_xnZ$YNGA`j>qv9p{BYOjtgnvMxrS^|D0c-pXwKd(vZqN+1 zHthi0ZG!A!$t%E< z{rqbV(5oz;3fJ07TdTV(v1RsX^>9(q`aE?8wQB${3r;ZeP@nBLT|smh`ahq`&0JlU zLBnkkId_Vjba{ek#er9%F*#Wp?Z1Z^K#}9W$^@bHyXKmepu9m~+8lMXdrSNE>-ud; zYA3x>;oF>i5cLzupG4$K#%fsomCmlEL!swhQbgRy6$eM3AJ0~>=f_i(QiCJnn)**i z5JOeeMsf(8N3SG#xWmIZQ5%FQ?4#J6cxV5icnlf`cyMb#5<^yXubF%Kttu&Q!)#kx zmc$XsIUSJl0Kcygs%CwwGO0)cENELOKI*6IfPrF zlR4{4@akxIwW)mg7azDb4A}}gP+>@#=w>R2^bbe@jH89{((T#GiVtgND24Qv1)AL4 z+w2|EPkSt&mYgv>=9QnzgyTb;^-AN5)2@IZl$MvH?1}LYplXimV4n!?8&j|sh?95` z46p!nOB7;C8S6t!f!~B{Wrwd;X!-(TaijMarHMGQJ^3nK#>~{r2cs8lx)LBHhucs& zab?^WoG`_H#`Y;`1b}6CbI#}+ShX;dr=%3dvmZO(vfttCxs%KX&=>=LfP2lH7kfQ| z2v6sdN6)Yi673(lW!L($%)z|uCe-L*e?!9c=6alR1DAOxp@qAfM|z92rB)f0)sGQ` z)iQNE{;FbSCDB`lkWR$Z3TM3^_yRp>D@w7@lRINQ8gUfFip8M7&t6#|+B1{H4(b!2 zm2H_C^fEE&&=VmfWWkcwCOj2sTR=LYxe@USWTUC2vD+#t(^@JQQh-+{c+Ej)O=pm3 zV($(dz7KG1+)5(N*bB+qJ&%m3%SsSN0~^(J9y8N3J2~Lj!wmD;3i$V_=DQ5hz60_M zIPcR@$83bQWk&zW{s8p}$6*0|TD+NrzrQ**x9&?3Zq+^^@w(u|vtpN5r*iJ5O)gil zS@WseZoe*IKMNN*m6{>6PIrEOD4&>ujwkG1qRf8#*c^wE>Jn)Y;Qfa88-;zo+_0*i z7d@Wu<||&D zF-qElm{#g`LmlN+rStB?#~Vs&VXB**38FP;rz@lY z6z%O7-_r$V$nal{)DHpE(V;k+0Ht23b2&5fSMQXK)B_VTTnWE_x~A-F*5`_nLS9l3 zDHcAQm#JwY59@uuxg;MO(AHMpJX+ZEk!n@!Q;qO^HoM z7|f$g-$O)bU~QJgQb-QS!#FGRJR;8x?7WwJ#ixUY8*`-nx}Ar-vRy2P-=)Z6snl76 z6iS#vrM_6r|Dj_YOx5tY~o49M$>-G%w&l{3}k+ardw;z_1`Nh*A4+I$ouA{4`HSYkHkLaQaH$MhYyKR>fkF1tFZvk4< z6L1-u@kbyCP6im=+L*9*ryQypqNClLMEPtKsjJxlU<)~UySA3mLAG#YF?L8CzeqZrCtrZ6Z^hO;yW_Su^Xk=)0 z(omo0AbXSV*mRYyC{J%nE&J$*hK#;9G;fU0DR9VH5lZ&XQ)h7W`aF5%H8@vmQ2Vxs z7|I^Z{{mt(I*^vj>%^5}wZ~eP$YJi7!DkZ~I+y!~&&X(%?pqmm%&=9x6Bk!>!n|FM z{Q@2(C5SI&|C*G@b`;77l=wx}#kQ$H+d!LzV~gi4&_hqWM&EhA;bikN!@^hvvHA!f zL>rV9tR{KXvRi6E> z%!p+QkkfjPtd}lbAt-sJ={WcjDpnaOQ{+2U%@};q+}q>h*K<+?$nSYZ_hvj8QQ^X> zjM?P`zVbn#Q-eOCBVAr&tl+dEutM6waD1zw;Mn2;E2p!HC14#JIubM+%ZtW@9z7$G zcfRRG@0R)5H|1eZK?cz54;L1{lAIyN6%AmTqhq9%U3+?)@OHBd8^6un3jfX5C&goj zjc-9!rWj;4-8~Ij7DuVZEl!4yg-GR%n*l}4{IB9ffU5o6mh$f0T3%6t)pm;1Xc7mX ze+M0RrhLFq9!Eq5NB}|Q{@`TGKV~F*;ZK-iLEoP+!i(g+`r^eGuYcDyU6#s`R^UGb zeFbzedC}m044|>i9fp-gzbDXrWiyw%WOlj}@D;xy zW?eq8HPPrX83m0%zC3st#CWN4gA)Bj40*W>W{6z%U@AX3jS?ahC01(xeR`8M(e}g% z(e6Zw)a=IcyPb2|W!kXdz?ulGt%Vt*zgS*yY`&XbKLfz@W<^!UMB|C8&F;~l^II8! zCkn1#UhPW}lQ{F>0_Mm%qhO*#s0F-VW5syjrvAqI4F@;0c+}wC$V(!AsXWNw7M-4P&blq`A z6q$3Sf9tuv@)JlXQ{A}v*qqgDh)}CEDVxmR`r%At`?nuRf@| zgSjm}0a89_sRLx6hPertJqLhgpuT*5FNB3$9OdnAN`n!ZFGd8d+1X7=pligu^+L+s z4pc5yW}~r#g53+0=T#T*LXTe1Xgj2P;OPsW1yP=_L4nR92R&@(!SOBr zw1s!@>Ko%X-ne0`Nvu#;79m;XvvZx#U|wGjqlioG@bXw-{1AaswTa2|QAX`NDc)Mfi6~|GTR;j}(O|YCtf9#`W;9uzb_=)6s%y z-~U_f>l~ExH^pC)Y2qJK z?b~nm{_4Rx3sJ|PpCU2`76R}$)U)l88>M>Ia{*W@&{kLL%S)67BU z`!7-t=`Jky|4(2~Gk2!A`CqVCY3Tm_cUc&^@H@^<5Pp-z;FDE6w=J?SE8MG$DdP!>KG)+f-E08no(&<^MBoQcOkTU zppgO6921TIjxtGw1|TB*=MM^8=?-u`Oj`D1S{0Zs>rZf$eEA9c8?AKz=Q7Tu%R|S< zGdw>nx3(hsyauNL#xjRK1#{2=&%Uj@mDTBHr zp3Hp}bmGO|qE4!=i$~ImN8S{7VnqMRX)4XRGZaT5&i^awWKAa9lNCxG#2sv$VaVZ- zVNVCxL{P7=7X5wz!^mt2ax)#762id_kHbw|W)< z7gw+;8N(lxCaNSnX8S`XxIVYG=hc3{e!fO3M%YX44U&VT5my`cDRZAZE*-v2=$b3v z-=}>{IqXChvXyjkX6zJ*Xkmp}h21kaJS0#IH^DUbIH76A7neQdaIR;7j`nzKjZ_XV z8^1DSF+tVH-EQ4<9QKv};PCw^_0JCX(+}m`a*o0rd_7`0?fd;bJU?q3_;A(v{??OX zRh#~YIC3tSTJ~HwE-M{7w&)+=8Y-Ax& zJnKf|Vbi4@xP1+X4A66G>d^ZLyzL~kh~QC85@#xoX8`o36bfA8kcJ`aGtXMaH&h&7 zn@+1_vt4lK>BQ&D_?R;s7k(yqVyxvc)`HLTikQ>1790Dpww(33(}wKp?Ny{EBD4ov z?22qdzqAUnwY2abeP<@Hy5)ysVx)k(Dpy%~o&V4}ERrcU=o zzE;@vn_}1SR=zWMo_dhaCxK8Meu&=^U9J zTgO=X;gsCUk;}k+kBrlUp`IUJOkA8vV7}Jc;gt%U=i0>SpgUN;`qBJ)A8=Gx{MdQb zSM_vOqR37Tz}pr+a?(AT%yAwYsH+^bWj%-$mEQ6!F>jeV68Y+GH*NaJJg4S-?QYQ8 z!}0NB%IR@3&2m>y_51!9KN9)#0KFbFtuJxbFYW4iNwoJ}VbOK*V#2$)mEF~Y-GYLf zb2+=6-*UX+)lTDN<6(%Y!x2I5f+xPG$JF330iF+dn^M7Yem=FsfdJ@D_xkHy_3%~U z6wl96-T7ym&Z#v~(Z2#}|Ac17(SW6|Br@pWo45iI?zuji)5m@*d`OE3j;-J)+P}2^ z+-5{a8so=+<_M{+l~~flfYI_+0>m$6@hrRp*i$;qF2QmNs%N3PlFIT6>;!t zNvt218HL%AR};AuOMQ(DpO?qZQ#oUyF`;Tu%C~}09QNMp$lF#AV_DdH*;EL~ajfcF z!?S0@A`C?9E#^x@Jv=z;9@nmyvsu3UImHt+d|E!ewB<#l;j%t0{6N{8+ab5={~0i| zy1VaVyYkKI4JfPn>6A6h^s6no$KDxv>b{C$^C$CJI_DYxG3;U6!yAdcx}E z;)i0Hpb8E+je8nAEdyMlj(YH}Xx4@cjChu#h#-G{!OZXUjF&bF8Q9lU*< zJswMl+!hfRy7b7`*V9K%RMh=H8;E##JBbeWv3vkJIqRum>H`8Xuu?u?(EC&l5J)CW z6L#l*VCwQ%Q1V5iwBz;d%A_SQ)fJ6Mq3Z^JH=X~(p7Rozrg?_g{E7dJ`YW8+jRkrU z#tHpDAr~I1i9dP4brF1LxBAKZ&nj$!O;Mk7Vf4?19%|oBwCY?%=HsjDucl3Bdkl8$ zlN3m!W_oEM3%+;KkGAp*-@xz2U(t-elGnPBKL!H6XvSw1Ip8jzd^^__sd94nLOM8x z(n|A&0yXo=t^0wrJf{z?G0L3Wf=_aKYMea(O=9Bp$)#sb|1KRFore^(B@Q4S7*>RN zm*Xq1^4n^{>heaGhmsM=tdJa!%$gR}CQ*Uk!-zm7{%}4BMp(WfqG7cfp<$Vd^?{B4 z2`Lcxy$V@BVs1gkAz}o6Cm@n9LNY7A`)S1AzfX~s(H$*k4QFsVXxys8!?+wjXaKw2 z_btH9P97{xjiK?Uo~6PH$&a70pbO1S**s==kdYB`Yi$`Z#Bzz>pXTwIPC9?uS!(5i zoeMyZHk2Mommvo15Ta_6wScWE%z_;vPi$$1!CoL()SBKx*6+enArM1;TLV}f2jtk) zc+eT*WdgI{gow^W94gl=?ZiR6bYVhBL=OM&mk`sz)6hzBE+dn0N=u%>4aFBRB<48Ikv9v+rr#R{pM8Qidd`R+1= z!x&o^E#7SZs6z}1^NY|j(;Z28OhwGjShGVaXEQ~3pCee?7xwPJEE4#v-$g_u30#9~ z`50;qW}(vcp^{(%$ch_MJKe&k3ALnF7*b84qh1Af>O+gPpktbBiK+4ILDFkBTJw9T z95y0w-eK9h0wkZT6wbQGC}lK5~`;N=oE@}io(35 z5jUSoNA-xpwTf`eDUS?U#ke@$Ss$m3^$o+=-0B3;eerO!*YM!#lu{4s#4J=phBfgJ z*A+F@-gY2|_6<4O+~M)mfGw4mynKOB{P84D-z}foTO~3{ZYks}$4KK;{1x}@7e|E! zS2W8VZ+jZT$`Y4dFQ+7ZoSrWwNm{zGK=I)>(D#)-&Jcd6*}S6Vikg8K$Qjcqm>O4v zrXe`M7I(fAkU#Eb zW{b4N(T;OKM1gTy7w7t#Q9bzwZ_?ge92pnnkA53_d)HWNKF2a){@abx$edATTpKSh zMdn0$0M_;ruSG@ZL6`4WFt(~Yxjk3>BqV$(<(i%8k>X;cWqX5D3<|z0z;cnWwLTL{ z_#4&3jH7GiHJ>j&aIv}PERdmX7Z`JEhUiwN3q?m{p_EeLT$)lnGv<)>_i^m0NaO13 z=&j(1d!+_kIsU!P*P`%pTidTuJ?|VGM$}wkP3KEBm6H4p#t(MHNUoa`#qEw5G{rRy$j~WR3aj}_MDJLf!`O+4G8oTnUHP{ z$hFrUY3qOndzV@_Vc8(^({EE6Y8nqNUSzt;t+{3kTLK@1#7yZ^ha|ZxpJPNID%D^D zYe63(0uns(bs=7NkLKv?1=Rl-o=f!Sw>5*k>Y`3a`oU`oO;{Xiwgyk}|3=jzxi&S; zw}o$RCL(rn5OeBMPo^7C@SJXLND1{?$V4%!C&-cqiQoWjwO7)?V8;g|CU5Jn&M-j4 zW%!u|QZlk`$4?8|93uktty&^LFX37&0fQO9x;#$T)u2fxzcS~yz3M4CY@cDipj3KR zGeaQd`qoaVrl|haeTV(arML-No9);>KZw|Kx0M*{w}*GFR@!mIP3ff28|bY+JlQ-Y z*Zv$v#G&0rn@4WbREhE%zae$Ez_pM81}y~}n^v@J)Rk`(v#CsvdHII99~Emri>{=! zZq?go-Z}z@J|o}xsoyI2D2!L;wOdbjaotUiDZ0(dGE}0$?s~U9@_d4tW#Q!%R`j%x z&86Wws4`8b4pfo;byv^^Z)wIPgZ(yaHxx>-f=`Eb)qtBdhBZ0k<^lc4_cwoWgFhT3 zqzese7;%4dMU(qP2?57R@vV}A5$OSsVG8FV0GO-p9;FHV9zX;N9rGA3S7=eZ?0u-x zC%E0lyA3)bro{Ek${8ivI_^Lvw67*Cm5xyxnr7bd9}VLsa>b!vZV=plCc&gw_se&W zT%!WW;fp6edPIs*#^oNYPrd1Gsp*i1E_94;DG?iv+2U$|7`c5qX>+0f-ZE|O23$)R z*Mt~4TLtAOug+IP#Ho|PVu5QD)YjWIgYGG6lzGAVDs8?#A;Ps93&xm9ufXa|+R%Cq zh)?8HWR8ICHmYX>F_h-!t8PO4dB%}SCtX3dBSRTGIC7H`RRA&2LH&sPy{=t^R_t@c z+T~L7u)$BbfIN!#fYv! zET@Dj}okM3Xh^QAaW;v_hW zMd!r0F>~4ZNZrRfl(?dk)cmpqa1ox&S%Lj-U z=IA-B)^E?wrg+fGA+rPV`0?gcSs%GDqC8<&k6B^uFEZXk*|9VAEDl&?%X>-JWEn61 zYZ;-pK*~q!NZGj$PbnApc3agSIXi<(AzV|m3ovSxn z*L86*p8IiCRIi>qQzY;!RzLJNt4@kkEU>Xj*dr2#Ct%czCvYN)Cwym8;b5&%afRW+ z%hO=n{hN3TPa`m~A5~scGK+;@s+KG8HA0oaBo~S(pU^OH$oXE+I6fd&lLpMI=d)9G zkjFd7j=j#+u+&luiGy0X1w7oBxd-sc2% zmYsoJB&(qz-SmrNN$9S(NYw<@O3k9k<9gBnuku}=cHzpkAv>gaz={Q%h(#+fY89|h z@J_q+(YF>QvN)TtSyLm6@=yKn4c3*qO+7&QOZ|}@LS|(M>*Kw_QDC8=lML22!=(<~ zMcZ%Gc_;e}^=BfEh!Gr$!MEA1L&Z0VT~6JfR7d^s?v$sH;ai!ncx2;;zc@*Rke76= zS~8JJZG1;-bPeQkjJRDhV{zSv7MsumoI{djv#C>Bxv4VUg%~?Oie+EuR6Sn3!)r$N zR$UA|Y`s`DvApjWbqlbjL?P2s)8*>lFK$)=as>r${J0jhRMIj83^|gpJH>ZQ5k&GWhjSp;fx?GP z2*@a)6*_5h36qU6)Sf{9>vNgN#~bn<)iZ35fe*9H1PEkYWcJ+-so0!rkjWwMF9eK8 zXM;T?PXSE@`QlQNIJ!$A{QC(<#5YR59M2sqVA(m98=^V$5$)+-Fwj zeM*XHL#Ql^;?{XqL7kz(2KmXqS#vQMr~Z7S(Xj2YRL^f`-CG8V%qva(@?=gAXnAxC zi;M5%{BBTe?OySFtTy4!C3xbm1CyYro`p7RR2$w_IGQ)%N3vJ8*4 z{}Er|Iy_Wvk8{xS14b+b zOr*qf@|&(@jZ5Sy_N^68q(JI3 z1hnMw0O@ce2|F#3vCCLsf&rjO)*acul{KDZ9scg?Q@Srxaq=5mz51JY!ck(LVGfm; z@7z7(VvAuZ$im~=<>uetUj{9^TDR*;k2U@Js3PBA*~ly}=D+ly7<&|~Co_2lt_4^_ zu6o$V-{L37=`7s`qRZz)qon+GA(2Z>Zhk_ zeYv9zxbXgpz;#=|UdHP1R(3GNr{hR!3Stvo1Jk1fE236IQ zXy8IRGWUd`xbgcNgJ_{YYuQDgGyluH2ArjDa8SbQH;hb(h@fncRnSa=aPeYUuijKN z_hZlmu-U|qF}w>EOMvI9+Fz-~S72%uZiMeN@;zP;NCFV$Z(yC+u?C8efgr){%R=7$ zkgTE^^ZOL&%A@-SpTRPKQ>k9aFW70irqu0Uheki!+uQ3X-Ub}?_}sdz&#V}*RA$Ak zd!SC4saG9Gaqj5q>T3ORb-eVc1I|}WvO4$0sgfWa;$MNKVpcxzJOXr8%&C(nTQ{Y7 zpKu)BjO5eT)@C?9T0QPWK@BOYLD=mK0BJzI$iq&XdxO~YO2D)fHh)UE`{@F}2KW-{ zwOYbq9H18K(b9EM04l!+yr^ftk;!_jN9a>Z1Op&x8Mgyq!FQRJc5DQ7l5w@;BoV8? z$!8UEK)hkWEH`(lIhGq}Hd-<~SXEM^yg%IKJ^e;~qr)ToOOaxGqOcth*0^hjg(*e= zG0rY9)lQ1Z{(Y8JW^XPt==bw$k#2vst1IsrPy|2*bgKd)+>?0g#6<3gWa~t+>W`lH z{+XWUuK%vI-$+_o`osd)r&_4R03RmOuw%;`Ja@UcdX~$7)JuJ~Bc%mEqn(uiY&!*= zDCQ`DRQLwCRi}pivDJ!@>8$Btr;Hf@1jUq(ce{cnqUfrQ_7*uM92uQby=aN4KFojz zonC8X@d)V5%SmrDY1p_x@rpa^Q`K{yUXGOetc+G$gzwHQlauxrt&c}UP*uS02H)QX z?6}pva;*89^6rm{Fah;A`^j(5ge zq(oTqt95U!4;M^Q1IB|=cHh1p*@Rr6M7Q5J*O4kmRT`CQaevz(pN$2?%(OowgiU^W zS&F{NdhOdxQh@o`KOxlX*omEAF-lE0R};kDZ@F%>le@l-(i-sSZvX-Q5jo$R4mOt>H3PWpAn*Y3A9`f~GGkMVwkmH}R*ev`^ru4*7O ztXgm82FuK#40pD2l*f$8X{({v{QUgtfOv^GpOY~@N772MJ)su!q?ou9pK{#Mte$zK>rmcD|_xb;%+uiOBF*~wbvNTKEY~*XL zni?#>Ex@vRC%n(17PPh4zhrG19QXnu>5}oGKJeP-`;ZSk5zY%K<>QY}xmM zElSN>BVUtpkjEZ+*E;FI1q%aFt?I`3lr=Tx<}#Nb1P_NF+5D ziD-|MoA|X*u0!!HS#9|R{?uje0E;t0#I+b|iBdaJ5wlQas!nk6{A?X3L|mDFR(XHv zOZ}kD3D~Eq+`~WFHgXr6$h`yU)?j=56JR%!SJRnM0~k8yg@sX6&rej(H1GpR%45Ho za=2E!ZG!^=5z3@!W_~W}kDJDYHn>PI<)j*q%nukVV zV87@sFu#h?^pKSwJ!oyOtdbkpp`Y7fY&&9W9f(Ju z0V;|7UIk#H&h3=j0YSR+p0S|?)X=#f)G>0j~uVTyIFQX_j%8Ta$vMWXw5^FzDJ%i@c8Wj4c_tRUj@{A}t?Pa*3i%q_|nAW(k)B4h4T2r7$qk^bw#;J=_66dl8FD>~7E zW9@f8W$O}V=;OHF!p+j*HOki3X8|Q@Wr?8Px&1o7k7Cil_MQDNDC7Tq4AMuVcyk{E z96fL|UxCjc&j2ERW=D3-tF*;fiH@iD>82w{0;CqpRnBC7{bb{2WS(Tws=@?JtHf`j zeFfHBY=qYSf(e1iXI7916TkmSYlhuUhfNlcanXUD@nrfegWmFsMD=7uK^zmd$`Gk}zcS&ze))lMER6PA6F*_?%1Ib+M}(7dJRdNSLEi*f%yz@9;X zebq>rA~GayOfz7_vLaL}7$4bq9@9pXyOgx|>9##SSU=rOqe#SElu_pXb?hM_VlC#o z{&ub#Ho8Xdt2*@jkBUXk9_*X1hl`wYAAG7eK4+DTe}+-CVeb~84FGI@+$bq&-LDB6mkpjiYgKyOIg;wZFz~z7G4$ zXz_iZ|BM`O#A83>$LJPaWMxI?-R*UteR~cCqWiZ(2qHX+xvY+`f)c+gz zT!eFiYjr@@FHA__s{7sM67w+({v5wrnW?!dYl>$Rjg2uLKc2kqfwQHe226?;&!-o< z&(0^fnv#~H*X-R5U6Bnwf7w~q{$;Om9Nj6PQNy4whbq9lELx#H8ItCIcJV+mt?k7a z1CMnqnIy?X@>`Pm9Cwk<__~nk;J18In)+L}P+v`nc55@dh{nA0gIk|V8iaOoSLH6v z4=P=sm+|;9am2Lck(+59cF~VkkRr=-ZIPM(Kyw3g%n{9wDMmWCS+Z}iWa@*QKTjFy zp{AksO-!Nd!a$ z%bS}UvIY9m>%BKKGaVG?__2)t@d)K;OaOeikMv{w0bZ?M_| z+6OI?MqTtM#P~E&oJ>C@mSY{xNWh#ru!>`uQcYE)4zwO#M0Vc4XTr{yTi^r;zdWT! z5Dhcbc42>2Msv;KvbOp49@SPjZ?11S*4GNy%8sI<+mhFeC8eG4!lrY*sg)o55@$oh z!n7TzljHbHKNpCzm~bt$sU$GnX`PL}k#;w=riOV^cOQo?SVJ3H`uW|i2y>D#Qv-HT z(H3VA!c46PKH`BeY=&jf6odAtD`&AnqbYE?%p1a}{7d|R7Q|L@jABQM=7rEOZP!oL z<#y-eX)bjHfqJ2roZTJ5eA=iI{J&}vFFAx+=>rqgEqb0kJ5aiczgLlmPVmz$Dm24e zkQJYkI)Xe6jf<gjxF1t7);W`7>H9;O{2J(n(m- zNLr>58Z1=OGR**cs-c|nMsE1|-NA;URIU5#o=0YtjU5HDM`>!`Tzqe~(d8DNGsgB>nwL9cWE@~;b1q?Q}#eV8He0I}!k`;#Q zkyV)2_gWq?hsO~Hsx^YIpZntB0_V^W4j1mnxG?zo*|jm6n};<@v*uAi&Yx0{amAgz&6-`Yj2&AE zXdp1fLemUkOko$*>vCQ0fx$wL&N#{P&lQC__@JQS3k8FlZ4BJx1SM&c`GnTt-1ul+ zqylt#HLy@zKEeiDu&A*8^PI2vIkZaTtGUB&XAHT$yiV(o~viGN+n zq2C=9d`V$k^xosPnT*a3erNL&vaHAd8vn-N!GOn?H&Dyr`=5Jeh=NZOn80ld{T=Ri z+SVfu&ax~uumr5grq3qAd|ZFO#){g0Q|6tK_fTjUEUvZ)GXZM{t-%Q$NB%9fXI-@R z7p375wNu=8-*p@}$dQNLHICG-Ylb~Lq4E2)gC!rlV@wU?2a-XaO^_^gzGtotdcFD) zZ7p%hT0X9yuCgeZnXv+Ry6e<1))O9Ks4YEX#wuJ?fl=;Uug2+IvX-uAZRgKdeyyC+FUYn#BoSk0%4hR3D1t!h3UiSB)@F z#{An8iwCSpH#o!@UFP1z4-CMx7dY~LSqFU2>BynnHJ2Kua4y#ISg^CI*? zd(ICk7+0{$3@T=3a)aI2<7_@8bQ%AUuJOF4A_YAFzxOFzAfIBA(W+cDDIl zh-Ty}n{TnxT6{|9MAUiLa|FrQP>;MqI(y1;y~u0`SD`O~c61CQkgMbDqF2yef(D;h?|D<%aS_W4dc00H$018kVr43CH zEB`YPmDs`;10+e>lCVmZB@i{_iV}!Zs&E@)bmRJI>A(moy}@6a%70AKJX>epLf?>8 zVb^{T+{z?vKdDij=I_E6h@!icsjh+z$1laBKY1}T`?bqb>N2ye$UWMoL)}K8jh(5_ z;fK+setyFOB4ad{1k_}9=Z(FY<7~Z7lOUuE@+cG?QdX$jkdw9 zt#5|6HEDpj#*T7CjlmT}8rwK(&8I+0B-SKs7(btp5l3&`Egyjbx|#Qlmg&hLR>@pW z3mU@ocvnCaO~QM`WE@=Kz6|fdSnrz<66r44wKxjsW+^qxQcjXf%uAFrE`Kx?Lu3F| z4!A1^CGs4x8Tk;3_K`MD@;NC+z&|G~PCma@!~7R-1dr9+T4i@yz{*~cXviv4$Z|sc zMMp!C`r9dp^3eE!;V)mFn=2pAw^yaOHtf zT@M?;_&tP()5?IVScZgIlr^BjNCc$cErqgMRGd;m=0FNBv=B{`9-O~vZhb_SuG)1B zoP9^0iD4c)AE=Xd?wELt3mK=z9{KH?tZSwGh|E+|{ZHOeoyD5v0z@K`6O^eIJL1no z;f(HcFDyRn%XNDvSH8J!R3N1jZpIs_u=l8@p~K&{SyCxLn)B_T?| zb^#ObiaT|o9cLWxO3|rfZa<(LHkP?=ogovH&E@ubGba9KotSJrweU4-|nfWVKleAU8Uo5SoSoMFBwasynnPeW? zR4SeeKfNeO8=YEIOX~CE?El)X- z4(D}|Y}Hvd=ycBh1S1yFyKrg$t9B_4$YBf3Uf(%amskN z-Yrro!1GXU#NTL#@Ze)4qI}?5Az&hC(APwa-*I}=_h$r z=wa{&yr!C=7Qin6e9zk$7QXSDu@q|hinA-HryE})SbcU;9gH+8Ii;12Qhfk&5U~Rl zyD%ilpGd_H;-hWggfQXEY}80*|IkpU{Na9$tgj75>V(b6vYHmSaWZt?|0fF5fu;Pf z5{kLvko9^*pdkNIW#duAON2WA@2`leGPC7VDVqbEtf&l%yGejRdLsistZ=P;aFWqS z%hQdLIAKS8<<~-E#+;~<09ty+A$^_{eX`eOOq4BZ2FIv3g+aW`VLEyKPfye%KZ`<1 z)_($X(DE?qQ0njM4Yl&@z9N#rKS3OlF847~r^L1}KuRt*{ui-qB=#@F@`%RCI29;x z3waV?lR*%1<~ceAlMdRG>-RM&#g6>Hb8z=<1`!W{+U-!59jl{-Arfw@m{5-OEJ;vh9SFj9 z>q;kWNZ^ zexc#O{S$I)ewF|Ccf^iS%;9)u!m|EqxA0uA)`8AmywZ5ac&7P4PNsnEopC21b;6nA z6K>ttvR~%8?OeY9rErNEvVI?SKuk;}ByFuL36Cn~pVNj`SGm2Vp|{a!7^fel<4N_f zK9`z=$)F2GzuasA?@uoZM9tvzcFBIYkWErSq(rSugwuq_F7b0{*aQ8pRab4k)h<3z zi%Bi=#X!z(NoG_fHFn`MA*8JIa9**-;dso0)RiSF99E}XuU=WGzYjj#Bwfb+VPkKw z+D*0PJh{^Avh8H5NH`Ntb>K9twA$Ua4O}!xY7;T?h-@d9fSyL~M@i4(k)T@QVl6dt z>q8t}WZ1@Wo)X>d>3tS(I6-xH8%%)WkMtTa>cs6Cv?$4`!D=T$C%-$#fvAgKV)q6* zB|9~Ah4|jwD}xia(I-t-6l)T~&Mi?X+#xd>PV)Kh8#UkqYZ6U*018bn>7C*GB`b&MkEDP95$$bg_g-8tec>JT> zs==7 zz2$6+O5(O(SeY_diMozC`7W8hy*dS7?2_l5;cxB`aC+}+h;PB3uTSUd;@+c(C);yu z+s<0^K+5e5@QTM4V#wW&$bN@!+3@;YnAyyc0>h3jaF^MkUi~H^=iaZ7`w4cqk5+Hs z!4M#InzR}$cbs81AMv=$*Ut*J1Ulf_3Due(58d{`=|Q?*d#s)nTKv6*##uSw(cX%R z*scY;LrpE`pteHl1{R(&2NPpOqlMm;K%{X6MUOt|SN3;hjqE*$2u2!D@V2XSD$w&Z zTqSO+h85~FL}VD}DYJk(;}BPI4!Ass*AK^3LJp}!N%%l9zsL#q(H(ewLA^Nl4UA^rRwa?L*Q+go+A{T%8|OoV<~iE8z&AC7b@jUMP3ex!{iXR zp<(69n>E_UuW8owCL$`g`M zi{Q>oL`16EAN%YgOYLew5oZAW2w3@jzyi|6eJgda4R`af5m{rO2$uRuR^+UzDU6Hw z(SGpEZHJp%9xEyeSl;oO16hwj@m%re+SO0$ rt~CFxUtIe?5g+^?zLPh8OlPkY=>7Gh;2`jJB1ltJ4_18F=E?s6i|x~> literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_21000.png b/Notebooks/1_N_horizon 3/sim_21000.png new file mode 100644 index 0000000000000000000000000000000000000000..04ecf99bff989acb90d3b347cde1f4ce63b5fa7c GIT binary patch literal 20295 zcmd?RWn5J4*EUQDjFO7VAmvC&GoXYBC|rVofP!>0gmjE_%Lo@bg0wU!A>EzQjUb(a z#3`Wx|3qIu(R{6HXZG5~$k7x}(df0kwcTrL3*+0)rjAGpJ6l2C zd%SS&+pk`~wnskTUW&5XENIX1JYTPeAUTi!R4^OE??ytu$ zUE^1$T;d0ZYR@-E#->M2{fM+4T;Wtq9VLDBIUTC-nWHtV85$lJ=lw;__H)OFAo#+q zaD%+UG)v)kf<~Ty_?QP$A_ozrmEYdq$>hq)%n;tcu34))b^<-HamEG z8rdt{3=L(G3uBR!H>b_yeFR>Fu~_)f+CRm;N-Z&OfZ@Ij8%V?t{BxKGG5y6s9IOA+ z4kCF3NvRt8B8n==9Xcje(VMA*z+R%LrbCw=IJ2WRo>WA*WKskNL>*8}D!UO&cG)E?+?%o@()--BoVX$03H`{tkCSN`gQFLf^3l z!rWnDJQw_=SBUd-l0o+UTD*gLszyy;Dk({fJ|^xFlOeCYdA1iHVJ~qo9vj{|kwocv z28*1^kpQ>=$6F}~Eeypa4asLczviO>Nl|v3+MtpmgL!hJ3Lc`K(@Ir5MDgE872HM@ zaG*A})ot{yNx2H3Hj1gF)VA`^Gs?6Lu1QsZ10J9Xz{gWmQj1E*XLb-HW_u^dEQYGF zKHMpn5;n;w^($fW%%$NurmsW)t^qmh87VAh^!JIjyBmrsj{-JHEp^}pF%q=zV6=R| zg4%esr8^u*rG4ID=Y_5@iK7ck>WHUm^rdRN-w@Q$7k>ZjVdbe23>6qw%d3AG7C)1f zYY<3f`z&uJ?BQ8~9)obJh*+zu71{xTF2p}DzIqF3kN3A%$F+ z$}*DW?3$0jbBdQ?2VLG)vV>oJDG5dhXYi)+(L}wJu=tuEW%-1szS+JWcm<=(-l&|?3Tzx>|I!k{cC`z1F=uI$i8eH z67CCzMK@l!`YM^DwW4CE2rH+n8rIimXK)pfgRgI8b*gkMA2!I0+o2KKNd$GFCkmbn zL3p!-V&pRiNl=6h+JX2v;R&p@Lg+C1xJ~X7;Y2P`UI<*M8M=N+AAg!!3W`@ldLV@^ zWNWR6`YXhrvUJ=<4ZUd&Z*7Inflg+_TLX>JPViQz2IZ%h;Ky^np>wD3RcOve2_LqE5cjd;H^D2*2ntEcUlj!=iMYoPc9!k%CPN#P4Q#usHBkD zriv_!rlYos*&`Fqn{{7@jw9i%!_?Zmto?)t=tuG#+g&;lLd|K*iQ)XqupJWH+wkr$ z8ji=E&IxK0+Dr)L`(BZMDZd+oq2#Yg3)oIPiK}Ps_m~UmfZeNSzk2Kbit&U|Lq80q zm>XrvI^nAG0p7Ya|1n`J!P4%k)LrKOAM-TuR>>91IK8iIS2s%3$*jlPc3U3pDvjue zr82fK0-#JAcEsqxTc>jw-8!aekBz@8`Lr-y$&qKwp!hYiB+>%<+jPtM%;Ds8zUVT% z)fn@IB_Ow?)QkLi!KtDn?}ws+6iZ>btE6ztty7c7`Fa>!F|Kkwd+0ig|pjS8X3c5jAES6D3CQ zk2j>CLzZJ#YwjDgDRk^lgs4L3Cx?#`_99s_WiJq;)b>)|m_(>4B!wGgKkQvH!gQbu zfr+8)8G|YX&u$`g6@LaEgh)eLIyw|7r!CHc6L#% zG0*iP^eT%t$B;kHRNaOecIbe%{3f8coGZ<&&#((u^q>9x=r%e z&YzVe@-0L+B>B|tA_8MjYI(IoUk5%t2l{b0L-|#b+ zEGs|(Jlb&f3Y0g0)idEJqLuON`8pGz17Fkx2xWh8Pi2Rin zC)XQq@Tn$OPiW)Ph8srL5P{wtr)rFRWP#p%_i~sM#~oB;3rS>!sj0KV?TW)go*J9& z&9FqD6N?--Xs};=kLAbw3Xp=tz)*)QW~M%OTSZ8rA8Qz9_9nJ=m5qWfI_2~==Os;Y zFb%?*fGvQ^opApxRcoos3{|6PgDKwIw{OEK#a0S>IaF{5S5>%eFXo28qtdDNDzuS>aJ0#E>O4T{iZkb*w_?9!IES9!VOvSDWghr`-rB}tAxt~X2aQV<1IJ^%4O z80XY8VE$uBe<~@74GP1n8@KHp9E;!kk*KI7UvQy>21fd+zDF2g80y(I{9&-q>rqsR z#A{&22sDY~qdV`gUNrfXn11RR+5z8wo;S)4Pf2{^2JYjq!9y|;TsvuR0|JQEb2J~@ z*w|z#ybunLj&8$z^Y7^GRdV7Or~JdW1{&Yp;QBR`P16)e$&UKC_;lBIHuf zF>L<(Y9_Dj@i#dc+y&F#j*n{}?X6l>q)^;W4$A?{jJ; zaXi+yRNnT&LVt(TR4cG2UMq zH{dO8%7rLG?XLa0eet@p-TZYIF{b0uwu8|& z31XHvkuiei1NjE^r?xHzEzlr%SZLvLeUpLD>8|I_7pAo2)b`Nbo)1K(e!|3;&al%`GIhmniw`*T1>)D&BO2vu_8x)cB7Tn+w{E z-;)WZ@9?LTfYj6qw|LAP>odB|hn6#JuN3#0ZOwO}8N{OEY^yH&a^=^A*-Vtd9e)1B zTY(|K^FBYGK@Pr<#eE>Lo2lGCICzQ0{S}%~JT_ceB8EN5vuFx?)Wmf5F;g`|z^L(3 zUeyvO9w#TK$Vx#|#m;~Nt*|XUjjlaDrQ`{J8}spR;~Me4LzqD$`Xexl;S(js{_Axe}en7Dn#*n>{&1NCH2*~ZM&`% zw&A(%4rv^oU?uzB5Rqz@yt?W#=|H0VaPyMnQGbXtRH)eS8^PJpNd4B%59RHIbCPH1RFI4IP}~f;dfcny~(ZF@Fhf|6SQ?OiItFba}yOb?=@NM zj`4UH((;~Wd!vbRdyeV+Qx|VFI_Y%9ygN=fgz5B`EN&6TvX_&0j0_lX+t~s;;o}_? ztzonFU8pUB200XiaH-4#rUt-h^I$GS5V`nF;@}&l<7(+h+0Ly|UUv3C!CnzU-_5x; z5XmVxI}6RVg=BpGY@EM@o4AVgx??=eI!{rBDDD)nhsCV7!QOihT7x?+y~HcCnUFa@ zJB_(-b@NBM;+LEpGG9vX4S#O^8rP7vcsPPs(5xHN&KzoIbo>sgb6M4geTtK5@3CvB}pWJy|CR(tz0s;R$$a5viJ$1y;r}SS6%Tt zJ?@pYwaM<%P|e9!*RxOjM)?xe+r45T-QCZ!va{WmGBZThYqqtAhlYk$)pX>U{-D+% zMNCZ0vpAs-7C+MA03f`#<7R4jFzvm)ww27XGBPqpv168>2l}tqkT=la2-{ zy0|zwwR=rnu*7!t%yJN;^3|I+Z6TfQ{c7O-pkDmDc%;E zn6S3BO?O$J2Da&=oRMeS;EO{lm2r#gj3?%93y~V_?d^txUti$ij2D>As;UkEU@T4j z0Z~s+PmXS7k?GmH;jFAI&@zA`-zV>HZgvaymE?5w_NJ$#_^qs1D~a#E?0vAzU3bvJ zH&E~6BV;?-9>t?0a`fxVg%t;o)7|CeT?AWb@o(nfQG`uKlJ|p|lSSc5%p20XoSeoB zoslNy=IcX;;u{TwxZ!?DPY;k~bW1hWRP-31s&Nwp4lp7jqQI=@*4f#9Jr2z9+;^8+ zz*V%_q!{=O@knWS=f6u+F4P^bebLC*x3kKxsQ7f1S;l^U$^|*?hP{d~`Sylr^@uyd z`;T9+paiRW*mr)SEMznOm%94RKzhfgUCl`z%fOWFXxHGjlOk-2u{&ipI1I6^*_2^> z_NgHykg=+XDj2s_E>pAdTMV$+)}K1p9Z#)0j$35(Pfk7qR(`&IekvI(x(LmyJF*NG z-_s9uN#dOnR)^% zO0B7h-`d)8F7;@>Dr-L%{Hd`Cb#-!y>(+ugI{;NXt-5=Z4_`VwPdsc zD2KV$7kYZNUGBJ!Nu2&x-kw_bjt2f$Vkd!+n#gHIG=1Xyj8$hCnn$d}?e zbTAv3QAM`eI;3Hs_~OM?gTqb@6}?XVi6Kb?7zzY892}f-9v#(R|ItmbR2M#8C9vXX zDO*+VjXS@`|9?qEMa;y^OaS=TZrFsj;ar{l%3KBBN|eW1C5f*BUu{IRfp=w( z4U^ma)kOED%&2|gX;DXmEBDvMheEr4^he?MveEY+N z==ELr0|f*E5uGI~9w&Z5U7RFG^hgBF*D95SL>e8(lS z^z{o=-2GmNbg=j~BU^wrL zyBgRx#4PTGo@>aYxr(`9#C&@wkGOWKm+6HVmU$fW;6|_HdG1F981!+b>VEa_)>fH| zod?E>XV#Ype2Z>V7hipMZuzvloZMyPVz*Imyy&Foc25l$#-z)PSIt%@SItHvDef~d zGSM;HsVXPWt?;CI&_n7z$@7Qc7-1aLY<2Nr-y59V*~a!^0Wwb-CE>gn(+P%zTeAS? zJhoTud^`dln1jpiju_N8Z4Cq0UdkX9L}yo1sApq0UJ?X+cLbnaT|8ZY2gOMGNZ=X^ zPdZ^)_c=eN6|#on99!kD&+j!04DoSXBk{fa%9xxo|-4R1%xX- z$V|(X@H$%A+W|;BT4F&BSd{=C&Km$8q2G0c>=UQ)1$0jJ#f!o&Aqt5DOq7xE$4~xW z#BF>w{F$ta^S}vVI<}Q*X(R1FlqGv=_oqo4-qPr|0}eYBWdrD_wSa&CRM3pfYB*UCpG-%5!(B^Efy#A`xsLe6F zRou2%*b#~JYo7o5;ll@pVcr$j-rQXM+E``JpVSWzF#cdetvbdHV=HQ9p2pXgNd801 zlcsh`UKM(2b_&;DKHvATA5!D@a?glzI{KZl?E^l*kwD-Cid{F2iOFv@%dsakg9TOK zt@?FmI8U#uJ4W!ZT~?x~sjiLDgZq4w>HHg5{cnF?Wge|?VD>uNNdc&DJzaBX)5gic zky26;0hneywerKznbS2F9&z5ik-Czp@825^u}OV^M-a+{FisVn0OOwv@i}3p(RYQF z&v=Wm$J!eAw7&e4Cq&_Fig#L{YH88#&-h4U z9`w|CWXiaJwdM)6Wh{Zi`(!Pn@^JI<* z8z^}KGc`43(Ec*0T|oDI|C$t(;N+$V6#vzVtL=oh{Q8=q=IeR69IENf ztHq)U0O&Kz>}RDYBu_T>Y&@r&f-XPN38WP?Z;TiHZb<>LsMb5(z9IFA1`!|jIjkgl z?*my#3gm!#<1KW~4D+Lb27#9L zOJrxrA#tevYiStD`r2&kD!kPr{5>CWS$!Ryh^5AHE7a~CTqy{y#KFb2d}0iu$5dwk z5s0P$@-wJf;5&GcQ4=w6vnqP;_QIuKR>e?B-R>7d7@;@WbJcSRl!zJemGGnJ50-F{ z;3e$3VF=<_Kk*Mk{oo|%Ls$E(uJ7Igm|xz(B)pgOA+T;`-s1-wa+nMliaYsc1^4|0 z+}MuU#KhtN8%eDqlhca;vp|jTB!JlDBzoS)DHCBVzaKeJ08JLWjM)3LVE{!F1j;t< zGmE|pYXotxI8M0zAAC@-EgOoT1;sCjD&R+Ls6b}7bB9mOA+wS5Tgxh1K;{91XW-x( zBKq2N|9>}4GQ3^_wq_{EK%A;-r~Nsw-SiXH~(liBt<~mxgm9z;OvqoP?JSb zABiFe+VE8Us-+;z2(&}SDK8-}A@srPU-)@AG6k#zK^bg&7xhu`&SZsntE-*k<`vBJ zCw{tD#7C<&cIeG?=v)N&DJm)=)F`>=>G3zv)61|+7K783N*nTT`Ty9FUvojE9bQH$qQ1+w z3on3zVLa%@pH+4Ms7wBqsz?q+SKbC)C!!#h!2=Q{r|-9hVi?Nbd0M#DRTb?Z4}P?? z#{9T-a3e_dG6NRJhNAM-@p}tzO~Px28sHt3kEauSx`xnA3j0T-Gu-oxlNv{OUQO1y-k0vdD(1>$>m{JOu}ZzL(Iqj9!U-thR5 zpuH-36M#PxfjPl$gH=PDF*?q9WH^FD^(WAa#43N*mVb8Ss`ql|@cC4W<|+L^4^I_l zlJpi?XO#T7@=Q<+XKD=0D1N?H5!NB6uU=##z$Z06GBiYQj!{YR88X@n@k0+lh7XR~ zAoPXK-Ke(8&L*Y@y48Kh^E=>7ci97*JJ%k>LSw&V;9Uhyr}J6~BpD`WJ2nf4jE z;T3z^$(9yMm@cs{F;I2BcPK>jia)yHlJnvI?n8bb*6nD!pKoudfnlbbPGJT-*~oZ} zPLijeL3JA|9tRW z1^!AC7a9@T_}R&+ulb_o&HQ%J2RpAz(#O~BM<3T-3-N2AcYn?ou+PIH$edbWiEA{| z1PmWwaSw`$z@DqXKEr;F408oDzlWlmQgqN4YGarTnWI=6DYE`C?5?j{8AHS+ygAU> z!|jd~q~z0;Mha|qb@dv)Jpb#L!>`A+A`fXjcepwg`?W51-MI0^PPQl55ZNFInrJ5Q zWT?PzClX?b7NgGJ%tCIUA-og$;~zNxw-jy zbCJU3peeIOzL{oZm(b=2Q8s>iN2j5#o5P)rr^HMok@IPvJ#o{pRJigjMQFE~k=_H* zv#6b@r`=K9#pz}{#&$C&=W`vr-y*$+B}A@CUUc@OcRYUfND)CgLjM@ zQiN#jR}zj|&GhwaD_M6wsTPLbkE52>k=f&#Z+>wqV)T->4ZR|r|8RZ$4zBx7#Pq*g ze5Gv!Fr$)inW&uH#ZA^_H_wg-X0>&pHsp#Xrk8^0$K$AFBOMyQdOw4{lu}Pey5eS4 z?*qQ9I~?;oj!fi%x*mdhJ4$`)AZ+(xp@}$OUe+C%yS-gMQ~OQhh4yZzGib{c){5b} z$@}eMvwT$~rcba!D2glBRVB9F%ttJ8S!o&QDLb2CM*WW+#y{cLAiMF1uZwAAg0mtx z|LvuSeQYdqA5ZptO7zG^U-WdUag#b88^!M)3j~S%_$PmnRG$~`vLnDr?l%elGa;!m z=unLjb-}rX``xa;6%!3!5H++HNlm*Q;H6WnH#Mi!{?>?y`zep(v1>j5c2KWrDa+>J z$<{5inwo$NgNa870Muw@A6X{G}Iosz0Vn_b14 zf}(eaU0gBsp45Fj6U|Fm+IU5RgosWB5yz)?xK2mRrjhaTJauRRC*x`^p7IgXTZV&1 zG>a>vuu(QYD;FZW4a$OuxUxovzh7brD2>0Dg$|e5pZj&yi=(?o-l6p3O#c5m)6&{< zG4j5S>*DT*hh?q|#nYpYY@`LpV*EIoj_iN_^2Rj)Cw$-04$0)z04FaMk>R#;;5Z00 z#0Q1$!R;(qLwNMt5DLS^z-IA|ZZ6t4e*J6IVW(Y!!W>7dosGd>B@-EBBMe@%SOr$< z>LiXkgE~LY+{;NEZ-LeA8AE?yX4A3#&fgOB1NDDXt;~XQpwz^!f2VfJ0Esl|kJI^d z+Dg3m@})qvG4pcSApUdhk6=!`L@ZsI(u03Bjcyqi2@0y{7J{q3#z5^;X$UDwJAA)j zgWyH4o7BxTtWA39=wg74za!VdZ}00h87P>3rWn8|OToh`*)}l%7A5oe-)RlJ4No;y zdcun26cRZ8@PXSCDF~NRmoc17z7{M`VHNYBCSsaM^q* z@#TN6%cS*{CfPAw`dbB9k91Pw-dl!Btr)U(jYnE9@{rzOb7U&O|Fa^2<6p{Bg0Rtc z@;e(}zs`@PMZO%lzvd*?;-*DES^u|xSDEA$(Nv$S03AOrOfrELk;eyy8y2}lz>-#8 zv+^vMaV+|a>>g2aVP*`gRd%L@dHW01nP$4>EH@iH^8CEq#ln{53iIiAQM+K3jl4)j zD{?+wJ$(o5&-VrIXs63Rp4B>bv=@wARAPZxhk=_*(7%b~=K7EXdkF8u?CIh-vA%&u zla*CAX!7Ug(zvA=ul9%lJ@IWmF@GbkE40JqzO$!ceO}akgbG_7_fBvTlsg${N>2%Z zGj-sO+0T#DV%&C?!8zk4AJXW`R0>l9(&#L|KCSb9z4>72*31=2M*%_T0J|iu>ve&e zG^{MXzdKfJ>-HYUp(qVo)5F%> znlfJaPFk5!o0}vBFPHJl^E)!+zgl3Y)cLg&??Im;v_W#iy(a99wfq%%sPNZ$n`L8k z4%jqft<8G+Q8}4r9pjc@GdP}~sPRlJn3(bx85rH!xyxm2q6H&~z5)Mi06P?oA=!G3 z8z5r`2w$Cv0RcXo;{afaFx8H1sc>rvWa$0PFNxoJPJ4W&%xGr^~DtC5psk8z}1O<)Ww-Tc8=K zxH1Dw3v;BrTMs%bgq<)VZv>Hn0&Fb+P@tx`HpDx9^)6DZ1-p1NUBaG43IhokE zk!laCtyQ}`Z@YAB6F-vkzSutl-&Jsa*1=yM_|2^~K0tx*rz^eP?hCA5lSk1Dn%C{> zkCOnN(JBRL@@w;TXefdr*439e5$Lq)i5W(El_NkiYs&Isac*PGH1c7&HTC-u+mv0O zqhdiqx3QRcbMvsIaM$UD<9Kv)(aN)}uuVz1*j@z0KKE)3LbXosM z7j-FlP+M65TiN}4s?}b4*}D@n<=E^m{OsZQEp8FJooPM}jHe!~Z$j`pMx>8#@_%)y za|sJ&$;?=upb@e~*?CjfZ700cC?>pc=NECDUp?MA8h*x7xpKo$8|~oam>4W;j1FAO zV*uHb@kl7M(}x~ABF2u}sQ`LotJnaCD>OqgSd|YJIV&(M3xRhEJXXRZg}Esffn~(k zu>x+I9N_^`xPOQ)h4zl6NtmG8#I1_m%@Hjgv>dxFXYu(#KMN?}{{$J$y6VW6Q8Br8IwgoD@ zmd67o^}+LD>%0Zvymz=91Zb0TCf*~G;$llSxlZG6d$iHs}T#9}qJ8%`o~^0Lx^75r#pXcm>F_*vn9 z9Qr%Kf<4vB%4o4FhRZZ(LsVd;g)CENSvK($su;ImXii@`>&?gdsdyvUt-D z2Y9>>oJHE02Fmr2E&x#Hs(iSA=2de2n&FDhuRZ4PO%!>Rw0Qc;Hn`gz!Mrb79#&sl z5euTko%P7B7}*G9Z>T?1M}Nih4w#@1>1@A7D5uZ8D;A=F)hYZ-13nI_anDplikb1v z^@?_lX{z?Md%yME`D9e%vt=m1RXkJXC9Nu0@8QmIe!O99Nf&!?u*rPTrz-nm@Ue?? zrp+tk#m}Xa`;+o!bwyDD>Fu!7_acDBlPx9mB@diLVe8(C5(D?Y+L@ze-wn6NCIqE$ z=zaW`P_j7PFC|wzIc*s_+54S_+ues_G4Wm|qBM+x@$iKfyobBv?s?uDtT*#B7Xj0+ zIPyXOCh+x#<#u#FmuUao<#x#J@9MH zJbj^0k*PyPPnFb(Ye^mN^0cRv+>RS)q<6=fhewW8h8KeJ(BEfRA52!Z;Z#*~!po}L z|FZ0-OP%_Zh#G0H| zx5CzEw95+96Jx7nESF-z5!0%)kAAN46N$#~d~4t1Pc2}DbbNMsEaXLs{G}S9P~S*@ zbbaA_Ie+v3fk)`mu)U_mp6?lyx(-CTNX4vd3mm`S6eY9m>%I~!l~tWwkSLUVUN0QUGob!60XOlLVed|mjZ zosE`yX|7Rpc`rFWSfwB3ccUdbj09;{SI7a}%dMN_hYyQCzqU@DUv2q_Rc`6Fpg9{G zt@vumOO4OA&45D;@|c)h60olzdIT0-R4Zu1(C7aBwkXCs%h}X@U`0lsC%8`6d5*Q_ zmSm{DVkyc^3F?d`225jOl2=l!*t9ov;0?VyjS2gkh&S{{)=BSEZwE?rI1#?v1~~d) zRvirj&}GdUGg5_N^X{vq!7sYD#~Y=0{?fadY?hDE1LGXCZvrqZb^Rd1Fn!L zRmjxr63#1u(YzphP_}y1y4d_NF1G_FeBY*KTDz}Pabi?cRe7i^K(9@iLT+D83xg6xI|4Y}=Lsu z!|c--09jl8h=9#rIN<}Qb`>OYUPD=JqsfQ&a~TZ2E@$yr=nL`APcP~&TJdC>FGu^v zJHB_os0e~|7!6#Pxh34YxNU3f1po~cSKa@|z}^+YOqK~=Quv}$qjCNIMx zlz?+sSgYi!Knx40+m6cs#wT&l3Bn{{d3V7>G^8W(WlsKV{hC{%=#9vDM@=7IaidG% z!k-OZ^fInLE4Ec&pqUYhW3?*Z2;XLRT)eu#pdH8JBLO_Qy4L#-f2c>!lhtYG8QT``m`kEiy`?Ig&GC<_}3C zOMF~=ddr4{H*wNoJx%TcSH_1$$#kZok;g$SX$h?|0L6R7C~fORhlW-{{|iRtrk;2q z1O@fI!zH`*TUGOIZp%Og3qI{Da$~!hJ6$}uriW{VK-76K?9sO2*WoY5f`0YNauHk~ zQ-@XG3Zj0Xs+32EM}EV3$LY%p zIa9h_1~+pSzhN~TR%d8%zi=m4j&-rm@h%}uqXMwIE2CD3qZCum^U2G{Lskg$u^8Hu zgBs?$9es*{I5V7kVNg{S*cr^j z{;T31NQybRCa6oygD6Ud$pf_zA?Lj=tX1+w9?!Ib@E-E}p#;XA)fg@!e#Wba4R0 zJ_8T~IGUv+E_|GTO}IVc=@>jWwCiiRhToV7XC+$0(Hwz(4kN4Y-hoY zZ(>f=awbd2eJui`Hcydlf(5CF^~QmynTKlM)F|tk`P4*KRhn-n@@tnT^f3E>v}e=sXQ>XoHX}VvesJ;i|40=%tkUS(*2zZ}3&hhrS$e9b_Pv}> z*NxS4zdAE7UGHBF1}3)@WQ+y@0`-v72cXr=;Gg>)1G40Kn1=;E@MliYLcF9Y1kv?= zKPx!q{qR;UiGj&st4%y|{&wBoTGOwY?74v9*EirYWy8XS7CMBH_jj$w#~&>Wy9?P^ z8LBFZN9xdxmhcpM0_O(kIvW%D;Gpno;ps|u0b(OG?zGG|wbt*2y3Es+;;y}GHsf=D zO--NfH;H0FxnrXods79M-Xw#cNqo7pm?EjQgZX}X7yEib%~QV{Qm z#Zt}22J?+5yTW75@n+7~J7R(x0Lew{wy2cohw@DY27rue>#;@deYA1yPH11kgLewb zP>T>>-qgB6w+t%Q%?E`!LtEj~fVXXAbB&0A!e2c-lj1H!`{Fo~ zy1_>H4k_v~V8}+sIm=GTgA)j*Ma}Ru5<~;Or4eQF>WOs#N2RRZYwLkokwYR=)9VV; zWaSj~5Y>C{AL&VNPY_1VFE6RXI`ox!St1Oz(4b z-oNy_7gXDB9yHS6d=LCTn2@=gX=lAS^M2TIe{$hrkt+l63*XWXb-flfr{QLgvbt1- zi@buv%Lqb`(ifdeK?DL++%_O|s%zLNNQ|h=RLtQ55t!E%K(Mn*5bL zuOdAsnD8_t>Fi$3))h2k!jk29595E-=#MO!Ryx%<5!CKy>I>6(tVq(E0a!j255lcX%JJc^+jHBgllTXedL|+AFb*#eI!*c8_jNCA0&N zBk~u}n>ZAA`FiJe3Q5wc$Sm@Ku%i>9F!Ncrm7LRU;t0nabk$nka|v(bvKQbb2*Zj^ zz1-w*nxg4IfeIiErriz3*!bU_x9DaK&fjeJDQDYD|8BdeCQyl1(f-sF^rch8;iXnr zQI-vPO%3N&S8h$M7GxLa;WBBqU$dTZFmy5wi1;xA+*dtEyS|Xdh|>w#1^iG_aAI9r z{8Omlh9M(<&75G-C{*Hr|ls++R~D>7PL0O+&j5}OZ%C1Rm(B#R7S;Q^6b!A&Ig zts))|(gvj|S>0{p-7T}YUI=69ftZZM)emwc0A+Wxv6FL=C)dRG32Ps3wh0j5>yMjX zi0u&f<2#>h1{rY{o26BS)h^P5HSn_p0!vucTcAJU6!Hajrfwb@<=IRwWh0Y%sXB+5 z_tx2V@=k8zpologuxXa#0p36TRsd3iF0$7(3T#&8^HP?fg`H=D=2EKR_<-PP82UHFNTFTgPk+`3{DWyp#!Y4e_!;p8V`G_le~J6z%kFPmVbBRt zdbsi$k*f#lTeVmD;#7ve>-m_|+!SF^Lr(yHPUjat#o#b8)egu#ikqz#nPkS;$a zd;E1%VqG zRwpkCb_l`P&@LU z#3@KD3g!?fDb-03ZLnc*DqJXzES*)(X;r5MGo5WmzKs5H3PN{2?@)*^9w?P9As5C~ z2jlXsOuiX@($WwvDM%8Y#N`ta)W*XNaZJ(6VO%Ld+CVd`w(?+f_GB$4?O}CJ(U0I_ z0R7_u=}K1h3YnRHKnbD{BV+WWx^e~6$u(OxF&!H&y=3yIIHL*P>IZLKfzDx|bGhKg zO=EO80xjDN4GD(#DmW#8j;e5aE$m2(eiaGHKmAQ~D>hba0m@YCB$RP>@Iu{osnx|M z=;~SpA%*z$x???&*-Ljh-_)NF)t!5RQnluI`T+X>nE0*;@Hw8?9EX}BGg4v6Gxxyq z^MNeRM1#5@oVpPjmo(dxHBKSfia&I;c6VaRl^G2M)sc9F#0}KSEVh?D`o!(X6=EdB zuR3htUft~y$AzrA9n;YCVcF)P45sm`Q z;P&n7K?b&Ex;Qt(GtOyvy5tYa)xLa5p-5rj5yx*m#hM0sBd|6ROuBO5gk7LuAIhi+ z!*u@i5~D(NW1A!e?ODmor9T&eP7Zrm=iZv~aC6ChEvddpdfan9vJ@wA5{8oy z@|(Ic*;boyc5#(&_3N0u&{Ca&wTWVs9$YRePN`#**ru)6R=UfpaU(d&28Je8C=zxyc4Ec-cR2T4_0Vx7STN_P^9OFldssOL#Ig9B?Ypi@(3~ z<6}%rg-)lQi>SlbD*Aug(w33I6ot!d9aY_8)T(i=A0L0N*MR|E}+ z4v=SGfCM;D;K8fa4Q~*0fEYhBC(|5hgP_X|{xV-keAMfK0&yP^ef95&4Y?#3YYDpqOdh#gN!n3K-uke)wBkd>=pne$kaHR&O{{Sg}V?a`l3p3Aj}gM-V= zdzLc+>1Lee!^MS*xw58;;&j@zGulaHvbSQtPHHQI=m!YDz|*Nld+N;$k~Mg=Qr^RS z2cUlOFan&^j#Z{@Tu;*K)aVmI`^#_bS)NOZSHD^5Za8M6upHSlXMCZAKnfaEExYj^ zPwCoLx?ZW&I;L?12|x_EO(({||6S!l#jHoIkFy!^smDTp{m68}aW6A zn?WT@9$~q_E}!$jqS*zRS2T2vnFX1je++*jbH(a;-#?>}0~)#g(I@{3uVI0*;qv=T zEfeBLoezWt2e=Vm{0czRjrMZ5RJv#ksUTXkufDRe&`D#ppVf+0$eNV@iu8N~?(Vxmo9P{_> zKyGJON&oRn|A@6eZa*^;!~q~JE)1v%aZis2qd*Z*%zSvXo5o}*?ua30 zyp4gP<9(D81oClM!SX)DYSeh``1uIXOSYDJbe$G8-4{&PRmoMV{?uots!Kt1-G4$j zg{&70-Vd)i9Ft)4Q&TwBer!YxgOrN>oGiO4=y%`r89jN2Sm;Ve76>moq~GH-`Sn{a z-@S)!rwRTUiEU|Sc}lZUadLEH#zYk z7)=@iv@@tp*gK5VC^QVpp`0^&58j4EmLbDk?gZc^I9n1$Yi|rh!Jiy&* z4G>rlq>2{(RRcGoiL$lyN>^6$fbLr7(tF^QIQeo(>7@MP0UqP_9S%(v!J#t`OLuIR8Fh++cZZy6>InlgN`~|A zM$<_?h;hQAZ2&Va(nsCPe(AY{b;)~x zBqPMGR;H{I!n7u3JOo&%{b3Pv1GJ>V>7M|DjzrFjOfFMdPAccRZEf4J%Pcu2pUM(#J*(=4vCOl@Mdg-T{#~F_Kf5|^}h)&Uu?k)WYQh4 z?7YD3VTM4;r%oK87zCF+YCV7!IApXW5nmJnmuq=6kcNW^tMUWMZVB&3NRhxP2dmTl zGo3L(G_evHtosV=;Vr38u}g1o(<-<0l;Xv2+9F>S4AhX*UISuef`+fvfXY$ci_|Y4B zagyRbX31n01$UlbhMnMlBHjVd7s1OTuqCurn0`>kSmCPi|0wotvdKC6h0lXaYlo#0 zw!=6tn)pBd@S3+!M3&Wanj2D@B;1Nl4AtK$HItU^L|oH9PVBOpLAtGau;qL7EtIZT zRxOn>-9&IJI9;`5BBV%5plX~1<|7URkpz9zCMZ@a_L=NGY#h zt7eft?{r=Dz#R_Sjj34!hu2}Z#;xi_|Lg)#0F09haSMm5p-@fk)1O`fyOZPYLUWz#_`E_e)Kx^HEevc8K$d@MQxs7>MxNm3S#(D7vs? zoV6{rZ?FBX+HjKOMs2)?r0}9PB7+~Av%a3S@_Ae|MFc}-NI_&@&%0$S7#tUCmx>94 zhdjt8mXFu%!BAr1NyjHtQcoa8-gL+NmthaDOKFCA@+$JK(@A}zmHJ8nJMk25W4bE! zDRT0>mr6>>v2tcNA&1n!qkdiN1x?+W_Xw#mTEg>nCt>>~eL@)m(T44YPxDp38=4;3 zZh4&xjo-E1Jwi5o=omqStu7EShqZM~ww$dKOKokEV1DFAor_nVKn>NiB=gs{e*GM& zmE^xsL3|*eC7Hdp2i~8FB;Pwc(mNBI`I6^#)sDO)0gqdL7dw=|SY5p*X0wmL=-8Av zFxZ=J?M60GhUJs`QTulJC9S6iRQpo08qEAXv#Srf>apasUp*ZtE;5)IOrZY(UdM>Y zAvuG@N9yidV8)>chDT_J)x2AO!)rEV{KCm=L%pt_b^Tgttw&o!7Up7z*)M z44u_0=D8F90uME)kYvxkskc|v1|4aIV)4k2J;KJ*@;q0Q-oe$`ggpYv&vcT5`y=zc zoE*n`SF;c+YvY7LiPswrS>9ymiIN^DZtdFn7ULVE?}Nb0cf5=u(fas0CNW{ZZT+Zs z*fhU(WX-EK7df5VIUqa%g@qqF+T zL&L^|kcQxVH2SnuqiV}Z11leGb$+} z7CILuG!CUg=#qc*T&t&PTPL-C2NzoVdEh6&E@U0&A#94GP zcXGsE(f#KHYw~PGb~CV6yJl!0UO8csjqF7A7Ad9>IyZM*Q9qs!I`5Rn>$55i`5||r z+;^jTOv57|7$J1d3*OrF^dxfK$GJFvPapIo(Bhb{GQrKWepyUIqi%2Mq23wps>Qgg z=HdmExJyDchb*URJ8Zuc`Mf`ZP<-tVp9P0s|Exll<}T)9hFH`qH~;&UTGreEp>%r{gZ#mVs0HNmNod?QsutG8Hp8zCRHd z%#!3Hiq0fomLn7I7;o7;&0E*iI~>p6e*JrS&7~I9@5L2%Tm8pzQiJH&Sw08biP>=&WC>(f^Ild7MeuH{(do>H8U5ZPDX9chLv2 zxo_^zxRX}*>EqfbpBVn^f3i!wL38E5HM=e^=8pf~?D6MmqVWdJpSyM_pS$TkegC)Z z3{%%mJMa57{pwx0*dMpz8TU+y`DRk!1kS@5uWzYe|0}hlhX40>)_<%zo_60ex2|Kl z!4abVfA-$hyG?sk1grLP-8maw{^sNEeb2$U^%*F)x}VOy3@$DwU7F?`0%ncGZAg5e g8UuMJ*6;tib5FcJH_z}M@K8GjPgg&ebxsLQ05VNnyZ`_I literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_21300.png b/Notebooks/1_N_horizon 3/sim_21300.png new file mode 100644 index 0000000000000000000000000000000000000000..581d0676048a46527619c7ac8d1221dc5c10c5b5 GIT binary patch literal 19956 zcmd_SWmr_-`!`AmjDj$Vl$0YNA`%1Ar62-Q3JM}64Bg!+2w!FBZc#$IyGFVZ=^muJ zyUrT?{(k@GIoEk{UY!@uxh_WMn!Wd0Yv1dR&;7aYy+6NFkh*!}?hPy~teY~@&y}#S zuJL1GVH-j4!7oMWveV!{0XxZecFL9pc8)qW`dIQhc2;JVc4o%9_Z;+XY>h1~xY?hu z!yn%>va_?Y73APB|L+OxmNteQqXQ&g!64VIq}6P(un0*pA8f3+1WGJ0l+5#IZ=4d= zC!L)%-_~AkA9hSUkr}s3A{bLzf|$n=vfV?INlHF_j!y?cZS~#_@Y|jGM!|Yl{iR{-yP&Yr0*` zrn$7bNa-*}nJ~t*V&of&d*F*qSV=t*KjtSHr7>=F$kjLFUN4Eir-|SaU!4?j@PF7z zskrxiUkw>$62jJu_Ks`b43~3=LpsGF%o$Zdlh-2Tne~fx3Y{4;-2dUpa9g6K`9AEE*vuz5Ts?yz5Xj=#&@Z z+1{sKiafSwj@~-(miuU2RJjBs99tYx>qX#|kKK&YKu^7B)w{9MoB`zm3A_pvWj0+I}Yek23YQQyhGWab&0V)L~!EE-0wKpVisvDGxEjnD=I^a-@#8O--mcBmBY zYo!QDakaU;#Ph@Qls^zZwt?ulKy(J#hlhW4GWc4#LuM4)lL(nmlCD3D^&m5!=St0p zU{5aa>bC`U!ptpRdNB9;Lr?sm7Fg-nV)8>r{c{%xaY!(et7Z+IIDhqP_4=EziKq#! zIN{4*={?kl1X4r|cT0sp%e$LrP=0>jU)+`F`;@bZsO)Z$ux0(O%X;V?#fa(o(K0z-x}XG|B@K42B#9gVV| z(p*R4^k92jb0g!Yq9jb973bH9cAv&^!5+pY86bFo(tLW8^EN*bKVC(}XT&KMAC~uX z4j*h34E5o5y%8xwI62Yv+r&h}stE28>E|hu!?l!jOYC4A5wB+`#W>?#@vrJdbxA0F zR1oE?s<#@7to?321ZIavhwG7C(_`zM>HQB70t8~TQ4Yx0A+D47TTjbd$lA#T~ z5|DY+{SRzghjZzLDB1nfX3BD0*|62=Qjz1jZ64{cfn`c7>9C0R$@q0~XR>ZgpRr~b zs)?qLRFH-DTaF$U&>l%3t=)Gx4vVF);qDLNihY5rv{G*3X%S3Oh%XV=P*iZWREV@x zBs~xI3FZ}akVkGa!&~AgXTf6Q;VrGY$Vhn0O%#drHTdc5DCMlSF4F#KADu}Sz8?;5 z*zn~WZgZ7z2=9v)N>c=KR~O0Dz2+)d@VMnDe$KuQ>x}A1`n&rDIl_(0S*-2`4Xrq3 zO?AKx7}5P(a_%0A+D{SimR_t+j4pA)SObSk53$PDi%!et>g3I*@$c}H_%mj5V>}Z} zsUHr>1Ai4WJaU{;#s#|{<#~OlwDNB3Mtjco$ii*ks7{$Z6y*&)TvO`A)o4Z+_<;Io zMFCVCNRU2ULh7YgwalK$2z_90VMbh?+&7B$1ZYDx%vX`Of8i4666bIDC<&aUz&_%&yluUB3O;ID(ri|KU4|+x@a2=0XFQ6afcZ4IK=D%2E z`2y#q8!A}kXq}eNiw{YF?9MXc_%9qx6VDBMO82DoxkkI+r7s?j(?wdgQgVET6W{CW zpI?OehE{7?6_t1J=_37cT0@r7teEE>7RcuARJvYiZ_s`=NZ#K3J`x&efVH@h4u1h3Z36 z93eBvbEABctx>4B17zm$ZCk@Lpd?XE9Dk-sV0S(>&7~8pb9uJr-H_S41AGZ3#LYN* zebwt$peP6ajyPmf_TcLg{k`(amcuv7keQshUnJ69^0#I7EJlH^c>&RJ<9fvcgX^Vv z)N7i$U84jhCw5G$@86V~>;GhIv0fa~`Uz?y-PH^iYN=4(jGA)}klv$l7Hn~nCmol7 zz)0F;JbDOWa}TBuufyD)_`ZUQw-Lb-Uh0a5T*}g2+~Z{TwK6CQ%*Q3vMFxb8dlI;b z`f_sma$+6fY>hvtH%^Rv5f#@%rsX<9plZ9*m4hPi;++g%M59)9IP|SZB@A z4;+YfJrs364t1mSZcDt2+ey(2OqLc+OY@)#n-Gm?f_^(mA`_DC`i%3rV8Q10bT2uY z{I+eV@U@VH-8s42hgO82JxK!>WsjM*RMGlqvfGD?(cJ?e@?=11vcP|>Q1J>#1%Hc^ zMwY3JD$I8pCtDYJ8NTwKQReqlA%Xu@=zr;oPeUtbbR(@4x&nWg;C(|lxl5~g`t-bE##*ICfED1Yy6cnh@zWEe|C7pa<2q;dru-Uo>A z3&zB}iaLu))VObjZ>4H;u8ATbakIYy7^OFHgNPp(>S6~UtXXQI-U8`{C2x*@^h|^_iZbVMf)Rb%MXx%UEYH>+KzKaxSwGPH{*kyARZ=uQHBR>-Qq!pVI`UJfHSr8<6c4Y{L&Q${ zf**2lDB4q*v?lmm;m8B@sA2Mas1)7ICkm~5e0B-{PTY9Ve`xnjZH!)-{$6 zYgJFLyZs?eMw2EVT?>Jz81y8_Xn^e7uO!n zY`fFW%x&01ldhQD^Uo~?r=uBvZ^y%Q{`0+l=dF!%nG(Umtj`lLd{*JWiI$wO0@8 z4n@)x5<7galU8h0tzx|^GowPZAZPvra2NpTCOA$xpPf!$E{q_8^#^{u?uz9m@LJ8U zPulGjOD0tm4t@Ro#dfy#xk>OkolP6eZGk&^W~-6JaK0l_!{c~fE|%*PSRe12<7#es zkwN!egRYpLNGk5Tb*nC(C;iD4OWy*pF#jB#EsFJm0~IGL*=j|4*E13w?uIif8jO_~ zKYm~Gqj~z%?*Qy82eAH=B_pAsBa)R$#N|oyahIXfpU=#36PBk3>vGAWiO#zVuiw3E zyFBZ?+yZOfM*EQL?B{#B=l2}1YG1~I!*It94U5`+6<+hPra-1cM%7%@-L!wFjw zLJIb|Dc8;U<&0#5i?d@r0|T30k;4Lq_4j$z8-hS$#&oW0h2$hD&U<}Q&a;7hG2Dj4 zyNkVsQ#H=Q$8+IWHOC9_ZX34Ah@T(vz`FmLzPvaT-XBn&u<2wIx*4xl@Btg6rcMW= zhQ|wh_3d#yrVis9K%PB#6dI@ij=HvADH4@4e$+8Sj_icwkI|o*lRkj4+zyJ9^-*5f zT?qo=vD}6m+k)gAT3z**=azMs=bN_6Y0*33$!EUc?yNi6%C};B-3;E31tWJrQwVUJN;dRCH1*;Vsz-<@gdIT0}ENZq}{IqcQZES4# z*Gu}bD8)R4D=RC3wQ~a#ieghQQ{A6%S_~V~-Rf2;5KhbPm==F*`C<>xydyhA(j1{v(pK+b2aokNFfd661c&$w6YqfJyjq zx*b`y1k;nCz|{iFso@Y<&FWYW|143J-Lg1li{J=++l8)~%#0+HvdI()f182VQam)C z)9#1XK>L-Il^e%OO`X?EhhsQ(8noOU4HNCjV`F0@A|toExO=UJ)C_sdvU74Kvdbbw z|E7wWcwF4vvB32DGZYQajraOJzvb3koUH2U>2aD2Jj4Pg^a9N}%*@qk z^xNJ|zD%g95>(08n&kA9M2wf2f0qiTn_FBgHtM^di` z$}r*QTUAZTWKs8#8fWgbv@{y$xzH;`?oXG$Lq=wOd49-k{ijJ}$YCWjW2ZFVJ#e>2 zDEQ+?959KzgTsNA=ClNfNRw*a4q2JybkA(C*c4|@I@5YoM8vOBQ`IW_)fVtM0)Fx5 z-f}o9BsE`9BZ=6V z=4pb%nDK7&^zhHda_h8Yui}O=k;CuPxM5}}_r(s;g()VEe+Y+`Lb*C0UgVf#JrD&|LZMsgM zzAMzl(>@&=rsVv9g^N#Q^tzgqSz!)nI$~|45J?IDhzJ&O$XN9N=gMAQoW}~-J^<>^ zkdf>m=tDq)@wec{c+`N;nP{Ak*6t~+=#GT00+BxMnSD{^L%=VwF zAfNeG!}EMUll@s@jL83ce&w&xJTbmK+Y&enHs@PSja%|~6~=}4CtqAcHB)GJnda9H ztc$p1N(gbVjiuzquINX#pt~-3Wm87<6CZyo0^)ocXdsyI&4SP~Z zwJnK^i;Hu38!X7@dZi^RP8M}k20atblU=c&_j5mhP=ayK!oYk1AoB@!Uqc}2#gfLx z-q-D=alq|Y-e72sqwdv;`gtuG4T$bT5UZP`@+Ek2k;W z#3YFS59CEKU3ZRJ@xjSm$KeBjD>|<;C!m5o&u0BxhH}&zLBPHn)zu{z#i8A^GvA4E zhrp@fFelpGW>v|-x?THD^mMe>rVHN6soV6AA06B8It;M_5aPC6;tj*(bA>jzt-+t& zfy~oMI{-i~f!$$zITpr&`cYe;!IZN-LYt}Tr88+L@xa7R4@Of&F|w-KdXaKiYcmtt#B}!Yy4szN{Zkp<#v1 zH)%%-Le~f2QQc;#r$;h-1Z)?!zSEx@W$XvCf#9C;>QC9Yh3V^YF#S9TaA-p9Bk{&6 zY+QU!Fc8L-F-2=M#2O~GV}jwIFRT^lkA&|)=v+*6q)R?uGo%hut9D>h6xqKMEW865 z*0Al?n!0XmNc=h!V-g;DHMheWCF6KLU?sRb+S?>C9d3a6qxkAV-^Fnm-#%NC>gFx~ zi<7P~x>&ibC@22`lg<3Y5cJ__YX(dBWa<0kcLiTl_!`R0$DKfwcLG>U0N?|lfO;SZ zCji8;X>wV)m^6Dd8*FKmT~Xmw9$jue&Rb?N*#Wi^3k6VQo0?(bV8MAK{RJl$2FZ*T z>C2Z{|9VEiLsaeEL_@=7e41d}V_cR8tUpd@qvCtYa9eS&XeTa-Fc#`~F}XLo{%qdQ zUF_&5Nmyv;&lG>U4&Xr@Tx)+P{q=$?F)n)`ZDv(Lg}^@do~CTm&;;58a5>|S3{5_p zV@_~c$rM`OJ*>Y>gf>`=2g5h4lWRlc;|UobNabc`8kaigESg%Ffh(>=Fyl|34)ABY z`(15>dtgX~hq341d0vWDFB|uL^?27YT!&wOgs0(1+ZEH7uAd0TKl?*bk8UDWWE2vL zZw{c~wn9G*61#BnIPTQ8`H4qS;BoE(KyrJl=s{s(kO&a$vFGLHWue`&5=abs0AOHY zXHPFE2nh=db4<(z`mndu=Yv5c=3`GT4m~f+Q(BuZ#-huzv$F+G*NQ8b)8i>cTX(W9sz?l@^r5v}P!H9tR(@$A!Q3w*f_Y_8)6+`Yn$03G)NG|>t^ z1dJ|u7|`Sf5ZWAw5p=b#hZci((^@`GdI?5B8$O^NpNf4Y2ISV!EVO|U&3ljJ2ev3F zBB8jtEL|@4_Nt+66i{m=^O=TEGyr0=jRPk}O8SMDnA@PocQM)jh3!-6{kW4uGVvG+ zL_*lNu#)JtpMBc{Sla)<>!9KfuPuCn(&1X**WE&#NkL}n!;&*H3KRe=%v^s$raN#r z7cu~&va;iZx0IsB=1zY@8^k}{gL;3PvzYYa$;^C(@ye+~hNwR8Pf$N>f9zs!R&UQw zPz!7>FNBh6EI7(2lgr95i1)+X7ka}>3|F;WRG>a{B;;F7O8cWVw4G zm_>;Y2)od@|A8mf+w3p!BJgczXGcl%%R%_xjQC!k5JCsJO%TYNi>-h~N1$+RihpYm zv%pgekhbQ$FTLSGNB9-_%N^vJ1->u3Q;}=4{TP`-|-I+Pcm|IRA ziiljn8CWs#;%K7OhQRLN>;gg^+ufVn>pHxp1JIxmDlC}IQex#oFMZHOntGSEAEv>4 zKcSwYZ=+i%5&AacCj)Q)p0jH6&r1SwaY}p|{4V?#xc%agVhM<%FEl;9gda0V*!xgG z?EHX=V{aLvJ17w{5E$VSHVvK}h6F+W18>m`s=iZk=R;cvjG)5g>WYIvaK%@sIPYhx z*(AzY-1fn2F9O{Lny<|Mq@EbU^y^ftcmN7k?@PJ zed+aB%nuH!Zq8v*lQ{i{it+zpC)|p&h|A#*U0@#8Bs{x&WDl7k`+B3oYIug_N*mHx z0nPNF<>(GHZuD#$S1kZDx(vY=iT{AM{~uMpFt?s2f{}+WC%-Qzw{HQb@0JN<#OWcu$BM)juqc6fq~H^6LDLdy|0BV}aU(_Dl1(m}88kqG11C z0k#_5i;86Q%LV0^G`v>L8yYt__1Z#sbN+RZ2ok^(`i98gpQvDNIl{7na?&`l_!baR zUaNtMFO~n_^ygmZU;RlQ_4)2|9d-?^@B!nvu;4Ax-lBmAYWQ-W;TCc-p?_Dvg(34W z8pP}eG${J=rTy!_2bjPC;J7oq3jE#uXk$z;>y;7YT>E*&p#7ijb+o|lha9w+D?ZjS zb>^X<6+Nv_)XLGtNrz~gtNJcC!vXV{oG6d`AS z(?k;H`xCY4-XzHKVnQ+NBGny-hyLYY$1DESmfP40)Vmu{9g5b6 z6?NQACtm%T5k&pdm3Up&;DxlkGiFZ&|M{D8y%|o4f&(um4mtO}fVWVHLq4H|(LShq z=u2HB52(F@BtvyGFZbZC)c|YmkAqmmMNTk0k-MH z3*Qj_@E=khS)JivX%Xo}{D4K1y7HRB*O3A6s3-3)Rnb$Fvy;_AqMA5CEerV*9f^u; z^P3#`X=UtOIfkO7`1XbkUoGS)2NJDu1KN5E9Wg9ist7k)nghh{H;@!8C!7jc%hA*C z``UQvSoA^i6KBwdG*lXvgdb6Cjoa}K?i=gX_r>-Ep0V|D(JB`DKeNnpCRMPXzVLeO zeuGNv2Q_JUN^8u;r#S=t^a@?f=B)=}OSu5)d5J?tQ4FYhU8I;%$%QzY3!O@dI8GXq zX{Dp-R?~j}vopJF8<1KxHIHt&n2l-SJ#{en@FrQjWshSn#6uFftlbvlA-TuiC2u{5 z*&L;IFNWIxcx*hgAh_13(YY~-#EVoHN&Wt}iqs8$2Qq|Sci9c{oQV$E?6N{D^Xmaq z>^hn<`i-KsH*5q_Jz^Q>*==^JnsDPl96-myCI#m0IwH~?<# z{#s1A8zINz=>`VEA)Ju-$e&HmCIwc$CM9rIQIHbYGk2n{*zvIl5&nV4u2yS_rQ;4; z4LiAA>UE!-JNb5ZR?G(^A9i*A8S!zkK3kfSqaF{TtGVCOLU)Lo+R0`c|KfOM91FQL7-{_dws-4m2AAJF!@FK-$U$P^>MS^^|L3_HW z6ay+N8h%;ci0ypU=>_flyxFu!b!`40j;adsezd?67<@y=+2NvUO#F{&D)KP#5*i z?4#a>{j=4WB;mGrvn%C==iu=jf89ESqfMj%e4MV!23aO6ZQUK{wp$_s9&b1lC@15=APFUyD$f}1f2EmPPy4pCODhf{ zgxLco>M~r;uj+KI!5iJ%-$`qQT*&9rE0n;^WuC+TyU5mJ6Ip?)%?{w(+KZ=V$<4vO z-KZ8ssnr$Q7$BhQ1V679@Wd=p@5<~39^(cDC2wKqJB~S)7ZD zNEpm9P)PM(eXQpDm_+~Bl$wd!0PFAL40Si!YK6k^Tmei0Y9l13rsk}4oMSxjsi z5d8$D9L)#;q7m3^OKGB1E7fmR5D~tpwW7t+wB-_TGa?D1(dq)G-_|iVuu;u*}IGJ*ttT^r&(^{Ep0ZT*#kMAv`T zOpo9t{K-G}WrN-DDI8NcIZmHy$AObmRlurPa!a3_y{obo>I|Q0{T(e(fK^g9HxfMib}3?gIl5!*ji zfyMXf;TcWU;v%Qct3yZg{M>*X*31v!#%c=lkj<+voe`Q;p6Ufr)0;mmM)E66iNBvd zzzKfc&Rhrf@ad+ws~aYnBnSgpA`gt4f%B^?1-{*81Ds&r%znBS86R({Hx+?I`=O- zF}zuhjVF{0t1lmg2bZ&%IwkJ6;9s0IWci&JapSrN?6es@+YEw!)qYLK;KH1Q!(F3_ z-RNqsFKsOZ@iYIAqfUcw})+yJG<& z#~I2(j!LB~B1I&ID<|epo&Zap2JjA4eA7hA84XCP&761v(j-s1y0iI#!9i(=juz7T zW!CDe&Jh6DKg09zh8|2u`$0h>0g~6{_Q?$#Isyl3D`^w4s(C|hmU^LZe8*{H_w!#d zsw$RnBe=3301`SPyNPGOYnGCLiAN0^-4B_>gJQX- zj~}n&0&xEU=BtAWNAZ79V!H&@q1ia0pdi14TGy?L$K*_mAqcT~H-6;tg-I3A|x zv7D4F|5}SzK#gin&mbf`@|nd@PyYVuZV~r#SYoVGcRQmPbFq$Q^jsCYKrDb;P@~a= z`wT9QOnjX>Pk=!fFUTFC31+&uXF$c2dCiD{j>}tlklC!>7Z(AVZuz zvzc5)?NQE-%?Z;6w^EW!X$l>nL#}=HN)=rjd40Yy{ADEy?_MNN>4cagnPP2a=(n23 z?EEg26tqG}Exbx|H@pIuRbnlz(!jAQX>;VjU~|*y+#>j{i5wVsQB=%@iP?K>9j3cg zAXM+sIo<1Xooyo3`HACdWmJC!8{rif?6*n3U|{2+mwey@Dz+f_hQk6Ka9ZXw04!9l ze`Y${9V~Be??NYJ`c&$TLGURS%TFpn0Ik@~OglptHoFdzGO;pPja7JPICXKR6RpqG zFoFI5bTY%j#I&{7|4OZLH-To|>n{Wb2}CP)u~)Q=@B?!6`wzTU^qki~0|yymqNchG z_^;A5U{^=;q_R$1&4UAyN2n%j4TpwjG!yv+Z^u0K_j&U!c5$>cl^Z~o(s>yV4`UyV z)iZc%@B%*;77~iBMn$Ek_tXHQXK)SpO ze}G2H;2z~~pD&N{_u34-?R9Qcf@=gFt;}UOzl^MlUlg)nU$5+h@~_ zpv>Y^!%(bGcIp2jJJ%wRK9kg!`1vp9&+OZ$0hN1kz>WsrkhHIw*-52| zOj+`?%psy3k4)M+y6!Qv`mA+5RWQIGjiu7t+!0{q4(V&C6faX9Dgeo{iUqsjd=w^h zhXN!q7)873Vj^eo;;WPgu}Jj;m&m=xKRlCVfp9$(3<4G&wL^X}i1`C=aL2J5#@wkR z2pC>Ycfp9rXF?Z=jsFGpVPn~t3~TGG2^w`6wAtI-dee~|`9c?I_Apm(KI-{MVPVdf z?r~NC8o$WvzcqV#z%}|tMMg%l+aoz2s4+nW-kMG1Onpe@$0*7?}@O}SH=VZlwW-J*{-`iRq?e}mTW}o zf$5a+j~`yf{Ysjj1)-RVieTYd7t)V2m1l5ZsIao;OBn5-+4yVu_Mo^XQ%Rojj_~~U zeI~L&fO*h?`)OvZ`ROG^2IVs#`~ECrI4zd4EMqv{aPs>`o;zB9fqh!sUjBa5$fPhU z40V&9rnfbS#^&itcxnl^smh=IidiLff5AJLX$MvSs9sWzkxFi;B~e&exesvNrY{58 zU<6}h$W8soGs77{i;Kn8iL>6}*e4Z27!PnLzoaV2e-Yq z{bf%^*fR?oy2v#@0Tr$`;G#KpRc+UOIFzXw7U@g63-}_owy_JMcy^AC1 zT|?Ux-q{|)-`1)=s(VLUO}X>3dJzwRevxTm#A6B?5wrT$&{X2@dBiRUzQJzSJodBS zs1~dDTm@T@&JfEe2|C%jvv|6*+;XTXwH8vN@}7OM|HmgB-v)$@)4dV&pt|GMs8~%~ z&Ad9lVaJEOOVqonxiw88V8Lhg)AcAse(r45A$t?1c>7#=ramg zF>&bpA5~AayN#F|J2?3HYQ5H`mBW#VuB&7{ZcG4eX}yFXvzY&`Ot9O>;Ky0uN`VFPkRCE{ zBdRLVTb~jB*4?hHA@QY$66$dPHvP<{7eOL9lQ%CAw@TqVvC9nVY3rKiqgu_INt!(^ zMICdqrVKpx_5+N`CrZld;Fior$h|NCOW*K!nn$|~dwZ|5Kw!CkO|d2E=@T*!kYrHS`$t);4yTk82Kn3!znGZA z8zvrCEf~BGiI#k3L9S^#<*Z%MUnY0Mrg%9nezYL>US+PV!-JpN9;rcw%S!Kx@zdpH z?U`1*Fs)Te86mN^_?JWK66~b4Rm@oygKbrIS^>eCEV&xXRYD*pdRX8`M{5pa<@TXZ z5c%8%t(fm?9vJ$$s4#UIGMmZAyVEVDg~@h;Xh*~IlSRv#6440@&};>|QbiH6 zD9f>)^2@T2RxS0`kUwr7&KG)srn1c5cLCw->pkvUlqKnu3_@9?u(pGa_Z^RJ!=%-? z&Wz6LO73sJ9}jze?MGffgvuMRcVL6KUb31z9DUt=kToVk7at$l2mQ#16O!Zj>E0)y zT-h22S-O56zJM-rk3-mp%{%s5#RkuU={OzCvRGde=wXVFg1Kv5L@hVh9G>>Z#@?zp z?z*mbtzuuya%(Lt5a6?zb_u{Wq3QOP;)=&-JAtzV8dqsMq*TO(t1Y_zLDYF|%iV>> z;*l@3t+)NY7&GBP{dbvwfgwo{o*!oZNN1$-VvJhxgQk{nZC9pV*h=0sE!!{}ag^Fm zk_e0H=pnj^Eu*7FS}T9ImSciRFLOF7I#EaZ+ujpXavImidLyPUbFUueTE^;ZgG?OF zTnCx@V&CwP^*E^|&z=$`$O*&!_t0A)RRioOgDXWy=&c{XiERBbu{c@0kAXTfjRZFP z#)u{Li0D7r#+O{&IFmcY%TdX-z2FI0u7Z0uO@i>|A_1r7~izF4_$xDv$(?>(#zo{RDu-=m@;mS1Y);#%=9SaS^yuYIkiJg#S@^jj`Q z320l{&Ld#0mhZG**Di*n-s1}ZgaXI|0OL&tPuKoq@98r1u)8Y`PqPX&*Pfa8oc7H> zY|FA43dS7~EY=$nm6_}qx_DjVtvs!MWc8+bQD#n9^J>StBZun%qEiRa{$c~fdBEL| z!4fAFT!3JR#doIdooj#f<{GzQdQ})XA*?F^t{`JiYeMz6hii-jYo$}RNeJjnyty&?-EyvN`xXKIbF*dl?N97cDbgd1!M%G|CwplxZKJH)D~#RA4sUQ zC58E8`;Wz3btR;hL;zQIp+<^*)Zos+)772gU@(-^v})a&Rz_^^bVd8j48wf)VZN$& zbHP(aPVBy%V!oVwzE;m4nPLd^_nqiJZWs`<@OZo{-=H=UOcJ41{Gp3-X;Nq~@`n#M zddbOyFrlooD&E_&iIN#xThRkk0TuM+CZTULMx1V+OKC5b@-TtN2LcC&8u}H5ge3`l zL9vPy;dXnZX4T~D!{a*Yf(0*fOl_bv1&T9$yyXO-wbfwlZsw0Xd3%|x!w%L0^LT83 zVhC+dvEIW3f!s%9=sA)%FL>s%o9nv~0wi zHyKq4J!~z{QE>CSz5tL7TnGFDv8fkn*rwvODQO)xFr`vF0Ih!r3>Eb>jX@o0&m^mJ zd1A_ia465-=?gLCRe^kq0Ih~bLmRT74H;gtUYq_be`@a z+U{Fq=|pVl+T}GWrl*(WxwGN*iJi_;#4~;*ftIBXLdbYazf5IPY|ve7wUokX`#|_o z*zLG8Gf#o`-=0!?evq}Dp%Y|4DP|{4toAvwaB%Emp42k*78(O_W)sMAhb;Wz_KyKR#L};oLP=6#eZ@FRLz= z|HA#%_F;V^fhd;a)O9JEP|A;>A8)IHa4T_>acJ6+-fcJj^Kc88qUrC$H~!?}=&VDe zfu;;oeR8d3_(u!2{6CnQw6_fI(sXX8!Z@aspqR}0u{v4(XKkWO)b(q(*^7)1V-Y(V(Vp zrD=AnVdp(z$+f$SbH7Ez;sJkqXU^c3_(*+tZw&VN3Dd_f+q0w+ia`SS4(8>VQa^iQ zW`t=>Z2#4!PXMQN3zUlikQ{Am&HYSL8K}W=cYi0~$SM5yI81DkyO1cw9uef>3BMlJj6S^iHw>CvjSz2<{I!_ec{X9G?qqB-=?MA16JvWj3&(avA_Am+2 zQS+?q(MYI7Td(nGz642ag4Wj(SR*JPeF<*OU4p;TY4>oku+^>KzDE#N1cxaVrV3fIO3au?c`>64m`Rf;(DeIb#{K1sDpThh*b(MrfByfVt4rWB_7*!RF#(=Y5ZeO`C@Zo*p0>&bEJlKV+GE z2f8}==$!*uKw9#%ukoM~KeHI~UIO4cSTvn?9s+6_V}jGA>%)p1Obpl91r0_#k~2i- zFnkW8KCZi=l#NiJ?jl+hlh(@9$3A`GC!w4wa+PI+F#3U;S99mLF7# zY(YqIzHGuK8tLzsd~bwV%*^lam;q~q4rpx7&gV-pq<$sfNofYEzrHmI5fuE3C=-Vw zH>o6z^=~=~@2fOcRU2|-)MQ1;rUx1g+Lk_<8!4*&k}tM*V-}y>+L(3tp1t0`cAg7A z|Kc=#ba8f)nTAnszA-}M+CN91=L3&6_ zv{rJZ>ntDhtb|g=0mw*SYiV|_7f=03IW`@6^?r1vmhUcg6p?^UG1oMiO_xSV5`mUR z_k2HzNw}BfO548{Yx4b+eCOgiZpCV>{@I^xCXmv$mAtMU+e_GoNogGj!K92Od4@%g zxW1pnZU$X)cdDbgYdqr9t z2_NM7k@%l#UREb&?}`5b$-l|Uedkevy2GX~^7A15dnD?9_ROxm@bHD}t-r0$m}hFQ zI8<=Om=Dl&B_1w4>0Y-yVP`uN1$KMr-zNk>t?7SxeF&z_aBCIX0Nx$JTAg#b32j&f zFjoS?mysn3j0%kO5nHNtR~=o_!YU5o_PT0TEkv=g{J=ElfYw0-3e#Jde2sUr=)~r4 zmum7pK@I2Mi$k!b7CG<6fEQYTH+9_i<>VQ}yE-rs=O$;i7=pKl6@-(HbNC7RqKR@g zPsk6-j>nEi$)(qZ&8BoUzPmn2P>&AT)>F9{+yU&`xG{K(lPjo3f4eEXgf7r-O`GY!qR-#>k!7g%xxE}x((;9U{*_#TOFc4lN&I?9d8;0_pN zUaDdsK5~1)fY<%ZiyY&rWPW4MLCLOG`v3WxRsPk08!$60@VIl(gFPJH^ePDLtEt_d zR@bRxr(PlYP3Of~kbwG z{vX?EmzNFz2*&OC-^TvWB}m))~0AUNtzQ*BAPr?BA1;`+iJT!hC1n?^X#F zFKjqNW~Sy2MZ|my9{Y0E$Ib>wK!QI(r=;r+r1LhZFx}V>31Me;e2esS;xUQB7gJDi z1)Ey2-f?N6y2T4&O9n9S>8=JF1;WnSI2^C-S`-$87Y&*T{cEm_3RUktF}En%UGjQh z>D(+XJRX(y*Ekj{;bWA;;b`Xd)^^9dr2a5vAJ zR?0i>s%U=D=$BEQIU|bx-hNm<)4SW_)_d+eb-Yn2)~orx2DFr!FGJAXl(XvamPhDd z6ji%kG%>kAIFHh~W0B4%^(s5rsezpdG^P#t);7x%M)}YZoP}+ef=Kxh3PS z8@;={{Yjf(<%7ETG$yjR-jRW#`7iTuDR0WjI!L$zmrz>yLL9>93su2c#MZWaHZETp zdNYCK%vL){HK26SHLom`{qRhg@uDO9d^m3tY`Fx?R}wYtrC4^9RU*Vz$lGZa6LqIvl=XK(`a6NE(f6?|e#aKwPC1+7F093dS^e0H>U!{64=TnBlD@%e0TnjP zLXg`(DQ78fdmf(-Sp>c9ES;-MklpnhH1FI!-K{Y%!K}P*t~=S3C_@y zv4f{YvdfsRdNT1Nc^jPX^?ZF(o8H{&zYY|{A;Z|U-o51oyzA8mZoPxNWBVc`FgdIZ zte$`17Gv40%C_K_dUOf>x!JGBkl^%mrAXl?N})2)Glg>?S@n ztt|w|bak8!zF4*Os`gg(qVOV(7r5wccPGd4#KY$uI~dff&d1#}UpR`J6WtB(91dT_ z-720di}q&8yvP&m_#L$AEOy&7@ga8EgK3J=79PigG++cmUTlFwz4H5xgRi3;+~ef!Ae{O|2&8)I+Qwoc z^FC1i-AN#6$2yGCMU!*v2P#|N5=P=)`^9SDoi^9%o#4$TJm13Nm^!JUl!KrAH6c@bLZ- z!^6XWNlFa9L1jFd0RM@XoC51V6vszZdX1I9u`$^-_HTH@W2aNXG>akDMC!!pBQYhT`F=L@PbGui=rr zI_93-+gE+QIWT0%)y7v%&Z+jWzyx17HaZRSKzXY8mbGafY*#^DxUm81lKe`-XW|W!v8NF+9liJ`K&Fxm)bO_GWxjyHDGpU(L3r#eVgC zvco&rO{GY7rO4<`K{bN_@P=KfJ5Uh&@#39TSAab3NA_>hgp_|T+q*1w@srxH(EqTD zC|^V59u_LXNlm;9_i4XX)SO7Cf(<{qC`5m38}lj+Pn7-QfDMjx-3u1AWwQu z$;voxd%7@#qF_Y~$}zBzvht9!Y6L+H$yt+oZO5!w5pP)$*^s&-NZlukWjWGGNmj(x z%ycY7?q&FPG&`38)bUZ|D@X%0)J-bjI@&vtx00i8cl8e9V;^1EpUw(=DuQ6b>Hrg>1s#HI!Z0K5IcG%ioS<+XffnWqhft}i8W_<_9W5E69KWm%zDCw*cgG-X<<>- zy?1#K0@9v*405C${=XdjkX2?$vn^dS5DG8pCs$q9?22kB=;=hH9H=`l1nul`v+zEL<# zh5>Gigw>U-NnvB4(=2dgANm8j3{rQcWjBssA{3VQcx_u6i=qi*Q|e~@1w=l* zw<5N|Xi63Th#)C|WewHw6YYqV!-`;^pcm1c*w>Icu1ecuiDzV^c%!v!0{DJJy@d4v zUju{!xZMgJRI#^j;7zFX3txrao1(QdMbZ|!s7CAQde+S2`QQ9=JegYEyF-CB`6T(9 zrR?il5q_eI+sn)NK9>iX;U`x&*d3Ko7#lg#w`ex>dgT1!eXJrY;(5n#C8y_#nz22q zvtNwPLkRPtrj#Ozwe!Iz9z+2;m?h|R{k>Zo$I$7D8Kbo{_A8fH3Mk8XF)wK0 zRkSbusp3ZbCKqEk&_Mna#FT|S2!BI$cf{Qlxfuq9`y!pZkxoj;%?K!58R;awQOo{1 zo^bOia+4p1QTWtmXq`<+jPDyYf387p*B?PD64VG~Fh#nUBK7nJ_r}mD=rli=pwxyX z_OzqqP!YKqGP8Sd)zOF41f8mK2k|@YfxvD;wJ)Ahb->DulPUowsw~V%C6Aw=WChhl zb5&l)t<;bF*^CrpWV(C;elWXImN2Qu4e=sVp#r>@H#W&PC~cCe$7_=IA9jq_UV+=n ze4cf_DlI@9aq!klxe$Jec)%aTq$R@7gZM3k*a)8a9g&N6P};E;gLH)dEKQVA{X*N4 z1F7R?MNpOgo^uHBC-f&}%~4S)OBkywc@qG4XXN*64-FWv`~f5o-|*ucDN}NHBF1=h?F+3AWVDQ zPqKk0Ac5GZF=H?ynrnp8-X1uoKX^*|*@*Nr|Ar1WuCo7zQupVE3t%{s3DNr?!zedM zEcL_`)paTy)qqH6c=Ytz(V0b*p`qMV-0C4a!5dk8-@V`c0|A%V=iCoSLPlam_U*83 zEuWdwLSgp!GL$EmJ>EPB57S&3O0`b>r~NXk#>WGs3>{p*B1y!HV}Ina>AS91SL>~A zY#!Fgvaj890gA>D67p2`-WP3561#ohu$0FEQ^+M?f-fMMh6hG59@ zb`;H0G=K>RV>XwP+B`(A>~h&njE8BqjgmGi!ieC9Dbi?sq$H9(3;vS?C>me|kG+W* zQ=U5etOE@RZK0d5jny~2D(3;PNbGP_y07>#jyd#dF@EW8VYlq$N5Zt&IXt|{4%i); z3t$)z7t%?uPu|GQ3XT3dxZA1e{UlN3pr*bP=};IIPMS=3a;N-68(mIPD{;X*hJ*1H zIj+eyUuJD5>cyLh80O20rz>ynD<+Eywv}Z}bM@BULgb z&p*un@G0B7acvAlU*o)(mt+Bn;(QOufhH+y)Pn$5Bjn~fE5b71SdNqhUkh(O6ZPot z{35~psNu;ZjKxW_vuG=l+P}nXI1LAEk?BRxw6&YEHGh21%TsaXS~A<(+FF>Xl^q%y z%Hn%Sg1#VXYPv6qt*{^$0#C21O4j_L1v6{@s1f&-5X=4*H-m0D zS65+auN{HWXGvtNzrQL{c@w)55Hnu<7Bm?&{N~)imGbZBUNX_KSJYn>KA5fy{zS6K zrX~nk5;!(q*B0BZQLcSqO-*VJkN>K)#^9R^QoCo`ktiG;8ylIFM1If8ip%$S zkI1++nyWoknjzrJmz#N&YZ75HM=w=mPhVMdBsNBKsY4}RaZfkNM7H{8S@(i;4OcJM#e3lpD%;=WLnJ$g=0 zPap7r>cbT_1;ok2OE>^iNfRo3=UNhq5L)R>Z;N)ll8&dJ!xmJ@>jzc#UsQ0Po|&7 z3k1e+Ydi1uX$v_`Jy7^S-&ZuYS~}6W)b}Gn!u5`Nri$HBj{5;<)nFcHK#T_eU@T>} z=`vJOT3rVWnr!l`F*=qhjeitbI+Qq48tUGX>z(RwR^tp7@DmJ^oiKDc`sI;eA{(3G z{>h6ynd@$qt*wtUo+i{Ki@R|0@y)dvoe73ZZIMz*ZQvQ5E@|&C#><``b^#HhEVS&J z+Z%Dn1Ol4mP?KTK}4eylj8m+w*8KGeOdwFCige6fAO%PGJy(eOX{; znqQ(KvuApr{7YuP0}~p4!*=jfJh;$hu6;6uBNflMCGwWfR#ckVc$FuQe%Z%~(=~Ug z-Cp%kujO1xilhWl2j=sGCfN&FI~u6PEy(`h+Lwo+WiydaJSN}LLhrtW;DjCw(E{A# zX_`!m=k}b_YVkmKse@65auTMj>q@Qma>18O@~RwgQ=B{dvUXX zF7_8CIDH4T6~S_;4Id6q7@C|d<=PF;Mfg@a)_W_gx*0rweg!w`7LGKt;UX)2(D|s( zc878`v0HOX%VbVrCxJ20nwhz|$dr_hco_UeiS3X~pUd%T={A~>3a`L<_Ayw1r{T=f zZo_k6WvRg3OuEyR@N6e)Qc|V81zqNzg6)vg(V@emHS}NwBVIBLKisIN+6FI|-sg(= z&z?X3HPskOC+2uVKIk$|N%4^M!tZ-jBtJmvMmkrMT{>B1Wz)d^-~eGV8jakWhl4IhlIKQ(Vs{OWL(wdgzFhl(AQeVMru0gO!(#jt<Ht=S-wIrzLq&rtn6v$>}sk%0YF<{b>>|Cowy**#5d31~3A(5AZs8}e` zqvbAicVGVYD;DC+%d0gNvU(^GO`v3D7aK(K09R z+|_oWt{HBlLoysFJbd`DY7@g?W@)+Jb9lO&?>|d!bU+Xj6C-tYFs)o~t=qHKpR32k z!;@|^ke6dn8S8(xo%S?AkSJhk%Cy98r2p;}>wLrN7X`-n!7P4aI7I~}#K9&Xba|Oh z5FvZE8J_HacGv&~dSm!QhWs1L-)O*a===9%GMgc)1)kd$C=?1RV*8?}A??_DYo1FMtnXU~+*Czmq4<_Danx zEJ}_}a0olTo9F)1w2`c4D<=Op(A1;7)sbwsrVk8F&lQ;(zd!$qgK&VLa-`jkYGI;W3_Rj>zJZ_ja8AAgZRJ(J(KwU#<~{>T=tk&?YreK{}bf zf7~sz#dim1VS)IFKX{0H*L&L@Y@SBkC;52k|M!uV3$3A(^^^Ll7(REh-IbZ0ZCyK3 zv4U#Df%!k^>)QIiP7b&AM)x+GSS&F}I_35Cs%;g&(`BRe{h#gtL+C)uajT&ZqT|iE zrQ;Q-<5C~oDsSBJVT z_X`&bo3~!G=t`wP*PiY2OFC6C}KC<+dGFdZLlWB`gd2@JivAPhm8BZd$hF&4^_lxuhpENu8Z~+dhJ>R zYdx_8=4*DiHOpgElZ?Z|pYSHh~4-TIy-EWKZ~GNF<$unSy@^){S+5&0UUWd z;qE2AGHmWgIGFUYQWRy`;?a@U*CK#TR8Rg+-#&hoMt(12Hfj#ut^4k zLk^tv1ZKLZMGJM95bX4w?JU*%&Sj56kM`aQbs=PYjXUU} z;#X_-iW}hWnDF2cdz+u-t0SdCekUF`{=AuHV>u)hvS`P~!^2FPKeFOU0i9QJ8L>$K3 zxiXUp&|vvm59iY+iq5LGI|;E1U&Aec1*o)}E~uxpp?4z;5f{_#*?UWCIB061DtmfY z_IRi((d&cMcDvB1|M@ANzRzZ(4_I!8;XOb=Zn3ewVGEavEVda~+w}QX4ZEPMz2dIx zsidM>IRSx$)az9Dw#CH~xp{bOy_n!LK=!Zzsz@hRha~w?a+5_xs{_=8fMj# zvH6+G_hqJUxa^t7*>UZ8(zhpZf@aMS5&O|cN=lai=G%@{?AkRg0eKv&be{*5WF|dI zWeSJQ>fxb;#j9h-f!b)_sBj>ATA-JBgq^sAoAtH_{rlYfs%|P9~|g$JYJgfV~pQeQwP+Nb%j} z66<9=KZ+e<`oKz4e$e{ z=mAsY`DNBBp+mpNWXm{Dbhv9x4#^}f&hGjc=TIY^C<<;Ldg+mx;Qyw2cQ0!WeJ*A>?fep1~5zr_ye1=YLtU(_Snv;M{fEj-1#BX~1?-E)PL%)SQxssL(f`j0m@t*w2!R_20bWGG4aCM{(#fcfe&3sj0?zW2 zSdD%z+#aauwLW&mw|3b@Tf&iD!I1ZX;vmExV2Bn+4}v%@>1WHwKX7u%o<%|D_(~9l z5k@D@EZeani0;W^A7kghHO^xdy_$b-HsTB-AT)B&%ZxcW0!P^wM&q13{uoix)FhJqcs{vm)(!CMNfq`6mHeYt2Mfrrx^QdT^7 zLUN#9Bes1;0qRjBNId5N3XqAGLF^+{QSAdl5Gzg{eh z9WQqu(f5u%!n6-C85TKC;yDC_IRw^81z>d?Kj)EM2u={#i+R2O$`b&@sQglV@&Lb< zzH<^E=676oRB>0NyP5nK-avYd%7YDaU~2v2qIDKv%-^EO{zBVB)4|rb03qF<6PjpE zJVFvm+a|ILNwAjuKV^q77+*esR-Uvi;0(RZiWsk4V}Mt2W5i$>v7b3PE5@>*3#6CT8W=Uzk#%05Bypp0M=gV*b{u zpi?tbq$<7%|Hx$-u|8aMB=VKxe*#Va)3c}5IU2M#RzoE-YcX@#5`2;-0@ams-zpe! zE2~CgLPhy4W_DI{bhp7K`5>j~puO6~(|k8pBkp4Dmhk@iQxw3e;nfm*5q>}ebF&@{ zsUfc-`A%d=$QKT?A6M6-=1@U`V2u6z`~9)^TX+1qg|kqqJig7vHFnQz<7+M z4ljMjZ=%%8UOE`dxqjk|QR}zQHF?o>Gf&Kkbe_2{ylSOgBaQ>ihpU6mF`YK}`voli zSBznpU^sHOr6cv$6_51dJfb0e=~;o)las8IiMP|uE$!H&V)4wt#+H)lbx1I zQ_th@1FuG(2;Q^gq(5K5spUe^Sy94~Q%b55t5 ze0#;;uH;mVgOWXv`|yHcpM_o))6K8Q3)I$fFxf*Xw;R@k=sXccnR_#_q6g2$#LOSi zWgB^7`K%;pf746%6%@6F3YFx^}b&wx?PZg!X`zz-gbWREZ-~VXS>ROzwQ`Fj@G{6*t^^ATQVBm>O5ig;)janxUN> zqqTcC(ukH12DlxzdZ#FQMeeF;CATGf^>XU}F2g8Ugs`1oy$~4*!mu4v^k*76M@ApL zAItHehjYJK$;g5(O`H|zem zHe+F)QFgI`r-N_)_sAE`75T&I^6iX|ek>;(9w}He(6@AT&K%Tx3CwN?s?a^hd}4l^ z#it3ndrbcC_C0dYEZ&tm_7d-*&9wwAb+inL&{$?7TyIf|(J-q=mkhR0>iSt=oqAz7 zcmu)>1k^>RH;_WQQrZIM_$xYZF=33|9;0QG_fB1^m@wGbGM_2uSXZq|3Jp)^4 zzdd|zdA41*BqAZ-A-xLamNvr0+iLF7bu;J|i=<)P_4%uEFN0eFB&GKY{oAiDH>TNU znR`gTui_)TZBHUL=f@+de(eG?yN5jxXuwoePDTOT(TY{x>zZI$(Z^rXWG!7Sw)s6c z4RA9>M;M|&tycODt(@_Tt}njB^F4SP!usd-1%mUL9H2(nP25UhICK+KgP8q?*UW@NoA2HgFcJ& zxcpRxcJ@g1Gq_Lm+DVq7+VE0hT1OfF7*zDrh)NqAX`7vGLnh_+&yBWLZco3%jFh=! zyoKlSJv=+jK+*95b_#ychTVEAPO^yvH(_7p2T|%271F@SI>yIjE@EEK_EY*Bp+l(Z zu#^VU05#w^8$ zh!`-ugSnEF*Wpbxd0#&}O*oW}<=#lDZ+)Lg5ZHwfzeEG(j+yPf|M86jG#RcK~Fl%JbFQ@k6ZHw9v|uPLrOj8WX?5PHM< z?JZ+};YT3ejIozxgJQ2s@F)O@xIxa^9s*N&>dIuz=>Xvv967L>1w4pHS(@q-=&h|ghI-l&D~Fp}>*0U|-uN>O2h@mBGM%J}l6Mjq z?bSuFKHc@arRa1e0oNtHwhZMr^QmvT{AEDm8%`CrGo||L{}yc#BZ-e3UC~BQqnUx| zWW^-Kw1DkHE@)QuY+*1Bj&Xo^2m**nHK>SSQT6}8@>EYwOTpL{*m}t#&@Y$C6!z+S z=hI9>fE4$lZi7e}+IRn!9EiP*d-1Q50Qbj~74ZvAjecqT5cyND&^5^vIi@#wy?`V* zTIG)QQbM&Yn^2s+84gnPir*e#9s!G@F~PUP+0H7&_VJ2bkBfrB4WW-dDm+~+t)Bok zy-t2g<}Aq7KDH?lT9^EEE2{0ib0H^JyORf4R0)Bej9=yRb;si*{>LMFCW?TJG)a%z5dp~~$RmJ?Ib#2`#qrC&xb?(Z9+-`GothAUYi5AiX!Q5@ z{DxY+MBc?PbyeBv*vYeL3ghf_$&y%Oxy}w}>*pfQIOd1q;N7<(fkXZ1CtZByfU3rf z^1Ok7{e9i7#>pR???Y5`wyU9CNPU6(e=fa+paN?N&%Q{41q1Eo`lnkMqMVjrivS=O;ep!LIcFL%=G|vJz%xBL9e| ztCpxdrY(XudU-r<}I>Btm zZ93i%*qYNEPF9Y;eukm4vSTT(3+Hg=PyHdX@$@*;718c{9v{_`#pb=)`KLO;*+X^9 zWmsh81%L|&*`k2p`TTEB3~3Cu3f;-{+ z=fcQ1PyN;+;@qY9ASLL}E9>vY)x|sV;JH1`yy{AqImcy-XW@0Hc{mtq1bT*~+gSKo zU`1_a=}mi`335Rred&g?`~A8gF9GKv-< zAdEFPmDG|Lr0I`#-}s+P_QkBk{>wz!i%Wwr&B?P#9t+=uaa38&h1fTFO7(807|fI@%F(Kt-3*n{l6SazWdiTH~`+5r+Q^!0LrJ! z%^9*Bkgqzr=4P&#Cwt-8`a;W6$H*aOVqVB)Q305SsVD37EzwuZSFcKF3314Il~BVBpQCkf=%%MR861mYaH7F8MA-=#J(((j!)TZ=P8*t6ao_hw@ADvh@- znp>1yg)7Z31iAMn&?F|1;-8uA)AO*Mln|81cDKA)?Eba(N)2FsMyrH~M(;BnbyYVl zV(|nzK$1U3#oTwZm=fnGmjVV2sWl!ef@#jkme8`#F@3o8)4E45U)v$iPY*8=Txf;T zRto=8>Xp2*VAahln}pOdlMlQXcVhcE^y=}5%Y(>Xi!ceY$B(hH=Sr@(famjw|1A2Z z($a>YAOUa*;I`-XS$u%G>Ll!}B`U4w9gF^2OhrHvgX)kBzgO*+L3&iD@LM8|T!8;R z!~j(4MScDvvRQ$OZM5MYeD+*k*>^d(aYe)jO<@mqZ{->Gq_uSLiexlf#;pm(RaiQUGbtT*$Ltcltv8AJjvINxWOGPlYi+L%kxcG2Mn;!_gu2+Vt;ft2 zvC|!3pcVi1bUw1XngO9`_pl>8kKe!T@9iY)`r$*e42l*Pc2jy&x$asMCf+8x^>ac- zRa05|+7DPmTu@W`MFs zFQ>@ofc3|Mtry>YX9$3iKTr0U)Ni|8(C>7`nK_|0)(OPBW|ic{Y&0BDZaqm;RE1g_ zF|{>Mfs;1s()bf_G#~V?zJL{8o2b@Sy;VM}Op%pEdbWVjUOiIc+hUK&R0Ac8J?AN| zaxJ|`8^jhYJH?WJWL}GD83=JDg&&xl85EU?@X(Be2<+HOfCw~2pfdi~t>}%+D`(b&) zwONbj@ktMz45!KkL_?=$T%H@!0OTslm{w9CrL2!A^3To&SxRhS8cvE4xRNNf%!st8 zmc}NEDfy<$Gk{4PE>h=j@78wBmna&|$~RF?9bQk0FMh?wBJIhUCcFGjq?(%io`M3l zf4k|Y#S`JQ8h1Y6@j3OP*X;WJH0`8ilS>e3GC!jqvCDd|NBvOvl#v%P92D!&R4MB$ zD8$*^kuJayS~uGMz!){{s&ex#7x;z~Fw0S%_s-O%gS@RBUv6*|av2Z(^!0O_^Xu@x z$<-mXeYtm_o+~rG;;O4$=daH+;-DxvO9$E zzBA6!@hQ6`l|)7+0jwHHuOTwRzp5xG>Fj3!aH2fdpPwGo4JrOEd}8=xFdI~8vX34HcNW6uL0Bmng5=xyrQky1Bl_5l-9X?@P(au66-x+ z5(F<>(Y&6yOQo6^%oQ@9@tb`}{@V@9CKnoUojt(_iR660>-H6wMC@Mk835ff6es!L z@in02Ev+9k@7`4)j$=-SO#s&kTLlIV{6bkHUjl>eeFx6=FQTPR({J)O+Lvb;hcd~H zBrUH+5yurd6|ZLIeU8XZB)((4ob@<}IYwBL;NwxoZ}XeCZLkw#CQSHM!vn~U;tceV|$Ci6!oiqA%u24$t=1Fk#;xeiha zkHmf(UOQeYK;2wB$^TkDGcQzrRO)gtJKMCP9{!qlWVvkhkM`lNP#YIO1BUsqIUqx} z+a|)Ryplq1@`&i{Lyt zF5zx&u_cokCzC@>l;k`y{4%d(lW%FSb=zQT!ul)cfWSkm?-leGod}yeU@Mo>FN*nw zTQ-Atv2)v)ts&W(=Bx?tTqio4ka?YF`LPtU0Nsl%zJ3g^a*G>{6rQrM1NNoP-U zC)2VXCsTLh85wCnvEF-b->)KX``(@UJ&w1;&^5P{nwkG2C?pu!HJLl#ey?jvigMjx zg~_cK#gY2xB-ni_1ZVl9T|nHh^A|Y0GZG2|Y$6t*3@$d~>3ORyQF`9oa^p}a99ylp zyPdx*aRb1#!`mB`2887U*c8&- z^78_T+8)(l3I^k~Q4Q^G>&{;hhAW^ua4hXDgp<4T8xZ`E$^@Rfm<9ef*3_Ou2{Y!F zYx~bqnYL4U`xKWL7=TaMD~idOKMKNR?7LEYz@-6bwe2m&vw2TU`XBpk?g-)mh6A&| zCyLoyZ!J3;gUS{#NQdhAliYBM`aotSlus}^kyb8Imyx=hSM<>~pCP$ZuzczX4@m`1vh^zvC7POXF0ERBATBH^4 z1)v$3aqM+rnXx(ZEd049rzP}f-b)47w6h7djHpy)DQJyAIahw1q<1*rM z2cD!R2Bed-7HybdNGeEwf6fvB#E@x5L6G zP%!D^cPY8J4W$>5-w16YG*Yg?CH^Fem>-t=_$&#W6*@8r#o9h{6(45Vp8FNcOUx+2 ziF0b9)6{5;0WG0HWPT;V4=QWi36E~S3ZE_GBiFY1j9{AIgHSM?y*_GH_Ec3F@nYA7 zkH%=Hmj~B2#vpZ%v07O2EM8pQwRK9>%2OHt{>dto7dKVahC+7RpPED&rl8A#_=IW( zA(Z&UjKM)a0#%!!BzS4WYxY+4kUGs4PYH{BquR4i*Kwyfif5$Z$AWqO+BL`P4{h`9 zz;LZ|F_;Hbl);$`H(*$?yZU6KX+EclpBj}E{*MZU=qWJUbm^96QlHHfHcuBDVRzYG zFK{x$rX!7Nb{5R`i6M#Y2|H%}Q!x0h6%fIs5)x8LrE3Rs>fJ^Mhb zo~!lhH?BB7O^SWNSIkC;EBDy&#?oOoAa&rJsbTK5&NF|hJwf9t+FHQdJ3j%|2dwbpkzWh@RSKt^l;hJ zdNWAG?l_Qk+*rr+x{=?&BjBt7#Sj5x!Ojb*^5f@~wQAZhsjD(a&jFjRaC-|PP<|)V z4UCLxl7CMyM{Ds(n+Tj%%)0c*lY@kSUAKjSJX@)3Nj&VdVk?3=7?jB?V|OWHeCEc> z@0R?5NqmD&PMimYP)`!F1XM{K%!!(;>Uv=D4~_(%+n&>!VjJO6VY2e>jb6@}r( zzY=pt&rh;NthT#cw0=5IyUA>aT|q$NrE;SAYh2iI(TCM=PwKi1$**_!>sjgwOdR`l zKrH2CPE^31&&+aNY97;@6|&zY?f$#1|1&OWdT|7!#;a>kX7sdI&ED7J$~yf>@ayE$ z^S+Fdng~f|y}ASZv3O?>ot`Z!Rp$1SKE3kQKaDsT1P+*eXm?LfnB><{cb1(cB5eaA zRoRsI2RmVsSJz#fua5YgZ97c(FKNtAKC3LeIPjHTL@kGH1Hp;mT;Y?K!!{(n{l10T zTbQ|0FNeFb80B@QjYB?x_q}OAjvD!LQtD|tsatctU<%-rtG(k3VAx+qpOU$tBG-kY+OCG<;{Kt|fJWTn zmn<}}9&YK)+L)xO->;=gJG?yVWpm7;K1}i-k?J4lV(P%9^IBx9(DDPR5BBSPmz5mX zUAS>B{d$V5edahr$L?ZcmnvT>nqOLu(KMgTDx`# zV!WQm^DsMlP-v>>uHZRP$>{cl5~N@O9;gl90emiuN(E3+*^cv*#fN@gEe$kp-W#kg zR6F6)ak4p0%%##^&n_9sTHZA(JHKUrI3QQE(HUX)+%IZEsxVnp#9=;_JIs8mpmd+z z$`+~7fBSXV`wMzq_!AYhJ7Nvu6G=WQQZ)HLj4?K|wnK)c6T5(_{06@7&5ecFE?Ar4 z%$TU}`$qRsQb8?UdjIWBYvlP@y>U25(0DD@3|=u)7deeJ<9!C2+fuIVR0g6 zxr@0)^h_qrsPhG8HY&Kty4Kqw&v>ka-u@i>JeTaDj7R%DL!IikX;PaKxD=!K^fA-R zMLgTA>}isoSjX0PsIedhJUY6-sVZ9#4qfbPb+cJ!;L6YWTvGE>bHw3Cp5^Y`YR-67 z3Ya8#Ydt<#mC{6$`*q}NxYLkM+H^u(;pFTh9^-jfm%v`7KbAwacfD7I^kYiIeJu+t zF5vdCiPGA{W&R<%*`&AJ)r!1bKpPh*$mh^qCSdhp&^@63D6K(z`}%Bj znm)Vy{H0|E=E~CUD*h=zO;=sY@So{Mw;9Ae1^Lcc8~<|xiVw%jTiQuS_X0P8 zgl~iZ*WcAZzNf-SrW)Cy>FRT|Q$lxjtJp;WhEk=K@m<%~vdgyK^;6|D>;i1hv7^@n z#BlASbkpTi{vOU$$y6Qiv6uE|+#ax<1s(ol4Ez1IRZqCeJM7QY#of+kw! zPoG)0CThI{6OV$b*Lnt_<%enHixbjmq2c>9*=ldM#uYjVO z+qg=nNd%OOx>6t`f$aoE zO9t+HlkK`%o#!W3%pkv5sJL&TF;TKu{by9?tG5e?s~jvwJrVbEymaoMKQU&n4MJ${ z=hg3kzq670vvNYA`|R(b-*gpjQSK;78L_~lAmD#5A8IgkRR5F&Q3%r8luMnv{;A+W z5F>7t9S*5FoeW8(+iwdMBO|U1=Yr9g{XH6?&H$3fU3@7G9rGV1H^v)R-I7<@FZ*qL zzBFTL>AdTZ2H?^!a~D^O^{eO>E-lki|9B*q@*+_UCX>}8c~-!zFJ@(2$&%?lAXRf7 z`1J*<<~9HL`BfMu!&TPH=Mu;Zm7T4y4OfF!f4fz(TL4}H*w-s3=4;k|qBcZ$4z}Z+ z{1!aZRbP*UP^xj)v^iZ>R0J=MBHOJbX4S`6`%oKsJIcV1U8iYFNXM)(+2L8Oo6u+K$mqmDse##6wzayGN#ZdQ-r-}9_)AYNZj#g~ZA$kqkb zDchS|^=bx@z?t}a{AU=KgE$2KJ1&wvaI&Hi$L4B{t0t5qm8D|M0Vm?C+O|{?5b*d5 z!%M8Ak=aK$1(olZG5PkCUO#e4FkPi9;Oq9`Ek~_wB34A!MG@~bC$|4u??oAuS|#jn zX(AqjyN-{rqYLuq?edO_H-_;z$xvEt4w(KeKp@725D)^7<3I>-^%3E|kL-<2Hrx6A zk?0jk7~yUF{kM=H40Jk=A?V*c;eB2;+;!l{3ssnW{T=LCya4&je;&J+njkkpp11-0 zfeQOKy6G4F9JhgfHfXUL0gyV<8zh4tTVG#%Z~cVw`68HWElCF6H&%oungZPwn8xA2 zqz8&}D<`>dU9f-S#_?Rt!7m!E(}DZEIHwL&^fa^n?~_!2og)y|v%C;7ko8Ty(8|9@ z)Guzqwfg_xMQ@?-Y@25!*X3SN@u<2oRX!&J-pdsU&Z_=kn*9CG^)|jQH@#RSz{fE8 zMO~`*u-I=Eq{U(Q!QCpPCT`#ySoZR><856Q-Kz0m%KY8Wjmy3Z8@jj#OWzs4{5|yj zf6U;qqWiZBJf^#b%krTE$G<0wWr{qishGgW-~nBxNS6!W5I6n5f_YKU+nXmxYWWr? zHnAYLJ7GS?5xI;LpzgY}2~yT}km9Fcl>*OS7_l9rja=m;V@)2aJKJX;s0Gh|@g!xH zESCZgY*Ag41vT2AdAp9E^#BNuJo!tVZ=5nN=QC(wEZQck-##_i8 zAnAkko52W(#qIrCQN+h6{WW(thGq1?@cN3|@4)=hi4kjWm;#H;@GQO=K|a2GAS3o6 zwt1!^3;p$;{g!VR&G16^%5E__rDZ_z_DCC15PNu3dD7{`CB)41KDw_X_FSm^M9kPC zTQ>id->VIqG3xk#M*s2Q>r2zDkd-(nmcd_0_3{yr&#C2SdRpK{;(?2&ugDN~dO#ws&> z0!m(sGvNWZV3+|ovKY-0;1ao&FAn67CcwoV(5}8${@r*i;V7dRO${`@%uwh#&IF%DofcFUIGT8>=4xg_|Qcxjt2V zd&4mzbN!$v?|9nXO>ep2VwL|yT&%JSsESfO4T$L&&wtEE2*pp1Uda;yppf-VL5@`P zEkuie7T?J3;Yg(o8$%iNVBl;ezj~>8K-Z4jAa7Uk(Mh8=Nrt@9I;759o|HV$ACJX; zSI5d-*F{=|pdSOJE&Z*K51pnDm~rXy74xGq23X`L+O#iOY3Dj)lUowUH!!kpS9}TN zjWY|9%q7q2Vu@aH{OQ~A4>*pzv_9hgZu1EYgO8R*3+KM{cK7>73Ov-uS$2OQ^`d#- zWWFn@$(<0E=)95o8tW8F-)cCLssS2)V{-uQuwr7gYG9MsL}GQwU$yG#Q(HKqrC8H% z?ag%NbzGfWVut>_S40N=z2fU{>{{r$&rzAwNkAXi4XNXgq-K&XO4{=ysmi}@x6Y1m zBz#8flMz#FHSxFK&$xbhHiWRrQ23!tN`hM^SOX?d4UQN57V=onU3d6{v|%_n&Em-H z=ul{0X}DZ0859QMgOavcL=2BEOScSnY@T-7>oFbb{#bQgSYF*P8BW9x9`12LZ_Ko} zh@(jYNTQa{ZQSrJ#*Z%YqD;8ju>F&WGOa4si1hL8Qxbu-H(fm8^HvplJMz$81y z0yj`1$J-mfpm2DhCKW*(0x=!HD_JpaRr?CJ+I>KxNKI}y$~rnBH~UH?Cgt@NYsTx{ zcA%F+Dy?Vm&K#@G_g>}Vt8l;~mb012-KzUrR{51{YOWpF*ifY=tD4hqoQ-8cWAKQa5< zu%GeothK*`Hr;hSa8vh9{QNs{pl6mpsV6JNrny{x+uB zlh^OwauitP^z+rMt!K;0+E!BrRC4aaiv!nxTRoWiWK(*BaPZ&ArN0+1&7K?c-TOgu z_09e4ALJ7XKkZy{b64sCw*^W+-+y@b?vcS1mlIoAekkYPU3mQc8|UXyzvtFw!~$Jj zyX9x{@wdP^K2UveY1#HKxEr>li#;{an^LB{Ts5wZdt% literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_21900.png b/Notebooks/1_N_horizon 3/sim_21900.png new file mode 100644 index 0000000000000000000000000000000000000000..dbaf07032090592481b3036e00d323554247a8d5 GIT binary patch literal 20239 zcmdqJbyQUC+crFa!YBxc!64-bf=CJ6bSbEmfC>`Q454(0bjbjsBb`zz-O?R`4${)y zF?0;w@3ryw-0%Cm>s#yl{`&rS)&jv{$90`~oX2_Y9q?31=F-I*7hy2iB{|uL&tb50 zLNFM?D>yOuq##vc9Q+V|^GM^3inYlbM*}-!n4-ZO8w=|<7OxF&zBRV9e{F5W$Mp{v z568_{Z{FD0i*R#W{(AtIwVf&VU=PI?aFGi(vYPfV80i)0n*jDX4grHHxye0zpz0L2 zGU^zu^P>86WA}5y6NQ+Vt&7RQ7v<7#UAXgQ>ipI3H{Yp0+!&(O_;Gk8&ya-lTY7r> z)-8dj(%fu97jAo>>pDzUluOMUXT%vrqhpLhTW4Bhs`NVS6AC-H%sqFP=M5wZ`-YI% z_snvk%yQ2~T4Wsvz%Ss7q{U16?6(wgB68@1(C{5Hp}&U>@l6Du{r0-!f7n4H=cM4h zIl65~bbOA4Uijhx`9rvYGkj7pBNt^Y1*h<*<>j5-JUz#;EA2<1slQj-kBZeI?J5TWpqN+(S%Qk+leJcG^tsDR(XNC z*nFknG)Q!o6g-dll*-c;{#DOz_&22#8Pe@0`uknMEAOC>nU&tQP%S#(W27uS_-5pVbp3;Dw8xkh&eCi7W&Tt z^-&-0w?av|@IGG*trUV%s_eSZ`90eLEFd0a|u$>l-S#)dW3G=*fJ4p8Sx&2&1)?O`Or6I_aK24OFWq3-bf4G^L1oj z4-?-JW)QmQM7=IO(NY)db)n7|iB{Pi*nRQkT-l8>S9N{D5yF26We6K#rm(1DTMHT+ zPD-y+g+6`;#N#PyOG6BGp{sKEl893^4(1p-e{8cPVRqnI=W}0A|Bj8csHHC9Ro0~? z3b%6uG^iuqb;NqU(I-YyFXI+{hhMx!fiP?p&s$MgJHzdcZ@L*k0n6~?!5@u$w$1tC;{!=GWOMzgx zK;V-dzi38OwuR|nAV{H2n5lwsn{%rPmqn&E#Y$5j0xD z8a4cR2?VbOKLUSdxeNy;o0Z%E4rzD_5^YcZt(te@N|ONvb#S!kbRG}Zf!X8osV@BM z9pUnY%dV~C`Ds#A;^#|zDg9uHCL7x3f!#a_ zvrFJZs%ovbSEQn^NkxZ~sos?%(;O@wPvDn;VJ;xGo-pN~h&(ftD;zmPAl%g9j6{#94YRWLZ<8b4$Pwp`SjzVq^bO&Y z@l66X#2gqNE+wl|&h;3|`e4d>{fWYyzzF7r??!b;wbCi zQPzW4pU2w2ONtb`Dy0$Xwidhi@-}qXA_w`i1%psN9FCRIJnE7dxf_)e$#>xPIh6G; z?vEp;BQmmIKnNqb-H;-XfrUktRnml2@3Ig{+3oU^>k}i=dhuuX(`oQZBDsh(@}q2) zYi&MxirJvizmKf~tu8V|Nhwf}1%&&2!>L(DKp@ z`HRqfm@`NRe3Ec9=SHZceluUzA7wy+oV$M2#uYy4Qzt+1PW3t)B&X-5yc6>Vh8R+B z)R0CkjnMHQ^|Nh1@BfRp!mr=BaYLipg}=DCID_kv_!C`S25Eot+oGbPy(#lI5jL`r zPDr!V^HRTm4-R3Hp^}ny5MD$YVl2k0VtTXG`OJFKRil!8CYX~Tad$~sT5=vA?h1}P zO}mKvQ|syJO1uptraSwa-=tr~yVG13;=kx`(aSuqI`YC5mV3^4qg18%X1)$FqB`R! z9qdQ$ngKQ(LfDS^+O=!0qqx}dqdAY#L-4~d$bA`AnRB?E=h@bip%NqFa93DZ_{ryg z0y0$6?0R3QuQ(q1*Hd`zNxxkl2wCLq`6T?;uvQvWl*NA$QHa$Qc1S2#S#g0Y_w@G@ zt+(i%;Dh_{ZPp%P-0lksB%|#l66*vK>)sTw0Da?~<-zdqaJn~@BzLj0m=Fx6AD_?s)9fa$(2Zq(7s_sBnk) zu6C+oEEav?O4&kcEUauXGi#vSo>e7HY4+PkF2af3+EejHdPh3w1F)!jii(Q&zxiXM zc~C;zJu1#q0jwf!Iph27j^GpGFjnQc#jHGH{eAo_hE_1Jg{u-1aD~;b^AYt%hv!LH zn6gAnQlQ8OVf#6lO&fo|&BiZk`=Qrqwmr{eHa_Yd878g-GD;={d2A)oxi05tzbyX1 zo?G^Ap*xMwpdKB0oLhV1(wD2#lC4=7&2O&O(%}*%x>gmYz+HXS3;Yw_;Wo$D`kDVD zdtOzjx~{WtVY|r3*WIbM&1`Akoi?V(PdUPM|5gL98QX=X$<%UQ{sQaXo0pMnW(pGP zn)Bf2=ZECDzll@P(D$1&9G6z8q<3wv&7>G61;xXrc2Hg5Opb%3Ay zeWf*z@^q{3aC77Ow5*LgzdagxJ8UVo@$*V}R8&|@OjAzjSaXHLQrW>`79=sJ`LF&W zV(7UaB#cH)p|@LO`26vBySa|Uj-()oi*;Qo3i~sxl1=r#q?%PuJf3?Ej7~=zjr*&P zwUxu)V|+=e@lmx$zG(?AA5M?QPmNcGid`*tQ=)XIj@LXTPxm`K5j=+H`gL77H|N?= zll8u0_}@$%+GWAYZc|st7{sCn3r+c4cb46C8(X+*TfrI1HNe(v_h+N*8!idn1G}p^ z99_eA26?=xUG?emcXxmsIwd~ubpO1rw$@;VC4+d``>b(^uWgp+&!2BiluT@7aK(Vj zZss~xf3$XA(&DTpe%sX4G?`u4PN?6NEH^VZ7aAYmmMj;hQRBAn(QALa-ER+!5BA-x z_iiMIrqt=lvEwjK@AQCr6W3vi#n8Z(N6Nzr3V0Ko=V(mY#w(F%vEy{V5+62zQqJ>F7l+YrRW z#HgyPZ_b1%+x<9CU1X7!l{K7K5-#!Alro5T`S@ahhw+)V8-cBk*tKxxkqQ+Q7HTE@ z4haeAm;K86((6uh#svJy_sX$+G%T5mYoOgx>*NK5$UxHbmNuCVRc5Tk9^ zbo*!=DAsCet$KHi$b}aK1#XXxk8Z#Y#w?HVvn^V=#@7ABd7iiA;0Adsb2wb7n{J5( z&G_-EV~nUHm;2$)Y?lJJ$_k_b31E$DOI^K0{|ULGE89i$ce$&# zsAyUW8DZ+QF!3!H}F4hKgvxQX$t9s(lb@2@&(J$8~whzqz7_qPMr#?P!|ObhyOQ$k^C+CPb#>$x(T& zlEnT@9kY0WlgyTqXdkPh}|z?F>LT&uzaE$iwCD12JGP1FAK&p+!R zehhmh`CsJ0s`h`eGCSB>uMlYD#%uT@%L*>KX^cpcsPQ4uG8#c zzBH~5H}JsNx_prD^1!p*h4L&j+luhRN6>FQY`NugpH-v2G(WDNF1dwcu#2t3t+4c1lUyR&^q|_1eKc z9km=m7Fi!%^Kh&kTF7=u_L)^tg%*)P612Q4Tp^D_p-MAl{00B!+C}HwN^+BqG568s!GP`f ziEtGqgN3dXG2p&XFxds66T$|msVov8^zxywWGu=FtsvXk!wfNQ%P7X_`J|vZOKVqJ zT0tv|*XDDrF|DzJ6kfHb$7@iMdlJLz3pvkhOO*ZeCqcXq|bPlx%>^YP`R!w4`<`h1+&9BMqO#c$}V+P;B1M z>#*1pscvGz!mgIB|LemwC?0~S76aWaf?b_3K$jzN?Xx7}u&Amo=L<@QkQ zsond_ayb9p6`aj6wWpl-S`JJ3ZMgw3(FRs+hkeu@RtL zL|14vD#GA-WXs?*L6BRqn0Z`vrE8V$+bzh%kKGnkg6X)ra)0J`MZlPdXfzOg26Rc18P!!lq)<=%PhfA$Z zL8ccwm`|$0iLW8~_`-hpkU-F%6E^_rtd(mcv+(7%tY` zj?%6_Pp$o@;Fx~Ri3HZ2s)z#M%Cf}v=Vh59vP$otbaeEu4|UdD)GHmt0pd6UhHbIH zkMB`Yw%r|dB!VE;rZ2bKSL1PzZ=*06vOtN0R{|CT-}{#$c7B}^q0c*dO092=Xp~d= zQ7F4fz;kdDuQ(+oYmJ4mzb^@n)Ww)4ln+aI0wr8PE*BporX_X<8OzJd?;G0nV6j*w zbLzLXbA5d|T8$)7Ku|sEI6b0hiR46qAa5~P;OlXG@JvHP*4TJmEt%))n| zx*3EL+~75<5f9f}JpgjAQBX7DDtETDKzJM$WkPL(*$3OtHKiS9GkGt>M0e;HI0Kju4= z_Ceh-`ntcM)>3kRCag7HG%72v<}>)dA-knresZw1zjk_JU9%a#_Vne;p$vZcob#0g z+Z;%=L7la?_kBJaz#7UR(HV80?lb&>yZwU|GPSl;Oq38`{oJMr!n1twqmS2lJdXAP zSKLM&0xmq#@~0^@Z5S#4V@3{t9aVDT?n^n>h)7FIXI^1-wb>H;RA-99bofzT^xj9J z{k@jF@){AR*QK1y@tdtz`=AogA-+Tkqa!ZNye$h=))-s*?_A~D*Q7MgkrCW_8a|SP z(1`tf@o$~$29D5x8!+3Dt&^>@O)w(SYlJj)av51qplp)d9ucxg*aML}bvh7-7g2Yu zE)9ig@KPocEVUn*MWO)*;v6erDe~sL0yu+yg6`eo#gocK8Zsf5FO*UO0XEZpi0RR$ z-Y8gQpK~aiQMmdyJRf+kL(|=y%eG?3B zpAhE#(HkcPpKWr`Ba}FIbO#-LzK1X>EmiF7L?ctvzm+U9Bld5_97OarzO9?wm=oGM zGyUE6ACSR;3O4~Froe9yQ*rh;ww1quIW)P*^vo*%=N{AvSP4I0N)vy|>%Nq_aHLy7 zZ%L3prLKH#Ems7fxgqt%6g=1Q647B=A4E(SBGFR%9`H$|KFo&vo-kH}TI!C%>xeV4 zIou)w#0<8KTq8<5_ac&m&=1B)SaS`Ptzb1AU2*rXMQQ_@=Z6%W$s6Tm>cvyXhD4i6 z!GqA0CdoxYXX+3M5f^evr<5YFp)!#GT5y((nk%HH?)qO)u?`m0APz!OE zcOY((qzlcQ|GVq+fU?<)Bhw}m16x$iJ)~M^pHN4lao#Qyq2m5&5RDQVo(l{y8ZkY6 z|CQw3YyadH zIdiRK#bTl>>@n|`JKVjqXAV_y!PVwY4##+vPogCLqV?WR?fwxxsgtwxi%cm0faFJn z#6~aP=n0U5H+YQ`5_y|UfPO}h6nvaujJ$^^561YO$7)zht2<3O2=FmWQy+H6KeX|W z9PRO1C6;~|@-s0B@e0%|!TmfYZIdRayg=((MrKgREGu1w*`|_V)Ct<^N z@9Lf-CZ7krZs`ShXjk*BN@BW7i<}IcqjKIvBx_V*d1^v{^oPAaY)Q_;$q$T-hlHW4 zcKzU)kmWwPJ^+;6{|k|*$fZv3(F@6gB|%|6HH{{)Ty{z>uGtrMo7zfpn#%0nt95*0 zDC2%5@km8D%>!p(1^QjR4xbLK9zt91VFLUx2`LhDj^R8D7QwESbINCtqP6#yBS)0=vvsqu27ijg62o5~q*ZNk2OZ5hN5}iy92(W1 zaB9|RsWlh8>PI+ODA=toh^3M*O?PWR+9_`GVyXrLypKd%Ob|>k@?h6WUwU3xzdW&p zm=1I=4zm&$8tU$$b2e7tpUo=C*Y6d$o;`-0a(MBN0PD#L#hqs3`UyiU#a*MLFSnrO zzdzYG8tR5-3`DYNY?7m(z|nqlE0okgstx#)+oyTAfr3>P=$AEJ|e!U%xEH?eG4J@J@`obl$8lm)hLv7 zK;WYFYV^X%im_auP^jC!&-Gone02daEwj_7ro8Z@^I7pFMUGL8wvS79HH&gXsry;R z*v+qmMfky{iLdjxKh#SNT5c)2>`v2_78R5VH2_@hxY{IB6Ok7$*^mkiQK5`hc3uKb zuW8e~WOKPWN37D&yd{o-=p#N_puqap7NRp~!{?&=!yHK8(g<+s;jn`1Whs5xL|w9l z?vH|u;xI34s>$`dJj0U@Ijvgx5&JEr>ruW-u=)6~CZ2{v8+^#^Ryq~z-UHvAb!h$~ zS-Osa&MZn?NW^NTB%aftk*}rXyOaAhn6YnpoJeZ8N@Jv5b4be7-F7A06v)m*ni=R8 zK&7(6J0WC4%Wm#GGpi_eglA!Jb-of&{K@E?kcpF?2@6qBfX~OKbvX!4Jufw`3jtJb z4;N8jd*?t;>$~1zr@a(KF+85-dhQtc{nH~lB}P5077O`QGSgvLY(&hIJOl@dP5wPE z_t`U@MwEg8kLw1@NwpIbF#M}?CL5_qBsP6Ny`hy>Su{X1CTzWALR}vT{D+L|I=2^Z z#5x(iKJV#jB~DRO=Di|H3&|nd*0{=e>b}V*PA19zaxZYFWYv3T25%Nc(D=3YPfu%i zp4FUnM;`76b)U*J9c3#u;Fm?#ZYLe3_s4CC|!q`ZdBdal898z z5(Oz+FFyhwF`S-hes1D@mm3IUsJ;PS6U^dLw>rXYnsRe21+4D;2U?fy_?iWaI+o;qQEV~y033(Y_`aF9_!|$8|+Mdg4CVh>_ED$*k)vW zE|qMl;X=}(?NR#46WY#xnJx%coUxXZ$>8+_4+lO{b?dYY;n0Z7 z(PBl>(=xj_bmwu5)dWyOazos|!X&5QclZQ}B28~}gv#k30U2IC!Z5$9_Vx28bdnW} ze2;gM>gu3?;eYwxHPR)#?O`PhGSyYwTG#mQLVHOupbj+^Y^a174Z8Ap+w|af&DA;M zv$mnaPrU5a&jJ8Ld3)~tS;FbH#>cYVGizu_=6v2v}klbBHYV8_s@cFf2G zE&a3_h~>@1zoz-MWI5Y&pbC$!@kP<&?g&5avR>!1i{ zYVzjUEToMSC}EJNM-}P0%o^Esh1`yNV{`!qMIBweM<^1hKI!iu}*FX*2KW z6-P*NYYZ2NvoqbxWKLvixhV9l$SdUbK1ROgV5gnsoU1#ORn1}v{F8k`qvD%-4BSPk zPJvd|cARD0newbM4VtibBQ4TR7O-X@s7(E!7W~t5^pc`*N_P;%iu6#o$B{F9BKxZ| zY2ZSkM>+SO%Wt>KKOmO<`{1u`nAzK4-yUiQ(0SUMsIeY>y#^i zDG`@{rYjKUzhi*^Bat^;;x0p!RkEr-8%du%5a*;!=b zxlRgui37?}k0bWNsUfSW1mjb02JWoJE84F0ckB}U0a0+svbgH`vo?jLERCw%&|gbg zP8LlpH$GGSkWn%rmI=Rh&qE)XB#&=eygv{UL(p(|JAsVvo2NAq6?DOmplv`E91-(l z{Uo4V7=$u&O}+7f)~sv29J=birnX-IlV}RdvzS{IXAxO>zua2)`y}9d()QB(E<#pm zDEE+ug1UC)k&+rQl%1^fJFS+?X+Mj+adTJUYhgG0YeZLqez?DOzjo?mAYS?SCmJSw zxHFYrQ2%iL*~_}iP3uWzQTE=D4bcOr4V8)nwdaWm+v-4x&*)2eKu}7+X`tXbyLjor#>D7tREKZ$dC=&6M09ZzeJ1^xKxiY0w4Sv3DrvBMb+ zv+m2CoSUmA1>Xb^Uq#1X1Pcm+|IVqj6PU0#R-Si444Bs;7yh)g!Z938rbcoS)`s_6 z4iHRBAV(UbE{QJg(!Y7A4;%@KW}crbL&wF+<0$p(CvGXxjV6W#-Z8+Ydt9A4;J+ys z`rHUhR<j~ZShX%R==gT#(&X|NGx^e$*`*xH2ZSn+uNQcG|#=2NbD{-fZ-4IpeS2LEB2$5AtU z#u|*NWSl08>opigRaq;wMd_dlEK7o(iX1=yAd;k2(8-0Kd-|L(RvDr9b zFpJ@1^nVlO2_C|2zRv6=_{G#4H!pt&>TBJ)><;DEj=YQ+P*145=>MI8lHX6%l(8F0 z_aM>nVU`=BsPs!yRjaQ(IgebHV3iTnKTG%jH)!RnTdA|rzismXW7{$|1cFk}AaIa8 zi_BEFUV)R1BbSq6CngYd$`4j#`0OnP35qpARMF|kontMGDsWj+f*owNn+&bjJfR(o zT3|ZhaelS2#IT~JIb64v@bX6^|dnVjSX>9@>sRo=>F>qVbc9w-fNotXB8#0eYRjL{K8KL)^H zEXK6{VEeoNgG~0ipEZo{Q3`)pc80zEJhrO;h1jC)n#K zkg}gAtIwyezuXqvP$KTKaw_&SYXF4;+2f}wn)@xefyH=z(A$`2~?$iJDCyw#G@+xSpr=e+h6- zY}V4CMg&|;K&>}FBQp@2I_J(n>zz6DSl~tfvu7`49y!oo>)i%`k)*DL@;(Q`F64vu(jO$A_gw9sWg3jf*@{@#e979f&6)*GOVdZ8BHm^LoP z(rf&NbTEd7jH4Z;Z>yVj=A(0;Meb%UW~ApToV(eZ=boFMi`t*NF_$yY9QpZxya(~S zrJ0$VHLPlx3}3+8)Y10M(}Vn&)NWocSmE@j-vz_mH~S~gQAxfb1QashVghP?`5vyE zw3%ju-^F>zUQ55=TqF|Cm&b^9Mz-t6aE&+*Nn_<$#G-tU4>ZZ}Cc3$) zS^udmH}SRIAzaNT#WstK3}wHY+ZMymly#)}ia#lW9FbpmQat-JD`v>=CuN+&u(`9x z%3A^T{!&prxz`3`PB-DdC9Kh_ud~jP=w4 zL`bzTs=kgWS2~p3Rax?q4CAF=zcO+kioXxTWa=pK-j$P2>D6+)=eqIur2G|=a& zL8{5c%>p6QMSU(2k8{%`*H+YBA)Kc^S{w|#$8FYf+Ijo}(~fI;Q~LqSn0vQMRn^ze zq7rtuuK4dU&V?3@e~$f{d~R%C33Qa7>$K?#H@*5#Nec**M~XU3${aZpQ265R$Vtl0 zk3sqGPP(&VCUU}v0SYYdN1cunapTjx&ZtFe(6Xg9{NFn7G14~xYaqatA`we{T&c)ySB&rL`^@pC0 zxgNnEN6f61tN}DM+g%z_XxKt7VYhhM?LZOryGdj(?F+|C^`?DE*HD1_M@}ZMG<7)i zU36#hb4ef3^~`yY<_s*xK3a?8xM;^0wx+q& z-oz{^SRNM}qrE#M!8vTltF_bAX67jrlHBk!ob8^?O)$Nak!zF)>E@X2Hs}Pfv$sy8 z(&&F(1NjwLFTNkwXTKQzd`!aFCMsbUP`d@$-~3`3+#{ad-mk)yO_KELVnS*qYZFf0 zCm!`#=FQeGNSEWYZMV38uh`ITe`@RL;eW2vFZ;rhiGTak8PJPz$^$?zgNR0!`8hx; zfd?!AaArU`AUEK1#baO^rrUk=m6qnK6XUG~e9{W{Lu+L;x~P(wUB7L$kBUES8fW5Q z1Bh7t?VN}5b#^x2%*=^>++@|}bDaQ}n^3E~2W4b(PKj2~s~dYsh#5zUTrVyRGWj(} z@3uXLqZ!K+WM$N}yKl*vl|E^{E8c-pxQmcXf6rLEivVO%>G%rBy}@A-(&I;QM48j~ zeEmA9TL+Bj>{-9*sQM^a5zNJcBephrYa(PJYna=J|$w4YPMau;OygikHoJV^C z^0zsGoQ(g_R&#rDy1D>lBD2OSJ?tC0BkZx?sw^(zMaCkN1zO`{ojx>QU`?)|+P;6* zsw6?O^ZC$@xsu^dm*phzhx;R&onbpmY@8rZ?kzMZ?C&$>g~mqw=(U#o{81V4K#c^~ zG*2!CpD{LNNib3QBWx+~4?k;t=)vQ+J=GE%AdsJ94zR5BzshIWFzl=FG93e#Vy1=qJFYwH$s zM9=JcgLC>0J3hZKqo;>1BiAyypai)w6r(*hc)vGyJE!kO-)c=wX35uv28W&7g6ux^ zYSpqAci~Sz;B`q~=#oCB8s4<$6Yc3{rldk*8rf5XP{GJH{9%LV*{y_oDYV~-1MJD3fdRmL}1X{_X z`6KxglgD4m90h(=Q&<=d&CSUwx}y~4J3|9hAs2!ss;Ben*YJ zeba&i#gm%V*bnyDOu(2cwj5TUYD(K<+!k`C_v)IGM2-g396V`gyz7C9Y!=Ww$>S1N zx0F^<2*$s>7Ycs_9A#csW+fFdsG-?7WGSjyXvqqZiA#ZgqdQHla59c&6reI#C^$`; z|42Mxcv+E-ehI&R5ErGJKpu^f0Co?xm=hF zUEb?#TE{sVnk_vIGKTWzoAkk~65Qx{F(Te-c3;QR8&K+``fE#cjCpwAO&Zih>MCuc~q z^*qS=8Y6k^Eog!f?}}>*N&ur&<|68;Sr#bSu6dq0ft=64<}yy17V8?sn9$tiaHqGY zuHJY37k4UfPW``g1R{!X?+3rC5vn5}`B=%$QGIRv&?c%8OeU7#X3VEoffFX)ZbGT? zBA!tQS~L8^FZ?6DBHX7P3f#*C~dpwcs}XZT9F!3YddN6`xx*MrwWi+AS7Jt67*KAS%3LOS+% zN#%MRo&%)Jk5550p^J7s5r$8;Ce}B;FB(D8|I&`%kpqN$~X zxFYx=4i~nTz=J7Oyzz6F!7avA-AWNWK5(}sssa0nT=`iP-^9GL2T@#cW5wC%N*bY_ zf=49S)APINI>B+C0Pjc6Zc{<028Zo_s!_?g-_1`hx!RMTS+Be_&{WBOoZ-Kx0G4kPDNbN6`_x-6$)s zrk93CvEmk@OThrUwAvSNXL4)xIG1y*jDv~hCr5+|0;(w$bPkd6qF<{y3nhA&{M)sYcHC-WJKoyqlaDRjr-EgMoH}Jn*Nl8Lw z0+cj7OB&92PU4&!H~KqlkHyCMt~n&CAwF{pny6}ntF^8!=RG|=+|x>H?Ka6-dBwvM zJZ?M=@+&9+Xt}|wunH3OZc*XuAtWc%S`@jjCuC07!7*GP;mB#!^~ca}YoV8IMdGOI zG1u|7HkX9KIla@o3r0q0rPt~!?|C|Xri;2k_9VZubM}aDPY%d{HVv+UU-L6!I!4sS zUW;?B#?^iX?9^I%_PS{dND*=eBDWV{TipRdzjT_vs(Ll)Djm#;?Y8K_7$K zD=5+9s-9bm&`Fg(C*xs5A<1aX%NTxAtMc=!)ztFx6V+?J!`8~#Q5C^wV@1hUOGhaG z0tXqQLcJlUI!jg6{*Aq^iznvI`ch7ohMg3NF6Z<_4_}>Z)D!3K9lMzUiZ*GcVYslP z{+fE7>ll%uVt}(yZdtvJv_Ja4t{9#qe}}VGJl)_f6p=tZSKdhGJX&(<(Qv26cJ(2| z@h~2&h)D-l5Av5jHU~`S=?V9U6VsE}NT=gDL7StEr`lwC`xlRvP4gs`76~O-)PNm4 zFO2|vvvVWaq{f0$zf~>0NjsYH6aj{J zf0k5;MDyOxw;H&&H$gI);7TPfs3f{lJiXlXmFqvlfLgA&eChIqPWAFUH_p>zzh{RI z%gt?~dmYV|+S`$~uA^)93k|>9$=r5!&THedgpU@xXh0{2@yQ@3&|O2&Nio`%h%_V9 z(x|h7_^vr^dak*Vo^stvM7-RyJdTTwqz|cD++9rhzT62as22mQ3m8QR>Z%{fC4B_g zKfTi%V1V%F%-3tzf}=>N^~e|xD4!&fBbi-Xipcp)+T`65MEkv@b(+rt>+@29xB5t^ z71dvuwJSPNmgjZ}W}V3Elz5on*!r}9k8f`#vAKM2PWWiYr}5dFU?h~2_ZO=>?3dRi z&dL+BYZCtm%49ClW{eEpe_=UQT~HE|IpilENt=a zAzT2KeJP?C6fuBCqNlxkWepU7gBmXyKbo@xHY4d1-HcaUnITfLtqtecn9z23ax7T0 z)kLfLkJXLp0=|X#FgZ}7xXdoUY@Y#k@4S@!Al}~YHRIpR=iqwEZ+vfjujS(izbC(* z@Zmf;{U+%A>kg_Gj#o>x$K4CIjuQ=GUvmkxJ~F=Cf7FjAVgsbp%l0b@f}3rdEIb9w zr(Qz?v8|ZxRp*z9x7f$#;M17163Ns@x_M; zI8X;W?v)*2O(fi1h4;%f-In6R;D?|4Z|S&AlIA7Kp!%{)a3jIb{{y;SMhlmOpX>{d zY%edmuZo%uUhh-y!|SQ|)2;6p@bZ;SRyW=Q&8^%r2MKn;wfR4`f=8|wAig^mr}!=V z-kMhj_v=%LV1k}b1l(5~p9B0_} zIq-&MhtqvPriTqG2zw4aZT~E^{-vGs-)qqVkR~s!GSflYUs92 zRv!u6?@%`nm(F|+P}^PcJW`GgGC2>b2FVD_`Xo#r^`iE^MdIN2vA_ z#g$4vnVpOhc&0i0TUdp}amZO&~hCRO%g~P zyy)`&&m)>@ke>lqx{3G86eu0ntBC}HtD5{BswBR4sD$`&s7&`mF{q}Qep79wWM%xL z;JUx5n%zEIlCZ~{Qzh}dWbhm+lt9DP+G9kbf!XL-ZcU|UT23T>6tLNud0^x)@vPu* z$=sB&jW&>DQejuDv1(QeHt<}fgL>615QN12RvMJZaa^bf_HXQZ$;S2@ntoW_@3?Uz z_Os*gP7t-g)BXXsr^?EMvDvL;9{4d7%}}WzuD7dq0W7UX9}vPP=ew1*?nloeY?pl)0b+hu5p z{Ol4)+Z)uPL^GO#3oEjQX3Bu&gzl(=b|>x$eLdq`w$WiA@dsDa&AN9E|HugKMz_1V zG>=u;K4J4bo?(NgX<9M4msFWoV*fr#lak`dAQ}$r{iMo<6Sm8#(bDPj0g#XD!Mz~; zg#@7^DlYuR2d`gG1>eGw-KBUf`-FtQn$^-V^+j8aj_=fC32LG=+TZC%_2pLYqx2T%L<)*ATtbJdo71`k zBSTe(KgrtW>f@gX1r;4ME{1W2N!n5NS{4u^?wcDF3hKbc{u6% zL+HZ0Ze!C8KD+zt6YdgXPKgmEfP8@j$($no_tC1eY4)#N*QA8l(d*CQ2H?#Pnc^kx zV&yBol=TiPbf>3Ma8hYF82TrXhWlt)9vT*mMoGa z$W4Z%8;?|b;laF=K-E}kb*0OuDORT9r{B9>6y}S$+4Dw z8DGi-IR;Pgz6aLwv9&p+u1{GTO~-q;Ou zOeEg7!rN<#T3#)Fd2-GMWw$?XrKI6yP?qH|a z8$Du(BH;5f_wGnJFpX%>v+_t(COlw?8lO6ibX|7mnkY6X4)gw%apIh^WNy9d9CTbm z;+7LHkV}*+&!ua1^0?OL^o^N^3fh=uIj3NAFtL>F8uu zSAvKgw-SNCPefEvHx`W5ig?Yq4tm7ZN`B|W4h&%TkF8eeM)w)AHj`W2cPcgg!wLK= zp1(qk=GImi6S&L0d2lRddm?>?tVOu4 z()%!Mc=a}q6?kP5f+~#Z#ZQDJB`WR)%FWzv_*u@-A-BG*-M+`fD0qztW&NFrJ5ds7d+cm2^){+%5ukw4Lc6wMovR#@VD#S>BXJxxFQDY_ATkw z9PM%Q?YkQBY5!}t?}2h@&_?MqC9hUL-{*0rJx` zo#&k%oIfxj?DoDnIp0+u=)RS?KjY4Fo1ed;ifS3^Cf)faV_Emjf2}k11 zwHk9zK3#Nf$Fsv9ulBzGtlzkH?X~mXU(ajJjlcWDE}nDGgqZIlAKF6xuetQ|>b+XO zyx+VZCf3T_m;WKYLFMPY^;fq&Js`Hg>gWI6xwcmmO*$L0H4E6++s-}y{@J|x{=a#4 zHt#myKf5pJ+pVuBOu;qMk}XdKM8T|)aL5^`rpLRr_@DjTle)JbOl*w@9!|&L>FVdQ I&MBb@0LMvcn*aa+ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_22200.png b/Notebooks/1_N_horizon 3/sim_22200.png new file mode 100644 index 0000000000000000000000000000000000000000..f399bb53375c8e175d5184b9a7f55ed1cf0b1510 GIT binary patch literal 20331 zcmd?RcT`l(*Ch<1&`MMknrurFi47u2KtUx*5R@QEXoBRNvos*mfaDA+IV(s`ElAEt z&N=6tnQDA~&->1rS!=$vzW-)i-2&bB-l|)*&pG?-I(7XOyM zzc%I&t@)-r}62kIR;nwCAva8R(-<7@jD|_(T-o1<{)^=afJJ|RS z$P_-^d+_BtWB6?X>|0`D&M^I+G`-{FGb=e?sV1ZpcNmZ1w!3hrQ-?@J&e>R@SDmXt zZjm_Zrc@|{RA`EAWXSRr@C$emMPmD1{wD2$OO5$}fn|-tQu6Y!pN44I&& z_I&k(^WCFOg|M{*&rWP%FND`0Pfo@Xee7&6B~K1?5xNS7{DlQWCZf-p_r|=+&~$M> z-2^O&EN^qsIudU-_gC_Rb^ek8h(sUDKrWs=%{ zlG-~kBnu3A4Tdy>Auk3}a%IFIg<=pFK{sG1IrAFmp*hM*wqR}J zO4MpDm>?o@j4`D4zhOAP<#D5neDKDpW3XG$wHH`)SKYB(X&mvm$oNH(mMyd=9Q55L zlY*1ynqJo}`4sR7@PcsV@Hj?Ve=wp6pI}vo<*Y#7VfkzS^oMITtqZ?0H=o)|Bs}$h zw&CY8o|a~T6MSXN^Bf%_7O)yaCz5d`WEdZl^KVkl9= z+?g@&|zFJWH`SD^;gI|$d?8CdRgh|%cN)-xrB4_=y& zu84kw_cuT^(Nv} ze_K!+>zu&#OS6ba09+)dl1>{hh!{pNIPlzuWhcXCAb`E49@Nh zgD!15G5XU&y**9exrI%5@kqAe{E+#hF9u;mn=$x0-DW(P82*-Rto6sHQd3qN)*Ys6 z57A-uhf&lF%EZ;cx?N_7n_&-Y7;jSct?N%bMgIWCBHOReIN~T12yfV){hUzk(mQ@1 zsqpe!db7MPs%D~f-^P>5%i%YaZ{r6$z0*47ctlA$wOg-B;I=H#7DUMy@tW4XYx@=ND|)-r(ezE4<=CX zAZ)q2-7+)Z42(4hAOC3Vtl(;J)DLr`bTL7a+>m;?U1r|7!&Krxf7ASwvB9xUt2pWU zsFd#gP8kck@?v-xM6EdtiM;l11`AAr+3(fgGsh+7?Pw~){-g25! zoq=bOFyu5z?GRqK)^*D_5SS3slGeYBht?mS$GjDA=pYVB2n&lN8bO=~3Ev4>WckjH z>>@tgrXAtK5|49rCv3upRSF5LPJ4Kc&Qp3+#EL-{82#Lzd|QxY=&sP`gCUn-NUP>2 z`gr~@){6a+LSWe;FeHAMX!7dk=%0HZnNBKMk(Rm;nBOzv&;m!3Y4zk?VpYb?g|q!))Q_>ydUT43SF66hT9Zu*dj)sTp3 zPX?g#_pQM!5mEhh48&58jd#0A#3(kY{hLLIdv_R^7{*@ee(NHB7_+;5?=GII3A#)7w zFOmY`91}8BRbh>5SY+7ppP^}2{F65D#HO!5EUAaKO1{)PhTW>-9>+4*J-9pXz`*o= zOl&%niTt6`$w?@$R;;UZYu*5QcHczmrTejDn3)HjB<|a!t4vrH4~N{bpICQ<*+`An zGZ6*!imipRw^oLl7{ho_`kl!hBDX@z>qSYt-2`YwDL&XJ7R}-zB4r( zie~0L4`o=RbNMfV(ESTZvJIkzIE2%eMC&@tm8Y!Q1v2%6q&9TcrR4R%0}O#sG_m?9 zjTaUlQg!!8wZe4LXtEG};>8Ycpc01+V2$abRMHESFPX;M0AYT?=xBw+)93`(=aZ(B z>$ArdUN%H-c9-0wh!7`;=sxl@2(84XS80LIAl{W039=YK97!vxe!CW0nuHS?Cbf+mpuJl*=tK)tF_Uv5ARVp#kBW zH*YdIp3}V4(xN>(IbaqN66#A`ybHaY7HNEw{+zEF86SUn#I zbo{zxoE9@fhDmc%esuFb`2CaL}3#V|J1zm?lK4_lxprY=xqovZ3=NVm8pbb(F1+bZJ%inMlWmuKGwaRz`}#s6=JKoj@c)9i zXGFEeU0B#6s;ZAaCdUUM|D_;gUYAlw!&u*1Iacp=^<`k~P+L}SogkkC37<_2{ZIuc$+b9v!& zlwx^KobQ)V+qA(kAIQ6JhxHB&;P}&0(n|!*hAYYG^yjFtSNE%%m-(R8Cq{r^12BbwCu8;_W;yC5K}&zqdEAb787xijCM48VAClyoumqmg#T3y*e^YT~fL zJzECS_Co?wOre{;AsSgd5R706@1@Jg_xvlD~C0 z6TCCF;U3k>SrbopwkUz=252cl-fdaw#EvdpWHp-}m^sUu>rQ_DcgwLLWiy+X6CD~3 z{exBJtZZz0sA;Ez*CMG64DheQ}({kKtf!91cFK;}*I9vq7O@WWR#?8YM0}%5k zO%?&}bkyx&%;GwKL17_PQd3AsNH>29BR#!$dAT4~K|#TL@b9sKMKE)MfDKcy=s7=T z4ig0JbccT$xr}i(G}V)9w>ebrB#iZo9!`4W?dpAo(rceBs~pWTiu}`ER>{HWQ6_x{r9Jpu1D79ReQ?wZ872i3m8j?b#pcOv$I;(nfHi_l5%mlh!r5w zqe4an@7-l~%(C`y;Lo>QHm%BN6pG*l3W|*e=%sl0z6-mE*KzY5u=Av@t}gU&kqOm8 z{(Iw-{WaT_{y@0|!7U6TM{PQJ&09M<(u#{CS65Btgw`HnMp*=aPf1a+Hj-WaJ}c|Y zAR>6KFzJjfH8s_CeKh7|y&^a{NO0NAL}&)ZQ@THFf^iGLS?R3}7wH)qZVc=R?{N~moHyDIW)_^>(t?%pC8olm<>O~`t<1&Xv8EQQlyfv z#rF2+$5+WOFql$!{dzZYU(jK_?K4cgbffx&A2^ne@Pc>0K9HTUg}eWqwvxQ~p8YQvCD@P=lV2T~`^=^6iMEDI!eE<=BI>G|=BlI8~@#QtThXOJ@L z{2O^0QiX8<^~A*g{l7yFqVr!ukV4kf)}~jByiV;j8xrp@?gZi}t)+UDhV^xfJI5*o zQA4%VQm62wBVHiPFwrS(YiF%wq9fnqYz0T;fP+;zXR?Vtc+_kRGsL+iZnz%=_BElHHl69h2N5sR7xPS+{?z>$@emFBj#(GB~J@|8R{^CVz{K0ZG2 zmbKThG_30HoVW!QE2^jr5 zz?Hbp($nbxn+FkbXO7b&=AQuQzF(MxO@f&HlXU(N(SVu)&Xtdf&)n411Xy`nf)KeU zCOW)~=MMqa@ad17P#`dCO8~K*vki|V3`yx#l3(j@)dewu+F{fRLtPH4Hr!0d%8P!q zXXjVPV!#qYFR_g|?tphadoAB>%_QEsh2?b9Pt-KWaID-8MC-3x5iv2%EfK70W!8-8 z3HFpTjll~)|HvWwvfe!TM&9~HMYH}ob3D51t2mX*Pf5I%zZ9yGNB>5=$9WvA5k=wO zsgy=-`^V1C?iBRR5Zo&k#(z?omwNf&lW*@NUBm;kiaTR?6F8ih+w$QB>S7#1rd$^S-Oz)3aSiBk;DK?w&XHJ|9 z&_30jDaS-Nk8{`g&ZJIek*(_;!Ur0-z{{tLo*8kJFWw_#Q$=4R*Fb|i?{jQB-dk}3 z_ULptEgH$@ebz-6ui0q-n9*1>$ z1_l_iCMUetTk`V)I8v+aW@f(PzABdkH?8sgwUMD>Gph7>>l;|)+OBXAfV5`z4{9#X zuwKSK^ans$Eeh1B^W`O~@cK>mS7g`Fa;X9p9+Xh1@n zRI0Zl8r(Vs7O1(oxuHA;1XPbq2N(9FEgJus?A~1Ud!wpFH*kqwx{5$#7bf3l0cUF^ z(9i_fCw&M13~Fp2Sg8aAwpw@wof%m#6t%Xo@%lZR0YH)4&#~&>E}N@elNbyzeF}`= z>-X=L`6myn8Z>#urjJv-b^eB%v(@DE=gFFNig{IJ?#D`{>w?iDRkE#uAP^ib$$PY9 zrYB0<+ds;$+NV4_-kX^Xlb<&fJ)yu58elql4JZnXu??*a&IF4lUYu`S7#wZS5m0a= z+0~1?s$3jEFaROHQN5!tRffFWZlysna^Kx_N0R3OUfNQoX zBydHZf9mQvuo%lJA9CwX;RDNQf97K8z@Egv{>tugMQxzVhAfiuPx{7rS)hjfkbaKp zj}QK&%(oCJrKQn$bgrKp^9VYFHMxWCj1ySjCaE0-FWI<9H02*a z7Mwz6N%XYn+C|wilz?CG3yIhxf6JLf=*(GjA307%jaYpY84K`|Rv{QLl=!p!9&5%+AfFmfxmf@XN5}f+3%Lb7=SmojHg#eTx@=rR}QR zwMgpYWsFO}8L08_0LhNGaA4msxX9u}jYn2%*Hdugj%ioOuWUc z|Griu0rGw*31;;{^|qKJBXVLI zB&kI_;hZ#m=Zg9vh*Sved4N$!q>P{AQq#OdSqXm^DbpYmQ@y&2BZ55&MdZktk3^UM zbBrcXK+s|kZ?9yp1+Nga6buQpEO{hJTFOtb3IV$JHU!8z86;w`O~XkWcmoX#$@YcH zlA7yUDIb#SVFUDle;uRFfV_itI_t7sL9YGDMNcuv5CiZWx~KzYm3-{=;Om86xL+0$ z8ylb-AK`LAa5)YR4iVeu7^4ieB?0h_CK1DOCt~{qch7H5!}C%KJ3(Ew_H6g7d~(^3 zVNdbbf{B@EAG8b%dDLvDjpL4edJnnDt$?FZxv+Wr@}QmwY%qcdS4v2`>G|T<93Xjt z0T!=^T~ea|C)UUQ&xjH(_FzGhh(m;x-Xw#gfmdS3$Zmao|C6f=fO8PQ2(ZraRU?LP z{l$|em{%ZifkhckhNxE0=TB;8=QnV)v2{PSgkdg}DT~qJz~UCV8@&TV9$Ya2N2V2D z>WHCllfeA_2S*IPxvn()Ro5Cdi8P3~EGN;AauhD7svkjosS?WG8!csSa1`YtfL^JD zim77n;%Px(yW=~9&>0#)#KEh+zTU6E^m5vXqA}9rzxW}(+i-YGp+_(24tf?kGar8Y zuR_OKh$qp=bElMqpBKp`dgQE<6@Y1zA(MT``yYo?GGw^`{pj)^6+&R%lo-GY`L>R%-RdT;|whKlE^lX)3#qnT|&ng zPYea`z{27n*plaNa^%hiLT8x z2jMEz$$Z||v}&&l!EfYAkM*HpxOOsjMwpQo{7h0?37wgJJ@7RW4iF~>aq|@U$JITa zr2ZnhxdBCJLZ+BJp)-9a#@SW4)D@;2`SSyvIg{&#Dg|za>`J%}GhxicGrir6dV0v$ zQOsbPS=uQqQ^+w94&JZ_E*ILWkG}Us8@1I9u4Y}bAbFM6DA!PjL!002cBh8TgMkEI zU%Qd4($xVQfipaL>y7xn*8_d&<w)P4pt2#kppLirxf@E8n~!U*c%b0t_S%gl z2ei~KS=kno7M!^YhVpEPsbiX1LqqO7ZE_}p)fObSrhxGim1Fy6`l~Jum{E3i*`JgI zk{k_K2PJX5QVMHu^a$J2#$&?S2zDtuf+1VITCs77sQHcNS|a>1ru#_|vrDOQM+4si z+qA0!eOBxhlqRsASiRyP#kDna4cwUU`Bu4lTZIh+Zei}f*H(bQs2rh(hNvwU*?w&T z4eWR_M2>5PeNQf)gpKhsrRq<2yd4z_6Ib>L4eTcnuAhe3h+})5mq{I{rI8r8o1l_L zc-&tPpBjrT;e0tWx~KJH=t$_yLTrvG=^?G9G|EazW_bBNcH=m}(o{X~NKB0}6=(iP zN3ETZYK58M%>MMZ(XlJRa5o{IQVHxBIW3HLpm{{V-xGjw-D3PV9d9`L|3>IySL2T2 z&R$7vw(G2i<`1f<(+Ers#+gO%vc1)AsNEA%Ej7o(AJ}-;?907OdFvwR_M8FSN`Wtp zV7+1X*O)+-hsw4Mw~|H?08~n`E;>YufWJ4VjvZWMx!gI@oNXb(PRP+}@6mkTV9PY2 zK9-&#ZqVw04~usNkCVc^-9@d>Vbh;5ey@lOCumm}{ndcNa&@e@g;GnkC_;d>nA@SA zOiQDx%Iel1o%(CkLO=2TyddMTbCkbfU8ty$i)j`||8KKwI6;w_S-A^yMI$j4)~q&> z7E?!a>i6^W=!JN=^er9If*wWIoI&^Y@^V?sDI0K% zH?`HrQTqMdU5V}d`KtaU)tlPubz2@ZiPbrc8}AqNc6>LtRM!(}7Mdwrl0a6blY<4wu>tTe#Fq4W8od+>`Is;V-n*O1x`oDibBNoW1AbSeqc0tDk8rO*AYz_zUmTWri9qb>>aPY!Trc<~&*_BVn0GkvN~@B7VI(tKc@Wij!d`-EPdRiPhvCWpca$ zZA!C(L1hH7S5lB4b`?xNcV)`wfFQcIj#%eJb>$XRJ=M`cHkFfWH!jwTy$8C(i@I_Y zYHh#0##YBLYb}}LKk&em69?@^EsnkFK&kM-5nC?|I48t3#Tl4cz5Q`2tWUcVsrh~i zk>c7j^0lHbvC=|Iy;OfWm5YuoS;kK8Lu8oN3R|VsO5O3`Oo?6GMhbjEbi>{=zI&4y z=bCN|7&sGwDx?3LcUY{_zkRx`n5bUtV;B`t@cxVlYrB9a`f-L(Bk{^FEAa}RY7dnH z9>T}qL|eyyr=@Yq(BwH`C#U@GrlYwUOMdk$+$Zk#OksEqGPtzD(1H8_FAO#XAOCA| z?`5777Dh#FudeuO(FX7_TnYXV{}KSE!%E!6@>$Y7Zl2na;yxDUu&MgzwoBn-{rVV2 znOplWfQJ9fZySR#2_<+etyb{EwPxf#ON;)qe6bhdx8dJZVDv6`;NMa{=OtJVf6)bl zx`f8eCLJkjX1z1n{C1v|o8v&K2$t!CYy*9x=K(=u)rFC%RIN^C;sP>!kyaa{eXsj_ z`OG;vz(u8C^wKvddI~*Z^*#h^YELHej@XxB_b^x8G(f|aJnxXtDQbj|OrOaMeN&mS z78lnW+fQH{Qtb#O)Mpz~=m-s*8@;G~+mf|HdC=P2_D&&KuDL7OQ%4w|LQw<#Iq}-= z{U+GeI%04|DX@g2$UsluRin;)?6C5C_Z4FxU}hi?>Kx7Ah_v7^9K!s_dI$aj&f}S^ zoA^xib0;-|wHSzyFN1gRS7ChUXrX7V#>Ea3xE_t%Dd7{vid$muS1GIkyerJIEk5Rq zm51rawT59!PV*YpE7Lk#(a5IXe!$Wqi%WNnV71%-=@>q=H<=Wt+~J!{HE9B7ag_#C zE~WeoiMa_K1Yfw=>JDd&mAvWeFD&@E&0Zx!t6u8W^C@<0e{Gm0?&%n*PU9E7LwKnn zcCs@$g*zr38UYPX(eHCqLUYFWbJVitZlu{AMRWp`}2DU{JwBe)bW6Y3*4yU3ViZ&N>x*9ho0+29%^Hv$VwAsRU$FCF5~ou z2B2$a*tekJz;Awo_OtCuc>BlDd%gz`^z;DCoG(E;{Y}Fgg9Rf|plXA}9UGnRHU0$0 zQUbN*2Scu->AZfSZ%m#-XZm0Fv7{!GTuIn@`{=sSLZ#`kefz>}NPXanF3OZGd%oyD z@bf?L)7EGVV)`W!b!z&8!NnDIpG6lK3$E?TGXwm2?4|IqrO!|dTq4Cxk2RjBR)J;q zFY>4@P;GIOiQC={-psdoDk*Za-Bsc51Swy4?kINAmt-BRXO;XhjPfR$EB6u7`)8jpT&&5#^ z;OAY-ZT<__(u475O>jg*Tv95|yZ@qpw?HA*>agBOKNL~oMq@!t#NviQm*p8zqFYt? zLSzItFrAjL9X~LZdbOT;x99YgKF3M9%P}Ps@GOPLJx`Bsn`QkGAC({_V}Qfb)c(z4 z;Iz2vK8Vp**yQoxT{}V1j>L1bnpS+I=(b z=JyBC84<&EU}ryT9!0#_S*+zdY;3jIY+Fg~<$HE)*S>)IQ6&Hxeo5K8_QmDZ<03s$ z?V~?e9!0*f>E7~&4i|dH=b(PG@`T0b5Li37b+p`N=J6iji`c1ajQVbBa}6-=IaWi| zG?Hm20U+h}An#-SMk2>;sf_FqH@P5t^kpEz7$>P$x@VN+VC7CTqj9qVn2p6gfhd`DqNxuEJjLExiS>0wHKj%eTBnGK z$0eZvq^=vM*Qt5Gm;?mpgJh$VGiM4fm{aF$|A8F!co=6A+_+{KRG#E6&c^|1ck=v1 z=fu9L^MK`n;C)Ry->-EZ;D;F_N*SKDy1QUO1j5Ge^wYI99szr%}}G;KiyL!Hbgq6}e-oRcQ! z1D%R7RMc$N`j;DtE2?Aowz&1&Nu0VhVKsKI=W#}Jzo{xT+=KE z%Nf7eOH#^XtN!LYmp54a(-tA%@c2lO_|%Y{@aDM7YwbLKeQ2^Xv$JAlrM-}L<-v0@ zi~BQmjRcb`8?@p&=E~UvKT^N>CUt1EjCJOvq~&?Fp`L(oDYtL=YUBP$bEj}A)YWb+ z+>x`T_1@1(>~abUFY|*LRc$EI_hK>f((xrL&X&v={c)@^?#x)Udz!r z=@10?_>M4SA93g}Ff(KqvhVM){Hz^!G!(OYzwN7p4u>$lH8@@Tpq5&2L0>64F2Zq6 z{}pg9ue2WdIQiRw$UkeKKUncBwAX6XmQ=%r&~y}1Uk{8q|KHRBwxlrp_ElYel4f&$ zqFP6P%UjHdRom^Wg4>s}GYX`nyrK$JHxlc^3 zbG)XR86c~lG8<`agUssde~wESI!qjy73MrjOiGZ_(IQLODOie6!i?WH8+UtM&9J#j zQ*lx$#ZQ$7Ro@-0ru*dn8)6;+ZuP@_q@&KfrxT=YE!nrGq|~;nDzkzLmWO9urfuvr zar*4`UJpD{cr)R%=-FfdAC_s|P=sRc2 z+VoYTpiv4;Sos}L{262Q(Oob!g(&?iwzTx*YT?v^sJtC7$aEw*b48=oLQ}lESeRG7 z4^fjnV{_kJ0X*mII{{F zcYDNQchy~H_-@+W600&RH)~Bfkg96UcaG7b@6?pr@<;i zZ`CRW+^h?@7efdP`pw6h8{Gx`@Ge{)FedB_SBgjpvbD!XIPy&@uv&lo6gvkNyL--! z-+x@q$kMkd@cSLf1Z&FkobBVY-yHU}26Dy>DKqh$xDsyh&>#I`59_iPL1#SCxf2bATdJTeSlQ zvM#CIkjG?U zd)_*XAn{~GqIbI)M;+>~gZCD7Uk(0*+bVC`_^w6uPSd?d>luO>`zFhjhaL0*hl`y_ z>38`8@I-hcTIFerwPE!_4ZG7T8-gD^Dz|a@E(*^&);Xn&jOuVz%X_C-jO{KfZQ^KkKl<g+V8cnlOghvvJ;`@eBbp!H7m?v@MFgY@0Z<8) zSpbr5kJu7lC)Sef+N@kt8IiM;`D?S+C0{>eK~2Sik6f4N~Faw<8s%6KbthHp)s`ngid?@U3}R+S=2&I0L?ovfbDz zxZfsQ`Dwf0ep9<3gM3Cv3Xb)t)#n64dEtm<>G4RL|7aWHp}n-fp=!ltAIO!>=X~Cb z9Cl{qvW+XeK>7P0>=g23=2}cH^GNLc$P^#e6YJ_zf8aDBZ_v%c9DuQeF?{Q{sbf%j z4<{>{33tbvajn_vsqLD;4>Xxhb>0&d3i~k1COD_37##9s^#2#c_Wjj@UN8b;qDq58)^m5i7PbHN1nv!8-sD z`(LA+0BvYE*r?6tNT>}t8$YK6?mD7qFI=VXm6oQA+8Y{>MPdGkbj{C@%Q1QXi>`q3 z-s`@8rB|8~&t<3G)b$BXN*D(i2L||lt_JI>QFwjOvj~-w_5KVj-TbShb<)^@$4<1I zEbSC)CQdXDp0P>7yVquz;&F!5gm0Cma@5^nq!QHS0&pgx)dq)7p--Ks=b{>C>DOE@ zyh(``$v1!xUw71{5RLs24m7FiqwycEyQNRr*UdsgZc_RsKUpEHABuv~125i;PEPz3 zTRwIrWP4fgL7b~xPIh_$Q(10WV$XI~W z_N-oLOm~5fz_qd%+m6mO8?8qPJB5q!QL-SV5nM1-3XhvZc%>FUG*O;DLy{`0`w22& zigZ%Q1XnVufz&=Y9@3A%Y=cUqVqwJl0q{d*isq|N@qPr z@6WRfm16^T9j*7WeRdLV&l)_URe9HWn=t@<>)fCh(k#>QH&;eE|j%A_@l7cYAh(h zE@xPAsI;o+LpTbp?i{lE)}2Rki07r#PNBF%cqAp|t>BNs8qs;uHZB_YvpIW{)f131eZ_415m)5qkOGUPt68hepIa zEddOns3*)eR!M#0yZYf)zd}mtuN&c!1K-U@uU{{HWNHWOF z^E}9dmM0?UPwc+RxUcNyg;1`=demKi(f8uAFGPxR%D6!5fM*@7W4~~+qp>iZXzoh% zk<-XL3r&c58eFU4e0#pwxPp){r03JK$sd3%_M2zxjuj_h)EJfiwaE?6n(opKpaucS zz-Q~M!us_E2S%iq6F5Kq;=Q^1rz@MBfaZArL>do$AqJB5qLA8AHs7d06Y({P7cah) z-j4#xK@erv9{WfMpq201?ZM)Or4mlUJzw6wBSLYB9CwOrS2EE{RQy9w!~ zcU}cMurSqqnR(*uAZ-N$CWV)yBuAExVw(@2{SIgruf{=?%3)v59Sz&lyFhIVpT5z@ z(H48Hkv2|w%C|@UMHW7$$iLSLaLcLe4N5|6_rt@`*HOv)Un;53cj)}mGr;N-M%*%f z<5oUv({1H_xPxz^TK-L^ z)@AtL*FTeC#Iw2{eP+V1>glHDPPSHAGOx0F2kHtt1s^~6Lt-~hP1&H?VaPsoE?PxN zJqR>Jg!kNO$klk*GSStHw3D4x)=og$Crax>0XH+W52k~*axA@d=!&w!+H{&+XkUYh zl|BZV!DUTL!4=S6FI>~{^sci*$4sOL2NNjNw6@K_@X!)GKO$_Lpt`zxux)bg#M6M8 zA`m`)6A@31h}Y22aFzT7)}R#|BYaYR)VlKN2&ki%rEQ^H zll+f!aO9*ol5QM6vBn5l+zYbnos+Z)rE^IEM(@9qH|oqSrIXevf&CYZf&^ei8|3a2 zIGtCLFL#d8;fY|o@*y|xZF->RGIL&mDfNq5Z6gr5(583V3*eXtTT~R);{+f6-2h>11F}y{Qhp~jVwBH8 zHoN3vwLp=Z%dX=-+&6h5PEy%u)o|g1=ksO_^zM&TViC6atADdstQ9e(^<{`#F z97Kv%zjS_0iL-DwQP`@ZtDXF1xnAZk@k`|JuItIjX08RJZ|bVE=!L5|QIWuZu3mbs z3Dye6NB4TUi(mIrzgCy$82TNXD|FQK1IIz#*z|FzF^D+ zzkn=(|LjEGy7{{JVS^fis5C+T)R}`bXSAhITR1R2XY9gV9jJQ(qKWm9pD1b1+x&My zF#4`v^BfhzIeu^t#J}Xb%mJtIF9CUN?(C4RT+mbe90nB0-_`@C)F2RbCExX<^(nJ$ z?_{E<|LLr0How(4l~ed7>p?eS20IG@vW zB!g?IKUo(-U_M?=LgU!6?_}gl>m^_w6)$7+PQ1U5)H@c&-bv|?sBLZVNS^y=uy5HLO~=st*QD+O(>D5Wcn+TR(u@d#cm%K#sCI%u9G*`0;cby^GDHU`0vi&m>lvv9D8EzGS+>ZIt zy#x0ng!RR5E5wQYJc60XXiEOIApc($p*T;< zOgQJznLq7Y!#?XJFKf2tdYgybLKldcc_ve*G}?l0x4{^8Ts+?8PCmH}ul5-5&Y)C| zRJI&YYIVBkK8t>sG571G%$$LKPr8hI0M1QG;{CUyg0#Z3!#M z(4JFWP*%g-u&?A@c-4y+kmkAHCyj|Q^@bA;gf>*iq+~ht^aOhQW!n0yJe^yP{dc*q zT)hJ8a@4Rlpls*-_D{hci$16@IO?HD#<YVhi1OAF7=1UpqgJAqDK!25skYGW8tP9OSt#EaI3a7lEFKsz*z8){Z_BtfO#I zJJ80`=zC!pzV8?89|4RhTyaCRoDMT~^B!zzS;gmO2ik>2p)vVp)80zBs{`@3K(2bY zB*9#eSsBafAr!n^ULra$-lkC*(nxML$&()VMP;E9$5>o(<)00SiXeF8*PKB5%}1I! z4cI+K&Mx>3d9mmodzL)}X=DpK9kg?&wPZ6wl>N(B*!sX0uN|T5%9IbmdbdB2rN=jR zWQ>LWnZI?Uj<8eXO~zBbh7|yLbNd>Q51n%v@`APUu9}f*W^%KRA=2ZmIi43=U8i=g z2S4gh>{iD*bKVW5-Ke(ek5=}W%}Mb_T-HfvYL?C?NPI6WPNaK${%5TTV}HQqXWMb@qg;NE4YBLgdarH zv|*TUu+&gcwQke7lf5{?7`&7$L$s^`yISqG9}>@95N$%|977SnSG@)=IYq#MqNs6_ z7%5!#yyvU_-!6?Et{TxVh9@)w{T;AofV|D#&~{hLmM7fmhx|is%`I({jpQ%&K!SFD zl1T38w6kWk}Hb!YuuK#@jD-Ds;x$sdp#0{c|d{6xg_zvLQg!y#woDdktCjL_+q_1D@+l1E@i_Bi6q zPz(YdTau3?F_(MehKZ>RMb~hGf)-TJF|sP4NEgQt2Ru*!;iaym@V6e%tl@8M^>x!B z#9jm%Jl@Yx6GqT>XiiUU209vbP{Ug? z#d3L2Dl6D14tA_h89Z{^{Y-|bo&e=`vw!zm{jd9|{y%ND`u}mz-}=S`@H~|(V4rhP z)#7ziIlG(2JmV8V?I$BYoIHd?Hmn-w&(;PjYw!#dP(S$lo@eM2@Q2%rL2N+Py^^Ni zu(@b3n*|5luu zA?riZK>%YTg0T_8GzuGwI~huCOQHN7QsVlj@qdwgpr%75FM%Q zDs^i&@E{o!iI@{)>SAr?R9pmYrR5oe`qYLhUJ}G;_bdYYyGc)U zp_k}yXf^`X>Xq8Ov*vV455FEwxNBj3njaRIh*R!Ma!lP;PwP9pb`}UXN5MO=jfwZ~ z5hK=)&P7NOqp_oF0^_F#Z`lVDH!Pg2#}e1F=JxG8yq?M5m~_20)iWMXIGUhQO~sFQ zw*fq&#g#I{czw3HSpM4i&xNhSvk^*g-My2NH$N9nRu1xq!Op~@RCn|;Q_=v#05tc7Cx4J!_|mTP+Ww_Yg^Sxh|EpB&fIJ?+QQJ#_{mfhFlbzQfIL-qq?Rkv;ND^ z=sds1%*nmRgILR@x<=4(?fm@sEPKDrQ{2pmkn2nH!a2H}X=GjA{#63ToryzgUdqMq zHfar?&{&$|50A@2rUbu055@3Jlv=^CWqS|gZ2;%^*pl4R9`(bvChuie$HoQ+yn)$E z2RzV;y@HK#ZHE>~Qs8-j<6&B0-g#1?Gtd<>d!ps{fEU5z|CL$IMWAM)1}|TDLYt=2 z-p%9e{Edqt`fKq+JZMO~zX0AL$!64SF`g7^gC5Bh`kO&I4uOgSI?iwCM8xQ$Z&EHB z*R*6gF0LJddR{OBSD{aJ2@cGGqsBJGq6>mQdN{O8KKbplCG~eV6%~;p)xWpBf9^|y zd*uL!yaB3h@;|ng+wKg|GuAcX{Szlt9CG7(@ZaVA{Mx(m4doMN>?u9FPPF>o{U`s# z)u-#T$z{DfIk|Yn83wxz(;velZ|iMP3cBQ!!)`qH*Q*`+LYtTFcS|yRvEDp#KJy>3 z3dssai>)&s|DSUwo$*8Xg80d~@&4O(OH`yAAHS~pedhd{TIHQ~4EBC`)toctyqX_s zwGUXny!CyguVCGfd-CbIwS{NfFRuocLc1H*`d&Nl3(31b{>Aa`nH2L~ryyxneb~z% zS?~U-ZU4))<56zkd&WQ95tC}(-%Gj8mB0-=g5>?{d-FaROmW$;Rb)rM`TSFlzvmy{ zx4-Ux*&C3{*O&dj^;NoL-+*Q|K`e|dx)jtJkd_a8v+vL`>7V^2FJIZ+@>{+E Q558mYboFyt=akR{0RH@8fB*mh literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_22500.png b/Notebooks/1_N_horizon 3/sim_22500.png new file mode 100644 index 0000000000000000000000000000000000000000..11bc933b047cd9fd83504b9bfe45ea2b4be9384b GIT binary patch literal 20195 zcmdpeWmwc-*X{rcBRPu7Ams>xh{S->p`d?CKtM`L7(%+cm5`QhFbL_Au8|lVQjzXP zy1ULEe4pn$CqA4{=fmseFkHj_?ObuMd#yczFXSc3h;I=?AP_QXsi#U1$R&OV1n&)$ z5PVXSDLVn)1ni%w+bdfc**odk8bajs?5)kM?9EN|Z#x>=+L>5c@^C!lKt8zr#@^oA zPLPw+;@=H8tZa=rhk7YKf=;ejOKI3aAS9Hy7ak-r84iKSzmR_VX?&z%-reu z=0Hr!hfDarbrGMScixT=52pX|@dv;^JofgDvU3(;2tT%2vkPB#UmJ~xcPdz}mI%2j9myme znQk8&vxElW`-Y#eKlUx=L*=b~qVDF=^ZM&F``z8n272Z~t`zOCZWIENP_j1tiO09bzjjMoo#MkfyM(?4%P_-Y`0 zgJ6wqu*Ob=Z?d*&uEnNDk#*dj0tMm$6!9_umgx^8tQe#chw}Nsc$wppB%q%d3zWg8 z>w(?uc>+T{7%zsj`#6;kIy&VnkEpckHvc~45me`!#Cv`HCrv!w=!Cx4)eV!6EY`Hv zf*Xh0!be|;kHK4qi1v%d-IZ2y<(~Y&#Ofyw z1rs!rfEM08zviU?{p4ml@c|}IiqN_xu6|W~kXF3%jxQIhFBgk%(Out-2KM1Z}W(b)|MZE8RFBd5}26?-39}D$081TOJP>c!+qjc_+eW)Vx_- zzQi^6A$&Q|jOg{Kfx{=0SqNVw`*6+e!yyr$A*|rYG&_13i3xQZJm2CNsZS!cN+m}; zw=DJ`-IxyJLt-q@X4qA$;WRBP7qUnuI@`Z13dhrxKD%2V_SAc$UfbWwoeiT-gK~!t z5}qJ1l^ln0$1Kv92!!$oJi#7@BhRj=LzBTVlGTzO*oW9?hS<;r(i1Vfu~}P!&sZQa z{&19Bh>c>%W&|9i9bzN0L2&I!hfh2`>O?c7_{zO8S-D;G>yNryM`@-RovzouWAu<1 z416XJj(Wz{T2G*U3w7eKC74EZMqFFig7gYUibm8j=;Fyk5u~HPpZUQEKR`1@N7~M0 zeFD+!?7X@Jqy$F>q}t@9e>ZCNBpVVY@LNAPDDUMmz?ZYUQbrS z8e?yc*hX5^W@F$e726;34cewwH^uL<{Q5ncg~W)h7@b$4L(!V35SmxtPR)ax)`$`A zFlV8_)cYz-_#b0seA;G@3XWxca zLSf>_Kxt96^`k26sUcHiD3N{$A6SM4np28&E}^D|_mvK@mAi*7Gt%czm}51h$p!Vk zUH&*~xrW>;f@$%CJ}_fSreoxzMW{RNFmV^?R5HPvLaGfcOxzMWC49}!_=FKt>EFyb zJwbtpW@h1|t8YJ{tGSQ(rTkhJ`bliVPkXQMF0xraK+XFttZ@k8t2LSX*wZX@JwFrH z=z{&k@ZpcZHR&D8A!(?d3{=mY`$hI`q=8|pO-=s+jEmdXT5roNn&w(mIsN!_d_@3E zo*Xe7@#o2wdB~<*9iKQf1Kr@0g$fy1Gdee6nqPOe3bDa(99R3nx}M8_NTj?LPV6aL zBI14Q4ea|m8R9xbmuS8jPQ|o;e)GT_`pFCWiD5%vlCP%!wsg;@W^ake^xh+6pk$~h zt@zhVsR-oI!kKGqvu`?$)br~{^*5t*bS}-}ZA)Du^ujw@`;>15p_J-a-*CDX&Tg?- zgI0@D;5c*-v0<~mVa-w$^fWvyW@RYVH1U!!jri9)n~#oOhS*>&hyO$g7vjfL2+Qlo z6EoGbO7;cWLxGLkTvX11 z&8LShYz{J!_EJ#tzGx;^9$y#-9!D@THF@b(j|y~(58Vb#m9lm)lk_m(9`G$VC}7g< z&Dg}$y43|m)WXG`1$;L`XZO~CQxJz1GV8W0Y3E)vTWvwyr)Czg^NgECt=jrzc`M+p zRLH*16V_!lwmNl99FtjVp_Y>&0kRYVPf7r;Z%A5W5y z7-0|qGa^{_meddF#;=PCpBdRyuh(IHpm>2&9Al!E@O#hnLqgF9Fmb-gdRSwGg$SRo zwScw2<2VlOFlrH3`_}8MxDHcB^E66%o8j%s+5y8DZ^m~m@CsiTJwX?Kzd!5<10V2( z9Yy{bE3UCygRDW~`EB%*1?=XZ!FP?PzIwI)DeLi9!}Z9*8t zQjOC*ZhE(K)P%Tf&zH3ulTvg0lF{(4Y{svH54-Q7eVjk{BK zmIo-ju~95McJt36LBYXQ^ND8s^YJL>WzC7U5Ne)yVHfTuf3g`LB6`U9Xwo#@x-(I@ z$lhR*==P{x_gp+GOs^vzIcn2N2hnm{E$i*=>onOxt5&#RwdC8hcORmONEiV!lO>m@>^oJFc&7I#0+dmk?zqvp=n<&IOatrG(jtD$lYScL$$dU?q{p<5H_a)^t{jOwz2kJ%M z6X$39!n?i7qqgnrLS#u`WOA?b3MpDbXa=mPpDr(wg3j0qMo9YE|8`jgsNAI5ClFK$+*2#DjV>>3)y5gv7V}r!a8q1Pq zu+*Dfdw#mUfT6K6Uwc#}p`$~O+kXhEHSDgKSlZ~Q7EXtHGGzC&Q*j4*yjDZueS=MP zV=1=~sB?Hq*x|a@c{?y|@efU|K^{GNw6oL~3=}pN9Eh@x4mtXG;@nfmWiF=9a~`*I zxYsX92C~O0DmM!2kM6%CB-8)%^HT_&&`ob73S)h=m_;e>{JSj0u1nzh&6`T<>OZ1c zm2tACAhP>1ca@x8IDRHvtp4!CZLKOmXsz;{zds?+tfpF*Z8)FhsHn$km(aR!Noi?z zPLBTYHyhk;B8Uy<^W4B5E(ec9Lt zQ?Z(sQ&kJ8U-I%oWI3wR`&ui?Pm;C6hkh9;D^reDJD~PfhTLlG4gY0tv&vF$(iu)Q z`hiIz^_!s(qwdts$?xy>bMp}r{u{s3&Z09jnN{;&^$B}Dlhv%S%m6)q{(R@=19db{ zxA5;;PCmXkVAyT#>;z7CehVxl+Z}Wmi%Jyg)D3-Oyxe((SOlWj$?AC(V zdBT@4LDRyr6qoq~_f<39nYSbyA1f>4RdQ7$l9Fl^2As}M_qQ`RJpzFqZVsZtA5r9* z$kyDral?MG$FD%Uro?ge)!AXU7q`on0R$-M*StLQRA`yg`glj0SeoLOe{3c^_7#?a4gBz_#Vf5hK;^gI-|nZu++xM-%k#=1*Uu{ zy_UIs(?>#!&U6yR{JRR;`Q{lnn?6D zI^vUf2(s_d*Qi8*3PzDM-+*REo8m0iMiYgC1NHE`<-&&4>1ln@^TY0}>S&Mhn)O0h zV;+2_`Fc#c$E@;8oJW^d8n$~Mg!?U9Tg&ToH=E;002eMM03W6QKkzL|G+@m9jZlW%w6kAq{rnNs1>WDr}y;6nGGdt_u}DLM3X!zs5{T|l_F2dmKTa&V#g*Sr&oKW=d*ab9KA$ zn?pYKIhbQQGszO?|9~}*wQ`@K5$Y2_VMsl9zA&tQ ztIHVBakI#JF%4wGN_j-H+9AnDwKl0-E^hBh(#@Pn-{ag}<^W$jtQLoM|Npq^D&#{2>|7YjLZU-t7SZtd}RJ z0vL?I0y^uimRpXs;oLl>g79}Dv4bbTqbv>-G63K+oHXn;pJ43Vt~uT_s=B{6w(sl$ zOsyd}vt-w$Y>1ZoX3Jl%GqIhz53%k*wiW?XI985yKiHVp zB?_(AmR1e?*jfBtwLk8LSGmzha)>(s_Z8q9WK~sfO48a~G8-ruo7t6dLtPM~tUNI> zcN;_J+Vy^ZY(6IVX-gg!TMY)OrAN({k66xh@N|zZ#(SO2F!;ju20cS;3R_o#0ldA9 z6fl*LkfO>lSDv?$#3Rrr*(O0=_|lfSRLg7N1>#uiiuJX#p3k! z{B+{{(S9ZWi{syp9v&h9os05~*;6t~hMA9h0>HHebS8p?v-SfHrGba4v`wQO4gc=V z_6n45t%~KU>GOn=?PGG=A;Y+0`$Z*S_#cNvY;D<|?Nu~vt~oU%Niuju7o%FaZD)Us z`Cp!!o5P{$+69sIPubalI(4p_z+P>1In_t)1FSsib$&YPIAS4`VmF}eWYcm(?S-~> zXOUjh!ET|~nB_o8p@l*cZ|Fj*Ti9|z4emuQwWC$F+pl?;c7DiE5BgBl(HSpzB*T8W z2G1}S*7$g`;xWU=E0v6xgBe((^Q7ZP$QwvO5VC7fS(B1QK19gKE*2O@C5y9@Lt4*+ zDGQ;4`6NoppmI{4OnJYB)OR=S9!m+WtR1uYarZ0opvxfuRXJpK64 zMP2Q+gX#Tf(2^|0_kCefJ6-V%sFNqb+POZ;KCRxrz11i@9l#8G&S`no}{RR^TC0 zIM?ky!#@zPtkfuP5}zuB?-15Pmr#`Wgx~iAK`(w>R;Dl*(&QWjyWIAFe!h%DWJhsN z{@_Alvb=w`t)a+`*l|l|qI=MF;co!W{_mEh0L%M-!2}nLBJ{+e1QJkX3Fx*2lrsP( z+NVFkA`T^q8nKc$Ou5*pvaIBnR39A&AnqKP19#}BOYt|voiF_%OC|^jM)v!`TrNuz?PJ&d`!RG^h{{rB~a*kw5U|y2O9W`6m2I z@-=a1UO@6g^^|0Sqi`*<>3|kU_`!mF8t~J?kgC2gTW{`3=hxS)6`*?RA;>k`@j3Jy z1cV-fKU8FK!+!Hx`5xgT4y^*DWDP20pP8@l(pu;h9&hH43k87xUw@C34?)U5;N%o@ zes=MMJp{*}KoO9JOY^O8ub=t@6W+fgTSG2wd6N;Rdw__c-?;o_i4}fY1m&rCVKBL@&)LP=YJAm z7tt_NhR9zd9r@p^5o41tjL;vK&6*E@>5wDbP2*0}C=kss@$Q#>_i+28fMV$j&W=oG2%Lb*JV*T{lPXhZ=PZ6e~Hc#n)srX zso37+kH>&XzBYv!Lt@-~rqC}YTVRb!uOS;i(!2jR@rgJ5D{vD);DFxX9o*#-!yFKJ z!)LTUss*EB@qyW+QBq33nB8gzJ#E4Q)1>(1H=F=%?Y*S>J2S}=BAl84p{b+gnVo#e zh?{TEcRh*=TJFD_Jp3QhZmXp2{f*P}?7+-CJA0ug%Kv9>`t82Ci%>@JiktPl{0C#| zovYyu7%ZRMT>E~f;iA7qHV1B#B73j+!cjS9FNBB@q?bHNcJLCtfwK_*KftPX2pjXy+ zzA&Q}I7?=PQVv%Yf1aG8+vk^|tfDLxV(#Kdey>g2b5Z^{N_^@jI%kDYh4; z>a>k@KloBo;G_J{&TNo!fZg;4y)R5jI~B|{{h={BLWlNqq@I3=84z=p0XCn*$LH{w zCeYceUiSy6aL=p49{d82kvFMlJtkUq{cq+AvuEE5rOhR$33rOk7knzlZph1%{90!@jIKw^S!jxbz0yN)^;OYK@;5#e`K(VX~E*IhUr#-f8-#F)wu+rq_)Xe23C zFu&fl@teNpt9HW5Iwat_>hTrf?+FI0#A!x20betG-JA$_TCutaI2z!3 z-!USj1#}-HfgjA)C&1h5!nPi_pl_fTk(i~rvM5Ut{#VL%bv{*W6>WDwehYC{ zM%spS5ElUr+VP5L#-mv7OkGyV9k#g*(TwZ!hFO)SxTDWD0^5nR+EN__E>uMzgSB{b zq#NH8l6(uLH4$6ReRpzDB_!gJrddLrJ_+Z8i4NJ^`|%Z-Z}T7RLJTg$hf7INM-FrE zJ+YHttXM^Yww1N2aL4ox>&;jP2X+S5h($-CwXTH+UOwQqX8S;4{@l`y8ROiNI^5Rl zjdIct$s1N`YR_ehuc&?-r>4f`C3iWuy!RmkPo?D5D1ZBfLBv=Be|pF#k(z^VH!tLh z+B%(zfV^z!1u_4tQkN0O`TXq33>D3UDsvv5I7@vyhtFA(-P7*OWUQ#34{OhF^`tZ% z$9{-fb*BdlR?6g>l;R|$HI2b*O=^L=Sa{sviDhaGqn70>wzc~lCu!qJPDvQI8GBVE zfxDWjX=Mr*J!d>32;0#|e^RBk{??h8|ENQ~BrrjiZ@XhUw6?l{*!#&?a6ETTGV2#N zo0B5?>$8G3*n(1!Jvbgj1Xh*7e674RpKc2jU{? zWRFb{;k3|orQJw#;}OG zU;(q|3}H0=?=}f)e%%#g=`+M7Q39_2d#BPd)j_Y$c5Oc!x7uNg7=_rZpH3)+QEOqE z5r)rcM^i+#NtCp6aD)8%_dZ3qYML#%=p7mvv5$1v$?_rHT5g&yCqdvZRDU#oH>BlB z7iuM2?Ru}%0xW`7G45dj+`}H@8S;5%dK^)byZT#Sbs)WbyhtmD%iZi_&3T4NE=Ogd zCl-6AkRvCy*>At<_$}-?<>BM+-j1%kjJ+^{L@^@#z4zU$?LCqI#9HOdFFvEe?RToq zH=o3#fBx&FGMNa%J;#WZ|4!Nwcq<)1u4EL$@ZY)F>sg0$xc{kq(%a9swGt^OEa=4^ z&Y{)nMU_YJ+CJ@?JWa}gh}&5AT0BHK*-Pn-88$mv2SfH;s{aNp8W$r^XjR_gi=5 zM`C^%WamCsVP_3AJu|d$6O^4OxJ0NRyk? z6lPLrVIZM0CR!GeLxYvEby{mtdVKk$94>Ht&Pd>xdCt z>Bdz4J1dPu;dIgN;_bZUFRdn)tH9>QB$+uIYTqp^$k*QsVi$gBEVq4DoBY6kcct;i z_+3&?P9t>}D*wHe#-c5b>vM++xTr6^e6xZ``uKq_TCXl>#QnskrglPg0R7oPrM9Fz zQZ1^mG}dDNyFjkVPVxs3(7VeOo5TM1WAi33(_|y@ z)z);op;q?Ce_q9p2zMA-?{ko@DMo8m!##2MfV#t5LMe+%{G+6eC@|p(57Uq3k8j;d zQZLK!Z^5E3=2bX>`Sy&aszSd{zBP7sf$JW%GwIT}9|Eg$`^#}`PZ`(#YaP&4WV)jf z8o`=BXJCx1l%yiu|I-+)z1P>zSE8@{sGV1})EvC=S>pUD&Mil{m^m#SB0uJR01nFb zX+zKaz}Xn_>gI*by#kOtb?$Axq^otZ@Lx5va>uul?&MbVZVVsY2R8rp_!2SB^hX?; zC9w#yv;UZS@0k&@I1uAw=x0!-r~kXauPWq^O5=u(_K$9?<@yE2>?H=B2Bfd#q0wv4 zNLO^4XBF!bE7Yv4UVmSX>GWx>?Yl90y21@i&R*5&cab3YP_A!;hYWnECSDQDqNkLk zYDi<%LjWwb2hj~OaIfyQwd*y0aWVsHG&x5w!#*-9$pWdKpkmUEpQEN+lQO|=HIRc!oB ze$?4IJ7-{{?t)}=qvHAObmdFrlw=aK7+K)d!!9ZiOQlO_yhpB`-pc^RC%PZ4LN*U! z;#asx_^B!{4PHmpB7LpdU))618vRee_eD0AT%&J7C&SxnyetD0_$ z-PKoU8;Kgb(IR?Uu{hFva)i=Nx1!gM`jxui=EIQvDgV6}H0-LQt=aO~A;vt{ zY}8C>H&m`eyDTQ_rp2sPsT#r0TqZGUNBf1!Pa<%g@fI|I#||79>~E9EK9hJ@w(^8C z=PD71d@g94E0a>MT|$aAgFTW^A%^+M#Dni7WcZN(;MA`)m~RvKb>SKVMl-f0klRQI zeAoU*F=F{0TX4{ z?YCb~Men{5TJ$BVh)5EcvmY-IzWS3klm76TI)pE~#T9-~*GLdYKzi%ppLoEO(&a_o zEh~jH0yWuQi3}Akb*2P>>$#x?LD_C-FYm)&gT3Wm=MvsMZw)3Dqeo~xcUajcI~b3x zJ3ev~z`(fYu6w?rG*f1}@2os|`ubLy|6;I@Fma9z*v2}1h9Yw0CVmtu#4K{#Uic=8 zwk!)cF@$0H5hnBLpkl+!qhcL^B7=qr%lmsvGhBskJlYN1r7P^)ec9VvYAQ?SKqj}d zuKGhLe5qAn=Gex0qKCY&rkGV}VlZ0k4q2$2`GjHJCnWc`T9S;*7V+sS062A>?z6aB zKTp87TNr*PLDVdO!9X_Gp$hW6L4LJoq zlJj+4r=@D!!7NmE$1{b<5+~$B$a;58*itJ{-qly@qcNI?Jsx(>CMwU8!n(V$(<{Xu z0$x3j!)S)b1f-axm(0OI1arvb0j3@{(`9EXb^L=Kr)SpO8%$hr%_x1mdQxGMQ36u@ zSb~KXINxeEJ4pVR=7y>`oS@cjt)C-B5xATD*wXQ)fQE)IM4`4MmB^?t69hB}ksy9B zzi~c2NS(|+&#wqT+$;k<>7qTDVbEJv{nOKu_4SYUUuYJ&*BT_(C(LjBh@wNM^X&i| zw!Le5OmctWixo8nxS;*)eBirhhus!R44Qby#cXctiXK~6-z@hSl!huk9E9T!zGsw(SlG$$Nf6#;U((#5Gz}WK<`PasLar z2Bhzm07Nn&ui2*kJFd7aGZkpw!61k#J?snlM0^aF8Xer{#;fwOzs~hg25cSjNGe4S zcq;$X$H%)l*tmPLST*-tyV5f&3u}*U&$Ox#KXPCLBjX=A%H{2^zIv<*eb^!;p`2cv z9f)CmV{R%_?}ai6PF{I@Zi#aSQtOfUY2u91f)6`W$v{5dX@ZR5=tWNM5c|I|t(2+N z$kHvaOyV_n+bbYY;i|1AVQ_1=?h>eG=yM2lU;gAWdfa#)2e&i#Ls5+%`9wOawJpZW zQ!;2OijBN8Xt`1xa5(@dkZEH)F4#kSoMV*8MC6*>!AvQka$t!qytU8F_pWQY?7 zoF0q?Z{1_>$N(rc@~zgEEw>$aKYQOucD7Zz)j;FRxI5ATnNv-AAgi^ktE?>z0Ax?F zS7QWI#&am36Qb?f-fz8(>oKusZ_6-KR0~^~DC+o`|$1Xhs0COP8_t<|}kc(a`tg11e*!5T-meLRD&{f9v z`Yp$U2(O!S;<=|hFNK!JHAdIC^lD*g!EbrmB*9coF>0CB*9>7elCtNyqpB3SGB!YT z^|z6Q2jeo^vbvf^d+d_yebeRauO=TqXSTRn05R!v1b!)Ybf9Pet8(nbW&py8fA(1Q zaBsV;dg|TN@2tAW93vvKke*WO6mgykNWwfKl}W z*Sp~jC8_=f@W`keaMf`?MGqP3zM6Pk^-SA)Tia3!;hjOHx|D{FR~H*lY(Tji8WDLy zD^EQXh5h1+bTJU9lOcidTdF&89QBbFxJ}-*^qf#6IvI*g=S}1#+uC~F==)ObGbyf^ zHF8fA>cep;V2|zoWVQUo6f!vevw50K<$-%$i3=_?q<6P@1o?6ty^*pXGPa(z&wqC*9H#3Boy4lmXGJyut#8PX*Kz1VTpWwVOAaTsKm$5bQ0N-jzOn zGyLsorQ(YZOES?URdcy=;^K>IY<*tg-hjt;%?u=NPP>ifRZ6kxxgN2=Su`UA60wXI0 zw_GdpY2)xZ47HeRGT?}&Xx48v)v2Wp&RY}QW)TY36tjK^4$b{!Z6SMT-1%c1s0)pv z(($eq$+NK>)8cL4gGPpJ@Tkvo5d z&Sq?PnJu-Nnx+f@24e59^w^$#GGLvd8z5NsneTBFJ4#H_Zqt{(EZrto1fDCUE#kDs zc0z?^)9ZJfZF^IpHHIQ>k}``9GiOCD4~!bvK=<_tlEVh$*k3j2-f6ndq{d+a8?D%6 z!II=$W{QO@u(~TvZq{7~XRFqago2S<>v01mZ?x|Mq?tWFE(N?;&N2;HT~T{EVPfLm zxDoV)YBb<>gxh4dC}lyg5>+Tveq&())>t1P7TLR&DfjNlyN|jJI8mb9>)%xlC>_&iCdUYg-V>^P7^3NUUOlbh^)dqr&UJaa{ z7ml4@W8)hD)>NtfIJG#0VK84p)U31r*7(^B%cAxx^n|DhR!VDqi zeD2I~x@!jx$;EwP47Hz|0-T(u7)oHm>)=KX@VqInZP4u%~OEg%7P$wI#VeHSR|kMU!A-gI$QVBnt#6rIbN zn+Lt@?^hnf&?5kdwz|ZO&Crj77@En6n3eaJOzz6uH(kokTdss<*z-M+F?rIJ^!9qd zqSW!5Bl~*~e7}UrINWV}d{GKqvw6t#57KVYsD5WaAY^qS1~8*5yU7C;{aYzs9Sc5G zYQGya5n^?(@vVePx)FyY){d$lH5KW{f&|xiKv4fR&%#-mtE4Q`vts+h%6-g_^3_lw zzk4^zc58JM+kvhFN-4{hQ$*3WRAT!>V&vO$x!J^&8~28;#(o3#ANtaE9I8fqO;5%K zNc!=n{q1aJV8NN?-j0T?c4kUM;jX6jSk4+5+l&x}&#zX9VofHzLOze06GzJG>G1kh z1!e%G+&Bu5a;Y<**ls1>NfTb>DoA#R`?-*N{E-qE(uj7ze#w*73Gny_rJQcchmd); znj{gEGfX(lU89XsrliR&FEwZ?pHIE-)`lv|880Y2*X_sza zh>p^&_D*@yi2JN>()L8HS8m_T&z&7m;G7#@P_yaohymfdP+aQ6=nDGrB=ZG=UuWQ4 z$%RPUKy`i~_sjRi?2MNk?%~SqKn<=@PCJgM3o_3ySis?n3V_!^fQSnSHm^wFf*cu= zWG1EK+yDF-qZ!}htz0g6srK6lT-QTl0<#MwEM``o;OHX9Tr))u1|bLja4$V>oX~p6 zkR0qyEZ8+Vowa){6v{cc$glv|bhK+d4W4_7qpEP+3q2s1Hus7>4!3WxY)$sD{BFqm zP&jeU?LZcq%^|l4id_FH@ZUl()6!ys>aAU;5WT+GTW3~BB`@Q?*dsjzqodLB$p7e7 zRKVq_!Z>$HG7c;BFCF2Uaar7=b)q#e&H}KF>u+xPcxAZsA7w?&ZUqM2=q07zAr;le z(Wgd|8zO!ktX>+)vYJ|W~ci?iS(n0Sv2BdSkz=L7^S-G}ZJB(XPx@QF+i zn_^Zu>g}(Ya0LsxHfJ1hggLlWWHQkC*u=Jut?1|@0C zHxW|$b`}G%&uScGfiZ6Bk!Q`S@3liPoz=V$;bmJ;XQWTYy z?@U@d2a)3wgh@2TppErI2zL*IfllA)ExQ+&n?;M6Da=~{ z1iF%Tm|&70iC+6n7I@ziJ+#f6N_Zt-)tT|fKIwl@Ax_P377UyvHZG1KdKx$OIESzv z*J;g-tue2ztZdfIYFYwX~4Eq6PXlZ$w^e1D`)+o8zh_ca9t?3S8>gK$GTxD~Sb4vDEpVn*RJ zATP~{3Q=f*hX*3*Z=i%ZF#K$N;N}h!YpH?Z<@%kyUwNZiP3x%|<7=zuE1Lt(%M_`T zK*!46Mof+QCPKLUFa28RP~RC0g0q$=silaXHU&NnPL>JZj1`0UINf zruAIan{!MkE>6wLqN2PH57^r6ZcyeeRm*u#sy6K*YncP<%zp_w-$1>^Ly$tLI^7%? z&hHfKQ2#!^iXP5)a9;{9HQ5Pd zPx+l&*a%AD9$}BY`c(XB1n>Q=&?w98PDMsSPc|ad$Sd=YQ*~RGZMZShC zk2_q#1r`kF3+NFwp;x7Z1+~}6#c1i>VL?GSzR;IWIV-bTkPiP}z2O-?)3Tk0oo$`S z%;y&jt~&yUb}$6EA2U^R;)$d zd=56?s`#66dhtok1$u16sqA5gNGV|LHQi!PnSsf9;9U1vu6>F9QG$rMQR{C-$FI4v zq+*K$6qc2EkFKpj5ZnI-1iRufM<#73Pz6F1(ottXL^1H^be_%JewDjJs`?o(|H2b3Tl! z+ou7#Q|ENQ0s!*(b~q|Ym4})dmhrScQ>-E5yN$d)-%ml`+0u~s{gGEndp-laL0KW3 zU^jre-NmNmrs#Hm1Yo~wTTzTfRjxw0yaPqRZvYsJi(d2c^D^cpq9wd_?j8c7QR=+p z^Q_sOOVlr7)veY)W{$1=3EbSPkg#B%on>-$0ENog1<&zUzJC${HUi9$ycZ-K$B*8% zQjcXti|Kf}=juI^MgB8>`r8D@C@d|oL?zWNMC^(sRKH(8bwlX7wO)0fo&B_`v_Ee# zlCX8!3Lnez6?5M?I3<@a=XgtxZ0KZRgfIO-u)2Or!R6?jq;Lryv@f}%r3;X;sxLN70x_A4DR7fX-=5# z7Qq?iu9l2gcMIW?d2#Z$$Z#pTwo4#NK3Eb8n+*0!Xd3J0m}#W+2iR^gn2#IeLF+x% zBHYOMAO(rS$y93QQ$pwQ-SM6oz-_nU4V=~mP$_AQp!vofX7P53vF%v>7vXmZckd0a zo?$Y79JL9mT4V#kF*qpB@CPalVBl+%$|C^ui}DL1a;gc-`Bo;}nQKZJPkvxs882bG zh@0VokCnMUzDHg|O`jrzjqPxC&S~<8u=Vrr`R+z0$Zk@4$q<+{?L@RNJub(2w!2vI zO|!En6$hIE{rX~oj>nrwSF1DhTniojs}BC6{8)F->0q&U;2tM-!K0P*jq)+#QoYxi zV)Ax_g5BCMj27J3zs@~@)Z40=*;2RhEWYL6T za-jcvCy_iTFAp8MPA97^L8)7Fe%FzX*SC~+{SEQ@;$ zyN`#{yTpW!ly7%B(G6v0)k!UB{Wa}$51ZP84?E6junoF8?PBxwLCpu29MXml!P&x*3P8Df{^WE|5SUo;u6?gCYtefIL6LfYu0iA z9ueY9{NZisr?oed@ZgnN*~kozpZyKO!)@a*!O3yPNTt@l`1J{2wF0Y}oM=cxr%tDe zlbC{pGNsze3`%e0bDk`HL)DJDZ3%wdi7VmqeW%n>drfTuz7r2o$sP7NiB@vc{q8vX zjlW7J6BrJ-Es&dxFEi&^7tCRJ=X%}Y#{%h+Vsjx!LNg|3)qR$aXGnG6XYD$RG8K-2 zo)9)B9g=@=9~8A*l*X~*XfO5!a5v{&^=9C2N&7#>p)@~3)3mG~au$xa0e6%Ng78@L zK@4ZAR)-t&j`8$|HM*n2NI{*!-Cxgp$p04~rc`ryTH1cNT0B|cUs4i+hdRx^hd&(<|1Aj8tn8C6VVfbI= z_5slV`bM%p8gVhSxIvZ1&jgCvOj-U*1X+Phc&rWL%8^q9uwQ}t05AHVU!8)hKq?f6 zE{j7sS4&PQ5x#y1-#7^&a#$NCJTT~bT z(srQ6nZ;YK#=QPoB@&|^Cu}tKg!6BmH$ZMSZ~m8R+Z+;Hr%c%*hw+0F667xkX(^uL zuU$cq1|u=r6yUlwxfVIso1Y)wz4}|tc-&48V0a9=4yi}@^U}`fn9qOKc~h81Ty(d} zi9_F@m=+=qW%Ln#Eph)}!w5XR`xoXCy86RZ@dxlgHEoQ${fgt{^ca}}VCeuV)dp4F zpx%>6b7*(!-K+N(dqfoR_j1Vp{}NgfBnDjCmcQ>?M6VvZB8W3#HEpnx!-M;@wY^jB_QzbLrm$T1YGk%w3xz)7WOc2$N%h2!<3@{HAUbd7e zaKe)(EP$LjQ9K$YaKByUDRh?HxpTbKJ=9TGahB|WecwV)yCl_$AFLk|j0zd?5yM|# z+Sk4^3PB8L;b+5Q109=OeQP z#@?0)-+Ch3;(!nGZn~(DWl$-Kw@c(25%9Ik-6{)YdRZvk{Q1r_`^O#Tk6*=%mYda> zCW(w`-u@MZ&!6_R=$p_2#Odz9I)2yX_ee`{apZDu`Q8+^T!G-MWcl#GZtt=EFmB=m z{R!*&V#YC7N%?ytjtJOZ)#@gU5^`PRzdQ77Z4=g*-hb-~ViYE>j;952uOqWqF9_8F zmCL%vcJ+=u3G2D!&#OmA!ap3e7Y%1BPYl2sYb2l~-VFrjzvpwWeOq1jA}->^9GJ3M z?1X{(f2sPt;ehUSJo7*#@5=o4sX)!S;I>Dfk93^da<@hXI{~>vdQp;v(3xNyL3G5Q z@}tX>sRlVG^OX80G9fm%t@*4SXokmA((o0U;c27Y+q?cA0rn1j99`m5~2Zd66LtIi-BJ}_}lsNOxUx6PGnDd3AY2)Ztbg0HVJEndc({QSXM zxX3}$No-ZcxV})3D`jsSe5DlLK0Xx&u4__ABKkk(Qu6F~)r~$mWyOzEdTkE;UzxWX zn3Ni}Pnxl#^l2aO?t8bNd=yu|uFv)^|8=|ibN`uKd-Bbn|1K{34@`Wkm@j97laOJO z`iz%XREx!hHm}(4lyvOH`Yku+vH#(#;H;3dSUdIe|5-L^d><4p>_571y~^!ajy*sz z=}E`W`02&_=kXu#pY;0~lW_3gtzOHQ3g5qOr}ED#h%v`=-Sln8P35(`)%R^LXPO$tSjUb40ca3y|bcb|z z*Lw{k}?< z1BMfq+e7@Kh1h)cHQ&7p*rsc|V>CvxIYyjRaS(qYXlUY*?Qs${^maG>28D-VkwAtZ@jmJ3shBl4Dr@2gWH78aT=$Y< zMfs2vdjoKs$~Qid@=8Hf{YV#>yvV(*phMw)jyWL=NOqeyW{49B+Vg!kJC#X*+G-A%bW%IY00FV z1zfnyq@W63Xe(D#l|igoXku$S9GL@0uKJMs=rWs~8QPx0;YgOyYOVz&X_r~=U_2bD z8M-RS6g1^z-28<{(Vu7XCPIr6k%jAtM@S40V;;I>ZaQ*D_i;m@ zG!ZCvZ!awA&{YZS4iwKMC1U)B7Cwp)PAHpG3q6uW*~k{GCqgJUvlL}Rh$%1%pE|fG zd&YcW@C`qY?r4B`jE0EjhC59e)e(jD9e;Y?ZUT5*Rei~3@Djf@=N7sIeXWe(Ck`=I zAVd+LYofJA+k4dqa`r%dNbivqndEzNM3witTk`mD-L5!wS>lsTze*>SzDq16NW8ZW znmfj1_ue-~bzN3#;XJ0MBhG1;X}i`tl9W>SAqm$mLd3e2uxp9ogciM%$E}D+tiDi( zk_K6H0Bm+tJ1cQy?!4Pa2}!ym4Hfq}4225cwXx70E73#c--v3i#AB_z0AZ z7Kd0iM0vFkT^dsBpUZsnuDiM44E1H?8RsSWquX0Uu-S|`tBpjKn}p_tH_C*Y)Tj|> z)DQ5F-a(Vt{pr8e!Vp;jJURD%&rXvo9B5M@&Yq(3xthwriXBngtuTZG%7%YSh3s)h zP1G%f`~9Y2$gRyEKQz8^_b|9za6jxb;`Dzv8w^8uplmcy`N`21-PjZju*+bvZdLDE z9D1{YPDy=KH&bqNsW(CzTJ7YZ3`goPen{sQEW99lM`*1Q+SnZeWn%MYV)RWC3)51C znvW+%e|hwZZ&eWcQ&&A)RwN4Jqrx;ieDFi1*##hl-mYYJBIbn!t*e}(F1o{W=e;n5 z`Hm;tpAP2XWB$%16fyBEnX+Esb1Vgg)DoFg8H=!e3ic77zYfu9@-mO3YTuCT-o0ot zsVFL`qeP?8Gx9B~=>*ccf;nXDNT>N2rI72`c1W`r{ZdKc9Rw;IEkc$!qxgxmO?L0$ zu>)#5S5)1L*cxZ+0yY~nSAa6;B!S>EN(?EYgF-6bgh0Jx*zg4S3u|CM$7e?6LhN7i zOb0Wv7E^>C{VGL-%IFk0HBBy+*IR9$LfS)`)A8D3Xwrn5hV9kr10`uLAC#LvLFL1a ztjK(%?Z#BUMyZi|&uQJ67d7v*Pt+c~h0wZ*IFm=^LJ(loqQ%2x&yoQ zd5J%VG!%H4!o#F$F7%=_bOesHlkJG#?uO0Ul1ct^$%uSOLlzoKJg#>UNPGM15^Ek@ zSf*jfQLUB?)-!jmb(b5t^~-=HzzV0llfR}iMhd#f?C1GN-!kNRvQxXG6m(V^S|953 z0@okTK2|c8-_-2=7>*uVF1RTJoPff$EWOk@>eu91a?gk%#2Kd0s6w$H=?7z=LtB zWbZvFOKjkL5xc8B{hVx9^z37Ub-)i#sJp0e|7<2t(-%fdyA#oOtp0Sga>K>i0}m;p zXrz8JZc}-{n}obrEbQerR3GdA(_P5u+xO_t?z!6Yai4_<*eo*{d9>$;C%LHGjJ}^9 z66s$^>3K))xGR&!jaZ@t4UJDF-Y_Fc*LoS%_d^4vJoAxLoKk^vo!Hl4O03(fYt zeph(0RYq2;exLC|{$V`#yukFUX@_YdvZ2Kiqm?km zvZ^2|_%QJ_S*2A_$c7Xdul@QDc90Pzmuew^%U_3AMa0=$RJP8?gE-+!I{8Av>4ih~ z6`&}l@cUWB*BZS`ppOb~y*{Y}sd=Oyw^;$31z{-DM-d#3vU=tf2+3}wqgj`i|0!S7 zsVH&JTEJS>_E;M&j9(*i1y&A7Z~`6gBZH}=qKLDw6Hq*gcooc6&86!l?%K*~$$y7n zV;{i%x!(v|^?3zH2BJU0k$RjHf=FvBYpO?&AOBi{OZ%=R-eUp-rhkbQuo#VjAzU(6 zU$(=nix50bU`fW_d_LiDStR@r{d75IpD|#gy%#>2Xh|GI1 z!2ffeCb_o@N!k`FE(nF&Llkk0aDpI|OoEkAXCWrs7Z?!~(GP$8e!fgRep{-A@#eb; zYJ@un^1<~oLFAUnyPMXQY@fq0YftB=vM%D|X`({k6jiUG5ZXtpUTvxO;xAfb&Wkp_nKNp zi_O#v46dJ_9x6EqkK!xxvVr+nIn5_3!h3s_>xqgpNU>8>Qx6DD@d<@6lco~Y6Rne6 zl$+B3{W%>sr}o0tmzcKgpPLLYe$!i_EJ}FOy>i_1oq|*5;fTG}p&)*$0f{e1Pk>|`bLu`>xO^HP*BZ=HmsU_9g4CW)Y!biclsx)HaL(7X3gE+tASPbbMnnfQJmh$beX^^{YKzh&|rCys+BY-PIg7($=O`SHBo` z%ge*RLcQxvJM-OdC7M0k?OsezOZam%8?@LXO=8#<#tPALnsCsv{)HQ7 z+r~=cx|DQwP+B`-QRzqP2m{h%lA&{9{7lKc5Wt@Et|N+vkXEF~rc%?g{F7mO1dr#L zb5jug)RDTC-R1eA-F71-jy3picb?lTdV99nZs3h7kJY4Dm)NfSvmm-of0l%nwUI*2 zGxht`uzyb~&huoML#HYVvyu65)t$A%?hX6Oj10D>FVxLNCVltW*#3-7T?i;i95a$g z9NnEd?s7U*{?@zyMerFe^66Cn)eg9na^VMVS?L+ zFl5s6)S_nV6ZZo|6QNOeLZ|M<4yBIs46bFx@{e`jP9Tks7=dGSZPR1ZjYG4D+S#>s zbr~IP&2XsYy$f0?2cmP{`h}0BR^`lNRlQFEEO^Xf7pR(_N#741ph%Ds^AV{?F6}5W z7v9;XFW;-GXuN~KrooDxN}JvP__H{JkIBO~VU@NoG!p|5t`;-xm)4i5Wt#i@IGfAdhz;OOX9 zV0bV=OPYE=lEs|L4Ob=f*ZBAeXPH103e^PXq@tn%BVz@Jhd-5;mY$UmtrTAd##gVR zB;J@J8`{#{Z9HCPBRav=)bf;4yMe^(sD3>{a<50)&A~Vr#xQl%BzUxDELl0RgG)g1 zFrhuCi)hkKCWN$(YmD>${rB#YUKj2_HJEigj}1i}RvH>9b;sA%HDl?Fn=ML;M|yf5 zH3!m0OL&}YC~B{J|Lbe}w3I%d8+OGB8yFZ^FD3b5KLDzFahYOxPIqVDC%(8Grh z^X!*Gtx zgV~zRKNMnxPL{qO*HPA>fe&Zp;##OV-9XH>e67r0NAYz{$C%~J0Jo5qmlvEW7a0;C zUoEqExK&TG`^C!rBQV1RmxbsiJ$_D;(&Xe1A3k8ec=1B5+?FXw@ZTI>pMy=Bnh@*w~0s24HtV;M5{v417i%?|&O7?IHdiTjeWt z_14Ra&C3G4dc1;y0-?EJ={qbJ<0{ScUhcEjL3;JRHgjKPYK&vSNrh@!RfpeXc=o_~ zYkJ++8e=Ia7|#dbOhYO+YhpLOE>AJu1js8mKE5;8bDup>cmW19K_pQ8K&`@Qv+Ju2 z-H6cfQV!;_ju`&Wh#+x_=Y*ZdK;`9)jEp{aZ~puq_~#@2+1<|+oPU65l4OGD_LhEs zf4Uw>BOJmIDD(k1Xx?{dNTB4!(R$bE`KFiTM5U8)9r8NH{lqy8s_$(~#DZmmjg|Mg zZq%Gw=9K-pQ3KqSil$~ei^TSI072LqU@F=lM}P7lni?z$AIpIlpDqCW6|v}A-s{LD z?Xr!E)%zSAbD6s5rWtZ02+`Bs+fq>!2%6C3kRrdT&jD9q{e>Ixt1F78IAArWl52oz z>8=q8$lSmm!w&vNU0LN(K9DJ3erM9{EsgmTW2!g?g)+*T`gC;2W5P+EUcJ!axZOyV z%dSqT1MuG%XO3gNoEo_UVyi&qI>t&G{K=`Ord(IE&$ffS##a$mh3|f0`w~%?Oca30 z17j^KOoB#DvRzX==CxmArb)*Yv0p;(E%#vwU7qch1OIxw6InZ6R#Q`x(9zK$Zh7bg z!ZFv7*M*z&2658$cl;zfj2?KmIqgh@4py#W{{7{J1@9SPS&pZ z3lm4itZF+k>pI$=J?>AFXxy5qPtVO=G}Ar3gJ=#kZ20HqxZ{`wqyct3z9`W=<450x zFM0I%ZMMe1@Zf(1Xkc8mLOU%CRKm85!2hxlP;g8SYFf>M_)7Kt*_S^c@J{7KHiA6} zFGL|=Jo?w@FSh*DYdt*>v8vh*w`FJ@Zhgcfy1H)GZv4&I)Y*cd@bO&e@o~4;q*`}@ zVLL!NuV)$f_(DGsP!?FvNMURg6P-a6ZcBdp+4~81M7P()E{)T;4I%8ow|tq;MWug_ zu2>S$T<5Y_O>HY573?hOxF#W}t*Y8Q8zk8U_KFq7Yj|Tw*Gt^0=9n4WjL*cxRCTt~ zj`?6BxZ%awvDne{#|{vVz-94MAQX-f36B`DTtMl2?pBIg4%oE1BQ5US5y{=Rem$?EO7Vtq0r{ zCd!KeRd?SBO=JXzLMQHO-Nu?$m39sgl7Fb8NP2#DSG?%v&Ypnfcni>OA#j*jWlPDQ zF$O|CIa=lIyWx(_S7xbv+Mlj+Z(OYida@^5HHELR zIQ>53+qZAq4ydoX01w33G*N-j40I(F6L5lfHXLKczsANAFfz+zXJ(oeJL;Xd#rK$KOE7dcKyN_Vl|&y>d=Dp64!g*?|U3(z7 z<>6(Nq?ZIp3ydc!9PBs7qmz^Gv9YmD+GT}=kYS?WZntDN#$FRI_R^Z@C{InTMsu>W z=c{(RW@RK#ZUXZ$)$#nuetzVrtEmnDqVeR11VK;D^cwz~9` zEZ^&uQ_p*cg@L9#&)VACT|nSG+VYd^=u?vH1ja%2@O_VB{fC_$Tg%#WM~R)UK|LV) z0vO{Apz?8#pF~5m!~qYT=aHW0_Gex5(r#_1iN^Uz-7cWfR1e-kK;);_Sl2ozS_i7M z11!UCy?DqLe6al!*h|N42`+afFY5sgLV(FNi=U;ZzZ3j+z=Z6fK4R!0dJnM-;<*q* zKDbeKy9H;(n;n5taU2+o;z9f=8HodVW6JATelrRHu+`cHYPOpikjV=5sO#j@^N~rd zG^D)(|FgGW`}O;xA4}Jtr-n@GKK74KqzTt7uhoDIPz<@{Gk0pknxz7q`KXs8g}(V} zD?DABcly1tKC0bkzI7;83R>u$@aS4VXlyv7U0EgRDiUOOdw-`TfbZc1LYQ%MuU*he zm0fRv1j=a}Ud4yv9Mo&dZ|4lim(VlXBYjjpb{Y1OGAdtii)lL0=%5m0p8UuM4#1J% z=e)ae^l{QJPd|F)jN<>zt`+W$mx(qVJ+j??iY^&C#FAMzpMuS<^EB~*fAjP6r?qOB z+dl2=?5I^bW=ofAKIY5_EEb$@NE*b7 z_Gks{AfL0|v42*(NmIg9aGunG3z|Oq_@wp&6Byf2pu2beMs_8{IlH(n_ zwYq6rD7f=L(a}-hDu<;C8NCly3s_)m(inB|lShO1Ffp;$=MT;QU#l2kdoTV^YcxRq zNls8bDX89CsGbpYhCpHP+zP6vXnXu6{Yu|LQU=4qSFrn6R=jf?V7k}gx3K!8pi0=< zK7~Fvd74&8r6R-LvSLK4%>KVAB-+@US|2sg>X50dn)+8I+rgQuL6hjMuRWlGU5kTB z0Y1xF0Qo>5wGlH&NPhsZ1HhNw@TtYoMe%^@NrAT_ng^{mJxN;U4MU9U)wX-LLr(UV z?YuK1Fk_l*0?vf?2HYSND!38IBN41sbEYi9T(mF~ zV9681&nWXAHXUi0W?mga`o8d!)c70lTi9OsHP7{j+e*FrH1nnm(S{I@lf99k+kfY9 z1#=L8A}x?bQad%n=plI6=RQMHPy$edVTU6vMK`DsRpL!T%uPZ+s;bT&MQ~zv(5q93 zkKr?+Xj*g@Y*q+k^DsEZB*=v?bVT5 zAjO5k-cn>ubXXG# zY%0@JwfI8C$E*l4Xi3$o#YuJTR*UYMdYoLYBzWBjgPZknnGfNLM%YR(X3Sy+IMM_J ztn?gdP6YZlU}!6FCJ?AxBx!)R30n9O_w+Ihp$(mpfdKy5ap0{ckx+?xjSWGqo2P_V ze8E4R{QFg#TRB?7mUm_Lmj7!|96XxkMq#1RXi(F5=d!c^gS3w0n=xwJpEf3P>=%Dh>ov|96VUX<&PKT;GcLXk>kv|kavv=E?6%~H^F z??rDto~8iic6!_kP;cAKIj~w47jk_4M!Q)zjpI*gcWr%JfN9$eJJ>)aIap51O%D;? z0#%tCww-%dn?;EW^?n9sb6e{EwFKOpARdVxgX2E|UZD2;{`IhC4B6M@Xv%Xk5Q==Lh#BI`gx@R$KDEyl$0`g61mZ z{&H|<4_zbS`m2t-1SarB{<1)dmq;9}I^|;mmW*qDt*0nCS*Rj#+N1DsA@Z^tLgh>| z&)j->B>ikYRz9$_ri9$Nb8j;%eJ=bHwX?%Eo)Onri*_i5vdR$Tk>8rUuRZq*JbM2g z#LJ<3I|Y0yE_W~nl%kz?Wz0fY&UDW44Ho)XHP^?n=djH}+jRnXbZRn7M&(EXBYtLE zy_;NlF{!5UtHY2wx;*QHdOO?j>-eSRuc6Vu{?TEg8K~t$oH`lVPbuD7G)yZq#dwO- z&?|BK#W*~`r4jAxAyqH3UXxk^>L9Ii0uBh#5d;Uk*uU_^CXd zOC8*eiKx%H@n}p3f6-a5bu7e)=xB#QMSpbYHfMewDl8WG{mST(3sy4`$9x!ETgdSd z6|F5zF9zSF@?9N7k`a~lnvQ}tPA>OEOFO|J&vAUQd_rv?P}w;nL+dlRA&S2DlZvl> zl5sO}I@cR8XD{8qb4Fk_CuHVi8t;g%I=ddQB_vb_JY6N*Ehk=n+i(PCb9hb}xYXBL zS%f)w6SOx2V0wS5&c^xAj0ayN#1)4CrC5qe?42oSA&8cITbW@Ye(VedTxk`1~AZvu;iZS9qn@t6|Rg z7T;e%f=&747ndX$FJvu%TaLQ3-k7Inr)52eJS16d+V%_MDbZzlQH`4oZn8&HS*K9q z5c9Wt&!WeaRl55MRkwqNBDeR}-i%Fra5SIlLM;#Z=bwx8l|D=)U7Nwwy4IC2cJD3S z38a|4QsFwOR`E5GGRt`7gF{u-J8|mLe(aZTquPf(<6(Wdd@_fd9WxW3Tdkje1{3yY z0Aa|1*ce=7SFRq7+8B%e?IBvRMp54WH5t90BkYr*F;2+ZtTVj=I<0hzT0=$7Zayw6;wTW2MG9s!=wPEKB7o z9;b6*@`)F62md7+8Q1h|tLb^%Rg73LrvThAAv)OdX&f)(O-Iz)z}GkqtEcQ>reY+p zN1o}Ig^T3IBG9loW4nbs z%Q)dIYDgwq3GXt{Wp_7D@+tNDTH~B+WKPDidmH!XkEGj{CPt1$!M%*B_dqf4SV3{t#uIMMNlfgjhgMD#LP$gAG3pgOM>q#>;yE? z(Wxxte$V*f88o^Sme~0%=PBXF+lD0V&#>|0e;#WSEJr04CT3u8=|TK|q*}yRyie4j zp6{PsTuCArY8pmln7Vr%w` zA@%W4$L)T>24)L`o>Dt354qjYpa$#6`U=Xva8+<^C_-Vfq>>O#Z! z&A!qB$e&{@@6#tU!9r_`+XRD_Ml++G9l9!wg?6ec+Cx2M7C|9mz6Tt7?}PMx5AN%! zb?aB$UL2XlP_HleK*P{zJn(W2q~X2T-`p!5h={(1$CmI~y}8X7X<@KXa03&YR0`h; zbnX8xznjLhwbUn^7-2v=|H)spZf|W#>n_G-*g)}2`gOnoW8bhXgiVz4 zeLr=y)OxF}+I^BSIkytL4e0;p4lk(=kyexs&#k!XX;W`_6|J|Bk`Qr^{sbY zz;`!n&!_T$V)frSi*x|McZuli<`UjRNGS;LbW%%%XGBZ*9FVThJUL2l;*~{OI@?k- zWsN?Utb@Y^E{wlsO5pm+`0elx^>Tk-!-mQ{h6bZnLpRj5x+Fl6~733p~U;EQH-!8=-|ZXH|<5_xvG z-Vbv|txSBaT8r3!1n|GebW`A`-L8)q_KSv`x$0DBl;FQXK6Ek+(agL$*bEcpFJym5 zLd>e2HTk*|6VeSYM3}pEo7ZmNZh#6$Q=!(hrD}UICw{-9^PZ$&Xx%u+4cmhIEuATM z1v725W&O-wh!{`@JP%31F|NBNv`BNbBs23{W{OC36zYZvc%W(l7$GqNEqa9eU1VMo z6PC>X3=4hO)Roys%E}|s38sj|K&W{EwDJwVLy^HPd9XQ=1>-&d$pUE$mR|=e$okP> zevx`VG88|Y?^~7iWnznB18hV~Maj^CHnwDtDbXx_Tmv5sFa_azU^{|_hIx*hT6RS4 zn{MejMxs~o^eVr{3BtMzD>Z{2h+mba&2%)%r(_5NGYg#X0f#R> zz)Hm54ETS0HyfcLV3}^{@dlJH`U~{z0Czo9;0eBzVt%ri6@&XZvd*EBCWH|01%3B9 zCapr_yVMGNHZKtrazj?K*Qf?6iA?~SKH9sEbF_&#c^MX2t!oODGka;qk6c`+DF~46 zrTBga{s2;wlSvwmKh>A|%`KpQfp}*TD*H^d8RjHx7lh@P@(5J+kZB){g7~oN$p_kkjQ-S9xJY(U>KVtzV7McmR4cH-*Ho37|a7P#D z@T;&$1wBiO)eO_J^>Qa?%MH_j-GZ{CGEXgccP|mjxuUuexsa5%r54UFo<9BKfEw#= z{f!6vd#=n#YwRttEfN2*25fioD8g}qJuC{W#U|L$dIl%(6O{!y8NO*o*>nEU?9Ln6 z{Qdp>J*<+keZ;G6_%im3Dbnq&EyKGBw03XJ|Fj<}8Ur^bVQZk2bKdjvg-B7AVAHCc zz)t3MtKHma_NCzX)?=B&89o-GZ)P@=bVI-!9ek&@lHVIWTGiE?eRlu;78lzn3qZFK zKs*r{89B2f<(bEa9k<2A&29t4vZNZ*{i*q27J+bmHU44d9>5k;5|_l19{OC3v;}1s z_4UHvTjPxm`ZYm3i#1-@-ZE=%A@m9QvfMb&LX@Ipa-mZSh$)Sc^t3u(q6Zcl8SEph z|B27fN2&Q8h|b&=Zea2*6M`WX;6r6(4*%34PC;0WS5g%5Qn;;K?j(}SF^Z0suCzJ# z^LwQcHO97&!4jH@@y#A8kuT{PX7R%9-Vfb7iCAEv$F=9~8q1ty2EdlSf8cSNqV?~m zTkX0(Dq`aQgR1>fJoZmQzKjdoUYd^$ z6x(T$6a@vzF*T{jabEWH3GtONlv6tGWxwXfx4z!AXBU33YXG!1!eY2C*&$XvuO#59 z8F@GGahTW$aP(B#LFt5PDI=Bht$D+~kaAVK0^ViiFuBq{Vigf{zl-ljS~9r+l(KtJ z3Zm|!V66{(F4Aez=i*%De_2pwwi2Gcel0N8t$yzgEAt?x0nTS*Oo;QI#!A69xH zM0uE96V208%N65CqJ0#Pg~KQo05FwS*W*gX6%M=2lt^Gl-hRVwNh5B^$n~rFs7Ct- z{@Cc+l7LTU8A8cQEQ&%!90P{3A&|G(A6#~)ciL67{YP(NO31x0jh+D`*7pp&S$$Al zed7D1Cm(px)l5^hT9?zI)r<^v)i?DqZFc~E(^oL$*EE}={$|hKHJdzpvYr0@wwGs|)ytF7A1 z%h7WE0|EI?zp0&z*u{x$&dDj^oqJji3-3UTm#-~w-?59ioahYMj}=~2C0`B>{UxnR zr(~jMnc06&c9ei6{u)33R3iuW8bZD-o4%oJX@Rn9#vv3u3PJc zcaba;qC8zZ^ltU-;?&DbJ7S%ht7n7>e^*lny;NV_li zx$v3eA_B~2kQn&I&cS?GtA4=CE8eS9>zC}uw&T`v23GFT!*aeH8o^)y-;R#GCX+!9 zv`F*YE^%!9cL9+m$cw`{D4VoxFpHF)~C=0}bX!A4XEhCYkzrs<6G zjMq$^s5rsfh$#wA6yxy&#q5xEdX2p=kG)`j7&LY6dRy16A>t}(bejB__@>AtC#@#Omo(q@;X zw%KKsm|CUv>KX%vDQ9auD~{}UXVbPd`@ia!bwXqm-{PrLB{hn3uB=cGYiV{z7)>pObqA>eid88gsy&{3QAH!F-GTm28_-HK z6-jh6EIr3;n2RGlE9X1g@q70P0~Y{o`8k&q$b2}#@`0i?aTc48D>pZB@&j*ux!KWy z>VbLQV!;WvNP7O*l7e$ND>Od(_wX~>(DPDUj)Ny(N57qJd<6LbtIE5z;n%8#nt$nJ z4ExoWo8|3k=;r7bRy|Og%?`EUudgLvsq-4S^sTep6F`FH05$c6k##mhQVN~ z#>69;!3JIg@ZiXJSsh2_cmmsl(`|heM&0TcMh%u;wflA!zczQPPW@q{{-@j**DQ0m zEH$Dn+ksQ$*@UHQ%A8@XAcR%%fLFGvJDG9hdx{WuYzIXOTQrqVa+SrY!Pnx*Qn3hP zjZo&tI&>(S=#>}!#3LW2I}1Sj?D9L?ss2Xy^$V(7a|XOAZamTzw{6r8^@&$?I;Jh3 z-deD{bW6HTU1~eQz=z4!0X5%3BFP)~+e6csj-*&#+XLse=IR}suywjG)v_@XD|c`r z+EyYy-LF)MiXDK(fhg~)^lfLO;*e`B^sa)bV4yIbt?hLAqO!K^=i!eG)x#e_R(@T` zN#06iVR5TYGc&qapFF6l1XanxZK^c|*t_})ChVZB4zyK5w2XxZj;<);L87n?L|FYI z&-I(3p%DlY#<{L3m{99W3$h30{Ng}ginBktH4@7C`_(>eB_$Z{LaU_Maj4$yhApq= z-XdU2Odbf6QTm!iYgx}U&)_vRa zgZbv0G0~*+)o<_{-qfM(>?E&>8np?XA(X*`8aj zPVU_&0olc%5%xoLJ6lw_J%bg;SPP%sTmFNS`|KU_!#=4rk?woTaaPkwIEX(_U_zu7 z_OcF4rfFAuNO8nyDgrOew!^!($xzdDCA#?DO=o${vIPI#!JQ?ucF595zH})1JIBqq z=h>W1Pe=j}tGNflf71T#ryDIN7LKMFNh6mzSZ=^=K4AFEZpW1RV(#zH3LlrWxDLT- zBM`ED$4W^%79?Fsky>V3Oie(64!BLM^xM<$ssobNKnhCJn;Hy2o$asu^Y?(#)p+$Q z#l;L$Ss|$^2)pdiXsoTVCSy7tN#{~s|5b7<829e=>DNO(OhW^)EftkdlK6|Vy#}na zi$D3Gi;oAx00`2>JvRTfZkIX{BXsiyf!=T)Mw>dWT8(-gpY5%*sCL6TBz1LvRjW{@ zRnQdUhcf^AEhBAYl)?T=)aYty%i>(3HV_Q2Ss^oNFuBqO9tE&}`vy0+df|+EbdwMi zu}JGSrJMT^YiuKeQzU$t=I` zWfWR_u++~APA{HsT1d$K=8+9lkH?yP>q~zGXsS-J-&rT2>jK>J@lJK0x~6*kifx#p zzWg=2+n!!*WcOm2!(`?Pi{?T-@-Jhq&#$J-9Cp2mc?yK9x&UfTE1`) zegTf}adY4UgXbCSzaOK$zsFyPpWTkS2A*}~xDI!}b40iW+Q!V#B;M`H>fbSfQi1x= zdzmvnby0V}$jvP%E~yz9odm^BWmLkJGZ^{dqijn})@kqG%Co zw-HqgO-E8F8+(+E0cv{*He2+12&B^~d#`oE+Jm}jTi0&Kmd$LBWDjnX(z(XZS~|x_ zRu}aMOY}~B5d>|rc{U6kanVs;h&p70t%)S>RfA`dOcTjQ9YE)^UH$~lfWbcG9OErZXm zhetBDwx|yI9WZMk_j9$ZeD`q5`I0oj-HwUAYTgCZ8S^$jt)QtT=`71}YtGjjPN^-u z0m;S@dBE`RI2_!fp@q-v7ySiQU#e@DDp`o1jPka9wiR}L#F{AXa`#ZjlY^(O8DNeaztsi*iC&hgew@ez$NbnTQ{{*VPG%|Z%i z9#3y=7#LlH1g`b@dwE_wQ54T27`n8hNUT{k92CJa87pyMAGaqbq=8DFv&Pxp2n$2= z5239*L!&-Qk9PmG=&`I*x($2}AZWIdzD|^C>VzbAW?zcOY{rX+ zVN!N{OP88A3#UC2!vZevRW6T7KqI987}|5)%wP1!xTmOm{EfpYlBrW2edjipMJn6( zwST=`k*X9ljxU3SyQbRr&27!Yj4v{}nu>tw4qTcrNn6)-HkYI;+Y#EaD>&-6(*3iL zwxGNj9NrIRSt|MVhegtduN&#M;nNjA)5f)XwilAH=r5c>1?_j;lPNkFI|ls%qffqy?g$8_>>f>w_Kho6Q8%G%yw zZ7F*Wpu+NOk8LJtS?*A1`UtR7{ev=q74Rq>qgXK720l+YEV40CSEJ<;tQ9!-4T}-T z+19qYm;gc;tOXP#OUsO(LxU5mIia%G7(SKzLsC+t1wf6rRfgE`X?YmSR3ybhaD4Ov z9DTICrF)6%G=ZBIj~66y12oCyyukkV@W0zV+n;j_s%{<26af5GGR5ZMFlv5}v(wnQ zJA}f5UTS(bjjrvyFJh}OZDA)Qd12E`T&po@b^QfUT|cMuGNC z>!QV`;86c7b!`BvMKVk$J#sP>vobSsjJ4ko?Y>nlFj67XG+lLa9S=Mn`7$G8GE=g} zusHEDWohEjWhC0o!}GKgd3`I$3;jm*7p)UIMRpSY)WY}g;|?CSgDo5Gm-JRUJ(=xC zD^wpfi@IalOm*Ddh*VM3Wis{RfZHseJMug;trN?kDgBxxu0avFw)DfRI|)c9GX5dy zb0iBWf`T%2Z#uwUqvoa{A21Ubz~n>xV|1}#z1r%XvF&VXfV=vUEn3@Y`B;$|EDYQc z92+kSU{3i6mH#0a!hlJ~*w`pI`X*TrDInMkn5K-8kBsmPnEisD+-tr3hlh;eVMD`? zMImJatW+~%m;$d#B3kKUZgu>8o;q64oC9ZG2}QM14Q2Ux23!I5)hyil;D zqDG5SVpKaVWzfXzIZJI}#C5y3yI&4Tz~&F=HmAsrh1EetAsKL(mZcLKn%$!rcLvQ( z$$VcA<^hTp)Ri;LsDI{|eFK$-n2Lr~&SH>dC`*GvKj1X`o1c4l$cqU+l1B9p2=WOu^{mI%&f4my66$AYI{OHsZnnyd>(y~Z)H22 z(kk|Kg!^Vx593{bP|@YUA*Oxs_pJ{HBYr_kzalRV?(|V)8=Kd5RZd*|9*VfCL^@d< z2S-@E*eN_-lf@}p_Ajq0crPw<;Ic`p7DJAhlevsh01OP5NX`@;y_;7{dshl*JJ?$r zh7Y8!HJOO2JF-C%CG$Q#7Y$$F8^@G@ObHYvtEg!U_*|9-QY$AM4IAI;=;Q^Gd|ApL za$*4ba}h={XWdu3xc1vqsZ*no9puD~eR##4!d#5&{D1xXY1UoA&wYN5^Pt|Jo^Ccg zUve3h9|t41b6RWP&Y|&wk}qZ({uwjVC{pr}o&y9!r*{E%7wv>uZV+d>#ow^i&(Dk3prVH>}e#- z>=RZ)Y|G+jnwY+^^fz(N?zC-$)VSdZ=Vkj28lQ|g2C!zKZsw`ZHIemg74L}KD@ zLrE_jw8bSoY`N;)BDOB{CJv5=Lq_TT?kD>mJKsl=FKfR5h?3gxoHoHF$iQ{+g z-b^UqTMS%&I@RlL>8j5~MAUis=cs+|DW>p{nvckhMts>nq-pOHIeU5_d7V(1@@aFPNxk*3ra6<7)~}1JciZe(zUR;g0}(N9fzZ zw{LgH7N=%9k|scR6C#sNRe9`+90Zb$w|hdOkCgerJ!X0Qoi74YO{s{qf4`4N;3;Bf za1FdYpwZI&?C?)8Xknf&3mGN;_h2^aW%djX0u%sAh{foe zW^m2q^t1V=CCkVOw%4_rKk3QJ!J(jIQ%I!2AeA4 z-#3T-&SW635eb}(-yvz)W-KNGl}lqOXe|jm>ju0kzkcVE2;OlW-a!Z-kIFa!an*in z2~=C6TV?QmNbBZE>k7dePSUwBP6l*18;}Hkl&0vpE`$do7^jwkks?r{ zmH_?}mJxmfk2&HOJ;xx~kFjrjggApiYW%tegroH&6W>!s1G z5IFMjBjP;faNMiA`(yq-|9x=-h0`VlmGd_9nZl`6niMI)D|>JJzjPFbc4nPy;%NMX z8Bi8KSo-QotN*u$y#Bvw8YbXrdOh?Fq=>!k_}uA7yPnjsNY!G5Xx}B4e6lOn(B%Q2zUS zg{`)j4CL}_CpT!0ZvVR{J`}?fh=^N+_=rfKZts4Vx32;(7 ztZjARlZFZk6kc9_A~iyi{_rDBfWr6Q7i>_sIxd12$GkVXtPEY9g2K-vkiqd2#$QbGm%-Id~I^+Wd0p?b>DBoXA+z@XUTK@O2_-)`u77Zff}2uGQB?pk(_Zt;s( z%2ujKLs^OzTuO~Qwfjixra}@I_ekqLkk;)P9c+TWc3$Mx+nsV1TNe{di+vLKv0a;{ z)(fg$8b1j3orL~$9?JlG*Bk2*@zxz{XWI$q zY1X@f$2D?%7Pkal&RwPl=T_@O*XOa%Lz`R2TQBG#QajtK)0nnUB`!(4sJNAGc3L`% zvlvILChQ>`U4?z)aIPQ$PlX^H5hmT*soJ#lKQRAX>y{wv_zi1n&2aPu`wMSac8dZ}uHHDV$5}+w_Qm)b)J% z{`5L*R+Ojd&NSWh+FS+uRntG{mVF~?cDG6G_nZY*o<(m|p^qDQ7J#Se7(LcHyIyuF zi6DD`yEI^MDaou_ea)T_Za)o&rj>gU8zs8~zUyqO43Q<+5hh+Ng_ zp=#w|M6QXU?MUFd>5!v?g3lAB8`ENBKD}LWMC0M^9+cL^;0;P_;AxM%;_{CyV-mP! zUd`v*r}kFGBW5dy%Q|N5VErnz4+({eB=@gT2)fiVmJ_}swbn17p1}BoPJZyt7YSq@ zOo;wSkzjOEoq7a~i>^H|^5QpbAA0S^qMfsxCVLj4Ryp(|*91BP-UKy*mh`?f*;c0= z*Vrjfgl3_5Y6j$~wGpUxtdMT)gXyDGv@Z-Xp%}P%xIAg{?;z<@X{JM%MSP0q7&{oN z;P^)FzmcVjv!TG;y*UAIvTB66;W*(Wnmry9-8Gvoht2M~mDiGu?(h#xn(PieL_SDp zkZj2rZLD!sjjj2?(}a&eNk2a`+P-wm&z&3y={^sAc&Rya?&4mnbf~CV^J7%h;sWSd z#z*k>hl4bxN1M!>ZdmOxS#EbnQXOveK*BzeUIfQ^FDHtcY;vPzGF5_`@+O0pZ(g^O_O;$7pg~ETkgBRyn4BAeDK@3X0^anboC&x=luKf=>rQ- zO3p2A@Mq{(xo+!{G)Dngda9@;M*&YtQaNS;jM2s?yPRil`5u4Z&6C&e4Z!n_ikvzA zHadIue7@($@i6EC&x6T^$J*3Z%Q5Qla2{un-d@UiMQ`iV>{WX&rvYPXA^!)40>_@h zyzIFj92e-uUv}R1Rf4l~ckUC0f6mq4foX}+PuVc>^`u0>X7>B|6J?cpARz#C0@IIpmtBSy4-&M+xLN`%a*^f!TbGd zWlZ{Ww`YNd6@lw*qDS&(6>tzBZJmDqpZRBa$=%ZUL*c-q`4~K1{an^LB{Ts5W>u&@ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_23100.png b/Notebooks/1_N_horizon 3/sim_23100.png new file mode 100644 index 0000000000000000000000000000000000000000..79df92d8563cef7a02041e523740ebd1bd434dac GIT binary patch literal 20247 zcmd?RbySpp_cjWmFiMSq3{u~b5T(32!~Pg@uJhDDnEGJQmh< z9xN>E4=`NtKZR*h81Tkx`|7=|f`x&tgO0U6mW+y&p08?Z>^$gKNh9id_C_2&o_JG5HctF|;vrhEFlg_qb#f0wtc( z$NUhxi;AHee)0L?XHQSX7tU(hkxv#6Tf6e`3xC$L6ctq`1h?`ynDg#d*fi*1T)Hce z=ufl~A+!?me4VfDu)zoLgV*6Hdi5z)5Qhl*kC3nf0-nE@jdD(Xz4~O-^Z&7n_+TP1 zk}p(tNT2mDnu&=kCkNs%9V^&$vEonx1JZ{<6c$-3Kjtk8^T0>u+(hOOBhMIo*iw2A zf_>o&AK}kF!j=5s8$`&kr=#xrFdb)D(qo^kv58_2W0;OPOh*l-BM(cmNH#)S5E9nMB0prH+wtyu!wO)J@e`n zr!2md3gb~wqnK~tVyV=Zk(+6Kb9GzHBlLsw;SgUN!q%_1o$C2wUqQe_&T|KGvzqv* z%PSF_-*P87tCV}Uka|AwJVGS1^acGzEnGy!TCEN)LV$GT@cGH?^AqV~=>*eph3P24 zbWpJA^e>~8JU(0Mu<260e6I?mj{>am99`@rda;1QeF?u0c0A~0?rI28;zeph6eK)pIL zh6o=i5H1i|g7iTPPjR~kSL?;Dh9tHZ!$pSRjbG~h>*YeZE}m9g{)RWA+BHdcMPQ3u z#;avWpRv%fGFnXC=Efv9nuiO06pNTWL7=#{XtZC$k`$~@3lX!UVt)PC{J8io8W6Ku zUUpSR7vA-2h}m;?wB!`-R2#hU_uN5%Cv`I-vK4{3?vABiUByQy!KVlvN0@3N!*=XZ zs25c|?v!EGn$1%-*b!_CHMLrARL?e54R36(T06!4O;%3j_)~}tdjr?__1Ra!2RxMJ zw%o1u*yh)-ZB6KD_~Fz@oPC!G+`eYN;culJ|g?*=ndSgOL26K(-2H&+B&#{;f zyAQuVRncOYvetG9++MBctPgL0kWYZTcP$v(<8{Jft7oDg+?UIE^K8z=0oQx<1gRQHM9{KkFyp*oa{b;UL>u&g$A;IoV+LO8C1 z$FWC`?_f9jIgr(E=OR%0f!lAjnYLOHvnz8J8;Qu<1pR7+XFTZll&CXKHeyE$SQ68g z`BWBSb`UXZd`FN-Xmn|qgdIJm8_30uUS~(&U`My=2EJoQbJY_|TxZAAwGQ0QXGimW z*JI^+hvVi&)xPUd>i;ZT;ySrs3&I2y$f+9`8#{dHRzHK7)o9;!y?ungH7#~}MuR@G z-EnrMAM8*?o4jVW_C0Gd4F)z+t~E&8zw}jX|?(pJRt>Z$7f7 zB9iD!VxDNNl?(~nIJrjr5x(*uH=B+1-rM&Ll$TRDtSoi^_%OZis3*pdb6M`rdH$!LrXur5%-QL$0WPfjV+fu zHQX0r6e2dn{=YMvxla#n1Q8)kO^aEWM$r7mf$U1OertQfsRy`7AL~1UGVWBUv)PRU zfA(53kt6Oc2JNnmgOOJ^{IN0$?%WZ4VP95rJ!5!&R4T;wbpf6qtwd%CfuloUfoQV0 zW}yT6VyU9jV*B)KRF^f`n;W*~dqQ;VXmry9`}66es&+dXR3KeF!)pRHBjd~5=P%9! z=F}g|SFQayiV_^WhjL{?A1xzL#CHTW+^Ix(0yW5`_mqwe0=HpPJa=lIvY7rr>(?t( zxlX=fM>9QG|MOdo#^=pT-H;xVs#*(c7x6pO=q7eFxkH&8jY@re&6{pEY=61?@ujkzt?}oj-N6 z2VCTlgseHAW#lox{X6L&>Gf#1h}=|Xm8sUNnT>z;HSu;tV4H+UJ)BG8HnXhlnt^*F zJlwo{ICliaANo%|;lGKLCO`(h#(f+sL7;p%^S~i!{x(jEUmAC>9va&Go`6t+(?f++W8}0 z8PVl8kC?Yirey92@B{<{%tng`-qtRF;U$6#A)0>n`rBvzs}>YN3OyY zcO1S~aG}dTHor`xrt4*zeKK{rM$vrc)qFj7)vJJ(o^m4ICWOnK!znW2L_BfsfW~uC z!slhrw}LTnOTKQ(iWKcDG&IeRSce)Ejd@rGk~^Zv2^ zT{}r&g)pLlFxpHv7*d@;{Q*h(bU| z8^Aw0kv=0x9}D`S$d7O;d}NoLkb|^c?iFz;x#yQr%-J5jiyvB6(utdJqZZ2*{+=3j zrU{!?{f-LUj!_(Zd__B?3h>1F@7{eJ!des>42!!l933Mo%B`oOSeJ8{+JKAD`(v%vB4%ljKJE2xNFOQB)cT4{=Bw$XMCjG` zb~hsov6CH&+$k+r8uDNNUAAF85)8@sL{V9}$o1IzF%y%5#^=%K>S_V!{gqet_V!s) zz1Wa(0&aFcf>le_%8LE`WS_?8>xy;1Y%@Zo%$%|_k~Q7q@*9Pj|#(00JT`FM{VF~V~dI>Qu1vH0#0`5sinkHXD)Lh%Qzz1BP zNi`j@J*8M{!iF?ma$ij*Yt^~uXjIt;pSmvcV@4M3Jx<3k*7M=Y8^s%WRU5kf8E>J# zii@KV3q&+zyiG1Y7&SSpIQO1z6~15}D>aj{BQtJ_^S)x52f90R?E*V(G}T8l0dorr zh4$;J_G`n~_4yv>tKO=e4z;_KwFf2nl$QL7XLAh4a}2^aY5xtE2&M0>uvx@0ckpOI z__K$6D>%h8T^_XxFWgN$x_;xvjbG+PX=%PW%pPlkio^dIYQ7`fc4Itxd|Vxi&tXG4 zm`V^UicRO*pL99A?-?1NO!6vx3s9}rqekiMb}NeX(oyxE*f@?y(|%qK2WgI&)5+FQ zIicgALxIz^A~Jq^X0S)ILHrw7Q==yN`lko$(6V=XgsDAUHY)s*gZMtbO%~gZ?s4@U z9aa6OR}{51)ez^p(=Kp0Zu3iMDAuAjdV98&(|Yc8UfqQ=)_qpZuHQ+b6?=VBWJ0by zi-{gW!NM0jt<)X@-nfLiEB%>RXr>R;;cIu2_8KCq;|%Df)kM5llz7gJ zLI>)M6zZ#6wU7joa|h`(`Eso}tmc*#>bBgXmyK&{_PUSap9N7}j z*9@IjGSls=FoU^j(O?%j4Z6OUmq%S5US3cK3mzbd1^3{XBQ*EHvfyU*uB<^BGB0$;cT!($;U%~o zsF+vGN5uR7>WbkC@Hm^LmQE0ezC5kFM74Y-aWQq6taeg&oc>r1wtR1WERx)!`rGoK zbWU)O1m_h-gI_T%i^7*q&U;G@DH5SkPmTICduG9W7Pnie7x9FTup>3>$;u||$-&yE zBGk;M!6B>(Y2c+2pRPdeEXj{KJ2ll*E2wxiCh$Z2=1`r-uz48?2?;w2O_1QUKt?YU z(=0BubG!DiW|M30K}KX~Xj8Od!p-_mw`tmb{i5UNkG)MJ_S12D#w}}cP|adK$&c!q zHaOz0MBzl)c)s=Gp1X1a4S{5w2w`^ttg$kSbg4*|>a9k6=_od@ogHf|p`CBRTPLge zoBM*)ZhLR3z)LKcitzcXS2w^erpqM??QLQb!5~;{ro(Kqg8PafEc28Vb@K(Bow@Gp z?n1T!;9`EnFwv}VqSo!yx{JN_DTN2d?a-=~(&3GQLQ_XLlhb<15Q5iwPRPxEF~Nl; zIyzcWQE}^Rx5s9qV)2=2c2?GCdTE%@U%<&EokjaNB8Ta5~#=jTUg?03Hrjs8e>@f~Z*f z5pcBOP*?Tmr0!xr|J2U#D}n}cjN>jtp`t%0Ediw5ah(a>gp*FE&1t{@bw{Au8JFqCE zNgEAE#K+6n*>R1GjKn#wWX9PIs;Il|57;jEecWFiD$?(~A0%}00W#yC<`aC9l9J_@ z7pJ@c91m5;$PD8e?1nU2j~5f=-oCwUQF}}eZgXnu4x#VSigH~C@IxoCMdZE%PtzxU z#d0gWfB)LZh%s9!cSh^-gcNKx7UZB$)JmU9`;3;DD1+HIeMO2oE+zRrVqtL?ccG)B zgRJ3nvn~;MTqJ^~$l#appkdM;>MAHnxV(M)wqa4|koTGS_-iGl`+k)6@0*$vPgjm+ zgDnsn?5;dFAh<U1{^Wb9=EMigqx9{ewoU5&cMZfOO#ZO*My;on>|BX0pQP zwksx2=8r$D!kn8| zI&5|WS3a6NtZfAdB;Yp#Oo`ynGt>^XJb;eUY_cEAj^;8yBu0;Rel! z*3=Bzb(+l|4(w88r2%)INlNn!f^VfDa`FuwH#wFVS9kC?_$;lZC!U?p;-GYbe zrDkKL7&8sm?G}NpdK@fu=jGID5N2gIPUk}9c7Wq?SJ$2&j2%yGx|d-#H7vGgS_r6x zT+{8K9WEQU?i4EdBftL|ucImhLMnOAxy40Jn+0jCZsAK;=;&&XT3DZ%=I7?padO%u zj-Bu4d(^b9gYZZD>eVX>hjA+`b@$`>(=)2v)U>oTnSo@{Sivi$s6?21;(93kdbN39 zO7qEm%Nc)$LIBPQt~(M?3<4a$3h;s#W@b;cE_Ncx0B+HU2hBy+ozY>ji{(}CNCxrD zz$U@r6avEITM9*C5I3-o4(l#|MX{rJz}fQd_baGWJF=Hy-1&u1dV>*M#`k&zcDrP2 zm<_t)+Sywvn%ch6@Gi#L4FA*-6^(^rn>eN2J#ReX1pu!ji#Fp5V_K)9Lp;ZGp~vlV z?tO21K9ewk+bA~CfPJQuiukG5eg{HB$bvJ|6FT}*rMzCUM)Y`G>_UqtK(KvJ5)UY@ z`-^BL!n3VSPKz~^*3vOyj)LxI*xVWb7y%x!g0*7T_h%|pY@^8`lsx)n;Vuf?@=ux! zYP8ts40x_??~hjkd%s1yV!4BrHJv^};KfhKn^|V?>w(buvfM7%oR5)O?$MBAx}Tp| z9nVMF><=hI=Ort!-5eiO0TBQA;;^nKN2LhCu6rGGw!rO>Wdma58Q?^dMs6q&+Q%8g z%7ID54jiDrkVCQi2y=Ok@wF3l-h+S)il%ZNCx2X*M5%vRU~1K!=EI@j2!&2SY7(KP z6Sn54SA-ZQx=6`9@t=D@~<#QoYju*#^yek>WOPD%gEGV=?h_m$Nr_mq!g`UKo zKXSsqT7?eSLA+S*O~y+HyoY}@kwgC$L%glLsG7dMzKcK&z}W(;Sut6mV?8XE%B6?E zJ;r_4sn4eHun~Zy1(32%nvvt+5t$g=m6!{(YCNw7%_{S_7#mfFBFltwq7OBUnBPx!uVpem={~ z^MDD&l=ngG)?;R6R%kNAwc;KS4dg^%E~dih@*%f_SLWs{U!y2WfUC5OevI#_Ch6*kd#g zpkVcG_v|U=QV2MY`FoFXtJdvw;d6g{mU2(P+amAE@+7@74zt(4iV&ISnZ(>1Rjjv- zrQ^zXSCy=nQzHuuBH0Q<4`D)Wa{guRAQ9`!9{LwkwQwH!PKp(6$Hv+ z%6N)fhQdJwlA?7^Vz^9*G#jokp2zRIs<%hpC>~Cb{Ue{RG7rbgxzR`3*88uXpYNR4 zzpdhbhISMWv{DB@PEJm%q)cEKE(J|Zs@1{VUB9;_83-EiiH4Pxbs%*Ki}z(}{7vNb zJ2jjO%?OX-4}We==}k#Y-P6AKo5YWL)Hv_!9`DQ#|9Su92`g)`W{q=dB?09>I6()C zj#JmB!r_fwbCvnniMZ}}MB1)B_Ue>ZNB~PK_5fUP8B^zx)%mqwjLfo_6KH{6znd2d z@QUt3F*Jne{^FG{(n|b)t{MTI)cyGd3;#_(HueQLY9MnVqHc>g5-i<{yAcTV%a8ENlw!%h7k&j?=PpY9W{xzA z#Z6=vw)3?_+*(ppj-l*~f>RW4AETeXgpRXpn z+~JuV@6RrT??eC0V@7-MimCNA%)m*mX7>Mw+SmWp+LD1s?-3!TZy~#Y4Ghf@R=+=9@;NABTH-e8t7^S?T!5@wex z#|;P4U1+D8C-3u~xdm!$Eo|M-9e?rb9m290h4gW+|1k9t-iYVP4WKi<^hzBJQ3Z5) zH1jXCJ-*YVR7(^$88{0GdrLsBVN&`#l}<=QyeHB|f7^VV9OVi}!1nMoiIB{=&e#Bi zE7zS(1Gj?^v*qAtXJ^M-rS$69Pk#X$m4+d)>aZc;g27R)HL zk6(l*erh9NiESwf(=piDPEaJh@&S31LP)qox!#AljHF{4GR2_frg%3|U8!fZjO%1q z@jE1?_^*}+asR&x%9V(EwK@MUzDPf{63a+y{GwmvnOXiq$la4a6_2o_ z2yDV@1K5}-tfih{%Je(w76yTmflZ%cv7=26`UgSUHUkm}wW_)EQrD(u?)!V>XGWtO zSthHFn{8BQJq;Rjeb59;aF9M^>}adZJkeh$VgNGeat?r+)=u~!Jd>eZpQ7J~ zj+@=`ucyh~UwL28-SeQkXeh2xpMh|$&PK^!l z%US8E2UBwkKIH2XLm>j)6qE6sehzrr;xd#)%BC|dspQcWrZmvUZQksRo)bROdA1y( zt);geKdDmpSUS1)ASRyjtjja`oR_K`%MlPL&Wa6_`rPL%Tkm)9_8HmHoeJ_gpXc@T z*(&A4#SWK;f0~=TBeYR6Ul`!#-d_3Kyjz4nD6bazT9A)q!BX+E(6{xsIh~#X!tp90 zR-1;CaAnpIydBXBA1LW^F~QHTuJ9*~G@bhRYL$Fp_fdPNu4~=PVXHk)S%THKBKB$A zbXVJW*DnJc6A{<)8)6=N!((4FX^rCA>236AF4ny{J&sZfaak($?o2<2RFB2Rd&&^p zEk7rNj+Th4-4nH`WRa)0GV^kH`>fH9`Mm~qz2}aIEam7&1>(();abY|38+4hio80k zBziK-wW`$B(rrvdwxjNbaawgj(8}m*3C;Tq#LJCFeh$-f4fD2-+9d3vp~=NGc+%7$ zEHfl4*obg{(JD*DIu7T^`MV;o?J~hoeaP1Tj)kYJp`nNFBLoAHob85( z=j0A!KOYKFNAEMuX1MDIt`2=mnviVkV%vf&NHrE)+?jpqO(+46e0m-Whlkw_1=4)O zlbL;Kwc-Sl*vHt9x;u4EF+qWw%ILS}orsAl9F<95C1`zCxD?ARUKjG@Vc%{e`f{U? z6Q3)lqH3|2F+aZ;1q^YTZR4grQSAxcUBG@5llaRAIUi^5s4Pn*FDsD{8V+p{-yTTy zjD9G$UURl%o{H<4e#nx1wCQnq-j{T4{e!OzSjOs6`MC?=AfxIkuX(=E_{_7vl^4fRjGyf6@DD?05;GV}-UeL$ zKWD#e(q5S>AjELn9@u6=Oy%nrvh=g3;Z|ol@jT|*hCxf3BEElTD8m6<7ni~~1Y7*{ zr;!U+C~4k&#f?=*^J&$|_eCV0K{rMy_}OmTQ+T{LJh6McWnT;pMFZ^&FHeen-c#XN z;Ma>?(-YW^CJJ;tPu_Rh;1BJb{c8u#rVMLo1eu7!v!6L?;OZ*mNK&gs!OeH3jJF7pkp{#QRTQ6xHRB3i)XJ3fN#!V)2*Es=u~R zbFlpe);(rW|4oyCr=J#wXgv$Kmy?B=j>RSBQ+>>ncUK6KKiXLRPVIfQJ=6ZkYkLE2 zZKvDbRrhV)M?S=jAZ7nv{q-UqzrC}x6{@$4;sO_+p-m2n$$i8fP~gV@%;oYhaB1?V zx{5|;BNvH({cLXYZXg}GNtwrAc?x2E= z(;2XYsrc$1e`{$h6M9?jMFul3o5(bAH~y{pN! zt*u~H%<38qb01gjSN6Y!-(J#CdXAC3vA3!i<+!2Vc6&l4{%|u>C--(oY^o+~kpHo_j2X2GLHjb&D=fc|TmYRW9 zqFF0pqlLgsoFhq|nqX?9#C_z z3S-NVx;=XuX$9aPeX#!8@83A3Tn(_icjLBq1F3;NR$F7Oh*hz z8Ck1uc89&8OfT=c5`AQu4}1Yj(5uMvX8XhjZo>5g0K&$+ElwkW>uTuXT7AM*-N2k- z#rEnsc%&T(|G}uNj0R~HqXze=;5T^QbKlgkPO8wP?R?AEZxii(ieGj z=?6g&b`}AndSLE7RwODUe!!9{`htkgX(VjU@NHbA42bA-$L)*Nrjk2FjK6y9A1VS0 z%oj@EFk;x`Cv+W1c4Io?%~uIxMp%_9 z^}NZB4sUnjO9*5q8d2asnEKkM75FVHrc!VCZPP-BajD|qQy=QsQsp8mH7@ef4eePl z1@o~6Uo-#3FJoDmMz&Ss07iJ6EO{A-85g6l;~%vd#Rs}JtlZjgHNPEOrmUc%A^uM0 z$vZAP#di#eCMy}zEQd>9TOnFrLsJL;0(d8*T#fqqD2{0nm>vE=!#=G8RRVB`j8~|99T}4MCeqUjrJdU$C;Zjokd>WQJ`@^Y#by@vRDb& znn@0SBC_b{kyF}u{LH(}!b18gr+ z4$)SDa^Wol{lR7vGTaSoBbGgaKdor)k-CtQP{OZxs%YP2b%hnbTwSd%!(y&M-#Ax4 zx(zRAt-+9iK<~}aObrz^YVKmW^SDl26R^MiO=@(-tn<2!1t`vjF61r@GTdjg84&|> zupW`XIXdcfQ#E_^1+Xe?Q2u68ZtP@DuMC;^FZ=LIaVs#kp{sK~A>44&VI0dg;k9|s zePKAG6S(xQa_n5$B6BX=!|5Z#Lf%3Yw*L6pG|jR`>1K`ag8=p&K%~bHFvrqPC_(*? zyz15>9zkTk{e#+XDoX7ZwOiJLPG|Z2JR&|jNdl?kc~%9DU*`Yiz12`u$Qd(-$Ujd<^J^I-J{%EWzm}vEE!Js~-vjgKeR*R4_`5~A zNM+<4S=Q^2;%r`#B7ZP~7Qu5^N6kZm&PT0$9q@I>V4!7rCii>%&myLF|@Ck!>17=CzBZ`DSbk__RVHkzlWfh zZu0!eWwnjl_^*O}>q3sD3HC$)|96wbRURHKDaDA3ar(~Qo7aD<873tgaW_LUWb|9r z#=mlIk8j%&P{ynn+jst#dxxkt9#EEm>{@=q@q|#xJd2izX6sl1Z+qk>PP=isgFt3( zK+bq^Jl$$39ktrsp4GdZWA^Ds4etHP6sZ zB|3@aY0gB6ad!O)zP1msm-KA^;iY~l5yi=AK_DUd;o*c7tqM=6j0^K;FD%u?lNvPB z-;c;LSW8?YEHbts$u3hYbe1B?=4MD3GR^#vwh@n+1xI6nN8M5p7CF~f!gKpy+s9q0 zJgfmf#+d=L0Nno}H`A=A#V(UXpAb3k9p^nyk4yf6@Tcuy%{(R5w9DVy+B>EuXe!ey z1HwrN!8WlPK zckl0!lUIroZEd9JxE0d#(ITI<-GuyZ>EOVtK}E#^)AMH$X2a;6{V`qxZ3grq)7WW4 zNJ{^3;SEhU5}~~$Mdcs%%}|T?)9`P%|1u8spzq6??CfIC%(D#!A|wZu*S-TP`Z?=C zsnWpDRPd=IK9VWR_?gI_P57|$V)eW2d$B4#@qmZSk8 z2?=$+Aj2$pN@l>UR`&$}i9(6g7v4~g^2Ly3hnR7tkbYn3_?V?M$1e8FyqD{rAgya% z9p)9(o`5)gjBW$Wd(c8gx~Zb&uIy$ywl;9dG+ci z^RV?+m-Y7XvS&8))S9{g;;{g!So)Lc*`N`?3$mKMjVQUz!fSx0ya|hKY4zaxD7Be@ z*2?1vdZ7`ZR(v1mc2OL3+pc@PnYp6tpKU;{+ueYa7>xxu*ELUme3)&qov*B1XnJnX z!Ff&mkac#Vsmcod(;Va;W19!4z;RCfo0yYU3d!A~;|*RK1g6e3zvfj$E(VR~u`Mt{ z=7lHhA}}F&SceNJsN?0S&a{Z*dWoWPp?G)0f5<;*oBYJi;nHGovA-e-UTW0^229BM zn|^i+pF{Di*Xm_YpGGgE&G^d~Sc{H&*4{}YSL z2gTTKGJ$*=l49`rcBQR^4~4^I^osF8+y8R9lyef4-o?tTi{lPS2pmmH71=B0@bcmu z5$Oc$g+t#_qci)i)4{9-X+J)jbW?Ps2W{4A-Hj3A^dL;EHhCaU{Ae~WAow9ew%Mfb zn-C&K{QLFaUs$$MZY|5DSH=iJAne{L6_RqFR7BfyNH>qqjIGC2{~?CYg(sU^*{Xfw zkJF)C!t^F<{&#!svhv*AfU~*nW7oOJ(01S)tjZLvsSHHJn^h%oJQ;DZLINR+_j6{M zh^wV1%qJB>Y`+fl)J=5<<6Ne9;I;1Q&ZkM5U-Sr6hA-Hx zSNWCJtJLI{vg}L+bgKNU{MU@%c%(ErVts(if044pG(XSmeO^{(G8=c%w0$+8f%g{m z--fu#3KX_?cK`G9@C|5zmckGL2*0oQ2PxdD`8Z^>wmmed91+Cxa3DM*-s;omm^n}~ zkT=NyD>pn)J2UOO2FSj2aGyXo*`HA1>Yrg*F?_XlgO);1OO*p^4FkWeUK~6=lve5B z7G?_!2wEL_xXz-k(4b5e)dCW_wqG6J|6vIIH;x%(0E}(zw52_I-*d;l@Ex9>!y&Wdut9{{cvwqW=t>7UrXGt`cj_h0snnId!JTnIXgO+d3ZSBj35TuzR@?hKFRrmf0JtR3xk$cQ_n?} zXQGU1+fORG@q>b1f=8^z+lK_mtzX0hh64+a&5uq^0Z3begyVEV(@bNo+mO_%GkLeI zvwO~Ok+PjP*=6GoZB|uQc7SPio<0az;RALq6T;}W!7SBh=9mVw*?{S|=C3p}3swth zmL4sQhQX`{j~|<44EI*U>A0Dakz2!DSOAIAivRHgN<;f34KH|&079BX%NoFpb4NmE zq?Az8oh+~B88`__kP*^KFy0o?p83imP0{yJf3>W)gf{=3pE3}s%+HrT2wki)x=zb+ zRvh+0g3#Ea{r#ND#z^X@7AYxi>(ObA<8Iz2;w7c>eGU$hA9%0u2|A4=fu7`I_k`q~ ze*z83euMbCAKdMOS}fUZCcH?Yy)r}7T@H?GTo;HTGFoV4T)hDe-m z&X7Tqn@D=6sO^K8WmtUlH<(sPE9txe<(nzm%y8*MqLLEJwE_q_ze3O{Suv@918?39 zoc-~ySF^`ktO<)DRp~Z>Ch<)F>?YV$kzCNE=g7^>omK8(o)HhOlLhjP@bS_kAxpjB z;u9nv4b7XVwea2&y~{BWa6tlP&{V1?_icT^)VNsvtxD0*vxh%xDkFgOJW^Z}Gobd^ z$!*~NGqY?1se#F0Ol()+R~Y|;1%^ywVQc$aA}fB|VGD~-nfYIe8^7AW8%X75YrOiV zYK{V^LN=h%F`5mw*$SZb-28kj7LY|}%Dv)w-QO6>^5k%y^O3CGQ?ITy#@DL7)CbC; zKc}DFtePQldNmLCyZJH~kYJkT<><_oQi8XnJhDs8iMI-^X?nj4ja=-Se#gsCsp?!_U$mpBG8M{yHFj;*VyXqaRx75o68!3!L^6Y0BuMDe4^O%FQ zNy&V)J8hlIbW-zI(5PTfvi#T33I!hd5CZW@vZ!jxIN+NKnqjLH43b*x^v;&ms~XUm zhe2n~r)S5~F^?mDFa=)!pxc0c0Z9Z2YCj{ywbWY9IU{hkCcjM_*AWvWD}1YYHtO9K z_#99MzEXM5Yj0FE#^A2~J!dX%Qm$^qy{=<+h!W`^iU7WwL32+ zGA1bz@dN^52af@vs!ElU;Ij;6U`Qb3>6g4}nzECMNPCfBM|Bl@l1R3YuTyHFrS^onG^ zEN^>8%p8!)zyoinKc&WyLQN+1Y-{}AlImhpni9Kj|HerNQU3P7i)**g{9>Mfnbr1n zfc$I}>K|^>1n0+q(8Y!Zrjfc_74Fub8@+hOK*+L~(lD=np4R{j)1af#PJq+nNl%wn z(_I^79H`!L7td}1SAFzQ-OVnG=`Fv(RX0qDD9GRAgmTE!iC1xH z&4bmc?axjJ%8oh%EOwR#7}$SSKWYhI`MT97^+toRl`0mjB#0LQ)s6VB@3AmV&59pR zlO`fMJ?fr%Rp$`6A1$qBvPk)TW>mP-Bg>Yhq<1w6r7kFrSTFnI9JMkrMVGjuvO0T{ zw0HEDhKMWer0nR7Td%e|Mf7(n!$Eoun_ujOAk@C`hE4x-4R=4#^+u!NjqymI0i=&I zc`iALNYovXC^C^K@EFnKa4w)zGwy%hEj&*2_uF3kw?u&7!z`=wt;@ke>`&8ZY(Ld_ zAPw)TO?7DuPF#28MDyG_65D~wK15cF)DwOQlsgs6!Z!ZwX_XWu%KN((JPjGD(N~=Y zt`FYVtr~-t7xh~?JQ=SbnM$Su#EumQLW98_8EC8IHG)R785O`OiG7g-OIak~AtF@9 z=Jta}V3%QO$(Zqi%`#?!2*3-C&*jIxPW}CZsbD1WP==-`_OGF#U{AZrEGZu3VdVv} zAK>QUy8r19Li%)u?Al6efo8K8OmDy~GQUONKH4D@bp)a)RaAk%z%S2xjbP?H{1mNO#)hK~JDnOtP5h(k>0_DJMZqQ1D3Phm-#nFi1 zAolLpcJWvDtaU}hp@MEuI%(;LDgeu_3x}NLa~nq0)uyO`(%ffDX|dX%qjM*W(SMRW zl%8%-D!1+GLEt-Bpia5tMdM<*SQMaAQ&HG5>b8~2tx{-C?lcnZdh8XMnPrs_Y;Shv z$g?Tnxb?zumhcg)Ts4)j&_H-*{NKll`=9L=^C%fSN$!rXTGTG{^+`vA#`T7A`c{B=lbzzLvsu||E zBk_pYC*PgKeLuTwaqg??x2u|eN<2s`W)&FrW~U>S*<4yK4vWh@&>WNFy3rC`AY&=qYg5!M;u ze;W*({W@hI01ec%_F#%>Eo0;`;XXj>v$Z;W#6&s{12GH6Xl%Kua{B_D%$Ua_CqULG z?{@e>1+P?5X-px7j;mHwQiJmB;_!DmvFrJ&Wd|dhi~UR<<00nq;AhwgFK?QRl*Rp%6Y{+7wq00T}o*@6i?i5MuxA2j|I+ri()(sYEI{-|u0597q3F>oHoR}u;^Xy1h40dR|4D+z&xqi_Rhj&tW5vOK zNc_{c+o?#4$XemcGQLV9A|uSEwDOhYHL7-5J#Bz~0wxTq_@bC>7R^%0}jjIQGnpc4Ix%AlMJ6`zeqhbC=!Sf5PPM{amT z(^N+OuFBEQZ#{Dw<(M2*Zzt~Nw+^nM22`EgkZ2VhOyv>pK-nAKRC%xD^)FDYc3sr6 zL5$``k@t{Iu1z9=GFhUQ{l20gBs})9N`;ZjPDMyKc^Ri+%cS3*m)d5pNYoyi*sEen zXd`R&Kkh9nKF9n`u%lvMnY&qp&?gje;zW}rne9J3K5Ctw_M7hU@LkR09DfrF)yUhC zkHM6$y)Shq->ldt!?k6ZyXXw2VaQ&t|6W)b5o#Xu5){qOjyYS`_VISP)Uq6hf)jpt zEQ(N-pYd>T5}n~4YY9|*g@n^XP3Nbr+`Zl@TrG%^^4u7@)v^M;2_;Co3fUhE=}}WD zsW46)>w@{~JR?KicGUBIZeTFOo7`&{akR~H2ldd@pPfGOZl`~)|7A6b-{R8rJ;wap zMZdq!P)xgvoOL@_*fqc}_#BHm>WmFjv4yKi#u3p)U_Z)DbDe`@DhR*zZAfIzCH03} zP_6XuV`F_(`ydoA5L36$A9hVuUB)y4Epu?L*27VU5eQ1#p}|4sO8MTP;%4r6$(DDr zE4|@temgROXUfx9qb4;3BvAFB4lg57jtv+2j?y8b#J52VR5kIJT43IG#*&v6xrsk{ z*Pg`rB{AFhj;IktDBmiGn`xx5h#9Xu1cx_T`Pxich@p%Q!+U(;pW1BmVee#pb-UZl zf8FclR&V(_y64wM$okZp#1e-FWv0K4cgE`M>kc~p%Ou%>bOM#pV#0ySu4?6|5|C!g8^@-03RW~ zXa%yP<)I48y4ADkeA_tIuw1vfzA@G~%a$6p3=;GsnbHLgdzZk@(m6 z=mzBrj)2O_b8<0ZpoLrrxRH@kjs;)f!9zX}gUU{s#igpnOmnj{W6Kq_q2-d2Rl*fM zKSEryoTt`G$x18L87rmaf_jvKgmdnS6Mt~u{Ng+zxm&*BCeCKp>+H^F)F4C+6za>1 ziwBfDMaScr-Ur8y63c(T+CskQ>db9|^#BiXJxsJAAH)Dz2((D7*=&A6cTvnHyR%e7t@9z523U!1_2Amr0`wiowXzR$~w2;|hX5~p*4Iuqq{J{M;TBd;hX z>H+Hq@l>Y2MAOnC1D^>+Y!Z!#k?Jh~ycn?D37U1gW-e(-CN zalbu+Th9(ETA+>#jF$C1m1ukUNTPQa>yZE)i+h0Fd$imtcJ~?(y%<5jFa(VbPx|bY z3~+@nmL5$CR+D3#=eXQY$A8ctY80h@9s`1af}i~~pwLftE<*Z3|Ax5pzN#Eg>ICl3 zpy|hTc@Ozy)ZX3zx6Ix2X*zXpI62tjy2NV7veR=AQ8RP$=1t6wN`HnB5&eB^VALWV zfEVa)0gpwujCFTQkC)6B9oDwldBn zSOhKQ*FhNf3TX4$D%usd>G;j!dY+_wJlmi8e5Uj#G<{GoJN~!qW4O=%Jf31zp%Q&I za~E~gwQ0CDfTxAzyv}z|j}sI|&M+!XkDhFSx&1Y(RIl+IY4gkG_bjL91bI%D_bKtM z5&fy3f~f}>22v%AX(+Cq?O}W}r*CN8dIQA^((@clrFVYap``^rQ>NG75mUc_x~jWd zFV8}LmbPP0pJF6UCL#L<^ayj9l64UWAvbM}_tj2<6~JRMMdxbzRiP+ zARZ?bLBLUgRT~JA^8fVfmb|_i;2=^EknsQ2qgzFZ3UmNZJGCHM!y_Z9`yXC)Nsekk zw72eBI+hRosxepbJ~RsG9<}}?$$wYmh=vV&i9+N(kvj4C&GG1JyEUSz9}|Rfpp60~ z92$RnzJs|6mha+~z^}$7did8~{-5uwB>npU7}zYrpR@yZYhs4lW?2Dm0=At?sWm$f zT2@Eg9iNPWwxQFRebdtuG@?^M!zZTIQ`882O^o1QMxyU1I7SQ}5(ZZYS4XS|3>CR; zJ4-(4yb7LR#sBA~(Ii`2aj0i|=l|yZVX9vt(FHonVnax^1D~Ki<^C)YnBmpe(cA~$ z^fIA8wiq%7nk&tXXO1ku(`eww7fwZp+yf2b+3og=AK~2}W{zA!$FvBM<76UjvU$Wv zAGOfdo?FO3qxN0%;L)uTiU%T56e1b7kgl0@Jr#l`O+&k9dR0XtupU2nkm>(iB#`~K z>W?Ulp?J=zOj$;w2i}+%nmFGDZ=35ZbYeL7=73necs#_Ia;Qg ztn+|Pf1KO)AVSX34xQFiKm+c%*a#O-uPz^^^}i47^$S*V!iugJ(Z>3UQ%ykeZT#77 zM~XI?+Ks-KrXBNX$CsS8;8`t7^e}_Oxu=1BuFN9&5|a8-*BR zPm8C$Xqozw_IVSpO@>H(ue+X|UWpq?zNenS^pO^=o4*bmpPWycY7PC_l%W=SAP9Pu z25s;C{0Dsm+70lw7^ZUON|`)2TM*e;x`EjaL(f4Yd~)Q+=jSQxhS(mT*_B!lq}cc& zn`Nupmw^)XiriYB; zHzmKk1=j_JYuUPiyRjdVO~BJF&vz<1g{nOmv{8Wt2HcyQhYPhvokQ}cEE;*~m{`6! zGRq9Ej}tlBmxP-4e}8+)J;aK0NcU&ifeJo5gbJ+ja`9q{1v5CKaO6WDb-7b{WPr8H zpXUA20=D+@&gGjb1LD@KFIt_5Sy6U$60Q56qg+9XY#%TW>f~h%ylmkVn3u)qPDy{Q z$u4waj16GfM!dhPdRH~;KZ}h~N!#1S-|EMX7lk>{F&LdJnvb61Y$X{K*M!0w_n-4_ zwHOShIT&A!Dg%xBdTOX%g&l2oYHQ$^@XYPWY6~I}7uOfg$Gurhq~dbcB??oi$MX{A zRxMlISAQpLOM6^BmLwtbUP^aKV$ggNv-!*IPegv|fktd?g1d#J1?SWolNekA$?lUl z9M^k}JQeHtwCFo`L=gYSe3A|=+iG~s|CogPQHlGL@0hI!td?hZrZ!!k%}&bc1Ta6d zvrUxv4RYwx1Cj@T2lABmn%VNiNC@>Ynq4iIzLK}~Y4*z6>uKwOrGuCIno2~xb zXC_Nch52zrIBo`oW2X2<-ZLey7XP*LIJ4`YRp-p*`|oAc@)huZ(E6ZM;3a(gzv|BO zIuG7EoOipuZ(dHh+=q8+ed|5n85{rn;Z{`3P&e()H!cIctMfyn>$g12zS(;uKg^6- zdh%&i-NJKke_m``|9pKTZ|^mK|F7v+ugT~Bh>BxA zfB*D{-vQwRf1VUaF3tt6FLH4G^ndE^-P}hQgdDFiJ*d04j~h6u{q{L9<=@-~N_2KL zCRJDN?*lI*SJBM1bODXY0N2!xq%+SzRWX)bMtlGBTP?WXaoC?L0C-3pgQu&X%Q~lo FCID10bJ+j@ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_23400.png b/Notebooks/1_N_horizon 3/sim_23400.png new file mode 100644 index 0000000000000000000000000000000000000000..375991cc084a0dd7cfeffe48c3d67236377b79c3 GIT binary patch literal 20309 zcmd?RWmuH$+b>Eej3O|K!XV{HiR6fMDJTdCC@3M#5YpYPBRnYGjS7M^(hY(RodP4> zA>AG8y777cYrT8z5Bt+TjV{coTAXtnQ#+KQL!J{OAP z)@ug`8+&1HZp;4+;Ig(e;U4TG{|F|zWb;JB9uJR%0(#-&#U~>0@Dv+lA3c2GlDIPJ zniyqta<+lv6X9v(sV`V-t!<5-BQi6~)_i5mb#kvrp-4fq#Cp(R2v=Mir(yaoDn42x zTE3he_WrBSo5Fmu;dVUUcDs{PL4VtNYJ}cIyHIsm7loZzG3)BE$tl9V-B5VLxD?F#9h@HnKc$dF481;) zk%Hxezy09@@8GL2q=Uuhr0+;f7QBJMS;NZ!rvDJ8Zw}LUgMIQ&bwpy;r{N8UGt-rD zNkRBLo2+sr&qOHGpIiT+C|6zZ+I-0QU-5JH@2uR#ghpIy608@--y@XrU9EpQu@*ES zK}t)9<{%=%7pmV&cs);5zZFD#1xt{GNm%y{ zJVs(Nq+kN9?xY+rWa97Fp0=<_0VJj$iHSmD*8Jgx&Vzg2QZO1Hb4i&0JNRirPBsUI zhZEDyR&m1M<5e#aUh}M$QZn|Mr24nE1HSD|7*dNuvK)}I2`(vQ(?f42EQ(oo+0<&4 zgavumTYCh)F-%yBNNL$ZVpfqDb6>P?3ak0CtKE@465}6H!=*!lO#JmVcUTHm#)MO2 z3K_4$dun2Do^avcCgMUhexGA|1u2m=LMU4HntQ;PK0?E3Dz48 zwHtkFnY_ALurA^vdygve-p#w;v>^`|BmcGg?AM-;zt6RgG-T9++8 zpu8wtuI+miV!Qm|!g%C_&MaM9S`%lIFh-gZXPwR8+P*?9!kSZpdJ2KIC&3qy7_=lT z!T0h6$2FXFQ)O`d8J@1y=iIP*d6BUnh%!8DrkFak=cePdJ&>`HhACZu~jrgrkXM+y>#)93an&6u_0o;c?@?p4=$s&w)dv*Udz3i%9E_^HcpUi%UL=tmggWKKs*^j6NGb3= z@cyW_d7NUF-f{EVckCnzTZx!nMxb4JhrRIBuc42%H$`>vPA_|u_wb(uqQt|h>Blbw zUq)_^j>^7+ABMuxYx`VW12-~f;8EiBN!(3X}v1&KjlEcg&1Wj6Zg} z0@nE#IxrmF1v<4vK0+n=)w(z*_(vj{NRH*Unmax!GC)>bjju!>_6hT-+}1mAV`#MaQoxxrU9^YTMFbv)yr0Os2Tm~kM}fAY>vsb_ z35W#$LRPG0w>-`dkJWQ9-aPp&y~HFd%p~;aad=u^<;8NRrbp38OfS5_^r%NiV4@H% zX$70KxMpv1%#JOO|3N+_fPoA9{g_GjU%BVql=uG0_VwS_B^O9N9AkFOWk=`?{c*l; z;0;Gou!{OJpX0fk<0=YBOi_fC#H}8CrtpQ)!U%XnAG~3~@T0P#L33;Hic{_ezTOkq z? zZHXL5{IHa#IYO@I&Lqj#UPF&u@t`axRhRuN({$O%+L=#*z!(F+E9)U0(}bWB=#dVY z@tUpon6SOp_~O>aftMiD>H~X~z;ADUJW6L^?qNrhuA`mE3|5&?50{Aa2m)kf66~Z4 zu}Vy9y@k^~+!bCI)~^JFE|^}ckrTfNM~~b@YZXn0jilcd!d+^aFM6WY7{qk?^nNn; ztXjQf#eioCLR_BoEo{fWFw&BBy!uohaK ztIf53-A2fUr2vWDPlY$Ud>|XR(fVTGE(AT4&A$=L_yt^wYALH|k-4BqxcY>vj!^Jq zLX8#ry4P2~KFn7VHi*Os)eBEdBBrl=bl-IH5V2~*alT`ggRn|pmYuS;&nw-)Z)6B6 z$%PBRG$8tWJ*8kVcrkbm3*Gt+1^SI-Ps7f~Vmp$>syMLf@r%NJ_lRhzIk4s67zmrY z1^k$9UTnEAraR)%T5$Sq#f|bCdQ(3FYzJ~Qh;wzI&6vqc!sJ!7-@fXE4u^Rbzgz(@ z1)a^c0=#mDa-NF8clF~c${)`OK<9DSFS zW(Es>d6$)Sx6d9mXhg z&$u0d4WelZq~^sd-=F#rCt$6UO^dGg!HG~#Fx7OW6h&N~ z_FmPf=M6Ly_KB+MuR8y_4J^&Uev^da(e8@oh_R(5r;yO;Z}+bSe?@rZ`(l6gpP>@= zgM$M+hn1lyofpT^%0K%ucVJN;^e1%@rx{77lA zKdE%vzdlbDT&v!4nF*5-JX}bn7Iop_HR-%C5pSM1dA!v%kD*Z1Tc7xTe2A+XLsvEW zlg}5WoN!Dxg_s;{&U(!8rsxCt4Wtz+)UQggstkCUt%`D7e37o0G_)>GIkw5EAtkxQG0)zpGsE~nr}OS&Y~9I< zb)1+xf01#=RC77^YWX@(Q^b@0{K{C{5Y_QMain*hxoTBD zNyJq#bIq#uz}UDexnl>X+hrngG+0wfCdaVb59xBGQ|(cRT3lIH^~+(}o@_=nZyUpi zrOPBF5G|C%514*sD9tl69Ka+FdqQrykuHbE#584QBwwyy=t*tq>S7fTi0Mg{DKcyc zugRJRgqx~8S|!v24B*fz59QLXTrTcN4H0hzG>E%zdJPXqV5(-BReLPzEt^XEvsbS! z*UN}+UIjbe5u@MwWmHvF8$+XWayY=u_{}XXpK5Ds^;6QVln#HRLpGWjL)Mpzx_WCp-GRvU z&N!i@xvJMCz4jX!R*R3Vy^n^)N2!^x&A7T#NAZ(CN^8X)E#b_h^MzIRZ=J`&m@oyy zP9nfDtb1)t{e*-=^z3*mGBOg<1U~np0c_KtV*;J!01o#nQ-u|ryC_3Njp*;bBc0-x zOl?0_?+%$88X2Kn*7fkf0I9RnlfBGbd_tmi@3TGcJ{+#dZno9$fc@rhwJR?(Gjp-^ zc=AOO%JmWZF20<$j*c(s>3$<4T8g3@j}%2#?&p_NB*#m* z{0wwc@QCN$Xds=4Q%FgYT`QZ%(eU_O^;TzUK|yE~yIOccLY3P5-d^2VQoi@elEq-* zJ7Ax3^wkyQhd8;pGo<{MO0Nn$Zn9FUku zOD1u=?iV1jH_#))Fv>H6?)&;YkU`>}POjT86{zfV&BtM@U};qqMiKtjOx z$w1#XPS(6rB9z4A4iDYz?ClSJa(jIblc8_n!)Y}>m!W&yl`KXr;pNddlUilJ*}}>T z%tNs7;+E7sl#z@GO2i$Pf;;M1br&+7Ol&I1LP;u>hSA>MPn zV3IZM`b%e~FJgZkad_k|6t{*mWnKgpky^ltHdQ)k3Mhav@S;Z}1COb+e~9gk5Y|IJ zquO;VesuR+6a93YNwTSncN=Hf`qB8AS4v1tV>q)sg3qi^u?;MKGq3LSu*NK-WHD?v z#`!s9snRGRRkxpO$DaV=H65*KH7T!qsN8r692Z!4uX1$Qs>-r#iNSpt1?-pWUe!2h z{g)V>N?eoRGoYx$FT{k42j4 zEd=GZ{d#e6aeq;*t~E_I0>Nv1rS7mlAMYR3=0TTt@>NFZb%?EwO9OnxeE<6A`nt0d zYitNZ*Y9s=p^YCD8ij_J%0}!+&W`HN+5p6G0aD_;XoLd30~n|$*g)z=YLmq80KCu) zRd2Sk$BDY$lk&SV*}|GKvSdG^Jv2ZLQ+1JAm$US=Z%th5>#MMM(5$j1~q z{85H96q+Z1HMzOasLkgQcXS(9RiJa-(dd<%_rHFU`B0qympewuvJn%B_G4s1=}Jn~ zDfdn567q6$XTK9O7;Z20;I$_TML>Ycb!%=TVf@%{YRVwl`_vVBd7Uij7P)K~Ksu-c zypfLAff4k-wfi%M{$*osACx>7RgQP^y=MWnr@$y_6 z^E#ep;B{Wrf-o1f$E3wXA$t~qF_&q@HX8ToAOWY#%vKe%(Uc`MroUL|y^n2ck7v0B zIF|aesQ~BoI}?RG7FANFa*8@Xd!GS!yp=NlhJ;IRb)+KEdCXPIY0!xDC`YFzJ|o%f zJu$tDPj+6V8FxOWnAiU+lv9+G&^^A*tK?Dd5~3e|kS$;Qd5aRt%%dseg~ zF6g2T%i+=>0E+Mf=xHJN<2n~-5(_v(NKAHN0yrlFuo!90RetNS_J(&PkYg9z8?kTc z>`VtfIMJrz(%S2@iuvT}^66mn*V({7SBcehBnT9N0|iT*y5K>+pi}&4*>A@r*_8zk zfH^&2{uN4Xf9w16U8(Z@K}*YNdIVhVlOjhkfWk(chAl~Jq?0{&HCAi(bnrSQ&OB;& zOY-?F+zfkerOgeyyFw?*vgi%-llsR zPN6913;YO#N8I*SJ8YZin)1DN*db9E$kl8DvBJUcCh^i=wK8;$*Hey0=GCiRP=L^e zjeevKt0QqBYG`e18@J5?;wUF42Pu%y?r-!#Bg1KT_q2iciu^DiA77$SN%ujDTtYAeq)u@DY5YXxB$sF>me_wNemqIO z1v$6`>sr?g&(-p2GOn6!uDbJp@Yk*>+Ac(m|`gv?^;P%5jv1UP)`H*elRF(^pfU7?VKF}azvhoDZ2d$L~EZ`7mfFV#1^)lC9d7Ox#{ z|A9i-f{bskG#@_1_dMK|b)+6rBBG6(e?8$bF$-@!37I=N?Agh2f=XAoy`F}d{5c0Q9S7f@o3|!}?vvU)yg9;}i0m_}{hM%=7m$hr6~_Ee>xO}gU&skW z)kY3woquQMN%p+uzr;xPisk`}jUCBu)rIm4A9d@zhztI;k0HS1K7%1+9+jgwu`b*; z2p%}dOcq>NAgqQ zJahIR!2W->7(ikA|9vB7_a>w(L|zz_Z4>HhFJf4B}QQY%^O6r}k<9bg3B;EBX2 zvT-@49Iv4Z7utywi4XD4f=~l~aIY(HbhVwcr9z@0sxzK%=|N0&S2VM`{RpqS5UL?=+I=gI z&7Zfx-2X)k3)mbRAqH;TgkVjtBr6F7QuQ>@))9#J%+h5&@oo|9{CZqk<7Mc5DsFOvb!;6Gb9V4pM^`g!ar1nG#9?3>b(lWh`URf5SoN{j z2NFJYKM-f-RVTx4k=F@A2ys}%nq~2ELj9wO_TN8#k|VVUv)+UABbwM62gafptEm#c**+Nvx#W`V9%LNU_%Tg|9?uiDP8osOv`}w$Y!=QlC1BE zY+Zb%^QtyrP+s7k^G_BXor<`U*?!U`V#k&GW-!_6XxQ_b_tb+`zmw^~guTdSAI2I0 zTw>u3sQQTdwg;Ye8v;HFJ|23Wc7ygPth_T$HJyl7K|}5N&usQKSJzo%9a(Wz%RDo6 ziDLJwYd8DioJp4(W_**_I9rwUOCZvc5fKJ&8`OU?rjx^$Q5jHE-CE4Do6GzCBk*Sc zl1sA;hi{{9N<7B*m1OPa?>I(c$4~A}Z?3DcgA-ch3-x;LpUWa=U?=BciB*{(=MD;F%BcJi0(eH?_rquIIH zCS!|s#?=+R^J7|FMb>#HKq7`_jqTef9{ol+stZ)!7_5SVYdIM}SCEbExHs`zq`$;b zbZ?G`KCUcUWQ-+ zVHcNNOb=M_+?>stj->Y{q|olXS zNgCaqm_*w2Il%Fi?;`%vyv=8N;#H{^`&n$&`=j}ssgjZ#kcjhq^1c*7>}0%I-x>Hv z<*8S2*++;1|KTzqMCW41aBPJOAupBn!~rvni>DSx=jQ1dU<6zZ$?@)Ho5z(H5{7i@HZgADHdEAa*9e|2s5QtkR@(Qjua3n*fTS1s zlOB*9D7#c(n3`JDR`YR*sHin(e%@VTy=OSG#QUE`RQ#RL9%qW3qtFglnBD)29E@VQ zL&ZT5UndWiTy}%*nJr$E(qJK9Zb$h$&n`4p-OG`=sxg)Xtuw^=uh0W>)VGW(*Mh~X*%{p(ncT_koi7m7$Pe}8+aHNpL8@6|^dHU%7F&+$w6*^fnOjru zI_{r!FY$h8MJZKDg#so)%DwvJ4re>-g}0E&D)Ic!RnO2yQT-fj!-Y*NW=o9nIP1w0 zzNqTb(nQ?Ai)X48HTs^iM`t2Ix$C8j0)^YHV$N7d+~84JSlnp^INNpRs0+uP=$G);~y{Gb)C+Y8&g+np|Q4{ z92CIWuYF*rDQ)Y#yuCEy6|mve9U2*|%f>9C5?iw_{jKF1a zNGvsu2cjRXf1CbhMWR%#gWat>^joQ<1=7H=KxHb2f`=b=&)Tl|x%ViP@F zSz`z=0lj7RBJ+n3xVRUJ@1Is2mUIKrT|!7$=``_Ua@6@%nX4u#ptgR?VJ@J4L->xS zx^n3(-K30dm6r6LB8C+m-c=()?FIq$Kb<~O%F=hNV%lQGlMuf$eu)fN0z?vC$XQ*P zl^CODWw83bn}SV7(~|B=LLM? zW^{8jeAE>jxcu^|>GQT#eh3C-?tlc2Fw>10V}Z+JhlBy$=-G5j_mQ$%@xpQok}cI3 zUh9`a_R-c;z7^Rt12L4dyq`^E{PvccfyutIr19fp-n+3?$TbW50Jr=Ug4OOHiJy^! zy8f{S>=W-gl^$Nf1wmG9IqIdOoaOU}R{Z`^l%=nSzmI+Z#wNsXFQIIJ$6G-tKTi%r z57ygir?FO6iCMTB9&rOmS?DLR_lTj?fAm{S=FcEryps9n+wADK{@r(QHv%zqAU6j7 z-e<7>PyOS1Kg4v1BuovT8HHtc#tr-kpqK{rF*1i1W$ciSW>Q>m|lCDbhumi=hx)H{G_?A zyta1G{|3GI3WN_TZ)12E7Dy9`p2}J|5w9Z(hJhxWLdvfm5`1N;C+ycv&hhG8KOBxl zGUS~(`|r{ks}M`ek;){<3MLP-B4wi0HGXWv?}(^$TFb=3m`3VeVVLI zr;rU!J0KK&xLr0be^gHoIs!ms>q3CI2z1QJtk??l{1`eP4ZoE#(=-UI)+l{9D9^un z98TJJq>Ai?5vay4-aX2Sge}oGM7aKgrmwczUxt?s?4z^05}Cew+-yW%gw5 zd$WO;FE&&kJ2s+EqE{f-7NWQ+?-h&;Vv?o)WUi)OM_+qlxu0?->&Pd9I`{O{cQBzO zqIk!w*!^EKg*YEJ6t=&`Rha$*ifmL{WOpL8S54b9?Q@o2$8fx>g{7DFZY56tk2GeP` zh@@F9CeV?P>wQcpzKx8%cTvX`xV|BPI6&iwFU6-LXAN~SEEBhSEnP1H~O26HuJj!p+v7o+~WKd5&YLtU@^Kthk&22^?)SBLIR zgkDEO{2CELQ-;Xb|S_TLKp^9kfR@VvvR$wi{IyuAKeog^i4_T zji&H(9M6b1TU@MgAGqwbyRZbpGvmc>MS3;yTcmeQwcm>4PPMt7NvA}XL`LB9w_zPbkbhd>8ZIEk+d{NPxMX-O zzSJ^*I@ly;-TN2S^XJ-aEsT}C)h04-H_B2?G6>u#!JF-O{3Mx203m!qd@8<=B5nd@ zyhXEkkct8^2>{1rvhIboh4ED;`4b@^Q2L3rjHH}BmpKbN3AgK1%f&0FS7c2yJ2cJr z`zfq#x|VO`WPkN)It;!jw7nP!6LGsBGq^8cbF29|*Hw5H9Qb zB7g3p|GbKoiD~#DiqyWmbwvRnB()Ee-zUDWXX}1vj!CPGXZa6;mQt4Q@0X$X_N4Q6 zabgRpIi=J<+HC%_n&@rl4KNc4P=HY$rdhwDCcCM1Pnz&Tfl}N+QEB!2mkFic(xJC3 z^%_^r#;y2{moIPw5jSqJihRg{H+Q~C%;6|3yd`p>u#f=7@+NUp+BwEF2kcz?!{+Ol zs`=r8IYXnKY!!S@xuIXc86P@XDUEloENJ$QeS8$|un@;jDt>Ak%S((6R&eAyXWOZ@ zTzK(#VG#lAm8H&0jg>_fC#vZk>aDuQob%t+2D*#Nefkr!5##w30uaYE^`FSe&&(P! z6JmCAd&hQ%+y<;O({l_&j5M>@vcDPwQxf@-$;whwTXXy~KM2LKMb4&e~q}Ub+%WSJd=LHo2^<8cLeqDpwz13y$&fC?lHELXSph z?bc0F&CHyi@ymzh+mgN_%#gjy4jDG9@ z{}6nf2xxr85fo#eCMUuK>D@W{qwcrS17u523o`ScZwVw6v20J~T=G=bmP??J{0LA3 zfbnPm2#!V+9WCjWTC+7Yb$$YKHV~=y4X~9jfubuvXQaLIy`#nGn1h~juXs#eOMU86 zu#oioO#m*fVN#VW^EYK35!cX$+K>6RRHJyU9j8#{bx_CGKdJ3goQe zD#RMyDQ!2K=|?u&uZepNUpd{*WMumj>il2{K;dvIT}=EvX+ zExogU8g6+%__VT!U{|F*2$HyZ1w+hgh#*W7mG z9Qiuz{*eRT@>vm7S*m(fUiyYuSECWcl=`QOc6b2F&DEs3ua7+!qyAme=v8ty(Ux7Y znQxyNVzWY>>N38N%z2ZZ*YmqD*Fhr(Gs{cgc zWU{@h5az7YRlv}3bB~Ytw7N>Sbufb>6mqtccz@YR!qBj%^0K)1{09zomG8_=q*Lsy9z!ee&#AWXv*#}x%T9MMd#4n=PbG4k#D)Z$mxvT4ihbjLS+e7C zWSwtwkfJ*?XCHDaBg)FY%Ip`v*HNDV05qS{^OAuaLx!}5OIby;Ygf9hQ1YXc7yrtZ z-9l)Jf`2uw@XUO-IJbMoJejLdv9)?i&95V;ia|r8cdD7%;X{G*$!`;B5fb9S%2Aff=cGexanJQ4%*xQ)>59R%(B_udziOPvXb;?o5KmS<04> zrxrJ$(TEovBeprkm}{Q+EWT^E(oK$JtEGc%#@Hk*CL+qEv-7q9D^qe&(btf$+~K9) z%GzzwD~=Wl;?|jYUrK9@&dx6556v6@5|{8Na}6j+<2hTwOG7fXc)M%+AOEn|w{v~| zeYj0{W)>0qM6QNH38Rppx4R4^NM;wfVt~W|dhPqzD+yANh&(}4Se>WarC-UKa{3R+ zybrdY12}l#L$^1DCVsB1*`;*4b@M=I&|_`;`O$qXBVb0g9M`mxb&8Xn83x`lr11IG zChe^al!H`~MQ$FtZFi_lD%5W;00)^HjT0xHaP?&MGTSyM$lMPszPcN+wDbxQKVxL_ zo&H`h9+0N)Oi%ixp;?yX;rZT7Z7vY=14A$05^S_Wu_Qk<4<$&fM`ekn3-Gr2!DA&D|vQ@KWRlr;K!H9$qWG)zg?(S(*$;|1}51 zKT-Vw57KTQRHI!TEj>RBvFB$QZI!NAj3_q(9gHnA zp?_F3s`6Xre#*Nj^|=f;prZ4#ag|?T`|hBSsOhnnOi0A;!5~J=QAM`2EH$X%nASbz z32~!+7jtrm=)DrhJB-lXU1@=ol6s5XR!`}Mf`Gi=188|Qz9i9qF4qXkG&vi3i;LEh z|6H-p%nmtT{qs}ntlJz&_(lYI$YdkM;r?4|Mv*s>1M$~Ozf~SSdHnL;oxy0Byc4Mk zzqPx_GmQ#c%|<6q+E2f7mUBX3B15yviOYPwnVveSaOMNA7)Lr1yJd~rD?!w}AJZ-n zkt;efw?0t3mt`!}@|B5A1%mJs?AZr^kgocJEFfvR-~C&MLrbj%WPogY*R8bNu?vKo zQq`|?JwZ@X84b|i?_x_4&8!3l=^~Ik1DR!DH}toHCk!>G;j=4yH(r)hS!RRibcC{f zEj)ql4rgmdF^|NCR-{td=Qn;hk!a`UJ?GF?y;K>g6!G{U;}>3_tl3+;G+8FS29bLZWb5cohNaWD86cBc?0eX~Vww-yq9iCt@g-|2k= z{eUyW-S&nup@kKnGGrA#u(;;t723lIf^>vSY() zgnKj6lDt`>PVe5G=vSM}DN@!BxEBfC=_Q;Nw5Z)q-bLG3HYV|AIp>EKr7~J*P{Uz0 z6t}pQ0I)5;#b`22EIfp7_9cgw=J)LE)`PV-j-*o7?=RaSdWsks-EZ)IR+GVQvl#>A zAw~WrMx*GKG%KPXAG(Ps`~n$C_rsW|8w;;um2eFnetRDChgtE$lsTDtV_9}O+9d!) zv{l&8DQB5ob8h%EhDt#b$JmX8DhCTyFX5-?sSa6-upp8|g@Bl$4-~kdtlGni6@yS9 zWa}xy$B~^K!ofA%u>6I_#Xz5$yi2o9tVj(`5V)${Zu?eV$jL?xyT^^hwJ7xuw8w_U zY8A`JKnP@(Db*}GA`rCvmsmRPgjKNfLlIoE%L%8BR&4+fKz%PV8M4KOmuqy`$R zp;Gp#a7-1qSZjrFq+46`_o0%`x=)0yUgqFRWj`p}1i;lMFg;r(Dt`CO|41imsYfps zrj^Z)1GLmP@F~#vyfNSCqdm*c7v~J8k@fW@K@M#;0W{I|>-DkV4vR~p&-+nQ@c5T25eu;%+E;Rfzdi;mWHVA^ zzXZ9P}8P# zv;7U$~NPszHq8hSD%-JV~k%bSUVE4O^(WDw)Op+z(n+3pSGA;VIC)%#`}ys=RWx z;Gn_X!ZEnunuQ^vJIqgnK>8^vMvLEPFX~D7Lk*KIc{Upj0ePLpV zfz*Fe#41CFDi2@8q)Pp4j|(uFAMbvs2bu&VVcrDE7ybO;s-RMR$>VZ4xY_gCI^jh4 zivdvkNPEl8&c6O-?~1Ust$a8uk}+~aGz{8odVK;Lb!9-_klQja8Y zKbtm8_fLO+8KlhavQw-{Y+PzQXVm$r=0N#^$5qe7>va6_i~eO@?qCV=vdFA>H!g9f zTX-P#KGkFrqz_Ur#|z&t=04Bs{kglcz6Fx%{@?d%V`8pE$s~JYN4o`)boO?lXC8}-14!h4h;KZv?bHuJ^MRZf zF~ESQ5za(KB?zrhDcKL~k7?~qesc#cU12I#9&d8sF6*1d|sfaa)^JZtq}aP4wRJ_9a!TA!$WbfUe0vYR#d!OHq7&c{5Q#-;3+r!JxzI;_40l zq@j7`&|x<|;~bF1%_#yde9VJFPJZ%miK0fZkauZ|1lb;pQhe%2XBG$5!XO*MC%wZp z7d}n2(bhCJ@fH*gmnV8D*N*m=tTzsa|{5M8-gslhjFXE;l-~xSzih(gE{+4ECzMtAHU=@=U4mor7{|L{Zfnk)I6`Q zx)IL1&7X?zq~yIj0Eq~dc#qXrv1PwDx#%`q+Jqj7{9tgV{SgZjP!zs&x`@5l4~d|ErW7}tgO(+i>Fg$!4%-0e`KB6C~cztuQZjRNdev5fhCyxjBd z>CI;iGOT+b*M+mln^IG%{(jW7J=3bMnwgI8Jvb$LnA+2U} z`FH07TFvfenI%{hsenq-#B<P5`XSjt#o)}mVOUCp!b7VmAqmzGZ$>OO z?Teb*I&ZVGhbG;4#kntZ2i&W%aU7Ljzf#s%)a4d)z2wsQ&0M|69DpO2I&U@(*11Ke z9MALR9dtK~t@3(13Mp~koi@)PvwY6&2YCUKHvY||BVD5xpn|`{HI^Tr@4djcxHOqX z=|>Y9t6rk5!@sgw2;#)?>}i0>o~y>e#39Urxn<3rZ45#^kb5XHI;tIwVi92vrMspt zqo{gI4xyV_&|xn_aP?GLD|?mJK}o@j%>pDDHTUM8aTWp=HLUXv`*i)W{F~q>A;g_#>z7*Ty8$StE!X##VOA#42KUT?Z2d zD!e}ob#-1I*$=bzn3&7hZ!aDcT|YpBGFg>UNi9Hj-k$mwV`xSGsZAPQQ=xIs2BZ{c zUiqU^I6n;viSimhoj}bjGb=Z>GCg^5NI1)!g5t9(Zh)1(1qXo1(BTu$&5FF*>_(A(1gFf|0z#We*lq;6DVl|<%@M!tD^VulXg%ocC+ zIqvig)SS4D@RA(-{DQmZy?(W?uW!Sm4rNh2ag)sZ&tsj%`!g$^i;R3FJAHjP`=RnN zB3j`)iH0va?82V|^_OajUVNokv2h6mGyAyNCVr8@IZ#;-KG^UUTGKw!>>Ez~2Kp^F z!*s>kpa^8=B1KEv~Kd)+iBRdc} zUT8-_br9f_e=j>Zixz>6H?s!Q7vP#=yX!F4-g*~8xYV1vGPsA9P8gEvf=$M?x%dV_qRnD-==*c&%@9_*Xv{^p}N{&OJu+rRA`H-+XRgsksmt$DNt%EpZI#3X#2?e zbT14ScREx_xuyo%E67jzQX1t%Y^>OyzPQV_^|wpfY&~d?Ji}a{UbkkR8Dt37idR=P z*nfk%kP@AMP0BF&d7Q|bBO}9g_Ui+OW?jkSqfwBdw~n@)q*M|Y(T=~K1V)?e&#ZN()Q$2P#ms#UF#Jyjfv^V7Z>-16QrC@Ta>O$ zb}|A42_Yk>^ew2bUUni}n$~V~jsi_t*Qk4v$b(mYcARN9FPXFBxwwqojJEvUnh{Lb zceiN)_eD&=%Yl|;AabkYNXOV&Kw|&r_G617)kcAFfj977D+6U&f3kD0BD-eOK`iqO zRNrx{aq`-pGdLx#bnAJi#CwG@*>q?S%W2v6!U6hVuJd*>jTi=JjT%nTX&9t9+5WKHRUx8h>4KVu)Az`K!n-<|eYw zJQDLhv>AX4Wr-5L@3UTsJI|B!_4TXhG8~La%!7pTsn=-9AB|%Ltc@pj%D_h6k9``06aK8hbP8${O zp2U(d+#LQ811hlsN}O}~+%r6dYBHUopZ6XLm8Naa!*75EWG%5!Pyw2TGQVccCaf_i zsxyOLyRC<{Jqu#{HH2^Nv8M zzY_GJg2##I3>qC!NkWeofx6&gvJSzv0C0tans3)ieP$4N`bRp!d6O=q?~=;1nDeiR z13?=YXg@sYvo>MXmOgj1b)7AvfF>}A^Cs5otx^sjnMK1Y?4#Y zG;8U#q}oT0{>QKDTRYmqzadi z?eEXQ&X9yoQ~QKt`xWpuS#tgc{e{G6fJQ~mf92`FH;6tHuH*yV*)RW{|G%&1Lig*R z^Pm^VYq81y(qHQE;2m6%6j@CvseWCu+$_dX_eq{RAI3(T_sE+Y!y^D1Rx#_(V4u`d z9d(sTk6ythBaL@cqP5QCV3TD?%*f0pT(X?4;tX_L?hlBrJ^kgEKV1NCC_-Wu;SFl9 zwi0=t)6@pfGY==xNV>3KcuM)YM1B=dF1fr)buxJe4>s-C>b&2f-2`vY4NsX&gg1nP zK7QlfHCjm*K}-S9fmXQI7&C@P4D*aya{s_8Sb_(`!&q^qD+zOLne~!beaG)Xcj7fd zV!1DTcv2oSv|h3;vZ)tvV$ornk4OsGR3&4g39NRPi6u~xAL^wRL|}ptUmCCw~pmb4>lhypm)uNb3N*Xx2oj< z_p($J=3&Qq@8 z678B_t9gu}3$pl$Qnw$OwVKw`wcwobG6=!bVSXS|2(scuTnbkxeB7Nz8R{7Jq`|y^ z?op-ZbQiHacy&nU8j7%4c(6#yVZH73*p9j$KJnX-Dz6DVDJb5Y31edkMfCLRNtDH- zFK8<259;gojLxLAz=q5!94dlSm^Oyde7Op`KnSRjn2X@C8fUnvBH``gnIdsYbsDtR z@251Q=)i3J@UGF_seNr9@XV4Smf*ELbX&>n(${GD7(mJC(_rGWV`>( zLgrN*VPxpS>EX+XJj2CH>N8M10U!&d^Q8)-TrH?lks&YB%McD#ao z%Dll)&hA{a_9+i+2Qlr5!s;`5p?7LVm)*abx0rZxb)5NaJfI(6Yl=2+!#(H3&E=<# zhj0$0=YJUwBlgGlCri8WU|f3b2rv6)Zk52`MJMRy15)HMm(W3HUHt1c#fcos;u_GU z-2Z@W{R`zldeZq3%zxof7#^Z>QbA5^xmSMYa(8cf{xlg1%j(l83DeeedgY%u>NNmv zftYwY!5tL6;zoyCMF@v`Sb>@iZ|jpQVlAdq`(6^If2qpv2`L4;<>9N<3FjGKBS4Zr zu6j0h{F9;+sr4r*Tn=p>Rcc@0=wTsrW6xsiS@#y|#=CEg0j3GXmbwFb z5BxMdc0Kxai*X1ra@*g(FccChzjuQ9&-seWW#zJreoBUnce`Y{%l7u2e5>!XZ=b-A zYH$8|GVFG;KMI6@|NeWU2oe`>O27OrT)*`xI6{SPAMjajXY}1M$?V&8&odc+&bpoc z++feNoNEGlDFmE?2~2j%=d1e`M33C?lTqn`<{CI2lOYsj$>0> z_G@$2>3(2gQ9Z%q_31`mV7`ogJjeLsMPPZAd*GPc>GY*A73*2zeD$iuEYz;f4~?!f zDVLr6I*(oN?%{v24epJtC!e3|y{5}(#xV6{z4+{1-3Jte7_TWk$h)`icONik7oz9v zR5|M2$9@Bfd>c>IGS7K8wgxMT2i^>bP0l+XkKEa-0; literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_23700.png b/Notebooks/1_N_horizon 3/sim_23700.png new file mode 100644 index 0000000000000000000000000000000000000000..fa97e0629d66cc63250a192fcef352f81ad58814 GIT binary patch literal 20357 zcmdqJbyQW|*EUQ@NE>u{L`6a3$W51mibx3vNDGIMJaoeWJ%Ex5N{2{^G)UJGq`Tvg z(%oI(+IT;|=Xu9?$N1jAzA@f!3=uf&z4lsj&A8?@=h`1$D9VtNFp%Kj;E>Bcd#r+k zb4dsX2lovzA^4;qO>P2w6Lxs=%0U%r;^1sxXN;p@;9z5kbg(otyy0YQXK#kI=Hvc{ z8-D-B8wUp)dl4QUtN&cUjkGi68SbO}3I@4s^Gwqo2Z!_;^o5HP6Gw-Gqqrse_|Z$3 zxYaRdk9gzL^Uc98V|NtF_qn+oR78f735?$pQ&2sLxcOE8_n~UsSN+XEAzY%H6fa*s ze8lwqI@b$z+Ru2**B8e57N7M5E$=r9lbe~1{8VtWW6zzRwq==*bJy9Qm(alWR@#pZ zG8+ax3%ey7cI&pLdK&3R=qFi`mxN3gpWWLe6T0|B3tWrbQr4F2lr<&ZBc_?7_$zY%Ts0Mtg)-J=Y4{Fy~g~})p zPldQGcM`+y6T?=BVe;fKvhO9_XsT*vsi7#ZQ3fgEcH0CXb6-ee{*Qw4-wfivB8<~O z4p&9zAeCU~xB;6WlYuJ-oHn<*@S||WbdaaL7+HA3)z`cq@jdJZTg1=gcW_#Kh;XEc zb$y6@a`EDQG%=pLBh?J0I6@3`_?6d6(=wD^gr(eqgAKd)PKsC)hGvu^&P_*ML!pS1 z?A^vNR8nLx9eSx(EK);EQl$cDUO1Xp5S@1$y^-u@rF%unMFedlZ0fz34=2jZ#kJ4dZP z>-BURzv(paCh&9Ke6^Ad8@U82?t^7Fm6{Kd}cZ zT$d8E3bmTRDaRAUqg*4A_jdO-SCKSg#gDtJQxxf0fiH-Udr;$`Tj%4I;?;Gh!R1~> z=;N}YPxI~)8|*5{tZQRR3g@I^Bo25-c+Ppwk@&Y4kIHcd@n+!-JmDl{IdX$8y2MFT zQFtd3o(ZftURR~)G;^!udK%YA+GGcZ>C*8m41*Y*xrkwLOj36Vit*NO_oK+;>yU;) z@Kdi_8-H@Xz#CRE%Zsx}%|tKVbEaFe=Jt>sw`5s(^MLKwm*sfqGQkpwJV6HK-)uOz zo5y@09b~I}B)H%Ei~zqP3*UmLD;Wl%hOh$ghA%KQ3Kw;$VKx8g z!DI&A^dGm@;!h;rOPqK3uNonj1AVOAcdBm5S_QCO?9wbo7~T-F%R;c&O;42E$x>6l zPMP(bHT~*>*1AwVyx}O4f90@l^E@>&_ye21&6xW(vhBsWnd`Nj}rZey`xYdV!@1Qc!Fo-p?L}Bbr zFqPDm3|R?{RoBs-BgK^3;F<Z#)o>X|K3b0Bn#H7Kb8UbtKB6gw6O-ao^&1ZeW8q^rv`Ho$C=N35l02 zeiWZuA5tY!VIwF;Qyt-)BSUvBWXG6|A~k$~yD5XAbtX9p z6~-`D5KC1%Lsh%r@KxpMQrH(=?5gJUgpUCXE!Ufh=R~Dp?*6!_!T?!(BRSKeC;CPTn zF(Pz6>YX!A^1;v&F!VUa)JK0^^Bvfr50JZ#c4W-Z4whh$8X^&sF)!$R#~cEnH8Ja0Yk#837>*&uuk1J2$*M?%VYPq6}=rz&;A2(c{d0s1uZb{Xob@FfXj{ zeF*gmw%R;~Se_DQ$+k=HX&2fmUGi#(Jo+qqtDH6_6EuZ zx4gplh#h+uH4z^3)$tl{LSIU<`}UecutwT?Pr-7xWR=&Y4YG`n3uY?YNgfWN0^CF_ z@`GyZ;`7b!vb$3zDyTb4osnC7lSqslrZweg-juxWo~%kNRpm?7u#^E9+J?YJEogH_ zelYAM46TpPX&9v6?7$UvYY`*#_CJwchVz=#U1C@pF|3kK$_0ds-JPut82TOz{bX@o zF*-*Lf&?jPe{OSR%e&2;)b3cV+WDk=E8(r<3e?jfFT+N090K58u<)Yi(3O2JnSOP* z{QhjUSW>nqbE#v#UAt=xU&rPkGaP~x8Lo6TKc!&k6{=dM*UY@P8-$n_K2Q%yEq$4MbKS=eG4H~tM;@uv>5c|Yk#sd3n{d# zF6J7Briw5rC*)6v{QmO+3~jymi4jdTf{Vnb!9fvlD`Y zYf?>js9%ql9J^1#f-Cf)gHmY%(E6ZBg(bX3>bn-gJDMel-m^a=h}6a0A8%e>l&e zPNL*+prqOnvwC(kSTk3?oP)I*&h^^mYzSd)9m+>Ex3(g77P_JP8LdmFys?r@UI%ro z1&GEF`N$-iHsK4PX(pNAxu+J*z!&M5BMy z6G>4P&zV~p2EML7Bj8j`S4_1S%<&&x`xOAcinzsTv0meUK1GRY@|W0wjg%lK76dXg zGn<`1Ouxd$8t=+GY7ofOGYByx7^nG*WnufK~@{usKaHYdQCGUyTHD@OGm3-&}i<~mQm>7l|{8EUaJcBr=5i_yVo!(%H!F7*$ zQTaHbPjEzo&2+FJUY=3&)ew=TyE)}c98ZH8>TgHt)FMK~8)Vtze|IHGN5c_>ID%si z*CO@Y?xiPsiGYototHd6^ujVrcnGncA2iYnS~Imq^2{SxkLj-6k$*kY^vMxB=5@T9 zrBxKr9L~!R)UTFIbTkArmd!?JzZuM7wx4U88h2keK07%a z1$z$3rY)M!e`UpTt!iISJy)+iSa7_lS4pz{^F37t&&%z}p%N|Mo&-h#ae#Xb_Ev_) z4rjt~D)&Y#Jhs9Ujn+oXz_h(5&d>J6cKcL4_A4gFRtuub?B}<@l;4>qdPX2UrWt`q z%oA6+bxJ?Ba#sY=>bdyf;uG3zw+r%F4BVgVh;O~7B=&2x%)adGXnAq0LJ+8&@ls#L zv3RJ4zUP-l7Wbfa&vkbl&)xn}+eYTL1o7B)ul)*-lWA7TuU;?ggw$n#HLLvbI7R02 zBGoj*i-o^A!vzxr?Q)j`0s^AM-35Bn6cAv<%Jb9p`3P<63`YJuIXyiVFhK#FWSP)A zl9Gv|qdHGRS=z&H%Tat!z#?nn{aM_Iy=Pk^3*U6#EO%HezzUoncA}usuCXg#`dV2T zw>DP6=XvCCM^WL*42S|(zBg=bU|=wITpvigJ+|%@8O>+flcCC5ILcBF63@q znAtuuq9x+A(iA6bzvsMUPVhG`zO5+D#ud|A>r2|)(qg#Km4pN7Do`Azm)iJ56f^9S zhnK-@vvkS|tj_|Dp3BKC_GMgyruyqGf!O}2z2mZ-y?w@yA2$UBBl$Xn-feeECMuzh zdL7os;}v2B@*S7eLqykvBo3RE3T&sJ1_TDWPWliDfnD3z#%h|z*K5=qsd1OhTm?Gx zs?6?oSy>s8gBPXb39tUiAKKw+Pf;Kvmoa1hV6&2}tf1Ojsprq1zp8NJIzO40jQ+>$ zDh{)V!|UaNY{zR!dkfv~4!7s+XFkbnbxBipCrSI4{M69VY5V%w}0eTn%ydAIgs1Rh_)raj!ySZpn6>V)0*tjLnHbaGhe=S=~ zixrweUt8$Uqy-Oc-87o)OA7vs?#qkduJXtA zL%;<}kR5gCRfy((WEBOa02iL(|DABTu$p{C;{)@)yTGcXoK}WxyR3A94?kH{Lg7vR z$jmVuuXH81K0cTZ-3G3@uc~IdLlj8a%f72|+_*XHHdv>5i7^yKpb$m*JwEM+jL6IJ zCr`i>!WfctE1ZBr6M2Imh8A6~4DSTN!ExEb+`OryLt@ftz4~~~GY56D*?5nG1OjjX0n zsM&bOY6QSRUtizG`Psxd;?M67LG*lniKi>3IKS!2fLo!18(x}EaOVc9nrUGH481Le zpVS+5x~w0>C>R1_Kn!F)x8)*i=Hs2W-m#u|LxQmy`8oDf6SB$aP{{ln zf`dhezC0d2Ae=@R)cL`|b@&pEo<*mrJf0tV6-9%w))m<~32K?@a3IujpjrZQk=(|M zJ*jcF4fN2|pr;wPM&M>B-yhURiL)oT+AH9c)y zDbA%yK|@1hyAyR5-kmIi&x>dvv#vfgnQM=2IaPaF5+IC&`nx;Szk$f z&t&D*!4xH*`HpPH;1^n2P@H$! zYGyyg5J@})dje)Tx6`YHk~{7c-)Blsa5LA{ju&+vpI`hE5m8{=N~0*c`VS6w&57Mb z(Aiyg?R3YXlk^gki?}~*!6@xVmQk@nsA6yPPueP&{3-dsE*Q>!f6RF>n89^#*wl67 z7ZGkLkpCeNw|>bgz>I*nV_24NEt zz`?Tq`EzCEZoQHWR7iz6y6;fVzxE|XJ;wUg;yok%mB2^0^69hK2ETyy?oMnenJTp&7|w= zBg>JWA3EYiA-vYo(lTzB6&7|?#Bu5OPqSX3+0Uv6t4Nf#;GaJ)nB}o*YHB(T-A_D@ zu@fc$!8*1oiETbUJ7|=&TTG3#Td&%;16w308{CuduWTeLYJ-p0m3$e(+1Jmiqjenn z)$VH+plzoct{_shORP_3c~Dcpg9`%WgMw7G&W{{x@v19ZTMz;iLKYUiPvf8OZY~U1RE9LjR2iNYB z%(5!Ehd{%D2XPWUuPBgoDOa#$PD5zdvnib!?5tQL7+$SL3A7l+bSG%uA9VHAZ22}DCzJfyKPoa6YLDVrG^ zm*en<0w!m}bW#=G@L&>wNk;^odMn}Aym?)dDNS4`MO+B{21~DNjw?Lg8LD<3H3eW|(QrBIaA2emr=f!v@G)TLY*$ zZBp`Mw7@8y$9wG#^dgT5nX)@&F{v0i7+QGISRYSZdwExq>ONja%bQcermmke5iQafl zJQcn>;CU0B$6IwWAU|;L0$ZrIG&|s$+x25i5kZ~)R3bQq(!{FXESN(~6dl5tILZBK z=3nyS@?RnMW0rQ7vtj7Nhpdyy7%q52%TBptbmqUz#VnwBUJ)DIup#4RrX!5IDiy^d z<#H1g6O!vMHl+^@sGaA&Q~}!_$q zNF#48P6E<|nglizMk2Tt43~(~tHg8RO>4t3_sMZzV?UY#b@X$D?=>L2(wp8X$h!~bpdFGxQB+tOb07r>X2LKUnwN?0YR z^USa;OVUcchoN(#e<)wbH7z215wCCNhYz6s6DeU1I41s7X@JY}r8>ez5=9snKfc(a zmVWBNyLv;M4SEZ&~Z$ldHBpy@PcYXo?I2(;bDcln#dT2{m7Djc$|1}lT$rdiKS-5}WJwE% z?TG0iIs3<5xG=)nWUr^)GW!|1&Z5@m#?rG44C2IFF=$Cu>XEgRUnXR2eJb=ew*rAf zy)M;6a7J+=+Hi2{*2+VaL(uUazP8U0k`g>Q6gx7~WU*WVw~*ynaq${9p+OE&Jk)cd zsdIOH{W9@t!w#1L_~y5}@X)$g!y20NgUM$MkaJDR`Bh3ZbRBW>vTD{8e}YIc5T1jS z*UpB4LCLWkt`g$qh_wI}Jv}uo!4@_i_P{A|)uhG+iQ7SI77I|%L6I6EQ?nr;%+XYe zglV`uxJ8Tg`gqnvTRy>y#+~(axnmmI+5D43s#aD;!)eTIx|%JmoN}&apyMZ5qUud{Z!4g{%(Kweo4W6Q+ z%ebf#)wn3*IKRr~X0z3m^Rv^w3yR{OuU`l&iICogsj?t|BjHtP!oBT*2aZ!B#p*A^ z6T|B>>dI};hQ{M;Us8_D3L_z3)fWb7K#gKV%p==J-1E$1vD+bQ3Tg^me6+|v-L4j{ zGpYUZ(IpYJm6jb0!{N@stL@D)4!0YzT~IZr2WET8pJ9eLBuzt=F}m7?4HaJ)AfuiF;EchTu<}E{H7+Z-#*7& z=_6esrx&J*bUnUdPJ}Gbo%ZnmdStTk-3iS)(pEvf(_jVY?)gZow1V;o@Yv0F6&rh3 z#9grOS#}nOxO-C}fn*2Z$`sJqe1Am9#HDKNNN%t3c`Na7IqCtDJU4fO0@E~JU+MXn za$MpY5t|#esAdLOp~HKiV1Q^R2MhHZ97G~oDvKbIgGb$Yy3m`iYi`uI!6HvL^x^I3 zihLx5>~4qr=P}KNUKY2{bw84brg4otG&=iRo7o zAqcp;0r0J*5i5D^p9$%DSj>)~fU=&Nw3GTI*ts~dpN#2bt1Uxb%+2i`Ee>Un{GST_ zNBzM(9l1Jrux+Y=0=%n5SK+*>HX{O|Xs==-B%Z&r+=-KP(9(En zB>TjxL51UoIW93Sq0_yYCKhJ8f#mnFu|T?>?DxOMNX!!FB`=6JieO2#XCt{@@z~y6 z`{Sop?n`;rj=2`*Y;uCurc*K5_g`(BY-}!6^7joeiVdVAL_?ktv1H6kg)Hbjj=ag^ z2$c%^gg~_}M!`w_wN1%QLTAoDaotr*5gO`)c}8^RTtdI&_t*o|YRGrJ7 z4aG(dVkHBAjj6DS6FPGly*`3}mxINVY*XwnLeR$?g!NlRbeftz)$t>}C93Xsn1?+} z9Ait?XNq>QE}mntY!Z4p`M$s-RAFbiZ?D?X52bo?>@27>ea-PDlj}VGG|h#Cc1yk0 zTUzC&14kRe(7^N##Y!c1t7VBH0?A?8?6(T`E53elUQVE8A{6%cBWN;sH&an-L|@P;yrdgN`SjTlM@~6@H-W z*O&6c!rawywb)@Y-aWkm(#wG; zb_a$YhBsV}&XEpAU?BheJ^TCj9|j;|^{vfM)WwW6{UOJ?8mnn8LC;z8dC;mi!;@QP_r8fsE>Qk{pDFP``jO=KZ*_QVfr^am$}{049rz4K?W)t{ z3_o{OBgfIiJ#x05`2I23R2KIdp@ZQlKp(4vpY~k!2-!eo{)0Bs_ro<%ffS5Xh$rDQ zt(})lEGu7veD8VsD5#NZ;Ai&cmiST4;d^>-`^YY~ui>%~?E$)6MCkUay|A?nZ3yFN zsO1I&JU)$C5Q~>PJ{;*pC2dz)T)w5FWk=AW&e^6nc|awK%a>F94KOk4H^cbnSpND2m?#95Nq72a)N|wfD#?Fff0^@6`%ut68eyYIGHzzMo&e2W3 zgQ2;CFAGT#Yv60(@2pRtPI^-1C^eeH7&3mOMI2_f_V_fK&}5H2f1<`kt;YZIW&aCJ zT{+|3Y8n5Td86*+QtyO%0tcRsbW>YgaWKV!WPEnAMJa2i0Rs_6;6vsdmkAjKFd8)^ z69-SzGKYgNA_LTTp)a2U2uXQz-%D!<>2RPhon;wN%385^J00Q(` zvWcr(j{mCB)2r)<(E=m!7rnT~27hX9&c+W{(Pq31<6UgBj^iy2OjZP1Xmz$H=rUOG zy62Y5p|On3!bc#X2e93mbN6QocaJjMT5Iqvvjm&p%+pOvn6825$B_^^HsjfTdHu>y z{`xxgi0uItAe0HkRhPl;Dq)l*YskuQQgg`uM%)*V*`&x}EzQ#iN7zFrVk2XM0_m@J zm$_aOsB=a;d*{UPWCC6Y9RPTXwt2uy?((6} z$`H5ul04BG(Gh;DHz^`0b`P??J|`;xIzTKJ6Eme&sw(yYW)4i*=4?nJ&e?$nARScK zs@Lk2hRcHQ7oeLT)+>=@RiedgoRU>SO4yhiXXOzGsQ=}eU2|9h#U_Vm7od?s7H7FceXB_>6CkDM0NeUfO}1ST zFP-}d3tFz}EDLbvb6+%(aGW5`8rA98H6@!ZZ6l4rsT?8O=KFqT*NaGxazyW;n#XArLR?UVRn8kSAg=<`$?xoJE zF^T5!4aNyXHOn|5Hwr$1rH7_hH&~r(KF$rpv#xNtKTYHyvA_Uy;9NH^BvI^)0mOKz z!Ea(YVrEq9%!83RPh5$v$2DOAmEwVN_yU`p~`nk6N3KHasu|hhQ>Xn-zs0Hoe_{Fhd)i@8UL-s zf{JI?*QHFETVLpt2nFEB;a*F!oU(*2scNTgz}CVLcj(fH7Ql(3nHIyEx$Nv;PF2@oeB}1EMI=0+pc%vul*T} zFfcRJ4|8(}QiI%&u}xq1Y3Lsh3A?Qu5;m5oG;W>FNLIHGbWCeMPA|%i0$M+?oB$z|Q1$z5ezWfIhhB0t9Gy#Zo zFdUw{y<@=$?)vuaM}+OE=vLi6tMoZHk>EWuRUnDhIcCw}g5-detcPBTG-bn@GqWkI zi?632T1#uIGHT|#5+SoDI+mA9HXHm_EAzb=p|s9(K$vWM;l8Yi@Q&;qBH|A8`mxi}$~&7X|2}wffSZbuSw@ zGy;pB(4y4E`GV&lqUKp!+~zMjKIiW2Ael*($(}JGdOhJI<3tlD@{^HOEJqS?>?roN z8)TcS8Vcl}KV!aVq|HsfNrIMQn*#vBizkP|Ox;!Q0V?A!RRHm8x)>U_AT8_d>X-hN zten(>Gy(BX=10n^s{7?XuJ|+!1el*~_L#FoRlU7Z6>vCdds;RbC2@UL@D#-iG;*uA zQQx#b!fs^NSoLG9LdB>h_^F#)@Kl1Q$P&Vdj$D>o44?yjxY9MxQRb1uopd95q}XZI9zZqjl&Yl{ zA6ru!DJP{HcjtX)wGU2rjKy|ppP%s}gaH)W_=Py$&dIN$bom{Ovkq8#@T6xYT0?rHM+i{k35n)59UV&f-^`5@@w?tK%IM9 zGO%>dxe#D3d{ot1%2R(voYk#@!$ad~VbhmNXZ!2h2UCdLwf(5D6dIFbCzr+B^Aj(^ zFAii7-A7~c--+0t^RwH``!}enskVNpNoY>3iTYKkX6!ze?qN!vcu+^`fo#dFJdTnW zb>7`{;NcdUM9j|{**6k}OnFWpZ`C!@Y__A?1ZO^`+;Tm0{hsZ3M$RvMQBxt}LSu%L z-RzE(#}3Er<;qTL0)_TN%qo#O`V!6qpLU)R(PhfDmK_Ney1J^}6O6OJJ{Tu*@X=a4 zHaxyQd!1R@|1Fc(W}jiP+RN?i{h&LdnTyt@6#yI%nQ*0NeTxAiUHLA^+7uGs|5>9S z>}E{B53Mb`g1c>P%RF4jcqi=j!c@X_g30Nny8XWKH6esc=pA7bb@fS$ zb*4xDZ*{ECJ8u@RX3Y`N2H)nH?;`pxv3*3Cb6!VkIaC~e5_f+j9jU7QF;aKG93%+h zf!mPp1dz+>3%_ONcf-1Yc+1SJ9QVF|{uEcj9x9K={%VYU^i1H%VOhpx%J|l|w@d+~ zcK56!<$xM7li1w_KP5f-ka8;uj!#H|UK``n{h&n;^$qkHJs+9hnzfg)S=_`w+^eCn zIY!agigwl5yRTI(2?08-E2WVXwh>)InOu6qA9;q5z;b3DF5aFti;VPqv06`eI2?|& zS+1es{cZt69V~2;iKAl>K`+$@3yQwQtnNyMT2c2~PH0w5%q|zJ=T#N>0aporFPzA` z#re>-;^kyFOj3}#Aq79WL@Zrj(4de z4bTwMiM_L1bx_={GCG<&~a*5U-10ffkQQKtf98ES2(6{GDCj^fYjMy-20 zTU#7}L+#iWEruAxALbNX51ZR5KL2#*yL%68E`_{GlB{fn&K85M#h=l*hmB6Ij>nGX ziE{pLNAJYvKIy@Yg0t2Ho)Ud>g^G;4t&X3sllTXYG)0F&IEa?Qfd%t|ACK*>(AdluXkc#8CPzQD0TZ>;I zrD&vYJ?QV1d!?)O>!Y_jGNx7Y%I*GLqa5WlwjKLtxqYjTx8C)UNYGBg4oZCw7i=!WpHrUQ4I zMS-j>;E@3AFR*K+P`6a{WoZ>$olO0bdNQ*)xV#qBTVsD*j+u@+i>K?(ES0r(yKK^3U(q$d@;3p^I$jQO*m`d`-n!`BRL~#nHt+DM#+MX+YxJk9SvnfNvcgLG+{##D-$Bs88mG zQ%@G&HEwjktN3(({6tby^O{nCmbmDg$JtRA1ANATT?$zk_hBn{o@@yxR0jFMp`=@k z_Ic4qKA9Z{6_p}Oo@!z>wT_x3li8ZL5S@fKJ8!h@Yae0=c%Ku4h64FWwpHxTVumST z!`Uv@b}#7;`EtYNJ5hTO3-XJ;arDkUBaemSg9NDB6A}UZBJJF0rK&Bbs%_nk2quS# z(Mm;KlZv92;uQe-nK^+JvBzfIl;vo3c%qVa+@f8IUwhQl0y)1Ze#pT5AZFP8eg)K) zVtaq1XvZC}v_*I_`^!yb2scQ-UX>Kx1kXeknO(cDb*Yg#a`Aaz%iq=jb{_?IZo+`x zTsdzw|DwC#PX5eu=ebV+tj-oU(ioRtU(7b?kQWD3Nqd`jvem)$jd-eByU7X+sO&;j z!k8XRj<3f?>Dh_xoZa}V8ZPjlidYF|DX=pSz}kfILyD*VM+eKBI&h$4(N)AGTfgQk zj~YBNMcV$9Uiw~B^B>W3y{JW%l(F_G+&X`0+s(6*FBG6J0Ba+>@%m^N|KU4Cona8@ z?qUB;$L_E^u$p%rROM2n2aE0|h9-zap{gtW0K4AdAguB{2sERCO{&9yIlm%^i}3Ok znXHcn`<2}#qeL%1_|3!G)d&|ffkv|Z3cHa}?cV@wh`S90g zjg0RV75>3K8X| zw$^b_HZSXwzi1Cj0fY&Lwo^EuKb89ADEhYl=r}0l43~PcuS*uQLa1T2^2*6>dHABH z4#u$t<->^*51);7Vse`@7cX~w2b2E#gCv4W&X;k2f-;=lwERJlAr${)RX80^Cb{Fh zUOIa{*yS%?8FGDQb!t2J;K;$UF+;kdpNp|S9bI$MDLd*iPHe(G{u_(hxFqR$;>ZrO zT8`j)$C={|N4)-pCv@s?u$?%CVC5TqQTVS2GI-)VuWJL`)jXZc>c9wG>g$nj)Lnjw}Vo$YtIdq;}x?wfh@*}vq8L$is^fEIYV~uzi`?LSfe{VDg4OaNuFJiIMytk zXNeM}tv*saSX5Gt%y`z`bkXT&o(fngALr23I%I-wZFx2|QGWy2t#IneZcK%nwiZ>jbMmxm7RRl&0Y4L|%jHGDU`oLWsMRHKhTftf+Un@q&N6_p);`W_^ZR zg{@u*x;a~xOssY?4TrDQ6X7MeF_eW`ejlY+hveuAF8o0dZurzLN@3P+;VL+$J(e z2Mdd{!jN$jHQmP$S?3(GSlkg>$UX#aD|}hXgr~T$D;aksBSBTB8=&taM{}k1kkzJE+e!C$ z-ADDp^AC-0&&*(~N`CDQu2+xEOV;drk_+|){j1e$*U~9xlW5hU6ns9-IoNW?3xKev zz;S?b*)cBj`nD-^eT}|m9c5Z&3)ecc{ny#8h9j#Jj}b-)>Qvk8DIbqXG(6LE<+o_z zc%`cTYovf=Afo!v4bT|d>R*&qE7s+7Z{`(!3-}QuSkg+8A!h?XjZ96)>f(ejwcF3m z)-+J;2DQOHHq+4kGEE~>f&!@KI**J6WXEI;>40s!nRHXTMBWv$(~6(-J<~*6%ceBjQ{hDL zEE)f&>x_t*WmK$;m!g1RT;aJ5zDm*~*<&4$&)6AtHn3VC0ig@3WUq?Nh#-SGoZIT# zPGgqW{>;$bbKS|8SrZoz7tb-*Ia`i^ZE-L|VJRY9k7#!=b#G#qWt{A#%Ib=zXLOIM9!|QNlhIjJ8MHBpjX5ecp0RoJ}4=H77IW>0CqMB z@M8f>3>?l?<3*L_5iujrfV2g{GUL%3wT#3bqnqn1>o0UCbO_?!}+|Go#*7L(mrDy ze0`ylS-&b|xueF%lxW5CXNPWN$b8!;@z|`;6u-YG`m7!TtthjR0>@?S=?4`Vq!K;l z8ML$+%a8+hicCGexVj{iOD>>*caYdDW78^0yV17HC}jI=@N`WTtV{6hj6}ME*7ooN zKIKwrd-e^%SRY-=H9j+H>v&ug>V3uXT#ry}Ok>Dw0zKdGS#yahAOky=v^X*?zC)Z< zc?4{1WMe+Hu4UNnqQ>|Kb%*uQjg92<>f+8-sAA745NW@eADpP;fXorHg{mh9H8M0W zDiRNQaMs+m$U(&qvLUg_Rzrspe6%wR56V5eK!FwPH^|w# z^F8(a0@SppYZ#zNzzEeixh0BODciI>hQT*J^n0zqa>$k)_;inYO z3tS#H5(R1!Qi|%6A>vPM0egg;vumJS_}ztHTC{uyknTkRo%!4|xQAJ-A{z_#L;>Xv z_Ikv=|K7Wpm8h_hzh`(df*194Fu+w}-hugS`U%R|LM;t~0+z^vZpK|tfE%HdEWFW~ zQqAkM%@BaJc*ah~?pu*Sk1PJVJAs9fUcZlkepx-&d|9#rq}vOV^tW%^G2faFUeIlG z4_R!@P0*|jXwSH;I2fU3gGB@iO@CjD^Xf}dc*7z4H)1pPWlKv$Ch~p+sl!Z>Blhl? zay=VQ_S^}=tyh94T{Glx7@V%!sFKkqm^^2RR#H=#v6v5j6EQ7ouKn*kmH^ccc!PE@ zkKZ7<{R)&1;3j18^e(Vg%EW)(`|G`G&P~v3gR)`Z-}t`D85AVGLSRt^F=>yWOoVREb3j#0GGHZ+k&k1=9$!k*vn>KBs?8Y^Xn-EX~te zAXARh1;r=NU7r5ut&W6i!wa11t&S@{TkQ>%WfhWLxpSaa$IryT*h=?)!cMjp>*FMg z_YH*SX4xrbc9Pw?YUGaV?8IcPq~F8A8DmfiyCeU;(4@V^fgY%`xe5F!Fspk_j{o?+ z)c^19G?$BWM12juRAhp;ZvT(>ut4>w|4Izp@1H*=HZUNb`a)Hk9sNTIj2D(N_ZriE zbiyE1aR!dv8%=t=mJhPMwJ}E4chU2x0&>8M)<(S8y;mpj$q3LN>=x_jU&RYtDL}KI z0J`QS6S|G&6-RG?!41<$q0et++?zEj$6=-se#k!Q^7^I?irBzrv{n4A^nX<@&+}+5 zdXam6fev|W-ha3EVtE@}G(ht__y^7_QdoSt7!Mq(0cijaW)TO5Hh9RA2MZ^-m_Xm> z%EzgobMpi@>XHLFEDOi_64cY{xjYn)nRTxayJ)XSNqKOw2-Y{R`~4{{&@`ZApXz

H}SWiiH1MW6F95++ew<5AMzm|KD{fC*3ON>?K(E2u24N z$DT%l(f{+PArfJt|7uSCdsYh+H~A)C6q3N=z?)vc(S9zpO&!a!#3#Ld&`dr+xOWat z)Q?it#!=NKgLfl<=5qMh8hA5{Ciw~q>2}%*-WcFVW!Kv(O+2-?b7n71JRP%DsU1i& zijwiAN+5^5^rMm({5(H8@^ez6^48cI7z(^*AvqRY6izehKR;;UtWG>NlP0!4@Ga?# z6gC=pwlW9K+oP%G{>eklQ`G`i=G%^a`py#W@ z?s=cIY*>$Uhn{hjQl4^KrhtLHXp8@WKV_AOnZ-52&&7Y|BR2Wu^<%d&qe=J;$n&?w;Z{rboN)9o!EwUw3Q^_6yEMy+3-L;2ylHnmw22kz|QVSnSM971we(cO<%l zCy1Zex?|d}!pc=isdPysRX=fh;@9IngDXhAB@x0`A1|)m>qog;?u$=akpHyhw2?mA zCC8NX=92n^`&js}t|t2(`vmspuK!;DHP8npd8Y>DzZCp+b#xFx^oI6;T<^4`G1p!}?Htkmnl6!<(oDhRILKu3$8n;Kd&e-`@tpVx$4 zCF5r`vbk;)3v^Noj(6FyBt=7KpxH7I-f`&%#qKTbvWQXt&fj!`>4NSdg6G!e&Rk`b zC8?3C!#U$WbIG{owy`HR z5VpCzQS|g@Rf&L|kDL#Rx$VsArQDh%zoN>~23v|(cvgvdwg%%yUX%iga%v3 zxN8=3_P61Rd}5$EKKDNEU0l$1e!tlYZ}7rYVH|_sxFfyr#OM)mP9Kj;o^X|&_X%-T zQ%Vzu%bupMksc3~a9M!aAUy6ixLnVeFgjhA*t5!H*rrE$`=O?X;u?X{*=pIb{;<{Z z0Gn5;&s7d-9@MQFr;c;FRJBf;^`m6%*G|_E{X?!Ue)LA>&MooKmDH*U{B^6x*b4AM z3}Od-iQcA>&plzsO2NI~j(O3%gr$r^k`1Ms-W^%1Z@N88<$^Y4Uq2&GvY1xPY#*98 zWdi48#_>nNd!rIgOPmH%*%s%k^aA?4$y2z+n}=IBPgyMEz#f~&(ToA*5_lfCR;PQy zZAlMJ%LGrlw~%5UmlhwTkb6v;VKGb$BV*$?=<=hR2A%i$@CN6ULGtXu@d|H(#X<05 z3kukbKNTUaw5%>;HFyh)8b%XCWEfPmtA0vddOwAU^79%)ahk|q(G>&Hor3pL$szuq z^{h9$%DLSMn6mnBm?o(#d3RtU`;Ymb@4j9ApW&WcmeVfL-C}QU*1vqK@4tVaOvR3k z?EdlMcA^#c=2@1k9ITMt8ysqNB+FVC-9Y6mPw>KH3j_r8gI@WiJ+O!wo( zfd5Oc|CQQNX8*gK@gK8}mwoxV?RlIVIB!h*S6+}`E-K-pwWEr+qQU(AuE*aKK7lgE zlkW@fx1N0Oyq`PzM)GytTu==OJU8vMH*6a)Xe<;cf_J4oQl&m@HkUv*5#0OFuJw*J V)$65CJn%?722WQ%mvv4FO#s^&e5e2b literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_2400.png b/Notebooks/1_N_horizon 3/sim_2400.png new file mode 100644 index 0000000000000000000000000000000000000000..8febc5e6310870ea0432fe8f2654580cfbd1e3dd GIT binary patch literal 14577 zcmdse2T;@7w{9R5m3CsIg9a&)E>#dXN25rPVrbHvfb`zG1tTgb1duKVf)pWA1nE(l zbPY{<=+cW2I=me`_y6vlxijy+nKy6d-kC(q&QoB4E%T1>*hT#9amc~UrP@gh=!$?o0F@TlfBgi9~%!(dsi1J zF=;VLkqZyJyxcq$#KoQeH9*YO!%lplhvhAp^FY5b$J%eAOx&7+qrHjlGVo))HP;n01Yu-uahYZwG ze~0Cqh_a$NCnLpo;lv}(oRf<8Ev>jtK2L&#pSbi#v0zQg7_WC#Ri)0zKxNgg{wRL7 zLTf}}Ygp%9(l6<5B2k zcDLg}S;JDKSI3Vk>(|1J~dg<} z;)BN{8;mcHL>D3(7BTWwPX~EeVdXa)p2ODA$bDJ3S-;wd3KAKK8H_15<(ufk+~b64 z-E7!X7?u)+^E}6R!z6{_x3(I#UR^@qDZe;k^!w-^ow%aI@HsYxiKVHa;s`WcB6zqcav~ zS5*c?uwAzru$X&;<9i=F*D;vqd=oR6ZF}T<>dwLI>1LcTU%N3Iem1?7o3VG2~H~E-o19hPtMH}Wv_vnQ;xK3nKO*@r3%$Vj9}4&5EDkOvoO4P zKdV}d&n=3jZi@0kHL0VhZc&Tt?5phIMo%o#r<^jO4Wja6aD%v^kX+pv%VS|9h(pU@ zb#)8sVTd#}o|c&|3fd{=xpIPpz7U4DJs9Nu@pOWBFbk{s?%)nqxNLnd?ZogMcXEBZ z=*HYwxMH{^VU!?~TIw(GLA|eTB+N4m>|GqPMLla1d`+C;{4({S)Lz;OZEg1zPq?QM zd7ui)P#og&QVtrbg(wh0?44RQC9QDJM?sU&C@n1Z;Pr%xPI13VnaOQL0qvoYhiOb! z>ahz2x2cASXJO;Bv9f5!KSsMPcbe+nVP&(h%QSt|M{($Yi?|JuMiml^SneLRn;t3` z{4PauCpp84=vSi&f@qYZ4oX}*#eKDle@i(5T`7R;d4o1eNAIem<_fXICM@weK~9KH zQgPxlmMD%!br8OZZsbz2F}-N7Jqk`O9r#o7ho3Vl7lD&j!IkF4R=U#1XJJF$1b3;1 zr9)Q`xxd=5M5O_hXmN-tvO(E2I2ZFH*-BzFH>OyPa2LyBO9#b!2?f%!7031Ss}0Ug z2N&dDQtP#qc5_5ZCtzjn4ku(Z{^FlqXshNmSw9@WqA&X&oo!@i%M4erFhrJ`~ za*YEtkuM;H*`M02Z|fgT7wqb%3Lm@>-JB~qYlm)shDiv=zr%)TXLqD)r_`*C4V+F& zM>D?UXzk%xt!LH|E^@vXC9Zl3+U2!o7Ns-X3gL=t7 zhHvDEq|(aGAj}t3i>VPcDR`DuJIzjdguv}7nqe@KL*GZuU@-oR%|elZir1h{G(K7g z86OYV`PIXG!-2>)A3 z4C;2$O^qzIcdju}xIbZTQi?Ewz=i(Y_UAXUb3`^+L?#C*8x&e088g{jhSSiMrBg(0 zi_@zmBEv%Wr`7o;?vr3|W#MFXgi@lZ;)!ifpF_Jybyp*0yFXTwVisa9Ep3?m4Oc^t zd5F5%x7~_|NnV3%4u_L(L3p2IDi>Mi4#LfG*!a8qH})4`lG2gM$+g+_huqvu8S=3f zHpoTVeaEK@UC_Pw>QL&OXiWJ{B=_pgx1n|~U30Zy?jB_u&`2rO(~Se7OUQ;E3|l(w z<$NJAL;KwRqG(^pBz$6H(N34OQNwskJoi^0#!m;iktzRZY8*?nEs=v;39TBF4zWa9 zZn3)S?tRS-i++y!ArJaSjUu(wcFHkqXJM*$htsoc1X>CR;jp!3Ob&f5jmRB@lK$a4 zgc`B4`L|+>&)VG^W{2g6KNWHzSJd!if4Vs55y|LgrcMqvUXVB#&bjtT4Y@v7WyB0z{tSDll>*pi_*Jv~7 z=j}6g*#hP!*JyKDdw-`^FjDJng#xZLY2sG)(H(dFrm^rgd)|h9!A2${^S{|{r}U|f zjU{fbK?ihdPQSPmAVef{Jod?B{g(^%IAND+RRoYG8hT0 zU*%RqI^RUh`=EZzCt-M6yV+B{O8jvg_GV4U(M=R`=};C5d|}G%#=GiHG9{=ZZ~*qH zE$*S__EBU#%E+wc3C5_)vCdXy0)fT}+|MR77v=6x%RvM;LspIh`8+!vm!1&(6s#z0 zLTu3&hvlIof90v`UuUa@om>3-c+5y%8IfCiOC2FYb%t+3k5B+}C-seT!n(ufAdl#n z6gD>Tp}}2VXv%`SpLTxDifbX5@LnpV-i-2j_fYmW$aXqSNLn;TNe9&ix6+C%QEVNN zg1(`WuqS3oyN*_yE#N5&ZSup`ba8uc3uaHpT|NV=FG=J?Hb6+C1ZxmS6AeE~g%4dO z{&k#@1cXV+=XIqKm|%C`vRRD0L09s@d1zc-U|6WMpn?X)vA@M62nB~n8=c@X$qu5G zDA)=-J`cLw*F2h5yh^5cUgv}&m=c|4+05BXup zrRu6w&MCIzysDL{o@tY&SptE~}V@U+|j^$dGjMrQg*Wna(0v~h3j zD1?rg>r=0@tgI~Bcp<$;k-_fxoW%1Y#$_+Smr@T8_Mjj3maC*Zrfx&B?<9Vy_WuQ8 zyXGe`n;xqClqW#Q)xXX7jg%d;PWBzkvEZ#~@{lXNY`Vr8xx6lQpv2CVoG6&;b(%7g zp34m)W!nxRJ!BBGIN061lOq4RTT_uKEd6lf9hc7!OUi@jpea6S85ycZc8U- zqs9;SR>tO6c0b~SU$(>wN&!iWRsMuS;zbO`gB@n=5A1+JI0^%SH!3 zIwoGRIrVF{%kJx|i$QD8&8G^hmM8j*U8mK}cZssWGb|yi(3!6EE+FquyYu;mMOL&4 zratUYI!24n4{6&|uEyScetxYa{ouvkN?kfF!+C9?vv00?3be(GPX7H|YywDa7EC!f z&oAve>My9JymQHOrrnbA-E@`oz~u`1u)6(e@u2-lUc2!xPp*-FSntn<9tr|e;WaSx zx2dv`Vqg`UN~qiCXHnk1a71=JY63#(x2cL&Ih40cai=@lt2=7@`8~5@gQ%V;=gLDF zzFf6p3uX&iwC1&*`ue&(N#?m>iLLWm;I*}eGyBWFb(2743f=FtW|JHXEf4p1O#G+g zQowG8HoE@W88_jk07Hdm%h7(KYPxZ6fpe|pl(twvGnEaViRaoI085@LHCtC4`$ROA zHg(0S7K{4~p`yE+3(Y45Qy_%xwaGc)7~bCA6o2AZk9X1uEv(&jaH-kUhfuVT7PPMB zGvr+E;~jFeHzpN&7$l&T#z+7YuuEFeu&C@yQ0#bnbsUlsFrQ1=wDEpB@Yh(%`w@#W zTbPVv-|AGX))j{yApjh0U_~liDS%Cm$aa(T@ zEH@kasaZ?ltrDwk1ibdEg;IQ()+NE~p4eAC9_gU+<8-0}6FX0+y zmA9@cufL8i6*e!vueRVjH(&L6M(ffujMxyj^aJgMy~gLPp3`v#SA3UEBA7UvfJ5}o zO&Y7Kyt7V?mrYJi_V3L%YkWw{P`1&lNBi3grZw%PL<3qUqg6CDG?@05%6TCS=S3_w zetsY7?Rz6>z1`_sd&ARHstdUC!r?ibng8@T%G`u-sQ+S7v)|8*r$+eR-rn!uzWr%x z$_+4Yvf+%@RBZbGCB9oPNVo(utIhe|>a~}yQEq;E>820Mc;PU$Rm+|7z zS~G9g6IQdY_U}@gNS`11lLzc_^Ye$YSA2mjtW|UcM}2hczY<7Z?6Z+E?q1H*%V(2* z@CUFihAx$(Yjua4c#5||ZbUFzf`tk=GnR{*c|?p#G5s~m-opV41t7HCFCj-TbGQB| zvaXoRPL|)9id91txs87**fkUi{Wmn|dv91@x8GLx!DAZb;OOYT;UGSV*NUURL zPAe3Zq5Wfi#rKEh)3vhlnwRg=Ly{Q8t6#n5Q@!Fb^|ioZ>+K`v3DP5$nJ_4`1qIl1 zGNT-}YL3=;k6u%z25#*>V3Tl+^TFhSr%;w_uYl!Zm%4z>@BCC%X$8<>!@D=q4MA>!3<>O=ku|>(7!H@IjS!d6Ku71ylk1kr zLp95l3zgN%U~gh>GA!oAYJsZzSIO^{e8) zkC1+5M$d?c?l1sPwgs?Ky%M})4g4QO$~FAaF8)s1wZxNW1XgQSf?2|_r)N`rd0hSK zIsJx)Mw@_EzYX?b5jt-GMnmd$I$Y(aUfq!Y`SuY7v()27#s?ko)5&A|0w5Kc8Vy`= zmTR*DVS+1UdmI2$xNq&R)aw29wgTt0(8C={oPNP67Ztct)|v(RiId|XF}H#LGu zID%74g(>saxv`ZnqLMs{i9k zoT{^v(_)!V#(}TcN2h@+${QIh?jW*A`K^+Qy-{`6>bx1-2RLraWA+mfTKUHQd!CJ9 z>l4;5zI6<&rZhV5$Pdb+R1W=W_eNGcK$Jln7&M>Jy7t*DaH$b^gKh0r&5C;yyWQ#+ z25||HaExx%ZhfrU0vJjr^VG^=44Vw-J&-+ioEsb6f?{GnR6lpyWL6 zlTC3<3=u56oxr~R`m087g1AZvl9cq4d&Q4_#lI`?(^A>cr38{M0vbtJBOlLr0Be_>zyE!6 zvF_;5*kC78IFd6mK7zf(_VaLsb}{|qp1+5;BQZM&oZ7khn6lU4Zm7k#I)^3l!6a$k z@WOnl3?K=B-QtG1c8qG}TBz^?m`u|VYj}{@axwQZyPIwzmUzX&(5F@bex53j>Lgo| z-Vm){;T0t;1)FpCz=$FY8P`-aE@xke!D)h>) z(MGgEXSeU8?0HGCgw51pIVJea&4y|abBeYUM8I^;v|E4ZYPp%{(Sy)-7Uq4n{$(Np zXIwlX6(0X9Ijp{QBpIFb8l8kiCrJlwucocM2b(C3n_pM}nf#N`7kS1w>^+dvgWGD{ za-`2Ib=|x>NSek0_UCBSm{7$Amm8x5r~G-p;;leI%5rt!N}G&RPnfu4?OndR8$bp? zjq<&r_%$qZmy0%qc^?5kf8QpZUYRjS814|xMA&Hc(gG(NRHh`u+=^wykykyczl9Y1 zrR}eTGLh)jdH&TR}Os&jl z5|18yV;Y#@QS;jn11pfY$eRspBny(I1(%x_@){S+SG8d((nk|a5tHRI1=yZ*ut(wP z&~!jKM`DaD*xckL*g+A2tbxEWZ)wnHLtk*nX%#+ZW-3`QnqqZz za(l;#8QRtTS>*4J|J#(8D4P3!P&or0ym$sy0=K%0+`kG}9v$DcgTrq&EXU1f9t&io zfI`8QJJKkpq603$BOt%{CIHQ!2`ge*Wg&FOE&apPwXt*Q3E)aaa2vOMYB}!FEXJ80 z3alDl(8~!tR^R3cAouey>##@RPx&U&!|ZfWq3@lJ**CTM5V5%|iFAB_exTsUsEgebu zeAfmJ4_gSoiNLu+08>u$LMXR{<_#8YWcFGUMH$r70R{y}QESpiy~NNCto5OMkDq6y zQLH)^4U9#!hrL^|<~2nmxxVs`{@WHM|I1cm=8RLk;QZW}$FP-{&@WY58-H=rn=uz} z^D}JmV{KFh_@xk!(>@cooOdh~R(3ZbgOCb0_PWr;C!&3v!*yjc8$a0|VrzNP=KUP; zi&x%G2Xk+F%OKfeDAiuH85;=}plB*7H+26cI@9HCinEdEJoZJ>(4aX8&BfY&8 zO+)+c%gV@>1l)k;%Sjgp+~CWXmHt5at*<;Kp}J7KR=Lgr8tR`>bkFq$pGHS+TUTzu zvzR}!F0tj}g(EINQMRw{UsP-U16M{mB|$Nxc~Ls9-gmHVFVx&?3>$Sjs33+_g>~Vu z9DEZVBu~Ol+~QC2yn%7O%cH%LA=2THcPQ%FCX>c{qp|aTUW`bi>#@Y*#lTJx%0 z`{(IWZwtS1JT7fNJ>VqJV*B~FvEP*(^UsEtD0WpE2WaR!D0}t~B8ukRu;*blXq0cf zZr}+&E&knpRwNB{ulLFab5Z;#E~IMkfrIAzmWQwO1{PoUrnd9g``3Al2&9GBn=UxT zYG`zrhTPKl<`VyPX76QB83R(*JVZzRXz+_qunOf^t(^bcy%bG$FRYfBt!SS^^w3l> zzPC;Y_Z}K)iipS-qki4drtkbzP}egC@m-0=i+d`H=?OH{PvJX(k-A{ z*63_oS=syemmNUF-}Fa+^yrHVJ3bh^{;)U>E_4!o%9Q@{llTu=+NT?ON?EL0dzQ@0 zsxJj0&Kh+Ew?+Xe>jncUYa@H^GRoOzV_gskl{0>d5~8^EqZM!y|A*{f-dWIB`a4^o zm|w)35XQ6fVrHg?Bchb{l7^Fmg9~eflgLTU!Pex#k@DQ4ADVl`**>4!l3qGn-Z362 z>l*qp`oXxMOhDn}jp9GDw5!bwgm?-zPs#N3-bySc228IwU&Ra494MOL+rA`MJ{+gy zD3se_-kr1k{}!*Z_Gu!MBY8kgz##V!Vea7Ya5rhoem{J;v zWQ9Iq9bfCV_P8c160msd7N>Yy4i24#O%07kYxTCrWqKOlI080=PyRXB`u80}V?Xrr zsOS@MXPdhMuMkZ3U*16}y6FNzU0Idt9W*o&Lu)uN8=fD2NH85RJHdj(cIMt@!7b?; z=VX*=*S}pd?(JSeqoifZAM@nOY&;M;sl{Preul~L&u(pxf&!5^gm6KEQJYa~zl)Oy zLVZaYF9>}THGcbOkYj!!vhDG%ojM-XHoxGIgBM-yK$|C)>2#MS~hW0h&arKG; zaZZjTBXe`ZF+$VgK~sc)?EPu*#OFccU1yC_7OlZ2aKk@{Vz*nU6GZ&%c`GT8I)~^f zHk>1Q4*+#5EocPqf%=go+~0#G)IoJsC@3H_Bdv4wT&f(#0dmELIgM+yrAh z6H`Zll)3`L_0|Y+?uS?=?uYSl3mmdl?`*n9md^b(E2UXxX|L7nh6{by&rrZQ0)onP z9A%cgo5-@^EC_TyV97H%S*Oh3xq=-r{SZ4-tR6UcJ+7?MQC7A%s3W^LTw{{?J@j%9 zQteeS4yTm*RCs#J3K6PxWVB@f&Nxy}sao=A>zrZyX<+eZ-KZ%~&w6PF@mp3tPN`sA zEpY(B4NZ(&kc~^4xXGyER%Frhft6Qx_gf84L5Y&;W?h)2D%p)Z!_!d z+&{lyvd#x;q6Et9mx<)kjL|)VAk?#n>>iG^v(VS%zd3NEPy zKc=+x3|@r&RX6z7+?lCoYkwA}YjRlPq9X}0tjk3xx>^O_upaVXaO87T?|i-)xngcq zRa@Ysb7p}f>A_%=jq+0cD{AO2z|lg&+e7EsCEE<(8hZ1mmTYqwFJI-=w)2Cl5zCIL z=!(;@g5=C)g`B|j@599iXZr`mh0+lFlX@Je>v2*2oRKzdX7)c851mK&aNdcUrWy5j zVnt5m3Il8$+6fD3Om7S8`<3LgLVthuprpU@`lle(7+slT7U&8tnON&!u~lA|E6Je6 z(fU|`n>ywr=TQ7yY5Hqo14F)?lYW_!)-ph3Xz_;!f7VS*Mh!i=H2p9p<^oRintheo zSVq)ek(YAIkBfGjF(DsiHu4KBSu2m8DKlv_*4*i{OKvK36{6!^C@E%2j*M0^tIPFs zzR|K7zlUnmFLWjC=y48yEXl|KYH}XCTc&-cr@s%IXh~eJwJp)k+Wcs4{{hWtIhb(H zD4p1iCq)#;lu8|!BlD=epK#2dl3~nU8EC#JCo5BOG5Hzs^b0KA1!tR%r8ZQ3{Nh1G zgspyoE9r@z^HQmke3g;S@fR_3zBD%~)XYHhN zGDo@6ZG>LVv$Ah|fz|FueIK%<&mu}0)GJTv%&RZNl^LV;%?;j`HQ`iZbX$Rm0yENd zrA2gfG`_Tvla(!z40LiIvW^-`h*KW)v%cZE*L=~=h7-l(U0qa^_>q&--`?4C&&POZ zxX2AB@PG+SdOfb=VQeMyxcbvX1oxxZK3RoQV}qOwAi_Q*d5}CRczAoB;aJb5-Fdku z=N%*4^w_?Yv;`_S_&aDh-i~>4nN#8MWzMQodPehdPCQ@EZlMQyF8bL!S~~_!jVBv! z&%0lf54i3)0Min^|79$l6zCeHSr zdvrMFh(k{^S-3_mqkVB8O zs}3AhO6z~P9*)NCA5P>~SWGO~J7`MF@+T!F+dFACZWZ7=`1{+yYF&k{PEPaM_^c2e z!RZeBD%sj4muc!WU!H1K)}wB!xaFi$o!^X?&y}Swal2xdYnMkPY}s6sWDBNmu_+~$ zA9S%;cH%7>PW-Trp7_329eQN8Bc^TQ&|@D)Oeqe_y5sNZnFz_gVbR^A=3ljtoS-#4 zt5-ul;6L}fMCh1U6_!Q0HI;?O1YnJh zhQ>F%cj9f!s-f3d*WW~wf^V0Sge#AU-^HMaD6i5^2oP3lPyNXj8Sf^dMEb2&j9Y%s`bXti8HpBoX`F4>6~XSv8$(7 zIiYgoKO5-w-bjy8@w|9M-9f?9=6BU`gSv-IoP*^R{btkk(M8slT}r|C3w6I713*k= zecv^2+n?H?L@@FFuBX)g!AkN|-q1ZxKrybyrk}NYRtmZgw*5wfw?ug#GI9@2nj6lm z4?nt*>cK*hRW8fGCsp>PtmM(E?TtjyiiuNiu2ndPo)&UxSMU`JBA1Np zZk8pe>#jHczRfex*>FyBv%&>Y&2x2jjWY12Tl3>TD+5# z^ABGDIz97#v@$(}TPa9zTlD1IRq8)()alJAEOd5_vhS9ys}1m$ToekPXq#wU{bAkM z&%{ZJ;3R!v*wg)#u`fx=xemLlDmnZn5nahI9HI;--$97Bk>~s}hAE5!fl;WF^fQi` z!Y1UI-H0GOKG~R=sj^R{smu=gKmZYMMX>yuv7`%HopS#5ApW2WXdymK=p?flTmOjE}9$l_VgF|3N*|;8_3Hq!xu0 zRKZ|a;S)!wR)Jd$HvsoXA-*l+7XP8JIso6ie?mUv#=toOKLYoRkWjou5#S{~rr%^B zyaGd0^2&ujXA_lfyDrfTjSze9>&+!uJ;t#L~S1^ho2yg->_R5+Dl z5tr=21$vPy4I0(b8BLq^-U9UFfo;wEEK?|}iMlWZVHs9*_S1=NiPZv34y`PtTe$xQ zWk^hAI+bdi8lt8=R{bg2LG}0dZvJ+A(2Mdvp?&`U!W2~Fo?&>A4Ge(lOmW05@KuAifdM{9CAh z(Qzq0btim>t+^qGxnZ%wBOsThXg~)LWN*#xGB84!=>?#2w;E~@xSk>_6scp2c+keK+w`Q_~`bJ(7n2j=ShD}GyBPdt! zYHevfi0l8H{onOj=&QaUwuti zhdkN?MtG_)$_1;UW~FkaVTOub z-r=um-0Pjy^9r)5rAsl(9$t$JjpH#NkyP&W)e8s`g+|>$Xk=}#d}V-JP05076c8u# z8|$FHzCxZsdQWR5n)=>h1#FvD;;@QMK0XM3mS`T8uy6t&fwN>Q8X9Oj8%Q1PdXqDh zh76^?$J}E(tqQ3V)j6smY@tR&#f69R_LSB=b*+NphUI8KWlq&h=C?+nqVUU=W0@;F zU?&6@LO0=dv%w~J9EUj}gAfX}qZ;dMe3t$LHp6{Tml^WbrZ z+;lyv4b>PwA-HC1E0^^Zl6DsgA%mMZ`=chj9zH>EcIJbVX+o%jF5r6ZNT!Y~W)^oP zC!iIoru#JKy#v5HUncXr1r)2ycZjS_{bj@WpxljZ6hbK$odl^qFE0fr|C|q*R)5mm zUqQg5QC(g+3;!(q0)^0^9#wUJ*5+7QX|Biuj3E+BL|Mo-diy}S?CN@qLMm#smuoR> zr}j^8TcPGM-uqo$&BNq$jIJ&H0?OT(yhHEWc93UA$2Bhr zldQI>e~V#*RMYy2R0S!1Ti1;RozJbqV=SM}ZM&o9vg6mWXlh%kmAUy4QaQmLCMhyx zvLPS2uv$hA*|ZF{2#TBD&SM6OSCUcgmD>nk`{+xqxPKIKEpkG^zuDki4n;nx@o0`X zGzTRzC`fYaf-i0;gtwLMIn^i@Of3$qF@D&dmm$(ZF4qol|d?wd73Z2SlNw zB}unQS_3N|RH%48Uig=Cy=J002K}sIkN*sbjlP3H7sL~#WB>pF literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_24000.png b/Notebooks/1_N_horizon 3/sim_24000.png new file mode 100644 index 0000000000000000000000000000000000000000..659f6563f09d3cc647568034634d66b7dcf93459 GIT binary patch literal 20113 zcmdqJXFyZy)-FmBL6M?}gl<$sMM^+=)1V;I6r?vX0s_)|2L(|GAiaYK(u>kNNbew3 z2oR7aCG<{!`%YYY@4N5)^PThWoF6Q+GH2d0-cg?Mj4|iOr;0KZ=NZlu5D-wvK7Oc7 zKyXHgfPnBd*;(*SL7E&E{3C4lNW)IW(#X!yz{Ze3!NAVyjiucilb2T=3~g*pEG_uB z?r|aRUVUw6XJsqG&29eg8@McOjJZb!s6K;1&RIRyv?U-Qr-A+m31Z`61Oy7lvJW3T zcZ$c2J4WlOR-dfz#wK>kAEbs!U%DFj2}yP1YSY`R3YSgZlIcDCLA0pa%W?h#1>?1h z44tp!bZ5Mi&N26q5h{~?ns7A=T`2VMj1S{E$CnuvKN7aPd`=lU8p6)92DYPj4g3#%A%D?HY9z)-xHu6n=I{oUSaUJ~hrb|6uQqZLv zY>9+^riJH-rz5q|e%j zd5|#p#NqSpwhxblPjBT!2{p2e&F7oQQ3byb^-i<>lhE+Xkd$!5h~_U{+%E{Nw5siQ zjVfx)2TvY}wax$P7$poQBqh}K`dF8OSqZ27#!xYYB~V>J^^khdAz|?nX*6p*Yr3C_ zdFadXC%#7!8x!~uHFzlz=#Op6h2FSb4vD_~Gc{6;Z0dlz-gTk25zC7F^J!v;{Yd>p z4oOBXMP?>NrtU*6?MI#FM?K_A?V+2W8z4o-4L;E#HIj~(PCjmzlv2RQn2{P_+f2wk z12VX49LkdgsX;sjLkjVTZ@jQ4Gf*X)nxIBjZXJ7)xDcL1vG{IuQP=;XuK!}5XW4Np zn7Td??n5d?=1C5JL%=ohK;cM=tmkXKp(Mc+T$G zS2XLV?@9{!tjW6!G%Zutmv4_A*pf{JZSC}J?Yj!vO~9rbVbkM?W`0Do>EwLf1GrDn zw&z?OMV(-2W;wMG`JM&(``zZfYnk6>-fnRj6Ir&vSU(`t2n31z-cwU5TGo>7nV_wo zp{)^XDwDt8FNWVR@iYLMt!$*Lu*kjMLOkwWoO)cKkG)t&Fxg+n?X^n4N_dud{ylXN z)(E@nt(fZZ-NVWD1<@Gs0Kt)WgIAb$2ZK-vpA`+Y7i;>G$QdE80q)U8825{%kXxlI zGuw%jVvkL?8mdJz7CgPuy?5>_O{xbLIbZA*(AAfjJpWm&d5?LLWHQSxQ2pyWUt_Nm z1^szrFRTTNaEOD)!B~Qq$%2SuvvpkoYR*3Qlq4+hS+-)HZ8h6RQ(`JNw&83 zyR#J9`udt43R5bq7Mgk#3Rz~%_M=HraQf<@=c&6V=5_*4J|ff_VM%8Nh&+Q4d5=$K zk4cn&)ERMj={Lf%QRrR5LhoQd>Iwo@k{Slo7!0NJz_js)^LCK#B@|v2{rzUM1`Enf zuz61&{hhbD?9v{6=2au5Dsa&l{hji4;k(!@?}_`nTidn29>)!)z70G^G=o)!!=~Q@ zb2-Dq-Mp8+Wv@uWLe!mC+CzhAp6@?eXP(TUt|!D)W>6!Qlz$8qZx00$1tm|tNF&pz z?W)+mziwfnPjy+C$`71Vp9+^HQ`xSLZzCHn9kUc}Tv@x$)@a1g zp;*!Y8G7PA*SDgH)jG|(dY8i?{hL0$^koSH<}6JMN5d-vs{DD!!Vb^-1!V(MqhUx5 zxy4Adq(JYSzHH#cp3K3O*xHcufmw{dN(HSRk{Re$+Y2uUNIXXY#d7aZ+%-4FUh{d1 zG)--@M4>&E@;it;$lchQHTv(bJe9sPnVC=Vv?30JAuz;jRo{?3q?G}lG+dM1JGdE! z8FZyhl`&opV!_~PYw5n-a8G>lS*3cj=p$mNHrD{7ALJRYCwRB{*V#R$OpF=>#`Aiw z%ckF!4g(uzS>+@eH*^`La|MM*qQ8q~hH%wVz_+kFZ~IeJYgkcCXP6XB!<&5r2g<0O zEaH+JpP|>=T@K&S=UznKy2jr&A8OtcH!+d;ylh$*ZTqdjX0T5F`^4#{j|ti1U01c!HDiBmM7#^=48n-WXYmy z{F6PHpO<^pojX61>x_e4-fm%ghYSw6Dax*Jg<86 z)mOGBUO(C+N0)2u+8XVo{0jy2`W$ur_WeWHw0%sD>M6KL`%M;f<)(P1rse_4;(%7R ztJ6ctm6j1C?5(izm<@1Rd87*z9wqyJfolmIS7d(x@Yt(ep-+gvE%FT$d z1)_nim+0cUHEN{jWC(Trrvz~UA1h%i;rj*#Q?2i)B%D?+--br)8VkRzqSgeHKP1)cb!|P9$ShBsT8liXzuz!(B1Yb1RC)MKO5NK&1NBHp&ak+Y;T%f_eZDSp#JjZ%e{rhN;bB(e7gQSUZ(&o^`S=5>x)fIOdcj%VZ-QLnZa z2k&YXeW-CiG^$|25wg=qfce77XlZHfmVf=Ul2W+ibH62snVEio2zH9~o?K|4z)>7m zn$rKpZYJzwcKr$$Sj3_Y8r~z^_N??=ar^{amCL+FozXvU%>U_6r^;5#9bJ)-Jop*x zP(Chsvfra)Kd7pmd)S|J+_*N?Kri7YZ0|>=NteZpufmCEF%iH`Ak;ghPM4Bek7Ra3rz<`%}@=>joPa zKEZDi?qRUU%~O7?&=>o^>1rRFn{$3*NJdyq-Vc&IcG7cM_?l2Nl!TvQN3)2>0wG&B zPzVz6SWbvhO6D?;{oDfCg5AZo14 zTH9kNPJD0josQdj69M!e9amg2no%$a+Wqc?Yp{xvcm$9FIBS?uS8Q>=Bsp8aU$~E} zYhzF9toJ3S7qYslf6y1@v{F9LFlGrxMl*{>-d0I_s-x5Cd9v%d*~!V`qX1_g&qZ zjfi|6_X9hy?xvID)sv0i0o*ni^HOtrOeZiA=ieXMon|A{_kK`$)P=Iim0(tuM+(c= z>dBqK0WOSJ3JQ+f(Ex2QI@nqe+a0r&Pm)N;&aa7G8L#968rK}mTHCPX1Ww#(XT*4a zLCLdyHcG!c-(#C2O+KdHymY)ds%Gn}?jk9hAIcswa<=Z>lT~x0yCc1+=9G&Q?->;t z$0kd@e7OeQPtILcx3@mMzm+ZtNu$bepw0-`OuWltCIMtPKuv+Q(~H>M+MMgce06~& z$KpJ5k>CoKPHVid?Vn%Yr_~PewI{nL(Y%J|Q)GhAey*yD?@kci95u^F0PTJ9y49ua{s?q+h?UVMbDaffChct=V#*GQvu!)GnoOcdN_ zGMGi1t5y6GXbmK7I(@hAKOJ0mSGq!ESjuPj4p(cFz`$X#u?&%1y6tFsKA6CpUtCAa z-NN%s1%-vTIXI?)eCFb9yGIIg3kqzaMwM;;dYnGR*6wbjPmUNTfiu)gwqF_ozb^T4 z^b)OO_wx~cuSIgg^ayfA<1W09(IJ-ZOWJPh0s3R6M^(<7B|05Dc@z@(hoRK<4j9h6 zcgHrISH{Z695CkcvG+di;4rr9O>}|>dqW5FBMwPj=0k&nKl5}&(-h)LQsmUhU!3N^ zx2+i%O}>|QCW^=9ByyKEHqerYar=Gal^VI*6&n>V)UxrO+V@{pqU%J;*lHUlu_0shV1IR4v|c zC|6qsoXyeUE|zzFK2KyW8dWm3f_T+REsch)C%Y?(Z$Doto2GnE!PxwOl(}e-lPOBy zL%88R1q%47G1t{<{F}cmv7YR;XnuP^h&@_yT$rd99j|o6 zW;#%bZ#|_HUFJDU#UfwpaU=vSuwo?`L=?NFp}_U&7Te7(!Of3KZf}Vxg}mTW@4?Q7 zUWh~92y&p3_$jK)yu7)p&2GNQ*U3mUqMtt_h5-PBF)_v>D5RP|PV18tWt$!SXb_`i zRR}nfn&a(!Uxj?Wn73z)tym!4!Hwa<=@T${?MmP*)gZ-z!!JH1I68(d`CrOHDVZrKsBSKcN2IFh`4L< z8<9PZW7ede`yKiYhhuSFae~2Mn{SF&ni(x;N-!3fuMV+UEGA0(muaEZjh=(79e7`Y zc+cbgG3yp)C^l%93=a*3CL~mM;3n*cbur@-2K8tB{r!aw{-h9={r2Z@*k^K;Q&3PS z%#t}2{JR@dXNzju=3uPL_}+Tvw!(|fXhhZFN~L@>kGJ)7^ZH1S2W0ii+S(n0HR}}8 z!7N?h3>x;1Rz0ciqeHUuD*PY3JG;If>={qXq4vha3^)q;L@|1=^h6i`i`S*C{v`X^ z0AJ1v0w$zk9><$Wd=N}=n)1z+)|8JE2)rIF77F6(dZv=Qf3exHg~?{cQr`4h1C{Y) zop%-R_?2#f7&Bn4#{w;^o?^B5S?I#q&x9pVu67mGz2Z@m`U9iu`9txu~Y$plYKrwZKLdUv^R>!uBAKEK8@;COKzI1x6oTX#+AkIPa zVNZ^COS5c$H-5we0P@S!-5rF}3AN-#X2-GbD(3mxr9tzFu0i?kI5X`b`_+jAD3+R! z-m6*j<+d8qH2zuXXqi{Bc!#TM4Vk8t)D3|Vu<`2I=&y27P+Z;En+`t3buX13Yj0jT zRiL)b!F=R_Lx{BfDrI^+(Rjs=zOPoT@U^4WbUg}s2_}#A0O>dmZf@hfwW<52XIen8 zZ|~r)?F3Ls5dgC z8i}#E%1_$TU33J3cg4>N2v@8C&EQOt)^nbvW%1ZEAmA#SB&yl(va}f4Me}uE<=_Ya z%J|)Fe*>qNUv&L1IM+(s!Kq9&za{C-R$ts?$&e(KargE0)s94=@r&xUzr$4&M@*AE zkCya(s7o*&XluX2Wq%OQuks6<0!s-iCfC-tbqD@;woi_G_InFUN=8P;5BEj=={W|t z{ZU^c&nfpBE{35u`Q9{#QLZ`E-5Xz>e9!n|tgKpV=yrO1{i?^VsG`u+8GsR-0VMhJ zGljH;*^#OCUNdSCw4%}Rp(7ynj;AeA3}6L zNa%FxfKqjU^s0CckCmHj>s5{ZYv2KPY9G4N`*Aln=`ybdUsGg_2+gFnK@fjZ>?{O;rDC3}=S zHfR7GiY=1PteNEb90_Pgf;GC&98XEd=uvn>G6Nwi(x(Ii1p596#W6i?fSjBO)< zW9BuV>x^NtX@!fHZswMz-MpO3YJ_H`3cLBBTKH;e7sJ6WEi(ENiYX#Fv?ze-$IlHg zNB}~S0)ClT1xeOJP)dXiMo7>j_cRVRe_a@Yl2M#Eg)b~l#^$kU$OR#-XxOy!3lo>} zdp8@14-uY)!;Skl}~g+2_HNAicrQlj~BWe8mp$3 zM&3ICm>wb)B8a>r&^f0=gAyYsJ6l#6GR;K=m#2iw>y_Kg)^KQ?`uJ{mM)eO*b$`@W(AIC@IJ$rQ-&mP|4)%XqbOCI{loxgV9(8>u zbv*{|lRtpjnWe5@-a63c(*!&Z7)s$bdp}7=+u(nzrLI@Mw*jKLof$5gR>#~0tYSh zHihIod?xg~;7TAuB3`eW%t-A6B8KI^lo3nI2~E<+!UNO+Nk&-4_>a<^oKbwd z%17NwtcKepVuS7(B?ny8tnk?~0w+En9?t3&OdYGY!+qA_J~5{>pZHs=#)}6=a^cWmnI^(-Q+z)nxB?N1 z3fxgdeBLYzU6Q0V=Nd0WutQ7h(=(|1`PP^EfWVIskfIXj?gk-hLPoNnAIqA$OnmA4 zmlB0mn9qvVwTW7f&DPBlRJ&}C2GIUpiXBijB4277SzpH8W*F;P$}H3$5;7VDP!_0^+RN4ObtRHDNjTiob6ZGJD3#n%Y?q~F zVuRHKKO?UerD{}h?{u!SzA#jp*;AVHa696PCRqA=YJczBb@ZUZCW&Z{rLN~BKr}Cb zyd~pV%I}%Buw93?O58Z@SNx*n>c%fdxm&GmbM+}Mo4(TrKQnJh_J2LqIYK0v%1d<0 zDL;JuG%WW44d1f44Z`w8l$%JiM%V;SRoPqS%l4{HCwGr1+Bi=*QRS@T6cu+>PqcQk zZ9fg4hUVgj(~|gT66Dp$;ah}>r0*MHf&mR#*;gOvOUwT#t`01&D{$$}`6*uoznp<{XE==H2F z=DT+{;FKwKC;sXLJbTftxN$aR?Q7n*tv!w(ry^ z@NU~2<~2NKxY?uK;lG9BXxbOPfE$TS79Zs;GS+^-{knyaS?l84Yj{c%&nwq>BH3wsH&H) z=EaR(DR5PO`>MjK@P&Y(&AH#(Rpn01g^`iUDp3bm=_rAHrjh*XGTTe7Ax9#8l_)b} zDloK(f8W;?HstA?u$JpB~c6ivt$e=mcaon+l z^?|OC$y2%myE~nBBVd5gftSK>r2=ivw5)tYZ0v+mh$T>p7;%jg)IHGk7smBk#7k6> zlG?pan7RX*EbhZ~Na#|5AVxBf55M^hCU9QNHI$DpJ?j-xjj?TBTXA#KaD;q784@xf z3dFy6w!o=X`LSg}qdp~{+hAuy*`|P~h2rki*3`JL^HX*9TTo3R_ToQ6ydbob7b7RQ z)?*Uj{ATo0WM2Mfdp&{l3oGsCNFC=scrgFb(fPD+2`no0D3(yB0A`i(>@3rvw65+< zak-h3-RR5X?Kx$E=K}=2`6_Ukt);q)?xHpiYbou_Fn1avAUisw`_Ej}v7;grdIjF< zSp6y=-IKJp57F#+LNDn` zqST|&%}72>n2FI;WEk@eBekFXMm!o4VfgD*#c%(6fw8rQOB_x{b2f<{uJrj;rLnOU zkJG=nDKZQ|Kbivac%2Xxw!jO?;~~(Azshu7b0|uk&tT^~_?0k?QT_{*DyQ>^CVF{1 z5kU-sr`M&k_GZ(6Am?Pl{+~_h&<+;M$5+0m!|FC|uI9WNDo`c>Cu%K!qKIC=engSl zeQ^~{>IC(`8~n{)*EKH)4csCQibOp!A>ppB^rxH9Y$9LHdueFGMnD>Qnb+w4xfY7$ zMj(IX=vCZZNNtV&EsY|1gtQSi_iU4Jwv$Kq9Uw-9NA}F+BiMoxgBH_x7{h3VHv1hL4^l%pU^!`ob~hWF>M z$#?@4m)Z1hD?^iFlWnI=^^v1(JAX}K{bS{=Iz2r^A|u~ zki}Kld5qo>jPuqF5H6EL9EsAIJ8!=pZcnd(5T)rQKpQa7B0qc1e@U1)3ICy6dN)da zkk|MT7$TCFgV{|?)K+*`L9fg(>FwBE%Db|pENrZ2SgS>^ghqu8rb5-&8<~cnA*)Ee zsJ+8TqsIX_NsH`lGeNcWm3H2_yWG>`w1!oc1?aZTp^ZO9Y}z|*ZRfWZf4OA$rg+X@ zqr7V!1UWldicLWh*~90D^*T}ZgGh7!ftuCz{Z#;M`l(g@l{a{o^Nu92CCN`Ys910 ze+Y4~-tu2RS-?ojP9fBmYGf}x8B|rjP{j?g!bm^Mha1y2Aq z@$N58-}VnVk6gh0jGU?-MWniFYt0(1uDOYimc9fEWK)oUe-5oK2-HK1g+?^J6LH%8 zh3;mGVyWbx7}gPvgVGZkML{OyLkRPqF2{Snb+XK+DYXvodnjHZbu??}Wif~KRdY(Y z6dAsVdYQC$YCOd7=7f`ASDe0dAOkJCQeyl9Z)$Z~L0aUlx<#rHDO^Su-Kkw2B1o4z zpUbx7?7DvT35S{2z!)p3J*Uy*V1WxO6OmFC#Z!}cO%gbey=0OAVEPde)NaQ-Dh#4H zNCXKcx$mogrYz%Y-s_-7l1@r|rsAOz5^OGWa5V>~MUkBya95-7qaa;6QE=&%{Q2A_ zMh$&Eiu+`}l~QJB?JXPNx)`g+r2%I+9#q>|BQ8uGelV_NxxYk}>*&e( zwyx1*PEPp!lkP|8KZA)Nj`V|2{O%%%P8(w`9B3Ab>1OwD7I>%Vd*=WR*Ey&f45k-) zUjZc(B#~)Ra#CaXw*M80rwmyh=uS+ZO1Sty(y*{jo?Imqy0` ziJ7zKtn^j>kBdKa0~WC5AA)@M?e4axs65lFo*k%!e*pTl(;V!_*X_mE8%e?lVkqpMP>>ew$uj56tZ{_EGMH#T9Usz~w@pG8|;C|Vm5tf;ehjMr32N{B9X{P_i zqL%cIg_8Ay6+OvXs6DZT)vsUi-E^>DDc0eP-_D2WDDCJ^u^-ngUd+u|UB@9NuT9Qv z9j4IVQtH#|y~7=s=$yGP>7eec$_awn+H7jK~Kj)M{;zzIm7>vnV@w;isj~sQSN8pI=5DS#g^pSsN@f20-w22l0$roQ!EcI z-N{-K0-#yK^&z*SXi=qYz~j&XWuW?1yDVeQ>^V9y6{=0?8Lz4SqMXq7Y*Xiz1X?jM zdjvobiU1(%2=CnI63L><-6(K$aC}8CZS6s69Q5ahaqyq62f6{fe@3B{&1z?a$No;$iANfT$)|q zR~G>w@zhkIq->=>J?S#L*SOQCzP;S2;&+=5DUGhK3J*JLKh>;6nFh97X}B51)KRJ8ck9vSD*_{+(&=L4xadLE==UnijUIvR-1E-(#`R=IZJtUH<4`N24W?c z$rqkR%b1Q{2MAAFEys&Xcd`UCX{O&{$4~KZL?xw+dWn{IGG;41auu-T9;x%{e&mLm zdH3tNYJ-AO=PO-j{wNkqRDQgWS3SO3&{*0~fwN;s{hO1nu-uU9w^z_V5$TfYLlNqN zc-XkOs?H}VtfKGMg2v+{MPF@FR#B&WmKKViRh}IyVzaKxDhF&e(yV<{s^4N603&Kg8>C(D^2B4|AD-a%nKAHW3m2U>vi&EwW)-urU7p z(*!d);}{DnwID4h4fgt(Iw=$aEw`oT@aT}_X{n<*The-q>%9qs1<;1^V+AM@P!QXa%LqSn-X_jMG021M(H6(;gWiMoSm2^Y8pl-Qem&KzZg99`YN}b296Gzi zp;40jmLyvcVZFjIBxv;p=%sGSx%(AGoS(H1Y~$YQY}gip{QRb*U;sWorx7cnqN&n> zW@C)5b)jKp9L@ddtan59oS@023k+u-u^wAQIQW73n@RBOD`V?s194tm>E@aFSN*lN z0EDfMgy{nF(F8LBM6FSi{Pyd@F7&A)`K{x8&P#w{?L}dnp-Ewn9#{yFlxu=ts)Q#= z$y!S!_-`yckC%~sb{yFghs6}PcRl8zMZH?Du+h{1#1Sz! z9>wKI%Z$m8VLCqhV=X=XvY?2s5d@cKj1W08qFlmhR3Nyu6!|WdPnYlh0ilQ^NYW~Q z@Vacf*Z!u#;2oH_NPk2I2?CUBZa=UoC{!-ZD&q7ab~xIDU1w}J)6i7=(cX7QEkd;* zD<>4n%YZ$v_YOSTTI`K2l-`=j2@(G@Qez)BBnh&OymCthGeOn&+-ly@sCN~YHoa> zo7+Q3qRpdZJ zrJ&jQPKB<(N@Tdl}e8Y-R+$D2>tt+gtf=OAl*~zQ2R4J8FV2CK$gg ze7v*h2Gn2DP6s5)>L-?zNtH|dqb2QAKTkv)N*gG=AUL_x!_=%TH)M-D>d(OZOnC)F zH=LvSRBaB=XlfG#7!D>-V=;XUqKr~aF}hOEDG87({UG&968$1b$1)h#ZGK)uSFMeI zxAq6fA7?;@zyCA+y>c}6-exRzyZ#Wr_Av%OTt>X#e4A8IHtrJx+yps2koE#s=+m#X*ySC50@E*k?q%BBT--+kek**!-#S)$1v&-Zd% z-t-_5lHvuD5Po}I)6E|=RE)Bfk7&AW^sdAUTK<<92OP0S0@Ow4xAW9O$ED%JtJ zqFI>f&+2Y^D@hpdb<=%j`D@G0Y;}Yo-U#oywe-AE)0OAW8RhE=$9sJ`7Vf43nwq_7 zSEJ%{?khT65gzd#%NcM5pUO48b8_lN6;$u)RDLY*XK24;_G_SyEb{%#?5k(-l%gdR zkIrwZ7(6x*xi?aPEg^iON9nsiGV_Wt^6`^zvSFXgV3Z=afbsc4#wT0J=2JK2E@}mk zTBmk#h-CG>s6%${FSc=REHxW{sy7 z&j!LHXm52Z;q*ZWTdG>VNs)2m++z}^>oUklgWTB2(u|B}6Tpl|RRNnYV`z-C+W0A6 z?4iP+bbyn~;mDs0rVF0yO*D60pj-E>twt}g#wt47b7Bu0CvUQv6jYj;F8$Kblru5p zXY5aw(KIv{xx4?u8KrvXs;n>jpf*t$#q3~snp9-krv%y(ANDw@V1ez(fKsgq7uN|z zG;dp1+ZWwzop+Z_Je4(L7^>F?^XqdU;q)@w$+$#JEtl6Et(49*W}f|Txq?? zWEu`NUw4fkC=7}TxSs>gsu4K!*7H_?Ch2DQ83s;$yP95m#iMsmUM)JJ^!- zWjgl{p&Sly$?XLJwV}1u(x{&z+xWuvq^@Z|S6E27hC`UvhF(p82U+Q z>XmFBNk2ZBEl^W8g@U=ml68Hcu)7mgo=CD}?Qu^fe#&=uzk_3wLS(>3AtAOx|IOAP zNXgnqKnMY`Smaykha^uIp&lJqv2@CXc2?lx5vAyPnUmPItb%s=D0cn?*)ZkRvrMCM zr~TonMlUd*r}ON3twDjuLFi*vI2jFlT4KDia_GX70p#E32fJG5K2MLB1pbpXZ!>BbU$kG0NQiDr!EtdQ%SoAdU}M`s<(_Gw(ucl zsN8Kc{9W`tOU__L?a&3AR9za>oyoPG%Q!=bnL)2RzvwE-_7+%}E%CzogKeL)UCAJZ z4Ha@q9t_KaAi}E~RJ3`8%ZHZZf>6;gz11>n&3Qa{wvf7vVo%Me1LRA6c_7-morJy9 ze5Tcwf6T|;Kl@nJ@^|AvC6E9wanMmiL>;KL5PO+Um?vB!B=n zX#u%HqOJ7KOfYvh6!&7dWJZNS6N?2GlgsNgj%Vb?b>BV9K;gX_Ptg14Mhc=?6opO! z^)S#ivmZ` z;3pZOzuoeLO|AmAwyB>l(ioiA;o{(}5ac zk~FC0E2z#u#10xU!HjZ4Gz;-IJH1A)e*h1m$q$3hh1Bt=xP+#_B&NzqJOg~n3<&BAH_}GkQ)C*-=j#i5>RUtB@SB-E6IoxXTTdUh zeUh<))3P2scjUZ?GX(VYphamRh^ticnvLvKxF4WCGPT6c+8AcZIepwl9`{WPr`{a+ zZq=R2sOxQ3*7GuJz-Mju>AgI)A+}$JsDr*jcMb~=)0_78m4d&2uZCTL$PBq)9C;mG z^VT$|Sb^iEuPQCbx!o~%Jc%ov+UlQL%vLE)uR6G+&T8T7)29U3BQE@kW2UfB>c2K!*6+7F2|_b|YhmR1@DQ%=`-zL~ZMk7}tC8p$ z?cCMAG%xKQiSW{>H*tytO|?)G-qn$!#Hk9$aNP$=-j@jKqi&l6@AmLX z?3;j1D4%Sd5VhAqhg9mv%hiS=n<%IzD&=IEc*w_2%C1w`ye< zk6Ic@bWYadbQ~9dKs;5Szv&YW(_c@YHN4*#*qF2b8Zr3h*2$!8mxHwP@*+~!Fsj4sELN%w_bD~jCbJIo62?U>%Ev+Y=^z_ zz6?hd+PRbPMdlc*YO21&T{fp@Q}#@Kyjab{9XGao*QT(r72pLy(NAF!k1Q0gIFA@~ zl#Jy@f^TKryW0+42!E<5d7R@&fzjy~7#{9*@yelYJ-@J<#l3o{K;5lk4<&+~B^B)$=6rtW8In2}4y)Hb>o}B?DP9Zy*y;^hpC5 zC-aK_Gu@7YZQ8q<`rV=Sv^kjP5tNTgSl9|Ga{QgM1pqhO(456!YC7#89YXwRsV9w z7w`+SclxzbF>b+lC#vWBu^Meg+HcP-t?HXDfHD@^_pd&tf?Q)DpiXnOffse9gBU0Vw9zX=*y^^OK$Ezv;d^^;ZEvJTA?_@ZF*dg zUmJAobH;J|ro_2<_fS3hEZNb{Tgt!(ni>GEw#ip!XAVO2#?A|%kY>8H*Dq%)T%b?- ze(QB*hk3Ag1|N3+7aXD^K{OdsWTivRc(Not0Nj~6ljkH?l6t5E^cXD|&imL*$MgKA zP1$zlh<2_gz}!H8e;BsxU~nbe;w9V=iy)fhnN(ZDYndM8>~^3GDk?34iV`2{-AF^_ zOkMs)WAcF-o?vbkY_PF0moZ?WK`(xjE;ndrPDd&Vm2Fy-G9xF!!EJ^}iP$!vEH{_Y zvzYN((9jW=6yF3NAGI24ZDy6_kaey9yR2jh&o}yjCWhFlMp#V63r?s=I3K)FC}(SY z?}jLc)uAyZ>Tz(1+x}|)=G>RJX@%l0-JMH1c!!(K<`u%n^HMQC-n`=8{C>QE~9*F{Knk^Il z&qxjve~AC|f9J=Z)Y6M>5Ai~E0TZ&wB?1E%wjM!+O6)WA%ALowEgPn)K73s;ZFI zEgOEtqka={31tZ$J@I$w^}m6m|2u^5;a;x=pqGf}nLP+}F;|u&Y?%NYvJiKLOzT^gf45XJ(1?6Ps5hydalF00I+W`M zdST+lGRU2UCuq4%uzxLLAQkxYvX$pavDZwnyoyj`$$vLKLS-F1!spvHpS2-@rCKIr zG&9mk)W^y!Z4t_VZkSktZc^vt3-MZ>kH`#|tVDS3HVeVZIEn3{kwS}xVOB*v;GG5D z{Ft1YOJ%~%8Zi^bO%mMl&{YVspiX$GVKhi5PMS;kbx^jSS$@383c=>!f@*8zAA@bW{oKm1JjXP`Iezp%H--{*yK zToA^W^rj&|k`a50y->aRuW6hEoBd$IOHy0uAC`Y4edIX<2vLTS*|^bD$O|U;r*}2sgiG0@b#0tE(Jpyov=l@pAJ3Z z`FEbuBpb?qy~O4(P&rkf{W)wd5M3VJOk@X|V zl)y_fhA}(2c9n%vWa;;8@YM@AOJC|^7_wC%p9=1S>2Fb@f}>xzFIk+6wZ<|tA)VNK zo`PoqTvYUI<$j_MSMYX~U?^@sYD#l()9qO6lLWo|@iw>*DsH1f`)%_9myebH!Mp&c z4-dBwPj1Mxs1J4GIe4dRZ7FyHABKdnB5#qy@h+nCtBgPc-SO^lpQ#oVS1p}XWYd5C9~&t z!2dhm>y@a+KRa=ZDm&)*{Z3okkFb#UXwy_NAGbX&aCmfiPw%?<*m<2Ky&9G>wrU+R zCUPA@uyXz}s`x0q8sgebEhKh7A!_+})0Mm2ecn+IsUI}iJ7FiZW`SNmf}v>Fs3y0z zN;tgZQ0NHI;YmxuPmLOTx{88-bMA}o_x5araiGw)-j4nAn4LY(rh6~0^%hR7d&*k6 z(7pyQq9|df!_?oy)C3^%J|Gl{vUazwX=luhIdZqahSMBfBdCsdGpO#(A9Kj%V@hJ~V5)}b8e*kADiF1{H zBpeN6xN}G`d2Hu@Fh%?luZUhJnADrhN_brfuO&$gM$~+ZYgx67wZ)no#=2vDshdL% zsH&GrY?qI-Gmjh|AF0Rn+maYz2hSotNo-H=o<4kc?mtr-VSy0%!QDXr+FsQq zSDRe4x?kNR?#;GcA|B7eC3-P~SOi!}cw**2-edmsG;kV)E0VRlCE1$0<3=9y&=c)DX|i=*Tg#2kbkj~?FO;i$&Ltn|p>l0Ln3u=|U8>$%|d zP{fLa5;Uls?9v6qWc??b8{a%O*8~W=D!~bMm8>Gks=fTY$zP&Z?+uca@^qD-99Xg- zE-5QbwG!ilx2b@75lA3SLn|J|slUNEE*x<`;nqJRR#C{VgyoQ65vuf_{`X-TVSq$& zPfyh<^p3#07)AHuF}lnc3>MBWwc)s!+e3VOwu(faMDg{^o?qXgJn1pjpJ$dB$39&5 zS&7lsb^ZnSw6FSDxqPZR%RbD+8EL}<a z0&l>yfB*Nk%`>^sACmD^?*oIpP2utPd!Bp)B?3^`PXgr-)h}CrUNi^SkDi@Rb+y2( mp>t*!sM@1JW%>R;^TcwwM^k=Q8Ul}pWAJqKb6Mw<&;$UVk{40{ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_2700.png b/Notebooks/1_N_horizon 3/sim_2700.png new file mode 100644 index 0000000000000000000000000000000000000000..270752ceb138f66aff5e6387c39cf0a89d6e1f7d GIT binary patch literal 14602 zcmd^mcTkhjwl76MsYU^nssY7FS9(`KBnW6ilU}9w-a$noRUtHKDufOZq)ClPQ54Y7 zdjJ7x(tCS5c<#ODym>RP%)CF&doyYCefwK`@74Ejt-N@kp+ZN^LQO(KLZ^C92|+?~ zN`i!h)aEoLxKfs*HV(cdJ(Tr4kj{@iyv^LKNYu?dTpXM|9Bj=mds(@;+d4bl5)cs( z=DTd;;o;&gB`E0lp92J(-K+%%dl=pTB4=FgJ#r@@p*c@{lajnnyGTMJ;jOB4TgxYH zY1B8_P&@s2b-Svds>tCCJj4Occ;$-16TYY11d?0xT}%&NwLrLTM%6x{A&ZefXOM=U+-sL5r$4!c z_NQd~``|XM#K|qhpGz+Hh?lZQZV_IdT>5DJ??OoXEX1C-vJy4$V0G`8U97XeQga!~ z$FZWV^eRMH5Zd`WtAR(kSr9rohw>4F23>$)^CW_`bLF>NQF=(%png=fFtks(ISaDd zsd3189>Sp1yoX9=g-q>D%5kf<^AfpMa2X>~S4SF4>YOJbRy#Dczz4OX{OrF`njV@O zqDvx3Iz!%gJ@Y;+eQ>VpPzATi)PKzI18wAgb7d1Xz;GFQmsFf&mb8|PCNy(nlTI}b z%|jFc-DSu_6v~}z(iu{E16mS^GWy^?#RXMvuH~9sMfnIoJEKr@kWy}_j!JW|?uMtI z(g*~id$)Og@c4)mEIk*sqoY(5h2nuuu0tL!dMxR3O+F$#LHRsVI=I5xe+wck4fX0A z3g)~>bKtC#zVZT<41s);9yRe#P*E~G3z3gTaVj;_;N}c2b${cUOk6b1c!3fK{uGOP zUeu*MxNUh`sg4^eKo)cANSbvj*m}w262!f%Ad-q}vN@umAywP>`wNul;J)`G$ybQi znTS0d_}m~Gacf1Jzyv8ZxM0CXS;tge*}brifZHSCRY+tFZT+c#+e)Oga6I zL5r_yoR`mueEF8i<;iZ-BYZ`DTtwDM9n2Vs)Os84K4WG8F(X(Q}5>% zj8KL~xWngoa8Gdy(8;T~MiNdqtXK^utDHYcSYqlgxd$^!LD;Fn9PhynMKK~gn4V;W zAIlCk=JHHSH7{mk9gScWa^tnIqiiL$DBEwWPnAoBQLqYX!YXpm%ow!s@0_KDP%9W_ z*>c-gaOD=kk;ySA0Z}8mzrG{lqNlW2k4cR{)nBJTa?a&^wZ&~C;4pt#HlGG$>TD=P zRz^@2PcOLKRRfO`8Hgfxib7RJSQMlCtgic)nFlLgz=rGA1-+Y0vI$XvX`4oo+l3}T z9?I#GaA0i=K58m0(i`5M6OM&E+Mo6F&>bxdh%JtuJCD8rn^9?Y$0Z@** z)8F+>;r$3|pBvGq`ZiYTxK*WPc!6tU(c_>xx{4`xZ|QrfZS4>%n+4^6Q?Ah(u^7k_ z`jBb))=iAo?iWQXAu>!G@|@6BjL12k3z#;Y8v922i~2#YiZQ}9$kcZGN{Jja9teL~ z9TxpoYi_Lq<>Ncc+F772a35ArEs=&uXw4suT6HBPYK$*Wz%bjo<+j*96lwy^yleP# zH}J!H?E`9YCpgTgM?2Ml&pQWwWbC?l<;^wdR=$K6$x4#LvEbms+CDA0v5u>8TsHfO z&nEw-jZ>ZubhT^$+r@hkKcGOG}N@;O{v34Jn4YrGI*0GRPO~^x){3pLM(D=u_tPtUIJM1nh z@VSvcf8r6i)lrS@h8TQqc7Oo%xpFfE-NysdjT(0zw_3)P;X;R>kWN%Cc<2ZHO z2_J>i+l^#ubVH+aB%bGo;VXo`qV1LLDr7IdNl z>3wwKnpow?Whi}Cxx)OWkzp{i&@+4uOrC5EI5!%F%9*bQu)|AoDz+MR^^qVr44Emn zwYgnY#hXGPx#ZT_=%f50i?4;K9f9{Un2i*>Smiiw#}uajinf#~C>s=N7vgH7bZ`|a z@I7Xk1>z2!oLF2C=;bIp3B2_!Dq55&4wwV8!M1^3vMO@UQ)6T@sfZd0XeWi2Dl8q@ zQ3@x<>K=n4!bMBO*P%r#$I7d4-cplP_C{tO zQ*RUJ!;@6m{CsDPfM*rT(r-qQwp~s{=(9uCL#9G`xXfeG_;%F5Q-r6AZoeU&A)S!p zPk(Dg4R>5(Y+iIlqt`jQ*I5}3)|;R+g7PKu%%nrKyR|G>+SrSEt1AYu>}GJS>*Vv?uRj)TLXLA(w7Fe(y4I zhvYc}XQ$+B+UHMHoZszD_Vs7FGP}TlWC>TO_^8ME_r9Vn3ns^YGaac_gZ>S3>dupd zrwor954Wb~3$c`h5%(^u&(G6#&m-r4O4IIaCIha_>YL9rugTX-)@h%P_LsZ9@??Hr4nFpe zk(fNaHE7KV7R7+0xL}Bb<)$_LRN?H9+h6=F-niRQyj8p0ux~P%4h!tJ`;W&Hv`q2Cj>xZEIk_En7Tyr_=(U)5qyVf#G6< zsu&_OZGJ-UMqT`5Ew_FN5d0i1KK8|0et*!>ugf`jf0$3d92G`$!L5Z!_q|>34S|Lo z^XIgenkHK!Q)KctyZ6YaG)Z^AgVP-y z;^W^xGsu5G*j;~A=OY}+%s<&@;7mcl1|RYgS^uca@(hE_3W@x|1jEO}t>KRwcr|Gm zu@9DC&joE3nz;5Gd9Qx#3XEam)o~~tr{WBFiPV%$kUv_Djbas#i4>?IF0u@a276;p zBv=xw*oXd`{-kFRX zE~IRqpP!dF+L>to!~_ zmG|&+wd<4wpf`+d{8O_~y*FQIYinyZ-JUQKe0+F6<)&3?gEvo_3t5Z#D=>xIY`V8w z(;1%fOnV21k(>rJ=U*SzLk{i(wGpytrM;$^@x7woxb_k5p@G5h(F?Y)J8utPCEj_f zpr%GcA}T6cUQtnD(%st@-uC6Vuw$xUo)1WykHZ3}uX~>C_%pRF5!N0@G>=2$ZQd1C3lZ08& z_&Z=pWg!;0*!G8?wg->x*UI1c-~J;_wLp!l^wpbadqJ=;#2_ zb^9*dw$duz@QNXL=ksF2{vVnB#ScY~K0McL-0KZkdCF~uDZrj#kKo3g7QvlgJn~;_JQtG1osIV`L}ll;!!8&T zW8z|Yw}uROHiKsAAk7+Bimwo2_7tWrHi z8=>Y8;kNn-&$AtW<>vhZwOEHR5yL+MTTOUEQy_b430L&Lj$_P+nwNg*$wv+Xvy+^7 zc3!VB=+JB1b8jwpy*u-WG2~XK#8a@5#^K8KnU1MW>1BuDz+P?LRS=Y%YsYJWNmwm5 z9v`vC7`c3+F!Y`{u>F2iHW4597_X#w(0Gp)y~+k8tqK-5;3{>p=(AP z>&JxkA6@X7&(9s&e=Tf5NpnHq6rrl|ke`a(<17`M3rQQBJMFhb{;7h(lF34o!yCw4 zjcJhgEIhC(1$&^E-FQHZwyEO>k3mxMaZ9dCa+Zx=^4HmG>aU5OxUyrr8q*-ZnXh>g zr+255s$#8MBA7rNuL$I2j+EK^oke`JxqlZ1PA<$MM)G+Zhd=Fg?a}}OIVS;lQtQd) z7fVe1_^q2KLKNA#pGnV?Q4RZ*EM2wXx3_U&)D!qK5VW0%?ww?PwrloXq`)MI_p=7$ zd(6^H<>zUb`Ak1Op$J${9sl)8g=3&v8aPd4aUR<2mkL|75`|CnZvNx@#$$VZRX3eR zBs%5x9W-P&wTQ8in5BUD7`kOojMPh2JGo3hzOFJxg<%MRzyZWWnv5jlgVPsgp-a?;yM_ji>-;f8cs$s{d~xAr~sKyt}ua=h0s3G_6-xOf_5D&}3X+rLDyzI5X| zt>O}!JxE_*LCMnI0>p$}+R%T%EPQqO_-I*X?F$z;I)qwh1|}MLk0yW+umZHjVau4P zmbHszG*zQstSTJ7+{ExZ%qw7Av@}=y@ngz)O_^7ML93DXUyI})0w2KH85?|Hp&>cV z__!;hL;kQ^ezW}|rt>diOD8w&GF7txf7|*!h23QP712cjDG*cFR|s>EtQ;K7%FlK< z2i*c{%t^G8_-pF(H~B8g`ibb81d2NQelxJKx3}0H^|tOzldPMdb0#=C`?C@wU-eo$ zue722QboTT@Iqxlhkn;I(!O{%tfw2-COIzc0|#gcOe-z;XqWf~Si*D!ZwX=iXlZ;0 zpVZL&`)8KFXA}bSp4P_Y1*$%DnN*NsD5MYxPf}^tBHVaGYD3xyhjol2OuBQ_)uwyX zt^(ZI&Y;Evw*RNrxr@cbP1W}H&vqe;KZbhmNpAFoylk&|Z2~F1ju9z_E8@k;8d zlFGeC)QCgxl0-ty>0Qpan8D}7A*Hi#s~v{T&ggFi7bN$awxVlB$6xWC<)!=4m<$KYa?Z zI2(b|hflOFqVaTt6Wt+eN1M1SMn>Q)FNG1|$A~xrK?Ta|5rbYh3k!>0g=yh#tK6O|iX0nHxaNU%{MP$Y0?>T=c$bYHg0yycm!7Vl` z|DJNOb_|Mwainbo_fsy^E4e7WH1>VQ6=T90Dvwl*>_fpV8RB7XpO_SzH9Z4^@g!C_ z;V;=}C#rX;-BjDNdc@P7>bzjdr~luI31Hj*QYU$OUulsY;?8AmO9X7>^j!bQLnl8i z?p*CXQ8RAU`uvqAfy4Bii>1=Yc}SH~^F{&vUr5K;k^-bmkk6r+ zqyQYQKMN7X3EO}7mCcvk^RE3SwH|q>VEoc5b$?ALL|2J~@e_M^x1pw^5;mKBc0qd6e z=qNVCHw{I*LCJmnvAgv77(J971Cq$Qo-SGmH1DzhIQ(b@hcs}w_3mws?8<=jRTvR7`YuN3VrJv34LVvw2bcf>wi>x;H9vct*xR10qs0zG5c2~rMDZ+yt<=|)3_Pz!RdCopgLq5H%fhx{N)OqAOGN|;4RwR`7I?}uzSWW}3v+ljWd6SUrIZ&7qWkTQY{T1lv*K58*`LNgADWCjC?V<_o?wa- z{)h9;(8xWa+fi*~xZVbRGO;O2i^ZCCrH4CoS2#Mp5RK*s>@MLfww>Ii>yW9heAOst z0?k0_;;uiIyseG62*C@3gFHBK@MQyg+_I_Lww^UAmIjb<*277G7A_Ec#~^umsebUtzUaut{pr4G){e=y;D@T(thb|k(TlJ zp{S#QVOMtUyp-8SJ2K2vX@r+3#e78SUY>)&`0n1KkE1ZH0hpRH zAEk#zyw+KA&9f#JG~R8b_JQD&-V{9r9t$AjyS7rc9PtZ4a*G4MFI zY6QLfYpE~+cCxs>n77~hno>kr4fGPUi$t`a39Ap5&h(9)@#gw{Hqn9qK8$n0c6cv> zfH|=FnfT-aCnr(dG3_B1E0Saq6gx;IzRs9H>T0q)su|1U;Q(*=-1ma02hw$~%|pTK zt!FQ*qSaM3r1Dw3B(1Fj!#%NdXFJ>C(;7D#yd?UD-i~`N7~I$!m+_ekd&f)?5oQxy zZv8pk!U<&6GBBpdOz?7!r0m64CWXL=eydZRe zwPI@U7p;kvTQ4mYmG706LSV9SRwUo_?us%vmQrgpYm&4pAT3J?78s@3a zU*z1r1ul>G#8nLTcy+WgAFUp=B5F^DY*g=YlRfWazNDWScEyv4R5g(9vve428XiB9 zz{ImD%HG6$AvS^A7MyrMH&7~Z#z%ZYWfv}_JKEVUoPCZak3*Q^n}%9-`ot^W3rP1% zYCWnbd7+YN)V0^D{#I2}ezaQe^mD7*s=B>bM=7|cD;3M;Fp_X7YyWZ^IeLs0M7MJtfxBWO}6Yk7-v_3`jBEmtBy|5n4VN0M}foe zlTx}0jHp_Bh;uqTK7z1t?wc^>FrtW?y)kLW|5lskAiDJoB^&PJfM7hVs%G(!H# z!sOCqcp%0(LL8{&S?p+foS9!TNA2>|pSwp}SOHzEUsF3xrbOXPzpk zm*P;sF6*m>956YF?Ic#+ZD+*As>(_+<&C8uC+*c*cGp%D`{*4r#(#WAj;4(px7_i_ zyD`WZ+!}d_oaQzI>sw3!mDMga;e|5J98ob9^%DG`G68lPxEC<@eSFJp+p;pImS0y zr+A}BDXtHeuI=Wy33cP|TByNfe1jC-z3O^O@;#C7@zv4xxgOT*rriEU!?64LwD+Y< zx~)PGBXy4cwd%7A5$QJ`34A=2qX{4&arRW{3(R~W0HxCX^C(X0#0>ECSUuDtm*4(& zAQCQ8m9r(3oeyQR9e4h-QG;=RSq76C>`}1~KLjdVq@Nnb3!E5!Vad=O^R#9%=kl-j zDv<$4?#?qbxyHCm6IUVR@t#WO?w{R&UD-^FIc;wQ>WyCB0Q9=0No3fX93u@yL>N9( zbN4mBiCS9_G!Ld@h;%Y|bEv0oHJ)C=|JX4y?2Z?|QA|~xXFz7mR0-@^f*6AHZ}(mS zH#D#C46v-Iyh#ated*^{6DHuug`Aaawls8A2QRX$A3KuH8B;LZ#M@~#QEnlzGUgj_ z7)7(Ye-!?pJJCk{MNXoa{?Iu`*v}!Iq4s^p7h4v^kM=7U?d^wi4lBiMZ0#2kLUQDl z6oj8_vx~lp<=k$!V^Cr7fMU`PL>@GziaF}*SG$;1gab3omhoG;?PHZ|G8s-E_A|?D zdsNM&s$AYrgqF20s|s$5ypHEcwtRa}&0yB$nfgA{1U&pQ2C4w7aLlTR*0^%N%{1pQ zaOhm|iw?4scA?pqXKHUwG1YE=5;v;nhl0MQ9BqHL`AdH*)SC?|9HHsn&jCDYa!5V4 zN`F!ET!tTYMi5Izz&TK^#UHgs8*TsmtiXLYHb=rwq=kbL8b`_Vw=uHb{*R%=G-LGy z=tjwMpKW@<)8yIjY3Rdv`Kn%(6LMvBquXeC+x&7_F%vXy?bAu|2C=OF{*6Vlu>0e= z%_kJ8RBRBT03X{_3D<={XV}?%nXTAh+9HK!&BRxGY4$F81}BJ0_K4b#(#{kQq$&V5i)$rW%3WS-$xmTf?$esnV_;~l-mD(PPE;o`m|t71(3)Q z&kKe@l5Bo9%VXGb@()iGN6VfNdp?IE+7&GAd#`B9)A8yk*xR?swMN0h1kdv{Jv)=S z#iQ{osezF?YgavQv1kNU zI^Ug#V*s!=FAWCWUC_Urp0}4hv`pFaOBTs5_e?w|v+vM9(U$Jr1eoRMm^#$o`)Oy@ zNH^qu+G#G8tvPLJ8F&BBkBv3Y=|rZzJ0g(v?*le z8o`4wh{m@-Tm{~%!RONWH?1g$t+wS)ZEQn%GJfx^CN&RxjtM9|IRqD<(s{gZ4>gCq=UKUHdbe*;-<0Eh z%Zak#>EGq#Xq5^(8MfixI&{1);q>2K&zuN8zVQ0BSOq^LJhs|nv$P5bI`1JyGc!f5 zeyXW3fu8$m$ZkB z*I##ZVGXFhB{~`(uKrNOU|GeRD*BszXX)}>6n8C7nv?i3E*4(!x#x>3@sLs#xUE&C zMjP@3A!Vs%fitlk-ZVX-+5g_`{df?j_=EfbsfGlphTNrwqfG?P?91CFEh0Qy`%bH1 zmEY7BKF7qMsUZA+6p=;ydaJn?Mf1#DTB=aXhIwXWeqKbh&~^J;CFC6I3Ku#u*b zv9UuUKP;JqMurB*pu$6gJB^7z7{ZfJ?}uwgbjmF?>;=BOKhz1}-9q{RCfB z4J;x;s*O8mS87q!Xhfc;k7qd73B6^26Sb`b5kA8(^`Q*p3I+cKw;$e=AX17m<|B_`|4dEDb2zpkOx%b8je0$#UZqF<6+mg z|D+01_fF=iOd@TInV7}>B!LK@$s^CmpZWV=ig|T_#sdwH4Y`ENL+R0{F$A#gcy0YG z1s#hB~|FK=aPYJiCfoKRyr8A~KCshcfFVEK=3*MCB9-^!hb z&_RUdp#Vs3RB8@mn)QlCNkUd#wmg#rN-|j>-d6nrFHrF}I@M7q|FVVPa}dwbsEP8T zj?WO+p-N+HgSf)XS7$DBPo;yhZr9nbBoCK-@vQ6j4=qT(C%A&zAe7lUFzq9Me_^ne ze}+~$`z45`Qgg6#*XFzdxmkvilKs}YrK{3Nd2zp*Gz&TXCgv{THyTfh(<1DkBt$?N zcO@8x2@E;@X6#+bAt8z>=X8;Ad8D+Mmc9>N>0R8L4cYc+kN`PECzUZB8(EskYEqXD zR<|*KUgm4S83|0}RA+o>*3f#k_)N;4O2uqDoUnq%Yr%t$(^w%El@orOv36bYWyhzS z<~+Xp-gKdT=390JBO*F{WYXd~`=TcS9hYj5>5O|oFeda4E>MNamL1B5Q2GC83&hDO zkaUrV4z7L<8Tb5o#EuicVI0gQ-Iuj6>J{aSa2=&3Br##rdB{BqXJqDziB~_8EmF!* zM!A;Ijuh*!pOUz^BkUrzGCn8_I5%1#q1or<`rUVOrmy2MMfjeU5+j$n@Cu_455_~& zYyK(>lRz@qKU#(Fx}w0oA`U+`1^JWRR}Dd`t?xtXktqAJDSxt9T@R#F|I%hb%#E)2 zKN6ah$)Ptj{ru_+a);cnLbqa2SJ6lGd**Q4mc$ZWPc3&K0@9tEE2|o#l3=Xeu?#5- z)Z9#IgdO7C9wVul?R3#4PZP8uBlGWj3ld(U27(RtQ6Sq|CSTToRXl_ji~AQY9x~^k zJFlAzsnI<^k*MIR5 z`oVSS3eOB$q2423vM64wsdDaX@UNFb}SJ7 zgNooB%LLY7(wLEqg~z#+n?eE3%sy!NiWImo}3OWOE*a!-nIm*5Y>EPMl-JCjUP=cv|C-bfx3 zjWQ~0QI5rI1ej}Lb>%OTtY@nMHN*fl#LlGnjgutv`dcllZFzS=&>0=xCA61&Gk9Q_ zcqH5c37-m$wK_~&kh!E+Agfsx{JGD1KkNFT%*SzGsN<(fzJZCEN`6)$iXE=^r*>|w z3`V%uKGb*J1D)z6Mux`%Z!YN>ma2Djs-K!652h%gn*T7>9b$iDZ>OrL!vvN)+=eYQ$y#U-4=gd$bxHX>34Ll@8wLhsU~gdhk= z{iKDS00PoGA%u{5gSX9Hvu5tUSu=MnW8f`kpR>;{&w2Ld?IRsEw$oQn)6vnfX{am1 z>F7?#($UdBImrxMsmRg917CN2RE&M}JRE)eZJs*NY1{aCx_S7xIon?Ib9n0Q?BOmU zDk&;1eC>&kkEgesm>A;U9uW0->LfNg$o>f!jm0}o-XwxConKlL-~Pz zz{l0eXF*m5>C{c!O?;7sv-5+~J`eK2l^1Vy+&Lp6i;a@2r9WMfhs55lWi7!*$s+Sk z_99OT3ih5nxzy*t%*|Ti-wbEz1j9c)8r38gEfCuqHJUU&NFzQ31%AM7Z`Q`HTl6a6 zw|g`W)Ta~{Ce$H+X~YX?#OvD|B)EqGKL}{_58olYKmO^p6ZX&D(|ut|w5J3vWza_) z-x9pXc=peW0nFUTxAHg6$R6K~R|3l9wfR2A6?s4)AqIwblDJ}ft^CLz7Pq#YaKZp`-M~oZ5|;5F*(r`o!{?bpZ& z!l|_SJtOhaU-)tK$?6g)GX`k_DzEHXSmvAqfi5ezMuRqIk;e2N>)uK?ih|wypk41k zKUewoL60+Wql)pimdY!fpv&|T4EWCR{o;m0F7V7SGT<(l_bqa^bLrrLvU!S?RZ3H6 z4gXCzY#9!V%|?xd(V6~u5mWvwPA|+A4r9+jS<)X}l9dY0oW|CNiDjb<(Wtc(A*Vi~ z@MIlAGpe5rg7(ESVW&WwZ`Q`Z8vT##0psnjp5rF0Vr{S|2$w3TqhiDx*8YS5!X1J) zHZ5Es9N5z`Q3onR6k{)oy9>Kkm}@u(!56EDjl()mPSi7cf=2mPsfjhN?AAsV&`J$R zy7EHYt)!i;ZC=KSlWr{LHE*RULY}N9Ps&(5RoHzq7@~T|YZN@0%cRjecL`?+D-F?3 z3(en(vASD*BufHxOikyPPB%V~yX>}yQ!LmPR2C!rsa6iX6BOdCO9-#{o1IQxwRI1x z|49nH^CW3G(9hok<}9@lFzTxj|K`}|szvyi6_enmsc;to)^k&n4hL;b^I1&p^oESo z6!>#R^v;=4z6~-eA(*#T7(MtAegN4xxsiw*0qqA8vLNUo65lkQZc5K@{R;#w1c!-0 z&{YsLG#BNr4Uq!0Oo!3oXmyJYgu|eHY6?+f%4wHei2>A!sHD z`jP@FSg1?@y+b+lo?<^d6X0)>VwH(#bqcyf;m4wGSQ*y9G7JXs9LEF z4z-uTjg`i(Oiz{Iu4`P~id4iI#Ai16EDdD7c~>{@@9_p#rh77UWW z1J#gbusi>VQTQEl&(#1s;NZ|je2e4>>-v%NEULS!slQNn=*t#yL_bYYTRPs>UAciF zNCdsp=)QCa8vPwj?ack>Fj-jAWi4k#fS?U3Z&)$+wQOfbXhDiQb62!}_wVU!ISWv) zfZp-j+Q1g+E2QL96E3;ptwwvQ_LhaVDcTlE0?r-YCxFm5o|qfnqzge9RSzv>NmRG? zK2GF#U;JUy?MN{iTU$ZAk^mRX+Ff9PUuOn!h#Y}*%g z=v*Itk_Lx`YD0o=p(VrJvb#c+TbJuX2tk#duOVm|29^)e{jy&pq!rmFrskFvz-S*w zla!dBS3%-0+_a;e>M@of<_Aco01yFl@ar$N&s{c;Kt}uoJl(qF;+iKi_ z5>uiYA1z?a3zBEdTzX2mJ4_X42mD|cw3&#^qgP}f{P|M53IdLaMp|sml)is`sn}xq zEpikjF2b&F_+Hz@SqxVd-NcZi+Nwdq<=wEV^o^~!Lp=uyy#T7R=T~3TgdlD|=Les4 z6T1vz19^##cBGNFz|a$loFI=Vq&NvT%R+Lp(%wU%Lf;~%;}k6SIEP~ezFrv-0#986 z?P4#7t3c2Zfd|iF@sfj_K(47okZz35plXy`VFb&H?}{~p!S<~281?E$zw5U_jPIje z@|bwRtY_R$_>HMsTxKB07gIJ|E1(@+6s`@@;g9Q?T9C%mADPVA?kP$CZ3p41DVJVl zpSTPv?7*n@L+szh_~pj9Js3&a>Lasb&ET*;hHTUkSM7;pC251-KN_a|oaou?mvatp zdOE@un-8ZhcVtvNeSGBm>_R$DGY+t~cfA8ouWR&MgFv|qxoFf;PCo)tfZV4qlSJ>3 zU^Oa0%>T&$?8YQN*TgS383rc(#2Z=zez(yfQ z&eq-q?=7u1g1qEB<**ymEyTbUuBm^Z(I^^DKuo+~VztzQM3?%=56Uxhzchw9KU1Dy z=4QKh86=NJC91UQ*k{St)h`GV1jAA!oN`Fp3+%>$*8xe+X6He=hIMR93b}cJ3d9xp zzCKWvr1N0rWd@Q%{AGEjeHE3ff93@BJkd`0a={a!jOt)0TGoR#MIr;kmicF1V)d}) z32xcPs|)@SX7^qLBEqn@IDe>#1u^2m$4KWO^BDVNKYZfu?zq^GE;6er>DT^wP0z}z zPqcpJp|-X*I_>Xb>toE6e=bqfqO&88Kjq#tU}F~NpS)LxZ1!u4mHRBhbF@<6z!jm| zjy&4(9~#%V^Nf2mHBP@d&{r;_?2XIcd2;UdF?Q1De8aWG9%99I_7BV&WW8+R0}5RG zdUGIG*QqV)%7i~YnC_$BnDf1zf0Tl^ct70Ko&SE>YT`+XSSYD0&0?KBWP`C+k-Va_ zfT2>>CG6VHICdvLKp;d0af^@y|>-UCBEV`nuNXTxsUZCIK zj1BFkXW_;I7xp(Ipjxi3LhqyhNtW{!jNtL(^q=%KDupf^H60l2;X^}nbTfNN3z_WL z`0JVhfZ1Z5bJN=_16RMly_wOm9zv8qd-vBlKYXzNd~Z4{mg%xNR^w)R>vRNP?^^wO zuYVJHQhT_*oj1^P*u<%P9YfyQ8PN5fPjR~AJ+B2!u`lLnl2ypvK1H(d7pFeQy_HcO zt7Si#sQ~`mjOT)MwEy_1`|T+TfzmV`#6pi`)%b!XX}XBueSV7_dgxi'J>2au1w z;*Y%-pPLzyny;7p6p-izJm_!czPmKkohtQ?iIwB_(_iX}R8pV!a&gVm?H-x!?_wcd zU#7ML@nl|B4q@w~Ly~z2X|7?XU(-Bj^Sh*^WSQsm!;<7`#)VoC;6pHe*rFsP?oI#t0QiRQMbhIkypNO6%*ss zc&C4T(4CJBJ>>szLwn}$ccQkyG=)tok$~T%tGwgz>b<*g8!(yq?vxh5{G>^Dd4qQz zhY;)Wn^mR3(F3~BbfJ=3U>+QvfGC@~ zdJ+KNoR)QKd)XHa@N)A*xRyj(h9fT0)_U1kl)W=dbs8}`usmh@gRlZx!wFK#Pe zn&0ROyhTP2%Lnam#LV8z2za3>)`)txJumLq&8efXJIKq2H$76c=&Hnx4iC2hZr}dx zHLJ|-PpOkMKp>zY_%TD(bSFuT_t~q00zsN{($NetTjN7@UdfLSH@Eqyn|zg3Rh!)s zeLh82kJpBbtQ@+N#m{g_M@8_3BnPfH*36n}YqRzA^b8ITdIHM!>=tj|D31+};_({^ z2Rt?t(?SH$B!P24x62u<>czj-d z{%BDj@txJ-i@ucBh@+KkpGIybt$knj8S7(?xOL zjRz$83BRhFjghYi*tE5z9^kwI$CY^ctAlNcOUmVsOpw|M0LXpdISbI<+^Pg|~wi^&YVB zwCc#OwqnR@_h6gH6HDJPC*m=kpPMnm zYPHXB;f9v=w^yec3;fp`iH@1Udp1A-u%|`$_ey6McfQiZWTg9zy}j!_@45N?^7e2I zCc(mgGNEyA?43cOq3?Lca!GxRMBlv+V!?}=k}@*e8N`NmAdg3);OOyBh(W-C^~f&& z&`=Os1elY;-bhw|&p)c>p3O{AoZ>HZfk>3#-s!l!Miv5dWTPAn^EAe^6jcC}1q6so z8G8DEu))j=R?$443zDzyzW6UQBF8=?;n;0m+PF6ZY>`7xs+5^I4p@9=w9M4W<8-3L zt}tjf3K&Cl{W_+8cE3}o^j8G*aGImZza9uHWjM<~UpfC~rpvVOFd1G(Gj>p?7GsPj&l!O|W`*OU$PWv*%MIl?-3we=_-;0 zXdg9huM@P9ko++OK-mlxkA)XLdY@(C3%XsuT5Z;jk$;1NjXmfHsB#9QE(mXIJ zv}gmREb0aUX=hb(E_;$ytN|OLxbs)Y-j~cxEF-&T3!BXCXIu8Yva@Ft_sV0-fy8=N zVdozm;>Vz^A3<|MRyIHXR-wgN;LS2U`Gwx}E{7zG;l-e@?R=pPdbhj)@7ya`o9jyQ z2GaWWTiu|)XD42rxt)ejN_+?B)}Q0*lO>&xx8r7J(4BW2A~UTQbbo#H?p>^P z0+RK_vxW3yP}i{CJKmk~Ud}r*l7>TPNWazo$`tL-I(31Nmt~!sZasQu#E!jotb8UsiFynf)no(%&0P&vM(L^CF%5*EtRj5z|5OtJ6R2Y`=T9_@KhtFubV?b_XUW*ZNd3WcpOA6w4Kp9#~` zx%=8KR-tkcBegWA-UMkBy92?B8WoS61$rH2y=9 zNHPNuE8ii3g)}D?`U8mYbs~C4SH{OrjxHoszxi`km>KO*e|L6u0FK#U+TW|0KHRq1 zTM0o7KUU-U4$Ka5765N9E-nE;;2i~ag*4toF~b1<e&fJdiZ+MBP9ua8<3!qIuE{-TZXhva4U8Fy- z2q3$b13T&oz|5`cn#O1v5I&r_+(d{JD*5fxSB10ey5jV)IaSJa1b_?sN5m$)Q>KIW zG7u)}Q)E1N7cxT?X`lDe=3fuDx=2_SMJx@Hx5e_|a}lV{*DYbpNyw2)`+sd*{lr!) zh~DWzCexdr8e|l~nn2KBxe8qYG?*VO=_a}1=3x5g+=-VUaJGVN@0787 z@@+gOgo0<_pH9oxJ{9>uODg#u1_pKXOMD=4hW#rWKT-Xs30ed@2-+e%mL9j`iC+YX zL&5V+8{b$Nan`iwFPkepqBO4;Ha8z1!>?9&&eoy&wMmP5VS5y=Fvhxi8MKc9uo#&0 zJOC`oP35%tiVfj#+rR;o)Sh>s4||(r`TXs{!2wK0#q0+}@THdWiP7It-y!JIB#Y-9 zvS(`9WVr*}2xd0{frzgbext9^nn^S2cDq#v2haUR9g<)&N@l=8dE@R0*;D&^%EH}! z!5sVNHhPeG%)|7#Mmf&_nf;0R`S~`TC`f|)n`{J%zWv$F z0;&@CtwRY1$Pp1Vs&2xc#^AKRy}(jCM0-I1aYfDZ%tO#)B@TD zHIbbJ?~|VAH*%52$(dx~4Fy6VXfyQw1y2}m5ppc}Qo_F*RFlWG@ne>z|Gw98G6PNk z|6f(8Xqx^%7!-2~azqL|uiQFABLEfq=MHZ2gH>83D%%R>qhI z!r&W>WICcsE0m!x8^xRFR!F<0u@nfHS2o!8#D)YR%YML6k%fEo9a)D(hb39o%NAPw z=+8`M0TH*rE*;;ZfntITeJN889lLVtdF#srpj@Sm3)F)dp;3-GD90E+XvnoR5!%rG z9Ns6|uU!Dqn==aQK!SO$p?7XtM^xO=3`>EaFAMdn(;kXHNamMi&QuEf5Y_^a`51~4 zn(Nr^;h|4~w~xb*HY(-b?czV-$6EHk4&yccA1rJhn~fz9KCU5RGAD=^bukU8t5;n{ z-HqACr3P<5H|{x@wULq>L?MwdnPcu(GVF}3{w;rnBXEu4KDTx;LLo6<#9;2T8b?5s zD63L6mto6qn<^giYIDbL8>y(GLTOH#DzjhEvLM*jh!BBw4U;Amp!#L_X9}_7VK)d~ z1PTN_cggiP#{u!e9&kXdo0m>3Mc9&39TQ8P=ZE$vRTeQg$?fi~s(U*t01_PUPR$wS zT^2Q9%Hrx&dp%e-SvIy}PVyQ(@?(>Va>@Iw?{NFr+Y{`u;`^2V(V&Gqg*H-9a82bP zru{RX?$^2M(BKzu#?G@`7GWkeJ`-g)kO{4i@oStXyK+q1@il9&j zWnpGN9mpiyaK(}^nefC4J!FtHVq^c7M|Id^I9Q|@QDlt!wk4%4yna%>Q|-N^zquJE zCneX)asc$P5}mQk^Vp~{}M|yu_a+EE66ZBkY0wGRVaimJC zy)_>JBbua0cj$xV(zhN$3$~ptby(RL>!~X(7AdbNM|)qZs7^7$`9RV0ahHVTW75oI z;-h}K6c*-{mi(>AuCU}@>NSQ_W0p{V+T4YP?s;*96}lM3IZz^mhYo$;5;oYtC7| zb}caJ&#rm>5LpPTL1# zH?AB)uvf4k2wEzwzzM*5&HyJ!!96n2@^&3(4p--h|7D}zb>O{R$9&6z;lu83QB!HT zE1_TQGt5FUGP@*4FjV9*Zc#S0SoE=(g^Gpmr7F_!uDM0~@b2N8IhVpO&(qHXq9rSp zTVJ61yJ0m-jkLgZqoN60LeJrUN+#xpnf^}M)GMy56D}}=K~w?fV;N8C3CS8i9_I?u zXJGAqCFSVooEV&;p;R@Br^d>4RTfuqX&Ux*Y^gvr9EQW9$zcw9(=ZQ)#JZ*PEiRg( zT0(&8cd`EoS=DmqF}n9qFCR>y`mbDa{`@9;?~#K&(^P$xi0^4dxd?&c^lx!(iPEX2 zU+$yxs}K}dU5D+1RMRnI+(cVsm52hWYiZQ93N3imMe|Il$j?V+w#EqGb}v$h5<&_P zOG;dI!WC?j<c=Y54w^y)BY*j-%Hc``Wftim1XZrqY z26_dyK1!FexDNaVVX(JtiPbS>b_m{}BGK`6(MOBV5p#7M8D`}r165T$#c4x{NVi`a zO4=OBl`MR_4q1<{x>Q)(8zTU+%A(Vs8<)swsHYuliTRwP{3Bl;NHni$Wu7r%(9caI zzP!biT)9?V-8weErkYwgzhGvJYfwC6GR_+#SyNGxzfE!*(_vjs9j~}{!wT!?J!EKv z;C$u7rrxQPkP6Rzd?URj5uWR-3+#>JXEh+a#L}3%>MI5Y%^P(tZ*T@5ir-DtjE$XN zHXV-T9K9yI=ri$cEJu1+vc~OPMiHV{^;1JxMfm`!CmqAMoV&3jTbEtk+HnB9>S&b| zw>!jRl@;f^O1`c-JaoIEq!k!6cTGJ$`>!8BONykuzJUs6UQKG8s6>G{u>L6NdKst9 z1OcX-OR6kpH|Q*(_^L>_rdFu^RqEcYTDhaD4PlRTsb^J&S$vCI;$=VyOXin~3js>|Nq;10D& zlw8EMNhWaBb=5(f&pj`v0E<2S^gT5YyTol^_7*g)OP)w5^{<#U93DEdPfu7jeSSu{ zf?{Y`mGnaiH54s!uj;vW?p9B6qg6+CaB;kiufw$3kz7NG9IM)vcgu1opUOv`nj}6; zv!1fL-Q`cRB5DAwB2KGtnV}DV$jz#`Q)bGdMT(1h)ne`So>o+88p>1^h1TiVk-d&u z({6 zJvlR6J?M;5Cl9zA$~fr$bcRkDmu+<}-N<-`uA0RFzAss|qbTcaRB(E!u(0A$wqr0| zKP{704|)~5-tK>7mJo51VnWre;C`AXgKV5N`I{7Lo}1%a%V|nL!C1vxMz8N{QPPbd}#}tRdR#tLI06yQ?sjq z;&-m|RJw-(dT#7p$|D3^+q;D>@vg&%O>A2jB_}*y^vxT1! z9ve-rXb}_HileINwt2(hxzf@SL{9nFs@Wh~p4`GETHdRxy$Q1atj=zu;s03!_ddHG zrw!C@EdKtL6?@(J-7#O8Z)IS>v}-Ur_(7a;Cqtz8*)=%FbDv-lcFp00*8&zT@iAMZ zqp^8IOOt^?goRl}2<&Sr{1GrlbzNi~ka$Y3yJ(tl!p#Kblalh6O{>#pOLm8M9}Ry} zfrE|(IRBF`>fjo1X1!j@ArKv03FL0BWm8jUw>5VG7?B=E*3Zm2PBww#%PuZ7Z?3Fx z^kt0}S#3w~WLb>Gk{{*^0-L~7I{E6axn`LEXINkRsPuG!$IpuOkV;DgbLmg7 z(F>$9q(VuMg2ESYgGZ4oLyJoB&ux!O=(}-SKLxWE@lyJAAK-s~mGV8oJ4dgvml`3O z-dmH%bZhw~s<(Z)uO>oJ2v@ZM*VHqt?jlQ8SN4yaJY-QYX{o_@F*xyg^AfdEdmreE z&X_gTCQHQJjSUp7b$GcoXQSq8@F<}vv9r2&q41W$gZu(PdH1H8i~8T+5EF6bAx(lp zW|7*MQ2+JOe615`xX*avWLvDYPYX5_um1A&F~29Nu6&|u=mElaF7y6C{}|;Ys*UZ% zhm?EITbK8z)fBN?I30)jc8=}e^7wY=f$D`B3$6};fRDYf~sI0zjI(8lb z`PrZP1mT(`g#9zymNp%)IG0x?B9uAwL2hUuv9776IC{mmE9u$d zPpRDQUq}VN6>=o{FED&5B2$a)G{6^XZ7=kd`bf}#%f*!@sN0Hv-$_mh=CeU+j z&QY@XBf(uwZ#|Ru{h*l2#MfeoQ7?|v%Act${OODzdjIOKv{03BZ>8%i>{nI!55VWR z-7`VT>8!8`LnifJ5P975`=#5yf(<+88}@CheJ4YgAhpz^mD=)h^7AgGxTzE1aSwL8 z_C3LiZ-Y8vzSLhg)&{fbM&K(8Br$swQ1UOv*( zZRVpUua=tOf`eB-t9vlUdCflOiS${H*R1#{^u@{lD78C{CG%(}aR|cp_)lkqpwm>t z?liM~Db6Z0U5uL5bQ5$tD4<$9b&yO%u&YR4in>SfS$`O}T0MTaC^0l-Qu~;91I3~k zFa6HdGf%DLxB!x{xT+qvN4aeI`|ic?-2tb9!s*R+oAt)&&k=+P@9AVa>&}aucb^gz zGo=Yvxxd?DKlA>nAecG#q)st`-*Gf=_jv?RYrV?G-AAPzU<(ur|DJE4T`tBL+s)hu z$4AtzGMmxrarU4*q(2WmU*bzbwGxp-Ar|GgskAul@Ygt zC`si%#XLCL%`I*SDASr(qnQ##U*F6y<_oG^ryeehqLQETtL@!8u-mfFE9J}6g|MCc zLvf~5&+|XSMp&vFV9A@F2`>TUL7V8mOKmGig{QAW9?^s*|b3wtu>;+9q zn-oAJ{U>6TllAao@)=?J7)?lHMR}e1OIr2ossQ{&(@_=qCtoOu_1?CYVUC4`Mc;J$ zIn%>IDcQ*HK>h74GCeFE4kN0ys$0`<_!0C8bEy9BATQqAH_$$7ZA*Vzjo%>KR0Fnt zthK~89Wogf{Wix0Zw{{x3B}OF4#5#R;>*z7XColUf2GL zJcpy7MDl0!^|YD($=|WjA|Y}Pr@K>`sQa-SCH~E&p_9)P&O1w7@jL_nH$pe^_uTAf z@Qe?^C+zKon|oG_G)jW)?9kBYtjkU9v4-!uKtD&IMa|igMh>7*(87ke1W+vhPLRyy zX1+tFZ~f$wr|k_4$m%WaMGVOoAUqf3{yd1!RxAU|r|jGp2f{-90H4S!NO@QQ#zTf?(-+(fd1ynKdCX~inshLmi)+tJ=iBO$ML z25GsK|94A6r^U^Z{R&ovrmT(5nG{_y2{(f))Z@b&}TsOqV1f988Gw{S*BVD zzKQ;~R~%4lFo2)|`YdI(J(ll%8|{(!%BnN6Z{9eCw`@^b!rKK$IF7F#d~^jU571^N zR@mBHS(vGpMe#(C1h^pF7rU6?`uTYD;J)LDH`YXGlG&ap9bdb8U*|D^t$~66+x#&B zZM6VZOXDi>?~n`pGt|0|)CFXK0GKxlsVO+5_(!2H>Dvk0jD+7?7eL}%vdqaD@UaWE zl?hbTQAjKIHOkl>$^_9#tu^zwco1FLjNcq;M8&6>HM!lVS4jY83d zRq}(e_2A9mS;G-bDbvyx1%y3s{UR8;PsS8wcrZZeF$R9U7`|V@>_tn{4Z&6u7(7ez zN2&(2@Gv|EV0rPBJ4@QgrfdnTcI^k7|dTR0x+ z$9?qnR3)P9s90&29!!KZhsO3k`G#%)?CSz{y1w+RT4;pKT zh3oot>-@Gjq_Ohe`jHXPB<{WvvYQUu3s%;rw_;QrLd%gu==2X3c=KYBB#@Vfa)ScY z3C|uDvP6zf*!B} zJFnL4Jt}D@5BUpD5ETqZ2PjKi;}4rWdMQit32S6j{{RHNh+PiT1KYMoPnKfzrZG^~ zeQns{qNu|vnf}pYW}vk#%=v~VgQtmdgP$ER_Z>aF#|q_;$Ep#)!Sr!()3ZR!c6#P> zQL0)og|B9zzFrKhO5en+m{}?m7m+$sr)d<Rw3xw@6@Q0do8Y()%?Y-98bItOsXU-jVS5K4q6xS&#Dk^5J zJ1_$(Dmr;8Dr)-^48WPZRP8a~-?lx4qPd!~7T|6BfEH8N5xO+Ib zI7^93i%W`Lu=n(I^-z$IaQfE^#9iF&B=9|~Uw}?dy54!@K}E&H1|HN@pA*jm9nWgP zZW;L|u8h1$G`*j6c-WtoS-i}25{`KP<;#gM>ND05t(sdr=Z0O?IM^Ya!@NJ)<8kuo z=_lHeCqzWVzkH*ZYTTvG)4CJ?7bDHLGZ+4%&$}6|w>C#=tQ^T$^%P1=u;gCwWG_} z(bR8_nnaXnS&o{Fd>MF-dssg$f7E0!!RdMjJeBfG>c2@xDI!Ru7rTiu%rRYFC3kRT zhy#)<3Vrf;#oJL2HhdnE#%wqe1D)(cKIDWvhfWfa^4})+5(FkGNM8{sUlcM6YUx-{ z2!ptp!M;Z!-#{m`0~b{I#E9@cfXw%NUS4Njan$MA%Ua(U`wQk}opp zBQP`=n#(jyA^glFMqu&ofISa}!C=DB_Aq4ii~w~`7&2_P&;jxRI=KSbxC8qhiIjp` z>cK>tHJJknzvUQiLFnUVlNo?1T8ZRDy+vLXuvCXBaX~O)NOz2XH4h{Uu?3yH0oiy{ zVWzK9*9(zUkvKH75W(|rFF_}hA(C>?kEGoI>&5PzW*svmSA_rRMnia66)z-iroVr7 zZEUS63}v7VU!b52&i!>$=+PfZ$!f|S_(F5Ii9*QS?3&amU*+`-R96|QORPo$5wn?x zqg~Y!HcK#gM%_;P(xO;Bdsb!1Ff;kSKUL_611rF0BwmULP4LpVP<8BUY>T~y}=%xtCZ`5 z(T4m@iwTDD{oT0$ruDHA0U>vx*)`>p4-<<$ZbEYD>@PB1$+;t}{KRdg9}jjt_lY40?=FpuoHKwgg;d`+jk~nK30h)G((m#R{S?&4G}Pl}n%8pM zpQ<(vH#=$iX_rFyQ&4>R!pd+W<3R|!4L_r}o^W9rDu`~FwE_x7(^v59+=M#>QZ#qs zLgb8x_aDL+x=;q1a0fN`0!|pqZ2->}#tI=MKF~`JO%YLD9h>)9t&0DodRs_Xz$v>f zoL}0#^DL%Hg|Y3Zu5YNWZdz2J;15ykcJ_hCDE$GQubTQNb1aGyPihoG)Iu#gLR9X; z9c(F&Mo$fQ%?*m}o{d#TNKpOW)J_gb+cP4Zy=MEqUr@`h;p(2Lu~zi6wkI`Skk0#V zIWdlAq0Wcj2gd$%Y|MvGX&S;aCU-98LC*VA6KcYd^HmRM_%g1TlQ&-wb<#hL*puZs60+w#@g;kY){s`nDbLGFd0 z7jm?tx8Kd30Q{e~coda{zHkI?;PYlD=a3~S{SH%8U$d`hFy?`ULH+(aUE%wBFVatI zTu4AiBR&aZb8Cj0QnODR1u0+4+rMD0ZRL)+9!qj8(iO%Ar=Uh-4L;wN?V70;m@Exc zbyayhbAak%Lew^EI3z0F?p3W(EjDwUUD4-V zPYgJexM>DkHgqHZU8B59QQmd)QPh|rjlR01MRVjN@TLr=e=6VGz;q&!Q^m5|r6wC~p$l7PIq=6U9j1`@w}PoZLnqlG z_gDkY*z=@siWLe&^^i#A&B?6hU*YXl1Xx`KGX4Xjh<=RjqXqH);)rTGVgxc~6L&AL z%6=(`-G(A#u9zI+NY~6OjMdd}fz^E-nSoluV2Qf2o3oJzdtnesnd|-^vY&76ALQeN z{NXLZu)6dnJ_&y%Zp~;@MxMVQxG3c1@$Q;vR97HvpfaF8sggjbahTg=&#M;(8VhSM zO&t5f4}9K>-PyZ@=kIa3Bb?oeOFAu0MT(|pP-XBQ(lMKh(M|I`wZo3*pN^%l?O0Q$ zqoYz#XqtAq94bCR?#|rAwjtAmSt=h`okAY2bKeloN;GWD-`Ynre58^4plcYiytE(M zgudya1$Pj`-%fS8%pJSIn%7wVfI)Ih$mEL`yX!Ulw`8)zC6m9rZ744e*?raF8U6*0 zOo*YT+uux@`_x_-*OTpN1e*GEcd6IWs4iuy-OoZep{3eh>oK<2CF~tQ)y`F>&A_8m z9z!5$G-+7W6VsKVv-e>E+z-(Pd)9?RP_1a$4#>X+;b%H9Y4y67$Pz{9Y8Y~BYl}@_ zG8E~1Avo#oN)a3k%+f}Q-wdoaV>dNtqH?nsovBAzD_9=J8kAjwwo_kDLAB@Dnh1i? zol7KgJY7;aUtINjM=`AE%>Mn|-7G}^@=o7T?3Y$LE&uE;3?*PGi5FRxOF^wtp<`8p zaQl)0B9Pr7-P9TpTwd#2n8Sk!hZGPx ztW0x=J>Is4JGd7Pef=ppp8ixAD+6&8aOGL=Kn{pu3!qSM0q&8`G37YgINDaUvZ9!2 ziR+s}V{jzz%aDz`g+pI{dW6Fx!jR3oP0UbBx^;tbmGN^m!Y^_S5g21^$nl(LHC=nq zBZw^MHysWOvlxRt8`v<5DH~*sj*mev-B#fE;o%HCGMBLhbn-tiTUSG@yaV2Xlhoo0 zIz~LFzE)Ny&HRq*?&>mFNlkB%mXXPA17grI)Y}-E9e}9y3Z*OnW@QxGgz@z?Br89B!Y#(!wfPG4_SjZ>d$Qz6<0=l5YS{PYmba% zSzJ8GCw=;LtiT2IS08-0=t|L&mX)Qs=FoL1Rp%2;&2Xv5qY~GPRLPoAv&;D%v*WK= zXR#82!b}{Z7OTUh%ax?jgUNH%RI1&2-p5aL%wtkYjK^pd;epuwl*%3_Hy0KEwEkBN+mEWji+Z|a8YJ_O={8ZUru6;?* zL?ypgu_eEd5+lDipNzM|1nxA*Rpr+Ek%nAU+m*I-SQO?j@V%IZjBcSx*Zhf&#IfK* zw0oSX`^hL};`y!FHmlK!7s}>K&Z?A+s2hYHLuz^8-|n9`Ds>evw&eGh^LK~FC=G6n zyp7-!e$eD=4kV4p&Ex(KuRqq1qVWN%s2QN)=~y6Xrd6tAIyJ$0v3Piou=GjMNBk{^ zm}P6cWWZ(&W;&GHdAw{XXQ~@R*?v$tCs)0z3)o@ZufLf}r=ztWmbwd`d*XXhK;xao z#$>%|AfZ>(tPI6Zp4S}qTgn!FQW5W7+S+Su-WJY&RUQyfDWT7#bRv|SLHY05y(QdS z2qT}x&zJPzh3aoPHX2na5JWYFfU7tpuh}(63l95?1qK}MkIj8Fah~}0R(w&$$rd<$ zuxMO82`Zi{WlGg|Ik!>PWQ|N3>u46jv>sB{4)gk-_`Ch2Klj6R;`T?;N56FCM(Uyk zwS9p_ZA1wh#;XRaY|V9yP0sE7HmCdomRGTAr(VK+Zz0WN0UMWR-w72jn}-66(VD%; z$o|I43p8%__T9rV<>CE-ZnejAOsVf?hK*Oo)(Sh5HS>WRoU3+iXFD(*38UMW#Vgi- zq3_X-aB*?Tua-aq@6i4!4LxuAP6BN2?B^nVgeCYS;T4{$rx zca!2sMm}FehGE+Ez&%gf)_Cd~P`M==dDLKzoA^joim%4I^FNUgfp|F=KEOQ20hx0C z7_B4@zExvYE|{Y{&nXT4Em55a7~X^L4}Sud^Bd6X;>G7azfKC>6_0yV?95v{;>|6T z=z6=Ou&=K#J5#&<>G3x370?dqj>lZP4d69Qy?XB_(D4um1ZDl{E3t58!^d#!8D3sq zs-E87&feZ$5B=aMp~{U0?j!41DIRNY`XB&w;9Nap08eyp5k8m;rr6=ORQK^6MGMUr zgauWIxltRdKGo&@yEeZ+5&}N91qp@~HA z#igYiv+-8)l%1*FaYogqobuI{%==jn%e}=U{5s$I0&3jR5_^?X(OVQyPceyr38vzK zqPWUsn}9__%w!##zV-HerxM^407Y@>o!j5-2ySmwAxie)%sV3FMhB#_ZLbkj$lKlT zxMafJrW!T?PZKkCFe}%Zq<9V?Y1Qzy$e{-A{YpTcQ=lsQ5OfOLZm8ECE)x+%gPkc`@?fY(Sy>$Ncl-5 zdV!CT$CZka*YnS18$ciB#mkqk+qNe*15T>qiJ`onD%lhKd5e*^4zzbWl`YOlW#YrK zva)m>ZmycLR4u>#N9_ja`j&sx4mcH$$j^Uy<;TH4l4upB{1K}i=RWZC4K=Do zAN70YR&bRX%Z=B@6_e~r2kW(+uS8ot^X}CT|>)i4Tib3O42M+Aab5i zYEIdV%O7$smkg!^07iKG$!?2r-W=NBy@s0chx15T(2xhA*BG4gn~s24se>wU=sFTvO7B;%n1X+5GTK&L)dM zBC|u@8o=|jdM-H$V!i=D3k=g8!Xn^j%0;))7jyT^Px>)<(EZb-NY@3_ZyPZBQZw?@ zoD@pD>EW>@+wZlQk+um$(DVNq!fW#6MtubUOEl@&0GvjHPt{hEQ_!08?~h_r2wIkT zuhojJ_9?(y4rcm=W-50PH;-o}ec~T}nkvzEGR)K)Zxb-D#=lrPipOh}nvO2|;YudM z+n!VdR>`UCC;f&$NS?|r(XHV@b))OT{QN-1V6vU8<`HzsRK^@CwPMEhhYxn~yBA#n zAGXxUOxvm1TIRk55>wtw*W=IX=!YAL&R9#A`gOT4H6`}XR4R54C3G0u+j zrH=v}lfD_~Hzt1lO?A+5c)$v1*Ed$vTGepCR+|Z#Q_h$K1QoYPg~cmXo3Xg~L|rfm2OpoILO1VGHxf#h&7IVP?$l|5!_ zxW`H)r{h&s712_5cp8~EnF_^MjIaq4(lLmlilTYTZl2=@Um)POp z`o7BaZ~H7W?Afgwuv5#wdPB~pFyPhU6-slJK8B*yfEL>9A>x?3z0s%y*mSHqWFX2mlcrd3bxBmhw25ua+qKy(R z>oom}c*7r>VVFO)a<`O06MHXNgRq>2D%tMReu4k}q%W%#7fgN*wah1^p^6^bJ_j)> zeli`1cxn$MwkfT#pfDB3cJ+cb-kM+Y+nx{lZ4}h7Dtnu_i(NU6p&7oiQeEFPNd+kV zz*AL38F`W^5UC#~5c1+G-{AsRp7R85cLJed3qad{kNAuw#Q}l|ATOC8X~ae&za8aZ zw}O!Evf{P&^bK!AHF>Cd1Bi(r9C(oZxV|oo4KT^m`l{sZ%WE>u!}4GtYm*y0LWn-q z`y*(`xuNGKi_R`Ca}h290vN#m4*>Yfznwp5XX0S}jp}qtjNas87H+m)B531%!M(-b zM|jd;Wr0O5r}Q$D%xv3IppuTB;)*l?avFeG06_cZ7@@6v4EbGu6|wMOf;AZ2RDcFb z4yBI~(x2V@EivbX^XD})Gg}6L=CErmbH(C)+$6J$FRkj~ZbvB~VgC`2-uuR&Df}58 zZXNYsYXkNv*%$XkO-x8YAZbYQ8Er0|L;nU2CTjs>@zUutqZ^SvK#T|o0fuLF;Ksry zu6-Fi1M#OBqee4(QpcsCs?I?25x)_aztGA{VGArgyxM?0qZe*g6!7Hthq|!Zc$aE2 zgYnK5ri0^b_GzivjyH;Huft_7q&SlUgVpN*f@@hsM$4ob!c&+=yW6QBim9D*fFL|bekhPm7~=RbgzTEW-NP6ctEfdOqAZ6@ys<@30W53 z?+Ril5N0~ebGr8YK*lrhoEWAKpxSYQnbM&UwORewk3vl7gN#AuKkGQ7~`nCqQjQYuPZU${+AxDBoJVsl;Y0eDwRYU*WRE4sj+%w=%2Db+GGG%QT` zwlaM-mWvH?OIE?k0luKk9>+%;N#jfx$-p z1aW?R^QU4SK-&Tjzj7t#=l_hH1NgN6bvi}nGL-lZxeLja1_>OJv8lfcY#4(%43HTT z2KA%sZf2G@t@N}4f;A1b8jh5#`Gzc^_T_L@x+aC~;ewPuD2zQ4Ci6wwNUj)z$JF1O zNc|dh1{OZ!W;K5cWBU#Ur+S}b!5L_&{T3FH5rw8wGt&4_?bB##)bT>x3}LMq&!&#r zxo!g#&^?GG*UriH5PW9^h3S)cbsz4?uRWGURm5JEV?26pzG?~MZ zetE7_i>NOBt?u6;nABF9FHG@0q)}AYj4&1t`~iMp)Ggv8IEDkjmGs0TPmIGYj`a;7 zSd!xK=j^G_!xPNM26J9s9ZTe)PNX}y0p*yRQ(*~U+p&cm@c&^*?DFvoKboq#P0c+k z19&l&WX(+RN>kBM5~?6sUS0i28vnJhkD4<68|SXTNB^%M?LX-esg&{oc?Tky@!08D zrs=)+%c;5Cd28Mn!hO{1&Rg7r4Zk-ilYnBL0ML6aq<$Lh zkddw5<_s#QQbc4xn~qL-`n2XAK=pIEUU1cfRdD%AV?BMmjtRuBKOh?ye(cEJ>zeG+ zxh`K=RpgcDwOH)Qs2#WsYD{!!qyWex_Qd?nZ45ZoQ%a2SEW^Bz-w0(yIdl>qxTY&? zhBo+|Wbj$}#pX0G-tp+JqEEnGIxsp{!5`AtZ9xR83lm~?wMCTHHVuXT4*v&WWav^Gr1!QG-YD?1ZW#&^hhz(ry{Gz0$`tAkrN=T4@~L*i?rtdPBpxM zRBwSyRd8diQbp#cu;fKf)x40C0^IS}^3W%f^T=)ji^6f=2HTF-f5n1xH zy#|p?^rYg~6CPoQSRvFQZnUnn>$yOB3l_k#bKcckhPx~q`m!^^>mATlN0E_S+nq2Hf5Tea;eop%^LA1&(duAG%H^l+$4(jqXz3mYMzzS((^9D0deK)pe> zmoxlmz-!n3Q=HcqHZ#AstY5>O*;)1MS*Aq(PzhvN*17J>n#0=iWCrs{^6kyPE{&PT zFha97Yo@D$l}0?OvJN?=dtzU12<*Q*!HKWgxrg`s+)`r=$W}wTr_;#T5~lVkwd}fJ z|G5vKwFUhfbm*MxQbh2ttTV9R4J@ro>5S0f0(RW~Wo2icn<(V1Czpyb-R>jtUF=eh zn4P%aHe4CN3<$Zq4_{bc#@!;wwWKZG8|RQIA^EK;aiu@@YI_{#z1%S)<8QfD6}gV} zWL+~pHOWFux40Zj4_lUDqKEle{y)e!OBZnz1^ z$~?PEN56S;+>*c}yT(%(pYxb*;MDfRiiuwJKda?yxU4xyE+^S-jSCYOvEsTd1 zW*2yS5)zlHTufwoV(l}tPU`_rk_%PJP#QBbZ^zkCHzPyCFJObLPDp*zf8S+fo|>Cu z{RP~cJ0z&XY2RUupQ^)@*R{usg|QO%6IFqHto&tcPX*S`wga8SA#N%kz}(C7!QfkA z^4q>}L<&~_W*6HR&o$%Mm$EBcyqr$!DU{i-%mqAeEMgP^mVPu@$4?{P(Ju(5#uwk? zbXr^FRZPQPgn*&O_B(@&6PAncoHxMeDQ)3Mbs(Uvp>jLOP{rtau2ulpr&+u%h;sdzUI{qd!LKJ(fNBsBH5ZR=<>}Cp&G^CtXb7 zs_){>D{#{M(slJt#`%!z-!NO1scS}&PaLjv4|JTxRCT{OZ3HgK1Q7N91LzW`<_h87 zRLui&=nBaqVn(`GV_&8k5F5!myz9WY8DkDNMyR#cI)!(i>o;{B&ZGK>;t#T2mPiK{ zeeeZ+I_ch6PW)Y4YpYN9n7!UPUXjXln_5Z_Eu-M>C-V0`w6(5n$Ro^j{S~YZf?msi zL2(p{+y>6a(9L~k!NP;SVz2GQvCj@F%rgeKyVllLyvbaff29bW&X6A)BdB~0Pu2yV(+CD+T?*J+ zuol*8yaL>zYnYD6cJa?ciVn^ztuLci`-@omioJ0Z2vyW-`$LR$ykP@Fou`e`8#vz_fO=WJKtY6hF%(dE~jsnnfvF+p*TD5 zHa6|GEOFx^q?G_`HJ}HoWc(Pe#6nHxl5<%aPU|L(=+ARrxq$!Er!1J3Z1=1^bd^kO zKk#D&yp6ACTf@|BQFbtwzK`$qOgF3fPC2Cvo=08gz^`0!R*Td6fFQz~fDKuJt_bFj zl$%lQ`@WG+QSuJX*(WpyufB>Fdn1H5O8RCZdzaBRs} z$B;Lfd+B`l!;bWZ>s}0(0k>KE3+%63I1X@(kFH(oQ7AvtR;dxc&7xoS>iv`cA=%0* zz$?#WZPichhTH_}&BMB;w`-Km*2 zx=)uD)!0|C{rb{#lR<~IVfVWRHy)?@+%$+|yoINvADmRcKNbh5$9oa@o+K~^IJWjl z3&)<;2Bz!<(xU}zVJ9@Emjai|l9+xKd3zFHUx*dZ@MFBRqDo^f3YQ3O(bE8>4`cm&@un?=@5n<-cl&0*ppy@w7 z{bc0CY9kXa>x7!$OH`3#iWbT0jX%9;cGAJr!p8{GY(GQRS5r&t4(SA4&6s!gSERnF zaI1G4Rl5aSW2TPxa436u4=|Q9NUzZ*7MUl$E-^X3p24hC+1}4Xy5VcJ9w2>g> zmYUh0yT+Eo$cdBpE|^>?x_)Be?A3_;G&C44ZSX~^t-1t{re?lt0M}(w`9*f4EW2{ ztv&b6)6=`Nt20)2s5x!jkw>emQz|>n&QDKO;J(N!RPU0U<8=dUw$+jvYR~7h4{{mk6x?hNrfFN1z&eW>0Kh8XE`+;8Q52Jz_3<3#zQl~sJ+)M$SG)lL9rK!O~(5(|jR{X)JDORcG! z1zy%m-wM1uJ3sT|p0CV%nLbMO4^BsE=W5;UddOMec;>z1=?7fV|7rd0Vg8FMW)f39Rx zxaCbY&u?Q@PX+TElVYOiO{G+vAIc**_{Je|(W8WH;=?l3k2P(%9ksfi?7zfvs|7oM z@`0Zj_XVSj@3jeqd-QpJ=Gx({`p(|Tjg>}c29!^tWO;kbQs#>(we884yd+^BB zu$+iw-KxVW{cg!18s4dfZj~S?@08FV*&rGxtHy3wXPRu_q=Gk%m{nsZ@WI{i&aQS~ zqd-o&>(iMev%n(M{36`b(+2m5bAEa8TRu~n!M9}p>T=UDKar&-oR_EIphB7KJ~~Ob z6OZ3l*1r)TQG-z9I(=MBs)z+baGATqRQks$a~79iMbj686??s|J@@KbVta6p)yXZf z?;e((c|f7%D>?Td=k@Gt$W@nTFM*WS%qRN)@quJ-=8S&KmwnZLUq!916b+4Mr1`~Ru6^}czsDK0Txcxo zq%qiB!k`Hh0*xR>436my2v7`aWN{z9@Czx=82{ct!QaEHlmSfLZJ*BdBcx7fk|=pL zfBK4Y9bvNA)arGsJe8Rc%QzeiA z$D<_q0;lD#*N%$wUvzO^UO&Ux$#3|BchqEMQa6JW<)j@GDP3b{<4>~XxqHlRql2ad z+zOL`8mfmd9a{r)SFR zycpXMF?8OyHGvTqBvU~ltY?`M&}acCK|rwVkmL{y6+ci`%KOUn;ti-CqaI_tg4g1@ z%w0gH22S>luLDVKMHD51(cwg67Z$%A_mQJyF>^UXGL(CeCFke8SI}>KJA&&&sIIt8 z4-&1%Rws8kwOlF+U0mvSTocswV~@O+?;tFMKB2nvQ%~+?t&DuQ&0klm)9*mJGu;G# z6etcik!j=w$5iQeb|am^hq*+ESLGi)u-(~+nuyj0*ue;w)^_b7aMKPFdpx`VXS`w_ z!W0r5hGawpH%Eb0SQ!ekq&ub#+yIG3>mGiz2erGNmVWlFz<=9fb5IojHDL!V4~T`1 zOTM)J4|Vj(4X`>nfyoWzPIb6PK6Fwak}D791uphFCWHNGskH%;4d9l~=_ox)R@hQw z+K*(amC1Qj*|x1|aeu74W*{J#XMKR>m=x5i{hkBl9#}T0$BQ9ukVolWzFrB(+}Iy? zx<;v5e*|kPib$t&!t}=7pGbLS^E9goHhrbsTCOYLpk2gkkbJw4o8tCs$jyP z!#FGONRyZuX(I=>oW@I9*dUUufT#LoFvwq$ern~Y)nNc+-BDfqA@>9Isu@eJVS7Hu zy$Emc1Nr|o;+S3rlI}`U2dCw^EJ%Je|^`6%G44__V@Cm273A!%D9H^Qgeb{>$Bq zLszlVrGpWF#?QN^yFx9W!X3PUlGm?Rm_EM!0^-2Gy91j&b(Z}|Ape1qHiE?&gXI0c z?{)C#cB8>l|CU1gcV)rSj?izyP!3q#2*gbvmT2zgWCWVK&IQ4OO3v!i&F$wPy33rShUPglDE zkA(x?POmbz&}9CoYIVi^eJZx%z^3!eHyRb-CD#L(U2lm(|6>6>AJR&l$r}q95`qgr6oYnvsX-FtP6$16((*SQ{!bccyD@G&~y5gz$q?)L!hK!1}`w#2b`A}oZNw~uLWl2>ldpP2J3~SA|IZI1cxL0r{|WtSFY&$Yp|#z+(tvBVhKai78OMz2bg!n0Se#X+@mv<%_cKz#n-T&k4f3IDDL$jr$@2- zo;4zjW#%SDQrioC!@zjnm{b&>mT(&#nkn%Nq+@Uxn3xD@;ZqIp%0bk&@Nr-9i7{BM~u{H;&2R{SP;6(%Ya|CzD)TZHK>ml_T<;}qc1$cca zw+4sMPeoBsn4mM~`5|7r8+#3zKv_iy3r}kvL2^%*oRGf(6(0`YFXZgqyU`Y`q9sgL4nCwUo(*DlMDBb3 zIH)uRxU$+S(94>2I|0F9ZF$wfrUb%plMED>lRScHU3u4&P+f&1bB6Gf@vIe30q|5! z9~pr>x%;fQF}m#r&oX(@N@%`22%k2TGZ?5~I>y#vt#}Kw`k`84x4KgEeVbgde(}A+ zeISKq33qq~ci>w8P=WSX?shU>QE3a7d)7)4`an(`1q4<;vDlprn9iA!ru3n8ry8B{ z;1I!@LuyP;NfFb!|9HrOm!&GHn%SO_!`Lx@^SM7Q6QY`?KhLe6g0Ep`_o@((*fP%h z8sxYdRD64Tp{<6kh9U3JWaIjNK}lel7^!?^J8(~8*MBUj8vW#6ap2<`l@-JOjP0QC zaPT`l3nL}*Fp=3H|Hr% z2n527(7kE|f$Y8rf$VVEzZd-GLl$xn{H2W1zJ)RN0x(#6Zzsrgd(0hoFN{0-_8C7X zZy&UmCtO-yT2}Im3kGw?M@2@)<3AcmdwDy{&^mcugM)C~(Y5e_Kn@&b|LlMyzv6>H zRAdlWFPZqinxY5X>+GuDnq78IaEG4B+v7xxcRl=Ke|M(YOPkWZE@@Y*+#hB+fdxpV zsoPyaZh75h($xi-u5R(tuBB@off63!>QwvGcOF*29;+BI$!dgI*%B7dSYe z_LRYdP*RMo(tFZy30%odswT7=Nv**#zvgZY;!eS)q|i|W+a%iW zV&;CtvM$MldI5oiZM!*^dT3)w>;~P+BGr0A<~j z0YxIQ#r-i}ipQCIT{5o#UVn0rQZh|-$ac%w86|WZC{Lp8g$I42)OZ22e!iiufE5(w z2}~;zLmzJRIsykM?nTAxQ@94Pl}9xVlo~VuZ*fPF+Y<33_CR6^jSl!l;5}k74bp21 zg76^dx?~DPa#UsoFgsF4lZ(Cm6hGwwnCq!nQrqe^HYFuP@8hN9iBdorm2%^o>x2^E zXY3yww6dw}e4`?$np}ig1`r}*1!uPcR-iUoEv>nQ|F%SsfeYX9M*|sKPa0CZvWXwWYSnZ^9P%U8t zmMYFrK@7$$oJGXKQf~u|B@(Pq+%;X2K2=@n!BavXG!t5_Lp_U&ip2m?q_tPw)Veg&4UGHnqCM~2Zp2~A3Dr=kAKK}gNa`of%i+N=`j1N~J}_<$mXbA< zh8yqSP{j$xVr+gi&ez-7XAlM-rOy*_Ap>$g=j6}dn?8)o{S@N&m6CwWH9vH-f0D`n z2^oR3^ZZz7oOwb!YEa2a|75`vj{Tl3 zf*6KHa%gT13zX0ZXMXrcle6i;c(T{T>&ZrFf#0%iMEbl1A{4j4$d}_GvEB~(-_xNU z1{BNQ^898Re`=dkM$m%$mDVMdME5@xjKkPgU^1<#s#D2eq3_s>f^ylE*ugcqxQi?tm9^?LB!g`E5%dFJ)lmO2xxJ2lr$c8b^H? zhE)$z%79elLyyT$9c&Rt;^Yf-&$42@6SP)|$P1WFG26uWQX1(SXAz*s!-CE0+>=i2 z$($dvk{yJa^$r}HjD4?hFMTgU_``s6 zG1*xr;OoI_1iOG|$mDTmI4szv?n8W3)AUP|?zwaQNC!u<9L-l{Dwe#}OmFjEmgNLU z>;060j?G;WMAO1M%gYEAqdLjR4%M+?OGI=DD=?AFQnqlCBPvkxt?SZGP4v}z?Ze@g z4n!x8`fnYVLFy&ZHZ4XECM;a`U%$LU$`lHRR;x~^Kp?xeQG28LI@SgmRRP6jO4h>%O^SPvW|mE*)5E)P zB6u2ls7DlCmsPM2h+lnz4?bh9H)o4WyStnUcqP$>q(&(DofK)a3-f>Q#a{(*2bG9C zkAlfJsUir8dUXY6%tAV#_%*DrIqh9H9=fcj@|B|D1i)}L=h2nq+RpDiMA!Nk&b1@U-NwH;xFXgY- z4e;=YuRK!gGHvM)gP*RDMnXlW#n#GSR_>XiKt)3@iG+hq-APr8vOb z-6w*6M9}FBRPCPNokY)-;psn_eZ20DYbW;*C8A;(jwFcqxIEV(aeb_13UhFRqDni5!!<8nN0$Occ5HPhv5edSvHM6YYxV}wKjQ)s4ozh+g}!2K-!xG|gwd(wP^H0OFi@vD?ER169JSK{ zfB|JcC~0uw3CiTNne_{BD;FTIel%m1DX|^7)gQsc_lWe1h2He%Cld&bFw_}FEUv7A zWeWH`C1fx|?rN~uxe`Rnz<#gJgITTXD{?0_tn01;<&Q?aVlhU8%iAfy{eep#4ewJV zJ%KJxKYQCTW}9xWYSo5Kv&YJ{k@wHH=URAowMO-R+9(r^hzH6N2|+EBuM4{shyl1i z2*L<{nFqreHPO6?UKAL!p-^)6OBz>jrjEu8~=L;rs=5 zemaFJ^RSjg0;40FMa@LA@@u#IrYF%RR++m0rNnCRr!sh=WkH3*y4RZ9FKtmYe74EdfZlKh92^d z83I{DpCaJ!caTHdx!Du0dhUh2HAS4e{-$A=x_EP&oNuw`-Nrj}a`W>$;caTd2$gvX zeDT+FnWe8m`bifqr6_ugmr!^@X2LzoSt*0-*G5yZHYq-}n~O!J78W^8O?te%yy&Jl zG4=qkL~H8Q606>~2bJC1+j|eYYlAOnd+v|YYKxu5fj=MYTbLxa>8BkR4YH!p;5r`_q;%y~UteFgyswmfpa^XL-H3y#lNU_Q%*LB-H$PArB?P<2 z4Fp6ih9cWI_Vj$(*qrmm_vjG9NjTsFs+u(Up&5$EGcW4ivG4S2Q0d0|1TZiEQ1EX- z@x4^W-@Pr_+GM%S{`!I=G|SXlXQ%olN2xE}nyTH}TC!Jqq6ooA2 zB`dfkNY|{~u3j6@QyF@A6vI}>*xTrCq)c_^NYS1*kNzg@enS<*Q60UdZVG5Bls#qO z?-(8LgueF<5kTv!9H-`loHuVS4{k8ArFVud(}Sj~*9MkrdJ2}S7Q3xV-Dz@CD3Xa% z|DA9}uYvr$LXuu)W@c_-VRzV`10}b=aBj>-hjtz{P|Fw}cl|PaSL#-=7QdowKF3w;i84LmJR0w^(*pIjR@1j~7AJbJz09U~3EwqF_C)&DdUiv! zP?1DYl@T&gx@&HvdGV`ow9D$;h|1RbyaGVsGc`5M$<1|5OdlRewCx_;TvFOtY1Hhl z3Yf#St$C>T{$Vw6bvp^AznZrU z2&hbuvdU@{4AKXORRR6Mx69Pr3E(af6&I&+oPTu&ku2x*3^ZHN`xTs;juqHcldLu> zhaU4|rmL6raO|Bn%`-!T?(NaEzA+uz^TDZE-l2gDVT3}ZUW+`H>6{jDjcw>(V}xM{ zQ0iQpkkt`X&FCi{&3v{JBTjoif#zgoU1Mvr;_k5g-CtL)EotgjKv{>g z>g?yErk0kuRH{)+vI6q?37PKUXw3n8@^E8x&rpO=T23ek0w`0$K**}-S-dbTv8M4q2S>PK7aJtQk5AT(!oFB(%M#sCR^Q-4r?Ej!e!e~^ zBgLYXu7G7)Z_Gq!y8CRlg>KG!(ocS-FBW(OBW*Y568m1+RtNh2A!3$jgw$!>+dyiW zs!RK8$^>W}*TJ8H1WAiG8CN34U%*?(W|j(Q(;YSX$ds0rmR`4_Y7-QyIxjkEr`Gl% z_KdemGWxrfS)p~#Ey*kpC2VnEgM!)N#%VLFqayn4;PgHUN=g%vN&{afZDXcVu>;@R zGp>M`kdUXv-H z>IVXrHr`1Ag~s-kd7P4WdHI;@gj1FhwlvCS`M9<`NY!$dRn1y)Wyqhb)vgV&>eCq z(SCo}AoPq^0`vK>jxJ}ypZ>dz0?!(UQJeQ71pJaT*1ku(f~HCWA%N|)ktg9<$SJ{l zGj%GzUtVFG_Eh;`2pd>??=g8oS3aFm4=l;e&BcK3$8Zp0B{f6|e}XVZBbU1Nbnzc`q`hNH~%of)L<Eo)*~eFGbm-+w6q=MU(&As zjuX*3@pBELPFjUseMtZq4yf~Sx;+q??+H9+b z>qmj;k_HBmWyV{fjdzNk{YhvyFgjY2FgZ|0=;mmsyhpFR0Jyu!>Oo~@MK%Q~o+O0k z2E%}zkbvl#-y-=O3?~91D?{v2HD;e0jDZHwS`sk(<-|nsr-L0}Y+m@`5beu?`*nl5 z+3*nXp~#Xp*CyZ_7PTSO;t~?@Xn(cB9@|h-xpTR z=~aXI2Wce1O5XA7At{RwSCI*l-@%|PQ4MYhX?Y;1)O$ov9gINiXx{~VLp(1Z2t+!k z`X+2HWNR`iN7Fjk4$5&YkV zQ7lqO(}ukrH$VWBvaPZ9`9t{*%ATG>wEwhMeRE})ozh{x!4fe((EDY#-s}W7|4g8C z)lJUC=NK0XA7f=W^ZVOOZhpcpp18t_bN;`LEX2TtM6`frmh<6*kaP@qvYA?w*FG~3jAA;In>GL-Nh0evM$3X=G$1*IzkkG0)0H!O> z33S~$!P6)-3ydjK#kK}&vkyH%`=;c_u+xR*exGP4qom_Thf?ioi#{#(h6>{SEqxHl zSPNjr>bDl~0QDCWZzerH$Xy?);6}JR9M%(bCWt4>J$x^B(`ho8mV^|b}qr4`@kq#vydsn*knzc2LuGP%F)u_XGR;% ztUgd@({^m7s^HNv-#P?4Fo>z7HBa_H`So2l;EMxi3x^rE|7NlwNziDi$C=M{B>ZX`Dvtv08- zF~k$vj?PZa+H>Ie*e;}frE`M2Htsyjr60-`vUjb-wWswqJ1^mH-n^2l{Jw*iD z1Li4ipt2gAgMyCZAGpjXN%F{SIt2 zyaswf0gFjCP#W-eNKpYZh?G_hmU~xs_jVFr6uL1X$daUcut1FL#KDjlno}aIEhe0K`0fBM_b!hlwQ|L5Lwn zNvvP3y~!HEr1Hr>T;N{(?qi1{(D3~VW)ymM^FIS3PMVrhaWJE9!9!Zltp{y^G73F= zGzU2*0^B*47Dp(mWDxp6htW@49wNVn1X;ctV@}^bT z(qMK3?SG>*6Ku-2|03s0JdF1t|AGFEw3!8Kgj6FIp(1IH!lq9%JLth{;C2Po64{fS zh>weNng7$WF854ugxOmaK-AOIn*&d*XA|BXKh(cD8f~9&wE)yp&Zxi zwW2=7Ws!oy@sUk#GTU{Vu}j+;R?_V~BUkwE=06`wXsc){I}cj!4U9Zkt-W1PDDz`0Fn*PYBMG$w6545VLKh+ z3t-NCOcXAWxNshELi|?QoB*QHH)B8zF%L!eSKO`s@eeK@g#QbC2_mKw&+0+mNT?O@UGZgIOac zlloVH2vC5T(=diSqA}URcV$JlMs+)1*7CXya+`OT8(}o*CjGILf$asiD<#!!iv{@~ zQTb%6>AxuI%EU|`gwSVMU))NVQViG zs~;ce2Do=wtxX*85~oip7x73TUH$n2Ux>;y?LPad`MJXFn}&RkkGWk9h}oM6<$Z1; z6#CaAz0PbSniWd>5T&2iMa;aa7i@2nVJac3( zdkymE)XdF}C7yh+jTj3$f6`boLr+BD{8H!=vZfori%USLAV7249Ab*W$(FeOjeqh2 z85F6coZLT=Ol=7ym&xwetcO5Z0mlASPC9q0v(Cm7Q-58Rl-SR)>*bvQeHIM;&jMsx1>5YSsYH_9-8%oTb)GrZ>5eRs;5s{COB?w zGuA(LvDt8nh_1?2Dtt;BEGG-Gs;(S1#JzA!uhuJVv&ke&PB3%Px}_GUh%m0JicXJ& z-O4-1)7{Eko1^xQ^lE(8KV_6`Vj)*Zee=^WLH`{=w2blc$Qa^slQ@v zcFfC1%I6hYIO~o7i;-5H7dc&)6b*8t!eieE5DMx!d}xZCLRu!i`UUzidiN-aowuE*VlSf z>+Yf)X5M+|<&hhm;&ZSVsBSxSb&E9yy}g6-l&bS1azT-R6nf=?EYYJi2Rn z2?0&n$dw;=}ilVD%|_rcwdQ(dx7_wgKo;$dq%!il2CV z-Zv7hK=76!GxQD5b=&J2y?T;&@uV?g#roBgJ)=k7&-nVkdXfXBdDkpj-!-eIEMB$# zRv`;#gGBXX^^0#Fff21CY;eglrsNH(;%*q>IZU7<{?4wAM0^hPRpfhfi|HyI63uk5 zQ&BC)!(G{v14+$2;GA5-f#`iC-8W&}8|P|rMZDl~7N9^#4j(olp27<2egm>z*&`6- zcEUxSV(KXZ=2)3yX~!kePx-uTyV?R>M@QG=4AddHHu0*sY`A`zKxXl_KhNRE~ypmhV1$ouT+Zx6iw7aZPa~8Ov$pddeu* ztG6;F*jQyWM3f%$VjnUT>@3&p--NSh)P6cs>5Df&8(t3o5Y_x4VV_ekqJf4v4lZO& zWM|aQVP-V4Y0-J4cEQ*7KI-Wgeb{?{eJ>RLgN z>cw(lwH|t=hW6827yF?5wb(KdbuH^(+U+%%A*sD;fs6WRR49s8nVFrQB(hQI_fe3_ zTzKH0zZj*eE*03G-MUGUEqQ%Z%c0itlwUIgF$PI*GOg~(88@?()| z;~s*CuUK_uflZ#`-p0Q1l;7lAk;XQ!zzMGIv)5f(?RL9T?=u2(XMz~n-p8g_V&b1P z$`jY@7q+oD0sqQvoXH!Dc=Cl*nnpC%6j$@FNY1sxt>ZcQTI7*U4+&}yLr6r_RMLCD{#}p<`j*55qKyJliHzoj!O^c zQ6G~4$pjbwYj^ohFmYCY&MtaCdETghr9N1F>8i0xh14BCJ{9151@)a5+8l{1-)T2jq+%TM=5(;x|57D zn*|>FZaNNnrQCHsC~}WS)1x*8ZZVJk?w6G|eMv^a9fi(`CAy#UJ-{mg5Dw>;B?t8N zVg=%P(vY!tnNM~>v}Cqa)r1z6;1U%v=Kkkq7u>8O%cfb9c=YNxcFxC zt#&TQCD23)9_X@)p_u~Q49a}eW4kLoq^y$h6cFYos;b`_PJEj8jcmzv<7)CfuND*5 z$LSn~v#!&XyGNJi`xeq#n7Bd8ls?M|d94XT9C#GoMI&B+ynLsRS=fLfj`OFO_8pUK zL33YAHsybO2LGBMRC|aP0!5@6{}cfoXBA~o)Y#mlYI6W;b2%yk{<37 zeF2lAKm2U|GZ#o}6 z(D8dh^)6HpMW>>u8lpLFoWMJG+V}j&U|cdnE66(uWG9c14`(?dKTC3{`3WQ)`$9gH zg^|4_rnh?vHrz1D3mMDaW=!`M*X%d6tRN>-(>OqIYjJhyU9FJqQapw>7SVAzQgtvY z94{WJ+}xQ>4LV(%gwUQ%diJ3{K4Io9%tTDD#70K%bDy#Jy|uIJ@wI5|XT>csh9 z52YaO2e->jYY*``qW0o?pG{&Sma*8(aFwV?@q~QNeEn+0xtzbys zA=g5IJ15_*z@w~lN{kI-J`aUFt|X)u@s3s<-z%pao{;qHS7lLY$)z7V&kSy_|H7Fh zJnpWsoS<>Q-OUg#Py9EWK!|)9zVgUk7~{+nv{0dA4|?pkB@$u`0{Hh3m7~;2Mt;I^ zDY%Irr>13Cd@4}>J1G;VPKGsdCH(S_aDjva{u3a&nn5eDN1Dc$I6hry@miup z>~1gmd&@FdG)Uz6v-!Tn1PiIk%eYkMoZkm;p6Z~%t$H6T;Jt@ddwWfyEG`tBZDqRq z_x*a(lbMcM6-&kbf?1LV>r}j3=GPeNnw?4pt7W;hwKr#z#121y)RuL%|5)^wxF;5W ztku-gziJE?TFZH=mUi|2X&wDFyX5Or7OYr5!i5 zwzYA8hj@@#^J}#TDO{Xhd3qf+zX3yE@U;F5(dAAH_dqF)qwu>z<`vq~7jYqe^lzN>4$l zeD4|inV2R{F~XT$+o7=b6Wg=Z^phU%GFaDImT#J4L@VoonKZYAs*IPahL8^o+Gwj zg>)(^AJrGwPs@*a^9I#+3auqsA98O-%|5JTc>tAuG7Ke0 zbYg0#4{m7n9J=!wB2QO-gOT^lQqI#<;J?OuFb$@)jG5?T* zI`-X2vU@pQ?9F~K1%`>URn?vjjitUbtb40%8V_CtDPTP>k*v{oYN@{Ia-}Fsa9+{;@>!0ei24APDIyIig64Zs%pEzKCZWG zlY4C)=YIc;L3$LF0N0t2-x(1EZvNhc=*Gw-86Vidd?rmGi<_f3vM+8WI`qJ>{HL5=sXtt*ZzAA$kSlF)s-U%o_9V(sFvR zi}NA}7z{z)Ry>{)2*4b>pO4~qPfqseeAitpd^}e0-h~QoW;oAM-kmGwem*$`o^Jky ze(U~XrH!X;b0^l=>BDTY)Xok84SRiieWkyrgJG8*y~GO5w-Im;BLR_}?PutIR>coo zH93_Ise?qG7LX9PaGy|1Vj0x?NPIcMK4(BSz71{(N+R)aowbc=eBA@}dhVA8UhFYe zV4rqi{rl-MXitANb82ufU5VZP>$_Z>#{5YJlbp%#xxYTr_y$MoF7ku>|3=_f zQt$=11+O8u?OxF^WN+(_Bn1ioYDYu}>(STSPdQaS|6RhalSmWxA&cD*^8e4JbWqrT zqh>(9Zqf|i=K^e{_!d$rX^KQwxRomqF+z;q*35$Z&Zzo%e#H3_RV=#-QEfzBuJ76Y z(=o2Uhcvxj>ShU{ZfF)PIj~BM|91PpzJI52H-k`{Oe^KQTp&E(_xDYJz~k_XdmsBi zQNNiEFcg%L5XG5HtGbgOmFZQzXqN7~O+4HOOIWfODDfBr|9gpqgGwiTmsgn@bb5C5 zY2^F`;hc6Tu~3~|C7obg!q@`U4U-amsr&VJnmW&O$CvNAemANh6)_`VJ$7CYJbh<-8qmnWNy+9 zN(a{%sQx7qg+RDq3jyB2_`mw{2^`yo6>2xY)2whdZCFijzO!iK8r27$_LMh|W}gW* zNCxr|$Nqju+f)ID>A{ZRp9|0a)cT!7GXn3AfV|)YAJN6W>P>{~^S|x?ez;;__g{(h zbYExDYv;EeF7= zW%7aF=*gnfbLxP)?4MoNHTj6MU?~(V=P9-_Z)`je9dt-A^()3#+XI??scXBmL-}Oj z$cU|m+?L5rX19<_U;w2RPBaJKNO8Y_JNjXU;jFXTfL<(MXX&Se?2iNJXLmzI1>>NUgx`UZZ6IsjhJ$JLJ-l3hkG>xCQ~}_4?1BSg(52_JL-&JwTl}#mw*h3!BpR+Nrq<~1`zEm=pXj|_ zRS_|#1_;^h2U7*38pa&eB;I%-bW^`ePt!3N-)3|56Vy$4f(rP zHtugz)%XYC;m(AJMKYfP!&jqr!r z16*5gyXS<;BP+-8G&=;3-dZ79Qy^^siU!T{VbOAYiH6RiFRlTo_7v;sTH9ro){rOs z!u-TgZUWAq%&LnCNP)Jsenz90cpKPl3Xu` zVYg~$Hh37I59CKQ=I5;h+~xU=rl`~>J-ENCx{>`(h0W0290Cs_P^{`+EunH~)*7)q z^3E2@utC)NE|V==$z)_M__|E%IC3qIFidfOw@3A&P_~_b4QSb-8+KLRx2seVre!Az zWMv#T>?ljzgXTk_C!&ptHIii~v}zhD^wA2|MQr*R#)Q3U;su~`B&e!BUHRFk;lrGp zk=0-Qee=s3^7&T+-lu^6F!DL+(vg%Gb7R#JgdE(a7`l?M6~9oO@Ae6{fue%Aa4Tvp zJ+Tv-qcUN5(x%UVdK*!sOF|Z4_asR({^Tpx@FfIj*DWadnt>L+_RU{igdv6S<=lMZ z4f2KgN#sv2%!+N?_?Wk8Oc5dyVer{r#SQ-p~8~^KQ@QV`j`;=XIXPd92^_IF2jgw!SvUF`i=}5QszP zCL9R@F)4yT3=T(FfL}^;bcw*nRc}pGZ$r07-hK}}?Lc}DyxpDMyqz5%p7XWy^m24_ zm64Q{ydrVV!Q0#2OG!$~<-ZS*bn~>A8v4og4w&Sq`^|e^AQ0OL`ilXSl6D3JQmWB` zUpMkkTN(>UOScO?I2f?+dMnau8_sld@Xp605e$r)7eyE%%jdZjvR_GvLD#UZ6*mfx zY>8hIyZfy2VH2~s3-hVz+1{rv*S2DN&agfB&T~GN@u+S0;s7~@qLv_&@b;6;RjrE5AXk5h7^1F({ua(S0_|!T~Q6-pC+BJNRDibnK`G3) zm%>18FjW&?BQS3BrjT`Au z=hzHTf}mt@Ac!rD%(*@rC!BYiE&`tG&=2RKl96cQFChlk2(;>&6RRft6?z-qB(r-F z6$zajM4QIP@a$0XYrDF&Pg)2J{^QP3WB`@K0#8z0hPCfup-J16AY7ITbg~V-V+juuh4wSfx@GAV zzed-scb7^-S@xOLp=N7J;zBTiXf#e}Qj8=_BCpHSf-Pyr5D$BJ{Yi)cyh%BKe(x@P zG}g*08GnEh5=A0hU|8T?^%`i*_WC!0fH(z)0W8K60mB`!&_0d+3o?bOVo1)#^ygxh znO#}CTFJrUD-MXcehiY=U1TK%?caCJB~I8;RvJ)4N88=MRvwXTt(8`!hYl7^D8Z!L zBngrksTeiDpba9U(Fv49s-X2TcjlFFgf-(RlQ%;#Q#7MKSn>>M9EU1s32{6aslWdc zOi7@A&_m4e?M1_P_kBagWl&^>1XOC(_nZUP(d(yq7FjLSZ>G;OoLJvlI%>h>jDS&3 zxpTSej5q79Sx@MbGS|Cz^+|%_LZY7bvt(6f)3hqD+mI3_2O+kLuD4*g+cg+BBYrYB zNzGq~7mj*Dx4S3_K@d$0Tdsorsek%hJ&w2$ zb&wo$x*9wP+Sf(QJ;(Hx+2RR;#>QLBq+txw9x+!(I6>frK6E3+gvDfIrF-|Es!;@ zEJ0$>-wu(dj4i*2E%%Krbz@4xVjA9tc4?!?V7Fqi^#n|>)EaF^oKyiRIj|PIh?SK& zkRUVWkL<{h8X;HYpj+qJ%0SJGg@lw4<3fh!S;|PQq)zWglZ~39c;UWOaM%d+L+-qV z!cZ;yscw@cHy%=T#r)0?2AQu!;~zTm8XTr&tqCW;d&)w3n_t>Tfj3#&{t(lLQoh!P zIX`PH`WO=9QZaYJRtR<)-qcRuHbfB5yz2^u^5RyDcTc8}W1nlKgE6Xq?NHIC_kD`e z21+z}4G|0LFy$YV3S3MOPb(hY)QdJvL+*(TU3{Zsn{{nCtT^uZ9Vrkc_Bpig0%&24 zx;au!Cwle>;1IQv>{06aFunX?v$gMMm2HS05o|5}t^SgsnZDMDKFY0|Fk^#&kDOZP zQZwRFZ(-P@gt|H9=?|g19JW~}KrI8kZ-$F+ZK|5P7$W9E4H0Amn4T!_+*%A|wT&jI zC|J1m7Smf0cA`bgF-`d!_ z*_bUo7(e4D#?x3#ZJ217C!EjBhwOyXUZ-lWPa%|>8Hzt1a-Hs@ds{rg?#6cK+k=!E z&(_^0S`uDDKU{%!37acV<-)M1Y!~hYU4dTs6`9)bfw;#{jS}V6`K$!pVy1l{ZqBxb zzU@{$S`KgGg$DA?=b~o5h!O9mLMJ=WgHlp7>3gQ%$M6~GH@py;wQF{lhA@eU8k)=g z6?ap3T0&?P&$^~L7oatwkX2U5cewo1U+*!!r?V8GlRJnS^qCWoS=ZLKCiZY)|R-Dcz%McUC%t8d`xL}LAV^xQ}IaW@T zTD25VFRkS5w~7b?!x$u4T$wUNc)ypV6^@vtMl%b%LT}nyWpU+VLX@xZQ+{n1GAA+m zCFmK3EiO>DS~9MA-A6d`58cQKMaYXyg|-Ti&G?)4W$yj8dfc6T=tCCR@q+nZzQ(kG z115hBM4t5U)F}dWcVOZIsWgZ`@l|Bl6AclR42Z&3-YfJJ%0-h2(hsA4V6 ztAUB%R+fw#FCge^$!51zxT0QIBJz0OoPs2vMxc`|OE?9nB$Fi583otTE5%Rx3SQ*K z9gh9`l3BTf9m4T(;mG?X8^WD$NCZHVB*~k!i++=YG=o5Xv}pOUdv~i?3lJ8E%6|O) zoXyWXPz1m!j=~XWVqY!CaESh$JQ=|C2-aMOzh-Xb{#=ei@t+XH_Xj>1D9)ZCtkcTf`6XP2vm~($a&@v zX^F8na&WL7SoE>}0cFFSCii_#Y4dq7$=G+<_J6vkveBafvT*;xtgEy%J2P` zxJl9IDUmyAq?acBHej^OHqQd~`G?$hCg8d2Bd| zzQjaA=Ke3qf%S~-`j^}Fv#Qrlf9l9o&x9G~EPCRU#j(J)U%UuA5Tp$|6;F?mLlkVj zMUO2j)z#KsOr}=&mAf+?!cLdQSEt0^NZTC)Rsr35EB$=#M=toXeHY(pNsA-boSejy zEuX-?@p-Wq2aYY6ezs=tn(3H`)!>}i8gXN-IejM$V~U2?jF_ zl;x4-?!D(yL18vAs!4BU>^;ApG68*d9+I})%s27)!p!adD^A;UYsh|mJ@X*#gn>$& z2A3*^ne8;leLB&^v+L@tdmAj*{rCHqYZb-8E~%RWAv+TmL91W+f;Yaatar!+t%M8O zZY>V+c{D+A(?xa5N*RI6S7*A?+ed4>0`dK)h?Mbd#e@BI2Kw9X;5W5q;6lwtukJ1& z#m2eZ%r5#4bwtyfref3^#;n**MgGC>E{%@4>CH0TDvb|b@;86ww(1!3BdS{0aPZ0> zvh$Kz)6VMD?$2Dcujzi{tu9q#&AIB-IsPZzZb4JL5@zM-=WN`bV?F~VkNd=m8ulJH zzdqYI`8Bd;cP8~-tv8HFUG}RXH&9IL{jXq=5vgtsZ%>Kebq5&aP7L1mm`(R{-9DM3 zyj&fgoAKloz>?4Ys}D~Dt4f8evVlUV3s&nBT%m77bdy$grefB+5B9r91IaiGuTHt( zoKA^*rOyC;5>;6tfcH184&=I3w@2?T1W!hYDsGQ@?G_*GNpY&ITq~-b7Xvh-C0<0g znzCGXuhjOa;9k$mH)_F3>$BbVwEf+YeLe%VU19Zu-R|8c$J&%pg}0ApDQbTJqj zsD1^6JCxfIy8kWov%`02wCa{ANZw_*$ue;1E1)<{X;;18DEWwi?9+Wt14RFlC$2{; zFO%r6k6F=-*3`XCmCc`qeC`AWzMz#a9dE9HQ9{v*Pl2fu(Sws^=^o8z0Xkk>v1z{S zw`_4*!jyp99#?k2u?qN~`z9C~M5b1ada|w0bY>M4L;~Vk8MKMH0$33L-f()r%v%gX zq`%mzo4QTxerumG6j+GE1;3m}di?Q0y}lO{5gl)3US9Q@xop$S?piySbBQq;@OR^) zp0cvC8~Top4i4`M3fNGdHMa~549Kcr)r<{5sV8UE53X{ltbhQUx9du~3Qp36d5j0l zu2zLos)D-?R$i))=81-9V|Lo{`?_i?VO$$m@c;|QyGtv&SrPBTLY(7`HWvO}2bER_n7*BOj;<(pFyHt9X3s z#D!a=esi~Jx#ECM`H`)?0enWg6h5u2TP?M}|87R`);%6xUccY#)Zg0blTrt3QbV5~ zfc?gNOvvRaOL=}v!xgW26`~_fh_3CgcdwUaQeOjH2VD-?_wO$>AE^6lems!e*^AZP z#Stm0u60ZD%`t*_&0zYnq;Reo`qCXT-NM)=z%nWqoZe4fIXtLmyO`obR71DyL!0OO z3Si0Y^=pa6i}!cDwA1}3BXB=dqgB>!Myu`pzSNc$vNt#C-pJ9Bb~S-W!4Vf^o=^SF zCS^O*@s{qrMuXNngSN^tr^|onXXWO;Y;M+~O$gG$05_B&UR)nP(6Ci;D^)%!D@Lu> zZ}ofO)ur+urhwll4qkE!bAH_A*Raly!1nrvHcUk;M=R7%aHvo>eprO;PT$H@O9#BZ zn+Xo!os;7H$1KH3w2o0(D5F=(g1!XOJr-a#G%9yhO)r<`u^PP)mG(||G+`^c1^ zGO-L0DJ(1u+Mg0E_A&GwycXI3eRv1q=o^)i&Hu~L=nw!PC$4I09>NvjqWZNqGllC} zZ-oBm6C;%xc}5R`h)t(94KO}u}BITkKf*T z!RtyIA=0+=@qS-R?b;RBT7)QRb!%6%b`bDJ9Z#;=T`ybLAY~`$PY&Q|a)6q0d(C!D-zPuemU-0iuC6W>zY~ck z0nWq@(2k(Z0xRZo*d~!=i@yu3sE@~2UMQ>pnzPX__fH%r;He{ckB#rz>nQ{EFX-OO zu06@4kwakxD-|38KobwZ-EW+=D*<*9txofQ)Roq1KE8I^63~uuB`Mqn5^#x%oXU%r zmuqG-_-U`r3n&2m5Eji0lD49)B?peIk9u_j_~z4ip^?~X9g!MM4_9=N!Q9Lc zo))c=px+vTlh01*lK==Y$NwF=B=HAdZO#tbOz@Kj`8+!^Gx-Gr7bQ)``ue_hhim~G ze#1a`%FI?hpI_j=Sn_QLudh}DKIBpJ=8Ydb8U{7J^XrX8Mkd20_eThkX`bU zwZYBcKT3{V4f-V%YruW>=f>R1-auoyYI!%nP)u0L}0I#T4= zTD08j$-(3)8ihPtJrz9#cp?^h^s;V^7r|vg0Hr^Sf^-BhzT4%86icKB>fAKXw$q#H zJEZV^z=1q)yB`Q}^{)Cj;Dt?bPvq!A1p#nEz&<135qYz!VY3j#=hbmV!o1R%pk%rF z%49>oF3g!DdMS?r1ZJM{``crFf`F3SkUz!&fe$6PPhth7d39Y4nmm#D`x0eF0sr>J z3l>Z2yvaJ?T-`R;5hD)|vzK{ldKqcYc@5M#Sovc4$xr9y6!QTnT;!*YZK7j_1*?NS zHM@|#ADPD?=7s9m@=j^x4>dJsTTW{)&Cm0cK6y{JFRBEX2^jLW2W6@1$MCR{_1pPw zQ%51&OsnBje-f#$?8SvHJu%L~T7+B;nidBz6A-OG%P(vehpJlbwwWkSV+W%a%9G1aua1g>i&*KVEy zQ+HpXHDTBxxySLou|kUT2HY#NFswH8p~~lr&}AkyuAmFpjWYC3!oI&g#|Zu8$dMU# z<8|9jP92|CR906u<}OHljp_p_IXTFElklv55KgKYF279=AldKjfio_2@*L?R={!k@ zfY)x4y9Rc@v1E1um`A6#=kZ4$u&fI7!>Jv$l{ieV87Z8gZHSLASj8CBl2g3#cn*sg| zbM^UY&GaMsNFH!<1&*Y(-h=hUA}HNgDBXK zAs1w@MC+#$sO*NPZrSXvO)K`AY83uC{}%Um_DBLJXLV7=SrGme`s;3u0VA2Ufe&K$ zj-&dsd}ji%abJBK8zEM~Aos%5^N!E{oU;SN&iq=tQdf2fm^fZ|NwVn6f3?a4u<`#? zbn&?W-HJi)LP}(z0#Rr#llzo1v_BL$$(U6d(wUU~-lz!Bk6*PYbpx2{amZAdCd5PZ zvw}OzWf|;G0Z3q9dEy~6InINDEDq9);Zw`@fMyfY+KNOa^ue%O`@?J%PFOm>bu`*x zVm=a3PR3|P0Y*-+{wwrL=;Sh5u`(x$E-_)pBUhhh>1)EpSAt1GFl+_n4$B4bH}E&c zDtOa*81^T*fh~-Ufm4x$8XJ8~pD^Ax8ZeiC*FsCq{d0DwL8=4{Z94}ugT*|`#XK?q zjCNbj>~KH#tqFJRp-@yYSl18{YT`5Zk^l>M+labgJ?-lD?vTtz0!(ak7EayaXVBh!5i=)zf|$9*z+cJKSz9H~P9HKG3i75Ugd7eT9h~awG5mi!v6lmH(tH z|AVc4l!26l!aHKnSjegaJgAzu8KVtUi(nOxvkv*CQE0Ki;?Uy55SoE}A`EQ?0|lfm zOs@^3M14h@@T0=z!=GX85I&y^*m5X#<7NY%)AZP4suk_{%F%Ou9|I0o=U@Z)ej38c zpv}Og*>u2=p$DUuRu&#!bNmfBlmAd3+aGsn#}r+Zm+Stj{)>bHbDn8F{U=%I&G+RF zkdKa&7_GjF-2jtL5xx+lgdU##EVyzLzWC!{9MfBm>0Jc=fLOEK^@#5E;>&*kcl}Fm zSYwfUr#_n)zqKO(1KUz$k@P{?=Vy*Y?|DJpIo%O(iLNU3JfA)L+Zr#ImQ0h`n(8nLS1jG3W@okK_B@~>srSmb}n zO{A~sQhd`9b#Tn&fo7AewHabA4t<78f^nREk#!#^c!@*R0QIQ#cJk@WP*uKUQSDxx zs`3em_~f$Cb|c2;-b%@1jmm?E0Eij;(4D{T)~+WE|vwqTSz8--CR)6~-)CMkGYh?GmK;64#_|Z8%6pY{qN}|xqQ~RTC4y{&1G!U`Y5|6J z=5#Fw;Uo3Z$36`WetD%fTSn#Yvp9M?rLCNu=QU={I@_YcYQ73TU6EAEKtIxE$9<7I zj3kWeEHqW@hM)0lH&~KUUk~OodRKMxGmAEEZceA%Z}W3WR%8_aSh>%mFWN+E(WM)4 zos?j3Vif;Sg)=^~vg;DJ?N}1Rp%>};PJ~On4`Dx+r2TVk%uIwDPP>4&tw)7gduq?H*NI>4l`^R`9 zE0lkz2BFwHUK4;X6uWf~SCZw2Kb}+Wv)S{#Vk!%H&RoLR!Yjg~)2>-A(a}XxMqb_3 zMa;gqQ>0nmZCo%pldS66)sR%!$#MZ8s@GlSAD0;xlCU?o>>4Q>i+-2KC!5Iorl(hN zkvuS#u=Y9IYUhqzsjcB=h_(W+Qte>R_}9HHSNU?k5+herBM|b40nl z7+Z3lO($iK<=nlC@vNe_u$y@b7xOIKmi#Ov<=DyG`oOwkXMoeWPvK8xF}vRj%X2!; z^NZtr{^j=9Z=Ocmej7?kyhj}W+MG}Nh2`K^S?_Hg4^;5>cG=!YpYd#*xg)ZBF;3#- zkV?F5kglB*@OJl6kgm{){H`b$vACFdx?vsb1gbW^NDYmR=yL1*qJd=Ohr+U#0IkLk zT4zYYY}fOjCa9R^S(xMU66{Uf<_$y4!*ue_uaRuLe&69oy(X8b_iSo4pN$8)V;q?- zlVY-s0V99|SYIC6*;~uW>#gGnzoKZ&abD$G3bSyqM%?^B z+vX{!VgI$~ozt~daq)10cy_*M+gZ`qhhFDG`LAM|HXLQjysbzVs29q%(HnSJPL%}k zbg7*%_sx&SlvW@r?N7E2=X-S*yG#v8IXBpwpKq^w&RM>Cz_{fEFOkj8%O$aXk^1?KOcD!t|uJUFLut`~OdV7nI<>t-!xz|Gzl)Boo zujateN(rWWWr?U?p#znh%T<1x&J{GeNY7Ns2Xww(FnljXfvHu9rBb#_5UScf6c(B@olgx<=x=*k)ER}N z6n5IBw6ll+%~<}24Lw?Y24zEjz0n56dA}Ez=eS?|V$i|6+XmY~22@l69^B_WSbuoe z)y15ff8>oTxX1KW=lPog&u*Quwgp6V+$Oc`+kUi*q+PL|h*_$FV2q>0?h$JM7@5;E z_eP*7fDbWF57(;GQy&?AAMfjYv9)|jEACUlGob+M(yO;xwJ@JdfAou5%q@;L*Qbiv zq#}UW@MAa)7rn4OJeigp)`H#Kib%KzH-b8#w(7fbBPR*-0I zjOh>gHkFcp1CxK}LLw=uNkb~)S4 zq4Yg2k^}tgLZWrHXZ<5XQSrNOZS7=#hhEcT&9X^n5?(?tMTs=a%5N;kbcV-X(Zi14 zwskhl>#j%wrVm`WIPGJ*DVNO47XSqc!u0+j9ibbBHDNhxUFu7Z&L#HPdYvhqMkna; zk2%kGR7E?Fm=2LUw6f{pGbdV7-p9ABBrCPDYneYK$M8FEEc=Gp(Oda9;^&=GH4>$5 zQh3&^v7@tQHZY5GcjILr)9o$0w&JSn*}Yojy1>DoLwe@gr=PH&j4z*_4J@8L-28uoW{fGrg*?sYN2P62@&2!F3zbEj;>T9e)*+ONIW z?F;Ulmauh%ZR4tH>UaBKYVp}FhlK^6FzAQvWNK^Ujv5e!Y6Be>7T@E_q+i*3?UZPm z_6~LCw0W2SVNlh0qHV^hK*4t-uK;PFyMp|J76A-Jd0 zffWE8u#r(5;?hlaBG0$B+f7@I_grxp;x~2kWrMJvdB=X{)drhhN?SlI(zPY$R${4j zPM%R)?(NOGqydwfyET@smu=(z*;cQs;o~FC@`-0h$|)i2da&<(346>!VAcz`fpuw| zT|sm~yAk8tWMDfSw)t)B&(Y3Ix`qK>vAqhH9e;Db!Q{7bo&5aEF26XD*I^t1GCXR< z_Z{k(eW-27`;kX@bgu(q>Yo{-Ou5+|yRB`~;A5YqFE%U2pga8}(72{;bKYqwxM;KI zPEE!@T?4KF$XrV&Qha@JiH|w1lTT*MXY+GUZ}L)mLu-3x0t<@W8vJq_ z6T3qNqE%1Nbd3eM(t`YV9_%!U`cm11@@5YEII|!0+8?_eWvo@YaTJ-ak+hs~smRCM zZ<|GW$ymseg@@Tt^{E{I*3^Ey&ev{OeB6S(H(IH5`K)_zV#xV+@u5_i@iqD7`ZXm> z#Tlk8^Zj#PYE=7CzdrTP^Aq+L<(Q_Cw#6LRHH@OmU^lS&g`M&v z&xcHi*9x1DlbA|z`tbsDJblb@rNSsbhqm$d!cRBVB(({hP28@T1lT|!r7c_(_p(5p zW*Jh^EgrDRhMzXqre2BJ-^btcB1_+mIomy-boXx6>s*}2PQx`Y>-kg-j3?}(rtvi- ze<^(9=))8QM~AZC*5?XiF`hp;{yI%~j}a#w2N!>#_>IX$_lAxWO1dSPNgtT27^+ur6M$vVFPktArEfm%EC;Xnvi%e>-dw z>HT`7f%f#g32 zrO*AH^iE&j`-R$S-acRE`v4xBk64DBt*v7%R$$~*J!wgOJQ#Z5JmQA$r2NR$u$fv3 zZBRM|i9{kKy^(*h@bO>{Q^-a(urIYf<}88=V@&E)7@yC{MVx}l`mM^s`y<=5BZKyt zVU00utL2WjeccbPu`9m%s{WOp31e;GSOjl?){zLSXtXMd%*e{nj`GXKSQZ&8)7xiU zULJXK`TPi{(nV#3P&EltP_k7dS`Y z9GF3=F;ya1XVus+#@P8Oz0|#N6G{8?E&Wo^VdXIDGMDw$qpN=k|~F}RBTTK;zKt=3`Cz3MBbrb0_h!0Ds}t$1XI*H8Q*6){8g?2M@T5H0RvU4#(8aUjtn1~m&K zg9UY9g;5AZ?GlCFuLUIcz%Po!=t%jMIAe}}XJuB5K=myHuKJa~NenGxe)i{Y`uSBl z%ugrBe010N3UqM&E146%zp)OvatX*ES>;YW4_nrQb%JNE%RjZLk~IZpL{c3cS~5tb z-D*SLn6Ul*S@-^X?ps4cPxHKHc|09*mk7r$i#=_5@i>V8pKNp$cy^jH%b-3y=0eX< zW?Qb$HYyX35-9=}e)r{7r}@b(UAoF&P+7FJBWd8YmP_hRm)*p6cZDvd|NS8*C&jEjR4wE)A%7 zj13>Q-o?MTSJThY*1e+3q%-_o;E-4{@fdq;ivz;Z5-86j9JhYv8T#o?0TT)93>&lXWi@&cT6bwM zf}xyqcRbn-iTC#Y~(l+NW|_sc+)hsda3tOkL2g~`x+ zorO?Nk9#EPSL0tq0sR&_Fe;;e9&wI~(Igi$ye=)Zxb@=js_biaMXi^Os08Tbdvvuj zG`i3y{7_0fh-ov0Yjv7u->~y>@v)5_hrG%Izo{@167R$F9NoSY#Q*orcc+Aurz0=s#d>JcS(I3^bb%k_$0^amDkTN%`(g+@s z5{e0yUKl;_?QFneLR@Rezdlany>bFh zHNaije|!Du-aITxaHOIgBGAl`)poSMEL6?V$0Y_`Ed$MHvl8WUKlp_9KZp0zfu|Y! zERoRu7x4#mkngfLdAr)%RZc->mwr<>A3fV>#cMXrqjx;;>sh4+@3yGYC#hy`TGul9 z&Ojoe4?QfuX)1e$;_`j)Mv3WvLAte?h~y6HrmgUX4%~Z|C>|*^xy6sekF$GaS{#Sq zqtPcJhLyc6p|pAXXB&~~;dwMHW_0w09hlLfbDKBpC2DGYsvDdQ5x&i zIl?h(WJnO(O71R=gTTsK9m+)tT^j(L%C99HUZBcsTPI}6h@?k|p`;5Y21_5`v%9!g zFcAGgPFFyzA z+C$L}=h<$x*7C_Dw9F+h;X-9U`eeeJXpoX;i{z4SEGA=Qn3|<|i6R2!K}j)&elM=Q zGbU9*vt%%XK70UIIRkO)>K>wV$y|K4+iK)}GgbP{9imje6aXdf!m!JjUI}Y;QZ-u9 zQ+ol8b|k1Xkab|2u_B%3^~SUiHbVrrkt=`p=)3J07P;kw>jiv^wC@jvH`=2|)p>r_ z8Xyt$pv73s)D?-wRrww`+?figIkV%4n0p&yr|pCPxfjT+cn&Me>(A}(0L#p^WtmaG+dwt*fcgGznCXHh{Hppmm%l4&BpFOG;Wue>Aya({wSuM3P=rkiLeA!d6tV&PZ`F2HIhIx~ zvprD2v)S$xrVD*|)}6!M6>fn8Zx2+M1sDG!3T0zxqM-*_zQ1TsE{st-r3v^2nfev_bChNWfijs;NLAm8(Tnp0-U?SFPD_ezQ zT>HxIX7F3l&T{iVT4qkV0#w;EZM34ayfUvXQS7SsDp~;3TTI4F?Gmj-<2zdgDuNj+ z$jO*qppgKKM6falb}!U8%WmryQiKl_8m5DdM9h$s+BKnz3)fxCm>`A!*UjC;?YJI*~fV=&msUTf_&=bH1G&zf`X`rxX6`0qlP{?#y>Ab1$kJ;V!Q<{lR89~9<~ z_)9FpD53M`JfPQh0y_?LU51+!A6du5Xiyf?7v-* zoTma1h{ikMik@xc($DSh_a3e{8plWd)~P(ZSdEYHe>-hUj@(9pU2Q zZT$FkpFC%z{w^!WH`d+Hp07!Zaq3R51PJKwXiKw4v@|PWkB;g;`+gbQ>Uq}K(>kC zSwuNjcYQ1g0uf7KD|^n6SoM}D55o=j__tulUhs}~zv&LEUEY|{ad`b_;wM!c6<$9< zRKtw+;^sB_iTNtH+#dhXUp3pf*VQ~~xbYtUI!ucPTvriy75`cnhC7U|R>3iHN4IY; zIeEi>_V^n`ZU;#uXVSOZtJx1RJi&5E> zT_9F<=&tlsov#W-jYygh{WCBwa@1fzmuLLf&y_76%;;{|_;t8K?r5iDIBSeJb9cDm z?s98!+HqZUSUNU*RFcf%L&i;zb0=8Bz)uNbK7s`X+iToBLG~lF4gfqx8rrh430VFK zRv5S^lDFwW(MeC|QiEiPn)v z=mL_tqequ$EM1P`ebtY{f;1GPYKZe;~1A{cv_zH8vW#or3)! z;c}$@M}p$jt725f)a>RPtQ*$Q{I>Z)O3ZC+&dWSuWn3cEEM28RsDS0+EBsx_%DRi} z*4e!EG@+)veR!6{KY_}{4&$o#Koq~Q9jdSOrXvYCfy%_IOLHDE_g6ylgA$f8-b zW~4YgGbh;g?KD@yty)!dU@!xY+%CpuOQ5=l2Ec|oz>jCDA>G8O-e{d{yLA_2>nJ&$ z=DJL)X=3h128A)|(6JR__eO;+@XP{oi$1APxVGGpbRO_%@7=y48LlS7siyOVCWUmH zp*d?bG5XQ=&CHti-rrSNT|h%=A-}be=`l4tt%>GV!nKS!oJdjmeFs}}yP(Vl9+8zG z_HARuwh7y_6gVzh{w#NR7eruX^{;9f2qen$DV9l;W%7K>NC-bkn(Q8{S^m7q7GA1!)p|+xiGni!i*Ym*eGy2tR#isN;rBJFV57C7$^;r764w2 z5Y>z~?&B$+_3~Qn6r-nkrcUHgq&SmvG#immv8hi+ORGYEyi8ddo1@iDW#lO>jmZPE zCQdY(1#;7B4?N-x)(?uBAourQ_2u2GHM$QN8|ztsKn_K+A&#yPWU}!LuRFSxfJvs@ z*;rSEb#q;KFMV}e`e>OB2Y7Tg{I|FC3$5|?oCfggZr0&Qa_d77BM z91D({e-roJd6-LRC2t5X*_{&rUUm}KAJdZ~hAHW_$e|xH=m$NEHt?*+bQeHB&yG+G zVhaGT_l{&5aJcJNptRv?{lv3(Zguf-*w~X8bwSgK=(9PaRCiGc*{ikTl&TmV1YA@V zcZoyXh_5Mz`B?}ZR+_N&f~%o~DPe1=C|ZR+7a!E6?0Qk( zaWV=OxpWA)gLbt&A}}G22;&cTkw831s1x0K_JwEFUl&a$uXIYdAsIbfr2!LXslpuM z8usOWE_H}ztUlbnvM^OXgrTnSd>ZB6B!{*)ineW2;gy=B9G8pS-D5^0*tK0MEwE9P zo_0f5+l`COFu3@9$YO|!1bxGXX&Q)SZd9{2akqxsEHRGMNMTuO(TbFO9ejPbO8Qf_ z?X&CTjP0zje0=MXp%(i#8~bW*=67*lyer5=_T<;)Wr66ndIysyMfFE+`&5q~vxBeu z0hJRhd{ZEJYfe!7Ujy&AlQ0=I+&lRCQ%uWsxWk>dg9PoAN@ zWh1Ly9e)YnZ(}8)E>P-TKxl#`2*aC_ERn4$*#SGGps-9aLA*DzP)*D9cCO6T`>anZ zn|bJzW#-ThE9leYJiq!F^Nv_$&?dcjZ~~QvwVIk{kW#0FFdb+AJgfLC$SR`q@nuju z%;*t-ff?N*%lW}Wp*?BX*RNlfi*EEKMVF=R%&S+pj8G z@7Jr%usxIZG2G^*&>u2%r5$WxYh_jRWBNlkF@${T+X3Y8#@a%i@1V5V6UEcRJ#B&4 z)2!G7r}g#q6;5>|9S*GPX zX8BrLRXp=%E5(M0{B(b~EyYb3=7^Ozf`?QCe6_>(*LLcpC?Q?FB}q z8_O8%Qc+Q1?e1Q5)+`5GQ6cRTG3ur166e-9byvvN!6ADAUMT8uc!%MQ+$t-Gb>h+a zRhW-jcjV>eMUb1reSLk=P;$h00BS5tbZaGPW4)oZWqj>v_>iNXf-CAWUEg>aPq;%u!72z9yAB|q^l*F?f<2I*7{Wj>-9IdF=)s0`d08&?` z%vuo-%E-F_RliP&i_41`LqvZ|GYlJXPeK%+)<1uJ_fP_GaE&T4*JXtXM}12h1Dl2| zyl9}koJ29m4zmSugi=$?vj$46^K2e6ztk+Zl(jyt5K1vqCu5NmlmpEB(*O|zgQ4;w zK%1H)!g@2Hc~LW%jd_RG3JlD9o@AmhxKPtt?U8c9z^2T6a4Jc(I@>k6d>nPl=kyo0 zJ;e*3pMPFV2d%{K>)-b^wl{yS%@wCcL{jPl##KDt9|FD26kN>>8nU&L;~?K0fl2FU z5Ew0a(Y>0q#>?GVa{Zu#h4-7OBUl@2%`-WEw$|3qa&iQF3Uu9M?5p}jw|^OG|NfR< zQC@B(%h$j8`)6JBny<@^cf4%P)m?8(2(&1Q`ZblbHeXre`{V07u;J&|UfuK&k5mBd z8ndM8682f&iEy*YHJU2H+G4a0AGgpd0;MAK)MCDOXD=wk{eGAqyMaJ$GbzLPWx}{u zi$d$>>rdyW53!cFw`$%e3zb#Y5S&c14ceCa5{k{6Vd8PfJDx4@_=ipG;+#H=$ zFrDe(`dK_x>si6(H_05BcS<1PH=Hg1uv=WqC*AGMybTR84S`Db9!D&sdLvF@?j5p$ z?vp1f0yAnu%JCZfBo7T9o8jPHV007bSg$?bEP91RAcy;Tlzk_ z?p~EGW&0fHnK>#5H0{mLPfNQ~uAE7WI%BA(rw2DS(bKzy?!-c+L{ckDN+fJbi$A2x zUu(2X)mpvBUdzm^EMKs*@Z>BlM?0oImR>AccVT;0cRMOO|Ik<3#!v&H1YGy-fKN5o znv{P!HgEWo)-9k)IQa!R8JX@=tv}uiHE(S!)OmIuJ1neW>zyA3FG~&Ti7i-XU>E!m zh|iBtU$(We!4;>b{0n@BXb2%bJG;jI_ToKp!Uy!wH0a>KfX_tZ4ZQ8}uOHKE58XB| z$;rt@gU+bD;NUs_CJJ|#TeyNmvTmW1OrmEn-pa$r?%&SI&CN7|vNbJ?oVd~a4Q-+l z^35n<_kF3mUBR{!_tkxyK{upA8pQyA_5(*eP9I4QcuL zNz)j5Ompowt#vyVwct!4flgTq!WOYMhcgLPL%tWkwX^RH2jXvDEWe0;3A4BbI zZG9GoUSRH68YT;t@XFZFC5mnq((ubV;2nPlN}*n&ihKKBGKeu6RBZY;8t7b64I8^Z zU;eX?*R*tYuB^HFU1qEnk^c2Zqt41L9#6il3CASih^z4C4_nOT8Y!Dne`K%Hhf~E( zp|ifL-#RzG?AINEbA5PvAyg%5)zb{4tp9VicbF%3Wsh+9fR!%-VFg-z9BVj^`X!NP z2(;Pq%iI^P6dR@vWk}g5KTM7I{=7Ja^nh0;?BnSqBd*e!O%QTyWce1>XEo;v6Y1p^ zDC3}(wJiD8&5-1iFawYGkEr%7pyuMawN@@Jfgm{+v)mF6f@|IHiS6~E?b6T1hM;3R z4POgQ)?raC{Aya(N$k0gjg4`S!{WAX<{>AeHrjY%3uk8FC|YQN_?M41Gc=GOY?On< zAu3wchwbUZ_ElGlKwYU1_gv(!ezR(vnVr3`;IA|0*TT zhE#~y>XT(|1=g9-aj#r~R#UaA`gE%Z{)(+f6b z`Oy_@;$SOX5_EG~C`Sj?eAXhr%57^k8x2JcbMRj)E?_kGss~|8opRGA zi151<-jh?(nJ(!!ROJ{A#$YH%@m2XZE0=_$=Ze^d1rv9QchTQ*5V3930{Og~A$}jN zT!c?q6cEPkB+~)bT20&_i0Dw@A-}>92;ndI-ELZeW{Ka&BT^+{lI7EhmS|oZa$b8c z6tojYyA@iiz!>k^Fd6NaD2U|`f(s_hS(y2B6e zs&Z{{0>i>>k((=eJKXPgCS>fd2kg{m{9MzozoeeZlggDmu*Ioa2B}&0HCgLqhvxZ; z>kCG9nPDA=^Xwhm+-gAH2()pgD4?h&JMp4VZ$F~__5m~&l;vu7wnFbCgAou(T~TXx z+Up}88=JGbHQ>4^dAy(dD4se|y#->ofhcq2gL3#`A+@UR)P|^^@PM&efW4kj#QNeW z8^x4|EzVEv1xRcv2gX$Hg-DPM6ksC6IsAgd%4jy`7fSjg*gT|pseW9!*nk~m$l$u7 zvHcdhE|kp~br^$fF4E`D^(ED}c_dDgAGho? ztOs`{L;`+cCO2s4v!N(?CO=6e+6X@6#i9{9Vj>KztkSU8Zwz=Uk9w>b2k3^@4^}!X zn7D1AMIyiK0x<*`X|e8Y+F-?{qx%xvBe8+wiUq&8oHD83TE6vK^LIY#0~ss^7E|YF zD2l2LZ2Hc}CW&A~i2k1GQ2Rk7X3j&D`6Tvtx7++9*r&c6RXV;vt&~h4Ujslfi9;8`}!Ah$(Y>J z)1v`uDjf7>Uyu}Heu9EM2kE=+9KGLS7-Vp3pHpLN4aYcZ|73o}wy_<_cpBHGWDIOv zgn`EO>Nv|dR1bi_{*6{qRW(qsz3Gjbffan--t67>0SOT3oPQ;`>v?&V%=F}z9XCI( z2gcPMawB`S&?8mbUNS%O89VBcZ~p8F=$eR{&0~83NY%=~g>i1(7_5n2#4Y-hEwtA% zvSb~f$y7I9a=3Qm4)*%DE;gA`i2daksh`8ODYX!|6lbC3TWtTwa>t2Y&pDAAIe%lBtH{1eEGv3TKtDAE`NFN$_1(L7O@Uky$8Bs^A7L;FpHIq6 zu*w{>Co{o3Dws~qp!-r9*n7c|@EBTCnf(hV2?N36GTuKMUSc@xWiBXJuRGd2oBjqf zczc#0M?D3o=Qv)oPQ+elLWqD}U;2Uk>8$CK#|v=CTp8H>5nlInr$&=jox=EzZZ5jH z|JiRs{zp_4K#?K;4>Wg1tr6)8kd!-m1{O0wES;^r!G0QqE@lw?O$sKHO_yXRkojN_!E876I?yix zmKtL4_y!quL((ZgP&2|`v_X*FBi^NhGeyf2et=`@{Y_-6x>k!ZsYT?fY`H$^-uk~a zMbt2xfk7YFWdQ#T3Fa3TGK z+aJ$o)?+oHWOw*>#sCx%!K6yy8zGw6T& z!WDa#|G8*j8f;w|=L>Uohl6z{{iW(SGI4@v@U0?wM>2YCB#1O3*%@?IWZV!@8Vc66 zIA~kXFiR5DiS)m|vd20i;c>d!!2V5$xd zpOz3lhe*S)@L1#ot7)R1%_Jc4`5#VXYI*$w%{cn)3F6e}ff>2th!kkDux35KGbg** z#a{Qlh9b(i+X=xQ1UyBC%0iztivC2jHy*Pg;o$3pe{VXY{_IYWh?C+VieNC8Bl2 zTGe286L`*f{)p5;H`mJ6mKBAjptyiY$0BLmrPQ><*9_;x$Il|GmW6gyHD|XMR3vd7 zO&0=|(+AEV^6?ZOxNcTh74|GpW1`VbR{vgAgrCb&Ftt-2e6}{8L!Zpr_hOXvoKe58 z#;;z@w}<_8?0NQ9oxWd#T182sn5PfolDNzR)euXonQ&WsPGw)qSJE;MY@dp8vduF7 zIT-H#Luf|a!Ui?PkcicpbU7e<=5-NXT12MrIVhXz^TuwbwOsYuxM0UhvFhF^g+qEn z{s9AienW_*Ap;3bqf7gEKO`O%OMIYG@$71*yO^@H@T1$sSBww-?%grakmOb(7_j~g zoKDeryvgg2u*X9`69^|{UMk)@m!;C!&vbISCN!Tj#&P;^K>K6;ApgFx7s7 zXXhp(RE&ngo-9f!f7jof-LbcpJFSiXBm_(HC@YdE^Nk+MR__+#N>rLb20yh!aDa-U zRhxzPEE(KVsXbtjkMb)X@<-TugfPXhRf?ru56)!rf3VBBSJ|joO1ffNa_1E{!-UI2 zTI!Ma(*9wSV^mh7@iC=$Tvh7$oznf8Tk+x+7{?~Ca@RaUZt%?8PDwz>{?wHES1_+t z(IA>$?&eaht+Euo>84-CXu{X4Kw%5FJlh{Da+doUmsd-b_pJ4749`Rls+ZYPGOS%} zjMsX~x%n-ZjNRW{lyE<9eQcjt3HT3v&Jy8%?cG!psr~AH<`1>m@nPOsstVi4&b+

pdAoEtYW_ z7ZIEtkB7d9bLx_qOJ(0{@5;(ytYqqv_2SXORg1>)#}r-?ebQFHHcCJET5-<&`I~dq z557i@hk}Y-X$;q`e%;>4b#-|!_|&R3DbA6zC!8bU;frn?nmy`-WAv5w6+=$e1N@- ze(+3D>p(|_p8FGP^gXFVC)s{T7X!0`X`s3ue6T%{iZJ3C8Yg`n8yXOd@DK3$G-gpz ze_Ct!$s|v8K(!yKA~_rr3Yv&8!J+D{t?Pgw+A~!EaXckVu>xE5e63F9sK*sHF?oC^ ze$U%@2g~bI85w^E4yK#d)t=-%_GX_u5D|&yzCyayIW}g{@+#1I=9chicG|Euzw3P%x|Htl3{&#jxCu|%AZfD$WGty9$ zl9?B~DCIBgV(lc*Jz#ZWIqzKvsEhcNBf*f1x;7_L%b#nNPJP$MyEvFUtR!5>JfNw; z1tiFo1ekRaZv=R}e7-Q#e6|JmDtu}vYK- zL8ly_pBjzOB7y!OP>7f5;6_p`mG{I|xS+9xk*-u(y^Est_!C%hULahH@X_ReD;rbP1**Pt~R9V=i!pBHmHi2t{2-JxjI~Bw$`@AR`;sw3-IUg3*So>T?#^4P=0yF?+(lzzJs@&{OkD6*&RnQR zfWp+PLGe`$=dB(e(0tvIsy8(hts}CST|a5#^f3&itnvA5Kor*{*6KF9h+ zk&%lZCt4Wo-^pdM732~CzXG5_XAi!D%gFg3)&jvklNYpE0UJm66(^^R$)LDX6VBEn z>y5RFrOzUF*?{JB@e^pRkiOI>bvk26`WJMbJmrZg!UUy!{PBPq)NYs!=hovn))jse zTanHnvYSZ_s-3Nan-tfpO4w0OXzgw+YAP9DcDc@VDK)s(=&a&_jx@0o_seU~fk5=c zm}`0|C6U?nx+|OSy<;CQ1QK?TT{Mlto)fY0(l^cI#cv5v{LA?qT+Xf-A)M_mT4#qp zJ)ke>+>yRfimg}OckoU1*wumqX7hqJzQ*CY=YhXv1p?6Adan&~Gr~?j1M#Rzd1@}5 zbmfuZ-aU}V-fWd$Ec=V2^ugEL(hrca&1MccHgYe-0YPWCh1_vb?>py`fkD-V6pg4L zzsr_}9s*BQN;2mEVxiX`eC5#ll6J4ou^02z(XA7)zdI`EPJf>P5Z zc7AZ<+8O)8Hi@?4h?ocXN~KYfhBfq%KB?H^bw@^X)o18Z*`oi5z33wyz=Db}?*swf z(;zwH?kz*Wy=qN$LZL^8UxZ(>UHJ}&G;mwoY>aFezZ-IKc4zLciZEWugu?4Sj_#?0 z3p8J!z|OsAs4H01_1CN$FY5u9P~*d9QXow#+*rAW3Jq>i8fBGhfB=<1RLT9ScG~Eg z#QoiweD6D6dNPklX!-+5(h~RU-A&KHW%&+5?m^k*n|S#rj&S;&u9$jS7M}wu^hl)V ze$lpA>oqgE3P0nD(9N-dpu@;V{Cz6i** zEGh1T%AAvW!2euP)?wuPjfLOOB5!edaG37e9nbmaNj7l4tsf%&k98tjZ67AJ8IH$e zPs^M`n3lHxT&niUGszD4_>|`pNKG^Lr-DQVvpfFa7FN(PJ4nh_M*;<3p?_Jd!3d`4-q4}CeomD{?*Lk*Q(S6d_KP2bn z1qE8!Nb?fvYYBH5{^MB_)t?rdqc3R)NPWsVmXSY}&T@LHn*1CW^Kjfuri+lz61nqg zcPZztdn!9aU&+UmD+WqG;(z|^JaWm%;-Ifke3(eRN{G^fnPT2z&l6CEB)c!x6FRb;`5WnV1=<@WJ@@#)CD4xFIjuQ&dbB@5 zI%H)_PHqyuVSYJO8a7zA)WoL>Z-IYm7!A@)_VK%H&1T%?i5k|L_?&?K5hw1}V!G0K zQ#?!edcEkiei9y(i@506pF|3`ouI?sapzS3{lUBLuIx_AjHKS$G+uDaE$T zlGj*Yh~8k?gwHv5hfkw)NyEBKVLAM~`#Ub#5u!5l$8H-ve5f$Fq2njt!13j8TkKWs zzSdoV93qI@Sv{Q_Rggb&`p?OT2oumnuT)+9-a@}pD0~Ac0ed)6zfa5z(}xXMA&s29 zHtLWnTALlqtb+|$A4#vP^_iY)q36X-)&$7#`;HeDjoIs5b?)9@S?_szOf$rGrmNoU)mFX9il&ksu(QJ^xoY9A_1G(d zN@qsy@+|+VV>OXT*FUEV2QQ1!jrNPvq<@cE3|Ok_uO$f=d73<27qD)p3m)?MBlEuc zdEfFmrjI4y z5TzDDntzEq^lMp{i+!7u<)og2j=t3MrGESIHgUg+xS?@oW}Dx7EHhNx!05&n3$G1x zo}u-Jkh#Nn*l8u)XS4yHiG$mpMqseh5_wXHM7)~^JR1<4r)5Xj@$a1D>FZ@pi;|?u z_Kt7$a_~bgfR$LQ_c=xpH+C7n zPeoq1;VmOGvz4*Y^VY#1O#$Ml*mpl6IoBd{L_?;ZpnuX?^uO5`|rZVqx?%;Rv1kNe)8Z87A3)`@nu#Q$09=Z{za`)W0KW)R;& z9C|XUi~9r~(}Th7J>Vuii-p(fkFtkhbL6zRSUKvGh}r7&uuQxIu;Chch<)qgB$$YS z(YBso4=-7m2%ezvWYGf))cz#@T={y#_w-5rqs*cAJlrQRcjqmFi@ksC{qQz8A8Rs! zQUJ1znpF@^_cbQ0&`LHxAWWg-0e*)#?<>ghN zvXgp>C+ojeQhXyry%)S~1k}vDlw(f{LO(wQ&I-OxLBov%-Qkr`7k2jhpY;g8(>txS zQ+Lky&1yEO)L97qsX>VTDS<-%|1$IgF}{d6s?cZbeS^C$12eL=NI$1CFTv9D`vr< zFb2%qUVzsRfHll!;XOxD|I$i-dzSm3UoKOMCI8dP$d%7;uBlfcJ+5qgC;bQEGrWieRH2VyKi=6msTU3v?qq9PL)&Wx~&V}3YTNP&ho83!Q)=7b)D^mW+pKY01u(Ur$pQ&sjq{# zm4V?1%h+dFR69!vZEqrYOoSpq4V~J$2F!+A#y-JrA9PE)%e;(t*6DJtX6n3AGa#bphD&B>5SNd2u>fOICk3Y&WSgMx{m zFfBEU9-=-UX-?9a;u#D_f1Ub$8Omx&Wa=tVvmHOQ9_kIRyh-qHnqyXlz+P{cSx^`* z6o&2Z=YdVM7@$LhYwt`2#(K=UFrGc2+3^N#Ry!~ek_{K(M4jq-3)hl^{#{2|6afCsZE3gP5GuVYr zIfoV8tP?V>p>p*%G#eEJ=Rn7vp$aWk6z{0-6-G`K=S^JvwQ>s8x`3h#qQL1%d|**9 zyFPETN|yJ3UDlWr+_gVC6JIs~78>)>+{!o>vYs0zBu8yPe+psnaZnc{f_MoOYoxBG zOKmz+gZ=OcMxOns{nC~+Nny73OKVCuXhERSQvLX)nzjf$hJkOys4Ff~qFxu~nU|q1*Woe}E(+8`Fg#qc zYxd4H6eWqW9KzT>NZEdyCsn``-MEZ@NC~}kVSfA5q32t@c9frZZjH-tZ@GHFGvR8` z357KJ4M5>ew&-IO&4~i=a6ESxzj3n#DQJR4qemf;z#!UuvEmK3)kLFkf_ou-7MbfcDOWlhYhNKpmqg1dJ1 zX9j8&r8__bJ>w`BVc8A4jBHs(w#T!y4d?k;l%iXG+f6j)txY_4a~reml9>PRCLl+a z8Ydx_O}79j-OXy(NV?D#K?3(e;U+&+)uf_xtfJj7#>7dMstO=0*E%`+q2w&P5BwmS z*eKpKbII(@eo;VYO{0g5D;!p8ObtOmp)l~)I&Sr#j}~xJm`y9;=JsUJC%1{66$_?y zs0Umq3ZBA9GLF{SB*eLrvgep0ROUh6%~n|X7q`NGR?qSUR^|3@7fDdu#MLM=1N2ha zO?E;O{M?f*eZF(?|IYi4?CJiWvcvy^Xm7T8q7r1TM7MVClxP8c^DEVtt|$C2 zAiYIU>Am;+9Gv-PX3eZS-(PpFnY&gZcsS=Nd;j+S?Pu?Oo@%Nq)1G2J1%tt8RcUqLBPe`PH^x${aY}|N!Qy(7#NJ^Ec7LVB_v&d!6YB4DEzJK zle94E8<1?1e00>$!^5M}lZg*|h-0Hvv`1-bDugqzTAC`E5-5#y6|DbqWBNcDx)XtX zhm_!)Xdpd*`}R;%*)>yflW3K5%g8$WK^*>@sK5Kcp@cW_rHDh1SZizGuAeOX*5t^r zXY!nBYkE>$b>UnT?#v4=74Y%Z*O{TZef+x<3Qh-IdV%w&Vm-cs+Bz+9e3$kjlk4$K z86($8F~^sx?Fg5S?{@DBkw3osR|?sa<3F{@{7)GuHw0^_Q|YO!pgOqnG|qYaHx`RW ztkj_2-;+mLnJXlTom#@66*5-0BCtA~@AAgGg1iPdPzX19h5SftqheF-UazmNg7gJM z2SQjJ>BTbBbxB1#fRWiuJ=h(QxqXW6z`P~fc zwzC4?Gi(-eVhy1+ZLsNxSRr@4t57F`JQR2AUqiU5DLi;NdUVgyfOOQZ#2s)AX{+4y z@<7&Ni8mTsC4>xON60Jf5S9D3T36R+mWq&X1q!%z+ctxODWI?K|k1R-85q9`01I`T$)*9M)#^13Qk%oA2i z)>GOQJbcm9OY@YN`77;NG>ZQYs(|_Dm^itr4tl&xcB-Br81g=TbS)7_Ra@mnZl*r(7 z7@z3ueyRy4o_NWxb;!=**u#U0%y`X#5G1z%x^M}R48G&A-W+VBV;^)2B{F+~G&UMy zpx6{qim5PSo2w88fJ!XAUSKgy)=9yTg&1S_*M}UOwdZ@JdybC!My~hSZ^z zm$MSu!B>HmI^Z6BtB8`heaHfq=}eLl8_2{F$3y9@J?j~^Kt4U)IN2hX1D(=0)w>jW5~{bCt`!2YB+SN zLkvhE)!TNnFW?nTwotWG8;F%5Y<9ZH!=H;d?W1lMSeEwe_?yAX5bbZPZ}QEKaB8$j z6V~+rlEI*zh3X6nb;N*})+{;0+i z&B^B+f$b%j;TZNtOucoCW7d7qG+_-g_;Tr5uWOpr(l=2;+c%0Qsb*_VNW>6_=o{14 zseP*j$x}O0Ojn=ch-h?=SOZ*I(Ltf*<%5CnArB!}Z-xA{@5&r1C>gPvY=W(A1>~<_ z?==%L$?=DQ{WkOg{L&OfYH4xpPu&9MqkxN2QLls z%B*_o_0elG|0t0__GvTgxyvkvm0szjXx1_o|0NenkH;-`%?3pgYuFg=4py)17RDo0 zi28!N>g{n{D!oXgI;FZQs=kuw)S8FgCR?^f&y>YEKjTsv5>oy*>dn4}=>7|_2ACgP zC5IGf>(qFPP2`-2o%eLd4_|@knCR*jfsT7h#B4O%MVDM9e^16iHg>8mM!SX!*$L;) z!gUr{n_PzOWEO}bWnas&R`W9aTB+c0d6UC-D)L-U#mF$@z|XbO_&XF+7av*6D;e{?74kB-6Vs6>2?6x;XZyiElrq|ZH2<0M+nnPF!*pIz3!m+pJCZhk&73yzxEP( zVP&=*Xc`8-3l*DaXj6t~5W#sKEFvE2S~=Gc!lEqIe=9tPn^Q}l*k_iwT)S|NWN_Z$ z?Q!tINkFjn+9{KsAhh0|vouT8t`SBqQWQpFx8Tw67K75*<5-232Of3hrMB^DRw2U9 zFM?M3I1*aq3#C6XOor+7^falJCpDv@qJpTV73W}YZ#k9hooUFYUxOMV{}Ug%|A6ku z$$2{JJ)Vrs_Q2>~)<*MLG$iq)2E35j97rd2bThcdYC$7ce;XQVs~mQAtV+9k9`T@d zp)%@p?!S)n$yJ{7!+74T<)4sB-gV_OW7$%}-nDzpr)@ivTEY0V1c$8TW;ngH5Z_YC z-eT?A{#uvIa*ANU51K^NCHkOcc&FrCzU)-P(ZSMn%g2ww^2vyWd~mBzced zCYm1ESM9I1J2*QRdR!L?uckVV)|{G>y~kQ3#mBzXZ;h!22Fi5F9Z4@NEWiS$q{f+g zE5QU7q@L8nb%y@6v8{&qt%j}on<&FKQr-f?PVYw<`fIDT(HXex9H#A~PZmKtzv`xB zmeNW}+`f2vd3kA@%%#?w(ENcgQHjr_^7%sLaMbRu9}EaXDpM_yiZDM|W>joR20P1r zhctre`t|k^-Gpb6Kik?=m)++4;C%H|%KmPDBUK-V+Dfx{L#*%G?}DwA7B+8IYBrC* zfGh+JECNMgKt1gI{QO^&ZoE9JA&m%0-T%qM>i*>tbOFfck%y-z86Lsxzf>=-%<4w* zemrO|Ms6;?ao>hccH7eS>+27cjHWOG5wGg|`KtK`NZdht3oTE1Qoe8;E>qJ<%?oV~ zIST&nN~I@+F`9o-;Yn_aRc3EB_h0z@zVToovahyFcF*r|8=ko^3>pdFR?K)Y3N_vL-Wr7aZQZchRS>&$ZpVgA+z~?tGzg-urr&g!a zquu9ATHL?=P3^Y*_Kn=ZjK(|whiSmdXFkK?kk8K;G41^C zi+xtCI%W4B0LV0tRAT`C7M0{$KGDm4g|ySK8dv1HJClX^6=zTiwl7dSf2~t`?W@}E z4PH6cJWgPOC~tw?qs6JvECX7{ZeS*o}HIBIdCtU(sFlw=6ip?4j;oC*+5Cvc!AN3O;fke=SN&W(ZZxxn$AkEe&K{n zI&g6(^=O9!IJz$%s5wsGR8^%Jc4?IH9uE{Rv+J^*{hkA>n`B!e{dmGLHtj#=(W5p3 zzO1eUGFZM*S-3L0?_)FX(Kz5b9?kS*!HWTI+`nrnBM@_emEw&%9nV?BqueH&g&_oW zrFH?CirLqLd0C2rHuC)2E&LZMOanK1J-ob19}He&_aTu1SeK{-dhf5a=q4V}>}^RhrgCH76I#g%mSf+FqITkLK{77l!l(@XyYz zk@7VsD@Ag8(xiPn>qth%)63httV3+L*uMK+WT1y0*`Fh3_4R?<&tg}<$5KNn{w|r^WHGO%J9s? z!$Xsg;l^xsy3bnT_*Z4QU9HOTAb)e8AC&q<<{f$F8&_mkW1}H^;Z{%j;@NN3a=5qD z*j>qn`6`?ge7KY3Gx7A!YoSmuPlQ!Tl}hT8LF4ZE)ZOn{hP7V&Ku&YX`qy!O1_j2S z!DioxIGpK{UOU~mH@XB#9j2zHmTz8P<9+Eno7X_-Wz|>9tMQFVEY4M-nVFdzvxyRJ zNdNf~YOq{3pgn2SWd=cW>5K-=L+Gpt2vP~c575M?e8ZB5Lqo>qo2Bs^0{hiDz-<+e z&9DQr<)8+D@Y`YqV17J{0LG`V5VzQ(C!TMU%)OgkgazGAFiIBY|SOe5vji7`vEjSiPpgct-eeJNDANIp}X<( zud(HD@#XEwXw2cx)ODvJ5n#Jw8Gc*i!NGJAB-rMtx5efNMgv-+Z0cU>;Y{j)TMHXx zh4H5DCtU(2Sq6d27;tGk0LbkKS*Ql?Y5Us~*`_JEBVS2LNgu#a4g@Vc60bWWX8$}v z)KP!dh}Ia$Bexuguo$>w-5RE$5E{X{n3HF@m!E0`yd$a&TEh>56q`Qci20{PRT95I z!82g~j1f#k#BtzbXzKGLEYA61rB&2FpX*?Lcq@(Y_09D`uv&@3?McA0WAioYG8?*( zlZU$wIb^L6;Pj{cmg;=hs(=LjqKj%~uLP~9b2x4KZyDBjpn#4nQZbC?K9}Onyau^@ zubVE!R^l|YVxiStx*+b%`iy~}oCJvFXKr5M#66BZ!=;VFLV;6ZAG!PYl9vMP9`#Rk zB(^+0dDf@H(Hu@-vP&vyT@u!ol#*)E^)L6tP(X~IF^ieO3wb+_V=z;%I_Vz)7n;;~ zxKZ>qQ9K&Z&+?*oV)8R1loN871+s2#`wsf-ms! zZ*E|0m-KnhZ4ZwhHjf`}ibqM#@(;AhK%298{;Iw!;J)RR=-|4ok#dI~LqN2U{NNnhFc<&fVaU@-%;lF!?EHLb zROchilj4K4OAYjLc>@tP2+-UnBgNgve5afyG;Yndqpme4pOTkBb)c~;)KV#$p9m>F}W-=2E z>wMgn>>tNnH2~Zfz1$*q80%d>XLjxsB}C95E~+*^0776qTBbkxX3~#C>4~RJP^8A-%7ON%!N&SFu3Eb*eD!HO^;Xk2LZqLtFyzAsj z%iVr6)fSVt0kl!>lP%FpqZ%kT5G%NU6>eFto&xb3KceKrt`3@|-cAQ_Jskg8OG--W zNrCzF-kWxQ5VmeL9vwhosO`tcC*fl{hfMxMC-7Z@PAC6BYo{zUmZ9D+6Q2|;8?ct> z`hil&t`jRZ_xfJckHqnPZoutapRHn_a0InIkoBOkIt$~gbD`EsLq3UzJAJLEunwe;%LJn$%Ck3is=xo+pH*JdnJZG z_>7r(66bj9R#s*_0I1^-=4&=CSaOgAR@7VB)o}Q`^0e=bG=jI(eK~3 zkiUnHDD=a2gWqeGswU|mwil=(kwf3NBJRH;t`?F&kji0kxElXP(sQ=BQtJvM9XwY6 zQ9`rKNxFPf+|?63Glvj9TXo7FCK-BN2fZe)+Yk6pyX$@@fVVcD->CF4@Bnu9;ud}m z4u5yA3f)^Yt(s!zHG$un75=tlpul$r)sd_DvivFQ2dzNK&}fh%io|kT-c=YmZFYP$w&uV)nrcI(~B6z5OfQj_XNAt~Ei+MjPE8Vl#L+i!~&lr{J=*@*3tM&9s$k z9+SuqJA&3{q?I=bMsg;xlC}_TOq%ezOn3f2XKJ5b-5N4xCWJ8AHl?dN+Tr~2B~m&H zZx#|wKF*dgGJ`0&h-8r78o{LZTY`|);e@HY=D(Z_wZf3^Zlgx3K&CX%Yxmq+yCX?b zOlVssu23D-fkt&C09kzz*9WU$eit52^-9oUkt3a1A9Wf0rYIY%_2}NUObwO6_Bm-ThBE41iT}fo!jtf2Df?4wAQn&kaR< zgksYo$bXL##t1(UZr%zbXAsl|S>!9o`=PCbywFFXj+|Cq zIPF=3MGulk2sn;-;!OAF-m(l71`pzhy(qj9 z_~>M*v(+o9LUWW;o|eeHqd>82W~qXn$+L+MI?4KGv`idi>f~l=|16V2LJ_~qN|i*h ze*?*2GbKwKK)-FSuuo}Etv(|sqjm zBab$ydw_+f`_057y+69tKpa08cF5I`m2cjA{iwL0|xI2$P!hy9s?155#Oh}x&b z3sq2N^mXS3;8lXiSL9M~P`6UujaNgNC2J?dX(xz!&VKKHPzkL|C9wm+s>h8a-xet5 z!msOv;E1WA3+;L&#BzIfaCFl9>bAo`xr3AIT`^QC=;ZYjx~I(ouD`4Wp58q z^dA@Bby;7;d-+c4w{*U9Mx)IZsevhW z2JgFj>w_*nDQY#;aHaC<)q|0&(&SCSNe+g<7P3(v|ofZ+wE!6z`_rOZvvIp!1%}6lYjex$(IQxHf5iq}5X@(flM9=?MVvUU4G>XFoG- zEclm^8T+es8Vx_CIO)dB%FFOTl-3WvY#)xb1PF3Z9KG`HKfs86BW zy2PzNpzoRSPtM-o9kC063I#cG@TghL1=lmnQ&>Y>@}7t*r6&DI(!pIH1N6-Eh;mI% z0i=C?9=@dT)xwjshNwbkW62tO2f;9QelU}V2a!0YhVi!>cbr@B-aM(QU+H1}tADg- z>_&OcjX7Bk_;YqtVv3H1s*Zd~moc}RjgChGbHtodVO1uyY2EV>ucBwfEZ;Wv1xXD# zX>IT_+y@_kR@T^EDSvWYRAIvpacc{!Lz2Q0#HcyQHZuIW!BQ|mu`xW&VXT^%s{V-1Lytw z51-P0=1+Oo)0@1@w^&nCk0&Y{SpH%vqk@apt?`V9NHg zy;JlYjmi2AFh_PK-MY|^_U%=*&ilKtJH+mlYs=V|bWOTbvJ z7gm|`mI{c>u%vwN?R(&C0J38_r=T>Wn5u$MVIiTa#_i6q?MO^J9%t{oWTnUua+)Cm z*ZF>J`MRUumQ*b@y;5`k`GL%mC>0~#(vB)g;12z>DAgW(F>mSJyy1L58((QD0Tzw( z22#$@I*)i>RAdtn$S>t&B~)5j|BSJJlj0Iy(^?U%b}tNh)mYNU_16{PdW%c(_a1#X zfn%^H$D0*RNYmHIy3OgOA-&mm#bV5YT4Q7m$B{ zVcK6-Drh3icF|?VQm>MsHT)b+H;d1m`Lj`{SzqC(xz%VDPl<+e0!Q}g1L$bd?L|Ip zt}$kwyFchg%#2@}pS9Iwg)<2Z~? zR~9S3=oo$Cf<-*#C8OzXU5obZUGlTD&+cRk3ZgK|bZ z)SJb8DNs53bYOifJL>X~WUc?FC{d^6e1`>Vr@b2Gox+aJ0*5)PKQ7%6xLe5bO-3sV zO-*>rSeVqvHP7NGx#pf+{Kcs(CRUTt(6^xi0{v-WAWMhm5hs`mCk_lNN~8cX@! zb&`q}bXlw)8yOSL*viifp{Qgc$Ryzr{3B$Gaol#GiUlVG= z%vt76;dzF?$32X8^9u9|d^0-oN zzlbj=Iaz45`pP|tecft~%8UicW`G7(CWh#YrE2?S8u z_##=bkVdz8gGL?QzxygDuOO|VGQ8$N-clexZj(mz`*(>7Ae)Kn94eni`IP8)Mn@`s9Sf5S7d2ZqX~IfNMQvy*teVWs#&DdxD3 zQLNpb`pTo3`B|2TbqWrrxv)!fPXuJ9hJlqSmjgj=MEN*43(63;t9za5TV(nrYs6%X zKrm#)m}FfPcegg9_1l!|zn@39MBR=puYin8MZ2(<;eIy%_iu*cHA}1_9cL5p+e;uakKwAWfsr+1>O@gW!!C+ zTfK#eXLK#5Swi;8G_91tjZt)qRhL{o;0b=LPzmI`S9L2TUS zMrT}|5NE%VDxpv(%^cs0_bU@|7FO zy=`rywQ(C(6%2bsAASSVmz*fYxL8dsyVH7i=B&!6KP{ll=}MdmgE57R3d&2nD6>HL zi&9M+v*J=`wz$JN{5q{=Ur}B~dZHeGvdvVD-=o(l7>Cz=CQSBj!>bp6hBS)1cgi)! zxg4}J`aIaZRJR{WS$EX7w%vUres#ceODp>%;PzV-VF{ilY7}A2yb6OGA8YpR`-@Rxms*4^ya4JAFr z^+m)=O4FV)w%C{)P?)od$4<@h6z2}yX2e@&zu^AfzZ(B6D#xBBSMg7R(L+i^u#sPbTSE*!!I)LTvB^;YYXS3 z@{*@V)aKOa@SRM@)pL?O8flJ1Yv{*4@PmbU8vQN#jM*r@KmHv_bX_sjZM zg&QONy~zV>dqZ5v+vi>&fOh$^8XZjX+h%+xu?z5xrQB2 z*N-P%7b@^xoyoO}hC^u3E%XLEK)H=rKJ%8PN)o@mfqhNBe|mt;@KjQawqJ?%0+jG+ z&R=!4>`Wr+2T6P0cNjibP%w8ZhL(bp&w`F#rhL&f6-hSCIH6rg!%lm($ixJ8m6>5{^5#LEabcA*=1 zkHzp=cUtJ!?-bYErlYIc^g`&7dnG=hRN5xnF;S88gD@-80?GMo*wjj z81tdi)0^J>=ms&RC9wb8J z-Tf}dDzW;-v!&(q%F`>Oqs4w3-#*2F0_SLu-4tmS?>-aLjL9)KazGbm-q|w09D8hd_>Y zdMR0Z+|v5qk1ufge5u8gN}vWwd{`LHGDHr#t8RhrKWB=dRPEjSUW=EK-a)4why2?) zBKIeMzWgDx6qi7Dt1TI6edoC3L?(o{V$(aU;a`X+ zx}}kj;J9eT!I^XoP8tZB5}*_S6#)v_c(&s_tgh&v^I|lC=0F2}w(LNK(33vI3&G@t zlA#lx<*k+*-SQr`>bZ9IMnapIGW3UxAHPmS6?}RU5}k?jB9lE8;9bnZIkEmAIf@cg zRY$T#{}eppf-iXx-vJ6#-hQ zevsBhtfUeiSk_{F&Q!tvT~(p~*71|!sbtD=DyVwL7**=X`|{8>RhSk3-~#m29Y;Rk z;{W7V5WtT9S#&7JJ;g35HkBb(;)AB-SP}G!Aph&;fFI(4 zP;fO3s0o4#RrCkQW{*t$y0XO-pcQ6l{XBOb+W-ISq7fqskADC6J@EPm^?m_y;R3;n zuomasq)!N9_uX8XE>2ZW36z$cpNh5Ph^E`~{W;k3$?iRl_#G{NOa2}qZR9DI5|m5g zoRure{`0NrpP*4nD)s+MtowR+;#rF0{);L8^*MCmhkt!L2k~$3@`zX=-(5ofR&EMJ zxCJYi>Uue$6-HPQ(bh#Tsd?qDBNxB62}EJNac0Au$i>dKBR=FTmBT00piHzv6DrX- zD4&HhaDN<8fMl`>(dH`d9L{;#}WgAhSN$*zlAALTUPMOXqU~F`g7=g z6P84sAU+nFKvsm=;L_?l?Dj_HtFA|g#i=snL=hquX;n*G{$c3?=Xgs{%Y`37>`}p( z4B^Z8pTEVBEPoLmKWIELLR%*()o@Nia9EChn+W^0MYY+snMKwf;#4~680u}iXF$fm z{C58w>8P~7b@1?K+N-Wl`ZKbfg=~~{C#y=vcXFpEOTPVC>F|Z=Ny)de!>KSn%1k{S zj_9x;fxM|Xf<~wdE;%nEh@B?zbUxG10KN4U-t{#y!s1{fe3*9i5L%mT=i-`F^Oqw5 zg9Go=?+YCBeBdLMQMC3HikqEHFU81TNqt{%CeT#h*=r|0`u@TsdTY%!j$_UQzjtAP!AE-Uok3inX=@M_9r+=R zL>wO}yDzBFlB0;xRo9V&-dk=<>OJnm5%0QG^NB6DL7B1@sb=gJ=4iEdq|3Rt{)VC= z=N05BM9B#shAI#Md3!lL!4a>8%zN%de#e}^AAQ>8#mmX+XW%5u+BL|fY_>WguuIlc z-sCB~d6`oUf45I*h3)wW>GiecF&PT)2Egi1ZDM zMtS0Kwx9&`1aylh8Y_b&|NaFZ7j#ad_Pe?<6Pu;?7x5m(8r^>{vXlp~>s3Wl7q}O% z`ie5_`s%bzY2o)I@aqa_2dd?3Bpi0&uKcgH+>ZwV+{?o_;@N}6g503O^`&dYj%Wvl zWoObV)@KGRx%b4zTKHJk(uMTlmPh(GG`rQD`VFr!>{bso-m{;(OGwj-)i#Do;T`HS zFAwC0*63%;;Bn8ePYEs|U75JWHg!4r2WJr#gDahc9{9Q7GXwbfs;LG5w763nE0(#X z(P{1n(zoQYgmZ|E?So$;_d-93X9bw+W~b6qc1B?F1RFvt!mX7X*A<685U^|f1m4gQ z^gn`&;RD7_W8~=L#)Xv{qN#P_0#C=yO%=>Yh3BS{JyE&?z0BcMdf-Nw3!yG+Z=_Oh z-P9lp61}-2NunYtqwsTnomsduLX19p;cf6n>ZmAetCq3nu00w<{lqxvD+@eO`tAMM zd)WbU(cilq_?X~mzekC5J*x@4B#VL#hs%2T;5kYJn~QnKxB;A82&TZF9VC z_d&1}y0M*JSBK-%myI>?I?;fZZ~EMkpiaxrjQSTH#QJeW+@ zz{|;m6da;l+K+O+xUOL_ zrQL0P(v7!a#G`J>%!FMZzV)@=IB=b6cblVZt3l9Trapi1j}aftO2##4Xyrr%6?$;M zi^vX>4g`*ve1a=BAbTCe9s2jF%p4hRtrq}^Hbx&r34c7Oi(S?0>2fydVnAI!=9(9) rU;lJMas97oXkmRnw@0>el=FYkAA9wD|dEXgA*{r?xv!3#K>V9$knjY67!9x%T zgv&r*2L*w!sz4x24hPu5m7?1|vD7CceoFBaf3)>;mcZe*1Rkw?8CUkDR%ycM*Doh1C{*k}14owuA8DrfngNnIKon zSAu%S7yeTAo&}W5mhSM#Y8g=eMiK0Nr(k%Q0Xi#sgq5sUu!+ppd~HFULo zIIMqdr9y0aG;hvwy5;rP8V{>}5%@_7gJ|&e@>50^*XzCC2XC?qGcHMFEgx3dyMh`& z=C04Ul>X&BX@Ajkd*X?`8xM5^YwxY*OJxe%TP>x*!oBw|6W{+S8<{Xc3oD)HBCuse z6U9;^btzD&H0(EDtZS14>~}j>1*2TkQ3-w1GA4aa>;*Oxc29dWPP`>==@_(Jw;>Me zs{tETOKBAMtE<|3UQ%n1Z$;>7fAGEZ0S+rVP z=PHZVfnC35!ugPT)@$sWtcx6Vx4fxiA=mDRkz`2c1DW)7u5!4t$#t~KvDYaE;V(s} z|2_)@;K=*}n~1HDfdvUcoy31nVSk;k_r9(rMOuKa*y?-=$8w7Q{)IK=ht7%r9&4FZ zlZP!vV2!55*+nC<-7R@W5mm<&w8*A3hDFpmm55YvCx$-*sZY|tB%VJhR{O2 zAbNi=OE5h?>JsIG&W|W;thN@KemV+UaSm1|0!2q*BZ!ZO9J<3{zw>sBHH4sFX-~wU z5sy=x*0dgTSyJOj>gbAF4T4!M){A;v+(dNwD9z6J#29 z0=Fg8@Ss2f1kF?xBEY1_l*uy9W9;oldT_is=rNv6n0wx6Gh7KyC_bifWO8DN@)*q- zAoPo+!coX&Tax5`N3cL_c?LSGA&`(*?j}#V^iGzrP9}~JPd*ls|Niv3da&Cc{F*Eg zgEJC2A!N8>WE)ta;5Jk?E)cxz3`1*r2r(xXT*s7WodMsM~@LvPCrnxs=zL|FQ zI~w!T=LDgIZOdiA%OEcF+GeUG6>VXk_gxi^kcAijj zim?8#0r_RU*pX`X3OPbgENYv7`M`2E_7}&NF{u_#kcATziS^8w8@Ie~B4@hcghd?6 z0y(1$C#a*4B5;CzFy;j3J@0Q+IAJLR=NAGWaxfNfKYm7;vb#80t^h^=8>~3UI zYa|{CClpOIeZPE1_&^U+j`)WqbFO9Ef!fI(orY0cWBF^RcD_}GIzRiKcN!DrQaZz8 zD-P$^ZBQe{zzOo)#?$@Hm)!!+<1ejw6?J}eO7Q1lwHAfWwYK-3^L2SeQ_8?8O&fdP z=W&_a%slRZ0zfpBF=ECf zq6X8Poqp)q&%X*xlaW1cA!&1yrX@mLFCxE$pBOwk)TIut4|xE-?gQ|dMWXMHGHUkN#p3?1B( zaPNOjbG-()GVwN|14wZ=W%0+Ox0B3vjm26Fios$Lf0n4z>Pq-@B|+<1H{d zB;@O()1%w)*4D{>_cWm-(OEOx=yC%t;9<7_w^_Z-NB*KWtaIY`(4?hMON^jO`ux_7 zcV}VNvH7Yici-JjZz=E1z^a^wZMM3h_4seCAI_D8@#{3qYg`}DSF$54)xCGwWpX#w zNlqc(u(Ay=6Sem4!0R@M>FQ_>9Ej#XA+`0~Ajx`t^&V?3XWjV*O8A30Le8(T89Bjz zI~PHv>%aH+RPb#zVH1R*l5cX2x|E~;D3O}6TWeScR$7R2N%L3njZ6uH4rPY7F_gi> z{QVjipoIswjt$(ytIshNu^He`TAW^wfD=k7r5?e4q!UF%(h%{-joGS0Dv8buVPetL zOV*3{5T0oxIm!^Oi@nHE2+xrU6Z%;g{WGF3!zP3ScJI8ISS^64ox8KX7p+~z3xq4e zof8k)Qg<4gQ!jV`E9D)yl!3XZBsIZ9Y&t635b)I5@4E-_tZjIt>q$b1mYCgY7_LjK zS(H+Bc8O!v4|B2X`ix)EhB6JnoK}6%*)uPkM{smjIiMhF`8&soGCx_SkXu`i)mXm- zr}IDSYn~@zkj)Q$DC!=BoQaYeiTm&pE6*Zrj15ZYuPlo{mOb{k0rVi<1ohEGT{LM%FnBk`lAl^sASN3|V3tg=oa1s!qY= zSTYDWxm?@-SQttAcn)5yiulx8u2Xho=l1Fvn#sC+$3l{^PuJEN(#K2C8!xd0+nj>2 zHz+^IFG`s5a2f73|T0_3sdr83c={2Mfj}g0}X94P|!R|*#EFR7K5kZWA ztWC9D2^Wwbbyy~|pUo?;VNYnXkHZfUu@1`Smb$x>Yx z_QI3K5OJ04j;kbT=nWWW0Wdb|ao8e_<7zJ9~S-wZuw0y1C_h8k^V&3JDFk)l)y_rn{0^{4p{yi>l*1D68;Jac9wd!x#_(*=p_G@DYtfz^MjQiE^PRe_HKN){mjZBaad{OB!ea>gma&~U+t){<{$8`H- zQLEh0__j~jTwZl#Utb?mS(`V(X)pNeQX0n4sk!}Mh)CD(=qC0luU!GsZYX!#7jhMktqL4j3hv`ep{Z>9A zZvI0<4i6p-E~-^mS7+sJ^p8$+>izp!pR8*WXSy@HJ3Ar7^_lLsicb8HwdoG~mEYeW z3d+hJGlcj@Kh8ESzr0=ZL^quOEQS`qt@`JmIy!ZU#Ud)hcOwVgmf|y7+3R1o=#@W_ zU=ulx6^|q}3c0b8z!}qWb0fgvAN85pGc9lAV^Ss})g!@$)jXft@YGb%<3jHr{<<6X zumzs!zEn$gCEHUQB(**lHi@<-t9n%YeklzxExgCZ&{`Gx?waaqv$*Qqr{b;eMnPW; zBvTsRhl#d)&<%%FthPw20ye2`^cbrGnNWtOwaVN4co4hpa&=qxBDJ<1QUg{E}7m^k@m{w~dFjnOvCRhMekAS&S7R#H7hh+oE(NQk#? zal`Cbw5v=Uj#QmGdQFRBD;l&lzOcy27rq~iyL_F=#J9&7X??#NCerv#0R6+tXGC#6 z(4x%wE^U`0V^;JmE{NaxS9s&jxdCs7agd@r$p1e7?^QT@)=aEMJmnI|C z7k@3n70Sng)T1;vkB0Nh-ka$nFrJF1t!F}ZrV^U&D-o3{H$5-}cw-<1%sbZ25vz&IdymaG6e zV1=8i`cXwVM;u^7mV4edrhe-EO`)ce_W1V1FMRo`_kKCGwY4!wuU@K40(-6k;@>*u zRc2s%F5tJf{TNb!-0w&=)YfM4^78tTs+q(meQW-@e_lP!&$W6%3Br)HsQ>&~VBPr_ z$-5o&U7jm(GULB&qS)R6eXJ#qCUJ=R22<9i&)YN}hKvICto==ka$VB|fa2{6K9Op( zry)viqd#n-G#i;Xgo&Ry#D2^V6f>#(#)_*flyqaUxmrU`=pFM@hKUX71~CjB0$l%{ z>c4obaFm5d4#UO-*%wI{2p_xRYSK0ZZ2y=Y5P_81E! zKb(4Nzlomv`}f!TDih)TY_3EE2%2GvKz|sA%nz89wqO$mN2VJ6`Iwb8gYQBa8*77| zA*H3I>zkXK@y8Zd(tSoBOCl)WjVkE09mfX`?t#0%j>e;Y4|{Y>;^`DTM+$w>r@q?Q zh}{6b@|h>-wNLGw)zkKT)4~t*;#ZpkcjhFcbs9cyTuarcq;HYy>6#3|@n~%w@6Irs zs99?lT3N}RTsps=TBqjk?>_)IWLo7pQ>Imw9lU1?>0gdHrhoH&{O64xpmMxZn}_WV zP)1>2Qi%G^{)-$U4Vc{~Oy|&0tFe)0Z+(z%C6|!W8J9tY#Kc73t?@9*Ku1s?CO0oH zGA~bVc6OG*Zr=qbbnDJ2S!;9D-wp6sRmo+rp%qPgG`f~bF7RG3&$#;bi){Jumsab| zBA2p-*!+N#@#r8``xGyJpiLS86?%Gm7dofG9(7F|h^>od&I4ZnZVe!E@B7b=R6G=q zkuNdZeEt{)`EjG zyvp#SR@vmoQ*YC8reIs|jpr|$_H*^JyTEJiZlLLkbN%_5Wo2;!wSRS~oS4OrG1t_x zFjY;!!oL616RYjjv`>D>t~~6{0vycvH~FBIcW_~b@i6`bsyUUBST@TsjPuM;demtQz#RR-si@Ra@cpTb#g` z^T7$o@{7DZHILU&V-Grk%S91n0Zm_d5H($Gou~6^R*{KGNtB^_>JU=dE{u!3#s|HE zLas^mNGu%3e}L@;4~IJ7Qj9nt{p`cZ*xR?N4*H3Du>LRCKf1h6$0C2EsK<*(X+)pz z(1-!9HYINkXz|3*7)=Q>jmK#5Xs&l+$)k^_Q-*!U0;x?5DWIvdw|%y2cRraGJ^{Br z>a3K`uZecbuk{X_J(jbnU)_@Vkx{7W@=j22JaQ#oj*axGxczsikSocJHs!XRPhMZY zE*0xtG1`Hlt)*GlueGZ?y1Gs^@EWm_zHrJ9kCTtekBp4)W^4Kd?Vl%oc5Nl<>zC(G zJ7g^rQp8v!@d4-RDQ#{Q;8rt$E^dKy7L4FQQ&V$yWQ;1(B-~zrRrAYRA0}d`{g{XAKlRoa67IgH9s%Ie{VSL9az1@KpTQge zwEmr^!x`>occtmPeY>zVeY?Ndb)<@>CSSXb0^UW1TYdh_V%^T72<=r`FZDf7AlCSr z>T{#OS!3#gS?L2l5YsG-0l2MLy>&p0J4;nal=p3S}hN5i&7y$HKz`B`%CUJ6BE#D>a8XteCPA7kD(%L*5Cu`9NaK3UjJBPj0+1 zr|t1O3vL+o)3}Q9P@%G%#f`as4-i~Bwv9(uC>Cq6w?(b?kbT-(w`nOPRQ>^-M&YG@8-^ocCWn1PpdL7eOd#^Y_*PF8{S`Cq&JPN(JRtMU{^g#PN-`Non6RHggT>s~Lg z)R25;d5B+#kTDYf5?e{+x**=kWtogJS1`9?B#wbOs#k!i$CiOmmK(9VyiiS<5bNOo zmn_eDez|8HV$X^ckEd&Wr3UCWMB}<@4k;R_H$#PcGlhIH$eC&APi7fV*$j?i0mYjj zVJId}tRw%9I!JiaSI%2ve=0|7qi&vKq|St1;%orMSVx9qlkLcvll3lA1=;6hag1`g znzEpm2rE1MxpG1)CeRZ3hTgL$5NwAD1lZS@I@mX zF{D7Ez~$3E7j@Jj;RbnJs2?*5T*3UVFO+qlU}R=e1xUpKz!6d zip!fl&iFj!`k&TF0CfL<+9UaR4qAxOk$Hukgs#kCeT@c6>m#vxt7~HUwhTQ3MVu>p zg%wNXWg4!lL;M4q=@F<8WCxPZHkFQ3gWX$tS%w13K%8PrykUnz=7jW8Xc<^j?s?7{ z-ilL%o;PR<&)F@afa}b1XN-?DpA>{@zqGb!`>sjLx3i{z(VREGDdLfl>x#MbLJFT zn7xOkV{wyxpGmV$5|10?xvM*gTo1xl>a2;xp6@U{!B%U78nO zxl>%Ki$SXZY`-9P?Z%#J8T{|nzGBGtzwgX3cuEz&cUMOy3X9fj@DH`54`KD8XKPU| z`zZ9O_f{2?pvMSt#~6u-!t&oS&>04mywk8v4jQZPha$uMWzMQk(pu7Sw=!`-sY`Cm zaV$Gi@pQf|$ZM${jeQk)&ZNf|j(r-O7R&+rO=n33)yxk?xqIw)oLAK)Aa!-lFN=_B zZM$#LL{$RSTdW|K5O*RI$15AoeT`NJ)kaWG)Z=#@#-XbCd{4NaSq{gVGR<@BYQU_| zlsF@28UYxCFW^z;+wU_FJi4S?`11`r7%W&G(rS#PGrvY{pDgeh(3B2-47wcBUHbdf zB``{U2E+kk7PL@djP|K3VxKaN{c|lc-4h}Um-w4AssILEi{l6W4*(zrfRu>Wc`hwI z4sem)x$0<(hjUT${f!*c3Gd^uA3gU=xO{hr?=Mj%jfE;E`i+XS()@FrVrG%lyG>fg zf{!nX2G45}-UOO&e|dfRRByag=c7Fi`ZC-fv=Fg;lf-sG-rWW{V+>t6NK(8YxokmN zfD<iWP=uj(Xa5B~AMzGX!0YL77O?t?fPP&)=y_qc zj$S~{bp4!7RCcpAukl^+Ren62j{Eg%v@J1WL1RQL829`Hg`$`=I5Ru2UH?>5vcK4; zl|-`n>+pJ}ZKEg7vgI<+hwRJHLJ5LGe%C_h=0jG7!^&m9HNBGryQf;W-n;$p;TCO>Q!bf*73k;NP|iCq&py(?$QX zy9&M^W+SpeIE3Aat`3e5aSxu>%;vK@zoeLUT2y_>H?J1r6aJUe{IFqBoYjmzt*>uIiMC#jze__KTZ z)!G=`Mio}F>+!wBs*yN|m`ogvFuz+#d`@(P6Z%|wjn@@bUVbXB_R&8c%_fngR<(9V zf>WP8vbAipsK4E{Y#Omrh3YgxxBl5a5;J?{s_REPloib!eeY4=i;QjaM0P9bvspD) z0~c;h&t6f~s=5sx_>NDno@f8}l0@3a z+!wUvw5<0!#*eR~(EOQ_a6jQ#RA+ingrrsotMm3|0GN(~>?o?^WSp*VM*U zszuq;?@R2$H&20v`c8{NUDT(?&e=J2sCm9klms2Y9DSQwp#6v%!KH5{b;HV0=d-~*c$UED0_w*%emLmWM92rv!3MYDE9{`&O z1*YMhl?rTPs(n#r_vpW#c@{e+xZB!Tlr_(#IVo+Rhi+XsS6NqLJgz_XF-C2FhaX@9 zC0j~S@r}{Vtf!9Z)^+8|g@odyh=srt2K~e!vkNHExK9H;?QVUCStWW>vMHKRS>Dj7<6oogm3>yL z?aSBEV||zMBD@sUMIx`hHMyeg;%Hy32b3hS0AxXqhjkCj%&Uc`aO#_@`-fUN*}9uX zqn(!SElgbts%K#`&~`Dzs1!~A*`~Re8xPR__-#t5_nV+s-_$d<=wxic{NlhV<(_ku z@8jMY`_up;%JNdjzrHzQsr%N4yD)jbu0cGdRSp1b1;_uI!G+6yOuQX=5%yW4-POi^o#&#j@ zT3@O6>Tq1h!i#D1$F5f-!5Y0!`EJjeJAWR3dg;y7yw~6#zYK*wHKYz8QoRkZiq&>5 z>Z(h&%>!c*4kLVxm7Q9(zuDN}+vl*P;(jj+HL%TX{^*kXC%zlc4N-cHg&6w+rTp4= z(}MSFB>O;dR;p&=>_A#pB>0h_1|P$lH1!yGX_YbTjZv0$6zJ*iDAOnrs;0; z-?i#j7L?$*92)tLS^wboRfMzc2q3*Yg7$YbF4R0@YP?A_X117W@Kq$9P2A8+u1v}x z+Qg2LnpPW9V4rrD21=~#{QLk5iWRl{%DoEfN@KVvg0O+gYf3mPi_-VGbl(!T+mgMp ztI!iHcR@S$K%C|&E^h7ZsHE8hlj$cpfHdAW4B9S9_v&bEe+UX|A>e)u|7_dt%L}=X zo?AR$QH)R+=p6jElsYnu86MEwRS*o`Mzy`W0W+55x|;Mh5fQEI-{bB=pLpEbQMr}9 z-y?l3ag%^;)_$(GITrE=eiAsfuxBT%oE_$5gmllj*E|SRZ@uky&&o+MH$`*kQ+;7x zh79DpXumo^<{w8#1qpx;gU1*p_*kGhz3~Yqh!<~-B^Ry_R4VU`^BNsE*vcFLUWg@aU+H#cdkCD8ET3G0buVJSGr!Ca09T(=` zm!^e*aKLfl@At^HwUIQ9L%ttThKCPb07P#;jXq-NHK31M4Nj*k)~EIwum1cDCJ+8$ z2*Uh3RpFA@0Zv$F3P(=YNJ{XMSCD$F{-a>6e%;Vvq|Lm-ds`?ZNSD=^rz&f^YZh&2Vb6=ZBmtNJUc2;Vjea{K+CFMpob7Nc|fu zqO-43mvEi37*Y^-vAc12sOi|{_rxxQ~kE4oB|Z&1?F688XRK~Jk=eMR-e zzxVSq)=J5g5&kZayfDPzrl;ljbXL-+i=!vVw$p=Eex_r6s((i}i{{j;jxSu_DAj(78)u2GgVM~Q8EVuO*?nv_)3kUDNPs#$Px1+9@4Q!*} zm|VEO>X-jY;E(Ec7;T9cZ%56)Wz2igkd=^l{K>@~!hr`5VD*xm81TIh z6SR}3Ywc!86V=W)=&*m|?KPZ~-3K~FUBADDGYVB;;*e)U7B%$KO6!a5@KFQF%pc}LXsz4JkI(aR56UiCMZoTXnLBI3(EEjn{VbHXouvCf zIU_XXW~fWX}8N^6MfdQUhLhg>LBhkg;Cr2dXSGIyLR2Mr4g= z5~E#Gj5E4=&&5WPae2 zBop`iVl8}Dk@&IG2GO@vxq)`s1%W_Pafhk&^dJvSYX^H-DNTtL6P0MS($6ZMQ-FIKn0rLwgwGYr}? zq^YE)`mgDS9=$|@+QwVrkAIiHm}|IIczopuo`yP>>{qYAt<=n|_NzXRCQp2R!e$}1 z^m21Egk+NtY}@0Jq#R}Klf_zFTQC+>uvEv02mD{vY*^vd_-5yP7K$S>Ae`lDx&%{3 zb>Y8O&-fGYW1D=WYj=9~+eM3?IXJ?Oaq`b!>Rv3j}p7~%SMkoB0Yr!5)pnV z2NQxVk~LKyzHr0a#R};-=rAd=H{``6}~A2OAJ|pEE&RGhDY@->o)vHO1GtW z9RxpJTSwIb?|*(Wp4qKK{PTUFY^hG2rUkb%w)K_}Hmf`mw2?Ev9m-`U0zp%yEQ2V| z4k?>xfXv}EY_|DJL=p;FK9z}&#DX-um!c-(6e^vBs)ANPi=e{Q1mGtPq8r=nKuHr+7`ZyGOgut@hZ`6@i3 z>QR)j3D`vyfP-ZIK)`|o?{*Lm^;_9By{EIvLvODvGiu6gSa7s zr`!>se$SvGwF5|0CUS4A3Z#DjTTQcrV=6Yym3wWDDQ5a>vAv3$iQ-|E?5oI`OrnRj5sUFEHH(-% zGI*MCQ*@)53qk1J$nRPrMz5jN_I=-rSeMBC{aT^I9XtX|OIP3vJT*L9U-XqPH?RRc z3CDxp-bmm6XdY;iHLZQEB<50RvP5k7tN+rnaCJ=H+p4-Hc!F}5&mCEZky-U zb|rXlF%CsP_=6)uuK`IqL`orM!andjaL9eM{C9=Xe=pBnkAupI6k7=G-{<=0UwnJC z|Ic}A0dV1eRnGri8Pnt~cI%$brx#c>mnyvX@p%yIY%%6bqZC9Uh>8}N5^*=H!yH>KyxStiE}Xd3!F-Fw z|4)-L3+Bzz7{pTHDn&D744i3|>NsQ(^uZ-|v1518k?0gGc32f%K}$XmsK$>u#p{>^ zp_=h1{Ml(E9=dbu#*PPU-O)@F&s@i}YcWvyWn)I?uhE^g1Jj)S`0DpYQOw*ebcKJ=baxTMxjaxb(J?h$mb0rfD)kd@H#udziO}fn#K$gn z7fK=Clp)EI1p>>g19TO>I)wB?GS*3Gu1BmpSCqhpCv!|ayfSfF?u{;$+9UL5X>`O+}c zy&#MDd9w;3evghdy}UU_YXVzcmPWJ2&Ua%!GHD&$9eF)_Xecw5c8pC>{N6*IT^X2l zJYE{yT(L3ZK)$)*qiIrOq=)*Ym2#SDCOfuqouZZ7xa1$f#ljttv-ehuT!EOorH*iA znwL()Rgx2N$QW5`J2QXFEw+B_H?E5ksH<1u*09QJ^?b*pK}t^w&C2`Uh@pSCXJ}X9 znr~5wEHwvIlwq64as!|y6-M&xK{%A(qvqP@3*AWiD`t*#+!T`=TV6O;Ao5n-fyOK& zJ^%V_T3*;o@(lJS_iazTp_>PJ-y?EnszrgW_ihE|7v3elAAu1{L@Rhz#1R{ww0QF| zv@3|B1fa&jV$5P-OkD;+l_}8E>6vQUVaf@G*B$v)KVPv_2l#dO=0}7cYK!))Wn)H# z`qspffVsSe`A$)EUv0Xw4w{gPCM-j@?8(}U?b>o#`R=oGOxqr&x(h}h z1Mrdkcmo13?_qfidX+w91WVenXa@9?9g#Dia9vDr!qedTwzcjWZ{n$xHaftBmWxwB4B9TFjez>+83C#q2={Hqe-qm8diny=1Cnn&N=*)DugKPP$pKj27c53&J z&Zx_LSu^IJJ#39W)Ve=o_n literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_5100.png b/Notebooks/1_N_horizon 3/sim_5100.png new file mode 100644 index 0000000000000000000000000000000000000000..7f25ea8a28ba787c6915b2e565337b3e3cd31808 GIT binary patch literal 14963 zcmd^mcTkgC*KYs;m1d3y3snQC0TGqnE!5C7fFMOcK%|EbQUZE}SSZq^MTLNXfb<^X z0YN~C(t9Ebks3OLQ0@+%@B8L{_x|zD+?hM`-aBIqDbKUlUhTK`Z>>DJVW`b@nC~zI z0^!ot(Lh2V2NWO>ruzrkz&mBRdL;0q=&Nb&YwUT?H^9!@5n^EHi*obyb#uOZ%HPr3 z$Jx_E`hv`bOXpAB_w_~jC`n1V|K}GjczQcY4fXQ80yjB?(z)#efp8pUJeVM987IJv z$+{X>O#(CK$AUAgO+z=9h@J}x`o*GFe@kA~Jn{$2fu}GrCJytptCDYdYt5k%NU6TV z7LtS77AEg7Rj`Lo5tdi47WEyjVq%JjyU&?~`ql=CIQTP5_wvTtcIn3FjF+GF&$NHe zm`fni*OW@iiNnDqE6U~40?S`4T(uF0bmK*J<8xqz;sH#IzeIKGJHoH;|HYfd6t(}3 zxC#sR{?|+b*#!1K%3tJE*#8Lm{Ul0<@m9{?(&V`Pw;nqYPVayFF!A5zMjfYMX?jA| z(9+7EYeSR8o=zGqPceb+wX-J>8l!^Hw+ht>d}}!=nFQ502htX z7uY=$jfQN}t}$$)6f^h-ltW~K{A~-UiT4FVeU5QRmzgk#5sT+}=X%`e+S+lbY|^5T z{m&$^fif9=XLb+Pan(;jdz=+abchp+O$MadvG!OS|}jgSzT5Q8qM2U!=2OeAAcGlcgf$*0Kb z%P%;DpI~Uv(lQcd_T(fKYNpi^ATlumErlwem1P@cU<>W)oimsdi&C4=Z*d#7XZBvI z2ter?EvAGggp_5zrbJ=1xyC3j)Kz3+2@~k5YeT|dW>xZXDaFcO_n}mD$7_zJG7CULyyDb|EN3Ry z=2@){xEa8ABvDc*=Q}@eLGMw=7fWcAZ6C5towni6t}aqA-+P%7pL6Q57P{l^_(d;e*-9367U^Xo znsh3(DuI<>$^h<{o0y!FD97zR#~;oM$CXg9D=CDHaB0058Zoh(xH7v`O(=v-5Uy@1 zA4)wWz^1~!eLvOMGcBBJXIKt$G_uwvK1cNq?z3N#Xg*Saa})}-7IV*Zn7!;9jCTm0 zg_NWt?x?3D#jU?C!^@y2*jXwG1(;vsW~?g4-fq)!&{BDn;E+u0A==Vxh64ixSxfNW}G(QvFHGb30h=@zjXJ>zi~)n-J&rO^tU_&V}vt!Q9qFq>q}T zlUCDk{l=aO$?X|tgN46ct6t?YAvne53`Zcs;D8*LPm`!_u!=S#l7fTS0<96w-tF0^ zg)>W~*JI-=!rd~TQBOkrfUV8826sb*Gi=eY%vs`*VAIJH13NGq zJ^Keu_6Xw1vfRXOVI+d83;%M8e|lL8y41ZZtRP&p+@9Di5pI?c-K`K1$A@KFnBG|N zK)|i7y!DCqqcQhkmOoc&cd5!44HEX7Z5G4@HsL7dUXl~g7(@D5Qa^iwr{OQA{*^dU zXCueoUjKkxu<-c2$lV7T8KoRM^IQ#5Fc*=D^JU)-s2jqIV3x!QALyk^HlwRzJN?vO zp3Fl!57(fj>WlI_>*_oL$mOj=uTI162tz9gZ4p}^lt_0BpkB8$1mcA8G3Ql&&5?{W z&SNk`L9fbQxOE^lymnl-p{V;B83}vOT~;(Ld88Dlj6^16p*OYV9{zlt*e#bW51YVX zQu(2MK}VJq$+vBT@anKPOm91F6J6B6mYHGOkpq>2B!6D~F4SOc0mV zcDc=ykq_M7WAlJD_!z+AFJ*J8KDad#T6!oj&aIS~xprjeVNPNDvBRp;xQa8RfD1!5 zRl;H%oOq5oc?}!vftWLv^zZ8JyVvf_2uH+H0xr-{2xk`5A(Y6F&8j?$#L3|svVt5c ze?q@FsAq5FC5EYA5vEU3+(kK#FPu)#Wga4KeEzg>#Rqu6(V=U(o@e=!me|QXt6X~0$tMybwL0rE>h9c#ByG1jiZLdT8jgEnqMr zQNbP>RtK#PUJTpbwC7fyd;blNWPrZEk6!Zm+nLC;I}1uODr^G0=W!Kkumv_l_N-XU z4iZrayQ^OIO^_wihXut#Xb4*Ap7{8z?cE*5I>VV7Eyk0@SDPt+CLKNs?OA!juc0Bb zXhFV2jv@rn>?lm?=ky{NtB6K3YokoEcEZy|-lUx;)PcN~jR}O*$il|CRJbxsyI{Xn zqzeQ%gR9_Fa0y?RCBW@%Ui{wj?=l2=x}v(e+{Zw54`gIm|0TiUNvU2i* zW<6oQRzaSAXH^@2=;)b?K2!RzH=~npujM3~m*3-(Fe`TGe|LNGf_6PYQ;V@4?=?L= zj^O#ql<$#RCK~St?gT4de#?AfzZw$fZ03q)+p{ud`&~HkMHUvlRgRL&$~875qM2`wlf6!!8sUF1+(gdwV&h zDF=_w>MJzs>F;MFM9YsW)>P&)TgUHzKh{r|b5Eg< z-G+-H5hkWw+tfv{ElFw!Mfs$>$LM?d+^=7+a$B3$7vKUP_G`S6QkOpQT!VD2&`?!K zPp*M|>+_S4&scTr$7jb`zV`OEIHp*)UTPC)cD12f9Fw$Y*`}>1{*1f6`JD%S&`mjQ zg3B|IC4dyVAxEX<$~Qi-k5PR$aYes5C9Q(6qN}hwdkat(OY~&y{|DDIFzIT*DmBD{%`oXcy)6 zf%Q1*=L>D`^&zK~a_r9YqlO9*DUEZE=PfD@hD($*#QSt9MkN@jy=1%@vQ}s_=Ft=- z9Hx+B<$Xw7I8=tHvch@XCgjq})R!L^k(ghK3w5)_KWZsi_8%Uyo;QF0isCdjUr*Y( zK*6HbAdLUeI|Jx14_P^C=E^!Z$Eaa#(|On~hBls@&H7{?t135#ef;#}?;^SCN3XHb zprru>8F!oU}VDtlNXN)xe zH8^bE)yBR(UhMpxhSb^O`WRW)e$-l@S9=(YI^uk|8Y7<6h_z+c7 zY<6bM1VR=+So!stGURmZO!gwGZoCJVjc?#LF4?zo9=l-m>F>uJ)pW(Iz==b^h}flC zVrUG9R70Fp*wVA}x6A%=Ev}8!yHM*8Rs85_bEy&|HyoxU>@D#Ng?jwJtka&JJX$*u zt<70elAr%XOfMNlZQLkBeZMxoURCV{RI>4$@7FC5L%rm3TKI8Kly|;lbcWD13Ms?jBQspt$F&<3)a-Bz&;mt4A zLX{w%!6PGq6Hm@o(X#@^gU&J@+Jb(6LcVgP1sXJ8=~R0~ua)d9~t z0v!pdlI~J?)Y_`W$IpNJy)DzTW0Dhi`T~Ci=@E}w>W^4;JZ0O`voQ$-Lqtpr_pKs} zkJ+(m9T|!~{=b|8`foekw6-?z@sV!Y{3xX``>y=KdSzAB!VMd7?*GU-GcztzL@bdZ zrfRU9JSk*Fj!E0y-JK|?SWr;#Ah*KA)b!i8Z%kJV47jYVtyL+UzQNt~RD3#iXU<7w zk-+ktUp|JmLg5LtLOfaNQjSG$x1r~Hc6X>~blw7IJaQsic;_57lp0L0C^0X6Ln-H6 z8?qfyj@M|3+ldhd8(5>F_kxRSr}%`zHtlltU;a&_VAX%kTk4VW_AZTu`uq7^3R-qZ zzF=L~7+ZYUcK_sxWirtS~W0Hz9DBMxnJEh5Zeb&Xju5 zjv1uXncD~bu%YXAwB^Z$?MW#La4}mD%_FPwVAXqH(muLZkG0-*%G5+W0fE6a>-2i! z(*9vOXa2s2$5hGgOo@3@n5wL-Y{M!}YX0`7k9H>N??b9Rsxd0dIx%WnzuaRKcUF69 zceiGNdbp*~v`)JI_nO7OIT$Y)$*X$Qn*+Pmo2RhWYdk$O^9Hy*dY6Kp+WZkq>5wS- zXYjXeTCs}E?w14JMIOAg;6^+AiTnzy{&4mnCu8+@3_!=V_S%oZp44E;;z5zA^i_HTp7e^vMeNdktv@(TT=z9e~H^znJj`R9m2e zf|}h4a;(++D)brpuag+fH>|C{jMn-nE`JhH1Ti*P=GbYt;RlSo0uuW1aE=Q#;S8O9 zwWs3g9w1NItTy0*8E8}TO|?DLG53#8c?E)gz6c#=NDBfXO>o93XXb@}Qov0{d6Hvy z-_6Zox*G>!xSADuXKj1UX3vkf+tp*@fZn z8z&?M1qJI(Rfo$JA2J9VJBG?fn#2) z-?Ud41~xWSe9VBJo2|XV*_UmikU3W7Ky8r#`=IPA6^O>o2k#=%Fww z0IxQ|w%1WY9gQ2~_03qXw|MpS(pax<-Lp%Nr9xikWl^$%W59jZRlt^mX7cj_!9!s( z(Kr=&Z(fG?VI%b&nYie?K_vQkTcOR43pc1CvY?XPU6=R6#3U$2_1O4U|9G7J_rK@X zO4}B^2Y_z2f1XvhTb~<(0EEXd3NT=(#B`6kC%Oq|mKK|NRv3@IlCUJw-tGpdD+E<` zH-D%ALo>jCUV1WTec}q+sLh{e%iFF@bv<@1 z5v-{Hr=&W?|6yq%pefyEd*Zl2z^E4hD2{MtYC{4@L2J*o2H)GU7^%@j8Sqa7$nFD7 z^YW5C+gWVLvfPe3$i>@B!h2puHpY2|g3CYL2j54m%?|hgn=+xsgD74Ap4R5jotERw z1V+X4lvjdn?uVFEkS?);|5HEtgdvFmnrub0yL2k0mEUvjr0g<*g$D(a5DThHk+S$A zHYA5KDBn1306=Q#saeBAP*R0`B1*W&?$eSv9WsuHV;(9yG6KFg)*l>CEdFrQWqWf; zbp$Sk2Z-oB?3}lzIMt@UdkK2UVGoX*7b+K-nVpSr^XiR>iGj`@-wK;T7TzkF0G5$g z-~P_y?Bc?=nA%Mov=(u|+6?pl<~pA`VO|_lt;@p!I9QyNYUVW~JY>zb=y%S`Y)xs} zb~IF@Ik>pG1_3u1MDOj;eyH!-3a; zr$C7~?~Dds`h`(zfx4A~>XfWrOdDvpr{R*g^_z(`394(3w)FgREt-{M3oj&g+zQ1c zaqAuVS9a_fT+8Zo4-H@+krAi>2zH}DapLpqbrkoBWBORNOh(O7-7qN$P_`6E<1=6# zu+%D#e<4j&Nf6#9vxk68H|Nv!MV|Co^SE^jC<_%BW&PGbliFRZqc(l_qg2?3W*+s= zyk=G(z=O#_#H_e}L1}kFYWE?dLuCra3^_V@{1>x_4m|WUY>Ih+ zh3g7C3gq%{H$p)LEag`+bsi+~q><&xPQ~rT=BR*0C$$90a~6E}&RZSiQRftMy`nS5 zwza|w)k7jyI!xmI;hW<^|k zzVJdIUOb*j`>`&(i22s!NILAU;(PVD@Fz68gm6lS@$3C_qzExQ`=MrwKKUH^G?|3} z_z=EVhXeg+;t7n8ogGY*>LJlFnET9l_K;J!3TVxVOmvf>_~zcPUkPcluG^h&wM-CCK;iQB>(?6#$ckqfZ;*B{*e5Ng^G5I;Z z5+csF;guNTQ3O#0CUCg@Lz~YvM^;7#ykbwR=bVSJ#B}&DqqrA!G|qn+QDbXh-@K;L z3y~x|o`f5L6^9kU0U6|m!cj+^VS|$>lhnlS&?}r}^wiRKn&9*JoYD!te;rTb|9zSQ zU~m6wzvHGIphq$0C!n1o6Y|id-S|*6FEo}ikA*vBGIS&wos;H${1tS7DdZe(wG)#H zIsXJxA08Sm9j*w+^-Mew6iW71|J=XL(~j`$zjFZXe>ZN7D$r@M ze<7cQ;eKT#s{3!)NCG?fSAFJx?U6B5$|7774!WjxSVAt zFI*8RX4$-fm`;ISVlw{&8h}d_ipH=+s550<@O;9srfBqez?Ok1EdZHsW!`|`ZMzq; zL5YZk@(U{5zu5Vwq9*Q|rpD1lRWgf1&#m2K3VtUj z)`0s%eZ9&aefRP2B?Q0{|CO}38xEwhZY#lVLD(Tp&oQBNY&x>;G)_heC*!%bI&FWu zYTvTTU!Z`XgE7|}GS5P8oefXy79os_wY`H(;Sz79;B@wd(@F(-n|O$zNN9(a%AmKM zYoGlVOh)nHKhC1u_E{j^<+ro&$Nc+t9sgx#F*9CZ&JkQ%qoavEuGJUqks@?M7u(jK zZ0ni5pT>{QK@>2e34)v|a zr|9}`^IDH+FtjR;%t`F9ex!BdzX7lsM+5XeOBj2D1g;|NEq>}tdI~rQsC4jBGomHu zx9zTT5Q|7@s-E}1^YB-dxm?#hgH+oJ!|Mft#`64hit~g|!+grRpCEPw3iEwk7x9!_Hc5978ZTI~p z4y{}6_w70%r@>~+pr;~F0ol8=zJzC+Gf)rE%;BcA^<0cO_Z${kSN`)odxUi7O_KSO zgJa7pqFI=YS1_baLgPzclniPOHTkSr7FC(nit1z(jakPU2uqN1y5 zj>2@yq2BHn>ci!fet$WSdE4e>xm(3!f47F%xM~mhyPhyJQ`I?m_xCzuR*$loH8ms` zMaX$@99rC2ou}rYf*7vCF?i?CAg-7<_h*02a9v&gYH#m+vAg?2Yx25#O#5(vny7OD zQRv5PaCJIg*}ze@`_yrdw?!~mEBUMl&`T2574_#cMzg^IO>a14J}xz?AXvkx;H>aH zvQ^94fHzpSuiVUd$8h5kN~c>eF)>mM*XH0FD^u;isuG#tcgu|R$85pNuQxh3w`Q{9 z9DvS$%x*=V9-C)jg&VBN_70p#W=t0FDY6OtPe4+`{g!>9V-HCK)zzCalebXWKThi+ zo)pbz%2cni3E@W4EtLlo)twlxtIBIDrERiv9#18Qphp(}j!!E%;d?-Lqc?50$79Q| zu|3N*GmNpDLo6{*6OeU0Cw^f+qE-4U-zvZ!dilvdFD$g9TF(_0N|fRnr8zX~uE)lI zb?_M>&+}JRlzNXPXF<ZW@WdJO)7Ig3V zZUU-JTHGERG2kdzRTXm~%~EebaL8XWUd`BZ*?#YRDK4*Z&pnJCX=dCfwf)xaTBxLf z*wywbCIsoGm|-o0Ea>PAzuxUpSe*MbU)E1w(5AX4)YsQPO7uFrC_lZju_k}RL*Yx2 z;7BNTcxLd-sgrK2Iz6Z6qbvI&MHvxe2u{l;-&_g`Q&oy%+JE?~iB8WULbc*od34w; zzpmxWTHg2g@-XT9`JWcXyp7pf2GuxEwhOuJTra}SO#$t!NvWc0I4 zPJ;foGpC8EpOM`VElw2Il3djlCZfH?COQjjR#h9__oe9F_-N~1u$MG&cIWvMfgk#x zaLMYY-yl{jt?8%7Jr){^_*4;Z>tJCl2)reR8z`vT11Ko|Fbq~-xv;s#2eRYEIZ!{l zdCWQ(_(&A4EZQ3oeLP2gpa)yhzPOq<;X(;vGcE-PE%YjvdfAm6d4ZRgi<9|0zk|+Q z&LzfPc`v-#=#pcn%7)dqRr~ptdg!Sg&Z(8;xmtGP=f`c@V}qjeHkD6gfrQji|8e~T z`X|lWDni6RR~%XkI)`lQ1)>VtbpG@jVlFcVO2jafn8KLl*m_%-e;50NYfjpWo~;37 z93B2J!`O3gN7|Rh4?5EaUufSdcJlKXi3`YiId~(16+~jH(gk!EOI-dB*A>e6P6D56 zet~z#bKn@4!BI6Q^B7d0&#W`YtFpo2L63i|r!&=IC)vN>!^3_oxe8BAA2F}TW%_}q z%GZyz&Dd?F@Z=v(&4}Io#dWO=;?Pm!&hi2d78)cg!GOyoF-C!8?(w-44h10B zxQkAgRTd>wS}sEz(y!!1`=yr?eoj|fns0r6(C_Zdj~eE52zdEY-`SwtZMbeL%Ks?`Nx>AQt(iwo-&cZP_-5djG|G7V2lU zluWsY9{+4rMNe&J@M8ZhZC&!s&c7CpAuJOtJ=!Usbp@sN`D7pQ1JR_*Gjs@=Ge1F z_eTbKa8v8P`d_YlH({zJv#!B^Cma%^r!Uw4dR|g!XB8@2dEv9TZhUVu&_qRBVZn^G zo`YEhaE01R`9-iw7Q2|(Yu%sOnu*B_PD3OIgmzt;n`*4}w{Jrqr}_=$ zCYf}m&&5l+3%YsCJNUS=156+4PG&u0X`wtc+W#TB%J7za^}UfGOFjC!cCv3_N&d{y zzgBs)S~ob5Wwy9nqpz3Mc#P_ZK8P5QN;w#m#{4}-3XmywNzqR9o&7a;S1;Jfh+JAL z%b{CU;dokiU5P`xjGUAGbI>r&QaRAh-j!PGo>{?Vuf%=jz;oeKnwqfE|D}wtFCIkdF)Vi|^j`<2}l+b>Zp z)jc}QU*OhJJ>W6ko!4086Bwau?PuzF4*5s2{y8qat-sFog)+yFPbcpE| zWz5TTa~BpB-$mN8{jYUSDul9#SlJgy|v`8BN=qGXDHEy;Jq3 zsEuFoQ(<;Ga;9f(nsP|9MedoZJw92a-fk!B1WEVIk;Wv{9eF$`ET&KX`LG z4BsfBB0=klih%CnZ7P5T-V;bR`>Pi9^&Ci%;Wy-o9~Y#iZ|?K3e|6xWQe@L}vKz9UCQ;ib~U z5A7%bNoxm0L$4*RM_f-xj&b8N+IX8(|9Dcr5PHALLV-uhUW zZ%IVAGA=JbSvfbrIEbRXJU5K*!tt<*0)gXg7Si! zA(RWFQlpRKNN9HHG$TJQ<* z{S#3=Q}F8bne?un#w_5fc#NALuOCebjwAZf9-IvwMs!Ut*b{zit)>)ZBh9QQ-}34P zbM80cc)QFEsQ_jx{G)_uiCGM1a!q%bZ=_p}CHq_=X=pSqn|I>JvQ{78^o5+=#LIXxnVI9#CZV$$iP#?mIl!EtQ0N^+lS z6Q+Io)DV?p_nT$(ziw)J^}4AXf>q1^DKSO|{_R^58|N(xy@yFvc5D(wf-JG-&hFGV zxW;GEmdb2AzW&~IH_&~im)_ap@b|*s5w(*t`hd9Vu^k|cz^$Y_^!FSUO!RbHhe$62Wf8JTEmb_m{plry2nQwPgA269Z-{?O2obyOlM#$i}6%8G8qEabm>}rn8 zWgmJ)Fb15wJ(=mu)&wp%PD-Q2gse=^w`E=IPwcLHy_F{KdB>t5aOu}E2I0qh!%3|G zSDBsgB-jY&vNH7{R!}~xt36>lRpI5jF3oU;h4SaJooXp-xUv)A&o@u?4Wz3f&xs;}iZ#6ED`T4|5pm~(#tk3SD@{DWckN)e( zrSLF&*%u;=fbU#}oq_1VCN7Xe$W6uwGwqg1!X&}b@trY<1@U*lze|hLTIp!+=xEf^ zM^ujis?T&WK7}w`sTw=uH~aQZeR5r;tKFDVpg*fhJk`@(aKfO#ZpI|_vRJT?OFd<+ zVy?F8SZ)TBXQ;&J1Bncj$uSS#rg6cV$R}E<|D9Szv0YSGpSwr)*iRifnPz+^&YMHf zTX~Hoq}}!JYo&g!o+rvYtg*H^#96;tGK~Uyr*mtOT-P^7dJ`WDC7k)-ocH0~?ZsYW zRJZQ!(7h$$uV3RHOGigP^5m&3se3RG7S<*-vO%e?XT2ycz!G!#7*skUJDf4?wD<^6 zBY<(ss02pQeY~;Q+=y0;nxpkwmali;JapaJ?XR5;qLA{N@}vDF!gnrq4<9yCdBG~w znbHheMXVB*)%SMh-le6@N1YlOQKJZe#&Y0F`u8^V1^P;&f1E4I@G&9i ztT7@%Z@okhZg7(PpS+uW)`OY+Qt{hh{cfFEAzrVgkD#;Q$$!e%cQsN_Qc}68QG`-a z!D%&nR*eY^AK0(>oIEo?K6mUl>%xj>9|c3As-9tLu=P%D&pGyni~DSGIR7b22Vece z$sixgEN>aTzWx3c)%BB>oqlSZYAeFbOs*gY#~QXS9Y_uSKI&5r$*nhZK5N3@t>1m} z_$&12dllTOkyt&L!cFnSvTxhIb7jy9GLeyK*NhEKO@~$!aeCk5^~k}bN3JDbT!LpU z%WbuW4>3m5pi6w@J7j3tNDFhwb2q^l%ZNwec@gDEglp7H=ST~K-Q<&Ht$Fs;*n~0i z^5}QxuHvjT*jC=#fBzA3pr`*c=C4Gvg#)_OBOfC%|#F1kz;5J}FpmVt?vw)yLL-@1E^lyy~Gq5B+~Av&6ncVA>}<5HPUr z`srGcSxU74!|4HqETXW^d7MR9A1-(>+yoBIzDGd#-ugq5F_`|=+%%IDTx06^V5TW{03+X ze+&vBWN+PduMiUmhWw90v2e4{eJw|`fiBGo7kRZi5@Qa@VEU{J7i6+Bj;v#t0L0aQ zxnpcirbbrMHM)z|P0c$&D0J?bk&k`A8I6Iw0 z&7H*aWN;pVMlt&lX1tH>OV_RA{S*P1Z8XaiOAqX>7>adKmh4I^vL6XwVN1)}r^1jo ze>aw}JY}<)_7<4^3++F_|6_z>A0|NQ{D0-gCQ|>5onQi?fd!*}oVI-L>qa&2_XdVa zqz_b=1%*mr2Wl8k=>q{2fegm*D~vJxDxQHc2d~V)D6CQgKIzM>_-wzRVV? zMi`syZ|r~C#trD$jRj_zg8$tWPeB;%+c1CepLxsu_F48B7$5BJO%1@fGo0l7ki0Bx z;VI_q3I)!Rp)L;-`b4xo2KAH}l9zx9brAOqHF~*_%|WzFMp`XF$`9~t)#+BGy{DKp z=u&prJos4#NxP+c`%=IG^(~>-qXY6V?ih?1ZH;cAVO1eQalJo@$BVUrHj|Ucgr1oD z?(V{yn|OSRR*R{M4rWykGy>r zi7=WPAu>rpdPHF12@zCoKQ$B|$_(M`j&K%49Y<|(XOx_tV;e|G>_)Ss`>&PXw*-2D zyZea$@+Ch2l^9sW86@^?FFvAiDjL+KQB>fc}yZ= zXXVF~W=nJseU~6DHs&iV|BE(!$q|nq@iA39zp?_o*(8G1d+7~+W}|Qsmi%Hz2(7e- zl|iGmbrefHHB6YWEW7vOJa%@*G_!p}qm;U+q)R4Kv-PUGyD{P3Hug=AOikDX_)Our zuEcIDGK5@%QSjELV=z16o=j8(-0ua~$jDUD@`hywvhEeV_i7CPYRG)*WgF7#kUteT z6_VXBtB%SRDIMrgV+0Xo2Z$7F*E39Lq>_zt?&pDxKgexxoD-YEIEe(kh!_ZXyRkwK z;7p=zaeoBwAou+S^aHQk!*CTsHT(*yo)6UaVm&s{AvPy|HDFQ?Zl7ITO6-0VwBlmx ztlU~oLM_zG?@lbR+5Nvts3_WwvQ`IBOFqd+bhs+OVDE86_MiIs$cM%Q}`q;zUzU*BC zNBkenDx0{E*=%2xlV3##{0vFj+tO-bqS52`cC#QV3smZ-a~o?0@XSo4(m9;W(M{Ai zaWaU+2(fQQ0=6OPQeA{RU=`;aGt|qvz7O$%C)RgALHhqevNe(TlL@JTAzZX**3C{?( z%FvfoBt7?p$uAm;Jrhba7P1uvj&CMxH=;AuZOpr?o0?dg@H<;dSbV_ErTzG#cJ2j_ zTwRx{9&0KO+grHJi2K9%)=j~=Y(lI~yEEfF5igoQ_|Mqg|CJ>X5G`~h!jO2 ziWCVY0YqvjA~lq|gWqZ2I_uu^*InzJ!%86R?5E8$^P72oGyAFDT@98~Jf}b)5R2v= zI1&UpAqN7{JUmGcTzOZhMFjrH``kA6G4OEk@wfK22kBV*c)EJ{xH{SV`0{=!DVpjtL3`VmeEG(}135bAdn#e46l^ z_X4uX6T#Wp_Mt~dBaV)`ntmwOJLuDTuTDOtITH=NM8j0Q$W}AWC~pjjKS+g$|K^%7MxP z34y)J+o2O9Ar6(yA6mB?E1#yGNxrBFyaMkVuFxKTO7=^qi8}t&qYP%HewUmYOwV_G z8*H0d?)WR@3b*GS>ZSZ~DN^F`r3Odbh2y)u@o2T(k7) z9&=(m1~Us;FZ3Rfe1@qPg!Z3*e`o-|o)$a139hE(mAUzTYJCdv((*f$f~>cy%w?a3 zB&fqta1jg!tiI@bCplGvDzLPhh~k$NdL^dj8ara#Y(-_|fMv(VK3~(vB}A8Zsl+9w zw|l|mmS6(9CE^>pQlsPLsC-I99w?7Sh&Bc-5U+QTd~r6JD#NBE%$sP87IeB8W6Tec zz1`8V{QdWG<)HuuGY7SCgJ<(XP=Yp2@Uj?8xbVVK8Kzzq+R6i2!nPge>3N5k!9#?h z_tiT#AnT);E5GHpKSQeM>qVdznSDw?f2GjrE(}**&5?=(%TC*9?-N~kM>EFw>)hsM z?=KAIGjv)5vi=zJ9h6-Y_uS$f#NVOP-Vpwq!W0G{bPTQN4-;Zj@0f&m(Rqrjd6>i< zrPqY(z{k%+T%glcm;fV9OJW?x1v|rwog+?Vo`p!V*0b-x^A2p$ZS*QBNJ1*Ikzq&P zGidk+KkfspAj<%e74aE8a=XLDubM+M`D)y;1TvT+>S(%Y3?gdSkKS1>;?a*I{J}=x zqm#{ya_j*{aK4cu@)20bV83(k@w#Ifz_S9%`Gm0z|u$QC6XbK7bv* z(m^cv1mWSk?S8G32514AnF!uG{clG!?qDGhg~pQq1zsw`%Oo@fjfzN59Z;q92Xop< zTO`sk)q#(aTKczXk0zB-P}GC1@sx;5COMBAgrSG*5Y?xch0yp=)*XelA{B}wC4QG#>GomWZ|!D#=J^1gzym2zP+)rv~x- z)Yj+7#XGQ?{M1}+*hDVUSqIj_yf57OmxJSY9&*nKQOv~E6!)AE0Y(>(F10zLRmNcS zyp;%;Z(%A&QK}5{mn~7;uhaqmcO$!}*KA2Sm)ydVkd4B;3E?L!1RxZ)FGMe#4@nxw zge#x0<%FQnw)3jboIu0dqjl#Wj`zg>{uraP89Oh@LgrfbR+YGg~+J; z!km}dr*3xA~ilOE!94?!5KJb|RV8zpv<9?(fyFqh>DhWrI#$<&HsuiG<^!sCfk+aZW zFKu$7VULx%Uq~0E9-aufva}S3^AMb_NF7KCCDed3z!{FJSW9Gf!>{r%=MdIJz<;0FX!s$}y zrbsJ0#P)T4{em#1jQG_^uru?-64b_$B(TR94v~BFV}0gED7;x7>WtO}`+|L2%b!E1 z2QlBpU0Ty^0=|safN7c6OW8PfHev+b@*C^j7!`Vo>$!gbi&F3si%+GxZ1 z)VxBIS28cwfue4ASZctP*K~0MsROUU2TGST3E#K?=TaTKd#aP0qwaQxI?11%lQOQ) zre~JubFTBrEn+6}K@Ptn_zm6pmt0)?C%-!;wu&*tzu5V_Cw}Gdmc^naTGx?i_G>+L zAczz~3W{!RUr!sX#f@J5~j!r!e(OW2%x+_XN!4 zcNE6i3d3U;JT-mk>N%lkEo{Q4)~*WrdWQOw0Ss@23ViJ0X0+OOVCH814=zz%Gmlt5 z>5arF)FJC#l=P^mzS+}*NY^74+?Zde@3F^@V+O~cN)1(>I1^p^mY9nS0)1Dc?6s^^ zPK}kuUP4gsxn5TC*&H2di6}n%j2|)+VG5moOIDVJ_S5v!a7j7zCRGOZxu_T3p^iuB z6SZg#Fhn>Z8kW9nNs``J!3umKUJRbs)@H2`(FfHJ zGlqnzjhj+10fpnz4=I695l^0CV57Y(P#g9&A(B364wq?ym5RtqE4V?uGg%!iC3h9C zf@6W`zu>Z(033=mbcMk^8pB45r!7jy9#1AYGKEIti6%^xj&;@X$eHxFxngafmQ_{$R*#jafirUl~!I_k~WOktM2UIu-nnIa@F^@f(J*%vi? zSU#}Coj5W#r2i9P5m=4Pyy&9N2VKEB^x14Jk1DO&l>o`=63qROws!qp;uAo8| z4e|&JVJd48Y``l7bcJ4+i9^Kd*N;z%6RYtESQ7G8Ny$;$2g}gSq2{B5Rmb1+U&kgK zH8dE8h7Ji$MV|D>5v1FPo;2Z1rNC>xzP=#sT&2ungCbf9k4YsC(FZ4PsHuTDEkh(V z&Iexf2>O;~T<>{d<7eN@i^r_fbE-%3Z#P||>zZdp$Gy7wO_k@yCbwkbm44k}RsOA4 z(X^rf5^MNz=D~vp&y<5@igNsTK&m_M+2j`Ayry0dI9!WbSYAF6Ep^?Y_t|@(hwhf` z$)<_Q%^1slC~B_Xez?rUENGzsBx2c`J<|MBnks8Pzwg%Begvoet-7|^XSVTEq{nOy zQ|(VcW`3jg*(p+wEJhzmC=i%-g3K(i@tfIL1Y2e1s zs(^JH9$wzv-$kl@cKZvmIe8?1F{De_!^LRhxCZqhsB}NhF?9x+|thM zTInKFUA!K4qwnnZ*P>K^Oa`yoe@ec@eu~b$d0qW}h1sWq42vE>YM+5VTPHHUjQfqb zDXn*$6)~$%yrh->7U*`RaY+o68}dt2tZ^QiE@s~IIzgo;e7`%~6A*{zkfG6LqpQQh zK*9brXB+8|vO1S{w3`<=^@Nk2yj|6OekN9`pA>$y9WGBogX^cGg^jBpLbNi(X8RRa z?SN)x0aH)3a}?6(m^j{Ay?^A^8s9Ato=rU5stZ}rvYgIF^-q;r9$by#6#rRLS~0!9 zffpE%yP}$1Do8ayf3c%BwvCTWypc8dk-Pk#3p|voiMA{(EFu=o&ze?Svw&{bR{Yzt zge#lhIS${bBM=_kRoS%zIrL|1nw#@WOH21=%csnK&R{Ffb*X5GG<9#FLsK{5a&7?C zoHv~}h(`xRYIhB&IodA+1ML>U`(jOwcMmL<;nwYnsrKOACa zAC!v4M5>FoA| zzW|_G&iJa~;o%FL1^W`mekGr*cZL0#tjBr4+-!gLW{!J)U@@iR0~V}I{HSkeIE2#F zGBi8~^bERZWb|!lXb5#T+)_8Fo8NzJjChz%S#8Vv`dUNEW3oAHtRPixqgQG-BYZc* zf)c*>EpO$E?Bo2@ogbG~KSinTPgzhh#4RT`9?%E7z1@^ehIhO;0JOMpZvC6CYM-Hz zdFNv`m5+Zjo|RiF!_x2X4G+vMj1@NFD=Ngg5(Mzcm$Yg(2MlTc96M+GZ%B!%_W%~6 z4$O~1AVdO0Rbw=m_4~`#LfyRnwj)X#FyGD%yebhJcDs0UX++Ap{e*hL`97*@Qnw@5 z7FZ{M^ach79~duZ<6uSE?Ha0k`db7SaR3xPbj9)RVpSw+%C=$mXI9|E zl0{t~;jY5MMU{ksr@vD_c(y=DT|J2`iUD#JPf-2gpwb+w!6ic@BKxdK?2h-q!CQQO|oxc6sKz_qv! z5rIMF0S`bOSblTRKoeHwvoJv3Gr1D}M-WcDGH!$p;=u&5%6&qiq_i|}sMKNzyEdoC zkLs0F&IqPL8J|}N#I#0!_eV+tu((WV7mmuX&C+1=cCUW3@p^W0a z0eu`88oI5c!(vGxjL7ZHziwE5_c`ET$r7(ZS^fag;QNZ*nYX&Dv<^=fHSJomJPLXd z;MC6+wgx`+q}{Kr^>w^Lv~1gMpAuym8}d^s&w6pN7_eU7roB)=cHL7^0{t(e&iCA8 z;O~&^=KHqfdo*i#cnP?f4R9@_9^uL#q8@=vfNrTq@%wQB7P45E%j?mcw9&7a00{Nw*Jap9y0Af*F7 zx6e9?zpJelmD1Q=-#j9iiHfe{e^&j_Q01VL*KjTu_lD-sTIzKG3^t_YfuIN>2NK?(P9>>!Os6R-KT>Y&c*udTI-73SV zW-K=4)=P;WVU=x%dp8q^fNQ&c{rXy@Y%>iSg;)0fh?hhvC@A=q230$vj=gYx&&CsR z+#|Y{ZBb*raaHDcX0O!GumX+=Pnq0Sp+cUcff; z5M-@x&jkK)zW_z|XQhh0PjpE_EpL=ta zvjC878WD*BoQ3D_uNqQ-#!Uj)jrAiFa#h4zcWmMn7Ozm<^MpT9`NxQyF)?p%ut*M= z*G`X7>wp2CNxT`iJcXEPN!CpRlZFLXbm>+D9&t@w-pkhZ^Q)Mf*K9*FA4ge&SFQIXRl zbjdW9S2iAiltk*=BWxo}>EQP_szoYoeYf48Vhbl_5%(P`weB{y?Em^4GOs2u-K}~k z*#<;ER5Q&~2~_}mgP6dsz_{TItNaPEw&s8({PL*h<`CF#1aMw}s3WGC;{l6)Jnl~n=RPp1n!2VyVz|J{6d^lgHv*5B^0g0}(Byj&3 z=9gn)CWmsPxYlm3BWcMpN=y97?uJHnS;}37rvkM&)a~?<#KZ>x@hdVdw9&5uLg1E9qrF$O4_R94`rLDSoTN44>*C| z6l5m@1U-OZqYBiE#s5T-X+?_T^$UeIZzRLRR=Wj%04C(H`)ii!D)LjQA&ct4f^HyX zjM#s)k3W(?{nQ2w^s9%lgnbV?HR_&RkN5uqI9O_+Lya{}iF@}acl-T+Ve<}RsqUqv zzhNqpS8jV8<>c=ElN!q_5_kLGwxqw@3MGbauLB{q_d-Di^-bHEDLi6^VhP`n4gbK| zwsX5sJM&tZG@_v0=|ZG{#r^b*toJVLv9gTXTl;WT9x+6NpJeJg*8 z06?BL_RjvZ+>b=H+RAm#Ry{Ml>g&D6Z$alnP9uiViH-je`+;MkF2mY3tRM>d3S!I$ zsRLVr#B^Z?SD}YjgOw^{eW^!W!J@X)uY-l6@}uo=`qoH69%b2I`vFfv;R`_3?EF6S&H25R&5vv^zc(y4TyLG5Fglg<}+R!gpNdER@0dGnIX zef$}6PqUVy{UVs+Kzei7uLCpBKt4}FK9{oZNlg;J4~#>&yScepX3;{hRF^J8B7jfN z_xAR@GhXHVpwa@+N7Ku(_OOC*QTgAro_wARo=R&S6_t0XExjn@IsxG1ip%WcaR+)? zt|Nxcim54nLcjjS2hL{QzW`0Qqo~k@oZLac?}4)-P(22@z(lKUot>TKfB@yQd1U@X z>hZC90^9+LN*GV8IZg{ym)8F|0&4#6Ng@C{{vYxq_nu+Ct3o;89q%v!a!|3W@>~9p zb>rG2rr9zBs($28-7{aIy}qn~ZqtP+vqR!=)0lex@4Rw!&(e_2ahR5#2L)6$(){od z{klCr^**gImK+DEV*bv#bK27$Q7o;vh1@Oqqlp0kOF|ceS-?%JI4B83+X&PNQTxdFBuGXF;X@UrGrsOL}?E)|Bngua`UClaglsTJAmR$9F~mV z{xj=jU`zm`w?S2LGT;1lq>ojI%=7OE)c>|g$$wUaf6liW0qBwca;LvVcVqdv!xq14 z^np;U4RQVTsDJwvq1cKG&>nLtT3;;IW|m784i5-ZZabXGd+5HjTodl&77^N=U_)el z9W>z|^;fX;u)d)^==fxmb`^=3t+@H&%0Ic_)|1WW9)fdeRT7a8WQ{EWrb{!1LzHJK zI!dgdqw%L-uH{I3bd9J|Tg8*Pk=nKW#-F+5nm%$%e=+O?C6>3w@Z>v7zczfm{^0%K zPO87l7lqn*A)N01gB+HCRI$C)MJ&9;JUqbx_5g2z4=)!CLLhkz0EMk&Y}w?3t5Sac zKrz7DoJlySJz;WN+^17L$(qb^zdDKEuWAF? zkhj;yfK0__bf^KMF6}ynf34qpu&y+=xb!Efg;zdcwJR*4&evzXXfw;Csv@uyWVaCQ zyT6wp?6kVfe;6lVZosUv*KnfC_r|e6oBz#L=27z=Xn~bqkNgB{h77f{u0MB5QQr=3 zE)`z?RXAKO9$_-p{%c5Qobu!9^Sv@K()`@@L8EVaMmn~kEOEX=$_c!Sr7;OwThhav zW19*VmVIxYKf3vpItoh?0EE#PdQvw|1Bu{8Y#j-Hp&6IM1MpeYEq{v2Ro<--NC(sFU*RY4YOk*Lby@YB=TU-^#7END&ZU@MjT54_O zF=jJmCnB9E@2dt{Jht^8njAG`zA58);f{;s&irWqik5(fs~di$j&GGBdhOsTI+Ebr zHE1Z+Sb=*+a8@7Tc=)E&!N*+M)|n}`qTE5-JdZ+XM|bC#1Dcnw{M5zsM+^|7X|sn@ z_Bq~`>DGH)^OW=)-};-EhghXXeqX9`iZ#{Dfq_OO ztbN?@2Y-K+jukNf+#y*&c}JG4i7oaOqHcEnB%o2+h=ubn+KBsM4W%ynD)1AV(sYY1 zr?h#x!p0OD=~*;nTvx2j4R~F$#!N=Wy9hsJhOgIAO@COXrpg-CjSd~*DB+TAjC@+~ z^5Zj`D+B!T+FaD3Ol!O2N?wwlUj+6P*?EnWcpd6oTKcBE!an54@*Y-)KgYbx!)cZA z#_;u;s)~l3n!XmbB*1c&Hh&2Xs~C*Se(6m*$z^J3a0bop_*i@XY&6jChwu8*fGnCl z%1ZsJ?o+Xf0pO;{=_O2t+Rkrmk!lluc_~O60~d|TzwF!$O!M^e1CD+b-ajAibrx6w zy?J%b)fZK*kyWotxHISkChDp-P1_S!Zsc#TJC`t3NK&DQd=#?{?1R7;Wf-PoQ=9j9#dmTR3a^Wjh%pjs{M35T~5yIySe9o}nx zlWAS4t7t5_e41OeB=V`Pa}4%D*Wk6{m-Q!?end99hKrun7*Vi=17Zyp0nS$h#tEkC zl^XEWonS{JUAcGGD2>&`eEf2fFCa^7V`fyY`RC__wKQ!6|NVKJ)7Juf(@C~Sj#$?~ zv+n%J>F0uC%|PNPA7Kp?(%2)h;H6lQkME`7nrdueahhRPG}GIP$-$n*LYe!H2}W+t zv&9**Ri1%fEXjkqf1SCxU(#3G z^^Lu^UuJK9q=Jy_;I)RTco<8km7PzyfF!VPg71Etu4aknlM*X$HU1Rd#b;IiGcsd! z{(e=p4co4Xhqsb6EWYDPbjn@F$G>{0zII_6-57SDxx;UOsBHo#eX?ETQY?9X(lH9~ zZcg3QqN1Q;*u5$vTjgMBcVZ(H*zK~(d(5})dt42pTLtw@OxJ~K7`xNpuV5w>S0IgL0 znZ4u@EY4TkX?&}_1a?WL+Q)86!|UeI3Mk))lIfUb+)^C(^Jc4GU29>95lPbTo>#DI zD2weRSSksn)>-7NF$LqAsyIWP z&e6YkWjWiN{i*m}>-XE$0-;kIg#fH>Y`utj3&+|$Cg)GFTW8H z`E)C#TrGJ;qF|@KqOr$U9ngC9M4*1A7)pg(LcVjM4v+E=l&PXZ%#?=a$#;@WsxsAf z+m|S^)zusAjeV})o2!bXOn$=W2a_Q{tpU4e6Az8tNnGxXewheBA!HpwBBVF;jO|4?4Gim2sP!Wt@dCK1BWEArQEGgDpAcwS8B?HFnjElb4iB_-sr1VlW3VLERO*|M zsxIx!^FI1r*B0Cq^aZt4QkoqI)kMZqw;* ztN9J(Si9h*1L}0$-I#zSRNJ{l^5ou-yuoc~I?sr#ovb)-6)t%Z_)pp@YtLDHBI%;j z#p7Pz!S3DOl5UdzFzIh(WP{R>1dW~v@re=$RZDSWxYFmM7$tp!JFO48&|=Q4sXlVw z<8|LKg+&j*Mg=PObT6r-q}HrZ>P)264U=z!UD4Jj^#Dn*YWV&1J`ZNsMCKl+#>pUX z>g3eNVX3=8Q5Rn$2t(VM5!Xrz14_m2#o=_3$<;;2IV=K8n(z&nyFc^WHm>;UYTr#~ z03+Q>Wfaf68009a{rk$n-&{z7;ilwC^)&V+MzTP2b7r#3R+4px&kF0URtIam44)$v7@2R354Uz!J&KhF?09N zc}UYaGZ~H^CfgoVFO61+xlXj^9RQ&pJG0S6CpcA97oEPx`JidPOpe~x;z;}r%!CG! zCs9BNSg==e<2SGNBN7xxzYOFmujJRXxP120;B@0x%S#$C(z#H}o$AVH9C`Z9Z)Zzp zgFPmP<`Z|21;-_pNUl71&zpA=Q5o^i{Wu>P1%dOhODk^0+pn-M{v|4y9H zHE>~Yp?6A&RIx6|xMk>Sq<8I$NIIcCeJx+6X~@un(Y`TZ#DNm@C_QA= zbnXVHr#WIl7$OPTxgf!B%-RgpeASv!i9wj0=dSR+|VL9&i^L=(p%Cnn1vp z!9dAO&=n|8L?>{jj#J>msfQxzb@*7+;iUUZ{rf_ zg^^ya6~#q@Hyw>Q`OTlk_ro2HUcD|2VAK!B&j6o|@H1z_*OhY>NYeXjzZ0*?fv|G0yIv;%tJL5O+sx+$&1#K8=*Qc zcbI~7q=C{CPjU@VJg`<`^!~YY=h))Vy>b&Z^5W27g~^9!L#5VzF>5~rJ7@a(z^eLg zqT0_-oW0E9F);?7@b?f{V+|N-A{Ay?g>kt1sEQReptKgBw^0TQ#=Yq^j`=ZjoHY&$ zD_FnOJzSV7#O&89MXid-zi{P%u4Pqxxd6*fj}1gsO4xm&tdNIFU)K1NRF;-rzN8th zcw*E{YY_rrmCxrwv!7D*FD)T7YzTz&wQflVP{yV*+V}`~XHHLgjaIqGK#~#;2FfS} zVFfH>O{ewY+2Cxjgd3qcNmvh9b;)%$mG2bJ-@6+z2?8OWlyIlY%BW(4n7Wq_-OnqX zFu~HVG!$`N(ay8T9{oDXNG5+7G8~`$YD(Pj@7Qi-$lL98Kj(fW{14&sFUK=%XaWsT zbS8}TRam(LYYBQAmi?Z}ei#CleQ_>_!SZPDV}B|a!pa-3>^b$svy0nvCa$0K<*pZ% zftkJ+2QYVyAL4rP5mFJtSV~^nOC_MSX43z+Qorn!cf7^U$DcQ$<1;d)WSr z4S!MgwRgV7(}rnO4$2n&En-H{M$?ZX9R0q_65eqZXK9x}rH~98-;3o`i5Z?2*Z+!c zhTjId9mws~y7#M-`+s(2Ik5Ksz~=okiQ`D+Os4@36baw2vLh~IcFf@-PcgS4Uiai( z{z32oNrv22+RNLc+jJzLLf4g)_pTcdARtw0xn2sgk;(X*zpRAJ*m;KLw^}jBUpf6v zr3J}n1Zcv}LX7m8YbNz3y{T<9c>pHxyHqwq$n}D1)ir&RDOfrdgL>zyz(GxHHkJJ; zsq>4Z>CTcgR9V*dlRD(BeasvHAo8r1gWA0ioH*-rD5LC%Yf%nD{oP!kQ|wJ%<;DPqt!H425ueCi}2)+UI5_r-{!f2 z|M%|xm)J)jOVi2^5x?CbKv_O&!UTvw&&OlLQ%hBjg{A%opeA<3JiQmK&>a|+d}-x23ptvQErlz;TLFqtOjv^f#a1w{JVU>tk@q7JkC8- zYuy8%MZb<{!0AA|^boL3H!jG(kV_dHFzV<7@!s^^xz==RDfg;R&(jKRk4O~wm;<+RGLRTuD@%wX zW%0WVsrOJ!_n6yHW1-IG9{VidC!vQx))JN-$h0X+n2?ZhsWw74Ek( zfC=#bR0S5Cj#%CoP=}L2(%G3cflz2a-{LO8t!sS*QY8j;Cu5JAAnQH={pF60S}!n4 z^-i#b^PPsoV7-Fmp#A(kyH~Gn%cWQI^Fr_%9c^jL8wd3{>H&P>7|dls=DN0S2^$_$1(?0xI>w;!Lzs7b0sn<`n;xsBm z{H_%GF_v76Ls*4u?Ff;SN4IKlfd|>Dke%?+gTGya+qZI8-L|>9m%lUOOe0JIBM}4m z+oRZDp2FL5v^6)(YbQV=427(-#E80I3AUQ5mNbXpox0@ERssJ6FD1Tbxh>s7Y-{^r zD)(`64&?oiGIUi3{$n&(cXHT%tjJ6sHy@8=@k4{Hw?a+6;(OkwJk@GL!E3c){ozUl zzu~n9v}mh z!VOk1yll-s%6yBMpk}b*bpnGCjA)4%^ZPZsT&3>JhwVPfLOy7XJF_3cN8j{bZf{pk zyGJ=aOr15sJ3(-VyFpQc^aT@*xdj(_xg&rX15!J7QCoLmae#gelzzY5f$V0b7? z+Fi8F?Dmq#J7EFtEsz`9n|?W5a~ZZRSD2a$BoJvW=(4#X!EAoVlT{J`o?BRG2qRF! z_#Q!cy5HyG|IC9gcD4J$)qm)dQhb>D3O%!2wHB}eH2$E=j!hQ5hcjOf1d=lL6vd%k zv~3`j9ORyPZSXk>6=(^zn?fW08?|@J>L|H;f?T^DvZ-I_#aEV_HtN%HpQMP>SCbFd zHC*xPJ-oUp;kg{2UHR%-+{{u06VyiD^PHzT+$?iwhT_G*ydmcpXm(YOw+kxV` zo@N>>`iL$a8FKc>;8T?*E*z|Dw|$l(e{^s|@ooMO8AV0E({E1)oT<+g71qVmRERIk zc)XL*MP@s6S!5k3%{#L zY!yIVix1sXh?x}bpoEPpcdfTCx25p29}SEhod3O1b*=j=zWWrH)_!am#%uZ8h{+DO vNxG?>s^_u0%OC&szctnS&%xpL5tt>vD8?bkEf{!s6r_3kF1+HF)uaCdEe3uX literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_5700.png b/Notebooks/1_N_horizon 3/sim_5700.png new file mode 100644 index 0000000000000000000000000000000000000000..77668c640f5f46747431b72f10d443c00f0bf1aa GIT binary patch literal 15259 zcmd_RcT|(j_b-YCK@hMY2ue|iAV@P5rOJx}Ar$EyL?lR8DM7kQv7kVx0Rc7^B48*%kq&`7!T0{|`QEkeI_Iyu*6$qF3VHH8Gka!s`RqM=&-472z7`t` zFAD<$0~<{Hh7kk9;j0V`2ktQ+0e8x?;S=ENn$JxOA7d|s57ObG6N8?E&wY09VFtDDYe-1FD zzB$9dpu`Njp>E>;W|90T$i}yB@AtZM(t=AWDNMpgBlkAa1xM6vDh;RRj;j880bNg3<%glfW z;P3j66ZiKo!afUq+rMCl(`x+N@j^`4q5WGo_zy7cUp!Mj$i9DZ{Lz0GLa~PsW|^x$ zrLozCv@hP|20jNwLDvGUhN@*xbdN))L&FydXt}$uradg%JQwAu5(u+o-=G9ESs-IC z6&+k|J?c$dV1&BKVj~dp4!Pri5rzq$eZkjPzM4SGfKj3uT(ONT&|w?1g+Lrd8r-DG zMYgL`cOS0*gH$shJ)#6d3C2cRW{G>KelZs**Z^wx9-^mu+Z!QoMG8iB$E`G=c8y71 z!hEVXmJTq4eRenkh!c)OU!sSn5o<5d9;YSGhFGRBx z%OW&Qw4eyvweSE+_(a5o?`^4x%=<^6X=B8}wBfUeH4o@Zq|$m60tX|RBG&Yw+ty!8 z*bwp)M9s+6&`U10m_0UUk)TgR1bTSHb4d!?*+MM7f(`6iFh}4_NyDR*FCmDv`x|!h zDZ^d?n><_*9-hZSFT%UrrJw{&QXeXWbM3d51MLve{W03(3YNQTp}!DEJ?3n8SsIJ~ zwTcXw2}dXDY^7ib_(l6k>MC_N1*4{|D5O070hQss9ynHKNis#TU%?*o!$~nP{9vVP zn4bhUOc6$sLAC0P6n?W`!`5k$c2WBAJ|8e8@PG!)C6vA#))7BI%fa-aiW7Y76{QV- zwfX9hLQw2UK5w4z93=OUjY)DST@tb-giqAv%@ehXX{xh!fGsJCTt_6AEX{7K7?SEx znmVZs>8gMZ6U0w??ug;!#N8Z%0%7|pidUFcMQE6&dWmiv z+Wl6D_k!X3$fIL41(aRFiaK-@PGSFrwOIO2h3r+e5*^*8m@0 zQv@$va;ZaS#e5PjYR^xrlYovIle$$|^!128fbL z6{bz@$Lnjh66?V zYuAF;+R1y<)LHzt1tZip#2vBi8`?7Io>)Mpkx{Qrq~TLUyRB+XQVTg`+=&_zVwO&H zXM>8z%jz`sl&aa-hHA2GFNYKMpalyM*iq=HTET)KtS4f$Ct{ltlAsgdJoo_EMIaq^ z7py!Jee?p(!=VLNu&0pk>r^1NcM&kC(#?UGO9SYakio`UJ^G?`h5*Ik3qaua%mg@e!<8^${G!Mj= z=Ic%cPvB;xRs8zz1F-n6h3H?-3CFlSRHO^K8`6dYy9%#29YcMh)^{ziLDTLa1`u2v zPh*$h0UD$ZPt%?RALpv|@weY3FHKy*8bOtGnzn=~XyJ8usw+YOioF1vNT_Hg+yDF> zb(Epe^BM3qKzsC9s2RWCq6c6BI!$*nm0Zi7Fv1i>EksxDA}7x9D;XO-#>}2Rd}LjR z_luUbIb88Z(+EeX$uFiyxFww}P5)VxRLwRQj9VM8*CepTh8oQG3SM=|#(YAUm3(vd zDI+wDXq;VQ?itM&wDGrSauPH8^+#p+iBj*_0@as=>k6&U2J1{*xCSLCUKVgduoB%(H*C=J^#|$xSK6Zb2Barkd^$O@stm3ZpiBCM zQWbNFC)m3olHvJ2>zxmW&G#Mk5mxBc zM?_Ulfnh1j_CcimWtWm)Yk`!}UyJA#$-hJ8o~)rV905=P&zHx>p{NSjJetZ7aYiRq z9F~=p6~%wQ@qoq`7=5&_pCs(-gPs!1r||+m1rEMeo}pGEaM~nbr?OZXYW+B|RWya% z_vP9j;jVZL4-~Oc?$jAs)IjfBDlUT^dPrtk5lGJc!2>N|arXR7d;zJmC$XY-1u2E4 zBbKO;%y{;{lRBKz6c^g6jqfCWXE|6%Akz*&1C2;z#F{0n1g;24PCrbid0YC#{U1C? z`}34<{2dB9sn8vj{qDDa{tbGbh2wDYMYaU9uCA^cD$BC2p<&$Gu(JRpzTF1NsPuS0 z{JAb%2wF@}Pp4je@Sb>ih^(G*AL%hxZRj>sJb;14KP2-l9OmL-1mhh)3J8rj#;7nW zNaqrD0~gAepih?>_JgOe&w^u(x4x~5sU6=BxUQ?&cz4OAUU7PnZID?!H|Hv0S8IXt z>Ap7mb8|LRAYmv43@7jYwbwa)DQH&dkmq{0(o%l}x82vQh1W{dTfV-P`2_{0w{E?4 z`I4Q7$6F=ahirz83a~4T`+wj)d)AxGw$MxmWblWZY8T1uKg6N@HYYR0Dk36cq}1W5 zm9;elRz>z3EnS;dn%I0@zgAhY=%bXmyOOg?F$lFXI$n6$ruxS1(i5*4*w3kYSp}1#Cx96SJwuk*jRem)d@@-<| z{u!&m-j^!p=Civw>((0017@j{J>I1-QRq8A=(4sjoT?J&H{+b{w^X-2w}95|Z z8{TT>u75j>b)GNpl>8!IQv3dt{#ErT{(#)qs$2K!el@ewb}a?1{>JCGm4K|T7Fl97 z<3$Vx8M$rVMhS#ew*|1Vv4L@ulBDd5mzN&~Po16UeZt7Pn+183A6jNHtIFB zJl$F8K7557^rvg2`oV|dx;3lQ+}s7(*_wZ5dxkm^#aBUN%^0=aYFAfR&X_j2(A}US z`vyBYhxkKx9!OY}zMV+!Ro?ja)T+`oG3m19`_xokVBD}@+$cia!K0cMzC^wt_Rnykl;WOqE={2 zq4wUh-2)O;WACRsljkGPdiDawNWXn>-ACG-u7uZr*w7k!D4V|4OqE^87`}JnYRXw{ zj!sTaR`o$O{J|@R5d#E`s<&L92yGB{=}MKO^8u_dM$&h8YpB6>b9p-Tns>HvUS1w7kXn<&C1qD=iACh) z=j)(+MqF|zS;=-IR5w+?!GK>)Oupa)N6pR8SGo>}y%JEfi@&Hxs&M%t3^UHw?R#_0 z`z~U%w(69Dvf-yspTs032N#C1m3P}u(wSO^Q*vlN%onmTiT<-xzwOzTreKg~qBB2K zGW4fMt%UL=hvTO+vg1;YD1S^reZ8H5^6zl{YtsqDvZSP>1CsbPcKSp%|H(nb8e{y1G_0T=Jz(AK&%*HT$b`*No)kq0}dL^Ax}OV+IzE!NCtj8wS9&&|!P zWUSX}aoY!#$$O6Fo)FUfnGs0sQ)l9pj3luN=Yp{6ifZPAmAHwCUSKR34*C{Lc+-ewP-mzPbMK(1?O94X!y44oc)&`}mX-1!U2aCT*p$~j1=gkG=(2LXJTdUaXD}Q}PqhJ5f z(EOjwy;@f{w?u8>iiwbIC$8Od0J9XuyldL}^Nf8zpO11ko((^x-&<5Qo)5HQ-gYU# zJQ;pQZaxR@$8y@F{wc7h>HPMuomg5bZDIeyq_&}6x4Sh@=a8)5g2gL7 zC7k^tzfZ5aBG7v|rw-0V!cx8BTZL21 zuCA`CtU2%QY%1>U{GFhOhsV}No0@)OTn>@!O=ennk07Q@QU>0FU@6STy5?aPyYjC_ z8|0zj>bd*^6Em}HsbC7chT0Lfy0Yzr=p+YgzQ%_i_%10%*L?=T)dq=Brn)l*R^!oimF9m+H*_%Xu$VQs3Wvx$^Op z!QC~lx>YmUckYI-lSBH}bpiCQBUuai1;r#bg)!;3en$$_8oU3UUM~l*dZ5>F!gSY$ zUmdhwjgSgD?_FD0XZzbfsBv-JZ`320-@f8r9Nmrnh||(RfuNxFKtt;-Se6mNB(yYe ze^0{@w&P7(B{fIbc5+D`>tJf?(-J5G@qs09sw4m@tL+9MbbvDs3?$U=OiQ`V5Yefs z!T6A^FPS>1FB}=&p($+{6U^5E`j{xKvhxYXE@=={n5v%2LPSj0v0QWWSzUu(LJ~K46$#% zq(Smh%BP2YH@PXFg<|?a;E;yyJGdbFH#4>AJflnLH&)Vk9l`pPhK3^X6ce$meG8QL zNELQzM?vs2sctJfe|qL;)%I${#Kh=0Bw>p;0j|AgWv-xP4&cksOR4%?=geR;`c1se zL)04Zr}JapJp*2$+tw<;d*Np@0%ae3zmbj{e}o6V$<)~R!-p7EeCIXij7Ql3R27RX z%Ko8ykpXjia#kih>2lvIh4HUh%A>&NlOPGzK)%}pejXl0{2?0-!M|VH6BB^tm;vOY zV;jJwf|%e1$5d&DCz7?l{z-o{gSINW6QQq0^Pzi3wD(|%eMuXCpe~2N6dBUiD(Nwkj=4Rba)6Po1lixQqzjBh4;+o8 zpH5*jX@wd7-;eV7eRW8cbwLSJnwSLo0s36Qp1`>ezc(!~qr_?P_lc==D+HPM=hzZIE_-|Jb zc&XricO&be-ovjr3!C~faRy3@6?WUJ8&fg!xKYneBJZQ+b`jr+;B^?P`|8xO;AwID z_I?!#CZ6-HE^A`!agP>5{q4dD;&VQlhyI)|tbl>b2UgKlrWISJuW~0Gv#+ zT>uQ=LDl$r{W>K_jh5G~{71JANZYFV{yWvpb_2g_>vVt(-DwN`36z7ri2yOc#aFy? zI$)bI0t`UD#MIF6T}OwG%GS>hir}-_X}@~~I(5f+QF|0%q9WkBFWGmwy*okLXpw=rf%OQHGc(ofK;yqVnS7#M&C*qeo#377Ob59_= z;2CIUAK;G)7=z7K;IVtF?Ax6?h$&&(KO`k#U+vUcssh@w5@QWH4by?)8_CHl1B1~# zQ02N*DA4a%H*xdg{>M!GUmH4x>;*21rt%>!+lWfoia8Y>IDq*N?7wqFYZnIFdQVXE zKun{O(uNPhhT!-S@}4_lkDuDp;h;wMCGWl%Ka0y~KOiXecgrZ{5?pQTj1Y$`O0+{> zF&CI>TP3IQ|J{6UFkf9xLF*;>lwv-iB;!`Np#*g!T~b`lJP+OY7@mqJ&9mRWmtu*= zOz7Z0lB;wS?MYcwRee$xDrCI#k$0Cn8Z8mHy;v1h(gNCFS1XMaj6B$2zWEsJ#?h8W z>eVt639#t!XUr~xnbdwn% z12!chL*z#N3*SDgX~7gVNLYl~sia^%QVq)U3N{>rfO&g=QQ7Y*91qh=mAy1XW+;6L znnOW4S9pH<*SnTsZt$FeA(GYYf8C!l{5Py8fHnS4N+ntuGS~+QTrbfqb=Vu>_h7KB zCvEtp!{%zug2+CPo?eOr`q7&u9Nb6Fl*c}Vb#}Qw#?%R?i@M+mRVl+6*A^jv8$JsY z0+oUQ*nG>PBGmelix+HG2R}%*Zg%vVE>7NWb4*gwu-y?MZ%ArFalunBQ|>{n-4PsV z!^Ag!`?Z=d^^eD1D?1^aP$A-!lgJ5I#8FrxialA@801TEC4|7LKl{0yskRt_8N2;_ zL8&81uS5|q=LwFbEK%1ZKDj~2vyUMtMd4S}kYYlQ_c{+%^+SHX>xLp5eG-lOfdq5>}OE^(5IyMOPvqC3?Zh#n=4^he#HxA z*W#D4_!BzY&G1ztHa8Pq%Aew}%gC@k6oCLH(rSD{(gy zqcBE8kFC**rVL?CZ4j|X9mEb{ni&bgB5A#e$4qTK7`K6WLtJ(?ertTypf_VU!U1xP zv1rKY@Uwr&G*#GAf-H;#Mc}MRs;CTkEYe49h&)@feGHjtXlg3=hD@)>e@mc?uGq zXxLT_CXu>(2=;K@8M25rb*{wlQ0vc&{F}*(1+DhZK`6&yZK;-e8yo93$iH)YN7wEt zY7DG=u^)X^xo&^GxBaF6X1@NnRv5brpssu5`|CFQfsrmfUbXxiQ<|sUc5+WH8e6`9 ze^+_PcHf$R96!KxVS2dIdL<{c(A?WvD|uO^leMK+D9D7%d2K@Gy>?m3bZ#467-5sQ zsTuRCw~wQTufiH)SJ+{EsF|8=J;a&{OdzRWjB*;5>9;;oKawir7%63qbAJ}7e4koe zHE&&kFpeK|ckQ1~Ot}gwsv;W*K{$tZUj-m&c+N;hM#^W7mvkU45D1 ze3h)5n|In=sxh6J_?ZN7GKKynq;#AoZd__XdC>Tlky*;EC$aluTRasK z0O1Mg5Nh{3RqeBw8l3b9HB%ipwKnp6j`tkl1#a!N^a68pj1RNX&>PZVHcql_&T0go z;KdeGiBZIDD`qkN*1d{i*XVe0QcUXD!Ps(X=1WpKxfP|}ghFZbH8U{Q8>KEfH*HIg zXjMo9Xs{?1{MZ92THx}0BS^UdYg-W+YwU)%I`W!Yy*12YR2tKC%h&Mj@<2BV@x5?g z6cQaC`ZzHIK+|vo;=<@=avL-6t&+ilg#?7zOU@Kb8_k!isUpuYr zjC*<;^DfJFRl+0R>*$mCE$MTX*t{}0&7^J3Ip~vP68bbML(a(XP5>jC?#D4^$9=2>|i?s{D>Ra=Unhc@lR^{$w>;5u~JF2RNKoVM@&Y)W=rT5<$D~%xuuO% zWR;nwwJeUbnt8b18&I3@yyf9ofRkV6kJcsuixY!CZT#@QlNj4g>mXsoUOcrFPIS2U zk2F0%{lNsbO)X+PF)luqlVKVtlfWpPd=4Pb8+qO%zl&YFdD+Ked8;+@t(|dNfHi!$ znMWuQlK!skGYX@b$a&ZS=4a`mjvz>%5D3qt%O|YqM&kj&lP8s`@40D36%=2~>T+Nx zuPHON=6yQb^(q~D)Aj7=%FH05Zlgre!_$4y`@taUNwpZ9#l$j|{W^;YPvrSTNW1j8 zb}?~@TQ2HvKAF=a|MPUJC7V3ZsDD*UduhTrj%o(dHR#OobzjXL=Texjg@+r%1gsy|USze2F~P0n>wr-;#T zK?tf86A9ofT(mNUrjI7;`^u?=8?f>A_Wp%*A#!-W2N zQ>Wm;E_Mw-3vn=(?l_g+=A=$v)(uv$m%MRfNE)+*4~{rbxqdg$ z;hAva>5C?oBafWXL~nm{v|$$Pm6$|-E~(pk>EidY^Zx6gWNw4?2H!0r}t3w6of0 zP=jNG#a)vUehLZ|zDLea{*zCcRd7vPiBZ7aGu9}u8V$^VoQ$zdwx07lBG@i1coY$N zmmksuP3{3?1kZxW-)?+?dhjYwbTH+`_mBZ3QVxgnIu+*bdT(CQ81v3_Z|qiyUI`=e zt;^EaHFjuv@H1aF)fe&kqTTEoC(+WF?Xo9_lluU%A7_DHH^xGtiCh;=tWtWb4Iwme z0I0I^T9zJL(Fkxx(`A*Hsy})94WF&-vZ|@qr(4woY7V>j{cdfW<#`oVJRiKgl^F(Yg@t8ZGgbU09e+FzAL{U zc*F3Y>6h9NymTX>pWgbc)b6hvm~h%Pro8z;=4k3%@8C@R(>VN$ z{D54J34rFLRZWfECe*G^YYD?-jFZDK71GSQ9W1BBB%+a{OF@zn(FL{Ad8B6l?C4Tp;6D!0^DIXU zukf>a##vjHws`pXRP$O9A_ddmX`gv=*JG#>)8C6S0thtd?r8$BolRoV^{3XY3yf9k z65>CPT~}<0y*;Sya#46#{%ZRIH>6qqyH2S-K-A9%=%oE*%2Fbr&?EJ`+PK&3=El|p zUMoe7*e#!p6P`oJOB}DWIu+z({Vpvnnl+G5U%Z1xpU+}En#g&i=M&?DM6QpfMk&l0 zE!Qy^!Q8Yu`;qB4;V)1!2sB{2D!rZ@n{%hEn=rI+jd`&WGeQU#A|Hy!>z+XwIl4(d z#mKyYk-m-;v#m-vd?OXNmKHV;Im020O_xzXE8u60jAB2Bi$K~7k3+_!bXrYQqVoj# zjUBFJH{Y;{c%H&?Qs(rYa<$h)CF(a9P}uCM^v& z0YAU;EpO^6$O02+3Hz7)(Le^^>NM?WPp7%Nr_(PiR8TKC`MEqe^fXc zvgKcer@YOU4VqbN0p4N%m|yIvVW_T&s{bM`TT$^)j5Mc(NP zssMG%Aw~r2DI3xuhOabwVI!>8=y*3SS9G{WPWMO$IdSe+@d2HS%9LZesm6=0u8W^- zzJK|eY7~4`JWF-{Wad^I()h8%;Zsq+d~?_J{Y8#iMs98jLB&WUu`3+3gk{77Gf(( zM|QY;wqnMeKL+D%`E=(C)PgkX)h{36q+U0J<0HJu5j}y6TuB_rt=XF%&4O` zNe5sTFH@A0ip^6@ORA#+h?)l&R=DYTx9c|!V~zc&@*jssTC7hhRN@M1ifp?8-(2Bd zOxs<<+j+Me@+4ByQIcLA`PQTT*-1rxMqVnS zEOs{vD_wTcuPmskgj!Jen=2}O0bI_@&t^%njhsNRXvB02Vx;Fu>CK)!>DXIOW_`|l z8TIyRt6pGY@cVn}Gt%ZVLQIkwVRbBOjeWvz2IfYvG8%>&Jq zygNVOq;_g#;oG#T%P?}}DB}GJ|1(Y}&qwFRCq<&rg*y{9D@l ztn_<`7Q&QYAU-s);wFPe8O10T2&9P9DLbUjsD?LfH)G}4@gVzR}mZa zuRu><{4S>Z5yG~_7i6@^XNg>*_?`X1?-e&@IrvEY$C_sw&chjQJSsoyG&I~dD!dLk zf%SZ+Jw&^EA-maMw>{i<@aR*NPZ)}Cgj2Y@IW^-o^3qG>B?Bgv=l+GE=?%L9E;G8I z@ZVh?!J3r?&ngLW`W0#cB7)^t^c^`XY$>+?yh{dQ;x6KYFin$m16BY@pQEOE4;TQ? za_seu4J{<)IJqvTVMNKsW3g#Vq$rQQvJ#mqF>Sj}IJd5A3C|9>HBNhj^IIy6_Y@g; zH|S?>Etb*+!tIVX@v3S{&tPn=CfopSXOAWOZ1icwUJ2GfOJ4o`0srUy{K|;>Qs0l+ z=y7pAzw(#B|3P=bw77Qued+!~4?{sLuuHs9p^uxhC9#9@(PsM(WP zj1X4Z!_9S+M~bpc44HYerW;6ZNm#kYRA`g!HU1!im-U5g{yQ@RgOq%8t(Y%K%~uAv zlJaq-x@oLB6NBgGoo>q-vC8|f9^slD$U~ZBd{6pKVKF1k3IsN)PK3;2y zU$>(KFU9i*n`|vOXB}c^?uPg9Qg)RS+A>1z@Y7tNq=ErOus_ZfFK>hG*75s4E`cM7 zE2S8>F`6p0V9}t_0pShlO2qu0Y7^KRaVudn-xuyqoXXjE+Y908v_tiIF5lj12M~%q zb0$V&YreBktS35rrSO8^o^gT9qy{1>VZ|B-@QU=!Zrt2jPKu|Z~vxMXk= zznw{92N=e%iJ*{*9a8XPczy=tEsG|3hT`!fU6;>#j> z+{de}o5-iMWds@Ff1uu~scpi3VTU6S_XVv01D%OP&cd>?cCu8v*j@(amF3Im*ALfK z&8d?oPlKTZV~$N1qJn-JaHKSykf7B*hhF$03Uk(093;9nw>7}=W~2u6uo!HQi%Or_ zSKAf2g795I4vz5>RZ*!(lDZ6a;f;4`}Vy7?X~YJBpKiDhcNBEkrd3{mJ!lddir(`wXK;ehCUJ zRpP=$X9x8GascQ2k$&Vb@)HELdk3K)%3S%H=z*j^V4&wQzpA{Eq8K3sL?}iuwWXr> z=q|P)iUqws%VEv5-~TJm;d6v2tT36|b3!O@=%yw)ID^o0f1L*un_5WM_9^*s9cZIE zfYM0wq9dfJ!(l&z!*Ir@kgh!o4UjIB>jo|gwE|3U>=<^P8c^cC&=L9D$;t2iTuX7fY$*>Q~VAlU5YU`~~T6RbGQ zDTp3&{SwOav-A#MDgimHs?Z@D0fxWB*; z1le;44(f`$WaFF2%vmaQELhXjbfDDlB)wG_-_6Fdzzv`ckaprlxL9n(`DDJoCq<}sL3-?LHr`##u! zQ=$L=zANLrpTXsJLU_RgB!*}|o9@BRJ|rJK#_Y%?5pBLAjp%DhxykYO$3niNd=t3< zJYL}dN#ZtQQq6X>&H5o)Tgpw=snaUamjAZj|G{(Q(BI<)|EU0vMN^YOJ*)8y_MSuS z`zV>0{H>P*{_h_x`i^X1vjYB(KO%nHzo5Th^!U6Z;wA$3kqCG@OI(;Mbo@Ynfux8f zQ#|l$!w50sSdXm(BFBj@?JnYF%b!q31Y_OGWMOHy7*xsa?d+1iU)=94HE4kxmI52X}1xbEi#X~iQQ*EZxTM(#8{ei9`2m)M)rpPdVlfTOT0SPjS`gwm8Aq(q2#$BVtcw?wTE zP_q37nCADG&bzSx;+^hy!m&D`Z;i26u+``R(G89vaI*Xy|41i!2yV1dJL@-cO;^2n z_XS2pcmN+Lrd(@A8h5DULHJo))K_8TEW0rCs{y-I$+oFVm7(x2XF~5GA`U&W-@H8J zh(Jsc-6Nj#jQCFO<^JNC*N|)@67Qhur6`?svYoSqOd7I?;DITEyT}j!T3l3*1;@X$ zl5C4!y0Q`xc1WXxJW8&km!#OC*t|m?EuiSIm4z`N1V%k^c`#aQvJucZMtif8SJywk zx;7@^qZkq_N&mn^)_vFcP@cw3LZa>M+O0Y3t(PQDo6gOc$8R!A zz#s^m!3Lg1%~1;$5Z7a|1ny8nKxB(te~zl>#CbpZDxZnvKQ@rU#sGL!${KBMA3Oye z1dH0|**u+R!OOO{vyAySH)CaONfVHwTfYR7y%2n(8YFuN01d6x`@1>9m9YHw0F$V; zwZw`Wq)rsoaCUA8DojoqXmxH@loC(b&93jBNEaY{_E!<3c);{nb_bR>N_V_a8Eo6D z;t}G=C29cP^({)%>3Zs@Em?wITJf6fPLA#H<-n_(|Laj`w3}T z(e`qwocR@cL-OTVim%(e`)}J;p?QZ%seKo~aQ*Is=lfO4|E%fmqu~ExLF4wG3ww#i U>0y~9`s!gf^=}mabNk8v1w~js!2kdN literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_6000.png b/Notebooks/1_N_horizon 3/sim_6000.png new file mode 100644 index 0000000000000000000000000000000000000000..06caa92cc6dd2abb588e8d3a6fe3cbe3eefe583a GIT binary patch literal 15210 zcmd^mcUaTSwr=Q3(|m#=Rf7mYib$^!rAUwt(wj){y+g2I1OdT-N);g>z4xw^4-}#i z>5vE_B3*h5cY^!uv-cnOKKI@~?(>{;9|^=?nOU=Dt@mBC*31)KZFMGkc6tZ|!lZFa zMIQp8mVrPhoKDb!E0uYg1n@`JPu0ZFz|+Am(ALKuqGjvn<>u+<=6v@;fW42ev!{o+ zh=hok&;=(yKQCW7QBn7QJ|N=h<0v{hcZ3Zorj(`^Fp2X_cBybJ-48SN9%Qu zHt{^vQLU3zos))UbM6|IORSr|S&5NAEHe##GBz~T0nvt7mY&y2&DBcV_>tC{na~qH zu@bU8_d~*BeJkCU7yIy%M$#n>{Y)cF6NLONDL2Eu{o?UA9~|l?`O2l)Op3?HkM${1 zF(2Q;gwk>z--2&5%KT|z`MlSyBFb;)Q zz+hGe%W|}5pbWgz=}@<}YcM4)C{Crb8@=PMa$89Dr~|#@t5TeRE>l&}>TT$SdYh}b z#i03N(@WuFN*7_=@#r6Dlhe@sgu(r1m*5FxH3>ez=-=F?3i>N3ytg8)&(hi&swa8Y z%I;h}We}^E#8qw?Dklmw`Z-Dybq005J!*7wl0@Z1wMD5-*UAQc?69p(;XxxpbD1hO zY9)TBDe)3qo!l(DD(npmCh`Q0Q0@GMu9t;fcARriQHenZs&yJbE2LlpvFHY9g%E5= zwX^L-wSR!h#2Kjd-)f8soKSvDde&*EbsX9Vy5=YK`*kI*B`X#!***(hn?~>0-x+3r zdK+y2e2Cr=wUJvrs?-zUi9-iND=KmO3+HE{&==~R+puYKXa$8#D2HUrCD`)EsSga$ z&nrATP`$L82D$xL3a6o=s-4O0742<~lBCdp!w<0Oc(lnGXo5x-1j9zQX_=C5+m)khR#3JfoweXXPO;x3oPZk!~F5Z@Jd zGgR4pVM+fB+zhESaCo@DI%G|E?}$S*bUBASz-y_w$gL` zy&K2^UTifGxCevhf@6m;`1STSJ;u8M-QjR7PcEiWKzp98I4{5^(#C9yw8H(mKOm-~ zTT>sI0mt&eu}oAJ`*Jp_$oYlQ{R5`eaAH5-@WCbQMo}?BiGq_0y1)5lsFmeG@`EU< zN-2>9bX(tmG-N@ubY;q8an53Ux0_;lDby+{cXG<)<$|CF-lP)YWv=3v%(;+TFLJZa zQL|QhyNaM&dE|$LCodwDy{WrN*C|X`p_6lhsC;Cp@Z@FK7IkTkOn;78Q^Zn0OHovE zYj>^7o$DVb61vPd%iw0Ey^Cc#zpiLi2uv^4coNe!qn6Vu3>qdqiV@LgkI8V&2$^}0XPs-RT5oL_aB6ja2n?r@iHUvRgi;8gZrdYq+u@Su6H4U+Y- zwc$H29J|?0({7B)hsXak=_S$@Ig5Bjsz~S^oNqy3H-ZrE%>qrHROOuY&!;6=1xR58 z&Mwc_4I&>d8C<*LPp;0ev}wu`R}?Q?L{9EmonHD@W$HBUCmw?rh3F%X zs4SR-UdtH$d{R8=aSr0oGOV@hNj$*dAB?u(3=UF~uT*7yu>KUe%`XK$z&FHu9vxQ z_f$hwYt-Xn=%tt|6@-^uZP1|irDfX3?IhZ^i_xm8*sBO(>*@Cai0ntTRF)AINbIeO zA57jH2LkU43nyrtcCZ+^s8OgGv|bp-JU$i5J8eONN!J}PuR5b z`y&i~&}TS%$*x^28jAt6b%S`1IEo&T$5so%w(?{ebJ{{ZARdsH;*Q#8%|UA-MaJZp z)t;k+-b_e3?aQj#KYfBO82y_G_J%o#Y4z$VFR^&BvI@nMg1vqmz^I{kWx6w4qBwZp zB;7^%1NZBJdh>Yssx)&1{UuYAu8KUCCY@2H`y~c{jkp>SUq-7vvdMb$>>M1g#O!FHddof%YPlGb zmJmts-ggugvp}Hi*h!IVf}mmeIWse}5xWFMMrny+*nP#Vk@tzpcBtdvD|h1R#HU-U zgs&quf1;}KZ+%zFzJI!T%6_QW^kb%C+Wtx#56X8y_VHux5GNBWyY8pwn^)g4Jg{2F z9Ub6qdTetLc4*I81=*I_Ss(2Uzfug9s&d5TH8!Tc5_h~7y5%O)@IC2bUE39l(4`s) zY3UbDjB$5MJC0+)aW62ewHcnHmxO~K(u0G8pkdKZLqoLf#;w1TEzLe4j@A+DYYCBI z`QyQJ@`PS_!mjpfwqhZZaunPkZ_%$wUJ$E-d=e8wI*QzJEo(^$Y@XqI$|3F1G`{%r z=j*~gL}=i-_~XDa*WIMXh1DSMc6MGKE&1)M?qd>=AN^@P(_OI?PEJn5=~&SpfAc1M zmn;iriajfQcd9v<@KYT@S<9`p);Qb}|A^t7$7ZT$(0dM<-+%MUZhX4g@GY7H zQvW?kbEG*~9E|+O#uptrqB&vjtU8xJ3;9CJO1Nl7M#gpThus}?JRiM#xOx<~C#oh_ zHmkA@g?#4*$f~vo7`2BKn^fF?(Xwct4)o0#Fk+h?u{VEkFo&3XX&3+P^#kU+pWmoL zEFyMi)4jXTb4DJlar%8y4%_`;J>}5!nA7LPISVfebxv<;9mP$SxvWSf-ya{pfvH?- zSZ-V>oq6S$X-hiT{g{Pln{%983MK4wJ7$GTLCC*&_C7s+iHKA>XB{RMx%VYYX7~GZ zS@H9r*&#k?Al_%FUmuX)Z}Iq&r}Z&SI)P6! z<-~5POjph0oW{;*NDbgCxk@u~#-I}uSIB>f>Xzgxk)3V&1GOK1ZS)#<#Exz2;gYBC_GF-MzvS>nsucNh z#P8=>$Cg*16CUH38SL;WfG7AnbUn1pTnWTX5jOA62%PGzwEs~5 z^G)naDR*{;vqCl<_i4t%coLNM1Q18NxZUB%L*oI(ZHv~`N22BTdjBeI_`xnxPrQF| z^TF@;6>?;s_nC`1+P-i~vC7tDJZ!gm&0=fs=DyLGJQAE;7dWa#?a*k{%t}eV*N+I-LJs{NP57Sv%=obobj;!anH64^5^|2 z1Scvl?=pAjqFA0z)&K<^XZy!j;uJE#vSq(LJcCA;OpU|y({F$|^7r=#wv(kAd)6E1 z^VG;PX@3QG#d^0dbKkRd*TJLy8?Bt29NEiGDQ=vua_DEr^9{%?2$5#3N!Z~vo&zGC z{6_x;IG@s1MZ((Dc5B`68taui8_h2|ra0UV<1RtPoSHT_Hx>625G0vl3ty&F3agOk zm$jxBt8m<_3+9^E`74r>?g9S(V&2m#z|0y;>Pp4hkJqpI%Zw8EySWO$Nem4Qy*??^ zQIz}5>u(VvkGNc10ZJasMUwa}EiDxeH@+w?7-P)ZA{0T}cPHw-6%JP4AM6dcEz24U zusC^o=IaW0y*tV8)d$aC?KlbUhtU6e9MA!j@gGfk8ReH~KXFk&19&;5<5w#xBwBFMvdo3WBIv3A_ zoi$Fcc8Up~55nmozX|}!)VhrZ9139&f7a^NOj=r6%`4$6c9V_%V20L`UNq-Ae#2$U z{dj2?k{3$GF;4GJsJW%@?_Pf2!_8rF*C8RRJ^YKU)OX&%qpyMg#>-5f@MxUBtaLc9 z<2(I?AOH2MYPK#BL7G7X&0ewYoqb_F@L8Rwe=2mPAF9szxoYR9jkdy?3Rzrm9mIq` z!WPU4Zz?N&ng|3vb*?T~>wUA#u-_UYEgSlIT4~+Y&R=SaCXJh?SvezizHx^9%qC+y zr|(CxmZ@#)qfP6o?Wxczn-0p-#$SR~+l|8&gou6b5!=U~0WEndN>BQoAtP!QX(Qj+ z({rxGGrWkRhm94E^%;Jx=Q5BkTM#Pg1jx2vf-KX;$DI1h*Cfy%MBCD%qiL0XCnjK; zFc%kA2*xTx8t{I&fd)IQO;weQ3?L6;U`YO}@qYUE2T{?$lVfqR_y4z3B+l{xB*{F> zEWdaa_?Ka7T3TRzNfk~h4NOWXgv=!hz?-S8nt;myC!ESWTqtYH^o&?flRp@nyi;t_ zVf&bCXkmn`WXWL*@!WvuB5r5LU1348c-36Le*H3O^n*k4vm)e%ts@o5ToE!57!aUu zYAX9ZpzU{Z8DmJqw|9@oMp$UvLXQG`;Q4o%m_C35H6z8bmOsP6kN9qWEw@o#v12&P zl5pw)K&=!6X)Qs>qW;93T;48~|G#b26^2O?N>KKqPXC%zI@)T~}lPYME5rr6Eh2wLdZU5(FfHlm5nK zdS}TblUx?Y2cT(sg|xh4(iGsXlSZaIGF8*@gk1#>4nHHz*tka?%<#+srkPpKIttTK z#3`&Z0xDk)2D<*;c}8aye8?Vq71*w}%r|PXrM;GknSB#0GHp~A!b-;-WP?MWbyokA zyNP-O$tTZTUTvp3 zb^MtXjeOO^6PZ5l(G;i79sH00xQ$Ht%aXIX+!`54u$nJ?7AtzT8s|QWWue6P{x8xEEe0d^xE+Y&e$+D~zh?K}2i^pmPgYMp^O>JBTI2S3>yn2I7nq-ok z&(9iAJ!d)Siz_rLs^4F3+67_TN4^&p*E%zwh4{wA08`36*lnk~kS22NweuHZ?sJ=! z7Td3aGT%?vPsdE>AgUbS*9~+n0ec|)^YIf@a@T-lDaAS_VbSE9qNd^&zY`-)o5v5J-v<()+C?I@U2m0LRq!&A7Jdx z(|8{9t^2voyN&s-!wlU zGz@1~f#eu!s%BR)8_EK34N5VI0CCr^%5C;Yx>HG`SrPGQHk z{#oS2DNcUt?w3AyGj4Z1bS2>#d5HnY*{c(({!ITa2v-1mBZy=--2pDp3xX0^5N_@> zG304y^f5_Kw1ahrT4Q75h%ZjDVJ2Qa=y1Urmqs{nIA*^`qG8#?iqca-ymJ|W-2MIi zWV8n8G`Iv|^(75&_bUjr)dp!)hQH9<~bBnY(zkmS_ zqoy5sQEmGcvxZ#~Ae-m}UIuW$-5NOKNLVfUng}*gNr`_j;<>19613C7`jR6$w-;6iPf$ zqw5S_9>IOjL6-ryL7Z^B-aVhB2B(S_yNvadK24RbLgdbVAuJrq@>k1QE&nCmmf{xP)=a6vm0 zm5&f+x@9_M+W0v1KJWAZ`lb2M^znUmHDLQWus0MtN~=*Ad^GwkK~NS>YY(= z?BHChZRU?}}=5`2?QEK{O^O`-#_Qg2?@+0^YUNLK1$zKj`(p!S+Y_{!jfTnu z$TkbWwx~$-L6yyXf6`ygoE>7_xtKdxOvH0{PwEt^{d@Tcx-gbo_JTTOwdX=X_Agqs zlac5}B%ycAiSrozN}u_0;!xu~4w#priUfo}r*s|Uz4=jR>Sq4KWR&i+{^=qNbOG{* zQFrUTK~3ilv8$b;eFb)x22@qj&_Q~He@8Fl6yal=VD_c%VLJn*2xB$L)Zddvfo`J| zHA_t?K5D>QbW>o*#>MVH#_o8E0Z2R6x>DA%ouN5n~-iy+~ocr2^Ij!B1edKwqmR~Qs zG26FdTsoH@X`-qbYFsw+e4%JGP@ijGOOTd(-=RZ&JHkD?@;0j``T2lHx8TW5v`jhZ zkyAUDS7EOi>Mvq9cF{XRt0AwMcFwGVl2&8KSn5C0wI_@f{NQ|dJY8lAB>Tx?M6cURDg(unB(wpNwz~!Hy zTcTS2VZtX@X>F{DFW}gC^bX^7t4l|3Lh== z5>;nh={OH7wjY`m3Nl>>P3KO=QK+}dfYh-DyoBh(+&b08 zbxKAp!mOHJSu1WS;5?j`wp$x-*z1glWtX<^BrQ$n#GIU=KeRG1m}S3sJZs`01bB;f zg0!9@m-@25@9?9TiFp*u^5J?vzaSbna z_pp2aBVcHIJt$<-A*F1reXoB>q9%ZGFSX`TjFRoGNQ&N}gf)MfbGpaQZSlbFHo*B+ zJ7S~(^5~Awfe=xF_z|0=y~NO+O-|3^lD+}^9@knojwJFP0&`!c_%QE(diWIogv|MRHW`o5 zcT7xWg?;pwhmFM>T0{Qc4)6=8sJO&wI;CEjs3zNj>J2X~BO0g6=d6?1GvM&dTKLPCDan<)31 zww`yNcVifiUGLM+j?OKtysxqO_4Zhl7j+CpZ{Co$)V(P6z}1S1nvA>@W~pkw4W%jl zbp7@3sSZ-Le&rX(2}3qzeKD`I^J1RN(BEb^?&mh`2OjiFqBOO4^UzLk%;h#N($47qLmJqUc^q4?i zPA)T_9n(z4C!~mVc$M~tjnjs&NJG$97S`{%O=T+8Z%T#^4$Jtf0lC=Kz(51cANA4a zNex}Csc>joaduu2I;ldNd85i_$swZ6M-hnjd1&+qR^Oo2jlp@}_^8 zO=sCO*>PwcKq~d7uKC-0D<}OI6>ay2&x{TZ^`_=YS&aah^6s9f3^Cv+N;3K^4(=(T9(o&F|vPGgw{3UdH^cpNzh83 zIL^~;_EFv)tC5kubwym4*Z1AHl429Z>Z|uY)Y_7rqVGNEJAfB!;K2M+AMvw>_k8s2 z(lT3oJ>{7mBXRgX`xM!;ih=F)6&MM;-%54-v@)K4ntCPRS~}XDEB*esLw3W z^L6y3Bwjr8E2bypM$(?}w_939vtCC6Kt#jKU|6}9g?<;mhV#20g=bhk*-X=X_e^W4 zczhz0hPTTrcYmj^re9&__S#s7TI|!JQXyLLnl7)r)fy5Vy2g%($~DZs#^6y1Fm{RSsoP2I5ITWPNh67rhXOOMv9_9)*?71#(ACX* zzzo^HxG*FyDrUz6zFPWp2pmMwwkL0BU@=$|f*-7!99`JSt7RVY^q8Bk>38cJkgV~4 zhOf1*s(d3en_oc&aLTyRfSc}H76z{?0yHn+O$>g@4!_KBeOvNIcm93}SPyKID+l-s z^Z?5~4sDK@!uh1?0=FLWrJ2ct5y%UTj^F`WZvieN6>bVkC>l>pfq|(H*FH}gyU{g7 zp`ih(^bbnPSdbjc?JL^@9@Idte&R*`f&yLMweV+^SPqhh^O?yvhP+FN6Q2BbD^y1S z?}}j1Of?$|_PFV)6NDcetFSCHHh=q*HN=mOCp>>*gGsG%nBV#1kVrvU!JE9ock@6e z&MIu6evT1`D!XTc&iM>DTm$Me0Q%(BF0bYUnp_)UNslYxQfSJ4baX|wwV}ng$*QUl z=JZy$)Cm8K=ECNvKvKz&U_r@Ui|i!tugQZ(#tz?fw*&ZQ=#9X4eal%xPK_k8-titq zl`uAIbDJ=C+x+ogKNs&Bm}mLlGLv_9abG#9yvLv|RTEHIfqj4|^PKk&lXoC)ye&iv zXRG^rCk|OD-|`nbG5S}^#z|!1m4YjV?xP|n4LH4F8u}6B0pw=f0l~z>M*7QxOJN{~ z@dn!xn>WM^d=@`3rR;0YpEh3m^sKYT!pC@jj9VanqIGtpJB2xO{1ehQbV!?gU%t*Y zd)R}uBL$V)Sjn#dSG>diY(wsj;?4=oSRqo-f}oO=YfIj0k))Q4o<=`y{MBdc*(9&v zJaFTgu&sv1iKL}-?~_X2W0pffh&S#d#9%D<_}T__ExUWAzW_dz8X2goZ~cXBf(j_kRqd0Sv%`x*$K)TM%^Wl| zasvj@1{Lrh4Y_<6fBig>yY0S7k_7v45|`-#zRQ|F?)pBk=oa;tn5UQLrEfbELJa%z zYPA98=QNZw@S}kWa!YbtZ`H5}K4^4P(XiagY^qzJPaaHh8#Z#BV@Muk6$~jY5tb!b zb4VJoYJW?-#Poz*iPvXliT2KT-YVCmU*;^=wR#T)1mx9{b9NSu7D}rs$6{NaGYKz^ zHk4Y;1*o_OUeF(rqaLlaRMs*QJ6%vJ=y5LV%AUfxve8V?+qdb;B+O0V>;S|YK)g^< zdwu3=SdMliGJgdG70fD9b@s})LivS9*ZLn&3v}sS;R58PrYS{LtTRrpRf^%( zzn_3VoxANzm@(fnr)wx}D0$$Y*5u^A@}{I}XW}qKcq!xNUg1nDeX_EZo~2 zxH77113v>lK1!YT-QFEinv<@s-uB38d7dH^G^z)6JE;;v!)H#3A>Bx#c>g>}s!_dx zMKG4vl0I2a;f|?Bw&2^+;@5qTT=|%&$axL0Ol>{ceBvji$1Qlc66`V+fyM!H1yz@e z8A>SviIUt3LD<_;K@yZ;(zIYzS9AsNvOMQJN9M-ZvOqMiIo%cW$3h@l3~Fsju2tHu z_48xeT}a$FfNoG<_&SN3%)XU1GfAQ0Uu%Wb%35d~pXVwx+_)`S2shNXG);UY#rNeI zeM|l&rhRluQCW0@FR0cF_nZ|%(Q%^^BK(4^HOI8b>9BuWUQ?tq9l)@DMk*GR;Gade z99W}DJQWnYKNe#t&id96M9jhu9$s?ivaAktFnBB{@4RxWIw0WllwSIjfdU~pW98SY zyMt4sE!K=4WAZTzHN}Jp+$P@=)8>_AIy_erhW0|2%{|Q%mG*ug+Lbl78^SO5+bpL| zedIN^c)vGu6!WCb@}njplKE(R#X84-Rt~IG3S(jxWn*y3pO4lSWw*b?FosKf{Ilal z(8j2?MGOX3{E&RedgTWX>a%yrE}xrWXk@B<)1HP&GG|677Nf7>l@#(W$;!2|dV6xE z#Y%H64B^_aVKJ;>;7V7NHb(2_=(@=nj#uB=QeA~_(afKP`CO_gek2l_+zU;ZzRTmuAeNiFoZ_YwN z!JP@`s#lFWQ@HpQ4l|STM?-6&k4&T|#|cv%VOIM!%%sWS%&+nEVKAWW1x= znK@gmMGg~ALKEX&kJRv*BK;o=g}=wtZW&j7!?oRe_b%&;-wx-P)q(!y66+oe(?Y>m zd3<3_WL~+g;-fsK2ekxKqt`X9i7C-*ZXRqpn&G_tn=_*ph)k``IEi7&N@ojRtr>P_ z_TlRWmb@Gb>?68P-(Q{M>3iI|p-~!+LsTrj<`p<_xtM+!zr?_*e}6#x=g*N{_0Z6@ z-TMqgi~*6!6P0!7ra5wP33bakDB8=}?+Kcgs7>qxsWfPX2v(xv`@t9npBwSd1)aJQ z*x=Drcn^eF&Tb3b*##>~v3cF$entk>@M((8%}*1I26^qj zzFu`_9~^X(f5uik`ORw{yIPjOG5qp;6kW*U^Xqfxwt0eVf{tD%pt`%K?e;cEWv1nj*7b~O^b^qt=zx5g zLiW4+G+q7(P-UB5I9ehwbMD<5?*M72+bYfM^$a_TU1d*bc4WHzWjtu}sB|dv^Dsk< zLqqAZzId>=NWI()C{m-zkdSyOd^-@!85SF3VEDTWb(8Aa@rIi2mz)pjbDn@K0h^c8 z^q z7)RE}B_?U|;+mtqH$2{w3G8T1Wje5{6(#Em{}Ln*!Kyccrg%P-jV;Sv2a-98RXtXt z#Jj>iOH{yNHwpmPojenJtX-MK*1 zsN-Ij7^&hX-DeK5*8o-p1Hl-=Skt(VVy6#C_!*tQ z{~EM3%RO#S9@G!ESE-0WD6|aQTUsjtN98}(%b)-DsTg#P(5_&ER4Jwwp=zZK6W;$d zB1J4F<>epGJjVFX5ZtNKLwZDnRmd;qTK)|eJZ|Ct@c|i8edKJZa*m;j!YKv4Ww|{u znxO0nRj2D)xStM3Pp!84$$vcl`M=twEd5loWmt7MqYOqKI4)Kqf5QK5=s<>|#(o4rnZFIuN>Mqhg`w zmH;d-tqC%5s`=V@8+-kw@mA`c+lXx*Mox^o4%HosGgXIaQFRXE!&GzIzDM_nM_{Y< z=vMAhOQaB@Z&G@+;S6e+3bE{az|o%e;ZS@mW1sFVtxM$+tqsjpcY#Cs6doXRQh?H_ zFpiz=Bs&u6soN1J^T)p<`12T7_ae5QPLp~|*Vi3cwt%Qlf05wMJveTjoV{-+nB!g= z4q}$hR;q8m5zU84JB&+Hdj6avsT&{@?8k8s9EAZd3^fzA!W4k;`pZil>8yox7WSg^ z`h9wtr%Fwk@JxS?rrg_+@WI4znWO=)!D7s+CfO@LN063TfYu06+{xRntmZ#Qsj zQ>XT59D|Q>#}FNH7u1xGc6P;4KHG6wiVv;?9-*=n`{<~c{)>VJUhCTzj{-5YY#dy_l*<*c-|nVTtqJaXWC1ylz-|~KhWGd1qc?FjWpj?W)0l=x+N$w?it*}LjQbRi1HkzmIh%`K zJ^?>R7ZK%?N7><}ZTqmh3ae*`&*4~W$H&%?%W5h{wQZuSw-I$^)LU0ZS6V$nR|vwG z0#Di^M<_N64^!DM5V}efy>L%}HSe{yEr&|+wr@U9dp8ECezTb`% zh{ZXQ3sH)g2FIE=CgfxODu)EE+iX)EF{HCWpTDV3-FVV|#QcpU=E}0sZ&TwRd7Z9H zHaC*3@6b-UVV@ti)o=A;F%YEHp^Oi?#A#gx+NQ|B;HOEg4GcltBe&O%))e6KBu(PBsU-ns zE*2ITf@z9Gwe?x;2ac{c@VT!HwaMpXNA6YoOSKqRZXaXBo5eO`E|w#n@5_Yqh|u3( z5fP-P?^-)>nR=6m@G&_KL}=Jkyn1f6xwh>wWog)<|FKC>|G)ByNWfkH7UuomaM{!m a-7BSq7tdy_?}2l#5DisrmC_qF_x}g%OA(U* literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_6300.png b/Notebooks/1_N_horizon 3/sim_6300.png new file mode 100644 index 0000000000000000000000000000000000000000..fef2a3b1ba4eaae1344c1a5c5ccf8e8328cadbe5 GIT binary patch literal 15597 zcmdtJc|6qL+dn?NOADz~mI#%hWRFsWk}#HJ-Fbz5AUn=OAlq*5-U&Xb$Tu7TFBgzkZII?Za3t!+JvWH)4WzH957N`)=CJ^` zdww21-pcYS@=CJDZX=PtergH|UjHf}?{m*xp}%|oE6~UuUwvCY2!!Vl=WiP%{iP5D za?uW^bJ^nl%Qp~e)f@fqC7 z^2sr!cwFiXX(HVLvoFxkvCoSx4@LxmgrADx$8XzugapTgZ{K>-5!<$F>*2}8fA(!X z90=TTbnD^R;%*=u@N;RL&v)w~{ENhotp`Yg-iN;}orwSM(h&CtvhbpqD7^P&ZP>M( z!P=8#Pa=kh>zJF0!N@6B@Qii$yrL3Qp)ys;9XJEArQ!cs~piC4kuW{#nDb^M%;VX7#=E# zPL?&@TduUXED`w<>ndq!sAg?uc%N#Jzie1Qm=Kk*SGtFGCbhk@Vc-vi-hqyQ)%6pu6966CSgqd-9JB#R9geaP;w_v~q?ITm(<7A3C*Pnb1q7D^+Hv*=AyS z0=n`e$+Ha$L{FtkvCR*vl@>OWy$kLY6!MBv<&0$JF`E4ik$V1=ut7{*nA2ji7+DCiz>x7wa)TtRC7VXJD&jU3s3lU4>q5Ke2tYx*T}4CvDP?-I<3-D?4D-H`IgA$au1jz*iKM zgWJd(%JtzGHUTr2WKn*sqwd1Rv*u<5f>x^aA0KX}#pu#V#mOO}DP<{eavMZwnPZ4T zwwfnsm2^@A)t-OHZg*q`>9-br_$Ph8{+%R-GHPU&UVdtA`^J;^6&aG$S-J;m^D)+4 zlGsXKNni-T#Qj!vQ6sW65%h2dYEBnb-$PZV56{v!k*kvQ;c0p~jERpp2KTv0r`O+G z-N$9F#=K*0M^S;9H?D5#EBNR0?-1FA3nmcC16J`)-$;&>Ak^mNHO=fKh9S&-JbAs8 zpmlhq*J}i)Md&&$b?-F0D9QDE{M`j>Te);VBw| ziHv(r{eQeL{ZLr#sk8}G{*;m7a#RoDPv3XP49z?j=qGOFL3tX29;&zBf5WC>DmFXX z{C4Q;V=4x#*8|eAVak=Ffz1bRh!UzgsUnTi>gM=rNAA!SG=mG}lT!7W94b#M<<@;V zUdNJwuk3(_BDp@ayUw7f?R!P<}+9^oNFO!i5#$fEA)qojQ=HQG2E zQuCF%`HL=yV;$y_a3p!bcln1kjowb48DhtB3;cONz%B)OjJ2S}W>=QVkgJA^-^O(j zX|{P0S2a}w!W?0UpupH+C{$F)TkE9s4fw9fOf3hB`RI!IXlRWn|7f+z9tcGL1ZTil zoH1p&|FLYV=W9$RNpRU1jl^LjTW5{95bl54sH)O7?LQH4D^YpxAeY)@b$p4LBHASy zGbcll|IMuyf1fcn8lK*d8*M-3(eS!7dOSH0Q5T^5G=dM>LM5`McyX*H?)=>$y<~$X zwYGiESKtA07~|>>DqJ(^e=fYQF>P=(Be}r&;Q{X>mSGhVFnS^~4MS`uo1rxoJYor2 zU4!k102oC51%nK3de-l7OpjrZcEio=;5)boE}$iAk<7iQ5#cO#6SJq-0{$I4SM}3} z^c?%7)2_WUr}*&yxtulMg4Prq#*HV^N#>M1w0A1wSp=V`NOvu1K*fY|PZ@E2L77=d zsPDKUTFz5ml2~O$iR8{N(r;*A-OEG2v(4_ckdP4srdmz$z*98)nD#t`MawHP-%yy zaSd*!FCk*&>7Ql5Q-qe^%v3o*AlGHdv;V*Z@vM45yqu{UTq~)nfvROaRRjDxNh#uA zPF*iSsWJ&us#sZ%={JW5INpEok^{v4qf6hlYxy}&JiMXtaPo;mWl7F_!=L4)X?!s8 zWQI3vaEQHAnP5P%LDg5h@Z#c>ba|^7k^ANTtK&n)QTwgm9%N;X{#KVH`mNb-QHKv5 z$9|mBh6|`x+HsY|In#$^L z>ig3BwP8GxMXz7~EL43z%6p|tpHo<9)T-Qx_=$Q_053Wv{!iSA3A#Gj6NBx767Rqh zsUe9NV=F~`ZUI67W(S4&O|~stmRRxH2XhFC3sk96kcYaHA#QH*>^a7Gub%f8@;4~a zmZFRfm7x83`+Xf9>iA;kKb(#fcL+6@K9DlRcaeW`|MP}0#12&scAz-IS8l)*U}}{w zVs~(gxhV4a9zKF{mY_Wmi}OiFE-uvW=6oKW^Opo2J4m5bo%8(uDkUXFTb1joRI-6b zJ$uFc3`Q1d{#NiWiPC9|;uW#5w9KP*6||7KsYeg*LG|^P+E?Fb+S!_>l-tqT;N+5E z%4s*DgF<=zd#w48x65@5=5xGw`a}Fc!(_mb0 z&C;;^C{%Vng2|C@+$qHrCE(gYf?hq|0av>?}lvI++kD#!%Ch_Tt7WtWbv%9p` z9!`)kxflE<3b9z7N_Z>fxbQ+g|`^tTakFJjXHY$ zW~j#cc;aa}xt&xKXz#q?hjpvL`S%|(I|Q8 ziZ>da`UnL>j`T8{HN&3g?4CnX zg;iA+Xq6j{JB%@BuA)`KHXfAPRU4o!Y;B8V%HNymiTWoE|Cvxle0s*8t`$bwcm4;2 zJ)v5kP&IS=S#3Rg&aTF@U%q_34Mj5Nl;wy@&aO%y&6#Eq4rj}e*@elM5-{dhlhD_> z@tSs=PxLew`KoJc4Y_r1lV4siKbdv^wO9zFGqk?1JaoAvUDYQG-kw#8D8uQZt3ug9 z#8Fm#dg-!d^jV53E#cePOv}kK%@qG=u#NY7CSm~q7h%0uP!E~G&4V#EuXxKFq zJi;3Gp3xY8aRo`sOP&5A5#QaSQ2)kI9;X9Tx+f=EEL{fGB3FBR>~pN$TbG9dvNkVR zw(eBFb`AWG2p%X*(82ei=Em=ML_-7@e({^k@}H&lnX0a9U8Z`Xd55l@zubOt$*4X| z;EBLrV*fqX{Mv=93iW>~;B7C93>AnL`!&~G;(rN?h@9n!)rn|lX=%wEn$#?iG)$Qy zvFKfsTAS2$va z;{}wKz4@m=li3-6r#1a-&;-Vv(UrYn5r1*FW&|4ePf$DvawPd^yhc;@?(Vu zmqk>)XDf%@vqP*VGf`O^%)a_Npg;TubEf)E&*@UzN?kC$SDb1?%+c?9LVOKXRV!3<~eGrTEzsZMIILN6f|tvKj*Y20CTGmFwC zGPAR~P4!w)@7ekDRn30M$;o!aplY$uwHtDdcndI$8t=N%sG-7#Z_wz2nE?YHXsm4| zya;IT*IQ;B(_${q?CQ?4_r_garJ}N-v|p*ty?Fl_mC!$H@@^Y{CbbaD(>)x`f^yU{ zQOcMCOqsJV#xKvCqLC~8?lZW_tid^iCJ~(^w(STxTEiEWL5Jd1!ANVzv`n8K7FL7rgpE7 zfefa&wWQEY!kCF-VSnx>r=}t{{;X@H_@OexHrAPosr5s@);LzCfmeP)m;q`~rMZ|8 zkGwz%Wiy9@X){C^VL0Idkoh1ZOw} z(Ig#1mV46AxIN1^!cfYC_G|s|6}|hBPmR%W#s9;$T~h#E=NCyMiz&6Y7stQa;gLna z0Cy7Eb3T0=tod>d67%x%YSg#`Ai|HM4H=vf(vWuZA@jj|&Ob}S1?LQg^WC8j;j$cg zg@HUyRdL4j;>td0q;f|zqMT?2jGQ@sQp)JrJsXN-c_ z0%C8nk(Bc5fymBSzAexHtUXrMz%VsHqXy~W`{2M!-^M*m;2erTRS)2Pf;L$r>4=WTkYC;F{s(GL#2vWe%qX zEXP0;IOg;Ve)#~4N4M2ClcqPw?wYxWOfH&^0Ak=b*I#!x7qpWY{Bi6qaqVYJ(C<%z z{)=BvazIWE@R((ap#qFs_nkxN`Y$zl-53&R*SKyKB>351wD^rtHBp;+)AquZMsW!n zeorh@OZ+;uTE9tzx28+N?B3mcTvopkq`_u%F*jE0%YmJiI^fJ?tjoGrNvj&fg+?Cy zJc-4at!$s358EV=R*Ccen0x5u0Yo|Nb&NbkA#B|csBKsm$5H`bn*nRk%Wv(#agdon z(vD>p=HD+dlFJ`l1sK~2ARbBe@ALPVe8w+>1S|@5A!~kpGJF1@!BD`U7rQtZm~#-I z7|Tyh9-KgVeoK-rE-keLo?0G1b%HplG2dC`(S_`HOQpSEYU@fri$DS#np$j8Xm_mi z=#tU^i-F(VVEJ>1;M9U0fm$ zt)uE$R5Ug>PR(GZuYCSp-1hw!6;G!nAdfsBx~h(`&0Z$3yj%9_cz6_HUG8=R)49ED;5gz(GR`{@*6;nge>Q)5@923I?8`IaMELGqLl-D!F^JG;&6ZTF$a(00Jp#qq^`XzbY@Rm2lWw#^XmWnQUHsd0$69itBvB_pE?`@4kSnD z0p1ywDCO}LEg96TKAfZ6cK%BJ#&Ws;OlfTZZlX_Z_QNit1P*|AqJ0Y0_N;Q?|nJWmU%E1+Ys@3 z{l;fX9$*$`!@>tHS^XCmpzC`$`#IL6j+F?vlJuy?$R!|iu^?Kr3Sa5<4GY~i2m&sU zy_s3s&u8`bL9RXx&;3%zl7eM4&IKvk%Xm1$cqT^&7S~!XV5psB^tqQr)L_RIaHls8T5wB4s(Ph4?Y)QxCG#1gJ zwu5Yi=`Zec3ietP-U}))wj*}mJhc#Pd35*rXD=|4{EtLpsO;f|g>`hrAj(h;Ux1*7 zBoNyDS8<0u$xt)2t~^M-2%%XmEWd<-rIkp+mab5b&h%Ba38OY_eMF=2~Pxy{r{q`?qY$G2;e>PCl zrCfxeF#X%;bZVLXDUTc|*q8XH+4FK1@k7>)9eR9cDzOp1uI~sVB4WeGXiodzyy!me zp}qQFRFR~+6~^L(PCyI?gPk|Do1r_mt1rvIPCj;n8=Ow4a{Dgw*K7{BJTv%x!HI%H zZ+OG2N8h#U$Db_!T)Qm z%KehozX7l5CikX;;NVK9_oS8w+#7y~yGM6RAUo|}ckq6A)uPXQL;&AdqOCIe52C^b z$SbJ~kk~ry2~wKiN66th$5=^Uso8sLXCzCLt9LYh;gkDM&w z7-x9r^YHBn74W8OZ2EjgcRKBhXiT$_`Dd((m&4=yIEB8dyT2|&&Xj3`>Lss}oIx%e z?63kR=#Ra(?@ajLU2=#eMIBlV3v#0DqK4@G^~u(yc4t4ziPgpJ>qGFC2Hiy@It>jJ zrq-P08XQb#Ps zker*L?;qz6)}|bJe0#*V@S3FmchXrk&yjS;wrco5^^IUZp&*s0T+MVwn7wfIEUvG+ z*K4|kjD19>*yvRJ?3Z{}pC_elf+62$k@V3r*`OFNn^SCIW?A$Dr`CgW z&NL{*zgcqdmAzkf3U*3Ye+%}5W5aXxF}8VFX9H#$q3@UI<{QA1J^^xZouUm(SM#4% ztU``I`DB!c_@;u(H)=kr7@E4Io9JdTMVq>e>0rd4Pwi>Kx;lT9smwWG+6X ziZT~svQ0Vhw4wU;_#r>}17CMaIj$nURkXvBrEb2F;B@ZN?aCW>;uahRTQy|nayZ7? zI$AyjSwT>pE6XY@Yfv()BiJd6;udntE>I;8e~mikm{sX!r`}S7Vz7_MJ#Dsd6nJ!^ zrwCiz67fSq{T^28qLaD6a~0aqKJ7!jM>t{(0)gz##@%rzTpKpOZIZCn)W+B@sG~IP zh~#P%Op$j6F-*xt*z!}Ibi+H0`r4hiP++q66hc%&myXc zDsVUpQ}iC1vxwH<(H~HE;4Q^?=jf{mrp?~=?yC8G&dY0eR-gBquHMfzVuH7lv1u^Z zmL^5)Yn?F}Llx3%mD)^oC)48J$&$i`$2g1hDjRH$7^lUQdmhc)pVbPVq0EU641dor zjlBV(fEV6U+?>~qV~gba>FUzEB>^hSN1uQ;zo8wq%nE7w&#@-rGuOdo|?mSkC<2!!&(!m`P_QC^I-hPoaXKOry z%`<}R#V=?jeci8l=Nnqsycf57CT$TdKMCF$NRCCWnRDcz_!5lsu)_(lu8+lL#&1q1 zSF!kQ2h|Hsag?Fxw@F3%kW68Om>Z!+au|c!zr5eKz;Sa9D+!y$E9%orh&KFoX zHEMBo1|PD1)MK~35;r)w-gP^mJm+j~*qmo)eL&6auC|FEIQj2kZhA3R^>vPe!8Q)n zYROY-|3FtAQU=R!9=8P5T?9cUNpZ(%!$WGf&GPo8Tl6C^Dac@<@Tw_*!wr4`VeTw=ovvtPJfM&gm1jtHzaCf>xIAIL4gotDUZ93J~r3id&cE zn9ZNnyu5BxC3h!a@A6Atp5luV$6bQXf5%RnB}>^rIZ00mL2%khhocwc>1T|~q-QD} z@`+al8@WtX`)ZMUuAGZ*&SF^;oe;MzgZIO}q%Gb$&y+aIYnJ>icE_F-!?XGCbu9Dt ze7gCD4=iB#=v9!E%hfp{#-n@7q5#^%uqz`rRhPb#6O8aIL-e~Lzwm7K6@sA|)Xob( zO5;Mj=uVQf%rw~9?)LQkoMv1e&{$X5*Wff-_%_bLDkNXLEj>;tdd0LXx2Zb!LTPJ% zk)prcK>tfCM?+ozR*#;?wLPT>7=oRWKNMhYADmsD{oG!Dw(uL5_)~`iXz}!0EpFS< z#TMEy0c${fg_1d;j9{pMa%{;KW)MgH+4b_&VZI&5jm}NH!=0rr?<>Wr;B;tWe1T5I3~%pM-C39W0A0jodu6@8* zk-FFb3yv+9?OFRq+2%Y$zXL;!>qa8?=%-V_=uNL6?08F$^wjQ%kLrD1)2#};LMgM? zWrWqH59O*IS0X2BL9JYOPBEsIJqa-T}zxk7P_NQg>#KD`v@HPDYHl-*S|_kv3ERr=Z)yHA;B ze!Erz8_(~v$WyCbinmTW@B$2+!O;a5i>IGtRe9Y^t{jxMd0zcaZts;wUu;>PUp@Fk z!UCp^9sTSwX6*c$)4M{Vp-Sd`5UjnTStfV;z~{4HLJYE{%v)cWTuE)h59ea-)%)_i;nI7y7OXx(OJvU!!N(R zmsZW}@;O+1YP7c=nB+J|8D3p7I2cS4dkS?MQ19+YrwKgYaYH`@aUf3R(PjM*L#dZ> ziM_ze$Mb)vR4w}$qdmWyVjSzvChrxvJ0}olFqOqrEZFp|X? zfgR#s>&ya2^=!}VzIt!6$u+P474!&?b|SiM0jsR@^l@K+nENwuelT|zr}bPLS@>vD z64s(}a=8k1|G@L{#}WV%?_8@bk$j+1TU~O2ngg7jT~`Bc!T}Ta$_Vc`C_LDW_OLb_ z#!*YHDH*`<`6WSe2x{SU&^plLbxY_~k6|3zr5k2@rtBG|&GjQh)6m}5e)iGnlp|-s0NzzQ8haf% zTg}xjf>Hs)Df`^}!^TysVER@b`d!;XE;Og&{afg6?Z#tyD)#xSFY?~2ypcHKUJA~0 zuKdI4PUtsTR+WA0)UEAFo<9a{HMUtvY zE+`z{v$CX{S_Nm=g&^EJC2a-AhN>BkQ$wTg@@!AiN&Ns72_N5eGVg1e+0!356+T%h`}E!P zH;Dks2rpY?nndqIAR$|6r6*~?JKC?LNMVZ`O4X^u2|Sl7jvM&d2YXLn^HV$Y#s{r2 zEO#F8zh${2US){Z(n!isFK4aJh;HY(j&Ip1S~Tt*ftJsKITS76R5o#j>t#6xt3d~q zBpkMd^Th!x14nef-Zwhy_U^d7;yK_HdW}~2WDgFedsrjxpUj-awavAiS$9*rTEXI)9JF=}?I*5Ipj)J;laD4xk{?v%m3 zg36AJ-A>Jl%s}6NuFiryISfv(xWZY6%mi#7Z2Cpj7izr+d<@FgrXXS9kmN7=AWzRV zjwiVVKMhMWIH+Wq7qwcguIAu1Cra2ML5#KNXWvfQSDioDb5OJI>@Gx6)$)PQvvWzW z(29z*gGmfOsG*Nr#X}<#M6GY1I3zeSJa_FDG^CN5tx|a!R?_PE6w3o;_fvfoD@&k` zlC*FC)BqKBu>c&t$Y$kS^A+Xg0#(e)zUpcelGh{%Gu)MZhN@Siatl=ld=nY{*U0Xz?!Uh1v@EgD9x`Y#piSXSXLl%(R0c?Fmb<}c8-j5TDP zGKe!Kbo%AdcMs#POT#`!bVwWl=C944x5u*JAns~#i5bi?UoGBkRi^TnS;M=* z=gAo-LF^jY=Xm+cJEX_thVPL*$6NGoZ-2)9zcx({6wMoJ$5A7<;ECM*=YS3!E|)it zh+6O;I3qereQ?GR=p1SjhT3_OI=|au1Py$aZbm>&;qf8w+pUZ-w)E~x2I^Phj~&<} z21x(BO+fvb~HN7JEgJt9ywh^VXqp7ZB$xV)wsvsI&<40Y_HxI zO6T#sE;D=kNxzMiy1Nv@h#b3pbBEXW_knAXVu$&ch_=^+B~m~rBne$y$ z3Y@GZu)d4^E0DHaDCqp)Ze2PjxO>aq_QN1k~0pJ0#f zr+@6pAhMpy-~ofpHMj^bz6O}j0Abk->=OjuQ`p8J}S(bM@IdREo2 zwbdZsKG~pFI@!bgbeFJZZIKEUm#LoRZEhQ!aoTRcqPHV|aYZ+8U@(chB?W75iT1WE z&a-^i3>aG2MaK072eX40D+brwfBiBuHXde z><}1&%AN@<0EfmNz*HZ#*UMj80#gY$J$@wK!}IFX&sL1LkZ&M6kXrU4blEVo&gEeh zL)I}%%MrV)-`}{x{NBBp6s&r|FtQAR?rdX}O;!%Jj^g^Xh-Q6%#(C_PR#s^r>xazK zIu9A98tlJ#;E~A4`n3h-qod!i{BJwQ++*MCTF9ERG)b8Ie?-hr)!uXKQ@qg-;S%=i zo6}}pyK^5Fu1Nn}i7WznZo}1)R36)^j2CVlzsgw&yyv0_yr)jTX?W z%mpIkDKWZFN+O4s&;a(u+8-V|{XOR|)VllpYe}oAot#1t$gJG|@S6c(j{g?^+6p>T zZ@@EJXT<}XC(`;4!L1PR67uYncFo_zj19UUOdo`vqE&e}dnX|?3GE4tbzgCgsKQ@g z{$P4*h5cTfUA2|Oemb2S~xIB^Mrb70{#KV}m7%KKyw_4fT)~(=T;hZP$-(!eA2YjFJn>56$4w3B5%4446Stn50 zGjzX`AloGyyA?8b@!wHjBBPSsvFmkGuyIMV+azwUP_=AhV zVf;2Bfjux+Nl^)pEG&UM3qh^YxmrDQu#eFy{?pwzyr5eh1V7_Dn%lG!wi@K}7`qR4 zDCqPQJ!UARjL@EW{_fAW=MHXlq;VB=^v8e#L*IfcOD5|Nn0?u~wVaA+Air~qJnN30 zFidxWi$EPEX!~HON40TYiO5isuB{*nLaZe@!g|K(1UPUmZocf9}#Ylr=39ZuDM zz0*1RujHib4zM!-Kb*T%dygm^V*0t2Ss54&H+bK#Oc8guA=%S$?P5*z%w$^s*l0C^ zJUjc|Pnql)c%Q96euGUt_fkB?)*U{%pTWGTq|N-fA70Z$rq2ibiH5I4aPkuuBG-EL zUTUvC#uzJC_KdbOfll5()+d;#y?WKD|BiC-Co(A+3W%#ns!!`vq<9TbF zS5}!fgAU^r8vRZh21R381kueLtTH!SSy(RQc#)2oN1daz2N5g1oz`+Q5R_Y-UeCv7 z8!)Yg-H#9NH67SZN98)u=&|h=HyU_V;#6j1BV@IB||fz zv@B9tDzX?WNhh^ZYYpvA(5kjMIIHMha{fZylr0MN88PhU$14mGTdDRuU~& zC;V=}^hQ(|bdgit2+a8$PG9vqhFXS zJHGsp^XvopD4YUWR*Hr|ZxB-N==Dr$3s-DRl>qS(Px(5}wiPlxfxOq+rYydI!Ma*s zp^A@oC;3UTj}J|%OZ>C@ydrjpNTp7m($|bXSJ|}FE*fK;!f=I&Bf*WJrcVKZMGMPT zIM(BS!(i#YndMJ!K7@3pnizud269KOJ6`ArxN4lkYNR>`toEb#p^+raTvy*#vAads z5ge;UBT3vpo5$k|Gq=2NOg&eSiylLIj&Ik^VMWY8zs5!9At~dJL~X3qV55iFqYKMx zZBHOTa6G7y;~wAwK;xD2sLfZmHgEI~b@{`shqceh}(0iI0m zHN?Xxf$)GU-?L0vxEDK#TFjXF=VFHo6_|J03)%lExL2H27QE6a4iAWpkd_gj|K+yc zCX@q2cZ&>e)Wq(oZP~hQFiIQISJN8Obf%OC*O7E6A?VO?I?6qsKrpmBO?wV>kf8@F zNb9%Zu`(@F{AT5 zD6M8{0iK0~W$&HAoqiL{G4`C9_-#N3RsLbVF0Y9#{!f8E-V&(rw++Qg9{xA)ev>qH z`xi2m%+`0?(314-YC>C67}hYv;XhYc>+k)>B-yqU{6e6^{=TqFW_D&?!>-rv(;-|j z8-L6x)MNTA*ZI_7u2MK8UGXMYp literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_6600.png b/Notebooks/1_N_horizon 3/sim_6600.png new file mode 100644 index 0000000000000000000000000000000000000000..8ea6c941c0c434e44d68f7b1782acc701a3796bf GIT binary patch literal 15757 zcmd^mXIPU>w=Rf)f`G9gQZ=ZEQY}e%I_KTYktnt>ZzNp zv(rrxF_G&+=bpH`ySPb*HtdCZC1q>nhQo-U#K&J$k70B4@^lhewZ}=unEiw>&zt)!ZL7)s8dJR2NbHHt#c6q zse(1_qP%ZF$7FMtPV$eZqn<>da1d9l3xZ8GI;;h#Et5$_P<*2yFegwyj;F4qXOT+? zYNzzsX5nxgohY3NQ#eEC;UQY+d-iIc?bAeAQ#c{XYLLwKX4FWE3tzG29S!{_zC=$=e(6>=jNz3If}q<2#U* zf_met(D84W?xTgFGL>;({y3xzYQFMrc~GH^A1d++wXD=6$!{*~(#bxw{v1`! zPZ7BaHE(GoD8mpYGi~)+yeL!ybexG`KxkZ(AbXjR??PPtV1;3*Q2z1t(pn5VWN>O` za4Jngyg zxv&t;2vgYe*jb3{$h%S`!zG%yL-=K8jXuGa}MF@za5fvO4p>YjxdDtbL|srH2Zucu3d7*dlL@56V6&UBitjr zua7u0_385>mNJE3)5KCXBa&NE-XJ#*n+A+^rfakhlXp?u>M+?85Q>o}`HATR7)gxn z$uz8~oHU~QP9SSt<!*|s`fZhF(%Wvofa#+ z(-+o{z4I>A!8k-7DLm}NW!{+QKuJJrUl~S5FNh8@(p)sP#n~X9Ih;~V%W3CghxjQq zRjuXm+qVux#eZCcy9Tay{nSp9|4Slll8oBcfz>;n^a!BazC~PYVc)C20#!@8>_$hoB3VJHV#n;D70;Ji!pXGt(R8g@?LVcVAiT2 z+tjBcmc2SBuE}MIae6a9B7DqSoqzTKA+z(C^CV-8V54=JqnhCU#VmIdHQN(7l{iWS z>dZ0n=ba}p?K*0rmkfz(de}!vPbPY?JVCp4f?4inj}pk;oRDral-Y~#ZJB<~=t{<^T`SqK2EzM1>@RBRpe{V7P! zn+W!8RW(~doG&}&G$e!HaAbWaXkeM6Fu~!%r#aM5#_g)xGZZFngG$Pg`+Sh%@5=Z6 z59bc+P8r(iz>?V^d(&UjE;2LwG7O%CG%Gii%ie#aE@72bJVKBdW73E~-CUEua<}ry z{3k0b69@#Eq;+w}i-1A*1a=Gi?C}XCLDzqwa@*&<70G8`M|j_ohMJ^SEy`h;OwBOa z-?pAbDZ?ya+=`X*t&*$u&a|u%C}bGQmtcW?j_y%Rn$rR^A^FEel{nfi^8l?n2gUzzO)D?LprM7e~I25B!EL>k*b2H^_(lqo3XWPI)8zqn1hPxdT&scKu6-p?0-W`Q0aKvvD+nS)r{; z4MuUuDxGJ@?>Pm34d}C2&S(2GS6|Co&mj#>S!zA1fi`YBb5xsz0ZVJ(kP_C9z7TN= z;>zmcq&Dk(bu{*U7^;}|m5v%;p1a`%)t>2F&;KFm<|8K|8xU6{j3f^?Bd?OSd8ybd zo7fmt;BI)4O58&alHcF>Jb86WG8_GPm40;T&=^ZSt3ix*?G301?YAtnNRj2g?&SV- z{d1;xXK{?g%m8Q1EBBuz1H=fhhn-`jd~xP<=&dB6i%Ykg?eD3|5V_fem`-GFH( zEe@*3u5G0O-Jmqd1sHPC!DP7AqjG@-Fg!Sy)U!M18woh2*?Bxc60( zr1Mx9x~EC4O3|=6(BiPV;D<=mEvz6G&Tqbq?&(4OOmc8QZTh>I*V0JJ zfXTtAVqi^gW1NC2Q+0He;!*MOQ6uM|oPlw4Y_tl8Iy+ybu#i4NSu*q)|Sa-r(-wKqO ze+}!1-HD=XM>!U4*~9lZ<OR2U@`Q=k%$M+_e7wuCg-Lwm18_#kXT3HIvbfMM#_K z=|uY{j*cJPZ)Re28x7_^2qA5mV?~VHUK~A{TTnn}3ZB+T6gwLDsLcAh*OC!UVq#+T z_V}w?<0yXbopyNV{uaKg@KKo*5lgqz9TjlcK{jz*uh{oAungSqoA9;7L6;_ovP;YP zP?!CUK{}V#i*Y{&2EK)#y(u*jev@W)h@?ZjT@-`!q(LIICoz>4apL&qt|0`mel#kC-!l>4a)vc|r+A@-trtP5$S*$uq5wmj071Gegt-8yg4Q2*60BbFz&C!%J?Ux`ky zH1o}%b?*H_@kbJVT0~8yhw={1VeXf39K`ZH?8)vusrM0 z#sIl8>kjj=dLJ=K$+b68{x61|8&eFOYJ#H>3l_uc3GkgZ{dh@dUbmUfsUiDftEsja zBcG`lF)^`gNV30E{fZL1h*1k@k!K0B=QQ1wrsd%wE;;7SuO25d)uS#twN$q}y*ccR zpA!_T8ujFglHa|&g-0r^&2-s-UP-%yjSPg6X5NX>#}eq64(ShG1~Uo#bJNaGD= z+Go968F)7-@J1tPN;Cl|See)70*#}i;{q7v2r#zqiQ=zbo)kC)TCaZwE?T}y^BH!m za;3h0nuXH-=;`^K5hdS7-dpYh&=D`;$Vmh2=7>P5HxyFR?Ip9(r(^r%$-DIQXA@Bh zse8+fX?07r_HQ?MU9hy=i1qIMLA-mfrV(;~!`;iP%zajy*PnPhTPqEtiSQb-&3RyK ztf{Wf+_=->EVWqPyW8dA?(U#te1-K7k_|ES_xDp}qF zK3Py$PfriDOm|;LN732YnIf(zm+Ib`d<*zSBO%pq$*eE;0cgO!<*DGsPWe3t@|pt0 z4ZFfeA}|hbSiVM|pnmcJj(DB0{r>K&-NyE543`557LEGp&=3(3vA?G!yK-0`ju2;) zCDKfMihK2^&weL6g=k?KsW!5a9Z3`f*?D`MI5x?bz{Ta2a z6UN5IXtj&?WLIGKN9hUX4jHSM_iBu0L_Y>{y$u zM#njnI0~fs-{9N-t$Yh$&J#Pk@dTUHbloeCy<2;~*pMxZ3fs2_is4Df`W-YI z><5doN=n`UP$mvGl4H`y>p4Ja%z@L>)}W)o#^ZA)ev4l}2Q&NpVurT}SB>0pb6Zo| zh~Sk=6x7LfS?iE=1C#ki+x*jWdc*!RS9t%PzUQ&A?BpppIk>+-Uq?sh3$qFFIXPIN zs{eX3cdx?e#1BQbDdHD4eC~H(&!0U8jhg|tQ2UTFWoq7;N$Ub%sjyYE@{Mb!NkIOS zsz3_N*;zD8`z2*3jq>YvM$~j^yU0YAC_)hEOfr-&z?(9jk>u8+Dp2C`>yF88Puw9~ zU$S$+T9U55zVpVG%v^4U_taH*tB#i3S7n9W2bVMxn=)13R_2ez)lXjJ_WWta{j}vg zw>RM#6cVd+Q3Cy{#M9r=}) zT0i>xzjEQXmFOZNSF`~s2YEiYY165JD7dW-d_ATT2*nEMQcY4Z$rWc6*WK6G)JUFh zd{`?u?2wDshkaKU>?pkdwmiZ=3t|9TF@Fuk@m z@$5}&7a;9ZFh|`(L$#wGDFE30x9afpgb}x{sZWf2BbK;ZZqvjhJSiJVshuyHn1@q# zJ&~SifOx0_Wt9Tl66donM??l&5p#K?X={)yU)Y_f$FJ z&jlQAh39}^0A^bNZ{|jlR_XypSPzxkuCK2Xohh5n|Kdkc|6j~Bnds`@?_YTX!ux&| zzM~c^Y&ZZP1T-Bl<0V3)u!rlCqLN>$y2(C^&gKfpZ3WjA zP}wM_9xG%97=FKaZq6>%e^r(GqB$y7PsPj6DOmhgRp_t`HoP48|4(DBO=k-fEngPI9&e@I#$| z`mKg#D>7+^+i#(SuISc$VcGVifI=&vH7dx*!2@;zJ;y*)VdT~!P8S*H2Vw)p7bgad zy+$AQH~4PYEmcpjj#0>4TYO1?`lv(;8cX&X^C9&r?4M-hcA){GAH*ibgPqE^;Ws-8 z#>>9?6mcqJ12Y*PFm#@ZRu{p2Q#fjS?vIIIN!_YvT%Cnd8%*}UvCtqXWX#0KcPtK` z+7NQXf&qwfsleXe-U8_QFNx<9i_S=y1Lgoe9e=}$iH1u3pts+A5g)BPIC&B44+8e* z;cMBF4KKmWP(A&qK=Q{2`@ow;ky~EKLHHmq7(TAJ3f%s%*rWr5D~wp2O{0B;L!->?diWK)FlTAxi~?n6zt`!UVUUIWT)-Euv5&2uqlm3h|5KI7V9x_jGe4ww-X!$C`)5~l5qpumk zOQZ@g>KKTS*E0C_QQ6tq=iAZ9W{kw0&Hb#I&j)e4_KJgb=G{h&tsvk2Wq)I8D5`B$R^H)kG!-@j->ijvd6$9A;ZdWT$#-p2wHux6{3h) z^_>|c*(TL{{AjjD!smRw0uTktJ#lifUL306LJY)Tx8RU;;s#bA(9G*6gx~%qxvOj> zt3RycrLTV`CoMoajWj8cAnjpCS)oFK|K2cu`uokU$!}cFlT@enQsK(_^e?YK{Q9OT zX_fwMrI~Gn?-F&T0p?*G@P$BDQ`5_nJD=DBuwaexIAEgyPK^$-@1;mv8eDT7hZQxF zeNDD%2fK%d+d&Y}x>$wpEP(IZnNW5I*MNt-?m{fN(G}JF3gN0IJZA=rk0~r2+a$PU zj&)CD`0*AX3@%=80fT7=+>a)o`freRdkOQ z|M=-0av@Wt4j>0kdBtE31ploI5h@Ja{2Cye@=*+Lat6Zu3=w!Zyz^BAZLDr~Fg3`$ zun02e{01-$23EQyx-mMEEVPIrKQK_e2n7Xyi62#nn=XC# z2eZ*dT7n%Kf*n9t<3!1apr0YNjg5^$qne(^aJx{ogGDJ=!CoCbC8vDv!C5mXv_;8A z2sBf>(076$WyIh9|v&$e>V z0bGy{Y(1))=O?q&>G)LbITT9n>W~^$+tHrqKw}FE%!(w9 zl(tp;o#kj3yz-ANW*=%+YC=F$ns|DJ(^k(-74 z=*TGuV>Y_y-FzowC*x1RPF_z7{^XbBBMBVOpzmSqP9yQ!y8!{-*NOY+8ouB3myTg1 zvfL4Bw$^I4(*QNROfn9h@MQ&t6OTGVXvcm=_vEzS+ozE_FM9KIF8#xWb%uj6iyZ?= zt5t5g$2z zk|dJRJ`lQeyndw~RaO9Y08Y}O?~iWt5_wB)uktb68w&f! zXhKW=hD53VU^MbXe^Vyn9?IbG0y9YhnkuW(-@92{2jl8-d3w0{$Xo4N zW|S~Gq2BE=KXoiUoxhI!_b+h%FU>?8P)xZn#&heW(4*c?^w9_nUVO{5lU%s6nn+Zx zd+&kfPFrHr?>zeG%~C}+6HFOx*l$+qe|Xc!pI_&aWpV3C&V(Cgr*tlfU3b!LB_3p; zJ?Y+P=eu*2)7@4o|S?f}20yR*&6zl}nP)DsmQh)G!!p+{18n@7zufs)E zk|pkrGFn3Lu9H^>*P2#0gdW$V3Op>FnbrH?zU8#78C6tl*4A_>JG|>qRO?A4S5xws z5j>wzMJ-jA7ra7&ic~_3Q)p!*Ej9V=N9Xr9D#{YXu^4PIsC7YBR0GjHUy};#^;x7O zatdUjbVF2W|(+$UPS61C|e z-5VE`W~|z}qMUNmi@v=%PwhjD8-Q#s>d7GtW4%CDdF8@(=rbq6H%%iikc!8Gq*CL_ z$F=rP@(X_bKzwugEpH(qy|u90No$WNe2i}$+H@Ky_b93S@XF?46?jXka5Q$`TxWf- z$FPx=Po}YSM`-efIUM=x+q$!}e_;(KB+*Vein>_txo;F?aX1Wh!sRM)jf(D(X)H!G z$?@8DquO$Jje;_wwbk6+w@N|N6^q6`G(8fTS#Z{KMxZ!O=`$15_^JF-1%0^sm5@T+8=ujgK`PT@V|JukdO;!U}t5L zyhkg-5ILOaqBtx9%@x(tf#+Lyb#Dy&Bh+4Qq{wl7eqH*PB@n;RaXvdM<5g^=(?Eq+ zZ%=mze4re>X{!543a5-ZXj(sl=f4O2S^m{yz#eu?ULiZZsVQ4}^GTtH*h`?|Oye-x z<`%bOE|-X*sQ5I#z2h#z_Zdf0t(ag^_cyL(xYLtR!w5-?D!U#foWsqW6!QmTi;x%ApWSC_;FZ=~lHQN&AX zB9CfT><{~i4M>~AsKfqv^KbII-jtWNuu%DArXYXlcr>;$3Od^>Icojaxt_6(#L9cI zRqmzc#*FQT(gr0(L8pazNK1MBLh!-chWcHvHx|1MhWUIQPQ4Htw7RXT!!wa|Op$8* zj(mVSxdhXkZl>os6%-rdyF0>Sh1Lx)MK_VlzZELqXT8OXc7A?6(3$?_wQGhN*YnpH zVusHb)N8q<`JZJqsVfl`x_T@zQ&fl@;sN_ahRitE#AR7I@YP>SKctKn8Vn{x96rna zV)9qZ^RESufNUFzFV6SteR`2SB)gv56%-|XDYD4MT!+UmvU4kG-e0yD2v*K@jqq9* zl3{266Y0;g7sXfcwbU_1uJFmMDXx|^w%Fc=`u1Vb^bux1PJEH{D?z-_VU}Z6Rm?&; zX7@`Z=9;Cs8)#8v*r_NZuPDSnf|DvCy#@BXZQS5}!;S#IaPvkv3BC~bt@TnngbjOO zA!u{R!BT}nu4P?9nxAeT^!S16ty`Hv=QDU@14;d*XOK6#C~ zHo0OYEaW`*=r5 zU*C{**4Vdh&q5oF4pnsb#aqn}?F};fxU@c=E_CEuoxKjZR+-+kec&rrcXWg&xY{d| z<~Z;M?c1d7_>k!NU;q`iRn(NN%mdi9qLNtGh>CimPf{9h879LItMXcJUIxh6+P1-i z^HUdKqge4=9W1u=upfNwp{q|np|laq#}#^h>U`^V_T#h*fXOpI-yposG}g5+X3?3m zi@#yE)@yMt3A*NBZ-XRu^F3d0^eQdQ3c@SYCF%*MD2k*q-8VFjp+B!#vCwVM{K8+X zrTW|BZxVesJaq;AVjLyW`7C$AZ0fp#X%IVv25ZKz8cC80ceAzp^w|mqynt~CTzy=6 z+_Hc7-oy1M)>%{VffqjT8Hil&esRlDTPjp=9-2!82s0{%6kLlo+Z-w z06V>_%3tOc9@2=46kznt+DqIZvV8SJ(3&lH>WD=ZCzX^*@cM=m(6l!N`mA)TESjvxtig zI{)k(E4u+;*v|f#3J_O`6M#a`M<0<-Es3%V-jx+^Jr+j+h?+b4odE{Ew&j2{_LFQM zs95`1%F^s78E|6xou?kl5jiDE^y*)hrYb%9)*58a;n$1$dzQfOGL0iaY1K9k;Bz)m zfk{S{Fvqin2lewZeg?y_!F*F@Ekl*hZnxG(E+Bw%**_R`4aus^j@`M_V+8MQ#I(ed zX)-;rB_%s6-B!*1Y7xLniPu3wGvYGjwvI82rpNFW(pB){P_6H-aztS(9EVPPR@@IX zYddc~o9H<(Z6$FgQdj?L;G1((w5=f)6vR#`_aX(pYO($+amHvpMUy3<>=J%@D* zY7<94$^VevmM0Dj{xEgFoh{?bBb@VgPYMfga{_(qv$L9o_I$ogDm%JKtBY3lGP^m$ z4z^|kM*#7iEx%^JQ_CL|^wz;o*HPRr|%Nq?cC z0T3ye`sK0X;pHCPL;Z@%`fQ7%4LIN%i^ky1i;c&)q1bn9VssZLo?TSsY^A25PUz{~c9R#UuXOb7 z7*G@32;~j>616D{n`Kj5T?B?#?(W_j%_u6&Gg@fBY~4EN`B?h#>b^*=Z>20Lvnbon z^jgoE_{m=?ZV20qb6M%Sng~Y;XjXbfce}HAs!@ajGSov_=d{TbzYh=zUO{Peid9PRDvOhao zm&LWPwy}t1aIzO^cT5`)9w&8sO5TsQptm5r95&Wcd%0O;GEiY-A6;JVwG|~~JO5oN zw%lXm$3Q}Z*ZQIt_<$QmVn7rLf|1zbc@7s%KQGag;p>_L&sq4DcLxLn+3rc4MLQVK zWu?~};W!1RHaId>qQg3=iN=>gmu+)9$UTiS*APlt&YZ`6-Q8_|sTlek@6lt=cHj6h z_Na2SUxr|yt}F>4OI&NHt%r$Qc{!3(zgj~cTtwVf+fjMTGUFF270a_+VB_egk4qHX zd0#dvXIMdQy$|JB&6DxSvg2HZT*|O3%lRFiKYDG~Qg;!XC(E)^vO84jW;J7PWb`oF zlZ&b>RelW*y=(cEArC6PP||!68QN`U!WOwww0TkMay~hfJn5jeIMEx!WBp&kV(&ec zF|=Kt%c>}=Q$XP!R)8?P*O%e&rJy^}m~NR2wWOmutH-nC+2FeaYOWW;E-Z2$PEblbCLE zNcaFTpJpJJFqqMf-?ZpB{1`$VNxy;3+enm&k zN5nVIg9Ew`^oKse14NjW8DfN)HG$(Z4kYmL#YB197Jf)im$=HWde;n^-5XD|ua$cqkYlV=9 zS|OArKkWRD0l_;pR`Jlg`hkZla%0^I5eD#<>(JZUIfo_{{7HWa-xFOS79K%qojNyv ztIF-P#H?CeJd-pk&f{|-IY4^EU5EYY_tXY6_z>&AS73CTZC}79NOgYm>eN61DlKWi z?i-%$8_?~R)ku4z{k}|qE2W1o(tZ6SrpzzH;zJ6;tTn_XQ=IMoK&4lizj39!nz9$} zPQ~c3LPJjN6$aT#Z=I;ykw;Wst7O79=Y~T_YwcS)lobqu!+rFfG)Fmd&JjP^O~*RT z#>kVJrp3M6;_UP3E%VM;JKpGF^QAdadq%}ddqtU_eKqxIyxYX~s^XxkLD%L_6@#Dc zP3XWDA7WXW;}Mz6MKJq!?!r!jJ(*yuW`$whWj$CjTQb{63VDwWP6yH+V((!v%(Sw& zh4SL|?%p9Zx%t#gdUK$_23js9C&T`?!1lVaegJ0qdP{>KWXG#@?EH~kvW_oyrPS?B zicp>Pg!FG26Z+eFNFFT(%6;-8Gv9QhX!Y|@*3{NdY#mc+jlP0ujYK9;pIt5vD(&JV z;)3S!Fd2@%u}>cB8!I1$tcQE)kmQ@P+oqe3t6jeM+1o#yPQt&43g~lD>{88KjJRFV z{_oY|ngttO*=jeJADx@Fn&^m;9JPWAwx;lq8K_0vx-vfU@v&8Q@2^)0mBWPH`Ck>q z!HLiJ{oHK?WH*0)yZ!A8o1$`a$kV+gX3+rG&HVi5qR6wIGHjU53S+0k%71FS?lR>b zOq-1yj;fY#=Hs3PBYr6@DPwWin4LYgt3PC^3xXicJcg#Bs>g==UGMB|Y7eZ<-BP!QVy^Uq}{+-TpTL~V&GNS-?VLZg- zGl4?CP`&q}z2xDuqW5i3;ERKL#^p+7`>R66wNvLT z_je6(v}2u*zPOsY<#|xXez+>Uh92(PGa(7{&$j=o``Ew;7DwAx3U2VDmt& zRoyYVNON3kLHD0}{87ZbKWRM&$N#u--*J1R`0D5t+qysf^(^K3H$+7tW&ISu)K%;L zb-*ss<{)#4W<0a9Q?DF^1u6m2S7*TS0N=rP_luigA#0n3$n&< z?gZo3YnAv@NXR(r5-tm;yLZ-o;h>;(j9{^Yq1v7*e+WpXz17|o|7b@vGj+$vF&LEU z{GB$vR*>gTSFTgfxa|Wo(qy-5C@k&xlWK1U3Du=vcL)uFS^I%ohu~wnpHNZ?@EnV! z)v0!`$5i~Gu0M}Sd9vBi;k&Aw86;|2z^+(OtNRZA!0x9d^q;Z=^-RhFZ!Aso)UW_e z)WeU$;6bnkb}0fIQejP1fse2+PzJ}0n35U&C7^bJo&-``#eM2MnLJ$wb)^Q|lR1$; z^H}}}Ch+wC;~D^{lL);+DX>bDMIkFLFp?m&C|`H)V469pwAVElsME#@1-eY*QoOt9rA{@dCBaGivw)r48#l8^d`pX z&*>o;?~784d&}=f8E=3Z(y?Y0CnSLP|KQPi-?1V@Ta4DOjAMrq;pK=jBps zOX!{?3D-GcnTmr{=!Hety$1(Z|92mB`jZ`h6^5F^g3Zd!$1l-by)ud#MI+$1HW5=l zw_>a)`jP*9DJ$6Arxnb48RPT`e<*V4!UpwgY3r{4bLW44%x(Igx-0jme;@t&atS)eKMoF3AgE>|A}Uj* z3>)EvL`^SGgj5FrNO=pdI|m)R@9Crl8;OHcQc$_0Fs{zdc3Dn{jr07*-HKQ1`(03T z57>zG@9jb8_)Cx%ZM0s%7Mr-nEbXDB&OxWA5PLbOYE#1^(NeW7#3NicWJLo;^1@w5 zZVltN&fIOXfV_d4f3_YX>|>rHmiIA-5REeU<@D8k_`?A|a^&J37ytM#)V2l8{~|cv z@#Kq>PuJi>6~UcVaUs!jf!Y3bhesH>Q|H~z-$E%~-B`9l*WRsjm^ta@!Lbh1F=9C`9X4FH6n@VP6IEw}!Br)PGnU>Ibu_qo$RE&ZZNk>5N1* zNO1&D9aJ-v$PEw9GYA;0%J5UGD;awCm82ha3u)vfLGUKyi|t%X)CQ_gIA zsLghg*6L^M3piY!jTBekEQX7$6_yO5awJeOHhFq!}YokC5wFgHgFMy0z0dxqnp3(+_wH)5gB~ zvsX}ah>N((Lzq!QRWn|0xPQyAeNXQ6{9Z=|_$rgL400}Vx`mX6nVYgew{g*$k9_c# zq5Gq3 zNPG^uQ$=twO*`=z$=;;vqR%LK>E>|X)-d*OK|AmWYlGbYFAQFBY7g&6Caxo3$?BEg zz9mWAd~Z#)zN?wWrdc|0{xy0H#sEg4b9E)i!i5oULL4?@XO9=S3Hv+dc=%@Gn>3l% z4!^*9CJFa3Y+Hk%Zsk!gEV{;lBT7=|(q|EhKni^1e!{Olq}3TkVcJ$4D{_u5{w$|$ z60_t-SYGQQBgg@m#=VrSI?;l8Zib@V<>i3AJ+kqRTxQY&e0(=x9yoFea2fbBjEy7) zzs$6+kXz(NOl{2A#Uwe%MPerSxbl~An#((wN>Ugp^v@YvU4#EajPobjz3_k08C?pW Zu?%Cyt(m+Ya5S1m_3k}b(H+z0{{ztQZnOXZ literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_6900.png b/Notebooks/1_N_horizon 3/sim_6900.png new file mode 100644 index 0000000000000000000000000000000000000000..ab0a20e9c8924745ae993a45e16a54224282d0c0 GIT binary patch literal 15584 zcmd^mcT|&Iw&LLiwF{O-NqH#2Ky*8DT;-dT%i)|2y`v(GNSz0cnJyuN==o#W`~ zqYMlT92$32br={9$ucl7K0C|`o)l$h62X6RF1L+bbRC|$xIcD!!f^Moi=&-`i=BP-dyhi>0tKYj@v#o)`B<6CG@5+Y`x z`mwL(rD%77k={dy3Fh-95hTmW&EVme(q|KHyp%lpIFFGj;s$plzHENG3Dq^(ZgsWA zD(=1anwPS`%!{Q>`4s0DUIfpX$^r!)_?<{$jY#2>#`>6J@95t&h99z?Ie3<}!Y+I8 zMCT{3Z`Vk_2mNi0J4YWJd9=&_*6$gT8G{c-izqU49{i-|@tS73;1%|3h+yZB|R#hg24U2CA4Bk z@6YZAg`neCS9mQ+S4mR19-JzP{i6`kUGfT#>>=6Xvg|v0_zK!l7se{4OlHIzbRZ+t z;`E9T=?6~FoN;A;anDp(L*!37v)#@@9-M^ms5iWa6kdhezeQ(}Yf(_>?S?9$@i?D9 zah{MDs;XjPXer35#1mu^Kg3?Rg7FQn{tLpIvuI&{onV4zHB zJl=;^xwjt7F9(6>`g1WY--RhfU-i2K+hjZAz?6RvmIsH`Fg)VeyX$LzV#N@bsS6i} zVXFL7B3XnP92f=Qu+gY8ci74t+GFaA3eZ8fzvzm$Xf(!E%`3|pdnES)C1&5rkM#^g zHGlch9pM#uk~s+pc`@?NlExFu`iN=ov&t35d^Rut80KK6i;Oeu&P(hhr?dWk?ep@7 zhu$x6A$8!^S3HDUd8F4V$w&7XV%bN&ypE>|I*MLl8DidPRU1}378^BKcFa+rJ6UH} z*zuy{W3!3BJ-;~ett^wbeb`p|sSzhCeyn#Tvx>FOpXto4-YQdTNP&(QqIU>I`w?}m zgWG7dhLw=Kmo7X!dXdJD_tRb5CT=d@ft508e^`tWw#lU1TyNME3U^T#-lhXjvSR#Z z5WwQ^x(MhA}2fNiEn4eP?S)1&M)VXo6c$Ek5*X#DBzj40nkojIW@jAeR!Wk5|p z9C^FWRtV|#o`p|B8@8Dd#hno~U_Ut|!=$MTC$`qj1md^?%0BR~7f1CLtkVQi4uyrG zm4a<-xr)rEZkQ9RLp6oQX_FK`MxV3L4E2V#=5J#DY9Dz$Z0>kVFrHYOx_hum8G$9& zXki;gJYTsSbhj0|8QIa+y-Y5e+Il>Y&^C~A7ltX?%xqROU*L%HpMo$49?kZ*ZVeMh zT!21(H)`-g3@n6`?)wxf* zayc)I;Zkll#1|o@Jo)(gVs)OkIN;;t(%qVO1xSKA@I~A>dPkci(X96R(LHIMCy?$V zK1pJ4A2L?I6(hl9AVx6~Wp);I!Ws%n>Hs54EInC0P;eV3e2%hUQsH^G@S+lbyX3bs zYhAO4GNMtP4N*E|ajvPahpoyoh0WdIHqe#JtVActjU5AEWH+{6LCkmGS+;iZ7G^~C zrs%+dEp!O;&93#MJ;>b>iQxtnVweq)q9ZEA!-*9Ur&Ac0PW2KyV3_r`Fy2#n5J-pB zdmm+)4d;OGeB`&(N+4IBj3_s4*dkl*As{cWfF}QVwCu-)C_`qhsWz^u`F+>xjFgyv zRWJLQwn-=}7at zstcTZ`|tLE67-OeijS1>yKaS&B($tD^yySU z>%$@wgWYhxhZEws0LTlqF?CGy1*FpFh1fbYdQeSO9Dg{Hq65FB?(j~>D{_H5RaCISqyRjyqr0==LZ7&WSzcg#@+29n_bB@;O7jI_RKx=J>oQ;%)0ECb&jW&6m;wbE zszSR5o>+xTqmJzG;sqzCsE{2!>SSbiMwA)TWrkWtMNR2Xmb^lISs6n96zHeFbHkP2 z>FiEiK~{^YIEa5aR35k>eX@CXJ1;^hV0td9SH9@A7A@XRuQA2H>zXW@>|S)%;-sT2 zK0S?ZowJBwW)QjA1F)^Gb$gL(X&;*r8OR$>3)wk11N zRZ*%Vf{?m5=wRr0kq@O0T`mq4=ptt7RT>;PZtO{i2fWs6acc={O+(TCRsLK6W(_b= z`DpZ;02mDOM#MPhz||8%gk&4zqHJ0WHOZn89Sy#y+I=rlhb1EE_s_wMO|pMN`XPmA zJMJxl4t$%jYC4=a@5fGjd-TI4`dYox`nt1BC5srKnsN|HUSRW__z`EJ@kgXb{uvn= z^$2pSp?wPUJQ!@lR_6Hg8;>p=xaeT%a4`1=orfnNWz3ljUFr??Fw7LBkPrVW>}O{M zcR9ED(ny8P*Ox4o1_g9t7VkjEv*3dtJ7&a1CbU$wy43BDLpX5r{_6fIOx9DuNi2Km zP!>2nlqunteQCLe=O|Z(X16fq^6A3MR2yn=p^#Mpk`1W@&J8=D9BYM>>`ag1W)9{o zMxA#YA2K}Hbnn*h&?xJ8WmT0i){d8-pFjHY?FlUuO38bnkPV}g)r)y1dg>se5_$Ec z?StgwZ-=(<)`HMay;IK;@4yP3rr;mMO&V({OD3~UB_|WD^Z;2p=UiM|zO-GgI%WSX zA>^flEqJo5PYcOVuuZ$h-_Oq6SnyB0h={P1Z< z{P#pT=klHLH|nEQqw=}zoM*PSIWD}z0di~y5g+nf&GuNEc-hFeKrZDwrl$N7wL4H# zQ&R??2|nVf9}np(tiIOvvB)8KZdVaIs)+mcXO9_7ccpZd*!;j&j*3U?KryQN{VOz1 zzkYqg)qMAwH;s*r9rneUnZfa=X$zyqvM&#!OzFquwJEIx>Cnnbd4`O;35|eA##k8# zfn(fa3?C~h;@(`YMAvhvBo5XrxsLeJ_S+L=!uPib;VIOOOk7YJY;31d#)-06=CBgy z;Jcn6x3^L+w?hi7*c!HFq;Jv2!ND5rJ<)e}mceJ)n>f)d6mA6`R4=2J)5^+tn$@12 z@gN19aUXdxg4!NU*f*`)`7Ytq08zi ze93JHr*_FEM;s%YBW-`1*>M&VqBv`$Ykl?wgMszp|Wh8+xp` z-hM67k4kP&QiuVJ^&pk!6x7DgBzuQVgsUWjkMG9<%07urg|txI#Y+EYx?YfarAg3F zk;l{pqOD98&P;SV8Z785+a%yE7OuF~{B-;8knjJ{ke})A?~TV` zPp4X=AHDc~^7{4bU!L_q?aP0%eh@SMwp~XWHsuvYZV9t?p>V}-bu>zy z^Ps8wi>YWs&PwFd)$#9p3)U(VW8TYCg4Caa9!nK7YIfT_>Vi}4*SaRl>h{IGmuqBV z5WaGNPIEAP!FvImr<>c8~}?e#nxQ{`otu+VH-U| z!ymo9-;}mT>TNQUq`wpt7dz`Avt)mt5^b)5->*50Dbm#^*SNTxx;rm(SQd`y#hsAL z&dz4Fx5>)R{*;-?<{uw_dUto1wUc*gHNA}Jt5CN$B~by0u(7kV8msoK7l_dr&n@m8 z7o@EUvLR`!;eOS(wOKV_tKeJWcFi&>5G!F?=|ZY{yD@5Be=$0TA3E78 zS}+;FCScwg1xo}l$A|K3`~Zj6tIGNOsv@hFKg?D`3?0`yWUf8_ z_KIUT0W3;cs*<2DoSEcy8g?ESSG6%JbzJfwI7q+y%*N*DGIeR$sQ4*|l$2C8kcwdJ zj&n(v+;nUJL5YrKoC*tHIKt=(T|OOe8>{3kUEuLuly&sm3t)g(0Rn;nSLhg^Ou=_K z^=e$~85~s4(i=z6HW6}jpVP_#@8ouWrQwlfqp}NM>RB%c^0#PQOlpWcuPFt+3WCefcP>wqlR_6{b#&>rJnIw`MLmjbH=${ zGO%`g9zpYRBOqnyR(R6z(N{j=j@s6Uvo@XfhYueH<;?`~*^~CxyJm`0_Qgg=NB1@n zv{DdBoP=ROaKPU;QsJyiv+Jh&Ta37I(W^jC`Om#io*jxY^MZABbogwf3Ff)L(xgY0 zMWG;`o;LU_92%+pAmYIF{|#abdH|7*9PibX$a6U|{95j}-x5Cgzt4{RHX!TH-%dke z@%r%aFt$9exJx-faF4{skm%egrwIHNpVHPA!2tl(60cDmkit%E%eu7(}9X3RLxnIxIHt|2o32yUOfN}Qb!(OrJ}>dY~OKY5+a zAwfljP|I-!1U8C5@ke|qi)Z}yR;$;OmaPVIjW@Qo*0%j<+h<-hK-!a)68tD-e#~bv z4S(~PHRqUZij1uU$$YW+9uk11gT_miV+=b5v|S0h5}5%IbRK_wvB+gsC%ojc%aVz9fUXJwz@q{g90<9?&;e+rVSD50xiJ&o0Htf zif*SXIA;3CXMY|s6YjSsBt!JM7OuQ|3HYLA^6p@r@~;o?eI=?_nCQAs22yEW_T5&n zubjO=j|)2$mKBvZQn?C&e+^UG8oD`?=s6wdLtRg?296ED{2LGz+TBmuCi*jIOv=uY9)9HQt>8S}&R7IFv+UXBT@KV%7Fadjorq#A-yAS8 zuJ%~PJ$nVr>oo{m5)riB!RiVA<&Tw>@gQt<0@0COHx)!`eAK-zn$O3)EZxkoolP^Z z+4F$e^}wgI;f$@5z90A_nz)1KF$Q|PqZxCV9~%lBoF56x*E~%cO2iVWTV)O<`M@tG zIDoj6IZbV;X4}jc*fXOeh{IM2!%=pmA(=XIhn~LvYPMlb$V`f#Z^N=EGUOnynZ9b% z8YMR3v1>DATVRJ0jq3XPAU`Y1##|25U|73$@}4qz@@CWC-i*pcsG6M$rliGEEiFHv zv-yJh;_NK`>Ebui@*{f?y;jdCE&l{yMu(Gn0bMFT#rD+#Mbo7IATHBceS4+X;sy-~ zOQBx(S+sR*Iq$f)N+`{JudN(cfLgRo1Q8<$A_Tk_B;AN8cRE`V>1H(n;vTE-At&2Y zR8rh)*OLM}l>nZS33dA>RNz92mTM_R&-+C(?j^OpI O%59M~MargEI72J$8!(lY z!X|+>_d3dG0EEZHR&#i1X=xhi;LVpp+nbRCs>_D0o0cm0sX|*TCgA!&gMcnzAN8iAQ$x6sDzjpUIb=rX%B;mXI zMk_@bl`wEA`dBbys05_&;tD_M$qhkABz(3FBFR?H`WYnuj)4Pec;CQp7ts07F5uZZ zC-oao(UIG2^>4}RKLgl4+HoGvB0AO;pp9a6;!RQ`ufxMgr~JJ9!_%V#-lC7-zM;!G zc94#m7;VpLA#zOQEo9v(ETsvo1h>#cO@3T~AI7QQcjVwXx>sK-$1tC4`d&hUo z;Wpxq$}6c+y~(&>e+T=?YG)yfo2p{qK*!UVZw}tDxh5O@5zFRhI1zYoC_i81I1v=p z8@|?I&A8tt!>G>bZV#Uwj_Mr&f3rU_9cUJSjPwpY1fmOsEc=#v1U>lcXi-BQ1OhRu zQxaW$`$^(!^jW^7LSf8C*ORJb<}hY^wtEZ$f|NPBix4jZf%O+V{M9oyxyZcQ+GK!S zX~30=@;bg%X=1Qus0&BmCS$c3mRV}gK%{Q4IodyIeGlHmYGvtJ5K-HCF1(R$_Yc@K zd-<$%5oM(?_cnd&>4oEG{(q}b(6{~1#TSspX-I}hsz5)eHr#@&1{9(Ecp%}^gu44J z^1s#R!*dZ+e{6*SNeG5v6S83Xas_J7?8b7B?rx`8^jF2>Z+%G|K;00L7meHslB z5$3QL7cee7$NBL4`TwC&zaux{|9@&;fE#p;I%N&D=t9Q|LNuY{spuWtyM4h>^q-I) zBKm0u{31NOi#gUUJ;>|>%-md6i-B9M0SUtd3t4EBXbjqhSXDY#BeCM@Ks+D?2b67n z$`$vA`L@q?jDI*|)?ZTx14>MR{461bT#lC<5vqF#5mAs>KWB)n+I<<+oJ@XT_;r^h{uU;7R4jg3Ye0o>DcMcqy%m;qc2IK z0ySf`4MqJ(Me<+AwDX^Jj3J)=e0@?p*M43=Ha|Zj1eGaONPA1|7CLrgD`8C4G7p~& z2uhE*-S7=KF!*3dPucNA~HXFo*@4?kcIi^zSx z*curAL2;*<>7BJfX^-KSE)nI#OqmK$=k~w8x;ERPm2zMGRhlw=!@Q1vhSJ_DfxPbr z<~E?{kitVlN*EVg{Np;tv4^jBv1M6zOSO>ktq_V9e@RVRRZOM<7J1xvq@2V%T5i-R%QMWnQI$8KNXJn>4)UW|}j zr)_sh&O()LcWPhdWE)e_ml(?!Xh}M|GewKmj5CZEGops2`|m+!NT+OTP_MxXxi<6D zn5~7<3w{Vf-Pk~>FM_bUnD?Ztkv+2_KSS)#tj888tYWI~{#wIs{GJj)8HTXWFIYWt zmCiE*C(ba77l)c;PvF_(h=)F~ACbAoc$q1Tkmz_TA+u5>cEqS{vT^u93Zef;({R}4 z*JjPBa~k+H%|+8(XWD;_KJuR~*-AB#9~fU>a{5H>{T+ zF4KRtRL;*K+w!?CRxvA8H9Ad=u5tQk5U;)0sXTUSsh~Y2+*N$oH#_I0Mkro2!{k$e zM9*;lwc|k>Y(n!vuY_%ftBgm7zqbxtPJW1Q%pSP>Q2MG@x`;X45=j+K*i3Eiqar(8 zJugMFK!K`c<-LePgC)|D;OsGcL|^~5uPFTW=tY^gb0eL}W(H+$#YLs>_47=Dg;+e% z_*1*{(R!VBkYKtre$7?7+vw| z*9%xQ(sT@UJK8SjuNP@-Cb;@IAS~{h2)ru!P*dhomSeiCpglr}5!@zzEa$`5{b27_;=mPShW^ z3SO-Cp)G2!T{utk7m09bB^&j80}~Ec1^Yqo-qmLpfJ90Z5DjF0xy8dmOO;V-U^0`)>$L{Q`K`Et662W?_f5{qCr|s|ML{W$L|06v)F3&E7i`*w%@TJmYvuIw9DEu!LMh|A{lMyI4eFK} zI+sh;%x>1|`|v%3+<6jUC&;Bqigj4a?zQC<)3(-uPL2z@c}HUh64}n~ zr~P%|L+H`C`zps@?VwHRM9qVAXYb+coKIrxaV0$ymEII1eDC*lTZN**%6kSI5(SHs z6*2Ng8||kJux=a_-X96`v66-M-INW*Q*p|vVZ0}bOf2U#`w6QAI$nK$0-6yBH?k@L zGG!Ade>|!5+Vx01FUS%ZEGRnQx{?_q@0p5uZ#`JDUiHNI_|=gK*Nak7tW4owmp20k zz*nD_Z-F4)L_h)SdeC#*>>+@;RoeEaR?C;hlnqMV3N4TqB}!bZmgnV-3-f6;fov&e z9U-MjE?XPO9l3set*-j8h?nnx$@LA$YSZ;Ngx-qeb^|k)?UNrC;Sj0;E6gv>6l0hr z{jGRtmP<9+4Bz+?lVdbGpk&AQo=+2R>B2Xta<7ag1*|ZuBXC=4z(7Hsj$R69fJ%sb zL7Q8kUccTvZ>F5)*PVKca$qqCx2K0!b(Pgw)Wopgv|(vd(RhJ@tRW(#Tlg?MASWxT#`scIfSdQ|GUy=082V08GXH>|p>m zO(oNtLh2b(g8+dBJXHaa^aiD2>AC0GcvlNoWryYrOq3B}tiE;N9?%D%ac`pYl5(H7 ze2a)a0E9D#Re_Ltsv>S!SpWbyUi28C$~oOOwXmq_C%~+1M(8x^tEyhfDr`t^{DX3r zxUq^ty)NY+tsaUDJ#38cjSD_IA7hBMDr;BV*?3MDd4%Gt*PBwz>w#MKxliDhTgnxM z4N-eFew3)jhZm$i#NIcYn9Qcj=L(RI&N)5(+X8>}0qX+uN-fesP8|M>F*4vApLiCb(rxx>|j`<9Di8@NF)aM#l949fXrI1hBTy z9Pr_EOm?<~d45<-*HE=HuoRE1ngl7NDSaAO6K?;gf^7*2lhH=OI*{|Zpam<_XP|57W_Al-F;5&^o+mEvod=70(|ZE5UINX@%E@~A{Ks^M_|?e# z57+ZW*1Uxa$>@gmE|kFW`8YV(lTShmXwF9iZ?r#z%y@~>$_@l(cR@NT)(G*wE+%&9elagWla;>3VtUo)`aR%qADFyXI_mCy2i7y1 z@C?jStZ?j(yq8z;O1ih>@!p7Khs9R44B+OUF5gMDW=t&}U3 zEv6J#mu*hIAmCQI2l_Qll)t6tiB_>>)`(VdWY$!LZ{-UBkI)=8JBJZhvA@0^mrE1i z3p&pn(9Fu%y4!6vH|liYoNi?eUz`PvMn~v$XLau~NAjM)nkLksY|gUVEI(9{ zY1y4x`;zWgVQr4^``A0s-5)S#d^Ka1S{Ez_k1$!QGPd=c3O~+ft&nxSqLuPoV zPtj1acpT(|*d5-(ia+vp_SYVHvha6K>2QDP<2Yle?>2I{iSx*#=h->f$J&~7dpyXd;N1OV7*V)V7)C<9 zL61biDdTiV;HcXlovjNLMNq0=|GJ?evdqM*m4ic9-g_WiXLi9@<@uALMJ3~pS4V2G zK!~OJ#KAbhs?tje#Fh zo7~*C3yVr^1D$sV)pM}&Ril|%Kvyc`7izE76KjecFkG8jQRSA^y({(!iZgzgiLO502 zJ93p<1J;B8A>+}Yfo~{5GKb$>N-Zt+sR2-9S0P2*+NN6s zUs7VVjQIo9R~+ZER;Fd@C438&7v3FEe-hFG`XagLy^>2TGSGidY9IoDBg;mwtyn$R zU6e*v6-aO#I=dgPV&7ID`B>0%L@?2A1wCm-hlQDkEq}cqt5rq7H!x!9vzo8LcR0J< zvZhV9)9~7?t{O(fNQH3`=OY?8^N?5m<|2ud9uhRYkDqX+wLZwKPR>Ba2n}Uk?&-d9UFr{xP*uwl`gb{0ZwcvlgzCvi>-3M5e3iR? z{l?vnMs=M>?)+jV(y~!Q@!Pc!rZ3CBJj(kv^&H6PJC>V%o2Rcq9x&N6QWZcdn2c2q z@Ff2V9rY*Z!V6AiB~>`jWUw6LwxhiSsetswvm8g1ckADYiSZWIIo!F^+w_qTDDAP} zq)l~6SzD~{tmvf)rxq;=DW3dgt5TUbsNyT}#!bOL*m^-7rOm@Jn$)-LGQDitH?z#4 zl*HWTS~F_Wr#{**XmRi(HHa0GJ>3%Ax3hwK< zSyFmaT|pnYs0#k&UsUy0&|h5CbH(cR_uRazzGXJrbI;Y9O^R&W)x=#)`4L{UBh*?TpmLyE&0T(CM+t9f!Ki#wnyV=k zX9n8JZD1IEq0*_t^!|IBw^3ack}lsm3U@5)XzQISg0)+vh2#+?t=zf8VHT34ZnfVP zP0RF1zXe12NB97c+<3znEZurgi5fogr@8QL%&C8V*4x?cpJs%0ls*L(0J7u{{?FU< zPpAK%GwT0~>kJ@a49$OoJ_%V3E;MS@vb1CCJ0ybP zvL>v9QTcs=CjF=D_Vlzh41-|K39@IsFx~dvf2OhIp!G2lTO1GP`6#)1lT;@(4llYt zFBL7W{(HVQ$Qgy;^#CqR)Yc*8Lq5)yY-$Y^WJUgCW}u=YDf&Czo%a}5=q!6|=RvK{ zi7!1GYX6cp*9xK6QiN@6c^wzdfZ9x3j5dQnfjQ^~1y7OAonPrb&yQi<-v(01UVg|! zVr2?s?dAQQMGaHwLo^7<2YCmtCN(#H<&3`%?tfels=j?tg846<_xzu>Y5$zxj<)hubUNJj>l!Cp-XSj3ea&hoabQDUaTJIjlF*1xjzi| z00#jLsD%hPj6>aEQPAZr2b#417KjU)HAk|5D5lt{mQV%TFhp-E)azy6fZkG(Xy#lKw)chsHm7JG(-T$fD@bVx>TzKtELDPr*gE5wfaB+(F!q6c7b(5{K zkaiQj11bDV_WnM^)MS>)4f@|rAI?wlqQBZkHF*4wrdSOTMf!yRFa;fDy4_AdHX$$k zRQE1J1wznmty_0P(FExD>K>}~%1qa5wD-C*xV}SZ+gjvL6m*VWnnw>QK)I(;Y8@z!XK6HBTK( z5yaz=aJ2?O=y)ai5;8p~X*@pfr3Q?=R%&W?gQ0`$bflb1Rs=y~a(q$iBe_C;+^KS0 z_ADa#h#1?2nRyu|za$9+bD~N+SvP>zLCl28?@mg`xM|U`v%D` z6uwJ&tN(Iv`!w%{p;YGb7vN0>2mK<-1aW@s+f`N z;ghEce74qSFdu}s3}njNyCu%T_&R^ZBMVHq;C{|zRSaX*OjAcF+F_F5&Xx?b&7hTs zCL^p)F3sPqP!y!@V9=lWI<|))`jrJjpqyulS|!V9WCnVe9dxakXPnFE*=!TDP}5T}Jb*5Z)bQSX2@*-idVuLEgRR-C^+Jl;g81 zIQ_EE^tS_(=(vU(>H|E-7pkULdF8#G@{leQFL^B^NuoS z^&he??M_YHPRp}Z*QK*i>Ag-oNA($5QK%dL?B1swM?VC^o+4(W{Yn#sAkcUPrPMp) z*^#e>2)7#9&;K{>jSQL-E z_N~&Qd>v{5UAacmg<*)335Y`%)K%}+*0QaPT*;JR-V!reRPl1M+gxp`+(tV>GHZnjQ&J`h%FLWd8Hl73^ukQr z!7YQeQ5BZX)|f6P->dE9Qd|elT?a0+>7WfeZ?3#D5Yfp-<&%X$GgPI$H#Bg5;p2PX zh8TCf(ua3xY|_n3U-#;tbrO5@=;96Eb8hh)Y+?uxYXZWptTT)x=xUO^pg_r*0MlUDdy0 z!xlT+H@M@&SR6oPdecHxpS<>j;>PI9q6msQ{L_2xjH9?uMT3bxL|?1-0!oY{4ZHZ3 z87AT-+X;s?%jC0sUQKsqcs5G|H#U=S$8IPXXZtzT?)&)@XIxR?K8?$tY5@e`Xe}xf zcQU17V$;1wXk+^ww)5%A+dV2)rmldPg5dFL23G`W+Y3@vPN*8)N5$^1s826e+8b6D z1edrO|d2i;;+`0e%Wkz#Ovdh|Qul@O~z1H6U+%(o@ zXFJEn!otE1=xLj=uKe*VfbGCu!SKpJ_^U1ntP_zSR+!+v@;{wyp>ize9QJ61`3ZTp9kZzyWP7+@SW}PKEsU#dnMo?4 zQ87eA1e!`M?wetv)=CM+Im%&kSg~HELSqc!2q+T^i$M472HNfu%e#pSU;jR(=)T*t z`*a~Ga^LQQHs79uyAMxP_a57QIPqZr`P~PBl|!Jyz(39JC;fIGB0ma!-F;yBuijAP zd0E_Oyfp!%;Od>1J-@wp7-r{=Sn3MYK)E0chzo6!wP9u%8f06TKTJhpT%(_8l{sPz zvqK`3Fg6#aH%=nflQBb>k$J@Wvh-rV0xpACHbLaf9(nKm9MqSo4yZ@XWA!06b0SoB zfdAtqyUh9Rz_dSH%a5De?FV*bo;Umwfo1z3<_XUoQR$B{a4*F1 z%#kJp-kiirpboSm*6-Yxw(Bh$Yx$aOWBTPM-p?={GjbM2a3BHbZHa~Hh?uqG3OF4E zoxP1q4Qs+C1yN&!bia?XaE6k~D1@I_iJ zZTk^+QeRodd;U7w!H>?MG?|iW(TVc7>x?g4EG#R#HhR712fFWBKsEL*dcx|L3uW*=D(CCibi*Qje&ij5ZG6`@)HTtWT|cL1`1 z95Bho2+YJTvu(eU3f3^maep;F*!f%SI%ywToMS7drB0pc2qfv9lcur&b@Wd^RRIp? zog4a%x6Gmm5tgKBwDb|ieVenAlIYdnzf?6usf=RG>6iZPOMD_8ZeRKxFgE{Sk3XIn zNDVeX32v$Cm}L_xyT0tajnXiWS?Vtgdi1iZl$)`K<;x7TtYm9KZ;-4hVNC=ju|p@+ z$A7FR?99^=XxmS)%0P=By?3fCvXf)~KCx^O$~T%6ZQB5lF+k;E5>i$j0PFgY90D?Z zRSn?py%H2nn55ClX%k;*mGz7Z!N_}bDRgtGz>^Uk69S`>(gY{Hp{y3`khFp6w%-x2 z9xK|N+0S#35CY2QN6%3k3~Rv#(zd66sph4wO0Z68cQ1`ItA6!Qm!cDuaLa_Nl{jIa zwADMoD!mJ-XoP;_RY~#GntX#=UUWC3o}VQ$%mKR;$jTyc-00bAGN#u3S*_Tu3_&;Z zj+t0re2*M{@?LQNmvDIN(fEJRXtZLMji;j_DVsYGrqM&ZVbEyQ>cjWLnOVmOuu|*U zN~Ek&4cHK7k_xywk+4q660M*&Pb{-(Sz}5{o-TeU!M3qj#gwGdTc(^Zc@ke`z)xvX zeCy_JpV1twU_vq>#5W0d5kZ5A#?tE! zRnv1nqk$p99Z13{5X%f(FXZtwh9hs}ETa(yn;uFG(3^tRb8A^b%tV>7&_5v&<4XZ;(sz&k8s67r+-h#NJwVj&UC?HoPsJk8s>0MmFqIzSQ{gZ; zNjx~BI3t{e<&B9T$Sh8G8Z27}V0@Qx=Yal8w-)?O)JmPSNabvtY|J+V+8NQZp3cAJ+LD>ZIrCT3Y^Vtw?Tjr#Mx%2P0 z>|6JikBRW+JAM94$+;dJ7w1s!v^+5R*yL`p0#3tqp~b?iDk{)CT#$MyI6@2EreM-% z_RD<(A2q4{6D7vNvhces+wM9@6nwI{Bf{`m+ERC*UA`pz+guNrD3ON;cn6l$m3yor|En^H+Nanryg_EvBF7YeK5+MuBYt(D`dAj&7c#0 z-vwcD*(3U_rEg^J(cMK74)eEUppH(?o)0>?+t;47kAVkee~mX8k&ePjp(V}xne5W* z-HiQ%wy?ED5nn#$%gQm{3-xxQ?)HbLC$B!*`IQ7mA9_wJ2$M9&E5AS@hODp2Iz1J z4~JVmx!B3?*l0*57S}znD=YoC0D7j4y;fvk9znw!VPeqOPgIuzdDwlXI(4_$QQ^Ib zs?)SmVcsF5KZ=0=!4}=W)%kb5ok+bq9v+`J*XD=5e94@z5a>U{!9k7OckHGdh8Sr5 zhU>52qumCUuyk;!08&M}i1#SG-wy|q@jhcU;Y^fKuIg1XrPaYH#T05d<F_;^P=evk6R5f>fEdjYhO3Cb76)XGxI$Eo(Yh=gDV)H`J%~fjFWtZ68uyq@N z6vO3E#N`-zSF_oLgat+$1HCE(oB#A8*9nxot?w5b7pi-d)0i8b8pHA2FnO1bqa0_> z+!?L$fLf?%oGS^h(>Uwf@Pl)ROrB}vIoozCde^@Tnx+=!4YwcHD4WR*F^-9e0b4H3 z%FY%6f+rr#yjcH{J-JoTypmSA5U2w6v({x2Zf16(Ow!@)t^6Aaqw_)ZXM`RKM_k~} z(yzMldvWT^|CkhEvDkheJRUEe^0l&w!G_rN4&V8DkJp=mmCT%-UkZB+7MY$?@_jDs zvA!^3+Z@^;TwGRWXzlReb>h{ZXPai!mOhhS8z_XVd-LA^`fzg*86n|89yzlVvBRi! z?Lxzwe-mN-gO@wc=R>M$jbcS(ODh`n+1c5l5%;Ol?Ez8~eWKJQNzDp|AbxUJ|IJ-n zTMMuu?iga^bS~zFR_BJUbgAdf*R?Qxdb1P^1`18c3S@gBz_!je=a|~+P5Aw(80BwI zgaT*{GjshB+c;y@Wo_Pj9|dh21B!*Iqh6Im4`y--&5f_>JU)N#N%(3$|015!eoVzM z!vR&CsJ?lp>CeyX#_wnYdHGL^it{C;Z zS4qLG`wSdKeT`cEtV<}jwze)D!MS^Vc*-FzBSR)PuPaE|*61BqTTO1>UaO?ft1LA$ ze9LcDUF*q^A^X%(3Vg=!)L0(hn|JS4Syk8<#~k7ET$>x({2>!j4C={D!n(pjm5tgMl&#%-cul@cglyqltv=-6{RGCAUhk4$WU}`TgleP$?=DMV#l5IFlCKGB9AGQNFX)zcUEx1?5Bkk>NP}XC|+5 zhdH@3^!}gIfy_0s*PoRiwzZyVd||7m<+io@8IIu%9SJ;zAL6*YmcM-CX1npGM~TSncf(Y?RR7y^X6R1IF4+6xaegI3 za;TGM9izLuy9TVFw!JZJ`}TfS-_@D(6u)+Ms?9zzR#sMM9z=kF0wZ(Kc+p+h0;BAL z!1>{|QjI!FP&OZGRuCX%Bb$qBy~v*5Kc?i&ZGqbR{FFmN-fLJAFuQ&|`bH98xqDui z70$ii%F;4TnEKqm?{k)dR}dp7Np@Pc(b&;Z+j2O;>a?igr|(^<3O=Lq z0BNw;Tp^fdj~S7k3F_c>FRHJ<_2I(@$WYRy;UyPy@4xB{x@i2oXgX0vI&3S9PAOzP z!dX;XYssVJI~XU^TtpoxqM%q5Mu=jBY02L}f$@h5oyZt6ZA zT)uA)ia5M5f`huI`1h+3_Mh)^m1Alr-jYmjel5ZoR}40cex@fpI5Cl{UO?zfmA0wY z1`RiFZFRt;6pPgc8=&EH30@O#A8ZcSH4hbUkz2Oc_|&-HQ`SJe*yQ~ox+|wu+SN&i zNjK$W*UX;=h-Ks;0|SGBvC5|PEZ^oo2q`X6n(MhO#t`hw?hdCW2p;tQPHW2xJWC31=`U&B~)PSB`FBe+@vL8Ji1GekD6rK7uC zTl$uiTK*(7gSJpwQDJP5E(uIp4P*ob)5eQQBr{73i#wo2ZMO4ozW^7k0lK@V$I{$9 z)!|SeG4rx*6RLJ%IWc$^WKpvR5B^9mvhye!rd~7|X3{4sasBFcvAt);+1Q<{9&uofyNrl0LtA?-YoU7 zMyQW~#uyiH(Lk>dY)RSI-<;g&PznI8q@<|{-sNfrt;TZDx{S#VA?1l0+xHWARjk0q z0#M7JCmsUmY+n)q=RK0gqbql>FpB`tiOMt4InnhrxUWXNWkQJzCS|7C!-oudn%UvL7 z{C`I_R<%Hs1lc#>{Yl-~1zf*XSQwM9F0hrAYxdzmzGPvDPf*JrxI)SZu3e|p)&|X~ ziz>AG>l#d|34McLK3r~B2+q+f^O0JzLn(+R4UUUPEg~YDKA2lTQoT6-G%l|8-Vc3% z)G(7<3RTV9*_s((jE#<-N$O-!XgR?XBlFuL2I)oMP%l3BixQ@Oi<6u~(w< ztyw2uNLhg)<`qj02(=7;T&Ms)Y~Scu|pY;q)Zu5Hd&&V%j}dAz}2 zA#5|CH%G-9`F1%L>%`du@<_#L<11PR`R+TRZX9`2_}6Lso@ax@CWT^!zTbL#xn01|oYl?oy$Xy}yTwU2&R$^7S+|gW_iI!#mRcNBMU6-wxE#y+!)X4t4fkFf zD^sz?ozEk-|1^Rtq86k;s8g^Tcwx9SywL*mpbQFE3@e*AJqvGsOH`rFnvV?)4MD`d z79$fX2v-Cb5QJ?YClBgy!LhhLWdjiB2Hi5?1z@L+rB>y;#?d3wq8dg7Idbj&X_MKh z$Na;V*6^Wzjl(ZszNU~@eL~IJUNELEZuQRi6>7}@w#wyo0?+IAW2qGc>HC519Y?9@ zb|~+PmoK$I?T8+T^SKXxVxE4ut-STCz1Cx(z@eY(3-8~ctU2N7hONs?QigR9dLP z^kA;nwOHEN*wh8e^NrQV(h*S2Wznf?X`7C@JFNq&}4;RS4aeP-MaZY?7w+U*=db5g)H#Y8DvG zgcbe{O1B4r3UY!WE@&W>l$5N_JMP%>Z+$(u2J*Ni$XNr=#LOGnkAOebIJNE#o4w9& z77{{$TpXP^PU=4XjY##aspIny`}wvo*Nr>JK|i8#<6E4iqhsa1IX+N~#@n&nmT8FIhHG8^uV`P5O(^ERI~GZ&GiB_*Dkj6<$+1$%yQ!FXh-h3NIv zL1~YNgh@{XOqe2AtOv&M3@Bk9NT0vxfAv41e^_bgfKhAID~xl;w-2OhH?xj&Cp7hg zTV!B%Q#6?WpvdZJaLWj~Ei&~Ce}t8^M+`;^9gvEhA7>s%tjkQTFPvWoBlj#Hb7|M& z2Mv$0JoqP4sK1_Z1K?@zS3uxxN!w_9(wjH7F@hwCbxqQTUI>%>epg&5ooh3hzAa$aq)*p}(x8 zq&wUlT;Y-G;^N{Y&{x^$xpd$e!D|ff1AfsBZeKI%bwv6zF=ClHRil)a>?*HlY^sP< zO2AWWZSEtt>3C`;J`^AXDBsT=@D?bZ8A5a`;y4Sl3Q?3Zbad6y>Z7?i;tOwccrU79y%UQjD?1NeMRala^ z#+g@P5*amZL{8wG5cMc9KxyhC-k7P$fXcBP71)hq@QC;v)gWh%cmfQAMm-WcZQ=}V z>^Z>!3caw%z5(a^->vZsa1k?tL#!8Jdb>SlpaLvsHHlw8nj@@4sn+NUFw%=iPnNeQ z-9;k+FmQ4#Ab9ECcqs5&1jNq6(c@mbRo0J!izXQ(!tsdb2!+}D=6)0QpxPS?GXmBW zo)k!DrKt~4+`)YgyF=mbh`t=zfBr!S(U1g3TM-z+upp)_Nz6G%49zC&!@GKHSI}hE z@mJ^w<7WZ6*cQx4_nQR?G%Y=#4#R|l36TeIq{(he0wrMhD4w7p*oFGS{HJx{Z#FAB z#%|X~`tO*Ff)x7y-_BCpiQaE9Qi`}C#CjAa4BxXYlZDA1DY9St8>M@g4n^s{+KPm= zQu1K9dw>MdJB8442Qe+e*`3wQYs zs_mAjj{0{{8zydBlI&>Pp}rxz4)eQr)0}ClZU{GYxCoVvwXQtWl2jZ9;ushTly`1> zB)NV9Y9sPt`_V*IR|LR1)p0F2;wDK8Eoy+8APxh{nk0V&-jNK(0v{6k1Lzn_OUvjH zpWTkv&w{oVkHKIG!sS8qC4DeWWJH>cSDqK{4WO4_r3&ws+857#{?CjyFas!mAX>#% zMsx)h?*8ymba!MC*U*aveb`ni`|h{V(cJ(2vzX9G{$DNU6qw@u#7|ePHRcJDztcT? zk5{h1@L-a(Ij~2=1*-jpysUIxySrPdbd6xiGc-Od4alV)JL^y;mfsWjD^t#h8(tyi z(jE9~R*r+~z5lo!ROy}5<=x#@BxrfqJpEAq>cBF&C3I-@k(nU&BV;vsR z_nZpu3i|IQF)C}z;q&+*uf>9M287AoKF=s#+^4pVpvNvU6jg&^75DG{8q8A z%i)!eTRXFiYHbM(jISC3#T%C|D6n+BA-qrc`GdnpZh_7>QdkJ#teW_zyA zW=T;F@Wb6h&xrgL*QrS8>qi%aB0w@l=Pp*yo1??8&hmDr2y9#;x90Z{*wu%<*^vGt z_G3Q3E<0=gBbp>W^aQ=v@|m!ujs1(M*MQ}jifx#u%xH+J3} z7b#?dvB6*+fyOpUFydK+CFt?QsGV1GB!vQ5vd(P+tMb8e(Mb^)MMd}o{MYg(Ub(5d z!AfP$&SGG2)Fm6i7L^3Hs~p1*#~YwaE=k{X1I*eD*yPJDz0`hQs0b~>%_2>e!iIQAF zo-mLFBhX9o*M;lD3WN@IJ(ogrXTHH70=tL|z4k8UKQoALs>LM_)8vP<+`%nZE~<^| zesJOJdv|G;e0OoNV)Uog;_SIcSj3aT;9R3>gt^bAzo%3R?TqMc>bv|4LPxnxZHr9Z zSWCoZ28*f(OEp2A-E!OyX)F2v_HDpy^(sA@!gVzM77^5Ev9k`4!2g*(Jq};%_2I?o z$VDa3#r}lvO;y5^=l`trjyjOTWKShwZam|}?n^4EzLp>^b9C~ETwC(BgiBI4pUdtx zF94p%Sb2siu91C7YJ0R^DM|Z%msY{cE;VX9hLuw21wRItyT5FArYrjt`s zQ@(iq33e|!aBQxo77rvy5n=_+#E(){j|eMBV8vZRTs;KiN+3I&<=k^HQVlVDmqFCB zbZZ(83?5Rbi_y|M8#$$-b;^dnB45PVr%G{KC0m#!e|nU1*yyZH^;lzqln*aV z%dD=;)f-vtLo(PY`#hXgJ~~qGb=EBT$?NvSyBr_R+1X&3;!hPScH4uRO%nmGK^*0D z2n_U`c%ai&-;s3b^Tx@rBiHdmtaTk*{<_hM7D}Gei3fbfKNlsaoLeJm;62QZQb$Ks zG=PFj+ynJbZ!dDi@=c4Yv?Wzd%{c2E-fdAp7mPeCm_J3|U39cLuWEw`b*l>;9fjL@ zX4N?BMsGLdoAQ)IvwY7}Iadq5=Z3nKDw5?(3=X_PN8Oh_f~~&AV3#0$>GtE)bGwU* z)q7wn$GCVH6m=mQZ1_doePWHHPRe@erMW6&FFOKQH;}kpmeGD0%y2L;!3_Qv*C{@QzRKy~{ako3guUAJm3DJiN#S zISJG;M@1{8I|F^9J{2B=KeI%c%yQmQdtAfV#SUTX6A#6es|t zwQSJwodNHDo#K^!ORv@P%(kudaL-pPY)gti;X2TFqiMDOoLV!Y)U)w{t)Z4`L5b{s z?$l#i%Kay}EgfE*6k*kW?=qqcnXbSLI7WfaZno3nrQ!p-c2|n@9r~H0HCxqCAa?(? zhSFS`R4r<5h?aLo2;letfL8zM$uEU!$+dz; zEIcaL&e@HUaGHvX-XwgZs86ZS@OtCd+VTnjq$z5HQps9S*l%f*ctA|T@XmdYYIBxq zuM?!IN~}QNq8!-ZM{Y2*@DT3Yfe{P`zJQR;hEs;Fz!0~}~D#Q%% z%>kX=cPs*5!BZ2rBoQS?+n+?21UXJpEXM}V_3if<9-CsU8}9*9@#MPM-o>>N2!dnN z;klxz(8_um|0}<`UX#OFwt7BDSJv#=cg}O5%mH9~EUOqy@!LzqE3dGki3?0C%(L|% zYa^G^5}qteIEb{doR(xIFWu_~Z+71hi-+hdW|z?S zymi;C{pqQxkb3xYy$Ivb4$p2raNdCaH#KvMX`QL| zBdFHG&-!u&djFnv0Hu4lE1gQ$eZzKxBl2%+oRSie9$qH>2dGj4BVfCu9acl~__^}A z8$6KuUZkDXE=unpV+~9t5^lBzjaeO2C!8Xd!UwSsl2TI-DZRf6YnYz5!)2LEXe4E^?k{Rf8E0do8#hoZ)tnh+Q#|X2f+6;Xb#tpLmA?IM52ZLiAQ_$ z>92C|L7-YQBC%DLAlG<$dzia;WrJ2d^o3MVkglkJKadw~y>V5tv;ujo+g4=>>AARF z)zb72#^T(By2ZKXZnkN0so6^sN8EFtalR)M^U!4UifUy0%9TMJ)P!PMvf3Y9(j8b7 z>_*4nM#WCTLbAYPfpV?;q)()R(E`OGh1wG7=WsO2Bn??wZjwP(s4Z?NM@|9G7w}%U z&}=$vr>G-BBCLng&g|FH2b}FiShZ||1JRE}LG<#6ruWO^54U-7Mh9%oy|U-pe&yrM zWl8BL69d>mzhP`XYpr7)HKbHq+}vOp*y|H!OBQ}Dz<1KS&%(hSZqu)pMcA4a=O+~u7LoqzUX)PuZ`A>v}R2w$4fRL z@#{)nHb`Ca@?5mIc#WUf<#^BER5H#UVA7QuvCsKdm0eZJuy-uMzN4oq$m>$U)xM6ei;&W5d zU_os9*CucfJSBF6pU^gyJFUQ7xkH9eQ(G@oicFQIe*0dr1nMT|TU14-u=1SS;14ks zaOLlTCj5&##%5zR^C89qjb<~Ji%waUO!aL;Z>C!*#JaIhox23iJxG;9=~1T=c$8kt&-_&@w%rAyXEG&-eVH>vdr!t%F}#*M)b=Y}V^^*H0SVTT{Z)zLgHS{<5-ejBBh_u%sLP|IU(216vPX8~cRMxu zn^6P}cf=1gc=YoEz@@htN0@X%SObmvq_nFG7a`+izwrc(MzNW=oPDyYU_m_trVm1W z*~W^BJpeLNziw=zQo-ygx+>tSsco{};|s;r0as3`ch{G_neI{(Vg1JsOoiO7I*T(t zaZ-sQ+?yrRiy1J*-><6i#()9s9~F*IB>x}r9p&q!g*T&W==3L%pxeH%PcE;`{N=*< zaOyXjr^jzUW~$T4k;Z~y<0MgIwXln84r7CVJk)B9%13K(RrwD7*;#gsa03$v#x`B4|kpdGoE_#sXO|4>cyT}mg>8;#8uR+I2B zJRAOzqLei#Y3;i_G|90lu=XYOe?Jb`N7qz%+s{!ASYHA=Pom za&wwrrR|v0anN4GU=rXtMeqzHqpw*y*$weqq&EY5__U~NWi)8%HiK8U8M`;ujoRh9imhJQ}`@GLHp8Usmj zG6yQT91cxbSEkR+MJdxKB;a8RQwP@B_UQ7-;jmGDE-wihXE~8_xT>jzgetURaBvwx zCb>ov4eq6{>g}Y0a~|2sshUuznI_UOA5G|K|CDd8`Ar&mynAf4UGshWCoE-%G+a?I z{0sb8ZcwPtDWtDBsnk|p9d{fX9Gz}X$2aY?d?0{;mW(ymJT-7qMLb}No1Y}p{L802 z@9y(sC})g%=rq^rSY@~g4`;cl9O7xGQP(YSUc|VSKDb;K`BtD!eDik>NUl4j5m zH6lw5yKDZc(B<}J4vzg{3w3x!D*w(Gg^%~CBE>IX=1GQ|Ny0t+p zH>$xCjpt-H54_ue&p0|TrqjL})Fs;lx3A#Ual1E081qyAy|B-=cJhpx+TF(H_2%|~ zDd6C`sz3I%4r*;EQ9y_T@ph{kJSAa@+}aTMcxB7aV{Y&(^G!RpyW1(^XBH2f{PpYw z!N>nYxPl<8CQU`M@tu|c98KRG>kLDS>Y=WaMrh4Vb@*M(jXZyKCzR^0ky=s`Wpm7~ z?m+7`B~?!IkRN`vNoQXUPYDew-^SWX=oY=cSD*Db>8Ae&KLyLgo6~Rf6|9b0w}T(g zEK7zA%Y9lUF(-R+KM|Tym~9kgG0Sh55%4~1ChE;pK{mF!x=*VkOCg6L=V7LsoWce> zre<+Yv5f8?|8DUL7zerb?jhgbJPQCHLZ?7xQmn8~J z^DZUp->Y{z^6B8;+?1?^q}}iX_NQ0YWP32vv}pUls*a>4vV%U5~dsZ#Oc66)O+Y;FAEDp4gpFC zgUIi{ou~eG6 zC8_u7>|cf3T;I*xT?WPoXB;n34+JCG=Dqn=6aU(Q&i?a^STVG*9L~LW!4#IAHh*mQ z2iasO+I&Fg8p#jn1hPb^>M)g0lqN47ShkEuv#?R7tn*D3C~g6T8V__fJO6vih+-M= zA5uo17kAtHVh(lWXrQcvCVD@`?gi}pM+BkjEC){Qo&^3+24P2{Oy#>|i}cRZ*3ayg zdi8WSPuq$5vi6VG;;xafL_hi8lP1b-2&rI13U(9mdMGtAbGG9WI2y`7svR2$uIX&G zc%Pul%_ARnU*Pe`by@t#P{wl3EX^|dGxvhp-ecN{7^z?=7_QrVI}{hU+{@RYNH{yW z@b^W!Ln-9!82Ix0cwN!%*#FaUrH7Ynljo0pzuKV$RdM!)>VsAORsV4n^wR(4-;SC8 zhZ9el!^T_D!EHESo$z{kU3Ct~o*;=Lrj`H~3>hTu^}7aW^B5el2!~S9A^&MYBep`Ykxf z;^G+oTQ@W2mwSs;h|rCso$gCXM0@?3Y)V21dF$70Yiph>)b01qCGvaR{x4>a4H%MoJ zq=g^UqgO}HP5Ln+C}9-eMo`Jg<&gF&pD~tuXXcR=omSsQ!9G)$nPFd=4Q$1!k^fd| z9u!vatELskW}IjxUjIZAye7~NcNq`M7miuV4<6{NV%xU-VF?I{SQ0|K>O-2a%yty4 zccJf1Xas;n$fuT&rVqVi@c4`$(4_nVpQl{u*pZoX{km`;R{#Wt#A@uOjcDsvx zsjHoS*D+ASPcFR+Pqy*S2p18iA(XCyx2{&fo5i=9 zf6&66=RWbxt=$hD{C+<)BvQ_1%<=Aw1Q50p2BX%w6%O?3i(6TJ!kAgY%v+=?=GE{^;JnA~+}nu4rmlbA zcqy$r9r702L-fwUW{c#2*BBo$yRs)M(a@X*n|?^}TuUm}yw|&)wNxxmoNB_n60XOy7ZiEYY)8n2jTXHX5|P+n zYoAmOUM~u-Y@4M0gLe2?m#rRN*+HiC2htDI)BzG#dr$@2SRw=r6C3OM$P=3Qj=H+$ zWd^0^U#6PwwUnDwiGde6B_t%R$$78bPiqK*m*2YM$?<-Z57{{Ppma#gxm(Mj1y~i>=!V6u84gzS&x2#j zrYQE55vB-lc>_Dh&_f(M8o-eus4or4z@@D4SV2KrsDS_ip$kZtuA(9k zf`k(3fra3`FqGC!l$kdI6?ogv8De-F<>TRv@^HO#A;8%W>FVtz zB_SOb)c406~<*BS|du(C7%?SZ7>&OsomrEtyb z=J#>)V?ht>{F`_FuDK-tb{|1aJW|gVw~yDt=h?k0Vca-rax(JBnYYj9&e*a2iM*Io zIa>1kd5&fI!&eTYmxe3*Na`Y_8=a;N&lX%)orE?R40#u!1Zj9e0Hy=mk{R2sL|j## z*vRy5e-gSD($bDY?gi_CKn_*j$miO={^J^T4aR7sUei5jUbyg zbRO%aV@&X<$J&#O{j-LtJvBrE4x2H@*ZPfMqsWt$<;P%?3i(3#)%{ysihi?TlOt_N z3^8~M(M9l3N816iT-O5RQadP5i9E#zPlq;3I!|B>>dK|0qMX_SX~L9I_6&yIgjkUg zX~Hy8Il<;LtWIhA+m5bVytF#$04B@>(GJI8k0sDv;oSv~#aHW*7B{zZ0Jqqfv_5!J ziWNH~gII0A&dXNO2_DbU9yzKPzq2E1hX|`_L(T}<9>QRnbq#hqP|uzteaH+E5P_Xv z-dRE4?)+;iMaN<-utSzo^knQa#SFTJ)QA8zSW58&fkCZvPr-^`t-98_RSu0#p`jUH zo=T<dW>{c`<6SH(4KK%g0Qru5J(SQ!eOJY zRB;Jrh*Dd(Wf^sjjB`@9Zio955KCjF%btr@J*Jg(vqUd)g9?yb9uCR#SLp;L} zlTf9|G9qjZk5`2^e3e|f4wqDzlZ<>$&tMfwLzv#-twu}Bhdvjgj}of z%}Wet)d58)k0A8{yiRX34KD@d5vH~w0&EH@y>&T-s0#2CLVMZaYkHCT3Z|sXa2LG> zd=xT5zrh3p-;9|kE5dy4phwl>kQ~K7bQ9A6Q zhBA7VVpr7!nbgSOomiKo*d-trPQq6(VRN{VN!*C&qU4_{)6RuBR0&dI21n1puVBXS zA_Sn#wj>H5DY2dh6LyIzAVTp%62~TSQHm5!Fe{9btUyW2Kq?Aut2wYCFJ<}?x8K9a zLPb9zo{{jh3$E4ZZQ}ql7XybkzIbHW0IY5pX4Pjnw5B&ai=)@0GkWwlo11(tPWBM% z+qYF?%i#(ggwH(R8;D8O`lP!eblwzcLx(uOvZgE3s@r$9FsuH>ceC(Q4!kUo?{7F} zUF`QjzNoW9m7NftB6OSS?yk5u%FfLdQS&*8^QA;sO67KP)5&w}P%S|Vto77QUD8Zq zWzpQVs!5Dj%37*Ug=3g^d0BBt(S+|S*--0o-N+9NT6mu18nya)hVc6j{V!fPcOsf-OB9X)AfzG%c zk6^~HOY!D&<$SXM2qToW0SaDu>yb?JqS#q?3it43_+I&ZQ_tptcjik^#+tM~XY!J= zAhEt*hu8GUNgzRQ6QtWxAmKr&`B1!By(~8RLo9 zen7iZXk81P_-eskbh%z+>X3;@du$4=vXxQUnz0_E4%fkRGs(=v>UZD$3h-R)?AB@4 z&#)QDLo3HpP)S&=?%zs5NSCcoFe^cCm8ivZ>ldo^)RP%Ai?gq9j_W>llj6!wFE=$O}zq>_zDdX0h!q7m8iue4z}umvUbAR)FG7WjiUIqFM2t4 z6j_zau8~;#*)@~?Cb(@ue&R-;R7e4K`U}_f$`3Gd-)uCipz=H}q}i--d|s6kiuU{J zF1X#>x*8nh4d2Meo=F=LS(*`szk~+qlBA^+$%G|ns0PV~GAgEAy$|xR?FiH4Jn8aW z8qfUu96O*FY&q_f#p3>~=`cL7BmELhgIGVtsEC42>)HrQUb(MED&+muaGm54gjC(K z9(Vj=7OF!cZ_A}T=z!H3lg?lklB+GopT~&*vNrZi6Lx)u9q5?L?NOkN|IUetX9US$ zM5nu-{B_^?=D9Q@J>-t4Q>3^}8#-;C49dMWo=mg%KYAxj!29u_GG^vWI*O)7{u<FcN{p=F4yfPMFe3ml_pYl#5qz1TIH}^4$7O z2?*rNSwuhuULS{CB%o{`cM`(*U89f-b677{2xRuWz<-!#r}I)>QdLQa)f{ZI2SRS0 z9+5g^DmC(5vP){ra@PQpp6QrZzEm{}%iiH^EW`^7hFX$X1m}H;V@?RNu4o|9KBJ>{ z*Z#*zy!`&<8qtj6t-T$aAjckZ=R;M9U^Du=?XGcG+qv-li#p=0Y?aIs;2oGriW z)1A%ckM8T?E^l7!PKLLD_8n8(gi&k+yQQnH!B1d^s>d_k5mAET$@mW+KET?!kp?@` zrnSyVGx-N{? zdkqv@>>G4ozI@Jr@VnHYZclT&fT;Cng6LK}*R`q#a2MTREm9U#d?`vCLu-F2&BlE8 zVc5GvF~6nsNX>||$sD)FD7cVsgv@wU7B*CmBm}28SH?3RgW%cs=p_3ROOvEaqP80a z#ktqd?)o`jcm8o<_N!k$+m|eE+uz@xNX@^{^>cdK_4l`mNbOv#*OB9Uc3q%{YTqiI zqavfCWPGPIvDW$NPcBd5`WD6-Yn;2z8m38$^mV`IzlAYj&iCkRe?LB3BjS|Tg;Iin zM#OPvryFN4d}rQbJNJ}p_QY0M<-UI$E82%>x$(juF^Wb~2*OtaR;uRCrz3EZV2WLi z|J-2Sw4#s^uF$?QVCCk_$OI!GYi|3KWLUOXc~fOuOV-X7B@KqmM-XvEI2^ZOmWsWU z3$b5@Y}ZHGWcg59H(neb9&RAF@5wpjuB-QMkJ2(hDtLV|Vr6T&M@&x6sxe^RR9`;| zN?mANsnaWEw6^Ldwh)166as^}IWSs7*WM$oE2-t@2k6EGcR>n%X|A)iE_rNckv;x)A z!9h#-_@QVKv;5iWKBGP}W95N4_iZp{LD2Gy>*tr}8x|Vopl~iZul}p;+`0M^^_qS8 zhJ6P(>|W{cg_;-O{32r%eqAcHt2f1wtXNjnL+uo-s7*C z+ldq_`+7H4dC<9jb2E6CqE_XWzP=SLfCTPTQeNrgr()>8bmjzxOJswQc}|9*kV{gL1wU?``~L6dG0}spg!PU-dtIu zk+JehVzPw&@SM&)-k_f+J-@xVE@oBMpC;p89lYYE%vk?{!IK?A470X>yVL~C+cYnA zifwj#hvf=qJus~s_0x}NM+}zPm#FS+^aRgfU1;E**+{MDT*dgx9CHww>nJ{v&R{x>V%qqsHhlb4xc(OyVue z9ZH2W@2fM1-JoQZr+YPsz}znI3k&PGWQEp3T{me|Ah#CMoC7p!UybjN&nh*P)e z#tCI8oXKffk8iJlh6h|)jzw>2lvtGyHU%w1;nC62oGK6ATE4!Sy|GLw$;na2pcosJ zxdAIjizOEA1rlv&1GD<{n$w9@5i4TYh!^~K!zng{qVH_$~M;EpLX@G zcGl)X(=yRap4$@4kQuh=nh`i2)N!}FyF0X)_5JmKLcC_S;}J4w#sjAG^c5JBo7cu0 z9p9ad)=u#LdFYvXhmMVUcHGq8w@{H&FA7Ub#eaMQj5NGjPy1CJW8)XrGb-j0g7O z=W4olOOdTty%rEqTxVC8|KCp>f%MJ6{za;tkco?}ZF*;CXEmZbZJ)hDCFCCnen<7f zYoV=M!ka-B)4)n>2QXIb_W%DKT-D zL0=^QZRbP3tIhBqv~E}(cK3gOfTOUmP}jE33rNU(-^w;X!G5cjr85I$viru;bVs{e zu$i}^Ve}DJRtp=O;`x!fxpMS&$xKg{BwSQN!qU^z)9+&cNdfJ`%1ToJHr2erv;1c` zI2NrO;qVtihG}^EVyh!1BQO((1Zv<}zPb0k#y^Z>xnX5h(DPtMs<^Do5_+mPUWXTp zTdyiNf=ws>{K3mau-`*fYhp+MCUZo^#r~J)rBJk9oxuA~@BW?o1Oy};(UVy!sGmG* zJF%HeR9ZHusi_g+jQ)jYP|&EU7s9_b=gP@&;S9V-~#bB+%87K^N zu@~pKvq?S@(bnA3!fqsgeKDvfq}sJl$UbDghEqAXT053^tRy&Am2tm2O-3ImD2@s1 zW=62QHvd-o*y3QJNp7{r(6upCpJDJ~$V3THFxTN~*W!|rxk_dIwv8 zpYCja(NR%<7oSIfrBG#W#ic0*mgy4?9s}y_WaI3dmv5AjMn$}0Av>a*BO@bed6J(;d7iOoiK zS+CJT*S>uJZ-Go}l5FcmHB+X#o$x8VAH_^cL1^k>VJ(BNtp(sri-rO-{9<)nS6{mC z?q2d?(kE-KnZD2%qSOKgXIjsn3C77#`+ynRBStoMTpP+yZf0g-NWC=4zQk`y~{^W%{R^}1155tf@T!Vbf*`bmqN@6t8To2 z0{ag93)6Pqkk{kOnQQmjV|Y3mfasQ6lvu(sjMchUrc@{Z@_W8a5t;GqM!k| z8|A;47TU9JEZL){)^kJ}IYam<%zbB@VB5U)$(HpThIVj$@*A+Q zVp3r6XGcPUfX%}v%v=lva)C}r7YvHs?azY+ zBxdKWZk={)GEqUFQ%0}27?W?5-_~Pc?DTv zHo`cc#{ht!aHgRGrg-@0y{7<2UE9Ks1#kUrUjYznKIwB4ICF!*7iw|b?opw?9$zU7 z6rAI{=A;{&Qs+IPVqs-92RNDl6}PF@1#;}Lw9cZsejQE%-d;6Oc8NLpspkTi*fHI4 zZtmtHI`BppYwek?#zG5y;b&ny@OHFMsI0$&QkhOy3eX^@p|#eX?IX|B6@Y6{16IUa z&LO{>D1$(Tike1Qh0HmUn#RTI4_2bD=se9%i8QO05Y%**V59mPlh*t*5ndg++Jq_)#~Q z;HfyVL9DJmIs0-qiL15>f6BEsMtR1`dKNXhAe>_7_kxK;Lsc$au!6|QBimrOuPiEm z_G~X_?eqhGhdHc7+hcHR%%5z(`JF|z5E#{Cd@6SODG~$p@impuSq(lC*s~6kzC6VG zweb-DA?K8$?Ck3a!p4J4eW1tb;J$Dxd5Yz#IeD}mX@5u7 zg{kI!qGDn){=fRi&$MhHyw!XAuiPEFMy;pd6JZw~KK(D)fAz5d{i9%LFKn#|dq&^J z6QM6ScA0vRGV0jpc8b3=V&) z^=1*?6YI(ko`gWCI`85?5j=A6))-6OO&q>8eMlUmjxi$Ib?x5QEeF~5hm6|@kbsh; zB8l~!@D%;cCZrb*4-#wEaujjdDhoud8-gKhiKghjwVfp`*!*JWR# z^6a7mRHP!T70=$FK!ydTAic_vUS2>rcjV53w`TL2nv{S)pWgcNVkr(e+#FK3w6t_> z>@@d9UXzY%2*i@Mi@5?NEY9y(0tyAMNdyPks-Apq z`b%u-+S&xJBjBHej8VLS9K@9)g{DOrT}D`5cCEpRCxNN}4146uTt6D7tx&ASxIgk1E2ay5C}qgX@aiL@FEx^nW{60 z)l_VE*S#OR59kVL`#6b6iD76V@GK;8Ak~_g>t+}1P5`MA!vJEv5k)+?`X+!+KGk=n z%yJlzkSmV`Sh3dT4sR5M_% z@dM!nQill>Dk8zwo+N6Z<4_Hbh)6s)yzyYuBjz&@+CCtfDh0X?H%R)3+Rqbf7VtIQ zhIRr&utf5DjDf&SYSymXSU zR{0`o2?WvZ-_BBWkAfeL*Q8t!ZPy00cQ-^5$50Pmn4iM5%;G}E36X-OvQ>G+dVhqh z5vdhEoH!)(kJLHrrUC0kfy^<2OYwT}yIXCli8N=pghuynz3-JHn~&2~sq{;($#@__ zJ5W!5Vsq+{S=YXvl#Pql^5_7HP5YMcL6 za_|CBLkukk>zOERNm@q8RxZ~Q>l<-MWCju`CMtTca%guC+|ocs&r3~u2!@-k{*GRhmY!&$HLzL5S4n2i2!r*!qx(AiJdt=u4pUnvi4(;hQ;7%Rf z{q@R~bMOC=ng4H z1e7`iHCmRN58T@xsTr;<7qQNlRxQreIqUAG_s5s^{LYyf43){5Ssp3dd0curHQ-g? zA^FOe*l3J&=f7;VICUHIS#PrdDdB~fNP<#E2b2e7Ztja&`0f7Ob$b=$ngR?XzUQ{& z$yg({;`Z_=SITcZ@9Gr*Iof-VE-KA1rT!KB-k4jHSyfdpk!5m*z0q8zuh5DCnto`r z*B0gTg?(b)WVdG3sUHJEG+TlM`RA0GGu1-@S>n#BIlf(<#;X^yRbqHkaW)+GF`1CL^>Rq+h$<)syiw zaE;h*oJ*@=%-dMx@8?6`zg^;%HZ?Yw#C}|`EvE8uA;-hhn~!v_$8;X?lg3{uzNUKa zylGtSRMT^He)W^g33WMUb_)VYv^V%xMc_eHqT}&hP;nGdhPyEHRrmYetf^AZVe+}Y z@$l4QE}QCt7OjC}SLZ$N^=5{jwIGMgfp6Z8*;*l7cicSZHqnm!34HgfBQ8vb>6+TG zS@?QsK4S>`H(!#=$!U6iBCX5HXb)>RgrHvl}kQrBL8?15SY9FZd?qiXPd!R%hI za&_hL*;@6SHvRM<7!FzN8Y$cs)4U=+3}UI{@Y>&=Ut4Q~Cw29kO08BnW}Y^G73g7A zIf6XJuX|G~h!K3pF~?x)zL)v4`pKUyml9qxMdOhC-k9IWNIa`xvlGI7E7UOw)rhx) z>u+yd%=9PPC&!=V6(ShqZI~p@=*Zl@w@CCQ7KsezH_W{KmHwl6S#_nux#U;c-C}ny zi{{qWLB~P4_L`c8ingH8!}^_DL0V15F`Y}f9Xeim%efsULe2-kKq1bDcQO0u*?*Zh zd|9UbdY4+=flwDjXU}0VRbgCm-P?~gBTa00k+RKX%^RfRhWwa4k!$OQQL8c^&BxA} zIa?U|H8-|nb{-l0B;uiW|i+$mGl3-A6@62wNuz#8yekwM7#4yPVuEq3oYNWa1P<*pyEpl zZ_A}sJGtDzP!JlZ%RThMVk4JxM2S&uqjBR|6r7nSQtA8yb9#1rOZeIOqFC3!(5iqz zS$7@Js>})VQl1(^x5)V&c|#+4eB_kfu{pM<_q!r}K zangimeom&iYr=W2Gwn}Y9vIEZ?w4-7fM{g!WiEHmzJ-S51x%q*ZG=xlG zn$v&*rvt8}*Lj1}KDqoVqkV+fms9V^W`{qM2QCG9&q*s@e<(V~;o=+)7uRe)gJ$YeXKwWQ1 z;N@QCLJpn-G;d4By52M?3qLdcYu(q`KG`+0CiqbV-vfNi-k>1cXkIGf^p`@CQnYCI zTCy|aT1EL~W5J-_J#W>)0N?*GgIDD*QQYo7C=hu{MbJaeD*y&N$7+pF6g+ z+9EVx>^}I*Fr=oc*4nV5cAIz%D_wm_hV}&>ezC*nqhs=n&Y6ox!NSzuv4MrD{nY-z zDTi145su<}EKf0?AQflSbPrpQUxPn9gX~@8z3Fe7hCMI5*3E^i}Zw|r=(muZp2sok|Feu}m z(mHBQe(i4|Gi*=Jxt~5)nTct74hAZ2x=_sj%;C>f{1u()XE09F?~<&!9ovFIFWH!j zW$N_1+noe+fTXV1&2^41Zi-($?CEJV5MANKRtc~;gv+MMIW%fj`eSuni`GbSI&G;!6Et{sg&Af%6YhN3~7c;`yJ!M8%#LUy{2hwF~_yX5*KST6UaZTSTtKgLg|r zn9OIJZ3r}9`B)emW*zU*T3_N&GEqD@9)7kaKuQmK>KXvG+XmKQ=1ibG^YcD^DOXhN zkIHy}k)NY$n7IjWHdwU$Wk6vFiAVre&E&d~=H0H4z!;>FjG-@DQ@35s$?>kiK=jpl z_m{4Y8U~7UX)D7-1q->4<|C&ULAe0ulX6=Z9%k+=a$DEBrM2gT_7UVoB|YG>vRwf6 zv4_{+6EOTAHCL3-y2bb1)7{diIw1Il_pF*t{)<06L+FkpCX^)4=l-w`H}x<0oYCic zV2vG7#Zc8L$&tD!0B9X^4F3h0=@$0DT?e!9b7qEq=gkc7+NG~bL)XYMYf65an8@vi__rl&P-jOI2hEM%H%rJ5qF)Xd zyw(9*w)BF2?2jEtRZ^;Td!CX)D77j+an%Ht!+cn10!s z#Sxpa!cNih-;a1psoyL`RDV6=3u0VT70%hKdZ?r4aG=fF<9H=B`cdmdi9pWd(KkTh zI&MAt17P22AG3e#xVn5l<7}EQi*J~Fx|w|y$K(FGj{{#x#resWGS$_^{DZ}xlizYC z%$1J4Zm-Fe%|D2Cyh~7QZIt_l3gmfV#mYem$^x{CTxzN#CqnDkopVH-w~&6hol)01 znX{Z_7G=(}9k1zuVZ8nh%F28i>Hi)9eeqr3WK4hE{n&5)fL0V$FSEYW`elm%_&$#v z8~;0#ns$ffxWPq!{qPI(x8c&~pPrt1YB9?v_T@$46}i_RaLq$kHb1Fj6mrNkb%Zw=bx3zrtnaF3$BRD=w?MNe4|D0WCPq*^PIp4sZ~pT5aDMpB z5~f-AUQH1n4}PLrjL)tgu&w=QK}msgkC;v57>026$N71s&y5A@v<+TepS`$WOrvI%xrnQ&RqibdUHoci1O*fB2j73|2(H*a3HB-TDf>8su?Zul`fFPxwru*@P)(84C;b-*>g~`K^?^iSdfg#@kCX0$60*-KKLThbpz0>BAGazV9qzFXSlF>ysUWzgFkNfdH*dM#D_kCgIo1TFayU;4cVX=~zxF zDi=3udMq!=X_?w_dk^IN?$}>rO&vd_dv*MQo_r3(?&@Gm<{@>3gJN{P2|!ixkP(fP zmKHC0e&JJk;ruVY3Y>iSv*34+@l$~pukdXZaZ5RjFA18;u~ons?YSN2%q7bdH8tDFm!Ah*Vs)6*WJv(zre`qZN5QzdFKxU z_8hlIhYK^M_49CB{O8m)S3PUvrtr5FQ9q7}m%2sPs1{c>wtO1#az&#G@>VXWC;I3H z_1=hx7w9k%>0SNq)Ot%$(3~oIQ=}udSYGnOT_yRZ?%k3DDReD}S#_8nQG@d$HVKKyp$DQ{0RvnIpn zuydriQ>oG`Y&odFrUw36$3uN&*o`B8AN~!on9#M}MWicwvBzC_v$~LES)L3!Dq@r^ z6@DBodTmf#6mO(ry}7-ZSCEO(etB=_B{x-kdFePKq|BGJ$IyAWE~6t_$7?2H<2CPIF45KHN0yeV|aBy z`g60hnSr8v`pPCzVdth@Da(C1U+=w`siwlE9RBI2ZIR*KA!m^CK*4l-6P>*x=2!ii za?VBI8*G9Z8>?z}2SlmSa>KF4nU{G&tIe%NqWL7}zwwJ(Pi2skFqoJ}Iur=L;L6jJ z0=iPjvJ}ZUo$skbn($ctG$GdnWZC8EZw?f@AY)2Th9bGtrl#0&1UOu5r-8Yut`0bQ z-Bcr9VlO6U`Z#wSO3Ko%c4#cQ?b@kpAJS1JMez>zvz5QxY_=JGlfAwE z@datL9@I3({Z>7wpE#Q1CYQQEDd4U0gL_`9A7bW5^6Dm5lV2E9=9|Zq4o_H|Gj)_y z{__yEP*2L*8D)e%d5SF!Aa-}76u&A0@$Do;LY0N6py%`n!g4JAVH@G!;=8QnL0j)* z<_SPmD{b7=NWXiolTNKAS9~N*kh#6hUJn!rj<-mfs3bRdc$(>t&Rgjqe+B)Otx*uB z;AJUI#_8ltS>c`3x&cX=*vD zNAzF$srE?M?VR6y4N0ywXf`xndq4MkP`G_YxGYM&4MztOx8F_FIglQJY$gcut4Cph zDC3nYkC}<53>Y~Sg87zm$U5y#sas4|#pq$PpGh=u`*0`^ewzG3c>Q#h6d;EFijBZ;5-`3g+ z1$Pd;(@3j`g#-4`(kH;Q5l=z#I#sT0(E%QULuTm@?I^<=&4kYLOyTDKO6-;sA6~c@ zS>py=zJK%9Mi@gD&| z_kUNTx$Aenyfn!@m>(J;YA>L@d2)}=8-NYxLBk|o7}^Y7l&QebEZ}0$F=5vxydj2& zB+gTdb`=rg#7@EeO8Wu)Pt2)@(ly@Xy!{tzy6t0*b{vk7F1~DBz$;_mV!)G~5Oc10 zRQK%;XXx4(DK8~>4l#Zxs*31#LRvd^b(O^gGM=OU?j-0Vn%y}t_gkL`WxF^FL$ux2iLn>ZHJDdqIPTX?;gP@wDMA!;A#@9 zqQkhQ06b0l^$ph8^JP*oJlXZ^ooA?Xw)T6k=xEj6-Or@wE8E>BDYXgD60d$$(Ym?b zPM+YIl`%J0Pcz_w7Vt^gu@)RByPAob<2aOkwDzRtUK}~;v!8VjOT#~9W9~E%)MwuJ zFG#lZB3D`k-1F8j=zT-|*rDP7x&Ne%y#L$J$>8JwcJ|;d1OIKp&FWg1a;vMi-*^l; za8Mt^%)Eh=&(pI;JlW^(>YX`qfL40R`uRhFn}_7TiZkIA@@l84qRI&5m9llj>gMXB zL;7c!k#WXV|F>s(rPK?!VFnwp?e!xz+-(1Os(0_c*-qq4moI$HoeP)+8KmMeSXt9O z-9@EJCSl704S0)RXs{mNF1yiCk*thIGKfsz^yz*hDdH7AP z5fP3c#h=jvFDldI-R@U>AWX)~?yC7CFA$Z0&l6)qGXrb)nCuL2ZC?+Im~-L zhhvT)KPZIRVL5_dijfI_ojENN(%V+wXg?C&xwkTIGk^Qjq(y51G|LSSlgFvLozrMj9 zapu>)s?T~DPFtIma!@Gr)@Y_*@jz}A-0(BaKC3fgA)lBn;!H{x+g}C8M4oz4Gzi>m$3joQ~}l zPebfTnZ!oHr1iNxOzp9Ixx4pfU6?hmeN#vb!wXUOg|)_r=mAbifsd}FwhuS2L<%j4 zGAa+xN}*LP97!9xgU*bxPz+q)eshosHV~gnhvbi+h=MB5mQP3)jli`tkbyADi~?oG z(%k&0?hocO5P48Jiiq&U7%h{HQ>yu&{8N&=FrWGaVEvG{V0Vf%fl#a4U_{Epcu7?~ z#|y!uq{z%n35ZT(cdMBy!`<1ieZy?Kza3FerzA}_A9=VfZ_SN3Ihbo)S|W8UtSo zKms@|SNRgTkUPe`x&Bag_sxfUJ_?93Z$kbrAA#$^A+cWj4vI*Ph)_X`d@gGnbiNZM zPo&4K2!*;_!>Lg(}S=Pwht=KBs4>mv>1_BLz0d-U#Vl?AcB9vpm=%{K0fVi>4y zN;l8;&~pFlm-yrV>XL)}m!jF@*)jvU3#|W}Y5sjqc_+fZm)rhRU)@)4!sQ-j94jtUb&OHj6t(Pi)%@-YxujRrzSj*Y7o%~=2kW#h9SmG_iJS}iJ`{QXvNtAdWWd|NI)IPoXy~t$uHq1pEL!Nf z_m9GUDETuG{X0;hP?!#>nX%c78K3yHQLaFdU7s6)&c~VGMhH<+@Dnst3%&{}?oR}V zNamBO%}GO{^5`4q_iu|(MpdB$yuWIWp2aShQS73SWkVB$B-P@WiP`r%+T9*8_>&l3 z*vGE(r#DNCx92%*Q@SKkr$z* ziPE)ELQVsr=A5TP)BM*=@gRG$nS_1T?GfF?MK-039@+VN2t*9fjjl>wu3InZMGdn-$T@g)|VM{GNnXb z%2sT#Zqt58mA0jQB1g6RGL%ZkFsjnsHll0ST#cvS#;!V|c@MSrKAG+FXpGgv&i8pV zrK|>`H)BogE>XQ10hSXwc`w(fkM=LfMbdza)#^vAQJ^3?^&O3`RJn$hwt-^xW)ib3 zI{fpP^~hq$)}k%QLqL7qx(QmqZ(5pYiFfsAc#^Y>+68dnN0T5uo21N=&7o1tV zD8<#=xADY2oW6Vnj`k&bF61b+_Qr$`_pSNzDL>Sh?aBPZrTj&uyOv&<_*bR7A%qH{ zQDULW3%HOEJ1wtUV)f21_GRv0+Fjnehdx9LeH#g?2bvtPlb`&yet!0sl9X6H%?0il zNK~F%90$@$xX4(&2_I>Y4~@e6ij2JQYgR^o?Yx0r?avfNOW&@-XXz_sOHxi81dQKt zg~%n|C5bgRj>+H`thHYR;Y9j zhq$6?1z3CG#lMk~sO1{#5FiSJ1b2sk(+%b|jt0IQ%`a11DWX zhsNVo1AN0`@Db2$5-bpXrxi(r+XzuLlrto$ix{GGmESVLN5zaZLHA+2x^`%@s-RYo zp@CS+tl6@1B=#g4tQCQiY^_!dZ`x`29MCO0v;sxKhZr45G)$xkwr09-HEcxZ(_Hy{ zn1GPI>SFBqLoS#tG|h9(L}Z!yhs5}8EY+wv&dtR)e>>5@5&*{aUa)X+pH>q*mTSLM z#!?3{77rF3S8X}oJS4!usbJ~qF?ILUdf_x;y`j9(2m z_p~yh?elauPyDx?=(0^SYZM=kW@wtlnyCtvp1Py4Ys(;qF8}|vz2<*$m3H_p{S@Y&@ zrY;P&M+OFCve~~6d{dOEF$jLix~Uks={cd?Jny?&!8Gr?IomtA*`ptDd04q(&`yrx z!Vy zxdfVsp{I4C1_Z;nkY>VTJw?5Tm80WyKbDk8^e5rFt+8`+kre5i1QrE$YkaYN@Aeh!{KZ{Iwy%zP?K!`F!S#DTUVFqPUt!|8+PWz=Ctj>3Rn@5EN>&)8 zEw73pmav<{(z1pWR=#8&^hbO=-v!*?c3@b!*X!^ zKDrmC6nG5CL-g5eXmJv0T1?#cD`^sLUKN>mM7-E~qot^yRIz@r zI-!2uZuWNoe-ml?n0TcM^5gG0|M0EZGR4oNGl|_=;-(K#sffz1!scn@)*r{M4c}hO zFb^V9c7knv27yI7lQ&W^1)3CPY{bG~mJ&r4>*!4Gl%GIG(U}pL4U8fm&3&RTom`GW zNF(GLND;rRgaDfrAe9S_6Xf%|LCMB`=bOPUi>%QGM9`u5MR@-unkn`g9G!!2dEK3z z+_RaAkH$K_qI+Etjiv|UpW*A^?1HpIhGC8sVY*+3JG)tS z8D+9&IJTiRCSsw<@mo2jtUY2k%()dZyL&b(p?D|R2`RY=lhM8VQ)eX}jSS*2&E)bd zK1sDzk%_*$6Meo5o4W$+O?vaOvu@=2WXw?w6JA<6%Huiys7A$iS?W(*uK?`=_F9t1 zEdNBG0=fJdrU0xOZ1XLqpkB62lM*?$SB!bsYNBs088d?oUDnYvqwGP9ZB7KdO|okk z+j}lVcA^J|5yWBK`%5-nU(M$;si&P$`YkD* z8?DjfqsQ7CgzlY_oiOWR_;@Rb@~efa=SUTgeu%;!Mmw}qtx)Okej%sVx1tCA4GXUs zEK>#_T1cAn7G9{=74PMv-6EH-Rel_I8eJOrldt$}oZI`YPE{D;B%C-%vZXLoI$RuI z>W7odeFDB}d1v*=SE^B-Ci^p_)f3041Y^ns-$v)0kgkZxPlVxRbXiSx;Rp{&Y{KS2q(ir*SDTL{jQL9{1h z>K8VjI4YDlMZHSx`#nLqIMuJif*5k>iHHkTT~*IJ-~*#d(jEoqM1A>o!=~jDCSf6L2DJmaxi=+;5bZ8 zoOIv#MTC=j=9PT@=civvx@p zQ9&W4p*#wz%EdQFak+8Qsr8YhydSB3bid^BxnFr|NbM(V;^%m27V_+aJZRS*MiTY` zilGxge&M9?eP(ueE$17FELr@)f6;v5b0~pK6)ToSNi`qUpBz1Gj37*zjp$(oNcII= z;-RZC1dfERab6UINxUhV`qc6TrXXwJ9EOiLiu0{(-?YM#mo8jAoX~CNt#Ef>VWPv! zjN;jxS4+~0lU76&UHEnq8zEJUAzkLD$z$)zO$_{c3+(@h00g;*ggn3b`ZTno2&R<5 zQB6j9P2AU{D7VV07dI4VaJ@sEm3MR_@CFOJo;Je6XNOFrH4-m5&4ws`Upwes!Kt=N z*c!zKxR5*5E6gZ<*nt>o`onaeE2nJaz-B!Q*m!aKhv z1&o}ZFbfY@cSU$FjBBolAmU{wkn!*Uatvm4=5UYF@t0`fPinT=>Q_25Ae*i=rX~+{xxi-%Pe0{4Wvu z&#za=dUH;y8}TvHCw*N%7c;~C9{kSTcKi449dowi7C)F|99w1lgH>)KPEGDhz&dh4 z>{0p^BcAQaHUzM=U9DRX{kpr2s6Zu+BN8tl_U_%=$nNsx_-;KoH29E< z;N83*vpB&fH}+rbyCN=+<8sA{>#<~PNj*tbej=yYzNBh^-8@;`g7OHFlb7e#6feSA z;sdSq-bJzErGx?|V&k#c%MVdj{w;?Sj8pJO5kATkPPqA~G%)X&e=Z$^<_Tm{IvO!8 zZbI3OIuplwPhlA6`<;Z0qd!mZLr^NQPk62%?{ySlncIP^#~zZO%bntPh37Al^d ztyJxwJ{!gciP?&{f1SMoR6tUK?f0zzsQ$?{7pEdj`t zl@($&iYNLG{IiAc(K9$Mhcek~*r2v+>ecH>ahUM`2#myeDJ`ZuDdLg#(U4FhMma3edmUbg6#U}^( zXucj9(8am=J0wxkE-q6$wcwmnl@7MVv0o0-+=@}Gh8w-@*3^@O!mZ*hSJPv(uNmuQ z-fp90Xz(GV``u#3$;r9xTJoCEmm>c2VSdQvue^~RWAPRR3F6kab-{-#ri+^Njg7Oj z^|CU1`u&#sdrHtT1nlrwY5#9?tK!p6PGiFUW$`jgAbnr3i!53q{gh}+M0d*3>zDpgfGKB z-{`{)6&00LMp;dM&_UM87Z*}mJ*yX!uMsCUmIn(@3*NO^Ss1GTGA@1Cc%h22}y;th&?5vn?IJYz$CSp7EIf%${W0Bsj zZ8y_XYEt2ros*MO@}QnYVYv^3#g`5EXjrWEP)l6L)QRAk)t0SwZQ}3G2P;M*>kldcEBQI%oI!*@23&IMb3xE3Wxw<+@;Z zd3OuUvVoTBj*X3(l-NX{5i%)hX_+5Sa+*xAPHBtur}H)^No#`@MBdFadMiKsQ90hi z-#gX+=>8+ClaR9S$0cp8x##!jQwynAbE=G_{U6!JH?kZ&SPCtDYkd(SOO~Iz3Na)b zxf>xXD+|d0j%d%+)N^z!NNanSshO1NKGn69ol-ehZK{2B{uvw%1Z`63k+1slY}?!B ztds3j}a-$Yw+qa;FsVT922 z^CNZ@nCH%qG}=+{h(sxeL^yh~BU^5R-fo5R^&=FwTr>6d_6Cw_$H`(!+-SNGPy3Oc zfLC%u&ra%2C@y^EO;il1KJnsNPHt|gZKr@{>NTRaVkM?U!EnggXlZH5hn5lVHd{WC z8BtnNLZ_MRKeB^Dzk-})@*s0#Om{<5b9nuHOxzV=Ba!ICbL-+M^~2}`K{wRlC$M-m zcp8Jj=#Vv6NO7AVuJ;*Fu%-hL5mZ#P0Jc0^l#J10HFt~l|NWHH?Z?*I;Ff<)%AsLg zyL8Qprr(&L1?_!6e}#K?3#HvUhT+fiB4Np^|H+dl9Sr%os&q(dO>shcXmmEPi(yC3 z!NkpL$-VHx?ty`V`*p!U(QGX^*^L9Ytw8Cg8@2txn>?U6Z||r9GmM5C7#N@dKY*BD zoV+lZrMQvZ)7!f=;5(NwUZ`ehYMM)-=#EWHOodAiv<_}E$~r#SNaT23EdW2;wH3{+ zQ~d}9)vLDQY?A8op0gdZ{gq2V9WA!i8JNmxR@SMuTb!L@jpvJ7ddOE7Z}&Ub9j^HK zQKpbbk(NZ0@-W#5-1mOGl8C$q4y=+2IG&{z&Xx=yn1Y`H5L zJ@!48xN6Mhwc|1FaZXN6Ep-<98%Rn@hTi0nn|@!XdoqC02^N84n{@#gW(P3Gw^SCw zlR4tD?JAunxBk0M{?O2CX{Qtj`5?Ud^knbqz;bn#I9Wz{W@aW-HGMU5>(9|-=g$W! zXqicF!!It_(touj%3@Hq3vDSlmxh0!#cExhzlj)V#f5PAs0}%Pq^8dO8HuFcQe4#` z0(_|$3O=WgL>4S8EFjI7Uq6g!`_Rad3-Hhu;JVz(XpH=$*`on}>ev)~N`OVulSFf~Nyb3Fl+!%>UOJ4<(Ujb@w43dyCVrgsiY^2K?*naw&xA3XC5Qv3L#P z@|(GL^Ct;2!}VcH6b+FK0+0Yw;m^;fYa0WIsjmEXpilkx2f^fcp#ACER9c}=;O=@o zeP~s0SOMeo4Gj1Ykd8sZo1C)P@|pB9HBI_F2 zqOrElv70Yi?NGLlv-8e&0;e%+Gn6zH_GKZH(V02sESziTfX|eW5VFb$GfrxoxV9{- znIxs@;NY-I4cIVjPL$MuA`qaa7z7rhWoYIS6d^Zx(T|?a+1ZtEsz*&!@Fm2FSO_Cl zn=CfdfCf!M;-zJ!765>x0h8<0_Fp&&F{edw>rn{u46scIrzHGV-TW3}QacLFD|M+= zkk4PAZ_EX585)J%3)=w+MuMcqD#@Dh?0nc6@7`h*`|pgCFP?3# zPbk^}cZ|hnXv9y(nL4)R806ByPIUSB_)G})32{QEnHKBAtUeRTp7bv#wQT@Ld}d0i z^e~I{w7RGmyhAU62F4fpFINuIIt?v4(<86tK&S(x+zI~92hKCu_4_4uayh_h_g;rG z$Z#QWb*x?)KjJQIUZL+f;B6hUK^yR2n>q6K3vqd%H`k8Z(ebO>I<-@}dOp0PdSSs8 z@D1Rey2a)~ygONT!Upn!ly*vT!`Hp@3z=HkSi#TQu7?>o*7F_Oq6)oa0r1s z8X@9G)7W+vKsJy+!r~!sC1_Z1dr1{UQk^}ec1wMj7TWq^i=oWl>*DrokgMdH_*uc~R+nn#< znr@vV-04WffZ1BrB6*5Xz-sYGXSv_gB8U1FggAMPoB?K73C~$Gb4;^jHX-%TmkXy@ zg4{ZEZlQtCQ1D0Iv)DmI%PfknNT1iTIeOj8X$^*N`4nC7<_%ZrEUq2QoeqMzV&x>o z4Vw0qVvfQ&T(5Of_1EU+*ip@hL^b&8OoeV^3$CD|!o*^g5>F3NT)z%tQ*#1h>*Y5# zzPZKS%ujX{>o>i%orh2M@>uXWeCo#Sig{Hu8OJ0vMG|l6Xz^!=Cwugu0gC!8HcLyQ zNN4?kN9=&i$=quwsHeg`7s9(1zgY}B83Owy5GA!h$|ixPz-Ri(_3A>78iLcspV{FgbYmLKQ8@*>}fS!*@UFu8u?i?;y|8Nhlb4g;XHeJ)_j zciTQKwpI-xNH~4^w0ZDeD=RA~wz#&Gt({FInnPjD=b(d2^N|5&shjkyrO_De$rRsN znlpL#(W`GXM2Py~;o*r_y^Ekz$x^R1ZK~A5hsFn7-)-puuXM+%c~u0mB^C;!ATwJ6 zG5#Ge$A$@S6#3V_SLP&p9G;nvT_D?>@@S&Z93`bpAz~k3Phf>T$wD(U6A(-Z%O;5f z-Ht-%8Wwg%-{R=5Y$zL?)x4Oldb>Ci+sFr+GIS(}%ha0E&lj1vg$=Y9E0azX;@Ql9|ZiGgzCd zY_>1Oi(zs22Q|ho@R|wPJ15Rfa4@eY*{9(j@(D$|#p1Wbisj)!@Z?wJ-vK2U?3cyc z+pK|)@1ugS{ugKh6K2WyCb;&%tncU8_0A7f@+0+v;<*r`Z$x$0a@GG;Lu6H6}tUQ|@{SmX>eONPJ(Id^5f9;h#*}<=`I)UBT_giYZ(&MX51y-^5ifp$ zjfgF|sT+jXBiX-5P_RQ4UoqK{#Kv=u^TyvvEPNYU6a#X(oOqa;K&;ynyfKzTtoR#Q zmP)Jg#*QN>f96M+%WWZ=Fvd{@nWCr!m9e062XUClwMuDqpFZz6b=!D}qQ!D@`3kvQ z9hjG~are*DhoJ{*L5Ae(6%-2Ve+gZRnQcUe_>0gaYBYoJ=MlZkL?vhpY#$8ds#?Bb z$JKqBNjd9&RE-J?$_9#Y6p@b=p1gW>M}yw*KxwLSR=BZrh@#@_((Ok@jn1Y)X%!gk zzjK)iEdRe&neEKXf4#K`kN_JY*+(bjOBGX_r|ps>w!#u*#m^;Vvu!{1%PAUwjemR; z{qRJeAnGn09h4yCM$W%d?1BaL5l?Z`zqz|Gpal)GhBG+ddW%6JGyt~Ep;WaBRczB8 z?`_T=+7ApGg*wT{E{J}Sun~h_#$gIk1cB|FtDHb~uM$qHuO{PjM-Q8>#Now#Tn4Tp z7UAgiKl8hdxVMLGgn(JTlF}AFhwmkqH}Vm+DR4w#Vz(UPAs_JpD#QcS5u^uY4QaUC z%YuUENJZOw_~8VlCjUcwupoJ?NqJWyH3c`2n;=-@)ppkK575eO{gH$8hkEOZ`Kj$2 zyI*YYZTShj_g2!2r+V8e348jK_ehF?;=kjHyOh|;leg53a_m#)e>^;$vX?@Ql=ph7n z$VdJ2x_I3F#W{$)QWQv)i-{*)q!}SJ7i~NzaFql<=m-TNEe7uF~G6T$LpMKHF zB!t#$B3QRMOGbgWgf0sl=0;6nSKlnYLX`;Z_w3 zhBteFtNz0~mWRhrkE`mR4SRRdv&HAW<4u(h&si|($pqf-EeFIS_k#&VVf$sC1cA*o zRMpTnbt#itLk-5*f><|Or_YDISX_ApzJ}YlAqHCfA8)>F*DKpVQq2}=YhL!nRxo7Gc%{X&-vDL1w(*0#oRl@h$CIp8&9o%>dUI zk-=z88`{`#0kgtt1OIhh?n^E60c_JI&OcpwxW{g~>YGGil&A;>KVlz;d$Wr}Z-0(M zWm2iTXBeTY)W*~=j4qbv`i$TE0|qyh}V*q6QN z6H-;0j})mcHLo;1;hU^@Suv4CUe$B|^#$EE+F{5L-bjN3#6!y#iwWA@9(E??K&1m2%}1~J z*;5@(IL!2zQS%PVCzaecOqZIq?+7;6?0H|T(?TrQH1#ZVvq?R906h)X!=6$&U$?jp zv(!GOi)FRqfKCnfo`da0x$_J~HN=hE*`uqqI-V0Fq#JunT&M#>jlt&OKJLolwn@Y6 zJ*;D@5*}XF4H-UxUQHh|Rs=ZDET(8dMLMo@!0+>J589j~7aw;>HWF(eTE|Gu+S2PH z`H98E>n-{Hnd4rKw?@v4sp?<5teqZG5B(bB6AKsqw%8Toee&(Nsux@skP?joq~62~ z8|mvcX-Je-Sr&p;B8Nh!C7*z4TU~d}m>j#LCFJ%mdQXGNjLnZVv?%XEj3nwc>!X(( zXWC!i_x9gE9K>T4MA{8;>->I@R{phHT+dji;Cra6B<2x1-XU?sA*aBhD>ISbVPSWa zrle+%es5kGp>t}bw6~+Rr)vnO_SMY>aeK`Fmza+cGGu@&UE=|Sg17fWG~Hf+WB01@ zWwtJS^xi~?qBl(=WZ6zhzLM;&sik?OW^vAjsHL7m@!hIQjU611G0kLrrBfU=97%783RX-!%5|pt;qqo5)Zu zNnH9CCUEBP@t1%$mnh)vz5Ogfw}BzE8JutbK(yg>vNHsfN;UI)I?qxIg70=pct3v5 z`VvkxExm7@j$Bm6#@+NSqrME*1h5*qmlbOKBH+u1n-+Z{4~hI}kAYt}As597B|wkd0CjigV__lkv-WC>i90b$Im%KJ60M!q)Kf28NnU%H!G(YJwfHs9nJ~5ihnLPx6GGqD8Xg% znYE@ZO>Y|k#MFLz2?Y4w;z8Sc@K5!0{pzCvjF#rSRHsxuae#O8PGWL+eh&I~NcSIQ zTMx;GQb%9q9BYK9EAQKm(Hx{xl)_ZqLJUzkP2k(&_*q2tFCm~6QQKwHr)1Kr)RQ{? zT6k^ZEi5J+zbiVptD{1?1J$xR+3cQ8P;ff~?#i6@IJKsX!uBG$uu?ew0BsrF^I;cH z@Sg{6;;aA=6YTK^MND`}nLO}zdfIQZ9YW{4C4HI_OZ=uhB{I8`h8+};mB6>H^Uxlv zT{(3rR7L;w6fyL{fQPNc%NIs~%<4(dF2|J{bYom`m-H>&>#1Z1L`ep}X}&|~ns!e2 zVh;MYeAg*zPySN&PfLrK_v*S@aD1AXBK>*BUT%Nba1b~9)95s#4vX3DTiPdp6rl1< zMeMl)cKSMl6aTo7v-#QzKrrPYeL;T^*E$>LW!vA&Nu4bj`Q~@dLuyvGknb%arGffq zA#F&X3(IoLH9fl(FB5m@c3SoTZ#{YlasP7KXWa7}+`WUGr$O}60JV*@wvaAM9+>+2 zxmuw@+T8WZT@m1Lm8-Hk@yxtSLNAW25oQXslMM&4QN5m85bLmKBBl?hP(u1nHSh?0 zUD_4^cbos}qpmM1Ote)&mwhY(x+AiB%goc3$K%TF+0T@2Hww2*3HVOg7rS6QDh^ z5E~~YS;F5D=55Z0;MNPNP3MwMTgUxQvC=9EdBGX+r|EOwd)M^)^*r~-RF!?>+TOeJ z`o`&`fG#qnRH$n(Q0ZV0$+yb!vOuAEKmmPMiy2L7*3zgPE5$@gIcHL$`}-UY0Eh86618Q~urNqEJMw zUOzuK@%sFN-l?!ZM9->QY!^}~Cs~ds0swj*_A^mhE{$;|v%Ll0rNT_ad4MBBz+wYFA{NgNsQ{`Qba zOL)M4dVKc4Ro$klcbw1R%NY(6AecWBH>y%czx?TXK7dal_vY_m!IC+DYJ)eKp8lV? zMRJ@(uM;B>U(fRsnEu8^u!f807bcWx0rLcg{*SiSL@4U@kZvrklzm%~>1A69;^T^O zh2GB6W*^MdtbV267(6=4{TDlS`kxaTjEnQWv0t!LZFg*aTbyyNDI=TS-(7*G^g2QFm0KR34|`<3 z?x-x(siV(t2jY)kxi&I*Y*j0hLe3A_EY+>!Uy%EU_wx9Lz`waW`8Lg>BngCU+3q#? z?BQmbpt$>f1mlRt=TOxfp~0GMchsWaUt(hrc<;~AllD?nA-0D9({~j_1g|eBE?3ryKs9{ha zb8&;JAn2l_d14D($(>6K3l@@n3f>zl;lKXpu^Qt;so1CF%{#d+}aLdR6)6^8^n*-6^dX492w<428Ar{mRLPRfRh| z_Z8RGuDMvZ_*@2RZ)5b~Yf3G=vrDn?;+f9hPtK3s^xCtq=}bn0a71d_e)>w)53}C9 znI-cO)^v>p2_K`|?G3MN++MI+zFKQ)gp%r+ zBZ`?&x(dkd;Ru`d=4 zy*+x5)jY2ws+yDT5xP^A2(n9iQWd7YZDfD5idkF7Bn~^c`mHNAfYSvO#ifbf;$>O4 zx?iBW+FN(fwQA|J+2N)zj*^%L0=$R5nkkoWRHo5Ho$Cl)lI%eaQr;dO+S_{E(>G46 zFtZNy8$bf`@RG9sAUor5BTxoRo172cPmD4dUmFj%kX4NHLT6l zvDfh3(I6&)VuxGcw6oS!R@P}ptGGL3Yd>@4;(?Ic87tpvA8K=5DH1j0WvM!5dGmgR z>gw7e=863E>4;Tuq;U+7D;&%=?3$zGp0n#r{2hEfoHM0RFY{#wX}(Uv#qu$$?J*?G zcc|w1G^Pk&jzx+W3j_=1kti2j~qhoAL1I5%7+7)2VNAgh>|>I3MCXLgV=eO zpK+eN`dC*PwvW~Xs5QQ1&-CWR z<$ZsVA?IP1t$xsT-&pZ(X5O9d6z1ej7R9vt8Vc3RQNv~iT4xJH{O@4}F1(t2x9~uv z?&=xVvzK??Zivbh8ETAJy$hwXM)+UZf=vb|Z6Exg6%jl1{xESB{}S1GIpY5!do22@ z-@mfNMyJsa6pz=K@Q|+s%6&)5E{>kiqSkVC#6iSl)S)FYw!0#bJGk)+bW#Dgts^7? zs@=vDC~Jcv`Nq7U&#R16iDlx|R_nw3J z3Dlq5=c;%edil-0Gfssev=#W0z0z2n*BNEHS5s&#k6(h*BlrZqy(~M?z#FON+0VBz zABp_xG8RiACsS4?G-CJ>WdoBAyO}TTF!1d6IHASQ;iI^7m~pkpYXaf_@Dk^P>4RHB z>@Lsf%}(kM8`a~@`SX#<-HDG6iB6bh+SML2_|G~Cqc_+UdMjK7T^_dRXtJC}#iRi3 zrFfOMe5*Bz@LAR{fhN}~Pv2RXy{JQ?+n^sM_%Ow@M$o{(o4c_idqB^K?VPwdx9FQ4 z_25c+6^oGWDpGb*8 zwZu7AY9`9)toBWS(mkNpTKF%$1Vk2&XJgirV(Nsj*vMIa-3?lIWVV zh7KU$bL0%*kK*Qs5|?yoZd#ns0I$sj?KuBG%Czw$Vk0Hfv_!39gF)&zNN3uS*m?WV zunfV%S6zA0DUWpJrbTIqc6iQprPZ&u@XQ>)dq7LYUan%46#@B%b!Ra@@0~uPu|?OW zSZoPwY|H_f_|_Q+R~yMqoClTZ(c_>}eA|#^8age2k5ZzT@@i)xz@eZZ%1ER}yt(Sf z$F)0crm*P`wy_-)p4fN|#kKAMj4Mp})Xr12F*wW!FK0B{xr`7_2H}A0G1v~rU@b*f zzTS1T*Ho^U!&X5rvk2`WmLN9~!B}pNax28Y1}{o9C1W(i@4~@C z0^fq2f#5Ez%&fTKp#1BQ-P;Ydi*^WW_a4tmd{Qz-9PZaR2-PVA3k>wVnxqFw_UuZW zAP4%-1Ze*A@E8!v{$U{!U4p(72HC=~%P0BO+AcCN?*dsr=8#;FV@&Ah7U__?R6GW5 z!_HDZ->1E=+b?tMBK@a~j2S=8cA`%PVW_cc<$1W-J|#g&x_AuKM$eV(0>L`$kl5+d zd(Q7awJYLjoeGv?naUaK_Q><_e=dk#zXT$0SnV-=9d6=MTt`3s(Cd23vBw@D!KuNB{O3OUbn`m|Wv z#a&N#6z{#XcnbcB68BH=07z(r2kvG9SvTnVmx)SHiDUAz#Odwa(Dv>8v>UEkK5H|# z4R`&kC~xe*5}1NzcC1>7nt6LZ4zOeUlnB;9RadWStUuw*1+uIV30VIKLSR3Xivb@c z5X~L?Yg2)<2Ks8I1hvxAgn~W4j_>Hx8{ZJlSs_~eWA2EZ<+dttoDK{8tA=h)3znBo z@%*ff`umR9FQj9EgbNQ7bMW6c!<1UQuq?ZFTJvD7#g?^0W|@La72BsQutQ^&AbkrF zhXEXrhvWA70vx^?V)Xyj+Q5|K|FLj|bJAqrL;#q@hW+u0+)h4)TZ5qp)-@9g;A;C>m= zFQCxC^xf}laMb471tQIJ0aubdZQZgD)=xj*tkk?yTki1fhJlorlH&H+CV2lO&ThWfo}K;~jDYR2076D-X6C{w zZq~Xuzl(AUO#p8nSU20>%{;hmEJ`7q!VW*UBtet*iF+b@&NGKR$Lk_4sI3|zB3~!C zceawo6S`f+O{+ok(WkuQfM)HTc$^JAzwC-BbL(EnDpV1X@-4cE8LX;DXX}41uXXTj z8;}dM|FcYupN5vPS}}0(+^AQ)XkY$+=Vu=mIv^vu=Pz1p#N)fMs)^mI2x)bwJiD3x z(3H=76o*O3g_09WT&K^dKWsSWd{1pB*}YgPOJDhG5FW!oK52g|wZFitT!(c2%4Gn^ z#bf$6vi8`&+D{yf(eEl~21s(@-!YJM)BZ}AD2>LRI&#wa-q*jTLq|#oXr|n*eas#5 zS5>8dkO8E83y}8eE#;S z?{Ve5%RIp>vnurX1LX3e+pLcVxPL1BeBJE|isYG7u#c=_`pzN`-u*;=x$}v*|2*!$ zEM`Bk@y|R6d(;qK*vBFcs>qFSh7K^ym zsSKh*sv)B)xR&^u_Y&1YHi2cH!LX`* zBgpmV0e&%bi~jY0nwNP*kjC^hX6Ah_7dzIHbhct~^f7zH(LYm1)mCq^PSntFrc;GZ z*b)QXgoFfqJ6xfweFaN?RnjV3)-GG7LAimjUK)C2`Qr9q7`goJgjrZkf?&<^`Q_nH z)^BE20@mipmLK3{37vPnS7xS-F7q4s?R8*w|mo&k9 z-F>eW83xa(fHJGN>7}`ps^+a!(b@W^t+4(uh0+n<TdHR1}B8a(a#|)oXMq4Q>c$r)0MfhK3Px1LWg6|zw>}M z4rL}XHRNtnR8Ssj+7rCKhg*q1+SlfZ&xNi2AV+#=4zy^;`i zknb)io8UcY^$U4BU`rE=jCcFKiHn?WYgvBa1g0ZeLN@}cS-H{oW>v&1bq1nh3q2PJ zk3@DEKMUNwyMgqbWdFJ*z+z>2_#3v%S%l-!zDeZtZZPAeMM$00*uDY- z5RR5^Y*p4 zLOrzg!_qrOg~&(KnMrs-)TQ{LsejT2$A!Gj&vdr0R2418(tLF&TZ@Bh1_81nGd+D_ z%x!jobM=B_8yc2325PSG&nZ^3dLJ%_3=D~`nR{HtdU9cWL~V8}q9zr5RaHc{B8$B` z1OX9j&pGAo*5Lp5=8+9e!C~bN{~M`(QBG zevH;dBN%MA5)8J(fpstVrZi7y7<`~SHLiFXyJ00S49zwPFE+wq2=_bm^c zqnj&IN=`~vLeRm}(;cTQE$#B30a9)r_R_tboKFFff84b!a4;C#Vd!rMEH#}Q21A!% zE?zLXn?5t>8*tUDZtK^Iy$CWs&@q12g|>6gwAv}j(#Pc^oImr?0|$=w9uar1KIK<3 za=)=I`|%6b6|s{~U)0%LxUl-nhSZaEf_#m{rET@{o)iOL-n%lfzCNB#(51ok`rz?M zUsZva1tnbfs;(a&MP>LyI&LSJ5)8&#dO4qM`wFIHw3~1HO7JHukN|j{A35m0eG$?q zJhFWOyQkT>WBY1nOvtY7i{1P?Shg=%&+g>dzBq9Ae+r@4o!IW!a!-N4MGg$9NO0irS0$bTZaiUBQ$Ip5Z z2&&FlpEQf2t)8v2_-L+_UMAMe5v$TRJ%v3s>ov1Nx!piaYnwiWTz_I~o=7N?DO20p z$kItgFt%2UF4sF?b=q!gmb523e7lZSOzSOao94ori84ynJ3Y$@s*Ke8PY#v z-3Rjl?}}g4Ix7>m_>{G3^4AK=F{BzRU6LffWIFuC|lp7-t7i;4R5fh1y} zbnCieVnYy$QFk0s7w5?b3%LVnTga<#NPPWRdjDv;b0U{uz-#lBs9+qmLW!Ok+j)wS zOs%e?R%gry-9yVV2I}y$p418zdJw{~jJT50dlNI4w1}c#&B3{r5a%#!4z!AzbexY0 zT{#`sMy>A2z=>zzim26r_;73v`m0hO zs)vzoHJ4s6MITtv&UdFW-*2T$W7eXGoT3>E{`3Lk&4y-kc!m=exn4aijR@2;DyR*9 zQldn!Mb$856*JH8een$s4s@Wh|i2LF{u{jw0eEt@iXsdFn)sr&EBrG zWqtb9`H&>H7Uz40Vy91%Xq2&LH9S6;XYSXNYJwi#Gr884-*#>1wh;s+Tl_ADT%Q*R?#u z?B)rxBO`M6%r|}d`mMpBfH+26`Q$@I`1t-%{nD(+3}nl|t>VuKmGo-|(-pN_qTPPm zIVLPBi>{{baQ2|icvA!WP>OmsI>`bly&ZMvm&2Cdj?oAD;Ta+&iA@M*=WA-0^hugBwxTTxXOw7G8;+NcCc{29u03NcXhg@0|d z`NquM6DWMNk-)ew3?^d(*>jo70bxe>@AFAmvm02tz#FCrhTKg#iS@o$`wF=^l3tLY znEAnnA~7s5u=v7e+-EUKv;=V>ilCRgC|wsl7bhp`=>LSMi}a82MMegg8WlFA3FM0) zYZ@uo-_HeNxy(G5>thI#$g({_PmM%NTD3Q7hvd&mITjPFr?(CKD|3h%Xv49I>)nWr{6nh;O!S63rC-WW{rs zTEwRu{P(opunqqJJ=!JufHRYMb_a~x?T-bhmv&o@6r~i}(AehpuAjXs-7+O+h;V!Q z8JLWGrd{&K^;_$vzW3ggAoNa**i>m*!ri9BhFjM|&-N-J0=u%RC$chd75L&L&n#lb zyrt*#=f=JHj^RYEw!#ZT?LW$>)h>Ypb`inW8MPL=nF&358uLN*0t#+>Q-MA$&F?+K zd{Jx0Q-cW9QGJlIm7sWjDhMO`iPv*ckXo$>4>Yn-%v9bA3>IbtZ6z4_T0b5ul1lv+ z6@JL4f+*oTp0{B{Go@CWZ}`u}E4H>2ZMJ`#nMB!u=wv)|X*vnGYFa44T7V` zt#g^sYk-(>rv}P*Rlr~&_d4$X$0=*3{#susmMu$en?8!H`7n%rLorM3H4C;*n6%t> z;oMT5h8X0g)+%aK&if#yU2Cn7$f?~omtNCGag8;ZNUu4USg{=?$Xs=J6NgQI{$@Dx z_mgnlK@IwfOJSGN1?nKWRVH$KW_n=9^B4L*9#4Hk?U#{$BEo@4N zJ}{15t|f+1rj7AKc+U%BPoVk0t|=XKC-Tq-E@4EMUo}|LdUI^I7X=gk69b(WEU&6^ zZjL_TP!uY7z|zuE?#|f7xBJ<}kzd}2A9mzP*!w3W+r4*m@1>pX zrhb2jhFo~P)NLj2Hgs0<>g&tjzJ2ri^??h4F~52z)FyDL>$-1DY3UhLQ`7x-sfzW# zqJ)N5o}-zh;_C0I{OdvU@mViwYp;U4A}-}vzPxs?rM1=T-F`*()y+;+v9WP} zYa@3P_jXw5&f1RNs^t&fxKp=C(~0OuX4dVcxET*JFzUwX#cd(m^xrl+Sb4438PsPph_ z^r_f<{sUi*XQib^A3l5lOz_09u^W163VQf*Pli#ERh2$IAuX+7s-(e2G{X}=v{dZl z*p@19N%katrx0?Q`TcciZ;DP2tq-j@ElqZ@)X~?6w}LV}X_!<+x6IkP6&nm~zv95t z@87YB$;ngMPo(g0<``GQ=TD+ph4b?sf!~o?hW7T);U%F>1JyXM?*#kFUi+*Qi}uXr zs)izjPLjju+fXtiFAa`4di1FB?CWvQ4@b=%HaAwuKeC@J($QNM&$EKa(Wvj-MHXe3 z@SY28ic@1xq`NKbGji>sQJ2u0zhXFjhsR^kHs-d06~`nki8K9GQ~3qOw6PCQz+TqA z_w^a{O7@=V%e~c_!y7nVyt*@tEfw&Sda*w4vi0KDO9hy;oL4jAlOVw#{aUEWT z+n*zjikCZn5drr#(8}7+73}9#IK{`|{2}6Keqmv!p5h?UJ}b~n+`O32lPgs;^RAjz zm1|e3ymR^WcYBL$8*B_zmlEKNr5@WJd-S@6%fM^HlDg&8%?0$9ar@bYNFdp0{z0sQ z>%fcQt<4p`%~kqR$<|s)Uxjl|$jV@?Z<$o}#3ANVNwBG-BgwUH$qbq&ucB*byumqA z6tCiBpL0nUm|?k7mspWy#bj)jU2Br$+CtV=;amV+#j-x2dbWPu6`G3Az@4z-`n5?R zri!4F!?sluba!11F8R@A?e)&Dy-KgOM{h2zhyH3{;Oh3=(adrP*=*9am#YT7t+Kn$ zUzI!F1z;_TfmG?ntCW**kB>=Qc^VNBA=HKIvG!qfXbL34U54weAvpl8_D=^(T|iql z1l1);Se(Q-xw>`}G4YE4EKUqsuGs0*ad7LqqoIAJw_1gU7s5p|KOZ(Y`waXU;yXWo zehQZB)Lm$is_I_}7zu6zoO*8kHlg=I*38C2ySbTJQfX;vIe-a-L?Bb$h80Ok$*$AS z)A6r2pM~+$>Q;sdqN6!X&CDjd%x$~ghO&h%meq{hXFI|X)&*G5GyV0suDV|syW;FT z6+0U`@~_!p4SNTv9E6`eY{!1QVG%fcYUJ_7li@rlwP%;Jb#zW0G1AlwgP#@_R=2jc z4tHKl&GZENxGjBpRc%jEnuWKY`D`E0ks0@%vbWYvUtj-*e}AP58TgEH?-@%lfKl2iHRZF`J+Zr)zy_Ks|BVL=G``9R=B zL4l5n&#Z2wZCqhxrJ06?MhlhN?Oalq$7OR@=#Ipp@E3J;)^S=F0kkWr=&b;2pctug zj`-!d;gYpAzdEphZ8)2nn~S5-ww&mVm-HpNAI1nckjbg3 z!@Hj8XP&i4Q*fcZYUVG{6bLl&_4Q>Llm;w;GwFWEi7sT5dVQXX0%~>VGOz`le{F%9 zy844nM%E@qUS7WCli;DtVzXX)OB^YlTyiQ|-u1=D1g+oX7 z`;nYozyRSOTan>6Ny66_qZ)pHkOmNAVXo?*TfJFFSDovya;wYbb*nY}lBf3t4BhKB zd{|%U0x%odV8foHaNmC{eleK)RXxm{^>Lo;Bw1ECCA!wkDAcXg&2>=-NcrH+0C_pN zMT>SYH_t9pbH{q)Zv1L~ zPG)Bx`JU!x=IUC!xtg_w>dIxeux(E!6!}mk^$juHC$WZqsvh?=xsF2Kyz%Ah)$eJ> z);pVIE&tz_NZ8es_{@BLtG~Brl|b90r>7SdSOVGehRvmt|N8BqcI!I73LyRJ_sgm) z136jDY5Oqd&>aBuRCI7qOrYX$KpA8og$C_kPwt35QubndQi3;c-Ew^QXg{9#M2f7n zGJuOYx3$_X8tvolEyl;exmv$6=rbJBY+hnh1Q3|v-RFoWikH-Se4LXtQdU-OGEwCo zc6bA=RFF9kR8#I`+8$V7=DQyDX4|dU23rGsb^~*?_$wy(D%&xM%fM4^ezV=w&`FYj zkg}8`z|_J|q<@j`xtdc|H{;^h?mv`M=f5H{3&D5WeJ>7gF^4V79pZpq?9K>W?#+Mk z;xn|$xxhJpF=^?ZF9ztroWu`6c|BWBKZo4yS|iK3r@L4<;IqEWrJgC^zPf>LUIKvN zTt#wt&PfNawkj`BkW0+DV6t}1QxxfAsViB_tI>eX&qRPaTik5zx(uv1zgB=~uAh!)!b~qGn zkU`Y7G+9tGxw$@Pe&NEs?qcf#;Fczv(VMR-UHbDNg-la)>mJ@*R%HHeM$dM9gS!sb z2d*tXM;8rmd{^{a{g%A+^BreFVWF?gC4Dts*_jCuu-$M3snB~__|+BysB#903i04SBgob4#?$62aK|X2SWM-LC=z7~q=2HoH7SKmm6`DH(W zqR^0$)d4!Zp+>7APcNRTYM!cWnqQa@jkY0wJLbmF@vZixXE29~tE(+Q0Ew?X#+S9$ z`FwEz*Uo^pXS%lxfiXDy>mhL8DGpJWt*i>b=1-EIXVRL_Ez5?!yAH*4_8DH?7gmBt zL%9~IKJ~~uCI1{2VgLQh$=TV|*fRGcP1aG?ReKCFQVFGXnuz@tI! zS?thqWtC%lrs}RBn~}?ZH~o3`N$G*RQ<9F|5^n3P@R&Do5~8A_zxq(mYv$^$fFE>? z!EOEwLw^Jgr~x+{OJ~=RI2J##Kf14@L-zJcqF>PWn~8~uKnCY>p&+!nx;ij3euHOR zUVDhn61{ud{DzG1Jk8ZmtF>y0Qq)FoJoEgbM=QN0Y}s8+&nyrC$$cq;*v(LS|ySDbeH{VDs#291q2sdM^1Ybw2^TBZ5%sQJ}r5fS?&Ez7m2 zsKkVXA5{&^qH{m*asB|B_ymf2s&VvXo?{8%ry>8jE*A9f3tnDcjx-|1vf3keXr+FI z@lIg#Wzb5^Fk`l6ZuU;w1I}|VfGIKpCK2dkG?bjM_uKPK)@Aw6qKd3*%oGPb<6X%N z5sXc1V$CdBCu?IubZN#d*b0F_yt5RJr8w+Ou%X<}BW7VzPm*+KpcFQjW>HP_hu_kk zjP^-8#fix?^cNZt(n?hh?Yku{V+jThCI}zG% z4|LoYW_oI^-N(%$kgf6MLliS@vNcVTT8&QaMgQ*CF}@-SD9U)O?UNmoM8SxNozZgR zppIg~Xed@J)5GWKc;M%mU-rRgwDm&4NEnPA4TfN`xA6K2i`m3>%vwBQQ0O$AQQm0^ zwH;uMKlkO5VUg^}*2G0#OcsvXg&}Lxyr|U#d~v*IFuF%lvCIow3E7k!a~W`h3~Qv& zN(5mEs~uTS%ING2i?MM<7X#G)MA6W~tw-&jh@ zvlA-bkCU3XUH>G!mq507@Z^XV`neAI3T>Ej`$5B8EB>4$V;!3$MAD$mcP6laTlq4z z;MoAO!0W>7j_lA(y+c(M{6bK$2;6Z_)DF!R>tlUk^&-pD6S2BE_;qyoipnElrJn zwSb_f?U)D+gs}_%Z)jXAC-$e~iZ)->kqQn$V?stXxDx-1$7(!Pri`m?8iTaL)5f3y zFz!p`BU;ATByol!{v16WG(^}j8hHJ<@{2Ukd1yw_{j965(mXIAzw16_4n@MtdtB>o7mAxb7`(!PiBW1ljUTzS*p^C9hm@qQohhz*Bz8@kSMX(?c4uo6+tltz?mk%*)41} zK1i5>n0gA5)U8tNz>jLbJOf^QFd z7kP}2LHERP=_t1X0JWlt$_V%%5yuFk6b5Wty&HBoY4IG! z1wRz)S&b{kKJ}Nhsr?E9MAwJn{N&1LDVGALPUo7b@>>RV3UkFh;Id-;JZ>yK-Qh~J zE>)*|@#ou^vwD=M+?O5@p9?pzQyI7?#?~x*!$O4HQhH4=#sHuMi%jAYen=XCra_6W zOqsRq7&hb!mp-DJ)2FH?@=GB4WT7B>r;DP8GCq5Cj_)*q!&z| ziXuQ97B4m)l-Mv!#-`&E@nX!LC2S>z=1CtojCo!s$aqJ3;RgTKbf(S(K8P&w`T8Cr#}PhBNoBi&P*`+Zp-gD1$9ol@zb2@ehC7Ak4R$&C9$EY2SQ#!nV0 z9`Bh=Rn$#Rdu&!1 z1z|6S_8vTn)i8-YVS3%HeJ1<1TaBQ2UmaRJoBjTFv6|a-H=kn*#RI{-L<8Bl7iPWT zBuSkX5mam?Yoa)(PAEWPHe=P9u$W0BCl))1bN4{M& zO*mnia&J3>9(gIVciSfrn-R=UsFgt?Gg+H#MC+wi=cx~hI@q~K=24}duO)eR{T|iS zGfs0#W6tDxcga<)mh^A96W42tgEmF&MZi+!ghcbhQL=g;!=2PzO%CI-ho*?k!??Qh z4^Ml56gDL89XH<_HDE{Vup*2gOqyRPFC9a+p%EVZqbT#z{o}?l?hYaAp0015pSwr* z@CP06cuKNf=e4Y8c%|1BXX^GZ?}S&Voc`$cIbda*7hbo|Pxn=S2;r_ji3!r{F>diKf2 zF1VUy#map0vm(s{G$z?pg+tD9Jo@;I+ihb_blb)G8$793V@ao1390E>q))4|dZ&Nd z7<_8)Ot`Oml-~414C=lJx`Tjk+h_$cz1PAziub$|<}1C(m6#)XVl9B4K541E0VCR< zDy=Hk@Sn7-s43O}RhHbkrK0c)rsHZNi4z|V32B{$F*q*VfY{VhKC%YhfB?y@ypuz) zErqaeqxUM7i_U)66-?Rd0oUF44`Ng+BsaaEh~@Jxy&Wz95V-TX0@dN}^E1w2&seB{ zFw2b|5o&*tlv}XrPhpS-ZzTZjgoAlUSphYfA+Shp`B#xITOx2K-3B_b#Zu4no6Kg; zelE0@m+Z6nGQlDUeH1Ra@n3eq`Nue~9Y5j~fi|WjY*5}8%A#cJX91lM&!(+$78&eA zwLGBqkoF(8UkcP$ch-za68LrJy!ZNp>~mWyPF*Xqr<`oCmu`p+oL1d?X@)~XGOu$eFfi_sSk?VA|IOIxxNrf$tx%fj`0sBth})`-P9AO}DIXz}+6DIGtA$14CmmlM`3)&l$2i`3@rY`6#;_09V}MLyJ=9ES+qyVSS?_D(SAVE3Y$ zn^^z7_g0~cM?>p3-(b>aj@NY-Wuk0t*(LlwxMuy@qW1-Cr}6y3|svY^qqFW z`~p(GLQuzeUu{qP{F$R|*8-sEhsX)m#GNyLM!2Ol^2ZMh(#`8!e; zQ`THtTX!iq-4si-cw3jZSX#!oxjz=Hha8@cs*B{Rk5rh$pTO03mtddm$6vl3ExjWK6;Gmb_~ z$VN#4B1R$L>IM0{edW@pcZai_bTd0SCy^z|N~l z2p2j6o%eqH#t1>mDbra`>oYMO&YNt?yzucHT95?zX_)3rS}B_h)1FmQAJnwKk?|gO zgZDIVWUyX5v(ZRgsjQ;5Q7(JKb+y2*%5Xr(9XNC@DG@QgLm{~jx@bcra?Im-p%4&O7Er8$F^q+2RjXb5R1G2FYLv?^f zR(7PZx14%!2fN;B?ts>~p|J~?x%2Q%W&Zn}qAZA@l+v<1i;~%VQ{aqK`;=K;n6^B* z<;f!OOAs!O5)5A()oKqU#2wfLHSpOFg6h+?0St$>$cZ^=TU81(cSn1^>}1QWmuCM; z);%SgM+jI8pzOS$Hi42a_lEC``#rWt*d^b^$=o{NEFSB27M~&CmcLSErSeGWinFZ{ z=7x&L=dW;7P%8bu_TV}rdKc{cPY9PG?`~ji zv<|3lkb=j-p7>F&jE4#bmWwbdX7&&D5u3WH7oU14Wsk<*h>H~nd6-BzXol@%(?0Y@ z3to7|NDI#hgR80^nd2vHs*=IyxmWDik2_%3h`^=pHzT&L;+?&s#dzq=%SKojU zrATzXxa>B69N^$jWK2~;6_OQbu5lmg$5m0iN^`Zt2Q$)1Z z5{YLpNAc&z(p6&fm4Tv>wUmh9y+Qf-xZVInIFOhuRXRJnNlgmDgMH3}-Ouv6_2nyk zuVd`eeDv(B!a&UCxW1XkPxoPewnrO8D(Ma-g7AZnA0~b)DYL8V#?Y5Itj-9RE9`hQ zvD}{v+6lK>$ty*ch$3t8z+X>P^<7-2I-_^7gmDd#Er8)rrDmlId@1~=S9$40c&fZm zO|!@AU6#8@=NsdKl;MGIP%C)CH;knlRvZCN{sgDvs=%>Nylbpy;Jzu4l|MMZvA_N4 z%eo3L&!v58`0hIOBj~e?SAfT66LyZjXt0MpX|+hN)W1UEmt~e`m?$$85g01j+wt;b zxxxjqW$DGWkDA0Vexn|Oj_Ja>Xo63#hTkkN`m>IB)uKbxtE&2n=3FoutM}22@t!Z^ zjxOe8Z3;@r3K>zFz{BX8l;qD#IH9b&qv_E9R%rs&D5I@%7DUl8NHxdJ0tVvWPLI~u zClB|*QLK)xQ)f?|1)k&68?AtvJd&P@Gr8UE_KebWw@5E@H(d2W{HA5z=f2&fZ|Ps^ zADNk&$U9n@KG+;OqtPM0sn;zgatI&UQEN*j(&gqPmmd0N^af<3#-!YC#CR%@-haQ*(s>mW6vP+H&_rx+TT zc;-)aYPB{pEup0kWMymrgzBPRv44AihA5nFA!=cznJkdt3BMmZRD?Nh75_G2;=l(^ za}GIqpRm(Gch6kG8hI15Uc!%=0dE#dIHQ*5{`H80vC@PjkC5?4+c5RbS47;Qb#%Xmx|fz(SBJN!I=OycI?H7y9#4%Zpn4tqr?6?XWK# zl!z9H=BWvUJtOitzp?SJo05;q9q)9B?^En-ot$D>d1PT>6tww9$Hu082DIpuw*naX z1w$nvXM|1)S{R;thJVoD|USu>?Kq74WFb#D+I>_iq8YHabeyv?V(AmYQT7g zrx&Wi)04k570&;d?`+biH$?_csr|rPSO9&UoWv`W$(_9jFK;hWS*!1ph3*s9#m$XT z!a`*|x zD!gZ%xBn15R5#Typ$Md&l2RE@dq1GW#Hk(WV|;qz6rCPrs1 z9yeRFS>J|FS}Rh_)3%&RSMh$jF7dbYFu?|DklZX}{LYxWKRS-u)@1f)1YMzZbS1JH z^r;NK`NC7RYJ6O@ee6p&=~zRTPCF^4&cZ)69y`wynLYg&1h_+ZF5^4JTtP=bHi7>t z(DgnYILL8DcE*osTH1PAxl0z;)!PNGy0t^rJ+$!wkkGYBQ9Gu`u7VH!LVNv>W)eAB z7Ekdt;fu2hX9h;qoeLJj&{_g(u_iWBF2m z9|lLG6Ft)!Hm&!yfUJQ@g~D%rs~4DW8asc$nCe!iMf3bm#=4Ksx^ zvMLxu?~7$maGre~hvl0&ku4ErrV6snQ%&+F&OOWQJV}xZl|98LHb+LQ>BMiXxppy$ zBKisS3mI{2#v#`)Zl~mPvEYn!!>2S6Gkm>-8((x7ybZsYL}W|Ht+SB1wkvL*lfPH$ zo646vfl`XV{c^+}p`!eJHyyqbH^z?ze&1K@iO1}xQZT;CSdZfGYf}V`UOU&baeaB- zb+tK{q}@t>?TnhK$angQ6$8PHoSS96ev09X)h}$GCYWfD&%TgRNgd0NIUjH=5j3qW z8*KW>UIWx@P%*eBG;+RSyD#WYwCqzc9lY!A92>Y)wB~P`Q#ngAzvbe?6;0970_8EM z*_+Zom9R#c-=lB*>;RdgUgDCUuYZ)n?G?4C26K6lXaQ4v&OAXw3~cOS?6Jw$r&k&M z^7Kc%#JM1IC&xH7$2A_#dm+MCeq=*=$hG%3FTG8*Ny!DtFEi5^)K+>{6da~9{akv# zJT3C)T?Fa&(hpl7kwN?44`M)m>CzQt)5?zie7B-he4Z!OKXNH{mHzZrd zwM+NrkzsBx`(;ZCDZK9GrADdeRJ*!hVHZJ=31ZpYd8DwVT!GdT?9rvK=+2SxADAJ( z*@>%dr&`QjoBw=OQZL^jCOq_wNS#xQKfK@hP2|qN`4eScV-&RvnX=2q^GNxxy{uo1 zEC^LW3wk>_cJKVt>6CSReLtoHQ6@eLzWxPJ^>o@n$7n5`E*pShg3I3M_ z&&(z!`AtRaW0Zd}vfL-b{pY!now*GoIrX{LR?HE*sm#4DzaGRyzGS?&2qkYUo=I$% z=&W_z(-N`Q=UB2~JfAyk$N4`?k(^jM955nt%U&m5L*9Ghb$Hq>N>e3E>B~;5RF1mum)bx zeMLNByZ*9+{on-!(T5;40XeewE+L#CLs!hyyvOoSyuA%e{DOaPfMzJdqw(H+XNuP_~H)tZ$^zVGk z!F>Kv`tSeXWcuzueP-CxU|(O_`|#a-+zWsC?|RZs+zB~4h-JvV#3b7NU3Pz;+_`q` z)-9XH(X095JJvL|WeMZHVnOH}keKOD24V^N%W-d$$*X@?*w{F>gJoCL4R+xXh$4)= zu)Ndi3!upj`Yy6%ER@?N1g0CU-UI3XhN6(ttBh1ZCCWn(XHD4%AiV%9wL88;b8VGG zT=1Kz+3u!#U~CtvAXHxaIff+tr#Faj44xYV{nMU3c<(4DLx|gbaPZdd>ZN?P#uvZS ziD*LaiFvi6FGg07@Ix9;i^qf0h93H7biCvnFF3rBJ$DtsP^J&)VtO#-hK9p!x2w_m z&E!DJ9jH$wSX^%6bUPuxz}Whq&!Rh{e~p4C5q_5lBz4XS=1{BsL17uZb+olF<$|;i zE{)J5AYgroC5XK3OFE&`E{b3cG;(9#IWM3dWC75E^W@dXcR z-aL3qxTJygb^~}P35e^k`?W~WE=5wSW0r6~h=!6Nn1h}7J1w!8q&TeWg*cz}$0)$K z(`iPQ?$;=Pk-)BR!Lx&-Q7Vbl5l|QU4A{PGw^DaI60vpswC{Pxh~_$jAYaKlt|tV@t8FZf$vauyU=x z`o*pnkPo7=H{5D}p`CiS@q*&fNTI*9p9z7f{40di@WZ+3kR(q3`>X82-s88}IsQA` zF8@lT?7zQ4%TRBO!&0VqAp4!MTm8;k0F79vXX|QU8VHGwcF}_1ITB)Gl{Tpj!|di` z{CJM1>I_}Sw!$-{9iQP`Gl?ojmqA?t6#fonVM6aH$y|ckpx`MQ{PId)VB()%Ey`cB zP6ndK$o&f)!4YnO@7l`mC^m9sqHVV^`D~DS9dQ43j4$%tJ=v4OU3;#X+|&}odqxlu zc>XhGC@QLF{UY)|^?sA>}}NfxuuD%#BQpOvSdD$AY7lGLN>Kxa+w@I^u*gRs}jt z&mSw-oTa?n0JrWlUpWG;f*VgW+RO7H?dMQQ+l%H%082-CuZ*{5;@(jU6f_fEQmTCZ0&qCBL|) z`xgUz{75&Eqd{J7AAx@BgLy8}QE;BfXOCO1zf-*Szu7|G}u1 z>|ga6g-|M7MagQOc^7?JOf=8gOeRU1;`+s&sXi=*a}_eL6GD-CE@_)fpLVq}{C zr1AAzWSGfF^*e`gg1Xqxf$Qb_mk8os)Wk>=S#BGU$MPYq=;>DJlgctdKPf^-@6O8f z-TfZB@2n5E%UK*FN=j^d&HtBYHU%Hg>Vd-nKK~u3wI@?0QX#Wi?(boKnBdR9Vue8u zatb$5&a~Z*BGlc+mZbDbVwy!#dbN@LlO<2qUe^y$GFM6l9k5&?C(>N7(rZ0iEtG6# zr#mT_YKE-we9}4pzrB87izUxFjAx;k+1!#A1{ec9o{U!6^|W2 z0HIL-E0kHzO=bpB9*lV&;3| zIqqb|f6IO0rj>e%)P(986&Mn7BnJ=OK-RPmqpfMn#Qyi~Q!9SEZ6mT!gkD`_|Eam& z^`tEU695B6wf4dD^j}~Cxxb-Z;XBT-r_P;pe?{C{u3F7h-)6oOm{{Q!=vhDUB=1|17>hT(>5MVsS(sA;5Gacpj;fm(1 z((qu$^vskpvNd_pA7kr9ts9vu#+x``c{Z2XF*R$i1Hy;|O#iP1u2y5H_EGH9O%AAAOtlCtfkR++2Cy!MyI2*|Ru39l2s1JG`*D+5Z&+4Sw7*jRxv z;6{qef=6Dxl88PSzc%zn3h_7V*JSNAYk?k3gsK=2P<7b&I7pHGQ!^M?frr9D~5*8cq^+}$$vx!@A z#I(gJ3Vxo#^P8=(Ha|fOCVR#htkG+wN-R?Mk~0xsb-*kzTg}09$;>5>%<4s30R0-X zAzLYx38vSn%|aml=wuT#1pbCw0Q?-j<0s#*1Q)F!>23?Eiqs?%v`;|K9-Qo!0MxDl v0n*FAVaT?r*#7E&@-yFH0so&*YHgyuMOq5)N3uvlV!&wVUo2L;cK?3?I@pkp literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_8400.png b/Notebooks/1_N_horizon 3/sim_8400.png new file mode 100644 index 0000000000000000000000000000000000000000..31fdc26c8fc825bb3d0978bdbb12a95a0e6f36fc GIT binary patch literal 17000 zcmdsfXIN89)NT+vf*n-qksu0Elnzo95ds2A@2E)VMG`w$7`bCnR4 z6uoqj&mN6-N6Cwcx%@{1Q8y1evHqUJuKwmO^kIS}r=EhruJ$6XUp07` zIy>z1$kH=y`!|E?+Ru14=fF}?R*@6O9;0UF9(3B%;(;prNugh=L&)76yOE!m?w`1O z2hI^16SLidKYOB53X(eW1c;Xfn5ds*c z^RyJC*EPa|Xtd-PyG>oh14Jy`l8;u4^r{Qg&cW@2TMFh|kbMyZt`yx}Fcon~Hqlp! z7w;n}$^F8}zB@<;))XJ;oUm=Y9fj@pl5o0Q-rnIHigl4JS41xJUSQOGBJ#+TD|9%Q zZd10)^&=CL`VSL}NJOusehTs85PiT6YnqMYB+i^Cj9-0-FC?UMmxt))5L~PGi zUt4{G6_F|*2*?oYZ~I7e6)(5O_IDDUGjLjLdfi>f#>a|k<)wZnww?O&bB%|xSQ(`;uwOG)ncsZ-m4afVG=%3Z&^{8 zK5DQv-yg?tj9JuddjNx-+cC1s?ScaS{c^_BsngLMe02nCMns?|sZxQ;lhAXP#zDec zlJMN~0gsh0jSpF3T)j!2^3;F}G&O{qOgRFxWkt42MTvk`m<9ow>IKRinlwyHo%SGA z%2BPnNX2N9r!3V=Yc02qZ^HcwEpGpef$)A4dJ&wJ1CrQpVYzxOZv5Im~s*pbP@36DY7rNtkitu-Jt_+xT0#- zHlx^!VFe!_ zQ3ZX^u}^7x)B`7Z@#c_((nVg^~G zX_eNRAJxL4O_<`A_TYT3>F8)~p}_3oXr8K`ZQJ?@1*%@{72IBa3`MaCVK$a3oUnM? zXV_@30zpkL;NC}Gt?YtPxqQkY(^%A;Cw0h{gwLNht9jHyjGWtkyxAutBTtQtMHkc= zo#9~B`{9L%T3q+xkf)Yt$O-nFeIy7^Mr=H&^Unp<2#U!9T!E&2<$DB zEEkgSqud>$??)J?nD!7!i85Zzys0S9`R4K!ZwcY$eKLv#qbuB-CtIBmZ(4}Ch&5_J z%V;$Ee%rDZ#-n3qcA`Uk{v<-~>F~xKDQy2LQhHdq9${tDHN35atRfO8)*rVi`B)kq zqb`;H_Qp&k_Xlrvo_8F1Ros%Bx^NijRfBE%S;^-k-!+TNAZR4pj2OH{BGp@2jML*O zY4;0o!CTY38%{d&bjn$`gt)*<<+~&lv`1Fpp$YKAn#p!ZxAl(jJH-p?o}XOrQs8HXfaW^MlVuQ?jy+R5=TB1u*H- z`A>Ik+D!E5a4yCwIw3o;{SjMR9unpb$dpZ6(;BBekT1Ve@kLFbeT9FVW2O76nm}>P zq62~+-!qw7+fOWsH<(DRJ(pGqsDi%D?BB=OZd@fMZ+5)i_L#qMk3bm>EX8?81$siy zVd1R1B7xJoD^VCDb8uagI@FChx7tk?$o-~pHbUSJje@f@QCN1T97V(-6C1DT`-M2c z$}p2K7j?kHPo6lDiY8ua3D=H+$VGpXcK&*co?58s&3%doke)~#v_TdMqzTekB~rep z7D|*~m^br2gzgx|%q8HO!Z>P|rYTY8^*b*kh|W$mPL031!0eJt<3~MIkqLq{7mQW( zVl*ynvs*M_aj@dVeyDBZsaJc{m$ATKNU*fCyqQChHc7 z9A{EbctCQALw|>@0|%wJb#fWXP4*bZu9ExQYy z_~fI?PJG381T-)-Fu<9XBU_1NOSZCSC>>T-)`H^V-kJXLZc8>c=BMEhul7G%UiJbl zkGS43z+#1jgzQhp?fKi$-fw%GcXb+i@r^;_3cCA_mYag!_}$|4{>dJ*ckY?#0c#Ej za!#UE0W~8qz+l9tugJ8Zw3K%~wKQ;Zn!kY_6}Vwz>Dg=Ozq~oAu1x+A%u?z8?OM~l zOC1@?)+`*NJ(UzIh41T8A%kuN%i`i@Jlz2qD%&z~{sQ<)(=81x;dm)>b#hv%NECV;eNJPx5CX;L;yC9bP zEKJazu!w%i*xs;9^BQnSmavQLE3p(t)O>r+iT)PMF;!GfBB#os7B}gE+pidk%U^9g z$K#D1yRy^<8vJWZ-hDqPVpV6-!W;N#zD{B8ovMQOTu+&8dxdj<+0Rb-Z^neRcv1Y% zV+gW9qD5Ax{~XG!${AaNpEy%L-zF?iuUkNq5rVXE3DOr9u{!aYj6F|+|HSlc-&0Yf zuI1T5DepN8OP}$0U%;xpS4wko)U*;sd!Ms%8UWQSeKam?hWE(fdGzb5|5BkfcbDJR zuMp)P@VFvi(|7nm3%8@a{g)1z(W1J#E4@8E_DwHO4pcbA2CTMQPyKG;HP+US`0(wG zQISbzO^rOnAzz@Jl^)}5cfB)xR=$N)`Ya%eEo+UWq@)Jk+>{Npgw)Z)#2Q|Q ziPmTYg3cvT6E}y^-P&e^fO=`yq1Wm>KG!*ATzh(rt&8*Z^Bj8%49zMXd#@_DXo=P1 zl($zq*BF7@-Xhiw7TzO1c>r%-4Z7B98(aB|zu4kF!d1}=8Tb)dnJos&H-Or3yPo<$ zKg@GeA&U2x$=$n|&WDKc(GYHDg3s4XxMV@_#jNUz`spp^38U+^z3 zcI!IP$TX_m)V-tdKCjakeKwhBc&OZCYyxY@tED%X zTUuHc6c%tTbBPnlh{Cpc38F_S=<^9z^E5?sU z*g`7NG(8c^8iNIDC#9Y-;-}JhG~!0AgvYaMnfDVDZk@*g%SPzIkKNYQ)tyg%oGWNq z?_0SA1U%g;m|+kQ(2yW%DL>{zlCymDyJ@XDaJ^b-J#Zmql#5K{Bgy&y4zunNR9lTI*Px48wQE{iTN}DnAn}mAzthzEqO#zF z&h&Ji_=JRl+}w#fyxgWiJEovAcBqehuc&V2d)UF?YmkY;^K)}=NZ66C;QTt0rL;y@ zN!~r(-Pzm4 z91>j5*RQWP*BR3tZUN;=n>5|R%*?AzO-(i1TkD=54hV8pRG~T*jVYGiX%Oz5WM_A5 ziR6BHBb$Hi5n*%IZK+8t;I@c}2mmh6GV>1ixmveTCEy-k<8asA>V7}pT4_;s1bTtN zWo4b69VIBs9ht%*Vk;cF&(+hk-N;W5E4|Lj%3_`~wy-GbFSncCTBlQ1sTpF_RA3ge zMF0^({vtvakZi_UPhN#xCy(0Mqul>_69Mmb2I=W3=! zMNHnPxcPRctf9Y|G(5tyUo?587RK%X5MXV9(vXWH$*C(UDuSu3b#8Cyrg^kofM9Pi zp}I~@KldhpxG>DqD7JA3hjO)3c7DfDq^Nev>(~$9e!Wp11qxAA4VW-c<&siTJ14K5 zCU2;pr^DUnuPgg)ciO}6q4HZRKXx!4jB$Dazr97@wt{FE7#5-zI%KA~=?_DY#H36B z#QAuk3EvqeX_gRwKPWS}d&0}c*Ibm4# z_vf6h8r}zz8tvczUuROp4}Ehtf&6Wq&jK2lT4817QZ(HY=<) zQT*rlIHcGZ^!q&=lYpOOsuBbL^Y`4GYw*W!M@JdyesibiSEhOk4NXj5>+32SV$iGO ziBT(x&6>u>#y5JOhDNaOBz?*{i>oyYjh2S19pkG5PozF*KJ5!yR{AbE0`GT|clEQn zB!C`IZ|~`h?bVFR`>n?yT^U^;VZafa|8l52&mz-z%6QE zg?-oAH1`h&}7GfJCOd+p@qs@=`rsLORE&qbfQ&I%ba>YGVk_^IutHpD!gXRAg|*K1i18+cSA)$KmbA_&{H1p@aw*_m6XM?r-!GS zIIMfDx7UpQx7SDM-Q)1PjJe^OnX>jp5Hgu{DylycLL11VVC;g zMuwAU&E(l(k9HBrIZkwDlybV&z12;F0-o9G(Gk1A0^qZ9bk9Ekkit4W;JO~P5O`$3E_A$_dP0@Rh}oDs`!reJP@Vx6!zc1fbmW&!Xw97U6cu*SI9G!I zm%+-)N(aDeOdUH{#>ywbMc|?)f5z%Uu1NrKSb5_O=r74R;tc>)mytTtD5bU6N*mt} z11IAIqC5HNqH?x(+dvU>svDMyTm9k_6A!QcUY;8+RP#+X5+< zCPqh|26q9Dt1nydE~5TF2`5_V&__ zXRJKq@tyn!z&zVSohiGUJ?DKgcxAc%Xx9_F7YXc$P}d6-OF@4|EqRHe)t(UHU`kE* zD`@~yfTBe`5I{f?i$ixVt=P@Kuz^uer)7nSl1nUWD;#@;{D1QE(onPJBlGN=gl)$5 z;($}B!}3hOqqDPtj}QLk%a;{yqYca>g}{H<+S>Zgylp`@pSGLKQ{HqaYijx?ALr-o zct?%APtbS1GK zld2;6@+tfxSqrjT5wi*nlANKTAx(y`8Zokv&X|M%8iEEu*1Pe|tAYYe?@|Bi5g@yQ zygYSvt_RPIN-Xld8y3=hfnk)6ZY@{WERYn|El~7&#?*Yfn6Z;nVdRy04QQ=$rn2)g z*-!cRr{j=`l@PXkcOvk*1Yz%?2O&yZzoVu(M^~PMi0MY<4ZirUL+5Lg`VS$LVqS98bbmst!BtIDljcpyL1G02JzC-RgTeZ%IlKO)53bs&zC^ zGw;$kHMx4ZoRx%cau7Pef1M?ArdxovK*HM*i!{i4CCo3-j1VA`vt^Im9&;1Zwn>8! z`0MHOpEN3d!lL8%%a(1bkl1OQa*@X@OV5;bWcdAs1Qgf+_ahw*CyfJ za=8XB&~75Yid?{9VZ|6K7I4+jy7LOFs*EZmo9){>I(ipr-QAXZ*}%$qSx%cAjM;KT zN^LcWA!=@tt2-{9&9@}aFUIY>nGB*S5US+W9)g{I8N}Z%3(~@6SJ^To(<=dCkbbZ_ z_4I#GVFH@c|8vcyEF9Y*UT%o2Y9*#ilOC+P&KG|xW@l)RH(DbXTR(@>pB zrZG5HWR)Hnj-X>I8s#W=k?OcgO{izsjiWocj9x^+0)>&%e-6(EfQY}IPosHKD zc1lNg&>(pdhV8$I5Y+TFBU>QslKQ(rF#s!qa001OaD|^WbH9HG36b%DG%Hd5 z0(Tjar(t%MrX-<2mZPp&R$Gug5MXJ-LoL{eiex1##y(#|vd43{7P*rY$LJ;Ti$M!T z@jd+cW!se`Jh0F(@UO6-pt;n3rxP}2Fw{#Dv5U-zlvLE{O}Rx*gxxBY7=I$xKzVM@ zpNa3C%)KuPNfJO;(TVx7xMowZKP57~WA4wt#bsO^Ua3)&>Gq+28 zss`>qBF6~FoFGxQI6E6yh4Vi%4s0#Tu2C3!SN37CF7Nwn*NEzBTqYi=UN)z}8+|LhF z>7AZK!r8eX%pxC#yLgcN^)acazl>;qTXZh;f$WD= zVV26b=$zV%(DYT3kGk{SO79=Qjk*-+8%M>$$JIV2E8sO+v@eh!=)d%wiMz)wkz*1p zcVz%-FCLSG5*?Pha{~Ln`(!r_-#pwqoH5*=C|7Ow+7D#Fz7|^(0>XuP@R231^>u}& zDO1bSt7+>M`K}q#^$ogyW(u)XV$o;H+t~WXA73x1$-6qf&5fUE4e#4gy5}uKX;~_J zUM<_9!w`a$U%=$bQqwP$pG9!O>&?k%#5Of``f|BByj9M-;})Z>C&&gQ8|oWM>t%ku z9xT=NTwgR(4LcU~@PX^~mYZPmThm`JG$l*q-@`Ps?2}-x4bx^hW5Ilq z^{5*%1+I-EDW-Z1=wn7QBG;NA7(~X)`v00*vbB+QkpkR$pWGE6+#;Hw%A2^@{y^+J>%7fTkpj`~ ztf{h}4e302E)m7P4WeBGHW_{OeXmFRW^ShITOH9?yL!`h^-}zVdcE!A>Wl4B1(M2r zcJ-3V1@=jZP>4F8B|yv^V$m%!KgQLAq!?Yc-Hu_`@-5{Y;~ga?Xqky3KC!W1K_(b^G}!=@#8IVyetx; z`#~qsnUh(^F8&EUFad%zT_|dpA()WIF(fZiCC`k~)iY0RuEm&>N;2M6U?I7?o(FIEU#7f!(^(v9U=D& zW*aSX?e4Ct^yRC|{sAYJ+RuX_AEL{iix>0lVQx%>X zK36a17;4-+8EiEj{qjSS5R1*0Z=}${dliQu_ZWS0CrEUSz&+mUx$^NL<%#NX)(}ZN z+&EUt1TrKiVN_bFCOjpRI^csG@z00;fv9;xGzp}dbdyM`&_*#choEdB7KT?H&^5C z7~Zh+ge#Ye#BsGP`T0`mhm`bGqklFeyt5h}E?S#ltMq2OQhW1(D?G>PrcQ=9t~&k& z_=GrtQK3GV25OX8bhkx{QlwDg=3?zTzL;G#dB>xx~9?Ap~lB)P*NEo$VV`^=$ zOH+7|een3o^8w1qo*!{;BF?Mzt~#mx zec@!7_|rpRaNOhkIvw z8kR?}_phDP7H;n@dbx{kX!^?ZG(Vm$vTUS3sT@Q=ukGEopru}&p+Of00qU=dh+rfKg29|wx z1eA_;ahg?F)Ec{si+z_<0Bn9tLZO0?EwiydHQv(qoZZFAxwmgGy|VbN zT2x(ydF`_Iq8ve1<~ysqSxm+u#ez-o`yLNUuKknS0430xnZf1`oQBKlgL?#5F$}-~ z@^W)k1CxeLVfx@(8UAN8nX=h0iR*ZwgvrNN5l^03$@(_Dv#XF2Pib!gMkDc z{T!vXnA@u6+x;_(InvXUVNXr>a&d9~ZSMbY*t$x(Vye}c6G9nOz(p?2=NC=}Uot%L z$-pW)wv1=NEP17c<-m17Ea)m=bL08YXQ~Ayzs#IcFXhoMQB$W7nHc&)jR zCDb0ZRKoGe;5%J-i4ngx4KRKDhU#u8JloF&c4d7Q$9KKSO_*?SbQpOBWGz8n1QF>m~3SI#}Jz z*|S9+HO6r0n_e|IxknE4D|C!4qAv<`1Uq#J^tAuoki7}eDoK~5$1i>cp9Kz}GEZbg zaJPfzjMMJ~po#-}qXmjCemwwKA5t3MzrY$K@M=YJ=*4hpeKI#<&y5tsWPi7)=>!z- zpdmKzj^ku?@<5mXXbbU=K}15%)B|GW+cSpX(BB3n88X z-cj8nRXS2tpXx;=M64#ezE17=C;$EDuu?i>pH)O*3#|*=-TzS+KG3jwHm9UBX=R&GYBQUa+nwgK)ur zb|k0(kltDrt@QRRtS?vRP8)WlFZR{@4?9lJ{N865!5HSH8~GV`zG8mEc24lvd>(B! z?L)QXXiAyP(I;?Z@rBl~bBvP{;wr+x_*9_D9M?R5UudaiA<5EI+>tR$doVRQe=Yj@ zt?$9SR!7KP{n>pFtCy>MBzk7FZ~mC>ykB1Y)-Z7R+bpN^#bbz zyt_3jI6mX}?W-4yHcYPXk+X7&ePVLmr%QYo%tfUSlE$4A&#r}DH91U}MgS{XuJm-& zHMgTnHn^l&oyQ~%P)0{836^5@Z>{~z6)FkYPG9LU8D}0{{|NS0#sFHYa$A?jQ+sR! zhzf-BGFe%vFJ5{8mOZyO1#3j|%OJ3;?@;Wi=^rodvXPR%^bTj&yQDeNCXKY}v_P;{ z*<9O0{wDSVFspiaAm;06@kFHP>;NUEt|}*6i~Hk@@9_iJgD8HXMdqlHU;J4gEZnT` z>RfLMolUi$H+dUa1iI9aMW0uO5<1Yf$}%-Lm!8^P5CW*v(}xvxiZ47?zt?|^PTumO z_YQUCY|f@RE>|-uz4P(e`lWOyN_*{bs%Js@I$w5eTgtI_ZYpHX0QeKk_c*?$L5iR2 zZP#ZPo-o~!9P%x!xF1^KY)Wr1EW~+E}iF-pIfXbtOi(KfvWBQAWZkj@1?h?(@&H;hAlW=zr^wD$3bir>%R4VYn= zN5VhE^vteJysMI|IQKF3n^!&J1(3hWy?T8ZRUnUbd3n5PP3L&(l@a+i@j4$eo~oH>IkAT`^bPapTTnidPyAYTPZoTnH};T*86=$< zqgv%@ZS%U8!MU4h2OkD)ZoO4>N%Qr0^P4xhCzmQJw~0mIV;-Bw{A~KrhTvgYa`60K z9I}B$)frvbb76Y*QmFvT)Aze>p~@HM+pU6P&LHa+F&ysjXV=K#r}gae7Sre&6ifAY zkHgg)V{D1e&v6+V$rtn0$zTcUmST#>S!*T>IE3L2%TklchJr8{?L^o!1D??QIzDM6 zy$k5ovS?t zkow{vDocoXpirE`qW;q3?AAlU&;{R?8;Bx~PiGGX+gtA9GPrj!+jrU2B7pdOiwbKEBPDx3rsDQ$lhPxW55Z(mzLz~nJ zG`bL2Q%8V1d1y{szmD*ca~qeFZQe0!`O^DvX*}X;k<5t;FMNtM4|<&4G>cs{Z~hQK zNo9_rs$p;MGX)8E+N@jRz<@8~B>QqzgN94!CA&xiBk6gDM#TyI?;H8GgH9cnnCx!< zGq#@{Y+OPj%i)Sb4(T`-5}q7q19GST5NHr^Hrh{4PU$@7wmS7a1kODIdmFmM9;nbi z|H&=h<8`stF-wnQR}le4)lNDA7mMs=ac{66GMTKHXJzzduY7vTwA^$ybA-v(=I*#U ze_KRw9Eiik&KM;b3CkMrZoga1=0$K=!iPP=Bpon}FHu!tq8P9rVxY!zkx%vE2zZ;Vv89G2Hpjhb_H>+kLsJB5%F1CYUGQB_>7 zAm^lOUMDOk0sYsfXxLiX8|}c@iX7PlsPE-fSZg=Atyp-G*i}(>MO&<6A;H!sd7@NT zxI&Uju5V++<8ZvNoP!dX+AJNE+z5v&k=hOh}=lyR0IH>EVc+EKIyXdE+ zmk#E|r;OaHE2OUo3ixy>J#JaNzaLZTVCw@SJR~wK_$XMac9jn@Cf{~|O*-Sgo3`sb zo(x$KWcn`59ISWiLZAHfVd{Zi)Tn%33qH=pZFp&L4l(DwNun@O(TqiVE&sx~(OZRn z8H+VuCnm0=H+t@+iDw(I&`j&qY3Y{eb3 zP@N3@{O-t-9)v`D-0{<+&kAZ=Xz{}xzFzA*E=9wI5emzW-6a3k$KLJp*~!X4L^l~` zz890MvOw(j!|caZ#qBz<%Z}U`DC)oRkye5ny0lmQ&6l0rXP?HI8G^iB)J{%WBjeU* z^!3{%k>}fbv!<9^61+(cZsvK8DRoA?3YcOQGsD52+~irmioDA5PN|&L+uWw6ud)jc zdfqq8j4TlP5@Q$)Ek^BSC9Qb1mq2y`2&TB-qEt$ZQt0Yd3(v2)V!i#&y+B8~MlX-Y zFq6FTk(V*<{!BF&ANx|$TQ7!WJyRL*!h315iNcufA5dI#nzd3iuT>v4wal0akj$5D zneMw>e|;e@(eZu7vG|A&D^ejByBuu>s}_43uph)_w)(4y!dO^5jVLrgw*P$+Dccg?7ljS z(iUlolm4(0!YVOEKdRu1p`GDWcy^(IWlZ2#x>Vo2nCJ;zv91kTz4AiU!|L=wJjH4J z_H^a4$?67Y>yO^?)mB##Fi!iCieo1y!n;d7)YL{K%Ll8YI@g&(9*YW{Igp+ZSDa4uQfh~*1FI#Vb*1~M|kPN`<4jO(`4PNyPl)%|(%Q-i? z{MZ0keVpTZo*$`^MHfH6!jV)L`a)lUY?J&nvcixA^X8^uv)8yTSn(3GymTMP`4zx$UWpM+9Dm(eq*8M z-0&`(O#3bmtY{mtLX`KXgWUjl7jxff7~2!DSOAy!y9@d__oN`^(|?aniNA9rn4|8Y5O7cU?&I+?dLZzdvwsfj2+y z2peRTLHg%3_&_b)fg*ecALu^lX<&ExmX+pu*08NvBX@=dXkA4a|gqBs{62EfuWZ0n_P{2GB zf~;yMZY7ktWnvX=ky6O25u%QcT?Eu@7ifMuJcxgN!-VX!xjZaHyFneghOl0$hS+oG zenDZ*fLVT?;BY)_AK%#L%Ot$IfYkD+Nd8xAv6u>!MHp1=i{=K+BH0`mb6`STd{8Az zREeLai}XsVyEWajm;jB4FIq3}Wt!xL`bya5mnSy&-d!WxrJ*F?{zl}(dlkBf3F|-5 zMWfn6;208&&(N`v>Heu*k)hx2Ar7xhGqld2qi_GWnv)*H%Ag>=9bqJ$^3s&=wpP|6 zPe}GbBjS6lsg?8L8ekZ_8H^ga%!1GoFibWr#!U-=;_D!iJ*G$0!DmefWC>tLOpt(A z;c9?asVH8apI;C^%%GHd(9HG5$A{E7PJ(+_<1bKt*;#UdKc1J?m13#fp^ zEYu+ATgs)6=6!v+)oibL|4QlCCBuuCPwZek?9K{s#F>9Z`%%UvS;q1r(DpWU@&KG4R9a+SNCo_ z&%YP*_+L`0U>?{1D*S1{6u!UX`)pvK;o}3e=={H=F4+{A+=tR#;A;E~ru^}*>feBr z`Oj`0n7Bu8FL}CDi<_HPvOD@OVc8R*SOZ6=Zu5O(e~lr0#~A*7U-YQE^Jw~rJdF46 zjDP0pG7>7rRG#mwlR@go!nH)w;TYh_-ajqIzK8?%?f>@=V$#*d$Kii>!pcg9vU8Dg zYL5j4@ehI{cpc7(*v;b6EnRGX7;-rkJDgmy2F>Aq%#>q(jvCm$<}CmNMV_^{xCK4$ zr2fl)>h#`qxIywQ=*(u2b8M1Of~(MHfEJ*{#CVNs4yY}SMwg>XJ}TQ$-f@654~%d9 zh&$iYBkng3p#;+IB6U;x`H@xd;XRP8eBK54$QOg=2zqcd#^4<71VRfwY==~r_a4(w zL00Y5=5-#KLQNZ03JP$kfXnxHn*myt7#{cZN{lbukPV%MngfTy?oo%ngKaerM2>;h zDvi&sLHc>M@zSM@8)Q>(<_jgz1nm{&s6>)H?nLeeGgIhy$JT7Wl2!8ts ze3~Vm?|jGQcT#RrEevbI8h-)tx)Yu2QLYbard7PYuYNFrK0i)>-1!Fg_OHTrD(SHQ zc2akLR&BQ>tn5rDNAof8In#M+=NsI!aoYTG9YKxRd%#KpT+o~0rzP5@$}5q}MOZ~U zq)aZCuuOS8vZ~)Yfz^HUnuH&j;FXQ_7a#xXEa5jm*h)mQbK;(dZK9-8`kVOcd9cF6 zor%~E$#Pbt(T~v|^D!1tMCs;EiXn2j3@ay5$d$FXfly{plOYDa22Uwl3lnG5B-T@~ zn_q}oPkR~}#_U=QiDvIp&wr-=XmYw~g}JGhN#KcJtib7S%$f^WPM2B>(-N3UGK3u> z2}*`~X*j*WbtMGvJcW)yH^C^0TE4y339Hk#AM4YNk%Y@*t1l64zbPyNE-{kvRAB`x zn~g_l=N%HZi3V)*TaN;5e+x6GLxWk70>e~ZVaOl|r+yNmz>`(*X#IvZKV9(X)|YB;maa<8Iqca@FH}0>3uno5-7wes9JPH?OR& zJq-jqD~fS6<~YERgue^{!P+I;or6`3rb@CLqax5A19p;OHpY+c!*{mMlLw69h8hDu zQm5w+Q#6w&GOE84=YBJEV=ENLr9&6?*7Ll_Oi;Cu(jSS^ZGI%z-`o5h3-JQYldET@ zt~3zNMN2AMgIVL>1~hEAGIMCI@dl>QOAnmu=sY!g_Z09I&2gxbLAmN%R%^ax*bYvb zBGLIJE<fO;sk+r)cW|%p$_ptTg#|)-;djR zT95FvXC~z(z`064g!KcG;yAq|(ZCUTG|;aGm&R;iCG2pc&Fg#JH>;>1jqZi`wJik! zMQ{X070-ipiOVSc_I=&y$)5*co^RhiY#`3~`V1dXlKDJ1zbW+?M?0Zb6o7#VP*J*O9jhKm;i;wrAvsznroq`xvftD1lRy;|4X z^}b^vmel>#ywXbn4K+U_;-kNA_ilA25;}k}63Cn3zqy;8UMH>|hQb#B`ggkiW7qp1 zeEsi;v(xDRpZ_-iG~EBX9cm{;1snSRZ>F{x_|IdLE~P%dOo$3XP3L;awL4G#7X|nU A4*&oF literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_8700.png b/Notebooks/1_N_horizon 3/sim_8700.png new file mode 100644 index 0000000000000000000000000000000000000000..363fcb96330efb88c48d4be648413b11f167557f GIT binary patch literal 16683 zcmd_RXH?T&w=WtCSWr+@K%@yl1O%iB0V$%C5Q4NW>qi2*_{((elT?EUUL?l|LqxL?k>8DjoPR-N@X=b9_*wvPJAV31=j8YXB6gy9VB?*Jq*nGFI_eht5M z!@w(h2o1orFKH9ckGZItb=$$)IherMuUKEQ&=?r03TGHWasc*-lC-ubxgk-G$5TW9AzoKOICxVVd=_;yX zl(5T3HBG?wkE1-m@;CQ313dS|oZC|@ryXi|-Z=>)`oh>T7z!e1iSteU!}We&>$a1XM4SQu4IhEf%XV8YW$+jbd3X?jPIJO1)MJM|s5HB%wQ@mg9lHo9i11cVG7-B?oO$+*;MWo!jxO!i0kU zz3pIA9jz#XOB7b(avAOdE`!A&=9wHQV=O-4t;H#2eJJNhF66gu*dKe6gH z?gEt48RdNb4GRRqC{Gj1hY1c)3m%FVT%VsBvo5wp84;q`dW#%(idi`apO2CtQyrAxJ-FvB>8k;FNCLHIo0C|XSH?7$SnqrUY zI`UzpnBU(*FSJG}yjYf8v4S4T!UW7Eqj!D6a7~KMQkp`XKLY?8eS_y_jzg3g69p*; zBxf`S<6~t+Z&s$*wNrNr5^#mih%J6o%(YgBU~zrDTY9xv_jv}m=ALy;pV$=YEB)01rDkI6 z%3aC9van0R}>Ik2&gbI1`Zmh?UoA<}BIV2tD zXx0Usa7_30FFOzj$C~ZO0}y48eqKrnvFfp%ez$YV!a2^MyY^>f)}4Ox>lHM8VJociGi+UuJY?W4 zVi9l;rM|lJDZnA_LJGPWE~kwYeubca`#2mIy0u+{NJblFbH>;g-be8-H4S_pSx57C z#FTx5ts9Ze6VOhXIHgvHILsU~TvwKi)E!(a!CjY>mvbCk#2^(9(qWq>% zTp#9MJyttrrPzOMK2}QJamN~dN76UJ+nH@65BDTkG~it#VOB*_{*#hlTFpD&{&hK2 z#TUZVRcXmn<9+y z@OMZm-d0N6@DZ^IN*zBXe>VxS+X(BsOc8>6!UrxDt2W;~>GUp92U9jcFrCa)VGjaq=tPh!nO& zfEo|A^BMfJVPY26zdh2yKY*aFAC@pW&lz8fyW7+iK9inT=GNwD=Nfz;t8`b)K~ zdsQ`twathFkg<0*wbhdcAwlN%Q3-JT5Ny3dtB=_LwI&HSOF>(9xQRd@_gu>U+b>63 z5w6&y90;>8N#BnIr}JbXT; ztPkc{inS21t3l5VX!X+Y5~M*RolZUCaVkro^iN%#5slgP--GkfZXdrJ?SqDfUp!+i zH&86sN=>~p-xa$M3*)6)19ygL@?g-)0$n8$) z(kx88rrzVni($^*?Ph8@8nm`8t~0%bgX78h1UF7L_Ja`|Q^|wQsC;OOfL#t&`!TU6 zssF5Zq5P)24HjpODYN~?Tj@a^5YK0&buJ0RI<~o;WRt_conVv9UomrPAspwgy-7k~ zb}v)(_TC}*cP{eL9i+9rdffJ7v~RWszM1f8>0p6x3YsagKL#@=U8<`&aE05>%lw-|3aIG|rGM!&MS5D1Q+R3%Ix2N^m z-uCNAQ?itnmd4NFXP*1-ymuLNtjsMe6zQ_&2^Xi|XEMi^7+uBOBiw$sJFhRlJbwIm znN25`yN8D+2J|TsFPuyo-OjGto)oL6%=m4ObN4kX?LLMh-<7ydYHBCTE^1q@--eMV zlJzfl@6~@E^%!*A{NAjXosp4o(NZ#67%B%DkVtK#CiN<%;o}nc{jR#=yuZr?O^J z1i!u1F6}&W-NNmg>gM3+Zg!Whl7%|Ae_3yV2_GE)I*sn>u$PSYq>$ z+PU}5T>1G$cufXY(e8K=Gq=e&Bl~X|s)_QRPSYO-o$DiJ`g=Umq4CAJn{z75UvDx|;*5~r5~Ups%*^t^sFY}Ru4riO z=5+oh!A3E2b*677D*;I=4p~;U+p#Xbx$&>52)Q;$x))T3Z!+{?+n)4ZLLwC zB0a~OUg0M&h?UvWPWveW7Ej4eD)XS47FyOLnUuEQ^%h$eI}}x^>F4P5w8aURyH2(} z4Twyz3@{1Y8XR4j-`kxx#k=LseHdpfG^^C99Pt6Xn9jSu1LKjk&8J00JT6Y#fnvWJ zsoH!#9pl;Yl+ASl)zcCV4+A=z1K4XIY*f@8s&Gsxz(l z$&-Vsyr*f3H={*d$ zl$R$|h^#dYXBE3^ZJhE~`xXoz zZ~O`QZk}QcE%#b{K-0Tra%Z2y`Vd;V;dIz7J?Dv|Au73|BI&m^!fvTxViOW_ii(Q5 zVLP>{ZasO1`wAkE=BKBsstPpvaeXt4>_*8-m^K^Tyjx7I-`kmIqIB>OVg3|^B?)LF z1vxk~J*_ut{cipe=WjJ;$qOs^#>U3nRhbd5n>43%L=ls{HTv?3ih7v> z77hV^*$q}W<}M18q_17G-~PQQBqT&ah}Gh9QhkKV#hAk`b43a>hy4PS?%g1#6?gj2 zq4V9IelDQ9Hnk+u4}QGJMilOQDNQOpXy-QrOIl7!(f;l z2P?FrH69v|&NBu6epQI$_;6}S;8K5{^ z&(1D4F)2y^P`XZ{6#T-qM_iNMve+-1OV-hP2P_o0Oa!ye}b1Mi&^R>tnB%iSoLh zBi=bQi)R%9%Qj+-$U-F8e|$n``oSeVUd*z{*>C)U961@?-P4n$0nOOk?%eAZ%t_9; z;Pl}JpjKYC7B(YQH`Es}!uE6a@xgXEYNO{hgccdzq<)j7p6wmJvJ?r%Kv$ehf&30ez zkeL~t52(!6O)K(Vo&tK2HR?lKn{aWB-stZpnX{42t3Q|mUkCB2W6`2r(mV(e)3O%# zNcxjN%O4IrKY77z_I)!7f8xZ?=NFuA0|nomwA|(I$~s{dxSoJ5L=#2YZo}Cwjb!Yj z2FSrkQ6bP15_J0U=aVuI@rOB@Xn_Ik_5UKFa`o^J7h~XS6J?xJfnuqYmzQ%cm5Wx- zO6;sv*2h6DfUf%hcX8yp2hbLupJ4)eGc+Cq>@KHqFWGqJ=jV6TcrW`nR@3~-OkpMC zj2xdK(*kOdqXsG{i^&H;e>kbey zJ+M<9c`8UhoHH^PpY3E53A@FcKmGB?E0+D#k87t$rG~K4+DL_KR;B;p z`(q@A&?GqNh|>2nt_9|l!ZbHhQk@%b^jFK>C03d}$I$S`uv?cljZNiTQeZw=3{452$|wn5+B zy}and&*Q*|qycMHNR%Cai6oo5w(@TRfhYuS(E-?Y{9@Au-<~Sk%m6#pR^$LG^!bD^ z1JNKy71ajr1t@GUeBS)TS{F5N&3)PcNI+gi#oe^c?wpm~^?FN58)A2lk!2x5wCdJO zUvVGJ0s;Sc$z8|azn05)R$Srt*wcOdw;^y~MU8b|mOd``cWMTBMjy~l5lZnblCpkb zU@6AwTi`bSYNR_Yk)2X8NMB>_>st+wB-C3(R&k?McREZU^(*kz1;8o6F^v1Fnvlwkth1|gc|Xh>d^Pdvqj;=C;IEt9?C*+z zr8Nft&nT~_g$7x-=Ibpn`}ix|a{IybcLvc9%D^=>b9#cD$Pnz;IvwNlKj_+tU1@|t z=9+Unim=c-`fNp9mUNDlH77m=jUSJYcblssugOhy2JV&;9(|pWCo}pGT+W_7tFc6{ zt_@}8^RUQW_tY`6v@F&QSc=&k=iYmZ!C(R+;d>Fo(wZadM@CNkLG2$UH4x#kb54Sm zTZt>5xi$MN#Y9Xb@~l&Q=c+b=oqAhJltV;o+!CwbF3HwT%C4;6p#qf(z|mL-^oRtE z-YWQ9)>lQdu)Cdm8%jRouVkbgdaqE2tBuZF(z;Fa5Q&M5ziGaM<{BdvH{SxeI>48^OrECp-#O!&$24z9j>b9i%n*?*7vV z05{V){n|xFf-)%go7&sv`;aox3kX}Fjz`94@B0an=pt9)Bh;<^$}2YNlf%>F7bJw4b`O*~^iD!nbm z-r*+b74s_tV?`iLloP*?C2u(m6j3q6*fLF$2?lw7YZ`P6y6O4lw7M+_*E6!j)l8+> zdrqr!L{lUdE}eFnNbTacxI*DZ-JNmXD#7W(H|wyI@E35?MC{Uj*E3#6OS0A7j!YOMyR z15a3^rta@r`SyPZ7WajA(?7cqcDu8$UjM%nEcFQSQVObqM7Z|4p8>UoRovQZ1gA*a z1cO)mlzCb9{~%5-#9CWa7yphJJW0}wcfTE9IN)g$%xFH@x5?5ezU&4`DsX)r>VF5* ze%t%cNXLQkL!o*wI#D2Rx?72JBvz3n%=S?Qgbx5{SleHtHtBA*@dAf_?($!flWBbM z&n%(;Lvr{z1?}Q-WI}-s=`;o$)wTL}x)VhJICmwA zINT%3Dz72!7= zEe~E;{Zygm`2AY}@m2yf_p(yKcy{dSam9!{p*v8m$Sbs2ZrY$`lF{K37Dt{xrx}g@ zvvB=nbmwc6T%0>bGzuKs?L8*)6J`f76Uo&c?;NZh8os4@l^}}e?7uA!vafzxyHxvb zIH}V85s^@Zfn@AP0B_uHzV5RxiBsJ8C7^x_DKj3S|Iacxg(ZN*Gf-f zvSDN{P5D_tICsk}|4e>nM#^_VYdH^1tmsN5e|7RSyQzM9Gi{PF^x$fKPZB@e`(oD} zL;ggWLi6SAc&=t0LH)-E_DpE|Q2x4*Wd1J_7`EvXfbO6O4D41vq9`qG%$z1B8OsjY za7;3K0AFkYsMAfO&UVG6!hsKndW%X!%)?6^d6#=9mfkk8k{wj;)G0-JE&ud;CAKtm z=EbtzfqiRe@`M%vn}p#;;hP2MB0kpJ%fM2f!IR?`C} zUC~@#3C0|dtMzusS*zGs?)9?Y3J4rIi#Xv`i+OV0Fm}R0&(6Tmnl90tr3WYB?2W0v zo?D=-x-k(+Bi|))di8e;7YriAC1czwaVPyhy;_D^2vZ2@&o2Br&1jN`XuI7QV=*ww z!hQ8r|1c@tLR-A{T`fFt^c{k_IB}rw@~f$=PmE$G78ANuqS{CY&rN*Ord5VOfZN=+ z5-UuS`Ky)wCL}86IJ9s<;*`Q`goN0M+$E*@yeoNan1lEx+EguehiO)I z{WWyPrZ24-&vN1wHunnq9TTaH%skB_*NLzkf5*p4kg(O`DjwI|ZH>@cVpLnw+!Ukx zYS;23zdK(Tz@g|uCcz9)P~XIWzebg|1!c%$(uq^2Pzn~-5h;4t#vX?~Okg*aFK=g3 z@R0Vj^(?I)>P`nt_Oa5<_mJ^?E7|Yfu%Wu~qwFhRqJ0>NGsvy-1on1p@$I+uS7;d% zNE0X)iLzSyl-@1NskadX@^>dw@%dFZs}tqQsbyX3v;0ay(E96KMJngXZVM{J1P zs9DIAKiWS$lKF?`M4 zOL+01qu?^v%7 zJm#X@aDc~QGUR5W^n2sdODu@QZims4UY**yYSrTTHI>Ldk4pRT2$aIgPaXcQkr*>W z)3Nfkw?e(MVf;wXgtiCTB4QIFG`O$KcySDJN@GMAEns_R^%-(d{*1*yO=Sm@g3rMy zrCui^{Q|P%)o&UaJ?9z|&AEDFU5m}MJ8N#ov}Xtj6JpL^JPHOmbr_rnyJ`j?HPj8` ze!b1ZAO};x(G<1Yp}MA*t9ah&j>XM<52?nL?Fu!j9p(C%X-M?DO9|@IRad4vy5e(w zx1Zyud$~vB=EDPkE}?XiU0*N<0n5Ld*%)!WtC#$im7*<9ee@!??!8T2rr^F-cmu7t z))@P1dWUPMCMq|tj7J0_*gdgyP3vTqmSiGiLSRy^lr!vSr+EF)%TG19ZKEdrbNR5hm>kEi3)Tptx4%_BK6B-`7+Q zm^=NGg(H4|7hvNCHYNF^GqJ2{dcnH~Ex zvAw0vv~=7&SKx%5EydubDTKuNk6WkZNPoujczUWs__}Y3EfkkWdV4AE+*@D+;8}MJ zFI!V3^SQenL1N~>ao>R3= zd&&@nJ8m(8FQ56UoC@@df?Lz=x_Vw_HiRDtq+xI#uiy2?kfZ--$WBx?{lm5LJwD=@ zhje3EX)BX*Vh!Y>4La0g!#Se=8=JoGb^{MiR;d7PeaA4~Cs8dkpM+V4Lk4xF)H`W&6T z_95}Xv2wQ)Bd*YgdUigiB$PEsXWp!gSSE9$#tcC;!a+OmU^ArizHb=!+|bZx;r-1` zO=xvDDSF{kr121w;?LUN3p-bFzLvwO72S2a^k&+u5}e;nCwS5|Hs7lrhJpo|JO!+b zDqs3^@s)5}--nDJl^oGN_}-P1s)-K*u96&*STQwqIsE0dRGtHH*@wABlGfkm<|GyF zYj~UXC8jzmY-L6-T=W+MLvj2=8>)0ftB<|aSK1kEIun(>cFQy&abz%Y=j%gt{VU~S zEc5Iun;YKgyJj!lA`zJ02RJGAJMbIEjdUa5`5NiGg+!0$^F&4gQYq6&bx%3kMFYSD z=^v*KVT`Y1?Qf727~!6X=sK%Nsm7XMGa2c!>>?U_NYS^=Z1hApkCl7q zrohWRybhIAxI=peC?fN~HuP9JQ#CH9UiUKQg@;7D)H@fSZ!>c`3edVT$R+@R3n6H! zZg>l|b#}!r$pqFCZy5<4T~vvDSR93GWV)TW>DFoojMfF;n!Eh3sE_%XNO@59V<*`n zV%7MBUOWS?VXfY5y+r1m+LBNFj@73cdQg~o;xsMe8ydV_6ScI==zpC#H^;E`o^v_n zLe#7y)gXmCN~-ziO(!@8>3JvMgV9w9uglDL?+2v5;H`a%LEhK=QcYi|4Lr99t)%9j z2FWZ=OO$)pA&}pBtha)Q8<4M^lLYPzSf-x%Iu6~uTFGd+qK>qI@vv^!n~0nWx3n|s z74Dblxx34YYofA3_`QW*t}tr8==v1kD@!4w~rM;Cla=(GkFR!Tos%w?18r zV|{LbWIMm;Ab_#3k7VL_!Eq`Z7eVFB1{@RDB2|_*9|^Q}sf>d2(;+>Re;!mi5vFD^ zUB8-*OURMb{2lM zR-+KgA^>V!ZZt&uGGpq-KzK>epk3AV*)`ew*V< zOs_d7U}2P?Z+0Df{JN{#0W=|*22$3h?yksz3mB~SDBY_)fwDnNJ(CnHQ} zxjiCrhWi>r2qCG2L{BB_t7qgJ@i2$4ALbvnN-Oh#_Hcyf_cPs1eDJvZOHI502%~)b zD=UXM5N{>D7v5`UoGzZ!%H@td%j$Li_Tw9!YyyqD#+ODa=2qVYKI*LC4ZLy&PX-CO z@F2cWtVucU43t(&!=yBkoG(+Fr_~Fvj#?@<3y*twA>F|Pib0-Yo?%q@X+QVN#3_v5 zr%@9}7KuENMyQ;$(>S z#(n2h)}_kOn{5o(z~o9XOr279t%zgbTk?l(7h}5Us0{Cs8XmD*o?M_V2jJ6x!*-C1 zyt%{BPl(qv6@p8m2yC?nL2Vq**@+Ot+swURFfx78&9EHf8e!?T4*5#XGrznubsTI| z961%9e#|cRsRoP)y?b@O&o&-+gUP)*gWI49}9!q}CiG!Wv_AQd&jbFX7LwlR53$Q~b%hbzn#u z=KIapl*MEfaw9Y|rh{cJI>z;d0hN2hn8!IyN z8g99Kz{WAyQ#9W4jbs_~dN=sJ>lJR?xDS9Rz@xn2?XJ6OG|J#?EnA|WV6`=PT?i;`!mrC_3yiq)BA3ag)y758KT1c$TC_omseSMica&|F+;Ztp2bppeZ zO73{qdREbCMnMjV+KOt`PN$J#o66a~v|eX$=JY5Y8mG2wAn9)o0s+{AWDu*`EUD9t z@eoetNJ2|ev9;QyOw8`ZdFl6<6>INtmmy)h=b)xq)Qw2xoHY$+5pi|sE8=Xl2cR%Y zw12Y9Kd_qBXO?6&y|Zc)17doNvw5SJDyNAvX2rOylsD6PwStGArFUOiNA=rXc0 zGtVFWbxaC5@a+m*=;gEWw>~vG3MDEz#GlL|9y7`F@!jR3nqT$(}n2Kk@`%a?NRHNH6qQVJv-J?!K!N4#>BQAP)f( zI5!beMq3irFkL^g;Oi5ya+Y3b;6bEnRk$LGjY>AI-Pw z8MIWRFV(c(&>fUJ}`b$tJtG?xg}p?Wa%q#*VTaWIRE`CJ-K(GB;>hmHhVi znU0yYGP~uGYmUy3=B1C?!*3vU6B1sGj0b87DY$&?GQOVcp5$}z6}e*8D5G6a>|q{u z~3Q&AVfKZTLb)X6p0pB2u5z|r^|2~z0IAxqb(X~4^mJ9 zP5P~>|GE8%Ixsfqqc1`ejl80d3`!NVjx(#%!v_Puc40v@Bqy4e;31Xou^d3tH%9D~ zuCOj0dw5=R{^h*||D2CSQ?Ko1=KG#+qIzU19DJ>`R<{PrGsUx~B1VS82mrbt)D~S= ziA+6(v#H7}3tCi^2nymeJ}P^ahlYWIKAZ9OXKgmUp2pvd?5@!sT&r~G{qhqTtVUsr zpq_r%@&3c~1*?%VC6R607a*(e(IeB;-HV-d*J;7Qt&!o8xsxG2qoeV{cS~=3^qS;> z@Wtf*tuuX!=_P^PLVJk5x?Cr~U-?(`AXnEw{^13`!RYs*&7FW#r0+%4t=f%< zrq|g@>#=oP)y|aZ<>IawN!DN8+B2)%fgena(gIU@335p5Z`b3_sR1-W%QTdHswtb) z7^oX*j$>6TaeddPb#d%y{O8IJfR;djcTrNmid(M6+SR1KS=KY#RI%iC`)FXDX(UW1 zr1(+yW>#8{QZ1EgYAkU>`#p|*aNPbyW6yUkBY&%E_Q5mu_K`XCw>UMVm^DKkA#cH6Zyt>4jz4X_8>~bG0;u1-pA_3mj zWg|^>_&Pd7I`s3019iWTs}KDC!@rVUidggYy*tqgiN{W#DsrRq)F5L>GY@n*Of9ZdWc%8s|Ll8FCexYgRZ z;2%5yCIha%F{#qq96OTbJHM*(PbqQQq<%Utb^L)irN<~M!E)}HA~L`PKd)#vKax7m zdz#Y1=WFWc<_@3tFJ9?N(_}U0DKzat`|}{asnQ+F2&dK7MrEmGgfylq)IN=zTNnq! z5Q(Ydnux4zKe4m$y_(Mu3xg*iL5B{}PzNZRzuAg2Fd~O=%8dMScdwdYrlk5xSoFW9 zso%&Rt!NDbvR%Hzh8cInCZcdhxE4(Rftb+ZNbve~zgzzBQtiC|h}^{^C2TaC z1%bS&%t>3LKMQJ;?4}LGCO)hqo#msly!O`zeq0IG%+IeChs9rk&C;J&efRar{%}{{ z%>^BzK?2$kLBWPb2(t=M@Rcomfd23GA~s|9^7ZNOj)M{w$F5$csRi(@4SD&suwjF! z$-lRX4)KjCD}ykQ_M*S$k6%wTKFIhG_HXOs$8m!CM`fc{|2BV`Ule~06!@NNc=O-i zWYZlf`Fnxso=Z;;DPBa6H=3du^v4u}ag8jfAr}TKZSc(Zl>aXH<6@ri;Xg%Tpm6#y z$59A4u&_cYiI-ZS*8B!4*d=}22=*P13b854t?aZc#9_kA^CQVYhX6hK*0;4t-u@N) z$G_&UaK&3QwDn(=qN5{q=N{&0vHz3F`v+I+FM|+TPH5*BmjK8D67=JT;rkX>Z*Zz> z_4ChpZyQ6oPWvMmt^dIsys6JptCrD$6aTPqgoX<9`x9X@79=usSmA3hs-l}a$BGI{ zNSX_jY0XWF@TLPLjlLFFqC$?!GBPD-;zup(bV)%^U&@i=VPtUJ!D4v#ZUp=>t@Xh- z_yGo)imq|a{;;6&g?APt?Cugc$!)#2f86@Sc1p{cD9h2J_wpl%0%rR#ATMQ$GUK-p zqv&JmoKfDG2bg$NkqT|BU;_(khm2#J?fC}f{d2`RzC*KekF^+Rbc!+q^%GNNW6JS= zL>w|UmT||f?JQuc$X~X8H848k!sD>-sQ}sq^%wsN=~XGfzo`yA2`u2>p}%tRJR5JS z3B^$dB`uD*K>i)WtzIbJNvK8TFGJHWjw!S7jnS3|InnW#Rr?N!#+Yw!rL2!1I8ws= zN96DQ@-nD$+7K zNUMieRf=&#ZqkDjL5d%oAsG#>za<9aX^WY_Oxp``B}~r%Zt;W#@sVZ8T+wBfom0a6 z!?VdV3z7ZOQz839iqr_Pm^=rCkj8aCI9t5 ziygGWY005eJRu<@8~{r#?1zDljUwa_7{a3na4E!B!eoDHjs`$kRhnF5cT7n!7;tD> zh+2cgm7=8v1Kno>;rO!pIYHW1uLAem!b?+_WHk5rdwtDKWwa3>RmFHy{9ZtAKH~V| zJh|n{oHFg(hIA}U|3!1w<|d%wU(sf~v!4H8Uz39VvQO4v_`s2I7aoRxTXYbx`)23Q z9RP@n?TZ(WJ`QXO^ItUpL45F)zcsqDZaqCCW(IgXU_2xG-v&k&BJLiV z@*WTI%p6mHkld-S!*E=1aVntS;L)dA+Y$`M#1b^}Vx;1H1--g1 zk0Jy#^48`f!w&f=c4l!TmWypJNT!9;0aMl&{ZacBcXnT^1@qp(^f#b7y+$f_*9S+T3=t88r6R9y}DkSgE zvfL)TUF#ThQ5UT5M=?u_^G;Lk+3T6^VjDA^a^z`7y@OyG7|K?djs6_lq%Wm&cQpkk zjfwb`b2wES2D*Y(JY+v`L@f>*(ot}Cb@-R&P_gppNirt@X!;QX^;Me)z&s*MmFfh_%SNU?3Nrkq&SUaiYH_TfOM`dZsUEtEXOLLNE@SBK-f371ZKD3pkzYl- zM9ESKcpzrQkUXTnJEeeW!kVPk2Ry@3carN2Nh@WmbK}o_0Iq&Mm$lM4DoUY)+iT!Usv}>sm9^*sR7GZErjaAnv`!eZUQrH*k6*8s8Fm6Tz(uzO0m-A{ad9cp{;ZFvt2;a2awNWB>Cb){xq1l0Ov3u_wPmEeG z)*D`D0u)J+@K;)V)RtlwJD>HeM*J+kGO%{OcA|LsQCqO!zT{Ik6o6M6xl{-7=*EBBwI5KN+AXr zTlUH_#x`OYyXU&5&+mKx?&qK9{_8%T=YAZ=9IoS9-q(4a@AG_}ulISrua|fAHQA1F z9b;i(VS{O@8?mtbbCZQ-pVN^;z?l#EI^)1Uc^{2?KE@t!AO8p5jx2f)d^}w}d|aLF z`TQKckw5guIA$<`3^Im)J&7J}CG-r4;~L+g^U zdOeV&;LRXq9>&BNZDZuy&iU5b0pHPS3?K*ar;-qP!-jdp(ztu&=ij3znvMIINBiT$ z4=@k@;n{bXd2r;`{u9iDlL7x+Vjl1<9RUmm{Hgpr<;gqR9pO6C&;OQOn2hcbN1CnbV+UC}?fxQ=K;`|;@mP`eI@cdp5n&<%ch5MDE zr}7sry207gEt1egM|jq(*Wwka;0{t+hifESkGpt_g@x}0XqZ+OiuD6;6ulZ7k9D(3 zp>77n=ZcCC!8$pJ75 zY_lBQLGR)gpJKi;u zY~?DDWSnmndUT5Bu>@@>OF2`Z6VxWps6>iirUs*~YAbvlZ@5QR>cpF4khPGVT5QaA zmrw%T1BF9&$|z7WQ|N_Q)@>wIoO+Hj648k_gUM+rw2@BGayeL7PTXV~N7P(wInwQbZQ*o8f~v z>kO4s+iz5Op%xPcI&xc~q2>*X#U9kG@|v{zt7QUTU8IHusL%`~W6it6t`$N26Bf#u zX4l3VI}|MMSBzz(S-1^VU)tlU?VG_M=(Y2&8HF~T_yLk@Id%^v{b_H+TtJ|fD&5BF zg+jHn5$AOlJ!U3GGPm}z-2B=76r2#p7;KntXRLO*edye)CvTjbouAZs-KgHm>bdId zIz&0ENFmqW!XD;F4JdturA=T&Qhe$O{@-Q-A14tkC0coPa^JOFr&8w2uTn-7JMlUg zdReKNHdCZ! ztMk-SD*YO@L}`tdz(vJyGU&lUxa>FRk4P@s(&s%7=v9|j8kX7J!{*R|j5LqY08*LkHY7#pMdyEbHDigiu@Mdz%Lcj(BD zce-Q)$WEs`BduYJf>K7nHPbAL_EtW2H88FQdcZcS(dXU_!j_u_Vbzepdt_0mEjg(e z*k%fL)p_6$%g=Byp*6NHs|9*=1&~Nw5G4tZ_gzmc1w2&98Ow)`DYbiC=L;<5%2_5D z&ZFdhP@XAS&)tEwv|il$#lF1DXTab^)l(brlOmmX1z4&M!HO&!D5g;D(zRyN^B7h_ zdS^J+HN)D8mkY)>-`)*eMagOfsoMIV`nI)^={R=LY03yg?cn~FlYOvU;diBM6KKs;p$j9zh$ti!2#Yz*iTtc^13yo`6v$&LUL zZX?H&87ax>+ga_weIa#c!GP%}T8RUhh6C=Gh>giW(%OB*Zacymu%TJZ7CavTgO()^vUEhi}}cX;}CpmRRrAegxCzyGcw(7w(;#kpQq9-|dx zN#=xvSR2J67vWO1cZ`aVi?h1@AY)=_yq|qgGsP?OPMFMZ1N||rdB)Z-EtTH=tBm=& z@a)@-iILj_J*KS}BSY{=_hjs!-8lxT?AOKAPp6q2w=ps!y@D$e&Z$JL&oGI>ovaUHaMwfCsqj zCwX&c_?gM7#hC?69x6qfTo<@9GE{|#DzybgJr5(zm+B6L@8-s6r(CbN(J=L#Bx*oD z3?W{n8p2|BnmBYe-R>Ow2fX+Gk?&9Ww{#PH8qkqb2k)`pq=b6FyI?_$BxMn*8|=}e z4_e@DEQikQ1GMifP4)4S7%mYINKk(Jr_lQehTyGF zz7Gu*Uw3Fe>3;t%8r}Trf?E4qQ57avI5=N*`guhI4vV+6UmLklb8v<IAwKSf7%lfTR+UyXbY?LJYDF#=G8lxH4$fMeN>tmBYM`-}8jf4Pmu4 z`Rhwj(09oq=8J1+-klju-}&+umuV8(lHgMWp#oYO>gdEwcV?8VbSfI4=>ie7P4$t-Fr_L&^kfe6%2dq4ZrYn@L0gOD-XJ>Ul2PNw<_O6K? zYRzf)xE$V*mIn?N58eH!uRw)x2hC(#5`(HB)aMu7zaQkZers%?WE#a2R2T|aXK|IF zdCBXUc*C|gH)_K!fJOj+YriXd z^m|gotfU>9kK2T9Oa=XZDHx=LD=LDqa)^E>_|BP_m|#6ZSJEx(ALDsK*B^w;S&a`B zbk#A&f~(v|6-sSt&HP8aqKW~ou+kwXA|YXL?%X-cYFD(Z>yNi~JG16N)96PghKAXm zH{Ut7rxbnoU^HMCM$8PHz942-UpH>!#1lM!-EF86R$^XerlAqpUusn#nDy8QMQ^_7 zF~e%N{3>C>IX!P)Z9SX0PpV7VI|Q0)@m9`7lvzSe+Xp_ zy9DvNCDk3kBL{kmjD36b2%}LLnt7OI&V%Khmq$8E0WXGOSB+4 zgB6buE7KiYCSBbABiT{Bq4!Xgj_n+v9UPipQT<4EdzLl-h2Du!wnc2PsuEay(qW1D#Z&JP-*RlgTm%at^h1HHg>4eIVoQkokQ&@K&;IV zqL@g~ouhH1VsvqVB-LeNYn!>eyjwHc zZ7*;l+q$|2o*rZkQtFg1_!`4G2i={365PTj6EzRf;U_7W`rXyCIb_zBbfBf-^-l*TOn`H$&R$E8Mw_AgAbz`%i-bD@6T~5o$$l#K3 zc`Ym~yyiF8y8mCGE+|XkP@7sEurt4QmYf~MBMd7pEc_1m&S9TY=bn73CUi4VK~b^F zZMeF3{Ty|6cGkqwvUq#@F>!4O5wyEOG2Xh8_+n^y_}okNN~i8C8G+O2&EK32gVOJs&-4i zlGv&|I_?p+WfihBXJ>9~oMeWxM$ek{WX<&t43xZmt0EvEFjVdkwM#F6I)8e45QWXj zxgsMijXk8w4GpaWgRkj?qAojh`+anDv|p_)@XCCHEF6G@cOPYiRAZ1pID|BWavb6L zyQKdS)7*R~WOpUY+|8}j+uNI-$*2>QS)$Y{P_aoyqe>u(ImF4sYaBpV9tGqDoFeXo z;{1Deo0}=37CG|B>6teUaoryr+vyp!$C?EherbTs0E^Ja_jbk=fZ+0NVw0PBc1HjE zv!iExNY`7ihj>Smdh`|bF3P%oKPrgf`!<)h0wV4&&yV8_09IP4YP_2XW1(AaHvXf& z!V(hZfq{VyxZqwxP3lZ;d_M^-<-7Fh@EkTtf7Wk&Z?kN#_~@CdPG6(XfuXnhi#_aK zlAuBVJBy0mA3uH|l-g6odK^=2@@bDLiY^`=1A@wbj_!{W1(+2;4Nkd?)dh;nb4dds zp5P3MbV~D5BK5}m!*U~@5yx0rSCh*g3-sj8SBzy!NLf)Z>8aVM_wfNSOfJN7^<`wV`G7wm$)6>)Y?B;S}#K~o0I|vy0 zE2rH%bGwkLE(dd*brCRyvQ?o2HvUu!bZ;XZs^|=WNtz78ti}x#*1dM2I)u=9zwf}j z#8}RLP^z7T)YO9L=wmQ)ASI)qc9EcCw@FSl+EP?dIC~-rU;zH(Aq*ZynKj-B@Ii$? zU(N`?Qf-5%%3;lSVUW}O#XOgOIDG=)k8f+lJEqcJgW)D(7BGDH(>KAacXDF^Y9i*i z-p`S&t3?JO+7*ww%rrHl>Noq!Tz0oNKvxM}PRi0kVUUF1(IP%TIM0GpTU=ahH1MDF zy}6RL_YQEfJDS|SuQ|jlu|U?F!__X5*+Z8OfW|RUS~aOL;{Y-Y=uR?^IxmIHJMi}4 zY-)`L>HwVb1zg4%U`8MauWj%!d=`LwXI6mmjt*UK;?18OtPiOLGI@I1=U?x~g671C ztNm7%l}?F3{?FBj;h-+mjHgUi+2fbnM0|lnIQuh#UBAj{-=Sz`wp3X|L+unO7+iwG z*JB(wf+s7jQj@TN>CIEEyx|^IEu@9eg27}4QnQO5b>&tWKrfVgFYX%>VaAU8VBVgTe<+M)L_ zX&nNGhx3M=QStXNWahtH<~9NwqZ*qgw&EF~1nCD)O)P}Cy`K3@#E$i*q{7rE6n?WcL z`u6}i6;^wV{cCqux}ar@hP|C4L@bX|P<)NKxp~3RkY$Ewhwq;(em!q(RQLVA_mv-=LK%N|aWYcwP<<(;S)}l#CA|*3epIwQb0HHo* z75_d^zgE>-4l==W$09+$bZLp>4z9Di@A0>=`LKX&Bry`O<>uUW)*}RpjsKL0d;6BJ zY97;*;XhW?V*n)%Uk8ou2oJ8SN4l4_%*TM_bnIv0OLhD2I1%3licfNK^5*;_Xo)6o zhzSr~M4qJ3_-|YSwB08=xBn9OfVJ=BD*}UJQ-nDz@7_JaZjke@&zHsKz}yfYw(XDs zxOBAom7$MbxmWcug`iP30dwWBO4QvoH8r&?w~tf?BF|Tm0pjc4R@j~a=x!k7r=@WL z*0a>m&?qh|8(*l<*475IS3zcwHo&t!g#L-K!&+L;mp!qr1=cGR3^J~sL8O6URJ0(N z8IZF}+uJqZwDx=g(8PS;N=Sqe|MxS@g+};%(s4PSfJRms4)OVVWp(lTb$hq5I*XP| z$X6Jou!u+xfBdbScpykOhsSsGLDB;ZOMHIN(a{kk+{(Lu;!7$jj3=67dzPo#R}u-z?ws0{b$5#Mb?h%_eDp$vK?UVT>#7@0MXW^#e9bM?uS|0Gro|=S>^5hWW#yVcJ@R z5&4=RgMlEi&rJsf(@cG2g{DNQ=P3=k1okBggSFp#e;PI{WqcX9lZ7QBKAb-WJtz&+)Ugzx3d6## zR}4cUAsKJ*ZOrTEt+RDG!?Pd2BT=FJRG>;i#I{31y5;38$eaSBJuQJcBv)Wj90IK8 zqRQ?AkG$nQuXa-H2}M{DSTO^&nO0W06nP5IvYbT9YwOUvWG`aI9L8!ElMduFb2Bqp z`d2Vr?3|7HYGPy4!JB*Dgt;CS;fQf0oShdW6h6ElB^6jIC3}-npH+>h#Tr9^C3rDb zugQ)Zcu>+a>8c(XAkG>(4#%tSiRQzSt~wHq&kOF4n@6IstPtWu__^I`gn-QzY7{($ zzsQt~BE1IJcE@!gr@QIY9x0nc;isa*`P**-CEkZ2^U8iV!5RjzEdMBZ=>Nnv1gP8p zYKH|de!44M1n?a+(H?H6HOvT<3LYH~)ww$Nw{#&n^^m}FobU`Qp-8cnthfT3Be~+S ze^8yTrCa0&;P8nXmIB}lSt4FAO)M;6y4lVKuf9!Ihox!}2IU8)X(ese$;^9>iv!br zT`K)5)d^Mt=}7STfG)jJAxLr!y%WP+KHfjs{ght^ZIO)~*CMpZn|r|JQQ89B63+G5 z!=(B96wI90*lCy!#JTOYP?NO`bI=27tZ||b;im$BHQ%6&sO?UdqIkSB`%nr3u?vAX zq3`B+uBXw29YJ=!3$aV+*kvO}2c@QPsl5 zg$F4R7^hayHrw+j`LiFhV zdn)7s2>y67Gh!PPfGMh!#XId{k9ke!Z%L&vX3rHfK2s1vAOA!neD90m6)!NzMv>ug404HPLZ44+bf zz~QS911G$`ZsDqkYGtlv1DmB)LC%N_+Y!r>utis+Wy8#y!UmdpYpU_`XLO_yMlYis z5=k5&RPcHJP0jz-hXJhQbAI}7Zq_Gj3h1Heaun;&qW{{#YJAfPVIz0_o5nSu7qR?c2Ox?>%7-afl8bq2mHDaWO}5`9MZ{jr zzP{k7;CRQvWjJortaNKqZaB6{nkdvY zbGFbWG@F56Tq;DKQt4|R)9+E*v*|YWhUa4SKuNwlZfJTEyRpb=#2EL^85&ZW+1R{|jqx{Zl@t#1b&0I$z5Blp67UQYqz>1WqmaG}4 zRDMwmV!utEmg(?vD|YD>hhC!2^E;5@pZl{a1+lBurSJ;`o{Ds4g4$0OjmE?feU#4= zY%1y9=W)MMtRiGe+j7y7FKA5O-}#O($v&|A{na}w(q1OE4RN%2pJIgbxY%(RJIrO< zZEs|-Fs=Dx+HY>6ZM&{;N4yIV8Ew(tGW9p}y)^J#sn+71eIIk)0H>U}K@jDe1L)ZW z%193?XzS57^n}0IkJ`JfCbRKV*&m3!60p(*?qat!!k2j$7e-TpY@c*Z387rilx>WD zr%#_a{5@Y?LQh?L`3e{9FwX?=o=$c(!qbx;cDAqizz9^41nP79&cr!Si=J*2hiDqsqyg*3TJXHBA<-6}k(n9H(ntUUOn(b;zDF=b$=2PT>MvEK%IuOCcP zu2umCpQZbClYmNbtZ#i zN4~{8lkwH9&yN>dQe*$j4m`|)1{OXla2p%P6VO811OOh@1JyGf8G1n_1enL7Yrj>W zUQmc;1kd>U+<_&Bp*Q>WE?T{Hc39pCeA3K$2Iv$6yxJNl-))Lrx&b==x7?LJ*aU?EZtw$8R=UgOLHaX7a!VLt=f&`HEx+iJT}z5Ja!1AF86tXrsw&y)L$*%q82Z2 zFGa-H6cd*wJjzUk#=6l8vRo&ejhr*D#&-_9?%qhdrO=fXZ0sd^W26See?AsqZFn5N z_)C)!0*o*$(-BmgZ(-$c-P^xl= zQ~kmgD0Hh4pzxhaRNV{ht0_+XUr?iKzCH>Ig&qst%S~3ha|qL+!5{q#>-Qko<S!{%x$zUM<(5WLH3YVE7nWny55pn z{4(m{dSZdsSG=$Y$<)FSXP>y_IdTOUm4z2D&;c`P!OE6DP)JdcSautM!>z>4)X^=5 z_gTP`R?t-IC5pW%Gb0OizwgC0pKCEOdy{@lx%pi1uNEM#pk1ag+h<<4fw97GgFUj~ zy9w#Jj8`J$;O5n_V_)P8((*qF&snaztECrnp;oGUw`m>&#l_jCr32>yOXY8ps(ga1Q8T=VUDc?X3F%*L-$*@y|^PhHLnA(a+rABflfB08X&_ z*{arL^ek0*!{ljAnS2l~bA?|#XU2Z`fkVJz`uG7U zV<2hd+*6NweQxp3kF_{`Q@Lj2PnzDv?$HQy$I(pVz z&p5sKB9RYE5W=NZPSqgNOnc6nt08jYyJS2PdMnG-$hGZ|RH`_jZ+PMhK;Qi&lF6I& z+|MHzr4uP>;+ZqLRsR(IiAc;~a|@~gU})7g6s zMquLm=5rJmlTZ@?lFzkxn_xH%y+nVPQl_wC{^JHr;Gbs&s;Vkko5MEE@&$yHHTMGr zLAPJX^~tsX@rNsw=_vMaGq=&H9a0?ODMND}WpIW2hz0M1!Cd4~mg29bu3gHR0-~Yu z$umI1_v0kp+~r)ZWZu44e~1l6av4bd(uE9gh>#f0fPnU+9(YO+q832M)jP>GW8a5x zok|pb;kH$)2)f+)KTWTH*B$YA3oKNR@Bv~qzL%1k(r9XndA`+WnqSbV4_N=kaTxuG z_UWQQ`+k1{y7R_;O6wE(M0z5?q| zPtF|kCHk4?ZH0#Bo&S6H69z*c(Ht;kv54dJRYUzHvU(P+vx`C*uleq8ml@GFgNNyxj;BQL^U z)mSH7T0l z9~w?`XV~5&PaouCE46t7ix}UzD&Mzh!dPWso*#Z4Aeaebo+NWyRw4MO$TE5A%wU*Fn$Q>XQ&<`>Y1 z{*YB4e@@aa>VHf`=WDds<`;{Ox&aQ~sr~M%r zwi(2@|Ao~Em;sPA`8<(}ZHvFAYR(O8eR~zozXgGW49YW}qR+uBAHmxNY#`LKPCT${ zlM6PWMNo+F-OnO9PZB+Mwa{~^ENf=Q1Q{GwPDG--VtcG1ZhJu8pW|5H7enp2SzQhyX99xbkpU%bDtw5 zN#rib7sAhi>+3CfQeCfim!fd*4=^Qk z{7(@xBI%!0n>f2?URx zPocmVdT4Am-Vjw!?0_l<>HIWrcN)03BCyrrPfm$|g&%RO8*k}`AGD#y5VVUz-B2kKNxG}d!F3grDh;1VLZ zpk{o0AZwpP)8(G^9P8xxww`B(fx^7!j00hrHMXaFz8D4q2}_=D?6vXmrGa8O1btJH zEm|<5q?bn88imvd)&$Pkey%b|@-($WF7KW$VOg8n0$tmGLiNP)lR&xpI<4U?Lu=?KW-D|Erzs$o;!^?Lb34=q zaDy4sn-7mgedeEL@9WebI2Qn9x8n5Q#qZqyC4Sui{{xrP4Rs>~E6LL_&rFnsyV#ZO z)9#`QUgj=KKQIxkQj$=(u^4CvIS@`$RAh7IZG8Qov z+w>JPhE(U+@(h#!dhKslmEXLz=%qFfL4@GAGM>PEzrp=}Nt(5<3QT_CWj=gQHLfXP$T z<@UT{VXBB-Vste2jKQUD55wyfzMc3$H15ETTH_OC=9c{9xPTmE#n~RKu*%IRFXYCn zOElQrUiSXU+c?FoP_GpgD*;p@A{Bg?{GB}WbS9yHa9qWq6Kfbf{R(sadhx8)>hhWb zv9iim!lSH5WO%lch?A)bYnyr8vD_3l2ozx|>h3ulLrUHIv(LWe1a&1VmFMwYh1qM= z%wViTe20(ej%wp6(SI(@FuO*LOWvK-(dV*mBi)6uid>aN#h7pR_`B|vJ-TWvoAZujf;C;XFL;chWf?7RVLoetx>oTERLa*g8N#g{-O**DKL+gc?6y@2v%(%K z-E(COLV^0z9@O)2{(DDmeisCL`{9Y7~t*X24h5%7DC-09>t?8p?DW-3(%JO>5pM-Az%U87S z9mIzoL0vSng$PzHM)Hq|B%R^LrPiGGEfyH--YHdI2z5F|bF>O>8H*W-NDx|Gd+T(w zSElP|fo=Jv4r);FU2oz|i5vtpKz$E7Q(A-V3en$ex2to%#u(w}4qXrJ%RKterBAB= zD1D4d^10FEv!#K(=vIgo8~aWg_x& z;3=BS*Ye5w7d1r0C{%)LY+~6x-fm8)QK8P$$DVt4$k?*RrF*P3j~d1{&%b2pPi>ajUO0y{(c9#^y6dhZ6JsMXMCgLa2}wWLt{nx0jgr5GpCNGa~e%T zB3^#qWxEp0%;o%#5;_NLlf>)q1x;U|(tGl097WF@LxUxN z$?lEK#>5FJo6ddTNUT!N=`xKg6#uZ&+30gNb4^7=8^Wp?wfSP+XI1L%RvxSPlI^1d z$N53O0G0zek*q|?iFXxP_Rzb){=Pc7WNgjMc^8Q~zL04ta*Txbqb#w}zyj&ayKG=h z1bpUpm1j1+o&jsv&Z`OC-5_J+$L8)Otu&oT@;NC-yK8bnJdC(+9m#RG$gGOwi1_Ocht|*r zN>i~_iRaHu0gvfso0soO#ea z3j(bkw<4%Ne@qeespZuLn^L8q6ZV#NwAj)=Gr43sl{^uz6T`u_<#r(CmzeO(84u>B zfjjS?)M?}uw=v((cCqe>sz6y)3khxeGck+i8-m{p6*`^BA(7&@NN?W$NK-C)d%xA= zdQU)%_WP5bZw)}E3s68l9)@Kw{kU>*F@cx!gpU8nWt-4I_$&z^JomHzZp69NnqycN z+=h`Kt)cz+b&$JeY}Qv3zd3tActmCC*}tDV-T#LRIyRSPWO&)eKcmv8XyD+X^Vxqb z$Wp7rTS*@tUz?_2)LNgMiUBA*@b|t}22ppHU;YL4bL7}&nhd&>b>=|Cs~m&lH^BWr zKUJFfazCm5Z|({J5Ot@wdhL+N1|rfwd3AtCQCrh%vV^gTKpPgby#3k zzP0ebclF+%{o4`(zBjum>6+>j-S8Ob9$$FJY`28pZaELOYk=+U`(X|pt|i#H|EW`K z`d6=?VDG9EZ?INA_v3*Wv&9hpK%Mg(^X>mfe47Sp^1s^81De9M1EgZo{1neH)B|3Y zJ}3hB)5)J@`tAK|Kw&v+3zCso|B1w*tzb;PL>bYA)i}NtXIks|aps-`C847Hmg#oL z=sX6o5?{o%_L+J0yy`!f4nMzu(wD6;1-|Y=cXavOW?nd+j{)`}JV@j(G9mv#P3r)g z<4^c?;xiAY4gRO$YYAcAdO(9U?m&|nj9tFV1(tzoUh{kVKluY#jsRj?<&@{8^E`<@ z#Srx1ahM@YQOe>Z^ZAIE;==zomlzeH+V1t0d%cyZfGl zd9G11=RbS%{(>>f{~q6vqFCo68jm=_Y1%;|J-&4Nci0TH`2HtfDk7fz#D7xxGk^bW zfS=^aTXJd+#YmiJkH*`uBR5apgje^=%SrV3@&)|8dj47__wln`Ck{QO9D4h&D*v@- zmDzASsjees!?Hi-(cuH1kP%OQ4>HH*3vl;rbU4mTKY+%SKbd9(KgWD>*#UlC%E}Ec zkp}vR!%%%Uyn2KryRkyH?aV^JyEZ5|;Jdt@H9ffs)7_1R8x>BxGNNnogAd^`jMc}- z8+4&^aM?amKiVQPELMjx_4r}uNvNXvo573lX_D(akIPR*!SEY9^Gn1tx@y}aqEZzD z9rKQ$dtM3YZS>b?aoimIrFht)L%!vUG$aX2uMg->dGT6 zgWZe$W&u=UHC1OTSh;84)`+^m)Mk4mN>)dhg1@lQ z1BjxjlQs=yci38gT#wwZ5F7p|ik88m4~X*kdqX{Jb6j~h_^ZFZO2Mh6`K64e*Hvf4 zZc0AH6m;9gt{Z!QPn8lFrAdrSP;-fxhHm+qZ+2tiMcPJaG#YCxuoGlJ(NVA=dsD1q zk?yJ3DOBf=sFlQh=umeI(u-o9-jF8Jkaw}GqgBqNE3RSJpE5E{d<`hA0xBIW_~!XK zej_(5M9{ek3;Q1z6b}!+3O}IMM*0jlyG)Dm2fvePK-3{|MyTzLk3?(A%|PcBC?qz~ zWDcXVUR$G`Hp45|MOs{|F?d}muyEts#O5ttezoUW7twQ1)AL`y|!7 zIy2)Y6a{r2u7d)+eZGnRQ_E@1NA22G7?-!W($sZgT)x%vpG)VBm>=?42U7od!DSJ4 zWe?zIAUmq$f(&HFa@xqkn&B>`)VI?HbE_);Kd+OgRNtgbYX!w)zrtlh4JZzi=W`xC zGRSK2*H39(s%T>9tFSd8SNLHDz{i@)(0Cd~H1QWOAD14A?LTpx75I1un~dsQl3Q46 zc%5X|X-dp^1pkWK<)fx|;wd{FiUP4WDlUbEps))>OuZ?2vT}9OYe$LqLP|E}>ds1y zPLKxq+W~oAv{Y-Ce%POkq=Pr;^Vl%uam9VoXS-t2HWFpSpHes1@6{tes65Zipm$LK z#{;VOYR#lJlI!aRj3D&@%67#cDl8;F#IT1oEKF?|Vxt6hM&udyy=%t{JR`9cYd-bZ z1}%jSlJ?H2LW3lFYRFCA3kg(8GwJF^mdGAn9!8$KCC5L0S4nXzoQ4T+ql1b|vP~f! z;GFFj9VU{3o!Gwo>jR+U$A%~Bqdy=~(wgLPfznj^2dqcl!bN^+848HPZXzbE9_t4? z=iFl*HvVb(kbaOFIbxRUXiz4$wg>m;!rmLXNtyAU%+5z`+pnpVJLHD-teqUF-Dl*P zSI#f8GDN0!5YDP&4RC=hPC)Pb|B6#^In@31a;~3Q|;xf)wciDIy4w-leNRByArz3~KozL0Yqu>wJN8_%Ku?O78|Gu{)MEAarr>lpLE8+p4 zpQASt;o&YNCM|aT8lRJok0(+=T-@#7zaZw}{ZM?Mm*pKGa@14H0ttaIvoU`6K~ga1 zAP^O4nEFkV0L=Vw;3FH~wB2PI*?k~M7DnT~k|1_QD^BBG)=7y>l_3bb#fA6#n|{k) zesM|S^2tjdj!3;?H|$k7cI3wkd6OJb$N48&N1i8U`7pc1%WefB>+4nUl@)RbLbe+! z6}c6p%tQ7nU)&g3gvFSzEYP-;rZ8X`;8K0_Tyl7C1PQ;T(XelCxIZ@hz~0~>&pxKT z!I2yLPwov^0}fu;8}Kb10c--7>hDvYdxP+X%fI&qkjI+;T?n1O2aiT*H?~_6*2VEY zTPGvXZqhgwhbr!^2XO6H8N1*P(0O;T`buZ|#C7dqW@)R&@rq9Kw;s5|vsceo7Ofg~PEbWEgG1 z&!ue7haNCQaloqX80BGia~RAyN!p0ej0$yt_v}=) z2`F8n2*R2Kicr+SeRTp5$o}U*QsEcBwX4DXo}z0V;WF^`cjyzePF+c6xh-YEPHJ1#jCPC`ldIE?pIXuNzAhNaBj%>!MQ3{?+SS@N#W} zDBSNEdM9JF*jdWT0iG4QVRt8mj}o>$!fYpltAv+l4en$G1tt%O!q-2dcYe0d2-wtR z$Z{j#ZQH?lvN)dI205H{J)U#-;b%ho?UVsGlwJ}wBa~~mM?CB`T2vNi6Uq|B+%vOT zi5{NK@K{o*uSjPjYgsN}g1aDF z8Q2f}HvAMZm|YTeAFM~f#tHt=Ph_hc>kX6B4&pzbtQDkcWIe(=(4wtiMPOI5R#YRn zp>zoKTk|P`h?*Le(n(CUx=nEAP(mtc&FfN=^@(rssIbc|k( z)=35`30q>2c1fkygtAbslC`JLff(mU$vONx5(CIa|4+LElc@f`^K&mZv}rr%^A5ll zCdluP4D)K}S_y>N`QzQZ z@MW#ctjgVPf4|p5$(CtIeV8+fI*PC4##a`t(8E=fi{?(k{Gnt846^<$H3GZZ?uy0M zCs8%X*6~R9NbI8arUR*L5QC)2lmFl=Imkn)_{wH{r7U?!4>lS0X8`u1osNiz@Ag(xi5k?NC%jScaC!>NDg5 zVwbk;3(H9!_{%e6d5xk|Prjo=h(P*`Km_hculboM1vMs#Abzgxp|( zG~5^OvbWg>`Ju)ppyUjHS!$oQGUcd6N-rNKG=<(L(ap#h?ZGf}Tb9=^QJJXxcB8bD zYAD&9x4NT==;${-6*c#HG(tCqL#hf!vckU8NmSE7rK@Ji1MaZhF-&!Rq(a!$654l< z?Tga&sI#2DR0F?EEDdepM*8%^uEo~P2QRaE%kR67OEm@w%)}8zHzqjkBJJXP9g}11 z{0h)JFoFkv8eg8FZ9{zVU0Z#YwXquzNTgB_07HpV*F-7}Ur8txATFkPNqo1owB++h zf9*ymm%@bgw=fUL)|+o4srS@ZB68$mI1I8GrTn4zmSk0uhmqytp)j%NSMH94l7WY* z7~~?9TT1w%6!MKeO)N)W=Dq|GI#ZP`ChwwcCMD-`MES45!M zf2K|#t!SNVDqHu-L&wS1=$eZ+*#wH_@(OGCCXa*#*J59&7$OK>DBHCPyER(;{FSAW z5L1BVrx|#EtD_d>uC3>QfV0E>=ofqC)Cj(C4jCNtL`T}PCfWLJ&Bir)Q~Rr(R^8ZX z*)UCijg_F&y(t5CVY`I+ZNESdCYYu8Rbo3{3YUxZ(E3R!TG=UUZ5NZkd4(lD8FbS`%L=^J3`Ff1=^6Sdrw6`-1doxOXEiKV3o5+XXCf4`@yP?D^+HKOq z3@7+~se(6Dd)V$cCU{uI{}WnQqEkI^HD$ZGo+cRR0oyQ_5|P05Omyg@=3pzi*z@pp zFR8Y-R9%=$yf1KQ3>OxW!uumQ_`5N@pO11VFg}E*@a&|nmZj(-%Z$D}*?Ak8^fUGH zADO_%Uz=7U%&1dlflXIu_?0d$vaI;*icz@esoL}bsJRe@6GnrPgiADAY@1}N2Fz2Z zw1T?ZIVX2s*Zsx>=R_*p-XQjATM8l2HDi}hwAGzwfgbNF2cbkhk4ruJKWE=Ar`J?u zV41GhCla~rldx=)x(cLJUakDMazt1WR-^~dEkc0?UhKw&qN%Gyt)KC79zVmht4L5< zKK}+X{gL&^qGv_T!%HD`XCRQ1!Tr8>#UPL$9B{u%tO!t=P9Li$Kifma5K+hlF0?x{ z1oBIcp_<@g_~{>#@I)85Nc)_lRB&Ir`&uk;WXr!&XVU&c-3S z%UmWZJ&t+^#v5PS2KBE-5Az|CkqetTh1_U)&eqo_cfmsn}>H2=~Y=glA_#(XO#I#~WuETk$f~8>h zAMGprA*zH~6i<>5+HOt~R^O?0V2=amAk^PKls^b4-Gko`+}HmUU#XHju!`c5#&yDg zFMpyVdz!JHaJqU!oFfM5BEUV`w9E-xWvbU;+=m?hSIqRdtGoNXs8xAxS(!|a?#;y3 zj*h-BUgKw?Z%YlIxv>AA!0Pcw$2Jajc6I~-3zNj@$T3+oLUU45INb(5Ys3rb<9(2x zN0J?Ys3EF+rRC*dTdzG20Jm#mW_G*t-8I#{fQwJ!h@1p#K=J1T|AcMSuWl8?*_56f zm;OSF6s6#D+egb9Fao=|^?RaiaFLy|J(w-OxOn6t+9PahkjZ+nGmMV337#*riP@QZ zsM0exfRhPccWr)fy#oU^#y#xpKOr~d*|5eEQN2*5-O?d@%1V^g%g?gt};(1zu5-8R-M>WjEMYL?&3ZUEv1ouTVERLwodR+NCS zxVXwh5KAIb4-b8=rnIZLZR0j>St%?A~J0`z&h?o*gB8c^w&MnY#ExGX05Dv zPfko|p?bbQ4V zw(SKAre*)_id4pCX(uhLp?NocX!`tlDdfCKrC5IPe9upb;Bq(6){cUArWZwt*WE=? z3+#682&MU;7HVk`;XO@i$g=l(yz@A$7#XP+E10)WaBfM@m+zN1X+# z)NA}UH?sYD)t^@)()Qnv+dNus-dxStE$q=#)YatnO)x9Gdl6POnP}zHDv&f?h{F>M zHMz4gwkL$Piu_5Xh^na+7oWzXLQbnw9aWn%1*R4jc|e>wKZgNJN#$;-Qyr-}fvZzl zq5UuxmF~J~*yIegN1r%bQa?h@IP`=O zJc4U|d=A&y4@k-Q&Y0LBJ7g@&T`giKQ&Li-{THl@Y-=qwG&DB9%hkPajygNrt;yRb zSHID5V6%N|vEB|CV}HJBfe&rizaTsNcExCD^~%ahDZGPI)Us4-w!f$csFoFjLzXyr zbmQ1Z4pB>Ne!lSVqt%X}^?`?F0n2}sS>6ZE8oLaA%A25U<0F!!%H__9J$?VRB z<1u;BTyi`H!3%X;?n;}}A5hqiR5_QXh!eshBC|$QK#EajCALLSQAhp+6pYnG+Hi=(GR@NC%Ns+k!L{LAy5H0oa z4k}weqj+PL+}6HcRk7NsViy<~2u!D^CUCX%LGv-C)pn`cenqc8>S>QwTJvUkA1&P! zwfR){2G@|37me}E2C7K z?n5DD?eU(R5oWuwu>rQ|9y^IaR?U5Gqb}~!7j0rx)_>VEt-)Ezn7Z|{5(+S+M@i#c za_&0AZFLK}q^)RvIFLN^v13MCi#4k;3pJ~HMb?!@fDb*uBt~Xut$I{)g3%6XFV)qu zva*0acF^6qEyDM#K=n7Zzvscbn&t0Y$DXSx%;bLHhcOiK+euIKh>@z5S?`zBwB-_WZ078OT&YK>;AUOc?!9S{Qv}laN%0J$3oE z6S3IF*~zJEYlNoE&}IW&-RM_QQEOedSSVk{V+K72@lf)GVV@q|Dj;6dyLWSotSW># zqj|b^cIdQvBC&2=23!chq`dnwA$b*bb+(5N9TL8JwR?SjaBU)9-x&ZL3Y(dENk&>4 zE2zc|^~UxWS>=3)Rkn;(-pqaV>eYIF$(Jv8fivm9#iE1-a#O`ai)^aP^;MV;vi##P z<}~f?KhP-|bXZwg*(>!+3M)S@8?%M+E74<9Vs%}LKx2{3>)_dnYB^?X8%@;A24LiZgA`4 zd%F9BFMu|zAn$Mzu2b2H0TowsFqc}nQdSvwJLdVNljcu=2~lcR@jcnPsen0hi1y^` zoKkR|j2WecFXKMj%PlSdwHd&!r#N3KM%$rW>NK7Eqa!*I_nK_0iT?uA6E^+1KZ#e7+t!n_F4A@ou(id!=n{sfk4!Rs7}8vD$T# zOKqY}l}}!J@IqxTy_PmoV7L9}EYr>a446VMc(m$5HN&Hj)BJf1ly>@fej6-v?5%40 zX-&(lo0Oc{4!O}@LYB6S$HY zVEKIm19@Q^Nnza>C=$TOwVl5$DvA71vJZfhnP2v?eE`FAxE1}dGYmvCE3y=TfhXx$ zHa+>9E!_T?sm_cN0FZl{MyuZq=}1?y0?@ihXnO!ujiF95fNBW!18?8LaJ8|oZP?D5 z0tFi{4IG)MUEOy0qL-a7a0Sr{0NvJ}@^16>r33eXSf3ln6S#14cG!QkuX?er0Knp2 zh@=u$C+kMyZ=G%S9`+?t0G#$ETs1aQvJ8LvPi~BFs~vsWCSWZ6jeYBBk1#yuR};!0MlaZ|08GTJu!|9Mf$&OKWrw0~YGjo8R>a(S^5@&lR{hXS|B*mVhB=M^_f)&` zQ-pDo;P?YZz^5ttPQEpt@vq-Xvkl#FRHAm>N|8pOimPUXLnzvIgcKPUAHZe*$|-`j zc%OgWDmSoQGvG^liz-G)S!s-!LD1AU8BkR*5>%jl#cQ#aww|{@BJKG*yN#dbMlHa8 zKLCz70p?YK+1Hk1!>rka^m@yPwguYawI&R&*nHNmaJINw%vaac^ew~D?u@a7bur?; z@cN_gL?Ut-&hJRNc&On@WE9o8{Tu~@#CCtk$`?kEq$&MYwOK;AhuUBzF216oqKv4M zzl5oUtW1L{0r$5joxl|b7{ORyDXYwdm>qPvx33QYKspF)Z!J$h1X%uEfHd6}57Wxb zcf@O!p5W!jUz^x8MY4>N=llBl^2*E29;OFo^HV;ziS-;hYyC!H_fu?$4r(uo8~+}y z)bI7}lqNP}SZn0Mg^;|h%qX#$GMi52t-=K$ZIhBXhL4H8vGRhSg3=c2Hm~38GZ~0| zG;x`M{J_bSg>0>djEH|!`6t);x##13+b^FG@zVF7RD>NNkbi5L8yLJH`Qa(R2)m(V zOixxj@9tks^nmiLKYqTV{qc|1*0>4X7|z(1ts>jJS*4tU{CvV559oi#g|A(k`=qm} zBsh2_kj8T1*gq$LuejKBj;pQrugVSc?@VhFI^?uhr%pKG7>)t_uR;L)$a0d-Uz;Vm z%>DYLF#cMKI?lU$H_0|A&u{M6djajlX<$1(NiO=($um3SD)bK{fn;vo^cxn{e)EK- zu_jX!6YS>ZX037o7OT$iiYt?Cz6{F+DBzgi()?Z_xk^z%!3Vgq8O70!m~6eY6opU_ zSImHTFIuc};xr?qTMXOX+RBPn_5T-h^d*M^mTrpoCd-w~(jk=~)MbRdX`YQoz43XO znQF00>&eQS-LW&khwn-wr*w4F6v|pYz5^dIpB3wEQC`0;aQbNUx$A0CXT|%0lf57E zhb^NEOcOi|0t}ntz~7IVeELky^C~MXjI(vR8Rv%3>ZAijTb1PWo}X_;d{;ZkEL_3w68v20wi`!KU4{25YCqDRA{7;yrSK2`+0zs6}}T zGz-{_W2`=vRDp=g##{CwP;R~+hUY}|WUm!1ar+0by~>U}ubrqRVtxmKRE5BllNeM$*4#`RCkX#R_!}?4sLdZ;*YAE#uOy^lwrl8C~U^M_warxE8v^_ z7KWe!Cm4@xhC>ft|L0h!$svi$t?{&vLoS@!U2;UB23cSVc{wg=NM_*6@RdIS#~yoJ z0}pj+R#sN#=jDyX8d62b7-whagw)hjO7?Ho>*@k+$>`SEv`=^_t+v#7kU#AzA`gq> zcRRP;&+vmx9z$QeNS_^}rV+2{iK(dtUgO^#tIo@VWcUDC8kVFL)ZE_xx5YidCkxA) zY@u#cfIWmp@PH>hJwXHo0#*zK4mp>3ME>(@Ap{ z*86|5eiC!d9zNdT`Vw6vg){G%V@8napa8KHI~v#O$4GKOx-u@I-65Mc)&z45QXFj& zhwX!x-z8|l$l58B7#Atrsq=22b^xxO7yn5e&F@qVLy1!vgK?E+|4^$xmx=m!g+%0I zdphPcq^#g@q$KH|3ee^$CHc<@X!bjsX;^Uu@=V9IONeA_yg)}B^&MK*3t#C@6n#^w ziW1aGmiSS$r^LU1cRjt#jJ7ZVxcUQ1dl428h1JA7e2#sFU0EP1kU12{!ayNGLgXpY zX>X|~_wCb6ye<__HHOV%kfYj)YspyLwxqE@GruWI(7$DDK+Z}z2Uev{5P_F}SMmFR z-4Yn~fQQBRicvlhN z1ki{Uy^iyRujivf-Vbhs$%5k1B-;7%9z%9S8OgcP=Kp|lX~+`vKmaUE2w@CQJ;L~& z>TV{JW}+9~6iT*Tso>%-ikI$J*$IK!y`7Nk1*vgx9X<#$fl@daDkh1ViQZ9xS%GZe z!*bKT52-33CwEm!Bmq=NW$CudRkg(ly<6yQ-d!Q=Os_hRg66_AxvgLAw+>we7} z59(n@VDSRAu5d1a=y)m$9X%6Tgmiz8EG9tBEes8>CwKg#Z|?w51Jr_T=3#yDm5VSG za)BLonefv!!GwY-z-wLphxkKA%5P7BEPw*pDJN5I?|mTgX8J25$=9j%c_#raEnl>E z_nv3h)4dD|s7`h_ax9ru^u;7 z6-nGOD)b^E0a*TXd?j!4fWJVEo3HpMNK|3!Q0rU!#EMCs!1BOHuWGAN2*g~O`9w)ew0XEDLTMZcI)%5g8( zPhe~A-ff8%@ADehHg3Tn^YdN$s`7(s>9$X83-XDxrfZvRRrA4X>+*m>F`S0EUQH{~ zes|NqpJ+3O@hB-XCgD2*9APqA7v)ofJzJf&$powCrXF?-ME9Ek5cJZxym8U_ zG}6b*18q&SYs)R>`6fg{_vB_K<^```z~h!*gc`AZKR#~fwomWuX)gLU4utT_-)Uk{-8M4K=1%#=0`L>JNmSX(EcOpxr~c-9z0q^mm7&km>XA@_m?}hEpWIE z4`+&2ry6gG*VJl9yDb;5sW%}WYo>osobn$ixzc_S!k8ueX2XRG7C+iEQFKr_PGf*} zC>mS9-{Fs!Su9C^*YWjw7hs9UOBZc7q$PxqS=72i;^>q0pWk;n>X~$LFY}GtNfXWi zH)DP>+jH8o8e80t`FZSt@G1>?Y3%s$dBzm!5=@#OfiG!GCffYYLG}AG%i-Vp)MBN! zPP^apfM=t&bMLHZONZ#dVjVdL|BzC6g8p9okx1ew8m%*~P9gPm42eoy73vrLUzT#{@U%{ZG>fV=y z#i@-kD~-vwImpfqUd6WshyqYf3rs;H=17wRV*w6I|MFQz`e7Y(uaARIYSHLBE1ANr zQO@3hUqjo3PV21|aVs%hMC@y|QcR@|S;;s%MK79ahF&W)Y_8-q#Ed`Z6{zI2NGLEA zs0_V=`fy64l6r(8CRV3|7aCYOj-l_Y+6#BYQeM2;N%C-ybqNkh9Vu|>i-|C+H7DlJ zuep(INAqbjR%J88!z9De>~;J%TVf*nx9xOZ+v&KOQ%0zQZZLxlCg;zMpr?#gpG!F+ zAASwR8|CC3=#Wu+3xgyL4~<3g7UeBnW`EXO<~*NhX)0H~=<8-HUDz!Es2o$ivtrZ& zq`o|3&7g4pX2ZS<@OGW19hi13xABlm<$8dcBG(|*)+P!p&e+r@Du1R1g3T}15U(-) zFn_`=xZ@O1o|=Xa^5*t;R*i1{$bBFVId6(8`1~YU?V{RVjJ*>Xen2($LEIaluLxI! zZHc1-n_geETjkh+A5Bsp)cBlvsSbqq>i*JCxwZRErRUwXX%mdHSwi>#|^-y z6V!PI^L|KzW6()Ud56481?jrd7Ri^-jCGBJ^T{p2Yegip*+YC*E>@+Fn)H;cNBbvJ zP&K)NiIXmkfReCC*E31+gJ=`mcc(O<#~(AOeLM@!f(L}pNSdCR%+0)_Db@0pdY1u3 zseUrE!zqHbRy~FO{(-Y)Rx{Lz(UDons#rygQmKK$3aJi(EwX&$n_6OYmv2sGOkMxNgEiv{6F(eW8 zOB+49)x>g(0oS(IZX{P60+jBtf+nAHgv_xwqqjb&8WH^`1yAcKa*}G&c@avgvh&XU z<1XcSbuuGa+duwX(7j;$o3{Cb`0Vq3UEwz3x3NRQt+6NnfO0+rGVKA@v|r@R=Ux$) zQMoMFlGU<~dHS0qc&*j^bG}sPlrq;Hy?Li!!6UJ-(CO=50d<0Zl~e)Kq!t;iNURX> z_-8Xjs7}_#b#7wQ!Q9qB71@4igfXdxSKOnxkJm1b(-ek=uB?WE=OG7Pf^>1!%ZOVkKya{0rOvHSxKFx+&Q_&G{lRPV{Ui=>w42T6 zG#UO?Zk`5EB=4jB>w2EFa;3~Gk#Y?T5|NCI^GVe!4h$2IYpzrXRqJ#l{YfL)5~mLF z`ik0~Ga}~alQ`V+5&g^_#N79T2XimRGqAx2RxJF=+r%vS!%E|Yw`aebnEfu<*+JD@ zx%B|h4R;57dzUe(-k4%ArE5Y;jp#pV+E?aBIf}BbHy*~Ca{0TMBdalkTO_R?CW*(D z0jWJy)tP*5D`8}I&iHvf54fTCZ0tH9_ahXr`prI#N<;R^+cLfrBgk-mUqOtYOj$v8 zo~}&ve7?J@v9Eo#Gv}bm@E7tgD@9IIuxa8DAFR3Zl*;zf{@D8)*H4JNKzym^N#q^I zW$+psx~souRZ<7kS+4==66()yWxvY20Mvc1q7bR4JD(Q%w|hhYl7|4KjjQvyNTr{u zEW~Aq&i=;Le_rxbMgGlDyrwd9=;9vbg`>AoV_G*$+d{p>JWxQrRN+8RRXHT2*r(J@ zlG(byeSWf&=#S5PFIr5>J~{8~PF%?Ln|F677WY=&Dx=dC`*baL+>4x3Y22?8rZh}Z zyrzisv!MZl*WXTQnx^oY!fbnkeLd1E>{2v6PJv}pd4Yw>A4j8KAwLM?qZg3HZ+uz} zzA@iYD6PJ##ELMt(T;RZRWunS6a%PS+YCOD??N%Kx2hp3+{!jtGDICyu9_zY&tJnw zkS3-7H{t<1NNA!`~gLod4CcURY-2QBX89`kM#{`oQ+e|GYA0^8B+G;rQf zWnpx9O$&OnHaQ0!)8MqMg_&_#jXS%pMs)C3fDv%A8qsdt&aTk~?`1}2t(>b$MID0o zpHiVNHO4s+cX;+ETvCz0+8%vHg>&kJEI@_=M)j(T<)q*l7#U-1b)#E`6&7)^l@)8H ziW(|$cO`yLf!9BZv{XF3wR1x%Polq!rX_js>Wjc8XRyE#g-Tv#+M^png?E$F!ReY0 zx7UKUzg?%Y`=j@Vv8N|tCy7LW5n*?F|{d3A^jO4jO5{!slstJ z=>n9CTA_OC&!P7xTWWsut8lCn5&K{sj^5MvftsAWz$nyM2y&jxlUB(lY(GtXCv$b6 z0GlUTJhiSTlYNLckCor8K1Wg}y2IHywxF^@k;pL`wur)RJH*D_4T_Dc4UXk+<8O+u zNv_B^%Ur-Wbx3FfdTLUm=@?rI1oEbgv1-*=Lh##!HRH5pyt*adX>)t4oRq& z{DCz&l6}$hK^5PbbyG+ReZ4$MvsOZEun~unjn=Lv77YUN5LmiK{LPnV-}oH8gK|Vx z*>+la130+>LKu*_5ZF;8T!9^hfrOKa1a1r!DuO^^qfuf$_<6jE;yy@Zj+Q(YRnv8| zb~sxI4=wZg`&ElEzhd7I4~<9}9FEy=OeKvwBNlrXrZ~zi%GYTiajp z7s=w9QDRBdv*e+9&_{{o;y7;wXx)K{2TI?kQ8rLU(Z2+-0Lb9R93(Zp?<@)XnM=1QAesLY`km#D(~ zBzlLvBBdY3NPCQ=+y9eOwA*o>B0X=o1bTAtmBKJnI%wnsXJ<3Q25M@vndeQZ2>?n6 z)rl{H%wN{RX8XH)>;!IEFmT@BmW%b8D7~ue!=Rrv2oM&p_Hc|YlFxht#uDuptm{cM zKXR5zl+sqiO}^hh9>8T`gk_X%f;53eWdZ{l zK~JGwxqz1{xXX_PKc~63CDQQEjO_>O4#WYE(pTY^n^)8m=Asu_POMl6jMB3jjToCy zSF_pABF_I(SY=9=c};yCzren@}h3N{_Ef zVa=7MfbfP?IsMJGlC0QJlg*{bER`LE{;z!(4gzg)gg-}x3Q?l)m78^Rrf~GXXOTQl z06<|9y&(B^LW2b%#zwYwen5;UH9sO(?&~wCZ?)~|VC5E-GB`ftqxbSzf~Q{E(Im^@ zL0i`Gx6A!Zk|i*^IrgA$H5+=UmUYail+YdEm)P2lNoQrMvOkADKAc|QcbU`ThI|HPDE;?k z_6Yt1Z+gpnyU_+Nnh%}z;uB+(R#Qv=A~OR9mwP`k4BS7UWu#zHi`#{=gs<>l*m?B_ zC{}jDS*JT1W9hycj|G#?UXkPE!SLQWJn!Vxx3bn}S?QI;N&4d)E7aRPAoEVky~1~J zaa!j}`t(+qaExe2PobAU3ba_gC0eBK^(TQH*#U|Dd~t7VgIbxT(*qh)?QfxO$0mY) zm7sMCPz=QK?)+euKLYi9!^qAC?jB$M_k7$JY#aaZLP=Q0wNd7&L>YTD4jJQC}-o)iw9#$ThKUzq@BC+h2W0U zuPW=L8$3|~s}-)lM&2b=^di71LusReW;BnswtZ(Yen%RdX=Av|GwoZ>1hXB!tk_Eo zu9X6Noh|wlQcY7Srq$|iR)odl74=EAR#nrND4$wt4916$)%ezZ7x<7n!{)5#9pQ_N z&R&rfTQ(7x+|Sg=@tZI9SFVwiNH(IewS@Y_;c`5ChMJE=G z=HcGRvE{Ycoi%E* zOtHFV^p&4l;_oiH@jZPK(ibx9OZe;I&kA|DKZkfJ+8S}+PqryesPv{G zgNpJ;n5Fv{duROp3qJH*RpIErYW&k@s@qmP8a8<-GN}6LcW4gCaZv#~YiqL1T;zxp z5350$mgp9rGC-`g8?iZQX>{HK-S6k0y_Xo$Yf4elm`vO~UTedZ8#^Rf+Nvq;{ zWUx6z#-gRNlI#*wQnPAqPzrH1s^d?269o0mGGC^0l|hx7OoN;G9D7gzAWi8|YzaFg+K}L27$yUudpjT0W9A{Qz*+ z`k`J?*Gsm@d0fmp7(Zqt4?!S_mIVbO(`*MUbIdFH^2+QNTkV5UXHP7$Kk_+x>w!%y z`$Ry=#RVPyUbMlCu4-$=LEnrk6*$~1*HZ;H60*onEd3W!nN!vSAMf;~ZAfTDp%9~` z1?@HCSs`_k+c{ezTb z?%ct0)2ojO>QVPcui{sq#Mad8d$eCN^8YJ9x+!t!y_~=7-^Y>lbFRIK!=ib_>4HS(s>5o=6;`)9e&neUR6jZ}H=aN{Z-W812-&sBIPvcP!#W`MP z0ou;I!KLD%h@i<*Y1k@R+kaG4H+4#vGi4G8SK!Oj_dvAa;a6K@XTH5`^8NE|%qFJ7 z&u2!oK1b6#xs4%g>gG(ZhpZN)BS`CwFX(xSO4%T8sGzK6-h=V6Z1o>&bDFoMQx#-leY^)^)!j* zh=J$kc`N$$eLcKYwjMeKCYp^`N6-eEImS2Q3~G9^Y*(v^%e@=Ljv}KLAF6q4ZM0SV zvhabMhKtcxT6ltgs370fcRxK)o5=*iO;vcaA{(iuTEo;=G(|aET_CVqNABpYZoc-f zaeq5J-X<#&xsD;v)&6|TbKz^FViIHP7llusM0f{2)>F#Fcpj*=s{HKo`wix}&*ab0 z0!8WFYZ{I3=|x=AAm6T9@=uG*Z_nE-G56jxCIr|2b`^t>TL3NI|M%Zq0zK9KE+hs@(pVxm6^L?5F4#i3Jr9oIps==-#gRTp0Oj@=y=T z&sXJI-mg)yxKcL*E=B?d(g2Ba0A=4Zb_vvaxL;0{+jp9x0`Nz_aIMSTom3T@&Cr_Vqh!(RmJ?DYT&C#*Jr#oR_hG+ zcgP2Cg@Nlh2yge4Ae&bL7l^_qNw-1eYzS%RozCukejsA6Fq@uOS}-_PATYduaanDf zJ4cP!Q*(*%Bl0I%j0Mu%;o>O+l2WPhl*4-;{8RZotf5YjfC*`*T&CQVO8tXD4l}0= z{Ci%Xq_sE0Ne(4I!-`+&&kYfN0sgl%lP+jQ7t|b7!wPeA&-LC0feR?ee`L%Q3scZW zwY%nHld&^8vU`#Zr+;I83yyQUqKIOwx76Sz3LHk$t{M&Vb*;v>1#zbDJ+5kSYEPka zf}m^Y|Jypzi9w>>4@6v%8oWvw)~WcwG>OWW8a{G7@P^Q|NIE<9Q0LLjC**@6&A8JS z*wT>fX!nDg5#a|O+rtYm$hT;BrU=<|HY$7PvAu77MLwzfW3lh>;s3v~u_~)*yUzjE zBmar={^O9T-+TNA{R=Gr^OeeT693_S3|&RJp>~ecfx}@+g^{xlQwLV*WiB0anWe~h zP<-Fr98Iw(Op>*pN*cHaPvV|lI~RZs)oXXnM1zy8OenWG_m8!67Y=M=tX<$9DQGF& zN=WJB#dydMDz4H0j>PdLlK^u@ZGq)ze{KVKVbfZ1QYqYaV`ovlne zo4SNB+RCodqnv~H&hPI$Ix2MS8q*h0Ts`nTkaK4^x1L`p1Zqb(Kwm$AQYJL5&88u_ zw&&eYep>kwQt>{C*hrdhEf&cy>W82A#?L2~-X&Brc`6;gnVkX7hSkX8j?s>|QCu|H z!RdT1`P=Aj0n&XuG^K$CQ+3$17*iBDcla-KO3{}tbDI-V^mGq!qAWz4r2r0IZF>(n}Xje>VUs#Qe zeOn4GN^z*PEzyKK{DsD$qvddAE9ps#e|JwcA|<~a??Qeq@qUzX&?F**z0P?5gLfHh zVL!eKpy(5et7)fI&;KJ0)_qKe6OhF{P&q4G;SdzML%vG^yx)SgyR%t{6uVd=GHS~^ z88#wJ9%66R4!%m9UHkF+xQdWB-pvo+f%3s(+uB_x>WVetd-HXUZ}GpA+%8;7JI(rZ z3A1fL=)qS`(#gyJal+@wVl#pfjJz3HzGb)GD!v0=rg;c&My0=@o*)k~)5n})S#XYJ zS__QS-!y5(AFV&ApEx_acFy5^kRCxLEEQ`mkQORIwD+X0A_?YTlLis#Z>gPRMFGg+ zKhW#A)X5VXf4#+d+x+h|I7~xfyN~Mh!(KGvdR#pgt7b%I{rjQMF=j7-?iT8 zY(=0(enZb&9-e_hAz%^e*$hrUxzCruCRMFAa)B#@q`Aloc+c0v(71-1p11C08z;_L z^LL=A<}eq59bJN45B@D|GYWfx9u&Yr47+UytLyQ9>oNXs^Kv!7 ox&NxS{5MDhiDt(2zYODcc|~Hd@PvS=3C34p8hYx*YWJS}59}jjJOBUy literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_9600.png b/Notebooks/1_N_horizon 3/sim_9600.png new file mode 100644 index 0000000000000000000000000000000000000000..6a44983a1c334ced23f31978bbd430804a228d6e GIT binary patch literal 16400 zcmd^mXEZ&l^CNywt-R9qmo`YF!zn2^hd5EP^?O6?-S@XIK2MPU9I<`)65R!J+B5Qnv?cj*(4+E$H@JD6*%#(wIXPawHD_lR>9EWm| z#^`(3ct1zs9N>)bsvbNaQx6FO;d)C`qZS>>(zS)#AsihIWw%J3-S)DBUn2jBc>V~k z3BZKOfxGNBjZ*nXp3ES!*H|#QZ&Ic1EsrBDuP^ng-(Go zCRV_Ri}br{bdb|rG)14f3co0hxq_c#mnf9PXcC-11-l|qauPcgC>JS=BHTM3MUcXP zleU8^>tXw+;Om*F5hr->Uc;W4mb}eNMlIRrt2wuxO@(`|>G%&X7 zZ;~|dP~ysT;(k2(IC5{u4fn@HBIPlB2>Y~NU5Htt_8Xo<24jS+#sKb}g6@V=f0j;0Q@V$?1SY4bnIfcN-r3=^Q%q}w8YD+z|HOl(pxM<7WO}^uwbHdFoZ|3`IB+zGs`1^) zplc>|2a6{0T2cC!V9NLIag!T%JGPDk%JcSeziNL5d&i;;8`4K^1e3AKO=HRckxwF^ znb|%8HE?Ht*cfnWuVDoG8~7GGjQ6%Hqt1bP02ZNX$3W?5hWNR2Sq`xAX?Fo-Z##Kf zsV{q{Ie2@2d%pY*9&wIAJByODCbqDNxw6Se+{j;e%Y3OQb;CH+Ru>BaYS+zJf z_imL3;MB)f;pKcv5uyvJPM+>496EQmyariNJ6sAgOmDz7tUw@a>ogN$ zh4E?o6Bl6yybd_DwBMw-=g-)Rk)MPhSK^*GDOG21On5Po5{l$Tw#KEeN%$4B$~)_p zB%vZDF=N|SnvTCCISo9=Im_aHKb|Yqvx)ELewdBIJ%DGBf2B7dS6P4tDU7&8Z4;hb z@m<B+@zO^aBFo^T($+KmV=}zP%qDJhj*(l5DS+` zmf>iHsiQZ#p}jv&`XZ-v3f8JOd^jM_nhuCjt<4nJpG&=xQ1NxQ@6s{bA{4JrN)lH- zK3ETf&P0=bE0B=2H=)OPko}6^faIyvw!~EduLWdRcZo7(Zz^ zpuI*Y4Z*t%!|wLrqvp1sQ~Ly~#g6*Dm@*+6*2faU4zh%U~Sm1R7ww) zmps6qWd0K$HdU##< zlWfB8_2M5Q>jfNKh&Vck>>SOxU9T7xaa)ggOeiuX3N6#`+`K3Bn^6mP)$M&}v>Zv0 zib!m|!t*e#?(?`iVC!GgUyO`Olv!`e_)Wc)K39vZ|K+o`=|i%tL_0whuQ}A#U1T5X zsU4k_G$WpnD2&^X*ajgo;<|8Su%Sf5nk8duP=TE?vfL~=U<==nB{@zpKH7HoD;6J( zli2}0POsQ3!))ggJYUp_3M_<}HE!j>QsgKjlJU zzsa0k4PtM5jm)l-&yN(lDe3*ejlvaQ0h;9$A*wAQkQhaOxjW*a@4Pfv76M5&sg@fo~#_Upl31mA1QKCz9 zmbk)41|(9t`ke^QAJDIn@8aSRja{0Yir3?hfa5*8>PkqKy3k%TVcdT>Q0;SUb1K3F zUUi2khxASwU?o}Bpdw@Yv01fF7XcU)KuqJ^3(ZP7Dz*=SH-EnS5T0UWb!?U0%9t2| zy09Z6^9XK^RJumirTG@Tm^TWYYiOu?FmHN@h%B*#6<|&=zi0hyEf28}4PP%uYZB%# z$SN%?SNy?zAn%pWJV9R~4a0yIFGQUo@x_! zmL)YuUdh#hB4-Q6PoF+m6NXnVLsbG|V)}7>x=2(uR$l8|yPS!sDeb=Gn|>Yzg)h}U zb7j%SJ@g?zAK=l5;2KtG5SNH#z40PJ)#2Gebf$9uwCjDYKi1jD{)T2VFNa)fb-Q!* z`-{vmk^$?^#rMi?Aw9ocFtZ=QdQq1nfH=PV%*@Pw@v*ITAEwRvhTSPKuldS;Z~66b zo84QO#~poh1DFeu8d8YqJA`ya3z^|3O>|?y*N46OtsL#`wY;RRzq&zx5D?C_w23to zDeo;s`>*wy#iLO9VPPjKD=M^*98dpzQ7vxssb66q@tuqed77agyxqOMnyW1GmT3bFw>xKSmzM6|8fAB9Rq9Y zlFUqQJ2+e$85S01Y-q?0B+Iy^o0eLO0IdWXpu9CYe?Yp=EBBRXk`{rg1n!GGFPs^a> z{)W9uy_-wwv@;ny!=#?RKE5ALA8vTf8mGB8U-Do2#HN6wlQzO-h(hNoT|*2~Y4kN@*~)P)~8qnBA+#09NCX4J9X7xOVX-T4qXg+%(c; z_jN8m3fSpcu^4wi&aia7UW4C7ur5?Al>1HS?8Z4v-EEt%ZqozADO1D-> z{6T%}9KpNpRzX`+NHn+%mNt9KiBiFPPpyKfYyPA(AJ29<(hN;VhupLrnX#vs4&{?a zPX3ML=UU7kr)3vgR6EZ0yM!G#!(@7BSiqluh zcMDocIkt)q;qcdT>MQD+?Je}`P~6BXFE^|n3#u(IFE@t43ciK2I8nFPwnr9&azQm3 zWM^le2x)@V`Ifb|wRx=&WGLTQY63q+!o3kYXVyBt%)Ocf+kE zh~icasbl-p3_iWoJenPVG|)F#=~Vf2%cIz;*0kTsCrw*hyTX%fC}M^6Y{;-}dc(L) zvDq)6VFvc;$%h5phIO$yM#E>+FSn#-I{EN6Lgh)PDGlu^t&iP_kh%y7@0`D%U`qvuk`9S6yy9DI-fkgODly(oN- zOJazGNefu0X>DyaG&N12At+wRZ1y#a^~_TJIext!fIscsr#+Bxdoyo`pO0=a0Zq+| z(&x}uWPWTFQ#=0RuIrH@%}hBJw3gL`y)PMy=gw9`6h*?`5!;tO|%K}i|(%GQ_gilMFmtjDl6MWE3PL+DX#yd_RY^>I{I{FM$qA6_4jIOY6j~AYq?{; z(*@S&ru%E#>DfGktcoD2KW;H_v72VGb#--t3yB#Sr9a~MDP=7j-A7q0xk#yfC00YZ8Ao4) z{7vrHvr0{nI+kA>Wcz0>%9k?(E&wc6! zX#M8?V>_e$`6pW%U!MfADone8X5{tMc{fTCrrj_g0F>ly&~jYH3_4DaC{jI~3C_se zwmG6}sf9Cx^=XC7<20{?zEYb~+IeKZ6p6;SjlZ5`D368mr{^&T&ZrHR+l9Mg$$ate z-sPduX#EXPYqnm)?kx`6tK?*HyD*Sad-O7PGWNGJq~Lf~(4viLT%@%7i`i*+b1C_T z?VH)zS!{8~#J6xS&_7Xz#`daU78Ywu(ZQ+Dcyv(+(O$35r)dn^f8(+wh=>?R3YY>` zICL9YF|JO4ByHg8TCxW+iej&c-2D-p4ZNyZPKN)sNh96Ei+^h>r+qyQ4*b(T!+ZqIK4UOCZ;srCy51=Kk-SZwOxAP}w zC!XEe7z=LT09WZ{kaq~kB@WFIm(rp}JlaICEA0x*GfGqw&hfi9!fDkm$f_!6@7g*# zya3IsEi~*01#Y$3=%u$+ahsz55+HIqyZWMX?ug6LY*#>;L!1zj3bCx}?&fbNJAm$8ecu^Wg*YD@5L z$aH&Jp*aRleyqHMf`TsIsT610!iI=YTK&N6Kx$754WMxa$j=E-YRCR=bd>U*FMGgT z8SLZz=h7~N=$*v|8|Ce;Xj%xPxWBuS1~Y$`kT6Sw6ByX6c0~sn2dvKl!zZ=jaJM7V>5C=VF@v@ew7#WiL({mdK6DWcA|9w zXw(6)TJK_-iY?r5l}3tYC6@WM3)sT$rALc(D|)$iC-!z07rSwV1qGlp_XwO4vH{qH z1OyB~N&^w#H5G3*OY@{s?i1=(0rQpERiaKM=t`}gE`7r;U@2$&-z6qeK%dabxxcA7 z@}!CJ*d{-nrv}Rb&cCdD6VndziRFlYr}a2PB=QnZe48yow7^nIINbVw z{>&S|Jl0u;J$bs0$>`M)!=caV-!zEh*H3^d?#y9830yLzZh3iCO1lo{kV{rgcnZdIl*62xDh)knX2Sla8{1?C8IHi7lTyC7&ivxC~YREu6u1sR%()(LONBJ{Gu|#o0Tyw=P375u;qad1>Km;8$R9;kma( zDg<3Bk7g7t4qT0meyYy7^Rs2O$4H+%8n8I;NdRMqqQVlaHX|b=jpc)u!fjTE9?NwG zG=PYORXWDg0_~BfD+FX+g3!h=B3fw$)iJX(wqG9>9==l8}3`%o36#RuX1d zi@x1nQ%i8JLhtZ?gMQ<+noPAA7{X2CQIql-2wDfg&;^WHlcil?V<*PkLuB6DdnA>4 z=2tkzzmudt()powqYd9DOPWUKY0IiqjB6>o12*pMI7hf2vM*`iEa0Ps?UmbzKvBaR zl*L}J(GpgAJ)f%@nmSAnhtOv{1X)rmZ~V?sCA`X-cn{DsthXsrF*J8{WB{*(sO=xf93>X^@Ir#~T8ULHeQ6_YM9%APxabcpn)q{#YpKC6#0A~fYXj8^q+}{W!N^R9b`4~k1uT;!p>&a8ZTtc2E_ScGd7!d1`ReQDg}GVP9MYAT;W!SPV4 zCGjupsH#L%5Go&;i4>&Ay*L>46a<@x&M@M&;wF1Z2(3krTq9ovm{9{`yp>wmBBzb> z2UooaJ1{}(m`94Kdp-XFtXqHm8sxuECyS<*e+9|Z_#ZqxEQ+POG^te;2?=*2HXi*I0f+iSew($+*}U=TSdNUN$rIvYS3 zz*7-Z?KNi9c^E+9ja<{;*CLwn)|@wCrd{!jP8F=w;hmA_NoetP%s#(EEn=avr|%#z zeYU3w@`@e21{owq4qwI=KeZy72Y&hw{lJi(fxSmIJ7&`S_;!; zRqE9);?YiUZzl+digMr`X}kh?(n*`#f5M0Nhuj7h9Shh=1Ib`*Qw!idP~OaA8lC5A zW7UZ$xaq9eK5|z3;EU@qe}xm%DyP0fNy=6poW1{~^B@!kTdMz!8=|0k{!18HYZM4U z*xv3W;Ido-E=%IjD&0EEYxP}zVYeIeOD@vX%k_;x_VhK24au1X8=>xr3l>n|R}A_4 zgeAKXvXsobHR^xo`H6BKffBGv4T0RhevoLXD2xA3E_rSTsl=Uso2YAJs}%>MrZ;@cgwVsXV4vZLSr&* z)fvu8SWKp-#LfD@cVmzROTCe?lFf1(1*j$g9j5%x3yB-(2{ zfT=z2VpMUWWS`uIvtgMTG*I}$+7+$aH7NN&$1=SPSgNe)7+ZhJ;?{?j^~=RVrCnmy z!{~%6Z@|zLT9noD+rb~GkK#xxEo&;56jwINTCo+xM+vHL9>DB5NPYh_n;DN;31pDW z%mwY|srXZA*WEwqCCT1&FRCoIa$78-^bjZWiQ-hOgHEm!&x7vobx9gij~$JJgv%mC zzxU*U|4z3^V!3jL@9as?toE64R=9SuIK~oa;~kk!4d5nk_VW^AJ?kmc%wzbA+OTWD zIleox55UU8OXJBNkM{gJEU?%s>F`)LZnV&q7&Qo=&!c_t&F3vuIi*bQSf-p~bTU@G zlO^AHIyk`dd9|{*Sk6S<9e4mumP2nu1;5<-9Qy_@%uS9)?oFibJRmN$L9KWlo+C;g z1aBN4WMzB#pJY8&&K1uf`{H%gnnQD)!>u4uhrq-qlWai0j(nEbFM4cZ z9O{F>x0+PK6{*oO6um4~sIU(aKZeFnK9ap94saSVIcyNQLi9;uefnsVzD!OIo-<)cF- z&YjDQwW~jqUD8@FPHCJIQRL$-=8ybtpep@~Rvmpd4i?pjcU<9bauUzm`vYH;NS9#~ zgO&p^42sewJx)e;IP0KXL;X4|&S;VF?CL7x{m~d$!AI5&niE8ccG4LBnFLiP3T`y=> z{}X!;9BRO#wgOYN@{qC~LRq9m^?)cLYaQX1=Sg)Kd6EV2SSY zdxqC{vX*Tx$8&av#)bHR1?BFN!D+q28LrE@4S`df@jHyl^6+PutWF!jHGDrR)551` zSHa$pN-GLQGyn3$KTTJ5D^wTxV8L@&g0x0^s%=k{(^vudBB}XQ8!-v|IPXg_*g6$N zbIoWTFbh_Ld2BB23Gm3LQO*a=xpoHh>I#;+8k?KMRc+E~xg-wQ;L(}GcjC`~l^kSN z(th&|98c)X+X#G{@hjKs;3z8Z!6p|&(P(2dlNZ4qM+)JX>Wu`4F!VEtYc0647HzfW zzcjDiE9JwadW-J@$&L>ec%Ebj+PM*rN0wkK!Pvmnn8!ohX#_vBzE0boIEQMCgQ?6wjp*7 z&JPlrwpGj5Z(?1UJ3@&fwET4D1(Ad7d=;c4FANt+J}pNk1?g zq~o)b&x~o@OdX{&^69UhS#vQdC~`A!F{&Hdd38tddsyCeg@OkIquA^G1&woWL9OAa zb8my47nkhmN8sQzuRj5iGJgHc@et6%=EQF8a9%S(CQrHy8jTf%VW-s@%4_RQOc+H5 zyE`)#8ArYSyyE)e`|b7B!joY`0d+Qdl0^@K`cdlFCqg)z%6VFU;P2{5stuqXOu^yT z6fT?UNj52@Uotg?;>QbUYjg%|ti88DU3w5H%CO-uox}vH#Cr4Bv8%NTFJiWF&%dX? zxj64?-wW~>IEBn)4p^9{9iJE^bem2Kes7>FLY;M@7flgX@`UxK!PszD=GQAWkMv*4(1%u!6(}-_z!p2y zySurHko~xv>yO=uFE=u&I=?RObd#VZegP)<#?aJS+ax*me)xqs06CTd@M z)EebKV)Bk(*HkZ~B)qz^u%Jxp%$vEAjoP2k*H_sOSGW!vh|EhL)SY70H)F{zq{m)N8q2lE^_L%>ftP{fInY}7&t9HqLY*k*1_8#l zsyH~9HYK?X6>dXsYRlp;LSdb<~2z9!=eH!@){^}je3OxGd~8cQmI7aD_&6EnXBUv2-oYzt46Bc>PH8TaU#DC4N?=JX%-PZl2v?1`9{mO z;chW~*y&HLg(=2kXU(kQs>j$C{gTHXm1*S}aS_YXu29a#c*>>MWl%bN)$W0C*goju z(j}f@`fG&DF7NyLs=RxBj$8%4gvi`?vh*Uj6s&Z3T}hae|M?L*QF%Vp?izn`ti1#A zOxT&2U;qm7sVOo$)o~8RTg=LaMwGBCG62-e=GO881#zNK-a0)YIrbJ zQUO<+mTroX&wx7~D|KMMQ)`FtZ*;cP&;U{zz;?=2^P7MLGj#RdDV+(Ic}IH}BQ-?I ztVJCc8bmgu2>Vs7l-anxHIXHBxwUUOCdY5FQpClPYHqCzWdBG=xc7d&`vZD zbg2rL|B^c3UcSymp90S5?Z+cv3JPu(3HtX`7Acyz+R$DzM3|!oWVEnKw2Iw(eeuSt zQz2@t(d@gjyjCC$@!yJ}S7snHD9bPMALR!~g;y+0tb1qDR$j*SN%vDE2p1)obv!ea4wh*%eHlDxymqa2) zvXxo+cdC#KCN{t53IsytOFl#V6Os3Z#AaEYy6&Bey{LQyI06k&iybVX0}zGYz0#C4 zE3dr>Irncv0s2~XSm19SqD03Wqrx-VWd5~k)K{(40I#}Byagm*f6(~ZXGoP8ONpv|KzWu^P(4fV}C@Z?8(fQmlczcwFG(aUr3zrot2Rk2M;@>|VuRU=&Cw+wc`OXddd&9^{NY*E{nf>ERg| z8uGmN=QXg0_UC;@3n@pf*UH;sTFyVo<_m^RFL&K(C~=E#Rct1_MO-lRtp@ zvAp;0b;4ztJKy|J`Fk^3EGaTN8zcORo9~Uy1$2|4Q`6e}>u#e z^P4+(i+$Ru*U3HINYOaY+J+#(qqIUT-I)`phaWzUX=m;?3l4CS>h5RfO9|}Sk6a0o ztg6ZfW1~eAnF3m>Xd*+)7_%)3D{AZQGIply;P%FvKS5TdHN~0)c@{jSHbrjouWF_)QHCWqXs>7j}l`+kezVA@<7F zM?2hxy7RK#=8ZK=b7{G=ljUOZpd;7Z*rGIfbz>@S6OXpnjNnF` z+Ee9R*JgVU-?IRt>Amir!5onH!SIz9R|0feS)+vxeF43ZgXTkZ`X^)Y5i!kRBpl>h z1t#^m4z|l+&Q~ABhDt%Yt2-vc)`&wFVD%qvb-4V@o;Qg^q6NOm$=e`ZQlU$@AJj5xkK3}1x>|MsVQ*Hp$%KY6c7+d9rQQUL~4W-f@_Kei#9Z=AtE z@eR9|V`#v>#`)tZQI`kK`2HrdDsNu9`ThB$0OIHZSZIk%aQm4*b;X<9D`Mj4LY7jaN7Md7ZkYg&R}R&EoUAN1@prMP6r4@w^;0ed#m6OZOuixi zTxz1tz460`0eSkv_D%F;e&yJpEuH)vjbsVU?OhVC?^2oC;w_mZTK4|zup&3;Dj^{$ zpeMsw7?iF}NzqC_Yg3glGt;8RW`2K_}OnT6#RV&2{C zF&w=4=hM>oW`l3?K@We$WP~=$=VS*<6vMa0*v-FOEmjiSwyjuyxauv zp@Ns01kP4n9g<==_Mw=Na&)RiIbm;^Mc{0#C{_!*4kLd(hl4BAse|R8BWwp@9^~0$ zGZ#!>Vn0-*(*LoU)kDY8drpSdUb zHTGk56koAI)a}NAT%m7Lhd>$zr)aFCe`;(eFbyjXTv%-c%lfn{#1w!XJH#4UcnH9YjEbnMZ!f#vlmZ8+( z(UeBntz>wxVvpyYI5wRVYMJaGw4fFG_Q*OtCc}p#MYd;@jeq>Kkly)5I*;2tR}Lcm zR#c+(GVJbZ%d@nR*Zj;%*A)LeTivFNzAMemSg7oiUA$Skrjg7w&T#P%)9PC=jDw7S zmL;uP>&Eqe%f_En0xhXCqU`8_&B=MZT1Ew;$K-b1Nzz0l4-vT{H8wu0XZOmTHnq&2MiJ5Ue} z&*xLHVJvf&dIT>Nkg%W~ee>u^iqD$9SCw4u(UTgVl~cr4`G}OqE2JqhP~%8gU!Roo zlb@LHUn2*&bxu&~3lYuVB$w(r0jGZLt~}2HyV3KdEgS();yEV%)i@yZW-Z1)aBr^u zcmO2cwfo}JP=E>!&`ya~(z7#)GKH(9aWk%kN%sk1K3Jn7*TSU0qkQYK9QxPWe|GL$ zTtnwX+_9^a6odjFVq~tgx>N&AAnb~l*~CGX z>=akx*PVs#uNiyqHx>lu=MB|f8e32Z-r$-IGWGXd%dIl?U%E~1HOnpy)ZJdMW}bg} z=(FF+=%!3+p=o_TXq>X z+VZ(=WeU)d+0+yfa>}04fr=c!J=S0?Fg>oKmhu4D+Vg&nE>|u7+w?jt46f$q_nUv) z$;-EjjSMaR?#$k15s_tLHq+TgB3$dxV!*ba{!wt#wX$BztW~WyBkU-xz6p^%e}pY0 zqz&xSxheDIx2S5QA;MD;2=Eu|u^-F!IG6yN;Gw7{H56K6cV2?m<<0}EgR?U}5wzaR zoD6ar5ERF_AYBtYv(dE#VKu`z^y~b>s|Qz6qYoyp)YX)Kj=qxn;M^&0Y~I1af7ze- zf3fw#Lr5A>gI9Iq_eQ5SY3*H!fF}HcmI?Jh9jpvT*vO9RJ$Lojq}|#+@1BhE{Z^ z!cGCNk$On*b%rds^fx&Y_M#-_HS(f1@zrr~WsnC?U=xOcV^jhDjee%uj)}%SR;vHH zgFv+ydT`mX@Mn{M{u~4M1|U(o@#o`>V_X0EsF_UUzhh!G1|71SZ)*Xy>a+UyPAv@+ z`izdZ4~Aq_|Ht;a|I@D}PN(X4v0qn54Tu8Z+XKEqGG}aH|NGgB9j0)_HD}(KBS@(8w>GijS|@v+?(T zcjZAC{`EadhRoaGn-FiHqbFBi`5gYowVmvvC%L#-Umh$WNMa&j{RjM^y{>uxbCNk8 zZ<;*dMB5NBlI-dF2_1i+JHdHFnXJHfKpp z8`G-)YJ+hD3tYMj-b9~@oC^xOYb1YM9=i4>;#pb;$QHNNwZL3^$Ci%)Z>MrjWh5P#|jj^bCUOKc$KXys&$))j)37g%W6!h5YAD`m~XAUhM9b*v| z7O=Me@|^A;FQdrQ2g;cdoA%b5knNP|ZN~PR$UX24k2GW$0S`?RATN!UBzjh%!H)Jw zdyOJ8K}((lDQSUdtp)r_b#iZ)+Nnh?Ta+(Zqx)2FEPH$VawO^b+!If2P8s9}$!xZ> zCev@?HZj4${0`Y@_YvdgixF3^_0r~{G7Bz^3JQE@NqdTVwCt-~b)&LWtDKoAu;>3f zXaSK~XS~Y}@IX!ENE3Tx7i9DH)O6Co%e|#CWEI~?PL^eKzwHzBCN2gQDTAq89*thy z+CSG65c}}(s`aXA)MEHEttHx$oR;cbd_8vb*I8hHa&aZ?3`8JEY_lF>81d}z;a0i+ zY0yQ8O(}KZ;cPRCVD5^x0k$g;C05qmp949jl-(*33t>?@0oVE`*I3!WTYskxfnJ4| ztOX>Z2J%KrTEaO+bg)tVom`op@t*xhzPpKYWvQ8QxEMxhe)`YYy zgRskd_p7--;KV#*#lm)9#oHVAx|2V0{gNCtpt@O@E=?7~K% zr6AcBXC+1!L$-@!ZUv*~Fi`5$Ki2#Kd~%o68Z4$4zj|@;wj*OtfIDQfo;A~u>I&jq zlJR%I1Gw4uE4Gv8a24yn6l_7W2>7yb^!kxcSFaNVbo@n;a9~>*aN?y}5oO}qBV$$@ zkl-6tzeX(g1%P6tc3i^1UX8#qy|2Fo(RNVb;Tjvj%r`PA5rnFql9DiX1M$BfaFv{~ z`?z7clx5i(9YlkQ-2RrDwL@!>fQ@kJ|6l#+KiTr{OD+(Gx_xH#X0Q2c=1l4|#Q?YU)JtyNfAK#6 D1P;0x literal 0 HcmV?d00001 diff --git a/Notebooks/1_N_horizon 3/sim_9900.png b/Notebooks/1_N_horizon 3/sim_9900.png new file mode 100644 index 0000000000000000000000000000000000000000..7e6ded7ba48c13916703cb62e3e0ce3fb1dd6424 GIT binary patch literal 16720 zcmd^mcT`i|wr{McDCnnxO4k5NkuFU@MM|jBrHeq2jwF->DT;`S2m~pierPD6OO+ZF z1%VJCG-*Mlgb<3-J8uQgJLlXt-XHIeJKno@JjZZklk7eBTyxDif3vL@cl0z)9J_D~ z0)d=>Y2G%3Kn}`5Ap0I1ISjrj$fYm>U&-yN&R<+0%c&a~?{gjFq%m3`$U8wQ7%)yeG>lFYgDIO6#9 zSAQ*@E~Tp7Pyn-_W_Q;Qq3=SpV+&Cd^0=9xp&3;>j)44_;=&`DX+bY zkcLa&_bwohH5&drxIZf7z}{B}x%V;cT^zZ-pJngjr2l^xLecx+eJK@CV!o*RX1-3P zr)T1Tg4E`ntfBW(@QTkw63^!i6*ydMlhEwcKGRudFCn#w$GS_Fy2DoxQW05PJa%wa zta${s&K{mlH(7lo70^z!Xm@*$)#c2mLm<4*8G`%@p<3B_$1D}%qB3VK6KN~UaCnT{ z+Ut)Fa3g-vH^>Z}AuJfP^kC4(n%}tsN5f>n6b#9Jcp4xd2gHIA?nBf(a`9oeA z*mj9h6S%1-Ttz#NeqAb{iRd9!dU)4%mzvEbCQ({L%pW9POBz@uiVV|-)050oajxw% zH>5VhM++}VSw4Vg2Ca|6l6YzQLGxiiLRL~ko%9XEy6eOl3#otxVvr|15jW@WwR75+e zDw|(Ph~~CCtgnUsBJW2)6k3zZF)XsBp_|Uk5XdGMLm8hXX!8eJQFy-CL)~Ln#Wraa zG3Q*I6#s|_Z3v?brHR9w5(i$?wbqN`Z;@p%+&YH^Fmo|y5|GijOVCsi+Lkhj>k17G z6QD5#)v&}!+faB0y-BGBX-Wnj!|ik>UGjki^mUP8wd5Tm@))KS8X1eURPjj@#((y- zt*Yfd>rSfj)JAKO`GYvbeusvsVRnWHqzXP5F}QVtlvMPz0m(bTI)|IjRM;F3y(|60*H#YmIFQ{DDLAl^^B%`NVFlA&Y)+ z?9x(P{YXkz@oHoqAgvSx$Hex&;M*1hq8JZfl8-!fE^etB7nL}08O9TjtU?rik*`!E z>+=T+%ns|4s)kY!52;qkh&f&A@I|Us_~?Njf`b%AJ5MEQO29YyglOa1h-*Huq|45) zg17Zojhqr{?~UI^K{U zuSzZ&4>PcYa`B3Nhnb1sTWmckUmijrD*;R2A&`6i=3=x)QWd$3zkfdUy=;?(g$1u? z+AH0iRitLF=4RS`s?|nx_|m=G3(vCUU{a}wFBs*bG}Wu<1kbJ&3iAS$oHJu0u$_`x z(IUT^hM3z=9X^LrvJUcqGcDKOBUHBfkg8Pqxde+6n&h|39@gOm(c87msR;JWIM{NZ zc?4oq?YbR5mG3FZb1A|Jvd{-_aT7c5uTh8jNmcJjRaY=B`~^sok2YG>@N;^O zG|dZEv_>yl8*1@Aqp2W13q04R(jOxl;E}N|v z4m!ZIlLzDoYu8YAYJT%*qFWla{nvpwb(E?pW&&OLy91Mj9T?c@xIC>th}N{g21}H( zt~KfbD>I~8MNv4MM+4tr!`kx=$zuH5KtxHwZu!_qi4KVc%5(3?;91cH3TA-^Zh8;i z+?JdU9f%$0gLSvh7{TL(X*C#AemcN*21p&3t^67g&@=|`gVIo_*uc4h%mo2xL5%F} zpWUP?i`{SX3zN_NO>FM{3aQOFyIrM6$oFc#b zoBnt9p}rnY?n#%N@mQI*&GXiiDV9STTuf_J87&J@+EG-a8g!nz>AXm}fyhG?!YH@1 z(qsCC$COZ>DlpdjJC-&l4FqYIQL(RAsBEz1g-Hc`0`lhI`vd$+!t+$GC|uqa${2Gs z{*9pL*H#{=^>|8v8fHsgUzva2?}IKyDMr~A#4(#nba@eWU_Z=Kiu&YrQWdL1wdhSp zI3cF&qx@>BPURs8WQJ4eUm)*rUaC!|)Dgb&7F%~8-oL)7kvMQs%5p3?-m$u157UpI zd6wgFJ~(S@|E`R$0Zd=JT8Avi-z!h`5HHPx#>rC)i4K-~k-@pkOW(grlDcO+)wjR2 zB){0^4&GJ5C@U`&?8OWByiR&K@a--mO%~vGw&N+5Le6h?H|oY+*VN&~FaEqMM>C5f z*IzNVTUFqu6}tx&1zK)yd!PaH2U1B;?0uBBce% zQM`HXEyfYJqxmX6skYc9K3EY9ZA`8TdXL~&!o(cj&tOaZ$kfM}Ky~fvX5y!X{rQ_I zh~R6bROpBk+!h0{y<2KPlW`m5@L&5h;vbRh6cTpOT)yAzlH?It@b;w4Ozi|M3`u48QQgLL-hlwFizGhxwpGGzU?AOcbdZX!{}m=S z#caFw1S)pdyw?A{kdV+y6{T(>B^IHVac6XwC3vx2mcE$2Tf4Bh=vPDXzh0>MR3%`Q zo#AZ3K3eA#7MiN5h24Lj2*tmBd&|D*RSdK}Rnbh?G(Q@8mW^$?Rk*0fK!YojHE>GR zqQVV3NlMMTVw5%2r2(MJ-t%Qt(9%1L5{DL+(e>X^!B!evK5tkQXT(PyHgjQcd4<(l z?(XhMGOqC?1-b}~JRiIpz!kXE#rURvYeFoqrp6M}uWCP7=B)7h^XX-xRL9Ip`OcJv z3OPj{A&r>Su|~AZU~oS4KHB$C*1mOWdJ(NVo1R}vB9HFw_;Ceq{Z3Nw$&DAa6o6H) z47&QP3^>tov3lelywP%=?Y2w8GPn0vzUsA~5kBKF8ZO%#%hgkFBcuaX+!*_b_pYR% z^RBrM;!ul|&XigdKHZ0Wfc5&{izG#T43dJP(g2a%$@b)I;i6hY&${J!J*8!1E}tF) zg&$8(FAcgD&8~Fp|9I<9a9`uK&?4vx-jQ_8J?U!w+I=OksK9tvXXmcrDnz;Wgx1-! zXK9L~>#x~FEpXx7XwA{>Ilt8@#rgV8j{>VILm>9ff=Wv6;Go5bSL2D+wl*UZlQ_1k zRyn?|sLSc<|qE;X7^!D~vPbRr80l7WsdaG8W^mOufGfzJdZ<*VG zq=|`%^F(VL8ZgBV^Q>Rbx>_?MSzuAFRaCcQwsfRs zIPsjQP3_$Xb}`C?Pwnp}j*ZRH-9nz-wPuUrdyhS8X0I_8C_93T1%mmhw4uZ+HdjT_fZ@7~Rc6E>U1XQz>Weu?mz#5zqsMT6@&a{7w){XwJur8RXAJLt!HFoleVz1Ani%HE^1k!1B8ks zEbFDn88mYubf&j9=W6u*h98Fi{QV&}FK>A|ugGPRhz(dORoq_cKFbo`J3O54lpbiB zogRdqzN?|p%-tLIo%fG{j+|r(m+_mkV%Q|ZbttV4m#Q|Lic~l996u6v3(qH-aYysF zzZK@pi`#EBp@!6@Wi**zJAMjSS`EXGOi-z=bHi1E@dy%a7}3$o8uTlady^+N!GhbZb&}c|t6>s(A+pFtgCnsb64rP5m#aA?Lb7hYsOq%U%1Yvywf?3lnW7rlwiI zFp5U|E3<<2=OtSdPQQ4nrL7J0tUOO!gY6H`C*`)6%g%`u5q7F?WkhG`r3%4vb92d` zUz}deEd*|vMpfCZ`s>BhYaYXiNra2ms;Z%_t*vj;(~J6T0(3ioQ=PsmeZd4cd$6&S z9qC2gdWyPcRu99}UvuKCs}*EqWN6#-!32gf_xAPWe)w>Abu^g3qO$eNx?=W?kzQA? znQcKSNkKa-ENt+@!*_4Hrns#~FGXE{>lw6|>;jAt!>?`F=;E7AX=+jjxR`^(-A5CWrTAZ8W?o3ET3g(cU>57sove$ z^x2?gx5;OlWefs<13t9A2%O3%DR?iSyWaw7GB8}MPw?9&0Gn`wH=>kj;X9aVd0 zu-zZLo$y+I@|<lp@*N`;$^ zJUhkeQQQSzBG~D`?m9J8HVh(pRBQn6W(Wi#eb)SgSH{)qsf&U00i#A>vy>OH9Uwxv zf*?6opE#Gr2pBM>HyH+wtw1lkZ~-rj^*HSN6SzzhJG+efo#i5@>MH^HMVoCzQw1vA zDF^mVwN{N0UVspjTh(~);sE3RcI4?|o_9?D$JLSsk0arY42a3nPcQ7&SFtWACIS)TJGBR>3yfMIPKGly>)jg&i zFJb_e`dV>L4n_`RxB1XKDslJc@3mqV))mh`2pk>gQEOmP`+-{jC8BQo!1t%8^*WP1 z>+!&Z9{@Po7^W&`pO=E?0GwpFutIsn1yS)r8YGhThTBLULSNqVBo3oYlY?W<1BO=L8L+5IUMF2G6LJ%bw zp^ftI7y1u|D%|l3MYRiBdq53sY|P#W{Ki?12>ij{J50p1b4I^xHVs=Ir&Zpn}f_`f7cN3C29=Hkjfk(xugJOU?0 z`o`@oVl(63fi3MYX&!s11XP;g)}hV=C63iQ8+3-doGz@HGlaoj#EaP$PP8S^%?KND zeTCL}3;<=g85=Z>e|y@DFfB0-b*A?fRDXZMywt3+V<1+)_I8f28>E{g4P&?Q&nW!x z^B8beG$7@vhXB-4-tp}G3b!bCiDLi=y|AWGLoq?rG7Ibg@P|kM_oh*Iey$98juuqY z>GWlQcT=vmn-(ski4yk4CMKCccGg}W4{h{hD`&nqEjZ2C4hC7^5B5|eGr=ZFA-lTT zf&sKUTT~T#ZeHPFN@w(SNcEpWwrZ*#7rN}x0b-~%u=tUGn#!i6$;`vs--@z{+S zCzU*~FB0}mQy?4~%-Er(2ix#$eP=TAi99E9KRcnnv-9tb4Rosi&leaRqC?4S4}R7J zRn}oJG9%&xaIkFN{FsS5@q+Iq6vAspZv=oOoG^<9Sd65m`emUbudfax&>*P*_?aG9 zQU5#A6W1EFHO6Ch`3#w%mhH*1^GoQ*)_mU?b`zc2+FI*1HsY6g^mOfPV6-xmM)i{? zPkO2mdX*!-$$Ih=Z@3+IHu?#zL|+R6!Xv?P<+cc0?6~gh3sKEX`8If}Om<#jVP8W1 z62B7gXhI?)Go?BkG6F-FQT?nl%zw(LA4_A?*siqLT`{v2-Tui=mg(1AoIK%D3do-U ze-k=kf~mL%(z&t}e^vYD*S$ebaH>%^ z)Y7bOl=q9kwquYrI4jsg7`q}hem1{wpwy{m+>HeG`$krQO`SzJr}x*nv-Q8#J#Td_ ziQE6a@4W7P#hv8{FaAHcevtesKZMyLNOkw%Y8ca`fr~I%t!hvlOT=zR5R_y?XAc6B zhxKjw)Jp`JLh^4n#5krPdNH}%%K}oCqR#nHLHsu{(~HhVaEl`hZEFCv_pkTi*I?vR zn0T#fEAl9DMgYbKYj!MjWc&^}o_`0V%OCCFVVIrEG;gZaJ6r_R`bP?f80{F$Zy7<^ zFJ);57q0LaQ9zzx^fY`AAdcJ@_p)_l+W%U_0d9c$(R7PC9J(`y;0NWZ1SHaysz9Cd zBDMRH+6(jZIk%b^32@C7kf@fImv2eD+&7V8I+q3Wbe6{$fO z-v_a{)BK__NDNL!byNX7d2c?FLspODn%haGNQqAHl#Ivl2OZf1o6kcoZE}jy++bo@ z^Ekr1CFW{0G6JgxE!Vb)#!fP_<^aJ9kqnImkQ-w6GUQU595pT8VVhIg*z9LvNTLEallY2;1hAup$rs2_o$#j03{{-29$ym6sZ^5MK0oX$P$=I z&FT(fmK@cpXpv3Rf){pLKer~%3}R)ublFY=^&?h6H$k3jrpT?Q+6=Hb;m4NYmBkf_z8xQLGGOt zzs>(2HEb>(S&6L^!5fjQ>cX=bH$hGsGbn+^1C&nvMGY?z-TU_V*=Kt}(tqw&?UDX3 z-bB09mN?)qW$6abYo9qQRg>TUyC@keRr*q={1k)zkjHE-$OGcve`4wO_+BInvjDy=cr6=K&)4FZgZd-mV?f>D@K`7p zAE=jZ=ixx*on2~3Xz$0vAa*W!gFUOY@ebEEal&%F0vGEyR(lA;rbz}_?BVxee`s(5 zW#f~IXl0gVQ=oFcLH>M!TWH+jnuKI;Px(<2Aq_HAzLmt5BNtOx)uP5lpGWx`jkdL?b78hWF znSD#dWjO!op{j;*|9{Xzy@>UI6blB`kL$YUdUn5h&!41Ral2dn?3D`w*$itA+2-2E zwBNC@;@UReB{pbxs|JHh(bNp*yo00JYfB?IGxk!TnIfWm0`1y82zJ09Mu|^AI2BPUHNrB(4YbT2{*FHqXyP6yYi)eMJ;dz%NQp=uVC8R- z_nRP1UntzCVT;LV1{7;M?L$|w$CN(taYQ?{%;m+{3_}qY{v0Q#l3&C8EyxP*c?@N`!-wvCGXCl55B_BF7cnq;QBKJ?jNkv3DZxTeW zTy?fnp^8SA-M|RwB#Ivt<+1>L8Uj8|&P>@mXEblP7g*T#XRTfsTDDP5&gB>^uX=CY zdtw&tY#-_Zs!KU}yn^`#{8d3~G1&*Sw#1>LN6yEjzq|ANc5AXEX<#a7PzqsLso5*lDWPT$A<5QS4d_ z*6%9DmxyP*e48l5Y@aLg692Y8yE5(FE%Z~ysv3_Wybdxe$(6i91@n#aJNp!QjTytt zv=koteLAspCgQ0~(CzxBsIT*tI)0z<6;-N$c_nm6kF?(dS0fDz&uA9@jjv}B?=ogT zYNYdN>Rj6HsO6kI!jOCj@*w8`)gR`hjcy_4ZUv5Fka@U7oLZ3BV=8E=!Es^cLY$J3 zBBb80Kdrcw>vz3Jj%K?Tq~gEZ1JXsydUZxaxo79yjI7&UtJ*{Hm)W|e$W~x?x)Xbx z(wg3kyCCthPDf5>G9s35>7crBo;uu(*| z68%GCaYfug+dlkSZ$P8H4dvV4gUU~$PaTpUYK$uTZtv!trk*hAY;2$tBVN?PC^kfM z9gz#M6S=_RZ2W$8dN9>_e!4H<#Oz>CXV&zFuZe7#^Sj-35BI#Z;2Kli+27pMr#ctR z-{f^=R^cf;_F9Y571H`+tqU?0BKrKOu8+0X0Zqs`@q?T<*uF+SGx7|l=^F(k0L3s; zQpu$cmEk`!-?SO&$srJ`&AEQxjzYZjz7+KRM>zM+#y3f^Bj*jG8$a&>=(9unS?;MA zyx}l0@Gu5mVi`3opIsfV=brD`{mk8c@I!$vM@4y7MMAxGcGl~(x*H2`?IJ}NRint) zgGZQeH6={o--VW6PRVW%?@CehAmHt2+XR&iBq>04i))DgUAZv>rQ zUQnK=v7X|kX|IKld0%_ONQhZF^X-jT;bSsYB{$whAdadq)^_|HpjA@<70boc{>61I z3)e9w%JtAaU;i1m4Qup?p}{3R_XyMcJR@xbEDd{py2ndsLG0p z2kyG1X%?j>tog&yrs2|AP%)Wd$NMN?!Q-xmsK-rl6T*U@Ts?u9LblKDV+wf{@k}+z z&^+f#T$m!K>)dl!YuyM+p>x-u!+cZ{o6_2+Chpj@XF3-w3MhiQUw+y!(=+=Q!!FUFmn+@gq$cUn|E7a&Nmdij$-1xzqrj^+r z8YR?b+{;Hr{Tf1Bmph-HdddTc+_(nHsV6mQo`Lc%_syg1N%FmwzRuR}5fuFLvwG-( z=w_Q-$`5z3ciP@E@2}f}U6KxZx|%d3u_Kv#IZHD!LktjU@B(8;y!1qD>oIR*)981X z1m4Vg)qZ4E!R-55J;+v&=iD_`Po@H%Zb6--)>+7e#Psr=-okgb@ zMW3edLCzZ`Wq0x0K)i3juAcszK`QiB$N>oX%;$>=4;*4xE>w->dGKF}@yd0c>&$w_ zbs$=Ic@~YbZ)B;vLBuUQ;WS~JaB(moTE4Vr7+&kRuR)B;qF3&K^7U4AA4P0qS|<@Y7rI$9P#x9ug)} z5H8ct13rfHJoD$%46l%`$g9XS;-C*L{d|V*EngZDh60~?`Ktlyrk>F8E31Sd=3AHy zO`VBD^2cL=cHQ6w^cuwBa3NA;uAFS{0byo8i)(;IPr9KyA{?yFq{jYjKOOBk#!{* z^)urSrgN+lJZE3!T|4`9>G;ixa%65{xwcGuD%u`VT2b!1!tp#223(%;k)MZn>z>4H zamI~nm_(m80DAxA?%hN0pWlx;iFg4-aPI~fw`vFyQW1Q+b?Q_kPYl6wVyLDX_!}c1 z(bT~{a%Od(p4bs*+HgIg+z2?e>C8wQENPC5$_is=!5;JeB=kz{4NpW4FB>49|Af<1 z>HO0(lm5-jU?q1yi=8%g4q{Pt1#h|m>hIr_s=A8R6ULp9Fp5W<9|@mXs(AKEPo)pO z{8HiM>kmL{U1&2a%H4g*ia%XuXH4A@u2J5pzf+m`F|uV@Z!gCuxk6>STnu#10@R2) z`^EUon5Z-$KJW~vt@vf4PM8E3%$QsGi>7bpcfXkz_s+7N>mjhtT(FUr$qI&z?v%m7 zd`EgMH@`7@=WolrMUp$Dpe$_T7x6c>(P1x}-( znEgb!aZ>s_vJw&Ya}Uux(vjtvsxrD1wD)M=Buhb|hoQT6cy;xrrs|_Z@^*lXNlK;C z(q+=3K!_+Q!oPV#-sTO5-4PI2H}C>ohBy>x%Hd+ZR9!Gnsc9=A$;(uHDen#5)KRre zNE#e-aho@^x3toowZ<;m{GY6arNd zBo;=ZOc$HLeJfL1pn*Z711NG!@RT~nnnRuk?z)m zcSqwb=D&Tpe(6W_?70x!A^x!U&tH1i@!bsD$*$zmb!Tt7SW9M1UWfuIKvrU~D9_B6 z7gHe^>s2B{B++_s#(zj^j9yS8}<+j4Jq-o@grNV1E1TLlFJ;_RJN?`uYFR zT)2w}_q$$IUyg4a>ZfD^J@J(oRL6k$$oLJtUCA(!4Ram zJ+EhoaU;01qP#EJOvQ`^3#dll^;RS!Y(*}Z+DPaBv7Tez7b#96DHdX{P#=%+f$V7@ z0@QIpiuoU7{v)tett6;(Do!c|F(lcm2Wj}_01uKo*_HFNuBcf)`?ddDjmzYouFT1m z4};a!y{GhZ-sM@&S|2Un9GbNrafu4pG#s)XnV!;mV5yyLc8xMp`lz2oy$WNO%-kQf zl_+a0DDRNXJ9$DvXyz>D%%r+8hTX*3#+ZM{FooUmDwxTA2IB9T(+Nv5)L~}0DbzU= zD~ds;;dT+Ek$Z46ShW^8?!22Igf{{^pv+n`z}3Q=S(j%inmXdL91sl+$S6a8?j;Y* z2Ks`JA7D3{dZ#@-b3M&movhk--d7Y_cQ_foIj+1=$;3m!#9EC0xEo{~CVwjIhz6tq zF%}6X1<19ip;b{E5mDQ#fnyw4SN8o3QOQwr`As(Iy6_4M@?BUqEQ!uuqe1=)_&CV^ zt4f+z+IbQcYEJ7Fq}r@?^-waORm^G!(pQ$7Dz5f!(vvxoO-83@=`(W#GuYRjv1LLF zO6TR)x|Sim?ln7g1CcbYZqgtey3ZkEua6NuSJS~P&n8BxKQVLYU-<|gXArc;2Zp_{ zkwk|f5EvGIa$dyF&@3MU7?{_}sW0eezO{7&M`68<;e*BQnx+T@&tb+nkiJfs{^*wU zVxLXnQ08rM=mnN57p{e=W@%o=X?{J!l6=v5D5jX8;t(`2zEie{p*~f8`AlbB!gEb8 z=(X%4K^3-1T?NR>NG-}H@pp^9*6v0T*><;DX$G>gAB@>ZmfnH|zhTTXKJ?qoY$pD* ztW*nTcA~?GIw*O&iHSWI%AG!+0z$b;S*I7ft>2f#9X8Qs)4KA&VGIs`E3B+&>OHG} zIn9egPQ3&22jL$*vtkFX2>xYw^ED5sSZjFO#6Bro*Cj^@3I?@Dg_)S2>;Am3f8zEL zEnohDyqtnk%K|)qnuRBQp)a<%4LB0CcU2asu4l3rw5&7Z-u)%5G}& zx_{9zpsIMmyLOBsjJbsOUhgVqWV%TA)cAVqJV*NU(pp|JKTPfYbGW`xcUNrN^3Ih@ z()MmgRU^gAZ2UhmU)xy{#OLd5kP~p>Jn?gcQDzxE`AljGX9Kq+bxmW#?LM3*dg%== zVZ2Vj6jRUd$^Cj0svFH14@*V(DCW6>P4xg>&CqWa04ntX9)R57L3=#BuBr;=S|RNU zErOFi;hQGRc0dv$ok7KaR4J@j#pu42p2aV7!gkz_4mnK1Wx-{<9-WEr$~B)dy~k!vhe zSEQr=MYquMM|_;ZO2dNPsn3k;yo$$P#M&~upW^xkVW=mEGau6iVz>GJu;;Vn1l6Iw z?np7a?GoDU`c^T!+oRe)%#UZY%KKm6=v_0MN?@uOa<-D(Aya(Y#l_#*nAhFIPBAr4mM%V*gGJ~lZfp!hTzPJ#-?KBf&d z#&pG#Ci(34NG=P@?zcYWq84V|C4qGn<;_o1-)m~dwlYiO&Gxd*OA+@KkMrO`N@3*6 zVAEx(C#e8r7;m6l3e|ElGvhfg93KZu=^!+$ghvOm9Knd-(yT(=hm3j+Pb}pkAN>^i z^F_WdZ|x@3RTU3kj48g~RpuQNP1NC&!ombH`}o(JYqwi`u22x^Qr7uq{xMD zvXtYp0LIY|8B*}gtrO08?O!=q^Owu~w5did)oJ55_*XxB6)2XLH{aI4vkLX z=7V)~Li=jm#rwH^&$3G#^N@FWsb*ox|>4{@xHik)Rc*U1!q zxOG9|{;zt(^MBuv6?Rb7(Oq`OQ@Do?M4Q(2cNWs@Ba9mLvZAgG&@)88k>uxlKOfzl zk9msl*7J6zdt+jaKA|RJo5vFnBr$qFHKnp>2vsCE_uOwY{Y8(j#-Q)Ky`r0+U{6<^ zW}q(;eD($q2udN3btR{M-C|XN9L;9pqxedfj|vBWbroJ-PY+UMeKgiQi2N*(v_+QO zrn44y+K*PL^=fdx^V$PUJ~Vsu-Nr*BEt&{+q}6b9$ay1baXc zYUG1K^{UOhNl}8$^a+hCVmygFpT%#0y5&L6DfYd=(Bgm;#7jXdLIwfrL6R|WQ zrp?7=Q~W!w$lp^PpYydrKgf%rMco$}IctNmq?B4?)&n`*le+?zlD4gZLji~AOEiTC zTmD>k%>;W*wCC$Dx(^9xLpPKZ4esRlJ7cT0watU;OT=jr`*+IX+>8cJgWC42S=FsjF4bdO|bih#=eGjqje_Fo>BDgs>!~ebM zZPrO-TU$ite*?op(K06)kB0=_YTFPE4&4F!oALau)??aw@igSlFhnc>;4zSz(^uJT_lehgCLkDahSffAJ zL0)V^h8~LD_^I6BJIuU!YV!NuZh=NP>%WFK&Pl`LUEyuS88yZjL!q|fwNFGg?7)TH z()_4JC+q-Xrz(#)LoBn8ZFj>5@6^HLyY)Fp%We4*rHIv~M>91#qfGE?T}0C)^Elh) zumEr6!zA8O=7hw7WN;cX|GuF6cWksBww~2r;5cjOBOVdy(*E`tM~0TZ-7b4f{U{zy z3wZ4G>6iG|)sNOeb>LM9-L^~I}sSYz+r<=hx z?0Bg9vC_S^pxI|(h$jT5<2u&pmD<%gQHvUy=%HPa#r`(m)kpF9Rjl67FI&sEV038Y z59P1b0Y8qwVz)*;)l^11r0mX#G=5k9juk&1f3u!-=S$HjbUPz`_u8-P=LFisKd=L) zLmi{%Lw}ZetHAnt>5tNmnwNBj9tdqhC2hCo5TJsA^15WDoegl-hSI$5DM#&FqbEb% zV~m~Q0yHR$b!O%fEL+oJJS7i7a*r+3B;y0Tln>v?nm<6b$_7&)qpw=#tC|AEmk!fy zepP}4g_e~O0>5<59hMB_0Uz9l*Ok}uYzeVtI^++^Nezql62C6hHAva{pBvx&+dyku zZ;?E$+bqSWebVdR9jy5`V(z$-1DiZGej{969+WUzb~&pe(68eYiV6I9E5ka()j1vt zuXDbwM+J6-HqRsM9B3ia;=P>~^)cqh<_*S3i)l*@PteqEc+@8Efx|SLZ|3r8M;q@v zn?C?PKHnQ<+VOf?%D-JiXa~%+{$enbc#gOUPNa&`lweHS)$OBzALdhlA9-puXa~)qfK;_is={JeFvvn|zBHjqI0#=-8}rg~lbBe;(x)bT;D2 z_KcQRc2_j_@at%Xv~>nX?`$VS>n_rs*2(i6a0;0Z8~Fkj+p_n=_0!KDfBe8ooVkD+ z=_U+z^eHgh6`5dcxrdAcxUK4I7x*p!s#zRROomram08WZ0wbPoJa6GMSJ))$((gM9_-0{pp;pT^cR)R;BY zhbNKx_c%C@n%SHD+UZt>SL3}bqxcysX#1NbeOMl}PJ~wD+}z5)osN^)p*~k8?bhP1 z!c3goM0UTOLB*=oU7-cJr*ESxaEjg2Yj15Qby3#6Wu=SeCG*PBOS@b1L0!964S~^d ztDiC#c9!|C&fA(|2*E&W+*+0b89FNh?EmvbWS#!puE+dl!{{Um*qzQOGmvGoSXPpI_3$2Ntn|u->Z|m" + "" ] }, "execution_count": 6, @@ -643,7 +643,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAE/CAYAAADcwItlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADn9ElEQVR4nOydd3hb1fnHP1fbkrcd21mO4+y9SUgICSvMsHehjAItpYNSStsfnXSxSkuBDjYFyt5hBkJCEsjeezjLcby3ZFnr/v44urJsa1tOHOd8niePYumOY1m697zn/b7fV1FVFYlEIpFIJBKJRCKR9Ax0x3oAEolEIpFIJBKJRCJpQwZpEolEIpFIJBKJRNKDkEGaRCKRSCQSiUQikfQgZJAmkUgkEolEIpFIJD0IGaRJJBKJRCKRSCQSSQ9CBmkSiUQikUgkEolE0oOQQZpEIpFIJBKJRCKR9CBkkCaRSCSSpKAoSnPQP5+iKC1BP3/rWI8vERRF2a8oypnHehwSiUQiObEwHOsBSCQSiaR3oKpqqvZ/RVH2A7eoqvr5sRtRZBRFMaiq6jnezyGRSCSS3ofMpEkkEomkW1EURacoyi8URdmrKEqNoiivK4qS7X+tSFEUVVGUmxRFOaQoSp2iKN9TFGWaoiibFEWpVxTl8aBj3agoynJFUR5TFKVBUZQdiqKcEfR6hqIozyiKckRRlMOKovxRURR9h33/pihKLfA7RVGGKIqyyD+uakVRXlYUJdO//YtAIfCBPxt4j6IocxVFKe3w+wWybYqi/E5RlDcVRXlJUZRG4MYoYxqqKMoS/+9SrSjKa936x5BIJBLJcYEM0iQSiUTS3fwIuBiYA/QD6oAnOmwzHRgGXAX8HbgXOBMYA1ypKMqcDtuWALnAb4G3taAPeAHwAEOBScA84JYQ++YBfwIU4C/+cY0CBgK/A1BV9XrgIDBfVdVUVVUfjPH3vQh4E8gEXo4ypj8AnwFZwADgsRjPIZFIJJJejAzSJBKJRNLdfBe4V1XVUlVVWxFB0OWKogRL7v+gqqpTVdXPADvwiqqqlaqqHgaWIoIbjUrg76qqulVVfQ3YCZyvKEo+cC5wp6qqdlVVK4G/AVcH7Vumqupjqqp6VFVtUVV1j6qqC1VVbVVVtQp4BBFMdoVvVFV9V1VVH5AeZUxuYBDQz//7L+viuSUSiUTSC5A1aRKJRCLpbgYB7yiK4gt6zgvkB/1cEfT/lhA/pwb9fFhVVTXo5wOITNggwAgcURRFe00HHAraNvj/KIqSB/wDmA2k+bevi+m3Ck/wOaKN6R5ENm2Voih1wF9VVX22i+eXSCQSyXGODNIkEolE0t0cAm5WVXV5xxcURSlK4Hj9FUVRggK1QuB9/3lagdwIZh1qh5//4n9uvKqqNYqiXAw8HmF7O2ANGr8e6BPhHBHHpKpqOXCr/1inAJ8rivKVqqp7woxfIpFIJCcAUu4okUgkku7m38CfFEUZBKAoSh9FUS7qwvHygB8pimJUFOUKRC3ZR6qqHkHUd/1VUZR0v2HJkA71bB1JA5qBekVR+gM/6/B6BVAc9PMuwKIoyvmKohiBXwHmcAePNiZFUa5QFGWAf/M6RIDnje1tkEgkEklvRQZpEolEIuluHkVkuj5TFKUJWIEw8EiUlQiTkWqE+cflqqrW+F/7NmACtiGCnjeBvhGO9XtgMtAAfAi83eH1vwC/8rtM3q2qagPwfeBp4DAis1ZKZCKNaRqwUlGUZsR79GNVVfdFOZ5EIpFIejlKe1m/RCKRSCQ9F0VRbkT0XzvlWI9FIpFIJJLuQmbSJBKJRCKRSCQSiaQHIYM0iUQikUgkEolEIulBSLmjRCKRSCQSiUQikfQgZCZNIpFIJBKJRCKRSHoQMkiTSCQSiUQikUgkkh7EUW1mnZubqxYVFR3NU0okEolEIpFIJBJJj2Ht2rXVqqr2ibTNUQ3SioqKWLNmzdE8pUQikUgkEolEIpH0GBRFORBtGyl3lEgkEolEIpFIJJIehAzSJBKJRCKRSCQSiaQHIYM0iUQikUgkEolEIulByCBNIpFIJBKJRCKRSHoQMkiTSCQSiUQikUgkkh6EDNIkEolEIpFIJBKJpAchgzSJRCKRSCQSiUQi6UHIIE0ikUgkEolEIpFIehAySJNIJBKJRCKRSCSSHsQJH6RtXPgy6xe9CR7XsR6KRCKRSCQSiUQikWA41gM41qSu/BtDPLthfT/43lKw5R7rIUkkEolEIpFIJJITmBM+k/abnIf5V+Zd0FQGuxce6+FIJBKJRCKRSCSSE5wTPkhz68x8lXImWHOhZHF8O6sqHNkIzkbY/CZ8cKeUTUokEolEIpFIJJIuccLLHQF86KB4jgjSVBUUJYadvPDBj2D9S6DoQPWJ50dfCENO79bxSiQSiUQikUgkkt7LCZ9JC4RjxXOhuRyqdsa24xf3iQBtxh0w68dw7kOgN0vJpEQikUgkEolEIukSUYM0RVEGKorypaIo2xVF2aooyo87vH63oiiqoijHreOGCiJIAyj5MvoOXjes+y+MvgjO+TOc+TuYfhsMng27P+u+gUokEolEIpFIJJJeTyyZNA/wU1VVRwEzgDsURRkNIoADzgIOdt8Qu5eAsjGzEHJHwPYF0XfauwhaamHCte2fHzYPavZAzd6kj1MikUgkEolEIpGcGEStSVNV9QhwxP//JkVRtgP9gW3A34B7gPe6c5Ddjup/HHc5fPknaCiFjAHht9/0OqRkda49GzYPPr4H9nwOOUO6bbgSiUQiiY1NVZvYXL05rn1MehPnDz4fq9HaTaOSSCSS44/DzYdZfGjxsR5GXAxKH8Qp/U851sNIiLiMQxRFKQImASsVRbkQOKyq6kYlgtGGoii3AbcBFBYWJj7SbkJBIRClaUHa5jfhlDtD71C2AXZ8CBOvAYOp/WvZg8GaA5XbunHEEolEIomVe5fdy/7G/XHvZ9KZuGjoRckfkEQikRyn/GvDv3hv7/GVlzmn6JzeH6QpipIKvAXciZBA3gvMi7afqqpPAk8CTJ06VY2y+TFB1YK07GLoPxU2vxE6SDuyEV6YD7Y+cMpPQh8sqwjq9nfTSCUSiUQSK6qqUm4v5+oRV3PHxDti2qfJ3cR5b59Ho6uxm0cnkUgkxxdH7EcYlzuOf57xz2M9lJgx6o3HeggJE1OQpiiKERGgvayq6tuKoowDBgNaFm0AsE5RlJNUVS3vttF2A52SgKMugM9/B45asGa3f23Jg6A3ws0fh5dDZhXB4bXdMFKJRCKRxEOjqxGn18nAtIFkWjJj2ifVlApAs7u5G0cmkUgkxx+VjkqGZw2P+Xoq6RqxuDsqwDPAdlVVHwFQVXWzqqp5qqoWqapaBJQCk4+3AE1DDc7v9ZskHsvWt9+oqRx2fgyTrotcr5ZVBPWHwOtJ9jAlEolEEgeVjkoA8mx5Me9j0Bmw6C043I7uGpZEIpEcd6iqSoWjgjxr7NdTSdeIxd1xFnA9cLqiKBv8/87r5nEdNTpl0vpOEI9HNrR/fv1LoHph8g2RD5hVJLZrLE3SCCUSieQ4oXoPbHztWI8iQIWjAoB8a35c+9mMNplJk0gkkiCa3E20eFrivp5KEicWd8dlBPV8DrNNUbIGdCxoVyiXkoWaNZi9G5bxiftCRhSkMzI/lQHrX0Ipmh3dtTGrSDzW7W/7v0QikZwILHkANr8OQ88A27FvnRnIpMW58ptqSsXusnfHkCQSieS4pNKe2PVUkjhxuTv2RpQQ8aezzzjMO77h4c92ATBa2c9H5n087rmQ0rc2MaIgjREFaYwsSCfb1sHhMThIk0gkkhMFVYWSxeL/+76CsZce0+FAWyYtLyW+SYXVYMXukUGaRCKRaGiLXvk2mUk7WpzwQRoInW0wzdljGah7n7/NH8iggQMxfvUVvj06NlpPZs3Wcl5dfSiw7YCsFN6+fSZ56RbxRHp/0BlkkCaRSE4sKreDf6WVksU9IkirdFSSbcmO290r1ZRKs0vKHSUSiUQjsOglM2lHjRM+SAvV4q0uYzR9gAlVH1A85YfQ+BUMmslTN52LqqpUNbWys6KJxTureGbZPnZVNLcFaTo9ZBbKIE0ikRxfqCq4HWCyJbZ/yZfise/EtozaMabSUZlQ/YTNYOOI/Ug3jEgikUiOTxKVj0sSJxbjkF5Px+Zt5alj2evrS/GGB+GhIaI59agLAFAUhbx0C7OH9eGqaQMBqG9xtT9AVhHUHej+gUskEkmyWPUU/HVk4gtMJYshZ6hwwK0/ALX7kjm6hKiwJ+ZEZjPZsLul3FEikUg0KhwVZJozMevNx3ooJwwySAtBndfEWa6HKL3kHTjpNiieC2Mv67RdilEPQIvL2/6F3BFQvhl2fXoURiuRSCRJYPen0NoIC37SoS9JDPi8cOBrGDwHik8Tz23/IPljjJNKR2VCQVqqMVUGaRKJRBJEotfTLuF2wtZ3YNMbYK85uufuAcggjc7zkUanBx86TMUz4ew/wbffg9TOH8wUkwjSnO4OQdqpP4P8MfDqtbDlLdj8Jjx5msyuSSSSnonXAwdXQFpf2LsIdnwY3/5VO8DVDAOnQ+5QGHQKrPwPeN3dM94YcHld1LXWJSR3tBqtMkiTSCSSIBKVj3eJtc/DGzfC27fA+z84uufuAZzwQZoSoiitySkmFumWyMXmgUxaxyDNlgM3vA8DToI3vwNv3QJl6xJboZZIJJLupnyTCLLO+gMYrXBgeXz7l64Rj/2niMdZPxK9Ire8ndxxxojH52FT1SYgsfqJVGMqLp8Ll9cVfWOJRCLpxaiqyuHmw5Tby49+Jm3XJ5A7HGb/FHZ+BAdXHt3zH2NO+CANOtekNbZ4MOl1mA2R3x6LP0hzdJQ7Algy4Lq3YMzFwuXsrPtg7xcisyaRSCQ9CS0oGzxb3BArt8e3/+G14pqn9ZEcehb0GQmrnkzuOGPk/lX3c9OnNwHQP7V/3PvbjMI8RWbTJBLJic4HJR9wzlvnUNdal9D1NGFam8W9afjZIkiz5cEX9x298/cATvggLVSX7ianmzSLIWSWLRi9TsFs0HXOpGmYrHDF83D5s3DyD0RR/fqXujxmiUQiSSr7l0P2EEgrgLxRQr4YD4fXiSyads3U6WDs5XB4DTRXJn+8UdhTv4fijGL+PvfvTMmfEvf+MkiTSCQSwd76vRh1Rh6Y/QBXj7z66J143xLwumDYPOE6POVGEbS5HEdvDMeYEz5IAzpJEBudHtJTYuurk2LS4wyVSeuITg8jzhUfsFbZf0cikfQQvG5h+lE0S/zcZyQ0HYGW+tj2d9mhcmub1FFj2Fnicc8XSRsqIMb12FR4oAgW3BVyk0pHJSOyRnDGoDPQ6/RxnyLVmArIIE0ikUgqHMIl97zi80gzpR29E+/6FExpMHCG+DlvFKBCze6jN4ZjzAkfpIVKlmmZtFhIMerDZ9I6MmyeWBXYtySOEUokEkk3cmgVtDYIiSL4b4TEnk07shFUH/Sf2v75gvGQmg+7P0veWAH2LxU3aaMtpIOkqqpU2CvItyVe4G41WgEZpEkkEskxcXUsXQMbX4GR54HBJJ7rM0I8Vssg7YSic02aO6ppiEaKUR+6Ji0UA2eIVYFkT1okEokkUXZ/CjqjaDUCbTfCWOvSKraKx77j2z+v04ls2t4vhHtksti/TJibTL0J7JXQUtfu5YbWBlw+V5cmFVomrdktVQ8SieTE5qi7OrbUw2vXC7fhc+5vez5nKCg6qNp59MZyjDnhg7TQNWme2DNpJn1nC/5wGEwwZC7sXhiby6Oqws6PRXPZFf+C178NHuk2JpFIksjuhTDoZLCki58zCkUQFGsmrXYfGFLEDbUjw+aBswEOrUjeePcvE1b/+WPFz1W72r1c4agAEnN11JByR4lEIhHKhKOeSdv1CTSVwSX/Bmt22/MGM2QVQbUM0k4oOvdJiy+T1lHuuOVwAz9+dT3PLtvHzvIm1OATDD0TGg/Hlq7d+TG8cjU8OgE++QVse++E0uJKJJJupv4QVG4TwZSGTieyabFm0mpLIHtwaO34kDNAb4btC5IzXkctVGyBolOgz3DxXHX7IK3SIYxKurLyK+WOEolEAo2uRlo8LUc5SPtUSOW1WrRgckd0WpjrzZzwQVroPmnxZdJaOsgdP9taznsbyrhvwTbO/vtX3P9x0Iq0JikqWRz94NvfF7bWZ/8ZTrtXPFe3P6ZxSSQSSVRKV4vHwXPaP58/RvROiyXjX7cPsotDv2ZOhSGni9qxZPSI1FoFFM2GzEEiAOywqpqMIE1m0iQSiSQ519O48HqERH7oWWLBsCN9hkPt3uRK6HswJ3yQBqAGVaW5vT4cLm/M7o6WEDVpjU4P6RYDS+85jf6ZKazeX9v2YlaR+BctSPO6ReO+EefByXfAtFvE87X7YhqXRCKRREVb9NH6m2kMnC5qvWr2RN7f5xPXpKyi8NuMmi8aW5et78pIBVo9Wr9JwjE3Z2hIuaOCQq41N+HTyEyaRCKRtAVpRy2TVrpaSOQ1d+CO5I4QBnz1B47OeI4xJ3yQ1jGP1uwU0XmsmTRriJq0xhY36SlGBmZbGdU3nRa3r/1OxXOFQ1mklYD9y8QHddR88XNKFpgzZCZNIpEkj7r9okGoydb++YHTxeOhlZH3bzoC3tbwmTQQrUcUPSz9q7imdQWtHi3g9jU8ZCYt25KNURfbQlsodIoOq8HaZhxyeB00VSR8PIlEIjkeOepB2u7PxP1iyGmhX9eMrU4Q85ATPkiD9iqcRqcboEs1aQ1B7pBWk54WV4dgrHgutDZC2brwB96xQKwYDzld/KwokDVIBmkSiSR51O0PnQXLGQaWzOhBWm2JeMweHH4bazbM+Tns+BCenCtUAokQXI+mkTsC6g6A2xl4Suvp01VSjakik7b6GXjqdPgwdE+2TlTvhjduhEfGJCd7KJFIJMeIckc5cBSDtANfQ//JotQnFH1GCofHIxuPzniOMSd8kNaxJK2xJb5MmsXYuSat0ekmPUXsH7KPWtGp4nH/0tAHVVXY9RkUnwbGlLbns4pkkCaRnIi01IOnNfnHrQsjVdTpYOBJoodatP0hciYNYO7P4aLHRVBXtiGRkbavR9PoMwJQoXxz4KlKR2WXeqRpWI1W7LV7RXBmTBES9Vj+Bh//HHZ/LtoDrH+5y+PoFlrqYdMb8NHPYNPr0CpbDUgkks5oygST3tT9J/O0ioUtTckRCnMq9BkFh9d0/3h6ACd8kAbtM2lNWiYtxpq0FFPnIKyxxUOGf/9QxiLYcsRKdbgJUNUOaDgIw+e1fz6rSOhwfb6Qu0kkkl6IqooM1Mf3JPe4Xjc0lIoMfSgGniSuRY7a0K+DqEfTGSB9QPTzaQ6SB5bFP1ZoX4+mMeR08dy65wNPJaunT6rRRnPFFlH3dsm/wdUsVnkj0VIP+74SPdyGzRPZw55wvT6yCT77NbwwH54+Cx4aAm/fAmueg7dvhadOg4bDx3qUEomkh3FU7fePbBTy+UhBGsCAKXB4bXLMqHo4saWLejXtU2ma3DHmmjSjHrdXxe31YdTrAsfQ5I6hgjgACqeLG7iqdk7nac2uh3YonMwqEgWTTUcgo39M45NIJMc55ZtFxmprLZz3MOgTr7VqR8MhUH3hTT80++NDK9mY3Y/fLP8NHl8H6XZzBQzoB+9dFNs5Bw2CvS9C5ecJjLcUBvSF9y9p/3zhQKhaBG+dA4qe+tb6pEwqbK121ujcXFWQz38GTiNTbxI95cLVSoC4dvvcMOpC4UC2Y4GQtQ+Yyt1L7mZ7TYxtDfxYjVYeO/0xCmwF8f8CS/8KJUsgrUBky3QG6DsBDBZhRjXyAug3WTipvfkdeP58uGOl6EUkkUh6HQsPLOTRdY+2bwsVhXJ7OTP6hbDC7w40eX20IK3/FFj3X6HM6Gh61cuQQRoQ/HGtc4ggLcsaW2o3xaQHwOn2tgVpfuMQEHLHjkEcID6E618S7mm5w9ofdPdC0ai1YyCmTabq9ssgTSI5Udj9qXh0NohsUqQgIR406XS4IG3ANNGkumQJGzyjKGko4eyis9Er+rZtag4KQ6PcsbGds7UV6g9C0ZjQfdXC4XXBke3iupg7qv1rqQ0iOFJN0GcUE/MmcnbR2bEfOwzXNTQCRlY6ytjXUsGkolPEec75c/idtr8PqQViEpE7VARG29/H1Xc8n+7/lJHZIynOiCIN9dPgamD54eXsqtsVf5DmboGlfwNUcDtg+veE5DQlq/O2w8+G8/8K79wmeuP1mxjfuSQSyXHBkkNLqHJUMXfg3Jj3GZs7louGxrgI11UOrRT3o7QoSoj+U8Xj4XUySOvtKArtVhVqmkXNQbYttiDNYhQTlha3lzSLEY/Xh93lbWccor3eKUgD8aEMDtJa6uHgN3DyDzqfLDhIK5oV0/gkEslxzu6FkDdafO+3f3D0gjSjBQadDCWLae47EIAHT30QneK/jpVvgUX/hgv+LuR9sbD5TXjrO3Dh1aI4PFa2fwBLnoX59woVQkdqroXtn8OpD0DeqM6vx4vPy9wju8gaewEr61fQ7GqG4ecIyWn17s4LayDMS/Z8AROuETV9KVki0D3wTcAh7ZqR13DpsEtjGkJJfQkXHb4osTYAuz4BVxN8+z0YdAroo9zqtb9FxVYZpEkkvZRKRyVDMofwwKkPHOuhdKa5Cg58A0PPiL5tn5FC5n54DYy/ovvHdgyRNWkdqLG7SDUbAsFXNFK0IM1fd9bot/DP8BuHaMdxdqxL09zTDq5o//yuT8HnEVKUjmQMFCuz1SdOt3WJ5ITGUSv6xoyaD0PPFPI5Xwj5dCLU7Qe9CdL6ht+meC5UbafZXonNaGsL0EAETigw8vzYzzlolrBXfv+H8blzhapHC2b+38GSDm/dmpwasOrd4HaQmj8O8PdL037P7R+E3ufQSpG1GhZUS5wzBOoPJNQQVuvVFmgDEAmXHT74MWxfIH7e9IbI6BXNjh6ggTB+MVigclvM45NIJMcXyarXTTplG+CJaUItMv7K6NvrDeJeULq624d2rDnhg7SOgpvqZlfMWTRokztqdWeNLe2NR1KM7V8PoNNB8RzY8D/47FfgcYnnd3zQJpfpiMEkagqi2WJLJJLewb4lom5s6Jni5tVcISR1yaC2xL/wE2FBqnguAI7aEmyGDr3UdiyAwpMhNY76r/S+cNVLYK+GV66JvfB7/zLU4P5oHUnNgzN+CxWb4ciG2McTDn8AaSuYCPiDtIwBYmKwY0HofUoWiwA0WOWQVQTNFVQ2HgLis7FONaYC4HA7Im9or4YXL4G1z8ObN8M3TwhZ5tjLIv9tg9Hpxep0xdaYxyeRSI4vjqoJSDysf1HMgb+3TNzrYqFwhgjuerkz7QkfpA3IslJSZafWLoKkAzV2BuVYY94/EKQFMmnt+6xpckdHx0wawPxHYdJ18PVj8Oq1YtV8zxcw6gIRxIVi0CzhauNuiXmMEonkOOXgSlEX1m8SjDhPZDyW/6PrrlY+X1s/mkjkjwNrDs2VW7GBOHfpWpHxr9girlXxMvI8OOPX0Hi4nXV+WPz90f6+J5+nl5aE327EuYAi5KFd5cgGMKRg82fSAtmsUfPF9TeUE2LJYiFvNKe1PZcl+sdV1Ar1QzwTpIiZNHcLLH0EPv4FPD5V2FbP/4cIVj/9PyHHnHF7zOcCIH+MDNIkkl6Kw+2gyd3UM4O0/ctF0JU3MvZ9Bs0C1dvrkxYnfJB21bSBuLw+3lpbiqqq7K1sZkif1Jj375gp0/qsaZk0iylMJg1EzcKF/xA31z2fwyOjhVwmlNRRo+gUUUR/AqR5JZITnkMrRVZdbxTZjpPvEG6B0azgo1G2Hhw1MCyKwYZOBxf8DbunBVv9IVj4a3j6DLGoVDAeJn4rsfNrzrWak20k/P3RlrpHsnBbRfjtbLnivYrlmNEo2wAF47Ca0wHa6sJGzhePOz9qv31LnXhP/ZnHAP4grbJhHxa9hXRTesxD0Ck6rAZr55o0VYUFP4Evfg/rXhBmKt9dClNugOvfEfeT734FmQNjPhcg6h7tlSIzJ5FIehUVDnHt7HFBmr0GqrbH77MwcLpQLmj9M3spJ3yQNqIgjSmDsnhl1UHKG53YXV6G9LFF39FP55o0kUnL6CB37FSTFsyUG+CGD2DMxTD8XBGIhaNwBqB0fZImkUh6Ni4HlG8S/co0JlwrarO2vde1Y+/+DFBiK9IefRH2/hOw9RkNP9ogMjQjzoUbF0BKJodqHdz9xkacoRaiwpGWD30nxpb12r8MJ2Y2q8X0SYtiDz9snsh0dSXQ8PnE+95vInqdnhRDSluglDtM9ITb36HX276vADVEkFYEQEVzGXnWPJR4HC0RksdOQdq6/8LGV2Du/8G9R8TfQVuBzh0m7ieJtGnIHyMeZTZNIul1JFIXe1Q46J/LDoozSDOnCoXJ/ihB2nHeS+2ED9IArpgygJJqOx9sLAOIL5PWIVPWEKhJE8XaEeWOwQyeLRqmXvtq5BusJQMKxnWeJEgkkt5F2XphIhTcM8ZkhUEzhbSuK+z+TEjzrNkxbd7sbSU1swiyB8M5fxF1ZZYMAJ7/ej9vri1lV0VTfGMYNg9KV4n6rwg30tY9S1jlHY4bQ2AxLPwxzwJUWPwX4baYCJVbwdVMZdooyupb2gdKiiLe/wPL24955yfi/Rgwtf2xrNlgSqPSWUu+Lf7JkdXYIZOmqrDin6K/2ak/S+CXi4AM0iSSXksgSEvgOtSt7F/ul/TH4farMWhm9PKf58+HD+9OfHzHGBmkAfPGFKDXKTy2aA8AQ/ISkDtqmbQWrRl2FOOQrlB0ipA7elqTd0yJRNKzOOR3fg3OpIHI1lTvhMayxI5rrxaSyWAXwig43A5sxs4KA69PDSxuaXW9MTPmEuEu+Z9T4X9XicxhpxPXYq7Zzkp1FINyrNEXu/pOhMnfhtVPw/8StGb2Z/cu+NDED19Zj81oax8oFc0Ce5VwgATwuoX8cfi5nRfYFAWyiqh0NyckM0o1pravSavYAlU7YNK3wtctJ0pqnpDgS/dgiaTX0WPljgeWw8Bp4U2hIjH4VPC5wyvLPK1irmyK3WeipyGDNERPtJOLc2hyekg1G8iLJqkJIriZNQi5o16nYPM/b+mOIG3QLPA4RSM/iUSSPKp3w5d/huWPHuuRQOka0aqjY7ZLk9SVLEnsuFoWvqM0LwLN7uaQQdrKkhoqm8RiUb3DHd848kfDjzfC6b8Wmb2XrwCvp90mqn+sTQUzKMqx4XB5Qh2pDZ0OLnxMSAH3fQV1B+IbE1C7YQFbfEVUksXBWhGctguUBvnl6Af87+OB5eCsh1HzaXJ2fg/UzEIqVXdCkyOb0YbdFRQgbn5DtGEZfUncx4qJnGFQs6d7ji2RSI4ZFfYK0kxppBhSjvVQ2nA5ROZ+YIjel7EwaJZoHRJONl++RXg49J8a+vXjABmk+Tl/vOgV5HR746ob0DJlDlebcUi6xRA4hrWD+2MwXp8afdIRisKTxWMvL5iUSI4qjlp4ci4seQAW/gZq9h7b8VRsFdLmjuSNAWsubHoVdnwUf1+wA8vBaIu5abGqqtjd9pBB2rsbDmPSi9tInSPOTBpAWgGcejec95AIejoYItVsXYRDNTN6ylysJn30TJqG1uA0nF1+KCq3s2XjajKq17E9dQaXTu6PqtI5k5YzBFLz24Ldbe/jM6TwnWVpjPvdZ2wqrW932LrMfrgVyLf0iX0sfmxGG3aP/9yOWtH/bMgZYMuJ+1gxkTusLUMokUh6DT2yR9qRjcKhMVTLqVgwWUUvyHBmUYfXisdEj98DkEGan0sn9+e0EX2488xhce3XMVPW6HQHnB2hc81aMPd9sJXRv/mUsx5Zwg3PruKXb2/i0c938+yyfby04gB7KsPUeNhyhBOXDNIkkuSx/X1wNcOVLwrXqHUvdP2YqiraalTFKSFz2aH+AOSN6vyaTgfDzxZ1aa9eAzs/jO/Y+5cLCWWM5hKt3la8qrdTkOZ0e/l4Sznnj++LokBdvJm0YMZfKTJEwTdbrwfj7o9Zo47g7PEDsZoMsQdp2cXC9XB7jEGay4761OmMemceekXl7Iu/TY7NhL3V0zlIUxRR+7blLdRnz4U1z/CRewpf7BXZtqW725uWVNiyAMhT4pfzpJpSRSatuQqeO084cs76cdzHiZmcodBcDs7G7juHRCI56lQ4Knqe1PHwGvHYlSBq2Dyo3Rt6UfXwGtF3OL1f4sc/xsggzY/ZoOe5m07iB6fHF6TpdQpmg65dM2utRxqAxRA+k3agVtRgDMqxUWNvZeG2Cv72+S7uW7CNX727hTtf2xD+xINmiR5K3i5MjCQSSRub3hByr1HzhXvh+pfbmswngssBr1wNL10K79wW375VO8VjnzB9Yy74O9yxCswZomdZrDhqhTFGHHbHmtRPa66ssXhnFU1OD5dM6k+6xUh9Ipk0DUuGUAgEBWm+re+S4SpnQ8FlZNlM/kxaHMqDkRfAwW+gqTzqpuq+r1DcDnarA3BmDSN96AxsZgMtbm/nIA3g3AdxnfR93IfW8LTnXN7qdzdLfjaXdIuBqqa2WuGvSr/iX03ib5nXeCT2sfuxGqwik7bqP6JW7Lo347eqjodc//1PSh4lkl5BdUs1D69+mP2N+3tgkLYWMgpFPWyiDIvQzuXwWmHmFKerbk9CBmlJIMWkD1jsNzo9AWdHAJ1OwWLUhcykOd1eTirK5ukbprLgh7NZ86uz2PnHc9jwm7O4fMoAdpY34fOFcT0rmgVuu0gXSySSrtFQKjLT468UF/QpN4Kjums9tza9Brs+EXKMsvVQHcfEt2qHeAyVSQNRZN1nBAw5TejxO7ojqipUbgeft/3P618UP8dhd+xwi8Wkjpm09zceJjfVzMwhOWRZjV3LpIG42VZsEY2ivW5aFv+Nvb6+FM64DCA+uSPAuMtFdu69H7S9D/UHQy5s7Vj6FnbVzKoz38Ty4zWg02Mzieu4SZfSKUircOq5cNe5jG59DtP59/PsbXMZlGMjxaRvtyD32PrHWFq7mUEeL8UVO+N8Q9oyaequT0TdxuBT4z5GXOQMFY8ySJNIegVfHPiCF7a9gEFnYHrfBGu/uovStTCgi1LE7MHiurV3UfvnW+rEdax/Aq6RPQgZpCWBFGPb5KHJ2T6Tpr0eKpPW4vYF5JAaZoOeTKuJ0X3TcXtV6lvCTHyKZgMK7P0yKb+DRHLCcuAbeOkyEZyNu1w8VzxXZKl2x5Gl6sjmNyB3OFz6FKCIn2OlcrtwPvQ3Qw7LsHlCnrZ/KWx5Cza9DhtfEyYc/5wBz5wFH/8CHh0vfl74GzClBeQlb68r5fx/LG2X/emIlkkLDtIanW4+317JBeP7YtDryLSaupZJ034XEJbJDw3FVruFZ7iQs8aIemGryUCrx4c33MJVR3KHiVq3PQtFRvOd2+Hv42DpI+02O1RjJ/3Ql+y0TeX6U4YHnreZ/UGaYqXZ3YwaFAg/s2wfe6uaee6m6Xz75KKgGmRDuwW5CnsFlw69lAW2SaSVLIu7Z4/NaMOjenBVbG5bMe5OsotB0ckgTSI51tQdEPcmbwK+BUFUOCowKAaWXLmEC4ovSNLgkkBzJTQcTE69WPFpQsYfrHzZt1Q8HsemIQCG6JtIopFi1AfJHT2dgrSON26NFpeHfhmWkMfMSxcOk1VNrWTbQtQy2HLFCsHuT2FOkvvlSCQnAl4PfHQ3rH1OSC6ufUNMUkHUawVnqeKVS9QfEpm5034F6X1FH8TNr8PcX8R2rKodIsDTR7lEDz1TPP73IlCDDESMNjj5ByKbV75FBJ2z7xbNlTMGgEFcX+56XWTi91Y1h20UrWWRguWOn24px+XxcdFEofXPshoDLo8J02ckTL8d6vbhTcnhrk398Y08NxAsWYPqe1PNMd66pt4kWg6s+o+QelpzRA3f3J8HNnnq7Y+4T6nGNvMX7UyjbGZxPoOSgsfnweVzYdaL96iy0UlBhoXZw9qbgViCFuxava3UtdYJiVFxgTAxqdvX9hmLAS0wblZ0mONomZAwBjNkFkrzEInkWPP2baINS2oBfPcrSEvM9KPCUUGuNRe9Th99466w40MoGA+ZA2Pb/uA34jEZQVTxHFj9lKhBGzRTPLfuv5DWL/4m2T0MGaQlgRSTvp0Ff7DcERByxxCZNIfLG3CH7EifVP9koMnJiIK00CceNg8W3w/2mu5z+5JIeis7PxQB2knfhTN/C6YO7oXD5sG2d4UEL5TLYiS2vCUetczcuCvg/R8KeXIsroqVO3D1m4rP7Q2YE4UkLR+GnyMMJc78vXBLBLGIY8mAM34jpH4h+sTsLG8zJmr1hHeI1IK04Eza+xvLGJRjZeLATACybCZ2VTSH2j12FAXOvR+AhVvKeW/lWp6bMiDwsqY6cLR6Yg/SQCxizb5LmLGs/A98+UcRuNlyWbitgoz9n4ARMsed1243Te6oRyyk2d32QJBW3+Imy9p58SzFqAvcC7TmsXnWPOg/VmxQsjj2IK1iG7aP/w+yU7GnFZCjNZvubnKGQY0M0iSSY4bLLgKO/lNEXVXpKlErnQCVjsrur0Xb9Aa8fQtMug4ueiK2fXYvFGqVAUkI0opOEQqAksUiSKs/CHs+hzn3RF/o7OFIuWMS0DJpLo8Ph8vbWe5o0ofJpHk7yR018tLFxKCyMcLq9LCzABX2fpHw2CWSE5aSxWBKhbP/1DlAg7YsVSJ1absXQt8JQi8PMOJ8cROJxRK+tRkaDvLoJgO3vLAm+vbXvga3fC7qVHOGiH+WDPGawRy2kee7Gw4H/u+M0Mexo9yxssnJ8j3VXDShXyDzlGU1JWbBH4Z31peSm2pm9tDcwHNaZiuuujQNnR4s6TD0dPHz3i/xeH38+cNtXGH+Bl/hTMjo324XLYOnU0VfoeB+ZXUONxkp7a/z0F41oQVp+dZ8UTOR3l985mJl27vY3E5x7nGXHr3i9z4jhBupNKWSSI4Nh1aBz+N3clWgYlvCh6pwVHSv9X7VLrEACUJyGAuqKu6RQ06L2WU4IilZ0G8S7PxYGGl9dI94ftL1XT/2MUYGaUkgxV/Qvq9a3MQLc9pPiqxGQ0hXMofLG5DwdERrqF3VHCFI6zsJbH3ic3eTSCSCksViBS7cTSItX8g34plYA3ha/bKLU9qes+UI2UUslvB+Z8fdan+W7amOsnFi+Hwq760/zMBsEYBEyqR1NA55f0MZPhUunNgW1GRZjThcXlo9CQRQHaizu1i0o5KLJvbDoG+7RaUYRdCUUJCm0XcipGTD3i94e/1hrLVbKfQdRjf+yk6bakEhqrgWB/qVAQ0OV8hMWrDcsV0mTVGE5HTfV7H3tdv9Gak5wm2xeezFse2TDPpNAm9rm3mNRCI5uhxYLtrADDldLPRVbEn4UN2eSdv2LnicMPOHQs7dWBZ9n/JNopZ6+NnJG8fQs8Rx/3elMBE55c7YpZc9GBmkJQGL3xhkZ4WQDw3Pby9PtJj0tLjb35h9PpUWt5cUU+hUrM1swGrSR86k6XTCQOTQyq79AvFSfxD+fYooapVIjkfqDkBtiZg4R6JgPFTGOVk9slHctAad3P75UfOhanv0ep+q7QDsVgeQmxq6TqyrrN5fS1mDk6unFQLxZdLeXneYCQMyGJrXVqOW6Q9Y6rvq8Ah8uPkIbq/KJZPaZ7a0Ba24bPg7ohMTH3XHh7z/+SK+n/41qs4Ioy/qtKmWScMn/gbNrjY5Z53DTZa1c3AfLH0PZNJs/lXs4rnCcax8U/RxNldC2XpsheIzpAXKR4W+E8Vj2YbY99n5MSx5UBjXSCSSrrF/uVBimNNET9zKxDJpdrcdu9vevZm0w2tF/fRY4cLLga+j76OpUzS1SjKYfRfc9In4d89eOPN3yTv2MUQGaUnA6r8x7yxvxKBTGNKnfT+hFKMuYNGvoa1ch8ukgcimRcykgdDzNhyCporEBh8vPi+8/V0o3wz7lhydc0okyUb77EYL0nKHgb1STK5jRbtJDZzR/vmR54vHKJLHqpKNtKpGDqj5EYOnrvDuhjJSjHouGC+cE1sjBWmuZnSKjhRDCjvLm9h2pJGLOwRQWlYpGZLHzaUN5KaaGdMvvd3zbUFaF9+T03+FV2fmqZa7Ob/1Q5Sxl4I1u9NmWk2az9tWkwbg9ak0Ot1khMikWYOcfMvt5aQYUtoMVwbPEY+xZGZ3LxRjGDwXaAuUjwrZxcIB9MiG2La318Dr34Yv/wRv3yoMWhLF5xX1OBLJiYrL0d4AI3+MWFB0xb9QU+EQ88Juy6SpKpSuEfPQgvFgTof9y6Lvt2eRCEK70h+tIwazWBgddLIIbnsJMkhLAgXpFsrqnWw81MDgXBsmQ/u31Woy4HC3X/3VVoPDGYcA9EkzU9nojHxyzb708Nr4B54Iq5+Gg1+L/kPSpllyPNJcBSv+BWl9wzeL1ugzQjzG43Z3cIUwX0ht7/xHxgBxI9sVucatet9G9tGP608ejMPlaWf9ngxaPV4+3FTG2WPyyfI7x0aUO3oc2Aw2FEXh7fWl6HUK8yf0a7eNllWqs3c9k1brcJGbamrntAjiOgpJCNKyB7NxztPsVftxcOr/wUX/DLmZJnf0esR7pAVpjS1uVJWwmbTgmrR8a37b75GWL1bFYwnS9iyE1AJsfSe3O3eyCfnZ0unEBCrWTNrGV8DrEiY1kLgz5KHV8K9Z8PhJcbcqkEh6Dcv/Lr5P2qJe/hjh3JuA/Lid5Lo7qD8o+on2nyxUCoUzogdprc3CCGXI6d0zpl6GDNKSwMyhubi8PpbtqQ7pxCjkkO0nQdpEI5xxCEBemiVi/yJATPoUvVh56W58XvjmcVFbUzRbBmmS4wuXHRY/AE+dDnX74eJ/RjdjyPX3zaqKsRGxzyeshQtnhH592DwhTw6TmatqaiW9aS+u7OHkZ1jwqZEDqERYvLOKRqeHiyb1x2IQ15+IckdXMza/sconW8qZPSy3kwwzM4mZtFq7K2TbkaTIHf2UpQznAtefaZ32/bDuX1pQ6PGKsWjZLO13zAwRpFmCMmkha0EGzxGfD0+E98nng5IlMOQ0Uk3ifpKMIK2svoUPNpbx0Kc7+M7zq5n5ly8Y97vPOFQbYoW+30RRBxOtR5OqwtrnYcBJMOYS8Vx1/E27cTngxUuEq2RjqZB7SiQnGpU7RB/HcVe2ZdLy/K6uCUgeK+wik9Ztckdt3qnZ6A85Q3yHI90vD3wtTFGiqVgkQAxBmqIoAxVF+VJRlO2KomxVFOXH/ucfUhRlh6IomxRFeUdRlMxuH20P5aSiNqnMyBBBWopR32kSpK22RpI79kkzRw/STFax0tLdmTRVhV2fiJWT6d8VMrCavXLFU3L8sPSvsPjPkN4Pvv1ebCt5WUWgN8c+8azeCc76thtsR4bNA9Ubtgn9m19vp79STf/hk7H6s+z21q4HJcG8t+EwOTYTs4fmYtQrKEp0C36bQQRpFY3OTjW3QCCoSkaQVmd3BTJ8wSRN7oiw0AdCOjRq6HUKKUY9bpfYRguUtH0zQ1rw63F5fXi8vtBB2qCTRb1ipLq0is3QUgvFc0kxpKCgJCR3bHK6+XDTEX72xkZmP7iImfcv4oevrOc/S0oorWvBajbQ3OphV0VT5537ThTjjLZ6f2iVmJRNuREyB4nvSqwLGsHs/QJcTTDjdvFz3b74jyGRHO8s/ouY053zl7bnsgeDIUWUmMRJt2fSDq8Dg0XMQUEs1Ci6yLWpJYvFPh3LASQhiaWBgAf4qaqq6xRFSQPWKoqyEFgI/FJVVY+iKA8AvwR+HulAvZUUk56RBWnsKG/qVI8GYnKhyZY06Ys20YgWpDW1eiJa9QNC8rjlLbECq0tyclRV4auHYNnfhAteen9hJ95UDq2NYK9Krq44Fhy1wmK8u5szSnoX+74SK/7ficMNVacX9ulVu2LbXqtHC5dJGzBV2AXv/gzGXtruJZfHx6pVX3M7kDN4AtbmNnlfsrogNjjcfL69kmumDQw4J1oMnReRgrG77dhMNtxeH063L2SPMi2rlAzjkFqHi+xQ9V7+84bqORkvDf5gMj1CkAbCPKTVbUBBaQvStExaSAt+fyDp9gTkju0YcJJ4PLQyfH8gTQ45eA6KomAz2mI2DjnS0MLHm8v5YkcFq/bV4vaqZKQYmT44mxtnDuakomyGF6RiNujZU9nEmY98RXOoRYD+QmZJ6WooGBv+hHsXAYqQZun0YvEuEbnj9g/E92LidfD1Y6IGJ9x3SCLpjTRXinrlk74r+lxq6PQw8KT4XYYRNWkZ5gwsBkvyxhnM4XVCzaU5JKflC7XA5jdg1o9EWUzH9jYlX4rvtrGbxtTLiBqkqap6BDji/3+Toijbgf6qqgYXVqwALu+eIXYvG6s20tja2OXjPHz1EJ5aXMmsYbmdXksx6fGp4PL6MBvaS3Y0W+lQBGz4m1o72fq3o3CGaMr73vfhtHuTazv61UOiILz4NJEhmPodIQ/KGSJer9mTvCCtere4OKVkhd+mtgT+ORPyRsKFj4kmw41HxBc+0n6SExuXHcrWC5vgeOkzPPb6nIMrIDUfsgaHfl2nF45Wez7vtKjy8ZYj5Dr3gRHoMxKbK0k1WEG8t/EwLo+PK6a2XSPMRl3ITJqqqqyvXE+5o5y+tr6BjF6oIM1i1JNi1FNn71omzeP10dDiDil31Op37UmQOza0uEkx6iM3CkfUpTlcPmxGG7vrdrO0dCmryqvR2/axt9lEc2n7iUaZqxK97QAf7/PiUT2dV7DT+0JmoQjSTr4j9ElLFotayXRh6mIz2ihpKGF7zXZG5YwK+bt8vPkI7244zMp9tagqDM1L5eZTBnPGyHwmF2a2a2XQ9ruJv6O9NcTnK7tYfI4PLIepN4V/gw4sF9fglEzxc+4w8T2LB49LqDRGXiDOq+igVmbSJCcYG/4nZIBTbuj82vCzafnsXtbvfAevrfMcMxy76nZ1r/1+9S4YeV7758ZfCe/eDg8UidKYG4OMshqPCNnmuCu6b0y9jLhacSuKUgRMAjp6vt8MvBZmn9uA2wAKCwvjH2E387e1f2NtRdelgmcNOotHr34k5GvaRMDpagvStJXriDVpWkPrJmfkIG3s5eLLsvxRUcTddyKMugCmf69rLjdet6hBG3EeXPVy+yxdzlDxWLMnvLQrHja/Ce98V2TIxl4mUvuj5otVpeCakS//LB4bDsPz58PNn8ELF4imxLd9GX+g5nWLGpGi2UevWazk6KM1Bw3uXRYruSNg23vgdkZf/Tu4AgpPxu1Tcbg8oeV0Q04XK42V29plKZ7/ej/XWCtQVQtKVhHWqhogOUGJxutrDjG6bzpj+2cEnguXSdtas5UbPhEThvG542lyinGkWULfNrKsRuq6mElr8JtyhArS9DoFs0GXlExafZhm1B2xmQzYWz30yejDokOLWHRoEQDWQvj96tD7WAvhj6vE/4vSizpvMHCGyOqqaudrjrNBtDYJmqjlWfP4uuxrVhxZwdKrl5JuSsfrU1m0o5K31payaEclLq+Pwbk27jxjOBdO7Mfg3BDN2Tv+bmZtESDE50tRxHV9//LQ4wTRD7B0NUy9ue253BGw9V1wt4AxJfzJVVWoP5wNIvvsbBDXe4NJGOzUlkQdv0TSq1j/IhTObDOrCmbYPF5d8RceWfGbuA97ZmESbe6DcTYI05DsIe2fH3Wh6N3bVC5MROzVbZlBzdl4RIfAThKWmIM0RVFSgbeAO1VVbQx6/l6EJPLlUPupqvok8CTA1KlTe1wB069n/LrLRdkPr3mY0qbSsK8HS2AyEBODmOSOqW2ZtIjoDcJZa9L1YjK5YwEs+iMcXAnXvpa4LHD/UvFFnHRdZxllxkDQmxIzD/n6cX+wFfRxcDug8GRhTrL6GZGp+/T/4PPfi5v94FMha5CY3J5yF0y8Fv41U5hAeFuhpR7euBHO/L1Yqa7ZKyYQoy4QP2scXit6+uiMMPl6WPWkkHJe+pRYAZIcO+oPCtlT8WmQPzq5x9aagxZOj3/f/NHCXat8k5CdhKOhFBoO4p3xfSbdt5C8NDOL7p7bebtgK3Z/kLbuYB3rD9bzeL9yFPNI0OkD14ZkBCUAW8sa2HK4kd/Nb//ehsuk1bSIIPEPs/7AvEHz2F8VOUjLtJoCUsBEqfVn4kLVpIEILJJVkxbK+KPz+fTYW708e/azlDWLJq0vrzjAW+tKefN7M9Hp2gcvX++t5sFPdvLo1ZMYnpfF8KzhnQ868CTY/Low5sgb3f76/PnvxPVswtWBp5444wle2fEK/9r4Lyrtdby5qoZnlu3jcH0LualmvjWjkIsn9mf8gIxOjpgRfze/MUpIuSOIVfCt7wiTnewOmWFVFVInj1Nsp9FnOKCK6280meRb3xH/N6XB5G8L0wEQ2TRZkyY5kWgqF3Opqd8J/XrOUGqsWZhRePa8l+I6dHFGcRIGGIKaveIxp0OQZk6FK18Q14enToM9X8C4y8V1bvsHwvk4VCAqCUlMQZqiKEZEgPayqqpvBz1/A3ABcIaabJ/oo8SQzCHRN4pCcUYxiw8tDvu6JtMJnmwF3B0jyG3SU8Sfp9EZ4+p09mDRZf2UO0Wg8+FdQq449xex7d+R7R+A0RraYEGnFzdT7YsaKz4frPy3CJyGBa3wpGTB9NtFQOZ1C43zjg/h0AoRgO35XPycUSi0zilZcOrPhBTzlLuEwcOCO+HJOe3Pt+gPIqM4YKoIztZrFzgV1r0gLo4AX/9DpOBlNu3Y4PPBm98R1rwAw86G8x9uH2AngqMWvrhP9J3SmoPGS9FsIcHavTBykHZwBQDLXMNobm0NP/nN6C9cI0sWw8wfAPDPL/eQaTXSt3UfFM4DguVoycmkvbGmFJNe16nHWbhMmmZWMaHPBKxGK82tov9Vqjl0cJNlM1KbpCAtVE0aiOtlsuSOMWXSzAZq7S5yU3LJTRGrwa95FDJ0FibmT+i0fU1NJT5nCwOsIxiRHSarr9Va/fsUEZhc77+lHloFa56FGd+HfpMCm2dZshiaKYK9a59eTGVNLicVZfPrC0Zx5qj8kFLGWNDrFCxGXfjPV5E/63xgefsgrfEI/HM6mP3Z2GAlRa7WsmJn5CBt+wdgtMEdKyC1QGTQNLIGw7Z34/59JJIeR3NV51YsodDk9P0mhn5dUWjOHECa/QDjM4f3jHouLdvdMZOm0Xci2PoIddfiP4vt9i+DWT+W86w4iBqkKWJp7hlgu6qqjwQ9fw7CKGSOqqrxd9nrReRZ86hx1uD2ujHqO9/4NbljS9BEqCWGTFqaRRxLkxnFxdSbRWCz+hmY8/P4vxQuuwiKhp4ZXraSMzT+TNqhlaL59iVPwoSrQm+j3bBHXSD+heOUu8SFoHiu2Gfk+eJ3djaANUfUdSz+i+g7ovqEo9BJt8HpvxIXmJf8TWxn/hAW/kYEcR311SACUVOqKIqVdA+rnxYB2jn3i9X5JQ/Bi5fCD1Z37YK+5S1Rr5lRKFbrE8GaLQwfdn8Kp98bfrt9X4E5g39sMQEi++3x+kJPoovnigUDj4s9tS4+317JvXNy0a2sDGQRNSl0S5IaWi/ZVcWpw/t0ciUMl0nTFAY2o5DONfkXiyJl0srqu1bfq7lDZtlCB1BWkz5JxiFuinIjSMj92EyGThb1dQ5X2CxcqGt9J/LHwmXPiCzVzo/EQoI1Gza8LJrBntb2GfP6VN7bcJiHvtoDWZCdpvL3S6Yzc2jsdSmRSDUbaA5Vkwbi+mnNEZLHSde1Pb/rE3GNdTnEwkdwI/CcoYAC1RHuCz6vuLcMOyv0Ikx2sWhR0VIn64wlRx97tagPO7xW3I/8taFxc3AlPHs23PRR9JKQIxsARZhwhBuWLRdb0z44sEzMy4412gJ9xyy7hk4HQ8+Cjf8Trq91BwA18pxO0olYMmmzgOuBzYqibPA/93/APwAzsNAvsVihqur3umOQPR2tMLOqpYp+qf06vR5KttQmdwz/J9AK9BMK0hRFfJF3fiSkI9lxpLw3vQ7v/wg8LZELPHOGCJc6nzd2SeXm14WdrNaosSvoDTB8XtvPttx2MiEArn4Z7DWi/qf/5DanoX4T4fZvRNPI1DxY+SS8eg30GQVDzxA1fq3N4gK08VUxWfn2u21Ws5Lk4HHBp78UiwlDzhBZT0UR7/f7PxS1iX3D37iicmC5cCS9c1PXgr3h80RGrqkc0gpCb1OymPr86azd1URxHxslVXYanZ6Q9VUUzxVS20Mr2dYoViLP6SMyVeSJIE2To4U0dkiAykYnp43oXEQeLpOmBWmpRuFYq2UGU8MEadlWU5ct+Gv9zbBzbOaQr1uTJnd0kZGSEXU7Te4YTJ3dTVaYTJ92rY/klomiCPlP5iAhTd+7SPy8f7nIsplT8flUPt1aziMLd7G7spkhA2w0A788fzAzByYnQAORKQybSVMUUT+nZbc1di8Uix43fwx0+E4ZLf6asggKi9LVYK8UNWih0CZ9tfugvwzSJEeRmr3w34uh4aD4eeiZoiwiEfZ8DvhrL6MFaWUbhOmOubM7uIbdbMOmIr5/PSFIq90L6QMi156Omi+CtIseF6qs/cug3+SjN8ZeQFSdhKqqy1RVVVRVHa+q6kT/v49UVR2qqurAoOdOyAAN2hoFaj0pOhJqRVz7v9kQ/k+g1ynYTPrEgjRok9UcWhV5u2BUFZY8IIK6Gz+E0ReG3zZnqAhyGg6F36b+oAiA1v0XNr0h/o08L+LFKOnYcmDw7M5WsGn5wgnTYIZbF8E5D4hAb8U/Ra8fV7NYURt/lbCSffoseP3b8J9T4Z8nw67PhG3u7oWw4t8iWJXEx4aXRRbtpNuEjl0LpEacJySG2z9I/NiqKkwJBs3surximH8xYM/noV+v3Qf1B/jUOZJ0i4HvnCImmmFrtAafKhYrtr3LkfoWAPq0+LMP/oUAqzl5zZsdLg92l5c+aZ2Dn3CZtGZ3MwoKKQZxEw4Yh4RwdwRhHNLQ4sbrS1z5HqlRNIDVqE/K+9HQ4g7Z56wjoYKYOkfoPm7Qdq2PKZDsPxlSssVCV1MF1OxGHTSLL3dUMv/xZdz+8jp8qsoT107myW+Juq9kNLUOxmYyRH4/B0wRagmt+bqnVch0h50lgrGM/p33iSSDX/McvPt9Uc88bF7obbQFRWkeIjlaNFeJz+WTp4n7/s2fibr1SIsN0TiwXDzu+FDI+SNxZINQBUXA7mkh1Zwhrhc9gZq9kBNl8X/EuXDXdlHvP+oCOPd+KXWMk7jcHSWh0TJpFY6KkK+HqklrcXlIMeo7FZ53JM1iDMiM4qbPSCGfObSyc4YpHEc2iJvy/EfbahLCEXB43CtqwjodayM8dQb4gsZfMK6dnKfHkJYPM74n/rmdInBTFPB6RMau/iAseVAUwWYOFHLQ/3XIMuYO7RkrXMcTm98Q9VnnPtD+4m3LFU5XOxZElhhGomYvNFe0NzZIlPyxkNZXBGnB0i8Nfw+bp0oHcc0phfTLEIFNQ0uY7645TdzAtr5DxYhvk2o2YKndITT8/pYWWjPrZGSOqptE8JOb2jm4MBv0VDd3DiYdbgc2oy1gRqFl0jQZdkcyrSZUlbAW+rFQa3dhM4W3xrea9JQ3ds1B0un24nT7Ynd37NDjss7hYvyA0Fm4UNf6sAS3Y/AHLL9cl86rZasZmJ3CX6+YwMWT+qPXKYEFQLsnuUFaqr+hdVj6TxGPh9cJhcGB5eC2hw+wQCgstrzd+fm6A6JuuGAcXPokWNLD7D9UBHHlm0SGUSLpbpY8IBREYy+F2XcLA5ysovhr7jXcTihdIzLODQeFdHLgtNDbNlVA05Hw9Wh+7G47fW35ULJEyIlzhyY2tmRRuxdGXxx5G0WB9M7qMknsJLnz8YlJtEya1u9sf03bDdbh8kasR9NIs0S5iUZCpxeGGfFk0ja9IVaQRl8UfdvgIC0U614UY7hjNXxvmbDxv3VxZzegnobR0hYwaPb/mYUiZf/T7fCdz+D2r+GS/8B5D8M1r4qata5kfU5E6g+JSd+4K0Ovro2aL2Sqid4oDywTj9EWG2JBUYREcd9XoVdFSxbTaMxjH3359syiQJPksEEaiNVFRw1ZR5bRN8MCFVsDUkcAg16HyaBLilFGVbMTIHwmLYxxiFaPBqImTTObCEWOPwCsaY7iRhuBWnv4LBWITFVXa9K0v0msxiE+FZxu8TdXVZU6hztqJi2i3DGYEeeAo4aad3+JXTWztKk/f7pkLF/cNZfLpgxA71/E0ySndldygzRrCDlnO/pNAhQRpAFsXyBqewfPDr9P9hDRU9NR2/55LQNw+fMw5pLw+xvMIpscb781iSQRvG7Y+rYowbj0Sb9DKWKekui95/Aa4dJ6+r1ChbP9/fDbHtkoHqNk0prdzaRmFgmFyZs3wpFNiY0tGThqRXa9p8/legEySEsCGeYMTDoTFfbQmbS8dAsj8tNYvLMq8FyLyxuxR5pGqsWQuNwRYOB0MflzxlDQ7/MJ/fSwebEVbNv6iExdKPMQr1sUxg8/R1z0CsaJdLe+lyRvDWaRnTzpVpERGXYW7PhISh5jxd0iXD4h/Gp58VzxeDjBPob7l4Mtr20xoasUzwVHjbBOD8bnxVeyhEWuUcwf34/+mSmBACBikDbkDEjJYnbN65xm3iFuukGufgA2kx5HEmrSqgKZtM5BmsWgD2scEhykNTs9pJoNYW3etQCwqgtBWp3DFbbeC9oyW11B+5vEasEPbb3qHC4vLo8v7BhTYjEOCaJiwDm85ZtDjreS2uxJfHHPmXxr+iBMHWTwKYYUFJSA42ayiFiTBqJvZe5wMel0OUTme/RFnaXjwWgTt44T3N0LhXNjLBO7fpOgbGN0mZhE0lVKFovrescWPNlDhOQ2kc/g/uWAAsPPFi1XdiwQ8vtQVG4Tj1Hq3e1uOzZbHlz5oiizeO1b4Y/Z3Wj3wNwQLUYkSUUGaUlAURTyrHlhM2kAc0f2YfX+2oB0MfZMWhfkjiB6j6GKnmfRKF0FzeUi5R8LiuJfbQoRpJUsFo0OT5TeYyMvEMXwwVlLn1cYY0ja+Ppx+H02/KlANEofemZ4d6jsYtHbrHpX/Ofx+YQhw+BTk6eBD+5vFszhteicdSx0T+DWU4VGXwsAIgZpBhOcdi8T3Rv4RdXPRR/AU37SbhOrKTlGGVrglBcik2Yx6sIah2gZHICmVk/AzCgUMfd1jEBjFGv8FJO+y+9Hvb/hdmZKDDVpAfMWEchoNXPhWgRY4pSo7q1u4W7XreyZ+lsGXvansDJPRVGwGW1Jr0lLjSXo7T9FLJRsfRtaG2HKjZG31yy5g+t53C0iCz387Ni+j/0mQWuD7Jcm6X42/A8smcKJMJicYmGe1nQk/mPu+0q0oEjJEovTtSVtwVhHanaLxcSUzIiHDCyajbpAOFTXH4TK7fGPLRnsXigUV9EMUSRdRgZpSSLflh+2Jg3gtBF5uL0qy/eIBrEOtzdijzSNNIuBpq70SRo0U6yGbl8QfdvtH0Qu6A5FOBv+Ta+J854oNVrD5gmb2de+Be/dIfodPTZZ9G2LJYt5ImCvhsX3C8OEOb+A696Gq18Jv73BJAK4qp3xn6tsvVgkGH52TJurqhp9MSS9r6jz7BCkeXZ8ggcd7qI5jOknapUCmTRH5GO6Jn+HX7hvpS6lCK7+X6cbtdWUHKOMqqZWFIWQtWLmMJm0znJHT1j7fWjL0oWqb4uVaP3LNAv+rrTl1MxcYpM7+jNp/mxmIMALk4XT6xTMBl3MmbQauwsVHb5ptwppegSsRmvyjUPMhujuoQNPAnsVfPQzsXJeeHLk7bOKhCQrOJO2b6mY8A47K+xu7dAyylLyKOkuVBW+/ItYfJh0XftefRB6sSEWnA1w8Ju2edSI8wElfDlE9R7h7BgBl9eF2+duWzTTAspjZSKye6GYWybSd1QSFzJISxLRMmlTBmWRZjaweKfYxhmj3DG9q3JHvRGGnyus+L0RJoyqKnTTxXPDF3SHImeoWNHxBK2eO2ph2/vCFdEQ2kq712FJh+vfgeLTxO++wJ8RqdoJr14rXCG//ItYUT5RWfqIMB246Ak47ZfCiKDjjbEjuSMSy6Tt/gxQYl4kuON/65jyh8+pbHRG3nDomVDyJXx6r5B/AU2bP2KtbzjXzW1rbmzU67Ca9NRHyqQBFY1OXvWexuenvw95ozq9bjUbsCfDOKS5lWyrKWTPtnCZNM04RKM5SpCWkWLEqFeo7oLcsdHpIT0l/DlsZgMen4rLm7gMLj65oz+T5g+UtWbb0ermnDH+zQLNu2MwWkk1piY/k2bWB4xRwjLpejjrPpFRm/vL6Jkwg0nU8GqTW1WFr/8B1lwYFGN9aJ+RovZNBmmS7qD+ELx4CSy5XwRoZ93XeZtwst1o7F0EqrctSEvLF2Un4RbKa/ZElQBr33ur0d/bMb2vKCE5FkFa/UGo2h7fYn6C/Peb/by34XC3n6cn00sKhI49+dZ8vnB8gU/1oVM6T4SMeh2zh+eyeGcVqqricHvIS4veNT7VbOia3BGEAcOmV4VJg1bnE0zpGtGgtP4gnPqz+I6dMxRQhcX+tFvEDXzjq6JoNposprdRNEv887iEZjtvtGik/MkvhJxh23uw8l/CZETDaIXzHoQhp4ufgydLvcmqtrlKWO1PuBb6jIh9vz7DxY1Ic9mMld2fwYBp7RvthmFzaQMfbS4Xu1U2k5ce4Xs59xfC2fObx+HwOnxzfkFW43a22m7gpmHt+1dlphgjyx2BIw0iKOybEbrXjNWopyVJmbRQ9WggMmken9qp8XbHTFpzqyekO6SGTqeQYzN3Se7Y0OImPYx7JLR3TzQbYuzNGOIcABlxBGnNHeSOkermUoyxSzJr7S4UJfLxAmPpBrmj1WxAVYU80xZOyqo3wKwfi3+xkj1ESCSdjaIv2v6lcO6DwpQpFvRGMQmVQZqkO/joblGacN7DMPU7ovFyR9IHCHVMvJm03QuFfLJ/UGZ81Hz47F4hewzuWdtSJxQfOZEzaVotarD8nGHzYNnfRS1z/lgxXzgacwYtMIxRpZIoaw/U8pv3tgJw0cQQrT5OEGQmLUkU2Apw+VxM/O9E3tvzXsht5g7Po7zRyfYjTThizKSlWYw43T7cXVg5ZsjpIhhY/mj7jBdA5Q54/nz46iEwZ4j+VPEwbJ5oePrR3fD4VFhwl+gzNmDaidv42WASkj6jBWbcDnftgLt3wbffF5a1Q05r+6fo4H9XifftjZvg/kHw+0x4YrrovdVbWPucCNzjmeiByKT53PHVpjRXQtm6mKVVD3/WJqc8VOuIvLE5Deb/HS5/FkpXoXvxQuyqmcJZV3Uy1EiPKUgTmdW+GaEnr6GaKSdCdXNrSGdHIODW2FHyaHfZSQ1aUGhu9YS139fok2ZOOJPmdAtTjvQIMkQtk9fYknjgWu9wo1NEPVY0tJo0Rwe5Y1aEAC/FpI9Z7lhrd5GZYgy4OEYci9HWLcYhQGTzkEQ46VZoKIUn58Jb3xGZtXgX7fpNEs530oxJkkw8LlEzNulb4nMaKkAD8Xyknn+h8Pn8zabPaL+oOOoC8dgxm1btLxWJInfUFmfaBWljLhXOkf+ZDfdlwV9HHp3Siu0L/AZA3dcCQFVVHvhY3Jcj9RI+EZCZtCRx3uDzaPG08PTmp9lYtZGLhna2sJ87sg86BT7eckS4O8ZYkwZCahRJYgNw+b++5qKJ/bj+5KL2L5isMO+P8OFd8PLlwjo+vZ8I2N6+RWR27lgJaf2iy886YkmHmz4WNWibXoXNb4rVnLP/HN9xejPpfcVj8RzxL5iWOhGcbX5DOKaNmi/+NqufgmfPgdl3wbgrYsoI9Vg8rbDqKaGj1+yNY0Xbvmpn1BtZgB0fiscYFhxW769lya4qfnb2CB5ZuIvSuhjlqGMvw5sxiIdffp+1xim8OrNzAXVGijFqTVqFX16ZHyZIs0ZrNhwjNc0uCgutIV/TboKtHh82fxynqip2jx2roW2fJqeb1AhyRxB92BJ1d2z0KwYiBWkF/vfpSEMLhTmhf59oaHVv0XpUQnBNWpvcUVEi17OlGPUxW/BHazkQTKoxleqW6pi2jZXUgHtl6PF+sqWct9aVYtQrGHQ69DoF7V0z6nVcMrk/M4pzOu844lzRcmXhb4Thzik/iV/63m8SrHoSqndD3sj49pX0TpoqRA9NXWJZdEBkdt2O0KqijuSNEs6msVK5TRiIDTmj/fNZRSIzvGMBzPpR2/M1u8VjlExaJ7kjCGOSOzfBzo/FeVc9KbJc3dlbsKkC9i2B2T/t1qzd4l1VrNpfS//MFA7Xt9AcxbSqN3Ni/tbdQJYli1vG3cIn+z6J0C/Nwswhuby3oQx7qycmd0ftg9kUJUhTVZU1B+pYc6Cuc5AGMO07Ipu24E54/CQ44zdCglK+Ga55LXQz6ljR6WDiNeKfJD5SsuDb73Z+fuyl8ObN8PE9oi3Cd45RgXAy2PKWuHHNuD3+fbWbV/VO4ILY9tn+gVjpi5LJVVWVhz/dSW6qmZtmFfHKqoMcqouSSQvik7r+/Kt+Ov/61uSQE/5Mq5H91ZGP19Aieo+lhbkBWZPgZggiAAoXWGiOgsGBRYunBZ/qa5dJa3J6wo5TIy/Nwpc7qzjS0BJWwhl2jDH0L9OOqclEE6G+xU1mDPJCEGYoep1Cqf9zUe9wkW4xhqzt04hH7lhjbyUnxiCtW4xDTJEzaa+uPsiKkhoGZFnxeH14g+TYDQ43r605xN3zhvOD00NMMkecI/4lSrB5iAzSTkx8PiET1BtFVmvBXWLucsqdiR+z5EuhYImlf2bBOGEs0lIf1X0RgANfi8dQxx51IXz5J2gqh7QC8Vz1bpENyxoU8bAhM2kgjjP1JvE+bX1X3Pu6M0jb+jaoPrFw3E34fCoPfrKTwmwrd545jLte38jhuhZGFJyYJiUndh6xG8i35Uc0ELloYj8O1jpodHpiljsCNLVGXpGPaVIw8Rr4/jfCRezjnwmjkLP/3LUbqaR7yBsl/lZn3QeHVh7bxpVdQVWF/LXPyLa6u3iwpIsMb+WO2LZvqRdSllEXRF3p+3pvDSv31XLHaUOwmgwMyEqJPZMGLN1dRUaKkbPHFIR8PSMGuWNjizDjCNd7LBkW/D6fSmOEWi9zCLmjNimwGURNmsvjo9Xji2gcAjDLX5d36oNf8ocF2wLGGLHQ4Jcwpkc4R79MkUkra0jcgKfe4YqYrQvGYtRTlGNlR3kTALUOd0SpI8Qvd4zFNATEBC3ZcsfUDjV3HWl2ephcmMXnd81h8c9OY+k9pwf+rbr3TM4f35eHP9vVpTrEsOQOFwuLx3NdmrMRNr4mrNK9Htn3LV6W/VXcP5Y/Ch/8WBhy7Pm8a8csWSxMcCwZ0bctGC8eO/bGDMeBZZAxMHTQNdK/yPjEdPjvxWCvEZ+LrMEiCI1As0t874NrhNuh04lm3LsXwqHVsOl1UQcOwsht46tt0squsOl18Z7EU1ceJx9sKmP7kUZ+Om84g3PF71sax+JpRx75bCdvrDmUrOEddWQmLcnkWfPYUh3+C3322AJ++fZmPD4VqzH6269NWKI5PEabDAbILhYuhFvfgdYmmHJDbPtJjg2TrodFf4K1z8OZvxWTligX9E54WkVPk3Da++5k/zKRrZ3/aOLyiIHTRNZXVaMfY/dnooZt1IURN1NVlYc/20nfDAvXnFQoTpNl5avdVRH3C2bdwTomFWaGlc1lpBipb4kcpDQ5Ixtl2ILc98IFctGwuzz41PAZKouhcyYtEKT5mxZrk/hokpMLJ/RjVEEaTy0t4bnl+3h99SF+dMYwbj5lcNS6q1gyaVaTgYwUI0fqE8+kNcaRSQMYUZDG1jJR61HviC5PTDHqYw5aau0upgyKTcpsM9pwuB1d+ix0xBqlJq251UOhLbSs1GLUc/nkAXy46QgHax1hax4TRqeHvhN6RpCmquBqFi1q3vuByMYMniNk6P2nin6g9Qfgo3tEv9EhpwtX5W8eE3V1GkYbDD0d0vpCar6Qt3fjhPe45sgmce8bdwVMu1XI7JrKYcPL4p6WiHO0o1YY2sz+aWzbF4wTj+Wbo2feVFVk0jpKHTXyRsEZvxXmIZvfEC16nPUwOfoczO7xX4/DBWkgPktrn4Nn/I7Gik6YuZUsbnNInvtLYX7lbhHuqcHXEZ8PXE3hg1et1vuM30Ydb6J4vD7+tnAXo/qmM398P2r9Rk1Ra8XDUNXUyr+XlHDt9EK6L/fXvcggLcnkWfOoddbi9roxhphMp1uMzBqay5JdVaSYok+aU2MM0uqj1L60Q1Fib1gtObZYs2HMJbDuBXEBNqcJO1+9SfQvGnlBZPterweeOsPfIuDd+GsOu8o3T0BKtmjHkCjDzhbOmBVb2m6a4dj+AaQWtHfWCsHiXVWsP1jPny8ZF5D7DciyUtHYitPtDdtUWKPR6WZ3ZTMXjO8XdptMqwmn20erJ7wTYTTL+RSTHlUVWa5oYwo/Vn+GKsx5ImXSNHlNs/8YqVGMQwCG5afx4OUTuHV2Mfd/vIM/fbSdr/dW86/rpkT8HWKpSQNhsnKkK5m0FjdFuREmOx0YkZ/Ox1vKcbg81DlcUV15Y82k+XwqdQ53zHJHm9GGV/Xi9DpJMcQnJQ2HVpMWNpMWpRZE+0wl3XhEo98k0XMyXnfXZFK+BT7+uciS2PKEdHvY2cIt2WUXtUBf/lHYuptswkyrZImQeRsscNkzYkHUXg2NpbBnEbQuFRP0L/8EN38qruWS9mz/QMxVzn1Q3AcLp4t64zXPiEArkUbKG18Rcr3RF8e2fVq++JuXb46+bfUu0U+waFbo1xVF1JiDuB9+eJcw0pr5w6iHtrv812NTaviNimaLFhd5o8TxN7wsasFNqXDli7DlTVjyoGjFtPzv4veadJ2oF63cLtRV5Zth9t2iNKFjK6ZDK/3nibGNRgJ8uPkI+2sc/Pu6KX63YBMWoy4uhUswr60+iMvr47oZkeWkPRkZpCWZfGs+AFUtVfRLDT2B++m84Rj1OuYMz4t6PE3u2BxF7hhzJk1y/DHrx9BUBgNOgqYjUL5J9OjasUAU5mcNFhfUKTcJfXqJf8Uxd6iYYFT4bzAf/kTIW2OReSSD8s2w62PRuNrYhUml1uts92eRgzSXQ0hhJlwTMWuoqip/W7iLAVkpXD5lQOD5AVlijGX1LRT3iXAzBDYcrEdVYXJhVthttGCjocVNXlqYIK3FTZo5QiYtqGYo4SDNf20Il7GLmEnzr9xqcut4ireH5afx9A1TeXHFAX7z3lbeWlfKt6aHv1lGG6dGv8wUyrqQSat3RG6Y3ZERBWmoKuyqaKa6ycXovpH7SKYYRcPtaDQ63Xh9alzGISD+NskK0jR3x3CSWnurJ6JZjPaZTEbdZEj6TQbPP6FqhzBKOJo0lcNLl4nFIUsGnPwDYWA07gqY4F908vlg/X+FMmXit8SkN2OAcKQsXQ22PuEX0RrL4PFpon2NDNI6E6qNitZIff/y+IM0VRWKlAHT4vssFYwT99xo7F8mHgeFCdKCGTwbfrA65iFombSI33uDCW76sO3ngdPavAhyhojg6sDXsPRhMUZzOnz1IHz9mGg0b80VGeDFfxbbTLsVzgkygDu4QiwO953Q+dxJwOdT+eeXexmWl8q80WIerSgKA7KsCQVpHq+Pl1ceZPawXIbmRb6f92RkkJZk8qwi8KpwVIQN0sYPyOTpGyKv9GukJVvuKDn+yB8NN3zQ+fn6g2Jlcf8yIbVZ8BMhbdj2bts2Rqu4KRWdAsv+JuojLn3y6GRSv3pI3AhmfK9rx0nLh74TYddnkWUqexcJ165R8yMe7ovtlWwqbeDBy8ZjCrL31YK00rroQdq6g3UoCkwYGD7g1QKBBoc7bPal0ekO6O5DoZkLOVxeQnjoxURDFBmhlkkLDtK02ictSNMyaZHqxUKhKArXzxjEvxbv5es9NRGDNG2ckTKLIDJp6w/WxTUODZ9PpdHpJjOOIG2kv2B9x5FGauzh+81pxJpJq/HX68VjHAIiSMtNyY2ydWxEs+BvbvWE75+GkJ8CtLi7MZMGQvIYy8R685tQtx+yB8PoS7om8d74qgjQzrlfBGa2EO+5TidaC3RsL6DTQ+GMyMdP7yeuVdveF/26Yu0hd7zidgrJossOoy8K79CoqkJad2QDnP7r9q9ZsyFvjMhqEmdP14PfiGzXRU/Et1/BOKEI8bgiK1F2fSJaTQT3QUsSzS7RszJUD96IBC9qWrPh8udgz0I47V4hF923VHzOB0yFMRcLI7NDq2HFE+Lf6AvbPseHVonvYyIy0xhYtKOSnRVNPHLlhHYlBAOyUiitj1/u+Pn2Co40OPn9hcd3KyhpHJJktExahaMiKccLdneMRKMM0k48MguFLOHql+Hmz4Sb4bZ3hcb9h+vglLvEBXXeH4WO/DsLxYraVw+1b5rdHWx7X/yb/l1x4e8qw+aJWo+WCJPzHQtEE9EIcgxVVXlk4S4G5Vi5ZHL7BpkDssUkOJZVu3UH6xmelxaxb1hmUCYtHE1OT8TMkTYJ7kqmIpChChek+TNpIY1DtExaQO4Y/7qeoijMHJLL13urUSN87hqdHixGXdQm1f0yU6hzuGPKVnWkyelBVSEjjpq0wmwrKUY9q/bX4vaq5EQL0mK04NdMVeIxDgGSah6iZWpDyR1bPV7cXjVi9jR4EaFbyC4WCz2x1KVV7hA92Rb9QTjjPn8+OBsSP/f2D8SkdMbtoQO0ZDDucmhtaGsQ3Btx1Io2Mw8Ngf9dCW/eBE+fCZveEEZPwexfBg8Ww4uXiJ+Hzet8vOK5IiPkqI19DD4ffP57cS8ac0l84y+cIeqct4XufwsIg5iSxaIWuhus6e1ue8DEqUsMni3MyLRAa/BsuPgJocDR7tMDp4lANjVfvGc1e8Xvd2SDKLXoBlRV5fEv9zAgK4X5E9onN+I19NJ44esD9M9M4YxR+cka5jFBBmlJRsukVdrDOzzGg8Wox6TXxZxJi6UpqqQXYrLCdW+JlbL5j4pg7Mzfws/3i5uMoghJzYzbRU+V0tilFnGzfQG8cYPI4M38UfTtY6F4jqglOLgi9Os+n1jJHH5ORGOVT7dWsO1IIz86fRjGDjbq2f6Je50jstmHqqpsOFjH5EGZEbfLiCFIa2xxR6zBsgb6WCWeqQjUpIWTO4bIpCVD7hjMpMJM6hxuyiJY5zfEKEPsG9QrTeO11Qf5cmf0a65m5BKP3FGnUxien8rS3aJHWW5qdOMQt1fF7Y3s5FfTHF+Qpv0tHO7Enc46otcpWIy6kJm0QB1ihL+55lCcSMAcEzpd7OYh614QBkl37YDz/woHvxaBVjx4WuHjX4iM3OE1UbPyXWbwXCGJDFY/9DbWPCus28ddDt96Cy59WkhJ374FHhoKz50HL18JL18h5KUmm+gflt4/tLx90rfA6xL1ZbGy9lk4tELI/U1xBjvDzob8saLu0BPm3rD7MzEmzcExydjd9oCJ01HBZIM594jv0GOT4dEJ4vfrpiBtZ0UTGw7Vc+vs4k735YFZVuodbpqcsScidpY38U1JDdfNGHTcz4llkJZk0k3pWPSWiDb88ZJmMUT9gGoTweP74yjpEmkFQsYYaSVv7GWikHjt890zBlWFRX8UlvvXv9O5+DhR+k8FvblN99+R2r0iyxYhi+bziVq04lwbF03sLEW2GHWY9LqoWelWj49Gp4cBWZGbKUcL0jxeH3aXN6KtvZbpcLQmPgmOKncMkUnTsjVa9qbRb48fT3ATjCYZ3FneGHabxihOlxode6W5vT5+9/42vvviWtZFkUFq70U8ckeAGcU5AcfGPjHIHYGokkdtMSAnStCnEXDadCXfhj9UM+tYHD1TjN0cpIHIZlVsCT9BBiGl2/A/EVSl9xX1uQaLMESIh6WPwMp/iYwcwMhuDtL0BmH4EG7xqTdwYDnkjRaLh8POhPFXwE+2CmXHyd8XgXFzhZA4Dj0TblsCP1gjJP6h7mX5Y8QC4NrnY1OEeN3CJXLwqaJeOV50OqFEqdsPG14Kvc2OBcKIo5tqC+1ue+cead3NlJvgqpfgwsdEJllv7rYgbZvfPXfW0M6ifk1eri1qxcJ/vtpLilHPVdMGJmeAxxBZk5ZkFEUhz5qX1CAt1WKIOZPm8akR3eQkJzjmNFEPsH2BkDQkW5pxaBVUbYf5/wBzEm8qRovQzR9YHvr1w2vFY/8pYQ/x0ZYj7Kxo4tGrJ4ZsRqwoCukx9DbTsg62KH0OM/39tMI5r2qT4MhyR01O1oVMmv/3CSdV1MwfWoOCCofbgV7RY9ab2x0jkrwzEsO1uq7yJk4fGVp+0uiMnFXUCPRKqxeZtK1ljbS4vZgMOm7771re+8Es+meGLrDX/haZUXqddeSKqQP4z1clAFGt5q1BZi+R/raa3DErRumlJnfSTASShc1sCJ1J0z7nEYI0o16HUa/g6BCQen0q+6rtOFwemls9NDnFv3qHi6rmVqqa2v7VO9wUZFj4363TA+9dO/pNEqv4lVvbatQ6svUd4Zao1Ybp9JA7TBiOxErlDlj6V5ENaSwTFuZ9hse+f6IUzhCZpoZSYTrSm/C64eBKmHht++d1OhHQhAtqbFEqcKfcCO/dIe43hVEChwPLoaUWTvpu4ve7YWeJuuhVT4ngJfg4bqfoTzbu8vB1dl3E7rYHalKPGjp9WyZ5/NXCuTK1T7ecamd5Eya9jkE5nbOF2v3JFUWZoFFa5+D9DWVcf/KgmFUKPRkZpHUDeda8pNWkQWyZtPqgiaWjVQZpkggUjBf2vM2VwpQjEqoKjhqw5sR2g1v7vMjUjb0sKUNtx6BZwnXK2dg5Q3d4rThvmJ5DXp/K3z/fzbC81Ii2+RkphqhBmlZ/E2nyCm0BTbjjadmpiHLHJNT8NDrdpJkNYWUfoSz4m92iUF3rx9XU6iHFqG9ntBIP6RYj/TNT2OlvCh0K4YIZ3TwhP11ss6dSZJRW7xO1Kc/fOI3vvriWW15Yw5vfOznk36c+hl5soRial8YzN0xlX7U9qlNYob+2cV+1PZD1C0VNswubSR+za6dmv63ZcScLmylMkOZfGIzWwDyUm+X9H2/nqaX7Qm5v0uvok2YmN83MgCwr1c31bDhUz6HaFkb4g/l2BJuHhArSfF5Y9ogwlCia3fZ8n1GidilWlj0iXGjnPyqud97YV+67hBaoHFrZtSAtUp+rim0ikJ3+XZEVcdTCyn+LPpyZScw22GsgJbMtWDmyCdz2xOzyIzHiPPF4YHn0IG37AjCkCOfCRFEUUbf1wY9FqUBwcFmyWPTQ60ZpbLO7mZyURK2jkoDBBBn9o2+XIDsrmijuY+skdYTQcvxIPO2/7tw6O/kGLscCGaR1A/m2fBYdXMT3FnbR1c5PTWo91arK9xaGN2DY1NpAykBxU/nJkncDN/5TB5zKtaOuDbuf5AQkd6h4rNkdOUhrLBOOkZpr1dl/gVERNPd1+8WK8IRrkptF0yiaJSyDD60UK5vBlK4RE7gwK5kLNpWxp7KZJ66dHFGjnhFDJi2WDAOIep80S/igT+sLFjwJXluxlqc3Px0w2Gj1eEkZWMuze1P5pDox2/Ud9Y3o+7n53sJ3Qr7uU1VSBlbzVpmVNQvFSubu+t3t5DWidq5rt4sRBWkRg7TGFg9D+0Q/h8WoZ87wPvz3mwNcNW0gq/bXUpRjZebQXB67dhI3P7+aH72ynn9eN7nTYlVA+hlnJg2IuQB9eIF433aWNzFzSHjDiVp7K9kxSh2hrSbtpe0v8eWhL2PeL9WUyn0z7wu7Ep9qNoQ0DtHqIKN9zq0mQ6dMb2ldC/0yLNx30VisZj3pFiNpFgOZKSbSUwztmnEv2VXFDc+uCt9mJqvI7zq3Cqbe3Pn1be8J177Ln2vv5pg3Eja/HnpRpyOOWtj6Lky+vs0kpJtc7DqRP1a48B5a1bXFrW8ehy9+D9O/JzJYNXuEZXq/ScKpz9kAq58S7+HOT0Rmcv3LcM0r0Hd823EqtsLyR4XBhsEMG16B/pNFnzdHtTCkQhWGEnqTUC94nMLK/et/CGnjnHuE4YumfIjFlj4erNnCVEZTUITD5xNSxGFnirrtrjD2cvj0XrEQGRykbf8AzBlQdGrXjh+CCnsFf175Z0qbShmdMzrpx+8p7Cpv4qTB2SFfCyXHD0dZfQuvrDrIxZP60y+MmuJ4QwZp3cDZg87mUNMhmlzhJyTxoOhaaHF5aXTpUcJUnbl8dhS9uFE2uppwq3oONR3iUNMhGaRJ2pMzTDxW747cmPKd74rgZ+aPYNPropl2uCBNVUVApzPAqXcnf8wg6hBMqfD+j+DCf7QFap5W0ZPt5DtC7ubx+nj0892MLEjj3LEFEU+RkWKk0l97FA5HjJNXELK6aEFasCTuo5KPWHFkBaOzxQ3Z4/Oh6FtweKApQcmj02dHb/CFvR6pqCj6FpxelSaXuBEWWAs4ud/J7cYaS71YJEYUpLF0dxVury/kimlDS+z9yx64bDxn//0rvv/yOnZVNHHZZJGBmDsij/suGsuv3t3CT1/fyD+untTOzrnBEb9xSLz0STWTZTWyqyLy9b/G7iLbFnsgYNFbuHDIhexv2B/zvcXutrO3bC9XjbiKaQXTQm5jNetD1ns0xWAcAlrLgfYTqOZWD/kZFs4cHT2w1Y7fHK7uUlFg6Fmw69POTa19PuFWmztCyLiD6TNKPFbtFI51kdj0GnhbO1vpHw30RhHodLUubdPrYLSJYM1gEcFSa5PoVZk1GC5/Flb8C5b9Xbx+3sOw+H74z2yxCGe0iut47V6Rndz0mjiuKVUEu4pejHX9S+ALuhYZLCIoVL2iSfTBFfDadW2v5wyLrthIhP5Twtcoa5StF71FR13Y9fOZU0WT6LXPi6zcuMvF53HnRzD87Mj2/AmyrnIdiw4tYmT2SE4v7EImsAfT4vJS1uBkSJi2NwGlhzt6kPbAJztQgTvPHJbMIR5TZJDWDZxWeBqnFZ6WtOO9tvogP39rMz8/ZxYTBmaGPufDi3E1t9Lo9PCr82YyuTCLh1c/zGs7X0NV1XYrl5ITnIyB4sZasyf8Ns1V4gZ46s/gtP8T0sh9X4XffseHok/ZuQ91X12FyQY3vA/v3gGvfxvu3i1unOWbhUVymHq09zaUUVJt59/XTWk3YQ9FRoqR3ZWRjRns/slktJo0gGybmerm0EFfm9yx7TJc6aikOKOYl89/GRBmJyN/8wlnFBbxy/NGRT1fKK78zzcowMvnnxx2m1G//oQzBxZy7/mhV2sbWzwx1YtFYmRBGm6vSkmVvZOszedTaYqxJg2gIMPCo1dP5MbnhEvptKBV2OtmDKLJ6eGBT3Ywpl8Gt89tayZc73CTYtR3qxxcUZSoWUMQxiHRTEg6HvdPp/wprrHsa9jHhe9eGFF+bzMbOFjb2TFS+5xHDdKMelo6LCA0Oj0x99QLBGmR6q5HXSAChYNfCwMIjZ0fCrfaS5/qnEXPGykeq7ZHDtKaymHFP8X1I5Sb4NFg4HTRx9LlSCzjU1sCFZth3p9EbytrTpuLYcNh8bPRIow5HLUi8E3JEoHt1ndEYKX6g+ShZ8KsH4v32+OEk38oAh1Lhuhx9s0T4hrff4oIAvcuEucafZHIyLU2i2ycq0lIAQdECZATpf9U2PyGUHykh5Gwl3zZ9jslgzN/J4L+t24R9x1FEfVu3SR11Fx2Hzv9MQpskRcYj1cO1YlrT2FO6M+9xX+tjiZ3XFlSw3sbyvjR6UOjmnodT8gg7Tjg3HF9+c17W3lrXWnYIK2hxU2/zBQay5sCTnB51jycXieNrkYyzOGb7saCqqqU1rXQPzMl6kRX0sPR6SB7SOQgbedHwvJeu/nkj4ZNr4obvDWELGHbu2DNhWnf6ZYhB+g/Beb/HZ49WwSGE64SDVIhZBG62+vj0S92M6ZfOmePib6aG4vc0R6j3BFgQGYK24+EdjQMlUmrcFQE2niAsH8fkJlYn5jAeVrcgTqpcJiNuohykkanO+amy+EY3VdIzjaV1ncK0ppdHnxqfBmuuSPyeOHmk3h7XSnndMiQfm9OMZtK6/nrZzuZODCTk4eIeo6GFnfcpiGJMCI/jbfWHY64QFbb7GJEfpLcT8Og9e2MZGSVGq4mTWu7ECXYspr0nWomm51uBsQoN9KOH66hNiAm2QaLkJZpQZqqwpIHxbVszKWd98ksErVIlRHMQ5rK4dlzRC3VJU/GNN5uIX+MCJJq9yYWKG5fIB5HXSCyYsF0rCUKvn6n5ok6tenf7XzMmT9s+3/24LZ9z72//XbDO/QyM6e21YklKzgKhbYod3ht+CDtwHJRqxjqnpUIlnS47k346G5Y/nfx3LgrReuXbkAL0o66s+NR4P2NZby84kCgxjiUaQiErpkOxb5q8V5ddVJhxO2ON6QF/3FAusXIWaPzeX9jGa4QH1RVVWlocQf6B2m1BHk2f8+2BJ0mHS4Pn2+r4P/e2cys+xcx+8EveWppSYK/haRHkTtUyB3DsWMBZA4S9RIgbnQgVq074vPCns+F/LCb3K3aMeAkyCgUK70gJm79p4gWBB14e10pB2sd3HXW8JiyyRkpRpqcHry+8NbOml25LZQTXQf6Z6VQWt+CL8TxAk2mg4K0SkdlYGLd7hh1iffGitaLDcRqZaSVysYWd8LOjhpD+qSSZjGw7mA9IGQuj3y2k1q7K8g9Mr51wznD+/Do1ZM6STEVReEvl45jcK6Nm59fzdd7RY+z+jgklV1heEEaza2esH3hVFWlxu6K2X4/UaxGK6nGVCrskTNp9hBSQ01+aI1ibJISKkhr9cTcUy/V/z1qihSkmWww5AzxXdcaVK99Dso3weyftpdAauh0wkioYkvoY6oqLLhLZIm+/R4MCp9p7nZy/Nnemr3x7ed1i55ua58TwV1WUdKH1mMpGCf64pWuCf265iyZbNMSY4pwRr75M7hhAVz2VLdIHaEtSDvqzo7dTIvLy71vb2blvlre31gGwKAwC4lmQ2zGIVrLk2jXq+MNGaQdJ1w2eQD1DnfIhq1NrWJS2T9LrFxqK5LaZC8ep8l91XaeW76Pbz+7ion3LeSW/67hvfWHGTdAZOJKqpLrLCY5RuQME0YfHXsPbX0XHpsKe74QWTQtsMn3B2kVIYK0w2tFj7Jh8zq/1h3odKIeYO+XcHidqDsIITdxeXz844s9TBiQwekj80IcqDMZfjv0SG6qbZm06DeD/pkpuDw+qu2dJY+Bmh9/YOL2uqlx1nQK0gZkpXDYbzfv9voiBpChENKzyIFJ9Eyap8vGITqdwuTCLNYeEG6MH285wj8W7eHnb22K2sstETKtJv536wwGZKVw8/OrWXugLuaG2V1lRH7kvnAOl5dWj++oWERHawmTajFgd3VemGh2erCZ9FGVEynGzgF+k9MTc8CtfY8iyh1BZHvsVfDChcKk4qN7RKZmwtXh9+k/RVwjfCEmeNvfF3LJub+MXrPW3WT7nehqowRp9hpY+Bt46nRhQf+fOaKnW2sTzPlF94+zJ2G0iPvSkQ2hXz+yUThLFiXZtESjcDoMnh19uy7Q7G7GarCiU3rXVP2TrUdoavVwhv++nGYxhFU4BFrERMmkaUFaSgxlCMcTvesv34uZPSyXHJspsOoQjNZktcifLtZW+jXZVKQbdFVTK+9tOMzP39zEKQ8s4rSHF/P7D7ZxqNbBddMH8dJ3prPuN2fxn+unMjjX1qkfjuQ4JXeYkNfU7W97TlVhyQPgboFxV8C0W9peSysQNQyVWzsfa/dnoqh8SPLqMKMy4WpAhRcvFj+HaDr7xtpDHK5v4ScxZtEgegNqiN31DkSABXA4hFyx0ekmNcgav6qlCqCd3FEcw0p1s4t1B+uY9qfPmf7nz/l6T3UMv40wTWlu9UQNTCJl0lRVFdm4LmbSQDQr3VXRzL5qOwu3VaAosHBbBc8u2w9EbkeQCH3SzLxy2wz6pJn5yWsbKGtoOSpyx+EFaSgKfLO3JuTrWo+0nhCkZVuNqGrnz7y91RNV6gid5Y5en4rD5Y1pXwCDXofFqAt8r8JSPAeufkU4OX72KyHBu+zpyNn7gdNFbVSoptZfPSzMRcIYDh1VzGmQmg81UZQqn90LXz8urrfb3he94a58EX66M7Lzbm8ld3j490wzFUm2s+RR5Jg0sT4KvLb6EINyrPzqAlEDPSjHGvYerWXSWj1RMmkuL4rStn1vQdakHScY9Drmjcnn/Q1lON3edr11qv1BmlZ34vCv9OeliMlex0za13uqeW9DGesO1gVMEtIsBk4uzuHW2cXMHdEnpD44xagPHFtynJPrdz86+HVbw9bS1ULOOP8fMOWG9tsripA8hsqk7fxETIZSwreISDp9RsAVL8CbNwsXM62tgB+n28vji/YwuTCTOcNjb8CpmR1oph6hsLd60MV4M9Cy24frW5hU2P79aWxpb66gTaQ7BmlaY+aHPtlJvcNNvwwL1z2zkseumcz54/tGPL+WrYuWBTMbdTjDuGe1uL14fGpSAqj5E/rxl4938NrqQyzZVcXV0wrZW9XMW+tKge5xXcxNNfPw5RO4+qkVqCrMimCLnyzSLUbmj+/HSysOctupQzo1wK7RgrQYG1l3hXxrPiuOhHcOzPGbl1Q3t7YLGptbPTEtRKSYDO2CtOYYXSGDSTUbA5/ViAyfJwyDXM3CDEMf5fOi1UYdWgEFY9uer9svpJJn/SH6MY4WOUMjZ9K8blErPP4quORf4mdF377twIlGzhBhHuJ2isxaMPuXCsVIamwqip7IMWli3c0cqLGzoqSWn509gsG5NiYVZjKqb/jaXHPAOCRKJs3lJcWo73UmeSfwt/v44+wxBdhdXpZ3WEWv9tsnD8y2oihtmTSj3ki2JbvdKmqd3cWNz63mk63lDMhK4Wdnj+C9O2ax4TfzePLbU7lhZlHYAs5QBeKS45S+E4U71hf3idq0XZ/C0kciN6LOHy2CuGCJZOUO4SrW0f46AY40tPDehsOx7zD6QrhtMVz5304vvbrqIEcanPx03oi4LtpaINIYUe7oxWY2xHRcLcAKZfzR0c1QW0zpnEkTx/impIZzxxaw8K45TCrM4qdvbGBTaX3E84cyJwmFxaAPu1IZcKFMQiatb0YKM4fk8O8le3G4vJw9Jp+/XjEh8Hp3SRGnF+dwyynC/CA//ej0v7rzzGG4vD7ueXMjZfXt//51WpDWzTVpID5P1S3VeENJ/iBQF9fRhbS51UNaDIGW1dTe3bGpNbbPXDCpZn1k45BgzKkisx9LcJU5SGSoDq1q/3yw0UZPIbs4ck3a/qWiHk8bs954YgdoIExjUKGuQ+N0Z6NwIx5+9jEZVrJodjf3ukzaG2tK0SkE2qa8etsM7rtwTNjtY82kOdwiSOttnODf8OOLmUNySTMb+GRLebvnq5pEcXpemhmrsf3NLt+a3y5Ie2tdKS6vj9e+O4PnbjqJO04byoSBmREb/GpYzQYpd+wt6PSi15izAR6fCv+7UvTTmXB1+EbUw88RK9jLH217bvProOhgbAh3tThwe33c9t+1/PjVDbTEsxBQMLYtK+inxeXl8S/3Mn1wNjP9rn6xogUJjZHkjq2emExDANIsRtIthrByx7QQmbSOVsvBdsLnjC3AZjbwn+unkGMzc93TK1m6uyrs+bUAK1rwYzbqaGzxBJpoB6PV53W1Jk3j5+eMpDjXRn66mZOH5DAw28qT10/hlKG5Aaev7uCX547irdtP5rY5Q6JvnASK+6Tyq/NHsXR3NRc/sbzddVnLpHXVMTMW8q35eFUvNc7Q0kutDUDHXmmxZtKsJj0tbm/gs6M1xo5V7qhtG6qhdpdRFOH62rEH2Y4FkD+urRasJ5AzBOyVIsAIxfYFopfZkN7ZLyshcvx/v47B7e7PwOvqNmv8o4XdZQ80se8NeH0qb64tZc7wPhT4je7MBj2GEH0zNXQ6BZM+cs00gNPl7XX1aCDljscVJoOOM0bl8fn2CjxeX+CDXd3sQq9TyLKaRCAVtKqZZ82j3C6COlVVeXX1ISYVZjKyIH7rZ6tRT3lD4lbgkXB7fTQ5PTQ53TQ5PTS2uGl0enD4rbl9qoqqqoH/Wwx60iwGUi0G0sxGMq1G8tLN3dr/qNeRPwYu/pfIpA05TTio9RkZfvuhZ8CYS+CrB8XNsXCmkJoUz+2ypOSxRXvYfFi4tjlcni5dbF9csZ/q5lb++a3JcUsfYsmkOVzemExDNAZkWVm1r5Z6h4vMIHlbY4sn4MgKUGGvwKw3k25q/93MC5LKneYvtM5NNfPqbTO45YU13PDsKu6/bDxXTh3Y6dxanVE0qeL0wdk8/Nkunlm2j1tmt5+4xpqNi5XxAzL54qdz8PjUQFPreWMKmDeme/sA6XQKUwYlyYo7Rm6aNZhx/TO4/N/f8PzX+7njNCHLrfUbyRytmjQQiwAds7TQJnes6ZBJs7d6yLZFl1pZjHp8qijstxj1MTfBDibV3E1BGsDAGcIV8tVvQeNhKN8i+irO/WX3nC9Rsv2LB7Ul0G9i+9d8XhFYDjtLuAtKBIH3rEOQtv0DsOUJJ+DjGLvHTrbl6F6zupOvdlVR3ujkt/ND9+MMh9mgi+ru6HD1zkyaDNKOM84ZW8C7G8pYtb+Wmf7aiqomUUug0ymkdrBTzrPmsalqEwBbyxrZU9nMA5cl1rDTatKHtGqOhMvjo6y+hUN1DsrqWyird1Le4KSsoYWKRif1DhGUtSQpQ5dlNZKfbvH/M1OQbmFgtpUheakM6ZN6VJzdjivGXxnf9uc+KCyP37y57bm5/9elIWw4VM8TX+4hx2aixu7q0mehudXDv5eUMHtYLicNjv/mptWIRTIOiTXDoPGD04dy56sbuPiJ5Tx9w1SG5gnnv6ZWNyNS2vqFaZPojoGl5q5n0CntAqWB2Vbe+v5MvvfiWn717hYmDMjs1H+sMcYs2PfnDmVrWSN//mg7Y/tnMKO4LQPZ1nQ7ed8dRVEw6ntX7UA4phZlM2toDq+uPsj35w5BURRq7C5Mel1cgUyiaK1YKuwVjM0d2+n1zBQjOqUtu6cRq0Oj1b+g0uIStdJaTVo87RRSzQbK6kO3K+gyU24Ugc+uTyEtH2Z8D4w2mHZr95wvUQI2/HugYDw0l0NaX5EN3L8Umitg9MXHdIg9jpRMUZsYnElzO0VLmHFXHPdyULvLTqqp98gdX19ziBybiTNGRe9ZGozZqI/J3dEqM2mSY82pw/tgMer4dEt5IEirbm4NSFZE3Vh7uWNdax0ur4sj/p49o/sm1tjaatZ3mkCrqsrq/XWUNzppaHFT09zKoVoRlJXWOihvdBLs7KwoIgvQL8NCUY6NrIEm0lMMpFmMpFkMpPsf0yxG0lMM2EzC/U5RQKco6BTxf6fb68+8eWhu9VBnd1HR6KS80UlFYyuVTU62H2mkurm13fn7pJkZnp/KuP6ZjB+QwfgBGfTPTOl1xabdRmoe/Gg9HPgaanaLZrHjrkj4cC0uL3e9toH8NDM/OH0Y//fO5vjkjh14fvk+au0ufjpvREL7p5oN6JTIxiEOV+xyR4DzxvUlP93Md19cyyVPfM0bt5/MyIJ0GlvaT4I7NrIOZuk9p4W8AaWaDfz96omc8/evuPO1Dbx9+8x2WcjGGK3tdTqFh66YwM7yJn786no++8mcNulnIJMmbxeJctnkAdz1+kaW76nhlGG51Da7yLIZj8p1J1orFp1OIdtmDtQ2a8RTkwaiJiSLtn5n8QZpUd0dE8WcChc80j3HTibZxaLv13s/gE9+IdoNTLkRzn8ENr0BpjQYce6xHmXPI3uICMI1dn8qZPmjLzx2Y0oSdo8dq6F3GIdUN7fy+fYKvn1yEaY4HRjNBh2t0YxDOhjq9RbkXfc4w2oyMGd4Hz7aUs6vLhiNUa+jurmVXL8kymZqLxvRJn3PbHkGc4voBROPVKvjuR0dbqTrDtZz5X++afdcfrqZgVlWpheLepOBWSkMzLbSPzOF/HRL3F/QruD2+iita2FvZTN7qprZU9nMzvImnllWgtsrorccm4lxAzIY3z+D8QMymTAws5MbmyQIvVHYYRfP6fKh/vLxdkqq7fzvlukBU5pEM2kNLW6e/KqEM0flMXFgZkLHUBSF9BRjVOOQfpnxZZWmDMrmvR+cwsVPLOeOl9fx3g9OEcYhFiMOt4MFJQvY37ifGX1nhNx/YJhGnyAWPR66YgI3P7+aH726nn9fNyVQYxqPVDHVbODRqydx8T+X8+cPt/PA5ePFMWKUTErCc964vjz06U4e+nQHJw+ZRZ3DRbbt6Fxjsi3ZGHQGlpQuoa+tL6cVdm6VkZtqaid3VFVVBGkxfG5S/AsW2uKKVsOYao7982IzG6L3SevtGFPgpo+FhLylVtSfrX0eGo/AwW9EfZWUOnYmZwiULGn7edPrQupYdOqxG1MSUFW1V2XS3l5XiturcvW0zrL8aJiNOpwxWPDnHgUjpqONDNKOQ66YMpBPt1bwxfZKzhlbQGVTa0BCZTXrAz14AIZnD0ev6Pnnhn8yJv004Oy4CrqDEU1LRTPdQG8nv2nJk9dPYeLATDKsxh5VF2bU6xica2Nwro0zaUuxO91edpY3sam0nk2lDWw+3MBXu6oCWbfBuTamDspiWlE20wZnUxShj4ckMb7aVcV/vznAzbMGM3NobsC1NNFM2jPL9tHo9PCTs4Z3aVzpFmNk4xBXfHJHjf6ZKTx61US+9cxKfvLaBnyqkCEuPLCQP6z4AwCjskclNObTRuTxu/lj+O37W/nDgm38dv5oFEWhocWNXqfELAMZNyCDW2cX8+8le7lwYj9mDc2lMQH5mqQ9FqOen58zkjtf28A/v9xDjd11VExDAHSKjlHZo/i67Gu+KfuGFdeu6GTrnZNqaid3bHF78frUmO4VWh2I9r1NSO7YXcYhxxsDp7VvrJ0/VjSv9rTA+MQVC72a7CGw8RVhuKL6hGnI1O+A/vi+XrV6W/Gonl5hHKL5IUwZlMWw/LToO3TAYtDHlEmTxiGSHsHcEX3om2Hh5ZUHOGNUHhWNzkA/JpvZwKFaR2DbMTlj+Pqar/nuwu9S2Sjc4xKtgwjUHri9gWNosrDR/dLJ60ZntmRjMeqZMFBkzTQcLg9byxpZf7COVfvqWLi9gjfWiv5Nuakmpg7KZmqRCNxG90sPmB5I4qfe4eJnb25kaF4q95wjpIkpQbKpeKmzu3h22T7OG1fAmH6JyXk1MlKMkZtZt3qxxiF3DGbm0Fx+cuZwHlm4CxDuj0fsRwBYfOViclLic6MM5oaZRRyqdfD0sn3kp1v43pxiGltEI+t4FhjuPHMYn24t5xdvb+LTO0+lscWN2aDrUYsvxyMXTezHwm0VPLF4D2aDPq7+fV3lv+f+l3f2vMN939xHpaOSooyidq/n2Mzt2jnE0+ssIHf0qyyaWz0oCnHVh6SaDLR6fLi9PnldDWb6bcIs5MByGDz3WI+mZ1I0C1Dg1WtFVs3rOm4D2ueW7+PNtaUs+OEp2N12gF4RpK05UEdJlZ2HLk/MWdds1MXUzDrF2PtCmt73G50AGPQ6rpw6kEe/2M2GQ/X4VOifKQIkW4heZlajlb62vuytXY9OIWEHHKv/hu1wedqCNL+0JRZZTE/HajKIzFlRNredCj6fSkl1M6v317F6fy2r99fyydZy/7Z6JhVmMnWQ2H5SYWZC2ZUTlV+/t5WaZhfP3DAtoCPXPpfOBDJp/1qyF7vLw51ndi2LBiK71RhBeiUs+BMPWH54+lDK6lt4dfUhhual8vGRSrLMWV0K0DT+77xRHGl08sAnO9hT2eyXVMb3ubQY9Txw2Xiu/M83PPzpLlrcHil1TAKKovCD04fy4eYjON2+o+LsqGHQGRiUNgggdJCWaqKs3smXOyqZPSw3rrqyjosrTU5xf4hnYUDL2NlbPe0cUCVA9mDxTxKaQTPhkv/Au7cLg5VRF0K/ycd6VHHjdHt54ss9VDe7KK1rQTWIIK039El7ffUhUs0Gzh/fN6H9Y61JSzH1vgUeOas8Trl4Un8e/WI3T34lCmb7Zwr5itUUWjaSb8vH7q3BZkq8I7u1g6wFoNEpVk1jKTA/3tDpFIbmpTE0L41rTioEoLzByZoDtazxB26PLdqNTwW9TmF033SmFmVxUlE2U4qyyEs7fjKLR5P3N5bxwcYyfnrWcMb2b8t6aUFavA3TS6qaeW75Pi6fPIDhCUgpOpJuMVLZ2BzyNZ9PpcXt7VJArigK9182nj9dMg69TuH5veENQ+JFp1P4x9WTGNInlccW7UZVYWB2/HUsJw3O5voZg3ju633kppqlaUiSGNU3nZOLc/impCZkT7ruRPuMhTIQyU014/L6uOn51Zw2ok+gDUO87o4ggrR42zVo36cmpwzSJAkw4SoYdLIwXklPLBA41ry/oSxg3rO1rIFBfUWQ1lGafDxSUm1n/ICMhBUoFqOeug7usx1xuDwJH78n0/t+oxOEwbk2xvZPZ+E2ccPtp2XSzCKTpqpqu2Asz5qHDze2lMgf9EhoN+NgG/4mp5tUkyFgE97bKciwcMH4flwwvh8gfv91B+tZ48+0vbLqIM8t3w9AUY6VqUXZnFQkZJKDc20nfF1beYOTX72zmUmFmdw+t730IVhOGw9/WLANi0HPPedE6PEWB+mW8MYh2tgSNd8JRqvrDNe/qivHveus4UwuzOS2F9cyY3BiGbp7zhnBF9srKGtwMiiCcYkkPn5/0Rjm/e0rTo6z0XpXiRSkBUsTv9xZxfK9NWTbTEwrit7GomNNWpPTHbekXlvk6zaHR0nvJ7PwWI8gYVRV5ellJQzLS6Wk2s7WskZycsVCYW/IpMXaczEcZkPkZtY+n4rT7ZPujpKexfzx/dhyuBGAfpltNWlenxpoLKqh3aDNKaEzBLGgyR1b3G030saWE1sKlWYxMmd4n0B9icvjY2tZA2v217Fqfy1fbK/gTX9dW47NFKhpm1qUzdh+6YGG5CcCqqryszc34vaqPHLlxE6/u8U/UYzWtDKYRTsq+HJnFfeeNyppjpyZNiMVja3sqmjqlJnTJpHJXLGrdFSG7F/VVeaOyGPTb+ehS3BhIM1i5MlvT+XLHZWBJtqSrjM8P43dfzr3qNdeWY1W0kxpVDoqO712wfh+1Nld3DhrMJP/sBCXx8cPzx0ao7tje7ljc6snbnMqLZMWyeFRVVV2VzZT73Bjd3lwtHpxuESPTYfLy8Asa8JyKonkWLJ0dzW7Kpp5+IoJPPnVXraWNTJlVO+pSWtxe7tUImA26CPOC7QATjazlvQozh/fl798vIPcVFMgINP6Nzlc7XtGaL1yTOamhM/XViDePpMmXd/aMBl0TCrMYlJhFreeWoyqquytsvszbUIi+elWsZKdajYwtSiLk4tzmFGcw5heHrS9uOIAS3dX84eLxzI4t/ONJ165o9Pt5b4PtlHcx8YNM4uSNs5rTyrk7XWHueWFNXzwg1PIsLZNVB2tycukAbi8LmqdtUnNpAXT1ZXFsf0z2klSJcnhWJlj5FvzQwZpfdLM3OXvLfjAZeP4fHsl106PLTNhDVjwtxmHxFtvpwV1kRweP99eya3/XRPxOKcOn9cr6qMlJxbPLNtHnzQz8yf0Zfmear7eW43dLVpi9IYgzd7qDSzyJ4LFGDmT5ggsnsogTdKDGJBl5aQOcpQ2SWL7G6UWpOmNjQmfT5tEB8sdG/29niShURSFoXmpDM1L5Wp/XVtFo5NV+2pZua+Gb/bWsHhnFSAkP9MGZzOjONsftGUEJHHHO3urmvnzR9uZM7wP14WZ/Bn1Oox6JWa54yMLd7G/xsHLt0xPau+9QTk2/n3dZK5+cgW/fm8L/7hmUuC1ZGfSqlrE3177fkok3UmeNS9kkBbMVdMKuWpa7NKxjosrTU4PhXHKYzV5ZKQgray+BYB/XzeFvHQzNpMBq0lPiknPV7uquOv1jZTWtTCqr7wfSY4fdlU0sWRXFXfPG47ZoGd033TeWX+YiuZ6oOfKHXeWN5FlM8ZUe+9wdc1sK1omTZszyEyapMfxr+sm4w0qQLeF0fbnWnNBVVAMDQmfq61mqL3csW+GNMiIh/x0C/Mn9GP+BFHXVtnkZGVJLd+U1LCipIZFO8QkKs1s4KTBImCbUZzDqL5px2WmzeP1cdfrG7EY9Tx4+fiIdXkWoz6mPmmVTU6eXlrCNScNZNbQ3GQOFxDNp783ZwiPLdrDrbOLGTdAZJO0iagtSUFahV1kVbsrkyaRBJNnzWNP3Z6kHlOvUzAZdIGJUpMztibYwWhBmj1CkKb1LjxjVF6nTGR/v9y/Noq5gETS03h22T7MBh3XThfuq2P6pQOwr6YW6JmZtPc2HObHr25gyqAs3rp9ZsRtfT4Vh8sbaHqfCNFq0rQ5g+yTJulx5KS2r8PJ9Euzaprb36yMOiOKLxXVlHiQZjO3SSk1mlrdjEjpuqPeiUxeWoegrdHJin21fLO3hpUlNXyxo62/3eRBWZxUlMVJg3MYPyDjuCiUfeLLvWw8VM/j104iP0ovPasptiBtb6Udnwrnj+uXrGF24rZTi3lpxQF+/d4WXrjpJDKsxsAk0pokuaOW1ZBBmuRokGfNo9pZjcfnwaBL3u0/+Hvb3Bq/BD7Y3TEcjU43VpM+pFRUU43UyCBNchxR1dTK2+sPc/mUAYHPcGGOyEJX2RtRUEgxxO/O252oqsoDH+8AYO2BOo40tNA3I/wYA2ZbXQigLEZ95CDtRM6kKYoyEPgvUAD4gCdVVX1UUZRs4DWgCNgPXKmqal33DVUSC0U5YtVlf429U4ZB9WTgMdcnfOyUDlbLIDJpsiYtueSlW7hwQj8u9AdtFY1OVpTUsHp/Lav21fLwZ0Iip9cpDMtLZWz/DIbmpTIo28rAbCtZNhMZKcYutVtIFptK6/nHot1cNLHNETMSKUZ9THLHQ3WiYXsi9vKxkmYxct9FY7nr9Q1c8s/lvHn7zORn0vxOe1LuKDka5Fvz8ak+alpqyLcl7zNnNQpXYbfXh9Pti9vdsS2TFv6739ASXlqvTXBrm1vjOq9Ecix5Ztk+PF4ft5zS1gdPy0Lb3c2kGlOP+T28IxtLGyhrcPKD04by+Jd7+HDTkUDLjlAESgS6UJNmNujw+tSwze61+/KJWpPmAX6qquo6RVHSgLWKoiwEbgS+UFX1fkVRfgH8Avh59w1VEgsF6RbMBh37q+2dXvO602kl8Tja2qEmTVVVf7NcWQPQneSnW7hoYn8umtgfgDq7izUH6thUWs+m0gYW76wMOEiGIsdm4pfnjeLyKQOO1pABEcz/5LUN9Ek1c9+FsbkXWmIM0kprHeiUNlfT7mL+hH7kpZm5/tlV/PCVdcz3B5rJuhlUOiqx6C2km9KTcjyJJBLaYkClozKpQVqKP5NW7Q+SMq3x3RP0OoUUo57m1tCtL0BzEg49Zcm0mlAUKXeUHD80ONy8tOIA543rS3GftrqzwIKF29Eje6R9vOUIBp3CrbOLeX9jGesORp5TBsy2ulKTZhSBWasndJCmzRksJ2KQpqrqEeCI//9NiqJsB/oDFwFz/Zu9ACxGBmnHHJ1OYVCOlX3VjnbPt3q8eN3ptPgOsr9hf/j9FR0D0gagUzp/EQx6HSaDDoe/Js3u8uJTCXvjlHQPWTYTZ43O56zRbZOsJqebAzUOSutaaGhxUe9wi355wD++2M17Gw4f9SDtjx9uY2+VnZe+M72dQ2IkYpU7HqoTEouj4ZI3vTiHP148lnve3ERZvRMgZDNrVVUpbSrFq8beQuBA4wHyrHk9brVU0jvRZLVba7aSZgovU89NySXVFLthgcXkoc59mE92elBMVfTJbox4nwmFNbWW8hYd+xtCT0yrnIewWULX5+h1CpkpRmodMkiTtKfcXo7T4zzWw+jEf785gF09wiUn9e/0XbHZamn01JBq7VmmIaqq8smWck4ekkOG1UhhtpXyhsjvbVuWqyvujiL4anV7Q2bpW07wTFoARVGKgEnASiDfH8ChquoRRVFkUUUPoSjHxr4OmTR7qxefK4tWXzPz350fcf+7p97NDWNuCPla8CS6yd/wV1oeH3vSLMawdunrD9ZFrPXoDj7dWs7LKw/y3VOLOWVY7MYeKaYY5Y61DgZkHT2t/pVTB7J4ZyUfbS4HQt8MXt/5On9c+ce4jz2j74wuj08iiYW+tr4oKPxp5Z8ibjc4YzDvX/x+zMetSH2Ig0oZm7dD6hC4Z0UCgyuAxXZY/G6Y102gN1rx+E4LWU+XZTVR5wifiZOceKwuX83Nn958rIcRltQhcOfyzs/rCqHCDQMsU47+oCKw/UgTB2ocfG/OEEC0oqlqiiwx1uzxu9K2xux3b3aGqUsLGIeciDVpGoqipAJvAXeqqtoY68qvoii3AbcBFBYevx3hjyeKcm0s3lWFz6ei81u4Nzs9uOtn8K2pE5hWlBl237+s+gv7GvaFfd1q1Afkjo0t4ssn5Y49mzSLgSNRVruSSXmDk5+/tYmx/dP5qb/3UqykGPXU2aNPtA7WOjjV30D8aPGHi8aysqSWOocrcNMIZm/DXqwGK785+TdxHXdCnwnJGqJEEpFMSybPnP1MRBv+Lw5+wRcHv4jZXMTr89KqK0fnGE+qdxJZVhO3zx0S99ge/nQnaRYD350Tet9ff/YW7pTV2N12MsydF6MyrUbqZSZNEkRJfQkAv57x66PikljV1MoDn+zg6mkDmdqhPVIwX+6s5N31ZfzkrGEBH4Fg/vzRdgrSLfx+ZuQF9aPNx1uOoFNgnl/FYzMbIrbNAKG4gq5l0syGtkxaKALGISdqJk1RFCMiQHtZVdW3/U9XKIrS159F6wuEvOqrqvok8CTA1KlT1VDbSJJLUY4Nl8dHWUMLA7KEdKS51QM+MzPyTuac4r5h931h6wuUO8rDvm41GwIW/G2ZNCl37Mmkmg2Bv1V34/Wp/OS1DbS6ffzj6klx9y9LMRmiZtKcbi+VTa0MzDq6ev2cVDOPXTuJb/bWhJQnVtgr6Gvry/nF5x/VcUkk8TCtYFrE1+1uOwsPLKS6pZoCW0HU49U4awAfjoZiGupHcc284ZxfPCzucb2oz8bXCucXnxzy9V/a10GEIC3Lajqqi1GSnk+FowK9oueyYZeh13X/BP6eNzfSUmcmwzeM84uHh9zG61P502uLmJo7kjumhf6sP63LxOo2MCh9UHcON24+3lLOSYOzA67iqWZDp3ZPHXG0dr3RtCWoJi0UvTmTFnUGpYjZyDPAdlVVHwl66X1A08TdALyX/OFJEqHIb+G6P6guzR5IOUcOqPJt+RFXWa0mfUBj3Oif+KenyExaTybNYqT5KMkdn/yqhG9Kavj9hWPaFUPHSopRF7UmrbRONLXtTmfHcMwckhs2O5hsMwaJ5FgQbC4SC9p2fVJEZvukwTkJnTfVbKQpzKq8z6fiaPU3vHY3h9wm02qSmTRJOyocFfSx9okaoDU43Gw5nHh7IoDSOgdvrzsMCHOvcCzfU01Zg5PrZoQPwFLNBhqPcolCNPZUNrGnsplzx7Yt8tvMhoi9DaEtk9YVR2QtkxauoXVvtuCPZZl7FnA9cLqiKBv8/84D7gfOUhRlN3CW/2dJD6AoV6TP91W33cy0lHTUIM0aOUhLMbYFaVqdk8yk9WzEapcXry+2RPbXe6u5/+MduCL0JQnFuoN1/PWznZw/ri9XTE3MpCQWC/6yehGkDTjKmbRoVDoqZb8zyXGP9hmONUjT2kh8a+p4ivvYGD+gc5YrFlLN+rATvmaXB9Ureiw63I6Q22RZjbImTdKOWK7J+6rtTLjvMy54bBk1XWjh8J8lJSiKkN1G+hy+vuYQmVZjO+OvjqRbjDQfJfVLrHzsr8c+e0xbdj3VbMDtVWn1hL9nO1xd7y2qlReEy6Q5XF5Meh2Go2AkdrSJxd1xGRCuAO2M5A5HkgwK0i30z0zhzbWlXDdjEIqiBDIpaVGCtDxrHg2tDTg9TiyGzo2HrSY9Vf4LWWOLlDseD2h/n+ZWDxkRsp4NLW4e+nQHL604CMCwvFQui9ERsrLJye0vraVvpoU/XzIuYbfCFJMhaiat3v+5y4rT5rs78fg8VDurZZAmOe7RPsNa8BUNLZi7avJY7pgVu0lQR9IsxoA6oyONLW5Un5BYhcukZdlMtLi9ON3egBscQGWjk+ufWUWL24tBr2DU6TDoO1+f1A5rWCrCzU57zaeqgecURcGgUzDoFQw6XeD/Rr0Oi1FPqtmAzazHZjaQajJgNRuYVJjJ5MKs+N8YScJUOCoYmjk07Os1za3c+Nyqtp/troCUL67zNDp5bc0hLp8ykO1HGqkLk9Gts7v4bGsF104vDGSHQpEaQ63X0ebjLeVMLsykIKNtXqjZ6ttbvWF/H3trEjJpmrtjmCBNfOd7X4AGcbo7So4PdDqFH58xjHve2sSXOys5fWR+YIUyWiZNu0FXOaoYmD6w0+tWswFHrVjJrPevFmWmmJI5fEmS0YK0Jqc7ZJBW2ejkpZUHeW75PppbPVw/YxAvrjhAxf+3d+fhUZVn48e/Z7bMlp1MCGsAWUMgrIqoBFFARHAt1hXfWhdaa9X6aq2t1PpabW1rLSq17j+ttdq6traKilaKING4sCOyQwIJ2WaSzHZ+f8ycyTrJBGYyJ8n9uS4uwiznPJkzzJn73PdzP7Wxze/w+oN87/lPqan38/dlJ8fcbr89NrMRbyCIPxCMelWsVodlthX1FQTVoCxKLXq8TGsmZoO5S+WOJoOJLGv0Rgkx7ddhobreRyCoYjS0DKKq630QDtLcvrZrgELT2mxVHh/905u+MG4tq2VrWS2njcoh1WrCHwjiD6i0fx2p5Y2KErrFoCihnxVQUFBR8QdU/MHwn/A26/x+Dtc24vb6cTcGqGv0t6hIOH2Mix/NHc24AbIuYnco95Rz8oCT272vwRfgmv9XwsHqBm6cM5Lfv7s9cuG5q/704U4CQZXrZ41g+RsbKY9y7vzXxkN4A8FOl8NJtZq6vSNzR3ZXuNl0sIY7zx7b4nZHZBF6f2RB+dbqvX4UheMKoiLdHaNU2Xi8/uNqTKJnvfO3Epw/eSD3/2sLfyvZz+ljcmMud9SCtEOeQ+0HaeamFvxHPT6cKaYuN4cQ3UtbIqH5lTlVVVn5wU7+vfEQpXurAJhf0J8b5pzAuLw0Xli/J+Z5bPf8YxOf7DrKQ9+exNi84/vyoU0urvcFSI0SpOmxq6iWdZBMmujpDIoBl90VcyatzF1Gji2n3bU1uyLLbkZVQwFZ6y98NfVN5Y7RgrRMe+g5Rz3eFlf7tc+xOxaMYUz/7g+OfIEgNfU+/rphHys/+JoFD/2Hh749iUUTB3T7WPoSt8+N2+du9zM5GFS55aXPKdl9lIcvmczATBu/f3d76GJAF1XUNfL8uj0snjiAIdl2Muxmth6qbfex724uY1CmjYJOgnSn1YQnPEWh9QWLZHi99AAAZxW2bDqnrVnWUdbP7Q3gsJiOay3QThuH+IK9srMjxDYnTfRAJqOBBYV5rNpcRl2jv1nKueM3cmeTxu2WpnkDRz3eyNVLoV/aB2nzK3OHahq4/19b+GJfFT+aO4pVN89i5eVTKBiQjqIoOK2xlVs8/p+dPLt2N989dVhcvnRYmwVp0dQ0+DAbFV2VN2j/XyRIE72By+7qUiYtHu/7zHBgVuluOy+opsGHGgzd31kmrXWpmfa5194iuN3BbDSQ7Uzh+uIRfPi/s8lyWFiz/UhSxtKXdHTh7NEPvuYfXxzk9rPGcPaEPNLC1SbRym078sRH39DgD7BsdmjpiCy7JWq54+4KD+PD59iORC6s6iCbpqoqr5buZ/qwLAZmtGzW1TyTFo3H6z/uAKrTFvzeQK9sGgISpPVqi4sG0OgP8s6mQ7i9fmxmY6cTKzsN0lKaWqQf9XgjVy+FfkXmpDX7wNc+VB+8eBLfP30kJ7hadmKMpSb+L+v3cM8/NrOgsD+3nzW2w8fGSvugbfBGb1pSU+8jzWo+ritz8aZ9IZByR9EbdCVIK/OUxeV9nxUJ0tp+Ua5pVu4YdU5a+FxU1appg9YxMlUHmfd0m5m8dGtkXrdInDJ3+5/JX+2v5rfvbGPhhDyuPW04QGQaQHUXG89Uur08899dLBifxwmuVCB0scHjDbRbmufxBjqtZoKm3gG1jclvHrLxQA1fH3ZzbtHANvc5YsmkNQY6TQ50JsXcyWLWvuMPBPVKgrRebPKQTAZm2Hi99AC1Df6YPhycFid2kz16kGY24guo+AJBjrolk9YTpLZzlVDr0GmPcvXJmWLq8Cre02u+4fa/f8lpo3L43ZKiuJVkaOWOHl/0fdc0+HU1Hw2a5uVkWqUxgOj5tC6/autuGu2IVyatKUhrm4UIlaEZSTFacXs7L3dsTpvDmqxMWmuu1BQO10qQlmjad5jmQZo/EOS2v31BlsPC/53b1OBKC+C72vb+jx98jccX4IdnNK0LGO19CKGlkBwxdDlsmkee/Ezaa6X7MRsVFhS2XTPRGcmkddzd8Xjni2mZtKfWfMOFj/63TVlqvTdwXOuw6ZkEab2YwaCwcGIe/9l+hH1HPThjbIHa0XwEW6Sbj5+vD7sZFm73L/TLmdJ2Tpr2oRqtLW5HmbRf/WsLy9/YxJnjcvnTFVM67FLVVVomraMOj6FMmj6+cGnKPeW4bK7jnpcjhB647C7q/fXU+tqfW6Op89bh8Xvimklr78ttTUOo+YDT7MDt77xxSIsxNvhxWIy6mNsDkCNBWrdorwT9yTXfsPFADXcvKmjR4MpiMmAzG7vUOKS8poFn1u7ivKKBjMxNjdyudR0+2k5G2NMYiClgcVo7z1B1l092HWXq0Cwy2qma0gLOug4yfu7GQEyBaUe0qQ07D7vZsPsor5fub3G/x9uyo2tvIt8oerlFEwfgD6r8Z/uRmDJpELryFC1I0z5gthyqpa7Rf9yNIkTitXdVrj6cqYp2wnBa21+k0hcI8qf/7GRBYX8evXRyXAM0IPJB29mcNL1l0so8ZTIfTfQaWtCllYxFE8+GOVoGor1MWk29j9QUE06LM2omzWo2YjMb2ywkXNvgj3zp1YOc1BSO1DUSjHHdyr7M6w/y5EffULL7aJefW+YpI82SFllKqLrex4r3djB7dE6bBhgQKnnsSuOQFe/vwB9QubFZFg2a5la2vtjg9QfxBoIxlf5pmb1aHayV5m70k+lo/3zb1Dikg0yaL7bAtCOWVtN0Xli/t0WWv8EnmTTRQ43LS2NETijbFXOQ5shl05FNnPvquew4uqPFfQMzQxNH3/g81O1HgjT9s1uMGJTWc9I6biTjSDFF5nI0t/OwG19AZV5B/4QsHBnp7thpJk0fQdrumt2c99p5fFb+mQRpotfIdYSCtGvfuZbHv3y83cc88eUTXPP2NUB8gjSr2YjdYowapKXZzNhN9qiZNGh/Qeu6Rr8u5qNpcpwp+INqZL1H0T6vP8iy50u4+81NPPDvrTE/z+PzcOk/LuX1r19v8b587MOvqWnwc+u8Me0+L81mirlxyJ4KDy+s38NFUwczNLtlNVG0jLB2TrPHMu2knWZfyeLxRg+yYmoc0hhbiWdHms8//8W549l0sIYv91dHbqt0e3XznSDeJEjr5RRFYXF4wmesqfyLRl3EnKFz+Lr6az4t/7TFfdPyMzEbFZ5ftweDAqObpfmFPimKgjPF1OKqnHbCiDbZNjXKnLQth2oAEtbK2hZTd0c/aTZ9XBkvLS9lR9UOigcVc8nYS5I9HCHioiC7gG+P+TYGxcA7u99p9zGrdq8CBS4efTGFOYVx2W+m3dImEwbh7LnVjNPipM7bfuMQgAy7hapWX45rGny6mY8GkJMayuxIyWN0/kCQG174lFWbQyWL+6o8MT93Z/VOvjjyBRP6TeDaCdcCodf6yY92cc7EAVHXqEuzmiPLu3Tml29txmQwtJiLpol0GW31PnZ7w8sgxZDxSdNRuaPb6486ZrPRQIrJ0El3x+PPpAEsPTmfP14+hcVFA7CZjbywfi8QavZS0+BnSJb9uPehRxKk9QHnTw4FaSkxrmdW5Cril6f+EoNiaNNAxG4xMWlIqDnCsH6OXttRp7dJtZpbZMaaThhRyh1T2i933HSwBovRwPCcxMxFjH1Omj6ummn/P+499V6m5E5J8miEiA+L0cIdJ97BzIEzozaR0hYK/slJPyHFmBKX/WY7LVS2NyetPnRhxmFy4PFH/8Ke6TC3yWCEMml6CtJCr1W0BY/7ukB4DbN/byzjrnPG8f3ZJ3CgqgFfIHrH3+a0Etybp97M/GHzAXj4/R14A0FuPnNU1OfFWu5Y1+jnra8OceXJ+eSmWdvc39Q4pOW2POFzbkyZNB01DvE0Bjocc2edoN1ef1xKEZcvKmBeQX/SrGbOnpDH66X7cTf62V4emjfbW/sjSJDWBwzKtPPk0qk8elnsXyLNBjPZ1ux2T9CnnNAPoNdeueiNUq2mFh/4nk4yaY4UE+7wYprNbTlYywkuJ+YElDo2H0+0TFqDL0CjP6ibOWnavAebydb5g4XoYVx2FxX1FfiCLb9w+oN+jjQciXuJb7RMWqXHS4bNgsPiiCGT1qoFf4M+gzTJpLUVDKrc8fcvea30ALfNH8NVM4cxJMtOIKhysCq2oLZ1w5B9Rz38ed0evjV1UIdf5NNs5pjKHbVAbli/9r//mI0GUlNMbcp2Y12rFkIXK40GJenrpMUyj84R5YKuJtZmKV3x7emDcXsDvPnFATYdDFX3FAzsnVNvJEjrI04fk8uAjK59kYy2Vs5Z4/szKNPGuZParpsh9Kl1S32P14/RoETNrmpfarSMm2bLoRrG5CWuxLWzTJoWaOqlu2O82o8LoUcuuwsVlYr6iha3V9RXEFSDcV8XMMth4XBtI7uONM07CwRV9lR6GJptx2FyRF3MGtrPhtQ1+ElN0cdFHZAgLZrqeh/XPVfCixv28oM5I7m+OLQ49JDsUDC0uzL6cW9OWw4ly5oFwO9XbQcFfjCnbWlic2lWU0xTQpqWdIj+nsp0tF3QWjuXxhKwtDdFIRki8+g6GLMjxRS1cUhXmqV0xeQhmZzgcvLXDfvYuL+GTLuZ/u1kNXsDfXzTEbrksrvYW7u3ze0jc1P56LbTkzAicaxSrSaO1DWdNDzeAHazMeqC0M0nBGulhZVuL2U1jYxLYLOYzro7alc69ZRJkwWsRW+lvbcPuQ/R39G0TlI8uzo2l2o1caC6geIHVvPzRQVceXI+B6rq8fqDDOvn4ICx8yCtpsGHqqqRz7baBp+uujs6LKEulO0FaSve286ROi8DM2wMzLQxIMPGwAwb/ZyWqJ/VPZGqqlS4vWwrq2XboVo2HazhrS8P4fEF+OnCcfzPzPzIY7WKnT2Vsc1LK3OXkWPLwaAY2FFex98+3cf/zBxGXnrHF6nTbaEpAcGgiqGD5Rq0C4UdZWfba2Dj0TJpMTbRSLW237yrO0WmRXQwZmeKMWomrSvNUrpCURQunDKI+97awpaDNRQNyehV/z+a088nl9Adl93FhrINyR6GiAOn1cw3za5Oh+rMO/rgDU9cbvBDeui2rYdCtd+j+ycuk6Zl96Jl0rQrnXqakzY6c3SyhyFEQmhBWOuKivYWCo6HkS5n5OfHPtzJ5ScNZWf4c2tYPwc1dU68QS++gA+zse1nQLrNjC+gUh9u+x0Iqri9AV2VOyqKElorra5lkNboD/DA29vafY7FZAgFbhk2BmRYyUu30T/dGvqTZiUv3Uq6zaybL6qqqrLlUC2f7Kpk66FaDlU3UFXvo7reR5XHR5XHi79ZKX26zczpY11899ThjB+Y3mJb/dOsWIyGmIO05tUNv31nKzazMZKV60iazYyqQm2jn/QOLgJq2a0OgzSHhYq6Y8+kAeFMWnKDNE8MY3a0U9oZeb4v9mYpXXX+pIHc99YW3N5AQi8cJ5t+PrmE7vR39KfWW0u9v17m3PRwqdaWk3s7W7skMnG52XMq3KEvFYkuK7BZjB1k0sLljjro7ugL+qior4i0Kxeit9GCsNZBWqIyaRdPH8K8gv6s+foIN734ORt2H+Wbw6E5aMNyHOxoDM0pcvvcZBgz2jxfu3hTXe/Dbmn6zNNTd0dof0FrrbPg3YsLWFw0kP1H6zlQVc/+qtDf+8J/r956mMN1jaitlllLMRkiQVvrAC43LRTY9XNaErJ0CoTmC6/dWcF7m8t5b0s5+6vqgVAZ4aBMOxl2M6NynaTbzGTaLfRzpjAy18no3FRyUlOiBpgGg8KgLBt7KmLMpHnKGJU5io93VvDPLw/xwzNGku3svLGNVp1RU+/rJEjTMmnRH5Nlt7CjvOXcSW0eeKyZtDSrOelz0twxZP8cKaaoAbT2/Hhn0gBcaVaumDGUZ9fubhPY9yb6+uQSutL8KurQtKFJHo04HqkppkiAA6G1S7T5X+1xtrP+ifYlItFrDuU4U9gd5YSsp0xaRX0FKqrMSRO9VkZKBhaDpd1MmslgItOaGdf9mY0GXGlW5hX0x275ilc+24fJEGrEkONMwWEOBWl1vjoyrBltnq99ua6u95GXbosEaXr4vGgux5nC14dbfonXSrnTbebIn2jt4n2BIIdrGzlY3UBZTUPLv6sb+HTPUcqqG/G26ohoUEIBYv90G/3TUshLt4UDOGvk7wEZNiwxdoIur2ngvS3lvLulnI+2H6HeF8BmNnLqyH78YM4JnDIyhwHp1uPO8A3JsncpkzZzwCksf30jAzNsXHta51k0aBngD+7gcbGUO2a00wBHO5fGnEmzmpLeATSW7J/TEr1xSCQT18F3jePx80UFLC4awMRBGQnZvh5IkCaikiCt90i1mvD6gzT6A6SYjHi8gU7qzJuVO4bFUuYRD6eOzOH5dbup9wbadJ/U05w0LZsgc9JEb6UoCjn2nMh7XVPuKSfXnotBSUxWxm4xMb+gP29+fpBBWXbG5KWiKEokSIs2Ly0SpIXnA0WaPOio3BFCa2m1Xsw6cgEqhs82s9HAgAxbh83AVFWl0u3lUE3LAO5gdQOHahrYedjNf7+uaFNSZ1AgL90WCdxyUlNwpITm0ZmNBsprG9lT6WF3hZttZaFAc0C6lQunDGLOWBcnDc+OzC2Ol6FZdkp2H+30cXXeOjx+DzsPmdhyqJaVl02OeZkgrTqjsw6PsQRpWQ4zbm8gcr6FpkxarO3oU60mvtrfiMfrj3t3xFg1daTspHFIlIxfUyYtMUGaoihMGZqVkG3rhb4+uYSuaEHaIfehJI9EHK/mQVeK04jHF+iwpEN7fPNyx5oGH0aDEpc1Tzoye0wOT675hrU7j3D6mJYBkJbN08OV8TJ3Ykq+hNCTXHtumyCtzFOW8Pf9ZTOG8vfP9rP5YA1XzghdJIw5SAsHPHUxfKFOhva6UEZKueP02aYoCtnOFLKdKRQMiF4O5m70c6imgUPVDRyoqmdPpYc9lR7KahrYdLCGw9tCgYI2hcxqNjAky87gTDuLJg5gzthcxvRPTeh8OFealdoGPw2+QIcBoPY+/WBzIwsK+zOvoH/Ux7aW3qzcsSO14fNgR5UoGeG10qo8PnLTQo9ze/1YTIaYl6+ZV9CfNz4/wLf/tI4/X31ipJlXd2pa262TxiHeQLsNVzydrMcqOievnIgq2nwE0fNoJYp1jX6ynSl4Gv0MSI8+t6y9ckdtvaFET06fPiwLu8XID/9SyuAsO3cvHs+UoaGyqpoGH2ajgtWc/NVDWq/HI0Rv5LK72FixscVt5Z5yxmSNSeh+Jw/JZFg/B98ccUfK/pqXO7Yn8kU7HPBoWQ+9zUlLs5nx+oMtgg4taEvv5vm2jhQTI3KcjMhxRn2Mqqr4AmqknXp3NyjJsIeOa5XHR//06AHDZwd2A5Bu7sc95xZ2aZxacKxdCIwmlvNglkNb0NobWfDa0xjoUgONBYV5rLxsCtc9V8Idr3zJg0uKuv11jzWTBqF57q3/n2nz8rq6/JNokvxvOkK3HGYHTrNTgrReINIIJPylxdNOKWFzjnbLHf3dksFKMRkpHJhOTYOfjQdq+MN72yP31dT7SLPqo4tZuaccs8FMZkp85+UIoSe59lzKPeWo4U4Vqqp22/qA/3feeOYV5EYyIk5zKJDw+Nqfn6SVrGkBj1YJkOh5tF3VOuMH+ppv25qiKFhMBpwpib9I154MWzgzVd9+F0GAvZUefvn2xwD87sJZkUApVpHGIZ2UO9Y1dr44uhZUNu966D6GssW5Bf256YxRvFZ6gH9+2f0VTbFk0hztXNDVbNh9lPxse2RtQNF1+rq8JHTHZXex5sAa7vn4npifYzKYuHzc5Qx0ymLXepHaJkjzd3h1zGIyYDEZqPM2bxzi67ayof+dP4aXS/aRZjXxxw938s0Rd6gFd4O/W+aj+YI+Hi19lBpvTdTHrD+0HpfdpYuAUYhEcdldNAYa+fnan2MymAioAer99d0yF/PkEf04eUS/yL+1TNpL214CBebnz2/x+FRry+Cnu+bRdlXzIE3LtOhpvq3eaMfv7zteILjrcJv7A0GVNz4/gNe2D4Cpg/K7vo8UE4pCmzLU1mobfB0uZA3NMmnupm15GjueBx7N9cUjeOurQ/zizU3MGp3TrVnhWDJpkakUjX6afyKoqkrJ7qOcPkYqTY6Hvj65hO6cNug0XtvxGm/vejvm5xxtPEpGSgbXTbwugSMTXZEaPqloX1o83kCnc8tSW00I1so8usOUoZlMGZpJeW0DT675hqfXfMPPF48PZ9ISP4bNFZv505d/wml2YjZEPyHPHzY/6n1C9AaTXJNw2V28t+e9yG0um4siV1G3jyXbms3YrLGUlpdyyH2oTZBmNCikWk2RrJSe56RB60yaH4vRQEqMnRX7EqfVBIYGXvh6BTaTDauxZal+vS9AvSVAmtXEBNfJpBi7nrkxGJRQF+ROgrSaGM6DWfamckfNsWTSAExGA784dzwXPPpfHnp3O3csGNvlbRwrj9eP1WzA2MHi3tp7ec5vPuD8yQO5cMogZgzPZucRN5VuL1OHSqXJ8dDXJ5fQnVum3sItU2/p0nNO+8tpUiKpM80zaYGgSqM/2OkJw9lqbbWaBh9DsuwJHWdrrlQr508axHPr9rCgMI+aBl+3XGnWJqA/Pf9pRmfJYtWi7yrMKeTdi95N9jAAMBvN/PWcv/KLtb9g1Z5V7T6meVOO2gZ/p00ekqF1F0og8tkmmfm2UlNMGEzVACyfsZwFwxdE7tt1xM2Zv/uAeQX9WXHJ5OPaT5rN3GKpmvbUNfjJ62A+NzQ1Dmnehr+zjsodmTI0kyVTB/PER98we7SLGSOyj2k7XeXupOIGYMaIbJafM45P91TxzqYy/v7pfiYNyWBwZui7wtR8CdKOh1yyEXHnsrskSNMZrSa8rLahqc68k0yao9X6J6FMWveX4ty5cCxDsuzc9GIpB6saumXOhjQFEUK/HBZHhx0eI90dG/1Jm0fVkWhz0tK6uWlIT+G0mlDModLz1p/JGw/U4AuoLCs+4bj3017XzdZimZOmzd872iwIdzceXyv9OxeOJT/bzvf//CkHwguFJ5qnMdBp+3yr2cjSmcN46NuT+OQnZ3DveYXsP1rP658fYGCGjeH9ojekEZ2TIE3EncvuatOyWSSXI8VElsPC3sr6pvVaOvnwdVpNLdbQSdaXiFSrmQcumsDBmtD6Pt0xhjJ3GRaDhYyUjITvSwjRNQ6Tg8ZAI75g2y/UadamL9o1DT7ddXaE5l0om8ZfHW6KJNpKtZpRwpm0XEfLuZDagsvxKGlNs5o7LXesa/THtO5eht3cotzR4+1ad8fWUq1m/nj5VBr9Qa5//lN8rRYqT4RYMmnNWc1GLjlxCO/eMosHlxTxt+tPbtOWX3SNBGki7iSTpk+DMm3sO+qJeVHN1JSmcsdgUKXOm5xMGsCUoVlcPG0wAJYY15k5HmWeMnLsObq7Ai+EAKclepfHdFvTF+3unEfbFWntZdK6qSlST2Q3GzGYQ0Fa60xafRcXie5Ims3UYSZNVdWYGodAqHlI6yDNfpwXDE5wOfn1hRP4fG8Vv/znlkjH1USJZe56e1KtZs6dNJD+nZSFis5JkCbiLteRS2VDJd5A9Ha5ovsNzrSz/2h9pISxs9ILR0pTuWNtox9VpVuadkRzx4KxnDNxAN8+cUjC91XuKe+W7nVCiK6zm0LzXdpbL63lnDR9ZqeM4SYVzQOC2m5qitQTGQwKKSl1WJTUNk1BtIuO8VjsOc1qblE90lqjP4gvoMYU+GfaLa3mpPmPK5OmOaswj8tPGsqTa77hf57+hCpP4r5nuRv9SVlEWzSRIE3Enfbl9nB921a5InlCmbTmQVrn5Y5Ni8Imfw2fVKuZP3x7EmP6pyV8XxKkCaFfWiatvXlpWc5QBqOu0c+uIx5y0vS5RlNaq/lP3dUUqacyWmpIoW0TCo/Xj6IQl66YocYh0TNpdY2xl1Zm2s1UhgOoYFANZ6XiE/DcvbiAuxcXsGZHBUv++DHltQ1x2W5rx5pJE/EjQZqIO60cQUoe9WVQpg1vIMjuilCJUGcnjAHpVirdXuq9AWrq9dnKOhG6c7FeIUTXaeultRekzR7twhdQ+fW/tnCopoE5Ol2nqXlZpqqq1NT7I3PVRFuKqQaTmtHmdo83gN1sjEtpeprVjMcbwB9lvpe2pEMs8xwzHRaqwuuk1fu0bF98Ah5FUbhiRj5PXTWNvUc9XPKndS06McdLV+ekifiTIE3EnfbltswtzUP0ZFC4ff62slqg80za4PDj9x71NGXS+sCXiBpvDQ2BBgnShNApLUir87Ytd5w6NJOBGTaeWbsbk0Fhzhh9ZsSbl2U2+oN4A0FdlmbqhWqswhDMaHN7POZ6aZovVdMeLRCKKUizW6ht9OP1ByPNTeKVSdPMPKEfj18xlZ2H6/jJK1/GfY5aLN0dRWJJkCbiTisTkw6P+jI40wbA1nCQ1tkVMm1NtD0VnkjZY1/IpGnvW5dDgjQh9MhpDpc7+ttm0gwGhXMnDQDg5BP6kW7XZ+DTPEjT/pYW/O3zBXwElFqCvral7h6vP24leWntdN1sTgveYunumOkIrZVWVe/F0xjfTFpzJ5/Qj5vPHMVrpQd4/fMDcd22ZNKST4I0EXdpljSsRquUO+rMwIyWmTRbJye2SJBW6dHFnLTuor1v+9v7J3kkQoj2RModve2vlXbepEGYDAqLJg7ozmF1SfMgTSt77Aufr8dCm9/ubzdIC8RtsfK0GDNpqTF0d8wMXxw46vYlLJOmub74BCYOzuDnb2ziYHV81lDzB4I0+IIJG7OIjQRpIu4URZE2/DpksxjJz7ZTVtMIdH5VL8thwWExhoO0vpNJk4WshdC3juakQahV+ZrbT+eCyQO7c1hdkm5vuZ4b9I1y8mOhfSZ7G1Lb3FfvDcStA6G2xEy0tdLqGkO3x5JJ658Waj+/6WB1UwfKBAU8RoPCby6aSKMvwHXPfRqXjo+eOM+jE8dGgjSREC67ix1VO1h/cD1BNfGLLorYfHt6U/t6q6njD19FURicZWdvpSdy0krWOmndZWvlVjYc2gBAji0nyaMRQrRHa8EfLUgDyE2z6nqdwzSriQZfkEZ/oKncsQ9cBOuqvbV7+XDfhwA01Dvb3O+Oa7lj6PWPVu7YlcYhk4dkMiLHwR8/2BnJwCVyftcJLie/XVLEpgPVzP3dh3zvz59SVnPsXR+1Ek3JpCWXBGkiIfLT89lRtYPvvP0dSspKkj0cEfatqYMjPxsMnX+BGZJlD2XSGv1YzQYscWhzrFe+oI9L/3kpb+x8g4HOgZiNvTsgFaKnMhqM2Ey2dtdJ6ynSmy1ovb8q9GU6L92WzCHp0g/e+wF/+vJPGDBR50klEGzZHKM+ruWO2py09ssduzI322BQWFZ8AlsO1fJGaWiuWKLb2c8r6M+L185gwqB03tlUxv1vbTnmbWklmpJJS67e+41LJNVt027j4TkPA7Cvdl+SRyM0mQ4Li4sGMGN4dkyP14K0ao+v12fRjniO0Bho5NoJ1/LcgueSPRwhRAecZmeHmTS9izSpqPezt9JDismAK1Wfa7oli6qq7K/bz8LhC7ly8KMQtEaCB40njuWOTcckWrmjH5NBiXlNtkVFAxicZePvn+0HmuZ5J9LkIZk8fuU0rpqZzyul+9mwq/KYtiOZNH2QIE0khNVkZUbeDAAOeQ4leTSiud9fPIkXrjkppscOybbT6A+y80hdry/F0bo6TsyZSD9bvySPRgjREYfZ0aODtOaZtN0VbgZn2WOqbuhLarw11PvrGZM1hgHOUBOYuobWQZq/0yZYsdLKGKNl0irqGsmwW2IuozUbDay8bAoAJ4/I7taAZ9msExiSZefyJ9bz23e2dXmemlai6ZDFrJNKgjSRMGajmSxrljQQ6cG0K3+f7Dra6zNpWpCW69DnukpCiCYOs6NXlDvW1PvYXeFhaDdkWXoa7btDrj03cv5pvWiztph1PBgNCqkppkg349Z2VXjIz+7acSoYkM7nP5vLo+Fgrbuk2828fN3JnDwimz+8t53Tf/MB63ZWxPz8vUc9AAzIkBLcZJIgTSRUrj1XgrQebFp+Fv2coRKc3t55rPkXAiGEvjnMDjw+T7KHccyaZ9L2VnoYLEFaG8077TrbaY8fDKrU+wJxneuVZjNT5fHx0Lvb2V/Vsp39ngoPQ7MdXd5mut0cOd7dKSc1hSeWTuOfPziVDLuZ7z67gc/3VsX03K8P12ExGhiUKUFaMkmQJhJKWvH3bI4UE7fMHQVAdRza+upZuaecFGMKaZa2a/EIIfSlt2TSdh6uw+0NMLSLGZq+oEWQFi5FbJ5Ja/AHUFWwx2lOGoSagrxWup/fvrON2//2ReT2em+AQzUNXc6k6cHYvDSeuWo6jhQT5z2yhl+8uanTzo9fl9cxrJ8Dk1HChGSSV18klARpPd+3pg7mgsmDuOnMUckeSkKVecpw2V26btsthAjp6Y1DMu0W0qwm/rUxNGdbgrS2tBJ0l90V6ajYfE6atv5YXDNpVjNaA8nP9lTh9YeWENpTGcraDumhx2lwlp1//fA0vjV1ME+u+YaZ973Hna9+GXWu2teH3YxwdT1rKOJLgjSRUC67i8qGSryB3p2F6c2MBoXffGsixaN79+LOZe4yWcBaiB7Cbrb36CDNYFA4eUQ/tpWFsoHd0fmvpynzlJGZkonFaIlk0prPF6sPB2nxasEPYA0HfAMzbNQ1+vnHl6H2+bsrQu+1/GMod9SLdJuZ+y6YwOofFXPx9MH8ed0e5vzmA1ZtKmvxuEZ/gD2VHkbktF2XTnQvCdJEQmnzeySbJvSu3FMu89GE6CGcZmePLncEKB6dE/lZ5qS1Ve4pjzRy0uakNS93bFrLK37ljl+Xh95Td549lsKB6dz31hb2VnrYXRHKpPXkIE0zNNvBPecW8uYNp5KbZuXqZzfws9e+osEXCnr3VHgIBFUJ0nRAgjSRUBKkiZ5AVVUJ0oToQRxmB/6gv0dXaSyYkBf5OcUkrc5bK/eUR6obnJa2jUO0csd4teAHyHSE5gqeMrIf955XSL03wEUr11K6t4oMu5l0e+9poDVuQBqvfO9kvnPKMJ5du5vFK9aw6UANO8KBqgRpydfp5QdFUZ4EFgLlqqqOD99WBKwErIAfWKaq6voEjlP0UNoHrARpQs+qG6vxBr1S7ihED+EwhzIadb46soxZSR7NsUmzmrljwRgJ0KIo95Qzvt94IFQe6kwxtcikaeWO8WrBD/CnK6ay64iHVKuZwkHp/Pm7J3H+I//lH18eZOKg9LjtRy9STEZ+unAcp47sx49e+pxzVnxEIDwpb3hOz88a9nSxZNKeBua3uu1XwM9VVS0Cfhb+txBtuByhL73aBGAh9Kj5BHUhhP5pQVpPnpcGcM1pI7jy5PxkD0N3vAEvlQ2VLT6TnSkmauqb5qS5G+Nf7piXbmPGiOzIv8cPTOe6WcOB3r1mWPFoF+/cNItvTR0MwJwxrri+ruLYdHoEVFX9UFGU/NY3A1qf6nTgQJzHJXqJVHMqNpONQ+5DBIKB49qW0SBXG/UmqAZRVTXZwzhuh9yhDmsSpAnRMzjNoVKsGm/NcZ9behs9nCuP99xQ5g5dOGtegj6qfyr/2X4EXyCI2Wig3hf/csf2LJt9AgCzennzrEyHhV+eX8g1pw0nNy0l2cMRxBCkRfFD4N+KojxAKBt3ctxGJHoVRVHItefy3ObneG7zc8e1re8XfZ9rJ14bp5GJ47W3di8XvH4B9f76zh/cQ/R39E/2EIQQMUi1pAJw8ZsXJ3kk+mJUjDw4+0GKBxcnbQxl7jIWv7Y4LlnO/vamz+QrThrK1c9u4N3N5cwf3z8hLfjbYzUbuXnu6ITuQ0+G9ZMyR7041iDteuAmVVX/pijKt4AngDPae6CiKNcA1wAMGTLkGHcnerKfnvRTPi3/9Li28fK2lyk9XBqfAYm42F2zm3p/PReOurBXNNxw2V0SpAnRQ0xyTeJ/p/1vjy93jLdHP3+UL498mdQgbXvVdtw+93GfG+wmO9P6T4v8u3h0DnnpVv68fg/zx/ePlDvaLVKWJ3qnY31nXwncGP75JeDxaA9UVfUx4DGAqVOn9vy6KNFl0/OmMz1v+nFtY+ORjRxwS1Wtnmhfji4ZcwkjM0cmeTRCiL7EbDRz+bjLkz0M3Xlp20tJb9Sl7f/qwqsZ6BwYt+2ajAaWTBvMg6u2s++op6lxSIIzaUIky7G24D8AzAr/fDqwPT7DEaJ9Lrsr6Sce0ZIWpGlzQ4QQQiRXrj036efKSCMmW/zncJ0/aRAA//zyIB5fALNRwWyU1aRE7xRLC/4XgGKgn6Io+4C7gO8Cv1cUxQQ0EC5nFCJRXHYXVY1VNAYaSTHKhFY90II0u1kWYRVCCD1w2V3sqt6V1DGUe8rJsmZhNsZ/TbEh2XYKB6bzjy8OUjQ4Q0odRa8WS3fHb0e5a0qcxyJEVJH11tzlDE4bnOTRCAitTwRNrbCFEEIkl8vuYv3B5C5bW+YuS+g85bMn5HHfW1uwWYxS6ih6NckRix5B+8CX9db0w+PzYDPZMBnkSqYQQuiBy+6i1leLx+dJ2hjKPeUJXc5k4YQ8DAp8vLMy4e33hUgmCdJEj5DrCAVpya61F03qfHXYTVLqKIQQeqFd0EzmuTLRQdqgTDsLCvMACAalH53ovSRIEz1CpNxRgjTdcHvdOC3SNEQIIfQi2VUn3oCXo41HExqkAVw3awQAuyqSlzEUItGkTkn0CE6zE5vJJuWOOuL2uyWTJoQQOpLsC5rafhO9dub4geksPTmfUbmpCd2PEMkkQZroERRF0UVrYdGkzlsnmTQhhNARLUhL1gXN7grSAJYvKkj4PoRIJil3FD2Gy+6STJqOePwe6ewohBA6YjfbSTWnJu2CZmSNtASXOwrRF0iQJnoMyaTpS523ToI0IYTQmVxHLmXu5GbSXA4J0oQ4XhKkiR5Dy6Rdv+p6tlRuSfZw+jyP34PTLOWOQgihJy67i0/KPuGH7/+Qqoaqbtmnqqrc8/E9vLDlBWwmG6lmmSsmxPGSIE30GLOHzKYop4g1+9fw3p73kj2cPq/OW4fdLI1DhBBCTxYOX8hA50De3fMun5V/1i37rG6s5sWtL6KgcPHoi1EUpVv2K0RvJkGa6DEm5kzkmbOeIduWLWWPSeYL+PAGvZJJE0IInTlnxDk8MucRoPu6PGpz0X445YfcPPXmbtmnEL2dBGmix5EGIsnn9rkBZE6aEELoUJY1C6Ni7LZzZXd2dRSir5AgTfQ4EqQlX52vDpAgTQgh9MhoMNLP1q/bzpXS1VGI+JMgTfQ40uUx+bRMmpQ7CiGEPnXnuVLbT44tp1v2J0RfIEGa6HFy7blUN1bT4G9I9lD6LC1Ik8YhQgihT7mO7g3Ssq3ZmI3mbtmfEH2BBGmix9HKKQ57Did5JH2XZNKEEELfXHZXtzYOkVJHIeJLgjTR42gnApmXljwSpAkhhL657C7qfHWRz+tEKveUS9MQIeJMgjTR42gnAgnSkkdrHCLljkIIoU/deUFTMmlCxJ8EaaLH0U4E0jwkeSSTJoQQ+qZd0Ez0ubLB30B1Y7UEaULEmQRposdxWpw4zA4J0pJIGocIIYS+dVeQps0Pz3VIuaMQ8SRBmuiRZK205HL73NhNdgyKfIQIIYQedVfViayRJkRimJI9ACGOhcvuYnPFZp7d+GzUx6QYU1h0wiJsJls3jqz3e3vX23x++HMpdRRCCB2zmqykWdL4aP9HWAyWhO1n69GtANI4RIg4kyBN9Ejjssex7uA6fr3h1x0+Li0ljbOGndVNo+r9ar213PLBLQCc2P/EJI9GCCFER8Zlj+Pjgx9TUlaS0P2kp6ST58hL6D6E6GskSBM90k2Tb+K7hd+Ner/H5+GMl8/goPtgN46q96v11gLwkxN/wkWjLkryaIQQQnRk5Rkr8fg9Cd9PijEFizFx2Toh+iIJ0kSPpCgKqZbUqPenWlKxm+zSXCTOtNb72bZsjAZjkkcjhBCiI0aDscNzpRBCv2TWv+i1ch25EqTFmdbV0WFyJHkkQgghhBC9lwRpoteSDpDxFwnSLBKkCSGEEEIkigRpotfKtUsmLd60ckfp7CiEEEIIkTgSpIleK9eeyxHPEQLBQLKH0mu4veFMmlkyaUIIIYQQiSJBmui1XHYXftVPZUNlsofSa0TKHSVIE0IIIYRIGAnSRK/lsrsApOQxjrQgzW6yJ3kkQgghhBC9lwRpotfKtecCSPOQOHL73NhMNmm/L4QQQgiRQBKkiV4r1xEK0iSTFj91vjopdRRCCCGESDAJ0kSvlWXNwqSYJEiLI7fPLZ0dhRBCCCESTII00WsZFAP97P3YWb2Tw57DyR5Or+D2uSWTJoQQQgiRYKZkD8Dn87Fv3z4aGhqSPRTRy1itVk5IPYF397zL+3vf598X/Jv+jv7JHlaPJkGaEEIIIUTiJT1I27dvH6mpqeTn56MoSrKHI3oJVVWpqKjghuE3MD53PCs/X8memj0SpB0nt8/NAOeAZA9DCCGEEKJXS3q5Y0NDA9nZ2RKgibhSFCX0vvIrLBi2AJAuj/EgjUOEEEIIIRIv6UEaIAGaSAjtfaW14pcGIsdPyh2FEEIIIRJPF0Fasv3f//0fBQUFTJgwgaKiItatWwfA1VdfzaZNm+Kyj/z8fI4cOdLhY+69994ub/fpp5/m+9//fovbnnrqKYqKiigqKsJisVBYWEhRURG33357l7ffHR588EE8Hk/Ctm8323GanRKkxYEEaUIIIYQQiZf0OWnJtnbtWt58800+/fRTUlJSOHLkCF6vF4DHH3+8W8dy7733cscddxz3dq666iquuuoqIBQcvv/++/Tr1++4t3usVFVFVVUMhvavCTz44INcdtll2O32mLfp9/sxmWJ/+7rsLil3PE7egBdf0Cct+IUQQgghEqzPZ9IOHjxIv379SElJAaBfv34MGBBqjFBcXMyGDRsAcDqd3HbbbUyZMoUzzjiD9evXU1xczPDhw3n99deBtlmthQsXsnr16jb7PPfcc5kyZQoFBQU89thjANx+++3U19dTVFTEpZdeCsBzzz3H9OnTKSoq4tprryUQCAChTNmoUaOYNWsWa9asifl3/fWvf820adOYMGECd911FwC7du1izJgxXH311YwfP55LL72UVatWMXPmTEaOHMn69esBWL58OZdffjmnn346I0eO5E9/+lOn2x07dizLli1j8uTJ7N27l+uvv56pU6dSUFAQedxDDz3EgQMHmD17NrNnz4681pqXX36ZpUuXArB06VJuvvlmZs+ezW233cbXX3/N/PnzmTJlCqeeeipbtmyJ+ru77C7JpB0nt88NIJk0IYQQQogE01Um7edvbGTTgZq4bnPcgDTuOqcg6v1z587l7rvvZtSoUZxxxhksWbKEWbNmtXmc2+2muLiY+++/n/POO48777yTd955h02bNnHllVeyaNGimMf05JNPkpWVRX19PdOmTeOCCy7gvvvuY8WKFZSWlgKwefNmXnzxRdasWYPZbGbZsmU8//zznHnmmdx1112UlJSQnp7O7NmzmTRpUqf7fPvtt9m+fTvr169HVVUWLVrEhx9+yJAhQ9ixYwcvvfQSjz32GNOmTePPf/4zH330Ea+//jr33nsvr776KgBffPEFH3/8MW63m0mTJnH22Wfz1VdfRd3u1q1beeqpp3jkkUeAUFlpVlYWgUCAOXPm8MUXX/CDH/yA3/72tzFn+7Zt28aqVaswGo3MmTOHlStXMnLkSNatW8eyZct477332n1erj2XtQfXxnaARLvqfHWABGlCCCGEEImmqyAtGZxOJyUlJfznP//h/fffZ8mSJdx3332R7I3GYrEwf/58AAoLC0lJScFsNlNYWMiuXbu6tM+HHnqIV155BYC9e/eyfft2srOzWzzm3XffpaSkhGnTpgFQX1+Py+Vi3bp1FBcXk5OTA8CSJUvYtm1bp/t8++23efvttyMBXV1dHdu3b2fIkCEMGzaMwsJCAAoKCpgzZw6KorT53RYvXozNZsNmszF79mzWr1/PRx99FHW7Q4cO5aSTToo8/69//SuPPfYYfr+fgwcPsmnTJiZMmNCl1+6iiy7CaDRSV1fHf//7Xy666KLIfY2NjVGf57K7qKivIBAMYDQYu7RPEaJl0qTcUQghhBAisXQVpHWU8Uoko9FIcXExxcXFFBYW8swzz7QJ0sxmc6RboMFgiJRHGgwG/H4/ACaTiWAwGHlOewt0r169mlWrVrF27VrsdjvFxcXtPk5VVa688kp++ctftrj91VdfPaZumKqq8uMf/5hrr722xe27du2K/C4d/W7QtgunoigdbtfhaMq4fPPNNzzwwAN88sknZGZmsnTp0qgLmDffT+vHaNsMBoNkZGREMo+dybXnElADVDRU4LK7YnqOaEkL0uzm2OcOCiGEEEKIrut0TpqiKE8qilKuKMpXrW6/QVGUrYqibFQU5VeJG2Jibd26le3bt0f+XVpaytChQ49pW/n5+ZSWlhIMBtm7d29kPldz1dXVZGZmYrfb2bJlCx9//HHkPrPZjM/nA2DOnDm8/PLLlJeH5lFVVlaye/duTjzxRFavXk1FRQU+n4+XXnopprHNmzePJ598krq6UMna/v37I9uO1WuvvUZDQwMVFRWsXr2aadOmxbzdmpoaHA4H6enplJWV8dZbb0XuS01Npba2NvLv3NxcNm/eTDAYjGQcW0tLS2PYsGGR319VVT7//POoY9cCszK3NA85VpJJE0IIIYToHrFk0p4GVgDPajcoijIbWAxMUFW1UVGUHpuaqKur44YbbqCqqgqTycQJJ5wQaebRVTNnzoyUDo4fP57Jkye3ecz8+fNZuXIlEyZMYPTo0S3KAa+55homTJjA5MmTef7557nnnnuYO3cuwWAQs9nMww8/zEknncTy5cuZMWMGeXl5TJ48OdJQpCNz585l8+bNzJgxAwiVeT733HMYjbGX/k2fPp2zzz6bPXv28NOf/pQBAwYwYMCAmLY7ceJEJk2aREFBAcOHD2fmzJktfu+zzjqLvLw83n//fe677z4WLlzI4MGDGT9+fCQAbO3555/n+uuv55577sHn83HxxRczceLEdh/rcoTeotI85NjVeWVOmhBCCCFEd1BUVe38QYqSD7ypqur48L//Cjymquqqruxs6tSpqtYtUbN582bGjh3blc2IJFi+fDlOp5Mf/ehHyR5Kl2jvryP1R5j919n8ePqPuWTsJckeVo/00raXuHvt3ay6cBW5jtxkD0cIIYQQokdSFKVEVdWpHT3mWOekjQJOVRTl/4AG4Eeqqn5yjNsSIuGyrFmYFBMrPlvBMxufSepYjAYjy2csZ3re9KSOo7WbV9/MxiMbo94v3R2FEEIIIbrHsQZpJiATOAmYBvxVUZThajtpOUVRrgGuARgyZMixjlMk2fLly5M9hONiUAzcMvUWNlduTvZQeHPnm3x88GNdBWm+oI9Vu1cxJmsMIzNHRn3c4NTBOC0yJ00IIYQQIpGONUjbB/w9HJStVxQlCPQDDrd+oKqqjwGPQajc8VgHKsTxumzcZckeAgAfH/xYd3PjjniOoKKyZPQSLhh1QbKHI4QQQgjRp3Xa3TGKV4HTARRFGQVYgCNxGpMQvVquPVd3QVqZJ9T1UpYnEEIIIYRIvlha8L8ArAVGK4qyT1GU7wBPAsPDbfn/AlzZXqmjEKItl90VCYr0QoI0IYQQQgj96LTcUVXVb0e5Sx+1Y0L0MC67i3UH1yV7GC1omb1cu3RtFEIIIYRItmMtd+xVnM5ja4SwcuVKnn322Ta379q1i/Hjx8e0jYqKCoqKiigqKqJ///4MHDgw8m+v13tM40qk1atX89///jfZw+jRcu251Pnq8Pg8yR5KRLmnnBRjCukp6ckeihBCCCFEn3esjUMEcN111x33NrKzsyktLQX0sxaZ3+/HZGr/rbF69WqcTicnn3xyzNsLBAJdWjS7t9NKCss8ZQxLH5bk0YSUuctw2V0oipLsoQghhBBC9HmSSWtm9erVFBcXc+GFFzJmzBguvfRStKl2t99+O+PGjWPChAmRIGr58uU88MADAJSUlDBx4kRmzJjBww8/HNlmIBDg1ltvZdq0aUyYMIE//vGPMY2lpKSEWbNmMWXKFObNm8fBgwcBKC4u5qabbuK0005j7NixfPLJJ5x//vmMHDmSO++8Ewhl8saMGcOVV17JhAkTuPDCC/F4PJ1u94477mDWrFn8/ve/54033uDEE09k0qRJnHHGGZSVlbFr1y5WrlzJ7373O4qKivjPf/7D0qVLefnllyPj1rKSq1evZvbs2VxyySUUFhYe8+vQG2klhXpqHlLmKZP5aEIIIYQQOqGvTNpbt8OhL+O7zf6FcNZ9MT/8s88+Y+PGjQwYMICZM2eyZs0axo0bxyuvvMKWLVtQFIWqqqo2z7vqqqv4wx/+wKxZs7j11lsjtz/xxBOkp6fzySef0NjYyMyZM5k7dy7DhkXPoPh8Pm644QZee+01cnJyePHFF/nJT37Ck08+CYDFYuHDDz/k97//PYsXL6akpISsrCxGjBjBTTfdBMDWrVt54oknmDlzJv/zP//DI488wo033tjhdquqqvjggw8AOHr0KB9//DGKovD444/zq1/9it/85jdcd911LbJ9TzzxRNTfY/369Xz11VcMGzaMxx57rMuvQ2/VPJOmF+WecgpzCpM9DCGEEEIIgd6CNB2YPn06gwYNAqCoqIhdu3Zx0kknYbVaufrqqzn77LNZuHBhi+dUV1dTVVXFrFmzALj88st56623AHj77bf54osvItmm6upqtm/f3mFwsnXrVr766ivOPPNMIJSNy8vLi9y/aNEiAAoLCykoKIjcN3z4cPbu3UtGRgaDBw9m5syZAFx22WU89NBDzJ8/v8PtLlmyJPLzvn37WLJkCQcPHsTr9R5TMDV9+vTI847ldeittCBNL5k0VVUp95RL0xAhhBBCCJ3QV5DWhYxXoqSkpER+NhqNkflZ69ev59133+Uvf/kLK1as4L333os8TlXVqHN5VFXlD3/4A/PmzYt5DKqqUlBQwNq1azsco8FgaDFeg8GA3+8HaDMeRVE63a7D4Yj8fMMNN3DzzTezaNEiVq9ezfLly9t9jslkIhgMRsbdvNlJ8+0dy+vQW9nNdlItqZS59ZFJq2qswhv0SpAmhBBCCKETMictBnV1dVRXV7NgwQIefPDBSKMPTUZGBunp6Xz00UcAPP/885H75s2bx6OPPorP5wNg27ZtuN3uDvc3evRoDh8+HAmmfD4fGzdu7NKY9+zZE3n+Cy+8wCmnnNKl7VZXVzNw4EAAnnnmmcjtqamp1NbWRv6dn59PSUkJAK+99lrk92ztWF6H3kxPC1pr45A5aUIIIYQQ+iBBWgxqa2tZuHAhEyZMYNasWfzud79r85innnqK733ve8yYMQObzRa5/eqrr2bcuHFMnjyZ8ePHc+2110ayXdFYLBZefvllbrvtNiZOnEhRUVGX296PHTuWZ555hgkTJlBZWcn111/fpe0uX76ciy66iFNPPZV+/fpFbj/nnHN45ZVXIo1Dvvvd7/LBBx8wffp01q1b1yJ71tyxvA69mcvu4osjX/DAJw/g9iUvWP1g7wes+GxFZExCCCGEECL5FK17YXeYOnWqumHDhha3bd68mbFjx3bbGPqCXbt2sXDhQr766qtkDyXp9Pr++n+b/h+PffEYVY1V/H727zl9yOlJGce33vgWO6p2MDh1MM8teI5US2pSxiGEEEII0VcoilKiqurUjh4jmTQhkuDycZfz90V/B5LbQKTMU8biExbz2rmvSYAmhBBCCKETEqT1Qvn5+ZJF6wGyrFkYFWPSWvF7A14qGyqlzFEIIYQQQmckSBMiSYwGIzn2nKRl0g7XHwagv71/UvYvhBBCCCHaJ0GaEEnksruSlkmTro5CCCGEEPokQZoQSZTMVvxacChBmhBCCCGEvkiQJkQSueyupAVp5W7JpAkhhBBC6JEEacC+fftYvHgxI0eOZMSIEdx44414vd5On3fvvfd2+pirr76aTZs2tbn96aef5vvf/35M4/v3v/9NUVERRUVFOJ1ORo8eTVFREVdccUVMz+9uTz/9NAcOHEj2MHoEl92F2+emzlvX7fsu85RhNVpJs6R1+76FEEIIIUR0fT5IU1WV888/n3PPPZft27ezbds26urq+MlPftLpc2MJ0h5//HHGjRt3XGOcN28epaWllJaWMnXqVJ5//nlKS0t59tlnj2u7xyMQCES971iCtL66sLWWxUpGNq3cU47L7kJRlG7ftxBCCCGEiK7PB2nvvfceVquVq666CgCj0cjvfvc7nnzySTweT5uM18KFC1m9ejW333479fX1FBUVcemll+J2uzn77LOZOHEi48eP58UXXwSguLgYbQHvp556ilGjRjFr1izWrFkT2ebhw4e54IILmDZtGtOmTWtxX0eee+45pk+fTlFREddee20kcHI6ndx2221MmTKFM844g/Xr11NcXMzw4cN5/fXXgVAgtXjxYubPn8/o0aP5+c9/HtN2f/azn3HiiSeydu1a7r77bqZNm8b48eO55pprUFWVl19+mQ0bNnDppZdSVFREfX09+fn5HDlyBIANGzZQXFwMwPLly7nmmmuYO3cuV1xxxTG/Dj1Zrj0XICnNQ8o95eQ6crt9v0IIIYQQomOmZA+gufvX38+Wyi1x3eaYrDHcNv22qPdv3LiRKVOmtLgtLS2NIUOGsGPHjqjPu++++1ixYgWlpaUA/O1vf2PAgAH84x//AKC6urrF4w8ePMhdd91FSUkJ6enpzJ49m0mTJgFw4403ctNNN3HKKaewZ88e5s2bx+bNmzv8vTZv3syLL77ImjVrMJvNLFu2jOeff54rrrgCt9tNcXEx999/P+eddx533nkn77zzDps2beLKK69k0aJFAKxfv56vvvoKu93OtGnTOPvss3E4HB1ud/z48dx9990AjBs3jp/97GcAXH755bz55ptceOGFrFixggceeICpUztcSB2AkpISPvroI2w2G5dcckmXX4eeTgvSkpFJK/OUUeQq6vb9CiGEEEKIjukqSEsGVVXbLfeKdns0hYWF/OhHP+K2225j4cKFnHrqqS3uX7duHcXFxeTk5ACwZMkStm3bBsCqVatazFurqamhtraW1NTUqPt79913KSkpYdq0aQDU19fjcoVK5ywWC/Pnz4+MKyUlBbPZTGFhIbt27Yps48wzzyQ7OxuA888/n48++giTyRR1u0ajkQsuuCDy/Pfff59f/epXeDweKisrKSgo4Jxzzon5NQNYtGgRNpvtmF+Hni5Z5Y6qqkbKHYUQQgghhL7oKkjrKOOVKAUFBfztb39rcVtNTQ179+5lxIgRfP755wSDwch9DQ0N7W5n1KhRlJSU8M9//pMf//jHzJ07N5Jl0kQL+oLBIGvXro0EK7FQVZUrr7ySX/7yl23uM5vNkX0ZDAZSUlIiPzef+9V6PIqidLhdq9WK0WgEQq/DsmXL2LBhA4MHD2b58uVRXxuTyRR5DVs/xuFwRH4+ltehp7OaQo07Sg+X8v6e97ttvx6/B1/QF8nkCSGEEEII/dBVkJYMc+bM4fbbb+fZZ5/liiuuIBAIcMstt7B06VLsdjv5+fk88sgjBINB9u/fz/r16yPPNZvN+Hw+zGYzBw4cICsri8suuwyn08nTTz/dYj8nnngiN954IxUVFaSlpfHSSy8xceJEAObOncuKFSu49dZbASgtLaWoqKjTcS9evJibbroJl8tFZWUltbW1DB06NObf/Z133qGyshKbzcarr77Kk08+id1uj2m7WrDVr18/6urqePnll7nwwgsBSE1Npba2NvLY/Px8SkpKOOuss9oExM0dy+vQG+Sn5/Phvg/5cN+H3b/vtPxu36cQQgghhOhYnw/SFEXhlVdeYdmyZfziF78gGAyyYMGCSOfGmTNnMmzYMAoLCxk/fjyTJ0+OPPeaa65hwoQJTJ48mSuuuIJbb70Vg8GA2Wzm0UcfbbGfvLw8li9fzowZM8jLy2Py5MmRhhwPPfQQ3/ve95gwYQJ+v5/TTjuNlStXdjjucePGcc899zB37lyCwSBms5mHH364S0HaKaecwuWXX86OHTu45JJLInPIYtluRkYG3/3udyksLCQ/Pz9SHgmwdOlSrrvuOmw2G2vXruWuu+7iO9/5Dvfeey8nnnhi1PEcy+vQGzwy5xH21+3v9v2mGFMYnj682/crhBBCCCE6pqiq2m07mzp1qqp1OtRs3ryZsWPHdtsYRMjTTz/Nhg0bWLFiRbKHklDy/hJCCCGEEHqiKEqJqqoddtjr8y34hRBCCCGEEEJP+ny5Y1+1dOlSli5dmuxhCCGEEEIIIVqRTJoQQgghhBBC6IgugrTunBcn+g55XwkhhBBCiJ4o6UGa1WqloqJCvlCLuFJVlYqKCqxWa7KHIoQQQgghRJckfU7aoEGD2LdvH4cPH072UEQvY7VaGTRoULKHIYQQQgghRJckPUgzm80MGzYs2cMQQgghhBBCCF1IermjEEIIIYQQQogmEqQJIYQQQgghhI5IkCaEEEIIIYQQOqJ0Z1dFRVEOA7ub3dQPONJtAxCxkuOiP3JM9EmOiz7JcdEfOSb6JMdFn+S46E+8j8lQVVVzOnpAtwZpbXauKBtUVZ2atAGIdslx0R85Jvokx0Wf5LjojxwTfZLjok9yXPQnGcdEyh2FEEIIIYQQQkckSBNCCCGEEEIIHUl2kPZYkvcv2ifHRX/kmOiTHBd9kuOiP3JM9EmOiz7JcdGfbj8mSZ2TJoQQQgghhBCipWRn0oQQQgghhBBCNBNzkKYoynxFUbYqirJDUZTbW913Q/i+jYqi/CrK87MURXlHUZTt4b8zw7dnK4ryvqIodYqirOhg/98P71tVFKVfs9vTFUV5Q1GUz8P7vyrW36mnS+AxOVNRlBJFUb4M/316lOcPUxRlXfj5LyqKYgnfriiK8lB4XF8oijI53r+7nun1uITvK1YUpTS8/w/i+XvrnQ6OS7TPsEvD/0++UBTlv4qiTIzn761nOj4mffa8Agk9LtPDnz+l4df2vCjPl3NLK3o9JuH75LySvOMi55V26Pi4dO3coqpqp38AI/A1MBywAJ8D48L3zQZWASnhf7uibONXwO3hn28H7g//7ABOAa4DVnQwhklAPrAL6Nfs9juabSsHqAQssfxePflPgo/JJGBA+OfxwP4oz/8rcHH455XA9eGfFwBvAQpwErAu2a+XHBcVIAPYBAzpaP+98Y9Ojku0z7CTgczwz2f1lf8vOj8mffK80g3HxQ6Ywj/nAeXav1s9X84tPeeYZCDnlWQeFzmv9Kzj0qVzS6y/8Azg383+/WPgx+Gf/wqcEcM2tgJ5zX6xra3uX0oHQVqzx7X+hX8MPELoQ3sYsAMwJPtN0g1vwoQfk/DtClChvaFb3X6k2Zs1Mh7gj8C329tPb/+j8+OyDLgn2a9RXzwurR7T4jOs1X2ZRAkoetsfPR+Tvnpe6ebjMgwoo9UXHDm39LhjIueVJB2XVo+R80oPOC5dPbfEWu44ENjb7N/7wrcBjAJODafBP1AUZVqUbeSqqnoQIPy3K8Z9d2YFMBY4AHwJ3KiqajBO29az7jomFwCfqara2Or2bKBKVVV/O/vvaGy9nZ6PyyggU1GU1UqoBOyKLv1mPVuyj0usvkMoU9AX6PmY9NXzCiT4uCiKcqKiKBsJva7XNfus0si5pS09HxM5rzTp7uMSq750XgF9H5cunVtMMW5Uaec2tdk2MgmVHkwD/qooynA1HDJ2g3lAKXA6MAJ4R1GU/6iqWtNN+0+WhB8TRVEKgPuBuV3cf0f39XZ6Pi4mYAowB7ABaxVF+VhV1W1d2X8PlezjEsvzZxM6mZ5yLM/vgfR8TPrqeQUSfFxUVV0HFCiKMhZ4RlGUt1RVbYhx/3313KLnYyLnlZa687h0PsC+d14BfR+XLp1bYs2k7QMGN/v3IEJRoHbf39WQ9UAQ6KcoylPhiXX/DD+uTFGUPIDw3+Ux7rszVzXb/w7gG2BMnLatZwk9JoqiDAJeAa5QVfXrdvZ/BMhQFEUL9FvvP9rYeju9H5d/qarqVlX1CPAhMPE4f9+eItnHpUOKokwAHgcWq6pa0dXn91B6PiZ99bwC3XS+V1V1M+AmNGewOTm3tKX3YyLnlZDuPi4d6qPnFdD3cenSuSXWIO0TYKQS6u5jAS4GXg/f9yqhiBBFUUYRmqR3RFXVq1RVLVJVdUH4ca8DV4Z/vhJ4LfbfqUN7CF3BQVGUXGA0sDNO29azhB0TRVEygH8QquFd097Ow1cd3gcubP388HavUEJOAqq1tHEfoOfj8hqhNL9JURQ7cCKw+bh/454hqcelI4qiDAH+DlzeR64+a3R7TOi75xVI7HEZpn3RVxRlKKHXdVfzncu5pV16PiZyXknScelIHz6vgI6PC109t6ixT8RbAGwj1DHlJ81utwDPAV8BnwKnR3l+NvAusD38d1az+3YR6nBSRyjKHdfO838Qvs9PKCJ+PHz7AOBtQrWdXwGXxfo79fQ/iTomwJ2Erg6UNvvTpgMOoc456wlNfHyJpm45CvBweFxfAlOT/VrJcYncdyuhTlxfAT9M9mvVx45LtM+wx4GjzZ67IdmvlRyTvnteSfBxuRzYGD4enwLnRnm+nFt6yDEJ3yfnleQdFzmv9Kzj0qVzixJ+khBCCCGEEEIIHYh5MWshhBBCCCGEEIknQZoQQgghhBBC6IgEaUIIIYQQQgihIxKkCSGEEEIIIYSOSJAmhBBCCCGEEDoiQZoQQgghhBBC6IgEaUIIIYQQQgihIxKkCSGEEEIIIYSO/H9hd78busBg5AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAE/CAYAAADcwItlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADx20lEQVR4nOyddXhcZdqH7zOeiXubNNLU3RVKW6xFChR392UXFt1vYY3dZbGFRZfFWRYrDsXa0hbqSt29aRr3TCZj5/vjnZlkktFk0qbte19XrkmOvpNMzjnP+/ye36OoqopEIpFIJBKJRCKRSLoGmqM9AIlEIpFIJBKJRCKRNCODNIlEIpFIJBKJRCLpQsggTSKRSCQSiUQikUi6EDJIk0gkEolEIpFIJJIuhAzSJBKJRCKRSCQSiaQLIYM0iUQikUgkEolEIulCyCBNIpFIJBKJRCKRSLoQMkiTSCQSSVRQFKW+xZdLUZTGFj9fdbTH1x4URdmnKMrpR3scEolEIjmx0B3tAUgkEonk+EBV1TjP94qi7ANuVlV13tEbUXAURdGpquo41s8hkUgkkuMPmUmTSCQSSaeiKIpGUZTfKYqyW1GUCkVRZimKkuJel68oiqooyg2KohxUFKVKUZTbFUUZoyjKBkVRqhVFebHFsa5XFGWJoigvKIpSoyjKNkVRTmuxPlFRlDcURTmsKMohRVH+piiKttW+zyqKUgn8WVGUXoqizHePq1xRlPcURUlyb/8ukAt87c4GPqgoyhRFUQpbvT9vtk1RlD8rivKJoij/UxSlFrg+xJh6K4ryk/u9lCuK8lGn/jEkEolEckwggzSJRCKRdDa/AS4AJgNZQBXwUqttxgF9gMuAfwEPA6cDg4BLFUWZ3GrbPUAa8CfgM0/QB7wDOIDewAjgTOBmP/tmAH8HFOAf7nENAHKAPwOoqnoNcACYoapqnKqqT4b5fs8HPgGSgPdCjOmvwBwgGegBvBDmOSQSiURyHCODNIlEIpF0NrcBD6uqWqiqahMiCLpYUZSWkvu/qqpqVVV1DtAAfKCqaqmqqoeARYjgxkMp8C9VVe2qqn4EbAfOURQlEzgLuEdV1QZVVUuBZ4HLW+xbpKrqC6qqOlRVbVRVdZeqqnNVVW1SVbUMeAYRTHaEZaqqfqGqqgtICDEmO5AHZLnf/+IOnlsikUgkxwGyJk0ikUgknU0e8LmiKK4Wy5xAZoufS1p83+jn57gWPx9SVVVt8fN+RCYsD9ADhxVF8azTAAdbbNvyexRFyQCeByYB8e7tq8J6V4FpeY5QY3oQkU1bqShKFfBPVVXf7OD5JRKJRHKMI4M0iUQikXQ2B4EbVVVd0nqFoij57ThetqIoSotALRf4yn2eJiAtiFmH2urnf7iXDVVVtUJRlAuAF4Ns3wCYW4xfC6QHOUfQMamqWgzc4j7WycA8RVF+VlV1V4DxSyQSieQEQModJRKJRNLZvAL8XVGUPABFUdIVRTm/A8fLAH6jKIpeUZRLELVk36qqehhR3/VPRVES3IYlvVrVs7UmHqgHqhVFyQYeaLW+BCho8fMOwKQoyjmKouiBRwBjoIOHGpOiKJcoitLDvXkVIsBzhvdrkEgkEsnxigzSJBKJRNLZPIfIdM1RFKUOWI4w8GgvKxAmI+UI84+LVVWtcK+7FjAAWxBBzydA9yDH+gswEqgBvgE+a7X+H8AjbpfJ+1VVrQHuBF4HDiEya4UEJ9iYxgArFEWpR/yO7lZVdW+I40kkEonkOEfxlfVLJBKJRNJ1URTlekT/tZOP9lgkEolEIuksZCZNIpFIJBKJRCKRSLoQMkiTSCQSiUQikUgkki6ElDtKJBKJRCKRSCQSSRdCZtIkEolEIpFIJBKJpAshgzSJRCKRSCQSiUQi6UIc0WbWaWlpan5+/pE8pUQikUgkEolEIpF0GdasWVOuqmp6sG2OaJCWn5/P6tWrj+QpJRKJRCKRSCQSiaTLoCjK/lDbSLmjRCKRSCQSiUQikXQhZJAmkUgkEolEIpFIJF0IGaRJJBKJRCKRSCQSSRdCBmkSiUQikUgkEolE0oWQQZpEIpFIJBKJRCKRdCFkkCaRSCQSiUQikUgkXQgZpEkkEolEIpFIJBJJF0IGaRKJRCKRSCQSiUTShZBBmkQikUgkEolEIpF0IU74IG3elhJWLp4LDtvRHopEIpFIJBKJRCKRyCDt/YXrGDXvUnhuGDSUH+3hSCQSiUQikUgkkhOcEz5IsyomXk26B+qKYOfcoz0ciUQikUgkEolEcoJzwgdpDo2Bn2NOB3Ma7FnYvoOoKmz8BL6+R8omJRKJRCKRSCQSSYc44YM0ABcaKJgsgjRVDXMnJyx/RQRldgvM+QOseQv2L+7UsUokEolEIpFIJJLjmxM+SFM83/SZBpmDwFoT3o4/PgrfPwTbZoMhFq79ArRGKZmUSCQSiUQikUgkHSJkkKYoSo6iKAsURdmqKMpmRVHubrX+fkVRVEVR0jpvmJ2LCjDsMrjmM4hJCr2D0w5r/wsDz4fBF4pl6f2g5yTYOacTRyqRSCQSiUQikUiOd8LJpDmA+1RVHQCMB36lKMpAEAEccAZwoPOG2LkoSqsF4Tg87voRGith2JW+y/ucCZV7obYoauOTSCQSiUQikUgkJxa6UBuoqnoYOOz+vk5RlK1ANrAFeBZ4EPiyMwfZ6XjK0H55D766C+7ZCIk9Am+/8WOISYZep/ouH3YFDL1UrJNIJBLJUWdD2QY2lm8Mus3UnKlkxWVxoPYAiw4t4uyeZ5NsktdxiUQiacmh+kMsPLjQ77o4fRzn9z4fgB/3/4hTdXJm/pkAzN4zm5qm4OVE6THpPtsnGhKZ1GMSAB/v+BibM7gxX258rs/2PRN6Mrrb6HDfWpckZJDWEkVR8oERwApFUc4DDqmqul5pk47y2edW4FaA3Nzc9o+0k1BQ8EZpeRNAdQmnxpPv8b+DqoKigaGXg87gu86U0JlDlUgkEkmEPLz4YfbV7gu6TX5CPllxWWyv2s7jKx9nTLcxMkiTSCSSVvx73b/5crf/vEx2XLY3SPtg+wfYnDZv0PX6htfZXbM76LFHZIzw2b4gqcAbdD275lnqbHVB9z8j7wyf7c/rdd4xH6QpaphuhoqixAE/AX8HvgcWAGeqqlqjKMo+YLSqqkG1gqNHj1ZXr17dsRFHmSteXY7D5eLj2yeKBa+dBg4r3LEk+I6q6kcrCax4VUghp/wu+oOVSCQSSUS8vO5lusd2Z2rO1IDbxOpj0Wv12Jw2LHYLcYY4dJqI5jAlEonkuOemH26i0dHIy6e93GadoigkGhMBqLfVo6ISb4gHoNZWi8vlCnpsrUbrs71W0RKrjwWgpqmGUPGKXqv32V6v0WPWmyN7g0cQRVHWqKoaNIoM6y6kKIoe+BR4T1XVzxRFGQL0BDxZtB7AWkVRxqqqWtzBcR9R2sRZA86FeX8GSyWYU3zXLXwCug+DftP9B2gAB1fAoTUySJNIJJIuwJ3D7wx7W4PWgF6j5455dzAtfxoz+8zsxJFJJBLJsUWppZS+yX1JMiUF3S7OEOfzc4IhMqVZ6+09wV+4RLp9VyUcd0cFeAPYqqrqMwCqqm5UVTVDVdV8VVXzgUJg5LEWoHnwCc6zRorXol98N6orhp+egANLgx8sOR9qDoLTEc0hSiQSiSRCbE4b9bb6iPZRFIU1JWvYU7Onk0YlkUgkxyYvnfYSd4+8O/SGkqgQjrvjScA1wKmKoqxzf53dyeM6YrRJiGWNgPNeFD3TWvLL/0B1wsjrgh8wOR9cDqg9FM1hSiQSSdenfBes/+hoj8LLyuKVTPhgAutK10W0X6w+lnp7ZMGdRCKRHO/kJuSSm9D1/CWOV8Jxd1xMi57PAbbJj9aAjgY+KldTAuqIq3lx/i4UpY5+3RLonxlHj1/+h5I/CVJ7BT9Ycr54rdoHyXmdM2CJRCLpirx9NtSXQO/TIPbot87Mi8/jvlH3kZcQ2bU4zhBHg72hk0YlkUgkxx5lljK+2/sdZ+SdQfe47kd7OCcEJ3xltOIn/iw/uJNtP77LN67xAAxU9vGtcS8vOWZw8NMN9OsWT79u8fTvlkBKbCuHx+R8iEmBptojMHqJRCLpIqiqCNAA9v4Mgy88uuMBchJyuH7w9RHvZ9aZZZAmkUgkLdhZvZOnVj/FoLRBMkg7QpzwQRrQ1jFmy+e8ZHie08+4hLycHKo2Wzm8oS/rzRNZtbmYD1cd9G7aIzmGz+6YSEaCSSxIyoGH9h7B0UskEkkXoHSreDUmhlYcHCEO1B5Aq9GSHZcd0X5xhriIa9kkEonkeGZC9wksvnwxZl3XdUw83jjhgzR/Jo1ViQNJB4aVfU3BqF9D7kVw1kW8igjoyuqa2F5Sx8LtZbyxeC87SuqbgzSJRCI5FlFVsFvAENu+/ZPz4cpZwnwpLj2qQ2svT6x6glJLKR/P+Dii/WJ1sRRbjkkfLIlEIukUWlrsS44M4RiHHPe07rxQHDeY3a7uFKx7Ep7uC/uXedcpikJGgolJfdK5bEwOANWNrbqgL/onfH5HJ49aIpFIosjKV+GxLFFP2x4MZug7TbQuKVwDDUHbZh4RShpKyDRnRrxfrCFWZtIkEomkBV/t/orXN75+tIdxQiGDND9UOQ2cYXuKwpmfw5ibYNmLYLO02S5GrwWg0eb0XVFfBhs/hh1zjsRwJRKJpOOseUe8zv5tq74kYeBywqJnoGw7VO6F10+Fde9Hf4wRUmopJcOcEfF+sbpYWZMmkUgkLZizbw7f7/3+yJ7UboXNn8OGj6Gh4sieuwsggzTaPo/UWh240GAomAjT/g6XvydmiVsRYxBBmtXeKkg75QFh4f/hFbDp084atkQikUSPUx+B3Amwez5s+yayfcu2wY9/gaJ1kNYb8k6GFf8Bp71ThhoONqeNqqaqdgVp3WK7kWY++u6UEolE0lVo76RXh1jzNnx8PXx2M3x115E9dxfghA/SFD9FaXVW8WCRYNIH3debSWsdpMWmwnVfQY+x8MmNcHAVFG+EHx6OfIZaIpFIjgT9z4brvwFzKlRG2Mj50Brxmj1KvJ70G6gthE2fRXeMYeJwOdhQtgGgXXLHW4bewmfnHZ2xSyQSSVdCVVUO1R+iuKH4yAdpO76HtL4w6T5hTtVYfWTPf5Q54YM0aFuTVtvowKDVYNQF//WY3EGapbXcEcCUCFd/CoNmws4fYP9SIZuUmTWJRNLVKPpFZME0WnhgtwiyIuHQGnHN87g69j4D0vuLOrejwOMrH+eGH24AiNjZUSKRSCTNfL3na6Z/Op2qpqojez1VVdDooP+5cMqD8KuVEJN05M7fBTjhgzR/XbrrrHbiTTq/WbaWaDUKRp2mbSbNg8EMl7wtZERjbobU3vDL/zo8ZolEIokqC58QWX/wb3kbisI1Iovm2VejgcEXQ8UuaDryBhy7qndRkFjAv6b8i1GZoyLef1nRMq777jpKGko6YXQSiURy7LC7ejd6jZ4nJj3B5f0vP3InVhS4+hM4/U+gN4HOIAK3E0iRdsIHaUCbP3it1UFCTHCpo4cYgxarv0xaazRa6HcW7F9yVB5aJBKJxC9Ou8j0558kft41D14/Axqrwtvf0STkkdmjfZePv0Nk5Yxx0R1vYzW8MBqeyIfZ9/rdxGK30C+5H6flnYZWo434FBpFg0bRYHcdvZo6iUQi6QqUWErIMGdwdsHZxBvij9yJ7Vbfn3fPh3/kiPKhE4QTPkjzN2nsyaSFQ4xeGziT1po+Z4LTBnt/imCEEolE0okcXAlNNUKiCMKpsXClcGoMB50RHtoHE3/tu9wYB9pOaMW5bxFU7AR9LGz92u8ms2bM4rFJj7X7FOO6j+Ot6W/RI75Hu48hkUgkxwNHxTCkcDU82RN+fqp5WVwm2OqgfMeRHctR5IRvZg3+atLsIU1DPMTotf5r0vyRM17MNrvC3F4ikUg6m50/gEYPBVPEz+n9xGvpVsgdH94xdAbx1ZpNn8Gyl+DGH6IXsO1bDHozXPpfsNULJYSf2TadRt7eJBKJpKOcnH0yBo2f63tn0VgNH10Dsekw+qbm5am9QdGEP4F4HCAzaX6W1Vkd4WfSDNq2FvyB0Bnglh9h4HnhDxBEULf83zDrWnDYQm8vkUgk4bJnIeRNAFOC+DkxVwRBZdvC23/N28K51h8aLRxaDQeXR2OkgsEXwVlPQI9RUDC5TYB2oPYAD/z0ANsr238jL6wr5NzPz2XBgQUdHa1EIpEc09w4+EauHnj1kTvhju+hrghmvgLmlOblOiMk50P5iROkyalG/PVJiyyT1lruuOlQDa8t2sOwHkmc1DuNvplxviYkTrv48tN7zQe7VRRL1h2GHx8FuwUmPyR6sEkkEkk0uOE7qC9t/lmjEdm00q3h7b/jB6ja539dr9NAa4StsyH/5A4PFYCcseLLaRfnTs6DbkO8q6ubqtlSsQWbs/0TWjqNjv21+6mwnnjNUyUSicSD0+WkydmEWR/ieTWa7JwjpI05fpQcaf2gfOeRG8tRRmbS/PZJiyyT1thK7jhnczFfrivi0dlbmPavn3n8uxYz0vVlouD9l3dDH3z2b0UBf0I2zPyPWBboYUgikUjagyEWUnr6Lus5WcxYhkPlHkgp8L/OGAe9ToVts6PjyFW6Dfb8BE6HkL18ciNs+Mhnk6HpQ/nmwm8Ykj4kwEFCE6cXZicN9oYODVcikUiOZfbU7GHc++OYs2/OkTmhqorewr3PEBOGrRk0EwZecGTG0gU44YM0ALVFVZrd6cJic4bt7mjyU5NWa3WQYNKx6MGpZCfFsGpfZfPKuHTRLHbPwuAHdtph+7ei75CiNM9CyyBNIpFEi61fw9w/gsvlu/yMv8B5z4fe3+US16RgAd2AGVBzEA6v68BA3ax5Cz64HFSXkFKm9oay6BeRe2aNZZAmkUhOZBKNidw98m76p/Q/MidUFPj1GjjjUf/rh10GUx46MmPpApzwQVrrPFq91QEQdibN7KcmrbbRTkKMnpwUMwO6J9Bob/UA1Gsq7F0kZoMDsW8xWKvFAw4IXW5sBjTVhTUuiUQiCcnOObDuff8zliAmi4JRdxgc1sCZNBCtRwZfJJqSdpR9iyFnXLNJSXrfNk5fL697mQd+eqBDp9EoGsw6c3OQdmgt1MmeaRKJ5MQiw5zBzUNuJjch98idVGeA2NTA6601YKkMvP444oQP0sBXhVNrFQ8lHalJq2nhDmk2aGm0tQrGCqYIG9GitYEPvG22KN7vdWrzsvt3wJTfhTUuiUQiCUmwLNh/JsM3/vuQeWmshIQeIuMfCHMKXPxmc91Ye2WPlkoo2dTczw1EfUL1fp9+OhvLN7K/dn/7ztGCOH2cCNLWvAOvnRr6d+GhfCd8fD08MwiKfunwOCQSieRoUdJQwuH6w0fuhF/9Bpa/Eni9vRGeLIAV/zlyYzqKnPBBWuuStNrGyDJpJn3bmrRaq52EGLG/3z5q+aeI132L/B9UVUVBfMFU0McEHqxEIjkxaKwWTaOjTbAgLS5D9FALRrchcO/mZvv+YBxaC/8aIvrftIf9S8Rr/qTmZen9hPSxcrd3UamllMzYzPadowVmvZl6e70wJolJEhL1cP4G3z0kjFIKJgfPMB5N7I3N31ftg6b6ozYUiUTSdXllwytc/s3lR+ZkjiZY/6GQxwdCHyMm5w618z5yjHHCB2ngO7Fb58mkhVmTFmNoG4TVNjpIdO/vz1iE2FSY/jj0Pj3AgFxw2p9g/O2+y7d8Ce/ObFs/IpFIjm+e7ClqsaKJ0w41hYGDtJxxwoY/WrKSxByoPgD7F7dv//3LQBcDWSObl/U+De5Y6uN4W2IpIdPc8SDNm0krmAIX/Fv0ZNu/NPhOjdWw9ycYfwdc8DKYEjs8jqhweAPM+QO8M0OYUT1ZAI1VYt2cR+C1qVBz6OiOUSKRdDmOaCPrwxvA2STuPcHoMQoOrYmOGVUXR1rwt6pK88gdw65J02uxO1XsThd6rcZ7DI/c0V8QB4ibeCA0Whh6SdvllgrYPV/UgSRmhzU+iURyHDBoJmz6VARW2vAmkEJSXwrGhOBBGsDBFaKuzM1lsy9jas5Ubh92O7bvf8fMsvmi6WgQZvSaIbZP68PM3e9yXXo2l/a7lOKGYm764aag+wJcN+g6Lj3jUYoHnstNX83kt6N+y+l5p7O5oZAHlzzos21NU01UHipibQ0srtgkZnd7niJaCeycK2qKA7FzDrgcMOA8UTex9l2xfYsgclnRMv62/G8hz//niX9mTLcxHX4fbJ0NH10tagK7DwOdCcbe0lwTPfI6+PgGePsc+NUK0YtIIpEcdzhdTrQaLQBvbHyD2Xtm8/n5nwPw9KqnWXCwbV/I4oZixmf5scLvDDz9NEMFadmjYO1/hbNwMKn9cYAM0oCWsXiVRQRpyebwuqvHGMQH3mp3NgdpbuMQEHLH1kEcADYLHFgm5EJxrR4oNn0GWSPa2mJ7Hqaq9skgTSI5kRh8kQjS9i0OHiREQmI2/G5/4Mx8jzEic7VnIeuSu7OpfBOX97+cASkD6B7bHVQVZfu3DE5OgLTBQU/VPbY7AEruRAYf+p50kygK12v0DA6xL0B6TDpodejT+zE4bTBJxiQAzDozg1MHQeFKMCVBej+GZwxnWv60sH8Ngbi6uobeLj1oDSJwuf6b0D0qjQnQ/1zxENFUA/P+BA2l2E59hL8s+wvn9TqPBGNCWO853hDf/sHbG4XqYtL9oq558kNCmRGT3HbbPmfAOf+Ez28VvfGyhrf/vBKJpMvyp6V/YlP5Jr644Au6x3ZnUGrz9axHfA+/16XBaYM5v/f5R2aAB1eI59z4EEqI7FHi9dAaGaQd7ygKqC1SphX1ouYgJTa8IM2kF0Fao91JvEmPw+miweb0MQ7xrPcJ0moOwv8uhPNfghEtOrk3VsNnt8CEu4QNdkuS8sRr1T7f4nmJRHL88uWvIGOQMBLa+nX0gjQPgZwd9SY49WFI78+SoiX8Z/1/uHLAlfx54p/F+uJN6Kv288RJ/4LRN4R1Kn3PU3hi7TugF0FaakwqT5zyROgd9/wE3/2O1CkP+WzfM7EnT0x+Ej64ErbMg9v+ARkDwhpLUFxOphzewZhhV7CkaCl9k/uSnhNGVqvfdPEFIiDqMQb2L6OmqYaVxSsZ220s53c/P6z3fKD2AJM+nMQj4x+JPOjc8b2YBNTqwGCGqf8XfPtst4S0ZLMM0iSS45RSS6m3vcjZBWdzdsHZ3nWX97+cy/sfodqzQMSmQ79zQm+XPkBMLIXKuB0HyJq0VlQ02Igz6rzBVyhiPEGau+6s1m3hn+g2DvEcx9q6Li21j5j5PbDcd/mOH4Rcpv+5bU+WmCMkK+XR7wskkUi6IJZKYZFvrRY1rNtmg8uPfLo9rHwNvrgz+DYTfw19zqDeVo9Zb0ajtLhlbP0aUKB/GDdVD3knQZ8zheFHJGz7Bta8DfpY/+tn/AtMCfDpLdGp2S3fCXYLxWn53D7vdtaUuOsffnoK1n3gf5+GcjHJ1pLUXlC9n3RzOnMvnhvRjHSiMZFp+dPIis0KvbGtAWqLmn/e8DHEdfM1WQlGSoHY3ib7wkkkxytHtL6sPZz7LEx/LPR2Wh2MuVmYOh3nnPBBWmu/xPJ6W9hZNGiWO3rqzmobfY1HYvS+671oNML9a937onDbYRPLt30tbpaedG5LdAbodVr0alIkEknXZu9Pwkio9+kw7jZhOBTNY7eeJGqNqkLpVix1h4ltHSBtmw2549vKtYOR0B0u+59w6HK5wi/83rcYtWV/tNbEZQizpZKN0WmafXg9ANm5p/DuWe8yIWuCkF1s/wZWveZ/n2UvwdN9hZTdQ3JPqC/xXRYmicZEHhn/CEPShwTfsKFcSBv/e4GoWdz2raiNG3yRqG8OB40W7tsG426NeJwSieTYoMsGaYv+CT88HNk+lkrYMOu4d6Y94YO0Hslm9pQ1UNkggqT9FQ3kpZrD3t8bpHkzab591jxyR0vrTBrAjOeE1HHpCzD/UXEj3zkPBpwbWIJ01Sw49ZGwxyeRSI5hDq50OxqOgPyTYfCF4T94B8PlEk6F2SODb6eq8PY51O/7mVgVWPK8qANwOoTscuR1kZ9bZxTn/mdf0fcsFA0VULqZ53Zn8vqiPYG363cWoAhzj45it0BSHqbMwQzPGE6i0e3SOGCGeP/+nBD3LBR/J0OL+0dyPigaZm99nzvn3UmTM7I2CnaX3f8+9kZY9Ax89zt4cbTox3bqI+C0wcJ/QFqf4OZU/pAtXiSS4xaL3UKdvS4qzrdRZ8PHULolsn2K1orSoIMrOmdMXYQTPki7bEwONqeLT9cUoqoqu0vr6ZUeF/b+rTNlnj5rnkyayRAgkwaiZuG85+Hit+Dke8XsrdPmX+rYmmhJniQSSdflwHKRVfdkz5vqheQuVP+yUBT9Itxi+4SoddJo4NxnaXA0Eld1EOb+QVi41xXBmX+D4Ve07/wpvaChTMi7Q+Huj7bI3p+5W0oCbxebBpe+AyOvad+YWjL6BrhnA2h1fLX7KzaWbRTL+88Qr9u/9d2+sUr8Tlv3ixswAx4pZautilXFqzBowldpAJz8wck8t/a5tiuK1sGPf4HVb0LmYLhtEQw8Tzh2jrkZbvsZknIiOhe75sErk6C+LLL9JBJJl6fEIq6dXS6T1lABZVuFFD4ScsaBom3un3mccsIHaf26xTMqL5kPVh6guNZKg81Jr/QAdQ9+aFuTJjJpia3kjm1q0loy+EIwp0DeBHhgV/A6AocNXhgFPz8V9hglEskxiKoKzX3fM5uXKRpY/Axs/KRjx945B1BEn7FQDDyfhuxhmDMGwm/WwcVvQFKud/XBSgv3f7weq7+JqEDEZ0L34eFlvZpqKdZkskHtRXp8CHv4gedDQhg1XBHwt+V/4/t934sf0vpAQg/hstmSvT8DatsgTWcErd4rM1IizFZ5e7W1Jm8C3L8L/lAK18+GjP5ieUpPGHVd+yTxihaKN0Dp5sj3lUgkXZpSSylA18ukeYKs/JMj288YL0yO9skg7bjnklE92FPewNfrReF1RJm0VpmyGm9NmjAOCSp39Ic5RRRFBkJnEC5vrR8SJBLJ8YWiwCVvw0l3Ny8zmCFvopDWdQRTQvPkUBjUO5uIS8oXQcCgmT7r3l66j0/WFLKjpC6yMfQ5U1jnH94QdLM9PS5gvOVZ7Oi8k2EBcdiEwcjCx8FujWw8Hoo3wfMjObR+HkXVjb6BkqJA32mi11hLtn8vGlf3GN32eHP/REnpBjJjI384MuvN1Nta1FyoKuxdJOSmccF700WMp71ASYSyI4lE0uXxBGldLpO2f4lb0h9Ceu+PvJOE/NzeGHib4k3B13dxZJAGnDmoG1qNwgvzdwHQK6MdckdPJq3R0ww7hHFIR8g/GQpXiSarEonk+MRjJtSagilQvt3XzS9SJvwKLn4z7M0b7A1tjUMAp0v1Tm556nrDZtBM0YNs3p8Cb6OqfLW+CEWBvFRz6MkujU7ctBf+A96/JLLxeNg5Byp3M/ODYn79wS/E6mN9s1nnPgMX/sd3n8kPwIWv+c9g7fqRUktZux6O4vRxNDhanLtkE7xzLvzybsTHCn2yDCHBl+7BEslxR5eVO5qShAIikClUMHqeAi47HFrrf72jCV6bKu4HxygySEP0RJtQkEqd1UGcUUdGKElNC1o2swYhd9RqFGLdy02dEaTlnQQOa+APpkQiaT8/PwVL/NQBHWk+vh7evbDtco+kbs9P7TtuU13ENvWBgrQVeyoorROTRdUWe2TjyBwId6+HaYEtl9WtX3HpknM5L8dKfmosFpsj+DE1GjjvBZjyeyFBrNof2ZiAyvXfsMmVTynJHKi0EKuPpd7ux0GsZV1wSgH0nUadte3vQE3KpVS1t+vhKNYQS0NLW/yNH4tAdMB5ER8rLFL7QMWuzjm2RCI5avRN7stl/S7z9knrMkz9v7aTXuGSPwnu3hC4b3DxJuHzkO1H4XCMIIM0N+cM7Q6IYCuSugFPpsxiazYOSTDpvMcwt3J/bInTpYZ+6PBH3kTxul9KHiWSqLP83zD3j1Cx++iOo2STkNC1JmOQ6JlYd7h9x/3xUfjX4IgCtVkzZnHr0Lb27F+sO4RBK24jVZYIM2kA8d1E8+nynfDm9DYtASo3zyfJVc2EEcMxG7Thy8aHurNo22ZHNJx1O/aRULaWrXHjuXBkNqoqslkWeysL/XcvhM9vF9+vfZeq1Z9wzRsrGPLnOWworPbZtCopC7sCmTHtCNJ0sc2ZNEulcEHrdRrEpkZ8rLDodSqk9e2cY0skkqPGKT1O4ZHxXcwZ3OkIvw2LP/Sm4L3SDq0Wr/5aWh0jBCl+OrG4cGQ2czYXMyovOaL9WmfKaq12r7MjtK1Za8mjX2/mnWX76ZMRR1ZSDFlJJrolxBBv0mHQaRhfkELvjPi2JzWnwKT7j+kPnkTSZbntZ/jXUFj7Dpzx6NEZg60BqveLFh2t0WhEBkqjhcq9oo9aaq/wj71viXgQD9Tmww/ZcdltllntTr7bVMw5Q7vzxbpDVEWaSWtJXIZwrNzxg+i9BuB0oN35PavVfkwbmsOqg/XhB2kpBcL1cOtsIe0Mg8oGGx/NepfhiotpF1zLjp0GGpocmPVmDtW3stxP6A6//A+1phDlwFKWqiexqEmcZ9HOcob2SPJuWhor6v4yiNzMI84QJzJp9WXwzgzhyNmyRjHaTP2/zju2RCI5atTaaonXx0dsXtSprPg3LH0Rfr1aGIG0h9JtsODvcPqf294HD62B+O6Q2Pb+dawgM2lujDotb90wlrtO7RPRflqNglGn8Wlm7emRBmDSBc6k7a8Us7N5qbFUNDQxd0sJz87bwaOzt/DIF5u456N1gU982h/ErKdEIokOn9wobhiJPUTPrV/eC1wXFgnlO2H5K5HtU7ZdvKb3979eoxWzkP+ZDIufDf+4lkrh3hdIHuKHBnsDr298nR1VvrVKC7eXUWd1MHNENgkmPdXtyaR5MCVC7gQft0fX5i9IshWzrttFJMca3Jm0CJQHF7wMl4VXu6Xums+ely6kyGrEmtKfhN7jiTXqaLQ729akAZz1JLaxd2I/uJrXHWfxSdYD/PTAFBJMOsrqfGuFf3FP5GW4Ip8xjtW7M2l1RZDeD676OKK/XbvpyOy2RCLpclzy1SX8edmfj/YwfDm0RtQltzdAA+Ggu/Urt2NxK+K7d540/AghM2lRIMag9Vrs11odXmdHAI1GwaTX+M2kWe1Oxuan8Pp1zXrZJoeTRpuTv32zlS/XHcLlUtFo/Mx8qKoo8DYlCTtriUTSfmoKYdNnzUHRqOuFVG7nHNFcvj1s+0bURDltwhyj9+mQ1ju8fcu2iddAQRoIF9heU0Vgo6q+zYhVVRwjra9v8+vVb4jXvPDtjisaK3hu7XNkmjPpm9wshftq/SHS4oxM7JVKslnfsUwaQJ8zxO+ptgjiu9O48FmKXd3JHX8RQGRyR4Duw8SrtRYMseL3UH1A3LhbGXxsW/g+AxpWctq0f2Ka9CAAsQZxHTdqzG2CtBKrlut2nMWuppP444zBvDk+D0VRiDFo20zI9c6fSt7hRRT0PSeS34YYg17UpKndhqJc+k7E+0dM9QF4dSpMf7xZMiqRSI55Lu9/OenmKDvCdpTCNZDdDlfHlqT0hNTesHs+jL/Dd90Zf+nYsbsAMpMWBWL0zQ8PdVbfTJpnvb9MWqPd5ZVDejDqtCSZDQzsnoDdqVLdGODBx1IBL42Dtf+NzpuQSE5U9i+D/10kgpwhF4tlBVPgrCc7dgNZ9hKseQuGXgoowvQhXFJ7w5hbhGwvGH3OhPpiKHY3W3a5YP1H8N4l8PJ4eOMMWPyv5u13zgVDvPd9fba2kHOeX9Qm+9OSnPgcVl21iun5073Laq125m0t5dyh3dFpNSSZDR3LpHneC8DK1wCYlXwTj6vXcsYgUS9sNuhocrhwRpKRaqyGV6fAB5fD53fAv4bAomd8NjlY0UDCwQXsMI/impObg9BYowjS9EpMG+OQNxbvZXdZPW/dMI5rJ+S3qEHW+UzIbSjbQO/kPsy+cDbx+vBdgz2MyhzFVX0vxlV5hMw84jKhsRIqdh6Z80kkEv9U7Rf3Jmc7fAta8P2+73l+7fPcMPgGzi1o54RjZ1BfCjUH/LctiZSCqULG31L50lARsUFWV0QGaVEgRq9tIXd0tAnSWt+4PTTaHF5jkdZkJAiHyYAPT7Fp4kFr5w8dGLlEcoKz6J/w1nSwWeDKj5uDIq0ext3W/sbI1QdF/5chl4pj9JwEG2eFLyPLGQvnPB28ZyKI7ByIIAREfdrnt8L+pTDhLpEZWfCYkDkCnPNPuO0nIREB7p21ns1Ftewu8+Ne6EZRFEw6E/oW2acfNhVjc7g4f7j4/SSb9ZFb8LcmYwCMuwNyxtHkdPHc3h6YBp7lDZbMQep7AxKTBMOugKJfYMNHYE5tzlK6ee2zb8lWyuk5caZPvUasUZzvtB4zef/s91Fb/O1Ka610SzQxqY/vzLSpxYRdk7OJq769ilnbZwknzmcHixrCCDg5+2TuN+SifWG0qL3obHRG0ai8XAZpEslR5bNbxb3p2UFQV9LuwywqXMTXe76O4sACsO0bcd8LlwPLxGs0nBcLJoO9odkoBODz2+DtyNULXQ0pd4wCMQatjwV/S7kjIOSOfjJpFpvT6w7ZmvQ48RBVWmelX7cAet0+Z4qmrQ0Vnef2JZEcz+SdLIKZqb8XkriWNNULyWPO2NAZrdZs+lS8ejJzQy6Br34Nh9dD1vDQ+1fspsrQnRiT0WtO5Jf4TOg7XUj6XE4h6fv1WjGJY0qE0/4olhvctsvdhnh33V7c3Hy6yRF4xnFb5Ta+2PUFNw6+0Wsj/9X6IvJSzQzPSQIgOdbAjpLAgV5YKAqc9TgACzYVU22xc+HI5oJvj+rA0iRapYTN5Adg0r3CjEWrB32Md9XcLSUk7vse9JA01PeG7pE7mjWpDEhN8llX3Wgn2dy2r0+MXuO9F2jQ8PJpL5MTnwN2O9QWiibkKT3DG3fJFlxvnIFFq8UUn4UuvV/477kjpPaRmTSJ5GhicwccmYPFV+ua2AgosZR0fm+0DR/DZzfDoAvhkrfC2ye5J4y7PTqZtPxJ0G0oeFx4qw/Arnkw+cGOH/soIzNpUcCTSbM5XFhszrZyR4M2QCbN2Ubu6CEjwQRAaW2QhtV9zgBU2P1ju8cukZzQ5I6DaX9vG6CBuFF+fpuoVYuUnXNFTZTngbzf2UJmGE6GoqkeXhjJ64/fzc3vrA69/ZUfwY3fiQBNUYTDlce6X2dsDtBa8cW6ZsdCa5Ds1K7qXby39T2vDX1pnZUlu8o5f1iWN/OUbDa0z4I/AJ//UkhanJFJvdO8yzyZrYjq0jxotGBK8AnQHE4Xj327FW18Bq6hV7RxAPNk8PbVHGTW9lnUNNV411VZ7CTG+F7nwVc1odfqmdRjEvmJ+UK+mpAtgrRw2fIFC3QuJnRLZMewmb41h51Jej8o2wHODtYYSiSS9nFwJbgccPpfRA+xSCcJW1BqKSXT3Im+BWU7xARkSgHMjKDfWfehcNYTbeqD20VMEty+SJhP7fgBvnUHZyOu6fixjzIykxYFYgxa6psc7C0Xsx25qb4PRWa9zq8rmcXmDCx3dDfULqsPEqR1HwGx6eJDOfTSdo5eIjlBmfOIyEb3PMX/+vhMMTu39yc45f7wj6uqIjjKGdu8LDYNHtwDurbZlza4nR13qdks3lUe/nkjwOVS+fKXQ+SkxHCwsjFoJs0TnMUZRE3VV+uKcKlw3vDmoCbZrMdic9LkcGLUBcn8hUFVg43520q5dkI+Om3zPGKMXtyu2hWkteTLX4Euhs8y72ZveQMDr7kbzaBubTbzBIW7q3fy5q6/MjR9KIlGEfzWWGzkpbQNfk16LRVu2eeB2gPsrt7NxOyJGLVGUee4/VtRJxFO+4NBM+lriuW++ETSC46gbMdTG2hvjM4DlEQiiQxjAgy+SEwiulzQWNVutVSppZSJWROjPMAWbPkCHFa4/tvw7m8ANYegrhiyRkTUCib0cQvh/UtBa4ST74GknOgd+yghM2lRwOQ2BtleIuRDfTN95Ykmg5ZGu+9DkMul0mh3EmPwHyfHGnWYDdrgmTSNBq7+TBgcHEmqD8ArJ4uiVonkWKT6ACx9AUo2B9+u29DIa4EUBa75DE7/k+9yzw0sVDFz2VYAdqg9SHPLnqPNqn2VFNVYuXxMLhA8k+YxzTDrRFDy2dpDDOuRSO+MZiOMJLf0r7qjDo/ANxsPY3eqzBzhm9nyTGhFZMPvD7sVdcNHfDVvPhdnHOaMfv57Y3oyaT1ihrHg0gX0Tmp25qyy2Ek2tw1gWkrfFxxcwG8W/Aab051hLJgiHraKN4Q3zowB5Ey4m+sHX39kXdkKJovssinhyJ1TIpE002MUXPymsKb/7GZ488x2HabeVk+DvaFz5Y6H1ggXYX0MfHEnbP8+9D7r34fXTwVLlCchE3Pghu/hwd2ib9pxgAzSooDZfWPeXlyLTqPQK93XxStGr/Fa9HvwzFwHyqSByKYFzaSBSBkfyXo0lxM+u024ye396cidVyKJJnvcn92CKcG3S+sDDaXi4TpcApmD2BvhlUmw9Lmgu5ftWUeTqme/mhk0eOoIX6wrIkav5dyhwjmxKch5GuwNaBQNMboYthfXseVwLRe0CqA89VnRkDxuLKwhLc7IoCzfIKE5SOvg7+TUR3BqjLzWeD9P196H8p3/ugVPTZrdrictJg2dRvzsdKnUWu0k+qlJM7dw8i2xlBCjiyHO4+rYc7Jo7dBCchmQgyth27c4HE3sq9nnI7U8ItitYlY6HCyVsO1bYW6w5Ssh120vLqeQGUskJyp2q5hE9JDaByr3CHOrCCm1lAJ0bpA28AKYcKcIKLd+DTvCCNJ2zRflAHFRHpfBDHkTOtZ3rYshg7Qo0C3BRFG1lfUHa+iZFotB5/trNRt0WOy+s7+e2eBAxiEA6fFGSmutwU9urREOdYVr2jf4SHE5hPmARgcVR8gWWiKJJvVlsPxl0S8rWB8yEPU5AOURfNZnXQuf3NR2uefhfIefppstKN+znr1kcc2EnlhsDh9XwWjQ5HDyzYYipg3KJDnW4F4WOLvXYG8gVheLoih89kshWo3CjGG+rpeerFJVQ8czaZUWG2lxBh+nRRDXUYhCkJbSk/WTX2e3msWB0b+Hs//pdzOP3LHCUs1L615iS8UWAGob7agqATNpnpq0koYSMs2Zze8jPhNmPNf8mQrG8pdh9m+paqphxhcz+GFf57j4BvxsvXcxzLouvIOsex8+vALWvQezrgmdnQ7EwVXw2lThRiqRnKgsfka0Cjm4SvycOVC49pZF7u5aYhGukJ1akzb8CjH5pNFC7njYtzj49k31ULgSep3aeWM6jpBBWhSY2DsNm9PF4l3lfp0YhRzS9yHI86ARyDgEICPeFLR/EQAaPcz/O2z/JvKBtwedEc5+UtTxyCBNciwy61qo2gcXvBzajKHnZLhvR/gOVC4X7P05cLakz5lwcEXAzFxZXRNP1JzB2oI7yEw04VKDB1DtYeH2MmqtDs4fkY3JXT8WVO5oqyfWbazy/aZiJvVJayPDTIpiJq2ywUZKrJ8sVbTkjkBRTF/OtT1G05g7A7Y58ASFtTYLr6x/hU3lm4Dm95jkJ0gztciklVpK285gu5xQvMm3n09rXC6R6e01lVh3HWDrPm3toai6ka/XF/HUD9u46e1VTPzHjwz58xwOVvqZoe82FEo2he7RpKqw5m3oMRYGXSCWlW+PfHA2C7w7UzgVD74o8v0lkuOB0m2ij+OQSyFnjFiWMci9bkvkh3Nn0jotSKs+KO6lnsmeXqcJZ9iyINeA/UvFZH8oFYsECCNIUxQlR1GUBYqibFUUZbOiKHe7lz+lKMo2RVE2KIryuaIoSZ0+2i7K2PwU7/f9/QRpMXptm4cgz2xrMLljerwxdJBmMEPmIKEL7kxUVUhwds0TDxGn/QnOe7FzzymRdAZDLoJrvwxvJs9gFhmQcJ31yreDtVq4TPmj7zRQnbB7vt/VH6w8wELHIMadfQ1md5a9oanjQUlLvlx3iNRYA5N6p6HXKihK8EDQ4rB4JXsltdY2NbeAN6iKRpBW1WDzZvhaEjW5I8JCH/Dr0OhBq1GI0Wux28Q2DW4bbM++SX4t+LXYnC4cTpd/V7Vts+GVk4LXpZVsFA2lC6YQo4tBQfGeOxLqrHa+2XCYBz5ez6Qn5zPx8fn8+oNf+M9PeyisasRs1FHf5GBHSV3bnbNGCDOAULP3B1eKh7JR10NSnijYD/aAFojdP4KtTkycZI8Mv5+gRHI8sfAf4p4z/R/Ny1J6gi5GlJhESE1TDQpK58kdV7wCL40TQRfAoJmgaGDjx4H32bMQdCbIGd85YzrOCMfd0QHcp6rqWkVR4oE1iqLMBeYC/6eqqkNRlCeA/wMe6sSxdlliDFr6d4tnW3Fdm3o0EA8XHtmSR/riedAIFaTVNTmCWvUDkD1K9GUK1zUsElQVfn4KFj8rnL4McXD3hvB6PXUWlkphMa7pmIuc5ATjl/eEDn7MzZHtt/a/QlY88deht92/VLzmBrgBZY+CmGRh0d8qY2BzuPhu2TruyK2gV6KGNcZmeV+0qk5rLHbmbS3lijE5XudEk67tJFJL6m31mPVm7E4XVrvLb48yT1YpGsYhlRYbKf7qvdzn9ddzMlJq3MFkQpAgDYR5SJNd5xMoVXsyaX4t+N2BpN3hP5PWw+34eXBF4Oysx6a/52QURSFWH+t12AzF4ZpGvttYzI/bSli5txK7UyUxRs+4nilcP7EnY/NT6NstDqNOy67SOk5/5mfq/U0CZI8Ur4WroNvgwCfcPR9QoP854nqc1gfKd4Q1Vh+2fi3+L5Lz4ckCOPPvQkYlkZwo1JeKSZyxtwk3YA8aLZz5V5HdjpBrB13LFf2vQN9ZLq2H1opxeY4fnwlDLxM1YdYaURbTur3NqY+I/qF6U+eM6TgjZJCmquph4LD7+zpFUbYC2aqqtiysWA5c3DlD7FxUVWXxoRAaWqBbbDf6JPfxbp+bkEteQh5NziZWHl7J05f34rWFpZzUJ63NvjEGLS4VbE6X1566uSYt8J/Aa8Nf19TG1t+H3PGw5i345rei5iGa/PwULPg7FEwVGYLRNwl5UGMVbJ0N+SeH35w1FOU7xcUpxr/bGiAKaGddCzfOae7/VHtY/MMH209yYmNrgK9/AxN/E/yh0x+750PRuvCCtAPLIS4zcF8bjRZOedBvwfR3mw4zuHElD5W+CnVnEOv+fEcjc+Thy/WHsDlcXDK62ZrYqNeElUnzZPT8BWkmvZYYvZaqho5l0hxOFzWNdr9yR0/9bkMU5I41jXZi9NrgjcIRdWkWm4tYfSw7q3ayqHARK4vL0cbupVHtBSRjdVhZVbyKPsl9MBm0oGnku73f41AdbYO0hO6QlCuCtAm/8n/Sol9ErWSCMHWJ1ceyp2YPWyu2MiB1gN/38t3Gw3yx7hAr9laiqtA7I44bT+7Jaf0zGZmb5NPKoPm9ib9jQ5Ofz1dKAcRmiEmH0TcE/gUVbxQ1yjFJ4ue0PuLBLRJcLti9QPQSjO8u7i2VeyI7hkRyrFOyCfRmGOWnFnTsLTQ6Gvnl0FKcavD7wajMUZj1ZgrrCilrLGNExohOGjBiQqb/2b7LZr4iXr97SNSnXj/bd73B3DwJJAlJRH3SFEXJB0YAK1qtuhH4KMA+twK3AuTm5kY+wiPAnT/eGXKbS/pewh8n/NG7/Z3D7uSO4XdQba3mzh/v5Iy8M3ju8mf87ut5ELDamoM0z8x10Jo0T0PrOmvwIG3wxeKfxeh2Q3PYYNmLMPaWjrvcmFNgwl1wxl99s3TWGvjqLjjvhegEadu/h4+uEhmywReJm/+A82D8Hb5SswWPCdexplpRH1d7CF4cI2ZrfrNO2kZL/ONpDpp3UuT7pvWDLV8K161Qs389T4HMQdhdKhabw7+cboL/683bS/dxhbkEVTWhJOdjLqsAohOUeJi1+iADuycwODvRuyxQJs2lulBQ+O9Z/8XuslNaI8YRb/J/20g266nqYCatxm3K4S9I02oUjDpNVDJp1QGaUbcm1qCjoclBemI68w/OZ/5BIVM158KqMhMT8/pT3STuAX+Z+Bdi9GPRGMr428qXAchPyG970Jzxom5RVf3LaC9+CxrKvD9mmDNYWrSU5YeXs+jyRSQYEnC6VOZvK+XTNYXM31aKzemiZ1os95zWl/OGZ9EzzU9z9tbvzZup9fP5UhQ4559tGny34fL3wFLR/PPUR8KTBquqUH84mmDEVfDrNWCrF20qEnOgam/oY0gkxxO9ToX7d/q/x6gqHyx7gmf3fBryMF9e8CUFiQXMPzCfz3d9zg2Db+C8XudFf7zWGmGhn9LL/3pHE+xbBA3lzZnBzV+IYHTyQ7IHY5iEHaQpihIHfArco6pqbYvlDyMkke/5209V1VeBVwFGjx7dJYXm753td+g+pJia687eO/s97wxpiimFERkjKKwLbFfcUgKTiPhghiV3jGvOpAVFq4PT/tj88+H18ONfxCzolR91TBYYSBqWmANaQ/vMQ5a+6HbwUqHfWaIfSNYIGHIJVOyGVW9Aai8o3Sxu+A6baEAbnym0ziffK2Z5/3uemLV1WKH/uSIgddjEzb5it5DqDDhXzFx7OLQGtn8nDFdGXgMJWSITV19ydCWcEmE7vPVrkbXNHBjdY+9fAopWNAeNFI+7VvEG3wbV/hh5DQ6nixGPziUj3sj8+6f43676IDTVed/n2gNV/HKgmhezilGM/UGj9V4bohGUAGwuqmHToVr+PMP3dxsok7aocBG/nv9rPjj3AwalDqLOKi77gYK0JLPBKwVsL5XuTJy/mjQQgUW0atL8GX+0PZ+WhiYnb057k6L6IgDeW76fT9cWculFMwFxD3jv7PfIjstmxS4brqZMHhv3Gn0zkumb3LftQXPGwsZZ4vOenOe7zlIpJsZaZFpfOu0lPtj2Af9e/29KG6r4ZGUFbyzey6HqRtLijFw1PpcLhmcztEdiG0fMoO/NbYziV+4IMDDIg50nwFQUX2lWWu/A+7Rk93z49CahfhhxlZhc80ywpfSUmTTJiUmQScALf/mMvJQepE97IughsmKF8+5ZPc9ieMZwChIDqDo6SsVu8ZoaIEgbdZ1QeO36EYZdJpateUs0sp76cOeM6TgkrCBNURQ9IkB7T1XVz1osvw44FzhNjbZP9BFCURSGpoev9W29vV6rpyCxgIUHFwbcxyPTafmw5XV3DCK3SYhxu4tZI5ydzhkD5zwD39wr5IpTfhfZ/h6KfhGzJP6yUxotJPds/kcNF5dLFJsm5UKf0yHD/cAYnynS5KoKTruYZfE0ga3aK2xd60sgMRdO+o3I6vU8RczUnHxvc+Pgdf+D2b9tPt/8v8JJ98CUh6B0K7x2mnuFCgsfg+u+hh9+Lxbdtih8gwhJdHG5hG194UoRTN21KvDFP1Ka6sT/QdbI9mWW8yeJYuidc4MHaTWHQGvgu9126pscgR9+Af53oTBauPoTAF5esIsks57uTXshVzQubZajRSeT9vHqQgxaTZseZ4EyaTnxOdw69Fav+UW9V+7oP7hJjtVTGaUgzV9NGojrZbTkjmFl0ow6KhtspMWkkRYjgpGPHAqJGhPd47oBYNAavPeEGH0pqEZ6mPvRLyWA/Lrf2aL2KrZVg+qDK+G/F8CVH4prm5tkUzK9k0Swd+XrCymtSGNsfgp/OHcApw/I9CtlDAetRsGk1wT+fLmc4jMfly5qKT3UHoaXx4mZ9L5niWyaZyLQ1gBr3xX/J8EkTVu/Bn0s3O6n1CClQMy4SyTHOvVl4v8nFDvmwPcPwZWzhGS4NYpCUu9pnLb2XUjqG1Y9V7o5nXRzGOduLyk94dL/Qk6Aic9uw8Rk+s45QhI5/++wdxGcdLd8zoqAkEGaIqbm3gC2qqr6TIvl0xFGIZNVVY28y95xRIY5gwprBXan3W+Bpkfu2NjiQagxjExavEkcq87ajoeS0TcKJ8ZVb4jUcqT/FLYGeP8yyJsIl7ztf5vU3pFn0g4uh5qDMPPV5tmVliiKkLyAkDOC6Ct039a22558L3Qf7mvlmtoHznoSzKmirmPhP+DwOrEuY4Co2Rs0U8zUvnYqfH47TH4Qvr5bZNha66tBBKKGOBFISjqHVa+LAG364+LvFq0ADUTQn5QLI69t3/7mFCGTbCFB88tPT8CWL3g7/n/eRQ6ny/9DdMEU+OV/4LCxq9LGvK2lPDw5Dc2KUm92zSOFboxSQ+ufdpRxSt/0Nq6EgTJpBUkF3DXiLu/Pde7JomCZtKLqWr/rwsXjDpkc6z+AMhu0UTIOsZOfFkRC7ibWoGtjUV9lsQXMwvm71rchMVt87ZgDcx6GG38Qn7F17mAnqzm4cbpUvlx3iGfnQV3V3+idk8a/ZvZjYu+2tc/tIc6oo95fTRqIiYkv74Q+02BmiyBtx/ciQAMhPW+p1FC08P3vYMr/BQ7SXE7Y9g30OQMSe7Rd3/t0UZvjdARsjyCRdBoN5aL336E14n7krg2NmN0L4N0L4KpPxGc9GEVroXKvqMkMwPzULBqNCufsXyz+R442Mckw8PzA6zUa8b63fSPk3SteAVShbpKETThXwJOAa4CNiqKscy/7PfA8YATmuiUWy1VVvb0zBtnV8UgfyxrLyIrLarPen2ypWe4Y+E/gKdBvV5CmKOIfefu3oo9FJHVjG2bBV78BR2PwnjWpvWDXXHHTDVdS6XJA3snCDayjaHXQ90zfZT0niS8Pl78nxufBU5SbNRzu3SqydXEZ8NNToiFren845QHhPlRXDD8+Cus/FEHftV+IdgeS6LL3Z/juQdFjZdzt4rNrqYS174isQzjNfwPhkY/dE7l9sQ/Xfhn6M75nIdUZ41izo46C9Fj2lDVQa3X4ra+iYAqsfBUOrmBLrQhITxnaB4YtBHeGxiNH82vs0A5Ka61M7dfWsCRQJq3WVovNaSPVlIqiKM2ZtABBWorZ0GEL/kp3M+zUWKPf9eaoyR1tJMYkhtzOI3dsSVWDneQAmT7PtT6YW6aXmGRRS7x7vrje7F8qTKCMcbhcKj9sLuaZuTvYWVrPwO4JvHndEKb2y4hI0hiKWKMucCZNUUT9XOFK3+U75wpFw43fAa3GojeJwKsyiMKicBU0lMKAGf7X9z8nOvcHiSRSqg/CW2dDzQHxc+/TRVlEe9j9o3jdGE6Qtk5k0Ixt3cE9fFK7nYqkRM7ZObdrBGl7f3Zb6QdRl4y4RmThe50Gl/1PKKKygmTYJW0IqZNQVXWxqqqKqqpDVVUd7v76VlXV3qqq5rRYdkIGaNDcKNDTOLA1/mbEPd8bdYH/BFqNQqxB274gDcSD4MRfCxvUcFFVkRFIKYDrvwl8IwXhlHfvVjHjGojqA7DiVWFjXrVfyHhu+CboxSjqBHq4js+EpByRsbtlPkx/wleCtH+JmFEbepn4Hb5+hngfIGQMO+cK29ydc2H5K77BoCR88k6CM/4Cl77TnPFVXSJA3vhJ+4+rqvDyePjm/o6P0fMZCqTqrtwL1fv5wdqfBJOOm04WkyIBa7R6niJ632z5gsPVjQB0T40XtZnumVuzMXrNmy02Bw02J+nxbYOfQJm0/27+L6fOau4l57kOxftxdwRhHFLTaMfpar/yPVijaACzXhuV30dNo91vn7PW+Atiqiz++7hB87U+rEAyeyTEpAg5UH0plO9AzTuJBdtKmfHiYu54by0uVeWlK0fy7i2DWFb9OuvL1oc+bgTEGnTBf5/ZI4VaomXz9XOfgYvfEMGYP2ORlILgMvi0vnDus8EfXG0WMcEikRxJYtMge4Rwj9bo21dz78HjchpOfeXhdUIVFIRnT32O12IGwr4l7R9TNJn3F1FOEoy8CTDmJjF5M+BcOOtxKXWMEKkliAKeTFqJpcTven81aY02BzF6LRpN8A9svEnvlRlFTGovOPNvke1TsklcmGY8J+z1gxFKa314vagBc7nH32OM++IX5V5u0SA+E8bfLr48DL4IBpwvMnbVB+CnJ0UdHsDS52DpC77HSOvdNWa4jiVsDcKZ86S7fZfHpkHuRFG7cmo7i4wrdos6xmhlPz+5Uci5Lnqt7Tp3b6vXCvO44uRcshJjABEM+MUYL0xztnxFcd/riDPqSNj1tZgMcBs2eJpZRyNzVF4ngp+0uLbBhVGnpby+bTDZYG8gVh/rzdx4MmkeGXZrkswGVJWAFvrhUNlgI9YQ2BrfbNBSXNsxB0mr3YnV7grf3bFVj8sqi42hPfxn4fxd6wOi0Yrrxa55osk58H9rE/iwaBU5KTH885JhXDAiG61GocxSxnf7vmNYxjCGZwwP742GQZy7oXVAPL3cDq2F3u563vhu4isQqb1g8+dtl9cWif+T/ucIOX4gnHbRK23cbWLyRiLpbNb+V0zQ9jtL1FmBKMcI1EolHAZeIByqx90WfLu6Eqg7HNK4zKg1YjzvJaHq6QpU7hbvUdKpyCAtCoTKpHn6ne2raPAus9icQevRPMSbQtxEQ2G3Qvl20cQ3HDIHCwON1q5j/nDYRJPrHqObb+At+eV/4kHkjqXgbBKZNI4xfxlPTURSLpz/YvPyU/8gfldNdWJGefGzMpMWKdUH4cXRwjBm0My26wfMEMXUFbvbV6O2321KEGqyIVy0BpH18Nc0fs9CavUZ7LV159qJ+RTXWIEgQRoIR1ZDLEWfH6B7ogmW/kO00XAHaTqtBoNOExWjjLJ6MZ6AmTQ/8rx6ez2x+mYr9zqr3Ws24Y9UdwBYUd/UoSAtUJYKRKaqozVpnr9JuMYhLhWsdhcxBi2qqlJlsYfMpIUldwToNx02zmLunNmstl/Borps/j6zP5eMysHQQmWRbk5n8eWh+3lGitmopcJPgO4ly91jqegXcY1f+ZqQOAWTgKX0Epm3xirf3pXbvoFv74e71ohWK4HQ6oXEueiXyN6MRNIenHaY92ehbuh3VvPy81/q2HHH3Rrm+W0w4mpR/x+Ef6//N70Se3Fmwpmw5yfxv9U98gbXUcFSKf6/o1k7LvFLF0xpHHskGhOJ0cVQZ6vzuz4jwUS/zHgWbm82Hmi0OYP2SPMQZ9K1X+4IsORf8J/JYA2zoF9RxD9+sJuoB61eZJN2/OB/vTlVXHzS+4qGpwPO7Vg7gK6EzgjDLhe96PqdBTfN8c6GS8LA3igKiR3WwDKPgsni9dCa9p1j3xLhLpUapi14KAqmiJ5QJZvarKqd9Ah3N93GjKFZZCfFeAOAoEFaSk+Iy6C+qowpxu1weEPzQ7GbWIMWSxRq0sq8mbS2QZpJp/Urd2ywNxCnb5Yl11sdxBl1AWuiPAFgWX2IliFBqLLYAtZ7QXNmqyN4/ibhWvBDc686i82JzeEKOMaYcIxDWlDSYzqvu2bwVM1pJJ3xAD8+eDpXjcvzCdA6k6A1aSDuA79eK0yabBYhQd63KPhBR10Hvy/yDdBAyMKTe4b3YJc1QtTpuAI3WZdIosKeheK6PuSStuuc9sAS92CUbRcSZoAV/4E3zgx8nKQcERC2uva35oOtH7CyeKU4zrw/i76yR8tU3XMPTPPTYkQSVWSQFgUURWHpFUu5c3jgpthT+qezal+lV7oYfiatA3JHgNwJgBr6xgpQuAa++JWQpYSDoogbbiDd9pTfiYaoJwo2CzS0aOzqcopso6SZrV/DX1Lg791Ew/Xepwc2tUnpBYZ433qYcHG5hCFDweToaeB7uoNGt7SxJe9t17DANoBbThHyGE8AEDRIA3DaeaTy9/xf2YMie33yb31Wmw3RMcrwBE4ZfjJpJr3Gb+bHI3f0UNfk8JoZ+SPsvo5BqA1hjR9j0Hb491HtbridFBNGTZrXvEUEMp6auUAtAkwRSlR3lzfyN9sV/OHqadwxpVdAmSfAw4sfZtb2WWEdN1ziwgl6PUHV5s+hqRZGXR98e2O8kDC3xN4ojAb6Tgvv/zFrBDTVyKbWks5n3ftgSoLerWok138Ef8sM/3moJbPvhf+5Tde0Bji4Akq3+N+2sTqsyQivskFRYPQNogSj1I/r9ZFg93xRsxci+yfpODJIixK6EOYcU/tlYHeqLNklHuItdmfQHmke4k066joid8ybKGZDt84Ove3mz0STVUMEph6BbPhLt55Ys6AOGzw7CJ7pD1/eBavfhBdGwsr/HO2RdS0GzIAL/g2TfwdXfwaXfxB4W50BfncgtKbfH6oTzn4SxtwS3uaqGnoyJKG7cP9sFaTZ139M8aK3OLl3GoOyRAbam0mzBD+mTdXyjv00qmLy4fL3ISbJZ73ZEB2jjLK6JhQFvzJEY4BMWlu5oyOg/T40Z+n81beFS6j+ZR4L/o605fSYuYQnd3Rn0tzZTG+AFyALp9UoGHWasDNpFe6+cJkJofseLT+8nE3lbbO4HUFk0kKMtWI3fHaz6D+Z1tc98ReCeX/2Nf3Zu0i4BYdyufPQUmYpkXQWi/4pnntGXN3c+sdDXIa4jwRzKvWHtQYOLGv+rPc/B1DEBKU/3r9MWPUHwea0YXfZm5UNnoBy55zIxhYtpvwebp7Xvr6jkoiQQVqU+HLXlzy67NGA60flJRNv1LFwu0iBW8OUOyZ0VO6o1YuGo9u/Fan7QKgqbP1KSLr8Na8ORGpvMaPjaDF7bqkUEsuFj7V72MccOoOwmB1wHmz5UjzQaA0w7Aoo2QyzroUF/xAzyicqHsntsMtg6v+JGpfWN8bWtNdkRqsXxi+5ARpttuJX769l1F/nUVprDb7h2FvbyFrrf/wnZ9vncuspzUXmeq0Gs0FLdYhMWkmtlQ+dU5l36leij18rzEYdDdEwDqlvIsVs8NuzLVAmzWK3+ARp9SGCtMQYPXqtQnkH5I61VgcJMYHPEWvU4XCp2JztnwCKTO7ozqS5A2VPs+1QdXPWMP9m3ubdYdTwxenjqLfXh3XccIkzar3GKAFJyhM1zTljRf+zcDJhmz8X9xwPB1eAOU20XwmHjAEw7bGQEjCJpEPkjIfRN8EZfp7dPBnkYE6l/ti9QAR3fdztgeIyRGuNQBPlFTtDegA02IWfgfd6nNBdlJDsnBvZ2KKFzhDS6CQa/HfZPr5cd6jTz9OVkcYhUaKovogtFQHS2YiHtkl901i4vQxVVbHYHWTEh549jTPqOiZ3BJG92PChsJRv2fjZw6E1opFz9QHRIywSUntDxkBoqm9uPr3+Q2EU4s8M4ngm/yTx5bAJzXbGQGE9a62B/ctE8Lbi382ZyrtWg8EsAmSv9XyLh6Xjyaq2vkxkFs99VvSECpctX4natWu/FIFXuKx7H3LGhVX/srGwhm83FgOws7SejGBZjTE3NX+/6VNcMWkk125lc+x13NDHt8FwUow+pNzxsNtgpLvbDbI1Zr2Wxihl0vzVo4HIpDlcapvG260zafVNDr/ukB40GoXUWGOH5I41jXYSArhHgq97olHXvvpWr3FIBEFafSu5Y7C6uRh9+JLMygYbihL8eN6x6GOx2C0ht4sEs1GHqgp5ZmwgKatWJ9xXWzuwBiOll7ivWGvFpN9pfxAZcX3oe544px4m/Cr880kkkVC6VTy7eO7Z/kjoAVpj5Jm0nXOFfDJ7dPOyATPgh98LO/6WjpGWSlEPl9on6CE9kzMtr8f0OVO4UjqaxIQwHJlnhs1fiObbUx9ufubrBNbsr+SPX24G4Pzhflp9nCDITFqUuGP4HXx47occrD3I4frDfreZ0jeD4lorWw/XYQkzkxZv0mO1u7B3YOaYXqfC9d9C/iT/681psOkzMCaK5sGR0HcaXPgqxKZC+S6RQVr+srDbP1EbP+sMor+Q54EktRfcvwOu/UpY1vaaKr40WmFB/84MoWH/+AZ4PA/+kiQu6McTa94S9SzdInSjsjWIyYWqfeHvU18KX9wBmz4Na/On52z3fn+wMsyH4Kr98NltaN49jwbVSO5Jl7Ux1EgIK0hz90hL9P/w6q+Zcnsor2/y6+wIeN0aW0seG2wNbYK0QPb7HtLjje3OpFntwpQjIYgM0ZPJq21sf+BabbGjUUQ9Vig8NWmWVnLH5CABXoxBG7bcsbLBRlKMHm2IViwgHtCinUnzZgo7Iqn3x9hboKYQXp0ijBNAZBQioaFCZB+ka64kmjia4LVTYe4fg2+n0YTu+dcaVYVdc4VKRNvi+jJgBoy5uW1PWc+x04IHaZ5MWksjJ06+F+7dJgKlH/8C/+wfvkFcR1jztpg81YaeWGovqqryxHfivhysl/CJgMykRZmrvr2K0/NO548T2l4ApvRPR6PAd5sOC3fHMGvSQEiNgklsAC7+91LOH57FNRPyfVcYzM2zRTvniuApIUtcrBStsJe/daGwVg4lP2uNKQG6DRbfF62FjZ+K2ZxpJ5DUMRwURZhYeBwLPTQ2it5YGz8WxfYDZghLf8+sdeFqcaMwpxz5MUcLR5Ow7u59hnD6jATP9mXbQ97IvGz7RryGMeGwal8lP+0o44Fp/Xhm7g4Kq8KUoybn4bzhe55+7yvW6Efx4cS2BdSJMfqQNWklbnllZoAgzRyq2XCYVNTbyM01+13nuQk2OVzEtojjbhpyEwNSmiWYdVY7cUHkjiD6sLXX3bHWrRgIFqR1c/+eDtc0kpvq//2EwlP3FqpHJbSsSWuWOypK8Hq2GL02bAv+UC0HWhKnj6O8sTysbcMlzute6X+8328q5tO1hei1CjqNBq1GwfNb02s1zByZzfgCP32b+p0Fl70nHoTrits3uJ0/iMmWX60UlvwSSV2J6KHZEZfowlVgtwSetG7JmJtA71/l4BdFgRt/aFtakpTr30StYqd4DZFJ8wRpZn2La56xRcBmToP6YlGjFolSJVLqSmDvTzDpvk7N2i3cUcbKfZVkJ8VwqLqR+hCmVcczJ+a77kQyzBlB+qWZmNgrjS/XFdHQ5AjL3dHzwawLEaSpqsrq/VWs3l/VNkjzUHsYPr4eUESPpn2LxCzlZf+LrA4tEEMvFV+S8IlJgmu/CLz+89tFgHbTUSoQjgabPoOGUhh/R+T7em5e5duBc8PbZ+vXwuo7RCZXVVWe/mE7aXFGbjgpnw9WHuBgVfhysu+rsvl39Tj+fdVIvw/8SWY9+8qDH6+mUfQeiw9wAzJHwc0QRAAUKLDwOAq2DixuGnKTz891VkfAcXrIiDexYHsZh2saA0o4A44xjP5lnmN6ZKLtobrRTlIY8kIQZihajUKh+3NRbbGRYNL7re3zEIncsaKhidQwgzSz3ux9WIsWrd0rW/PhqgMs31NBj2QzDqcLZws5do3FzkerD3L/mX2561Q/D5n9pouv9tLSPEQGaScmLhfMeVi085n4G/hnXzj9L3DyPe0/5p6FYnI6kMyxJWPDM57yIZBbscslJMCpvZonXbsNESZaYdak+WTSWjL+Tlj6vLj3dWaQtvkzUF3+2xVECZdL5cnvt5ObYuae0/tw76z1HKpqpF+3E9Ok5MTOI3YCmbGZAYM0gPOHZ3Gg0kKt1RG23BGgrin4jHxYDwUJ3eH2RaL59HcPCKOQ/JPab84g6XyGXiqK7g9vONojaT8rXhGuiL1OjXxfUwLEZ0HptvC2b6wWVt8DZoSc6Vu6u4IVeyv51dRemA06eiTHhJ9JAxbtLCMxRs+0Qd38rk8MQ+5Y2yjMOAL1HouGBb/LpVIbpNbL6EfuaHfZOVR/CKtDBEM2h4smhyuocQjASe66vFOeXMBfZ2/xGmOEQ41bwpgQ5BxZSSKTVlTTfgOeaostaLauJSa9lvxUM9uKRQ/MSos9qNQRIpc7htv4u3OMQ3xr7lpTb3UwMjeZefdOZuEDU1n04Kner5UPn845Q7vz9JwdHapDDEhaX9Cb4dDa6B/7SGGtFVbupVvB6TixHI+jweJ/ivIJu0WofExJ4rmlI+xZCNmjwusFq6pCtmupDO/YK/4jTHP8Ub4d3jgdnh8B/71AyHkzBwsTrRD11vU2PzVpLdFohHJk59xmc7LGavFqqRQ+AZEaoPhjwyxRstCJkyZfbyhi6+Fa7juzLz3TxPstjGDytDXPzNnOx6sPRmt4Rxz5dB5lMswZlFhKAq6fNrgbOvesu1kfOpHpeWAJ5fAYsh+Th5QCuOZzuPgtmPG8LM7u6oy5WchQ175ztEfSfi5xf9baK4/oe6aQuITD4XWAKoK0IKiqytNzttM90cQVY3MByEk2R3QzWHugihG5SQFlc4kxeqobgwcpddbgRhmx4bjvhaDB5sClBs5QmXRtM2mH6g4x/dPpzDswD2h+iA8lOTlvWBZzf3sKM0dk89aSvUx+cgGv/bwHpyv0+MPJpJkNOhJj9Byubn8mrbbRTlKYQRpAv27xbC8RQVq1JbQ8MUYv2gSEgwjSwiu+9xiHdOSz0BpziJq0YDIjk17LxSN7AHAg3FrOSNBohatkV7DhV1VoqhPS7U9vgQVuOX/1ARGEqaqom33vUlHvBOLh+N0L4PNb4eXx8NdUeDy3uW7owAoh45b45/AGmP93kbU59Q9i2fArhVuyo52TApZKkc1qXXYQiPpS0Vpnw0eht1VV+Pkp2P69//Xp/eG0P4l704Flwkhr6QthDWN6z+msuHIFeQlBMm4DZoiM46G1QjX1VC/49gF4cxp8fhv89GTztvbGto2wXS5hchYIh03INkP1SewADqeLZ+fuYED3BGYMzSInRcg7w64Vb0VZXROv/LSHzUVHoFavk5ByxyiTYc6g0lqJzWnD4KewMsGk56Teafy0o4wYQ+gYOS7MIK06RO2LD4oCgy8Mf3vJ0cOcIsxGVr0ubla544XF76rXhSV2/3NDOxg67WL70TdFXnMYDVIKfB2tImXGc+FvWzAFHtglTHCCsHBHGb8cqOaxmUO8cr8eyWZKapuw2p1BmwqDkA/uLK3n3KFZAbdJMhuw2l00OQI7EYaynI8xaMXzocMVckyBx+rOUAU4j79MWrIpmUcnPsqw9GGAyKgAxIUwDgHokxnPkxcP45ZJBTz+3Tb+/u1Wlu4u599Xjwr6HsKpSQNhsnK4I5m0Rjv5aQFmpP3QLzOB7zYVY7E5qLLYQrryhptJc7lUqiz2sOWOKaYUUmNSsblsGLXRcVXz1KQFzKSFqAXxfKaibjziIWuE6DnpdPgaMRxJKveK3pf7F0NshpBuX/aeWFdXIoKwBX+D6oOirvg0dz26IU7U4130hgjwGsrFvddTWjDnETi0WtQw5Yw9Ou+tK7P1a/H7OuvJ5gm+vJNEZu3QmvY1Uo5Jhuu+FjX54RCfKf7mxRtDb1u+AxrKAssoFQUm3Su+H3oZfHOvqEcPA42i8a1H80f+JMgaJkzLmuphxDWiFtwQB5e+2yz/X/c+fPVr8b5GXA0n/1b4Fsz/Kyx7ESbdL0oTWpfA6AxwaedOFn+z8TD7Kiy8cvUot1uwAZNeE5HCpSUfrTqAzeni6vHB5aRdGRmkRZlMcyYAZY1lZMf5tw2978y+6LUaJvcN7XblkTvWh5A7hp1Jkxx7nHQ31BUJyQcIx8PSrbBttijMT+4pLqjTHxc3rj0/iYeDtN5C1rFvMXz/O9EWYNpj4ck8okHxJvjxUTj7qZCa+7BoqguveWZMctDVqqry7Nwd9EiO4eJRPbzLeySLeqei6kYK0oM3dF93oBpVhZG5gc/lCTZqGu1kxAcI0hrtxBuDZNJa1Ay1O0hzXxsCZez8ZdISjYnM7NPcQsMjt46keLtPZjyvXzead5fv549fbubTtYVcNS7w5yDUOD1kJcVQ1IFMWrUleMPs1vTrFo+qwo6SesrrbAzsHrx+N9xMWq3VjtOlhm0ccvXAq7l64NVhbRsuHnfHQJLahiZHULMYz2cyGnWTfhl3u1ATdMQooqPUHISSjTDhLpH5GnIJDHDXx2aPEpNImz+H4VeJh95E9zXFaRMBQaBJtEvfgRfHCBt1GaS1Zecc4RLd0jTLE5jtW9K+IE1RID/MXn0eug2B4jDKDfYtFq95YdS69ZwEd60KewgLDixgbela7ht9X+CNPL1aQZidzPiX2/jE3PwZLFwtzHjyTgJjAvz8pHBdHXuL+D/bs1D0t130NIy5Baa3MICzWUQw10m4XCovL9hNn4w4zhwonqMVRaFHsrldQZrD6eK9FQeY1CeN3hnB7+ddGRmkRZkMswi8Si2lAYO0oT2SeP260X7XtSY+2nJHybFH5kBxs/cw4FzxVX1AOBnuWyx6suVOEEHRohYuUhqdcEc7+bew+Fkhzbnw1SOTSf35KSHriIYpzYdXiZnom34IvM3272DJc2LmOjFwX5Uft5ayobCGJy8aiqGFva8nSCusCh2krT1QhaLAsJzAAa8nEKix2ANmX2qtdq/u3h8ecyGLzYkfD72wqAkhI/Rk0loGaZXWSg7WHaRfcj9MOpM3kxasXswfiqJwzfg8/r1wN0t3VQQN0jzjDJZZBJFJ++VAVUTj8OByqdRaI5M79ncXrG87XEtFQ+B+cx7CzaRVuOv1ws2kdQahLPjrmxyB+6ch5KcAjfZOyqRFOrmz8RMhO0zpCQNndqzeurYI4jIhdyL8eq1/ybVGI+Rf/iRgxjhfB77WJGQJidqWr+Dsp8PvIXesYrcKZ0BbAww8P3Dg7ekbevGbYK32XWdOgWn/EIqSSDm4Unw+Jj8kWgaFS7chsOwlIfcLpkTZ8YOQA3ZENRKAzRWbmb1ndvAgzR/dhvj+bG8Uk76eHmd7F0Gdu2VUYjbcugAOroLlL4mvgec1/67/e77ILHoCwSgzf1sp20vqeObSYT4lBD2SYyisjlzuOG9rCYdrrPzlvGO7FZSsSYsynkxasLq0SGjp7hiMWhmknXgk5QpZwuXvwakPN0tCRl4nHipOvldknhrKhBb+prliRu3np9rq0aPNlq9E8+5xt4XMbIVFxkAoXAmNQR7Ot3wpMoxB+jGpqsozc3eQl2pm5kjfQK6HW/8ezqzd2gPV9M2ID9o3LKlFJi0QdVZH0MyR5yG4I5kKb4YqUJDmzqS1lDsuObSEq7+92muCVOeVO0Y+r6coChN7pbF0d3nQeqpaqwOTXhOySXVWUgxVFnvYdV8tqbM6UFVIDNPdESA3xUyMXsvKfZXYnSqpoYK0MC34PaYq4RqHbK7YzJ3z7mRvzd6wtg8HT6bWn9yxyeHE7lSDZk9bTiJ0Gus+EJNLoSjdBp/eJGRbn9wIb58TvMYmFB9dA/+7SMgsw62JjZQhF0NTjcgaHc9U7oUnC+D9S+GTG+D102HDxyJga8m+xWK7T24U967sUW2PNeFOIemLBJcL5vwBNs6KPBjOHQ8uO2z/JvjxG8pgwHmdYk1/14i7WHDpgo4fqOckOOPR5ibUPSe1deTOGQPnvwRjb4WEbGFAYq0V9d7JAZwrO4iqqry4YBc9kmOYMcxXihqpoZeHd5buJzsphtMGZEZrmEcFGaRFGW8mrSGww2MkmPRaDFpN2Jm0cJqiSo5jTv2DkN+k9oLT/wQP7RM3GUURkpoJvxIzuE2dWEi7dTZ8fJ2Qqkz8TXSOWTBZWP8eWO5/vcsFO76HvtODOmX9sLmELYdr+c2pfdC3slFPcT+4V1mCm32oqsq6A1WMzEsKul1iGEFabaM9aA2W2dvHqv2ZCm9NWiC5o59MWuu+PO2RO7ZkRG4SVRY7RUGs82vClCF2b9ErzcNHqw6wYHvoa67HyCUSuaNGo9A3M45FO0WPsrS40MYhdqeK3Rncya+iPrIgzeVyUWGtoMkZPSdFrUbBpNf4zaR56xCD/M09DsXtCZjDZt17wiE2FPsXg9YoGvxOf1xIxNtjOrLonyLjcmi1eIjtTHpOgT5nCmnk8UxyPoy5Ea76FC58XcjxP7u52YFwxavw3iUiKDbEwv5lsH9J4OPtWwI754V//jVvwsHlQu5vCL8eFYA+0+CCfwfvu6nRiCzU6X+J7NhdFUOsKFNIyoH1H8Bzw8RnNGdcp5xue0kd6w5Wc8ukgjb35ZxkM9UWO3XW8BMR24vrWLangqvH5x3zz8RS7hhlEgwJ/GH8HxiZEeFMTxDiTbqQH1DPg+Cx/XGUdJhQs3gjrxVfncnqN4WT1TWfB5f7REL2aNAaxExrv7Parq/cLbJsQeoNXC5Ri1aQFsv5w9sWjpv0GgxaTcisdJPDRa3VQY/k4Pr8UEGaw+miweYMamvvyXRYmtr/EBxS7ugnk9a6L0+t2x4/kuCmJR7J4PbiWrKT/PdPqw3hdOmhZa+0gvQ47E4Xf/5qC05V5cNbxwetE/T8LiKROwKML0jlPz/vASA9DLkjQKPd2eaBoyWeyYDUEEGfhyHpQ/jo3DAyShESZ9T5bWYdjqNnjP4IBGlZI0SQFkpuNuZmIXGMTRUKg/b0ZQTR8uPz28T3/YO7xHYYrQ6u+rhzz3G0qdgtgrQz/9a8bPBFokbaI0tvqhVOir1PF07AtnpwBZmYmvcnkSXtfVroe57TLlwie54Cw66IfPwajXCVDIbLKeSbnWRu8/K6l1FR+dXwo+DGnTteZJJtDZ0WpG1xuy+e1LutDNUjL6+otwVVrrTkPz/vJkav5bIxOdEb5FFCBmlRRlEULu0X3YbOcSZd2Jk0h0sN6iYnkQDiBmdM6BRpBld9DPUl0QvQQEhUskcHnl09tEa8+pPHuPl202G2l9Tx3OXD/TYjVhSFhDB6m3myDrEh+hwmuftpBXJe9TwEB5c7euRkHcikud9PIKmix/yhqVUmTatovS6CnmOEe5NsTV9PXVdxHaf29y8/qbUGzyp68PZKqxaZtM1FtTTanRh0Gm797xq+vOukgIGg52+RFKLXWWsuGd2jOUiLDx6kmVuYvQT723rkjskRSC87g1ijzn8mzfM5DxKk6bUa9FoFSyt5p9Olsre8AYvNQX2Tgzqr+Kq22Cirb6Ksrvmr2mKnW6KJ928Z5/3d+ZA1Qszil25ubnDdGnujMEuIpNaoNfVlQprd50zRC0rRQHrf9h8vEuzuDPPxVpfmtMMrk8TE4FmPNy/XaKD70OafT7lffHkI9XccdT18+StRZ5YbInDYvwQaK2HsbR273238RBjEXPY/3+PYrfCvIaLf2egb23/8ICwrWoZRF/y602lkjYDblwg5Z1x6p5xie3EdBq2GvNS2WU7P/ckWQpngobDKwlfrirhmQl7YKoWujJQ7dgIHaw+yvmx91I4XTiatusWDZUdm3SUnAKvfEv166sOQ5KqqMOwIt4ZNVcWMYrgWx5Ew8dfCYc0fsWmiHiBAk02nS+Vf83bSJyMuqG1+YowuZJDmqb8J9vAKzQFNoON5slNB5Y5RqPmptdqJN+oCyj78WfDX2+uJ1cd6m2zXNTmI0Wt9jFYiIcGkJzsphu3uptD+qGkMT+6YmSAeZHeVigavq/aKRrNvXz+GJruTm99ZHdAIozqMXmz+6J0RzxvXjeaRcwaEdArLddc27i1vCLpdRb2NWIM2bNfOmqYaLv36Ur7ZE6Q2ph3EGgIEae6JwVANzP25WT7+3VZOf+YnzntxCVe+toLb3l3D/R+v52/fbOWtxftYsafSm412uFTWHazmYGWAuhNPYBZIuuhywqtTYV4rqdnif4nap3CZ8zD8z52Ju2U+3PBt+Pt2hLId8HhO8JqncAjW56r2sMgmNQjJLpZK0est3CbN4dJQIf4eHg5vAHtD9N0rPdLDYJJID4k5wjir16kdO6etQTgqF7ZyZdyzQLRlSMrt2PGDUG+v96oajgo6Q1Azro6yvaSOgvRYv8oDf3L8YLy+SNTs3jIp+gYuRwOZSesEXlz3ImWNZbw57U321+7nHyv+EXKfKwdcySk9TvFuf8fwOxiWPoz1ZeupiHuJclXl9rmBZTxljZOBBDSmA/z2p1/xl5MfCd74UHLi4rmZVOwUbk2BqC2C2b8VtV5JucJVy2M97Y+qffDOjNDbtZf+7huzx/2rJb1PF18BmL2hiF2l9bx05cigGvXEMDJp4WQYQNT7xJsCB32evmAtH4LXlKzh9Y2vew02mhxOYnIqeXN3HN+Xi+zQqbmncmm/S2lyNnH3/LuZ2Wcm0/KnUWop5Y9L/tjmPNuqa9Fm2bl97ucAbba/esB1ABQ17OH2uaLh6c7qnT4PBaJ2rmO3i37d4oMGabWNDnqnhz6HSa9lct90/rtsP5eNyWHlvkryU81M7J3GC1eO4Ma3V/GbD37h5atHtlEUeKWfEWbSgLAL0Pt2E7+37cV1TOwV2HCisqGJlDCljgAGrYGtlVt5Zf0rfL37a7/bnFNwDjN6zaCmqYaHfn7Ie18JRpxR59c4xFMHGepzbjbo2mR6C6sayUo08ej5gzEbtSSY9MSbdCTFGEiI0XmDf4CfdpRx3ZsrA7eZSc6HmBRRx+SPLV9C2VaY/KDvctUpHqittaEdZi2VsPkLGHmN+FlRms0VOpuUnsKF9+BKIQNsL4dWC+OUAeeJDFbFLiERP+luIVPbOQdWvSayPdu/F+9x8u/aXk9LNguX3DP/Lpz/lr4gjDoaysFSLgypPK6bpVshKQ8cVrHd0udFHfLpfxJBzU63G284tvSRYE4RLooeBUUwUnvB6X/u+DkHXwQ//B7WvO0bdG6dLfpy5gf/P2sPJQ0lPLbiMQrrChmYOjDqx+8q7CiuY2zPFL/r/MnxA1FU3cgHKw9wwYhssgKoKY41ZJDWCUzPn46KeMhyqk7qbIEfTDzYXXaf7R1uPbbD5UDRNNJoc1Jr06IEqDqraxLF5IripNZWh1N1sqZkDburd0ddfik5xkntLV7LdwbvGbPhI/GQM/E3sGEWrHkrcPClqiKgs1RC1vCoD9lLUx28O1M8XPRxB2VOh6hpMPu/yDucLp6bt5P+3eI5a3C3oIdPjNFTWhfcmMES5sMrCFldqCCtpSTu2z3fsvzwcgamiBuyw+VC0TZicUCd+7wtjSPqbHXY3KYDLtXl91pjdTWg1TWva729igNFAavTQZ1TbNPN3I0JWRN8xhpOvVgw+nWLZ9HOMuxOl98Z03AzaQBPXDSUaf/6mTvfW8uOkjouGil6U03pl8Gj5w/mkS82cd+s9Tx/+QgfO+caS+TGIZGSHmck2axnR0nw635Fg42U2PADAZPWxHm9zmNfzb6A95TWf1u7M3Sxvdmo9ZqYtKQuDOMQ8LQc8H2Aqm9ykJlo4vSBoQNbz/HrAylAFAV+8wvEJLVd53LBz09DWl9h696S9AHitWy7cKwLxoaPwNnk30q/s9HqhUw7kClSuGSPElLNZS+CziQccZvqRBZEo4GZr4gG2ov/JdZf8b5YvnOeuHYbzOI6Xrlb7BubJn73u38UroiKVox1+/dw3zaxbt5fRCbJaRdBce5E4egL4p7x0xOQ2if4ZGC73+/o0P3LKveIycP8SUENpcLCGCeaUK95W2Tlhlws7j3bv4G+04LXS7aTtaVrmX9wPv1T+nNqbgczgV2URpuTohorvQK0vfEqPeyhg7Qnvt+GCtxzep9oDvGoIoO0TmBq7lTv9wWJBbx3znth79t6+1GZo7h74As89OlGHpp+EsNykvyf8+mFJJiaqG3sySMjr6IgMZmndjzFrO2zuKTvJT4zl5ITnMQccZOu2BV8u5N/CxPvFjfy+hLhqBWIbd/A7vlw1lPNzVw7g/pSaKqHWdfA/TvFjfPwOnj9NLjyY+h7ZptdvlxXxJ7yBl65epTPA7s/EmP07HTL6ALR4H6YDFWTBpASa6S83n/Q1yx3bL4MXzXwKk7LPY2J2aJRq8ul0v+P33Nabj7/d/YAn/2NWqPPtaJbbDe/15pL/7MMBXjvnAk+y1tub9J9Tyy5Aa9VtY2OsOrFgtG/Wzx2p8qesgb6dfNtSu5yqdSFWZMG0C3RxHOXD+f6t4T0aEyLWdirx+dRZ3XwxPfbGJSVyB1TmpsJV1vsxOi1nVqzqyhKyKwhCOOQUCYkrY/795P/Hta2yaZk3jvnPaqt1fxxyR85p+AcxnX3X7sTa9RxoLJtHyLP5zxkkKbX0tgqk1ZrdYTdU88bpAWru/YXoIF4QC7dDBe+1rbvVkZ/8Vq2NXiQVlcMy18WQU7rvlJHipxxoo9lexsG2xpE1uycf4rMmTm1rYthxgC4+lMxkaYoza1RdAboMVoEWSAUCafcL7aJTYMH9wgLfVOiOM+yl8SkmCkRJt0nMoF6swiSW9aZ9RgtJOo9QgTI7eWcf4IhhARw02eiJcODewNO4kXE6X8WQf+XdwnTkr0/C8OqAZ1jMOMxcHrh1BfoFht8gvFY5WCVuPbkpvr/3Jvc1+pQcscVeyr4cl0Rvzm1d0hTr2MJGaQdA5w1pDt//HIzn64tDBik1TTayUqKoba4zluTlmHOwOq0UmurJdEYuOluOKiqSmFVI9lJMSEfdCVdHI0GUnqJTFogPA8LnmawZ/49uBHIli/AnAZjborqUNuQ2gtm/AvenCYCw2GXiQap4PuA4MbudPHcjzsZlJXAtEGhZ3PDkTs2hCl3BOiRFMPWw/7bHfjLpBUkFlCQ2Kyl12gUeiS1r0+M9zyNdm+dVCCMek1QOUmt1d7hpssDuwvJ2YbC6jZBWr3NgUuNLMM1pV8G79w4ls/WFjK9VYb09skFbCis5p9ztjM8J4kJvYQRQU2jPWLTkPbQLzOeT9ceQlXVgBNklfU2+mVGodF7EPRaPZ/v+py8hLyAQVpcoJo0T9uFEMGW2aBtUzNZb7XTI0y5kef4geoIAZHh+eRGMQF05l+bly99UcjeBl3Ydp+kfNDFiP5pwVj5qqilmvlqWOPtFDIHiSCpcnf7AsVVb8Cip+E360LXRrUOVnqeIr6CkdKzed+WBiA5YwIHwN2GdG7QG0rCCqJmLWNQdAI0zzmv/gT2/CSC3N6nw/g7ReuXTqC1y+7xxFfri3hv+X5vjbE/0xDwXzPtD08N8GVjO6828GggjUOOARJMes4YmMlX64uw+fmgqqpKTaPd2z/IU0uQGduxxtoWm4N5W0r4/ecbOenx+Ux6cgGvLdrTznch6VJM+JUIcAIx61rRt8ZDXLpwT/OHywm75kGfM9rOZncGPcZCYq6Q4ABs/VrMgse3nWn8bG0hByot3HtG37CyyYkxeuqsDpyuwEYpHrvyWH9OdK3ITo6hsLoRl5/jeZtMtwjSvtv7HXuqff/HspNjKKxqm+kIl1C92EDMVgabqaxttLfb2dFDr/Q44k061h6oBoTM5Zk526lssLVwj4xs3nBy33Seu3xEGymmoij848Ih9EyL5ca3V7F0tzBMqI5AUtkR+naLp77JEbAvnKqqVDTYwrbfby+x+lji9HHepuR+tzHqvFmzlnjkh+YQxiYx/oK0JkfYPfXi3P9HdcGCNEUBRxNs/NjXHOOyd+Gi1/1bn2s0MOQiSAshfZr6sOhxlTch+HadSY/RosmwOcKm2U67cB1c85YIzqIVjBwrfHMfrPiP/3VOOxxYAXkTo3tOfQz0cwdlhliY/o9OkTpC236VxwuNNicPf7aRFXsr+Wp9EQB5ASYSjbrwjEMa7eFdr441ZJB2jHDRyB5UW+x+G7bWNYmHyuxk8RDtmZHMNIsgLdgNujV7yxt4a8lern1zJcMfncvN/13Nl78cYkgPkYnbUxbcsUxyjDDiKv9F6pu/gBdGC+liWgv7aUeTqGfY/l3bfRQNXP1Z9BpXh0KjEfUAuxcIx7eiX/zKTWwOF8//uIthPRI5tX9GWIdOdNuhB3NTbc6khb4ZZCfFYHO4KG9oK3n01vy4AxO7086DPz/ID/t+8NmuR3IMh9x283anK2gA6Q8hPQsemITOpDk6bByi0SiMzE1mzX7hKPfdpsM8P38XD326IWQvt/aQZDbw/i3j6ZEcw41vr2LN/qqwG2Z3lH6ZzX3h/GGxOWlyuI6IRXSGOSPoPSDOpKPB1nZiot7qINagDamciNG3DfDrrI6wA27P/1FQuSOIWqeGMnjnPFj5mngIj8sI2naD81+C0Tf4X7d/qahX0mgDusIeMZJyhUwxoXvw7RoqoKZQfF9XDP8+SZiFNNWJOt0TjcLVsD2AC+fh9cJZMj/KpiVHkBEZI7ht6G1olOPrUf37zYepa3Jwmvu+HG/SBVQ4eFvEhMikeYK0mDDKEI4lpNzxGGFSnzRSYw18tb6IaYN8MwZlbqODfHe62DPTn2EW/wDBbtBldU0s3V3O0l0VLNld7pVV9UyL5epxeZzaP4MxPZMx6rRMfXphm344kmMUh01IaxKym2UjqioKve2NMOQS0RzWg9YAv/xPPAy0biatKML960gy8lpR67B3kfjZT9PZj9cc5FB1I3+fOTjsmsyWDaiTAvSvCtf1DkSABXCoqpGMeN8eSLVWO3EtrPG1Gi2zZ87GrDO3OoaZ8nobaw9UcePbq9BpFJ6/fAQTe4eedXc4XdQ3OUIGJsEyaaqqimxcBzNpIJqVPvbtNvaWNzB3SwmKAnO3lHiP3dG6t9akxxv54NbxzHx5Cb/9aB0uVWVQVudKDEFk0hQFlu2u8NsXztMjrSsEaSlmPaoqPvMtx9PQ5AgpdYS2ckenS8Vic4a1L4BOq8Gk13j/rwJSMBku/wA+vg6+vR+KN8J5z4c+gaNJZPtb13p995Awk7hlfljj7HRqDokmzsECxjkPC5nd9H+ISSpbPVz6LvQ/58ioGLoaaX0DG67sXypeo+0seQSZkDXBx8DpeOGjVQfJSzXzyLkD+XFbKXmp5oD3aE8mrckRIpNmc6IozdsfL8gg7RhBp9Vw5qBMvlpXhNXu9OmtU+4O0jx1Jxb3TH9GjAjSWssdl+4q58t1Raw9UOU1SYg36ZhQkMotkwqY0i/drz44Rq/1HltyjFOyEV47FWY81+xoVr1fzCxP/0dblzNFEdr+ki1tj7XwCSiYErqpaDRJ6Sm+ag9DbDqk9fZZbbU7eXH+LkbmJjG5b/gNOD1mBx5TD380NDnQhHkz8GS3D1U3MiLXt4VGbaOvuYJG0fhtm+FpzPzU99upttjJSjRx9RsreOGKkZwzNPjMuydbFyoLZtRrsAZwz2q0O3G41KgEUDOGZfGP77bx0aqD/LSjjMvH5LK7rJ5P14rsQGdkudLijDx98TAuf205qgonBbHFjxYJJj0zhmbxv+UHuPWUXm0aYFd4grQj0Mg6w5zB8sOBnQNT3eYl5fVNPkFafZMjrImIGIPOJ0irD9MVsiVxRr33sxqUvmcKwyBbvTDHCEVdMfxrKEx/zHfSqWqfcAY8468Bdz3ifHozoMKN3/tf77SLrJGnR9iQi4XboOb4eiiNiNReQgJrt7ZtBD7+TuHCGBeeiqIrUmmtRKfRkWDo/ImlI8X+igaW76nkgWn96JkWy4jcJAZ0D/z+jF7jkBCZNJuTGL32uDPJO4H/u489pg3qRoPNyZJd5T7Ly932yTkpZhSlOZOm1+pJMaVQ0tAcpFU12Lj+rVV8v7mYHskxPDCtH1/+6iTW/fFMXr12NNdNzA9YwOmvQFxyjNJ9uLAw/vFRYSCy4wfRj+i+7eLG74/MgVC6RWThPJRug4WPBW40GwGHaxr5ct2hyHZK6A7Dr2iz+MOVBzhcY+W+M/tFdNH2BCK1QeWOTmKNurCO6wmw/Bl/tHYz3F65nXc2v0O9zddd0pONW7angrMGd2PuvZMZkZvMfR+vY0NhddDz+zMn8YdJpw04U+l1oYxCJq17YgwTe6Xyyk+7sdicTBuUyT8vGeZd31lSxHEFqdx8sjA/yEw4Mv2v7jm9Dzaniwc/WU9Rte/fv8oTpHVyTRoI2XtFYwVOl/+/r6currULaX2Tg/gwAi2zwdfdsa4pvM9cS+KM2uDGIS0xxon603As1eMyhTPkwZW+y7fOFq+d0c+xvaQWQMXuwOv3LRL1eB5pt1Z/YgdoIAywUKFqb9t1Wh10G3zEhxRNHl78MLfNue1oDyOqfLy6EI2Ct23Kh7eO59HzBgXcPtxMmsUugrTjjRP8P/zYYmKvNOKNOr7f5NvUs6xOFKdnxBsx631vdpnmTB+py6drC7E5XXx023jeumEsv5ram2E5SUEb/HowG3VS7ni8oNEKqZC1Bl4cDe+7e+mZEgIbhPSdLmawlzzXvGzjLFGTNtiPu1oE2J0ubv3vGu7+cB2NHZwIaLQ5eXHBbsb1TGFirzBm21vgCRJqgzg8NjQ5wjINAYg36Ukw6TjkJ0irtdp96nZWFq/k6dVP41R9339LO+Hpg7sRa9Txn2tGkRpr5OrXV7BoZ1nA83sCrFDBj1GvobbR4W2i3RJPfV5Ha9I8PDS9PwVpsWQmGJnQK5WcFDOvXjOKk3uneZ2+OoP/O2sAn94xgVsn9wq9cRQoSI/jkXMGsGhnORe8tMTnuuzJpHXUMTMcMs2ZOFUnFdYKv+s9bQBa90oLN5NmNmhptDu9nx1PY+xw5Y6ebf011O4wiiIaD7eWxG2bDZlDhDNkVyG1NzSUiubb/tg6W1jd9zo++2W1i7Q+kNZPtGVpyfbv4Zv7A/8ujxGu6H8FNw658WgPI2o4XSqfrClkct90urmN7ow6LTo/fTM9aDQKBm3wmmkAq8153NWjgZQ7HlMYdBpOG5DBvK0lOJwu7we7vN6GVqOQbDaIQKrFrGaGOYPiBhHUqarKh6sOMiI3if7dIk+fm/VaimvabwUeDLvTRZ3VQZ3VTp3VQW2jnVqrA4vbmtulqqiq6v3epNMSb9IRZ9IRb9STZNaTkWDs1P5Hxx2Zg+CCf4tMWsGU0Nv3Ps03y9ZYLaQmBVM6LCl5Yf4uNh4Srm0Wm6NDF9t3l++jvL6Jl68aGbH0IZxMmsXmDMs0xEOPZDMr91ZSbbH51LnVNjq8jqwgakeNWmMbaUtGC6ncVHehdVqckQ9vHc/N76zmujdX8vhFQ7l0dE6bc3sMOUJJFcf1TOHpOTt4Y/Febp7k++AabjYuXIb2SOLH+ybjcKneptZnDurGmYM6tw+QRqMwKu/Iut/dcFJPhmQncvEry3h76T5+NVXIcivdRjJHqiYNxOfL831LUr1Bmm8mraHJQUpsaFc5k16LSxWF/Sa9Nuwm2C2JM3ZSkAaQM144wH71GyHvVl1isqkrZdHAnRVC1ApnjfBd53KKwLLPGYEn0U5EsobDXSvbLl//gahJO+vJIz6kaHJKjxCtEY4xft5RRnGtlT/NGBjRfkadJqS7o8V2fGbSZJB2jDF9cDe+WFfEyn2VTHTXVpTViVoCjUYhrpWd8iPjH8GoFTfhzUW17Cqt54mL2te7xGzQ+rVqDobN4aKoupGDVRaKqhspqrZSXGOlqKaRklor1RYRlDVGKUOXbNaTmWByfxnplmAiJ8VMr4w4eqXHHRFnt2OKoZdGtv3M/4jZaYCv7oLqAzDl9x0awrqD1by0YBepsQYqGmwd+izUNzl45ac9TOqTxtiekT+Qe2rEgvVKCzfD4OGuU3tzz4fruOClJbx+3Wh6Zwjnv7omO/1imvuFlTSUkGHOaBNYetz1dBrFJ1DKSTHz6Z0Tuf3dNTzyxSaG9Uhq03+sNsws2J1TerO5qJbHvt3K4OxExhc0ZyCbm25H739HURT02uOrdiAQo/NTOKl3Kh+uOsCdU3qhKAoVDTYMWk1EgUx7yYjNIN4QT53Nf3PtpBg9GqU5u+chXIdGs3tCpdEmaqU9NWmRtFOIM+ooqvbfrqDDjLoeKvfAzrlgqRANmifdD/mTOud87SXVHaRV7IZuw6C+GOK7i+utywmn/kFI0iXBsVtFS5ghlxzzctAtFVtIMaUcN42sZ60+SGqsgdMGhO5Z2hKjXhuWu6NZZtIkR5tT+qZj0mv4YVOxN0grr2/ySlZE3VjzjGTLf+7D7p49A7u3r7G12aht8wCtqiqr9lVRXGulptFORX0TBytFUFZYaaG41kpLZ2dFEVmArEQT+amxJOcYSIjREW/SE2/SkeB+jTfpSYjREWsQ7neKAhpFQaOI7612pzvz5qC+yUFVg42SWivFtVZKapsorbOy9XAt5fVNPudPjzfSNzOOIdlJDO2RyNAeiWQnxRx3xaadRsvf06jroe9Z4mbYThptTu79aB2Z8UbuOrUPv/98Y4fkjm8v2Utlg437zmyfpXacUYdGCW4cYrGFL3cEOHtIdzITjNz27hpmvrSUj++YQP9uCdQ2+j4El1hKvG0zWrPowal+b0BxRh3/unw40//1M/d8tI7P7pjok4WsDdPaXqNReOqSYWwvruPuD39hzm8nN0s/vZk0ebtoLxeN7MG9s9azZFcFJ/dJo7LeRnKs/ohcdwamDGTpFUsDrtdoFFJijd7aZg+R1KSBqAlJprnfWaRBWkh3x/ZijINzn/FdNuiCzjlXR0jpBRe9Ifp67Z4P710krrHnPCP6cI285miPsGvy3UOiNcPFb4qfd/4gMqUDzzu644oCt869lbPyz+Lh8Q8f7aF0mPL6JuZtLeHaCfkYInRgNOo0NIUyDmllqHe8IO+6xxhmg47JfdP5dlMxj5w7EL1WQ3l9E2luSVSswVc2srdmL69ueJVbht5CQ5N7mwikWq3PbWl1I117oJpL/7PMZ1lmgpGcZDPjCkS9SU5yDDkpZrKTYshMMEX8D9oR7E4XhVWN7C6tZ1dZPbtK69leXMcbi/dgd4roLTXWwJAeiQzNTmRojySG5SS1cWOT+KH36R0+xD++28qe8gbev3mc15SmvZm0mkY7r/68h9MHZDA8J6ldx1AUhYQYfUjjkKykyLJKo/JS+PKuk7ngpSX86r21fHnXycI4xKTHYrcwe89s9tXuY3z38X73zwnQ6BPEpMdTlwzjxrdX8ZsPf+GVq0d5a0wjkSrGGXU8d/kILnh5CY99s5UnLh4qjhGmZFISmLOHdOepH7bz1A/bmNDrJKosNlJij8w1RlEUnC4nX+3+iiRjElNzp7bZJi3O4CN3VFVVBGlhfG5i3BMWnskVTw1jnDH8z0usURe6T9rxjt4kHBsBYlKg3zmw5m3hRJk1Aib8GmIjq7E9IbDWwP4WzyAbZkFsBuQf21JBVVVpsDcQZ4g72kOJCp+tLcTuVLl8TFtZfiiMeg3WMCz4046AEdORRgZpxyCXjMrhh80l/Li1lOmDu1Fa1+SVUJmNWm8PHgCLw8K3e7/l+kHXU98kgrNICrpbIpqWima6nodAj2nJq9eMYnhOEolmfZeqC9NrNfRMi6VnWiyn05ylsNqdbC+uY0NhNRsKa9h4qIafd5R5s24902IZnZfMmPwUxvRMIT9IHw9J+/h5Rxn/XbafG0/qycTeaV7X0vZm0t5YvJdaq4PfntE39MZBSDDpgxuH2CKTO3rITorhucuGc9UbK9w9u4QMce7+ufx1ubACH5AyoF1jntovgz/PGMSfvtrMX2dv4U8zBqIoCjWNdrQaJWwZyJAeidwyqYBXftrNecOzOKl3GrXtkK9JfDHptTw0vT/3fLSOlxfsoqLBdkRMQzy8uelN5u6fyxX9r0BV1TbXstQ4g4/csdHuxOlSw7pXeOpAPP+37ZI7dpZxyLGK3gRXvA8rXoXvHoA9C6HnKdI0xB8pvUQNmrUWjPGQkCUamGuP7euVzWXD4XIQq/fvtn0s4fFDGJWXTJ/M+NA7tMKk04aVSZPGIZIuwZR+6XRPNPHeiv2cNiCDklqrtx9TrFHHwUqLd9tBqYNYdsUyjFojcxu3AZEVdLfEW3tgd3qP4ZGFDcxKIKMTndmijUmvZViOyJp5sNgcbC6q5ZcDVazcW8XcrSV8vEb0b0qLMzA6L4XR+SJwG5iV4DU9kEROtcXGA5+sp3dGHA9OF9LEmBayqUiparDx5uK9nD2kG4Oy2ifn9ZAYow9ak9bQ5MQcgdyxJRN7p/Hb0/vyzNwdgHB/PNxwGICFly4kNab9M+XXTcznYKWF1xfvJTPBxO2TC6htFI2sI5lguOf0PvywuZjffbaBH+45hdpGO0adpktNvhyLnD88i7lbSnhp4S6MOm1E/fs6yg2Db+DSfpcSq4/1+1lIjTX6tHOIpNeZV+7oVlnUNzlQFCKqD4kz6GhyuLA7XfK62pJxtwqzkP1LoOeUoz2arkn+SYAC78yAK2fB2U8d7RG1m7eW7OWTNYXM/vXJ3lYsx0OQtnp/FXvKGnjq4vY56xr1mrCaWcfoj7+Q5vh7RycAOq2GS0fn8NyPO1l3sBqXCtlJIkCK9dPLzKw38/Dih1lwaCUa5Z52O+CY3Tdsi83RHKS5pS3hyGK6OmaDTmTO8lO49RRwuVT2lNezal8Vq/ZVsmpfJd9vLnZvq2VEbhKj88T2I3KT2pVdOVH5w5ebqai38cZ1Y7w6cs/n0tqOTNq/f9pNg83BPad3LIsGIrtVG0R6JSz42x+w/PrU3hRVN/LhqoP0zojjsDOLM/LO6FCA5uH3Zw/gcK2VJ77fxq7SerekMrLPpUmv5YmLhnLpf5bx9A87aLQ7pNQxCiiKwl2n9uabjYex2l1HxNnRg06jw6QzsaViCz3ie5Bi8jXVSY0zUFRtZcG2Uib1SYuorqz15EqdVdwfIpkY8GTsGpocPg6oEiClp/iS+CdvojC0+uIOUY828tqjPaJ2YbU7eWnBLsrrbaKvpk5Mth8PQdqsVQeJM+o4Z2j3du0fbk1ajOH4m+CRT5XHKBeMyOa5H3fy6s97AMhOEjUrZoN/2UiKKYUGZwWxhvZ3ZDe3krUA1FrFrGk4BebHGhqNQu+MeHpnxHPF2FwAimusrN5fyWp34PbC/J24VNBqFAZ2T2B0fjJj81MYlZ9MRvyxk1k8kny1voiv1xdx3xl9GZzdnPXyBGmRNkzfU1bPW0v2cvHIHvRth5SiNQkmPaW19X7XuVwqjXZnhwJyRVF4/KKh/H3mELds+DzO6xWdIneNRuH5y0fQKz2OF+bvRFUhJyVyy+6xPVO4Znweby3dS1qcUZqGRIkB3ROYUJDKsj0VfnvSdSaH6w9z1bdX8djJjzGj1wyfdWlxRmxOFze8vYqp/dK9bRgidXcEEaRF2q7B8/9UZ5VBmqQdDLsM8iaA9titJf9qXZHXvGdzUQ153Y+fTNqe8gaG9khstwLFpNdS1cp9tjUWm6Pdx+/KHH/v6AShZ1osg7MTmLulBIAsTybNKDJpresOMswZuLATGxP8gx4Mz824pQ1/ndVOnEHntQk/3umWaOLcoVmcOzQLEO9/7YFqVrszbR+sPMBbS/YBkJ9qZnR+CmPzhUyyZ5p/qdGJRHGNlUc+38iI3CTumOIrfWgpp42Ev87egkmn5cHp/aMyxgRTYOMQz9jaa77TEk9dp78aoY4e994z+jIyN4lb313D+J7ty9A9OL0fP24toajGSl4Q4xJJZPzl/EGc+ezPTIiw0XpH8fRIK7GUtFnXUpq4YHsZS3ZXkBJrYEx+6DYWrWvS6qz2iCX1nkm+TnN4lBz/JOUe7RG0G1VVeX3xHvpkxLGnvIHNRbWkpokgLU5/7BuHhNtzMRBGXfBm1i6XitXuku6Okq7FjKFZbDpUC0BWUnNNmtOlehuLevDcoI0x/jME4eCROzbam2+ktY0nthQq3qRnct90b32JzeFic1ENq/dVsXJfJT9uLeETd11baqzBW9M2Oj+FwVkJ3obkJwKqqvLAJ+uxO1WeuXR4m/ducj8ohmpa2ZL520pYsL2Mh88eEDVHzqRYPSW1TewoqWuTmfM8REZzxm7ap9M4p+Ac7h55d9SOCTClXwYb/nQmmnYGgPEmPa9eO5oF20q9TbQlHadvZjw7/37WEa+9MuvNxBviKbWUtll37tAsqhpsXH9ST0b+dS42h4tfn9U7THdHX7ljfZMjYnMqTyYtmMOjqqrsLK2n2mKnwebA0uTEYhM9Ni02JznJ5nbLqSSSo8mineXsKKnn6UuG8erPu9lcVMvoAceP3LHR7uxQiYBRpw36XOAJ4GQza0mX4pyh3fnHd9tIizN4AzJP/yaLzbdnhKf/ksHov6FpODQXiPtm0qTrWzMGnYYRucmMyE3mllMKUFWV3WUN7kybkEj+sFnMZMcZdYzOT2ZCQSrjC1IZdJwHbe8u38+ineX89YLB9Exre+OJVO5otTt59OstFKTHct3E/KiN88qxuXy29hA3v7Oar+86mURz84OqpSl6mTQQD57Te05nUOqgqByvNR2dWRycnegjSZVEh6NljpFpzvQbpKXHG7nX3VvwiYuGMG9rKVeOCy8zYfZa8Dcbh0Rab+cJ6oI5PM7bWsot/10d9Din9D3zuKiPlpxYvLF4L+nxRmYM686SXeUs3V1OvV20xDgegrSGJqd3kr89mPTBM2kW7+SpDNIkXYgeyWbGtpKjNEsSfW+UniBNq69t9/k8D9Et5Y617l5PEv8oikLvjDh6Z8RxubuuraTWysq9lazYW8Gy3RUs3F4GCMnPmJ4pjC9IcQdtiV5J3LHO7rJ6Hvt2K5P7pnN1gIc/vVaDXquELXd8Zu4O9lVYeO/mcVHtvZeXGssrV4/k8leX84cvN/H8FSO866KdSVMUhXtH3RuVY0kkocgwZ/gN0lpy2ZhcLhsTvnSs9eRKndVBboTyWI88MliQVlTdCMArV48iI8FIrEGH2aAlxqDl5x1l3DtrPYVVjQzoLu9HkmOHHSV1/LSjjPvP7ItRp2Vg9wQ+/+UQPcz9+NOEP3lVUF2N7cV1JMfqw6q9t9g6ZrYVKpPmeWaQmTRJl+PfV4/E2aIAPTaAtj/NnAaqgqKrafe5mmuGfOWO3ROlQUYkZCaYmDEsixnDRF1baZ2VFXsqWbanguV7Kpi/TTxExRt1jO0pArbxBakM6B5/TGbaHE4X985aj0mv5cmLhwatvzLptWH1SSuts/L6oj1cMTaHk3qnRXO4gGg+ffvkXrwwfxe3TCpgSA+RTfI8iMZGKUhrcjbhdDkx62XNl6TzyTBnsKtqV1SPqdUoGHQa74NSnTW8Jtgt8QRpDUGCNE/vwtMGZLTJRGa75f6VIcwFJJKuxpuL92LUabhyXB4Ag7ISAKipTeTivhcfzaEF5Mt1h7j7w3WMykvm0zsmBt3W5VKx2JzepvftIVRNmueZQfZJk3Q5UuN863CS3NKsinrfm5Veo0dxxaEa2h+kxRqbpZQe6prs9IvpuKPeiUxGfKugrdbK8r2VLNtdwYo9FfzoDtrijDpG5iUzNj+ZsT1TGdoj8ZgolH1pwW7WH6zmxStHkBmil57ZEF6Qtru0AZcK5wzJitYw23DrKQX8b/l+/vDlJt65YSyJZr33IdIcJbnjggMLeODnB/j8vM/pndw7KseUSAKRYc6g3FqOw+VAp4ne7b/l/219U+QS+JbujoGotdoxG7R+paIe1UiFDNIkxxBldU189sshLh7Vw/sZzk0VE3ZbSveSmlraaVL49qKqKk98J3rurtlfxeGaRronBnYQ9pptdSCAMum1wYO0EzmTpihKDvBfoBvgAl5VVfU5RVFSgI+AfGAfcKmqqlWdN1RJOOSnCv3yvoqGNhkG1ZGIw1jd7mPHtLJaBpFJkzVp0SUjwcR5w7I4zx20ldRaWb6nglX7Klm5t5Kn5wh5pFaj0CcjjsHZifTOiCMvxUxOipnkWAOJMfoOtVuIFhsKq3l+/k7OH97siBmMGL02LLnjwSpRVN0ee/lwiTfpefT8wdw7ax0zX17CJ3dMjHomzeO0l24+co2NJScumeZMXKqLisYKMmMzo3Zcs164CtudLqx2V8Tujs2ZtMD/+zWNgaX1ngfcyvqmiM4rkRxN3li8F4fTxc0nN/fB82Shl5R9wTsHFrDsymVHa3h+WV9YQ1GNlbum9ubFBbv4ZsNhb8sOf3hLBDpQk2bUaXC61IDN7j335RO1Js0B3Keq6lpFUeKBNYqizAWuB35UVfVxRVF+B/wOeKjzhioJh24JJow6DfvKG9qss1ePJj+tW7uPbW5Vk6aqqrtZrqwB6EwyE0ycPzyb84dnA1DVYGP1/io2FFazobCGhdtLvQ6S/kiNNfB/Zw/g4lE9jtSQARHM//ajdaTHGXn0vMFh7WMKM0grrLSgUZpdTTuLGcOyyIg3cs2bK/n1B2uZ4Q40o3UzKLWUYtKaSDAkROV4EkkwPPUtpZbSqAZpMe5MWrk7SEoyR3ZP0GoUYvRa6pv8t74Aj5Ow/0eWJLMBRZFyR8mxQ43Fzv+W7+fsId0pSG+22fdMWBQYT+eOsecereEF5LtNh9FpFG6ZVMBX64tYeyB4bsZrttWRmjS9CMyaHP6DNM8zg+lEDNJUVT0MHHZ/X6coylYgGzgfmOLe7B1gITJIO+poNAp5qWb2llt8ljc5nFgrxzMwsQf7avaRHZ+NXqOn2lpNdVN18/6Khh7xPdAobf8RdFoNBp0Gi7smrcHmxKUS8MYp6RySYw2cMTCTMwY2P2TVWe3sr7BQWNVITaONaotd9MsDnv9xJ1+uO3TEg7S/fbOF3WUN/O+mcT4OicEIV+54sEpILI6ES964glT+dsFgHvxkA0XVVgC/zaxVVaWwrhC9Vk+3WDEZUlhXiFFr9GbKDtQewKU2yzb21+4nw5xx1DOekhODwWmDeWryU2SYM9hXs48McwZmvRmL3eJjKJIWk0acIfz+TCaDgyr7Ib7f7kAxlJGeUsu+mn1ttmt938lLyENRFMobyzHHVVLcqGFfjf/6zDLrQeJN/jPOWo1CUoyeSosM0iRtqbfVU95YTnZcNnqtnpqmGqqsoYVfrbfPTchFo2ioaKygzhbaKbvl9g32BnIThCFPmaWMf/+8hQb1MDPHZrf5X4mNraTRls3E7OD1XkcaVVX5flMxE3qlkmjWk5tiprjGGnSf5ixXR9wdRfDVZHf6zdI3nuCZNC+KouQDI4AVQKY7gENV1cOKonRNC5oTkPzUWPa2yqR5sl+HbMuZ8cWLzLt4HpmxmXyw7QNeXv+yz7b3j76f6wZd5/fYLR+i69wNf6Xl8dEn3qQPaJf+y4GqoLUencEPm4t5b8UBbjulgJP7hG/sEWMIU+5YaaFHcudm0Vpy6egcFm4v5duNxYD/m8Gs7bP424q/MSpzFG9PfxuAO+bdQf+U/jw1+SlxnNmX0mD3/d8c33185w5eInGTFpPG9PzpbKnYwmWzL+P5qc8zNXcqq0tW86sff+XdrmdiT7664Kuwj1se+28OKDvYuBXiesGDy/1vN+eiOXSP685H2z/ixXUv8ss1v6BTdLyy/hVs3T5iYQMs/CLASQwwRv9awDEkmw1UWQJn4iQnLj8V/sTvFv2Ory/4mvzEfD7f+Tn/XPPPkPu13n7FlSsw6828sekN3t3ybsj9W27/2c7PWH6l+Mf4x4onmFvyA3G94J4lbffT5MKcGhNPsiri99qZbD1cx/4KC7dP7gWIVjRldcElxh57/I60rTG63ZutAerSvMYhJ2JNmgdFUeKAT4F7VFWtDXfmV1GU/2/vvuOjru8Hjr++t3K5XPYiCSPsEQhhL5UACggIOHGh2J8LrbVardbaSq0DW9uqpdVaxVGtte5RtQKKCiJILCJLkD0TCJBxl+TW9/fHDTJuJVxyl+T9fDzyILn7js/d97jv9/19fz7vz/XA9QDdu7ffGeHbk/yMBFZuP4rLpaLxlHD3ThLaP3kYk/svJinO3b1qSo8pvrs7AA+ve5jdFbsDbtuk1/oCvsoa9zalu2NsSzTqOBziblckHamo5a43NjI4L4mfeeZeCle8XssJS+gLrX3HrZzVr23Hcf12zmDW7jrOCavNd9Kob2fFTkw6EzcU3uB77I6Rd5BoOFVYZ9H4RThdDYPQoZlDW6/RQviRZ85j8ZmLGZg+EID+qf1ZfOZiAFbsW8GKfSuaVVxkmP5uvj76GUaDO1haWNzb73LJce6bSJO7T27QY2Nun7ms+J+JRKOOGyb6X/f+9zeTlBV4/rUUk56TkkkT9RysPkhFXQWFmYUsPnMxGfHuG4ZndT0rrHHAjZfXa93XOrN6zfJb0ONoVR2PfLSNS0d1Y2R+WoPlCzMLfculOCZRczCV287p66sjUN9DH2wlJyn25kf7cNNhNApM9fTiSYjTBZ02A9w9ruD0MmlxulOZNH98hUM6ayZNURQ97gDtZVVV3/Q8XKooSo4ni5YD+J18RVXVp4GnAUaOHKn6W0ZEVn56AjaHi0MVNXRNdXcd8f5H6p7Ujem9RvuW7Zfaj36p/Xx/v7jlRV8xA39McTpfCf5TmTTp7hjLzHE637FqbU6Xym2vbqDO7uKJS4c1e/6yeIMuZCat1u6krKqObqltW7Y+3RzHny8fxpqd5X67J5ZaSslJyGFc7jjfYxO7TWywzPT86a3eTiFCSY5LZmavmb6/sxOyfX9b7BaW7V3GsZpjvm67oVw8sjsfveAO+C6b2o+ZvfoGXb5val/6pp5aZnDGYLK1VbjqYGavcX7X+UVFHXW527HaB/idsiLVZGjTm1Ei9r2x/Q2WblpKyZUldEvs5nu8V0oveqUELnbRWOPlB6UPYlD6oCbL/fz1b6k5EUeyqy8ze/Xzu7zTpfLReiMjMyZz8yj/n/VnNCnE22PvuurDTUcY3TPNV1XcHKdrMt1TY9a6059o2lhvTJo/HTmTFvIKSnFfjTwLbFVV9Y/1nnoX8PaJuxp4J/LNEy2R7ynhuqfeuDSLL+Uc/D9+likreJBm0Pr6GFd6LvyT4iWTFssSjXpfJrW1Pf35LtbsKuc3swsaDIYOV7xeE3JM2oET7kltW7OyYyDje2cEzA5GuhiDENGQbXJ/hkNNeu218+RO3jn8EF2zTgIwumd6i/ZrjtNTFeCuvMulYtVuZ5XlQQ5WH/S7TIrJIJk00UCptZRMUyZaTfCL9wqrnU0HWz49EcCBE1be/Mb92TwRpIDN6h+OcaiilivH9gi4jDlOR2UbD1EI5YeyKn4oq+bcwTm+xxLidEHnNoRTmbTTqYjszaQFmtC6I5fgD+c29wRgPjBZUZQNnp8ZwGLgHEVRdgDneP4WMSA/w50m332s2veYN5MWKkjLNmUHPTnH608Fad5xTpJJi23uu11OnK7wEtlf7jzG4g+3YQsyL4k/3+w7wR8+/p6ZQ3K4eGTLipSEU4L/0El3kNa1jTNpoZRZy3zV84Ror+pXgAxHla2K/VX7uGJsN3plJlDYtem42HCY47QBL/iqbQ6clp5clPMQeeY8v8ukmvQyJk00UGotDfmdvPuYhaH3f8ysP6+i/DSmcPjbZ7tQFHe322Cfw3+v30+KSd+g8FdjSUY91W3U+yVcH3rGY08rOJVdN8fpsDtV6hyBz9lW2+nPLeodXhAok2a1OTFoNejaoJBYWwunuuMqINAAtCmRbY6IhC5JRvJS4nm95ABXjnVXz/JmUhJDBGldErpg0BiwO+2+/tT1mQxajnq+yCprpLtje+A9PtV1DpKDZD0rauz8/r/beOmrfQD0zTJzYZgVIcuqaln4Ugk5KUYeOn9Ii6sVxht0ITNpJz2fu9RmlvluTQ6Xg2O1xyRIE+2eNxscrEdFfUVZRbw15y0AFp5GMbpEo97XO6Oxyho7qtPMwNRCv10dwV31tsbupNbu9FWDAyirrGX+s+uosTvRaRX0Gg06bdPvJ7XRPSwVdzU773MuVfU9pigKOo2CTqug02h8v+u1Gox6LeY4HQlxWhLidJgNOkxxOoZ1T2F499QWvTeiZcqsZfRJ6RPw+fLqOhY8t+7U3xabrytfc5RW1vLq+v1cNKIbWw9XciJARveExcbHm0u5fEx3X3bIH3MYY73a2oebjjC8ewpdko2+x7xl9S11zoCvx1IXgUyat7pjgCDN/X++4wVo0MzqjqJ90GgUbp3Sl5+/sZFPvy9j8oBs3x3KUJm0a4dcy7VDrg34vClOh/W4uxvlSc/dopT4wIO5RfR5g7SqWrvfIK2sspaX1u7judW7qa5zMH9sD/7x1V5Kq8Ib32FzuLj55W+orHHw5k3jwy6370+8XovN6cLhdAW8K1YVg91sj9Ucw6W6fF3FhGivUuNSGdNlDKlxbRtQpCYYqKix43SpaDUNg6iKGjto6thh/Yz9lRPpltStyfreudlOWu10ST51wfh9aRXfl1ZxVr9MEo06HE4XDqeK//tIDR9UFPcjGkVx/66AgoKKisOp4nB5fjzbrHY4OFpVh8XmwFLnpLrO0aBHwuQBWdwxtT+DcmVexLZQZi1jfK7/Owe1difX/6OEwxW13DqlL4+v2OG78dxcf/98F06XysKJvVn03mbKApw7P9p8BJvTFXI6nESjrs0rMgezt9zClsOV3DtzYIPHE3yT0Dt8E8o3VmNzoCicVhDlq+4YoJeN1eY4rcIksaxjvirBBcPzeOSjbbxRcpDJA7LD7u4Yikl/qgT/Casdc5yu2cUhRNvyTpFQ/86cqqo89dku/rv5CBv2nwRgekEXbpnSh0E5Sbyybl/Y49ge+M8Wvt5zgicuG8bAnNO7+PAOLq6xO0kMEKTFYlVRb9cwCdJEe6coCs9Meybs5f+4/o8crD7IH4pDlzQPJs2kR1XdAVnjC77KGgeKpoZ/7XmEgbkmv0Faqsm9zgmrrcHdfu/32D0zBjCgS9sHR3ani8oaO/9ef4CnPtvJjCe+4InLhjF7aG6bt6UzsdgtWOwWv9/JLpfKz177lpK9J/jL5cPJS43n8RU73DcDmqm8uo6X1+5jztBcuqebSDHp+f6I/znUVmwtpWtqPAUhgnSzUYfVM0Sh8Q2LaHh3wyEAzh2S0+Bx75xlwbJ+FpuTBIPutOYCDVk4xO7qkJUdIbwxaaId0mk1zBiSw/KtpVTXOeqlnIN/kI/VHOOWT25h9UE/k3fgvoj2ZuVOWG2+u5cidnm/SOvfmTtSWcsjH21j44GT3DG1H8tvn8hT80dQkJuMoiiYjeF1t3jmi128uGYv153ZMyIXHcZ6QVoglbV29Folpro3xGnjmNRtUoPpLIToDLaUbwm7a2QwqZ7A7Lil6bigylo7qsv9fON5Br2856LGXc2833v+JsFtC3qthnRzHAuLe/P5zyeRlmBg9Y5jUWlLZ+L9TPrrgv7kZzv5z8bD3H3uAGYW5pDk6W0SqLttMM+u2k2tw8lNk9xTR6SZDAG7O+4ttzLYc44NxndjNQayaaqq8vaGg4zumUZeSsNiXfUzaYFYbY7TDqBCluC3OTtk0RCQIK1Dm1OUS53DxbItR7DYHMTrtSEHVhq1Rg5WH6TaXu33eXcJfm8mzea7eylil29MWr0vfO+X6mOXDuPHk/vSJ6thJcZw+sT/a90+HvjPVmYM6cLd5w4Mumy4vF+0tbbARUsqa+wkGfWndWcu0vqn9eeJyU/QM7lntJsixGn7/de/Z97788JaNpziDOFI8wVpTS+UK2vs4HKPFQp0bvKei042KtrgrRiZGAOZ9+R4PTnJRt+4btF6vL0bGn82Nx2s4I/LtjOrMIcbznKX1fcOA6hoZuGZ4xYbL3y5hxmDc+iT5Z4PMzXBgNXm9Ns1z2pzhtWbyVs7oKou+sVDNh+qZOdRC3OLmhbsSQgnk1bnDJkcCCVOH2Iya/vpB4KxSoK0Dmx491TyUuJ5d8MhqmodYX05mA1m3pz9JtPyp/l93qTXYneq2J0uTlgkk9YeJPq5S+it0GkKcPfJHKcLehfv+dW7ufvN7zirXyZ/mlcUsS4Z3u6OVnvgfVfWOmJqPBqcKjAgREfQL7UfY3PGhlxOVVVKraUR6eZ7KkhrmoVwd0PTYtQasdj8Z9Lqd3eszzuGNVqZtMayEuM4WiVBWmvz1wXd4XRx1xsbSUsw8ODcUwWuvAF8c8ve/+2znVjtTn569qk5/wJ9DsE9FVJCGFUOT40jj34m7Z0NB9FrFWYMaTpnotmXSQte3fF0x4t5M2nPrd7NRU9+2aRbao3NeVrzsMUyCdI6MI1GYdbQHL7YcYwDJ6yYT6MEqle8r5qPg51HLfT0lPsXscsc13RMmvdLNVBZ3GCZtN99tI1F723hnEHZ/P2qEUGrVDWXN5MWrMKjO5MWGxdcXveuvpfL3r8s2s0QIiLm9JnDbSNuC7lctb2aGkdNRIM0fxe3lbXu4gMJ+gQsjuDdHRtn0qprHSQYtDExtgcgU4K0NjEyeyQPn/lwgwnZl67ezeZDldw/u6BBgSuDTkO8XtuswiFllbW8sGYP5xfl0Tc70fe4t+rwCT8ZYWudM6yAxWwMnaFqK1/vOcHIHmmk+Ok15Q04q4Nk/Cx1zrAC02C8Qxt2HbWwfu8J3t3QcK5Eq61hRdeORIK0Dm720FwcLpUvdhwLu2jI4nWLuX3l7X6f837BbDtSRXWd47QLRYjW5++uXI0nUxXohGE2+p+k0u508fcvdjFjSBeevGJ4RAM0wPdFG2pMWqxl0kZ3Gc2UHjIjieg4bE4bdlfwi9ZAXcpawpuB8JdJq6yxkxinw2wwB8ykGfVa4vXaJhMJV9U6fBe9sSAzMY5j1XW4wpy3sjOzOVwsXbWbkr0nmr1urjmXWb1mYdC6P1cVNXaWfPIDk/pnNimAAe4uj80pHLLk0x9wOFVurZdFg1NjKxvfbLA5XNicrrC6/nkze1UxMFeapc5BaoL/8+2pwiFBMmn28ALTYAyNhum8sm5/g94rtXbJpIl2alBOEr0z3dmucIO0KlsVn+77lLlvz+WHEz80eC4v1T1w9L1v3dV+JEiLfSaDFo3SeExa8EIyCXE631iO+nYdtWB3qkwr6NIqE0f6qjuGzKTFRpC2t3Ivd352J7N7zw46dYUQ7cm3R79lxEsjGP6P4Tzznf9Kj89+9yzXf3w9EJkgzajXYjJoAwZpSfH6oJk08D+hdXWdIybGo3llmuNwuFTffI/CP5vDxU0vl3D/+1t49L/fN2vdNYfWcMOyG9havtX32NOf76Sy1sGd0wb4XScpXhd24ZB95VZeWbePi0d2o0d6w95EgTLC3nOaKZxhJ36KfUWL1RY4yAqrcEhdeF08g6k//vy3cwez5XAl3x2s8D123GKLmWuCSJMgrYNTFIU5ngGf4abyL+53MVN6TGFnxU6+KfumwXOj8lPRaxVeXrsPjQL966X5RWxSFAVznK7BXTnvCSPQYNvEAGPSth2pBGi1UtbxYVV3dJAUHxt3xjeUbeCjPR9xoPpAtJsiRMQMTBvIZQMuI9uUzbK9y/wus3zvclDg0v6XMiRzSET2m2oyNMmEgSd7bnQHadU2/4VDAFJMBk42ujiurLXHzHg0gMxE9/QA0uUxMIfTxS2vfMPyre5M7YGT1matnxyXTJoxjb2VewH3e7101R7OG5obcI66JKPeN71LKA9/uBWdRtNgLJqXr8poo8+xxeaZBimMjE9SDHV3tNgcAdus12qI02lCVHc8/UwawILx+fxt/gjmFOUSr9fyyrr9gLvYS2Wtg+5p/ie5b+9i55tLtJoLhufxx2XbfRMChlKUVURBRgHL9i7zdWfxMhl0DOueyrrdx+mZkdBhK+p0NIlGfYPM2KkTRoDujnH+uztuOVyJQauhV2brjEUMf0xabNw18/7/yIzPjHJLhIgcg9bAPWPuoc5Zx+cHPve7zC3Db0GraBmTMyZi+003Gzjub0xajfvGTII+gSOWIwHXT03QN8lguDNpsXOpk5norlJZVlVL/y5yk7Mxp2cOs/9uLuW+8wZRXm3jyc92Yne60IfZe2NQ+iAePvNh399/+fQHbE4Xt5/TL+A6yfF6Dlf4n4S6vuo6Bx9uOsKNE3uTnWRs8vypwiENb4pbPefcsDJpMVQ4xFrnDNrmUJWgLTZHRLoiLppd4Pt9ZmEO7244yL0zB7KjzD0nXUetjyCZtE6ga6qJpQtG8uSVI8JeR6/Rk25MbxKkAZzRJwOgw9656IgSjboGX/jWEJm0hDgdFs9kmvVtO1xFnyxz2CfL5gqVSau1O6lzuGJmTFqptZQkQxJGXdOTtRDtXZYpi/Kacr9j08bnjo9ogAaBM2nHrTZS4g38dPhPeWDCAwHXd2fSGpXgr43NIE0yaU25XCr3vPkd72w4xF3TB3DNhJ50TzPhdKkcPhk6gAJ454d3mPf+PKps7ov3Ayes/HPtPi4Z2TXohXxSvD6s7o7ecWs9M/xf/+i1GhLjdE267YY7Vy24b1ZqNUrU50kLZxxdQoAbul7hFktpjstGd8Nic/L+xkNsOezu3VOQ1zGH3kiQ1klMHpBNbqOJCEPJMmX5DdLOHdyFrqnxzB3WdN4MEZsal9S32hxoNUrA7Kr3osabcfPadqSSATmtd/c3VCbNG2jGSnXHMmtZRMbjCBGLskxZqKiU15Q3eNxit7Dq4CpO1Da/oEMwaQkGjlbVsefYqXFnTpfKvuNWeqSb6J3Sm/5p/QOu76/4Q3Wtg8S42LipAxKkBVJRY+fGl0p4df1+fjKlLwuL3ZNDd093B0N7jwcei1jf7ordbD++nQS9OyB7fPkOUOAnU5p2TawvyagLa0jIqSkdAn+mUhOaTmjtPZeGE7D4G6IQDb5xdEHanBCnC1g4pDnFUppjePdU+mSZ+ff6A2w+WEmqSU8XP1nNjiA2rnRETMoyZbG/an+Tx/tmJ7LqrslRaJFoqUSjjmPVp04aVpsTk14bcELo+gOCvV0Lj1tslFbWMagVi8WEqu7ovdMZK5m0MmtZRMqPCxGLvJ/tI5YjDUqZ7zy5k4XLF7Jk8hImdpsYsf0lGnUcqqil+NGV/GZ2AVePz+fQyRpsDhc9MxL4/vj3bDq2iQv7Xeh3/WRPNkRVVd93W1WtPaaqOyYY3FUo/QVpSz7ZwbFqG3kp8eSlxpObEk9eSjwZZkPA7+r2SFVVyi02tpdWsf1IFVsOV/Lhd0ew2p38atYgfjQh37est8fOvuPhjUsrs5aRacpEo2j4oayaN745wI8m9CQnOfhN6uR495AAl0tFE2S6Bu+NwmDZWX8FbKzeTFqYRTQSjf6Ld7Ul37CIIG02x2kDZtKaUyylORRF4aIRXVn84Ta2Ha6kqHtKh/r/UV/sfHOJmJNlymJ96fpoN0NEgNmoZ3e9u9PufubBvng9A5drHZDsfuz7I+7uI605jsKb3QuUSfPe6YyVMWml1tKgd/aFaM+8QVrjHhV9Uvrw4rkv0iu5V0T31zfL7Pv96c93MX9sD3Z5vrd6ZiTw2YGP+PP//szs3rPRa5t+ByTH67E7VWo8Zb+dLhWLzRlT3R0VRXHPlVbdMEirczh59OPtftcx6DTuwC0lntwUIznJ8XRJNrp/kozkJBtJjtfHzIWqqqpsO1LF13uO8/2RKo5U1HKyxk5FjZ2TVjsnrTYc9brSJ8frmTwwi+vO7MXgvOQG2+qSZMSg1TQrSPP2bvjjsu+J12t9WblgkuL1qCpU1TlIDnIT0JvdChqkJRgor255Jg3wZNKiG6RZw2hzgp+unb717eEXS2muC4blsfjDbVhszla9cRxtsfPNJWLOBX0v4Iy8MxrclRTtU6Kx4eDeUHOX+AYu11un3OK+qGjtbgXxBm2QTJqnu2MMVHe0u+yU15RLd0fRYXk/200KSOlNDMsaFvH9XTq6O9MKurB65zFue/Vb1u89we6j7mqOPTMTGJA3j9m9Z6PV+L/o8968qaixYzKc+s6LpeqO4H9Ca29lwfvnFDCnKI+DJ2o4dLKGgyfd/x7w/Lvy+6Mcra5DbTTNWpxO4wvaGgdw2UnuwC7DbGiVqVPAPV54za5yPtlaxifbyjh4sgZwdyPsmmoixaSnX7aZ5Hg9qSYDGeY4+mab6Z+dSGZiXMBrDI1GoWtaPPvKwwvSSq2l9E3ty1e7yvnguyP89Oy+pJvjQq7n7Z1RWWMPEaR5M2mBl0kzGfihrGEVUu848HAzaUlGfdTHpFnCyP4lxOkCBtDe9SOdSQPISjJy1bgevLhmb5PAviOJrW8uEVMGpQ9iUPqgaDdDREBinM4X4IB77hLv+C9/zH7mP/FeRLT2nEOZ5jj2Bjghx1ImrbymHBVVgjTRYaXEpfDu3HcbdHUE+PrI1xyrOca5Pc+N6P70Wg1ZSUamFXTBZNjEW/87gE7jLsSQaY5DUYwkxwW+IPNeXFfU2MlJjvcFabHwfVFfpjmOnUcbXsR7u3Inx+t9P4HKxdudLo5W1XG4opbSytqG/1bU8s2+E5RW1GFzuhqsp1HcAWKX5Hi6JMWRkxzvCeCMvn9zU+IxhFkJuqyylk+2lbFiWxmrdhyjxu4kXq/lzL4Z/GRKH87om0lusvG0b/J2TzOFlUlTVZVSaynjcyew6N3N5KXEc8NZobNo0DDA7xZkuXC6O6b4KYDjPZeGnUkz6iirCq9YSmsJJ/tnNgQuHOLLxAW51jgdv5ldwJyiXIZ2TWmV7ccCCdJEQBa7hZLSEgakDZAL0XYu0ajD5nBR53ASp9NitTlD9DOv193RI5xuHpFwZt9MXl67lxqbs0n1yVgak1ZqLQWQMWmiw1IUhZ7JPZs8/uaON/mm9JuIB2leJoOO6QVdeP/bw3RNMzEgJxFFUdhXuY8Pdn/A+X3OJzuh6f87X5DmGQ/kK/IQQ90dwT2XVuPJrH03oML4btNrNeSmxActBqaqKsctNo5UNgzgDlfUcqSyll1HLXy5s7xJlzqNAjnJ8b7ALTMxjoQ49zg6vVZDWVUd+45b2VtuYXupO9DMTTZy0YiuTBmYxdhe6b6xxZHSI81Eyd7QRWqq7dXUOGrYfUTPtiNVPHXl8LCnCfL2zghV4TGcIC0tQY/F5vSdb+FUJi3ccvSJRh2bDtZhtTkiXh0xXKcqUoYoHBIg43cqk9Y6QZqiKIzokdYq244VsfXNJWJKqbWUm1fczMNnPsysXrOi3RxxGuoHXXFmLVa7M2iXDu/y9bs7Vtba0WqUiMx5EsykAZksXb2bNbuOMXlAwwsxbzYvFu6MD8kYwqeXfOqrIiZER/Txno85UXuCeQPm+R4rs5b5DZIi6cpxPXjzfwfZeriSq8f1AOBA9QH+suEvjOoyKniQ5gl4qsO4oI4Gf1UofV25I/TdpigK6eY40s1xFOQGzj5a6hwcqazlSEUth07WsO+4lX3HrZRW1rLlcCVHt7sDBe8QMqNeQ/c0E91STcwemsuUgdkM6JLYqkMispKMVNU6qLU7gwaA3m65n22tY8aQLkwr6BJw2caS63V3DKbKcx4M1hMlxTNX2kmrnewk93IWmwODThP29DXTCrrw3reHuOzva/nntWN8xbza0qm53UIUDrE5/RZcsYaYj1WEJu+cCKiruSv/OPcf9EqJ7OBw0fa8XRSr6xykm+Ow1jnITQ48tsxfd0fvfEOtPT5xdM80TAYtP/3XBrqlmbh/zmBG9EgF3IGiXqtg1Ed/9hCNoiEjPiPazRCiVS3fu5ztJ7Y3CNJKraUMSBvQqvsd3j2VnhkJ7D5m8XX7M+vdhUUsdv/l2H0X2p6Ax5v1iLUxaUnxemwOV4Ogwxu0JbfxeNuEOB29M830zjQHXEZVVexO1VdOva3HqKeY3Mf1pNVOl+TAAcP/Du0FIFmfwQNzhzSrnd7g2HsjMJBwzoNpCd4JrW2+Ca+tdc5mFdCYMSSHp64cwY0vlXDPW9/x2LyiNn/fw82kgXuce+P/Z95xec2d/kmcEv0rHRGzDFoDRVlFJBk6buWczsJXCMRz0WL105WwvgS/3R0dbZLBitNpGZKXTGWtg82HKvnzJzt8z1XW2EkyxkYVs2V7l/H3jX+PdjOEaFX3T7ift+a85ftbVdU2mx/wwfMHM60g25cR8WatrXb/45O8Xda8AY+3J0Brj6NtrsYZP4it8baNKYqCQafBHNf6N+n8SYn3ZKZq/FcRBNh/3MojH+xAqe3F4xdP8gVK4fIVDgnR3bG6LvTk6N6gsn7VQ0sLui1OLejCbWf3450Nh/jguyPNWjcSwsmkJfi5oeu1fu8J8tNNvrkBRfPF1u0lEXNW7l/Jv7b9i66JXYMud8+Ye9AoGj7c/SHfHv2W+YPmk2eWya5jRWKTIM0R9O6YQafBoNNQbatfOMTeZt2Gfj59AK+XHCDJqONvn+9i9zELPTMSqKx1tMl4NLvLzpMbnqTSVtnkuXRjOguLFrL28Fq+PPQl1xVe1+rtESJajDojG8o28P6u9wFwqk5qHDVtMhZzfO8Mxvc+la32BmmvbX8NFJieP73B8onGhsFPW42jba76QZo30xJL421jjff4vfnDK7j2HPU9fn7f8ylIL2Bb+U6u/Pej2OrO4NUr/sHAFpRkT4zToSg06YbaWFWtPehE1lAvk2Y5tS1rXfBx4IEsLO7Nh5uO8Nv3tzCxf2abZoXDyaT5hlLUOaj/jaCqKiV7TzB5gNQzOB2x9c0lYk5JaQmbyjexpXxL0OV+MfoXoMCmY5uoslVhdwb/ohNtK9FzUvFetFhtzpBjyxIbDQj2dvNoCyN6pDKiRyplVbUsXb2b51fv5jdzBnsyaa3fhq3lW/n7d3/HrDej1zQ8IXdN7MrCooXcO/ZenC7/UwUI0ZEcqD7Ax3s+9v2dFZ9FUVZRm7cj3ZjOwLSBbCjbwBHLkSZBmlajkGjU+bJSsTwmDRpn0hwYtBriwqys2JmYjTrQ1PLKziXE6+Ixat2B7bjccRSkF/DCV5uoMfyPu869tEUBGrhL/SfG6UKOSasM4zyYZjrV3dGrJZk0AJ1Ww2/nDubCJ7/kiRU7uGfGwGZvo6WsNgdGvQZtkMm9vZ/lKX/4jAuG53HRiK6M65XOrmMWjltsjPQMVRAtE1vfXCLm/Gzkz/jZyJ+Fvfydo+5sxdaIlqqfSXO6VOocrpAnDHOjudUqa+10TzO1ajsby0o0csGwrry0dh8zhuRQWWtvkzvN3sqNz09/Puhk1YHmaxKiI5nVa1ZMFI/Sa/X8+7x/89s1v2X5vuV+l6lflKOq1hGyyEM0NK5CCfi+22KhK3esSYzTodFVALBo3CJm9Jrhe27PMQuvf6lnWsFfuWr48NPaT1K8vsFUNf5U1zrICTKeG04VDqlfhj9UReVgRvRIZd7Ibjy7ajeT+mcxrnd6i7bTXJYQPW4AxvVOZ9F5g/hm30mWbSnlzW8OMqx7Ct1S3dcKI/MlSDsdcstGRNzuit1sPrY52s0Q9Xj7hJdW1Z7qZx4ik5bQaP4Tdyat7bvi3DtrIN3TTNz26gYOn6xtkzEbpRZ3kCZTTwgRexIMCUGLh/iqO9Y5ojaOKphAY9KS2rhoSHthNupQ9O6u542/kzcfqsTuVLmpuM9p78df1c3GwhmT5h2/d6JeEG6pO71S+vfOGkh+uokf//MbDnkmCm9t1jpnyPL5Rr2WBRN68sRlw/j6l2fz0PlDOHiihne/PUReSjy9MgIXpBGhSZAmIu73X/+e36z5TbSbIepJiNORlmBg//GaU/O1hPjyNRt1DebQidZFRKJRz6MXF3K40j2/T1u0oTCzkIVDF5ISl9Lq+xJCNE+/1H5MyJ2AS3U1eS7JeOpCu7LWHnOVHaF+FcpTF/EVnqJIoqlEox7Fk0lrPBbSO+FyJLq0Jhn1Ibs7Vtc5wpp3L8Wkb9Dd0WprXnXHxhKNev42fyR1DhcLX/4Gu7PpZz/Swsmk1WfUa7l8THdW/Gwij80r4o2F45uU5RfNI0GaiLgsU5avu5iIHV1T4zlwwhr2pJqJcae6O7pcKtW26GTSAEb0SOPSUd0AMIQ5z8zpKMws5Kaim2LuDrwQwt398vHJj6NRmn4XJMefutBuy3G0zZHkL5PWRkWR2iOTXotG7w7SshIaZtJqmjlJdDBJ8bqgmTRVVcMqHALu4iGNgzTTad4w6JNl5vcXFfLt/pM8/ME2VFU9re2FEs7YdX8SjXrmDsujS4huoSI0CdJExGWbsjlee1yKh8SYbqkmDp6o8XVhDNX1IiHuVHfHqjoHqkqbFO0I5J4ZAzlvaC6Xjene6vvaW7mXirqKVt+PECKyGo5Ji83slNZTpKJ+QFDVRkWR2iONRiEurhqDkkictmE5d+9Nx0hM9pxk1DfoPdJYncOF3amGFfinmgyNxqQ5TiuT5nXukBzmj+3B0tW7+dHzX3PSGnhagtNlqXNEZRJtcYoEaSLishPc3RHKasqi3BJRnzuTVj9IC93d8dSksNGfwyfRqOfPlw1jQJfWn7dv4fKFPPjVg62+HyFE831x4AvO+tdZ7Dixo8lzaWZ3BqO6zsGeY1Yyk2JzjqakRuOf2qooUnuVYJnDmLj7mjxutTlQFCJSFdNdOCTwzeXquvC7Vqaa9Bz3BFAul+rJSkUm4Ll/TgH3zylg9Q/lzPvbV5RV1UZku421NJMmIkeCNBFx3oG9ZVYJ0mJJ19R4bE4Xe8vdE8GGOmHkJhs5brFRY3NSWRObpaxby89H/ZxLB1wa7WYIIfzITsjmnB7nYNI3rTY7qX8WdqfK7z/axpHKWqbE6DxN9btlqqpKZY3DN1ZNNJVoMKPaM5o8brU5Mem1EemanmTUY7U5cQQY7+Wd0iGccY6pCQZOeuZJq7F7s32RCXgUReGqcfk8d80o9p+wcvnf1zaoxBwpzR2TJiJPgjQRcd4gTcalxZaunvL520urgNCZtG6e5fefsJ7KpHWSi4jibsUMzz69cs5CiNbRL7Ufvxr3K/LMeU2eG9kjlbyUeF5YsxedRmHKgNafdLsl6nfLrHO4sDldMdk1M1bYEj/msG1Tk8cjMdbLq/5UNf54A6GwgjSTgao6BzaHy1fcJFKZNK8JfTJ45qqR7DpazS/f+i7iY9TCqe4oWpcEaSLivNWXyiySSYsl3VLjAfjeE6SFukPmnRNtX7nV1+2xM2TSKuoq+PLQl1TaKqPdFCFEAA6XA7uradc0jUZh7rBcAMb3ySDZFJuBT/0gzfuvlOD3z+6yc0L/Accd25o8Z7U5ItYlL8lP1c36vMFbONUdUxPcc6WdrLFhrYtsJq2+8X0yuP2cfryz4RDvfnsootuWTFr0SZAmIi7JkIRRa5RMWozJS2mYSYsPcWLzBWnHrTExJq2tbDy6kRuW3cCuk7ui3RQhhB9HLEcY9o9hvPvDu36fP39YV3QahdlDc9u4ZeGrH6R5uz12hu/XltBr9Jyh+zv66ilNnrPanBGbrDwpzExaYhjVHVM9NwdOWOytlknzWljch6HdUvjNe1s4XBGZOdQcThe1dlertVmER4I0EXGKopBlypIxaTEm3qAlP91EaWUdEPquXlqCgQSD1hOkdZ5MmvdzKxNZCxGbEvQJAFTbq/0+3yfLzOq7J3Ph8KbdIWNFsqnhfG7QebqTt0Si0YCltum4sxqbM2IVCL1TzASaK626zv14OJm0Lknu8vNbDlecqkDZSgGPVqPwh4uHUmd3cuNL30Sk4qM1wuPoRMtIkCZaxT1j7mHB4AXsqdjjd8JRER2XjT5Vvt6oC/7lqygK3dJM7D9u9Z20ojVPWlv5/vj3lJSWAJAZnxnl1ggh/DHp3Fl+q90acJnsJGNMz3OYZNRRa3dR53Ce6u7YCW6CNdf+qv38c+s/2eZYSrX9ZJPnLRHt7uh+/wN1d2xO4ZDh3VPpnZnA3z7b5cvAteb4rj5ZZv44r4gthyqY+qfPufmf31Ba2fKqj94umpJJiy4J0kSrmJA3gbyEPB7/5nHWH1kf7eYIj0tGdvP9rtGEvoDpnmZyZ9LqHBj1GgwRKHMcq+xOO1d8cAXv7XqPPHMeem3HDkiFaK+0Gi3xuviAmbT2ILnehNYHT7ovpnOS46PZpJj0k09+wsPrHmZP3WdU14HT1bA4Rk1Euzt6x6T57+7YnLHZGo3CTcV92Hakivc2uMeKtXY5+2kFXXj1hnEUdk1m2ZZSHvmw6Ri+cHm7aEomLbo67hWXiLpaZy37q/bjcEW+NKxomdQEA3OKchnXKz2s5b1BWoXV3uGzaEdrjlLnrOOGwht4acZL0W6OECKIBH0CFrsl2s1oMV+RihoH+49bidNpyEqMzTndokVVVQ5WH2RWr1lc3e1JcBl9wYOXNYLdHU8dk0DdHR3oNErYc7LNLsqlW1o8b/7vIHBqnHdrGt49lWeuHsU1E/J5a8NB1u853qLtSCYtNkiQJlpNl4QuvD77dcbnjY92U0Q9j186jFeuHxvWst3TTdQ5XOw6Vt3hu+J4x6INzRxKRnzT+XiEELHDrDe36yCtfiZtb7mFbmmmsHo3dCaVtkpqHDUMSBtArtldBKa6tnGQ5ghZBCtc3m6MgTJp5dV1pJgMYXej1Ws1PHXlCADG905v04Dnpol96J5mYv6z6/jjsu3NHqfm7aKZIJNZR5UEaUKIgLx3/r7ec6LDZ9K81UilYIgQsS9Bn9AhujtW1tjZW26lRxtkWdob742zbFO27/zTeNJm72TWkaDVKCTG6XzVjBvbU24lP715x6kgN5lvfz2VJz3BWltJNul5/cbxjO+dzp8/2cHkP3zG2l3lYa+//4R7vGduinTBjSYJ0kSr+uWqX3Lvqnuj3QzRQqPy08gwu7vgdPTKY3aXnYz4DN88f0KI2JWgTwhaOCTW1c+k7T9upZsEaU3Ur7Rr9lMe3+VSqbE7IzrWKylez0mrnSdW7ODgyYbl7PeVW+mRntDsbSab9L7j3ZYyE+N4dsEoPvjJmaSY9Fz34nq+3X8yrHV3Hq3GoNXQNVWCtGiSIE20qoq6CrYdb/ngVRFdCXE6fja1HwAVESjrG8tm9ZrFp5d8SooxJdpNEUKE0FEyabuOVmOxOenRzAxNZ9AgSPN0RayfSat1OFFVMEVoTBq4i4K8s+Egf1y2nbvf2Oh7vMbm5EhlbbMzabFgYE4SL1wzmoQ4Hef/dTW/fX9LyMqPO8uq6ZmRgE4rYUI0dexBJiLqskxZbDy6MfSCImZdMrIb6/ec4LyhOdFuihBCAFDcrZjymvC7b8WaVJOBJKOOjzYfAZAgzY/6XdCtVvf8nvXHpHnnH4toJs2ox1tA8n/7TmJzuDDoNOw77s7adm+nx6lbmomPfnoWD3+wlaWrd/PCl3u4dHQ37pjanxSTocnyO49aGJiTGIWWivokRBatKsuUxYm6E9icHTsL05FpNQp/uGQoxf079lit36z5DU9880S0myGECMMFfS/gusLrot2MFtNoFMb3zmB7qTsb2BaV/9qbIRlD+NHgH2HQGnyZtPrjxWo8QVqkSvADGD0BX15KPNV1Dv7znbt8/t5yd5Ga/BZ0d4wVyfF6Fl9YyMo7irl0dDf+uXYfU/7wGcu3lDZYrs7hZN9xK70zzVFqqfCSIE20Ku/4Hm+3BSFilcPlwKk6o90MIUQYVFVt12PSAIr7Z/p+lzFpTU3Im8BtI24D8I1Jq9/d8dRcXpHrFLazzB003ztzIEPykln84Tb2H7eyt9z9WWvPQZpXj/QEHpg7hPdvOZPsJCPXvrieX7+ziVq7+/y3r9yK06VKkBYDJEgTrcpbKc/bbUGIWPXbCb/1XRAIIWLbM989w5h/jmnXvTRmFJ7qQh6nk1LnjR21HsXudGfOzIamhUO83R0jVYIfIDXBPVbwjL4ZPHT+EGpsTi5+ag0b9p8kxaQn2dRxCmgNyk3irZvH839n9OTFNXuZs2Q1Ww5V8oMnUJUgLfpC3n5QFGUpMAsoU1V1sOexIuApwAg4gJtUVV3Xiu0U7ZRk0oQQQkTa6JzR3K65HRU12k1psSSjnntmDJAALYCL3ruIyd0nc9+4+9BoFMxxugaZNG93x0iV4Af4+1Uj2XPMSqJRz5CuyfzzurFc8Ncv+c93hxnaNTli+4kVcTotv5o1iDP7ZnDHa99y3pJVOD2D8npltv+sYXsXTibteWB6o8d+B/xGVdUi4Neev4VoIivBnUmTIE3Esh0ndjD9jemsOyz3moRoD4ZmDuWawdcQp42LdlNOy/Vn9ebq8fnRbkZM+unwnzKz50zf3+Y4HZU1p8akWeoi390xJzmecb3TfX8Pzkvmxom9gI49Z1hx/yyW3TaRS0Z2A2DKgKyIvq+iZUIeAVVVP1cUJb/xw0CS5/dk4FCE2yU6iER9IvG6eF93R6fLfedLq9E2+DsU7/IitrhUF6ra9E62RtGgKIrv+cZ/hxLp9b2fn0DrH6o+xMHqgxi0TatcCSFiT52zjsPVh8k0ZWLUGgMuF6vfRc099zXn3BkL50uX6gLcr19VVVyqC0VRGvwdypw+c9Aop3IJ/bok8sWOY9idLvRaDTX2yHd39OemSX0AmNjBi2elJhh4+IIhXH9WL7KT2vfNj46ipWHyT4H/KoryKO5s3PiItUh0KIqiUNy1mJwEd9/721fezoHqA7wx+w0A5n84n++OfRd0G/1S+/mWF7Fjf9V+Lnz3QmocNU2eWzptKaO6jOKD3R/wiy9+wfvnv0+PpB68uPlF/lDyh5Dbbrz82svXYtKbeHT9o/xjyz9Crl9/+Td3vMlXl38FwF2f38VHez4KuF6XhC4hty2EiL5vy77l/z7+v5DL/ePcf1CUVcS7O9/lV6t/xUcXfkSeOY+lm5by+DePh1y/8fIlV5Zg0BpYvG4xr2x7JeT69Zf/YPcHrLp0FQB3fn4ny/YuC7puclxyg+V3V+zmrTlvAXD1R1fz7dFvm6yjVbQ8NukxirsVh2xbaym1lDLnnTlc0PcCfj7q51TZq5jwygR+PurnzB80n10Vu5j7ztyQ2/Eu73XV2B5c++J6VmwtY/rgLq1Sgt8fo17L7VP7t+o+YknPDOnmGCtaGqQtBG5TVfUNRVEuAZ4Fzva3oKIo1wPXA3Tv3r2FuxPt2e8mnuoNe26vc6msq/T9fVG/izir61lB108zpgHual6KorROI0Wz7a3cS42jhov6XeQbe+iVZ84D3AH2zUU3k2xw9+Uvyiri5qKbQ2678fJ6jWcwd+4ZJBmSgq0K0GD5dOOpritT86fSO6W333WyTFkSpAnRTgzLGsbPR/0ci90SdDnv/+mBaQO5uehmEg3uuZ+GZw0P67uo8fLezM5ZXc/ynZuCqb98bkKu7/Hp+dPpl9ov6Lr1M4TT86dzsu6k7+8L+17IGXlnNFnnyW+f5Ltj30U1SNtxcgcWu8X3XR2njePmopsZmjkUgFRjaljvvXd5r+L+meQkG/nnun1MH9zF193RZJBueaJjUsJJ13u6O75fr3BIBZCiqqqquK+aK1RVDXnlNHLkSHX9+vWn2WTRGf169a/ZfmI7/5r1r2g3RXj8d89/ueOzO3hz9pv0Te0b7eYIIUSnN+W1KYzPHc9vJ/w2am14c8eb3Pflfb4sZCQ9tnw7jy3fwaq7JvHWNwf5w7Lt7HjwXPRaKVYu2hdFUUpUVR0ZbJmWfqoPARM9v08GdrRwO0KEZXj2cCZ3nxztZoh6vHMUmfVSplcIIWJB35S+6DTRzSx5x6BnxUd+DNcFw7oC8MF3h7Hanei1igRoosMKpwT/K0AxkKEoygHgPuA64HFFUXRALZ7ujEK0lrl95ka7CaKRroldOb/P+STFhe5+KIQQovU9dc5T0W4CZdYy0oxp6LWRn1Ose7qJIXnJ/GfjYYq6pUhXR9GhhVPd8bIAT42IcFuECEhVVart1Ri1xlb54hfNN6rLKEZ1GRXtZgghhIghZdYyskytVwlxZmEOiz/cRrxB2+pFQ4SIJskRi3ZhzeE1jH9lPBuPbYx2U4SHw+UIqwS1EEKItrFi3wrmfzDf1x09GkotpU2KSUXSrMIcNAp8tet4q5ffFyKaJEgT7YK3b7tMih07Hlz7IGe/5reoqxBCiCjQKlritHFYHdEL0lo7k9Y11cSMIe5pfVwuuVEoOi7pzCvahawE9xd+qaU0yi0RXhO7TiQ/KT/azRBCCOFR3K04quX3bU4bJ+pOtGqQBnDjxN68v/Ewe8qjF4wK0dokSBPtQqI+kXhdvK9qlIi+aF4ICCGEiD0KCksmL6FbUrdW3c/gvGQWjM+nX3Ziq+5HiGiSIE20C4qikG3Klu6OMeSo9ShxuriwJpcWQgjR+mxOGxe+eyGX9L+E+YPmt/n+9Vo9E7tNDL1gBCyaXdAm+xEiWmRMmmg3skxZEqTFkJtW3MQvv/hltJshhBDCw6A1UF5Tzv6q/VHZ//7K/Xx+4HPqnHVR2b8QHYkEaaLdyDJlSXfHGFJtqybBkBDtZgghhKgny5QVtfHbn+z/hJtX3CxBmhARIEGaaDeyTdmUWktZuHwh245vi3ZzOj2L3UKCToI0IYSIJdkJ2Xxd+jU//fSnnKw92ab7nttnLi/NeIlEvYwVE+J0SZAm2o1J3SdRlFnE3D5z6Z3SO9rN6fQsdotk0oQQIsbM6jWLPHMeK/at4H9l/2uTfVbUVTDrrVmsPbyWoZlDURSlTfYrREcmhUNEuzE0cygvnPtCtJshALvTjs1lw6w3R7spQggh6jmv93mMzRnL5Ncmt9k47iOWI+yt3IuKzFsmRKRIJk20O2//8DavbHsl2s3o1Cx2CwAJesmkCSFErEkzpqFVtG02jtsbDGabsttkf0J0BhKkiXZnxb4VfLj7w2g3o1OrtlcDEqQJIUQs0mq0ZMRntFmQ5t2PBGlCRI50dxTtzp+K/4ROIx/daPJm0qS7oxBCxKYHz3iQjPiMNtlXmbUMBYUMU9vsT4jOQK50RbsjAVr0eYM0k94U5ZYIIYTwZ0zOmDbbV5m1jDRjGnqNvs32KURHJ90dRbuz+dhm7vjsDo5YjkS7KZ1WdkI2twy7hfyk/Gg3RQghhB+7K3bz3s732mRfpdZSskxZbbIvIToLCdJEu1Npq+S/e/7L/qr90W5Kp5VnzuP6wuvJNedGuylCCCH8+HT/p9yz6h5fz4fWVGotJTtBxqMJEUkSpIl2xzswua1KC4umKuoqOFx9GJfqinZThBBC+DGn9xz+c/5/MGqNrb6vMmuZFA0RIsIkSBPtjrdLhQRp0fP2D28z9Y2pWO3WaDdFCCGEH+nx6XRP6o5Wo23V/ThdToZlDqMgvaBV9yNEZyMVGES7YzaYSdAnSJAWRRNyJ5A4PlEKhwghRIyy2q28tv01RmaPpCCj9QIorUbLn6f8udW2L0RnJZk00S5lmbLabP4X0VSf1D5c0PcCNIp8hQghRCxSFIVH1z/KmsNrot0UIUQLSCZNtEtZpiy2lm/lxc0vkmvO5eweZwPwxvY36JLQhQl5E6Lcwo7r4z0fs+nYJs7teS4D0wdGuzlCCCH8iNfFk2RIYtXBVRg0hibP55hzOKfHOQC8teMtMk2ZnJF3BgAvb30Zp8sZdPu9UnpxRt4ZLN+7nEVrFvGvmf+ia2LXyL8QITopCdJEuzQofRBrD6/l9+t/z4TcCb4g7W8b/8boLqMZ3WU0G45uINecS545L8qt7TiqbFX87LOfAbClfAvPTHsmyi0SQggRyKD0QXx1+CtKSkuaPDc2Z6wvSPvbxr8xPGu4L0j74/o/YnPZgm77vF7ncUbeGZzV9SziNHGkGdMi/wKE6MQUVVXbbGcjR45U169f32b7Ex2XqqpU26sB0Cpa39ioals1Wo0Wl+pi7D/HctuI2/jR4B9Fs6kdyqHqQ0x7Yxq/HPNLLu53casPSBdCCNFyTpcTq8N/gSd/5854XTzgviEXik6j8y1vd9rRa2UiayHCpShKiaqqI4MtI5k00S4pikKiIbHJ42aD2fe7FBeJPG9gnB6fLgGaEELEOK1G6/dc2Vj9cycQ1jr1SYAmROTJqH/RYWWZsiRIizDvpKgJuoQot0QIIYQQouOSIE10WFIBMvJ8QZpBgjQhhBBCiNYiQZrosLJN2ZJJizBvd0ez3hxiSSGEEEII0VISpIkOK9uUzVHr0ZBlhEX4rHb3APQEvWTShBBCCCFaiwRposPKMmXhVJ0crz0e7aZ0GA6XA6PW6KsIJoQQQgghIk+CNNFhZZmyAKTLYwRd0v8Svr7ya5IMSdFuihBCCCFEhyVBmuiwsk3ZAFI8RAghhBBCtCsSpIkOq2dyTx6f9DiFmYXRbkqH8cq2V3ho7UPRboYQQgghRIcmk1mLDsukNzG5++RoN6NDOWw5zK6KXdFuhhBCCCFEhyZBmujQ1h9Zz8m6k5zd4+xoN6VDuH3E7dFughBCCCFEhxf1IM1ut3PgwAFqa2uj3RTRwRiNRp7d/iyKVpEgTQghhBBCtBtRD9IOHDhAYmIi+fn5KIoS7eaIDkJVVcrLy7ml1y2oaWq0m9Nh3P3F3XQ1d+XHw34c7aYIIYQQQnRYUS8cUltbS3p6ugRoIqIURXF/rhwK6cZ0Zr89m//u+W+0m9XubSjbwMHqg9FuhhBCCCFEhxb1IA2QAE20Cu/nKtGQyO6K3RyoOhDlFrV/FruFBH1CtJshhBBCCNGhxUSQFm0PPvggBQUFFBYWUlRUxNq1awG49tpr2bJlS0T2kZ+fz7Fjx4Iu89BDzS9t/vzzz/PjHzfsevbcc89RVFREUVERBoOBIUOGUFRUxN13393s7beFxx57DKvV2mrbT9AnYNabZVLrCJAgTQghhBCi9UV9TFq0rVmzhvfff59vvvmGuLg4jh07hs1mA+CZZ55p07Y89NBD3HPPPae9nWuuuYZrrrkGcAeHn376KRkZGae93ZZSVRVVVdFo/N8TeOyxx7jyyisxmUxhb9PhcKDThf/xzTJlSZB2mmxOG3aXHbPeHO2mCCGEEEJ0aJ0+k3b48GEyMjKIi4sDICMjg9zcXACKi4tZv349AGazmbvuuosRI0Zw9tlns27dOoqLi+nVqxfvvvsu0DSrNWvWLFauXNlkn3PnzmXEiBEUFBTw9NNPA3D33XdTU1NDUVERV1xxBQAvvfQSo0ePpqioiBtuuAGn0wm4M2X9+vVj4sSJrF69OuzX+vvf/55Ro0ZRWFjIfffdB8CePXsYMGAA1157LYMHD+aKK65g+fLlTJgwgb59+7Ju3ToAFi1axPz585k8eTJ9+/bl73//e8jtDhw4kJtuuonhw4ezf/9+Fi5cyMiRIykoKPAt98QTT3Do0CEmTZrEpEmTfO+11+uvv86CBQsAWLBgAbfffjuTJk3irrvuYufOnUyfPp0RI0Zw5plnsm3btoCvXYK001dtrwaQTJoQQgghRCuLqUzab97bzJZDlRHd5qDcJO47ryDg81OnTuX++++nX79+nH322cybN4+JEyc2Wc5isVBcXMwjjzzC+eefz7333suyZcvYsmULV199NbNnzw67TUuXLiUtLY2amhpGjRrFhRdeyOLFi1myZAkbNmwAYOvWrbz66qusXr0avV7PTTfdxMsvv8w555zDfffdR0lJCcnJyUyaNIlhw4aF3OfHH3/Mjh07WLduHaqqMnv2bD7//HO6d+/ODz/8wGuvvcbTTz/NqFGj+Oc//8mqVat49913eeihh3j77bcB2LhxI1999RUWi4Vhw4Yxc+ZMNm3aFHC733//Pc899xx//etfAXe30rS0NJxOJ1OmTGHjxo385Cc/4Y9//GPY2b7t27ezfPlytFotU6ZM4amnnqJv376sXbuWm266iU8++cTvetmmbNYcXhPeARJ+WewWQII0IYQQQojWFlNBWjSYzWZKSkr44osv+PTTT5k3bx6LFy/2ZW+8DAYD06dPB2DIkCHExcWh1+sZMmQIe/bsadY+n3jiCd566y0A9u/fz44dO0hPT2+wzIoVKygpKWHUqFEA1NTUkJWVxdq1aykuLiYzMxOAefPmsX379pD7/Pjjj/n44499AV11dTU7duyge/fu9OzZkyFDhgBQUFDAlClTUBSlyWubM2cO8fHxxMfHM2nSJNatW8eqVasCbrdHjx6MHTvWt/6///1vnn76aRwOB4cPH2bLli0UFhY26727+OKL0Wq1VFdX8+WXX3LxxRf7nqurqwu4XpYpi/KacpwuJ1qNtln7FG7eIE26OwohhBBCtK6YCtKCZbxak1arpbi4mOLiYoYMGcILL7zQJEjT6/W+aoEajcbXPVKj0eBwOADQ6XS4XC7fOv4m6F65ciXLly9nzZo1mEwmiouL/S6nqipXX301Dz/8cIPH33777RZVw1RVlV/84hfccMMNDR7fs2eP77UEe23QtAqnoihBt5uQcCrjsnv3bh599FG+/vprUlNTWbBgQcAJzOvvp/Ey3m26XC5SUlJ8mcdQsk3ZOFUn5bXlZJmywlpHNOTLpBkkkyaEEEII0ZpCjklTFGWpoihliqJsavT4LYqifK8oymZFUX7Xek1sXd9//z07duzw/b1hwwZ69OjRom3l5+ezYcMGXC4X+/fv943nqq+iooLU1FRMJhPbtm3jq6++8j2n1+ux2+0ATJkyhddff52yMvc4quPHj7N3717GjBnDypUrKS8vx26389prr4XVtmnTprF06VKqq93jig4ePOjbdrjeeecdamtrKS8vZ+XKlYwaNSrs7VZWVpKQkEBycjKlpaV8+OGHvucSExOpqqry/Z2dnc3WrVtxuVy+jGNjSUlJ9OzZ0/f6VVXl22+/Ddh2b2Am49JaTqNo6J3cm9S41Gg3RQghhBCiQwsnk/Y8sAR40fuAoiiTgDlAoaqqdYqitNvURHV1NbfccgsnT55Ep9PRp08fXzGP5powYYKv6+DgwYMZPnx4k2WmT5/OU089RWFhIf3792/QHfD666+nsLCQ4cOH8/LLL/PAAw8wdepUXC4Xer2ev/zlL4wdO5ZFixYxbtw4cnJyGD58uK+gSDBTp05l69atjBs3DnB383zppZfQasPv+jd69GhmzpzJvn37+NWvfkVubi65ublhbXfo0KEMGzaMgoICevXqxYQJExq87nPPPZecnBw+/fRTFi9ezKxZs+jWrRuDBw/2BYCNvfzyyyxcuJAHHngAu93OpZdeytChQ/0u2yOpB2fmnYlWka6OLTUsaxhvz3072s0QQgghhOjwFFVVQy+kKPnA+6qqDvb8/W/gaVVVlzdnZyNHjlS91RK9tm7dysCBA5uzGREFixYtwmw2c8cdd0S7Kc0iny8hhBBCCBFLFEUpUVV1ZLBlWjomrR9wpqIoDwK1wB2qqn7dwm0J0WZmvjmTC/tdyI8G/4iKugouee+SkOvMGzCvwfILixYyt89cdlXsYuGyhSHXb7z8vWPv5cyuZ0bi5UTU7StvZ/OxzU0ef/f8d4nTxnHrJ7dyyHKIf5z7D4w6YxRaKIQQQgjRObQ0SNMBqcBYYBTwb0VReql+0nKKolwPXA/QvXv3lrZTRNmiRYui3YSIGJE9gq7mrgDoNXpGdgl6EwOgyfLe8W0mnSms9Rsvn2ZMa2nzW43dZWf53uUMSBtA39S+DZ7TeIaunpN/DgeqDkiAJoQQQgjRylra3fEjYLGqqis9f+8ExqqqejTYdqS7o2hrsfj5qrRVUuuojakqk4erDzP1jaksGreIC/tdGO3mCCGEEEJ0WOF0dwxZ3TGAt4HJnp30AwzAsRZuS4hO5cZlN3Lvqnuj3YwGSq2lADEVOAohhBBCdFbhlOB/BVgD9FcU5YCiKP8HLAV6ecry/wu42l9XRyFEU9mmbF9QFCskSBNCCCGEiB0hx6SpqnpZgKeujHBbhOgUskxZfHX4q9ALtqGxOWN5btpz9Ehq2RyBQgghhBAiclra3bFDMZvNLVrvqaee4sUXX2zy+J49exg8eHBY2ygvL6eoqIiioiK6dOlCXl6e72+bzdaidrWmlStX8uWXX0a7Ge1alimLans1Vrs12k3xSY5LZmSXkVIURAghhBAiBrS0uqMAbrzxxtPeRnp6Ohs2bABiZy4yh8OBTuf/o7Fy5UrMZjPjx48Pe3tOp7NZk2Z3dN4uhaXWUnom94xya9w+2/8ZiqJwVtezot0UIYQQQohOTzJp9axcuZLi4mIuuugiBgwYwBVXXIF3qN3dd9/NoEGDKCws9AVRixYt4tFHHwWgpKSEoUOHMm7cOP7yl7/4tul0OrnzzjsZNWoUhYWF/O1vfwurLSUlJUycOJERI0Ywbdo0Dh8+DEBxcTG33XYbZ511FgMHDuTrr7/mggsuoG/fvtx7r7sYxZ49exgwYABXX301hYWFXHTRRVit1pDbveeee5g4cSKPP/447733HmPGjGHYsGGcffbZlJaWsmfPHp566in+9Kc/UVRUxBdffMGCBQt4/fXXfe32ZiVXrlzJpEmTuPzyyxkyZEiL34eOqEtCFwDKrGVRbskpSzctZemmpdFuhhBCCCGEIBYzac/NbPpYwVwYfR3YrPDyxU2fL7ochl0BlnL491UNn7vmP83a/f/+9z82b95Mbm4uEyZMYPXq1QwaNIi33nqLbdu2oSgKJ0+ebLLeNddcw5///GcmTpzInXfe6Xv82WefJTk5ma+//pq6ujomTJjA1KlT6dkzcAbFbrdzyy238M4775CZmcmrr77KL3/5S5YudV9EGwwGPv/8cx5//HHmzJlDSUkJaWlp9O7dm9tuuw2A77//nmeffZYJEybwox/9iL/+9a/ceuutQbd78uRJPvvsMwBOnDjBV199haIoPPPMM/zud7/jD3/4AzfeeGODbN+zzz4b8HWsW7eOTZs20bNnT55++ulmvw8dlTeTFktB2pIpS2Kq+6UQQgghRGcWe0FalI0ePZquXd2TFxcVFbFnzx7Gjh2L0Wjk2muvZebMmcyaNavBOhUVFZw8eZKJEycCMH/+fD788EMAPv74YzZu3OjLNlVUVLBjx46gwcn333/Ppk2bOOeccwB3Ni4nJ8f3/OzZswEYMmQIBQUFvud69erF/v37SUlJoVu3bkyYMAGAK6+8kieeeILp06cH3e68efN8vx84cIB58+Zx+PBhbDZbi4Kp0aNH+9ZryfvQUdXv7hgrEg2JJBoSo90MIYQQQghBLAZpwTJfBlPw5xPSm505aywuLs73u1ar9Y3PWrduHStWrOBf//oXS5Ys4ZNPPvEtp6oqiqL43Z6qqvz5z39m2rRpYbdBVVUKCgpYs2ZN0DZqNJoG7dVoNDgcDoAm7VEUJeR2ExISfL/fcsst3H777cyePZuVK1eyaNEiv+vodDpcLpev3fWLndTfXkveh44qXhdPoiGRUktsBGlVtiqe+e4Zzu15LgPSBkS7OUIIIYQQnZ6MSQtDdXU1FRUVzJgxg8cee8xX6MMrJSWF5ORkVq1aBcDLL7/se27atGk8+eST2O12ALZv347FYgm6v/79+3P06FFfMGW329m8eXOz2rxv3z7f+q+88gpnnHFGs7ZbUVFBXl4eAC+88ILv8cTERKqqqnx/5+fnU1JSAsA777zje52NteR96Mh+OvynnN3j7Gg3A4BD1YdYumkp+yr3RbspQgghhBACCdLCUlVVxaxZsygsLGTixIn86U9/arLMc889x80338y4ceOIj4/3PX7ttdcyaNAghg8fzuDBg7nhhht82a5ADAYDr7/+OnfddRdDhw6lqKio2WXvBw4cyAsvvEBhYSHHjx9n4cKFzdruokWLuPjiiznzzDPJyMjwPX7eeefx1ltv+QqHXHfddXz22WeMHj2atWvXNsie1deS96Eju6T/JeSac3n060ex2KMXrH62/zOW/G8JIBNZCyGEEELECsVbvbAtjBw5Ul2/fn2Dx7Zu3crAgQPbrA2dwZ49e5g1axabNm2KdlOiLpY/X8v3Lue2lbfxzNRnGJMzJiptuOS9S/jh5A90S+zGSzNeknFpQgghhBCtTFGUElVVRwZbJvbGpAnRSZzd42y+u/q7qLah1FrKnD5zuG/cfVFthxBCCCGEOEW6O3ZA+fn5kkUTIdmcNo7XHpdujkIIIYQQMUaCNCGi6MGvHuTpjU9HZd9Ha44CkG3Kjsr+hRBCCCGEfxKkCRFFW45vYd2RdVHZt3cybcmkCSGEEELEFgnShIiibFO2L1hqayadiRk9Z9AjsUdU9i+EEEIIIfyTIE2IKMoyZUUtSOuf1p9HznqEbkndorJ/IYQQQgjhnwRpwIEDB5gzZw59+/ald+/e3HrrrdhstpDrPfTQQyGXufbaa9myZUuTx59//nl+/OMfh9W+//73vxQVFVFUVITZbKZ///4UFRVx1VVXhbV+W3v++ec5dOhQtJvRLmSZsrDYLVTbqtt833aX/4nHhRBCCCFEdHX6IE1VVS644ALmzp3Ljh072L59O9XV1fzyl78MuW44QdozzzzDoEGDTquN06ZNY8OGDWzYsIGRI0fy8ssvs2HDBl588cXT2u7pcDqdAZ9rSZDWWSe29o4Hi0Y27Z4v7uHi9y5u8/0KIYQQQojgOn2Q9sknn2A0GrnmmmsA0Gq1/OlPf2Lp0qVYrdYmGa9Zs2axcuVK7r77bmpqaigqKuKKK67AYrEwc+ZMhg4dyuDBg3n11VcBKC4uxjuB93PPPUe/fv2YOHEiq1ev9m3z6NGjXHjhhYwaNYpRo0Y1eC6Yl156idGjR1NUVMQNN9zgC5zMZjN33XUXI0aM4Oyzz2bdunUUFxfTq1cv3n33XcAdSM2ZM4fp06fTv39/fvOb34S13V//+teMGTOGNWvWcP/99zNq1CgGDx7M9ddfj6qqvP7666xfv54rrriCoqIiampqyM/P59ixYwCsX7+e4uJiABYtWsT111/P1KlTueqqq1r8PrRn3sqKpdbSNt/3pG6TmNtnbpvvVwghhBBCBBdzk1lf89E1IZeZ2HUiCwYv8C0/p88c5vaZy4naE9y+8vYGyz43/bmg29q8eTMjRoxo8FhSUhLdu3fnhx9+CLje4sWLWbJkCRs2bADgjTfeIDc3l//85z8AVFRUNFj+8OHD3HfffZSUlJCcnMykSZMYNmwYALfeeiu33XYbZ5xxBvv27WPatGls3bo1aLu3bt3Kq6++yurVq9Hr9dx00028/PLLXHXVVVgsFoqLi3nkkUc4//zzuffee1m2bBlbtmzh6quvZvbs2QCsW7eOTZs2YTKZGDVqFDNnziQhISHodgcPHsz9998PwKBBg/j1r38NwPz583n//fe56KKLWLJkCY8++igjRwadSB2AkpISVq1aRXx8PJdffnmz34f2zhukRSOTNqPXjDbfpxBCCCGECC3mgrS2pqoqiqKE/XggQ4YM4Y477uCuu+5i1qxZnHnmmQ2eX7t2LcXFxWRmZgIwb948tm/fDsDy5csbjFurrKykqqqKxMTEgPtbsWIFJSUljBo1CoCamhqystxd5wwGA9OnT/e1Ky4uDr1ez5AhQ9izZ49vG+eccw7p6ekAXHDBBaxatQqdThdwu1qtlgsvvNC3/qeffsrvfvc7rFYrx48fp6CggPPOOy/s9wxg9uzZxMfHt/h9aO+i1d1RVVUOVh8k25SNXqtv030LIYQQQojgYi5IC5X5CrZ8qjG12esXFBTwxhtvNHissrKS/fv307t3b7799ltcLpfvudraWr/b6devHyUlJXzwwQf84he/YOrUqb4sk1egoM/lcrFmzRpfsBIOVVW5+uqrefjhh5s8p9frffvSaDTExcX5fq8/9qtxexRFCbpdo9GIVqsF3O/DTTfdxPr16+nWrRuLFi0K+N7odDrfe9h4mYSEBN/vLXkf2jujzkiflD5oNVrKa8rZeHQjw7OHkxyXzBHLEbaWh84kNl5+TM4YTHoTeyv3suvkLr/rWB1W7v7ibu4efTdXDLwi0i9LCCGEEEKchpgL0tralClTuPvuu3nxxRe56qqrcDqd/OxnP2PBggWYTCby8/P561//isvl4uDBg6xbd2riYb1ej91uR6/Xc+jQIdLS0rjyyisxm808//zzDfYzZswYbr31VsrLy0lKSuK1115j6NChAEydOpUlS5Zw5513ArBhwwaKiopCtnvOnDncdtttZGVlcfz4caqqqujRI/w5r5YtW8bx48eJj4/n7bffZunSpZhMprC26w22MjIyqK6u5vXXX+eiiy4CIDExkaqqKt+y+fn5lJSUcO655zYJiOtryfvQEbw15y0Avjz0JT/59Ce8eO6LDMsaxtrDa7l39b0h12+8/IcXfIhJb2LZ3mU8/s3jQdfNT8qPxEsQQgghhBAR1OmDNEVReOutt7jpppv47W9/i8vlYsaMGb7KjRMmTKBnz54MGTKEwYMHM3z4cN+6119/PYWFhQwfPpyrrrqKO++8E41Gg16v58knn2ywn5ycHBYtWsS4cePIyclh+PDhvoIcTzzxBDfffDOFhYU4HA7OOussnnrqqaDtHjRoEA888ABTp07F5XKh1+v5y1/+0qwg7YwzzmD+/Pn88MMPXH755b4xZOFsNyUlheuuu44hQ4aQn5/v6x4JsGDBAm688Ubi4+NZs2YN9913H//3f//HQw89xJgxYwK2pyXvQ0dSmFHIq7Ne9QVOE7tO5NVZr4Zcr/Hy3i6Uc/vMZXzu+IDrxWnj6JXc67TbLYQQQgghIktRVbXNdjZy5EjVW+nQa+vWrQwcOLDN2iDcnn/+edavX8+SJUui3ZRWJZ8vIYQQQggRSxRFKVFVNWiFvU5fgl8IIYQQQgghYkmn7+7YWS1YsIAFCxZEuxlCCCGEEEKIRiSTJoQQQgghhBAxJCaCtLYcFyc6D/lcCSGEEEKI9ijqQZrRaKS8vFwuqEVEqapKeXk5RqMx2k0RQgghhBCiWaI+Jq1r164cOHCAo0ePRrspooMxGo107do12s0QQgghhBCiWaIepOn1enr27BntZgghhBBCCCFETIh6d0chhBBCCCGEEKdIkCaEEEIIIYQQMUSCNCGEEEIIIYSIIUpbVlVUFOUosLfeQxnAsTZrgAiXHJfYI8ckNslxiU1yXGKPHJPYJMclNslxiT2RPiY9VFXNDLZAmwZpTXauKOtVVR0ZtQYIv+S4xB45JrFJjktskuMSe+SYxCY5LrFJjkvsicYxke6OQgghhBBCCBFDJEgTQgghhBBCiBgS7SDt6SjvX/gnxyX2yDGJTXJcYpMcl9gjxyQ2yXGJTXJcYk+bH5OojkkTQgghhBBCCNFQtDNpQgghhBBCCCHqCTtIUxRluqIo3yuK8oOiKHc3eu4Wz3ObFUX5XYD10xRFWaYoyg7Pv6mex9MVRflUUZRqRVGWBNn/jz37VhVFyaj3eLKiKO8pivKtZ//XhPua2rtWPCbnKIpSoijKd55/JwdYv6eiKGs967+qKIrB87iiKMoTnnZtVBRleKRfeyyL1ePiea5YUZQNnv1/FsnXHeti4LgE+g67wvP/ZKOiKF8qijI0kq87lsXwMem05xVo1eMy2vP9s8Hz3p4fYH05tzQSq8fE85ycV6J3XOS84kcMH5fmnVtUVQ35A2iBnUAvwAB8CwzyPDcJWA7Eef7OCrCN3wF3e36/G3jE83sCcAZwI7AkSBuGAfnAHiCj3uP31NtWJnAcMITzutrzTysfk2FAruf3wcDBAOv/G7jU8/tTwELP7zOADwEFGAusjfb7JcdFBUgBtgDdg+2/I/7EyHEJ9B02Hkj1/H5uZ/n/EuPHpFOeV9rguJgAnef3HKDM+3ej9eXc0n6OSQpyXonmcZHzSvs6Ls06t4T7gscB/6339y+AX3h+/zdwdhjb+B7IqffCvm/0/AKCBGn1lmv8gn8B/BX3l3ZP4AdAE+0PSRt8CFv9mHgeV4By7we60ePH6n1Yfe0B/gZc5m8/Hf0nxo/LTcAD0X6POuNxabRMg++wRs+lEiCg6Gg/sXxMOut5pY2PS0+glEYXOHJuaXfHRM4rUToujZaR80o7OC7NPbeE290xD9hf7+8DnscA+gFnetLgnymKMirANrJVVT0M4Pk3K8x9h7IEGAgcAr4DblVV1RWhbceytjomFwL/U1W1rtHj6cBJVVUdfvYfrG0dXSwfl35AqqIoKxV3F7CrmvXK2rdoH5dw/R/uTEFnEMvHpLOeV6CVj4uiKGMURdmM+329sd53lZecW5qK5WMi55VT2vq4hKsznVcgto9Ls84tujA3qvh5TK23jVTcXQ9GAf9WFKWX6gkZ28A0YAMwGegNLFMU5QtVVSvbaP/R0urHRFGUAuARYGoz9x/suY4ulo+LDhgBTAHigTWKonylqur25uy/nYr2cQln/Um4T6ZntGT9diiWj0lnPa9AKx8XVVXXAgWKogwEXlAU5UNVVWvD3H9nPbfE8jGR80pDbXlcQjew851XILaPS7POLeFm0g4A3er93RV3FOh97k3VbR3gAjIURXnOM7DuA89ypYqi5AB4/i0Lc9+hXFNv/z8Au4EBEdp2LGvVY6IoSlfgLeAqVVV3+tn/MSBFURRvoN94/4Ha1tHF+nH5SFVVi6qqx4DPgaGn+Xrbi2gfl6AURSkEngHmqKpa3tz126lYPiad9bwCbXS+V1V1K2DBPWawPjm3NBXrx0TOK25tfVyC6qTnFYjt49Ksc0u4QdrXQF/FXd3HAFwKvOt57m3cESGKovTDPUjvmKqq16iqWqSq6gzPcu8CV3t+vxp4J/zXFNQ+3HdwUBQlG+gP7IrQtmNZqx0TRVFSgP/g7sO72t/OPXcdPgUuary+Z7tXKW5jgQpv2rgTiOXj8g7uNL9OURQTMAbYetqvuH2I6nEJRlGU7sCbwPxOcvfZK2aPCZ33vAKte1x6ei/0FUXpgft93VN/53Ju8SuWj4mcV6J0XILpxOcViOHjQnPPLWr4A/FmANtxV0z5Zb3HDcBLwCbgG2BygPXTgRXADs+/afWe24O7wkk17ih3kJ/1f+J5zoE7In7G83gu8DHuvp2bgCvDfU3t/ae1jglwL+67Axvq/TSpgIO7cs463AMfX+NUtRwF+IunXd8BI6P9Xslx8T13J+5KXJuAn0b7vepkxyXQd9gzwIl6666P9nslx6Tznlda+bjMBzZ7jsc3wNwA68u5pZ0cE89zcl6J3nGR80r7Oi7NOrconpWEEEIIIYQQQsSAsCezFkIIIYQQQgjR+iRIE0IIIYQQQogYIkGaEEIIIYQQQsQQCdKEEEIIIYQQIoZIkCaEEEIIIYQQMUSCNCGEEEIIIYSIIRKkCSGEEEIIIUQMkSBNCCGEEEIIIWLI/wOidqH4quThJgAAAABJRU5ErkJggg==\n", "text/plain": [ "

" ] @@ -657,8 +657,8 @@ "source": [ "plt.figure(figsize = (15, 5))\n", "plt.plot(df_simulation.index, df_simulation['values'], label = 'Simulated Temperature')\n", - "plt.plot(df.index, df['InsideTemp'], label = 'Inside Temperature')\n", - "plt.plot(df.index, df['OutsideTemp'], label = 'Outside Temperature')\n", + "plt.plot(df.index, df['InsideTemp'], '--',label = 'Inside Temperature')\n", + "plt.plot(df.index, df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", "plt.title('Temperatures')\n", "plt.legend()\n", "plt.show()" @@ -714,10 +714,6 @@ "cell_type": "code", "execution_count": 30, "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - }, "tags": [] }, "outputs": [ diff --git a/Notebooks/2_N_horizon 5/sim_1500.png b/Notebooks/2_N_horizon 5/sim_1500.png new file mode 100644 index 0000000000000000000000000000000000000000..642f8e6a3ef9a180e9d1dac762775d9a2b79a9cc GIT binary patch literal 17172 zcmd^mc|6qb+wZh$v$T>dErSp$J2Ae=GGr$^p@y;77_uuxDr9VpW~^i1k}ZUk2xBm| z?1ZMVXEzMz9{rx@={&FVI_La%&Uud4OMT3IKKJLoujPHc@9VnmFkNjm<|CX(AP@*M zT>X|l1hQWS0@>qm=pgvyeTL=;_)peD#l*wF4dLNs^YA`I%f`dq+0DZlX?x!D{zDYf z%~f1fLiE~|^9~*!?kG7iF_(Y8LDcP`y;xrtYcd$*u)De`3IaKLlJUC-l7QoYKyE&U z-}=Y!5pH(K+t09@zVmxcKpr}CSo8aFcbjWBlaHjHzvGgNR>?b4l%MWM@9)>DGAXTf z%rDK?WY^5kccGSl2%?pio;KHYw=t*}(s(!Xly7GL`=k+G3P1KK^y$?mBDYmrqa9BL zs(gdk#C&g9mSTY-9R{<3K+Y2}wwAkBkWWPyNB>-=V;da;bIua710U<#s^oy5=a!x3>J$OwWw6dhY~n>^FweG~$DdXgdk2lYe@ zamG`8^Bd7Kp)VTIBl%tG6A_2?ClRF*`dr1U>WB?*`ZUA`>=3ojWqQ$w)dZ}9Ey6dr zc3UUn`*0I6z#j1oQPxKca6mMzM9?d+vlx$fEdDNHhh<9Wda)^@NA~-U4u%G&)h642 zE+;ytVqJ39wjF)E-}G4`R!gw-KH@68a_*2MvsAJ1lQsQ&2o-wEmjMj-3;z^E1^6^&Bc={0^vf)Z7<8~ z#kb+{nw4K783(E?_^Aq%K?7373Ah(ruA8VWm(aThaz1KTu-2|o9$|!H zzDbRKk)3$DI&ZYZEwUk;RfASQK=Cn0d!%FWmTn_E8qIMYnFQJH$6*8ksF6D76{-ZB z0-Q897{R?yKN!31Se#k_{uW$Mr5hPT0YZ4wE!`{$R$F#$$HsEh7e3;lhVJNwaP zUC4iAiu;Lk&wrI(H`Gr@xuWZ9=D!8%oc8n2^a(~4n2^7wY4U}3%s?Z`; z=x;#AUif^G-cCXl)XT162)6K@Y23gZZs5w!p6!z7{^goJ?Xt#mxVIuyWq8u{Vjhg* z1!^v-!j>}V35Ugd7}Xb<<4}<@6d@cc6o+!cp_Xu{bW#O3CV-!}p6jJF4%H?{$$_G8 z+|-)H&@`Kwhj&s{Nv5K_&c{4SMsk!mdCIEf`}t>>9$88N@5i=ssKO=ci|78^KXJa2 z>j8eoup*4^h-?8NIwN@zRiU=mKM*jM)&Kj>4+8-<#yJ+3n%S(V1{-`!B(6@N$Y zK1k5|dp)uM4u!wObM~M4S8=~wjw2s$-8gIhq*pLDhWoc1Hy#zG%yTjLcvB#o7e-Z% zBBw#i+j5!ttH z(YJ1CO71!zo~?)>)m<3=J*fv@Gt{|t-p;D$^n-Kd0pK-G9@UNxWi2UW2AfdoEt;zK1X% z=IOlKblnI_e!uNabjD!A5ABWhUsS%6vzBW;eiRdu&{vWit{)6H2Vg>pMtEjm)0@`L zo6g{z-mQgT)3K%@e(q76w;v^(a^AdkRYJXPBH2sbNA%JB*F`V*#$)XLguX``8}J-o z3^7(>kSNMZ+VO`A<59d4J&6zqmm4FFJQrha8c`VM6CV(xYHc(rnmZP4Jte3to_uCC zh8sBRTy;l3fv`5YFF2EL#qo!QmnJ74Z0*a)1njjMEs8LIz)N%^1m#+|C1SuEU1D0J z*2piJpPkU4Zsv?&ni%*cOsXhl#--W24=TcQq16{*w^bHreV=W}x8In-4T!;_s78y` z*UL0$MN5xqY2(@}|`p}pHFB1OjwAtro;`VuD zG-}SbsNetuA`#B>AJO#0?W;XrVc2Rr#5}fdsE$^EkZL0yc~WR;Ybm@NS35ql#qK{z zj7d5>*dS^|z6iID^1u=-NfnzQI>0S)sPeDx@9f^0`izI`aDz9~lg#Y8FHLRr+qd3r zABM-5_@j5fE@9alvHu>T2~l=4;LNHwsp2cfXMg!fZVj{b8b{nA#yv`g>GhS6TL6so z^%Jq^IN;48(rYH-Z!aK2p!X4o2t_I(+ALF@aqn|fOT3uaL(*h@C5r^>9<{wF(kzIh z7}3`ytwbML%8}N*c)$6GkO-_GG6OnEp;X;(i7Pd&W<1NLLv;4fb5dHmc8jm>jj47! zN*U3kO|HNwzFz)Fpw_u|@+q)K@7?7k4hNP;)o)Zo6>Jbqi+g&aNfqqG8D_XnLLWQS z<+TJ~oXXzaA+`2{#mkoKlab7MBZA0>1IGIqpDRuO;U{cICMPHROOVkT8XC5iM^4;U zRSlsnQ`5S-x=iAq*eUIjp!27sT>1$t+;R?|g7#c5Hi-}3KZffh;pIz_o&3yPGFN*h zM>(!GT?XR@>0TBT)GK!#IwZ|zgvf9ms_YQIyoYU<6dhvz%v^G?Ah-U{sE}6oHib2Z z@9%6lWgik27Z*z&{kDaZS9+}r*G2+iLWS4veuA7neOj`jt$JXP)~%+3 zR5`MC4L=VBqY$yxW-N?{<-;ND=UY!kQ)gJlB%9;#x%;6_vD!gYxDPlVH|; zeSM97!*LHuO|qE;LdXuw&S)^}RB;kLufN=FWCnG|(C{+fv&ibkqdvRK{B-=(nKMH2 z^5#@36+@Vrai0A7Qv<`VjmrX>hGX8pfA2BiQjT2y)giYwh$_9;bV3U!qZfRTnY`2n z6QeE+pJKOqlyc^ZiTigatA|Z|oC-cAA1RJ}JM~$~V7nenkMb5!UePY+BSMwJDPPd<-<- zyj)uV?|~_(-S%PTRkY}}K!sZcY}^m$g;^@!BuF4J{8|Zyoju)& z0W_o~7z#s}E~wJB-t6y{K$4+Do&zqlUulsZbqClTfGiTO+B{KQ9}Py7ANc(2595v) z{kTNxYzRLm>G4Z<$fHxsXEN59bFlEk2a}Tm+Fgs2E!`=~O#bt}Bb^_;mn6LAEc|yi zM_@U!l~yg3+dnRoHH9u;ZU+J>vHf~P#Ja|!u!fcc zMYbkL(wdEHQe%aUr-E4(+pV`3*+tAs)LCyVDB*3yg^dfkMz&X_tATWAb*ur&U@{Wk z!(ckP44n)IY`Uz>k5~f>h>R04&tQxaYi!lg94m}&5h=ecEp5C+Y3tqESc+U%yi;hE zA8#FC3ZqkXB<&iGDJ*`wWLD!>!SiTz4?`|$EB;E4+Km~z6Qy5+^uT#4U1T%Whh*?j zev0%mMDl}(u&^e8rQXlaj!Fh@`)T3jjMj#{thEXsJ0g+D%F!oBq3}zpuXKHUD)kKv zB!N2t`~BylYthDbaj(~KX><0taoVfabng5*X$b9F#r|_b3;{5zkhs9 zka>{$@Zm!!+#plCd#XD(ay>z;dKqKoL*>JJ_9HQbeM~G_$;nD|+DhlA$NL!Xfs^0a ze39^8yoc?xnV+ju z$;#3N${G&b@ek*cUCiotZH^Jt(AMsGypL&_HeKih{*)Zh(A12avN**0XTRnUGBI(F z;cE=*d4BxTa{Wmit~2h0jEtVas7r!^*$8z_eSM6OkPs9uC@7c%eq=LJ2BJkx-YJRI zZoMCVG|pV=Hev-HcXo$Sa2YyD1-$fMYUm!==1j3jrTBA{Hc)x_O1hYTHi?Fw?&dmnr~8clfJp;)=_cr7)P=-eaaZjmi)8z zt<%rK=OteAR%j|&Wp<#v7hqws^oUmY>SbOeBL}pZb0hY{zftK_fQ)xJ&NbmG4` z+mRM}C*Lgnq|OaJ6oq6I%EHYeZ`~NdE$Ke0q_EOukZ}F}3mnR<;^F<`{=H+$e>UT4 z?xUaf(A##lB3Ebn(qdvxG4tH`fcVjtCK<4`o-oGqC6u){OD~OOfb!(1XnR_uVh#iF zfSU8fpV|TZV+0!2aL#n#>(o%#RtkW^8%9P(f|8O(wOf;73=;zwHAg;ck4v$t_Ca=K z=}AUMN=-6wD90$*qv5Q*`l2#wdy4`SmX)pOn|GV}UPSB4R7__+C-o~reooibwcsHN z^%gyBprc@viT6xkAooAP2a#LrztO{M0*b#6uS|7oGJM;AZ7B1o*hgLe&DHLOu`lS+ zPmd2yV#oypJDmFrtM)#_f)}U?y|F0tTe(!007VDsZ~q&H37qUo}V1 zTxp*!thHL&>QLkD=G|FuJX7mg3fuv?zA%RF83HEnGy0e*V(Lam4wKBCL6zNEC8StZ zd72g3K7&#doC-P^$}9Arb&?zq78Z`h;rzNN{xe0534=9v>-OHie;+yc;Q@wl&h^7s zmUUXGp`l^Dk%CMOV(dU_cIu_+2{r-H#?+{Zr4RbRQ2XOhyX1GBuO7SWX+Z^@9 zgwtod4cHQN!|F=;;KP>yk28T;buT;YF?+EaE|q?q6<4iXZ0>(;x9zv%M|@+ah*nW~ zX65%=C7k2hO-um8 zm4T7%GScg4M|sbgcJ|tJ6@?|DxDN&IwcKT(g9JpdaxCPW$8>(V;ML%{a~-nY7wio007t9Dm{`1g7h6mJeBOVNHce>NdNif^XHq4SS$8% z;R#?wt7%)>5cD7GR$BL4$<@DVLC~wHAa77Kt9{_lo{^gbG`&V4>i$>vze>f@_(L%C0$?5(Cv<&5(S^Emk*ifWe>6f7}GT&1b07ab|FQ#BOzXV0F|KC{;(Q<4I$OifLh z=T2_$c%mi%C~q3bLk~n3 z22B~R_MOfvCXs<-owM|vE$y%Iulm`RRG3>>Q%Nea$2|zC0YK{n1jZ@jp6of>pI%^D zl>^u+gG<{Kc4r$1Fe2AccG0eA1-hkWn#s+~^l3y!l^JA<h5ONfr>%}+Vks8gf4KGkZ5(Se%`h)nW z{|@ormM_uQHV>;@`toXHDLq{?{kiPro#y#d&UDP8XsQ-}cS{xSr zx@3^}6JBXe1_>DU)|u$KrLb#xAo&h)P+)$>(XAj0fkHuy8OI677;;>hmo7HK_-H=F z$Q`UgV@mj>PXF0R`h$%mk$6yDPK#^{w~k%b5%*Qn#}FPA4BaL8=NBQ#&2~oYmxum}kPm<> zAzoMFLsIMEJ38@()mt%yB4+Ms+*>NH#fvmanV2XEDB6AK{=It+fFb#Ds2IvpN>CJS z@Iig$DXvQ)Sx^pf@r~iLxi}Q;<@XX5av$c5x}2K+KLfkWxWpn!(I0pfe@7=rM_g1? zilRTQzVaB?rM(gL;#On{_3_dymej_K== zdcj>unM0d6`)*W%yY_&bYI_&!@46$nS zZhPCLXSd3tB(a-Av3y1-l&1_|FJ{5Sz3saJSAbexK@v~}UBt@95)H-+A*s)UF4f6U zj_{p6*s=-6BMf6|E>jgL7RYxlzB4(y>5KD~9I2R3MCTwvCsZU(!jQaQ+}s&a_@?j8 zn=`wbP&(BSeCZ#oX&k{G>fbF}-bU1iqN6-23D+=*62Oq>6r!1l#KI|`W*nJ>k&mOfW z*Tkcj<>7yfZaI&Ddg33Vp%HD^_4B~4-?SeAGkw&cnZQrA6gNMfw;4fb_i#z zBYo&&g1aLBKoY^+3wPdjHt*SeRLR`tIinf}f&AC1I5AfApUtWshtjTk(X!kV zGUT&5+xn37wGs+Z`bGeGH}J#7i$nDn)f!HF@^n?=znaw+n=meEjLW6u)p*0M8Q-6; zo$uSHH@-82D1B#hXPBcfH4@{ak%N)wlwH%UUv*Qbg%P+Y7JAMM8w$(GY0h@HhHE(# zx!M=?up2RPGNH3RzDJBqKn+GjXS-_6GgQ~6Q@4k%OP;T)rg^m(#;+o;`LRQSu3iM0 zx6_!KIh=0`QBK{=6#w)ywn`T zNXZ0rWxB^|Uu9|Uhm-G}_P*LP)Gu6)l27Lsx8;Peaqs5pj4x+jH5qn8z+0$Mcunc;72Nz-^Ra=&TbMw z7aqP!v$xN&Z#>2)V0vuiFl6-6KcAxh&10mBbu{~DaK4SNtgi#;Hq^Ju26J?@)T?*L zj84ZXgr17Bxh$-pvhV%Cbj)A`ZQ^<2)QF@3y{fb~Xy!J0{;T1A+m;@ES&B96 zs_o~}oDiHB4nocsoGl;KxB-Fy^#FXwgG471Rn=+ngy1?+f2d28M2~EFY0=Wezmlas zAXz&4eMZ4#PWdGeLQU2jjzfh>V|wN-KGsU$!>=TK_O|6fZeaQ96tO-Lq8o}80WqYJ zk&ji7Iq_-(mcOM<7NQKcL7QaP3J7z@H}j%n+8Dc}LrfH$=jr(F!=e{!=VVQ+>~|8m z#epUG!gy6ZeVKp#42@o%kIT;U2%ztSK>4>rHE)dbX+o9w$@-SnjxGwzyBCO5X{~|tPkOp$?isqil6}0|5vaZoJ2jAA-Jj0axPS+nvU7hD zwd(rO`|jaU`}#9D!H3!JfsxK%aQW_iHI-eJ?cU6dEak~q$;}KXmga$^Q0jm6eq|Lr z>{`^HsVSeH$z}_l31e&r&c9%opm$qJKO`+n>f84Z)32L_avfK-G`00>U1uee&3(gp zaopFWRWlyS+h69B6%3i*4+(O=FbdqwVGjk@bLRAPX{4uPYZ+bgaYM#XsNwMkf!&_j zO;aQJ)d#)W$Q1%>S>hG;Z4qZRw11GG5Xh~44C19EJ}YaI(c3fA_4x_6nTal;)t3d1 zkt1Yg1p*0955bc-`*Jhb8-iSCV>>V42Xgm9+7Iql&pGw(=%trS&Ge)`xhQhwdrIuv zwPsmfhgatYwWM#~_~+z7dxlD%f@Xnwj@>tXlFf|tJmq9l$08zhnS5?%C_DImtcLdW z$(7l>!rMHlhn3%>9g|4JNKlT(?Jlgb)bi_n9~Uh>t*oN^ZedX1Fsqf$hHhFMm^5+i zUl|c+v#%AL0;P!E3?!GahOkhnpa06c=!N;`+^67UF!(^U*j-aOl;Y3+6&w0N056p&A zpW<#?N@gVSA8YDqJcu^9BUd{Nfw({YIiPHc!n4u5iAU=aga1J(#|cL%dPOACZns2 zfXx9^o@D)%Iv^?o2lJSYvEq)c-yQzg?olJ!CxIrLNM^daqo zo(5GV6CB1MNS`>&7+i**sYM8gTU5ltlAz+`=>U`fN&tB!3G%x$;o%mywEz)c{T@UA zqgjSVvenifbPCVRw14haF{=qE2TmFjhanX0tDIWY^Y;Kj4L=xdBLIOU&oYWAL6`d9 zQ(m7reF{02aIv~9L%r&Wjex+)Ofq$x=5*7&Jo=R(!@h#P@0v`gplE*kk5c)Ssi})1 zW(EYwf!t6$!Rbdk*S}ef*Y4di|1i>PhNhFt!*SINpEU-8G(YE=`;jcDzz4Tu^6c)~ zs!6yiVJ@)x>%92xGwY0$+@}YQONq)1YcD*rZX@8!5~qpLrgrNk@xpXZhD=-zRAS$~ zS(h=L^L4Yrg2rQsCr-~P5I$G)(URSh&J+le1HDdZVk*7VdnclO96rBx2Dp@uW1(Iv z0G>Vy`f1J^S_K5YEt?lJLioIwyGOVzE~0{^3I@n3sF+d(HFV&qn-W3est=IQj;!&J z;}rP%E6Z=0ukz@R@$8_dhr#PaIv$f>$TflpNwwQoMV%_5d-Sw(F;f%2*1iSv0?j*Y zLVMPN!%MNnCRPB zWYg5^s2t+*L}eZP9tTDbCIi0{>JfMw?M@bz#J=0F6i$B8e4cPQ?9jCwU+Wl$>0#x5 zZerN+Y;#0{51OQ#BsweUdDnPls*A+L!7Uy$P=WXHAnKYO83QRhnQcI`5|6;Gy-3yf z5!_G_>0)opPdKd%Rq&Y@aD_U6aea9|MWjPfL}j*9zbkFL2%nkLOx5+ik3T=56vnFl zq9rF@7@b^V0j7_>8AIng4Kzm}6&bZ2(!|_G@5Rts0^Vpn#3vI-HD^oP1~QMwL4N1u zrD_bU#&$hD6R@uCGXL^3(6_0D=l2KrflS(`RD%%JmFc`e(rj0*L5L4}(c0Iu`R->O z;1a3~QV1FY2%qnI*JATAT?4Xf`t`1E8kHB%tbBb*xXYo5@Oe?mJ6?fXvVptIM>QuT z@}Ye(T*FI*4<$DT*5b21l<042HXB*o$!D`8SH4Z+Awq65wjK~ z+1NXV+$(IjsmWA2)AaJqYzOV$6L4e`TtiDLJsm12*#{%%#v5Guo=7N(AtX$8-IW#j zx>a@;Z(ZP9@NIm{=V*k>-K44BT*bhLC-xlczkNTp6GQ;XlOC>pC$D+ja|=7N7UQtF zjrro^azBGF*SLM)2O*KWyVxKEP=+oRUTT-NDRnCzv}Uy@th)&Rwc8T2rF%_=77-mM z{$rDstbgme_5I46UfV_fH!M<>u*o zryF>;zPAocF8MrfJZ5+%Pq^^dYW6~7jL{vHY)MBxfj*m*Z)0Q6yG@hM9M6#8dcW>M zT_HttK9xc?HEn;7AsndPQY>!%!k*|o5O*Bl{{NAz2s43M zlAmGt<$D)Sy(Lv(F$fL)fPjFd?XAcUr_RRRv*$K9c_@KHDRO1=1{qe$wXw1qv9KC8 zKe?J-WS6rq_S*_@=533Wp7@?CRS4#Na-4{q*{>(|3uUkDjhmVkM3?o7s?8Y>9nGlB zyse=>#B;5CkETZbLr0C11CC{H^`lP|tG(LYI63ZpnZJ3FfBu*&w$jBqtXX(EV7^ly z^W@V-W!`h&jjH8(NnUzGo2dp>hM$j0I1@Rj&BEydNy`@+w>C=K06}_tX;l5{&%mQQ zc!CkBB1t8$Rw+QgqZp53vNPg6k%ZmgVH1QmJ6BmuW*Oe8kWit-u!i9m0ZI;}h3~RMfbIYA4x)p34mCwQ?E=vm9Ry@|t z&<;Ae>(2J(Hvjf7^ALPg_s2A zy1_HE5|x4R37=A>K7G^eB}#lgS~5t0D-ze2GyUKF-dZZP0a4fiwVx}@{v!d28I~+Q zT~|4;?qi}~N${={TXK`5xITwJQ+mZGfW<^(#mnR zRPk2q3i9_a%Zn>q@Xb9>dc`BcEeBQD{?JuXyxbN@EA;lR@nr|o6Yu$^en4qsW5c!Y z{rw`*eM*O9D294QL(zPP%rE*h#2E7oYkpk|%C;WGJua@~;c@%@I&%BwvbDx2#kj*{SjP5k^L4!qo8+1^2D&ycj9x z*NR)Zw9(*7>!U}V)-*L1|7lE**I>84GC5ISfGFYI8v!;#N@)!G=b)T>XCv8e)p^H8 zNDwYZ;o|kQ@WghNI^_xPKhd&HS1ifmy?5%AIv-!@CVK7)XsHM!5Y}}UJCouPy;Y~a z>-Cql?tIjKGa7hDtm4*Guh^aWBYLWzj*IT+ayZ4{jMqkS^R0T^o_@Aiccw0+8HWnizPtw)HWw`eQq$* zx%qHC3yUi2P!{G;4&{*b1+m0ar{Qg|d0(%O%NWBuKLw80tlRQ>;!qLu_-7xK|C;^< zUA?g#xf{M^Nz3lNqOjj%eDUk=#s^Uwqfghzar4i*blqO9OgpWKFIDq!9=Yzba)ja@ zN#9Iow_a9|2R$FKj~RAqBj={yxA-Yxv1g}+j-UU_HeU;h#c!{O@p=;R!m~rdXzCA` zgcg2^!lDijL&wS_a>-51YmjwcKNwY-4Zvc<*BaC(QjGcd$Sq=i_?#X(L-3s)% za;RVYdS7w+&L(Wo*MA_+Py={VhOo9 z8fIlgCT`Tvbx-LfSZ;T83=8L}X`#rY`?RaD!fJ-UrRhf7fbn_6y3*NEzRi}fn1U~AfX zyKr0HOJj##xWi-I((3X-TD3O7&m_X$yqqTM`I8v6O?QJus=2z(UX3dz+1ifT-TKQu z8?(9Px0o`3e~CEc=JM9)<4^cjtF(mje&&RLs&17($sPyx+M9NFFN zRRp))k|LWzmDlC~iG;mGALk7yz!zAi>jd_Pa`Wzdn2!ohyZP5k+I#YA*gpY@rK$v2 zS|zf|6@0{mv6u&=6z@3-ef<7D-IeuN6YE*(K>1wS2a^O@g9IrpP>yp7%{^bleFNkI zTCw8-XNIeKbrxt%I<$A=(MixQNB+N{Rf+qp6kJDP@=L_mm-NbOc8*^nYW(fYtvO^U zFlVXLR?htsq4Bpgbk?H1dRVX0R&p)py0YhRf?BP0|9pF}by;|6WD{uKK50e4mrN$0 z+E#2DGhwrC7s3zzg%l9ZQdj&=GVtc*9`k^q4-XV)-dz7W60-WpW8rS+*w=<|^5cEz zNVxXu62HW0tBDCN`qM&@ikC-DnBPxdZa7yO9aCUVp_pK=rg&oXpES!IlKJ-l1!>j) zSDe{7AJAi}IP+oaVYcs@i7^NF{rezFYK5{_d2$C>MDlft(q5X*{@{7}@8C74fo=B3R{+`x$kBKY~>6x{fih!)YMXr6|&W)0Ygy204j zGM8;-8-l1M3#-`0eXoYA=?f>$5BsmDu*&@;#qPqhY`WBp%xuZ{Vp+#uHX3vWMOyor z#Uigr`?jXPzTW8n9r$_x>3LaBdR7*7!M5d0;LBEZEEY`IpSB*R@c35ogS4bVI}#VQ z+nA1zp{*5iH(Ync@tUEz{z5g#t!Jo!#E7YPc3%#{n#Kea$G$|o6vYIra7&yv*U;&=s)uR{=2+(V}Q+T3TpW%Wq#EX+uWFK%ya{|W&`C)AoTjGpmmH$cn zT^=PBO_E9T#E}09-l|y}8Ck6G>OTZtaCPA-qxyzNxgBWP9&3o!(SWT#-U0oX0SZA2>Kd4ah}gNRwh^CI*iO`3jk(+-U0Q=Q;iUFLIgVb( z3YuUmVU+G2mRDy_4y*;Wr!uMS6))a{v5J+jARnYyP@cO~;Za&FFVYxgR0r`3>zblL zb|s$qyq~YzM}T&|0P@&yb-HC0A-6Ct(N}cN#}!of0KqvCgS`*;Q6VdUavh>9Q+7`% z_TS16(mtTe(8UOpH^7mBuRZyS?O8SSJQSJRYdw+s!BfDGKwU0~(fu!uLC8{m?$0eh zu!J&f>ny5HvBRUp@u&^ZKZV2L$^=0k3gk%B?R7wdEoi{Coa#5CEymLa<&SB8xdw{Y zR}lzIfB-TUHD`bPZDPEHf=Qw%wW6$m89WDZG;FK*-DN-)3#c2EmqGm7&V+Og>`ca^ zF>}$&55$FEFaI8uW!zogKu$+f2H!|D!K^DK%Fq`|-UROpx5el&zHAi#2}0VRCS#D} zy)?@B5G02Ge>thfSS+X;f|6@-W2ixGp|r{M)0bs!nm$$CUa1v=G!y7{bx$Tnqi=U;pD$s z8x*@Z*#{mn9)dg<^>OFob&c`JMHLhh%=zdAMcl2d9m#R8p=f3+0-D5*?9^Pl}H29we;u4#`BYnnUs2SCTGepARYBeUc4Ltc$u! zoC)O9iivSSyoC-4QeR>~FUTo49|lohaC7&r)X3ekxMJtGj1CvG-E#>Lm**FRcE9|8 z`2Zqg0spxi40fIW^Rtz}=~h2rU8IY5y3BV#r$Gv%>tL-hM{!piX8ZnS0vCnLj-dn#X}*CB}M0K(T$ga3to1t?9qsR1Z$K*dca=k*Ne{@c}4R z8y>0YbK?Wr8B3rtGwbYH(|KS`3~Lq-ccwYNJp;1Ipm1`|_Ww-JfH=hhoLs?OFXqPd zG*(6&yr(Jj0)6~&h*Y>}zc|gI^H-`uTIAn}V5QAPyKOVe^E z4!dw#me?7A+5cW@)(z1TEalrqbd^aMAJ@Z`BYzcinv~nu*8o&0#?n*y8XKc!+&bGW)1F_a zaIx~_FTTEqdH-b65dM-6&vT>Jnmk*#IEx7w{PbIykNI#Mitn_>6xWSFeX>#AVj9NP zd33!1vwhBQ_QVx0#5`d@jpokFmxdng9yl^W-oSLZyjm1YJNYY_XOR;-#Y5w`+(S}sm@fJ6Vk1PJqdjYJCD(pPbZ<)f z_7bL(_WsZu=-Nz(iB3mE0|>gcoK?a)Rb8jT5Y)C(}F|w8uRvl3kc`oo&Qmyzy~TS+87DdfI}@V zYUajy^&hm(DcrYfY^;)T(Ft=}e$&6~5E1G1pg-|MufxlMF4^)9S!sRpU3h0}o|-{p z=s&o!>{H}viH2G4XhN+#MXF~Yo*_1&XUm)_%V3+YB|}+NH#<*#a<{u|l(%#$aIj3; z1BXS&EK9>jP^9X!d7_xEKBE2;3TVnejxK0nXsR~~hYKqj8}ntHbimm*ys;2<4bxCI zga4}is=wr#MOudouqmL<9$I3(8Lkv~!>NLz8&k^N3OqR5?9b*LU`1ZO>s?8paLOoZ zkuBhXplD`P4UY6fTjM=c3>r0QnS>=`-ph@%xVC8C#@@m4agC2<_U?02JKt`T`7qm^ zLodcR*#WdCHtR9xwOv1uhcvF9vt|fYTlFK|D@MwA+Yn&#5}e(%~iH|E?Nr`8_@ z)O-7Go0F^lu?)O(wb=6`><2-MU8Da3^|hZEcBw+uJY50&)1DzB3mgexkVTq^Q)eVo zAzga`ty*89>=ho8tflOQZ>Ut5#!t(2FjDdmq z3?CPKQjxDb1^$V+%RX_}aKE{;C+8zhT^`f*oGlalg?JbgZr%SYVSMZzcUpo%5o{+$O3*~+4C{Ve^1f{d7#6%|CE#j!2U?fHwBc8Dw*EV}ha#y0Mp1(uS+ z9>p;z#xbxYljRx*qu(j^XYx+RUcM9Q3zoV3c3vEt82wdT!VZz}pRj`vHnt+yfprR3_f|y%#jlTv@!NbNTQ{)hE)2{3g65I z-^?LDNv5*qfDk%CBmEO1?JWS`dd<|41>Q-*%UR&u9Pn}{!vMfP*VmZg42mo-dG-rU zgGYi7EI%|bt{pMvb&Z(r`$pz+ka8qz)NY*gk zJt!O#X^hn4>(Is28egDSh)YOEOJn7sG(HX#&L)k|6;7%fPU=Vq-R-ugx+(n<3XcgT zy&FzCNdz^zC7lA1PN9>2a$EY)W%yGs2~?a?`cT8_3vvevzYXXohMw}m%f$VNpcA*Gm*Ph+4v><_EWRA|W{7kl5tQ9#`-oD`2TocF zF1RUOCju`g77k(-pdpn`d40rQERFx|{5hTUgKrsb9t(E7%VVjVq=)=S zJy<5rAodqP)j?5*_*=}=89g8Au4P8?Owz(8u#9l1?@9~T4#4VoF%qekYd3yA(hhjWUBjTLfja2x9W-|xiJF?2Qlz4!m*h#$pzik z?oHd?!oYy^#yFH&a0`SSD((;7jQeqC>fRA$Z};Gl=L7*YsWgO4 z`a$pD(Lqm*#zP0hpZ1coET$tN#+^g=voOf4-1L0OdK`m?FD^Cs%btaCE`+LMK-DEO zJQU99+>LVj0;&B1*~AmX3PSLdzU1L#JikxA*y9Acp4hgygD|yA^7|qjs2j+hdRR?%_>rhgWw36AX9kTg~XBe}|Q&UTz zoQs=b=ZMZ`CS!=hLX|N^~wo8S-g8b7Z<6^*(*n%XIoHX=_@E zhb;d_)DLwS!bQfat2dUZdNYD8k!I{eyli2if-P`N-{|7o@A3bVpNN^;>Asc{DMbMjSwHn zJGqw3@J^hr)ep6N-R+0`w8&b6c|OrX{E^~8MVcdI6y)kp8Q{(j2S_p~K5XwnW}i(% z;xs51Yt(1WpUTCTdBs3xnJf2gARlf@Fa6U$=cYe!@Czp#Q;RRh&DI>z0!?+~qx8P{ zfB;JU)8fLKuP^IcV`*8ASb5N}r(&F_1lnzjCQ*eHuTtrUk>ZAtN|xg-QeE>Gg{xCb z3&-brp-f?jZpCALe=hiUwt)%v3#K!%v=v3(xTmW4W)HSPnZ`}=_Pc%0?yFNud#mLy ze$fl&+A6|8 zuWQn^J6K0}7zBlHK;baO(|P-1 z`s`1L0X05I%D8i?f)2=tMU5$eJL7Wtw)}KF56T*oS3>PE^O2B${9M}CjpX}^ng!&P zYTbzpibwb1&XUe%h(C2zcAYv<_!Ne+Il@%2;jUs_6)gHcQJB8ZV&S-#7%EO9?JWr3 z+Uq$Egu?Np@d^220tQNT(BV6G`1hSe@%ZJ0DG4{K2J`8g(|kz05FvBK2=Lz+$0!Jw zTBYt~pf`x57v5G;vH#l0-pl?v_x6bs-)azH#@PAL<=2CPM8ezZ_}ScW?wDM{6Koz7 zb8r)H?No8gjj6YHloQZ7LXi$xo^h~&DdOYZ2OuP2ZV*EeqeCzdNU_PW-8Ux#T0i5_ zO$f>=0m?M-guFH;ba+r9HY3@_Fy!kFbA%m;x*=M@BQp3efR2K{igI53UOlQvRgC%h z`H%14zyGxY*aOUx0lsBBCh%-TM3%7+PKs+K=SV8OM9_%sO?!CT*~F@LC)iJmMg5Wi zg46iXr+kn@2mI_<24p=4%G(s*?5?vR{tVW%z;q9P2 z@i*z^NTn4TsOMin=!^BrtiZlg5X4)f>?r-L0Lv9qXH$?5bl#QSgims^O&Gi0#9fPxROFGkU0C+SnCVcnb!B|qv-FOEkN5)(Cab>$QlufsZ`^GZq(Y^8PP zwS7~xr7h>af(~N|o)jy{wa-wrn8kSPhS@h7HYGFtw-xK%ms{WK6#uMopu%W5Z08!Q zPI3xZHS|B~Hl3W^@n3_{&BEwTAhFlj2J%&5$Y4xA|H)c5lmg=Q^XCf}#6f3!BRfB0 z0uvm6)vs@h*xA}XVBH>>>}|by$lt}ODQraJPk~-flkivALQT;P{(44$HP|z|jp(e4X&7_io z%nqmRQWg4j4N0bF^m*Z1Itv@y>{?|X?({;s)51&o=(k|=YW}}(4-OAwb>c^9g5X($rM7a##kO0%6Wg(dT06tiR;?O z4%g`rJYK(jdyLZh71mynMe4`GGuMd4w;l$b?__Q6HilEX;wPKeWHx<$Qj$h>iZUGj(w`rIIP0+RfFH zk!%{6s`XeT^!jZkZkv9F%%Jll<8y-twGd|oAgun!8Sedx>?VyVU?(oidC9ym6vFCY zyv~I_F)^{{jaYJ~gx_{znSUrAt#@$4W^;O3z`9+-US`YjP+5wY7pIPn&V+N@jS`cl zG`rGIVWq|myiSwij-Tf5-erG+94ylE+5I7(D&#~P8X7v`+Redk+MK~w))*&G7mxs! ze41SFeIn@MjNPa%cC^x(58S)Z`=+~%M2ZNh%+>V8T5^YCp)ad%r%$Sn?tBZ6)@SZ! zX~Ran+<+DOW7G3(a;tA??H4CO7cqb%>syUnjayiYnSPu=pm$C-8o2aK0|Wq(Jy}v& z6ns|PLFfLGXUl4QKvD8l(@|A61D?ksCjNh9Y5lkUX+CJ$botXxzLP_D_VSb4qU$e@ z5j0aahFe~^hQmD2<~*NKc5$SiX;@RL(fVZwbtb#QR7-2ccGI0q3_6jiOEX#-!MczkQC zw4nV@BrHY(m1>l(uWGS=4B)dX~c%^s~g1)U@X=hW5J%|uh< z;NaZQG9VxzC@d<%d|O!fvcA4P43^d)vAnxH;Is7^FIB+q?yq`}oQjHy(KB;IhS#Kz z|H=52W7RpJ!pG1H_Z81}9#_CCwDCm^a~V_>&Qz`~RemnTrT}yOGj7r>SQ5)#0ectf0&e zx}ZigLl+mGp`oEWsiB_ga2Cwa-6ns90~H zSdYuG<;;^OJG7oZ&8Pzp zXVCF%t#&Gq+HdV+l;lCfAHn9JMT@usqU?rHemHcRD$-;YBCKSKZOEe z#-qv0t*=ib30RWBrS@U{0vRa%heq4S$ERcymjl>%p2O$oIMl9Rp*G3cG<7TQiTHBK@L=ucvGAgIW*B3x2 zjz3Kd4VBHzW*oB)$U$@_u2svDd;?U_xre6%!?}|&d2QdXDlsiBjaVl}R7n0ZVsuH3 zm=F%+3z!Hw7*sTqsig700&(gUh@yNT97%4!j^PHL$JWm7sFl1K`Q_DZw3IocZ;gY$RI6jy{tF zKGfHz;Iru1NYl-M&aeY!4-7W zt*x!S)kb$-o}CFI14v(n%K?+OSBlHfFIQlvyp9vXXzys^w=QsxqJ4W=Ehr5ZEfRLN zKVD|`D00`6;%djYnOpU(9Y{p-Rh3QDGU_@CN{fnSfOn$;*$~dt{k2hab|ro=;dZ*6 z+>#3%QBNvgxQN@r)=t(%hMtK}DB29kO}s;_GkwC)dK8tPF=+V7m66=o{U&g9%xY3+ z{6LY#=;aX8amt)CZdoVPI}6`n{ke)!(IQ~sqh7D(w$q~>3NcT1bV5coBm$BLkbND? ztyVUjZg)pXzXD=)N$za|)(ceO^Tlc31%C+@FdFnifOAIfKV&lkkC)c~F-D%FmKh-P zLq|olMyLfH58UWL$7T=_;2>$K| zZ7Y1OUuoqsV(f+K46>}PcCNsWW>Z>f5{b{BW68zPep@YTX>RLdTSxrOn@+&R$PD~8C=3?b$xSVmzGqVho&GspvzD5jaO<;dk03+m7%~2H z^ik0g$4fa!g9Vc9AgOBo`kLMcxP_&WGCB#reG3pNoP5eapctriGPUZ>=*(4&KRnwE zn&SR#uGaL%O;1nHZCKy>&znvEaFG59lt?Y4!0Psf4Mi3+-0J3&423u9W)1S>idg;z z_@e^JiMsU~hQSo^Pk&YgU1vhcE1vzh5A0SA@j3(>&$UnDzlLVtiQ$JW=2;@+VAf=wchJefR@>=m9R+Gsj3LGxBXbOFRNj$|X(>*<0H z<}GLYvm-6%9>oDkza$ROIY)+wTitdS+b8e}v6$<+AvA&PkUDp1KKZrD>pYFr{h-lx zml`+0R2si6WD3&{+XJb}gQ5!~?Fyy}(R_BlV4=z;)>b(mB9#nb`=MRk}||1 z79*a``(wG;&pcCj94LEIvGpbH<@$azHig1J@u0R7l=>ZAugRYmVV*Oi4lVGrnYo4F zTNut9TL5~QlE&ZcZ7fy!_!#)vqIG_9^TC+8*o0(I>8c=HM9Rf?`~&dKFuCu%d|1}w z*c4*9to`6JPOS1xe}zHeH<2^Q+eqt>AW%zV69mKhi&ZY;$*@kWC#EexJ7|$_kk&B7 zYOoqsRwNHGo+RFBMd&OiF;qL0^u2DW(P$u!GTOryhUwOGOYWzknQJ` z@%tJ~e?d){fh~SpIwe{Ez;gQjbT|}#|0$ufi|9Oh-%e^ERic-VR%swoq)EV(&wRxr zi3PtasP?Q6V6Wf;Tdw{8pcDW1G!nqx|Eo>%l@AJ^fx>N|aDdWV%iw2qj_m_|B{ennqr)Rmc|%P;m{Dq#ch~BFZ}!M6e?+NjGu&u7~Gryl!bFY7-9uN1}v2YSq>Ab zj`~TaPcvvQU_c0rt{L5iO{9(1+;6(N#`v*D=l|&AgQuGKGp|Tn5u~kOv?I|1XDA{A z=tdE#G|BYi=}I1y2Sbj>F_t{0DF)~qz^$SigyHIB(uD?}TrC@h*@0>iFO1olja8vm zLC_pl*2DwwOt>_DJHrf$g9p{XTbzvH)&9l)EivT#?oY@pu+(h`>%og zE9Sa$m*+-z(1Km?vCbwVpF?I3Dg}RGXJDw1KoM9sb)_RZcIe13i(8hx% z=Rpl_YhqACIDdtb(l>fMEN94Lx=i&xJb*h>bKmw3vq->2CWqjKm||KY1*ZX+7qqct zbOjTwM*x^evwmgeY3D8P^CMI@As4d3QcSW&nf#}hDTL?Uk!4xaTO{Uem&0E-QMLNL z)aBY=g|51j7gQx-_Zp2+ee~gDH~Q%x`_X1#|IGK`v7B{=`z>mJ=ZX@2?5qoMBWKJB z_uKw6gq?wrcO6VKeF@U`o$NRpE%N z+nMPX+3(E#VqLaAb3ap`wP7B}XVlVmY`DRs78bAe*w=Z&lgh}~X7*sJ?xsmVwab=9 zOHVo;n=b!kORhx+{X?RM4C_nEFdwxR+@ z5*}jF2g~8FN$Ne6kAtXP6?Vpj9Bh5AeFdr3Fh*{j_ab_)xsB#XG(c5dZS1f;TA;Q~ zc+OJ5PaDPKYOzh|XFdF3e7{WIEe-eHXpR(s6%PA?C^xfcg84@X0ak!b%F^){G5G*R z<;Fa68&FCUJfh~gelhDH33iQo7D?q~3z zz0K@+5qUh( zRmJvN^oAe0&R{uUH%I{Oi#=WM<7ErmP9TX;E(SBXmcVaxBfGlgPj4$!M@2-;{h0}$ z*&P`8AiKhFX<7+XNnC1jh7-PQ;^*EK8%sIy;|-ZUOhmL9jscoA+pbH)H>`TNr(?%n zT{;rc(xKvbv8>ZSG28*Z{nj}p>^65qEeQ~i*RCO&gi12;S5!`;Bw`_q!WH(HjF#e5AryysW z;jXzI`8FYjm2IYrZRVR$w$oHq@$2ohOFn@X#8z1l;4O4I6lmL(b zishN8IbK|-aPF5Pa(nXP{D0lm2P`iHMR$SUCxI6lx)trk;Pp^soqy?<*g8SpzQ>oF z>IP{OoWsE~wpy1;KgJhH&a9<&ekh+JCZsQ9bL(`D+4*=`aaO&kl9fZ1a$zi7#@6lc zr2%Yut?RYSIRaL_D#MA%Z2-LHC!!H#|8<-jom+9M`P}14C6mp2wj$L_zS@j{2;+q& znnWUD;-=;9vqO|noY-4x=Z9ltN;FylbkXv(AqUMu>$bU#^HJ?PD)?sJ_+|$9X8+*N zjFPrmr`ccl<3m9QFjpssL9q);CDb}tVx47-Gzd$?dh^wxy@}N3aqSS zZC*{-???F1b=JIzAJxSH!nvMLk*}@I5#1s4sf(*J_=LgPNH-)&Fc;QAz8(nrE3vk= zPsge(jysLL7zZ?t55nDg6&+W7CtNydG#HvB$jF@chRQuZc-@X0d#R1~=Lc=37X;nOZBar@Eh!X^3V!(& zt|vimabs}MK(pK173reATEx(-zhjQD8F{OFSNZ|&2KM<)*l8fX8T%G# zIZI_X_frbzN1*S^@ur}$QCwF?r`o3pq+&GePhwT1J^@ehNA>~ha}ewEvl=hXzE@fU z!5%sFGyJT%k?DPZU8yQk8s80M{OJDJEPgb|%JGq0Avip!P3$j_EKFR>^-BB)F+8P8 zc?ybggTAFrf;Pt@KHK{q1NombM4X59$7P}lvK~{uc$`TDa+Qog(cRT#lV6(F+8UT6 zM%b$(RIEx4NLuQn#V6C$({R$(#-860Vc?X9zPwV5<#90BK8_ZPTV`rGx`Cj+ZhCyn zeHB;g6v}Q)Kq7IC+}NTHnwMR1%hqna4O)Fu{<3>Uk0jn4zYC-OAvvTFmn$gb!+W}- z*U2A$el|0t7r)2I*l8M3pb~PEUXw#Z6NL_CZB{+OT8|YQC|Ncy^?tto>>&IGRh(r% z!{KP(G}=)qX=?pyXuB!T5GBW0En0xa?B?r7Ov9T4X4p&>(_WnywA22M>(|x5)X`DA z$5NzoiTuo0*bKzcQhQBapE|^y@HCvwqy~NQE~UbvkPceqhFkwWuR_EvPCe(GlQo|C zGN{yYDt;4NfIMJVId)dC)q$c?Ja4SL?dtA^fkwobB^oe1nqSJvev51R7uh1BT4w6?cc4iaGV`~u5;O+i8ToM%apvLcUZK3L^Td*Srni} zmP>4@?7_h{>}0l__6_9vobqvFCYFr$lSFO{xqvGJ5&fJGf$U@I>%XEL1WLv=+m1Pg zO2&=a>c0(@Or@QP@6_dmc^JM=7cVn2bTDo^BA#quwoW8jtZEDIuk}-m$Wn2s+=r4@g3gnenL!yR#cA!+loBvkgJ{b!NihN{KTeRXz(YVMhkSq%zn_M*GCspyoMmkciBQ`+U!~S%$u3Ms`5` z#&WW1oM>1C!QoKZ+j`1~$bnM1F2!h&_>2C=k9G?ZNDntP`qUN>L5M9;&rdA5l6An! z(QEIwx_?a9=$CN!M^o+tyavxOxxNZ2}?$gDmkxvf2=CnRGWKg6F9?`VS?SmPb9K0WS zh1`ktV4h&YhdIMVuHSxlDF={75k38t16>Zoxv39n%7xVNChova&G2U$kSDn_yVikOj$K&Z?!T^vusN9Ti6GIwYkM00^XqP z9%8wbwpdzKxtLwsTkrU(M;Mz-u^94->uaKggdAaeD2I~C@~9!I+6vz`!O5R>A2c98 z+zGxOe-IFp@T!e#Wuj-GR9jz49Ub-X0Q)k%i*$7?O$s?1XxZt?xi8} zpK&H^`AK)%uHNS(FP*D--!8s2v8p{HM@%&tPNGWP>(_B3-@2%+k#Qch!=L`-K0KKM zx=evf{i!{ezAuz?11FFgOqALEvO!YtpenuG?VE9_LBaKPIIX?}!@>{0B3pwyjx5^# z+hk_Rlz~?5z`=@v(P2_-uC)zsM&qXg~8JD@d`K05x}(L5hXuU;CF81 za8zVjV?_!HI@)>8>EQ#0UO#I{{$A#H9oyGEJ1Az(=YrOFX-Z;L_oC5j#9ZF9I(vw! z#`Qo;IaSn}hfvS{t(^;WlR_v3h(N2^X{r(O={`$ez>3yZ!_;Rgr=Q_DFS!5e7CW39 z%Nqi@4KqrvKJP;gLT0~-iB1ORtUDAJ+3|~7oF&Z>UyG8DvT$&+vhB@x5Oc(TQdW3R zT~j-jJru{Ct1OW>R>s#d<57h%U`zIsw939r1hCjYq2sXw(s}3+|T9)QChL?F@7S z-Ag*d^|V$xa+VYhgkbx5DmFY)w4Ge9ZPT~@JR8&YT0Y-63hYDx-5P^`$44mMcw|TYFb>}RQ z+MI_fjiKFY#qiLk-a*n?#eoCIUbd3V(hqxxW}U80xa-apFOoTB zquTBU{j;7@qdii=>US)Ewi7i@`Js%2*MRcoP*ZN~c`6cY^477}rgRIf;?vhO7DP)w zLYsdnd9D)EtsDwEewg9vW48wWswZGiHG%+(nOgiMT4X%7Z!gZ2SDu&zNqo{-^J>O6 zJvAR2!pDv_x`L*V0Z1ux#8jU_5UuldXLE$hKyU9XKCu89%pU(Cu%BU~tzyc5o;Ozg6tjEqr$1tELbn>;kZIKV{>J#vVmDzgu+yDh{wn;O~qgmOL(O{GAzJ8Zc9Iu>M)cFi*xumb5t|7zG}ec z-KqP8v?iP->UsQkVQw3IQ%XGM&YGV3o>flS@ffH5M*R?FMUC0ueBm8R1z&CZpQ!gy z<5Z4V?&chS3(7A8))E-vGm{v?YTS5u9 z#bS2bwPmEgSl09KZnqm$NyRlcA+Y?sJ+rr1GXRrR8i@3TOswciKcHRX9Vd zJFLGU-HR`F@Np7XIB3H)OojFZNv_+1flajI&%TS!fJAeu)8BtOSf2B&?Bg_)SJc4V zq^uOu>I!!o3_RO;#~htYyz%zMQ&7e4WDS(&4xp)fyaJNDuKor?o<&-T=Wa2ypIeej zEzuF5&xz%r*AOLnR_~&F#0@koqscEh-}rs5zm9&YicZmoQ0Wsa#fGk%V1MX#w~~EP z>HOx!F^Se9yVY=uo)+m_^TCH`-dxAqoL>)RtS*&0#q5=&TIdb^Gdob4uLa6PN0)1$ zM(=-|aF^V5WkyD1Z!5d8-j}{shhri7lXBhM0`u}z6PzSkjWV8=yU=X$^R)V}@PHHEJbz)d)7~&X6^qN2aGnm~ z_T``Oa~ex@xBZ(6pd|zPCsy;vA13zZZsqH8EKIQp^#fOPKqCmRWFlVNnh9tmtH}N3 z^+VRVgQnazF+f<;0{PmINOw9Gi`^%3MBNDDy|~mQ zTo?7xe}sHEE)>Mq8q_;QpRa zHcVm93(O1w7h&e8$;f{5#Zl!h*Uvc4eG=uajCZ`nR``K8xrfzY z4O$&^BK7O7_?jB-x{U!D0?Kp3ca<8%6=^VO(C_0pta&G_Z zF8<`vYd3MRwrXGe0X9)SnV}<@agcl?ThGR2j8RFcySS|NxzBPL2~OiJc_0&@(Uke3c>zy$@18qsf<#URzwZ%IkeLrvQ zJiypwZOHF|`X|YQgJo{_dYf=SEBASmD>l&fnO^4Pt?B2ixch6Z%d_EVi`%FANx!bi zSRD#*KNl1cHn9ye_2=xnf9J}JKynHEqXjTj6+bf^kfFVzKX&ao$A*Yi3Bkhmthfq3 zDjWg0`p42udE|O+fw5`<00I62zPZ#|Mo*Ap@|*4GSA>UQ-E1f0sm&yB;BH^&pyj!z zK)E$JifFn0XLb`s{B?=_4ISGYO_mXOEaEpv+v3aHF2eFIJr2Ws`9DocpQ^SoI6sI7 ztB%`xJC2HG>enX)aTs@?9SJIujY>KOQ$i`OJV$aDGM4_i>4rouaaqN!zze@804@6!C!WN6hxkGsypE~ZZoX5d`0pX8;sPV=>0j; zt@Bi=>B*23(RXfKqJv*)fg6$lZm3Jm@O`Cp45QuANCnz7j>Ep^m>%3B{-)woL?RKk zC$JlS&Q zgk*10>|zB}e-?S2eZ2{xs`!uwDiE=WP4Ph!C*^?JrtiP>0$sEo;yPB9^9p zeU}-d!K21_fya#5!7TaOQ$RD^;u8Or(A3oa&TTN;mg+HXyYi&YJfLkb$vUZYwzks5 z(omIYcS-Zh(y?5ATO3TD(pQ0l5Sp6L8vx8D_wFScQ#6!#hs=2?c9L2&S4fMAY4yF` z>XXCcu#)dEj+UTPof<3Ym<`5IYEcHhF4&V>fe7mFFQjEiSir&vU7{mmf>>!Br5}pc<97betr8&YWU#9?of&LMMgb;~ba^QS^m%M7j zEG+r}n~7l9EhLdV=RVP?5l@5D{!$_kaaWj?%RjlnzpKs+BANK(EJq|%fd1d^AU6a8 z>X6HpDq#je21(;hSR)hM8RxqY%KIp~SI5MJw)p+~v3d(&$a1!}tKL5IC^;`DAE5Za z`C}#3ycAa#(ZSpoYt4OjqA-B&mJXFB*F36ZDj zYLCUl!QdtN(ZTzuD9Y4H03rll92R4^v#?H2e{KT4io77{MxOtpmOD}*yMh)6GXO)P z1dUW$aKsJ!0P_N*t5TI4IG1xsqS*krc{dd0=PTaePGjn`2~|m5qH|AxnZuh7K+iJ_ z3}CO@ZfDY8TJyGwLYVF8ttaYqjuxlag-Pm|cD$Vk&|?VI4bPt=1F`+er;xP%Z|xt% z!f6FO&a>4-9>C{3KMoWyn}q`f#(n&-N2&vB5rY{{x?q{)6@QIt6P#VUHks-JrUVCB z$nIQIia6DHBJ%#-eH-5TXBq%wqlrKtfk6DZ`8E%7@MXV57Nl01RE3*uJTP1Yb*e3k zro6d5dd5)klf~{c2=~3z{QE^$c-DN}u_QI06#%LRvoCE&QM0tDP{G%^@z@rS0SD0LCi*y^G~R@NA6NweW=Yzu20qh9%?a$yB+w3woXB zSL@tAaaM@Bx`mTci1>KFnj}2ovh4%ND}0N=r0NRR`1gbN6}L=$uP1S;0<_KJ3fC)M zYl8}0fqq6FKh3^3)MAFiuhuVZZOtVK2axL(oi?CZ^gFWL-vP8QIq9&eriNKp*o^R~s|7wA^0eC-X4BB4`yA z6HY4uGP9z;!+V;gY^={`qbo_mMFp0}ESij~NBgT!h0o4}YjMaZMP5<= z;`;5keqJYlnk!QM)s2Y2(Tceb6L6M6CDPB1!iiYuJg zS#K9o)&c1bF0(X2Pxf>PF*5GYsH1Z>&;}vFcH%d_vD+oSd4t_<OVml2WT}hH7=&7X_1>_!1n#pl{Y?nepteGnsN0tO)4R^<_-2aevorUn z{h;uI5GPFX0)5b70&u@B5W{PE0CL+3fkf%;Fd6LBnJ}HH$_|R&Mn9OM?$l0P9+(N( zR0cVN@fBjet!l$U?U4`wq<*E&lJ85<8RRymgt`XJ}kRi*$!k5>buB|z`4I*^K8dSqnkhJ;|28HhgpU(tK) z{!llv2W%#|(#EoSj~DdO+sM zU@@W3u>f68S9Do_FD6$>c}hn-&+(Ur6?RtEI2P7)A<%&sT)BEcC3t|tc$`&^X66<4 z-}}36cC9VD(ef|I|3)@TQe7ALf%z*(v7*At7B5L{Sc7KL`+w;Kp0G7)v=S{)oxiG7 zOxhYj+S-y!D00tnWps$bj1iN;5w!&JBLWqz4)5wr@gIx4>Jp0S& z5HxmxMP%5~y)(4a*Ff9o!P{$360QD0??h8q|9XrB?syGa_^jyJL;RT-B>VJR($+ZA zRvctm@ELDybQ75{7YZ^^q6Kcz>|$koI>1!;9?UQl>D)n|xzj`ZY2&aze%5doJu_Ye z6FWad7ahV2DeiW!4MP5ovlsDEa$}$npf9t1WiuYSz@IMVs2jiWWbCKC($HQIECe0l z%vmZ8w`^km)fb(q@HQLPF6_V7F{poo@>-5ObCg^j^;N&;jlL{SPsVit0if9HH?Nec z2e7{l*L$T1uy+6DU+?T;1^iRymGkbk2W^q*7wc`=|MrdE7=z~a*ciBBQt)b(HL%Jr z(G(#rAjH~lS1R3rj--;*U1nDljozRo%8?rlml5H(%mrz*@y!^)F+mT07)Ckk`u&93 z#^%8!@EUGJUH(rJUD>O4LbyB~lYKS63a+sms#zZL}YFaLx0!_$8c z3H_pIv+J=te*_C@EBU3W? z;K1a8fd1xQ;%t9&v%&1KcE=EAX<2{_zMBmG4)0=}g;%s*N7DXYVzm>nvVPLmn5o`B zD|Mo+0(Yegzxk7-lS>~CY|xgSS|YP+s>p<)C~t^5ZpJNXVb;oZg6V9?YzR^&bwt$x zt2c^=mLLPmhz|XO0Q)r4c&W2f*EpZ~I^$>4IWsylIA3$N92OdVLt947HMGh$+kh1L zR&sFM6<}j(`oSgO{jAc-u>mplZ5TWKQP3P26b@~0X%wxgDl7Ay!m#4kU))Qi17y{R zpq?b@Pi9q5+LcsB^3>N=9bvg+XI_i$X$-`KWcWxzyv@ja|L{BCBMsJhs9|;X11Xg@ zdeMgLt1!7>uXId~_Ue4Y7`4i_TBkJKTry%}>Qj^J6Hq<;hm*!j@#Glm7`qHprm=b3 zNpbZUiwUC^YY|(jw`AwItBtYU&R&LZwGm|ms`MIgKA#BMgRP4}0($LV?Z?=_1m?XR z;b+W?B3KVFO_+|%>{SsTnJRs*bMsf4`ryxyr|!vwwCfiXO_jCJCK_r2dHmi>WESn( zt1j+ftIZ7n2T#JnNf+WzgSN$ZP?ln%CZ8C;t+K(@G5kpmrQ-*D0_I;=wS;5lLE-O7 zTW6tgEi^F}Krm#mlBiD7pJvFLP&iM6ANZAur_%@MUY7^M@|xi!>rNmzMoYL#;$YTt zH%8A<@#xt0PXY%`*+l=%(z0J7;5qB7fPP_=FtIR(Fc-XhBs%)?viduRb_f@j_<*M7 zZH2L^w%`Du{z!R+{JOQ4oY^5C0C5?Afs9}bC@zd*HfA2>>t1|wkag<_CH2J&!fd_; z^B1r5CHu|{S5NSfAbK*~Gou_lqhGdqFg`S!NUvFc$pY*C`sT5vV{N?n{e!ZeuTj<^ zicX8(9`-E8rt;Xy;MXcJM=%$|NJ~efW)o%lk7<*RCS?(Srcw{2{DJnK^IlpEQHc}e z&fgQhl9fkl56_HMd$Bhh77lMsJ5GD?pvG6hFCWlz-w=k$cVJ&&JSKqde&Z*Xcx6F5 zSqfCL1l!2;+xBr63D8CdkAU~EC5(}g@}85pql?*(3_EjR{}0DTfDc`R%u4d0ZXy@? z7C*JFvIXS^L|F#bY{vOW2G9BZbTffr+4HXSdlGUJdlRIPoDv=y4A-19yh$XtqCF9C zJCzTyeQGkSnKW8M$4%vZy^dxnPT!RH^!_R}UEkWytdMe>%7-3+s7Li3)ETBdHf5DHpfPMbg%r!cHXHfjl@7FY5kSJGS^s4%F+) literal 0 HcmV?d00001 diff --git a/Notebooks/2_N_horizon 5/sim_2100.png b/Notebooks/2_N_horizon 5/sim_2100.png new file mode 100644 index 0000000000000000000000000000000000000000..eb389004dad26d0a10f1080c21ac580fb22c2c28 GIT binary patch literal 17000 zcmdsfXIN8Pw{8#xmA0ewx&c8$SEM)H1Q8IBARrx-B0ZGQ39#Kl1OaKHNKqglz4sQn zfPm6F0YpH0uYo&*-#MT6+#l!uxj)YJNrY#ux#k>m%rV|~%rWNT{rmArJ_a z%6&Kj0y!@Ufsj1ANCvJHrK?SWA5v~gkKMGLtlT`zT`VE$=59!PCpUYWCx5zIy13dn zIf@G17P=|$=QB4qq^q>Bu)}{g5OQ*{79Q!R`2ae(guJis3V~2uC4NaD@d=C&$lU=I z_}xdI2`dv`39*)h(~Ti(dioJK$pr>_Ix!L`RPRbje!M}vO?<_VC$Be~t#O>hn^7)30gA+**XEK)g3oSs z$dOW?-HP!cV?DbC+oO~`yMK*Dp#EAO{^??G|GDLb`&35t`tWfks2cao97YnI zJ4=4A*%i8>0e=;WsbiT%-H(dVBWlRAfT!xqnp(il5#jXuf{|aLa;YuM#lCQIwiJIM754Q5Z09N5GaTRj! z!ymz$FF-e@FrK1Zj$xRtkhVi5cnC(Ddu9ORDZ|wrf|28TVgMJwV6s(5rFpp6!!i8a zPs}&UPs!h~uF*p!;LQmbPeHCa4rr{M@lhYflcM4VS6L{AJQP(6g+Aqe(l>KZf1&Kc zi4p6I%^eIQ9kh7R+ixdTmTM*jQz6IY7>-fG!Pd0+c2z~qUvI9 zOfMfk0~Zc0^xD|pf?-(#teHPmUR_tg%fPTaFzid(#;B{I8LSs%qY+ht*b>%?i^F1E z?zW%kRiZ|@h$d+e=NiZzNC=e2jnSfuO>H&J$nlTyE_g$na)5Dwrc(2XUE9{_ocQdA!fJ5LtU|260cIbw0z*O${aWC8)466gfDnNQj zgO!@;ams`*eu45WLkfkF;(A&a#mh8dxf(Ea6_}vy_wlB{cQC9eo#}iujw3Kt zt-DeJyWKOB+*Te?%l+g%s`e9RIQ}n@ow>au5?T})eO{>(=U42@HXaq*txfqMov1XI zK86ZWE?c$T-1Gt=#l%XUy*RP;3fK18A%rTH!l3Sf`T2XMADG`>g`(Q{0`%0n1#30o z+voB=h;*f@Z5)@s-_ByzJ7itc>l=c-N_$HSbs{~DLsS(8iujxH&|H7|3kqazWA#)|W|%`UwN$ath@=6p4R zsCKEp6{FGy=XCI?Fs!;-8FkAyCXQxZttk43kFP&<-|*6f$f+h}*r{f^bu^7mZErNq z)N#VFdALio>AAPvPY`C&Rpc$Dx4rXF8jE5}IWX+Dx9Z}n7zD>b`1TxX&xnJX$BIXf{6Oi*R}J3h4m zuG}foT;U%J+*|!%SSeb0%&95dO;E_OYQkX2BPW;QMdW!3t|$C>J3F>y3d$Q^$LGFs za#4q3Z1H1vj#`=h>*Kj*-p=&X+<3*RLVK?~hm-4`ax?zPhaya4Ol;NGVBQA1nHfCc z@iCJQ1B1gv<@W?d?kDw_XUgX1+h<|ey;qYMOdf73AXrS2IJbr7Raki+>eq8ybIlEf5LJ~@jwkGH#FR%9hFwr3TOu`i8XDV-0TVF zF{SK1^THmQpU#&lqU!FNfBc%NMqexYvN3qY8g`znoV0f6+n`6FIqe|2BCe5q6QOXv z&iMF8RDOC4{keI_5NW;^j!(lnZ<%CeAO6#1Jz9;jd(0E=Ybo6VXYw{c1gZbjmgtvw1@CTZ&=i|Qm?`vB}OVy zkA%2pXz|-Iy=eWRC_U(gotduc;+XyrmrB%N7xdqx+VQ|yek~2-$;XxS60=6X=R^;s zfj5V?jIHVq@ew%~;p!Zs`VN*CGnKh7=01Rf<7M$T@Bm7Apw1*;<*;t(H>IjXLhd(W zZP2npG(^ob{hWDoBc~ay?R=_^ixf0XJY#N_U=n4f5KIT=t*SZQE;&Lqg4B?<9-Y5x zx9@HFIOVKOR~FyWx&C8>YIfj9Xdw(~4X3pISqgRLMe^Rs&`5NjvdKsk*N8kDu0#FZ zt+}umL{HAr!#+l2Okqs#-xx+3)^lINFq6P0q2Jy&E`$f=Rnk|`o9(Yp+iZSs7u3xs zj#J7D-EbKc`?Q#lg0SLBv3CAW2K@%zzqrndlt8*{ltc$s--10ni!#D+P}aE&38Xgs z5#nNjqdIKjDm3C;`MqWv96#=+K0WN0j&9*^h{CWoI7g~w|ErP(bNs}Iui4E0icw-H zvUPKx4Cd$ynAXWIAs$&tyDi`b4V~0cDAXYK87bpgNYn8`zu4*TQ`%|E~9q-2whY2)x`4d~NUNVHD&E7MO(HLXY2Y_zg0$^FFqA1#@l#`pN2Y}qXz4dkO+zJ63>l6JeXGFtj{9p6CgfkLRltai-lQk*GTYOQ8V zW6<&woh#K@$mY!vA%A#dZ`_qeQ~u!E%2@e)n8c*nTt_U#$e*wyXwXT6UMHvMWBGIV%zBGaxe<{2k`jzVjp>cR_eW*UYiyWX^+(}2lL52tJQ1W%JQ2~ zUiJ9qPg<#rB4!YeDL;wz$#1m59B9eewg~?oS9Y)Ok;`>QtII{5LPkC-r4S=z!vz7u zvR5A!gKt@VVT3r=9a!Ca#n=FJajKV$*vKB2=}&r6Ick zr?_8dIs6Fq(;xOSTl7ns)^{>)DB+a00gkWVmnAHkl~@aI+hJyL8f z>b?E!UIe@GX>p$G(Mq{%2P^}E1plqi3H!hMma6P}axlL&b$Sw~NGYfAZ=8|KB{ms%i=X|Ouh?YX zEcRt=1uGl}0zJRY)XqTY>$eXVK7A)@P0e89$w{MdEJ7o@ekVHP>$v|Zp=N(3^g;aX zm!RP-%MRL;gC75L>&d6b!CT!j5jK748$fX9PQh{!=NY(A^>UF|de?*Z;$c2(wQ`uPgvbHPthM6aIf z_BcJJ?CCb?&v8J1($o_=9u}fvUmC9z1rL}v{&VRSi$wU-2)Q?ELX~Og{yT~8E2GYz zIfEf0p6h0#p?u=a3E@Z-3<+@`v1FhIn&z63%U{88hktn57Vfq@90^QB6qq2dM#Av3YQLjh z%lz8itojoGOmm}l`PlUIASu@$>&wMGw=6!t-Z>m$bNzDjk*;o$Mf(-tFwk(RA8!wz z^6Tb2&M%AM__a~%KOY+#OO%o5hG1;Rs>SrZ^Q;2{13OcnwZK0GEH)+OZ{W(1tgNh0 zxw*OZ=^yj2vnilu{ZEgkytcn7k61*jGm6k|Sa^RI zq3S!!GKDWrCM+`_S$8MspBfDAjN)sj?q7i}*_Uf)XzWB-e|g(r8E4#jRa5rv-s*(Z zT#Pm|;c&2bUjHbeO5D!QZp5um{hc)G=TWU&EXl9EW@X>-{m`&E02vuTKsNVbk^o?e zz2#0*H2u2uXu^JrF#4{8gCNk60pXAiOD|+}AM{O>)^oLT-V?0H&j=koy<*z|zO3wQ zDc~(qGZ^mu-ncq=zDcd;Qf~R<8qb?PtCiP*Z?hBK#kksi4y@VJA!84}sZnbAeY3i) z#5ECs5=8K_%dfqMLhX3h)&WEabpo>%Fs_Q(m~9)<%(hXj4y6}N0h4uG8Vsv+o!^YB zKYjspPVyD-2feU~QT-o3=?(2003?n$x3N_MCtB>qcKVDijh6Bgj`rrkxU+AchI3+@ zOKke$w~HU1{34;=qsK)SmrVB?86Fpyk?82?*w+(wcPRYx^8NNE%F$JAAMQS96t^Gt z>6ZHbTCoB^6Vok=i!!Sfv&`C(-LhK`f+(393(T7sW!wb-^z2D3e0UC)8Cz8q51bhU zpF<`_Zr_xaYxgF%S0~<^Hw6s{%U21Jv$_4zm!WCBR=Y=bS=*Hew|xBk?~f0Oplcq? z*2)96vR#Rl9~F^UtvZ+xeNyqebL{g55 z@zKzVBqD@ZXsA%tjioF7LBz2C3^V@w)JEndFk>RoJ}0A^0ZTItP~iaQkm%9@8%H0l zKoZc0i?T<{#bHS@=wnYJV;#2Xnfi&<12UCgcO7~s<;n{lHF!Fu#9-VE%)iWJ<+h$& zZ_uXUBcceIm!#d7Klf*9lQ4=}Q4*gtJ=u&~iU7tL-_g;rJ(}SL^k2HQ5z<{s3wtfthi`n+y;MGi` z#F?HR>IG4;v=Wy#kevPVmv^F-z`_m|HT^pP^S%=?Z)8ptNY_a0F!5PwdCjS~-+W!Z zVa%!CcoHJnMoHwKS9u>iUK^^&DtSwDQ4|PW-Vwi~ zG_s(dAS6DJe6xc;AM!#=U_Qx52zrGc%)NrEF|rD4)YR5k+r$*cjyF4phE0DG35@w;^MIb|L|Pexz+;>uja;){ z-Dd2epWorOIbh`niPEv6-IC8W(VNlRD`RoQD38dML?#6SA_0&Mnu=O?vjR@|EVnn_ zbb-OBAj$tqZ+t=u*g0H-`Pc0$-OymLd6X=VTyOYVE%D_YsmvPX6v5Hl?(^4=$b-2s z@pAi-TS3%pmuc@I6Wm8_WH&!^zhb=kH((=DbF8eult#N2EwLHI{8H>>#90zDZL`1DhjZL>j&9g}tZ|m=VHKHj zrbeRlz?3G;c`jDZWxats-?-!oUhnxwK}Eu@y`!{ zX|I|>l>eUIO&>zB7T zp95WQ0U9qHv3gJ3P|yn+Y$whC9L!~zsP?cXMkuUOQBx&EPohZO7TqDCgbP#?ro+ zk=zZOl}X&55ys=ayW9>|^t$}UOU-rsbDCSgSjnhahs_>;Ew=7D?-ZLvo?U;pg4_;!(12{;gK$?q(i&{{gJ=Q!CblBV4_Yk8c z5v7RG|Ftue!X?ZQTA(-ChA-d0Gc;o}5im0H=mwEB5L=@78&9F%XojggS@*ft%P|#{ zpCG&KdAEpnqvG|H1}{9D#bCNYVhkkS=t-Oe>h0%@gb*2_jimv51*2iK#TjU~2ui6sqsEvA3>5@0z={f?R^8Ds>mxE_o{{ zIYhY37e$;XdHK$up{U)U0IN;TkHL?MJaV&!NUNP?dz?f;Y7 zML1CX7`(Xx^Ohaj18?@?X{-AK+QYDSdZSaChp0qb4IO=k4_11lzC74%3%DCeI=q<_ zM~{QzUdQx?U>0I+V$XCb#!VW2D;g0``UN&=$_niZ%nc9?P(!HlhqV2$)WZ@dpwiU| zMsi8vG!J z@iju#&e#KFX>cH}9Bb53BaXV=Ao+JHr4n511@fuA>SFlJsy>b_)9lJaitWcoqcOdu zFzht=$ocHrSEigzXB0xlYRSuWu7c!k65>#${i6a2Ic*Qq#S+rVXB+2!HMt0KHt5|8 z8t0S3F_|rXQ|BGeJHEpBlkx{f4<#iLNlFD_!i0=@7t;&>lUd65FSWs67uB3YLe3`g z|5tU1IHmu__&OfI?XN;-xt@5#Wv@c#b5Y0H&`7QnWnHmfiM#QvBB487dH)-zAyj+r zHH+g;A^8@D|H{pEg7xRc-o6ejZR6yLnRJ29#=2%;J}E49^GvU!Hvr~5hHsO)ld?x( zB1rSGF-aX|XGz4U_+;%z9gpB{WG5GWBO6O%ok+;VrmI8)MM=sg+{eNme?04j`gx*t!MWzH%2>41ljD@bTGQ9*MI2WoCg=f2V$d!yyuo zK5bP6lKU_@s%<_gYhDpq?DjogrC)RW0+N$wWYsW`AvFy-5xVoQ+76U@SH{<(B(H z%2E_jmJ~I>z0#Qxk;||PwiTa9WAl?(dvuzleJEej>Z9FeTUC+3 zH!QQ=kscdKGoE8MZ?5KqlXA8gqzZPd$W4dw@b9mr3U7_Inf%Db@-x-wNN8}3BrB5d zrC0R|TSZ@sOU&e*wV2*$=(h`R&#_*zr;>e($a;xUBSEOn=V#{*G9&FV zF;~`dj0lr=EZFX8?o&RPbkt< z2xlpzGM0X1ZJY$Su{D6(6rh_CeEfn@EW-PP#nknHRBhF#gD3|nGFFx>9_5JJtRc5$ zz0+Ke_@p1{F~7bsq}!ikW#U}YGOpC}H3eOwk_(oaV}?9*oh2Ztx)TQ4rCaQG|=N|)!)RLGT0_Y)3_2h!P! zg*1W7S>Ymu0bdd+`}8~+HikZS`BZd0IHtF2scJGH)yrY|8#hFU?(R|6WgyYuR9SY` z2R{@KTSz&!ZK%dnCHQBQ-vIV#urANSe}h@!cGk^o-Jx6l8>6X$lZiqIiNl!{58c}N z(Vrb3^ls*SVsX~G$Uiwz4&-!Od4`NE&9D~ye)v+@xu--5!YW=NVf~5~htI9HGNN`d|zwERFAgct@k;mqtE|j-gENax%D#%Yk{`#sQ`~k<u7B$_1-JI-@0QSTw8L>3<;r*MCyCjFTK#o__g?I#>!B#CiPf6^+2qC+;tU1G~>U#t1-XG>D;6$%&*YmloO{JK+sm* zdf)qoB-r3D)t5Ti+R=@#>2^3fs^`Vs)QyovwkSb!~ieAJVd>3(~6OEi#Qn-C#+k6L;!dsT2L4+#7_nov{NG@>A|73jIM! zh07m5caZ%ZS-LiK0S2aH&^GuiWBafw0BePs9*>V=4k_<~{Y|FaXV!OWI8 zPRs1up8BQtM2d7V2<^_00lODBs1oX{#0$YJ>>e;Ij$mv1F7(fs#Ml4B!rP7Cg%v;6 z((YVf^Kk(Nwp=^$BQKL%#a4$>a%k}~h9ODNGa^+qkeMtMc0 z-TLLNwlN@6ky)w=yE!*kUg_AVHh#Knl*P{{`Q#ag28UDtTlsR-S#xvX++Y*+r%F^w z9oOH}1o5Yy^<8fdS`m)Eo@C|fNi7cARvXiSa#Bw%{CCId$f0?CAks0Mz6kUQ>gZ{* z`s>}Qt@0Te=_^xpub1_XO9KsRG;YuBcK zm}C_^ZW_8d^t2ysKmCHKa~n&OUIM|i)RQyBIhzBl2cder)gn=WZd7~Vxj`kZtGAgs zZMgN0aMlH)D9@_(RB`TRq~7#qw-^0dj;d$e|iWgz>x8_9~VyD56xO1}*+AN~V#Zu~yTH zwv}^JGgHmxpp1R>2(Pcz6q;4kmqogCPwmGwl?%U_L&wC=(Pq+~x^C1}D-o~^#PDx+ zZ~Tq+?qVCgv5W<-ygx+td;Y*NnZGP!Z!SWLt5a>Ykk86RlyiT%0RB-akGpVdD*VQ>fu zXEbK#&h%Apj3+3udbgZEx#{OPXbG}PKLC}#!wmCswJJ4lV?24e zy7^b91i08S7>3aDiQ+us0j$jpuv$Hp+=~;r+!+(M-*HUN$AG$sK@^GdK_*FE6k?QV zm}1`u?t8HUvahUaLyqTYX#+bBrk%BKFJ*d0g0Jq5zOg$wxYA~_bt7MjC>p&v4xA`a z1^GHn`ZZy)bW%eSWrzfwX7we>ThSmNz~>6W{DYIo=aoPACp^tpuTT?4&Yzs*XzN~6 z86E!jZj`+2KCCP7uZ!olI|^>AM0HF~D;^?y7 zDWdDj_)r*DX~}uw9rUIY7jI9pg8wYt4HX2-*L>ycC!V|V2^D&#dGAG@YZ`CeD4s-L zCoU(S8VJY!y?v$i=m95DT4rkly{L@eBdWwfxd?l^#=0j-P#fgxEOQi5Jf~})?;aoT zo7YHsTnaY68A+Z1#6T2-l%OaSilf5)O1e!@B^cHC-$LrC4eG|(Pt;s3Pp*~7Sni8p;Yez@si!bQ zlvMuDv-^~#`B~pnBGwuQu2arpCEmC!&|TeMsyFSa$_WCcJQ2t7_@mY^{^htcr~u>T z;y9msyRI?Z>#bM5-d*K&d5W+ln(Nfj@n5Pl7KU-xR4P7y8f;Ly2aXAP@!RUUwwor+ zf%$+y;vOS78hO8rmvi%G0MIYQN;kF>Ah+mvahU*D}Q7Fsku zTB8AlPx5;CCxmm6sFktTPjz%yPKrOVw74wgzIgp~rOhF>A)@0Sz;m~os;fX&B7ThX zd6`9=yz#;D+DVJPghD&)XnU3=colw>)nQM;B0-(xM_+fSQ?YTcVpEk-obruuFdhG3 zjl;94s_@uJ(~?gcPdnoj9Yh~YW#-r?6?|Vvou1_oKCeI{ciuXgO1Pd$iNws0c;zVZE6RXr!$A}R^WnF%tprd-gnG)!EEWX?`6d{Du1(2b>gs(> zQ9me62J3cCd#OTi*q4^R`19ES->|pcu#4J4FSY=+db~>L%`GGtSJ960#Vx9LTsYg{ zokdJ4h$ZJ!(fqA}u_P{@itPnXR%yxSFn$f0$J(kdXjW-tL3xMrdIF@LAZUc5Tdwt( zZt`<*n69C5spcFKS7zyQUa4??QEK2mK?iE|^up-1G7A+>5!;ZgtRT|Ys25yI(t~-% zofmjd2<<$-@uIDad>Z166kQ^=&FT5vg~X1CNKX8P-&Y@MOWVvWM701dJ~FAF=rU z0Gl=iM#t~Jg>~0TO=x6g;_@eVX-i9As>w_J(-c&a;-nwhA-Jz!m~wD0u7=?Lv1`qj zyl$`7-ZXA9?%z?;wNl68NudY&2SfZ6lFs>czDos(iw{>~=rRYGC8(+8N($UN)898b zl!LTcEC>eTLUJg;iTqyjV$_~`#ZIx0>yKdab>e0{y59GncTNIbfX=8g->18dSQdDT zCAb?*Z&Wzz>+!}?op~^8c3uwteemiRs_QiKU<)F7-0|}GAag`Nj>pD9Q&#J-D>y)7 zhJ$!+wl~gRPx@SSE7M+5Nh!>Qn2tTz9R1tUclynBug%yC2?axCzDET#0Q+sjK&^kj zfyQi5U}5D@D)*iCqs^AHV~dtgvejiagL_uHtoJx@AWm-7s`vbdNkc!-@aPa&6tTLCg6>^YRI^<>4Iu$c~UR7G{zL zpu6L5drcjZiKE(u z%R}8y5VQtmy;saSZ_{TO6z+F55(zt#im_H(cvZ&fn#|s6hgW@ahs5gJA2D<=yQi%< z{}b)ESzI>H&t8Nmh1OQnrROAw+RC6M7Ingp51NjxlfV?e_-;mj%}WdoQ|)U0)n#T@ z4t^DD_lRUcy`ELmr#D1bx7RqxVR;~^06kalj?$>}PD1+aZTa4B6*QbXLQ1rBbQ_)98vORa z;R9>quoy#P-2%IrI>@6H;#A&{D37fx;oG1ad`PDCF#Aq$ki?6aBzh(1r`auM=5wOmd*lm5#*oaE^33Z_bV-N-^3HBd|}uUs&yWGP^-o(jA-bR+k+$pe{?8_S)vRw zha)2k^8&_Su8tO4DoWeDs>Rp>4#kOd+L-r}n-e>t9M`JxXZgCo1tqJpqopjFr$geqSV{&d1TlK?7@8L&pIp5n@7? zP!$IfLicDOCSMA`8x%3x#9Y_%qR&Q4#4?Vwr+co#j^k-Q$I0{4+NG%=HiYXi+K2IG zqYYm#IW6pfMoa1?W{M;=fE{Oq{|oPhx4uJHz$$qidwY&B$}I2e887R#*~+gAsvm>B zbYimm#2xHskYGUMK{EXY}7mFIVT-CmmqmrR=Yvz3ir7OH><)k!Yd zj>`VVE4_yXdc)2O_{mobPQ#qF`Oj&B7)%1~pVWR`$POL)p1Ay5Ceo8*x^r$G)qHWmdz^>q3Su!+$hU&pl8T@f5MIf;~uh3sxxnw-th|{cH-)m|w@c zfoAmX3ZT>Rqo-SHdO2 z5yRi%PQKj0plE+HC`9G0<%g@w#`` zVKhnd5$l7*%hjv#K*pfoWX#OfFLM!_O-^o;3u3c%nDiv|-U|};XA-Kt4ThxreMm!H z2KVu!ZPpX5EAFha&(x?TmLJknE3l@k^XIf{nNQhW`pxXF(J{Jz(y5rEXA~uCjR+=y z5`MgR!*2$cw#P>$!|vLbKpCF?9$iQ3G1TCFNCT_M2%tO^vX zY)p0Dp;Y)hp0?7aXC3e4uWv*ET<*`3)FK|^wf1t3QTtlP%raiIkDr${7nEi77sa%dp zB3PF6vkEmoc6;$2b>i2Q7sL*2nSgl!DBIrvhxhdLxGg~?4qT3ku@2^-Hm;IXS918* zq02e_ws2&>)_R*ln_VipS&B=~5NH{w^buBg&1gbIkz51T2E14~4VVnx0l2NiiM5o1ukC=T0!d=Tu z0QPcv$nYRJ2^ehXuh(YNTwIn5A8L`5k4OD}vA0@+6?umfe;>AFn?`@NojU&>yxA8& zm$UTj4h=pmC-h;qwSt!Rh+aSK?p3iD1h~4TX?sK+44b6S@G%{v4p-sL-(z~$!K*Y& zR{ynOq&RiPC!%it_jhhT%7P@;xflx2VXU8$x;c1kShN4pE}acG^4Gf{;6N;KFG-y*&^O;ki0Z-t7!E) z&%ApWW{7Jhi^io^Ja6!;Cf5_x2EoD>K3-clq~-t^Up$=-M*_nd2Y$qHLJRdahA-e0 z5UMhe(;M<8V=_1ua4SGDpp*EbYN1+SGJU>3i=@L!DEAXl{9k68X6KRS?F#a1KD7o9 z(g|q`ZMc_I%jL->?D~7rKNhTQne_K!rEu~fo}@h?RQ}0znA5gHycjKgO5^z~*Kap^ zFjZ_j+7dKqS()WITDgu;M5sDCviOmTlO&zr6_7`>FBsQMv3S;9a*(~S3^~6}_E2ZM zUShqRto!sfQoViFF61cQt=4dC;X2Py*tu1hm%V}w*6tuoKUj>Yf7FstW&a_9p_}AIY*}5XdbHN;^c}-u_ACtnMDWw=w9<9Gxqg6s*4*l9|b|y z4H8mbJDHIPy(5FKr#)$^_!Ij`TUM50ILmW#9aB+P;m?mBh_d?GZMW@h$vuniWjs>h z?=v`5(azU%FIwe?7OKM^q^>)C#lo;7OI0Q#pNo>=@C)nyxS>JYZgg*l1p$4|4Fk@v zZ9Imv>W^D1L^7KLE8)YINYe!^I)ZXH=I+wiJ@_^mnj#?{k%fJ2P(Pm;(jy^-b@QIU zh9wLw>~!2~C8T}hWvMn9c}7LB@XI?J8iv)=R#gPA-bQmj2}K#_+gprlc9X2C!D_1p zD|e%Hd6)J;`7x#!iTAv$ZB%ABw1Y4N21*}^Fo3+u5IOzB%yFZuZdKjiL~%$7u7@|l zkHN5QA=Oh5@i0u*%xrGp2$hjM#c=v}=Ls+MS`$Hm)L+w&)lnF^Pk6whHMj*T74_uwy@WGh(iYP)m9n50UzlQiotxTUwN8QbZIA zGl#M-l>CkE{qsm=DGH@9@|f_TE1zyVHaE0KZDT6Q5B8<2Jimksm|#rr+nC-m7#5Aw z3tcfXQ?M}x4%2elR3<#Rc6XZaUH|B13H4I3S@8R@LwnpGcvIYM{1omKxNJgWNS`ph zlY|}q@M?e#u0P7**~T!$?8-U^Ui^cf^C=R47$q*REjzD38+4&4Z)sxGUf~_&3;7!@ z#sk*^LK?~e3=cfg@cjz^skZNGMo78!n-T|88y>?!f<EfoKpgF6C(+-<_6~G%%;oldcN!Yz)6j>OCMo3{ z4UOV!O*PefPg53#d{Vk?hW3|x?Yu1eyzd?1=rUGgaMwPmFS273=QN2zB$kwD4SDzH z441?u#@_c%v@ef+kQ5qc6;cjAXBF-^%J}Rnx!G-xDr*-?-%O&B;=)ViPmQ_qtSa?x z?wC)xPbP)Pk=+BTE~AjQWB4^=_-*cM7BatvzG)7aGjbi=L#&>VJ-CCKJnwSQEVEgP zbl51-uKE(xIOb|w@Xf;>(rCjDS~n`vvmX2l>+}CgNB54v3cr#Jd0~#n7t>AWcZ${3 znjb1$RLRt7?I3^%zh7ygr4bwCH(<1_Rj>H(imfh6+ zt=?J-s?|!t3gzKhw`v!imKFIm8-*cpgkQwn8*-sHryaKV<8`xeZt&g+^RlSQEzUVw z0_!~e8dDa1iPHdr*HU`jbf3*QU1j4D=`u`GG3X92=`3mPhJ+=fi*>FFJrH;^5O`+l zZ8fY~?F-nlm6~WcCK>+0D3JJix15?Djxpl1(o{=fhgtJkd8vs;VtCnKdHSj;o`b2p z!q{wk?_WMMPv(L3YSivxo+`n`BQYJ?QG0=EqKx8E7^PJawzKNBCNS5VYHPnY_gSu- z+tLbTZ{*;!GF7W6Zdi3Roq)kOG-`SIMoVCYT(Wyk4g(_a#TJ$L68MJ(jxCs8EU&vB z)o;aEZ7mwp6wDXGJK?yihu_D;Bn7HwNBc2bw|^Q}y}~%IP>jZTs~TcYBXBba+?+l# zLLVtzy%`b!|KL5c$yIuEYgAC$n^yUVzY^~IRoog)S;08gKmK&cM-)=#BesW*gPx*M zi`VXkYoatB0W@~BPMDI8kc2Ex7W_?6pu8A9HqYXJru6uhu*-=nTwAx*xQaB1LG%H? zD+}Fln#K2afEy%>z1m>Xd0izF~Rp^zU7mXTPI2V4FsG`nvI zvtgXWSy}rGi;TW><#Z}fY@0iS7q@qO>FsD8QAi7hMW)t<-lsas#tC%0;`@p!th=QT zC)9=;w(A$^n;U!kPm$?{ZzIHnA5#REPLm?FcUb9XQOGv-?@Fr9It@VqA0BET?b(;C zeg2ezXb+p%K1qjO|33mf<* zC@q>kh)&t`&r}q)BVcfVvuG;n!)OE-mwLT9e7#nnNB{dV@pHWj<)1;t1{z;=-o>} z$6L@1FK$U|uMKfOwNn!ndo0ovU3fndfs5VN_hNKH`DI|HwVZJc(fY`$wvt#H6~bhr2-(Q>;7dh(uJ{|N3m1ZxFrtq{K{G<-2F!@s-$(4&p0^y{n_`BVCU51!LtHtue&&&~JYa+%B6 z2DZb7q5KD}buj1Z$Sr&PUJ*w2*i$Z{2u!6uvTbT}flV=%7#L2-mSKtRWa#^5S;eo( zo%Zq5?U?WGWsIetNB)X~wadVj3%JMD>02W)E4$1yd%+6&$km3*ll#tU9ub6J+M9&& z9q!~=q_e=!4on}z7Fl~kf@VXgbf4=kJB%EGaU(h2uyKE0Wu^^tMNzxhet+T895*a^ z!Vj<0sQvB#?rRDGA;PkE{fq0>E240K=jcX0@AjU(<2w~H@F)!CxSPmr9&LnEu`eI| z2dy_PTNYNF@M!a@Tdwl0DKxpIgcr+;W-rs#+)l?#pMr(GEmzj8LB^Pbz+lVoF`wx0 zw9PsQrOq{P{g}+C`a{)#K@^lKzzu1lUzhhy75icd44Oo^_xnF=9Hwh4_ukPxO)|Ay z(y%0*t^09A_BA15UEz1-MTs>rlH<0n_;xd_ zJL0cp%Mu4v67rYzw{`99OIdW}(ANmTGOP8Xw-I03(CI85aPJ{3kv?4up~UdIYO*2h zcgx5rHNdslYc8m(rLd;FLCJsUD|%$0wtMQS7;de|su!*qQ{2q{ zpMiNG5%Vb=GXq;zQ&VJz#g7mAsn=pLPnGwJ>12yCRW%Q~ zDB3hyXC|E{Zv~dpFG385^I`<^qMkSs$PUAe(|t}xA>Z`GJ={EC-Cumy=Cp_sZMLx|7TG zydS@QjVT%SjaZ-SrFR+f>|OZt0KeUWUWv{3w<)jR?)s?w>!b2I;v&cAJE`)q$^ko1 zHcJPEacanyF)>-hu&UXd+^zA;Dw`^Z2a=QOjnyS48wA>cy z`FU_7eQ(|_J2#i!P2^fA3um342KTS$Y|4G3Q#+|-|FA;q`l~?9;yYJH{)wx7JB3 z3w~|yPN}qQEst$?#N%rtB=En1D%w<;xNF~N@H9xZDRz#MUwr*_$hn6hku>Gz;~NVe z*2q%kzm;tc`z6npICKlwMRL|RCrZr>6p2_+26_{&+8hVU6d`Wa$rR5@22oejrQ9d) z*fuBp>^8D!`Jf(Ay1UXe)0KVtn{CTzD5tY!Yl{tdw2rIFK7X38;ZovD#|AG2gGa+AOuZ z=v_4y!o)*r6v-z{e^2cHX6Ihd?Y*>A!?vojzpB!lEQ5|1QwEbr@tw`yT}|JAv^nHG z^|eXdy6)Ba<}{^bAmMoEsl~FXtB?O&%+g71?8??BZulr}65I*yZA$)|&55Qy6R{})8~rBIY>lkFv(O5rF-42Iaz?k!WH`qfZ+%xr+;@LTaMQrZ2$IHP z)qWte{5_luz4w9M*tk<2J5B)>)ixkdo&e5 zr;7W#t80rxei_O^`xIiLoV%cPeH4RbOOo{3TyHc$2o@l?y##GRqrB4|y#mHtxnMmU zusK8kA1;?_TAI(MWieCfL1{mqGf8<&-@O&Zb*y@6q$csoLpoStzdNOxN%_V{oz!Wd zBnUjfXcU*K>06@8DU0Rqzb}Pd;|c22mT_Gu>P4BDH0^G$`s~bnJTL9gWf(x#k)Pp5 zYH8gsa}!`wT040;)dMw#_nhl->Najw;g+e5-v1cu?UNJs>;lYXr+xUH+FCv8X|uR(u^rqH^t&k-3jR zw9>{oCBKdFwN731#+V5+uU)4yi*-+LZ)b)En{7+dx|gomLh!+YGqc&=8K-XIv(ayd zKp-BHD>oS}dp_Tv2Ou20*7N$(&8_9=pgREpO8He(-?4R(<6>C6ssi_nE1pV<7=9)J|8RLK)te{ctk?&W z5@&+{YRi1pJ{4^;=vvQR-&;lX)KT7kl#`q5v$x)hkdPqeOnDDFl`Kz41SJ~e8cI41 ze6Q+evl2J)Ro3#VIY=W#PFK=(W0PzDlpwJfZQ+> zbY*OwS-JCd^AhKwbMhWSGDLqVpuJNF0o%5;p%1_pKy(NMmEpR^Sds0v{axKSaWmxo z`{(@@ij2lysFd`Kgz*kP{ZS7&F@P7DIrrV=diNIT-YdY>0imTw>Wm~@vpotEtdbdZ+4y?sPF@h1~+Gi7*F+1zJ>9Zy})mjXu1$a10UgX<- zL<6~O9>4jYV1)Sg)xb8t;hO3Y`b2q8;dqNcxzm?*9+eDvS=VAL?ss*I+>$+Vl*Tx{a$}0Z7Sn1YiM0Q@@ zWEFL;D%`Bm&~bK31a6y!tvi#=?Z zlOMD<=M*^4=swkI1LnzDWahv83-Vhg(mIaad`=So8s39<`X6NK9;K)-}I;@rT%A`gNxZ-QC?>UVRT~QapR^o9vx)!W9>Leaz9|P8K;x z<`k(InbPWibS7N)bjYh@=K|=jSo(+g4j9(*SpDitUH@lq_%u*PM)g7an?X`u^TxL# zFZ|LC+R>*$Apx(Ds~F=ZlLE+oyv!WpPq-WbcAFC<>4Tvt%k`8L0vW}fgexIs?o)06 zWJ`PGp!D_(4fp-MP4xFhD`1&iZoe}n?lP$^h)9o3YXdDh#0b&*Of!?E+aZB>yKSv;tT`UQo0Iq1F zpoY~NIFQGt?QkcNL+7^8)>pXnCi=-yxh$QQAzlTq^02%wUnYR~MffzLj#vU`YUL_^&ji_$`)2);FiCq%-k64Q_aQ*?r^%hx5dp+nlRs*dapO?@rx*tzwpW z|2gAN*ZQB;Ay)v49QHvdrIM^a~JX9X!|lUkUV2j`JkA)-S(J-~Ahq^(5dx!PMjcx;Tc{^SqZk)2Ubp z3@?~Du6oYiQ(k_l`@~}&xX;F*-TI&<;CdxN^gk0k-&eBmUKc}WXX=!QyaX#LWK_c~fO(=`w6P5XbnyngMYBl0x%0DbJ zgld=uSG%w@GWqI3_O^?9?Qc$*AuO|WT{LkkkW+5#l~jU)w>W^!MTEf4#zIs2{;r+! z)=##T=%C%_0IgS_^c4u!Ji`Z2+yK3B13*VvSm=W22=PiXAUxZEay2`Z4Arp(ZPi3Z zZFlDf{`oQV;VNd4^>r1CUL_nWlLSrl-ut~tdbox&z z5Z|MT_%9DK?g^PPcHz}(ovZUhXm2RFI3Z`4V3HR~89&iEgnZLSc9vZ00n0*EO?Qfb zW=y74vXmVwSQ%I}$y>OpFFyP5;$dA^_EMkqT^E+4*{b>~7BERE+_kLR0`?+h&ocJ1 z8St-BzKZZ4bW(g)$6Xj)G?6p;u;t<1Jy-S5`oL5i6trKQV-b<#FVbSSH7ZB zRSAbr(v;I2n~o#*a3>h090#ukO#?s+W3>~stTa3ftxO;}ED~~xR4{5F2>ll|Cyel- zb>M{QvFsj`Rl$Ad+TwCiMcT`d=tw)ZQORduQgExfWHi2P?06g$eX1Rg=7?>%cPoQc z@lBYXjyR$863#;lzkTi9Ly9elloh3oFiS>Vc#FEwS%M}OOBh09c%PFa3>KT?5qd>A z*i#Tk$;rv-!#!5;fl>f4RcFt-6l}-lajzEoD7q|K4f;0n)+~5krc=pWUik`Gx{e^N zi;6)nUSO#QqUOS*>UJs@YYLs>dDyoVCkxuvBY`JjHq{R-QLc?|!IQ<>K0b0c!&t?< z&c}G64umvAdoig$;7`=&gNT~R{mb#cchvxr-~YKFq5))Iu3p=PNjMGDRj>77pirgY zX)Prddd>2O;L*1EC4S>e-r23ckTc7e>Eq3>Fo+vLB>L)4*p45VX`?RT!*=Tb9~j!v z#e*#P#HN_2c`SfH41bZhuAY58-0G+c&63cS6S7y~JdqebKC35s5sKz5f14>p;2ial)+nSka2Vxd;ShNF?G*rOrC_k?_3A^o?VXpEC)%C6 zOIuM?!+e-+VF6hwio2}K@uf#<&5b1i3|n$btC%g00v=hX&Q5)(8>nUyv&FUV?d1+EY#DGi@gtJR0O4hvHDMc^p4HH2a0q3VmF)SICZ zv;QUB+EX>uJcrHW^fg{sqV$+W7u&*UDztTih8erjvCSU^^1+g;e&_+dJ z?r#tJMVKADQq!q{9dgmY`wVBbz2?@BJQ%J*=po__#-E6?xvou0uN6X zEu(z9nWPJGU-BN#B(00yPj$2?whagjVkzI4uQeJj=e@b(f$*9E%2kktm~b%)`BGZi zGxAbxhxFX)C3O}p!>N+hg|cd^n!O_F^_D0T^9vs2d#cf`6Km7=TB{cg6n97AQI)gG zRBM8HinKGEa1+v-Bn8r#P~O0%Q7pQut^(&cJzVxIEwyQ;ed(`v?s7^BMt{maU@<~o zi7{8BOk#1aA>~&MNP>|!UsEK|}i~(nULEqN**B54IllOxP+|?0E^0A#tyf>~L z$$610dYmk?Ti$VYKZ~$QNcP_=4q9IM(CxnzY_`?tx0!+NZ8Qwx0^U9yA;4{_U@&AFGE)z|1YJ5P91V3CD_B?47UUH>*PxaR=42`?@0-=c z?3RCKk$8L|E?VM#WtwMEOV!{51M{!_4zGC_$T`kOwXUztv}ZpHznb4EQuHEr&f$K6 zzZi2|zRk#rCqP2E@~^MmbDT!^#{UZUH!jQy72ESRG`nBiPIlgW=3+HQ;d~acnA+t1 zqf@n~r)zmETVm<0pGBs=55ht*&_daD$r6b)Efds4nOq_LK6@|&Mmmt2kJeB#vJ`Zo zD-c%Hzj9^Q?5z9Ev=8ew%O zV6+fLt5FQ1kvq(lb14JcfqhoYM#rmzNUgwG51LdLilLC7&8se*vzJw=8c7`&;Cvy# zKo-q6Z#!#P*;$nH`K1ATf-_I7L(RD3OAf)?zNj-NJ9p|!?40pyHleeV^bstZ?(ge5 zx}}r3P4o=^+INm!BR^2zcQ#m?Gi(TU<}9Xoe)-@XfBc81@W(D<$Ss6`bFy@_7Wrw? zuiT#1?3ysQpXFhCW-}8-fWC<_a`jtPw@0bho+K$-sv+%tR4Eq0oS;TI)Ugc2nuk{| zv@%<;%~ic%7=0#C@zF!$ul`P}P4j&3Obp~w8?~}UCEn+J#^$V?5^h@AYyy7|ZaLOa z|H)^eh%i&wU+KjXjSLJ&k*DFb%Ud8TKwMl&6h&N8|qi4#ISeI>IGW zQAN}T>^0<2==y-}5|~ZnP(N_*_HwJwk!rhY$2DsCEl*XGem-aO-JXc|zWa;rQ?9P4 z#kXY*?X!$<$e|Tyr4&cjR28=E9EL-z9x*ltF_qoG?5H6I3}{&>Ho z!Ic&E^z=9_KZ{0x{O~3;e)t%R1b@J}L_=ewJL-Jpy>z3ab$RG;PZ}BHkaY=~;*k!WV z`KI8TP{l^uY@pzu%!^0**Bl={?&zXw8{t0Zw=4`6RE`ARG;#d&g5E$f>;IO|5xjJ_N9UAt8sZFLDZFNL4LC=q3ijR9j9-(E&Vb7C9VZ%&;J}UJc?$K zDUE+qvXI7tHjhy_M18wh1BJA6vKIw`M-TaOecM1}&SBPlP&%0juI-HO2r_%SH+P?S z^3%1owtUkD?&R_+ZaYS4VTs7P8=1-iao0RUT02hdu;+c9e$cHJtf%Q|b3e-n_jqtO zpp_2qI;dZP_h8{Y|4oDgZ>QqxnJsjHgwO*de7eub)luvyEB$H4;PSSC7(>YKI@-p` zy^u&{o6JiU)BXL-9u7^0`S}yGRaMoVoBPRm1~&fNm6YWXdhhiIGJu{3|3^nLU4e>} zy5snbsmnf37EiJAbVO*W$Ub|xSAMo!R5QlQ0l0%vgL;0=S(=UWe_}Z=b2qZ{UijtC zY_v4YOK24QX(nFo{e>CsBJH|Y=MWQWVdTTGSvPdR2sifV% zJKq5qQE@VqE$6s>Fs}8^>_7B!10~>(CCb?B~8y zJe6f*1itOjWy+O>vKL&dLw;q8)F6G6UU}XUFv#zG(4Mfa5Cd$i%SLHsg4<6$F2(O0 z@xzi~oBPwM)a}L?t9Y;k{%!zmB0E*SKHJ=;%iAQKuJ~FYx5s@{muED$M7iN>xAZS@ zZLl~|KWIh+`?<`==+?#&HQE`*HnG`h@$jF`tmUa7d=#&U1Q3lERFk#m>yEYY4;WP_ z-Am!?!`a!jR=J+NY_TaMfiL^ohXY(!8bBNTwyzZ*Dw}W*bDcTH_jG05reZ3GvOSEQ zGB(jSI*`hBYbcSEWbojW|H|v3Z3=jAB_ET^Ix&4}D|c~>Iz<%qvIp#mQxeLYpmQyH zh4Xg$XbCQL3NMf9lm*I9QK{*`(G(xNmG)q8B3yVQUaIf#o0OpD;oSub^p%lDzwPxJ z_w3wFcqW)?DKym%!)ze_UF%TSUIwz&{*dodAfVA@(;wt@21VgpK@_%8vW0B;TVk0)mH%V$ zdVjL{qQ9Fm!e;;!wFg`e-t09uoSm|-^zcYYT7Yaoj))v36x4G8V~SPJjetNfdl71f z$~|9c!sbkguGy}u^}b@gcxrfW&u_abTcQA8jE5$i>D3B}xhUsr$0_B2+PjO}yLxx} z@_C76bN7e+*7p=w$m$2$EwY9rldXMX+Wc3vt}@0VMLEv1$kTs*Kx6A4ZQX*$6F&~X zGH?kZsa;uhs6f;P>mSN7Ov=PHk8gLtWQ&|QmXj?hF^^kBR~ zn^H^wqsPQQCTZiD>B`MgXir&O6pF<4sGD-@1}~0`bK0-=2;AO7gM~!|G#iZ z^Xkazla}I3Z?GLPVv*9IntKh9;9@c3m`p*!UKgjSYwx#;0v7?Cz|Z%7Yqq1GLbz0{ zXq4oQ&Xg+xc)?&&U)do zT_;ndeW3D@#5mM|omTw?;5WR^A_S=GJ1cbsV?b)3gv3V7YIatrdrVg!R#ER6#j%&) z(L@1G{011JkH&qxJVV1?8&HXP9D-6#G@e64}AxqS1JK~OT!6c6*9J%sziS*n& zaC?H=;48nT$rrq`?VtC5Cw!U?NdyEj1AiXyZi;qY9oz>NQ!(U|Wx&BgPzYtQx z+tTVmF!~K>9Uw1|m%Zw`AHr2&!sccdh>Vd38J{PTq`TiB&%^x-tQeu7OkJtk);^skanx&?Mbaqt4nCRycm<&LMA z*UOm9>yHj3>JSITPR@!VH}0UlUQU9fA5S#?dji&yNNdKaYkj`sqgJ67mcQugzsd){ULeRx}Hr^ZL z*+#2)Ax&S-e|w-yKFy-wS=G3a*Dj^S02_BCY@t6HsKAY|L(QIHnrL~+Kr88)R^xM0}m}P{-=ikTf@PM=WtYAUMQsE_Rdu>i#BfX z&`yUmNDa7j72qL-KldU-jNKzgNX#ocrt9IqDZL}=4Qh1RDDJAyh9VT@09$q>^n%QT zxtZ|v5bhat>BhwHYS&TmI}9!pUc%=0)PXq2mK?stxiz zJ=eG~V76yIvu3~3U9TItT_gNvc>6}CqfKH6hTr}pw6i$|D+yEev^fu0&xysMGWGh; z<`zvKVi_*|Zp<oV%5cxW>NVH>^~NJ$n`gfaxFDNHW3|(TA#H)NrGZpJGS|n?{L^La4zC*{ z4PQMO7_QWp6A)m8$7Fsv*!Z8>0`y_i8{RrU@XaRV_dwE*NW;I+AB900f>Q?_y&f5+4vx0Z3MPW5U~>sgWwB=A)q*Cf0Dvt$d4F=j6UW&SmSG*@5(s+ z+}FcFZy)dj(fbCSrN~FFKRs{8<=t=lk>uOc-2+xy;+sWTX$BzSQIV5YB)we>R*LLT z(D~sVF)hzthhIPXASdbQ17ReKF~7av!N~>tuv}3Qn;V-bMvr`l*k!Qv&(B4lxOx2f zo4N&%j{vXIW<+Rj=37tvAb8$M;zavN9}%76{w8C`Ri+{0Z^WN%eLw(Flj>@L25N}! zI<{X8uCo~ToIS#4!ukEg9MQ90g;vvn>0lz63-{)O)nkqbK_Wr!Qhm^H~I#XzzzyUqa>@I!%VKD6v%}J9^uG9^=y|+VI;&5@#i0Jz%%|!1>k1* zL6HHPs>g}d;Ea_)P-NmLJPW1|;#_Jkl;9oRtd@PJt5(5idL-r8?nQWGa8Y&UsKLLI z(_l(=C?qf1wpUf*`^kgnye>lV6#Dw#>%0jh&Hw+(kxDcM9Pr539@qy(qe#q0_-MFQ z_hm>LP)_bZ{}z2GVPhd|G#MylO^8Uu-S`7xIYE3*6EVajI-I%fUOfSJ`)?~Vdp~^$ z>4LxL5`9$ELl6wr6feLwZ`Jl$aU48_augQvq8+%@7@SspsoEH9lkMZfVXrTogZGUdXK_2tIr0-cex(E736F@*Z*hPLC287$>AcFvt5ycV82I^R!kQiv|`W{#ur+T@bUJabi0$9 zRIcLn#B~njdO~?mi-1l?IaPR^e;m_Mgzc<_2xyTelie4fW&1%L;k)}e6`m;N3+7L0 z9UQ>^)IPAI;_3l^*Hj40)*r!BNK)w`u_7Y{HKZSN;byV?2)+YnaL=Emmry#BW%_CP zql)U06d%D9SH{m~Ci9?rtRM$Paej89b@aqPk)e*xDK2ybAG<~BdT-4ejenXXIEvK3 zu@;c3{ErPz=cR1Vl%D`=r1l{%&JlJF7fX9JtTzi0kHndc`>1gJTWg? z;R{pvF}Fnp@hQBu+c0zie-#Z?FhV*4H3UVY|11&TO@4{V!6fj&bPtMLnm_U8;LH#_ ztu1JwzjhgT!I9m-w<9Crzi2j`EtSNW-d((3(f$<~3Sv7&`=rA>waP??>BEoV5%nVX>P5-6BY zP5Z-b;h4daji*k@*V8EO@X;6Gj90rIv-Fk>J}C~hGWkW@`36n*_JSKpkMw$XPb8Rm zb&!LO=sddhuzGlVLABcdod%VvU0uI2*h`b{IJ#wCUA1cAH(BCWy!I5`pGw)qAFHN> zG$eml*j(@!HW{0$GqIh*(|u}28_~OmsI~@B(kahe18H_yxAat#-HEMJJjVTZ%H7k4 z%2a61#q4`m=t@PCiCe=-mF$%?Xznpa4@MrQ;l!$a(JNP~lukY^X0TSIolo7@SQmRI zN(>ZoF*>~mP9uFMQFT|H#N>xfyr%G^Qr9y_xLO116E=Imo$FIP(<~K#Ek=Wp&^If& zoLpied92Wexf35w27U{!DQjCKpgXR|PtvpQ*KPL9x9H#N%7TBm2DhbU4gp7rG*-)Z zK4K^7$E!B{l3iH^H(7@w#;H%ul2AD<z4Nl^&uvWb^8KTAaF+d$c*61;7<65 z{kSNjIm8MforREy^7VX+Z{1_PJ5ThpbV1smSUN_^!SuOnfsVen6TlpHIW5EhqveL< zzMn~8x+%3wHi82xq z>LCYEH&d}4RjbiK)jeGK3%!l*L=-hLAJF|zEoy2+%=8=L;t?)-#ka%&1(yeblxw77 z!Ki#1XNJI3)Q__FN;qtAc6C^ZhoTFI%M-P=W{aQO#%@z1MQcx;GEyxUlg9}qUw|E% z>=C9H7JwZ&Qe7MN{eoo6R`IEn>xT1Xx`@;i)CKTEw`&xb!kkJeHkvPM+Yc~GBre`u z+@#u1;TMX!3227>I-}JN9hXZd(F?1Lujr`9ni;7K{u!1QXcD=4bvwT@NtXKd2FsOP z(slVNG@GUT5}k__XI`2LV`-k{E8Qtd#SQ0eP7?sw@+1l+L?%RfJcc@!LfKFv54u&9 zcu8%NTU9nrZ|A=~UgxzqxJ*D_?U{M9ix6%NP)PG5T_H8>lK0+L+oe#vBsZsGDCJ+` z2(uBP+Z$+qwAc@IDwFD=7yG98A6r8I-#yX#e-|Yo4}1`Uz!Kwsb69sT=w@Ia6Y9q; S6>wmgMpIo!E$=VOXa56hB^&4f literal 0 HcmV?d00001 diff --git a/Notebooks/2_N_horizon 5/sim_2700.png b/Notebooks/2_N_horizon 5/sim_2700.png new file mode 100644 index 0000000000000000000000000000000000000000..df7125f838263e8fa86839dad7e8ffcc9e66dc46 GIT binary patch literal 18375 zcmdsfcT|&Y(nYbY0_0%hnMtpGe=aq`g7)uS9pKr=w0Cj%DkJOO#WC*#TzePie;o!= z0T0#h$KCcWflP+aJu7)f0^V%cx z+Y7$7J!~)V(((gR3w}Wt0T(kxXOTsB|e) zyOZm5m)OG9D4T-asxXrU25At8<{JC|hgCKTRZ|kR3^bW9?39c#)?$6nTinvCT`0?FFN}zuGVHxwj)S zRH8GHo-Y$g;;1tGQ#Bc7K^A&MFG z<_ruDk#wtcuyA=LeT`^_eJ3y%x0XzEvwr1Xi*FSmNm7Kdged9TM8K0V&Q>KhhL6Gu z>o8#w`W^7T=#_g4-Ui#GRb8EmuFCPJw_%wO4tRfjcdGK(2Ph$NdGuiSv+NB7u2HSNfIC~MCqt^Cs zzkO?4sZ~7&HJMNGH79bw$jO6J*m?nq5ZN*V?NU=4@whkySJMk!OGg)df||^xYz;u= zI-n*qDZ_k}wco)BZ%V#G&F3o%E9Q(V^E@#zefcgV7n*F41?8NHzG6CmT z{g1jV^b7FLNaH$5I5F$3?Pu%OwrWj`>Zo*NPv>Gy@^UW6nH?Ecqi*rv3LZmMO>^otdAtD_Z&(0Csk9Kl}Szj(yvKhXs)-RuPlWcj-p+(0SH{_ULmQ|}0 zt)fWYG3(e#{T-a)`qWwC75lFz)bpsolWY4KI_JAS?qg6Leg`AQr=W44c#dSuzvS;C zeIhdYQ13ah_~Z0p=WMLAAEPDwTCRIvzTneskb>tURIy^~MO=sA*PGel@VtPN=34xv z1gUYdw0Sgo9zq_e#G%c8D++Ib^i?ElvE(k7cC^*7I%e`m05;Yqwr@TipoyIw_&`YR)J?R z)-(^SAU9_PFGG+g9g%}7CT(C|CX)A1$V8;)xSnNk7@o83QeT@;i-qEZ3ZcsRcfhe- zT%yNeaTkmeZbfkh9@`Il+uT;IwP}N+rD@HuukP@}jvzhj6C2^1x%l-^iGZA>HmAD| zGf#hdM9BM)#LE)~O(C3IM-5lMCBM`6wUDc9G|}Ugv<5MmP-Vfnnev-4qM7Qqs^;Sb+o(zuOdh=GLyb1{!q%Qgy-M`& zZ95@AyG1-o9+|mW4={G_=pGWb@=lVJY>N`-;+HFG8+P3 zUe>!ie6ElB{9xH%E!@kL*+cHvUU83)o6#tq+21xR?Zb>$Ht5*shrweiU0PHG5!95e z+gLTnR6nE9v-5FlUOyaHEP^x3LPsy5SyqZfhtAMX9x5% zGB9vxF#S75M;x|A9zj-oX&Z%*E>)F{q%%}K^1ND0{-MkVN4oV zbvU8`FDF2{NVyB!AXNFb%^Jf{geu+*Gco!~hV~HFh{F?C4`x)BWITQXP>7g4(h8pFe*Z=*W*hi4!?NUp(}FvNe9eonW_#U`h%N;tz(BR}%*P zU}X5_NLw|OT#;xd=R@LN!9lc%(l8EXzxNguPGT>1cKv27NF-Fnw>d@O6OpUp zFit`3Utj`G(FhQGh+vD<#}M-3)XkN#v+N#Eyd7WzIs z+AnkO>oGffd&k8ejaYnsalN^iNs&`raaXo3@7zdLX_sxlO1?Gsst0f2_5(y9ZKb?I zJ53oeI5^lsAQ)R(rW|79DVUvgB4Mb7PyK0qZo9O#{G6Px3s*WrOAhTB71yWN>S4=7 zElCQ_YgEtAuhw&ZB=_CBD=^}lNadlt^6eRu2BLE%$+M@w>UWEn$7HMt{C9Bd$cUxg zy?b0M9+5F<9RgHcy?57leQTk?dTe`2E;c5n=cl8wq2WcLP+s3*W`(^x^82w0=i#iE zFaK(6Zq~wHxpE~YHdYYE0YScu6Sok8!C|nj$be;j+`|?T1#$|y?B2H%;pZSXX`3tE zVUqP1Dc@aQFiX5wT_Sg=Ogri%T)vi_^6`m-?;p>r=c}pizrP7Pc4ui+kN+JV+k>sE@%1S9nZJO>?Adn;bTNPr|jedvyah z4ce3CbR}zl1qZB_rg8W6Zx4^{WC1619DHYo`TmHh%&}jBgziv+-@0XJWtEC-OUN+F zH>Oas)B2KK>vL;suc~WkI5xdJH&o%AJpX=zwQgf7IZ4jdDmuHf4X0@0*k9C(71WA} zkIx2FsVn`~@dEzai_O)GO`PR-8;=%R)tT?EH>)f+ak@^|Z_Ve+I3pWhoW^WS#+N&E zU7&4~Rr>o1Eja7ulVlv-8&8`|lf1@^7Dnql)<|A-Ce2IkhMc)%ntoc$csi8R<+ibL z+(R@vHaXe%YsX@j1}~+&->Q2dU`X}Q(}VYhlE;5<|Y12QlI&g{s&G`72A(i$(> z|Li!w0IadGafX-~c1F^w0O;f*1Y&@7AGC|70IyQ`*`K25RWwDw<=cD?g<+2#JzC~D zXAX3%<-fJs`~Bl%LD+sK)}HqdChj4b{41CxYi~b){v0T&2N+K|@QXSiUlyxMuZ2;C zl^z2}LK+mEm8G4W_2R`*=iv%%01`c~_^z{3J6wKzdHy0I!uZ;?N23_3xOR$s3DO#c zqSzpqKVJKDgwsC8&0R=0o3;cgj;r2p=~n!hF=Aj~AW8Az4dB?fP|shy&{tOv5fBj) zx@lx&Bt!1;@+EF8k*Rd)1NexEiNOO3J-#VuooHd*zT!X{)qL2#J;~#S*P#alO0&vN zN&OOTp=YQ*fVP>`K^(A;X07Lco+yJMff$jrM(r!?_Fp4qXKKZZii>L-WZgpjS}h#6 z&YqX*?Jvm7)6dqy0VDIuiHta`y2ti;H;$Py2NB1<0zE^+mT~E;qd}=qjYVcdA8RN44B5o$BW6z8c#HZcLR;) zEch?@($)5RX{kJLH^6_K*}5}aZZro`66gUZHbxsa+UKcjVv%>2rvCYmGr^NjM{hfvwD-&s@J0BcR$-QA;A#sK1a z>}-%7fk3NitHZIev6%%01wsg~>COxeS*HX#UIQCI_2lT4E3d`ZFAI85`?Ra7s;U8p z?jH}b=h%0oa!5P80!}egXb+%=j-o5A);s!>larf6{q;9L9M5QjlD$|Q-h{I8&gYpt zrdMsYEAID-;(+M}#6P+@0`Qq0PS^r|?QhV6I<3%XS4t-dRpZLBPddGBkAm(oe_nRR2{o7_ryH zx-eGEMAmzDdt+&(&%(90HgJ9X=?ah_&tiX31qd@N9MU;`6^aYB1_12FY!KO1Gy5XW zcoov=&hEQ_cq|tCx?5KTfpu?} z>E~MQcMv&!`m}Q%PnoOxUa)v}b!}8^a;k4ME}81=dgzTtWM4CHU;%Jn$Jv3B%_h0} zjE|3*^54DFSJ@tClezolFx^Ig2U`om2vB-bp+Lb$yVI4rwK^x$|L=f}S?M+LpocoT zYUNx~`iiZKpYjHn2CjeRjR8?Ngqgi>=H1uU*6!Tw)I7fHq0_I!B#85*8pooIH@q}W zevJr2VEpB7)kYwZk%^q1c5ohedyP}psS_Zg zG{}g;IpuUX~+mTy#*a9Z6lSkBDfXrQ;3=7)$X}GK0l8aT2$)L!)9NB z*_*YoKzcmX*gnL2U&TtLf8peRwusrI!KuNSu)k{hD+G!kPgsm?#?hlhI2TkOAXcnEI|%V&#sxW)n*%jo#eGGH{C?{|g!S%b z|7j323JNaa{8tB=5W91gV|_ppX6VA@<>i|yqX28m!H#eqeP&qvw`gHU5QSv6BUb?9w>2~o?0)4^2Jc-@KY2@O{%w(O)(Q!w&Ct5l> zMLu&W-H+Lnb5c@L%$q?#*o^`q$DcgH7YXHBTwKJ~HtLCqiYCof>(6y?xeQl0Z}wHz zXR=%S>4}Jltni%NIhXGkQ`^DD#qtMlKXz+otB22^L@LK5Xp@peZZA#S<_ZThC=|L0 zAnJ8#hq6UUNy+B)o5-FzUoV``RN^MpdN)t3=)Kx-rK<_ZGU^w@U3(PP%DQ#BcWGn0 zC{nct9pXX2iA_x{>gh3@8?IbPFYYa|)yT}uM2&w6;ZVYqrDA4slOn?2cnI`MNJ{o+ z##`ml6YZI?hQRh!y7vQ}G`NGbik_?~OuU37W!_Ae_``Hmw!%mPw3}I`DWZ^8A7bgh z(hKsKIy&w{$uWtExn`wE3f(n<@u{%zTs5U_trg2%`r6jkQ-J7TXB8Vx9*_&=g%)kEKwAF5hs?z>E`}{4Q)qcFX`2rsCKLtDvbNA^HjRQsLOBvEPj=SBs459L)67Y>!7p!!1+kEsX zL5lmX=w3xV-A8=`!C)Smn5l`;A!-w<{INx`%SvQRUD#Okvgv-ZwoIuVvcjo3g1gY< zG9cJ_pn&gL+=sFJuc{x8KWe*VZ1rC1Gjz?*Vd);Mw>T|I`dvL5RNqq2pK<8V5D3Jg z-jvS9^Ajgd(9`#Tv+AV}_l}%!P0e56U@DlEbK@)o;zK%@pMq{+8!k5jWzs1v1qmC0VGc1p~ku_c|vJKfo1bAA@fdtaC;BWH?vCHY@NdNoFtc zCtwCN5jOfKuK?qwTkDt|gTot89C(SIXMy#7m^UylJpHu8Vp1<`mS zRho*7b42F1&0dGpNI8vpwL57$Y}Ezy9ifXz75!qdhC#aKC~VA&P-lzG#l|HMUWGMl zR^KKbBU|PsdMuX1=?fW>j_(yHoTJOcmoW{Ah1ebhu~LvUks`)2H#~10ySGSM66pKi z_PD9V;fxGxcY2f<{;T{?_a^B$H`no&HhlplVNe?$QHF#?#RyRhVf+H^(xm|es0q0? z7n=pwF9vCG)%`u15r2V?d~Lfs8NvxkL3ccrb&XrDUAh!yC@At~zKT!LJJ=rrb51Lad*vjDeYf?pkBw5hwZ-YjfoAu~wEvMje%e!ls}Xv}R6twqalZ@)Z656c2-tH<>hko)e@zgxM#X zSxrAk9aH~PrNn}2-(^CToWLMo1f^S{caLbN!u0pOi~o+TO2GIZJLeK2r>vfdcQgoy z%F9a`n*?vD>H~#?sBz|0ywQF8Yq_4M<4`8;OON^$nc=b4b%k#YCu6PNO1;yq4)CJf zUb&_FdjoWz8OmHiq7?MZ&{!{%q;7Rtj~njYkLB@QwTe<{C9|GCel6DFZJ^{+|=g*7g zr>vfe>jfh&qIq?peGJ?1A{A2B05w^O)QD+g9FQr4@7HdKmo_B6gw& zI_RsT`@*34i>bQ$VzR;ciz($Bj1}zg?Gz zh)$RC)8sC_ENT;1HYBp6Cwv!U63v4s$nTiW=l%KDZM93gIAH7!EK^+h4H_pPR1pdc zh7dG@B~7Jly-B1Q6XOMAVVgIIv4kq6aD?OfuW=VpJrlQF92b+wHw@5A^km00Op>@a z+g$=|2Cof!vCC{*Si|5i!&whrD1qxnm|*m0KiX(sl!m$Tt7z^E04at2wM5wk3E~u~ zambLCVvQHC2`l%}Eol+WV^xsklWk!Z(Eky8d~>Y_nps`?iTX}cHzNOt%#XXlzR|@$ z-oa^`u|}AOU59X;GDd5G;uga0bKkwp7#O}EP8fVh9&u}+s&*d(pah``xwcDztrlML)SdLS3K*n4XHCXUOX5cxoJ)X*y5OKk+6LgX)K4ZU>k_P=b^WVtF1C z+L?zvqwrcO=x7c_Ieo?mem#AwTqX6%AtTc~QpjY+WxU~r`eeBpmZZ*9tuD&paPoQB z^ZNpSEh=c#vSM#v#Gc9?nEt-A%Hf=h*4cU?ruL}u(L5;e{bGFiNx|zRCE=`vSnYIF zTuv$lHWL+xpGQ51KX(lrS2vgwz1UmW(NOForqZ7?p+K#Fex1(#nB6{5FSzji@EOL4 z!$_pRK%E5Y723smU^P$+GXz~*Ya+OI>}wteDz%1%um|+?pVRL+l|*A18NY_rKY2GM zl`H$pfP-L@x)`63`H>Pm__J{1yG~_4Z0pvZmvq6ODZMS8I(~8z$8NDT^2_#!-i7`h zpo$vFyzHpi;_i$X4&FCB6d03-&9bJJe&q5E56x#Ql;|6W$SFvPVSLR_oxYS_mNnw4 zDf?gFe%D;0r@RNaKC02{IG5Ckj4&@naw^;K&Pmv3LB#CLIX_6UC@N0?ltZa8ES$1s z`i*nCX6mu4r}|k{YgO@<8zGr=<-UFgk2N;T!`JFJPR5Fg6zjtZ$t{NzHCP3OT4s)D zypB0G5hA)M_4Kgb%zW5$V>Kn4TWa)8y>@7Ky%~~uT84CHoW$OHt!ebfZ}Vp1M)iDq zb1Ww7san|WS6%$TIJ&Vtd?h{$qQRSmV`e$YsRV=3ETw91Q!kRwxauc<(9e=*jJU)1 z{h2EAj2J}_hTcoJmCcAU*d{3X1*-?Qf_!jB?K{tDJ#)R>AMZqC4Vn1uVnuTg&*ckW z6k&Ci%stF)VdX#n=$PR40RL&;lSX0}b165D3|n#MNw0E^4eWHTU^mB{v=yz`Siu2(^sPd3lEU)}pv7qDa;_U@6(L(g8ch$_WwmGEqjHPaD1@cktV z{;jMn1W3*u81`v^_Q8#_O93x@)bv5Nko9&Bbl&Rlr77r@G5c~>M%JFm6a$ocEd08S z2JGTl5s~7f2Sqa83it(jKhyWJZhUksv#eIMr|{wTD*S7Gjit1l>5KWNy}vxIhRqz} zV@j>li81fUK%e+TU$l5E zF<2!GqpDwvM`Sp=Dw2y(v*ri5egRjSjGa&a&c9t%e+NHKo{@;(-;wDtYQiL;A-|-7 zJ!O}tvi?lgdCVklZp)GBY)MzvJdX9i8KqA(Qp6LnQ71Z1r5!djHP5iFEz{pMuZBIY z_Ufd?vvfZ|=x8x*}kL~ddcpzQOm9HVwrF}FrRAt zi92QXXyxr&DgitGr(=z#E0%P6CbL(w_?Z}jWP^kFP2X4YGW75ZDZoX#^hOv@i%Zzw zF=3(h!YZ%UsHr5=GIlC4HS=}%o>k+8))64^sHR^YXJ=qY^MGl0E{pIlhcPqV?-H(Y zpQka)tbOj-WA6Ozy_uN(ZMWjn`ZOfR+(O?e2s+Fdw0cm{VqjO}UMLX39?>i3s+>Fe_bH$ z4r%1&6euiz1Iy-4?KR_jzSdJPlUZHWZVqwtfzE{zKHgD%3zwGZJ{~0doIZyjTX0>i zARy4Jf@iboa^bL9&JvGlPN4YUMVBRzhu`L;)7j_t@ztd|Ot-_H9F%wKvy{s%YmUNc zbit>$pZ^Y;r{}9ZZuJgX}{<#6NTl-JP8*S1h8B|P{(&6-z)t;RNyPTQy;3~}S+dIw95k3v{*_-Qh2~uUqqGsaVPy=2y=3$M3wq-O*5*IQ)$f^!^{y zMReE(S?yrTMk65G_-=Iw}T#?qZ{ed7rQ-dBf9C^`?>C*jd3pt*dW4VW6+8q@*Yd1Z|>P0VB0-f zW88&eI@CgqG1KfLff$2)m0>bHIy1CK?C}(Tmc1~|T3)j|`(-B~_=^AJN4b^hPr62p zbN7G|9pD3-OUIq{Rby|jLX{CXUgcWX*TTpAoJv5Jwz{W(B)z|+sz`(iT6IgPs5flP z+?jM9dXu73TNH2Xw6eG6&CR_vw#aIy8k=Hg?YhrU zMomoe3tqSEiISC>F3Qetb;RW~&YRSC<4P;!jkM_>4Yj$El?!WoJPFaKuo$rTpX+By zOTBzao*N=V)!8@5D!)QgEz7J359p%oT&43AWZuL!n`h$6QP>?ZSCH1ebK69@-f(y= zetpjb_9`TaE7GNw5DPmbZ_;3R#vBDH+tJn+n%ccxbef^l^MCSc>D9_5kEOP&;_D7i zMMcfhKt-uc>EZv|7EDNtN|hSIS_QRVNvqQloCi{4qz}qv8vjW75LXz|!?(PB zAMyCm3~1!X&O_Gv882hJ5ts4FLVr<4 zFf7oc+yGfI0+kzCQ0SBf$V+HLYGE!epPfh?TrxDt5h8+Q!strCoEi<_5#z`VmVCQ7bbMQupf3yl*{4CI zVh_QFrck@aK_>bf!aF;HY^^ z)TTS7ij2<_rR3$~n|YRM-g$-r{N5XhX@p~7L@rS1xIWzX3>4dg&a5u3(vnu@joSlU z!vF?|DGR~LDef-;<$g076Dz_7gnqgyGk~iwpv65)}j+ zXKFu^r1@%ULf3Q*3{QncGdeV{&Mjr7-b$0GTZucxEspa_mG*nT{QdE0J@4*-qDwPt zR_^+fKf8IEh~qJ}2DC)gqR^+%$wsimg;f zt880>gllG0M9=ygf%s&0o}*Kycj3gobPq!#81otLjHc2Kcw-|GCJZyN67gS3*6%MW zUwHknnVTpXC{p(;xC|rXrMI|mZ@1~!=vtpL29cMZ)zY>8-ZLAVCUvHh@{WA2rrT3Y zuSgf2{zjp-q|)LOITkw_Cf8Pj;%L1T93I7=8R}9=>$4!{=vl2beR*DJdO7bnJz;0! zxBFw0$W#pjs*lLatzn#<0M5@&10=~79Xy=drE zhH49vNP0y=Oz6zM1`(t|>p;+Tv<_y=S+d7_6Xi;K89>8}7=VsQrd1v5Zc@DE1#zoO z&LabE*-Ykt{X-soQz_j~E!I$dH5SW1d@aiT19SC%*t*ZB7tyI_a}S$!UD7$4UN~57 zgqaa>J=!wUJBrg4(pj#SxfvPvI^qYbe&p2)+Bi}F^^8g@CUa0yd+TP40kDNkNIc}R zkaLZsIMYnVG%ap}$)77YN@1;t!|Sd9NWPdqB^*r6a!DYb`4c%)oF5`nCGCpVWD^ zxx5&Bs!SB*&LKhjS?E!;Ox-uEWu=8_SX#_A>`ZZMJX+tgLnrAKE|WPFDZ(!}3asNs z5>ByB)fV_{-5P$~8};b`5DS#7*(F}913LKd?kt~2aDy|#>ZSiwVW0D`MFIN~9S)2O zhbnZz5gZcH+8Huv)^cvZ=-Xmj(?Pcet#VglMOkNe5Plj;lDhc|pCdMR+AOfo74%+>?6L??rQVg*> zlUf`P=3N5sJ7n+S-X9Sih(hbM%FXrx2g3L?%FaoMnwaYs5O|5&bW@KRMP1T)@ii)0 z41vj&MrW}$Y=@l&}XP(%Jy;r1=TNh5GT&0#JrrGrm|N><|hLx%OtycT9iQPoWj$ju}b zYs@s?f&|ZEfkt;uo~Y!pBxM9<9-524!6ARUdPWpQ6rd#7ZWq0+7~AQiwhWfRX1YEv z+#h1uixaAk>G?_&KD|s0pw6w*-xV|MkzRT4S}0#!xTX0NwEzI=S4LbKc`94*-qgIt z*u1WK)wZ1@H)s0$L_5CVQm&Wl!aS${W={YqKR)JFXLVXep=qTKX8QrXk}x)Wt@9Q=tqa>dC1V?6-8zlMb~^J*|{rQk=e0=x0}zZ zju_noQTpbqqorR=7^Swwc&n?Ica8miJ(r*Ji!p37_~rKY{$@b|&HaZog;TxHx5*EJbv?9ZK%4JS@9E{F-|#**O4RfiDrRo8Y|S8m@`}a_s~A9Tg}%rR9^o1iETtK_Z>qO z%nJ53>w~qlsp>GeU1nvF9qId<&6Q9VeH3aAt>ES2ee~ACsD5*V_U>jos`U)zn{XZK zBCo%Ips;U72bf*7PwDc^PM2;}*%k4h;2c%U;n&ziXxD(=8#rh>9HZxlsl*p>=Rt(! zNpGhiL_v5>EyF!Q48M>*l}T0$tLJF^O1 zhv~QqTC@^X_&Kj+>0Sa(KVE`}@Pbv2&3nnrG5*I38Mu9*RZ( z`;-Lp3KV|PjGfAIeY4*dMZRUggVTb7P{pHRy&rc31&PhP{k->1@gxl4BeGVu57}^*ui~bf} zm&?`6GyI8nNSObox7Syn36=&i6#GA5==*f6i7{$86`Sjyzyb?$VbpO6 zXqD$LJ-u=5uJzvHS`lS767WcIvCX;+o&5TNjRMZQT!FP~pXHJw(Zp1xaNS3Pbv3I{DJkMgzn0g?xV9Hc@{GiC*4Wjx z6wo0LFgdyS4>5eOjy2LrTM&chP(S-33UCL@+5K-lkJO7S+t1BAzE5*a=lLA9ud>(c z-Zky6bt7RZcm(`k+K|_bB^2W3WIZsg9>)SRyy4= z?~uE;l7ls<*Ajw>Z&8v~{moh17w897rOIM_-(q6!;!N`RK_36lJar1fBFaMPI9~fS zagZkx4Rm3ZBq5T2<=E+Q2ScyPwiKW91BV00Qh)x`EJgZMe&oLVVc~v|EdA6Bj@Ihx ziPi3!x8qrlaEuDm(rJx$u|uz{b37D}u22YS^qQRqKtnELEik4f%m;#0a3DCI(rg6=8?x?xTwm>K}V&bU{v1?h?_!eUoG4k-l<-Al&-krof{ZPnT)3u3A`>jr17>BBuwB8sUXxSs+b%7&et=qoCMA0 zKA34<`9@(`zLQpRr=2y{h{tq^A1Yz)4~ecLL;{_)Yv%coq@*e)RSq=FY2aJGMP=#6 z!?iNky&LlP4INOB?>tW*xK=eVGKM;n3}!w2W-oSbBGfbHBN?4X5e2_op^BiVqib5J zK{o+l32B6Hb5tG44_)hP4VlG$>XCW zKiQD^`4giXCEwq0V>~ye%$t!Ow+?#*7YqH-8^^AA z(7a`!L_eS&3|j@5oG6(FA$f0@{CjfD`dOBlQ9V%0D4_V<3O zzd+N?d@r)VN`CLgc%6>cixsaDgLJ{kpPFD6wahuWr!aY}m!X~?v<{K0axiwyq4^Zf zQ$zn{?Bs_<6xjRIJII-o6U79PMJCczMP3V~)L&4>0FkGtLJwq6-hiT(y#3rQ+$U{& z1!b)0Pf}9G+%w9;UwUS#38(T|kBn0B?;V1Vm-+YZYaXd0{`?kTvVT27M3i3Ej4?b< z`Sv!*wg|5xPqvaO1@kFCQaI5$j(fw22ef_cdaqIaXGJe|gEDneGw6YscU#Y#JZUF$ zP1ED-52d^J)m~L+z*eX|>u0mt=w~n=9Opz6Yz_T*v7N^(g&{dP3 znG?CKx8UKCdd>J5iKxf>qs%ijP1#{jznGpeQ14b(hfOqV71z&%aO-W8u5I1?(4{;g zfQm>Y35&pql$|)B^zX&Mg0k`Q9`F~6vtXVDxXLo)tJg!1zShsE;)O0Peu^$1X1>1~ zZ)_-oq5XV6jmaYRP%gj<8p56o&sJQALWyI$5_MZe?kys8@x2Ioek<=*Q_w3_AV!9s=TI5-O{JUc9FL>hjr7h_vGJe!z7L4yMxzOdmF9g`WXq>b zMSOerPpDcL=$RRb9XPUZX3)a2DF5b)(OoVC*Bs%SuvTs^G58>`+6ShO`Aw(4JMdP( z6|{(cFncX?s-p~$zx)NMEU;O;rH} zn!5;e(BkRDCuUmFp19LkiaU^Rb{d>Fa2C+ntAPT9 zoqqVR*1lT4Gvd!or79TWO6jST+{ZK|^JlW`umYqwj9<<~RBWk+;{*HOw2nM{h!19@ z6jp8*9r$&So=}0xWN>Lm+}*ngS;3%)0?dJd;lj12tVC4yakq35{fq~IP%|o;A1HWv zgB)POSf=pjE1sR|tqjA-b&M%6@cy~^K@~5*aZiN*F-p`So_;<6jOyP|hgomGmi8(# zG@A61`BQtPQ^ZE|JC8{envQ!3{^!Lj0kvyw(x=NHfAb5g_J|Jsi|@N?&2>;P0FNjk zVGYa#OK$py1$dD0KVB4-jGyXQt2vS0`!80`$-v>a?j;=^I{i1h(npRE6Qn>UY4SI3 zCjjI)_QR=t8;B#FqW^i(yTkoKI_~^;`WFUiO5X|U$!7^x*$t!>dvo9}m85s@ zncLrt<^sXewlXWnRsjo*e=7ygA*b^q0ts07`;Me%hByV7^*SRU_ODm&0qy>tBoc6R z!CnMiLR(}Yq;w9sdJQ)>CQ~YdT+K)%QBC~myqKHmMEp#Vc1<0NWe|T6#Q*!M1ZCtG z3sTmY7=jIzCm(`WcRa18uUxlTcN0;z$9%=(KCX5iyaj$E1Qs#O(5df5zKQcX4K64mwxXO1^ zKM8LjNV`qE1u5NRl`hRiRoh7u*^J-NPN_Mf*gHU63`dwy2u_;`+WrpT&=|*zq_=ML!2P;Aq@I7jB zq4{At&5Fr3Nam9Ru1PKN^*@1CmcF4!Kl*9y%MHn&ceq(^T>N7+4w68zz4@8poV20? z4xWFs-D&mnC*4NQGybh;-v>mP{@VNju4kJ6T9M#`;3}>YGBR98uyhvuv8{BaZ{MO; z=VRk8Ednbs``3pb5}^8qr@9S~J^0r$m~Q;dm*>B$exX;+=^_ADZ(eQKvS;9fe;c@O zbTq$_kxy7Semj&5N^TL{K=9Ah{mC2{(C~q<>$|+M&*+v@X{i zmS)+<#Ms;x2d0I#z}a*A=s2KYgMi|+GB zAvKqrtgRsyTnf7=NSI@K=(h~pzNEpQpOtva%cG>g-KyYDMlFvDNS4Nj1u5r65DOPDOX+BdmM2f#35Y}ulyJ8>g(WJv3y>#*DlTUsjn8d*CD|h-dFD5A3PYNg zF_5hRaA&`rwEq6FHAVuI=c@TnzHb7VPpq2Z=9efvom;+wBo2&!K7OnR9S{g>erjb8 z8xqPjn5Nx=Su@uKm=eoZQqm+S-JNLjX%BOQ4szFOlXRJD3SLqRlS}Yyk`A&R;tCY@ zE~}CXk3PkV!CgSr;V(5wzqjS^#HqkHpW>f>s*uXs$87*R$l_#wYj`w)HM&Q5d93^8 zp?c-9wcp>zK|?CC&qouEU5>y@J{c{J>JeYAPR7eI#;^|+H=Y4 z#af$=16vKD6*3e*9%t8Ep9!3A-UdCEV%bTM?ccaM)RzFCxrBOC>)Lm&n;|k6Zy-R^ zBAyCiWNniEWsAA};bTHYom63|a~%h({Ca&n6B{|=+u@ke60z?rD21K+_?zQ7t3D+JIff*qA%W z*0xz^Nb<3vrUaglGaTJb5ffWh>7adHc9CqEiI%Vc({B9jPMzacpWCWo7&v_>N7M(l ze9c;Pc?B4BQIT@_qkr?@{VkNxoKYSkrIfPtz#$+q7wr;_c6o-M5YUz_wdGLU#BX2; zEY6!(mwA89?7ng>UbqUOo~PKsR6GcE+(Wen`ofT~BXtXWC`YAi*SH?YtpCabZ6)6D zU#MH0pAuyEH#C)n?C7ZO>?*Q&xcFT}Ek~t9KHiYd%7#^sw)JUM>k>~RJv(etB5$s* zEJ!ae7!ay-uUiKWjHg6~$^hA(2IhO=yDIaQ(p%uyB`~;)6fRi)^&0CKY3MTM9e!{n zg;$tz5T*-$;URZ)J_U_^D2N~qY+$D}Ib4ybjNZKF)@1ZR&yt=7=h<$IRF(z-_*HJh z$vHFdf1Zru{LVmMjc>`WgajVGhUOlq+&5@{E3{vO$fnj`6)UCm5O~|P@0;~b>R&#) zIwn`LG>S5tmM{PEmpotc^j2)kMMhcF+T z$l1>N0BoG*rYRAk@b>Pm8!R#uF_G6P#oOw*Vqi;NI{YO;BBt!Reo5_^@z2XyAGy2v zp=lb)yxo$a^{c)aYxGgDdCXYEkT?Fh1S{7y(Z`%Cgt31i+NnT z;3N9e!`d*CpYB?EWE+CiLD2RFj{}_lD}38~>%a9-BiOZ`;Qs;Y+lRjZ literal 0 HcmV?d00001 diff --git a/Notebooks/2_N_horizon 5/sim_3000.png b/Notebooks/2_N_horizon 5/sim_3000.png new file mode 100644 index 0000000000000000000000000000000000000000..5f150a66ddb11a613716e7adb4928dde5f1cbe37 GIT binary patch literal 18883 zcmd_SbyyT!*Eb3xFoM7sz|f9@NHa82-f$xg($d}CT{^%mpeQMA5Yo~OBgoJpNVjx% z*VzNl`@GM0zVABc`}aHNx)@+)_Uu@Dt>0Sfx7VIGFBGMS2q+1#u&{_^r2kgI!n!Gd zg@tVi!2_=pXUa{1KZ353FI`m~%w0W zSh~78x;*9Ju={rdb_Zt*j*;IapFk(K9Hq5fu&@a4VIJ66iODc5EE!IjzyDJ6OkSVx zs2y}Wzuay)l}8(Kj7a=t*4CZyV4+psMPu&UZK(xI0q(NG#9XfR_%L%V>x?&#y6zK> zzY6@P9g0siLe=emc~Qy!4qpKOFSMKJqVPt=n43`AYDvM6+az^mcl03y@tj^J3j9Q| zvh?FhWB#LGXT>4DdM(BikNWBrrtRATSIt!ZP&i&SO8?0{{r>8uHx?-PRqMMwff84( z8B(!Builas{y(Lo_CRQ3wQS@Lv=J@aBV}4$&+!n+DTH)1&0HOhgEm$|8wG2YC)p$* zg~8CcP^d;QbP@umE^Zc#4}ppj!SjgW!cg(nLf1Sm$jlpP;|a7e8QNG;QR(gpF?tR$ zl7JZ5LO$2OOEbtdG-B=vr9P zFG8>(dkFh@M;xZV>=_Mhq?3Szi$e&-A^b>aaYf}p1sq9=a)Tr5Bp{b^LuIVUEl0>_ ztCO>a8!6J~;tlLbM=gkvCB*20Y_sr7ycA@n8rmo(0U-&74q{mZC@P#Hq5857@n&!& zbHEQ0_;0x>7geRO3UP=X7~)1Kc7xK;(dpjtX)qLxglZt6<{?nUT-QReQ0RsXok5cS zIkS)APZ*&|1h+}V{4=a}Xyem(-I| z;E~_D4C)ktZZVDsM!BJ|;mGrx9LcEk>Q;=D66YUI|2^&aiROFM@5?pK1BOpRj!zx& z9eEw;dkF>Dkd8-Wi~hGuZx-M_cOZ}t#1B$2r28c1c;8Wxbf_H9o_=5Mw6M=@oy3)X zKb#MN<{qwPY|kG%_E*BXxW$7@dy$-YLE;&tX4#8fnVaa7ipwK2G;~9NWEf^rOX-PQ z$*DIRyliN6drSJn&!6z9DKqt+)uX<`iMt=83QDxW-aLb62mZN$%|`8g)<+4&D*EAD z-V?XP-ot7)j-a!3s?}51avHpQvd1ygfLpJ%JQ|EZ z*BD1+Akc3SXcChM6XOU;1UdudAdQOAO?<5noQkx#>7E7O9zIdn*Ilm?L}Y+;=#fgNDsk z@4ZiP*ZEzau*VtI5Dd)>g=YSQO~HAkq-JHa>_+u4&=S$oRfJVC>#a6pf? z8P&T(I7ECRGCdi;tixTH4NAHajU&>~umGrutyE4{2c0o`0;?; zY^Sw#GJb7o^I^>cw5NZD3$wQk5=tQ5m0jf6F_izDJ-h91>`8p$Z?0=thE5Sqf?L?{ z?};zfH*X*2R`ZFJns3UsFv#TWVxT=oYXjSUoaciXd_dAhQF_IjKJG=$IO$gtU!DqISCej*los8oZ#o2?vlRsS0&Sx^( zO*Hfg8W6#$DaBhK4ZJq>jd04Hq=F-H_*2NmztM?TCad)%Z7-`{-0&4c_HrY8Swu8wjjyeIhRuk4n%Fv7qv?%AtJ}mWqp*u-ppyPP;$u znQ)zRo03UHZV+MMX%KF@w`-@xSh;$?p`kCth$egUS2F^wlvCNFzq~q#)gKfuO{5z1 z`|vR4y>`$-H*8j0nhp}$jo1AKL7TX&9mR~?vM}_I*j`L1kc^_YOTwrqaM2hq{+kO(2adc2M|y}u zHbbEWN}CR};;?(-A7d{@S^LXmF|NEcSK#lAIGLW9DbBhGJ@zeTM}*_u?+?+QE|3|5 zPg)V%JMx3fm>&BIj7i>UKhDgP6YEkCdzhUtOeen?02OfR(PX@Of5Ql+Oc)F;mVl^A zcQuMWMhnndM(g`K^mF;AQ2$R+nXJ;*R<@QihTI$On?1*C&uTSfD zviBK$Ue~FaRLJ*IWagdFhGA0(Q3AUJ??;#Gu@*gN-|~AdBv^bD_ToA|K4#S^kNES) z7;B^9@Fw6$dw-!&Wzk{(8Qpe7r$7DhNk#r}a?+r_l|GP~r@o3VY%6y?)eS9aH^5Ss}uHyfR;Z z_vbw&(`i)D-pW8Y5I(kJGpXixr`hLV(JlYnd4%P;^f?s9WePbz*`FPE>B-2;yDh!n zyY%ZTekh&4Kw;g%sC&cEn0?LLAFuKID;x|8>JGHA%zIM1{7=_g1Q(MfHYe*S5XLt- z>W?0VQaeK?YCJ3&k+-mPJto|eozN82PCxIsZce70Zq#hLY}Q;}oVxtLCFe9mVJ&ne zwHz;|^#Ju<8pzdb_VSqYVk9JIHy!?NbeoDV?~hMio7m;CQn%=-Ef(gN|Jf`Zx9u<| zd&8Nt=*iNfcY+HrJYworqfi=j1O<2bsn2Iq#J|Mn^jld9;V>!ey|)C0(?!W~)TzyT ztqv7hEcJetPvm*?{4M47ZrWus!UVkqM6?xdaAq8;zZ-;4YuJ}ABcCkrL1?o!dcGsx zWw(o8wZY#nQ$C@wiA1b(Z@K@tMeO2-O<^56hDo)xyL(|Kl+OIu7fD^8^|IQ7Q5!H9 z^P14!+O0;y&P3kuTlXGwnzi45tdRJ#gQMX#3dps!ncSfBceZK*!UQi;cn4Bgf5Kcb z<$r44WS*&*(q7Ud+Ck+|`-3CkSdNTcx3cTBJ6SNAyGJ-0G)n4D5pn@)$mR6sZ%kvb zvY()Sg)As1|s<` zvHof9d*M4^Z|Og)E(|ug?Pe17yn9mDDP7jL>vDuOfR?4pM0?K1YQluvS+mmopYl)n zx=0oVDeUa*2rPUw!CLCiA^~PFx3JKcr9=m`qE2Fe+-osKc>Cu)tj;9o1l+030SsE>40Vaz5NwZM@Hk~L)K{Phkk@plo`JbQsE;L9pY6?LZHQv#T1KE+mu$X2|8b^x|Z1x#=~DXr(&pLsF7X(L*T>4UOjaad~;H zvT}0Rt!-_eYin!&B<931((v0;W30iUb{mg~lE)AzoO&v`$y{DZ_aDuMlL7P7G~b;z zj#4h^hz~4;)g2$4g-#w=$>$JSp0Z}OS-G6R_?uT4Z42*8jt8B&_{>*WAo;s@o`;Q zS=rXEF0-SpnPkVtTe{xM8Kw3UiKHwV-`&@>>-RD^oVJ_EOMH)=Df#U?O(I3m*!a|2 zRb@1Od%tvDx_BdCh*z&(-5_Iq3H-nYaa{utco=5A`>R9T0Gh&#c*k6(cx?uIzZ*#a zch~r*IoxZbY7zF-^$FHnN?zmj(K6C|pUbWKLzerqN;d0HcYvMtepCLMzcEzlWK!+E z-i{eHJ1bQ-;zPD-mi^G7c$>-f&ZU`5RJ)xmNr@Q`R(rt&`%?iD+@`5jpGy&~`B4G1V2~7(p!V0N@LBWR*D+@d==hzu5F+jDy4N_oNlHqbCnVe>3PuL;^LkGzt`o;B$SsUW&lTml;$rA zW*MPYbv2By2l12O-yog>-dzrZ;R)=2xqbYP(CYt^!CYWp{8)dVye$khrz{8uz^qXNQp&%jmKu! zfgTuq95@*v*EBu#$kGyB$*WnFOMuQ3fIeeAdLA*I>a#Hez}TsIySSLExTM76sQz#& z;F2#gl8XNw&^}_(BSWlifaEm(ZznQJOG}>*e68-Hy&`_B({vnyi%j^Z_}y)-FWDW3 zjY78pl5^RQ3xIeGUD0rE2aH}qON&D6bfgCZTp+@jpY++peSmHaCfAqlNfi+UoBFcY zRHnHugqWrs1Yy`mAiih{#KsYr4#a_p`U(KMUck%}bjODAv9X%^BYE-7z;g&}p>USR zDmbQ&(EKl}oXwg=IDlgdxlJJ+Nh^XuUH2mq`_)NJJvUN}D{eTQ*koSOs&s^dZgM?M zEiAY#x~UgB6PmVWnlSw|g_2loj8{F&A@7hR*ZcVcpH9BQeuCM%RN5fsinB@|wb(Kg zSTF4ne^+Fp+JjFrxvUc(7q3E3!kJ)lXAqBZxvi)@kAVFE3s-aM z0v^Y6e?ZdQmgFfI^RkU4Oh$66B0PFv>YQNV|#Ue7`j@hB$Crt zNH^{zRaP-p>GTN57)M1!p#JiFa~CKnw`nUB01g3)kfRm_ye*6Oqdfh(MBv`GcRDzB z^Bw%c*Vb%D%WPWiNKqFJoKN}gD%79Nb7+p|dhITZ`TFE)7McSnqV_+U!Af=;)WVns zX^Ya+WqK@32(va)l3UvXbW0DhhNt4U%y^Pa#*q&__?BoK7 z_!j{okQQ*P)*zP<>K!VR^T|7n;806wO-Pc~$pRYSOxUT~!{YesVBq0hM z9tPUONLef=YXvcmpevDAr%nTCqvc>8MPcm@K`4zoEC56`EZ(|nc^uB0Ap1}hTIaE^ znkNJCo^sLU^lOp@5O4@tBs<}eh@EkU(t0nkXDg3J{g)l6R&FnS&3<7r{Jkq}^DzdK zfSqDI!cUmhKn|&r=rKLUERUuxFQn2${XjS@6>IcYu0}qL*ZMwVitF9^`FV^t1ks}- zPEG1+!le<)&Kv(BeoW?d#{6T?jCj*|meO`4zvEFbK7)Hm4dra0t0&?nIQ8I$8* z5l)Te8~*}%i~j`q20z9rZyRgzU+qTd;i9cUoflTb5Uc2%3*TVq<7ODX**E(22R@F! zMKe%J#u3pHkhg&{a3lhikJ?9|7sVk43SxALKc0frFnuB`2Wq0KL@ZMlg)PMfc*mQp zvJQnraC!VuoI94uqWQPJb8?ej=h3Sm;WmaN*`Ea%3OnA~@`cQ}KOhtkaEZN65^c=P zsyVZ2q!%0O<*&V0wY znOcon#0L<$gEX{GKK@I}95hz@F%l}h-~Ex+6=YK&?GtJX{CXgGQvk=4AIZs3x5+$>j{^H3_zcd;#XXN%oPoT( zJv%_AE?0^u>nAvXBtRcALvsX$9hC+jVjA?N{-OT=$tlBC=Ex?Qxc!C!Ark<zvc$`HNXry%LG%Aw7{fr zd~o!F03}%xM2wn)HtOr>{|`teqE&vSp9Ub{woZVGV_iVxBM}#P570;Kz14k!B|(27 z&}I}&D%Z>G1UlIRM^T{ez>!SLEt=eVS8Sb3O*H1?7?n9ncBx)Vu)gYalzZ*R|B+{z z7-#?v$!tI5t~rN6&)WQILWA=o{Pl@f*eQu-)vUls*6~0zlKwLcQEaP+aEU9lIM^ZT zR0x>Z^W8^Bj216cNm+tJeX4w!Vs4`W4Eb;Yg-ra9D zBV9DdwVcWm)zjvgv+*12%aD|KT4DJtK90!h7iXk0M?fc?!8vkq>N1Aq-9)4+zB@e& zi|N(`KzdCLTCel3W)Z2ifqvTLTTMo%rqzIAWxyom6q?!^-HqzOo%;3l4{N_cxHN1( zRhHKN86RJJ*0MmfG+v7>QO%bn7mnv@Kk~l2i>mjt7S4`yPMZEod*Mcp49-)>uINpt z+{jU8hvm+{9@9|F< zx87^(Z-2eUYX-!jdG&3XvcHwBD0Ve$$MX)GGodCI?Qdh^0uDBn>&981@?Yj1N@gt( zF?*Yo+GwY(rL4IDigs@fcYJSiIdAl3qZYo~OkbgE7HFN~mlUP;mDND=Xa6QErcG^) zA@7J*kkM)RpLA>*0po_j-yL1uu5VP{l8Ju=t~zGV4Kf8;j?I+15 z;Y9w!YH@k<29RKdwrL$s+=DQ!y<)>`Ld?|^=!U(YKVGE#N4eGK$GW>^snkPR>$F~WGNXC~a_vV` z5eyNj!f8(2@haN1%Mz{ao89KGfgGM@rvYH|kBxDCmOznP|FY-Bj zjNkD4K)_Y4M!*BsmWvPzP+iFXv#3?LF>Vj?`Oy}+A;%|b7^%sb9%P1Z z+Vd0a2y$c};WSXbp?(jCSo$2NzWiGZ>1vo(ef>w$)o`t%`X^;|?E7aW=gq7J27epL zc*P#JcXXeyLb4y;&#r9%J3u+q;U+FV;Ei~$k;h@)9p=grVV2evjIcPy120UjoejR- z;a~MDvJ#NVA|tX?5fhXUZEt@>5}DRy*VB{!Ej@XccoU7=bWn6!o=#~u8Ac?$eQ@Ks zQYtW2s&Da0&4{{#KXXAe0-l?3LL%u(Ijgq?qM8H0#@&LK;*O$WjG<6U?C8LI02434 z!7Lo9gJm2M@35-R%R7Da5GX^juikvG$=K)C>MwoFo6#wxmV*xp6X9Gsp%1$#=Z=4f z^8x}$ol5p)Y4!VN8v-rxM``H(&hpCJv~?Zz)=^n89Qd=E$NS5D#Q-t*$Mg7~10}b7 zuUWH@t6yCH-r(E^PpP&p@LkvHZb#vv`LKUJw_Y5*`b(XcjV_!1?P82Q7LAN7SOVX4 z2o))NQ%z1wGafX!pVzUPf#A3pI0Ome>%*HZHTHO4wT`nd=y}V+ep^qrPaSOX z$Wm}fc%PPzU906+-RM^Mtk17{t8@8yhU|CDY%GfdB&u>XqL&w0_haMw^UWj_X@`UE zos@l*;MSD*;Es>;4zTCnn#Cb{f$>3;;GjG9;F9o2Dq{Pyot{BF4p@weMt3{Wa_`r^ z-h>tL53y8XOjGDceMOB={`P$PeL+&^eVXGF7+}uHldeVP-yT1X%T+!6y94*dG!NeRndu#JT=*C%;ji?05nMW!9^Ry1ub| z%6Y0B^{UxG9#z^RZ%`WY3xj+y!K`{Ze@CBG`JM;5 zC-Zy~Ie*HRk8q)oDT}?{AQepZ!7vTZy_aN93-R!<8Jn3Y#gLqLVYhk#8xiEP&^aPO zI>cr+|6zbiPNm6o(2hVvb{Om)`cL29kTYLgOmR_V#9Ib4+b8T_zo)bM<>eV)qN9qf z7hxlD<7?l&ELE83vzcF5y-$)jug#NfQR!hRXSorR7q&>;Ga_n3D97yml6CY;MRVpl z+hQHolh&SW2-AUVD7hV_!$sL+g}DUNT}}JxlK=&i&eCRA2R#%KLLRhpo{=-%W|UYR?_7W)6!%h19^gcPbiEdOovHy&MmMP zv71aHs6;nK52mHx?d(V!SuyW@qej|Fhdv0_388N`vy~2D%k$Nj**|>3KCumD;1CKw z0m`_T{_4GVRd!)g>f&Phf!#^A6@0Nh$yUU^F*#ac&2lF}-_2s0{cjcdNACx7WvQ;Kfv`+Y2#F`s=-I+lGN zoH4IMR5E<0Y9z>8aAZysNjDG*PxH$cMP|n*#nw*^E|SH^Iv^UF(On^LS+!LEb{bju z@xoo>lfu`tu$hNRhn3%yfaO_E2uxk3g1t$#CEOSL`R@Rf{M0=qESZgYzY=UY0UlD^fZTZz0^@f{3kl8I!=*& z#a%e@QNIOs@a`D=T{oWB=(Us?+K3GvK? z-1F(Lkmv`{z=XZPYS6RPMhH7U@Lk9smVRAp`);|8oRMS+6*QrJw24%E4RfRq#}3Ug zLw&AJuNBrnKF|qTdz(7Zyq}TMawv zj(@t_|Mf6K#xImaW^{bzErYO-+a2KVEdC_NBC$f(CZeM8N*9;(eSY<3=w(p0T{~hn zP+K=DYC|A*)I~_Q70++pUu#6GNmn7pcwpl&%`o7^U^ZXNWy6HAhmTg_OzdnHX@j`Q z!k=&$4;%nAvWu_{xZ+W_8KXX1gPgSQotMK8YyXQmANhoeFb+4nZeU!QK2$Bea&9sa z9}dY2j6eh$R@pQhcK3SEbX(A!#bF{=Iy-j8H+X@J{5L-OA%CiaZYH z`Q)Z*r(ausmhUYNU9$Of0HiTa>7#%&KUR6Nd5vh@o)Rl7U7Zop{tzD>yL^|y5BonR zMPA{nccvK>T*#dM-ro1jipLnzB@PcQ_5m?Am>873T*46 z6>JJrm8H2c|GBzuADaUL|BIhKow~Jgj}C0Q+*%I5sD|Suu*>z4tLf8HT(%KlEUaNl z@8`)Mu2KGc5K)fqzP(sq9?W?FLX6SiD-)9#;F^A)uJ<)PFB#t;t;?as_nDQ~T%*w` z=gyY>+@h&PHIK~L@@&Q`OvDQt<1uk_`BdJgHEEu%HG>e9GhNQ5Sa(!CC-y&kv-!31 zc6_VTHPz4K&V)AKTs-66Lhl9}@UZE2M~2(l1=Q#4(F=L>EU3>DI!-%*2h;;D94m_y zDzarMSK$3k8wB^IJ`qV(NSieOG{Fvj$208pqhqJj{!Ax8@Gw{r_SDt-LF9c*UCcUK3@ra{*KplLRFR*!#{URdcPhwT^A^6ungx4Zh}- z2AAhH@~Jgk{TVWDqbo!VzMDM`+o4W$+xc*saPMHAD6c#BZv-y)h^6`%c1i3}^nzkDPVu!@E(F#*bO@)dptEQ-^mphYJ8oJFKUhH@SCh3L)$Ja_xJ zWsoNdwPH>?2B08r)%DX=O08RZabT~GGK*B2|Lrqnc=Clefn6a7)Z092@V0+SF1o`f zGRC`*Ku2R;375HLhAF)xDw)!M>$Nxjx^g|H-nZCR#GqzX{bDo0DvyP^%hgIHzu4Ii zVR3179UbHM z7e7cNr1MJRru&Fu>=*=E$yAh@SR5F=;r}+OuT`vDq}Nd*%K8?jKKHKSvn+Gr{U(XZ zjiXfggqpCg0jFFI6ua0!9l*k6Bl?P+?S0)T$uIo~{6_g_mg#83FBQ8h;4)>w7_#`* zhv<~%kxnf^SV_42q_!EC0{Oq) z2C1LG@x~BS$g%14aoYGl64<>qjM(?9{IKR@N;;WDGdAP}iM%!sVI9EfCM ziS%7Wb)PN$v%v$hmgT)Y|a8iAh$s6)PE##7<`sZ zRnjDPZV9K`TKeh5)7ddo``Kr=PNG^xj6(=mgiq&=o8(n8b-Yc`Em}#4f$ypjcip(s z+5fk{Czg@jDOpq%1^+{FjPLC zp6Lgsizhl!>Du3XlAezT3>sb_cAkOgu?3^q!&6m%!mKM=7`qndeDoQSD6t-)VW1N$ zFdxTnfcANxJ_<*-x@`Kj=U*oL0BOpR%Fu%D@xb}=P?1%pT(tX}s4KO28sP88hwo7NV?w7|Mqb?DTAc3Tr2aDRh#pXOiV0Fg_XsTm$Ugly(}h~ zyL~M0vhd$`*_H7VEDAUU%g&C&M0vC8fX?m(q&Xl!MUY$mkeNSw7Yl&Mhax0Z zUOEbJRe-7;yDiNxyt-;#_Vqo2^ zUem|jT5VMZ8|a>QlS2;_`|QoG)8m(r&xBiCy;L8mOl-B6hudMZe4*KZ=24lrXEJwu zNba&4V7|3oynlPSFPWvjnhxiwV6k!nuh)ibcYx*HT>d!6RVMtceVkD~g?MYei(S`H?|(`f2ACbUUS zt9b_g3P|IOHxS+z1sRUZrU%}y61`c>R=(r>p8|I8DS7HI4`oLGS`C-2+Ki2)*xzZn zA0M}y4^OGI^z_i?b#5kI_m|8t)4eRT!f+^|ZVqjFQ!7gSco^O6`Bw_?I2}(`Od1>m z$uX}t5WUp5iu$zxHm}@`1IW1VvD_e;^J0L-cEzpTZ}HL1tsI+Of}w61M*fPKa;j`) zrV8*y5uP_~E}Bjky>-XS%BN8&^S+!>2dw{NuzF*Dc|sF=Hb^Q+5v4o*8#Wtu6|6>; zW<AjISI>;IUxf7voQ3Y=T0s(_TAOoz2U(gnxXsGq3kek+XtUUz{}%uZcS67Qc8x@#w$b7$=bhMlyl3ByCN{AVA*6^jLPnmt{H zfb>`zEr!PfWp3G<>>$-#`4*hZ=X@a%?P+mg&HmJwj$N=AUkm77b_ga=!XZ`%=?W;U z{RunX++!HuNu%i0E`E2BlIT2NbjqD>vnwB;DPnon(s4ZVD4L0tX%QobUv&rVKnY3} zFms?&2LFu(Lj{U0s8VZ=I5D9Bp{Ctjsn67OGCt$ZOjKC{yHbr-#0Rm4gIkX_=#*wp zs)Uc5UV~UmrY2cLK#dI`RFr%C+h#N2tx?8tk&Q=yLUKL<46w5)$taI|bL?p5_wMYt!uF`{>waU?paA@io6% z4FYX~LFnteVZgXE`HEN9+myuL^`|J11C#Q9yEgiDCO}0mVl1Kaw`8g1#}>(^8jLNs zb~y3asnlKk;$rumvy+wWI9^{q2MbODuplGU`QP55FZH0iR{d)|^)DaE0-r)T;F7Rmt5SwKCII+?g3;LIq>4Q#N&WZ~oVIL6aIbrhtMYiHIYTu=O6xU`QM1hPC{3s2GJ`6S~PFfyrb903AKv*po; zAPF;X8x`N6J-pLTmOqmvwLkspGmxº=(RNltLM@tUH5iO4v&uD-fFsyo-KgZ`| zUq|kD>J4i_#xG@cK||*V?x32pFLGAm45<)4Sc5dcvp4| zFat??W8d_N1B7j$QfrI8R8i?7SC_pQG$28PZ&!X*D~sT{S=A40yGdqr>eUBTv8a4* zNuH+y)HIIjV&Ov7p=d^4-*9|wGV4>mTm!_Elq3Y~0Zk(BCw+V8(0V{|s3Y%o^aV-I ze=;7aei&E4VmvbXaF9IS&dm?fTl*I+8{v-Cz>_p~Hp<={W&h?~g)y2W{!b64BIBdd zJGTrTfQoP%(z(Un5aSUo{-0SX{Vsu}b}DIW>(nQJz5p|APQ$%Fwq#diEg=(o zXc?2H`s=IlW%*mdyax^?`eaG<5y(^*mqf}zi`N%Bm;aRqxX}yz{r{~>$1YZi{ z=mRAlw^z69AX!F8_}siH*gwp624tC+=44h#N-UPWr(bqCF3bQY{OmC)q)WrXyizT2 z9cmyOYl&MUBSFuP1$}%cK>}jU4V*4eDSG6y5)7RMZf9w?Eq}i{9{k@p^UP__uV@@D zO4_6n;wv+VQk%W5dRM0qhJliolJ_QS!@qZbyyn&c5ryp4A;C-#v@r_W=o5RePYAE2 z5dU~r{3AFojcTI=W8O6y<^-j7)59h+XS=F1=&zBP2Xax?)Hv@(7kf|$owXX$N>TJM z$&utq6*x5%RqD^oE<7B^NfDChNu^+uic%A~u5#e|Zrm~PY-yAa89= zzkZ>Cr)fZRx8RXIvJeaTA6M8!+UccQI6cu2JgXE0Yk{nY8kopF3peSZQ!~<@8 zfkRb|78sSoDlHbMcMZG8s5oBN45rVZ>?L@%?%+5d%jrPtd%l`IZ*n-n-ybV88Y~Wp zHja4Br59QrDI%~E5{#NzUVjv*MUe;U5t)vQiw%E5J_>U4GPVpC_15r%qEkbTmon`T zjGT~L{L@5+Q_#jUXyaiJ9TvD_REslyGosVr>PDL&T1-$Nl)%N|bW= zrN9-6-01YD&2Z+NI0;NirhD(+vg3%^RwsA1nOVR-3#j&lBjq(8FB3ZcBU?QD8gnmo zRQ+Iz?qZ+Ab6e7K@OJ&Voxs*JPyz>9$&_7RSS`&Zq9eY?*qC;Cn~)4;6#Ao$F)O4P zcuGQye$rccw04J-biX1I4K%p8n;JmteSnnX2qtCW(o3Nqc#6qmW%@RLf5O&vQOG$2 zWynn_9*vVeO%DDzl9CApic!`?*Zn9B+i<{m2|y`7FGq`#f7Hsa?O~JYpO;ak{TS>9 zmXPh?;JH!t`+aN((M)Oo^m~bEP|U8EK+lkPRh<=cONs{9p@HadiX_eV20q>GthCh8 zIQn(YtNxi(i%Vusr$V(#rpX(m*$_2T{#zw!KiXq4bGX}#F>9Ij(pNVsFHY2Y!L@|5 zlOa(1n|(_rJe(V>gyGfI7;37e4kRSPSka6UmluxP&DnxNsh*8*q#2f7uI-Cgp~0Wi z{I>8Z>)aelhVe)5XHZR*P#_;=eSLj6`!NA_{fYX=r=%P8RGCVla0wNOmkXV3u5SM} zQC=-Y;$#n6-y^uL8)*bBM!z-nZ{=!QR6mu;L0rp%-f|pfUwcRN2uo3j$i7~X_s%li z1r`GXW-(mdSBsI2dPg(E5fJp|-e*mYqZyLV4pYDHmMH$soK1XvNjb`L`WZ}!EY+K! zy<=w8Aatf_X1#(N$kPmYEl)K#xW0He`MPF9Rzdoy3vd*-$_2Es0|1 zCugsPik?9H54ev`r#?%O93A%h&cOiCt*uS}NXS=@a=$LvQ%efQVobT&pZUWf zfRHZWHj8Fv<2yMHgnqbV1qw`AWIdXhmRoh3i*#jE( zRk&mvA%y`n??lMVJ6m0YqxOQYb;PYr$H7i?5p5Qqp`m#^It0}ClM)>$S2f&U=^SK| z5qk1>&F5^&f5A*AC=mm8sv5@{lv@}gc5z3$>{XKet4)9M;`O(9Kl_EH9z`mK7@Q9I`2En1UuO!1UHW$HdIMay12f+Da z?sjqDu#^w`i8{JO6g~0ljuO%Th|vs&n=r&fpq1*H84K%6zi{m9DZ;`qkYEQ6aP60{ zsma7)bmE>&NKS!%T+A?V0)lBYmC-1Vz>aj~j_lF^VXFVAnHj^t6Fh1+3F6+{0?;Fh zElUVo&CM8MWC}3?zyI`Q$Q@oGVouw^Bvq>KU42jNotjsc(RObI$JtQ}I|~aFAe&Y~ z7=s>Ri9izpDBL4Ka*z6~1Z zj&{-gn2vVY(fli1pN&ZDWDG7cfL4(17*(*X#4qhir8@Gf;d~8;i+3F&9_QzVjH{s5L50FBLGLf0XHl# zhTX#_M>fXdWm_^=)D_k8uP5B=1pmuYJ{cZnP{bBGV%}!#gXvnhTnjVK)sxJWg@0F- z{%28FjRNGeKEy~IGLwSA3*;&bjm^KWz2=3jg0CQ$lr|9JMLK$CnCMABX8VUOA0gjs zDiB#@^dyjq3)n~%7Rp&m`6=cI z?{p2w&8oYYQ^o|4-ya~iPC1R*o)<)ap$^)wGZFV`fpEz$e6;I^)e zGs;TRs^mb9RTAW0uGM8%B71mDvjy2Yl|8jBp&ZsnRa+m7>HE}oo#5#81q_wtE$pAy ze*DfSm$qo}oKF36q}3H$bOnuLi6xI$ALB22&oXJ!p0IQLolh-}tI}mg_3c)fO)-dP zeb{aT?zqnKaow`tn46!Tzv-7cW_!B-L8ak+#L06 zdJ{F0jzc___q<|A13PrRY;nvs+^-~Cbb4#oxN$VEPf%i;`)ec{EwS=1ds6XMVz@kZ z92WSVg4zDi(VsAK?DU56i{#VW@O`mJx(_EW>Y33m6GesTEYn0CUO;9p_AU-kwXzi> zuKHy|Lv9rIg)77QV=q)kZG8$g7sgnxnB&;rQ;`**FZ)$*v+^!+h!(04bJJaDERQnb zf&ym+)Qg8eCvU@(KTcZs*frT(m)NB&E;gsc%<$#DvwMs~ysnQx7sE`%KH+fEBYS^D%D`F^-M& z+Z9@66?rRtH2HFE=BUpi57CtbFnsFh$ufcS_|eRU@i;X%J;-Oo7VFk7Y&K~boT6vK zk;!|z#HdDQ_B0aLyglE3uQ4CLl-SP)Iq%lXXt)NQn$wQ##I2AY+AyE6tpw-np`SXa3fbxG3{>lF57eYYm%frWPeU81H7)`%*<(MS3 z1xnN?VZLhMvz2#^s3Se+Bflf7>AbxIEtIOdZW_KY_89~EXgKp6frdojDvk{9qjpis zaHKh$_w}xFI(o)#bKgyt$g+@mM1P>eHEF$oudvJdS(2M{1N(9VISHIsbd)dmdFB`^ zTHqmim|Ak%Olv|RXzWnzpk zH^{EMxvtxMS6vNQ-Jm||2dZW{t;i#2b4;JYt|VOAFZBt-zSwcnXj@Nsn*+dvlW#kB z`U0Q;h{4a@4mdOBFa7`Lzn=%J^8b+u*u2Eyei-&OvZ#3se4!GSjHKe<1>%OU{x20P BInMw9 literal 0 HcmV?d00001 diff --git a/Notebooks/2_N_horizon 5/sim_3300.png b/Notebooks/2_N_horizon 5/sim_3300.png new file mode 100644 index 0000000000000000000000000000000000000000..fcc6a6e00e57fc610a2dac8fff9e5ec3a78cf434 GIT binary patch literal 19861 zcmdqJWmuHa+b>F}fTV#8?MQb?2?GiOA|ObrlsJTdbT{Y#203&HA|*&jgQTECholTO zNK1FaSr7Vu-*@kGKJ4p!+}Gs*&a7E+_x-!?^}Nw|phSL=?jjx@9=YB z=g!XdPPYUEZ2oHizn!Cnz;Hk12QUeV{k_LdczC2&pcg(~VloU5PmMtN?j3FS<_L*TKluNGV&}M;D3ju;0K?5q0RIEvO$^`<%nZKZC&6f zwa}E*7*`)J7StC()Y^FI;;#g%#%QX>KtAW?6*!7Rj`*`2v9%nrdLUJpRp}`bj`Dz` z%HXIOIBGZ4iJXNWo1muo^=*ab2 zD0XndU)-Nk9P6rt-L~ODX+)3~{%qt9AoXXuO@nK0n4qgI4g@!7-cDa6A-DrFdIY_W?fpZMLZcx z)!0kbm;^_y22*WRNbb(TQ569^^29_zR3}k6)@H<$VN`N+9qaW(7b3jV3d!K!d?-O7 z)ED=p-Jza#7L+|0u|n0zEJwWPzv=q0uZOCUC1JN%81l#)==TUOOWp0Cr{k`!fEOAZ8zLST*^Vi zxk~a+@O?Dmngmm&J<;6GIp5nGna4^AUlj?CmFu2gK}siOAs!ZtckX)Kuov&4twhp@ z9?RnHpnGt5xVTP(O@j|wS#`DzYzRAZAzaHIk9BWRe2*h}o{i|#Fu&Lj$scUGw$@CGji9NrBaRN#LdVg6AEUpLSj9^-hP>x^~EVooZolSoNnIIvDX*XU%DIQkA)=@)x0-m`C);I%o3*bRtKxCjHZTu>8KgAEGP?! zqQ21WS%$1vNL9|RDtp=;afzU2DOuAVZc~IY64&sczGVF@f7u~g{#gj~D1o-P&n*d? z)I!Fx57hVpv59%e`o7IhJ+0gx#~Q~|hSnoS#)>LcC3FhY62?~lSOdqsp!}O| zM;AW$97lB+&>_ktv(_c0@&OZcL)JgSkjCf~{(1^H+1L)bh398)0gSt#J*%=ns8eE& z!=<$rG1=8#*i>d{nB{!_B{@#E1TAE1dErQi9GXPIEdx(NaMN8zgGvrI`1};!@GhZQ zz&vGW=qKE1^{f6crPfgpSi*&loGE=p4h^|S1~X_Szk%))@;47 zlf~7@t?M2@1`St3sTwD@n**t^fmC%5dN*eiI!=J15XwEf-de+c+Euel&iXmy$c;En z{$6YxA~GMLymDSKnCbyJJQ{D}y!j8Y_a zo)F>8)=Kjy90Suc+j&oT6<;9o+yys6A6Lix)kw1JN2Ev0tuz}L-*etlC629n&qAyN z+WnIP#FagrdClisb^FfY5~$?ZTD#{rg)l>|_Mzhmn}hgH{z~_Pa&B*I9zVaQ`=N>- zQ<-9Vqc1#itIhqLsmBoJPRA))wdX+0p0hP0T}o3`7`~L-ad<3%dnJT97-u3PR7a!k zsz-DLJ3dU`6d=S#b|h^m;Q))@;U!3_KVY+L8esKfr|XWpp{$uilSt7X!>U|$17*)- zZxXUTW;uk;mm{tqc!vy`cu;*!8C~kM1FQt(${%<8voxcq?#mHt$rE=6QyBpRE>Kbn z3~m}##E8w+x%ofuq_3_=PZq*^fV; z&3O10A>pX1s%@Tf&D=K9lznGJc*KtI0rqs@EOh7>CX;Z~Aco7L1fxu^?F2sy>Bg%S zZeJY`Xc`jvahVMogw4L#%YXaOD5U5b?26nx*(kjnthRbCh>HIL|AqOUw5Bu`#gOL- zH=w~eF-by5OdAXtUb@(`B7|!(5yFVVQCtm&0cLQNj1VRh{A8__a&_(sZ3xAiY7P(Y z%T}MT+rAGL(zL!T=Z;vWD?McRh(^j0BZLv+#PCwWang?SCl`~GB$o_uC)yXIp@Zd| z|MiMxcMIQ^6h0kw?vWb?#!L*CK0gX{pLOkm{gXrmXhw9Y0ImIWJZy^h=@LbGAwk&4 zDfQoTZ;(kq)0hSR`D1lWz^G%kGpUbXK{6{N14T$7;osQUSgP_<>gid8#l^#GR1;rZ zEPR2S?k+KW*)f{sSxDZKvbR6p(TKRO;Y!(3eD7sUYZOOct=F!b_gF18k`;5$Xgti1(r>wJXyc8# z_sgB-k<}ehYbz^G&NXX0eG^Iwh_=|kOqICaS}(V^@803hkJn219PXTd`uqDE)l?Zq z|K48Bx|8ifr}?ztjq%;OxE!r)VTa#$gUDzbjZY8so*s^0Wj^Q$ju$p-b1n4fRpxL2 zBZaN{Ic;m!74i7%j~vBpu;1f_kP?e|C3t&H%qI;d!HgL2#$JE6jDn2~U&K}qOvYQH znZb!nU3&eyZT(Q{(KLr@ykNlFw-*a4e_zDA#&6K_`Vvd!S|cef!tkY`|~i6LuiYunqYsP6<5e6QUdZ+8O%f$;2{IN7P_h!=Xb(3kB5?Z;|>yWr~|Zfu!# zb4P+m)l`^Nyod#b-^pgG$L}{B@sdvL`}_N&4$X|bhF_z33MyZ6q`1EfX7YSq5!@ra zhkM2Q=!-wZA*WeY^N#p$V5=7!+6C%6=44Mj%sUf*j8-}APn;ebGx;4k6jaS7vNxGS zZ=W7doUZq4sjq|2CU_qgn`RHa7q?@YOLn5@M(i>W5>ZSO$?o9;&9@lLdn~=t!qSl_ z`mWn&#c6AKBn}9jh{wjXVO{wC=G^956Xj-K>PhrFfx39(lZ`m&c-93~L4YhT!m)RT zo9b?zDPGs^$<7S{zQ+~ng&y`3VFv4y52Z%+o;+y_p%rmoDr%0G_7Jv6cDSHt=%OQE z7~rX(pipyqyh`+;rY8CK?`IcDNx1|BEG8QRy|lYsh76klRY@B@D!hC2^EQyf9&mq_@q? z*hsJOK5g*FCu5S12bzkf7)tj8&|HbwqPEydAI~ePl~1@$_;{5G z-wTPf^PZyj{-c#@RqO+ZN4{!iu}WTU9Lb9M(zoaeyu;+abzv<=bjYBo)Ut2BH1jQB)Byhz5Lp`x*NmYzOka#gBltd4Lxb{^z0|2TEI|g zH`#~(Oji=I9j#mr^Ef@6=q48*y{({do`}&|BMQzyW9%(NO-&s_FCHefQu%7t@AQzt z?`XY$U;yyG<@Big)P8R=*l8w4&++>urJihcW=tskkl_A&7c>mmieQ#734(h;vq!)& zT$h#gtC*O8>?}~*JLB$Cb#j1P8}tM!KvfNC%)SKf5R&}S_Xa0ZwDhic=y zL^5mm2U`nG)2&fee{w(X^#se@Jv}*wOm0j}j8xtn*cz@^MPTM|;#6i}V8D9`$t;3v zc?ieEyOLXFV#1l37cE}J0(;miX3@o<7{-v`N{fBNQ&@wByvRmOVTNHF)5y=%LaN3P z*wkM1{az+V>c9RydYj?njWch=QBbqdR;r>wZ~oUkp`*9|x?g3@K`1$c27$2a%*U^sno>9c2sTbqtHw4kMUsr67;f`|oy{orE@ z2k_0cOaY%96F=a-fWCTpk0sgFd1N1Et0u@e*Vm7<74hC?5ZC= zetbD`G%Jqx9k$dvZ+JHe(#|da86;sLqp3!5_Wyz$3|7RPZ&$M zG#V}+baU%@?G{t-hj5!13ur^*XANfOu zQs1^J@WK0ALN?f&S!zibHSw|UkU4@}CNM7X2rn`5F=wqPILEeb-lJ~{G=|@SkD*EN zJMmcgy2uZi8n!rtM#ylOcO|#}RAL^RPIl^&3}!yvYleIlFz0o5TQPkRfI#OwGBd&h*OTOJi9c0M>>m7e8&^Y|b$riT9-Im!* z=(g{YoD;MjCJ!=w}76HF~l?M`&DE8)~<5fQn$m2A_ z+&nr`IQjW6pj#h;$aH7eC2hgW_QgVPruRlv>NId1Jeir9Qqo!LUU`L=(7OV)SN^%2 z?gySvZhm5p-FUy+uszg7t=EvD%=csvas}H%#@$8DOe!WO@XfjIY~y<0nmNSkB#4*E zp_ryUPQYSgx;5EjHbJcm@%uH)-d473CnRUUyn6tfuz)S&F*7sE)330t9s+`L#qg{1 zB$#k&K0SPPxBk>eKKz}Vm0f|Mp<(Ajc4}9+-w`s1l6m~gaSKcMw7TEH6^m3KF}G0% zqE+AB>Rsi~-tvFcNjb2e>XM4mK=x*2b?di4cBwItlvdo9K}gYaYyO+h?pQN0PaPoS zV+MwRR>pgeqUj|Q!V@B?V;fhthMt~McM8G-MA>_5!Ll7nvIh@W>Q8-r_uGxdB4ZQGK5qbsHE4TP7aRk1A&^^HX z`8-MQfAoc3!xn%LM7Bhpgf0!CLKtHd6$VcnkL@ zPEycux@Ami@6YEb5(WBT+9(bXIP^THAkG;NJMj*rGXD;1&elfnM1Z_joqTNuHdO*g z2|raNo`mD9a9%2gFq;PWL@^Uz#z$s5+sI^N)vkH@97aw(p{&N5Uy>5K2^q6Y=AVFj|HW1 z@#y@XT!;gsJ=fX~7}5{-u7R&J+0B92#FN49RjmR;QR@D`Q=w5@Re31FG|qIGs?v$4DYDnZs2I(D1xUV_71mZprd(ZfB6#e z?G;hBVNix{+ZmmhiR478DaTUF&T0*%^%7_923Vf|+e!@J_~_#Q!vcy@7!YMjxGDv_ zg9Kg!liTx7_emv(ceKB#ztwr`FIWWqBZN z07Sd`DAA)v1|>)|Ph@b;fEqc99tqfZ}Kn zr$w-iR`m)d+=pBy?gf{l8eu)a~cy zyBs?f0QiUKAVBf(?BoA;6!w1yuGG1f|wFb@$evY8#he~~n)es(~QuGN5~r1TDeEa!_iUy>&@Yz z`qRO2#whl0{`h?BT?1{XzZTpu*fktKIMECO*fOqBv+x>?{-wk5c7F5La<%C9Pxa(< zrGB1T-{Z*wa#qKL%r52`BrHj-HDm=St&Z~+i5h;x=qE0<^nd6i}T4Mj@#5J37vTo@T(KYvj1=e$1oc>J|BXsTz4(Cd( z<6O(I`2Ta#H?l|gGW)I5DjvsFSNzlDD*)N_3b+1rT%Z?cuf6qWZY^F0v9O?Nkc?v3 z4rn$Bo-wD4<27xFG$fPg=Y>QsL+nNSwY^q#+~I_}?vK_n{G<#4A}F!n%F8WXBQ!2YY&L>_BFCQ+<%=Wlh}%8Xq-NJT&`_TGC5 zp@i#OeW^i6W``{JV!TUn25V7{kb63eBgVPRe?0i*&qMYQAAAv5;X(5#IGa>O)gRx&lDMtHCQc zkm>?HGQdKPm>GXOL`WvpRtH!vD{8S9_t-NTq{L_s>_==`X)KyT2lIX7dkTGHr0eHD zPVY~*E)24j5dcH~&zTUkeu=TepBM|>cuL4XmC_gqAewz8EAL;a3PeUFgt zJCB<}U+5X7bfn!N5yZ79DB)WWHV09eo7 z)C0$qPyfFX=UxDhOyoY4X-i`jj zEW0B!n-$@1*IoDQT&Fz1*-YV9+J|BFR(iIa{l5U{d9Z=#LWA|$)4QKt0}yPp2yok^jITs z)QyYUy3kR%&yJcSno|(OdOJ-CTdy;`_Tmzuiu_?d*oRuZnLxx6d= z`f}*ThUuri-b_oq8=081AOvfCvab$9(D|+rN^Gjeiwh)pv2=&ecn1H`({zY`ixoU& zgKCI7nV$lJSTCy#rpkI zeqgunwJr&k1gELPiQu`^;5S$L3N)*-to7zchGMk)v#LIngNaK8)Dq8u$S6CRU>VEi zbR&eB5+tw;?oY7;TyZ+uKqYJv5m50h!^ftVb$(QmMEn7QI_rVxs75=FfO;%#L5_0u zWiD!{CYt%o$%T(+(9T3*CU&~+M7Jt1CKMFTwL3kO$Y5sEjBY&MT4A#kP)!=V z+3_hg3W>c*NKuw|i3Q-WBocrD(0Ta3Gx}VP@n4^6ZU)63C~><+h0JhNA?M+t-!1=D zQx>O?zRbf@p`lfAd`kV}yoVGS*VonSHJn@>e$Ap2qCS@L`<-^aDN~!7odabx#UIh)dUjS z@cnnBJB!J%?9f&9!Z0=i*XEMsBUyFF#q(ESKdYyFy?j7ICI|HV*csAuL7axJ$M2b# zqs1Q;u6rZXR3EGlKL$0V>$Br67(Iz5xhp&(e0b~XVYBgYJ~)0MZ=vb8jr-Sljl0|1 z(arC4?M7|m?+sBXB*1SdFx>jkE|#W1GS-ehHpJ3I4!wQVxJ$PB?S1O4mz#F)+boA< ze~?=+w>^}v&Nc+VbH0*?M=|UASC^ij#^*lSKsERO9n0_~@P>UNFv9N&7b+MYE_<>_ z74!9L%h%3G_qu)WR@ExPpYLjDk`ckNHFp0B#H(rq}^fMDQn58UR6n+CAac z8zC8bIZi@zJPv#!ywf*AgD5IrGAiWJL07@R6T&b=S=HCr3UTcs?koOzd83WFB6}9TiVaTGRYQo2G`tg5A9r?e)PJC$68#+sdd$2t^f1qy|(qH{jH2Neik0(-o?VE z4|nXF$k%ezGY!=MHs8YUOWH03S_T?=JEpebD9PLPu&Gy}6kc?D&*`=^(=r58>)wz2 ztk^8zV0|$vl_7(dv&vYUE5neJ_d8I0XvK9kf+;kp7p;fwt_*>)iqt zHn&3}sTV6)o9@Tv&&^OP7ly>e=@nba>ohqqzTKe3ehvXr5lJF)pB9@Q;%kTpragz#9=qGe27Qx@-9z3|rzH*Sz{*HG<7rOysb$taFDVheqylNGVT8w&6pW z<#**WwtDgEhaX=mhHrAUj@tPc+^+s8jiqJ}P_F)%HN?%;VmIK#Go1)yQ5muwr!(#E zjwyP9SQN7($J~m&DwwB7yDC+w*Gr$SM+=0eH(TpXz>qB`cgvJTHnZGB7u!+yw4S^5 znEAzvlnIQfSc`kG9I^K{>eANYXv*s7DS^f4-qm`99RZ^K zelNcoh*100Z_*(zyWg`xIoVHx7EAaV-dZ7Ss+-P6mZtKY1Zeni&>L!vk(6-M0qbhH zT=u_7ayQp%Slh6Vm2+6TOq4gruLfvBsE%kTlbzpE3O9F)if7E#S*>1HDy|Pc=}%3q zUl-eiN55pR)hb8uccu}Embuid?_l!bisl6&db-+TBuSpJ)FOF$!mSp^M=+qpz4@gQ zW!MpPt5clQFk^Rbnf#>+L&1PFM0+nk@P@~$L-j%GestsRga^Co)ront3=G3R0KCJ_ zT7R+be0+&o<+?9!u|cT%itVTE_I6TdPX6ab1$#n@VtPYnFQXEdJ!5W?s{xkiG-LkI ziCL7}+5`PX_5(p3R&1?3XrLS$f8LU757?3mAGp{y_oQSp2xaIC%PO+>%=Z`A zGgqK?zGqxQ>~CgM%)QjlcKWle?l3hRyiouj>*ZGgNBjKoMpY_e#9!X#tR0DXa;yQ_ z@B(f248M-VfaogWXW@~QFd?Jj66@ht@_byFme|Cv?BA4q)X{(gojcsa(F+O1MKX_u zzkNyROgJu+O4u}2y0}4biLQ$j|AMnkcMlVgoP#trq8;AMeo3Y$WeRq7)1wn=X6qwK zdkYJ}Ym@Q^S%x5LKkQBv?a3rHaH010$tLBnqJgrzBUB3VSx7jc6y5XP-DAUdr6TZi z_b)~nQ5!zN9SAArS|i!Xa)!;HKM<+a$hB@I4Mws0he>7(KI3 zOs2KC(^xa6x1c3O5}m=IXGB3ML#(5tp&jii+UpxRjy?ylH6jm>0K1c+dv&{!52d9o zXqoF5EOm8km8*FHnx*R@sjb&k;{ig)WpNOSW{6FWvJg2maZs3b^|~ZG9!J%bJIZ50 zJl^j}SD105?9$nwDb&N-{iz?pCB9DN*+&N?<~4P6rK{A}8ed;3$oMD*wY&7slKmME@Zv|HBYkc;E-;Ez zZoe5iQwX1K5L7}$Lt`^Q%yG2-vB_h##mHd4B5v=5P~f2+O&=s&KG`)40CW?z?k%{B z6*ya3xB8>E?cVpaWUueHZGDeKWe%I?ei;}hxjqIop`V#)t*w>lS3H}!^r)sGhMD$9 z#fdfRskj%H#l!}gwU}-ueh(-&=^JdFmi?CZ!}{zvwKQ_Vsz1Py&KB-(F?m(J z5vLOV0k|;{-_4t+DJ8rR8L?i})BvoadVf#93Mxxy*pMwh#vtMtTY=gcI3GH%xX*5v zs(>Q$YIIx^Kv^*KfPrNaP{!fnDvf=gN}podny6+O$EMu7lJn^cQ84!0*Q~1_6YL`pfHIfGgHUVs&yzvhJoBd5M9_ve z4x)bSlXwvh=&LgffE~+euRP-%R?UBYK!&RL^bb|N)r?n@JzkF8ai4^ zGqH5s;zM6-okU~wtsd1^1-0=FB-n^*+vb>P>Db8s`eGJrBG0H3O7J#UG2lntqlB-V zvf;m9O1~xDL^lWSU!|FTs2%ab4#Wt61+7BlBb!MwUCCbePP1nTw3GnCJfR0Z%c^nT`7IHpT-QkEDG!eqMy!hrmg#zu98N+F}Xj;gco5 zqTafzNK<(o8+Q9o4?OR^7{^*aJD$yg-}T{)9L=To)PM0QcWlOb<~%1K|A)Mc2(Sf^ zLChOH`Tk*r5qb}4uK!pWKQjT@_Lh{BPq`~+LeC(=qL9Cg324$+_4;+!=vx{#jY4xDs0}m#CDh^yU2; z74-6A_uoaW!Aa=R`t@DQi7!;--pbvlKTmBI+W2NiVgJIFHpI*fX#MzNMeV#8>nf`G z4(j)`WR~=i^Ye7!o-CH_z)hceywn$v2$`&H10K-|bQ?@GuBJX|SxxnQKS2MP7R32J zw?JfH>J!CuNm(LtK__xS^kFOscia7o^BUT>>*R$q7(sTtV$mJ+=86`df)y8JY?kGl zLHd#^>vE1}^j4@=p&xo8*@sh!=@(+TI78R+Tk-bj(J$*!sZF(9>qQCMy8`^TJOzWv zSF9*6S{hrQrLT_B_-AFU|D{6vmB8=91$@$gK4i$}zFaM|k`NRX6G0c@2_v$G8)YwPFS)jTbul_4+4XkZ&Ztjoq`}eQg7=BK z2uO$6`4O|X{dn@lK7TC_BQock%u+I*%FJAZ#2{{5JXxJVCZd4xZ7*2O2hQ50{co}V zt>Akl;7vl4Enya91o?8c4&`i5r%k-K3mzLBcYE-9da)RLPuP3LO74Hch5;O4f2v;` zc%#6YGFuT4zc~&7%W<=unJsYNGLEB+kDA)PolirL$b;XqU=-O9`JY1F?LyVPJ0T91 z#Az0ZWy+fR4-F!^%Pd0DjN@DlWM`;Pq-`!KkuP^CBM%%J=g0XuJ|~yWFNYrOycw!= z!rl#HUv{Hv_o9{d3-C=Ffqd-C7_8i*lRT~ z>cM>wol?ogUqUjZx-w!B05#?Ww+f{3j(9M8B^~7+4c}E)LuDGGVN-Xcs=M~qr>3?R z`t<9bDqDdttHa$#bhpzx3UJY^6Jzz&mGieewGR*`Sq%C7k^y5IcbQ9M@Eq^dY_pLW zws9aj=BoXy38BR5r#o8<{rt-ttOK9(P+^Rq+2z%$H^;J7@yoLkPKywH|E@Rvnrp~9 zX=wTBxkm%f(LW17EBx}(6QC>o8@X10+?`J@t|aZVQ`VM-@QJ#R&0|xdFk3UUr4`HZt%|9aZj`ejB*%=tY-PIg!Hty;_H*w6I6@8T7w^tA zr-t60EMBcxmA64$d3Lh$3Jk9XKlvKc+sk4|7#ERoY<)ayb+Y|ic*Sc)Eydf6&E*m| z#r*d-$b)qdlS)YDJPDmy6yH3|Hk#X2ukT6>9bj<0%>e})*2yJPlPOF^Wfu(pDf8K?yvZHEJpWV9#6%zFm)YHwq`DM|IgLB(7g zbSzaJHAc#gCyi?1wV32HP3?%A5Kk_lV20orph1>)F>xHbC7^uAIS0jJ(QI#x3Uj8TSK#V2od_g!;1)GCyc%-MNUM*n$#BFD~tF{-fW#n`o=ZQhwbT0DC#@paKx zXR{4cGTf}@H8{BfhD!iyik)Nl_|aVQt^&IFRaBIf@uRIBMO%*}(Us)7*P%LP45Fp< zG)xH8no?c+6*-0W_Il%<4hzo@i!56`5&iEfou=(;A+dyHXP_h;95(4< zx&!vRAwQ0G{>mnivt={j%Zr}HG z^qwUB&t&PI;Qmy^$CuLMUiJduRmdI{bz-&AZm^pg_dfY%bBC8TLR@x-d$-#_&c%?i znR)abG-VoL^)G8Bt9H*FRa+48GaxC!rkH>>x=Kh|f^L|Ny>_0eg`y!yG4Eg8lvwUL zF<4vqMz%5z2Z~;HZPiC0&ych)E7MTJjxQ$n#X$z|W<7Sk50(c^+J zw=2zCnUxI!eCWi7Mifb6-#!;MelfAsV_80HDzgMI#s9ZJ6ZU}QzsV~`xCX*#VuWfe zHhwV?9(Ik;=f+n%GdhhwNv$$&J~E2|c{sjC1dYTOB`zh(#je&V3LK*8t5khZhT&N> z0PKK9*V*-w>eA)u3=x`qlau26v-M>u`|U$c-6eLKRhe0ndrW3O$X0dQzNDBj^jGtG zjD8LYV+-V}dpDR5+$jJngxwZAXKTv%tBk*f%`8^jWaz6cjgRzclh}P75Hdd&38iLF zyD4`1BTDB$31wpg{YFt8Aqs$KpGF{Jtjm$bXt^+^!B^?Q+s}VpLz*sNJ3I8tQ_i;! ziugTdBLy%UQ01bWujP}KGVkvvZf(KFt3yl>DhoXrb|J$eUs9*o0;H`^#QLD8kx^aB zAFQcu>Bl4KpdH?sv8Jyg#coQ9TU^Myt6^K5PWK`*d@_8zV7K~Xw4=4KgV`h?L%ktK zytO6E?i?l z3%DQz;ML`~#nl##v58MWQ+z^4Oc7wh#QoWhM~@#5*sB(X{Rmm=i$n(PJ~d@;0if)w zsH*!`9y2p*N1GtLTo!?1v78^%Gv^Q7Y}8K+mL+XX3xk${9}^!RZ#hy#$jl1pcTbV( zYU(7NV}>{Q7cA2biqQUc)L0b;b_{thoFe*ac>#_E(^BlBAHO;HHN!&De4|@W_r-^D z{)HG2K{T%!nK4Lx9_adh3zCo6FyuQXaG^OFam+DLQwoM#C))211w`H;0<6+sg@?7+R% zc&I#OC3;cVNgX7rZGJJkmcNX2w3@AX#BXlx#mAA{X7XO(6RsjUpU`9KzFN#a**t!M zREWLF`i~c~!-FSb%W1NWoV;+jKrj`gYU=?%YiWnGSy(*Xraz3EIa|${=Aw&lPsM1H zNkkJuDVFAEJ?)6*JGD_MbfGo{1v4?!G2{rutiWf}o!@0gK0BJv*ioEq-4Id9x`Cj@ zCg4i_hIXds*xGY!e`z+=s1}CgU-2tI9?$0UG(jQ2rP}sA4FzM0uB|p$PZ`3)gCEqk zRmf@4s$zfcrnf<`2P>B~K>tK??Kpth?>9Zn$~ATDK1kySf@OhO{Jg)osY3TYsW|{~ zfA~vg(9p#AFRItk*JuPky3ulkEhIgDTNd)l(=DSkG=J+x4tYyEsC1J{M2j4yK0&k2 zB)cl?M>F@l*&s~3zzpStJTXyvmr@P_s&Yyp{)m3_vhC;QsL;SNq?p zuBN^Yv%Lgmu%rK3iIKHTXRKO2RptUi8wqq|pjELkaZ+~`B)>sA4(xyNhNJre+b5_# zx4;N4_X)vK6G2q5;GW|1QX5s`NzfM2LDjfL)o5Zl2=#^KQ0IK|=hMf{!~vJ=sRXVX zcIP)7Rt&p}uGPY(V7TgpIcVPL``m2+I|1Erdz@=KMS|TG- zR{COM8?M=l2+LWg5L;S+p3yVY9hHpxT zpz)yHGNHMdfK)S20SwTz){^}>e^xl&qL3hha;T$A@x;!QaNY|Ac>Dyu;G!>{7$Hrz zUfS6nv)Au)2Q#PG^7R@C1Ih_u!o^D#dyb#HhCW>qvcDc3Bl+`FaiaX$4S}5e_J1-m z0LeU9PhU^-jSzq}YM((ZQ=kZ~tNFN=E*7M&mn{pS@Cl46e{l1UAhj9SS@l_2voA(F z1N7{i4S&gR2)aR+zNO`zwOoPkN5|3Ib6Wp9c0Ek^&9 zF3ZnAdZx%9Rf~aBApV^Kn+uR(zsW%7#fY7Vf8)T##D}pUzJ-o$Gf*$<{AU`hdh6dJ z`EvI>9l#>(|IVD4ODXY86%e7~->Qk+0_wUCAD421WyZ|^p57|gmyJ3&hx6TkzC?$( zRprJ;ZFcD&skGkT`qmHtKrCGd?t>Nv;A6DeKiZG*2n1I-rR8!%Q~qb?MhfTq`&r?^ z(dYkrl==!|)<<5GhDdOGwVoW#3m*0GrE{k{h-x+vy31?uUe^cWQ}Oq;NsUMIK^s9MEm^hYg}!{g9+`C0)JN_>E}fmHgwTzdgC<$H&b#GaGb-FnkHf z*wx)eXs2eW8;)LplQ8>I@}_`vaBmo-)g*A$d)3#$r^=5%)G&;DU(qdm0B95k$uYqP zQqaPrgX^M_`}H#bj(R6g3?8n~rO_NVU5gr@`wT23JzC7DqK%GyT z3JusG&(#b=|DAmB@QHvow|A);pMmE%fF@B9m1bT1Iq#Y_i@URJiQ)lQ4=tKa0$Hc51EJ8ST^j{gu@c_Xl z;KP~dTaABu*jfvq+?aoYEn1jIc7d{-DEP_0>ps0*Rp__H|E!?p9Kat>ynod|{V#ue z3jwlPP{UwlZPJwtl;LmFBEb42fuI5soyp7cXiu7k!P0$htN$phl%5725%UYs=VA3v zbPb)@sLLGx^B*8nnJOkTZD2;%mcItJ)cV2ATwVU}pzq^OzBaMR`87|h%hGMPhF_K2 zMTSq9M>4jH)ShsRWd4s|;|vzy)YmGs`_Hdyv^=b-Hv+7cra^*#2Qt5+omH+;A zPYue6&KUFW>}UP6(V@1g)p*Mh%e@D`*z?0}dT$N$|M#yOqQ4<16%xrsP@nm)ua|*G zIVcmGSP@U|Q#HN=&mA>^%+|G2bTMC%bLVzi$)jqd4c#H9fJ;Y7o_51g zAI+^K#GN``QZ-h2dHNPuve|5OQ#B@1H4=`zu#2)GSg2^Pdp=~)cM)s)l-NWOJl0{B zE^euHzlwX=)zbMz^V#!HjF&t2t1?7Om5I~DHr>q3i6;xsCYu!72aae4da8=^gfhAB z309HEl1BCw*X|Ekt%r3aJ(WMGCd=Vyacdo$p99)O!Uc$YYhG;z6E+El9}=hpbS2EW z5iqw)*Wp(>6V17uH|iX9Yn5IpuAZCw&9^Mpx+F!hC%D!iHZo$GR2t+uOtYM5U7_2< zu5jC7)`9B_)%-~82-ufO`r;A6o-ufgOL7BfD7llW{@lMKK zP03OmW&PZoFfCsm+^_OgNmrwLFJ83nR{;3^JkH0(w_vQ-_R0tPwF|98Pexd0T=6N+ zpPWlpV#j?k)U=CQCZHHGov3IP8@bl&-7tB!htRNu*QwuXX4X34+*S|as3WRI)u)nc z8X@Zm9R)_91do?+m{MKYWx`tj(>rjw=_C<`R5Raw_Q80zavhFJ5*azfe@ADSby8{G zZAYqU8#PRooE zy|z)XDe%aS^MY3;#8Exg7IPKUTovtR4HL+acjc1hY85J2KRthZAxQ4=H`&?y(+`R+Uc+dV|`yU20`+3s1V{nE_mME&%Cd=L$+u8R6}6mCwTTy zSi>p)1OPhU57%6tXOQD;k(R}KRQ#%shVYmkQ7CKc*4=H%Ri^CpA}XX5n;D1|<;Xa8 zW9xI8QozmEO3LbG_VX*@rINsT&lTWzk-!bgi00->OHT?+Pr|5>-lCfa$ld89gYxhZ zQ@8znYZ^_fxY=L)Z2%Rv0#O+g9MzT3ybKFo96D*&lPFh#<=FOj&{aYuQRq{kI<|zHtJKa__ZwhoP?yb``)S{qZ2S2;_wTs46`DVvMLoY*B0AOVre5ZD&H@z!YhY<%_QCV^ z64%>LidFuXU!U-2+WvjAfBsCBefucgAm6f{8-D!OOh{u4-%e37w;y2Hb2`{f`u#t9 XX{W&fdpRB85orvbu6{1-oD!Mw!U_bceLzeCs_#ub7VSzICLZJNb+;@cN-9dS~d!gK2?(+LN z-bcE4dBVgc#jjrGcSfPSk@6A}9{+WLxYvCriGiLYX<(3p-rAN(2!#Cv>;EoDV)7{n zME3$*L)GL#^2~_;Lpw+2_WX*Ff{SMN#j`X|7hPJKfS8_z7(ahbnnl)S)x8>@4rUy9 zh|UPj`G@TShl#Y&z#+BPDe*$Lr+8R%bLC>7(z%uK+Bsw@ za<(H_>gg|BhwoV==^zjV0^x7F`&fME9pwA1W8OROLOTV%|NSUk>(j2CcWP0gdv@MD zJ-3T(=gk4d-5fh_jt1^Mv-5_ZaR4X`yi_LtZy87h(pGT&rK{%4d}y?+z?taLryu^n%f9RM0tDL?5hWb&#~>2C5K?v z4hX7@!m>Aav3!-Ad(!@~+)yB16k8B0Ef8D>V-MJ*?gz)M5b8e=< zhD?Dv>bAt7vhh@2rFbkfM_TYlORg!G`Yv@RKj@r>(H zCtrXYlx}P7hVWl!seDqS?Q&zAr({VKQ$JLwz2N!w;B6QZ;g^dogq55{_+?`Cq)VV7 zluup)B;S`~hTe79*i|%B`RdQ5e_$IWSWfJ~e%J;U+aRs5EQ2VwB^M&3+uH0_=z|DE zRDz{HdK<0Hb7_uy{XT3X9jgZ`S!!3ZcZh$E9dSh%Bn>FH7nqQt8#%Nqu%Phk^`=ml|Qm^hcxbMQ_$a7ob@!Erv$s1)z!k01h%Wb6*K^&BZpxRU-XFcE@aAK$O zvM5IBK1p#RIUj?{#|yMi|KX~812pn@M=v&nSX35%96F&rcz#Y|<835H(uORDnSIM} zfD6HS#Axm?h1!AIRP7cFDje^`v-<@6h;CjiDgl2GqaTL~U~gK+psK3v2hl$$QaWTv zK%H}|oPT|z-?+j1SzjE!fcgJb))f}G$Yf9US9Sh2SzP>Hk$-{dM9&@Op+HCWKV z5obiwfW>y%G0aplQdB^HskRzzytXnYQ~fO9Ls~o16@3`!ZGcRY7sxw&iRz_wkxbG)wf9P97eE$QF4U^ILh8vh#FzQt5{vDy63d zU9zyfTJHJL72@ho+K)wvT0cnPnSb~MNxE^}USKYsu8R2y<-}UnyIsZf-I(TGvq1Fe zj!ICQS~eQwHSL}^r@wd@72L~E55S#dZ*zZ+x0j=Ck-x}opDzj;_dy?OSDpydloFd( z&?Xxq%3*h{lhKhKJ(J0zE7{Y(B=c(yqIsGf5an%chmw(Vts4~qLvkx01hE4nn2-xa zyjeDOmyQeD8ez8|*ca`AbWU`A27XWdpiidakRt+~@DTsT&y!BaTpm^XUXxy*GZqsT z{TWQgA>SIGyYS>#b5hDr!3ZQNQ+GYF+C{W*#{Rr;=8uGEz&sC7zP$V<;*`h-PS(%!!t`y|e0>yDr1h`3n^Px*p@^|S4n&2+(j7X(v~nKnRA zDx<~+G;d@oHn-`^lspI+IrOp+_t0JnJMa&TJ~vmZZf9|evUwdLJ<`^={zxacT3Gb( zhE&n~KDa>Jv>N*L&vxrlUz4v&+1P=rTPB!oA(vX@ENp}qAzgMy8Kx^;!u!j2v~9(I zEgPSU@Wa>-En&*xR=Q3_;ETV+mIL1ZZnb`cN~#W1tD8y|UAC{%HhPTDT-g028@e>o zTIm@rX*fD~M51LQ>^fOOkomRle)9?r3B?fN7;o^07v$yp+~$_ey6?dk+Y4+)PuWtF zH%h~hjQJ?h*wUM1-a({XU(iIM%ZK{5StKd8+4>v9CcyS|(l6UlscSC+Oh$JX4ng%W z6_d`o$0x)NSWlxzy9IHx$wQamq)N^OqTRVa%0s6ywZD>wX86!$_A zZW63A>jk3vF~_#c&23x>0~?6tx7d;2UUPR4MTr9<+e)xWtDTVVEPB)M<+UxHwUN!% z{s!GZYqBq<_JT_la+U*DWoVRzoPEacwvRPjT4CqsV~)w$!)TtlvE=HowsXrB%9m+v zkwrTMA#_>w)3LC&%YAK!eieS%%0qhA;zze8R(QngDWac_|DDX(N0mFYoSK{;Ejijo z)J=3jI4rMNz^c^9oS2?M>k9aDzK{nSCwDjtZunu#{Z}Y9l($A|E#{nbiABJ!zGzYKeF!r!Gc(iW&-c&QO43?YW4uYZA3s`v`zUYDt3MWJdmeg2 zlO@(uHB-~rz~yQ9$4AnRh^c`RA)KmV=ngwmaX#vqrufH~^Xy+Dc3XKkWMhU$F|f2T zf;W49yvc2Aa}9%Um8i4PjTiTbUO9FB!TWNLp>j%a$kt*i-=Bc(<%&95q8q{G!%PvH znco=2R|IYoJ%3)+p((O=b$;A;JVNH&pEZRqiYvqKY^(hC+3uIW+V`FHz@fnj3jPGU z2S4`JY|K{a+`QQXhAs_S@r0Ark0|z}mu+rRl_`2MBdBlGN(NcimzEi?v+y|9vIHS4 zDoTIT5%fM8d7mVFF>9i(ehk^6xIRd!&5DVMVJbO!cohEpxms3{pY~*jhAyY)mkoenOccr5c|C z-s?<8H}MxnR}da=bN^-S#>kxOI)g_1@r;)--^54nF*fMM!=q8t#Z9hj3lkfPTnD)S z8eaeNXaglndS7Api(>+)rCxJ-gv_Y3Pu;6mhxC%9^}@L&%&e>uLl&Y_CwtB9d)u(E zrS8-%M(F6G1bQu;OTw<;MmQG@2xRQzQ#|`|oC7K(l%JNS5_NsyMVy#*mQczAwYloW z$U}z?o#f@s*E$!VapT4fmVOvOZLBdz=7c4Ssuy0F6Bz0^>SUzCtn)OF^P4ws(u@rhO)-*w(-zQ+7e$nm z?0`d=-nsK*S1)obc*W&+8y182rT4k?=9vPYc8U(R3!0G zXBEsal7S3o+=HJlua$H>EQgU~)tj4}b@cW77_{!P+n;yW00kAM_ybiX%KN&G&l@PM z;mdVjw~Y<#>MDOoP@s)OdZTW@bK8%q2s+uv>B z^mFicmf>_~>2>!PJ1qUFKZ3sa{Y6xiSM>$0n>TNc$HXNhoB|{3V1EAmX<~0b_TZ*& zybw+?sC;XsZrf#cxKalW?<#fawi@n`%Lc1!QMcM4k?6h+{u+GCe7_Hgrlq|8wsx)E zOM1Z0!lHlGa(Q_G-(mOmYuj?*sOJb#N@<(XZQ#2y;_vq3OIS-=TMsnehCDT4Eijh7 zrgWHEP*h~TGCN{=>(=|CsK`qyJ6l|Sloh?ySwhsT;MUEXuYq@p!$mG#0xEgJF=g|F z?MNT6ji6o%#jXC?;Rw39hKR7RAp((QWMowOaP5A3l1$Nj+3M=@LSn>ac0aIu|* z5iIyR%qtDX*$Pz}E9p?m=VMN4ftBc-9w_0>?w#%k(ACxLEwq+#ym!xe@ppS502nC% zesCk;sx2)oJltwCBUKeF_j@a#|&vMq|*B2#ncS|)79(CGx;E*(17Q4a@YRZclgv5 z6^F*xhG5R{rRxjd1c+04`HYfO=1nOnDfyLQGc8wWTxrL-4+WD#tz)2+IXr!e?WXVIa$FEay0O!;SOsk zeF+{>YVvqz7;7WIdi@{dPTup~b#RaZ;U(fUOcRD^>m=A#aje_0uskJX-33mbh_@$X z>c*E7=YS1JIgyeZsVx0(0iWSx1j$^we7Ps#szaiC)l#1|%kud;0|xWXeZTduc>PC! z#{+wQBWUaWd0*i7M{JCdxsZzaB_dJ2p|SDYp8&qV$@H39rJ!Z^%&aUCWo3H|Y9iMB z+@GM*_`$(JebXaEY5AS(jz((LEC$i;O7!Tv>=nc-yWHQyapN~ieEZmFWmC;9Uj`Km`Bsp7TyOjLT7XmxW+8QSoK~0qQNaPZ;5`?dJ zpto4&HT6v(s^_IpO3s%rYKnh8?OAX43VFwh#Q<1c$&QA%Zl&cKXS)JhTVIH;D>$p* zCz-PNjMuZ16`}8bJx~Kwz_xjM#cwvrlL&9(Ls!q%tc*4WN_!6HfMH}tfvU?8?L38+ zC7LWhW!dlvgX@NF6hiDT-(s7fnX;CS4oYXbI^TrzRPoK zznY&voEjXos@Ys<b+vJ3?b59wd*Q1q~4CD4> zIb(n?oosv$)09D&*UL(l>?iu>*Um?HP1FgJyca6MJg`$ zUu?2Lb=@E?k`&7BH6Lf8dc}yJb+kP9Ws9_+*~;wZWocmK71%#XqW0?1DVTuY&j- zxG__)^o3nwvXR&8`X}_kG~uiqmMI@dr5D9-(k>LXG{4oCyD>FnE+T@_jKFwSwO5th z+k8Mv39?eOb#%-G%u%A5{{7?hhgL}^(iuJMwHxZs{&_3N3R3`e;0`isaQI7B$d?&= zXiUZVr+`&q`S%HZ*&i@!s*G0(@ZgV)$fe0Hha$crJYGY=f3^p383{OX^=G&g@aaZM z-9l`UHs+#UBL2&lFI*j0-TU7+y2xNE_BU-MZzLm0E@cG&(EzO@ii}$hlyAe8$fY(| zhc-sM`i~m(&vRw>;T7<^3BdbE*`EhIMymsgQn~y8B}QGsux@slK0@q%4n_*!<8M;3 z7eIV2oG(V|uZ*GV0AR;l+^7aT_F73z%9vb5M=*!R-MblrUOqj*VWbs`dKfS*5fKrx zW4vt^H6=(tH#b*o_Qcw0Ue}oFjw5Fd{pDXjO5*jyH4k?idDdF4*Yn}6J>O;-cu_vE z0s`~L5p?H4q2x3WSPE?_jhO38-9Alcvz52zqgVu|)UlPTJyA-Rnu-pIc350kU=(@< z>!yaR=RW)AbjHk3MZQ+lIRO2}E-o~uQBeT_bu1POz^sDB1E=`5SG63P8q(zxkd&UD z$?1}gKAit(?lA#PNzV@80OL{01a^t)TP!9QDfc@;I`^1!kR-EIR-v3h*wqc5A7K9$&Ya`Jtp_s8o|5)3yJkZJT>2zD{>aAlHuk zgj5;S?p}>&6NJJ+hOZ3i`FWHSo0LT7F+;Kv{Ey4s2d+i%NV#tN)zZbiRJ*=i0iN#i zLrwVZ;R9)^y7u;n@_xB^-dk{471p-U3OxttFw6*zsNCfjnh<{xA+U&K3J?+bdLchI%ak*?!1e`70%r(x9VIzAe)hZ zJsc;gN`45Z=&l!GN5q6RjY7O*cS1;KIV(v&Q{QF;W$KcbNR>u#bNG5B(lZo4r@f98 zZL+MOKXAlwE6-d2A9jDK*Cy?NK8P=P~O%j#v_*|`fouMa3HL&V-Y-QhyoR=xARED_m?z?RmkE~I8sQqx)&jIzDOd?LQ*`HN72^)q5L zH8@{_<)gZpi}0~Gs3L3wJP(7qab;rXP9eaT05%*X{sY0C+}TRkh&5XU1Q==c?I=e@ z>(1f-`zsAVNB<{80P?>tqP)0|Q3o(D=``3WtegXsW zAefO?K#nreG7;Z^SkA+bVn}Z!Npj{Mh??Dn$5|qTN^5}JPcrfb=GA5sC}P|+Qf4j5 zb0lF9?V;;!`ggSQgpA`2ZSLyApQy8GoxBDzgFhMtNR>{T z?R2Q(_;q%{UfmYgkOJhaD%FO76qiv@s2YF8a!APcqep??z+iB6Te}fw2|3CFE)?))YD$tTJ0D&brB3j#~1z=T#0s5E>%n4zs+IxU? zg^G1JI}uV^`M+WusWKBGtwN>>79K9wU|j|o@pI z7+zG+<@={cGZyD}#_)K~5qaqzVt(OEgjO=LL!0NK%M1KUd%-OuG#r?E>hC6b>Nyl? zLY{iRq@+aQgZs{196T)9+HR6lp<+l9(+ZP}G5>D4RyF&<<(x+WoZ$>kb@)R zQ0e#+Z3Um|a9k+Eo!d)=j zIVI28DU;96#ATeM<1uWRnSs&qU{sh=`efuTo)_0-5{2@;G%=Ci;1mb;KG)CLLrX)8 zLX&@#XuE=05TpSE#Aou0AEnO?NlPJxM=0d;sIyCa%Q0~=^@w)3dvgkxg0DRd=joPE z7mAvFm;73AX(na(lq+L0jvwZB{r8ON5Q=$XpZs{m++?=>bv3HN>Hc57VC3(&ut@Pq zo=*70@83j_mD*>kc_K>8BLA?0NUx}(VGa3sEH3WXn2?CDlJw+4sD5VcsEhTDGKxo6 z^`3WMhsw*Ut=hL`-e8Xx)t+u{p`{cg&%#^g)x$$ZqI)ZXJ_Ke%MZ}js#d{B0nHA0{ zS*BH(d33utY)o?7pU!^$YgKx^6bRwb(Z;1fy}y&1=HPhRVx3<;rOfAP6wF>}qj|qN zFcX?*9+>gL_(ZR0u)%7Vs95gRlW@J);}T6T4rQ83*;O=<;uNmD(h)H=rZAM_eyv(8 z&CG^z3TPpM&OhTrFlJKl$*=E0g-Q)95^!-j&n0jfY-8&h{@eaxqxLItv&!hl7dhJ8 z<5vJst5DR~v|_H7?80n`=SJZJ;YUD$PpZUTXFUTyf>DY?*CEqQskGV4KnpT~+PZ_>U~6TN!bkzX4V*6~8Z*+E9#9Is#hYP=;NAXjU=_u(92 zB;AcK$RJ54k5Ln?HI>wKc%n`Qupk}uM&Ps%O*AbsIa4!N)K=skm@AIeIt9NR+-WAGnOx&5Q`K|o%GM?r1V z^KC(oMgyNlmC`M1^CDnvrHG)gzLRt0!I`Skav-w%SY}xRXI{T8<=%Ed&tBz^+OE|r zSy2z%?C*gUm)1D13U`bMVYD5uVSK)LR^hsCol;QshwkG~#MvR<5LfzC*+XM27pEuX ziGU$o!QUh5jn z5&uWvw>bSk&P-!LIUv0CqX&Yd1j}D3ySxqjRV-+AqX|craRh>e1cSoo}F2J z@9$muJdqgaA?nq)@2B!8&#_nTV))cHy zLcfYY&+CsIUl|r^(we5+L(eJ6DaDm1W%4*X#pUOxS>jyv!Kqa2ag-&b z)3Jx5P&jBb+K(%CZucu3vJ-~uyo&02x-00*>w|l$L=|6dXP;j`=KYj?*A54ROK7hb zA!jMah9u%pnfMbpWYx0oIeFQ~Ka!1oJ%Xe8@fk$@sta@el-v&ki?+R6!R#AzgSOdI zTwFFDdJhYv_VYKltG&gqo`NEfLXru>5_`Yzf)Y<(i~y5 zvAw!VBNRn;=Q^zKw>=Kg$jnOwH2`}uc)%R*DxLgl-{ucSC!_+rvo0QP>G}0p5v8Fo zkMo_x9FYAI#-ca=0Z*SpJ^V?we8o%?cwHQ-8tF;jN)8VdAole2x|!?QI>c*_2a7)X z1{O=qFUh30CpRz4uD1*=Q|L5~1ou%v~#;w`3n}?^c zU$*HGuyBXL#^`E^gJ2DmwkII|Wh_2Pa70Mh(5Sf1BLz9zQiBT*-LsLOMX)oK^35yA zHTKmDb~s>UX-rin7@K<3VYdzAK`ljPFUQAbz{7&#aw5SrpYsocagyN0w@0QQb-> zT^ddgb1SDu7jk0oPy0_r&{NalPhe63w~pxX#N@Vl9^7UA4@w^(q1vZMX2-nKV6F*Y zPMm&iqPbVVw9NOIYDGIO<#Sa5$dav{uL}7o%oZ?z-g=W*~cTx^U=&ig1 zkoIXpAw`Q!3+;~dKL1@MA5=e4TuHk5 zDCYRS#0_{c=~U{wRGi#1abAe66#(;5+p2n&qixRp{KYfgV= ze1ziI^v|7^L!miF=5wV5IVRzh2P3D$5BWPAyTl3#OI_7JvER>YnsiF}eU;Ji)g)-A z9Sfmqd3Qt999!O;3tS^QEIrANpLCKC?@o>i_g#4{(EDWH0_3TQhiy%q`=zeosBo#d z=({x)e%USgHLYdK?b_sD=M{OXU>tMN1dFUBh)Vb*&>H9t=)}rV8Gn-1n46gsEz?{@ zK^?fXT=k&+wp@^DW80c;aztk0MzeG~^P>g3(g@+zh%W~Jwx(Os@kPZc=h^S)rYMSX z-(4ROA~^nQA)bDI&Z~o(ahS_}|50sB>CVU6;4gPxjUSSO$iH0=%$`VUkz9$stK50X z%q5nRepRw6Y2o>j$!O>0vr?tcfsgMYaH$A_)wuKO5QM*{ko}Qh9lI#9AtsTN8l?KFX=D&pTuuP#@?z)tNHY{x}WN ziTL+%k4kS_Rok(~I{x!6YQ;RN2d>57APPckLy`Kap83wxoe3-O;_}$JIKd@)NX>4sFNUPY8~l|NL99Z=~E1% zD*r24YN=@+pNU`Yyxru9q51BtR zC)Vi-VOAC&ZC6rd4Anmn_u2A<9vymL^1-L2x!T|rD`W@?i%O{)Gp`7EIU5{qo@&g@ z-^I^=(@-@(A!9fHwB4F>bjTmZ@!q~(`m#h+FZRUxKHKA=Z~Bd_GAmP0x{+K#4SQzU z7K3k#S-tqE@lK7=LCMfdjVEKh(?Oa2Xqo=G5iN&x$4O$-Soe~_$;p}CA=FU3X1?`> z?TtO1J>?6o?TeJo1mIyx16JqZItH)04b_9DFq@xSc>9b6g0h7#K2zBPkrxR0vInA3 zmOR@WIL&M9JLZ;;+Ain~^q=8iE?2*lzaYeNq`l5s4W8}WD1)@(`^d^2%a3Mrni_82 z6C)$3tMv;n8VANwdn7F4%xP=_(MXcx^XguT;&yfd?Ck#fC0kkFqlFVH+=f=B@Ajp- zQ_d)NTGZy6kl@Yp#Vu!(2V^Jix!3*E(9pQoRy?p*a&e>sJVImP`B{^S~O(fw-#v_JIgF=vSL z>0MeMj{^4w{T>;nfDWXNZJGFQIaLN`3(-cAO``tZQE9Eaz2D@y(Mw&Cm2sT0u9k+_ zQR@nI-M;u7!l?thQo31xc)JGzh|S1gW{RCtZ=Hx#<0lB65#Z z_I&z$p2ci9N?(QUQ8B*-w3L*xrXq1!nB4VzsmF_SuE>rCSB>9?3MlhkT1Q!j#cA$6 ztsAaW1_+o>suB&((<`I*Zas?*3f>V@NrcaeRbjB4YPz_~!abLDhT;&S9m6Fa6S7+W zeQGyR7P#yW5fMnJxR|1_9k5{4CXNoWSVu6vV{9WX#CQ2^qVxyz&dgo5ngEdFHf&EH ze$?2~?wCg?j2CQZO5~u&W;r}}qP?i4$!B;GIp&fG=SDJ|naR!3nI#=@tmLyCqJ41j z4CKB2f55A^V9+MZ?Od>dsB}Cnsp&}XiovKXuMLB{r7kO!xn15X?-mCtQ{?zs!J6g4l=pj7Ztu{+f0brpYMi|tbSL*5 zuFhc3O_aa>$;LAD%!^9D z5`xx#i&^7UpWyREgs&PBzwf3cBk?En-~4p0-v3zT6Kn6|%(;s#lrY@@y+NGELhtJn ze?P59!MAP`sv)JHg4~3kiPWtxt$fE#CsXm%{H(9$Q4*>@R56U zaD4YO6<+5MxxUOBQ1DPU75sZ8XJPNPbfP0!y6RPiRnq+&r;ENx$y}g(|F~>Ldl!YL zrpEitVD8_?pN3VxAJ2Iw*vRQ@{$Ft)5=zAZ^wpvJj5kKq<0|p*= zzblaG**A5O9W8AWS@y%IAiegCo8%?ow<*D9fjvm-}{YWzL_?ew929%A`@HARIz zAdMmnRWdWz+mr&pfWm%MTESx4LuPrH7%le-Oq zaA&=0COnd4yV&JPO4dBrWjhx_uUz=MwQ)e~5oFpL@xhlcAa6F}hENn#Jn!-zuLgHg zp!!YE*Z>@R@0DK>LyL@$r=wfTFM;i!vaBzjB>RDn{cT3~5C|alH6M%&#O$(5@ehJG zfQ=fC-iCf{*lWu(_+@>GY-|vKJIl`XU?@v}NnQcb_J>P!-+O}{YXF^x1x5H;Ql)?U zWj*p;xRVZ1gX~8g27T)9@HeT$hl3QjK`+U49Sh$(?5(nn$i%qbtV1zZO9f(NUWaLS ztxXTw<}25%v^9!XGS?Vj0E?b)>?U_XoCVhEKQM+X zBD=guaz;a~{`6|)_U?%z5Y2P=F{42SR<$<7B{P>+F4|OnW^Hh0v_ag~0=G+(T~g3H%CF|plPQ)Z)zriB zlep`0{lsOh1UI(9T_APIN}2{5lTX3jSY5<+LqC#Rhll0?f&BD2H_yf51;fF#uZLDG zya&aE3&b?2;SYRE?j2&lwvC#!I3@|H$x1rWY%2$dm-jZy(dv)X2wyh1em;1!_#~eM z?*1#vfKTIT&@IwwT3$40m7DV|i3FM_wCmPmB^_T$qH9s30d`k<$a6XyB{R396cUh} zTsj@s1Pk)l4143a%==+rtQ9;}D@I7oC$)%vT zDpKS$BtzdPpp3=W&SC4!Ks+Y84qmbK`v=(4cmar7_SK~~i^Rq&ZdNd#|M> za&>^6Qxh=u^C}gdAZq;b^-B)Si#g>jW92weTOZz@q#R`9nkRWXw5M)6W#idUV+8rI zjP}@O7UTO9vOtt}cUC~tjHpfjSTM)Ep+^Z)t=77Z8-8*XpavCqLqC(WaM18<>>cEQFKNOVmmv;4%cMftMm>C>|F8eUeq z*5W8jyIP@YiweTTpNx;IC7@I!efY8!F*CbjGvzSdO!DT8^Hw!1ykO}=YjsDZyQQq_ zk%K$21yrj1UgIkSgZbyK6=P7*_%%#QjN~nF_63%V99r=c2iafeprs}K4vB%Bs;v?= zka(W@S|3Ey%05e|54^Ev<6kODO->0)EfOt#m&ij~qSTNgv9L_c@mwbZT0sf^tw5&z z=H0nnkB~+#w9zW@zM^=)+0E%7C&#j3-!5-DrGsuGYjLOcIQ-s>{YD~V(9Le8IpYSd zZu!msh!KMZrh2$7>Fir|K_eTw8b%ky&{a_s z^9lNDs4Zv?enLnmN@>b=-+qtBp#nAsWIIJzDRT0dfsn$8G{ilK#Ki*ky^ihw&9OXv2Ott`G2N1lEnjqKBeqCQ)cruR| z2S6jppGMZr+?YE;Ow0it-v5#p2&#HtswZVeLY$T900avdB*RcXk+%O$X;r!1c0z?F z>!BS@rQ{X-Lu)rGk4?quZz%2N`h7$GUHd_y2X44Ou!l*2tHvj=N)(Wwo2SX@up%X^ z6`YJJG**iEJ$;SHC}JA~!0PHc#Cn)TMP?xRNy1*g zHMTbFy`(c9KS=n=^i^0Y;f{B`^MfN|5|@{x&zm`}b+5HbFE8FcIfkDCwA${mhtDb1qVyy`NYDpV%@sUxkHN9 z?+q<;53aApH%(0sZ@mi7T;uv=cM~@?(t*?c^ho?A2jHC?VC8I-M$FQIuTb+&k0}J; zNk8*W8)lZ~X`&OD#ao-p+1KD>vVJ*)Wa*o^FP~aMmb-Hd$#f^Q(u$lLYMY+VSPL5aMNU7z(A9W+Wb5a(_O*`|>LoY-dat6K9R(+A!+rBC{sGs~eVtrW^vrXLcqHlV)@oB){z1j89FRC=vto6E z{V2)$sK(mc*{$D>2D!bdF7MLBl6*lgqWI8rlPz;G5|w)IW>h7mkWGf zE5*FxDA>dXcJR)NYaP0DiZ0*7qbMlrAcpv+B^xC4(zP5X8RphwxK%ZxYW873Scr^U z*%Y(RQSfV{v$LNJ7(eS6$h3U$Pt;t78w0xj>W9wdnJmI6jn+VCROiR^HI!Y zQUX8jXJ{WJNwe zGO;d(KRAF<7W<5O9xUdWWjiOZE;*bnq9FBliJzm3RmocBj(1thx~6xg-xj?(C0l61sh$;^O)=m4scWtF8mH=w40_qKT2?TStJ1Papq zsRliu;&$}ZuE|rzpxpEV2Lr9Ewue}~$F{cujjBO5c=M*rXONjFWGE<_t^R0&&3WDm z@bws10*JS%AJxmyc)^ETz25o+Oj2W2~ z4z4S@C1pYzXj$DHl!mn@v8T9e9QLH0&@qT_jEwzFI!rvCrp`Lz8LDZS`?5tx&t&U; zL8Avr&f{{f>pzM-vwT~43y?;I2B0sU=@-cKv5k86-9g)|LO zfN?zYB}iWnoYKJ5KE76&fU|sag(KV}PlI*r0o7daBL<84WaVp~V!^&gCH_ZpPkuZrF)+5pg_25l zM1kb0g*J+`+P=Sd+d> zV#0RCH@SC(K8a410R3;J9!W8=Wpm6&Zye-oSyj^nEHPW~s3+u8`nT4_S!z3bIY-(P zmaBvDBwN~JfBviv(|jcU_lyuE!%*jyWXN@vwpeZofxIwVTO)r7GirA#QrV}$`#(M; z*pe|&RrB4Y3jg`=Fnh%PN(vlq@^+lMvxprP91n50(uGcUmTcH4SQc+*Cd!JAT%PgbnIqDrf;yUgFs zCCX3gg!-wo&eKg_g(IO6k|j$BKP=u$dp#CgBSE8L2nRlBvhFy0S=oND#yW6i1cbXm zJ)6#bX&!P^lG{Wk{HzsAx=@n9P8@UUaNuw0{M$R;MKIuV`F50x=Y|REh$gs*z^^<; z|L!f$npSnEH5p>7YL{YSB3Nk4i-M|DvC_!@UROoEU;M)8?}>5 z;;AFZN(+tC|IVia+KI1Svv|J8@ZVDjL`=e|Iad)d_O*Y_YWnYOqAjh_zuTjy z=uZfHolpEnR})m-%uF&llck7*{|W}UV@*(2F2Bydu4OLio)8n;p!V(sp!KW=?Bv7- z*q%Xo|MwNK@j`_*!X86hDCnp2|5?DiJ7*&U79SVxao+RqeWnw?b$ono8mpS{e+T=g zWp3EeT?C)>(3S_x`VN8*J7BBY%hG$=2{`<1W0X_6p~k-5k&}xu@N7-bDKg9bLJZltDkf4olg*9q32TUladi{oLU{{{2Mlua*DV z9SM>S{$n8Oe^2{s1(4;-k}Z;)Pfz~6OJ%BCi|5)?(Omx0zxD-5slHzHq`ne3567v0 zM+Pv?$q9F(?6*DW{pmlKZ9be!0cNT8*CZev{l!KV0P+q%|5{(Dkhp&0wJ@O7e;q7T z5%}ff-MJYT021u^SHOM&W&6DRXf83}Vc$dlBVmGkZV9qU&HQk;cZ|4ME> zOpGMF*tzyhqmspI^uO2MnSN5=|4!`6jh(hW$p7*UAy2!WsB(9PU0wdXa}`_oJZma& z`_5EBXRiG{JIXqf%nGI8#rj^6QeGHntKWxM20erK5EVD7`|8{5q)JS;f)VUZQ8Fc! zTgAF<)5$L=&k_b6Zm$ZpT~3eX5no=hbVP9TP0ruxg*R>~Bg(tm?3~MS#a>OtUg7Af z_fvbpGqrIgSw2EXiXQp3dWAi3T3}gErsObUdFY9p(rfwp{v=D>wy*tdM8{dyFeC?b z1h!C`)fyR;o36W+Ea00sPj$jU8f(RBz0QM!#~*#%;*$iUW2TfN<0b9MCfjSa7*7V@ z*d-c?E0XWL%g1e5Eu**i*{ww(D2}ciqCz$mJ2R$E7TOBV+LlG4qmC?!O%|`%D;Scw zp*5ZE3JznD4r5%~es^ko9~T?EiJ4T^k2Sd@{JeNBVNPy~zM>OoLiQ3Uzq&kgeHqhY zJwWQ`+w3=ZBiX;Lgz0VB@E=G;%Ga-MY|NMFU$Nh?U3NO_xly~%4pKqziH^BIvxRG| zb(m{U(UoUKT^d4?$AjVZOs~8l!G^V=ML}jo7!!OyMbir^no%)BneV#Kes@|RGKp(V zIk>TQys@@0@(3Ns8{cD0w%TTsXsq4SXh#-=N9htZLOy-&_wVlqhy89(9|@UG@(?wl z*ZrDD>W7Z=6?aGidH5a1HdhJK%fnW+S8wc_X=%ILUZ6tef`jjw_`M;qK%Uv|Ku>n10-k)K}SVh zRE?^^9==inU8r3drX>%3tN<6haqvQ1#e_g6>U?2lO9@ zx(ep1oRHe5@v%hlt6Mn7>8hU{^8JAAfE1Js4(VA9I?u8a1`_rtKF2P_GLFFG<*8E> znI)+KqT5U^IjXpqY-udhN>M3s@Ac)vln-TKQm0cJd*r|eip!)*Us9zHh9eqPj9nTX zn(q?)UR-BI)&-xpFFQ`Jbe|9DI1O6xV^OvEpf>mZ(a5NaGm^_eLCPVdmq-7sRs^=h zaVT~Y<*P_nmTi}u&Q71*#U}q0>6wim!00c@cr4cmOFcvmlF2@ZIC0tyxUvtaeNo0M zx@V;A=O&d2^>F|3X9=@kA&ss0Us?WwqhT`I!iwu4pkibGJg<*&{+q4RJqS)NOD3h zarmOynFsLgSkwosV`9bQ#pZ?IKW66U(|Zp#*4}s>yb%=~#2gA!6*{%CwYAZ*oq{Z_ zu55Z8tPoX$oZU?wR-q2xhL5duAO#%8&fBkG5pk2sB+QC$T}-j^YOylJcA0u6*Z4I$ zocLvxO>xdeM6h`yN=tu%d^j@ZR93w#H8Zp7TkDNxryPR_>K;JVpGXz+LR2%4XEt+7_Gamy-T zd#)gMg?sYZ{BLS9Nos4e;KZl?x$)JUb3wpgvD;xgSO__4_3x=d)^|3r;@AJSnfLz- f-^BF)`e@sHQSB=kDwB%qtV`iH^fd@-w;%sMTdzbU literal 0 HcmV?d00001 diff --git a/Notebooks/2_N_horizon 5/sim_3900.png b/Notebooks/2_N_horizon 5/sim_3900.png new file mode 100644 index 0000000000000000000000000000000000000000..2ef7054051fea8208c8d6c5d65368d3296139293 GIT binary patch literal 19280 zcmdtKXH-+&w>L@=iPR_xL7GvDN)1SF3XdQHq9DB!iqd4FfdH0iy!yMmtcf6ln~!+YOP_q}5f!JWO=nrp6EezUCo>fr-LYKqGgL_|c?O85Rz zCn7o{MnpvX1acN!DaukF1HZ&w@9MZ}I9R%Rm^xb!shYYv+B&$}J~g}IZsF|m)WKee z?-n0|=gJdTS4S5Ketx_EzJbrd*@}O#k2Vzya?bIdt_u+nB^}{IOcb98BOX14{9nc2Uc7_dP0ZGf)^_e3D6a$Fi^P5%kjF#q+Q;=gA$JO#DAQ zyPk0EW!X3+J$1YuO<_Hlmia&FlKIv8~}O&;uy z9*iu{CTGljmz+&>c!{{G6veI-_0H03knc9(FZQ_+!SOeQKa_H;u<+Aw)jI>_Pru7d zCJs6M>b^87&7TLo&oZBWbz_T4?DQ-3c}B;3gi9HHLjQ*hl)(dmKfa|mF9*S2mX_tl zZ?T}E^+nM7gJQ#`8Wfb37H-g`GO&DJ&XW^W2uBs(K&=`;CUzALDCHrgD5zF2bd&~u zD1ds{^(3GaTHgRiwL31*cofd&*7I)BJGW?0( zld{==U8=DiD6NFbRT_APS!xmcp1n?5K_W^LV7pn9Ps~Y_9yEbPUcMsSJ+v zj#d!Ui|iBUR-voZsZ0WtyKX|YY)Vn;jbNKHwAfK^805+TrR=?Q<3Uil()OA=a1=~V zOcu3jnZf5Km*sYSvhug!r~^5Op^!hct;hG{P*ba-LT=jQT^M+xwLMkhJSA-}jR*@}r>MFQE2BSwynUeY?-w z*RIJ!B3?j6f}!*%sLbeZJy}}#aP(j;$Hu53dA4Ymtg4TB-?qSu~|(_#nXTx2P#E+c&fa5`iL`K<5 z1TnQXej?$t@WLV|IOiPh5B+`L4K_T;`bmK;; zXT_MsE{li&hx%x8zYzX^AeNm$J<&={Pt4Mq4lGC*Kj&?$YFY<0W;E<2UjNDOFD7D zey6>1%>cdT5obi31Quy+a-~aj<2c3sSNsq5I@|;THw2qpgdx4?n*1R;^vFZq8NV9H zA-!02H{yf|=_|OgwR_po7LpdA;cy)%CbD59Lv|~FO$|E@M-@Tk9HIm$Q?ETFu^nAf zPYCL1pY#~wS5i-i+5VCr#XcP$gaw*ap@6qmnz8s;n$2N4O(8d44-trV=O0^e(th{y?aPnb z?X5Q0s8#ZIIJ_x@nu%dgd$eT~&H}08LKWt8W8C9x79SzeU#<$7XRp|otXvgBPXz#t z23ur?=6}2SY)-C+(p+*C86{xN+m*n6@o6qyA;(79FP76?8GH^DvVU52JjD!cc$xQZ z+$bY?y77~D^l#eVei7V|zz4C08D(przpT9p!PP<78#Jy8h~R#n+r3puQ~vX4_kPsq zIU@6!p6mFfSlsMlaTaWH9yU2^hW1nPt^fwdad+84tXF?}A2u0@bz-l+)$#NLPBe(i z-DV{UHrW^!{`7a=dAaNGI1S|VaseJiVsbAl-wuIOMxu|*(DH%QSg={Vh0rHJyZe6+ zrw3{aMHqjVDkw;Y!G@mHvMbr08vMLALoD?covvlDP~tXU{s3JW59%RQPVBk)GWsMG zk$*L=^Op}C^&qZAHDp;NplSKOlJ^B$3iu}Jv0v$tP4l5($`|N$3b?NTd#U`9#KWI` zjbk}k(0WEVszETMR`r5b-?D!awEio!K2{}F{ehr)=5g7Gjqe#4&_u~z1+q9L{fH;7 z?Xn?I&JgI(+s!L+=aIwdI|`7A>aC_1Pze+?pL5Pj=vr~DF(l35URBIg`1JwHQ6G*L zL-k`J)I;Vdd|NWEBbl9+G+iFTMhU-2d_vqFhUjqkB+a2@ZS%(_*k6lFTm_?#=kjxq- z*)`0H9F`M|oa4IZZIR1aUTrgZWyU}1irF=RWb>Zx>Kp8FPzKSu47Yppwq?iLh)7@RG0wf@CsM|*!R{ITbkoUaS8BZk zM{NXBnxWqo8!GF)fcn$qzC`#-<4f*EW%w17|F=sIXQq<_+eAA3TFIu-|;^pJxL5E&xT+E&F{r`Ukz zl8@t5Z0yHoDc)wDNOR6@A0hk-nM}|6kJGRFq^QK4A41@=D1i`j`t2q&v{0Z?9De1; zSa5+Az4AK(nwWcI9kWE@`nwTk6XXO(@ewRQ_koW+WI}FSF7Vf{Uu)MC!)=qVa)5ht zq7$Tjw)bI3UCct)F=D*g6oFHPqnd&=f`s8H83YcvDH--^$!+(J5$p&N9jD66V$1K= zU%XEr7Cr~Bid?$<^@RCD6fheWamh?5s07gp`3z|QQO9>?cfQqw+>6%AVWRfTlen;Szk_WwqfoHZB+lu(@Bs7bmVSL+ z>1byVZ)ox=hZU3FB(E7(s@6F$LOikfL(%ze?4r4V$DoGO2y2X~n57pJ{e`p(j-(8#Z zIyo5YY>yL)lW@B!A51kt8?Z}SXyx#l*6+8x)bZ}5Pt}Z~%=&p;1Y76FN9kn;%az1s zGx0V*F?LK~-IKY+9VFv1wTB#UIaSSu%ba|VH&U`O82WqOPpH^r66qd@1z9C~S=Np% zc+?&kaz03G{`m!2zCC0^tb?&-1R^{2jFQh}^LKZmTfgq%Rzbk@?qr13&qCAoL~**n zh5X9!;!c?aIyI?C(}v)+Nw$++mI9w|=M^1WIAR>z5lyQz2@cL{jSNDj^=A~qF8^>G zUMd~yXpQEM6S2G8o26>=WWl?3@4JK8O4SAt;h)`}n3`{2pZ1pR&wth}GC!A{?0s{x zDZ;At-HrAX*??NS+??4Tu)i|?PUFGEchNEP-PH*L=N1mBwQqDj()mS2Q8^mffn)F z-U&E~nN9WyKRN6?F`sUYKB!uLMn)+%o9N;>ml*>SbG#xt>_`d}-)wofoUpd`B*~aI zzDjhB-+`dtzH63R%5nG#a-#ml>Av`k9k4POdBQ!0oyd!=I%fdmXQGt(#8V5N_cYW< zoa)`|zHCja4R;&uoN&Y<{*{faly$+u{rmT0rF}%yq_-{tNuF&N>YS1s+j}5i5ahjt zFP-hvP$M&Gk40Rhr&oXY5DWAVNX8)X50`_b(v8&yT2jIm7d`2|TH&!$(}oB*z>g7z zqvLvT#srVC+gu!c%P3?i;5PrbwY8NIZDKH0)h@kTiB<9%VAU;*4y$>YA!1i>d$&+WPCg1?43EWJmTE+&Edad}3;T?}j zX{E3u9%HJis?>ySDj6_BF8=&N-sf(W=yY~(Z}0Kr$E%CQoz6H$t6PhBz(Zm~rK6?1D%TY1Bs;Vj&&gZv~SGf zpva=_@@QMlDAS^sVidGqra<4oV0iU#YruGxuxl?Ej8bg|@)JEqy;MhQO4b$@{Z)>H z7v|@G_heGK%(Q!Dm*z8@oKk+nEq?xKw*ftm&TS(j)`nneQj?BEaVlo9)zp09CtX+k zcN^H$wY8h{9jbo_1l&a?h&p6}p@q$6neNiV|d6WXt%Z z5h#{Xe&w=6xb(Kp{^nc*qKUazVDEQLBDj%2EU+&0_kw2**JEngWr2kn8_Q67yE{%U z+q^#Awucj~xiePdH-|4>@i*K7Z2R>)J;Ji@<0C3YLDXb~tbfeTk=n_o+U8tu$Xsvs z2Eh;!Z2RWQSW0)gqQ;{~Uk1Dhr1914ni0rTH#GdtC9`&pG@SX88G11PPF^4C9G%&b zZ5P4eW4;55u7!(T#aldKBTx;rdlyiaxTH?=bF`*b4pNLn(-l3AqIu)-DDpH7k~0gv zL;wptaHkQs0gK8rC8mFT)c;amWr!B&7Me*k91!aQbgR&9q5pYJzt?P1lY{>T6A@q8 zIEj(ZQVC~--{D%5*Y=t60am}hy+X4{zGpl7tw{6@R=(MzEWX}+ZI7_AK+2f%g@LiK z{2ot+O*uKVA_!2p#Qdqnde5tmGxQi~$k#A_S-2@`xX@L^J0eH!G4tUGQ?1dNgBSbuKV9dAdym1|HQ1%Qh%58!mw8jgwZ zNp$T|B2f4CfyArnwir?+{`UmeFc~fx4wnzUwfQ8H=KZO9WDE;AUG+Vjl#~w#tDdFf zs##DT=<8d}mOXlPYGz$#RP4(p&VoG>_FsRS(gl>$$a8{>@bN#KWZT$ZC?J^mVv{j-}-&Y9+1USS7z+rcB;LtiI za7+&7z>N_w*g`?Ae~g4xM`8;=U=?lKxc5A|MatKm1`Iux21-QjhQ0wfQ5UUkG+3Ai zKoP;Kio49LmUsGvNBAuwfpL2S@ZCF?4)Kt3ms#h2T`Q+Six}a=VgRU;{r8`;dQF|r zFQ17gJ-mOf()lHbE}}9v_kJu^G8f>*lof4nu0PpLXN`e;rLr%+;#9CVQUMH?JL|f2 zoSd8*CSlhIz<_NROYSZ{b8@_L0)a1X>?3d6p`K3Zj9;l?{8Cx&cHhrU|!E|9YA z5&_4>#g*)Nm5hvx$Dr&Dfahy~DG>xs0@=xR;kKXvoC0tcK2=(?9Z7RTCENsjqLHOCQG0Sw%j9iPrBCj%1i}&-Ae1hX zVWNV*yQ{%VO)MVFwfjE`#10mV%U5a+Vx_#+;W>|nlK$#~2AjRq>g@~GDhZf{4NK=b zGKNB6e+bHJhJF_vy;eDP6drIi5HP(Ga3TqefhkZ+A8JZ~TnNZ|@3*4teM3VQ5WGzR z_&3?Wb}W#c;xAEqaWIA^9*1vWgcaKvPC}oy0m& z83dj?Zh7bEIKS-=CW2rv!xlJnRz+r~Z^taYy{av!4`B`HxnAJZQoEU<>ebbL0WYAI zO)xI=9Cnr~AjVC;Jl+bM427fAP23?MtH(JG5;7@rkds6&8R1a3`@ju+w{n0h_^Ht- ziMIq^Yx)M$CjKlK0dmJP#7BV;*H-3!MxD4M3PL2RB(VwNVjYMn)bW-8>F(9l7-;?X z+pLZT+c)2yhQwX1ZSKU@AkTVXycElTL{DQIv6m3IW9%iYTD;gwJ+wX-`~ZhhVo*nL zK>m(2cZA7n3!I-5E7DNFFTO!B?KHyJT5V+*J_a0K5qRn_i-WC%BObg&Jh;xyZF6i! z;K30YIGx|8O*+pd?BwXfFhAMRcg-f*7$Uv)Fl^ zzCVFI`3i_)k&Uk}{p{5V(R=jhdC6dz^T_TM;#9BF-gc(UJbJ`?Ao5j8Nm>tvQ8 zP*zfJ;%s6h5{;LKNEhp65@u2gc|)ui{tA&#qGiGAa1P#1x=)-!S_9I)$%CaLKAHr< zjdFbgHaz47^enL=sZihq_8qhyR7dDQ5kZ&t0pW%W`DRvT@tdfJB!~37X6P?cs4kk{ z6jcnd5Gkk}>;e*9ndAX?go7Z2RIkjMFl`h~xHKX4lNQK6Tn19G4=pz+#?xYB&-D>Y zyUU8=JU!4(a^Oc-SGVmF@9B~%O|X$5EknF}P5?Y`q)_Qko){}`Db~fRGxm$@l+ZpZ zkh=Mw0+x+clZO-#Nd~%juqB`39(6rNkduN<_TGMCwv(-2M1M+;-fQ{CrwsW&uy{qF z`+r{>2uwXXElz=)c0n+dZ_Mr_MjnDdbzRdJ{TwlyxER!Jew1oix#FjqQ`XSgBNF%N<^<=IwTMFT$R)3sVA(rk8`A zVWw_}zz-=`wa{zRi(02PuP1F5Bo!~oT_^UZ^o=zC**XxYu{~Ku8AM5ZmI~H|zVwHb z-#?#UBYy#ny9SftWQ^K&G`QU%}2fa|5TN<$Nv?=vhoaIO^(u1kzpWvj@v6lk+aJs zO05{7fGv7@^Y@txH{(Q#(E1(BicQSO$G+3sQNS!+w;L4y=d6_baG$tg9n$wHlKxOr@Dj(&l9nkBgM^MMaI?N znwEXvr=-Y6!Yw!kJtcuq^{_ree){o_;JN`|v#6v}B2UfdTc5$}dobz=2Dpj0iP&ah z`1ZWUWMm`Kq?KWVmG91PDHo^%Qm>*`!wc4W)=T#mtBYSEoIA_uV6uh!F15hmWaL8N z?Z6{8yR!_*o@KUH2NeQ;VHa@+yCH?n2X{Ab@@8mfU-fpo`9V?1XJ}f|Du3wx)+M|U zF%EEpuXD5GqlvzoT?2x&!p;1jm7XM1g#z`nTi3J34Uc_vF*Q*x0U~dIBz!JgqEmF4 z|2?|0y#(A_iNsmvxnIyrnXPn`18Xtb+8U+$d<-P6{Cr@t{jT&k$(eUI7a!j%==l(A zH=<0@(&;l>`%pQrrJqHZ$3WvtTSf}yfUT)tV|XyKf}zw3Y=sOWNA{XGhbeB=DDxtN zNN2>}9qHFzzkf~cf;E@z)(jdPq+JtV*{%D&u18?!F-UBOpM!6b`x9@Toe!);qDx;u zYbbqTKZ$vWJ0cMFLjxsxNLre}p^E0<*GsuK#yaBHZ}!{fn5pi$_gnPaw7%U6Ze3bD zUP@v}Ra8ocW@wzRo`3#E<$BL&jq@X+__tQj5A<3Z`b|aD(UnyEx`mdMZKC#eyGF|o z-*m1TaZnTEnn#mh-Icd&==|;RkJ>D1yI<+HQ6%3*4Au3>-4pF$Ac6r~SoU z`NErA-U2iE>2T=|yBLP++`Ji9PdU##?W4=cop6F1N?u0&#@ZF+SZvMQG%_|Ge3Fdj zzRIHQ(o@@p9MjK1*oMmIihpZ$yUA#-S zH^`?9Opu|__&tV@j|9(i(?oM-?LD*}*hlnQw?c?CZDMlRzMlFWe^x&Uk5si;ngc0& zMOBuCoAV73OSvQJKe{N*m)-|WK$ zlO!&R-O394m=~IhFG`9|DE;ExE23rhX=u;Wv8^!~z9fJPHZ2zW4A~hn>Z!k9NuSYi6Gvnz_{KkjS`WM(2M5MsU zoPc2Z>%+$K^iLHcjP%8spG-YfyflUNJ^Iwkt1V;P8n-WFmOrLB``8tYKEez9V;XP~ z)21vJxj&9%t80;wkFIC`=Z5_lM*eM{r1dt0N6SJEz5g(MjphE8xyIf~m-Bv-9#0^A z`|fkM$N28X&9eM{+-F~FUmMSzY+MmU8Gs0_f9C7&KKhTs&O+kSDM|vUq^B|P)Z+yz z2G)Lq)s8(mD97H#Dj{%rE3QdjJL@8~ew4U{$-QAe{5brmp})NXPW2RW*L`GQ*Xzg) z!*=^gPmQ6Gd_m-gXHpUv2gQ)>J=g2a*+|RkwvFwj-*3e8Kl=3)XUHFz4{q$b>oR@P zFw}3F|E?KldKK@!UH|iISaibME685^hBtD7MN##^*bi!)-+trEU&_SUNx!DlA4!De z)zu5@i>+h}4SvmwXG?aY(oo!NcL#h|B5x18W(a~Am3zl3zWjv<+-{=+UX84VHW4`9 zQrQ7eA7c?NaeKV{lNa{1&nCm!=X=K}hh$U}-o5WjUPZ8-r1fA$`uk7w=GA!>7*qUm zHRHA-5Ii4hWq0a-hJ+~|uJ3qOZTxhnjvy_(N%y#_BG67ozT z=x)~R-PxpS0fM>qtHj{br$_WOj2gXUeS%)tU{>=2SiZ;6k(*ZnSu;sX9=RGQsa@}&fQrW*EyYW{+_(sPahG>N;_ON_WI2>yj^-Xclc|VgP$uE znVn}o1K1T|T2KrT?;Pe^3f?pkK5!v5ZZ-H%; zKpoP>v*!%HfR_E5ni$^wf{>~-CuOT$5C^u@qLK#;It>Mbs)vfZ{32Qw_aJE#dA#1u zCesE4qsWjT%FZZ|D#*F3%GCXqTqb}AZ!<4;)M4f2KNsvFqZIYES5>rbbFR`pK}LFz zPsuKpaC2kW@<3b&zj%02k6g!Ii^}opdaEsf5p#(DnR&A;U}`j3w)`J{cG zm8! z)IzGHb~m#pCPF64CdZdb-zGC}rIFv>S@sELO;@<1tJ{A+CS!(Bk87={s=^M)c(VId zx{k}Td4;KsY)I`S3I#25ycpzDRcC@C%^UG}9YdqL{zg}1&#Z5dEUl9+t&{9|d9`4I zXC(*rs5>{BDO>EmBp4ngGS%*>3i4zg?~&4C`*I4cFIDZ&=ePOo-0|A$uz44~#OTfJ z#SW^Hhg-_(LQXGV$4`MA_TcKQwwBXg!Aw`S%lRFD%L}BH3|2r{#53~wifrXM3UYa7 zf0T-BM1W7Le!`7{PvYzY4lxYPZFp%&3!VcyD8xL-7}ZD4?UmNOeV8=ROd0g{c-KXX zhUxoy`l!4S=R?Nzh`3F|Lkgh>Cp_>oa)GytIw+x6U55&Tm)jV6C&L6`pnZajscabAuB;Aa?2$Kl=K=xcYIN=zNLO z*0P`ZQQGR|Hf?#+qmQHu;KxY6`;0$Ih0+h)J_HPe|C5Tz504+ZXJ?p^#iu*K-?C9* zh#6S4FdkXP+gvMgDxDN8=q{|D5MH>95oIpc=M|2doS(mX{)(KT3hO}QJv2LI%jCYF zkMCwgq>O&QknfRma9+UkiG>)#pEP5uoE(xEVP*`bjGNMj%H&Z5G0!5RaKg#!Q44W^ zVgA8tWTMC6`18Y0_j%h+t!y7V(1F3P=7wamN4A^`7+WBOtPL%S+pWMB>wRGncH=Q9 zexa>xKNAhsWif3zlXo-wQw2>Ra1FqfzUn@b;8GszpjyzByW@|q%rQYnR>bD+(7)`v z`?912lq09A_b+>G7;!j^O0CaUD;ytsq4M;Z@-^|x%BZMBuuYs``rRrFsYI`WTPEqqm$K?9D$v24ShHBZCme|Rmc|zZPM#qd$ z;*fZAEIg;=V@}?r?D6W&olcz&5bQYj&LMBu&f1x08Wel!3l~_{#)hpxsRk93RACVN|3jUznli>eEuqZ`TWi=JZ#<3EvUWn~tl&xhCn zuMy)9-+~sh63Y$k7?)8s<5V*rY7hT?SQZs`n>%P=e5lQ!TkgfAJiu`W*W(t=V`y9# zRT7=cH#W$9O_pCE*Gj3ufDyUxHuF*@={lb)>MKn>E^KwPSCTY>!B~Y;#BP9wQ{^XE zadIM+OC-(te@*HBS;S%TFr^y%tK<^!%wK$M4^4qBYb8jpdoV*-J$hh3`=O@cfTO|F zN0LBG1it3Rrde=M%{^-GO6H(i9PMri{NdZ$HW6p#PGjRWLH036X}Q^Xvs*IcE0|Bk z{3gr4mY8`5Kw^dyXOT{xQEW69?Q9Pn?M^sFkN=Rq1A5rqG4>8sQ(5d3l@*M4-vj;W%GSa+F$1gK4G*Iz-sct!7mUK>+oEnajKc0GE#XaP z+LMBsiaX^jEQ%byy)-0^I6f-Y|EwqcA8utTp(7L646y;K#`Ry%TO5vSG>P>a+kxW4 zRGuncr=lhbVX*C>v&{^ z^=HP%R$UOYn_<&9K}*;D^aCrN*@fBz^7MW88Q@n^t#V4~9^2=vghif#DLJ4yY`AqW zY0hBqu#l*qO!C$l7?E-zWxw&Yskeou@v4Y)}c)~q8+S-|-i?jLMs#}!*On4g4v^~fqFY(X( zyvb-4;0v7^cK%08O;nWmQRP^j5|>5ZKNcYXX~G;oDuL2d&*HSGsM8w1RWV2dHBm2h zL}#N-4zc-w=|c`o+#ajXYx!qlI%|osK%>CG);AFKzZzFF`RlGlu;a5-f+SZ^kJ5|u z6ZGEwYtZ~p74Hc=35nph^lPNa3cEhps-YlIVLWRa!zrBO>_aWSp1Z=bZ5 z$eYv+JA%OB({oOox0}Z^n+YMAU9?#TRrqMt?2yhaI6eVhZrd?B1Dnx z#hvHlwa1jldnv_+Iq`9)YyH2cAy^5a4(MkUzCCc7hX6I>3=taET1 z*um)vH+_uD?4yOxioZ2jFt zqDVg5p4V9>^-ny8@n@I0ZVkI>_cX|hH~a}9A4Ag4c#@RCL9qa0+IxJ48IJm! z92PhZ6CHh$6UA}EM$2v#M|)foYh1g^x#tyBJSO=jG>axvQOOjetPxI7jD(Y-K-ub| zc>Bhsa@V1W#H~@{(Q|k27sDn*YlGVO)$DnFS~x&&WY^%iJeQz9j7^2g5wAj4V_=gz zLU{Ud0EvgPMMdqWF}1wE(ipTKK7P}=*F^iP{)YVA@E6d!d1G43A^#Wnb}C4h`?_sR z6UbdnxU4YADW#1JW+px|qA@=47TkN%ne5oc>o^nFGNSzsNGdQRAQ>+?8~03&uLgN;#^F{e(5 z(R{{~XXYM$w)$_x$i8#~*IcYD;<%Ac>G^bz^Q`MaGsBo{yS^{Rw3Bxb8y1k4pYjGex-M>K#Izs$s}UAgW5PS;;|edx z=dpUCi_lJ#N(^8f36XjpE;3OPJw3cTyC?OMl(puvVm$diLV7g*YO?v`4gE5tw z6mb(PrN;;vvdOaYrf}VV9ICgKn_Ej4YDE_F=B^F5*atPPd?_z6E|%`z+VR9j99w;skR;?kI-q7=KBUJjT2{u;Sz5KO-aLCBRVa za6L)V`@lqr{At74vYE?ev#h_z*p|ykA4u}zHFN$2ZsxF>1O01Vq1yz2kB2Bh-F(PIFPGd(3_S-sOh2)CLuB9#!l2FE|eS zOM=FYrB5hg#i73r&vg|u(6_$8FgisZVB9{$iw6XgYbOgnb2_Rtue`OCy(C;REQ=JE z-90c9dAvNH(zH24@LgZq`KF@c@3;vMJ5w5Xu%L(rjA>(xX~?!Ov~m82D{~`wO!|9c znUk{~GG9<((UP7g=cV_0TCRa$G#glZ&c6P;{<5>YH77siw5qDZkRh(K^8uHiigDyv z@aUg4-X)P*zbCl&+t7pKZRAbve@TgaHo%s$0W+swb6Qi_*HMKnU(5>@vcvP;{b?(( zw!6>V2!hgXT>avapQO`P&b1`PyXtMB=lypi%N7N7zL4-$L2EWxeh&%bqf5m9r8Q}# zAOP8sDtVV8b0mTPWV6>?=5KI(Y)Z9gl(^J0^mWjo>N`Qa+XqAi3w;#xr7X^{U7q9( z;IJ5c&)f1Q8gKvHeq{V$ETp*OesJN(yQgmAH0lBE5Au!f{+mRC2o;IoXogP zE}HaHU!SL{`_+b0#e*^rj>`bF|lv8?1yl? z5xi5S{Q0TK19#tJKl$DEsk(~{m^Kg!ef0n_?j##mY4iw&S2tjq`{5KzQvBP0&EX6- zDw^%k4?$bKNiS(VPt@E=Nwxf_{iRVR`gfA9ceEggUqT)*6KW&+4i3nceE?GPOhDv% zI58a!omfPYuRHY8Wa~Q}*v8yYI$@|brZ+P}l?|vI2F5?d5MTM>99CKOM{BYRLU* z)X?L0i3fNJ5MuBcrsNurJsgByCI;C-tP%h>jV%pgxi(EaT0BZC^~NU@F$N@|^mSaa zaqXSml^&SSt^bk;^@T^})xp4M=oD5Y5~_Uybb+}AKf4`OKp;oZ6b4vV-ZlBQ*No~~^<70~!SAC5GIGC-UXF5B z)Vwt8dChl0zvWvxgW(y_YCUBYEczgYhQEqP+c0`WLgP;Y`7|!DJ_7j6$}~Nhbpuqn zy5o6mM;_rFRZi?#E>pYAeQO@g1iPVf$A2N|UNJzHp#IRliTh}x#MuQvchsl(q-uo3 zr4ro*`cUMvZ2_^?Y$gDO$}ikVImhNYzCA#i7L z;(}45FtB`c{jH8<&de7}u%2R6TICBEX{E=eyQnrS&!vlqFLN_?Kd75Fd3bHhLX`!Z6uAhh6tbymKI+;s^@UWxjbBDpuhbSo`<un0eRi+Jr#>5QAX@N8|iy-_AA;}L)vkzcK{e{&SLV|Ldk1j!L`J-t)%D!?q zCqtXd2YF9D)O+GZk|}PgWwo@nt{@=ER&@L!lPN7wJXXSSW_5}YHwJ*Td5oy!Lo6%f z9~Xmyqvy#jLQ$iY<1H80LUwYiJ&QW!pA*g*2F_EFT_xO7N3Iy|NDu;@o~W9Rs*(~r z_9Uet7+FFR{GAP_S}+-<$w-B*_SF&?NY@dD6W-cz{23~5_ww&k@#pAL3%dg4?Ouc4 z9B_>G7OGGLwR%6@Zc+}?83LU_K`mcEIW3A62v2{{ErfCcB=s->$f=J%O=1NelMuLo zL{A2uG)obR?(f>bqzuNW)>gu#kUvdT7k-u|sXTkyWl1w9#X)CqAG ziL@Mq8=TYaBnGAGA!1GJi^0zi!PM%ZaZ=*CvPZYjY$+pp8I~aDhcrW{*qX)2ekUvi zGgH`LGLB^*2R-<<+Si1+Lp~B(%+&c3q!^REDa_j4In;~)oP^IX5V4@h)g@JaZ(eyJ zNB7U^EpC4TPhEpb0vL#p#Uek~KCh@$aGeavpvl{4#MN@~x(Sw|@bw;02}W z(hy+boA}7T5>T-=nO4|kdb9QEe?3S+Y1+fiby@SlUwOlrv|jXF zyZbTsl*+$nx-cf|<{$H3FbWkJzUt%oLst&3*tQO&&P(iF@qbjP+HFO|vL3ZXp7jAh8R_$JW{21)z+#7*YF-i%B_6I|a2JH?QT*AU8L2~3A__46C;ML0@JV5V$xYjZR zM2wg~#Y!L@u^gl!XdAn4OaF%mu|)ycEx=WA5J-S5%Q3kp4eY#}&Uv|Ao>dK#do%rC zYDqf65V$`rhdI#%qP-~&FWtE@Kj3w*_Ed+sB-r{;_o)Mt*=KJF>jAQZ2d3M5e1^4cgCil zu!E`pbx~WEwn?bdyp(3{@5xCJxE^|5zv;|MlNtY4INg@;4L+m59NicGGq^f1WtlOl zAFkq~?~xPUo&bn_cZRv7c0{Ng1jKcFd4}9iC&968krzF&CFqcuJBhUNSeq-wGHH1`JmO8#XiJuzILj(T?m5cD} z8@EEwI3Q(_w_GIIUZ;qwf4+cpb$a@q402m(#)(*f)YD;RPZcX1*EB#Rx;%Y2fh}yG ztij$)Ri4=+#c~NotdQ`Hw(X4sW`fhr?UVTjKK_^A+mZ#rITi|5#_JUs1uElp0>iPPSRcVo1|mPfhyx0bQ4exCEA9kq8`PoME*Y`ZJN>Lh_1Zk`jA>siE9@ zTT>Qjud>{sNHv}*I|oPk2;vXGixw(Wj+|7JQxtUVC$pv=Gs!PJojsD44J#VK!BNNH zO(X2GqV{M+{_w!w)9CN+H1H|nF~W-h+NK{%S{?W>5>A{`z@^yacJEp0KPW-m(wAIW z5R*lIwPh0J$R2{}sY%YRTTzv;fa|(|1cE;fNYWBr_#5O(K)r?-Ib) zn{7+J=T-v{I8hHtk?bLH{8$?n^pBkx*TCk%QE3O@>G+(aoh@&F+>=2O`}HUv$*tQ9 z)~aC0+5NwCod-wFv6I-GI8_@#*?S8Csre&#FYrbL>tA%K!wV zDq|D_T98C4CaYPrRh_uU%84txwXv^ASe465yjK80!tiA`#0PP2s@?6CQxNYCKt;tC z9AyXR=Hr@J0(VF^gep&n5)-_9!CCg|#4%P+*e-ZoO5Oev0tZnce=s(%hcyn=055lu z7hKr9!Hy)~**VlIxb$_+Xj&Z*h%YY(1S)YqnQRa&P@b7>Tw_NjxnzaG50;pbQrtMP zD>yO8uJeqdANC;4fLqu?Jg=i9o@8usSSZYEF6V9F-W4mS4AHkPKBT+N<1S=!qP@Cfptxh_3+ zc6M+Q=jFBij{!XPPb_%*yJ+8mNlrW5)pLTuD9=GZM6mcoBn+lNP`LGvrhDSzu!sAQ zS=ILH_S=uj@mGgqQa>^lI;R&B>3!rPX4&+={NZxubNsW*bN3C1=x*P-t@h8YQ*>c3 zpL#lw6q*I|=u!+{yGv=?@m6>?Lb&Dd0R2YL@=XW(;-rX2O}2G*+^+5V+X~C{^`3a;qU@b63-{nA zp78Mqk`-}!EW&iX_nv(Mv+O4d6c;6G=)CMV>*5+W_;@X%E)7xFfv5|1E1hmaVFOXv zHWbzpg?+!j?{haIk_{rD*-c!Y*95gYv%6}6?Y3EYHM7w1<)q18QG_hK%AXgu?%LN) zy>tEty*r}=|4P64zTYVu5;E8faY-@q;mz^uV>I>a;?{*>8Z*sWfcZ z@N=@ISFtNra1&ejxEl&PGV4>{QANx{fvP+s>n?zG(1VXZN7M}=>h=(IvNi$XIa*j&P zk^W}l&IJd~+_YT+a$*rp;4sAvn&Mgl_Wd!PIU1)DNxj(#rD(zq+ls|l<;LtX$#es9 zISkzc>m>>fMBJ&l%^kt!auK4t3s>@~@26B?&Hf?^hvqe9B}7*Ooc#6ud5O|t6aKVV zgi7Cd-*NbykOTM1P0T~$A<8bIU|29oI&neGNbng05wxFR%RlsLrSEf7HlTRtUChZ#DLF(CD3-FaBx#A%8vX+X}K;=s6^ zuSnJxXuDVFY_e+k8_)ac+rJ`@kr*4;y^#-T4<24qi}pQMEp}{spk7Nrp$U7)i3KD^ zi?OkqQTHt7z+=xxn)ZOm-LC+1bQa?+c{sDmKK2_?_m70pwc*amMm$Hya=J1K8*-Nv zC6X@ULN2`E&`0*pU1VD^qHETyL03m1BLAD(SS>j>a^M8!ulrLaxd88X{Ma9*yyWgF{dsMy=VX7YTK#TVO|90Q37<2`=Z&u+=yz|3sY_iq z$09~fRWo8LE26BAA~cs@jiv_wIC!b~SaYyBPcEP&5YZzt7#&khP!S>^Mbd&7A{W&p z@O1bg{i!MZETj3ZK2AOn{gIz>J93pt@7u>?m^ z4Tj89Q=qWss78dklSCzv4e1^MIX@sOvb1ubKWlpqgR|~5?(!=QnGks$uUn9JWbkg3 z#|RT6)PU51u__wRi;n$7)J>oXI;%JFUaBkaz+aO#Bv=mK zjW0;Ox<91f{yIL~nL6Wz>?kY7AYsH!`Uh#O>J7dfDYfztYeQP4t3uoL#&>;C_DlNs zm`=_ZZ(%}dKv(Xo3je88PiHPnud7z)8N3q;`zm$d_h;mUb(R6<;a=s9heRvL43it- zR-@a&T@->P1Z1Xy@}s?f)T{WlVWVkgh;?iAbA{O?Y2oqC&KzjMCYnI^N<>|;TKnT5 zk-B2#7VIeAsKE>aAGdGgaU@l{Yc&#iOv)36{;p{3C6uA1ZFje%W$>|>@k=&^w?>b} zxO9M12|?5a;@Q!J34TLG^+3cDQFH^cCUN!wn?gr+|Fi$_#PZRnQRlG;pcF=MR4XOQ zAbDg&0=se-ZsNFC4J=d?9g4(s%EILfcngd(ZtUd>nbT_(>43MN1OO1>7Swsud+fxqk&s znDHl?o!Y(_Gd`bOd-l&9Iv#O6Hy3#cy0l6ZsEt!BR4Cl&u#+4-hB$`!JRO}fgOumS z(RFnwm=G`RFR;jYf!=CyW*(3tW6}fGPa4a|EXu6QAbafVs+9oy7*oRrqg!X|JELvaoX-S z)>MqbI3eqvg|%3F-}MA9?_sZ{vS7}f%KV1nt=EV9<=`Jz`}Y&!@mozJeI zdCWa}FfFqCi@v6`y|?W5hmcb6^Z#y8kx3yT&-aD+1zGI4;oGd)@+R?Ww3k>s~ zyy86HV_TA=r=ufplw|BBLFsjJ%ntoeU%sT;k5)S`4$%2m`|PW0Ym?!-GBo0ZtS`WZ zE8J$*laD1e(v-#{HB?LpI0mJ+;!$U=+*z5CIcDf96KSXzJ+wHDR&&} zPIIhuX{au4c^!UttFAvI&s6*M#ksPr0c#@N{70u#u znztt@J369`kJe&5CSS|Duhf$7&gs;Y%jbA(54#C?ZP}Q&#W!S?j5GroEn6ipUgzR^ z^gU5*$ZgbzOE=el^k}O@aWR;Kk= zLr5GNL*_KyYO=M^FL|^x0jpeV<}`5W)@pq#5feyBzcz1t9M6&L9g$#PUDl8rSLQUc z7E^N&Xp!U*l;g8#4Jfj(RvvPJ`xlVA89)#bxnP>9AV#}~KmegR8d&_hkCz7hHP z{AtPwghI>Cku{%6KwO9|-rE(UQyq%DQ^kXJ7_f^W@AWnV#|ApDjhT0oxjCUgn^V7* z9UV`jYd(B7%n>X8g0&tM$nN$5qGkc@diCo$r3B$uPT$3X8SN|cGJ0>O@EDdm?9HZ= z@R`(|DtBGH=j$td?yAzmrU-T~&31@z&uFFLcrdyaP++z*T{Q%AwA=2-4@es-`U?&# zw&|BWK05SRDw~NFce!!6w@EUV==6PjD#qBirPq6BJlF&Lh#jod6ZMrkUJ0S+HUAcl zqGFX!JbmsejL&XJR7HCCkt|%Iszl(s=(D;ySqe%@F|bjH+N$8IgkENG=WFuJE}EUY zHT%QMrR(1%GBPt$^7A8raS(9)^;OEMqM%(m0q{@QZs=R5s!UtIMe=Z={d`ZBmoqne z@SlusF$fGuQ+eAA=^vj7@%D(#Budi?COC~WfF=e?2Po6yal$l9#iI+DlC@3h+ z>4AQd^WMfRM0&~fRso>ouQD{!i#-i+uPJ#-{q23`^|_0WSHt{X!`ZT+1ol`|<6B%s<;x^lzNl$O&Zj#VaBJB5; zIn1)sTuzQe%4-V}Py5ZDDAGS^E4zxm6!%ul?T`zv-@K{+_WBA@tbhd#keuO6YieK? zS&w%b1qB6jy?58rb~)n*b4^I9JU2h+m)LO`l!jX*`xILm1D*oYJ~=bvwARGoL}0LR z*zDHntnu^f$W;r9{!!O>a1yMt!zdU)g&<(@>R)3JM}yTVLP(8Rq--zC3e- zORr($PkB~lOUvtTI8^Q8y`6Pbq&797t%8rKQ-h`tfK|CHBH~suI{I3krKw_MlgG&K z(4~4UDo0IQ`;MMozn$TBZavM!Ni8&A1IYlGp4s@NVrDF>>qWV^=2{OZr?PAF|#ivi#F!Ad|(?xa=i}1|!%O zgMhkEx5km+feUM4b{nb%QZ<`)xVgDGIX%6!>atuupKZ95EbSu>Im=i~DA8Dc3(w$0 zZ=dnp+?=?k)ZEZQErj4)-yd=Yrmg46V4-Ek;^G)^Br{PuMkYXe6WxEk@ZPCsHLt^- z?&|GbmpNXSVRHO>1`>oCxqNtoS@}dRms&`Ax0N~R~Y}45^4$ruX4L;c?#&bP5CtN;vSGo zzVqs0!#P#SyvAimo!%o5S$sRqk%*`DU3r$~dE>^7SV2qmPHqvAn2(Av`OdTIkUhMr zlK8EOBe``xr-mlgGtYbNP4Xl-zRB0;XOyKLq*j@o;8xf7nH*1fkC6<@g<5v1w}*+E zCi5EV=rjVaCISK>7#_zUP&yvO7%Sr^EwkU>{`+SNxq!v@M}Xu98|gArMZHE7wdAai zetx)Jx$`Ro`pgzRnfi0CJ9D?MQJTPdv_fv=K2Ew+bL<;L%}6kdF(h>B7`G*gIf()X zsGsO`v^%rDXz!N*+!jA@AlWrXdly{3$D*Hs!02Pc*0hn&X7`2nUjb|L^m~nJe5Jyq zwvfrYtrqdcQBhH7i|7<+Z%FXxojov~*LLBlt#XhMg}w!~%+MDtDS97*0Rl6MfWEX>d(;0(JWovo9BCUcWzhuu{627 z)9u^0mBTQ&A=g3MMArdJ?$BKjg8=X^rZ)^-J%#rAVBMR2)9OiAd3m{O1y7-Odz+TF z_8PEykut}-?as?1Ro$5QnnuD!)aKDgACo^q<>C6X^Mk@fZe)%(sa*|ocGU$HNynOK zmjTOk$Nj|;ClCj|PEKxb;jL+X_s=tTK$P#QzH8^c%N%=aXFX^DA?qXoN2N&xK&BwQed6|$9?j>YV>+56Ue%)D*%*&c3mY-H}`5xOVAe-hP4`dqAk zHG0THXO-w~+A_1>#2#Z%7s0L=E9t?Hz5^UbBXE@RBl{!UYdL<0At3hPv+DY!UH{bg za1RQo*Q&RxfYT@2+g@(J5++&aHL}h!0+f6m@^gcB60UKh#9Q*?}IqN{K2J0fy`HHkyn0qiaHI?TmYynxcPRRSjqA{+^V+nTml&=j) zw#Eumn}5feJKend>cRdl1*$a^9c}T6Z4u?=@F-b)OaLUTa_|QH0;28;UKtNE^_oBk zZ1J`tn~wzcb}P9@7Dq^8ipY;3l8=6Y)+UacZR|#2N%5C15wp+Md&21AGSncyk-BAp zf88JpulKJHnDJL7I)qmoAXFBMca>Fm&|xe6Rg6Jtuf-@m+q9wSF#CEt;i3JOe}JjfvCAf%7|2^8ah420)nqQbhrPMBP6pr2>GV0mLpdesTX6+~mIJzH;0bjXweu88b`V zwKV4s5ZPn^rIQo@&>TkMFW~>qGx%j$_!U!}WAHi;DGw=<|Is(1><1?stisTqfIS>^c0=?S?@Lu4 z3@bO4;)n!cK5mjC1a}Kuo+LqcB*(ahM5hoe!KSc}_rC%O-HO1&e{ic_ZLWuBM6dg_ zUVBHGJMB+@4I0wnJBEl_aN=@cSuus1sCW+22UG-9$iaDu2K^~rnUYRIF?DqYhevV9 zi8nVNW47gK9s$fBJj;BI=KkxGb^bROrNBY{i=_Nd>TM9p$8=sc_JXV~LN=COw$v*4 zFqsGN2!Yl{dw$%fZQsmSINiHZM+SSi}nq zVH^@;hFjg;n6P?C#CNS~e;+^NANzjogtP;^RHFI1a1*41=!yY+ye41@O`zx3Kfw_d z7TZxb^lo5(Fz=A8TvxBxu0EAm&NyR8VL-w6=v(-q?)#G|78_ZZ^sZsURc{QH@)CAn z4t#t}?kH^TDI}F7t1Pl~q6|%tz~I2dYryU^f6M;^(OE;#BMJ*UpwdNP4p?sDR&T!p zb%$se7%0T>2QN%@HKz?dksb$iAU%6q#&JCNpo66zHi1R2g1Ql6gt1IiApJR>nZg)pNkoK9ocF*g)dAT4spJg&A*Q#F_ zC@l&ljnc~COZo89BZ|@8qv1|*w+KuvJb4bkJ;`ak)6gK#|Kz6Q)fR}0TX7)SXV=BO z?(Wu)i&=_7=a`a!`E~PMojTD~A?1A8U$7ye%!I!DvxKN9zAvh0LbSD=#@j8{jwF)C zE$AaPq`$b4jlKX=723<<(49h`p4|X&K!JH%vok|P#~kBj#U8tRfedsRe3*aC=&Xh9 zti{dmF5BTaIZbRV6~tSA*ZN0fV-XLkrWxmjooa^#bgO+SOMHJjs4$AG+^k{-+@#^f z@<|YMlV-&Wy{JUHu9DDPce1jY*DL%WJ}iJCS-Mk!2c1@Bx#tz?*@LoDYZgrNy`8bwVw7@U9GC9OjU+{^Bh{ho{TH}V`?8Hx7MtVr0q#1 zTqWm5gux1kJ*LG%ir@U8d>B}~gL-e$?>P5aYsTyTxzEA{ag#oCp5`6s97(M>x zJEBqn!p<{9otytQY|vjPAjA|mFQEO~sQmDX#-}X%hh|#ToPYp%?}M5*^}&*IQ$gHc z`qb*{=(@l3m%5}QQcKaNX7%n`DiD2?DhWn?oLwBQ*wc|+#OND(D)g932~6u~-#64C zzp3K?Y~N+(+jv!{lljI&8@11nwOIH#{KGM0G@%?(S3+cpOCIemijX94EG~D3t82+M>}jt2 zL_XC_W6jAPDev@XAobvu3rkzUcp=pv!9Ns&=ttNNGdrNnWmpmSabCEk#j$&Dwy(!JtEnzkkHJ07_}qbqX+A## z#H1#}3>ZpwwK!h`W?5Yr)l0PW&_b?7z_!JQYLbtNMl|G`ON4)_DvCUmFz}AcJGwPe zusEIj4e_tCf-jj#QFJ=_r^-V7eqb}-(@^uE|3fuOJr)zWNKZ zlG^m=)wc)d`U-_yMh{Ak?AbZODI_mG3oD^eiZ2$C;9!n+o{vbVo?_3IudV)^oiTj9 zQny@KC^a?zb6P_p_i)AZ$GQ;dVPr?ea}%F(bgJr&Z%AGBAF~5?KVMq$lzNdR6!)yY zSxguW5Lrvj&0(2MuSVWJJ_rN4c(9o{24#mYm57T0TEH74c>X zeSZ{@F_atF+iPduG|8q1PUZc=tsfCAaT9(d9_uI`?AyrI=UR7Yo$3 zv8y2Kegl{EYR$1Zume2euI_0qfR+*Qeb1nPF_a_;X2e#c#D%91&=1JQ4{Q`$U~n;u za}T!05H}5dND{2)^=B0#E6e;fyKPrTNzq$PeHxAtH-I^{-{l6I%_ij9L@B4I;)jEJ?MWb0wFQi5rset z2*6K0*e_n~B{2-imou`XVJ{PlJU>}7D1^avbqN<f=YyT0>)xBHypD~Soczz_LH5Z)uMdV6;tjOG`I<0z)T}=xO0ADQrjDoVhg4_x zW7VnYQ`L^s?qt#DSBB+{%-aaIL%vIsUExqVcU|rvDuK;1ED*8twdu<4mfkt{xhNs; z-|6l7<`X?iF(6V(RcQsFZ(;9uF;lo(l1N~Tjgss+cuCTs0Zlcl@wH*Qb+Xovx8+1<=Wao;`=a?x1)`e6o%>AaFCsd}Tck_g2U@1M zI3D1L6yExS7$d_l>incrdxQK+_KT0+>p7IWdvcVIAM;Iu#n8)39us7DX+CeCdwZO)dUJdC`eZ#94YTMIh}$D?v41@)&;b#yBvF%hpb zDis~TPU<~xPpMa8$tWXcPticS8^@!pPX6-;La*FTfR}p|U-|OJv{vd;ukFAc_>U@U z7IxCz^YoJ+?ImP*`p2tx(YFoPs1(>T&Y=NBvM7Q&CGA^RyTQ5CJmV`9Lwhi(w^a2T zz87=;5s0_Qb!~k}a=r|F19KWZs1Der(`wE6Vmi?y4h118WapilV~?m7HEt=}N_7jl zXm)q08*0eAD06dWTDhBP%{jU#GrQQM4{Y7!B7QyfzW1PC+aO%tP3|nH^+Fu+-L7tW zHrrXn8FOqUynMLYdGISm{)t1)5};{^ueyeQJ8;e1p5|Nz_uGog$zT-gP7E3kTKBKg zni}Yxo@n;uv$}~kTyypF1XL3$qSox~Qr9Yw+W2I*TIx8uWt;ig+TCSy%eH8<;!K2d zKZ|eV`QimB{#<#YXPy`MOLb7sJn1@WO8pH;&L}iLA6wY6QuOffNEEWxPHPE|ygkjM z-+o&rSwRjr>S|q*d&(`Smop9SUJ&q}}*AUa^GF zLQsehV@Wa6bWOd1EINC5sIbP*vG>A1gwlK#$QZ!mXa%-nfUEtaTN4PPEtB0nZm!XB z-`iT$ZO0YNvY+3QZE`(Q%dzA3^b-uaG+bV&!7-m;_w-7r|2fs6YEavb6+0)rUAE;x zeZ7Ujfh~k6c;FEpW$CA9SQQnr9M^Qve4~1E*QyKdropQWSh;hGr->%NG zFiem|@nsj1OO=;hR`>d3|NKk#Nb}leg5H+-ywpF%T|FhD>7NwsT3~F4rFrysN0$ss zRB__A7ZaaQ2nyb`Xe!oMd80r4-6d%iZd z1ig`FhgfR;2j59L*m;BVSx7VRDe@@R!*L;;=fScjE%QG{ zi^3F~(L&6FKm1@!!mktSX;n#Cf|)_3{GTMh>9a@&wpYhb6e9T3KsYxlwa>Q~<2=O? zb{H(wJy<&R?9H`r?Z6DF|H>LJjSA%atf!{e0CW&2U_%S1aDJ9_QG`MXPZ{ny_xPa( znaE}H7Yc6!pvs(H~qY@(gMlT&cK(AmK%PRzX!U`ILxcV||rZ~LBUbDb3vEk4}y(>pGn z_;ff^gLG)xK-5=sQb$xE&z{7V>T4b}-+NiUm zLT=Al;s-Z-5y;{H6&3LxN6Uc}((4uU$et3$Z3AaEGbu_CfOVOCMe1o)xp;-)HV!#6 zh1Fw>B8n94Xs(buTWsLZ5+W}Mcs@KGOv9CC?AS}ClY{H))zUP@PPLePXNnaF4ia;E z?qqanyIUuoCS&nu2z3e}cRC#X1t}eGCMUn@S%cCPnpCSQ3VkKyVskI}T6Y_96u}JZ zCYYP*Z&BmECSC2AaR|ibul8R*m*i_k9dqTUUOnL{c!lD{GyR}-u0caK>CME z2A>pi^4}!WP7rL9J5yGxb$Bn)_1I=vKczvd-Bu!@AU6(4FXi+_H2_hBgw14sBTUBtUo9Kx91}q z4>uIf9xZT|X@9v(%G~xW>~@HHOAm2mWNKZgw9nX2`SC=ju`oaE{<6rBTJXb@c-!g? zQE;k~K5+Fqhts2ydG6F0Ma7-HxQST)t`VlWzKa(xEB4x&n@nx7K;&NED{oV7Jnz}fm*}uM58voMttZe#i%3Hzv%ml?25k9ZkgbdWxsBW$Y_fPPM zC&X0C`h`{Ucf@}ny9&Y)3sESc-5Htjg#ysQG{)-}kP`Y-$ok>9Y+teMzT>M}dCYH< zmG_6O|DU4FO=(#!2Mz~= zwTx?|<0hYCf?hA@(iNou1@b-WI%}7FMA5B3FKWH^Fx$8B8i)~EL15~t<8%03&JZju zxV#9+d1I$9A?Yf(Spmt-wA>QjRr>Ql}AeYqef<9KBl~?d*Z`ohw7xSe1AAj2g+TN zWJ3s0Ex_jbx)FyW>OSH>!sLRe;y~TLgG4KzttbSdtmL8AlKXrl@qSX}ETEAlvCO4)p4@fh0 z>}%}3E6o(=dmnQmEIE<=2{*rv3oa5)lqp{gj$(C(@5qBn#H?+I!}FJ^Dvtm>NjNiW3ElJa7naK9zl9FIeCb-XVW+?OS?dq=&1C0vl(r+{)iyNR ziv7rS2W=vLj-UyKgc6Wj<=56+$et{hX`k72N$}{!s#kAhqa(${Qac{#uWf$71ZniK zi*$Zen0vfs@fb0&bu%>!_NdWTNGQuV6OFij&7WOy>{rP6c8$nTpW?sk!5hJq1m1`T zS1*i(;GOWx{wVxB9`w4n{E>B=`yhXK8+IJbs_Ye*2xXVSD?cZKI)&PK^WJKOup3`7 zaA;M_j`f6By);+APcSdpPb)dWuBdYvEO59 z+IHin=he3jwnr!2_dof9goRuUWI@}KRajP4Meg0b>UwggO^G`o%P3KbxvH>eJs>E$ zsfmd^d;FkvV>#>B zv9c64tjgyU=`M|a)731nr)RV(PnvWT`faCMHDgzkkMYNctW*pUp3+WfM8Wy-QUG=a z#e+Gj=$z3y5tjJ&QKJX7xzfX>TT&CEj?TwQF&|xjcsKO|#BOKEGDXZbQL*~o+^y-> zfO^_stv{Fo3 z)y7)06+p-?Sd6Yx*?$>qEg2CB2$tD&RbiF+;UK3z!*9pryhw4>q5c;8@6K#MQ0K6% zk>fZoL$5K4DD$4HHE^w~rO{V-{&G{lbn0i!?%{&jd6%Y%{0wrZ)jXcv8yRmT=00^r z zhU-ttCg}@Gcaq`&Fnhi8V@4bln*ikxt(i3*+THPU@BONNwAp`d2eA60-CgyRwY4t( zJYLZ4elPX#I}5n#Q#2kcx3^Z389I}c9_`SQ!n+>2Ec4yWp0##LgVwQ6j;y;|WCg$8 zvO98xR|K$DCY`xCRvk!6>f6Y4d7ajH(iC}%;tQ5CP#d=;{hE{0PT!#X%IKTsooQow zhxr<#ap2!(GM5=zGBAd(CvF0-^!usS(8hKkmr>Dc1@g_wXj+wD*Pt1TU$IaRmwzM< z4fAH}?7q7n^#=D@8S3Yj@Y<5GF56OF*DcJCKX+$yVqhC*b_+`1Ip^E%@$QOS&nDo0 z>wle5k%{ail-+pAwirDTsyHmO`^bF$?j;TeWzf(I=|IE-9sN-}Z<1a!cUWa>PdOQn zn6Ic#k~4g`ybqmU#cib5R&reZT%P_*DsaQnF3s1Z)udx94bsoNNga0W)^g}I1TBt} zyLv?&C*Dxb7BqmQ8tQ8q*1z&I{6=zYq@ou_3_v*13Gz({uLnt`fT7W4A;DV^>{$7d zT1me&p8UAVr>PfIg3O-kiQ~2hG&2nV(F3Z_`oU z$m}c3V!6vb==C$NzN~}YnB8(zP(@JOtN1@@VMmf4*!=+jb9A)PIUin$z8~ zMOEcf0@+;M^;hV8Bl$iUyFGErm)YpcEsF+~F!jYZb}2gAwyD{uZqeI@PZ$#H-VlT@ zioKICTsO$N6S1Y|Bek(`n%)RrG8{c?b+!RYKcL>f0fpmV#Cxm{@Lh8IBDN=yET?)v zW93u^@7A_t5!QB-8g_nihR^e%LdXxy20r2|j~pW=)l}}r?>L=2l#g-4+NOSdC=lEzpu$ogLYcBh z`p&zzX7=Ibcr{n%XN<@%ap0f(4r|Ei$5T7aKCTy>n_~oEPFfe@&4yQ;v0lSoTM-Nk ztKYxixD%cPh2Y9kf_rpsZ4OfrU8kdB>cjk~ii*OQCGR(@K(`c_AMTcA7%`@hM>}YH z>i?-ewcWn22jLX0-nPts@fts!jV!~SrWvtdTGZb+ju{1#KQana)}Plc{Sd!P#~2?p z_6La4RE^B`5Q9=0iALH-HhN*ss*$EI%lC|_73L7lE$`FFrrU$-X~T+jbG zGqXf^lglzuAZ6F!vQ)*CKye|KGL$8r{(~-~cEDEaap1Jh?SWpG~16qms#Yg`}^Ty4?B8 zi_DK(4?zo?dNc(Jsx|?TEs@{#W?IW@HnRsF9yf;EXFqo3=cz|K3iCnbnK`O>Rlyr( z5MX@rzaZLRqbe%V$f7@u*BJtERCh?dznmTfIYZEL$l4S4)!Uyknw;6yEB@S>N&Wtz zl4)-4;nI+j&gCMBzf*CgDJcv~DBafkcG5AjM1%SQuC;dA45lLL3Q$-v6jl#~y&|BO z0wLN|4E(3|wuHviw88Zp>1|m0a_-{QF>qCpZ7g$k=49ani1Y2=|11k#;b{zTk+37X z*AeCgqa!ao>5*WT_YiAMAWsmnC_kHFIAvB2V@4zsgBGpQIL%KkO6GtHpeTTzno={S z<*kItv%a0RN_7QIFyF_YjLjh@{=s+S+Xuw?unv}&X2$364%oI(BKa9LqC_zEY_90Dlh&!` zRB#Mx(MYqzld{MWeJsTWHHwQQn^c?YeusF``lbFZ4eD$To2#hS*@DSlhBw^|6TPb6_P-Am zJo#|n?99I-5+7^oef_&)=17&vS2%c{^zXN=%`JdhbpNi#$s5eB_^>S=2-@Pge}`P; zxcF8|qQK?uK6I}d98J8S>5axVjmG`DKbPIrEqYSOaZHx9H2>agcX3q_{LBR@3K;*^ z&_fK|t@&aQ2f~pm^S>XyJ@@Ly-Mp--g^1x+J)u*t(2`_YO;Ut-aqVM`_|;hPR9;%R4^Oc>6b4b zF6eqWT+91Y-d{r0fy>2;5;n(BLmAw}2tJ;s)Xf1#W{_AXJ{BZE$48TZHW^w6&vj}P z_FTY8OPM3Sjo}kiol%$9F`~)TuFW@#%f2;$0i{gPHzS&B7u*&@B0@lxq=o6Z;3?lg zCs`Hy`RQz{e~J^5l!;Z=9bA{w1$WMs=%IaOki?6gSz80<;4XCGkNg(P4@yxAQQ{p# zxXCS?1nn1a8}V;v5Xpm7@I)#VCl?4G0LMU7{F^D7i1uqF!%dPOB}F6{oErhz0(yeL z9+0{3s5Lck4f0JQx-Eu)7l3rg=jK~qa zJDI2;HkS*!)Mxkbmgj8WD2%>PSQ2W2jsSwBFvWCo*7w4$K9l|zpjNZ%aaWc64-Pc( zt4G@woZEKNhW~`xyToq}?ZPX;|dqrKOP>@|Sz@ zr$Jf43J9&_v1C^-FmD)5&DwY{6^yyDpYzIEN*kXVFldZTQp^vxo_Tz1&!!<`)c!4QyDlYp< zLSNcq%a)B_vE_cg)L^phK($T#mPJA_?_j}Uf0`BTf7`aF;B1jb`Azn}f9B708C!8q zC$|Ja`&Pk!YAFSUI_y(K9S%`PdD2`tpRhR3EbGpO%@y?-&5T;-2t*_)Buj{39aIW@ z>gC|=AKQ;@;qMh0g$%-_%^l(6Po<=4uFPIq+}%ETcY>URjjDl{?DSxv)RB^S1kH~m zIXO7!#&qiFEwxeozWkhjIIS&|`!tG+7IolY|9$zIxU5$YVy;sr#YqoP=j(jK4fZ)9Ja(AdHZlrQCh7sYvG~2if za`pSOGa^L2sjS8%-W5^n@f!#3^_h0 zfK_-fx>R@(zIfWk2IKW>U>#OCJC4uY7@exNt@PFQ>2bpfE3?K3C2z;swQudXrKAjt z-%Kzco~bI?sxYgB*}t72b0$e5ABpy@hF?>b;UT@SNDwlD-AOyXZ%8uvv4oZSASG%7 zya*w+e?2+1WU*(Lc{lpSmW}I(X8d6=2jhT1r|p2zj9aRH+Tgk0B$X<2GAb|Z+m(v1 z^O5dQJAgv@6~+O@v4oa*fzRMj2$`|~^O4)<|+ z0h;0!or)ig?X_{M5d@7v(d@Q$iE^qEi-Z`P`2)7!aNBZ@88>IZALIlhn(zXT!h`jR zD#T?@^8@jN`Mp9{=hf%^-I^RwPJD2HK6uy1^4tMipQ>$nX79gS^JwZ(8SX6Se}ARW zLfEHAZhBCVQD(VYno899=2v7dNoPQ3XM#3ht@S~pt(NsnAmW~X4a_(cEuAn@N%osT z_M4&%E0t#9lRf^icjoPkVS_*{zfcuf=${=;3J325QT4mZ5Hp+nbHo10G*RPn+b;9{ zpn;9YW6g-Vvt#CC2Z*{?UJky&Q5j%J`&BgIIMw)gMM|vZiuH`}u%X_*9xa1)XE9r~ zvOsrI|DGOg+%ZENq1|hdk%R_PfACs^q}fL3vUlCak_-tw&>q-9M$~!*jF!0OIeKKY zREmHMu*C1Xxk#_jj&&hqbHd|mcQw@~R$R9aXg-n@T4VzC2;UVRHuk$3*FiMk#(a~ux zmC?B5kAqpL}AwFia!IM6MtxvtWd^On%OVJqr$pQk+EdIFn18@Jr69^soaZw zvU4To>Fh<2wl4vK?)DH3tTWH{`l5XNEDNmvn1LmSEK19=m-l`R2zD->W+JJKJ!0@V zv-3D&5K?#!1)rX-*L&PH7zy)53mY;o^e0i^YPr9F&Np|d+oL6nroKdoNF%L-q%v0rDmokAt9lK zsVeD`kerqzAvtA3MFH-VWvfqsFDZBB2kv@KaCfgquGS=)kKCP~Ik`Wxeaz`;?doRh z4giM=Zw#sPSHPC;OSp!SRrWe*?_gu6We1_*=$!i zJTPosRF4^uozKlAujaI&GF3=?t3U<&VS!zV+Jiu@o;ig`8RaR#O}nsfNp01jaevTL z&f~Sk3*xvGKnVEk3kVF7pIox?lF}VtP5Pc@J-%q!q5>QMpP-fV&c_!d6I_!g7fmWH zr;e}uqJqedFSglFQ669XmHoe^BPvoTzrCmZ&GKLHC>(ixQ|lvma_3^-Lu}7^sOd8} z(^kv6nGL*n$1QQl4_e^lvHVnQWPAekQM}w0I`SB9>C`{V3N?KSXM|V%K)v?ZS|A~5 z(I)bYiWFz&H?4^=gjw2EIX)^~u^1Qbq*&v!JU$aI8cR#QAVPmX!)O(!@vYleM~c%?8Sh`@N(2M-vTVQucH;^ zC|b^gT09Tsj}txO6pIiq$C8y~b)$y&UpT=kR z;V3<&Ofh!2(P?xoA520m=`mczYf}nv)PpFL1R*1sv^wS|0>ix&x0P@(8yP2h595tk zjwR^9a@3MI@n%q&+WsaEb+tJ65M&NB*+m#VEI&rnM7Ijr3o##U`%K0?Ch+r*zqfXR zsD*BJgYd8`I<+KTRwrQWC)PI`$phh5H+lX(=`amx1j$nU^_~#wIoxnxS2w-s6hbIQ zAD^<9hm_zpzmmK9OQG~{J~HsM1r7^2sQrvnYH4V3%TfD9+c$I_ntYX41v9p^h+w07 zDtD`VA$h~(3V+_X)Rs=UztInw9BKh0QAcNVoceIzGZ_*R|6}E8?8rg{%%_Yjrxe69 zai;XzZMPk{p$(*P7SZ}b_%w8_Il7i@t*Pay#E4e{QYO`{5?!mpU6eo|hq6HMZipsa z3cnY62|J=d$AuwbmM@62)g>g*J-g%0-dIk6qd2^l?T_!j@jbJmH)RXSXX{pR!V2KLLX5M?#Ko8@f|j}TR2 zBh@?pi9-tBio)<;dym_EWq=u`REFWl{X>+rc>&hBgBt{O19dXNfm9_ zqnVidt3I#XgtaFbyOevJ4;H7(?U6FNbh#{MJl_*mcUSkL+wxeIMXuZOG@RZjX-N1F zIcqaQ|GMy`t&k3;spTNVfs!P>i)ic8y@syilhL)+rcO7@r$T$i&q2%KSKIGuSj&<`_e$b6YMiN-Igs9%qJM5_Up#?Tc?FbK##r z_xvVZ0=*S=%TnBosy;WzNGz%#QULaBz z6!l3+=FFGl-QA{@;^Fad_*3>fzGU3y*6?V!xY79N6=7){^`FkCt1M7;Q76}4oub(l z8^Jpk+AkhMSw0=K@-r{Rik1ycM?t=S7-B*R=wiAc%GKEIFLt-eYvJ+d2mMPLg3_Bj zWZ>c>sO#jUak}1$hRj>`=F{tlwxpq*;4~eicT82JQ&ktPa}fd!M_@yqymc$~SfPa_ z39sOi8EXV%m@4)~?_+VKiXjXiSP4F`E(#0Z+J*w;{#Vp*)S{C2dW`5M#M=a;1l+8=X|MTI<)Kd!zN!7ahfF|FaPMl)ZDQCkke zQLlq@mSgR@jUYl)a~zpT>5OKS!O1x^{H*_DZ##+O^p?H7hAK3(C_&^v#xR9%`61tb zB}>etA%wipMRXO7rsEB45|jZ#?fEl)U;zo<1FjE*fazm|i(6v8qibVcn1@>?4uv49 zWN-nO7EMS<6x!#${FfW%`u4&2U80~^IdDhAC`anT6(@K}($MRcTik<{q(s-;ZE*S1 zg~zD+Vhgj$Tb|K~aRk8}_EeqE6+LDL$EvEipv~D(CdVDl@ewAeM9_Mdo?pIFBjpYK zEYI-Z=smLBr%C$Q$=6YyQlYw4?hNgSlc3ovK-Y33D9DAHvCpqG1>X@kPizw;#CU#@ zw0k4PZ39t;5-`T}!o@$AwH%hb=&4dGKFb9GTR7#BY$Fuz+^%%XuFPb)O%ouQTKiqNH#iCCa_H zfj^x{7w#8gcryw_!sLg%e!1T3tq`kMD1t0H8^l%F4>&Cja{U{QMW@ z)OR&BG~V61b&KK3l`D(7&Zkds)ArZRrIEPz@6)GRLpx9}%<1mFbkp+PT;1Yp}ZQ-{F<;&Lko4NHAJKX=!Pzzhmu8yrSdQ7fO!4I3tUp z$75vlx6=y?1+1;DdHML%VyH8mq3_;KHrr5+P7z$J69F%Okdv@(-9GF+%m6~R;}U{ax) zmzSq9x;*8I{wbAHT3U5P7l=#snrE5Ve!aV~fW?b1%+E8N|AHNFdcl5-HJ#6qlas4y zY8tq^S3r2h#0>CwJOXK44z~r%j6iO0KR5T^=uZ-NNYaws&=)kX(=Ug2Vtzz(ZH&5g z!K6zizB4s%D+^jQYzN_PFBF!GIt+^vS+q6k76rj4*%#|rTW6J(m5Dly--cnhqHce> z0)^k;=T}d#@X4EBSm5@S6>W=TD~QpSGj?h|@XWDXSgM{V#`osful@O1H}#qY0!x-~ z8UPYo6fWHK;3AJ!UxW8LVc5O||Lvl7-v<$^3U|CN3=<(So(mXenUmrg*7oj7X7j<4 z6QzUK{`P9!?=XH*k9mEEkt)pu%Ya%}S69(TUteY)EY~dv&ERnMn~Ot9vc8_ZU3EPd zwQpzatmD)Xvt4N=9Q%`$;6YV!)2^Mva0TpXip%S4&E)Jv=u^9~I*-&t;}**k(U|1a zl35ZZ4q(+D+0STXmVvblZ0tPv)zKklKOi7z*<^O+%$ePxu7GSKOMe4x`Gbmp!}T-{ zjN5qN(Sb>mUv0dgX?Fc`ojOrUi>k--2L~U_%+A_PeSKw8?^(p|Pta*R*c|!Q*=g|n zdCesuv)mUiNXML8X?^yVsyF5fN<4k2I{8Z)KGCv>+u$)-pke>oOvgqWi<2rs+;KE_ zC19%_P}5uIu|S9l+*fpJ+=ySUnU1{F3SV1WBYdS1o+FB!aKI`JV2Rh@G7uM!FXT*f zt@QGJrH@+O*E=Qbfk+VhSSV>OZfLk|?$K|crmcGhsj)a9sndNT46&F?9slz*#Y(&Lta_en2veyi-O{ntL@cHDpjd>|v z{k^^2erIjQ2Mkte({nA=YuvkTW56`ohgLK!EDUqyY06btlBg}>Q)VXPl`DC$nCrId zvz?*(T|gPKa?%1!5ETw1;tqqQcYsRUeC`T7+Os4wzc)ua0b*ciXgApsY*O~*EzsAj ziV9H}2B=;Rpn5L7Yv&h#$sEvD9Z%0HNM2!~28;N!?(PglU@xdNlSE+%ATy^s6QL?_ z&lY=`brh75g{1(jQs+lmQ}qO)ep9E$e#iRO*R;JZ?QB^0eXA(hY~STt6%P*&z8g2X zlf>*rz1RLI?hbXP${0;eP4V&b_sXm^WY)Uj#2pHXi{+42lN=}UU-udC9J~-uBooXL zpApI~%{lqz-MeRX*Hj)nc+mSkzO?jae}6v=aqZf*zV7aBcMa179`lChpDlcs#2WXO z>*uj0Y2fw#*#NYZ`SYn)yZt2r{f`fzUANsH7*V*O@j!w4vl1+ZA0NziCMR2{tCVO; z{|$q{2OibCxVUIW$?yERI0mNTb9As3hd_J+T2bx0GceoL>yy?d&ce(bo03vEIyxHC z=>C%AB<^hLwa^YHytH!5kg5n(3hu| ze4S(Ihiy)3cBMUb9*~vrhqlxEPqYdHJNq~uD`C}k)_;n|vU{M&)Z<_S%P%Wy4lI1C zo!75e-d||+z{@iiMP2`>rau4uR?uP#C$}X<%YOSo_$5IM(Fy@`5dI5=>ihQgBG8@z zxGa&dnFPyX%fqz{+@wGXjD7JNKB?P6#OTA<#iM}{ly#RB%XA0`CT zjXs}_2#bosMgG=qJ1S?IHq6^d0sCg|=Q3-@};} zfMK!q@!J~nT9^vukXyt#R(P+&!JD7I*ReP?=y;8~v|p|4HP|3g2`k7Y5~slPt*wnu zLc$0^bY#SZ+xHa?9)%E-xl7U;Qgrh!We70(z z2kmbE!4B$-V9mW!wd8i592{;nJLU7p%Uc>78*5ho{p;*7RHkfN^{gjF%8e+qM7wBO z?HKoG<8keLeu4YfGdwnbene}^ngq2fALpw$2^wiaslLmH@2z^St*jF8Dx>b^=BY%z zJGQPwCqCx4-f2<}j{r2wadUIy54I+-dn?T)L|4B1Cq|n<=+(AA*xfLxb;J>OQPdt;h6c^=cus=7Z=Ceg0RDZ>-f}PLYin!V$B)H&T2eDX zn-jh(vi`HsG+VoZz@tO9rUqbW8JU7dQiXh@Ohw+BmPVsvY z%>AN^_ts`7=QKtDXtb#JAVQA1t#RLEpNIzFQ+($0av(5VT3}PaT1=YglJ9`=Q(gf9 zjdoVIcb?0mLsJXnbgz%0vx1EpZ1rnIk!e2KY5H0xw z!lk_i0G)4@(~Wqc+1%3<&$F=!{!C`AEG{nY7>+Y(nw_PlrX~=1&?UQ-@_TxEWHe{T z{#l{UnuWYG*QqQPriTpIvB z+WvTdbr-z@~{jD@DWj1nPohmB|o}jVv@96i(^mq-y8y7p}QrRj0pYa)h%}s zXek`4?A~HI5ps3^{t(LUqncpunaIb-M>OxUe_P1RH%;g&mjI$tS!q6Ma;%x6AmT?v z!$*D)NF+4vbUMv%jyM^an3yCCP>DWuC!-dG$MfPJ!Bk*&@7<%^mbc*X+;~Tr2x1;$ zK9yoRtYZqI!D1Kjr@*Lj4h|HX7pzXVdpY7PkA{=)S9pK;Y!gj5+|wL*H-xx5&HB5srt9?xl8o7l*Q$08hE(Tz{wY4o>0GJcZ=p>WW0ui=}X z!5A_H)sv8r6h$h-JOESq zKi(IKJZA+@ByJWABn{a?_Z-U|CPd0Nf;XD!;Hk%~anE`K1VqS)2Oo;ArAGaeWw5TCQ18VvhUXnaSNWXNvSEIlLl;F*+^5-yZwcU?y#eJx2An7fw zg>i>PB@U^Al&r@nFXej&t6h)^5LhQOgTpuTI<;G`pt#68(6u?v! z6%`-(nU6{3QUIi)P>?Ym+Y_mi<-*6d$XRhK!}u0gNr_@dGDmS%=Zq|mnzSWG4cb9l zSg(aSKrBm?8zAf;=7T=ZiQ94{Bmv6DlXilYd5Q;S^4K50nx1p>1hJ9)U$_MYCiQlA$RbeYwao@xd(OB<`FC*;Nt}N+Sc)lKtOmGfYOj z%}Cvy?{R!Kp7PB#YH^htVPRCg=9ZlUS1v|Td;SFPC`4VGBnjdyaB?25EU^m=(lN_> zf#6%ZQLKOGZFO;O!)(wr=EA4Aj|`cgLoT?l4F;=eNA`sC)3|^CI#V~(5ku&|q8Rem z4)hc>$q9OL{6ou@M@y*4)x87DVloq@xg{r9r0XAI?_ze>{Us*GN=#DfUJMigdYqQk z3hRIW=K-x+n4!DU_NlI|4Xe=kuvZ*&NjZjg+TIbxAH>w)1A4+tpm!=}5XwuE#))nG z5+34sAWF+&yBK`_vNXm_|M`bVwJ;qY*LRU@JFz4y53A*Mbi6Aa(`1yR zr%?PL%na%V(S>F0QIU2vPOQhbJl%Vb}Odw@3p_ak`O7wkPB7}jOX_!zL(zY-LPaWIkl=&cQCWTS6tYi zhSM}?zHvANthR#9@4&jhaRxiwKGqvraR%7R2OMxr`nSupT46ntEtVZDWbfO&X(+xa z_h@oB)aod%vOxOGBAroI+|? z*+$)o8n3s@Y4YYj4?evxCtC3C8I+XQ-^NLn{~d^V)+2>s`Oy_Hj550RcjWM|pFdqX z;sqCG!|1hb4IILy=$VBRjJqY>(~)Xo9<+jywkcZ=oqL}|P`}`8nGq8WNR76lw`db<#68S?9zlVB!K6zd|uCdql8|pFi>80zvv3!EXyJS5alBa zHC;~WIOEAS#|mtd6+DES))Vdj5Pk*`uP&{w`x<#9g_}n$io;yd=3_dhjZ%}6mvJd! zzwGtzmmR4w3X;D6&9@{_q-$QlZ$t>EcDfQI%0kgw^DaDlI%Yz@f585G)$i=9JRQ}G z4oTZ?`X(unY*GsCk#i;Z*2XjPiv9J;n{$ZJ1YTZoUHU-#*Y~o%Q`SR(ELcPYwSs)? z-IPRGetZSQq zmc{g}X0SWE-_tY?@r*ajOGg@zTzGIPR$r{MzuQdd1Mk)Aci(=F9>0~nb89Wg;jP1B z2Qn|!NLQ!8+BB@<&&8E0JC(QdEGb`GH7;lz8uBxG}pYlccI zBilHkn!r5qC86FGbO(lsC+DA43_V%J_le4CJ{Fh`bnS$=X)B7W(%BU^l5pM?81>!a+0M&+a}=C_geo9CRrD=X((>c9N` zsg;qXe_PVbrAIK~fOH{~>xIN(b~;j5orNqSYRjf~*%hX%@#I4`t-39>D6kET7q76# zG9Lh|ZL$z6|Pxpcx!M!?M}?c}R%4NmF6bC2+iN-ARd5n9U{HNne_ z>~OVtCU2!y?tHri8Ma7Kxp71N41WWU{K6t5Z;#ac1!+2%33jwZgz7Dw6Se&BPhb0m zrAwc&A(X`E^+-oDlPk|(323>`ic6`wWFV?ZRre=GcGys#7pC?m@;>@6Ln>5IuRU_H ztaN$jLyA%d}0|jMmG`IPZgzX!wl|52_+0Ps3=;f^0IT`Ed z1x_{vJAm9nzSG=(Gk?$dM|-V^Ip;Y20lTNRl@Q)6OC-^@UEyjdNO{MRlKb~&lb=^5 z=+%6^Pfhl-Up-ph@q^=j^O^k=03Ma->6$YD0(Jq_CwWCq*M&FT1?LW~eQk}s%%1)2 zLvix+Ua6cUK$5-$4NRI!jkz_t&D#CR2iMoWMp9Q&FO}SEvhk{a^Y`Xh0Qw2-n<$K> z<Ay1#){rIY@Na$mx=*(;dEI(oaL zs`1%vVApd*VEo_(zmP8rBth3{0AUc=OBpc{Ml#O zETXv}HY&)WODJR(ru0sZ_VEdXpw=r<2FS#6+15*yMlfv$l3I79)J@4=xo=FdhqBkT|gv zOgeU`IgPz}@pObncrQ1-U@w$onaUFehHp7VB#$yK{#;R@prlrB=oWU1y|bUpDe%I{ z`Y7?mejrK2}* z&tlVNHT%0h8fVE14d=?v^zY6X$1t$NzX;JPFxlET4_8&+Em&8tyxy!2zACcQ^<~rx zxM7d3e^*htarL_HYR~zwsJB$NHyw|!BK1K*#oYq`-+PH+uywKjxlt(b=8;6ftaSQ6STtl=b1q--ihlljr*T#O5+n_bRemXrKds66_rA zdlJ1(! z3xr8!Xl(pBwnapcT&Gk{YF59A-u+MgGMkjlrr~@^o3MzeftLg&wwRA|f|NXV+d(xJ z*o&WtREYtq`fuIfwVzimlfS{6SJ*!w%eY%pYNk9Rrs<&cD%AG5oqU8w1U5I=B{+*I z2y)>UsU+3E5CC08co3PwQ$dSn^#u8~U<&Sg3o8@ShKUDz%5w0**uz% z5WH%ViTN#hORy;q+dfzEJd39tvp^OEA*E}+I;l_(M4B~>zG}H&g2T@;dg_tSb~02n z!1*!IsJm(g4vhnWbzLkLx_}isStdrM+HsZRHzR>*ijd`NvVHzj1pk&lzZNo2*3%WS>8^;SY&et2`~P8;BUgj%?fzS4vD z{98Q7aERdYs8)Q5&;Il1a6Yy@{o5Sb>-u+U;d(y0&q`Q+lTH3O@4QWOijrs-CY={= z6!-0H3HC%b#_jfEbLRW3D2V(u8mTN%&hxE2`Zlf`=u& z|CswO_JPpnVZ{auj+x<_0>7iugfVO4G}Q{`lQzTOp6z|pchD%y%p=1V&733Y<4@A0 z{NHnIHPE-n3}=6kZ?Kb9x3LIIN{+b#q|72Cx8a`mNO+@ymC9Q~N8uhKx^C#mj?@Tu zqJ}d2J|#qjQ@i%tgu7|IvKFH}>$L+!Y9x%Wudp|ig6F%9zDYwioq7*SB=6TR4Z|mr zjSeL8oRfcd=dcVEZxt`ZwQ#HLr69sg8uwf>#s}}`R*N%; zo7Z`%x)y3NFTG;piPXx%(shTQ`>!=k=LdLnjIh%0vppub`>XHl*#6Ahu(xOFJ&ju) z6%^)SlV0c+jV^Ee`Z1#ONwdDAZ`(5e>d((fq7YcjEucIQ?yYGWe!2>4?b`9PFWFX} z@#)(dq@s`j5=h%>{2 zsc!qe0STfhH_;%eTkh5EAMiagn&)830t?unz{O<@B3IEHBG-QyaOnfxvi;faOPGCq zx3Tt7wfNHJ>)Tn}O7`%Fk{z&2J+Z&4fs}z@Lv7dHc60Fn?5QEf11)!dYDX42aGw4b zw`CR!^7{pai+kl09Q#4^RcE!#U~PS!vR;57vO%kr?3v)bZv9Nya6Iw?QB*w4Lm)&T zPNYN%5Jc9h`5NM8Yj|2az$I&Z_(86O1jGDN#4A3&l4wW-OKf*v{q*2@G6oipHyNv+ zlrgn9wJ6!ySFA-GWd5xGEnaoK3mi)WV%oE|PXYdw@s4fsoxj|cm^so1eA`Ta8lP9P z*V_RQV&>=OB|yF_zp{TkeL6i@!D=ul;N_LMN@nJi0ftx#(x@??z;z4Y5O46^*64km zWivad-^rSqeFp!Qnr7kK3Xufc99ZjXn2e|D`YbFbH+^cZ3Gd%@VwLNf7*teM~c`oBUnc~$;8Ak ze|}KhNa`YOGQjh=eN7E#^yH*+=MY-{DYq<_h&-ld|EEc=hY^d1>UG|Ae> z7T>mh_vzZ#7v`7zmP3ksJ=SULEB!hwBG?#8?ByjapzTP$Ybg_gFRRA(@;5fy?lyjY zR6Ra?Ki7OOpBu)dH{DQB{tnjb!Uc8|^^Ts4%e7KZ3Xf?7gEr4bE3*|EHJR0 zE-xcvCWel=&vU!yxw_W!5C>_u@<}WQ%KWmCq1w2Bi&Nn zd}Zv2o=}@FFSlQ_t7JfrW3d~6x!ulDUg_(yB7@dnLaP`J=7`K(_a;|Ue=|TYFJp+) z=-?bwNCO+Yug$GBW8#E%YE(f2iJBg2{q*`m!3>MXY)L?RsS1a|cAlHG1f_~Y5tC~L zom^7rRRaUTD451G`Tfh{C>qtT!_T8`o#A`&?j(GAmq;5gIw-XjoXD+eB7_%!t#dO< z;T*-v?IBr`xZ>qpL6GSA@^?NdwQe&nj;}bk$H1*^Zp}E8;U|-x`(2oF(P72&Om;ut z@~>Z!*L1p~8BgDR{~cZH!p5fFa*Ff8W;}MTEwE&uymlu^ z5~9nAAK84>+2jB{~Z!Jt(2Iw+){QnLSNH2Y2$07$2%oadP78 zYp?I9D9Y6(=Z>?p*<`$W8x{MJH4_yZK%^JAOzX{+9Ms`w;;)LAbBbxP)fE*7;~b_{ zs^sJr_c3M~?<6dL%=K7kzmH{bnp0Q%b!ciD6%*6wtyHJzM1QVE4Sk-A=+I8Gw~beA zKOu|IwSV9vo6yT@QJ{7+{W2a4>h_i1 z+OM=&Wfidg0S(uYP#r;Mh}{B<{(ZA72VZ_b{k77u?WbdP3QQ^o`U3r zF6M6P2Ti6(i00PS9hhorjx4ONA$^ylg&MjG!kwqzAKTKCJ&O|cx*?EAPGt1DK6$g8 z9C1k%11hC*Kv6(ejv7Uf_!4iyKv$Z15tHF18?}3gwGQ6;fD{AWbeP;#jgY=%%Y+X_blEJC*RK0BG_8NOuvBS$RtMRmAc7#O6+*VRivpMD?Jm%e|7urMe=6fJEPUXIq zl>wV5wZ;aYoU+jC3z4;YqI`mKgVq_8fSmcRaEbZgY6*T6QXL-Im&FsMd;8)W(x%@j zz>;eAIwv?NGipBiK@^+M)w&*?*GX!h{k%9VZuiL(my!-G?-g4aeAH+k8UC6A|B4B@ zvz}EFXujJnkMv#H@NrX8@twMN(>Gp>;;tLcr_u7GpKcvN_im)3!ZBw2-xCcc*YF}R zMQ(>UQLL0vpN=U&SUz01l#iy-C28{YCI*!oyQ}zV_nx<0bDifu0oktjE9*qs^ZS=c zYHDf*N2;7*NX+99bLJq&`xBD{TU&#NgW=e9tG#h*2jToa+lv(V--%oy=8x4I{V#O2 z!R~Y8WA%^;mYY7Vg!rHzl>c%k$xD1i7!U1|K6`sF-lq@3h*@MV-D%)X>fX3%l@t!; znOd6UXj6B1e7ylEc&qq9fk8nSGg9&ilbfr`d{d!r!w^4T5Mmxt@-I|T?S{tVK^)eG zGbAPmjnZ5ygl-4ae4Xo@vIp>Zql0O{4$q^^EPK-e>wjp|$u9B!jMAw|)w3KzY=I4g zu0V?V3zo!1rzj>R@#{djZ}y!{y~$^Qm5a+EhUdaXyZT-!P-R6*0*$A)B*43dbCEz0 z6G#1M--Kg?yOMHCw7Q;<>X6J)8yjOnIVkF>(@lw)0>719z&duzCiA0}348ap zm5J`kG#QiiNVa=UbR0K|^7}0>Ibr;r{IA6j)6niiKQm*`UA(f0A>nj?@)VR^@Wdsk zyPU-<*#O)~^71saw^k}q+SWb4IN+8x7Azl;x@v#xvRiw-$(a)QMNZw#@s9l~79;7O z)|gXMWtHS_`=`8yK!b0PxYrg6tRSkqy~pn}a-QzNT_icD3$`gX{z^QZGkU6x33K=^ zJ&l$iL~)ybPtj`(1xr#ql-IlBr$`*git_uy&Pob$;$wnx%_)*GZkZ9&*;$Ipv*|KD zpkn%*D@wyMSwtUT03z7L*X0<^XBm*!E%C?1p_%5=O==sJB${jPt@xWEqitR4wqCGy zUgC>i~NKbo^`_Se9|$W%_nSe3>O#I?v6L*n~WXoULV_=<#9y_rHQE}bTMZs zT|Y-2^f4ih`(UR_*F2Tsi_x8z>;VO*Nc_KcpE@9PsYmvze2M%@Xl~MW+3^U8iFdLb@?YvyC&RCw}v?(jk%IC8^@Ui{+@}Uu# zyA(hH3Tfvr!IJ`iQ*|;++?Nk{{3>93o4TNg&JD#!zeRl96f@-Z>Lm!z zmg$NsTwfY4-RNoXO_(#K7mRVk$l|nnGif5ZMoEIkf6rxR&Dj(qU%XeQC(;CROuGXx zE>U~4Bv3_2?Z0JN>mx2ymhuhD z5#guA!Nh6*g9k)LTJT)En_npSZ0nQ+g60fp-Zc%1dkr6{tW%xLt6&fAyPl;)9Ctj&G!M_9<>4`C(Q&5|->}zou@0o%A=%=J^gnC*wq3 zVj%ZfXX;LI-GbO5tK49neD^kpQ>A!bCAt%I-X@6)WZ~nZFLWpskxViL9+nf9oYVpO zPzyPGt8^%JkiD$BM2)~V93fC=tbTKNFvdJxEOAE-3h;y(#%u@~C5>WWH1 zjaPg2w@#7x@gFPO1!vAbf8`lK3KE!z@jkr_okzx%hN25It1FBxkh?Ynj zZ#Q&XJ-oZZJdCh3%bPLX^l5}vEj#q6TZ65fSytInyjaxQqlaW9b1g{Ncy}zleC*-M z(F=3h?kr-4Qc@{zwI>N0@P76k2LxtkXjE&=N+_ESwAgN;|)&!4n zUcY4~)w;+3^!ZV?NBx#T_1w&=nPbx>iq}<;Z%P0kxrTpa2XkhVQ}GW0QNZ3Ny~I$N zQSz3)D&ktJ=0!{lA!7Qq7&)^F_eOEXEwGFH6CKa)uRmOGqz04PJ`B=6K8>Xa_K!D) ztSIp1?TZ}4AorArZRP6jm;KS3{hnH3_GuxVs7`cim$PM27nej4`RgDookbi|d| zbT_wK+}=i_#lTp&p+UCp4bh9F zGrf(V#=ax&S$#Xq5Uf`#AWT&~b{NykSPi)-#tns?5sAK2c!6ZnK7;}mLg{Oyd+II~ zk&lg|E#EGu%1z}yOaP}Dxrc^`YZ;o?ORPjmF9Fq)1BKDVBSB}nt%+iEd=ni%zmU}r zeD=R?+NRjVdP|2epR)%653kB3Ldr|~63u+SJ zSLYK>5O+N5$*qvUd3?S}0>W5nA;>G@EDzHSh`K~h>~8BPdNUr?8hq|fOOJ$~Hf9N4 zrHNrf6w^9_bGRfVFC4#~=Dmdg#NVQl+YWk~mjTEM#kIE2~R91w<4n_#5iG6sJ@s-V5XZ zv>fO`9H<^2SC9FG7Yf+owDQt92jfUo1c-Gl_K8FC+?|M6JNO9q7$^P$tXZO*3TA+~ zbh_j&ap=Z->u>K-($m@TwnU%Qqm@*a+nPjO0{fz1mdUrin+9xW5Nf-~t1kg&oYWBQ z<|84te^iOCm~)cY3z2Q%z+^*+;th7+E#p%K9Y${~jW8{$1##VNIW9r+H#Ur~Hv4=n z*BX>+1H}fP-LhFAG=A^?^NZllD;DQ1`Jcn}-3f`_jgp`WCGF%uSx}P@zq(1KT7D6& zCwI%E|GFt-nx7XvQ2ak`7O$%Dp;}LI{HKxQ;sajsc+j^!Q8mDRJ@!?odJIo*2wBs; z6Z!@NxfyXlI-EfUj@W`^{5C5$H)gi;OYvz*fs?mLN+?6W-DdqujL5+!NYv#M!=<)= z-RLVxb0_o=CWD;*`ELNXjg9~PYiJ0wxupB(Q7Qi^x+^E=5L#m5W(2QflX4Js4t$9N}eX{RGN0aVXz#q1g%?Mt@eBcp&{? zgScvQGpGg&Rxo52X!ntlJGIB}Rbpqndp7bXy7mlWnd+`Nk*@t~GN!*eV&)f!`fCfy zFx#ZIUL!vl76>P}7q}Hmmv$Ai3!eoIg94ve!{XvFDjekX7t(u)%JCTiPa3)a^&LZH zQ`U15dux2)SylZ6P)h}b{M=PuWsD0VKmacSEwAzvE&uQGPagZzpmn$DI}TxGWf6Kx zzgIz-PJ=>tUYs#s-W^>#QyFR8vI}|!s1T^s^{G%j?p)~!Qq<*|tmGvBX;%MMC_*b5 z0%hUnRnvWRlZGhu-5p{UuLQ6t@8rxP_I8IDiYq^H}aI9aoF2M{&1bEtE36BqWz zi9jffl$AHmgfV_8BAYw?pIb?mF!H&Xf5gFo<@N(+(KkTyY5tLgO>1j_#G4dOhPAQu ztg3)V=<8hsx=QztU=0H}+drUIU_=R4N%24L0lvKQmhA5MPa_GR3I?Y3+pKdN|BSUn zLlcv&0sKeF)00yszfhj)!xt8%hu`z%-5gX-A8`&)WWh;PxCAJ2;3SD(EV!+|XWh_Q zhUbf+l&+EMXRIM)~Ely#IR?Lc#aOXNRq^)UTEmN9Pk$bJzb84Fuy8J29$h*)RY zm24+|fnQYKsQ)_s`>!J^-3};$HdK7l5H-})0WKjnGBAO%5G$t*wpL?lf0{T{A8fUb zT5N!i-1{(uXjzR)GS-(7GrK(aG$hgdd2V~Af8(G1!*=37lGrg^;1Dg>MhQqbcg%lH z80R^?x1Th06KcvX8CcM{Sf(h&&PKDj<51=FDRJp$xxBb(``#9n$NEkq1|^=92rciU zvzuJ6P9`AMJ8(`C)SFVX(92D;DbsC5rj7^=UBAfyB$68uNpt(K5@}DmRTAxP%F-Sc zCwkpk-dr~r`KM*N9pW$MeB=mAsCMxSgmF;D^9JwnrpkUaU6E@Jc5s9E!!YYb1M)ZU zDG!g{?fU_0;uyGjrJdz1FmMBB^aW`RK{yfF!;n5y4J98mNjfc3?ePs%2%9_=)_3Tl2kDS3mtCLH@{(86iW zV*-P?4_yzpfiz*)0(!H4vLyf^3iVz3;0gdT^CH5%Ai+|RAZ%Rdb@f{iQp1;CQon zdNSHcr3YdQd<@eJu;9_py5=v(eGm?+NMUht;KyuYb>8esqm2F_dWHs@1*-atwd5nIwfPL zdvr^?oF+@|6>xXnPMPlc%$Yhd&24TA3RK6g;z^D8M%;A<@Oz~}SX>>!wOd$9a zAUcFHWG_nKd&8A%?HIz^Kaw+|;}F5If8FWXTs}}Rz$5Ul7M@#>k2mwEnRM+{+XE$( z#?4CMUQ6R%tMBThr`nS`tRKqW9rFmFKLvy)mnmf;(r)@-g#3knKSctx1^n%rc-__Glb*il@?)zZa@w$+LE`ux1rLxTLJ4oGAcLR`(qZ11TLI@;Z- zT)gSZ;M2^8W$*d9=Z;M>%}#2=f_b{*mS?r;3y;!}alv)$IuEbAIvz?jBji|~FEa+u zynq98Hg9fXA5RZu}dLhmi~rc~)D0@4D6 z-kT6Q2nitdtl;~-zxSN+-FwIV=Zn_*?f4ara*R?_A&th0U1Q` zi6#L7kq807IV+Nj;FHp9FtQ{Tr zc?5X)xb9fN;jds~yu9}RzJbTl*^+m3fIJNha_N<#K8%2Xlmh?%96>_TEdl~%708oE z&)k#NCq2BM4IZEV-n-}Z^D@gfq8qzDqy=6Vir!Z^Xireu4(3bS7F5{Sb6XWu3>g&c z8oCt>j^z*93|79lKq+@kAkBYG{JP?u!<3|HMzbzP~m;yCP^xzdQ5yszIUY+}V|PxIf|9#XiG1;fgk_P>#xo(2&S25{$Bk5eIWlk56TeoRbu>{j@YB`&xhR}blGLb`|yvr zl(%**#*Z%0Z;A1DcM1A(?;Le>RmSU^rNu;q4(&ZC)9or8=n{$_y`UQA@jBke3~B)t z8tyu%-18tHn7M}+4N(A$r{RRnx(umB$L+;4f)liWUQgemrT^AdqkNEuTu{~N{sfOl znzQ0QmCK+_X^T!XksOeE7UTQN>bP_7; zd=T-HX3**YlM9Ux%eL4KPo}zDl@sitgxzb&GR7Xz-K2O{;>yzyBp2lLGWKzG zdslYc=nxxbxVN*p3z|5p4Bah^r-anN83oB6mbnpP5SGwx-*3WYaZP+Xgwm1W-G#C7 zlkB`k?)RV0%Lc5!iyytsKW+~#=vqsXZ#yW9m%OcKdfWZj2bZ*8fh1;G5Y(SCMSEi= zJTXQ^NK4jGk~*~{WEsokViKnlsyh~&fD9o#^i@DRVf~8 z0Oj;YEr>xZ6~)vvgOHNjC#BOPvxtkzV!G&KgfH82B0^qCtgS1|wshSS!j6DKJgcQ1 zL}1I2w2(I}p^*Zr=!NdJM7Cu$2-{|-R}gX*@o>SXF9x>pVttZgA>~+Nx}UY4g%_f?9sPHrX@xT21Y(HxMRIDKBoJ>`Q4Sn+^pl@@xFHF?--dL30woD360RfB~a zU?y&3jIv-3vB<+;7x>=22!L&*qN>Fp9}aW#3^Yw4GyyxQ)8F|D7B0}eNrF|Ns##Ih z8B~?WmB>(3b+R$)qJ!za8xu= z(ArCZJYz(0M0uBJRoWk|K`uz-`3fKQ<-3qgBF~VhpQP@z%2Cg5yVsTA2ngUFSO9Km zu+h8AFEK{WnT9H9Zmr*z>_gG#J$7E&k=LnZA*19=BA1eEC4QwlJ-F-9td)f1LsdWV zFzqdhURP#yDe$|oH2Z1nWn$}Lxj`gsLm4wciK@QhA!&Tl({)i$a#qGMdOR7%%tFsv z65GnkJ@8cyU90Ll^&3@PKxg0IYuMa1x1hRRUBA4lB=!g$58cg*_n~oLpB7A@wkSk4 z5_@6>L@*~@j$gY;AO);)aicTxZFB`CY#hc6?k1)RNyvbMgD2TwFZy_(g7c6o*Od9* zRpwU~EbAwqb+<+o^Oq^|Co(y1d=yTGRc|kr?I*{xUSt!dA9;BamVM(Fj^+M?vMGcw z`sMLe2qCScDK~p-m)fN+(cdsgA2+?XsbKu*75-I<5%2K2&l#1=PF;5S@u63VIOKpD z3^)##w+^$C@s))TN@ptWu-Vg3StUBgkMcpOSWAf8A7hOAr|1yyyt-6J*O^K^^!j#C zg(A8Q0VQISAmc9!S-|P()5U4cTR`06^poQ0xgC8G2PrHiinJC`%Xs~dNYkII+}m=> z(&_{RHMDqtB^E3Fv(~fK5URtq%;Tx|YZ=~1-ej0*N9`|LjTuZ@lT&O*Vs5$2)DfMfDCY9{)sl#toQ_jb7*^x; zBtr&~T^$vkXQI$bwpY`VBNgZIH}&e=%DD03JpV%5 z1s-#1cIyTtqtZbbauQWt+r35wnM{TW6PM}W?<5$zEGhE%<4zP&iu^?fwJDV~b>bLl z?&XhRC1*UrfA>+-_19fo6J5@~y1z@ciB>(;ENNQUTj6bvrTTH>jAmGAUH`^IVBaIE z%gH|8g2X|JE;cADWvM$zMU1K~Sb`3a+ z2W1|JY~?XC=rXF>h+jE&xHhxehano9%c7bj(#LI5_qBNihzIzJA6-HhYA>!y2j#xK z#ji|;o%j^rqI8gruVGg6q!;!2lpR7d^nOdbM4w0W7-NVGOXfYVtRCZfQyX3P<#6=2_|WKXQ#qtRR^~@ zEj_X@bL~O6l#dOYQnjxZIfhg+OM&rqvN&lMKQj`v#I@k z^gcfiF!4Kf@!4*_7aSI*V`7q$pP$bH370-`e>dbjZ0xo?WaudQYuc_ynS zsb7nW9IUKzeSLihWK`5mij`2m z`Ppj8V_Rj#duV0eW$-_m#n^K>t7bNcPQYd5*`)VQw?UOda<+PE@g)kjr4jS+L26U) zFVoVb`=o!V{91Flb$_`lCpY(C6uVaW%k~?rEG$bH>C@`P zuJ}w{6A!t@{TAM6qiRh* zAT8WCV#fRT?kUX9&U$WCW1$3!HhphTCzzTRU3|m-9O*Hx#BcEE&yLGx{oaP49dxwR!gD@UxcvFI^OH_( z^kWS^UIlH&6*kd4)xU1|94zOoj8~Q5)gM^DUS|w)zz0PBE*nN|{Pi$&91{r!4%@zIa}=EOX8Cz}5iD{~p5zu67n`Ln@~DeB zPD#`s?~WS)_yG2v&90R#P@4=>dz{t^%{L|GixlYMQewglj7- zDA00tE_HTx-gQ|aIrkSNy>qfssMak8^R+LNlJ?Jhd&3G56%_^Av-ya=z_ii#pz-uj zdT?;idc4w}Y)4l>M^7&o3|(MY( z8R>s{3UXFf)`M^4zG<&tp9jZd)tmN+jKYs0H#1zS#_Vfbu0|$+qx}+lexC!lB-jfr zKlEeJRr;FYYhj!vb$I{MxBq({Hv#Ke)@?k9&Q?v#uBj1|lb2r!_dCiA6PY9FPLVWJ zVDLbq`}+mKP(keqhWz$p0(hjrf6U@&g(~ZjD%jfEI+ki|kG!`UrKQ%l*q!JyZePXD z%q&YoLv!dd0c2(~@zse|)ERm4%B?i8JkOFHsXxCWqf=6ffjzHm)NT${H6GhrK%q7R zxf&eo?ADbjm=rHHJdFC{3QY5AY78*RZVcxX-ao_`eYTakC+IZyL|2+l02uf+J5Jr= zfvwr*H^vtY_`G)Qz=^E3(m7snWhXAI_A`Z6{ty-BQ)HbbaH6CH_XD5nbw%UM-=&MTtY$qHt&Bi+@-`ZA>J(Zz zjeG1YE;o})+qs`?HIuK#Tc(IE4Hs8A&C3JtVpC#KX4x}Tzc=M2(`H@Z=`Y)&{S3dj z=h8n~TR8y!BH*)u)GNSrhscB{dOtT*R_XwACH9^GhEg|(1HMqp+q*7IY~?-#t*vY9 z(p1uCVq;??rY*TNw)73Zi#yl}Sh#@O##HAb3KvrqU>+{1V>?_tSm&{WcQ?kbzFnY| z^enfrwZ%oI9zBUMtm;+EO65IGXk9{Y7l%AflK3)Zeshy=_U?^5i6teEmRu!9l zOCbR5x|RIu`=zluk201L>Q0woj+0#n@QE&(%Io)4EE!UIqngO>`OkX3$noC*YV-k&&56NwRyP63uK(@pQoH-GU24s&Ihl8P!nElsA4-Ytp68juixUGmKbo8B041QL)M zD?qZk8O&#z0?3*jSRAj09gFS)=Q#etn9+MHfB~?oAQNU%Dz08&MqH2@0Ddn0s=|VH zUad5i_qn)KnB_nAhS7@~NSZ!3{Y%#0W^YW^zcSx}vU7HN`I6A~eCyN0I~H?H5`*{F zqhvT5;$^?HnCRF6TuuYbA$9!r`=uo-$keY~K|w)#S0n39m;;xvuRTGE?tBzw|XkgwNN>Zls<+e2r4ItRTy`QEh8hbIp71lSpsKL z;fb@sZA=t4Si6jn};8&7k9>&x{!JsGR_ssh4G zfBTk*l9JMAy#j$i4AgtM)t{amitUb=<6;|+veMgH(#7J;b#--DlVGSmN8cSfzyXnF ze>4>6vl;=J#mnjp%;U_%tRrayvi~KXl!I6Efz)+R%~uBMQ>!BJ@I)umr;^LyDtlSUi9~{IOD{Eyv zLj@%b`NWLguS$GUd=IRRT?VxQx9ImjM~EHJQm+`TzPQA;lo!VwjWX&`|_K%uVJzc{GT% z<%;NS=YD)B_7$?kquPj0u~FV^^SjOI*1d^&)%#;2U2)>N2m9uEeYda4)Gwa+#E;&< zO#HYL{g&_vd04L&^Ku)iTD^q)HrfVh^3ZERlNShZsOg|J{D0_ZriY zgffbEXGlQW#|Tm#(AEO2)YNo@sA;}0NUWsoY(My|3-_I>x&O&EQ_Z&(MA zIE)jN5C}%dyO`eZHZ>OX%A7^rnkHX=C&4xrn&#pWD~yfzt({?qVi*P&lqwvhs-miD zfBFKy=Hr_nDg`vY;bVrXC?+a3wInVs4n(W6KdwbzGl#O3xV0)_CVWD5>|^0cNDo9< zYa|`2{33USI9`Xb~bM3X6>Q;mK1%cV#zg zosG1`d6u0?Q!8>Gf=VT_7l8<9=(FF?iqMIfZzYXT6E z$X9-2_?I)=hcj_7b#%?K9?PP`e~}sfiAP!=e)+fFxE5Z+58+?=KkJP$?ftw)WEQki z15{vA<3`O?_gqktD@lnbak;vGFfNAHl!fVC?7WVqCO!y zR)Bd67qS%bgAPopVB6N-DlbWcMe<_9MdwOTzd#U@>j#3F#&-DO4NSTxR|n9&LF}N867Y_B)JfL zMOYI4%{^IQ`}6Zye0dnI1Tgg)5#?Zo0nWln_WhT;Rf?v+s0zN8$|G(^R(y80&+z5>6L zgdZ<-U|`7F$He+h*S<|0#H3w!#}ca+Hn@d-;$sW1kw@OMa`()5SnH;x7gyoAw!cJj z{HGLBGZ)`d^E)dmKfkE|Ph{EHVH6mTVEWFCe~E;s-y5M#9xZw2kLbu3bQ}FQGAOU3 zlB$brl$+zR zdRG#%Ak{b{wc#ip+%K?`>uV2}2NU@>UVqi3D>ZGBTNShU6!JXfwdbr^cKKVYta~l@ zB}H{;AYR0GmfQK1K7>qROxpvp4HEauOnScFCsS7+$Wp-dZ()f-71h!H10r&jvP)DH zG{x_DQ_>iZa9Z7-_SGEuwz%W@ivakD=)KZXHt$RL%rhlfWwLJm+g7)>srk4F5@!3HxF>K zkC93x5HW#;b|?mGJ69>jUw;kPw$K(dD9e0VGRqoz??fQ-BJzjNATzV11~Zx>I_BEs z?5RV(?JE3u8iqY6HJW@icg@)C`^;4zA0U?Ermh$f4BLO@^39>k2y`+mHBSFEk`;ma zG@yVMM^)4EABM7sVjLXS^^!$rMyN4KyHVPNg!j3^p=0W@SOWa`{x1K9??sj5Q6wij^$U?UV0-3(Y5WMn}=P8`(ht z=DDKk2d&D&S(52L9*70U=P4LPdH#^Iezu8(R^=7IIymzNcE4XhF2FM_R0N~k_!g4 z1$wKlF*f#hdiAObo?NgPBpYv$53-f9Nn+bwErx0F3yN@?FhAUNoa=c`O3pv&wW}wm z@OC*IHk?;lqb4nGA#%D1RHB#l`m29Cc2yl?w&hKFlc)D6sGv&9A2keKd@SXUOq>KH zT1`Bdvys7{XhYYIcVhK2jjG(+_!}?o*3B>rJ-*Zza2Th^+WO?;kVk;x3za9&^FtYl4=O`4-TTji{u8`P;WL>E7@{!JT2RT7Zr z1e9kT`$*pQ`*#($WKn~@>$9HTCl|Gc29|gG0udE^ehfM zE{=j{u~=9*UFvwh^#G?9roH)VgsLj9FmEt6kP-;}nTA|wFsIEkBaNbr?Is^Nm*@JS z!5sw^d?kfu`u**ii4=4+4Z7DfrVldaw)&$2(S?Y86VUIV=U}h)N%56Dk7MKHeW{Iw-0d7sm+H8Qbvf)-|yTc=BO9HHauh3Apyp1QG1!#a=djH^fB{Vue z|IZV@x>rdV%ry=@RN$=Ppx(yRDk^NM37aOFURyGl;RWFSqv=$XT@An3YIaK@uz|ufB%mrI|33jj7rDAW>5Rj zcd|bTe}3Ji)O|)=i?5lc8G|aL%zJTjBS*Y@U$A5El~d=^G^1g{bG66hpd180H%*%i zTuMS(^mqvT#GH}65&3Y070>zYgF%-~&3nhNrK~on+CYsltJvw6Z~$a?|Mh(k{`*h! zLCBT7O*J&25n`JW;lP71tRcYT{z8vH>}K4hL8yi8vWToG`>KhND3vjEjlFQTxS3C& z#YKi%;EO4_q}QKW4z7Zs>Ts^!);jd_SUl0ceFJ3TmNEc7;f|sea_eez@Q(w4Ap(yR z=Yc9%sy+8W0)0ydZ{9QeWKvfMI1mw77`cpqBM9^ze$Tbw159zl`b<4)iOQ#l{<2uc zVzYOw7s2y~PqhqldMYVxz8!dT>&2F|(CvX4D$RW2Ad+(#1N=N=wc+8KO5WuF#_|;E zsw7yYI6m_jeBitOuAePw_8hUnlcsZU z?!=u={K@6zW*DfO3hB?6)qvwq>vTq0ucK~o>!p^E4==7}lKtVhUl7AWrud=%I-%D} zZh)lA5C0UU58+dr^EyKVHg49@+sgS-rUrv{w=^3i8j&_7CQPBg=MbMKFCkWxeSlWE zg=Xea0-$Zb4Lj!_Cf_v6OLW`n`Z?lWoE_)=;lOYoq;X5M=Spp)V6|U3I7Rp+z%{3g zv&ji11*D8(OX?6x5Y5eBdh~*ybHc7n0MaF1SX`Q)Q2+hY(ZMUE)Gh0qL2Eokn%efp zWo@EdeDcRya|67rYIrnbu*5B8=aOW}Uy&eTJq>5@NkSkqs zg~%w5nLM4k2IbO=%~=nmL?8#=TG3N3r91udziF}i9@lbo3nfaaJ4Ez7tV5>c6URD7 z@xbDw#n>m^3^I?bF^Z)RcRgT%FL##~FEB{X3)~qbl|IP%!OqOCV`i3oT6gZP(D|!= zOfxbeBqILBoFzz2YRQJDt2;`#pK=reE_w!^mCt)S>N;68BhyHS7Oc&E<5}{&suV#s z#Xm*N`FZfg?AAYbdqwoTlnTn38lTbaC{-|(JOcw%nCa#TEym^-t`sowXL=mB@SEos1~E`@9fEg^-*(|p|?`N>XvSH6xdX__iqGw2uO|V>m?+?fBl*9Z=jZ)`ZQy zHxYAs!mGM5EgOL?KG#cf?p@?q8OIBJa(RGfz zftutjgH+uN7jfkZ2i*@tm}sljl#-xFagfZ12>3u#ir9Z&WlvcLPTf8%B#{vnz} zFBhFqWs|d5IFkOycITPCR?d$&5>@(`YzhS|+DTS3y2+bCCRX9!+UB1Pf*b4`jC7x0 z>}IdJIz#p*qwoW8*u;eZj}y1S#Ie-R-K#WS$-~>0qo;!StS(5c)AKog#2T^n9OlhHK5;dFf+rQmj2ZM|AF=-6v=n z8|KiN=;ixyPZl%!z&`uBe}CRulBor-a{<>xLUaodW-A|)JbX-NKdF0qiiZ%w{<@hL zXOp)8@?3|eF#lQup?(J7pEYsU3e28R=KN0R0uM$!TOFZxdrJ9U*jiS4{f+&4V)*rc zbleKh%T;-~`=zBu^Bu211|=;+XG;=Ef)mEX0K^UT5@tF%ew4)1bigOAWoDc+2({+v z9FDc-Z<)NN62+85EkEGpT&1(ti{`$7Ko&AgV!LOj>gXd6Trl|}G9=71Th!;T0wp7q zu}y+`?q;gitakI>q;aS@#zu%S*9!X$KB>JA++b{JF{J>q;_7ViVtA+F`xp9reclmsEO&iehK17lV|xNY>PX&hF@ z`HM9^U7y|(VUK|@_3;6N#7?ak2Y86P=6|j;03ap?eHyHGyHEMv6?H9x^OEBPjsI-5 z=_J1h=6Q6CJD4;qz(+yiJ-3UNGp~}m>Tji&=F=WKZ5T-IPF)Oq7Z31aL$Z*C+a!L{ zoaTnVS{9&KAwnCwi|cw{WDWPCI#oJQDnlQbJ*~&yo6yG5s*?*hy(1Ah3iK!BzB@zk zDow{nzmU%4XW#a^+yUzARD#Qx;z>r>@mx~BU#wrA_({d%aZ*lfvQxcFXI0Q|>R0<= zFf~(e{fTR?-jzj95d+e!sM@=oVC>YvWF{?t^)na(`N}dCNROhJie@qrWHkLAlrbPq zc=A$_p$L={YTbHW52RAA%DdPnGk9ATort&UL z+0>h_D)-Xogrk3*NWM0v>Sc2#?ZoYNBqx-;ct=&(spV3n1yTd_(p;+d!nPLIXG)u8 zFmh+s$<*3~X3Y}ENb!{sL6ljNnU*ynpq;`kag-ZTBYqY_8rWLMg19MrrqOTikcFu%pdEx8M~_ZB}=S4SX`4?N)*=>!`xm5C8|%E z%R6fRXF&ZpE*=+&O+jiPgv2ojx}x#PWe@mO}KEJ3l}ywNxyuyHXvPh>z>{k|T@yd=Nkd#1yS9LK)mGLsOC(AAx|T#%b)S zvAa7}vxYyLjm;|dD5JY(uV|1XuduI00XvABzMX+|P#O7nZ7vDBoP*x!QT97bEO#lW zIsz3(@eL9Od)2>ZL-Mdp5mKUjPy*X%Xe!ly@&2;E+RWr&Excb@Ia*gU%QojKx}uF- zlf~3o7PRO&ddC!));DOHQfXVYzLl!^^UJJ@pJ1&y1A5^>NDX@+kg zRf-$V`x#brkP4>wnHba?1i$~prWO^$8(Um0?>TqL^VQ6!YaoxjbJ13c+wpN9qoBcw zA>>ae8_oJ`lC8@k1MsiwS)U6H%1$ecO1x`SGd=IEG{8y)k<^o)WxL0cTMk+ZI&rf# z-XJqJz}s^x>ynQlJ^iJ$50v8}0*9uZ6;{m-pp6Ud$_QSzoF`2&+$OxCnAAN_ z`#4A&{k>$rhNu`eW2XzSS83h&weX9}qYn{Mk#6yNkQ#0DV+gNe2cldbeFZbIF%%}( zbS|y_7_(zEdC-Bu%R00_XvwSX%1lWlQyQ{Vp8TkXE)31hVI(bToy#Lq$7@e|n+20( zVj5FWJ7tsy(rL*N$>~6ui<=QIUK<;1?LT+!;ISX(S#F`Oe`?Kp~rnB+R4L^U_3 zrXDg9Y5xPsOC%nw(KWb*9_$csRs$uq8_9e+K3=UCYPoI`VUkWNxOCkbzB~pz*ah`N zs>b8s0q&*9AcerTUpsYA>6om3Dd zu1+g(e}t0Z=D&F`DB6Jy|A8k$>nn`}E7Yn|9vV^8r?jx%@Og;~d(rLbQcYFZ1A?Lt zHS<^v+SHa;H`65TP`v%T(|YNmoUXZ!Jq`ygRSHY{X4dOF;ycehl?DbOEiK*eZg2-u zb{7>C+1Cs4vp>|#&p$Y*$-U3cEW6U*Mk?XCce3Ji?BiKeMSs=AqZ+%IXp;N;U{%v1 zYoH{R+A7JfLBO+oSWW7mXvIG)24p!CO$@U4hJP)Od}FV{tnn$S2a~z#TggEzLQl4K zZ6tBuK>Iw!G`dJ$zuCmGDqNyUNGwEnqZN$E5W;VenQO zbf1FqWe{?)HBevv}l%?m~6S6 z{6Sw=*q0ix`uGnU{Wg=-Uq&jtS}d%?ad!fKXwB@h_;m`qxbzZ0s{OL-YBVN;3Eb05{#*4A7(o&R%Zf!29$|e=P z&sO@AV{W0{-UcE@tDYMeCTc9$Ft^D>Js1L zKsr}jl~k5Vr-SLU5SVo%|m1^f*>Z`Fhc#tewT=jh{LwIna8a-;M z9BaZMxub&FFP$=xWbNqOyDE_&HC3bC(S6LZmPbwVN1NmZ4Li5deR{7#(2{_jbW^rW zS;kTQ?ytK8_A2Rd;<3Exw^tl=gN`%VHG$ejC3Pdvm?`W(gp5xT|2V?c>@^lpGE$`1 zqHbp`XQJO2>%`)nGLEhb;_(VHrLQF2@fyiV(0I#bvzQ`?_cGcFpXz5Fp_P*PnY5(irLZ%e-&_Jk zS;q`~NCaTn*dG+=aKE)~{ZfmNa*rL|z40nPpSy!dWIbVcwwdDQ)H*-kN(?u8`eZSX zHr029j8SYugm*w>l`GG(r_xU~_0B)U)>0F2_;*wK1@9J%wUxZ1HblJ&!{`vSYo(8; zIwtO(p@jWJ(U*YP`{p!Z=l36L$W<^LP1By)qkQ110`PCjVQU3HUonzJZY2^f|JKx+ zCv(dqm!N&eh}-+~$7|D^jowwSlSvT@-H|m*Ak8=NXrXhCioMsJy2+g=&xvngP@U9U%KcQ{RfoV&sO(fI;-&)5~FTWq$lQ( z_lr{Sk3%J-{jXNIT7KAY_X(UbtXF=6o)bJAh!BImQu^F^S=D}WKC7^cR6OA#V<@9= zy_m{;`U70L0)VIed9=@-2kfl`_LFWTOX#iHKw3=lJu+JO7KS0?AF|r3k7q~?q6N5- z!_~nYuR>p8X2ZzCJrY-arf;G-vC^a2rl*Ib3$Z$Qc&c%tZPp-YgrS!GINeslhIOrW zHXbGml*an{c92-?E>W$aU)@jIDLz6QZH6DTjaT~kXbyaSusi|FGIWTL55Jn%SyL(a zA5iWZBD6LX%F8ntBWY1{6nAp)yF4AFQpsKQ8!BFSMfm<+!5Gw8hlAXlOWX205m6?8 zwVaF^9rdp1H2mQjVBmwo7nfGp-`u2Y*+hNPmc9wyftC=rb@D2Mu5xUr>BZWIrvIpg zKV#H?@Spp5{=*-`yFi@#xz1OlL!Q+w1l`^L&ZdjWMCtHV z_GXukB{+>=JGn7#C&0+30>G=wI_K2YT}W23h^s$7{<*&V0lQ=+ z53&yp`=xrR4(z=-iF;O4`Nkj^%?i1?S-_}Hm+{L1fPYP}9Dt-D+s=xIRf_NSHq%FQ zLI<|6YOnG%%ei^>yn6pRxfx+lJghmcSn&MQZ;wE}f6(9Cd_y2xy%Y!w|LbB-3ui`% z@uQheP$9A#%~ThrUh40@U{F~kLpeC*z81A_rMfn5Jj@`i2x!lRYE6P~PXX@y<$2m1 z93?|?faj6jyWtvi^M9FHcZ&MpJomUknuQ^0g`I6cFoz8bAZ4?(@e#RvJ_tb}eu()Y zO961SO#R%o;Ji{DIkDeA%H&2E>M=orFO&EGoccf;J8C>%iV)=C)US^;mtCAVcRS&A z>0gp}Y!!)k!Hk=?mUTJ##TCeJL}q;JA6S1ZXPn&MdZY+fVJyL>R~ybke^52n1kd;Sgc7QrENF#qfp9Ox_h*3JRjovxA0B<>5~n7JXrA(w|oR7!MPzjkeO zpp*Lv?6x);|fTv;y{${K4Rf z$J~>eBM<5K+!Yh z`$2cifm67c!`d5qTPBgSAiuA9XJ~nLZ>Rv|QzB-wuhT$iW8({d`_$S>$WC6H`$x|R z9OuwIv_X~bl9CNv+l%ES`-dd-3BB$MQN6hX}QVHq_Cw2a5k&T$mv zN3-DGhoHZzIL5VqE!?1uj7R>6o7rVM*INM+ujskZT3q{LiLXMmu2*BGCPjvzROjKb zfK)-P{GLPO7WI7tr+@6#%3i3k z8QhUzz&&k()!zKreF3EPc-m{XJAZ!s5%d7R@lwyXD3)A;$Fj`}*}|LFB$6Qa3EB1y z2a(qVC-&#sBVO`-ihnfhvtJTytgg0;RI>7>)$-7JpN67bkc0sqmlo)jzGRKHoWmC# zJKkq5MSFk7#YKg#LEWn&Xg)d;&!~eOJDKjQgO`zewVxaA835l?N*Kuy-m_BtB_6Uu zMS1;KaDdN0c?r5`M!+^+&Cs3_{S$RMRGBz4BQANw@e)}wnLF!t?(^ZZo0mn2Wn3wm67@18ZTq-9dZ=yC!MA~jl`Gur{m3MRba z$Pq;gOHZ@5uZ1ryELmaN?B$%EXGK8#d~jNT8Db8K`M@u8K=KPBN{C=iys4#wl`4RCfHy`= z{;1cWUIgkwB`iOlti*j|KXaDK=XyW9y-gbK^5Z1w-hA0+m zuXj|S=LPg7iJK$(if0uNC$`YN4$_LS%MPMv58+#y;AFbWHB+Lo?8}}I_44xccw?Hl z9P{7B#L!p_<GoX!E$;JtxftkoeReu2gK#MEACU}BZk>#&S_m5axsK)*;yunq77UNPR@{CoD04$fsva%N;Y?B=|>V#+lE0 zMt2PL1k+_n&sy%%2>G6zt^NP0w+lbO|Bioy0l)13zHJR;vr+`glA*gEkqh{~M`-0l z*Ty9s&^Q8q%8Ad1_3l_g`ssKdl;t7RVg*16Ruf(SD3=ufwZE(ESxf0AWNh-~@4>&F zj+LXMvw?pb8N*0KYJ!*$VS;6W(B0yA)yuAr@Q(q@eE*!<|LS$7yjmnPiz)*9I-cwm zsydr4Vf5dPjodfzcly7PBM&P!D?r93TSkCpWA<+Qr6jKbQQ1-KqvFi- z>p-(kqu_Nc@uSxu8i?)J`ezMp1oj_59~{_Xtbm+maJ+rAfHFD~k#faItP*rEE(Yb` zCn1>8Ju5D|`H~j!tn@xU`)o<(UoV~ff87|nm_+JIwuJ1mi$$t_E6${02b(b_x=OQt zi`J^GS4KSO>exep-mvrl*DGYQ$*@b`c+MZ*!?zUfIOAW~4O)yFeF3_upAQGf%8CbF z9OJ{^{HF2>S-H7Y8olhBc2+1S~t`+ln~Ef7Nuh|v-A6!3&Qo+&KEMG zTJAp|?dZNaw8@We)6l4(L>(r^7TDTZT8J4Glnm}Kzi-;{Vwt?*?j3@h7AQNt26;mm z&d;)-q;yrn?-AM~pbfmQUlV`qrD(wTb(6t;!pCn9GbB33_j!W|lB48V-@YxaEG9l8 z%`83fdNK@=!6HY@(55_gpM75Dg#Hz&uegvHijn158!a0e^V@gr_PU6gW@D2VS61LK zW`~am3`CzA&eR(-$N!LJ>`R~1{>LkGp$xaJgi%^I+-YgP4yqqG*C2BU!&776^8AM- zuBf6*5>q_ZIml=H{E#+f&%BCb)?^mzFqlIX%pn{pipXYcI(eF7r67tqxtF*9v?q&` z)Ky#zlb-~O4#?@djJ@;g*!?+vtuLVzEI0&qh$%%acF<(~mitK_%wb+iX$Hs*{u(d7 z(0_|h;X}_)l)pdWdPmpyZZ3r>-uI%Y>c9Z)`XpF2;^tTN@ir&6PUWg$$O?O2lc+9* zUcI*FW|J#L_uB8K?I}d1fSAg$EB8kD;)QDZy#3W{=$oUQfn&%U6az zuVhY*NG3c-JQfWr9s-^zFC5tp6)GsHE zqq}zN7|CVCE6i<6+A!wgB+lZML3{J(F1s3T(~Jteo(S`ncRf#Zd+8dg`aEQZMU|Xu z?E3zK#;Nj4OW0w⪚yQ<#tU^Q0*R)0 zrH;Bon)r(>WDbj})TiUx{O48XGbNgxtn^+F4x1^Et`eH)3ecE~u1E0jmDLjBwtOW> z>?gtwLweeTsF1F9MGRBn#Ox#X?Upac!FXV8mq0CZGEP4q{IwZ|wzD_z&li|RK9jaR zRDqNTmH9;>by+0mlf1t8R>M$`1kUBPq1{-lDWt!vu-1d0RXq|rO*q21a&vvez#hl= zjLng20YhBsr+Wi`a#8`q+B3)Q?{zI^IHwI6WS`Ao1+C42VT-~U-8;LPLw ezkH`->Xi7FfU|Y~B54i&afqDSlj6tEU;huboWWTD literal 0 HcmV?d00001 diff --git a/Notebooks/2_N_horizon 5/sim_5100.png b/Notebooks/2_N_horizon 5/sim_5100.png new file mode 100644 index 0000000000000000000000000000000000000000..0736b2668f49b8acbd5861531e390be5712f66a5 GIT binary patch literal 20871 zcmd?RcT`hd_bwW-fGD8S1Su*Y0s;z1l_E+Bz4rta2~CQIfON2cqM(G{Q9>^fX%f09 zD4o!xqX;2{D!t#e@jc)B{l>WCj{EO9hoQp^+1Y#Tx#oQ4GoLy4eyOLUMn}s|3xmPv z;Oe&xV6Y?7FxVk`nq%O9K4xl;fq!J&Rm|KCT~Y3ycOTipwC}pRJ#ck@;BfD}hwUS@ zgR6_Uh=j zf#1Gq^f+m5#M3u=a*X${b4tMTQTTdk`!r_Ra|B-Yuts zUW9UxS{~-4z`;E_XlT+3W4~CYj@hupg9DZt$nBQ!q#wk~vA%OP!vSNU7mQ zw;u;9fWhiIK39nxe1eUupLYBEX^dz5?}r+-xK&_=PmI_QeedAp5&ciEsC`7RrY< zd7@0LC{_xlP9sX<+vV}j;^L-FH3BF}zEArW;+6MPSNRhM48(_QQHE{#lrC>h7;NJ- zWFjuN_OHfcyakc&CIz;P)rGFsD3;T-9bLDBdt_rv8=@Y;@tTCpl-)gDq6>VEFD!P2 zRs7s}II7Qtcptv5p%EdWNpw=n@rS{DUjo|)qQ10#Zk-hox3onKwasG0HIEmz(0I^T z*`g?IS2|iY+{;YxRyB*nfg?7B7B@ieVbwOT`k@y+waixP`=rT`Q*BuBu58VGyqzYaNv+ zj%~|VB1ThZ=VZnEvG@uPwdS`oY@k>eZ%nO?uiwv%FO@0|;SGyfasSYm^>k?cda-Wn zgOGS(@!}JXoD^=ZGkDx3b1HLXx3QaIaeX2jGyIsPY&)TxyPIInuybAKx0oyCg3qhcP8y9V** zl;bo=!+$JVri9#dn0I7ry`Q5C&4{@cltVE4B`9Rhh$ZRc6o(U z)F5Q{)yTA0D9VrolhAza718Y#x=Co;_KE`RUYgP=G;fVZd-YsW9yZD?Frk?b6CK6k zyW2e@gQ}paSJfq1WuRTk(1mF!&K*%DjWX-XiW z-z2AR5R9wAKH{woczetB7w_ak@fB->otuT!u(YoyqKgV)uxFu#*vvR{;{w}g+SV35 zXLP|fALd4Q-s5 zQ)C_1Uh#hXZE}g9BObZ$wK(r0UWqUWq8br7G4ptSFqDbrv7_c&qsMO#wqW|ewai7y zKJ67ai}JWTo{c}J@0Sv(j!u35c3eR>9#>YH!e1|A>hrCk#&l}~;WluGWc386$$YlV zU~KIx*1}YgradEq&>>m6?(pFfX&C&$v{y(Rl|}45K*_KB)z`a3QzxN!`8czbVjCw{ zdp;qFcH6$S6G>>PzQN2)%ZAopOmV-(?Z!w2A>E^6>04J~neL*h9fi-mmtV$Qp;ag> z^p-%XR?p9g&)}{hQN^=HDS$YJ&hVlrGSJBwYz)f$_`==$eK1hns zpqA<|Jbxp5cwHJL+1GmP=;3Ipqrv$`uH~*_3z{>|sMw>mY7zBt%kAF5scn?UlXw+@ z&YNN*GUe9m!SQrgi?zg0FdVy38(X4J#EyH57oUae*Ed~5v2gm%eWkVHo4hIh>U!}6 zb6hHp5P3fo7liUaE}pH$M$IKzT8ynT!UAK0A;g=SgdZ(TSt^QW*4R=F`mVsx?|$?W z??`6d?RO+OQWx?U;J$WH_ zo^VA}L?3K;CXQQSZ@ zwh+^vJdP3ew?*y0Evc7T*Tg%4oJ*Jf^gjt#?ZxqMQu1BYa@&K5c==OSDfdvRaRZ^_ z{rB-sN1=q9R&@0?-D)QFeAlrWwJde$Sox$lM6EVW zzD!mTKVf>l&U-{=y(ZpIn2ZsxR3*y7C#tTTfes67yj^$tUJ`l$8{AjqTZxNIthosN zKP+6~FPo{+Lm~_5&PisMl=M&xPTd1PQ7I{f-@d8iHS15GABT<|KXFd-fu65#m6({= zeH1eG>8YPd-D`70rFR>SVJLlVlt*qy;_fqnBLhXFVq$W&6D6OWvo}IzN;(gAvN2Kp zWl0;yejW=ywug9r?C+JOX&B^J-X1%7Hm&|CwUD^DVRx2pEHA=muGFIH@x$~RYO1Qi zWzIu=%(Ymix$^_ zZOajKhrF6^QeGiJ!xVvu#wmRe!^{|!IuEVAc;oXa3H_*D;7a~{ZG$2>KVgNa*-OAs zo+_YJRGweFxbb7iptJsfI#Rz)Ow0od7nGH?!1k0mTV`Zrz_E?5+0xC6QE=?9U%%W* z$)1isKHQa^j53t4X*?OmCayYC>DgboP$T59?-DBBal7n-g^<^>(5hEBEB5wMp&@kS9@?Y&BT z%_hzZUmpvo6{(yROLiy1XL|Eu_twg5ITt_eZmo7}OO4?2^RE*YcFZuP-kxKHh(c^qITvw>cS`Amy6!xuN0u!(X>2r>16reY$~Bb9BL3(?U9Z zcb1wgitar}wZ^@Jz6{R0wX@v82NyCe?3pVcE1aEuAdDawMPAY-mN;~;Y)rgaxc=ah zoSY@M?_yBR-jD(57DyEx4BR9xD%pPdM&Y{isNX1V7e`^%j0+t09r3QH>1(1WZ#a+AAovEF-{s~d( z(R;0l!?1Xtg0C&KOZ77WG2h(Q*8A)0tLu*!$8T+ohMkkr`T6swpr9bp)Y>oO;Y4F^ zzL1cR9L}a*@h|v{pMMq-;?x>#EI?_R%U@%i&- zBYph~@X!}8^o)&-+Y~T}l$CB>#omCuWp2OS)qckjLMe!2Ly||k4C3Ke=B<$h|MLDn zsM zv5}FO$!OC)pUu9(j^YK$-lqKATmu6G>{MH#XIgCdDW!u-w9a#eQX*{;BW#)Z;ltI{ znO;q-gzM-H%-rDWhw$i#hb52wEY+*%3>+j#cLraYjLFBsDY-XYm z_wVDHTUwae*m5Fu70iJN%lvmHxbuKz2a9Y%XiuED?$~pA#D9Bku*R?Q%$YMQjptnL zzrDRcoj+I7tU>F`qvDE=As_Pix03 zJ6v&ZBjG34VQP9K6O%swp(KEr-c#{*5|0<}tdhI!@E153FKKm-*FTMpj?Q?=$Uh@h zyBVep4}QjMUL4S%H2vX#{as{iAj|8&84>pXL&XSudWwsyu(eeS zS}NF??m|Q*{kEAY(klZ(bvO}9A75Xw_E*kjrTXXMYqoNymO%1Kk41WuKcrR;0tA+D z8?UR5837mf25`VYmJTy!aKn8HJy;dTGm`=fhtVo8EDrb=CEhNjOV|HTWWp-gFIol$ z#orSOAU)F+?t?Id?sXzuP6zAWKqtlV2hAZ2V4y9RtK@PA05>%rQLN za;|>5E4}p5q=w%XIg4G+BVVNA_ZbM>z?ru;I|2$%^QhV{j@NHdtoH@skJ`yGmM;4H zd%KuMHamNO)7P6Ipg^@H@WHqGYxgohvZG@YyUm~K`>`+IJl!tEOEmz5P;`8J4nWp> zc#&5iIgsOQ!n=UCtu}D)>3Mm1U2m#dZkN0M=(jqQ!mNFlzFw$p3=a3}kYAtv!l>H= z1*4&^j!rn>F-|T3z$_{~3i=8WdC)JOQZw{@=TFTC1Pe~GkMgTBHWg$Xzg0H6b#58WcukQ z#l0ecQCVH-Y73R#P`v3sEuy9%A2z<>#t*qv z7NAmxhphmu)P^YBJb_Yp>jq=p=-KyFz{TqV{8xAcq^)pB2M3}<7MxQ~qoTr~)}MHo z;fM?7dutTnL8A@PQBjuxM>I%#I+5U1*afAD2p+XukczOlH;Q{^VExxeXf`)Dp=7VH zzk^1A?E*e%YGIL}BTL5ZhVQpYjZMpqZR)fY0hng@^#TVER-m(VZYx-vyp%?h!qKHQcGLo;3)mt z*w{Dh*$xc46{#aPS5jTJx!Ay9i=yKilku!`rdM%yFTvIQ&IZ8}=3(Wq&~Ihw;!;>x zF~wfJJzojHI}e>Wh%X|j3M_5~@!b5Ia{}0>OS1LluS|~mWYq4c5Ec|1W`Cqx^f_cD zXV&gaiUNB?GJ$L|*%F%vNX1sWXH9zT-YT8|=w_*H3yXHLtZ}T>qwmOVE}z*V!sb+B zDad@lleOhMX7w~QAlx_B)B7-n2L320BV!I?<2kTY0m!te*Ew0$X57LNpe{Kf@=58< zjXy8E*XI$%JD(=PyYuihxh*18Lh5FKK}V!)kiqQdln#{ zhPYjOkKg)87O<+WK^l58Co6^6YieE4#O0#}h*6jYk6vQeF(!-F{9;@zFXpWgAK9EV z9Epk%AhW@*VFh_dekUb%bru0GJ)dibhNSnZvisl9tWx?H#wGn%y6T?2FKu|8W0(;y zo?(Gjg7yAS#HSDMG`v90YOjz%v4}d9#rs_(>%$qONeW`c3)I|imOki!GmcN^2z|+( z{|!5ZrIA*CjTSLAa9Q+!7cU&q1II>2of^KPZxAlU422b}a|0X_7jLW1F6cnOal^OD z<-ZX{0X6k}grRT3^W7+B=6;?JLEj=Ydt+NW+Ug zJw55xSHRcY-h!I6#BbX};q`lc84~pA>z6N&5wzi_ZW$@Rj*q7rVbe@P2V|EDsu5pe zL9LC&F>6}`T^i=LLG12^s?;ur*NrTUjOi;Y?)a9v(-+5SAHlNifw|jeIi_<#nyV$jQi4>~C<>_s5Y7irQXzR6tB< z0HO$GJ_)@&D|M521U>`mOh!{W=$v&wfjD#oh=^1_8*h__e~)B?d$m(LS*Znii$zrEl| z{e#Him#|X zbD}3-!E)K{0|TJzB{Ei7Uv_wj)2Z(bh;k3%CFy$|9Kpd1>2j@NymZkL zBdz}D9n#S*HRZ;CooM6i`!nxbujmjhvHrNa57E}@va9FU63;t4;l+@Nlb1~n)HkJx z|KT|I;qttgNQtr5K6Q;)iKbTB*~6w2j=pT3*PmGh82B_dx_&fRz{d}*ft!p%9x_qM1l-%S(5 z_OC05rFFI~QfYeBDMs>=5VRLNP5%~QE`a!hbRcmqV=~&JB12vCDS}P&=`HOt=DEUw zOoVUAmWP&JE&bBW&^4r=9B;OoW77MJ>?wbyYc(Y)TLJBTZ`4*UIiW&jz;UqY-U)PbVr<~k*FCl$#2fBTWFnradp*&8(+iu%ZVyX zf%DfJd#)vgeG!-F{yv~np&#&Lo z0+w_9o=L?VW76{=GG$l;EN*%wh_k2s){`xd*QTn8X3s;+)BFBZ-{f2kX%^g_F7--S z>@eRNnrvWZgnxr<%5jp4exvz>bz$EYC!dC{ONP$(f+%n*GQ1$VQ&1TdwtbiJogJxg zB%$<@?g_~$>d&vi-d6gVwrzcyrh&GK`y@P%+&n#Up$1O+A}v=O>0xR_Cb^<0nJ>{R ztr-pU(p3k_{vm2#RDGlGuG7y;bAyPA{y(3lUnosS^yHdsbP=W=YCK>%q<*5LBF#wL zWTEqQubc$Bjb3=f=rWvETp-;!|5zs9%uc@h>RenJFj#cTaIX1|9Gg^Cv4^P%nbnYG zrq6V0nymSeiB0F=#w4D}03H;NiCMwo=mG4@Q<8j$tz41rF#xJf;DlzG^5S$;*MQ4A=zlZm;Pzla6ls}|S`fcKPj*AijN@$d8@(Xg7`<;K9zvxM#&a z=MoV&)OZkOa4%irvV2jy^B>JM1|_gG`-XNz^XLadugd22K?T7ZS`P4QJ{Z5AXXn2c z^jx?Q%n;kAWgOl8NBDU{g?C6Mb)`fZQw$u7wNwM16)GZ^nWyTZslOk7Jaq9c^_O0L z_wM;-LHV671C{3?8Jtv$V%9@C}|isk~R|{;G^Qdal&(c3jS_ds=R1wJ6n7Fml`v zjh6)%qfasZY+>l~*GHOXsK^{mDDw7k`vy<>qe*qsION$`&hF|ku)MBsE&?<0?5tup z>*)B`^vu1Y_cl@|Lqlo0T?3>)n4e6CmY8skD*O}*#Rl5q2{j$Ld3@Dw9x+M4*$2tsxy8Sj}j$WV{!|-5D&XfYrJ@=r+oEJ&K^6B(#7Z> zg32!o@)j1V=}cRGSUPxROcf60#5(~NTHHUCgS&BcU8B6LNY+n@I&3=Tz5a+nLfbH# zT8lIPx{p!V9i{PzMC;rq#7C2{M_i8bG1ucKEoyCI zS&qdn$X%PMd4KVD9C%X1fTm_wlK`EJ&OeD`<<3C&${Y7(({m z+AI$ZKiRKaGc-i`2$mj*dI}hv**N3OGB!q}8pD;xk_0Vdq9pTyJn-ml*=p3A@G%~X&{7ekpEfh42eQ`BU z9CrK&@3!cW)Qy*~!u2TGi{7`ebY7K?BK@)e0sJaU&9F?2Y?=8Y-wAWSk?ipi?^{LS zj+|fdnS{7_uAO?NXj5tV)iLJKaGLHm8y{~3RB3cxSroXq!XZi)gP&-9fOH#>$EIMJ zgvpWP)Sa%NoBr6~0=>CeoWO-kSFcRE8By~-&tUdZely~S&K*)*5zjsr=kw6! zwIk<`W?(`tmG-*|TrotEc(pflJj1@J>!;E$Sv^{(c^(qaB^U4kN&-^cSM-f;$B8IP zHXLjaOc$hn>C1QTvdlKWFlxGu&%1g1aa_u$%ZAWe@;q6fwXlZUS1=xiI=Cy(4+rY1 z1c#8xn!z()Mso;Gf2g$ME9)s(@Jm<+kdOo4fPkamW9hn!Muw)d@E!fs0~N?vh^jw+ z0{ZU0BA3LhIuO^a8VHvtYo?@`36;bu5vYW*e*`AIPElE?sZ1}JhIiKKyd-!LIkXXF zUk}b6cu585B^NF#Trv3~;s7rIez+KRm`;ujoWDUF%go3&|1cv2|0!Qt^U;YCH=7!ksUtOoKMah-jV@id zqHnNbjX5>D zM&s_gq7`O%Tbh+}cs$_0Oy;yU$Vr&pWYf@e%rNEWNH2T%ZubzK^jT{0+27BQ&b?WF zzOT45p|sAN_^RY8zxAspBV4c0v_=L<0XVR;;aK=__Or8p&H^wR<^09O`EzWZ1t!dR zD5Un3TN?5Rhm!sF)X*H^&vUkBd&WHI61YBn5Hu1MU{_WsaeCr!g2zIVC8C=Jvq1R( z?6i6+)>nAYEba40TDZaePdTQQ8+A!s$!D&g7uMgEyOeFrG-e5FWBvCE)7$sHnjn^c zU0HSD#=qvTf%s8lZqP|E0Wq{yg$U~8;kP~^HRYtQ6Xe0P5X1DT)%i`&rvxu~ zz(TVFES~(@L>x(rhZy-^>)W&KmAe-g?vozS%|vC#7P4i4r~|Id-c~rmY*Ch@XI(JZ z{vi_eSte_EhnVnEiwN2g@%ncy4PE#W=mV@nFED z&8+xV#Lvv`WA2@N>4fPY^UgHyU=lJ^^q>u|R81ot7&BSDDMQ%pt&lBLvy?{YIuI=o+!XFEfCt_b3VjEbpWO zIc$39&f}s-nh_?>0)4p!Di+1nW|PrAdt*cq1=&;gOI{gw^hmGL1ha86+H7bB&5jSc-;Sz>*JVo#`4-}Tg_s3!ysgQ zjZP%V#ptfXbMLZO-F!TU5u7gzHrHWkOQ!*qKSVtPGDeBj(5vQ^$bJ%~c+wKnI3Di3 zF?`di7Z#FH^-;sAd?A-j$AI&`Z)HaI)Sq`?z=#24!@@%TgP>`)dAX0aD5SBOr8ltx@)gl3 zHPV_-iHy}EC)$P^lli=Dw`2hy$TqfoRpPNNVr(?GS*yDJY}z9EtWQmu?u)5g0`x8K zlYF%kYIGJ_TlDqKpKq1C>4*F!>0R>lpF?h6{zb9#@Z!GN&H{XE@7ntj0%_Y1^YtN{ z@2Ri;Noa4sKJVSFT|PkpypgJ#+4oTdTai1}&ujrus#Y$eB^DfeO)+%#y5-_LNH|;A#MyO4#tunUU2#D!(${yl`^L z`=)m8_XkjYLiooMx=r8&1*7q?>4-|9Uc8NRS{{#h*ju`~3m2f^3 z$F+Slje5*FKU5>DvZmiOmb2UV?%kaXj<#EO9V$lSS*K^rk}T8u^nY&Ezg04A8eieX zw;Ucne1Ms!@3rQql(DQf2D>V&1qUYQHUS0&(qf0YB7etfE*8NAd-`4}iGLy`!%RdY$(I?t0t$}XwW zI4s9Ejg3HHJWvVu(s`;xPAiG4)cq6%RKC4+G-AblQ4;88=T6>Kz_hPA*js}!t<~>i z#)YZ1GS=LpqxptgrQH(~!IyI|QT?{>j!TmyZ0A)+_UA9o73LE;vsQbfn`}Ev4~;?P z#SmJ`k+^~Z@{S(J7qUL~{0Om+ua0@#yJ!pZ;rVNHs2)>@mCz%~lB^60FkbByzk}EK z$6=kPNJ)E3z3jVd4SX75uliC&*mCb8468&=sCC7BHW(52dbd}6zc?79-Dg8$Fj?=B z#ze4Mv`z9TJtzfp!%bD6T8?zH-;1g;dUGcYMb1_T^P8e{a;6R?+@#aam4qkcC zZFzu_W4JVawfH#pk~(OqA%Y7Km1Q{^$Hol@&Uws0wti^$(%;{LTl?%ta_v;eSyIwy za%%eaC;|uk2-D=?=ia+C!qo1i`r;d~Q~A_`P8=Jh1R&I}be@%ld>z7lBi7Zqx8p$4 zx^erjr9s<+uUeEm2IRjZvBHeEj9?smM>8e~l!6C-pYB99uE2Y_MZOtnT)AbUT;KOu zZ1>OH(XI9OZNS%XO-*$A9Ukt^=Ow__qP0_?tz}?!A;U&ybg}D+6)@y;LExEhbjSsi z+V12sU!@=~S*|U&B4ldm&5^;znV)ECh|VEnkB(nHFyDbHR~O;dPVSATVD>9t0b*vL zi;T*d@Ge;;ToSFVg$kn_J?`OYgM_cFoF@v9o>7 z{HsJd8}G~5Lb^0$rHAP>1Gi}ZSgloo$I`W}Hkrd1js3NQ75|$;m24nDtzNj&^IPT| z=E1t8_n-G#2ShKQ#T96Dg#8f}Zy#j%mZw%Hi0AA8_Si2+==(qt!H^OMEXpeM?C9X# zes-&-L(;($hu%H=Pa=VZ&4rm$Fbi@gm{~dBDI()?x~dJTMRLAwEnwTA!fTRwp%0X< zGgC$K%*;3YkGW+-6<&OY37NcKU__aA+ns6M+xpq5Lu>VeK5*>coH%Z81~`J0ZbCY< zWvKgdT*_9LKy}=gkH;rtqbT+3ER+J7b3m}H;^LNi)`Fx8yYqEQd1TY1Y$|^!htVf% z<{dY^k@q7f00eH&{!JEcB~i15J$?%!J(OZe`}?Y)DTK$_vbwedQ!bsNnOBUo z?tk(Rs6Q1p*WFIRDjVE%sPJF*AO8~rDgpA+!&?&4^4|dvzb(Ds8tZ?}_ML)djj=fb zyYkKJX>XpqDIe9&i+@e4eYdyo;>eAM;V~|PJ*)g4{T(`U4a_&#yGSkNGwtOcOM&Jo zmGt9Qc`8w}>ooBGqt9-Tk}_LIvZ2I-u#F~6;!+4dzi_#0A5ysWuajjOSRiwtL*U*0 z4rcxL@2or4&CZ}Sj2@CH1Z*<88 zaq0v~nCPzE5()~!K?Aegyf+J(sY!#D1?d+7tk)g-H;n5}IF&I|rr_w3%UMeODV^G$ zNu#kb^G}VeOx}(8mE0B$DAs}aV-YZKzSGBk+e0)^RP%5P_kJN$dSo)9xfDDOE^MGVeliq90WjYlqMFUelK1# zh0Vs~1Bn;N<#P|8kG2Sn7Vz&^D(`PNhKUW9^w~@V+XImm+<mR+OI zoXfCIl~>AQn4QL$+iQWLrm(XY!Z<7K26}Rct?@)o&&Q^$^vD0h|6vJFKZa`9x_;~b zM-6X7MrIw9ITrU`tGa6*59WgO(X0~@&T3OgKzy$!Zt0+ZDM)J zxf9}$xAzK$7Sh$}0*#?R+0_;*Y;?FgZ!)CFE6ts`2X-p#?u-%n$q5`ZXTh#OR)u_x7I0L))T>5EmzzR z53x*)?Z<#wL0Qij6MT$ImA)*ABgfTR;Ce4*#_iO<2ry3FE>kd4qY1QknqV$D$0va% z5kJ`n`EoKFZ0uukD6ifpzdq6mw+rj71uMOcsJ>o zHL7PxuH`J`!tW;_0f%#}ILv>&p?-!K{O)m0iDUFit2pt5sQOSjb&Sewb!KLtGKcO< zr`%U4te=d>76y%Jm+hpvL;q`Grk1pt*U^|1RN?U>T%edYn#8@h+8wC#l0E+P^y1lw z2;%RXH^0wofVE{G7lU@BSy&~PwuaMF{Y4j0qCn>$`zAT)YPz$Pdt@I?ot&|;4!+eY zD@4&M_fM|i?na1g3vIO<4sX+*Cf@F|NF23D;d6!27Vg ztB$N$r$-DV#CTMA2pQRi26?JJqmX(qVsw^9{0SPB|HA;+d?%qxQUnxfM%3)dXV`og zl(12W*6)4BklFiJ2Hry{A0W(3|FwF`N4;3>L>wt4a&ODjq2XALA-}`tXG&Kec572h zQ8%s4`Fswa!E45VDdp_UANw!oGb+y5f|?u%egDavZFQL-2p z&2Eum?bCu0fV2bpc75*8c}v6d|@59s3zjE_%K=lNJR|Hu>p~EAb7>wWVNw6RcMQL20)7!}C zNbvWnKcVh}4q#R1|FvCOhHU4TjOca;PnGknFW$VQdB#S5$v!Lqf7;CmI%=U;4=bf_ zyAQDJ-UAfnH-P!Bk=0_u?aP8szF$uKk|aY+-RGb=<}rs=4Wo5;dVP++)UoPam|AN^ zoiEpRFqdYm2BmMVdd`akPxVv%^bq#1a#Y7=}*?bL^ zkA2+Ma^mFNrzKVLpO%a-K!uijWSDgvnSts|!!sGXcRD$meklVLb(wcP_WD_WK~TiyKcd2fRCYQfskdVMV7mr2I|aVxa((`$pDgZZOBh_#jM{ zv9bKSOK*ZSGgBUEjMH9J+|4O@l(EvKMr82s6#Gmk&{>2{;`k(c@{}^j|6pCPx(Fv$ z?)2C~uAExmGL3+Z`xR68v79VXwp@U~$k;v!Etm$}sC#uF6SG?rZltp2b&sz!mo^+-Gu#-MZ9M@t=Ot zI*i^Rw}@tFiaJ;PR4vWFA|PienAJ`F?kO0&TV{akYI^7NeN^L^~udn1#q z3HlRChG$bE-ZQvz7s!pa_PHvUy~mq4_d{hgpJX$INS}%}xEWO9Y&l-$x1F-xTkgM0 zwe0ZhIo#IPKvnhp^rsaAfeZB%)6S~| zm&y6?VgBv=cec#T7;e#v%8o;lZj>MT7Ud$HMN6Mgyu&a@HAY1ayn+GQ>%yulc9Fy#iI6OG6^6!tw31+~jMv4DTo;PH>s z{)?%y*RS&aF73xf@MNryM!FE-1d51&{BB*nir+1s&kY%p&TB_loQLN3ACK7{KOS^G zosfCXHEQoqY+Yy6;GvUi*}2#=j2U@_*c9((ierLs;rm~Zbden%I3WN}l_8Ca6`$bM zc56>I=%``j)qaZukD8pctXvC}fkt+G(|~5aUQ?|HYN-^gcE5Qpr<1P zL)y>96t26-gNc=U?yHI@vebfT-+X9pgWQjvoS;1HFaWsKegj|Mak2brA8J{t1i|6A zR2Ld+lEFOe85ap&AtATpBh0=xlmsB+Z~k{-aXmm(Tnajq3qbz5C`YJhIqUkyrsnDdv&pNORQiqWagzRsdcH0J}u&u z+q1Kz;jir#K*v%iSrO3lUZi0O((qN%@F~*pWzz5iJOwn|0?Y4RY*-y1IJ^o*K1xuQ zMeUCr6GjsQXjq35WzY+o!j0i{H&SGlr3I>TxpbXYzYIWS=~YPXR$aFU^@M))-OFNnGeV=JlF2OxUX7w=%2APH+3L7u56zOo@QV@2{puI zmx^+reyU%oV=##)Wj>`h zzM09*7lDh3<27&J+FPV1XDLQYy2cEaE)x<^4Xr3SQm_w#nx3BX;6)$dW}wiA;%_-P z!wK#Z1a!A70U&VxNeY`8x`3Qe!*t2qk`qw4M5Gw#$3j8T9<3wSHe?alaGM&4Q`C^Z zgx?1A1(FYAYt8e(IEy1Eb78S~w}iiuDJV3iF<#luBpm@6^Q}48jLL;Iu#Tty@!~rD z)8{zfy#ivU3XiOi4-j>Atn-mc@a&|N(`xhURqrKADcG3&rF6m!7$pN^4fB{BVO^7$ zm8ry_pMr2W()2Kg*x#tqZf}*i2#NzSgO$8u4@%nr%HrOPhf*rE~G@c9&T&#Mc9U>)`vpt`XRs6;Sk;d`52N#?z8CU2xTL&ozf z5AXr)e=o#6`=O62j$_EJ-Gz+Qoi89o91YHf#;2egNqGL@YWI@-&Z zTV?&hRS0kADer1Y5c6ISV~A&L+`GPs5ZrFtmFj{{Y)|LgXuj(86eFuEU&Z#1?>wgm z8sxzPTM}xZ8ir&xu!YH>bFU3%ITqHO@JmhZT}$$Vg0Bn18`ejC0Kq!%x0wNW5z=%* zMi%6fzmI#>oMGe2?56hU0aVqot?XX4m`yU!J(2qsC2+)0Ngp3i<@86JN+6VTd(xY) zMjK7FUKkHtxJn1jp~1$Q?a$>^){g0p4WmD%R9!X%NoXau!$hEU`j_+-2L}U3K>#$d zFC?H@s|}?4?N9CPv$$e$IR~{Rm#?=$EMXPnj}oM5q{nZ$gG?d5T^a9ut@!!&m0B=8 z9uKC+eR}e?z;^@Fg&|sWW=B{^)1pLOP-vNOX8bKkE-3-(vej!;;^&0O58zLe(T92E z=WimQwe6f2(#*|%%OY}Pu}n!^`Cz0vRdcYY&DWMH8XfC{IPTU- zBW)2}&X>#!-h5+e5QTF_vOtq4X>2Xcv>?Th4M2*aXFpKWO?mx=@=5gTd2GS&vLc87!ZHt51yO+Y-7o_>S&Ab-K`1l$VISe}9#8zW7rIGFwhYu(<*kGS_29Uve$ME{>7K`f+R z7>BM3o5cqN2ndD-9-$&PAGmQYGPXE2G(#SD7?B@nx{u6)GPaxsz7xlx(PPx^w{>^o; z)s|)~ssr_2U*ezlF9mJ^JdGR&xC5(Ohu*dV{eXG?p!CMpd#w+G zagNskX2gDEPi2DSjPVQeV?uF*VTONFgowr1$ii=YmQN>S5_aov*+%9jI-$teu zTMS)_8&DPZA@qs)x6immbqs)#h}fDGU+SE8Y_x^mKwQSUDwdN9-@&$E8`4fen>bmH zwtP?|aY(tSOMIc|JHjcfBHyp_}|+a8I%1ou8zYrnJbuE$&-+Q>l^sJerYyc^ z3;v%age%x5e+4?tbJ9%S$yeeo9e4jx6xFi0^juT_bF1gqWEQXh!_d*#0u+Wy@Gw;S z7}xeou;9T8qs;}zvzH&xUk5r@q*8b8Hy3{X zGzaLgHUXf+iq3^vJvUNa>MfO-#?1d!BJEn>C41G_r*l>ZEzr%|znshNzRvSITd(fE zwmEk1@9iaW^VhfC(OtQIi6GaO%=?uqN?WzopPyNrx3@TN1Msk^bq1Ti@xJ9hfBvTL zB)gJxYu6`N15;b!lyi~J=Z{z46#Vd`#f>JZLHFdd+j<3+>}uj zbLnZ?w}K6Fb?1P6mGd_bKHB@npt5A2)T;LR8<{`+0)|W33!w5n(-#6)7g=PT(YbnN zQq%WnPb=3;mma(-R}DSSQs26y{M8M6uS+7H`oPZSia6koqDjlVtoASbtNJ(k(#o`H zIgOHY{HK0-?|fswYbG1eb+=aC*YIuJIER}*^?$(Aua?G}zdZP?^~1Pq&yrMNw48rk z{A`Z&`#G;4%{e{c%jO4#@3`b<&);k%v$nX50~k&$XCKs0VmXP1ax2HQupq_Y%oTVO~|v z)oJ_X^j_|aI=;hd$5}7dTlcSA_^12xn$NlG;*+*{X$3x5KW#bd^#A^sni695wJnOv zz4wE1X|4H>JD;25)vs8Y*(aaxcjV literal 0 HcmV?d00001 diff --git a/Notebooks/2_N_horizon 5/sim_5400.png b/Notebooks/2_N_horizon 5/sim_5400.png new file mode 100644 index 0000000000000000000000000000000000000000..9a894fc37ca9ebfeeda2a06be513edcdee65360d GIT binary patch literal 20379 zcmdqJby$>N_dZGp43Y*ov?C&dG}5J@B8?zj(%s!40~jM9ARVHFG}6roICMx#57OOT zXAi#b`+2{=f6lqiKj-?M>k?;Ro_Y4(EAF+{z1M!;Dl1BpT&2E>g@r{T^Zbbl7SPX>{Ao)XCY>-j0{!AqO|x zZ3`C{2WMeUPTT)nz+vxX&N(tb_8HuS(BZk3GZq%n4a^TVRzeaK3rh(i^W^bMkEFE; z&!j=qiHogaJ{nx!CVt#j(qc&Q8ymvPfEaB{tE%YvzU26r5vPSnQ>%(k@e|puS@G&I z`yF~6c>|3kFZi$FMn8SbA567xm^gQQ=13}dyJ;R7zY#yYvvnvw?=!q3hz5Ga46qoe!qiB!+EjNnBhQaq-V@AmvQNk+=Ce`)6*CaK`B@Zn!SAKsY zZ!Ceqi4JD=j3H^oiaL{OJ&qTO42c@%I%DLGUzc`ng^+hoPAAPsLhRw>{BUwqD0%fp z;V?`_l-0cT#2-1Rs&+_QxoTM2LvV$ft}ug7u`D>zL;5FwWpA*6oD79 z!He#~9i$*I_fThldPz+}-CL52pVmE(g2GJA*bBf zJTBkchQPq39{1r6_7FpMhaYxU%XE?+9B10?QV@}|*9?;P%a$YzxA*9;8)&5 zRf?ky?`+;ekMF`#@y$?B1_ZYqP5~|{5o~vCSo^L_J3q#@_&8#*vv69lk^|Jz&x;L) zr31u~T1a-Jdtf*YZUC8Zdu5&DQf4}Q``wk55E(HmPlY6ZeZAc^6 zkToJU8$<)m(1n4Ked=s}rn8;0d=VqWC*-N{36qS~HpbhmbnA(I1W=WNsLJ@40S?Ec zO#70^*II4QCv(7qY^z!=dH zn2MX4@4Vgzo#8Y>405ABaHBlAQCY@_L}SE*fD0yyW*_JcV?_8*sC8gWO?LLxMN${p zhVxr1Rb~{~ufDn?zTZO$@}VlrQ;d~xD4U`Fv3|+@0il8YE3`Wm(3zd3{X-5eR(Nk& z$_gFsF4i%&Tp)9KxgNw&kSipafcGadfv!9sTXx?8n683;Il}eRT^1b|0(uhIz|e@g zl$Cx+{$%cs$Bg38`;|P-x7@(%h-CJVi=?x-9g+~8gE_4C%d|QN+%Wh)(l$NBGdexo zpiH_j$Ims@*qu-BaSrp(bn-@4v^h6wYJE1r|L&moOwSVR;X&lp4>@j5HtuLf7<|yR zd@iGKE0Ee4vC=Q)CcLJ6GIZ9H#b8GW^P$ru+9iW^Uh%{85kqO}E$rErrMyI{YRJ8s zpkI%@o85-Nxok(RE2kO=$Hp)bH=c1rB^Oc{To@)TpyDjThQp6*%8gp~>i!^-cOh73 z>wx%v2kyYS*`Y^kKv?=s)t{r+?pDwDjszpb29ANO!OC-VJbB{|(1QrA2A(dNZt8im zm`u(>`-Dig4Fe{>skhDT*b>y!=N%aeXjV6Cj_lum>dHW>BF6_Up5a721Cg-cpc zB2I9h80NzRk0A3QvrwP<>8_y)nMROH#_mq%J`X0~6VYdeb8*1A?$dqCW8yP0U2zl{ zI=s>=0C%uEc8_LIi7MYObnXO>EgeFB_4(dyPbSo1;3N%zHy9iSgO9tAZ}Yw)~6o^wQTAe&b{jz8_fV@APF&k-lbGr#@zN5i6n0{mxKf(4+5#UQ3A^+zOs=6 z15kji1C`^lIiWvQVQ^PuNBX^!agD-=gox6lfhTEMEzk#jC*8PL1GLg{fzZej*nGL(C^+V7A^1W0Vz81DXrzYF@ zNM%ziVqR8m(qN-mU#Nv5?-4te87;7@MUhG{jWOk}C`{y(Ak zqbU#%3@!tM4@*J->3__SJVs7hh@CY!^ZO?^n3 zF~U&`lE#=lNhcz*pomrsm~IMfVNuPbE%L(5Hk+Fe#@6XVGU`nFqKyXzcUwxKfs-fT zGT=>Oo#P~>im&>hw-7h)V;0uu_lhiRwf|ZrGdx0$73p;wb@&8gcxUqwWcoc)1W6Uo zrh<`FdWZ?~qp1;sH=xPAxDH2f9jS4-?7s8ASr5y#oSYoZS`Y3-e%p2zmUf=t;9!@f zzTnf-Q~B60WIrx5B9%LA`n7S9k=MO;7av1l{d4!_nxWa>zP;M|^K*A~gtvcgQOY6m z1!h`ri!A%^$;!!*2n>9dgha>0jPl+m!r1p+8Cl{ck~Ok(_fK?xb1_S@)6Gx`6J!83 zF}-LUOe$ov{Xrp?!*uX19_yhze9tg?F)w9({rV1Lzum74YkRK#7bjEBOBu0t6>IJd zCv;LF#D=XAu$wn;a#{4=4k4y$RMXHa8y=P*x2u|?FZhQx%*E&&o-Rlzy{BZ~KTH@L9GsmyDyzsY`u9l1rXBYmJou_r zVuls{>C>-lRc0(y7+ps+iz?QA4vu-SN|WD3hCX0O)4p^W1f57s5Se&f!|5C+lE7Ov z$)!(5^klV!!J}JMN$ithQwaAfB-VQEjv`h;^)f5J-8fjZl;A>=Ggjrnq&Jn2(_J8m z=?;T)9zH(4M>(O-rs{o#=HraxxC|TV8-`NPce4;s?$c`yTHaf*E1yx=*+!d9PQ|dar)pUFr{=I-M7&sk6H{KRasI zsBi2|lhP`+xE8DHMA#HcW)2iM7FM%XKBigi!ZL&UU_4&wIOaF3BevTsrR(qm4-503 z&x+2J5%@sYbM8}TszmAyCDD&yX^sOgq_bEIUz*LgyHMF$aet$QP7j|W3Vq)^y@Sd7k%1WL8CCxB*GIepTFScOsf1;DAnA{Eo zT?wZ1?b|mrxOKYc&b)l8c=E}5P54NOx%0)@0k2`>l}x2nMLRo=g9&$rju`ftQR_m} zMmVA9*>1nLD11IUE5&Giyh=Xd;oGJDEMC{;mnr_|o>=o;i7mqo=dNa*aX)D6YkvUQ zGVA+nJ+-SpnqLd)>Wt$KYB*c7mroM>$Z(1#VAHF1i5>Rc=@JmysNL}Z_O&!wCn9k= zO%~5%dX?9#6J52CVvIsi>AH=Wx-1X8-I{6P^*cSBs1Flzp5N@`?b$3zJwv?bsD5K` z`sbE>vhb%w`}+7opScI#gQT*gC(D<9m9%mp9Hk{U%)iJ-wl)xHtwdkc@B8!TPt5hV z^gRN>U7d%t%pGSw2-vOg6{$UbjLn?laR)01pX3WL(%FRtUf@8KY??(Hd*g0nwxY+2 zU$NM>@krX&E*6iHe3mu)BwWQ>Ul-&{Y)VX-`6vIEwZ%ZwHy$0W2->rl) zE~NU4OPp_oSB#ziHV$9wPkwBK@L3ROdIB{R$i5mB*EbG0+UqJ?E%NheiL&YX-k+wS;17&7i)T5=A zQUH%UfQ~(m=3*<>I(mAta&q3Cp88T5o64( ztgIFz#Y|-4hqpuN+=2UNM;ALYW-o&(m5ouDPe&{$1l!&ZX24MiM6&7kE0H68tp2KJp{ezfJI2z;j zGFh++izTsYg>cXzerP9M73$AYB0wiOcTWTJMC(i) z50#&R@HIO>zrN?XQN2>2x9-0`V$K50Z+Gz*mafm%Pwz9@6FFB`*RMI!3W;KubdG6i zqTTDQnTjcXKOZY^T*2jUU*iPq>49ys0hF3qE$K1q{rq@fV88+R1g}vu1b|0pq5qjR zmJvc1Oq|whG0kT?D%Ip@dv2_N&uvvRQ$8LC3A~&vgp{t`Fq97E*h1Ix8jq-QCQRh; zsK>t>$OWwbR{4r4x9_nF#*8rcw9HCI<*4PB>+N8o`)upS-LYwMv??87Ep+a*K?G#;V3?U?_epG(I!%t6Ri0uLQRYe7G^;A0U*lG@a{!+d`82r03}@vxFgtTg224->eii_|*tA zD{rkCq&Dc?2Xb>?{Z*z>sNdz>Bi7=7ao}%1HUzu|1m13tR2=oi);F7r z?@(2{Z**tG>bH9?B)0$vz<^HWYH>$-a*53d4<@*#c>Ey*nNLog4WXqs>5GpTpAelo z#7_@>Kai`+EI55-@%ObD_Mr2#>EjjEj&5QqoQiRkjk$kiN&zp)!Z`i5-q-H-$suTk zB2&b?aW)53mAHYU+SXkg%F}8ZuX6T0KUz2%Ul5lDIYF|p>mPvdXUIJRza!Hy@#96? zVXLw7H4cNx1U_pF9JSCo6JufG0dNmg`57j~!iMtOK#3^XelPKP?Jbwt{w7JENB@qp zPIVp9+8g2n8OJ)XYTLSJ_Y{*_8N)?!kRTd$P-y6WU;B;8^OBNiNyT=RC%rf7^y>93 z-T$TSEPh*+X_UyuqYAt1J+icQT3S~M3JP0qTI1PU4TpHlNe+!}Euu%WQE+lM&ok(Z zUHAwMNN;gfqQ0tYXbAjvH9Q&C9R?Zc;h$R#tsqd{diValyO;dLaAn!E=XHKdO=dfqMzicvsD5^Kiz)dH@A zW|8>GXVc>%b!1=X%gc&VrHL2aY6OGRBd3uMkOBezA>?-WP65B-bLBBnB|YR*)Dljq zKOi&$Low{!FitGi6oT6gubyyRugCLNFnK1NJTp)8`yV6)W;JWr3*-amXn&279|4R+ z!Q|UA!88Xyp$szi;tao!4VH1sMF5hyMEjAzG>!lq7a{_`qx6DW0!CS(Eo>3(gmmn{NP4)0S1&R|1T+l|Cf~L2ryl0 zS&@X41a>21184xJ+kX;cULcDRc_ej=)XQQ`NE(5I;O5odTY{|cOb9jmg5; zZc4T?Q`n8)GWNM!=gGbKTt5EF0FJ3h3XO3sFG^4pC0MIh<3>PumJ$wcWcR6XlZa~RCF4>i-S{?j&=oNF1(r_0 zjyrA2WhSPgLgio*51o1c=$rY$0+|UrWcFM*8>CCGl}K?i^>Y4Xe&ef754H_=NK?h^qOQc5mj(~{O+mpr^#bQg7~ zZI*kffb40ZCrom|e<3Y`x_ny?eJCclaR+@Tz;2>?t>x-p5>XJ4h>|e44+zD++$iY) z{YOgZGV(^8&qQ48aEIQo1r&4x!A%;@O=>?}FcHY6^VizUfVKT&J2(JU2u6p6%&@sc zQJN_q@BF>@D{yad;{fMCV<|{~e+M&<-sSRTPNKvFi{%kpPj9cz$I%mHQeQ5Hl-T=! z)BYtVC)kQr;m^tb(5YFQ5Ie8o@I3UoxR*t!d@M$JrhK4Mx4JE-VLy8$^uWV!{p!8W z+*e(w9NQB=kI_fnN6!z4)iKU)DgZ7Vm8L0wxzn!mz!O}Ul3Mcm=m9IX;5SnkGw~ww zh3_bLvAItDPV0)#!LJKtn(1*yVj+wno?%GLePvr)ll>ZNPeVJQo*u0q(RjJPRaE5+ z{YV*>wAvS*xy{7YuPsj0$B{Rd@7P_OD%X2WJuL8Cm1u?v*}n|$tb>4Au*iX3&_0el z&5HP23;F0Hp}AVFilptmMC?U(Wx`vCr60e*ENZ1`uI@Om)IBSy)%A1j=Bhu=vh=yw ziXRwwR?n5W5a>k+tV1R06=1tuZ3+qumtU)i3b^BOcCwfc6_;T}Q&KpXr1FHV_lJEw zj{a3|I<2o)aho&rLd5&N!HIu=<#}Prw-1{?8A&cz7h;4=dvY`Zuh6QsVw@N)|Ex1c z>0&$fn!`3>W4mynub>$k-|!`JVIdD4T=l@?DF2g9UJgt`fGf|Nra*9u95arTNcml6 z=GF7pHOdjOO`JXS?WPwSYUc}YwVI(-o8N+H7C&JMH-$v((Cc%1Kdn8sB|3h;RI8cT z57MUW%P;*|jyASF{FQG@)c%gBJdy0Nc1ha1TMM6d8pkOx5@N~~z;STUx@Jzg(fG@E z%(3}L#!Wu!L;pKF&d!x<&Y?RWB$O6H8oDz1pK%CRYXnJz1HBClz@f&O*2=h7VJ>** zShN77-2uT*0z17aNc9`1lc1j5Shp_MnuI}IR1xrL5*oD!Mu)Wqu~Vq>LfGvDYU@ zm#KlGr~+FZ+TMhE#|xK~xbKJuN~KpU1C3dQOLfE7$qX}P6N@o`9O=*WR_&lqGsB%lH zGh^(v%7ZCPSd9UumD!y?9IKs`%A#DbAOVXXf%$)h#)$>}!a#LY7QQjeR)B@sKh zCI`%X7Wc#m5nVV{tcU*22Z`q@ObT`Xb;3Bf^Yy4ajZ1H|wCF$@-`2JRkKz;C{X+SR zapdcFvXtsJug>PJu!Jk@x@CeyoL;87A(qshKC<~JM6Nnrw4?EI`q z`N}r;!l|7w*6rO9!1(V-0Fv9Gk#oJz)Rl!P|0EILN*!hP&hKZspZpyauW2&usb>k86b})FRFIX>88o(^mH!HuTpH( zk`v^{kAH?7cpJZbSzP3UyW)1;$c0lO7%C>K(_5GKCMDyki(P-xDg2zn$r(pNY=#T6 zxnn-BOv5;JsyQVei-{ae@35sQufk@dt_rNb=N4BnKRH6mARWJ_v}qV2+;Q9`tw_Ug zmFR#)iw)9%YL5VK8q>rR!K>@TFaWnduxpYeoKWQAVcQffD}B`Gs1BfSa=~ zbSr(ItLQR|9=&=MDfi;Be)1&L)ypJW!|s;R>=iI)Jh65a*t3JaJ6@SV2pdvvH)a85 zhkkSXC>orKGjIB`Yv(5(QW*BkQV9x>nHyP!T!F!tmTWa}E3mr)vic2T^uxIIlRjQ8 zYXREI*PiuXe9K+&a#*EGXpqt5Y<@XewBQI?p1;yDZ2P6S)@*E_ZUL6vGerK?+mc9; zW;C8YyPVif4zQPn@I&krl^Q+Nu_@R+3eWb`S#&shmv4(1f~EPCBdYl#y;16 zj|ikOlew^4iC*1yy5IWXv%-rXq4nwtw&_kCC$QFP7tW9Q*v}Kc_*BPI{u(4VPMw>* z;^#7Y+sO&1!OKmYkK1YR?b+Y>s0SE;QVl2P#`3p{Wf!xvSL_5$Zwq1josH`>L#B=@ zVVDiHmkgLloesW!;oSbnNfOLTo<)Lu~Fy{l8x==RrrLUxC0j&!R|~1g@;h9?Vvr ztK$Bh-9s?0>>F~NsWTIQCnptWrvX$enK)lW67A)E+rX&T@4_SM6J?jzS<5~SOsHRe zZ=e~3YL!MfdF67m-)so7FeO>Z)^=7pi-ZR=U6m*^5Pk`7N}{)KkiwX+_zC&ZmvKAI zWD(FfJtw)3Y881Pz-6e9htZhri^o=$FCLBk8R+4EiZ{D3Z&LkICK3*)dM0&9;DvZS zrx3Q?$$_X9|z$K`~XEWMo!VMU{~s0Phl8cc$#sPac}qclktN4_5$;- z-5zRp`TU|g>0k)Ax0oyZMV;)?Ha7upwFcFMoKBIK6vcxF6}1gEzZ={4bTrEhi6}nl zXlhl(gCM+h9LblLlV>ESu%?(=a$6vj|LIXFyVbL?d$>N5oR3mgf9wgIu=LtoJ%O%^Pd4nz89C*uoo6X`k&{bXbPE z8_I8};JaAu1s*8ZM4FX8uq>DExnT^Pz)D?B{l$waA&S=ngi`8*gtGbuWeK0a)M~P; zCs)d>Qc{;mR9-#;Zg}i+Khr+c=(v>R4M8%A+UjVYJ&?41}B`;)g>Wd0zKV= zoejr1ZMoSWYU@q9%IT?9Df5h+UD*NjH&vJZ$(`}SNJOfpB2!D>E=bHC5*XR&15~i2 zK57)+ot=|yIvBz}ws&1i?a1%8%8ROCkj8mBPF|%?DfbxjWWVaP)L$Qm36^7NarJbv zi~VVFiuuIiAPagAG;jK`kZw3MDG8}`adfZjnx9`LEHoho%D59#2&Ce4ud@(6SHY?o zyH53MX(xpjrG&T|;F0EO}{)VX%* z)Ti8I{jTW3wc~t2Xk@*SB3o10hnK z#Av7^6|^hvzj_j0j`%IJ$<0jX(W!874854YN}qSb=cYi1+}@$Z#W`0jM&1^iFd110 zM)4{J;+eOAT4~Pt6Gulij((1W(8^}EcMZyG7e&U-XWYY2F0)~eIF>yBm|`pB{*nxg zHy1(5f@plN%wd@O89s`}(-#ZfA=nd501-QnDb6iX}btnv(n@$5udVqBREdm+1iQ}fYW z?QyqNjx{4*l@RgTWCC|xI~0f-SfEo_{F#aAT+B=KcOPHj!{>Xa-@c6(uf-MrG4t`V zFz=?F{4}}to>w#f?wSM)p3RM#jxUh%Mg>Ui0W>Ub*|=BRwdbGwvo*!`Xm26(SLV0d z{Y)~TgqY+gG@0+?>(s7}(droDabD6^&un-SiWMYWVdPTCgE2FYgYt)*7L_8&78`1L zQ=Q{3i(8H3PUmMRCos{bnu_VXYkEhs=&;iJML|XBtA@yrZ1}V}vDl%}di36|gc_m` zgTnHOj@IxP7YDl=DwmNXFV&h7HwujB`^q}C%R}PjhPP40uAq*<{tQ5*o`AyHq9ulS zao`*m7@4or;DwBW?ec|?Y{J~H230wH z7ujH{P&XTyjs2gbsj?t{R;4WX(-TFxRWTe}oShTnNASsE=uJVAn}@k}MbU6vx(N^Z zIVCRXAV9Wu#rNuV==TTmX6Nr@&ljQtlg>Wc#dF9IQW%>oB@Fmb@y2F)nPP+tVAD<{ zQ>w#k%*(`PE%{fOt@A~3>dzs&oIizy>~rUB@8iCEkl=X=C2^r|i;H}D@RgK$Lhv7X3e4liJ@?tm!Yv04hYJa0JB! zduHoXxz2YAR_c8;cwW{snf)7yt4g_r9(Y|>3-$NLLkFVf(nswD3x?)YwsU5URkKJ1uU zTzo6Yo;#{~aJZBH^mOIJ9PpiI`xYJXjMdw39}{@iXvutdjV)aab@--_Ppi_;b5Q4c zIxH5YRqw_tA+p1zNIlNd&$NUUw=*fs;ctOo$gbT*h%3A)kwu#BD`S}1p>m_dXW|}x zd^!Atne)%uwk)tq$L)xLH8TR&eYcWGo|XVcEznyAXw&~e|EIA#Nc7@rVkJ=->z3tO z1M5&w`gz>ta}=%`U+h3Jb*yPn?`C7)plOnwlb{W3WZ130} z0S3v{#; zKIvg4BPOxSm|T1Ep%Y{wr>0)ZZY71BG8126fNT#FIYu zbgAOCyi*cK$~7ks9Lp!|_5p}+Z{-6`w$S&bfI7BInOQofl;K}u#W2o2*b)eC@#~VB zbH?d%S8lQdhT|es_a(T27j7wU{bQ5OFxJTZUwwl#Rhua+wOi}j_5OWnx?Gv&nR0#fan%k?u@Vo1D%4+Y zk6hEMI*vNC)QU@8Do)2Qb5o_z5EBhzHt>%%J}Fx;H>Z7;c*mPr=B-1&0+-Ph1kJ&D z`PPi#wn^omcb$W3p}tGcnW{9x2JMi-wewud$%}C|&VExFg65U?!<&N=3dU{AA4s)6Qs+Xa^D9*99%jl1W~GKu z@qRXtxX&3%K>xd5S~_GT2&0IXoFFaPtMcC#!7z=zC3$aZdKey8^ijrhWVhvx>vmx> zGXJ>B2s>My&8Qw?vzLW^pk}9Yz}!DRLr&EYHDua;Q#1Zt#Ja?c%LFnol)10xOaeN_ zsMy`X=H|b{#^|Tm`B>++y8hNK!qek%L&V}Q{(dGtEzWNCh4xVMB9|_}C{{C1iKlV0 zUtKLr%Y1-pWiZfhB~j|kEUgSMNbwbHsy?xgE}hEPJ@R|=ov&B3`e7NTz%6`Ic@l|{ zYGPUlXMG%Xj8hwv!^zq{x;OM+@oF@=LOpK*gh#`+oDbuN@sB~u0=Ciy((@)>{tO3s zn1qsk^AFRf<1WXqLTDb!j0u`N9St8U47Kbp-$>pX(%IOMm?ejbpPq3Uw~||YmkRI6 zceb-3;d9fqzj6r>muXHZv%3B7My3Nr<3B(@!UX~t@N0NPi#0Q)+3im6nLM|`zm@To zY(9};4KM+A01c?=Li3)JyxKAISSwp=LX4EC?pR{Etd#rqAPk#6tL07@4A*@77D#o8 z>XG{cG0WN*7I$32^ja#^gjyR^gS0(cD#v3(I`+xe3z5CgEZp)0S0-N~l z2W|cR-C?6{bFi>+tEH)CqcOLzF@z-BSf_m4FRty)wcfG^@XVch?*HU3ef1t*L*71T zJ%xQap5pGw5=q#}`=8(ExMdrinH8L@u$>=|s*tYzj!aZ!=tOp(>u2~*M^L8KC8W?@f<84jS#16 zd#1W4hw_;Gr`Y(!Ve7a4>;nJV#YnU`TWH?5wnV{eVZv9ftkCIE=nxvv?AN+Osw;v? zye`N9r;7%);m;WZIw_E}>F&0$V1ST#;Gi4S%awrEa4hB4`ACH82~c_%x6Z;FKvduO5PEpz5Q$k|W@dM;MA!kuqinR4?2 z5G5y1Phx_{{eRsT7vH??w>wMYv+!|vL`4q-HtISkV|aaa+>HOZ=**Pv4>g937RFe_ zd_<5ek6uEwE557c&l|CHZJ203)6noE*gvi@r=1-D)2KfytICdDo(=(MKR#VG&#n^e z7Uku$c`7Ri5TVbnzxH;lfuG%d1Ceq8|CHJ{JN_bX2Wd{Xl~dh^ZT>WRXKr?#7|fuH z@1)eO-sb>SjpzPo#C~E-@X_hih}6*!7F-WUJE7FtH9U|Fe*$0~QemlTHTl7`13jcO zUAv<)*789vm^O;pyi_zBCP)yvJV#3#N!`cTPw70^RM=mo;JhyEFIYE9VP2j7>}xsy zHps2UH=Av8tgNd};eNVY)dW?O6OV;Imrt6SE-io1UDs2ORnxC1x*|vkO5Tj zI{M+|^1s{yby(HX?hhAE_I8)IDp7M_kWU5m)PASNm0Qm$x7+14qVE3}$}z+gOtykG z?EI;9%4FB=ib>GkcE$~Lw{D8lH>DlPivFReZ9ZX=0LYj>8J-kN%3oh&b`*NQtHHi{ zf8s7M5E17t`s&XfLmfy4)^)$Bx}wcRtFOLlNAYkwR<&cTLTc05%>FWbUuMUa{$rIH zA#FtJJcfQkoL#wS3Atf%Mo@2We+-hN>aRg?*U1T`OA*2hFQm#rxGbzKbJF4bAheNB z@L6rg=NX-Dd)#F9@Nh}qeaAutD^}X#FU=<{5-JseV&@)*9R{_k?c!Yj_-bIeR}VG}<^QAE(g`KbixZWg!Wp&r51) zpY7XpEb3<$nLWx<@6LxYy^&In)-0^Um!>DI^KRPdk$USsGkWVEVYZh7(PVl(>U?0{ zczRVmZ;TjFDwN>B0VqrdbEC_t4vSx?(!_&Wf-}?GLSDZpQbDb3cK!+|$$kQ9Bi8lW zd+luRclL;(_hhUDNwr@5Vbdp;ru|4Aw!PiaTjiYjK$ZMu`t|07csV|6{% z4g`~R9G3v!U6U3H^2tU&Y$tC`UwWz#e9iai{sUvUaj)W99)1( z=AV^|8hA5ESL~$Qus^;ULBV%VP0eAuZL`q-N0d@yi+Bw1fS${Q>oU&EsJJ)w5$?3d zSGllrOFEW_iuaYUfAx-aG}+)ecDrBTuF}Itlj|{;{|@ZjP;}~~BtT1D-}^i}U^R6q z9N?>tEq5?d&L(tjeMg-Eo&NG3T~MRaajPM2>0R+ZemLgxpMT82efX#}Y0uyJvGP5+S*TAsc?T>?&dX zgC>9<{2)^sQS{27M~sm~zM##Y3M|{Kj%4?;hAake_l(63-)Q*|Xo6MUC?E z@j0NVHh&v$wlX>_XU7-Z&&5>gyg6V`L5AQ_N28CpKru}!&B%wN2SYoX13yK1YzYlK zjj8i>W}Vv&lLdV>HSpc+mdGgwH?})K3-xr24zWNw-R~f&y<*IvlfH8`unb3iD@ccg zd3^`Sd5-B`HZC<)JG4i1mp<4EgXYZKY6$4ykYlfyOjxo?xZ?fq3h|UukWdr!U&T%G zU#Y~seg>n znOLJhQ=#D6L%|~xk3+*&*XR9#uP#Nbbr0_Fu!#OpDmh?=1--zHY6vA4$JV`OOj}cf zDSN@LK5G16XsfsMr>L+kAwc&`+ZWhb#4;1XrU32YIg|)Sqgfm}xj|z!f`RPm)A)jK zZ5UWx04KV*Q43NKF}HEzQh5nGJT|ej;;C-vZ=&Z}iXcgKd#h zyGER2cbhhhNR}fMqbWt;Oe^e~Sj@>+*2bC)F03kHYp+4Og|aZ(>3-Fz}G>buk6RObMp?m7o@bq4Y;{r zqw{c=N%WyDx4`)s2^Qei51;p_V1Vysp$h4evSe7G^o;x2UiPaQ0tv41h<%KNS2%wIu29I~R1tV7; zokW@;metz7f$%<&ivXlJjfY8J!}+HKcjHw}k8PRO9*n+H{>kO<%8W2y?gDN04IyXp z|3=bn+<-CqHPz?4s(Hr<~9Xq<3}m&aN8k}@<{7`;l0Af7pp4V_p>KSqUnQi5%Q{_^oyvA2AOiuSP2h(KW zs}5MJlsBa}14wjo;)`FY<+!)J{)9-OIIbz;vRQw6)LONUAD=iNo>z4x zk{Yvhi0MmWg+BuA4NSpDyKE0e=e~14W33n{GMbpTHGF<_{F1!bcI>!|%_j>iV3|y6 zwEP=Qz|G!zQ`ppzhlFJ7qfHRhI%1_R&Ns^nA1Cr}uGeg$gR<%A{&W9ljPOSwUwM}} zx8?{fX1|hsBV=HWrFb)079{-3O1lz|3UPi{a=W@mpKOFOrv#ADd^VPb3SGaa@Y=e7 zdpv?V?(aOGu z>gR8`&8qSFRKPjJaMeutHWw;z3zhl70VEM8=o5AyI%bJ= z5Ge^!HAXb?>V@tj{+=VTG`F$_$Gu*D+v=4nvY{%qz-CTOy2__0dM!bq$K_LG-@g`= z3srR&s=7EIu+_cA8PX_u*vt&N&zU6%pMH2HsVc*O>FEM6Y5D$|zAqnG!X_4*CKeu^ zLnEQX%!kcvrN=TdnYq!WH2>;f?^h7`@#fl?(jOske8s4z12lP^GE-QM`%82t##WED zwTR;n>%}JMe05!sSL3i`z|e3Q8EMUDCaOG^)SGF^Drb1k_$=M-XLVW3*32|-YG6FC zArcEJ3I)a1;xAmk9U6}VJpgb3-V($IhSAHps!fXPb%3dQI37_P{nrvh1nl*# z1Y7xrk!uxM_tx`7Miv6O{Ct*=82kkH##4_6_NC14no=-ReFFY9P_*1#wH3sW?l+XY zy7MSr)boT398DcKo^2y2CzT<9I|GiW8zYZ&-{Rb{5`D*~^UIO@kZ)b?xy-dM4Nz!12K z*!V3_0xSXZ&m5RfBll_k_HWQ@RyEDb{cU+}VUs`yUw&H3K;`g|#5eG(B%}~do46HzjG<5T2QEO5+D3v8=6PTg;1N$-jSdEA&Qu*UNn0n*s{hKj64R zGc?q^nshB`t-o?a{6nnm_zn9sQd`(g? zx4S+C2G{6Ym;%qB`IZ&3)8Eob0!wPBSTN6h*2jNw`A8hm?@jwtq2!aK;7|jn6!m5X zvt;HNGrU&}&c%0jl1e36>0#g9;}&n1D%?^|3}Yk2JVb|oO5&u#mxBb>NrdUO9^tUs zEXkt(knVeWI`US&;zO!fP0Z4MwsT&pnANxuf`jA46dOl5$uEhl7Kiquegk18>)9bI znps4sfwPzStnx+?u|=}JKh~km@fIDD3H+ITQ~lUHad(E_+sluiGu|$7w|*udDv;Uj z_qjKESN+g@vEnVho;H4_5SXg3gTZ&SW5+KI=hXSS>hYYs)_9E9fQY4A=ojWjN`Cga9P=}naCPIDL zNACBp-7p@%Zaki(Z~LseB6TAhH$RqHSo*LnX>^6rJA3P5pRHX%T%gMQ6 zLs?HjN>5KpUBvYM$ftW3=WQ-yha)A{RCWwNJP>?Z;oC-t+(7fd8~ursau>KYdkmv< zA|jmd-s^`nn|08cj-{@-M=Ru#`d)QJMJ~))ocPs4T2o%*DJlQg?yID%$Sn&!zp2Fh z%-I9)8zxp4*KIpl@_WhuDl=h=taxBzm&}?Ucwnhw3+sWi2Pzd?q%VK{@o(kg#@p%s zKW}bsH@afCd)4vp{!z_j?52@4{lZ8;~Ul* zpPtWevv2Ze?gsZp;39DOJG*R;Ni=>u@N&16{15el8jgj&9%t2RZ9bfbCZ(I9xzY9u zm{%Gu`G0fv=gp4bI8*(*XUTo*0W;OIK5v;*{o@%U+ku0MmFa4OvWC6oxlIJ`t8+N z&scof{`R{kf6g<99{6H)dcv1|&5fQ1Y#un?n_pUOQ4l^i`%n0<8I?O<>(H@k+dnzeoOm^AAV6+m$)}&8ZeoE*!ZP*|FnOVfpfFXUjnCNGUm&! zD`mWWKIQ%I^#9w=r@pLTzsmD3Yvt=|V8Eqp?VoSoyCD}?as+Na&v$(n11LMb6iUjO z`CQ&lvy8$xJk=w`Us z;GME;`C0HH?DXuFlbWrGlj|D?V>HD#PIgwdPFCiI_g#z~9L;TQcsckuxY_QTIXT%m zig0pT|K|%FwhpG86C*@vpbsUT3vJ8H)^#VrlxgGoDbk!OmI7=?6n^e#4Vk~Em)^t&dH^I zye#J22}qif*|%pb~l zpneQ;qbkANwms*>E!1;w$rlRZ3(PvCaJ9MHe`QK^_&7WdwqLHIf(4UdlG(abOS$1b zVt4IK_3M*#OcUHP#GOAUUx+4_x;tk+hcP$Xe2E^09=M({eqT=Ym(W}3$jlcE@R#&( zJ8#@Knz(PC;m&UpOJ(de9UyOG%o0L+i6DhHA$rtO8=D4&)`9( zDWqOSU94ShIh?Kq5?@eCy#ik#mpanG{k$x&G6Vj`n3)ctTe8r|E{a*us;MYI8g_d7+`n=OojJ z?AY>dV@#z?-KxREZMGe9cE+3xKY5l&z98KEcy5imy@7mT(`9=<1?@2&9~$jXImJty zhFg3$bTC~t2bbL?&z-zO;=Da8FR%Sg%ki(t?ZyUeH+!`QX7$RSgQbjZ$GQ0j! zovR{;sRVCx&(Y5nK;X;GasCB{!BmF9^8UL1wy~nF;In>mn0>IlTClxI@OBJ2>`kye z#g?qUHHQ*w&WBt_GVPxcYeCyCE8--ckqf*HBnx4GLZNvKcxUn>P~ zf8AS4LVJvrq_gpf3>IvgeY(KZoJK5_cym(prWuhF7AZQX)v&8>63!WWJNa6zQ#6KkUT{=+T) zC0T$D!tb$QfMn+LWg?*@v0nM%()<|$A6=?4&YC*X3*m0xM>31DSLb>6T(Hyg2m}%r z-x!OeT;KT`3mcm6RB1l!POeK)Z&uS6d;ODRBaR_&((wjRjxjx6b3NSc*h@CG$nO*e zPYYghu-~s#YER$Wy@#RLEvDQ^4m)NhS_-)RTv7RhWC=M;Y)&^byGY&X3_Gnq76)0$ zmtfTFqmB~#Oc@(cfQ%$z|Nzho6|5D2Qx5=GRxiui@zUd=Ew4B zG8wEPbDG;YgI@~QU6NjPwiSAN;>7c5U92lCI5m3efIFN-YE{o>3ep_Ccg~FL(EXi@ z@5EAV5SeL#(#e_KOSE&@?D*R6i4)!vEBy#KNI=(u6PHQj=0s2`Zm9;_bLZ`|T@Xv< z#_3O23=6EeTCt{%Jbyb1fonDsRZk#ptiIaV?vS*>od=k*n#++?dKR)-m`&Vb4uOv$ zTeTu?61}LhW`c9^!3TM1atj&xjg5Qkr^b#j1{vXYN++Jt$@&$Qy0x&TJ5oYC@Rva& zxRKo4?E@h*xDY2I$Q~hNL;(lli$;nuTqV4xH}~0E{}fwQOYYbh_cQ1eS9LAQib8JZ z)*#R}FK{7bN5Wjf?Lyx5vkE{+AlE`NB?lE-SR!r_dCiyCCXUGE&Lm}kDp`CURD%Vx z4xRR6S)i-QVPPv{u)7S7ar!l7j`_GnjBqY4ons%FpL8=y{KH+0&VjYTv>$YV{Tf}g zDkA|K4F)uloOf7pFn9lq5*1G7fUZ1?o?E~OAIWoXUuA+k*1_r9Fg;ld$gpiBWz077 zmTncH;l&dR|FIZJ3Duxb8)Zk;I2)+Eh5gt;^LV#%2p;6tgG$NYcc+9eRnr9WoYgMy z^zOitFv9hB7w@Th*L)lq_$F9A{2o{i%^w~*#SC)!EK;~Dm_Yi&dY#ziNPv-eMGQML z&$f(UkP}_T{nt=yDBwZ_;amdnEg#%BFL39{kn15*xFv96lT3s_uT#;LX=~Fu!GF&!%YGf?6+Y23>VcY_JPBfGJ*wh-Y zg6*Ag-!Rxc{=xtse9&Ga1Rs1mvKqRc?8s@yDS3HuzEESoaG=|WdRRRkPP}YVhrKS6 zldH}RfoCHlsNlpFn6j9|{ww~wLxIUSkK-aR7*V5|#G(GGvR{El3qZ#}@>+}*<^_Rs z-E?~l--5oTwbOYR6n#B^p1E8@!{8`?@u`U>4DzN+R#Z<6=Cjv+Pc-hcXV2JPeerwy z_N_u(I?F>r!ML#^-KgZ`WTa{Z&b7P5*zy(&zjI(9$NTgEPRs)h&Hsm-o>jB(_1Cvp zPOF2E;UzPon$BF%ZsyZRj~=DjFSNg>nkSGidS(>^M6aN6f6d(0Qyv zIO_kD6;+8H%?0dj{7eK7sTF9ldmQ|c+ni~vy*OEOtv^4XubQ%fEwqQkb4bU0vb^&1 zhLnOS`9G5ByZPhYeHb1U)w;9PGtuDAi*`8cd+AfOG>*97m$=vtJFH2z^*x>PI-Q!u zR{h%j&ux0Mq0BDY>eFX!34N!mtGA16y@N!YfB$hvY-?*XGCsDnb)LTl z@#KfLAhO|1xw{Sy4rt(MJa*lx8?QUVA;DCFgnkVTkBjR!L{9eCI=;)&_5CP?QScby z(ule&9bS?9bkB+r>;JKNNoDv>JBQ47B~KOJuLJS{F7=~T>JjBbfCje=W%Y!F}6^N3pdmf%zX`r7xzBl@a2qVyLQnl z?sm|6vhA)6nXWRp|^xci)at0gDc6xe0aR-#bI(W>77}~?=1`=(X@S4HW z)$Vk&#y@uF8O~8&p}Rc7u|=E0kaT}TvkA$fU=z$nB+xu*9GAlqUTuQ3k?Rq?> zxAr%te#XVcbsTLkxUUselXDy1Fio<@7M%5RoXGWOw;0WD1I-gj4y1^6b#*~RMH5rR zJb6s}lYZu}gor*RrIs9kfQl^%@N=QNTJ~yWAw0g7-Z{ z`u$*qxf)u((84Y8i=%~P@s%D{wknPitq^N~XBsQtC^-HrN9he`9Cm~~b*w&|j(XzIT(!nYVJ>-5u z&$sskROG@AMiUhYP;=My$;y!;-8dl0wJd6KnUF9n#f+zUWes9xug} zd+b}3m6Ztr$?hS&n1;$y+drLf3ZoVC7_7FP9iVYM+wO225IYi1AM)=o1^i>`|4K8-#%t6ESGQo4piMGoqeQrHj@mV&Ew$K3KQ@@W= zI(iOWjAx+H^xWKkY<+eUfuo@Q4>vIV8mi}~hhe&!0kOcE@_^^eoz}+KhmFl}Y#O#@ zc6N4-z7qL_BUN3d4t$!Va2H^~=e+8XE>T)4z>fl!{lm&V64dLEzWqXoph?{g4Or;^ zdxB#Ui{ElA({*zO;3!~NNi-ycO3-J%s$b&LE5&O^?!Sz)&U`7bP>VlZXW2cyzy@qp zBhJ_HB@Rg)mwQq3)U~b$x~+C8R@bEicIK zu3U!S#-?O~pIgu3V-wN#0`*KG?7$!$NVrs3-k)wdkP;moz12#05sr?DjRFbS83YW-pa0|1N7mxGtyZEOSVyQa zy-p@)_Z1zbI?DSREy?G^6w>j}?Ys_5>_7IyU`ftaBrZRLnW6>Lh{h(`)O`S&Uba`1b!z#Rba2&|_;RgrN|tU?0c2e5A2jho(KYD&WIfbO@SFpjea z%gf`wV}!y(am}xfWsanr`n_Pe`hekU-XAwWB#J?-`gqZi{`# zlOWPBZro05*odQNzpKO=JzK4-HGWJ3AzuAiFBnewb^GV0Pn_$lcbq>a&JfTzX!<_K z#=uJJ2~fTPJAkrqz$`}b4m^%Z;I|wqGnNP1?V$DmAh<8CX)mj+3aH?U*0^euK1$6J z{XXDSVKuw2BzKtSBx_b(E=DP1rvZruursZd%k6%8w&J`*vGjae(%Wq-oMOH@&t28j1u|*)1XN zyTEvkEQr1IAqd_14GfBlM0;nl>r5B$Z>mSRIUD!xK;Sf0bg*e8cRf856V7w?P#rzJ zhVjXFMFx)UL1diE^|R+30}_{y-QC@%#InyUr&Z}Q^$`_Je{IbGp^Q%S1P}X?sYF2i z=6fm|zt7T#=GrJL0G3S<*cEzUM1URs1R%bh#p(S4akj*n1dIV2v@ZHKy^P(MwyCxA z2GE&DzL%SqD3FObtu}YZu$qtL-abA)E`-(}I1Xqae7q?ItU7`Cv;i==FGk3A%jo^d z;~a8PQMnD)MFi*%TOc{|69=tC5=p-2YX(VRrBIrZ8hqO`OU7LH+OX%Ru+O(Igyl$u ze3q{EX$aG^`-+9~Xo14N1IsiY&VCF`SCZ3^TmuLO_Wn#naX{;=1li0cE0|Hf1aL}u zfc50F918}%-n$aeQGk{3EW?a8#qv{+; z%nnMJS_uS!8!d>I7s2W}ZI3g1-0ymHzUiwxoUM3h5u)n;^^K&4Jnmjx7xaMI!>j|WwmudFg zd{WDQKa;)caF;}ioDTLU^>buJA}Zp$hdCR@t%M6%#9WZZEkQ$I`rL+{DdWzwB0Hpc zUgZEOso1pQ{Pu$Ri!h#Rm z$xl1TPX(FH?@kBTkci(z>PCw?B%|A`cK z2CIbz`DOS;G;_UfzbH`x9iIHsskZ3@;i+9_=|L4}1^k(ehI46wgN}DN+%8U0{*up z0>H%nKh1IEe*#n}amzo%EfvHq(Znq=O9xO|siQ}Y=dSUEYABtY*~rW~jAd5Birqv9 zOCpx)#Ay#C)<;jkWI}5+3P&^yUQ!Je0e=rq7)WgAAj>ddfvYiygEmH$=988_Mzs9kP4yKQ~y(w`NsZ*+cJO~P+5Km zjA6rI-y8pM`=If$y7p41`3Bp&%Y3}1UMZ~t$~VD@x7p+`nDFlI$4#}=7(r&lUySG;Eq8Y?qVyNwXf zV+yP=4@d5xCT7tCyjzx+FV$OQQ;VlqdOuwtb#8uqfu0+q5m1b?SnlNwnRQ&yD;&i}0luw9(7%2|vgu zrEza9|I2VBU=2WtfEs5z*!S_mizjsRT zaU$YiK5TN4(M}LJNHAT*7faW-`$?1V%)K0niIrI{o_;0JXoOk|XvO=bHNiNV;U;^U zy6VD#uk33v?===>G?;ECVx2>aeZ{G^?UDJhWwr{J}XuR^Y|zyHYr$~_}vHL^qeWSn0;rTqb?C$y3p$J}8xmWYj(;kaD6 zp?@-`W^-v`tF-!)Wf)~x%mr()Wy^qP1T+$)N%WM<9XpHQ?LRchiQoKSvOvUw#;pwdcS3sg zBPh2cD6z`?-B|@=i)PVYiq@N0nA?Y%RP9&%xMV3ptPN3RW>$y{P7+AVB5knTh}O!;E$;V6YpAs}SGq61B`7}2E1?Q{rS+;ebVi9EV?-Y3 z{!(k$K;VOkDFWp(%dsE6oF1GLWufi5ys^9e0&8Zs{tSNl8skM1(rCUsbDI4W#4=IsfuhKoKPHcU&3o?{@yuN}?hS>@Wrg9xqa;E%RDhNO{MnYQd zq9$_m)0F|%uLf?}RycL`CMn6t$w8@_DS4Tj^|iNzI@EZe-({qCwPsYv#z zwUPYV0oiaXZCRLnnu-riNJP~H&bu5bbmFx602I4BHcpI>-mOpMqY#2iLRMh z9TLi|-;hytODK}Qz4Lt^qb?S09vXwU@9@~0&bqy(O5~{}{>N8{C}sgPZDWWW%h?Zg z^%kZc0kk}4K0=8vcmV~gB9xxPi1z-4lN^b;#ipX8R`Wph(@Je1LM*J9p+@#zPFDu} z$BeB!=lZ5j#U-4$v#09;CsPoq!PWzstgHxv#Gsy*F!kqUjA+MRl4UMxxA~>!5-}(3 z7X1|q+Ccj~f;d&iU6WEa-uo~h*-Lc`^(J*Fb$aDap})+Kc^=kl$I^9S*S3YJT~_Q@ zFWa9E)Zwgny7Uz~BJcD88_9DY-h7!n7_hW<^LPng%{(Esb=;$}*GU`TN7b;lE}6mj zc^{>}X#XE+L={2pa_OPF>)4J$9I7YASdg_dere;PxFJy@u}(QYpN5rl4Iq>K-7Ub4aFB1{ouJ^BW&fF_an;%I? zl&;Bq$~_mJ`669@*K0!pIA@yHzeI@|JKFo&{RCp{b!c)!E8c5gT-czx%`_zgneL5xO}>Agfd2CLUdYqav1@m%Dr<6CjNNSS)$all zJJOy1q;Z;U$DyoqpzooCAgg!JL$HS)wW-zvtgaHyO22)Qb@=fhMkkCfChJgiX^%HKCXlT9cJ!vtF<(v(#GkDos*OFY~s#Y#@ zpVL(SdE~RkB8&)!uU(pu7c7#(X+9hwzsDxWX9?v*Re-IM-t3(p(~`*MlPMOvxX&R} z2Fvb=tN_{-tR0EeTy~Vl7vNt>`1;&b+;tRck_}RbV>DI>j?nH=^=}7@!E+KtQuv&R z({?mXptVlG^kq&v^;qfcBC4^8B^P;l`ZYl^UsAWs03gZF3ON<5Iq_w0isQ?ZmN36Q z9~w9yiPLL7-`F!-4!@B-{$e!K9iotc zNRZprDtA*vN7LrV_^C6(ivQT7+FCNO-8oOC)tqZ+roy7t#OHJtdA8PgT#=jF6EeHn zUy38>+8ytrjr+zcxYRd$ZLpYo?&Z5%LYdvL(f55x4g>XUx>}ug$%xX|(D#8&tr!Qk zxZaRHLtOjo>YjDiqDVxDS02!m{nM-GescM*tB(DlDa4)R3~)dYnH!p#6#P6 zC>Ju4pNnYX@9*idYg6TEBX>7E!?3v+a2m5>`Bg9LGS@wyoR_$O=CV!;^v!<_!WdvE z>1@RnRDvl(J%oyY!EllrqW!?l~m^mvAjQ#bKzFJ2^qKPZFkOHLZto5u-!)+E zRv;Jyt#aP`L(*#yf0K`LtcyceV&O|@2y&XOWD=XQ-Viu}4@D}U<_m16hokAsYIeO8ULVmr2cA#eKCay53#++VsFxiH?>rVS{#j zb1#VJawUPS6dG-O3_;_|jq3YMLmBgq5}L4dsx>P1QZ=D2y*JanpyzGaj+(BHU?G&$ z1x!w3;;jZ%?e=kAgNQXAG-1VlSWb*$ut_DmN0sEiO|MpLuiwh%>`=X*`bVrm>PRcX z#}c7i+7$j_SCiNNg5_bqykgc5p8T{o$yO(omg+7OV>UP=yn{bF1Z+5#Ti;m@ueoQ+ zc!2#xc}Ss~K4?sb)_rM8A$jHokLEwVcyYWoRbG2ON`a>5>}1;HXoOQna8?YCOu9X zD&hB@6i8D}d|zRi)LW3mpq;Fv4IG+({At8b*Y;!c*y$y7y78mPcK5!$<12}4{ot)* z?~po1?Ih`g%^KVEskB^cXV_F?Zh>)4czJGl`Y2?Bqk$dI?na}=;|?d% z##$iOv>cAz>HUTkd}c<`mK6cuZLgZD>6PIspRlxIQuow6P_vM8QSdUpKWc$&F#n0Q z&vwWLwYS}_LR=P0|843n!{*O7ffnt036!jI%CTQZ2m9R72F_LoFX3k;cAQo7aguv6 zT*luM_Ev*O6+Ttx|8Xd)v=~d1E%4Z5CNrxjOkGfu5|kDUy*b8M(#eBEIhsUOTCWv zW!P!|+NK@US}QmLt3ZJJ%}jn7@}U}8Nmeey{-ysIfn`oh@ZPUz9H54kViA8djd|mW z7m#@P?k>NiNQ;>70|QsG_t-D$q+)rHFoc>UJ2;`rja|a~K)QVZ+SYs!ax^L@wmLMO zr!naZe5kgo05?3+bWv8m_KfasS66YDK|fL!;X(jRF^`q>8}2BwLS}rvhkXWZJNt>~ zxyjHd{h~ErfEGo}gi*%?DQ68GN(wPgtO12ro$_>SCaueNbog`o045w%0VaO1aSk)) zQ%<~m)oWei(~G&;``KsR%4ct>IBBw^GNYqn_R8hFl2gXv-mJBnxp{jw9cZ(y(nc5a zxsGWa!@4PbHs?}|x%?*~+ckM$I8@_ikme7)C;8IW(2w;EUrkk-JK}LFpGW5~u`L!+ z^gIf&1DY>sx|-iWB9jrA)NZE_`RRtiXSUsUQ1upU`fAPbm{WG^_E7WHfh3-9S0REr zsNiF+)wG@N%?eYR`>D-Zvzi;K=c%W~iLXt7(s3aJ%JbXyppdHT1%RZgzs#lp!5P*Q zgU+E!tjCuZ4^mRTgy#i~M{3Y>Ev99ox(7zrv5|0{e^<+9@%>89*2!L$li2;#M5W(P z5H2AuKIs)i|84fVDss#SpeJZ4#Ny_miS|>1o>8fZ$;h&bFa_O)*q#e+f8|))xgkh$ z&F@tXBT*4)&k109cY5LP9`o8m0Oz5~DHv38VA0j(t@|ATmChkr#h=jA>-M(w242TN znhdU?%2!#N_&IIny*$$N$`DCRwaK6MluA|8s;ugndC~_*CeBqZ9E)P$;+hAxvKNwD| zaF5{D&%jw2uq0=*AH;+lUr#B-Wr}gR9K0w#8GjmE#JLE9ft_S}5jSCFX11J+Sp^2;L>K9Z*J0_6hgn zsi{)duIG5a;E#047y($BiWqWwHPWIbls36If5&Ekh&MSFp7wg7{NC9* z1-TRb1h5C-z(6B@GyN>h^OfaeisI*!+*ckN-7cR{R^9YD@+4El8Nt~Yc3luoU9V!kdYObC5pN& zL@92mEx%NK+@*+=kW<~PnvYZflW?@qL+7}un>tvmLSrMAA?Q81VaJu1AKurN<#qbG zH2Bzvk;umrEkINd#5F@4+#qi4VASG<>?3{x_P7d8Wj=tplC_zN^SBye8KqvEB%Vfa zc{KB;a7O*x2ValCY7@2|C%MVcmS0zT$?I_5z9QEk(bvF-A?Lu-y5{q@uCDy9u%@99 zU!P5`k1rnN%Dt%xW|!kyQ^$p z?_%HsV0&XxhyfkPB(ahGQrjtFfAp(;C3_1PeCnZW^y(C!e=<7rzeqIgaJx1L1QdjA zw8Y4|_B#m=*?@XoK#^T}ll!GjUp^IF@PE+CVV^IQp4thrbz+)oljZ%Lw~c=^;Yb%5 zr4cZj>VYdu_opQ|-$OsC;S-(2E_z~+{Bf67z5T&wYl2q=pE_m|JDiohn~~?byHjc& z6Nneo|GLe;vnu!;dV1)#S0c)V3Ssmc;`MX{Ye3^`kM@JG%je)vAWAs~f=F~7M55^X zj=TWs173C6esto;;p3)SVsTqoF!oyce2C(3X@z|KzSiF9`j2_Y z^Y8$6w%FT(2WO;b>0`t@#%Ir0qDB3TwT%4o;C?R&nN1lthzjL{`M0G-WA1 z5ll@5kLmIls-N1#FwCgo4q7{%J%LAU`UC>3UO3O+FMeECKL0*Hgpwa)h3>mQ8HYq9 z>Aqv_YQ(nQ>EbD1m;0T}PcTS}XTG`8dW4-+mbYrt|+GykTu8Qcb5@o@c+?%x{V1Qe4(LaAAt_fi+c?0i5vwZyfE{ORC8a zOdXtaJ=KV=8evhryU-ZGNMNW>NASC5<3oP6jyC_%ygk(Y zEd2>u(nXxg*@f@$gx;SeBi4E#G8{fej{)~P#|iZQ6C9y7m7xn`P??IhY8*zNa&KUed)n)%FlcfN-UO zrYGMP@>GVp7=Mc7C-o zheW7t_{3fM9GPd!zeu|D`tqq{`ht|syDk(^L9MpR>(7A4j_PSIbkiQ~veAMoK!ks} z-B)?30jHzP$odHgQ6?qYdl!`HP3)JO1@uHR)v|jc)I(6G>RhzLH22*%E@{3#!C7?N zp6zfPU*pyDaw5BTFJ^1ORD2Ft+riJ~w46}xPqx%UJj2Fv9{?>9hciIeT%z>ntEZ!; z!?d;S&Ja!zScghMLqP5vOb4RO@TIF1QO=}XckZ08f<^?Yi~^MV8rR*Di+TA(1y91` z1T!VRCcK1hC~`J+GHCiw0>FpriCdQl$7RP;ahAXq^f~EPTUTv7EJ31*C{ax zHNf@_g?=NiT?tV>`gxf>3<8V|(P~5-CL2?Gr$k5pN*t#G1h~@@Ni&HVb$opQ{4pp} z1~^iSVA&ib8}%;iP9T6#vCrl4h4i0o- zM8h;&lVA;fYdwDsVAKI9Gf=ERhq7;T5b&PuRvwiuV7GIocRA$8Nw-EA1BYvC;{r5BjsFuF(-SI&F3G_rw6gt+);E&tGcbju#@aa=V(l)tiJ)Bf z1$Tg(+aTc0oMBq@+EI@ASXkQ&nU;M^G?zk}(Bj2HLy|&V?KmK|#r5k#RmwHF0853k z{G(JsW(#-{uL@dn66@jjq&1EkJ#+`$}0%=fOAC|$qmA?cH@IUUB$ z0?Vc7f*7;=SI!t$wx}L zeTB}6L6!n|<@xZ$OWtJ9nNMxb9j;4vIB^OrTK;1x49$_CwwSe9sJ z+7fY}p^4lLy1ay&Bbh_c4~*@dOdvl5Rsg9&$*SGdMErcz=T%NSivI#U({SCJR22ETs3H%rcko(K(~7vX>Ns@eqQVv_D3UK;4Zf_tH*+$3h1vgT~si8uKGSIvyi3)Vm? zQKs^os7bx64_fM902UkWUT}N@VLu+l6U#N|_^wgEHkv12vlU^FG7u=0tvzZ4WyAwx zxK5geS4i9=jpJI5ia}P2#&Y>CJw&Uk%yVUwk@hQ6b%RzoXv!e*$wGq;;5NvV*2n86*?byuW>OIewlks$ z{e8Pf5w@V0eBwp!9ajf!lL&Hj3hQS>HP^ zXNnh5hkU^VnY_it`dNrz{lfu0j~j}+1^o}c4;AzL2ZE~EMKd+=g5vt^Yr}CoI~m4> z6Y5VjLzQuhrMdsfK7#a`T7_$_T z5DDYi>`VJd`6IV34>S>hyq+(6>apnSRHYURCMX#|2_wildX;%$Ua^=JU@=&eLBu-S zBl}`hJvahIj-#S@5Osd9)ushh(mT#Wp=Mt)zqjdk`j6MhXAHi)m*o_S28{xdWQP3< zN%i4NS9bHL))uH0`QI6H4efi;Zt?-8NltaV;a z<>Tm}3-OeUdj6FZ+kM9usnI6?QR$%Ap&x`KZhsn&r}s}3P>kM|QpoW|DRgzb*n+)I z*nWnkzrmIdN|f6nfp8_Sv>fe4WhvhLw-!`?=RXJwjqmtLZ(8PcZqhW8#f%z0;P#E` zD#Qdpnp){(w;tpXxA%Zi5#nS5Bx%gY|8P|xbCWtzQ~L?Hv^@qu?}41htP1V}roOhYVAGQv;8xApFh63Me+%Mk zkUgIE)%R^BkkfdJE<3tQYsb`m(aDxw2Go2 z;dOjaT?0~4pK6`FvwNoUB8NIPE)%|eJ1(eQ51!GmQM@fTs->BYKR5#pA@jlqeWv;( z8~4snn$yp9K;@4ri8`lXBA9SXb(q-zidP8$IhrgYQb)s0O+D@gUf@ahIepLtqkJ<_ zCv|ahV09t7q~>!_8F1_{Knh&4$OFo8)QLs(4t(x*T4cvhze{xgk=$gE^mTL{3%xq- zwq8fFhF=SS=;k&;jf(pAtlO4aMTWCglD$tF*6@S0>#F>+)^4g*S7NbEIru`+<;Sx( zN+#6RUHV-^SDObAK3n2N^7%LQ0u3dCliMnZgqq zLnAN@<_6VO{M_vxq86Cc-~e`H1(P^btriSEMMs3M*~GUQ-7TW6=D^}qm%OH{pFk3yA1N49|ilE7!pD$UPdlXKB$jDk67 zU;_DH0(`>PHfa%i;K#Z-^**Mhtvvr;O0Z^>Bcnai^BFc=ryEl9$QPl+etF6vM{;%G zRO*O{>xLNy8@dgeIED=qi5UqRs`z)akX;saAaPv`WdPcUNI_OZ!)EarhvKdSU~Ae4 zvbsA_{PGPwP`5i!_*x5buJaFoV%1QUJq-uN5c9C{bJZAQbx>yn-u=ICs>nQFa76^% zrmvb2FnnrJ&#(>{Nz@llJN(e?PLQeZsOe=gX^F_gC+Zk9@Hlu-)o|vQXYo=Z;tAw>#9P7|n@5pbs7$x)`ovUtDa)B$8a|=Q4Yl%^Iox3?yH{N0Ywd=l3i| z-->&`9(lAnge4Q!@1zl#kM>`E#_|iMxM4h0@SD9LCFKCM7NGF`onj&n^mFEo>%*rN zzTjxon5B)LC;Q_=J&TC%;6P)!3Qgo5*54i^iW?7h@jv>kTXLD)YB+PSxX}?I+d|~K zYDOqmk4kU@iCU&{yydlpu4jin?GTh9%&;zSJ%AYLMvtvHL^Eqiri>l6{f)CZoY3X) z3i-b^_8hWw1av;QWY8PFN0@sX1mK7rGM_=i;kwM6CH2g!=G4Y*U*i!Q{A<8`g5~Rl zb_K16d69rK1S_xZPC%EUleq9JXnssrEkk(5M|4<2E+784ahv1gtrdw@%aSK5x4n?^ z;QSS;Ym)1Mb#Ym}vf%4rjBB>8{t5{cN|08i`1?sj9FFhF-G&R1=;%xtM?L2lFrVv- zN?xRWmVUEiRI{gAbMCS_ia+DQ3Oek*|M$V@I2_lX;K-4rIWx8MJw10uaNG>p&0zfZ zGfnIIXQ_o8t%%3!pXr@ifdZFQ>*eDUY*g+ z`z`c4cf>4|wfH#}ZKKCmDqEvE7P(XZ>jS;{SvEgMS~6@K&>@-GU-W#03k_01uj|s+ z?dE55dgIObN>pyGrd~u-_St`bmiJ7qhl(4+=diwab?Wlx!7AHsG2Pe!e`I&kSsWKNeSr=tDnC(nP(S7UUx*kkl5U9Ent8# zO$}pHpj$x906gZWR29~4f4jRiA86Od&t*gHw6?rtlm+LV%cZSD3y{VIXYoNjz1|a) zV2%!ZZhBWO%iwMWN;G>PX303+qQXX;F-Aul)xD52@I#l~569xWL5S&t``;^IdS$A?%e}YwuMez**4S$1v4u8-j`oIoN0^ZKsD4S& zlslqJC7B0}JaO8|H$%7&!nhA?Co7OX?5NW0?oSPmkEUklN_^kB&c2&zoUa_`fyQM1 zeBG=f_89*bCb--H-2%ObSNm$SkZ`owW5Qq>{1D2o+#Q)RPC~}dUfj4Ux7kvDeb4SC z?wcpL^YzV`k{x?luuH5YGFb3+t$2Qg$KLazQTrM9JbvL&aY|D5ZlEw+9-!*SH$QTx zXn!rXT_2YM8wIZO(Iunx;;PgKVv?C%_;}~Jg*TyGOeFo)^*wnHR#Fn{f~|I!?asEh z7U-ny?NOUTa}B!+`k!@QKXK<36rC*#=Bd!&lcF#?#dU?X%;Y>ZoQ--STJL)g6<;W7 zyCbs{v>5ZKujOb`!!#Ldp+kCYY-_ZnrE*+KMFlhrzrF@&J%t1Mde5xp$Pk?On9t34 zJ<|Xl)$sh=YrTWx{6_tJX~$eEk(!!jimx~j(9wkJXT4Q&QVH)qlnf-aYrzA!_~Pye z8qR0@+wEN(THMVh{5S(bfX)D%);|;R#V_(*uCf~9C#m9Fd&8(t zLAVB13S4j?d~Ebdh`W*)$()lZ<9v_Qq>d#|=kIJA^Q3XyPOWQxv(&6{fD_)I_)%&@ z(-SPSz`-s2NUWw->W$vZ$Cv1itq2Bw3LLnKRQ2yM zMF`xud0Jt-lt$5SDV{^h&s$~U2VG2{w~G4@GSo}$4?2pGI|;UaA(pRckWINn$IhSo zAH0f0p5&LVH*!w4ktdp@ldp?|`cNf+=&OQ?@c)NK{x;e5_gv%uteKB~dT3II7E{W} zLUx+5^M#Xz=rkSm@}IvR%>R3a;~G2Q(jf{vvs66D;(KCn)5;7HL;(+SmOkACZbAYV z_wWuGP}!`UfqNcQkd91&#Ql$|OQdn%D4d*u3y&&Ua_1ZNxOu@%7V8_w8qXM!L6_jN z7I5C-hsmil1U>rav_C}IHj8PqDH;pbQ{0k6c zty=5R-`?n_4H6vqkltI6Z^TkjG$V7S*fH6hXTA4#z2{BaO?iHjErss$26)fVg}o;h zzX|aomvXxg4~IS>@G()B;g+$TIp`w5mDE4+5#YiWVmm)_ZQe(oj$kxkF( zR!n6WSMkq!bNRegifJTx54?T77=QYpUDP(FT7$PM1ZBa(e_&o4CMqAUW)Ert_wFP$ zU2@s|a_PSmY8RsS_Pzb(o*AVSZZp?h7fmt|HBQ4Fm>va8532!#8bP(9MG=$6`44v! zcHz|Uc%)PO2B@H21{eRFydgwJcr|hI>^9*-_AnDLIXCBf5v_Ffm`gN`Zkrq z96Wp0`@F}=;3$4OUf~eyC|+eod?PGwXkGR-+n|RiBX~m&1&y1Kky{Xj2m4{|tlaI~ zNN67{I0${nAaOl2*+28*BNx8etwL~WCC8N$O(*OBtpByV(+>N+dqoZQ#~4TVt^V+5 zmCoVXjmG9n+u4B!P@T9r_xe;9pi9BqXi|dS_upS;f1@`3&2ykruQ2>$__LuYZS~dP zOy45w-@LG}H`bc)aNmuYSzqs+fI9SB>wL-i+t>eAwl#e!^I-qW<8^5&z*_y=N{M98 zo{i=!pA;u>EIj^ho1jw$qYYDy^|1)AtQ|L=&(r!_^EjzTJjZft(_<~0{aU9B;@_O; zZ&-JLA?Wa*b+_;CnxuBQRxo)EaBmr_496UCr;L4zKd;`z^Zn@31Kx(me%`j+cWbYH z!u+qt`{tcL-@}!%L%(dvt-a>JBw3eMqjngSKFxs1;E!a5@v$FazkUJ(7ufWBD{gq~ z>H&`jKfWweeOVu{?a$#&CDqSc1zs`gGuihV_W9+<@tJTarYx1;&L)=o{0pnY?4thd zGTVV^(NpqOx9ru;7Ped)1S$k1c33}Gj|8U9zu`MH4?NH>stcX8aGwNAjF{65<~vMt zq@8wH#`_PH}u!Uzxltf!*HH#a*lLz4*ws8yXU^X+y;*6*!nkY_QsdA9OK`t*oG9--+?h5 zeS7*}L8l!JSEQuV-z7}x1-dtM4U6{Ns@1d17l<1O&hU99e{25q+t(#3cxO!fcPqpC zc|ErVliJkXU;W;{_Q<+8f93(mU3p%B@kaJ>wJPeE!D8pP^sFfP3Y16C^iu zhPj+vW(tPmOXmOn`{g?K>8)>nC)s~HYL+|q{59=I;j6zN zt$We0ed+%@k;%WjZ%zB&40O|WU;qPypb^MiroS!obUp$^vSaA1MURexA)(H z^F3ab+%NqgN9%d%EMEcYF-%%AEKb`4*19OWnn>{4p8x#m%HCh6ihXnd9-YYG>FVdQ I&MBb@01wGXKmY&$ literal 0 HcmV?d00001 diff --git a/Notebooks/30_gaussiandome_identification.ipynb b/Notebooks/30_gaussiandome_identification.ipynb index 37912ac..7590721 100644 --- a/Notebooks/30_gaussiandome_identification.ipynb +++ b/Notebooks/30_gaussiandome_identification.ipynb @@ -175,6 +175,22 @@ "exp_id = 1" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Copy the corresponding WDB to the model input location:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "copyfile(f\"../Data/Experimental_data_WDB/{exp_id}_WDB.mat\", \"../Data/input_WDB.mat\")" + ] + }, { "cell_type": "code", "execution_count": 10, @@ -562,7 +578,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAFlCAYAAADoCC5oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADPaUlEQVR4nOyddXxcVfr/33d84tY0UkndqJeWtrRocYdlWVicxW2d/bHGftkFVpCFhYVFF1vcvYVSg7q7pUnjbuMz9/fHmTuZyUhmIm3Snvfr1dck1+akmZz7uc95ns+jqKqKRCKRSCQSiURytKM73AOQSCQSiUQikUj6AlIYSyQSiUQikUgkSGEskUgkEolEIpEAUhhLJBKJRCKRSCSAFMYSiUQikUgkEgkghbFEIpFIJBKJRAKA4VC+WU5OjlpUVHQo31IikUgkEolEchSydu3aWlVVByRyziEVxkVFRaxZs+ZQvqVEIpFIJBKJ5ChEUZQDiZ4jUykkEolEIpFIJBKkMJZIJBKJRCKRSAApjCUSiUQikUgkEkAKY4lEIpFIJBKJBJDCWCKRSCQSiUQiAaQwlkgkEolEIpFIACmMJRKJRCKRSCQSQApjiUQikUgkEokEkMJYIpFIJBKJRCIBpDCWSCQSiUQikUgAKYwlEolEIpFIJBJACmOJRCLpl1S1VbG/aT+qqh7uoUgkEskRg+FwD0AikUgk8eNTfby+43UeXvMwLp+LU4ecyiMnPXK4hyWRSCRHBFIYSyQSST/B4XHw08U/ZVnZMuYPmo9O0bG8fDmqqqIoyuEenkQikfR7ZCqFRCKR9ANUVeX3y3/PsrJl/Gbmb3ji5CeYWzAXu8dOta36cA9PIpFIjgikMJZIJJJ+wNObnuaz4s+4a9pdXD7uchRFoSi9CIDi5uLDOjaJRCI5UpDCWCKRSPow+5r2cd0X1/GvDf/i3OHncv0x1wf2FaUVAVDcVHx4BieRSCRHGDLHWCKRSPow35Z+y+rK1dw46UZunHRjSC5xblIuVoNVRowlEomkh5DCWCKRSPowbe42FBRun3J7WIGdTtExNG2oFMYSiUTSQ8hUColEIunDtLnbSDImRXWdKEorkqkUEolE0kNIYSyRSCR9GJvHRpIhKer+QamDqGirkI0+JBKJpAeQwlgikUh6GZvbxjWfX8Pmms0Jn9vmbiPZmBx1f5opDa/qxe6xd2eIEolEIkEKY4lEIul11latZW3VWt7Z/U7C52qpFNFIM6UB0OxqDmzb07CHWxfeymvbX0t8sBKJRHIUI4vvJBKJpJfZULMBgCUHl+BTfeiU+GMSNrctZsQ41ZQKCGGcl5yHx+fh2i+updHZyOrK1Zw85GTykvO6NX6JRCI5WpARY4lEIullNlRvQEGhxl7D9rrtCZ1r89hINnQujFtcLYAQyI3ORq4afxU+1cff1/xd5h9LJJLDwva67SwuXXy4h5EQUhhLJBJJL+L2udlcu5kzh50JwHcV3yV0fpu7DavRGnW/lkoREMZOkVIxNmssN02+iS+Kv+C1HTKlQiKRHFpqbDXc8fUdPLDyAZxe5+EeTtxIYSyRSCS9yM76ndg9dk4afBJWg5VGR2NC58dTfAftwrjJ1QRAujmdGybewImDT+Rvq//G6srVXfsBJBLJUU9FawVnvHMGO+t3xn3OvcvupdnVzGMnP4ZZb+7F0fUsR74wrtsLH90FNfH/MiUSiaSnWFG+AoAZeTOwGqwJu0fY3PGlUmjFd1rEON2cjk7R8Zfj/8Lg1MH8asmvcPvcXfkRJBLJUc5XB76irLWMjTUb4zp+Q/UGvqv4jtum3MbYrLG9PLqe5cgXxuXrYeP/4MnZULnlcI9GIpEcZSw9uJQJ2RPIseZg0VsSEsZenxeH1xEzYpxiSgHahbEWMdYiyammVG6feju19lq21W3r6o8hkUiOYpYcXAJARVtFXMc/t/k5MswZ/GD0D3pzWL3CkS+MJ14Ct34HqheKlx7u0UgkkqOIJmcTm2o3cXzh8QBYDVYcXkfc59s8NoCYdm0GnYEkQ1JYjnG6OT1wzLF5xwLIdAqJRJIwLa4W1latBeITxrX2WpaULeEHo38Qc+7qqxz5whggazgkD4g/Yuzzidf9S2Dv1703LolEckSzrGwZPtUXIow1sRsPbe42ILYwBkgzp4XlGGspFgBZlixGZoyUwlgikSTM/3b8D4/qIdWYSkVr58J44YGF+FQfZw076xCMruc5enyM8yZC5abOj2uthv+cDAYL1O2BlIHwC5mfLJFIEufd3e9SmFLIpAGTALAYLDg8CUSM3UJEx8oxBiGCtUhxs7OZZGMyRp0x5Jhj847l/T3v4/a6MeqNkS4jkUgkIWyo3sATG57g9KLTMelMrKla0+k5nxd/zoj0EYzMHHkIRtjzHB0RYxDCuGYHeFzRj1FVeO8maKsBowXSB0FrJTTHl1MjkUgkGsVNxayqXMXFoy4ONPRItPhOixjHyjEGSDWm0uJu9zFON6WHHTMxZyJ2j52y1rK4318ikRzdPLXxKbIt2fxx9h/JT8mn2laNx+eJenxFawXrqtZxetHph3CUPctRJIwngdcFtbuiH1OzQ6ROnHQv3LwMLn5WbC9ff2jGKJFIjhje2PkGBsXAhaMuDGxLVBjHk2MMotAuOMc4zZwWdkyKURTpJeqKIZFIjk52NexiRfkKLh93OSmmFPKT8/GqXmpsNVHPeX/P+wCcN/K8QzTKnqdTYawoymBFUb5RFGW7oihbFUW5q8P+XyiKoiqKktN7w+wB8iaK14oYViPFy8TreP8vNG8SKDopjCUSSUI0u5p5d/e7nD7sdHKs7VNjoqkU8UaMO+YYR4oYa+Jau6ZEIpHE4uVtL2M1WAPOEgXJBQCUt5VHPN7r8/Lenvc4Lv84ClMKD9k4e5p4IsYe4Oeqqo4DjgNuUxRlPAjRDCwASnpviD1E9iiwZEDJiujHFC+F9MGQMVR8b0qCAeOkMJZIJAnx7q53sXlsXD3+6pDtXU2lSDLEjhh3zDGOFDHWrpFI8Z9EIjk6qbXX8sm+TzhvxHkBh5u8lDwgujPF/qb9VLRVBLp89lc6Lb5TVbUCqPB/3aIoynagENgGPAL8CvigNwfZI+h0UHR8e1S4I6oq9o06DRSlfXvBFNj95SEZokQiOTJYWbmSUZmjGJc9LmR7vML42101rNpfx07bPgBeWl5Bkj5ypHlGURapplRa3a34VB9NrqaAh3EwWsRYCmOJ5MhmS1kTn23pXm3UhpY3cPs8OOvm8LcvdgDg8om54+0N29m+O7ywrsK5GYBl273s2bcjsD3DauIn84d3azyHkoRcKRRFKQKmAisVRTkPKFNVdaMSLCTDz7kRuBFgyJAhXR9pT1B0POz4GBpLIWNw6L7ipWCrg6FzQ7dnFoliPI8TDP2npaFEIjl8lDSXROz2ZDVYcXqd+FRfoCAvEn/6aCt7a9qw5JRhHAAvL68EtSHsOI9PZfiASq49Mw0VlRZXC03OphAPYw0tYmx3yxxjieRI5qnFe/lkcwUGXXRt1hnmIStR1SJeX+4A9vm3erGOge/3V7Csbl/YOfrUPZgK4MN1zaiu9v1DspKOTGGsKEoK8A5wNyK94l7gtM7OU1X1GeAZgBkzZqhdGmVPUSS8RDmwHDIua99uq4f3bobMYTDhgtBzUnLFa2t1uJiWSCSSDrh9bspayyJWZVsNVgAcHkfMgrr6NhdXHjeUgUOH8Mwmhd33X0CkAMQv39rIsj21DEwaCIhiGbfPLSPGEslRTF2bk2OLMnnr5jldOl9VVWa//ifOG3Ee/++WUC/iaS//getPHMLd08M9il/b3sgDq+C7X58XUlvR34jLlUJRFCNCFL+qquq7wAhgGLBRUZRiYBCwTlGUvN4aaI+QOwFMKeE5w5vegOYyuOQ5MKeG7ksRNxxaqw/NGCUSSb+mvLUcr+plSFr4CpnFYAFiO0N4fSpNdjeZSUba3G0kGZMiimIAq0mP3e1lQs4EAFaUixqKWBFjzRs5EQ62HOTL4i/ZXrc94XMlEsmhpdHmJiPJ1OXzq2xVtLnbGJE+ImyfxRC9rX2DU6xqZZgzuvzefYFOI8aKmJGfA7arqvowgKqqm4HcoGOKgRmqqtb20jh7Bp0OsoZB/f7Q7XsWQvZIKJwefk4gYlzV++OTSCSHnQ3VG1hfvZ5rJlwTVZDG4kDzAQCGpg0N26dFjGMJ42a7G58KGUkmttiqyE3KjXqsxajH4fZSkFxApjmT93a/B0BRWlHYsUa9EYPOEFfEuMnZxOrK1aytWkudvY6FJQtx+9woKPx8xs+5esLVnV5DIpEcHurbXEwaFP5wHC97G/cCMDwjPP3Bqo/e1r7B0UC6OR2Drn/3jotn9HOBK4HNiqJs8G/7f6qqftpro+pNsoZD1bb27912UXQ3/ZrIx2sR4zYZMZZIjgb+venfLC9bTqYlkwtGXpDw+SXNwqRnSGp4xDgeYdxgE02IMpONlJWVBSySIiGEsWhhPyFnAsvKlpFlyWJq7tSIxycZkjqNGJe2lHL+++fj9rmxGqxkmjM5reg0rhx/Jc9tfo6/r/k7ozJHMaega8u0Eomk91BVlUabm8zkrkeMNWE8IiM8Ymw1Ri8grnfUk2nO7PL79hXicaVYBsQMm6iqWtRTA+p1soZTvftzLI4G0iyZcGAFeBww8tTIxycPEK8ylUIiOeJxeBysqVyDTtHx4KoHOSt7KqaXzoUfvgL5k+K6xoHmA6QYU8iyZIXtC84xjkaDzQ2IiHF5azkTsidEPdZq1APg9Pg4JucYlpUt46TBJ6HX6SMen2RM6jRivLV2K26fm7+d8DdOGXxKSPvoB+Y9wI76HTyw8gHePe9d2VpaIulj2FxeXF4fmd1IpdjXtI9Mc2bEOcyij+7F3uBoiHhOf+Po6XynkTWcm3IzuXfxL8T3+5eAzhjuRqFhMIM1U6ZSSCRHAeuq1uH0Ojl58Mm0uduo378IGg+IjphxUtpSypC0IRHTMOKJGDf6I8ZWk4dGZyMFKbEixmIKt7u8gSjxGcPOiHp8PBHj/U37UVA4cdCJYcLXrDdzz8x7KG4u5v2978e8jkQiOfQEVpySEn9oXXJwCb/49hcsLFkYMY0COskxdjSQaen/EeOjThi7M4ay32hkadUaau21ULpKRIJMMQz0UwZKYSyRHAUsK1+GSWfilKGnANBUtUnsqNwc9zXqHfVRK7LjS6UQEWO3Ug8Qs4OUFjG2u73Mzp/NO+e9w3H5x0U9PtmY3GnEeH/TfgpTCgOFgh2ZVziPiTkTeW7zc7h97pjXkkgkh5bGoBWnRNjftJ/bFt3Guqp1jM4czWVjLot4XKzunQ1OKYz7JZWWJLyKghcfn+79SDhUDJ4V+6SUXJlKIZEcBawoW8H0gdMD9meNtTvFjgSEcau7lRRjSsR9Fr3flcLbecS4zSfmnFgRY6tJCGOH24uiKIzOHB1zbHFFjJv3Myx9WNT9iqJw8+SbKWst479b/xvzWhKJ5NDSHjFOTBgvObgEgFfOeoXnT38+6spTtOI7n+qj0dl4ROQYH3XCuMQnfqFW9Lyz4394PXYYdGzsk2TEWCI54qlsq2Rv017mFs4N2J01NvgdbOp2gys+m7NWV3RhbDX6I8b+JhuVbZU8tfEpXtjyAjW2GkBUlBt0Cg1OMefEihibDe0R43iwGq0xI8Y+1UdxU3FMYQwianza0NN4fP3jbKjeENd7SySS3qe+rWupFMvKljE8fXjMB3EQq16RIsZNziZ8qk/mGPcH1lev5zdLf0OTswmA0tYyAO6oq2VfWzlfJifFETEeKCLG6uHtTyKRSLrBl7+Fj+6Kunt52XIA5hbMDfhwNrlbRP2B6oPq+Dx8W92tpJhiR4y1iMtzm5/jyQ1P8vDahzntndO44pMr+Lz2fpKHvMSDqx9Er+jJtmRHfa/2iLEvrrF1FjGuaKvA4XV0KowVReGPc/5IfnI+v1zySxodjXG9v0Qi6V20VIpEXClsbhtrq9ZyfOHxnR5rMVgiPlw3OISHsUyl6AdU26r5eN/HVNvEsmRJSwlWvYXLT/gzI70K/8rJxZ4c+oRT76jH5XW1b0gZCG6bKMKRSCT9k20fwNoXoWZXxN3Ly5czMGkgIzJGBCLGTTodTLlcHFCxPuJ5wTi9Ttw+d/SIcVCOsaqqLC1byomDTuTTCz/lyvFXYtKbsHubUYz1+FQfFoMlppeyxSCmcEecEePOXCn2N4kIeWfCGCDVlMrfT/g7tfZafrf8d6gycCCRHHa0VIoMa/wR41WVq3D73HEL40gR43qHqImQwrgfoBXB1NpF75HS5lIGpQ1GP/1qfn3mM5ToVP6y8i+BSd3usXPB+xfw6LpH2y8y7lzRMe/dG8Hrhj2LwNF0qH8UiUTSVZwt0Cj8hfn+X2G7VVVlTeUajss/DkVRMOvNWBUDjXodjDoN0ofAri87fZtWVytA9IhxUOe74uZiylrLmDdoHoPTBvOz6T/jhTNeYKjzN4xy38eTpzzJ4yc/HvP9gnOM4yGeiDHETt8IZkLOBH4x4xcsPriYF7a+ENc5Eomk92i0uUm1GDDo45d3y8qWYTVYmT4wQpOzYNwOLJvexuFsgpXPhOzSVuVljnE/IEwYt5QyOGUwAMflH8dPJv2E9/e8z3NbngPg65KvaXA28MX+L/Cp/uXJrGFw7mNQuhJeOg9euQg+/82h/2EkEknXqN4hXpNzYftHYbvLWstocDYwaUC7V3G6YqDJaBFe5uPOhX3fgKM55tu0udsAokaMdYou4AOqFbt0jNJo7VznDZrHsXmx6x+CXSniIcmYhN1jb5/bOlBrq0VBIdsaPX2jI5ePvZzThp7GI2sf4Z1d78R9nkQi6XkabK6ECu9UVWVZ2TJm5c/CpO/kvKotWNtqcCkK3hWPg699HmlyCWEcqR19f+OoEsYenyfgMapx25TbOHv42Ty27jGe2vgU7+5+FwWFans1W2q3tF9o4iWiO17JCuF7vPktaJEFeRJJv6Da3+1y9OlgqwsrpNtcK1wnJuZMDGzL8PlosqSAoghh7HXB7thR4xZ3CyBs0aJhNVgpay3j+S3PM2nApJBil8+3VFDR5Ii7cMaiCWNX/BFjFTWq3VK1vZpMSyZGXfzLsIqi8MC8B5hbMJf7V97P9rr4crElEknPsnJfHdsrmhMqvNvfvF+sXBXO6/zgsnVYfWJ13dlcCgeWBXZpEWMpjPsBSYYkrAYrtfZa9jftx+VzhVga6RQd/zf3/zhn+Dk8ueFJVlWu4kdjf4RBMbCoZFHoxc54EE67H675WKRUrJVLhxJJv6B6OxiTocgfnW0uC9m9uXYzFr2FkZkjA9vS3U6ajGbxzeBZkJQj0qhi0OYSEeNUU2rUY5KMSXx14CtaXa3cN/u+wPbaVic3v7KOJrub0QOjnx+MJowdnviL74Coeca1tloGWAfEda1gTHoTD857kExzJtd/eT3Xfn4tFa0VCV9HIpF0ndteW8+uqlZGxTl/AHxX/h1AfC3ey9dj8aeJ2SxpsOmNwK5mVzMGxRCYY/oznbaE7u8oikKONYdaey3b6kTUqGOLVaPOyJ+P/zPnDj8Xu8fOnMI5rK9ez+6G3aEXM1phzh3i64IpcGD5IfgJJBJJt6neCrljIcO/WtRUCjmjArs312xmXPa49kipy0a608buJH/0Q6cTto5la2K+TTwR41/O+CXrq9czp3BOiBCvaxVFM3+7ZBI/mDE4rh9L63zniDdibBQ3LbvbDtbw/TX2GnKSIjcn6YwMSwaPnfQYr2x/hSUHl3Dzwpv575n/PSIiSBJJX8frU6lvc3Lj/OHcc8bYuM9bW7WWguQCBqUO6vzg8vVY0oeArwJH3oT2FDVExDjNnBazWLi/cMRHjEGkU9TZ69hWtw2rwcrQtKFhx+gUHXMK53DK0FOwGqyBXLyo5E+Gio3Swk0i6euoKlRthdzxkO6f/BtLA7vdPjfb67dzTM4x7efU7xOpFKqnfVvhdKjdFbPwVssxTjVGj9icsvZNfrH4aeZs/iRku+Y/WpgRQbFGIRAxTqD4DqJHjGtsNV2KGGtMHDCRh+Y/xD9P/ielLaXcvuh2KtsqpWOFRNLLNNvd+FTIS7Og08UnTlVVZW3V2s6L7gCcrVC7E0umaBXtSMmF5vLA7iZn0xHzEHzUCOMaew3b6rYxNmssep2+03OSDHEIY0eTtHCTSPo6jSUir7hgKqTmg6KDpoOB3Xsa9uD0OpmU0154R90e0n0+mryOdlE3yH/zKFsX9a1aXP6IsSlKxNjrhq3vQls17Po8dJiazVIChTNGvQ6jXkmo+A4iC2Ovz0udo65bwljj2LxjeXDeg2yq3cSCtxcw6b+TeGzdY92+rkQiiUyg411yYvnF9Y76+ITx1ndB9ZE0UKy4O5KyobUSvCJ40ORqIs2UlvjA+yBHhTDOtmRTbatmZ8NOxmePj+scqyF2hyjyJ4vXio09MEKJRNJrlPv9hwumgt4oxHGQMNYK70Iixg37Sff68Ko+Wt2t/vOnidcY6RSduVJQt1cU8SXnQlNZyIpTg9+YPysBY34Ai0Efd4MPrdV1cVNx2L4GZwNe1cuApO4LY4DTik7jg/M/4FfH/orjC4/n+S3Ph6enSSSSHkGbPxJ5sF5btRaAGXkzYh/obIWv74dBM7EMmgmAPSlTND5qEbUEzc5mGTHuT+RYc2h1t2L32Jk8YHJc51gN1tgR49wJoOjjF8ZtdVAsc5IlkkNO+XrhJOOPdJA+SOQY+9lcu5ksS1aod29LJRn+fONGZ6PYZs2AnNExI8at7lZMOlN026PqreJ11GngsYO9IbArYMyfYCtXi0kfd8R4WPowsixZrKpcFbZPa0ndExFjjaL0Iq4cfyUPznuQZGOyjBpLJL2EtuKUiFXbwZaDGHQGhqQOiX3gjo+htQpO/SMWrUmR1R8d9hcyN7uaSTdJYdxv0CzbAE4afFJc53TMMQ7LkTNaIHdc58J48UPwyiXwt+Hw4lngjiG2JRJJz1O+Xohig99hIn1waMS4ZjPH5BwTWjTSUkmeUUzyIdHVwulwcE3U2oJWV/R20IDIdVb0MPxE8X2QO0ajzYXVqA/kDceLxajDGacwVhSFY/OOZVXlqrA5rcbuF8Y9FDEOJt2czpXjruTbg99yoPkAqqoGmqFIJJLuE1hxSkAYNzmbyDBndF4wV7YOjEkw5LhAkyKH2V9H4Z/DZI5xP0PL95syYErgl9oZVoNVVG4jmn6c9OZJAZ++AJ0V4KkqrHke9nzVvq21OuHxSySSrqH6fPy1dQdrBxS1b0wfJCZznw+b28a+pn2haRQArVVMTsrDpDPxfcX3AJQ0l/BWkpkt7saQiHPIae7W6GkUAFXbhBtGlr/lclO7MG6wuRPyH9WwGuOPGAPMzJtJta2akpaSkO29ETEO5gdjfoBBZ+DRtY9y59d3Mv+N+YEW1BKJpHsEahQSyDFudDaSYc7o/MDy9ULv6PSBtvYOk9+WrakMt89Nq7tV5hj3J2bmzWROwRwenP9g3OdYDVZcPhcen4ft9dupc9QFOlUFyJ8MbTXQUhn5Is1lIjn99AfgBy+JbVIYSySHjJaWMl5OMXNNyzpcXnHjIGuYyPNtKqHB2YCKSl5SXocTK7Gk5DN14FSWli3lrq/v4uz3zuZPlV9z98AcnKXfR3y/VldrTKs2YRs3HtL8aRvN7ZHrhjZXQvmBGokK4+PyjwPg/y39f5Q0t4vj0pZSDIqh14RxjjWHc4afw8KShawoX4FX9fLh3g975b0kkqON+jYXBp1Cqjl+F94GR0PnwtjrgcpNgRoLTRjbFcCUAs1lgaLjNLMUxv2GLEsWTy94OjSHsBM0WyO7xx5oJ724dHHoQZ0V4B1cLV6HHAeZReLrVtktTyI5VFTUtndhe3Pnm+KLnDHitWZXoAOc1Rhkkaaq4u80NY/Z+bPZ37Sfb0q/4ZbJt/CXOf9HlcHA27vfi/h+be626M09nC3CIWPgeEjJBZ0hxO6oweZKqKJcw2zUx23XBjAkbQgPznuQAy0HuO6L66hsEw/2W2q3MCpzFEZ94mOIlz/M/gOfXvgpX1/6NbMLZvPJvk+itqeWSCTx02Bzk5FkTMhHWEuliEnNDvA4RPEyYNH7Uym8TvGA33TwiOp6B0eJMO4K2o3S7rFTaxPCeHn58vaoE8DAYwAlhjBeA3qzOC5FVINLYSyRHDoqG/YEvt5Uu0l8McAvjGt3BuoIQro1OVvAbYOUgcwfNB8FhTun3cmtU27lnJHnM91n5JWmraiOlrD3a3G3RI8YV/tFeu4E0OkhtSAklaLR5k6ocEZDRIx94PPC/iVxeaufPfxsnj3tWdrcbdz41Y3U2mvZXLuZSQMmdXpudzDoDAxOG0y6OZ1zh59LRVsFW2q39Op7SiRHA4220BWn1ZWreXBV7FXyRmdj52JWc/UpFBFjs79Wo83dhietAJrLaHY1A8jiuyMdbbnA5rZRa6/FoDPQ5m4LdM8DwJwi8gVjCeOCKWAwQXIOoMhUConkEFLRLHzGM42pOD1OsTEpS7R3rmkXxtrfO9D+8Jqax6jMUXx96dfcMPEGQBSvnVF0Ogd1KiWvXxT2fi2ulug5xlV+R4qBfstI/01Fo8Hm6pIwDhTfLboPXjoXipdFP1hVYc0L8PyZjHXYefzkxylvLeeaz6/B5rExMWdiwu/fVYalizzrOnvdIXtPieRIRcwf7as97+x+h1e3vxq1yFVVVZqcTWRaMmNfuHo7GKyQKf5ete6gT218irsMTaj1+2lyyIjxUUEgj8Zjp9ZRG/A/Lm3pUHSTNwkqN4dfwOuGig2ijSwI/9SkbBkxlkgOIRWtFRhVlYKUApxeZ/uOAWOgdldsYexf5Ql2tQGYO/1WAJbXbxM2jH72NOyhsq2ScdnjIg+mepvIyUv3WyOlFwaK+Hw+lSZ714vvxjg2wHK/FVrZ2ugH7/8WPr4bSlbA5reZkTeDe2fdywH/A8TEAYdIGNsbsVSKSHFMW0yJRBIXjTZ3SMRYC+KVt5VHPL7V3YpH9XSeSlG7UwQAde1y0awXUeMl7lq+1DlpahEP+LL47ggnuHVqrb020BWrrLUs9MABY6GpBFxtodurtoi8nMKgjjIpA2XEWCKJB48L/ncFlK7u1mUqHDXkebxYjCk4vI72HTmjoWYnNrdo4qPlzQHtxbSpHQry/AxOG8xgSw7fWS1Qs52vDnzFTV/dxN/W/A2DYuCsYWdFHkzVNmHxqN1g8idDQzE0HaTZIdq5dqn4zqTnAufHIgqeVigeyKNxYIXo/Jc7IVADccHIC5g+cDqZ5kyK0ooSfv+4qdoGW96Fz34ND48n6d2bAXDU7+nkRIlE0hnBEeM2d1vAZrK8NbIw1vzZO43y1uxqTz/z8/a5b7PssmWMSy7k79mZrDm4BINiCAsi9FfiL188ytAiSBVtFXh8HgalDiLXmhtBGI8Wr7W7RdqExkF/dywtYgyi4EZGjCWSzqnaIkzlU/Ng8LGdHx+FClcT+egxGiyhdosDxoCjEUebeFBdubeF3WbRwalo927GAQtLwV1VEfG6RdYprLRW8+SqV3jKvhyDYsSjuhmfPptVe1xAh/NUlVMqNlNZcBpbN4t9ycxgPrD1mzdZN1CkZXSl+C6DVo73raGy6Bry1OrY3uqlK4UoHnEirHwGPE4q23ycN/BeWrOb+GJL7PlpaHYy4wsSiAqVrRUBgU9/BTs/Edt0Rph4CZahs2Hz37GveQ4mXgvmKEWLEslRiqqqLN9TR4vD3emxDW3tNQrb67ajImoNwjSLH20+zDTHSKVwtYnAX85VIZuL0osA+PnEm7jh+9/zbsUyLhp1UWwP936EFMZR0ISxljqRbc2mMLWQgy0HQw/UKtxrd3UQxqshJU94pmqkDBQtYSUSSWy0go/S8A5tiVDhtTNLZ6FVbw6NGOeK1KjGGvH3+Nv3dqF6RWTlN4bNDNcbueGtvUDkCm+dZQzJwxbyn7YV+DxZNOy/HXPO16zeN52V34d3xsulgTMtTTy3O4mXdmj7VRabBlK19gN+5xbzyODMpLBzO2O2/VuMipdr1o/i3VMHkrT9I3A0gaVDJMjnhYNrYdIPYNBMWPE4VGzi3kXw9Q5tJSu2MM5KNrHudwviG1j1DvjPyeJrRQ8n/RbGniXmxeRsLB6HEMb2etj0Jhx7fWI/uERyhLO9ooUfP7cy7uMHZYn5Q0ujMCiGqMK4wSG6bsaMGNf6W7hrAcAOzBp5LrO/+RWrrFZuOOaGuMfZ15HCOApJRvEB04RwjiWHQSmDWFO1JvTArOFi0q/ZEbr94BoYNAOCrVNScqGtWhTAJGCpIpEcdWjCuGoLOFtFoWuCuH1ualQP+cYMSgzm0BzjPJFL29YgcmvvOvkYzpgwGIDBHz+Fah/J5z+YH/P6f/zsGbbq3Fx1zGWcf+7pwOlRj00uXQyfwPUXnc2PCmcHtqctP4cTt73CV9dNwJQ2gKHZMTyQo3B8Ugltphx2OIbQkglJIKLGwzqMv3o7uFpg8CwYPFNsO7iKquZJzBqWxX3nT4j5Pi+tKObNNQdRVTU+S6j934rXKVfAxEtgxMkhu816MwoKDr0RGmSjD4mkI1Ut4mH+0R9OYWx+7BUVg05heI6YJ7fVbyM3KZdUY2qnqRQxc4xrdorXnDGR9+sN/MWTRrFpMIPTBsccX39CCuMoaBFjzQA/x5pDYWohH+/7GLfX3e71aTAJcax9gABs9VC/F6ZdGXrRlFyRd+xsDo/mSCSSdsrXi0I1VyuUrwsXeXFQ2lKKT4ECSzbVeku7KwUIZ4q0Qpz+m8bIARmMzUsTUdWajTDxEvF9DG5On8A/6tdy05TLyLB2kl6wtxiAIeOOhaSgY+ffBJufZ9Tel+DUPyT8MwLoGvbjTCuCZmjOHM9AgPIN4f9nZUHpXal5YMmA+v002sYxJi+105+3MMOK16fi9qqYDHEI4+KlkDEELngy4m5FUbAYLDgsOuHvLJFIQtC62U0alM7wAfEHB7bVbWN89ng8Pk9UYRxIpYjmSqGqULxEBP6yhkd9r5zs0eQ0FMc9tv6ALL6LglZ8p7VNzbGKiLGKSkVbh/xBf4V7gEj5xQCp+eK1KfLShkQiAVw2Ed2c/CPxfWn8S4nBLCoWrdhnp4/CrDfj9DlDD8ibiNtejeozkmzyP+jW7BAProNndXr9E4edzkcHy8hY9mjn3sHV20QKQVJW6PYBY+CYi2DVM2BvjO8H60j9PpypQwFo1WdA2qDIecaVm8GUGrBdEsXAVTTYXGTFUfRnMeoBcHhiNBPZ/hF8cJtw5SleDkOPj3lNq8GK3ZwshbFEEoGGNpFbnJUcf1GuVng3Pns8hSmF0VMpnA3oFF30hkTLHob1r8DUH4sAYDSyR4gUUV/8TYb6OlIYR8FiEFXq9Y56rAYrycbkQOe8sDzj/ClCGK98WnxftkZUfudPCT1Oq+ys2Y5EIolC9TZQvTD8ROHcsOvLLl3ms32fMNXhID9jOBZDh4gxQN5EXK4m8JkwG/1ToZbT3PGhNhKTLoNpV8PyRzvPha7a2u5f3JHp14rI+MEuOHC42qC1Cre/GMbh9olah0jOFJWbIe+YdleMlFx8LVXYXF4y47jxBoSxK8oNsHo7vPMTcTP98E6w10NR58LYYUqCxtKYx0kkRyONNhc6BdIs8RflaoV3E7InUJBSQLOrOdCyOZgmZxNppjR0ShQZuOVdGDIHznk09hvmjgevE+qPnHQoKYyjoFN0gXSKIalDUBSF3KRcAOocHQzp59wOY8+Bz34FW98TN7jcCeF5kdmjxLJEtRTGEklUtHz93HEw7lw4uAqaI7tDRGND9QZ2N+/n9DYbZA7DpDfh8DpQgyO7eRNxKGD2QVbzDnA0i85xSdkxlw4D6A1w8u/E17FErdcjUq0GRsnhLZgCKO151Yngvxn5MsV4HW6veCCv2yN+Hg2fT4jzvCCf4pSB+FpEsV1GHP7JVr8wtndsP91YKua9/14g5ryCabDxNcgsgjFnxrymRW/BbjSDrTZgeVltq2ZjTQxnDYnkKKHB5ibdakSni78mSSu8G589ngHWAYAI8HWk0dkYPb/Y6xbBvsHHhvgXRyTX79tevTXuMfZ1pDCOgSaMh6eLm45mRRL29GW0wg9eFFGmD+6AkpWi8K4jRotYdpDCWCKJTs1O0JsgYyiMO09s2/Fx3KdXtFZw1zd3UWhI4ZxWGxRMDfgUu3xBLd2HnUCLMYVBNDL2g7PhqTmw9V2RwhFvcWzKAEgfHFvU1u8TEZXcKMLYnCp8lcvC3Sw6pX4fAGqWSI8Qwniy2BfceKhhv4hKdxDGiq0GIK6Oe4GIsdvXvrGlCp6cDW9dI1bJrvoQLvw3zLgOrl8YnjrS8ZoGC3atXsMfNf73xn9zwxc3hBZLSiRHIV3phqkV3uVYcwINN5qdzWHHNTpiCOP6feB1Bdx7YpIzBlCOKF0jhXEMFL9V07AMcdPRWr22udvCD9Yb4ZIXRIcYdxsMmxf5ornjxFKxRCKJTO0uyB4pIrIDxoivd8efTvHi1hdpcbXwpH4I6WmDITk70KnJ4QmybLNmUJY1CYcvmYaZPxcR1vwpcMrvExtvwZTYwliLpERLpQAomNrFiLEQxvps8fBud3vbbSOD0yk0kRwijHPRu9tIwhFfxNika38PjW/+DB47XPE23LZS/IwDxsA5j4iHhs6uabDi0AnBreUZlzSX4PA6WFfVhQcFieQIosHmiutvMxit8A4gzewXxq4IwjhWxFjTKFo0OBamJMgadkTpGimMY6ClTAxLF8LYpDdh0plocYfn63h9XsgYDD/5Gu7aCBMuinzR3PFi+dNl67VxSyT9mpqdIoKqUTgjctv1CDg8Dj7a9xGnDj2V4ZXbheCkvWagYxTSrvoo8Q7COfdXcNcGuPYzMJgTG2/BVOFCE614rmqbSKGKZnmkXaO1MuGUEer3QVIO5hRRWW53e4X7TWqBcKbQqNgIOgMMCLrRaS2vlab4IsYGLWLsF8ZtdbD+ZZhxPYxaAJbE28FaDBYcWnC+UVjnHWwVNRwrylckfD2J5EgiuGlHPAQX3kF7i+Zowjiqh3H1drECFDwPxyJ3fPSIceXmdkOCfoIUxnGgpVKASKdodbWG7H9t+2tMeXmK2K4oIrcu2lJs7nhAFf3HJRJJKG6HEEjBLUjzJkJLBbTWdHr6wpKFtLhauHjIaeI6fmGsRYw7FuA5fQ7wmUT+bFKWiH4kiv89WPG4GH9HqreJFCqjJXyfxhC/C8bn90DHIsFYVG2FAWPC0xwKpoQ6UxxcLf4fg8eQImomBtAYV9W7xdQhx/jAclB9wlWji1gNVuw+N+jN0FiCx+ehsk205JbCWHK002hzxVUYqxFceAcEHCciFd81OhujW7VVbxN1FkZrfG+cO144U0Sa/5Y9Cm9fF991+ghSGMdBUVpR4OsUYwqt7lBh/NHejwD4387/dX4xLWen6shZdpBIeoy6PUJsBUcqtOX/qs6jxqsqVpFhzuBYj3+DJoz9UeCQ7neAy2tHVY1YTN2YCofMFg4aS/8O7/4k3LqtakvnuXoFU2HB/8G292Hdf+N7X49LRGMKpgYK4wLR3PzJIiXF2SqK/8rWim53wfgjxgOUpoSK75zaexQvA4NVFNt1EavBisPrhLR8aKmg2laNV/UyNG0ouxp2sa9pX5evLZH0dxpsbjITSKUILryD6BFju8eO0+uMETHeEV8ahcbACcJJKJLjVt0ekQ7Xj5DCOA5M+vYntkgR4/wU4U/80taXqLF1EtXKGiaiI0dQPo7kCMZlE0/8H94hBFZvU+dvQRpJGMeRTrGrYRdjssagq/Y7W/idILTiu46pFG6fE3wmTPpuTIVGK1z1AZx6H2z/UKQXaDhboaE4uiNFMHPvhPQhIhIbDzXbRVFf4TSMegWdEiyMpwCq+D+r2gJuW3u3Ow2/MC40NGP2p0nEwtLRleLAchHpjuVx2tk19RbsHrtI/WiuCHiu3jL5Fsx6M//dGudDgkRyhOFwe7G7vWQkkEoRXHgHIlXJpDOFFd9pzT0i5hh73aJYN3tU/IPVCn47+qerqhDGOQlcqw8ghXEMPrnwE946962QbanG1LCIcaOzkRRjCk6vk5sW3kRFa4w8QZ1eLBMfQRWckiOYr/8PFv5BRDG74rObKFqjh8yh7duSskTTiv1LhMiMgsfnYU/jHsZk+v++knMhWdwgAqkUHYWx6kCvmONrcdwZc+6EAWOFdZlGwHoujupuEPZInXkig0grKflefF0wFUVRsBr12DWP4eACPO16HYVxUhZe9Aw2hi+zRiJg1+byiVzoqi2d+hR3hsXgF8Zp+dBcFvCIn5gzkfNHnM+Hez+MaDUlkRzpNNpEc49EcoyDC+800sxpYRFjrR10pjlCKkVjCfg8iYnZzCIwp4cL49Yq4YYjI8ZHDkPShjA2a2zItmRjcli+ToOjgVn5s3jspMc42HKQCz64gO8rvo9+4ViJ6hJJX2LPItEFTtHDnoVdu4bbLgq14qGxVEywHVumF04T7//0CVE7LJW0lOD0OhmdOVqsyAQtBQaK7zrk73pUJwYlwWK7aOh0QnyWr29Pp9As2OKJGIP4v24ug6aD0Y9RVXjmBOGbbskIdLKzGPXt0dzUPGEjt/Jp+P5f4uv0wR3Gq6dFn0G+oSmuoVn8TVAcLjd8cKtY+Rp/QXw/VxSsBisOjwM1VaRSlLeWoaCQn5zPRaMvwu1zs7wszgi6RHIEUd8mrCXjTaVwe92UNJcwKiNU0KaZwoVxg6MBIHIqRa1/1S4RMasokD8pXBjX7fFfa0T81+oDSGGcICmmlDC7Ns32ZHbBbN47/z0KUgr4+eKfU9ocpZvTwPHQUg72hkMwYomki7RWiyLRMWcJwdcVYVy/X/gDP3ty522TAZpKhbtLR859DOb/EhyN7RN3B3bVi7bsYzJGiUhtkBgN2LUF5Rh7fV58uDH2lDAGkStsbwg4LLDjY7EkmVkU3/lax71YUeOG/UI8AwydEyj0tRj1oR7Dlzwv/r8czcJKskNU/GCDjXIGMESNzwlDS6XIrVoCe7+GM/7S7SVSi8GCioozZSB4HJQ17Wdg8kCMeiPjssaRbk6PHWSQSI5A3F4f60qEPog3leJg60G8qjfgoqWRakoNE8YxUykCYjbBKG/+ZKjcIlIxNLoisvsAUhgnSKopNSTHWFVVGh3t1Z2FKYX88+R/4va5eWnbS5Evoi2ranmQEklfpHiZeC06HkaeIpbl43CGCOGD24WlWEOxqFrujMbS8MgmiHSKYy4RX5dH9rfd1bALg2JguKoXObVBEeNIqRSaSDboYrhFJIpWiFa+Hmz14v9w3LnxNwzJmwimFNj+UfRjNL/jqz6AC54MbLYYde05xiAeZm5bJfyFB4e2uFZVlTMfW8pa5yCKPPviemgxG3QoCuQ0bhQrCJMvj+9nioHWRMmRkg1AaVMxhSmFgOg+OitvFisrVoZ2LJRIjnBeX1XCb9/fAkB+enzz04Fm8TA+NG1oyPY0U1pYjrGWSpFhyQi/UN0esGZ12pwnjPwpouahdlfotQwWkQrXj5DCOEE0VwqfKiIzLe4WPKon5MlrcOpgjss/jqUHl0ae0LUbdtWWQzBiiaQLqCrs/FSItPzJUDRfbD8YR/6rhqsNSr8XwhCgeGnn50SLGIOITppSQhtheJzwxb2w8X+UNO6h0JCE6f1bxL6gvN5IDT7sHjsApp4UxrnjRde+3V/B4gdFpbb288eD3gizbhYd+EpXi3zlpf8IPaZ8vUhjGDoXrO05glaTPlQYg7Bk89uyBdPi9NDi8JBSNBWrr609wh0DRVGwGPQMaN4mfs6uWNt1ICCMk4QwLmktD7mxH1dwHFW2Kv688s+UtkRZgZNIjjDKGuyY9Do+vH0uRTnJcZ0TVRhHyDFucMZIpeiqi0SkAry6PZA1ovO20n2M/jXaPkCKMQUVNXBTbXQ0ApBlCX26mjdoHuVt5ZHthtIKISkn1IBfIukr+Lzwyc9h81sw9Uoh1vImiihhIt3ZSleJIo5p1wgHhM7cFuyN7PPZuLR5NRd9eBElzSWh+3V6Mfnu/greuBJeuQSeng/fPQHv3UTrri9Ia6kRYnnMWTDwmMCpkRp82N3ib9jck8LYYBLpFBtehVVPi5bWms9xvBx/t/j/eukc0Wp50Z/AGVTXULZe/D70obmHFoM+tCtdDBrbxHJn6lB/hDvOBioWg0Je24724r5uormF2CxptCgK9Z7WkBv7CYNOoDClkHd2v8OtC28NcwSSSPosHid8/FNY+1LCjj4NNheZyUYmDcqI+5zi5mIyzZlhYjfNlBZWF9XkbCLFmIJRFyF/uasuEtkjwJjcLox9XnEPCO622U+QwjhBUkyiLbT2QdOevDrm6swrFC2hlx6MECVTlK63gJVIepv3boI1z8Hcu+H0v4htpiQRJUzkM1u8TIjpIceJdIziZbGX7JtKWWmxsN1Zx+6G3exsiNAEp2CqyLEtXga2OjCnwkX/geNuozUlh+TC6XDLcvjR6yHNLCKlUti9fmGs70FhDPCDF0WL5FtXwg9fjj+NQsOcKjrwTfohZPhFYqV/dcnnEzeeCGLbaopfGDfYRGGPbuB40eGqMo7VK4+L6YZ9JHubEhf7UdAeWBzmFEqM4iY9NLVdGOcm5fL5xZ/zzIJnKG0p5V8b/tUj7yuR9Dpl62DN8/DRnbD62YROFf7FidkgHmg+EBYthnZh7PvopwFXn6jtoG31oplScIOleNHphQjWhHHFBrDXw8hTE7/WYUYK4wTRhLEWudCqOzt2kMlLzqMwpTBguB1GwVThQypbQ0v6Eo4mESmedTMsuC90Caxgipjs4833LF4m3CTMKaIJRkuFSJWIRmMppUZD+1CC0h4CTLlctFu/eSnc+A3csBAmXQpn/IXWlAGkJOdFvLQWmQy+plZEazF0PyUghLQC0SI5d2znx0YjewSc90+4/kvxvXazqd4KrhYYNCPslLDiuxhowjg9PU0UB8YTMf72IZ513yO+Lux6U49gAqkUqocDqSKdYkjakLDjjs07lpMGn8QXxV/gjeJKIpH0KYJ7FcTRnCiYRpsrrqY7wRxoiiyMU02pqKi0rn8Btn2A0+tkb+PeyMJYm2e0tIhEyZ8MFZvEA/yeRYACI07q2rUOI1IYJ0iK0S+M3bGFMUCONYd6ZxQPzsJposNX5abeGahE0hWqtorXEaeE7yuYKiIAjSXh+zqiRTY1l4XC6eL14Jro5zSVUmowkOHv1qSlK4UwcAL84AVIDy/maHW3Bh5cO2LQGdApupCIsZaqkWYIz8HtM6TmibQK7YYVXBDZASGM40yl8HukZiSZRJQnHmFc8h31SgYrk08KSVPpDpowtnvsHEgSS8CDUyPnmJ9WdBo19hrWV7evWqiqyq6GXRGPl0gOK9XbwZQq5sB45swgEo0YOzwOqu3VEf920vzPyqstFp4q+YLLPr6MHfU7uHTMpeEX0uaZvEkJjTdA/iRwt4kaic1vi3uG30u+PyGFcYJ0FMaxjLIzLZmBHOQw8qeI17LIFfYSyWFBE0h5EYRPoGnExvB9HWk8AB67aHgBQkjpzaI1cdRzSig1mRiVKZbxOjbj6IxWd2vg77MjiqJg1ptDrrm/aT+oejKNkaPMfYa8SaHCOHNYxAcDa0dXihi0e6SaxO+6qSS2faTPBxWb+N4yj39m3hOW39xVtFSKddXrWGs2kOdr39aREwadgFlv5ssDXwa2LTm4hIs/vJgvi7+MeI5Ectio3i4K7TOGJiyMRcQ4fmGsFddFCtCl+T3R7x44gKecpVgNVh4+8WEuHHVh+IUqNkLGkMQdKTS0AMg714ufefZtXbvOYUYK4wRJNaUCQakUzgZMOlMg8hFMpjkzEFEOIy1fFOBF6i3eE9jq4dNfCg9TiSReKjdBUjak5ofv8zeSiNl8QqPGnx+sObAYTGKZLYYw9jWWUGowMDpLtIOOmEoR7VzVR5u7LWrEGEQ6RbAw3te0D9w5JJl60Me4N8ifLHyZW6uFMC6aG/GwkAYfndBoc6EokG41BrXcjpFn3LAfXC2UWkbFna4RD1qKyzObnmGlt5l8l1MULUUgyZjEmMwxFDfuEysbbXUBj+N/rhcWmdGos8fZYEYi6QlUtb3JUMYQMWfGmQKkqiqNNnfcjT2AgB1bmjktbN8Yh5MCt4frLUUsLqvmtTNfZsHQBZEvVLGx62kUIH7eaz+DH/0PfroVJl7S9WsdRqQwTpBko7BOaXH7i+8cDWRYMiK2lM20ZFLvrI/uwZkzCmr39M5A37kBVj0Dexf1zvUlRyaVm/0OFBEKxqyZYLC2N5eIhfbAlzO6fdugGcKJxRtZwFQ3l+BSYHj6cPSKPnIqRRS0fOFoEWMAs8EcIrb3N+3H5xqA1aSP+30OC5MuFQVyL5wpGnYMOyHiYSEtoTuhweYm3WpEr1Pal01jpVNUbBAv1jFxv0c8aIEGq8HKVQNmcV1jc8zoWoophbbqLaJpzJPHsaZyDRnmDA40H+Bni38WMRCxqmIVJ715UkgKhkTSq7RWibSzgROEMPZ5RI1FHLQ4PXh8KlnJiUeM00zhwnhQcyVfNOu4e8yPyHI7RNOlSDiaoX5v94QxiKZDY86E5OzuXecwIoVxgmgfPC0CUdJcQkFyQcRjsyxZeHyesE55AbJHtneZ6UlaqtoFseyuJ4kXt0M0nYlmr6MoorAsnohx9Q5ILQBrRvu2wukivaI6ckFqaVslIHJMLQZLSJe6zohHGAdHjN1eN6UtpbgdA7AY+vg0OGAMzPu5mCsmXgoTIiyBAmajHqfHh8/XeXFkg83VnsOYkivymGMK442gN1GXPByHp+eEcbY1m+dPf57Fly7mlxNv5ES7XTSEiUKKIYkWZzMoeprtNexs2MmPxv6IXx37K5aVLeOsd8/iuc3PUW2rxu1/AHt3z7uoqCzc/zl89QdpkynpfUr83RpzxwthDHGnU2hWiomkUmguWZGEsbBfG9m+ehdl/g38/WtpnkcxffyO0PdIMiYxNmssy8qWoaoqexr3MCozsuefVvUZNZ0ieyS0VQsngJ5k42vtXzfH95QqkfDlvaJz0ajToh+TXgjN5Z1fq2ZHuCtDrAI8t4NSj5jcB6cOxqw3J5RKod0Ykk3RzfDNenNAbB9oPoBX9eJz5mLp6xFjgBN+BdcvhAufjprfa/W3bHZ6Ok91aLS5Q6veOyvAq9gIueMxm8w4ejBiDMJxIsmYBFnDxYZoES0gxWWjTVFhwoWsN5tRUZkxcAZXjr+St899m+kDp/Poukc55a1TOPPdM1lZsZJFB0SQYMn2N2H5o7D2xR4dv0QSxsqnIX2IcOPRLBcb42tQU2/T8v8TSKWIFjFW1faGHTlj/NaMUf7Ou+tIcQQhhXEXWDB0ARtrNrK1bivNruaowlhLhNe8jsPQusv0dNR41xdieTQlD1riEDGSo5u2Onj+DOG1Oft2GDY/+rFpgzpPpfD5RFvQAR2EcWaRyF+OlGfcXMZ6i5lUnZn85HysBmtCxXfxRIx1io7FpYv5/fLf88slvxRDdeUGBGWfRqcXbZ1jdJCyGsW+eArwQiLGIJZ8a3dGbkSgqoHcQ6tRjyMO4d0lkrLBnBY7YtxaQ4tOB1N+xH6/7/HYbPE5G5ExgidOeYL/nvlf7pl5DyoqN3x5Aw6vgzNzj6VY8VBqMIQ2S5FIepqydVCyAo67GfSG9kLZOCPGmpViV4rvwoRxW60IvGWPFF70eZPgwIrIF6nYKDRDhE6ZRxudCmNFUQYrivKNoijbFUXZqijKXf7tf1MUZYeiKJsURXlPUZSMXh9tH0FLXH9yw5MAjMyI3D5Rc6qIGTEGqNvbMwPzuKDhAJSuFDk+afnQUtkz15YcuWx9F0q+g9Puh1Pvi31sWoHIlYvVyampBNy2cGGsKFA4I6Iw9jUUs9RqZW72Meh1eix6S0I5xppLTCxhnJskJvxvD35LhjmD68bfhs+Rj6U/COM40H6OeArwGto6+KTmjAGvK3Jr6KZSkZKVPxmLUdejOcYhKApkDRN5jlFIaSzDrtPhzRlFg16HQdGRakwNOWZq7lSuGHcFb5zzBn+c/UceOfERbraI5ex1OUNE/qdE0ltsfVe0hZ96pfjeaBGCM8YDXzCN3YgYhxUfa0E3TWsUHQ8HV4u0uY50t/DuCCKeiLEH+LmqquOA44DbFEUZD3wFHKOq6iRgF/Cb3htm32JY+jDGZY1jaZnoajcqI3bEuN4Rxcs4a5hY2qjd3f1B+bzw2g/gsUnCH3n06cJZoLdTKWSDkv5P9TawpItosd4Q+9j0QvH5iiUuqneI147CGEQ6Rc3OMLeU7ZVrqTPomT9IRKstBktCqRSaS0wsYfzHOX/k3fPeZfGli3nhjBc4v+jHgK5/RIzjQCsijEsYd/RJ1TpdaW4iwQSWWKeIAj+3N3pBcXfJHhl9PvR5SWkRn7tWUyqNegNZijli4TMIH/mLR1/MqUNPJaNSFIO2puXJYIGkd9mzSKRQWIKit3nHxN2zoMGfY5yIj3Gzs5lkYzIGXYf5W3vIzB4hXovmiXS5A8tFIE3DZRMrRlIYA9DJXRBUVa0AKvxftyiKsh0oVFU12Djye6BP+nK0Oj3Ut7o6PzACBRkWDPrIzw7XT7yeX3z7CwZYB5BhyYh4TJZFeAFqXsdhGMwir27rezDjWhGN6yrLHoZ9i2HkAvGEmj9VCOOS77p+TQBXG0TL29zwGnx4J5z7GEy9QixRmlISb4ErObxUbYPcCfH93tL8y4LNZUIkR6JGE8YR2ooOmg6oorX08HZ3hW9r1qOoKnNHnAOQcPFdIGIcw64tx5pDjrXdbL6ySVzfYjwyMsrMBiGMi2vbMMZIuXB5fdjd3tCq9xz/w33tTuCs0BMqNorW3gPHY94t0mgqmx3kp4dbVHab3HGw5R0xl5hDI8E0FJPiv5m3+Rw0mJPIII7PrKpiPbgOci04TMnQGkf7a4mkKzSViUDDgv8L3V4wFXXpwxysrEU1xu60WVJvQ6dAmjWxiHHEwjstMJbmn6uHHCeCca9cBGPOgh+9LrZXbREBDymMgTiEcTCKohQBU4GVHXZdB7zRQ2PqUb7cWsnP3oyjIUEEfjB9EH/7QeQPyoKhCxidOZpBKeFG+xpWgxWTzhQ9lQLgrL/DGz+GJ2bCtKtEXpJWxZoI6/4repJf8Va7wEnLF0ugbjsYu3ATW/M8fPJzmP9LIZCPuai9gApg1X/A54YPbhURxw9uhZk3wsm/je/6Pq9Yvu3K2CQ9g6oKI/p4/SY1Mdx0EAbPjHxMzQ7xUBbsSKGR5/97qtwcIoyXtBYzyQNZySLdwaK3BJYH4yGeiHEwS3bVcNXzqwBIs/RMs4rDTZpVTOfXvxSju2AQA1KC/Jst6eJ3FiliXL5BRP+N1sDNes6DX/PtL05iSHYPt9POHS9ea3aGt72u3kaKT+Q3t7pbaTSYyPTFyHdWVfE5rdyEpa0aGILdaAFns4iQmXp47BKJ5gY18tTQ7QXTUFQvdz32MuvU0eHndWBAqllYKcZJi6slYH0YuqMCrFkiCAdiTp5+rahD2r9E1IPodFAq5sJIreaPRuIWxoqipADvAHerqtoctP1eRLrFq1HOuxG4EWDIkC4Ivm4yfWgm/4gibmPx72/3cqAuepqATtHx4hkvolOiR2YURRFextFSKUD0Ef/J17Dk77DqaVExfet3kBne8zwqLZUisX/WzaFRv9SC9v1Zwzq/zobX2lvOqqqI3JjT4NuHxLbVz8GEC0ShTv5kKF8HJ/8Ovn9S+CZ77LD8nyK3KnOo+KNz28AcJFacrUKspxXCZ7+CvV/D7WtjFhVJIuDzgcfR/Zt7czk4m9qtfDpDizzEKiSp2RE5jQIgZYAQYEGV0bX2Wrb6WrlD1z6xWwwWqu3V8Y0JIZQUFOFuEAcVTSJ/+cGLJjJzWBe7PPUxZhZl8dQV07DFkQNsNOhYMG5g6Mac0eHCuLVa3ECnXw3ARVMLqW528PjXe6hqcfSCMA6ylOp4k67aRrLfiq7V1UqDXscYZ4wCzRX/hK9+D4CSkodVb8Zu9AuE1sp2FwyJpKcoXw+WjPD5tGAqAAsyyrji1B90eplRA+N7wNeIGjFuqQxv1nTOw7D+VRHIqtsDA0bDwVUiIJfax7uAHiLiEsaKohgRovhVVVXfDdp+NXAOcIoaJelMVdVngGcAZsyY0UuJadEZmp3M0OzoFk7R+GpbFXtrWmMeE/EJrQNZlqzoqRQaA8bAxf+BE++Bp+bCovvgkufjH6z2tDd4VocB+j/kLRWdC2OfFz67B1BF9AhEdPjSl0SVbdYw+Pw3sO9b2OhfftEZRJTb6xLiuXCG6Ej1/Okw/CRRBNhSCZf+F0adKkTwG1eBq0XkOpWuFOeWrYkefZRE5pv7YcXjMPkyOP2B0IePePH52iuUtUhdZ1gzhDiu2hr9mjU7YdrV0a/RwRps6UGRqz8/uf1hMOEcY3crycbkmA+qwWgFZKdNyIuaLtXfMOh1nDkxQsfCeBkwRqw8fXEvnPIH0a1w9bPib3TmTQAkmw2cMHoAj3+9p3eK8DKKwJgkVjE0VBVW/hs2vUFKykBApdXdSgM+Mpw2sT9SGtDeb0S3xgV/glGnYX33dBxaDn1LlRTGkp6nfp/I5+34eUzLp07JYoq+mNnTo68yd5UWV0vk1euWishit3CaeN30hrjfl66CoZE7ah6NdCqMFVHZ8BywXVXVh4O2nwH8GjhBVdUjrgIrM9lIw4HoLUbjJcuaRY29Jr6Ds0fAnNthyd/gpHvbE+Y7o3Ql6M3tHaw0tJzleHxnKzeLyOFF/xGdtoIZc4Z4vdL/TFSxSeQdZg0X1i4zbxQ3oTMeFIn93/5VRJnSB4k0iVcvgYIpYkk2dzyMPEVEc1CEuN7+oRTGieBogpXPiP/f9a+I38e1n0bPBY/GovuErytK/BFjEKsFFVHSkzRHio4exsHkTRQPSR4ndyz5BYtLF5Pr8TIms32J0aJPvPhO60oZD3Z/W+MjpfCuRxh9Bmz/GL57QnhZD5svVrBGnyEaBPhJxP0iYXQ6sdoQ3ISgdjd8fg8AKUNnApU0OZtoVt1keVxiBSqpQ9Tf5xV+2ZMuhfHnASK1za7z/75bZQHeUY3XLe49idTDVGwSHSCnXRX9mPp94QEqPzt0Ixjh2pXYOOOk2dUcPZViYISgR85o8QC69O/t26KM+2gknlDJXOBK4GRFUTb4/50FPAGkAl/5t/27Nwd6qMlIMtFoc3W7+roguYCK1gScIcaK4qOYZvvBtFQKkVEwVUR4gtGWUOJpRXlguXiN56kxfxJMuxKK/Mcm58ANX4nCqqFz4Kr34Wdb4fov4LrPYf4vREvM438K130mIjhz7oTZt8GIk2Hr++2WdR6niACtexn2LIznf+DoY9UzIup+yfNw4TNist7ThdbfpauETdeV74YLi1jkTxY+xa4IHR0r/JXX0brnaft8HjxVW1letpzp2RP5c00tSmZ7qlWiEeM2d1tcKzgamtevua93vTuUjDwFbvHPA+XrxbzRWiW2B6EJ43j8krtE7nhREKpR7m/lPPg4UiZfLja1lqMCGV5v5PmtZof4Gwl64LboLdg1IdQiLduOSuwN8PqP4P9yYPdXiZ373RPw0V3RfbA9TpHTHmUlYrM6glxXSa/4aDc7m0kzd0il8HnF32/HVAoQvuhaoV22v/B2iBTGGvG4UiyDiKW/n/b8cPoOmUlGPD6VFqenW8U5BSkFNDgbsLltUfMfa2w1eHwe8lPyg6rD43iydNvh38cLE+9zHw3fb0kXT4Xx2BMVLxN/0NGcBrqKOVUU43UsyDvNX7W7+yv43+Xw+HSxvFO+wd92uBQMFpF/nTte5NPKIj2R5/31/aKiuGCq+L/5wCRyxPyRsbhQVRGVO+Yi8XCSCHmTABUqt4RPppqDQe6ETs6HkuLFuH1uLs6dyXGOT0SnKD8WvQW7N34f4xZ3S0IRY4fbi9mgQ5dAgctRQVKWaMRSvl5YTEHYaoJmC9drwjhnFGx4RayMWNLFWAxWuOYTUnwu2PwwpS2ii1imz+ePinX4vJX668MHHds+boMVu+oFnVFGjI9GVBXeuwV2fSa+r9wEo2N0+exI9Tbh3FC2LqRwOEBjidgfRRhv9A1Dh79ZTtHxXfgBIuPxebB5bBGae9SI8UTLG550KSQPgAv/LVLqpCNFABkuiYLWdUbrW95VCpJFOkNFW/So7clvncxp7/j/QE3JQiBEqg7vyME14sP/gxdg+jXh+xVF/FFES6UoWwdf/1lEZ/ct7tE/1rgZtQDu3iKcL9x2EYlOyoLjbhM3xRfOFOL/oWHC1q56h0jVaCg+9GM93KgqLH4Qhh4Pl7wgthnMQiBreebx0lIBjsb4c4uD0SbQSOkUFRuFkDJaop+fNRyScthdJvKbR6n+5/P09hw5i8GCx+fB44vRSCSIspYysi3ZcR0LQtQdKY09epyCqaKwVsvzHdBBGAcixr3UAa9j46Py9eIzpzdgNVjRK3oOth4EtIhxB5G741MxRyTnhogUq9Eqmsak5oX4ux9sOcg9S+/B5j7iMgIlGrV74LkFQhSf8ZAokEvEz9rrgRp/sCraXKs18IgijNe7i8QX2gpID9HiEhHosBUzbSUlUsQYYMZ18MOXheYYtaBHx9TfSciu7Wgiyy+MG2yublVeF6QIYVzeWs6IjPCc4eKm4vCTBoz2+4l2Qsn34nX4idGPSS2IvNS49xt4+YL277NHwvxfdf6evUHqQDj5XvEvmGlXwjd/EctTOaPgrWva99kb4Yy/HMpRHn5qd0NbtYi+BwvPQccK6zyPs92WpzO0HM5Ecos10gogKSdcGKuqSOsY1UkURlGg6Hh2169Fn2RgmNOfMhEkjK0GsTrg9DrDTes7UNpcysHWg/x4/I/j/hHsbq/ML45GwVTxELp/KaQMhOTQBw7N97lXcowhSBjvEasLFRsDD/6KopBsTA6NGHdsYvTlvWKl7IInQ3JILXoLta5ayBga8mC9onwFn+z7hLkFczl3xLm98zNJDi/LHxHpOWc/LATh2hfjSzHUqN8n6mdArM5FOwYiCmOvT6XSm0pzSh5pPSyMo7aD1oS/dJpIGBkxjkJmskif0PqWd5X8ZPG0Fi1i/PG+j8M3DhgrnnBjeXSC6MeeOx6smdGPScuPHDHe8QkYk+HnO0X08fqvIGNw7Pc71OSOE0+0N34jcpXPf1I0E8mfHH1yOpIpFu4NYZH9wTPFpK3l98ZDlGhgXCiK+B1UdhDGLZViBSOeJbmi49njszMkOR9zS4VYHQjqFGXRC+EfT1voFeUi8jy3IP6qaofbF0gJkHSgwF+xvvuLiA9OFkMvp1JoHUHr9ogHOI89YHcFwqu62ias/DKNqaECx94gBMrUK0QzgyCsBqtoGtOh7XRlmxAQXxZ/ieQIpXiZsEY99vr2ldREIsZaICF/sogYR7o31+8T9qZJ4StX2t9KbdoxoiYomqtPF9D6JGiddgN0FjGWREUK4ygEUils3UulGJA0AIPOQFlrWcT9X5d+DbQLAUBUjHrsosI/Gl6P+AMdMjv2AFLzxQTQsYiweJnID03NE3mmiRRfHQ5MyeJmN/0aESEv3xC53/uRTPEy8fvsGJHInyJeqxOYbKu3R4wGxk3+ZHENT5CPbKB1cDzCeB67TUZG6pJEoWmHpjZmf+Q7UgGey9v+sNroaGRRySIKUwoZmha/97fdn2MsicDQOe3zStqgsN06nYLJoOu9iLHBLD4PdXtg3zdiW9DDYHB3w4zkgaECp3yDeA0S0hpWgz+VInuEeIDztyWvsolCvOXlywPL0pIjiMZSsUIQHFDQ7ovxUr0dUIRHv6NRfDbD3qdErEZEcLrQ/lY2j75V1M68dJ5wxugB6ux1ACFdPQHRhU/RiZQiSULIVIooZAalUnQHnaIjPzk/qjNFeauI5jq8Djw+j1g21lrpVu8QhTCRqNoCrlZxE4tFar6IJgZbGrXWQM12mNS50XifZPAsWP6YEGJHeiWtxwlL/yFaMO/8FMadF8EjswBQ4rPl06jYGF6wlAj5k4XTSPW2dhFSsVGMY+AxnZ6u5ozmoMHIaWWboLZaeDEHYTGIB0WHx8H2uu2srlzNzoadrK5cTUVbBcnGZHyqLxBRvnbCtSgJWC853F4ZMY6GTg8XPwevXwYTL454iNWox9EbPsYa2SP9qUM1YlUsqChY+2xkW7Ix67JCI8baMnUEYWwxWMTnJcuf0la/DwqmUGWrItWYSou7hQ/3fsgV467otR9LchjQHJdChHGeKMDUOr91RvVWEZAY5i+6K10pUh6DaS5rt0jtgOb57cwcDafdD+9cL8R2/qSIxydCrb0WILzGonKzcB3SS5mXKPJ/LArpViOKAg1t3RPGIArwytvCRUubu402dxsDrAOosdfQ5m4j3Zwu7KwUvWh8oXkId0TLL+6wXBhGmn8Zpbm8XRgHJop5Xfhp+gCD/BZM294XTUiqt4lJYOoReEPb9oFonmJJF1Z+p/4x/Bi9UUR/myKvSoThbBX/Z2PP7vq4ggvwgoVxzqhAs5H7vruPiTkTuWjURWGn27x2fAqkeVxCqBx7Q8h+q17kGL+x8w3e3vU2HtVDliWL6QOnc+HIC2l2NaMoCgOTBjI+ezzTcqclNHyH2xtICZBEIL0Qbl4adbfVqO+94jsQFlLFy0H1wqybQnYdaD4AwK9n/ho2fhzaDKR8vWjqESG9LMmQhN1tb19xqd8rhHFbFccVHEe9o57nNz/PJaMvwayPM1df0rdRVdj8lr8bXVAgIDVfPNjb6kQ3zs4o3yBqObJHis/WwVWiBiaY5gpxP4qA0yOEsdWob2+uUb6+R4RxnaMOBSU0lUJVxfU7tqaWxIUUxlHQ6xTSLEYauplKATA4bTBf7P8Ct9eNUd9u/aYt4Q1PHx4qjE3JIpoXy2mgZIVwr0gPX+oMIdAWuqLdfmn/t2BKiRhV6RekDBCd9b5/ErZ/JCY3t03czIvmH1ntpTe8KpaV79wY++dKL4Tmg/Fds3y9sPEpnNH5sdHILAJzunBG0RxRKjbCULEE7/Q6eW/3e5S2lEYUxtqSdcrsO2DUxWEe3FpU8H87/8eMgTP42wl/I9uSnVBUOBZ2t5fc1K7bMB7tWIy9mEoBwkZr1TNCGHe4uf9h9h8obirmzGFnwr41wqvV5wUUOLg6anqZ1WDF5XPhzRiKHqBuH6qqUmWr4vjC4/nhmB9yw5c38Mm+TyJ+ZiX9kO+eEH74p/05dP4M7grbmTBurRH2oTNvFNcYdGz4vdnjBFstpBZQbavmw70fct0x1wU6cdpd4iHSYtSLBzdLunB+mR6jQ2ic1NnryLRkhhYpN5eLQu3+eo8/zBxBCqLnyUo2dTuVAuCkwSfR4m4JFAlpaAUkw9JFu+ZWd1AL6sGzoGytf8LvgKrCge86jxZDe8RYW25UVTFRDDtBRBr7Kz9+By57TQi0/CniIeHNq+HPecLr19XW/q+bTVoOG00HRQvuyZd3LvbTCuNPpShbI14HdUMYK4oQL+tfFl342mqFMPdHkvc07sGretnftD/i6W1u0RwkNfeYiO3KNWEMcMW4K8ix5vSYKAZRfKe5K0gSx2LU917xHQhv7bs2iMJgbfnaz4KhC/jJpJ+Ib1LzhHhuqxUrYS0VwuM7AprTiUOvEwGD+n20uFuwe+zkJecxM28mhSmFfF3yde/9XJJDx4rH4cvfipW22beF7gs0v4ojz7hig3jVIr2DZooGMvbG9mO066QV8M6ud3hs3WPsbtgd2O0Ijhgrit8SsWfcKWrttWRZOtQIla8Tr1IYdwl5Z4hBRpKR+jYXXl/3hNXs/Nmkm9P5ZP8nIds1YTw8QyzthfhoDp4pcoiDW6OCED9f/D/xNDi0k8I7gJQ8kZax41PwuETRQGMJjEywqUNfQ6cXqQDXfCy66Z31V+FqMHACfPIz+EtB+7+XL2gvdPA4xf9Df2Dr+4Aa3qI7EumDRCpFPA8BB9eI9IXuFlye9wSMORs++5XwjYWAMN5ZL+wGq23VtLpaw04NRIyDCqmCCS5GnTSg+8uNHbG7pI9xd7AY9b0bMQaxUnLMRbHb9qb5c4/L1sKG14QrQJQUIe1hS+QZD4f6vVS3iTl4YNJAFEXhhEEn8H3F93G5oUj6MD4vfPOAWG245IUIdRkJdIUtXw8ogcZEgW6KB9e0H6MFJdLy2VgripC31bXfu7Uc48DDeMFU4UxRtze0gLkL1DnqyLZ2yC8uXy9aXud1Xu8hCUcK4xhkJ5tZsbeOs/8ZPdcuHox6I6cNPY3FpYtDxG/siLGWR/th6MW+/B18/5ToWDMitFVrRAwmOOX3wtj838cLUQ3xndufGHMm3L1Z2M6d94RoO73gTzD7dtG85M2r4ZWL4f5ceHAI7Pz8cI+4c3Z+KvLissP9r8NIKwB3m6iYjoWqiuXm7kSLNYwWuPg/wkVl1dPCwcAfodCEMRAxaqx91lOMUYRxUMQ4N6nnq6qdHulj3B2sRj3O3swxjpfhJ4rP3/u3wJa3YcIFYIrsO69FjIUzxXCo2xtIZxuYPBCAEwadgNPrZFXFUWgHeSRRv1/MhxMuDEvTAkRNBkr8wjhnVLudZOF04fYQbBnaIoSxLyWPzTWbgVBhrK2uBB7Gx54j3v/xaXD/QNj5WaI/YYA6e1144V3pKlG0KrvFdgkpjGPwi9NHM29UDjsqW/B4u3cTOGvYWdg9dhaXLg5sq2qrItWUSo5F2KyECOPMIphwId+u+RfnvHkKv/j2F6jVO2HLOzD3LvjlHsiM057q+Lvhh6+KP5J934qiuwjL10cEeoMoiph7l/h3+p9h7t2wd5EweJ97lxCa793UXsDYF2mrg5LvYGzkZeEwtMhZZwV4TQdFTmZQq9xuYUqGH78NFz4Nt68SLcCBHfU7Ast7+5r2hZ3WqTAOti/sBWTEuHtYTYcgYhwPpiT4wYsiUjzhIjj591EPDRHGWSPAVkuVv8HSwCQhjGfkzSDZmMzXpV/jU32o/TUN60iiK7+DSr+ne97EyPv1RpFO0RjDElWjYlO7JSaI4uKONUD+JjPFijfQcGN7fXtRqPa3EnDCGTQD7t4EZzwo6n12d91Du85RF2rV5naI4Ed/La7vA8jiuxiMzUvjlLG5LN1dS5PdTXZK1yuVpw2cxsCkgXy6/1POGi7ETrWtmoFJAwPLyW2uttCTzn2M//e/46G1ki/sXzC/ZBPnGZNgzh2JD2DcOeLf0ciC+8Q/jWlXw3OnwfOnw1l/h5k/OXxji8buL0SBXJR8yTC0Iszm8tjLZwdXi9co1dNdImNIiA+xT/Wxq2EXpxedzgd7P4gsjP3pFdFSKbT2pleNv6rnxulHVVXZ+a6b9HrxXSIMnAA/3dzpYWGpFEB57XZ0io4BVlGAZdKbOHHwiSw8sJA9DXtIM6fx1KlP9d7YJZHZsxBMqbDxNeEIcdO3iZ1fuVmkEgwYG/2YzKKQDogRcTSJ2omB40O3D5oJm94UKRs6vZh3jUlsaharY3ML5rK2am3AgjUsYgxile+4W4QoLl2d2M/nx+a2YffYQ1MpytaCxxHeCEoSNzJi3AmZyZqfcffcKXSKjrOGncXSsqVc/OHFFDcVU22rJjcpl2RjMtAhYgy4jUk0K/BjNZlpDge/95bz7JSzIDkn0ltI4iV7BNy1EQZOhE1vHO7RRGbHJ6JAKN7iCS1i3JkzRdlaYTAfh9dwV9lau5VWdysz8mYwJHVITGGsCeCOJBmTWPrDpfxixi96fHxur4pPRRbfdYNeL77rBQLFdx5HID2ppHEv+cn5IW5BZxSdQbOrmU21m1hWtuywjPWopuEAvP4jeOFM0bq5YgPY6hO7RtUW4eFriBHMyhzauTDWrABzOwjjwTPB1QJf/V6I4pZySM1nSdkSsixZnDnsTBxeB8X+FQnN2jDiw/igmcIn2Zl4cxmtuUdIKkXxMkCJrwZJEhF5Z+iEjB5q9AFw+bjLOWf4ORQ3FfPq9lcDwjjJIHLiQorvgEZnIwBZs27nifQZnKqk8ljtSt7Y8QZNzqZuj+eoxpwi0hTK1iY+6fY2brtoGzr2rNiFR8GkDBSCt25v7OMOrhbLgpHy7nqIpWVL0Sk6ji84nvyUfGpttWHHtLhbUFACYiUSGZaMHnWi0LBHit5IEqI/CmNtnrV77MIyCyhpqwjrmDinYE7IA5u2NN4juGyw8mmo3ROaIlC+Ada+JDzGS76Hh4pEXcTXfxZzgc/Xf911EmXRfaJgfMRJ7duCvarjoXJz9DQKjcwiIWpjFb9pxe8dW6MPO0H4GX/3BLx6KRxcS116Ht+UfMM5w89hcOpgcbq/jqh9zokguQYfK1YH/zkNnjpeFMp/9y94aBgsvE90uY1CrcPf3CM4YnxguVg1jODlLYkPmUrRCZlJIpLQE40+8pLz+PPxf8an+gJNC8ZljUOv05NkSAqLGGviNz0ll9TLXudBn4emhbdw/8r7uX/l/RyTfQzXT7yeU4ac0isC4ohn5Kmieca3fxWT09hzOxeMbbWw6wuYcnn8ojVR9i0WvszxplGAyK3OmxjbAsjjEjfgXk4dWXJwCZNyJpFhySDdlE5Jc3geX5u7jRRjSsDn81DilMK42/R6g49eICSVwpSEmlpAiauRs1ND25Gb9CYePvFh1lSu4elNT1PaUsqE7G50iQTxwLpvsRC9m9/0b1RgxrUi3//jn4HHDl/9DnRG0JvF8dveb79GZhGc9Nv+27E0HlxtsPU9OO5WUR/SVAaPjBcCtWhufNdoOCCK6gqmxD4uswhQRcvonJGRj6neLnKA0weHbk/Lh18XiyLu138IxiQ+mHY+nuIPuHjUxXhVMcc0u8VDVSCVIlJTocIZgCIEutcF//uRKO5LHwTLHhadcL1ukc6hpcBVb4eqrRRbxPXyk/ODxrwNRp8e+2eXxEQK407QWkM39kCjD41Lx1zKx/s+ZlbeLH445ocAJBuTA96uGlrEOMOcAYBBZ+DRkx7lqwNfUWOr4aN9H/HTxT/lx+N+LLpASRKjYJroiLTyKfEPxFP2tKuFmXtQG9oAS/4GK/8tin4mXNg749r+sSgmSrR4omCqsKzS8t46UrVFtAfvCUeKKNTYathat5U7poo8+HRzesTVjRZXS9T84t4mUAgjhXGXsR4Ku7YeJiSVAmjILqKFg2ERY4Dj8o8jy5IlhHFzN4Sxzyccgd6/td0xZvbtIr+0ahuseV78K5wBJ/0/WPdfEfG7/A0h7DxOYdtYvw92fgLv3ywceMyH52+n16nYJKKn2tyXViAaCXW0LY3F3kXitTPnpcwi8dpQHFsY546LHgQZcwZc9joVlmT+s+IeZuXPYnjGcKrahNtJs1MIY7vbi9mgQ6eLcB1rBlzxlljFyBgMH94JNdvh6o/g2QXioUnTBpMvh5GnwEd3g6uF1aOPJcucEXC2wlYv2qjnjIn9s0tiIoVxJ7TnGPec9+3U3Kk8ferTTBwwEb1fwCQbk6NHjE3pgW3JxmQuGHkBANcecy1/Xf1XXtn+CqMyR8luTYmiN8Cl/xXRWb1RVBlXb4cV/4Tlj4LBCuc/IZoIHFgh8nI3vyXO/er34maWMTjmWySMxym6+Y09J/F0h4KpoltY3R4RZeiI5rvZnY53nfDp/k8BOHWo6FaWbk6nxdWC1+cNfNZB5BgfLmGsRTplxLjrWIw6vD4Vt9eHUd8/MvI0YWzziJS1krRcaDnIkLQhEY8flCIKWkta4nAuiMZHd4omODmj4eJnhQvC9GvaH1zHnCGKxEadLpr4jOwg5gxmmCyCJwyeCa9cBKUrw487UujYmEJRRKQ0kVSKPYtEw6ecUbGPy/A/EDVEbkKEqgqv4c6K1seexf8tvBWf6uMPs/8AQJpZWLtpaThOty/2fDNqQfvXFz3d/vXs28RnaMzZkDsWlv5DFCQOnIhaNI+V5e9zrMuLrn6/yJuv3SXOizT/S+JGCuNOSDbpMeqVHmkNHcycwjkh36cYU8KEcceIcUcMOgO/PvbX7G/az4OrHmT6wOkRox+SGAwP6qqltZ5tOCA8Ube8C5/+QizveYMejObcKdpR/3MKXPtZu+d0T7BnITib4JiLEz+3wN+ZqXx95ImxbI1o+NJZG/Fu8PG+j5mQPYHh6aLqP92UjopKq7tVtDv3o6VSHA7arZP6h6Dri2g3ebvb22+EsZZK8eCqB8mx5uCwpEALDDVHbnSTZEwi15xFye5PwWMV6VORVmKi4fMJH/oJF8JF/4ncaXTcufFfb/AsIaKLl/VPYexoFqkhRccHXEHCKF8vColTB7Zvyx0nbEpVtfP0NY9LWJJOvKTzY7W6jGgFePX7wF7faQH01tqtLC1byt3T7g7kFlv0Fow6Y6CRkd3VRRecKZeLh6MxZwkf5UHHinvRmLM50HqQ6vc/ZmZjC6x7Sfj21/j943NGJ/5ekgD9Y0Y7jCiKQkaSicYejBhHItmUHFZ81+TyR4yDBEVH9Do998+9H4POwF1f3xVYwpF0g8yhMO/ncN4/wd4Aybnwsx0w5QrR2e2UP8Cd60Fvao8g9wSqKtpZW7NCBXu85IwCYzKUrYu8X2vs0Uu50Tvrd7Kjfgfnjmi/2Wuf3Y7pFC3ulsMmjCNaJ0kSQvu/608FeBa9hVSjKKr78/d/ZpvOjV5VKXDYop4z2O2itHYrfHg7vH2dELvxUrtTPOSOOj2yKE4Uc4p4+C3uZ04ZPq9YYXt4PHx4B/znFNj1ZWgxYekqeHSSqN/oKETzJgrbtLo9nb/Xzk+FW8ToMzo/VqcTAYRofvaateXgWTEv8+zmZ0k1pQbSIkHohlRTaiBi7PB4u+aCozfC5Mvam4uMORPGnw96A+/sfgeAWXnHtlvH1e4SYj8j8iqIJD6kMI6DzCRjj6ZSRCJaxNikM8Ws3AfRtenREx+l0lbJTxf/tDeHeXRROB0ufRmuel8UW1zwJNy0RKRgZAwReXB7Fvbc+618WuTHzf9l126kOr1/2TFCPp6tXkRAejG/+PUdr2PWmzlrWHvRoCaMtdUPjcOZSiFdKbqPFv1yuPpPAZ6iKHx44Yc8s+AZGpwNvFb1HdMcTozRmjx4PQxurafEmgon3COineVRHjo7snuhqBWAnl1RKjpejMEVXcz3OXZ/CcsfgxEnwmWvizqO134AT82BxQ/B0ofhrWuhqRSczeFFc8P97hR7FnX+Xt89IXJ1g1MTYjHxB2IlrWZX+L7SVcJLOYYX8r7GfSwqWcRlYy4Lm8/STGntOcY91FDI6/Pyn03/4erPrubFrS9y8aiLGTr1GlFs+MAg8fNnj0xsZUMShhTGcZCRZKKhrWdTKTqSbEwOa/DR5Gwi3Zwel+PEzPyZXD3+arbUbgmLPEu6wfjzoueqjTxViM36cJ/ehPH5RGHf8JOE6XtXyR0v8uI6WjtpuWe95F9c76jno70fce6Ic8m0tNsERYsYt7pbA9G7Q43DJYvvuovWwau/FeDlWHOYXTCbBUMXMDF7Ag9X10b/+y1bS5bLTiM+1HHniW3xdkp79WL45n5Iyo6eNtAV8ieDz9P+99wfqNoqXi94SlhQ3vqd+FrRweK/CHs2Vytc9wWc+xgc28E1J2uY6FS4txNhXLZORHmPuzV+YTjxUmENt/G18H2lq0QgIca1ntvyHGa9mR+P/3HYvjRzWiBibHd727vedYEmZxM3fHkDJ7x5Av9c/08cXgeXjr6Ue2fdK/KPT/0jjDhZHJwyMOa1JJ0jc4zjICvJxN6a1s4P7AaZ5kzqHHW4fW6MOhEt1IRxvIzLHoeKys6GnUzNjbMxhKTraHl+e7/p/s2vYgPYartvA5c7XuSbtdVASm779trd4tXf2KCneWvnW7h8Lq4cd2XIdq1wVEsL0jisxXceGTHuLtqycH9KpQjm7yf8HQUFZdeE6N7fexaSqoJH9eJMycUCqI0l/G/H65w0+CTykvMin/fdE8JuzesUzRt6MnVJqx2o3dW5HVlfoXq7WGHzt4vHYBbz3JTLRftiELnTekP06PrIU4Vjh9sBxijt4vcvEa/HJFCEnjpQ+CVvfU+ISw1ni2i6Mf+XUU9dVraMT/Z9wmVjLyPLEp6nnmpKpdHvROJ0+yJbtcWBy+vitkW3sa1uG+cMP4c5BXM4Y1iHVJHjfyqCIVvfg7xJXXofSTsyYhwHmcnGHi++68ikAZNwep1sr2uvvm10NkYtvIvE2Cyx5BN8DUkvkjVcOFf0RMR4zyJAaX/q7yqaEX3HdIq6PcIfNb3nc89cXhf/2/k/5hbOZXhG6ANCpIixy+vC5XMdvuI7V4wuVJK4CC6+64/oFJ1YicsaDvVRhPHOT0lJE8VUrXoFLOlUNuzhLyv/wotbX4x8Tmu1KBQ79nq45Hk4+d6eHXjWCBHh1Iqs+gPV28I7x2kYLeKfvpMY3bD5wue5clP0Y0pXid9nop1hR58hCvCCH5DK1grbuEGRhXq9o56fLf4ZozJHcduU2yIek2bqmYjxI2sfYWPNRh6Y9wB/mvuncFGsoSjioSCa9ZwkbqQwjgOt+E7txc5D0wYKR4E1VWsC25qcTQkJ44FJA8myZLG9XgrjQ4KiiNzj5rLox6iqsF+r3Bz7WnsWighQd9t9azegjvZGdXvETaOzG1AX+KL4C2rttVw17qqwfVoHMS3XDtpF8uGza4vRhUoSF/2x+C4i2SMiP9hW74CqLSQXCmHU6mqF9MHsbi4GYEX5isjX27NQpDpM/pFwlums+1qiGEzi77i2C8K4eodI8wimoRienAPfPSnmqo/ugreuEYVcXaV0dXujIY9LRLc7do5LFC3PN1oBnqrCwVWdFspFRAtGBOcwl/oL76LUZJQ0l2D32Llz6p1R29oHC2OHO7HiuwZHA6/veJ17l93LK9tf4fKxl3N6kWzacaiQqRRxkJVkwuNTmfTHL6E3G8wV5vLI0s957uMiPrx9Lo3OxoRSKRRFYWzWWHbU7+jFQUpCSCuE5orI+1QVPvs1rPL7Up7xYOT84fr9YlKf/6vujydlACTliGYewdTtEUUZvcAn+z9hUMogZhfMDttn0BlINaaGpFIsL18OwPjs9ijSaytLePCz7RyKprdOj/Qx7i5J/ujXLa+sw6CPPSnqdQoPXDiRMyfmxzzusJA9Cmx1ItIbnHq09V1QdKQOmw+VC0VhdPog9tj2gRH2N+2norWC/JQOP9OehSLHs6cFcTADxkQuFuuMd28QD8zDThAFZ8ZkEa2t3wdf/AY2vSFSukB0ejv5d0KIl2+A928RtnMHVgivdUsatFTCmX+Fqs1irhtxsvj5P/+NyB+e9zPhkODzRI8Yx0vmUJFuEU0YN+wX6WODjk382tkjRMHenoUw60ax7eAqIcatGRFP0QRvrMBVmimNFlcL5/1rGXtqWpk0KPqxGl6fl1Z3KzcvvJltddsw6AxcO+Fabp96e4I/lKQ7SGEcB+dOLqCm1Ynb27sV2GvbJlLiXEFZSTN7a1oTzjEGGJM5hpe3v4yqqoGivY01GylKK0r4WpI4SM2H0ih2P1VbhCiecb3oZrX7y8jC+PunxPLo9Gt6ZkxDjoONb4jOT8dcJKI/9ftg1Gk9c/0gWl2trKxYyY/H/ThqkWiaOS0kleKTfZ8wOHUwk3Lac+FW7a8D4JLpveexHMywnGQpjLvBqNxUfnrqaBrtnbv1vPp9CWsPNPRNYawJqdJV7Y0cVBU2vw1Fx7enUmjCuGkDJnMKLp+LJQeX8MOx7RZd+Lyw92vhOdtb7eJBeNTu+ly0CY7XvcbZIorgTCkiTWD8+dBaIwrafvCSEJzf/Us0FrKkiyZHq/4jhLGrTYjSb/4sLCpT8qDWJgTv8xHmlBGnCK/dbx9q39bdiLHeKDrVabUSHdGaF3XVAWTs2cKbvng5DJktPg/jz4t6uDafaY08IpFmSsOn+thUVsXMoQVcO7co6rE1thp+s+w3rK1ci0f1oKDw8IkPM69wXsB/W3LokMI4DvLSLfy/s7r5hx0Hqyuv4LovFmHK+ZqK5mNw+9wJpVIAZFoy8fg82Dw2ko3JOL1Ofvzpj7HoLXx3+XcYdPJX3qOk5YvIic8nfDGDKV0pXufeKYziI6VTOFth/SvCkD6th4TD+f+CVy6GT34G4y8QNkheV69EjJeWLcXj83DykOi50Vpb6K21W3l397usqlzFTyb+JERIN9jcDMtJ5g/ndrH1ruSQotcp3HVqJ53F/HyxpbLXazS6TP5kkXt/MEgYV2wUecdz25fJtVSKPXo4NncqVY46Hlr9EGur1jIrfxYXj74Y9n0jfM97u/nGgDFClNbvi7/DmZYze8nzwvlGS6kKbh9//M/aj59woRD5qk9EfWfeKFpb502Gwf6HidrdothrwoUiQrztAxg4AUYuEA8GjkYx51Vt7Rk3nOxR0QslKzcL0T6gi/fpE34NOz+Dt68VhWyOxqj5xdAeMU4zxRDGftGs6OycNTGPYwpFYEpVVdZUreH1Ha/zXfl36HV62txtGHVGrhx/JRmWDMZmjg1rAiY5dEiV1Ic4Nu9YTh18Nl+pn7G0Ukx4wcvN8aDlbba4Wkg2JnOg+QAADq+Dx9c/zk+nS5/jHiWtUIhOW51IYwimdLVYVs0YKqqyd3waLqArNoC7DSb0YDtva4a4kb13o6isbiwV23uhTejysuVkmjNDor8dSTels7RsKUvLlpJsTOaY7GPC2pc32lxkJCXYAlvSLzgUDZK6jNEixHHpqvZtW94WEdJx55HsFdaXLa4WvGkF7DUamWXN5S8n/JU/f/9nvqv4jkUli1gwYDppH9wh8n/jaS7RHbRWxk0H4/+b1n6+QceG1hkEW5EFz0ujFoR7AR97Q+j3OaPghKD0r3k/C91vzRRFc8PmxzfGzsgeIR4+IgUhqrdDzpiu11BY0uCyV+G/58Pn98DAiTG7EmrCOFp+MbSLZkVvx2rSY/fYWVy6mFe2v8Kmmk1kWbI4veh0DDoDScYkzhl+DqMzZce6voAUxn2MO6bewVcln/J11UuY9Wam5E5J6HzNG7bNLTyR9zeJPvDHZB/D81uex6K3cOOkG9FLA/CeIdUf5W0pjyCMV4obkaIIYex1Qls1pAbZPGlFKp20HU2YornitXgZtFaJG33+5J59D6DWUcug1EExP082jxAXZw8/m9/O+m3Eort6m4thOck9Pj7J4Scz2Uh9XxXGIAq21jwnCsVAtIIfcQokZZHqFJ/rVncrB03puHQKI/TJZFmy+MeJ/2Br7VYu++QyvvjmXn7QWgU3fgOmXv4ca/NHS2V8x/u8ULxURFOj5Mz2C7JHgscBzQfDO7tVb4Ohc7t3/dxxcP1XsPlNbNOu4sZvbqfOXodBZ+CKcVdw2djLAoc2O5tJNibHXIHVhLEp+1veL9vAI7vX0uZuozClkN/O+i3njzxfpkn0UWRZdh9jWEYBqr0It2pnau5UzHpzQucnG8WkrPVoL24qBuDZ05/lrGFn8eTGJznt7dO44YsbcHn78M2qv5BWKF6DC/CcraK1c8P+9pw3zSatY4OA8vWi0KWjqO4u6YNETl7xMhG5zpsExtgdFLtCi7MlZtQE4KZJN3HDxBv489w/R3WiaGxzy4jxEUpmkonGvppKAX4rMIfIMV39H+Ey4y/C0ubTVncrZUYhggY5HYFTx2ePZ0RaES80rOf50cfhGXgIUoECwjhK0S9AWx1s+1CkUDw5W3j8ju75GoNDitZoqWMBnr1R/M4GdrPAD0SR3/xf8k31GjbWbGRU5iianE0sLl0cclizqzlmGgW0R5ON6Rs5aN/OgqELeO605/j0ok/54dgfSlHch5ER4z6GoiiYndNxJ+1nVn7i1jOBnDh/e+n9zfspSC4g2ZjMg/MeZN6geSw8sJBFJYt4f8/7XDrm0h4d/1GHlhccbNm25nn46neAAsNPFNsygoRxcIFI+freM+ovOl5YxXlcPVfY14FmVzMFKQUxj5k3aB7zBs2Lut/t9dHi9JAphfERSWaSiYa+HDEefbooRlt0nyiCHXGKaCiBcFWxGqy0ulqp9NoByGuuDpyqKArXJA3n4Ya9POIqJXnXO6EFeb2B0QqWjOgR49LV8NK5wvcXRPe9S16AcdGLyfoF6aIQkqYO9pg1fhem7jpfBPHxvo/JT87n0ZMe5daFtwZSJzTiEcaFqYUMtBZScmAi95/3S04YkxvzeEnfQUaM+yDZzCKbWZwz/JyEz9WaJrS6/MK4aT9F6UWAmMTPGX4Oj5z4CJNyJvH8ludx+/pwJKc/kJwrCk+Cozd7vhJWP78ubk9fyPBP6o0H2o+zN4gCmp5Oo9CYfp2oKPfY2wtmukhVWxV3f3N3IEVHo9nV3GnEuDO0aGJmcpwV9pJ+RWaSkSa7G6/vUJjxdQFFgfMehzl3wozr4Lx/huxOMabQ6m6l0laFosLAhtBVnwvqKvnWlsTMvJk8vuFx6h31vT/m1PzoEeOt74rXK94RBXXXfyXcaXrBw/yQEi2FRGtm1F3nCz81thq+K/+Os4efjU7RkWZKC2tp3+xsjulIASKV4r5pr+CqOxGrqZ//3x9lSGHcB8myppNrvz56y9EYaEvVre5WVFVlf9N+hqUPCzlGURRunHQjZa1lfLb/sx4Z81GL3iBSFjQHCmcrlHwvCleC8/lMycJfODiVomyteC2Y1jtjGzQdFvxJVJV3M/9ufc16FpUsYndDu12SqqpxRU46QyvMkhHjI5OMJBOqCs32PvwQbkmHBffBWX8VaUhBpJhSaHG1UNlWSbbOhDHYQ1hVoXQVyuBZ/Gbmb7C5bfxu+e+otlXTq6TmxYgYr4TCaTDqVDj1D73WBv6QYzCDNSv8gaBiE5jT2iPK3eTRdY+iKAoXjrwQEO4SXYkYA9hdolGK7LLZv5DCuA/SnaXHYHuhals1do+dorSisOPmD5rPmMwx/GfTf/B2p8uRBKZdLXL4Nr8NS/8uXCr8S7EhZAwJtRsqXiaK4rrqvRkPs28TkevUxB+ygtFWIIIjxnaPHY/P0+2IsWblJYXxkYm2EtCn0ylikGpMpc3dRmVbJXmmdLDVihxeEH/P9noYNJORmSP5+Yyfs+TgEk556xQeWPlALw4qP7IwdtuF3VxvzimHk7SC8J/74GoonN4j3tEbazby4d4PuWbCNQxJE+lvWgc7n9rex6DZGZ8wdnhkl83+iPxt9UEyk41dvolYDVYUFFrcLVS0iSfrSDmgiqLwk0k/obi5mM+KZdS4W0y/RnSReud6WPaIiGoMCe8Cx/ATRaOPeuEUQvEyMaH3dhV7DxTdRRLGWoFnZ0uKnVHfJj7rGUkyleJIRCuq7K/COMWUQqurlSpbVfsqntaSWVsp8rcivnzs5fzrlH9xwcgLeG3Ha1z3xXXcvPBmntrwVM8OKjUPWv3+6cGUbxAexzE8ePs1qXnCAUjD0SxSKTppBb27YTcvbX2p08u/uv1VUo2p/GTiTwLb0s3p+FRfyNyXaMRYNhPqX0hh3AfRqrhVNfGcPJ2iEzlxrlYq28STdbSUjAVDFzA2ayxPrH+CGltNt8Z8VGPNgAv+BafdD3esg7s2imW/jsy8URT3LH9UdKIqWycK5PoBWjFnx5sDxDa5j4dAKkWyjBgfiWRpwritD6dSxCDZmEyLW6RS5GX409JWPA4vXyhaKVvSRTc6RMBh/qD5/HH2H7lszGU4PA7KWsp4cuOTbK3b2nODSs0XAthWF7pdE+pdaY3cH+iYQqI1LumkhuLV7a/y9zV/DzzMR6LeUc9XB77i3BHnkmRMCmzX5jdtvnN5XTi8jrgCAg63FMb9ESmM+yCZSSY8PpUWp6dL56eY/MUinQhjnaLjp9N+SllrGSe/dTIPrXoo4nGSOJhwIcy5Q+TzWaJMmGn5MOVyWPsiPDoJVO8RIYx7LpVCRoyPRDL7ecQ41ZRKZVslNo+NvMxRMPt22LMQqneIZh6n/Tms4YRep+fe4+7ltbNf4/WzXyfNlMZfVv6Fd3e/i8fXtXk9dFBRLNsOrBB+vz1t/9hXSM0Xvuxa+t/B1YAChTNinraldgsApS2lUY/5ovgLPD4Pl4y+JGS7JoC1ArxEAgIOt4joW01SGPcnZKlkH0RbUm5sc5NmSVwsaEt/lbZKkgxJgaYfkZhTOId/n/pvPtj7Aa9sf4VUUyqnDDmFMVk93yVNApz9D5FmsW+xiDQN7SfC2J9KoQlkaE+lSDeld+vajTYXJoNOFqgcoWT4c4z7tJdxDFKMKdj91mcDU/Lg9GvgpP8HenNcTg8pphRunHQjf1/zdzbVbGLJwSX8df5fMem7sUKiNRb67gkhjseeKxw1Sr6DYy7u+nX7Oql5IkLcViO+LvlOuFHEaFxi99jZ0yi8j0tbSqN2kz3YchCL3sLIjJEh2ztGjJud8QtjuxYxNsgYZH9CCuM+SHCEZUh2UidHhxOwF2qrJC85D6WTooS5hXOZkTeDA80HeGrjU7y87WU+uvAjcqw5XRq/JAZ6I0z5kfjXj9AEsc1tC2zruYixi8wkY6efU0n/JNVswKBT+m3EOLgpTUGyv14jwbqAqydczWVjL+OtnW/x0OqHuOPrO3jkxEdCluwTomAqHHMJbHpT1BAULxOdNZ3N/WYVqksEOo1WCH/mkpViFS4GO+p34FWFQI0VMa5z1JFtzQ6bh9LN4sFfE8SBiHGcqRRGvYJBL4Vxf0L+tvogWhX3Ha+vZ01x4p6YHYVxPJj1Zl476zXeOOcNHF4Hv/z2l7y5880u5TlLjjwiplIkEDmJxv99vI1PN1dKR4ojGEVRyEgy8sr3B3ji692dn9DH0Owurxh3BRNzJnb5Oma9mR+P/zF/mvMnvq/4npsX3syKshVhHrlxoTfAJc8Jx5mfbYes4fDlb8W+I1oYB3kZl28Ad1unP+/mms2AKEyPJYxr7bURg0Ha/NbkSjyVwu72yvzifoiMGPdBJhSk86OZQ3h9VQnf7a1jRlFWQuenmFI40HyANndbQikRep2e8dnjuWvqXTy+/nHWVK1BVdXe7+Qk6VOoqso9S++hMKWQO6fdCcROpYjW5jkePt5UTlayiZtOGN6NEUv6OneeMoonv9nL51sruf3kUYd7OAlx+tDTOfXKUzHoeuZ2eeGoC0kyJnHP0nu4aeFN5Cfnc9+c+wLtp4NRUBidNRqzPkIxL7SnEFz1Ibx6ifAs76Y1Y58m1R+xr9sD1dvF1zE82t0+N5/s/4TClEIGWAfEjhjb6xiaNjRse8eIseZRPcDaeR63QwrjfokUxn0Qi1HPAxdN5KON5dR3Yfkx1ZhKg6OBFncLeUmJT5LXHHMNV0+4mlsW3sKDqx/kle2vcPf0uzllyCkJX0vS/1hRvoJP93+KXtFz3ojzKEovippKkWxM7rJgUFWVBpuba+cUcuHUQZ2fIOm3XDW7iA2ljazcdwi6wvUwiqJgUHr2Vnl60elMzJnIzvqd/GHFH7jxqxujHnvRqIu4b859sS+YXgg3LwOPs0fH2edIzROFdt/+DVJyYcC4mIWGT254km1123j4xIf5puQbVletjnpsrb2WabnhzZYsegtGnTEQMa6yVaGgkJPUeaqhw+2TtRP9ECmM+zAZScYuFaykmFJocYtoXle654G4Gdx//P08u/lZVleu5meLf8aD8x7kzGFndul6kv6Bqqo8vv5x8pLzaHI28dTGp3ho/kPtPsaexL08o2FzeXF5fAGfW8mRTXcaFx2JFKQUUJBSwMQBE9letz3iMR/v+5gP93zITZNuiuhHH4JOD6Yu5iz3FxRFpJA8fQLYG+Cch6MeuqpiFc9tfo6LR13MgqEL2NOwh4/3fYzT6wyLwLt9bhqdjRFTKRRFEU0+/BHjqrYqcqw5GHWdF8bbXV7Z3KMfIoVxH6arN5IUY1CxSGeTaQxyrDncM/MebG4bty66lXuX3UuWJYtZ+bHN1CX9lw01G9hat5Xfz/49KytWBrxXtYixJpBBCOPuFN5pn+2sZGnTdjSQmWTE5vLi9HgxG2QUTSPHmsO8QfMi7huVOYovi7/k5W0v8+uZvz7EI+ujZBbBnevBmARGS8RDGh2N/GbZbxiaNpRfHfsrAPJT8lFRqW6rZnBaaPvoertYyci2Zke8Xro5PZBbXGWrYmDSwLiG6vB4ZcS4HyIfZfowGUnGgMdrIuh14g+xKK2I6QOnd3scScYkHjvpMYakDuHWhbfy0KqHWHpwabevK+l7vL7jdVKNqZw97GyyLFk0OBpwe904vWKJ1uYJSqWIsy1qNLTVEBkxPjrQfs/91bbtcJCXnMf8QfP5uuRrWQgdTFJWVFEMcN9391HvqOeh+Q8FnD+0gFHwqpdGraMWIKoTU8eI8cDk+ISx3eXFLIVxv0MK4z6M6ICXeMR4Vv4spgyYwtMLnu6xgpF0czovnPECU3Kn8PqO17nj6zvYVretR64t6RusqljFVwe+4vyR55NkTCLTnEmzqzmQWwehrhQVbRXkJuV2+f20iLF0pDg66O+NPg4XcwvnUt5WzoHmA4d7KP2CzTWbWViykFsn3xriWawJ5OA5TKPOLjoIRosYZ1oyqbJVAYS2Bu8Eh1tGjPsjUhj3YbKSTTS0JX4TmZA9gZfPerlbaRSRyLRk8tzpz/HtD78ly5LF75b/Dp/q69H3kBweylvLuW3RbRSlFfGTST8BIMOSAUBZaxkAmebMwE3F5rZR0VbB8PSuu0nIjndHF5oNZX9tDX24mF0wGxBFsZLOeWX7KyQbk7l8XKi/seb6EUsYR4sYzxg4g+LmYnbW76TV3Rp/KoUsvuuXSGHch8lIMtLs8ODx9i3xmW5O5+czfs6uhl18W/rt4R6OpAdYUb4Ch9fBP074B1kWYQ+Yac4E2k3xByYPxO6x4/V52d+0H4ARGSO6/J7aaohMpTg6yAykUsiIcSIMTh3M4NTBUhjHQa29li+Lv+TCkReG2d8lG8T3wc46wecBZFsiR4xPGnISIFLNgLiFsfAxljKrvyF/Y32YwI3E3vciLKcXnU5+cj7PbHqGz4s/Z1HJItzevjdOSXysr15PliUr0MwA2iPGAWHsvxnYPDb2Ne0D6F7EuE3LMZYR46MBbT7rigXl0c7YrLGUtJQc7mH0eT7e+zEe1cOlYy4N26cJ5eA6CY06Rx0pxhQshsh5y4NTBzMyYyTv7H4HIO4cY4fbi9UkI8b9DSmM+zCaYOiLERaDzsA1E65hS90WfvntL7n7m7v5cO+Hh3tYki6yrmod03KnhbRDzTBnAHCw5SDQLozb3G3sa9qHQTGEVXcnQoPNRarZgFG2Sz0qaJ/P5AN0oqQYU2hzhaYAuH3y/zEYVVX5YO8HTB4wOeQBXyNWjnG0rnfBXDDygsDXiUSMpQNL/0Pekfow7cUqfXMC/NHYH/HRBR/x/vnvk2PNYWXlysM9JEmCqKrK1rqtHGw9yNTcqSH7woRxcrsw3tu4lyFpQ+Ly8oxGo81FZrJMozhasBj1WI36LtVNHO0kG5NDuk5WtFYw+7XZfFPyzWEcVd9iW/029jTu4fyR50fcHyvHuNZeG7XwTuOq8Vdx/9z7uXjUxeQn58c1Jhkx7p9IYdyHCQjjPnojURSFovQiRmSMYMbAGaytXCsthfoZr+94ncs+vgwgzNpPE8baEq4WJXlz55tsqN7QrfxiEA98svDu6CKzixaURzspphRsHhtenxcQfuNOr5OnNj4l51w/H+z5ALPezOlFp0fcb9AZMOvNEXOM6+x1nUaMFUXh/JHn88c5fwxYosbC4/Xh9qpYZMS439GpMFYUZbCiKN8oirJdUZStiqLc5d+epSjKV4qi7Pa/Zvb+cI8u+tPS47F5x1Jtr47Zi17S9/iu/DsKkgv41yn/CrE2ArAYLFgNVmrttaSaUilMKQTgtR2vkWxMDlla7AqNNpcsvDvKyOiiBeXRjubBq+XH7qzfCcD2+u0sLZOe8i6vi0/3f8rJQ06O6a2ebEyO6koRrfCuqzg8omjeapLxx/5GPL8xD/BzVVXHAccBtymKMh64B1ikquooYJH/e0kPoi0z9wffzxkDZwBw1zd38Xnx54d5NJJ4UFWVDTUbmJk/k/mD5ofkF2tozhTjs8YHIsiDUgbx8YUfM3/Q/G69f73NJSPGRxmZycZ+MZ/1NTqmAexo2MGI9BEUpRVx3wrRzOJoZunBpTQ5m7hgxAUxj0syJIU1+HB4HLS4WzqNGCeKwy2i+9Kurf/RafcHVVUrgAr/1y2KomwHCoHzgRP9h70ELAZkz8oeJNmkx6hX+O93B/hmZ3XYfrNBz/+dfwxDspMOw+hCGZY+jItHXczSg0t5eM3DLBiyIK7lJsnhY3/zfhqdjUzLnRb1mAxLBuVt5YzLHseIjBE8dtJjzC6YHfV36/R4+dkbG6lrc3b6/hWNDjLGyojx0URGkol1B6q57JnvIu6/YtZQzp0c23/9gw1lvL6qZx0aMpNMPPLDKVj6qIgJdG3zC+Od9TuZUzCHK8dfyeWfXM6dX9/JU6c+1a0W7f2Zz/Z+i04189gnPv5J5M8WQI0RljQd5LLt7ce4qAUzvL2qkUXfRz83UZz+iLHsfNf/SCjGryhKETAVWAkM9ItmTTxHbIGlKMqNiqKsURRlTU1NTTeHe3ShKArXzCmiMNOKTyXkn9Pj49tdNXy/r+5wDxMQY/3jnD9yz6x7qGirYFHJItn8o49S3lrO9xXf8+Ee4SIyJXdK1GMDEePs8SiKwslDTsZqsEY9fl9NG59srqC+zRX2me34b0ZRJqdPiK+DlOTI4LzJBUwclB7x87ClrJn315d1eo1315Wxpay5089XvP/qWl18tqWS4rrwJfa+ghYxbnW3UmuvpdZey9issYzNGstf5/+VrbVbufbza9lQvYEmZ1MnVzvyWFO5DlfbEHw+XczftQ4zXhwh29yIVs96NfLnsqv/jHod80blcGxR1mH+35EkStz9ghVFSQHeAe5WVbU50rJrJFRVfQZ4BmDGjBmySiBB7j17fMTtrU4Px/zhiz7nCXri4BPJteby829/zqScSbx45ovdci6Q9Cw2t43LP7mcOod4oBpgHUBRWlHU4zUv4475x9HQCkX/eN4E5ozo2aVJSf/n9Al5UR+Grnj2+7jmswabi2lDM/nvdTN7ZExf76jiuhfX4HD33Qf5FJM/YuxqY1fDLgDGZI4B4NShp/LEKU/wqyW/4srPriTVmMob577B4NSuWyn2J5qcTdS5D6DaT+PNn8+OmBKmcfPCPJocTbx+zuzAtq9L7Nz1DfztorlMyJ5wKIYs6ePEFTFWFMWIEMWvqqr6rn9zlaIo+f79+UD4Wr+k10g26THpdX0uX8+oM/LISY9w1fir2FS7ibd3vX24hyQJ4q1db1HnqOP+uffz4hkv8trZr8W8kQxJHUKuNTfum6zmOJAlbdgkCZKZZIqr0LjB5iKrB3PTtfQJu8vbY9fsaYIjxhWtFQAMSh0U2D+3cC7vnf8eD857EBWVny/+Oc9veZ5WV2vE6x1JrK9eD0CSOirmXAai+13HHGOt612ORT7ISwTxuFIowHPAdlVVHw7a9SFwtf/rq4EPen54kmgoikJGkpHGtr7nWDFpwCR+MeMXzMybyVMbnopojyM59Ng9dp7f8jzH5R/H+SPPZ/rA6eQlx05luGHiDbxz3jvolPiyrrQHtUzpNiFJkMwkU1wP+o1t7h51M9GKoxyeviuMg3OMq+0iBjXAOiDkmNykXM4efja/n/17ipuLeWTtI1z/5fVUtlUe8vEeSlZVrkLBQJa+c/vISK4UdXaxepZllSkPEkE8d7u5wJXAyYqibPD/Owt4EFigKMpuYIH/e8khJN4byeFAURTunHYnDc4G3tr11uEejgThP1zvqOeWybfEfY5JbwqkU8SDZsUl2zxLEiUzyUiT3Y3XFz3jzu310eL09OiDlxYxdvSTiHG1rZosSxZGfeS/sTOHncmqK1bxr1P+xb7GfZz//vlc+emVvLjlxSPO81hVVRYeWEiydxxZSSmdHp9sTA4L1NQ56sgwZ8iUP0mAToWxqqrLVFVVVFWdpKrqFP+/T1VVrVNV9RRVVUf5X49uv5jDQEaSsU97HE8eMJlZebN4ceuLODyOwz2co5paey0vbHmBWXmzmDYwugtFd2mwuUky6WUbVEnCZCSZUFVotkef07T5LjO550SMFjG2u/uPMM5NiljrHsL8QfN59/x3OWXIKbh9bv6x9h/88bs/9vJIDy2bazdT0VaBwT4lrofxJGMSNo8t5AEhnnbQkqML6Tzdj+nLEWONmybfRK29lle3v3q4h3LUUu+o56rPrsLmsXH39Lt79b0abC6ZRiHpEprYjTWnta9I9ELEuA8X3xl0BqwGK22uNmpsNXEJY4DBqYP5y7y/8PrZr3PdMdfx7u53eXPnm0dMesWXxV9i0BlwNI2La95JNibjU33YPXYA3F4366rWMTJjZG8PVdKPkMK4H9MfzPKPzTuWEwedyLObnz3qTegPFy9seYGy1jKeXvA0x+Qc06vv1dDmkmkUki6hid1Yc1p9m5bDfnRFjEGIulZ3K1W2qriFsYaiKNw+9XbGZ4/n/77/P857/zxqbP3bPtXldfHRvo+YXzifxjY9GXGsIiQbROT9i+IvqLPXsbRsKQ3OBs4dcW5vD1fSj5DCuB+T4a/i7ut5Yz+d/lPsHjtPbXjqcA/lqKLJ2cQHez7gjZ1vcEbRGUzNndrr79lgc8uIsaRLaJ+bhhgFxZrrSU9+xsxGcRt09ANh3OhspN5RT641MWEMwjHoudOe44F5D+D0Onl5+8u9MMpDx1cHvqLeUc95wy/B7VXj+kwkGUUzrN+v+D3nvHcOf139V7IsWcwpmNPbw5X0I6Qw7sdkJZnw+FRanJ7DPZSYDM8YziWjL+GtXW+xv2n/4R7OUcPzW57nt8t/i9vn5sZJNx6S92y0uQKtzCWSRMiKI2KspVL05GfMbNChKP1DGB9oPgCQcMRYI8WUwjnDz+G0oafx2vbXuPSjS7nikyvYWru1J4fabZ7d/Cyf7vs06n6f6uPlbS8zOHUwI1PFA39WAsIYYF7hPKwGKz+Z+BMMurhbOkiOAqQw7sdoS9Z90bKtI7dMvgWLwcIjax853EM5IvD6vJ3a4G2t3cqYzDF8/YOvGZHRuZVRTyAixjKVQpI42lJ4rILi9ohxz33GFEXBatT3eWGcYkwJBBa6Kow1bp96O8cXHk9uUi67Gnbx9u6+4zff7GrmXxv+xRs734h6zJs732Rr3VZumXwLzXbxe4snhcukE+L5wpEX8tcT/sp757/Hj8f/uGcGLjlikMK4H5MZR4Slr5Btzeb6Y67nm9JvWF25+nAPp9/z7OZnOfPdM2l2NUfcr6oq2+u3M3HARDItmYdkTF6fSrOjZz1mJUcPqWYDBp3SacTYZNAF8oJ7CotR3y9yjL2qGGN3hfHQtKE8etKjPHHKE8wfNJ9vS7/Fp/aN4sNvS7/F4/Owr2lfxP1VbVU8uu5RZufP5pzh57R7p8exinBcwXH8YfYfuPe4e3t0zJIjCymM+zHxVHH3Ja4cfyUFyQXc9919gapgSddYXr6cekc9/93634j7y9vKaXY1My5r3CEbU5Pdjar2bDRPcvSgNS1qiBkxdpGZZOy0w1miWI167K6+IQyjoaUB6BRdp415EuHEwSdSY69hW922Hrtmd1hUsgggkE/dkQdWPYDX5+V3s3+HoihBTYU6n3eMOiOXjL4Es97cs4OWHFFIYdyPiaeKuy9hMVi4b+59HGg+wOlvn86pb53KT7/56eEeVr/D5XWxtXYrekXPK9tfifiQsb1uOwDjs8cfsnG1OwbIiLGka2QkmWhoi+VK0TvFnWajrk93vgPw+EQtyV3T7iLdnN5j150/aD56Rc/n+z/vsWt2lfd2v8fi0sUMTx8OwL7G0Khxk7OJRSWLuHL8lYE29drnRa5USXoKKYz7MdoN4sXlxaza3z+s0I7LP477597PiYNPpCitiIUlC8MmP0lsttVtw+VzMa9wHm3utohRlW1129ArekZljjokYyqtt/HgZ0KMS7s2SVfJTDKy5kADzy0LL9L9z5J9bCht6JXPl9Wo79Od7wBun3I7D8x7gOuOua5Hr5tuTue0oafx1q63aHQ09ui1E2HJwSX8fsXvmZk3k7/O/ysA+5tDPwcNjgYAhqUPA+DbXTX8b3UpABlWOe9IegYpjPsxGVYjJ44ZwLaKZl5fVXK4hxM35488nz/N/RMPzHsABYUvDnxxuIfUr1hXvQ6A2QWzASIW4ZW2lFKYUnjIlgwXbq9i4fZqxuenMb4g7ZC8p+TI47Txebi9Pv7x5c6Q7aqq8vcvd+L2qiwY33NpBBoWo77PR4yL0os4Z/g5vXLtn0z6CTaPjas+v4rH1j2G13do/y8q2yr53fLfMTpzNI+f8jijMkdhNVjDgiaNzkYAMswZAPx3RTH7ats4e2I+Br2UM5KeQX6S+jE6ncKL185kbF5av0mnCGZA0gCmDZzGB3s+4JVtrxzyybi/sr56PUPThgaWEm2ecGHc7GoO3DwOBQ1tLhQFPrrjeHJTLYfsfSVHFj+ZP5yfzBuGzeXFGSRU7W4vTo+Pm08YwfXHD+vx9xU5xkfv/DMqcxS3Tr6VNFMaz25+lt8u/20gdaO3aXW1ctui23B6nfx1/l8x683oFB1FaUVh9p5NziagXRjX21zMLMriX1f0Xpt7ydGHFMZHAJnJppgFK32Zi0ddTEVbBQ+tfojFpYsP93D6PKqqsrF6I1MGTAkU40SKGDc7m0k1px6ycTXY3KRbjeh1PVsUJTn60NwFgm3besOmLRiLUd+nW0IfCm6ZcguvnPUKd0y9g4/3fcyvlvwKl7d3Ay5ur5tfLPkFexv38vAJD4fYShakFFBlqwo5vmPEuNHmlr7pkh5HulofAWQmGTlQ13a4h9Elzh1xLmcOO5PT3zmdd3a/wylDTzncQ+rTFDcX0+BsYGruVJIMfmEcJWKsRZQPBcItQN6gJN0n2IZyYJpYfejtAiuLUdfnfYwPFTdOuhGL3sLf1vyNstYyJuVM4pYpt5BlyeryNdvcbby/530ONB+g1dWK3WOnvK2cvY17cXqd/GH2H5hTGNp9LtWUSourJWSbJozTLaL4UHMpkUh6EimMjwAyO6nk7usYdAYuGHkBz25+lvu/v5+rx1/N4LRDJ+r6ExuqNwAwNXcqep3wco0YMXY1k2Y+dLm+jTa3LLqT9Aja5yi4NXRjL0eMrf3Ax/hQctWEq8hNyuWxdY/x5q43Abrk/ftd+Xc8vPZhyluFfWSKMYV0czpWg5VsazY/HPNDZuXPYv6g+WHnRhLGTc4m9IqeVGMqXp9Kk136pkt6HimMjwAykow0Ozx4vL5+W4Dw/9u78/ioqrvx45+TzEwmk4UJCUsCxICykxCWgIhIEAQqFFwf2qKCdQMeLY/W1qVWqC9r1fq4Fa2lCNif1CpYcKk+skhUEFlCI7IIwYoQ2cmeyWQmM/f3x2TGBLJn9vm+Xy9ezsy999xzj5M73znzPefc2O9G1h9Zz9rCteSfyueNaW9g1EmuqtvW77dy2nKaf337L8wxZnp36s3Z6rMAF0zXpmkaFbYKEg3+C4zr9+4J0RHuHuPSeuMm2rKIQ3sYQ2DlO3+b2nsqU3tP5XfbfseawjX07tQbfbSey9Iuo0d8j2aPPVZ+jE1HN7F0z1LMRjO5vXKZ1X8WWV2yWn3+BH0ClloLtc5az5LNZTVlJBoSUUpRbrHJvOnCJyQwDgOeD5JqOynxoTlxefe47rx37Xts/X4r8zbO45ldz/DIpY8EulpB4evir5m3cZ7n+Y8yfoRSqskcY0utBYfm8G9gXGWjf3f/5TSL8OW+nxU3Ehj76leJWIP0GDflrqy7+Nd//sUfdvwBgG6mbqybuY54Q3yj+1fZq7ht/W2cqDpBV1NX/jr5ry0G0o1JMCR4ynPP21xaU+p5XGyRedOFb0hgHAbcHxalFlvIBsZuY3uMZe7guazct5JLUy9l0kWTAl2lgHt9/+vE6mJ5Y9obxOpi6WLqAoAx2tVDe36PcXmNa5lo9weLP5RYfLPwgog8P9zP6g2+q0urMMf6qMdYF4XV7kTTNK+vqhfqusd1Z/N/babKXsU3pd8wb+M8fv7Rz0mNSyXJmMTdw+4mJTYFi93C87ufZ+fJnZysOsmrk19lWLdh6KPa92XGff8qt5V7guGymrJ6A+98+2VJRC4JjMPAD4NVQnNmivP9Ytgv2HVyF49ufZTenXqTkZjhyaeNNGerz/LBtx9wXd/rGozYBoiOiiZWF3vB4Ltymysw9leOsdXuoNruoLOMDhdeYNRHE6uPbjBuosRiIyFGh0Hnm1Qxo8F1f6mpdWLUR+a9pjlx+jji9HF0NXXl1zm/5p+F/6Sosoitx7ey4bsNpMalUlpTymnLabK6ZPHQ6IcYlTqqQ+d0B8b184xLa0pJjUsFfviyJF/IhbdJYBwGPIFxCA/Aq08freeZ3GeY9f4srnnnGtIT0nntR6+REpsS6Kr53eqDq7E77cweOLvR7bG62AtSKTyBsZ9SKdw9e9JzI7wlyaRv8EW/1GLDHOe795dR5wqGrXaHBMYtmD1wtud+dLD4IK/ufZXq2mrS4tNYNGYR43qO88p53IFxpa3S81ppTSkDOg8A6uWdS2AsvEwC4zDQ2E+Poa5HfA9WTFnB5mObWfbVMu5YfweDkgc12OeGfjcwrOuwANXQ92wOG/84+A/G9RjnWQL1fM32GPspMJYPKOFtZpPhvMF3vk3Via3rMa62OzD77Czhp3/n/p7lm72tsR7jhqkUdV/IffiFSUQmCYzDgHukdiiuftecvkl96ZvUl4vNF/N8/vPkn8r3bDtjOUNpTSkvTXwpgDX0rbcL36bYWsxNg25qch+T3nRhj3GNf1MpfD0wSkSepDh9g/tZqcXm02m5YvXuHuPIXuQjmNTPMQaw1lqxOqyYjWbAdd/RRSkSYiSMEd4l76gwEGeIRh+tGoziDicT0ycyMb3hwh+LP1/M+iPrcTgdYZl/XFZTxksFLzG6+2jGpI5pcj+TztRkj7G/Bt9Jrp/wNrPJwPHScs/zYouNjJQ4n53PqHflLkfystDBJl7vmvXC3WPsXg7aPRCvxGLDbNLLYEnhdaE56a1oQClFkslAaVX4pFK0ZES3EVTYKzhcejjQVfGJlwtepsJWwa9H/brZG39TgbFCeT5YfE1SKYS3dTYZGvYYV/k2lcKdVyxTtgUP9/2r0u7KMT5/OegSH78nROSSHuMwkWQysONIMY+/v7/FfbN6mZkxNM0PtfKdEd1GALDr1C76d+4f4Np41+GSw7x58E1u7Hcj/ZL6NbuvSW/iTPWZBq+V15STYEggSnnve2+F1c5fPvlPo4sg7Cly9eRIKoXwliSTnrJqO4+/vx8NqKip9Utg/P+2HaFXUixdZbGagIuOisaki2PTwSMUF+3nuG03AP/aXcX2r/bz1fdl9DDHBriWIhxJYBwmLu3TmTX5Rbyx42iz+9XUOkmM1Yd8YJwWn0ZqXCrP7nqWlwteJiMxg5VTV6KPDu3gzO60s2jbIuL0cfx39n+3uL9JZ7pgHuMKu/dXvfus8CxLNh8mVh9NVCMd2CMuSpLR/MJrhqUnkRCj89zPOsXqGdqrk8/O1zsljm6JMawrOM6w9CTmXJbhs3OJ1tMcsew7e4qvzx2FxEKiusCGPTXgcL0vrh3W9oVDhGiJBMZh4nczh/C7mUNa3O/Z9QdZsvkwTqdGVGMRTgh5ePTDbDu+jQpbBe/95z3e/8/7XNv32kBXq0OWfbWMPWf28MfxfyTJmNTi/k0NvvN2fnFx3VSAeb/KlaWfhc9NGNCVPYun+O183RKN5N0/gYGP/p+kUwQRpRmJN9Wya+FUXtx9iBV7dez67Q1hOa5EBA8JjCOM2WTAqUG51e7TUd7+kNsrl9xeuWiaxuHSw/z5yz9TVFnEbUNu8yyXHEo0TWPNoTVc0fMKpmZMbdUxjeUYF1UW0TO+p1frJqtMiXAXo5MBeEHHGUt0tBWAk1Un6WLqIkGx8DkZfBdhkurmfAyXVfLANfjw7mF3U2mvZOmepfz9678Hukrtsv/cfk5bTjP5osmtPiZWH0uNo4ZaZy0AR8uP8m3Zt1yWdplX61ZisWMyRBOjkw8lEZ6iohQxuqhG8+hFYDhqjeAOjC0n6R7XPcA1EpFAAuMIYzaF55zHV/S8gs9/+jnjeozjtX2v8fn3n1+QexvMahw1fHTkI6JUFFf0vKLVx5l0rp5x97XmHcsDYHyv8V6tX4nFJiPARdgz6qMlMA4itfYYNOW6t52sOkl3kwTGwvckMI4w4bZ89PnmD51PaU0pd228ixd2vxDo6rSKxW7h6revZsW+FQzrOqxVucVu7pSRK9+6kpnrZvLq3le5xHwJvRJ6ebWOJVU2SaMQYS9WHy05xkFC0zRqauKwasUUlhRyquqU9BgLv5DAOMIkmcIvlaK+zC6ZvDPzHSb0msC6w+uoslcFukotWnt4LaerT7MgewGLxyxu07HuHmOrw0pGYgbd47pzy6BbvF5HXy/JK0QwMOqjZPW7IFFlc2A9eznGqHgWbl6IzWmjW1y3QFdLRAAJjCOMe/no0jBLpaivj7kPt2XeRpW9il9+8ks2H90c6Co1qdZZy8p9KxnedTjzh84no1NGm45XuGYWyeqSxQtXvsCb09/0ycwcpRab570jRLgySo9x0CipsqE5EpjZ4z6OVRwDkB5j4RcSGEeYhBgduigVdjnG58tKyWJi+kR2n9rN77f/Hk3TAl2lRhWcLuBk1Ul+NvBn7Tp+VOoorrroKp7Pfd67FTuPq8dYUilEeIs1SI5xsCit+1Uzp9tl3DTwJgCvz7YjRGMkMI4wSinMJn3YplK4KaV4fsLzPDTqIU5ZTnGw5GCgq9SoLd9vQad0jE0b267jU2JTeDb3WbqYuni5Zj9wOLWwmN5PiJYYdRIYBwvPUvNxBu4beR/LpyxvcSVQIbxBAuMIZDYZwjqVor5xPcehUJ7ZGoLNlu+3kN01m3hDfKCr0qSyajuahvQYi7AXa5BUimDhCYxNevRRenK656BUaC9KJUKDBMYRKMmk96xkFu5SYlPITMnktX2v8YuPf4HDGTwfeqctpzlYcpDLe1we6Ko0y/1ekcF3ItzJ4Lvg4Z45SX6pEv4mgXEEcvUYh3cqRX3zs+fTv3N/Nh/bzJ6zewJdHQ93L3Zb5i0OBFn1TkQKoz5aVr4LEu50P3Os3HeEf0lgHIE6mwxhP/iuvst7XM6SK5egj9Kz8buNga6Ox8bvNnJR4kVcYr4k0FVplvsDqrPMSiHCnFEfTU2tBMbBoNRiI9GoQxctYYrwL3nHRSBznCuV4q1dx4J2tgZvizfEMyZtDBu+28D2E9sDft1lNWXsPLmTiekTgzpvrqjEwvt7jgOSSiHCX6z0GAeFnUeKyT9aIlNEioCQwDgCDeyeiN2h8es1ezh8ujLQ1fGbqRlTOVF1gtvX385H330U0Lp88O0H1Gq1TEqfFNB6tGTZZ9/yTsFxkuMMdEmICXR1hPCpWH001lpnwL84R7oH397D3u/LGdg9MdBVERFIAuMIdM2wHqy8NQeAs5WRk1Ixrc801vx4DT3ie7Dm0JqA1cNaa2XZnmUM6zqMISlDAlaP1jhbWcNFySa+eHgiRn10oKsjhE8Z9VE4nBp2hwTGgXSuysZPR6Xz8uzhga6KiEASGEeorglGILxXwDtflIqif+f+XHPJNWw/sZ1VB1Zxtvqs3+ux+tBqTlef5p5h9wR1GgW4JtnvHGdAL3l+IgK4v/zJlG2B43BqlFXb6ZIQQ1RUcN8fRXiST7sIlRTnGukb7gt9NOaaS67BGG3kyR1PcvMHN3Oq6pTfzm2xW1j21TJGp44mp3uO387bXiUWm+QWi4jhDoxrJDAOmHKZN10EmATGEcod7ETS7BRu3eO6kzcrj+VTllNSU8IdG+7gXPU5v5x79aHVFFuLuTv7br+cr6NKqmwyTZuIGLHSYxxwxRaZN10ElgTGEcqoj8aoj4qoVIr64vRx5HTP4aWJL3Gi0jUgzx89x1u+38KAzgPI7prt83N5Q4nFLh9QImK4e4xlkY/AkXnTRaBJYBzBXPMZR14qRX0juo3gpYkvcbzyOLd8eAvfln3rs3Npmsb+c/uDfsCdm9XuoNrukPmLRcSINbg+EqXHOHBKqmTedBFYEhhHMLPJ4Fl2M5KNSh3F8qnLsTqszFg3g4lvTeSb0m8a3depOdvds1xUWUS5rZxByYM6Ul2/ca+OKD03IlIYde4eYwmMA6VEUilEgElgHMGS4vQRmWPcmMHJg3n96teZP3Q+Nc4aHtv2GMcrj1+w35pDa7j6n1dTYi1psqzq2moKThdc8Pr+c/s95woF8gElIo3RIDnGgSZfyEWgSWAcwcwmg+cmJKBXQi8WZC/g3uH3svv0bqa8PYVn859tsM8nRZ9gc9r4uvjrRstwOB3cl3cfN394M1+e+bLBtn3n9qGP0tPX3Ndn1+BNJZLrJyJMrMxKEXAlFhu6KEV8jC7QVRERSt55ESzJJD3Gjbmu73WkxqfyzuF3WLF3BUUVRUy+aDIT0yey8+ROAApLChmTNgZw9RDrlA6b08aizxex5fstRKto1hauZWiXoZ5yDxUf4hLzJeijQyPQdH9pkh5jESlkHuPAK7HYMZsMQT/HuwhfEhhHsCSTgbJqO06nJhOp16OU4rK0yxjZbSR2p52C0wVs+G4D1/e9nuraagAOlRzy7D/7g9kUlhSSEptCsbWYe0fcy7dl3/Lhtx/y65xfY9KbACi2FtPV1DUg19QexVWSSiEii2e6NpvMShEoJVU2mcNYBFSLqRRKqeVKqdNKqb31XstWSn2hlCpQSu1SSo3ybTWFLySZDDg1KLdKOkVjDNEGns19lg+v/5DL0i7j7cK3iVJRDEkeQmFpIeCaaaKwxPX4EvMlvDb1NX4+5OdMzZiKpdbCnrN7POWV1ZTRKaZTQK6lPWTaJBFpjHrXR6IMvgucEouNJJmRQgRQa3qMVwJLgL/Ve+1p4Heapn2olLq67nmu12snfKr+6ndm6RVsUkx0DH+e9Ge2Hd+G1WHl36f+zT8O/gOH04HN6Qoe/2f4/3Bb5m2eY7qZugFQai31vFZuKyfRkOjXundEicWOyRDt+XlZiHAnqRSBV2qxk5FiCnQ1RARrMTDWNO1TpVTG+S8D7k/4TsCFw/dF0HMHw+99eZz0zm27EQ1KS6RftwRfVCsoRakoxvYYC0ClrZIaRw1HK45i0rnaLTGmYcBrNpoBKK0pBcDutFNpr/TsV1Pr4OMDp6mpDd6fbL/6vkzSKEREidFFoRTsKSpl3b+/D3R1fKJftwQGpfn+C3qZxU7eodNoWtuOO1VhZVi62Sd1EqI12ptj/D/AR0qpZ3ClY1zW1I5KqTuBOwHS09PbeTrhCxfVBcPPbjjUwp4X6t8tgY/uvcLbVQoJqXGpAJytPutJjehkaJgi4X7uDowrbBUNXt904DQLVu32R3U7ZEyf5EBXQQi/UUqRmmjko32n+Gif71fCDIRenWP57NdX+vw8r279lhc3Fbbr2PRk6TEWgdPewHg+cK+maW8rpf4LeBWY1NiOmqYtBZYCjBw5so3fHYUv9ekSz47fTKSqpm0/G764qZC8g6d9VKvgF2+IB1ypEW7n5w7ro/XE6eMoqykD8PzXvV9ZtSuv+627xtAlIcbndW6v1E7GQFdBCL/6v3uv4FxleM7Ws/TTb/jnbv/0hJ+psNI5zsDb85vsN2tUlIJeSRIYi8Bpb2A8B1hY93g1sMw71RH+1jXBCG3MiOiVFEtZtR2HUyM6AmezSDC4GqzSVulKKuLCwBjAHGP29BifHxi7B/f07RovA02ECCKJRj2JxvAccJreOY6aWifVNgexBt+OHSipspMcZ6B3SpxPzyOEt7V3gY/jwPi6x1cC7fu9RIQks3s2i+rInM0iQe8KjCtsFZTZ6gJew4WBcaeYTp7A2N277N7PPbjH1x9OQgjh5p4GrdgP89cXW2wyRkGEpBZ7jJVSb+CacSJFKVUELALuAF5QSukAK3U5xCIy/DCbRWROq+NOpaiwV2B3ur4cNNVjfH4qhXvwndXuGnQXo5PFJ4UQ/uEecF1SZaOHOdan5yq12MhIlt5iEXpaMyvFT5vYNMLLdREhwnNzjdDlpHVROkw6ExW2CmzRNnRKR6zuwg+ZTjGdOFZxDLiwx9hqd2DUR8nqTkIIv3H3GJf64d5dYrEzPD3yOk5E6JOV70SbuX8eK43g5aTjDfFU2CqwRllJjElsNMBtLMfYnZ9stTs8q2wJIYQ/uH/hK/HxvVvTNEotNpkfX4QkCYxFm7l7HSK1xxgg0ZBIpa2SKBXV5Gp25hgzFbYKap21lNWUkWBIIDrKveSsQxbOEEL4ldnTY+zbwLjK5sDu0GRpZxGSJDAWbWaWHmMSDAmuuYlV4wPv4Ie843JbOWW2sgb7VUuPsRDCz8yx/kmDK6lyfTbI4DsRimTkj2izRKOO6ChFcVXkBsbx+ngq7BWU15Q322MMrkU+ymvKG6yOZ7U7iZHAWAjhRwZdFAkxOp/fu92pGmbpMRYhSAJj0WZKKZJM+ohOpXD3GJfbykk0NL68qjswLqspu6DH2JVjLH9+Qgj/Msfpff5rn/uzIRJnLRKhTz6ZRbuYTQZJpbBVUFZT1nKPsbWUUmvpeT3GkmMshPC/JJPB550a7s8GSaUQoUgCY9Eurh7jyA6MS2tKqbRXNtljnBybDMChkkMcqzjGxeaLPdskx1gIEQj+6NT4IcdYUilE6JHAWLSL6+Ya2akUbhmdMhrdp5upG6lxqaw6sAoNjeFdh3u2We0OjLLqnRDCz/yRBucuv1OsBMYi9EhgLNolyaTndEUNX58sD3RVAiJeH+95PCh5UKP7KKW4LO0ySmpK0CkdmSmZnm1WuxOjTgJjIYR/JZkMnKusYd/xMp+Uf6bucyHRqEMXLSGGCD3yrhXtkmaOpbjKxtUvfOb52SyS1E+f6JXQq8n9xqSNAWBg8kBMepPn9Wq7g1iD/PkJIfwrzWykyuZg2otbOFFW7fXyF/7j33y07xRpPl5yWghfkU9m0S7zxl/Mr6b0x6nB6YqaQFfH79ypFIYoA1Gq6T+jS1MvRad0jOw2ssHrVrtDeoyFEH4397Le/Ha661euk2VWr5d/oszK2EuS+dvPR3m9bCH8QRb4EO1i1EczrJcZICLnM46JjgEgPTG92f06xXTi9Wmvk57ww36aptX1GEtgLITwL4MuiuHpZsA3S0MXV9m4/JIUuiYavV62EP4ggbFot0heAa9bXDcAfjrgpy3uOzh5cIPnNocTTUOmaxNCBIR7GrWSKu8OwnM4NcqtdpmNQoQ0CYxFu3WO88/yosGoV0Ivtv50a5NTtTXHanMCEhgLIQIjyXPv9m6nRlm1HU2ThT1EaJMcY9Fu7uU+I3U+4/YExQDWWgeAzGMshAiIRKOO6Cjl9Sk3S2RhDxEGJDAW7WbURxOrj47IVIqOqLa5AmOjLAkthAgApRTmWO8v0uT+LDBLKoUIYfLJLDrEH5PFh5tqu/QYCyECy2zSe7/HuC5nWXqMRSiTwFh0iD+WFw03Vru7x1gCYyFEYCSZDF7vMZZUChEOJDAWHZIUp4/I6do6oloCYyFEgJlNBq/fu92BsTlOUilE6JLAWHRIksng9Z/jwl2N3T0rhfz5CSECo3OcD1IpLHZ0UYqEGJnwSoQu+WQWHeKLn+PCnSfHWBb4EEIEiC/u3aUWG2aTAaWUV8sVwp8kMBYdkmTSU1Ztx+nUAl2VkOHJMZYloYUQAWI2GaipdXpmyfGGkipZ3EOEPgmMRYeYTQacGpRbJZ2itaTHWAgRaEk+mIe+xGKTgXci5EkikOiQpLpBFgXHSulhjr1ge3J8jGeFPAG1DidFJdWADL4TQgSOuS6A3VNURlVNrVfKPFNRwyVd471SlhCBIoGx6JBuCUYA5q7Y2ej2RKOOgkcnExUlOWcAf/zoIH/59D/oo5XMYyyECJhuiTEAzHs936vljr0kxavlCeFvEhiLDhndJ5nlc0diaSRP7ZODZ1idX0S51e7pnYh0J8utpMTHsPSWERh0kskkhAiM7F5mVtya47XeYgCFYszFyV4rT4hAkMBYdEh0lOLKAd0a3WZ3OFmdX0RxlU0C4zpWu4PkOAPD05MCXRUhRARTSjGhf9dAV0OIoCNdVsJn3MGwLBn9g2q7E6MMuhNCCCGCkgTGwmfco5NlyegfWO0OYmVhDyGEECIoySe08JnO0mN8AavdIbNRCCGEEEFKAmPhM+a6qdykx/gH1TaHzEYhhBBCBCkJjIXPJMTo0EUpWTK6Hmut9BgLIYQQwUoCY+EzSinMJj3FVZJK4VZtc0pgLIQQQgQpCYyFT5lNBkmlqKfG7sAog++EEEKIoCSf0MKnkkx6SaWop9ouOcZCCCFEsJLAWPiUq8dYUinAteBJrVOTwFgIIYQIUhIYC5+SHuMfWO2uZbMlx1gIIYQIThIYC59KMhkosdjRNC3QVQm4andgLCvfCSGEEEFJAmPhU2aTAVutk+Iq6TWusTsBMOrkz04IIYQIRvIJLXwqJd61+t2oJzZx8GRFgGsTWO4e41jpMRZCCCGCkgTGwqeuzkxl4cS+OJwa/zlTGejqBJQnx1gngbEQQggRjCQwFj4VF6Pjp6PSASiJ8Nkpqm3SYyyEEEIEMwmMhc+ZTXqAiJ+dwlpbl2Mss1IIIYQQQUkCY+FzRn00sfroiF8Bz91jLCvfCSGEEMFJPqGFX7jmM47sVAp3jrEs8CGEEEIEJwmMhV+4VsCL7B5jWeBDCCGECG4SGAu/SIrTR/xcxtXSYyyEEEIENV2gKyAig9lk4ERpeaCrEVBWuwy+E0JEJrvdTlFREVarNdBVEWHIaDTSs2dP9Hp9h8uSwFj4RWeTIeJnpXD3GMfIyndCiAhTVFREQkICGRkZKKUCXR0RRjRN49y5cxQVFdG7d+8Olyef0MIvkkx6yqrtOJ1aoKsSMDV2BzG6KKKi5ENBCBFZrFYrycnJEhQLr1NKkZyc7LVfIyQwFn5hNhlwalBujdyZKartDlncQwgRsSQoFr7izfdWi4GxUmq5Uuq0Umrvea/fo5Q6qJTap5R62ms1EmEpKc69yEfkBsZWu0MG3gkhRIAUFRUxc+ZM+vbty8UXX8zChQux2VpO8XviiSda3Of2229n//79F7y+cuVK7r777lbV76OPPiI7O5vs7Gzi4+Pp378/2dnZ3HLLLa063t9WrlzJ8ePHA10Nr2tNj/FKYGr9F5RSE4CZQJamaYOBZ7xfNRFOzCYDQETPTFFtd8rAOyGECABN07juuuu45pprKCws5NChQ1RWVvKb3/ymxWNbExgvW7aMQYMGdaiOU6ZMoaCggIKCAkaOHMmqVasoKCjgb3/7W4fK7QiHw9HktvYExrW1tR2tks+1GBhrmvYpUHzey/OBJzVNq6nb57QP6ibCSFJdYBzJcxlX2xwSGAshRAB8/PHHGI1Gbr31VgCio6N57rnnWL58ORaL5YKe3enTp5OXl8eDDz5IdXU12dnZzJ49m6qqKqZNm8bQoUMZMmQIb775JgC5ubns2rULgBUrVtCvXz/Gjx/P1q1bPWWeOXOG66+/npycHHJychpsa87rr7/OqFGjyM7O5q677vIEq/Hx8TzwwAOMGDGCSZMmsWPHDnJzc+nTpw/vvvsu4ApeZ86cydSpU+nfvz+/+93vWlXuo48+yujRo9m2bRuPPfYYOTk5DBkyhDvvvBNN01izZg27du1i9uzZZGdnU11dTUZGBmfPngVg165d5ObmArB48WLuvPNOJk+ezC233NLudvCX9s5K0Q8Yp5T6PWAF7tc0baf3qiXCTXKcKzC+6//l+2XwWbRSPH1DFj8emubzc9X3TsH3PPD2HhobY2h3OBmenuTX+gghRLD53Xv72H/cu9N3DkpLZNGPBze5fd++fYwYMaLBa4mJiaSnp3P48OEmj3vyySdZsmQJBQUFALz99tukpaXxr3/9C4CysrIG+584cYJFixaRn59Pp06dmDBhAsOGDQNg4cKF3HvvvVx++eUcPXqUKVOmcODAgWav68CBA7z55pts3boVvV7PggULWLVqFbfccgtVVVXk5uby1FNPce211/LII4+wYcMG9u/fz5w5c5gxYwYAO3bsYO/evZhMJnJycpg2bRpxcXHNljtkyBAee+wxV9sOGsSjjz4KwM0338z777/PDTfcwJIlS3jmmWcYOXJks9cAkJ+fz5YtW4iNjeVnP/tZm9vBn9obGOuAJOBSIAd4SynVR9O0C8IBpdSdwJ0A6enp7a2nCHE9k2L57fRBnKmo8cv5lm/5li+Plfo9MP730VIAfj628SljruiX4sfaCCGEAFcqRWMDtJp6vSmZmZncf//9PPDAA0yfPp1x48Y12L59+3Zyc3Pp0qULALNmzeLQoUMAbNy4sUEecnl5ORUVFSQkJDR5vk2bNpGfn09OTg4A1dXVdO3aFQCDwcDUqVM99YqJiUGv15OZmcmRI0c8ZVx11VUkJycDcN1117FlyxZ0Ol2T5UZHR3P99dd7jt+8eTNPP/00FouF4uJiBg8ezI9//ONWtxnAjBkziI2NbXc7+FN7A+Mi4J91gfAOpZQTSAHOnL+jpmlLgaUAI0eOjNy5uiKcUorbLu/4/IKt9d6XxwMy0K/EYqNbopEHfzTA7+cWQohQ0FzPrq8MHjyYt99+u8Fr5eXlHDt2jIsvvpgvv/wSp9Pp2dbU1F/9+vUjPz+fDz74gIceeojJkyd7elPdmgq0nU4n27Zt8wSIraFpGnPmzOEPf/jDBdv0er3nXFFRUcTExHge18/lPb8+SqlmyzUajURHu9L+rFYrCxYsYNeuXfTq1YvFixc32TY6nc7ThufvExcX53ncnnbwp/ZO17YOuBJAKdUPMABnvVQnITrMbNIHJJ+5xGL3DDQUQggRHCZOnIjFYvEMZHM4HPzyl79k7ty5mEwmMjIyKCgowOl0cuzYMXbs2OE5Vq/XY7e7OlqOHz+OyWTipptu4v7772f37t0NzjN69Gjy8vI4d+4cdrud1atXe7ZNnjyZJUuWeJ670zNaqveaNWs4fdo1lKu4uJjvvvuuTde+YcMGiouLqa6uZt26dYwdO7bV5boD3JSUFCorK1mzZo1nW0JCAhUVFZ7nGRkZ5OfnA1zwJaS+9rSDP7VmurY3gG1Af6VUkVLqNmA50KduCrd/AHMaS6MQIlCSArTSXqnFRpKp40tSCiGE8B6lFGvXrmX16tX07duXfv36YTQaPTNOjB07lt69e3tSJYYPH+459s477yQrK4vZs2fz1VdfeQas/f73v+eRRx5pcJ7U1FQWL17MmDFjmDRpUoNyXnzxRXbt2kVWVhaDBg3ilVdeabHegwYN4vHHH2fy5MlkZWVx1VVXceLEiTZd++WXX87NN99MdnY2119/PSNHjmx1uWazmTvuuIPMzEyuueYaT+oFwNy5c5k3b55n8N2iRYtYuHAh48aN8/Q4N6Y97eBPyp/x7MiRIzX3qE0hfOnuv+9m//FyPr4/16/nHff0x4y8qDPPzcr263mFECKYHThwgIEDBwa6GhFn5cqV7Nq1q0EPbbhq7D2mlMrXNK3l0YH1yMp3IiwlmQwUByKVosqOWXqMhRBCiJDU3sF3QgS1JJOesmo7DqdGtB+mhwOw1TqprKn1zNkshBBCBNLcuXOZO3duoKsRUqTHWISlpDgDmgbl1f6bmaK02uY5txBCCCFCjwTGIiy5e239OQCvtG56OBl8J4QQQoQmCYxFWHLn+fpzLuOSqroeY0mlEEIIIUKSBMYiLLmDU3/OZewOwmXwnRBCCBGaJDAWYckdGBdX+TMwlh5jIYQIVvHx8e067pVXXvEsDFLfkSNHGDJkSKvKOHfuHNnZ2WRnZ9O9e3d69OjheW6z+X8GpZbk5eXx+eefB7oaASGzUoiwZI5z9dqW+jOVQgJjIYQIO/PmzetwGcnJyZ4V3hYvXkx8fDz3339/h8vtiNraWnS6xsPAvLw84uPjueyyy1pdnsPhaHZhj1AhPcYiLCXE6NBFKb8PvjPqo4g1hP6NQQghwlVeXh65ubnccMMNDBgwgNmzZ+Ne7OzBBx9k0KBBZGVleQLXxYsX88wzzwCQn5/P0KFDGTNmDC+99JKnTIfDwa9+9StycnLIysriL3/5S6vqkp+fz/jx4xkxYgRTpkzxrD6Xm5vLvffeyxVXXMHAgQPZuXMn1113HX379vWstnfkyBEGDBjAnDlzyMrK4oYbbsBisbRY7sMPP8z48eN54YUXeO+99xg9ejTDhg1j0qRJnDp1iiNHjvDKK6/w3HPPkZ2dzWeffcbcuXMbLAft7n3Py8tjwoQJ/OxnPyMzM7Pd7RBMpMdYhCWlFGaTgb9t+w5ddBT3XdXPp+d75qODrPriO+ktFkKIlnz4IJz8yrtlds+EHz3Z6t3//e9/s2/fPtLS0hg7dixbt25l0KBBrF27lq+//hqlFKWlpRccd+utt/KnP/2J8ePH86tf/crz+quvvkqnTp3YuXMnNTU1jB07lsmTJ9O7d+8m62C327nnnnt455136NKlC2+++Sa/+c1vWL58OQAGg4FPP/2UF154gZkzZ5Kfn0/nzp25+OKLuffeewE4ePAgr776KmPHjuXnP/85L7/8MgsXLmy23NLSUj755BMASkpK+OKLL1BKsWzZMp5++mn+93//l3nz5jXo1X711VebvI4dO3awd+9eevfuzdKlS9vcDsFGAmMRtn45uR9/2lTIpgOnfB4Yb9h/CrPJwMKJfX16HiGEEB03atQoevbsCUB2djZHjhzh0ksvxWg0cvvttzNt2jSmT5/e4JiysjJKS0sZP348ADfffDMffvghAOvXr2fPnj2eXtWysjIKCwubDQgPHjzI3r17ueqqqwBXr3Nqaqpn+4wZMwDIzMxk8ODBnm19+vTh2LFjmM1mevXqxdixYwG46aabePHFF5k6dWqz5c6aNcvzuKioiFmzZnHixAlsNlu7AthRo0Z5jmtPOwQbCYxF2PrpqHR2Hilm+3+KfX6uEouNCf278l85vXx+LiGECGlt6Nn1lZiYGM/j6OhoT77tjh072LRpE//4xz9YsmQJH3/8sWc/TdNQqvGVVDVN409/+hNTpkxpdR00TWPw4MFs27at2TpGRUU1qG9UVBS1tbUAF9RHKdViuXFxcZ7H99xzD/fddx8zZswgLy+PxYsXN3qMTqfD6XR66l1/wGD98trTDsFGcoxFWEsyGXyeZ6xpGqUWu2fAnxBCiNBTWVlJWVkZV199Nc8//7xnsJyb2WymU6dObNmyBYBVq1Z5tk2ZMoU///nP2O2uAd+HDh2iqqqq2fP179+fM2fOeAJYu93Ovn372lTno0ePeo5/4403uPzyy9tUbllZGT169ADgtdde87yekJBARUWF53lGRgb5+fkAvPPOO57rPF972iHYSGAswlqSSY/F5qCm1uGzc1hsDmwOp+QXCyFECKuoqGD69OlkZWUxfvx4nnvuuQv2WbFiBf/93//NmDFjiI2N9bx+++23M2jQIIYPH86QIUO46667PL26TTEYDKxZs4YHHniAoUOHkp2d3eYp0gYOHMhrr71GVlYWxcXFzJ8/v03lLl68mBtvvJFx48aRkpLief3HP/4xa9eu9Qy+u+OOO/jkk08YNWoU27dvb9BLXF972iHYKPdITH8YOXKktmvXLr+dT4jXv/iOR9btZfvDE+mWaPTJOYpKLFz+1Gaeuj6TWTnpPjmHEEKEsgMHDjBw4MBAVyOsHDlyhOnTp7N3795AVyUoNPYeU0rla5o2si3lSI+xCGvuXlxfplOUela8kx5jIYQQIpRJYCzCWlJd3m9Jle8W+nAH3Z3jJDAWQgjhHxkZGdJb7AMSGIuw5o8eY/ey00kmGXwnhBBChDIJjEVYk1QKIYQQQrSWBMYirJnrenHdwasvuINuc6z0GAshhBChTAJjEdaM+mhi9dGUVPm2xzjBqEMXLX9OQgghRCiTT3IR9pJMekp83GMscxgLIURw+/3vf8/gwYPJysoiOzub7du3A665d/fv3++Vc2RkZHD27Nlm93niiSfaXO7KlSu5++67G7y2YsUKsrOzyc7OxmAwkJmZSXZ2Ng8++GCby/eH559/HovFEuhqtEiWhBZhLynOQKkPc4xLLHaSZEYKIYQIWtu2beP9999n9+7dxMTEcPbsWc+yxsuWLfNrXZ544gkefvjhDpdz6623cuuttwKugHzz5s0NFunwN03T0DSNqKjG+1yff/55brrpJkwmU6vLdC/V7U/SYyzCnq+XhS612GRGCiGECGInTpwgJSWFmJgYAFJSUkhLSwMgNzcX9+Jj8fHxPPDAA4wYMYJJkyaxY8cOcnNz6dOnD++++y5wYe/t9OnTycvLu+Cc11xzDSNGjGDw4MEsXboUgAcffJDq6mqys7OZPXs2AK+//jqjRo0iOzubu+66C4fDtVLrihUr6NevH+PHj2fr1q2tvtY//vGP5OTkkJWVxaJFiwDXYiADBgzg9ttvZ8iQIcyePZuNGzcyduxY+vbty44dOwDXSng333wzV155JX379uWvf/1ri+UOHDiQBQsWMHz4cI4dO8b8+fMZOXIkgwcP9uz34osvcvz4cSZMmMCECRM8be22Zs0a5s6dC8DcuXO57777mDBhAg888ADffPMNU6dOZcSIEYwbN46vv/661W3RHtJjLMKe2aRn13fFXPty628sbXHwZAVXZ6b6pGwhhAg3T+14iq+LvRvcDOg8gAdGPdDk9smTJ/PYY4/Rr18/Jk2axKxZsxg/fvwF+1VVVZGbm8tTTz3FtddeyyOPPMKGDRvYv38/c+bMYcaMGa2u0/Lly+ncuTPV1dXk5ORw/fXX8+STT7JkyRIKCgoA12ptb775Jlu3bkWv17NgwQJWrVrFVVddxaJFi8jPz6dTp05MmDCBYcOGtXjO9evXU1hYyI4dO9A0jRkzZvDpp5+Snp7O4cOHWb16NUuXLiUnJ4e///3vbNmyhXfffZcnnniCdevWAbBnzx6++OILqqqqGDZsGNOmTWPv3r1Nlnvw4EFWrFjByy+/DLhSVjp37ozD4WDixIns2bOHX/ziFzz77LOt7tU+dOgQGzduJDo6mokTJ/LKK6/Qt29ftm/fzoIFC/j4449b/f+hrSQwFmHvuuE9KKv2XY7x6D7JzMxO81n5QgghOiY+Pp78/Hw+++wzNm/ezKxZs3jyySc9vZRuBoOBqVOnApCZmUlMTAx6vZ7MzEyOHDnSpnO++OKLrF27FoBjx45RWFhIcnJyg302bdpEfn4+OTk5AFRXV9O1a1e2b99Obm4uXbp0AWDWrFkcOnSoxXOuX7+e9evXe4LoyspKCgsLSU9Pp3fv3mRmZgIwePBgJk6ciFLqgmubOXMmsbGxxMbGMmHCBHbs2MGWLVuaLPeiiy7i0ksv9Rz/1ltvsXTpUmprazlx4gT79+8nKyurTW134403Eh0dTWVlJZ9//jk33nijZ1tNTU2bymorCYxF2LtyQDeuHNAt0NUQQggBzfbs+lJ0dDS5ubnk5uaSmZnJa6+9dkFgrNfrUUoBEBUV5Um9iIqKora2FgCdTofT6fQcY7VaLzhXXl4eGzduZNu2bZhMJnJzcxvdT9M05syZwx/+8IcGr69bt85Tj7bQNI2HHnqIu+66q8HrR44c8VxLc9cGXHBepVSz5cbFxXmef/vttzzzzDPs3LmTpKQk5s6d2+h1n3+e8/dxl+l0OjGbzZ4edn+QHGMhhBBChLWDBw9SWFjoeV5QUMBFF13UrrIyMjIoKCjA6XRy7NgxT35ufWVlZSQlJWEymfj666/54osvPNv0ej12u+tXzIkTJ7JmzRpOnz4NQHFxMd999x2jR48mLy+Pc+fOYbfbWb16davqNmXKFJYvX05lZSUA33//vafs1nrnnXewWq2cO3eOvLw8cnJyWl1ueXk5cXFxdOrUiVOnTvHhhx96tiUkJFBRUeF53q1bNw4cOIDT6fT0rJ8vMTGR3r17e65f0zS+/PLLNl1PW0mPsRBCCCHCWmVlJffccw+lpaXodDouueQSz4C4tho7dqwnLWHIkCEMHz78gn2mTp3KK6+8QlZWFv3792+QanDnnXeSlZXF8OHDWbVqFY8//jiTJ0/G6XSi1+t56aWXuPTSS1m8eDFjxowhNTWV4cOHewblNWfy5MkcOHCAMWPGAK4Uktdff53o6OhWX9+oUaOYNm0aR48e5be//S1paWmkpaW1qtyhQ4cybNgwBg8eTJ8+fRg7dmyD6/7Rj35Eamoqmzdv5sknn2T69On06tWLIUOGeILu861atYr58+fz+OOPY7fb+clPfsLQoUNbfT1tpTRN81nh5xs5cqTmHvkphBBCiMhw4MABBg4cGOhqiBYsXryY+Ph47r///kBXpc0ae48ppfI1TRvZlnIklUIIIYQQQggklUIIIYQQQuDqMY500mMshBBCCCEEEhgLIYQQwg/8OaZJRBZvvrckMBZCCCGETxmNRs6dOyfBsfA6TdM4d+4cRqPRK+VJjrEQQgghfKpnz54UFRVx5syZQFdFhCGj0UjPnj29UpYExkIIIYTwKb1eT+/evQNdDSFaJKkUQgghhBBCIIGxEEIIIYQQgATGQgghhBBCAH5eElopdQb4ru5pCnDWbycPX9KOHSdt2HHSht4h7dhx0oYdJ23YcdKG3tHRdrxI07QubTnAr4FxgxMrtaut61eLC0k7dpy0YcdJG3qHtGPHSRt2nLRhx0kbekcg2lFSKYQQQgghhEACYyGEEEIIIYDABsZLA3jucCLt2HHShh0nbegd0o4dJ23YcdKGHSdt6B1+b8eA5RgLIYQQQggRTCSVQgghhBBCCFoZGCulpiqlDiqlDiulHjxv2z112/YppZ5u4vjOSqkNSqnCuv8m1b2erJTarJSqVEotaeb8d9edW1NKpdR7vZNS6j2l1Jd157+1dZftfz5sw6uUUvlKqa/q/ntlE8f3Vkptrzv+TaWUoe51pZR6sa5ee5RSw7197d4SrG1Yty1XKVVQd/5PvHnd3hYE7djU3/PsuvfgHqXU50qpod68bm8K4jaUe6JSo+r+Fgvq2uHaJo4P+XsiBG871m0LiftiELSh3BN914ZtvydqmtbsPyAa+AboAxiAL4FBddsmABuBmLrnXZso42ngwbrHDwJP1T2OAy4H5gFLmqnDMCADOAKk1Hv94XpldQGKAUNL1+Tvfz5uw2FAWt3jIcD3TRz/FvCTusevAPPrHl8NfAgo4FJge6DbKwTb0AzsB9KbO38w/AuSdmzq7/kyIKnu8Y/kvdiuNpR7IpgAXd3jVOC0+/l5x4f0PTEE2tFMCNwXg6QN5Z7ouzZs8z2xNRc8Bvio3vOHgIfqHr8FTGpFGQeB1HoXdvC87XNpJjCut9/5F/wQ8DKuG1hv4DAQFeg3SSDasO51BZxzvwHPe/1svTeXpz7AX4CfNnaeYPoX5G24AHg80G0UCu143j4N/p7P25ZEE0FhoP8FcxvKPfGCfXoDpzjvgzQc7okh0I4hcV8MdBuet4/cE73chu25J7YmlaIHcKze86K61wD6AePqfkb5RCmV00QZ3TRNOwFQ99+urThvaywBBgLHga+AhZqmOb1Utjf5qw2vB/6taVrNea8nA6WaptU2cv7m6hZMgrkN+wFJSqk85fr5+5Y2XZl/BbodW+s2XL12wSiY21DuiYBSarRSah+uNphX7+/WLRzuiRDc7Rgq98VAt2FrRew9sYNt2OZ7oq4VhapGXtPqHZ+E6+emHOAtpVQfrS5M94MpQAFwJXAxsEEp9ZmmaeV+On9r+bwNlVKDgaeAyW08f3Pbgkkwt6EOGAFMBGKBbUqpLzRNO9SW8/tJoNuxNcdPwPUhcHl7jveDYG5DuScCmqZtBwYrpQYCrymlPtQ0zdrK84fKPRGCux1D5b4Y6DZsuYIRfk/sYBu2+Z7Ymh7jIqBXvec9cUXe7m3/1Fx2AE4gRSm1oi5R+oO6/U4ppVIB6v57upUX1JJb653/MPAtMMBLZXuTT9tQKdUTWAvcomnaN42c/yxgVkq5vwidf/6m6hZMgr0N/0/TtCpN084CnwJDO3i9vhLodmyWUioLWAbM1DTtXFuP95NgbkO5J9ajadoBoApXvnZ94XBPhOBvx1C4Lwa6DZsl98QftLMN23xPbE1gvBPoq1wjTw3AT4B367atwxWFo5Tqhyvp+qymabdqmpatadrVdfu9C8ypezwHeKf119Sso7i+jaKU6gb0B/7jpbK9yWdtqJQyA//Clc+ztbGT130z2wzccP7xdeXeolwuBcrcP2cEmWBuw3dw/VSkU0qZgNHAgQ5fsW8EtB2bo5RKB/4J3ByEvUr1BW0bIvdE9ywJurrHF+FqgyP1Tx4m90QI7nYMlftiQNuwOXJP7Hgb0p57ota6xOqrgUO4Rh3+pt7rBuB1YC+wG7iyieOTgU1AYd1/O9fbdgTXKMFKXN8sBjVy/C/qttXi+hayrO71NGA9rryRvcBNrbmeQPzzVRsCj+D6BlVQ798Foz5xjRbdgSvxfDU/jBBVwEt19foKGBnotgq1Nqzb9itcI7D3Av8T6LYK8nZs6u95GVBS79hdgW6rEGxDuSfCzcC+urbbDVzTxPEhf08M5nas2xYS98UgaEO5J/quDdt8T5SV74QQQgghhEBWvhNCCCGEEAKQwFgIIYQQQghAAmMhhBBCCCEACYyFEEIIIYQAJDAWQgghhBACkMBYCCGEEEIIQAJjIYQQQgghAAmMhRBCCCGEAOD/A214xPC3z5M9AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAFlCAYAAADoCC5oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADiaUlEQVR4nOyddZgb57m+7xFLy7zrtdfMENsBh5kbbpKmDbRN2xRSOu0pndKvcE4pZWZI0iQNMzMnZmZYe73rRS2Jpfn98WmEI2mk1a7X6+++Ll/ySiNp1pZmnnm/531eRVVVJBKJRCKRSCSSox3T4d4BiUQikUgkEolkPCCFsUQikUgkEolEghTGEolEIpFIJBIJIIWxRCKRSCQSiUQCSGEskUgkEolEIpEAUhhLJBKJRCKRSCQAWMbyzWpra9Vp06aN5VtKJBKJRCKRSI5CVq1a1a2qal0+zxlTYTxt2jRWrlw5lm8pkUgkEolEIjkKURRlX77PkVYKiUQikUgkEokEKYwlEolEIpFIJBJACmOJRCKRSCQSiQSQwlgikUgkEolEIgGkMJZIJBKJRCKRSAApjCUSiUQikUgkEkAKY4lEIpFIJBKJBJDCWCKRSCQSiUQiAaQwlkgkEolEIpFIACmMJRKJRCKRSCQSQApjiUQikUgkEokEOBqEsW8AtjwGkcjh3hOJRCKRSCQSyThm4gvjdXfDPdfDH06B4Z7DvTcSiUQikUgkknHKxBfGx90Ml/wcOjfDjmcO995IJBKJRCKRSMYpE18Ymy2w7CYw26FzU/7Pj4SLv08SiUQikUgkknGH5XDvwJhgtkDdHDi02dj2q/4JthJ45SdQMQVuuG90908ikUgkEolEctg5OoQxQMMi2P1S7u023g+Pfjb+c9dWCAXAYhu1XZNIJBKJRCKRHH4mvpVCo34BDLaDpzfzNoFheOy/oPk4uPZ2OOnT4v6urWOzjxKJRCKRSCSSw8bRI4wbForbQ1l8xvvfAV8/nPk1WHAZHPthcX/7utHfP4lEIpFIJBLJYSWnMFYUZYqiKC8qirJFUZRNiqJ8LuXx/1YURVUUpXb0drMINC4Wt+1rM2/T+hYoJphygvi5egbYSqFj/ajvnkQikUgkEonk8GKkYhwCvqiq6nzgROBWRVEWgBDNwHlA6+jtYpEorYeqaUL8ZqL1TeFFdpSLn00mIajbpTCWSCQSiUQimejkbL5TVbUdaI/+fVBRlC1AM7AZ+DnwZeDh0dzJotFyssgyVlVQlOTHwkE48C4suzH5/oZFYkiIRCKRjBF/fW0PL2/vMrTt6bNr+ehpM0Z5jyQSyZHCM5s6uOPt8VOvrC+zc9s1xxzu3TBMXqkUiqJMA5YBbyuKchnQpqrqOiVVZCY/5xbgFoCWlpbC97QYtJwI6/4NPTuhdnbyY1segaAHpp6UfH/5JAgMQsADNtfY7atEIjlq+debexn0hWipzn7M2dczzL6eYSmMJRJJjPtWHeDdPb3MbSw73LsCgMtqPty7kBeGhbGiKKXA/cDnEfaKrwPn53qeqqp/Av4EcNxxx6kF7WWxaImK3n1vJAvjwQ547AswaTnMuyT5OSV14na4E2zTxmQ3JRLJ0Y3bE+SKpZP4zuWLsm73lfvW89L2zjHaK4lEciTg9gZZMrmCez5+Uu6NJWkYSqVQFMWKEMV3qqr6ADATmA6sUxRlLzAZWK0oSuNo7WhRqJ0N9nLo2JB8/4Z7weeGK/8AZmvyY6X14na4e0x2USKRHN2EIyoDviCVrtzZ6Q6rCV8wMgZ7JZFIjhT6PUGqDBw/JPrkrBgrwifxV2CLqqo/A1BVdQNQn7DNXuA4VVXHt3pUFNGA596XfP/ul6B2DtTNTX9OSTRsY0hWZSQSyegz4A2iqlDpsubc1mE14wvKsfUSiSROnyfAMlfl4d6NIxYjFeNTgBuBsxVFWRv9c/Eo79foUTUN+vbGfw75hbVixpn625doFWNjjTASiUQyEtzeIGBMGNutZvyhCKp6eF1qEolkfKCqKm5vkAoDxw+JPjmFsaqqr6mqqqiqukRV1aXRP0+kbDNt3FeLNaqmQd8+iESXHw+8K5ruMgrjBI+xRCI5uvD0wt8vhp5dY/aWbk8AgEqnMSsFgD8k7RQSiQR8wQiBUMTQ8UOiz9Ez+U6jahoPOi385p0fsb5rPcE9LwMKTD1Ff3urQ/iSh2TFWCI56tj3Bux7XcQ8jhFaxdhIxcdhEd3e0k4hkUgA3N7ohbWsGBdMXnFtE4KqafykuorBbf/mj9v+jR2FpVOmcl3nShbWLKSxpJG0+LmSOmmlkEiORjo3i9tso+SLTL8naqVwGvMYA7IBTyKRACLRBowdPyT6HJUV45ACl1Yt4qdn3Mb7hv3st1r5r5f+i/PvP5+LH7iYjd0bk59TWi+FsURyNHIoeiwYQ2Ecs1IYTKUAWTGWSCQCTRhLj3HhHHXC2F9aj9dkYnrExPnls/lSZwePzf8Efz3/r3zpuC9xYOgAKztWJj+ppFamUkgkRyOHohXjrq3xvoRRpi96Yit35F7Qi1WMQ1IYSySS/HoUJPocdcLYHfIAUHFgNbzwfQCsk0/ghKYTuH7+9QB4w97kJ5XIirFEcsSz51XY9YLx7YNe6N0F5ZNFg27fntHbtwT6vUHKHBYs5tyH53jFWFopJBJJfqk2En2OOmHcH+gHoNJVBxvvB6sL6hcAYDaZsZlseEMpwri0Hry9EA6O9e5KJJJi8czX4b6bheA1QtdWUCOw+Grx8xjZKdyegOFwftl8J5FIEtGsFHLAR+EcfcLYL4RxxUU/gZufhg/cA+b4kqXD4sAX8iU/qX6+uF31jzHaS4lEUlQiEejaDt4+2HCfsed0bRO3C68Esw32vz16+5eA2xs0XO2xW6UwlkgkcdzeADaLKbaaVHQ2Pwxv/QHcraPz+uOAo04Yu/1uACrtldByIkw/Pelxp8WZLoznXwazz4dnvgH73oR/Xgrbxy6+SSKRjJD+VtBWglb+zdhzeneDYhIXxtNPh21PwBgM0nB7glQY7CiXzXcSiSSRfk+QSqc1PV2rKC/eBv+5CZ76Cjz1teK//jjhqBXGFfYK3cedFme6lUJR4PLfgq0U/nEx7HkFXvjumJwkJRJJEdCqv5NPEBFsRr67vbuhYjJY7DD3IvFz947R3U+Ex9hIIgXIuDaJRJKM22N8xSlv2teJ2+bjRLa7t2903ucwc9QJY81KUWmv1H1c10oBwmd8+W/F3yefAB0boPWtUdpLiURSVLq2ittZ50DIJyba5aJnF1TPEH+fc6G43fZE5u1HSCgc4ZN3rOJAn8dwBqlDWikkEkmU/318M6/v6h69RIr2dYAC530HwgHY/MjovM9h5qgTxm6fG4fZgcPi0H1ct2KsMfdC+NIuuOkhsJXB+rtHb0clEknx6NoOpQ2xRlsGDuR+Tu/uuDCumAy1c0b1Yri938eTGzuYWVfKe5Y0GXqOwyKtFBKJRHDXO/upcFq57oQpo/MGHevFcXDqKVA1DbY/NTrvc5g5+oSx353RRgHgMDvS49oScVWDrQSal0H7+lHYQ4lEUnS6tkLdXChvFj/3t2Xf3tMLPndcGANMWgbta0e+L0GvaFwJBZLu7o/GLH3hvDmcOKPG0EvFc4yllUIiOZoJhiMM+UO877gpXLV88ui8Sft6aFoi7KV186B//+i8z2HmqBPG/f7+jDYKyFExTqRhsfAqhkPF2zmJRFJ8ImHo3AJ186EiKowHcgjj3mhmcfXM+H2TlsFgOwy0j2x//nYh/GKxaGJJIDbKNY+YJWmlkEgkEL+wHjV/8XCPWGlrOkb8XNY08mPhOOWoE8ZuvzurMM7oMU6lcbHwKvbuKt7OSSSS4tOzC4LD4oBeUg8mqwFhHP1ep1aMYWRV46BPLEeCuLBOwO3VRkEbP7GZTQpWsyKb7ySSoxxt4l3FaOUXr/6nuJ12qrgtnwSebgj5R+f9DiMTXhj3+/vZ1LOJYHQ4R3+gP6uVQjeuTY/GReK2Y0MxdlMikYwWmhBtOgZMJihvgoGD2Z+jZXRWtsTva1ws4tsOril8X3p2iKEhFS0w2JGUjhGrGBtsvNNwWMyyYiyRHOUUevwwhKcXXvuFaELWCgRl0T6IwYlXNZ7wwvil/S9x3WPX0eHpAIRQziWMDVkpaueKypNRYTzUBbtfNratRCIpHu1rwWwXHmMQPuNcHuOhTrBXgM0Vv89WIr73IxHGndF0jJlnQdiflI6hVXzK8xXGNjP+kBTGEsnRTNyKNQrCeNuT4O+HM74cv688KownoJ1iwgvjEmsJAMPBYVRVzSmMDVspLDZhPj+0Mft2L/8E/n0d3DYL/nWZ8XG0EomkOLSvh4YFYI6eMMqbc1sphg5BaV36/ZOWCWFcaIZ511ZQzPHBQgn74fYEcVrNMd+wURxWk7RSSCRHOW7NYzwaUW3t68BaAk1L4/dpjcyDOVbfjkAmvDB2WUXFZzg4jDfkJayGKbOVZdzeaXESUkMx6wXAux3vcsmDl3DP1nuSN25cBB05hPHKv8H2J+M/D3fl/TtIJJICUVVhpWhcEr+vollYKSJZxORwl4h3S2XSMvFYLitGJrq2Qs1MqJwqfk5YhnR7g1QVUO2RVgqJRBL3GI9CxbhjvdA7poSLds1KUeixcBwz4YVxYsV4MDAIQKm1NOP2DrPIN06MbFvTuYZ9A/v4/tvfZ0vPlvjGDYtgqEPYJPQY7BBXU+d8G678k7gv07YSiaT4+AfFdKaahHSJyqnCxpCt0jF0SAz1SWXSUnFbqJ2ic4tYaSpPP6m4PcGCGmccVimMJZKjHbcniEmBMruluC8ciQjLqJZGoeGoAKtLWimOREosQhh7gh6GgkMA2SvGVicA3gTLw4B/IPb3/YMJuX2Ni8XtoQw+Y+3k2XIS1MwSfx/uzGf3JRLJSNBWaEoSRG7tbHGbbbzzUFfyczQaFgkrRCHCOOiDvj1CGJc2iEa+hIpxvzdQUOOMw2rCK4WxRHJU4/YGqHBaMZmU4r5w724IDCWvuoHIMi5rklaKI5FCK8a+cNxn3B/oj91/yHMovrEmjDPZKQ6uESe/piVxv6K0UkgkY4f2fUv0C9dEhXHPTv3nBL2i0USvYmxzQf182P92/j5jLZGifp7wO5fUp3mMC2mcERXjqC0kwQImkUiOHsTxYzT8xWvFbWrFGERkm6wYH3kkeoyNVIxdFrF9YjKF2++mpbwFu9lOpyeh4uuqhrJJmZMp2laL6pCtBEqiJ+YhWTGWSMYM7ftWkiCMyxrBVppZGGvP0fMYA8y/FPa+Cs99O7990RIp6uaL2/LkgHy3tzBhbNc8xpsfgf9rhq5t2Z/gbhXRS8M9eb+XRCIZn/QXePzISecWsUpWNy/9sYop8WjLCcSEF8axinFomKGAEMZZK8aWaMU4IZliwD9Apb2Selc9h4YPJT+hcbF+MoWqwsHVMGm5+NnqBFuZrBhLJGOJZl1KtEUoivAcZ7JSxKrMOhVjgDO+AouvhTd+LewRRumKnmA0v3PZpJiVQlVV+j1BKgroKHdYTZQFuuCRzwjvdOubmTfu2QW/OV6I+tX/yPu9JBLJ+MTtCY5OhnHPDqiaKpK4UqmeIawUAU/x3/cwMuGFscVkwW624wl6GAxGrRS23MI4sWKsRbw1uBqSrRQAdXPEySaS4vHr3w+eHmheFr+vtE4KY4nEKDueA99A7u2yMdwtbktqk++vmS0O+HoMRb/jmYSxosDcC4UtIlPVWY+ubUIUW+zi5+rp0al8XrzBMIFwpLBUCquZy/yPiEZDqyt7tvquF8TETkcFHFiV93sVha5t8OAnxVjs57+b38WFRCLRxe0NjI6Vontn3H6WSvV0cdu3t/jvexiZ8MIYRNV4OBivGOeKa4MUYRzop9xWTkOJjjCumS2qNKnLCW2rxe2kBGFcUi+tFBKJEfoPwJ3vhXf+OLLXGeoEZ1U8w1ijdja49+vniueyUkB8WbFrq/F90RIpNLQhH3tfp28E4fxOC5wbfhVmnSOON9mE8YGV4veacyG0rSw8jzlf9r0B/7ocbpsDv10Bmx4U6SCv/hSe/dbY7INEMoFxDwepKHbFOBKB3l3xhuVUqmeI297dxX3fw0yRcz3GJyXWEoaCQwwGBjEpppiPWI9UK0XiUJByyun0dBJRI5iU6DWF9oHp2RW/egJhozBZRRd7bEdqxXYSiSQ7B9eK2wMrR/Y6w5366RK1swGVYOd2PvSkl0MD/thDN/jf4UPABX/eQljRrypb1SCPYeLfjz7DP5/VGQSStn2Axwb3cOfQ8fzrZ2ICpk2N8CA2Hr/3H/zCIvJBCzmxzfZtoIkeftO9jE/OcmNee4c4oZl06h5tq6D5WGg+DtbfAwNt/GV9gLvf3Z++rQ5LJlfws2uXGtsx/xDc+yEoa4C1d4kK/OzzxbLssTdDSQ08+VV4+/ew8AqYerLRX1kiOSpwewJ8+B/vMugL5dx20B8qvjDu3y9WmLRUrVQ0zSOF8ZFHibUkFtdWYi1BUTLHmaQ233lDXoKRIBX2CuxmO8FIkD5fHzXOGvGEWIf7Dph9bvyFDq6BhoXxZVMQJ4Zs/j+JRCJoXydu21aJqmaW72xWhrv1LRH1CwAYbF3H6ztrWDK5gilV4rs/51Afg6FKZjVWZX3pbl8zi2ztzG3IvAKl0ezfiXkwQrB6NnPLtO3L2BlexinBNTzfXMHx06pZMb0mr18P4ELbeoJY+G37XD5wbD/VwWERC5eY3Qwiz7lnBxxznRDHAG2reHpTHW5PkBXTq7O+z9aOAR5b325cGO97HXY+K/4+/XS47i6wp9jYzv66EMb73pDCWCJJYVvHIGta3Zw4o5qaEnvWbRc0lfOeJU3F3QHNbpapYuysAme1FMZHIi6LK2alKLNmP4mlxrUNBITHscJWQaW9EhCRbTFhXFIr/HqJjTyRiKh4Lb46+cVL6sHTC+EQmI+Kf3qJpDA61ovb4S5hU6qaWtjrDHWKuMRUamaByYrSuQU4lY+cOp3Ll0ZHnP5+P9Qdy2+vX579te9aQkPPztzbAazfBa3wkSsv5iMNC+L3v/s+ePwL/Pa0ALScaPjXSqQ+2MZgWQten4OhqmaqQfz7pQpjLXu5+djoFCsLtK/H7TmdE6ZX5fw9fv7sdn75/A4iEdVYVmrrm2LV7Na3hW1C75hnLwNXjbDOSCSSJLQxz9+8ZAELJ1WM/Q50R3soMnmMQdgpeifWSvhR5TEeDA5m9RdDwoCPaMW4398PQIW9gnqXqDwlRbYpSnojT+9u8A/EEyliO1ILqKIpTyKRZKZ9XdyP2zaCJrHhbn0rhdkKdfOwdItJlvaolQH/EHRuhsnH5X7turnihGCkQTCWSJGyJHnMdUIYvvqz3K+Rib59eEtbABgsmyEEr57PuD16sTFpqVjJKqmDoQ76DKZhOKzi38gfyjJKGyAUtaXse1O8V83M7IWAislSGEskOmhjnkelqS4Xnl5Y929REc7UiAzi+90zsSrGR40w9oQ8DAWGsiZSANhMNhQUXWGsiWotDzlG7Wzo2h5Ppjio03gH4gQA4N5X+C8jkUx0hjpFjNkx14HFIYZpFELQFx3UkcED3LAAe3TEu8MaPRS2rxNpE5rVIBuzzxc2j39drt/El0gskSLlBGcrgRWfgB1PF9bZrarQt5dAmRDGPtUiLij0hPGhTVDeLJY/AUrqUIe7xMQ9A01/2r9R1vHTT3wJfrFE5DMfXG2sCl4xRXgZJRJJEm6tKXc0Ythy8eSXRcPw5b/JbmWrnikGFQWGx27fRpmjRhhrAz5yWSkURcFhccSEsdvvBoh5jAEC4UDyk2aeDUMdcP9HhDhuWw0WZ3ogdt1ccZsrgF8iOZrp3Cxum5bCtNNg+9OFpSdosWslGYRx/QJsng7KGYpVQ2mLNvsZEcZTT4IrficE4O6Xs2+bmkiRyJwLou9dQGXc0wuBQcLlUWEcjIhsda06nLQPm2PeagBK6ogMdhIMq4ZOvNq/kS+UQRhvfhje+ZM4Fv77GggHoMWAb7hiiqgYj1VChkRyhOD2BrGaFVw289i/+YGVMPdimPee7NvVzQXUzLnwRyBHhTB2WV2xkdC5KsYQb9YDEdUGwmNsjUY+pQnjJdfCud8REUSv/0J4+ZqOSV8+rJwqKmD5RDxJJEcb2gG2dg7MvUg0khVyMakJ7EyCNJoY817zqzTte1gkxux4FqqmpeceZ2LeewAl7onWI+gTv0P9fP3H6+YLL66emM1FtMocqZwGRKu5jYuFOE2MhgwHxb9hw8L4faX1qNFt8qsYp1gptj8DL3wf7v+osI8tulpUrOdcBLPPy/07VEyGwBD43Lm3lUiOItxRm1O2wIBRIegVx5ZMx6xEYtGVE6fgd1R0gJVYS/CGvAwEBrJOvdMotZYyHBTLAolWimBELGv4w/70J53yOTFT/MX/AxQ4/qPp25jMUdvFxPkASSRFp2cnWEugfJLI2338C7D9SajPIHAz0b4eUJIjExOZfjrddSfx7a7b4eXb4XUnhLxw4Q+Nv4e9TFgktBQNHdSubayyWzm2dg66pzeLTZyAsrxGRvr2iNvqaUBnvGIMQpzOOkf8vXsHRILJwrikDpOnG1CNeYyjPuwkK0XPLrjrOlDDojr8/n+Lyu+MM+CY96fnR+tROUXc9h+I2zwkEolhm1PR6d4BqPFV7mxUR/saJlDB76ioGGtieDCQu/kO4rnHIMZB20w2HBZHZisFCA/OJb+ABVeIk8TMs/VfvG6eFMYSSTZ6dgqxqShQ0QwNi3NbFfRoXyea3VIjwjQsNl49/rf8OPg+us7/XTRn9wI44eP5vU/TMVmrvW/tfooPNzWwKlsZommJqDrnayeIVozN1dOAqGjVLgQSfcZa9TzFSmEK+ynFa2jiXsxKkSiMX/xf0cj3+Q3w4SeEsHVVw/KbjIliiPdeyAY8iSQJtydY0DTMEaNplEyrbYlYbMJnPIF0zVEhjF3W+EAPo1YKrWI8EBig3F4OgNUUtVJEdIQxgLMSrv4rfKMT5pyvv03dXOhvFd3vEokkne4dybmZTUtE41i+dKwXojULHtXC78KXE174XvjManj/3fqDMbLRuER8pz29ug9v6FoLQJs5y3Jo01KRVjPQlt979+2FknrsLnHB7wuFhTCtmJIsjDs2CLtG7Zz4fdFO81ql31DXuz3VSjHcDRvvhxM+BpUthWdNV0Qrxm7ZgCeRJGI0MabodG0VKTrVM3NvC0LXZKoYt6+H/e8Wb9/GgKNCGJdYSmJ/r7DlzgJMFMaJVWZFUbCZbPpWikSyVUpqo0sTPRPHqC6RFI2gT+QWJ8aaNSwUE+yGu42/jqdXJB3oZRgnoIk8h9UkegJMJkKRUKzHwBCa+H73r8LLm8LWQTEuvtOnL5yBeDzcs9/WfY2MdG6B2jkJNoeoaG1cnCyM21aJ+xJTMaI+6hoGDHqMU5rvtGFFc3M05+SipA7MdplMIZGk0O85TFaKrq3CIpGaopOJunnC1hX0pT/2+i9FMMERxNEhjK1xYXzu1HOzbClI9BinJlnYzXZ9K4VRJqBRXSIpGr27ATU5UF5b/s+naqw1wzXmEsZC5MVSKYDfr/s9Vz1yFRE1R16vxpQV0HISvPh9ePTzaQ9vCYmc46T881QmLYNzvgUb74M1txt733CIe4Z28bsyR0I1NypaGxeLi++ARyTlHFyTnrRREq8YGxklq4lvv/YerW8JQTtpqbH9zYSiQFljPEVEIpEAIpXisES1dW835i/WqJ8nYi67dXRN7670YUPjnKNCGGsV3/fPez8V9twVY5fVFfMYp/qSrWZr7opxNqqniyXNCWRUl0xgIhHY+rgYQBExKBRHgjZBKfFAqjWM5SOMtQvPRE+tDprIs1vih8I1nWtoG2pjp3unsfeyueDDT8Kp/wVr74Atj8YeGhju4kBUc2cVxgCnfRHKmoTgNMC6nY/zg6pS7vYdwG4xoSgJorVxsThRdW4RJ7nAULowjlopmiwDSRcGmUhLpdj3hqh0J469L5SyJpFdLZFIAPCHwngC4bGvGEfCwqKVj5jVChAdG5PvV1Ux/KN6RtF2byw4KoTxsvpl/OX8v/DVE75qaHutYqyqalrE24grxmarWCaWFWPJkcDrP4e7PwDPfwcO6QyNKDaaz7RqWvy+0nqx3H5oo3Fx3rUVHJXZJzYBvlAEh9UUi0NSVZUdfcLm9G5HHr44RYGzvi68tmv/Hbt7297nAbArltzCGIR4PbAy52aeoIevrf4pYUWhL+zBG/LisJjxJgpjEJXzAyt52uXk6z1voiY297nEWPtmq7Fgfk08e4Nh0SPRvq7gMdZplDXCYEdxXksimQD0R8dBj/nUu/4DIoM8HzFbPUPMbkgdLOTtE0OWpDAefyiKwoqmFZgUY79uqa2UUCREIBJIqxjrCeNtvdv40Ts/4oXWF9jdvzs2HCQj2YzqEsl4YusT8QaM3S+N/vsNtIkDbGpsV8NCWHsn/P5kY8kNXdvE9yxHQ5gvGE6qlvb4emJDffISxiAueqesSEqoWHfgdQBOrF1Cp9eIMF4uquYZGvk0brvzHA74e3nfgFjZOjB0AIfVFK/mVk4FewVsvJ/n1/+dr9TX8siBF5OndpqtDJnKaTQbGGlNSirFi/8n0ndmX2DouTmRwlgiSaJfm3o31hXj3uh4Z6ONdyCiaBsWiOJFIj3RFUApjI98XBaRYjEUGErzGNvM6c13T+x5gju23MHnXvwclz90OSfceQJn3nMmz+97Xv8N6uaJpYpcY2QlksNJwCOyuRdcJj6zhQjjcFD4bu/9kLHt+/eL+K5UQXv+92H+ZdC1xVhyQ9dWQx45XzAc884CsWpxc2kz73a8a9xnrNG4BAYOwHAPAKu61jAjFGFOw3J6vD2EtbHxmdDsDgfXZNyks2sL9zPI+weGuDwkTpptg204rOa4x1hR4Pzv8kbHu3yJTuxmUXXqTWkA7DbV0KwYa2rUrBSlvZvgrd+KrPaWFYaem5OyRvAPyLQeiSRKX2wc9BhXjGPCOE8xqzX8JhYuChHZ4wApjHXQrBN9vj78YX9SxdhmsqXFtflCPpwWJ/+66F/84LQf8Nlln8VsMnPXtrv036BurvD/9Rj0MEokh4O2lRAJicENM86EfW/qdx1n48mvwKq/i6mQOaqgAPS3ieziVBoXw8mfEX/PNSFuuFtEnxnI4PQFIzHBB8R8xRdPv5iBwEBswI9htISKjnWEgl7WBN0c52qmoaSRsBpOE6ZpTFoGKMK/m4FHNv2TiKJw/eyraL7ijwC0DUWFcSgu5LsXXMKXp0xjeskkvnPa/wHQ4+2JPX7T395hnX8S08L7DP1q2gVEfc874o4zjFnTDFHWJG5lA55Ewivbu/jUnWJE/GGpGFsc8e+kURoWiemViYWL3t2AAlVTi7mHo44UxjpoKRaHPOIgnSSMzbY0K4Uv7KPMVsay+mVcMuMSPrbkY1w641JWdqzUP7FqJ+xOaaeQjGNa3wIUmHICTD9dTIXLUslMIxIRglirFux/O/dzBtqgfLL+Yw0Lxf6kTojr3iG8bCAqteuiF6RGK8bW5IpxtaOaKWUiW9cTyiO2DeLe3vZ1bNt8L8MmhWOnnE6dqw4w0IDnqBBjlN/9C3jd4B+EvrhwjagRHj74Ksd6fbSc+U2qpp2J0+LkwJBowEscvvGDt3+ATw1z2/l/ZHr5dEBYRbTf+5XtXfSXz6Y61CneKwcmk4LNbKJmcCuUN0NpnfF/l1yUNYpb2YAnkbByby89wwE+fvoM5jXmHkpWVHp3Q9X0AvLcEyZuxl5rl8gpL0aD7hgihbEOmjDuGBaet9Tmu1QrhS/kw2F2JN13Tss5hNUwrxx4Jf0NamaJZIpUP45EMl7o2ADv/ElEcTkro5VM4jFoRujeDt5eOPGTYLZlrYICEAoIn2lFBmFsKxEDKtrXCYG+7w1Y+Tf43UnwxzPgiS/BzxfCM98Q4fSZRkEn4AtFsCcI43Vd65hfMz82FCivPGMQwzUqW+DN37HypW8DcNyi66l3iSZA7WI7K2d/U1ReHr4VfjAZfrkk1nT48M6H2Rsc4H1hBzirUBSF5tLmNCuFqqq82vYqV8y6gukV06l2VAPxivFAtLFn8rzjxXt2bjH069mtJhqGt+WMwcsbrTolfcaSiUTf3vxyyaO4vUEqnFa+dvF8LOYxlmm9BaZIaOlBickUnVuOuKg2kMJYF22EdPuwqF6U28pjj9nMNoIpH3RfyIfDkiyMF9YupMpexTsd76S/gcUG9fPzExkSyVix/x34x3uEmL3qz+K+siaRDJFarc2GNgBixlkwaXnuGLLBdkDVt1JoNCyE7U/Cn86Ev18Ej/2XGOLhHxAiedFVIjrts6vps9o5595zsjbRCY+xOAx2ejrZ3b+bExtPjPUZ5F0xBjjlc9CwgPV105nkrKO+cjo1DpEA0efry/38piVw5tdg+9Px+/r2MBQY4uerfs7yEFxYExemk8smx5rv/NHmuy5vF96Ql1mVYlBKlaMKBSVm5XBHhXGkbr54EYMX6RWWEDW+1pwTBfMmVjGWwlgyQejbB79aBr9cmtv+lYLbMwr5xcM9uRuXwyHo3QM1BQhje5moNGvpRcPd4rgy7ZT8X+swI4WxDmkVY2u8YqzXfOcP+9MqxibFRJWjKjYoJI2mJUJkGOmwl0jGikhExLO5auDmp+KjmRVFVAnzOcC3vinEdM1MEet1cE12j3L/AXGbqWIMwtYBcPJn4aaH4UOPCyH8qbfg8xvhit/B1JOhahqrO1fT6elkfVfmffYnWCnebhdWjxOaTii8YgyiKe2mh9lkt7GoXlTa7dGlRF/YoEf7zK/Cf22E66K2kEMbebvjbfr8fdzadQglYahGc2kz7cPtUY+xqBi3Dohpey1lLQBYTBYq7ZWxinHfsLCDOapbhH2jc3PufWpbzdfVP2MiknOiYN7Yy8HqklYKycShY4PoJRo4AOvvyeupfZ4AFcWMaTu4Fn46JyljXZeenRD2Q/3Cwt6ncVG8YrznZXE746zCXuswIoWxDjFh7BHCODWuLVUYiwzRZGGcadsYjceIBqGBg0Xaa4mkCPS3wnCXEJ6VLcmPNR0jUiFCBgfc7H9bxJcpikhbiASzDukI9e+nw2zO7DEGOP5j8InX4PzviYbAaacK/1pZI5QnN4ts7BYH6Gz2BW8wHGu+e7v9bSrsFcyrnjeyijEi/aFtqI3FtcJ3p1045zUcqKwRZp4tbCEdG1hzaA02xcJSn1/8u2qb2coYDg5jN8c9xvsHRR50S3n8/7DGWRPzGGsV48oSmzgJGhme8tbvuCj8IhEUaFpq/Pcwgjb9Th4PJRMFLZK1rCl+0W+Q/mJPvHv+O6KR+uDq7Ntp/mDNL5wvjUuEFcM/JFKM7BXFP1aMAVIY66BViA8N6zffpVop/GE/dnO6udxpceILZagQaUuR+SxNSySjzaFo5bBBp2LQtEQcXI1UFwMesZSoHWA1j3KWA/Pd+5/lsslNeFxVGbfBbDF80N7QJQ7y2sqPHiKVQlSMVx5ayfENx2NSTCOrGBMX5Ytqhc9ZOz74jV5UaFgdomrfsZHVnatZZK3EZrJA83GxTTTRbbOGYznGrYOtWEwWGksaY9tVO6pjVgotI7XCaRX5o51bcq9edWxkk2UhP2y4LbvdpVAqW8DdWvzXlUgOB13bxEV+3by8hbHbEyxeGsXBtbDrhfg+ZePQBtH/VDunsPdqWASo8OhnYeMDMP00ccw+wpDCWAenxYmCEjuhpsa1+SM6zXcZKsYZl04bFwGK9BlLxhda5bB+fvpj2vJa1/bcr9O7C1DjB9iKyeCqFbnIGVg5uBevycR+v4FYtxyEI2E29ghxml0YixzjTk8nbUNtLItaH7RVo5EIY5NiYkGNGEltNpmxmCzGrRSJNC7Gc2gjW3q2cKzPJyowNlfsYe3YY7WGYhXjfQP7mFw6GYspflKqcdTErBRur7BSVJXYxEWQf0BkSGci6IPu7Wy1L2a9ucBl1lxUTRPNShLJREDLUq+YnP27pYPbE6CqWFYKrQrctDT3YLGOjULIWwp87yknCPvclkfFat753y/sdQ4zUhjroCgKJdYSfGGfqB5Z4ichvcl3vnB6KgUIX2HGCpGtBCqnjF6WccdG+O2J8RG7EokROjdFp6bpRASVTxK3gwaWu7XKhCaMFUVUjQ+uzfiUTQEhiA8M5Vdd0WPvwF6Gg8OUWkuzWil8USvFui6xcrO0finAiK0Uu9y7mFw6OVZ5BlHZzctKodG4hI3+TkJqiGXdrWljmLVjj8USSrJSaJFzGklWCk8Qi0mhxGaOX/Bks1N0bQE1zEHHrPh0vWJTNQ083SKiLhu9u2HVP2Dv66OzHxLJSImERSpP3TwRVzZ0yLAFLRxRGfCFxGpOMejdDSYLzDo392Cxjg2F2ygASmrhSzvhm13wgXugenrhr3UYkcI4A1rFqNRaipIwhUs3xzhDxdhpdmavEFXPiE+GKTb33SxOZloygERihEOb9W0UAPZS4Rkz4gPt3gEoyVE9k5aKJftAutjs9nbTQQiAA4MjF8Zaw90ZU86g19ebUZD6QhEcNjNrO9diM9mYXy0q5dr3eSQe41pnbdJ9WXsOsrHsBva7KgCY5fPCrHOSHtb21WIO4wtFUFWV1oFWppYnh+rXOGsYDg7jC/lwe8VSraIo8dWBbMI42lBzyDkrKSu5qFRNE7cJuc26PPp5ePRzcOfVsnlZMj5xt0LIF68Yg7GJncSjFItmpejdLb5bDQuzDxYb6oThzuhq9tGNFMYZ0HzGKskHXpvZRlgNE4qEYvdl8hjbLfbMHmMQwlibJV5MendDd7Ri58tzcpfk6MXrFgfNTMIYRIObIWG8XUw7sjrj901aBmpYNxpsc0/ct1wMYbyhewNl1jJWNIomtc7h9MEakYhKIBTBYTGztmsti2oXYTWLk5FJMeG0OAu2UvT6eqlx1iTdZzdnWUHKhquajjnnoKgqtWd9SzTkJaAJY7M5SCAUwRP04Ql50t5fyzLu9fXS7wnGK1KOcuHvzSaMD20EawkDriljIIz3Zt4m4BEX+xYnBD2igdkonl4xmryQ0eYSST7si65mNCwSK8Ng2GfsHg1hXD0jPlgsk89Ys1wYyH+f6EhhnIGbFt6E3WyPeQ41NAGcWDXWRkKnktVjDGIimM9tbFRuPmy4L/53GX8kMYKqigEZAPPek3m7siZjn6nuHekNHLEGvPTpeZsOrUVRVaZZy4tipdjYvZGFtQtpKhVJFVrCTCL+6Phku8XEtt5tLKxNviBwWVyZ4xZz0OfriwlRDbslx/EgCx1lddS56rCe+vm0xzQrhcksLtYH/J6k+zU0e4ioGAeoTPQw1i/M3lTZsQEaFmC3Wkdspdjau1U/W9qIMN7/FoQDsOQa8bPRFIugD/5xiZjEmHh8lEiKjaqK4Uh186B5ebxibFQYe4S2qHQWwWOsqnFhXDNTWCoyZZaPNJFiAiGFcQaumn0V71z/Dr85+zdJ99vM4sOqLYkGI0FCaihjKkXWCpE2XaZ3T3F2WmPHs2KgQlkTDBqYtCU5uhnqhD+fBRv+A2d8OS5g9SifBAM5hHEkDD06wrisCUobdH3GO7o30hIKMds1acQVY2/Iy/a+7SyuXUyjS6Qy6DXgaZVPk8WPP+yn3lmf9HiJtaQgK0UoEsLtd6cJ44I9xoj9byyZpPuYVjE2mUSlacAvPIT2lDGsiceutAEC9fOiGaYh0lBVYaVoWJSUlZwP/f5+7th8B+995L1c8+g13PLMLWmWNJxVIlM5mzDe/ZLoml/0XvGzUWHctlL450FUmiWS0eLAuyJt6oSPid6K8miCi8F+H61iXFGMivFwFwSGhNaw2EUDXuvb+tse2ij21VWt//hRRE5hrCjKFEVRXlQUZYuiKJsURflc9P6fKIqyVVGU9YqiPKgoSuWo7+0YY1JMSf5iiJ9ctIO6JnyzpVKomXxwMWFcJDtFJAJDXeIkMPs8kQs6JCdJSXKw+WFRxb34Njj9y9m3LZ8kGkn0BJRG/37hr0sVxrEGvPSK8b6BfUwLhphcNoW2oTYiauFVyS09WwirYRbXLqahpAHQzzLWBF5EGQKg0lGZ9LjL6sKbrVElA26/GxU1vWJcqJUCIYy13yUV7dijaMLYp18xjkXGacI4sWJcM1tE8bl1/L39+8HfD42LcVhNhqwUqqqyy72LNw6+wddf+zrn3HsOP3r3R9hMNk6ffDohNcRQcCj9iVXToC9LoWDPq6LzvSY6eMZIIyhA2ypxWzNbXAhKJKPFlkfFxduS94mfLXYobdT/bumgRSkWJZVC62GqjvZ6tJwovgt6x6GOjbJaHMVIxTgEfFFV1fnAicCtiqIsAJ4FFqmqugTYDnxt9HZz/JBqpdCWRvVSKbQTVsYqUdU0QClOA56qwn0fgp/NFwb7WeeKL6McsSrJRddW0VR3/EfBlOOQUNYkfMI6nt0Y3TvErV4WZtNS4X/3x0VRRI3Q6u1kajDI5KqZBCNBOj2Fi5cN3WJJcHHdYpwWJxbFousV1iwB4agwrrIn5ye7LK6CKsZaVnCVI/n1CrVSqKrKIc+hpEziRLRjj2ISFytDgWjF2KxfMQ6EA7g9gWQPozbhUPu/S0SbZNW4WFSMg5HMF/uI/88fvfsjrnj4Cj7+7Md5vvV5rph1Bfddeh93XXIXF0y7ILqfOsK4ekbm5qBIRHxWm44RKw+KKffqhUbbKpG2Uj9fCmPJ6LL7JSFAE5N9GhbErQo56ItZKYpQMY4J42g6RMtJYrJdW0qefDSOUfqLBTmFsaqq7aqqro7+fRDYAjSrqvqMqqpa2egtIMu4qolDqpVCa65LXbYEA9OurA4R5bLjGQgU5mWMsfqfovLXsACmnCgmjZU1jK4w3v40/GyBqOJIjly6tonu6ZTVEV20yLZsgqQ7mnOsJ4wnLRMXbgkniU5PJz41xNRgiJoqUdlw+90Gdz6dDd0baCppiqVCWM1WgpFg2nZa5TOoRoVxipB1WgtrvtOEsZ6VIs0+YICBwADekJcGV/aKMYp47UG/L/n+KJpQHg74GA6Ek0+8NbPEbY+eMN4AKFC/IDYMRfNnJxJRI3QMd/DN17/JnVvu5Lq51/GHc//AC9e8wDdO/AZzq+cC8cbmwaBOLFvdPJFKoVep798vbBB1c8XQgJJ64xXjA6tg8nFCUA9Je5lklBjuEbMJpp+RfH/jEpHIE8r9/XdHK8blxRDGmtVIO25rUY93XgMP3xrfLhrHKBMpBHmNJFEUZRqwDEg1qdwM5DcMfIx4eG0bX3vA2JVaKh89bQZfOC/55G4zRasukaiVIpzFShEVy96Qlwp7hf6bnP0NeOgT8Oez4bT/hoVXFjYp5s3fweTj4eZn4lW/siaRCxoOgrmAL9muF0VD1vnfEyeqaadBaV388bf/ICJo7rwaPvIMPPxpOPGTsPQD+b+X5PDRtRXmXGBs27Lo2OXBg8Cx+tt0bwdXDZTUpD+mLdUd2ghTTwJE5jDANHMp/mhMYiECUmNj98bYKGYAi8mSJozX7Xdz41/FYSyIEGh6FeODofxHFPd6hTCucST//jazraCKseaPzlQxjlWGo1aKL9+/EusU+MTt68CbIOxtBzFPgVvvehtYIMZBa7iqwVmtXzE+tEFUcu2lOKPC+PQfv8hjnzmV+nJx3POGvHzquU+x8tBKAD6z7DN8bPHH0qxoEB+YNKxXDKibC6hiP5qWJD+mddNr3fXlTcYqxn17YeAANH9KpFr43GIpWaeYIZGMiD0vi9sZZybf37QEIkHe+92/soXs2b6BUIQKpxWzyUChIhdDnWI1UEsHKqkVqTatb8HWJ+AyVRREtApytv6SowjDCkxRlFLgfuDzqqoOJNz/dYTd4s4Mz7sFuAWgpaVlRDtbCDNqS7l+Rf7v+9j6dlbuTU+LSLNShLJYKXJVjAGOeR84K+HZb8EDH4VXb4OPPqc/YCETvn4hRs76evJSeGm0wjR0KN4Zm41Dm+OVPDUCz31bPPeu68R9VdPhjK8IcVNSJ5aMlt0I6/8Dd18vKjrPfBPmX2ps/1f+Dfa+Blf/zfjvKikuwz2iQUMTG7mIVYyzCMau7ZlHipZPEg1WCQkIe/v3AjDVVc++BB9sIfR4e2gbauP9894fu89mSh/jvq1jkAFfiI+cOp3qMlFBTPMYW1xFrxgX4jHW/NGZhLGWiNNYYeJz58xm11A/Lw/ABfMnU2uNH/sGQhaecMOpcyqZ5ZrJRYtSXq92dnp8ZNArBmlEs5Pfs6SJdQfcPLz2ILu7B3jh4EM8tPMhDgwdYMA/wKeWforl9ctZ0bQi4++jZcTrVoxrRVWZrm3pwliLoNQ+W2WTsvuRNz8CT31NfL5NFiFWDkTTMIa7jB0TJZJ8OPCuiBJMFZhNSwE4zr6f5UvPSH9eCouaMxTS8mWoQ6wcJ3Ljg/DOn+GJ/xaFrYrJwmrkqhV2I4kxYawoihUhiu9UVfWBhPs/CFwCnKNmMJ2pqvon4E8Axx133JinsS+eXMHiyfl/yPZ0D3PQnV7dSbNShPWXLRPvy5plDKJaN+s82Hi/EMdv/V6kAxjl4BpAFdEwiZRFT3yDBoXx3e9P7gi3lsCHHoedz4mK0TPfFNVtiHpNI3DSp4W/ee0d8WXKBz8BS68XordnJ1z+Gyith+FuUVXu2wvLrofXfylOUGd/I96IKDHGlkfF9K8TbjFe7dWjO6UKl4uSOlGByJSFCeIibd7F+o8piogGi2bmDgeH2dC9AacK9WVTaE9pbs0XzV+8qDa+JGg1W2MrPBpa490nz5zJHduewWKyxJb4NQpNpej19WJWzJTby5PuL9RjrFWMM1kptIv1MAH+67w5PN+6n5dfhFtOm8f8mvho7/ahKp64Hy5aXMuVs3X+v2tmw/YnRTVJW3LdeD94e2H5TWIfyh1cv2Iqj2zayP9b9THaPLtZULOAc1rO4fTm0zln6jnpr5tCmVVcNOt6jGtmgmJOH13bs0t0+pfUx7vmyyfBvtcyv9HG+yE4LLzzy28SyRvuVvGY0WKBRJIPfXuFnzd11bdqOsM4WeE8wNnvWTB2+zN4KF4gS6TpGHF7YKVYPWlbJeyXRux0RwE5hbEi1sL+CmxRVfVnCfdfCHwFOENV1QmXf1PhtLGlPb2ikZpKYaRibOhkaDKJbM4tD8PrvxJRL86q3M+DeMd16lWqJoyNJFP0HxBf6jO+CkuuFfe5qsU+TDtV/LzwSuFZ3vKoEON1c8XJZsXHYd2/4exvikriaz+DrY+JE5zJAn89X2zz7l/E+9TNg2e+EX/vbU/BSZ8y9rtKRBPSc/9PXHTsfA7O/B9xIZXvQW3LY+J1ILqEbQBFET60TI0knl7Cnm4+7tvB9a0vclbLWenbNCyEdXeDqnLLM7ewvns9i4IhlIYpad+vfNnSswUFJTbBDsBqSvcYa/5ih9WM2++myl6VtuyvpVKoqqprCchEr6+XKkcVJiW5haPQuDYtvSGTHctismAxWWLHIq0qnS2uTZemJeIC928XwCffEP9P7/wZ6hcIG1WU1uFNuKb+gT6/yi/O+gXntOQWw4mU2EqSfq/kX8YuLpIThfFwN/w6etHfmFBFLm8Sq2WBYYi+ZhJtq2HGWXDh/8XvK41G8skGPEm+BL3gG0ivwCbStzeex52IycRO03SmBUZhoFc2hjqg+bj0+xsWiubVhz4FIa8obi28amz3bRxjJJXiFOBG4GxFUdZG/1wM/AYoA56N3veH0dzRsabSZY11hyaSMZUiS8U4r+XT4z8GgUHdrNeMtK0WcSyp+YOlWsXYgA+v9S1xO/ciUbWpmZkuzO1lYrn1tC/A+24XlV4QJ9T/2gTLboAzvwJf2AIfexG+sBk++IjY5qmvCq/zDQ+IKnT1DKibL0TytifS9ycwbHi2/FHH7heFKL7i93DM++Gl/4tfHOXD2jtF5Wz5TaIJ1CgNi0TFN6ITqda5mR02K29723iu9bkMz18gPuPuVloHWzmlcQU/OtQJ5c3xSLFIgbFmng5qnDW4rK7YfVaTNc1KoSVSOCwm+nx9aTYKEFaKkBrSbdzLRq+vN81GAYXHtcUafHWy0jWcZmdM8Mb6HrLEtely/EfhA/eKv7etEskh7WvFBbGioKoqf9nwF7676lZQTXxs9m15i2LIUTEGcZGWuCKReCycfnrCC0X97nrNdEOd0N8qqmCJlEhhfNSz9zV45LO5R4+n8vKP4A+n6h/3QIjLTMIY2KpMZ7J/p8h5HwtUVXzOtQJZIrYSsUIUHI6OVVdhcoaekaOQnBVjVVVfA/TKJTpqZuJQ6bTiCYTxh8LYLebY/RlTKfRGQkfvy2v5VKvc9eyEmTrVtkRUFZ7+Omx/Kp6ZmEhJnbgqNDLko/VNsJUWHteieU9BCHRNpJc1wqdXiq7XuvnxJaaPvyKE8lu/g1d+IjzKSz8g9qNyqrivcip8+InCGgcnKgPtwjdZUg+LrhaxfOvuEv9uk3UqA9no2ioaMS77dX7Pa1wkDqh9e8QFVCIdG1ltF5/7bb0Z7BbRz1j40Eb6/f0sLplMSygEFc0jrhh3e7upc9Yl3Wcz29KtFMEwFpOCxWyiz9+X1ngHxMT1cHA4tl9GcPvdVNor0+63W+yE1BChSAiLyXiDrS/sw2aypVWgE3FYHHhD3tj2kH5M0pvamYTJLD5PtjJoXx8/FtSL6vvPV/+cv2/8O2dMOp/HXjyFyuWF9YxYzVbsZnvmqYK1c8QxLRwSx4uOdeL+W98Ro6s1tCXiwUPpViztQjH1OyErxkc36+6BB28Rf6+fL5rFjdK2WsRUdm8XK6WpDHeJ1JQMwnhTZCrvU33CFlSXoQejmPgHxf5on/lUmo8VK7zX/EP0+7ScNPr7dIRQQPzB0YGW8dnvDVJfliCMM6RS6I2ENuwxTqS0QZyY9LrDU+nbA2/9FhZcAed9N/1xs0WI41xWikhEXEVPOaGwRIxcmC3pweFac96pXwAUeOePwn6BAqjgqIQD78CTX4E5F4oInJM/IzvJH/iYaJh4/91gsYmDXkVL/hXjoFdUNxZfm/8+aIKpY4OOMN7A2lLhrd3Vv4tgOIg19cKmfgEoZvr3v4WKSpVWgSmfHP9+FSiMuzxd1DiT0yD0rRSRWPRYn68vFiWWiDZC2RPyUIVBWxPi+17hSrc9JArTfISxP+TXjYNMfW1NEGcaOmQxWVBQsts5TCbxXe1YD12igvRMqJfXXv8WD+58kGvmXMPHF3yJx55/wdCgj0yUWEv0m+9AiNxISDTzVk8X3uKqael2n0xWsVAAtj4urFyNKQ18Frto/pSRbUcXqgp7X4XHvyjiTPe/lX+UqbaK0bZKXxhr/TkZhPG60DQwIz7PYyGMtc94qU7FGOD878NpX4TaWTD73NHfnyMIORI6A9pUKG0KjUZq1UWr0uhVjA2lUqSiKEJs6OWJprI/2mF9+pdEDIsepRmyjP2DcP/H4PuN8PuTRfVwweXG97NY2Fxw9teFFeO6u+BLu+D6++BTbwpbycq/wr+vgRe+B/+6Ah79HPxgCqy/d+z39XATGBaV4RNugelxzyfNy0VOaz707BTNk4UcoOvnC9FxaGPaQ+qh9axy2IUNIRJiV7+Op85eCo2L6WsTcWlVwej3o6I593J/Dnq8PWkVY6vJSihlUp8vFMZhFYe/TBXexIpxPnhDXl0hW9AKEuLfwmlOv/BOxGGJJ15kqhgrioLdbM990dG0RFz0dG7inxWVfHH1bTy19ynOnHImXzvhazhsQtSPRBiX2coyWyliE0Gjwwna18ebhRJJrBgn8tAnYM3tIh3H5kp/XtkkcXEpOXpY9Q/456Xi2HPVn8To43xWDbx98QuwtpX622QRxqqqsjnUSEixxVdARhvtvJ/JE11SI0SxJA0pjDOgVYy1ueUaqVaKrDnG5niOcV7UzobuDNOfEjnwjqgu18/PvE1Zk74wXnMnbPiP8BR7e+Gcb8HyD+a3n8XEXiaSDEpqxDjr8knwntvgYy/ANf+ES38lTtbr7oZwAHY8ffj29XBxYKWopE09Ofn+yccJP2U+B/rUTNh8sDrFZ7QjRRiHgxzo2UknYS6beRmQxU4x9WT6urYAUOUbFpaf0sYRWSnCkTA9vp7YYI/Y7uqlUgSFRSocCdPv708b7gHxXGO3z53XfvjD/uzxjXn6jDMJ7dTX9oa9sfe3KBbdqrTNbMt90dF0DAQ9/G33o9xWXc75U8/n9fe/zq/P/jVWszV2QaE35MMopdZS/eY7iK9C9O4WzXV9e9IrvyByl02W5OqvqsKO54S17Jp/6L9+1bTk9B3JxGfrY2KIzWfXQNXUaIJSHhXjrujQIrM98+qc9pmqTLcYBcIRgqqFntJZ+fUPjYRYxThLs6BEFymMM1DpFCdod0rFWLNMaNWObB7jnCOhM1EzOzrlKYeg3v+OqBaazJm3Kcsw6an1TdFwdc3f4b+3iyWV8RjV0nwsLLwCjv0g/M8B+MYhIZwPZLhqn8i0vgUowvKSiNZglDrmMxtd24QYrSmwYtCgk0zRvYMXHeKzeP3863GYHWzt3arzZKDlRPpU8d2q8vaLCzizZUTCuM/fR1gNpwtjneY7fzCCw2piIDCAiqpbMdYsGd3e7rz2wxfyZR34U0jFOFvjHaRUjEO+jELabrbnPh5NWcGfK8r5uTPCReYqfnT6j7Ca4nYYm9mEooysYlxqLc1cMS5tAKtLCGPte643eMBkSp9k17cX/P3CL5npeFY9XWyXZay1ZAIRCYtz5bTT4oMuyhqN9d5oaLGW8y8Rjcd65+a+vcK2YE1f3dGafQ9VHS8sHW/9Ps9fogCkMC4YKYwzEKsYpyRT2Mw2mkub2dMvguV9YR92s123MaZgYVw7C1DTw/YT8Q+JL2iqSEqltFFUEhOXklVVCOMj1WzffKyoInnSB7BMWFRVZLY2LBIeyURqZotbdx5d1l1bxZJ1oZ7txsVimlji/8GhjTxf4mR2WQvTKqZR76qnx9ej//yWk+gzCxFddWBtrEpoMVkwK+aCrBQ9XvFeda50K4VeXJvDao5d2Gp+4kQ0gZ23MA77Ch/4k8frJb22xRGPa8sipG1mW86Ljp0mlV9VV3Lx0DD/V3VCWuVZURQcFvPIhLEtS8VYUcRns3e3GCJktsVzldNeqD55RaxjvbjVs15oVE0XTUmyAe/o4NAm8A8kr7SV1udZMd4mBncsuEKs2rWvT99moA0q9dN9/NHvysZ5nxU9M0//j4h+G03creIC02jsqySGFMYZqEhovktlZuVMdriFB9gX8mU+CZlsKCgFWCmivs/UkPtEDq4Ws80n5xDGZY2AKjpmNfr2iKvJTCeb8Y6Wy1hIRNmRhqdXeON+fSzseSU2gSwJVw2YrNmn0aXSvq7wBBIQyRSQ5DPuaVvJGrudc6ZdCIjVlYyf/dJ6+upFM1WluxVO+VzsISPiTY8ur/iM61WM9QZ8OKzm2P1pDYJAua0ci8mSWdzroKpq5opxgf5pf8iv+3qJOMyOePNdBiuHtg+53n/fgLjA+uDMK7BkyBd3WE2xKlghlFhLMgtjEFXd3t1ixO7kE/RziiF+4a/Rvl743+uzDFHQPKDZpuZJJg5aFGni+a60ETw9IhnJCJ2bhX1MK0TpnXsGOzJWZ7Xvis3ugOM+Ivo7dHo0ikrHBnGMH48rweMcKYwzUGa3YDYpaVYKgFmVs9g7sJdgJChOQhlOWqKyUsAY2Lp5YHFkXxrf/464zRXRpde5ve9NcZvqVT1SmLQUUESDzXCPGFTx9Ncz50seyWy4Vwjimpnwnp/BWf+Tvo3JJIYdGBXGwz2iupw6KTEfGqIpIwk+45c6V6IqCudMOw/IIYyBvumnUhpRsU0/A2bGBb9evJoRtMpuqjC2mdNHQvuiVgpNgGtpGIkoikKtszavinEgEkBFzS6M8zweZLNGaCRWjHNZKXJddHR4xLGi8czMEymd1pFVjLM234HIZe/ZJYTujDOzvFCKV7R9nTh+WrNcSFRPF7e9UhhPeEIBMbSmsiXZ+6s1pBlZNVDVaAPoEnE+LZ+s34A32B7P1k5Bm7TptJrjo87bR7EJLxKJ77Mkb2RcWwYURaHSqT/kY1blLEKREK0DrQwHh3WXYTUSY5QMY7aK2eqZul9BzGSvnZM+1COV2JCPhJPH3ldFlbHW4LSz8Ya9TEwGfOdPsP0ZCPkQAeXHiZPoRFo6Wv8fcdV/fY4UjrJJxga5ALSvEbd6vs0ob7W/RbmtnAU1GSpvZQ0iCvDAO4CoKj7v76DZ6WJulfhcuayurOKnL+KnsqwZLr8nqaphNxlITtAhkzDOZKWodMYryZlyimscNTGLhhGyTcIs1GPsC/toMGf3CTosxasYdwx3YDfbdbOdY+9nNeMdocd4ODhMRI3o5zMveq8YQDPcpb9KEnuhRjEZT7OKta0SDcXZqGwBFFkxnuioqpjs2b4Orr09+bHShIJRRXP21xk4CJ5uaIzac5qXp1eMAx7RKKo3TAPwBrRJm6bosbNe345RLPr2iCFK2SxFkozIinEWKlzWtFQKEMIYYId7BweHDtJUon+VCMmVnLxoPlZ8ofWWelRVCONcNgqIf1E1Yayqwrc3/QxRaTxSufgn8Km3YdFVogO9bj488HH40TR49WfCgqD9OVIryb27xcXR4mtyb5tPxbhtDaCIiy8dImqEL7/8ZW5beVv211l4JWx6EF7+CUO9u3nLZuLsinmx8clOixNPKPO0+D5fH9XO2rRmFUPJCTp0ebootZamZYpn8xhnqxiDENn5WClizbg6FdtCPcaGmu/MCRXjcGZ7l1Fh3OBqyDoG2241j8hKUWotRUXFE8zw+WhaAp/fIAYBZVvZKK1HWMU6xXHN2wvz3pP9zS12qJgskykmOi/+r8j5P/6jsOCy5Me0irGRBrxU3/rk48RnZzjhuKCtWmSqGCeMoI+91mhWjLV91ktzKZCCdMwRyhGsjEafSqcVtyeAmtK9PL1iOibFxM6+nbQOttJSnnkClMPsKCyTdfKxohLauTn5/v42MV7Z0wNTjs/9OqX1ItJo25NCZHdvF5XFGWfkv0/jjfp5cMXv4Ko/wkU/EgMAZpwJz38Hfjw9/uefl8YvMCKRI0cob3lM3C4yMMNeqxgb6bQ/uFr45Rzl+m/bs4U+fx9be7amffaTuPCHsOQ6ePH7vPbSNwkqStKI4JxWCr/+KGZDyQl6r+fr041dy2SlsCdYKfQ8xkDeVopM45ghIcc4zxOMP+TXHSCUSFLFOMtAECMXHR3DHTSWZBgKoL2f1YQ/NLLmOyC7z9jqzF3x0iZutq0W8ZOOCjG9LxdV06SVYiITCcMbv4H5l8FFP0l/XPMCGxn00r4OUKBhofg5lgKUUDWOZQbrf2980WhDLeqQpiWih6hv7+icj9rXib6TbFGuefBW+1ucdNdJrO1cW5TXG+9IYZyF6hIbr+/s4dLfvJZ0v8PiYGr5VN7teJd+fz9TyvQ7UbVtC64YA2xPyet9/rvw9h/FUszMs3O/jtkK535H5P7+6SzxfMju2zsSmXEGfOJVuOEBeO9f4aIfiz+nfF6kOTxwC9xzA3yvBn44BXa9cLj3ODc7noH6hbq5mGmUN4lOe19/7m0Prslqo3jj4BsADAYHOTB0IPPrmMxw6S+gbh4vtL9JdURl6dy4iHdZXNmFsU9/FLOekDWCL+zTFZB6FWN/KKVinMlK4ayh19dLOGJMBGq/r57HuNCUmmwVYA272U4oIsZNj9hK4TEgjEeYSlFiFc10+Q5PSWPGmcIS9shnYNNDIjXASNJK1TRppZjI9O2FkBfmXKC/MhobDmMgmaJ9vSgk2MXFHE1LRdRlkjCO2thyVIztlmjFeO7F4jV+eQx8r1ZYAotJ2ypoWFC0SbHP7XuOUCTED975geFj4ZGMFMZZ+K/z5nDKrBo2HRwgHEmunC2sWcjqTtEc11KWWbgU5DEGceCe+x545SfxvNi+faIZ68RPwZd2GBNMACd/WoTdh/0i6Lz52IxjK494TGZYfDWs+Lj4c9534ISPw6YHYM+r4u9lTfDgJ8b3UqqvX0TqzTnf2PZa5SyXnWKgXRzEJ2Venn794Osx33zGHGINq5PA++7glfIqzpx1GWZnPEouV8U408S5Qq0UmSwHFpNFfyS0JZ5KkUl41jpriagR3H634X2A7BXjvIWxgeY77YLAH/ZnFdK5Ej/CkTBdni4aXDk8zSNMpdA+X3qfj47hDu7eejf/2fYfHtzxII/uepQn9zyp71e3OuG9fxZ/n3uhfnOqHtXThX/Zn2EsteTIRkt8yJROYrYKn/FAlgv/2GttEPGUGvZSYd1L7AHSLBmZKsapVorJx8Hn1sJ53xON9jufzb0fRgkHRf53EeNYX297nQp7BZt7NvN2x9tFe93ximy+y8LCSRWcO7+B13f2MOANUlUSryotql3EY7vFUnc2K4XL4iq8KnLZr+D3p8DtV8KND8JbfxBXmSfdmv9rLbwynsGoMxFrQnPxj+GC/xUxTiaTuND4y3nwq+Vw9V/Fv814Y9cL4v9q9gXGti+LCuPBg6JSkImD0aSTDL7N4eAw6zrXcd2867hr611s6dnCeVPPy/rWb/s6GI4EOGf6hUn3O61CGOs1WGmVzRKdGK5CrRSZohNtZhthNUw4EsYcHYYjPMamWGU6k8e4xhEf8qEN/Mi1D5B9EmY+v1tEjRCIBHLnGEcf9wQ9wkpRoMe4y9tFWA0bsFKMrGKsCXk9j/HfNv6Nu7belXb/vOp5/PG8P1LtSGk4bjoGvpJn9bcqmkzRty8ePSgZP3TvFBc9Wx8TBYJMUwwzcWizOFdmm+xZ2SKyfrMRGBbbLLsp+f7m5WLfVFU0Dg+2i6l4GRq//cEUKwUIn/spnxWrwsWMHm1fL1YPixTH2jrQyoGhA3xg3gf499Z/5z0J9EhEVoxzkGk09MIa4TdSUJhcNjnj8yvsFQwECgzyLqmFDz4qAu7/dpGInTnpU7m7aDOhKOJK+WjMNTRb40tqjYvhMyvFgXH1vw7vfmVi+zPgqITJBnzkIKwUICrC2Ti4RlwgZMgwfqf9HUJqiLOmnMX0iuls6d2S863fOPgGDrODFU0rku7XxI+elUgTZ06zjvXBnG59MII/rO+t1aa2aa8ZDEcIRVScOXKMIZ5woQ30yYW2OpS1YpxHXJv275TLSpE4pc8XzlxhzlUx7hiORrUZEcYj8Bi7rJkrxgOBASaVTOKFa17g6fc+zeNXPs4vzvwFO/t28o9N/yj4PZOQWcbjF68b/nou/P5kePLLosHXn8WLrkfnJhE1aMucGGVIGHdHR0HXpSQ4TT4OvH2w8X5RoR3sENXiDOdW7bsSqxgnvdaxoliTb6xrJlqjcaxFqhi/fOBlgFj/SN6pOiFfQda4w4kUxjmIj4ZOPpnMrZ6LSTFR76rPetKqsFfQ7zfg+8xE3Ry4+SkorYOKFjj9y4W/liROxWQxgWjfmxAcZ922kYjwF886F8wGq/tlTaJCkutA37ZaLC9mOGG8cfANnBYnS+uXMq18Gu1DuSPgdvTtYHbV7LTvgbZcrpdMkc2LazcVVjHO5K1NFcaJy5ra+2SqGM+rnsfU8ql8983vsrIj9xjybBVjs8lMibWE/oDx44EmonMN+NCE7CHPoRF5jLUhKfWu+qzvN1IrhXbRpCeMPUEPZbYy6lx1TCqdREt5C+dMPYc6V11e0XlZOZxZxt070xuutMokCDvUPTfAyr9D69tHn93j9V8K0WlNOEZpAtUohzbFm+UyUdkC/QdEo14mujIIY0103v8ReOBjYv8y+ItBx0qRSPOxEA7AvR+Cp/5H/P/veRXuuVEkreRL65tiRSSDrSMfVFXlvu33sahmEXOqxOCxfAeW3bbyNq5/4vqCIjgPF0fZmnr+VGSoGDstTuZWzdX1SCZSbiunP9CfOa/TCJUt8Mk3xBWl1gAgGTkzzoS3fy+ma009xdi/raqKg3au/OiRcHC1yM2cY9BGAaLJomZ23I+uh6qK155/acZN3jj4Bsc3Ho/NbMNldTEcym4DUlWVbX3bOLslvRE0m/jR7tNrljMyhEKPTFYKrRqsvaYvYVkzV/Ody+riz+f9mY888xFufvpmPrf8c3xk8Ucy70OWijFAnbOOLk+X7mOFvJ6G5gnuGO7IaaXI9m+r2b5Krdm/C/YRNt9lu2jyBD2xinIiJdaSkTfraTirxIrMWPUZRMIiOnLb4/Do56BmlsihP/bDIqHg9iuhc4uImvP0QusbsOVR8VxHBUw5UQz5OfFTGccOTwgiYXjnz8LedvnvxL/JX84WI5mNDiTy9YsLnmPen327yhZhVxtsF4USPbq2Cuth6qCburnw6VViFfe1n4v7Lvxh5l3SjjkWHQ2gTXLd9oRYzVt/tyhyDHfBlkfgI8+KgTfOStFDA+LfyT8o7kulY0O8eX+EvNvxLrv7d/P9U74fz2HPI0zg5f0vc8+2e7hpwU0Zj7HjESmMc1DpjI6G1pmA99MzfhrzLGaiwl5BRI0wHBymzFZW+I5YnWl5r5IRMu0UcSD697WiOjH7fHGVfdzN6RUCjZV/g6e+Bp94TVTzR4PtT4sDo5HYqUSajoF9r2d+3L1PiPoMiRS7+3fTOtjK9fOvB4wJkW5vN26/O1ZNSCSbMM5WWbWarQUJ40A4oPt6WjU4tWJst5rxaB7jLAftptIm7rv0Pr79xrf5xepf4LK6eP88/ZNutt8LoM5VF6vKGiFbLnIiNc4aLIqFg0MHCamhrFaKkCrSKyw6vQa59l/DYTXHfJOFkLViHPJQbk+PEiyzlWWPd8uX6uljY6UIDEerfy8KkdV8rDjetK+Du64Tf1cjYmjR+nuEsLv0V8L7PNQp7uvZJfoONj0E/7XpyM6gz0b3DjGYYs6FYlWr6RgRO9aVowk4kb2vAaoodmRDa153t2YRxtvERYye1ap2Fpz9TXEh07hY/P9lwBcMYzEpWMw6/2/lk+CEW8Rxufk4uOMq8f/+kefgjvfCk18RzYQVk0V+/+Tj4d/Xic/P++9Kjl4N+cXvc8x12X93gzy08yHKbGVcMO2C2DEyHyvF79b9jhkVM/jc8s8VZX/GCimMc1Dp0rdSAEwpz33lXm4TB/h+f//IhLGk+NjLxAFpuFP4uFvfhO0dIg5vzgViOWrFx6Fyqoj+sTjFGOqwH178Plw7Sv7kLY+Kpbp8q9JNS0SW63C38Kenoo0Yz5BI8fjuxzEpJs6fJpIwSqwleINeVFXNOOxhR98OAGZXzk57TKv66TVYaQIsU8W4oOa7DGkMWsVYE8b+BL+fW5t8l8FKoeGyuvjhaT/k4NBBHtzxYE5hnEmY1jpr2dCVpaqfQraUi0Q0W9e+gX1Zt9fuD4QDusJYE6rZpnmCVm2PEI6omE359yw4rZmb74aDw7oe5xJrSXEbf6qmwcG1xXs9PbY/DY9/EQbaxKAedytc/XfRE+AfhIc+JUTX6V8SmbPnfEtU/FpOivtVtUl+a+6Ehz8lsu0nasOgNvRCy682W4QwzcdKsfslcbGRqz+jcqq4dbfC1JP1t+namv3f2mQWTfI5ECPoMxTRFEUIXo1bXhbV4vp5sOwGMaSkbJI4R/37feCqFSuKFZPFSsMx18F7fibGoPfuBlSxejhCwpEwr7a9yumTT49dKCcOEsqFL+RjW+82bl508xFVLQYpjHNS7hD/RH06FWMjVNhFfFV/oJ/JZG7SkxwmLkpZ/hruFsJ47Z2w41no3gZBrxDN1TOhd5c4oW5+WEzae89Pi2tv6doOXVtEBnO+aCeT9nX6Y3QPrhad0zoRRqqq8sTuJ1jRuCLWcFZiLSGkhghEAhmX5rf3iRPW7Kr0A3HWinGOJrVCKsaZ4tpiHuOwVjGOL2sGAgEUFF2RmIrZZOb4xuP55+Z/EggHdA/22ZoKAeqd9XR5u7JebCQS+3fKUcEF4TPWhHG2uDZtP/XsCjFhn6PZzxk9yftDYVy2/E8jNpMNs2LOWDHWco4TKbWWcmDQQLyWUaqmi4vQcMi4lz9fnv4fIXxvfCh9qJK9DN53e/p9mUTatGgFtPXNiS2MLY5kYVc3Nz7JzQi7XxLVYksOMaZViTP1ZfgHhdBccq3x986AL5qbboiSGvEH4MRPwIF34LzvCs/0fR+BSBDO/Jqw4rz4f/Dun2HaabD0/aLiDqKaPUI2dG/A7XdzxuT459ZhcRj2GG/t3UpYDbOwNofXexwyQddjiofFbKLcYaFfZzS0ETRhPOAvMJlCMraU1MLZX4cvbBbVm10viBPRiZ8SV/EoIjrvxFuFF6zYqRZbHha3WXzAGdGyNjONGj24VpxQdU4Y2/u2c2DoABdNvyh2n1Y1zGan2OneSa2zVnfiXKEeY6vZGkuLMIqqqhmFcSYrhSOaSmEz2wyJVID5NfMJRULscO/Qfdwb8mJSTBmFdp2rDn/Yz2DQWEOVUaEKwme8bzBaMc4gpHNFxnlDXuxme06LmHaS9wYK8xkripJxZLgn6NGtWBfVYwzCShEJZc+yfev38N1a+PkikeiSD94+6NkJS68vzqTRyqmiwUtLHTiS8PXDqz+Dny2EZ76RPqEzHISND4jfrWFR8oVK3TzhBQ8Y+L/v2yeqy0b+va0OkWXcs1P/8YNrATXuAR4BvkA4OarNKJUt8NHnxMWSowJuuA9uelhEsbmqRaW5skWsFAL0RI9LNSMXxq8ceAWzYubkSfELtXwGlm3sFlnSi2sX59hy/CGFsQEqXTZdK4URKmzxirHkCOOEW0SQ+0mfhgt/IJogrrtTNGJc+H+igrzn5eK932AHvPk7cfWvDezIB2eVSC7Rwu0TiUTEgT6DjUKrNM6viY8QNTKdbCAwkJ4rG6XgVIqolSLrOOoUYpaDDJ5lSBTGWvOdmWA4mNNGkciCGlFt39yzWfdxLREik9DWqvHdHmNjpo1aKUBUjEOREJA5VUKrGGeqyHtD3pzjpyGex6qNui0EvcmIqqpmbL4rtZYW12OsRbZlS6ZY/59os5sC/7wMhoz7w2PWpSI1QqEowmKx701jo9/HC+5W+MUSeP47oiL+xq+FBWDfG/FtXvge3PdhsaqVOsZ4yvHCg936Vu73WvV30Z+x4Apj+zb9NJEAFNL5PmgDPIw2/WUhr4pxPiiKsOjsfglW/RP2vysunuwjt22u71rP/Or5seIeRK0UBj3GG7o3UO+qz5lwMx6RwtgAlS5rWiqFUWTF+AjG5hJpIBf8r/i5fp7oGteYcaZo9ChWRuPjXxS2jff8rPDXqJ8XjxhKpG+PaGrR7BYptA+LWLZJpXFBrgljPR+ohi/kyyjaCm2+06qa+WQZZ8v71aq38VQKrWJswh/2Z8ww1mNy6WTKbGVs6dHPd/aFfFltD9pJotPbCYiLjmyeY6PNdwANJSKZwmlxclKTfoapkYqxEduGdpIf0ZAPqxNvMPmzEYwECakhXStFia0Eb8gbE/8jJjbkI4Mw9vaJKvGS98HlvwH/gP5FZyrhIPznpnhaQRGEVYwpK8QQHyOjjMcLe14Bn1tUOj/1Jlz4I2GN+PtFohL/q2Xw+q/iEWhzkgcF0XKS8Nfmii4LeoU4nPce48kdi68R/887n0t/rG2V+IwUIYFIeIxHSW4d835xMfDoZ2H7kxmHjORLh6eD5rLkmQlOi9NwxXh913oW1RyZlh8pjA1Q4bTiLtBjrHVXjyjLWHL4yNb9PeNMCAwVZ2qRf0g06hz/kZGlXdTNFUuJqdmcvbvFba1+U0bbUBul1tJYsyjEm+eyVYwzDdWAeINVqviB7M13WgU3nwa8bJaDNCtFQvNdJq9wJhRFYUH1gszCOJz5QgHiFWMtsu1fm/7F9U9cT9tQm+72uTzLiWjNvZfPvDyjFUL79xlpxdhuGbkwdllcaasJ2mdNbx/KrGVJ24yY8mhDU6aK8Z5XAVV8z6uijVoD+v9PSWx+WPzZ+6rwgToqcj/HKFpaTo++lWdc0rVN9DZMPVVUOE/8BHx+I1x8m7AENB8rrGo33A/f7Ib5lyQ/31YiLghyCeNdL4C3F47LHKeYxsyzwVkNG+5Nf+zAKjHIowj4gmEcllGoGIM4pv/3DrjhAfHzzPTozHxRVZWO4Q4aXclNsEatFLv7d3Ng6AAnTirO9L2xRjbfGaDSZeNAX36h1hp2sx2nxZlVGHcMdxAMBw2lXEjGEdNOFbf73hj5+M3WN0VTRb4RbanUzROpGX17Re6phiaMU/M4o7QPtSdVi8GYlcIX9lFj1R+VHBv7m8VKoSuMcyz366Ftm5eVwhL1GOdhpQCYXjGdx3c/rttAZ7Ri3O0VVoq1XWtRUXls12N8/JiPp22v/TsZqRifN/U8Dg0fisXt6ZHYfKdHLmGvEbNSjDCyLXU1Qfus6FaMEz6Picu7iXhDXgLhAJt7NrN3YK+IE/S5+eqKr8aaMGOYzMK3mynLePeLYCsTwk2N/p79BoTxO3+Giimiwlyk6WMxNO9oz06YfnpxX3u06NomxFuib9jmEvFmWSLOkphxBrzw/cyJOwAH3hXRbvn8m5utMO9i0YQZCcdzggcOisp8kWwwvmBhTaqGcVWLhuuv7AXbyJvB+/39+MP+2CqUhsPs0D2ep/JC6wsAnDXlrBHvy+FACmMDVDqt9BXoMYb4kI9MnHffeQBs+KDxGCfJOMBVLapBAwdH/lq7XxJVlZEK7Lp54rZrW7owtpVCSZ3u09qG22guSV42izXfZRnykU0IWk1WrCarfvNdOCr4dCq8uaqauvsRzlwx1gSRnpUiGA7mHSU0pWwKg8FB+v39VDoq0/YjW6NcibUEp8VJp6cTVVVjDSqP7n6UW5bckia0jY6EBiE0P7Yku9DQVgEyeXWNe4yjqRQjtFL0+5KPi9pFmF7zXWn0hJ+47x3DHXz5lS/TMdxBn68vo//x2rnXMrdaJ5u8apq+lSISgW1PCkGmWW1K6nNXjLt3wP634Pz/hcVXF0WkJFHeLGIjuzM0jBVCwBOfhBkOiYuAXIkO+dC1deSV18kniNtDG0UFX4+2VaK52Jr7wi6JGWfBmjugfW1cCMf84cWqGEeoLhmDBfoi2SgOeQ4B8cFBGg6Lg15fb87nv7j/RRbWLMw5Wn68IoWxASpdVvq9QXqHAxQQ2UmptZxuT59uA19ig5H2uN1ixmkbpWUXSXEpaxKTkzIRDsIbvxKV2vmXxSsSqex6EVpWjHyIS23UhtG1VVRCNHp3i33QaQpTVZX2oXaOb0jO/TTiMc42fhj0q4IgBLXVZI35f1VVZcAbQkUlFBYnkK7hIZwmY+K4e1iIpVDInPY980V/7Pd6cXsC8e9ZQipFPkwpEys7rYOtacLYH/LnFJbNpc1s69vG/sH9DAQGWF6/nNWdq/nzhj9zy5Jbkl8vS1NhIWgnOu3El4ov5Euy02RCE8bdw4GcjcmKolDhTPdxuywuOkLJXlnts5arYqyxoXsDazrXcNaUs2gpa6HKUYXdbKe5tJnFdYvZ27+XDz/9YdqG2vSFcfV00dSlqsnfjbaV4nu94PL4feWTcgvjXaJSxvxLijKSNw2TSVSNC7FS7HpBRJDNv0x4fs12EQ3594uF1/bi2+Bflwt72EeeTR4br0XahUPCz6ooItFDz5+//j/i/oVXxkddL828imEI7SK/d7e+MI5EoG0NHPO+/F97ejTBYvdLCcJ4pRjG0jjyRAV/KIw3GMY+Gs13o0THsPhepgpbhyV3893BoYOs71rPZ5Z9ZtT2b7SRwtgANSU2VBWWf+/Zgp7vbAmzTdnH0ufTn69YeymNro4t/a543GYx8cqXzqKxojgnQ8koUtYIQ/oig0gE7v0QbH1M/Hzaf8M530zfrmMjdG4SVaaR4igXVaXOlNSEnl0ZD/IDgQGGgkOFWSlCvqzL/NmEcaLY++2LO7ntGdE0aCnbgnMyXPG7V4j4jYkLs3M3rmnw2X9vJOxJtgko1m5KZ8GX7l9DKNoDa1JEFm8gnL+VoqVcTMzaP7ifJXVLkh7zhr2UWNJFXSIXTruQ36z9DU/vfRqAr57wVf61+V/8es2vmVExg3Onxu00vpAPBSXvfcxEnbMOs2KmfUj/Ys4b8qZVifQotYtTx2fvMhZh9sOrFnPdCS1J92WzUmRKpQAYDMSj7oYC4oLoKyd8hebS5rTnWBSxn5k83NTOEU2p/QeSG7Y2Pyz8x4lj2Ssmi+9RNna/JKrQWuLFaFA7q7DBJE9+RfQf1MwSVgyTBezl4nbN7SKdQTuWPfZ5kaVuL4c9L8F/PiguEva/DUGfSD0Y7hRiumODqDLPuUCMNX79l+I1djwXzXhXM08SNUrZJCHkNUtYKt3bxf9jIdaH0jpoWCyKE6d9UdzXtkrExuVbfU4hElE5/ccvcmjAzwnTRt7EN1ZkqhhnOp4n8vDOh1FQuGTGJVm3G89IYWyAK5dPxmw2EQoX5qd7pL2BvmAbH1ySPlhh+9AbPBYtmnz70gXs6/Hwjzf20trrkcL4SKCsKTqCVIf2tUIUn/V1cXvgXf3t3vmTWB5d+oHi7NP0M2DdXcKDuPwmUeVx70uufiXupk4iBRhrvsvlSXVZXboV59Ql+x2dQ9SW2rj1rFnsHh7moXb42OlTaHQYm+C0d9jHA+3w4ZNn0+xM/p4NBDv5yz64fFkDi8rFYy3VLmwWU97Nd0BMgO0f3J/2mD/kp8ah77nWuHzW5fx27W/50/o/4TA7mF01m++d8j12unfyg7d/wIlNJ8ZsA/6wH4clc/xbvphNZupd9bGKUCpGUylm1pXw8/cdY6gp+UdPbWVHZ7p1Qy/HWPus6FoposI48fM4EBBXOpmmilbYK3BZXJmFsZYY0bYqLoxVFTY/IpbYExvnyidFG/IyEA6JxxdfnXmbYlAzWwj3kB8MeM8B8LqFeKyYIoTwOd8SyRbbnoKr/ijsYK/9Qhwj7OXw6m1iFLVGSZ0Qz/YKaFgAQY8Qqvd+EJRoJfS1aJrOshuFX3fj/WJiKKRHsOWLySSq+5kaJQ+OMBpv/iXw0g/EUKeZZxdefU7BFwpzaMDPeQsa+PTZI88WHis6hjswK+ZYs7BGrsl3ETXCQzsf4sSmE9POJ0cSUhgboMJp5cYTpxb8/Pa3p/HwznXccOLktGioX61+FDpEpNSHT5nOxrZ+/vHG3oJzkyVjTFmjOMFEIukJFlpaxTHvFxXcdp3pTf4hsfS45JqixAIBcMnPxPLlM9+ApTdA/36x7JnSeHf75tv51epfEVJF/FXqgcxqsmIz2bJbKUL+rEIqW8U4URj3eYI0V7n48CnTeav9EA+1w/mLaji2YbqhX/n51t080A5XLZvOgprk53R5SvnLPlgxo4Jr5yY/FggHYukZRnFYHNS76nWFsZHmtcaSRs6dei5rOtfwxeO+GLOTfOvEb3H9E9fz141/5XPLPwdAj7fHkLUhH5pKmujwZBbGRjzGiqJw5TJjkzz/8uoeXQGtl2OctWKs4zHW/p6pSq8oCs1lzZmFccMiURluWwkLrxD3HVwD/a1w5leTty1vBn+/sCPo5cTufklULYsxzCMbtbNFhbZ3j4hnNII2nOSyXyWnFiSOIk4U9PMvERVfNSLsXctvFL9f/YJ49be/DbY/JSwTJrO4mGhYGL/YuPL30LlFVJQ1i9dIqJ6RuWLcuVkI9UIHW5zyeXGx8eAn4LQvFF59TkFrTj1lZg1TqrOPWR9PHPIcos5Vl5ZukyuVYt/APg4OH9RtJD6SkMJ4DFjRtIK7tt7F2q61HN+Y7OPc2rsViHuNK11COBcaDycZY8qaRJqEtze9W7ptlWjYqZgsKjVbn0gX0B3rRVVlXhGXnbQT2YMfFx5Cd1TApUS1Pd/6PDXOGs6fdj4VtgrmV6dXdbJNG9MyZ3M1m+k93xv2JgnIfk+ASpeo3Gq2gXya7/yhzIMwtIqwXi5yIakUIHzGesLYE/QYqrjedsZtAJiU+Gdhcd1iLpx2IXduuZMbF9xItaOaXf27mFGhnyRSKA0lDRmzk40K43yodFl1L/SdVif+sJ9wJBw7AWdtvtMqxgkT0AYDg5RaS7NO6msuySKMLXZoXBJvtgIhkEwWmHtR8rbaCOH+tnRB6nUL+0H1DJh9AaOKth+DB40LY+0iPcOAnzQmLRN/Ell4Zcp+NIt4SY3lN6a/Tv38kVeLNapnCJ+0XhGia5sQ3zkmNmbE6oBr/gn/vESM8W5YnJxZXyCJUzaPJA4NH9K1VDnMDgKRQNJ3NhHtwjbT0KcjBZljPAac2HQiFpOFV9vSl+G0iWNhNUwwEoyJA7c3v4pxp6eT77z5HX62cgTDIST5ozXY6DXgtUVzMBVFCOOwH1InnmnjmzMM3igYLd1i3xtiPxRzksc4okbY2ruV05pP4wvHfoGPLP5IkkjTcFnTs2Y1solRjQZXg+6yfWrF2O0Nxi4KNc9yLi9b0r5o6Q06S8taKkVQZxBLIVYKgJayFloHWpPuGwwM0uXtijXnZcOkmHT/vT+x9BP4w37+vvHvRNQIe/r3MLNyps4rFI5WMY6oydYwVVVzxs0VQqYBSZr4Tfx/ztZ857Q4UVCSKsaDgcFYJTkTzWXNHBw6mHmSYvOxoqIaDgkLwOaHhA0pdQVHm0apN0L6jV8Ln/JVf0luWhsNSqOCZTBDb4MebauEBcNZOSq7NCZUz4CQT/9Y27V15D7mujlw81OiF+RDjxUlf/pIE8aeoIfd/bvZ0L2BqeXpq+TasSFj3GMeI+zHM1IYjwEl1hKW1y/ntbZ0L2piI4kv5KPEZsZiUgxXjD1BD79b+zsuefAS7tt+H/fvuL9o+y0xQFmTuE2cRBUJi7Gt3dvjy4qxalNKlbF9vTjRFbuDvXKqaFhpfVMsE9cvEEH5UfYN7GM4OBwbcZyJbBVjrTs5m5BqKmnikOdQ2rSyVC+r2xOkMppcMKlECJCDQ8Zj8LLFmsXi2iLpF5vBSH4joTVmVc6ix9dDl6cLVVV58+CbsaEfuukHBplRMYP3TH8Pd2+9m43dG/GGvEyvMGYnMUpTSROhSCgtdskf9qOiFr9i7LTpV4x1cq6Hg8OYFJPu/6OiKJRaS5M+j4OBwYz+Yo1JJZMYDg5nzpJvOVF4ZjfeDxvuE7nGy3Sqn5VRoZDqcw36YNU/RIV5cpHGP2dDE8ZDWabfRSKiUdDbB/9+n2iKm37a6O/baKJZwXpTGiC15Is6g9XzXO9xzjeLdgERHz8//qVWt7ebM/9zJpc/dDk2s41PL/102jbaMTtT0UIrlhT7GDLWSCvFGHFi04n8as2vGAgMxDyDqqoyGBQH9sHAIP6wnzJbWc4R1OFImFfbXuWF1hd4cf+LuP1uLph2AeW2cu7dfu+oLIdKMqBXMV77b3gkelCZEq3cxoTxgWTvWvs6sZRbbBRFnPD3vSFGpaY03m3uEakVRoRxJo+xkYzdSaWTCKthOj2dSR5mX8hHlUNkboYjKgO+IBXR1ZJKeyVltjL2Duyl39+fc6k8175oHl5dK0WBFWMtjWJ993pMmPjsi59lVqXwN86pGpmf8hPHfIIn9jzBt9/4NkDRK8ZaBFP7UHtSc022aYQjoSIad5mK3shwb8iLy+LK2GxYYitJ8xhrE/EyoY21bRtqS4vXA0R82ZQVYiS71SFWbxZckb5d+SSwlohEh0Q2PyxWgk64Jf05o4G9VOQjZ6oY9+6Bf18rLswtTtFfcPY3YcUnxmb/RovKaKpJ6pCV7mh03UgrxqOANmXzSIhqe/XAq3hDXi6beRlXz7maptKmtG201cFMkW1aPn2xV53GmvF/GTNB0E6ae/v3xu7zhX2EIiHqnGLognaCqHBa6depGO/p38Of1/+Zqx+9ms+88Bme3fcsJzWdxO0X3c5tZ9zG0vqlgLBVSMaI2LJmQvVm57OiWnvz0/HpeFrHuzuhYhz0iiXAYtsoNBZeKQS7z50kxtuG2nh5/8vYTDZmVGb3r7qsrswVYwNCKlP11xf2xcYcD/qCqCqxirGiKEwrn8ae/j1c9fBVfPjpD2dtAEzcFz1bh6IoWE1WXSuFP+wvSBjPr5mPxWRhXec6fr/u9wDsdO+k3FZuKO4sGy3lLVw+63J2uoUAm1lRfCsFwMHh5P+TbNMIR0Kl04rbE0yzMmgNdonCeDg4rNt4p1FqLY1FtIGxinGVXVyAZRyyZLbAVX8WqzsVU+DCH+mPglcUkaerCTGNnc+KlaNMgydGg9KGzDGRa/8txPs53xIXxx+4B07/72h02hFMrFKe8nt3bRO341EYa1aK0RoHXURePvAyjSWNfP+U77OsfpnuNtqxIVMDnlYxPtKtFLJiPEZoAmR3/+5YtUmzUdQ569jdvzv2oap02ZI8xpu6N/Hrtb/m9bbXAZhXPY+fnPETzplyTlLKhTZu9tDwIV1/kGQUsNjBVRuvIkXCsPtl0UyXOMXOUSmqPP0J/sRDm0ENQ9MoVIwB5l8Ki66GjffB5HjT58ee+Rj7B/ezvH55+pjcFEosJRwM6Vsask2b09CqxFoknIY35I2lQfRFLwI1jzHA1PKpPLXnKUJqiE5vJ//vzf/Hj0//ccb38Yf9mBRTrDqcitVkLaqVwm62s6B6Afduv5eh4BAzKmawu383c6vnFiVa7ZYlt/DIrkcot5XrVzlHQEt5CyXWEl7a/xIXTIs3isWqPQZGQudDpctKKKIyHAjH8o8hwUqRcNHjCXl0G+80Uj3vg4HBWNEhE4YmKVZNhQ8+kvV1ANHAemBl8n0HVorvV5Ei9QyRTRi3rYT6hSKTV8vlnQholfLU37tzsxgFnWHc/eHEf4RYKQLhAG8cfIPLZl6W9filVYIzCWPtnHCkr1iP7/+tCURzaTMWk4U9/XF/mlb5qHWJ5UztQ1XlssY8xqqq8vmXPs+Wni3cuvRWXrz2Re699F4unHZhWvRbrqlWklFi3sUiqsjTK6wRPnd69UhRhJ0i0WPc+qa41cadFhtFgct+DdffJ7JHEfFf+wf3c8P8G/jlWb/M+RLZPMax6kCWLFVtOS61YuwNxVMpNP9plSsuUKeWT43FyF0+83Ke3PNkbHyyHtoo5kwHdatZv2JcqJUChJ1iKDjEisYV/O+pYjjL3KriVK2aS5u5demtXDX7qqK8XiJOi5MrZ13JU3ueSlpdGrWKsdZQnOIz1hrsUq0Reo13Gqnxf0PBoVhaRSa0/99MDUN5UTNb+FmDUWHg6RUjpYsQ7ZUXZQ3Jq1Qaqioa7ZoNpk8caZTq/N4HV4uYOL0pfIeZI6X5buWhlXhDXk6ffHrW7XJ5jLX7i31xPdZIYTxGWEwWppZNZXd/PIdRC6dPt1LYYsJ4U88mOoY7+OJxX+QTx3wiLXA7EU0YSyvFGHPCLSJy7Q+nwV+iU8um6xxg6uaJ8bNRQUnrm2JCVnm6lysb3d5u3agwXWwumH1e7EfNW3x2y9mGKpEl1pKkpetEjFgp7GY7NY6atIpxYvqB5qevSKkYg1j2/9qKr1HtqObH7/6YcCSs+z7+UPbR1DaTLc1jHI6ECavhtAtMo1w4/UJOaT6FH5/xYxbWLOTWpbfy3tnvLei19Pjo4o/G8oyLzQfmfYCwGuY/2/4Tu88bHB1/oGaRSW0o1gahJDYB9vn6Yt5zPZwWZ6zCrKoqQ4GhnFYKQxVjo9TOBtR4nq4WgzbWwri0EYZ0jvO9u8HXL9JwJiKpk0a1UdBj/e9vEM1jPN6F8SsHXsFhdnBCY/YiTS6PcbZ0oCMJKYzHkBmVM5IrxtFKiSZ2tQ9VZUKzynP7nsOsmDljcu7QeJfVRZm1TFaMx5rGxTD7fOFLPOlTcPnvREUnlWM/KJp0Nj0oKjutb0HLSXm/3ffe/B6ff/HzBe3qpp5NKCi6mcV6VDuq8YQ8utU2I1YKEHaKxBzZUCREMBKMCTDNT68JKIgL4+UNyymxlvCFY7/Ams41/GnDn3Tfwx/2Zz0Y28w23H530n2ataLQccvH1B3DH879A9WOahRF4RPHfIJZVUfGdKsp5VM4edLJPLLrkVhs22gtg2oV49QGvBqnEMbd3niEYY+3J+vkwMSKsTfkJayGDQvjTCfzvNAGSHRuFt/fNXeAYkrP/B1tyhrEEIpAymrO4RLqY0VpfXLFWBsFPU4vBLRUCuc4FsaqqvLS/pdY0bQi50VxLo/xRIlrkx7jMWRa+TReaH0htnyb6DGG+Ieq0mllyB8iEIrw4v4XOb7xeCrsxjIV6131I64YHxo+ROtgKwOBAXa5dzEUHMIT9BAIB/CH/QQjQSJqBIvJgtVkFRPSzDamlk9lbtVcqh3V1LnqDO/zhOAD/8ntMZxxlliKfekHMNwtRHKewlhVVVZ3rk6LPzPKpp5NTKuYljP7VUMTL73e3rQuZU0s51o2m1Q6ibWda2Oh8NrzNC+ptsRemWClmFY+jTpnHee0nAPAZTMv4632t/jDuj9wXMNxaYNy/GF/1oPxGZPP4D/b/0PHcEcslUGrIB7pB/FCuXzW5Xz5lS/zbse7rGhaMYpWCnHB05dipXBanJRYS+jx9gDis93r66XamXk4QOK0vFzjoDWKXjF2VsP9HwWizYSTjx/7xrbEpt+ahObM/e8IH24xosvGI6WNMPRc/OdxfiHgDWgV4/Fbg9zTv4e2oTZuXnRzzm1jHuMMF5m+kJj8qZfRfiQhhfEYMqNyBmE1zJ7+PcytnhsXxq6oMI5+2LQTSb83SPtwO6c2n2r4Pepd9Rwazl0xHgoMsX9wP62Drezp38Pegb2xcG9t6IiGzWTDaXViN9tjf0BU/rTqnzfkjZ2oAMyKmXnV86h31VNqLeWi6Rdx8qSTc8ZuHbEYabxRFHjPbfDwp+GZrwNK3tmi+wf3xyqfhcTybe7ezAlNxj3N2gSjHl9PmjCOJUHkqDKcN/U8nt77NI/seoQrZ18Z8yxrglprvit3xA9HLquLF659Ifazoih848RvsLF7I7c+fytTy6fy+3N/H1tt0TzGmbhp4U3cs+0e7th8B/99/H8D8fi2Qj3GRzpnTTmLMmsZD+98mBVNK0Ytri2TlQLEaplWMR4MDhKMBA1XjDWLT66LvKJ6jG0l8PGXRW5x+SSxUlRSP/LXzZfEhAZFEftgLxVV7MnHFz4BbryTWCm3lYhGQ1uZKDiMQ44EK8U7He8AcErzKTm3jVkpsjTfHek2CpDCeEzRlq+39G5JEsaxk3v0w1YRa1bx5z2JqqGkgV3u5AD0Lk8Xewf24va72di9kVfbXmVHX3Lk0KSSSZTaSplePp1r51zLnOo5lFhKmFU1y/CJstvbzfbe7QwEB9jeu50N3Rs4MHSALk8Xj+5+lMaSRiaVTOLYhmO5bt51sRSNo4oZZ8Jn14jIJ3tpPJvTIOu61sX+3u3tNjRlTaPT00mnt5OFNQsNP0cTxqnDIMC4leL8qeezpHYJ33vre/x909/58MIPA/Gkln5vkDKHBYs5e5WhxFrCr87+Fb9f93ue3PMkbx58k0tnXgrk9hg3lzZzwbQLuHf7vXxsyceosFfEhFKuZI6JisPi4ILpF/DYrsf4nxX/M2oV43Jn/EI/lRpHTUwY93rFZyzbOFlNGGsZ8ADl1vKs7699PosijEF8Z8/5VnFeq1CqZwgLx90fEEM8pp4K77sdDm2EM792ePdtNCnVcuOjlfL974ihKnrxeuMAzUpht4zP/QOhRyrtlbFozWzkar7TKsZHOlIYjyHTyqfhtDjZ3LOZK2ZdwWBgEItiieVsxjzG0RPJjk43KmpeH7Q6Zx3dvm5UVUVRFFRV5fKHL4+JcItiYXnDcj6z7DNMr5jOlLIpTC2fWpSTYa2zltpmIfIvnHZh7P5gOMgL+1/g8d2P0+vr5S8b/sLfN/6d+TXzURSFBlcDXzvha7HK+YTHbI2lROTDQGCAt9rfiv3c4+3JSxhrjXcLa40LY81KoS13JxIbCZ3jwk1RFH5w2g/428a/cf+O+/nl6l9iN9s5pu4YfMEwB93epKi2bEyvmM4PTv0Brx54lbWda+PCOIfHGODDiz7ME3ue4N7t9/LRxR+NLa0frRVjEIkf922/j2f3PRvvKC9y853DasZpNbO/10MgFMGWIBJqnDWxi/QeX0/svky4rC7CaphAJBA7puWqGJtNZiwmS+zzOiGong43PACr/g5mG2y4F+77MKAmx0RONEqjxZShQ+CqgUObxvWFgD8Yxm4xFSXCcbTY0rOF+dXzDe1jrovM0RgpfziQwngMMZvMzK+eHxMoQ0HRUZ16FVZXJj58n7rrbcrm5ueBdFqcRNQIgUgAu9nOcHCYwcAg1829jqvnXM3ksslZ45BGA6vZygXTLohlpu4f2M/d2+6ODTB4re01rnzkShpdjZhNZj608ENcNP2iMd3H8Y6qqrz3kffSMdxBjaOGHl9PUtOSETb3bMakmPKKFNMu2jTRkoiWe2vk89lS3sK3T/o273a8S+tgKysaV2Az23jvn95g1b4+lrVUGt4ns8nM4trFSdXztqE2ltdnj6iaVz2PUyadwp1b7uSDCz4ohTGigXBa+TQe3vUw9c56qh3VOePPCqGuzM7d7+6nzxPgjzfGG6VqnbWxiz3t4iuXlQJEgoYmjHN5jEF8RotWMR4vzDxL/FFVMFlg3V3idpw2ohUFbdLo0CHwDwEqTM2/gXms8AXD49pGEQwH2eHewU0LbjK0fU5hHJ4YFePxW9+foCyoWcC23m2EIiEGAgOU2krTPmzzGsv4043HYjKLBqt8rsBiHdhRW4Z28phfM5+51XPHXBTrMaV8Cl86/kv88bw/8sfz/si/LvoXJzWdxKTSSQQjQb78ype55MFL+NE7Pyq4yWyi0TbURsdwB++b+z5+ffavAejyduX1Gpt6NjGjYkbWyWKpuKwunBanrpXCH/JjMVkyDtVIRVEUzp92PkCseW5fzzAnz6zhJ1fnN+TkmPpj2OHewXBwmG5vN4c8hwxVwq+ffz3d3m6ea30u7jEuMJViIqAoCpfMuIRVh1bx8oGXObX51FGpbv3u+uUsmVzBvp7kCYa1zloGA4P4w/7YZyxrxdgSn5aneYyNCuOiNN+NRxQFLvsNrPgkHPsh4b2dqJRF+xzaVou4S5MFmsfvhYAvGBnXjXc73TsJRUKGU4oURREXmRlWX2TFWFIQC2oW4Av72NO/J5bBqSgKDrMjJmYVReH8hY2UOlRU8hPG2raayDbauX040Sb5gegc/+P6P7KlZwt3bLmDp/c+zZyqOXz3lO8enZ7kKJt6NgFw5ewrmVc1D5Niyqti3DHcwcbujZzWnF+zH4gKnp6VInGss1EunXkpj+x8hLNbzkZVVdyeIEunVDKrPr/P5zF1xxBRI1z32HWcPOlkABbVLsr5vFOaT2Fy6WTu3no3V8+5GuDosfBk4KLpF/Gbtb/BE/Lk1eibD4uaK5jXWMYr25M/s1p/RY+3hx5fDwoKlfbKjK8TqxiHvLERz+W27B5jEKsCE65inIjZAhf98HDvxejjqhbTPN/8rfh701KR1T5O8YXGd8V4a+9WQBTOjGI327PmGE+EirEUxmOMVtXa2L2RwcAgZVYhCBwWR1qnZ5lTZYD8rBSx6nP0ii6f5cbxgM1s4zPLPgPAE7uf4OUDL/Pi/he55MFLcFlc2M12Prf8c1w84+LDvKdjy6aeTVhNVmZXzsZsMlPtqNYVq5mee91j1wGwuHZx3u9d7azWb74L5d+BPKNiBs9f+zwAg74goYhq2F+cyPGNx3PV7Kt4ef/L/HvrvzEpJkNVD5Ni4n1z38dPV/0Ub8hLjaOGedUTNNrKIC3lLSyuXcymnk2c1DR6y9Kpo+4hLoy7vd30enupclRlXYGIjZEOeej39+O0OA1ZYRxmx8StGB9tvOenYsKooxwuzjwm/nCgRQ6W2cqwmW3CSmEZv8JYG7w0uXSy4edksyV5Q17KXEeG1siGFMZjzLTyaZTZyljXtY6h4FDsxKB3FVbqEMI4n8Y4Tahor3WkCeNELp5xMRfPuJjtfdu5b/t9hCIhtvRs4SuvfoWfrPxJ0razKmfx67N/PSGWcfTY3L2ZOVVzYiKgzlln2EqxtnMtAN8/5fsxn3c+1DhqkgZ0aOTKDs6FOzbYI38rg91s5zsnf4d/b/k3P3jnB3lZRK6cfSW/WfsbtvRu4cpZVx7xmZvF4L+O/S+29GwxNA2xUCqcVnzBSJLvUvMTd3u76fH1ZE2kgOSKsdvvzlpdTsRmthVnwIfk8OOshM+sPNx7octfN/6VX67+JWXWMp695tlxb6XwhUTMZT4xqtmEsS8srRSSAjApJpbULWFd17qYxxjEAT/Vt+NyiAD5fMSHtoyRaqXIFWk0nplTNYf/WfE/gLBa/HXjX5OGmATCAR7Z9Qi/XftbblxwIzaTbVRP8GPJQGCAP637E+u713PpjEtj99c4awxbKbb0bKHaUc1lMy8ryD9a7ahmfdf6tPt9Id+I0kz6dUZB58vlsy7nt2t/y7J645PHKuwVXDT9Ih7a+RCnT9YZ3X0Ucnzj8WlDU4pNYj67JowbShowK2Z+sfoXeIIeppVPy/oaicJ4wD9geIjQhPYYS8YNL7SK7PXB4CCdnk58wTD2cWylKETIOiyOjB5jf2hkxZLxghTGh4Fj6o7h922/x2wyxyq5drM91uWv4bKHIZSnMNYm06Q035Xbj1xhnIjNbOOTx3xS97F/bPoH/9j0DwC+fPyXuXHBjWO4Z8XHG/Jy63O3sqF7A40ljZw79dzYY7XOWrb3bTf0Otv6thmO49Gj2lFNn7+PiBpJqq7mGqqRC61iXOUqvPmtxFrCvZfem/eKyC2LbwGMhdpLioO2MuD2BGkoF8epWmctPz/z5/xu3e/Y27+X86ael/U1tFUBT8hDf6CfCpsxYTzhPcaSw06/v59NPZtYVLOIjT0bGQgM4AtFqHCO35z0QnKHs3mMfeGRFUvGC1IYHwaOqTsGFRUTJi6ZcQmg7zF22CIQys9KkVox1oTxeEijGE2+eeI3ObHpRHxhHy+0vsBPV/6UtZ1rMSvian1J3RJuWHDDYd7L/Hh016Os7VrLbWfclmaBqHJU4fa5c75GMBxkp3snpywoXABOKZtCRI2w6tCqpKriiK0UXm0U9MhOHJNKcwfTpzKlfArfO+V7I3pfSX5kGg19VstZnNVyFoFwIOewlcS4NrffzexKYxPP7GZ7LMUilS5PFz9f9XO6vd24/W4GAgP0+/u5bt51fG755wy9vkTyTsc7RNQIF0y7gI09oofIH4zgLB+/FdRCUiRyeYwnQvPd+DW/TGCW1i1lfvV8vnfK91hQIwY9OMyOtA+bwyam5ljziJOKxbVFr+gGAgOUWEsMR2odqTgsDi6deSnXzLmG2864jVOaT2F733a29G5hbddafvTuj3h89+OHezfz4oX9LzClbArnTz0/7TGH2UEgEkBV1YzPD0VCvLj/RUKR0IgazC6afhH1rnp+vurnSe/nCXpwWguvDsQ9xuO3oiIpHpow1hsNDaKqm2tVI7X5Lh8rRaYq1xsH3+DR3Y/i9rupddayvH45TaVNPLDjASJqxNDrSyRvHHyDEmsJJ00SDayDgUG84zzHuJDc4UzCWFVVQ4OWjgQmtloap7isLv5z6X+S7nNYHAx4BpLus1lFhm8wlIcx3pKeY3wkNt6NhBJrCb8957exn0OREDc/fTPfev1bbOzeyNVzrmZm5czDuIe5GQoM8U77O3xg3gd0xUJi9nWmK/7bN9/Oz1b9DMhv2l0qDouDW5feyrff+DbvdLzDiqYVABzyHGJO1ZyCX1fzGJdLYXxUUBm1zPR7C/f6jobHWFtV+/P5f4693mO7H+Nrr36NTd2bWFyXf5KL5OgiGA7y7L5nOb359FgD6WBgEF/QOq5TKQqqGFvsuilFwUiQiBqZEFYKWTEeJzgsjrSKhtUSBsAXMP7F0mu+M5LzOZGxmCz8/Myfc/GMi7lr611c8fAVXPvotfxr07/o8uQ3JGOseO3gawQjQc5qOUv38VwTiAD2D+6n3FbOnRffmdfoaD0umn4RLouLJ/c8GXvfbm83TaVNBb+m2xPAaTWP64qKpHhoKwOZKsZGsJvtmBQTPd4eQmoor1SKTN+VwWC63ezUSadiUky80vZKwfsqOXp4pe0V+v39XDLzklghaiAwcNhSKbb0bOGBHQ/EpulmopCKsd7qNsQn906E5jspjMcJdrM9zWNssYiKcT7CWG/y3dFWMdajxlnD9075Hs9d8xxfOf4rmBQTP1n5E86971xufvpmfvLuT7hn6z3jZtLei60vUmWvYmndUt3Htdi2bJ32Pd4e6l31LKnLb6qcHk6Lk7NazhIT48JBOoY7AJhUkr+/V8PtCY7YXyw5cnDZzFjNCm5v4cJYURScFmcsf9XoRX82X+RQYAinxZlkN6t0VLK4djFvt79d8L5Kjh4e2/UY1Y5qTp50MnazHavJGhXGh8dK8ZOVP+Hbb3ybG564IavdrpCKcaboQ+37JePaJEXDaXGmXd2ZTEKkDecRv5k6+W4wMDiiqt5Eo9ZZyw0LbuCGBTewu383j+9+nBdaX+De7ffiDXn51+Z/MaVsCjcuuJG51XOpcdSMyojcbAQjQV498CrnTD0nY75kqpdcjx5fT9bxuvly0bSLeHz347zS9kqsulZI45tGnycYW16XTHwURaHCaRtRxRhIEsb5WCkyCuPgUGzQUiL1rnp2u3cXvqOSo4J+fz8vHXiJ6+ZeF7u4KreVM+gfxB+KjHlcmzfkZW3nWqwmK9v7tuMNeTNmvBcU15ZhWI5WjJsIzXc5hbGiKFOAfwGNQAT4k6qqv1QUpRq4B5gG7AWuVVW1b/R2dWJT46ih399PMBzEahZVNMUcRI1YGPCGDb9OqmAaDAwy1za3+Ds8AZhRMYPPLPtMbNLeU3ue4qGdD7GrfxefeO4TgBgcMq96HnXOOppLm5lROWNU8141r9pgcJCzpujbKCDuJc9VMS6mP/Lk5pOZVDKJf2z8B1fNvgqAppLCL7r6vQHZeHeUUemy4vaMLE/YaXHGViyMWimyCePBwGAsTz4RGfEmMcLTe58mFAlx6cx4znyZrQy3X/QMjbWVYm3nWoKRIOdNPY9n9z2L2+/OLIxD+Udu2i3pq9sQ1xxHS8U4BHxRVdXViqKUAasURXkW+BDwvKqqP1QU5avAV4GvjN6uTmwaShpQUenydsWqcIoSBDW/E4nFZMGiWGIB3NJjbJwLp1/IhdMvxB/289y+5+j2dvPcvudY07mGTk8nwUgQh9nBWx94K69JQfnw5Ve+zHOtz+G0OGPdzXrYTbk9xj2+nthksWJgNVn54MIP8oN3fiASBFBocDUU/HpuT5BZ9emCRDJxqXRai1Ix3j+4H8ivYhyKhAhHwmnf3Ux2s0xeSokkkUd3PcrMiplJI+nLbeX0+/sBxrz57u32t7EoFs5pOYdn9z1Ln78v48qeP+zPu1ku0/fiqKoYq6raDrRH/z6oKMoWoBm4HDgzutk/gZeQwrhgNIHRMdwR+xCrBFEjVnZ2DbHpYH/ac+wWMzPrStKW+u0WUR0JR8JimVB6jPPCbrbznhnvAeCDCz8IiEru3dvu5sfv/pj24XYmlxmfLW+UocAQLx94mXNazuHmRTdnPWBpV/mZKsaeoAdvyFtUKwXAVbOv4nfrfsc7He9Q76qPrW4kcqDPE0ucyEbPcIDjpMf4qKLSZWV397Du8QxgZl1pTk+mwxz/XnT0Kfg8+q+VSN+wiF1b19aNPeXE3TXcT5XOpMxsVWbJ+CISUdnZNUQwPLbxer2+btZ2reXamR9lc3s8VUpRHXQOuwHG3GO88tBKFtUuorm0GSBr3n0hucM2s42wGiYYCSbljseE8VFSMY6hKMo0YBnwNtAQFc2oqtquKEp98Xfv6EETxoc8h2L3+SM+TFi5461W7nirVfd5f/vQcZw9L7lqp2V2DgVFoL0UxiPHarbGKgKtA62jIoxfbXuVYCTITQtuytkwF4vly+Ax1uJ0ilkxhmhe9IxLuWPLHbqNd50DPk7/8YtEMvd7JFFXduQfRCXGqS938NyWTt7zq9d0H3/fcVP40dXZP/ttvXFr2fV/3ICR05i1qg1HI1z1+1cgkrysXDKji7DfSke/j8aK+OdRCuMjh0fWHeTz96wd8/e1Vr6Nown+/mwpf/XHP9OOSX7Mjh5g5AOM8kFVVXb07eDyWZfHbEZ9fn2Hq6qqBTXfaUI6dSCPdi6aCHFthoWxoiilwP3A51VVHTDakKQoyi3ALQAtLS2F7ONRQWNJIwCHhhOEcchPS1Uln73x2LTth3whvnjvOtr60uNYHGYxy3wgIK5gpTAuDlPLpwKwd2AvJzefXPTXf771eWocNRxTd0zObXNVjHt84qBc7IoxwNVzruaOLXfoNnUe7PcRUeEzZ89iUXP2ZW6TonDSzOLvn2T88qXz53LGnDrdx3781Fba3NnjpQCCQQeYodxazW03rjD0vm91dXDfPvjxNfOpsNUmPfaN1UEGPA66h/zJwji68qaq6pg34Ery40CfB4DfX78ck2ns/q/+uuMhDnkb+ck1Fyd9Ru7f9xrr+/by2w8fzymzarO8QnFpH27HE/Iwu2o2VY4qIHPFOBAJoKIWlGMMokKcGHGoTZacCFN2DQljRVGsCFF8p6qqD0TvPqQoSlO0WtwEdOo9V1XVPwF/AjjuuOMM1pGOPkptpZRYS5IrxmE/FQ4XFyxsTNs+EIrwxXvX6fr17BZRMdY8TkYbVCTZqXXW4rK4aB3Ur96PBH/YzysHXuGSGZcY8i9rcW2ZKlo93tETxjMrZ/KpYz7FMfXpAl7zw585t45jp1YX/b0lRzZVJTbd4xnAPe/up3MwdwSPc+gyGitO5I9XvpdapzHR4d9Vx3374KSZFUwpT37/r67yoIad+EPJTc6xi89IYEJks05k3J4gLpuZixYXN4Fpb/9e6lx1umLPH/bz9TVruHrO1Vy4KPl9t/gaeLd7mDPm1I3pRdWOvh0AzK6cTZmtDJNiylgxLtQTnDorQUNboZ4Iwjhnu6Qi/lf/CmxRVfVnCQ89Anww+vcPAg8Xf/eOLhpcDUnC2BvyZjwg2ywmSmxm3UxQzRwvhXFxURSFqeVT2Tuwt+iv/ebBN/GGvJzbcq6h7bWDk153MCRUjItspdD45NJPcvKk9Kq55i2ucMoYNkl+GG3MGx4uZ4brRMOiGDJfSAbCAUJqECIOfMFkf2pqJrxk/OL2BouecNPv7+fax67lO298R/fxne6d+MN+jm1IX9Ets5URUkM5B2wUmx1uIYxnVs7EpJiotFdmrBgX6gnWvkupNj5PUFTtS61HfkO1kRyRU4AbgbMVRVkb/XMx8EPgPEVRdgDnRX+WjIAGV0MshgjIOXe80qWfCeqwCCuF2+8GoNwuUymKxdTyqbQOFLdiHAgHeHrv05TZygxHweUa8NHrFR5jbTzpWKF9HuXgDkm+VLis9BsQxoUMhomluESShbE2DlqNOPAFM1SMs0QiSsYHbk+QiiJnoj+661G8IS9P7X2KPf170h7f1rsNgHlV89Ie08652udrrNjp3kljSWPMPllpr8xcMY4K23xXQxI9xokMBYdQUCaExzinMFZV9TVVVRVVVZeoqro0+ucJVVV7VFU9R1XV2dHb9OHZkrxoKGlI9hiH/TjNmT9kFU4r/d70g7bWfKcJY1kxLh4t5S0cHDpIMJz5BL6uax1feOkLhk6obUNtnHffeTy2+zHOmHyGbsqDHrlGQvf4eiizlcUE9FgRE8Yyn1iSJ5VOG4P+UNZkAV8wjDcYznswjFZg0GIsNbTlXzWcpWKcZYiOZHyQLRP9x+/+mM++8Nm8Xk9VVe7dfi+zKmfhsDi4Y/Mdadts7d1KibWE5rLmtMcSx0KPJTv7djKrclbs50p7ZUwHpKJVjPMVsoke40SGg8OUWksnhB9fTr4bRzS4GujydsViULwhb46Ksf7So8PswO13x6wUMse4eDS4GgirYfr8fdS70oNYBgOD3PDEDQB8fvnnaSnP3nD6mzW/YTg4zJeO+xLnTzvf8H7kEsZuv/uwXBC5vQHK7BYsZjltXpIfWhV4wBukplT/uDcQs+rkWTHO8H2JV4zt6RVjnSE64UiYjz/3cdqH2jEpJhRFwUT0VjFhVsyx+0yKCRWViBqJ/VFRUVCSnltqK40JCqvJSlNJE3aznZbyFkqtpSxvWC4bqHOQKRP96b1Pc/vm21FQ8sr03zOwh939u/nmid/kgR0PcHD4YNo223q3MbdqLiYl/VhXbh37inEoEmJ3/+4ki1uVo4p9A/t0ty90IEem79JQcIgS25HvLwYpjMcVzaXNqKi0D7XTUt6CP+zPaoyvdFnZ1pH+xdMm07j9bspsZbExlZKRo11dp1aeADZ1b+Ibr38j9rMn5Mn6Wlt6tvDY7sf46OKPctPCm/Laj1zNd96QF5dFf9rRaNLvCVIhbRSSAtCEcZ8nszDWeirytlJksEXEhEvYiS+1+c6UXjHu8/fxdvvbLKpZxJSyKUSICl41KoCJJAnhRJGsKAoKCioqqBAhQlgNM+gfpNvbDYjv7dN7nyasJkTSzb+er57w1bx+36ONPh17TSgS4raVt1Flr6LP38e6znWcNvk0Q6+35tAaAE5oPIEn9jyRVh2NqBG29W3jspmX6T5fE4jDweF8f5WCaR1sJRgJMqsquWK8zr9Od3vtd8p78l0GYTwcHKbEIoWxpMhMr5gOwJ7+PUIYh/xZr+YqXTbdQQqalaLf3y9tFEVG+//whuNNFf3+fv6y4S/cvvl2apw13LjgRm7ffHvWxgtVVfnpqp9Saa/k5kU3570f2oTDTHYNb8h7WLxebm/+/k+JBIjZI/TsYRraCllVnlaKTBeSMSuFXvOdTsVYEzrXL7ieS2Zcktc+5EMwHGTfwD6+/ca3WdepL2wkAlVVhZUi5TPx8oGX6Rju4Aen/YBvvPYN1nSuMSyMV3euptpRzdTyqTgtTvp8yT7dg0MHGQ4OM7dqru7zNYE4lsJ4Z99OgCQrRZWjCrfPrRs5qH0X8rZSZBPGE6RiLNc7xxGJwhiE+Mp2Nad1catqcgqelmPc7++nwmZsZKrEGFoFP1H0fuq5T/HPTf/k8lmX8+DlD3Le1PPENsHMwviNg2/wdvvbfHzJxwteJrWZbRn9j4dNGHsCVMpECkkBaB7RbMkUWhxgvlaKjBFTgUSPsX7zXWK1UNt+tDvvrWYrs6pmcWzjsWzr2yYbALPgCYQJhtU0j/FdW++isaSRC6ddyPzq+azpXGP4Ndd0rmFZ/TIURTSTpVaMNZtipmSUUpv4fGgXXmPBTvdOTIqJGRUzYvdV2isJqSHd/dDOYXnHtVn0E5GGgkMTIpECpDAeV1TYK6h2VLNnYA/hSJhQJJTTShGKqAwH0r1xWvNdhUMK42Kiic3Eg8Lu/t1cN+86vnPydyi3lce2yWSlCEfC/GzVz5hcOpn3zX1fwfvisDiyjoR2WcfeSuH2SiuFpDC0lYaswrhAK4WWrZrq+UxMpfCnCGM9MT3WWa2LahYRjATZ3rd9TN7vSETvM/Fa22u83f42N8y/AYvJwtL6pWzo3pBWRNKjy9PF/sH9LKtfBohjfmoBIiYqM6zoap+PMa0Yu3fSUtaStE8VdnH+14R8IoXGtWWsGAeGJ0SGMUhhPO6YXjGdPf17Yh+6rM130cqcVkXR0HKMD1cD1kQmVRirqoon5Emq+mre3kxWisf3PM72vu18bvnnDKdQ6GEz27J6jA9PxThIlRTGkgKIHc907GEa2rEu31SKSnslJsUUy/fWGAgMoKDgMDvxhfRTKZKEcbRiPFbNcItqFwGwsXvjmLzfkUh8FUF8JsKRMD9650dMLZ/K++e9HxCDjvxhP8FI7jjAx3c/DsBJk04CxPk09VieSxhr54CxFMY7+nYk2SggLtD1ijTa57rQkdB6tiRZMZaMCpowPjB0ABApCJmoyFBhsZvtRNQIPd4eKYyLTKrH2Bf2EVEjSVfKmiDVE8a+kI9fr/k1C2sW5pVCoYfdbNdtAtTee6yFcSSiSiuFpGDKHBYUBfo92T3GFpNCiS33dMhEzCYzlfZKen3JqaIDgQHKbGU4rNaMVorDWTFuKmmi2lEthXEW+lOy018/+Dp7B/by6aWfjnnLtf/LXAM3wpEwd229i2MbjmVO1RxAHPNTnxdLdMiwoms2mXFanGMmjIPhIK2DrcyonJF0vybQteEbiRRqpcjk1x8OyoqxZJSYXj4dt9/NWwffAmB+9fyM22by5MU8QGGf9BgXmVR/lXbASUyAiFkpdA5G/9n2HzqGO/jCsV/QjfnJB7vZPq4qxkOBEBFVDveQFIbJpFDhtNKXw0pR6bIWlJVa7aiOjUrX0CK8HBZzxrg2PWE8VpUxRVFoKmlKq3RL4vSlCOP7tt9HtaOac1rOiW2TyRebyusHX+fg8EGun3997D7NY5xow9BeJ1vyT6m1dMyE8VBwiIgaSRvolM3SEUulyLIqrYf2b/l86/Os71oPiJVTKYwlo8bcatHleu/2e3GYHUwtn5pxW2050Z3SxZ3YsKd5jCTFIXUUc0wYW9OFsV51YuWhlcyomMEJTSeMeF/sZnvaJC8QBylfyDfmwlir3OTbGCWRaFQ6rVmtFP2eYMGfrxpnTVrFuN/fT7m9HIfVlHHAR+KqzFg13yXitDh1L7IlAu38V+m00enp5JUDr3DFrCuSbGqZlv9TeeXAK7gsLs6cfGb8uRYHKmrSc3NZKUCI0rFqvtP2J1WoZ+t38YV9WBQLVlN+3yetoLO+az0/XfnT2PurqNJKIRkdltcvp8Rawt6BvcypmoPZlHnJULtCXn+gn2F/KHZ/U0lTfBtppSgqqR5j7YCTeEAym8zYzXZdYbx/cH/Wi518sJltus13vrAPFXVMhXEoHOGdPUJ05Ov/lEg0Klw2Wns9HOhLP5Ef6POwv89T8OcrU8W4wlaBw6pTMdaxUgwHh7Gb7SPqDcgXl9WV0wIwUVBVlb9s+Ith68iAL8jGNjFdrtJl5aGdDxFWw7x39nuTtotZ4HL8O77e9jonNJ6Q9P+rV+gw0rhWYi0Zs4qxXoFG2wfIXDHO11+cytberUTUSNxiJOPaJKOB1Wzl1OZTgXj1OBOVLit2i4k/vbKbnzy9LXb/6ZNPZ3bVbEBWjItNzKsW9RjHhLE1/Uo99SpdVVUODB5gStmUou2LnsdYO4CPpTB+dP1BvnivyFttqhjZwVZy9NJU7mDdfjfX/uHNtMfe+/s3WH+gn8YCP181jvSK8YB/gHJ7OXarOa35Ts9LeTgajJwW51EjjF9re41frv4lf9nwF0Pb/79HNnHXO61UuqzYLAr3b7+fFU0r0iaOGqkYtw60cmDoQKzpTkMvicjI1LixtFJo55rUY36s+U5nxcEX9uU93EPjXxf9i1uX3oon5OHA4IExtxiNNlIYj0POnHImAPOq52Xdzm4x8+TnTmNKtZOO/viXVlEUbr/odr58/Jc5rvG40dzVow6zyYzNZIudqPQ8xqB/MuvyduEL+4orjHUO9No+jaUwPugWn78HPnUyCyfJEeSSwvjhexdz1fJmOgZ8RCJxT2coHOHQgJ+rj53M/12xuKDXrnHW4Al5kr6XcY+xCV9K7KVJMWEz2dJSKbSM2rHiaBHG/rCfn636GQBvtb9lKEGi3e1jXmMZj9x6Km+1v8XB4YNcPfvqtO2MeIzfahd9PYkjlSEhuz6cXDHOZUMYSyuF3solxAs2elaKwcBgwekqy+qXxYalbO3dynBAXABIj7Fk1Dh7ytlcP/96zp16bs5tZ9SV0lTuTPMZl1hLuHHBjQVfEUoy47TGA9+1ikBqxdhlSV/+3D+4H2DUhXHMbzaGOcb93iAOq4nlLVUFNUZJJCBsOAuayomoMJhgDxvwib8vmlRecE52jaMGIFY1VlWVAf8AFfaolSJlJDSIxqTUivFYn/z1Vp8mGv6wn8++8Fl2undy2czLGA4OG5r45/YGmVzloqXGxeO7H6fMWsZZLWelbRfrDckwEAmg09MJkFZt1rNSeEPenDaEEmvJmHnDM1kpbCYbFsWiW7l2+90jWlGeVTkLs2Jma+/WMU9rGW2kMB6HuKwuvnrCV9M6TDNR4bJmDcWXFBeH2ZHmMU49IOidzIotjDPlGB8OK4WMaZMUi9ho6IRjWqH5xYnUOIUw1nzG3pCXkBoSFWOrKc1jDOLiM7HKOBwcpsw6NhnGGnoX2RONX6z6BW8cfIPvnvxdvnrCVzErZl4/+HrO5/V7AlS6rHiCHp7b9xznTztftxhkpGI8HBzGZXGlpQXpPddI6s94qBgrioLTqt+82e/vH1EPkt1sZ0blDLb2bo29vrRSSMYNlU4r/Vk6uSXFJXFEaEYrhdWZNhJ6/+B+zIqZptImioE2yCWVwyOMgzKmTVIUYjGUCatgWlLFSKYqaoUGrWKsTQMTwticlkoB4uSf2OA6GBw8LBXjUCRkyFpwJPJa22vcseUOPjDvA1w5+0rKbGXMrJzJjr4dOZ/r9gapdFp5af9L/P/27ju+rep8/PjnaEte8shezibLcYYT0hDiEEhSEkIptLSlQNKyW0op8GOUQsq3pYx+C6VAKSOEfqHMll1awgibhBgChGwgC0KGbXlJsjXu7w/5KrLjJWtaft6vV16WNe49OpHvffTc55zj9rtZPGJxm8/rSsbY7Xe3+X/b5uC7QOcD17It2TQ0NXRptb1YdXSVsL1BgLFmjAFKikr46MBHVDVWhfeVCSQwzgBOyRgnlc1k63TwXXulFP2z+kc9PU572puVor2pexLJ5en+NFpCRGpraejwIg4xfMb0Ugo9Y1zbFJrNIM+a1+Y8xtCcMY4IphqaGlJSYwydz6jQEx3yHOLat69llHMUv5r+q/D9+bZ8XI2uDl/b6A/gbgrgdJh54YsX6J/Vn2n9prX53K5mjDsKjFsMvuvCjA5Z5iz8mp+mYPsL1sRLewkagCxTVpulOLFmjAHmD51Pva+ehzc9jNlg7vJV7nRnSnUDROycDgseXwCvL4DNHN2KUCJ6LUopfG6MKjQgL1Kbg+/cB+mf1T9u7Wh90talImNc4/ZRXJS8QFxkLj0wro5YAa86DqUUBfbQSXtz1WbgcGDcWSlF64xx0melMB9eMCjXEhrY6vK6OOPfZ1BkL2KkcyQjnSMZXzieQdmDyDZnJ3V8QVcEggEaA424/W6+rv+aBl8Dnxz8hIc3P4zb5+beBfe2nH/fksf+hv0dblP/smS2eHj3i3c5e8LZ7S6a1OVSijb6rb3p2uzGzkspIDRg02pP7Fif9malgFDSpnUpRWOgEY/fQ74tP6b9Hj3gaHLMOXxR8wXfH/P9tPvcdZcExhlAP5GEBkBJYJxoNlPLGmOH2XHEgLO2JuV3+93hrFU8WE1W/EE/gWCgxXzXKSml8DSR73AmbX8ic4VrjD2RNcah2/kxlFJYjVaWjlzK41sfZ7RzdLjmONeai82iHTFdm/4a/ctnqlb30rOAkYHZl7VfsrtuN0opPt/1OTXbasKPmQwmpvWdRq41lzmD5jDKOYqhuUOTPnXnnto9PLr1Ud75KrREc1A7sn9nDZjFZdMvCy+/rHNanZ1mjPXyml2N7xDQAiwZsaTd53aplMLXdilFW3Mgd2Xwnf4Fyu1zhz9rieLxebAarW2ue+AwO44opXB5XUDs07majWbmDZ3Hi1+8yPKJy2PaVjqRwDgD6IOeXG4f/XJlDtlEs5ls4YO22+du8/JVW5Pyu33uuA28g8NzKjcFm7AbDgfBqZiuzeX2xVT/KYQur42l7l0eH0pBji22z9gN37qBL2u+5F87/sXpY08P7c+Sh81UR5M/SDCoYTAc/pJrNR3OGHv8HoJaMC1KKfTA5uZjb2Z8wXgOuA+wuWozB9wH2F27m/X717Orbherd60Ov6bQVsgo5yiG5w1nWO4whuYOZWjOUAblDIpbeVdNYw33fHwPm6s2h5cLnjlgJvOHzm+eFs9G/6z+5FhyGJQ9qN0raHnWPGqbaglqwXazwKHPh8aHVf9hXMG48Nz9bTEZTBiVsdOMceTiWLq2AmNvwEuRpajdbcHh8rpkDMBz+9s+D0Hoi1W1t7rFffr5Kx4LgF067VJOG3Mag3MGx7ytdCGBcQY4XJOX+FomAXbj4TKJji6/tQ6MuzKSORqRS9ZGbjfZ07V5fQEa/UGZlULEhdloINtqalVj3ESuzYzRENtUgEaDkTmD5vDXj//K3rq9QHPG2Bz6MtnoD2K3HM662Yw2ahtDJRepWsSgzcC4ObDJt4amR+yX1Y9+Wf1avE7TNLZVb2Nfwz521e5ih2sHn7s+54UvXmgRrBmVkYHZAxmZN5JCeyEFtgKm959OaZ/SqI4hH+7/kMvfuJxKbyWlfUpZOnIpPyv9GX0cfaJ+z06rk6AWpK6prt2spsvdhMG2l6/cX/CTkt90uD2lVLulZ7rOSilaz0qhZ6Hbo39OkhIY+9zt/l+1NfhOH3gaj8C4yF5Ekb3jLwk9jQTGGSCcYZGZKZLCbj4c9Lb3Td1usuPX/PgCvvDyoh6/J64D4vrYQyecXXW7cNqc4fs9fg9GZYxbFqgzh+s/JWMs4iPPbj5iVop4fb7K+pdx98d38/qe1zEpEw6TA5s5lJX0+gItAuPIKRFTHRhHlmZVN4YygB0FNkopxhaMPWIFVU3TqG6sZnftbnbV7mJ3XejnjuodfFb5GVXeKu779D5MysTEoolM7z89/J7HFYxjfOF47GY7VqOV/Q37WbNnDV/UfMHjWx9nUPYgHl38KOMLx8f0nvXjWU1jTfuBsceHJf99rEYbJw4/sdNt2ky2NlcK1bU3K4XZYMakTC2Caq/f22mSI7KUItE6Srq0NZ+y/vmRlXHbJoFxBgjXGMvMFEnRevBdWwdTPQB2+93kGfPCt+OZMdZXNVy3bx2T+0wO368fJJO10IYrDjMGCBHJ6TC3msfYF7fPV0mfEqxGKztcOyi0FaKUCo/NaL3IR+SUiHrmONea3JUd9Uxg61IKi8HSreOJUooCWwEFtgJK+5Ye8XiDr4ENBzawfv961u1bx8qNK9usD84x5+D2uwlooT47ZdQpXFF2RbdXU4ukB/yuRhdDGdrmc3bV7MaU9xFLR5zepfIWu8neaca4vfrx1lcAuzIrhd6mr+q/6rRtseqslKL1rBTxzBhnIgmMM4A+WKVaSimSInLwncfvoZ+j3xHPibz8mWfNwxfw4Q/641reUGArYEz+GNZ+s5ZzS84N3x/vko3O6IGx1BiLeHE6zC2OZy53E3kxzEgRyWK0MHvgbD488CFXzbgKICJjHDziuXpgrM9/HOtI/mi1VUpR3ViN0+ZMyJffLHMWswfNZvag2QD4Aj4CWgB/0M/ab9byTcM31DXV4Wp0kWPJ4cThJ9LP0S+uxzY9k9nRALy3Dz0KmpELS89t9zmRrEZru1Pe+YN+GgON7b6HyGM+hGqMOzvGDskZwvjC8az6bBWnjjk1oavQun3u8OwlrTnMDhoDjfiDfkyGUMgXzxrjTCSBcQbIshgxGZSUUiSJzWSjKdhEIBigwdfQ5gEpfPmz+Zt6R9PpxGJG/xk8ue1JGgON4QNvvDPTnalpvuQtNcYiXpx2C/tqasO/uzw+hhXGbzaIW+feCoQCXwCbqTlj3GrKtsgR/foApgJrcudqbX0sgVBgk29NToBuNpoxE/rSO3/o/KTsUw/Y9Mxma1/UfMEX3jcx1s/tcg2zzdT2gkhA+P84y9T2Z8xmsoX7X9O0Ls1KYVAGLp12Kee+fC5PbH2CM8ef2aV2dofb7273C5ueBXf7I6b7a3RhN9nDn3/RkizwkQGUUrLIRxLp81fq83K2WUqhX/5sXv0uUYtuzBk8h8ZAIz988Yfsq98X3lcqMsZSYyziJa+tUoo4fr4sRkuLoCBcStEqMC6yF+Hxe3D73IfreiPq+ZOhrenaXF5X0tuRTJ0FxvdsuAcDFvJ9C7q8zcgSuNb0GtyOSin01+rBdWeD7yA0z29Z/zJWbVzV5mJM8dLR4LtwWV9EnXE8FvfIZJIxzhB5djPb99exelPHk6IDDC/KYlTfzFjTPBUip+9pb7q28OTuzQN2EpUx/tbAb3Hrsbdy9VtX848t/+Cy6Zfh8cU/MA4ENd79/FCby+ZW7GoOGCQwFnHitJtxeXys3rQfTdOo9cavxrgt1uZSig92VjF+YC7W5gyyPsD1oOcg1d5q7CZ7Ur90QtvThbkaXRyVdVRS25FM2eZsFIr9DVW8smk/kYsqVzfu5z87/0u297ioVlqzmWztzhARzhi3ExjbTLZw/+s/O8sY686ddC7nrT6PZz9/lu+N+V6X2xuNjmqM9fcUOTOFq9ElgXEHJDDOEIPzHbyx7SDr/76+C8+18/aVxyWhVZlJPyC6/e7wAh+t6dPXHPQcBBK76Mai4Yt4/ovneenLl7h02qV84/6GUc5Rcd3HW9sPsuzBD9p9PN9hxi6Ly4g4GZzvIBDUODfieDYoP3EBad+cUBnSjf/egtNu4ftlofnG9cv0B9wHqPZWJ618IZJBGUKDv3wta4wzeUYBo8FIrjWXtz/fxV82tDynWfr8F0uhxr69U5k2vutX4GxGG4c8h9p8rMEfChrby7pGZoz1n129+nf0gKOZVDSJlZ+u5JRRp4TrfOOpo6uE+nvaVr2Nkc6R+IN+Pj34KUcPPDru7cgUEhhniDt/NIVdlZ1PC/PQuzt5dsPXaJqWtFkLMo0eGFd6KoG2p2/SB+Tpy5qG17JP0NzC3x7+bd7c+yZv7X2LXbW7OHnkyXHd/oHa0OXDlcum0zfnyExJ31yrfJ5E3PygbAhThjoJBEO5QpNRMaZv7LMdtGdU3xz+88s5LLr9rRbTxOkZ40OeQ1Q1ViV94J3ObrKHrzoFggFqG2tT1pZkcVqd1NTXMMhp529nTgMgqAW46K1bGJk7iytOWMrIPl2/8mk1WdstpegsY2w32cODLz2B6DLGSinOmXQOl7x+CS99+RInjTypy23uiqAWDE0F2s65ZULhBPra+/L/3vx/fHTgI44dfCzVjdWcMOyEuLYjk0hgnCFybGYmDuo8gzCybzZNgSAeXwCHRf77u0PPFOjT8LR1gnKYHeRYctjvDgXGiV6med6QeViNVm6ruA2ACUUT4rp9PVgoKy6IefUxITpjMCjGDUjutGijmoOsyHKh1hnjaC7dx1PkdGG1TbVoaBl/KTzPmkelq5Z+Odbwua3aW01NUxULRhzbpfNdpI6ma+usxrjAVsBnhz4DDmeMu1JjrCsfUs4o5yge+PQBFo9Y3O5qft3RWQa70F7I86c8z18++gsPb36Yp7c/jd1k55hBx8StDZlGBt/1Ms42llsV0dFPSF/WfNni99b6Ofodzhg3Z3viPfhOl2XOYu7guXxe8zkQyhLEk8vtw2hQZFvly5TITCajAZNBtRiAl2POwWq0ctB9MG0CY30QYCrKOpIpz5JHk1bfYuxCtGUMkToafNfZrBQFtgKqvdUEteDhwLiLGWMIlcOcM+kcPq/5nNd3vx5lyzvWlXOLw+zgyhlXcvOcmwE4fujxSa+V70kkMO5lDi8fLYFxd+knx89dn7f4vbV+Wf34xv0NcHh2ivbmmowHffWnYbnD4l5/6PKEBj9JuYTIZDazsUXGWClFH3sfDnoOJnWKtNYcJkc4MHZ5XUDyZ8dINofZgV9rajHoMtqBb5GsJmun07W1V45QYCvAr/mpa6oLB8bRBpYLixcyJGcIf/vkb20umNJd0ZTpnTjiRFaftprfzOp4Ce3eTgLjXkZfDCSyjk5Ep9BeCMAO1w6g/Yxxf0f/pGWMAY4ZfAw5lpwWq+DFS02cp8sSIh3ZzIYjVr/r6+jLnro9ePyelAWjdpM9HADpU5hl8uA7CGV4gzSGz1lwuL63O9lOu9FOY6CxzaBUPz53VEoBUOmtDM9sEW0bTAYTF06+kM1Vm3n+8+ejem1Hop3xyGlzSra4ExIY9zKSMY6d3WTHYXKwu2430P5KWP2y+lHprcQX8CW8xhhCKzs9/O2HuWz6ZXHftsvT1OIEJUQmspqMbc5lvK16G9D+1aFEs5sPD77TA7Mcc+IGI6YDm9GGRlObpRTdzRhHbiNSg68BozK2uzqd/v9e7a0OD8LTEyTRWDxiMSVFJdxWcVu7M2REq74p9HnoyrLYomskMO5l9NXJJDCOTYGtgKAWxGKwtJsF7u/oD8ABzwE8fg8GZUjosqAAI5wjEnLydrkTO4+sEOnAZjbQ2Gqu7r6OvuFL8Kkqpcgx54QDoM4u+2cKAzYwtCyl6M7AN53+mrbKKRp8DTjMjnZLxfRjapW3iipvFQrVrcGPBmXgulnX0eBr4LI1l+EP+qPeRmv656Gt2ZFE90hg3MuEM8ZSShETPVvgtDnbPZhGTtnm9oWWae6pNbout488KaUQGS5UY9wyY6z/HUP7V4cSLdeaS11THXA4Y5zxgZBmRhn85NoPz4/e3freyNdELpSia/A1dNif+vG+ylNFpacSp9XZ7fmIxxaM5bpZ1/HhgQ95dMuj3dpGJP3z0F4ZiIieDDHvZWxmI1aTocVyqyJ6hbbQgbKj7Gy/rNAJ9ZuGb5K+THO81Xh84asNQmQqm9l4RI3xKaNPIUiQKk9V3Gd76aocSw51vjoCwQBunxuTMiX86lOqBYOhL+J22+EMfrRzCEdqvRpppNqmWnIt7U8PqGeH9Yxxd8ooIi0ZsYQXv3yRuzbcxaLiReFpAbtDMsbxJxnjXijfYZFSihiFM8YdXE7TD3YHPQc7XLIz3TX5g9Q3+smXjLHIcDaz4Yhlz/Osefxk4k+4vOxyzMbU/A3oQVu9r556X32Hl/0zRTAQ+iJutxz+ohKelaIbpRQ5llBNtp55j1TbWBt+vC0mgwmn1Umlt5Iqb1XM5WpKKa6ecTVev5eVG1fGtC39/UjGOH4kMO6FnA6zlFLESD8wdlRzmGPOwWKwUOmp7NEZ4xpP6EuUzEohMp2tjcF36UAP2mqbaju97J8p/P5QCYU1IjAOl1J0Y9rLXGvoy0VbgXGdr67DwBhCx/wqbxWV3sq4jOMYljuMxSMW89S2p8KrqHZHg68hvGy4iA8JjHuhPLuZaskYx0TPGHdUc6iUoshexCHPITy+9pfsTHc1zV+i8mRWCpHh2qoxTgeR2c4GXwNZlszPDjb5Ql/EzabD56pwYGzsRmBsDgXGtU21RzxW19T1wLjKE3sphe6cSefQGGjk75v+3u1t1PvqyTJnZfwVhGSSwLgXcjrMUmMcI73GuLN5TYvsRRz0HOzRGWO97EZmpRCZztpGKUU60Esp6prqQoFQOyu0ZZImX2gIlMl4eOYGj9+DURm7NfCto1KKuqa6DmuMIRQYf9PwDXW+urjN/DM8bziLihfx2JbHwvNTR6u3XEFIJgmMeyGn3SKlFDHSD4wF1o4PkHrGuCfXGIcDYymlEBnOZjbS6E+/jLEetNU21dLQ1Dsyxt6mUHjSGDw877A34MVmsnUrO6rP89s6Y+wP+mnwNXQaGBfaC/mq/isgvvNZn1tyLm6/m9+///tuTd9W31Qv9cVxJoFxL+R0mKlu8PH6lgOpbkqPVZxXjM1oY1T+qA6fV2QvotJTSU1jTY88eFXWN7JmW+hzIrNSiEwXqjFO74xxg78h4zPGW7+pY/ehUJAYOb2ax+/p1sA7CA2gyzJnUdvYMjDW54furJRiWr9p4dv6FcN4GJ0/ml9M+QUv7XyJa966JurloiVjHH8SGPdCwwqzaAoEWb7qA744eOTUNaJzRfYi1p6xtsXBsr3nVTdWc9BzkBHOEUlqXfz8dc3nPPz+bhwWI0U5EhiLzGa3GPCkcY1xbWMoY5zpq5xd8thHbPoqlCmOXKnO6/fGVJKWY8k5opRC/72zwPiYQceEbxfY47uI0rkl53LJ1Et4aedL/O3jv0X12npffcZ/HpJNAuNe6IczhvDnH5QCcKheSiq6y6A6//OJHKQxJn9MIpuTEAfrGxnktPPuVcfhsMi05yKz2UxGAkENXyC9ssZZ5iwMykBtU214sFUmO1jXyPHjhgAtM8Zev7dbcxjrci25RwTGtb7a8GMdiezzRKwu+tOJP+Xbxd/mvk/vY3/D/i6/TjLG8SeBcS+klGJEUegPyeWWwDiR+tgPT9w+Nn9sClvSPS63j6JsC06ZkUL0AjZzaIqwdJuZQilFjiWH2qZa3H53RgfGmqbh8vgY4swDWpVSBGIbxKz3YaSuZowBbjzmRvrY+7RYDTFelFJcPPViglowqrmNe8MXpWSTwLiXOrw0tMxOkUhF9iIgNN+xfrsncXl8Mk2b6DVs5tApMR3rjHPMOXzT8A2Q2auc1Tf6CQQ1Cu2hQDWeGeO2Sin0muOuBMYnjTyJ177/GhZjYo6JQ3KG8J1R3+EfW/7BHR/egaZpnb5GMsbxJ4FxL6UHxjJtW2LpwfCY/DE9cp7JGneTTNMmeg1rmmaMIbRAxb6GfUBmr3Kmz4JTmJWFQh0ZGHdz8B20XUqh/95ZKUWyXDPzGk4ZdQr3fXofq3et7vC5/qAfj9/TK2YpSSYJjHupbKsJo0HJtG0JVmgvxKiMjC3oeWUUEMoYyzRtorfQSynSccq2HEtOrwiM9ZU28x0WbCZbi8F3Hr8n5hrj9kop9JXxUs1itHDdrOsYVzCOm9bd1OGqeA2+BiCzryCkggTGvZRSCqfdHP52LhLDYrTwl+P+wvKJy1PdlKgFgho1Hp/UF4tew2ZK31KKyGxnJgfG1c3jXvKzLNhN9iMyxrHWGNf76vmm4ZtwmUJtUy0GZUireeZNBhO//dZvqWuq48JXLqTaW93m8yQwTgwJjHuxPIdZaoyTYM7gOT2yvrjO60PTZMU70Xuk6+A7aHmpP5MD48iVNo8IjAOxBcZ6H57w1Ak8s+MZ4PBy0OlW6jaucBx/Kv8TO1w7OPW5U/nk4CdHPKfeF5puNZM/D6kggXEv5rTL0tCifbLinehtDgfG6ZcxHp43PHw7kzOEerImzxEKjL2BVqUUMdQYRw6we/HLF4FQxjjH3PnAu1SYM3gOjy5+FKvRynmrz+OWD27hw/0fhh+XjHFiSGDcizkdlvBlKyFa009QEhiL3uLwrBTplzH+zqjvhG9ncoawpvmclGc3YzPacPvdQGgat1hnpYh87fpv1lPlraKmsaZLM1KkytiCsaxatIphucN4bMtjXPDKBWyt2gqAy+sCkMF3cSaBcS/mdEiNsWifK3yCkhpj0TuEM8ZpOPguz5rHlL5TgPQZKJYILrcPh8WI1WTEbrbj8YVKKZqCTWhoMQXGA7MGArBswjICWoAXv3iRjw58xPjC8XFpe6L0y+rH40se5+XTXibHksMvX/8lbp+biv0VmA1mRjtHp7qJGUWWsurFnHZLeASwEK3VSMZY9DI2U/qWUgDct+A+tlRtSZupxRLB5fGFxzXYTXYOeQ4BhAPkWGqMJ/WZxJrvr6HAVsD7+97n9orbaQo2sbB4YewNT4IiexG3Hnsry/6zjFs+uIWPDnzE9H7TcZjTZ+BgJpCMcS/mdJipb/Sn3fKnIj1UN4QyxjL4TvQW6VxKAWA1WpncZ3Kqm5FQLndTeFEhm9EWHnyn1xrHEhhDaApNpRQXTr6QpmATBbYCyvqXxdboJJrabyrLJy7nn9v/yRc1X3DMoGNS3aSM02lgrJRaqZQ6oJTaGHFfqVLqfaXUBqXUeqXUjMQ2UyRCeJEPyRqLNoQHwUhgLHqJdF7go7dwuVtmjPXAWP8Zy+C7SPOGzGPOoDn84KgfYDL0rIvnP5/yc6b3mw7AMYMlMI63rnwaVgF3An+PuO8W4Leapr2klDqx+ffyuLdOJJQe8LjcPoqyrSlujUg3LrePHKsJk1EuLIneQc8YN/rlKlqquDw+RvcNzbLgMDuob6pH07TwDAzxKhtQSnH38XfHZVvJZjaYuX3e7Xx88GNG5I1IdXMyTqeBsaZpbyqlilvfDehFTnnA13Ful0gCfeGGxz/YzeD86A42JYPzmDI0PxHN6hU8TQGe3fBVWp+AN+xx4cySbLHoPSxGA0rBui+ryLbuTHVzEmL8wFzKigsSvp+DdY38Z+M+glp0r9tf6w23b1juMOp99Rz0HAzXGvfEOeETIc+ax7GDj011MzJSd68f/BL4r1Lqj4TKMb7V3hOVUucB5wEMHTq0m7sTiTC8MAuTQXHfW19G/dqRfbJ49bLy+Deql3hl836u+tenqW5Gp+aN7ZPqJgiRNEopiguzeGPbQd7YdjDVzUmIgXk23r16fsL389C7O7nz9R3deu2o5ozx2PyxAGyp2sIB9wFAAmOReN0NjC8ELtU07Z9Kqe8DDwDHt/VETdPuBe4FmD59epTfHUUiDS108PH1C6LOWt700mZWb9qfoFb1DvWNfgBeumQO/XLjUzOXCLm2nlV7J0Ss/vPLOTQ0ZmaN8Z9f2cZjH+xJyr4qGxopyrbw8qVzo3qdQR2+mjmmYAwA26q30RRoQqEotBfGva1CROruWe9s4JLm208C98enOSLZsqwmsqIsL+6Xa6PG4yMY1DAY0msZzZ5CH9zTP9dGfpbMEyxEurCaQnPoZqJ+eTYa/UG8vkB4zuZEcbl95DssFMRwfMu15DIoexBbq7aSZc4i35aP2SDlXSKxujuq5mtA/xp4HLA9Ps0RPUGe3UxQg7rmrKeInj5PaqJPTkIIoXM2L9aTjIWdXG5fXOZAH5M/hi1VWzjkOUQfu5R2icTrNGOslHqU0IwTRUqpvcD1wLnAn5VSJsBLcw2x6B30y1w1bp9M5dVNesbYapIZH4QQyaEHqi5PE/3zElvC5fL4GOSMbc5hCC2JvGbPGpRSDMoeFHvDhOhEV2al+GE7D02Lc1tED5HffHCtdjcxtFBW3OkOrz+AxWSQUhQhRNLogXF1Q+IzxjXuJiYOjH2FvklFk9DQ+LLmS0r7lMbeMCE6IekqEbXDWQdZGKS7Gn1BbJItFkIkkV5KUeNpSvi+XJ74lFKUFJWEb8uMFCIZ5MwsopYXrlNL/ME1UyVj8IsQQkQKJzUSXGPc6A/gbgqEy+5i4bQ5Kc4tBqCvo2/M2xOiMxIYi6jJUtKxk8BYCJFsybraVxPn5eQn95kMIIPvRFJIYCyiFrmUtOgery8YXn5WCCGSwW42YjEaEn7s1rcfj1IKgMl9mwNjhwTGIvFk9n4RNbPRQLbVJIFxDLx+yRgLIZJLKUWew5zwGuNwYGyPzxztS0YsQdM0JhZNjMv2hOiIBMaiW/LsZqkxjoHXF8CWoYsICCHSl9NuTvisFPq5IV4ZY7vJzvfHfj8u2xKiM3ItV3SL02GWWSli4PUFsUophRAiyULH7gRnjONcYyxEMsmZWXSL0yEZ41jI4DshRCrk2S0JL4OriXONsRDJJIGx6Ban3SIZ4xg0+oPYJTAWQiSZ02FO+IxCLk8TJoMi2yrVmqLnkcBYdIvTYWZ/jZcnPtiT6qb0SJ6mgMxKIYRIunyHmcr6Jh5ZuwtN0+K+/YpdVbyzoxKnw4xSsrKn6HnkzCy6ZcLAPBqaAvy/f37CNzXeVDenx5FZKYQQqTB+YC6+YJBfP72RLw41xH37N7ywmQ17XEwYmBf3bQuRDBIYi2750cyh3H3GVACqGqTWOFpSYyyESIVTpgxm5bIyAKoTcOyubmhi6eSBrFpeFvdtC5EMEhiLbstvXu4z0SOcM42maaEFPkzy5yeESL4C/didgEF4LncTBVkWKaMQPZacmUW3hZeGloU+otLoDwJglYyxECIFErU0dCCoUev1yzRtokeTwFh02+GMsQTG0Wj0hQJjKaUQQqSCM5wxju/VvlqPTNMmej4JjEW36Qe/apnPOCpefwBAZqUQQqREjtWEQRH3adv0c4GeNBGiJ5Izs+g2m9mI1WSQUoooeX3NgbEsCS2ESAGDQZFnN8e9xji84p1kjEUPJoGxiEloBTwJjKPhlVIKIUSKOR3xX6QpvOKd1BiLHkwCYxGT0Ap4UkoRjXDGWEophBApEsoYx/fYrZ8LnFJKIXowOTOLmEjGOHqHA2PJGAshUiM/Acdul2SMRQaQwFjExOkwx30AR6bz+vVSCvnzE0KkRqiUIs4Z4+bAOFcCY9GDyZlZxMRpt8isFFHSM8ZWGXwnhEiRhAy+czeRazNhNMjiHqLnksBYxERKKaInpRRCiFRzOszUef34A8G4bdPl8Ul9sejxJDAWMclzmGn0B8PBnujc4QU+5M9PCJEaeh1wrdcft2263D5Z3EP0eHJmFjFx2vUVlCRr3FWHF/iQjLEQIjUSsfqdZIxFJjClugGiZ8tvzg78afXWNlc7Gl6UxQ9mDE12s9LW5n21vPTpN4AExkKI1NEzu3e+toM+Oda4bHNXZQPHju4Tl20JkSoSGIuYjOmfQ0GWhec+/vqIx/wBDX9Q45Spg2SgWbMH3/mS976o5Kj+OTgkMBZCpMjofjkUZVv498Z9cdumQjFtWH7ctidEKkhgLGIysk82H/7mhDYf+7/3d/GbZzZS4/HRN0eCQAB3U4ARRVn855fHpropQohebJDTzvpr2z52C9GbSY2xSBh9cEeN1B+HeX1BrJIpFkIIIdKSBMYiYfQaNpcsABLW6A/IbBRCCCFEmpIztEgYfTBedYMsAKLz+gLYpN5aCCGESEsSGIuEybNLxrg1ry8oGWMhhBAiTckZWiSMXkohNcaHeX0BmaZNCCGESFMSGIuEybaaMBoULo+UUui8fgmMhRBCiHQlgbFIGKUUTrtZVsWLIKUUQgghRPqSM7RIqDyHWWqMI3ibArLYiRBCCJGmJDAWCRXKGEsphU5KKYQQQoj0JYGxSCinwyKlFM0CQQ1fQJNSCiGEECJNyRlaJJTUGB/m9QUAJGMshBBCpCkJjEVC5TnM1EiNMXA4MLZLYCyEEEKkJQmMRULlOyzUN/rxBYKpbkrKef2hPpBSCiGEECI9yRlaJJS+yMcNz2+iodGf4taklpRSCCGEEOlNAmORUKVDnPTLtfJ/7+9i3ZdVqW5OSumBsUzXJoQQQqQnCYxFQpUMdvLouUcD9PoV8Lw+KaUQQggh0pmcoUXCOR0WgF4/O0WjlFIIIYQQaU0CY5FwefZQnXFvD4y9fgmMhRBCiHQmgbFIOKNBkWsz9fpp26SUQgghhEhvcoYWSRFaAa931xh7mpozxjL4TgghhEhLEhiLpHA6zLh6e8ZYSimEEEKItCaBsUiKPLuZ6t5eYyylFEIIIURakzO0SAqnw0JNLy+lkAU+hBBCiPQmgbFIinwppQhP12Y1yZ+dEEIIkY5MqW6A6B2cdjM1Hh/BoIbBoFLdnJTw+oNYTQaU6p3vXwjRe/l8Pvbu3YvX6011U0QGstlsDB48GLPZHPO2JDAWSZHnsKBpUOf1k+eI/YPbE3l9ASmjEEL0Snv37iUnJ4fi4mJJDoi40jSNyspK9u7dy/Dhw2PenlzTFUnh1Bf56MXLQocCY/mTE0L0Pl6vl8LCQgmKRdwppSgsLIzb1YhOz9JKqZVKqQNKqY2t7r9YKbVVKfWZUuqWuLRGZCynQ1a/8/qCkjEWQvRaEhSLRInnZ6sr6atVwKJWDZgHnAyUaJo2Afhj3FokMpLTYQHo1QPwvL6ALO4hhBApsnfvXk4++WRGjx7NyJEjueSSS2hq6vwq5o033tjpc8455xw2bdp0xP2rVq3i5z//eZfa99///pfS0lJKS0vJzs5m7NixlJaWctZZZ3Xp9cm2atUqvv7661Q3I+46rTHWNO1NpVRxq7svBG7SNK2x+TkHEtA2kUH0jPEdr27nyfV7Er4/o0Fx/rEjGT8wN+H7irTxqxruffMLgpp2xGMf7XExMM+W1PYIIYQI1aF+97vf5cILL+TZZ58lEAhw3nnn8etf/5pbb721w9feeOONXHPNNR0+5/7774+5jQsXLmThwoUAlJeX88c//pHp06fHvN1YBAIBjMa2EzqrVq1i4sSJDBw4sMvb8/v9mEzpPbytuwWPY4A5Sqm1Sqk3lFJl7T1RKXWeUmq9Umr9wYMHu7k70dMNctqZObyAancTm/bVJvzfcx9/zfOfJP+brL7fttqUYzNx/Lh+SW+TEEL0dq+99ho2m43ly5cDYDQaue2221i5ciVut/uIzO6SJUtYs2YNV111FR6Ph9LSUs444wwaGhpYvHgxkydPZuLEiTz++ONAKJBdv349AA8++CBjxoxh7ty5vPPOO+FtHjx4kFNPPZWysjLKyspaPNaRhx9+mBkzZlBaWsr5559PIBCa+jM7O5srr7ySadOmcfzxx7Nu3TrKy8sZMWIEzz33HBAKXk8++WQWLVrE2LFj+e1vf9ul7V533XXMnDmT9957jxtuuIGysjImTpzIeeedh6ZpPPXUU6xfv54zzjiD0tJSPB4PxcXFHDp0CID169dTXl4OwIoVKzjvvPNYsGABZ511Vrf7IVm6G7abgHzgaKAMeEIpNULTjkyTaZp2L3AvwPTp049Mo4lewWY28vj5s5K2v+m/W01NCso2XO4m+uXYeO2y8qTvWwgheoLfPv8Zm76ujes2xw/M5fqTJrT7+Geffca0adNa3Jebm8vQoUPZsWNHu6+76aabuPPOO9mwYQMA//znPxk4cCAvvvgiADU1NS2ev2/fPq6//noqKirIy8tj3rx5TJkyBYBLLrmESy+9lGOOOYbdu3ezcOFCNm/e3OH72rx5M48//jjvvPMOZrOZiy66iEceeYSzzjqLhoYGysvLufnmmznllFO49tprWb16NZs2beLss89m6dKlAKxbt46NGzficDgoKytj8eLFZGVldbjdiRMncsMNN4T6dvx4rrvuOgDOPPNMXnjhBU477TTuvPPOLme1KyoqePvtt7Hb7fzoRz+Kuh+SqbuB8V7gX82B8DqlVBAoAiQlLNJCaKW9VATGvnDZiBBCiPSgaVqbA7Tau789kyZN4vLLL+fKK69kyZIlzJkzp8Xja9eupby8nD59+gBw+umns23bNgBeeeWVFnXItbW11NXVkZOT0+7+Xn31VSoqKigrC12Y93g89O3bFwCLxcKiRYvC7bJarZjNZiZNmsTOnTvD2zjhhBMoLCwE4Lvf/S5vv/02JpOp3e0ajUZOPfXU8Otff/11brnlFtxuN1VVVUyYMIGTTjqpy30GsHTpUux2e7f7IZm6Gxg/AxwHrFFKjQEswKF4NUqIWDnt5pRMDefySGAshBAd6SizmygTJkzgn//8Z4v7amtr2bNnDyNHjuTjjz8mGAyGH2tv6q8xY8ZQUVHBv//9b66++moWLFgQzqbq2gu0g8Eg7733XjhA7ApN0zj77LP5wx/+cMRjZrM5vC+DwYDVag3f9vv97bZHKdXhdm02W7iu2Ov1ctFFF7F+/XqGDBnCihUr2u0bk8kU7sPWz8nKygrf7k4/JFNXpmt7FHgPGKuU2quU+imwEhjRPIXbY8DZbZVRCJEqToeZ6obUlFI47Zak71cIIUT75s+fj9vt5u9//zsQGlR22WWXsWzZMhwOB8XFxWzYsIFgMMiePXtYt25d+LVmsxmfL3Q++frrr3E4HPz4xz/m8ssv58MPP2yxn5kzZ7JmzRoqKyvx+Xw8+eST4ccWLFjAnXfeGf5dL8/orN1PPfUUBw6E5jioqqpi165dUb331atXU1VVhcfj4ZlnnmH27Nld3q4e4BYVFVFfX89TTz0VfiwnJ4e6urrw78XFxVRUVAAc8SUkUnf6IZm6MivFD9t56MdxbosQcZNnt7B5X13nT4wzKaUQQoj0o5Ti6aef5qKLLuJ//ud/CAaDnHjiieGp2GbPns3w4cOZNGkSEydOZOrUqeHXnnfeeZSUlDB16lTOOussrrjiCgwGA2azmb/+9a8t9jNgwABWrFjBrFmzGDBgAFOnTg0Parvjjjv42c9+RklJCX6/n2OPPZZ77rmnw3aPHz+e3/3udyxYsIBgMIjZbOauu+5i2LBhXX7vxxxzDGeeeSY7duzgRz/6UbgmuCvbdTqdnHvuuUyaNIni4uJw6QXAsmXLuOCCC7Db7bz33ntcf/31/PSnP+XGG29k5syZ7banO/2QTCqZid7p06dr+qhNIRLpf17YxGPrdvPZDYs6f3KcaJrG2N/8h+Wzi7n62+OStl8hhEh3mzdvZtw4OS4m26pVq1i/fn2LDG2mauszppSq0DQtqjnvZH1akZGcdjMNTQGa/MHOnxwnXl+QJn9QSimEEEKIHkoCY5GRnFmh4DSZU7bpg/3ypZRCCCFEGli2bFmvyBbHkwTGIiM57aHg1OVO3swU+mA/qTEWQggheiYJjEVG0oNTVwoyxnlSSiGEEEL0SBIYi4yk1/m6krjIh76giGSMhRBCiJ5JAmORkcIZ4ySWUujZaQmMhRBCiJ5JAmORkfKag9OkDr7TM8ZSSiGEEGknOzu7W6+75557wguDRNq5cycTJ07s0jYqKyspLS2ltLSU/v37M2jQoPDvTU3JX6W1M2vWrOHdd99NdTNSortLQguR1nKsJowGldRSCpenCavJgN1iTNo+hRBCJNYFF1wQ8zYKCwvDK7ytWLGC7OxsLr/88pi3Gwu/34/J1HYYuGbNGrKzs/nWt77V5e0FAoHwUtI9mWSMRUZSSuG0m3n6o6944oM9Cd/fo+t28/yGr6WMQggh0tyaNWsoLy/ntNNO46ijjuKMM85AX+zsqquuYvz48ZSUlIQD1xUrVvDHP/4RgIqKCiZPnsysWbO46667wtsMBAJcccUVlJWVUVJSwt/+9rcutaWiooK5c+cybdo0Fi5cyL59+wAoLy/n0ksv5dhjj2XcuHF88MEHfPe732X06NFce+21QChjfdRRR3H22WdTUlLCaaedhtvt7nS711xzDXPnzuXPf/4zzz//PDNnzmTKlCkcf/zx7N+/n507d3LPPfdw2223UVpayltvvcWyZctaLAetZ9/XrFnDvHnz+NGPfsSkSZO63Q/pRDLGImN9v2wIj7y/i0fW7uL7ZUMSuq//e28XDU0Bzjy668t0CiFEr/TSVfDNp/HdZv9J8O2buvz0jz76iM8++4yBAwcye/Zs3nnnHcaPH8/TTz/Nli1bUErhcrmOeN3y5cv5y1/+wty5c7niiivC9z/wwAPk5eXxwQcf0NjYyOzZs1mwYAHDhw9vtw0+n4+LL76YZ599lj59+vD444/z61//mpUrVwJgsVh48803+fOf/8zJJ59MRUUFBQUFjBw5kksvvRSArVu38sADDzB79mx+8pOfcPfdd3PJJZd0uF2Xy8Ubb7wBQHV1Ne+//z5KKe6//35uueUW/vd//5cLLrigRVb7gQceaPd9rFu3jo0bNzJ8+HDuvffeqPsh3UhgLDLWlYuO4qtqDx/vdSV8XzUeH/PH9eXyhWMTvi8hhBCxmTFjBoMHDwagtLSUnTt3cvTRR2Oz2TjnnHNYvHgxS5YsafGampoaXC4Xc+fOBeDMM8/kpZdeAuDll1/mk08+CWdVa2pq2L59e4cB4datW9m4cSMnnHACEMo6DxgwIPz40qVLAZg0aRITJkwIPzZixAj27NmD0+lkyJAhzJ49G4Af//jH3HHHHSxatKjD7Z5++unh23v37uX0009n3759NDU1dSuAnTFjRvh13emHdCOBscho+Q5zUuqMXe4m8h0y6E4IIToVRWY3UaxWa/i20WgM19uuW7eOV199lccee4w777yT1157Lfw8TdNQSrW5PU3T+Mtf/sLChQu73AZN05gwYQLvvfdeh200GAwt2mswGPD7/QBHtEcp1el2s7KywrcvvvhifvWrX7F06VLWrFnDihUr2nyNyWQiGAyG2x05YDBye93ph3QjNcYio+U5LNR6fQSCWsL20eQP0tAUCK+2J4QQouepr6+npqaGE088kdtvvz08WE7ndDrJy8vj7bffBuCRRx4JP7Zw4UL++te/4vOFEjHbtm2joaGhw/2NHTuWgwcPhgNYn8/HZ599FlWbd+/eHX79o48+yjHHHBPVdmtqahg0aBAADz30UPj+nJwc6urqwr8XFxdTUVEBwLPPPht+n611px/SjQTGIqM57WY0Deq8icsa18j8xUII0ePV1dWxZMkSSkpKmDt3LrfddtsRz3nwwQf52c9+xqxZs7Db7eH7zznnHMaPH8/UqVOZOHEi559/fjir2x6LxcJTTz3FlVdeyeTJkyktLY16irRx48bx0EMPUVJSQlVVFRdeeGFU212xYgXf+973mDNnDkVFReH7TzrpJJ5++unw4Ltzzz2XN954gxkzZrB27doWWeJI3emHdKP0kZjJMH36dG39+vVJ258Q//pwL7964mPWXF5OcVHbf8ix2nGgjuP/9CZ3/HAKSycPTMg+hBCiJ9u8eTPjxo1LdTMyys6dO1myZAkbN25MdVPSQlufMaVUhaZp06PZjmSMRUbTs7jVCVwBrzq8sIdkjIUQQoieTAJjkdHymlehcyVwBbzwindSSiGEECJJiouLJVucABIYi4yWry8NncCZKVzN2WiZlUIIIYTo2SQwFhnN2RysuhJYSqEPvsuTjLEQQgjRo0lgLDJari00VXeiSymMBkWOVaYFF0IIIXoyCYxFRjMZDeTYTAld5MPlaSLPbm534nchhBBC9AwSGIuM53SYw+UOieBy+2RGCiGESHO///3vmTBhAiUlJZSWlrJ27VogNPfupk2b4rKP4uJiDh061OFzbrzxxqi3u2rVKn7+85+3uO/BBx+ktLSU0tJSLBYLkyZNorS0lKuuuirq7SfD7bffjtvtTnUzOiXXfkXGc9otCa8xlvpiIYRIX++99x4vvPACH374IVarlUOHDoWXNb7//vuT2pYbb7yRa665JubtLF++nOXLlwOhgPz1119vsUhHsmmahqZpGAxt51xvv/12fvzjH+NwOLq8TX2p7mSSjLHIeE6HOeE1xjIjhRBCpK99+/ZRVFSE1WoFoKioiIEDQwsylZeXoy8+lp2dzZVXXsm0adM4/vjjWbduHeXl5YwYMYLnnnsOODJ7u2TJEtasWXPEPr/zne8wbdo0JkyYwL333gvAVVddhcfjobS0lDPOOAOAhx9+mBkzZlBaWsr5559PIBAAQhnhMWPGMHfuXN55550uv9dbb72VsrIySkpKuP7664HQYiBHHXUU55xzDhMnTuSMM87glVdeYfbs2YwePZp169YBoZXwzjzzTI477jhGjx7Nfffd1+l2x40bx0UXXcTUqVPZs2cPF154IdOnT2fChAnh591xxx18/fXXzJs3j3nz5oX7WvfUU0+xbNkyAJYtW8avfvUr5s2bx5VXXsnnn3/OokWLmDZtGnPmzGHLli1d7ovukIyxyHhOh4UPdlZxyt1dP7BEY9v+Okb3ze78iUIIIbh53c1sqYpvcHNUwVFcOePKdh9fsGABN9xwA2PGjOH444/n9NNPZ+7cuUc8r6GhgfLycm6++WZOOeUUrr32WlavXs2mTZs4++yzWbp0aZfbtHLlSgoKCvB4PJSVlXHqqady0003ceedd7JhwwYgtFrb448/zjvvvIPZbOaiiy7ikUce4YQTTuD666+noqKCvLw85s2bx5QpUzrd58svv8z27dtZt24dmqaxdOlS3nzzTYYOHcqOHTt48sknuffeeykrK+Mf//gHb7/9Ns899xw33ngjzzzzDACffPIJ77//Pg0NDUyZMoXFixezcePGdre7detWHnzwQe6++24gVLJSUFBAIBBg/vz5fPLJJ/ziF7/gT3/6U5ez2tu2beOVV17BaDQyf/587rnnHkaPHs3atWu56KKLeO2117r8/xAtCYxFxjtlysCEllLMHFHI0lJZCloIIdJVdnY2FRUVvPXWW7z++uucfvrp3HTTTeEspc5isbBo0SIAJk2ahNVqxWw2M2nSJHbu3BnVPu+44w6efvppAPbs2cP27dspLCxs8ZxXX32ViooKysrKAPB4PPTt25e1a9dSXl5Onz59ADj99NPZtm1bp/t8+eWXefnll8NBdH19Pdu3b2fo0KEMHz6cSZMmATBhwgTmz5+PUuqI93byySdjt9ux2+3MmzePdevW8fbbb7e73WHDhnH00UeHX//EE09w77334vf72bdvH5s2baKkpCSqvvve976H0Wikvr6ed999l+9973vhxxobG6PaVrQkMBYZ77ij+nHcUf1S3QwhhBDQYWY3kYxGI+Xl5ZSXlzNp0iQeeuihIwJjs/nwDEMGgyFcemEwGPD7/QCYTCaCwWD4NV6v94h9rVmzhldeeYX33nsPh8NBeXl5m8/TNI2zzz6bP/zhDy3uf+aZZ7o105GmaVx99dWcf/75Le7fuXNn+L109N6AI/arlOpwu1lZWeHfv/zyS/74xz/ywQcfkJ+fz7Jly9p836330/o5+jaDwSBOpzOcYU8GqTEWQgghREbbunUr27dvD/++YcMGhg0b1q1tFRcXs2HDBoLBIHv27AnX50aqqakhPz8fh8PBli1beP/998OPmc1mfL7QuJf58+fz1FNPceDAAQCqqqrYtWsXM2fOZM2aNVRWVuLz+XjyySe71LaFCxeycuVK6uvrAfjqq6/C2+6qZ599Fq/XS2VlJWvWrKGsrKzL262trSUrK4u8vDz279/PSy+9FH4sJyeHurq68O/9+vVj8+bNBIPBcGa9tdzcXIYPHx5+/5qm8fHHH0f1fqIlGWMhhBBCZLT6+nouvvhiXC4XJpOJUaNGhQfERWv27NnhsoSJEycyderUI56zaNEi7rnnHkpKShg7dmyLUoPzzjuPkpISpk6dyiOPPMLvfvc7FixYQDAYxGw2c9ddd3H00UezYsUKZs2axYABA5g6dWp4UF5HFixYwObNm5k1axYQKiF5+OGHMRqNXX5/M2bMYPHixezevZvf/OY3DBw4kIEDB3Zpu5MnT2bKlClMmDCBESNGMHv27Bbv+9vf/jYDBgzg9ddf56abbmLJkiUMGTKEiRMnhoPu1h555BEuvPBCfve73+Hz+fjBD37A5MmTu/x+oqU0TUvYxlubPn26po/8FEIIIUTvsHnzZsaNG5fqZohOrFixguzsbC6//PJUNyVqbX3GlFIVmqZNj2Y7UkohhBBCCCEEUkohhBBCCCEIZYx7O8kYCyGEEEIIgQTGQgghhEiCZI5pEr1LPD9bEhgLIYQQIqFsNhuVlZUSHIu40zSNyspKbDZbXLYnNcZCCCGESKjBgwezd+9eDh48mOqmiAxks9kYPHhwXLYlgbEQQgghEspsNjN8+PBUN0OITkkphRBCCCGEEEhgLIQQQgghBCCBsRBCCCGEEECSl4RWSh0EdjX/WgQcStrOM5f0Y+ykD2MnfRgf0o+xkz6MnfRh7KQP4yPWfhymaVqfaF6Q1MC4xY6VWh/t+tXiSNKPsZM+jJ30YXxIP8ZO+jB20oexkz6Mj1T0o5RSCCGEEEIIgQTGQgghhBBCAKkNjO9N4b4zifRj7KQPYyd9GB/Sj7GTPoyd9GHspA/jI+n9mLIaYyGEEEIIIdKJlFIIIYQQQghBFwNjpdQipdRWpdQOpdRVrR67uPmxz5RSt7Tz+gKl1Gql1Pbmn/nN9xcqpV5XStUrpe7sYP8/b963ppQqirg/Tyn1vFLq4+b9L+/a206+BPbhCUqpCqXUp80/j2vn9cOVUmubX/+4UsrSfL9SSt3R3K5PlFJT4/3e4yVd+7D5sXKl1Ibm/b8Rz/cdb2nQj+39PZ/R/Bn8RCn1rlJqcjzfdzylcR/KMVGpGc1/ixua++GUdl7f44+JkL792PxYjzgupkEfyjExcX0Y/TFR07QO/wFG4HNgBGABPgbGNz82D3gFsDb/3redbdwCXNV8+yrg5ubbWcAxwAXAnR20YQpQDOwEiiLuvyZiW32AKsDS2XtK9r8E9+EUYGDz7YnAV+28/gngB8237wEubL59IvASoICjgbWp7q8e2IdOYBMwtKP9p8O/NOnH9v6evwXkN9/+tnwWu9WHckwEB2Bqvj0AOKD/3ur1PfqY2AP60UkPOC6mSR/KMTFxfRj1MbErb3gW8N+I368Grm6+/QRwfBe2sRUYEPHGtrZ6fBkdBMYRz2v9hq8G7iZ0ABsO7AAMqf6QpKIPm+9XQKX+AWx1/6GID1e4PcDfgB+2tZ90+pfmfXgR8LtU91FP6MdWz2nx99zqsXzaCQpT/S+d+1COiUc8Zziwn1Yn0kw4JvaAfuwRx8VU92Gr58gxMc592J1jYldKKQYBeyJ+39t8H8AYYE7zZZQ3lFJl7Wyjn6Zp+wCaf/btwn674k5gHPA18ClwiaZpwThtO56S1YenAh9pmtbY6v5CwKVpmr+N/XfUtnSSzn04BshXSq1RocvfZ0X1zpIr1f3YVT8llLVLR+nch3JMBJRSM5VSnxHqgwsi/m51mXBMhPTux55yXEx1H3ZVrz0mxtiHUR8TTV3YqGrjPi3i9fmELjeVAU8opUZozWF6EiwENgDHASOB1UqptzRNq03S/rsq4X2olJoA3AwsiHL/HT2WTtK5D03ANGA+YAfeU0q9r2natmj2nySp7seuvH4eoZPAMd15fRKkcx/KMRHQNG0tMEEpNQ54SCn1kqZp3i7uv6ccEyG9+7GnHBdT3YedN7CXHxNj7MOoj4ldyRjvBYZE/D6YUOStP/YvLWQdEASKlFIPNhdK/7v5efuVUgMAmn8e6OIb6szyiP3vAL4EjorTtuMpoX2olBoMPA2cpWna523s/xDgVErpX4Ra77+9tqWTdO/D/2ia1qBp2iHgTWByjO83UVLdjx1SSpUA9wMna5pWGe3rkySd+1COiRE0TdsMNBCq146UCcdESP9+7AnHxVT3YYfkmHhYN/sw6mNiVwLjD4DRKjTy1AL8AHiu+bFnCEXhKKXGECq6PqRp2nJN00o1TTux+XnPAWc33z4beLbr76lDuwl9G0Up1Q8YC3wRp23HU8L6UCnlBF4kVM/zTls7b/5m9jpwWuvXN2/3LBVyNFCjX85IM+nch88SulRkUko5gJnA5pjfcWKktB87opQaCvwLODMNs0qR0rYPkWOiPkuCqfn2MEJ9sDNy5xlyTIT07seeclxMaR92RI6Jsfch3Tkmal0rrD4R2EZo1OGvI+63AA8DG4EPgePaeX0h8CqwvflnQcRjOwmNEqwn9M1ifBuv/0XzY35C30Lub75/IPAyobqRjcCPu/J+UvEvUX0IXEvoG9SGiH9HjPokNFp0HaHC8yc5PEJUAXc1t+tTYHqq+6qn9WHzY1cQGoG9Efhlqvsqzfuxvb/n+4HqiNeuT3Vf9cA+lGMinAl81tx3HwLfaef1Pf6YmM792PxYjzgupkEfyjExcX0Y9TFRVr4TQgghhBACWflOCCGEEEIIQAJjIYQQQgghAAmMhRBCCCGEACQwFkIIIYQQApDAWAghhBBCCEACYyGEEEIIIQAJjIUQQgghhAAkMBZCCCGEEAKA/w+CefCEkaX2KAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -686,7 +702,7 @@ " 24.5\n", " 24.300000\n", " 61.321333\n", - " 23.639075\n", + " 23.324679\n", " \n", " \n", " 1\n", @@ -710,7 +726,7 @@ " 15.5\n", " 24.283333\n", " 57.926100\n", - " 23.243140\n", + " 22.632962\n", " \n", " \n", " 2\n", @@ -734,7 +750,7 @@ " 15.2\n", " 24.083333\n", " 54.902033\n", - " 23.335477\n", + " 22.696056\n", " \n", " \n", " 3\n", @@ -758,7 +774,7 @@ " 14.9\n", " 23.933333\n", " 73.860700\n", - " 23.524368\n", + " 23.299014\n", " \n", " \n", " 4\n", @@ -782,7 +798,7 @@ " 18.2\n", " 23.666667\n", " 76.042533\n", - " 23.793051\n", + " 23.778789\n", " \n", " \n", " ...\n", @@ -830,7 +846,7 @@ " 16.4\n", " 22.300000\n", " 361.247267\n", - " 24.062549\n", + " 20.947152\n", " \n", " \n", " 536\n", @@ -854,7 +870,7 @@ " 17.6\n", " 22.300000\n", " 596.456167\n", - " 24.158706\n", + " 21.039538\n", " \n", " \n", " 537\n", @@ -878,7 +894,7 @@ " 18.5\n", " 22.316667\n", " 550.335400\n", - " 24.269707\n", + " 21.153586\n", " \n", " \n", " 538\n", @@ -902,7 +918,7 @@ " 20.0\n", " 22.450000\n", " 627.393133\n", - " 24.348123\n", + " 21.322202\n", " \n", " \n", " 539\n", @@ -926,7 +942,7 @@ " 23.3\n", " 22.700000\n", " 564.347267\n", - " 24.393026\n", + " 21.371962\n", " \n", " \n", "\n", @@ -974,17 +990,17 @@ "539 -9999 -9999 349.181391 215.275641 58.379310 \n", "\n", " Setpoint SupplyTemp InsideTemp SolRad SimulatedTemp \n", - "0 23.5 24.5 24.300000 61.321333 23.639075 \n", - "1 23.5 15.5 24.283333 57.926100 23.243140 \n", - "2 23.5 15.2 24.083333 54.902033 23.335477 \n", - "3 23.5 14.9 23.933333 73.860700 23.524368 \n", - "4 23.5 18.2 23.666667 76.042533 23.793051 \n", + "0 23.5 24.5 24.300000 61.321333 23.324679 \n", + "1 23.5 15.5 24.283333 57.926100 22.632962 \n", + "2 23.5 15.2 24.083333 54.902033 22.696056 \n", + "3 23.5 14.9 23.933333 73.860700 23.299014 \n", + "4 23.5 18.2 23.666667 76.042533 23.778789 \n", ".. ... ... ... ... ... \n", - "535 24.5 16.4 22.300000 361.247267 24.062549 \n", - "536 24.5 17.6 22.300000 596.456167 24.158706 \n", - "537 24.5 18.5 22.316667 550.335400 24.269707 \n", - "538 24.5 20.0 22.450000 627.393133 24.348123 \n", - "539 24.5 23.3 22.700000 564.347267 24.393026 \n", + "535 24.5 16.4 22.300000 361.247267 20.947152 \n", + "536 24.5 17.6 22.300000 596.456167 21.039538 \n", + "537 24.5 18.5 22.316667 550.335400 21.153586 \n", + "538 24.5 20.0 22.450000 627.393133 21.322202 \n", + "539 24.5 23.3 22.700000 564.347267 21.371962 \n", "\n", "[540 rows x 25 columns]" ] @@ -1080,7 +1096,7 @@ " 4325.034483\n", " 24.300000\n", " 61.321333\n", - " 23.639075\n", + " 23.324679\n", " \n", " \n", " 2017-06-01 20:05:00+02:00\n", @@ -1093,7 +1109,7 @@ " 4287.000000\n", " 24.283333\n", " 57.926100\n", - " 23.243140\n", + " 22.632962\n", " \n", " \n", " 2017-06-01 20:10:00+02:00\n", @@ -1106,7 +1122,7 @@ " 4319.766667\n", " 24.083333\n", " 54.902033\n", - " 23.335477\n", + " 22.696056\n", " \n", " \n", " 2017-06-01 20:15:00+02:00\n", @@ -1119,7 +1135,7 @@ " 2893.344828\n", " 23.933333\n", " 73.860700\n", - " 23.524368\n", + " 23.299014\n", " \n", " \n", " 2017-06-01 20:20:00+02:00\n", @@ -1132,7 +1148,7 @@ " 59.137931\n", " 23.666667\n", " 76.042533\n", - " 23.793051\n", + " 23.778789\n", " \n", " \n", " ...\n", @@ -1158,7 +1174,7 @@ " 62.137931\n", " 22.300000\n", " 361.247267\n", - " 24.062549\n", + " 20.947152\n", " \n", " \n", " 2017-06-03 16:40:00+02:00\n", @@ -1171,7 +1187,7 @@ " 57.482759\n", " 22.300000\n", " 596.456167\n", - " 24.158706\n", + " 21.039538\n", " \n", " \n", " 2017-06-03 16:45:00+02:00\n", @@ -1184,7 +1200,7 @@ " 56.233333\n", " 22.316667\n", " 550.335400\n", - " 24.269707\n", + " 21.153586\n", " \n", " \n", " 2017-06-03 16:50:00+02:00\n", @@ -1197,7 +1213,7 @@ " 53.379310\n", " 22.450000\n", " 627.393133\n", - " 24.348123\n", + " 21.322202\n", " \n", " \n", " 2017-06-03 16:55:00+02:00\n", @@ -1210,7 +1226,7 @@ " 58.379310\n", " 22.700000\n", " 564.347267\n", - " 24.393026\n", + " 21.371962\n", " \n", " \n", "\n", @@ -1248,17 +1264,17 @@ "\n", " SolRad SimulatedTemp \n", "timestamp \n", - "2017-06-01 20:00:00+02:00 61.321333 23.639075 \n", - "2017-06-01 20:05:00+02:00 57.926100 23.243140 \n", - "2017-06-01 20:10:00+02:00 54.902033 23.335477 \n", - "2017-06-01 20:15:00+02:00 73.860700 23.524368 \n", - "2017-06-01 20:20:00+02:00 76.042533 23.793051 \n", + "2017-06-01 20:00:00+02:00 61.321333 23.324679 \n", + "2017-06-01 20:05:00+02:00 57.926100 22.632962 \n", + "2017-06-01 20:10:00+02:00 54.902033 22.696056 \n", + "2017-06-01 20:15:00+02:00 73.860700 23.299014 \n", + "2017-06-01 20:20:00+02:00 76.042533 23.778789 \n", "... ... ... \n", - "2017-06-03 16:35:00+02:00 361.247267 24.062549 \n", - "2017-06-03 16:40:00+02:00 596.456167 24.158706 \n", - "2017-06-03 16:45:00+02:00 550.335400 24.269707 \n", - "2017-06-03 16:50:00+02:00 627.393133 24.348123 \n", - "2017-06-03 16:55:00+02:00 564.347267 24.393026 \n", + "2017-06-03 16:35:00+02:00 361.247267 20.947152 \n", + "2017-06-03 16:40:00+02:00 596.456167 21.039538 \n", + "2017-06-03 16:45:00+02:00 550.335400 21.153586 \n", + "2017-06-03 16:50:00+02:00 627.393133 21.322202 \n", + "2017-06-03 16:55:00+02:00 564.347267 21.371962 \n", "\n", "[540 rows x 10 columns]" ] @@ -1342,7 +1358,7 @@ " 4325.034483\n", " 24.300000\n", " 61.321333\n", - " 23.639075\n", + " 23.324679\n", " \n", " \n", " 2017-06-01 20:05:00+02:00\n", @@ -1355,7 +1371,7 @@ " 4287.000000\n", " 24.283333\n", " 57.926100\n", - " 23.243140\n", + " 22.632962\n", " \n", " \n", " 2017-06-01 20:10:00+02:00\n", @@ -1368,7 +1384,7 @@ " 4319.766667\n", " 24.083333\n", " 54.902033\n", - " 23.335477\n", + " 22.696056\n", " \n", " \n", " 2017-06-01 20:15:00+02:00\n", @@ -1381,7 +1397,7 @@ " 2893.344828\n", " 23.933333\n", " 73.860700\n", - " 23.524368\n", + " 23.299014\n", " \n", " \n", " 2017-06-01 20:20:00+02:00\n", @@ -1394,7 +1410,7 @@ " 59.137931\n", " 23.666667\n", " 76.042533\n", - " 23.793051\n", + " 23.778789\n", " \n", " \n", " ...\n", @@ -1420,7 +1436,7 @@ " 62.137931\n", " 22.300000\n", " 361.247267\n", - " 24.062549\n", + " 20.947152\n", " \n", " \n", " 2017-06-03 16:40:00+02:00\n", @@ -1433,7 +1449,7 @@ " 57.482759\n", " 22.300000\n", " 596.456167\n", - " 24.158706\n", + " 21.039538\n", " \n", " \n", " 2017-06-03 16:45:00+02:00\n", @@ -1446,7 +1462,7 @@ " 56.233333\n", " 22.316667\n", " 550.335400\n", - " 24.269707\n", + " 21.153586\n", " \n", " \n", " 2017-06-03 16:50:00+02:00\n", @@ -1459,7 +1475,7 @@ " 53.379310\n", " 22.450000\n", " 627.393133\n", - " 24.348123\n", + " 21.322202\n", " \n", " \n", " 2017-06-03 16:55:00+02:00\n", @@ -1472,7 +1488,7 @@ " 58.379310\n", " 22.700000\n", " 564.347267\n", - " 24.393026\n", + " 21.371962\n", " \n", " \n", "\n", @@ -1510,17 +1526,17 @@ "\n", " SolRad SimulatedTemp \n", "timestamp \n", - "2017-06-01 20:00:00+02:00 61.321333 23.639075 \n", - "2017-06-01 20:05:00+02:00 57.926100 23.243140 \n", - "2017-06-01 20:10:00+02:00 54.902033 23.335477 \n", - "2017-06-01 20:15:00+02:00 73.860700 23.524368 \n", - "2017-06-01 20:20:00+02:00 76.042533 23.793051 \n", + "2017-06-01 20:00:00+02:00 61.321333 23.324679 \n", + "2017-06-01 20:05:00+02:00 57.926100 22.632962 \n", + "2017-06-01 20:10:00+02:00 54.902033 22.696056 \n", + "2017-06-01 20:15:00+02:00 73.860700 23.299014 \n", + "2017-06-01 20:20:00+02:00 76.042533 23.778789 \n", "... ... ... \n", - "2017-06-03 16:35:00+02:00 361.247267 24.062549 \n", - "2017-06-03 16:40:00+02:00 596.456167 24.158706 \n", - "2017-06-03 16:45:00+02:00 550.335400 24.269707 \n", - "2017-06-03 16:50:00+02:00 627.393133 24.348123 \n", - "2017-06-03 16:55:00+02:00 564.347267 24.393026 \n", + "2017-06-03 16:35:00+02:00 361.247267 20.947152 \n", + "2017-06-03 16:40:00+02:00 596.456167 21.039538 \n", + "2017-06-03 16:45:00+02:00 550.335400 21.153586 \n", + "2017-06-03 16:50:00+02:00 627.393133 21.322202 \n", + "2017-06-03 16:55:00+02:00 564.347267 21.371962 \n", "\n", "[540 rows x 10 columns]" ] @@ -1535,6 +1551,261 @@ "df" ] }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timestamp_intzenithazimuthdnidhiOutsideTempuySolRadSimulatedTemp
timestamp
2017-06-01 20:00:00+02:0020170601200078.691622290.4308197.25133759.90864422.04325.03448324.30000061.32133323.324679
2017-06-01 20:05:00+02:0020170601200579.489651291.2795017.67211456.53708822.04287.00000024.28333357.92610022.632962
2017-06-01 20:10:00+02:0020170601201080.282334292.1305038.42313953.49267422.04319.76666724.08333354.90203322.696056
2017-06-01 20:15:00+02:0020170601201581.069332292.98412352.65724465.77023922.02893.34482823.93333373.86070023.299014
2017-06-01 20:20:00+02:0020170601202081.850261293.84065394.36440362.82917722.059.13793123.66666776.04253323.778789
.................................
2017-06-03 16:35:00+02:0020170603163543.923091252.72227564.970386314.46261424.062.13793122.300000361.24726720.947152
2017-06-03 16:40:00+02:0020170603164044.746130253.882437530.910153219.48589024.057.48275922.300000596.45616721.039538
2017-06-03 16:45:00+02:0020170603164545.573942255.018953428.243363250.65397324.056.23333322.316667550.33540021.153586
2017-06-03 16:50:00+02:0020170603165046.406107256.133161667.400308167.32881624.053.37931022.450000627.39313321.322202
2017-06-03 16:55:00+02:0020170603165547.242228257.226338514.333795215.27564124.058.37931022.700000564.34726721.371962
\n", + "

540 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " timestamp_int zenith azimuth dni \\\n", + "timestamp \n", + "2017-06-01 20:00:00+02:00 201706012000 78.691622 290.430819 7.251337 \n", + "2017-06-01 20:05:00+02:00 201706012005 79.489651 291.279501 7.672114 \n", + "2017-06-01 20:10:00+02:00 201706012010 80.282334 292.130503 8.423139 \n", + "2017-06-01 20:15:00+02:00 201706012015 81.069332 292.984123 52.657244 \n", + "2017-06-01 20:20:00+02:00 201706012020 81.850261 293.840653 94.364403 \n", + "... ... ... ... ... \n", + "2017-06-03 16:35:00+02:00 201706031635 43.923091 252.722275 64.970386 \n", + "2017-06-03 16:40:00+02:00 201706031640 44.746130 253.882437 530.910153 \n", + "2017-06-03 16:45:00+02:00 201706031645 45.573942 255.018953 428.243363 \n", + "2017-06-03 16:50:00+02:00 201706031650 46.406107 256.133161 667.400308 \n", + "2017-06-03 16:55:00+02:00 201706031655 47.242228 257.226338 514.333795 \n", + "\n", + " dhi OutsideTemp u y \\\n", + "timestamp \n", + "2017-06-01 20:00:00+02:00 59.908644 22.0 4325.034483 24.300000 \n", + "2017-06-01 20:05:00+02:00 56.537088 22.0 4287.000000 24.283333 \n", + "2017-06-01 20:10:00+02:00 53.492674 22.0 4319.766667 24.083333 \n", + "2017-06-01 20:15:00+02:00 65.770239 22.0 2893.344828 23.933333 \n", + "2017-06-01 20:20:00+02:00 62.829177 22.0 59.137931 23.666667 \n", + "... ... ... ... ... \n", + "2017-06-03 16:35:00+02:00 314.462614 24.0 62.137931 22.300000 \n", + "2017-06-03 16:40:00+02:00 219.485890 24.0 57.482759 22.300000 \n", + "2017-06-03 16:45:00+02:00 250.653973 24.0 56.233333 22.316667 \n", + "2017-06-03 16:50:00+02:00 167.328816 24.0 53.379310 22.450000 \n", + "2017-06-03 16:55:00+02:00 215.275641 24.0 58.379310 22.700000 \n", + "\n", + " SolRad SimulatedTemp \n", + "timestamp \n", + "2017-06-01 20:00:00+02:00 61.321333 23.324679 \n", + "2017-06-01 20:05:00+02:00 57.926100 22.632962 \n", + "2017-06-01 20:10:00+02:00 54.902033 22.696056 \n", + "2017-06-01 20:15:00+02:00 73.860700 23.299014 \n", + "2017-06-01 20:20:00+02:00 76.042533 23.778789 \n", + "... ... ... \n", + "2017-06-03 16:35:00+02:00 361.247267 20.947152 \n", + "2017-06-03 16:40:00+02:00 596.456167 21.039538 \n", + "2017-06-03 16:45:00+02:00 550.335400 21.153586 \n", + "2017-06-03 16:50:00+02:00 627.393133 21.322202 \n", + "2017-06-03 16:55:00+02:00 564.347267 21.371962 \n", + "\n", + "[540 rows x 10 columns]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1544,7 +1815,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1563,7 +1834,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -1575,7 +1846,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1584,7 +1855,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -1653,7 +1924,7 @@ " 2893.344828\n", " 23.933333\n", " 73.860700\n", - " 23.524368\n", + " 23.299014\n", " 4319.766667\n", " 24.083333\n", " 24.283333\n", @@ -1670,7 +1941,7 @@ " 59.137931\n", " 23.666667\n", " 76.042533\n", - " 23.793051\n", + " 23.778789\n", " 2893.344828\n", " 23.933333\n", " 24.083333\n", @@ -1687,7 +1958,7 @@ " 58.241379\n", " 23.650000\n", " 64.981967\n", - " 23.690749\n", + " 23.767140\n", " 59.137931\n", " 23.666667\n", " 23.933333\n", @@ -1704,7 +1975,7 @@ " 59.000000\n", " 23.633333\n", " 46.667567\n", - " 23.616543\n", + " 23.760643\n", " 58.241379\n", " 23.650000\n", " 23.666667\n", @@ -1721,7 +1992,7 @@ " 61.103448\n", " 23.800000\n", " 35.002967\n", - " 23.566295\n", + " 23.751253\n", " 59.000000\n", " 23.633333\n", " 23.650000\n", @@ -1755,7 +2026,7 @@ " 62.137931\n", " 22.300000\n", " 361.247267\n", - " 24.062549\n", + " 20.947152\n", " 4348.068966\n", " 22.500000\n", " 22.683333\n", @@ -1772,7 +2043,7 @@ " 57.482759\n", " 22.300000\n", " 596.456167\n", - " 24.158706\n", + " 21.039538\n", " 62.137931\n", " 22.300000\n", " 22.500000\n", @@ -1789,7 +2060,7 @@ " 56.233333\n", " 22.316667\n", " 550.335400\n", - " 24.269707\n", + " 21.153586\n", " 57.482759\n", " 22.300000\n", " 22.300000\n", @@ -1806,7 +2077,7 @@ " 53.379310\n", " 22.450000\n", " 627.393133\n", - " 24.348123\n", + " 21.322202\n", " 56.233333\n", " 22.316667\n", " 22.300000\n", @@ -1823,7 +2094,7 @@ " 58.379310\n", " 22.700000\n", " 564.347267\n", - " 24.393026\n", + " 21.371962\n", " 53.379310\n", " 22.450000\n", " 22.316667\n", @@ -1865,17 +2136,17 @@ "\n", " SolRad SimulatedTemp u_1 y_1 \\\n", "timestamp \n", - "2017-06-01 20:15:00+02:00 73.860700 23.524368 4319.766667 24.083333 \n", - "2017-06-01 20:20:00+02:00 76.042533 23.793051 2893.344828 23.933333 \n", - "2017-06-01 20:25:00+02:00 64.981967 23.690749 59.137931 23.666667 \n", - "2017-06-01 20:30:00+02:00 46.667567 23.616543 58.241379 23.650000 \n", - "2017-06-01 20:35:00+02:00 35.002967 23.566295 59.000000 23.633333 \n", + "2017-06-01 20:15:00+02:00 73.860700 23.299014 4319.766667 24.083333 \n", + "2017-06-01 20:20:00+02:00 76.042533 23.778789 2893.344828 23.933333 \n", + "2017-06-01 20:25:00+02:00 64.981967 23.767140 59.137931 23.666667 \n", + "2017-06-01 20:30:00+02:00 46.667567 23.760643 58.241379 23.650000 \n", + "2017-06-01 20:35:00+02:00 35.002967 23.751253 59.000000 23.633333 \n", "... ... ... ... ... \n", - "2017-06-03 16:35:00+02:00 361.247267 24.062549 4348.068966 22.500000 \n", - "2017-06-03 16:40:00+02:00 596.456167 24.158706 62.137931 22.300000 \n", - "2017-06-03 16:45:00+02:00 550.335400 24.269707 57.482759 22.300000 \n", - "2017-06-03 16:50:00+02:00 627.393133 24.348123 56.233333 22.316667 \n", - "2017-06-03 16:55:00+02:00 564.347267 24.393026 53.379310 22.450000 \n", + "2017-06-03 16:35:00+02:00 361.247267 20.947152 4348.068966 22.500000 \n", + "2017-06-03 16:40:00+02:00 596.456167 21.039538 62.137931 22.300000 \n", + "2017-06-03 16:45:00+02:00 550.335400 21.153586 57.482759 22.300000 \n", + "2017-06-03 16:50:00+02:00 627.393133 21.322202 56.233333 22.316667 \n", + "2017-06-03 16:55:00+02:00 564.347267 21.371962 53.379310 22.450000 \n", "\n", " y_2 y_3 \n", "timestamp \n", @@ -1894,7 +2165,7 @@ "[537 rows x 14 columns]" ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1912,7 +2183,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1930,7 +2201,7 @@ " \n", " # Select the potentially useful columns\n", " #df = df.loc[:, ['timestamp', 'zenith', 'azimuth', 'dni', 'dhi', 'OutsideTemp', 'Power', 'InsideTemp', 'SolRad', 'Setpoint']]\n", - " df = df.loc[:, ['timestamp','SolRad', 'OutsideTemp', 'Heat', 'InsideTemp']]\n", + " df = df.loc[:, ['timestamp','SolRad', 'OutsideTemp', 'Heat', 'SimulatedTemp']]\n", "\n", " df.drop(columns = ['timestamp'], inplace = True)\n", " df.loc[:, 'timestamp'] = df_data.index\n", @@ -1938,9 +2209,9 @@ " \n", " # Select the input/output and drop the columns that doesn't make to be used\n", " dyn_in = 'Heat'\n", - " dyn_out = 'InsideTemp' \n", + " dyn_out = 'SimulatedTemp' \n", " df.rename(columns = {dyn_in: 'u', dyn_out: 'y'}, inplace = True)\n", - "\n", + " \n", " # Add the regressive inputs/outputs\n", " for idx in range(1, lu + 1):\n", " df[f\"u_{idx}\"] = df['u'].shift(idx)\n", @@ -1956,7 +2227,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -1985,6 +2256,7 @@ " u\n", " y\n", " u_1\n", + " u_2\n", " y_1\n", " y_2\n", " y_3\n", @@ -1999,6 +2271,7 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", @@ -2006,56 +2279,61 @@ " 2017-06-01 20:15:00+02:00\n", " 73.860700\n", " 22.0\n", - " -8680.034483\n", - " 23.933333\n", - " -12959.300000\n", - " 24.083333\n", - " 24.283333\n", - " 24.300000\n", + " -14466.724138\n", + " 23.299014\n", + " -21598.833333\n", + " -21435.000000\n", + " 22.696056\n", + " 22.632962\n", + " 23.324679\n", " \n", " \n", " 2017-06-01 20:20:00+02:00\n", " 76.042533\n", " 22.0\n", - " -177.413793\n", - " 23.666667\n", - " -8680.034483\n", - " 23.933333\n", - " 24.083333\n", - " 24.283333\n", + " -295.689655\n", + " 23.778789\n", + " -14466.724138\n", + " -21598.833333\n", + " 23.299014\n", + " 22.696056\n", + " 22.632962\n", " \n", " \n", " 2017-06-01 20:25:00+02:00\n", " 64.981967\n", " 22.0\n", - " -174.724138\n", - " 23.650000\n", - " -177.413793\n", - " 23.666667\n", - " 23.933333\n", - " 24.083333\n", + " -291.206897\n", + " 23.767140\n", + " -295.689655\n", + " -14466.724138\n", + " 23.778789\n", + " 23.299014\n", + " 22.696056\n", " \n", " \n", " 2017-06-01 20:30:00+02:00\n", " 46.667567\n", " 22.0\n", - " 59.000000\n", - " 23.633333\n", - " -174.724138\n", - " 23.650000\n", - " 23.666667\n", - " 23.933333\n", + " -295.000000\n", + " 23.760643\n", + " -291.206897\n", + " -295.689655\n", + " 23.767140\n", + " 23.778789\n", + " 23.299014\n", " \n", " \n", " 2017-06-01 20:35:00+02:00\n", " 35.002967\n", " 22.0\n", - " 61.103448\n", - " 23.800000\n", - " 59.000000\n", - " 23.633333\n", - " 23.650000\n", - " 23.666667\n", + " -305.517241\n", + " 23.751253\n", + " -295.000000\n", + " -291.206897\n", + " 23.760643\n", + " 23.767140\n", + " 23.778789\n", " \n", " \n", " ...\n", @@ -2067,106 +2345,127 @@ " ...\n", " ...\n", " ...\n", + " ...\n", " \n", " \n", " 2017-07-20 05:35:00+02:00\n", " 3.260000\n", " 22.0\n", " -28.551724\n", - " 22.766667\n", + " 22.586479\n", " -27.931034\n", - " 22.750000\n", - " 22.733333\n", - " 22.750000\n", + " -19.137931\n", + " 22.586479\n", + " 22.586479\n", + " 22.586479\n", " \n", " \n", " 2017-07-20 05:40:00+02:00\n", " 3.250000\n", " 22.0\n", " -17.000000\n", - " 22.733333\n", + " 22.586479\n", " -28.551724\n", - " 22.766667\n", - " 22.750000\n", - " 22.733333\n", + " -27.931034\n", + " 22.586479\n", + " 22.586479\n", + " 22.586479\n", " \n", " \n", " 2017-07-20 05:45:00+02:00\n", " 3.240000\n", " 22.0\n", " -27.413793\n", - " 22.750000\n", + " 22.518578\n", " -17.000000\n", - " 22.733333\n", - " 22.766667\n", - " 22.750000\n", + " -28.551724\n", + " 22.586479\n", + " 22.586479\n", + " 22.586479\n", " \n", " \n", " 2017-07-20 05:50:00+02:00\n", " 3.340000\n", " 22.0\n", " -12.620690\n", - " 22.733333\n", + " 22.518578\n", " -27.413793\n", - " 22.750000\n", - " 22.733333\n", - " 22.766667\n", + " -17.000000\n", + " 22.518578\n", + " 22.586479\n", + " 22.586479\n", " \n", " \n", " 2017-07-20 05:55:00+02:00\n", " 3.380000\n", " 22.0\n", " -12.700000\n", - " 22.800000\n", + " 22.497085\n", " -12.620690\n", - " 22.733333\n", - " 22.750000\n", - " 22.733333\n", + " -27.413793\n", + " 22.518578\n", + " 22.518578\n", + " 22.586479\n", " \n", " \n", "\n", - "

4221 rows × 8 columns

\n", + "

4221 rows × 9 columns

\n", "" ], "text/plain": [ - " SolRad OutsideTemp u y \\\n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 73.860700 22.0 -8680.034483 23.933333 \n", - "2017-06-01 20:20:00+02:00 76.042533 22.0 -177.413793 23.666667 \n", - "2017-06-01 20:25:00+02:00 64.981967 22.0 -174.724138 23.650000 \n", - "2017-06-01 20:30:00+02:00 46.667567 22.0 59.000000 23.633333 \n", - "2017-06-01 20:35:00+02:00 35.002967 22.0 61.103448 23.800000 \n", - "... ... ... ... ... \n", - "2017-07-20 05:35:00+02:00 3.260000 22.0 -28.551724 22.766667 \n", - "2017-07-20 05:40:00+02:00 3.250000 22.0 -17.000000 22.733333 \n", - "2017-07-20 05:45:00+02:00 3.240000 22.0 -27.413793 22.750000 \n", - "2017-07-20 05:50:00+02:00 3.340000 22.0 -12.620690 22.733333 \n", - "2017-07-20 05:55:00+02:00 3.380000 22.0 -12.700000 22.800000 \n", + " SolRad OutsideTemp u y \\\n", + "timestamp \n", + "2017-06-01 20:15:00+02:00 73.860700 22.0 -14466.724138 23.299014 \n", + "2017-06-01 20:20:00+02:00 76.042533 22.0 -295.689655 23.778789 \n", + "2017-06-01 20:25:00+02:00 64.981967 22.0 -291.206897 23.767140 \n", + "2017-06-01 20:30:00+02:00 46.667567 22.0 -295.000000 23.760643 \n", + "2017-06-01 20:35:00+02:00 35.002967 22.0 -305.517241 23.751253 \n", + "... ... ... ... ... \n", + "2017-07-20 05:35:00+02:00 3.260000 22.0 -28.551724 22.586479 \n", + "2017-07-20 05:40:00+02:00 3.250000 22.0 -17.000000 22.586479 \n", + "2017-07-20 05:45:00+02:00 3.240000 22.0 -27.413793 22.518578 \n", + "2017-07-20 05:50:00+02:00 3.340000 22.0 -12.620690 22.518578 \n", + "2017-07-20 05:55:00+02:00 3.380000 22.0 -12.700000 22.497085 \n", "\n", - " u_1 y_1 y_2 y_3 \n", - "timestamp \n", - "2017-06-01 20:15:00+02:00 -12959.300000 24.083333 24.283333 24.300000 \n", - "2017-06-01 20:20:00+02:00 -8680.034483 23.933333 24.083333 24.283333 \n", - "2017-06-01 20:25:00+02:00 -177.413793 23.666667 23.933333 24.083333 \n", - "2017-06-01 20:30:00+02:00 -174.724138 23.650000 23.666667 23.933333 \n", - "2017-06-01 20:35:00+02:00 59.000000 23.633333 23.650000 23.666667 \n", - "... ... ... ... ... \n", - "2017-07-20 05:35:00+02:00 -27.931034 22.750000 22.733333 22.750000 \n", - "2017-07-20 05:40:00+02:00 -28.551724 22.766667 22.750000 22.733333 \n", - "2017-07-20 05:45:00+02:00 -17.000000 22.733333 22.766667 22.750000 \n", - "2017-07-20 05:50:00+02:00 -27.413793 22.750000 22.733333 22.766667 \n", - "2017-07-20 05:55:00+02:00 -12.620690 22.733333 22.750000 22.733333 \n", + " u_1 u_2 y_1 y_2 \\\n", + "timestamp \n", + "2017-06-01 20:15:00+02:00 -21598.833333 -21435.000000 22.696056 22.632962 \n", + "2017-06-01 20:20:00+02:00 -14466.724138 -21598.833333 23.299014 22.696056 \n", + "2017-06-01 20:25:00+02:00 -295.689655 -14466.724138 23.778789 23.299014 \n", + "2017-06-01 20:30:00+02:00 -291.206897 -295.689655 23.767140 23.778789 \n", + "2017-06-01 20:35:00+02:00 -295.000000 -291.206897 23.760643 23.767140 \n", + "... ... ... ... ... \n", + "2017-07-20 05:35:00+02:00 -27.931034 -19.137931 22.586479 22.586479 \n", + "2017-07-20 05:40:00+02:00 -28.551724 -27.931034 22.586479 22.586479 \n", + "2017-07-20 05:45:00+02:00 -17.000000 -28.551724 22.586479 22.586479 \n", + "2017-07-20 05:50:00+02:00 -27.413793 -17.000000 22.518578 22.586479 \n", + "2017-07-20 05:55:00+02:00 -12.620690 -27.413793 22.518578 22.518578 \n", "\n", - "[4221 rows x 8 columns]" + " y_3 \n", + "timestamp \n", + "2017-06-01 20:15:00+02:00 23.324679 \n", + "2017-06-01 20:20:00+02:00 22.632962 \n", + "2017-06-01 20:25:00+02:00 22.696056 \n", + "2017-06-01 20:30:00+02:00 23.299014 \n", + "2017-06-01 20:35:00+02:00 23.778789 \n", + "... ... \n", + "2017-07-20 05:35:00+02:00 22.586479 \n", + "2017-07-20 05:40:00+02:00 22.586479 \n", + "2017-07-20 05:45:00+02:00 22.586479 \n", + "2017-07-20 05:50:00+02:00 22.586479 \n", + "2017-07-20 05:55:00+02:00 22.586479 \n", + "\n", + "[4221 rows x 9 columns]" ] }, - "execution_count": 25, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "#lu = 1, ly = 3 defined in a preceding cell\n", + "lu, ly = 2, 3\n", + "\n", "df_compiled = load_autoregressive_df(1, lu = lu, ly = ly)\n", "for idx in [2,4,6,7]:\n", " df_compiled = df_compiled.append(load_autoregressive_df(idx, lu = lu, ly = ly))\n", @@ -2182,7 +2481,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 27, "metadata": {}, "outputs": [], "source": [ @@ -2191,7 +2490,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -2207,11 +2506,11 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ - "df_sampled = df_compiled.sample(n = 150)" + "df_sampled = df_compiled.sample(n = 500)" ] }, { @@ -2223,26 +2522,34 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "df_sampled.to_pickle(\"gp_trainset.pkl\")" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Drop the output from the GP input dataset. Also drop the input at the current time (`u`),\n", + "since input at time `t` only influences output at time `t+1`, not `t` directly." + ] + }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 52, "metadata": {}, "outputs": [], "source": [ - "df_input = df_sampled.drop(columns = ['y'])\n", + "df_input = df_sampled.drop(columns = ['u', 'y'])\n", "df_output = df_sampled['y']" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 53, "metadata": {}, "outputs": [], "source": [ @@ -2259,7 +2566,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ @@ -2268,7 +2575,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 55, "metadata": {}, "outputs": [ { @@ -2301,7 +2608,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 56, "metadata": {}, "outputs": [ { @@ -2338,7 +2645,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 57, "metadata": {}, "outputs": [], "source": [ @@ -2347,7 +2654,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 58, "metadata": {}, "outputs": [], "source": [ @@ -2356,14 +2663,14 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 59, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Finished fitting in 0:00:01.800025\n" + "Finished fitting in 0:00:03.674935\n" ] }, { @@ -2371,13 +2678,13 @@ "text/html": [ "\n", "\n", - "\n", + "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", "\n", "
name class transform prior trainable shape dtype value
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].variance ParameterSoftplus True () float64522.3146176324312
GPR.kernel.kernels[0].lengthscalesParameterSoftplus True (7,) float64[398.28296795, 262.16471714, 1574.2697205...
GPR.kernel.kernels[1].variance ParameterSoftplus True () float64600.9888765600585
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.005945197285215412
GPR.kernel.kernels[0].variance ParameterSoftplus True () float64405.164581621276
GPR.kernel.kernels[0].lengthscalesParameterSoftplus True (7,) float64[246.9104482, 24.82707355, 20.11777904...
GPR.kernel.kernels[1].variance ParameterSoftplus True () float64254.598042387761
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.028165256077095475
" ], @@ -2398,20 +2705,20 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ "test_day = 5\n", "df_test = load_autoregressive_df(test_day, lu = lu, ly = ly)\n", - "np_test_in = df_test.drop(columns = ['y']).to_numpy()\n", + "np_test_in = df_test.drop(columns = ['u', 'y']).to_numpy()\n", "np_test_in_sc = x_scaler.transform(np_test_in)\n", "np_test_out = df_test['y'].to_numpy().reshape(-1, 1)" ] }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 61, "metadata": {}, "outputs": [], "source": [ @@ -2420,12 +2727,12 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 62, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAEvCAYAAADfBqG/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADuQUlEQVR4nOzdd4AU5fnA8e872/v1Dnf0DgfSFETBgr0bNbEnamJMTDOaYkn7xUQTE0uKJbbYazRq7EhT6aBw1AOucL1ubzO/P/Y4QdohZTl4Pv/kdnZm9pmV3O0+8zzPqwzDQAghhBBCCCGEEEIcmbR0ByCEEEIIIYQQQggh0keSQ0IIIYQQQgghhBBHMEkOCSGEEEIIIYQQQhzBJDkkhBBCCCGEEEIIcQST5JAQQgghhBBCCCHEEUySQ0IIIYQQQgghhBBHMHO6A9iZnJwco6ysLN1hCCGEEEIIIYQQQhw2Fi9e3GwYRu6Xtx+SyaGysjIWLVqU7jCEEEIIIYQQQgghDhtKqc07277HtjKlVB+l1IdKqQql1Eql1I1d23+jlFqhlFqmlHpHKVW0i+NPUUqtUUqtV0rdsm+XIYQQQgghhBBCCCH2p57MHEoAPzYMYxgwGfiuUmo4cJdhGKMNwygH/gvc9uUDlVIm4AHgVGA4cEnXsUIIIYQQQgghhBDiELDH5JBhGHWGYSzp+tkPVADFhmF0brObCzB2cvhEYL1hGJWGYcSAZ4Gz9z1sIYQQQgghhBBCCLE/7NXMIaVUGTAW+LTr8e+Ay4EOYPpODikGqrd5XANM+iqBCiGEEEIIIYQQB1M8HqempoZIJJLuUITYK3a7nZKSEiwWS4/273FySCnlBl4CfrC1asgwjF8Av1BK/Qy4Abj9y4ft5FQ7qzBCKXUtcC1A3759exqWEEIIIYQQQghxQNTU1ODxeCgrK0OpnX29FeLQYxgGLS0t1NTU0K9fvx4d05OZQyilLKQSQ08ZhvHyTnZ5Gjh/J9trgD7bPC4BtuzsNQzDeNAwjPGGYYzPzd1hVTUhhBBCCCGEEOKgikQiZGdnS2JI9CpKKbKzs/eq4q0nq5Up4BGgwjCMP2+zfdA2u50FrN7J4QuBQUqpfkopK3Ax8FqPoxNCCCGEEEIIIdJIEkOiN9rbf7c9qRyaAlwGzOhatn6ZUuo04E6l1OdKqRXAycDWJe6LlFJvAhiGkSDVbvY2qUHWzxuGsXKvIhRCCCGEEEIIIY5QSikuu+yy7seJRILc3FzOOOOMNEa1Z263e4/73HHHHdx999273efVV19l1apV+ysssQt7nDlkGMZcdj476M1d7L8FOG2bx2/ual8hhBBCCCGEEELsmsvl4vPPPyccDuNwOHj33XcpLi5OSyyJRAKzea/Wtdpnr776KmeccQbDhw8/qK97pOnRzCEhhBBCCCGEEEKkx6mnnsobb7wBwDPPPMMll1zS/VwwGOTqq69mwoQJjB07lv/85z8AbNq0iWOPPZZx48Yxbtw45s+fD0BdXR3Tpk2jvLyckSNHMmfOHGD7Sp8XX3yRK6+8EoArr7ySH/3oR0yfPp2bb76ZDRs2cMopp3DUUUdx7LHHsnp1asLMxo0bOfroo5kwYQK33nrrLq/ld7/7HUOGDOHEE09kzZo13dsfeughJkyYwJgxYzj//PMJhULMnz+f1157jZtuuony8nI2bNiw0/3EvpPkkBBCiCNaUt/pIppCCCGEEIeMiy++mGeffZZIJMKKFSuYNGlS93O/+93vmDFjBgsXLuTDDz/kpptuIhgMkpeXx7vvvsuSJUt47rnn+P73vw/A008/zcyZM1m2bBnLly+nvLx8j6+/du1a3nvvPf70pz9x7bXXct9997F48WLuvvturr/+egBuvPFGvvOd77Bw4UIKCgp2ep7Fixfz7LPPsnTpUl5++WUWLlzY/dx5553HwoULWb58OcOGDeORRx7hmGOO4ayzzuKuu+5i2bJlDBgwYKf7iX13cOvBhBBCiENMKJbAZTWjaTJsUgghhBC79qvXV7JqS+d+PefwIi+3nzlij/uNHj2aTZs28cwzz3Daaadt99w777zDa6+91j27JxKJUFVVRVFRETfccAPLli3DZDKxdu1aACZMmMDVV19NPB7nnHPO6VFy6MILL8RkMhEIBJg/fz4XXnhh93PRaBSAefPm8dJLLwFw2WWXcfPNN+9wnjlz5nDuuefidDoBOOuss7qf+/zzz/nlL39Je3s7gUCAmTNn7jSWnu4n9o4kh4QQQhzRogkdi0nHrpnSHYoQQgghxC6dddZZ/OQnP2HWrFm0tLR0bzcMg5deeokhQ4Zst/8dd9xBfn4+y5cvR9d17HY7ANOmTWP27Nm88cYbXHbZZdx0001cfvnl261u9eUl0F0uFwC6rpORkcGyZct2GmNPVsja1T5XXnklr776KmPGjOGxxx5j1qxZ+7Sf2DuSHBJCCHFEc/7nW1A0GqbflO5QhBBCCHEI60mFz4F09dVX4/P5GDVq1HYJkZkzZ3Lfffdx3333oZRi6dKljB07lo6ODkpKStA0jccff5xkMgnA5s2bKS4u5pprriEYDLJkyRIuv/xy8vPzqaioYMiQIbzyyit4PJ4dYvB6vfTr148XXniBCy+8EMMwWLFiBWPGjGHKlCk8++yzXHrppTz11FM7vYZp06Zx5ZVXcsstt5BIJHj99de57rrrAPD7/RQWFhKPx3nqqae6h257PB78fn/3OXa1n9g3MnNICCHEEamyKcAl/5yLvfJ/mCpnpTscIYQQQojdKikp4cYbb9xh+6233ko8Hmf06NGMHDmyexj09ddfz+OPP87kyZNZu3Ztd/XPrFmzKC8vZ+zYsbz00kvd57zzzjs544wzmDFjBoWFhbuM46mnnuKRRx5hzJgxjBgxonsA9l//+lceeOABJkyYQEdHx06PHTduHBdddBHl5eWcf/75HHvssd3P/eY3v2HSpEmcdNJJDB06tHv7xRdfzF133cXYsWPZsGHDLvcT+0YZxqE3iHP8+PHGokWL0h2GEEKIw9jDcyp5/M1ZzLH9kIS3L3VXfkpJpqNH5dBCCCGEODJUVFQwbNiwdIchxFeys3+/SqnFhmGM//K+UjkkhBDiiFRR52eA2gKA8m/hhLvf5/PaDhJJPc2RCSGEEEIIcXBJckgIIcQRaXV9Z3dyyGQkyNFbeWdVA/5IIs2RCSGEEEIIcXBJckgIIcQRJ5HUWdcQ6E4OAZSoJnKXPUB0/az0BSaEEEIIIUQaSHJICCHEEaeyOUgsqTPM2kCjkQHAOFstlwafIPT2b5n5l9l0hGPpDVIIIYQQQoiDRJJDQgghjjgVdZ0ADNLqmKOPBOByz0I0ZVAaXEFjfS33fbCepH7oLdoghBBCCCHE/ibJISGEEEec1fV+ckxB3Ik2Vut9qTcyKfJ/BoBJGVyevZpXl9bS0BlOc6RCCCGEEEIceJIcEkIIccRZXdfJsZntANSYSmi1FAAQzhpOzFXExZY5XBJ+ltnz5mIYUj0khBBCiPRpaGjg61//Ov379+eoo47i6KOP5pVXXjngr7to0SK+//3v75dzHX/88QwZMoQxY8YwZcoU1qxZs1/Ouz/tzxgfe+wxbrjhBgD+8Y9/8MQTT+xy302bNvH00093P96f7/vekOTQISKpG7J8shBCHCRVrSFGudoBmDZpIq78/gAkSyYS6j+TwvbF/NjyIuNW/p5QLJnGSIUQQghxJDMMg3POOYdp06ZRWVnJ4sWLefbZZ6mpqTngrz1+/Hjuvffe/Xa+p556iuXLl3PFFVdw00037fB8Mpn+z1wHIsZvf/vbXH755bt8/svJof39vveUJIcOETe9sJzrnlyc7jCEEOKAaA8dWsOdGzujFJn9AFwyYzzFZUMBUH0nEz/mR9RO+R3/4mwGh5Zg1C1LY6RCCCGEOJJ98MEHWK1Wvv3tb3dvKy0t5Xvf+x6QSiwce+yxjBs3jnHjxjF//nwAZs2axRlnnNF9zA033MBjjz0GwC233MLw4cMZPXo0P/nJTwB44YUXGDlyJGPGjGHatGk7nGPBggUcc8wxjB07lmOOOaa7quaxxx7jvPPO45RTTmHQoEH89Kc/3eM1TZs2jfXr1wPgdru57bbbmDRpEh9//DF//vOfGTlyJCNHjuQvf/lL9zFPPPEEo0ePZsyYMVx22WUANDU1cf755zNhwgQmTJjAvHnzAPjoo48oLy+nvLycsWPH4vf7qaurY9q0aZSXlzNy5EjmzJnzlWP897//zcSJEykvL+e6667rThg9+uijDB48mOOOO647FoA77riDu+++G4D169dz4oknMmbMGMaNG8eGDRu45ZZbmDNnDuXl5dxzzz3bve+tra2cc845jB49msmTJ7NixYruc1599dUcf/zx9O/ff78kk8z7fAaxXyyuaqMlEEPXDTRNpTscIYTYbyLxJE3+KBlOa7pDASAUS+CPJsjTOjBMVpQ9A61gBLpmxdJvCh5vMeuGXcbTC/tySfxdrJ/+Dcr+le6whRBCCHEEWrlyJePGjdvl83l5ebz77rvY7XbWrVvHJZdcwqJFi3a5f2trK6+88gqrV69GKUV7ezsAv/71r3n77bcpLi7u3ratoUOHMnv2bMxmM++99x4///nPeemllwBYtmwZS5cuxWazMWTIEL73ve/Rp0+fXcbw+uuvM2rUKACCwSAjR47k17/+NYsXL+bRRx/l008/xTAMJk2axHHHHYfVauV3v/sd8+bNIycnh9bWVgBuvPFGfvjDHzJ16lSqqqqYOXMmFRUV3H333TzwwANMmTKFQCCA3W7nwQcfZObMmfziF78gmUwSCoV2+77vKsaKigr+8Ic/MG/ePCwWC9dffz1PPfUUJ510ErfffjuLFy/G5/Mxffp0xo4du8N5v/GNb3DLLbdw7rnnEolE0HWdO++8k7vvvpv//ve/QCopt9Xtt9/O2LFjefXVV/nggw+4/PLLWbZsGQCrV6/mww8/xO/3M2TIEL7zne9gsVh2e127I8mhQ0A0kaS6NYRuQG17mD5ZznSHJIQQ+01k3UcUzP0Tkcuex+5wpTscGjujAGTqbejOHExKoY04l43uMfTL7guAy2ZC2X3MMR3PSWtfB8MAJYl7IYQQ4oj21i1Q/9n+PWfBKDj1zh7v/t3vfpe5c+ditVpZuHAh8XicG264gWXLlmEymVi7du1uj/d6vdjtdr71rW9x+umnd1eoTJkyhSuvvJKvfe1rnHfeeTsc19HRwRVXXMG6detQShGPx7ufO+GEE/D5fAAMHz6czZs37zQ59I1vfAOHw0FZWRn33XcfACaTifPPPx+AuXPncu655+JypT4vnnfeecyZMwelFBdccAE5OTkAZGVlAfDee++xatWq7vN3dnbi9/uZMmUKP/rRj/jGN77BeeedR0lJCRMmTODqq68mHo9zzjnnUF5evtP3Z08xvv/++yxevJgJEyYAEA6HycvL49NPP+X4448nNzcXgIsuumiH/xZ+v5/a2lrOPfdcAOx2+05j2NbcuXO7k3AzZsygpaWFjo4OAE4//XRsNhs2m428vDwaGhooKSnZ4zl3RdrKDgFVLanEEMDy6va0xiKEEPubecmjeLbMJbLq7XSHAkBDZwQAT7INw5WX2qhpeHK/+BDTP9dNpstKg8pBJWOQPLTa4oQQQghxZBgxYgRLlizpfvzAAw/w/vvv09TUBMA999xDfn4+y5cvZ9GiRcRiqc8sZrMZXf9ipm0kEunevmDBAs4//3xeffVVTjnlFCA1NPm3v/0t1dXVlJeX09LSsl0ct956K9OnT+fzzz/n9ddf7z4fgM1m6/7ZZDKRSCR2ei1PPfUUy5Yt49VXX+1OHtntdkwmE8AuFwExDAO1k5t0uq7z8ccfs2zZMpYtW0ZtbS0ej4dbbrmFhx9+mHA4zOTJk1m9ejXTpk1j9uzZFBcXc9lll+1yQHRPYrziiiu6X3PNmjXccccdADuN8cvXsbd2dszW1+np+95TUjmURpF4klAsSWVzsHvbZ7UdHD0gG7Om4XN+9ZIwIYQ4FDS0+cmumgWAqeIVOGrHO1EHW6M/VTnkjLVCZnH39gzH9r9zPTYzAaPrj24sCGYbQgghhDiC7UWFz/4yY8YMfv7zn/P3v/+d73znOwDbtUR1dHRQUlKCpmk8/vjj3fNvSktLWbVqFdFolEgkwvvvv8/UqVMJBAKEQiFOO+00Jk+ezMCBAwHYsGEDkyZNYtKkSbz++utUV1dvF0dHRwfFxanPTVtnF+1v06ZN48orr+SWW27BMAxeeeUVnnzySaxWK+eeey4//OEPyc7OprW1laysLE4++WTuv//+7sHRy5Yto7y8nA0bNjBq1ChGjRrFxx9/zOrVq3E4HBQXF3PNNdcQDAZZsmTJbodE78oJJ5zA2WefzQ9/+EPy8vJobW3F7/czadIkbrzxRlpaWvB6vbzwwguMGTNmu2O9Xi8lJSW8+uqrnHPOOUSjUZLJJB6PB7/fv8v35KmnnuLWW29l1qxZ5OTk4PV69/7N7QFJDqVJWzDGBf+Yj2HAheNTpV85LivBTYv5WkUDXoeFl79zzB6zj0IIcahKJHVuu/9f/DPZScTdB9emd1NJFmt6W8u2Vg5Zoy3gLu/ebjZtX0zrspnpTG6THHJmHawQhRBCCCGAVJXIq6++yg9/+EP++Mc/kpubi8vl4g9/+AMA119/Peeffz4vvPAC06dP727J6tOnD1/72tcYPXo0gwYN6p5/4/f7Ofvss4lEIhiGwT333APATTfdxLp16zAMgxNOOIExY8bw0Ucfdcfx05/+lCuuuII///nPzJgx44Bc67hx47jyyiuZOHEiAN/61re64/7FL37Bcccdh8lkYuzYsTz22GPce++9fPe732X06NEkEgmmTZvGP/7xD/7yl7/w4YcfYjKZGD58OKeeeirPPvssd911FxaLBbfbvdul5Xdn+PDh/Pa3v+Xkk09G13UsFgsPPPAAkydP5o477uDoo4+msLCQcePG7XRlsyeffJLrrruO2267DYvFwgsvvMDo0aMxm82MGTOGK6+8crtZRXfccQdXXXUVo0ePxul08vjjj3+luHtCfZXSpgNt/Pjxxu6GaPV2Sd3gwn/MZ0lVOwBDCzw0B2JcnFfNT7b8gK9Fb2WBMYznrzuaif3ky4gQ4tART+okdQO7xbTHfRdsbGXpIzdwlel/3JN1Gze33Q7nPwKjLjgIke7a/71ZwRPzK6mwXo5x9PfRTrp9p/v9/JXPMD57id/r98D1n0Le0IMcqRBCCCHSraKigmHDhqU7DCG+kp39+1VKLTYMY/yX95WZQ2mwsTnIkqp2rj9+AACr6/30z3Uxxl4HwDHOGjKdFh6aU5nOMIUQYjuGYVDdGqKpqy1rT96raGC6tpxN7nL+WTcAXbPCIbAsfENnhAGeOEpPoHnydrmf22amJd7VahYL7nI/IYQQQgghejtJDqVBcyD1xeqYAdkMzXNwrLaCfll2yrTUULGTctu4bHIp71U08PGGFp78ZDNT7vyAz2o6dnvelkCUKXd+wLz1zQf8GoQQR57OcIJgNElHKEYsoe9x//dX1dFfqyeUMxodjaTFBfHwQYh09xo7owxydsXhyt3lfm6bmY7E1raywEGITAghhBBCiPSQ5FAabE0OZToUd6n7eNJ6J9OT8+lDAwADjCq+eWx/+mW7+NbjC7ntP59T1xHmqscWsLll13ev36tooLY9zEuLaw7KdQghjizxZJLi2T+h32vn0RbYfZJnY3OQzuYtmEmALzW8UDfZD4nkUIM/Qj971+9S9+4rh4J0JYfioV3uJ4QQQgghRG8nyaE02NqSUbr8XkZ1fIBuKIYaGzB1bAbA0rYOdINfnjEMn8PChLIsXv/eVJK6wWWPLNhlS8d7FY0AfLimkaR+6M2SEkL0brbFD5G19nlcjYsxrX1jt/su3NhKkUotgWrKSA3dT5odGIdAkqWxM0qxpWtFCHf+Lvdz28yE2WYgtRBCCCGOSIfinF4h9mRv/91KcigNmgNRTJrC3vw54eyRhLOHUxBOJYd0ixNTzE9TXSW5bjtPfHMiz14zmRFFPv515QSa/FGufHQB/kicd1bW8/NXPiMSTxKJJ5m7rpniDAdtoTifVKa+lD316Wae+HhTei9YCNH7hdtxz/4VnX1OIOrth3fhvbCbPzj1nREKVCsAytcHgITJAbH0JoeC0QSBaIJCU1dyaHdtZXYzQcOeeiBtZUIIIcQRyW6309LSIgki0asYhkFLSwt2u73Hx8hS9mnQ7I+R7bJCuIWEI5e4I4eMjW+gJUIkBp+OtvYNfMv/RUn1+2w+8SFCvtG4bWYKfHb+eMFofvDcMr7+0Kesru8knjRoCUSZOaKAcDzJz04byg+eXcbbK+sZXujlt/+twG03c9nkUuJJA4tJoZRK91sghOhtAo0oPU77gLPRkhFK5vwUNs+Hsik73b2hM8JAWwcYYM4sATqIa3aMWIiD+RsokdRJdK2uFk/qfFabmt3m09sxNAvKkbnLY102MyG2JocOflIrltBRKpXQynBad3g+Ek/2aNU4IYQQQnx1JSUl1NTU0NTUlO5QhNgrdrudkpKSHu8vyaE0aA5EyXHbUKEW9IIBWItHo617AQDT0FNh7RvkfvZPAAo//Q21OU9QkumgJRCjX46L35w9gp+/8jlDCzycOaaIu95ew9srG3DbzJw0PJ8Jfdy8t3wThgHheJJwPElNW5ifvfwZ/miCp741CbdN/tMLIfZCtBMAiysDPWsAzAE6qne5e0NnlLHWNoyEHbsnB4C4Ztvr2T26bqBpXy2dFI4lueJfCwjHkzx/3dH8+IVlvPlZPQCOWAu6MwfTbpLlbpuZUBrbyr71xCI0BbeeMXy75JBhGPzfmxU8u6Caf39rEqOKfV/5PRJCCCHE7lksFvr165fuMIQ44CRDkAbNgSg5HhuqrgVXZj568eju51TJeBKOXMzhJtr7nUHGxv/SsmkWG5PTcNQtIO4uYVxpMc9fdzSD891kOK2U98lgS3uYgXlubGYTdzsfpzW5hDM/+S2l2U42t4R487M65natYvbtJxfz6FUTsJikq1AI0TPJUDsm4IPNMYqUTjHsttWqyR+hRGtF9xbhsqeWg48qO8Tb9up1Y0kdTVdYzT3/fbW+0c/ry+v4pLKFBZtSrW2r6jqZu66ZYwflMH1IHrmr23fbUgbgsZtJYCapWTAd5Lay5dXtzF7bxAhzLcX/vg6ueo1OewFPfryZjc0BXlxcC8Ajczdy+5nDyXbbdnu+irpOWoMxpgzMYcHGVuaub8ZtM3HVlH7yt0AIIYQQQkhyKB2aAzGG5ljQ4iGUKwdz0RfJITJKCY+4mHACGsd+H0fLZxR9fBvV1nvo/8ZFxJ15bDjrVQpy+nbfSR6c72FivywsJg1D18mvn0WxaqY8I8QvLjyaK/+1gL/P2gDAN6f245G5G/nvii2cO7bnJWZCiCOXYRg8P+9zLgEeW9wK66qZDrtttWrojJJvasHwFuOypVqfosoGsb1brSxeswTNZMHat7zHx9z51mreq2jEatKYMSSPD9fUs2z+O3RGXJwzMocT1v0Kb80sEiMu3O15XF0VlnGTE9NBrhx6aE4lABfxDvaOShIb5/BGfCp3vb0GgBOH5ZFMJPFWPE3dsAvIGjNxly3DSd3g2/9eTFVriG8fN4CH51QST6bmJgzIdXPCsF0P5RZCCCGEEEcGuV14kBmGQVMgSh9b6guScmWDM4uEu5CkKx+sTuLTb6Nh/E24XS62HPM7bB2V9H/jIpI2H6aYn7L/XUFnZwf1HREC0QT1HRE2NQeJJpKE6lZhDqcqhJ6YHmFCWRblfTNoD8cpyXTwi9OGMTDPzUOzN8pQNSFEjzy3sJoV66sAmDluMM3Rrj8du2gRS+qp33NZiWbwlmA3m1AKItj2eil7+5s3Yn3n5h7vH4knmbu+mSuOLuWNy/tyw+Qs7rQ8zDfXXMtp2qdMjH9KxvpXaB75TZKn3rXbc21tv41rDoz4wUsO1XdEePOzOs4Zmc1ZpvkAJBsqqKjrxG0zs+QXJ/DjyV5+zQP8VnsQ3zs/pCUQ5eIHP2bKnR8w5c4POPaPHzB7bWo2wrurGtjcEiLPY+PvszbQP8fNgp+fgFlTLOyqrBJCCCGEEEc2SQ4dZJ2RBLGETpG160uVMzWLI9Z3GvGiCQDYLRoZTgul2U7i/Y6nbeC5aMkIW47+FVUn/AN72xoKF/yOJn+UzS1BTJE2IrEka+sDtK/8EADdZEPfMAtdNxhR4OQsbT4nDslG0xTnjS1mVV0nH29oScdbIIToZZZUtVFgiwGgOX34YwaG2b7LOTwtgSiGnsQTb0b5itA0hdNiImTYUImezxza2BTA1LYBrXX9Tp+PJ3WqWkJE4snubfPWNxOJ65xUGGbgs8cy7rlxXGSahW4ojrGuJ6dzFbpmoX7CLVicGbt9/a3Joahmx4gemOTQpuYgiaS+3bYlVW3oBny3ZAMZKkgCMzRWsLrOz9ACD64XL2bYMxPpU/0an1tG0Se0knnvv8Ynla2MLPYysV8WkZjOn95Zg2EYPDSnkj5ZDt743lQuntCHP39tDF6Hhf65Luauayapy40CIYQQQogjnSSHDrLmQBSAfHPXMsrObAAip91H9NzHALCbTRT67CilKPTZqZ3yezae8m86B5xFoGQazaOuIbviSbyb3sbWsJyhT0+gZNYPwNBx180n5ioiVHYiztp5NHZGmJmYzb3W+znftwZdN5jcPxuP3cyLi2vS8A4IIXqbjnCcPEsEQ5mwOTwkdAPD7Nxl5VBte5g82tBIYspIta86bWbCWFOtaD2oWlxa1cbFf3oFLRHBFGqGSOcO+zwydyMz/jSLz2o68EfiALxX0YjLamJE5xyUkaSx/Ps8WvBLFhuDmGDdhFa3jEjWUHwe9x6HOJs0hcNiIqocB2Qp+/qOCCfd8xH3f7h98mt1XSeagpKaN2jTsvhITcDUvJqK+k6GFziwVs+ls+9JrD/7dZYe+zDNhhfvkr8xKM/N/ZeM5ZtT+3H+USUsr+ngpy+uYPHmNr45pR+WZIib4n/HHNjChqYAQwu8rGsM0Nn13gkhhBBCiCOXJIcOknjXneFmfyo5lK26vmi4UpVDDqu5e+CqpinMXQNCPXYLPp+PQMk0SrKc5HttNIy/iVDOaPp8+D36vn89aCYyN7xCnw+/h2vLfKIlU0iWHoc1WEdnbQWDWt4HYEB8LYFIhMwtH1Hqs1DdtnftHUKII1N7KE6mKYJh83bP4dEtToxdJEzqOyIUqa7KRG8qOeS2mQnqVpSRhOSekxErt3RSphq+2NC6gecXVTNnXRON/ggAb31ej64nyX92JrFPHyWW0PlgdQPHDcnFXvk24axhNIz/CaHB57JCH0D/+HrMjSugaCx9spw9una33UxY7bpKam9sbA5y/wfraO26SfBeRQPxpMHj8zfR2Bnp3q+i3k//XDeWppXUZ4xjaawEc2c1yUiAcb4gSo/TWXoy4dwxnDymlNetpzJdW8p3xjloC8UhFuL0/HYybfDC4hpOGJrHpZNLSS59luzVT1P80Y+w1y3iZ3U3Mtd0Lf43bgfgiY838aPnl/H7Nyu6q4niSZ2/vreONfX+fb5+IYQQQghx6JLk0EHSGU59GWoOpFozMti+cshm1na5Gk+Bz47PYSHDaSXPa8fncbNp5mPEXYVYA9VsOukRGsdcj3fT/zBH29EHnoB56MkYykTe4ntw184BQG1ZSnLxv+n39hU8EPwR9vZ1B/iqhRCHg45wnAwVwrD7upNDSbMTI7rzyqGiJXdzr/X+1ANfMQBOqwl/sms59h4sZ7+xOUiZVt/9uK2qgp+//Bm3vrCQwIr/0tAeZnl1O+XWWvpG1+JceC8/fm4JDZ1Rzhxkx163gHD/k8lwWjh9dAH+rFFYjBimaAem4nE9vvbUcvaO3Q7f7qlfvb6Su99Zy09fWkFHKMb7FQ24rCbaQnH+/WlV934VdZ2MLHBg6qzCWzKUtUYqwTZI1TDC1giANX8QZTlO8n0Oio65BIDjtWUkFz3GiMeHMeq1mXzg+Ck3lFRy3yVjSegG9ooX0c0O3Fvm0/+/F5CRaCZs2HBVvsnmliC3v7aS9ysa+efsSt5eWY9hGPz85c+45721PPHxpn2+fiGEEEIIceiS5NABZBgGp/11Dq+8N5vkkn8DX7SVeZLtGEoDewaQqhYy7aLFwWLS6Jv9xV3u4gwHJk8elWe8yIbTXyBYPJWGCbew8srVrL74EyyjL8CZW0bLiCvIqHwNTY8TyRiEpWE55g3vkrBnk6238N3wP3aYdSGEEF/WHorjUSGwebvn8CRMDtjFkOay2jfQDUX7mGsgdygALquZgJ5a0r4nyaHKpgBlqp64YcJAsXzFYhK6wanB/9D/3W+yaN5bAPxyZBsAjkA17Svf5QcnDmJ0aAHK0LGOOJ0+WU7KctzcePlF3ee29NnL5JBh3efKobUNfmataWJogYeytY/yjxf+y7wNLXxtQh+uyfmcnPm/obo1SGckTk1bmIneDpShk99vJJ6+qRUtB2s1FCW3AJBXNhKPPfV+Hj/1WGLuPljWvUXOonsI54yiZuqdOOwOftT2W6LBduo2VeBsXEzj2O/T3v9MAkVT2HjeG/zPdDyZ4c3868OVmDXF/35wLH2znPx91gbuensNLyyuwWU1sXhzG7rMJhJCCCGEOGxJcugACsWSrKrrxD/vYfI++BFJfxPNgSiaAlu8HcOeBdre/yfQNEWfLAdJVy6hwkn0yXLgtJlAs5D0FuGwmlFKETz6JhL2LGKuIqLlV2AON+Gq+pCOslNZlHsuE1hFS73MHRJC7F57OIaHEGxTOZQw2XdZTWNJ+JmrjScy47egpZaxd9pM+JNbk0N7bmnd2Bykv9bAZiOfiKOAQO1qTh9dyFm2RQBoy5+lyGdnePxzArZ8gqYMbi/8lBmDssj67CFi7hJcpeO7z6eyB5C0+dBNNrT84T2+drfNTMCwQ3zfZg49PKcSu0Xj7zNM/NLyFBPX/4VYQufEYfl8x/4Olxuv8YdHnmHJ5lSya6Q9VSFkzh3MOdOPIWJYGGuvw9JeiW71drckA9gsZiL9TsBT/QGWUD2NY79P29CvU3Pcn9GSEUJLnsNZ8SIApjFfo+aEB9h06lMYziyKhk9Gw+CzxfM4u7yYQp+DM8cU8lltB3+btYFLJvblW8f2Z029n7qOL1rfDMPg08qW7YaBCyGEEEKI3kuSQwdQWyjVQmaPtwPQuGo2ryytpTTbhQo1Y3S1lH0VTquZvtlOstxWMpxWyrJdZLmtZLmsKJWqQHL5stk083G2nPQ3HGWpldA0PUag7/HUFJ2CSRlEP391n65RCHF4i8STROI6Dj0I9i9mDsVMzp1X0+g6dj1IwuLerlXWZTXTnuhZ5VAsoVPdFmaEvZlNRj4rwjmUGHVcOtTEMH09IcPGlOgcppa5Mdd8gmnANGJjLmVgy4f0/9+lOFpW0nHs7aiuxBQAShErmUKscAKYLD2+fpfNjF+3ofahrcwwDN78rJ4zRxeRteZZAI4zrWCsp4MJxQ4yWlcAMLPzBb73zFIASvTa1MHZA5g6OJ/N5n5MMq+HlvUkM/uD2r7SVA05BYCYuxg1eCb5XhvJgnLCmUPJWfEQuSv+gb/PdLKLBlDgs+O2mxla4OWMk1PHjbVUce20/oRiCWb0czPe3czMIRn89pyRjO2bAegs21Db/XofrW3iogc/4dv/Xtw9U08IIYQQQvRee0wOKaX6KKU+VEpVKKVWKqVu7Np+l1JqtVJqhVLqFaVUxi6O36SU+kwptUwptWg/x39Iaw+l5gxlaqkvUO+9/R9agzH+enE5hFoxnFn7dH6v3UJxhgNIrapTnOGg0Ofofj7LaSVRWI61bDLW4jEYyoSuWckZdRIZZWPYoBfiXP/ffYpBCHF42zovzZEMoOw+XLZUwiWm7DttK9OjfjQMzM5MslzW7u1Oq4nOrZVDe0i0VLWGSOo6BYkt1JuLWZfIY4ilkdKmDwFom3orXhXiJvNzmMPNaKVT0Kb/nLaB5+Gu+5jOPjOwjjxnh/NGzvgbwfOe2Kvr99jNdCStqWvtwSprO9MZThCIJhiea8G97lUCRceglOLvQ1cQrPwETY8RzhrG6aaF+KJ1+BwW3IFNJJ054MhAKUXx5PMZEK3AVLcUI2vADq9hH3QcMVchbWOuozTXS57XzuACD8ERF2Pr3IhudtJ50p/RNEWO20ZZtjPVyuwtJmnP5EcjIwzO9xD97DXGPT2SFxPf5w++lzFpijyPnd+Z/8XUt0/tfg8emlOJ02pi1pombn5pBcZXfG+EEEIIIcShoSeVQwngx4ZhDAMmA99VSg0H3gVGGoYxGlgL/Gw355huGEa5YRjjd7PPYWdr5dAwX+rL1QTTOh6+fDyjSzIg1ILah8qhntA0RYE3Ncwai4NoXjnB4qm4PBkMLvDyhj6JrKaFEG47oHEIIXqv9q7kkDUZQLP7cFlTlUNRZd+hAsgwDO59cwkA/UoKt3vOZTPTHk8du6fKocqmAPm0YdYjDBgyigFDx+BI+slZ8U+imYMomHE9kcwh5K58JBVb/yl43U7qZ/yFTSc9TOOJf8Xr3LE6yOH24nD79ur6XTYTnUkrytAhEdnzATuxpSPVRlcenIcp1klg4g/x9z2RnLXPklz1OgaKztP+BiYzjxW8yLnlRehN69CzBnafwzz6AgBMsU5UzsAdXsNic1J1+ULUpGu7tymlMJd/HX/JdKpmPIA3r892z3X9QCJvFFrjCoLRBJYVT5Nw5hEomIR77SvUtnRir57D180f4Is3UrtpLbPXNjFvfQvfP2EQPzppMC8vqeXO/63+Su+NEEIIIYQ4NJj3tINhGHVAXdfPfqVUBVBsGMY72+z2CXDBgQmx92rrqhzKNqXurg9OrqcjN3Un3Qg2o/pOPuAxZDi/uHPfce6/iRsaHiDfY2e13hcNHTpqwZF5wGMRQvQ+7aE4GjrWRADsvu6B1GFl36HVauGmNt5atJof2GDysH7bPeeymWiNW8DCHmcObWwO0lelZu4cPX482LwYG/6CbnUTnnYrmSYTdZe8RXLNO7jiLeTkDAKl6JvtYqNxMmU5ri+SH9uwW0x7XeHitlloS1jARKqNzuLY4zFfVteVHMoPr0XXLHiHHU+HPQPPc6eSs/JRojkjyCwrp2HCzQz85Nd8c9QnmCoqMQbP7D6HNXcA4ZxROJo/w5Q7aKev43NayfxSUsyblUfFaY/jsJi6B1jvoGA0tkUPsra2hsE1s2kddinBgsmUvncNyZWvUbzwD0SUA7sR5taHnucDfRwuq4lLJvbFalJsagnyz48qOXl4PkeV7ltFrBBCCCGESI+9mjmklCoDxgKffumpq4G3dnGYAbyjlFqslLp2F/scltqCqcohS7Qd3Z2PpsfwVy6kqTOMKdKGts1A0YPB7svF40tVK3kdZtq1roRQsPGgxiGE6B0i8SQd4ThuupJA2wykDrNjW1lNWyg1uBpQju0rdJxWM8EerlZW2RSkv6NrALSnEPpMpPLbG1l3/nvYRpwGQIbPh7//aSTHf6t7/o7LZmZQvrs7gbUzO0sa7U6m04Jft6Ue9GDFslhix/k7W9pTFUfeWDNJVwFOmxVvv3E0lt8AQLLPMVjNGonx1xIsmEjJnJ9iiTSjbZME0jRFZMi5qZ9zdp4cynFbMZu2/7O+tY2sT5Zzp8cAaH0noukxit//HloySmzwGViHnUzS6qVk1g+wBraw4bj7APj+yBh/unAMz1w7GZ/DQns4zlljigBYVeff4/sjhBBCCCEOTT1ODiml3MBLwA8Mw+jcZvsvSLWePbWLQ6cYhjEOOJVUS9q0XZz/WqXUIqXUoqamph5fwKEs1VZmYIq2w+BTMFA4Kt+mqbERZSRRBzk55LSacNtTX5qUUuDOTT0RODzebyHE/lXdGqIlGMWruip97F6sZg2rSSNo2FB6AhKx7v07wnG8qivxY9s+OeSymggbXUmWPSSHqttCDHB2vaYr9XvK47CT5bbi7Gprc9vMDCv0bjfXCMBmNrE/ZbmsBA176kEPkkP+SJzElwY013dEMGkKW7gevKl2O5fNjH/ijTSNug5jwtUA5GU42TzzX3SWpSqGTEXl251Hm3gNDSf/DQrH7PS1d5X4yvfasZh2/efeMvxM/H1PwFM7m7gjl7xhx1KYnUGg/2loepy6ybeRWX4GCXcRw7Qazj+qhNElGRiGQbhqGX3aF2A1aWxq3vP7I4QQQgghDk17bCsDUEpZSCWGnjIM4+Vttl8BnAGcYOyiVt8wjC1d/9uolHoFmAjM3sl+DwIPAowfP/6wmGzZHopTYI+j9AQqZxCdg84me9XjaFvvtheMOqjxfPnLgdmTDxGkckgIsQMj0gF1n1HdkoOXrt9Z9lTCx2UzEdS7kjLxIJhTP3eGE92VQ1v33cppMxNm6zG7bytrDkQpsgQwUChHqk0pz2vfYT+TpjCxd5VAeyvbbSXMniuHqltD3PjsUv4wphF3YR7m/lO6n9vSESbfY0Pz12EUlndvL8nxseHoXzCswAukElu5OXlUzfg77tBm+g3YPgnk8XgIjThvh5XK9pmm0XzSvVhePJtI/5PIsKQqvGLTb2Nz8fGEB57GIK+dRO5wVNMqDMNAN6AtGKX4veuxdm7mFPcdrG2QljIhhBBCiN6qJ6uVKeARoMIwjD9vs/0U4GbgLMMwdnobWCnlUkp5tv4MnAx8vj8C7w3aQjFK7dHUA0cmwWN+itLjZK/+N52Dz4eyqWmNz+3LIoYZ3d+Q1jiEEOmX1LfPySfnP8DAV8/A2bAIn9aVzLGlkhgum5nA1uTQNnOHOsJxcsxdQ5vt3u3O57aZCdGV4NlD5VBzIEau8mM4ssDUo3sYB0yWy/ZF5dBOVmfb6pWltSytaqV41o8wffT77Z6ra49Q6LOj+etQvqLu7XaLib5ZTjTti2RPjttKptuKtpOh05qmyHbZ9vGKds6dkcu6C94jccKvurd5swvw9z+Nvtmu1Mpm+cOxtK5nZVUzq7Z00rn6I2wdlRgmK7+O/4lAcw26fljc2xFCCCGEOOL0pK1sCnAZMKNrOfplSqnTgPsBD/Bu17Z/ACilipRSb3Ydmw/MVUotBxYAbxiG8b/9fxmHprZQnBJ715cqRxa2vEG0jLiKqKcv7dN+k97ggDyvgxbDhyFtZUIc8cLx5HYJIqNlAwqDC2t+R6mlI7WxqxrIbTPToe/YItYZiZNr6UoO2bZPDjmtJqLseSn7eFKnLRQjk3YM58Ftvd2ZbJf1i6TWbiqH3q9oYKiqxhlvRQW2T7jXdYQZ4ImjkhFMvuLtnvvykGilFCWZTgp9Ox98bTXv1ajAHsv12PA4rHi3icdmNtEvx9XdymfKH4EyElg7NgKQtfppklYvG854AacR4tvBfxCJJw9IfEIIIYQQ4sDqyWplc2Gndftv7mTb1jay07p+rgR2PhzhCNAWjDHK2pUccmbhc1hYc/Rt1E38OXleV3qDIzWHotHwkdXZwP6d0iGE6G30+pVEvXk4M7uWoG+vIu7IJSdcx3fVC6mlBbqqgZxWE53JrYmeQPc5OsJxssxRDGwoy/ZtYKlB1oqEyYF5N5VDrcEYhgFevQN8ufvzEr+SLJeV0B7ayho7Iyyv6eAa02cAqG1adQ3DoK4jwqB+idQGT2GPXvdAJYF258tVTED3AHIAc+FIAIrn/Yy4Mx/v5ndpG3oJyYIxfFz8TWbW/J0tS1/BOfnCgxq3EEIIIYTYdwf/0+cRpC0UI9/c9SXIkYVJU+T57FitVnLdB6Y1YG8MK/TQbPgItdWlOxQhRJq5XrgY0we/BlIJDa2jhlCf41hgnUwfo+t3hD0jta/NTHtix7ayznCcTFMY40tVQ5BKKAEkTY7dzhxq8qdacV3xtu5h1OnktJpImLqqeLZJhG3rg9WpZNDx5pUAaJF2SEQxDIPWYIxoQqfU0p7a2Vu803McCr6cGNpB7lA6h16IKdaJo2UV/j4ziEy6kbJsF1XDvskGvRD7on8enGCFEEIIIcR+ld5hDoe59lCc3JyuO83O1KDObJcVl9W85w/hB8G0Qbn8z5ZN0r8EwzD2eolnIcRhIhlHC9ShNaaGDZ/5lw94LVCHI7eMZ2vGMzn2cWo/mwfoaiuLd/35iG8/c8hHqHu/bbm6WpPiJjvWeHCXY6SbA6nkkD3WguZOf3JIKYXN6YMYEN15cuijtU3085mYEKug03DjJQCBBi59cQuhWKrNqkhrT+3s7Vnl0CHJZKZz5r20BePdm/rlurBbTJSX5rLUGMQp/jVpDFAIIYQQQnxVUjl0gMQSOoFogizV9WWi6467UgqH9dBo4tI0Rd++pfj0Dj7e8MXcoSZ/lOcWVvHComo6I/HdnEEIcVgINqMwMLWupdkfobNxMxoGHzU6WKQPZoN1KIbFBaZUK5nLZqY1vrWt7ItWK38kgUeFML60UtnWYwDimg1iu64cag7EsBLHEvejXHn78SK/OrvbSxwLerBlp8/Xtoc5wbcFqxHjzeQkAAItW5i3voWlVe0AZCe7fse6Cw5GyAeM3fLF3y+rWcPd9d91WKGXWnJxRhshEUtXeEIIIYQQ4iuS5NAB0h5KfTj2EkC3edO+4s6uDBkwAItK8sxHK7q33f7a59z80mfc9OIKHp6zMY3RCSEOiq4Bylo8RM2mdRSrZgD+tVJnS0eE54pvJnzKPd27u21mWnaSHOoIx3EbwR1WKgNw2VJJhZjmwNjNzKHmQJQsOrsOSv9AaoAst50O5cEINe/0+ZZAjD5dbWMLkoMA2LipEoBpAzPpY27HFm5Ad+aC2XpQYj5Qsl1WBuW76Z/rol/OF7PzzCaNkKMIDYNEW3UaIxRCCCGEEF+FJIcOkLZQquLGo3emlmM+RFm8+QBUrN/A+kY/m1uC/O/zer45tR/j+mbw3ipZ5l6Iw1lVS4gH3/qk+3FH1eeUqFSVS3HZEHQDjJyhJEec172Py2aiJbZ9W1kimaqWdBhBVFel5LbsZhNKQQzbbmcONfujFFu6Ki4PgZlDkEqItOHBCO28cqg1GCPPlIp5jdEXgIbaTWgK/j6mktmWG3DXfITew2HUhzKlFHaLCZfNvMPQ7OKyoQD8/LE36AhJ1akQQgghRG8iyaEDpK2rcsiR7ARHZpqj2Q13qm2jyOzngQ838LcPN2DSFNdO689Jw/NZVddJbduu7/ILIXq3D1Y3sK5yQ/fjaH0FpaZmDKXxq0tP4pKJfTh9dBEW0xd/Llw2M35960DqVOWQP5JajcueDKJ2UjmkaQqv3UIY626Xsm8ORClzdj3vPjTayrJcVpp1N4Rad3guHEsSjifJ1lLJofVGEQaKjqZahhV6sdQtRRk61mAdeIsOdugH1WWnTk390F7FrLWNu99ZCCGEEEIcUiQ5dIB0BAIcra3EHGk7tJNDXTM9TinVeGVpLc8tqubs8mLyvXbK+2YA8Obn9WkMUAhxINV1RMilAwDd6sHSupaB1jZ0VwEup5Pfnzea8j4Z282acVnNRLBioLorh7bOJ7Mn/aidzBwCyHFbCei27YZYf1lzIEZfa9fzh0pbmctKi+7B2MnMoZZgaoB2htGBbssgipWQOYNEZz1HlWZC8xrizgJ0zYLKLDvIkR9cyluCoUz0M7ewZHNbusMRQgghhBB74dAchHMYKF5xP09aHkb57ajiIekOZ9e67sxP7wN/HV8OwPGDU9syHBYKfXaeXVDVPUPpqNJMZgzNZ/HmVuJJg8n9s9MSthBi/9jSEWGcaiesuTDljiB7yyasFgu6rw+7Gp3vspkx0NDNDkxdlUMd4ThmEpiTEdhlcsiGv82yx6Xsiyz+rhc6dNrKWg0PKrTjSlytwdTvRneyE8OZTZ5uoy7hI0tvY1zfTExrVhPsO4OGYVcxcODggx36wWUyo3uKGBFv582uQdxCCCGEEKJ3kOTQAbK4+HJY+w4jE5swnIfuzCHsGRiaGVOwkZOHF3SvpBYIhSl4/0b+banmzfa+/PWjC0kaBh6bmSW3nsRPXlhBeyjG/FtOOGRWXxNC7J1EUqeuPUyu6qCFDHJyBtO/5gVI2iHjxF0e5+4aLq2bHWix1LL0neEEbrqSPrYd28oAcjw2OprMoO2+rSwvsxPDbEdZ3V/52vanLJeVCjyYou2gJ0H74ndeS1dyyJloA2c2UwtyqFvppcDUQUGRwhRqwlE8AlvJGJTLmaYrOHh0bwll7S2squskFEvgtMrHDCGEEEKI3kDayg6QK6aPwnv1K4RzRqH6TEp3OLumaSTyx+Db9BZVzX6SugFAZPV7ZK5/hb7JzdxgfpW1t07lb18fR2ckwfOLatjYHKQtFOfFJTVpvgAhxFfVGoxR2x4mR3VQl/TS6huBR4XxJNugz4RdHrd1WfqEyYGxTeWQV3UlfXYycwgg122jLWFB7aKtLJHUaQ3FyNA7MJw5oNQ+XN3+k+3uqhzCgHD7ds+1BlLJIVusHVw5/Pmico4ZM5zhngi54dRqj+aC4ZRkOg5y1GmS0ZfseD1J3WB5dUe6oxFCCCGEED0kyaEDKK+4lJoL34JRF6Q7lN2KTfwuts5NONa9zsbmIJVNAcyrXiJh81E77S6UoRPZOJ9jB+diNWn88e3VAJRlO3lkTiVz1jUxZ10Tn9fKFwEhepOmQJTGzigFWgcNuo+3zCdyXPTPvHLyPMyTrt3lcd3JIbOze7h0ZySOh63JoV3PHGpPWFIzh3R9h+dbQzEMA/KimzAOoZW9slw2Wg1P6sGXVizb2lZmibainKk2W81TgAo20lS5FACVNwxNOzQSXQeayuiLM9qIhQSfbvzivUokdWpkcQMhhBBCiEOWJIcOILvFRFHGoX+3WB96BhHfQHKXP0A4EiEU8OPZ9DYd/U4nUDAZQ5nRN87DatI4qjST9lCcYYVefnrKUDa1hLjskQVc9sgCzrhvLg/PqUz35QghesAfiZP35rf4ielp8rQOmgwfD83dTDUFFBcWonZTtePuSg7FNAdGLLVK13aVQ7tqK3Pb6DDcqQqc6I7J5MqmIENVFYXBCvTh5+zbBe5HWS4rrWxNDjVv91xLMIbFBKZwK6prgLby5KPpMSy1C9CtHvAWH+yQ08aUVYrC4HzfWp5fUEWjP0IiqfPtfy9h+t2zqG3f9bwpIYQQQgiRPjIM4ADbeof9UGazWKgb/2NK3/8OfT/8HlFvP0yJEMkR5zOwJI9o3mjU5nmsqfczusTHx5UtnDgsj1NHFnDf18eS7bRiNWs8PGcjv32jgpJMJ6eMLEj3ZQkhdiPcsJ68mne41OTAqYdpwUd9Z4SfnTqUAbm7n/XjsXclh5T9i8qhcJwslWoxw5Gx0+Ny3DY+3lqBE2zZYSXH15Zv4VLLh+iaFW3MJV/94vYzr91Mh+pKeO1QORSljzOBise/WF0tszR13Ma3SOaPQjtE2uMOBlU2laTVx53R3/KgfhYX/9NMjtvGgk2tALxf0cDlR5cRS+jc98E6zhhdxJACT5qjFkIIIYQQUjkksJo1GH42dZNuxbfxTfKWP0CgYBKewcdht5hI9DkGR/MKVCLM8cUGP87+hDNHZBGNhDiq7gX6eDXGl2Xxl4vL6Zvl5IVF1em+JCHEHlhXvwKAR6UqOUpL+/OzU4dy3XEDyHbbdnus124BIKzssM3Mob7WrlXG3DtPDud4bLSx8/asaCLJ+8s3cZ55LsEBZ2ByHzorISql0O1dCwt8Ke6WQIwyRyT1oKutjMGn0nzMrSSc+SQH7Hqw92Epqx+brliIv3ga33B+itWkaApEueXUofTPcfFeRSO6bvDTF5dz3wfrefKTTemOWAghRA+EY8l0hyCEOMAO/bIWcVDkemxsGHUNkYxBJBzZGAWjGWxLfQHU+k1BW3Q/A14/H1v7Oo5ORvFX9SdRrVH08W3U6TG2HH0DXoeFoQUeKuo703w1QojdMgycq1+mxjUCd2ATGSrIhccdBYMH9Ohwp9WESVOElBO62so6IwmGmdsxkubu2TtfluO20mJsrcDZvj3rw9VNlEXX4LQF8Y86/6tf24HizAI/OyaHgjHK7WHo5IvKIU0jdNT11A2/hkH5h8aKaweT1eGhs2wmxbWz+c9VRdjyBwHQEojy2PxN3P7aSl5dtgW3zczize3pDVYIIcRu/WdZLX94azWPn53JgH4D0Rw7bx0XQvR+UjkkAHBazfgcFgJ9jieSM4oMp7X7OfvA4+gsPYmk1UPboAuIO3LRNs5CbfwIgJwV/6S1vZONTUFyPTZqWsOEool0XYoQYg+S9Suxtq3jY/fJvGd0rUrmzuvx8Uop3DYzQRyoWKpaqCMcp0DrQHflgbbzPy05bhttuxjs/PbKesbatwDg6jt2L6/owHO53ISVHT2440DqIktXO50zq3t7hsuC1axhMx95f2Z9TguxPlMAiK6b1b196sBc4kmDJz/ZzBVHl3L1lDLW1HfSHoqlKVIhhBC7o+sGf31vHeGORvq9eCqh937Pp5Utez5wG5F4knnrmzEMY7vtgWiCjzfs3bmEEAfWkfepVexSnywHOR4ruR4bWa4vkkOazUXj6Y+x8fTn2DL19wSKp2KrmoO1eg5Rbz8s4SZylz8Aepxxpk1k0sny6vb0XYgQYrc+mj8PgMdr8nnLeRaRkimQM2ivzuF1mOk0HKioHwyD1mCUPNow3Pm7PMZuMRG3p+YMGcHtK4dW1/uZ4GxEt3rRfEV7eUUHXqbTSgdejJ0kh/LNqeopnDnd2712C4Pz3bsd7H248totlA0eQ9yRi75xLh3hOP5InByPlavdH3Pl4Bi3nTmCo8qy0A34eC+/aAghhDg43l/dSGVzkAtMszHrEepXf8LFD33Cmh52CSSSOt97ZinfePhTXlxSg65/kSB6dO5GLnnoEyqbAgcqfCHEXpK2MtFNKUWhb+erq7lsJsKxJBazQi87HvP61LyShuP+gKPybfKX/pXcFf9gVDLKKGsxC2pHc/TAnJ2eSwiRPomkzoKKTcwAWpNO3FlDaLvw6xRa925lRY/NQqduR+lxSESpaQuTY2kDz5DdH+f2Eg3aMQdbMHVtS+oGG5oCDMioJpkz5JAc4JzptNJquMnZpuIpmkgSiCbI0bpmLX2pne5ITAxtpTSNWMkxuGrns6YliIHCV/k6tyXuI2g/B5N2LqOLfZhJULF+I6eOLEx3yEIIcUQxDIOEbmAxbV8rkEjqmLu2PTynkhKfjctjH4IBOcF1GIbB32Zt4PfnjcJp3fGr5JMfb+KVpbVAquV8fWMAl83EUx99Tp7N4I3VbfzqrJEs3NwGwH9X1DGmxMebn9Xz+/NGoWlH7t9OIdJNKodEj+R57Awp8DAk34Nr2And270jTqZm5r/YfOKDtA26gC1H/ZT+qo6xS34OXyofFUKk31uf15MIp5aR/8Zxo7hscikOi2kPR+3I6zDTnkgNrg50ttIeipORbEHtYhj1VjluW2rlr20qh6pbQ8QSSQoiGyFv+F7HcjBkuCw06Z7udrh4UmdFTep9tMXaMcx2sLrSGeIhR+93HJZQI94Nr2Ht2Ejx3J8BYKuag6En6YzEud/1L65a8XXQ9TRHK4QQRw5/JE6so55w0+bttreFYlQ2B2kPxWjsjPDpxlZ+MKiBPkYdy/QBZOBnjLuDGyoupfLdh6hsClDdGuo+viMc5863VtMSjKF1taBfO60/Nxzl4KGO64g9fzXPL6rh7ZX1LK1qAwzKF/yYD/7zKM8tqua9igYMwyAU2348hQzDFuLgkMoh0SMmTWHqyuTbs/sQzRyESkZx5PUn1x+lvuwUOstOAeCt5VV8s+NZaN8MmWVpjFoI8WXPL6rmRGccI6747sxy0LQd5gD0hMduobU9lRyqa2zCShxnogPDu/sKkByPlbZGD1nbVOCsawyQSwf2RAfJ/GF7HcvBkOm00mJ4IFgFwG3/WckzC1I/e/UODEfWEV0ptDOWsZcQWPEcJR/9GDQThmahsfx75C27j5q1S0gEOjglOQuA9Ws/Z+DQ0ekNWAghjgA1bSGm3z2LOaUPkx2rgxs+BuAfH23g3v8t5/mSl4gNPIr3My8AYGpyAXHNxl9i5/OY9Y880P9TStbWUL/gDxw3p4AoVq48pozbzxzOMwuqCMaSPHv+EAqW34sp3EIy5MNR9ylu1cEJahFD7K387cN1+CNxxvpCTIt+hDnZxL+1Udz7wTqe/GQzGxoDfPCT47FbTLy6tJafvLCchy4fz3GDc6WySIgDSJJD4ivpOPFPoCfIA7JdVhK6TnsojttmpiZjPDQ/Cy3rJTkkxCGmyR+lxBHHUG5U1+Dor5LU8NjNNMdTyaGmlhZyaU+dy7PnyqEm3cOAbSqH1jX6GaTVAGA6RJNDWU4rbYYHFW4FYF2Dn4m5Og/pt+Fp3IKRvXczm44EdoeTNTMfos+bl5Fw5LLlmN/isGqw7D7M698he+ObJE0OTMkwj7zwKjd+fzAFPnu6wxZCiMPa8uoO4kkDc/NqzLEtEPXzyqoO/vLWcv5t+yMjmypINr/NgsJBFGe4yGr8lGDeeJZtSq1oWlT5PLoyUUAb/xyxiufUKTw2fxN1HWGWVLUzZWA2ZVtex7P878SdBZiibWjJKGtG38zgFX/kl67/UNC+ildMU5g68mhYDBNNq7n56EyyP/4tzyRmsMUYyhMfb2ZogYefvLCchG7w/KJqxpdl4rFbmL22iY8rW/DYzVx7bP/uNjghxL6R5JD4Sqz9ju7uGtO01KyirfOKMkqGQTNE6tdiH3hiGqMUQnxZRziO1x4G274tReu1W6iKpwbXt7Y2k6faU094dl85lO2y0Zh0Q6iqe9v6hgATHPWQBHIPzeRQhtPCZsODKR6ARJS6jgjfyGvCV1WJv3gatvGXsffNeYc/V0YuG85+HQCrWaMkz000YwD5i/+MMhJUTb+Pklk/pCS6jjc+q+ObU/ulOWIhhDi8VdR1YiFBZqwOhYGxZRl3vx3nutyVjPdX8LD1ci6LPsOUmofJGfVjrCsr0Kf9nIFGXwLtebijjQQHnAbBZo6t/gcDx3s5rqSeRWt0gtpxXDutP+b3biGSOYR1570DRgJzpJWikn6E2hdybNW7oMHXtDkUmlM3lMzoXFx1B17TJxzjbuQq69288tECNsd9DMr3UOSzM2H9X1BvFxI85f+44ekl+KMJDAMG5ro5ecTub0wJIXpG0qziK3HbzLjtO88tDuzXH7/hoK1m9UGOSgixJ53hOG5CGPZ9TQ6ZaY6lkkOd7W2UWrtWLvHserUygCy3lVbDgwpv31Y2xlZH0p4F7rx9iutAyXRZacMDQDLYQn1nhBJbagn7usm3oUZfkM7wDlmFPgd2i4bVrFGa7cSkKeKlx6GMBHUTbsEYeT6J7MGM0jbT2BlJd7hCCHHYW13fSV/VgInUrLe6io+pbQ9zim8zSYubYy7/Na+YT+Fc9RHnhF8FwDrgeF78zjHYikcBoA05leCpfyWSOZiS+b/k4ub7udv8N946qZ3CWDWOxqWEh19McZaTgkwPuUWl+JwWklN+RCBzBM8lj6eMOkxrXieeN5qEIwdv/SckbD4Kw2u51/YAbyWv41rL2zx0+VGc71vN1byGfcUTvLSgks5IgseunICPALPWNG23CpoQ4quT5JD4SswmbYfVDbYaVZLBJiOfeOO6gxyVEGJ34kmdYCyJk9C+Vw45LPiNVLVgoLONQc5UomTPlUOp5JApHoR4BF03WN8YYAA16DlD4BCd25PptNBqpJJDbU11JHWDwq4l7L3ZBZhlBsJOmTRFWY6LQXlu7F2Dz/VpP2PTSQ/TMuY7FPjs6AVjGKltpL4jnOZohRDi8FLdGiKaSG430Lmizs8oexMABoqODZ8CUBZeRaJgLMNLMhl76f8RtGYzovIRdIsLrWQcAKqwHEOZsQ8/laySoWw88yU2nPECay74kFBuOSWzf0yfD7+PoUy4JlxClstKrsdGjjvVhu4eNJWqC/+H/bgfAmBu34hRfBSxAScD0Hj6Y0S9pQxufJuEsvBt6xtE2xs4Yf3/ETasmJNhPpnzDkeVZjIhsYjl9ms5f/UPCNavY/76Zj5a20RnJH7Q3l8hDjeSHBL7XZ8sBzVaEU7/pnSHIoTYhj+SWv3DqQf3OTnksZsJdCWHIoFU5ZChTODM2e1xWS4rrXS9dqiFTS1BwvEEBdGNkDt0n2I6kDK7Zg4BtDbXA5CjOjGURkFBkQyj3g2LSdtugKgzIwd/6ckUZTqxmU2owtFk0UmguTqNUQohxOGlujXEjD/N4rKHF7Cu0U9SN+iMxKltD3N6cSoZX+0dh69tJROKbdhbK1B9JgIwpF9fAjPvASBePBlMFgBMU79Pw0X/RblzMZs0BuZ7MPebgrtkGI2n/JNw7mhUMkLH6G9izdjxZpGmKQbmuTn7hOOIe/qkztlnPOr4W6g68Z/kjjie9hPvoWHsjdSe9E/s4Ub6Pn8SlnATf8n8BbqhGBBcynXT+sPSpwlrLoZGP6fhxR/z9Yc/5Yp/LeDmF1cchHdXiMOTzBwS+51SirC7jMzAJ5CIgdma7pCEEKTmDQHYkkGwefbpXB67BT+p5FA81EmhswPdlYdJ2/09h2zXF0kWQi18XJWggFZsyQDJgkNzGXsAn8NCa1dbWaC1AcjHp7djOLJRmkwb2htmk0bfLCc+Z+rLhrl4LAC5/lVE4md0VxgJIYTYO4ZhdN+s+Ne8jSR1g4yqt6l7/G7+XnITI/umbuAMtTbSjpc3Q8P4tr6Y831rUS065tJJ3efKHH06Nf4/kd1vTPc25cggY8DE7sd2i4nSbBcAMfdg1p/xHEndoCTTscsYrebU54RE/xlYlj+OqeQoHDmluMoLsJg0fMOOp6ZgIiUZDsKLhmFvXU31jPv5ZvkFBB55hqus1eiFFuwvv8tn+WdQWVPH5JbPmdgvi0F5bp5eUMWa+k7eWdnAjGF5jCjy7b83WIjDnCSHxAFhyRuEKaATba7EVnDoVgMIcSTp3JocSgRQjn37sOS1W4hgRVcmrHqIXKMVw737eUOQqhxq6U4ONTN/Q4JJ7kZIgCn/0E0OmU0acVsmAOGORiAfZ7wNYw+VUmLntiaGAExFY/CbMrgq+jSJ2PfA4k5jZEII0TvEEjpmTW1XmdkWipPlstIRjvP8wmrOHJ7Fb6uexBNvZkOljz9WnA9AZngznd4y1sWGQALOavg7AFqfCd3nclhNWMdfir2rJWyrXSXwrWaN/rkuogkdj23PXzG1yd+hw+zBlzMEgOyu17FbTAzIdaOUouHMR6hrqsI7fAY5bhuRgcfhXvYYtcteQUtG8I2/iFVVr3CuaR43Hp1F3z4lPLewmosf/IS2UJwP1zTy8vVTtkuaCSF2TdrKxAGR3Te14lDN+s/SHIkQYqutlUOWhB9tHwdSe+xmQBHVnLgJ40s0wx6WsQfIcFppU6nkkB5s4ZMNLUzP7FrW/hBdqWwrzZkFQLyzCafVhCXSAi5JDu0zq5M3BtzGEFWFeveOdEcjhBC9QjieJBBLYBgGF/x9Pn99YxGxz/8DwD3vriUYS/It10d44s2EcsfyHfUKc2038oL9t9jb1pFXNoI//fQGOkZejjNYRTxzIHT9ndsqz2Pfq6SK3WLC57Bsl7DaFVvhMDjhDthJxfHW18zsMwzX0OndM4vMA49HS0bpM/vHxJ35lI49gVrbQACOcdWhUHyjzM+MyPuMKvKwpKqdpz7dzKT/e5/Xl2/p8XUIcaSS5JA4IEoHpVYzaK6q6N7W5I+ycFNr92PDMPhwTSOReHKH44UQ+19nJI6NGJoe3y8zhwAChgOPCuOKNoK3ZI/HmTSFbk8lVBrra2gJxhhp3ULSmQOu7H2K6UDzuhwElBsj2EyBzw6hZnDlpjusw0K4dAavJydjXf1KukMRQohewfTRnSQX/IsNTQEWbW7DueRBCt76Fs+9+R6Pzd/E18dkMHTdwwQKj2bLWU/TWXoyWslRjFPrMEda0HIGgaYRPvGPVE/7E9EZvzro17BtFenOWM0a+V5792PzkJnUT/8zzcOvJDDj/1CaiW9deDYAsdrlWOb+iTvqvsOfrP/gX6dY8TrM/OKVz2n80ncQIcTOSXJIHBBFRcW04yFYu6p72x//t5qLH/yEmrYQALPWNnHVowv5z7LadIUpxBGlIxzHQ9eKUPZ9bCtzpD7QtSZtFGjtmGMdaL7iHh1rdmWSwERdbWoAcVFsM3rOoV01BKkVy9qVF1OklSKfAxVqRrmlcmh/KMt2UmkUYY60QDKR7nCEEOLQpus4l/wT94J7eW9VAwBj4ssA+Gz+G5w8PJ8fac9gDjcTmPpL+hTmUzPzQVpOfZDqE/+ObrKhlRwFQJ7Xjj7mEizDTk3X1fScZsIo/zp1x/wa++hzARg3bCAJdxHGihfIX3w3nX1PRNcsWFa+xAVjCxhgD1Cc4WBDU4BEUk/zBQhxaJPkkDgglFK0ewaT5V/LuobUCgnvr24kqRs8Om8TAA/NrgRg1ZbONEYqxJGjM5zAo1LJ2f1VOeQ3HAw1pUq1e5ocynTbadcyiLTVUuS1Ym9fe0ivVLZVptNKi+7GGm+nxKOhRTvRXHnpDuuwUJzppNHIQGGkKrKEEELsVH1HhFsf/y9azI8lUEPFZwsZlAFj1XoAJqsKfji4hZyKJ2kZeTUZg4/GZjbRN8tJ32wntpFnsPGaNdD/eCC1glhptgubuXcsBlDoczC8yIvD+kW8ev5I7M2fkbS4qZl2F4E+03Gte5UfNN3BO+YfMLUgyfqGACHpVhBityQ5JA6YzP5HMURV88js9SyrbqM1GCPXY+OZBVX87/N65m9oAWBVXSdJ3UhztEIc/jrCcbJMkdSDfZw5ZDObsJk1AoaDHL3ry3wPk0PZLivNZGIONTIpJ4oWD2HKP/Qrh04ank9j0o0n2UF/V9f7KDOH9ot8j50mI1XN5m+SJe2FEGJXPlzTSMu6hd2P8xtmc3nRFiwqSa2RzbGW1fRddjdxZwGRY3/ePUDaY7fgc1go9DnIz9y3FUvTzfSlmUaqIDXOonXElZQUFmGM+hqWUCPe6g8wJUKcEnqNwcGFJOfdn45wheg1JDkkDhhH3zE4VIylyxbx1/fXY9YUf724nFAsybf/vRi3zcxZY4pYXecnFJM2AiEOtM5InHxrNPVgHyuHIPVBM8AXswDwFvXouCyXlQbdiyveSrnHD4CWVbrP8Rxop44qpKiwmEzlp7+jqz1PZg7tF16HmXYtNQj1B4+8I+3GQgixCxV1nYzQNhE3TDRY+nC8WsYktZKEsvBQ4nR8ehuu+gU0l19PQU7WTs/h7sFqYr2JaejpBPPHo47+Lj6nBefI04i5i2kZeikdpacwpeUlHrb8Cd+834Eu1UNC7Iokh8QBYylKZfGnuOuYvbaJCWVZHDMgh39PbeH/Tu3Lc9dNZmK/LLJj1dSu+oTH5m0kHJNf2EIcKO2hGLlbk0P7WDkE4LWbCRiOLzZ4epYcynZZqU34yKWNwY72rpPteZj1oWBI/zLyTUGOK+6aWyDJof1CKYXhTrXoZdHO32dtwDCkolQIIb5sdZ2fcnMV641iXgmXM8m0mgHVLxEvPIoLL74agLg9B/vEKzGbjoyvelqfo2i88DWycgsBsNhd1Fw6j5bpdxKZ9D2sySAKPbUgR6fcfBBiV46M3xgiLVTuMAzNwnVDQows9nLZ0aXEG9cxddH3mNn4MEMLvAzO9/AXy9/wvXEdd7y+ijc+q0t32EIctpr9UXLM+7FyyGEhQCo5lHRkgcW+hyNSslxWmsgkm076qqbUxh62pKWb5s7FpEex+GtSG6StbL8xewsAGOIKsrrez5x1MntICCG2ZRgGFfUdjDZtptU7jLbBFxIqOoZg/gQSx/yIESPLCZadRMvRPyMzY98WnuhtijMcaNu0m2V73fTNcpI5+BjWnvgoP4pfn3qitTJNEQpx6JPkkDhwzFbiWYNwtlbw0neO4bRRhcQ3zAYgY+0LrK2qJStSRbm2gbzEFmzEWFLVluaghTh8tYfjZJq2rla2fyqHtK7z6J6eJ3ey3DaaDB+aMsjxr0K3Z4Ctd8w/0FzZALRu+iy1QSqH9pssn5cOw8X5gy3keWzc895aQrEEN72wnDvfWp3u8IQQIu22dERwRJrxJNuYcPTx3HLZWVSf8QybZz6KbehJoBTB8/6Nbfzl6Q71oLOat/9a63NasFtMWM0ajuGnsNk1EgCjdSMArcEYZ98/l/WNfqlUFaKLJIfEAaXnjcTespLa1lBq+cjN89BNNkzxIL41L+FZ+woAJmUw0t7Eks3bJ4d03aCiTlYzE2JfRVqquL/z+wxOrElt2A+VQ9+bMYhjR5YBYPSwpQxSbWWNRgYAlvqlGN7eUTUEgDOVHLK2rcUwWXtNUqs3uHZaf3Dn4Um08ovThrG0qp3pd8/ihcU1PDh7A9WtqZX2dN1gTb0/zdEKIcTBV7Glk+HaZgAsxWNQSpHvtZHvs3UnR3xOCxlOSzrDPOQUZzjw5vYlhoVkywYAllW3sbymg/crGokmZIl7IUCSQ+JAKz0GS7gJ05r/sqa+E0v1fIJlJxHKLSdvyT1krX6KFlPqzvtVg6OsafDTHop1H/7Y/E2c+tc5LNjYmq4rEOKwkFzzLoONTYwPzsawuEDb9yVrJ/bLYlCfrqRQD4dRQ6qtrNHIBEAL1GP0knlDQHdyyN6yEsOZA0rt4QDRU2P6ZODKLoJAA9OH5XHNsf1o6Ixy6eS+aErx6LxNALywuJqZf5ktCSIhxBFndX0nA9QWAFTuUACy3TbyPF+0ddvMJpT8bdqOpin653mpMvIxWlJtZZVNQQAClQtIbJyfzvCEOGRIckgcUJajLiWcPZKi+bdibfoMS7AOU9lUmmfcTSRzCJZwE/GpP8VQGsMtdRgGfFKZWuI+kdR5ZG6q9PPB2dIfLMS+MGoWAKChY+yHqqFuXZUzai9mBmW7rN3LlqeO7UXJoa6hyaZYgNjYq9IczOFHeQpQgQbaO0OcNSqfl759DL89ZxRnjini2YVVdITj/O/zegDeXVWf5miFEOLgqqj3M8reRNKeCV1tzqJnhhR42Kjnk2xOVQ5VNqeSQyfW3I/97R+nMzQhDhmSHBIHlMlsoX76XZgjrQx4/XwALAOn4S0dw8YznqfikgW4Jl9J0tuX/GgVk7QKtqz4gEg8yX9X1FHbHmZc3wzeq2hgQ1MgzVcjRO9l3rKIoGEDwNgP84a6dSWatL1oDct22xg/cmj3Y5XRZ//Fc6BlltF8+sOsuXAW+tQfpTuaw487HxVsxPv29xj8wvG4IvV0hONcNKEPoViSh+dUMm9D6gbCexWNaQ5WCCEOrvUNAQab69GzBqQ7lF5nWKGHzUYe5vZNYBhUdn2vyEnUY2rbAMl4egMU4hCwx+SQUqqPUupDpVSFUmqlUurGru13KaVWK6VWKKVeUUpl7OL4U5RSa5RS65VSt+zn+EUvYC0ZS+XpzxHKO4pI7mgsBcPxOSw4rBp4C/E4rOjZgzE3fc4/bPdy3OrfMPTW//GD55bRL8fFPy47CqtJ44mPN6X7UoTolX774nzs7et5PDmTuGbbL/OGumX2w9AsmIpG9/gQk6b466WT0e1drWW9KTkEJAafSdxbilmT+yv7m8mTjxYP4at8HZu/in5vXkxDXS2Zehv3ZL7Aox9+Tiyhc8yAbJZXt1PbHkp3yEIIcVAkdYONLUFKkrWQNTDd4fQ6g/M9bDIKMOsR8NezsTmI1wr5tKL0BHQNqv4ywzA4+/65/POjDQc5YiEOvp58sk0APzYMYxgwGfiuUmo48C4w0jCM0cBa4GdfPlApZQIeAE4FhgOXdB0rjiAFXjvxkklsPP1Zmi55G5RCKcXAPA/9c12pnXKHYOvYSKbRwQCtjjtm5HLzKUO5/+tjyXbZ+LprEdqWpem9ECF6IcMwaFw9D4C5+kiWlF2DPvzc/fcCOQOpv2EDFIzc60N1V6pFi97UVgaYTWq74Z9iP3LnA6AMnZqpf8ASqCVv3u0UzPk554Zf4Wvah3jsZm45dSj9VS0fLJFVzIQQR4Yt7WHMiRDeRDMqd1C6w+l1PHYLIXdfAMIN62jojHLuQA2zSg2jXrZsAbGdDKaubQ+zvKaD2euaUovrCHEY2+MnW8Mw6gzDWNL1sx+oAIoNw3jHMIxE126fADv7dD8RWG8YRqVhGDHgWeDs/RO66C1MmqJPphObRcNtM2/3nM2cGopryk+1mCRsGQBcXFDLd44fwIgiHx1N1fwydg9ntzxyUOMW4nCwpSNC/8gqdBQV2iAC478Pk7+zX1/DarXveaed6UoE0JtWKwOynNbthn+K/ahrplM4eyQdwy+hacx3ydjwKr7Nb6ObHXzL9i4zh+UwqtDNi7bfkDvnVmrapHpICHH4q2wO0k/VAWCW5NBXYs9LVVw1b14FwEnFXyyC886s2fz4heXo+vbL2i+pagegom77RXOEOBzt1W1PpVQZMBb49EtPXQ28tZNDioHqbR7XdG0TRxiXzczgfM8ul9Y0FY8FoGnqb9BNdmKV8whGEzT6I8QWPYmZJEPjK0nGowczbCF6vcWb2xihNhP09GfBr85hfL8sTPt5FROb5SuufObJx1AaeAr3azwHmqbJKjAHTEbqrm5w2IUMyHXTPv4GwlnDCeWMonbqnRTp9fx0QDWJus/JpJNj9CVc9fB82oLygV0IcXjb2BSgf1dyiGxJDn0VuX0GETUs+GtSyaEBltRqyHHDxGRvM68v38LJf5nN2ffP5ez75/LcwiqWbG4DoF/oM0wvXQ16Mm3xC3Gg9Tg5pJRyAy8BPzAMo3Ob7b8g1Xr21M4O28k2YyfbUEpdq5RapJRa1NTU1NOwRC+zy6U180ew6YqF2MZdTKxgHJbqj6lsCtLQHiar4hnCyomdGOGNX85LCiF2Z8nmNvK0dsyZJVhMGl67eb8nN2xftb1q2FmER18BJvOe9xVHhpxBNJ73Etqka7FbTJTmZVF59qtsPOtlbGPOJ+4swLHsUWIb5gDgVSFyO1Zw1WMLWV3fSaskiYQQh6nK5iBDLQ0YKMjqn+5weqWhhRlUGgWE61ajFGQnGgBo8I1msreZG08YRIHXTqbLSlsozu/fWs38Dc24rCbOMc0jc9Mb0CorKIvDV48+0SulLKQSQ08ZhvHyNtuvAM4AvmEYxs6SPjXAtpNGS4AtO3sNwzAeNAxjvGEY43Nzc3savziMOLL7kum0oPc9GnvrKuwtFeQv+iPWQDVvFnwH3VBom+emO0whepXFm9soMAUwdbXr7DJBuw8spq+WHDINP5PYzD/u52hEr1c2FZ/LAYDdYiI7w0duhpfcDDcdQ7+Gu+Yj1MqXiDvz0DULPxu4mRU17Zzylzkcd9eHJPWd3oMSQohebWNzkBG2RpLeErBIa/NXMaLIxwajiOzwJkqznGidNejOHPIHT8DUup4Th+Zx8ylDufmUofzk5MG0h+KsbQhwzthiRmmppJDRsDLNVyHEgdOT1coU8AhQYRjGn7fZfgpwM3CWYRi7avhfCAxSSvVTSlmBi4HX9j1scTjKddtQSmEaehqgMeiVmeQt/xttA8+lqvR8VhqlmDbNTneYQvQaoViCVXWdZNKB5jn0ku5KKexftSVNHLYynFZM21S35Xls5HpSfx/U2G+gMHA2LiVeNp1I4UQGdczn8asmcsnEvvgjCVoC0n4shDj8VDalZg7pslLZV9Y328nIMRPoqzXxyDdGQns1urcPprwhmOJByt6+gpKPfoh1yyL6ZVgYnWchhw5OGJTBMC01KWXZkk/4/ZsVPLOgKs1XI8T+15Na/inAZcBnSqllXdt+DtwL2IB3u+5Ef2IYxreVUkXAw4ZhnGYYRkIpdQPwNmAC/mUYhqRbxU5tbXWxlY5n7UWzcFXPJuotJV56HDmbWvlYH8GIunchHpE7JkL0QGVTEKsexqpHMLoqhw41khwSX/blVeC2bYPMKB5CsHAyrrpPoGwqiVA73lm3UuxfzoTSoTyzoIqGzih5XvkbIYQ4fETiSWrbQxQ4a1DZx6U7nF6tdHA56nOdAaZGkh3VGPkj0ErGA2BrW4uzoZPMdS9hKBOvGUnidjOdwb9hIw5A7dol/EufRjxpMLrEx4giXzovR4j9ao/JIcMw5rLz2UFv7mL/LcBp2zx+c1f7CrEr1pz+tHYtN1nktpLhsLDCKEbTYxBogMzSNEcoxKGvORAlW6VGxCn3oVc5JMTeMmmKcPk3cTQuxTrweLD6iC38G4Xzb2Pp0c8AsLymnVEl8mFdCHH42NgcJJd2bHqIpKxUtk9U7hAAwltWYeusgSGnQlE5m67+DL/yosX9eKvex9a+HkOZyFt2P97ZtwOwVi/mKEcDi35wEkff+T5/fW8dD14+Pp2XI8R+JVNAxSGpwGfHYY3jtJrw2C34HBY6DWfqyWjn7g8WQgDQHIiRQ9f/X1ySHBKHB9uYc6ksPp6BWXmYgZrJv6Tk/e8yfsMDKI6lyS9tZUKI3i+W0LsrKTc2BxmgpVYqM+UOTmdYvV/2QAwUoXVzcCSj3TecHRl5mBI6upFFx6Bz2TpN1962Bt+mt0hYPPgLTmZQ7ZO0xiOcNDyfVSsWsb5+IAMLMtJ3PULsR5IcEocku8W0XbtJhtNCJ67Ug0hHmqISondJVQ51/f/FlZPeYITYTzx2CxHfF5VBplHn0Vo1i9KKfzLb+jLZn0Sg+G8w/Kw0RimEEF9dJJ4kuk1yqHK7Zexl5tA+sTpJekvIXPNs6nHBSADyt2lHTuoG0UQShSJy1FWw6S30wjGMG38MqvpRWjd9zg+NFymzPsxz/15G3x/ct0NLtBC9kSSHRK+Q4bB+UTkkySEheqTJH6XQHEg9kMohcRjJcVu7f87zOlg7/U+ECiayac7TFCVXYFQvRElySAjRSyWXPYe1fhmcmVrRs7I5yFG2RnTNjuYtTm9whwEjexBaZzWtk39GVukxOzxv0hROa+prsmXYCQSKjsE89CxU3jAAyv53GZZwExGzl6n+t7jp+SXcc/FR/G9lPf9dsf3C3E6rmdvOHI7XbjnwFybEPpLkkOgVfE4LfrYmh6StTIieaA5EGW4LQhxwSuWQOHx0LYQBpD7EF/gc1Ay5iNuXDua50DVkBRqRUedCiN7KvOzxVHLojD+AUlQ2BfmGpYGktz+aJhUq+yp57E+p73M6auzXydrDvmazmbYLXqIowwHJKLrZgTKSVE2/D1D0/fAGWj5/j28+rvPR2iZyPbbuRFA0oVPVGuLUkQWcMCz/gF+XEPtKkkOiV/DYzNskh6RySIieaA6kKod0XGhWZ7rDEeKAyXRZMZkUOR4bzaEMMgON6Q5JCCG+Gj2JpWEFKhmBQCOGO4/KpgB9rFswso5Kd3SHBUvZZILOEQzo4cqWeV4bJk2BZqf10ndpTHgxubMo9iiS837ODzyfcsGaUZT3yeDpayYRTxjohkF7KM70P82iriN8gK9IiP1DUs+iV9A0hcnuTT2QgdRC9EizP0ae1onhlJYycfjz2i30y3bRZHhRQUkOCSF6p4ULP0ZLhFIP2jfTGowRjkTIidWh5ci8of3BpCn65biwmHr2Vdhm/qIW1ZI3FG92LgPz3LhdbgLDLuKowCzum9DC/V8fi0JR3Raipi1MRziOpmB5dQfG1gnXQhzCJDkkeg2300FE2THC7ekORYheoTkQJYtODBlGLY4Q+V4bWxIekOSQEKIXqmkL8fxr//liQ3sVG5uDlKp6NJKYZBn7/WbbhM/e8DktlGQ6U5VEANN/SSRzKKet+QXh+rXUbKmlaPbNZK98FGfHenKdJpoDUeJJSQ6JQ5+0lYlew+e0Egq7sUY6UHveXYgjWiKp0xqK4bO2g0vuNIojQ67XTqPhQwWbueWFpdxxzujtVr4UQohD2aotnYxRG4gqOzYjQrJ1I+vDAb5m+ghDaaidDE8W6eX1+Vg/8xH6vXwaJe9dT8xdgm/z293PfwokN2vo714Pp/4ufYEK0QNSOSR6jQyHBb9yYsjMISH2qDUUwzDAnWhDyUpl4giR77HRbPjQ0Hl3cQU3PruUpL7j3drWYCwN0QkhxO5V1HUyRtvAavNQks4cjLbNVNXU8A3TewQGngOZpekOUXyJUoqC0kHUHnc3jpaV+Da/Td2En7HmwllUH3cPL3svZYvKR1XNT3eoQuyRJIdEr+FzWFLL2ctqZULsUZM/ikLHEW9Hc+elOxwhDop8r51mwwfA2QMtvL2ygecXVW+3z/z1zRz123dZWtWWjhCFEGKX1lTXM1RVsyTRD8PXl0TLJnJXPYZLRYlM/n66wxO74LFbcI46k/rxP6V10IV0jvsO8Yz+tA86nznF17AgORjlr093mELskSSHRK+R4bTQpjsg0p7uUIQ45NV1RPASQiOJckvlkDgy5HltNBkZAPzyuGxKs5387/PtP5D//aMNGAYs2NgqA0KFEIeUflvewKKSvBkZRczTh/badZwcf5/anCl4+o5Od3hiN3I9NkKTbqRhxp8ZkOdhcL6H4kwHZdku6vQMtGAj6Hq6wxRityQ5JHqNDIeF9qRDKoeE6IGWxnputzyReuArSW8wQhwkuW4bOQWpf+9aqIljBmQzb30zjZ0RIDXPY866ZgBW1HQQTcgHdSHEoSEUjXFe9D+s0Qaw0BjCylAGBXo9xaoZW/nXZH5aL1CS6aRPlhOzScNq1shyWRlS4KHByEQZCQi1pDtEIXZLkkOi1/A5rXQYTjramyn/9TuU//odjvrNuzw2byMbm4Occd8cXlxck+4whTgkDPv8Ls7UPqZhzHdhyGnpDkeIg8Js0vj7daekHgQaKO+TQUI3mLWmCYCH51bitJoY0yeDgVXPYSx7Jo3RCiHEF+oW/5cBWh2rSi8DFO9usQGga1Yco85Mb3CiR6xmDbdt+/WeCn12Go3M1AN/XRqiEqLnZLUy0WucPqqQDZ8X4qsPcfboQlCK1fV+7nh9FTkfrqc5EOOnLy7H57Bw0vD8dIcrRFoVdizlQ2Mcg6b+HDS52yiOIDYvhtlOrK2G6cE/Mdv2Fm2zBlA/+BVeW7aFSyeXYksGua7xUcwLB8OES9MdsRBCEF/9LgHDTtmxl6CtXkxFJAusEOpzHG5fdrrDE19RYYadxq52Z/z1UCjtgeLQJZVDotco8NmZMnIAJpL86rQB/OrskTzxzYkcMyCbYDTJ09+axMhiHz9+fhnBaCLd4QqRNkaojdxYDZXWIVilDF0caZRCd+ZiWvkieRWPYbcoxgTn838vzUU3DL45tR9To7NxqiiqbSPI3CEhxCEg2FpLI1mMLs2jJNPJWr2EpDKTGH1JukMT+yDHZaNFy0o9kMohcYiT5JDoXeypVWjoWs7eZjbxxNUTmXfLDI4ZmMMdZ42gM5LYYXUaIY4kG5bPBcA7YCKFXnuaoxEiDVy5mMMtxJ0F1B3/ZwCi6+dy6shCSjIdjGx8DQBzPABhWbVMCJFete1hEp0NKHceJpNG/1wXDWTx+TeWYh99TrrDE/tA0xQmb6qjwZDkkDjESXJI9C42b+p/u5JDkJoxkeWyAjCubybjSzP517yNJJIyaFQcmSoWfQjAaSefiqapNEcjRBq4Ux/E24Z8Dc/Ao0ma7JyXtZEfnDiIQG0Fma3LWaAPTe3btjGNgQohBDw2byM5dJLbNVD/vHElXD2lH2VFhTKI+jAwvE8urXiJttWmOxQhdkuSQ6J3sWek/jeaWrGsIxxnU3OQjlAcgFhC5+uT+lLdGubtlQ1pClKI9GkPxbA1LafRUkJGdl66wxEiPdx5GCi0oy6jf0EW8aKJTLOuoTjTgb7iRQwUL7tTrRpG66b0xiqEOKIldYNnF1RTYO7EmVUIwFljirjtzOH4nJY0Ryf2h6unlFGvZ9JQsyndoQixW5IcEr3LNm1lhmFQ1xHGH0lQ3RYiGE1Q1RpkQK6bvllOHpxTSTyp896qBhJJvfvnuFQUicPY4s1tjFKVxArGpjsUIdJGm/xtao/7ExmFAwHQS6fgaK2gqqYG29r/ECqcTGn5dAAaNleweHMbG5oC6QxZCHGEaglEiUQjuPQAmltu6hyOjirNImTPJdxaS1L/Ys7dnHVNPDpvI2+vrE9jdEJ8QZJDonexp9rKgh0ttARjxBOpX7CGAZVNQcIxHU0pzi4vYnl1O19/6BO+9cQinvh4M4/P38S3nljEzS+uQNdlAKk4PFVs2EihasXTb3y6QxEibVT+cCi/BLMp9THHNGAaAAXzbsfevp740LO5eMowmgwfKz5bzkX//Jjz/z6f9Y3+dIYthDgCNXRGyaZrXIIrN73BiAMmt7CUTL2lOxFU1xHmqkcX8qvXV3Hdk4tp7IykOUIhJDkkepuuyqH2tmbq2iNkrn6a/IV/xLf+1dTTzZ/hq3ydaYNyyXBaWLipDZ/Dwr/mbeTReZvwOSy8vLSWv3+0IY0XIcSBs2lzan6KI7skzZEIkV65Hlv3z7ayo+kYeC4ZG17FUBrW0eeQ6bISdJbgDtUwMM+NWdO4/JEFdEbiaYxaCHGkaeiMkKO6kkNSOXTYKunTnxzVycMfrcMwDB6btwndMPjThWMAeOMzGVYt0s+c7gCE2CtdA6lNsU6cDYspmXsLhtJQhk5DRyXZqx7FHO3AfPSvuWnmOUTiOiWZDq57cjEAD10+nic/2czTn1Zx/fEDUEqG9YrDRyKp01hfByawenLSHY4QaWUzbzPEVSk6T7mX5Lt2lMlMZmZqrkd2nyF4N87jiW9OpLo1zPl/n8+zC6q4dtqANEUthDjSNPqjXySHXJIcOlyZfIWATk1NFf9ZtoWnF1Rx6qhCZgzNw2JSrKjpIJHQCSWSeO0ya0qkh1QOid7F4sDQLFg7NpK7/AEStkxWXfYZ/uJjyV/6FwD8xdMo+vg2jjGt4qpjyjhxWD79c1wMyHVxwtA8ThtZQG17mNX10j4gDi+r6/04kl0fMJ3Z6Q1GiEOMz+2g9tg/EJl5V/c2R94AMuONZNrgqNJMju6fzaPzNslsOiHEQdPQGSG3u3JI2soOWzmDAZhhX8MPnluGP5LgmmP7o698hSXWa7h99Vm8/NQDTP6/91la1ZbmYMWRSpJDondRitjwC8ha+zzeqvdoGXEVutVD9fQHaO9/JlUnPMjmkx4mYc8i6/PHaQvFMGmKJ785kSeunoimKSb1T31pfr9CVjMTh5fFm9vIUl1JT0dWeoMR4hDjtVsoznSQ4bB2bzNl90Nh4N+ynkg8ySkjC6jriPCD55bxm/+u4ndvrGKN3EgQQhxAjf4IfW3B1AOZOXT4Kp1C3FfGT7Pm8IfzR/P8dUczpsSHfclDJEwO0BM4NrxFKJbk6scWyiIJIi0kOSR6ncgpf6F18MXEnfm0DL8SgKQ9g+oZDxAsOhrDbKd94Hl4qt6jrTk19M1i0nDZUl2UZk0xKM8tS92Lw866Rj8FlnDqgVOSQ0J8WZbLisP6RbuZ6jsZgOTqN6lqDVHeJ4PRJT4+WtPEcwureWz+Ji556BMq5UO6EOIAaeiMUmIJYFicYHWlOxxxoGgagdFXkdW6lKOsVZRmO9m8oQJX/ULW9b2IhfoQhrKJBy87CqUUlz78KfUd4XRHLY4wkhwSvY5mNlE77Y+svvgTPFm5DMp3k+NJ3Qm2WzSy3VZaB1+Epsdxrn6J5kCURn+U5kCUpG7QEYoxsV8Wn9d20BKIpvlqhNh/WgIxiixBDLMDLI50hyPEoS97AJH8cXjWvEg80Epm5Wv87qxhzPnpdD7/1Uze+eFxKOBbjy/CMGSVSyHE/tfoj5Bv8qPLvKHDnjHm6+hmB3mL7qaxPYS94mUAnOMvZpVRRn+tjpMHefnV2SNoD8U57q5ZHPWbd5m/vnmX51y0qZXxv32X0Xe8zW/+u0r+Vol9Iskh0etYupYmRjOR67Fht5go9DnIcFoozXZRlOHAUTKSUG45Waufpq4tjKHrhCNxatvC9H37Kr5TczMuQmxsDqb3YoTYj1qCMXJMQXSZNyREj4WGfQ172xoGvHYufT/8Hn3f/zbtnan5H/1yXFw7rT+VzUH80USaIxVCHI4aOrsGUktL2WHPl5VLw8Sf4a3+gNJ3v0X2qscIFk5ixLCRjJkwDRM6wcqPmf7x1bw6+G3OGuZFU4p7P1i3y3Pe+8F6DAMm9svikbkb+dnLn/HuqgY6QrLypth7khwSvY7dkkoKue1m7JYv2gP6ZDmxmlP/pPO9dlqGXYa9fR3u2tn0e/PrlL53DeG61XirP6CkZR5PW3/H5sbWdF2GEPtdazBGtuYHR2a6QxGi11Ajz0PXLNg6KmkdfBHeze/inf1rwrEkgWii++9Ks18qTYUQ+1ciqdMciJKht0ty6Ahg0hT6xGtpGnUt3ur3ibuLCU67HaUUxx93AgDaB7/GXfcxQzb8i980fo/zR2fxSWUr8zfsWD20ur6T2WubuHpqP247YzgnDc/n2YXVXPPEIn7+6mcH+/LEYUCWshe9Ur7XRjSx69VkrGaNxIjziC/4PX0+/B7maDsASo9jKI3NY29m9JLfs6FyFkwceHCCFuIAaw3G8FkD4JAPmEL0lDcrj7opvyFh9dHZ73SUkSBj/ctUbPkFhtmBSSkANreG6J/rTnO0QojezjAMdCOVKGgJxjAMcCdaUbJS2REh22Vl/aRf0DTmuyTtmfTP7Zoz5etD0paBo3EZkYyB1E/8BWXvXMXlkad5wnoCN7+4gmGF3u3OtbE5iMNi4qLxJRjv/5p7QotpG1zIPdZrePWzOtY3+hmY50nDVYreSiqHRK+klNquamhnsjweWodfhjnaTqBoCgmbD0/NRwSKpuIffRUhw0ZOw9yDFLEQB1ZSN2gLxfD8P3v3HR5HdTVw+Hdne5O0qy5ZsuVecS90m14CCS1ACCShhBRI7+QLSUghvRASIARCKAFC7x1jY4wL7t2Wrd7b9j7z/bGysFzABtsrW+d9Hj/endmZObPX3tk9c++5ul+KUQtxAEyaIj3lc5nEkIKu0ZdhSobI3fECAHkOC2BQI8OQhRAfUySRYn1TgO3tIXTdoDUQw0YCR7IHzV2c7fDEYWC3mKgscKE7vHjs5r4Jc1CKVNFEAPzjP0to6Kl0jv0MpRv/xXuWL/LX+P9R2xGmritCXVeE2q4ImlLceOpIjM7tFK66HXO0nYq6J/mm6XGUUvztjW2EZEi0OADSc0gctXIcZponXY0p7qf9mOvxbXqI4pV/ITD6Qqx2JytNkxgdeBcMA3rvDAtxpOqJZO4+OtMBlEtqDglxIHKdFkwmRbHHRo35WOI5wyhYdzf2rk2MqH2NpbZOnuy4F6jKdqhCiCNYKJbCSCeJJ9M09phoDcQ5VluPwoCK2dkOTxwmOXYL40tz0LT+vz+MIbNIN6/AMf0KRuW6aTjux5gSQUzxHqY2LuTueUn0ymOJJXUSu46gWPILDGVmx7kPU7TizwzZfC9/KEzy+pocJq5q4tYLJ3HZrMrDfJbiSCQ9h8RRSymFN7+I5mN/iu4ppfOY62ma/RPUhAsYXuhig2sWxelm9I7qbIcqxMfWFU5gIo09FUCTgtRCHJBch4XyPAdmk0ZVoZvusZ/B0bmegnX/Iu0sxEaC8zd+B+Iypb0Q4qNzPfV5Jt47inEPTidWt5KNzQFO01aQNjth2AnZDk8cRrsnhgC0k75N9affwOMrxGY2UVZSQsOpt1N7+t2kbLnkrL6bQDRFIpnG6t+BrXsLtq5NeLc8SmDYGVjyymif8yPiOcP5lP8/3Gb9G9Otdays70HXZRYz8eGk55A4qvlcVtqDcUpy7MRTVjonXcuIHBcWk0ZL4QkQ/Dvpra+gFUrdIXFk6wwnyKV32Iskh4T4yEyaIjnrK2yuPJ2kpwLDZOUfd9/B32O/gpUPwJwvZTtEIcQRSA+249r+IoHK03B0rKXizRupKbiNS0wriVWchMtiz3aIIsusDjfe0uGo3hENDquJ4hw7ibSVnnGfJX/1P6h89VocHWuxhpv7bZuYdjUji9xEEna2Xfwqpmgnox89iet4hbvbJhNOpPDYLdk4LXEEkeSQOKpZTBqluXby3TYSKZ1QPIXTmvln7yoZSWN1PgX1y7McpRAfX1c4gVcFM0+k5pAQH4vP46AnNqLv+QbnTBIRK2Z/vXS5FkJ8JPHqBTiAtik3oKViVL1wOTf4v0ip6iI85qxshycGiAK3td/zQo8NgI7Z1xNtfAdroI5owSTapn4d3ZopNp225lI69hQAnFYz+TkOOlQR3aM/zakbHuQx/ydIRsaAXW4eig8mySFx1Mt3Zz5UrWaNCq+zb/kQr5MmI5/cnkZs2QpOiIOkM5zAiySHhDgYXDYzDqsJk6Zw28wU5djpieaQF+wgGk2S67AQS6ZJpnW5EyuE+FCGYeDf8DoWsxNH5TQSmFkx43cMX/ZTdGXCOk6SQyJD7aMOal5RBZs+9TTGXkaHOW2mfhP1lOY6KPbY6Zx1PaYN93F37Fuk//Vb+M4mqbMqPpDcABODisO6ywdnnp1Ww4cKNn/AFkIMXOF4imgiDUB7MIZvZ88hhySHhPi4Rha5qSpwUeixUe510kUOtXW1nPXnBei6wc+eXc8ldyzOdphCiCPAUysbCW16k4XxUXzlkXUUuK08qx/LKfHfs/7cJ7DklmY7RDHAmU0aBW4bdouWqZPndVDhy/wpz3Ps8XpNU+RVjOX+EX/k6fRxmMItEA9kIXJxJJHkkBi0SnMdtBperJFW9pqGF2KAS6Z16rsjhOMpdnSEKbZEMiuk5pAQB1WB20q77kEPd9Dsj7G9I8zCrR1sagnSHoxnOzwhxABmGAZvLF/DSK0J26i5rG3o4XP3LOW1jW0UFJVRNGZOtkMUR4iSXDujij1U5jvxuazkOTN/du01tCuLSSM5bC6vpadlFgTkhrj4YJIcEoNWWZ6dFsOLRY9JJl0ckZLJFPGkzvb2MD2RJKXmnQWppeeQEAdTgdtGu+7BmewB4MW1zTR0RwFYUdedxciEEANdMJZiVMOTAMyY90l+c9Ex1HZGCESTfP64YeS7rB+yByE+ujElHlqM3u+FwabsBiMGPKk5JAYtp9VM0FoIBhiBJpQ9t9/6+xfX8PL6Vu6/ZtY+x/8KkU3ef5+AqWgWzbN+yHWtv2CyvhLDbEdZnB++sRBivxW4bXQZHnxa5kbCfYtr+9a9W93JmRNKshWaEGKA2/juy3xFPcb24jMZPmQal1QoLplRke2wxCAx1OeiBW/mifQcEh9Ceg6JQW3a+HEAPLGg/4xlsWSaP7+2lbe3dbCxOZiN0IT4YIkI5u5qfJv/y+jHTuXYxDustc0gfPrvpdigEAdZgcdGl5GDS8U5ttJJRyiO1awxqTyX5bVd2Q5PCDGAlS29hUYKMT7xZ7k+i8OuONdGm5FJDun+xixHIwa6D00OKaUqlFJvKqU2KqXWK6W+3rv8kt7nulJqxgdsX6OUWquUWqWUkjnDxYByySmzAHhnxToeXPL+neAnVjTSGU4A8OqG1qzEJsQHCrcBkHQWY0oE+Jb6Lv8p+zHpYy7LcmBCHH0K3FY6yQHgzGGZTtfHlOcyu8qH1rKGQETqDgkh9rSuoZvCSDVr3CdQVFiY7XDEIGQzm/C4PYRMORgBGVYmPtj+DCtLAd82DGOFUsoDvKeUehVYB1wI3Lkf+5hnGEbHx4hTiENC5ZQBMKcwzvefWsfrG9vQlGJVfQ8Ty3MwaRovrW/m66eNynKkQuwm1A7Akgk3c099EfNrE1zksGDW5K6kEAdboSczrAxgakEKgInluRznauTHlh+xeoGDyWddnc0QhRADTHswzg/vfZFnVZIpU2fisVuyHZIYpMry7HT25FMuw8rEh/jQnkOGYTQbhrGi93EQ2AiUG4ax0TCMzYc6QCEOKYsD3ZbHeVWKc48po8Ufo6knSkmuje+dOZa5owvZ2BykviszC5Suy6xmYmBIB1sAeHRzgsWNaUYXe/jU1HJcNiklJ8TBVuCyMWnUCADG2Xt4Lve3nJffyDHJNQBsW/oiOzrC+CNJ/JGkXCuEELy9rR1ftAaAIaMmZzcYMaiV5NgzRamlILX4EAf0K0IpNQyYCiw5gM0M4BWllAHcaRjGXQdyTCEONd1dghZq4bbPTt1jnWYk+T/z/SxYbGfOrNmcf9vb/PNzMzhuREEWIhUi46V1zSx9bD4/AZa0mfnKGSO48RTp3SbEoaJpiq+dfyzcBtr215kYX0VP3WNYkpkC1ZPSG5n3+/l9rz9jfDF3XbXPEfdCiEFga2uIUVrmx7gqGJ3laMRgVpbnoK46lxnBtdkORQxw+50cUkq5gceBbxiGcSDzfh9vGEaTUqoIeFUptckwjAV72f8XgS8CVFZWHsDuhfh4DE8pKX8TXf4YDouJtGEQS6aJJdNUtr7BCeYXeWSFmTujBYQTaeZvbpfkkMiq9U0BPMlusEDS7uPq46uyHZIQRz9nPgCq+g0A3LWvAWAoE6Op5+bTyjDseays7+HZ1U1saQ0yutiTtXCFENm1tS3E+Y420iYvpt7PDyGyYUJZDg1LvGiRDkgnwSRDHMXe7ddsZUopC5nE0IOGYTxxIAcwDKOp9+824Elg1j5ed5dhGDMMw5hRKAXbxOGUU4ol3EJ7ME5dV4TG7iidoQTheBrfxgcAmJJcyaPLGwB4r7ZbhgyIrGoLxCmzBOjBw3Vzx8pQMiEOB3suhmbGFMzM9mKOdWKOdRIa9UkAzs6t4eoTqvj5+ROwWzTufKs6m9EKIbJsW1uIUVozum+kzFImsmr6UC8t+FAY0FuWQIi92Z/ZyhTwL2CjYRh/PJCdK6VcvUWsUUq5gDPIFLIWYsBQnlLM0XZUOtFvua17C+7mxcTd5YzRGiimm9PGFbGmoYeeaLLvdTUdYT5/71L8keTuuxbikGgNxhhiCeHOL+PLc0dkOxwhBgelMBw+AMLFMzBUJimrjvsKumZBq19CRyhOVyTBKWOLeWpVE2f9eQF3SJJIiKPe7jcNY8k0tZ1hytMNGDKkTGRZVYGLsLW380VQilKLfdufnkPHA1cCp/ROR79KKXWOUuoCpVQDcCzwvFLqZQClVJlS6oXebYuBt5VSq4GlwPOGYbx0CM5DiI/MNGQqykgz4plPUbboxwx76UpGP3oSo544A12z0nzSbwC4eUIrF08fQjJtsLK+u2/7297YxvzN7axr8mfrFMQg0xqIU6T84CrKdihCDCqGMzOk2Bh2EuHSWaTsPlyV04gXTsLTMJ/m7iiReJpLpg/h+BH52C0mbn1xE/e8vaPffnoiCemBKsRRxB/tf4NwR0cYtxHCk+pCK5SagCK7lFLklw4DINbVQE+k/w3x7e0h1jX6aQvEiCXTWYhQDBQfOhbBMIy3gX31hXxyL69vAs7pfbwdkPL8YkBT486j/vS7KFn0E/KqnyKeM5Ro/gR6RnySYMUp5I+eQ/KNAo5Ta4mU53K8tpbAijoY+2Va/DGeWZ0ZYtDUE83ymYjBoj0Yw6t6wD0+26EIMagYvXVDTEOm0D7yQkyxTso1E9FJV+J77Zvk7HieuHcMYxoX8LsCP/Fjv8EvX67mluc3cPzIAsaUeOgOJzj5d28ytdLL3Z+bgcW0XyP8hRADWKSrEae1Apsl89NqY3OACVotAKbCMdkMTQgAKoaNgiZ44KUF/PVJF49efyxjS3NYXN3J5f98F8jUJvr7FdMYmu/KcrQiW6RQhRBAbOQ5bKo8c48x4VazhtdtJ1B5Eu7aN/An49xqvRfnljg/ffpENrUGSaYzd3/ruiIYhoGSceXiEEqmdTpCCXKcXeCR+mxCHFa9PYes5VNwWktI9/b+0aZcTuy9OyhfdBOmRABlZO68NnjKuf7kS3hrSzv/XFjN7y+ZwgPv1hKIpXhrSzs/eHwNf/j0lGydjRDiYPA3UnbvDMLn/gPb9E8DsL2xhV+a7yHpKMRSOSfLAQoBE0cOpWFRASWhjZit53Llv5byj89O4463qilwW5lV5WPx2q101NnZ3FJBrsPC7OFSSH2wkdtVQkDmzu1ekjo+lxWA1LgLMMd7sC/+ExW0kE83765czcbmIFfOGYrFpGjuifUlioQ4VNqDcZzEsOoxNHdJtsMRYlBRBaNJeCoxeSvJsVtwWk0AOO02mmf/GFPCT8+IT7Lx8iXEvKPxbbgfi6Zx6thinlrZRH1XhPsW1zJ3TCFfOnk4j69oZFVd94ccVQgxoLVvQukp1JYXATAMg6kbfkel1krn2XeB05flAIWAKRV5bLeO4URXPfdfPYtIIsVXHlzBW1vauXLOUL6bvIOV9uuZ/vRp3P3wY9z8zHrag/Fshy0OM0kOCQGUex3kOiy4bCby3VbKvQ6GF7oocGeSQ5bRp5G0F1C06ra+bR4/z8zqm8/glk9NxOuw8IXt30S9/rNsnYIYJFoDMQpVDwCaR2oOCXE4qZO/S+tn3gClsJo1PPbMdMBWs0Z6+ClsuHIdDXP/TMpVStfYz+LsWIOjbQWfnFxMWjeY94f5dITiXHficC6fVYnTauK2N7dl+ayEEB/VfxbXcP+LCwCw1S0Ew+COt7YzIbKEtbmnwNDjshyhEBl2i4lZJ5xGbqyR0thWljlu5Pvxv1Ju9nPqEJ1htY8xn5nohmK2vpJNLUHWN/m57j/LueW5DXvUKdqbjlCcM/70FstquogmpHbRkUiSQ0KQ6TlUme9keKGbsjwHPpcVl83cN0TM5XDgH3k+ytAJlp+IbrKTrF1KZyhOQ3eEmdYaJsTeQzW9l+UzEUe7tmCcAnqLn7slOSTE4aSZLTg8OXtdV5JrR7e6AbBbNCLjLkY3Oxj5zKc49Zk5/HlqCxdNHcKPzx3HcSPyMYKtfKdyK29uaqO2IwzAqvoe4in5Qi3EQLS3Qr2vbmgl3JqZkdAcbWfdyne496XFlKhuSsYfT37vTUYhBgLzkBkA2F/+Ls54G58yLeJl188o3nAvytB5o/JGNhqVzLNvYbbayPhHT2DVhk386+0d/PqFTezoCGMYe46SWNPQQzSR4rnVTWxpDfH8mmbCidThPj1xEEhySIj9oGmK5MTPYCiNyPjLiBdNxtqygqaeGN3hJBfpLwOgIp1ZjlQc7doCMQrVzuRQcXaDEWIQctv2Xq7RbTOT77YyvNDFqGIPZSXF1J56B63Tv03CU8n5m77DV4vX8bnjhhFJpMlbcDNXN/yYy01v8K1HV3H7m9v41O2LeG61TDMsxEDUvZeeEzs6wgxRbUTNmaRxy8oXmaRtByBv5GwpOC8GFPOQqRgonG0rCJafyI7zHseZ7KRwzR2ES2Yxc/pMFuvjOcbYzHccz1CUbuVixwouHO8htOJ/PLp0B+2h/kPN1jX6Of9vi/jdy5t5ZUMrAOM2/hX7C1/PximKj0k+sYTYT86hU9h02WJMx1xMumw69o51qHQcc6SNE+JvZV4U6chukOKo1xqIU6p1ZZ5IckiIw85uMe1zXVmeA1dv8shpNZMecSptU7/O9k/8j5h3LEXLf8/m5gA1jS3k1L6MbrLxc8u/SdUv53cvbwagsSdKKq0flnMRQuyfZNNabPN/Abv0mogl0zT2RKlUbWzWRhH3jqKg5W1OdtVjKA1HxZTsBSzE3tg8JH2jAAiO+wyx4qm0zvg+ANGJV3De5DI++alLMetxZuqrAbjEtYofWR/hdutfmffuNfzwvtf4/uNraOiOoOsGdy/MJEN3LH+Z0XWPYNEMTo88j3PzE5D68KFoYmCR5JAQ+ynHbsbwlJHrtKIqZqHpCSpfu56RT5yFZui8pk9Hi3b1++IgxMHWFowx3VJD2lkALpmtTIiBzOeyAaBbXHRMuha7vxpn0zvk1ryIlo5Te9pdGFY3vylbyAVTy3FYTNR3RWRyAyEGEMMwMFY+iG/l30h3VPctr+kMYxgwVGtnfdSLf9g5HJNYxRnqXZK+0WCV6cDFwJMeMoekoxDPlPMZVewmOO16tl7wEtbpnwEgf9xcDBQGGgsdp1AVXoVv6/8IFUxhsqmGb3T/gkeX1fLd/63hrS3tPLemmZlD8/iecQ//p93LDyo24lNBtHScVPOafsfWdQNdN2T49AAmySEh9pNSivI8BxaThnX82XRM+AL2rk0kcoZyz/h7WJweh9JTEOvJdqjiKNYaiDNFbSNVOmOvM+wJIQaOPIeF4YUuyr0OAsM/QcqWR+Hqv+PbeD/xnKGEK+biH34+o3sWcN2sfHKdFjoCEVJyt1WIAeOMPy2gflvmR26i5l103aAjFGd7ewgPEXIJUasX8vO2E4lhpSRRh14yJbtBC7EPqdN+Ts3FL+Jxu7GZTVTmu9CLJ/ZNsKC5vMTK5hCoOptJF34fZaRR6QSN8/5M24m/ZFJ6I/cNfxNXzSt8/d/z0Q2D706KME6rx6QMruq6jbSR+X6arF3ad1zDMLj4jnf45qOrqOuMZOXcxYfb+8B5IcRe5TozH5wWq52OE39O87GZ2cmSW9vpNN7NvCjcCQ5vtkIUR7FQPIW/s4UhehOR8muyHY4Q4kNomsJlM+OygcXko3vMZRSuuQOA5uN+zrBCN62jLyJ/43/I2f4iHutormu9BcdDabj25SxHL4ToDifY2hbC4dwBgFG/lNbRF9ERTLC8ppsK1QZAydAx3FWdYIr5FK41v4gqn5rNsIXYJ6c7D4/h6Htut5ioKnD1TcIDELjkURIpg3Kfm3jOMKKFU/BWjKM9r4rg9mc5qeFfnGSFNscIXp99LyMa7iBtstOZO5GiruUs0yYyjBbaV77JgtQZTB/mo7knxoq6HtbWdXBFcQP+nLPIdViy8RaIDyDJISE+IqfFjD+VBKDC62AJnsyKSAcwMnuBiaNWVyhOSXBdps/nkJnZDkcIcQA8dgvtc75DqOwE4nkjcBcPw20zEx85h3hOFb6N/+ESTuK4xCL0zvxshyvEoJLWDVoCMYo8tn5FpLe2BbGSpDjdDAq0xmUEmqvJbV1BbccYxju6QYcrz57L4jfTLI98jktsOu5x52bxbITYN5OmKNhtFj2ruf9gIpfTiQvQTCZaLnsZ3WSlKsdOjsPCjnl/xdn4NkpPMWTBd7j43QsxJQIERpyHMeaT8NxVNBaeTFvzMia1r+TWlzZjNWmU5dnxOi1clnyOWW89RFPuw+ROO/swnrnYH5IcEuIjKvTYUAocVhN2i0an0Tu9cViKUotDo6knxgR9M7pmwloxLdvhCCEOkC8vl3r9JADynJkv5z63jaapN1C24Lt80VgLgIp1g54Gbd/Fr4UQB09bMEZXKIHVpFHosfUtX1nXQ6VqxaQMIu5K7J2byH/2cxSEt/E100RaLWUQB0vBMP55lZdIPEVDzwnkej1ZPBshPpj5Q2bRc1lNfT2JPLm+vuSR3WKiqLiEJtsnAEg58vFtfhhDmUke+w2cpWOpjd7BaVPORV96NzkLf8aDlw7jjy+uZVbPUySnXc0XNr4JKXCuuBMkOTTgSHJIiI/IYTVR4XMCYFKKrp3JIZmxTBwi21q7maNtwJ87Bq9DvngKcaTJdVhoNsWwmBTu3lnNlFIYUz7D1oJjaHvjdnZ0RLjS9ArE/OD0ZTliIQaHVNrA3rmBUDSXQs94ANLpNK2NtYzUmgF4Uj+ZK7ifgvA21pZcwPDml5icXoduy0XrLSfgtJkp9tizdh5CHAy7DjHLc1jQtPef57ttGGR++zRrJ1FffiIAo4rd2C0mWsech8vtIjV6Liz8GTNfu4hHdD9mS4RI3Xs4U82s04cxseFN0u1bMRWOOsxnJz6IFKQW4iDIdVjwa5nkkCE9h8ShEGjm7Lc+xUxtC6lRZ2U7GiHER6CUYmyJh5FF/ZO7XqeVuHcMr1V9j2Xp3i/Kci0R4vDQdTwLfsbIJ8+m5KXriCYyMyklV/6XH225hE/aVwJwe9dM0mgsNU3jvJqLmRP/G88M/xnBc27vt7ud9SmFOBrsmhjaqcBtw+uyMrzQhd2ikeMwY7dkerpW+BwopbBUTKPunAeI540iPORkWqd+Had/K3FbPtclvk1aWTDe+/dhPhvxYaTnkBAHgaYpPG43saQDS7gDGQggDrptr5Efr+dm09f56knfy3Y0QoiPSO1llsFM0WoTuQ4L1X316zoPc2RCDFI1C8hbdQdR71gcnetor1nO67EKpm2YTxkpzk7Pp9uUTxMFPDnx74yYNJs/RawEoinKy05FlbizfQZCZIXdYmJUcf+bHTbzLr+CRpxKTVlmKDWGgW7NIeYqo/mFXFrtVRS2bzqM0Yr9IckhIQ6S0cUeOutzKAq2S3JIHHzxAAD1hSfisMpHtxBHm+GFbsaX5vBa3xBlSQ4JcVj4GwBoOPkPjHj2QtTK+/ne+k/wlGl530uSeSOYUeBlxty5uGxmpnpsxFNpeiJJbGYZiCHE3nhdFqLJNGaTwuu00nTMdRR6bBQufJt2rYAif2O2QxS7kU8zIQ6Sq44dRrvuprOtKduhiKNQMuIHoLigAIdF0o9CHI2Kcmx0GZm7sH946h02NgeyHJEQR7/tO7YDsDpWSKDqHHK3PoU54adKr+Px9ImklIW8ocfw2JePoyTX3jfTk81sojjH3r+nhBCij8duYUyJhxGFbnwuK6W5drxOKxVeB81GPlpQfjMNNJIcEuIgOXVsERGLl1B3C4ZhZDsccRTZ3h5iY00jIcPOuDLvh84yIYQ4MuW7bHSTGaKSCnWycGt7liMS4ui2qr6Ht1dtIGA4+OmLNVQPuQBLKsg3zY9jUWleTU/ntWMfwDg5M5zbbjHtdWioEOLD5bttWM0alT4nOxJ5aHE/xIPZDkvsQn5hCHGQaJqiqKQcZ6qHv8+vznY44ijytYdXsmFHAyEcnDq+ONvhCCEOEZ/bSgwbEcOGTwVY1xgglkxnOywhjlp/eGUzpWY/5pwS3DYzN63Mo9VcxpXmVwHYog2nZOxsrDlFWY5UiKNHhc/J5lhu5okMLRtQJDkkxEFUVTmUAhXkdy9v4sp/LeGHT6whHE+xaFsHv3x+g/QoEh9JRzDByFwDrzef8jxHtsMRQhwiLqsJq1mjCw8+FWRTS4BwPJXtsIQ4ajV2RxlqDWHNK+Ebp41iU2uI++MnYkYnbcvjiR9exriyHOktJMRBVOF10pj2ZZ4EGrIbjOhHkkNCHEQmdyFWklx2jI+eSJJHlzdwxd1LuOa+Zfxz4Q6q28PZDlEcgQKxJHlaFLMzN9uhCCEOIaUU+S4rXYaHfC2EtWMDsZql2Q5LiKNWayCGV+8GdzGfmlpOgdvKo8mT0DGRLJ5MnssmNYWEOMiG+Bw0GfmZJ9JzaECR5JAQB5OnBICvHAN3Xjmdr50yklX1PX1fLF5Z35LN6MQRKJXWiSTSOIwI2DwfvoEQ4ojmc1npNjwMc8S4xXQ3eS99NdshCXFUCsVThBNpctJdKHcxdouJq44dRhteVk26ieScr2c7RCGOShVeJ614MVCke6Tn0EAi8yELcTCNOBVDs+DY/CQteRM4ZWwx+W4bZbkOvvLQe2xoCrCtLUhjT4yTRxdmO1pxBAj1Dilx6GGwDc9yNEKIQ83nstLd7mG2qqZUdWALpXhlyWpOnXkMJk2GtgjxcRiG0TdErC0Qw0YCWzqM7snU87v+5OGMK83BV3QyllwZxi3EoVCaa8fQLAQt+Tj9khwaSKTnkBAHkyuf8LDTyNv6BOhJzJE25oZepFxvZmKRlTNrbuXuRx7n6n8vo6E7ku1oxREgEM0kh2zpMMqek+VohBCH2pSKPOy5RdijLdhU5v//E08/wUNLa0ml9SxHJ8SRLbhLDa/WQJxC5QdA600O2cwmTh9fTIHHjt0iw8mEOBTMJo2RhW6a9Hz0nnoAdN1ge3uIpFznskqSQ0IcZNHxl2GJdTDi2YsZ+99ZDHn7+wx/7iJ+nvgD5yVfZmLrM6R1g7+9sQ1d37NAta4b/PSZ9dz5lsx4JjL1hgCsqRBKhpUJcdT79hljOHPm+L7naUMx27SZV9e34Y8msxiZEEe+QDTZNzlIWzBGIT2ZFe7+M4G6bTK4QohD6bNzKqlO5BLrqOPLD7zHPYt2EI6nqemQ+qzZJMkhIQ4yfcSpJNzlWAM7aD/my9SccS/KSDM+uIiwYWOqaTvzxhTy9Kom3tjcRlc40betYRjc8vwG/v1ODQ8vq+9LDIjBKxBLoqFjSUdQdilILcRgoJyZQp1Ri4/m3CnMdVSzoq6DjkCE1kAMXTf6zX6Z1g1a/DF6IgmZFVOIfUnGyH3+euItWwBoC8QpVD2ZdW6Zql6Iw+ni6RV0mQqxhJt5cV0zj7/wMomXbyYeCcksnVkkySEhDrI8j5OtF7zEpsuX0jrz+wQrT2X7uY9SPesX3K+fyVhVx+dnlpCfauG6+5Yy7/fz2doaBGD+5nbuXVRDcY6Nmo4wLT2xLJ+NyLZgLIWbaOaJ9BwSYnBwFWT+Lp9G7tiTGZqo5nW+TNt9VzH7V6/zl9e3Ut0eJppIYxgGt72xlZN+9yZrG/19Q1GFELtpXY9n2zPo6x7PPA3EKDNnvn/t3nNICHFoOawmyqvG4lAJbppt5Veuh5lefy+Vz11KT0dztsMbtCQ5JMRBZjObsHl8GGY7AEpB3DuayDFXMfPEMzGRZkTL8yywf4v/TliOpuCKu5fQ7I9y54JqSnPt/OCssRjAlt6kkRi8+iWHpOaQEINDb88hvWwaavjJaKRxEefY2NuMcEb56+tbufXFjdzy3Abe3d7JvYtqSKR0Fr7zDj3+HgzD4J8LtlPfFZE6RUL00rt2AKCaVwHQGoxTaQ1ioMBZkMXIhBicTv7UtaQ1K5e3/YmpqVW8np6Ks2sD9kW/I5ZME0nIzY7DTZJDQhwCXqcFu0WjwudgXGkOeU4LJk0xbsY8AEqX/BLNSDO9+b/87NxRBGMpLvz7O7y7vYurj69iiM9BDiFcK++CtHwwDmaBaBK3kp5DQgwqBaNJuUrRRp+JfdRctlz4Kn+vug2z0vnXjAa+Ubwa8475PLS0jq8/vAp/NMk0X4Jvb78G61u/4I1NbfzyhY3c8vwG2oLxbJ+NEANCunM7AObW1UBmtrIycwDDmQ8mqTEkxOFmyi0jOOEK3M3voGtWHi37AS/ps8nd+gTbGjvY3h7uV6A6mdb3SBjFkunDHfZRTZJDQhwCPpeVkUVu8pxWTJpiiNfB8EIXTl85SXc5pmSQmHc0lkgrUwPz+fG542gPxnHbzFw6cwgOs4m/2O5gXs2fSOxYlO3TEVnUHUngoXdmO5v0HBJiUHAX0XLtCmyV0zGbNCgex9mnnUHUO5Yhq//M1/2/4Q5+wRNDHmZ6eAFTikzcUrkCm0ri2fokd725CYDXNrSyoTlAei+THwgxmNz3Tg3vLH8PAEu4BT3QQlswM1uZ7pIhZUJkS2jGDegmG/4R53HhSVN4MHky5mSQZx/+B6m0QfsuNziaeqLUdkZIpDIJI103qOkM73WCH5DE0UchySEhDgGlFEqpfs93TomaKJkKQN2824nljqR0yc85s+Gv/PYTQ/nB2WOJJnV86+5hnloBQLp98+E/ATEg6LpBqz9GgaX3wijJISEGDZfVjKZlriO5DguVPieh0RdgjncTqDydjonXMLXzOf5h/Qv/4f8YVf8/Aloe7rQfT8NbXD6rkjLVxepFr/Sb+ACgsSdKfVeEaEK+OIvB4fVNbVgDdeimzJD/9i1LaA9EGJXYiFEwKsvRCTF4eYqGsu1TL9Az95ecOaGEk07/FK3mMq6O3kvlw/OIb3mDzlCcV9a30BmIkkomqeuKUN8VZkNzgFQ0TFcksdd9twfjfYkksX8kOSTEYRaf8zUaj/sllrIJNMz9E5HCqeSv/zenbfw/Jpfn0t4doGjlX1nvmEHEsGG0SXLoaBJLpqluD+GP7HsmulDvLA2BWJLuaJLCvuSQDCsTYrDw2N8f5lKcYyfXaSE984s0nPhb6k65neY5N7P+qg3UnnYX7nAt1nAznSf/ih4tj0utb3P+5DLuyrmHG+q/yfz31vV1zdd1g8/ds5TL//ku2ztC+7zjKsTRYOf1dEdHiAqtjdbC4zFQJOvfY2xyIznpbozR52Y5SiEGr1yHBVU0Bp8vU/frS3NHkTr+24Q1D1q0g+Klv+b3L23ii/cvR3v4UkY+cSZRfyeX3bWEu+/7F+Pvn0So+t09hpuldQN/OEJYZn4+IJIcEuIws1ZMp3vClQzxOqB8KrVn3kvznP8jp/51Ctb+k5zaVzDHu1lX+Vm2GWVsWb+Cl9ZJ1f6jhT+aJBJPE9pHkb1ALMmO9jBd4QTd4QR5oW3km3uTQ1KQWohBw2za8ytaXm4u3WMuw2RzoGlgWJwEhp1F7en/onPcVdgmnU9q/EWcqt6jvOF5xscyQ82a3/gHb2xqBWD+lja2tYVo6I7y1uZ2eqLyxVkcnXTdoLE7SiyRorU7SBmdbFVDSXpHYm1dxZmm5aSVBTXmjGyHKsSgVprnIKf3hohSCtO0z/LY7Mf4VeJSnB1raVzxPDfmLmJKfDmOnq3kvfBFWnpCnBN9Dk1PkrfqTqrbwjT2ZGp0bmwO8OPH3mP0wyei3vnzHsczDLkpsi+SHBLiMHNYTOQ6LFhMGvkuGwCd4z+Pf9jZlCz7NcXLf0/CVUb+pDPpcgylKF7HA+/WZTlqcbDsvIsZie+ZHErrBg1dmQtbU08U04Yn+V3b9cwyMsUzpeeQEIOb3WLCbTdTVeBiVJGHHIcZi1kRGnISzSf8goIcF9E530C35VLx5tfQTXb8hTO4QnuVm/63gvmb27jzre2U5toZm6eTv/gXdHe2Zfu0hDgk4imdRDLFmkY/ZbSjKYPVES/JYXMpanmLy01v0Fl8HBZnXrZDFWJQc9vM/cpxeF0W5o0pon7I+bSpAu6w/41vpv7FFtd0vpe8jorud/mD8z+cYlpJULnJrXkRk7+O7nCCRErn1hc30b3qWazhJmzbXtjjeK0BmahhXyQ5JMRhZtIUJbmZMe+5DgtOmwmUouGkPxDzjsYW2EH36EuYWOFj9sw5lKkOWjs6pKjaUUDXDaKJNK7md7FtemqPKaa7Iwn0ZJyc7c9BMoZv838BmJZckZlq1+rORthCiAFkWL4Tu8WE1awxNN/F2JIcvC4LHrsZq1kjx1dK43G3oDDoHnURnTO+ST49XMIrfP7eZSzZ0cV5x5Tyg8LFXJp4kti798hdVHFUMt79B2MeOYF12xupVJkk6OJODz3H3cQbzMStYpgnnJ/lKIUQu7OZTYwry+GfVx9H+Iw/khh2Kt2jLiZ93u10jLyUR1Jz+ZT+KmZ0ro9/jbQO5qevx7PjJZbs6OStLe1cZFoIgL19DZFAZ9++k2mdjlC873eVTNjQn8zbKEQWWHqHC2iaYkShm2giTXU71J5xD4WrbidwzOcZmWMjUTQGAGewhu5wgtI8RzbDFh9TOJ6k9O2byN94PwaKwDFnk+st6Fu/vKabEct/xtCah2gunour9R0AHEYU3ZbT766KEGJw2tvnwBCvk3gq80XXYzfTMPIT7LDmECudgcPpIThkLt9ufpTc2Z8k4ipn7uhCRm94DoCK7Q+TTv8Is1m+Eoqji1b7NtZQA5Xb7qdSZYZPbksVctNzW3k7diN3HRdk+tSLsxylEGJv3LbMNalr9OnUV8wFIMdh5hcXKN5c82uiK68m4SzilLGX8NDybs7s+S/Fr32Rx4tvpdjsY55pFWvUWI4xNtG+5nWSo8/BMAw2NHUzu/F+wtM+g72sih0dYWxmjeIcO1az9JuRd0CIAcBhNVGUYyPpLqfphF+Rm1+GUgpz0VgAhhqNfeNoxZEr1rqV/I33EyqZjcIgvePtvnXvbu/klUf/zqiah4h6hlHaOh8DWM44AAyZqUwI8QFs5syMmJqmKHTbCA05CZ/XS1GuncYTbkVpGlc138KZI+zkti/HHa7ltfRUcmKN6Ftfy3L0Qhx8po5NABzX8iCfsixBN9mI2fOZv7md0WU+Cqd9Ao/TluUohRAfpNCT+T9q0hRleQ7K8pycNHEY2y54nrZz7+HaE4cz6vzvMC/5V9pVPsc3/5tfF76GmTQ/jF1JyuTA3fQ20USab/9vNS889m9Klv8W07K7CMaSRBNpeiJJNrcEaZLfWpIcEmKgKHTbcNkyX+7znFYATAUj0NGYqm2jsa3zgzYXRwC1/U0Amo7/BbrJhr5jIdFEmtZAjK/8Zynf1h5itT6cS9XveCc9nhfSs3k6OSezsVXqDQkh9k+hx4bDaiLfZcVpNWP2VdBw0u+xd6xj1FPnUrHgW6QtHr6V/AohsxdtzSPZDlmIg0LXDRKpNN+8fxFmfw3+YWdjNyJMYhvhWV9nxf+dyaZbzuLxLx1LvtuGpkmPXCEGMofVxKhiN6OK3X0jL8rzHFitVvI8me/Go4s9HDemjNsT5zJb28Qp3Y/SMOJy1htVvJseS2rTS9SvX8Sahh6u0F4BILX5ZX7wyDLy3/sTtu4tAHT11iwazKQPsRADhFKKofkuWgOx97s1mm1Ec0fwBf/LJF5eCBPXg9OX3UDFR2arX0jUNYSwZySRoum4mhZT0xnm4aV1TEsso9zazn0517CmLckXzP9HIpVmnOotRi7FqIUQ+0kpxfACV98P30KPjbqqc9hhz6fs3Z+RtuXQOetHpF7NodFaxYhAQ5YjFuKjiSXT2C2ZG2uheIrazjBdoQTbNqxA2QzCYy7gqprTGTZsJDefcCwek0ZvJzscVvkZJMSRYOf/8Z00TVHpc2I2Za5xXqeVb5w2moedVxLf8SrJ3GGET/kl3yrrYs2m8zi27RbOWXw5j9rGM0ttoN1URGGkmklbb6fM/Bzp1X+nftJXiY29kE73SEpzB28ZD+k5JMQAsrPL5K66P/UAf0ldiDUdQW/dmKXIxMeWTuFoWMSzwdE8tKye2JDjsHduIBbo4KlVTdzofoOEq5SSmRcB8IXjqgCNzUYFCc0h09gLIQ7Irj0ich0Wch0WIqWz2XbBC+w452Fio84j320lgBsV7cpipEJ8NG3BGNvaQvijmXpC7cE4ug5bWkOM0eoB+G+Nm9WxEooKi6SeiBBHEYfV1K+G68TyXH54/jS2XfwaO85+iDyPi6+dOorPXvM1/nP8a9yS/CxTtGpSmPha9DoAvmR+jlX6cN5KjmPY6j8y5tGTiW1bSFNPlGAsmc3Tyxr5lBRigHMUVjHfNg+AVNeOLEcjPiq9cSXmZJAFqQm8uK6FePlxKAwalzzF+PgqJidW0jXuSj4xtZIXv34iV8ypZGSRmzQmVlRejT7hwmyfghDiCFaWZ8di3mWqYKcFn8tGDx5UtDuLkQlx4FJpnbZAHMOA9mCMWDJNKJbCFOsm0rCG0aqBOBZuX60zoSyHS6YPwbFb7wMhxNHFZTNj9+RhtVoocGdqFbmsZmZOGMWsy/+PbRe9wnNT7mCxPp4WrQiA8Jzv8ub02zkx/ieiljwKVt5OZyhBKJ7K5qlkzYf2p1RKVQD/AUoAHbjLMIy/KKUuAX4KjANmGYaxfB/bnwX8BTABdxuGcetBil2IQcFmMaHnDEHvVhiSHDpixaoX4ASafbMIdaR4prOSyz2jOKX6Vk602YjljiQw+RpG59gpyrGT1g1mDPOytS1E7YQvMWPykGyfghDiCGY2aQwvcFPXFQHA67KS77LSGXSj4t2g66DJPUNxZOgMJzAMsPprSNjyqDeg9J2f4Nv0IGP1FB1mL0HPCI4bUsRfL5+Kz2XNdshCiMOgOMeOWVOYenvPmjSF12VFKUjrVQybPpSpTRto912OK7SGommf4OKkzsvrW3hMO5urGh7A1r2ZlHNils8kO/bnW0AK+LZhGOOAOcBXlVLjgXXAhcCCfW2olDIBtwNnA+OBy3u3FULsJ7tZo9SXQyv5GN212Q5HfETV27YQMJx854LjmF3l47evbef09m/SruXjMqWpO+0uvHnevtebNMWMoZn6UvluW99FTgghPiqrWWNkkZuRRZnCnj6XldakE2XoEPdnOzwh9othGHQG4+Sv+xejHzuFyteuQzW+R8GGfxOoOodNagRFdOGqOIYHrp0tiSEhBhG3zbxHjaLyPAfjSnLwuiwM8Tp58ivHU3TOj6g56z4qC1yMKHJz8fQh/LHnRKKGlZKnPk3hI+dAZPANuf7QnkOGYTQDzb2Pg0qpjUC5YRivQqbo4QeYBWwzDGN772sfBj4JbPiYcQsxaJhNGmNLc6jZUoS3uybb4YiPIJXWaWuuI8/k49gRBRS4bTy5spFQLEXtiOeIWuKkPOV4nZZ+2517TCmRZJrZVb4P+6wVQogDlu+y0phwZPp2R7rA4f3QbYTItmTawLP1Scre/RnxnGG4W5bge+1bxE0u1kz5Kd/ZsJjH8m4jf9SZ2Q5VCDFAaJpiiNfZ99xjNxNP6tjMJmxm+Nqpo1BK8edl13C2sZAprSuhdT1UnZjFqA+/A+o/rJQaBkwFluznJuVA/S7PG3qX7W3fX1RKLVdKLW9vbz+QsIQ46o0p9lBnFJHskGFlR6KX17fiSXVizS0BYFSxh++dNZYbTh2J11tA0l2Oz2XFbOr/kWy3mLhyzlDcNplRRQhx8PlcVtrTrswTqTskjhCpdJqCNXcQ845m64UvEzDn44tU80D8JG54fCttRh4vzH4Q08QLsh2qEGKAclrNFOXY+p7bLSa+e+YYdlRezC+NazILw4MvJ7HfySGllBt4HPiGYRiB/d1sL8uMvb3QMIy7DMOYYRjGjMLCwv0NS4hB4cwJJTiLh+NJdvDcsm3ZDkccoLvf3k6pKUBeUUW/5fkuGw6rCbtFoyTHvs/tpdeQEOJQ8Lms9BjuzJNB2H1eHJn07W/h6NrII+ZP0hSGPycvJI6VnJO+QjylA1BV6NpjaIkQQuxqb58RZXkOamO9PYzCHYc5ouzbr9vRSikLmcTQg4ZhPHEA+28Adv01NARoOoDthRBkukKedtwsePYenn97CefOGCEJgyNEWjdYXd9DkaMHLae43zqTpqgqcJHS9X7TTgshxOGQ77bSTW9yaJfp7BMpXab9FgOW9b1/4jd5+WX9RCyPrCKcmMeE86/h5IlV3FEZ4NnVTcwYKkMkhRAHbojXQYfuwlAaRqht0E3t/qHnqzK/QP8FbDQM448HuP9lwCilVJVSygpcBjxz4GEKIexFIwCIt+9ga2soy9GI/dUZimM3Ytj0KMpTvMd6k6awmeXuphDi8PO5bHQbnsyTXXoO1XSGiSbSWYpKiA/RuoG3EuMYU15APKUzsSyH0ZWl+FxW5o0t4o+XTiHfbfvw/QghxG4KPTZ0NFI2L3po8A0r25+eQ8cDVwJrlVKrepf9CLABtwGFwPNKqVWGYZyplCojM2X9OYZhpJRSNwAvkyl3eI9hGOsP+lkIMQgobxUAFaqNVza0sK09xI6OMF6nlSkVuQwvzMw+8/SqRmYO9eFzW3FJrZqsaw3EKVQ9AJhySrIbjBBC7CLfZSWAEx0NIp0s296Jx24hrRvUdoUZVeTBpCliyTQ2syY9VkX2GQaE22gzJvKnSycTS+p4nZlpqnev2yeEEAeqsDexHLPm4xiENYf2Z7ayt9l77SCAJ/fy+ibgnF2evwC88FEDFEL0chWgm50cr7by/YXb6Y6m+lZ94bhhXDargvvfreOBd2v5wvHD+MrckZIcGgBaAzEK6QFAuffsOSSEENnic1kx0IiZPRj+dq66ZylWs8Zvzh9FRVE+zf4oJTl2ajrDOCwmKn1OSRCJrIqEunHqMVz55Yws8vQtN4y9ljQVQogDUuDJJIciFu+gTA5Jil2II4VShCZfzRnGO1ySeJKTRhXw+JeP5cRRBdz7Tg1X3bOUB96tRVOwoSkgQwIGiLZgnELlzzyR5JAQYgBxWk3YzBoRUw4NjY3EUzpnq8Wc8sxsEtsX8vTKJi7/57u0B+IEoim6wolshywGuZffXQPA9Inj+i2XpKUQ4mAo6O05FDTloSQ5JIQYyGIn3URLxdn8wPIw35tpwWoy8e2TSvlt1UpmFyS4cs5QTh5dCM1roPr1bIcryPQcKu4dVoZHhpUJIQYOpRT5LivdhoeezlbmjSnk65U7sJOg6o0v8/Crb7OspptfPbuKaDxFd+T95FBXOEFrIJbF6MVgkNaNfo/fWL4WgNEjRmQrJCHEUSzPYcGsKbpVLiry/mxlg6V3oiSHhDiCWC1muk/8OUqZKN76Xzx1rzHxsRP4dPPvuDXxay6dWsyM/AS3G7+g5LUbSKWk91C2tQVjVFiDGMoEDl+2wxFCiH7K8hzURm249QBXzhlKQdcKOnMnYDZS/N15B784wc5Dgc+jPXUd0ViSaCJNRyhOY3eUjlB8r1+Y43LtEQdBMq0TSbw/hH55TRcEWzJP3HKzRQhx8GmaIt9tpcPIQUsEIZm5CRKMpz5ky6ODJIeEOIJYTBopZzH+YWfh2/wwFfO/QdI9hOZZP8LZsYaKN27gMzt+SIEKYE308O8X5tPUEyGWfP+LumEYpNJ6Fs9icGnxxygzB9CdhaDJR64QYmC5/YppjB8xjCpnnFKtB1uwjsTYC6mbfTOT0hu5bO0XcGkJZgRfp/Ct73Hrixu56cm1vLiuGV2HyG5DmNO6QWN3NEtnI44msWSa6C7fXxp7ohT19cSVYdpCiEOjwG2jNb1zJs9M7yF/JJnFiA4f+aUixBHEaTXhtJnoGn8VpkQADJ3a0+6k45gv0X7Ml8itfYncwGbu1c8FYPW7b/DblzbT2JP5oh6IJdnYHKTZ//5QgDYZFnBINXRHKVY96FJvSAgxABXn2CkuKcOe8uNqXQZApHQWxqTLCFScgjnuZ9XM33NX6lxKqv/HoncXsXBrBw8tWIt5+2uEIpF+++uOJAjH03ITQnxssaROPPn+v6OdNfx0kw3sedkLTAhxVCtw22hMuDJPwu3Ekmn0plWQCGc1rsNBpjIS4giilGKoz0l16lg6Jl5LsPwkkp5KAFpm/YiWmT8AFM89vZrL21/heGcdP1vfyuhiD3e8VU04kebMCSXceMpIvvif5QwrcHHeMWW47WacVvk4ONgCsSQdoTgF5h4MV1W2wxFCiL3SnD5UKoq7cSFps5PC0TNp9Cepn/c37F0bcZTMZFF1AZ/veImfDXkPV34L4zf+BesbadpSv4RTbgDg+4+vwR9NcuNxJYTiDvKc1iyfmTiSpZvXooLt4DsbyNTwm2LqwXAVgRSgFkIcIgVuG7XNmeRQKthGtyNC+fNXwqa5cPG/shvcISY9h4Q4wphNGoU5dprn/IRQxVwAHFZTZqXSQCmuOmEkPbnjOC2ngWgyxe9e3ojPZWV0kZs3N7XR0BXllQ2t/HtRDd2RBC1+6T10oPZWZyMYSxKMvd/ttMUfIxyN4kt3gLvocIYnhBD7TTkz9dBytz9HtHgaOU4HlT4nhs1NpGQmmgZXnTqDusK5zOl5jsmb/sQ7agqdpkLstfPpCidYVtPFo8vqCW98nfH3TyJWtyLLZyWOdJ6Ft1D82o1919u2QJxyUwDdJddTIcShU+CxUh1xAFBfX8fmd57HHO2A8Z/McmSHniSHhDgC5TksaJk8ECOKXIwscpPntPStP25EAc6qWfgCG3k257f8z3ErPz9vPJdMLWF6ehXNL/8BE2lUOsaGxS8QjqelgOgB6AzF2d4R7jdsQtcNmnpi1HVF6IkkaOiO0NQV5jfmO3Gne2DEKdkLWAghPogvM/NTPHc4geNuAsBlM5PvtqIUVBW4mFCei2nGFzAlwyRyq3i44qe8npqMq2kxjZ1B7nl7BwbwBe15lJHGtOVF9F1mmkqmdTY2B9jQFMjGGYojjGEYWLs2YYm2E+9pBjITPBSqHpBh2kKIQ6jQbaM5nQPAwlUbaV/8IDHNBaPOyHJkh56MIxHiCKRpCq/Tit1i6hsOVpbnQNMUZk1R6LHhL5uKtvpuJrEagKaaB5i+5XGutq6HAKx253OMs4vP7biDzTU5+HPOpijHlM3TOiLEkmma/TEMA3Z0hBlZ5EYpRWswRiKVSRbVd2VqPOWtv4+5pkUsG3EDUydemM2whRBi36pOYsfn3iNkLqA4z963uNhjx9F7nXFazewYMZfmWTcRqDyNKR25vFk9gU+r13jgiSd5rb2MS0ekmNuQuea46ufTEohRltd797UrQiqdSRZFEikZyiw+UDzYhT2cmZks1bQGvGW0+GP4jG5JDgkhDqlCj40INmJY0XvqOce8nGcTM0ivbOOyWZXZDu+Qkp5DQhyhinPs+Fzv13MwaYryPAfFOZkv9trwk0jZ82k48bdECqdS9u7PcfRs5e853yJmWPiEewtnWNcAkLP4Vnoiiaycx5EmGEuxc0RZLKnT7I/REYrTEUygkhHQe4eV6UlGbruHJfpYGsZ/CbNJPm6FEAOUUhjuElAK1y5JG01T/eoG+dx2Oo65nkTeCGYP95GuPAEdxcTYe0wrMvMN7VF0pfEYp+FoX01PRyttwRgbmvzUdUb6piUPxQbHlMDio0s2r+17nGhcQ3c4TlcgjEcPoGSmMiHEITRzmI8TRhbi1/K40vI6LiJsLjqTcOLoH2Uht22EOEKZtA8uxujwDWHjFStAKWK+cVS88VWa5/yEaPgYli18hemJZbiDLTSrYkrDm4hteZ5Y/qexW6T30AdJ6wYqHUfpKXSLi85QJqmmUjFGPXUOutnB9nP/h6fuNdyxFu5KXcHVuY4sRy2EEB/MrGkolcbxAdeAHLsZs0lhMWmMKMzhtmtPJXbHRK7ofpwrUk+idUdZOeSzPFA9mottr+FuXMja5Bn88Im1hIM9nG9ZytVzhhCZcA7kjDyMZyeOOG0bAUibnWit69nYEiIn3Q0W0HJKsxycEOJoVpbn4IFrZxNe9D38NUuI543k2uO/QEmeK9uhHXKSHBLiKGU2aVgsGsmUQbRwMlsufRuAU3WDZPup5Gz9CwArJv6ACWtuxbLyHgJTLpDk0IdIJmJUPX8Z9p6ttMz8Pl1jPwtKUbTqb9j82zGUieHPf5q0v5FtehnOCedQ4XVmO2whhPhAuQ4LhR4b2gfceFBKke+2kuuwoJTCZjZRN/v7uLc+g2520jPqIgzfJKzJdXS3uOl673FuTpYTiid5ovBuxgYXwzLo9q9Br/wnmqb6ardJ70qxK1P7RtLWHKKlM7F3rqcrnKBUdQKgeUqyHJ0QYjBIT/88jUM/DcBot/1DXn10kCuxEEcxp8VMrsOCy/Z+wsdiVhRMPgsAXbNSMfUsXjGdRFn3MqJdjdkK9YiRs+hXuNreI+GpoHzRTRSsvQt7xzoK1vyD7lEX0XjCr7H2VLMyUcG9hd/jhlPHMMQrPYeEEANbrtPy/syXH6DIY8dmfv912shTaTzp9zQf93OihZPJcZi586pZvGo/kymBNxkXXsZ/xyxibHAxf9I+x1LbcbgbFlDfFaa+K8Lm1uCg6KovDoypYyNx31jSRROx+bcT8PfwXfOjpEwOKJ2c7fCEEIOARcukShxWrd9172gmySEhjmI+t5UKn6OvIGie08L40hy8VdNI2gsIl8yiuNBHbenZaBiYNz3db3YZsRt/I7mr7qRz7BVs+9QL+IedTfHy31LxwmfpII93R3yD7jGX8aNxr3BV4gecOPdshhU4P/BOvBBCHMnctv6d0PNdNrwuG9OuupVY7nDuMt3K5K234R92NluHf46nIxOxRFqJN2+iJ5JE1+kr5i8EAIaBpWMT6cJxqJJjUEaauUuv41jTBqpn/hRkWJkQ4jAwaQqbRSPfZct2KIeNJIeEOIq5bWaUUtgtJip8DoZ4HSilcNut1J55Ly0n/ZriHDtDRk9hnT4Mx+YnCSWkUOg++RsA6Cg/DX8sReMJt5KweonFE1we/R4/fKWF5bVdvLCumVlVPsaVeQbNnQYhxOC0MzmkVOYGRK7DAoDHk0P9vL8SLj2W+pP/RN0ptzOrKp+3UhMACG58lU3NAZJpnWRakkNiF8EWtEQAo2AMpqrjiOWNxBbv5K7UuXDMZ7IdnRBikLCaNUYXe/DuMgHQ0U6SQ0IMEnlOK0plerCYTRpG2VTsRZmCoKeOK+LZ9LH4utcQ7azPZpgDW6QDgN8saOfLD77HinbFBclb+LT2ez577umkdYOfPbuBYCzFBVPLyXcPnjsNQojByWzSGFvqYVxpDhW+93tKum1mYgXHsOOc/9Iz6iLQzMwZ7qPbWsIOvZiuta/w48eX0/LqX3As+UuWz0IMJG0tme8hy7sd2PNK2XrxG9w87EH+rF2Fx2nJcnRCCHH0koLUQgxSbrsZe2+vltHFHja5Z0L8v6S3zccoq+pLJIn3xXpasQPbIw5MVsWPn16Hw5LHrRdOYlSxh5e/fiLVHWHiyTSTK7x7DLcQQoijkWUvxaSdVhN2i0YsmekV5LabqSpw8dwNJ5B85iROq3+MdaZrsDSkoQE49ZtgloS6gNr6eoqAxU0Gp2gKq1mjI5TA57J+4Gx6QgghPh755SLEIOW2mfvNTJZfNZWujR5sdQvpjnwW3yDqQrk/kmmdZxav5dPA9y48noriAv7v6bVcOrOC4YVuyvLs5DmtlMnMZEIIgVKKIV4n1e0hrGatrzB/VaGbhpO/QeeqHOZv68FmxDkv/lxm2G7+iCxHLQaC9rZmABY16UQTaZZs7+Td7Z2cM6l0UA3vEEKIw02SQ0IMUjvrEe10zjHlvLN+AnPrF9IQiOJ1WqT30C7+Mb8aZ2czSaudc6ZnfsA89dUT6A4nSOo6eU75wiqEELtyWE2MKHTvMQuarXgUzXNu5oXgFiz1b3Mez5HursckySEB9HS0ANCacvHHVzfz73dqmFiey68vnJTlyIQQ4ugmNYeEGKR2T/ycOq6ITc7puBPtqI6tBGJSmHpX6xr9DLVH0dyF/ZZ7XVaKPPYsRSWEEAPb7okhAI89c2+yOMfGxmguAHp37WGNSwxcsUA7AGlbHv9cuINh+S7uv2YWOQ6pNySEEIeSJIeEEEAmWVQx/SwAeta9TOQInLUsnkofsn13hOIUakF0R/4hO4YQQgwGdosJk6YozrHTbORjoEh312U7LDEAhOMpVLSbmMnN2ZMrKM9zcN/Vs6R3rhBCHAYyrEwI0ee042azflEVVdUPEIx+BXId2Q7pgLT4Y+TYLQe1JkEyrWMxZYphegmAa+hB27cQQgxWwwtdTB/mJYmZqL0IzS8zZQrY3BrEp4KkbF5+/skJKDIz4gkhhDj05NNWCNEnz2nliZwrKUo1YdvwPwzDyHZIe9Xsj9LYEyWV1vuWpXWDYCxFkz9KIpVZnkjpBGPJPbZvD8bZ0REmmvjgnkbxVJrmnhiQ6TmUa/jBWXAQz0QIIQYnuyVTjwjAby1B7SU5NFCvQeLQ2dQcxEsQzZWPxaRJYkgIIQ4j+cQVQvQxaYpg5ams0YdTuPI2Yh+SPMmGjlCcjmCCrlCCrkiib3kgmsQwQNehtjNMWjdo6I5Q2xkhFH9/iFwglqTFHyMUS9Hsj37gsfyRJP5oku5InEgihSvlR7klOSSEEAdDcY4di0nRbipCCzT2W9cVTtAT2TO5L45uW1qD+LQwFrcM4RZCiMNNkkNCiH6OqfDycHoetmAdsfZtB2WfseTBSTLpukFrINb3PLRL0eyeaJLc6mcwRTuIJXW2tgUJx9MYBjT3vJ8EavW/v304nu6rU6Tre96h7olmfphsaQnhJI7FiKNckhwSQoiDwaQpyvMcNBr5mEJNxJOZz9xkWqfZH6UzHO/3er8ki4567cE4+VoQXJIcEkKIw02SQ0KIfqYN9bJKz0wnnK5b3rc8GEvS1BOlvitCZyi+r833YBgGgejB+ULvjybR3x9JRiSRRtcN4qk0qcbVVL55A5Vv3giGTjL1frInltQJxVOE4yliSb3fPrvDmd5Bm1qChHfpYRRJpEgF2nC2LqeuM4JPBQDQJDkkhBAHTYXPyY6kD01P0tVaj2EY1HVF0HWIJvS+z+XucIL67gjpvSTyAXp26Ukqjlyd4Ti5hFAOX7ZDEUKIQUeSQ0KIfsaVeGi0VhFXdmhcTm1nmBZ/jJqOCJ2hTDf/pp4YHfuZIIom08RT+oe/cD90RRKoVJTK166n7O0fYQ40EEqk6AonyKt+GgB30yJ8Gx8AwFP/Br4N94Nh0BmK0xVOgJ5myFvfZOjLX8DVuJDOcJz6rswPjp11iAzDoKknSumSWxj+3CUkuusoIJMcUq7CfcYnhBDiwAzxOlkfzkxnH2nbQX1XlEg8DYaBSmcSQvVdEZr8UQwjM9wsmdbpDr+fDEqmdRp7oh/aS3VfiSWRfTvrSwVDYZxGVHoOCSFEFshsZUKIfpRSjC3zsrltOCPbV9McTQF7Tmvf4o/RFU5gN5uozHf2LY+n0tjMpr7n0UT6I08x748k6Yok0A0Dk1JEogkq37yRnNpXMTQzuTueo+2a5XTETIze9gzBIfMAndIlt5C25TJkwXfR0jFMCT8dU28AoGTpr/BufZyULY/hL77OtvOfJlo0FQDDgNquMLkOC7FImJyal1FGmtE7HsCnyjJBSc8hIYQ4aE4YWcCfl3nBBpZgI/5okrZAlJnvfAlzwk/1eU/Sk3q/92lnOE53by+hnTNTtvhj6DqE4insFtNejwOZ2nQHczZL8fGl9czNGLNJUZrrIBXqBEBzSnJICCEON+k5JITYw8xhPt6NV2HrWIdK772rvmFAPKnjjyb7etvUdobZ0hLqNzwr0V6N+72/ZzbYzQfd5W0LxqjrihCKpYjE0wRjKXybHiK39hWa59xM7el3Y473kKheyMsvP4s90sRa72nUn/wnUo4CKt+8Ed1swz/0LEqW/xZnw0KcDW9TuO6fdIz/PJsvXUTa7MS36b8AqFSmFlEyZdARTOCpex1TKkIsdwTHtD7JMNWaCUy+sAohxEFz5oRiUjmVxLDhbljAi+uaef3B35LT8CbOthW4mhcDYI60UrzsN6QjfuJJnXhSJ5ZMk0hlrkNAv2vP3vgP0hBncfAEokl6Ikk6QwmiiRRarAsAzSXDyoQQ4nCT5JAQYg/XnTScZvcETHqCJ196ib+8voUHXlrAgmfuoXb+v3G2vtcv2dMaiNHkjxGIZr6Yd/V2939kWR3RRXdSsuRXJHv6z0QTS6Zp6I7s9fjd4QSt/t2GrRkGnvX/oc42iptbT2SlNgndZMNc8xbldc8QMyx8fXUZ28J2tsz7J+3WIayf9gvqT7mNpL2AgvX3krP23wRNefw48mnebUziH34eudufoXTxTxl//yRyq5/pPZRB5L1HiNkLaZj7Z2x6lK+aM+uk55AQQhw8ZpPGlSeO5X+pE/FsfYr3FjzPj8wP8p6aQMrmJX/DfSza2o7r5W9StPr2vmHDkEksdITiGLpB8bLfoO9Y2Dc8aW/CiRSJgzTMWRwc0d6bRIYBG5uD5BHMrJAbMUIIcdhJckgIsYdch4XPXnwRAMe33M+02n/x64Yr+WrbT/nEtp8w4tkLKF7+m77XB2MpukLv9zDyR5MEogl+9OQ64vUrAEh1VPc7RiCaJJrQ+xJJkBmC1tAdobFnzynm43XLyfFv5l+Rk5i/pY0H3mslXDwT+47XOE9bRGP5WShbDjc/s56bFhvMDPyWL75XRldM0T32cjx1r+NteI2HEifxVnWQ297cStvIT2NKRShYfw9paw6Vb96Ad9N/qd2yhuE9i3hVHUe0cDLPuy4kX/kxTDawug/qey2EEIPdp2dWsMB3IRaSPGj9JZrVwY3R61lT/Ck8NS9T+MbXqex8m5TFTf7GB7B3rKV08c34gwG6wglyq5+maPXt5K/5J92R5F4TQImUjor0EEt+cO8icXjt2oO4xR8jj1DmiRSkFkKIw06SQ0KIvSofOoqWGd9jHsv4iv5fAsM/webzn+U7RXfzcGouRav/TttD11P67s/QEoF+2xoGvLK+FV1PUxnfCkB69+RQ7zT0rYFY3zTy9d0RusPJvk5J9o61FKy5g+Ilv8Tyxs1EDBuzzruecyeVsqahh46iYylINOBRUZj+Be7+3AzSusHqBj8XTC3HH01y60ub6BxzOQYKEzoFJ1/PTeeOoyeS5JHmElaYJrPIfSYbP72Q4JCTKXvnx0xefCNxrNzSfQbN/ih/t3yOFZZppPKqQKlD/M4LIcTg4raZ+eW1FxGoOAXNZKbhjLsxcofwpS0zWKsP45Omxbyrj+PR0u9hDTUw7OkLKFh/L7bqV3jpva245t8MgKt5CY2dQTa3BPsmGtgp0VnL2Iemo2955UPj+aDeRwfio9bbOxqF46m9FgSPJtPYO9eTU/My/mgSr+pNDjklOSSEEIebFKQWQuyV3WKiY+oNhEuPxerfTs+oi0EpLj9H5+U1Y3hv/Xc5Ofwy5nU63Sk7L3kvZ2bbY0zuepFA1bk8ql/EMNWKi95eQJ3vJ4eSaZ1oLIHSE6Rw0BGKYzVrxHeZZt676b+UL7oJZaRIa1aK9ASrSi9haHkJn8yJ8dSqJv5RV8FvgR7PKFJlMzmmNIf/fek4ltd0ccyQPIbmO/nza1t5vq6I1amTGFVgY/TYSVT4HDy0pI57F9dyn/o+ehjOf7eF6+fexrAnz6UyXMODpd8n2FjAs2ua6Iqm+UvxL/n9hWORucqEEOLgs5g06uf9FXO0g0TucL57ZpBlNYU8aX6A6LgCfvnCJjZs8XOSrQCLkSbf7iS69hlMTW+Qb+lm5ZDPMrXhARwd64gWTaEnksRq1ijOsdMejNO14R3G6ElUw1KY/AmgtzeRyhx7V4FoCpfNhNn08e6h+iNJinL2XSB7MAnGUqTSBrlOS9+yeCpN0eJfULD2nygM3pt2H96dw8qk55AQQhx20nNICLFPDquJSPF0ekZf0tdjxmrWOG/aUBKffohJ+kMsshxL0cZ/M/ztbzGn+s+oYAsFa+9iR2Mrk9QOAHTNiure3rfftmCckqW/YvT/5qElw7SH4rQG3q8x5N3yKEPe/j6hsuPYcMUKLsp/ijnqIfSzfktZnoMTRhXisZt5rMnHcvNU/DO/SV7vDDRjSjxcPqsSt93MNcdX4XVa+Pv8bfzE+BKRc26n0GMjz2nlxlNGYjEpvnfmWM6fXMYzq5t4YLWfL3MTN+vXMPSU67hwWjnPrWmmNRAj1+XAbJMhZUIIcSi47WYMWw6J3OEAzBtTxDdPG81F04bgcti5ZOZQNJOZW8v+ypnxW6n2nUxZ2wK+YH2Nt5jOPcb5mf00L+rbZ2coga4b/PqFjby5YD4Apo5NfesDsSSh2J7DzAKxJKEPKW69P3r2owD2weqltL8O9vH21htob0LxJIFY//cj7m+jcO1d+KvOIWkvYObWPzFOqyVtdoLFflDjFEII8eEkOSSE2Cendd93PN02M6ePL+HXoXPJVWHONS3lH9rl/NjxY0zJECPaXma2vZa4YaE1fxZa9w6a/VFaAzG6gnHytj+LNdxEwdq70HX6akQ42lZS+vZNrLVO4bPR7/DdF5tYVd/DGZOHYrea8TotWEwac8cUoaOx9Pi7CQz/BLmO9+9GapqiqsCFx2HhyjlD0Q04ZWwRXpeVfHcmiXT2pFLW/vRMzphQzDUnVDFvTCH/XVbP2105DD3jRvJcVn549lhmDvWhG5DnsGAyyZAyIYQ4FCwmjRx75nPcYzfjdVnxuqx9I3mnDfUy/7tzuer0YwlpOdzePBaPipJn+FlSfDlvNBhE88bganqnb59p3aAnmmRto5+KVE3mOJ1b+hIkgWiS4F6SQ8FYaq/LD0Q8lSae1Eml910AO5JI0Rne+4ygh0JXOEEkcXCHurUFYx/6mlRaJ5rQ93hP001rMnGNvYK2ad+gIriKT5iWEB1zwUGNUQghxP6R5JAQYp9cNvMuj00U59oozbOT19st/KJpQygaM4e64ZfROe4qOqbeyGPtZbQ7RnCZ8SJzrZvYaFTSZhuKLVBDRyBOWyCO1roWS6SFlD2fgjV3Yo60YYp2MOLp8xj5zCfp0F18Nf5VUr0fUbOrfJw9qZQ8pwXV+0vh6uOHcfmsCk4cVYjTZsJu2Xsi6wvHV3He5DKuPr4Kj93cb/iA3WLC67RSlufgjiunc+G0cr575lhmDvPhsZtx2y3886oZXDi1nNPGF2HWJDkkhBCHSr7bis2iUeFzAv0TRsU5dsrznOQ4zRwzJJeXY+OIYSOaP5HccfMIx9Nsc03D07iQMQ8fT+HK20BPUtMRpro9xFhVD4A1WEt7t59UWieSSBOMJ/v1pokkMrVxPm5yKBZP4ql7vV/B5V0ZhkFjd5RIfN/Jml1rFun72UNnVz2RRF/PnlgyTVNPdK/JoVgy3a8HkGEY+Pej11PmGEkiicx7lUrrtAVifc93CsZSuBsWYGnf0LdO1w3STWszx8+fQNfYy3kz70K+qX+D6Jl/POBzFUII8fFJzSEhxD7l2C0MK3ASTaQpytm9i3dmGvpvnjYaP7/FD5yRSPHwsnr+FJjLryz/ghi8bJxDISVMTkUxR1ppNbyseeY/jNcUtaf/k+HPfZqiFX9Ct7hwdKzlH9bP89/obL55wfGMLOo/jMvXO3QMYGqll6mVXuo6I3js+/4o87qs3Hb5VELxFPpeutPvmnD646enUNsZJhhLUZrrACDXaeGPl07BMAwOc+9/IYQYVFw2M1UFLky7JOIr850kUjqW3p6bPpeVE0YVsKKuh7em/pmq4aOYnVuA1byVa6uP5/PWOBc4Wil573d4Gt7k1dn/xmIkGKZa6LBVUhCvw1+/gZgxBS3aBUA44cLdezMkGEvh3fRf4nnDiRScgtOaWW4YRt+1Yne6bqD1xtz3eNPzDHvlarq9z8C4k/fYJhhPEUvqJNP7vrC0B+MM8WYSZR2h+F6uw+9L6waxZLrfTZ1gLEUirVPottHQHcUw2GuyqjOcwG0199UD6ggl6I4kyHVYMAyDQCzVr3fuTrFkmlTaIBRL4bSaqeuKEI6n6YokGFXkQTcMeiJJuoIRRr7xFaK+8dQU/o88p4VgLEVR2zoSrjLSdi8A93q+xNZo6GPXehJCCPHRSHJICPGBPHYLHvueXwrL8xzkOi3Ekmla/Zl6QU6rmV98ahI17cN4wjibSSV2Hnk1ymmJas4DbIEantsR47MsZy2jSBVMo3PcZ/FtvJ8UZl43n8QfQmfyk0+MZ2SRG4fVRKHbhtWsYWDstXdQrsPygcmhndy2vb9m9y/7Q7xOQrEUVrO2x+tkojIhhDi0di8ODfT7PPY5rXzppBFMrfCS77ISV4qqfCcPXTubFbXd3LOojH+0p3hkyjzGrfoFbHuNkSqCSRm84ziZ8+P3Y+7czKMt+Xyp+ssopdF04ZPkOa10heK8uqqary69iXDxDHaUzcbnshJNpNENGF7g6ksC7VTfFSGaTDO62ANAQ3eUIV4HtKzLvKBlTV9yKJHS+84l3FvTaGdSZ/frm65nEislOTpmk0ZHKEGOw7LH63Zu39QTRSkYWeTpWxdLpgnFUxgGRHt7DEV3Sw6ldYPucALDyBSLTqZ1WgMxDCMTYyKl09WbKNrdzt5VgVgKuzVJuLcXVDJlsLUtSDKVSXw5W1dgSgRwtS7HiAXo1DMxOrrWE8sfj6aBphT+aJJcGcIthBBZI6l5IcRHommKHLuFQrcNiznzRa7QY+MTk0s5e3IZoybOIlZwDOWFXt4LZWYdUZ1bSa1/iinadl5MTuPtbR20TPkaEcOGWU/wh+h5fOO00Uyt9OKxmxle4CLXacFhNfXdvd1drtOyx5f1j8OkqX6zqQghhBg4zCYNp83MvLFFOKwmrGaNXIeFGcN8XDqrkp+dP4G0bvDrtjkknUWMrn2I8eYGAJ5LzsBQZlq2reTxN5fgbnsPZ+tyksFOWvwxHlpaz5qFT6OMFK7W5RAL0RFMEI6niSbSNHRH+8USjqfoiSSJJ3XC8RTxVBp/NElHKI7WsREArW193+u7I4m+JE04nsbRvpqi9/5AZC/Fr0OJTFInnEj3Dfvqiew51Ku6PcT29jCxZKauz86kk64bxJI6qbRBW++ED576N3CufaDfELLOcBzDeD/R0xaM9/WS7Y4kaA/FicTTJPdSOykS6GTk42egat+huad/7aGdiSEAd8MCAJSRwt34duZxKoatp5pU0QTGluRQlufoSw7JEG4hhMiOD00OKaUqlFJvKqU2KqXWK6W+3rvcp5R6VSm1tfdv7z62r1FKrVVKrVJKLT/YJyCEyC6lFAVuG16XhZJcOxaThs/5/vCv4YUulnU76SCP8ndv5rf8hQ7vFF7LuYAnVjTwVoPBDxLX8M7wG/nN9Rdz8uhCLGZFhc95UJM+Qgghji45DkvfJAOQ6SFalufg7ImlvL0jQG3VpYwPL+U6yyuklIUF3T5iucNJtaznDFPmK6nCwN24EIClNV2crGWKJCsjhav5nX7H80eT/YZldUcS/R7vTN785fWtxJsyPYcsHRv7tskUwE6i6wbxaJiKN2+geOVfiLbXEE+l+9U+CsdTqGSEaCLdl/DpjiT2eE082T9p0xnKxBRNpvFufgRzuBkAa081la9/mdIlvyCayMSZ1g06ggm0RIh0LEwglqQ7nADDwBJqojuc7Nt/oPfcWwMxdN3IFKLePh9H9ya82x7vm1RCS4bRkuF+MbkbFxLNn0jamoOn4U0AajYuRxlpfr/axsPL6sh1ZIaa+VxWrDKsTAghsmJ/Pn1TwLcNwxgHzAG+qpQaD/wAeN0wjFHA673P92WeYRhTDMOY8bEjFkIMOD6nlfI8R9/zXWeYuXRGBRdPH8rvKv7OIs9Z1OTMpPUT/+G6UyZQ1xXhD69u5l3nXFxzv4VSCpOmqPA6+9WcEEIIIXaX67D0uxlh0hS5DgufnFKGphR/7TkRPy5K6GB92cXEdBOrGM3s9Equsb5CtVFGypaHp2E+/miSzS1+TjatZpE2nbTFhafhrT2O2RHK9MLR9f5Fm/3RZF+yaP66WnzxBgxlxt69mXZ/hHgqTSypE4iliCTTFKy6HVugNrOvmkVsaQmxuTVITyRBKJ4i1rqN8fcfg179BjF/OxVvfBWCLXTv0nuoay8znfmjycz2HXUMWfhdSt+9BZVOUPnmjWipKKZkiERbdd+5pNM6VS9cRuUbX6WhK1OXqHDVbYx55HhsPdtQyQjOlmV0hRNsbw/TFoizuTVIqz/e1wvI3fAWKh2ndPHNjH1wOiOe+kRfgkjFenC2rSRYcQqhsuPx1M9HS4SwbXwMgDbXaG56ch3/XrSDQCzJsHyn1BwSQogs+dBCHYZhNAPNvY+DSqmNQDnwSWBu78vuA+YD3z8kUQohBrTde/hYTBpFOTZSaYOyPAe/ufgYajtHEIieQLz3NaePd6Abk/jBE2u5YGoZZpNGca6NIs++C24KIYQQO+2tDl1lvpPKfCdnTyrhmdXNPMedfGnuKGZX5UP1Ur7Ucj7P25dRaTTzt/QnOScvTkXDW7xX1MF4djBEdXB7/JOMrMjBWz8flY5j9e/A5t9OoOoceiJJPPZMAkbXwRTtIG/7c3SPuoi0kaZo8S8YHR2KZjXoKTuBvMb5RFqraTeNBjK1f/zBEKVr7qSn6lw8jQtxtSylZ9RFJFMG9V2ZoWv5O15H0xNYauaTDDSRt/1Z4t7RtHq+QZ7DQiKtv5+cMgyKVvyJ3O3PUX3+EzR2a3gbVwCQW/MC6cW5ODrX0Tr1GxSv/DPhmuX4nZWE4ymcLUtxdqxBN9nQExGsoSaKVv4VZaTJ2/o4pmQI34b/sPnShaQ9lQCkeotou5veRjfZsIabKXvn//Btfhj/0LPIqXuF8gXfIeGpxL7lGRQ6mzyzGeYbQ27Ni4y/fxITjDSL7Cfzh+vO57oHVvDTZzcAUNZbgFsIIcThd0AFqZVSw4CpwBKguDdxhGEYzUqpon1sZgCvKKUM4E7DMO76GPEKIY4Quyd5di/w7LGbuWxWJcePLCAcT6EbUOCyHc4QhRBCHKV+c9ExnDWhhFA8zegiN4U5Nl78+onUdoZpDv2LnNW/4pmGUwj2bOeH8Zc4752L+ZKthZTZxeuxaXgDeXwv8ibD7puGWw8C0DT7J3ROupa6zsxsnTk7XmDIgm9jSoYxxXtIWz0Ub3uU31jyANhRei5TG+dj79pId84wql64nNCQEwmVzEJLx9hWdCZjkhGcrcv2iN/VtAjIFHOOx/wA5FY/TduUr7G9I0wsmcZIp/BuewJ3wwLytj8DgHfLY3ROuhaaVmEoE6DI3/Qga3JOpmPkdRSu/jv29rW0xM4HoGDDvRgotHQcV8tSCtbciWG2E8mbiHfr/zDFAygMcmpfoXPitX3x1W/fxKRALe2Trqdw7Z34Nj9MqOw46k6/i6L3/kDxyr9gKBNrbVO5K3EhvtAwrpwzlGpnEY6tz/PbtU5ypnyG45xW7r9mFqvqetA0xZSKvEPxz0EIIcR+2O/kkFLKDTwOfMMwjMC+pvPci+MNw2jqTR69qpTaZBjGgr3s/4vAFwEqKyv3d99CiCPErjUEnDZTX7fxCp+TnkiCRFqXGkNCCCEOCqfVzKnjitnaGgIyvYyGeJ2Uex3UdjipHfIw05fW8szGUhxaD3OMVXTnT8F1+o+YsizC47XF1Jp+widSr1JjlHJ+eZCyJbcQzxtBqGIeGAYly39L0l1O3GQnb+tjpG15ABSpHuKGhVXO45iiNOxdG4nnjcDd/A6WcDPv7uhmJPDPmkJ+VjGTkuVvYop1kbZnJm9AT+FuWoyBwtGxBnO0HV2zYO/Zhr1rE9H8cQAUrrmDkuW/RTfZaJ90Pc7W5eRvvI/OiVfj6FhLzDuaSP4kbNte4Nq2T3Pa5m7m+Mbi6OythxRqIqfmZTrHfw7f5v9StOLPuNreo2n2T0g5i6h88wYMFElnceZ1E65B6QkMk43tS58DoG7oBXga3sTevYWWGd8DoG3qN4gUTSfom8jlD24lrKcZvb2TL88dQUfJbN6KjeKp1Rv4fUUeSilsZhOzh+cfvn8cQggh9mq/kkNKKQuZxNCDhmE80bu4VSlV2ttrqBRo29u2hmE09f7dppR6EpgF7JEc6u1RdBfAjBkzjN3XCyGObA6rCaUyNSGGeB391uU5rei6/LcXQghx8NgtJlw2E+H4+1PF283vD0X75umj+fqpo2kPzulblgR+f4mTYCxFV2gWnaEruffxNdzXEmW+ZwtFK/9KQ/7x3PnQozzAdv7ouJFLZg6jYsG3IVjHS7mf5iT/09RRwja/QTxvJJ7GhRhaZhZMW2AHY/UXqdNKmN+oCM+cBUDJ0l8TKj8R//BPsPCtV5iUDOIfdja5NS9iC9TQMfFa8tffS+72p4nljwNDx7vlEUIls9lx7iOgNHKrn6byzRvZtvgphjSsJDbyDP5o+zIvRk8lZsllU0uAeOEkPNufA8PA/u4fSRmwuuKzzPJX42lciF/lcJv/OC4bU4UXFw25M/ANn0LRqtsY+uq1uJoX0zDpRi4L/ptao4glwQLW2y8hkFrHX5+IceO8NuaOKSJUMZc1DT2EE2nGl+awoTlAoHcY3MbmAJqCyUPyDs8/BCGEEPtlf2YrU8C/gI2GYfxxl1XPAJ/rffw54Om9bOtSSnl2PgbOANZ93KCFEEcep9XM2BIPVQUubOY960RIryEhhBAHW2mug0qfE2dvcshq1jCbMtebHLsFt73/fVKlwG0147Zllue7bXz7jDG0RDUWei/E1fYeq5e8wWmp+SSUlXu7J/O/yDTChg3dUPyu5xT+4Pk+D+Vcy+aWIP4Jn8PZtgLvmn+ScA8BYKxWT6x0FvGUznqGk3CX49vyCJVv3kDV85cytfofANSO/1JfXM0lpxKsmIdv00NoiQCu5iXYArV0j7mc6o4I/miSwLCzSbjKOH7zr/HiZ1m8kqfXtDFhxDDmjSliS2uIdPExmON+PPVvMKTmcR5MncrLjTb8pScCcGfibP63ppsXNnVzbvwXfD12HYGhZ6AMnZy6V0k5ixi64tckMXNN6vu8vqmdn9dO5JWSLzK8wMWfX9/KEysaeG1DK8+ubsJiUtwwbwQA9yyq4bWNrSyr6WJ4gZu8XYqJCyGEyL796Tl0PHAlsFYptap32Y+AW4FHlVLXAHXAJQBKqTLgbsMwzgGKgSd7h6CZgYcMw3jpoJ6BEOKIYTZp7CUvJIQQQhwSDqsJh7X/hafC56S5J4rdYsIwDJSCnTPEO60mNE3htpn7lo8vzWFsiYdfN0/nFLOLE6t/xwhLM+Ghp2Otz+Nvi5qxm8+mROuhOp7DxLKxmDTFpg2tRC+8HP+SP5ObbGfdyKtxb3qUYUYj9uHH4Ww0sag2TNWl76D0JHnbnqBwya+YZoR5RZ/OpkAZxUYeXoIsilVin/YtRj11DsUr/ozVv520NYfX1Wx+/ugqjhmSxy2fnEjTsT9n2GuZ2kD/rM4loqe5cNoQuiMJXlzXQqNzPAXAsFe+QNSwcnvqU3hqu3h85Am4U2cTn3YN6WUd/HPhdnSjGPyw3TSC/DGXESmaTveoC1n21O083DmCqrFjeXVDKwr46tyRVPicfPex1dz7Tk3fe33s8HymDvUytsTDI8vq+5ZfNrOCXIflELe+EEKIA7E/s5W9Dezrlv6pe3l9E3BO7+PtwOSPE6AQQgghhBAHi9tmpjI/MyuWUplEUDCWAujrzWLSFC6bmVAshVJw4bQh/OqFIA+7TuMKnibgHEbHlK9yvi+Pe9+pYWnVVylw22BFA8MKXDitJp5Y2ciO7jT3JS/kR8bdPBqeSkVyM9eZG7FUHcsJzSmeX9PMxuYAF00dwrQxl/F3/3H8d2kdSkHlykYK0lMp0fysaIpx/NiJ9Iz4FAXr7gbgfscV/OrVWqxmjVX1PXSE4zTmnsi69GxON61ig17J1Io8xpZ6sJk1fvH8Rt5LVJBz1gOsXvoGL7Z6OXbyeJ5Z3cS9YQvlRV/l1tlj2RHcwhub2rhwWjlPrGhkRUMPT6S+yAyLl0lJxZ865zB9mJeTRxfw6oZWTh5TSLnXwahiN09/9Xia/TEauqNYzYrhhW7yHBae+urxdIQy85UmUjpDfU5MMmW9EEIMKAc0W5kQQgghhBBHul2HN5d7HYRiKeyW/r2MqgpcBGJJ7GYTwwtdLN3RySP+a1mZdx1XzZuEUoprh1rpiiQ4Z2IpLpuZRFrn2BE+vE4rt7+5ja88uIJo8iTm22dSt82CTz+XyZOnM6J4LNecECYUT1HdHuKXL2zkR+eM490dnYwp8ZBM61S3h/mZ+XpOGF7AkupOvnXGaJpn/ZBg2sI3N4+n1TGFY0e4+eJJw7nuP8t5emUjw/Jd/CP5Zf5+RiHnt3i4dGYFZbkO8pwW8l1WltV00ZA7nHuaNM6fXMZ5k0t5ZnUTPZEkN84bicNq4odnjyXPaeH6k4azpt7PXQu2Yxjw+sZWKvOdRJJpzp5YynEjfFw8fQifO3YoPpcVyy4TTVT4+k9Jv7MguBBCiIFLkkNCCCGEEGLQspg0vK6917/JsWeGPlnR+OOlU6jtiPStc1hNlHsd/OWyqezoCJPWdf56+VS6wgncNjN3f24mV/5rCSMLPZw4qop736mhS/OhZpyDy25h9vB8Hhqez/omP9fet5yfPrsegKuOHUogmqK6Pcz40hxOHlPI65vaeGV9K/PGlPIr85dZrbXyrwsmMWd4PlazxqdnVPDAu7WMKnZjtjooGj6R352Y1+9cZgzz8uK6FgDmDPdx9fFVlHntDC90gQEzhvko9NjIdVj446enEIwlOWtiMX97M8QXjh/GGxvb2N4e5lunj2Z8aQ75bhu/vyQzQCCV1g92swghhDjMJDkkhBBCCCHEh8ixW7BbNGLJTCIkz/l+zZw8h4VU76ybXqcFpRSzqnw8/7UT6QjF6AonufedGsYUe3DaTH2zpwEMy3dxxxXTebu6A103mDM8n00tAZ5a1ciUijzmjSni9PEd/Om1LWxrC/H6xjbmjSliiNeB1ZzprfON00bx9rYONjYHmVbpxWXd8yv+zedN4PTxJQRjSSYPycNm0Shw2bj7qhmYNQ2l6FcHyGO3cOOpozhlXDGluXY+ObmMYDxFvstGUY4N5y7HMMsQMSGEOOJJckgIIYQQQoj94HNZaeqJoVQmIbRT7i7Jod6JWAAYWeSmKMdGqz/K8SPzOXZ4Qb+kCoDLZmZyZR6ThuTSGoyRSOmU5hUxZMF2zphQjMdu5rbLp3Ldf5bzzOomHBYTF0wtx7dLb6c8p5X/XD2LK/+1hLljCvcowg1Qlufg4ulDaPHHaA/GKfTY0LRMXSCAdG/8u7KZTUyr9BJPpSn22NE0RVo3MMkMo0IIcdRRhrHnhSDbZsyYYSxfvjzbYQghhBBCCNFH1w2q20N47BZKcu37vV0gluwbotYZipPvtu338VK60ddDKJnW2dwSxGLSGFXkRttLkiaeShNL6vucDcwwDOIpHZtZ65fIEkIIMTgopd4zDGPG7sul55AQQgghhBD7QdMUo4o9B7zdzsQQ0K/Hz/4cz7pLAshi0hhe6MJhMe0zsWMzm/oV3N6dUqrfsDYhhBACJDkkhBBCCCHEYfNxe+vsPixNCCGEOBikepwQQgghhBBCCCHEICbJISGEEEIIIYQQQohBTJJDQgghhBBCCCGEEIOYJIeEEEIIIYQQQgghBjFJDgkhhBBCCCGEEEIMYpIcEkIIIYQQQgghhBjEJDkkhBBCCCGEEEIIMYhJckgIIYQQQgghhBBiEJPkkBBCCCGEEEIIIcQgJskhIYQQQgghhBBCiEFMkkNCCCGEEEIIIYQQg5gyDCPbMexBKdUO1O7nywuAjkMYjvj4pI2ODNJOA5+00ZFB2unIIO008EkbHRmknQY+aaMjg7TTwHe0tNFQwzAKd184IJNDB0IptdwwjBnZjkPsm7TRkUHaaeCTNjoySDsdGaSdBj5poyODtNPAJ210ZJB2GviO9jaSYWVCCCGEEEIIIYQQg5gkh4QQQgghhBBCCCEGsaMhOXRXtgMQH0ra6Mgg7TTwSRsdGaSdjgzSTgOftNGRQdpp4JM2OjJIOw18R3UbHfE1h4QQQgghhBBCCCHER3c09BwSQgghhBBCCCGEEB/RYUsOKaXOUkptVkptU0r9YLd1N/auW6+U+u0+tr9FKbVGKbVKKfWKUqpsl3U/7N3vZqXUmfvY/obe1xhKqYJdlucqpZ5VSq3uPf4XDtY5H4n21U5KqUd63/tVSqkapdSqfWzvU0q9qpTa2vu3t3d5vlLqTaVUSCn1tw84fpVSaknv9o8opay9y5VS6q+9ca1RSk07yKd+xBiobdS7bm7v8dcrpd46iKd9xBkA7bSvz7wrev8PrVFKvaOUmnwQT/uIMoDbSK5LuziE7XS6Uuo9pdTa3r9P2cf2cl3aDwO1nXrXybWJAdFGcl3aDwO4neTa1OsQttGsXbZfrZS6YB/by3VpPwzUdupdNzCvS4ZhHPI/gAmoBoYDVmA1ML533TzgNcDW+7xoH/vI2eXx14A7eh+P792fDajqPY5pL9tPBYYBNUDBLst/BPym93Eh0AVYD8f7MtD+fFA77fa6PwA/2cc+fgv8oPfxD3Z5b13ACcCXgL99QAyPApf1Pr4D+HLv43OAFwEFzAGWZPv9kjbao43ygA1AZe/zvf5fHgx/Bkg77esz7zjA2/v4bPm/NCDbSK5Lh6edpgJlvY8nAo372F6uS0d2O+Uh16aB0kZyXTqy20muTYe+jZyAufdxKdC28/lu28t16chupzwG6HXpcDXOscDLuzz/IfDDXd600w5wfz8E/rH7vnqfvwwc+wHb7v5B90Pg773/iaqAbYCW7YbJyj+GD2inXZYpoB4YtY99bAZKex+XApt3W/959vFjqXffHbv8Z+uLB7gTuHxvxxlMfwZ4G30F+EW236OB8Cfb7bTb6/p95u22zss+vhwe7X8GchvJdenwttMu++ik90bVbsvlunRkt5NcmwZAG+32GrkuHYHtJNemw95GVUAruyUd5Lp0VLTTgL0uHa5hZeW9b/xODb3LAEYDJ/Z2uXpLKTVzXztRSv1SKVUPXAH8ZD/2vT/+BowDmoC1wNcNw9APYPujyf68lycCrYZhbN3HPooNw2gG6P276ACOnw/0GIaR2svxP247Hy0GchuNBrxKqfm93ZWvOoD9Hm2y3U776xoyd5gGo4HcRnJdet/haqeLgJWGYcR3Wy7Xpf0zkNtJrk0Z2W6j/TWYr0swsNtJrk0Zh7SNlFKzlVLrybzHX9rlc20nuS7tn4HcTgP2umQ+TMdRe1lm7BKDl0zXt5nAo0qp4UZvWq3fBoZxE3CTUuqHwA3AzR+y7/1xJrAKOAUYAbyqlFpoGEbgAPZxtNif9/Jy4L9ZOP7HbeejxUBuIzMwHTgVcACLlVLvGoax5RDFMpBlu50+lFJqHpkv4SdkK4YsG8htJNel9x3ydlJKTQB+A5xxgMeX69L7BnI7ybUpI9tttD/bD/brEgzsdpJrU8YhbSPDMJYAE5RS44D7lFIvGoYR28/jy3XpfQO5nQbsdelw9RxqACp2eT6ETNZ557onjIylgA4UKKXu7S3S9MJe9vcQmYz3h+17f3xhl+NvA3YAYw9g+6PJB76XSikzcCHwyC7Ldm+nVqVUae+6nWMw91cHkNd7nN2P/3Hb+Wgx0NvoJcMwwoZhdAALgMkHsO+jSbbb6QMppY4B7gY+aRhG58Ha7xFmILeRXJfed0jbSSk1BHgSuMowjOq9HF+uS/tnoLeTXJuy30YfSK5LfQZyO8m1KeOwfH8wDGMjECZTH2pXcl3aPwO9nQbkdelwJYeWAaN6K3ZbgcuAZ3rXPUUmA41SajSZglEdhmF8wTCMKYZhnNO7btQu+zsf2NT7+BngMqWUTSlVBYwClh5AbHVksnYopYqBMcD2Az/Fo8IHtRPAacAmwzAadi7YvZ16X/+53sefA57e34P39hZ7E7h4L9s/A1ylMuYA/p3d/AaZgdxGT5MZImpWSjmB2cDGAzq7o0dW2+mDKKUqgSeAKwfCHYosGrBthFyXdnXI2kkplQc8T6YGwaK9HVyuS/ttILeTXJsystpGH0SuS/0M2HZCrk07Hco2qtqZTFBKDSXzHtfsenC5Lu23gdxOA/e6ZBy+olDnAFvIVA2/aZflVuABYB2wAjhlH9s/3vuaNcCzQPku627q3e9m4Oz/b++OURoIojAA/7mCdpaewYN4AL2C2Nh5DbsU9rmB4A1EAsZKC29gY2lhMQ8S0bUzu8t8HyyBDAPL/LAPXjI7A/Mv0rp0n2ldu2V9f5TkLm2/4CbJ2b7WZIrXUE41dpu2p/Kv+YdJ7pO81OfBzthb2skGH5XFb2+MP05r7r0mWWV7it0iyU3d11OSk7HXSkbfM6qxq7S372+SXI69Vp3nNPTMWyZ5T/tr+DrJw9hrJSN1aYycklyn/dq33rl+nBgy9MyLujSLnGpMbZpGRurSvHNSm/4/o/Mkz5XNY5LTgfnq0oxzqrFJ1qVF3RwAAAAAHdrXtjIAAAAAJkhzCAAAAKBjmkMAAAAAHdMcAgAAAOiY5hAAAABAxzSHAAAAADqmOQQAAADQMc0hAAAAgI59Aa+nw1WO98TYAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAEvCAYAAAAzXwbsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAC0DklEQVR4nOzdd3hUZdrH8e+Znt57gST0GnoHRRBRRBS7oqy9u65d17Xs+q7uupZV195FsSDYCyAI0lvoJYQU0num13PeP4JRpGNgArk/17XXJqfNbxBmztzzPPejaJqGEEIIIYQQQgghhDj56IIdQAghhBBCCCGEEEIcG1L4EUIIIYQQQgghhDhJSeFHCCGEEEIIIYQQ4iQlhR8hhBBCCCGEEEKIk5QUfoQQQgghhBBCCCFOUlL4EUIIIYQQQgghhDhJGY7ng8XHx2sdO3Y8ng8phBBCCCGEEEIIcVJbs2ZNraZpCfvbd1wLPx07dmT16tXH8yGFEEIIIYQQQgghTmqKohQfaJ9M9RJCCCGEEEIIIYQ4SUnhRwghhBBCCCGEEOIkJYUfIYQQQgghhBBCiJPUce3xI4QQQgghhBBCBJvP56O0tBS32x3sKEIcEYvFQnp6Okaj8bDPOWThR1GUDOBdIBlQgVc1TXtOUZRc4GXAAviBmzRNW3k0wYUQQgghhBBCiOOltLSUiIgIOnbsiKIowY4jxGHRNI26ujpKS0vJyso67PMOZ6qXH7hT07TuwFDgZkVRegD/Ah7VNC0X+Nue34UQQgghhBBCiDbN7XYTFxcnRR9xQlEUhbi4uCMeqXbIET+aplUAFXt+timKshVIAzQgcs9hUUD5ET2yEEIIIYQQQggRJFL0ESeio/l7e0TNnRVF6Qj0A1YAfwb+rSjKbuAp4P4jfnQhhBBCCCGEEKIdUhSFadOmtfzu9/tJSEhg0qRJQUx1aOHh4Yc85pFHHuGpp5466DFz5sxhy5YtrRVLHMRhF34URQkHZgF/1jTNCtwI3KFpWgZwB/DGAc67TlGU1YqirK6pqWmNzEIIIYQQQgghxAktLCyMTZs24XK5AJg7dy5paWlByeL3+4/7Y0rh5/g5rMKPoihGmos+MzRN+2zP5iuBX37+BBi8v3M1TXtV07SBmqYNTEhI+KN5hRBCCCGEEEKIk8LEiRP5+uuvAfjwww+55JJLWvY5HA6uuuoqBg0aRL9+/fj8888BKCoqYtSoUfTv35/+/fuzdOlSACoqKhg9ejS5ubn06tWLxYsXA3uP0Pn000+ZPn06ANOnT+cvf/kLp556Kvfeey8FBQWcccYZDBgwgFGjRrFt2zYACgsLGTZsGIMGDeKhhx464HN5/PHH6dq1K+PGjWP79u0t21977TUGDRpE3759mTp1Kk6nk6VLl/LFF19w9913k5ubS0FBwX6PE63jkIUfpXkC2RvAVk3Tnv7NrnJgzJ6fxwL5rR9PCCGEOPF4/Sr1Di/ljS6aXL5gxxFCCCFEG3XxxRczc+ZM3G43GzZsYMiQIS37Hn/8ccaOHcuqVatYsGABd999Nw6Hg8TERObOncvatWv56KOPuO222wD44IMPmDBhAnl5eaxfv57c3NxDPv6OHTuYN28e//nPf7juuut4/vnnWbNmDU899RQ33XQTALfffjs33ngjq1atIjk5eb/XWbNmDTNnzmTdunV89tlnrFq1qmXfeeedx6pVq1i/fj3du3fnjTfeYPjw4UyePJl///vf5OXlkZOTs9/jROs4ZHNnYAQwDdioKErenm0PANcCzymKYgDcwHXHJKEQQghxglBVjd0NTqyuX4dL19m9hJn1ZMaGYtAfUWs9IYQQQhwHj365mS3l1la9Zo/USB4+u+chj+vTpw9FRUV8+OGHnHnmmXvt++GHH/jiiy9aeuW43W5KSkpITU3llltuIS8vD71ez44dOwAYNGgQV111FT6fjylTphxW4eeCCy5Ar9djt9tZunQpF1xwQcs+j8cDwJIlS5g1axYA06ZN4957793nOosXL+bcc88lNDQUgMmTJ7fs27RpE3/9619pbGzEbrczYcKE/WY53OPEkTucVb1+Bg7UNnpA68YRQgghTkyqqlFc78Tu3neOvMMTYGeNnQ6xYYSY9EFIJ4QQQoi2avLkydx1110sXLiQurq6lu2apjFr1iy6du261/GPPPIISUlJrF+/HlVVsVgsAIwePZpFixbx9ddfM23aNO6++26uuOKKvVaB+v0y4GFhYQCoqkp0dDR5eXn7zXg4K0kd6Jjp06czZ84c+vbty9tvv83ChQv/0HHiyB3OiB8hhBBCHISmaZQcoOjzC59fo6DGTnZCGKEmefsVQggh2orDGZlzLF111VVERUXRu3fvvYodEyZM4Pnnn+f5559HURTWrVtHv379aGpqIj09HZ1OxzvvvEMgEACguLiYtLQ0rr32WhwOB2vXruWKK64gKSmJrVu30rVrV2bPnk1ERMQ+GSIjI8nKyuKTTz7hggsuQNM0NmzYQN++fRkxYgQzZ87k8ssvZ8aMGft9DqNHj2b69Oncd999+P1+vvzyS66//noAbDYbKSkp+Hw+ZsyY0dLAOiIiApvN1nKNAx0n/jgZcy6EEEL8QaUNLmwHKfr8QtOguM6JL6Aeh1RCCCGEOBGkp6dz++2377P9oYcewufz0adPH3r16tXSWPmmm27inXfeYejQoezYsaNl1M7ChQvJzc2lX79+zJo1q+WaTzzxBJMmTWLs2LGkpKQcMMeMGTN444036Nu3Lz179mxpJv3cc8/x4osvMmjQIJqamvZ7bv/+/bnooovIzc1l6tSpjBo1qmXf3//+d4YMGcL48ePp1q1by/aLL76Yf//73/Tr14+CgoIDHif+OEXTtOP2YAMHDtRWr1593B5PCCGEONaqrG6qrZ4jOic+wkRKVMgxSiSEEEKIQ9m6dSvdu3cPdgwhjsr+/v4qirJG07SB+zteRvwIIYQQR8nm9h1x0QfYq/mzEEIIIYQQx5IUfoQQQoij4A+olDa4jupcr1/F7Qu0ciIhhBBCCCH2JYUfIYQQ4ijUO7z4A0c/Xdrq8rViGiGEEEIIIfZPCj9CCCHEUWhw/rHCjdUthR8hhBBCCHHsSeFHCCGEOEIOjx+v/4+tzOXyqrK6lxBCtDMVTS62V9oIqMdvgR0hhJDCjxBCCHGEGg8xTUvxu7HUbiCy8Fv07voDHnc4S8ALIYQ4Odg9fmptXrx+FZf0eRNCHEdS+BFCCCGOgC+g0uDw7ndfSPU6On12Bj3f6UbnOZPoMP96un0wiLTF96LzOfY53ibTvYQQol3wB1TKG39dEMDllcKPgKqqKi699FKys7MZMGAAw4YNY/bs2cf8cVevXs1tt93WKtc65ZRT6Nq1K3379mXEiBFs3769Va7bmloz49tvv80tt9wCwMsvv8y77757wGOLior44IMPWn5vzT/3IyWFHyGEEOIIVNs8aPsZoR+dP4vsry5A77VRnXsrxae9RMGkT2nodikx22eSM2cSlrqte51jc/vR9ncxIYQQJw23L0BBjQOPT91rm2jfNE1jypQpjB49ml27drFmzRpmzpxJaWnpMX/sgQMH8t///rfVrjdjxgzWr1/PlVdeyd13373P/kAg+H/fj0XGG264gSuuuOKA+39f+GntP/cjIYUfIYQQ4jD4AipNLt9+R/vEb3iZjJ/uwJk0kJ1TvqJ6wJ1Ys87CmTyY8uF/p/DMD9B7reR8MZno/M9aztM0sHlkupcQQpysPP4Au2oc+/SFc8qIn3bvxx9/xGQyccMNN7Rs69ChA7feeivQXDQYNWoU/fv3p3///ixduhSAhQsXMmnSpJZzbrnlFt5++20A7rvvPnr06EGfPn246667APjkk0/o1asXffv2ZfTo0ftcY+XKlQwfPpx+/foxfPjwltEwb7/9Nueddx5nnHEGnTt35p577jnkcxo9ejQ7d+4EIDw8nL/97W8MGTKEZcuW8fTTT9OrVy969erFs88+23LOu+++S58+fejbty/Tpk0DoKamhqlTpzJo0CAGDRrEkiVLAPjpp5/Izc0lNzeXfv36YbPZqKioYPTo0eTm5tKrVy8WL1581Bnff/99Bg8eTG5uLtdff31LMeitt96iS5cujBkzpiULwCOPPMJTTz0FwM6dOxk3bhx9+/alf//+FBQUcN9997F48WJyc3N55pln9vpzr6+vZ8qUKfTp04ehQ4eyYcOGlmteddVVnHLKKWRnZ7daocjQKlcRQgghTmKaprGz2r7v8u2aSvLKf5Kw8RUas8+mdMzTaHrzPuc7UkeQf973ZP54C+mL/kLAHIktcxwAVU1uIswGFEU5Hk9FCCHEcWJ1+6hodO+3kbPXrxJQNfQ6ee1vrzZv3kz//v0PuD8xMZG5c+disVjIz8/nkksuYfXq1Qc8vr6+ntmzZ7Nt2zYURaGxsRGAxx57jO+//560tLSWbb/VrVs3Fi1ahMFgYN68eTzwwAPMmjULgLy8PNatW4fZbKZr167ceuutZGRkHDDDl19+Se/evQFwOBz06tWLxx57jDVr1vDWW2+xYsUKNE1jyJAhjBkzBpPJxOOPP86SJUuIj4+nvr65L+Ltt9/OHXfcwciRIykpKWHChAls3bqVp556ihdffJERI0Zgt9uxWCy8+uqrTJgwgQcffJBAIIDT6Tzon/uBMm7dupUnn3ySJUuWYDQauemmm5gxYwbjx4/n4YcfZs2aNURFRXHqqafSr1+/fa572WWXcd9993HuuefidrtRVZUnnniCp556iq+++gpoLrj94uGHH6Zfv37MmTOHH3/8kSuuuIK8vDwAtm3bxoIFC7DZbHTt2pUbb7wRo9F40Od1KFL4EUIIIQ7B5vHvp+ijkbLsEeK3vE1tj+lUDHsElAMPpA2ExFN8+htkfX0hmT/ezPYLF+EPTcLtU6mxe0iMsBzbJyGEEOK4Ka5zYHUdfESnyxcg3Cwfx9qEb++Dyo2te83k3jDxicM+/Oabb+bnn3/GZDKxatUqfD4ft9xyC3l5eej1enbs2HHQ8yMjI7FYLFxzzTWcddZZLSNLRowYwfTp07nwwgs577zz9jmvqamJK6+8kvz8fBRFwef7tf/gaaedRlRUFAA9evSguLh4v4Wfyy67jJCQEDp27Mjzzz8PgF6vZ+rUqQD8/PPPnHvuuYSFhQFw3nnnsXjxYhRF4fzzzyc+Ph6A2NhYAObNm8eWLVtarm+1WrHZbIwYMYK//OUvXHbZZZx33nmkp6czaNAgrrrqKnw+H1OmTCE3N3e/fz6Hyjh//nzWrFnDoEGDAHC5XCQmJrJixQpOOeUUEhISALjooov2+W9hs9koKyvj3HPPBcBiOfQ93c8//9xSYBs7dix1dXU0NTUBcNZZZ2E2mzGbzSQmJlJVVUV6evohr3kwMtVLCCGE2A9N06i2udE0jXr7vtO74ja9QfyWt6npdS0Vwx49aNHnF6oxjNIxz6Lzu4ja9XXL9mqrB4dM+RJCiJNCldV9yKIPgNMrr/vtWc+ePVm7dm3L7y+++CLz58+npqYGgGeeeYakpCTWr1/P6tWr8Xqb70UMBgOq+pt+UW53y/aVK1cydepU5syZwxlnnAE0NyD+xz/+we7du8nNzaWurm6vHA899BCnnnoqmzZt4ssvv2y5HoDZ/OsoZr1ej9+//7+zM2bMIC8vjzlz5rQUhiwWC3q9HuCA/Qw1TdvviGdVVVm2bBl5eXnk5eVRVlZGREQE9913H6+//joul4uhQ4eybds2Ro8ezaJFi0hLS2PatGkHbLZ8OBmvvPLKlsfcvn07jzzyCMAhR2UfTb/G/Z3zy+Mc7p/7kZASsxBCCLEfpQ0uGp0+HJ7APkUZo72clJWP09ThDCqHPAhHME3LE9MZV0w3ogq/pq7XVUBzr5+iOgc5CeFYjPpWfR5CCCGOH6vbR7XVc1jHOjwBiDjGgcThOYKROa1l7NixPPDAA7z00kvceOONAHtNU2pqaiI9PR2dTsc777zT0m+mQ4cObNmyBY/Hg9vtZv78+YwcORK73Y7T6eTMM89k6NChdOrUCYCCggKGDBnCkCFD+PLLL9m9e/deOZqamkhLSwNo6RXU2kaPHs306dO577770DSN2bNn895772EymTj33HO54447iIuLo76+ntjYWE4//XReeOGFlibMeXl55ObmUlBQQO/evenduzfLli1j27ZthISEkJaWxrXXXovD4WDt2rUHbbh8IKeddhrnnHMOd9xxB4mJidTX12Oz2RgyZAi33347dXV1REZG8sknn9C3b9+9zo2MjCQ9PZ05c+YwZcoUPB4PgUCAiIgIbDbbAf9MZsyYwUMPPcTChQuJj48nMjLyyP9wD5OM+BFCCCF+x+b20ehsHupsd/v3WcUrZvuHoKlUDH3osEb6/J41+yzCqlZhcFS2bFNVKKixY5Ul3oUQok3SNA2b20dxnYNqW3Pvnt+uzuX1q5TWuw5yhb05PLKyY3umKApz5szhp59+Iisri8GDB3PllVfy5JNPAnDTTTfxzjvvMHToUHbs2NEyTSojI4MLL7yQPn36cNlll7X0m7HZbEyaNIk+ffowZswYnnnmGQDuvvtuevfuTa9evRg9evQ+RYt77rmH+++/nxEjRhyz1bf69+/P9OnTGTx4MEOGDOGaa66hX79+9OzZkwcffJAxY8bQt29f/vKXvwDw3//+l9WrV9OnTx969OjByy+/DMCzzz7b0qg6JCSEiRMnsnDhwpZmz7NmzeL2228/qow9evTgH//4B6effjp9+vRh/PjxVFRUkJKSwiOPPMKwYcMYN27cAfsyvffee/z3v/+lT58+DB8+nMrKSvr06YPBYKBv374t/z1+8cgjj7Q8x/vuu4933nnnqHIfLuV4vtgMHDhQO1hDKiGEECJYfnk/VBSFoloHNvcBhtWqPrrNHIYrrhfFE94+qscyN+6ky6djKR/6SMuon18oCqTHhBAVYsTm8RNp+WPN/IQQQvwxDo+fBqcXq8u/30bNERYDkSFGKpv238j5F6amQtIX343eVU9jl6nU9L2ZrIQw6fMTJFu3bqV79+7BjiHEUdnf319FUdZomjZwf8fLiB8hhBACqLJ6KG1w4fEHDlz0ASKLf8DorKa+22VH/Vie6E64YrsTVfjVPvs0rXma2Y4qOyV1TtSDfIgQQghxbNg9fsobXWyrtLKrxkGDw3fAoo7N7aeswXXQog+qj4yFt2Gp34ZO9RCz7cPmxznI+40QQrQWKfwIIYRo9xwePzU2D41OH4W1jgMfqPpIWv0fPJEdsWWM/UOP2ZR1FmFVqzE4KvbZp2nNUwY0DezS/FMIIY4bq9vH1gorhTUO6uxefP4/XnxXAl5Slz1KaM16Skc9SV23yzDbStC7G7B7ZHqvEOLYk8KPEEKIdq+i6deeDAe6yde76ojf+BqWpp1UDPkr6P5YE+amrLMAiCr85qDHWV3yoUAIIY6HOruHkjon/kDrjbQ02svImTOJuK3vUtvzKqxZZ+FKaO6xElK7AZdXld5uQohjTiaUCiGEaNesbh8ur3rQY2K2fUj6z/cCYE8dgS1z/AGPDTPrsRj16HUKitJcuNnf9b3ROc3TvXZ9RV2vqw+cz+WHmMN8MkIIIY6YpmmU1DsPawn2I2GyFtHx28sxeBopOv1NbJnjAHDF9QIgpGYD9vQxlDe6CE80oNMd/gqRonUcaDlxIdqyo+nTLIUfIYQQ7dohl93VNOI3vYY7pgs1va/H2nHCfpdv1+sU0qJDiArduxlzYoSFBoeX8iYX6u/qP03ZZ5O8+l+Ely7Cnj56vw8fUDUanV6iQ01H9LyEEEIcntIGV6sWffTuRjIW3kp46SJUYziFE2fgSsxt2a+ao/BEZRNSux5oHmlaYXWTFh3SahnEoVksFurq6oiLi5PijzhhaJpGXV0dFovliM6Two8QQoh2a3e9E5d3/0uXxmyfSeK652noeiGWxp2Ujn6Kxi4X7PfYCIuB9JjmG/Yft1Xxw+YqCmsdKAr0So3ilK6JDOwQQ4XVvVcjz9qeVxFd8DkZC25l55Sv8EVk7Pf6FU1uIixG9PJtsBBCtBpN0yhvctPobL2pVkrAQ+a8awmtXkd1v9tp6HIhvoj0fY5zxvclvGJpy+/1di+RFgMRspLjcZOenk5paSk1NTXBjiLEEbFYLKSn7/u6cjCynLsQQoh2xxdQqWh003SA/jnR+Z+R/tMdaDojOtWL3xzFtktWoRn2/nZFUSAp0kJChJnP88r413fbKWt0EWE20D0lEp+qsrncitevkhYdwj1ndKV/ZjSNzl+LP6amQjp9fjYBYzhFE97BE9t1v5miQoykx4TIVAAhhGgFmqZRUGM/5FTfI7wo6T/dQczOzyg59Xmacs454KFxm14ndfljbL1kJf6wZACMBoWuSREy+kQIcVQOtpy7jPgRQgjRrvgDKjuqbPtMu/qFzmsjdelDOJIHU3rKc6Qtugtbxtj9Fn0yYkOxGHU8OHsjM1aU0Dc9iocmdWdstyRMhub1E9y+AHO3VPHKogJun5nHJYMzuGFMTsu0Am9UFrvOnEnHH6aT8+UUqgbeQ133K/ZpHt3k8uH0+cmMDSXUJG/fQgjxR9TYPUdX9FEDhNbkETCF44nugs7vRDWEApC49mlidn5G5YC7Dlr0AXAmDQIgvHwJjZ2nAs1TvhqdPmLCZGqvEKJ1yZ2jEEKIdqXG7tm36KMGyPjpz6BpuOJ7o/fZqBzyV3zhqRSd+cF+r5MQYcbh8XPFG2tYX9rEDWNyuOv0Lhj0ey+YaTHqObtvKmf2TuH/vtnKGz8XMjwnno5xYS3HuON7UTD5C9IW30PqsocJL1tMXY8rSdjwEpUD72vpDeHzaxTWOkiLDsEX0IgKMbYUmIQQQhweX0ClxnaI/m6/ofjdhJf/TGTR90SWzMXgrgdA1ZnQqV48Udn4LXGEVa2iofP51OTeeshruuJ74wtJIKJkXkvhB6DO4ZHCjxCi1UnhRwghRLvhC6jU2b37bE9e9U+iCz4HIKrwKxzJg1uW290fRYF6h4c/vbUah8fPK9MGMKFn8kEfW69TuPeMbizZWctjX23hlcsHYPxNkcgXnkrRGe8Rt+UdUpY/QmTJPADiNr9FaeJzLcepKuyub15+vtHpJSchvGX6ly+g4guoqBooQIhRj0bzzzJFTAghmtU7vAcc9QmAGsBSv4Xw8qWEly8ltHIFer+TgDECW+ZpWDuMR+dzYG7IJ2COJnL3fEy2YsqGP059t0v3uwDAPhQdtszTiNr1FUrAi6ZvLva4vCo2t096/QghWpUUfoQQQrQbdXYvv29tF166iISNr1LbYzqazkjCpteo6X39Qa9j8/i5ecZadIrCxzcMo3tK5GE9vsmg41/n92HyC0v4emMFU3LT9j5AUajrOR1PVDahVasxN+0ismQuSsCDpjfvcz23T2VHtQ29ouALaATU/fftM+gVUqP2XXFMCCHaowM1c1YCXpJW/5uYHTMxeJoAcEfl0Nh5KtbM8ThSh7cUaH6rpt+hR/j8IsysR69TsLr8WDPHEbt9JqGVK3GkjWw5prLJTbjZIL1+hBCtRgo/Qggh2gVV1ah3/G60j6aSvPL/8EZkUDnkQTSdkYZul+CJ7nTA6zS6vNz/2UYU4JMbhpEVH3bAY/enT3o0E3sl8+HKEk7tmkhUyL7FGHv6aOzpownfvYDoXV8QXrYYW+a4/V7P59fwcfCFGvwBjZJ6J+FOA2nRITI9TAjR7tTaPYSa9KgaeP37DvcxN+4kbdHdhFWvoTF7MrbM07CnDGtpvPxH7aqxM2tdKWuLG3nrT4OItBixp45E1ZuJLvh8r8KP26dS7/ASF75vwV8IIY6G3PkJIYRoFxpdvn1GxETv/IyQ+i1UDryneUSNojto0UfTNF5YsJNau4c3pg864qLPL/4yvgsuX4BZa0sPepwjdQQBUyRRhd8c1eP8nt3tp7DWgdevUmf3UGs//B4XQghxogqoGtVWD8V1Tmr309snfsOrdJ51OpbGfEpOfYHdY1+gsdO5rVb0WVvcwL2zNrBhdxMmg45Hv9yMxahDM4ZS3+1SYnd8RPSOT/Y6p9LqxhdoxRXHhBDtmhR+hBBCnPT8AXWfIkdk0Xek/Xw/zoRcmrLPPuQ14sJNLM6vYcWueh48qwe5GdFHnadzUgTThnZg9royNpQ2HvA4TW+iKetMonZ9iaVu61E/3m95/c2rmpU3uqlodFNtc7fKdYUQoq2qtXsIqBr+gIbN7f91h6YRt/F1Ulb+A2uH8Wy/4Ceacia32uP6AyozV5Xw96+3kJUQzty/jOGhSd3ZVGZl4fYaACqG/BVb6kjSfr6PsIrlLeeqKpQ2uFotixCifZPCjxBCiJOa16+yq9aBx9f8zam5IZ8O30+nw7zrcMf1pGjCO6Ac/O3QbNSxpdzKc/N3MqZLApcPyfzDue6b2I2OcaE8Oy+fBue+Dad/UTnwXgKmSDIW3Ix+z0oyf9Rv+xxVWz24vIFWua4QQrQ1mrafab6AqamIjt9eRuqKx2jqOJGSsS8SCIlrtcctqLFz96frmbGihDN6JTPzuqEkRJg5p28avdOieH3xruZRqDojJae9hDeiA5nzrsPUVNRyDbvbT92eLy0CqobHL6/VQoijI4UfIYQQJ7WyRldL0QfVT+b8GwitXkPVgDvZdeaHBCwx+z1Pr1NIjDRjd/v5dPVubnh/Dd1SIvjvxf1apeFmqMnAfy/ph9Xt49EvN+P0+vd7XCAkjt2nPIe5qZBuHw4ladUToO6/MenR0DQobXCi/b7rtRBCnATsHj/+wN6vb0rAS+a86wit3UD50IcpGfsC6Fqn9enWCisPf7GJP3+UR5O7edXHFy7t39LPTadTuPnUTuxucLFsVy0AqjmK4glvApC65IG9rldpdeP1q5Q3urC79/8+IYQQhyKFHyGEECetJpdvrxvl2G0fYmnMp2zUU1T3ux3NELLf8/Q6hZzEMFzeALd9tI5XFxcyrnsS718zpFVXxuqTHs1Ll/enqNbJg7M3tXyz+3uOtJHkn/cdTVkTSVz/Pzp9fg5dPxxKx28vRwn88T49bp9KwwFWuRFCiBPZ/lbwit/wMiEN29g95mnqel0Nuj/+uh5QNT5cWcJ9n22gtMHFn8d1Zt4dY5jQc98+QeN7JJEdH8bsdWUtRXdvZEdqcm8lovxnQitXthyrqlBY66DR6cMpozOFEEdJOZ7f8A0cOFBbvXr1cXs8IYQQ7Vej00t5o7ulobPOa6frxyNxx3Sl8MyZ8LtRO4rSPPpF0zRWFdVTXO9k3pYq3H6Vt/80iD7p0ccs6/ytVdz64TosRj23ju3EwA6xBzw2On8WSWufxhuRSXj5EqyZ43AkD8XcmI+lfgtGewV6vwNNZ8Qd0xU0Fc1gpqr/nTiTBx3wuiaDji5J4bJ8sBDipKGqGlsqrHtNb9W7auk2cxjWzPHsPu1/rfI4JfVO/rdwJ5vLrZzdN5X/O7cXEZaDF5Nmrizhvs82ct8Z3RjRKR4Axe+i68wReGK7Unjmh/ucYzHq6JwU0fJ7QNXQ6+Q1WwjRTFGUNZqmDdzfPlnOXQghxEmlyuqmyeX7dXrXHrHbP8Tgrqdy0H37FH0A0mNCsHv8PPz5ZuZvqybCYiAh3MyrVwykV1rUMc18WvckZt80gts+XMejX27BpNeRFR/Gsxfl4v/dSmSNnafS2HkqAPEbXyNlxd+JLJmH3xyDK74X7rieBEyR6HxOLA3b0fRmTE2F5Hw1lcacKVQMvh9/WMo+Gbz+5lE/sWGmY/pchRDieLF7/S1Fn7CK5XiisonOn4Uu4KG6/x1Hdc2AqlFjc7Or1kF+tZ0t5Va2VFgJMen519Q+XDgo47Cuc/6AdN5eWsSri3aRmxFNmNmAZgihpu9NpK54jMjCr7FmnbXXOR6/iqpqqJpGQY0Ds0FHx6NcXVII0b7IiB8hhBAnLFXVsHn8BFSNmFAjtXYvlU37rlKlBLx0+XgU3siOFJ710T774yNMhBoN3PTBGpbsrOOOcV24dWwndMf5m1S3L8D7y4spbXDx3vJizuyVzPVjstG0A+fQu+vRFD2qKXK/BS0AxeckYcNLJGx4GU1vpnjcq4SXL0XvrqNi6MNoBguw77fJQghxIqtoclFr8xJSs56czyfjiemMEvDiD0lg19mzDvs6tXYP60sbWVVUz7qSxpYpVyFGPT1SIxnfI4kLBqQTF24+onzrdzdw7v+WMq57EreO7dy8UfWT88UUTPZSdkydRyAkfq9zshPCcHj8VFk96HUKPVIjj+gxhRAnLxnxI4QQ4qSiqhp2r5+Kxuaml9B8Y/7Lz78Xt/ltTI4KykY+uc++tSX1PPnddpzeAHqdwtMX9uW8/unHNP+BWIx6rhmVDUBChJl/f7+d7imRjOqccMBzApYDTwv7hWYMpXrAnTR2mkrHH6aT/c3Fvz5mYz5Fp7+FaorA7VOxe/yEm+X2QAhxYlJVraVo7/D4QQ2QuuRBVFME5oZ8FDSq+91+wPN1Oggz6cnb3cTyXXUsLaijpN4JQFZ8GOcPSCc3I5reaVFkJ4T/oalWfTNiuHRIB95fXky/zBhGdooHnYHSMU/Tac5ZZCz8c/PKkzp9yzkOr5+6PauUBVQNr1/FZJC2rUKIg5M7OyGEECcUjz9AfpWd3w9Y/f3ULgA0jZRlDxO/5W1s6WOwp4/Za/fakgb+8fVWuqdEMqFnMoOzYhnU8dCFlOPhxjE5LN9Vx3Pz88mICW2V4fzeqI4UTJpF8uonsXY8A53PQcaCW0la+zQVQx8GoM7ukcKPEOKEVefwYtLrCLcYcHlVogvmEFq7gd2nPIfBUUl0wec0/W4K1a/nevhpRw1f5JVT5/ASYtQzPCeOa0ZlMaZLAh3iWn9a1Z2nd2FVYT0v/JhP16QIEiLMeGK6UD7sUdJ/vo+ktU9TNfBuIop/ILQ6j5oh96D+5u3O5Q1I4UcIcUiHnOqlKEoG8C6QDKjAq5qmPbdn363ALYAf+FrTtHsOdi2Z6iWEEOKPqra6qbIe3kpW0fmzyPjpDmp7/omKIQ/ttVxvcb2Dez7dQIe4MGZeO7RVV+tqLTU2DxOfW4xeBw9P6klGbGirP0ba4nuJ2fEJO86fhzeqebRRt5QIjHr5ICGEOLFomsb2Kht6RSEx0kJJnZPsL85F72ki//z5B5wOG1BVZq7azcxVuzHqFcZ1T+L8AemM6BSPxajf7zmtaV1JA5e8tpweKZE8cnbPlib7aYvuIXbHTMqG/53kVU+i8znYcsUmVNOvU3LjI0ykRO1/hUohRPtysKleh3NX5wfu1DStOzAUuFlRlB6KopwKnAP00TStJ/BUqyUWQgghDuBwlx03OKtJWf4ojsQBzaNZ9hR9FAU8gQD/+GorUSFG3v7ToDZZ9IHm6V6vXzkQf0Djzk/Ws7qovtUfo2rAXagGCykrHm/Z1uD0tvrjCCHEsdbk8uHza7h9KlVWN+aG7YRVr6Gh68UHLPrU2t38+aM8Plq9m6tGZLH8/tN46fIBnNY96bgUfQD6Zcbwl/FdWFvSyA9bqlq2lw9/DGd8b9KWPoTeZ0dBI6R2w17numSJdyHEYThk4UfTtApN09bu+dkGbAXSgBuBJzRN8+zZV30sgwohhBBOr/+AfXwA0FTCKpaTsO55Os8aj87vomzUv0D59e0ub3cjl7++goCm8eb0QSRFWo5D8qOXmxHNF7eOpGNcKI99tYW3lhSyrdJKay3O4A9NoCb3ZiJL5hJWvgSAxsMsrgkhRFuhaRrVtl9Hg3p8KrHbP0LVGWnYsxLibxn0CjtrbNz8wToc3gAfXTeMv53d44gbNLeWa0ZmMyw7jlcX7WJXjR0AzWCh5LRXcEd3pmLwgwCEVq9D57USs20GqT8/gNdadbDLCiEEcISreimK0hFYBPTa8/+fA2cAbuAuTdNWHex8meolhBDij9hd79y7KKEGMNlK0HutuOL7kLr0IeK2vguAPXU4FUMewh3Xs/lQTePdZUXMWlvGoI4xvHhpfxLbeNHnt5xePw/O3sTneWWoGozoFMfVI7OICzOj+8032Qa9gk5R0NDw+Zvf4xWFfXoi/Zbid9Pl09MImMLZOeUb0OnJSQwj1CS9foQQJ4Y6u4fyxt+s6qipdJsxEGfyIErGvbLXsQFVY3ZeGe8sLWJghxj+d1nbeD+ote+Z3qsoPHNR7j791rp8PAZ3TGd0AR8RpQsAKB/2GNGn3iyv10KI1lnVS1GUcGAW8GdN06yKohiAGJqnfw0CPlYUJVv7XSVJUZTrgOsAMjMzj/IpCCGEaO9sbl9z0WdPsSesciWJa5/B5CgHwBXbg5D6LdT2mE5N7q34Q/deCeuTNaXMWlvGlcM68NdJPU64HjahJgPPXJTLw2f3YNbaMp6du4Or3l5NhMVAVIiRUJOeMJMBk0GH2ajHpNdhMujolhzByE7xxIWZsLr9+722ZrBQOeheMhfcQlTRNzRln02d3UtorHyQEEK0fQFV26f3m6V+G0Z3LdYO4/fa7vEH+Oe321hT3MCVwzrw4Fk92kxz5PhwMy9e2o9LXlvBM3N38OBZ3fcq7DsTcoks+QG9z0FVv9uJ3f4hIdXrsLr8hJoM+AIqBp3S0iNICCF+cVh3dIqiGGku+szQNO2zPZtLgc/2FHpWKoqiAvFAzW/P1TTtVeBVaB7x01rBhRBCtB+aprV8k5v5401EFX0LgDO+D9UD/oLOayVpzTPY0k/Z089n774Mq4vrmbG8mHNyU3lkcs8T+qY4OtTE1SOzOLdfGgu2VbO2pAGHx4/TG8DlC+D1q1hdPjx+FZfXzzcbK3h67g6y4sO4YlgHhufE4/WrKErzSKBfVodpyjoL76onid36Pk3ZZ9Po9JEQEThuPS6EEOJo1Tk8BNTmjxlJq57AF5aKzu8CwJ46EmgeDenzq7zw407WFDfwr/P7cOHAjKBlPpDBWXHcdXpXnvxuG5+s3s1Fg3794tyVmEtMwWxUvZm6HtOx1G8ntGYdtW4fyVEW6uxeYsKMmA3yui2E2NshCz9K893xG8BWTdOe/s2uOcBYYKGiKF0AE1B7LEIKIYRo3+odXrx+FXPDdqKKvqW+68U0dL4AZ9KAlv499d0uQ9OZ9in6VDS5eOqH7XRJjuCJ8/qc0EWf34oNMzF1QDpTB6Qf9Lg6u4f5W6uZuaqER7/cQphJj8mgY3hOPFcO70BUiKm5b5JOT333S0le9STmhh14YrpQ2eRulWXkhRDiWFFVjVpbc0N6S+1GEtf/j4AhFE9MF9zRnfCHJaMo0DEujOd/zGfhjhruOr1Lmyz6/OKGMdms393I+ytKiAsz0zUlgtSoEJwJ/QBozDmXQEgczsRcooq/w2erwx0bSr3DS6hZL4UfIcQ+Dmdc4whgGjBWUZS8Pf87E3gTyFYUZRMwE7jy99O8hBBCiD9K0zRq7M1D+OM2v4OqN1M56D6cyYP2atqsGUL2KfpUWt08/vVWDDodr00bSIip/d0Mx4WbuXBQBrNuHM5rVwzkgoEZjO2WxOL8Gi5/fSUl9Y6WY+u7XISqMxG79X0AbG4/TS5p9CyEaLvqnd6W0T6J654jYAxD73cSWpOHPW1U8/YIM0t21vLSTwVM7JXMzad2CmbkQ1IUhWcvzqVnaiTP/ZjPTTPW8vHq3bgTelM54C6qBvwFANeeQlBITR6lDU4CqobHd5AFEIQQ7dYhR/xomvYzcKCvRy9v3ThCCCHE3uocXnx+Db27kZids2jMnkzAEnvI81YU1vHM3B3odAqvXD6AzLjQ45C27VIUhfE9khjfIwmAJmcPLn5tObd+uI5nL8olLTqUQEg81qwzicmfReWg+9CMoZQ1uAgz6THs6YmkadpJM2pKCHHiq7P/MtpnA1HFP1DV/w4sdVuIKv4ee+pIdlRZueOjXeyssdMzNZKnL8w9IV7DLEY9H10/jDnrypi1ppQ5eWVcOiSTmn63tRzjSuiDpugIrV5LdcapQHMPIyGE+L220clMCCGE2A+3L0BlU3Nvn5TlD6MEvNT2vvag5zi9fj5cWcLjX2+lQ1wY39w2iuGd4o9H3BNKVKiR964eTGKEhYc+30y9o3lUVV33y9H7bEQXzAGam6aWNTb3ynB5A9Q5vMGKLIQQe7G6fc1TVdUAaT8/gC8kgdqeV1E16F4aOp1LfdJwnpmX37wq4pndef/qISfUyM9ws4HLhmTy53FdcPkCvLpoFysL61lZWE95owvVGIY7uguh1WsB0Lvr8dnrg5xaCNEWyXIdQggh2iRV1ShtcKJpEFn4DTE7Z1PV/w48sd32e3xJvZOvNpSzcHsNLl+AM3un8PSFfaU58UHEh5t59YoBnPviUp6dn8+jZ/fEmTQId0xX4ra+T0PXS0BRsLr8VFvdNLl8mAw64sPNwY4uhBDU7xntE7flHUJrN1By6guo5ig85ihKT3mOj1YUU9rg4v2rhzCy84n5BYCiKIzpmsA5fVOZk1fOF+ubV7KMCjEy87qh2NNHE7/pTfSuOrK/uQhfRCZcNYtGp5dIixGdru2PbhJCHHtS+BFCCNEmlTa4cHlVdJ4mUpc+hDO+N9W5t7Ts9wdUVhU3UG11U1jn4Met1Rj1OibnpjJtaAf6ZkQHL/wJpFtyJH+d1J0HZ29ieWEdw7Ljqet+BWlLHyS8bDH29NEALUsl+1Vp5yeECD63L4DN7UfntZO47llsaaNoyj67ZX9lk5vP1pZyTm7qCVv0+a0npvbhqpFZFFTbaXT5ePTLLXy5vpxzO51LwsZXSfv5fiwNO9B7GvEHVOodXkwGHaEm+bgnhJDCjxBCiDaozu5paSqcvPpfGNx1FE14G3RGTAYdO6ps/PObrZTvmQYWatJzzagsbhiTQ5yMRjliFw/K5L1lxby1pIj+mTE0dLmA+E2vkrrsb+Sf9z2a/tc/U39Aw+tXMRl0ePwBWT1GCBEUVdbm1/+4re9g8DRSNfAe+E3vnreXFqLXKdw/sXuwIrYqi1FPn/RowswGYkNNrC5u4O2lRQyf1p+MmK5EFX8HgNFZTWNjLQ6PGZc3IIUfIQQgPX6EEEK0QQ3O5uH74aWLiN36PnU9/4Q7vje+gMpriwu49cN1RIYYeWv6IHb935lsfnQCD57VQ4o+R0mvU/jb2T2oaHLzxfpyNIOF8mF/x9y0i4T1/9vneJc3gNXto9EpK34JIY4/ty+A1eVH53MQv/E1bOmn4kroC0CISc+WCitLCuq4ZmQ2yVGWIKdtXREWA1EhRu4c3wWPX2XW2nIaOp0LgDO+DwBNJRsAcPmk0bMQopkUfoQQQrQpLm8Al1fFaC8jY8GteGK6UDngbhwePw/M3sina8q4fkw2X9wyklO7JaLTKSfECi1t3fCceCb0TOKT1aXU2T3YM06hIedcEtc9R1j5MgB0nkYidv+I0+enxubB7vEHObUQoj36pel/7Nb3MLjrqf7NSlfx4SZeWriTxAgzN52aE6yIx0xCuBmdTiE7IZwLB2bw5fpytqdOob7LRZSPeBwAQ+02ond8glK0OMhphRBthRR+hBBCtCkNTi96Vy0dv5uGovopHvcKmjGUVxYVkF9t56XL+nP/xO6YDPIW1toeOLM7flXlveXFAJSPeBxPZBYZC27BaC8nY+Gf6fj9dOzVxTg9AVzeAKr0/BFCHEcOjx+b24/id5Gw4RVsaaNwJg3A5Q3w9YZy7p21gaI6J/dN7HZSTnP67Rcdt5/WGb1O4Z5vyvhT/RWUWroSMIYRWrmatJ/vJ2rVs2iavEYLIaTwI4QQog0JqBqNNhtZ31yKyVZK8elv4I3KZsnOWhZsr+HmUzsxsXdKsGOetDrEhXHVyCzmb6tmZ7Ud1RROybiX0fnd5Hx+NpG7fwTAXL4KAE0Dh1dG/Qghjp+Kpl96+7yPwV1Hdb8/A/DOsiJeXrSLeVurmT68I1Ny04KY8vhIjrLwt7N7kBodwsayJr7YWIEnugvRuz5Hp3oJqd2E5zfTvQKqhkNGagrRLknhRwghRJtRa/cQvus7Qhq2sfuUZ3GkDKW0wcnzP+bTJz2KW8d2CnbEk94tp3YiNszEq4t3oWkanpiuFI97GYO7AWdCX1S9hdDqtaCp6Lw2HB7pISGEOD4cHj8ubwDF7yZ+w8vYU4fjTB7Ezmo732ysYPrwjhT835k8Mrlnu1nG/LIhHXj2olyGZccxd0sVrpjOKJoKgN5rxVVdAICmaeyoslFU5whmXCFEkEjhRwghRJsQUDVq7R7itr6HJ7ID1o5n4PT6+ee32zAb9fzvsv4Y9fK2daxFWIzcM6ErWyusfLOpEgBH2ijyz/2Gognv4UzIJbR6DUlrnqbrx6NosNpaVmATQohjqdbuASB22wcYXTVU9bsDVdN4dXEBceFm/nJ6lyAnDI74CDOT+qRic/tZ0pQIQFPHMwBwlawFwOr24w9oqGpzc2whRPsid9BCCCHahEqrG2PtdsIqV1Lf7TJUFJ6Zl09Zo4sXL+1PekxosCO2GxcOzGBU53je+HkXRbXN3w57YrsRsETjTOpPSO1m4ja/hcFdj7liDSV1Thr3rMQmhBDHgsffvJKX4neTsOEl7MlDcaYMYe7WKrZW2HjwrG5EWozBjhkU4WYDIzvH0TstiudLMtmsduC71FvRFAOGqg1Y3T4aHL++Rru8UvgRor2Rwo8QQoigs3v81Nu9xG96DVVvpqHLhcxaW8ryXXX89azuDMuJC3bEdkWnU3jmolwiLUb++e1W7O5fe0I4EwegaH70PhsaCmEVSwGosnqkiagQ4pjwB1R21zsBSNj4CkZnFdX976DJ5eO9ZcUMzoptFz19DiY9JpQPrxvKkzdcyHTz07y3TcMd25WQ2k1UNbmxe/wYrcVE58/C01gByMgfIdoTKfwIIYQIKlXVKGtwYW7YTkz+p9R3n8Z2q5H3lxdzTm4q04d3DHbEdik+3MzLl/en2ubhkS838+6yIsobXTgT+wNgTx6KK6Ev4WU/A+D1q9Q7ZNSPEKJ1aZpGYa0Dl1fFaCslIe9FmrLOxJE6jPeWF2H3+Pn7Ob32Wu2qPVIUhXCzgZ5pkUzum8qmcivV4d0Iqd2I2xsgavsndPt4FBk/3YFl+XMAlDa4pGAvRDshhR8hhBBBVWVz4/WrJK96EtUQRmGPG/nX99tJjwnlH1PkZj6YBmXF8eTUPuxucPLpmlL+79uthMclUzbiccqH/x176ghCa9aj89qB5tV26vb04BBCiNZQa/fi9jU3K05a+x8AKoY8xLZKK99vruKqER3pmhwRzIhtitmgZ0LPJCIsBuY3pWLwNGCp20zCxldxxfbAGd8bU+UabG4fLm8Ah0z7EqJdkMKPEEKIoHH7AtTZvUTtnENkyTyq+97M88vqqLF5eO7iXCLaab+GtmTqgHQ2PHw6D03qTnGdkwXbqqnvPg1PbFfsqSNQND+RRd8Czcu7lze6pX+EEKJV+AMq1bbm5dsNzhqiCr6kvuvFuENTefmnApIizdw+rn02dD6Y1OgQrhuVzbOVvfEaIsj46c9YGrZT3/1yHCnDsdRtoaKuCUCWdxeinZDCjxBCiKBxegMYrCWkLXkQR+IAPjGfw6L8Wu4Y34V+mTHBjif2MOh1XDmsI30zovnX99u446M8VhbW40oeiCcik4xFd5Ix/8bmyg/NPZuEEOKPanL5UJsH+xCz/UN0qpe6Hlfy7aYKCmocPDSpB+FmQ3BDtkGJERauHpWFMSyWmbqzsDTswKczM98wCmdiP3SqF+PuZXT5eAzali+CHVcIcRxI4UcIIUTQuD0eMhbcDkD+yGd5a1kp/TKiuWFMTpCTid/T63X8+/w+nNIlEYfXz3Pzd4DRQv55P1Dd50aiC78mateXwK/fIPsCKv6AGszYQogT2C9FZL27nrit72FLG02VKYP3lxczolMcZ/VOCXLCtslk0BFqMnDfxG78x3YaDVo4s7zD+Nv3u9mgdQIgZdnDmK2FhGyfjapKnx8hTnZS+BFCCBE0lqVPEVa9hrKR/+TDfGhw+njo7B7oddLXpy3qkhTBi5f155/n9cbhCfDqol1oxlCqBt6DK7YHyaueQPG7cXibP6w1On3SP0IIcUQ8/l9fM+weP+aGfDrNORu9p5Hqfrfy1pJCPH6Vx6Sh8yFdMDCD168/ja3nziXxwv8SF2bivS1+fKFJWJoKAAgrX0Z+lZXd9U4CvykABVSNRqeXWruHGpv0bhPiRCeFHyGEEMER8BG97iUasyaxK2kCc9aVMalPCv1lilebl5sRzdWjsvg8r5xPVu8GnZ6KIX/FZC8l69vLMDQW4fYFaHB6ZblgIcRh0zSN3fVObG4fTq8f1e8nY8EtKH4Xu876hJWBbizYXsN1o7PJSQgPdtwTQnJkCBHxaaQlxnLL2E6sLKpnI82jfpoyx2PwNKCr2kSj08fOajuNTi8Oj5+CGju7611UNLqpbHLjk9GbQpzQpPAjhBAiKLyVW9AFPFg7nM6MlSWomsa9Z3QLdixxGKJDTdx7Rjem5Kby7vJivlxfjiNtJLvHPI2lfhsdfriKGpsHj0/FuWfEjywZLIQ4lDqHF5dXpdrmwe7xE7/5LULqt1I+4nFscX14+acCUqIs3DK2U7CjnjASIswARIcauXRIJgM6xPCBcxCLA734Kv0OAMLLlwDg9avsrnexq8aBx7d3ocfrl8KPECcy6YYmhBAiKPy712EC8vU5zNtaxbWjssmIDQ12LHGY9DqF/1yYS53DyxtLCslOCKNn5/PRe5pIXf4ojuoiTKoPv9UP8QNocPoINemxGPXBji6EaIP8AZUqa/MKXk5PAJ/LQee1T2PNGIu14xl8lVdOcb2TV6YNINQkH2EOl8WoJybMSEyoCZNBx6wbh1PemMslr56Ca5WL86JyiCr8Gk9MZ+ypI9D0zYUixe/G3LQLnc+OzufEZ+wPSRlBfjZCiKMlI36EEEIER0UeAWM4r25WiAoxcvMp8g3uiUavU3ju4lxSoyz83zdbKaix40gZDkBY+VIy511P+tybcPsC1Ds8smywEOKAauyelhW8AMzlK9D7HNT1/BN1Di8frCxhZKd4Tu+RFLyQJ6jUqBBMhl8/9kWGmLhhTA7VNg/f+/sTWpNHx++nk/3leVjqtmKp20yXT0+j8+wzyPnqfLK+vwLLd38O3hMQQvxhUvgRQggRFLrKPGrDu7KiqJHbT+tMVKgx2JHEUYgNM/Pu1UMINRl4cPZGtmvp+M0xLVM0LA3bqaurweX9ddqXEEL8li+gUmf3gqaSvOJxwsqXEV66CFVvxpE8mDeWFOJXVf4xpac0dD4Kut8tmBBq1DMsJ46/n9OTO+vP4bKwV9gy7GnM1mI6z55A59kTUVQvu8c8S+EZ72NLH4OhbjvQPG23yeWjsslNtdXdPK3XL6/tQrR1Mk5SCCHEcWdzugir3cIi3QQ6xoVy2ZAOwY4k/oCs+DBm3TScM55ZxPsrdzMqZShRRd8CoKDhKV6NLiEXh2oAmc4nhPgdq8uHpkHcpjdJ2PgKkcXfo+kMOJIGsbbczeL8Wm4ck03HeGno3Bp0OoWUaAvThnUkMsTIfbM2Mm1lHPeN+JRh2noMrhoaulyAP7R5dFVo1SrCyxaD34PNr6OkzrnX9RTFgjlcpvEK0ZZJ4UcIIcRx11i8kYiAh59d6fxlUte9hqCLE1NadAhXDu/ICwt2UjJkAL35FlvaKMLLfiasei0pK/+JNzwVz7SZmA3yAUEI8Sub24+psYDk1U/iicjEbC0CoCh9Cv/+YTvZ8WHcPq5LcEOeZH55HT6jVzIK8H/fbOPuH2pJjMjGqO8Em0qBUsxGHc/3SCdJU6GhCKth3z4/Hmn8LESbJ4UfIYQQx5XD40dX3LyCSF1kD87slRzkRKK1XD0yizeXFPLP/EzeVELY1eU6ujoqid06A6OzEnNTAY1ON+bIMADcvoA0exainVNVDbvbR4dlf0PTm9k16VOyvrscS8MOHt+WgkGn8NafBslrxTFiNugZlBXLjGuG8PHq3WytsAKgUxSMBoV5W6pZZYulJ+Cvycejd5O4bRYhdZvRdEY0vRk1rhNM/CvINDwh2iwp/AghhDiu6pusxOa9xDq1E2eeMhqDXkb7nCxiwkzcMa4Lby0tpIf7dcYVJ/NkYn9idnwEgM7vwrZrFTF9x+D0Bmh0+UiLDglyaiFEMNk8fsKL5xJRtpjyoQ/jD0umfNijVPz0Jkvrk/j4hoF0iAsLdsyTWkpU8+vwHeO7UGv3AJAcacGg13HZ68v5pKiG6YCncjsZa+7G6KzEE90ZAL27HmPBHBhxFUSlBecJCCEOSe62hRBCHDcBVcOw9i3C3FU8r1zKeQPSgx1JtLJrR2cz944xTOqTxvyt1dRE9wagodN5AJhLl1Br91Jt8+D2SUNQIdq7JoeX5FVP4I7uTF2PKwCY6+rKZXV/4k8jchjQITbICdsPi1FPekwo6TGhLV/KnJObxuZ6HV5TNPqtn2NylFM66t/kT51L/tS57D71vwAEanYEM7oQ4hCk8COEEKLVaZq23+2NVhvxef9jmdaLsK6nytD9k1SoSc8FA9IxGhRuX5vMWuMANne9DVdMN8IqllFldWN3+6XwI0Q7Z/f4cZdvwtK4k9peV4HOiN3j58UFO+mUEM4d46WvT7Cd0SsZs0HHDl8ilpr1ANy/MZkHZm/kwdkbWW6NByBQvS2YMYUQhyCFHyGEEK3O7vHvs03TNDwbP8foruUl31lMzk0NQjJxPCiKQsf4MB6b3JOElEwudd/NC2vdOFOHEla1GvxeIorn0vmD4Xjs9QCyHLAQ7YyqapQ3uogq+g4NhR1Ro3lu/g4e+XIzbr/KfRO7EWaWrhTBFmkxNk8BMzeP0N2u70yTLhqdAiUNTl5b5yBgjECt3o6madTtmSrW5PTt915ACBEcUvgRQgjR6qxuP6q696ifJpePqE3vUGVIZYOpP6d0TQxSOnE8JEdZuHBQJm9OH8TFgzJZXljPJks/dH4XUQWfk7z6X5jspfh2r8XtC1Dv8AY7shDiOPH4AxTU2PH4VCKLv8eRNJB/LKrl5521+AIqj07uSY/UyGDHFHvcMCaHYYMGA5DQbxJf3jqSz28ZyT0TulFY58QWkY1Sl0+dw0t5o5uCGju7G5zY3VL4EaKtkMKPEEKI1mWvIeG9sTjLNrVs0jSNxqJ1hFWt4k33qUzqm4ZRmjqf1H7572vQ67hgYDpZ8WE8sCkNe3w/0n6+H0vDdgC0ig00uXw4vTLiR4j2Yne9E7dPxWgrIaRuM0sMQ9lV4+CZC3P58c5TuGRwJvHh5mDHFL+hS+7V/EOXM1q2nd03hRCjnh2BFPR1+VQ3OtG7G3F6AphrNqFu/zZIaYUQvyd33UIIIVpX1SZMdVvQNnwMQGWTm60VNqJXPYeTEL7Sn8afpW9Du5IeHcqTU/tQbvXyXMiNKJofT0QmvtAklKqNNNid+GsLD9gbSghx8rC5fbi8KgCJa59DVfQ8WdyZ8d2TmNg7peU4k0E+prQlxu5nkT/1B0I6DmrZFmExMqlPCovqYzA4q0haeCfdPhhI8orHyflqKsnfX0/A48Tu8eOQaV9CBJW8ogohhGhd9moAjIU/UmPzUGPzYKzZTHTh17zun8C1E/rLN7ntTFSokcFZsUwf1pHX8sO51nMHj4ffjyuuF4bqTUSveZHOn56G21oX7KhCiGOsxtbcAyaiZD6x+Z/wZcSFlJLIw5N7BDmZOCidDn1yT0JMey/KcOfpXdEldQMgbucsvIYwEja+gqo3oQt4cO1aSpXVLaM6hQgyKfwIIYRoXY7mwo+ldhN1pTuIX/8/0uffjI1QFsVexLShHYObTwTN/Wd256FJPXBlnc77RVE0RnXD3FhA7PaP0AU8+EpWBTuiEOIY8vpVHG4/sVveJfPHm2gM78Td1Wdw9cgs0mNCgx1PHEJc2L5f2iRHWfjLxZMAcGPkFOtjXOv9C09nvYGmGPDtmE/Yiuew/HD38Y4rhPgNKfwIIYRoVZqtuuXn7K8uJGXVE9R6FO7xXsfdU4ag1ylBTCeCyWTQcf6AdK4ZlY2iKCy2paBoAUz23QBou6XwI8TJzO7xE7XrS9KW/hVH0mBuM/yV8LAwbj21U7CjicMQGXKAVdZiOhKwxFLT8xqumDAca4fTeWWDj4bYvoQWfE3i2mcJ2/wh+D24fQG8fvX4BhdCSOFHCCFE61Lt1QQi0vCFJGBylLM468+ManqM0NxzGZIdF+x4IsiiQozkJIQzsVcyb+4MA8CnmPFEdkRfvlr6/AhxEnO4fSRseBl3VCfm9HyORZUmrhjWgVBZtv2EoCgH+OJGb6Bi+kocI+/nmlHZ/PWs7kRaDHxYl43ZWoxO9aJTvfhK11Fr9+CSaV9CHHdS+BFCCNG67FUQnkTTiAdYlvNnrt4xhF5pkTx8ds9gJxNtRFpMCPee0Y0BffthJZy5an8ak4YRUr0Oq1OWdRfiZBXYtYiQuk1U9bqWt5cVEx9u4qoRWcGOJVqBOSyShAgLJoOO3unRvDJtIO70kQAsNTQvBe8tXIZxydPoFv8rmFGFaJek8COEEKJ1OWrQwhJ4vm4Il2weTOekCN6ePojIEGOwk4k2Qq9TyIgN5V8X9mPj+A940DOdJZ4s9F4rTWVb9zo2oMoIICFOBm5fgNiNb+ALSeB/df0oqHFw1+ld5b3hJBFuNhAbZmr5fXBWLHf8aRo/5tzDTfarabKk4d/2LQlrnyM07w3QNLx+VUZ5CnGcSOFHCCFEq1Ic1WyxWnhnWREXDEhn9k0jiI+wBDuWaKMyuw9iQPdOvF7YPA1QV7qqZRqA0+unzu4JZjwhRCux2m2Ely1mZ8I4Psqr5dzcVC4enBnsWKKVhJj0+0wF0+n1ZJx+G3EJySxwdCCqagU61YveVQeNxTQ4vbh8Mu1LiOPhkIUfRVEyFEVZoCjKVkVRNiuKcvvv9t+lKIqmKEr8sYsphBDiRKAF/OCo46dyhQsGpPOv8/tgMsh3DOLAQkx6bh/XmR2BZJr0cUTt+pLyJhcAdXYv9TL1S4gTnssbwJH/M7qAm/+VdCAnIYz/O69PsGOJ4yA5ysKH1w4lqcdoAKr2fGT0Fq9EW/kavvWf7nW8KqM8hTgmDudu3A/cqWlad2AocLOiKD2guSgEjAdKjl1EIYQQJ4o3565BR4DMjA7887zeB24EKcQeYSYDvVIjuWBgJm94TyOi9CcCFVuosXlwVeVjLvoJm9sX7JhCiKPk8QcoqXcSvnsRfgws8nXjf5cNIMSkD3Y0cRxEWIwkRloYOPZcAoqev3quwKeYadzwDYlLHyNk2X8AcHj8bC5votYhozyFOBYOWfjRNK1C07S1e362AVuBtD27nwHuAaQ0K4QQ7YimaTg8/n22r9y0HYDJI/ph0MtIH3Fov0wPuO20zsxUx+NRzMRveo3KJjepi+6lww9/oqaqHKf3179v9Q7vfv/+CSHaDpc3QLXNTX6VHa9fxVS8kJWBLlw8ohtdkyOCHU8cZ8akbuRfuYldcWPIC3QgvmAOOtWLqX4HOGqpsbow1u1AK1kV7KhCnJSOaO1ERVE6Av2AFYqiTAbKNE1bL9/oCiFE+9Lk8tHg9JH1myV4bW4fjvpyMIESnhjEdOJElBIVwuRhvZi5fDSX53+GPW004RXLAAjZ/DEF+usw6BUMOgW3T8WgV+iUGI5RCoxCtDlOr5+CakfL7wZHBVHW7SxTLuXGMTlBTCaCKSY2lg+vHYrt82HoCnbQRDhR2HHkLyZ++UuEV65oPjB9M0SlBzesECeZw75bUhQlHJgF/Jnm6V8PAn87jPOuUxRltaIoq2tqao42pxBCiDbEv/gZUt8dhsftbNm2fncTcTQ1/yKFH3EUbhnbiRmWS7CqIaQvuBW/zowrtgex2z8ATcMf0HD71OaffX6K65yoqoaqajS5ZDqYEG1FeaP71180jZiFD+DRDCg9JxP9m5WfRPuSGGEmMdJCRp/mfj//9l2ABxN13/yd8MoVFCVPAEArzwOapwkKIVrHYRV+FEUx0lz0maFp2mdADpAFrFcUpQhIB9YqipL8+3M1TXtV07SBmqYNTEhIaL3kQgghgsJhbSB67YuYrcU48j5r+eC9srCeBGVP4SdMXu/FkYsONfGXKcN5P+YmdGjM9g1jXeolmJt2kbLi74RUryW0cgWdPxtPzpfn4XY6KK53UljnoLTBiT+gBvspCNHuNbl8LSvzoWnEbXqD5Ir5PK1ewuRTRwY3nAiqX2aJmHpOpmz0v9ENvJKNShcyvQXUaFFcU3cpGgr+8g14/SoNDinoC9FaDjnVS2n+F/oGsFXTtKcBNE3bCCT+5pgiYKCmabXHKKcQQog2Ql39NgZPE35zDOa1b7I5/WwAlhbUcl6IA00zoViigpxSnKhO6ZpIWtRN7NiayAfrYslfp+PThNF03fwm8ZteB8AXkoDFtYO0JfdTOvppUBRQfdTavSRHWfa5ptPrx+ryo2q/tiRMiDDLNDEhjoEGhxejvYzo/M8Ir1hKePkSFgRyqe5xFZmxYcGOJ9oCgwn6T+Ox6BBcYRNh6SZKcy5l5xYj1thMQio34dr2AxGrXoUrPgb9EXUnEULsx+H8KxoBTAM2KoqSt2fbA5qmfXPMUgkhhGhTAqqGXqeAqmJe/TJVcUOoTT2FnhufRF3yX7zGKM6sXMU442q0sERZzUscNYtRT3SYicYeF/BkH4UnvtvOGdtuoHfUdKYmVRGlWYkZcB7dSz4kae3T+MLS0BSF+I2vUXj2J9TmDCI+3NxyPV9ApbjOiT+w9zoU4RaDFH6EaGX+gIrd5aLT91diadiBNyyFd6Nu4PHaUbwzOBOTQf7NiWbJkc1Fen2f87EVr6DDGbeSVZ3POncG/XbnoTnthJX9BDXb0JJ64vQGCDNLAUiIo3XIfz2apv0MHPQOXtO0jq0VSAghRNtjc/uwGPU0Fq4l2VnJk41TmFeWw9emBPpufQqAPhiwmjriG3A55kNcT4iDSY0OwekNkJUQxhtXDuTNJUV8sKKYR3Y0f1AwFOzk7N6TeKBzGYl5/wVAQyFp1b8pinuXaqsHg17BpNfhV9V9ij4AXr9MCxOitTW6fMRtfBNLww6Kxr/OGzXdeW95MdOGdiA7ITzY8UQbotftmfaV3I3dUz4kOz6MG09RWTk7lVOMP+MvqwTAV7ISZ2QXvH5VCj9C/AHyr0cIIcQhWT65BG/2eBauL+ViYNLkCzgntgNL6r/HYK9Gp/lwh6XRIz2OiBRZplf8MXqdQnZCWMuInAsHpjOmSwJOj596p5fP1pYxe305S8PP5/4QP1HR0XRNTyR11T8Jq1iOI2UoAVXD4ztwcUcKP0K0Lk3TaKqrouPaZ7BmjmdGYy/eW76LU7okcNmQzL1G4gnxW2nRISiKwoUDM7AZz4HZH2MggKroUUvXoDbVE735A7h9TfPUXiHEEZPCjxBCiINz1mMpnEegahsRtlQaLUmMHToQgCZXNLX2JKB5io7ZoMMk02dEK/jtNKwIi5EIixFN01C15j5A5w9I5+m523nWOY2iQicj1DDeDE2m4/dXUtP7eup6XEkgJA5T0y4y59+I2VoEqh+d2tws1J06FK77PkjPToiTT2mDC8v2Oej9Tj4IvYzXFu9iWHYct4/rTFpMCDqdfGAX+2cx6lt+jsjqD0AF8ZTqM+mQv5QIZQFGZxnYKiEyJVgxhTihSeFHCCHEwVVvASDMWcrp+kq82ee07IoKMRIVYgxWMtHOKIqCfs9nx9FdEhieE8euGjtfrK/g5Z8KmGx6iBfjP6PTumdJWP8/XIm5mBt3Agp13S5H05vQdAbCqlYTVrEM/F4wmGhy+bC6fPzS+zkyxEB0qCw5LcThqmxy0+j0kbPjY2rCuvBEnolTuyby0KTupEaH7PXBXoiDikjBF53D7qjTWFZQyyD/Z7/uq9kGkSl4/ar0ixLiCEnhRwghxEEFKjahB3yaHqPihxxZjle0DQa9juyEcO4Y34XJuancPnMd40qvZkraBdwYtYx0x2Y8UdnsHvUU3qislvNids4ivHwJNJbgi8mmpM6513UVBSn8CHEYNE2jzuGlxubBXL+N0NqN/Md/Bf0yonll2gD5cC6OnKLQdNXP9DAZ6Ff4I3z0GV5Nj0kJEKjejidj1J7Cj7xGC3EkpPAjhBBivxwePwu2VWP75jvO0IWTZ+zHqf7FGLNHBzuaEC0Me6aEdUmK4OPrh/Hc/Hw+XFHCnLIJwITmg4rLgXIAdAo8NSSKDMBXW4A9JHOfa3r8geMTXogTmNXto7h2T9FU9ZO8+l/4MfCtMorPLu8vRR9x1MJDzM2jxDIHAfC1OpQzTevRVW/Dv+wVLGXL4dL3gpxSiBOLFH6EEELsRdM0FEWhpmgTr88t4R/GMmzhXehw5t9pKPqWmLicYEcUYr8iLEbuO6MbFw5I54v1FdQ7vPsc88OWKuaUBDgPUOsKsCeOQu+qJbx8KUrA03yQKRTiLwadfHAV4kBsbn/zD5pK+uJ7iCyZx8O+Kzl3VB+So0KCG06c0FqmBobFUTvxVWYtMZBtfQLTlrVkmH7CbC8CnxuMlqDmFOJEIoUfIYQQLdy+AKUNTqL89aR9PJF/+BLpaqxC6TINfddcrJm9ZEUN0aYZ9Dq6JEdyTaSFRmdzI+f4CDNmgw6dohAXbuKFBfkEwkLR6gsxrfof3Zc/jqLtvcqXPzUDQ/aoYDwFIU4IdrcfNI2U5Y8Rk/8pb5ku4TvTZOafIl8OiNaj63Uu08Lrqfy8A2PcC7F4ml/XqctHS+pFQNVaRn4KIQ5MCj9CCCF+teD/0JcWsqW8gjEBJ710RRAALaUXiqIQFSqNnMWJITrUtN8+PefkpvL8jzupN6URVreL6LrvcMX3pXz4Y/gtsRhctXT64hwCVVul8CPEAXj8AZK/v46wihUY3HWsSbmYRwsn8fDZOYRb5H1CtJ6YUCMTeibjbxiNYd7clu1a9VYcMd1RNY1IKfwIcUhS+BFCCNHCsO5tsly1ZAFfRVzEUDYSb9uCktQr2NGEaBWdEiPonhLJhoYYBhcvI1Rz8JJ/Il8uUoAGhmbF8VdDCFrtzmBHFaLNclXuILrwG2xpo6lMGcs1a7rTPTmUqf3Tgh1NnGSUPaOMDYndAChSk8jU1aJWbUMreRiTtUT6/QhxGKTwI4QQ7ZymaQRUDRw1GFy1fBw4hb5dshg1+WG8ldtxrv4foclS+BEnj7+M74LjqwwinCsB2GTOxaBXqLF5eH9lKXcmdERfXxDklEK0XeqO5pEXxcP+wZ1zm3D6HPzt7B5EhshKS+IYSegKwLrQ4fidKyj++SdGmHZiDjjB7wVZ5UuIg5LCjxBCtHPe8k24PW4+WLSJG4HQ/hcSdsq5REWF4g8fjDW9P6FyQyVOIuN7JOFpGgbfz8IXmsgdl5xNZKiRTWVNXPX2aioMaXSQwo8Q+6WqGsbCH/FEZvFinp/tVTaenNqbYTnxwY4mTmYxHagf9ww5CSPxfnsPoxsXY/TtaTBesxV7bE8MOuXXxtBCiL1I4UcIIdo5/bd3odSVUWEdC0aYdNpYiAwFmhvlxoZJ0UecfPTx2QA4UkfSKSkCgFO7msmOD2OdI44c1wL5FlmI/bDZbUSUL2Nzyrl8u6mSK4Z14KJBmcGOJdqDfpfTJ8yEf/cADD8vaNkcKFuHd/tS0Gsw6qYgBhSi7ZJOWEII0Z5pGrrabUS6djPZtBbVHA0RycFOJcQxZ0juiaoz4es8sWWboihMHZDOssYYFC3A7l1bqLK6g5hSiLbHW7AYXcDNi7s70i8zmocm9Qh2JNFORIc0Nw7XJ3UHYCU9sRLKgrlfEvHzPwhZ9gz8Mn1dCLEXKfwIIUR75qhF524EYKC2ETWhmyzXLtqHiGQKr1yDrsfkvTZfNCiDOkvz6AVX5Q5qbB78AXV/VxCi3dE0Df32r3ErZpYFuvPMhbkYZUUlcZzodM33J78sOGHuOYkySxfGuBdg9NvRO6uhoZB6uweHxx/MqEK0OfJKLYQQ7ZCmadRYXbzz5fcAqNqeYk+ifHMr2g9jeDxhv1t6Oj7czE1TJwCQl7caTYM6hzcY8YRoc8rqbYQUfMNcfz9undCbjvFhwY4k2qPEbtSc8wE9J99BTt+RGJUALq15Wm7VxgWEzZwCX9wa3IxCtDFS+BFCiHYo8P1f8b05ie2b1gKwJWoU8OvwaSHag1Czfr+NQIf07IRDH8XwulkkzzqHxuoyNE2mDoj2rbzRhbfgZ0J8DSw1j+RPI7KCHUm0Y5bup2Mwh2BI6wfAl4bTadDCqZ3/HKHlywjZPhu8jiCnFKLtkMKPEEK0R7sWktq4momWTajGULqfcycASvqAIAcT4viJCT1w4+ZA5wnoFIXYhvVE572CTaYNiHZMVTUanF5M2z7HqZmJ7TsJvU6mBYvgidgzWlOXcwrO1GGMufwBXCmD6KkrRtUUdH4Xnm3fBzmlEG2HFH6EEKId8fgDEPCjq9sBwMjAStTYzuhzTqHx+jxIk8KPaD8O9sHVc9YLfD32B74MDCVmy7vY6iqPYzIh2har20f4ru9IKvyMueoALhjWOdiRhGgWFo/9kjkkZfUkoccYAGbpTqdBiSKw6fOWw3zSq020c1L4EUKIdkLd+jWebx7knx98gy7Q3LNEQUNJ6AJAVHLHIKYTom0xG3UMyYrli4hLMakuDKtfk+leot1y7fiJzHnXs5WOzE66lY7x4cGOJESL+DAzAIYeZ+OK60HEqX/mW98ADDt/QPM68brs2DbPDXJKIYJLCj9CCNFOaOs+IHLtSzi2/QjArojm0T26hK5A81LWQohmJr0OvV5hzMhRLAz0JWTLx9jcvmDHEuK48/pVQte/gcsQxYWu+5kyom+wIwmxl5bVvuI70XTFAiaMGkZ+/DhMqpPnX/ov+Z/8jdjPLoSG4iAnFSJ4pPAjhBDtxZ7pXdebvkdDoeOUhwFQUvoEM5UQbZLFqKdHSiQXDkxnWegpRHoqsOYvDXYsIY67mqoyIorn8RWjSIqL4azeKcGOJMQBJUaYURSFyy65nCpdEiMb5pCy65PmnZUbghtOiCCSwo8QQpzkvH6VgN+H0lAIQIZWjhrdAV3OGKxXLYbOpwc5oRBtk6IohJgMZI+6CI9mpHb5h7i8gWDHEuK4cfsCKBs/Raf6eNMxgptOycFokI8Pou36ZfRPp6QowoZeSX+2EosVgEC5FH5E+yWv3EIIcTLb8T2emVdy/j8/RKf6cGjN8+C1xOZl2yMyeoNM8RLioM4e1JXlhgFklH9PZYMsDyzaj6pGB1Fb3mOzloUptTdT+6cHO5IQh8088HI0FMqUZEp0aagVUvgR7ZcUfoQQ4iQW2DSbiJ1fMNC9DID6TlMB0Cf2BKSvjxCHI9RswNfzQuJoYM23b1JldQc7khDHnNPrR79hJmHWAl5Vz+G/l/TDoJePDuLEYYztQMOIh9jc90HyfJn4ZMSPaMfk1VsIIU5mdTsBmG6aD0DGmXfhj+yA0mlsMFMJccLpO+4SSg2Z9C58nTVFdVL8ESe96roGYlb+m3VqJzqOvpSO8WHBjiTEETONvp2REy+lxJRDqLMcXA1A8zR4IdoTKfwIIcRJyONv7kOi1eYDkKZVoYbEQ1wO/lvXQccRwYwnxAknJsyCfdDtdFV2s/LrNympc1Lv8Lbsr7N7gphOiNZV0eTCvOZVwjzVvGS8gmtHZQc7khBHJdxsINRsoGPPoQAsWryA4lo7rvn/RK3YFOR0Qhw/UvgRQoiTjKt6F47FL3H1/77D4GnEoxkA0OI6Ac2rFQkhjoxBr8PS7wLqw7twv/tZVn71KmUNTqxuHy5vgIomN6qqBTumEEdNVTWqrG521dhpqKkkdt2LzA30Z9ApZxNuMQY7nhB/yOjRzSOdf/ppPjc98x5Ry/5FYNn/gpxKiONHCj9CCHGSUec+SuxPDxJb1jy9qyRlAgBKfOdgxhLihJcQFUbllE+pCO/JjbVPkD//bUrqnJTWNpK87FFcFVuCHVGIo1ZS76Ta6sHh9hH1898x+J3Mjr2GK4d2CHY0If6wyPg0PBGZ3JCyg7OMqwFQipcEOZUQx48UfoQQ4iTia6okpOBrAKYb5gLQ+czb0HQmdKl9gxlNiBNemNlASHQ8tvM/Zpu5N2fveoxvZr3Nzq+eIX7TGyhr3w12RCGOSp3dg8PaSETJPNLn30xa0Sze0CZz4wVnYZJRouIkofafTkLtSq4wLgDA0FQE1vLghhLiOJHCjxBCnEQCa99Dp/poJJyeSiGazghpA3Ffvwz6XxnseEKc8JIjLejMITjPe48SUza31f+DkWWvA6AvXRnkdEIcHXtTHTlfTKbjD1cRVfQt//JdBKc9TK+0qGBHE6LVmAZdiao3E+6r4wfjqQA4838CQNM0afgsTmpS+BFCiJOIa8W7bDb14Sv/EADU6I6gNxCS1AkMpuCGE+IkEGLSk5MQTmRMHJ6LPoGoDEIUDz/pBmOq3gBeJ9D8IcIfkA8Rou1T/X7ivr4ak7WY15Mfob/7Jar63sRFgzNRFCXY8YRoNfrweFxdzwUgdcpjWLVQVi74kveWFVG3/EN8P/wtyAmFOHak8COEECeJwrIqYtwl/OjrSWV88+oV7GnoLIRoPRajnqz4MAwR8ew6ezZfDfmAd9yjUTQ/ruJVADS5fDS5fEFOKsSBuX3Nqz+6CxYTXr6Uly3X8I+iLpzarxt3nd6VqBBp6CxOPvoJ/6Du3Jn06tmHyuhcOlpX8/fP89DNfZDQlS+AoxZN06i2umn4zcqNQpzopPAjhBAniXk/LwVg2lnjuOv6a9F0BnSJ3YKcSoiTk1GvIys+DH14LN1yRxCSPQyAms3N0wYaK3bhLN0YzIhCHJDXr7KrxkGDw4t983f40fNa0yD+fk5P/jGlFynRIcGOKMQxYYlKIKpX86IX2adMo6Ouiu+SXiJWrUdBY8PCT/n5+0/gw4sJeWc8NBQFN7AQrcQQ7ABCCCH+OJc3wM6tawGIzugBITHYL/2SiFQp/AhxrBj1OrITwvD4Ve47bzj5z6VTu2Ehf2+ayFMNtxPqqcaXsxWjUUZOiLZD0zRK6x2EFn7P7sRBhG/6jkKtKy9fcwpDsuKCHU+IY86gbx77YMi9BOfq98kuW0KZPh2j307t8g/pqysARYeFJtg5HwZdHeTEQvxxMuJHCCFOYL49PUS+2lBOir8UDQViswEIzxkGobHBjCfESc+o1xFuNpARG4o/YwT91Y1EFXxBVONmjK4aHDt+CnZEIfZSaXVj2vAeHedeQ8Ssi8lWi7B0P12KPqL9URTUSc/iDUshauJDKJ3HM1afR5xi4yrPnXgMEQQqZeSmODlI4aeVeP1qywcwIYQ4Hrw+P5VblwMwa20pvc01qFEZYLQASFNOIY6z9MkPYDTo+Zf+RWxaCC4sBDZ8Kk2eRZtR7/BiK95I6rJHcFiSyXJvBaDLyPOCnEyI4AhP6ULj9WsJH3gxcf3OBsCZdTruxH5s1zLxl29EVTWsFbuCnFSIP0YKP3+Apmm4vAEKqhrZWVTC9pIqNpU1sbPaTmmDk4IaO2WNLuweP9VWd0sTPSGEaA3On54j49OJlK37juW76ullrkaL6xzsWEK0W6HxHajudxs6LUBB2jl8H+iPOf9rKuqtwY4m2jlN06h3eKmsqCDh6z/RqIZwpvNRFukG44noQEhan2BHFCJoEiNDAdB1Ho+9x8Xoz3icq0dlsdaThr98I8+99DyRr/SD8nVBTirE0ZMeP0fI4fFz98d5ZLi20MW5hizvTrq51xGqOgBw6SNoCMuhPrwLyf4ytMhUKrMnE9awhYqEXkT3PJ2YMFlSWQjxx3istYSvfBaAxkWvAlcR790N8acGNZcQ7Zlep+AccAOVqkrKgCvYOPdrwguXsuirlwi78E5i5f1fHEf1Di8VTS70OgV/QAOfm/AvriLUXcldYY/TJSkHe9/XqUkOIV1GiAoBplBM572EyaDjvHiVNUXDCdv0A6dWvQ060IqXoaT2Q9M0GVUtTjhS+DlCgfoSHtp1CSlaNQClJPEDg9lBJrqAlyR/Db18RXRt+pxCLZmsqtUk7Pyk5fzaouk0TPwnMRGhwXoKQogTnKpqzH3lHiZ6bCxQ+zKifiHnJJ+DvtEJ8bJ8uxDBlBoXxc7+t9I5MZypF13FpqdnMrboP3yxMJeJp40jwtLc6Lm80YXT6yegQnKkhahQaQAtWk9Fk4tamxedpxGfKRLFWYvhixvp6FjN89F3ccfll5OdEE6T0xfsqEK0KSbDnsbPeh1Dho2GTZCrKwDAt3sNpqEaTZVFRKdkBTOmEEdMCj9HKDKpI6E9RlOXMgpf5zMIDY9lpKYxXNVQNY0qq4c6h4cfXH5K6h24m2qIr1/L1zUJnOmYw9Vb3qbMWoPv/FdJjA4P9tMRQpxAXN4Aep3CtxvLGWqfz8bIUdT2vA3T8vN5THm1+aB4meolRDBZjHo6xIViNujBoMdwwes4PxjPsJW38WPkx0wc1heXx497+4+EWAvR+d1ocWkw+JJgRxcnAY8/QK3dS1NtFZmL7yWq+DtUxYBO86NqCu8l3c34c2+jY1wYAFGhRjRNC3JqIdqoxB5oig5FU6nRorBuWsLKpn9zcfk/4da1ECvFH3HikMLPkdLpMFzwBgda9yA5KmSv3wNqZ+zuwVxq1PHu0kH858dY7iydwY63L4LL3iIxIfHYZxZCnPD8AZX6lR9g0cG7C/WcozQSNXQSuSPGY7NNI2LrTDSdCSWxZ7CjCtHu/TKqByAptQMlp79Bl+8vodO8PzFl+f8x1fsFV/s+3PukrqMgKv04JxUnkyanj5J6J0ZrMdnfXILRUclHxnOpd/lxGWNI7T+BQYNHk5MQjk736zQVmbIixAEYQ1BjctCcdRQlX8Cgoldw7f4ARadC6Wop/IgTyiELP4qiZADvAsmACryqadpziqL8Gzgb8AIFwJ80TWs8hllPSHqd0jJ8+7oxOZT2eYo3345iWsMrNL5+Gq6bFxESGRPklEKIts6+6TtS592KRx9KJ/elYARLzggAtLOfYcvgv5Fk8ZEQnhDkpEKI34oJM+HtOYLtzufpvfgGnvb9g2zfDlZYRvKo/wp6K4U86fsn1BdK4UccNVXVqKqtJnrnt8St/Ddut52LPH+jKbYPE/olM7ZbItGhJrLiwzDqZW0XIQ5XYMx9+H1+BkXHQ9Er9NIVNm8vz0Pf5wLcvgAWoz7IKYU4NOVQwzsVRUkBUjRNW6soSgSwBpgCpAM/aprmVxTlSQBN0+492LUGDhyorV69ulWCn8isLi8vv/02f6m8l+0JE+h+04fodApVTS7iIyzodfLNixDiN5z1qM/l4keHydNAjT6ZOL0D3X3FoGu+2fD6VRQFuaEXoo0qa3ShrX2f9EV3ETBGUHb5Ir7apTLzh0UsMt8B57wI/S4Hmldg+uX2TFFkRIY4tLLaRuLeH4elMZ9iLYkHjPcw9cwzOLVrAgENjDodYWY9BnmPEOKI/PJ6rHM3wL+aR/hUaTFUGDNoGHAbI3a/iulPX4LREuSkQoCiKGs0TRu4v32HHPGjaVoFULHnZ5uiKFuBNE3TfvjNYcuB81sjbHsQGWLi1quv4vPn85haO4N/Pv0E9rjePFR9J03D7yJ21LUtx0rXeCFE485lRHuauEP/N/6hPU1CoBJf5lh0ul+/YfqlGaEQom1Kiw5hd+5llOgtKOHxZGRmcX6Mh2d+iENFh1JfhAJUWd3U2j2oavN5YWY92QnSE1AcWJ3dg2HJM1ga87nZexs748fxrwv60jstaq8pXUKII6coCooChMYSiMnGaYhiuzuVvrafsK56FZO6Emq3Q0rfYEcV4qCOqMePoigdgX7Ait/tugr46ADnXAdcB5CZmXnkCU9SISYD467/N4XPr+EWxwtss2VgUSrRLXiIqszRxKV3prKygnCDSnRSRrDjCiGCaMXKFUwALBm51PpOJ6bsM5TMocGOJYQ4QhmxoZT1PZ+oECOKopAYaaFPZgI11XFou3dQsKMCNn1GZuVcTD4rRr0Os9kMZz8Byb2DHV+0QQ6Pn9r8VWSve5E5geHYcibx8jk9yYqXYqEQrc17/nsYjKGMKvoR5ZuvGRFYBQpQmy+FH9HmHXbhR1GUcGAW8GdN06y/2f4g4Adm7O88TdNeBV6F5qlefyjtSSYqPAz18rcJe+dUBmlbmRM6lXGOr6l68xKeVSbyV8MMTJYQtNvXYQvoMegUQk3Sj1uI9sLtC2B1+Wgo2YzDEMl/pp+Gf5cJ7d3ZGDqfFux4QoijkBa99yIQZ/VOYdf3CRh3beWn/Ed5wPghpVo8u9REdDoYrKxG2/Y1ihR+xO/4AyrlJTtJ+uoKarUItve9n7fOHYRepnMJcUxYUns2z8Tw1gOgV5o/2mq1+ShAQNWkZYdosw6riqAoipHmos8MTdM++832K4FJwGmarAV5VGIyulMz/r8YC+czaeoLrPz2HXLzHuaf6gvU+KII85cz48WHOcW0jcjIKLRL30bRyRu6ECc9rwPd21P4Ouo6ulOOsmeZdkP2KBpu3kpMQkqQAwohWsMVwzpQX9iDqLKfyIospMHVhcUjPmF3o5v/LSxgU9QdhNQVIq1DxS9sbh/ljW4CXiexs6eh8zt5P+dF7pgyUoo+QhxDLe039izzXqdPwOMLULh8GQbzQvrYFhF6+kPNzdmEaGMOZ1UvBXgD2Kpp2tO/2X4GcC8wRtM057GLePKLGXg+rr7nYjAaGTLpakr6T0S/7Ws+tvdm4sY7uKzx5eYDq2Hl16+TMWoaISY9ISY9OkXB7Qvg8AQASI6SxmJCnBSqtmAqX0lYRQzdjJWYU85o2SVFHyFOHga9joSMLigFn2L023D2upzzBmagQ+GjVbspU5LJaSgCwBdQaXB6cXgChJr0JEXKe3574/T6Kamqx1y/Hd+S/5Hs3METsY9y1ZSzpNebEMeLKRRPz4uxhXXHmjeHOE8JZQueJdS3AIZfBxHJwU4oxD4OZ8TPCGAasFFRlLw92x4A/guYgbl7qp/LNU274ViEPNkZ9Doi9nxDo9cpZKWn4U66mruMelzdH0ebeT7fxE0ns2YhnVY/St6aj9EiUmiKzSVgDCPVsYVM11ZiTAEcI24jrO8UvH4VlzeAqmnodApRIcYgP0shxBGp2wnASHUV0Vo9JHQJciAhxLGixHQEQOd3E9JpFHpD8/ieib2T2bQ2hk4NWwGosXloqirG3LSLQGg49Bwl3yy3M9WV5eTMOR9Lw3YAPgu/mEsvv45EKQIKcXyd8wId9DqgjMCqd4jzNjT3+6neIoUf0SYdzqpeP9P81/j3vmn9OOIXFmPzTV9I19MovXYzpyclYy3Kwz/nFjq7aoizbSDU9gUAfk3HJq0jIYYmQr65m+/UvoTlzyHSUUSEzkuUxYDr1D8TkpiD2xfA7QsQZjbIss9CtGFa7U4UIFVpnkdOvBR+hDhp7Sn8AOg7Dm/5+czeKSxZlYjesZBJT37OX91PM1TL+/W80M8h+5TjFlMEl9vlIPHzi9E3FnKP71pCUroz7YILyIwLDXY0IdqdXz6rEd8ZneoiUXEB4C7fjCVnLB5/ALNBJumKtkM6BZ8A0lNTAYjL6U/1tT+CX6XS68FesQO8TojtwNIylaXz5vC++nc6zJ5Md10JHs2AEwvhioe6sjy+HPwKHXa+S0d9Hd70/sSNuQGb24fJoJOm0UK0EbV2DysL64lcuZyBmhGL4mveEdc5uMGEEMdOTAcAfDGdMIYntmwekhVHTbdeUPAx14f/zFBXHp+YpvC9I4fXjf9Bq9qMIoWfdqNx2Tsk123meu8dBLqexd0TupKVEBHsWEK0b7+5P3NqZr74fh4ppS6GuRbBVV8FMZgQe5NP+yeYX4fyhkLykJbtfTrD+f1voXbGArpX/UxB9jTy+z3ITztq8K6dwX+sL3PK3InE04SVMKILPubzNevINe4mJCqO+rOeJ2CtICk+AUtUQnCenBDtnc9N2HsTWW6fxGXeUnaE5tJdLcDgbWqZCiKEOAmFJ6GaIlAzR+y1Wa9TOOfUkVAAZwbmo+rNxJ39d+bN2IDbEoahdhcGmnv/WF0+vAGVCIuRcLPc3p1sKhvsaEteYIOazYAJl3Pt6JxfG80KIYJnz+Ib7pjONGhR5Noq0LZ/iIldYKuUaV+izZA7g5NIYqQF94UvU775R9KHXUaO0cAZvVOoGd+Fhhnria1dz8qB/+O9uk5cVPQ3zrF/hFULIbLBRcHzq8nSVeFN7gfXz8fuDciNoxDHmSd/ASFVaxkZUMg2VqLvMxG/qwuB6s0YDKZgxxNCHCuKgv3izwlJ6LDvvj1FX319AZ70YYztnUnP1GJ2N6XQsa4AgPJGF1anD7QAqGbCzeHHMbw41qqsbhbMeYNLAmWs6fY4143pFOxIQohfRKQQCEtC1+0sUnx2kte+ix5v876K9RCRLMu8izZBPtmfZCxxGSSNvGKvF5eESAuuKz6lqqGeIWkZDFUU3K5Z7F7+ARssQzHu/IaRu55lub8bwyvX8J/n/s1VloX4+k7BOOy6ID4bIdqXwJbmIcGn6vIwqgGI74S+7+X4fF55sRbiJGfJ7Idxf6syhcaimiLQeW0oHUcBMCU3ja1zE4jcvZV7X/uJ8+tfZ7hnMbFqA6opEm5bC+Eyevdk4PT6KVrwNucW/Z0yUybjpl4T7EhCiN9SFFzXLiEsPApl3Xugelt2vfvZ5/QfVE+OrpyQU+8MYkghpPBzUtpfRTkkLJy0sF+/AbSEhJE65hoydArqkF6UN95C3toiui2bzB0N/4dO0fD7amHYdahq88pgQohjZ1e1lfht31BLNPFKY/PGuE7oTRb0JlmtRYiT3QGX4lYUtOiOUL0RQ3Zz4ee8/mksXpVFvG0FQ5u+Z5LrC35kMPVEcr53HlRugE6nHb/w4phocvkoW/MNQ9bdyxpdTyIueZ80s7wfCNHWhEfvKbQndgfAGZqGzQsZnnzClyzGQgWMvBmM8u9XBI8s69SO/VIg0ukU0mPDuGlcT0LG3YeiwJJATwx12/nf5z/RsPB5AuXrg5xWiJPbh5/NJtJfz3Pqhfh1e24MYnOCG0oI0TbEdETVm9FlDAYgLtzMlNNGo0fl6pCf8IUmsvOUl3jSfR4AWm0+0Nz7p8HhpdrmxuMPBC2+OHI1Ng8bdxSSMO/PFGipFJ/xNpkZ+5kKKIRoOxK7o6Fg6D6RuC5DGKlsoKNagqL6mqd9CRFEUvgRewkZdi0V121kcae7AEha/W/iFj2E+uM/AdA0LZjxhDjpuH0Bdtc7iSz9kQB6/n7/AwQ6jEQzhEBkWrDjCSHaguG3Yj/tyb2/LY5rLgwbazbhzRjNxUM64A+Jx6mEEqhpLvwU1ToorXdQ1eDA5vIFI7k4Cpqm4VjyKt1njydaa6Jw9HOc2T/n1+WjhRBtU0gMjvM/wDj2fvSpuRhVNyrNX7QHSlYEOZxo72Sql9hHamoG912RTuA/DzDVvhgArWA+z32zjmnKd0QNOA99YtcgpxTiJOD30lBWwAfbFEbq8nHHdiMsJAZt3GM4a/IJ00ltXggB+g5DMKUO3Hvjb0YEGruMJSzEyDn90tm5Ohlf3ir+tWMO1ztfZXBgHeE48Udmwu3rQC+3fm1d5fYVdFz+V1apXWkY9hyjR58mRR8hThBhPSc2r7iX2heA6rjBeGoK0W38iYyRtwU5nWjP5FOF2D9FQc1p7g+wJnQkJs1LzrL7iF3xBM5v/4bHH8DmdAc5pBAntsDqN0l6dzQ/rsijn74QQ2bzNA5LWk9MvScHOZ0Qoi3Z54N/aCyqORIAU+dTAbh6ZBbuqGw6Us505StGB5YzTxnGPN1IDNYSqN91vGOLI1Bn97CsoJbtnz6KTQshb9QrDBx9phR9hDiBKMqevqgpuQQsMcSOuo4CSw9Cqtbgkym3Ioik8CMOyDD4amxdzmPA7R8RsMQwSb8cVVMI2fUDd/7ffzA92w1v3sfBjinECUsty0OnernQN4dQzYk+c1DLPqNeXp6FEAehKKixnfDGdIbIVAAyYkMZ0H8wcYEaximrcKcOpWTkkzzrOqP5nJqtzf9n81DR5ApWcrEfXr9K3bov2DLzr4z2LWN3p8u44tQ+xIaZgh1NCHE0QqLx3rETU+75pPUaQzwNfDp/WbBTiXZMPlmIA1LS+hNy0RtgDkft3HzTuHnAoxgUlWfVf2L2NuD78QlQ1SAnFeLE4w+oBKq2ATDNMA8AQ8agg50ihBB78Z3xHxyTXtprmz6hMwDGpiK0TuO4dmQW9SFZqChs37CSL/PK2LBuJVreh+BuCkZsQXMfn4omF00uH01OH+t//pou86/hat+H+I1hdDjrTswGGekjxIksxNw8tbbLoHEAbP15NoW1jmBGEu2YFH7EQRn2jDowjL2fhgkv0Hvy7Xg6nooBlS90pxFmLaBs1RdBTinEiSWgakx45if8VVtRNQUTPlRzFPx/e/cdJ0V9/3H89Z3t13un994VVEQBAXvvscREY2I0lp8tMc1UTaKJUYPEFktUFJVYUcEKSFOq9F7vgOtlb8vM749bEVQEFG73jvfz8bgHszM7M5/dD7ffvc985/vN7hzv0ESkBXGX9CfQduCeK3O67FpM7jmWgM/NOUO7sMHOY+WSOcx//g+MmnYKRe/eQHTuf5o5YglHbRzHYVt5JY2LX2Xjlq385X9zyZp2M5ucXMYPmcKmKz4lOaso3qGKyEFiCvrQkN2by6w3uO35+di2JsuR5qcR/mS/mMx2ZAz9HgCu0+9nx/qF9CoYRun4gZS+eReubmMpyAjEOUqRxFYTDLO9ppHV2+to2LGBFH+QzQWjKd72DpGCAXg1mLOIHACPy+Irw7/EBn2OJBfgzu8JwHWjulC7qS8jK9dwbLSUT2s609lbgX/bIj7fvT4UIRSx8bldBLzqaXIoRG2HVWW1RKM2xe/eQOHql2g0Pn5pR/FZEVaNfYJz+gwg2auv5yKtijG4jrmOTpOvInnjNJ6YWcTlR3eId1RymFHLIvvt88HK3Jkl5GSWkAOsO/JnDJz1a+4e/weuvPZXZOpedJG9sqffR1JDkKe2jmBgUinYUHzCTwm/uBi6jI53eCLSGniTCOf2JtxmGO7P222XRUqbvrg3vA3AvPSfUFczkyNLlwCwpbKBnTWNmEgDqck+2uVlxS381mzn2vm0f/2n1JpkMnfM4rHIWNwWdCrIJP+Ic2jTf6Ru7xJppbx9zyIy9Tf8MvgiZ7/Zm7eXlnJKlwCnByeTNPIW8PjjHaK0cir8yHfSfux1bF/1Cj/e8TDX/Ks3f/zBaeSk+HBZBpcxWJaJd4giiaGxhtTpfyLdDnOr/RylhSOhFCjsx84fzCU/IzneEYpIK1F/6Zt4PXteiHEX9Ny13PP4C1nw4kaOKHud/r94idtcTzDGzCHL1OBYbrhyGhT2a+6wW7VgKEzKlBtxV60jFA7wGsewYcgvObFvEekBL1mpPhV9RFozl4fQ2Lto9+LlPBH4Oz/bcTv16+8jyfUatD8Cuo2Ld4TSyum+AvluLIv08yfg9Xj4a82tXHX3Y/T/zZuUPngKkZeuiXd0InHXGIkSDEdZ8MHLWHaYByOn0d1sYMT2p4gm5UBSFjnpyRjd5iUiB0lSUjIBv2/PlXk9AGjMH8iwAX3o0W8oXhPlvrYfcIE1jRWB/vwtfA7GjmCv/WiPXR1H41F8V3UzHiap7BN+E72cM7zjKf7h0/z69D4c0SGbbgWp6jEtchhI6nMaFaPvpXdoPs/mP8EFVtPkHs6WT+IcmRwO9JeGfGfevE40XvoaqUl+Xgr8ngeTHqJk53RcSyayccs2GkMhHM38JYchx3HYvHkT785fxooPX6CWZHpe9Ce2dLkIyw5jZ3cDvhhEXUTkYPB83WdKdheiSblE+lyAMYbjjj0egGN2TiTsz8F93mM86j6XSiuT6NZFAJTVBPlsSzWLN1dTVh1szpfQqjTUVpEy427m0Is3zAgeu3wI/UrS4x2WiMRB1lGXUjX4Z+Suf41k00i5k8qiOe/z3mcbafjszXiHJ62YbvWSgyKtbV+qL38L77PnMLLifT6jIz3tNfzzgb9yY/oHZHYahO/sf+37QCKtSMXOMkomjiW9vhFjhbE7jeK4niWU5/2a8KNvY0oGxztEETlcuL1UXL2QjKRYT6DsLjiWBytUS7Dv2QzumMulw9qzcEYJJUtnccdD0xle/Sr9Q5/S1l9PSk4BXPg4eJPi+jJaotoPHyQ3VM6/XDfz/NVH0Sk3Jd4hiUicGGNIHfcrqqs3Um+SWbx2M/3r5/HOxD9xHE/Djz7QrbZySOgysxw0afntiF72BtuP/i2ZP36TOn8Bv/U+RUH9ctyLn4OabfEOUaRZ+d66FXd9GcYOkUUN/l4nAZCVk8+Giz7ENfqXcY5QRA4nGcl+3J+PI+P2Es1umvrd3edMAK44ugPV6T1oE9nAsbWv8+O6B2kbXk1FdQ1Ja6fA5rnxCr3FaqipIHnug0yL9ufSc89R0UdEsNxu/Oc9Qu75/2T0qHHkUMVFzutNG9fPjG9w0mqp8CMHVXJGDrknXE9hfj6+fmcRcBpY6e2By4nyzlN3MXHuRrbsrKZm6/J4hypyaG2eR/KKl5jA2Vzj+R07el6Kt9epuza3KcjDuDxxDFBEDjdfvq3UKRpEJDkfb8fhAOSm+jjlhDF4iPBDXqIxrT0fnzKNyxpvBiC6eX5zh9ziVb/3T5Ki1bxT8EOO654X73BEJEF43RYuy0DRAAAKTAUAVSs+jGdY0oqp8COHjHvIFTQUHknbK59hacqR9Nn2Ir9/YQYr7j+blAnDYOfqeIcocsis+PQDAN5LGsOtl56JPe4v4PviSq/XrY9fEYkvM/b3VFw0BVy73flf0BsAd81mQj3O5LQBxXTv3JFtZLNj5ZyvDPRs2xr4eW+C1TtJ/XQ8b0UHcelZp8c7HBFJRPm9cYwL2/LyodMfe/1M0ID6cghojB85dHK64L1yCi7L0PWsX2KePIM5KTfhi9QA8NLjf6Gm8+mM9Cwma+R1JH15BhKRFipqOyxbMJsiknj8Z2fi9+qjVkQSjzspgwxf2p4rs7vguHyYaCOB/ufidlncPLY7Sx9pT8naeVwzfiYXHNGW9jlJ5CT78LkNhRka9+frbH/7HtrYdSzq+lPGFKbtewcROfx4k4gWD8FOa4Md6kjmqrv4zxsf4MnugNWwg0Esozg7laQ+p+77WCLfQH+NyCHlskzTvx2HU3nBSyRPvpL1hSMpL93MMbVvUTdvGiVWKSs3LqTN9x/F79WtL9KyhSI2/1uwhTaNawhmdyVHRR8RSWBfmQHM5SaS1xsnVI+3sBcA/dtkEDxqJN4ZfyO9bDael3/H3ZFRXJf2HkM8a3GunYXxaeya3YXqqshc/DhvO0O49IyT4x2OiCQw59LJuI3F0NJlsOouPv3oTabYg3nfdyN5phIHA13Wg1+zAcq3p3sNpNlkdDuWxusW0ebyx+l32rXkOjtpZ5Ux1T2CLlv/x5xHbiAcicY7TJHvZMe6hTwwbSU9XJtJb98/3uGIiByw8OkTqD/ryT3W+dsOwMLmIc89nO6awUTf7zgq+BG+2k3UfPJCnCJNXCveuJ8Up5btfa8hN1U9mkVk7zxeP5bHi6+oF7Y3jd9238CMk3eSZyp5IjoGgwNlS+MdprRwKvxIs0rxe7FcFlb3E4mktaX+yOsY+n+TeC/lZIaXPskjj/6L2mA43mGKfDtlSyl6agQnVv6XNKcGd0HPeEckInLA/HmdSCnotOfK2PTC7lAVm4bfzbbBt/B0jwdZbRey8Z3xbCyvj0Okiakx2EDekkeYZ3pz1mmnxTscEWkpLBeRwT8gfc2rpH58Dw2Z3ZkQifUYLF0S39ikxVPhR+LD7cO+dj7JJ95Jst/D4KsfYqO/Kxdu/gP3vzSVUMSOd4Qi+60h1NRTzdnUNNXxtZ6XATB5KvyISMtjWeYrM4CRVkw0OZ+6wiPJGf4DosfcyFlnnkdd74voFV3K7eOfZWVZTXwCTjDTX36IPGcnDUN+it/jinc4ItKCeEf8H5HkfNx1W/EM/SE9u/eihgD1mxbFOzRp4VT4kbjx7vZlKCUlleSLn8TjMpy09DaenL4ijpGJHAA7SmjqH3nktY945n+vARAg1LQtr0ccAxMROYiMoe7CyTSc9SR+r5vijADJPje9TvwxEVeABxrv4NV//5btNcF4RxpXFbVB2i77N2tdHTh63PnxDkdEWhpfCpFxf6Uxtw/ufudz49hurHTasO6zOUSiujAu354KP5Iwstp0p3rc/fS11pI87Zes3l4LQGMkSjCssX8kQZUuJn3WX7FnTaCvewPb/B2JugJEk3IhOSfe0YmIHDSBwm5k5+Ttsc6VmsuO81+jPqcvN4T/zcRH72F7TZBQxKaq4fC7dXvSs4/QmU1Ehl6LsfQ1W0QOnL/PaVhXfwD+NLoXpJHevj/FoTX8ZcqyeIcmLZimm5GEkj3oDNas+ogLVjzCbyf8hY0lp/DDASl0yvbiL+607wOINDNn60IMcAyf0IVynJ7nUxMoxu80oA7+ItKafGUGsJjMjv3ZdO4zrH/qDK4ov5fT/phNanYRj+c8Baf+EbJbf/sdidpMmb2Ikzb+le3eIjoff0m8QxKRFmz3z9tOvY6A9ROZ/MFcBrTNYlzvgjhGJi2VLkVIQvG4LNJOvpMtaf24MfIwi9duJuulC0mdeC44TrzDE9nDok1VzJjxPgA9rI24I3W4ivrhG3EDZuTP4xydiEjz8LlddCrIxH/hE+BNYnzGk5xZ+Thp697EXvpavMM75EIRm48XLaN4ylVkmVoiZz+GcXvjHZaItBb5vQA4MXsb1z/3Ka8u3LJrUyhiUx0MU1kfoqIuRGV9KF5RSoJTjx9JODnpKWw64XekTjqNF3Mfpmj7WqiC2vWfkNJ+END0Ied1q24p8eM4Dne8vIifly2mwkojk2oArMI+BLzq6yMih5/84nZsH34Hnab9H53cTQORRrfMx6KpR8xXBoxuBWzbYeG0Z+k34yZ8ToglR95N365HxjssEWlN8nriGItf1/2BS73tOe+/t/CzZzNpSyn3uO+nk9lCCk3jq1mWwR78A6yT/xLnoCXRtL4WWFqF3B7HUFc4lKLtH1LrySHsuPjgxfFMWbKNNdtrWbujDifWAygUsakPReIcsRwObNshGI4Sjtp8sqGCBZsq6efdRGr/M4kkF+IYF2gmLxE5jGUc9X3q8wYSdKUy2+7G5qUf85uXF1K+4HWwW9fApA2hCI9OmkzP6dezmXxmjv0fPcdcjssy8Q5NRFqTQAZ1571A6ZBbaGtKeTXrXn7RcwfPpd5LN08pi3LG8X7exfwreho7vSWwfka8I5YEpB4/kpB8bhd1Q68j+aWPaRx6HdsWvknfymkc8+TpHOtbzT2Zk6g671G8Oe1Zs70Ox4Eehamt8mqiJAbHcZi+egdbtlficrt4ZfEOuvkr8UdqcIr70eDPwlW6EJ8nEO9QRUTixuN2U3X+C9RW7qDmrfEMLn2MmtlPkzd/PBHXI7j7ndNie/8Ew1FqghEaI1G21zQy6X8vcc3239HgTiVy3nMM7dQZn1s9PkXk4EvpMYqUHqOoaz+Y3Enf44pV1+IYN8ELJ3F01+MA+PM979PLfojja2fFN1hJSCr8SMJK6XUiq51XKOg+lMKULJLf+Ckv9f+UvGVPklNZyrP/upkJ0dO4wTeZYTlBGo/+Ee7+Z8Y7bGlFQpGmq9P1oQgTXpvOGYuuYbi1mQonhedDN3BhlwBsAFPQB/eA7xOK2vjiHLOISLxlZ2WRnpFJ+5Fj4JlHudU/CWyY9eaTrKruxwnJqygaMA5My+gZE47abK5oILh9Dc6qaVSsW4C1Yzm/Zil1vjxqz3yC3t26xTtMETkMJPcaS3XefILr5xDIbkNqh0G7th3ZMYvPPklipLUDIiHQWGOyGxV+JGF53RaZXYaS7PcSHXAuNYsnMWDZX3EwrE3uxzn1H3CCfyn+UAXOdheumfdB/zOpDoZJ83viHb60Apsq6qmqC/Gf19/lqm2/pa2rnAWdrqHd1jf4b/2fCVcU4WAweT3xui08rpbxR4yIyKFkjGn6PCzsB0CevZ0oFn0bZjP9zbsp8kwkFHgOb49xcY5034LhKBs2rif99Z/QfsdMAOocH1u97djY5gI4/he0Ly6Kc5QicjhJyy0mLbf4K+uP7JDNh3MymgZzqS2FjDbNHpskLhV+JKFlJTdVql1eP+WnPk7wwz8SScolqdfpuB4bRqZdzuSB41kz+zVu2DaJi/7+Cr/psRVPv+MIFHSNc/TSoq39kPZPnUMkGuXvhIm6XGw+6T9kdRpFee3V2B/eibdmA06n0QR8KUDTHzsiIhKTWogdyMZq2Ilz9A2kTv8bN3leAKDs/YcpSfDCT30owpolcyl67RIC4Ur+zkVEu51M/36DKMlOISXgIT/Np89+EUkIR3bMYpKTCUC4cjNOSjG27VAbioDt4HYZkrxuvB7dkno4UuFHWoyCrFTWH/NL0vwe8tJ8bB31Txp9mRzTfSRuXwDr4xc4p/zfdJ35PlXbTsK6+CkaI7Z6/8i30rD8HTzRMI9FxlHSoTvdjjmTNp164nO7sDPasPnE+ygLRWiTmRTvUEVEEpMxRIuHENm5Cu+Im7A/fgBXNMg8d3/6bJ3G4+/MIy+/iL6FSeSmJ+PzJMbXUsdxqA5GWDZnGj2mXUG94+HRDg9w9sknUZAewOe2sDSAs4gkmLxUP+6MIqiHaye8wUpnITe4X2CcNQe3aRq+IJpaBNd9Ch5/nKOV5mY+nxmpOQwePNiZO3dus51PWp9I1MZlGYwxlNeFsB2HnBQfOA6Rv/XAXbsVgEbHw6meh/hPm1fJOe7HeNodEefIJdFFojYO4HFZ2LbDor+MwVe3lanHv8zZA0vISPLg1xUSEZED0lhdRkNDkIz8ttS/cguhSJRIn4vIeWokvwlfyovR4byT+hsCfU4l9bS7qG2MkOKLXwGorjHCup11rJw/g1Gzvk+lSeOTEY8x9pihagNEJOEtWL6Sfs8M5oPON9Nr8wskN5axIHscy6o8lEQ2MsqeDtfMhlyNS9YaGWPmOY4z+Ou2tbwpFeSw5nZZu7pUZyV7m4o+AMYQ7jQGgFXtLsRnwvw9fCeFa1+k8aP7CUc15bt8s9CKqdQvmwrAPW+vIK9+Fa7CPlxzfGcK0v36wi8i8i340vJIzW0aZ8Ia9yc8J91FTudBNBQM5o7AJCZm/5u88GY88x7hvHteYesbf6Fh06KDcm7bdrDt/b/AGY7abF6/gi2T7+SYWVdRbyWz+bTnGTdcRR8RaRn6de2MY3k4NqOc7Ia1cMz1HHnNo3Dc7TzYMLrpSZUb4xukxIUKP9JqWEdfS+ngm2l78T8Jp7Wnp1lHyHHhrHiL0//6Gg0vXgs7V8c7TElQ3rduJemN6yirruf5D+ZTaMrp2GdYvMMSEWnxXLHbovweF8mx3jzhsx7D9mfRvW42K7JH4zdhfl91O13m/5m6V25jW1WQ7TWNHGjP9IZQlIZQFMdxWLezjs+2VrNuRx07axt3zdT4deoaI7wzewHZz5zCqG2PUOkvofLsiQzq10dTtItIy2EMTmoBzsq3APC3GQDAcd1y2ezkND2nakO8opM42mdfWmNMG+AJoACwgQmO4/zDGJMFPAe0B9YB5zmOU3HoQhX5Zr68LvhG3oLX66G+/6Uw+0EWdb+eQfPv4Nd1vyd72TIiucW4R90R71AlQTiOQ8R28IRrcVc0FQWnvfU/OjvrAXAV9olneCIirVZqbhu2nDUR92cv0nbUDTQ8cyFdN7xPhZNC1rbpnHz3f/h3wcvUj7ye5F5j9+uYUdthY9lOQo6LZJ+HwHu/wRuNUl0ykpo2w8Dtw+u2cFlNg/FbxsTG8wnz5LuLuXDVjSRZtTzZ9wkGDT2WznmpeFy6RioiLUxKAWbznKblgr4AtMtOJiW7mEidC/duPX4iURu3PucOC/tzE3UEuMlxnE+MManAPGPM28DlwFTHcf5sjLkNuA249dCFKrJvGUlNs4D5R9zA1n5XMijdh73kzxwZXgZA3aqZeIZHMBgCXl3BO9yFSldQV1fL9h3b+fxOZ2vxJE7J7wAVQIEKPyIih4IxhqIOPaguvBV/wEP9Cb9j5/SHKOt2EZmTT+a/3j+QubOK7W/sJND9BKx9/GFSH4qwcf1a2r18OlVRLzMbO3KGM5VGx03J8sepcQLMdg1gmb8/IU8qticV2/ISCgWJlq/lBvMKRVY5a0bcx5iBJ5AR8Or2LhFpkUxaIWwGOzkPKzV/1/pjuxeyZW4Wiz6azZ0fTebHvre4IGU+7hPvhM6j4hixNId9Fn4cx9kKbI0t1xhjlgLFwOnAcbGn/Qd4DxV+JEFYLovi7DQAQp3G4FnxKh+EezBoyzzOvfcNni55icApd0J6SZwjlXiyXr8Rf+lyJtaO4Zce+NjuwSgzk6A7SDS5AFdyTrxDFBFptYwxpAeaZt5MatOPxlP/To9kL41zjiBzy2zWuDrQsXY5N9/7L3oMO4m2WUn43Rapfg+ZSV4CXhdR22Htjlqee38+l627FdvswIOHM8xaZuWcxfT211FcOZu2299nUM0MRtXP+GogFtQkt2PtyAlkdx9OZrK3md8JEZGDx6QVAeDEevt87opj2hNe3obeTjV3+qYwtvxp7EYLZ/kbGBV+Wr0DmjbBGNMeGADMAvJjRSEcx9lqjMnbyz5XAVcBtG3b9jsFK/JtWCfeRWn/H9Nmw6ekzbiF79U8QsbKd4ks6IP72BviHZ40I8dxdg0OjuPgKl2Ip7Gay73TCPrySD36drKmXobZ/gHhTqPRtV4RkebzecHFHn4LlXOfouC0e2n45wAur3uc/76+iulOJkdZn3GRayrzrR7Mc/XHF6mhbXQDd1kL8FhRXuz8B5LbDaZvwyyKBlzKJX4/1cEuNIQuYKNts61uG1a4Fitcj4k2guUilFJMNDmfvLSAij4i0vKlFgBgFfbbY3VJZhJOp244a96nKLCS+XQjzWdot33FYfmdd4+/Cw4D+134McakAJOA6x3Hqd7fN8lxnAnABGiazv3bBCnyXXjT88hLycGdkwkz4EL3uwCsmTuFHcWX0CXdkJuTHecopTmU14XISvY2fchXrMNqrAagjbOVcPEYeg0/nXV57+Pa8gkFvY6Oc7QiIoenQI8TaGw3gqQkLzUjbqfntJ/zB88KAGwslqQeQ/f6JQyLLMDGojyphG1FZxMa9EPGdO6P40BFXS/aZSdhjCE31UfUdqgNRqhLbU/UdrAdB8cBYyDgsshI8pDkjd808iIiB01qIQCmqN9XNpn0NlC7DXf9Turzz2b1lk203b6iuSOMP8ehcfKNuPucibvTsfGOplnsVwtnjPHQVPR52nGcF2OrS40xhbHePoVA2aEKUuS7crssyOqE7cvAaqxkJxkUVs3nD48/ymPuu7CvmILVZnC8w5RDqaGS9AePoGHs3VS2G8v9Dz7NH4H1TgHtzDasov4AFHTsTV1xdzwpvriGKyJyOPt8zL7AUVexpP25uOp34Knbiu3PJKuoK2X1jWwJ1mC7k8FykeRzUZjmJyU2a9jnt5B9zmUZ0pM8pCd5vnIuEZFWpd3RhDuOxtN++Fe3ZbTBODZEG2nX/3g+3DQVd90HEKwGf1rzxxov5Wvwz3+U8ObZhH/0AZ7DYPbGfQ7hbZq69jwCLHUc557dNv0PuCy2fBkw+eCHJ3IQWRbR4iFEvalknnonqaaB37sexnIirHrvSUqrGthe0xjvKOUgs+1YR8ONs3DXl2J9/AD/mbGOosZVRHFRfsRNALhKBgFN0w1nq+gjIpIQ3C6LXiVZdOzUmcJex9ChWx+KMwJ0K8qgW7tierfJpE9JOp1yU3YVfUREDmsZbbC+9wIkZX11W3qbXYvFvUdQ0KlpIpMPZn7N+Get2frpAHi2L+a3942nqiEc54AOvf2Zu+1o4BJgpDFmfuznJODPwAnGmJXACbHHIgnNGXcXlWdPxOoyBoA2lBJxLFwrp/Db+8aT9mBv7PJ18Q1SDqqKip1EIlEi62cB4N86m5mzZ3Js6hac7C4MOOlKys96DmL/J0REJLEYY/C5XST73HtMr+52WYfV+AwiIvvLZe3lszGjaczdaHp7SM3nwpNHA/D6u++zfmddM0UXP/WNIaJRm7LF02jwZLDDSePc8MskHQazPe/PrF4fAXtrVTX8t7Qo3rxOpGd3AJdFJKMDVs0WqvpfTad5/+DnkfvxRXdQN+cpksfeEe9Q5WAI1ZE5YSBre16NveJdsjyFZIRLOS3yFl3stVAwAowhvfdY2FsDKSIiIiLSGnw+o3GbIwDw5nTCsdx0drZw8wsLefbKoVit9DtxzcbF+J47jxm+o+mw40PetbtSk96Nc+03sELVEMiId4iHlPrEymHHHbtaGB5+K8G6arL7jIV5/6DE7KDKSSI4578ERv8cy2URDEfxe1p/Bbg1sW3niwZr60KsxipS5j9Ksl3Da9ZxZJoqfuh+A4Jgxwa92+tVERERERGR1sLtIzj6j/g7xcb/cXmwMzsylh18tH4qT3+UziXH9oxvjIdA9Zq5JE08F6uxiuG1E8FA9KhrKBzxQ3DdDb6keId4yO3PrV4irZJ3wAUEhv0QMtsTyu1NMLsns7vcSH5kM1f+aTxnPjid7W//neiG2fEOVfaX47C9onLXQ3vzPADyne2kmCDnnXEWw298li3D7qS2w1isnqfFKVARERERkebnO/onUNh312OT05U2Oz/ice9f8Lzzy1Z3y1fNqpkEnjmT6oiHa1LuZZOTC0C7ASfgTUrDOgyKPqDCjxzGXJbZ1Zun8fznaLjgRUaffSVh4+NHntfI3/QWbWbfiTPj/jhHKvvLXvAcOeP7EK3aypItVXz68TS2k0kFTbMUmDZHEEjNwHf01dSf+QRktotzxCIiIiIizefLY6NZfc+lpuQ4ytuO4TwzlQefmfTF5CgtXLB0Ff6J51MaDnB28A7mh0pYPPRvBPtdBnm94h1es9KtXiJASnYx0PRBGDzqRo6Y/icGemc2bdy2KI6RyYGIrpqGJ1xD3Zwn+fXKY/hr1RKWuLqS3XkwKeXT8GS2B9CsXSIiIiIiAL3OwNP1VFKjtdT/rT/nl/2DJ2cew2VHd4x3ZN9NqA6eu5hgOMplkZ9zz1WnMqBtZmzj6XENLR7U40eEpoLP59Vv73H/x/a+V+NYHt6IDsFVuRYaa+IcoewPs+VTAJxPnmDl+o20N9sYPmIM3c/7HQ0//BA0+4uIiIiIyB78Hhf403GPvZOB1iqWTZnANf/9hGdnrSW4+FWwo/EO8YCFZozHX76Maxqv4fpzx+xW9Dk8qfAj8iU+jxvfSb9n7RWLeNd/AgYHe9uSeIcl36AxEuXZjz7DKl/JVm97Uuo3cof/eQBcJYPwuF2k+T1xjlJEREREJHF5B15Mbd5AbnU9w2drNrL01fvwv3AxrHgz3qEdmGiY8McPMT3ai45DT+fUfkXxjijuVPgR+Rppfg9dinMZefxIAObP/XDXtmC45VW8W7NN5bV8PH8xL7/+OhYO90bPZQu5nMvbOBgo6h/vEEVEREREEp9l4T/tHtKp4cXi/3K19TIA9vqP4xvXAaqY+wLJwVLeSjuLn5/UI97hJASN8SOyF8YYxhw5iOq3U1m1cCa3rH+fWwc6DLaW4T/26niHJ0BldQ0pr/yI4WtfB3fT1Ox333g12+t/xNpVM8hM9pAROLy7dYqIiIiI7C93yQDqjrmdzA9/DwYqnBS2zHmHuf6LOS/lEwIDLgArcfuP1JVvpfGd37PeyeecC36A1524sTYnFX5EvoHlsjAFfTiifBMTAP+7vyLTLIC+J+Okl7C5sgGXZShMD8Q71MNG1HYIR238HhdVT3+fdqVvs9NJY4Q1n2haG1zJOWQFHDzJJ+6atU1ERERERPZP8vE3UVv2GU6ogXkVKRxb+TJT3v4LAfcLkJ4HnUfHO8Sv5TRUEH38FNJDZTzX7V4ub6MLwJ9T4UdkHwJt+9O27BHuOwF6vroAgIn//TcLA0dwUvB1eqdUwUl3QnanOEd6eGgoW0VZVZDVm7dxQunb/CNyFnM9g3mCO7CLBuICXJYhI8kb71BFRERERFoeyyJw/qMAjF7+Kjz3PD9xTwYgvPwdPAla+Am+/w/SqldxlfkVfz3r/HiHk1BU+BHZB3ffc7Hn/JtuUy7ExsUOMmi/41362pPp6GzEa6JEF/XDddwt8Q71sOB76YcUl69ja2MJ9VaAC6/7M9fm5LFpbhsK23ePd3giIiIiIi2ey4rNhtvmSAD8hKl2ApTPe43goJ/TvSAtjtF9jYYKrDkTeC16BMNPOlsTu3yJCj8i+1I8kJ3D7yT3/dup73QS6dkdOGL2AwDcZP+Um30vkb1lPi6gPhShvC5Efpofj0v3kx5MjuNgGmtwly3EODZHW5Xs6P0D8vLyAcgdcDJu3dolIiIiInLwpOQRzWgP4SCb211Ij8/u5dgHXuEHJx5Nz6I07KhNsHQlnoYy2qS7ySnuSKCw+QdULnvnH+RF63g37zLuOrJds58/0anwI7IfUo66ig2uVHJ7jcBTvRFmP0BDdm+SS85n7qfzOHb9PJ78aC2B8sUcywIa2/fH0/eUeIfdapRWB3Fbhp0LptLVsfl75BwuLNhC+vHX73qOxvMRERERETn4oif/Hdu46JGSBZ/dyz9947HevJs7wldwsWsq57nf3/Vcx5MEt20AV/P1uLGjUcwnT/IhA7jp0rO/6K0ku6jwI7IfAj43WUdeSMDnhsxiqnt9D7v/JVyZ3ZlnP+3IKY0z+fD1p3nE81cs4xBZXgB9TibqgGWaZgiTb6eiLgTv3UVZRTlTV1bS0W3R6fRbCXUqwZ+VFO/wRERERERaNW+X45sWHIdoSiF9axcR8qXzsvVrDA7L2l/Cs5XdKaqaz1Xh56FyQ7OOf/rO268yxtnB2gE3adKdvVDhR2Q/pfhivy6WC079O+k+NxnG8LNLzoWnn+ahnOcJ1fi4P3wa/1c3kdpNi6lN7Uyy302q7jH9VhpCURqmj6fok3vIB7LdWUTy+nDqkK7xDk1ERERE5PBiDOELJ1HdGCUpPZvQy9dgFw+m+9hfMHDhVh5/NsxVvudh56pmK/zsrG1kx8fPEMLDkLEXN8s5WyINQiLyLaT5Pbt68XhL+jf9W72Ohs6n8J6vqSL+jwkPYT9xGtYr1wEQDEdxHCcu8bZU2xdPpWDmb1iVcTTbnEzyKMdqOzTeYYmIiIiIHJb8xb3I69iXlOxifJe9SNrYX4AxjOqexxZ3cdOTdq4Cmi7illXWsbW8mkgk+p3PXdsYoao+TNR2YsePcOvEOYxyZlLfdiTGn/6dz9FaqcePyHcVyCSa3g5X1XqSj7yUB8YNpuLhP3F1wytkl1cSrV6EE/obW6psclN96v2zD5GojdtlEazYSvabP2ZtNI/Tt13BxSlz+XnkX7g7Do93iCIiIiIihz2v+4t+JMk+N4N6dKZieQpvTXmXJ6ck8TPnaY418/ERJtz+eLj85W9/smA13vHHEwrkUlZ0DDtCbuo3zOeuyo/INjXYQy/57i+oFVPhR+QgiLY9iuhGN96Ow2lnWTR2H43v00dpcLwEIg38/G/3cWP6+9gdj4Zxd1AdDFNaFSQr2Ut2ii/e4SeMHbWNRG2H/DQ/DW/+hkBjFXel3cPDZx5HScY4tqwfQVH3sfEOU0REREREvuSG0V2p3dSOwVY5faxJdKxZzMuMoourlAHrP4BwEDz+AzpmxarZ+HI7Ys9/lpTKVVTU1FO4dSaFQIWTwtLAQDqPvZq8nicfmhfVSqjwI3IQWCf/jaraOrKtpqq3q9sY+PRRFvb5BX0/u5trGyeQU7aTcM1KoqNvY0tFHVRuoqbakN2l167jhKM2dux2MJcxuA+jKeGD4Sj1n75A2tYZOOf8E1ZOYaozmBsvPoPuhWkANKaPAevweU9ERERERFqKznkp2J37wOqp0FBPsO95VGX/jAlvPsF476dQtgSKBxGJ2kRsZ9+z8lZuIOPpsZQld6OhppIVTmd+5LmLYW39DCnxM7B7JwbmpWl23/2gwo/IQeD2J5Ph/WKGKXe3cWw4+1X6dx9GNPQphStepsYJkNqwnev/fC/XRJ+ki7Me2/ISum4RpOSxsqwG2/7imMk+Fx1zU+LwauJj5+Y1FH9wC65wLe+/0JURdgXJPcfsKvoA+Nz6UBcRERERSVRWTmdY+CwAST3GcUH7tkx6pyMAL77+BstSyhkVfIce3m34T/8rpOR+5RiO42A7sPWdByl2HPJrl4KB8PB7mT1qlGZM/hZ06VzkIHFZu30AGUNOt2H4PG5M77NwjMXUPnfTaHz8zr6PLs56HoqcgmWHaFw8ma2Vdfi3ziNj1UtkLn+OzOXP4l0yEUL18XtBzSgYipD2zs0YJ4pteei75G4ARpx4XpwjExERERGR/ZbdGQDH8kCHY0nzezj9+KOoIQl7ywJOW34rQ9Y9RNrKl2mc+RAA1cHwrt3DUZuNn77D7x98GN+ip3knOpBHA5dTnz+YLsd9T0Wfb0k9fkQOkSRv06+Xv/epLE+ex7i27Yg0vEnq6tfY0f5Untj6fUYHP2H72/9h49tvcq6Z9pVjhJMcPEf8oLlDb3bVy98nb9O7bD3yDjYtfI8hDR/RkNGFQHpJvEMTEREREZH9FSv8REqG4vE13b3wk+O7EF07gLN2zseqK+OxtB/RofJjun/0MBPme7neeZIVo+9jVrAtebP+zNiqifwawEDeqGs4etjpWJYB9f7/1lT4ETnEjGVRWNQGv8dF7aDLadyxlMbjf8sTSfmsf2EMx5X+h6Es4cOMM/gg40xKGyzmrq/g3ZQ7YPN8ACrqQpTVNNI+J6lV3u6UNOd+6t0Z/LPmWMqqGhji/QjTaWS8wxIRERERkQOR1Qnbl47V+8w9VpvCvlgbpuNYbs674kY+mvYqBYtu4ud1f8KNTcPky+nqFHCktYwXrHH42vTj2Lwg/Y49U2N8HgQq/Ig0g/RA0xTuge4nsDxjKF3yU/C4LIpO/QHWw4/TmNaOzDPu5ixfgHDU5oNHZ7PC6ki3bQsBKKtpJFJfTX2dgy897ZtO1eLYWxeTsmEafwufw3PzdzKgaARl+RVkHvnDeIcmIiIiIiIHwptE47WLCSSn7rHaKuwHQLjDaJIzCxh7xuVE1vwVIg282+t3HD3/FrKsjWwbfg+nH/N9XMYQdRwVfQ4SFX5EmpHLMrTPScITm60rUNyH7YNvorbNcXRvk7trFq9Lh7Vn1vtFdAu/w10vfMhZa35Fz4YFNLY9Fr7/chxfwcFnL5qEjYvJ3pNYfPtYAl4X5XXD8CR74x2aiIiIiIgcoEDK11yobjsUx/LiOuKKpscuN40Xv0jItji+pDs7+w8m4koir7Bd021dgIXG8zlYVPgRaWafj/0DgDFEht9Mlse9x9Tt3xvalvGzu+ANv07HRffQxXzCRl9XijfNgEgjuH1xiPzQqN64mHI7n3NG9CXgbbqNLUtFHxERERGR1iOrAw03rSFpt55AyUU9SY4tZ7ftGZ+4DhPqNyUSZ7kpPtKTPHusy0v186srLwTgHOs91nu78IfaU7CijUQ2fRKPMA+ZUOky1ppiLhvWPt6hiIiIiIjIIZL0pdu/pPmo8CMSZ7v39NlDdhdslx/j2Nh9zuNTugEQWjujGaM7dKK2Q3VdPdmNm7Fyu32l+CUiIiIiIiLfnQo/IonK5SaS0x3HWOQfdTGXjh7MaruQ5bPfZsHGSmqCYQDKqoOEInacgz0wkajN5ooG3p3xMR4TpUvPQfEOSUREREREpFVS4UckgUUGXkH5gJ+SlF3MNcd3pi5/MO3qF/HsrDVsqWggGI5SVlVLVX0o3qEekPLqOoJblrDw09kAtO3WP74BiYiIiIiItFIq/IgkMNeg7xE57he7Hnc74gSyTC2/XzSSyLOX8N+PVtD5hTF43ro1jlEeGMdxMNPvpcukE+hf827Typyu8Q1KRERERESklVLhRySB+dwuMnYb+8bb+3RKu1/KdPdQelW9R+dpV+KvWk3q8kkEG+oAsG1n121gicC2nT0eV9fVk7HkCQwOp7o+JpRcBL6UOEUnIiIiIiLSuqnwI5LgfG7XrmUTyKB21J9Iu+RJ6tI6c6xrEWudAlzhGirmv0bUdiitCVJW0xjHiPe0ubIBx/mi+BNa+BKehu0sNl0AMOrtIyIiIiIicsio8CPSwuQk+yjKTqX0+L9QlX8kN3p/zU7ScX02iTXba6nZsISkOQ/QGI7EO1Rs26GqIUx5XdMYROGoDXMeZoe3hCsarids+aCwT5yjFBERERERab1U+BFpYdKTPOSl+knrcjQbTn2eX11yIm84w0jfOJUJk14jd8qPKJz9R2rXzN5jv2A42lR4aQZl1UEA6nZupGTatews3UR5XYgli+aRW/EpE+qG0xjIY/Gpr+EacUuzxCQiIiIiInI4csc7ABH5drKTvdi2Q16an8pxN1L/1kz+UHYNXiLYxoVZ8Aw17YaQ7HWzpaqBirow+Wk+8tL8hzQux3HYXttIwOvCXvgCGasnY7sCbBp+FyveeoQ+juHMS2/g/zp1oa4xghXwHtJ4REREREREDmfq8SPSQhljdhVxhh8xhJ1nPovxJjOZ45hmDSNt1WQ2lFWwsqyWirowODaVtU0DQEeiNqHIoen9UxdsJH3pc+ysrMK97j0AMlc8x9JPPmRY7TusTx9C1y5d8botMpNV9BERERERETmUVPgRaQXcLgt3UT+WXzSb4In38XTjMbhDVfiWTSYUjpC19Em6PTects+Nob4xxJbKIKWx27Fs29lj8OVvq7YxguM4hJe8SsmHN+OfdR/+LR9T2vEsQp50zv3kEtpY20k54nu4LPOdzyciIiIiIiL7plu9RFqJkswAa6I2Y/tk4fdczOKXn6Xr9FtZPWsCxdEV1AaKSaldxabP3qMqZwiWHaIxzce2qiB+j4v8ND/hqI3LGKwDLMyEIjbrdtSR4nOTuXIKALmf/hMXNrct68QGZxjn+WZxakeLlH5nHoqXLyIiIiIiIl9DhR+RVsLtsuiYk4zbZXH6wLa8EX0O/7Sr6NiwlN+Zq3m14Simu68maekkMmr/jitYzuqzXieKi5pghGSfmy2VDST73BRnBKgPRfC4LDyur+8YGInabI0VjepDERwHahpClKyfSkWgHZkN64ngZsQJZ7Aj5KZ98WlUZiVRmJLazO+MiIiIiIjI4WufhR9jzKPAKUCZ4zi9Y+v6A+MBPxABfuI4zuy9HkREmoV7tyLNoO7tKc1/mdWhGgY3ePnvxAW87gzitBXP7npO6srJeGvW47i8rO13DQCN4dCuadhdliEnxUdlfQiv2yLZ5yYYjhKJOjTE/oUwnpoNdH77SjanD8Qd3Mnd5hIucr1F+6J8Lj++Nw2hKBsr6kn2uTFGt3mJiIiIiIg0l/3p8fM4cD/wxG7r7gZ+6zjOG8aYk2KPjzvo0YnIt5ad7KMmGKHeyqB/rpeHLxvEJ1NPhq0f8rY9iN5JlRR8eBseu2msn/rcgaSte4NwSgk7+l4FQCTqsK2qaXswbFPdENnjHCZcj+PyUTTjVwTKl9K5fCkRx+JjV3+GjP0eWR1zSAUCXhdd81MPylhCIiIiIiIisv/2WfhxHOcDY0z7L68G0mLL6cCWgxyXiHxHLsvQITuZhnCUZJ+bwvQA/Ut+wJr3bB5e1oGsso/5l/cfvO0awTDPctq/cTGW01TYiXpTSF/7Oo0Zndh2xC/w7/yMSFIe4ZQicGyscD3Znz1O/ry/EQlk46kv45XcH1G9dRXDuuQz7dIz2FIVJMW750eMevuIiIiIiIg0L7M/V+BjhZ9Xd7vVqwcwBTA0zQx2lOM46/ey71XAVQBt27YdtH791z5NRJrJsm3VpPjcVNWHWL1gBr+cBYPC83jAcx/PpF3Bmc5UMmtXYrv8WNEgUW8arlA1jrEIZnbHV7UaK9oIwM42Y9hWuo2KhiiXhW9jZM8ifnlyT9pmJxGK2Lgsoxm8REREREREDjFjzDzHcQZ/7bZvWfi5D3jfcZxJxpjzgKscxxm9r+MMHjzYmTt37gEFLyIHV3ldiIyAh4jtsKK0hlDEZvX2GpZuruCpOVsojm7mStdrPB84m9EpGxhZP4XVBeMoiG4lr3Yp2wMdWVGfyif1ubwZ7kdDyOakPoW0zU7i+G65dMxJITPZG++XKSIiIiIictg4FIWfKiDDcRzHNN27UeU4Tto3HQNU+BFJNDtrG8lM8hKMRFldVkc4arNmRy1bK4NMXVbGztpG6kJRyutCe+yX5nfTqygdn9vi5D6FDGiXSee8FMJRG8uol4+IiIiIiEhz+qbCz7edzn0LMAJ4DxgJrPyWxxGROMpO8QGQ5HXTNjuJ9ICHHoVprN5ey3lD2lAfilIbjFAdDFHXGOXzOnF+mp9kn4uSzKZbunyeptnE9jb1u4iIiIiIiMTH/kzn/gxNM3blGGM2Ab8GrgT+YYxxA0FiY/iISMuVHvAATTNwdS9Ixe2ycByHmsYIqb40wlGHusYIfo8Ll2XwuAzGGAJeV5wjFxERERERkb3Zn1m9LtzLpkEHORYRSRDuWM8dYwxp/qaCkNdt8Lo1do+IiIiIiEhLovsyRERERERERERaKRV+RERERERERERaKRV+RERERERERERaKRV+RERERERERERaKRV+RERERERERERaKRV+RERERERERERaKRV+RERERERERERaKRV+RERERERERERaKRV+RERERERERERaKRV+RERERERERERaKRV+RERERERERERaKeM4TvOdzJjtwPr9fHoOsOMQhiMHh/KU+JSjlkF5SnzKUcugPCU+5ahlUJ5aBuUp8SlHLUNryFM7x3Fyv25DsxZ+DoQxZq7jOIPjHYd8M+Up8SlHLYPylPiUo5ZBeUp8ylHLoDy1DMpT4lOOWobWnifd6iUiIiIiIiIi0kqp8CMiIiIiIiIi0kolcuFnQrwDkP2iPCU+5ahlUJ4Sn3LUMihPiU85ahmUp5ZBeUp8ylHL0KrzlLBj/IiIiIiIiIiIyHeTyD1+RERERERERETkOzgohR9jzDhjzHJjzCpjzG1f2nZtbNsSY8zde9n/d8aYhcaY+caYt4wxRbttuz123OXGmLF72f+nsec4xpic3danG2NeMcYsiJ3/+wfj9bZEe8uRMea52Ps+3xizzhgzfy/7Zxlj3jbGrIz9mxlbn22MedcYU2uMuf8bzt/BGDMrtv9zxhhvbL0xxtwXi2uhMWbgQX7pLUqi5im27bjY+ZcYY94/iC+7RUmAHO3t8+7i2O/QQmPMDGNMv4P4slucBM6T2qWYQ5ijE4wx84wxi2L/jtzL/mqX9kOi5im2Te1STALkSW3TPiRwjtQu7eYQ5umI3fZfYIw5cy/7q23ah0TNUWxb4rZLjuN8px/ABawGOgJeYAHQM7bteOAdwBd7nLeXY6TttnwdMD623DN2PB/QIXYe19fsPwBoD6wDcnZb/3PgrthyLlAOeL/ra25pP9+Uoy8972/Ar/ZyjLuB22LLt+32viYDxwBXA/d/QwwTgQtiy+OBH8eWTwLeAAwwFJgV7/dLefraPGUAnwFtY4+/9ne5tf8kSI729nl3FJAZWz5Rv0sJmye1S4c+RwOAothyb2DzXvZXu9Sy85SB2qVEypPappabI7VLzZOnJMAdWy4Eyj5//KX91Ta13BxlkMDt0sF484cBU3Z7fDtw+25vyugDPN7twL++fKzY4ynAsG/Y98sfZLcDD8Z+QToAqwAr3m96syf5G3K02zoDbAS67OUYy4HC2HIhsPxL2y9nL38ExY69Y7dfpF3xAA8BF37deQ63nwTP00+A38f7PYr3T7xz9KXn7fF596Vtmezli9/h8JPIeVK71Hw52u0YO4ldgPrSerVLLTtPapcSJE9feo7aphaWI7VLcclTB6CULxUV1Da1+BwldLt0MG71Ko69sZ/bFFsH0BUYHusK9b4xZsjeDmKM+YMxZiNwMfCr/Tj2/rgf6AFsARYBP3Mcxz6A/VuL/XkfhwOljuOs3Msx8h3H2QoQ+zfvAM6fDVQ6jhP5mvN/1xy3Jomcp65ApjHmvVg34ksP4LitSbxztL9+QNNVocNVIudJ7VKT5srR2cCnjuM0fmm92qX9k8h5Urv0hXjnaX8dzm1TIudI7dIXDmmejDFHGmOW0PQ+X73bZ9vn1DbtWyLnKKHbJfdBOIb5mnXObsfPpKk72hBgojGmoxMrie2xg+P8AviFMeZ24KfAr/dx7P0xFpgPjAQ6AW8bYz50HKf6AI7RGuzP+3gh8Ewczv9dc9yaJHKe3MAgYBQQAGYaYz52HGfFIYolUcU7R/tkjDmepi/Xx8QrhgSQyHlSu9TkkOfIGNMLuAsYc4DnV7v0hUTOk9qlL8Q7T/uz/+HeNiVyjtQufeGQ5slxnFlAL2NMD+A/xpg3HMcJ7uf51TY1SeQcJXS7dDB6/GwC2uz2uISmivHn2150mswGbCDHGPNYbNCj17/meP+lqVq9r2Pvj+/vdv5VwFqg+wHs31p84/tojHEDZwHP7bbuyzkqNcYUxrZ9fs/j/toBZMTO8+Xzf9cctyaJnqc3HcepcxxnB/AB0O8Ajt1axDtH38gY0xd4GDjdcZydB+u4LVAi50ntUpNDmiNjTAnwEnCp4zirv+b8apf2T6LnSe1Sk3jn6RupbQISO0dql77QLN8fHMdZCtTRNCbT7tQ27Vui5yhh26WDUfiZA3SJjW7tBS4A/hfb9jJN1WOMMV1pGoBph+M433ccp7/jOCfFtnXZ7XinActiy/8DLjDG+IwxHYAuwOwDiG0DTRU3jDH5QDdgzYG/xBbvm3IEMBpY5jjOps9XfDlHsedfFlu+DJi8vyeP9fB6Fzjna/b/H3CpaTIUqPq8691hKJHzNJmm2zbdxpgk4Ehg6QG9utYhrjn6JsaYtsCLwCWJcmUhjhI2T6hd+twhy5ExJgN4jaZ7/qd/3cnVLu23RM6T2qUvxDVP30Rt0y4JmyPULu3uUOapw+fFAmNMO5re53W7n1xt035J5BwldrvkHJxBlk4CVtA0wvYvdlvvBZ4CFgOfACP3sv+k2HMWAq8Axbtt+0XsuMuBE/ey/3U0VdgiNFXcHo6tLwLeoukevcXA9w7G622JP3vLUWzb4zTdw/hN+2cDU4GVsX+zdtu2jqYZAGpjefi6kdU70lS0WwU8zxczvRnggVhci4DB8X6vlKev5im27WaaRqpfDFwf7/fqMM7R3j7vHgYqaOquPR+YG+/3SnlSuxSPHAF30HSVbv5uP1+ZWWNvn3eoXWoReYptU7uUOHlS29Ryc6R2qXnydAmwJJafT4Az9rK/2qYWmqPYtoRtl0wsQBERERERERERaWUOxq1eIiIiIiIiIiKSgFT4ERERERERERFppVT4ERERERERERFppVT4ERERERERERFppVT4ERERERERERFppVT4ERERERERERFppVT4ERERERERERFppVT4ERERERERERFppf4fnKI9blWvvG0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -2452,12 +2759,12 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 63, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAE/CAYAAADc0KMkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADa0klEQVR4nOzdd3hkZ3X48e87vc9o1LtW2t6rd3Hv2MammV5CQg+QAD8SQhKSkAAJhECoIRA6tukGjHvv3rW3d22TdtV7mdFo+v39ce+MRlppV2tLq3Y+z+PHU+6deUdazb33vOc9R2mahhBCCCGEEEIIIYRYmEwzPQAhhBBCCCGEEEIIMXMkOCSEEEIIIYQQQgixgElwSAghhBBCCCGEEGIBk+CQEEIIIYQQQgghxAImwSEhhBBCCCGEEEKIBUyCQ0IIIYQQQgghhBALmASHhBBCCDHrKKXeqZR6eKbHMZWUUj9RSn3hZe57mVLquFIqrJR6/RQP7Vzve4VSqv5ivZ8QQgghZoYEh4QQQogFTinVqJQaNgIPHUqpHyulPK/g9T6nlLrjlYxJ07Q7NU278ZW8xjzzb8C3NU3zaJr2h+l6E6WUppRanLmvadozmqYtm673E0IIIcTsIMEhIYQQQgDcpmmaB9gIbAE+O1MDUUpZXsG+Sik1H89vqoFDMz0IIYQQQsxP8/HkSQghhBAvk6ZpLcADwGoApdRrlVKHlFL9SqknlVIrMtsqpf5OKdWilAoppeqVUtcppW4C/gF4q5GJtM/Y1q+U+qFSqs3Y5wtKKbPx3J8rpZ5TSv23UqoX+Jzx2LM573WpUuolpdSA8f9Lc557Uin1RaXUc0AEqB37ucYbq/H4JUqpF4zP16aU+rZSypazn6aU+oixpCuklPq8UqrO2GdQKfXrzPZKqauVUs1KqX9QSnUbGVnvnOhnrZS6VSm113jv55VSayfY7qTxmf5k/Eztxmtfn7NNNltLKVVjjPs9Sqkzxlj+MWdbszHGk8Zn2qWUqlRKPW1sss94n7dmPlPOviuMn3e/8e/itTnP/UQp9R2l1H3G6+5QStUZzynj99tp/A73K6VWT/SzEUIIIcTFJcEhIYQQQmQppSqBW4A9SqmlwC+ATwCFwP3oAQqbUmoZ8DFgi6ZpXuDVQKOmaQ8C/w78ylgCtc546Z8CSWAxsAG4EXh/zltvBU4BRcAXx4wpCNwHfBPIB74G3KeUys/Z7N3ABwEvcHrM/uOO1Xg6BXwSKABeBVwHfGTMj+UmYBOwDfg08H3gnUAlehDt7TnblhivVQ68B/i+8f6jKKU2Aj8CPmR8pu8B9yil7GO31TStDjiDkd2laVps7DYTuBxYZnymf84J7P0/Y8y3AD7gvUBE07QrjefXGe/zqzFjtgJ/Ah5G/z39FXDnmM/3duBfgTzgBCO/yxuBK4GlQAB4K9Azyc8hhBBCiGkmwSEhhBBCAPxBKdUPPAs8hR7geStwn6Zpj2ialgD+C3ACl6IHVezASqWUVdO0Rk3TTo73wkqpYuBm4BOapg1pmtYJ/DfwtpzNWjVN+5amaUlN04bHvMRrgOOapv3ceP4XwFHgtpxtfqJp2iHj+cSY/Sccq6ZpuzRN227s14gepLlqzP5f1jRtUNO0Q8BB4GFN005pmjaAnmW1Ycz2/6RpWkzTtKfQg1pvGefH8gHge5qm7dA0LaVp2k+BGHoAaqr8q6Zpw5qm7QP2AZlA3fuBz2qaVq/p9mmaNplAzTbAA3xJ07S4pmmPA/cyOjh2t6ZpL2qalgTuBNYbjyfQA3fLAaVp2hFN09pe8ScUQgghxJSQ4JAQQgghAF6vaVpA07RqTdM+YgRoysjJwtE0LQ00AeWapp1Azyj6HNCplPqlUqpsgteuBqxAm7EcqR89CFOUs03TOcY2ahyG0+jZOefd/1xjVUotVUrdq5RqV0oNogfFCsa8REfO7eFx7ucW7+7TNG1ozDjH+7lUA5/K/DyMn0nlBNu+XO05tyM546wExg3knUcZ0GT8O8gY+3sY9z2NQNK3ge8AHUqp7yulfC9jDEIIIYSYBhIcEkIIIcREWtGDGIBeNwY9sNACoGnaXZqmXW5sowFfNjbVxrxOE3pWTIERgApomubTNG1VzjZj95lwHIaqzDgmsf+5xvpd9CykJZqm+dDrJalzvdZ55Cml3GPG2TrOdk3AF3N+HgFN01xGVtRkDAGunPslFzDGJqDuArbPaAUq1eiC32N/DxPSNO2bmqZtAlahLy/725cxBiGEEEJMAwkOCSGEEGIivwZeo/RC01bgU+hBnueVUsuUUtcaNXKi6Bk0KWO/DqAmE0Qwlg89DHxVKeVTSpmMos5jl29N5H5gqVLqHUopi1LqrcBK9CVN53WesXqBQSCslFoO/OUkx3Qu/2rUZboCuBX4zTjb/B/wYaXUVqNYs1sp9RqllHeS77EXeJtSyqqU2gy86QLG9wPg80qpJcZ7r82p39TBOAW9DTvQg1KfNt73avSlfb883xsqpbYYn9VqvEaUkd+BEEIIIWaYBIeEEEIIMS5N0+qBdwHfArrRAwG3aZoWR6/h8yXj8Xb0JWL/YOyaCYb0KKV2G7f/DLABh4E+4LdA6STH0YMeZPkUehHjTwO3aprWPcmPcq6x/g3wDiCEHrD51XgvcAHa0T9fK3rNnQ9rmnZ07Eaapu1Erzv0bWP7E8CfX8D7/BN69k8fegHouy5g36+hB/4eRg+M/RC9lhToS+9+aix1G1Uryfi9vxa9flQ38D/An433+cbhQ//59qEvRetBr2ElhBBCiFlAado5s7CFEEIIIcQkGJk0d2iaVjHDQxFCCCGEuCCSOSSEEEIIIYQQQgixgElwSAghhBBCCCGEEGIBk2VlQgghhBBCCCGEEAuYZA4JIYQQQgghhBBCLGASHBJCCCGEEEIIIYRYwCwzPYDxFBQUaDU1NTM9DCGEEEIIIYQQQoh5Y9euXd2aphWOfXxWBodqamrYuXPnTA9DCCGEEEIIIYQQYt5QSp0e7/HzLitTSlUqpZ5QSh1RSh1SSn3cePzzSqn9Sqm9SqmHlVJlE+x/k1KqXil1Qin1mVf2MYQQQgghhBBCCCHEVJpMzaEk8ClN01YA24CPKqVWAl/RNG2tpmnrgXuBfx67o1LKDHwHuBlYCbzd2FcIIYQQQgghhBBCzALnDQ5pmtamadpu43YIOAKUa5o2mLOZG9DG2f0S4ISmaac0TYsDvwRe98qHLYQQQgghhBBCCCGmwgXVHFJK1QAbgB3G/S8CfwYMANeMs0s50JRzvxnY+nIGKoQQQgghhBBCCCGm3qRb2SulPMDvgE9ksoY0TftHTdMqgTuBj4232ziPjZdhhFLqg0qpnUqpnV1dXZMdlhBCCCGEEEIIIYR4BSYVHFJKWdEDQ3dqmnb3OJvcBdw+zuPNQGXO/Qqgdbz30DTt+5qmbdY0bXNh4Vld1YQQQgghhBBCCCHENJhMtzIF/BA4omna13IeX5Kz2WuBo+Ps/hKwRCm1SCllA94G3PPKhiyEEEIIIYQQQgghpspkag5dBrwbOKCU2ms89g/A+5RSy4A0cBr4MIDR0v4HmqbdomlaUin1MeAhwAz8SNO0Q1P8GYQQQgghhBBCCCHEy3Te4JCmac8yfu2g+yfYvhW4Jef+/RNtK4QQQgghhBBCCCFm1qQLUgshhBBCCCGEEEKI+UeCQ0IIIRa0Rw61s6+5b6aHIYQQQgghxIyR4JAQQogF7VuPH+dXL56Z6WEIIYQQQggxYyZTkFoIIYSYtw63DdI7FCeRSmM1y5yJEEIIIYRYeOQsWAghxII1GE2QTENzf5R4Mj3TwxFCCCGEEGJGSHBICCHEgnWguT97eziRpLV/mERKgkRCCCGEEGJhkeCQEEKIBeu5E93Z2y39w/zgmVM8d7z7HHsIIYQQQggx/0hwSAghxIL19LGu7O2GrgjxVJoHDrahadoMjkoIIYQQQoiLSwpSCyGEWLBOdoWzt4+09XPP3hbKAi6G4ik8djlECiGEEEKIhUEyh4QQQixYw4mRDKGnjnUzGE1R3x7ieEdIClQLIYQQQogFQ6ZFhRBCLEixZGrU/aPtehaRBnz14XocVgufvH4Jq8r9MzA6IYQQQgghLh7JHBJCCLEgne6JTPhc52CUt22p4MfPN168AQkhhBBCCDFDJDgkhBBiQTrWHgLAZT37UNjYE+FvfrOftv4ITb0TB5GEEEIIIYSYDyQ4JIQQYkE60NwPQF2R56zn4imN/uEEO0718ssXz1zkkQkhhBBCCHFxSXBICCHEtNI0jSeOdsz0MM5y1MgcWlrsxWw8ZjMrbGaV3SapwYuNvUQTqXFeQQghhBBCiPlBgkNCCCGm1fZTPfzlnbvpH4rP9FBGOdk1CEBtgZugxwpAZdDF1tog+W4bHrseMtpzpo9kWpvwdYQQQgghhJjrJDgkhBBiWv33I8eIJtLcu791pocySnc4AUBF0MXSEh8AWxcF+YvLallR6qUyzwVAMg2ReHLGximEEEIIIcR0k+DQLLP9ZA9pmaEWQswju8/0AfB/z5wiNYu+36JJfSyVeU7+/qblWEyKG1cWc1ldPlX5bj5z0/LsErPDrYMzOVQhhBBCCCGmlQSHZpmvPFxP+0B0pochhBBToqF7iGRav93UN0xPODazAzJo2kiQqsTvZHmpjyVFHvK9DuxWMx+8opbSPCd5LhsAoWhipoYqhBBCCCHEtJPg0CySTKU52DJAZ0iCQ0KI+eG/HjqavZ3W4GRXeAZHM2IwOrJMzOOwYDGb+Mg1i8k3gkE1BW6WFnupLdQ7mQ3FpCC1EEIIIYSYvyQ4NAuk0hrJVJojbSFiyTR7jCUYQggx20TiSZr7IpPe/sljnaPuP3yobaqH9LJ0GxlMNhNYTfqh8MolhQQ9tlHbFfvsAIRiUnNICCGEEELMXxIcmmFP1Xdy67eeoakvwv8+dQKAu3aclrpDQohZ6R9/f4BP/XovyVR6UtsPxfTtnFb9cPP0sa5pG9uF6A7pwSGf04LFqCvkd1lxWM2jtvM4LAAMRGRZmRBCCCGEmL8kODSDTnaF+f7Tp+gcjNLSN8zOxh4ATvdGiCUnd+ElhBAXyz/+/gDPHOviQMsAzx4/f5CnY3Bkiez6Cr/x2OyoOdRlZA7lex1YTGrC7dw2PTgUlswhIYQQQggxj0lwaAY1dA9xqLWfnqEEf9jTQldIn5mOpyCaSHGkTbrjCCFmjxdOdhNPaSRSGv/1cP15MxwbuocAcJgV79haDUB0lgS+O43AVaHHjlITB4dc2eCQZA4JIYQQQoj5S4JDM+hbjx6jf1gvcvrw4XZyL5l2n+7lU7/ex6mu0MwMTgghxmjpjxCOJUmkNI51hOmLxM+5fdvAMKBn5ywq0As7z5LYEM29+tgKvY5zbue268vMhuNSkFoIIYQQQsxfEhyaQftbRjKDBqOjLzx+tv00b9xQxveebrjg+kOptEYkLksghBBTJ55ME0vqHccA4imNUPTc3zMnOvTOZEuL3BR6Rwo957aRnykN3XrgvchrP+d2TpseHIpItzIhhBBCCDGPSXBohmiaxrkujw63DPCF+4/SOTDMUWN52YMH2zjZef5MoqePdfHfjxybdMFYIYQ4nyfq9a5jdsvIYeNM79A599lzpheAiqALj8OafXym6+0nUmmOtuvfq5luZBPJ1BwajJ47S2o63bH9NKmZ/qEJIYQQQoh5TYJDM2QoZ4lCwGE+6/muIb2+xTPHu/nGY8c50xvhpcY+vvzg0WyXnYk8fbyTQ62DDMlMtxBiinQa3zuX1eWzrTYIwL37zt2W/niHHjyqCrpHdQFLpS9+4Prxox3Z25+75xADw3rWU6nfec79XEbm0ODwzGRjHmju5z/uP0LHQHTc5+/YfprO0PjPCSGEEEIIMVkSHJohvWF9FtoE2HMumoJu66jtkhp0h2N8/Bd7eOZYJ2al+NyfDhFLTBz4uXtXCy+c7KFLLhiEEFNkcFgPWNd3hLPLyc4XlOg1ahJVBZ2YczqCDZ/j+2usQy39vNjQc6HDBchmT/7qpTP88JkGesMxYskUGhqRhJ6JU+I/X80ho5X98Mx0WfvRsw1E4ilOdo9kjXaGouw41cPPXmikpX+Ybz9+YkbGJoQQQggh5g8JDs2QzEWT32mmIs+VffySmmD2ttX47ew+08+iQifHOod46FAHqVSa7z99Klu341DrQHbJQXc4xkA0iQY8eLA9+1oPHmy74NpFQgiR0Tekf2eV+OwkjKrSfUPnDpikjK+cynzXqMcvpH7Pv953mK89/PKWyf7zPYf4/J8Ocbh1kIbuMM+d6OZYe5g/7G7JbnO+ZWWZmkND56mvNB0GowkePdqJBvzo6Ybs43fvbqErHOVUV5gnjnSwq7GXlr7IRR+fEEIIIYSYPyQ4NEN6jYuqgMvO1cuKso9vWRTE57BQ5LWxuMgLgAbcvVtfvpEGHjrcwYGWfp442smZngg/fLaBL9x3mHRa47e7mrOvde+BFuLJNJ2DUT5/7xHa+ocv2ucTQswvHYP698eG6gDvvbwGgL7IxO3dc7t7FRsdwSxG8tDQBRTM39XQx87TvcQvMDjUH4mzv6mfox0hHjjQRutAjPsOtPLHPc1EEvprmU3gdVjP+TqZmkMzsUp3+4nubJbW7jN92QD/8Y4Qf9jTytPHujjaEeZYR4gfP984qdfcc6ZvuoYrhBBCCCHmMMtMD2Ch6jVqCuW5bdy8poSvPnIMgLpCD2/eXEHHYIxXryzmu0+e5HD76CLUaU0vOu2wmklr0BWKYjW5+bvf7ee5E13Z7U50DhGOJrh3fxsKjWOdIcqDLv7j/iN84volOG3y6xdCTE6rUfOmwG2nKt8NQPgcRZozbezNamTprMOmCMe0SddD6w7H9OwjDQaGE7gm+M76v6dPcdu6slFLxO7d38bB1kGsJkXCCKo8Vd+F01gmFnBZ2VoTxGo+9xxJpuZQUtMbCSilzrn9VPrNzqbs7YFYimgyhctm4b4DbcQS6WxTg0Qanj3exXA8hcNqon0wit9pPevnNRxP8eUHj3L10kLeuqWKn73QyHAixTu2VlEVdF+0zyWEEEIIIWYfyRyaIT1h/UIr6LFRV+jBZTVhNUNtvpt8j51UWqPAa6cy30WBUYdoTZmPG1cWAxBNauxv6sOqYEdDH/fsa2V5iYeunGLVyTT89PkGHjvSTnN/lCeOdtLaP0w4luRvf7uf0PDEs/5CCJGrc1D/zspz27JBh+Hk+EtVm3oj/M8TxwHw2M1YzXpAxWvXv8uGYpPLHDrdM9IN7VRnOHs7s6Q240RnmJ+90DjqsR8+cxIgGxjKjDcTmL9pVQkry3xYTOcO9mRqDsHF77L21PGuUfeHYil6wjGiOYGhTGzruJFB9FJjHz9+roHvPH6Cz91ziKbekeVmDx5s40jrALtP9/GNx46zrsJPKq1xx/Onz/qZCiGEEEKIhUWCQxfJ2HoZnSF9xj3fbUcpxRs3VXDDyhI8TiuX1uZz9bJClpf4eM2aUq5aVsQb1pexpNiLAqry9Nnx071Rfm90CxpOpPmvh4+RGLPyYkdDLy+c0ttJ37u/lSfrO3myvhM0jR891yAXBEKISek36qTluWy4jWyaxATBoU/8cg/3GN9N+R47VpN+qPEbS7jCkwwOneoaCQ7Vd+gZlMPxFB+9a3f2uysST/L7Pc08eriDYWO5WiiaoKFHz1yqCrpG1XLLcFrNLCpwY5lk5hBAepq+L1v6h7lzx+lRj6XTGvExCVbHOwbZbSwLy3dZ+djVdVy5RF+WnNLgt7uaePRIO3kuG0c7BvE6LHz90ZF6TT99voGBaIpnTnRzvDPE+3+2kx8808Af97UQHXvwEEIIIYQQC4oEhy6CoViSv797P9GcDj3NvfpFT6Y72caqPGqCbmwWE+ur8rh5TSl5bhu3rCmlwGOndSDKq1eXcPWyQtaU52EzK8ZepgwbJ/d2C5QH9ADSvub+7Gx3XyTJPXubaemP8uChdh470k5okhdpQoiFLRM8CLis2SLNmaVWYzV2D2Gz6IeXijwnJiM7x++2ARAZG/WYwIunurO39zb1A/DgoTZeauhlz2k9SPL73S3EUxrHOsM8Ud8JwDcfG+ne9fnXreKKJQXkxHhwWOCm1SVctXSk3ttE7JaRw2T0ArqsncsHfrZTD9IbXjjZw/0H2kZlc7YYNeJMQMCpZy89Ud/JLuNzLy3xUV3gpqbAhceuf7iHDnWwt6mPLz9Yz2NHuvjeUyfZebqXxu4hGruH2Ns8COjHiudP9JBM6zXtOkLxbGBNCCGEEEIsTBIcugha+yLcf6At2woaoKFbXyJR6NE75dyyppQrlhZgM2axfcYMu8Vs4sNX1fH2Sypx28zcsraMleU+bl5dQmY1xBvWl7G4cKReRFWem83GTPlwYuTCTQNebOgH9CVnh1pDnOoaWaohhBATySSWBJy2UbVsxi61iiZS9EQShI26QjUFI99NHmOJ1mSXlW0/NdLCfu9pPQPyh8+coisc53+f1peN5Rbh/95Tp/jKg0c50toPgN9h5je7mmkfjLKsxJfdblGBl+UlPvyucxejBkbVGLqQLmsTGRhO8FJDD9989Fg22PTY4XaOdYS4O6eL2sHWAQB8TgvLS/WxP1Hfxa7GnuzrPHCwjdesKWGF8Xx3OJb9jgeIpzRO9wzz0xca+dbjx0eNQwPMOZ/thBwLhBBCCCEWNAkOXQT//sBhhuJpjnWOFJZuNWaFM118HFYzdUWebG2OXHluGyvLfCwr8eJ3Wnn3q6op9jt419Zq3ntZDe2DMV6/vpzvvWsTb99SyZu3VPDhq+rwO84u3pq7cCClwS92nJGlZUKISfM7LedcatU5OFL3zGJS3LSqJHvfYwS9I5PMUmntH3mtloEYXaEYB1v179En67to6YtwoLk/u82RtkFWlPp47qQeSFpW4uNvblzKh6+q46bVI+NYWebDYZv84S/zTRqeguyabz12jP7hJPuaB7LB+QcPddAVivPHfc3EjIDRzgb9M9Tku7msLh+A5t5hDrfpn/+m1SV85U3rWF+ZxyevXwKMBOqcFhO3rS3FZhxPHj3Swb4z+usVe+0Uee0EXFY+99qVLCvWg3dP1uv1jaKJFJ/69V7+5jd7OdYxcsw62RXm93ua5XghhBBCCDFPSXDoIniiXp/p/eajx3PqZOj/L/TZs9sVeR0TdsJZWuyj0Agk+RxW3rW1Gg041T3En19WTXP/ME8e6+RMb4QlRV6WFHnYUJWX3T+zLAHAYTGxvMQDwNPHuyZd/0MIsTDFkyNhZY/DMmqpVWzMUqvBqJ4h6bAoKoNOKvJc2ecyQaXIJJZnaZpG7lYpDb70wJGRMaU0fvJ8I7llj+Ipjb/5zb7skttb1pRSGnBSGXRxw4ri7HbrKvzYLTnrzM7Doa+Gm5Lvyl+/qHcgS2nw7cdP0NAVzo73UMsAP36uEYCXGvTjxuJiD5cvLgAgmkwzFNd/F8tKvOR77FjMJl5VV4A7J9i1pNjL1kX5vHtbNQBtAzFOdOsTEoVeO9evKOKzt6zkpcY+vRsc8JSxzO2pY13EkykOtgzwvSdPkE5rRBMpvv3YMe7afkaWIgshhBBCzFPSy/wi2t/cx3BCb0WcudTK99jPuc9EKvJcvG1LJU29QwScNj5x3WJ2nu7j+hXFBFw2LGYTVy0rRCnoGYpT7HXwyJEOAGoKXNllIW0DMWLJNN6p+IBCiHkpFB1ZEms2mUYvtYqnshlBMBIcKvE7WFnqw5GTZeQwWtoPRc8fHOoOx896rLUvMup+ZkmZ1aQHngaiKaJGIKu2wMWGqkA2CFRX5MVignQa1lT6z/v+ubwOG+F4nKHoKwuMhKIJBnPqLT13oovhnEBZLAVPHetkY3WAeqM727ISL8tKfWe91tJCT/a2Uop1lXk8f1IPKN2wsojBaILmvuFR+9jMivddvoidp3t59Eg7b95cQU2Bi28+doLjHSGiiRS/29XMw4f1Y0VLf5R/jib54bOneOJoF/3RJNFEKrvsWQghhBBCzB/nzRxSSlUqpZ5QSh1RSh1SSn3cePwrSqmjSqn9SqnfK6UCE+zfqJQ6oJTaq5TaOcXjn1OiSb0VcSKnc1mey/ayXstkUiwr8VKV72ZFmY+SgIsrlhSxpMhDdVCfqX/rlkoKvXYuX1zA1UsLsvtes7yINeUjF0e94dhZry+EEBkhIyhiM4HZKHaWCfmMrR+U2TYcS6GUyravB71DGEAkcf4gS6aNvceqcBnTGC806MWYM5lLfRE9EFVb6OX6lSWUGJmYHruZK5cWUuJzZF/PbFK8dn0Zm2uClPqck/vghqBRSHvwFQaH/rBHD2ZlEq8Goil2G7WUMvY29fPQoXZiRkrU4kIvLpuFEu/IscLCSHHvjA9fXQdAmc/OmooAb95cyWdvXUlRzn5bFgWpLXTzmZtX8OeXLWJTdZDXrisHIJ7Wu1s+akwigP67/Ooj9TR0hek3PvuOk90IIYQQQoj5ZzLLypLApzRNWwFsAz6qlFoJPAKs1jRtLXAM+PtzvMY1mqat1zRt8yse8RyTuxwDYPfpXvoiIzPiucszLpTFbGJlmT87i+t3WanKdxM0spFcNgsfvqqONeV+rlxWhAJMCrbUBPnUjcsIOPX9MrPNQggxnkw2kNNmzhYxzsR8xi61yhTer8538ckblmY7m0HOsrJJdCtr6NaDQ0UBF5X5nlHPffDKReSWZ9tUncefvaqGbbX5vOOSSrbUBLlqaSH+McH361aUsLEqgNN2YUmzeW79O3UoljjPluf20+cbjPEGcVn1DzBgZFFV5ukBq+FEmu0nRr6TlxTpNYGuyOmsVuK3n3XsuGJxAZur83jDxgoq8pwUeu1UBl3cskavPbS1JshNq0oo9TvxOqxsq80n4LKxKKdg+A+ePplTt0gf3/6mPv50oD27zVPHRgeHOkNRDjYPvPwfihBCCCGEmBXOG5nQNK1N07Tdxu0QcAQo1zTtYU3TMlcF24GK6Rvm3NUfGb004gv3HeEXO84A4LKAZZwC1FOpIs9FZdBFqd/Ba9aUcMXifIq8DnxOK6VGu/tMy2QhhMhIpTXu398KjGQDeezWbFt6t00PvEyUOZTnslFXODqok1lWNrZO0XjO9OpLyCoCTrbW6gWZzQpWlnq5bV05168s5m1bKllc6ObWtaWsqwxw9bJC+iIJ3rihgrpCT/b9Ml69sphrVxSNKqg9GV6juH94Et3KUmltwqLNp3v071oFLC8dvbTtY1cvpjJP/04+1K4XgrabR4p4f/Sauuy21YUebGOCQ0opPnRVLavL/JT4RzKj/vq6JWyqDrK81EdNgZu8MRlHZpOi2Kc/tt8o7l3ss7PJ6Hi5t3lw1PYvnOwe9fl+9WITX3v0GKeNYJ4QQgghhJibLihtRSlVA2wAdox56r3AAxPspgEPK6V2KaU+eMEjnOMyyx4yQsMJ9jb1A5DncWAxTW9NcJvFxOpyPxaziXWVeSwu9lLk1WfBM+3um8fU8RBCiGMdg3z8V3s53T2UzQbyO0eWiHmdeoBlbMAkExzy2s/OzslkEQ1PIjjUZASHqvJd/NU1i3nL5gpuWVPKR65eTKHHzrXLi4jEk1y+pJCygB4Mee26cv76uiWUBByU5xTCzrCYTaytCGA1X9j3rttIkwpHz5859N+PHONHzzaM+1zCSCR946Zyrl1WSK2RteN3WrikLsiKMj/2nAmDMr8zWzOppsBDqRHEqSt0j/sZttbmU1XgwpPzsw+67Vy9rJBttUFWlHjH3W9jlX4syGQxlfmdZy15LvXrx422Qb1OHUA6rXH/gRYOtw3wxfuPMDwF3dyEEEIIIcTMmPQZslLKA/wO+ISmaYM5j/8j+tKzOyfY9TJN0zYCN6MvSbtygtf/oFJqp1JqZ1dX16Q/wGw3NnOoP5pkxyl9yUCey5at33Ex3L6xgquWFuIzLvBWluhFTs90hy/aGIQQc8PjRzpJpzU+dMcuBrLBoZGgg89pZA6NCQhklqB5nWcXLc5k7EymsPPxTn2pUkWei0Kfg33NAywv8RFwWfE6LNy+sYIPX7WYq5cVEnDp72UyKZYVe1lXEZjwu3VsNtFkuI1xT6ZT1927m3n2ZBfp9Ojsodwlxhur8nj/lXWUB5wsLnRz9bIi8lw2/t/1S9lUE8Rj199vaalvVIbQP96ykjynhdesKR33vX0OKyvHKV79ti1VrCrzUeB1jLMX/NNrVuDIeZ83bCzjMzcvx2EsLVtc6Oa1a/XaRGmNbBDo+ZM9HGkfon0gxpmeIb7/9ClpdS+EEEIIMUdNqvCCUsqKHhi6U9O0u3Mefw9wK3CdNsEZoaZprcb/O5VSvwcuAZ4eZ7vvA98H2Lx587w5u8xkDi0qcNE1GCUcTxMxpo9XjHMSP53y3FaWFHuzF0eFRgZR20D0oo5DCDH7PFnfyZpyf7aD4j37WkhpcKZniGeP6wH73Bo+mSyi0Jhsms5BfenUeB2tsgWpJ5Fh0mwswSo3soK++PrVFHntBNx6N0aAlWU+lqQ8WHICQSaTwjbFQXeXkYkzdJ5lZclUmtaBKJ2DURLpNHbTSCCqM6R/z5qAIp8Dh9XMZ25ezkfu2s1Nq0pw2SwsK/HyZ6+q4re7zPSE47xtS+WoINf1q0poGYies8tlbie5DL/Lit81cYexsjwXW2qCvHCqG7fdwvJiH+V5Lq5fUUz3UIyafA9ba4N8/5lTaMB/3H+UQp89O9EBUN8RJuDq5saVxawou7BucEIIIYQQYuZNpluZAn4IHNE07Ws5j98E/B3wWk3Txl2XpJRyK6W8mdvAjcDBqRj4XJHJHCrxOVlflZd93G0zc/um8os6FqUUpTm1KAqM4NBANEUqPW/icUKIl+Hrjx7jZy80Zu/Xd+g1ZKLJNE8d04NDmdo7MBL8GRswae3TgyB54wQjMoHpwUkszwrH9CB6pjba5pogVfnus4JOVrNp3IDIVHIZ4x5bX2msP+xpASCpQXRM0e2OQf3nku+1YcsJbv3Xm9ZR6LVjs+if4+plei2ljVV5FI3J9HFYzWyryx+1bGyq/M2rl7G2IsAHr6il1AjI/eU1ixkcTnHdikLqCj0UG93gkppGecDJ/pxC1Bqw83Qf9x9ol+whIYQQQog5aDLLyi4D3g1ca7Sj36uUugX4NuAFHjEe+18ApVSZUup+Y99i4Fml1D7gReA+TdMenPqPMXtlMofy3FaWFHmoCjoxAeurAqNaPM+EAo+eBZDSIJFKn2drIcR8dqIzzCOHO866sE9rEDICQN6cwIwnU6R5zBKxzpCe8TO28DHoHRQBwpPo+pUJrRSdI0vmYslkDo3tzDbW9586mb3dGYqNei6ToRl0WbPBIaUUayr8LC4aKdytB4AKuGl1yahgXEZtgZuA6+yf7Su1rMTLJ65bwvJSX/Z3t7LUxz/esoIyv97YYKVRRPueva38yz2HiKf0fytXLy0EIJmGBw+1kUhJcEgIIYQQYq457/SjpmnPojdXGev+cR7LLCO7xbh9Clj3SgY41/UN6RcIAZcVq8XMB6+o5VT3ECV+J3br9BajPp+CnIuuZCoNL6MWhxBi7kunNcKxFMc7Q9liw+Px5dQRymSvDCVGB0z6jYB4YJyaQ9llZedZnhXNKVg9XpDpYsvUHOofip1zu2NdIx27OgajLCn2Zu+39ulBs2K/M9vxDfRg0Ng6SB67hY3VeYzHO85yvangsJpZWxmgsTuS/bxKKdZVBbBbTJhMiksW5fF4fSfJnExTr92crfVU3xHiROcQ8VT6rG5qQgghhBBidpOzt2mWWUoQdNn4+HVLaBuMYlaKJUWeUUu8ZkLuBUnv0Pln8oUQ89PxTr0ofSIFsUSaZiOQAeCwjgQyCnMCyk4jC2hscelIXA8uje12pe+jH3LOV3Kod0hfjmuCC+4sNh0ymUN9wxN/T45dctY5OLqW2wnjZ1zmG78o9Fhmk7qoDQsAAi4b6yr9o5bpeeyW7O/gjZsqcNvMWEz6+PwOC2vK/bxhQznVBXp3OA0YjMjxRAghhBBirpn6wgVilNM9+gVB0G3HbbfwV9cuYUdDD7UFHtzTUDfiQnnsJsKxNJ2hKFX5Z7d+FkLMf5liyQAdA8Oc7tPLyFnNioqAixNGRkzAPZK14pqgLX3m3ngFkDMBpfM1su8J68Ehn8M0qtj0TMl0D8sErcbzYkPvqPst/frPVNM0PnrXbho6QwCU5c3spMD5nKt+U5HXwW3rysh324gn0xT6HGiaxtZFQdoGhnmmvpPhpMbp3qFZ/zmFEEIIIcRoMz8lO881GR13iozizw6rmY1VedkOPDOt2Ch42jEoHcuEWKhys1x2null35l+QK9vkxssyHOOZANlgkORnMLLufWKzrWsDDir1Xuu7rC+fCvocWQ7k82kTBbU4HBiwnHvOj06ONQ6EDH+H+VYe4ijRoHvyry5HYS/tC6fAq+dNRUBDrYMsKLUS9Bt4y8uW5Sd8GjoDs/wKIUQQgghxIWa+bPueS5kLDXIdAYDvWaEaRbMhgOUGxcqHYPnrqUhhJi/mnpHGk4+drSL3Wf0QMeiAhd/d9Ny6grdBF1WVpSO1NDJFpceHsmmya1X5BonM3JUcOgcHa2ywSH3zBejBggadY8SaUbV28nV0q9PBGRqMZ3u1n+mf9zTxImuITJ7VQXndnDo+pXFrCjx4XNaeOPGcqrz3VjMJqxmE2sq9ILV9R0SHBJCCCGEmGtmfl3TPDYwnMAov0H+LCiqOp4KIzjUNjB8ni2FEPNVfXsoe3vfmb5sIGNxkZfrVxbzo+casFtMmHOyeDKZQ/3DI5lDgzk1eUzjLE9y5BThT6Y0LBPUwO8xlm/Nlu/NYM44UhMEh051DgKwtNjD7jP9NPfpmULfffLUqO1KZ0nW6MvlslnYVpdPMpXGpNSoiY61FQGeqO/maMvAOV5BCCGEEELMRpI5NE1SqRQf+tlL2fvBWXKRM1axURz1cOvZJ/MvNfTwlYeOsv1Uz8UelhDiIjrWORIc6h5KZDuOLSrQW6y/a1s1aysCmHMCPk4jOBSOjwSEBo3i1HYz4xZTzl2iNnSOqtRtxpKsAu/s+N705GRBDcXGL7Z8ulcPsK8p17NnOo1szNCYzmzjtaefiyxm01kZsJl/L8e7QqOWGAohhBBCiNlPgkPT5Mn6TrY39GXvZ5ZgzDaZi6/jHSGiOS2pNU3jO0+cpLFriG88euysTjxCiPmjc2B0zbGUcV1fbRSpv3l1CR+4YhH2nPbkLmOJWDgnWygU1W+7rebzdtqKnCM41GB09iryTq6z13RTSpFJcuqZoCh12MigWlWmB4eiKQhHRweS8t22WdF9bbpUGEWo+4dTJFISHBJCCCGEmEtmZ8Rijkum0nzpwfrsfcX4s+izQYHRmrovkuDuXS28Y1s1ALtO9/H8yW5AnyEeiiVnRXc1IcTUOdMTwe+0ZtvPj1UR1C/2lVLUFXlHPZf5PhhO5iwrMzKHvM6JM35sZoinmPA9AY536kuySibZ9v1i8Lut9A4l6A7HWTbO85lQ17KSkZ/TgZzlVa9ZXUKx3z7Pg0N6MDGtQTyVxmaZv59VCCGEEGK+kTO3aWAxm/jBn23J3tdgVrRjHk8mOJRIw1PHu+gK6Ushvv5IPfGURjylEYmn2HWm71wvI4SYg3703Cl+vr0x21o+91vKYlI4rRMHhDPLynISDrOZQ+O1sc9wGa8Zio6/PAtGlmSV+GdPcKg8oI+lJ3x28f7cOkRVwZGaQo8c7gCgJujkUNsgS4p8s3aiYCoU5TRe+Pn20yRSEwcAhRBCCCHE7CLBoWlSXeDmuuVFOCyKV9UGZ013srGWl3izF4SNXWH+7U+H+NGzDbzQMLot8y92nJYaEkLMM/fsbeUXO85k7xf7Ri7uywMObOfIcskUpE4zEhwZHNYjRb5x2thneOzGcrQJlqqGo4lssKp4FmUOlRuFpMcLDvVHRpaaOawWHMYatAcOtAGwvNTHn72qmsVF7ukf6AwymRROi35E6RgY5tcvNc3wiIQQQgghxGRJcGgaXbu8iKuXFXH7xoqZHsqE3HYLq8p8ANR3DrGkyE2J305mwveqpQUA7GzsYziRIhxLsrNxJHD03Inuiz5mIcQr9/ChdgaiCdoH9XpDCrh9UwWX1gbZXJXHmzZVYDVPHNTOraOWaUufyQY6V3Aoz8gqyu1sluvf7z+SvZ2biTLTCr16cKgzdHZwqNeoQ+QwCnEXGuNuMzKglpf4eO/ltWyuCV6k0c6cMiOI9puXmnjqeBfxpGQPCSGEEELMBRIcmka3bypnb9PArO1UlvHPt63K3v76Yyf4xC/3AuB3WrLdiSKJNP/5YD3fefwE33zsOI3dQ0QTKf7+7gPsPN073ssKIWaxz91ziFR6pPi002riiiUFdIVjeB0WKoMuLJPIHAK9zhpAV0jv2OVzTBwcKg3odWm6xsnAAfjDnhYAKgN2nLOokH+e8T3ePqZ4N4wEhwIuGxaTojw4OkNoealehyi3W9t8tbhY71gWTaZ59nj3OQuPCyGEEEKI2UOCQ9PIYbXw1i2VrDZaG89Wq8t9LC3ST+jTGtkuM5V5Lt6+tTK7nULjuROdPH+yhyfrO9l9uo+2gQg/e75RaksIMcd0Do4OcvgcFjZU5tE7lMDvslJpFBeeSG5h5ZiRHXKsQy8knXeOmkMFxlKxse8PkEiliST011pfnY/lHJlLF1vQ+Ezt44w7ExwKuh2YTIpao6V7xvIS71n7zFevXVcO6EHHSDxFS9/wDI9ICCHEVDjWEcpOBgkh5icJDk2zT96wlKJZVDdjPE6rmX973Uq8RvchDXBYTNy2rowtNfkEXfrjP99+msNtYZJpjTt3NPKtx46RSMETR7uobwsBMBxPSW0iIeaA5Jg/0wKfA7vVzDOfvoZ/fe1qVk0iqJ0J3WSWk53o1LtzlfqdE+yht3OH8YMsD+zXa/R47CY2VwVmVSH/TOZQ13jBIaPmkN+tf1f+vxuXUpPvwqT0AtW+c3Rvm29es7aMbbVBbEZg7497m0c939A9NKqAtxBCiLnhvT95ifv3t870MIQQ00iCQwKlFIuLffz1tYtZWuzh9o3l3LiymFVlfnwOK6vK9IvEZBqSxkn9ic4IOxr1DmahWJKvPVrPZ39/gC89cIQvPXCUtJz8CzFrHesInfVYpvizy27B77LisJrP2maszKqvTCHq7rAeJCrLmzg4lOfSAyVt/WcHWe7Zpy8pK/Q6uXZF0axahpVZHtwTHic4FNaDQwVuvdZQgcfOogI31y4v5tOvXobDurAOtRur8ggYv+cHDrZlM0sHIgk+8cs93DMmYCSEEGJ2e+FEN819w3zjsWMyCSzEPLawzljFhIIuG2sqA9QWeEhrsLYiQKlfXyLxoavqcFrNBJxWSo0LSA19CVrGvjN9NPcP89iRDnY29vCbXdKlRojZKjPzV5bTKt72MpZwjbSl14NDcaPNWPE5Cknne4wMnNDZQZaXjGL3iwpcFHpnV8ZlJjgUiqXPCn53GJ8lt77cmzZV8NZNFXgdNuyW8wfa5pO3X1LFq1cWA9DSF2PvmT6iiRT/+dBR6jtC/HZXczZgtOt0L995/LgsVRBCiFnss384AMDJ7mFiRk25Cy0p0dI/zNA4nUplQlmI2UOCQwLQWxCvKvPxjq2V3LaulCXFHoqMttaXLS7g5tUlfOyaxVy1rBDnOLPgPZEkzx7vpm0gyu4zA/x2ZxMDE3QjEkLMrFPdem0gDY3FhW7MCt52SdUFv06281g0MWqpUInv/JlDmTo9uQaienTpDRvKJ5W5dDFlAj9JDRLp0SfEjV16JlaBZyQodtPqUlaV+ynx2zHPouVxF0Op38GbN+tdOtPAj55r4N/vP8IT9Z1EE2l2NPQyFEsSTaT4nydO8OudTQzFUjM7aCGEWGBOdIZ5fpyuw+m0Nio7KBJPcrI7kr3fH0nwsxcauXv35LNAQ9EEf33Xbr5w36GzMo8+87t97D3Tf+EfQAgx5WZPKxgx47wOK5csyqc/EsfvtOE0uhEppagpcBFLpXnTxgpeONnD6V79IOF3Wogl0kST6eySM4BdZ/qJJVJwjpbWQoiZkem4VeC2Y7OYKPI5WJTvPs9eZwt67ZzqGWYwmqBnaKT7mMs+cWAnm4ETTZFMpbMd0XJnEzdV513wWKZbJqgFkEpp2aPn8ye7s8G2Yt9IcMhsUsbyuokDZfOVxWxibWUeNpMintZ47kQ3PoeVVmMpYTINLX0RHjncybPHu4mlNMJRvRC6EEKIi+MPu5t54VQPlywKZo/FfUNxPnrXbtZXBvj0TcsBuGvH6VH7vdjQwyOHOzjeMcjrN5RPmB37w2cb6ByMogENXWF2nelnb1M/f3fTCo60hVhT4cdjt3D3nlYauof41YcuRamF0dlTiNlKMofEKA6rmRK/MxsYynjPqxaxqSqPlKZxw8qi7OOvXlXC5UsKuGRRkMo8J4sK9AvMtAYHWwcu6tiFEJPTOagHd69ZUcg/3bqCtKa9rEydgFFoeSCSoHNQDw65baZzdhnLBIfSMCqgfLwzDIDdBG777AsS5P58crMiv/34CdoG9Cyo2d584GJbXqp3aQtFU7QPxkY99y/3HGJfUy8xozvmo0c7Lvr4hBBiIfvJ8w3sOtNPJD4yOfMPv9/P4dYB7tpxmg6jAcN3njgxar+vPVyvB3x6hnmpoWfc124bGOa/H6nn5y80csf2Rh490gnonSz/66Ej/NdDR/jdS016B7S0xs7T/YTjSd71gx0cbu2fls8rhDg/CQ6JSfG7rGyry2drbT4fvrou+/hVSwoo8zu5fWM5/3DLCt69rZpaI0D0yGE52RdiNuqP6CeCNUEP66uCfPy6JaNa009WZlnZwHCCjkG9ZXnQbcdimvi1cuvy5NaZOdqmB5NLAs5ZW8DZZgyrO6wHOhKpNM+f7CET4spdVibgb1+9DItJr1GXCQRmsqvq2wd54tjIRcUjh9pnYohCCLEgJVNpwnH9GHysfRDQl4g/criT/uEk/cNJ/uWPBwHoM84ZKoxmE429w9nX+dhde/jivYf56sP1/Dan3uhf37WHcCxFJJEmEk+Tu5DsVy81s+vMAN94/Di/3XkG0I8TDx9q44VTPfztb/eTTKU52DJ6kvlPe1v47c4zUhBbiGk0O8/AxaxW4HGwtsLPkiI3iwo9fODKWk51DbGvuZ9kKp2tr7HnTN8Mj1QIMZ6IUTm6NKBnurxtSxWBl7Gkx+8cqTl0ukc/WSzxO85ZYyc3A6c/JwPnmeNdANQUuLG9jEDVxVDgyXQs0zOF/rh3dEvfAu/CaVk/GZfWFbCpOg+n1USey8q7t1bhtRtFzGOj6zbta+6/4OKmQgghXp7mvpEAz2NH9ePvtx47Niqj98mjndy5fWRJ2Xu2nV2bsH84yZ0vnuaHzzbw7/cd4YmjHaTTGi+d1q8BLDnnA+XGOUfC+KrvjST449627PN/99sDpDU41Brix8818Bc/fpEHDujH2YbuIf7mt/v5pz8eYjgxUqMuFJX6pkJMpdl5Bi5mvVevKmFdZR4FHjuVQRefvGEpb91SyQ2rirl6WQEAjd1D0oFGiFkoc2Lmc+jBHZNJvaw1/h5j/1A0wQljWVjpJJZWOS36e3WHRpYaPX9SzyJZW+GftfUGKoIugGx9peMd+myr32FhZak3+/MUOrPZxFs3V3JJTT43rixmOJHmIzmZpzCSSRSKpUed8AshhJg+p7rC2dsPGZmbv9ihZ/5srPQDEE1pfOWho4B+bL98SWF2H7PS/wOIxNNE4il6Iwn+8fcH+MSvdgOggP/7s038+oPb+JsblnJZXQGWMVeeHTnnAamchKAvP1hPVzjOP//xIP2ROO//yUvEkmmGE2najeVu0USKK//zCf78Rzs40xtBCPHKSXBIvCy3byznhuXFeI2LIYfVzKICD4sKPLxxYyUA0aRGXIJDQsw6mfMv3yssAOwxskAGhpOc7NIDJYWTCA4V+fVtenI6lmXS1jdXB1/RmKZTqV9Pqe82MoeajJPRW9eWsaUmuOC6kk3G9atKeOOmcm5cWcIta0vYVluA1yhYXhFw8po1pdlte0PRmRqmEELMW+m0Rt+YDqF7m/uztxu7IyRSacJGVrHZbKLIWCbdP6wfmzdWB6gr8pA5yi0v9XL54pHv84y2gRj37deDTQUeGw8d6uDOHWc42T3Em7dUsGVRPlazwmk79yVoJoOpK5zgr+7azUmj8QPAvXv1Lmn/cd9h+iIJnjnezb/96aAsNxNiCkhwSLwsJX4nG6oDZxWuBrJFqQHC0eRZzwshZk5uy/lXmunidRjBoUicxk79xK0scP7gUIURZOkyZgxzCzwvLfa+ojFNp3yP/tk6jVnLTBHtPU39+JyWc9ZaWqh8DiuX1uVjt5pYXeanNODgNetKWVnqZX2ln8sW52drTH31kWOk03JyL4QQU+mnLzTypv99flS27vZTIy3s04zUHQL4+HWL2VaXP+o1rltejM1ipjpfz6C9YVUJb9pUyTu3VfGubVV84Ipa7BaFxkgG0C1rSvm7m5bzpdvX8i+3rWRdRR7/9JoVLCn2cmVOFpLHbsZlBIsq887u8PnMidFFr+/YodcduuNFvV5RSoMn67uJJWVCWohXSs5kxcs2UWceh9VMpp5sY06kXwgx88I5LeNfaW0fj9FVrG84Qa8R4JnMsrLigH7y1zqg1zzInJQ6LeAyspFmo6Bb/7xtA3pwqLVfzxx606YK3rixQjKHJlDodfCqugKKfA6UUrxxQwWaBtcsL6LU76SuUJ9QeLGhlwcOtJ3n1YQQQkxWIpXmx8820B+J86Gf7+QHz5xiZ2Mvh5oHR233oZ/vAqDIa2NNRR7/dOsKVhgdJ03ApuoAAJ+7bRVlfgfXLivi5jUlFHocmJRCKVhd7ifgtGTrzN2ypoQ8tw2nzUzAZcNmMbGyzM9fXlXHX1y2KPveS4s9vHVzJavLfLzv8kWsLfeztMiTbXqRUeLXs5k6Qwnq20PkLk5IpjWpPyTEFJDgkJgW5Xn6zMLR9sHzbCmEuJgyJ09mBa800cVjZA6FhuLZOkblwbNn/cYKuvTCzS1GQcyXGvXClQVeJ/axBQlmkTyj01omcygS16dHN1QFWFTgmbFxzQW5gbNN1UHesKGc2kIPS4u9XFqn16nrCMW5Z18LcZn9FUKI8zrSNpBtNw8wbLSCzy3u/6X7j3Cmb5ieoQQ9Q3H2nenna48cY8g4aOc59RUAzf3666wq8+OymSn0OvjQlbXUFbq5dmURAZcemHnV4nzesLGcEp8Di9nE+66o5W9evYz3XlbDp25Yyra6Al6ztoz3Xr6IquDISoJct6wpZeuiIH6H/t4bqoK8eXMVKU1ja20+H7qqFo/DwqdfvTy7jG1pkWdUzbq3fO8FAOxmhdvIOjrcOoimaTx0sJ3/efKEHEuEeBlm7xStmNNWlHhp7Imw63Qff3bpovPvIIS4KELGUk+7Rb3iZVDZmkOxkdm6Yu8kgkNG16+2Pj3z5qljnQDUFrpndXAoPxMcMlrZZxZAFUoL+wtiNinetrUKh8WMxWziLZsr+b9nGgB4/GgXiVQa2yz+dyCEELPB5/90BIfVxA//fAtKKf6wt4Xtp7rpHYpR7HNyoLmfe/aNdNVs7InQPhAd1Vb+hpWl/HpXc/b+pbVBrEZW8evWl1PfHmJJkQe3UVvIbjHzvstrs8vKQV8+7HNYKfE7SaVhOJHCbTdnj/VjZSYLPnBlHd998iS3ritheYmXf37NShYVuFlW7KHE56C20MP9B9sIR5NcvayQzdVB8l1WeiIJBo1zmW11+RxuDTEUj/HMsQ72Nfdz1/Yz9EbivGZ1CdUycSPEBZGzLzEt1lflAbCzsVcKxAkxi2SCQy6bmVe6CioTHMqUFlOAy352HbKxMplDXUZh531NAwBsWxSctZ3KAPKMcfeEokRyluf5X2Fh74XI57BmA0BLir3UGbXqEmmNwWFZGiCEEOezv6Wfl073ETEKSX/rseMk03DP3laiiRT/fv+R7HHWbnQJjSbT2do8DrPir69fQqFn5Bi2pXak1pBSio9fv5RLFuVjyVmGHnTbsgGksa5YWsi1y4vYVluA3XLu84H3Xb6Ia1cUUexxYjIpXrW4AIfVjMlkYlNNkDy3jf93w1JWlPq4fEmBXqtoaeGo13jjhnJevboYgIcOdfKdJ07QGY4RT2l894kTnOmJ8PMXGuVaRIhJkswhMS2WFOuR+vbBGLFkGof1/BeMQojpl1lW5nPaXnEgxuMYfQjxO0xYJ5GNFMxk4ISiaJpG1DhRXVsZeEXjmW6ZcUcSWraYthkmPEkWk/emTRX896PHiKc0GnqGKA2cPwNNCCEWqnAsSTimB4XaB4apK/LSOqAfl376fAMOq5mDLfrEi8OquLS2gOOdIUDRZCzpDnisFPscXLm0iLb+YYYTaSqMshAZDquZiuDox87HMsljotNm4dM3Lj9n59QNVXkUeuwU+uxYzSb+5bZV7GseIJ5K47FbWFXux223csf2MzT1j+54+bs9rXSE4hztGOS6FcWUBZyk0xomqQ8oxIQkOCSmRV2hHhxKaTAcT0lwSIhZIpM55H2FncpgJHMoo8jvxGI+/0lXgVdfhhWOpejM6Z6yuGh2p39nag5pkB13wGXBIiear9g7tlXx/WdOEY8k6BiQlvZCCHEuz5/syt7+9hPHed/ltdn7rQMxfv5CIyEjeLSixMeqcj+rK/xYzSZebOjhmeM9XF5XiNVs4h1bq3nwQBuryny4bRf30rAy//yBp9zgVMBt4/qVxXQORrlqaSGFXsdZnVfdNjND8RSJtMZTx7tIa/D9p06wuMhH60CET924XBpICDEBCQ6JaVGZM/PQ1DuUvaiaiKZps3o5iRDzRSZzKOCc+uBQic85qUBJkREcSmlwtC0EQIHLgvMin5ReqNyfWbtRBLTA45j0LKmYmN9pY02Zj6dP9GS7wQkhhBjf3TtbsrcfONjByc6R7sBpDU506fer8pxsqArw3ssW8b2nT+Kymllc6KUrFOOd26oA2FSdx/ISL819ERzW2X88+/h1S2jsHiKlaXjtFnwOC2aln1MAXL64gCfqO4mnNNLGY3fsaMLjsBBNpPjLqxdPyQSZEPPR7P8GEHOSyaSyxVufPtY16rm/+c1ejrQOZO8/cqidbz1+nHRa1gMLMd1CRq2cc6VxT9bYmbcSn31SQd5C70gB56Pt+nfB4mIvjvPUJ5hpuUGgU11hAAq85w58i8lbUqy3TW7tH57hkQghxOz2QkNP9nY8maahe2jU85lT6uoCN7esKSPgsvLpVy/nPZcu4jO3LOcNGypGBUjcdgvLSnxzYqLWbSwnW1sRwGRSKKUo9TsAfRLnrZdUUjlmKVwyrdEfSRBNpLMdR4UQZ5PgkJg26yv9ADx1rCP7mKZp3LOvla89cizbavObjx/jNzubiCZTMzJOIRaKP+5tYSCiF6ccm/XzcllyziNL8yZXJ8ZuMWcPPrtP9+v7BpxzokOVzyi4Xd+hB4fy3NKpbKpk6gyd6QnP8EiEEGJ2GxgeaYqQ1sguIfPaR46j5X4Hb9pYwbISL0opTCaF02bGbjHzF5ctOqu+0Fz2zq3VmBTctq6UyjwXH71mMaB3E7WOWe6+v3lgvJcQQiDBITGNrlymdxQ42BIibhScfe5kN/GkxhP1nXQNRgnHkhxsCdHUFyUSk+CQENNF0zT+7U+HaDAyXqYqpdqVk4Je5p98EeE8lx5k2XVGn/0suYB9Z1KxXw8G1bcPAlOzPE/oMhllp3siMzwSIYSYvaKJkfNll23kGKyA166vyN6/cVUJayv94x7vbRbTvKoH+t4rFlHktXP10iKq8l28YUM5Vy8rYFNVgKVGVmrGsQ6ZgBBiIhIcEtNmfYXezn44qXG8Q7+Q+tJ9RwBIpuG7T53kO48fJ7OY7FhHaCaGKcSCcKY3Ql8kwd6mfmDqghq5bdzLL6DDVFW+Xny6O6zPftYarcxnu4o8fZwNRj2H3CVy4pXJ/Cw7QzFpOyyEEBM40qafU1vNsHVRPjazwmUzs6HKz19cWoPLamJRgYtrlhWOqgE6n9ktZr58+1oWF3mwW8wopbhldSnXrizmUzcuoSzgoDygLz3be6bnPK8mxMI1u6t/ijltWclIpP5bj5/gW+/YyJH2kQDQvftaGcqZ/TjUOsCliwsu6hiFWCh+v7uZtAbdYaMg9RTUHAIIehw09eudu8au8T+XqqCLPU0DOffnRuZQJoCRNu6XGHUOxCuXKVQ+nNSIxPVjg3uKlj8KIcR88cRRvVxDvtvG6zeUs6bcTyyZpizgpDzPxU1rSkmlNGqLPAuqYcKliwsw59RMesPGCvqG4hT5HCwuPI1Sipb+KIdaR09G9w7Fae6LsKbcPydqLgkxnRbON4a46BxWM06r/iW7o6GXT/92X7aTAEDfcJJ4cuSBHae6iSfT2SVoQoipc8f208BIUGOqgkOZ11FcWB2jscvIKoJzI3MoOKbGUIlPgkNTpdAz8rO8Z28r//D7A8SlFp0QQozyxNFOAGryPdywopinj3djNukt6x1WE5uq8nj16hKKF9jxyWo2YcpplGE1mygyfgafvXUlt28oA/T6TLnXGn//u3188pd7iafk+kMImZIT02pjdZDnTvTQF0mw31jOkvneHtucbO+ZAX747CliyTR/fe2SUV/wQohXpncoMep+wDU1XbYyy8p8DvMFzVCOXY7lc8yNw1HQPTqoVuCRZWVTxecc+Tfwxz3NDMVTfO+pU3z0msWYTIp4Mj0nipYLIcR0OmHUDlxb4cdlt/Dz911CWgOH1YRSindsrWI4kcK6gLKGzmdpsTfb0UxDr9uUOZ48cqSTtAbD8RT2Wd41VYjpJt8aYlp96Y1rssGgU916kdHygJO1FQGCxkVlJvOgJ5Lg+0+f5I7tp4kkRs8WS/0JIV6+dDrN2Pkw/1TVHDIKXRZ47NheZnCowG2dMyexZTl1lZYUuimfZIc2cX5KKTK1VV883ceB1kHu2tHIiw09NHYPcfM3nqa1T4pVCyEWtuGEfk68tTYf0BtM+J3WbGBDKYXLNjcmXC4mr8NKZtq5pX8YgEg8mZ2sbugZmpmBCTGLzI2zcTFnVQbdLCnSC89mwjtbavLYXJ3HR65ZzPrKAO++pCr7fF8kSXc4Tng4Pup1Pn/vYf64p+UijlyI+ePu3c1nPTZVwaFMF5RCnwOLefLZfkXekXT38oBzzgSHblxZwubqPG5YUcz/u3HpnBn3XJGt6WQcMDoG4/zbnw7z6d/u5VTXEL96qYm08eRvdjbxUqMUFhVCLByR+EgL+xWl3nNsKcZT7NOPMSc79eyrViNIBHCkdXBGxiTEbHLes1qlVKVS6gml1BGl1CGl1MeNx7+ilDqqlNqvlPq9Uiowwf43KaXqlVInlFKfmeLxizngy29cS7HPzqJ8Jzaz4saVJbxrWzUvNfZSkefkktogYy8pn28YOeFPpzXu2nGG7zx5YlT7TiHE5PxuTyswsqQTwDdFrezXVwYAWFcRwHIBS0GLfCOZQ8V+J+Y5sozUZjHx9beu492vqsZls8yZcc8V5WM666SBY51hdp7uRwN+8OwpBob1JZJffuAo//3IMRJSJ0IIsUA0dOvZLWYFbtvUHMcXkiVGW/tjRhfl5r6R4NABo/yFEAvZZKY8k8CnNE1bAWwDPqqUWgk8AqzWNG0tcAz4+7E7KqXMwHeAm4GVwNuNfcUCsqTEy4evqiPosbOhMo9FhW5qCtz85+3reO/liygLuCjwjK5/8svtZ7JLyX710mmiyTTHO8KEosnx3kIIcQ7H2vWTIJvZRNBtpcxvn7LaLTeuKmF9ZYBrlhddUJePopxlZXOtqLPNaiYcS+J32S5oKZ04v5r8keCQ36hBlExr2UyioXia7ae6icZTdA/F2XGql7AcF4QQC8TxTr3TVr7bht0qx58Lta4iAMCOU/okdG5w6PmTXefcdzie5F0/2D4qe0uI+ea83yqaprVpmrbbuB0CjgDlmqY9rGla5q9jO1Axzu6XACc0TTulaVoc+CXwuqkZupgr3HaLni20tZobV5Vku/34XVY2VuVRW+hmRalv1D57mvuJJtKk0xpfvP8ooC87O9DSd7GHL8Sc12cUo752eRGaBmsqApimsF1rbaEbxwWepOZ2NiufI23sM+wWM7WFblaX+aRw/hQbSoxkAb3nVTXZAqK5Pn/vEe7Y0QhASoNTXaGzthFCiPno2ePdAFTlu2Ry4mVYUqyXujjSNoimaRxrH8g+1zIQO2cm6l3bT/PsiR6GYrKKQcxfF/StopSqATYAO8Y89V7ggXF2KQeacu43G4+JBaYs4ODKpYW8qi6Id0xXIqUUN68uAaDQq2cQJVLwr/cc5G9/s5dwzpfwD59pyNabEEKcn6Zp2WLUr99QxvJSLwGnbUqXQ3306jocF9jhQymF164fgsr9cys45HdaWV7iu6DubGJyXrOmFIA8l5XNNXksLnRjNyscFhN5RvOC1oEoP362IbvP/zxxXJoWCCEWhBeNjJelxTI58XLUFerBocFYmlgyzc7G/uxzyTSEowlSE1xnfO3R4wC8cLJ72scpxEyZ9JmtUsoD/A74hKZpgzmP/yP60rM7x9ttnMfG/YtTSn1QKbVTKbWzq+vcaX1i7lFKke+xs7LMj8N69kXkW7dUUuixcfvG8uw/mvsPtnPPvrZR2+0+08eQpHMKMWmh2MjfS22hh2++bQNv3Fg2pcEhp9Uy7t/1+bzv8kUU+2ysr/RP2VjE3Hbz6hLcNjPvu7yGJUVe3nvZIrbW5rOpOo/rVxRlt2sZiGVvP3Oih3BMjgtCiPmvtT8KwLpK33m2FOPJBIcAwtHkWR3Kbv/u87zpf5/jpcYeEskUQ7EkbQPDaJrGUFyfrH6qvvOijlmIi2lSfQ6VUlb0wNCdmqbdnfP4e4Bbgeu08aftmoHKnPsVQOt476Fp2veB7wNs3rxZpgAXGJPJRGXQxabqIIXeVjpDMWLxJJkVBi6bmUg8xXBCI5GSfx5CTFZPWO/8Z1IQcNko8Ngp9E5tjR+X3YxDu/Dg0F9du5Q1FQFcdimqKXRKKT545SKWl/rJc9u4ZkUxR9pDDEYTvGZNKQ8ebCc0JqU/noJ79rbwjq3VF1T3Sggh5hJN00gap8ArSmRS5eVw2sxYzYpESuNkV4hh40LDZoJ4Wq9B1No/zLt/8CJmk0IpMCnFXe/fmn2NZ09I5pCYvybTrUwBPwSOaJr2tZzHbwL+DnitpmmRCXZ/CViilFqklLIBbwPueeXDFvPRV968jqXFXm4xlhXEjMBQgcfOGzeUZbfrCsXG210IMY6esP734rWbcdsmNR9wwQIuG0G37fwbjmE2m8hz27CY5YJejHjH1hpKfY5sNtp7L1/EzatLWVriZVttfnY7u1llT2K+/uhxjndI7SEhxPzVFR45/y0LzK1GDrNJZZ6+lH1/80i9oVXlerAtntKIJjVS6TRWs8KEIhRN8t+P1Ge37QzFiSWl7pCYnyazrOwy4N3AtUqpvcZ/twDfBrzAI8Zj/wuglCpTSt0PYBSs/hjwEHoh619rmnZoOj6ImPvqCj1U57v5xHVLqCt0c9WSAjZVBVhR4uX6lcX4jVpF+5qkKLUQk9VtZA7luWwXXDT6Yshz2rBPUec0MT8EXFbqikZS/x1WM+sqA9gtZj532yoyKyJrC92UGhdIXeE4X7jvMHftOM3Oxl6iCTlxF0LML6e69CVQTqvC/jKWcgvdlpo8AO4/oC9mMSu42ZiYzndZsJogkYb+4SSDsSQa8Fj9SLaQBgwbS8yGY0niyYmLWAsx15x3GlnTtGcZv3bQ/RNs3wrcknP//om2FWI8AbeNEr8Tu9XEspI8KoJOags8FPnsDEST2YtdIcT59QzpM40FXvusXHKzKGf9vxAAVrOJia57yoMuavLdnOoe4jVrSnHZLHz+viNowAsne+kdinOmd5ifvXcL66uCF3XcQggxVULDcY53htlYPfI9tquxF4BSvxP7BTaBECPWVwX51c4W9jTpJXTz3VbeubWKx450EoomCLjTFHntpNIQjiU53DZ41muc6Arxhz2t3LXjDF98/WrevrX6Yn8MIaaFTNeKWem/3rSWd2ytZltdAVtq8ikNOFlszCQPDEtwSIjJau3TV/2W+CQFXcwPn3/9avLdNi5ZlM/tmyoo8dsBSKQ1TnQOMRhN8uRRKRgqhJi7vvHYCT7+y72jli9lCiEvKnBjk4zbl61uzKRUeZ4bl81CLJnm1rVlfOCKWpxWM8U+O8tLvNgtIxNrLiMD+6N37uE3O5tIa/DF+44QkWY5Yp6YngIUQrxCpQEnBV470UQKr0MvVrukyMcDdNAfkS9gISbrRKeehl4owSExT2yrzeeTNywh32PH77Jxw4pi7j/QTvdQnKiR3n/H9jN84sblMzxSIYR4ee4/0EZ3OEYsmc5mCR1p1+uqrSmXYtSvxOKi0cGhbbVBlFJ89S3rcFnNuOwWttYG6QnHiSZS1LcPcqgthAK21ubzRH0XHYMj9Z/C8RRt/cPUFXkv8icRYupJ2FnMWlazKRsYAshz67d7hqIzNSQh5pyGnjAARV77DI9EiKlhNimuWVZMgfFv+jM3r6A8z8m2RUE2VOoXTX3DCdJp6WwphJibWgeixFMarX3D2ccynRpXlklw6JUIum1YjOJ1Xrs5W2+ortBDacCJ32llUYGHzTVBLl9SyH+9ZT0Wk2JJkZutteMvV/7sHw7IMUfMCxIcEnNGJlDUF0nM8EiEmDs6B/RgqiwrE/NJeZ5+Ag/gslv477esQym90wxASoOknKgLIeag9oGRSdBjRhfG3KLHS4ulVt8r9d7La/A6LPzLbatw2c5dv2lFqY/1lX7evKWSK5cUAmA3Q3nAQU2+C4AXTvXxYoO0uBdznywrE3OGz+hW1j0omUNCTFY4qs80FktwSMxj1QUe/unWlew63cs//fEwALFkSupyCCHmnN/sOpO9fbxzECjnqWN6vSEFBFy2mRnYPPLhq+ooCzjJ99gp9J7//Oibb99Aa/8wK8v8bKwKEE+meefWKs70Rfjuk6cA+PMf7+ThT15JZdDFR+7YxVA8xZVLCrhqWREOq5mAyzpqRYQQs5EEh8Sc4TNmiQeGJXNIiMnKVOgqlGVlYh4zmxQrSn2U+J3Z4FBXKCYn4kKIOeeePS3Z2/uMjlqf/9MhAAIui3QqmwJBt5015X4q81zZLNRzKfU7Cbr186g15X40oDLfxU2rS7jjhdOEYimiyTRv/7/tbKgK8MiRTjx2C/UdIf736ZOEoyluXlPM196yYVZ2jhUiQ4JDYs7wGplDkXgKTdPky1WI80imRtLQ890SHBLzm1KKoNuG32lhYDhJ52CM2kJZfiGEmFsaeyLZ28c6BmnsDtM2oBdArsp3SUbkFFlXEcBintzPUimFw6oH5T56zWIi8SRlAf138ZYtldyx/QyxZJrW/iit/e1oQP9wAmsMTCZFMqXx1NEukmkNq1muX8TsJd8uYs7wGTPA8TRIKQkhzi2d1rjvQFv2vt0qX/diYSj06IHQzpAsQRZCzC1NvUMkRuZ16BmK8x/3HyVhnPjesKIEs0mCC1NhsoGhsYp8DmoKPNkg3cevW0JFnhMToBn/ZSTSEEtqpDToHU6SyKkdJcRsJFcLYs7w5aR9JtPy5SrEuexr7ue5E3pxRKsJOZkUC0ZlUC8Q2to/fJ4thRBidvnyA/Wj7idS8NRxvd6Q1ay4emnhTAxLnIPPaeP//mwzQc9ILagir51bVpfwZ9uqeMvmiuzjvZH4TAxRiEmT4JCYM7z2kVWQiaSkDglxLs+e6ObRI/oJpd9pwfoyZ8iEmGuqjOBQRyh23m2l9bAQYrbQNI0njcLTLtvIMTua0L+navPdoyZKxeyxqMDN1968jjyXlVK/g83VeUTiSfoiCULRJJnkbZm0ELOd1BwSc4YpJ/NhIJrA45B/vkJM5MEDbcQSeqeyoMcumUNiwSgNOAFo6x9m1+le/E4rVrOJ6nz3qO2+/9RJ4qk0H71msdSwE0LMuJNdYcIx/bi9pMjDoZZBMnOhJuAvr64j4JZOZbORUopLFxdw9bJCGruHePPmCirzXBxqHWQonuTFU930RJK0DchyZzG7ydW1mFNsCuKa3rGs3LgAEEKc7XhnmHhKP6tcUeqf4dEIcfEUGDWHGnuG+MqD9RxqG6Qm38WvPvQqXLaR056vPlJP0GXnA1fWSvcfIcSM++WLTdnbN6wspmMwRvugngG5pNhDTYE7W39TzD4Ws4nPvXYVLzX0sqLER0nASV2Rh1gyzQMH2njmRI9kDolZT9YZiDnF49RP4Acj0s5eiInEE6lsYMhlNfGOSypneERCXDwFRt2Hpp4ILzb2kkimONQ6SDiWzG5zpG2AWFKjbTCazbATQoiZdO/+VgCq8pysr8yjrnAk2/FNm8upKXBPtKuYJfxOG9vqCij2O4CRLmdLivXOma39kjkkZjcJDok5Jc+lzwj3D0tBNyEm8uChdgBsZigJOPFKjQKxgBR69ePEUCJNWoNoUiOtwe7Gvuw2H/jpzuxtOVkXQswGnUaWUEWekyVFHlaX6Vm/JmBVqR+/HMvnBI/dctZS5Yo8PbB3qmtwJoYkxKRJcEjMKZmT/n7JHBJiQj9/4TSgz2CVBxw4ZMmMWEAyrewzMoVAf/p8A5qmZ9Q15wSETnaFL9rYhBBiIpk+vOsrA+R77Ny6rgyA8jwnFXkuqY02hxX79Eyi092RGR6JEOcmwSExpxQYwaE+aQUpxIQOtQ0AEHTbec2aMkqM9GYhFoLgmIKtXqNGx67T/QwnUvzyxcZRz5/slOCQEGJmRXOWt75lcwUWs4k1FQE8djOvXVdOcEzQW8wtxT7999c9FM9OUggxG0lwSMwpQZd+0t+XkzmUTmuj2hHLl65Y6Ibj+vxjic/OGzaWjyrCK8R8ZzGPnNp47GY+fsMSAOJpjdBwgs/fe3TU9odbBy7q+IQQYqyukL6kTAFF/pGGK6vK/GyrDeK2SQbwXJbJHIomNRIpuU4Rs5dcMYg5xW8Eh0LDenDo648cY3tDD6vKfHzk6sVE4kkePtzB69eXky+zLGIBiiZSZE47XrehXLowiQXJYVFEkxpXLilg26J8TOhLNv7p9wcZiusz9NX5Lk73RNjfIsEhIcTM6g7rwSG3VWHNCXB/8Q2r8TmssqRsjsuUxQCIJ1PYLJKfIWYn+Zcp5pRMC8+B4TiHWgZ47Ggnt60t47njPfx2VxPv+dFL3PHCab731EkGo1KXSCw8h1r1YocmpdctEGIh+vSrl2MxKW7fVEl1vjvbweyRo52A/vfx1s16F7/OUIx4Mj3hawkhxHTrDuvlEgp8DiymkUDQ4iIvRT5ZGj7XOawjE3VdISmNIWYvCQ6JOcXr0JPd9jT1843HjtPWH+E/HzqK2QT/90wDhR4rDoviwUMdHGrun9nBCjEDGrqHAP1vRTqbiIXqhlXFbKnJo9jnwGE1c83yYoBsVl2+28b6qgAAyTTEUxIcEkLMnEzmUJHXIVlC85TXrgeImvuGznoumkgxMJwYVXtKiJkgwSExp/iMi91EMkVPeJjuoQQDw0kOtYUocNvZ0djPkY4hUukUP9t+huG4fMmKhaVvSJ+RKg+4cEqNArFAVQbdfObmFZQH9Nod/3zrCjz2kb+Hm9aUsLLUl72f+bsRQoiZ0DWod1As9EqW0HyVaQ7y/InOUfVRz/QOsekLj3DpfzzGi6d6Z2p4QgASHBJzTGZZWfdQkl1n9OUzTiNV82hHKLtdS3+MPad76QpFz34RIeaxjoFhAOoK3dm/DSEWosVFHgIu/ZjhdlipzHOxscqP12HhplUl+J16pinAfsk0FULMoKZevcV5ZgmsmH9qCtwA3LGjmcFoMvv4+3/yEpFYikg8xQ+ePTWqyY4QF5sEh8ScUuAdfdBUwDffvp5VpV5AL0K6rsIPQEcozrMnusf9kh2KJc96TIj54HSvnq5c5LNLarpY0Nx2y6i/gW+9YwNdoTjLS7yUBZwopbK1PH63q4lkKk3PUIxIXI4PQoiL62R3GNCP3WJ+unJpIQChWIojOV0yj3UOoaEve372RDcxqYEnZpAEh8ScsqzYiydnqUxV0MUf97RSne/mdevKeP36CoJuPYCkAXfsOE3/cIJYIkVLXwRN0/jfp07yb386RHNfZIY+hRDTp6lXzxwq8TnPs6UQC0tdoYdvvn0977ykmgKjm+WSIn1i4bkTvdy3v42bv/4Mv3zxjDQ0EEJcVM09+jlpmV+O3fPV7Rsrsrf/5jf7aO8f5mfPNwCQubJJaxCOJUmnNak/JGaEBIfEnKKUYm1lgBUlbvwuCw6biZoCN93hGGaTYn9LP5FYkoqAPht8qjPMkbYB/vKOXfz93QcYHE7y65fOcKh1gH+/7wi9UmdCzDMdoUzdApl9FCKXUor1lXlctqQAj11vbvCGjeUAxFJp/v3+IySSaX70bAP372+V1H4hxEXTE9ED0pm6NGL+cdks5Lv1pc4t/VHe+v3tfO5PhwHwu6yYjUTXI20DXP+1p/jonbs41NI/qj6RENNNgkNizvmra+tYXOTjumXFfPTqJVy5tID3X7GIvU19vH59Oe/YWk0mITOa1PjifUdp7B7ieEeIhw620tgT4VhHmMNtg1KTSMw7YWMde6FX6hYIMZZSikLvyJLLm1eXZk+EOkIx+oYTtA/GuOOF05I9JIS4aFLG9X+RFKSe1z54RS2gr27oGIySmYNYXe7PTlo8ebSDhu4hnjvRw1//Yg/tA5O/Vokn08SSknEkXj4JDok5Z31lkGKfnXAsic9hYWWZn2uXF/P5161mSbGXK5cWcu3yIqwm/eT/TE+Y070ROsMxPvvHQ6Q1iKc0TvdE2H6qRyLyYl5JGJHRfLdkDglxPmaTIs+Yyc1IpjWOdoQ43TOy9DglWURCiGkSz6kxIwWp57c/v2wRFXl6ADBq/N5NCv78smouXVwAwI+eP4NmPH+qO8L3nzrJQCTBQOTcExZfuPcQ1331SV7/7edo6ZXSGeLlkeCQmHMcVhO3b6rktnVlBFxWPHYLFrOJTTVBNlQFyHPb+NQNy/Aabe/D8TQpDVJpRgWCNOBnzzcQkXb3Yp7I/fcdlBNMISbl1StLsrdvXq3fTqbh/545RWN3mG88eowv3HuYtv7hmRqiEGIe0TRt1IV+z1Ase9suXUbnNbvVzO0bKyj1O7AoWFzkZmmxl6qgm1vXlp61vQb85IXTvOpLj/GW7z3PwPD4ASJN0/jp86fpHYpxvDPM1x45KjWLxMtimekBCHGhlFIsLvIwFEtSle/OPu6wmnEYB9U8t41F+a6zagplsiouqcnjxcY+GnuHCUUTuO3ypyDmvlBOFz63Tf5NCzEZ/3zbSh450sHmmjwOtw2yuNDFia4Iz53o4nh7iGKfg85QFItF8bGrl+B3Wc//okIIMY4n6zv5wTMNpNJpvvuuTQRcNo61hwBwWfRsRjG/ve/yWvY1DVDgsRGKpnjnJZUUeh24cs7bTMCNq4p58FAHGmA1K451hDnREWJTTfCs1/zvh4+SSGsk4vok4R/2ttEVjrO81Mcnrl866rWFOBfJHBJzktVsYkNVXrYz2Xj+/pblBJz6l2FlYGSJjdUEXWE9aJRKQ2PP0PQOVoiLpM8IhpqUnGAKMVkOm4VLaoN0h+N88Ipa+of1IGtfJElT/zAvNPRwrCPMH3a30NQrxwshxMv3b386jFIabQNRPvmrvaTSGt95/DgAxQEnFjl2z3s+p5V/uW0l1y4v4h9vWc6KUh8+h4VSv4PMbz/gstLSP0xFnt69bmA4iQZ85nf7GYoliSaSPHO8i7t3N/OHPS38z1OnACg3GvKkNNjX1M9PnmvkVGdoBj6lmKskjCjmrPNd/G6oCpLvsXPlkkKOtIco9EJXKIbfaeOKxQW09EWIpzT+uKeVbbUFF2nUQkyfPiNN3WU1yQmmEBfgX25bxZ7TvRR6Hdy0upg7tzehwahlx13hOB3hGKtnbphCiDlM0zSa+yO0DQyjgMHhBJ+/9xB7mvsB2FwdzBbLF/PbokIPb9lcRVrTRjVJqMhz0NQX5dZ1JbxtSzV/9Ys9bK3JI5nW2HWmn+NdQ1zzX08wHE+joWFWCg19KTTAJTVBTvdG2H2mn4Gofvz63D2HufOD27BbZMmiOD/JHBLzltmk+Ng1i3n+VA91hR48djM3rSpmfWWAt11ShdOmf0k+c7xTWhaLeSGTOeR3WiVzSIgLkO+2s7IswNqKAJ+5aQU+I+s06LZy7fIi7Bb97+nnzzXM5DCFEHPY/QfaiSc1hhNpIok0kUSK+/e3kSkNc/XyopkdoLioyvOcVAZd2ZIYAJ+6cRkum5kbVpSwrMTHT/5iC62DUULRkbIBaaOG6nA8RTiWzHaptVtMpNG7oJX5HNjM+nFr15l+HjnUTkNnSJoriPOS4JCY125eU8qGqjzevKmcW9eW8WR9F7esLaUi6GRjVR4AbQMxEun0eV5JiNmvL6IHhwq8Dpl9FOICmE2KyqALi9mEx2FlY1Uen75xGf/7zs1cu6yQW1aXAbDnTN8Mj1QIMVd976kTgN5YRQHRRHpUx6q6As8Mjk7MBjetKuEvLq2hMug2jktufviezfzdLctxG5Pa3UNxwvGU3mxHg8wVTLHPzoevquU/37QWm9XEx65ZAuhFrT9z9wHe9L0XiMST47+xEAZZVibmNYfVzKduXEp4OMkHr6zlcOsgpX4HXruFT92wjCfqu0hpkEhpSE1qMddlCrAXSqcyIV6Rf7h5Be/60Q4eONRG0G3jZKdeaygcT5NMpbGYZW5NCHFh6jv02i8rS3x0hKK09EcZNLI+agtcFHjt59pdLAAOm4W3XVJFYc6/hbpCL6V+J5fW5XOsM4TDYqHIa+eGVcX4HHqDhJ8938hNq0uoDLpZUernnVurePp4N06rieFE2sgyShGJp/A6pKmCmJhcDot5r8boaOawmvnbm5bhsppRSrGq3JfdJhRN4JHokJhjfruzCbfdws1r9PanrUar7Ty3nGAK8UosLvbwjbduYDiRQgHNvUN89p7DpDRIpjWkdIMQ4kLsOdNHLKkv6XnrJRW09kf54bMNJJJpYimNN26owOuQ81ABlUHXqPtmk8LrsPIft6/htd9+jqVFLjoGo/zyxTMoo4S1UrCpJpi9lnnPpYu4bkUxf/vb/ew63UfKWE2253QfNxnnjEKMR76FxLyXu5Z3caEnu9xGKYUZSAGt/VFK/c6ZGaAQL9OvdjbhtVvY0dBLx2CU7ad6AMg7Rxc/IcT5KaVYUeYjkUrjtJq5ZFGQz95zGIBEMj3quCKEEOeSTmt86f4jAChgfWUet61zMRRL8tChDuLJNJfU5kvBYHFOBR4HH716Md2hGK/fUIbLbsFqGrmmqS1wZ7e1WUzUFnr45lvX884f7sBjN3OwNUSzMYkoxEQkOCQWlLFLAQq8NjpCcVr6ImyqzpuhUQnx8jT3DlPgtVNb6OZkZxifw0JfJEGxpKYL8Yr5neOn3vdG4ngneE4IIcb6/Z5mDrfpS8oKvTbyPXZcNgsfuqqO1eV+ukNxin2OGR6lmAvevLmSwWgCk1K47ebzBhTLgy5qCzzsbdLr5bVJcEichyyaFwtaWZ6eutk2EJ3hkQhxYVJpjc5QlL6hGM+f7MFkgs5QDIACqTkkxJSzG2dMXcbfWUYsmZIin0KICf30+QZCMf074tK6/OzSn0Kvg6uXFbGtLp98OW6LSbBZTBR47ATdtklnmn3j7eu5aXUJACc7w9M5PDEPSHBILGiZFMzm3qEZHokQF2ZvUz8pDZr7o5zsGuJoe5jhhN6zojLfdZ69hRAXKs/IyOsJx9A0LdsS+D8fPEpTb2QmhyaEmKXSaY39LXrWkNNm4nXrykctSw24bKwu9+OyyWIOMT28DiuvqisA4FR3aIZHI2a78waHlFKVSqknlFJHlFKHlFIfNx5/s3E/rZTafI79G5VSB5RSe5VSO6dy8EK8UkuK9bahJ7skOCTmls7BkWy3WDKNAi6vy8fvsFCTL+1whZhqmeWaXeE49x1o41RXGE3T+OGzjRzvkBNuIcTZmvv0ZTwKWF8RoCIokzfi4ivx68sWO0Nx0sbEhhDjmUzmUBL4lKZpK4BtwEeVUiuBg8Abgacn8RrXaJq2XtO0CYNIQsyETBHqxp6J0yw7BoZplzW6YpbpyAkOmU1QGXTSGY5TW+jGbBQoFEJMnTLjeNExGOXv7z7AvqY+7tx+GoD/e+YU0URqJocnhJiFjnfqgWO3zcTaigD5HqkJKC6+EqOmVTSpkUinZ3g0YjY7bw6jpmltQJtxO6SUOgKUa5r2CJDt/CTEXJT5suwZipNIpbGOKVitaRqv/daz/PvtaygJSDczMXuc6tJPOKuCTlaU+OgKx3jf5YtQgEWCQ0JMucxyzY6BYULRJD9+rjGbwXewZZChWFK6mAkhRnmpQe8iWuR38voN5eS5pJi9uPiKfCNByVgiLZ3xxIQuqOaQUqoG2ADsuIDdNOBhpdQupdQHL+T9hJhume4QsSQkU2enWT5yuJ2OcJw/7GmWWWExq5wwlkKalKJ9MMo7tlZRHnCyqswvF6hCTIMir368+OO+FgAOt4XoHkoAkNKgJxyfsbEJIWanF07qwaHN1QGWFHlkUl3MiNxgUG7muRBjTTo4pJTyAL8DPqFp2uAFvMdlmqZtBG5GX5J25QSv/0Gl1E6l1M6urq4LeHkhXr7MGlyAgeHRJ/aJVJrP/uEAAA8e6iAUlW40YvZo6tEL4N60upjNNXmsKvOztiJAdYEsKxNiOgTdejcho+kQmvFfxlPHOi/6mIQQs9uxTv2SaVVZAItZ+gCJmeN36AuGWvslOCQmNqnS+EopK3pg6E5N0+6+kDfQNK3V+H+nUur3wCWMU6dI07TvA98H2Lx5s1TKEhdFbobFfz54lLduruRYZ5i+oRjHOsN0hvRZ4UQK2gYiFHplrbiYHXqG9GDmmvIA1y4vxm4xYZKgkBDTJhMcmsgfdjfzjq3VuO3SdUgIoRvWTyNZXuKd2YGIBa8s4GCgPUxLv3TXFBM77xmM0vMffwgc0TTtaxfy4kopN2AyahW5gRuBf3tZIxVimrhtZobiKZ453sULJ3sp9NlB0+iPJEZtd9/+NlaXBVAKzvQMURl0y8W4mDFRo219sc+B0ybLyISYbvnu8ScHFHoG0YmuIU52hVhZ6qcrFKUvkqAi6MLnkBojQixEXaGRDI2aAulSJmbWogIPR9rD2Q56QoxnMvmNlwHvBq412tHvVUrdopR6g1KqGXgVcJ9S6iEApVSZUup+Y99i4Fml1D7gReA+TdMenIbPIcTLVujVZ4P7IwlCsQTH2kMcbQ/RNObL8959rYSiSb71+HG+eN9RIlKDSMwQTdPI9JrI1M0SQkyvoGf8zKHV5T4AYimNe/a18tE7d/HnP36Jj925m4auiTthCiHmj3/+w0HaxmRkfOWhegBsJnBYJaNQzKzFRXr22vGO0AyPRMxmk+lW9iz6xNh4fj/O9q3ALcbtU8C6VzJAIabb69aX843HTpBIQyJ2dsDHYlIk0xqtAzHaBiL85LlGoskUkXgSz5jlA/FkGptF1pSL6TWYU/9KshKEuDjyc5aV+Z0WhmIpkmmN915aw//7zX404KfPnabAa8NiMtEVivHAgTaWFvsku0+Iee63u5qoK3TznssWAXCkbZAn6/U6ZKUBJ3Y5NxQzrDxPn0zc19w/bofmRCrNY0c6aB+M8oYNFfidcn65EEkYWyx479xazW92NpPSNCwmEzUFLsoDTuoKPTx4sJ1N1QF+8GwjGvDQoQ56jeVmbf3RbPcagIMtA/QPx7l8ceEMfRKxUHSHY4Ce+mkxy9JGIS6G3Bp1dYUeQtEk8WSKumIvJT47bYMxEmmNtoFYdru7XjzDm7dUUep34LCYZSmyEPNQU2+ESCLNHdsbedvWKuwWM9987DjdIb024NJijwSHxIyrzncD0BWOM5xIcbh1kBK/gyKvHaUUn/7tPl442UM8mebSugIJDi1Q8k0lFrwCj53NNXm8eVMlm6rzuHxxIeUBJ/FUmlAsyfUrS7Bb9BP6bzx6PLvfE0c7Rr3OB372En/a24qmST11Mb26QvrFp8dhls5kQlxEdiMYu77Sz5pyHyaTiQK3nS21QVzWkVMqi/F3ORhN8fVH6rlr+2kOtQ2QTKVHvV7nYJThuCxRFmIu+/3uZgBOdkUIG5m9TxztyC7/fsvmKmlhL2bc6nI/AJoGPeEoH/z5Tt72vRf49c4mEqk0f9rXSsdgjN5Igl+/dAZN0zjdM0RUymgsKBIcEgueyaQo9jnoGYpRFXSxt6mP+vYQB1sGeOvmCqqDLop9TgByT+sfOtRGPKk/cro7TNtAjEeOdJBISXBITK9M5lDQZT0rLVgIMX1WlOn1ha5cXMjHrl3M7RvK8Dgt/MWrFpHvseOxm3njhjJ+8YFteIylZLvP9PM/T57kqw/Vs7epP/taZ7rDvPcnL/FiQ89ZQSMhxNyxp7kP0M8RX2rsJRxLEk3q54KVeU4qg1KMWsw8j92C1Zjg+Oajx+kYjNExGOU/H6znqw/Vk0zrzRUAfrurmZa+YV73nedoH4hO/KITGIolOdY+KBPmc5BcVQgB/PV1S7h8cQHV+S7etqWSt26p4n2XLeLKpYUUeO3ctq70rH1OdA4RiSfRNI2/+sUeAHqHEqTS8kUoptfB5gEAyvKckjkkxEX0wStqCbptlAVd1BZ6ef3GCtw2Cxuq86gt9HDV0kJA8fVHj+F36Sn5rf1657LdZ/q5b38r4ZieWfDP9xyiviPE/z51kpNSuFqIWa+tf5j0OOd4h1sGsrfv2nGGvU16sMhpUayvDOB1SBUPMTtU5OmT3b/f2wZAJJGmZyjO954+BejBTID+4SQf+8Uu+iMJnqrvYDie5P0/fYk9p3vPOZmRmTT/5mPH+dyfDmc764q5Q4JDQgBeh5VXryrhhpXFbK3N54olBVxSm8+yEh9Ws4kPX1mHy5gFzlyLJ9J6KvE3Hz3OwdbB7GtF4snx3kKIKfPU8S4AygIyGynExbS81MfqMh9+42KvIs+VDdB++tXLGBhOEkukePXqErxGsXjN+G8wmuSPe1tp69c7YT51rJtESuNQ6yCPH+2U7CEhZrH+SJz3/ewlBoYTZz3XHRp57GDLAHfv0peZeR1W3rK5kqDbftHGKcS5XLVkdF3UTCmsTMjTbhmprbe3Sb+2+eZjx/mP+4/w3IluPnLXHh442DZukPSJo5185M5dDEYT3LH9NC829DAk10RzjgSHhDBYzCYCLhsum+WsoqFep5XKPCcWBWUBZ/bxHz7byM93nCb3OzKz5EeI6dLap19cFnuljb0QF1NV0MW7tlXjtJ+dCbCq3M/1K4p448ZyrllWxKdvWsqKUi//cttKlhXrLYR7Iwn2NvXxyxcbsyfjg9Ek9+5roT/nonO8E28hxMx5+FAHh1tDDETiox5PpzVyK7L0RhI8fLgdgG2L81lZJt0Kxexx85qRlRBOi2JrTTB732xS/PmlVThto8MDPZEkd714huFEmp5wlC8/cJS2cZaafe6egzx1rIvDLf0MxVMk03C0bfCs7cTsJsEhISbpg1fW4nVa2VKTl60l0TsUo3do9IlCpliwENOhPxJnyFiWUp7nPM/WQoipZDGb2FwTxG0bf5nI2y6p4tLFhVQGXVy7vIR0WuN4R5jV5f5sttGXHjjC5/90BBjJRD3SHuZMzxCg/40/Wd9JQjKJhJg1vvKQ/jf7uz3Nox7vCJ19kRyO6X+7ly3KJ98jWUNi9thQlZe9Xex3oqFYXKh3MSv22tlYnc+Gyryz9jNWixFP6Uul//KOXbzpu8/z8OE2kqk0kWiC073DJFIaf/WLvdn9HjUCpWLukOCQEJN069oyLGYTl9Xls6jQA+hrddMa2QJvIJlDYno9eLAdo84l6yr8MzsYIRagoNs2Ya0vh9U8KkvgnVur6BmKYVJQ6tcvEvsiSSJGHYYtNfpJeFqDu3c10xWK8s4fbOdrjxwjKc0NhJg1usJ6Zt+DB1pJpbVsfcmmXj2T12Mz43eMzhBaWxm4qGMU4nxsFhPFPjtmBVcvK+Tf37gav0tfHXHTqhLKAg7+4tKa7Pa5hzqH1YRZ6YXXOwaHGRiO8/e/O8hzJ7r561/uyW7XFR6ZNH/06PgTHV9/pJ7ucQKrYuZJcEiISbJbzXzm5mUsLfHxsWsWUx5wUJHnZF2FvpSgwGMDoFMyh8Q0iSVTPH60AwAFFMqyMiFmtXdsreaTNyzl6uWFWC165lBa0+s7KOBk1xCLCvTaYfceaOUff3+Aw60hDrUNkkhJ+2AhZoPh+MjfYmPvME/Wd/C+n7zEH/e2cLIzBECJ38FVy4qy29ktinyvZA2J2ecdW6vYUhPk6mWFVOe7+dxrV6NpcOWyAnwOK9euKMZuUbhs5lGTkFuq81hdrt/vCMU53jlEXyTO3/52P4/Xd437Xq39USLG308ylSaV1rh7dzPffPwEO071SDezWUiCQ0JcgNvWlrO4yMM1y4tw2izcsKKY5aU+2gdiLDVqSsiyMjFd/vY3+zhlnIh6HRbpVCbELGcxm1he4uM1a8r47C3LyTM6mNnMigKPjX973SoGh/VlooPDKZ461qUXsNZGMhKEEBfHT55r4PkT3Wc93tA9lL2dSMF/PXSMlxp7+elzjXz3Kb3LU3W+m7+8ug6vXc8eqgq6cVql1pCYfbbWBLGYFXWFXpRSrCn38z/v3MiSIh8mk8JsUlxaV8CKUi8fu3YxVrMiz2WlpsCNUhDI6b6X1qAnHMvWXs0spFA5zz9zrIu7dpzm1m89y54zvXzunoOkNfiPB49mj39i9pDeikJcAJvFhM2Iqea7bQRdVkxRxeaaPGLJNM+f7KFL0iTFNDnaHiJmLDVZWuzBapH4vhBzxda6AqqDLj796goGh5M8eaybpcVe3rixnB8+00AaiCVHZlG7h2SiQYiL5fkT3RxoGWDX6T421wSxGcfXX714huSY7IYj7fokzcHWAexGAGhJkYcVpX5WlwfY39zPW7dU4JqgNpkQM2ljdZAPXFFLQU49rLFLIF+7roz2gShbFuVTW+jGpBS3b6rgXduq+ac/HiI8nCDosfPCyW4yK6AdVhNBl43WgSiFXjs94RgpDf7lnoOYlUIDPv7LvQxG9Uyilr4oh9sGeFVdwUX65GIy5MpCiJfpW2/fQAqozndy+6YK6ow6RB3jVPAXYiq0D0Rp6df/fV2xOF9mJYWYY25bV8bde1o53jXEJYvyKPI5+MT1Syn02UbVrgPoCccneBUhxFT73J8OYTMrTnWF6Qnrx9mOwSj/8PsD3L+/bdx94imNUFTPfKgp0Iv6fuXNa7GYTayrCEh2r5iVbBYTVy0rOmcXvdetL+fWdWV47RY2VwW5YnEhi/I9LCvxsW1RPm/YVM7m6jw21uSxtsLPihIvK0q8vP2SKlw2MzeuKKLEp5c+GBhO0BWO0xWOj+pypgF3726eYARipkhwSIiXqcjn4K+uXcKbNlWyvMRHkbG2vFWCQ2IatPUPMxRLZlN3N9fkYzXLV7gQc8nbL6kiz2UjlkixuTqI127BbbewrNjHu7ZWceuaUnzGspRuWaIsxEUzGInxi5eaOdIW4vH6TgA+f+8hUho8d7IHILssFKAiz4HLOnIMXlnqMx538a+vW0We23YRRy/E1DKZFJVBF0op/um2lbx9axU+p54J95Gr6+gJx7FaTDgtZuoK3ZT4HVy5tJB3bqvGaTXzqsWFvGVLJaB3Osvk3mXOYTNh00ePdGSLu4vZQfIdhXgFzCaVTRsOGicCPeE4mqahlMwYianztYfrR6XuFvqkGLUQc43LbuFLb1xDIpXG57RljxPv3lbNH/e14rKZ8TitDMZS0txAiIvkvn0ttIf0bmRp4O5dLbx+fQUPHxrdhvvNmyr4/jMNeO1mKvPcrCz1s6TIy0OH2igNOLPb3bSqBKmzK+YLh9XMIiMzDsBhM/N3Ny1HKcWVSwr536dOYDYpLl9cQNBt48tvXMOiQg9XLC3gVzubsJgUmgblASfbG3oBCLis9EUS9EWSJFJpzCbJhJ8tJDgkxBTJN7qVDSdSJNPaWUsEhHglmvr14rRba/LojSTwO+TrW4i5KOg5u4PRdSuKeKGhhwPNA6ws8dHaH6U7LMEhIS6Gx47qnZbcNjND8RQHW/pp7R8mPqZh4GvWlvHY0U40TeOdWyu570A7h9sGWFPuz9YoAv1iWoj5LDOxsabCz3++aR2JVDr77/76VSWk0xomk2JxkYeNFXlUF7jYdbqPcCxJXyTBB65YxOf+dBiAoVhS/mZmEVmTIMQUCbr1E/6UBsmUTBmJqdVrXCie7B5iSbEbp12CQ0LMFyaTic/ctIIv376WjdV5APRKzSEhLopTXYMAFHn1jNxYCn76XONZ25UFnKTSGhur8lhflccXXr+a97yqmutXFmOXBhFigXLbLQRctlEBHpNRb+vdW6s53D7IvfvbcNrM5HvsLCn2cN2K4uy2LX3SmXM2kasLIaZIwDmyFn04kTxnoTchLlSfERyqK9Q7okgxaiHmF5vFRG2hJ5u+3zYYmeERCbEwNPXqF6e1hW7aBoaJJtP8aucZAJQCTYOA04LdauK779pINJ6m1O/EbFJcvbyYaCIlmQ9CjOOGVSVctqSAweEEQbednz7fiNNmotBrJ+Aw0x9N0dwXOatbmpg5EuYWYoqYcrpSdIdkxldMrVBM74hSkedkTZlPilELMU9lCtl2DsZIpzVa+iNoUsBEiGkzMKwfX1+/voxyo3ZQIq0/t6EygMNi4ta1ZdjMJlaU+llbOboTmQSGhJiYy2ahxO/EZjHx/isW8br15TisZirz9S7PTX0yETKbyNWFEFMoUwamsSc8swMR807UqH1w+8ZyLltSOLODEUJMm0xzg6F4inv3t/KT5xqJZq5UhRBTLmnEXtdVBvivt6wb9dyldfksL/WyutybXTomLeqFeHmUUngd+kqLZcV6cOh0jwSHZhMJDgkxhTJ1hw60DJBMjX8yLzPA4pWoDLola0iIeSzPpQeHkmn41uPHuXt3C0Px5AyPSoj5aSg28rflc1pZXxkgmNOyfmttPj/5i0tYU5EnXWiFmEJLi70AnOqWCfXZRK4whJhCxT49OPR0fRd9kQShaILG7iGOd4RIpTX+sKeFo+2DMzxKMdek0yMBRa90KRNiXsvLuTA93jlEz1CcjoHoDI5IiPmrM6TX8zOh1/1SSnHr2rLsYzX5bgIuGytKfDM3SCHmoap8FwCNXWGZOJ9F5CpDiCm0qizAnqZBDrQOsq+pjwcPtnG8c4ilxR5Wlfn56sPH+MfXLGd5iU9moMSkhXOyBmzSEUWIec0yTmbg9lM9rCr3z8BohJjfuozgkNumssvF/uq6xdx3oI2qoAuP0RnUJEvJhJhSZUZ9r56hBImUhs0if2OzgVxlCDGF3rG1EoC0Bp/+3QFOdA3RNhBlf/MAv9vVzFA8yQMH26R+hLgg4ageHFKASYKKQsx7tjFnZ/fubyWWTBFPyrFDiFfiyaMddAyMtM7OBIcKfQ6sJv0Pr9DrYHGRhy01edJ5VohpUuofKf6eSKXRNI19TX1EE6kZHtnCJsEhIabQilI/FmN2KTQcZ2/TAJ2hGPUdYY62h0hr8NyJHiLxJNFEil6jPbkQ5xI2aiLYLFIIU4iFINOxLONQ6yBP1XfxZH0niQnq2Qkhzu9Tv9nPya6RGiddIX3JZonfNSo76H2XLWLLomC2CLUQYmrl5xznukMxnjnexad/u5+fvdCYPe8VF5984wkxhZRS1BToa2jHJgcljLoxyTT0ReL88sUzHGyduHA1QDyZPufzYmEIRRMAOC0mzJI5JMS8V+C1j7ofT2n88x8P8pPnGuiPJCbcL5XWst8XQojR4sk0vUNx7j3Qlq3l12ZkEZX6HaO2vWFVMVtr86UEgBDTxGRSZFaSvXCqh689Us+p7jB37TjD9hPdUodohkhwSIgptqU6iMtqIs9l5brlRfzllbW4rKP/1J451s0X7z/CvXtb6Q6Nnz00HE/xpQeO0C3ZRQteyFhW5nPZpO6BEAtAmZFun6t9MMb2hl5a+yPEkilO9wwRS45Ov//6I/XsONkzqoi9EEJ39+4mNOC+vS1Ejb+dhu4hAIp8o4NDSil8DuvYlxBCTKGgR88e+t5TJ9nXNEgiBU29EX7yfCMhyR6aERIcEmKKXbuiiDdurOADVyyixO8g4LZx2ZJCblhRhM+ur13/6iP1JFIafzrQxuH2QQYiibNO5v/7kXqeP9mTDQyIhSvzb8DvtJ1nSyHEfFCWpweHzAoCrpHeIWkN/ri3lff/ZCef/NVenqrvpLF7iL6hOLFEkh8918hvdjUzMCzZQ0KMtaOhF4CBWJrhuBEc6goBUOKzT7ifEGJ6rDYaLTT0RMhcBaU02N7QQ3v/8MQ7imkjwSEhptg1y4qIJdNsqg5y+eICTnUNsbbCh8duxWKsXQ/H9JOS4USaHz/byD37mjnUNpANEB1tH+T5kz2c6grTJZlDC15m7XXAKbOYQiwEZcYSF5/TwvqKAABWs541+NPnGznaPkgsmeKrDx/jAz/byS9fOsPf/e4AQ/EUT9Z30ppTcPdER0gKfAoBHGjuz95u7osA0NSbWVZ2draeEGJ6vf/y2lH3XUYB+GQavv3ECb7x6DFOd4dHbZMaM5meTmuyBG0KSXBIiClmMZvwO6384NkGdjT08IaNZdS3hRlOprikJnjW9md6h/jDnlZeONFDY4+e3vztR49zuG2QeErj7l3N8qW3gKXTGoNGFoBXMoeEWBBuW1eOAjZUBnjblirK8xxcWpcP6LOqXeE4h1pDtA/E8DjM3LnjDPftbwMgltJ44WQP0USKZ4938YX7jmTrqgixkDX1RrK3H6/vAiBqxE1LA47xdhFCTKO1lQECzpHs2H+4eRlOYyL98aOd/PLFM/x+T0t2guPefa187p6D9EfiAGiaxqd/t3/U3/ZYUrv1wljOv4kQ4kJ97NrFDETilASc2C1mVpT6efhQO2vLAzx4qAPQlwukNDjdO0zHYIxEKo3XacGE4tGjnWQC4ztOdRNPpbFbpJ3qQqNpGh/6+U4q8vQi5y5pqSvEglAWcBJ029hWW8CrFhdQ6nOyriLAU8e6R203EE2w58wAZiA3N+inzzVwaV0+//ngUVoHohxuHaQiz4XVPHpOMJOtKrXMxHynaRqxnD+SJ4508qaN5dn7RR4JDglxsXnsFrbW5vP4kU6KvHbuPdDO4mIPB1oGGYqliCdS3LH9DLetK6fIZ+drjx4jlkhRkefk3a+qYXdjH/cfaGNjZYC3BJxYxhzj7tnbQonfwSWL8mfoE849EhwSYhoEXDYCrpEsD7/Typs3VwJgsyjiSY23bKnkd7uaiac0osk0B1sGeehAGy819BFNjkS5O0NxYkkJDv3/9u47Po67TPz4Z7b3ol31Lrl3O44dx0lIIZAGIZQACaEdxzWOu/vd7+4o13/HHdeA4xpwQChHJ4QkkB7SnbjEvUqyeteutvcyvz9mtZJcEpvElmQ979dLL69mZ2Zn92vNd/aZ5/t8LxUdYzF+dXyMJZUOrl1edVpHNkVVVR47MsrTx8d5y+pqAJxmOWULsVg0VthYXe/GbTVS5TKTKxSpdJiYiGfx2Ix4rEZi6RzhZI7CKcmlQ5E0Tx8f4+BQFIAf7hpgY6O3XMtoyrGRCDazgVa/42K9LSEuqnSugEmvI3rKLH49gSh/+pODAFgMOmxmucYSYi60+e2oKypRUfi969p5qSvIoaEoKpAtQiCR5b+e7qQnmKS/NMLiB7sGaPM7+KfHjpPMFvj6C91cv6KKGs90H6eqKn/xwGHevqGO9Y0e+R51jmRYmRAX2YZGL36Hkd09k6xv8LCu3oVegSKwdyDCMye0zCKXRQsEZAqq1Iu4hHzrxR4OD0X58q86y7WEZsrmi/z2d19hZ88k33ihB6NBR+e4Nt7aaZXgkBCLxe0b6qgvDXX54ns38MkblnHt8iqsRh2/f+0S7t7azJo6N22VjvJ0wKtqnYBWuPqLT3aV97W3L8S+gclZfUkinefdX3mZrrGYpN2LS9JELMPHv7OHQDxD/ynDThIZlZdKBaqXVNox6OQrkRBz4cNXtuC0GrEa9bT47HxgWzPNFVZ8diNTSa1Pn5jQ+qqiVo9oYDLJF5/soGtcCxb1BJI8eXyMgwNhsqUb7I8dGSWSyvPAviHiMrnPOZMzoRAX2foGD+1+B7etq8NuMVDptLCqTqvWH03nmUxqJ7BWn628zWg4PSfHKt54h4ei3Lq2hkS6QCiRPe35f3nsOIF4hn//VScdYzFSuSKdpc5PClILsXh8aFsLjRV2AMwGPVaTnq1tFfzWm9o5Ohrl8HCEj17dwt/fsZZV9W6qnWasJj1Oy1RBz+l0okSuwA93D9I5HisPJfvnx46TLxb56SuDTJ7hXCTEQvf08TF29U7yfFeA3oAWHKp2alndM8Oh25b4MehlaKUQc6HabcVpNnLjqircViNOi5HtS/y8d3Mj29q0Wq3hVI7ojHGhBRU6x2PlGc5U4BvP9/KXDx6hL6jdUP3cL48BEE0XCJwyuc/BwTATMfludSYSHBLiIrtmmZ9oJs+t62pYUePkjo11fPzqtvLsNFM2NHmZulY5OhKVotSXgFAiA6j8ePcggWSWYyPRWc/vHwjxSl8Iu0kPqlqewn7KzKGKQohLm06noD+lFtBNa2p55NAoK2td3LOtmfteGeJbO3q4Y1M91yyr5MZV1aytczPze66lVNxzX3+IfX0hjoxEiKRy/GjPALmCyvNdAbpPmQ1GiEvBvS92ky8UufeFHh45NAxAi9+Oe0YWrlGncEWbD4PU3RJizvz121dz85paFEX7O7x6WSXZgsqmJi9AuQ6rxaCjpUK7eX7qoIqRSIqO0Si/PDjCvv4Qg6HpiRieOTFe/h5VLKp87Nt7eKU3dIHf1cIkwSEhLrINjR7u3tJEvdfGB7Y284uDo/ROJriy3YfPrn35r3WZSWQLeGxapsjznRO80Bkgksq92q7FPPfLQ6MMhFI83TFBJJnjgQPD5GYM5/j68z30BRM82xlgb3+EU2brlMwhIRY5h9nAv9+1gfde3sjm5gq++N6N/N0da9nfH2YkkuJNyyrZvrSSBq8VBfA7jKwsDTWLZwr897Mneb5jgi8/2UEqp517ktkie/tCcgNCXHKOjSbIF2EskuTFLq2Ye5vfzg0rqnCVAkStfjvNPlv5S6kQYm7MrMH55pXVNPtsqIrCugYXNS4zVU4zv3ttG7esrcU5o0bY5mYPAOl8kWSuyHde7uNTPz3IzB7tZ3sHGQqlSOcKPHZkhIlYhocODJHKFvjZ3kE6x6IUTr3oXqSkgIUQF5nTYuQD21oAsFUY+PL7N/CtHb00eG2sa3DTMRajzW/nbetqGZhMEuyZpGMsxg9397O02oFbAgQL1o/3DBBKTgf49veHSGYKuG06JmJpdnUHCCS051NnqDPlkrYXYtFbVu0qP9brFLw2E5+/Yy1PHR+nscLOuzeZ6Q0kgEm2tFUwFErhshiIpvOMRTI8cni0PLRsylPHxvj4Ne0ytEZcMpLZ6czbiUS+nBm0pMpBi99BrqCSL6hUu834Hea5OkwhxBkY9Tru2dZCoagyHErynk2NLK128I0Xe6lymnnv5U3878t96BTtxkeNy0Q6VyScyjOZyBEvFaCfmhn65ESSP//5IdY3ePjRngFU4Mlj4wyFknxrRw9Os5GPbG9hdZ0bv9N82syei8nifedCzBMmg57fvLqN0WiaG1ZWsbTaictqZFm1k62t2ljbwckUu3omz1jAWCwcA5Na7SBrqXrsZCLLZEIbB/2fT3cxHtc6szrXmS9UnRaJ5wshTmc1G7htfR0Os4FqtwWX1cAfvXkZ8XSera0VrK5zYtBpdVYOD0U5MhIDwFgKBh0cjMyqUSTEQtc5Nnuo5NT/72XVLq5ZVkm+qGLQK2xq8uK0yI0XIeYjvU5hTb2HaCbHI4fHuKK1gj+/dSXBRJa3b6hjQ5OX//uWZWxp9XPT6trydtnS/dV6rzYELV9UOToS5VfHxxmNatfdmYLKfz3TxZGhKIPhFF96spM/+ekBTo7HLvr7nE8kOCTEPKAoCp++eQU7TgbZ2OhhTb2bCoeJK5f4AEjli0zEs3RPJOb4SMWvS1VVIqVi436nVl8qV4T/eb6bnd1BHjs0AoDbYqDKbcVrM2I26HCYplNnJXNICHEufv+6pXxzRw/rGzx86EqtsPXyahcWg66caq8AH7myBdDORTJjmbgUHBgI87XnTvJsxzgAZoOCDjDrFbw2I0uqHBj1Ov7+jrXYzAaW1zhPq+0lhJg/7trahMuiDZF+92UNWE0GPnPLClLZAi6LkXUNHipL35nWNUxn1vrsRq5e6i/PeDYey9I1MTto/PP9wxRUbfazyUSGYyNRHjk8uqhniZbb0ELME26bif/z5mV88of7+ef3rMNs0LOpyYtBp03bCNrMG29ZXTO3Byp+LUdHouXZUbw2IwOlQnlHR6J0jMUYj2uzBdVXaLVCat0WEpkCS6sdPHlMu8h1mOWULYR4bR67ib+4bSVNXhsem4lKp5l7tjXx/V395AsqfoeZ4UiKX5SC0gChVA6HZFCIBSSVyfOjPQMsr3ZyRbuP+14Z4Bsv9mJQdMQzWiauy2rCbtKzvNqB2ajHbNRuuHjtJv7m7avn8vCFEOfAYtRzT6kcx5RKp4Wb1tYSTmTx2k18/E3tfOXZkzRX2Dg6FMVo0HHV0kpuXFnFK32TdI0nyBfVcq29KVMJs0UVhiNaRtEPdw9w+4Z66r1WTHrdoqtHJplDQswjS6qd3Pc722ivdADakLNWv4NGrxWAE6NSMG2heuiANlOKXoFP3bQSq1E7/Y5H04QSWQqlZq1yWHj/lka8NhPrGz3ctm46Tdagk1O2EOLcXN7io9qt9R2/e+0SdvWG+P3rltJUYcNi1LOq1s0nr19SXn8yLtPZi4WjUFT5ne/v5Ye7B/jPZ7oIxjN89blu/ujNy3j7+hp6gtrU9TevqaapwsayahcemwmTYboftRj1WIz6s72EEGIeu3VtLe/f0oRRr6PaZeGv3raajU0VbGz28qFSvaLlNS5uKBW3XlLpYOrPfep7FWjX5S6rgdJlORPRDP/06HG+9EQHgUXYL77mbWhFURqB7wA1aMPVv6aq6r8pivIe4K+BlcAWVVX3nGX7m4B/A/TA11VV/fwbdOxCXJKsptl/lqvrXKRyBQZCKXqCCXKFInqdXMwsNC92TgDgs5tQdLCu3s3O3hAjkUx5mEed28K6Rjfb2v147ebS7ENV6HUKSyrtSGxICPHrsJsN3La2luc6J/jgthYcZgNfebaba5dXYTUopPJquf6ZEAvBU8fHCCWy/MVtq/jrB49w74u9jEZSfPy7r8xab2urj+1L/IyE01yz3I/FIB2pEJcK3SlDQu/a2sTR4QjdgQTv2lSP32nmhhXVGBQdW1or+Nrz3cTSOSxGfTmD/44NdVS7rTxxdIyO8ThFoCeQpGMsxgeuaJ6DdzW3zmWMQh74Y1VV9yqK4gReURTlCeAw8E7gq2fbUFEUPfCfwI3AILBbUZQHVVU9+voPXYjFodVvx2rS89iRMSLJApl8Ue50LUC9AW2c88ZmD21+O7933RL2fGt3OWPIYtCxrNrJ9nYfDV4rNW4L/ZNJ3FYjNS4LK2ud6BdZaqsQ4o1z/cpqjAYd3325DwVY1+Chwm6mymWhbzJFcBHeIRUL11efOcnSKjt3f30nZr3Ct3f0Es+eXjdrSZWDtkoHyUwBl9Ww6IaICLGYWIx61jd6KKoqVy2txKjXsb7Rw09eGeD7u/p456Z6njk+zjs21XNiNEYsnaU/lEKn1/G5O9bymfsP0jmeoCcQJ1dQGQqnykWtF4vXDA6pqjoCjJQexxRFOQbUq6r6BPBaJ9ktQJeqqt2ldX8I3A5IcEiIc3Tjqmr+4+kuQEvdy+QKIIWJF5xEVosCbWvz4bQauaLNR6vfzkQ8QzKT57oVVXhtRlr9DhRFwahXysML37O5AZfFIEUzhRCvy9VLK9na6iOdL2Ax6DEZdNS4rfRNphZl+rxYmAYnkwxMJnilPwxosw5lCloB2SqnmWgqSzqvYlDAazNh1Otw2yRjSIjF4J5tLWTzxfIQUr1O4XPvWEswkeHzjxwnlSuyssbF1Uv8hFI5rmz3sbbezbdf6mVDo4fO8QTZ0p3bRw+PsqXVN5dv56I7r+qmiqK0ABuBnee4ST0wMOP3QWDr+bymEIvdqjo3//7+TTx86GEABkNJqlyWOT4qcT5UVS0Xo2722bEa9SiKwsYmD0a9DgUt6LN9qY8Ku+m07e/c3EhfMCF3PIUQr5vJoJtVd6XWbQYgKMPKxAJx744eggmt4LRRgdyMUoy/c207vYE433mpn41N3nIBaiHE4mE6ZfioTqdQ6bTwz+9ex1gsg89h5oolPu7fO8T1K6pYWu3k8tYK/uvpLtorbUxEM0QzBUaj6Tl6B3PnnMPoiqI4gPuAP1RVNXqum51h2Rmr6SqK8nFFUfYoirJnYmLiXA9LiEVBr1OwmbQ/1+6ATGe/0ERT+fLjxgpbOcizqcmLz2FiS2sFBVVlVa0bg/7003KNy0KL337RjlcIsXhUu7TCnJMJyRwSC8OunkkKqvYlZvvSyvLyCruR3kCCaCrPJ69fwvYlPixGyRgSQmh0Oh21bit6ncLNq2u4a2sT9aXi1Ea9jg9f2cL6Bi9XL6sCYDiUnMvDnRPndMZUFMWIFhj6nqqqPzuP/Q8CjTN+bwCGz7SiqqpfU1V1s6qqmysrK8+0ihCLmtemZZR0jcXJ5AtzfDTifIzHtDsPOsBnN5eXv3tzI8F4jp/tG+Jdl9XTWHHmcc06nUKt23rG54QQ4vWodmnnpJAEh8QCcWxEu0fd4rNj0Cs0VVhRgFW1LtY3eLhyiY+HD4/S6LNjOsMNFyGEcNtMvH19HbYZEwG5bSa8diMNXm2Exmgkjaourlmiz2W2MgX4BnBMVdUvnOf+dwNLFUVpBYaA9wF3nfdRCiFo9dsZCqc5MRbl8FCE9Q2eM2aZiPlnIqYN17CZlFnFxI16HX952yo6x+MsqXJITSEhxEXnc2jBoYnYdPp8TyCOSa8v31EVYr4IJ7PkS+O0LSYdt62t42f5QXSKQo3byrZ2H7UeK3qdjiVVDhmOLYQ4qzOdH37z6nb+4ZFjAISSWfJFFaN+8ZxHzuWb5XbgHuB6RVH2l35uURTlDkVRBoFtwC8VRXkMQFGUOkVRHgZQVTUPfAJ4DDgG/FhV1SMX5J0IcYlbXuMEYH9fmIl4mvGoFnBQVZVQIstYZPrCXlVVRiMpisXFFe2erybiWlv5HKbTAkAWk561DW6sJqmLIIS4+DylrNRAfLpP+dR9hzg2HJFsIjHvjEWna2PdvqGOlXVOtrX7qPNYuWapH79TC3besbGelbWuuTpMIcQCVeO28KmbVwCQKUBhkX2XOpfZyl7gzLWDAO4/w/rDwC0zfn8YePjXPUAhhGZNvRuAaCbPd3f084nrTVS7LRwfifLU8TFWVDvZavTjthnpGI2xbzDMbevqcJjPq+68uACGQykAqt32RXX3QQgx/3lt2uyX4WSefKHIgcEwR0ei/O/OfiwmPZe3VhBL5egPpVhd58JskEC2mDtTw7StBoUVNS7aKh00VtgYmEyxus6NsZRRPTXrpxBCnK+Zk8NkcoVZWf+XOvnWKMQCsa1dm0qxoGrFGAPxLMeGI/zdw8fQKwq9gQQ2swG/w8znHj6GToHrl1dJcGgeODkRB6DOZZYUdyHEvDJVzy6TL5Ivqvz9L44SS+fpDSTY0RXAYzPxhcdPcEW7j2JRZUOjDGkWc2dqmLbfaabJZ8Oo12HU6/jULSswG+T/pRDi9Zt5EyScyuG2nT6T8KVKvjUKsUDUuKy4rQYiqTy5osq9L3Rj0Ouo91gZiqTpmUjw0IFh9DqFgckk8XSecCon097PA71BbYa5eu+ZC04LIcRc8ZQyh4pAUVXZPxgBoHcyyc/3D5PIFhgIpejZNUBRVWn0WqkuFchPZvPoFGVR3VUVF1ehqM4ajj0c1jJxGyts1Lima2K5LMaLfmxCiEuXQYG8CuPRDM2+xTNjsITYhVhAtrZW4LJoMd39gxG6JxLcv3+YXT2THBiKEErmODocozeYJJDI0l3KWBFzazisTYVZ45ZAnRBifpmZXRqMZynMKK8wGknz4IFhusbjjEWT3L93iP7JJIWiyqGhMA/uG6J7InHaPotFVWreidetcyzGV57tIjtVgRroHC9l4npsUqtPCHHBuKxawHlqsoZ4Jkdf8PT+7lIjwSEhFpAWv4N3bqwHoKhCYEax0KIKz3cFODQULi/bcTJANl8klS1c7EMVM0zEtXaamjJaCCHmi5lDXb//cm/5sVGvUARCyRwqkMyqdE/E6Z6Ic2gwzF8/cJR/faKDoVDitEBQdyDBUCnDQ4hf1/37hnj44Cip3PQ1zEBQu9lS75GZ9IQQF05V6Zp9rDSU9Z8fPUH/ZHIuD+mikOCQEAuI1ajnyiX+cvYQQIXdSE3pBJbKFmbd9d3VHWQwlGRXT5BIKgfAZCLLsZEokaT2eyiRIZnNX7w3scj0BBJMXdfWueViVggx/5hLCRg/2zcMwJYW76zz1VSCRq4I977Yx5/ddxCTQUGvKLx4Mkh8Rh+SyeX5wx/uK8+oKcSva/9AmHg2T3rG/6+BSS1zSG62CCEupIZSKYiJWIZMvsD9+4YIJy/9fk2CQ0IsIDevqeGFrgA3rKgCwKhTuGNDA5+/Yx01LjNbW7xsa/NSUaoh0R1I8KNd/ezpDdE5GmNgMskTR0e5f+8QY6U0ye6JJF3jMvzsQigUivz2d/eUf6+U+k9CiHnIXeozpu6Qmgw6/uLWlThMegyKVi9talazjvEYI+EUO3smGY1leGD/MNHSzQeAb7zQw/HRGAOhBJm8ZK2KX18omaVQVImmp4NDkZT2uFZutgghLqCp4NBYJMUPd/UTTef53C+PzxrmeimS4JAQC8iKWhdXtvto8dvw2U2srHPxjo31+JxmPrSthWAix1g0y5+8dTkA2QI81xngl4dG6Asl+MdHjvGDnQO8eDLAWCRNIpPjj3+yn7FohnAy+xqvLl6LqqrljCyArzx7cladIZlJRQgxH1U5Zn/RTmYL7OkPcfcVzfidFj73jrV89MpWQBvCHM0UmBpJFkrmmIhlyue/b7zQS76o8sNd/cTTkpUqfn2dozEGQym6xmLlZdnS97I6j9xsEUJcOA1erV8cDqf4n+d7AKh0GDFd4tfyMluZEAvMTWtqeenkJB/c1sS2tko6xmI8eniUm9fW8IU716MoCkdm1B06PhpDp8APdvajqmAz6Tg6EqdrPMbxkSjjsQwPHhjC5zCxqWnxTNX4eoRKQ/M2NnlnFcT8ySsDjITTvOeyRqpcZu7bN4TDqHUiFgMy/bMQYl6qcVs4PBIFwGHWc+fmRkajaaqcZv7xXes4MhylpdKGzagjmdO+nbdX2jlZKka9rz9EJJWjcyzKZKkW3r6BCIF4Bp9jevhPKJEhkspjN+updMqXe3F2fcEE+VIA8rGjY7x1TS2ZGXfsK+xyvSKEuHCmshOPjkRJlmq3bmzyzeUhXRQSHBJiAdq+xMdgOMWJsSgHBsJ85taV/PtTnXhtRswGPU8dHy9fxKtAQdVq34STuXJNou/v7icQzZDMFtjdM8m1SytZWeOS2T/Owb891UHneJwPb2tha7sPl8VIKpvnf57rwajXUeu2sLs3RD5X4GDpy9OWFh+GGdPxCiHEfPG2DXU8dXyc7e0VJHNF1jW4eVd1A39230Gy+SKHhyMcGlK5comPJ49NYDPqWN/gYTyaJpYp8JVnTrKk2kl/MMFU2btMvshIOEWL347ZoCeeyfNCZwBFp+C2GvHZzejknCjO4r49g+XHR4YjpPMFJmLT9T5MerlWEUJcOD6HFoCOZ6bruV67wj+HR3RxyG1sIRag61dU0TEa46nj4/zpTctp9dt5/9YmfrZ3iHtf7OHj17SVx8pOCSZys4pV9wWShEpj98eiGZ7rnCCYuPQLrb1ePRNxnusIYDbo+f6ufg4NhknnCvzLYydo89u5ZU0N//NCD6PRNP1hra6T12bg8tYKCQ4JIeal61ZUUe+1YDMb8TvM+J1mjHodH7uqladPTPCnb1nO396+Bp/DQqXDzNXLKvnI9laubNculC1GPWaD7rQ+5Knj43RPJIhn8nz1mS7+6bET/P0vj7G/L0xCJkIQr+L5k4Hy45FwinSuyMHBCAAWPRj00p8KIS4cfyk4NPXdyWs1YDcZ5/CILg7JHBJiATLodSypcnDHxnqqXFra4+UtFVzeUlFe58p2H8ORFG6riWA8TTqvYjEo1Lpt9AQTZGdEilTgxa4Ad4VS1Huss6Y2FrN9+v5D3LWlkU1NXv71iQ4eOjDC4GSKJ4+NMxFPs7MnyOfuWMvzHROAFoG/c3MTlU6zDCsTQsxLTrOBtXVu3reliQf2D2M3aZeHq+rc3Pvhy8sZPl6bkQ9d2cyWlgru2ztAsDSErD+UYjiSYmrUj8dqIJzK89CBYa5bXkXnWJSfvDKIXlFI5wo8emSUd13WgNNy6V9oi1/PcChVfpzKFtnfP8k/PHwMgAqnWYJDQogL6tSi9/VeG4vhHq98UxFigfrY1W1sbTv72NfLWrwYDTp+79p2rmjzs7zaQZXTwhfuXI9hxslt6mEgkSMQS5PIyuwyryaZyfPtl3q56+svs7LGRed4jB/sHsBl1ZHMFgmn8vzfnxzgR6WU+Hdf1kAokaVGZioTQsxTiqLgc5g5MRqjtdKObcbw4plDv965sZ54Js8Pdg+wscnL7Rvqyn1IvggmvUKty8xlzV4Aouk8X/5VJ//6eCfBeIahSJrJZI5jo1HG4+mL+RbFAjNzyugC8LmHj+OyaEHLaqcFo06+wgghLhy72UCNy0yrz8ZbV1XR5LPR7LPP9WFdcHJmFeIStaHRy3s3N9JWaef9WxqZTOb4i9tWY9DraK92lNd77+bG8uOf7h0iOmO2LXG6vmCcgZCWifX1F3tAVVlZ4+DQULy8TqpU60kBltc4cVuN1J0yzE8IIeaTUDJH10Scd29qOGv26LIaF51jceq9Ft66uobrV1bTVmlnXb2LNy31s7zGyVtX13BkWJtdqqjCSDhNNJUlV5y+GVFUoW8iQSydYzyaZl9/iHRObkwITbGokjnlv8NvXdPOcFjLJmrw2qRelRDigltV66K9yoHLaqSxwobbdulnu8qwMiEuUQ1eK+Fkjq8+143fYeaLd24AVH68p58ap4UTo1owo6XSRqXDxEQ8y66eIOPxNHVe66vue7Ha2R0kktbGTVTYjEwmc7zSH2Fvv1YHwW7S43OYCMQyFFW4fkUl+wfCfOzqNtorHa+2ayGEmFP/efemc1rvH9+9DptJj8Wop95jZWWti2gqR6PPzge3tfDYkVHuvqKJbzzfTTiVZ2xGEeFat4WJeJpcAR48OILHYSaRyROIZ2jzO7AYpciwgKHw9JAyq0EhlVf5qwcPkyrNlPe29bVzdWhCiEVkbYOHZVV2nu8Kct3ySsyGS7+PkuCQEJcoRVHQ6xTu3trEsZEYw5Ekjx4e5WNXtfHI4RF0nWAz6/nOjj6uWerjvn0jJLJFgvEM+UJR6uOcwaEhLQjksxu5Z1sLX3nmJOm8liWkV+Cf3rWOxgobP98/xLp6D4eHI6yqdbKi1ole7nIKIS4B/hlT0wPUuiy8a1M9foeFfKFIIlvgnRvr2dU9ya6eIJlSfTuf3cRf3LaKb77Yw+7eEM93ThBKZommciiKwk1raoBL/66seG0nRrXMM4MC7ZVODo9Ey4Eht8VArUcycYUQF16tx8KzHQHCqRxLq5xzfTgXhQSHhLiEfe6OtQBsa/dz1/+8zCdvWMoVbT5GIin294epclnY2lZBbyCBTtFS/Z86NsFlzRV4bKY5Pvr5Z+puZo3LQoXNxP95yzL+5bET6BS4bV0dx8di7BsI844N9RRVeOLYGO+9vHFR3GkQQixOq+pcdE3EGYtm+NXxcW5fX0et20p7lR0VlVAyx/JqB16bmQavjdvX17O7N0ShqNJUYeOlkwGCiSzJTB4Wx7W3eA2D4SQAlU4zH9jWxGfvP0yV00Qmr3L1Uj8Wg9y8EkJceLevr+eyZi+NXisW4+IIm8jZVYhFwG428LPf3c4NK6vR6RS2L6lkY5MHo17HDSurqHZZqHNrBZOfPj5GKJmd4yOenwaC2gWrz2Hmuc4JVtW6uKzZy8paN+/Z3EhvIIHZqONHewb45os9bGzyUOeRIXpCiEvXm1dVky9ANJ3j/71jNbeur0OnU3BbTdy0uga31UiF3cybV1bx1edOsqdvEtCmB37owDBjsSz5IuwfCM/tGxHzxmhYK1Ze57Wyrc2Px2ai3mvjs7esJFdUZfihEOKisJr0LK1yLprAEEjmkBCLxsxhTTVuCygKoOKzm3nnpgb29YcYDKcZi2YYDqdp9NpkaNkphsMJQMuwunNzI998sYffuqYdn8PMj3b389Y1Ndy4qprHj4xiNeppq3RgN8tpVghx6XJajPzOte2nLb9lbQ337xvid97Ujsdm4mvPneT9W5oAeOrYGLFMgdKIMwB6A8mLdchinpuZpVvttnDdikred3kTjx8Z5Yq2ChzSrwohxAUhZ1chFikFqPNYcZgNeGwmat1ahksRCMQzjEbTNMgMW7OMRbXCqlct8bN9iZ+l1Q7+4+kullQ6MOgUtrf7MRv03LauDuCsM/4IIcSlbnmNC6N+hIl4hkcOj7K6zs2W1gqKqsqm5goGggnWNXronkhwcCjCQCgx14cs5onRqJY5VO+xYDbosBj0fPflPqxGPVtafXjtMuxdCCEuBAkOCbFIvWV1NW6rqZwd1OizlWcF+d5LffjsJqpdFoySPVQWSeUBWFXnxG420Gp2cFmjl0PDET55/dLyBasEhYQQAn77Te189v5DvGNDPVct9Zf7myafjXyhiFGvw1OaGvjkeFwmQxAABEoz3FW5rCiKwh/euIwjQ2HcVpPM/CmEEBeQBIeEWKS2L6mc9fsta2r56Z4BugNJDg5HSGULxNP5BXeHrlBUL9jMYPnSEIga93QdobuuaCaeyUuauxBCnMJuNvCl9208bXmj18rlzV5a/Q529gR5rjPAQChFVoJDAgjGp4aVaTPj+R1mrllWJTdehBDiApMeWAgBQIvfzpLSNI3pXJHvvtxLLJ2b46M6P8F4hkODYYpF9bVXPkdT+8rkC+VlXtvs6ZYlMCSEEOfuTcuq6BiLMRHLcHgoAkA4mSOXf+PO3WLhSmS0/wd+h6W8TAJDQghx4UlwSAhR1uKzYShdf+3pCzE5T2ctyxWKjEfT5ArFWcv39E4yEkkxGJoubJrM5lHV2V84CkWVkXCKZDb/mq91eDhCJJkjlJgOlJn0MlOKEEL8upZVOzAbdDzbMc5Na2oAbfaymUF4sXhN/S+odC6szGUhhFjo5Ha3EKJsdZ2bFbUuDg9HSWaLjEbSFOtVdBdomNavo1BUOTocZSKWwWrSs6nJi9WkJ5sv8un7D3HtsirMRj1uqwlFB3t7Q7T4bbT4tToFqqrSOR5jYDKFUa+wps6F32k542uFk1l29wRRAUPpM9ADev38+TyEEGKhURSF379hGcCs4P1YNE2VSzsfF4oqfcEETRUyc+Ziks1P3/RxW42vsqYQQog3mvS2Qoiybe0+1tS7sZTSh17onCCZe/13ckOJ7KwLvtejN5Dga8+d5NkTE6SyeUIJLbvpQH+IdK7IK32TDE6mODgU5oH9QzzXOUH3RILR0tS4Y5E0X3i8g3tf7GE4lKY/lDrra31/Zx//8fRJArEMg6X1HBZ9OVAkhBDi9VEUhal4e8dYrLx8KJTkxGiMYDxTXpbOFSS76BIXnpGxbJQsXSGEuKgkOCSEKKtyWbAa9dSVprDf0RWYNfQqnSsQSeWIZ/IUzqOuT38oSTzz2kO4XkuuUOQrz3bRE0hwbCzK/zzfw3hcm/L2sw8cJpktMBJJ872X+8jli3z9uW529QR5qTtIbzBJoajynZf7GAonWVXr5Nsv9RBOZIln8pwcjzMWSZdfS1VVfvrKIE6zgRc6A3SMal9aKuymC1bwWgghFiOXVUtk7wlofUUsnePfnuzkFwdH6A0mUVWVQlHl8FCE3sCZp7zPF4qzAgtiYZoazq5DsnSFEOJik2FlQohZTAYd29t8dE8k6A+lGAqlcJgNDEwmGQ6n0SmgquC1m1hT737NQEm+UGRvbwi/3QSvc+aznok4z3YEKKoqnnyRYCJDOJkjksxxciIOQLagEkpm+dP7DuK2GEnnivzq+DibGj30BOI8sH+IRLbAT/cOYdLpODgUwW0zEknmUVFJ5wo0++2EEll6g0mKKjx5bIwr230AVDjMkjkkhBBvoCqnhVAyTl8wQX8wwfHRGM90jFNU4V2X1TEaTZPK5Hn08Cjbl/pp9tnJFYqYDDrMBi27ZCCUZCScZlu776zFi4tFlaKqyjC1eWyqvp/NqEhfK4QQF5n0jkKIWW5cVY2nNBtXvgjxdJ6d3ZOMRNJYDDrimQIGvY5QMkvHWJTBUJLEq2QFHR+N8qWnOkhkz38ogKqqhJNZAvEMwXiGzz9yjEgqRyCepWsiQSiZ59BghEePDDOzNvV4PEu108zJQIKuiQSxdI5HjozxtedOEkpkCSdzhJM5xuMZfrpngIODEf758eMUiypdE3FGwim+9GQHU8lR0XSWPb0hAPx2s8yaIoQQb6C2SjsAL54McHJCGzocTWnn6edPBDgxGuMrz3Xz3Zf7CMUz9AUT7OqZZDSsZXsmMnm++EQHY9E0yVfpa4KJLP2TybM+L+ZGJl+gZyJOOlcoZ3957CZ00tcKIcRFJZlDQohZNrdU8PP9Q+XfDw1GWN/o5m9+cRSdomDS64imc3z8mjZ0isJoJIPbZmRjo4d0rshgKEkym2ddgwdFUfj68z1EU3kiydxpr5XJF8p3fU+VLxTLgRqdokNFZcfJIJm8igIY9QrZgsp9ewfLwampNPRcQeXIyHTtivFYlhe7xlFVSOa0KJLdpCeRLTAcSfM/z3VjNer5h0eO83vXtXN0JMrP9w+Xt4+kCuQL2peQarf59X7EQgghZlhZ6+aRw2OEkjl+smeA/skkpVM1P907iNGg58mjY6hqke++3MdvXtPO0eEIdpOBJp+NXT1BHjk0Sq6gcmW7D7v5zJe30VSWSPr1D3EWb5x0rsAD+4cYmExy2/q68rAyv2TpCiHERSeZQ0KI09yyppYKm3Zx/Y0Xe/g/Pz6A22Kg0WvBZzdS57HwX8+cZH9/iOOjMSLJHBOxDPsHQoxG0kwmskRSWjDo0cMjqMBL3YFZs9KoqsrBgTCBWPq01y8WVU6Mxjg4GGZXzyTPdUzwSu8k6by2fY3LwtIqbfaxwckkwbh2MXl5q5cbVlSVi5sqgN+uZUGFknnCKe1Lgc9uYk2dS3stFWLpHN2BBPlikf9+ppvdPUHipS8QU5emU5lPtW7rG/AJCyGEmPKWVdWANmR5b3+IZHY6FTSRLfByd5BYOke2AIeHItz7Qg/feamPRDbPREzLKtUpKi93B5mIn73u0Me+s4d4OjerLxJz6wc7+7n3xV5+eWiEnvE4PaWaUj6HZV7NlCqEEIuBZA4JIU6zrd1HpdPCZDJOJJnF5zSxuy88ax2P1cCO7iAj4TS/f/0SjgxHmEzkuH/fEG9a6qfKZcFtNZYDOsdHouQKKqbSTGjjsQx7eifJF1U8NlO5BkQ6V2BwMsl9ewfZcTKI3aQnmS0wGtWCSDrgo1e1YjPp+ezPD5OfcY1/48oamrw2wsks+wcirG1w4bObefTIGDPrZ9+2rpZb19bxwW/uJJ0vEstogZ/+yRQ+u5HvvNTH1FeTOzc38KM9g+VtK52SOSSEEG+k9ipHOZszXjofOy0GYuk8RRVGIqlyJlGuCL3BBIlMnh1dAcLJLD2BJNkCZJI5gvEMxaJ6WmBBVVV6AknGwmky+SIWo8yENR/8fP8Qn7huCQcGwty/f5jeoBYcqnS8vhqFQgghzp9kDgkhTqMoCmvq3QDkVRiLandizXoFi0E7bYRTebrG4kwmMnxrRy9dY3E+/8gx+oIJ7ts3xHg0w96+UHmfJ0bjs6Yg/taOXr7yXDeRVI7hGdPMv3QyyA92D7C7dxK31YiiQKFYJF/Uvhm0Vdq5os3HugYPhhlnMKfZwONHR9k7GOLtG+rZ2OThzStr+O03LcFbqqEEWibROzc1YDXpuWVtTXn5VPp6MJEjk9deq8Jm5Oqlfirs09tXOS2v/wMWQghRZtTraPbZyr+b9ApXtvvwlSYxmMoGmgr3TMSzFFS4b+8Q//3MSbKF6eh/x3iUXb2TdI7FZvU5jx4eAeD7u/vJ5GYUqbuAktk86dz519u7FBWLKqOR0zOFs4UimXwBt81IIJ4pZ+365UaMEEJcdBIcEkKcUYvPzqpaJ8bSGK3Lmz386U0r+Nvb17CiRhvSFUhkiWUKnBiL8vUXe6j3WAjGM3RPxMkXity/fzrjZiSSIpufviB/rmOct62r5Qc7++kNJkhm83SOx9jbH2JndxBU2NkzyZ6+MB3jCWJp7QL7t97UziOHRvjFwWHq3NOBmstbK1hV5yaZLeCyGHn/libsZgM/fqWfu7c0lde7c3MTjx0Z5avPnmRzSwUWg44qh4kr2nzYTNopsaBqX0KuXV7JN1/s5fb1dVQ7TRh1CktKhVOFEEK8cVbXuWmqsGIz6njbujrec1kjb19fi9Wow2LUUWEzUXVKwCCSytETnD21/cMHRzHpdYxG0+zunSRVGhL8zRd7ATg+GiOVm647dKZ6eNl8kZPj8df9nobDKSZimde9n0tBLJOnayI+6zoglckxNJnkj39ykH95vIM19e7yUPCK1zm7qRBCiPMnwSEhxBmtb/TgtZv45gc38/2PbaXea6NzPM7e/hDtlU7q3BbsJi0tP1eAaCrP/sEoyVyRbEHl2y/18fLJyfL+krlieRaZVLZA11iMH+waYCSaJhDLcGI0xr88doJDg2FMeh2HhqMAOMx6/HYTFqMOv8NEfzCJQa+wrd1HTan+j04Br83I9Ssq+YMblvKr4+OYDDqe65igwWNDRcsCqrCZaKvUpqn/zC0r2dMb4qqlfi5v9fG717azvd1fzkZaUeMsFTf101RhZ12jhxa/DeNZCmgLIYT49XntJlbXufnb29dS67EyGkmj0yncsbGBb394C1e0VfAnb12BQaeUb1qoUJ6p0m3RggqHh6L821Od7OkNoaqUM1OPj2h9SipXJFrKTkllCxwdiZ6W3RNN5xgIJWdlHv06RqNpoqnTg0+XElVVKRRfu4bTl57o4OXuALH09OfxrZd6iWamP+Of7R1ksNRePrtkDgkhxMUmwSEhxBmta3DTVmnne7sG+M5LfbxzUwN3b23m7q3NfGBrM5uavXz5fRvLd3JTpYvrqeFZe/sm6Q7MvqM7FkuRzhX4+b5BMgUtQwdV5cd7BvnlwWFMeh1VTgt7B8IAuCx67tnaxPu2NPLRK1u4eU0NfZNJPrK9lWuXV7Gm3o3FqGNzs5d0rsCKGhc+h5nfu24J//3MSW5dV8PHr2kjnMpxZbuf61dU8tiRUT5x/RLqvFa2tfvY1Ozhg9uasZkM3LWlietXVLOh3s32JX5U4J5tzRwdifKeyxpprrCXv5QIIYR441TYjDR4rTx0YJjrl1fydMc4sVQeu1nP/fuHePv6ehxmPZc1e7hrSyPmGeOKHWYDd17eAEChqBJL53hw/xC/PDjCYDhJdkZtOYCRUgBiPJpmJJoidsoMZo8eGmE0nD5t+flQVZU/+ME+wq8SHFJVla6xWDm76UIrFFVOljJ73yjBRJaTE7HXXO/ZjglePjlJID6dSfXksQmA8o2meKbAZFL7zGcOMxRCCHFxSHBICHFGHpsJg6LjvZsb+Mj2Frw2E5l8gUQmj0GvcP2KKh4/NkbLjAu4e7Y28pHtzYB2d/bUm4nHR2K83B3k2zt6y8s6xhOMRNI8cmiUg0MRfvyKNhTNadazfUkleRWC8SzhVB6DXsf1KyrxlGoINflsLK92sqHJQ2OFDXdpeXuVgx9+/AreuroWg17HezY3UuM2s7TaydoGN9UubTjaretqGQmnOTEa43MPHyWUzLKpyYvNYqCpwsbyGid+h5mNTR6Oj8awmQ3oZfYUIYR4w73zsgZ0OoW7r2jiZ/uHeO/mRq5o99FcYeN9lzeRyRf4p8dOsLzahcmgZ3OTp7ztmjon1yz1A1AEjg5HUYHHjoySL6gcGAjNeq3OsRi5QpG/eegoD+4bZjw6XQunWFT5lyc6ePTI6OsaEtYbiBNM5Ehmc7OGUs0UiGfoGI8TTZ15hrVsvvi6ahalcwWGQ6ny733BBF1jcZJn2Gc0PTuIlcjkz3rcMwViGcYiWhFwgHyheNpQvUQmz2Qiy3A4yURset2T41o219JqBz67NkeOAlgMCjVuqe8nhBAXmwSHhBBnpdcp5Ioqqqry0MFhHtg/xCNHRnjo4BBOs5Zp89HtbTR4rKytczEez+EwG9GhpftPmcq2GZpMYTcZ6JqYXcshlc2RyhZIly5ETXqFrW0+PrSthbevr+eurc28f0sT49E0W1p8KIq2v2uXVbGixslIOM3Na2oxzxjyZTUZyrPRbGj0EMvk2d07yc1rasszo9lMBox6Pc93TvAv717PC11Bajxm/vDNS9lxMsCbV1aj1ynctbWZ8Wgap9mAQSenTSGEeKNVOS0UCio9gQQmg54bVlZz27o69g2EGQwlefDgMH/1tlV4HSZuXFnDlUv9KGj9yy3r6vj8oydwWbQAQzpfpDeYJJLM8dSxcQ4PR2a91pHhKMdGouztD3FoKMJkMlseGhVNZ0lm8uwfCBOITwcyztdnfnYYgJ/sGSxn1s6ULxTZ2xfipa4AwcSZg0PjsTT9k0ntcTRdHiJ3NulcYdbxRtM5Toxpw+ZCiSw7TgboGIuRyszOiIqmcxwejJSH0eUKRQ4MhBmNaK8XTmbPGChSVZW/f/go6XyeeDZPJJnj5e4ge/omGSsVny4WVb63s5dwKsdwJMNkPMtIJEUwniGa0l7vQ9ta+Yvb1uC1GVhd56LZZy/300IIIS4emcpeCHFWH7mqlf/8VRfBRIZ3bKjnqqV+jHodA5NJfrR7gG3tPmxmPZuavRSLKh+6sgWLUc9Tx8Y4UrpzW+U0kysUCSZy/OLQCI8fG2PqGvPaZZU80zHBeHz6LmO730aly8KHr2zFbjYwmcgwHs2QLRSocJjxOaeLVDb7bBRUlaKq0uJ79ULRq+vcdI3HqfNYZy3/4LYmDHodDV4bf3P7av7i50doqrCystZFe6WjvN5fvm0VPYHErKEMQggh3jg3r63lOy/18o/vWotep6DXKfzGVa08fGiUj25vZfsSP08eG+ehA0N0TsSpcZmp9VgZmExy+4Y6nusIcHQ4gl6nEIxnKaJNlb60yjHrdQ4NRegNxMpDvpKZHMFEBofZwJef6iJbUMmmcmRzeYbCKdw2I8PhFLVuK26rcda+0rkCg6EUdpOeWo+V8WiabL7IwSEtILW3L0Q6my9vl8kXMBv0xNJ5/vGxE0zEMrxlTQ2qqpZvfEwZjaTJFYpQ7WQiliGWyVPrtpy2HmjFuQ8MhFhW5aSm1M+90DGByaBnMJRkNJLmv54+icWg48ZV1VS7p/vCgckkk0ltpjCzQ09fMEkik2cwnKLGbeXwUIQ2v4M67+z+M57J83xXkPUNHpZVuxiNpDHpdViNeo6NRomlc4xG0/zvS/3lbX55aASXzUg0lWEq3BRJ5UjnClzZ7mdtvZtjo7HyEHUhhBAXjwSHhBBnVe+x8rk71pDJFbCYpk8XS6udXNbs5ZkT40zEslzRVkGV04JBp9ATiPOm5VVc1lJBlcPMc50BUrk8wUSEVC5Poahl8yjAH9ywlD29QeLZ6anjNzVXcO3yKuwmPV959iReu5HmChuJbIGPXtk8KztIURQKRbh+ZRUu66ufzj6wtZlwKofdPHu9Fv/0lwanxchHtrfwlWdP8nfvWINpRiDIZNCzvMb1a3+WQgghXt1lzV4ua/bOWraqzs2qOnf5923tPkYiKVorHew4GWBZlYO+yRSfvGEpJ0ZiNKyu4W3ravmHh49xeESr59Mb0LJVjXqFXEGlbzLJT3YPlff58KExzEatb/j5vunlO04G0eu1PkenKExEM2xq9pb7kWJRZX9/mEy+gNGgo9ploT+YJJ7NkyjVEQolc0TSeardEEvnODEW47ImL48dHiEQz5DNFchkCqRyBWwz+tlcocgf/Xg/f/O21aRzBf7j6S7es7mBWCaPyzIdoBqPpukLJoinC5gMCr2TSapLAaS//cUxbltXg8Wo594Xe1DRZg6dWQcpnSvw1w8eodZlZVm1C7NRz7Md4/zn01184c4N9EzEGZhMYjHqTwsO/eDlPlQV7ts7yBXtfp44OsqzJyZwW4189tZVjEYzZPMqY9HpjKcXuia4vKWCBw4Ml5dNxNL0BhO8e1MjDouB7kACnQSHhBDiopPgkBDiVSmKMiswNOXmtbXcvLaWAwNhnu2YoL3KwDdf7MFpMVDpNBNK5BiLZnBbDbT4bewfiBCI5wDtonRZlYM9/ZO89/ImvlGaYvjGVdV84IoWiqrKfz+jXQhft7z6VS8S/+GdawDljHdSZ9LplHOaGnd9o4f//sBlr7meEEKIi++WtbUADIaSDISSJLIFblpdjdNixOcwoVPgyWPjLK9xcWQkhopW6BjAYtSTK+TJF1ReOBks7/O5zgk+dnUbqqrOCpz84uAo79jYSDKTpzuYoNVn59holMuavCiKQjSdI57JMxJJ0VhhZSSa5qEDw1y5xFfeR0GFQCzNsmonoUSWQCxDPJPnS091EU/lKQL3HxhifbN3VnBoIpZmYDJFfyhJSzjFE0fHuHZZJRPRTDk4VCyqdE3EMep0PH1inF29k/zZTSsIJ3PYTDri2TyPHB5laZWTw0MRIqUC2z0TcS5r9mLU6xgMJTk+GmNgMsl4tJFMrsDXnj1JOldkKJTklb5JvvdyP1947wbSuQLZQhGrUY8CfO2FbgBGoxkGJhP88uAo25f42Ncf5qEDw3RNxIln8syoBY5Bp+Pxo6PYTNrNF4dJz1tW16BXFL63sw9FgVW1LskcEkKIOfCawSFFURqB7wA1aHX+vqaq6r8pilIB/AhoAXqBO1VVDZ1h+14gBhSAvKqqm9+ogxdCzL31jR5+8soA39/Zzz1XNHHlkkr+8oHDvGNjHR6riXt39HDjymp+tGugnEJeYTOyrtHDI4dG+Y3trezqnSSbL/LOTdpsM/e9MsgNK6teMzAEYDFKjFsIIRabBq9Nm6o+kuKqpcsAWNfgIZzMsrbBQzJT4NnOCQLxrDYzJrC5xcvTxyc4tYpQJJXjc788ymg0PWsihUA8w5/dd4DxWIZCUeUzN6/A77QQTWvDxHb2BPnz+4+QzOb5u3es5thIhO+83HdajaGTEwlW13n44pMdrG/wEIhnmYiny33izu5JTozGGAwlafRa8TnM/N0vjwLwvZf6CMay5IsqP9jVT73XSpPPhlGvI5LK8dM9A3QHkugUSKTzBGIZeoMJ9vdPki+ohJM5vvBEB4nsdJ2hvf2T3LKuDrNB5QtPnCCZyRNP58nk8nx9Tz+xdJ5krsjXnusmnSuSyGqTUXRPxBmNpLGY9NhMBoKlIeFFFf796S5yhQIP7B9Gpyjs6A5wx4YGEtk8Bwenaz5F0nl+8+o2/t8vtPdX6TJT6TBT57Vi3quj3mNjY5N3VpawEEKIi+NcvlXlgT9WVXWvoihO4BVFUZ4APgw8parq5xVF+RTwKeDPzrKP61RVDbwhRyyEmHfeubGBUDLLtnZttpgWn51wMkskmaPWbWFVrYuGCis1LgtuqxGXxUgym+dPb1rB/XuHuHpJJcFklkA8w9MnBvDazNy2rl7SyoUQQpyV1ajnsqaKcj2fbe0+Pnv/IcZiGdY3url6iZ/Hj43hs5sIJ3Ncv7yKHV1BMqXCdwra5AlTASG/w0RvMIle0TJ+Cio0ea1savIyOJnkHx49zpfu3MBgKInZ4OBfH+9gW1sFx0aifOelPnQ6BZNe4f4ZQ9MAOsfjdE7EePTwKCfH4ygqzJxNfjKZxWbSk8urHByMYDLo+NWxcQB6ggm+v6sP0App5wtFRsIpmnx2nj4xziv9Ya5bVsWjR0YZi6b51o4e/vitK/jhbm3mz4IKmXyRmfWkd3aHmIhlyBUKPHN8ohw8e+lkkCePj5PMaSsPhFIopX3c+2IPv/2mJfjsJvJFlcFgYlaQbTiULv9eUFVGwmm+8UIPkbRWbNtnMxJJ5cir8JvffaW8XavfXh6m96mbVxJN5ah0ml8zG1gIIcQb7zWDQ6qqjgAjpccxRVGOAfXA7cC1pdW+DTzD2YNDQohL2KZTakS8Y2M9f/XAYQpFlds31lHttuC1mbhtXR3xTB5VVTk+GmNljYvd3kmqXWbe5Kvkq8+d5FM3raS10o5RZioRQgjxKn73unZsJkP5RoLPYeZv3r6a7mCCn+wepK3SweXJHMuqnTzbMc7aejdLquwcH41RKEKLz8ZIJE06X2TfQLgcNFpe7aRzPE6uqPLEsfFy8MRnN/LDXQO8c3MDE7EM/cEknWNxVMCgAwVths8pU8GnHV0BVtTYSeeKHBuJ8lNVC9xYDDrS+SJFFXrG47hsRmrcVvKFIul8aWr4IkwmtAydXFHl0HAUnU4hm9cye7L5Ir84NFQatg1d43HMeoWeQKJ8HFMzgfodJgLxLCPRNMOhFM91jpefA/j2y73kZyQ9zcyiOjgUYW9/iOc7x7l7awv/+viJWW0xteryagcdY3Et2yg7vbM6rxWHxcBQOEW+CAadgsmgY22dG7NR6+8tRn15llEhhBAX33mNx1AUpQXYCOwEqkuBI1RVHVEUpeosm6nA44qiqMBXVVX92ln2/XHg4wBNTU3nc1hCiHmmwm7is7euIpUr0OKzoSgKGxo9jEUzmAw6miqspPNFHBYDH97ewt/94ijHRmLctraOpdUOuWMohBDiNTktxtOWVbutVLu1bJ+/fegoiqIND/M7zfgcZpZUOtnQ6OXwYJhV9W4ODoQ5MhIrB4YMOlha7aBQLNI5kSgHhgCCiRzPdE7w29e2s7tvclZgRXs4e8CaXqeQL6r0BhN896V+VCBXhOOjMUCb9KEnkKAI/MNjxykUVdorHayqdc7az8y9fu/lPi67cwODoRQnSwGsmTIFlS8+2Um2MHu53aznxpXV/GD3ALmCisdm5Md7BmcFgKZGw+mV2RlVANm8yn2vDFLvtfIvj59AX+qm7SZ9OQhkNerY1ORlMpElls5T7bLgshgYj2Wo91ipsJlJ5wrUuK1YjHqiqRzNPpvMAiqEEPPEOZ+NFUVxAPcBf6iqavQ8XmO7qqqbgJuB31MU5ZozraSq6tdUVd2squrmysrK89i9EGI+qnFbaPXby4Eek0HH5a1erl9RxQtdAa5dXolep+C0aHdKB8NJrl7ml8CQEEKI181s0NPss3HVEh93bW2iwm7CZtJT57EwEUuzucVHJlekyWen0mHCbzexvNrBLWvqCCVzNPkcrKxxUue2sL7Bjd+hTWiQzBa498UevvxkJwA6RcsQOpP60uxe+SIcH42Xl08FdN6zuQGfQwtwKcCKGid+h4knjo6d9X0FEhlGIynu3z9Y3k+r347fbsJYitgcG5mu8WMz6TDpFdbUuXj3pvry8o9+ezfJUh0im2l2tk6Ny4r/DBM4RNM59veHaa6wMR7Xhou9eeX0NXuL386WVh8bGj20+Gw0VFi5fmU1q+tcOCxGaj0Wmnx2blhZRZXLTJ3HSmul3BASQoj54pyCQ4qiGNECQ99TVfVnpcVjiqLUlp6vBcbPtK2qqsOlf8eB+4Etr/eghRALj9mgJ5LKsasniNNiYE399NTEv3F1K5+4bik+u3kOj1AIIcSl5M7NjQyG0wyH0xh1OixGPc1+O9uX+Dk2GiVbKOIw69nSWsE3P3w5f37rKlRVxWs34bEaaaiw8R93beKOjQ3csbG+fNH8zIlxsqXxV29eWU2r31Z+zUqHGR1asOeGFdNJ9acWwQYw6XVYS5MqTMSzvNQ9yY6TQZKlFJ6ZCTVTgZ98Af7ywSM8fXyivI7XZuSaZZXlAFYiq2U0WQwKK2tdeGxGbl1bxy8OjZZnAXOaDeU6RNvbfeX3pgCXtXj5zWva0OsU7GY99lLwKJUrUgRe6Q+jqmDUKRwejlHpMGEz6nnPZY0sqXJw+4Z6Vtd7qHVZiaRyrG/0sKLaSVulnXdvbMBjNXHXlmacFgMVtteeRVQIIcTF8ZrBIUUL538DOKaq6hdmPPUg8KHS4w8BD5xhW3upiDWKotiBtwCHX+9BCyEWnt+9rp2eQILuQII/u2nFrJlIXBYj6xs9UoBaCCHEG8ZjM1HnsbBvIMSHr2zBZtKzps5NKJnjN69uw2TQ4bGZaat08N2X+3ji6Bir6lysqHFR4TCxudnLD3cPUCgWqXRaWNug3dRIZIukSjWBnBYDt62rK7/m8moHfocJt83IdSuqylO2n8qiV3ipO8imZi9mg8KKGidmg0I0nSeS0jJ6VtdN30S5eokfY6mPNOt1FApaAKmpwkar3866Bg93b20uD/cCsJsNbGz0sKLGhcNsIJ0v4LFqwaieYLJ0/Hq2tvqoKGUwVTrN3LS6hoFQkhqnmTV1bq5Zqk02YdRrdZf0ila/qMVvp9ploc1vp63Szpo6Fz/bN8hwJMWVbRXctbWJd21qoH8yyaZmDzesqKI7mGBtvRtDacidwyIzjgohxHxxLmfk7cA9wCFFUfaXln0G+DzwY0VRfgPoB94DoChKHfB1VVVvAaqB+0vpogbg+6qqPvqGvgMhxIJgMxn4wzcvm+vDEEIIsYj85tXts35fU+/mJ3sG2HEywLa2ClxWE+PRNNcvr8Kg1/HtHT18eHsrw+EUw+EUd21pQl8KypwYjXJgMEK2NNWYzaTnfZc3oSjwo90DZAtFfuOqVr7+Qg+RVI7mChvLq50cHIpQKEK108xYLAOAy2bkraurGYlmaPXbqXKaSeUK1DjNOMx6dvZMMhBKlY+7N5ik2WejayJBMJkrL3/HhnquW1FNoahyfDRKtcvCcCQNaMGxWCbPPdua+OHuQf7ytlWMRzP86vg4KqAHLmv2sm8gzLJqJ5OJSba0VLCzJ0j3RJJlNU7W1ruZiGewm/R4bEbuuaKFb77YQ3ulHatRz1VLKzk4GGZFtZOvPHeSu7c28ejhMRpXaMPNnjkxTjpXpM5jpdplYTyW4YEDQ/RNJvngFc1nrBslhBBibpzLbGUvcPbh1DecYf1h4JbS425g/es5QCGEEEIIId4ov3fdEj58725+59p2DHodX36ykzqPlWS2QCyTp95jpdln4+8fPkZThY1oOs9wKMXVS/3s7pkklMxSVOGqpX7CySyPHhnVsl8V+NZLfdy2ro6nT4xjMxtYXuMkmMgyEklz9VI/jx8dJZou0Oi1saXVx1g0zYudE6ysdXHr2lp+vn+IkViWFr8Dl9XIvv4QqqriMBuo81gYi2W0Ys9OM0VV5aqllWTyBf7neW3msi0tFTzXOUE0lWN5tROTXsfDh8a4ZU0tDV4bS6ocvNI3SZ3HilGvY0uLj5MTca3OkMPM1Uv9vNQd5LeuaePpE+PEM3l6A0lafDbWNXrY1TvJJ65r5+WeEEadwpYWL4OhFLFMnivafFy7vJpVtW4+c/8hzAY9162o5K6tTXhtJhRF4Qt3rmffQJgqp5k6t1UyhoUQYh6RXE4hhBBCCLFoVLks3Pc7V2It1dLx2I083xFAReVvb1+Dt1SM+a2ranjk8AgWox6b2YCqwup6N3VuC/UeG+PxND95ZYD1jR4mE1kKBZX+UJK+yQRmg1bjyG0zsabORU0pa6bVb+focJQatwWnxUiVy0JbpYNNTR4OD0dpq3Rg1OvoHItxx8Z6+oIJiqrKbetr6RiLs7rWRW8wgcNsYEmVgy8+0UGFw8T7Lm8kV1A5MhxhVdxF53icJp+NOzbW872d/Vy/ogq9TmFVrYt1DR7+6M3LuHdHL2PRNG9dXcOBwTB3bKzj5Z5J7tnWzKYmL784OEwwkeXGVVXs6QuxrMrJezc38dDBYe7a0sSPdvdT7bayqtbJfXsH+cKdG9DrFGo9Vv7r7k0Y9ToM+tnD6hRFYVOT96K3uRBCiNcmwSEhhBBCCLGoWGfM0PWJ65aecZ1rV1RxbamodK5Q5K8eOMKSKgfxdJ7nuyaodFj42NVtrKh18aUnOkjlinzkyhZ+vn+ERq8Ni0FHq8+O3aTnkUOj+B1mjAYdVc4slU4LNrMes6H0Y9Rzw4pqoukcRr2OUCLLpmYv7VUOQokcm5q8BONZHCY9Vy+rZCiUwmLUU+M289HtrRj0OopFlSePjdFW6SCWybOs2snyGhd/9bbV5aFxaxrcPHhgiO/t7OfyZi87uoNc1uzFbjLwTMc4Bp3C8hoXiqJQ47ayqdnLjSur6QsmafHb2HEywFtWVTMcTuGyGnFaDLxlTQ31XitVLsuMz1e+YgghxEJzzlPZCyGEEEIIsRgZ9Tretr4Ot9VIe5WDT16/lHg2x9IqJy6LEVCIpnOsrvfwRzcu5Z2bGjDoddy8ppaJWJZ3bKynocJKvcfKsmona+pc5YkZGrxWHjowzM/3D5LJF7AYdBRUFa/NRJvPTqXDRJ3bytvX12HU6+gYjbF9iZ+JWJo3LassZ+foSplBLX4bXruJFTVOgHJgCKDFZ6fWbeVdmxoYj2W4dlklFXYTl7dW8MjhUd65qR6HWQvs/NGNy3j3ZY1UOMzkCkW+taOPbKHA/77cx1PHx/mDG5ZiMepxWYxsa/fPeh0hhBALj4T1hRBCCCGEeA1XtFXwyOERrl9RSd+kVofHbdUKKm9scmMaVnBZDFTYp6dnd9uMOMwGjgxHee/ljfQEEhwfibGmYXomst+4ug2AYyNRvr2jl3SuwOXNXhwWA5VOC4FEFrvFQJ3Xyndf7uP2DXU4zEaMeh21HuusY/zAFc38yU8PYjboZh3HlKkATjCR4fhYjI9e1YqiKJgMCt/80GYaKmxnXP/mtbW4LUbW1LsZjqRwWgy4rTINvRBCXEokOCSEEEIIIcRrUBSFlbUuOsbivNAZ4LO3rigXVL51bR1vXV17Wo0dgLu2NvF739/L8hon7ZUOfrZ38IyBm5W1Lj7/rnWzlm1p9aLXgb00DO6WtbXs7Q9xYjTGzWtqcJpnX8ob9Dres7mBH+7qP+vQrvde3shjR8b40LZmPLbp2cKW1bjO+t6vXlpZftzgtZ11PSGEEAuXoqrqXB/DaTZv3qzu2bNnrg9DCCGEEEKIslS2wEMHh7l+eRV+p/mctwvGM/gc2vrHR6O0+R2YDOdW3UFVVRRFKT/+3C+P8vb19aypd591tq90toBlRl0lIYQQYoqiKK+oqrr5tOUSHBJCCCGEEEIIIYS49J0tOCQFqYUQQgghhBBCCCEWMQkOCSGEEEIIIYQQQixiEhwSQgghhBBCCCGEWMQkOCSEEEIIIYQQQgixiElwSAghhBBCCCGEEGIRk+CQEEIIIYQQQgghxCImwSEhhBBCCCGEEEKIRUyCQ0IIIYQQQgghhBCLmASHhBBCCCGEEEIIIRYxCQ4JIYQQQgghhBBCLGISHBJCCCGEEEIIIYRYxBRVVef6GE6jKMoE0HeOq/uBwAU8HPH6SRstDNJO85+00cIg7bQwSDvNf9JGC4O00/wnbbQwSDvNf5dKGzWrqlp56sJ5GRw6H4qi7FFVdfNcH4c4O2mjhUHaaf6TNloYpJ0WBmmn+U/aaGGQdpr/pI0WBmmn+e9SbyMZViaEEEIIIYQQQgixiElwSAghhBBCCCGEEGIRuxSCQ1+b6wMQr0naaGGQdpr/pI0WBmmnhUHaaf6TNloYpJ3mP2mjhUHaaf67pNtowdccEkIIIYQQQgghhBC/vkshc0gIIYQQQgghhBBC/JouWnBIUZSbFEU5oShKl6Ionzrlud8vPXdEUZR/Osv2/09RlIOKouxXFOVxRVHqZjz36dJ+TyiK8tazbP+J0jqqoij+GcvdiqI8pCjKgdLrf+SNes8L0dnaSVGUH5U++/2KovQqirL/LNtXKIryhKIonaV/vaXlPkVRnlYUJa4oyn+8yuu3Koqys7T9jxRFMZWWK4qifLl0XAcVRdn0Br/1BWO+tlHpuWtLr39EUZRn38C3veDMg3Y62znv7tLf0EFFUXYoirL+DXzbC8o8biPpl2a4gO10o6IoryiKcqj07/Vn2V76pXMwX9up9Jz0TcyLNpJ+6RzM43aSvqnkArbRlhnbH1AU5Y6zbC/90jmYr+1Uem5+9kuqql7wH0APnATaABNwAFhVeu464EnAXPq96iz7cM14/EngK6XHq0r7MwOtpdfRn2H7jUAL0Av4Zyz/DPCPpceVwCRguhify3z7ebV2OmW9fwX+8iz7+CfgU6XHn5rx2dqBq4DfBv7jVY7hx8D7So+/AvxO6fEtwCOAAlwB7Jzrz0va6LQ28gBHgabS72f8W14MP/Oknc52zrsS8JYe3yx/S/OyjaRfujjttBGoKz1eAwydZXvplxZ2O3mQvmm+tJH0Swu7naRvuvBtZAMMpce1wPjU76dsL/3Swm4nD/O0X7pYjbMNeGzG758GPj3jQ3vzee7v08B/n7qv0u+PAdteZdtTT3SfBv6r9EfUCnQBurlumDn5z/Aq7TRjmQIMAEvPso8TQG3pcS1w4pTnP8xZviyV9h2Y8cdWPh7gq8D7z/Q6i+lnnrfR7wJ/N9ef0Xz4met2OmW9Wee8U57zcpaLw0v9Zz63kfRLF7edZuwjSOlG1SnLpV9a2O0kfdM8aKNT1pF+aQG2k/RNF72NWoExTgk6SL90SbTTvO2XLtawsvrSBz9lsLQMYBlwdSnl6llFUS4/204URfmcoigDwN3AX57Dvs/FfwArgWHgEPAHqqoWz2P7S8m5fJZXA2OqqnaeZR/VqqqOAJT+rTqP1/cBYVVV82d4/dfbzpeK+dxGywCvoijPlNKVP3ge+73UzHU7navfQLvDtBjN5zaSfmnaxWqndwH7VFXNnLJc+qVzM5/bSfomzVy30blazP0SzO92kr5Jc0HbSFGUrYqiHEH7jH97xnltivRL52Y+t9O87ZcMF+l1lDMsU2ccgxct9e1y4MeKorSppbDarA1U9bPAZxVF+TTwCeCvXmPf5+KtwH7geqAdeEJRlOdVVY2exz4uFefyWb4f+MEcvP7rbedLxXxuIwNwGXADYAVeUhTlZVVVOy7Qscxnc91Or0lRlOvQLsKvmqtjmGPzuY2kX5p2wdtJUZTVwD8CbznP15d+adp8bifpmzRz3Ubnsv1i75dgfreT9E2aC9pGqqruBFYrirIS+LaiKI+oqpo+x9eXfmnafG6nedsvXazMoUGgccbvDWhR56nnfqZqdgFFwK8oyr2lIk0Pn2F/30eLeL/Wvs/FR2a8fhfQA6w4j+0vJa/6WSqKYgDeCfxoxrJT22lMUZTa0nNTYzDPVQDwlF7n1Nd/ve18qZjvbfSoqqoJVVUDwHPA+vPY96VkrtvpVSmKsg74OnC7qqrBN2q/C8x8biPpl6Zd0HZSFKUBuB/4oKqqJ8/w+tIvnZv53k7SN819G70q6ZfK5nM7Sd+kuSjXD6qqHgMSaPWhZpJ+6dzM93aal/3SxQoO7QaWlip2m4D3AQ+Wnvs5WgQaRVGWoRWMCqiq+hFVVTeoqnpL6bmlM/b3duB46fGDwPsURTEritIKLAV2ncex9aNF7VAUpRpYDnSf/1u8JLxaOwG8GTiuqurg1IJT26m0/odKjz8EPHCuL17KFnsaePcZtn8Q+KCiuQKITKX5LTLzuY0eQBsialAUxQZsBY6d17u7dMxpO70aRVGagJ8B98yHOxRzaN62EdIvzXTB2klRFA/wS7QaBC+e6cWlXzpn87mdpG/SzGkbvRrpl2aZt+2E9E1TLmQbtU4FExRFaUb7jHtnvrj0S+dsPrfT/O2X1ItXFOoWoAOtavhnZyw3Af8LHAb2AtefZfv7SuscBB4C6mc899nSfk8AN59l+0+iRenyaFG7r5eW1wGPo40XPAx84GJ9JvPx52ztVHruW2hjKl9tex/wFNBZ+rdixnO9aDMbxEttcaaK8W1owb0u4CdMz2KnAP9ZOq5DwOa5/qykjWa3Uem5P0Grvn8Y+MO5/qwWeTud7Zz3dSCElhq+H9gz15+VtJH0S3PRTsCfo93t2z/j57QZQ852zkP6pQXRTqXnpG+aH20k/dLCbifpmy58G90DHCm1zV7gHWfZXvqlBdxOpefmZb+klA5OCCGEEEIIIYQQQixCF2tYmRBCCCGEEEIIIYSYhyQ4JIQQQgghhBBCCLGISXBICCGEEEIIIYQQYhGT4JAQQgghhBBCCCHEIibBISGEEEIIIYQQQohFTIJDQgghhBBCCCGEEIuYBIeEEEIIIYQQQgghFjEJDgkhhBBCCCGEEEIsYv8foDN2QkNPxDsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAE/CAYAAAAwiQR3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADBIUlEQVR4nOzdd5xcZ3Xw8d9zp7edme29Slp1WdWW5G7cbZrpHUIJARIIJRASAqSRUBLaG3oxGDDGvfcm25KsLq3qarW9l+l95nn/mNFacpVtSbvaPd/PBzx77507586uZu499zznUVprhBBCCCGEEEIIIcTMY0x1AEIIIYQQQgghhBDi1JDEjxBCCCGEEEIIIcQMJYkfIYQQQgghhBBCiBlKEj9CCCGEEEIIIYQQM5QkfoQQQgghhBBCCCFmKEn8CCGEEEIIIYQQQsxQkvgRQgghxGmllHqvUuqBqY7jZFJK/UYp9W+v8bnrlVKHlFIRpdSbT3JoL/e65ymlDpyu1xNCCCHE1JDEjxBCCDGDKaU6lVLxQlJhSCn1a6WU+3Xs7+tKqd+/npi01jdorS97PfuYYb4J/Ehr7dZa33aqXkQppZVSc47+rLV+UmvdeqpeTwghhBDTgyR+hBBCiJnvWq21G1gBrAb+aaoCUUqZX8dzlVJqJp67NABtUx2EEEIIIWammXjyJIQQQogXobXuA+4FFgMopd6olGpTSgWUUo8ppRYc3VYp9Q9KqT6lVFgpdUApdYlS6grgH4F3FiqIdha29SqlfqmUGig859+UUqbCug8ppZ5SSv2PUmoc+Hph2YZjXmudUupZpVSw8N91x6x7TCn170qpp4AY0Pz843qxWAvL1yilnikc34BS6kdKKesxz9NKqb8pDLMKK6X+VSnVUnhOSCn156PbK6UuVEr1KqX+USk1Wqikeu9LvddKqWuUUjsKr/20UmrpS2x3uHBMdxbeU1th3284ZpvJKiulVGMh7g8qpboLsXz1mG1NhRgPF45pq1KqTin1RGGTnYXXeefRYzrmuQsK73eg8HfxxmPW/UYp9WOl1N2F/W5SSrUU1qnC73e48DvcpZRa/FLvjRBCCCFOL0n8CCGEELOEUqoOuArYrpSaB/wR+CxQBtxDPvlgVUq1Ap8GVmutPcDlQKfW+j7gP4AbC8OSlhV2/VsgA8wBlgOXAR895qXPBjqAcuDfnxdTMXA38AOgBPgecLdSquSYzd4PfBzwAF3Pe/6LxlpYnQU+B5QCa4FLgL953ttyBbASOAf4EvAz4L1AHfkE2buP2baysK8a4IPAzwqvfxyl1ArgV8AnCsf0U+AOpZTt+dtqrVuAbgpVWVrr5PO3eQnnAq2FY/raMUm7vy/EfBVQBHwEiGmtzy+sX1Z4nRufF7MFuBN4gPzv6TPADc87vncD3wD8QDvP/S4vA84H5gE+4J3A2AkehxBCCCFOMUn8CCGEEDPfbUqpALABeJx88uadwN1a6we11mngO4ADWEc+YWIDFiqlLFrrTq314RfbsVKqArgS+KzWOqq1Hgb+B3jXMZv1a61/qLXOaK3jz9vF1cAhrfXvCuv/COwHrj1mm99ordsK69PPe/5Lxqq13qq13lh4Xif5BMwFz3v+f2mtQ1rrNmAP8IDWukNrHSRfHbX8edv/s9Y6qbV+nHzC6h0v8rZ8DPip1nqT1jqrtf4tkCSfXDpZvqG1jmutdwI7gaNJuI8C/6S1PqDzdmqtTyQJcw7gBr6ltU5prR8B7uL4xNctWuvNWusMcANwVmF5mnxSbj6gtNb7tNYDr/sIhRBCCHFSSOJHCCGEmPnerLX2aa0btNZ/U0i+VHNM9YzWOgf0ADVa63bylUBfB4aVUn9SSlW/xL4bAAswUBgiFCCfYCk/Zpuel4ntuDgKushX1bzi818uVqXUPKXUXUqpQaVUiHzCq/R5uxg65nH8RX4+thH2hNY6+rw4X+x9aQA+f/T9KLwndS+x7Ws1eMzj2DFx1gEvmqR7BdVAT+Hv4Kjn/x5e9DULSaIfAT8GhpRSP1NKFb2GGIQQQghxCkjiRwghhJid+sknKIB8nxbySYM+AK31H7TW5xa20cB/FTbVz9tPD/lqltJCcsmntS7SWi86ZpvnP+cl4yioPxrHCTz/5WL9P/LVQ3O11kXk+xOpl9vXK/ArpVzPi7P/RbbrAf79mPfDp7V2FqqZTkQUcB7zc+WriLEHaHkV2x/VD9Sp45tnP//38JK01j/QWq8EFpEf8vXF1xCDEEIIIU4BSfwIIYQQs9OfgatVvmmzBfg8+QTO00qpVqXUxYWeNAnylS/ZwvOGgMajCYLCkJ4HgO8qpYqUUkahQfLzh1S9lHuAeUqp9yilzEqpdwILyQ8zekWvEKsHCAERpdR84JMnGNPL+UahD9J5wDXATS+yzc+Bv1ZKnV1ofOxSSl2tlPKc4GvsAN6llLIopVYBb3sV8f0C+Fel1NzCay89pl/SEC/SHLtgE/mE05cKr3sh+eF2f3qlF1RKrS4cq6WwjwTP/Q6EEEIIMcUk8SOEEELMQlrrA8D7gB8Co+Qv8q/VWqfI98z5VmH5IPlhW/9YeOrRRMeYUmpb4fEHACuwF5gA/gJUnWAcY+QTKJ8n3xD4S8A1WuvREzyUl4v1C8B7gDD5ZMyNL7aDV2GQ/PH1k+9x89da6/3P30hrvYV8n58fFbZvBz70Kl7nn8lX7UyQb6b8h1fx3O+RT+o9QD7p9UvyvZsgPxzut4XhZ8f1Jir83t9Ivl/TKPD/gA+82PG9iCLy7+8E+eFhY+R7RgkhhBBiGlBav2z1tBBCCCHErFeogPm91rp2ikMRQgghhHhVpOJHCCGEEEIIIYQQYoaSxI8QQgghhBBCCCHEDCVDvYQQQgghhBBCCCFmKKn4EUIIIYQQQgghhJihJPEjhBBCCCGEEEIIMUOZT+eLlZaW6sbGxtP5kkIIIYQQQgghhBAz2tatW0e11mUvtu60Jn4aGxvZsmXL6XxJIYQQQgghhBBCiBlNKdX1UutkqJcQQgghhBBCCCHEDCWJHyGEEEIIIYQQQogZShI/QgghhBBCCCGEEDOUJH6EEEIIIYQQQgghZqhXTPwopeqUUo8qpfYppdqUUn9XWH6WUmqjUmqHUmqLUmrNqQ9XCCGEEEIIIYQQQpyoE5nVKwN8Xmu9TSnlAbYqpR4E/hv4htb6XqXUVYWfLzx1oQohhBBCCCGEEEKIV+MVEz9a6wFgoPA4rJTaB9QAGigqbOYF+k9VkEIIIYQQQgghhBDi1TuRip9JSqlGYDmwCfgscL9S6jvkh4ytO9nBCSGEEEIIIYQQQojX7oSbOyul3MDNwGe11iHgk8DntNZ1wOeAX77E8z5e6AG0ZWRk5GTELIQQQgghhBBCCCFOgNJav/JGSlmAu4D7tdbfKywLAj6ttVZKKSCotS56uf2sWrVKb9my5SSELYQQQgghhBBCCCEAlFJbtdarXmzdiczqpchX8+w7mvQp6AcuKDy+GDj0egMVQgghZoJcThNKpOmfiDMQiJNIZ6c6JCGEEEIIMUudSI+f9cD7gd1KqR2FZf8IfAz4vlLKDCSAj5+SCIUQQogzyHAowcGhCJlcDkMptNZooLXCQ6XXTv5+ihBCCCGEEKfHiczqtQF4qbPUlSc3HCGEEOLMNRiIs3cwjM9hwWKyTC7PZHPsHwwRSqSZU+7BZEjyRwghhBBCnB6valYvIYQQQry44VCCvYNh/A4LOQ07egIcGgozr8LD4hovJS4bA8EE8XSOJTVeSf4IIYQQQojT4oRn9RJCCCHEixuPJNnTH8RhNrhhUzc3b+slEEtR63cQT2f4+ZMdDIWTlLhsBGIpDg2HOZHJFYQQQgghhHi9JPEjhBBCvA7hRJpdfUEshsGvnjpCPJ0lqzWZrMZjt9A9HqfIYeHhfUM8eWiEYqeV/ok4E7H0VIcuhBBCCCFmARnqJYQQQrxGqUyOPX1BzMrgFxs6sJoM3ndOA27bc1+vi2u89Afi3LGzn1gqy717Bjl/XhlDoQTFLusURi+EEEIIIWYDqfgRQgghXgOtNYdHIiTTOX7+5GHsFhOfvLBlMukTiqfZ0RMglspQ7XPwV+c2MRpJFmb9CjMaSZLNyXAvIYQQQghxakniRwghhHgNQvEM/YE4v36qE4/dzCcvbEEpxR07+7j+mU4e2T+MUnDXrgH+vKUHBbxnTT0Ws8GGQyNkc5pwQoZ7CSGEEEKIU0sSP0IIIcRrMBiKc8u2Xlw2Ex8/v4VUJsevnjrC0hov588tAwU7ewK4bWZWNvj4xYYjjISTvGt1PUOhJOF4huFwcqoPQwghhBBCzHDS40cIIYR4ldLZHPftGaBnIs6/vWkx6azmN093ctmiCu7ZM8jiai8XtZbjdVgYCiW4bXsfly2q4L62QdY0FbOopojNR8bxu6zMLXejlEztLoQQs8FENMmRsRgmQ7G0xiuf/0KI00IqfoQQQohXaSKa4vYdA/zz1QvJ5DS/fvoIly+q5P62Id56Vg1Om4mH9g3xk8cP0z4c4YPrGnm2c4K55W42doyzrNbHnv4gmVyOSDIz1YcjhBDiNEhnc+wdCJPO5JiIpEhmclMdkhBilpCKHyGEEOJV0Frz6MFhil1WzIbiV08d4dIFFdy7ZwC7xcTHfr/1uO3v3j1AqdvKly6fz3A4SUOxk40d46SzORKpLIFYGo/dMkVHI4QQ4nTpGo0yEk4QiGWoLLIRT2WxW0xTHZYQYhaQxI8QQgjxKkzE0tywsZuPn9fMTVt7uWxhBXftGmA4lGR7bwCAUpcVn8uKx2bm4HCY0UiKL928iw+sbQDyyaOmUidbuiYo9dioK3ZO4REJIYQ4lbI5zZGRCFu7Jvh/jx/G77TSUOxgUY0Xv8s61eEJIWYBSfwIIYQQJyCX0yQyWfb1B4ilsgwEEzSWOLmvbZADQyE6x+JYTYorF1fx4fVNmIx834Z0Nsd3HzjAU4fHuP6ZLlY1+PDYLTSVOtnaNcG5c0tJpOWurxBCzES5nObAYIihUJJfP9XJly6fT4nLyr/dvZdAPE3dVAcohJgVJPEjhBBCnIADQ2GGggl++VQHbz6rmn0DIVw2Mxs7xhiLpnFaTbzv7AauXVY9+Zyc1lhMBl++cgEbDo3w3QcPsqUrQFOpkyK7mWQmRzqbYyAYp6nUPYVHJ4QQ4mRLZrJ0j8UYCMb45YYultR6qS9UeGZzmmAshdZaGjwLIU45SfwIIYQQryCRzjIUSoCG4VCKGp+TrrEYt2zrJZrKUmQ384nzW1jV6Oe7DxxgLJoipzU5ranw2LlicSXnzi2jzGPjSzfv4shoDJvJRFOZk7a+EGbDoMxjx22Tr2UhhJgJRsIJ9vaHSKSzfPv+A1y1uIpLF1USjKcZDiUASGdyJDM5qfgUQpxycoYphBBCvIShYAKbxWA8kuQ/7tlHJqv55AUtPNU+ygN7B4mmshQ7LXzywhZ8TitfvW0Pb15Wzbo5pVhMBtmc5omDw9y8rZc9fUGuW1HLh9c38csNRxiJJDi/tYyH9w9xdnMJ+wdDnFXrw2ySCTeFEOJMFk6kaesPYTEU377/IB9a38SyWh/j0RR/erabxhIXJkNxYCjMWfV+SfwIIU45SfwIIYQQL2IskqStP4hSitt39rG2uYS3rawjnEhz5NkIoUQGl9XEO1fXE0/luHnbEb54eSvVXgdaa+KpLOlsjovmV7CgysvvN3Xx48fauXZpfijYWDTNQCCOz2HlqfYRVjcWc2AwzPyqosn+QEIIIc4sqUyO3b0BfvHkEcYiST6wtoFltT601ty8rZcPr2vCajbY3RtgW3eAKxZXSYNnIcQpJ4kfIYQQ4nmSmSw7ugNsPjLOpYsq2NUT5HvvOAuAu3YNcHg4AsCSGi8TsRQbB8P8yzWLGA4n+OkTh3HbzDgsJpTKzwJ2yfxyPnXhHH77TCe3bO9jbqmTQ6MxDo9E+OrVC/ja7W2cVednJJIk0xdkfpUHm1nuAAshxHSTzGQZC6fyjZmLHZOf1VazgdaaQ0Nhfvp4BzV+B/9wxfzJ59y0tZe1zSXcs2eA4VACp9VEXyDOSDhBY6lrKg9JCDELSOJHCCGEKEhlcljNBv2BOD969BDprOapjlFqfA5MhqI/ECeWyhBIZDAbUOq20h+I809XL+CR/SOkslk+dl4zxjGNOrM5zZ07+3FYTXz03CZ++vhhbNb81+9gMMHe/jBfuKyVf71rL9980yLCiTQ7ewIsrfWRzubIafA6LFP1lgghxKyXyuQIxFL0BuIE42kUYDEMBoNxDENhUoqWMjcTsRS/faYTDbzv7AYAoskMv32mk7evrOPW7T3ctWsQDdjMiqYSF9FUVmZ2FEKccpL4EUIIIYBQIeEyv9LDf913gIYSFx9Z38RftvayssHPdx44QGOJi4NDYQBK3DbGo2k+dfEcfrexi3UtpSyoKnrBfk2G4s3La2jrD+ZP/lfX8d0HDgAwHkuzpXOcs5vm8KUr5vO129v45IUt1PnzU70n01mKHBZWNRaf1vdCCCFmu2QmSyieYSiUYDSSJJvTDAWTtA0E6RmP4baZuXh+BcF4mvlVHg4Oh2nrD7KnL8R/vGUJAMF4mj9u7ub95zQwHE5OJn3y+9dooD8QJ5rMSOJHCHFKSeJHCCHErJfO5nh43xDpjCaRznJwMMz33nEWSinevqqOu3b18/5zGoin8nduAawmg/ed08CfNnfz7jX1eOwvX5WzqNpLrd/JnzZ301zmYiyaYiiUxDAUD+4b4rKFlfznW5fwzbv2cv7cMs6fW8pjB4e5qLVc7gYLIcRpksrkODgUYiSSIpXJ0j4UpWssSjiZIZnO4rZZuGBeGYdHotyyrRer2eCOnX3U+Bx0jcf48hWtGAr+uLkbm9ng3WvqaesP8u0HDqCB+mInsVSW0UgSt83CI/uGWdVYTInbNtWHLoSYwSTxI4QQYtY7MBjiN093YjUZ1PgcLKv1Ek9luXNXP9etqKV3PMaWznH2Dearfco9VuZWeLi/bZC/Orf5hJsxex0W3rK8hj8+243LagaSbOuaoLLIzqGhMHMrPHzrrUv5j3v28diBYeLpLFVeBwurirB7HafwHRBCCBFPZdl8ZIwnDo4QjGdIZrJkchqnxcTccjdnN5VQVBh6u6apZPJ5+wZCbO8O8M03NmM1G9y6vZdVDX7mVnj447Nd/GFTDwBFdjOfe8Ncnmof4y/begklUkSS+aqixhIXVrPM6iiEODUk8SOEEGJWS2ayfPeBgzQUuyhxWXlk/zBfv3YRv9vUxZWLKvnegwc4PBJhMJQEwGyAx2bBbjb44LrGFyR90tkcsVSWbE6j0ZgMhcdmmdyuvMhOicvKcGF/Q+Eka5qKefzgCDkNrZUe/vGqBUSTGYbDCf64uYd1LSVUSOJHCCFOmeFQgof3DXF/2xBepwWLYTCn3M2axhLc9pe/ZFpQVTQ51Pep9lHKPXYqvXa+/cB+njg4CsDi6iLObi7hj5t7iKUy+dcMJ6n2OUmnc3SMRphf+cLhwkIIcTJI4kcIIcSs9tDeIUYjST510RysJoPFNV4ePTDMdctrODIW5T1n1/OpP2xHAcvrfVhNBvF0loYSFxbTc3dntdZsaB9ld1+Qco8Ns6HI6XxiaVmdj1q/k6LCcLBzmkvpGI1S4bEyFE7xr3fv5SfvXcmdu/o5Mhrl8kUVFDksFDksBOMpxqIpGe4lhBCnyHAowf88dJBYKovbZuZdq+pfNtnTH4jjsZtfMMT34FCYoVCCSq+d9/5i02Q/n9YKNx9Y28gdO/tpKXcRS2bZ0x8iFM9w7TIvN27p4R1r6qjw2GVqdyHEKSGJHyGEELPWeCTJr546wpWLqxiLpNA633/hqfZRvnTzLsaiKZzWfLKlosjOha3lPLJviMoiOxe2lk3uJxRPc8PmLlbU+/mfdy7Dbnnu6zWdzfGTxw7TH4yzrMaHz2mlpcyF2TCoLXYyHE7RH0jwzbv28i/XLmJ3b4CbtvZy+aJKbt/RR7HLSu94jI6iCAurvaf9PRJCiJlsPJrkG3e24XNa8dgtvG1F7QsqObXWdI7lh/zGUlmqfHYiiQyxVBbNczNCeh1mFlcX8cW/7EIDc8vduG1mPri2kQf3DaIUvHt1PdFUljt29qOBXA4GQwk6R6LYzSZWNxbLkC8hxEkniR8hhBCzjta6cIf3EBbDYHm9j99v7MZkKJwWE08fHmUsmgIglsoC0Fzm4vBwhBKXjRK3DWdhSvatnRM83THK3186j/kvMquXxWTwmUvm8szhUe7c2c9588ooddloKnXSORbjrStquHlbH1u6Jvj8TTv49nVLsZgM7tzZT43Pgd9p5c6dA9T4nZR57JR5pAGoEEKcDAcGQ/zvQ4ewW0y0lLlZfcwMilprDg1H2No1QSqTo7HUxdVLqyY/+4+V0/mJAaLJDH/9+63kgKZSJ+taSmguc3Pbzj4cFhPvWFnHjx5tx2o2sJkViYymfTjKl6+cz1dv3cMXL5snQ76EEKeEJH6EEELMKlprNh4e4/qNXTgsJq5YXMVftvayfk4JNrOJB/cOMhhK4rAYNJS46BiNYDEMYskMMasZw6S4akkVALft6MOsFP/7zrNw2l7+K3VtSynzKjz8930HuGh+GWubS9k30EEyneP9Z9fxu009HByK8O5fbOLr1y7ifec00DESZmPHGGaTYkd3ABTU+BzMKXNjNskdYSGEeK2OjET4r/v2s7TGi9ZqMunTPhzh6cP5vjxzy928ZXnN5DDbQDzFPVt72Nw5jsUwqCt2EoqnOae5hFq/g3+6bTeprKbCY+OaJVWMRlI82zlOY7GTN51Vwy+fOsJfndtETsOG9lESmTS9gRhWk4l3rq7j5xuO8JmL59BQ7MJhlaG9QoiTRxI/QgghZpUtneP8+ukjNJa4Cz0azFgMg3+5ow00eJ35ng21fif1xU5ayt0cGY6wuqkYj91CKpPD67Bw585+KopsfGhd0wmX5Ze4bXzxilZ+8PAhLp5fjsnI9xQaDif4/KVz+cEj7cRSWb58yy6qvHb6Agnmlbv58pXz+dGj7QTjKdbPKSWZzlFf7CSVyVJeZEepE5tVTAghRP4GwP8+dBC/00pWw2ULKwB4+vAo/YEE7zunAUMpEuksO3sDbGgfpWc8xkAwMVkFCrCrLwjAk+2jKEADXoeZC1vL6RiNUeyy5If3lrv59dOdXLXkuYohn91MIJZmMJDg9h19vH1VHU8fHmVjxzj1xS5ayt2n+20RQsxgkvgRQggxa2it+fmGIxhKUV/sZFmdj/977BCPHxwlnc234RyNpFBAldeO32llMJTAZjFhNgwqiuy0VnhIZrL0B+N86uI5r7oXQ6nbRqXXTjiRZkGVh4NDYeZXFTEQiPOz96/iH2/dzUAwQV8gAUDHaJSJWJq3rajlsYMj3LSll6uWVrH5yBjFbisr6v00leYvELI5TSqTI5PLoQGrycBqMsjktPSMEEKIgvvbBgkmMly7tJp5FR4iiQw3bulhSY2X1Y1+fvjIIYZCSUbCCUYjKTI5Pflch8VgYbUXQ8FoOIXHYWLvQJhMVrOg0sOcCjfDhQbPVy2pZmPHGKPhFB89t+m4JH2F185AME4yC8lMjh09AT68ron/vv8Aa1uKqSt2yue2EOKkkcSPEEKIWeO+PYOEE2k+ecEc/E4rjx4Y5sBQhGgqS4nLiqFgJJLC77TgsJhw2UzU+BxMxFJctrBicnjVPbuHuHRhBUWvMMXvS3nL8hp++3Qna5tL+MPmHprLciyv93Hztl6+cNk8fvN0J/3BBKF4mnRWc/O2Xr58xXzmlHv47TOdPHlwhBK3jU1HxrGZTYxFUmSzOYYjSSKJDOmcxmoyqPDYUQqyWlPltdNc5paZwYQQs95du/rxOSzMq/CQyuT4/aYu3nt2PfftGeT7Dx8klMgct73XYWZBZRGNpS7S2RxumwWzSRFNZjCbDBqKXSTSOVrKXOwbDFHusVPjc3DLtl4WVBUd1zsolckRT2cp99gpclgZiaSIpzLs6AlQX+ykxG1la+cEDSWuyaS+EEK8XpL4EUIIMStorbl1ex/1hWnV7949QCKd5fBIFIBilxWfw4LZZOB3WrCYDAyl6B6PMa/cM5n0yWRz9EzE+MQFza95iFWV10E8lcVhNbG83seBwRDD4QQfWtvIQ/uGOG9uGee2lPIvd7ZxaDhCOpPlvrZBrlxcxcfOa+ae3QP4XVa6xmPcu3sAl9VMDvA78sMKLGaD8UiKnT0BIN+guq7YyepGH3PLi6jyyfAwIcTssrs3kK9+NBn0TST4wmWtDIcS3Ly9j3PnlPBvd+/Nf95mNQ5rPum/qKoIv9NKJJlPBBlKYShFPJ1FFXJD6UwOp81MpdfMUCiJ02KmpdRFDvjA2sbjYshkc9y5q58ih4WmUid7+oKMRFLcu2eAn71/FX/e0sPbVtTyiw1HWFrro6LI/qLNpIUQ4tWSTxIhhBCzwob2USZiKd50VjU/f7KDdS3F/PCRdgD8Tgtzyl34HFZi6SwGimuXVVPtc1B2eJQFx8yw8petvVyztIpil/V1xbO6sZieiTgXtZaz0TLGvsEwv3r6COuaS9HArTv6WFrj5dBwhF19Ic6bW8bvNnbxxmXVXLusGoA5ZW7+sq0Xw1AoDaFkhnDhAkUX/k8pMAyF3WLw5y29nNNcytnNfmp8TnonYtT6nbheoTG1EEKcyTLZHD98pB2loMhuodJrZzSSZEP7KBe3lvFvd+8jEE8DUOuzc05zKclMllgqQyancdnMVBTZWFZIxqSzObI5jdlQjEVTOCwG/cEEfYERVjT46Q/EeeuK2uNiSGdz3LKtl7XNJVT7HTy8fxir2cBlNRFNZfnSzbv4+0vn0ReIU+W188DeISq8dpbUeCVRL4R43eRMTwghxKzwly291PudPLJvmGqfnR8/epjBUBIFlHlsuKxm+gJx1jaXcHgkQrXPAcC6llIANnaMEU6kyWnNha3lr/tE/NJFFfz7XftoKnFx3twyWsrc3LN7gKcPj1LitrG4xssfN3VhMSmSmRxPtY/x2UvnccOmLq5YVMlELE19sZNPXzTnFV8rnc1x964Bil02dvRMEEqkODgUIZPVXLeihjXNJbgl+SOEmKF+83QnZR4r9X4XD+0f4o3Lqrm/bRCH1cR/3XeAQDyNy2ZiWY2XZCZHVueo8jpYWuulvtiJUorxaH6GrqFQYnKIl8NiwuuwEEtlMBkG584pYU9fiHetrjvu9XsnYjx6cJiFlUVctbQwK+T2PrSG9XNKeezAMCORFL99ppPWiiLevbqOHz92mG3dAcrcNqoK30dCCPFayVmeEEKIGU1rzQ8faWc0kuQNCyr447PddI7GSGVzGAoqi+xUex3YrWbctiz37B7gi5e3HrePfQMhOkYjrG0u4QPrGk5KhYzNbMJlNxNLZ/Bhpdrn4KPnNXNgMMzdu/uZiKbIAS1lLvYPRtjUOc53HjjAtUur2d0XpMbn4MYtPXxobSMOqwmtNcF4mlQmR1ZrLCaDEpcVDSjgzctrGAoluHlbL4FYmoVVHpJpzY1berBbTKxpKpYp4oUQM04yky0M84LxaIDKIjsDgQT9gTh7B0OkMhq7WbGk2kskmeVtq2o5q9ZHMJ5m/2A4Xy0aTZHM5HDZzDitJuZXFWExGQyFEmRzmmgqi9YZeifivGt13eSNgUQ6y/aeCfb2h/ji5fOp8T+XwLGaTVT57DitJt57dj2/ebqL/YMRfA4rneMxltX6eHjvIBVFNrxOC06rmcFgnFK3TT6rhRCvmiR+hBBCzGj/+9AhclpT4bXz6IFhDg5FACh1WSgvcmC3GJhNinesrCWZyXHjs93MKfcQTqS5f+8gly2s4LGDw/zdJXNpPWbI18lw7dJq7msbwOewTvZxaK30UOpu5PBIlDcsrODXTx1hTpmL9pEoW7smODwcZk1TviqpzG3j+o2duG1mcjo/ZM1mNjAZBqlMjtFoEgNIZHI0l7q4YF4ZH1zbyO83deGxW8jmNBUeO7fv6KPKZ5dGokKIGef+tkGiqSzvXl2P1WxwYDDMA3sH2dkXRGuo8dkxmwwaS1y8ZUUNt2zv4/62QRKpHH6XhWKnlcU1XuZVeKjyvnR/NK315DqtNY8dHKZzLEZjiZPvvH3ZC5I1HruZdS2lPLp/GI/dwluX13Dz9j42HRnHYzfzifNb6BqPcseOfiqL7BwejrC5c5yvXrUQr1MSP0KIV0cSP0IIIWasbV0T9AfihBMZLmwt4z/v3Q/A3HI3SsGKeh97+oO8c3U9SinsFhMfXNfEaDjB7zZ1c+nCCn79VCdVRQ5q/c6THt/C6iJu29HH3v4gC6q8k5VEJW4bJW4bWmuS6Rznzy2j2udg85FxAvEMD+wdAsBiUly7tJo6v5OBYJzhUJJYOkMmqzGUosiR358C7BYTP3uygysXV/GJ81smY7hn9wCRZIYnDo5KI1EhxIzzdPsoTquJrvEYc8rdOKwm2vpDk0kfu8XERfPKqC9x8aNH2jEUvHV5LU2lLiyvorLm2KTPfW2D2C0G375uKaaX2Mfyeh+HBsNMxFK8dXkNf9jcTZ3fQc9EnLFIivv3DvK2FXXctqOP32/sIhRPE0tliSYzeJ2Wk/LeCCFmDzm7E0IIMSN1j0f55YYOkpkcn7xgDt+5/wDBeBqDfCLkr9Y3ce+eQVoriqgssgOQzWlMhuLWHf186qJmVtQXs6Leh8VQp6wB8leunM8vNnRw165+zp1bSoXHPnlnWClFqcdKa5WHiXia953TwJ07+xkK53sTpbOaB/YOUesPMRRKMBFLv+hrGAr2D4ZYVuvjkf1DLK/3s7c/RDqb412r6/jlU5081T7K2U1+5ld5T8lxCiHE6TYaSdIzEefyhRU8emCUzUfGGQjGiaayWM0KUPzV+iae7Zxgd/8Aqxr8XLqwEpPx2nu4PbRvCLNJ8emL5mK8zH6W1fl47MAItX4nN2zq5l2r6xgMJeiZiLOjJ0BTmQuNprnMRTCWIgSMRlJMxJJUF4aMZbI5lFKvK14hxOwgiR8hhBAzyqP7h7ivbYhMNkexy8rKhmJ29wVpGwgC4LSaaK1wc++eQUo9Nt61uo6c1vzqqSOYDMWF88pxWU3MrShCKXXSh3c9n1KKj53XQvdYjF9u6CCSzHDJgnJqfE56xmNcvqiC3z7dxX++dQm9E3H6A3FMJoWB4sF9Q0SSGfYPhgEwGwqHxcBiMsjkcoQTWZSCnIa9A2F6x+M0lLoosluwmhTpLFz/TCfXLKnkjp39PLRvmPoSl1T9CCFmhDt29GM1DLb3BDg4FKbMY6NjNAqAxTD4hytauW/PIIF4ii9fMf+EeufktKZrLEYkmcFmMkhnc5QX2bCaDJ46PArAFy6f/7JJH8jPLpbNaa5eWsXtO/r5+YYjfPTcJnb3BgnE02w6Mk4inePD6xv58aPtvOmsGm7Y2MXBoQhNpW6+//Ah+gJxvnBZK42lrtf/ZgkhZjQ5sxNCCHFG6w/E6ByNsaTWy717Btk/EOLqxZXsHQwzFEzQMRKhYyRKKJFBAZVeBxkNF88vZ3m9H8jP+HLunBLsFhM/efww/3TNAorsp7eUvr7EyTfetJiRcIL/uGcfqYxmLJrkbStqWd3o59/v3scH1jbw0fOaefrwGPXFDlKZHIdHI7isJhxWMyZDEU1mQENWa+wWEwATsRR9EzFCyQy7+4KEE2kS6SyxVJbWSg+HhqN47BZ2dAfoHY8x7xQnu4QQ4nTYPxDC57Ky8fAoA6EkA8E4OZ1ft7Lex08e72BZrZePn9/yklUz8VSWzrFoISGTAgV1fgdlHjuheAqb2eCJQyFiySwXLyjn8kWVJzzrY7HLis1s8Inzmvn5hg5u2NTNJQvKuXlbH70TceaVu7llWx9/f2krO3oCJNI59vQH6ZmI0VDsJJxI0xuISeJHCPGKJPEjhBDijKO1Zk9fiF8/fQSrKT8M6xcbOqgsyg+Tun1nP0trfJzTXMIfNnWzbzAEgM1iUOTIN808epK/rXuCiiIbVy+txmk1s6jaS0Vh6NdUKPPY+c7bz2IwGMdqNvGjRw5x1ZIqiuwWrn+mi0Q6y+cuncsTB0dZ21JCtc9BLJXB77LSVOqiodiFw2oik83RH0xgNhRjkSR37ernyFiMgWCCzrHY5Ott7w6QSGf56LnNk1U/jaVurGZpHiqEOPOMR1OgwW030zEawWMzMxROAkwmfawmxUAoyb+9efELKhzbhyM8eWiEbGFjm9mgttjJNcuqaC7L9whyWkyvWNFzIq5eWsXt2/tYP6eUz1w8l+8+eID6YgfzKtwcHIqwoX2Uq5ZU8fjBEbZ3T5DROfb2h7BbDKwmM/3BGHV+F2ubS2W4lxDiZUniRwghxBlla+c4v3mmkzK3nSsWVTARTTMaSXHlhVXcsq2P1Q3FNJa6SGdzfO/BA2zvDhBNZVFAqcvGO1bVTZ4gJ9JZNrSP8tUr50+e/DeXTf3MViZDUVNoJq2BWCrDZYsquWxRJTu6J/jPe/ezqKqI3zw9whcua8XvtLJ3IMSj+4cZjaRIZ3MYSlHmsZLMaDw2E5+/rJVnDo9x45YeBoMJXDYz6WyOaCrL4ZEojx8cpsRlZXv3BKPh53pICCHEmeSHjxwikcpy1dIqLCaDbd1BchocFhMOq8F4NE2R3cKH1jUel/QZCMa5v20Ij93EB9Y1UFmUb/xst5iwmY0TruJ5NVrK3ATiaeLpLE6rmb+9eC7/fPse3n9OA9954ADBeIZH9g+jtaatP8hoJEmZx8accg9/e3Ezd+8eoK0/SDydxX2K+tAJIWaGV/yEUErVAdcDlUAO+JnW+vuFdZ8BPg1kgLu11l86hbEKIYQQ3L17gDcvq2YkkuKOHQOsbPBT6bXzm6c7WVztxWRS3LtngJ7xGPsHw0RTWYqdZnJaUeVzsKg637x4IBDnxi09vGtNHbXFJ3/GrpNlXUsJBwbDFLfYMJTirHo/ZxWGqA2HEnzrvv04bSYqPHZW1vtpLnfjtplJZ3LsHwrhtpnpGInyhZt2ct3KOr527SJ+8WQH8ys9pLM5/vRsD7FUls2dE3zs3GaeODTCE4dGeOfqulNyoSOEEKdKXyCOoRTBeIqbtvSQzuYIJvJN730OC4lMFofFoNhlYWmtD8hXkN66vY9UNsfVSytZXO2lzGM7bZ9/dcVOBkMJbCYTbruZxdVe2ocjXLW4ipu29hJKZHhg7zDxdBYAt81CY7GL+9sGGYkkGQoniKck8SOEeHlKa/3yGyhVBVRprbcppTzAVuDNQAXwVeBqrXVSKVWutR5+uX2tWrVKb9my5eRELoQQYtaJJDN88aadACyr9bGupYRsThNNZfE6LGzpGmdL5wTFTgu7+oLs7A1iAvxuK2UeGx9Z10SZx8aNz/bgdVl4/zn1tFYUnVBDz6mSzWm+cssuVjb4WFjle837SaSz/OSJw4yEknzjjYt47MAIQ+EEnaNRNh4Zx2LKN7Z2WE1onePf3rxUpgwWQpxR/vu+/XSPxyh1Wdl0ZJzRaJKRcAqzofA5zKxpKmYgmGBFg583Latha/cEzx4ZZ1m9j6sWV1Hjc5yUIVyvRiab48ePtqM1rGzw47KZ+eJfdvIPV8zn+qc72XB47LjtKzw2LltYQSydpX04QiKd5YfvXi692YQQKKW2aq1Xvdi6V0wNa60HgIHC47BSah9QA3wM+JbWOllY97JJHyGEEOL1unNnP7FUhr+7ZB6RZIbfPN1JIp0FBR67hYODYZSCfQOhyZlbbBaDNy6tZmdvgNZKD//3+GE+vL6Rs+r9Z0QfG5Oh+Nc3LeYbd7bx5KExFld7WddSQjSVxWJS2MymE9qP3WLis5fM48lDI3zyhq00lrjw2M34nRbMhiKd1WzrnuC9Z9ezoydA13iEpU7/KT46IYQ4OY6MRkllclhMilAiw6LqIm7f0QeAxaT48PpmbtvRRyqT45ol1dy9ewC7xcT7zmmgpcxNhXdqeruZTQZ/94Z5PNA2yJ27+rliUSWfuWgu333gIN+4diF9wThHRmMYhRkak5kcz3SM4bCaOTQUpthl5eBQWBI/QoiX9YoVP8dtrFQj8ASwuPDf24ErgATwBa31sy/3fKn4EUII8Vplsjm+fMsuhoIJ7NZ8f5pUJofdYpBI58jlNHv6g0SShXJ4q4mc1iyqKcJmNvPBdY3sHwhhNik++LzeDmeCXE4TjKe4ZXsfGzvG8NgsBGIpPrK+Ca/TSjiR5uBQhL5AnFgyg9mkaCxxkdNgNimW1/kmhy6kMrnJpNfX79hDlc/OXbsGUcDliyvIZqG5zMUXLm/FMo2roYQQ4qiv3b6HdDZHmduG22bmT8/20DEaRQHzyl185x3L6RqLcveuAS5ZUMGuvgDvPbueeRWeaTOsta0vyK3be7lsYRUP7x9ie3eAv7mwhX++fQ/rmou5cWs+kXU0CQTgsBi8a3UdX7lq4RlxM0MIceq8roqfY3biBm4GPqu1DimlzIAfOAdYDfxZKdWsn5dJUkp9HPg4QH19/Ws8BCGEELPdr5/qRAHdEzFqfU7Goyn2DYZfsF1FkZUSl43eiThn1fiIp7N84bJWclqzbyDEV65acMYlfQAMQ+F32firc5t524o6UtkswXia79x/AKvZhMNqYk6Zi+X1PoqdVpLZLIeGIhgKQvE0P3r0EGuaSljTWHzcxcFnLp7Lt+7bj8tqIprKsvHwOFcuqeLQUJixSJJKrzR5FkJMb08eGqHaa2NPf5i2vhBFDgt+R36oqgL++oK5ADSUuPibi+bwk8cP8/5z6mkpc0+bpA/Aohovd+3qpy8Y45ql1YTiaa7f2MV33r6M/7x33+R2OQ0WQ5HOaRKZHB0jUcKJNIOhBNmcnuxfJIQQR53Qma9SykI+6XOD1vqWwuJe4JZComezUioHlAIjxz5Xa/0z4GeQr/g5WYELIYSYPTpHowyF4vRNxOkZi9M1FgfAZlasbihmLJpk32AEi0mRycKccg+fvmgO//vQIb5y5XxMhuKenf1c2FpG5RSV859M+d47lvzU7+84i1gqg82UT/4cm9S5YF45uZxGKRgNJ/jLtj5++Gg7H1zbyM6eAIF4imuWVFFRZGdxdRF/2dZHIJ7GZjbwOa1cv7GLz1/aKtMECyGmLa0197cNkkxnKXFZeHBvGJOhOHor2mEzaCl38f8ea2dlvR+v00JDiZM5FZ5p2d/tby6awz/duocSl5X3nN3A9x8+yI8fbcdiMrCaFKls/sBWNvjZdGQcrWEskqJ3IsYvN3RS43OwsGp6964TQpx+r/iJoPJp8F8C+7TW3ztm1W3AxYVt5gFWYPQUxCiEEGKW+93GLtJZTc9EnBxQ7bWzptGPy2rh8GiUQDxDkd2M12HhnKZiJmIpfvToYa5bWUupx85AME5/MM7altIZN3TJbTNT7rHjdVpetMzfMBRKKcqKHHzi/BY+/4Z5XL+xE4Bqn4OfbzjCB9fWs7s/hL3w/If3DZHTmo7hCF2FXklCCDEdbWgfpdRlxVAG97UNkczkiKWyk7NgvXFpNfe1DbKy3s+2ngnu2zPI2U0l+J3WKY78xXnsFj64rpH724aIpTL87cVzyWn424vn4rXne7opBVazgcVUGL6by3HDpm6yOc2+gSDJTG4qD0EIMQ2dSMXPeuD9wG6l1I7Csn8EfgX8Sim1B0gBH3z+MC8hhBDi9TpQaNg8GEwwEEoAEEtlGI+mePuqGjpGY7isJi5bUM7vN3XhtJs5v7WceeVuzCaDRw8M0zMe40PrmmZEtc/rYRiK+dVF/Pd1S4kkM1R5HbhtZrZ2B1hS7cVAs28wwlAowfxKD6ORFD945BDfum4pdsuJNZEWQojT6YG2IQKxFE6bwVgk9YL1ly2s5L62IS5ZUM6VSyq5eWsfzWWuaV3JuKLBT28gzp07+3njsmr+4Yr5xFIZmss9jByZoNJjp6XMxe7eAKl4hlA8zTOHx6j2OUhmciQzOVy2qT4KIcR08oq3PbXWG7TWSmu9VGt9VuF/92itU1rr92mtF2utV2itHzkdAQshhJg9tNZc/0wnw6EEewdCZAol7qVuK4ah2DsQZn1LKX6nhW/dfxCtDD5wTuNkmXvnaJT+QJzPXDyXlQ3+GVft81r5nFZq/U5MhuK6FbV0j8W4cnEl2Vz+TnIqq3lk/zBj0RQ1Pgd/3NSN1ppkJstT7aPIfR4hxHSwqzeAx27GbBg8vG+ETE5jNSuO5nQsBjx6YIR1c4pprSyixu/k3WfXUVE0/W8CvHFZNRcvKOdPW3pIpDP8eUsPWsO8Cjceu4m3LK9lUY0XgGAszfxKD1azYiScIJ7KTHH0Qojp5szrbimEEGLW+N0zXdQXO7l3zwBDoSQAZkPx7beddVz/gpUNfq5cXIXtmKqUI6MR7tw5wCcvbKHW75hWDTynE8NQfOrCFn7yZAdLa32MhpOMx9PsGwjztpV1tPWH6Bof56w6H08dHmVXb5CFVUX4XdNzmIQQYva4c2c/w+EEfRPxyWqfXE5jNhTprKbG5yCUSNNY6sZty1/2lHmmf9LnqIvnV2AoxfcfbmdBlQeTodjQPkqNz4lSiisWVbKhfYx4JsdQOEn/RIx4OsdYJIXJMHBaTRQVmlwLIWY3SfwIIYSYlrZ3TzAcTtA+HOHQUIRUNoeh4Jym4hdtWumwmpmIpvjz1h4MBRVFdv7qvEYWVhdhTOOS/umgtaqIco+NcreNbd3jjMfThJMZbtvex1n1PuZVlPKdBw+wqsFPOptjIpaUxI8QYkoNBONoNLFUln0DYTTgtBiUe+wE42miqQyLarysqPfRUOyc6nBfswtby/E6LDgsBg/sHSYYS/ORdRX84skOBkMJFKCBiWiS0WgagP2DIX63sYsFVR4+cm7zlMYvhJgeJPEjhBBi2mkfDnP7jn6KHGb2D4aJprIowGIy+ND6Jp5qHyWcyNA7EUMpiKezLKry0tYf5G2rallc7cVpNVPkMEulzwlQSvHJC+fwpZt2Uul1MBBIEM/kODgc5vLFFWzsGOMD5zSw+cg4I+EkO3oCNJd50FrL+yuEmBLXP9NFJJGlezRGNJXFbEAmp/nGmxbxh03dPHZgGIvJYF5lEd4zvOpleb0fgGA8w8GhEJ1jUS5bVEHnaJQ9fRNEU5qeicTk9hvaR8lkNdu7AyTSWenRJoR45R4/QgghxOn2+43dLKkuYnPHOH2B/NTtR/vRPLB3EJvZoKnUydtX1fK5N8zjX9+8GKfN4IrFlaxpKqHK58DrtEhS4lXwO62saSqmxmenypvvCjoaSXH9011cvaSKW7b3E0tlqfE52N4VoK0vyNfvaCOdldljhBCnV/twGIfFYCAYp2ci/x1hNRssqfHSPR7nDQsrqPY5UEBlkX3GfBecVe/DYhhMxFIsqvZy8YJyiuwvrL58ZP8Iw+Ekg8E4ybR8RgshJPEjhBBimukai+K0Gty2o5/dfUHSWY2hoMZr55L55ZiU4ry5pVy9tJq1LaU0lLoo99j5yPpmLl9cecbf2Z1K71xdTziRweOw4LXni4ID8TS/fvoIb1pWTbHLws7eAAOhBDdu6WEkkiQUT09x1EKI2eYPm7pJZXL0BeLE0lkM8pMBfPmK+WzsGOWR/cO8f20Dcys803ba9tfCZjbRPRFjTWMJFUV2WiuKKHbbsJqOT2w5rfmkWH8wQTQpjZ6FEJL4EUIIMc3ctr2Pg0MR9vQHiaayQKGh89uXcdfuAS5sLaOuxInDajpuOl7DUDitMoL59ShyWKj2OWgqdVHts2NSMBZN0R9IcMv2Pm7fOUA4kaFvIo5JKQaCCQ4Mhqc6bCHELLK1a5xav4O2/hB9heFNyoB/uGI+d+0e5MLWcmr9Th7YO8z8Sg9u+8z6XvjnaxayusmPw2rCMBStlW5KCj3XrIUru4lYmuFQgtFIiq6J6BRGK4SYLiTxI4QQYtpIZXIMh5Js7BhnIpavJDEZ8LcXz2XTkXEaSpzMryzCZpZ+BafKB9Y2kspoXDYLzWUuAHom4uwfDDEcShBNZUllc4xFk7itZp44NDLFEQshZgutNbfv6GcilmIgGCeezvd/K3FZcdusWEyKWr+Dj5/XTIXHRlmR/bgbBDPBslof8yo8kz/XF7vwOq2c21LCgmofAOmsJp2DZCbH1s6JKYpUCDGdSOJHCCHEtHHLtl46x6JECqXpVpPirDoftcVO+gNxLphXRu0ZPDvLmaCu2InTZmZ+pQerycScQvKndyJOKqsBGA0nSaRzDIYSdI3FSKSzUxmyEGKWeOLQKPMrPLT1hegey/f2UQq+fMUCnjg0zLqWYuaUuykrsvHR85sod8+cYV5HKaWOm9lyXUsJ8ys8bO6aYFWj7wXbb+kcJ53NkctpfvzoIf72j9sZDCZesJ0QYmaTxI8QQohpIZnJsn8wzNbu/N1Jh9nA67Tw6Qvn8PC+Ia5cUsmCqqIZd/d2ujEZig+ubSCWzlLtc6A1VHhsx20TSWXpnYgxHEoSiKVluJcQ4rR47MAwB4fCDIeTxArVPtU+B08fHuPyRZVU+52UeewAzK8smnw8k61q8JPOaa5dWkXnaOwF64+MRomlsjx9eAyvw0prpYd7dg9MQaRCiKk0swa9CiGEOGP9+dkezAYkCjOQOKwmfviuFfz2mU7efFYNy2r9MiXtaTK/qgiX1cziqiLi6SwDwRgmw45C0ReMk81pDg1HSGc1aM2ft/QwHE5w6cLKqQ5dCDFDbe0ap8br4JkjYxwZzfetMRRcu7QKl82M32Wlpcw9ub3FNDvubxuGwfI6H0PhBCVuK48dgEJxJgChRIZH9g2xpy9IVmsmYmnMSpHJ5o6rHBJCzGzyr10IIcSUGwwm6JuI85dtfZPLfvnB1fx+UxeXL6pgaa0Xr1Nm6zpdLCaDj6xv5JmOMd50VjXFThseu5lEJn+HHfI9JAAOj0a5akkVt27vIxiTGb6EECffeDTFrdv66ByL0j0Wm2z8X+Ky0h9IsKi6iPmVRbMm2fN871pTx0P7hlnbXEKFN1/lVGTP3yiJJjPcsr2P0UiStv4QO3sC9Ify/ZFkxi8hZo/Z+ekohBBiWvnZE4dxWk2TiYPGYie/3HCEdS0lLK31UeVzTHGEs09dsZP3nl3Pg3uHeNvKOsyGwYWtZdieN21wIJ7mjp39rG4s5idPtE9RtEKImSqSzPC9Bw/wjtW1HBqO0DeR7+1jNmBFvY+1zSWUeWwUu2ZeP58T5bZb+Mn7VtBS5mZVQzFmBa2VRQCksprmUicdo1H6J+LEkhkODoaJJtK8/5ebaB8KTXH0QojTQRI/QgghptR9ewZpLHXysyc7OFqdvqDaw+WLKljTVEJTqWtK45utzCaDlY3FXLW4iscODvPR85pQKLzO4y+uUpkcl7SWs6snwEQ0xX17pHeEEOLk+e3TnVyzpJp7dw/RNRYlls5iMsDrsOK0Wajw2mkqdb/yjma4eRUe6oqdrJ9TQlaD9Zjqp7b+MAcGw/QFEwxHUozH0vx5ay+Lq4u4a/fgFEYthDhdpMePEEKIKROMp3nm8CgdIxGiyXzpvsdmorLIwaIaL02lLpSSZs5TxWO3sH5uCRrNbTv6WdXgZyJWxPD+ERwWg1ihH9O/37OP5fU+Flf72NkTQANXLq6a2uCFEGe8gWCcVCbHvoEgHSMRRiNJAMyGQXOpi3PnlFLls+OyySXN0e/KlQ1+6osdLKn1sunIGJkc7BsITc7KCKA13LGjH6vZoL7YSSKdlR56QsxwUvEjhBBiyvxxczfVXhvPdIxPVvusn1vK2pYSqn0OSfpMA2UeO2uaSnj/OfUsqiniovnl2M0Kt92CtXAW4bab2dEd4OmOUda3lHLf7kHS2dzUBi6EOOPduLmHplIX23vyiZ9MDsyGorLIRm2xg2K3lfpi51SHOa00lbqJp3OsbiimsSRfMXu0J9KxF35zyj0cGIrQOxGXXj9CzAKS+BFCCDFlRsJJvv/IYTK5fNqn1mun2GmjsdQldx+nkRq/gwVVXtw2M5cvqsRkMlHqtlLhzfdeausP0ReME4yl+eOzPcRSGaLJDD3jMTpGIlMcvRDiTBVOZrhrZz/RZIbB0NFqH0WJ28bF8yuo9NpxWqXa51gmQ/HVqxfQUOrkgnllx13srWnyU+vLN39+eP8Q2ZymfThCW39waoIVQpw2kvgRQggxZe7bM0CscCfSalIsrPFy4bxSqqWZ87RT43ewsqGYUreNGr+D1soiVtT7cFoMnBYT6axmV1+QhmIHY9EUhwbD3LSlhxuf7SGX06/8AkIIQX5YUiKdpXssRjCWJpRIMxCMEy5UpTSVOllam09E1/ql2ufFXDy/nBqfM1+hecxNlJUNxbgKibKjMzMmMjl+taGTPz/bQ+Z5lZrZnCacSDMUSqC1fI4LcSaTFLkQQogpMRpJ0h9IAGAyYP2cUlbU+2kqc+OWfg3TksnID727clEFNX4ndovBowdGOHdOCffsGSKcyPDogREyWc1D+4fJ5jT9gTiJTFbuygshXlE0meGnjx9mfqUHl83MUChB11iUoXAKAIsBNrOJN8yvxOs0y3fFS/DYLQCsqPdTX+JkMBhH5zTpnOaC1jIODB9fibm60YfZpPjyzbv5uzfMpdhl5QcPH8JQCpvFYDya4pzmEq5aIr3bhDhTScWPEEKIKXHrtr7Jvj71xU4qiuwsqi6ivkTu4E5371pTj8du4eymEorsFg6PRPHZ8xdgh4bCDATj3L27n2gqQ9dYjGgyQzqbIyuVP0KIl/HLDUd47zn1tA2EaBsIcWAoNJn0qfHZ8TqtvGN1HelcjuYymcnrlThtZuZXesjloLHMzepGPx89r+kF293XNoTZUFw4v5Sbtvbwvw8d4g3zy1nd5OesOh8r6vxs7BiT6k0hzmCSJhdCCDElHj8wBIDdbDCv3MMl88tprfRgM0tvn+nOY7dQ67dT5rFxycJyFHDv7kE8WhNOZomkslzYWsbOngDBeJq9/SF29QapK3by5uU1Ux2+EGIaOjwSwWEx8dDeYdY0FPNs1xgT0TQAdT4H4WSaEpeNap+D5lKXzOR1gt67poFMLofFyM/gVV7kwKwgo6HUbWU0kmL/YJifPdnBWbU+LltYQVZrbt7Wy5HRGOlcjnAiQ6nbSiqbw27Id7QQZyL5xBRCCDEl9g6GASjz2HjT8mqay92UF9mnOCpxIlw2M4uqvSil+MA5jezqDbKlc4Jk2ow5mmIilmZ3X4ixaJJcTrOhfRSF4olDI1yztAqzSQqOhRDH+9PmblY2+LmvbZCxSIreiQTpnMakIJ3TnDenlFKPHYvJoEZ6+5ywlY1+/rilm6W1PiqL8v3zFlQXsacvRJHdwmgkRSar0RruaxukYzSKoRRt/UGqvXaUUoTiKUbCCZKZnEy8IMQZSs68hBBCnHZaawKx/J3ct66opcbnpKkw7aw4MyiV7/dT4rbidVq4dmk10VSWEpcVgN5AjEgySyyd4/YdfditBgOB+OS0wkIIcdT27gmaSlz8YVM30WSa/YMhDhX60JgMxeWLKtg/FOH8uSXUFzsn+42JV2YYin++eiFLaooocuTv+V+7tBqvw8xH1ueHfWnyszOORlIMhRK0D4eZiKVpGwizpz8/3C4QzxBL5RtshxNpHj0wzBMHR9jUMcZwODFVhyeEOEGS+BFCCHHa3btngKOtApbXe5lf5cGQE/kzks9pZWW9n3NaSjinuWSyb9Oxk8O0Vnh4ZN8wI+GkTO8uhHiBh/cNE0tl6B6P0TUWo3s8Rqwwi9ei6iL2DYb5r7cuAWVQ5rFNcbRnHr/LyrJa32TC/sqllSys8tJS7qLMbWVumYsqb/59PTwSZTCUBMBtM+F3PDdApH0ozH17BvjJ44dJpLKTM379+NF20s+bEUwIMb1I4kcIIcRppbXm9h39ACig1u+Uvj5nOK/TQmulhzcvr+aj61/YOHTfYJju8RijkRRPHhqZggiFENNVLqeJpTLcsr2PkXCCeDpHKJGhMNs4kWSWL13WSiiZoaLILkONXqNjh9jW+V387SVzaCh2cdH8MgbDCTJZKHaYKXNbcVtNuKwGC6u8LKzxYi285Vu7JtjWFeDspmLsFgO3zYzHbmE0nCSSyEzRkQkhToT0+BFCCHFaPXZwhLFI/m6iz2HG57ROcUTiZLBbTLSUechkNQZw7L3fsUhqshKorT80ObvXg3uHuGJx5ekOVQgxjezuCxKIphgIJoimjq8aMRS8Y1UtoWSaOr+TplIZEnyyzK8qwmUz86F1TQyGktT5nQwEEhwYCmO3mGguc1NZZMNQiv0DIcaiabZ1B0ims9y6vQ+NxihUEGVzOWLJDH6XfJ8LMV1J4kcIIcRp9dShUXb0BAFYXu/DaZW7tzNFtc+O1azwOi1MxNKYFGQ1HDsB8Eg4wcGhMHv7Q9zfNsgF88pwyN+AELPWEwdH2N4bmOz7ZjYUmUJy2GExMa/CQ5XPztwKz1SGOeMcvekyv7KIj53bTCyV5cF9Q6z3lBCIpVnZ4Gd+pQcNTMSS3Nc2zLaucTIafA4Lg6EUhgKr2SCZzrGrP0hNsTTdFmK6ksSPEEKI06YvEGdP38TkSf0bl9Vgl2FeM4ZSijKPnbevrOWXG45QWWSnL3h808/hcJKfPn6YErcNq0kxHk1SY5WLBSFmo0w2x2gkRd9EHE0+6XN2k59nOydIZTVzyt1YzAZNpe6pDnXGMgzFgioPqYymvMjGRCyFxTBI5XLUFzvxOa2MRVLc1zZMpFCRNZjOV+3mNCTS+WX37xnkysVVU3YcQoiXJz1+hBBCnDa3butlS1cAAKtJ0VjmkqbOM9CH1zeS1XDV0irMz/v1DoeSNJY4aSxxsqlznLb+4NQEKYSYcjds6iadzZIqNPSp8zswGwblHjsWk+LcOaXUFzuxmOSS5VQq9dip9jtYVutjSY2P+hIny2q8NJW58busLK31Hre9xaSo9dmp9Tlw2fI3b/b1B9Bav9juhRDTgHyKCiGEOOm6x6KkMsf3akiks2ztHOfo4gVVHoqlv8+MVOK2s6SmiLXNxZPDM+yFDFD+Ak/xp809BGJpdveGSGdzPLR3aAojFkKcbt1jMYLxNA/uGwbAbEBrpYeF1V58Tgs+p5UltV68DssURzp7GIaizGOjocRFqcc+ubzueUO4qrx2/C4bXqcFvyP/Pd4fSjEWTXH3rgEgP4Tv3t0Dpy94IcTLksSPEEKIk+7zN+3kwFD4uGU3PtvD5q4JAKxmxccvaMFjlxP6mchqNvj6tYtBKT59cQsKaK0smlx/09YeDo9ESGc1Tx8e4cG2If64uZtEOjt1QQshTpsdPQF+v6mLc5qKmYjmhw3V+pyYDYPVjX4W1xRR53fgtplxWaUzxVSzW0wcW7z5pcvm85Ur5/OVKxfwqYtaAIgkMvzmqU4GQ3E+d+MO2ocjPLJ/WD7XhZgmJPEjhBDipNJas6snyENtA5Nl3/FUlgMDQaLJ/AngOY3FlLttcid3BivzWClz27iwtQLDgHevqcdhzp92jIQSJAqlX93jMTYdGUOjGS9cAAohZq5YKsMdO/p4+8pa/vPefcdVgV7YWkal187Hzm1hTVMxpW6bDAeeJlzW/Oe3AlwOM6UeG7V+x+QwMA0k01lGQgmuWlxJOptld1+AYDw9dUELISZJCl0IIcRJdX/bEMlsjj8928MnLpjD7Tv7OTIa5fFDY0B+et73rWtkTrlHTuhnsEqvgzKPHbvF4CPrmijz2Fg/t5SH9g1z7IzNgViGcCI/TfC27gDVPmn0LMRMdvPWXi6YV8at2/romYgD+abOxS4blT57/rtBwQVzyyj12KY4WnHUomovmzonqPHbaSxxHtdwW5FP/Dyyf5ieiThPHhrl0HCEbE6z4dAoxW4rwViKNy+vnbL4hZjtpOJHCCHESfXDRw4BMBRO8ZPHD1PitLCm0UtfIH+C31Lqotxtw++S/j4zmdVs4LCaUErxlhU1uKxm/vqCFqym45N96ZxmV2+QSCLD5o6xKYpWCHE6ZLI5Osdi3Ly1l0f2DxEqVIMUuyysm1NCa4UHq9nAbDJYXOvFL33gpo3/vG4JAJ+8oIVi5/EJOZ8j3+D58GiUVDbHwaEwqawmq+G27b08dmCYJw+NkszIsC8hpopU/AghhDipytzPDd/SaH6/qZvNneNA/q7gJy5opqHENUXRialQ5rFR4rLhc1oo99gZjyXROU08kx8KeHgkiga2dk+QyuSwmuW+lBAz0ROHRij3WHl43xDJTI5UVqOApTVeqn0OSt3PJRSkB9z00lzmochupsbvnJzJ66ildX4ePzg6+XP6mKrO7T0BTIZib3+IWDKLzXz8c4UQp4ckfoQQQpxU/YHE5OMbn83P3HR0qt5av4PaYpf09pllyo6ZHebyxRXcs3sQt81Mx0iErM4PEQDoHY8TT2Ul8SPEDLW9K8B9bQOMRZKECz3fyots1JW4qPE5UEqG/05nN3zsHLTWmE3Hf0ZfMLdsMvFT7rYSiKdxWkwEEhmS6RxPHBwlBxwaCmG3mjGUYnGN90VeQQhxqsiZlRBCiJNqMPRc4mc4nJpM+pgNla/2KXZKb59Z7H1nN9BQ4mRlo48S9/HDOKKpLDt6JqYoMiHEqTYUTtA9HieczGIxwGk1sarex1l1PrxOuSEw3RXZzFS8SN+l9XPLJh9fubiKMo+da5ZVAfnhvEcLgG7b2c8t2/q4eWsvuZx+wX6EEKeOVPwIIYQ4qcKJ48fwW0yKhVVFWAyD5jI35UX2l3immA1q/E7evrIOs0kRTWS5c9fA5LpMTnPHrn4uaC2fwgiFEKdCfyDO9u4JkoVpvHxOKxe1lpPIZGksccoQoDNAbbGTF7tt01qZ781U5rZyfmsZ57eWoVDc+GzPccO+Htk3RH2xi7FIing6i8sml6JCnC7yr00IIcRJo7WeHLZjKNAaFlQW0VDi5MLWcuaUuTFJtc+sZjUbXDy/nANDYa5bWXNc4gfyU72PhJKUFdnIZHME4unj+n4IIc5MGw6N0lcYCmwxKd5zdgM2s0FWa6q8jimOTpyIl/v+fsP8cpbX+agvduJ3WoilspzTXMyT7eOT24xF0gyF8lWdwXiKSDKDw2qiSPo5CXHKyVAvIYQQJ02wMEMLwAVzS5lb7uJda+q4bmUtrRUeuYAXAPhdVlbU+7mwtQKLAcVOMx5b/pRkNJLidxs7AbhzVz/fuf8AWsuQACHOdG19E8RS+YrQyxZWsLqxmP2DIc6dUyrfDTPAv79lCfMqPdQVOyn12KkvcfGNNy0GoKkkn9hL5/I3hzTw8L5hfvr4YW56tmfqghZiFpHEjxBCiJNmNJIE8l8uH7+ghcsWVbKw2su6llIW1Xilt4+YdLSB85wKD4uqvSyu9gHQMRKlcyzKcCjBrp4AmWyWI6PRKYxUCPF63bGzn/5g/vtBAWsaS/jDpi6uXlrF/Moi+W6YAVw2M/MrPdgtzw3Zay7z0Fji5MPrm16w/T27+jkwGOaBvYMyzbsQp8ErDvVSStUB1wOVQA74mdb6+8es/wLwbaBMaz364nsRQggxG4yEUwD4HGZWNxZT6XVQ43NgMcl9BvHiVtb7cdvMNJQ4eebIOIlMDr/Twmf+uJ0Kj5Ut3QF8zi7+6ZpFUx2qEOI1eLp9lL6JGDt6AgDU+B1s7hzjkxe10FLmxmGV3j4zgdVsUPEiQ/b+951nEUpkqCyyMhhKTS5/tmuCnM7fKIols+ztD/Hg3iHMhuJzl86TGd6EOMlO5Ew8A3xea70AOAf4lFJqIUwmhS4Fuk9diEIIIaabeCrLxo6xFyw/WvFT5rVjNhk0lbpkam7xsj60romzm0t441k1kyclt+3o54pFFTx2cJSRcJKeiTh37+onl9Nkc5obn+3miYMjUxq3EOKlaa3Z3j3Bt+/fT18gzprGYsaj+Yv+xdVFnDu3lPmVRTit0m50pptb4WFBlYfrltcCYDfnEzqZHOQ0ZDRs7Bjl9h39rG70s38wzEQs/XK7FEK8Bq94Nq61HtBabys8DgP7gJrC6v8BvgTI4HshhJhFbtvRx8+eOEw8lTlu+Ug4n/iplkad4gQ1lDqZU+7CZTPTWuUBIBTPcPvOfkKJDOmspmciRiqT4zsPHOA7DxygudTN4weH2dYlU78LMR3du2eQtv4Q715dT1OZi3+4ZRfZo1cLKj/USypBZweXzUyZx85n3zAPm9ng4+c3v2CbHz3SziP7h/jUDdt4eN8QA4H4FEQqxMz2qj5xlVKNwHJgk1LqjUCf1nrnqQhMCCHE9KS15r7d/ezpDXL382ZkGgjmT9ZKPdKoU5wYi8mgrtgFwPlzS1Hk7ybt7AlObnNwMILJgNVNxVwwt4wbt3SDhhs2ddEzHiWSzHDLtt6pOQAhxHHS2RxbOsdpKXOxbyDIf9y9D1Nh2I7drKjzO6ny2ac4SnG6WSwm3r2mnrPq/NhMxw/jah8O0z0eJ5bOkdVw/cZOcjk9OTxQCPH6nXB9pVLKDdwMfJb88K+vApedwPM+DnwcoL6+/jUFKYQQYvp48tAIG9rHyGr4w6YuLl9cidtmZiScZE9fAIAymaFFvAZvWl7DU+1j7OkPHVdKnMlp/vehduxWE4lUBqvZYDSS4jMXz+F7DxzE47DgtJjY1jXOiobiKYtfCAG3bOtlTrmTf7mjDa3hkvnl/HxDBwBzyz2cN7dMhnjNUn99QTPhRIbl9T42HpnAYkA6B8nn9Xbe2jXBtu4JfvjwIX76gVXHNYwWQrw2J/Spq5SykE/63KC1vkUptQRoAnYWGm/VAtuUUmu01oPHPldr/TPgZwCrVq2SIWFCCHGG+79H2ydL9g+PRvnJ44dRQLHLNtnjp6JIEj/i1VtQWURLmYvO0QiRVA4DKPPYGAonGQjGqSt2ks3B/sEIAD94uJ2vXj2fMreNn284Qm8gzvJ6/wuagj7dPsqmI+NAYWy61ly8oIKz6nyn9fiEmA0ODUV47MAwn71kHj2BGP/32GGyOTAUNJa6aC5zTXWIYopUFNkp98A/X7OIa364gfevbeBXT3VNrl9W42VnX5DesRi3buthZ2+AYDyF3SLDx4V4vU5kVi8F/BLYp7X+HoDWejdQfsw2ncAqmdVLCCFmvmeP6asSjGeIJrK47Ca2dI5xZCQGQK3fOVXhiTOYUop3ranHajJx8/ZeVjX4yOY0Q+Ek8XSOg0OR47afiKX4zgMHyeU0iUyOi1vL+N6DB/nMxXMnm4ofGgqzpWuC61bUkMlpcjrfIPpPm3tYUuPFJNNIC3HStPUHGQjGiadzfOnmXcTT2cnqvY+ub2QinsHntE5pjGLqKKVQChbVeFlc4+XcOWX8ZUsPoWQOm0nxwfUN/P2fd5HIam7f2U8kmeORfcNcuqiSJw+O8JYVtVN9CEKcsU6k4mc98H5gt1JqR2HZP2qt7zllUQkhhJhWfvJYO8vrfcTTOTK5/LKjJdo3bOrCbCjSOU2mcIZfUST9G8Rrc3ZTCX/e0ssP33UW9+8dprHEyeIaH08cGmEolCSdzXH5wgoe2DtEKqsZKzQUT2Y1D+0b5ptvXMS379+Pw2IiqzXxVJaLWst5cN8QJhTZnCarNX0TMRLpLC6bDDkR4mR5oG2Qbd0BBoKJyWUmQ7G0pgi/y05tsQmXTN8ugO++YymKfLL/Z092clFrGSvrnxuqG0nmTzbu2NFHMpPjmcOjXL64UoYJCvEaveK/HK31BuBlb4dprRtPVkBCCCGmnz9u7ubxA8MUOSwA+BxmVjUW89C+YdI5TTr33Eheqwlq/VKWLV4bw1B8/rJ5fPjXz/Kes+u4cnEV37p3P997+1mYC7MARZMZrl1WzSdv2EYy+9zfXiiR4cYtPXxobQMuuxWbWRFLZfnyLbtpKXOhFCgUWsP+oRCpTA6XjEoU4qRIpLMcGYkwWkjGmg2Fx27mQ+sauXh+Bb94soNPXtTygqGYYnZqLHGjFHz2Da3cur2fN62opcJrp9ZnpzfwXOKwbSBEVsPuviCJdA4pGBPitZGUqRBCiJfVH4jTNR6nZyI+ead2ZYOfL185n7FwknROo4A55W5ayt0MhRKTw2yEeC1q/U7+9c2LsZgUFUV2FlQV8fMnO5hb4cZsMtjbHyKZyfGDdy7n727cjqHyF5jjsTTtwxG+++AhTCaFSSkmYmkunl/GSDhFOpsjnc1hMhTRZIZEOgPIVYQQr1cup/nuAwfY3ReavBHw0/evoNyTvwkwFEpgNilqfHJTQOQdPU+wmAz++ZqFNJW6sFtMrJ1Tyk1bnpulMZTIsqVrgpyG3X0BLphX/lK7FEK8DEn8CCGEeFkbO8YAyGkIF6beeOuKWlrK3KxoLGYknMBkGOS05vBIlPPmlmIxSeJHvD5rGotJ53IopfjIuU30jsfY1RtkIp7iE+c3k8rm+MOmbm7+5HpMhuLZI2N88+59jERSRJIZltb4OHdeCQ+1DfG7jd0v+hp7+oNU+Zzs6AnwyL6hyUqEUreV969tPI1HK8SZ7adPdLB+Tgm/fboTgHOa/JNJH8jP9PWpi+bgsVumKEIxnV28oAJzod/auuaS4xI/kD//AHjy4AirG4sZCiVpKpUm4UK8GpL4EUII8bI2tL+wb/+yOh9KKf7hivn0TsSIp/K9Utx2MzazIYkf8boZhsJm5CvMLCaDpjI3TWXu47YZCCb485ZuzIbB3sEQVy6q4L62IeLpHJs6x9nUOT65rUlBPq+jyBSuIjZ2jOOxW9nRPcGbz6omns6hgRs2dhGMp/E65CJViFdy6/ZeqopsfPu+g6QKQy8/c/E8EuksiXSWe9sGWVzjpbXSM8WRiunKfUyvtTXNJQDYzQqbySB4zFzvO7sDPLh3iM1HxvjGGxdPDv8VQrwySfwIIYR4Ue3DEcrcNjYdPj7xU+W1Tfb6sZoNmp93MS7E6fKms2pIZ3OMhpO8bWUNv9vYzR8/djY/frSdpzvGyRYSPOfPLeXvLpk32dj5/z16iCfbx9g/EMJuNkhlNV+/cy85rdEaxqMpBoNxSfwI8TL29oe4fUcfzWUu7t09SDqXv0Av91gZDid4cN8QRXYLb1xWzdqWEuntI05Ijc/BZQvK8bqsjEWSPLJ/ZHLdoZEINz7bzcGhCF++cgEeSfwIccIk8SOEEOIFsjnN/zx4AJfNTF8wedy6VY3FuGRWDTFNvG1lHYl0FrvFRMmeQdoGQnzx8vkopchkc6QyOZzPm7mrqdTNk+1jHBmLkszkk0HvWFmHzWJgoPjWfftpH47QWlk0RUclxPR3+44+1rYUc8u2fsajSdqHowD81fom7tw1wLeuW0K5R2Z4FK/eu9c0kNE5grH0cYmfQDzDxo5xchr6AwlaKyU5L8SJkjN3IYQQk9r6g2ztmiCTzfHkoREsxnN309Y0+NjRG+QdK2sxGXLnVkwfdkt+SNjfX9rK/z3Wzi+fOsK7VtXjtptfMBRAa02lN38xOhZJAYqqIhv/dd9+srkcoIins2w+MsbVS6tP85EIcWbQWvNU+yhPHhrBZjbY0xciBzitJgbDSd6yvEaSPuI1O29eKePRFMUuK9954ABVXjvbe4LAc/1+nj0yRlOpi2QmK72jhDgBkvgRQggx6bsPHGBgIk46lyOUyAL50n2LAZ+4cA4/frT9BX1WhJgurGaDv3vDPHb2Bvi/R9tZ1ViM02Jma/dzw76Uyg/lAkhmNIOBBP3HTB181CP7R/iXazWGJDmFeIEDQ2FGwkmuXFLB7zf2kAMshuIX71/F7zd1cUFr2VSHKM5gZpNBeVE+cbii3s+i6iL29AZJ6+e22XRkDIfVRPtwhC9ePl8+q4V4BZL4EUIIAUAqkzuupPpYjaVOzp1TSjKTxe+U6a/F9Las1se/vnkJj+4fJhBL8emL5lBX7Jys/gnEUpz1zQcByBWe01TixGWzEEqk6R6PMRFNkszkcFhNU3QUQkxff97cw1A4yW+ezs+YZzYUv/jAKtpHIyyt9eKxySWGODk+fckcstkct2/v5eBIbHL5zp4A3eNxRkJJPnPJXJwyBF2IlyX/QoQQQgDQMRo57me7xSCRzl8WL6r2YbOYuGqJDH0RZ4Yyj413rK570XW+5yUvl9Z6+fc3LwHg0FCYv79pJ9FUvj+QJH6EeKEH9w0CoMh/V/zgXWdR7LZx07Ze/uGKVmnkLE6ahVVesjnNkjr/cYmfvkCC7ol8teZwKEFjqVQjC/FyJPEjhBCz3O07etk3EKa1/Lmpdp0Wg8U1XoLxFAeHoly9pGoKIxTi5HNZFdFUftzAuXNKJ5fX+B0AaCCezuBFekcIcaxoMsNgKN/0/31n13PdyjpMhqJjJILbZqbS65jiCMVMYzIUqxuLuXlbH1YDUjnIHjPs66n2MUYiKbK5HOc0l770joSYxSTxI4QQs9x/3rOfiViKqwvVPDU+O0tqvLxhYQVjkRSPHhhmYbXMbiRmljKPnehYHIBFVV7ah8Mk0llyaEzku1vt7A3IRawQz3N/2yDpwlX3pQsrMRmKI6MR7t0zyH+/bSkWmWJbnAJvXl7D9x48yMIqD48dHD1u3cP7hrhndz+pbI4/fKxY/gaFeBGS+BFCiFkslnruzu1DbQMAXLeylnq/k4tayylyWDAZCrfMmCFmmPpiF51jccwKbt7Ww/IGP2VuGxbDwGkzCCdz/H5jN+3DUT510ZypDleIaeN3z3QB4LGZsJgNDo9EuHfPAP993VKKHPJdIU4Nu8XE3HI3lyyo4MBgiIFQanLdls5xQsn8ZBSRRAa/S3oRCvF8kvgRQohZrGMkOvk4lMr381lZ7+eC1vLJ5R89r/m0xyXEqbaywc8Th0apL3bwgbUNXDi/YnLdrzZ0sH8wQlWRnXA8zaaOMc5uLpnCaIWYHuKpLAeHwgAsqiri1u29aA3/dd1SvNL4X5xiH1rXSLXfzqIaHwOh4cnlR5M+kJ/tq2MkQo3PyZuW10xFmEJMS5L4EUKIWSiSTDMYTHB4JPKCda2Vnhd5hhAzy5vOqub+tkHqi53Mqzh+KGNdsYv9gxHu2TNIicvKQCjBmqZiaVgrZr27dvUTTeUvsg2TwZeumE+p2zbFUYnZ4pIFFWRymnOaSnho3zClLguj0fRx29y8tYc9/SFsZhNXLKnEZpYG/UIAyABIIYSYhX7w0AE++MtNbOucOG65xQCPDOsSs0CN38nSWh8mQ+FxHH8fbEmhp1Wl20JrpYf+QJy9/aGpCFOIaWNL5zi3besFwKzyM+d57HIPWZw+hqGwmg3ev66BWr+DSxdVUmQ9/nL24X0jDASTdI7F6J+IT1GkQkw/kvgRQohZ6OdPdtEXTPLA3v7jljcUO7Bb5O6YmPkspnxvkrkVHlzW4y9e1zQVA9A+FueBvUN0jET4y9beqQhTiGkhnc3x8yc72DOQT4AuqvGyot4v1RRiStjMJqq8di6ZX8GyhvzntalQkJk7ZrsfPXro9AcnxDQliR8hhJhFcjnNeDTF0VlQB0L5Euk55S4AzqovxmTIcBYxO9jMJs5tKcF43t/8igb/cSdI49E0e/qDJNJZhJiNHto7xP6BMJFEBoAiu5kL58m02WLqfPONi2mt9PDes+sxFKxqLH7BNve3DZLK5FNBuZx+wXohZhNJ/AghxCyxvXuC9/9yE3v6Ai9Y9623LsXrMPOBtQ2nPzAhpsjX37iIBdXeFyy3mk1ct7KGr12zAKdZoYH2oTB7+4KnP0ghpoHfPdPFYDBOVoPVAI/DQqnHPtVhiVlsQXURdcVOLl9USa3fyVuWV9Pgz/9NHq1DiyRz9IxHGQzFec/PN0ryXsxqkvgRQohZ4m9+v5WnDo/x+MGR45YrYH5VEW9cVk2pW07kxewxp9yNy/biPUr8ThstZW4+fG5+VrtAPMNtO/tfdFshZrJALMX2ngmSWY0CPri+kXkv829HiNNJKcW7VtexqrGYNy+vBWBlox9b4Sr32/cf4It/3smmI+P0B6Xnj5i9JPEjhBCzgNaagVASgBs2dR+3rsprxW42+PobF1PhlcSPEAA2i0E6m+Oc5hIMQAObj4wRS2amOjQhTqtfPHGYeDo/XOa/r1vKaCTNtUtlmmwxfXzighYaS1x88qI51PgcvGNVHcsLQ78e3T/Ek+1jaOCmZ7tffkdCzGCS+BFCiBkunc0xVEj6ACQKJ/BNJU4AFlT5MJsMTIaS/j5CFDSVuvjL1l5u3d7H2ub8BUTfRJzbd/RNcWRCnD6hRJpbtuf/5stc+VnuUpks1X7HFEcmxHNMhsJsMrBbTHxkfSOrGov5zEVzAUgeM7rrqfaxKYpQiKkniR8hhJjBukajvPOnz7B/8IVTUf/HW5fgspn4yLmNpz8wIaa5Ny6r5kfvWcElC8qZW+kBIJzM8kDbIOls7hWeLcTM8P8eaWcknL9x8NYVtWw+Ms6yWh8Oq8zmJaanD69voqHEyfq5pZS5Lcet2zcQkibPYtaSxI8QQsxgH/vds2zrDvDg3qEXrFtYXcTbV9ZSX+yagsiEmN7MJgOzyeDKxVWkMhpzoRju0EiUX284MrXBCXEajEaS3L17gEKRKE6bmf1DId6/tnFK4xLi5RiGQqn8B/Z5c8uPW5fOQTQlw3XF7CSJHyGEmMEODkUBuGlLflz70YFcxQ4Dh8XMv1y7iBqflOwL8VIMQ7Gywc85LfnhXiPhBF1jUa5/unNqAxPiFPufBw4wGEoAcMHcUvYPhvmPtyyRah9xxvjKVa3U+R3MKXdNnv8cGgpPaUxCTBVJ/AghxAwVPaYJbaowxv2KJZUArGkuw2o2UEphSF8fIV7WlUsqqfHlK+OSGc3jh0bZdGSMu4+Z5autP4jWMoRAzAydo1Ee2j9MujCTV32Ji+tW1GA1S9JHnDnKPA7Wzynl/LllzK1wA7CjJwDAO3/6DG19gakLTojTTBI/Qggxw/RPxPnIbzZzYPCFd7U+sq6R5lIXHzu/eQoiE+LM5LSaKXKYOW9OvuonEk+ydyDErTt62do1zlAowYd/vZnNHdI4VJz5Dg6F+drtuxkuTArwntV1jEYSnN1cMsWRCfHqffYNc3nv2fWsavADcO+eAXrGo2w6Ms5n/rB1iqMT4vQxT3UAQgghTq4P/XojB4djLKv1vWBdU5mb/37bUhpLpK+PEK/GOc0leGxmnmofJ5DIkcjE0Bp+9PAh7FYTE7E0t+/s5+yW0qkOVYjXZEvXOL99upNgLEXHaBQNWA1YUuelezyO2yaXDeLMU+nND2df11LKHzb3sK0rwD/dshuAjrEE8VQGh1X+tsXMJxU/Qggxg0xEkxwcjgHwsyc6jltnVeC2mVnVWEyJ2zYV4Qlxxjpvbhlj0RRfu3YhdrMikYHBQIyu8Ti7eoOks5r79gySSGdfeWdCTDPj0RRfu3UP45EkY5E0vRP53j4fP7+Fxw6O8IF1jZMNc4U4E61szFf8ZDU8fsy07vtfpDpaiJlIEj9CCDGDfPZP2ycfRwuNfVYXTnbmVLqxmeVjX4jXwmo2qPE78LusfPfty/PJnywMBmMMBvMXyeOx9HG9tYQ4U3z2T9sYi6XY1RuibSAEQI3PTonbxuJqL5VF9imOUIjXp8rroNb3wr/j+/YMTEE0Qpx+cgUghBAzyJOHXthj5ENrG6nzO/j4+S1yx1aI1+G9ZzewvXsCh83gv9+2DLOCWFqTPaan8/7B0NQFKMRrkM7m2N4dZCiUJFxIXC6odPGdty3j6cOjfHhd0xRHKMTJceWSqsnHR8+Gbt3WA8Bt23r46989Syabm4LIhDj1JPEjhBAzRNdYlKOnK8emd1qrPHzxivmsrPdPRVhCzBgum5nWyiJ6J+K47Wb+/S1LJ0+kjs51dOOz+YuITR1j/O6ZTpnpS0x7v3mqYzLhc82SSr593VK+dd1ZbDg8ylVLqnDZpf+JmBk+f2kr9sKH9bo5+Wblw5EM0USaz/15F/e1DdM7EZ/CCIU4dSTxI4QQM8TRceo+h4lldd7J5RVFdt64rJo6aegsxOv27jX1OCwmDg5FKPVY+Z93nsWXLm/lyiWVADzVPkoqk+Nb9+7np090EErI0C8xPX3ngf10jkb4+ZNHADi7yc/Hz29hflURwViKI6NRrllWPcVRCnHy2K0m3raqnsYSJ1+6fP7k8rf+31McTdHftLWbh/cO8YbvPsba/3yYiWhyaoIV4iSTxI8QQswQBwuJnxK3nbeuqAXAbzewW0wv9zQhxKv09lV1NJY4OTgUxm03s6apmB29QQDGo2n+32OH2D8YYiAQZ19/cIqjFeKFbtnaw1+29PGZP25nOJwC4Jol1UzEUvQHYty4pZfPvmEeFpNcKoiZ5XOXzuO8uaXU+h2sKNwkOzAUnVz/+2e6+Nj1W2gfiTIQTPCTxztealdCnFHk01wIIWaIjYdHAFha4+V9Z9dT5bXzzrMb5MRdiFPgisVVNJa4aB+OcNeufi6YVwaABn77dBfxdI6shv996BC5nAz3EtNHfyDG9x48yEg4Qfd4bHJ5IpPj3j2DbDoyzj9fs5B5FZ4pjFKIU6PEbeOrVy/E77TytWsXYX5e68NgIsuxXX7u2Nl7WuMT4lSRqwEhhDhDpTJZPnb9lsnpo3f3BQA4u7kYwzBY1eDn/LnlUxihEDPblUuqqPU7UUrxhctbcdvyp1UTsfTkNjt6AkzEUlMVohDHSaSzfOz6rfQHEmQ1BOP5oYjzyp3sHwzx729ezNeuXUSlV2bxEjOX3WLCMBTL6nysbioGoM5v59h2VnPL3QAMBFNkc5rNR8bIShJfnMEk8XMSHBgM8U+37eYfb9nNjc92T44FjSUz0hleCHHKfOGmnTyyb4jbtuXvRoWS+ROSRdX50uVvvmkRKxukobMQp9LVS6v4l2sX4XdaWdtS+oL1iUyO7z98UJo8iymXyeb4xPVb6ByN8vyzU7PJzJevnI9JKkTFLKKU4rtvX8a8CjcfWNfIOc35yk2zgr9a/9xsdtu6xnnHTzfSMRyZqlCFeN2kTf9rFEqk+fOzPTxxcJgdPUFyWmNSivv2DPC9Bw5SZDcTT+fQWlPtdxBNZqjx2fnRe1Zgs8jbLoR4fQLRJHfsHADgW/fu4+KFFZPr6vxOAPwu25TEJsRsNbfcQ+9YlH1DUWp8NoLRNJF0jrt3DXLd8lqWycx64jQbCiZIZXIMhuL84OFD7B0IE03lq0S/etUC/uehg8RSWRpKHPid1imOVojTr9rv5L+uW0pFkZ31LaVs755gflURly6q4L/va2M8nuMDv9wIwI8ePcT3371iiiMW4rWRDMSrlMtp/uWOPfx+Yzcvd+9uKPxcB/jBUL6cdv9AmIu/8zi3f/pcSj1yQSaEeO0+d+OOyceBRJYnDgwD4DDys1YIIU6/pbVePDYzvkMjLKwqYntPgG3dAcajKT5/005u+ut1+F3PXVynMjniqSwOqwmrWSotxMmTyuT40l92cnAojNVkwmzAQDDBWDQ/7PCv1jeyoMrDf751Mbt7Q8yr9GCWah8xSy0vJOWrfQ7WzSnlnWvqKHZZWd5QwsP7RyiMiOSR/UMA3Lq9h2uX1si/GXFGkb/WV+lXTx3hd89L+swtd3Pl4koumV9Ga4UbqynfJezoOVy2sHEO6AsmuPx/n2A0kjitcQshznxaa7TW5HKaRw+OAnC0J+E/394GQE2pC6uciAgxJdY0lTARS/Hx81voD8ZpKHFhNSk00D0e5ZM35HtyjYQTXPTtR7nqB09w3U+e4urvP0E4kX7F/QtxIpKZLO/+2TPs6g3QMx6jezzKgaEIfcH8ueeFc0u4ZH4533/4EGbDoC8Q57w5LxymKMRs9IN3L+ecphKUUqxpKjluXTiZ4+5dfXzuxl30B+NTFKEQr41U/LxKly2s5MePHsLvtFHjd+CxmXHbzTSWuLCYFD6nlTK3jUQmi99p4dBQlMMjEeqLnfxxcxcHh6OMRVNc8t3H+dUHV7OysXiqD0kIcYb4/J93YDIUHy6MO7cqKPHYGQgliKfzHRsai50Yhnq53QghTpFil5XyIjtHxqJUFDloKHZSX+zg+w+3k8rCju4A37yzjc1Hxukae242pRzQH4jTWmmZuuDFjLCze4J/um0PXeMxQolCmQLZyfXntpTw6Yvn8btNXXzt2kXcuLkbp9V0XCWaELOZxWRgKRROL6nxvmD93/1xBwA3bOzmK1ctOI2RCfH6vGLiRylVB1wPVJI/N/mZ1vr7SqlvA9cCKeAw8GGtdeAUxjot1Jc4eeYrlzAYTGI1KRxWM6FEmkNDYeLpHEOhBHv6gvnx0xoyuRx2i4lnO8c5p7kUq9lgT3+YYDzDu3++kSe+dCGVXudUH5YQYpq7/ukj3LK9H4DywlDR4iI77z27np890TF5gr9uTtmUxSiEgA+sbeS9v9jI/7zzLKxmg98+1ckH1jZw/TNdJDKaW7f1Es+8cLD4Q/uGaa0smoKIxUzxxZt2srtQ5ROdvBngwGo2UeKyck5LKefPK+Xe3QOsbyllSY2X4ovm0DcRw26RIcJCPN/8quc+k91WE5FUlqMf3w/vHeArVy0glcnJUF1xRjiRip8M8Hmt9TallAfYqpR6EHgQ+IrWOqOU+i/gK8A/nMJYpw27xUxj6XNvnd9lpaHE9aLbaq3pnYhT5rGxo2eCQDyFzWJia1eAVFbzph89xYYvX4LFZDARTUozViHEC2it+be79k7+/PMnOgCoL3bysfOaGQwlWFjl4b49Q1y2UKZvF2IqWc0GN3587WTlXSKTY31LCeORFHftHphM+vgcJr5w+QI2HBrlvrZBDo+EpzJscYY7MBjirl39pDK5yRYDHz+viWuWVqNU/m8xm9M8fXgEp9XMO1bXAVDjc1Djc0xV2EJMa8UuK2saixkIxVnd4J+8AQdweDRO+1CY9/xiEw9//gI8dqnYFNPbK6YntdYDWutthcdhYB9Qo7V+QGt9tIZ0I1B76sI8cymlqCt2YreYOKe5lC9ePp9qr4OrFudn4BkKp/jO/fsIxJKs+reH+Pode2TKVyHEce7ePUDqmLl3jz5++4pabBYTlUV2QoksbrsZp01OPISYascOt/z8ZfN4/OAoly4qZ13zc/0iPn3xPCqKbFQU5W/47O4JTK7rGovw2IEhHt0/xNaucbI5OS8QL01rzYd+tZl4+rmkz99ePIerllQzHksxFk0yHk3y5KERwokMf/eGuVMbsBBnkH+5diGfunAOF8+vOG65Bt72k6cYDifZ1DE+NcEJ8Sq8qh4/SqlGYDmw6XmrPgLceJJimtHqip187ZqF/Nvd+2jw2+maSPDTJzq5cXMPWQ2/ebqL96ypZ15lEV1jUaLJLAurpfRbiNnsmcP5Rs6LqopoGwhNLl8/J38R+dcXtLCzN8iKeh9+pyR+hJhOnFYzX7t2Id+8ay9vWVGNx2GmyG7hsQMjLKnxEk3m76H1jMdIpDJc8f0nCScy5LRGAZFkhts+tZ6F1S/sNSEEwF//fisDofxssm+YX8ZfndeCScE9ewaIJjO4bWZyGlrKXLxrjSR9hHg1FtV4aSpzEUlmJpdZDEjnIBDP98/a2DHKGxZWvNQuhJgWTjjxo5RyAzcDn9Vah45Z/lXyw8FueInnfRz4OEB9ff3rCnamKCuy8513LOOzf9pBz8QAOfLTMR917Q+f5D3nNHLDxk4Uiq1fuwxHYey1SZq2CjFrBGNpvE4Lz7Tnp2o3mxR2EySyUOKy4HVaC8sNVjb4pzJUIcT/b+/O4+Mqy/6Pf86syUz2PU2apEmbpum+0RYKhUKBIrJvgoiIoiIKPj4/BVRcHlDcEDc2QVFBBQFFZV9boPu+b+matNn3dbbz+2Mmk6R7oc1Mku/79cqrk3PmzNwzd3Pumevc93UdRYzdyvc+WcoP/7OJeWMyeWdrDXddOJpxuUlUNHbw/KoKOv3w09e3srtX0uduP311M0/dMjMCLZdo99t3tvH25mCJ6TiHlS/OGUmX189fV+zjkknDmFeaFeEWigx8LocNl8PG/HFZNLZ7afd4WVvecyFuxe7aCLZO5PgcVyYqwzDsBIM+z5im+WKv7TcBFwM3mEdYn2Sa5uOmaU4zTXNaerqSjnazWy3cc1EJs4p6qnqlhSoqdPnhjx/uxuOHLr/Jg29sYd4v3uOihxbg9QeO9JAiMsh8+sklbKhoZE9d8Eru184dycS84DljTHZCOCAsItHPabPy/UvGsnpfIyVZcYwJzeDJSogJ3+ePH+7uub/VwG4NXuxZtquuX9sqA8OavQ385u0d+EIfDb95wWjWVTTy3Mp9fP7MQgV9RE6ym88o4PoZeYcU0thS2Upzu4e7nl+Hx6fvahKdjqeqlwE8CWw2TfPBXtsvJJjMeY5pmodenpJjykl2cfX0PJo7vVQ0dDAizU16gpPNB/omePzDh3vCt59espubzyjs76aKSD9bXFbH+opmvvX82nAh3vE5SXx5ThHtHh83nT5CZdtFBhi71cL9l4/vs81qMXBaoCsQzBkB8OebTyMh1k5VcydffHol7T7w+gPYraocI/D0kj38efFuqps76Qol9bn9nJGsrWhiekEyP75iAm7nCWVzEJHjcNqIVPwBkxSXnUfeKwtv7/TBNY8tYktVGzfPLlCFRolKxzMqnAHcCKw3DGNNaNs9wK8BJ/BmqFrAEtM0v3QqGjmYXTYph00VzWzc38Q9F43hzc1VzB2dwZ66dlwOK8+tLO9z/x/8ZzNPvr+L1Dgn0wqSyU6MZfWeBtaWN9LpC/DAFeM4rzQ7Qq9GRE6WJTuDV/g3HmgFgifr+Bg7Z4xK48evbmGccn+JDBrDU13sqAleQ0tz23hzcxVtXT5MeiZTN3d4qW7u5Kevb2F/Uyceb4C/fWEmWarINKS8sm4/9/93I/6AGU70f9HYzFCScJNrp+eFq3iJyMlntRhMzk8mzmEl1mGlptUDwJaqNgAWbqtR4Eei0jEDP6ZpfgAcbgR55eQ3Z2j6xgXFbNzfTHFWPMVZ8Ty2oAyPP0BJajylWfFsqmxhRKqL3XXtmEB5YyfljZ2sLW865LG+8OdVbPzhBfxzVUWwekOXFwsWfnntRNLiYw59chGJSmv39q0QkZ0cg9NmwWIxePrzM0iPd0aoZSJyshWmx4cDP3arletn5DEmO/jF4ZW1++kKwK7aNm55ajkdXh9g4PGbbK9pUeBnCAkEAvzPc2vo9PUEBIcnx3DFlOH8Y9U+Hrp2koI+Iv3A5bBx/cx8wOSFlfuoa+tJ/Lx6bz1QRCBgama2RBXNA40CTpuVKXk9iVlvnzuKQCB4ne+0ESk8vnAnJpAQa2N9KJHYwatH7RYDb+iY+Q8tYE99Z5/95z64gKV3n8fv3t3O8j0NzBuTyc1naKmISLRpaOvC7bSzam9Dn+35qe7w36uCPiKDS3FWHG9sCibonT0qLRz0AchLc7O9uo1nluyhqbP7y0Xwi//jC8o4c1RGfzdXIuSuF9aFgz6TcxMpyU5g/tgsnlm+l+9eXEqsQx/rRfrLNdNyCZgmGyua+LCs52Ld0rJ63t5Uyc/e2MpLt8/GaVM+RokOGiGiVPcXvNNGpLJ0Vz0Xjs2k3ePn6aV7yU92YbMa+PwBOrwB4pxWGtu9rNrbyPI9DYcEfQCaOnxMu+8NWkPzgpfsrOdAYzuLyupJdtv5480zaOn04nbYiHHoBCUSKec/9D73XjyG5q6+4d0xWfERapGInGqjM3v+vi+dlNNn38iMOLZXt/HPNfsByIx3kpfiYvmeBjYcZuavDF7/WFkBwDnF6Xzt3FH4AibPLNvDrWcWkZvsinDrRIaWkRnB8/b43KQ+gZ+6Dh+3Pr0SfwC2HGhh4vCkCLVQpC8FfgaAr84dFb7t9ZvUtHRS0djJrrp2/H6TLpedc0oyGJuTyMo9DQSA4UmxfHpWHoEAvLLhAOsrmsNBn25P9EoaPf2+N2ju9JMe72DRXediUwJJkX739uYqalq6uOv5tYfsmzBc5dpFBqvizOAMnxibcUhuiDHZiby6oSr8+x3njcLAYPmeBho6/Xh8ATo8fh5/v4wNFU2UZMVzx3nFuDT7Y1D53B+XhTM+XT4lh3e3VlPX5mHOqHSmFmh8EImU0lCFxt66izAv2VmnwI9EDX0qGGCmFaQcdf9rGw5Q1+rBabfiD0Cq28HsUWlsrmzB5zeZOzqd4sx4nl66h9Yuf/i4ps7g7eoWD0vL6vjOS+v53OkF3KgKYiL95v6XNwLQ5g1+vHfbwcRCuzegZM4ig9jorHhOK0gmLsaG29l31m1xZt/Zfot21Pap2NTu8XHWT9/F4wuO4x/uqOXGWfkK/Awin/3jUhZsrQVgzsg0/r12P7eeVUhanJPC9LgIt05kaJuYGwz8JMTYsBrQ0NGT7+f9bVWcW5LOBztq+cwspdiQyNKngkHm7otK+d6/N3LXhaMp7nXVsLy+g4Bp4nLYGJ+TyOlFaTS2eyhIc7NmbwPbqttwWIPJIm/4wzIA7v3PZq6bWaDysSL9IBAw2Vnb0WdbToqbc0ZnsrO2lfQEJWcXGcxKshMoTHcTa+8b+MlP7VnCkxBj4/uXjCMt3slzK8oxgQde3kRzp6/PMS+vq+SLc4r6o9lyij2xcAfvhYI+ABarwd3zx1CUoYCPSDTIT3UzrySD4qw41uxr4sOyuvC+5bsbmP/rD/D6TS4cl01WopLxS+Qo8DPIDE9x8fvPTMN6UET5WxeW8MamKq6alktCjJ2zS9K596WNjM9JJDPeyejsdqqau1i2q2eNqglsq2yhucNL6bBEEl32fn41IkPHyj31h2wrSInjwnFZLC6rJcamAKzIYHbNtFySXc5DqjINT3H1uh1LQmxwLM5IcFLV3MXfQ3lf3A4rTpuF+nYvS3fWKPAzCLy3tYr7X9kKgNWAW+cUEvBDYbo7wi0Tkd4+d+YI4pw2bDZrn8BPcHFFcBb34rI6Lp+SG5kGiqDAz6B0cNAHIDfFxedmjwj/7nba+fnVEwEwDIN15Y3kJMXyyd+8z/6mLiwEK4f9ZfEu/r6igpykGD741lyVCRU5RR5+bwcATqtBlz/4IWFsTgKT85KZNDxJf3sig9y4nKTDbo9z2rBZwBeAc4ozcISCwEVpbqqau8L3e/CaSZTVtPLT17eydm8w6XOX18+/VldQVtPGpOGJzBubpVm8A8RtT6/kzc2V4bw+D107idc2VnHPRSUaD0SizKyiNABq2zwAuOwWunwB/GbPfd7ZUqnAj0SURv8hzDCM8IeHCblJpMY5ue/y8YzPSWBSXhIAf18RvJJY0dhJXZuHpWU1tHf5jvSQInICTNPkD+/vpKXTy4c7glP5x/dKAjg2lNdHH/JFhrYLx2WTHGvj8ik9Fb9KepV8j7UZHGjqYG99GxCsKtPY5mHyD9/gO/9azx8/3Mmdz66mtVPj90CwvaqFVzZU4g2lYrzhtOFUNHaQnxpLtpaKiEStOaPSyU+J5YopOYw+qBrrO5trItQqkSDN+JE+5pZk4vEGyEt1cdGvP+iz75F3t/Pkh3soSnPx1jfO1pdRkY/prU1V/PDlzcwoTMUT+oB/2aRhJDhtoSv0SRFtn4hEhxtn5tPU4SU1zhne1vv8kOhyYrdZ+PTMfP6+vByAzz21jHZv32qey3bVccG47H5ps3x01z6+GAC7xeD8sZk47Fb8Jvzv+aOVHFYkilksBnfOK6YwNY5Yh41NB1rC+9q8Adq6fH2S84v0J834kUNcOD6b0mGJxNr7/vd4MlT+vay2nb0N7Uz6wRssK1P0WuSjuvdf6wH4buhfmwFzR2dw+sg0JuQmEqOqPCIClGQlcO204X2+MPQu+z4qw82104YzLieJ7tTQq/YFl3slxdpJiAked7hcYhI97n9lE+f94j3q27wA/PCysUzNTybWYeW2s4uwWPSxXSTaXTYph7E5CVw0PhhkL0xzYw/Fa9dXNEWwZTLUaQSRI7p2eh52q8E1Uw9djzr3Z+/R2OHlhieX4fUHDnO0iBzLgZbgWvDuL2iZiTEkuR3MK81kcn4yroOq+4jI0JTosnPxxGF98vP0rvb1iQnZ2EL7shKdfY597NNTuDKUV+LDHbX4AyYPvrGVqx9ZxN66tn5ovRyPJTtq+f3CXeyoCfZJZryDpg4va/c18bW5IzXLWmSAMAwDm9XC5LxkTitI5uvnjWJiKIXGy2v3R7ZxMqQp8CNHdNf8Es4qTuf2uSNx2oIfOLorC3UnK/MGYNEOzfoROVFNHd5DtuWluoi1W8lPdfO5M0ZoSr+IHFGM3cq0/CQK093MHpkW3t47r0RhmovXN1dRVtMKwPbqVn747w38+p0dLN/TwF+X7un3dkuPX721jaU7a1lSVssNTy7ts29UZjyJMQ4evHYSMXbN/hQZiB66djIzi1K5YGwWAE8v3YvHpwvmEhkK/MgRxditPHzDFHKTXXxpThFJsTZ+cuV4ur+Kdl94/Orf1hAImEd8HBHp0T3g76huPWTfnOJ0XdUVkeN27phMSrLiSXQ5wtsmDE/uc59rpg3nZ1dPAMDjhz8t2Rve95fFuzV+9zOvP5jn47LfvM8v39rO9b9fyg1PLA1fUPvE+GxumV1AXoqba6YPP2ylVhEZGIYlx5IeH8NVU4cDwcLu726pjGyjZMhS4EeOymmzYrEYfPnskXz57JGcPTqTa6blkhHv4LY5RQA0d/p4eX1FhFsqEv1+8foWPvPkEjZVNLK1suWQ/eeXZkagVSIyUJVkxTMxNwl3r3xgU3oFfi6bnEtJVgIZ8TGHPb7Na9IVCkY3tXexek8DWw400dldTkpOKq/Xx6wfvcXZP3uHNRXNQHAGdXfQ55ziNK6elkt1cxc3n16goI/IIJHsdjA6Kw6A2/+2ps+sn8rGdgXgpV8o8CPHJcZu5Ytzikh02bn3k2P5fxeU8IU5ReQkBT9MfvVva2lu90S4lSLRq63Lx2/eLWPJrgauenQRC7dVARAfSrqa5raT6j78lzMRkcM5e3QGt55V2GdZ6LjcRABibAYXTwguLzAMgzS3PXyf8Tk9y8EqGtq54JfvMeX/3uKKRxYx/1cfUHaYGYny8Z3+k3epbfNS0xpc6hvntJEcayfV7WDOqDTcMTYWbqvh7NEZFGXERbi1InIy/eiy8QB4/SbzHnwPnz/Ab97exswH3uWtTVURbp0MBVo0LCfM7bRx9bTglMVfXTeZqx9djAlMve8tVn33XOJjnXz3X+uIc9j51kVjIttYkSjx3pbq8O12r8lrG4O/n1+aSazDSmObB5dTyZxF5PgdbmloitvB3JJ0fD6T1LieYPLorHhqy4JVvQwMYmwWOn0Bfr+wjK1VfZM8P/redn5zw7RT2/gh5q2NldS09lwgc9os/OLqCdisFtwOG4t31pEQY+Nzs0doya/IIDS1IIWidDdlNW3sqe/gy0+v5M3Nwc+Cf1++m/PHZUW4hTLYacaPfCzTClKYV5oBgDdgMvGHb/Hc8j38Zck+Hlm4k9qWrgi3UCSyvD4/e+va+PU724CeGT7dLps0jB3VbUwYntSnYo+IyEdVnBnPpLwk4nqVf59SkBK+ff2MfCYOTwLg2ZXBpdrxMVYy44MVwRZsr8E0e5YedPn8dPn8fbbJ8TNNky/8ZSUARelu7r24lLsuHM3flu/j3a3V/GPlPto9Pj49K19BH5FB7HfXTyY9LpiTrTvoA7AoFJTXOVZOJc34kY/tt9dP5ZLfvs+WylYCJnzzhQ3hff9ZW86isnrGZsVx5wWa/SNDz5QfvoknEKDLFxzMv3JOEb9+azvt3uD67uKsBKYXJDN/XHYkmykig8glE4fhdtr65Ij5xLgsfvP2DpJdduYUp1HR2MHSXfXh/XfMHUWq28nX/7GW5s4AXb4AD725jRdXldPm8ZEW5+DF22aTGuc83FPKUTy5cAfdX+eKM+LYXdtKVUsXv7puMi6HFathqIqjyBBQkp3I/102jv/9x1pau3pyqXX6TF5ZX8Htz6zhzf85i6KM+KM8ishHo8vL8rE5bBaeunkGE3MTOfhjywOvbuHNzdU89O5Oqls6I9I+kUj50l+W0+Lxh4M+ABsqmvni2cHE6HFOK26njW+cP5rhKa5INVNEBpnSYYnkp7r7bCvJTuS0gmRmjkglyeXkzFE9JeBddgtrK5pZvqcnEPS3ZXt4dOFOqls9tHkC7KnvZOG2mn57DYNFIGBy/6vBGZ+lwxI4d0wmt55VxC+unkhirB271aKgj8gQcuG4bL55wWjsVgOH1cAW+vP/yjNrCABPfbgzou2TwUuBHzkpshJjeObzMzhjZBqJsTbmjwtWJ+oVzObht7dFqHUi/a+quTOcx6fbsEQn3//kWKqbu/jSWSM4Z3QGMTadhkWkf6THx3BuaQaxDitjshPC2zMSYvjhpWP50RUTSIoNJoH+4X82h/d3n6ZeXacKnifq9wu3YwIWA0ZnxDN/fDa5KS7iYuzHPFZEBqfPnD6CL51VyOfOKGBSaNlt9yXClzeo3LucGvrGISdNXIydpz47nW9dUMLd88eQGNt3JeGfluyjy+vn129vpeQ7r2oGkAxqTy/eDUBCjJXzStJxWA1OG5FKstvBTacXsLuug7E5idiU10dE+skd547iwrHBBKLxMXZi7cHzz5zRGSSGAhFjQiWHu7+EXDkll/NDxyzeWa+ywyfAHzB54LXtAOSnuvjCmSNwO5VlQUTgGxeU8JW5o5g7JqPP9vo2Hx0e/xGOEvno9I1DTiqbzcL1M/PJS3Xz1bmjADhvTDoQ/BB52o/e5ME3d9DpC/Dg61sA6PT4ItVckVPmva3B2T5F6XHExdi5aFw2V03NxWoxKM6MJy/VxXkHDfYiIqdScVZ8n5kml03OYXhyLNdNGx5ebjRrZHp4f2qcA7vVoDvfaIsnQKe3b5Lndo9PwaAjeHzBNkzAAM4clUZRpkq0i0iP+Bg7k/NSDtm+vqKx/xsjg54CP3LKfP7MQr5w5gi+eUFJ+ApjU0dPBPvZFRWc8cDblNz7Ov/3nw10+RTdlsFjU2ULACMz4rnp9AIaO7yMz0kK77/nojGMVPI+EYmgSyYOY2RGHMOSYsPbZvfK/ZMUa+fLZxfx8A1Twts27G/i0t9+wKIdNXzqscXMuP8t6ts9SF+BgMlPX98BQEGai8/OKsBps0a4VSISbcbnJmIxwGYxmJATXIL7wbZgZcWzfvoOBXe9TNHdL1PdrJUS8vEo8COn1F3zg19uf3v9ZHKSYgCwW4NXFU2gojF4Envywz384N8b8foDkWqqyEnR2N7Fvro2uv8r33neKCbnJfPHm6eT6FJOBxGJHpPzkvmfecXEx/QsPxqT1ZP759ppw8lPdWMYBmmhEsTXPbaEdRXNXP/EMhbvqqely8/Ti3b1e9uj3Qsr94Vn+8wrzSQ3xX2sQ0RkCIpz2rh97ki+cGYhl0zKAeD5lft4dd1+9tZ3AOA34e0t1Ud7GJFjUuBHTimrJVii1Ga18O/bZ3NGUSqfnz2CmYU90xpDcSD+umwf726u7DOFXGQgaerwMvW+t3h6yW4ArECiK/hlyTBUtUVEokuM3cr43KQ+VaViHVam5CVRkOpi/vis8PaJOYkAHO7yzMMLdtKuZdthpmly9z/XA5CXEsv1p+XjUCJ/ETmCr59XzC1njuDMUcGltvubPfzv8+uA4HcpgHXljZFqngwSGoWk36TGOfnzLTP4ytxR/PDScQA4bRaunT4cZ+gD0a1Pr+bDsho6vVr2JQPP04t34w/AY+/vBiArKUZVu0RkwLlsUg7TC1JIjXOGt509JjN8OyPeyah0N6NDOWs8fpPVexrwK9cPAB/uqMEXipB9YsIwcpJjj36AiAxpwVmVTooz48LFcdq9wZPIp2fmAbC0rCZi7ZPBQd9IpF9ZLQZxThvFmfF89vR8vvuJEr7ziVKm5yfTfcHxM08uZ/muOiWLlAFje1ULu2vbeGdz3xKcozPjVbVLRAaciycO44tzCnE5epaAnV0cvBJtNWBibiJnFadTmO4mzhnMW/PpJ5fxm7e3qhoN8OW/rAIgM97JNdNysWscEJHjYBgGP7tqQvj3rAQnn5w4DIDddZ1aFSEfi0YiiZjvfXIsV07Nw+W08ZOrJjAyI3jlMGDCHX9fTXlDe4RbKHJsZTWtzPvlQn77znbWVTT32Tc1PzlCrRIR+ehS3I5Dks8PT3FRnBlHcVY8V07NZVhyLF+YXcjckp7KnQ+9XcYLK/bgG8L5+jYfaKIlFPy6cFwmw5JcEW6RiAwk54/NZkRa8LzxlbOLGD+sZ5ltgxLpy8egwI9EjGEYxDqCVwpzkl189xOlZMQH86HUt/v47dvb6fD4aev0smJ3nRI/S1R6bUNwls+LqyrwHvRfdGr+oSU6RUQGqvPGZDItL5k5xRncMruQKQUpfPsTY8lLicVlD36k/M6/N7O1MhgEf+Tt7eyrb4tkk/vd1Y8uBiAp1sZnZhUot4+InLCXbjuDq6fmcv7YLJx2K3GO4LKITftbItwyGcg0GknUOLM4nXNKMoh3BqeWP7eqgn0N7Zz503e48cllNHd4I9xCkUN9sC1YZaE75mMACTE2YuwWRobyX4iIDAa3nlXI/5xfHL5oA5CZEMOswjROK0zFEarWcMMTS/nfZ1fxkze38ei72yLV3H4VCJjc8PtFtHYFZ/ucU5JBTrJm+4jIiUtwObjv8nGkxwcrIk/NTwVgXXlDJJslA5zt2HcR6T93nFtMRUMHi3fW4Q/At55fTX17sFLIkp11fGLCsAi3UKSvlXv7DsI5STFMykuiyxfA1evLkYjIQJcUqlJ4sHsuKuGxhTupaeli4/5mGjt8PL/6AAAvb6jmvivMQV3ZsL3Ly8wfv01zZzDokxnv5POzC4mxawwQkY/Gaes5f5xWmMKC7bX8/PVtvL+tlj9/fkY4d9hDb23jwx21dHj8mKaJL2DypbMKuXzq8Eg1XaKUAj8SVYYlxTKzMJX9jZ3srG1j9b6eKY2PLSxjXmkWDpuFlk4vNoulz1VHkf7W7vFxcB7TkuwELpuUS3VLJzE2/f8UkcEv0eXgmxeWkB7v5EDjdurbe2boNnb4ggmfDTBNcDsH10dPnz/A+B+8Qfdq9PQ4B/NKMylIc0e2YSIyaIzPSQKCs8sX76pn/kMLeen22Vz/+yWsLW865P7/8491XDIpB6sSy0sv+t8gUefWs4ooyYwLV/nqtq68mZqWDqqaOjn/wQVsqwye6Dy+AI3tHpo7tRRMTi3TNGnp9NLY7sEfMNlaeeha69mj0jivNJPrZ+RjOfg/sYjIIPbZ0wuYVZTKwZN7FmyrYey9r/P+9sFVjtjr8zPtvjfDQZ/S7HjGDkvgy3OKBl2AS0QiZ/bINPJTXCSESr3vqGlj/PdfDwd9XA4rboc1XGXRBKpbuiLVXIlSGpUk6jhsFu48fzSr9zVyoLmLJJeNxtByr/te3sTbm2rwBEy+89IGfv+Z07jnn+vYU9vGV+YWcfnk4YN6OrlE1rWPLWb1vkbcDitPfGYam0KBn9wkJ3VtHjq8JrOL0iLcShGRyDAMg/svH8/26lbauvw0tHto9/i54++rMIH7/ruJeaVZdHr9WC3GgFsK1en109TuYeOBJl5ee4B/rdmPP1RdedywBNLjnfzPvNEMS46NbENFZFCxWAxeu/NM3t9ew90vbqCuzUMgdO4ZlujkrgtLyE6OxWG1ct0jH9IRgIrGDrKTdC6SHgr8SFQqzoxnRmEqq/c1khhjx6CdhnYvr26oDt9nfUUL5/z8XTpCpZTufmED80qziY+xR6rZMsh0+fx0+YL/vz712CI2HmgFgksXrn5sCYmhKy+lw5JIjXOws6aVtHhnxNorIhJpSS4HN87MZ8HWGkzT5O2tNeElseWNnby2roLb/76Wp26ezpzRGZFt7HHyB0weeGUTTy3ejdd/6P78lFimFyTztXNHkezWGCAiJ1+sw8b5Y7OZPTKNS3+3iMZ2D4Zh8NinpzI2Jyk8y7x4WAJry5spb2hnWoGqy0oPBX4kan357JHc9sxK5pakU9ncxfMr9xH6Do7FgIBJOOgD0OU32VXbRnZiLC2dXgrTVVFJPrrmTi83PbmUyuZOals8eEOXVrISnFQ2d2ESDAABzB6ZyvAUF+9tVd4pEZEbZxVw5ZRcXttYydtb+y7v+srf1wJw70sbeOsbZ4cTlEYrj8/PvAcXsKe+o892qwGJsXZykmMZlRHPneeNJtGlC08icmq5nHZeueNMGto9dHr8ZCfF9kktUJgWx9ryZvY3dkawlRKNFPiRqDU6K54rp+Zy1ZRcPP4Aq/c20NThxYKBNxCgptUDwEXjs1i3r4nyxg6eWbKHZ1eUMzY7nn9+ZTYOW3R/oJTo9aP/bGT1vr4J8/KSY5lbksm26mY2VjTT4fVjmnDmqHTyUt1MyU/pU4VBRGSocjltTM5LPuL+PfUd7G/oID+UBNnjC0TdmN3h8XHa/W/REirRnpngZGJuEi6nFZ/PZH9TB6My4/jfecUK+ohIv7FbLWSESr0frHt51/6mYLD69Q0HeGzhTkzTxAQK09w8cOUEHPq8OuQo8CNR7bazR4Zvj8lOoKali6YOL9lJMaze00heSiwNbR4CZnA2xrMrygHYeKCFyqYONh9oYVSGm8KM+Ii0Xwau1zdXAZAYYyUh1kGSy05CjJ2UOAdZnTEku504rRbKG9tJcTuxWgwSY/XBX0SkW36KC4NgotGrJg/j+dX7++x/eske7ppfwuUPf8jpI1P4fxeUYo2CpPimadLY7uH0B94JzywuSnfjtFnw+gOYAQvZSTFcMTWHWYVpmukpIlEjMyEYEKpq6uSS377PuvLmPvvX7Gvi/LFZXDguOxLNkwhS4EcGjB9dMZ7/94+1ZCTE8P1LSrnh90vp8AW4ctpwshJiuOVPK/rc/64X1rFoZz0lmXG8fMdZUfFhUqJXIGBSVt1KUUYcftOkIZRQvDgzAZfDij9g8s35JUzITcIfMHl0QRnlDe2cW5KJy6kP/SIiB7NYDM4pSWd9RRN3nDeaf687ABgku+xUtXTxxAe7qGzpYF1FM+sqmvn0jBFA8Kr08JTIlEPv8vn59+oKvvvSRjpD68tHZ8aRnRjLty8eQ05SLLF2qwpJiEhUykwI5hlbvaeW2vbgOSzGZsEwwOMP4A/AlsoWBX6GIAV+ZMBwOWz8+lNT8PkDOO1WvnhWIY0dHq6amovTZsVmgM8Mrrv3m7BoZz0AW6paqW/rYk9tOznJscpwL4cwTZNZP34Lry/AO/97DlW9SmDecuYIhqe4yE2KJSE0o8dqMfjKOSOP9HAiIhLyhdmFLNheQ1q8k7OK0ylv6OAHnyzl2t8vxQT+s7YyfN97XlzHwh11FKS6eOPrcz720i/TNGnz+HHZrX1yYByJ3x/gzJ+826cM8qiMOHKTY/nuJ0opUO5AEYly3TN+eoI+Br+4eiKFGW6eW76PPy7aw86a1kg2USLkmIEfwzCGA38GsoAA8Lhpmr8yDCMFeBYoAHYD15im2XDqmioS/MJttQRnV3xyUk6ffVPyk9la1Uqq287O2vY++77zr3W8vrGGqycN42fXTe639srAUN7QQVVLMGfUop21eHzBpYNp8Q7mlmRGXd4JEZGBYtbINCbnJxNjt3LfpeMob+xgcl4yI9Pd7KhpA3oKNizcUQfA7rp2dte08uqGA5wxKv2EKtN4fAH2N3YwLCmWF1eWs7uulZlFqWQmxJIe7yQhxn7Yc3qn18+1j30YDvpYjGAujMJ0F9/5RGnEZiCJiJyI7sBPt3NLsrhwfDZWi8GkvFZYtIe9dW0Rap1E0vHM+PEB3zBNc5VhGPHASsMw3gQ+C7xtmuYDhmHcBdwFfOvUNVXk6O65qIRPP7mMH18xnpufWkG7xx/+MPn6xmBVkf9u3M+P/ROxRXkVEek/++rbWNsrifPTS/ZQmp0AQGlWgoI+IiIfU4w9eMEmKymWrNCs2+9+spR7XlwPponDZmPXQV9EPvfUMsqbuvjDh7tZfM+5uBzH/shqmiZXPPwBARNmF6Xy+Ae7AXj8/V0kx9qZODyJs0ank5XgJNZuwwACpkllcye/fms7+5uDQZ85o1JJT4ihvL6Db1+koI+IDBzp8c4+v0/KTwynu8hNDp5/d9YGz7cHGjv41dvb+ca8YtITDp8sWgaPY46ipmkeAA6EbrcYhrEZyAEuBc4O3e1PwHso8CMRNCkvhSc+M53xuYncfHoBTy3ezWdm5vPIgp3h+3R4ob7dw7bKZkamx4c/gMrQ9KW/LGdLZQvnjM4Mb1tcVk9FfXDG2Kyi1Eg1TURkUJtTnMHNZ4zg4Xd38LNrxnLPixuoaenEGwjO2ilvCgZhmjp9LCmrY+6YnvN0IGASMM0+F3E6PH4+8+QSNuxvAWDTgZae+5tQ1+7lna01vLO1hoMXfZm9buenxnKguQuP3+TbF49heIrrpL92EZFTxX7Qxe3eMyZzkoLns+ZOPy+s2MM3nt8AwK7qZp798uz+a6RExAnl+DEMowCYDCwFMkNBIUzTPGAYRsbJb57IiZkZ+qJ+x7mjSIt3cvnknD6BH4AHX9/C31dU8IXZBXz74rGRaKZEgXaPj9c2VgPw9+W7w9tNYE9DJwDTCo5cilhERD6ez59ZyKWThhEfY+cX10zipj8s5SdXjOXrz63rc797/rmeXzut5KW6Wb6rnl+8uY2JuUlcPiWHhjYPi8tqeWNTFY0dvj7HuewWbj2zkJc3VFLR2EG7J1iW3eTwZhQkU9XSxX2XjWNMdgJxTpuSOIvIgJPutlLTFjzfFaX1zFjM6DUb6Dv/2hi+varXzHcZvI478GMYRhzwAnCnaZrNxzsQGoZxK3ArQF5e3kdpo8gJc9it3HzGCADOGZ3Osl31pLgc7Gvs4O8rKgD4x8py7rqoNHyMqn4NfoGAiTcQwGmzsqWy52pwhzf4b2a8I5zrB6AoTYk8RUROpfT44PKCqfnJvPONOSTEOvjZ69uoa/MQY7fS1OGlsrmLax5fGi7eAME8QC+t3X/I4xVnxDE+J4FFZbU47Tb+u/4AcTE2bpiRx4TcRNbua+JAYwetXT48fhPTNClIDeby+cuSvfy/C4qZnJd8yFVzEZGBojAjkZpd9aS57cT2WiZrsRg4rdDlhw5fTwjcG4DWLi9xTnskmhsxm/Y3kZMUS6LLEemm9IvjGtUMw7ATDPo8Y5rmi6HNVYZhZIf2ZwPVhzvWNM3HTdOcZprmtPT09JPRZpET8r2LS7lofDZXTc/ts72xw8fuulYu++0HbDnQHKHWSX8xTZMfvbKJ5buCyUM37j+0z3953SSGJcYwMt3N2Ox4XE4VPhQR6S8ZCbHE2K384NKx2K0GT940ldheeda6gz4O66EXatwOK6cXpuDxB1hT3oRhWLhofDbPfnEW37xgNNUtXfzu3TIWbq9hV10bDe1eOjw+Wrt8rN7XwD9X7+f/Lh3H+WOzFfQRkQFtRFpwSdf43MRDzmf5vZavum1gD+3eXjW0Kn3trWvnol9/wFUPf0ggcKR5oIPL8VT1MoAngc2maT7Ya9e/gZuAB0L/vnRKWijyMRWkx3H/5ePZ19DOL9/c3mff1Q9/SH2Hn5+/sZU/3nwagYCJYaCp3YPQaxsqeeKD3by2/gBvfuMc1uyt77PfbTeYPDyFWUUpLNvVwGWTh+FUYmcRkX43rzSLV++YTXp8LNedlse2qmbGDUuipdNDY7uXzVUtpLgdjEh1Y7caOGxWVu9tpLHDy4PXTGTssETe317L5LwkUuOcnD4yndNHpuPzB2jp9NLS5aO100eXN4DTbiHZFbwqnhhr1/gvIgPeZZNzeXZ5OVdNG37IvtKcJLbVBHNZTitMo6ndw5ryZrYcaGZy3tBJcfDmpkoAtte2s2pvPdMKBn9ez+O5nH0GcCOw3jCMNaFt9xAM+DxnGMYtwF7g6lPSQpGTwGGzMCK1Z42ry26l3eunviO4/vX97TXUtHRyz4vr+d4nx5KrZI6Dhs8foMPrZ8HW4KTE8qYuNh9oZuHWYKW3OKeV1i4/E4cnE2O38POrJ9HW5cfE1BcAEZEIGZ4SXGp79/wSvvefjSzbXU+7109GvJNfXTeZHdUtvLelBrvVimmafPHsEUzPTyU1zonVYnBeaeYhj2mzWkh2O0l2Ow/ZJyIyWMwsTOX+y8cxKTfpkH35vb4PnTEyjeqWLtaUNx92Jvxg9vrGnqXC3//3Rv77tbMi2Jr+cTxVvT6AQwogdDv35DZH5NSxWAxOL0phzb4mbj2zgIfeLgvv8wXggl8uoL7dR4rbzk+umhS5hspJY5omX/v7Ks4ZnRmO7AM8vqCMmrZgYp8Hr5nEF/+yktvOLgoHeuJitMRLRCQaOOxWfnzFBAD8ARN/wMRhszAhN4krphx6NVtERODyybkc7vplTnJPRePZRam9KiEO/gTPgUCArz+3lnOK01mxu+f1btjfQnl9+6C/8K91DDKkfGPeaC6ZMIzLen1Y7D4n1rcHq4H8c3UFrV2+wxwtA827W6t5ZX0V3/3nOurae/r0tU1V4dszClO5cVY+eb2ugIiISPSxWgwcWoIrInJMsQ4rMXbrIdtzQ4EfCzA81U1RRvDz75bKFvbWtfdnE/uVzxfgol9/wEtr9nPnc2sJhLYnxQTfo1V7GyLXuH6i0VOGlKkFKXzvkrEUpLpJdTtw2ixcOim7z308fli2M5gAeGdNC7trh1ays4GutcuH1x88na/YHczj0xlc0XfI1MV0t51Yu5XvXlxKdlIsIiIiIiKD1YwRqaS6HVw2ZRguh42R6fEAtHsCXPTrhdz3343HeISBp8vr5/yHFvSp6AswMs3Fn26ZwZ3njuLcMYcuDx5sFPiRISfWEYzsfm52AdMLkvn6vOLwPluopPuDb25lY0UTc3+xkNueWYlpDo1s7wPd3ro2/ufZ1exv7ABgwZa+xQZHZrg5vSiVZFdwKdelk3Nw2CzYrRZVcRERERGRQc1qMfjjzdP53BkjsFoMEl09Jdxbu/w88cFutle3HOURBpZAwOSChxayszY4m6m74hnA2SUZTByezFfmjsQ9BCr56puODFlfmjOSn101kbwUN8UZcWQmOLnljAIguNbz8oc/BGDTgVY6PP4ItlSO1zefX8cbm6r544e7CAQCbKrsO1tr7ugMfn7VBNLjY4iPsXH5lJwItVREREREpP9NyE2iJCsh/Pv5Y9L77P/8n5YPmhLnn//zcnaHlrBNzU/i0U9PZWZBEgZw5ZRcgCFz8XdovEqRw7BaDLKTYjEMg29eOJovzyniznmjcIT+Kjz+nhNeWY2We0U70zRZHlra9fyKcjbsb6a7B22hNV7nlmYyLNnFf796Ji98aSa5SYM7iZuIiIiIyMFsvYIdv7h2MldMzuGmWfkA7Knr4C9Ldof3tw3Q3Kcvr9vPO1uCVXyn5SXx4yvGU5wZz18+P5PfXD95yOX3VOBHBDivNIsbZxUQ67DziQnDcB70l7G2fPBnuh/oKho76I7VtXr8PPn+LgDinRZunVNIUbqbovRgeWCHzUJxViKJLkekmisiIiIiEnHxMXZ+fOV4vn/JWHKSYgB44NUttHR6WL67jun3vcWSstoIt/LEmKbJd/+1AYAUt50fXjaOkenxGIaB3Wbl4gnDhsTyrt4U+BEJsYby+9x3+ThGZyeQEe9kZHowErx6b30kmybH0NTuZcXuvtn4X1q7H4BJecl87dxRfPfi0iF3ghcRERERORanzYphGPzllhkAdHgD3P7MKr7055W0e/08sqAswi08MYvL6qhv9wLw62smMyozHovlMPXthxAFfkQO4nba+cPNp3HhuCw+M6sAgFV7gkGFQMBk9Z4GOr3K+RMtnny/jPN/uYD/hgI9OYnOPvvPHZNJjN3G2aMzDlvWUkREREREoDA9jvNLMwBYsL2OulDwZNnOOkzTpLHdE8nmHbdv/3M9AMUZbibkJw2ZPD5Ho3dA5DDS4pz88NJxzB6VBgTXunb5/HzuqWVc/egidirnT1R4fGEZ//fyFqpaungrVMHr0zMLGJHqIicxhjiHlfNKMiLcShERERGRgeF310/B7egbJujwmfx16V5m/Ohtlu2qi1DLjs9tz6xkVyih813zS0iIsR/jiKFBgR+Ro8gPJf0KAEt31vHetlp8Jjy/ch+BgMlLq8u5/78b2VvXFtmGDiGmabKrto3yhnZ+9MqWQ/bPKEzhOxeXUpgRx/SCFOJjlMdHREREROR42G1Wnvzs9PDv3ZkSvvOvDXT5AjzyXvQu+/rr0j28sr4SgNykGCblpUS4RdFDCS9EjsJqMXDZDdq9Jrc9syq8/eW1+9lS2cqismDEu6XTxwNXTYxUM4eU2/+6iq2VLeQkxQLBk5jTYaHNEwBgRFocU9wOzipOp8PrJ86h05yIiIiIyPGaWZjGXfNHU17fQYfHywurD4Sr5X64owZ/wAznR40WPn+A+/67CYA4h4WfXz2RpFjN9ummGT8ix3Dp5BwAWrt68vpUtXrDQR+ANzdVEgiYhxwrJ1d1cycvr69kR00bC7YHqwuMHpbA184did0Ck3ITiHUE8/jYrRYSYuxDPpGbiIiIiMiJ+tKckXzn4lLOHzesz3aPH7ZUNh9yf48vQE1LF+2eyJR/f2bpHtq9wQvBD98wlUl5yfoe0IsuhYscw7cuHMMLK8oJTSjBCnSHgOKdFlq6AtS1+2jt8mGzGLyztZo0t4PTRqTqZHMSdXr9LD+ochfAvZ8sZVp+Ckt3NXJ+aSZOm+LZIiIiIiIfV4zdytT85PDv3d99fvTyZlLcDu69uJTXN1by1KLdtHb5ME1wOa385/bZxPVjbh3TNPnFG1sBOKMohSkFKSrqchAFfkSOIcnlYO6YTN7bWk1mQgzZSbEs2Rks7z4uJ5nFO4MzfxaV1fLtf26gsd1DnNPGgm+eQ5JL+WVOhjc3VbKlsoXdNcFcSlYD/CbMGJFMcUY8VovB72+cSocvgGEo2CYiIiIicjKkxTkZl5NAS4eXK6cN58E3tvFhaOXDh2W1NLR56bPuoQXe317L/PHZ/dbGdeVNNHcGL81/68IS4pwKcxxMl8ZFjsNPrprAsCQXN8zM5weXjAMgPc7Bdz4xhmEJweDOt15YR12bB78JTZ0+VuyuxzRNalu7Itn0AW/Rjlq+9JeVPPjGNl7dcACAM0elMyLNxRfPKiLJFbyaYLVadJIXERERETnJHr1hKj+5agKXT8rps70+FPQxgIQYGw5r8ALs1qqWfm3f00v2AJCX5KQwI75fn3ug0LckkeOQGOvgmS/MwOWwkhjrYFp+EpPzkinKiGNuSSZPL9tHU0dwPauFYBWwNzYeYOnOOvwB+Ob8Ek03/Aiqmjv53FPL8YcuI3Sv2717fgkHmjoZl5OgGT4iIiIiIqdQboqL3BQXAFPykqht6cLlsLGlqgWrAZ8/cwSzitJ4d3M1f1qyh837D80BdKoEAib/XlMOwOfOKtSF4CPQuyJynLITY8O375o/huEpscTYrZw9JoOnl+0L7xubk8D6imb+s3Y/oVgQN87KJyfZRVVTJ8NTXf3d9AHJNE2uemQRnb5An+0WICMhhtHZCZFpmIiIiIjIEPXIp6dyoLGD/FQ3P3ltCzlJMdw8Oxhw8fpN/rRkD9urmwkETH7zznYWldXR5QtQmh3PfZeN/8g5UE3T5O4X19PW5eOMkWnEx9jYfKCZpTvr6a7Bc0Fp1kl8pYOLAj8iH8G0gpTw7UnDexKe5SXH8uA1k5j3y4XhoA/AaxsrqWzqJC3OwRfOKgrP/onGUoiR1tjuIT7GzkNvbmVfQwcAY7Pj2F7discPJVnxuBXJFxERERHpd5kJMWQmxADwwJUT8PoD2K3BDDIj0twA7Kvv4Pa/ruKVDZXh49bsa+TWs4ooCN3neDV1eIm1W/jXmv38fXnwYvsbGyuxWS20eXqqLpdkukl2Oz/WaxvM9O1J5GNKi3OGl3d9amYeRelxfSp/ATy1aDdVzV3YDLhiSi4pbicbKppo9/iYNDyZRFf/Zb2PZtuqmnlpzX5umlXAI++VAZDmtnPF1OFUNXfyhw928cWzinCocpeIiIiISMR1B30A8kLLwbwB+gR9uq3a23BCgZ/WLh/zH1pIXqqLnTWt4e1dfpMuf8+3rRibwQ8uHafUGkehwI/ISfCpGXm8s7mai8ZmYbEYjM9NZE15E3ZL8MRX1RxM8Owz4Z0t1by9uYq15U3YLAZ/vPk0El2JBAImnT4/vkBPXvwYm3XIBDk6PT6uemQxzZ0+XA4bvtDbcNGEYVwycRhxTjuLy+oYl5sY2YaKiIiIiMghHDYLNqDXwgc+OSGbsppWNh1oYcXuei6blMN7W6tZX9HEF+cUHTVY88h7O9jf1Mn+ps7wtqI0N50+P4GAidtpIy/VxaWTchgzTN8RjkaBH5GT4IYZecQ5baTFB6c9fv+SsVzz2GLOKErj3W01fe77yze3Ud/uDf/+7Iq9jM4ay7ryRqqbO+n0BvAHTAwLjM9JojhzaGSmv+PZNTR3BoeJ3769HYAEp5UbZgwnPfS+PvfF07EMjTiYiIiIiMiAk5/mpqy2DYApeYn8/JqJvLq+kjufXcPK3fXc8qflfLC9Bm8guIzr3k+OPeQx9tS1YQB//GBXn+2pLhvPfmkWBuDzB7BYglV9Yx2a6XMsCvyInASlwxIpyojDaQuedCbkJjEsKZbrZgxnS2UzB5q7iHNYaPUEwkEfAzCB19ZXkhTj4MkP+57YvL4Ad80fPSQCPzuqW3h9Y1X4945QQufzx2ZRlN7z+nVSFxERERGJXtMLksOBnyunDMdpszJ2WLAoy9bqNrZWt4Xv+9ele7h+Rh7f/ucGfnrVOPJT43l2+V5+8fpW/KYZrujbnVbjrvklpLodqur7EejauchJ0h30AbBYDB6+YQpnjkrnK+eMxOWwMi4nqc/9vzZ3JAA1rR5+8+4O2j3+Pj/egMnflpfj8/dUtep9ezD53ksbADg4z/UVU3KxWXWaEhEREREZCEpzepZcnT06DYDC9Lg+97GFPvN3+kw++ZsPWLqrnqsfXcLtf13FPS+up7rVQ11b8GL5iNQYfnBpKZNyE5kzOlNBn49I36hETpHSYYm4HDYuHJ9NTlIsV0/PJTvBAcC0vCR21rb1CXQYQJzDQkKMlThnMIi0p7aVDq+fpg4vS8rqWL67ftAFf6pbOvmwrB6A8cMSyIgLJrq2AEXpJ5b1X0REREREImd6qPpxRpw9XGXLajFw23u++Nx0egEjQ5/zO0KzeqpbPPx33QH8ZvB7UazNwADuvXgsN84awdNfmElanKp2fVRa6iVyiqXFOfnq3JHMHZNJdVMXL64uJz0hhvsuG8/+xg5W7m0E4MaZecwfl41hGAQCJtc/uRRvAA40dfLEwp28s7WaScOTKB2WSGLs4InZ/n7hTiB4gv/sGSMA+Ppza5k5Ipn4WFU7ExEREREZKMZkJzAhJ5EvzM4ntlfi5tmj0nl9UzUAN84q4JrpuVzw0AcA2CwQyvSAwwLnlmaSl+KmtrWLiXnBQFKcU6GLj0Pvnkg/uGRSDgCfnDSMf6wq59Mz80l02fnCWYWsfHoVaXF2Kpu7eHFNBfbQNCCLAQET7vvvJhZurwXgrc3V7G9sJzF28GStf239AQBKs+OYVpBCTlIsP39jK9fN6DtYiIiIiIhI9PvDzdPx+wN9lmVdNW04r2+qZmS6i4wEJy6Hm9ykGFq7fPzmusl87dk1GAbccFoeN51eQFp8DP6AifXgXBDykSjwI9KPcpNd/PKaSYzJDiY4m1uSydySdAIBuPO8UZT2KkO4anc9W6rbwkGfbovL6hiTPTgCP4GAyb7GYHnGy6fkkpHgxGIx+MmVExiRFqc1vCIiIiIiA8zhlmTNK80iNymW710yFpcjGIb4yy0z2FvfzoyiNP7z1dlUN3dQOiwpXOJdQZ+TZ/CsFxEZICYOT8JhC/7pOWwWUt1OzhiZekj1rrPHZPb5PScxeAJdurOeQMDsn8aeYvubOsK3zyrOCCfInj0qnZzk2Eg1S0RERERETrKXbj+Dcb0udI9Ij2PO6AwcNgu5yS6m5KeGgz5ycinwIxJh918+ns+eMeKQ6lVzSzLCt502g/y0YDb8lXvqaeny4e2V5LnL5++fxp5ELZ1ethxoAcBugazEmAi3SERERERETpXUOGc44bP0LwV+RCLMYbNgP0zJ8gm5SeHbhelubjunCIDaNi/LdtWxdFcdnV4/DW0e1uxrxD+AZgEFAiYbyptYvbcBgIJUFy5F90VERERERE465fgRiVIxdiuxdgsd3gAXlGYzqzAtvO9bz6/jnNEZJMc6uP/lzYzOiqM4I55ktyOCLT5+/123n3v/vZFR6cFZTBNyEw+Z8SQiIiIiIiIfnwI/IlHsutOGs3xXAxeOy8RqMciMd1DV4qG+3csLqyvo8PlZtLOOJbvquGJK7oAI/Jimyd0vrqfN42f5nuCMnwnDkyPcKhERERERkcFJl9hFothZozIYnuIiO8kFwGfPGNFn/yvrK4Fg2fe3N1fi9QcwTZMd1S20dvn6vb2H0+n198lB9OamKto8fXMSjR2W0N/NEhERERERGRIU+BGJYjMLU/n6vGISYoKT8y6ZlMNpBcnMGZV2yH3/teYAu2pbqW7uZMXueip7VcyKpL317Wyvagn//os3thxyn/xUd382SUREREREZMhQ4EckisU6rBRnxmMYBgA5SbGkxTsZmRmP2xH88y1MDZY9313XzrbKZq59fAl3v7iBtfsa8fWq/NWf/AETrz9AIBBg1Z4Gqpq7aOrwsq++na1VbQCkxwWXpVktqGyjiIiIiIjIKaIcPyIDzB3njqKx3UtDWxdLd9WRkRjLzrrg7J7/9/x6OrzBYM8/VuxjzugM0uKCJRO7K4BlJMRgtRintI0VDe20e/18sL2W+17ezDXTckiMsfOfdfuBYMT5nJIM/rGynHNGpyvwIyIiIiIicooo8CMywIzOCubD2VPfTmOHj/PGZFDX2sX26rZw0Adg+e4Gtla24MqzUt/moay6FY8vwBSbhdRQMOhUOdDUQVuXnz8t2g3AP1ZUcF5JFs+t2AfAqEw3t80pYuWeBi4Ym33YcvYiIiIiIiLy8SnwIzJAXT01FzNgMn9CNk0dXn7xxlZ8vVZ2+U1YurMWjy9AfWsXv/9gF/FOG9+7ZCzJLgcVDR1kJ8Wc9DLqK3bXc8MTy/jiWYXsawjORDKBrz27ms5QYOq80iyykmL5w2enc2rnHomIiIiIiAxtCvyIDFCGYXDtaXkAXDEll921bbywqpyJuYlsq2qlpcvP794rY0pePSv3NBAwg8ct21WH22ljS2UzNqtBVmIMTR1eklwfrxR8c6eX1k4fD765FV/A5OEFZX32dwd97BaDeWMyibFbldRZRERERETkFNP6CpFBIDMhhrQ4J3fNLyHZ7WRmYSoA/kBwyVd30Afgn6sruPelDTy+YCc7a9vYU9fGit0N1Ld58AdM6lq7Tvj5/QGTzfub2VjRyJKd9QCYoeeMd9qwWQy60wrNKkohN8X1sV6viIiIiIiIHJ9jzvgxDOMPwMVAtWma40LbJgGPAjGAD7jNNM1lp7CdInIM3zh/NN96YR1nF6dTnBXPorI62jx+AAwgxm6hwxtgfUVz+Jg1e+tZV27gtttxOa0kxtipaOxg0vAkEmLt1LZ0kZ0Ui9Vi4A+YfZJCBwIme+vbqW3tIiHGxqMLyphRkNInyARQkh1HUqyDyuZOmjq8nDEyjcRYe3+8JSIiIiIiIkOeYZrm0e9gGGcBrcCfewV+3gB+aZrmq4ZhXAR80zTNs4/1ZNOmTTNXrFjx8VstIkcUCJgYBnzr+XW8samS5k4f88dlcfXUXD77VN+/P4fVgscfwAB+86lJbDjQRH6yOxzs8XgDpMQ5MIGWDh9ZiU5ME1q7fHT5Anj9AVx2Gw+8uplV+xrDj+uyW2gPLe36+dUT2FHdCsCu2jZuP2ck43OT+ufNEBERERERGQIMw1hpmua0w+075owf0zQXGoZRcPBmICF0OxHY/7FaKCInjSU0K2dqQTIZCU7GZiewYHstL6090CcgA+DxB2+bwNefW4vXb2IAv/vUZP65poKJw5OYmp+CxYAkl53aFg8Wi4HDamF/fTs/eHkT8U47B5o7+7QhzmnDsPgxMBifk8jlk3J4d1sNOUmx5KUor4+IiIiIiEh/+ajJne8EXjcM4+cE8wSdftJaJCInxbXT83hq0S6eXVHOddOHc3ZJBjF2C39bto80t52Gdi/+XhP+vKFfTOC2v60G4M3N1STE2Oj0+rFYDNLcTpo7vfgCATo8AUygtcsffgyLAQETbjqjgHX7mjAxSY1zYrVaOG9MZj++ehEREREREYGPHvj5MvB10zRfMAzjGuBJ4LzD3dEwjFuBWwHy8vI+4tOJyEfx2dNHcN30PBxWCxaLwZVTclm5p55RGfFUNXewYk8TWQlOqlu6CJjBXEAHL/5s7vQFb/hNyhs7+uxzWA0MTLr8MC0vke017QTMALMKU8lLcVPV3EmcU8UDRUREREREIuWjfiO7CbgjdPsfwBNHuqNpmo8Dj0Mwx89HfD4R+Yhi7Nbw7an5ySTEOhiR5mZMdiKJMXaGJbnYXd/G+9vrGJeTwObKFgzTpHtBmM0Au9WKYTEImCZ2i4HFMGjz+LAYBqZp4LKDYbFw9bQc9tZ1kJMUy5T8FBrbPX2eX0RERERERPrXRw387AfmAO8Bc4HtJ6tBInLqGIbB/ZeNI8XtID7Gzqe2VDE5P4YAcOe5SVQ0dpGf4uKNTVV8btYIFpfVsrW6hUSXneYOL36/iRkAp92gMD2Or50zCovF4K3NVcwoTKG10096XAwJsQ4AklyOyL5gERERERGRIe54qnr9DTgbSAOqgO8BW4FfEQwcdRIs577yWE+mql4i0aWhLZis2e8PcMufVnDl1Fx217aRGGtnXUUjLruVeaVZVDd3kuRy4HZaSQnl+Vmys46ali4Cpkmiy8FXzxlJRkIMnV6/ZvmIiIiIiIj0o6NV9Tpm4OdkUuBHJHp1eHwYhoHFgIfe2s68MZlgwBPv72R8biLNHT721rfjtFlIjLVTnBnPuWMySHE7ae3ykRBjwzCMSL8MERERERGRIUeBHxE5IaZphoM4Xn8Ai2FgtRjB6l6GgcNmiXALRUREREREpNvRAj8qtyMih+g9c8du7QnyaAmXiIiIiIjIwKLL9iIiIiIiIiIig5QCPyIiIiIiIiIig5QCPyIiIiIiIiIig5QCPyIiIiIiIiIig5QCPyIiIiIiIiIig5QCPyIiIiIiIiIig5QCPyIiIiIiIiIig5QCPyIiIiIiIiIig5QCPyIiIiIiIiIig5QCPyIiIiIiIiIig5Rhmmb/PZlh1AB7jvPuaUDtKWyOnBzqp+inPhoY1E/RT300MKifop/6aGBQPw0M6qfopz4aGAZDP+Wbppl+uB39Gvg5EYZhrDBNc1qk2yFHp36KfuqjgUH9FP3URwOD+in6qY8GBvXTwKB+in7qo4FhsPeTlnqJiIiIiIiIiAxSCvyIiIiIiIiIiAxS0Rz4eTzSDZDjon6KfuqjgUH9FP3URwOD+in6qY8GBvXTwKB+in7qo4FhUPdT1Ob4ERERERERERGRjyeaZ/yIiIiIiIiIiMjHcFICP4ZhXGgYxlbDMHYYhnHXQfu+Gtq30TCMnx7h+P8zDGOdYRhrDMN4wzCMYb323R163K2GYVxwhONvD93HNAwjrdf2RMMw/mMYxtrQ8998Ml7vQHSkPjIM49nQ+77GMIzdhmGsOcLxKYZhvGkYxvbQv8mh7amGYbxrGEarYRi/PcrzjzAMY2no+GcNw3CEthuGYfw61K51hmFMOckvfUCJ1n4K7Ts79PwbDcNYcBJf9oASBX10pPPdDaG/oXWGYSwyDGPiSXzZA04U95PGpZBT2EfzDMNYaRjG+tC/c49wvMal4xCt/RTap3EpJAr6SWPTMURxH2lc6uUU9tNpvY5faxjG5Uc4XmPTMURrH4X2Re+4ZJrmx/oBrEAZUAg4gLVAaWjfOcBbgDP0e8YRHiOh1+2vAY+GbpeGHs8JjAg9j/Uwx08GCoDdQFqv7fcAPwndTgfqAcfHfc0D7edofXTQ/X4B3HuEx/gpcFfo9l293lc3MBv4EvDbo7ThOeC60O1HgS+Hbl8EvAoYwExgaaTfL/XTYfspCdgE5IV+P+zf8mD/iZI+OtL57nQgOXR7vv6WorafNC6d+j6aDAwL3R4HVBzheI1LA7ufktC4FE39pLFp4PaRxqX+6ScXYAvdzgaqu38/6HiNTQO3j5KI4nHpZLz5s4DXe/1+N3B3rzflvBN8vLuBRw5+rNDvrwOzjnLswSeyu4GHQ38gI4AdgCXSb3q/d/JR+qjXNgPYB4w6wmNsBbJDt7OBrQft/yxH+BIUeuzaXn9I4fYAjwGfOtzzDLWfKO+n24D7Iv0eRfon0n100P36nO8O2pfMET74DYWfaO4njUv910e9HqOO0AWog7ZrXBrY/aRxKUr66aD7aGwaYH2kcSki/TQCqOKgoILGpgHfR1E9Lp2MpV45oTe2W3loG0AxcGZoKtQCwzCmH+lBDMO43zCMfcANwL3H8djH47fAGGA/sB64wzTNwAkcP1gcz/t4JlBlmub2IzxGpmmaBwBC/2acwPOnAo2mafoO8/wft48Hk2jup2Ig2TCM90LTiD9zAo87mES6j47XLQSvCg1V0dxPGpeC+quPrgRWm6bZddB2jUvHJ5r7SeNSj0j30/EaymNTNPeRxqUep7SfDMOYYRjGRoLv85d6ndu6aWw6tmjuo6gel2wn4TGMw2wzez1+MsHpaNOB5wzDKDRDIbE+B5jmt4FvG4ZxN3A78L1jPPbxuABYA8wFioA3DcN43zTN5hN4jMHgeN7HTwF/i8Dzf9w+HkyiuZ9swFTgXCAWWGwYxhLTNLedorZEq0j30TEZhnEOwQ/XsyPVhigQzf2kcSnolPeRYRhjgZ8A55/g82tc6hHN/aRxqUek++l4jh/qY1M095HGpR6ntJ9M01wKjDUMYwzwJ8MwXjVNs/M4n19jU1A091FUj0snY8ZPOTC81++5BCPG3fteNIOWAQEgzTCMP4aSHr1ymMf7K8Fo9bEe+3jc3Ov5dwC7gJITOH6wOOr7aBiGDbgCeLbXtoP7qMowjOzQvu41j8erFkgKPc/Bz/9x+3gwifZ+es00zTbTNGuBhcDEE3jswSLSfXRUhmFMAJ4ALjVNs+5kPe4AFM39pHEp6JT2kWEYucA/gc+Ypll2mOfXuHR8or2fNC4FRbqfjkpjExDdfaRxqUe/fH4wTXMz0EYwJ1NvGpuOLdr7KGrHpZMR+FkOjAplt3YA1wH/Du37F8HoMYZhFBNMwFRrmubNpmlOMk3zotC+Ub0e7xJgS+j2v4HrDMNwGoYxAhgFLDuBtu0lGHHDMIxMYDSw88Rf4oB3tD4COA/YYppmefeGg/sodP+bQrdvAl463icPzfB6F7jqMMf/G/iMETQTaOqeejcERXM/vURw2abNMAwXMAPYfEKvbnCIaB8djWEYecCLwI3RcmUhgqK2n9C41O2U9ZFhGEnAywTX/H94uCfXuHTcormfNC71iGg/HY3GprCo7SM0LvV2KvtpRHewwDCMfILv8+7eT66x6bhEcx9F97hknpwkSxcB2whm2P52r+0O4GlgA7AKmHuE418I3Wcd8B8gp9e+b4cedysw/wjHf41ghM1HMOL2RGj7MOANgmv0NgCfPhmvdyD+HKmPQvueIriG8WjHpwJvA9tD/6b02rebYAWA1lA/HC6zeiHBoN0O4B/0VHozgN+F2rUemBbp90r9dGg/hfb9P4KZ6jcAd0b6vRrCfXSk890TQAPB6dprgBWRfq/UTxqXItFHwHcIXqVb0+vnkMoaRzrfoXFpQPRTaJ/GpejpJ41NA7ePNC71Tz/dCGwM9c8q4LIjHK+xaYD2UWhf1I5LRqiBIiIiIiIiIiIyyJyMpV4iIiIiIiIiIhKFFPgRERERERERERmkFPgRERERERERERmkFPgRERERERERERmkFPgRERERERERERmkFPgRERERERERERmkFPgRERERERERERmkFPgRERERERERERmk/j/yFtPNg5A68AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2498,7 +2805,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ @@ -2507,16 +2814,16 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.0008520598721588613" + "0.0630612964229158" ] }, - "execution_count": 98, + "execution_count": 65, "metadata": {}, "output_type": "execute_result" } @@ -2527,12 +2834,12 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 66, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAFlCAYAAAAZA3XlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB10klEQVR4nO3deZzcRZ3/8Vd1z5n7TkgyIQkJJCGQBMIECAmHikFc47XKpQRdEe9V97eCrrrr7goeeB+oiIByqCsiInIoBAYJhNwJCYGQDEzu+57JzHTX749v90zPd/r4dve3u789834+HnlMZvr41veoqs+3qr5VxlqLiIiIiIh0CpU6ASIiIiIiQaMgWURERETERUGyiIiIiIiLgmQRERERERcFySIiIiIiLgqSRURERERcKkqdgGSGDRtmx48fX+pkiIiIiEgPtnz58r3W2uHJXgtkkDx+/HiWLVtW6mSIiIiISA9mjHk91WsabiEiIiIi4qIgWURERETERUGyiIiIiIhLIMcki4iIiPRmbW1tbN26lZaWllInpUeoqalh7NixVFZWev6MgmQRERGRgNm6dSv9+/dn/PjxGGNKnZyyZq1l3759bN26lQkTJnj+nIZbiIiIiARMS0sLQ4cOVYDsA2MMQ4cOzbpVXkGyiIiISAApQPZPLsdSQbKIiIiIdPOhD32IESNGMH369JTvOXDgAO9617s488wzqa+vZ926dR2vHTx4kPe+971MmTKFqVOnsmTJkm6ft9ayePFiFi9ejLXWU7oaGxu59957U75+0UUX+bLehoJkEREREelm0aJFPProo2nf8/Wvf52ZM2eyZs0a7r77bj7zmc90vPaZz3yGBQsW8PLLL7N69WqmTp3a5bPNzc0sWrSIdevWsW7dOhYtWkRzc3PGdGUKkv2iB/dEREREpJv58+fT2NiY9j3r16/npptuAmDKlCk0Njaya9cuamtreeaZZ7jzzjsBqKqqoqqqqstna2tr+elPf8q8efMAaGhooLa2tst7nn766Y7A2xjDM888w4033siGDRuYOXMm1157LTfccAPXXXcd69evZ+rUqZ4CbS8UJIv0Nk1LobEBxs+DuvpSp0ZERDL4rz+/xPrth339zmmjB/DVfzo97++ZMWMGDzzwABdccAFLly7l9ddfZ+vWrYTDYYYPH851113H6tWrOfvss/n+979P3759Oz7b3NzMJz7xCa677joAPvGJT/CTn/ykS6D87W9/mx//+MfMnTuXo0ePUlNTwy233MK3v/1tHn74YQC+853v0KdPH9asWcOaNWs466yz8t4v0HALkd6laSnc9Q548n+dn01LS50iEREpYzfeeCMHDhxg5syZ/PCHP2TWrFlUVFTQ3t7OihUr+NjHPsbKlSvp27cvt9xyS5fP1tbWcscddzB9+nSmT5/OHXfc0a0lee7cuXzuc5/jBz/4AQcPHqSionv77jPPPMM111wDwJlnnsmZZ57py76pJVmkN2lsgEgr2Ijzs7FBrckiIgHnR4tvoQwYMIBf/epXgPMQ3oQJE5gwYQLHjx9n7NixzJkzB4D3vve93YJkcIZQXHTRRSm//8Ybb+Tyyy/nkUce4dxzz+Vvf/tb0vcVYiYQtSSL9Cbj50G4CkzY+Tl+XqlTJCIiZezgwYO0trYCcPvttzN//nwGDBjAqFGjqKurY+PGjQD8/e9/Z9q0aVl//2uvvcYZZ5zBF77wBWbPns3LL79M//79OXLkSMd75s+fzz333APAunXrWLNmjQ97ppZkkd6lrh6ufUhjkkVEJKMrr7ySxYsXs3fvXsaOHct//dd/8eEPf5jbbrsNgBtuuIENGzbwwQ9+kHA4zLRp0/jlL3/Z8fkf/vCHXH311bS2tjJx4sSOFudsfO973+Opp57q+P7LLruMUChERUUFM2bMYNGiRXzsYx/juuuu48wzz2TmzJnU1/tTtxmvc9IV0+zZs60f89uJiIiIlKMNGzZ0mzJN8pPsmBpjlltrZyd7v4ZbiIiIiIi4KEgWEREREXFRkCwiIiIi4qIgWUS6aloKDbdqDmUREenVNLuFiHSKLzYSaXWmiLv2Ic2AISIivZJakkWkU7LFRkRERHohtSSLSKf4YiPxlmQtNiIi0muFw2HOOOOMjt+vuOIKbrzxxhKmqLgUJItIJy02IiIiMbW1taxatSrteyKRCOFwOOXvXj8XRBpuISJd1dXDvM8rQBYRKTdFevB6/PjxfO1rX+OCCy7g97//fbff77vvPs444wymT5/OF77whY7P9evXj6985SvMmTOHJUuWFDSNflBLsoiIiEi5K8CD183NzcycObPj95tuuon3v//9ANTU1PDss88CcOONN3b8vn37ds4991yWL1/O4MGDufTSS3nwwQd55zvfybFjx5g+fTpf+9rX8kpXsShIFhERESl3yR68zjNITjfcIh4su39/8cUXueiiixg+fDgAV199Nc888wzvfOc7CYfDvOc978krTcWk4RYiIiIi5S7+4LUJF+XB6759+yb93Vqb8jM1NTWBH4ecSEGyiIiISLmLP3h9yZdKOsf9nDlzePrpp9m7dy+RSIT77ruPCy+8sCRpyZeGW4iIiIj0BHX1vgbH7jHJCxYs4JZbbkn7mZNOOombb76Ziy++GGstb3vb21i4cKFvaSomBckiIiIi0k0kEkn698bGxrS/X3XVVVx11VXdPnf06FG/klYUGm4hIiIiIuLiKUg2xiwwxmw0xmwyxnRbasUYs9AYs8YYs8oYs8wYc4HXz4qIiIiIBE3GINkYEwZ+DFwGTAOuNMZMc73t78AMa+1M4EPA7Vl8VkREREQkULy0JNcDm6y1m621rcD9QJcR2Nbao7Zzzo++gPX6WRERERHpLt10apKdXI6llyB5DNCU8PvW2N+6MMa8yxjzMvAXnNZkz58VERERkU41NTXs27dPgbIPrLXs27ePmpqarD7nZXYLk2x7SRLwR+CPxpj5wH8Db/b6WQBjzPXA9QDjxo3zkCwRERGRnmns2LFs3bqVPXv2lDopPUJNTQ1jx47N6jNeguStQF3C72OB7anebK19xhhzijFmWDaftdb+HPg5wOzZs3XbJCIiIr1WZWUlEyZMKHUyejUvwy1eBCYbYyYYY6qAK4CHEt9gjJlkjDGx/58FVAH7vHxWRERERCRoMrYkW2vbjTGfBB4DwsAd1tqXjDE3xF6/DXgP8EFjTBvQDLw/9iBf0s8WaF9ERERERHxhgjggfPbs2XbZsmWlToaIiIiI9GDGmOXW2tnJXtOKeyIiIiIiLgqSRURERERcFCSLiIiIiLgoSBYRERERcVGQLCIiIiLioiBZRERERMRFQbKIiIiIiIuCZBERERERFwXJIiIiIiIuCpJFRERERFwUJIuIiIiIuChIFhERERFxUZAsIiIiIuKiIFlERERExEVBsoiIiIiIi4JkEREREREXBckiIiIiIi4KkkVEREREXBQki4iIiIi4KEgWEREREXFRkCwiIiIi4qIgWURERETERUGyiIiIiIiLgmQRERERERcFySIiIiIiLgqSRURERERcFCSLiIiIiLgoSBYRERERcVGQLCIiIiLioiBZRERERMRFQbKIiIiIiIuCZBERERERFwXJIiIiIiIuCpJFRERERFwUJIuIiIiIuChIFhERERFxUZAsIiIiIuLiKUg2xiwwxmw0xmwyxtyY5PWrjTFrYv+eM8bMSHit0Riz1hizyhizzM/Ei4iIiIgUQkWmNxhjwsCPgbcAW4EXjTEPWWvXJ7xtC3ChtfaAMeYy4OfAnITXL7bW7vUx3SIiIiIiBeOlJbke2GSt3WytbQXuBxYmvsFa+5y19kDs1+eBsf4mU0R6rKal0HCr81NERCQgMrYkA2OApoTft9K1ldjtw8BfE363wOPGGAv8zFr782QfMsZcD1wPMG7cOA/JEpGy17QU7noHRFohXAXXPgR19aVOlYiIiKeWZJPkbzbpG425GCdI/kLCn+daa88CLgM+YYyZn+yz1tqfW2tnW2tnDx8+3EOyRKTsNTY4AbKNOD8bG0qdIhEREcBbkLwVqEv4fSyw3f0mY8yZwO3AQmvtvvjfrbXbYz93A3/EGb4hIgLj5zktyCbs/Bw/r9QpEhERAbwNt3gRmGyMmQBsA64Arkp8gzFmHPAA8AFr7SsJf+8LhKy1R2L/vxT4ml+JF5EyV1fvDLFobHACZA21EBGRgMgYJFtr240xnwQeA8LAHdbal4wxN8Revw34CjAU+IkxBqDdWjsbGAn8Mfa3CuBea+2jBdkTESlPdfUKjkVEJHCMtUmHF5fU7Nmz7bJlmlJZRERERArHGLM81rDbjVbcExERERFxUZAsIiIiIuKiIFlERERExEVBsoiIiIiIi4JkEREREREXBckiIiIiIi4KkkVEREREXBQki4iIiIi4KEgW6Y2alkLDrc5PERER6SbjstQi0sM0LYW73gGRVghXwbUPaVloERERF7Uki/Q2jQ1OgGwjzs/GhlKnSEREJHAUJIv0NuPnOS3IJuz8HD+v1CkSEREJHA23EOlt6uqdIRaNDU6ArKEWIiIi3ShIFumN6uoVHIuIiKSh4Rap6Ol/ERERkV5LLcnJ6Ol/ERERkV5NLcnJ6Ol/ERERkV5NQXIyevpfREREpFfTcItk9PS/BEHTUl2DIiIiJaIgORU9/S+llMu4eAXVIiIivlGQLBJEycbFpwt89bCpiIiIrzQmWSSIsh0Xr4dNRUREfKWWZJEgynZcfDyojrck62FTERGRvChIFgmqbMbF62FTERERXylIFukp9LCpiIiIbzQmWURERETERUGyiIiIiIiLgmQRERERERcFySIiIiIiLgqSEzUthYZbnZ8iIiIi0mtpdos4rVgmIiIiIjFqSY7TimUiIiIiEqMgOS7bZYBFREREpMfScIs4rVgmIiIiIjEKkhNpxTIRERERQcMtRERERES68RQkG2MWGGM2GmM2GWNuTPL61caYNbF/zxljZnj9rIiIiIhI0GQMko0xYeDHwGXANOBKY8w019u2ABdaa88E/hv4eRafFREREREJFC8tyfXAJmvtZmttK3A/sDDxDdba56y1B2K/Pg+M9fpZEREREZGg8RIkjwGaEn7fGvtbKh8G/prjZ0VERERESs7L7BYmyd9s0jcaczFOkHxBDp+9HrgeYNy4cR6SJSIiIiJSGF5akrcCdQm/jwW2u99kjDkTuB1YaK3dl81nAay1P7fWzrbWzh4+fLiXtItIT9W0FBpudX6KiIiUgJeW5BeBycaYCcA24ArgqsQ3GGPGAQ8AH7DWvpLNZ0VEumhaCne9w1kePlzlLPKj+ctFRKTIMrYkW2vbgU8CjwEbgN9Za18yxtxgjLkh9ravAEOBnxhjVhljlqX7bAH2Q0QyKZfW2cYGJ0C2EednY0OpUyQiIr2QpxX3rLWPAI+4/nZbwv//BfgXr58VkSIrp9bZ8fOcNMbTOn5eqVMkIiK9kJalFukNkrXOxoPkpqXO7+PnBSNwrqt3gvggpUlERHodBckivUGq1tmgtjDX1QcjHSIi0mspSBbpDVK1zqZrYRYREenFFCSL9BbJWmeDNv43aEM/RESk11KQLNKbBWn8b1CHfoiISK+kIFmktwvK+F8N/RARkQDxsuKeiEjhxYd+mHAwhn6IiEivppZkEQmGIA39EBGRXk9BsogER1CGfoiISK+n4RYiIiIiIi4KkkVEREREXBQki4iIiIi4KEgWEREREXFRkCwiIiIi4qIgWURERETERUGyiIiIiIiLgmQRERERERcFySIiIiIiLgqSRURERERcFCR70bQUGm51foqIiIhIj1dR6gQEXtNSuOsdEGmFcBVc+xDU1Zc6VSIiIiJSQGpJzqSxwQmQbcT52dhQ6hSJlB/1xoiISJlRS3Im4+c5LcjxluTx80qdIpHyot4YEREpQwqSM6mrdyr1xgYnQFblLpKdZL0xueSjpqXKhyIiUjQKkr2oq1elLJIrP3pj1BotItKzlEHDh4JkESksP3pj/GqNFhGR0iuThg8FySJSePn2xujZABGRnqNMGj4UJItI8OnZABGRnqNMGj4UJItIedCzASIiPUOZNHwoSBYRERGR4iqDhg8tJiIiIiIi4qIgWURERETERUGyiHijpaVFRKQX0ZhkEcmsTOa0FBER8YtakkUks2RzWoqIiPRgCpJFJLP4nJYmHOg5LUVERPyi4RYiklmZzGnZ6zQtLd05KeW2RUSKwFOQbIxZAHwfCAO3W2tvcb0+BfgVcBbwJWvttxNeawSOABGg3Vo725+ki0hRlcGclr1KKceJa4y6iPQCGYdbGGPCwI+By4BpwJXGmGmut+0HPg18m+QuttbOVIAs4hPNNCGlHCeuMeoi0gt4aUmuBzZZazcDGGPuBxYC6+NvsNbuBnYbYy4vSCpFpJNa8QQ6x4nHr4NijhMv5bZFgkDDjXoFL0HyGKAp4fetwJwstmGBx40xFviZtfbnyd5kjLkeuB5g3LhxWXy9SC+TrBVPhXTvU8px4hqjLr2ZGip6DS9BsknyN5vFNuZaa7cbY0YATxhjXrbWPtPtC53g+ecAs2fPzub7RXoXteJJXCnHiWuMuvRWaqjoNbwEyVuBuoTfxwLbvW7AWrs99nO3MeaPOMM3ugXJIuKRWvFEREpHDRW9hpcg+UVgsjFmArANuAK4ysuXG2P6AiFr7ZHY/y8FvpZrYkUkRq14IuKmcbLFoYaKXiNjkGytbTfGfBJ4DGcKuDustS8ZY26IvX6bMWYUsAwYAESNMf+KMxPGMOCPxpj4tu611j5akD0RERHprTROtrjUUNEreJon2Vr7CPCI62+3Jfx/J84wDLfDwIx8Eig5UGuC+EXXkkh50DhZEd9pxb2eRq0J4hddSyLlQ+NkRXyXcTERKTOa5F/8omupZ9OCND1LfJzsJV/SDa2IT9SS3NOoNUH8omup51IvQc+kcbIivlKQ3NPoqVvxi66lnkvjV0VEMlKQ3BOpNaH3KPSDdbqWeib1EoiIZKQgWaRcqctccqVeAhGRjBQki5QrdZlLPtRLIMWiqSSlTClIFilX6jIXkaBTj5eUMQXJIuVKXeYiEnTq8ZIypiBZpJypy1xEgkw9XlLGFCSL9EQaAygiQaAeLyljCpJF/FbqANXrGMBSp1NEegf1eEmZUpAs4qcgPKTiZQxgENJZSLoBEBGRPIVKnQCRHiVZgFps8TGAJpx6DGAQ0lko8RuAJ//X+dm0tNQpEhGRMqSWZBE/BeEhFS9jAIOQzkLR0/QiIuIDBckifgrKQyqZxgAGJZ2F0JNvAJLR0BIRkYIw1tpSp6Gb2bNn22XLlpU6GSJSrnpL4NjTx5aLiBSYMWa5tXZ2stfUkiwiPU9veZpeQ0skqHrLjar0aAqSC00FhYgUSm8bWiLlQT0c0kMoSC4kFRQiUkg9eWy5lC/1cEgPoSDZb4ktxyooRIqjN/fY9JahJYXWm68h8Hf/1cMhPYSCZD+5W44X3JJdQeF3Id3bC33pGTJdx+qxkXz19mvI7/1XD4f0EAqS/eRuOW7e572g8LuQ8vJ9uQbRCr6lWLxcx+qxyZ3ysqO3X0OF2H/1cEgPoCDZT8m6mLwWFH4XUpm+L9egvLe3uEhxeckX6trNjfJyp95+DfX2/RdJQUGyn/LpYvK7kMr0fbkG5b29xUWKy0u+UNdubpSXO/X2a6i3779ICgqS/ZZrF5PfhVSm78s1KFeLQ/D1pC50r/lCXbvZU17uqrdfQ719/0WS0Ip7vZnGJJdOtsfQ6/t7Whd6uV9rQU9/0NMnIlJgWnGvp/C7Qsun1VsVau6yDWSzeX9P6kIv94A/VfqDFJgqL4uIpKQguVyUe8BQCkEKRhJlG8hm8/6e1IVe7gF/svSD8nEqQc2vItJrKUguFL8LfD8Dht5QGQX5piLbQDab92c7tj3VtRCEa6TcA/5k6S/3wL9QgpxfRaTXUpBcCIUo8P0KGHpLZRTkYCTbQDaX9+cznV9QrpFyf+I+VfrLOfAvlCDnV7cg3ECKSFEoSC6EQk3M7kfAUE6VUT6C3gqZ7VjQQowddV8Lq+91/nZoa3CukXIfM+tOf7kH/oUS9Pwal8sNpILq3kXnu0dRkFwIhSrw/QgYyqUyypeCkcwSr4VQGFbeC9F25/+hCojSs6+RUin3wL8QyiW/ZtvIUKxeGc1UFAxB6YUT3yhILoSgFfjugjBIaSskBSPpJV4Lh7bC8rucyj8KnP1BGFhXvGtElbWUQ37NtpGhGD13Wj01OHpLT20voiC5UIJS4KcqCIOQNim9+LXQtBRW3dd5ncy4ynk9PiNDIa8XVdZSLrJtZPC75y7ZzaRWTw2O3tJT24soSO6p4oVpkMaXSnC5K38oXuC6+j5obwGsrlEJvmwaGfzsuUt1M6nVU4OjN/XU9hKegmRjzALg+0AYuN1ae4vr9SnAr4CzgC9Za7/t9bNSAImFqcaXileJlX/DrcW5uWpaCit/A8RW/gxV6BqV3AR1yI5fPXepWn5zDcwU0BWGemp7lIxBsjEmDPwYeAuwFXjRGPOQtXZ9wtv2A58G3pnDZ3unQhboiYVpKcaXSvnzs5Up3bXe2ADRSOwXA7Ou6r3XaFCDvHLQG4bspMuTuQZmCuhE0vLSklwPbLLWbgYwxtwPLAQ6Al1r7W5gtzHm8mw/2ysVukB3F6Yz8gg8VHH3Tn61MmW61pNdq71RbwjyCqk3jK/tjS2/qn+kxLwEyWOApoTftwJzPH5/Pp8NHr8ybKEL9GIFONKz+dHKlOla740VfzK9IcgrpN4yvrY3tfwWov5R0C1Z8hIkmyR/sx6/3/NnjTHXA9cDjBs3zuPXF5GfGbYYBXoxAhyRTLxc6+VS8Reygs2lTFCF30k3W131hGvD7/pHjT7Z6wnXUZ68BMlbgbqE38cC2z1+v+fPWmt/DvwcYPbs2V6D8OLxM8OWS4HeW1pnpHAKea0XswAvRgU78wrAwIwrva3ipgq/q3K52Sq0nnJt+F3/qNEnOz3lOsqTlyD5RWCyMWYCsA24AvA6cDCfzwaL3xnWrwK9kIFCuQTzPVVPuYsvRPBS7AK8kBWse19mXFna9Eh56ynXht/1jxp9stNTrqM8ZQySrbXtxphPAo/hTON2h7X2JWPMDbHXbzPGjAKWAQOAqDHmX4Fp1trDyT5boH0prCAGjMUIFNQ6Uxo99S4+6OP6U6WvkBVsLvuiCr9n85pPkr2vJ10bftY/QazDg6wnXUd58DRPsrX2EeAR199uS/j/TpyhFJ4+W7aCFDA2LYXFN0PkBNhor77T65F64l180Mf1p0tfISvYXPZFFX75yhQAe80n6VZT1bWRXJDqcD8VotdR1xGgFffKU7xwbD8BRMGEevWdXo/UE+/iEwP/9hZYfW+wxvV7mYmjEBVFrvvSUyv8nsxLAOz1Bjnd+wp1bfSUIWA9SSF7HVXGKEjOSakLinjhSBQIwcSL4KKbyvehKOmuJ97Fj5/nrAAZiQAWVt6b3xzefhfgpbwxUWUUXH6WhV4CYK/XYbGv1546BKzc9cRexwBRkJytIBQU7sKxEAFyqfdRghs45Ro01NXDrGtg2a8AC9H2YBXoPfHGJE43vbnxuyz0OiWil+uw2NergrFg6om9jgGiIDlbyQqK+N+LVQEVunBUYSip5Bs0zLgSVt0X3AK9p92YxD+rm97cpCsLczkn2QTAXr6zmNergrFg6sk39wGgIDlb7oKidmhpKqBCFo4qDCWVfG+gVKBnL98gVze9uUtVFuZzToJ6I5aJ8m5wles1VQYUJGfLXVAEvQIqZGtHIbYtwebHDZQK9OzkW8bopjd7iWVXsrIw6OV+oSjvSi+jIDkX7oIiKBWQOygtRGtHNvN3qou358nnBko3Td4lHqt8g1y1AGYnWdk17/Nd36MbD8mXysOyoCA5X0GpgJIV7H63dmQT+PbWlpbeIJfWJN00eZfsWOVbxqgF0DsvZZef5b6Cpd5H5WHZUJDshyBUQMkKdr9bO7IJfNXSIol00+RdsmM17/M6XsXitezyo9wvh2BJQbz/VB6WDQXJqZRbwZCsYPe7lTubwDcoLezir1zzRW+5aVp2J2z4E0xdCLMX5fYdveVYBVUxy66gB0vlEMSXI+XxsmGstaVOQzezZ8+2y5YtK10CyrVgKEZgX8ybh3K7Uenp8s0XQTqfhUjLsjvh4c90/v727+ceKAfpWIl32Z63oNc1D3+2c15zE4ZLvtR9fLbkJtW1orxfdMaY5dba2cleU0tyMkG/u0+lGMM+ijW0JOiVR2/kx/RvQTiHhbi2mpbCc9/v+rcNf8o9SA7KsRLv3NfVglugeV+wFgTJRtNSWPkbINaQFqpQi6efkuVx1XuBoyA5GXWFlF653qj0ZD0lXxTqgdb2lq5/H3UmNNwavOBHCiPxumo/AY98HqzNHOwE9YaosQGikdgvBmZdFcx0FkopWnRV7wWOguRkgnx3H2R+Fio9JSDLpNAFsV/fH/8eL61jQVeoB1qxgIEhE2DqO+CFn3VtEYq/t5yPnaSWeF0ZAzbq/CvXYMedT2ZcVeoUFU8pWnSblsKhJqfFPkrPrvfKiILkVIJ6dx9UfhcqveFGpdAFsV/f3xO6AN03C4V8oPVdP+veIrT6Xlh1f3kfw1Q0htKReF3VDoVHb0x/Ixb049YbyuBUit2im1jGhsJw9rUw48redcwDSkFyMQW9UMxHIQqVUtyoFPMcFbog9uv7y70LMFWQ79c+pAomEgNnTHkfw1R6wg2UnxKvq5HTUpcl5XLcemtjUbF7MhPL2CgwcGzvPO4BpCC5WMqlUMxVTxgeUexzVOhj5tf3e/meIN8AFiPIdwcT7sAZYNV92Z2LZMc0aMe53G+gCildgNmbj5uf13Ch8kOxW9F7Qv3ZQylILpaeXij2hK65Yp+jQh8zv74/0/cE/QawEBVQYuUMyY+NO0jK5lwkO6YQvOOsyj03QThuuQaY+QSmy+6MPdAYhXB1ftdwocudYrai94T6s4dSkFwsiYViKAyHtjqZvCdlhnLvmsu34sql8ij0MfPj+zPtV7Lxt0Eq7P2ugNzjBzEQbfd3FoNkN2wQvBttVe65KfVxyzXAzCcwbVrqBMjRduf3yIn8ruGe1vBU7vVnD6UguVjiheLqe2HlvbD8Lqf7NQitQeLIp+IKemtqrrzsl/sGcOW93oLGYsq2Akp3Y9Clco7G/mj9rahT3bCFq5zpxYxxHg4LAlXuuSnlccs1wEx18+alzGxsgGi083cTyq8FPQit8UETtOFYPYCC5GKqq48VFO25FTKFpMzlyLXi6mmtGnFe9ivx5uLQVucGsJyPQ8e8xycgFIK33dp1URD3TUFiS7JfFXWqG7YFt3R2Vz96o/NwWLkdXym9XANM9+dqh3pvHBg/Dyqqu+arfIZa9JQpKf2Sbyu/6v+kFCQXW6pCJlWF7IempU4LNib5tDI9tRW0mHpqq4bX/YrfXDQtzf4BtaBpbHDyI1Gn5euRz3cNRpM9lFeoh4fc39e8z1mgItX8u6rseo98znWuvWbuz2XTOODXEJPeXl+lOu+5NtT09uOZgYLkYktWyKSrkPPVtBTuvDy22AGw8h5Y9LA/mUs6FWOMYSkCoGz3q9RjLb1KdyzHz3NuWONdwzbaPU+4A9hi7We6m5beUtmVw6wfhebHuc6118z9uWwaB3Id9lQ7tLPFuND1VZCvpXTnPdeGGtX/aSlI9pPXzOUuKDJVyPlobIBIW+fvyTJBT20FLbZCjjEsZQCU7X4FfYxqpmNZV+/06CQ+hV87NBhLTKe7CcmmsssmEAhSUFous34UWuK5bj8Bi2+Gi27y3nLo17kr5E1x4rAnos4Y5nC1M8SiUPVV0G800+XxXM+F6v+0FCT7JdfMlaxCHj/Pv4Js/DwIV3a2JCfLBOXS+teb6W7fP16O5exFnYtBuFdPK3XFmeomxGtll01ZFbSgtFxm/Si0+LmOB5CbF8PrSzKfi0IEgYW6KY6faxIakCKtTotyoeqroJezmfJ4LudC9X9aCpL9kk/mSqyQ4xe9XwVZXT0s+kv6Mcnx9/WUIQKptptPWkrdBae7ff9kO8764c9Cewu+z2DhN6+VXTZlVdCC0nSzfvSmvBE/14tvdgLkVGPU3YIeBCZy3wiYUOf5LVR9ler6KnX5H1eogDbovX8lpCDZL/kGMYkXacOt/hZkXjOA3wVBqbqu/G79CkIXXDaFY1AK9KDK9liu/A1gnd9DFcEOwrzk9WzKqqAFpanOXW9sCaurd4ZYvL7E+7kI4s12qvIq8Vwnjkku5PlNdn2lqk9Kdb3lOq67N+UNHylI9oufd3i5FGT5ZoRM017lso1StVr43foVlNYXL4VjEAL6XBWzMPda0TQ2QDQS+8XArKvK53imkk1ZFcSgNNm5660tYdnWO0HrWvfyfECu9Vk+M3+kG+u/+l5YdX/2ZWwpgtVyrg8CQkGyn/wqqLMtyPzICJlm2chlG6VqtfC79SuIrS+ppLpBCEqlmEopex3SHRv3uZ9xVeHTVAzZlFXlHpR6CU78XKK52MFQtuciSOeuEA0QfpcliWVAKAw71kDkhPchLoVIkxdNS53hONmmVbpQkBxU2RRkfhQ0maa9ymUbpWq18Lv1K1UXXBADT3dQl81k/9ny8xiUorXeS8UVtJY3yY6Xc+znEs2glrtsFKIBwu+yJF4GxFfL3baSbmOki52mTJLODBLwBp6AUpAcRNkGH/kUNInbis+yEY04mSpx2dtM87OmSm+yYL8YAabfrV+Jnw1yF5Y7qCtU4VzI1pr49VXoVjqvxyZILW9euOeWLdZ4ziDKdI7zaW0rxkONQXrwuRDyvQlNlk4v9WG2+1dXHxt61Y4z20YIJl4EUxd2nvd031Ps3sguM4PE0up1ikDpQkFysSVmTkgeBGQbfNTVO3NHbviTk2nTvd+9ffe2Eqejcy97O/MKus2Qke10UvG78fgyvkEKML0KyhjlVNxBXSEK50K11qS7NpP9ze/AvNy5W5AwgO2cY7Yc81u2Esu4TDf3+bS2FfqhxiA9+FzoQDnXccfJ0pkp8M51/9zne+pC71NDFrtHyp3Wi25y/h6Eud7LjILkYupY/a7NGdtkwt2DxVyCj6alnZn19SWpV+xzFw4zr+zcVnuLE8AOrOu+7C10/dyMKzu/02t6Oyqk2FRaEMwA04sgBldenhD3c6hIIY5BYmWZbIYXKGxgXm7XYTJdWpCgI6/1hDGJXscWuwOgTIuv5Nra5vewLrcgPfjsdbteyxY/yqB06UwXeOe6f/n20hWzR8pLo0O5lgNFpiA5X9lk9tX3xgplYt02EbrNvZpL8OE1s7rfh3WC9UgsHSvvhcu+2X376b7fa3pX39c1QMYEJ8DMVrrgKohPMCeOK9+13p+FMQodYBZr6rF8Ky4/zref10z8uCVtSc7ymAVp3L3X1r9kZdW8z3e811rLTxa/xr0vvMGlA4bw5XAlJgIm3tqW8J2/X9bEtNEDOH30wG6b+f2yJiYO70f/mqnsHDmB44faecsYSzhksGPP4eWKKYwf2pfafPY5aA8+u7mvD6/nyK+W6lyPTz7HtRi9dH7J1OjgV4NJD6cgOR9ZZ3bj+jXk/EzMYKmCj3QXs9dMn/RJfQPLfgVYJ3BPtZpRsu+Pp2nBLenHPHaba7YSzvpA6oVNykGy4KpU3aNexl3G02WM06roR8tiIVtGcm2lK2ah78f5ziaw8LJficctnzHJQRt377UhIFbGRSOtREwFv9s1jpHrd/H3l3cxckANyxoP8OymvZx/ylD+sG00W0JfZpZdx8lnXsqx7SMZfngn97zwBhZ45pU9nDFmIH/42Pks3bKf517byx9XbmPKqP4sfmUPw/tVs/vIiY5Nzxo3iHmTh/Pilv0s2byPeZOHMbxfNZ99y6mseOMA977wBhOG9WXupGHc3rCZD543ngXTR/HanqM89tJOlr9+gEPN7YwZVMOX3z6NpbtO4h1X/5Hqrc91OXf7j7XSpyrMrsMtnDy0L8db26muCBMOme7HIxdeboCTXR+5NtbkWgbleqOe7w1+Yl7MNKwjKAFoqmc+0uXxIKW/hBQkp5PpIsk2s8+4Elbe03lRXvbN5JWXO/jw0lLoJdOnet+q+7pmHvf2U3XZe61EGxu6zjV71jXw9u+mPk4+eurl3RxuaWNATSUD9q5kdcOfea3vLD5y1RWMGVxLZTjk38ZK1T2a6SYpMV025MxiUg4t+cmC8HSBebEDOz/Ot5fvyHa//Lh5Cdq4ew8NAYea2/jakmps7dcYe2g5z7ZNYcWyPrBsWcd7xgyq5cbLpnD9vIm8tuco1/wyzOLDE+A5gHVUV4Q40R7teP/abYeY9bXHOdbqlF9zJgzhqY17ANh95ATVFSF+es1ZvL7vOPe88AY/+PurhAyMHFBNw6t7Adi05ygbdhxmYG0VL+88wv0vNgFw0wNr+dZjG9l5uKVje4P6VNK49xhv+c4ztEai/HJUf2aMfQuvrj3CjkN/Z86EIfxl7Q7aoxZrYWbdIFY1HWRYvyr+553TWTD9pO7HLtNzMMlkuoaSXR/ZNta0n3Bu2hMfEM9Wrtd6rp9Llhfnfd7b+0qZf5LV4ekWLfOrAaAHBNkKklPxcpHk0i216OHsLxx3gbT63u7f4SXTuwvL+CB+rwF24mvZVKJJW7AzpC+PTHX0RDsvNu6nX3UF1935IgBnmVe4p+rrzDDttLX8lqtvPUxkzDk88PG5/rXAlKp7NNNNkjtdmVr+y1XikJ5iBHZ+nG8v31GKgDVo4+7TXONN+4/z8s4j/HXtDh5ctY0Zdaez1pzGHYvOoboixH88uI63zxjNhZOHM6C2AmOc/D55ZH+W3PgmNu46wkd/vZw39h/n9MjLfHH6PqpOmU90bD3feeIVjra0cfWckzllRD9m1g3izn9sIRwy/LxhMx+ZN5FLpowE4Lq5E3hq424McO7EoXzj0ZexFu58rhGAO687h/HD+vI/D69nRt0gnt+8j/3HWjllRF827DjCvR+Zw/B+1azbfpjr717GtJMGsH7HYXYcamHqSf05eWgfHly1HYAPnncyG3ce4YUt+7lu7ngaXt3LNx7dyFtPH9Wxf87BSajHQmHA+PPQdLLrI5vGmgW3pH5APMiK3VruJ3cdni6P55v+oN0k5MFYazO/yZgFwPeBMHC7tfYW1+sm9vrbgOPAImvtithrjcARnAG47dba2Zm2N3v2bLss4e6/JBpuhSf/17lITBgu+VLnHWM2d+Z+d8nmWtD5XVhmu1/pAuA8Z73YfaSF9dsP85OnXuOkQU6X6raDzR2vf/O9ZzKz8Q5OWfc9wkSxJswfBy3iczvexKcumcQnL5lEdUU4u/3PZT9LKajp8kvHQ7Gtzu/haueGtBhDLgo9JjmoC60EwFMbd3PDr5d3tP7+89lj+dY/z8jpu/788IO8+cWPUBOKOGOUfTrOL20/RGt7lFnjBid93VrL8dYIfas726xOtEeoCIXYsOMwU0b1pyIcoj0S5VuPbWTh0G1Ma13NibHn83qf6Zw6sj+/fv51vvzgOv72uflMGtG/88sT67GO4X62e50Wl805z+f6SFe/BpnXJarLJUhMdQ7zTX+y8xt/vimA5YkxZnmq2DRjS7IxJgz8GHgLsBV40RjzkLV2fcLbLgMmx/7NAX4a+xl3sbV2b47pL41Ud1mJ0wYZA6ddBnM/47wWb5mF3J+ATSbxDv3QVlh+V/bf1yUdCU+++5EmLxd9qpbuHGa9eLFxP39Zs4NtB5vZdqCZDTsPYy2M6F/N5r3HGD+0D//1jtO57enXGN6/mvfNroORl8HLP4VIKyZcxbve9X4eeSrED5/cxLLGA9z6vhmMHpTXYzYd+7nGnMrw/tV06fgsdcDhRxd8kLmH9BRr+eh013W+eSPx9VIsZpNt71SBj3fT/uP8+/+t4fr5E3l55xH+tGobG3cdYeqoAfzH5VNZsnkfHzxvfI5fvpS3778LTDvG55lAkj34l8gY4wTICceyOrbd6WM6P1sRDnHTGUfgrmsg0kp1uIpTr30IqOctU0fy5QfX8ei6nXzykoQgObEeczeOuHsH3IFRph6nfMqUoPVUeOXOi5A6mEw2ZWrQpDqH2dbvbu7zW8hFrQrMy3CLemCTtXYzgDHmfmAhkBgkLwTutk6z9PPGmEHGmJOstTt8T3GxpLpIGhs6nxy3wMsPwyuPOQ/hRdu7F0QLbvGnMIhfzE1Lu48h9iKbwjLbNOUjHrx7nPXisZd28tFfL6e2Msy4IX04aVANb542mSmj+jP3lGEM7FPZ8d43TxtJR0+J63yaunp+8UHL75dt5d//sIbzb3mSa887mU9eMpnbGzazafdRvj+3jX47l8D4eUTGnMPX/vwST27czTfecybnjB/Cs6/uxWL5w4ptrN16iItPG86+Y608vGYHZ40bxAMfn+tsu1xaFcqZ1yE9xVCI852Y14JyPRU4Heu3H+b5zfsY3LeSnz29mZd3HgFgyeZ9gDMe98NzJ/C5S0+lT1UF508altuGYvthSrk6WT6zd9TVM2pgDfUThvB/y7fyiYsndQ65SBbUpQp8Er+7/URsOIQtzDWWLF3lModvYl5MNVVlqilTUyl1I0oy+dTv7vMbxOEnHnkJkscATQm/b6VrK3Gq94wBduBEP48bYyzwM2vtz5NtxBhzPXA9wLhx4zwlvuCSXSTj53Vdvhkg2kbHVEvuVtpUs0Vky+sTten2xWthmUua/GhRCIVh1jUp77wjUct3Hn+FU4b35eFPzaO2KvMQiS7j81zn0xjD+86pY/qYgdz/4hvcteR1fv3860StM4Y53Ph1IrTTaiv4RMV/8uSx8QyoqeCqX7xAbWWY5jan5bJ/TQWzTx7MvUvfoD1qGVhbyYo3DrLktX2cd8rQwBYQy18/wJa9x3jv2WNLnZT85dPy4XcF5ef5Tpa2oFxPBUhHw6t7uOmBtRgDuw6doDVWng7rV83QvlV8/OJJhAwM6VvFO2aM7pq/892PUq5OluXsHckaSa6sr+Ozv13Nks37OP+UhBsGdz2War8Sv9vPWXBSSWz4CcJNXzKZyoZk58Prw7heWqPLmfu6K8eeA7wFyclKIfdA5nTvmWut3W6MGQE8YYx52Vr7TLc3O8Hzz8EZk+whXaVRV++sSveXz8XGeeFMaZaqJTnZbBHZ8vpErZe0eyksc01TLt/nMbhpj0T5+D0r6Lt7Of876xC1u/r4VpBMGz2Ary2czgfOPZkHVm6juTXC9aFVVC1rJ0yUKtPG5yr/wEcW/BvT6i/hqY27eXbTXqadNICRA2o4Z8JgRvSv4fV9x9h7tJVJw/sx9xtPcuUvnueXl0R5U2sThCqcOjhABcQvn93MC5v3+xskl7JFJJd85nWMYTb86kpOlceC0lXtczp2H2nhI3cvY+zgPpwxZiB9q8N8dP4pHGpuY9zQPgyoqez+oUIsjJNLgJxvOrweyzTl5WXTT+Krf3qJJU8/yvnbd6V+/iNVOuPfvfpeOLoHXn0i/95GL4Jy0+fmpY5LdT7Snct0i3oFaf8T5Xt95zt8o4S8BMlbgbqE38cC272+x1ob/7nbGPNHnOEb3YLksjJ7kfM07up76RhzBP620iYKYiHiZ5rcwU0sQ9qTL6Bt9DkcaWnj+39/lb0bGvhd7c1UbGiHV27z/Y578sj+fGHBlFgajsGqH0L7CcJEmX5iJTz7ITjlId45q553zhrT7fMnD+3LyUP7AvDIp+dxyy/u4oIlXwViN09nX8u+U95NaMhM4o/wbD/Y7M9Y6BxsO9DM4ZY2rLX+tMgFuUUolWQzx6y6P/0+ZKowcq0Q3N+bKo8FpcLxOR1PrN9FS1uUH101iymjBnRuJtUHinyjnpIf6cgmDYk9Cgm/11SG+fSpB7h642exTUkePvSazvj1HyuzCj6mttQ3ffEHx93jh73Wcckan9KdS/csPNhg3PQW6iG+OD+GZ5aAlyD5RWCyMWYCsA24AnAP+HsI+GRsvPIc4JC1docxpi8QstYeif3/UuBr/iW/hJKdcL9aaePiF23t0GBkokQFKNia9h/n0Kv/4LRHryZs22ilgkWR/2CNOY3jrRF+Nn4HFbvai3OzEC/oFt8Mmxdn3e04bmgf3jfsdcJNbWCi2Ci8sK+Wa58/yogBz/Lgx+ey8o2D/Mvdy/j9Dedxzvghyb+ogC2z2w420xaxNLdF6FPlw2yQhbiZK3TLtPs6xqTfB68VhtcKITGPu1dCTJfHglLhZJOOFOfSWktbxPLXtTsZP7QPp43sn+ZLEhTyRt1j2n1NRzbXTIprcOHgLVSS4uFDL+lMfE8UGDi28NdZYlBZO7Rb8J9SvmVDPDhe8ZvYkEmcdQzis+LkU8clDiVJHGvdbWGtCuf5iRlXlfamN125FsRGuiLKWDNaa9uNMZ8EHsOZAu4Oa+1LxpgbYq/fBjyCM/3bJpwp4K6LfXwk8MdYK1UFcK+19lHf96InyvZJ42JLd7ecofA6eqKd5zbtpT1q2X24hUPN7RxpaeNXzzXyUfMgUyraCJkoFbRzzagmnhx2IR+6YAKnR4bB3XcX72ahrh6mLoQtsY6PLLdZd9altDX9Emw7bTbMN18eTv2kIbywZT8Xf3sxh1vaAXhgxdauQXK6wMmnc9/SFmHv0VYADje3dwbJ+VQ8ft84FaNl2n0dQ/oHY/2ciznTSojzPl+cFuPE661QZUzCvtpwJS+95TdsrJhKv5oKftmwhaWN+wH4ZOJDZ+70udNVrBbITNdhMdKReAzSBC3Dp7+J1qXfpT3aBqFKKhLT4iWdpWjVzaW8y7dsSDarEvjbY5NqVcJUs/CUsl5PFwiXuqW/xDw1H1lrH8EJhBP/dlvC/y3wiSSf2wzkNmllb+e+aJv3ZT0O+blNezllRD9GDqgpTBqTtXykKbystXzniVe48x+NHDnR3u3r3jRlBOePW0j4uT9hI21UhKt4+zvex9vrZsbeMae43cxNS51COxp1HtZccEtW2zzlrEvYV/sAFU3/YEP1DL426XymjxnIum2H+I8H17Gq6SAVIcMja3fyX++YTlVFqMvxixoD0QghLJH2E4R9vINPnEf6UHMbowbW5F/xJAs483livVgtGO7rON3Nn7sVKJ8KI3H/Uq2EmG+Lsdc5mLvM7FDt+dzvO3qCpzbuYd7kYSnLmede28uJpx5gfmzoUqTN8shDv+cnkYWcZV7hgsqXWTj7zQyYPJfLpo/qmu50gVOxhp1kug4LnY5kDSZpehhOXPVHHvnz7/ntnpP5/ImJzM0mncUeypPpRjHV9rMtG1INZXI/XuVnj02yNGY7C0+xnvHI1GsVhOFdJaIV97IVhIvWgxPtEa66/QWG96/mxS+9uUCJTCJF4WWtM1XaD5/cxILTR/HB809mUG0VIwdUM6hPFdZaKuJLRE/+c/qHS4qVSROferfGuVFJJs01MXTqPJg6j3MT/jZ9zEDu+8i53P/iGwzrV82n7lvJ4+t38vYzR3c5flFrsISIWksbFVSOm+tbht12oDNIPtzS5uzD4pshciK/J9oTuxmzCLibWyOs3nqQcycO7fxjsVswEs9jshvSdK1AuXDvX769Re7rMNU5SNYqSWxWnizP/e3PbuGni19jQE0FP7hyFoP7VFEZDvH0K3v424ZdGGDZ6weorziJ8yoqsLYNjGHh+Wdwzbh+jHrwFky0DfPyn2DOQxAenV3glO0wiVzKby/XYSHLpWQNJmmClv6T57LwU+fyg1uf5ssPruMn15zVOcbbSzpLUcamu1FMxmvZkGqhqsTPh8Iw+VLoN8Lf8dfJ0phNwOleACzNzE95y5SuoAzvKgEFydko5oNJed69bdl7DIA9R07QFolSGQ9ACy1WMNhIK+2mgp9sGsma115k464jbD3QzIy6Qfzk6rMIdVsKOvVUbSXjpSBOd02kqZBrq8JcN3cCkajllr++zG+ef53LzzgJM34e0XAl0TZLm6lg53n/yZEDu/jP1YP5br8zONmnXUtsSaZpKTy9yNWamGdQ6qWlJ+H4/NszFfxl7Q6ev+lNTqs2+N+CkWnVx2yXoc93LmY/9y9V1677HEDyVskcz/2K1w9QXRGiqiLEol+92OW1M8YMpKYyxCcuPoVPXbKAmtUDsY98HmOjnLbyf8Fe6YwFdV8juQZOmY7JgltyG75U6pa0VMFWmnTUVIb5xnvO5NP3r+TDdy7j2S9c7M/DuX7L9UbRyzlJt1BVMYYyJUtjNjdpXfJvBJbd4fRkLfpLVsMbs0pvPkPHemhLs4LkbBR7AHseF+0ru452/P/qX7zAjLqB7Dvayqmj+jO4TyUtbVEmDu/LBZOG+Vt4xgqGpx97gB+8NpJdu0ZzbuVKPlu9gZp5F3LeReckCZB95Gdm9VIQp7omPN5QhUOG6+aO53/+soFbHn2Z6+fN4NEpP2L7qie49qprmDBtPku37GfFqiU07jveMXtGvhJbkmu3L0loTeycJ/b5tlM4tmEXb5o6MvsNZLrBcB2f3S03ApPZtPtoZ5AM/hXckP58eMnbhQiW/Loh9NK1m2w8a2KrZJZjktsjUdZsPcSV9eO4fv5E1m47RGXYcOxEhOljBjJhmOtabd6HsbazVTjVU/35tLCnG7u74U+5l9+lvHHP8bq7YPIwvvi2qfzb71ezdtshzhw7qLDpzEU+eSrTOek2pMLnoUzJuOufxG1k28gWzwftCQ0akVanZTz+uWV3xhZ9iWY1TMpXeTYefuq+lSx5bS8fu2gS1553cmePckAoSM5GGQ1gf3XXEQAmjejHq7uPsOKNAwzqU8kDK7d1ed9n3jSZz77lVN+2e/REO1c+2MrabfNYOHM0D8xtg7u+4hyzlffByFiFV4iHhAq90lkytUOdLmFcLXBZ3FB9aO4E1u84zM+e3swvG7bQHu3Dhaf+CyOmOe8fP7QPAK/vOwYMz29/YrYfbKZvVZhjrRFe7zeL6Unmib3ixr84u3LL5dlvIF75xadWcks4PjbSyjl2PS8ymdf2HOWCyTmunJYo27lIvebt+Ge8PoEfT0uhW1my6drNslUyzlpnJpSXdx5h56EWNu85SnNbhLNOHszoQbXOVIZNS2FPA7QNhQ2u/J2sJT7ZU/25Bk6Zxu5OXQivLymL8ruLPK6fN08dQThk+N2yJqaPHhjMBopC3YC4h1QUcrgCZK5/sm1ki+eDR2+EbcsTXjCd23vk884wEnCGypVi5ok8Gg+ttTy2bietkSj//fB6dh1u4Ytvm1rgBGdHQXI2St3tloVXdh1h4vC+/O1zFwJ0LM989EQ7h5rbqAyH+Nqf1/PTp1+jbkgf3nPWmKxalJ9Yv4uvP7KBW959BnNi40hf23OUbz76Mmu3HWL+qcP59wVTYO1POjNQfKnTaJRcHhLKqNgt/eke7EsVPCcRChm+876ZfHT+Kfxp1Tbe2H+cD18woeP14f2rqa4I8ZU/vURLW4Tr55+S9Hta2iK86danueltU5zxzanS3NhA7e5BnDZqCiveOMim6tO7Xdc7D7V0fCQatblXrvE5V1fd1/U8J1RgNlTJ81GnYHxtz9E0X5YF97UQb7VsP+Gcl9qhXd/vNW9neyOW+GBcKOQsRDR7Ufq05xJspEq/OwBxvw88PVx55z+2cOsTr3CkpesDt7WVYeZMGNJ9X+P5O1TRNThJlcZk+5Nt3vUydnfktLIovzvkeeM/qE8Vl00fxW+ef4PnN+/HWstNl03lzdNy6B3KNZ2l6oovdn2daeabXBrZ6uqdeuXOtyfcXCasy5C48q8JlebGL9l+eTzn2w420xqJ8j/vnM6QvlXMGjeoeOn2SEFyMrETvHXg2dz5xgg+9abJHG9tp09lBQODMl42jWjUsmbroS4XXDwA7l9TSf/YylVf+adpvLzzMP/2+9VsPXCcqooQF546nNNHD0z7/Wu2HuSG3ywnErV84t6VnDaqH/uOtvLyTqf1esHpo7jtA2c7b07MQPGHcJI9JAT5F2bFbulP9WBfjrNinDaqv3Nj4WKM4US7c8y+/sjLKYPkV3YdYdvBZp56eU/yIDmhIvuyDXPbyd9lY9Uw58E913X99Cu7O/6/9+gJRuQyQ0q6m5aECuxvxyazYnGY4f2r2bTbpyA5WavlqJmdXZOP3ugETO4AMqtxgh5uxBobOoPGaNTZfny7ySqSLIKi1vYoX/rjWt7Yf5wvXT6VM72WTfH3edjWoeY2fvP863z3iVc4++TBXHTaCGaykVOOryI8YR59J51PTWW467Fx5+9lv+p6k1Ts1vRsz3FQ+PQw7fevmMVbpo3kjn80sudwC5+8bwX3X38eM+sG+ZfWxHzRfsJJ90U3Oa+VcoGhYp1vLzPfZAraUwWWdfXO3M3xlRBX3+f8ffw8qKjuegNeims72Y23x3O+fvthAE4fPYBZ4wYnfU+pKUh2S6g4RlDBipabeN+re9l37AQDaiuprQxz/fyJLJzZfcW1oHh+yz52HGrhxtNHpX3fyAE1PPHZCzn/lif53t9eBeB7f3uV/7jcadXbuPMIYwf34cDxVvYdbaWlLcKJ9ggvbT/MsH5V3PrPM/nW4xtpbo0wdnAtbz19FHMnDWPa6AFdM3zimMdHb+z+kFDt0GCsnJWtVEG5D7NiuH357dP474fXA3DweCuD+lR1e8+GHU6Bs3bbweRfklCRVVjLWfYlBta+mUPNbd3euvKNzu9oOtCcW5Cc6aYlVoEt+fNL9KlqYt7kYfxj097st5NMsmuhsQESx8Tm0tOQ7Y3Y+HlOBRZNCByTPUAXv+ZTBOH7j7Xy2z/+gVmRtewZWs/OAWeyee9Rfr98KwNrK3nHj/7BqSP7MWfCUPrXVDCoTyXHTkQ4dqKdY60Rjre2s+NQCwePtzJuSF+urK9j/q5nCLefIETy43HoeBtffHAtf1mzg4nD+nLbNWczeP8quOtDzvtX/CB570A8f2NwggYf5pT2otD5v5gtokmn5svtxj8cMiycOYaFM8ew9+gJ3vWTf3Ddr5by7wumcGX9OH/S6z73mxc7Q1uyWXI5SA9/ZZsWrzPfpAravdwcr7wnVq/QuehJUHq2E/er4dbkDww3NrBj0GyGTL2AkDHsP9bKd554BcCZfSVI5z+BgmS3xgZspBVjnflpzw1v4Ce7TgXoWHzhM/ev4sY/rKVuSC1nnzyYmsow/aormDCsLzsOtfDn1dt589SRbDvYzKxxg3hh834mDu/LhacO5+a/vsyAmgp+eNVZ9KsuzOF/cOU2+ldX8NYMQTI4Xf03XjaFL/9pHd+/Yib//fAGvvKnlwDoUxXmeGuEqooQw/pWUVURoqYyzLghffi3t57GOeOHJB8/mizDx6fUind3xsck1w6NPVCT59RjccVsKUpVKec7K0YSH75gAqePHsAVP3+eFW8c4PxThnHLX19mzdaDfPyiSfzsmdd4sfEAAJt2H3V6Plyr6NmTLyAaqsREoc2GaRlzHgMOV3I4SZC87WAztZVhmtsibDvYzNkn53CXn+T4PPvqXtZuc3o5Bvep4rRR/dm0+yiTRvRj0oh+PLBiG4db2hgQ6+3Ii/ta8KOnIdtArK7eaeFJfLgm2UNl8Ws+RRr/8dQjLHr101TSTtvmX3B16xdZYU/lsumj+NAFE/jUvSvpV13BAyu2cqI9SnvUadHqUxWmT1UFfavDDOlbxdjBfVi77SDP3LOHD588nE/bCippJ0IFP351JE+tepadh1tobo1wNDaX+acumcTn3nKq0xu1wlvvALVDYeeqrlNvFaMruFD538t0en5ut0urfOfDtPluY1i/au66rp7/939ruOmBtRw83kZ7JMppo/pzqYf6okOyB9SSrVDqdcnlIC1pn0ta8p35JlMPVWMDRBLK6cRZOgIUUAK01c0lFKokFIWIqeTJLW1c9OTbCds2htgQD4cv4Z7m83kpPIUT7VHOGDOQ2l3Lg3P+XRQku+wacg4DomEqjaXNVjC5fgFfGjSVIy1tDB9Qw/B+1dzzwuuMHdyHLXuP8thLu2hujdDcFun4juH9q/nRU5sY2reKPyY8KPfDJzdRETK0R53B6u85e2xB9mHFGweZM3FoZzdoBu+cNYa3n3kSFeEQ558yjO0Hm+lXXcHw/tUcanYClqzGpGbqZnd3Lfs59Vg+vFZ4ySqIRKkCKY+rZqUyY+wgqsIhHl69gxWvH+TO5xoBuP7Xy4gmzIkftfBi4wEuPLXrQ34r7Kn87/EbOTe0geejU/nXCecxoHETB5vb2HmohcF9K6mucK6Z7QebmT1+MA2v7mXrgeOeDl9SCcdn856jfPTXyzjWGiEcMowaUMP3rpjJ2m2HuGTKCCYN7xd73zF/u4IT05JHy0tre5SlW/Yzbsh0olNPZ8ehFgbtOMzUkwak/+DsRcnHwiYLHlKk8cSmp6ky7YSJEjYR7r20nT0zLmbkgBqqKkI8/8U3dWyuLRKlJbbUeDhJvm3ce4xLv/sMP31tGJWnfpcz29bwwIEJPLllKGefXMHJQ4cwrF81IwfUEDJw7fnjO59X8Ng70KHUy+36JVl+hcKtiuo+zj4EyHETh/fjdx89j4/+ehnfePRlwBkJd+m0kbyy6yhfWHAaC6aflPoLUgWRdfVOOhMfjow/nJnqAd64Yj9PkkquQ1zyKVualsKhJmeIRpTk+Wr8PAhXdrYkhyrg0FbnsyU4Toea2/i/5Vs53NzG4ZY2th1oxhin3mlrjzK5tbOeOXfjBi6paCNsooRMlHdFH+efap7mFxO+x/xLLueUEX3hhe8H4/wnoSDZZfHx8fy29YsdJ/grsy7hXa4Ke8H0rnfc0aglai3rdxxmUG0VJw2qYdPuo0wZ1Z9H1u6kuiLE/uOtHG5u491njeWffvgsD67axtxJw4hYy+iBNVhLRyDa2h51Vl/LJElQd6I9wpa9x1iQTasAdEy7UlMZZmIsWAGSduun2naH8fOcTByJpl+VrECtJTnx2nrg9X3uYCGbVbNSqK0K8y/zJvD8039ldMUGPnXqfB7cO5qm/c3c8u4zuPGBtZw7cQhb9h7jU/c64w5f2XWE3UdauH7+Kfx17Q5W2FN5tXIaR1raGTekD6MG1LD89QOce/PfmX/qcO7+kLPwy45DLVx46gjWbTvUZbq4fNz1XCMRaxk7uJbdR06w7WAz/3zbEgBOGd6PU0Y4192m3UcLEyRDzi2NB4+38u6fPsfmPce6/L2qIsTfPnsh42IzkHjebrpK1fXePUdO8Id9E1hYUUmYdky4ippJF1I3JPk2K8Oh5POix/Ls+PHzeODj53O4uY05E4cSDl3DxVFLJGozlzu5tKQHpLLLWmIZl2k6vfhDydYmLxeybXHON+jK8LlwyPCzD8xmyWv7qK4M8eDKbTy6bic1lWE+fs8KHv3X+Zw6sn/y7/f4rEHH9puWpn6ANy4IM0fl22iTy7XuXjDk7GuTz8BRV+/Mjxwfl/zqE7D8rtTH00dbDxzn249txAJTTxrA4y/t5NVdRztWze1TFWbMoFraIlHOHDuQ/jWVvGnKdPpVV/CmvlVMad9A+L6HoL0Fg8UAVbaNT5jfg50EVal70IJAQbLLc6/t4/U+0/n0+67mzLYoM8amf4gNnOA2hOkyD2W8denyM7vfkb9r1hh+9NQmzr357wD0q67geGs7Z40bTP+aCp7fvJ9rzh1HOBTitFH9OHoiwt/W7+Lzl57auY0UwdrmPceIRC2njUpRwPnBU6BoXT+TKGBrSda8tmTk2uLh5cn7VBIqvX+dEsG8cDMh24bZ/ifOOOcX3LNtFO+bXceciUMZ2q+Kw81tvPenS7ji50s4HJuNoG91BQ+v2cElU0bwo6tmsXTLfsYP68v4oX14aPV2AJ55ZQ9tkSjHTrRzvDXC6EE1jB3chzf2J2lJzqLSb4tEeXbTXp5Yv4vzTxnG/7xzOs1tER5atZ3tB5v5/fKtzKobxLghfagMmy4zXBR1IZwU1m07xJf/tI6m/cf57vtncOh4G/1rKhlYW8mn71/J/G89xaXTRjL/1OFMHNaX1/YcZcKwftQNqeWRtTtpOnCcd80awznjh3T9Yg+V6uGWNv7fd3/BLLuOrXO+yoS+Lbm1VLry7PRrH4JJnd8RDpmkrc5JlXPg61WyMi7ddHrpVgbMdShBvkFXhm2FQ8YZLte0lHOGNfC/i+axf8hMzv363/nWYxv51zdPpiIUYmBtJcdb26kb0sfJi9n2JngpM/0YT57v0BevjTapHrjNZduJxyYKYDt7KZIdo7p6Z8zvxr+mPJ55zUaUxBf/uI4Xt+wH4E+rtjNj7EDePmM0V9bXdZ1WsMsxSHxm6/zO6UBX3hsbNpIwbj1+jQZlfLWLguQE1lqWvLaP8ycN46LTRhRsO59582QmjejH4ZY2jDG8uusIleEQDa/uYd32Q5w8pC+/aNhCZdjQFnGCzHDIed+Prj6LSNQy+w0ncxkbIRpppf21p6mqq+eV2PzIBQ2SvYyfikYA6/xMFUh6GZbgNbPkW0B6vZPN9Y7Xy5P3ybgqvaqZVwLtQBQibVza51Uu/dA7ADoWbxhQU8ldH6rnh0++yvD+1Tz9yh6+9Md19KkK8+ELJtCnqqLj+h7nWpzkrucamTjc+dvoQbWcPLQPa7cdSpumZBVxc2uEA8dbWbxxD79b1sSqpoMA3HDRKc58utAxP/dX33F6x/j8k4f25bXdR4lELR++60UWb9zD7R+c3TFl1d/W7+Kxl3byzlljmDup63j4tVsP8fj6nVSFQzRs2svYQbVcNGUED67cxsHjrSyaO4FLp42kOtZauvvICU60RWluc3pfRgyoZuuBZqadNIBJsVbtIy1tXHfni0Sjlm+9dwbvnNX1gd1vvXcGj760k7+t38Xj63elPI1Lt+zn8X+dn7by2nrgOC1t0Y5tA6x57nF+GvkvqivaCS17KPdWo6B0Z5eLZMfLPf7TPQY7cTW/xHKhmMc+22258vKQax/irdNH8efV23kidj3Hn004b+JQ3nbGKFojw9kz4hvMjK5j0NSL6Rc6jdOt7RiSE41aTrRHqa2KDffzWmbmc/PlxxLOXhptkpV9kPt42tqhWGMwhJx0u5fPTvY9KY5nJGr59H0radx3jAc+fn7H0Ll43RgZdwFto2cTMoaQcWKKQ81t7D3ayr6jJwBnpd6+u1cw7vAKXu0zgxX2VJ55ZQ//vuA03je7jpa2CGMHJ+nBylQnxM/tjKu6j1uPX6MBvflWkJxg64Fmxh5dy4ei+6Gpzd8TlhDEVdbVd6ts4+wbL0DjszSPOZ/K8XPYue4Z+u14nv3D63nnQ228+yfPAXBeZSV3hMJUYmmzYb64bCAHtyyluS1CZdgw3qeV2ZLKVOhlE0hmGpbgpcDJ96GP+LnxMqYw1zteL59LFui7K71kD8Ik+dxpo/rzo6vOApzWyNVNBzltVH9G9O86S8X4hGECU0b153/+sqHj99GDahk/tC9/XbezS4vugZeeZGCaWREArrtzKc9vdlofxgyq5d2zxvCP1/by5iSr9yU+wHrqyH4sf/0Ay18/wOKNewD4RcNm+lZXcM74wdz4wFr2Hj3BX9ft5L1nj2Xplv1MGz2AbQeaWdl0gNb2KFELdUNq2bD9MA+s3MaI/tX0qQrz6ftW0rcqTFvU6fKLT6uXzPihfTDGdCzv/sePn590iqLLzzyJy888icMtbRw63saarYeYelJ/Xtl1lK0HjvPW00ex/PUD/OtvV3HNL1+gqiLEGWMG8vLOIxxtaefiKcMZN6QP2w+28LXY7CV3f6ie+bHx5Ac3PEWlaU97rD0JcHdmICUer1A49fjPxPIrcdw5dM4/Xcxjn+22kgTV//7Wj3HmmIFUhg3H2yI8t2kfg/pU8vhLu1iyeR8AE4adzG+OjOJoYzvwLB+9cCI3XTaV1vYo7/vZEg63tPH4v87nH6/t47lN/fnAwvsZfWA5nHwBoUIEQl32I9J92kEvvJTRqcam53ATFHn9BaKP/DsmEsGEQoQnX5q2hThTOn/45Kv8Ze0OAP7lrmUMqKlkxKHV3Lj7C1TQRhsVXN36RdaY0zAYotZ2POAbd5Z5hXuqvk4l7ZxKBQ+ar3DuxNlcc+7J6R+m9npzVlfffdx6wMsiBckJGlc9xT1VX6dmUwS2/MK/sT5ZjHc1dy+ESCt9YuNW62KtE4PDVfz1Pffz+10TGDGgmld2nsziqpOp3vocOwbP5vlXh2B2HmHXkRP8y7wJ3sY05ypTYZJP10kurS75tNTksqxnrne86T6X6hpJ9tR04sNQkPHaGlBTybzJyVfqiy9zPbRvFX/59DyeeXUP1/3qRQBGD6xh/LC+RKKWrQeamdD8EpHNz/CNZ3bz1coKakIRjKuQa4tEefbVvTy/eT/TThrAl98+jfNOGQo4PTWZFqx5x4zRPLJ2J//50EuEDLz/nDruW9rElb94nimj+rP36An+4/Kp/ODvr/Kb519n0oh+/GHFViYN78dpowbwy2tnUxEy9K+p5FBzG4s37mbB9FFUV4R5fvM+/rJ2B9UVIULGMG5IH6oqQrS0RZhRN4hDx9sY3LeK5zfvY83Wg7RFLG89fRQThvXJOIfngJpKBtRUdowTThzXP2pgDQ+s3MaeIyeIRKMs3riHYf2qCIcMSx7Z1/G++acOp2n/cT73u1VMGz2QIy1tmG1juLS6EshzhoigdWcGdLqnDvHjFe8i9jL+M56/vQ7VKGS6vW4rSVBdN6QPH5k/seMtH79oEuD0Dh1uaeNISzuTRvSjJbb64u0Nm/nZ05t5/KVdjBlU29FrdMc/tnDzX1/GWri7MkxL+xROGnCU+68/zpptB3l933HefdYYThpYm/9+d0xBF1vMI9dpBzOV7aluQrK4Mfm/5Vv5xqMv88H2P/CxaBsVxglWl+wKc5YNU4ElYkM8vWQZjU33s2/wTFraIh0TBDS3RWhps7S0nce4HdUMXLWe5rZ2/m/5VhbOHE1FKMTTr+xhYG0F50ZXUkEbYaJAO5+ZtIsloy9zhs6HYEjfaob1q2Jo32raolEmb1xJzcoIxjoPCP/mklaYd17m45Ztw1iQyqIMFCQnaN30DJW0Y/yYiixRruNdN/ypy+9jDy3ns2+5KOED04GFAFyN083VGol6ntXCk3QTnMcrhIZbuy8znWsgmSqzZXpQMJeWmqAs6wmpr5FUBUr8Z7I5KbNI/7B+VfSpCnPK8H6EQ4aLTxvBE5+dz6PrdjK8f3VHS/P+jc8y4alrMe0n+GplBf/V9gGumzWA0859W5ftfeeJV/jp4tcA+PWH6xnar9p5oWkpxkOh+OapIxk1oIb1Ow4zs24Qn7h4ElsPNNO/poJH1jpDKa4592SuqB9HVTjUMSQp2U3hkP2rePexBtjlbHPupGHdhmgk4/dDg5XhEHd/qHOfW9ujVIadWW6OtrQ7rcon2pk3eRgbdhzmm49u5FBzG7WVIeovehutE+dQtWNJ/hVKULozgzTdVzp19bGhY+3d81e68sjLUI1Cp9vP1tOY2qowtVVhRsYmc6mpDDOzbhD/+Y7TORSbIefZTXu56bIp3P9iE19/xJk541eLzuHBVds4aWAt977wOpd+72la2pxenIfX7OChT87N/7kD901NLtMOJjmn+46eYMehFk4fPcC5wY9tZ91zf+H3e07mrScmYoG5Ho/hlr3HuPmRDQzpW4UZdgE0PoC1bbQT5qcHz2H8sIs498jjvPnE37jk+KO0bvwb10b+g42VU6mtDFNT6UzDWlsVpioc4qmNu2ltd+r8M8cO4stvn8aweJkL0NQH7vodRFoJh6uY/5Z3M79uSue+nuxKb59LYc2PnKGc2T60mDj0KNW46sT3BzHPJ6EgOcETzZO5wFRSYXye1zPX8a5TF2bVLREKGWpCPgfI6SqzpE8D57nMdGJhl7hGfabxTrncmTY2BGNZT0h/jaQrUPLsyjXG8K5ZY5icMA528sj+TI492R5vaWaLU/GHiFJp2hkaOspbl7+Jfxs6mPcPOsGGHYd5fd8xfrr4NSrDhu+9f1aXANlrUFQRDnH7tbP5+TObufzMkxg7uA+//vAcgI4WKvdNYNWOF5OPaw9oIBYP6CvDhsF9qzpa2gFmjRvMfdef2/1Dk84vVvIKr1Tjo3NpvU6WvzJdW0EZ2tK0tLMcTTc+N7F8yeEYDetXza8/PIfW9ihNB45zyvB+TD1pAB+8YykDayu5eMoILp4yAoDLpo/it8uamDqqP8P713DDb5bz7p88x6xxgxjer5p9x1qZNnoA1RUh3jJtZLe53tNKHPeayzMtSc7pZ+5fxbOb9jJhWF/ao1HqBvfhUHMbG3fOoT1quev2FwgZuG7uBP559kecRTFwHvZdumU/M8cNYuygWkYMqOH5px/hmSceZIKdxpcXLWJG3YXQNBkaG6gZP4+7Oxo+DsCTj4ONUhuK8Ls3t8O8S70fB/cxSTbbSKrrN1Ndmnh9QNf3xd8b0HI3VwqSY060R3hgzximnvEjrh3d1P0Cyad70GsQl+x9yeZXLRYvD+h1PA2MP4uBxCVOGeRl1aZs7kzj57J2aDCW9YTcA30fuq7+911ndP7ius6H9atiQE0Fi0+cxlnhKiJtJ4iGKrEnXwCvwbcff4VvP/5Kl++751/OpX5CwkwOqcbxpUjz9DED+cGVs7qls0sLb+I5THxgKsPKdRIA+QSR6SrpTJ/LZU7jZPkrU+9NELqTm5bCnZfHymecFdou+2b6fc7zxrKqIsQpsWFG808dznffP4MJw/p1ec+MukHMSMjH333/DH729Gb+sHwrx1ojVIVDtEac+uSSKSO4Y9E52e03ZK4LMj370X6C9ie/zt1VV/LsJmeWmkkj+lERMry6+ygnDazhyvpxHGtt57lN+zhtVH/ufK6Ru5c0MnJADeGQYdfhlo7W8qpwiGvG7uLfd/0/zqlox1RUEeJ8oD55Wv2+yXJvI1PZmOr4uR+OxHR/yDDXcjfAw68UJMds2HGE1vYow6fNgzNc07b50SrlNYhzv6/Q3RL5DGPoGAfm82IgXh5Wy1WulWUx5Hqu/bpGklznpq6e959Txw8b2vmH+QLnhjYw7y3v5KNz3sLVJ9rZfbiFZY0HmDSyH2MG1bL78AknQE43x2y+y5AnpjPV1FtBac0rlVyDyWy+N9/eonxa+1JV0qm4gqC0cxonS2+2LcW55km/goXGBrqu0OZhnzMFONmkrWkp7zraAMPmAanf+65ZY3nXrLGcaI+w72grfasq2HfsBH9Zs4Nbn3iFj9+znE9ePJlpo1Mv2NPaHuXA8VZGDuj6UHKy9La//jzctZCwbcOGKzEffAgzbk63uiy0ZTFX2n/Q0PerfP/TH0360Jq1zvDG6oowB4618qOnNnHgWCttUUtVOMQV9XXsP9ZKw6t7mL3hLqpoJQTOeUkXPPp5k5XYmBCv57w+lOrW5fqI98Da/MvdAPf6gYLkDqvecJb0nTVuUPcXe2qrVL7DGNzjkAq12pT7YbW8K4+Ec9m8r3PJ7N4uxXX+kXkT+f3yrQyom0t4zNuYNXcSNZVhBtZWMmZQbZeH2k4d2T/zg0v55qfEz9uQ0wuA6Vooe6loStF6UYxt5hNMpkujn5VZLkGkl0o6lcQyJd2cxl7TXoiWYj+P7/h5dFmhzYQz73O6ACebtOWwH9UV4Y6pIQf2qeSjF57Cln3HePLl3TyxfhdnjRtMVUWI6WMGMmFYX/pVV/DXdTtZ8tpeKkIhxhxdw3uHNrKu8kz2D5nJmKNr+X87P08lEdqp4FujbuV4WzvvOHA3syMnMMYSabPc8eu7+UOfE4wYUM2Q6v9ikbmfM9tWEsZSZSL8Yn4LFSlmdTDGdEyzNrhvFV9++7Sk73vrgDdg7d87/5Buga04Pxo+0g2HTPVQKnhrNDPGueGKN2C5y91MKywmCnh8pSA5ZmXTQUYNqEn+pG1PbZXycnFmyqyFaOlOVQn5sZ0gnMtiBWfZbifFsRkxoIZlX3pzx6qMSbeReJPk5cGlfM6BO52pegPSXZvZrLDoZyvsnW/v3Oaihwtz/vMJJtMdl1JXZu4WsMTg30vQ4WVOY6+8lnvZXD9+Ht+6+s4V2jAwakbXfa4d2jlFXWL5mir4z6aV2Yf9qKoI8Z33zWTf0RP86KlNrHj9AAePt/Hz1zYTiU1bNqhPJXMnDWPkoTXc2HYz4SNtvJtK/q3la8xsX0wV7RigkjYu3Hsv57SvoII2QsYSJYQNV7J76DkMq6hi39FW+ow6mwcOVXD6vpcwtp1QRRVm4vzcjn+ixobYugEABmZdVZx8k2445LzPd38odfW9ncMc0zWadTwc2eY0UCy4pfv+ZFphMVEQ6uQ0FCTHDO5TxZumjkj+YhDGmBVCkC9Ov4PvxEK8lOfSz9aidBVwLttJc52nDJDvekfCtEsGKmoyL7mdb37yowfDXZGvvrfwD/+tvs/p9gbn5+r7CnP95RNMpgtwilFepLum3ddNPL1ez31imVKMZz28PPicuC+HmpxWxiiFGYsa3+dU4/iTfSYum1bmTPnfi9ixGTp+Hl/9p870WGt5dfdRTrRFOXVUP6clt+EpeNJZYCls2vnhecfg0EmwzPmMAS4Y2QbbI7HWzxDmlIsIXXQT/9FtX2dD0xn+XhvJekazOAY5pyPTcEh3ujDeGs3iwTVRsMYpfxNle5MU8PhKQXLMf77j9PRvKESLaakF/OLMWjbdxKUaYpHlQ2wpZZrfOdfWnGyu88aGWAGcsAR55IS3JbfzzU/xz+YaxLoDyWQrXfnecupeoj3Nku35yCeYTBcM5VpeuGdZSJUeLzcl7uummMM9spXu+kk1JCYUhrOvzX61OC/i+5zLtJHZtDJ7yf/ppLkOjDHOkK5Eqa7Zlfd0/m3WB2HX+s7fk62m5z5Ofskl3/j1HFS6xoRk5cSq+zLf3Hh9Vimbm6QAx1cKksuN3131Ab44sxLkbuJEfjzE5mV+52K0+o2f53S3JU6jB84+lToIySSxgji01RmX5/4ev4/hjKtiFXebM17Ua4tSLnINJjNV6Nmc13hwvOI3TtcswIpfOy1aycZIFzufeilL8ylv010/qYbERIGBYwu737k+XOVlrGr8+/LJ/6mug3Rz9ie7Zhc93PVvpZwpKtvjkUteSHZ8Mm3X/Xqus3Bl83qZUZBcTgL+FGjReFm+udjdxF65C5BsC8OmpbD45oQxbiSf37kYBVVdvTNtXmLAbq3TlTtyWuGvzXzPa7yCaFqavAXF72NYV++MEy1l5eEl6EtVsWYTMMZ7OqIRurSYR9twOsCTjJEuZj71UpbmW96mu37yGRKTr2Tpymfolt/5JNl14CUNXnodyqW+9JIX3MN1EnsmZl3jvTfCfe796HEsp2OdgYLkcuIloArwfIO+8Lp8c7bdxF6Pm19TYCV+1mtg0OVp5dgY4FA49fzOxSioZi9yAuLFN8Pmxf7OlZ2JX5Vzuu8pRNdrqfJlukAj03Wd7ewGiTdOiUKVXVuSk+XTbJ6Mz5WXstSPoVGpzneyru5iltuJ6cp0br0cKz+v62T5Mc+VRctOprLNfc66rCUQgWW/8vbQXD5lQi+hILmcZLq7LLeW5lwyYaoCO5du4lQLUqSaLaEQxzebwKDL08ohOOWi9GPriqWu3klHFqtD+rptP/a/B7V8pJSuGzvTdZ1Nj0djg2slyzCcdhn0G5F+THJcfEjKyt84Le+FOC/ultxkc8X6MTQqnWQtnaWQ6dwWsoU/3RCKYqUhqNKVSe5zFp+KreMhao+z2eRSJuQ7B3uZBd8KkstJpkAwSGNvM8k14ExWcSVOZZRNRk22IEW6hQYKeXy9TJnj3vcgBMhxfna5lkshWi7pjEsVaHgZA5pNkDJ+XveVLGcv6voe981n/Cbx6O5YpY/zc/W9hTm2iTen7rli49tzX9N+jRMNmkzntlAt/NnUAcXsZSgH7nMWX0ugY3o2j0N3cikT3A+cRtpS53O3cmvIQ0FysOQzXhDK6247n9kXUs13mk2GW31f51134oIU6RYa8Pv4xs/3oa3ejoWfgWgh+NEam6oQ9Xu+4nwf2CrDwj7l9eN1DKjXay+b69S9fLJxTTV4dE/3+XyTfUeqJ/gzHY/Ghq5zxbrzXq5Do+LpymV1z2IH1l7PVzZz38al25dc6oBc0uCXIN3wpDpndfXZLbyVTZkASR44jT1vEI06jUuZnkUpp4a8GAXJmRRz4Qc/p3zxM72FOAbZBJzJHizIZ5xa01KnKzeewcOVcNk3nQos3UIDfreWJt6Ru+dH9doN2dOkGgfq59zSfjywla6wD1Jl6pbs+nHfeLpv3NpbnBaqt3/P+/54vU4bG+iyfLKNdq4OF6qAV5+AjX/NfK6SrSqWS89UpryXTf5PvEa8LoVdikVu4vvmd3CTaV+ybXTINcDy41gF8aY41TnLto7IVCakCp5DYefBXBtxXrPRzOeknBryYhQkp5NLxsg1Q/p1h+V3EJXtMfC6/14rnHTbzzXDNTZ0XwEpsZto5LTU3XrZHl/3HLHJhm5EgbM/CAPrnCDF3WUWhAK5WJKdUz9bH3J9YMv9nlTXXhArUy/iaUy8cTOhWAVonetxxlX+78v4eXRZPjlc3XnDmmpqvkRdxumT/YOj7nIIsp9FIe2+VXUf0pUufV6uvWLWS8n2xWtZm2lfsr3pyHbGh3gPlB/5sQxbQPPmJXjetb7rfP2Zrotk5zzIjQooSE4v24yRT4YM6h1WNscg2/33UuGk236uLbvJxnO5JXbree0mdXN3Ja+8p3Mp4lRp6LKCHb2nQI5LdU79yhte8pmX96Qq7BffDJETxZ3lw69Kxn3jNnombFuBM39ve2H2pa6+6/LJiTeSqabmi78Wb/kOV6VeVcxrGuLbzKV3ykvLs9elsL1ce17GkCemoxi9lMm27TUfZdM7kSwNqR7Ajr/Xj+A2qPVztvycnalpqVMvvu3W9PVjqp7g+GsBb1RQkByXayZPlO+DHUEcb5rNMSjE3baXh0qyDVwbG9IHvrl0kybj7kpOPCbJCvx4Bd0xr6wp7wI5V+5zmuvNUJw7b3tZDdDrpPruwj6fYC0XflYy7q7U/ic5vxd6/t503cbuYSC71sPOVV17WuJ5Od2YZK/BQbZlfjbz96broXLvc7r3eR1DnqzXqhC9lKm2nW++9ZKGVA9gx/fTr+C2EPtSSMmu91zHyKf6fq/DgvKdXrDEFCSDf5ncjwK2VMslp5LNMSjU3fbMK+iypG2mB3lS8Zqxc+kmTaZbV7LrmLgLfHeQks2E8D1dtjdDcamW7870Xdlur0u3fwgmXpTb7CPZtvR0uaFryW82iMQAbeW9zljgQi6T7OXhyMQWwvgNSHwxEnD2vXlf+nIzm+Ag2zI/20re64Nn6d6X7ga7FIspZertK2T5lbjtxAew4/vpZ3Bb6H1JxWs+yTTExK/GH/B+3Wd6Xxm00CtIBv8yeaEL2FQKPabH6zHwuv/ZLNyRmNlHzUg+m0Wm1aLir6U73qlaGxO78NzzqWZ6qr6uPnVXcj7HT7xxL2qRbPluv7gL+1wD5GxbhcfPc67LSARfxg7HK9P4jA/plknOp9zJtK/JWgjj446z7WnJNjjIpswvRE+bl/elu8Eu5APHyRQ60El3nbm3newGKN/gtpRjZrPJJ5mGmPjV+APez7mXnuCA13kKksHfTF6oAjaVQo7pyaVwyLT/2aTXndk3/KlrZbf4Zpi6MPU0cMlakLJ52MrdTZo4n+qCW7q3bsVXv0t8CDBZ92Cmrv5yLdCLxes+Nja4FrUIFXbIQL6FfS43zXX1To/Dsl/h29hhL+VSPuWOl7HbyVoILXQMZQlVpO9pSTXHc77BgVuuPW2pFjBxv89rvZApHYVsBfW7ccT9mWIuiZ3t9pO938+0ZCoTkr2e6vpJ1fjj9RrLdtiae5uFqvMKTEEylO5uplQVqxeFCr4zpTfdAgZTFzqrusUD082LYcszqSs997aa9yU/3pnS5G5dSwzYE1u3ou3p54os9EMKZfAQRN6y2cfx87ovalHI45FvYZ/rTfOMK1M/4JYLL+VSruWO17HbqVoIvcyFnG6O51yCg0yy7WlLt4BJ4vv8bqAoJD8bRxLl0qqejUxBbTbXeSHK30xlQrLX010/iXVeumFHXodwePlcsrHRZdSQoyA5rhAFjJeLoVQVayaFCr7TpTfTAgbgjE/esQa2r+wMjk3Y+Zf4EEu8QgxXORWyMc7vyY63l2OYKWCPSzdXZKEfUiiDhyC6yWcMbqTVCTjStZ4FvCuvi3yCo0I/IOXmzg/ulS9T8Tp2O599SpYP5n2+a89Qqa4J9w13vEfMfQwC3rqWtWyDzVQNJYnlez7nLz41Z6apNgsxnCYbXnoIUi0qkmtDTTZDONJ9Lt7bmvg9UHYNOZ6CZGPMAuD7QBi43Vp7i+t1E3v9bcBxYJG1doWXz/ZYxWrVK1QgUKjgO11601Vu7sU34gsOgNMaddYHOh/sSzzucz4KS37kvPfRG5O38nrtEnK/J17Zthzu3Ea6uSILPXavDB6C6CLXMbiJXdaZKrmgBht+LxZT6P1MNo2Tu3U23mJ/3iehZoC3MaTpxm7nuk+p8kHiPpTyAel4+hJ7xF5fUvyufD/4PWuIu5yfdU3XFk/Iv17t6M3wMNVmNvVrIevMdNvNJp94CXaTNURA9wWvMn134vDI+Lag+5DJXJ7fKKKMQbIxJgz8GHgLsBV40RjzkLV2fcLbLgMmx/7NAX4KzPH42Z7Jz7vKQo9jTaaQrXCp0puukEk8nu45XG3UebgIuo913LnGeUgn0xhEL8fQ/Z7E36dc7s/4rHyUW8tprmNw4/uYarGJIAYTicptWEy6rta6eqcFOR7wRaPwj++lXvmuGNdofBuJ06gF6ZjH07f4ZidA9jI+OkjpzyVNXs97lzIh4oy1r6jp/O5cV1lNtg2vD4B6rV9T7WOQyqNse00TGyIyzXSTqrfVva1cbhBLyEtLcj2wyVq7GcAYcz+wEEgMdBcCd1trLfC8MWaQMeYkYLyHz/ZMft1VlrJwLHYrXLqC1H08Z33QmTM1sbs32VjHVBm1EGn3WpAW8pgGteU0mVzzSHwfky02EcRgwq3chsVkSu/4eU4LcuJDkukCv2Jdo4nTqM28MljHvK7eaUHzWjYF8ZrJNk1ezntHK3u8ldd2/W4/6lV3EOjnVJvufQxaeZRtr2liQ0S6mW5SfXeyoU3Z3iCWmJcgeQzQlPD7VpzW4kzvGePxswAYY64HrgcYN26ch2QFnF8tJkEsHAspVUGaKQOmG+tYyjGIklq+eSTZ5/1oaSq0chsWkym9dfXOQ5GPfD623Lst3mIqqbjLTWzwjnkQuvLzUYg0JfYCJA6lin+3H/VqMXvcglh/Z9Nrmm7VSy/fnWxb2d4glphxGn/TvMGYfwbeaq39l9jvHwDqrbWfSnjPX4CbrbXPxn7/O/DvwMRMn01m9uzZdtmyZbnvVU8StDvRoNJxEiif6yBIXbBeeElvpnnDiynZdQDldczdgnjNFDJNQdzfbJVLeZROoc5DgM6vMWa5tXZ20tc8BMnnAf9prX1r7PebAKy1Nye852fAYmvtfbHfNwIX4Qy3SPvZZBQkuwToYgo0HScBXQfi0HUgQaDrMPDyDZIrgFeANwHbgBeBq6y1LyW853LgkzizW8wBfmCtrffy2WQUJIuIiIhIoaULkjOOSbbWthtjPgk8hjON2x3W2peMMTfEXr8NeAQnQN6EMwXcdek+68M+iYiIiIgUTMaW5FJQS7KIiIiIFFq6luRQsRMjIiIiIhJ0CpJFRERERFwUJIuIiIiIuChIFhERERFxUZAsIiIiIuKiIFlERERExEVBsoiIiIiIi4JkEREREREXBckiIiIiIi6BXHHPGLMHeD3JS8OAvUVOTpD05v3XvvdevXn/te+9V2/ef+1771WK/T/ZWjs82QuBDJJTMcYsS7V0YG/Qm/df+9479x169/5r33vnvkPv3n/te+/cdwje/mu4hYiIiIiIi4JkERERERGXcguSf17qBJRYb95/7Xvv1Zv3X/vee/Xm/de+916B2v+yGpMsIiIiIlIM5daSLCIiIiJScAULko0xC4wxG40xm4wxN7pe+1TstZeMMd9M8fn/NsasMcasMsY8bowZnfDaTbHv3WiMeWuKz38y9h5rjBmW8PeBxpg/G2NWx7Z/nV/7nLCNpPtujPltbH9WGWMajTGrUnx+iDHmCWPMq7Gfg2N/H2qMecoYc9QY86M0259gjHkh9vnfGmOqYn83xpgfxNK1xhhzls+7Hth9j712UWz7LxljnvZxtxO3X+r9T3XdXx0752uMMc8ZY2b4uNvxbQR138s5z7/FGLPcGLM29vOSFJ8vWZ6PbSeQ+x97raD5PgD73hPzfL77XvA8H9tOofa/PuHzq40x70rx+ZLl+6Due+w1//K8tdb3f0AYeA2YCFQBq4FpsdcuBv4GVMd+H5HiOwYk/P/TwG2x/0+LfV81MCG2nXCSz88CxgONwLCEv38R+Ebs/8OB/UBVMfbd9b5bga+k+I5vAjfG/n9jQnr7AhcANwA/SpOG3wFXxP5/G/Cx2P/fBvwVMMC5wAvFOu8B2PdBwHpgXLrrrgfsf6rr/nxgcOz/l/XQc98T8/wsYHTs/9OBbVle9wXN82Ww/4MoYL4PyL73xDyf774XNM8XYf/7ABWx/58E7I7/7vG6L+e6Pt99H4SPed63g+ZK/HnAYwm/3wTclLBjb87y+24Cfur+rtjvjwHnpfmsO/PcBPwkdvFMADYBoWLse8LfDNAETE7xHRuBkxIuko2u1xeRIliIfffehIusIz3Az4Ark22nF+z7x4H/KcT1HpT9T3fdu14bTIpKpyfue0/I8wnfsY9YA4Pr7yXJ82Ww/wXN96Xe93TXveu1sszzue57ofN8kfd/ArALV6BYynwf8H33Nc8XarjFmNjBidsa+xvAqcC8WDP508aYc1J9iTHmf40xTcDVwFc8fLcXPwKmAtuBtcBnrLXRLD6fiZf0zQN2WWtfTfEdI621OwBiP0dksf2hwEFrbXuS7ed77DIJ8r6fCgw2xiyOdd99MIvv9arU++/Vh3FaGfwU5H3vKXn+PcBKa+0J199Lmee9bqNU+1/ofF/qffeqnPN8Lvte6DwPBd5/Y8wcY8xLOOm/IeH6juuxdX2e++5rnq/I58NpmCR/swnbHIzTBXAO8DtjzEQbuwXo8gFrvwR8yRhzE/BJ4KsZvtuLtwKrgEuAU4AnjDEN1trDWXxHOl7SdyVwn0/by2b7+R67fLYdV6p9rwDOBt4E1AJLjDHPW2tfKdL24wq5/xkZYy7GqTAv8Purk/wtKPte9nneGHM68A3g0iy3X+g873Ubpdr/Quf7Uu+7l8+XbZ7PY98LneehwPtvrX0BON0YMxW4yxjzV2tti8ftl3Vdn+e++5rnC9WSvBWoS/h9LM4dXfy1B6xjKRAFhhljfhUbaP1Iku+7F+duMtN3e3FdwvY3AVuAKVl8PpO06TPGVADvBn6b8Df3vu8yxpwUey0+JservcCg2Hbc28/32GUS9H1/1Fp7zFq7F3gGmJHFd3tR6v1PyxhzJnA7sNBau8+v740J8r6XdZ43xowF/gh80Fr7WpLtlzLPZ9xGAPa/kPm+1PueVjnn+Tz3vdB5HopU5llrNwDHcMZmJ+rxdX0e++5fnvdr3EbiP5xIfjPOeJL4oO7TY6/dAHwt9v9TcZrsTZLvmJzw/08B/xf7/+l0fXBvM0ke3Ev4bCNdxyr9FPjP2P9HAttIMY7L732Pvb4AeDrDd3yLrgPav+l6fRHpH2D6PV0HtH889v/L6TqYf2mxznsA9n0q8PdYGvsA64DpPW3/01z343DG5Z3v5z6Xyb6XbZ7HeQhlNfCeDJ8vSZ4vg/0vaL4Pwr6nue7LNs/7sO8FzfNF2P8JdI63PRknAOyW/jTXfdnW9T7su6953veMk7ADbwNewXkC8ksJf68CfhNL+ArgkhSf/0PsPWuAPwNjEl77Uux7NwKXpfj8p3HuKNpjB/n22N9HA4/jjHVZB1xTrH2PvXYnzhibdJ8fGjvJr8Z+Dkl4rRHnSd2jsf1L9kTpRGApTgH5ezpnEjHAj2PpWgvM7i37Hnvt/+E89boO+NdiXvdF3P9U1/3twAGcLshVwLJetO9lm+eB/8BpSVmV8K/b09qprnuKkOeDvP+x1wqa7wOw7z0uz/uw7wXP8wXe/w8AL8X2ewXwzhSf73F1fb77HnvNtzyvFfdERERERFy04p6IiIiIiIuCZBERERERFwXJIiIiIiIuCpJFRERERFwUJIuIiIiIuChIFhERERFxUZAsIiIiIuKiIFlERERExOX/A1sZp9VVk9AbAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAFlCAYAAAAOIeUsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACYqUlEQVR4nO2dd3hcxdm379ldrSRLlmRJloskW3Lv3bIpBmOaKQGSkFATTEhII9VvEgj5kjcVUsibBiEkoQUMBELvAQMWYFvuvduyJctFkq1qtd093x9nV1qttvfy3NcF1u6eMnPOlN8888wzStM0BEEQBEEQBCEVMcQ6AYIgCIIgCIIQK0QMC4IgCIIgCCmLiGFBEARBEAQhZRExLAiCIAiCIKQsIoYFQRAEQRCElEXEsCAIgiAIgpCymGJ148LCQq2srCxWtxcEQRAEQRBShA0bNjRomjbU3W8xE8NlZWWsX78+VrcXBEEQBEEQUgSl1GFPv4mbhCAIgiAIgpCyiBgWBEEQBEEQUhYRw4IgCIIgCELKEjOfYUEQBEEQhFSnp6eH2tpaOjs7Y52UpCAjI4OSkhLS0tL8PkfEsCAIgiAIQoyora1l8ODBlJWVoZSKdXISGk3TaGxspLa2lvLycr/PEzcJQRAEQRCEGNHZ2UlBQYEI4TCglKKgoCBgK7uIYUEQBEEQhBgiQjh8BPMs/RLDSqmlSqk9Sqn9Sqk7PRyzWCm1WSm1Qyn1QcApEQRBEARBEKLOF77wBYqKipg2bZrHY06fPs0nP/lJZsyYQUVFBdu3b+/9rampiWuvvZZJkyYxefJkVq9ePeB8TdN4//33ef/999E0za90VVdXs2LFCo+/L168OCx7VvgUw0opI3A/cBkwBbhBKTXF5Zg84AHgKk3TpgKfCTllgiAIgiAIQsRZtmwZb775ptdjfvWrXzFr1iy2bt3K448/zre+9a3e3771rW+xdOlSdu/ezZYtW5g8eXK/czs6Oli2bBnbt29n+/btLFu2jI6ODp/p8iWGw4U/C+gqgP2aph0EUEo9DVwN7HQ65kbgeU3TjgBomnYy3AkVBEEQBEEQws95551HdXW112N27tzJXXfdBcCkSZOorq7mxIkTZGZmsmrVKh599FEAzGYzZrO537mZmZn89a9/ZdGiRQBUVlaSmZnZ75gPPvigV2ArpVi1ahV33nknu3btYtasWdxyyy185Stf4dZbb2Xnzp1MnjzZL0HtD/6I4WKgxulzLbDA5ZgJQJpS6n1gMPBHTdMed72QUup24HaAUaNGBZNeQRBSjZoqqK6EskVQWhHr1AiCIESMn76yg511LWG95pSROfzkE1NDvs7MmTN5/vnnOffcc6mqquLw4cPU1tZiNBoZOnQot956K1u2bGHu3Ln88Y9/JCsrq/fcjo4Ovv71r3PrrbcC8PWvf50HHnignyD+3e9+x/33388555xDW1sbGRkZ3Hvvvfzud7/j1VdfBeD3v/89gwYNYuvWrWzdupU5c+aEnC/wz2fYnSeyq7OHCZgLXAFcCvw/pdSEASdp2kOaps3TNG3e0KFDA06sIAgpRE0VvPptePRKWPlLeOwq/TtBEAQh6tx5552cPn2aWbNm8ec//5nZs2djMpmwWCxs3LiRr371q2zatImsrCzuvffefudmZmby8MMPM23aNKZNm8bDDz88wDJ8zjnn8N3vfpc//elPNDU1YTINtNeuWrWKm2++GYAZM2YwY8aMsOTNH8twLVDq9LkEqHNzTIOmae1Au1JqFTAT2BuWVAqCkFrUVOni19JJ79jb2q1biMU6LAhCkhIOC26kyMnJ4ZFHHgH0xXDl5eWUl5dz5swZSkpKWLBAdxq49tprB4hh0F0fFi9e7PH6d955J1dccQWvv/46Cxcu5J133nF7XCQib/hjGV4HjFdKlSulzMD1wMsux7wELFJKmZRSg9DdKHaFN6mCIKQM1ZW6+O2dhFJgNOuuEoIgCELUaWpqoru7G4B//OMfnHfeeeTk5DB8+HBKS0vZs2cPAO+++y5Tpkzxdim3HDhwgOnTp/ODH/yAefPmsXv3bgYPHkxra2vvMeeddx5PPvkkANu3b2fr1q1hyJkflmFN0yxKqTuAtwAj8LCmaTuUUl+x//6gpmm7lFJvAlsBG/APTdO2e76qIAiCF8oW6eLX2g0GI4y/BLKLYp0qQRC8If79CcsNN9zA+++/T0NDAyUlJfz0pz/ltttu48EHHwTgK1/5Crt27eLzn/88RqORKVOm8M9//rP3/D//+c/cdNNNdHd3M2bMmF4LciD84Q9/4L333uu9/mWXXYbBYMBkMjFz5kyWLVvGV7/6VW699VZmzJjBrFmzqKgITzlT/sZ6Czfz5s3TwhEbThCEJKWmCrasgLZ62PdfsFl0gXzLy9LRCkK84XBtsnZLPQ2QXbt2DQhFJoSGu2eqlNqgado8d8fLDnSCIMQvm5+G3a+BtQs0a5/fsCAI8YXDtUnqqZCAiBgWBCE+Eb9hQUgcHK5Nyij1VEg4/IkmIQiCEH1c/YZn3wwzb9B/q7xP/BIFIZ4ordBdI8RnWEhARAwLghCfuOtcxS9REOKX0gqpj0JCImJYEIT4xbVzdeeXKJ2vIAiCEALiMywIQuIgfomCIAhCmBHLsCAI8Ym7mKXilygIghB2jEYj06dP7/18/fXXc+edd8YwRdFFxLAgCPGHN99g8UsUBEEIK5mZmWzevNnrMVarFaPR6PGzv+fFI+ImIQhC/CExSwVBEDxTU6VH1ampiuhtysrK+NnPfsa5557Ls88+O+DzU089xfTp05k2bRo/+MEPes/Lzs7mxz/+MQsWLGD16tURTWM4EMuwIAjxh3NYNYdvsGz1KgiCEJGoOh0dHcyaNav381133cV1110HQEZGBh9++CEAd955Z+/nuro6Fi5cyIYNGxgyZAiXXHIJL774Itdccw3t7e1MmzaNn/3sZyGlK1qIGBYEIT6ZdT2g+mILS0g1QRCEiETV8eYm4RDFrp/XrVvH4sWLGTp0KAA33XQTq1at4pprrsFoNPLpT386pDRFExHDgiDEF65Wj5k3SEg1QRAEB+5mziJIVlaW28+aprk7HNCtyfHuJ+yM+AwLghBfuBO+ElJNEARBxxFVZ8ndMZ0lW7BgAR988AENDQ1YrVaeeuopzj///JikJVTEMiwIQnzhzurhaPy3rABUrFMoCIIQW8IcVcfVZ3jp0qXce++9Xs8ZMWIE99xzDxdccAGapnH55Zdz9dVXhy1N0UTEsCAI8Yezv7Bzg7/5aV0kb35K/IYFQRDChNVqdft9dXW118833ngjN95444Dz2trawpW0qCBiWBCE+MGdv7AD8RsWBEEQIoD4DAuCED94iy8sfsOCIAhCBBDLsCAI8YO3VdKyFbMgCIIQAUQMC4IQP/gSvLIVsyAISYimaSgli4PDgbeQb54QMSwIQnwhglcQhBQiIyODxsZGCgoKRBCHiKZpNDY2kpGREdB5IoYFQRAEQRBiRElJCbW1tdTX18c6KUlBRkYGJSUlAZ0jYlgQhPihpkp8ggVBSCnS0tIoLy+PdTJSGhHDgiDEB65h1SSOsCAIghAFJLSaIAjxgbewaoIgCIIQIUQMC4IQH0gcYUEQBCEGiJuEIAjxgcQRFgRBEGKAiGFBEOIHCasmCIIgRBlxkxAEQRAEQRBSFhHDgiAIgiAIQsoiYlgQBEEQBEFIWUQMC4IgCIIgCCmLiGFBEARBEAQhZRExLAhC4lFTBZX36f8KgiAIQghIaDVBEBIL2bZZEARBCCNiGRYEIbGQbZsFQRCEMCJiWBCExEK2bRYEQRDCiLhJCIKQWMi2zYIgCEIYETEsCELiIds2C4IgCGFC3CQEQRAEQRCElEXEsCAIsUHCowmCIAhxgF9iWCm1VCm1Rym1Xyl1p5vfFyulmpVSm+3//Tj8SRUEIWlwhEdb+Uv9XxHEgiAIQozw6TOslDIC9wMXA7XAOqXUy5qm7XQ5tFLTtCsjkEZBEJINd+HRxAdYEARBiAH+WIYrgP2aph3UNK0beBq4OrLJEgQhqXEOj2YwQnOtWIcFQRCEmOCPGC4Gapw+19q/c+UspdQWpdQbSqmpYUmdIAjJiSM82tzPAwo2PCbuEoIgCEJM8EcMKzffaS6fNwKjNU2bCfwZeNHthZS6XSm1Xim1vr6+PqCECoKQZJRWQG4p2Cyym5wgCIIQM/wRw7VAqdPnEqDO+QBN01o0TWuz//06kKaUKnS9kKZpD2maNk/TtHlDhw4NIdmCICQFspucIAiCEGP82XRjHTBeKVUOHAWuB250PkApNRw4oWmappSqQBfZjeFOrCAISYbsJicIgiDEGJ9iWNM0i1LqDuAtwAg8rGnaDqXUV+y/PwhcC3xVKWUBOoDrNU1zdaUQBEEYiI/d5Dp7rHz/ua10W2z84fpZZKQZo5g4QRAEIdlRsdKs8+bN09avXx+TewuCkDj89JUdPPJRNQA3LRjFLz853f2BNVViYRYEQRDcopTaoGnaPHe/+eMmIQiCED4CEK1dFiv/2VDLVTNHkpVu4rkNtXz/0knkDkobeM3HrtIX4RnNuuuFCGJBEATBD2Q7ZkEQokeAO8+t3HWSlk4L184t4XMLR9NlsfGfjbUDD3S3iYcgCIIg+IGIYUEQokeAovW9PSfJzUzjnHGFTBmZw7iibN7f6yYso0SlEARBEIJE3CQEQYgeDtHqcGfwIVqrDp2iojwfo0EPd37O2AL+vb6WbosNs8lpLC9RKQQhtojPvpDAiBgWBCF6BCBaT7R0Ut14hpsXju797qyxhTy2+jBbapuYX5Y/8NrSCQtC9BGffSHBETcJQRCiS2kFLFrus7NcV30KoJ/onV82BIAtNU0RS54gCAEiPvtCgiNiWBCEuGRnXQsmg2LyiJze7/KzzGSnm6g93RHDlAmC0A/x2RcSHHGTEAQhLtlzvJUxQ7P6+QYrpSjOyxQxLAjxhPjsCwmOiGFBEOKS3cdbmTN6yIDvS4ZkUnv6TAxSJAiCR8RnX0hgxE1CEIS4o7Wzh6NNHUwaPnjAb8VDMjnaJJZhQRAEITyIGBYEIe7Ye6INgInDBorhkiGZtHZaaO7oiXayBEEQhCRExLAgCHHHgXpdDI8ryh7wW3HeIACOit+wIAiCEAZEDAuCEB/UVEHlfVBTxcH6dtKMipIhmQMOG5mXAcCxZhHDgiAIQujIAjpBEGKPa9D+ol8zKn80JuPA8XphdjoAjW3d0U6lICQPsmOcIPQiYlgQhNjjErR/aOM6xhRPdXtoQbYZgIb2rmimUBCSB9kxThD6IW4SgiDEHqeg/ZrRzFvt4xkzNMvtoYPMJjLTjJwSy7AgBIfsGCcI/RDLsCAIsccpaP/xIfOoeqKNawsHLp5zkJ9l5lS7iGFBCArH4NNhGfa1Y5y4VAhJjohhQRDiA3vQ/t27TwLrPFqGAQqzzTSIGBaE4AhkxzhxqRBSABHDgiDEFY6wauWFnsVwfpaZ+jbxGRaEoPG0Y5yrFdidS4WIYSHJEDEsCEJccbChndzMNPKzzB6PKchOZ/fx1iimShBSAHdW4EBdKgQhARExLAhCXHGwvo0xQ7NQSnk8piDLTGN7N5qmeT1OEIQAcGcFXrTcf5cKQUhQRAwLghAbnKdjoffvg/XtLBo/1OupBdlmui022rutZKdLMyYIYcFhBbZ0gVKQWSCL54SUQHoRQRCij/N0rMEIKLBZ0IxmStp/QHnhlV5Pz89ybLzRJWJYEMJFaQUsvRdeXw6aDd74Hmga2CxgTINlr4kgFpISiTMsCEL06Tcd29NvanahYRfFbrZhdqbA7k/cKBElBCG8dDTqAliz6fXS1gNo+t9bVng99V+rq3nko0PRSacghBERw4IgRB+nTTYwpvX+bTOkscY2mZG5PsSwfRc62ZJZEMJM2SL7bI07PPvna5rGX97bzz8/FDEsJB4yvygIQvRxjXMKUF3Jex3j2bjSyMg872LYEWnilGzJLAjhpbQCZt8M6x/u/70ywswbBh5v9ymuy5vLiRa9PrZ1WcR9SUgopLQKghAbXOOcllaw7b97UWofw3IyvJ5a4PAZFjcJQQg/M2+ATU/orhGgC+Erfj/QX3j9o73+xcOUmTnqTjZqE9hzvJW5o4dEPdmCECwihgVBiBvqmjooGpyO2eTdgyvTbGSQ2ShuEoIQLlyjRix7ze4jrHRx7CqEa6p0IWyzAGDQujnHtJuNPSKGhcRDxLAgCHFDXXOHTxcJB/lZZk6JZVgQQsfJwosxvW/LZW+RI6orwWbr/WhD0T7yLLKPm9hzvCXyaRaEMCIL6ARBiBvqmjr9FsMF2ek0yJbMghAazhZezQaWTp9RIwDdgmxKBwxoBhM/sdyKafQCLh58mBnVD+vXFYQEQcSwIAhxgaZp1DV1UOyvGBbLsCCEjouFFzTYtGKgmK2pgsr7+r53LIK98Ecc/eR/eNKyhIVpB7i3/Udcc/oRPY64r2sIQpwgbhKCIMQFp9q76bLYGJHrffEcADVVXHvmWV5oLQcWRTxtgpC0OCy8lk5A07+zWXSR7HCTcN4kx2ju70ZRWsG2bceAjUzp2oJJ68GIrW87Z1/XEIQ4QCzDgiDEBXVNnQC+3STsnerSk//gT90/QTuyNgqpE4QkxWHhnbdM9xdWRl2sljkNMvttkmMXuU7sOt6KUjBkyhKsKg0LhoCvIQixRCzDgiDEBUebOgB8u0nYO1UDNtKw0LV/FRmjFkQhhYKQwLhGi3DGYeWdeaP7Yxyb5Fi6QCnILOh3etv+j/lx7gbS0z7H09Me4MjGt/nurV/A5O4aDstwmczoCPGDiGFBEOKCOrsY9mkZtneqNks3PRg5kT+PssgnTxASF39dFDxEkGgumM3haXcyY+vP9UV2b94Jw6ZAaQXakbV878T3MGOBx54lZ+7feMB6NV8omE2h67WdN9oRFwkhjhA3CUEQ4oK6pg4y0gwMGZTm/UB7p3ps7ne5qfuHeqxhWZQjCJ4J0UVh6R9X8ea6nWiapothxzVqquj47y8xO/kJl7duAuC0u8WtpRWwaLkIYSHuEMuwIAjRw8tU7bHmTkbmZqKU8n2d0goy27v41Nr/Y9bKX+mdvCzKEQT3hOCisK76FMeaO1mjJqMZ0lA29GtkFsBjV5Fh6UShoWFAGc30lJ4NG3tobO9mvLcLe3PbEIQoI2JYEITo4GOq9vCpdoqH+BdWjZoqhjz3GW4wdmBwRIVyXb0uCIKOLxcFD8JU0zTufWM3ABu1CWw4/zHmqx36cb2++xoWpTCMWYy64C5MxklApXvLsPP9JLKEEEeIGBYEITq4m6q1d4AWq429J9q45azRfl9LWbowqt5gUGAwyaIcQfCEpx3lvAjTd3adZMPh03xzyTj+tHI/+zOmML9iad+5RjMWSxc2lYbpgrugtIKCFj0qzKkzXsSwl7ZAEGKB+AwLghAdHFO1bkI3HWpop9tiY/KIHP+vZTCgAbpThYLZN0qHKgiB4sGf2GrT+O1buxlTmMVXFo8FoL7VacfH0gpOfurf/L7nM/x33kO9dS/P7vN/qs2LGPbSFghCLBDLsCAI0cHLVO3OYy0A/ovh0gq4/D5sr34XsGE0ZehhoQRBCAwP/sQvbDrK3hNt3H/jHAaZTeQNSusvhoFXT5XygPVq3pl/fu936SYj2ekm75ZhiSwhxBl+iWGl1FLgj4AR+Iemafd6OG4+sAa4TtO058KWSkEQkgMPU7W7jrWSZlSMHZrt/7XmLePZw9nUbHqbb95yK+nSoQpC4LgRpharjT+8s5fpxblcPn04AEOz0weI4Rc3H2VacQ7jivrX2yFZad59hh33lTorxAk+3SSUUkbgfuAyYApwg1Jqiofjfg28Fe5ECoKQ3GyuOc3E4YMxmwLz3Moadzb3W67mYMbUCKVMEFIAl5Bn7+4+Se3pDr5+wbje6C5FOensONbM/pNtANScOsPW2maumVU84HL5g8ycOtMTvfQLQoj40/NUAPs1TTuoaVo38DRwtZvjvgH8BzgZxvQJgpDo1FR5jQPcZbGy6UgTFWUFbn/3hsMitc/eQQuCEDpPrDnMyNwMLppc1PvdILOJmlMdXPT7DwBYfbARgPMnDB1wfn6WmVPtXQO+F4R4xR83iWKgxulzLdBv71OlVDHwSWAJMD9sqRMEIbHxI4TSlppmuiw2Fo7JD/jy5YVZGBS91ipBEELjZGsnH+1v4OsXjMNk7LOXFWSZe//WNI21B0+Rn2Ue4CIBMCTLzN4TUieFxMEfy7C7CPiay+c/AD/QNM3q9UJK3a6UWq+UWl9fX+9nEgVBSFj82Plqrd3CVFEeuBjOSDMyKn8Q+0+2DvzRh0VaEISBvLHtODYNrpo5st/3P1g6iSumjwCgpdNCVXUjFWX5bjfJyR9k5pQvn2FBiCP8EcO1QKnT5xKgzuWYecDTSqlq4FrgAaXUNa4X0jTtIU3T5mmaNm/o0IFTK4IgJBl+hFDaVNPEuKJs8gaZ3VzAN+OKBrP7uIsYdlikV/5S/9eXIBbhLAgAvL3zOOOLshk/bHC/74dkmbl0mr6YbtOR09Sc6vA4gB2SZaajx0pHt1f7mCDEDf64SawDxiulyoGjwPVAvxhGmqaVO/5WSj0KvKpp2ovhS6YgCAmJjxBKmqaxuaaJJZOKPFzAN7NKc3ln1wmaz/SQa49x6jWov+tuW75cOWTbWCFF6LbY2HD4NNfPH+X29+E5GQC8suUYc9ReLm/eDDUXD6gXDpeKU2e6KTb7uaukIMQQn2JY0zSLUuoO9CgRRuBhTdN2KKW+Yv/9wQinURCERMZLCKWaUx2cau9mVmle0JefM2oIAJtqTrN4ol1Ue4id6lb4+hLOsm2skCJsr2ums8fm0eI7LCcdgJqt7/Nk+q/IWG+FTX8eUC+G2MXw6fZuivNEDAvxj19xhjVNex143eU7tyJY07RloSdLEIRU4OMDDQAhieEZpXkYFGw60tQnhj1ZpN0JX0/C2dPxIoaFJGXdoVMAzC9zL4aLBuuW4XnaDsxYUJrNbb3Id1iGxW9YSBBkBzpBEGJC05lu3nrrZX6av4fJlkJcgtT4TXa6iakjc3lh01FuP28MWen2Zs2dRdqT8J11PaBg5g39z/EmlAUhGXByA6o6pBgzNIuhg9PdHpppNgKwxjYZzWAGrcdtvRhi9/8/7W0XOkGII0QMC4IQE7asfpsHLD8lw2ZB/evZkFwQ/t+VU7j+odX87YMDfPeSiZ4PdLUYQ383iJk3eD9erMJCMuHkBqQZzXRZ7mbBjPN9nrZRm0DPTS9iqvvYbb0Ymq2L6ZMtEmtYSAxEDAuCEHncLEKzHqwkzctUayBUlOczrTiXln0fQ+ar3oWrs8W48j7fbhCybayQrLi4Ac3o2cb48k96PeWeT03HoCBz7CgYe5bbY3IyTWSmGTnW3BmJVAtC2BExLAhCZPGwCG1l5wTOUSZMyhoWF4RLcg7zxYPfh5VWz4vdXEW5uEEIqYxT+bcqE2tsk7nRg7+wgxsq3EeacEYpxYi8DI41d4QrpYIQUUQMC4IQWdwsQrMVz+elhhJGT/wzXyo9GhYXhIVqFybNAniwNDuLcoMRZt+su0WIG4SQqji5Ad1/YBg1R4eHLfrDiNwMsQwLCYOIYUEQIosb62t1YzutXRZyxp8NHmKaBop5/Hn07P8bBmXF4M7K20+UW2H9w7Dxcbj8Pli0PCxpEISEwHWGpLSC19Z/wPTiQW53lAuGEbmZVO6TnWaFxEDEsCAIkcXNIrQ1a48AnkM4BXWb6Yu56aUfcteUBuYvvnqglTezAJQCTdG7o7zNAq8vh2FTxCospAZu3Jbai+aw/2Qbl00bEbbbjMzN4GRrFz1WG2lGfza7FYTYIWJYEITI47II7eMDDQzLSae8MCtstxiSZWZf+hS2GE8zv7qy776gC4A37wSbDZQB0ECz6b9pNokfLKQObtyWdlrHYdNgRklu2G4zIi8TTYOTrV2y8YYQ98hwTRCEqGK1aaw52MjZYwvDNiXr4KLsw3x+3zdh5S9161dNlf6DQwBg08XvqIVgMOnC2JguC+eE1MHhtqSMvW5L22qbAZhe7IcYrqnSo7A46pYHhufqG3Qca5JFdEL8I5ZhQRCiyoqqIzS0dXPp1OFhv/a5absxaj0MWESXWeB0lAa1G3Rf4Y5GWTgnpBZu3Ja2fbyZYTnpFOVkeD83gO3JR+bq1uA6WUQnJAAihgVBiA41VWiHKnn/gwwWjpnDpVOHhf0Wp4dW0H3qX2QYrCjHIjqHi4TDLQJ0X+GOxv4L59zEQhaEpMTFbWlrbRPTi/N8nxfA9uQj8sQyLCQOIoYFQYg8Thalv9iMvDPy7+F1kbAL2aKcMdzU/UNWXGwhY/z5ekft2FjDsWgONTCmsCN9li4wGHSr8bxl4UufIMQpbV0WDja0c/WsYt8HBxCXe3C6iSyzHxtvyCBUiANEDAuCEHnsFiWlWUlDY1rPVuCa8FzbSWhfYUjjUe5k/8Tbmebwf3TuwJ3jCzt3vNWVuhDGpi+ykwgTQoqw+1gLmgZTR+b4PjiA7cn1jTcyvW+8EYDbhSBEEhHDgiBEHrsgtVm66cFIfuFw3WIbDmuQ09StwQYLDbuoPX2mTwz704GXLdItwjaJMCGkFgfr2wEYV5Tt3wmOOuEascUNPjfeCMDtQhAiiYhhQRAij12Qrnz9OSrrNP73gx+HzxrkMnW7xjaZQSfbBt7f2z1KK3TXiNeX60JYIkwIKcKBhjbSjIqSIYP8OyHARXS7j7d6vpZshy7ECSKGBUGIjt9eaQUPG2xclr0CdSaM1iAny68qW8SJJ9vYe6LN93muzFumu0Z4eg7i2ygkIYfq2xldkIXR4KcPfwDW3OG5GTS0ddFtsWE2uYnkGoDbhSBEEhHDgpDqRNFvb9/JNs4uWQA1/w6vNcjJ8jthWBV7TzhZowIRsZ4syOLbKCQpBxvaGRPI5jcBWHNH5mWgaXCipZPSfA+WZ1+zNoIQBUQMC0KqEyW/vaYz3dS3dmEuXwhLImcNGj9sMB/tb8RitWGqWx8eESu+jUISYrHaONzYzoWTi/w/KQBr7mTLbr5mfInTe9MoXXhJGFIsCJFBxLAgpDpR8tvbb/fjHV80GErHRkxMLkjbj4lXOL4zk5KmDeERseLbKCQh1Y1n6LFqjBvq5+I5B/5Yc2uqmPbu55hi6oa3X4LiV2QAKcQtIoYFIdWJkt+eQwz7vWo9GGqquGDNFznf1A0vvASX/zo8IlZ8G4UkZEedvg3zFH/CqgVKdSXK2oNJ2bDaemQ2RYhrRAwLghAVv719J9vITDNSnJcZuZtUV6Jsjg64G45vhlnXA2pgbOFAEd9GIcnYWdeC2WjQZ2vCTdkilNGMxdKFTZkwymyKEMeIGBYEISrsqGtmwrBsDP6uWg8GewdstXRhxYBx0wp962WjWRfDgiD0sqOuhQnDs91HeggV+2zKc8+uYJNhGr+WgaQQx0SgBgiCINipqYLK++ipXsOmI03MHZ0f2fvZO+BVxbfznHUxms3S319YEAQAbDaNHXXNTB2RG7mblFawefQXeLdtdOTukcrY21dqqmKdkoRHLMOCIEQGp3BkRkMaU613UlE+O/L3La0gd8ppjh7eh00ZMYIsehMEF9YeOsXpMz2cM74wovcpzR9EQ1s37V0WstJFcoQNCfcYVsQyLAhC8HizTPQLR9bDQsMu5pcNiUqaZr93C9eb3sNm02DuLdJRCIILL2+pY5DZyMWTh0X0PqPs8YVrT3dE9D4ph7twj0LQyDBNEITg8GWZcApHZsHEkZw5FGSnRz5d1ZUoazcmbFg0aMsYQbYIYUHoR+W+ehZPHEqm2RjR+zg22zhy6gwTh0dgoV6qIuEew4qIYUEQgsPXRhRO4ci++kEGOWULo5MueyehWbvp0Yys7BzPVdG5syAkBBarjWPNnVwzqzhyN7Hv/DhmmF7vj5w6E7l7pSIS7jGsiBgWBCE4/LFMlFZwPGcG7772Lj8pieBCHZd7csvLqOpK/ndDLuv3DOHKy7XIRrEQhATiRGsXVptG8ZAIhTl0mjUabDRzTvrd1Jwqi8y9UhkJ9xg2xGdYEITgcFgmltzt1Sd3c00TADNL86KbtkXLOXvxZRyob+ftnSeid29BiHOO2v13R0Yq5rfTrJGydnNR5l5qxDIsxDFiGRYEIXj8sEzsOtaCUjBlRAR2ufLBFdNH8Id39nHX81vZeayFScMHM2HYYMoKBmEyurEF2Kd2ZdpRSGbqmnQxHLENcFxmjU7kzxM3CSGuETEsCEJEOdjQTsmQTDLSIrtQxx0mo4F/3jKP7z+3lT+v3Iem6d/nZqbxt8/NZeGYgr6DJVSRkCIcjbQYdvFntW7N5sjqw9hs4q4kxCcihgVBiCgHTrYxpjA7ZvcfMzSb5756Nh3dVg7Ut7H3RCsPvH+A2x5dx7vLFzM8N4P2LgtP/etxbrN0obC5XxAoCElC7ekOCrLMkY0k4TRrNObYEbosNo42dfRGlxCEeEJ8hgVBiBg2m8ahhnbGDo2dGHaQaTYyrTiXT80p4ZFl8+mxaTz9/HNQeR81W9/n9daxWAxpoIwSqkhIao42dURu8RwMiD8+pjAL0GeJBCEeEcuwIAgR43hLJx09VsYMzYp1UvpRmj+Iu6e38tmd30E7YmWcSgPu5N6i3/DNMSfInXyBWIWF5KSmivOOP86poRXAuRG5vqu70ZihMwE4WN/G+ROGhv+eghAiYhkWBCF03O1EV1NF13u/ZY7aG3diGOCqvIOkYUFpVpRN3yHvn9VDmblyGgczpsQ6eYIQfmqq0B67imVdT/Kduv9xv3NkqLiJP16YbWZwhomD9WIZFuITsQwLghAa7haeATx2FaMtXTxpNtFpmU9ErFAhMGTKErrW/B5sPfRgZI1tcu9vhxvPMCYOXDsEIazYhapJ2bBplsj4xbuJP66UYszQbPadbA3vvQQhTIgYFgQhNNztRAdg7caAjTRlIfPkWpgYX2KY0gp6bnyRf7/4NC+cKmejNqH3J8dqe0FIKsoWoRnSsFo0lCktMn7xzpEkMgt624MF5fn888NDHGvuYERuBP2VBSEIxE1CEITQcFiCnBee2b+zYMCqItTphoHs8Wdz4Zd+zUZtAt+6cDzXzi0B+uKwCkJSUVrB2kWP8HvLZ6i+4qnI+cWXVuh1/s07YeUv4bGruG10PZqm8eSaI5G5pyCEgFiGBUEIDZeYoo4O1vq5l/jTPx8mb/ISvhDHi9FG5mWy5xdLMRsNKKVYc7DRfzEsm3QICcYO4yQesF7N7ZMiPFPjMmM07NQ65o0+m48PNAATI3tvQQgQsQwLghAaHgTh4UFT+VP3VWSPPzuGifOPdJMRpfTNAIrzMv1zk3D4StstXxFZjCQIYab2dAdZZiO5mWnuF76GCzczRpNHDGbviTY0x+43wRLJdAspiViGBUEIHi+7tq09dAqA2aV5MUxg4BTnZfam3SvufKXFOizEOQfq2ygrzELVrovsjotuZowm1B2mrctC7Wk3m2/4O8siO0UKEcAvy7BSaqlSao9Sar9S6k43v1+tlNqqlNqslFqvlIqzlTKCIESE6kqwdtkFYVff4jmgcl89I3IzGFeUWFEZiodkcrylE4vV5v1Ad77SghDn7DneysThgz0vfA0npRWwaHmvWJ00fDAAe0+4RJUIZJYlGukWUg6fYlgpZQTuBy4DpgA3KKVcg3C+C8zUNG0W8AXgH2FOpyAI8UhmAWh20ajZoLMFKu/DcngNH+5rYNH4wl73g0RhZF4mVpvGidYu7wc6LF9L7hbrlBDf2N0KWvZ+xMnWLl2UxmAwN2GYLoZ3H3cRw4EIXBmEChHAHzeJCmC/pmkHAZRSTwNXAzsdB2ia1uZ0fBYQokOQIAgJQUcj+pjaBihY/RfQNAyGNMZ13cmi8dNjnMDAGZmnh306erqD4jwfIaBKK0QEC/GNw+pq6SJbGbjecAsThs2H0rFuF75G5P72ewwuraCsYBCbjpzuf4yb2MQe8bBgVxBCwR8xXAzUOH2uBRa4HqSU+iRwD1AEXBGW1AmCEN+ULQJTut6JKaVbhzUbWGGhcRfnjiuMdQoDxiGAJbyakBRUV4KlC7ChNBs/T3uUFtsngaLID+achDgGA1x+H2eNncOrW45hsdowGe2T04EKXBmECmHGH59hd3OcAyy/mqa9oGnaJOAa4OduL6TU7Xaf4vX19fUBJVQQhDjE2VXg8vvAmA7KSA8mGgrmMyTLHOsUBszIvAwgDjbekBXzQjgoWwQGAxp6Z25QNvLro1SmnIQ4Ngu8vpzL82po7bJQVe2ySNXFv1gQook/luFaoNTpcwlQ5+lgTdNWKaXGKqUKNU1rcPntIeAhgHnz5okrhSAkA85WmmFTOL1jJV9clc65086PbbqCZJDZRH6WObZiWFbMC+GitAIuvw/tteVYbVYMpnRUeZT8bO1CHFvfuoLZth3AVG78+1qe+tJCzhpbEJ20CIIX/LEMrwPGK6XKlVJm4HrgZecDlFLjlH2VjFJqDmAGGsOdWEEQ4pzSCn7bcQXbDJO4acGoWKcmaEbmZXD0dBBiOFzWXFkxL4STect4ZML9/Fm7DhXNgZVdiGMwgTKAMZ3siYt59itnAbDO1TosCDHCp2VY0zSLUuoO4C3ACDysadoOpdRX7L8/CHwa+LxSqgfoAK7TQo6qLQhConGytZPnNtRy7dwSinIyEnaHtuK8TA7Wtwd2UjituYEsKBIEP+rZh51jOFFQzHdGDVjyE1nmLYNhU/qlbz5QXpjFrmMt0U1LspOg7W084NemG5qmvQ687vLdg05//xr4dXiTJghCovHwh9VYrDZuXzQmoaf6i/MGsWpvAzabhsHgZ2i4cG7CISvmBX/xs55VN55hyoicGCQQtwvepozIYXtdc2zSk4wkcHsbD8h2zIIghIVjzR08+vEh7hh/mrJdD8KWpxJ2qr98aBYdPVaOt3T6f1K445/KgiLBH/xwqemx2jhy6gzlhVkxSKB7pozM4XDjGVo7e2KdlORAXKtCQrZjFgQhZHYda+GrT2xghraXb9f9Cmp6wGDUfQVtJNxU/1i7aDhY394bd9gnYs0VYoEvl5qaKlp3rGSmlk5Z4YzYpNGVmiouaXyDd1UOhxrOYUZJXqxTlPiIa1VIiBgWBCFkfvfWHpo7enh0bguGrT26dcIGzP085JYmnDgcM1TfQvpgQxvnjvcjVrKzr96i5RFOnSA44W0QZp86z7N08aTZxGHbdPSAUDHEnqZx9jTtq5kKJZfENk3JgAzGQ0LEsCAIIVF7+gwr95zk64vHUTYlD3bc32edmHlj4jXKNVUMO1TJ2eY0DtaX+XW8+OoJMcXTJhT2qXMDNtKwMKplI3BR1JPnLk3KnqaMo6sBFzEsC8GCQzYjCRoRw4IghMTLW+rQNLhufinkT0xs64Rd2CprN48YjNxbOxiY6v2ccC6cE4RwYp86t1q66FEmMsfHQexve5o0azc9mpHa3LlMcP5dBpdCDBAxLAhCSLy94wQzSnIpzR+kf5HI1gknYWtCY2jjOuBW7+eIr54Qr9inzp97dgUbDNP4TbTDqnlJU+fe97npnTQ+MchlsCmDSyEGSDQJQRCC5mRLJ5trmrhkyrBYJyU8OEWE0AxpvHNmPKfbu72f47wltVixhHijtII/dV9F9/C5sU5JH6UVmBb/Dxu1CbR1Wvr/Fu6oLILgB2IZFgQhaD7YWw/AkklJIoadFqFsN05j48sWdh1r4exxPhbRJbI1XEhqOnus1DV3UF5YGuuk9CPNaCAjzUBbl4sYloVgQgwQMSwIQtB8tL+Bwmwzk0cM7v9DIi+AsQvbkrYuePkddvojhgUhTjly6gyaBmWFg2KdlAFkp6fR6iqGIbjBZSK3OULMETEsCEJQaJrGh/sbOXtsIUo57dKWJAtgCrPTKRqczobDp/mi60xtLDpe6eyFIHBsKx5PG244GJxhGugmEQxJ0uYIsUPEsCAIQXG0qYOGti4qyvP7/5BEC2A+ObuYv606yNqDjSwYU6B/GYuOVzp7IUiqG3UxXBaHYjg73RSeHeiSqM0RYoMsoBMEISiazuid2NDB6f1/SIYFMDVVUHkf35nURH6WmafX1fT9FottT2WrVSFIDtW3U5htJicjLdZJGUB2ummgz3AwJEObI8QUsQwLghAULR26GB7QySb6AhgnK2yG0cy1Rb/mnVqnPMYilJqEbxOC5FBje1y6SABkZ5ioOXUm9AslepsjxBwRw4IgBEWzXQznZrqxOCVydAUXK+zi9D08dKiQls4eXfjHouOVzl4IkkMN7SyeMDTWyXDL4IwwWYYhsdscIeaIGBYEISh6xfCg+Jt+DQmHFdbSBUpRMHQE7Ibttc19USVi0fFKZy8ESFuXhfrWrrj0FwYYHC43CUEIEfEZFgQhKFo6vViGE5nSClh6LxgMoNmYsOkXzDXs5eMDjbFOmSAExIkdq/ia8SXmqL2xTopbsjNMtHZa0DQt1kkRUhwRw4IgBEVzRw9GgyLLbIx1UsJPRyNoGmg2lLWH64Ye4fmNtVhtfnba9gV41FRFNp2C4ImaKspeu4Hvmp5lQeWtcVkWs9PTsNo0OntssU6KkOKIGBYEISiaO3rIyTD1jzGcLLisTh856yLqmjtZe9AP67BjAd7KX+r/xqEIEZKfPWteB2s3JmVD2XriMgLJ8Fw9Es2+k60xTomQ6ogYFoRUJ0grZnOHpb+LRDJZQx0L1pbcDbe8zOyzL8VoUP65SsR7GLRkek+CR+7amEu3ZsKCARWPEUhqqlh6egXzjft4fdvxWKdGSHFkAZ0gpDIhbObQ0tHTJ4aTcVMIpwVrWcC0kTlUVZ/yfV48h0FLxvck9ONQQzsf7qtnozaBm7p/yELDLr5/2xfj6z3by2GmtZsnzCa+syUdLpsU61QJKYyIYUFIZYLduammiutP/h6z0QA15pTYAWp+WT6PrzlMl8VKusmLn3Q8h0HzZLWOx7QKQXH/e/t5bkMtABu1CZx93uVQOjHGqXLBqRymAWVtm7DZNAyGJHS5EhICEcOCkMoEY8WsqYJHr2CptVv//Og7cNlv4tcaGibml+fzjw8Psa22mXll+d4PjtcwaK7vO7NALMVJxtpDfa48ld+/gNL8QTFMjQecyqFNmVhjnUxrpyX5wjRGkpoqGcSGERHDgpDKBGPFrK4Eaw+9Nhxrtx59IV6toWFi7ughAGw8ctq3GI5XXN93Clj0U4n6nZV8ovlpThmyyVdtlLQVQv6CWCdrIE7lsLJzIhvfVTR1dIsY9hdxdwo7IoYFIdXx14rpsERkFqAZ08DSDYq+xTnxag0NE4XZ6YzKH8SmI02xTkpouL6nJLfopww1VQx57lq+a+rCqDQ0FOrR/8Dl98G8ZbFO3UDs5dC26wSwnqYzPYwucDlGrJ/ukUFs2BExLAjxhr8dgJM4paMxsh2GiyWi/tyf8/a7b7NwbAHjLvpSyjTEs0flseZgI5qmJUdIuXj2bxYCo7oSg60bg9LQAAMa2Czw+nIYNiVu361jEa5jR8texPrpmXhepJugiBgWhHjCVwfgLIDfvFPfMhgbKAMY0yPXYbhYIupPHuNHltt467LzYPjg8N8vTpkzaggvba7jWHMnI/MyY52c8JDkFv2UoWwRPaRhpBsTTpvDaLa4thzm2V0jmlzFsFg/PSOD2LAjYlgQYomrFdhbB+AslJXSOznsOzdptsh2GC6WiNXWyWSmGRk7NCv894pjzkk/wNeML3FwE4y84IpYJycyyNR0QmItns8y64+4rfQoF5VnwOq/6O2CMT2uLYe5mWbAjWVYrJ/ekUFsWBExLAixwp0V2FsH4CyUNQMYDOgGIIdlOIIdhosl4o1XLUwdCSZjCu3bU1PF2Ddu4rumLrRVL8K4V5OvM5Kp6YTlYH0bq3vGcu3cT8HcEph0RUIManrdJM509/9BrJ9CFBExLAixwp0VeNFyzx2Aq1Beeq/uKxwNn2HoZ4k43PhfLp4yLHL3ikeqK1H27W0tWk9yTtvK1HTCsuHwaQBmlubqXySI5dBsMjDIbKTpTM/AHxMkD0LiI2JYEGKFJyuwo/F3bIjg+BwnlhJN0zh9pochg8wxuX/MsL8vq6WbHs2IpfhsMmKdpnAjU9MJy9pDpyjMNjN2aHaskxIweZlpA90khOiS4u5RIoYFIVZ4ErfepqqjbSlx00C2dFqw2jTys1JMDNvf15H1b7K8ajDfsozj/FinKdzEyYBLCAxN01hzsJEFYwoSMspJTmbawAV0QvQQ9ygRw4IQcbyNuN2J23iZqvbQQJ458DFfM77EmE4NGBP9dMWS0gqGD5vL9vVv89H+Bs6fMDTWKQo/zmUyxa1FiYDVpvHFx9ZxrLmThWNcA/UmBnmDktwyHO/1KF76nBgiYlgQIkkwI+54map210Ce2Mmw15az3GSFNS/BpFdSrtHMNBuZMzqPj/Y3xDopkUWsRQnB/pNtvLenns/MLeG6eaWxTk5Q5GWa2XuyNdbJiAyJUI/ipc+JISm0FFwQYoA7QekLx1T1krsDbzhrqqDyPv3fUHE0kMqo/5tZAK8vR2kWjErD4G9+kpBZpUPYe6KVbost1kmJHMGUXSHqbKlpAuAri8diNsVxl+6lbZpeksvB+nbqW7tikDDC2266kgj1KJQ+J0kQy7AgRJJgR9zB+AaH2wLh6j9aXQk2GwrQNMBoSEkLAsDkEYPpsWrsP9nGlJE5sU5OZBBrUUKwubaJwRkmygviOOa3j7bp/AlD+e1be6jcV8+n5pTEVdpCJlHqUYpH7hAxLAiRJJoLkiLh9+XaQJrSsVm6sKLoueg3DErRxnPKCF0A7zrWkrxiWBbTJQRba5uYUZKLwRDHC+d8tE1TRuRQkGVm1d4YiOFI+8tKPUoIRAwLQqSJ1og7s0DfmY4IbcBhb9Q//O8L/HF/Ec8u/EJ4r59AlBdmYTYZ2HWsJdZJiSwpbi2Kd7osVvYcb+W2c8fE9yItH9ZRg0ExvyyfzXaXj3hKW1iQehT3iBgWhGSgpgrevBNsNn1nuqX3RqbxLa3gzSGZVGcej29LVIQxGQ1MHpHD2kOnYp2UwIhnwSQEzL4TbfRYNc7NOACP3Ra/i7T8sI5OL8nlzR3HaensIScjLa7SJiQ/IoYFIRlwTPVhA03pO9JFiKYz3eQNimJnFad8anYxP3l5B5trmphVmhfr5PgmEVa1CwGxo64ZgCld2+I/NJYP6+hUu7vR9qPNnD22MFqp0hHLbcoTx0tPBUHwG9fIDxFcpNHQ2p16G2644VNziskyG/n3+ppYJ8U/EmFVuxAQO+tayDIbyZt8QdTqf6SYVqxvI73jaJK7HkWKSEbESAHEMiwIyYDrVB/oDWM4pv2cptatxfPZUdcc/UUuccjgjDQWjilgzcHIWeHDSqKsahf8ZkddC5NH5GAYvSDhp/oLs9MZlpPOruNJKoYj6aIksz4h45cYVkotBf4IGIF/aJp2r8vvNwE/sH9sA76qadqWcCZUEAQfOKb6wtkwulyr5sqnaO+2MntUXliTnqhUlOfz7u6T1Ld2MXRweqyT4x3xjUwqbDaNXcdauHaufWCaBFP95YVZVDe0xy4BkRKskRarsoNcyPh0k1BKGYH7gcuAKcANSqkpLocdAs7XNG0G8HPgoXAnVBAEPwnndLjLtZp2vgfAnFFDwpTYxKaiPB+AqkRZSFdaAYuWhzY4kqnYuKC6sZ32bivnZR7y/53E+fsrL8zicOOZyN/I3XNwCNaVv9T/DeczirSLUhTd5JIVfyzDFcB+TdMOAiilngauBnY6DtA07WOn49cAMocqCLFauR/O6XCXa33YM5H8LDOjCwaFL70JzLTiXAqyzDyzvoYrZoyIdXICJ5AyKlOxccWOuhbmqL1csPZesPX4ficJ8P5GF2TR2N4d2YgSnp5DJK2rkXZRklmfkPFHDBcDzitEaoEFXo6/DXjD3Q9KqduB2wFGjRrlZxIFIQGJZccTzobR5VovPtvB7NJBKJW6YdWcSTMauP28Mdzzxm42HTnN7ESymAdaRmUqNq7YeayFs027ULYe/95JAry/MvsueocbzjC9JDcyN/H0HCIpWKMhVpPATSaW+COG3fV6mtsDlboAXQyf6+53TdMewu5CMW/ePLfXEISkwNO0WLRG7uFsGO3Xaj7Tw/6Tb3PNrJHhuW6ScNPC0fzu7T28sf14YonhQMWRLMCLKzYcPs2oIfNQZ172750kwPsrL9TFcHVje3jEsLuZD0/PIdKCVcRqXOOPGK4FSp0+lwB1rgcppWYA/wAu0zQtQZZXC0KEcG1wMwviforSF5trmwDxF3YlO93E/LJ8PthTzw8vnxzr5PhPoOLIWSxkFvQN8BKsHCcDp9u7WV99igUXnA+T/RRwCTCVPrpgEEaDYktNE5+YGeKg29PMh7fnIII1ZfFHDK8DxiulyoGjwPXAjc4HKKVGAc8Dn9M0bW/YUykIiYZrg5sAU5S+2HykCaVgRiJsMBFlzp8wlHve2M2x5g5G5GbGOjn+EYw4chyT4AO7uMaLH7fNprHtaDP7T7Zh0+Dqglqo3tz/WG9+4HEu9jLSjFw8eRj/2VjL/1w6kYw0Y3AXqqmC9+8BaxdotoFtbpw/ByH6+BTDmqZZlFJ3AG+hh1Z7WNO0HUqpr9h/fxD4MVAAPGD3JbRomjYvcskWhATAtcH1ZoVLgG1y955sZVT+ILLTUyg8uZ/v5Zxx+o5Z66pPc9XMBBHDEJwoCNUFKAHKeszwYM3UNI3/7jzBgfp2fv3mbvKzzFyYXc3YN37e/1hI+IHK584azZs7jjPvF+/w8h3nMGZodmAXcDxDSxdgA2UAgxGaa/XfEux5CNHBr15N07TXgdddvnvQ6e8vAl8Mb9IEIYnwZoVLgFXeAAdOtjEu0I4pkXF9L0vv1be5diPiJg4fTLrJwJaaJq4KdXo33gnFBShBynrM8DCD9OH+Bm7/14bew061d/PZssOoE24GJQk+A3XOuELu+dR07np+G+/tqQ9cDDtvTY8BRs6G49thw2Ow+Skpc4JbZDtmQQgVf2N3eorxmgDb5FqsNg7WtzOuKIXEsPN7sXTB68s9xiBNMxqYVpzLVrtfdcLiT1l2DOyW3K3/29Hof/lNgLIeUzzEi/3r+wcGHFo4/cKBxyZJvNkbKkYxKn8QVYeCWH7k/AxM6TBiJtgsUuYEr6TQfKcgRIBwWLrifZV3TRUtO1YyzZbO2KJpsU5N9HB+L0rpvoeaTRfG798Di+/q965nluSxouow3RYbZlMC2hkCKcuBuAA5E+9lPda4mUE6UN/Gxwf6ROHQwelMGj6YaQvmwSg3s01xvkjOXyrK83l31wk0TQsslKO7rek3PyVlTvCKiGFBCIVwLIyL51XedoGUZ+niSbOJI0ynf3CZJMY1esKbd/b5IR58Hw6v7icYz5tQyMMfHeL/vbidX187I6ZJD4pgy3Ig5Teey3q84DLQ+M+GWowGxdcWj+XPK/ez7Owyvn7BOLfHevwuATl7bAHPbajlo/2NnDu+MLCTXZ+BlDnBBwlovhCEOCJc05KhbpMbKewCyYANMz2U174S6xRFF8d7mbdM71DHLtYX5DivULezeGIRXzinnGfW13C8uTNmSQ6aUMpyIOU3Xst6nPLatmMsGl/IJ2aOxKBg7ujUCG14+fQRDMtJ50/v7gv9Yp7KXCy2p47zLbFTFRHDghAKrv6TydbBly0CgxENMCgN87anUrcRL63QXSOM6R4F46fmFAOwNhhfx1iT7GU5ATnW3MHhxjOcN34oE4YNZv2PLmbhmIJYJysqZKQZufWccqqqT1F7+kz4b+BwC/KwDiAixOKe/iACXcSwkIKEu+IngqUr2DyXVqDNugkN+1aUNktqL0DxIRgnj8ghJ8PE6gPBieETLZ28vKWOFzbV8uKmozR39IQj1f6TCGU5hag6dArQ/WcB8rPMsUxO1LlwUhEAH+5rCP/FY7GY09s9YyVI41WgRxnxGRZSi3AseEu0OKkh5vnkmE+Rs/5J0pUVgyxA8eqTaTQoKsoLWLW3HovVhslotzf4WWZ+8douXtlS1/v5y+eP4a7LEmhXOyGsrD10isHpJiaPyOn7MtHanxAYV5TN8JwMKvc1cH3FqPBePBKLOX29G0/3jGXIwVDjhicJIoaF1CLUBW+xaLRC7fxCzPNayzge7f4hD5x7huEzLk6ZxjFYrptfypceP8FLm+v49NySgMpMfWsn04tz+dMNs/nBf7ayctfJ2InhFBJd8UrVoVPMKxuC0WCPppBicZqVUiwaX8jbO09gtWl9zyEcBLuY01O9cPduoP+xnu4Zyx1KQ4kbnkSIGBYCI9E7yFCtAa6xZ92E2AorcRC6bfORJnaaJlGw9FIwimeVLy6aXMSk4YN59ONqXQwH0NE1d1gozsukvDCLS6YM4xev7aLm1BlK8wdFNxMpJrrikYa2LvafbOPTc0r6vkyCbd0D5bwJQ3l2Qy1ba5uYPSrMiwfdzfJ46+O81QvXd7NlBWx+Wu8nDAa4/D59Ia67e8Yy5KCrQE/BMgYihlOXYERtMnSQoYZ2cjRaXkJshYzzu4mD0G1bapuYNjKXNBHCfqGU4hMzR/Lbt/ZwsqWTogA6uuYz3UyxT4lfOFkXw2/tOM4XF42JVvJ1UrRDjCfWV/f3FwZSMk7zOeMKUQoq9zWELoZ99Xu++jhv9cL13aD6+gmbTd+0Z9gU9/eNdcjBYOOGJxEihlORYEVtsnSQocThdDRa79+jC2HnEFvheBbutgAOR8MUZJ57rDa2H23mcwtHB3ffFGXxxKH89q09vL+3ns/O87+ja+7oIW9QGgDlhVnMLMnlPxuP8oVzyumx2UgzGDCEc6rYEykouuKNyn0NZKQZmF6c2/dlrEVTDMjPMjOjOJd3d53gmxeOD/5C/vR7vvo4b/XC3WYfGx/XhTDofYW3fiJe4kOnYBkDEcOpSbCiVjpIHUeIrcOrw/8sXN9NR2NMG6Y9x1vpstiYWZoX1fsmOlNG5FA0OJ0P9zXw2XmlfnV0PVYb7d1W8jLTer/79NwSfvzSDsb88HUAZpXm8cLXzg5sR65gSNEOMV5o6ezhxU1HuWzaiIG7GcaLaIoin5g5kl+8tos9x1uZOHxwcBfxp9/z1cf5qheu7+by+3SLsGbTQzImSp+ZgmVMxHAqEqyoTYQOMlo+zZF6Fu7ejTe/tswCXTD7k4Ygns2mmiZAF2GC/yilmDNqCFtqm/w+xxFGLXdQnxj+zNxSWjp66LFqHKhv49Wtx9h3so0Jw4IUBIGQgh1ivPBMVQ3t3VZuO7c81kmJCz41p4Rfv7mbJ9Yc5ufXBLklvD/9nrd23bn9XLTcv3vOW6a7RsRznykAIoZTk1CEXDx3kNH2aY7Es/Dn3Tjy6fBHUwbd6uAtv0E+m81HmijIMlMyJDO0fKUgM0vzeHPHcU63dzPEj/iwTWfsYtjJMpxpNnLHEn1q+GRrJ69tO8ZrW48x4eIoiGEhJlisNh79uJqK8nymObtIpDD5WWaunVvCU1VHWDK5iKHZ6QzOMDG6IMv/i/jbtvobKcJb++l6nWj3mYm+0D0GiBhOVfypoOGoUDVV+qpaFMy8IbIV09M0WKI1DL7ejSOfOPmi+cpvkFEwttQ2Mas0L/LT8knIzBJdyGw92sz5E4b6PL7XMuwkhp0pGpzB/NH5vLv7BN+5eEL4EhpuEq2+xRnPbzrK0aYOfvyJKbFOSlzxnYsn8Mb249z6yDoAlIKVyxdTXhigIA7GYBCIa2GsY9l7u7/UTY+IGBbcE64K/egVduEGbHoSlr0auUrobhosGSJguOIa0UIZfOc3iCgYHd1WDtS3ceWMEdHMXdIwzS6Gt9Q0+SmG9XqSN8izFXnh2AL+snIfrZ09DM5wL5pjSjLWtyjS0NbFz1/dybzRQ7ho8rBYJyeuKBqcwcrli9lS28SJ5k7ufH4bVYcaAxPD3ggkUoQ7FwuH0GyujW0se29GIambHpFYSamOpy0gw7FVZXUlWJ22k430lpeOaTDnrXJjseVmpHHk88IfwZV/hCU/0qNOVFfClqfc59dxztjFunh2tiZ74HhLJ5oGo6Id4zZJyMlIY+Kwwayzh8jyhTs3CVcWlOdj02DD4dNhSWPYScb6FkU+PtBIa6eFH105JbwbTCQJ+VlmLphYxHXzS8kblMbGw03hu3hmgW5udjYuOHDXtzjjvKXxpifAYAJlDD2WfTB1yCHcXe8vddMrYhlOZbyNFMMROaJsERjT+izD0YhA4ZgGc4j8zILkjIDhPN3n/B4NRr0htuG+QQ8gCsax5g4AhudkRDAjyU1FeT7Pb6ztvzWzG850W3hn1wmAftEkXJk9Kg+TQVF16BSLJxaFPb1e8WeKVSLOhMTOuhbSjKo31rTgHscC1Q1HwjQorKmCN+/Uw6AZDLpxwVekCGechaYNmPt5yC0NLZZ9sHXIk2+01E2viBhOZbxNC4UjWkJpBSx7LXo+ww7cxer1N+JCIhJIQxzAez3e3AnA8FwRw8Eyvzyff605zM5jLcwoyfN43NNVNby+7TgAOV7E8CCzibmjh/DWjuN879KJ/X25I+kP6O8UayJEnIljdh5rYXzR4IHh1FINP8ry3NFDWLn7JCdaOhkW6oDdeR2GpvT+IhBchebMG0OPZR9q3xtC25+KiBhOZfyJqRhqhYnFSlp3sXr9DYXjIJEWGgTaEPv5To6JGA6ZhWPySTMqfvjCNp68bWG/sGnOnGztAvQQdr6mx6+eVcwPX9jGjrqWvmgDkfYHDGQBUTxHnIljNE1jZ10zF7ha/BOpLfKHUHeBs3Pp1OH89q09vLr1WOgh6CJljXUQ6DsMRx1yd0+pmx4RMZwsBNNgJutI0dNCOn/z6ep2MP4SyC6KnmU7UCL0Ho83d5KbmcYgszQTwVI0OIO/fW4utz22nr+8t4+7r3CJEGAvlzn1Ixg6uIgXv36Oz2tePn04P3l5Oy9sOtonhiO9O6RMsUacEy1dNLR1M2Wkk4tEsi16CscucHbGFWUzZUQO/6w8yKGGNoxKcd38Uf2fn7+4a0PDJWBj8Q6TrdxEAenlkoFQCn4yjhRdGzYI7Pn0a4ytsPtV/XvnaBjxZq2JwHs81tzJCLEKh8ySScP41OwSHlt9mC+cW86IXHvMZqd6+0VM7Mv6hV/XyxukLyJ6eUsdP7x8sm5JjrRYTdaBcxzhWGg5d/SQvi8jPciJNuHYBc6JH1w2iV+8upM3th2nuaOH+rYuHrhpbnBp87QOI1QxGco7DLaficdyE299pgsihpOBeCz4sca5Yau8L7DnU7ZItwhbrf2/t9rj806+Wl9skeSj7rD44gkAfPui8by85Sh/encf93xqhv6lU701oLHAsHPgiR46kGtmF/P2zhN8fKCBReOHRkesui5OjdNOLVFZe6iRLLOx/+K5ZLPIh7oLnAvnTxjK+d89H4DvPbuFt3eewGrTQo/EEc4+Ndh3GIogj7dykwCWahHDyUC8FXxPhHlk2G2xYbHZyEwz9i4k6uyx0t5loSA7ve/AQJ9PaQXMvhnWPzzwt4Pvw6FVemgy180uwkGcjJ41TaPm9BmmFcuq9nBQmj+ImxaM5vHV1ZQXZnHp1OGMdiqXFs3I0VwXi5aXDmTJpCIGmY28uf24LoYhOrM8CdCpJSpVh04xtyy/f9SRZLPI+5sfX2XZTTt57vhCnt1Qy/ajzcwMdfv4cPSpzmkM5h2GIshDKTeR6IMSwGAnYjgZSIQGM0yd6OHGdv6z8Sgf7qtnR10LXRYbJoNi8cQiCrLMNLZ3sf1oCx/+4IK+TiWY5zPzBtj8lL5JhVJQOB4a9tpFMHr4HVR4Bx+hPqMwNmL7T7bRdKaHWaF2KkIv3186kZ11Lbz5xsu0v7Oby6/6DBPt5fKL75oZWzi7/wleOpCMNCPnTxjKf3ee4OdXT8MQrZi0CdCpJSKrDzSy90Qbn51XOvDHZHNlCzU/HtrJc8YVAvDh/obQxXCofaq7NAa6iDsci/rCke5wlL0EMNiJGE4WomUVCrZxCLETrT19hp++spP/7tRjsc4vG8KNC0YxLCeDuqYO3tpxnPrWLmyafvyag6c4d3xh3wUCfT6+/I6X3gvHNwNhFCGh+paFsRFbc1APLbRwTEHQ1xD6M8hs4qnLDKjH78Vm7cby6vPUfPJZhp31HT587Q3mZ6X3P8FHB3LJ1GG8sf04m2ubmDNqCFEh1MWpglt+9fouSoZkcvPC0bFOSvyz5SmwdAJav3ayMDudKSNyWLW3nq9fMC70+4TSp4Zj0BgLI1ekBrsJYLATMSz4R6hiy9+RoUvH2m2x8Y8PD/Knd/ehUHz34glcPWskowv6b8H5s6un8bcPDvDMuhpqTp/h5n+uZfnFE/jGheODz7NrY+gqjh1+w5ufCs8IOpTRc5gbsTUHTzEyN0N2n/MXPwWh8ciHYOvBgA00C0/9ewWn5uQDkJ9t7n+wjw7kwsnDSDcZeGnT0eiJ4VAXpwoDqG5oZ9vRZv7flVPISDP6d1KqDkBqqvQd3rBbPQymfu3kogmFPPzhIdq7LGSlx1DehMsSGu1ZgUhacON8hkPEsOAe18Y2VLHlz8jQRXDXXf0Mt76j2HOilUunDuPHn5hKcV6mx1t8+fyx3H7eGP7wzj7++O4+nttYG5oYdpeHYBfleSNU3zIIayOmaRprDjZy/oSh/Td1ENwTyEDR6T0ZTGkYRi3i6XU1ABRkmQce76UDyclI46Ipw3hl6zHuvmJK9DZqiFQ9SFEcOw9eMmWYfyekst92dSXYHAubFcy+sV/eF40byt8+OMi7u09y1cyRwd8nlMGG41x/N3uKp4FNAlhwI4WIYWEg7hrbcIgtXyNDJ8Fts3Tz7/88xUnDp/jnLfO4cLJ/HYVSiu9cPIH0NAO/eXMPp9u7GeJOZASKa4MVLvEZDt8yCGsjtv9kG43t3eIi4S+Bbkhhf0+GskV8tWgOr/6pkurGM+QHUU4/M7eE17Ye46XNR/mMO3/TSJMAvoDxjKZpvLr1GJOGD6bU31mYVPbbdrfBkBMLx+QzYVg2v3lzN5qmcfWs4sDvEcpgI9BzozWwCURwx7kFN1KIGBZ0nCuLu8Z20fLIjxjtDZ3N0k2XZqQ2dw6v3HouJUMCn6qfa582fn7TUb5wTlloFk5PDVY4nkc4O7YwNWLiL+wGb51JMNFK7NfIAv58wxzueWMXk4cHHrnj/AlDmToyh/vf2881s4tJM0bJOuzAnduEv2HX4skiFiPWVZ9mc00TP71qqv8npfIAxEe7azIa+NnV07j+oTV86+nNjC8aHPgmHKG0yb7ODfeMqz+k8kxCAIgYTgUC3f5y6b3uG9sIjxhP5c9i5bQHqF7/JpQt4lfLbgp66ndmaR4mg+Lnr+5kcIbJ/Sptf/HUYPnzPHw9+zjo2Kw2jcc+rub6ilIGmU18uL+BkbkZlOZ7dklJKXx1JiEOjKaX5LLiSwuDSppSiu9cNIEvPr6ef354iNsXjYleZAkHjnoQSKcrHTQAD35wgPwss//tU6BT8MmIj3Z34ZgCNvzoIub/8h1e2nw0cDEcSpvs7dxIzbj6IpVnEgJAxHCyE8z2lx2NUfcbOtTQzrV//ZjG9nRmld7CYzdWhOQDmZFm5OnbF3Ltg6tZd+iU984mUoLVn2cfBz5alfvq+dmrO9l3so0fXTGZ9/fUc/38UvEXduBPZxLOgWJNFWxZASi/tgC/cHIRi8YXcu8bu1m1t54nblsQfUEMgXW60kGz53grK3ef5LsXTyDT7MfCORlA+E1BdjpLJhXx7/U1XDh5GBXl+QMP8tTuB9Imu17D27kxnnFNyZmEABAxnOwEu/1lFP2GbDaNu1/YRrfVxhvfWsTkEYFPF7tr2OaV5XPehKFsr2vxfl6kBKu/HX6MfbQcondzTRPv7j5Jl8XGFTNCWHySbESzM1n/KLz2Xb3MQP8twD2glOKvN8/lH5UH+cM7+3iy6gifi0WILn+ek6OeZhakdAd9sqWT7zyzmex0E58/a7R/LiMygHCPh2f3/aWT+OJj6/n6io2suevC/rvS+TPb48+sn7treDrXU/1wHFtd2f9zuIgDg0siIGI4lkTDZ86fuKDBVJYwpb3LYuX+lfv5+EAjv/rk9OCFsIeGbXpxDn/74CCdPVb3YYsiKVgTZETe1mkBYPfxFn731h5G5Q9i3ugohepKBKLVmdRUwevL+4Qw+C16stNNfOvC8Xx8oJG/rNzHdfNKoxddwoGv51RTBY9e2VcfLvtNSk71rz3YyC2PVGGzwd9vmUde42b/LL4J0p5EFUfbb+nSN0K6/D6YtwyACcMG871LJ/KNpzaxrvpU/zUQwQwsnPs8gPfvAWuX/zuReqof3oR5uDRCii6KCwQRw7EiWlNe7ha4BDKadaTVuUKGKe2dPVauuf8jdh9v5RMzR3JDRZB+vV4atmkjc7HYNLYdbWZ+mZupskjHVQxVREVhwNTS2QOApsHRpg6euX1hbKbZ45lodCbVlWCz9f8ugDKplOJri8ey7JF1/HnlPr514fj+W/tGA2/PactTungA/d/jW+DK/4te2uKA9i4L33lmM8NzMnj01grKCrOg8nHPwsy1/ouFrz/VlboQxqbXndeXw7Apvc9myaQi0k0GnllXw4Ly/D7Xr0Dbfec+z2AEFFh79Psqg//11F398NR/iVtMVBExHCuiOeXlXAEDjQvqrkKGKe33vrGb3cdbefQijfPMK1G1PcE9Ay8N28IxBQwZlMaPX9rBS18/Z6C1LNIdTCgiKkqNYatdDAN856LxzHM3aBAiT9kiMKX3bQE+8TI451sBvfPzJwzlosnD+PPK/Zxs6eLeT0+PI99vzcfn5OfN7cepa+5kxRcX6EIYBrZfmQV6O51Z0Lexj6vhIlkJdPBftki3CDsGkZqtX3+UZXdD+XvlISaPGMzt543Vjwu03e/X5zkGrBpggDGLYfFdwb8XT/2XuMVEFRHDsSJWU16B3tddhQwx7e1dFv615jCPflzNj2a0snjNt/VrrQpS8Hlp2IZkmfnRFVNY/uwWdtQ1M9vdTl3x2sGEuzH00NG0dOhuEv/4/DwumFTk9VghgoRhYKaU4u8XWFllqeSPG4axevZIzh5b6PvEaDDzRt0H2toDxrQBMWKTGatN4ycvb+eJNUcoGZLJWWOdpuyd37uzAFZKF3f+TsMnOsEM/ksrdNeI15frz8mYPqA/+uHlk9l2tJkn1x7hS4vG9A0O/W33a6qguUbf7c5Gn2XYZtHTGYoQdqTDXb0Xt5ioImI4VsRqyivQ+3paXBdk2jVN41tPb+adXSeYWZLLLSN3wT4PU0SBXN9Lw+YIrVPX1MnsUX4nNfaEszH00tG0dvaQm6nvZubrWCHChDowq6lCPX4151m7qTAbeWdXOYy9JmzJC4nSClj2WkoOsv747j6eWHMEgM/OcxOpxfHenWfuNINu9USlhhgKdvA/b5nuGuGhXCmluGZWMXc+v40ddS1MK871P02u7hFzb9EjvDjSGy73N3f1XtxiooqI4VjiqAA1Vf4Hqg8F5wro7y5nnipkEJ1205lu7lixiQ/3N/D7s7r45JC1qEGF7hf4hVGMjczV4+XWnD5DW5eF7FjuWR8I4WwMvXQ0LZ0WcjJNfh0rxDn2d6c0K2loZNatBq6Jdar6iNdZmAjyr9XV/OndfVw7t4RvXTieEbkZng92HQCnUjxhXzF6vbWDPsrVpVOH85OXd/CD/2xlxRcXkjsorfc3m03juodWc938UVw7t6T/ic5toQ3ILenfBwZDIP1bCtaXWJEgqiCJiYQVzl3DEcp9Allc54ZfvraTkiGDONNt5cP9DfxuYSef3PZ1lKcGP1C/Zh/kZJrIMhu5943dPP5xNZU/WNIXZife3QHC1Rh66WhaO3sYnJ4mYa/ilUDiDju9ZwtG1tqmcFHUEio4qG/t4h8fHmTdoVNsPNLEkklF3DO/g7Qdf/Xe1jgGwI737bQYLOnxNPgPQx85JMvMgzfP5dZH1/HY6mq+eeF4QJ+pPNjQxrrq06yrPs2n5xT3t9pnFujuKgSwSM4XsTI2xHtfF2NEDMeaQLdv9IWnhsP1PltWhF4x/Gikms/08PfKQ72fK8ryubbg44GbfDhbqp2Fm8EIzbV6/NUgLSRKKUbkZbL/ZBt1zZ3sOmafKksldwAvVuaWDgtzjXvhsbtT0yIVz9RUwaNX6O8FfMcddnrPf9xdyHutZdwdvdQK6CEKb3t0PSdbO5kyMpcfXTGZW0fVY/zXNf63NZuf1o/d/JTnY5NR3AQabSGAzWkumFTEwjH5PL+xlm8sGYdSilsfXcf7e+p7j9l2tJkZJXn6h5oq3X/bZtPdVZbeG5JRqJdY+AKnUl8XJH6JYaXUUuCPgBH4h6Zp97r8Pgl4BJgD3K1p2u/CndCkJdDtGwNa9erUcLgKzE0r+hYABFoxHBW/udbnCPfD/Q0AlOZncry5ky+cWwa5Ru+NgbN1ZNMKXQj3hrBJD6oiD8tJZ//JNgBWH2jUxXCquQN4sDK3dPYwW+3wPkARwou/nWd1pT2Ekx1/45kCFbv/w4ZTTdhs58V/qDzXGK4JKPI0TeOeN3bz2MfV5A1K4/mvnsP0Ert/auUL/rc1/rRLqSRuPMXKD2SQaOfauaX8z7Nb+OoTGzlrbAHv76lnjtrLQsMutpim85s3C/nXbRW6ddjxHrCBpvQ20R2BvotY+ALHQ18X54M3n2JYKWUE7gcuBmqBdUqplzVN2+l02Cngm8SVc1qC4K1iBFOAve1y47hPcy1seCw4a7TrggLHClv7vQ7Wt/Gr13fTbbWRbjJwqKGdwRkm3lu+GKNB2aegRvhuDBzWbJsF/QaEtKq6rcva+/fqg4186bwxKb1aV9O03unA1k4LtcPnQuuKlHwWUSeQzrNskR55wdHpBxAT9XxLFwuNJhp3z2HolDh+n+5iuAY7UI8h/1pzmIdWHeSaWSO587LJDHf2DQ6krfFno6R4EDfRwl0fWXlf4INE4JpZIzlQ38Zf3z/AmzuOM0ft5Unzr0jDAsYX+eyBu/hgbzmLJxb5/862PAWWTkDz/114cn+LlGCMdV+3/tH+ET/isF77YxmuAPZrmnYQQCn1NHA10CuGNU07CZxUSl0RkVQmO54qRjAF2Ju4dl6wt/mp4KzRLgsKLLM+T3P6MP5vXxHvPdlGZ89qeqw2yodm09VjxWrTWHZ22cDg//74wjry7wiqHkhwcxcy7PGFK8rzqTp0CovVhsn5WWUW6P860pbE/P6/e3ltax0v33EuWekmWjp7OJU/Cy6UlctRIRAhU1qhR2AIYDrYcX0DNtKw8OE7L3DN5HPjKN6wC55iuCaQyHtlSx0/fWUniycO5f+um+U+WoS/1kDXY2FgmxxrcRNtXPuLYAaJgMlo4AdLJ3Hr2WVU/OpdFhp2YVYWjNjQNAtLMvfxxJrDuhj2553VVMGmJ+iNmW0wBf8uImntj4U12oFjZ02bHsITa1dc1mt/xHAxUOP0uRZYEMzNlFK3A7cDjBqVSDGuYkSwBdiX0AzFGu3SCD9wej6/351HmlFx6dQ8WjstfPui8e7j+QaKq1gNwYf1d5+ZyRvbjzE8N5NvPrWJbUftMYcd14r0lGOcTBF1W2z86d19AHztyY18ak4xbV0WcjLTZOVytAhUyAT6XpyurxlM/OtYKRXNnRTnZfo8dcPh02yuaeLTc4rJG2T2/56h4OrC5WwZjnORt7mmicc+rualzUeZNzqfv9w4x/OgI5D36HysuwXFi5anXtgt1zY00EGiE0U5GQzOMLGmazIGU7oegcVoZsikC1i54ST7TrQyfthg3++suhJsjllHBbNvDP5dRNraH6v2vbqy/86ayhCX9dofMeyuZge1dZCmaQ8BDwHMmzcv9bYfcsZfceSjAG86cprrH1rDrNI8Lp8+gpsWjPJvC9ZgrdEuQvqVZzuANp6+zMhc7T1dtB6uBBWmBtqfCuzHsyzNH8Tt542lvlXfDnb1wcY+wR7pRsjHiL+zx4qmwa7jLZQVZJGfFTkR8v6ekwDMGz2EDYdP88FeffHIEKdQQ0KEibSVxun6u9Kms/HFHg7Vt/sUw2e6LVz3t9VYbBonWjr54eWTw5suP9KbSD7Daw828rl/VpFpNnL59BH8+tMzyIpE2EZvrm9x/HzCiqc2NIT8v/c/i2nuOAfVeU5vebt0yEx+t/MDvvfcVp7/6tm+fe1d300oG8kkq7W/bFHfzpoGg75JShyWW39qbi1Q6vS5BKiLTHJShFCnQ5zE357jw+my2Nh+tJm1h07xx3f3cfbYApadXcb4osHkZJoCmx71p6O2N0I2m8bhU2/y09ntzH3/my7uDFHyCwrwWQ4dnM74omzWHjzF1xbbv4x0I+RDbH/6rx9zoL6Nzh4bSyYV8fCy+eG9vxPv761ncLqJp29fiFKKXcda2FnXwiVTh0XsnimLt0FapIWM/frDWjrhxXc52NDGueO970S390QbFptuo/j3+houmFhEQ1sXmWnGvg1ZIpzefp/jmLYuCz98YRvDczN46evnMCSQAWwwGwqlmhXYlQgYLAqz0ynMTgf6yl4hcNflk/n+c1v5YF89F0ws8n6RcL6baL7naM5UJkj59UcMrwPGK6XKgaPA9UAIwx8hpIrtIv4yZj4ApLP27ov4YE897+4+wZvbj/Pq1mMAmI0Gxg/L5j9fPZuMNOPAa3nzLfbB0aYOui02Zlm39626hchtH+ouvUE8y9mj8ji+YxXaqkpU+aLIV1YvYrvbYmNHXUvv5yOnzni+TggN2ImWTu5YsZFNR5o4d3xh7+zBtOLcwHZkEvwjTlb7Fw1OJ8ts5GB9u89jdx/Ty+HvPzuTH/xnKzf8fU3vb6vvWsKIXN9uFtHidHs33VYbXT02MswGhmanDxj0N5/p4Y3txzAoxTWzizGb/Jgx84NDDe3c9Pc1HGvp5OFl8wMXwsGUi1SyArsjHAYLP9vPa2YV8/u393L/yv2cPbaAdJPR47FAeN9NNN5zLNqmBCi/PsWwpmkWpdQdwFvoodUe1jRth1LqK/bfH1RKDQfWAzmATSn1bWCKpmktnq6b0oRSsV3EX359FUbDeWSZjVwxYwRXzBjBTz7Rw+oDDdSe7mBrbTMvb6ljR10Lc0c7+fGGoUIcbNA7WNPYRXDwobAsdPOIp/QG8SwvzD7MebafwXtWWBWeKTevuJsGtu84uM02vt+hZk8uLiG+r1e3HmNd9WkA5pflB5UNIQDiZLW/UoryoVm9ddUbu461kGU2cs2sYs4aW8DB+naazvTw9RUb+X8v7uDccQXUnO7g82eNZnRBVvgTG8Bg78tPbKDq0Knez5lpRgaZjaQZDRgUdFs1Gtu70OzOeDmZJpZOGxFyWp5Yc5g/vLMXmwbPfeXs/m2qP8RJuUg4QjVYBNB+mk0GvnvJBL7/3Fa++8wW7r9pThgyEEeEowzGyRqYcOKXg5Omaa8Dr7t896DT38fR3ScEf/C3YrsrcC7ib3f6LHIy+rtC5Gam9Tb8R5s6eHlLHTvrmvs33CFWiFV76/njI0/wNeMuSi3zYdb1gIL0HDi+FSZfHd5K4im9QTSSM63bSMOC0mxYLd0Yo9AhaSXzUaUVTvExe7AZ0ngk4+dAKT+9airPbqjhcMOZfmHPenHKv2btxnJgFWl+pnn/yTYq9/UFlp89Ki98GRPcEy7XmzB0OuWF2byypY67nt9KV4+Nncda+N6lE7lwcp/rwwubanls9WFmj8rDYFCMyM3stQRvOlLOPz86xDu7TgCw53grf//8PE6d6fZrUZ5fBCBWbDaNddW6EP7Z1VOx2TSOnOqgy2Klx2rDpkGaUTEsJ4NF44fy6b9+zLajzf6LYTdpOZU/i5c3H+V/X9nJ/LIh/PSqaUwZmRN4PpPVLzQaOM8GOn/2hwD7u8/OK+Xo6Q7++O4+bjtymjnhWBAeL4S6q16czHqFG9mBzheRGgG5WiJd7+NtwYCT+Nv+YRq5mU0e0z7yUCXnZZrZUVfa/7cQG+X9G1fypPlXmFUPhv8+o1uDDSZ6V4IfXh3erUS9pTdAq27htAvpqfoDaBZ6MLLbMI3Z4UmlR6554GNKh2Ry36AnMVu7UYCydrOw5W1aJ9zJLWeX0WO18YvXdtHc0TNwJb9T/m2GNG59L52/LuxhcIbnhW/tXRZOtHRy0e8/AGDR+EIumFjEgvKCCOZUAMLjehOmTufKGSPYfrSZd3adJM2gqGvu5JGPqnvFcHNHD3c9vw2A8ycMHXD+j66cwv9cOpG2LgsvbjrKL17bxdSfvIlBKV795rlMGh6EKHQlALFSe7oDTYN7PjWdGyp8RyWaPCKH7Uf9n6Ts2v8BaZYuDNiwWbrZsuoVvn6klbrmTiYOG8y/blsw0OXMXxLEfzIuCaU+BNHf3X7eGP615jC3PrKO3392Zr/BY8ISyK56nkjS2Q0Rw96I1gjI3X28FTgn8dfSWaWHxfJwTWXt5u+YuPtwBjCj73dfjbKPQUDO8TX2+Iz2eUjN5hQEPQIxQsPVidRUYTryEQcqfswQ1covdxTw0XtGbmzfw+vbj/PGtxaR5k80jgDYdOQ0W2qa2FLTxKL0o3wW9BgtSrdA3HyNnpfS/EF6Ek91DBTDTvn/55FiPtw2mOqGM307XLnhj48+ienIR8xRk9moTeCWs8oivxBK6CNU15swdTqXTh3OpVOH936+7+093P/efjbXNJE/yMwTaw/T2WPj1W+c69F/PCPNSEaakWVnl5FuMrDzWAtPVdXw5X9tYFpxLusOneIz80r43qWTgstrAGJlz4lWACYMG+zXpaeNzOHtnSdo67KQ7SPaw4mWTn6+bjC/1UykoQ+Wf749H0u2xuNfqKCiPD94IewgAfwno0YgxiZ/64O7awbRf2Slm1jxpQV8++nN/OA/21j5P/nkeDE+JASOZ+hrVz1vJOnshohhb0RjBFRTBe/foweidl545meBa+7oIdedGHZKexpQ1LiO3711Hv9z6cS+Yzw1yq47Qs2+uTeOY3NHDzkZJt7rmshVKg2j1kOvn7CzZTgSlcSR3pqqXp/bgN6H0y44E+3RLr48axIv/7mSP63cD8BH+xv0gOvo07GhbmP7+OpqfvzSjt7Pz3SfwzXm9zBpVjSDCfPcm3p/G2UXw4dPtbsXufb8r3xoNXCKmtOexbB2ZC3fqfsf0kwWbIY0jMtewTjaixBOQh+whCdCnc7Vs4r526qDXHP/R73fXTljhF8LKU1GA587qwyAJZOG8eeV+9hxtJmTrV088P4Bui02Tp/pYfvRZv512wKGDk73L1EBiJWqQ3oHPmFYtl+Xnlacy7Mbapn507fZ9r+XMMjsvturb+3ixr+v4XhbGdsv+hfWQ6somX0JfyypYHhuRtgHySlPoMYmf+qDt2sG4WYxaXgOv7l2Blff/xF/emcfP7pySoCZjDPC0aYk6eyGiGFvRHoE5Ki47haeuStwbgRLS0cPI92t8nZKuzKasYw4hyc+OsR3Lp6A0ZfA6zcIsML6R2DzUzR/9jlmPtzMl88bw5vNozh7zv3cNOxI/w0xHOdHqpIEa633sAvOlEUVXD59BK/Zo28se2Qdd142icumDeeKP33IH66bxbnjC6k9fYZxRbolymrT+MM7e1k8cSivbzvO9y6dyNpDpzjd3s01s4v73fb5jUcxGhS/+fQMlj+7hbrBMzh91Qusfe8lFl1yDflOaS8vzCI73cTK3Se5csZIj1nZd6IN8Bx54vVtxzj84mN8CQsmZUPDgjryIYz2sFdOkvqAJTxhnA1xvsa4omze/e75bDxyGotVoygnnXPHeQ+75o6LpwzjYvtMQ/OZHm7+51oe+/gw3fZd5H795m5+cc000k0G/8I7+mEx/eeHh/h75SFK8zO9ugg5c9XMkTy9rqY3jOA8NwtIuyxWvvjYOuqaOnn01vnMH1MA5y316/pxQ6INaAM1NvlTH7xdM8h2bkZJHtfNK+XRj6sZmZfJLWeX+e5D/SXa7yyYNsWTpT0RylgAiBj2RqRHQM5TFhhgzGJYfJf7AuehIjd3WNy7STjSvmUFCsVZ6QU8dMjKgfo239OLZYuwGdPAYkOhodDQrN0c3vg2sIC/rToIQEb5WTD3M+7vHSmCtdZ72QXnh5dPZsqIHBrauni6qoZ739jNvW/sBuCFTUepqj7Fox9Vs+ycMrLTTZwzroA/r9zP3ysP0tljY1pxDt95ZgsAU0bmUHv6DC9squOK6cPZUtvEty+cwKfnlvDchlrOHlvA8GnjuXraeQOSmJFm5JrZI3l2fS0/uXIquU4bYRxv7uRrT27g6lnFNLZ3A1DjQQx//7mtTOgezzKzCaOyonwN5JLUByyhCDHModfrumk3SvMH9brlhIPcQWm88o1zAX1G5Zev7+KfHx7iuQ21DM4wcenU4dxQUcr04jy2HW1m5e4TLL94YsAzLx/aF4L+9aa5fp8zJMvMY7fOp+JX77KlttmtGP75qzvZUtvMgzfPZcGYBPSpT8QBbTDGJl/1wds1Q2jnvr90Egfr2/nZqzux2jS+dN4Yv87zSqDvLFzCOZA2JRHLVZCIGPZFJEdArhXXWQg7cFSA5toBFVkrmU9LRw85mV5e4+anwdrN+cYVzFF3sqVmRq8YPtrUoa8Gd61kpRWsmPgX2PIUnzF+gFHZsGhGfrO7/+KaSSP889kLK8Fa673sglOcl8nXLxgHwI+vnMID7x/gt2/tAWDl7pOkpxnottp4aNVBzEYDp8/oYrSzRxfXf3hnX+9tlv5hFTYNjAbFK1vqALhgkv7cnrp9oc9kXj9/FE+sOcLr249x/fxSeqwaaUbF11dsZOORJjYeaQL0xcDuLMM2m8bw3Aw2npzATd0/5ImLehg0YXHo049C5HBy3wn7ZjUxGOgYDIofXj6Zs8cWsOtYC0dOneHFzXU8t6GWQWYjJoOipdNCflY6n51X4reFV9M0th1t4dNzSgKOjV2Uk8GwnHS21Tb1fmex2vhgbz0rd5/kybVH+PJ5Y1g6bbjni8QziTigjZSxyRHZyHWL5hDaufwsM898eSFf/tcGfvv2Hj4xcyTDczNCS2cg7yxWojQRy1WQpKwYbuns4f099ZgMivwsM2aTgZG5maQZFQXZfvq5hYo/i9icfXcNJt2IbK/IXRYb3Vabe59h6FeQlRXOM+/hw/0N2DSNgw3t/O2Dg3x1bAPfPvo90uhBM5o5cuXTHMqcwp/3DaF45HIqmy5ibPtmtqVN58POMdx2bjl3XDCOQ43tTB0Z5GYNoYxwg21A/TxPKcVXzx9LZpoRs8nAj17cTkePFZNBYbFpdFttPPJRNYPMRs50WxkzNKt3Q4OHPjeXjUeaGF+UzZJJRbyw6SgaMD2AjnvqyBxGFwzije3HOdnSxf+9s5fpxblsO9rMN5aM41BDO+kmI6fau6hu7C+Gt9Y2cdVf+vxAN2oTGHThFWF7NkKIuCv3Htx3ohKFJYIYDYoLJw/rXYF/12WTWXvoFK9vO8bHBxopGZLGz1/dyV9W7uOiycMYlT+Iy6aPIN1kYEiWmY5u6wB/4xMtXTS0dTGtOLjoFdOL8/jvzhPc8NAaMs1Gdh9roa65E6NBcfPCUXzPeT1FopGoA9pwGptcBePMGwbeK4R2TinF/7tyCu/89j0e+fgQd10W4nblgbyzWInSRC1XQZCyYviJNYf5zZt73P42afhg7lgyjsunjQh5AZVPvDUGzhXABsz9POSW9lbk5pZOAM9i2MVvmFHn8tLmOl7aXNd7iKr+CKOpB4OyYbF08+xzT/GA9WoAvrZ4HPPLprPr2FV8Y/oIak6fYXTBINJNxsB2XXImHCNcXw1oiFPOBoPiC+eWA5A3KI311aeZPGIw24+2sOd4K1XVp/jGkvHMLMllZmkeD36gLxy6ZOpwLnFate+4RiAopbhs2gj+UXmQk/b3u+1oMwC3nF1m3z4U/vDOXj7YW0/NqTMU52XyP89toaGtu/c637pwPFfOCGCTgST0AYsrPJX76kqwWfuOc3LfCQtxMtAZkmVm6bThvZbXXcda+Gh/Ay9truPd3Sc51d7Nff/dC4CjyS0anEFuZhozSnJJTzNwoqULCGxw6cyys8uw2Gy0d1k43tzD1OJcfvyJqZwzrsBv63RY8GYMCNZQECfvOaZ4EoxuZj6DpdQ+aHv848NcOnW41/jDj3x0CE2DmxeOdr/7YSDvLJai1JOlPclIWTF8sqWLwekm/v2Vs2ho66LHaqPmVAcdPVae31jLHSs2Mav0EP933SzKCyOw25I/uFaAmTf2FkabTeNHL24H8BzuxaWyfaN4PgtWvcHQxnVU9kxizJwl7F3fCvtfxGrTN4Eonn0xK2YtYM2hU3x6bgnZ6abe4PL+hjLySjhHuJ4sbaGKbafrXjmjoncx23Xz9alaR4gmx6Kg5ZeE16J00eQiHvzgALuPt/KpOcU8v/EoxXmZvUJYT0sp97+3n/vf288dS8bx/Maj/a6xYEw+44N9X4m2ECcR8FTuMwvAEZ4Q4Kw7wv/M43CgM9mym8lU8sVrFkHpuRxr7uCdXSex2TTqmjoAON7SycmWLir3NdBjX5Q3eURO0NuHnzu+kHPHB75QMKx4a598tV2+6mUcvueo4k4wRsC94CefmML2o83c/vh63vr2eW5nkps7evjpKzsBWHOwkSWTivjUnJKBotjfdxaLwY4vS3uSkbJiuLG9m4JsM5NHDJxy+9KiMbyw6Sg/f3UnV/6pkhsqRnHxlGHRX1jhpQIcbergvzv1HaHGFXkJMeRU2Yw1VZz14RfA2s04oxnOeZnzb7weasZAdSXGskXcZD/27CBWl/tFOHfm8mRpC0Vs+2g8lVLurUhhFJAzS/N63TDmjh7Cty+cQIa5fyM6IjeTmxaM5tGPq6lu7L/VbpbZGJoLS4osmIgqnsp9RyNgQJ/6UfrujTVVyf3M3ZSxEaUVfG7h6FinLPJseQosnbiNxR6BSAgphbv+svK+sLsXFA3O4G+fm8tVf/6Iu57fxt8+N7dftJTjzZ08/NEhQI+48vbOE7y98wQ9VltvWMKAiYSBwtc1U8hfGFJYDJ9q7yLfw1S/0aC4dm4JZ48t4Af/2crjqw/zjw8Pceuokyww7GLc/EsZNvW86EytuY4c7QX4TOZMAP55yzy3gt4t3rY0jlYhD9cI11NeQhXbwTQAYe6o0owGKsrzeX9PPVNG5DCqwP2q//935RT2nWzlo/2Nvd99aVE5d18xJeh7p1oDGFVmXQ9t9ZBd1Ped88JObHDwfX33xmQWO8lcxny5QGx6gt6ZAIOpf/sUoUgIKYVrXxYh94JJw3P4/tKJ/OK1Xfzoxe185+IJvTN333xqE1X27cIfvHkuq/bWc+fzW/l/L+2grcvKV84f41+oQQeRGAj5c01/4zonySxiCovhHorzvK8GHZmXyb9uW0Bnj5U333iJpRu/j0mz0PPyIyx74UdMrriI8yYUMnlEDpoGNk2jZIh74dIPd1sv+1OgnArwOEMac9SdFGaf43+mfRXuaBTscN3DU15CFdvBNJ4R6KgunTqczTVNXre6NRoUF04a1iuGDQpmu/NhC+SZp9CCiajhLp745qf6OqBbXtY33jn4fv+NdwKd0UiUTilZy5gvgdHPP1zB7Bv7/+7adkHf5kLJ+sz8IRYLrv3gC+eUs/dEK8+sq2HD4dN8+6IJmE2qVwj/6pPTMRoUF0wq4sdXTuXrKzby6zd3M3VkDue52fbcIx76F6tN4+UtR7lqZnHgcY/dXPPdttGMyh/U514XyAL/JJitSGEx3MV0P1clZ6QZuWbIIVBWwIYBKzePqGH52iM8+nF173Fz1F6uLaymJmcu+8xTGFeUzTnjCui22Jgzagg5mWkYj67rX4CW3qvvFe5PgXKJDrHQsMujdXsAjgZl6b19G2S4WpwjXbDDeQ9vFTUUS3cwjacnX7UQGuDr55fyydnFPrd+XTCmL2bqB9+7gJIhLhuwBPrMZSFOeHHeYRJ7nGtXwVtaoYdVPLw6OLGTaJ1SMpUx53rua1Dsbg2IK47y4O6dJsszC4RoLLgOEoNB8ZtrZ/KJmSP50uPr+coTG3p/e+vb5zFxeN+ajStmjOCccRdz+R8r+fzDVdy4YBS/+uR0/27kYSD08YEGvvPMFgqz01k0PgBx7eGat92/HoDqe6+gs8fKmoONLJ7o5dkl2WxFSophTdM41d4dWEQEp8JjMJr5xFWf5eLhc9l4+DSHGtspatrC4rX3YGjtoad1BXdl/5KHdhfz4AcHei9hMij+nPMvLrV0YrBvZKHtfAmDo0BZuvSO0128YZc0WJWJNbbJ3JHtlAdPAsyfBiUaBTvc94iUe0eg13Vn0fH1vH2IZaWUeyHscp7DcjytOMf9JgrBPPNUX4gTLlwtwihA67/TpINQBGI8d0qBRnZJJAu3a7u69F7v1ttA3rG7d7poefw/k3ATz2XbzqLxQ1n/o4s5VN/OltomGtu6+wlhB3mDzPzyk9P56wcHWLH2CGajgRsXjPK9MN1DuTnWrEcbciw4BTjR0klGmtFzhCkP12wunA283fvz//13L39bdZB/f/ksKsoHblIDeDYCbVkBKBg+073hLU5JSTHc1mWhx6pREIgYdhQex4tGtxifPa5QX2xW+RxoFsCGUVn5vwWtfGfKBRxv6UTTNNYcPEV2/QYu3PNffUc3Dbo1xV+PTeYO9TFGTUN58hl07iDsBfjJuhJ2bc9lkNnUd4wnAeZPgxKNabhknupz7tx9Ldrw9K58CQE35xlLK/jge4vJy/RQlpP5mcc7jnrn2GFy7GKYfLXnDsKfQYijjDhvgR6v79ifQbhzmYfEsnC7tqsdjX0CI7NA/xeCm7WK13cabSLxHCIw4MpONzG9JJfpJd4XLl8wqYhzxxdyy8NVPPpxNSuqjvC3m+dywaQi7zdwU27qW/VQgw5RDHDLw1VMK87ld5+Z6TvRTtesrWvu/fpMt4WDDfqi7JW7TzIiN4Mz3Vas9kgvGSfWYztUybMNZXz3iqfIr68id/IF+smPXmFv8+woQ/g3EooQKSmGT9m3s83PCmJzDfuObv18/kCvWAYjWG36v2WLGFUwqHfx04IxBVD5Muy1gQaaUtSO/hTP11/Mqo6hLE9/nrPYhkGzoVm7Uc4xEl07iEXL2frvzeRnnepLlzfB60+DEo2pS3f3CLZhimcLkq/n7e5dQdDW+9EFXkL/JdOUdKLhWg48zfj4S6+l2R6NAAWmjPidQvc1CHdt22bdEPdWwH64q+eO9IZjaj8e32m0CfdziAOXojSjgRVfWkhDWxef/2cVjz7zDLMWtjNkyhJsxfP93tvAEYf+uF0M22waB+rb3Mc09kHt6T7r8p7jrb2fX9lSx3821vYK7zlqL0+af0UaFuZj4qZ//5DqQXN4c+EMirbcj2btwZF6DVCaTW+vtqwIrb+PAikphht7xbCf0SDcbYns/IJ7UX3/ntg58KU7NZ7KaGbsRV/ig5L5bDwykw/eHcqcw98hDQs9GPl3XSmfaO8m30OH0timh4brxXFtS5e+V2+mUxg4fxuUaEyPO98j2IYpDho0r/h63u460Uha78XtITaEuyOvrrS7XDjiEmv07lgXj1PomQV6W4QbtxAYWObR+pfvzIK+BWSxyJs/cX3dvd9Apva93UPqrU44n0McuV0UZqfz9yVW8v/zM9JWW+he83uWZ/6c3147g/Taj1Hleplo7exxG7nqpItluL6tix6rxuHGM1isNp5Yc5jr5o8i0+x93QnAUScx/PGBRvadaGXyiBwO1rehFHzv0okMzU7nvBObydhgRWk2DFj4yeCXuafDwPV/T+PbE8ewFBNpWk/vtTQFoKE2rYDhs/xfHxUDUk4MW6w2/lF5EPDTMuy6JbIy6BUJDTat6NsIo7rSvqWqBtYefYtVTev/0t00ngqYOzqfuV+4mTMHxnJo09u83DyG+zdn8dud73Fb2TDuwIRJAUYzyt6hnGp3EcOlFbrP2uvL9QU6b94Jw6b0FbZ4bFiDbZicz/PlZx0I4Ry1envenjrReLDeOxPHo/iEIZz1rmwRGAxgs/V9F+4d68JFTZXeBtlsepqX3ut7cDfzRv0/h5tBLDtOfwfc7t6vvyGptqzQ+xCbJS7FQVISZ+4nxU0b0JQuLi22Hha0vIX22I+wKQvKaGbLksf55eu7+OPCNopnXdKvfJxwsQw7rLnNHT08s76G/31lJ8eaO7lremtvO/6tj9I4a0wBx1s6+ey8UkbmZfaem5lmZPKIwfz2LX1n3jsuGMfc0UNo67L07WVQczFs/jNYujBgY2bPZp407+Sblp/yzQ9LmaPu5p6xO0gzKhqO1zCvczUGBZrNgtr1kj7rHQcDEXeknBheV32a17cdB2C0uwVHrjgLLxswchYc3QhoeiPmeKHOlUwpXZC6C5PkpXMcNPYsxo89i+XA1SdbeeC9A/z7oIm1lruZY9vBVtN0xmwcRPHBA2w72syn5hT3v0BHoy7Agw3PFG2CbZicreC+YrMGEbYuKh2TazmIF+u9s09qHI/iU5LSCrj8Pn3Aa7Pqg/PL74vP9+LsL60p++YiLriWecd5ZYu8b04RaZwjgATTlvqqywPcXdD//ugPUDxXBp+RJN7cT8oWoYxmXSQa0yjNHURaiwUjNizWbuo/epR/md7BvMECW/7Srx3uswzrIvio00K6j/Y3ANB24GO0jXeDpQub0UzNmTt5ZcsEbBo8ufYIiycMZfywbNYcbKQ0P5NHbq3g//67ly6LlfMmFA60SDuen1MoSKOth/vPbudnsy/iWPO5TBiZg1KKMTVVWB75BDZrNzZlYn/eBZTbPiTDACoOBiKupJwYrjl9BoCVy8/3L5qEq2Cb/XndBcJVwDlXMlchEcRLH1c0mN9fNwuApjOLeHP7cY7sb+CZdTV0WXTLUNFglzjJcTbq9UmwDZObChnQQjV3xMP0Wayt987Py9uATogd85bpMz7x0pl7wrktMhh1FzN3O+s5yrzrDJym4XFzikjiLiZ0MG2pt7rcO1Bw2oYbDXa/BnveSJgFRwlLrNtZZ+x9marWd4A9x2bD+K93sFm76bEZOdnSRZpJF8c2SzccqsRQWoGmaZxs7cJkULR0WjjTbenn6vDmdt3gl3t8Lda0LkzY0CzdLDTsYqN1AqDPLv931wme3VALwGfmlpCbmcb/XjXVd5rdhIIsyE7vvzV1aQWmW19hzcqX+M2eQjZ+NJY56od8aVQdl135mfh5B3ZSTgw7wpAUu8Zj9YQ7weapM3KuZMOm9Is8EQp5g8xcXzGK6ytG0W2x0dFtZe2hRuaMdtlgId5Gvf4QbMPkoUL2IxDrUqINJCKB84BAM+jT26jUfR7xSjx15p5wtEUOV4ANjw1cdOxMv8GokxuIu80pIHIuPK4RQMYsDo8LljPObQ3oA06HMJbBZ+rhVJ9N0CuOd6ipZJ06g3HrR1gt3XRrRn6yIYfc1p10W2x0W2xUlOdTdegUb+84wdGmMwwyGznTbcWmQW5mGhstU7HwAgorPRhZY5vMzNI8vnHBOBZPHIrRLqYBcjICkIMBzGQuXAK3dzzLQ4dhozaB75+YwgXD5+J9y7Pok3Ji+FhTJ0MHp5Nu8u1U3ou7KW1/GipPkSdCwGwyYDYZuGTqcP/Smmy4doKeKqSvrU9didZAIpBOPNo+u64DAk8btAiCPzivpfA14+JqSUb1+dIOn9V/IV0kXZq8RQAJdudQV9zNIoZqiRaSB3sfPg+YBzC7BMOhSlZ3TWTTtsHUrjmC0aAozDbz/Usn8vPXdvHtZzYDMHVkDsNzMnh390mum1/KXZddjKo9C6or+fDMeL4+agEXTh7W73Y+YxL7SKdX7HX1Ums3F2SYeGP2gzx8JJcTLZ3eoyDFgJQTw3XNHb1O4xElHqbdkw1PnaAnS5O3rU/dEQ1/XH878XB1+IF02Ik4s5DIpMICRX9nXDz5D7vzXY9k2+qpDrjbYMObT70/kSicZxFdY0cna3kQ+vC3/pdWoEorWAIsuXjgz3+9aQ5Pr6vBarNx7rihTC/J5d43dvHZeaUopXrLmptTI4+9rirNSrqCq/MOcc1Vn4pFSnyScmL4aFMHk9zsDtNLuDoof33mIkUyxu/1J26pI+3uVqq7Eu28BtKJh6PDD0ZQJ/vMQrwQ7+EBw4U/Ayznerhoef9z3W1gE0mXJk9tgmt93PWS5/oZzBboyfjuY0U892EOwlj/R+Zl8t2LJ/T77hfXTA9HKvsTzHN1qauqPH5nPFJKDGuaxrGmTpZMLHJ/gK8CGoyVzV+fOdd0hFKZEz1+r6f8e+sE3aXdnxXd4ba8ent3gXTi4ejwZXYiOgRTX1Pp3XgTe77qobtYxc5taxjWZPiVFtf6OPlqz+sVUundxhuuCzFn3wwzbwj9+YdbYCdaGQm2v0yg2caUEsNNZ3ro6LEywpObhLcCGqyVzdlnzu1GHS6EQ6SFI35vrCqot/x7q1ju0u5tI4J+sYr9eC/+pNXX1GkgDUM4GhFZFBh5gu185d3o+GpzvcUqDveaDG9pcVcfPS2klncbO/q9QyusfyT08hEJI1G0yki4RHwooQ4TZOYjpcRwj9XGtyae5uLGJ6Dm0oFW3+YafaGVjfCN9ssW2bdptjJgow53eBJpgRTqUOP3xrIR9/WcPVWsQNMe6HvxJ63epk59pd8doTYiCTQqT0gGxKP10Pm6q7vhejeJMCXsDW/11lus4kgM3D2lxbFBBgqGz9TvBZ7rp9S72NEbg94RwzkMcaojUdaiUUbCOfvpvBhdGaLv9hkFUkoMFzVv5TtH/weOdMO2+/sKh2t81ZGz9HjC4Rjtl1bo1qL1jzBgow53uBNpgW5jGGxFi4dGPJTnHEjaA30v/qTV29RprEiQUXnC4RqPFkVv5+u8KyJ4n+kI5d3Ei1tTKHirt97agkgM3N2lpaYKHr2iLwwa2CM+eIkFnOgDlETG1T3REZEklPLhaf0PhPaeI902h2vjmn6L0dEH/oG4fSYIKSWGPY7w+sVXRd9h7sTOgdsZBysUZ96gFxx/Gm53Is0fi6O768RjBfXn/sE+50DTHsh78Tet8b4hgnTU4cHZaokBimfD8e1g7aHfroizboic61E8uDWFg0AtrI4yHO7Qf+7qRnWl/Z064S0WcCBuM1IXI4OjPDm29g71+boK7A2P2S2lKvZbaXsqQ4GGFvWG82DA3WZMkBTlOLXEsCdrgr9TK6EIzKX36qJ28tW+r+Eq0uLR4hgs3joAT6vKI0U4LOGuZSLWgwlvJIMlMV5wbUuW3qt/77orIlrkXI8CtY4movhyrU/u/PSd3Racj3O4Nvjjw+2pbpQtAmOaG8uwh+ftyWfVVbiHssg50d5hrAhnW+wwmvXGzHZsDBOD7cIdeCtD/ay5foYW9YRzP+ka6jCzIGn6lNQSw57ETySmVpxxLASxdMGhVfp385YFls54tzj6g7fKGyuhFs/iNdwkiyUxHvDUlrjuijjzxvBZqPxNgzuSZSDUb01FF7y+XN+62TlPrq4Nm56EZa96z6+nulFaActe6+8z7M0a7c6w4i6dwdTFZHmHiYqru4SzZTie1te4W//kLrRoIDj3k85aJIn6lNQSw+B9Si6QqZVARujVlX2+hTab3jA6u2D4k053FpJEE8feKo6vSuUrv4n4PKJNPCyQTCbctSXeBtzRSoM7kqXT8jVl2+v25uTa4Gk619FmZBZ4XzztzzN2bn9cDSvu0hlMXUyWd5iouNZtiL/1Na5uOnNvCU9oOWdc60OS9CmpJ4adcTeV5vivpqr/FqCu5wUyQi9bpIcGstmnVjRbaA1ZpGIpRppgF8T4E/9ZLCa+CYdbiOCbeJxtcK1fmQXw6rfx240gXvA2ZdvP7c3JtcHddK4jDKLzNsgGk//iwVn8wsD258o/9BlW3KUzmLoog9nY485IFcu0uJYh501qbEBuSWTTmER9SuqKYW9Tab7EVaAj9NIKuPw++1SZTV+JHEpDFolYiuHG00DDW8UZtwRajw+M5OHreSeqxSQQa3a4LN/xKNSE6DDrenqn+t/4XmBuBIHirrxGogy7cx9zdW2YecPANmLT406uDOjtss3qn3hw7R+cF0k6h8P0J52BPIckEh5CmHAtQ5EeMHkKExnuOh4DUlcMb3mq/6IIT9El3ImrYArcvGXh8/t165cW5MYRkcDbQMNdB+B6/PHt/d1IfD1vX7/HYwUNxJrtbtFQOFfRC8nNAPGGf24E4brfLS/r0XmcjQGBDtwdg+u2esguGjiT53psdWWfn6TDOuvs73lsK71CGLwvinOln99yJ7Sd8B2zPFyDUBnMCt4IdcDka4F7Es/QpqYY7g074oS76BKexFWwBS6cDeItL8NHf4Ddr9m/1GDjE/0b4ViJQE8+e57S4Ot4X8/b2++BVtBo+SYHYs32Z9FQsMTjQEEIL65lDc23G0Ew5cpRlppr+99vywrY+C/dfxbA2hXY7I27WL+u1myHWK7fC0fW6Hk0mOi3yGnpvXB8sy6E6zbZL6Rg0uVQPDcwdwVn8bvvHRh/ib0tdhOzXOqYEE0C9XF3LqehzIgn6gytndQUw/3CjqA3hM5bffojdl0LnKsPWaQbv9IKPd27X6fXwuHcCMdylObOZ8+bxcWf431VcE+/B1JBoznyDWR2wZ9FQ8GQ4CN5wQ2unZynleUzb/TuRrBlhe8QiJkFfTMU0H8dg/P9UH3rJUC3wgYyfes6WIaBq+ddxTI4naOBpQPWPACnq+mNBe3YPOOcb/fdB3zXgdKKgbHgs4eCKWNgfZY6lhok0oDHU5kMdUbcNdpGgu1Sl5piOLNAFxXYG0PXPe8hMCuu64K2aAXj9iYiYz1Km33TwClNV5wbEFcfP0cnF2oDE4joDHXk604keEp3ILMLzsd6WjQUKAO2Ek68kbzggmsnt+DLsPov+vt1tzjM9V07d2TOISad3XKg/857DkHp7DdrA+Z+HnJL+87Z/JR+jsGgr58IpJy5i/U7oK3rGXieMuj/2ey/Nexx+tEAYxbrMdxdQ2r602a7xoL3FEIv1u1wopBIYtKVSA14IvVMPJVJd4tsnYMI+JqBra7sm31xbE4Sb2uZvJB6YtgR89dm0xtmd0I40ELYr3DZ6LXU+rKweEqfv8eXVrgXkRBZR/pg/IrcWazcrcD2dZ1ACUR0egpV4zjXn4gXriLBW7oDGXA5Hxuq77nbtIa5jAjRx9Wd5uM/6UIYdKHnbXGYcz1proUNj+rnWjp1txxHezlhqV2UOkXG6XW9MPcXh873CsWP0bmdczfAzizQy7DmNNunjHDF7+H4Flj/sMsFFZjSdSH8xvf1AaEDV4tzoK5ZrsdJBAjfJLr1PBIDnkg+E09l0pvRxXF/d32WuwWlvZuTJM4AMPXEsKPgYgNN6RYPX2FyfDWMDkuzphiwKCMQi0Ow/q2uHQ8EJgL9wdnq6a6SOI5xZ22EgfkKxApr6dKvu/iu4AWxP+e5PjN36fb0TJ3LFfQJiUgsagxERLujX1rtFrJgn60QWzwN1pTq7wrmj2uCo1ytf7RPRDvcAEAXxHve0K3MVo1+Aylfm4uEWmY9ne8wbmiaLoBHLYShE/vPLm16os+qbEiDOZ/Tf9/yVH8hjHIfr9VdO+fIp6+dMsPdDicjgbjoxCORGPB46h/DYS32ViYd9cw5RFtAa1rsC0oTcACYemLY3VSAs4vD8On+iTlHwVj/qN1yYrULYtD/p2DEDKjb7P8IKZz+rRB6B+TuXp58Vr1ZG93ly1//I8f1Dr6v7+wVaauB8zNz1yAsWu7+/q7pBTyuLI81zmk1GPzbIlyIP9y1Aa6WHX9dE5w72Y5GwIBejlVfnQdA07d2zS117w4UqXLkSQT0G9gZYdyF/QVqaQVc9ls9lNrgEXDOt/rO37Ki/z2K5/TNFDrXfedBrbtn7kiHN//qRBF2scDV1zRQl5VYE4kBj6dZynBZix39nLv9FNytM/C1psV1Qellv0m4iEd+iWGl1FLgj4AR+Iemafe6/K7sv18OnAGWaZq2McxpDQ+uBbefULPC0Q36ccrQ5wTuCMPmKlLXPwqvfaevo9DQz3Gs9J/9eT2kkL8jpHD6t4YT53tpBr1zdbaiOB/jydromi9fDYjj9/fv0YVwLPxaA3kfzvk5utHzyvJ4oLRC7/Qdoa7evNP3johC/LHlqb7wig7BduUf/HOn8TYbtvRe3Y3Ane+xMd19xBoIn+XKFW8ioLcjtun/utZRh+XY2g3GnboYdqRx+Cx7/e7RfZKdXeZcO3jHoNadFXPz054tyIk8/R8tBrjoPJZwU+xhMzw5X8/bhhquhih3rpK+cDZgOQbMw6YEvoNdacXABaUdjb5nTeIMn2JYKWUE7gcuBmqBdUqplzVN2+l02GXAePt/C4C/2v+Nf3qtZE4B2DHAyNl6vNsNjw1cHe0YpTnEhAODUS9QziOiQPw7Q/VvjRSu93IX59b1GGch7M2/zlclW3yXbhGOxZRLoCN+59H2/nfje5qoo1EftMniucSkNzyko80KYBbC26YR1m69bLiW+0lXDKwH7uJfe3KhCgWfA3/l8q+Xc13F62W/dW/BctfBu5vRQnlOmyye8x/nttOxMDEBIxKEFdf+sd/sI7rRZf2jwW+gU13ZN5Nps+l6Zs7n+8psIDvYuS4ojcc+zwf+WIYrgP2aph0EUEo9DVwNOIvhq4HHNU3TgDVKqTyl1AhN046FPcWh4mlq0XVF8YiZfS4OrqujHaM013BBl9+nb67hTKAjxmD9WyPtOuBPqDlflt5g0hhrn7tg0h3rNPuDLOxJbKor+/sEg/+hFV1FmuviN+fV4w7c1QPX6+x6KTLiz1tZra60+zR7mIXxJV69WbDcdfCudRs8iwCpY4HjeL6O/jjBIhJEFMeM3mvf1cvv7ld1H35ng1wg9a5skW4RdugYzb74P5gymwh9ng/8EcPFQI3T51oGWn3dHVMM9BPDSqnbgdsBRo0aFWhaw4O70brDD9R5AQgMDJ3j2sia0vtPMbgK4UgT7qmZUO8VqfREM5/hIt7TnASNV0rj6qPuGhHEm1XSVaT5WvzmKw2O60y+OjKzON7Kqi/BGYh49fe+rnXb22IkqWOBU1rRN8gRq3p/Ohr7i1/Nqi8cdURSCVTAXn5f/50hg20LHNdL4HekdGOulwOU+gxwqaZpX7R//hxQoWnaN5yOeQ24R9O0D+2f3wW+r2naBk/XnTdvnrZ+/fowZCFAAt0G11uhkMURgiDECm9xrf3ZQCYcbZe7kInRbhMDvae02/GP+Fu7x3WDGWO6vljt+GYC9hl2vmaK1Ael1AZN0+a5/c0PMXwW8L+apl1q/3wXgKZp9zgd8zfgfU3TnrJ/3gMs9uYmETMxDCn18gVBSFGknRMSGSm/7gl2wZwQshg2AXuBC4GjwDrgRk3TdjgdcwVwB3o0iQXAnzRN8/qGYiqGBUEQBEEQhJTBmxj26TOsaZpFKXUH8BZ6aLWHNU3boZT6iv33B4HX0YXwfvTQareGK/GCIAiCIAiCECn8ijOsadrr6ILX+bsHnf7WgK+HN2mCIAiCIAiCEFkMsU6AIAiCIAiCIMQKEcOCIAiCIAhCyiJiWBAEQRAEQUhZRAwLgiAIgiAIKYuIYUEQBEEQBCFlETEsCIIgCIIgpCwihgVBEARBEISURcSwIAiCIAiCkLKIGBYEQRAEQRBSFqVvHheDGytVDxz28HMh0BDF5MQTqZx3SO38S95Tl1TOv+Q9dUnl/Eveo89oTdOGuvshZmLYG0qp9ZqmzYt1OmJBKucdUjv/kvfUzDukdv4l76mZd0jt/Eve4yvv4iYhCIIgCIIgpCwihgVBEARBEISUJV7F8EOxTkAMSeW8Q2rnX/KeuqRy/iXvqUsq51/yHkfEpc+wIAiCIAiCIESDeLUMC4IgCIIgCELECUkMK6WWKqX2KKX2K6XudPntG/bfdiilfuPh/J8rpbYqpTYrpd5WSo10+u0u+3X3KKUu9XD+HfZjNKVUodP3uUqpV5RSW+z3vzWUfHrCU/6VUs/Y87RZKVWtlNrs4fx8pdR/lVL77P8OsX9foJR6TynVppT6i5f7lyul1trPf0YpZbZ/r5RSf7Kna6tSak6Ysx63ebf/tth+/x1KqQ/CmG3H9WOdd0/l/ib7+96qlPpYKTUzjNl2vn+85j/i9T6Ceb9YKbVBKbXN/u8SD+cnY50PKe/23yJa5+33iHX+Y1bv4zjviVznK5zO36KU+qSH82NW5+33icv8238LX73XNC2o/wAjcAAYA5iBLcAU+28XAO8A6fbPRR6ukeP09zeBB+1/T7FfLx0ot9/H6Ob82UAZUA0UOn3/Q+DX9r+HAqcAc7B5DTT/LsfdB/zYwzV+A9xp//tOpzRnAecCXwH+4iUN/waut//9IPBV+9+XA28AClgIrE2hvOcBO4FR3spegufdU7k/Gxhi//uycL/3BMh/ROt9hPM+Gxhp/3sacDTAcp/IdT7UvOcRwTofR/mPSb2P87wncp0fBJjsf48ATjo++1nuI1rnEyD/eYSx3ofykM4C3nL6fBdwl1PiLwrwencBf3W9lv3zW8BZXs51rSB3AQ/YC0k5sB8whLmQeMy/03cKqAHGe7jGHmCEU2HY4/L7MjyIAvu1G5wKU296gL8BN7i7Twrk/WvAL8L5ruMp797KvctvQ/DQsSRr/iNd76ORd6drNGI3Jrh8n7R1PoS8R7TOx0P+vZV7l9/CXu/jOe9JVOfLgRO4iMFY1vkEyH9Y630obhLF9gfgoNb+HcAEYJHdtP2BUmq+p4sopX6plKoBbgJ+7Me1/eEvwGSgDtgGfEvTNFsA5/uDP2lcBJzQNG2fh2sM0zTtGID936IA7l8ANGmaZnFz/1Cfny/iOe8TgCFKqfft026fD+C6/hDrvPvLbehWg3ATz/mPdL2PVt4/DWzSNK3L5ftUqPPB5D3SdR5in39/iUS9j+e8J3SdV0otUErtQE/7V5zKt4NY1nl/7xGr/Ie13ptCOFe5+U5zuu4QdNP9fODfSqkxml3O9ztB0+4G7lZK3QXcAfzEx7X94VJgM7AEGAv8VylVqWlaSwDX8IU/abwBeCqM9/T3/qE+v1Du7SBWeTcBc4ELgUxgtVJqjaZpe6NwbweRzLtPlFIXoHeK50bi8m6+i5f8R7reRzzvSqmpwK+BSwK8f8LX+RDyHuk67+v+DiKZf3/Oj1S9j+e8J3Sd1zRtLTBVKTUZeEwp9YamaZ1+3j/Sdd7fe8Qq/2Gt96FYhmuBUqfPJeijM8dvz2s6VYANKFRKPWJ3dn7dzfVWoI8MfV3bH251uv9+4BAwKYDz/cFrGpVSJuBTwDNO37nm/4RSaoT9N4fPjL80AHn2+7jeP9Tn54t4z/ubmqa1a5rWAKwCZgZwbV/EOu9eUUrNAP4BXK1pWmO4rutEPOc/0vU+onlXSpUALwCf1zTtgJv7J22dD0PeI1nnHfeIZf69EuF6H895T+g670DTtF1AO7rftDOxrPM+7xEH+Q9fvQ/WvwJdlR9E9/VwOFZPtf/2FeBn9r8noJvZlZtrjHf6+xvAc/a/p9J/Ad1B3Cygczq3mv5+RH8F/tf+9zDgKB58rCKRf/vvS4EPfFzjt/R3LP+Ny+/L8L6Q6Fn6O5Z/zf73FfR3rK9KobxPBt61p3EQsB2Ylkx591LuR6H7zJ0dzvedQPmPaL2PZN7RF4NsAT7t4/ykq/NhyHtE63y85N9LuY9ovY/zvCdynS+nzxd2NLrIG5B2L+U+onU+AfIf1nof6oO6HNiLvtrwbqfvzcAT9sRtBJZ4OP8/9mO2Aq8AxU6/3W2/7h7gMg/nfxN9dGCxP8h/2L8fCbyN7oeyHbg53IXEW/7tvz2K7gPj7fwC+8vcZ/833+m3avSVsW32PLpbwTkGqEJvCJ+lL3qHAu63p2sbMC9V8m7/7Xvoq0y3A99Owrx7Kvf/AE6jTxtuBtYnabmPWb2PVN6BH6FbRjY7/TdgdbSnck8C1/lQ827/LaJ1Pk7yH7N6H8d5T+Q6/zlghz3PG4FrPJwfszofz/m3/xa2ei870AmCIAiCIAgpi+xAJwiCIAiCIKQsIoYFQRAEQRCElEXEsCAIgiAIgpCyiBgWBEEQBEEQUhYRw4IgCIIgCELKImJYEARBEARBSFlEDAuCIAiCIAgpi4hhQRAEQRAEIWX5/+zFpvyQtkVFAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2553,14 +2860,14 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "17\n" + "305\n" ] } ], @@ -2571,16 +2878,16 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.9754689754689755" + "0.5598845598845599" ] }, - "execution_count": 86, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -2598,7 +2905,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ @@ -2608,7 +2915,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 70, "metadata": {}, "outputs": [], "source": [ @@ -2617,7 +2924,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ @@ -2626,7 +2933,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 72, "metadata": {}, "outputs": [], "source": [ @@ -2642,7 +2949,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 73, "metadata": {}, "outputs": [], "source": [ @@ -2651,7 +2958,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ @@ -2664,7 +2971,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 75, "metadata": {}, "outputs": [], "source": [ @@ -2673,7 +2980,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 76, "metadata": {}, "outputs": [], "source": [ @@ -2682,7 +2989,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 77, "metadata": {}, "outputs": [], "source": [ @@ -2691,12 +2998,12 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 78, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAAExCAYAAADm2sJUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADkLUlEQVR4nOzdd3xUVfrH8c+5U5OZ9EYg9ColJPReFVBZpdhdBF1XXetP14K6rqyru7prW13XsjZUrItiL/ReAwGBhA4BkpCeTJLp9/7+GIwgCUXKUJ7367WvJXfuufO9gySTZ855jjIMAyGEEEIIIYQQQghxbtLCHUAIIYQQQgghhBBChI8Uh4QQQgghhBBCCCHOYVIcEkIIIYQQQgghhDiHSXFICCGEEEIIIYQQ4hwmxSEhhBBCCCGEEEKIc5gUh4QQQgghhBBCCCHOYUcsDimlmiql5iqlcpRSG5RSd+0//lel1DqlVLZS6gelVOMGxo9SSm1SSm1VSk0+0TcghBBCCCGEEEIIIX49ZRjG4U9QKhVINQxjtVIqCsgCxgB7DMOo2n/OnUBHwzBu+cVYE7AZuADYA6wErjYMY+OJvhEhhBBCCCGEEEIIcezMRzrBMIwCoGD/n11KqRygyS8KPA6gvipTL2CrYRjbAZRSHwKXAoctDiUmJhotWrQ4qhsQQgghhBBCCCGEEEeWlZVVYhhG0i+PH7E4dCClVAsgE1i+/+sngOuASmBoPUOaALsP+HoP0PtIz9OiRQtWrVp1LNGEEEIIIYQQQgghxGEopXbVd/yoG1IrpZzAdOD/flpOZhjGw4ZhNAWmAbfXN6yeY/WuY1NK3aSUWqWUWlVcXHy0sYQQQgghhBBCCCHEcTiq4pBSykKoMDTNMIxP6znlfWB8Pcf3AE0P+DoNyK/vOQzDeM0wjB6GYfRISjpkhpMQQgghhBBCCCGEOAmOZrcyBbwB5BiG8ewBx9secNolQG49w1cCbZVSLZVSVuAq4IvjiyyEEEIIIYQQQgghTpSj6TnUH5gA/KiUyt5/7CHgd0qp9oAO7AJuAdi/pf3rhmFcZBhGQCl1O/A9YALeNAxjwwm+ByGEEEIIIYQQZzi/38+ePXvweDzhjiLEGc9ut5OWlobFYjmq84+4lX049OjRw5CG1EIIIYQQQghx7tixYwdRUVEkJCQQWsAihPg1DMOgtLQUl8tFy5YtD3pMKZVlGEaPX4456obUQgghhBBCCCHEyeLxeKQwJMQJoJQiISHhmGbhSXFICCGEEEIIIcRpQQpDQpwYx/pvSYpDQgghhBBCCCEEoV+oJ0yYUPd1IBAgKSmJ0aNHhzHVkTmdziOeM2XKFJ5++unDnjNjxgw2btx4omKJM4gUh4QQQgghhBBCCMDhcLB+/XrcbjcAM2fOpEmTJmHJEggETvlzSnHo3CXFISGEEOe0zVu/pbAwO9wxhBBCCHGauPDCC/n6668B+OCDD7j66qvrHqupqeGGG26gZ8+eZGZm8vnnnwOwc+dOBg4cSLdu3ejWrRtLliwBoKCggEGDBpGRkUHnzp1ZuHAhcPBMn//9739MmjQJgEmTJnHPPfcwdOhQHnjgAbZt28aoUaPo3r07AwcOJDc3Fwg17+7bty89e/bkkUceafBennjiCdq3b8/555/Ppk2b6o7/97//pWfPnnTt2pXx48dTW1vLkiVL+OKLL7jvvvvIyMhg27Zt9Z4nzk5SHBJCCHFOMgyDXaU13Lngfp6ddVe44wghhBDiNHHVVVfx4Ycf4vF4WLduHb1796577IknnmDYsGGsXLmSuXPnct9991FTU0NycjIzZ85k9erVfPTRR9x5550AvP/++4wcOZLs7GzWrl1LRkbGEZ9/8+bNzJo1i2eeeYabbrqJF198kaysLJ5++mluvfVWAO666y7+8Ic/sHLlSho1alTvdbKysvjwww9Zs2YNn376KStXrqx7bNy4caxcuZK1a9dy3nnn8cYbb9CvXz8uueQS/vnPf5KdnU3r1q3rPU+cnczhDiCEEEKEw5zcIu54dw6m9hDrrwx3HCGEEEIc4C9fbmBjftUJvWbHxtE8+ptORzwvPT2dnTt38sEHH3DRRRcd9NgPP/zAF198Ude7x+PxkJeXR+PGjbn99tvJzs7GZDKxefNmAHr27MkNN9yA3+9nzJgxR1UcuvzyyzGZTFRXV7NkyRIuv/zyuse8Xi8AixcvZvr06QBMmDCBBx544JDrLFy4kLFjxxIZGQnAJZdcUvfY+vXr+dOf/kRFRQXV1dWMHDmy3ixHe54480lxSAghxDkpe3cFTaybKQTyjQCvzt/GjQNbYdJklxQhhBDiXHfJJZdw7733Mm/ePEpLS+uOG4bB9OnTad++/UHnT5kyhZSUFNauXYuu69jtdgAGDRrEggUL+Prrr5kwYQL33Xcf11133UE7Sf1yu3GHwwGAruvExsaSnZ1db8aj2Y2qoXMmTZrEjBkz6Nq1K2+//Tbz5s07rvPEmU+KQ0IIIc5JuYUu4mw7KATKTYrnvltJRtNYerdKCHc0IYQQ4px3NDN8TqYbbriBmJgYunTpclBBZOTIkbz44ou8+OKLKKVYs2YNmZmZVFZWkpaWhqZpTJ06lWAwCMCuXbto0qQJv//976mpqWH16tVcd911pKSkkJOTQ/v27fnss8+Iioo6JEN0dDQtW7bkk08+4fLLL8cwDNatW0fXrl3p378/H374Ib/97W+ZNm1avfcwaNAgJk2axOTJkwkEAnz55ZfcfPPNALhcLlJTU/H7/UybNq2u6XZUVBQul6vuGg2dJ84+0nNICCHEOWlToQu7taDu6xTrTuZsKgpjIiGEEEKcLtLS0rjrrkN7Ej7yyCP4/X7S09Pp3LlzXTPoW2+9lalTp9KnTx82b95cN/tn3rx5ZGRkkJmZyfTp0+uu+eSTTzJ69GiGDRtGampqgzmmTZvGG2+8QdeuXenUqVNdA+x//etfvPTSS/Ts2ZPKyvqXx3fr1o0rr7ySjIwMxo8fz8CBA+se++tf/0rv3r254IIL6NChQ93xq666in/+859kZmaybdu2Bs8TZx9lGEa4MxyiR48exqpVq8IdQwghxFmqxhug06Pf0z/tL6yLCm1V23r3YKxJi7gorRcX9P8XTWIjwpxSCCGEOLfk5ORw3nnnhTuGEGeN+v5NKaWyDMPo8ctzZeaQEEKIc87mfaHp0jU2D019oQ9JUmK3kmMP8nHBEob8cy55pbJVqxBCCCGEODdIcUgIIcQ5Z1OhC9ApMAdJqI3DbBjkRewFYLdFkWrewNtLdoY1oxBCCCGEEKeKFIeEEEKcc3ILXTSNyKdW09C9ySQGYI8ZzPuXWvdusoqPV+3G5fGHOakQQgghhBAnnxSHhBBCnHM2FbroFL8LgKDRnATdAkA6NtrpGpvMG+mS/DDvfPPPcMYUQgghhBDilJDi0GmirMZHSbU33DGEEOKckF/pJsZeDMCV/YbS1B4LQFdnM4bHdmSHCdY7vfxQ9iGGrocxqRBCCCGEECefFIdOE/f/by1/eC8r3DGEEOKsZxgGRVVeTFpo29cRmT1pFR3aQrZr4z7cMOo/vNttMj1KO7PdYrAi+/VwxhVCCCGEEOKkk+LQaSKnwMW6PZUEdSPcUYQQ4qxW7Q3g9gcJai7sukFkZDJdGvclSjfo1uEy7BFxZHS5lj3B3xIX1Jm6/s1wRxZCCCHEKbJv3z6uueYaWrVqRffu3enbty+fffbZSX/eVatWceedd56Qaw0ZMoT27dvTtWtX+vfvz6ZNm07IdU+kE5nx7bff5vbbbwfglVde4Z133mnw3J07d/L+++/XfX0iX/ejdeONN7Jx48ZT+pxHQ4pDpwGPP8jeCjfegM6u0ppwxxFCiBNqzpJ/cOmb6dRUF4Y7CgBFrtASXjc1xBsKpWkM6HUHiyeuIy6+dd15Nns0XXyNWKJXy9IyIYQQ4hxgGAZjxoxh0KBBbN++naysLD788EP27Nlz0p+7R48evPDCCyfsetOmTWPt2rVMnDiR++6775DHg8HgCXuuX+tkZLzlllu47rrrGnz8l8WhE/26H0kwGOT111+nY8eOp+w5j5YUh04DOw8oCOUWusKYRAghTrzPt33OdpPB/KyXwx0FgH1VHgCqDTcJylx3XGkH/0h0WM2ooJOgUvh88r1ZCCGEONvNmTMHq9XKLbfcUnesefPm3HHHHUCosDBw4EC6detGt27dWLJkCQDz5s1j9OjRdWNuv/123n77bQAmT55Mx44dSU9P59577wXgk08+oXPnznTt2pVBgwYdco0VK1bQr18/MjMz6devX92smrfffptx48YxatQo2rZty/3333/Eexo0aBBbt24FwOl08uc//5nevXuzdOlSnn32WTp37kznzp15/vnn68a88847pKen07VrVyZMmABAcXEx48ePp2fPnvTs2ZPFixcDMH/+fDIyMsjIyCAzMxOXy0VBQQGDBg0iIyODzp07s3Dhwl+d8b333qNXr15kZGRw88031xWM3nrrLdq1a8fgwYPrsgBMmTKFp59+GoCtW7dy/vnn07VrV7p168a2bduYPHkyCxcuJCMjg+eee+6g172srIwxY8aQnp5Onz59WLduXd01b7jhBoYMGUKrVq0aLCZ98MEHdOnShc6dO/PAAw/UHf/lPQ0ZMoRVq1YB8MYbb9CuXTuGDBnC73//+7oZUOFgPvIp4mRxefzU+oLsLDm4OJTZLBazppEUZQtjOiGEOH67iktYFqgETfFD3iwu4i/hjkTx/plDlfhobHI0eJ7TZiboC30frq0twWaPOSX5hBBCCBEeGzZsoFu3bg0+npyczMyZM7Hb7WzZsoWrr7667pf8+pSVlfHZZ5+Rm5uLUoqKigoAHnvsMb7//nuaNGlSd+xAHTp0YMGCBZjNZmbNmsVDDz3E9OnTAcjOzmbNmjXYbDbat2/PHXfcQdOmTRvM8OWXX9KlSxcAampq6Ny5M4899hhZWVm89dZbLF++HMMw6N27N4MHD8ZqtfLEE0+wePFiEhMTKSsrA+Cuu+7i7rvvZsCAAeTl5TFy5EhycnJ4+umneemll+jfvz/V1dXY7XZee+01Ro4cycMPP0wwGKS2tvawr3tDGXNycnjqqadYvHgxFouFW2+9lWnTpnHBBRfw6KOPkpWVRUxMDEOHDiUzM/OQ61577bVMnjyZsWPH4vF40HWdJ598kqeffpqvvvoKCBXlfvLoo4+SmZnJjBkzmDNnDtdddx3Z2dkA5ObmMnfuXFwuF+3bt+cPf/gDFoulbmx+fj4PPPAAWVlZxMXFMWLECGbMmMGYMWMOuqcD5efn89e//pXVq1cTFRXFsGHD6Nq162Ffq5NJikNhUlLtZfzLSwjqBlf3agZAcpSFPTs+5co1PYmNtPH5bf1RSoU5qRBC/Dr+oM4Dbz1JbYqieRAWGpXUVBficDYKa66iqlBxqJwgnS2HKQ7ZzdRWhIpDbk85cacknRBCCCEA+HYyFP54Yq/ZqAtc+ORRn37bbbexaNEirFYrK1euxO/3c/vtt5OdnY3JZGLz5s2HHR8dHY3dbufGG2/k4osvrpuh0r9/fyZNmsQVV1zBuHHjDhlXWVnJxIkT2bJlC0op/H5/3WPDhw8nJib0gVXHjh3ZtWtXvcWha6+9loiICFq0aMGLL74IgMlkYvz48QAsWrSIsWPH4nCE3guNGzeOhQsXopTisssuIzExEYD4+HgAZs2adVCfnKqqKlwuF/379+eee+7h2muvZdy4caSlpdGzZ09uuOEG/H4/Y8aMISMjo97X50gZZ8+eTVZWFj179gTA7XaTnJzM8uXLGTJkCElJSQBceeWVh/xduFwu9u7dy9ixYwGw2+31ZjjQokWL6opww4YNo7S0lMrK0AYmF198MTabDZvNRnJyMvv27SMtLa1u7MqVKw/KdO2117JgwQLGjBlz0D0daMWKFQwePLjuNb788suP+N/UySTLysIgqBvcOHUVu0pr2VPu5psfC0iKsjE4ZRkzbdOI8X7Duj2VrNhRFu6oQgjxq2XtKsdqzcJiGLT2XoxPKeat+k+4Y1Hk8mA365RpkGCLbfA8h82MN7B/5pBbvh8LIYQQZ7tOnTqxevXquq9feuklZs+eTXFxMQDPPfccKSkprF27llWrVuHz+QAwm83oB/Qn9Hg8dcdXrFjB+PHjmTFjBqNGjQJCTZMff/xxdu/eTUZGBqWlpQfleOSRRxg6dCjr16/nyy+/rLsegM328+oSk8lEIBCo916mTZtGdnY2M2bMqCse2e12TCYTEOqvVB/DMOqdoKDrOkuXLiU7O5vs7Gz27t1LVFQUkydP5vXXX8ftdtOnTx9yc3MZNGgQCxYsoEmTJkyYMKHBBtFHk3HixIl1z7lp0yamTJkCcMRJFA3d37GO+el5jvS6H+75Dryn4814MklxKAx2lNSQvbuC24aGGp9uyK+iZaKDKOsuABpF7SQu0sIbi3aEM6YQQhyXublFlDqK6ei38cWuvlgNg9ySE/wJ4K9Q5PLSItpFUCniIxIaPM9pM+P2/zRzqPJUxRNCCCEEhGb4XP/1if3fEWYNDRs2DI/Hw8sv/9wn8cAlUZWVlaSmpqJpGu+++25d/5vmzZuzceNGvF4vlZWVzJ49G4Dq6moqKyu56KKLeP755+uWKG3bto3evXvz2GOPkZiYyO7duw/KUVlZSZMmTQDqehedaIMGDWLGjBnU1tZSU1PDZ599xsCBAxk+fDgff/xxXcHqp2VlI0aM4N///nfd+APvpUuXLjzwwAP06NGD3Nxcdu3aRXJyMr///e/53e9+d1DB7VgMHz6c//3vfxQVFdVl2bVrF71792bevHmUlpbi9/v55JNPDhkbHR1NWloaM2bMAMDr9VJbW0tUVBQuV/29JAcNGsS0adOA0HKzxMREoqOjjypr7969mT9/PiUlJQSDQT744AMGDx582DG9evVi/vz5lJeXEwgE6mYthYsUh8KgtDq0pKFvq0TSmzhId/5AyzgTQRX6j94RXcY1vZsxM2cfWbvK+HjlboY9PY/cwqrDXre8xsewZ+axbHvpYc8TQohTYXZOPvkWaGFNxcBMpGHgCXrDHYuiKi9pjhIAEiIbXuIWKg5FAOD2SXFICCGEONsppZgxYwbz58+nZcuW9OrVi4kTJ/LUU08BcOuttzJ16lT69OnD5s2b65ZkNW3alCuuuIL09HSuvfbauv43LpeL0aNHk56ezuDBg3nuuecAuO++++oaFw8aNOiQPjP3338/Dz74IP379z9pu4p169aNSZMm0atXL3r37s2NN95IZmYmnTp14uGHH2bw4MF07dqVe+65B4AXXniBVatWkZ6eTseOHXnllVcAeP755+uaa0dERHDhhRcyb968ugbV06dP56677vpVGTt27Mjjjz/OiBEjSE9P54ILLqCgoIDU1FSmTJlC3759Of/88xvsE/Xuu+/ywgsvkJ6eTr9+/SgsLCQ9PR2z2UzXrl3r/j5+MmXKlLp7nDx5MlOnTj3qrKmpqfz9739n6NChdQ2wL7300sOOadKkCQ899BC9e/fm/PPPp2PHjnVLBsNBnW5TmQB69OhhHK6x15nu63UF3Pb+ar65sy8vfzOOeZZSrrOOID+wnFl6JRm6hReuWMaY/yymvMZHtTeAbkCjaDuf3daP1JiIeq/7v6w93PvJWi7vnsY/Lw9fIyshxNnrqY9/ww53ES9PWHrI7l4H2l1Wy5hnpuFr9wKT7L14cc042rZ7gD72Rvz1mlmnMPGhhj8zj+7Rc/nW+ilvpN9Fr8wb6z3vjUU7+Gj2WxS0+IwX209iSJ8/nuKkQgghxLklJyeH8847L9wxhDhlqqurcTqdBAIBxo4dyw033FDXJ+lEqO/flFIqyzCMHr88V2YOhUHJ/plDc5bfyTxLaJaPR99KfqAagO34iI0wM/X6XlhMGp0axzD9D32p9gaY9OZKqjz+eq87Nzc082jupmJ0/fQr+gkhzmyfz5nMe+6dLKaWhStfPOy5y3eUEW8JTZGOd4TWkNtQuHXfSc95JEVVXiIs5QDERzdr8DynzYRXjwTA7ZWt7IUQQgghxIk1ZcoUMjIy6Ny5My1btmTMmDFhyyK7lYVBabUXTcHGqq200zV0w6BA7WMPAawGVGmKkpIcWiR3Ys69Q4iwmLCaNV6d0J2Jb67g5neymHpDL37cW8GSraXcOrQNumGwYHMxiU4rJdVe1udXkp4Wy3frCwjqcHF6arhvWwhxBqutLuKJXV/RQ9nZo3t4M+ddBvVueIpwYaWbGGsBhUBCTKi/ms3Q8Oj1F7dPFbcviMsbwKSVgwEJca0bPNdps+AJOgGo9UlxSAghhBBCnFhPP/10uCPUkZlDYVBc7SPeYaVC95Kk2WlvS2BtsJoqTdFThdatfr3iOW59pw+eqhys5tBfU/82ifzjsnSWbi/l5ndXMfHNlTwzczN/+XIDK3eW4fIGuG9ke5SC2TlF1HgD3P+/dfztm5xw3q4Q4ixQVJKDW1OMb3Eh1zXqT5bysiGn4aZ5RS4vTltodk5SfGgqqw0Nj1H/jhqnSpErtNtHgCpMhkFMTPMGz3XYTLj1UHHIHag5JfmEEEIIIYQIBykOhUFptZcEh41yI0CsOZJ20S2p0kJb5A1O6QnAcyXLWGjU8OLsew4aO65bGveNbM/cTcU4bWau6tmUd5bu4trXl2M1aYxOb0xm01i+WJvPO0t3UeUJsLfCTVGVh/s+WctdH64hENQPySSEEIdTXRtathplj2NQp98CsL1wTYPnF1V5sdoqMRsGyUltAbBiwq2fnKaK9dF1gz9+vJYbp4Z62E35YgNDn54HgMeoJk4HzdTwBFqnzYxbjwKg1n/qi0OTp6/jwU/r391t2vJdjHhuft0GB0IIIYQQQhwPWVYWBiXVXhKjrGxXBnEWJ+1SMqFsJQAZLS8gumAeVZoiXTfzha+Q3276gg7tL6GkOIfo6DRuHdKaxrF2MpvG0Sw+ki5pMRRUeOjYOBqHzUyP2GdZb+Tx1HdTiHdYKavxMW9TMZ+u2UtQN4i0mvjb2C4opcL8SgghzhRVtcUA5JWbccbt397dX93g+ftcHuLN1aToiih76HwLJlyc/GVl5TU+lu8oY/7mYqav3oOmoNYX4OsfC+jYOJqLuqSSk+cmQZkOex2HzYwfO07DwO13n/TcB9pZUsNHq3bTPHIv99Tcyp9Hv4MjujkLtxSzvbiGJ77JwTBg2vI87hze9ojXK6vxUesLkBYXSUGlm7W7K3DYzAxokyg/C4QQQgghhBSHwqGk2ke3NBvr/IpYWyztmg+FnNcASEvtQW9zLEEM/jrmQy7+9EKeXPoYT8Y0Y+y3v6UlFt64cjZjM9Pqrndt74OXRSzwbKbAYRBjKmbKJSO49+O1vDRvK0HdYFiHZD5YsZuLuqQysG3SKb1vIcSZa/n2nQC8vbwS+8ZdkAhuf22D5xdVebEleEjRrETaQj9qLJjxGMc2c7GsbCsmzUxMbIujHvP41zlMX70HgIymsWTvruCr1Vsodnm5fUgrtMqnWBmsoocp6rDXce7PHWEY1AY9x5T7eL29ZCeGAc0cnzBTr2DU+ml4om/gzg9Cs7Uym8USaTUxd+VHXJM5gcT4hpfHAdw4dSWbCl388/Ku/GnGespqQo3BP7ypD31aJZz0+xFCCCGEEKc3WVYWBqXVXhKtoV3K4uzxJCV1JFY3iNENoqKb8My1C3j+2oVExzTlrrQRZCkv138zAa+C9crP5Om/QQ/W37ejsGANe02gK8WTIwu5pGtjOjWJZldpLXGRFl66phuJThtvLNpxKm9ZCHEGW7C5mJU78gDIaNmKfdV2ANyB+otDhmFQ7PJSrvlJMTuJsIRm6Jix4OHYdlL84xdX8acvrjnq84O6wZzcfYzslMLsPw7mrUk96Rc/lb/nXk7nyLlEeWfwj+IlpGuR3D/kn4e91k/FIbuhcJ/C4lCVx8/Hq3bTvVkU+dH5AGwr3ciGvZVYTRrf3DmQj2/uS++Y19ma+hEPz7gSwzB46rtcbnt/Nbe9v5o7P1jDln2hJtpZu8pZnVeBL6hz67TVALx1fc+6x4QQQgjxs3379nHNNdfQqlUrunfvTt++ffnss89O+vOuWrWKO++884Rca8iQIbRv356uXbvSv39/Nm3adEKueyKdyIxvv/02t99+OwCvvPIK77zzToPn7ty5k/fff7/u6xP5urdo0YKSkpLjvs6B93Mqn1uKQ6eY2xekxhck2hxaohEbmYTSNDppDlqr0NILpWkoLfRXM27YP8gwLOwxwc1xmdyb3I85ehUfzfy/eq+/MvfnBrHrChcDkNk0jiRzHkPaJxNhNXFd3+bM21TM1iLZfUcIcWTfri/EZgkVR5Ji06jymzEbBu5A/UutKt1+fMEAxSZoZI/HpCkiLCY0w4z7GFcwbTY8bA4c/feq7N3llNf6GdE6wK1f9mXSRz34MSWHgFIkRq2lqCpUHHl23Oc0azbgsNdy1M0cUtQGfccW/Dhk7Sqn1hfkqvYb2GcJ/SzYWr2bnEIXbZKdzFl+E5dM7cp/a5cTH9RZqlXzzbKveXneNrLzKsgtqOL7DYU888NmAN5ctINou5lPbunHwLaJvDGxB0PbJ9M6ycFqKQ4JIYQQdQzDYMyYMQwaNIjt27eTlZXFhx9+yJ49e076c/fo0YMXXnjhhF1v2rRprF27lokTJ3Lfffcd8ngweOr6QDbkZGS85ZZbuO666xp8/JfFoRP9up/JpDh0ipXsbx5qU2UAxDlDW8w/fvFU/nHhW4ecr5nM/G34S9wc3YnrR/2HCaNeoT+RPFswjx0751Fasplr3spk+sw/ApBVuIIo3aCXYWNFTeiT/jT1NZ62/yEzNguAa3s3w2rWmLY876TfrxDizFfl9mOxeFGGQURkMr6AToQB7kD9s2mKXF7iTPvwK0WKoxEAkVYTmmHFc5TFoV2lNVzw9/ep0hQFmoHPe2iB6JsfCxj69Dwq3T/3MZqTW4RJU+jVn5FvgnjNyiBvImk+A39kGTmuHbQIgjMq9YgZrGYt9D9D4dZPfK+kam+Awf+cy1fr8g86nlsQutf1+2Zg1w06esxs91WyqbCK9skO3qlYT6TSuD+pHze2fA4zMH31P0h0Wpn9x8HM/uMQfjegJT9sLOSLtfl8t6GQq3s1I72xk+vaz6ZTSqjoldksjjW7KzCMY5vNJYQQQpyt5syZg9Vq5ZZbbqk71rx5c+644w4gVFgYOHAg3bp1o1u3bixZsgSAefPmMXr06Loxt99+O2+//TYAkydPpmPHjqSnp3PvvfcC8Mknn9C5c2e6du3KoEGDDrnGihUr6NevH5mZmfTr169uVs3bb7/NuHHjGDVqFG3btuX+++8/4j0NGjSIrVu3AuB0Ovnzn/9M7969Wbp0Kc8++yydO3emc+fOPP/883Vj3nnnHdLT0+natSsTJkwAoLi4mPHjx9OzZ0969uzJ4sWhiQjz588nIyODjIwMMjMzcblcFBQUMGjQIDIyMujcuTMLFy781Rnfe+89evXqRUZGBjfffHNdweitt96iXbt2DB48uC4LwJQpU+q2h9+6dSvnn38+Xbt2pVu3bmzbto3JkyezcOFCMjIyeO655w563cvKyhgzZgzp6en06dOHdevW1V3zhhtuYMiQIbRq1eqoikkNvbZjxoyhe/fudOrUiddee63ueEP309DrXlpayogRI8jMzOTmm28+Ie/npOfQKfZTcUgjtKwsNqoJAImJHRoc07RpX25v2rfu68dGvcG4b67ijjl30NTk4EctwIa932OabWalu4Bu5ii6xrblhfI1lJVtZUfV9wDogeXA74i1K9qnRLG9WLZmFkIcWYXbh9PkxWGAMyK0pCzCAHew/p2yiqq8JFr2UgikRDUDINJmAsOCXykCfg9mi/2wz5m1qxzNlwOAoRR78leAszdOu5nkqNDY/2XtYUdJDf/46DIu73ElGZ2vYXZOEd2bx7F03xKSgwZvTlrBtBW7qVxxNbuclRT5vWRaj77HjtNmxmaYTkhxyBsIsrWomk6NYwBYtKWYXaW1/GvWFi7uklrXGHpTYRWpMXbWewvpHIwgWBvN5rh9uKqqaBcbYFaRYnzKAK4Z9RIef5DZG2JY5yjj2pZR2Pcv4buubwteW7CdOz9YQ7P4SG4a1Iq5y57mnm0fcF3Bcm4e8W+iPY/TMXY3n81ZzrjhfyKnoIptxdUkOm0H9SFat6eCVknOumV2QgghxNlqw4YNdOvWrcHHk5OTmTlzJna7nS1btnD11VezatWqBs8vKyvjs88+Izc3F6UUFRUVADz22GN8//33NGnSpO7YgTp06MCCBQswm83MmjWLhx56iOnTQytEsrOzWbNmDTabjfbt23PHHXfQtGnTBjN8+eWXdOnSBYCamho6d+7MY489RlZWFm+99RbLly/HMAx69+7N4MGDsVqtPPHEEyxevJjExETKykKTGu666y7uvvtuBgwYQF5eHiNHjiQnJ4enn36al156if79+1NdXY3dbue1115j5MiRPPzwwwSDQWprG+5TebiMOTk5PPXUUyxevBiLxcKtt97KtGnTuOCCC3j00UfJysoiJiaGoUOHkpmZech1r732WiZPnszYsWPxeDzous6TTz7J008/zVdffQWEinI/efTRR8nMzGTGjBnMmTOH6667juzsbAByc3OZO3cuLpeL9u3b84c//AGLxVLv/TT02mZmZvLmm28SHx+P2+2mZ8+ejB8/Hp/P1+D9NPS6/+Uvf2HAgAH8+c9/5uuvvz6o0PRryTu9U6ykOrQ0IahXABAb3fA/5IYkp3Tmxe6T+X3Wk+yihltj0llUvpFH9nwDJrgioTPdWozghVVr+GrZP5jnLQRNkVuxheWrX+OWdS8wwJLGjqr/O4F3JoQ4W1W6/URavDgNcFhDxYcIFG69/qVWOTlvkJz4NYVAo/g2ADisZtCtAHi9FZgtjQ77nDtKaoi15vHTnJrt+au5f45OmyQn065PJ6jZWbKthBTzDr5Q28lf9SwXugeSW+ji4VHNeWNHOaMiGqM0jb6tE/huYRMqYkIzcjrGHnl3r584bCYsholao/4+b8fi79/k8vaSnTxzeVfGd09jTm4RAFuKqlm4pYRB7UKbBOQWuuiQEsEGglxoT2ZTSRwBVUQT22biTE4AmiecB4DdYqJL8miy3O/TNnIuG3LzeWH5k+wKurmoRTI/Fl3HG9ePJ8Fp4+vtXwPwbs025k2/iN2agSkK/Dv/xwjvZK54dSkuT+g+v7pjAJ2bxPB59l7u+jCbO4a14Y8j2h/3ayCEEEIcradWPEVuWe4JvWaH+A480OuBoz7/tttuY9GiRVitVlauXInf7+f2228nOzsbk8nE5s2bDzs+Ojoau93OjTfeyMUXX1w3Q6V///5MmjSJK664gnHjxh0yrrKykokTJ7JlyxaUUvj9P39INXz4cGJiQh80dezYkV27dtVbHLr22muJiIigRYsWvPjiiwCYTCbGjx8PwKJFixg7diwOhwOAcePGsXDhQpRSXHbZZSQmJgIQHx8PwKxZs9i4cWPd9auqqnC5XPTv35977rmHa6+9lnHjxpGWlkbPnj254YYb8Pv9jBkzhoyMjHpfnyNlnD17NllZWfTsGeqV6Ha7SU5OZvny5QwZMoSkpNB7pyuvvPKQvwuXy8XevXsZO3YsAHb74T+Y/Ok1+akIN2zYMEpLS6msrATg4osvxmazYbPZSE5OZt++faSlpTV4nfpe28zMTF544YW6Hla7d+9my5YtFBYWNng/Db3uCxYs4NNPP63LFhcXd8T7OxJZVnaS/XvOFrK276akOPQJeOn+mUPen4pDMS1+1XUz03/LvzrfwvWONtw0+i3euGoOL3W4gYdThjBu4BQ6nzeeXoaN54qWUKEpnLrBRm8p32/+FAOYF7GXRPPjJ+AOhRBnu0q3n4Dmx6lMdX147GgNzqaZUfwePzpraRKEFk1DfX0irSb0/cUht6fiiM+5o6QGm3Vf3dcrdqylrMaHXvYG/d/vzaxVc/H4dUa2Dr1pXKW8vPTVRwxsm8h5joXUaIohLUcC0DrJyZ0XjK+7VscmfY763p02C2bDjPsYd1n7pUp3qMm01aTxwhcfMmf9VubkFjOyUwrnxeTxyez/YBgG/qDOtuJqOsQW4dYU5yW1RjN3BCDZtoVgcDsAzRp1r7v27ZfcgUM3yCqcx1PLnmCjXksbs5MF1n1ENn6a5nFWql0FLAiUc4kliUY6lCmDV7vcQdeqRLZpAT5avg2XJ8C/r8nEYTXxxqIdLNlWwr2frA29vjulN5EQQoizX6dOnVi9enXd1y+99BKzZ8+muDjUL/a5554jJSWFtWvXsmrVKny+0AdlZrMZXf/5vYLH46k7vmLFCsaPH8+MGTMYNWoUEGqa/Pjjj7N7924yMjIoLS09KMcjjzzC0KFDWb9+PV9++WXd9QBsNlvdn00mE4FA/R9gTZs2jezsbGbMmFFXPLLb7ZhMoQ/6GlqGZBhG3WzmA+m6ztKlS8nOziY7O5u9e/cSFRXF5MmTef3113G73fTp04fc3FwGDRrEggULaNKkCRMmTGiwQfTRZJw4cWLdc27atIkpU6YA1Jvxl/dxrOob89PzHO3rfrjnnjdvHrNmzWLp0qWsXbuWzMzMur/bhu6nodf9cGN+LZk5dBL5AjpP/7CZi5u+zprILcy7ZmndsrKagAunbmCxOX719fv3vJ3+PUNdzE1mK4N6333Q4/f1/TNXLH0Iu25wRXR73nJtorp2D4PMMQR9Gqsjy3C7XUREHH47ZyHEua2i1o83LkCUMuOwhX5Y22l4qZVL6WS64ph6x6K6Yw6bmYA7VBzyHGVxKM5aQWJAx6cptlXn0T4lCqstG7emWLjhZSIsv8ccsQ2728CvIL3xTP527V08+elD2HSD3unX110v47yLMWc/TkApOrQaedT37rSZMOkmajm+4tCHK/Ko9QV586ok7lvzNlNnf0lJ9f2M7NSIH3zvskSr4p9f9OXS3n3xBw0SLFsAaJHYiQt69mb9jveJisynuLYSs2GQ2ujnqdM2u5O+5li+de+lRlPcm9SPiRe/xlfzHuHBXTNYnv06pa69eDXF5V1+x/+lZKAbQVJS0vkyO4ssrZTpi76ie/O+jE5vzKqd5by3bBezcvbRIsFBp8bR/LBxH4Ggjtn082dKDb15FEIIIU6EY5nhc6IMGzaMhx56iJdffpk//OEPAActiaqsrCQtLQ1N05g6dWpd/5vmzZuzceNGvF4vHo+H2bNnM2DAAKqrq6mtreWiiy6iT58+tGkTmlG9bds2evfuTe/evfnyyy/ZvXv3QTkqKytp0iTUfuSn3kUn2qBBg5g0aRKTJ0/GMAw+++wz3n33XaxWK2PHjuXuu+8mISGBsrIy4uPjGTFiBP/+97/rGkdnZ2eTkZHBtm3b6NKlC126dGHp0qXk5uYSERFBkyZN+P3vf09NTQ2rV68+bJPohgwfPpxLL72Uu+++m+TkZMrKynC5XPTu3Zu77rqL0tJSoqOj+eSTT+jatetBY6Ojo0lLS2PGjBmMGTMGr9dLMBgkKioKl6v+zU4GDRrEtGnTeOSRR5g3bx6JiYlER0efsNc2Ly+PuLg4IiMjyc3NZdmyZQCHvZ+GXvefsv7pT3/i22+/pbz8+D/Ik5lDJ1GFO1RJrgoU49IUGzd/SfbuCqLsZqoCNcQaJ/dNdYf2l3BrXAbXx3ahe9oADKUoNikGpPSgQ+wwqk0ac1f+96RmEEKc2YK6gcsTwKMCRGnW0PIwwIYJt1H/DhLVmsJKxEHHIq0m/MHQJy4eb9Vhn9MwDHaW1OCxuYn3m0kJaFRpVdzYL4EtEaFPV9YZm+jXOp417ny6aw4Gm2JYY93LrMUP84W/iKucbYiIjK+7ptUWRVvDTNMgRMcc/XJeh82MZliOeZe1X3p/RR59WsWzJ/91fJpiS1QJEZqLQW0SyNGq8GmK9Vuf5Ylv9vdZ0ncC0KJxL67o05mUAATtpeTVFpKma4f0bBqY2ocaTWE1DC7t9yAAF/S5lyjd4H857zN151c0CULXTleTlNyJlJR0AK7uF5re7lQ/8rsBLQG4vn8LgoZBhMXE2zf0Ykj7ZGp9QTbvq657vt1ltQz651w+Xnnwm1khhBDiTKaUYsaMGcyfP5+WLVvSq1cvJk6cyFNPPQXArbfeytSpU+nTpw+bN2+uWzbUtGlTrrjiCtLT07n22mvr+sW4XC5Gjx5Neno6gwcP5rnnngPgvvvuo0uXLnTu3JlBgwYdUti4//77efDBB+nfv/9J21WsW7duTJo0iV69etG7d29uvPFGMjMz6dSpEw8//DCDBw+ma9eu3HPPPQC88MILrFq1ivT0dDp27Mgrr7wCwPPPP1/XXDsiIoILL7yQefPm1TWonj59OnfdddevytixY0cef/xxRowYQXp6OhdccAEFBQWkpqYyZcoU+vbty/nnn99gn6h3332XF154gfT0dPr160dhYSHp6emYzWa6du1a9/fxkylTptTd4+TJk5k6deqvyt3Qaztq1CgCgQDp6ek88sgj9OkTms1+uPtp6HV/9NFHWbBgAd26deOHH36gWbNmvyrrgdTpuEtJjx49jMM19jpTbN7nYsRzC+iXNoUfozyMDnTigy0T+OMF7diw57dU6T7ev37NKclSUpzD0G+uAODb4f/lx5Ikpqy5hKGmRjx53exTkkEIceapqPWR8dhM2rd9gAx7IhOGfM7oFxdxYfvHKTBqmHHDuoPO93oq6fHRAAbXtOLft35ed/yej7Ip2/smWQlz+aDnn+nc8fIGn7OoykOvv82mebv7aV4TQ1AFKIqoZfJ5E/m/Le/Q1+9kqaWaJ1v+nsk7/svtsRmc3/k6bpx/NyUmRXLQ4Msr5hDpTD7ouquy38bnr6Ffz9uO+v5ve381/tIHWBVVwOpJ64963IG8gSDt//Qd/zesDQv2XkExQSo0xe3R5zMycwy/mX87dt0g0jAo2PIXdBXJTRmv8nHNNlZcl41mMvPAO8OZF9xHsqHRzOzgpeuWHvya7VvP8O+u5jfmJP527Zy6449/dBEfeUIFnBfbT2JInz8eNM7vraHXB735jdaSKb/9gr17l/HKwofZ5algXPNxjBv+J/JKa7nz5fvp1HQnT0wMNW987MuNvLl4ByZN8fp1PRja4eDXWgghhPg1cnJyOO+888IdQ4izRn3/ppRSWYZh9PjluUecOaSUaqqUmquUylFKbVBK3bX/+D+VUrlKqXVKqc+UUrENjN+plPpRKZWtlDrzKz7HoKI2tORCt4TWI+70bOXqXk25fVgbynUvsSbb4YafUIlJ55EcNGgRhLS0PqQmJNCmxsGiQCEBf/3bUQshxE/fx2qUQZQpoq7nkAULbg79cGHFltBWq1HWmIOOR9pMePyh2S7uI8wc2l5SQ6SqpMykEWtKxkkC+0zw1bbPceoGfxvzFhbD4O/bQrsydGs+lNatL+C9kW8yUDn4a5c/HFIYAuiRMemYCkMAUTYzQT20y5rff/idNhqyrzK0nDg6sJAtms7tjYfRIggLK+azakuogPZ/jQZRZtK4oMkndG4Sw25PMc0woZlCr/el542jVlPsNBk0i0g65DmSUzrzn/N+zx9HvnLQ8bFdb0QZBtdGtDikMARgsTloY5goMorQNMW0pX/jG18R25WP6XmhhoxRqpCSxnP5gl3UVBfi8oT6J43slMJ5qVHcOm016/ZU/KrXRgghhBBCnB6OZllZAPijYRjnAX2A25RSHYGZQGfDMNKBzcCDh7nGUMMwMuqrTp3NymtDy8oCllCvisIID09c2im0jaERJM4ceUrz3NNqHPecNxGA5Cgbek1rKk0a+QXnVM1OCHEMKt1+QKdGUzgtjrqeQxYsuNXBxaGiKg9//3IxAN2bH7x7g8Nqpsa/vyG1r5rD2VlSQ6ptKwAjO3Xjwo7dMZRill7JqIgmJCZ24LkON9BW2WkZVHRpH9qFokmTXvznumXHXAA6HIfNTDCwP3dt6RHOrl9BpRuA4sqZAIzqcy/XNB7MWs3Pa7t/IF43uGbkv+lLBCsdG3j2YhM7A9U0N//cD65nxvXE6KHXu3lU83qfZ2CvO0lIbHfQsU4dxvH18P9y//jPGszX3pZEbrAGQ9eZU72DAVo0Nyb2Yp0WYM+eZTz3/U1U7u819MgHU7nuzRVUewPcPrQtb07qSYLTyg1vr6TY5f1Vr48QQgghhAi/IxaHDMMoMAxj9f4/u4AcoIlhGD8YRt3evsuA+vdxO4dV7C8OVRHEZBiUmBQFhVkAlCuDWMupbQR98ZDHGNr3XgCSomy4/QkAlFXuOqU5hBBnjkq3H7uqIaAUTquzrueQCSvuX5y7cmc5QX8ZAElRiQc9Fmk1UxMIzRzy+OpvAviTHSU1xNtCO5WlJbRjZJ97uD+pH//tfDsP7S9yDO5zD29NWsUXN6zDHnH8W3c2JNpuwRf8aZe1X9for7AqNDvTFSwnVjeIiWnGFec/SxfdTIFJ0d0ci9I0plzwHxTwyNxb2aPpNI9sVHcNiyWS8+2NAWiWeGzT7Zs27Vs3A6k+HeLaUGpSfLfwMQpMimGN+zOy2y0APDrrdj7z7WOwHmrG6Havx+PXuaZ3M7qkxZAcZedfV2VSUu1jybaSY8olhBBCCCFOH8fUkFop1QLIBJb/4qEbgG8bGGYAPyilspRSNx1zwjNY+f7lGJUKuhH6pWj15i/wuMtxa4o4W2zYsllMGsqcAkCpa0/YcgghTm8Vbj9OUwUA0dYYIiwmlAKTYcWjKfTgz9t4Vrr92EyhJWPOiISDrhNpNeHVQ7MlPUdYnrWjpIb4yNDsoviY5kRExjPholfp0/1mLJZTO+My3mklGNy/HM7964pDBZWh4lB50EUyoZlXJrOVvwz8O3bdYEBqqBlh48Y9+Gubq9iEj4BSNI9pedB1Ls+8hfa6Rqc2F/3a26nX+Rk3E6UbPLTjf2iGweBuN9OkSS/SdQsrlJeuuoVnrv6GCN2gRWol3941kL+N7QKAoet0TA0VjvJKf92yOyGEEOJAp2NPXCHORMf6b+moi0NKKScwHfg/wzCqDjj+MKGlZ9MaGNrfMIxuwIWElqQNauD6NymlVimlVhUXFx/1DZzOymt9RJq81GqKnrHtaByED3Z+zebtPwAQH3lo34hTyWIPdTQvrS4Iaw4hxOmr0u3Hsb845LTHommKSIsJjJ92HquoO7fK48eq1YTOjfzFzCHbgcWhmsM+Z5HLi90aml2UENf6RNzGrxYfaSVghHZeqz3MzCHDMFiyraTeH8IFFW6i7GaKdTfJ2s+7uLVtM4q5l81k7LB/1B0bMfBPTOv/JL8xJzEw43cHXadTh3H87/q1xMS2OM67Olij1Ez+2n4CAaXIxE58fGib3evajKWdrvHMRW9js8fQGgtbawsPGvvP6WO544M+NHEG2FUmxSEhhBDHx263U1paKgUiIY6TYRiUlpZit9uPfPJ+Dc8zP4BSykKoMDTNMIxPDzg+ERgNDDca+BdsGEb+/v8vUkp9BvQCFtRz3mvAaxDareyo7+A0Vlnrp7Gjin1AnD2Bm5qOYEr+D9y5/K8kAMN73B7WfBFRLQAoc8tSACHEwZavfo3pG6fRNOU5IrUqygCnPbQ1vMNmrisOuWvLiNxfCKpy+7GZQ4WfKEfKQddzWM14dCcKcAd+uSDtYCXVXprHVWPXDSJ+UWQ61eIdVvx6qKDj9lY2eN73Gwq55b3VXNzhCZpGJjD5ii/rHiuo9JAaY6fICNDRGn3QOGdU6iHXat9uNH9rN/oE3cHRGd7vAf7uq6ZlSkbdsZEDH2HkwEfqvm5jS2CR5+fiUGXFTj6q2YZPKfokPENe6VOnMrIQQoizUFpaGnv27OFsmSwgRDjZ7XbS0o6++88Ri0NKKQW8AeQYhvHsAcdHAQ8Agw3DqPfjQqWUA9AMw3Dt//MI4LGjTneGK6/1kRxRzj4gJiKB8/vdz+vv/sAek+LZ1lef8E9/j1VSdCxRLp1ST1lYcwghTj+zt3zOt8EyRuU9gsMamr0TtX+pmMNmJqjvLw4d8P2jyuPHZgktoXL+ojgUaTXh0SOJADyHKQ4ZhkFJtRd/fC1xBijtmFY/n3DxDiv+YGjGU+1hikMzNxbh1MpZTBWdag6+v8IqD6nRGms0SLYnNHCF8Bs95K+HfbxNTCtm+PdRXraNuPjWfLX0H/iUYrgWzezIcrqVTAX6npqwQgghzkoWi4WWLVse+UQhxAl3NO+6+wMTgGH7t6PPVkpdBPwbiAJm7j/2CoBSqrFS6pv9Y1OARUqptcAK4GvDML478bdxeiqv9RNrC63Ai3EkY7FE8mSvh5mcPIALBjwU5nShHcuig4oy/+Gbwwohzj0F3tASqpmmXcQ4NgI/LxVz2EwE9f19eDwVdWOq3AHM5lBxyPHLmUM2MwFsmA3jsMWhWl8Qj1+nVnmIV0c1ufWkindY8egOANzeqnrP0XWD+ZuLaOdYTFApSozAQY8XVHpoai/AUIpk56Ezhc4UbZLTAVi3+XMqK3byaeFiztNNPH3VbFr7FXmxCykplx52QgghhBBnoqPZrWyRYRjKMIz0/dvRZxiG8Y1hGG0Mw2h6wLFb9p+fbxjGRfv/vN0wjK77/9fJMIwnTvYNnU4qan04zPuLQ87QrjNdO1/FtRe+HM5YdVKi7UQGTRQfoTmsEOLs9/KMa5i/rG5yKPnBGroZVqJ0gzXRoaVEPy0Vi7Sa8f7UpPmA2TRVHj9K8+LQDUxm60HXj7SGGjHbDQNPsOEtz0uqQ4+5lJ9409GvkT5ZYiMteI1Qcai2gV3W1u2tpKTah3N/Ea1EMzB0HQBfQKek2kusNR+A5OimpyD1ydGu+VCUYXD7prcY8Plv2KzpXJE2DLPFztjGt1JqUrzy3a3hjimEEEIIIX6F8H8sexYrr/VjjQ794hTjbBzmNIca2j6Z79dYKNUb/kVNCHFueLt8Hb2qdjK4zz1k7SqngCAXRzTBWQoLHLsBiNrfH8dpM+P11lMccvtJMPlw1tM1zmEL/bixGwr3YYtDPgAqVZAOZscJubfjYTFpmM2xANT6q+s9Z05uEZqCMkdoiZ1PKaqrC9jlclLjDWAYYFOhAltybHgbbB+PpOROTO02mZz8pfiDPtqmZNJ3/5b3XTpfSYevXmV1cGd4QwohhBBCiF9FikMniWEYVNb6UVrol4nYmOZhTnSoZgmRxJqj2KXcuH1BIvZ/si+EOLfU1pZQqyl2BFwEgjq/f+Mb/K0VSfYU1niHY4l8kiAQGZkMhGYBlfv3F4cOmE1T5QkQ4/ARVc+k1J9mDtkM8Oj+BrOEZg7plGuQ8IvmzeFiiwjNmKr21b+sLGtXGb0bV7LeCs19sMsKxaWbuf79IJXu0L0GjVBjzeSkjqcm9EmSmf5bMtN/e8jx5vGR2PxO9kRIDzshhBBCiDNReDt9nsVqfUF8QR1d1WAyjEP6b5wumsckU2XS+GTllrpjS7aWMPHNFdzw9ko25DfcgFUIcXYoLQ39+9+jGewoKiJW2wHAj3si2FXbiD6+BBrpqq45tNNmptr/0w5ePxeHKt1+vFoAp3bo5w4Oa+iYDQ2P7mswS0m1F6dWiU8p4k+T5s3RzhgidZ2KBnoOlVb7aGJbB0C8KzS7amv+JopdXnyB0PKy2kAJFsMgLrbVqQl9isU7rJiCcbg0DVfV3nDHEUIIIYQQx0iKQydJeW3olx+vUUvMabDjTkNaxIV6IX22bCm6bmAYBn/9Ooe1eypYtLWE95btCnNCIcTJVloZKgYFleLHLQuJtYR+ud9aEkuxy0vjRs/ywZjP6s6PtJqp8u0vDh2w1KrK7cejgjjVwf2GACJtoZlDVkPDowcOebwuS7WPWPM+AOLCvI39T+IirUTrUNFAz6HSGh82U6iQXuMJ7bCypXA7AH8638nlrT6hIlhJ8gEFtrONUgq7ObR8etXmpWFOI4QQQgghjtXZ+S71NFBRG1pK4MFDjHH6vswJjlBxqNqVx/wtxSzdXkpOQRWTR3VgeIdk5uQWYRj1NBARQpwVlm0v5elv59d9vaNgJRGWIgAu6TUIgPjoGOLj29Sd47SZKPup55C/BgCPP4g3oONWQaJMtkOex2rSMGsKKxpuo+HiUEm1l+SI0E5p8adJr7YEh5XIoInywKHN+w3DoLzGh6aFikOFnvYA5FfsIdJqwuR5l+9sWcwKlJCsHVo0O5sM7NANgP/MnM2OkpowpxFCCCGEEMdCeg6dJD/NHKoxvMTUs8TidJGwf+ecZGc5/5q1BYtJEe+wMiazCSZN8e36QjbkV9G5SUyYkwohTobs3RUYxs99Yva5tmCxVWExDG4aMZzWzUrp0SL+oDEOmxmP7sQKuPfvdujyhAo+NcrAaY445HmUUsRGWjEbGp7DFIdKq33E2ysAiI9OO867OzHiHFZsxSYq6mneX+UJENANdFWNyTDI97Um1jAo9ZTSNS2W7VU7AfArRZIp8hQnP7VGZg7kyYIXsZr3sWhrCS0Tw99QXAghhBBCHJ3Td0rLGa6wcB0DE/9DFX5itEM/RT9dxO9vlJ3eOED27gpW7izn+n4tsFtMDGkfaj47N7conBGFECdRYaUHkynUSyc5aFASKARrNam6wmSyMKJTI+Idv9iW3mbGa0SgGQa1ATcQ2sYeoFpTOC31F0ESnVY03YzH0BvMU1ztJdIWmoUTH316NPJPcFixBK1U1FPUKq/Zv4SYGmJ1MGkW4oJQo1eR2SyW7d5SOugaKUGD9tEtTnHyUyshoT023cBmq2BNXnm44wghhBBCiGNw+k5pOcPl7HyN7KQ8lGFwnvn0/bQ4Yf9SkeRoDyseHg4GJEWFillJUTa6psXw9pKdLNtRCkD/NoncOqQNH63Mwxc0mNDn9PjlTQjx6xRUujHMNcQEddqanORr1ViVRqrJ3uAYp80EaEQY4A56gFC/IZuqwa8UURZnveMSnTY0vwk3DReHSqq9pDlDfYzi4k6P5s1xDiumgJ0KdehSqdL9xaFao5Y4NIKxdqKCCp/JQ0ZaDJ8W+Lkksjn3jfkYs+XQGVVnE6VppBoKbLWsyasIdxwhhBBCCHEMZObQSdKl0z/o7o7EUIqYBn5ROh04HClYDYN9tftIjrKTHG1HKUVtdRGXvplOieNmOiY9hNevs6u0ln/N2kKNN8A/v9/EX7/aSGn1ocsshBBnjsJKDwGzh5igork9iXyLwR5zgMbWhpeSRu7feSzCAHdgf3HIE8C5v++Os4Et6BOdVoygCY9qOE9ptQ9dq8ahG9gj4n7lXZ1YCQ4rBCOo1hR+78EFop9mDrkMH7GalQl9mhNl2PBagrSJyqdGU7SObY3F5jhrm1EfKNUUQZXJzY6SmrrXRgghhBBCnP7O/neqYTK2W3NenfQD462pDGs7NtxxGqQ0jT5aFN/W7MDj/nkZwLysl9huMmiChewID69ensjfx3XBG9B5dcF2Sqp9+AI605bnhTG9EOJ4FVR68Jh8RATNtI7rg4ZBtKEY3PyCBsc4baHikB2Fe/+29JVuPw5Txf7HY+sdl+C0oQfNeBq4ri+gU+n241W1xBmHqSCdYnEOK8FgqMhfWXXw97yy/QWQKvzEmezcNKg1raPjqDLpFBYtA6BVctdTGziMGltjKdaCAKzZLUvLhBBCCCHOFFIcOols9himXP0DPTImhTvKYV2ffjNlmuLzBY/WHft210xSggYPdr8XgDW50+nVMh6H1cQr87ehFGQ2i+Wdpbt4d1nof1+ty0fXZWczIc4UtW4XZdUuasw6toCVQtOVFG36B8+MWMzwfg80OC7SGtqW3m4o3MFQr6Eqt5+I/b2LohqY8ZO4vzjk1hTBwKGzSkKFFp08VUWTwyxrO9USHFZ8gdBsqPLKXQc9VrZ/84EKdGL3zxJNsMVRpsGWorUAtGo68BSmDa/UyBTKTIpIUy2rd1XUHa/y+Fmxo6zhgUIIIYQQIqykOCTonn4d6bqZt/bOpaa6kMrKPBbpVYyKakPn9mOx6QZZBUuxmU0MaJuIL6CT2TSW+0d2oKTayyMz1vPIjPXc/v4anvgmJ9y3I4Q4Sjd8MIg+jf9BpcnAFIjgvwu2E2Ex0Srp8LtM/TRzyIYJt7G/OOTxY9tfHHLaE+odl+i0ou+fgVNVtfuQx3MKq+gYuYg8M1ycNvRX39eJFuew4tFDy+wqXHsPeqysxkeERadSg9j9y+kSIhIJKkVW6QZidYP4/b3dzgWNo5sBMDz1cz5ctpntxdW4fUGue2MFV7y6lK1F1WFOKIQQQggh6iMNqQVK07iz6x+4ed0L3PG/0TSzxRNQigu7XIfF5qCLsrO6OrSUYliHZL7fsI9hHZLp2zqBtY+OwBcINZd9ae5W3li0g3YpTq7s2SyctySEOIItW79jgymAzenCq2kQdFLjC/DKb7vjsB3+R0OU3QKAFQ23HtrBq8odINLsAiDamVLvuESnDX8gCgjNwImLb33Q419m55MYv4Ay3WBk73uP6/5OJIfVhDcYD0BFzb6DHiur8ZEWWUOhUsTZQzOmWiZ1hqKFzDWq6KZs50SvoZ/07fxbmu/4gnlRa+nOTq54NYKYCDPbS0K9mubmFtEm2UmtL8CULzZwZc9mdG9+evSWEkIIIYQ4l50771jFYfXudhOPtxjLKjxM9xUwyhRHx3ZjAOge04ZcFaCmupD0uO1c1uotLj7PTk11Ie9/PxGHqiQpysYjozvSJtnJ1z8WhvdmhBBH9N2PbwHg1UK9fdompfH05V0Z0anREcdG2ffPHDIs1BLqL1Pl8RNpqwAgKb5dveMSnTY8wVgAKqr2HPSY2xdkwcZcchwuRtkbE+lMPuZ7OlmUUmBpDEB5bdFBj5XV+GjkCC2Xio1IAqBvt1v4R4vxZBgWRqT0PrVhwywx6Ty+mLiGC7QYdkRWcF6qk0SnjWcu70qHRlHMzt1HIKhz+/tr+HjVHj5ZdegMMiGEEKeXQLDhXUaFEGcPmTkk6owe8lda5XYnPqY5jVIz6453azoIvWoDV358AXs0g6BN0evHZzBrZv5T+SOWOfdx4yVTMWmKTo2jWbVTmpAKcTozdJ3vyjeSrlvI07xUmDSGdOjEwG5pRzU+0mrCpCksWKg1QjNCqtx+zBYXZsMgNrZlveMSnFZqA6EZOOU1BQc9Njt3H6mW5ezUFCPaXHocd3dymGxNAKjwlB50vKzGRzNr6HtenCM0Y0ppGhcOnsKFg6ec0oynC81kpn+j3szM/4G3BtXQquVwALYUVfPfBdu5/3/rmJNbRLzDKlveCyHEae6jlXk88XUOb19WS+um3YmJkdUBQpytZOaQOEjHDmMOKgwBdO98Lb8xJ9HKHM3EqPYkBw2WF2WxfN8qAN4tzcJdG/rkvE2Sk70Vbmq8gVOeXQhxdDZs/oo8E7TUMmlVEwtAQvTRv9lTSuG0mTEbFqpVqAl9lSdAwFRDok6Dy6gSnFaqAqF+RBU1B8/AmblxH0mO0CySts2HHOMdnXxRjhgidZ0Kb9VBx8tqfDjMFQDERTUOQ7LTU4/9M09Xbf6i7tiwDskEdINP1+zl1iGtmdi3BZuLXFR5/GFKKYQQ4nCCusFLc7dh9udx46pH+M93t7NoS8kxXcPjDzI3t+iQTWtcHj/zNxefyLhCiOMkxSFxRDZ7DH+7dg4vXLeYu8dPp489mZX+clZ4S2gZVJRpite//wN+fy0JwfnEmQrYXlwT7thCiAZ8n70QgOW7W+H3j2EADlo2G3RM14iym9EMOzUqNBOprMaLx+QhSVkaHGMzmwhaQsvWyn8xA2dToQtrRDHRukFi4nnHeEcnX2ykheggVPhcBx0vq/FhMVWGzoluGo5op6VmTfuTFDRYVZxddyyzaSwjUj9mQudC7hvZnsxmsRgGrNtdGb6gQgghGjQrZx95ZbV0ivscv1L8WLWH376xnK1FriMPJrQc7bZpq7n+7ZV8uS7/oMfeWryTiW+uYEeJ/M4gxOlCikPimPVq1ItyTVFiUkxsegGDlZPXqjbS971e/L3gX6S2eJ7cvTvCHVMIUY9AUCenILSky+WPRosexMsTlxERGX9M14myW0C3ElAKn8/FnnI31ZqfRFPkYcdFOxKx6wYVnoq6Y0HdYHtJDZXmKlqfpg2c4yKtROomygO1dce8gSDV3gBKC80miotpEaZ0px+lafSwJrDKV4qhh3pVzFnyN5bGrsan3kUpRUazWMzKx+qtssulEEKcjt5avIPGMTaKY3cCkGfyAjpvLd7Z4Jj3lu3i8leWcPkrS7j4hUXMzi3CaTPz7sJsVm7L48FP1+HxB8naFVqSPSe3iCVbS3jw0x8PmV0khDi1Tr934OK017vjVXV/7tXhMl64diHPtb6G0fbG3BabwV4LzPrx1jAmFEI0ZObGfXgCoWLG5X0yuLLnr5vtEmU3owcjANhXtpeKWj/lmk6SNeqw4xKcVqJ1KPf//KnjnvJafAGdPZqPVraEX5XnZIt1WLAFTVToXgB03WDLvtC27H6qsRoGEZGJ4Yx42umZ3I1ik2L2kqfIz1/FY1s/BGCFtwRD14m2WxiU9gwz8m+pKyAJIYQ4+fxBncqKnZSU5B50/KcdiAGKXV6W7yhjXOss9loUrTxQadLoEL2HH4uv4YPvHmJflYeyGl/dGJfHz5Pf5lJY5cFi0khwWnlkdEfuGWSmNPJ+nv9uPB+s2M28TcWsySsHdJatn8DUb57ggxV5zNtcVJfvQNIQW4hTQxpSi2PWqFEGLYLgA9Ka9EZpGucPeJDzeRCA1f8ewZKoAvLzV9G4cY/whhVCHOSjVbux20Jv5P5vVG9MZuuvuk603Yy/0g5AXvFeLHioMGkk2g8/AynRacNXq6g4YAbO1qJq4k35VJg0WsfU38w63GIjrFiCVsqMUO6/fLmBqUt3AeClhrjD9Fo6V/1m4J+Z8eE8HtwyDcuWaQSB6x1teKtmK9t3zMbjd7HSWQlorMpdSM+Og8MdWQghznqFlR6GPD2X81s/TrFRw0fXZwPw7rJdPPnVai5t+yrdGnfEiLsbw4DawEKshoGpZCCkLaJPs2+YHoTX93zOn//WHT927hjWhj+OaM9HK3dT7Q3wzqSOrF7/CKWeMvyl0Swtz6HErFHmcNM8ci9vLIqjyhPgvJh9LIuopIMxF6XO578LdjB99V425lfx3f8NxGY28cOGQu7+KJv/XteDfm3kQxghTiYpDolf5aGut6HrgXp/GYq29QOms6tAikNCnG4KKz20tgdw6MavLgwBRNstlJeGZg7llxYQb66iFkiMTDnsuASnlTKXmYqgp+7Y1qJqmthz2Qm0Tu76qzOdTHGRFkwBGxUq1Bshp8BF56RaYmL/zlLdRxNlCnPC0489Io5//eYDrv/icuI1K48NfR6z2cZbs37H0s3TmblvJRYM/Erx8vcf0bp5X+Idv/6/SSGEEEeWvbscj19nW7CSfBPU1pawZGeQxz9fRbemf+NLfMzcs4f++f1JiY5hvXcPnbGxrrY7sIhv/TtAUxRZNG7uOpudxo28OGcrNd4g328opGeLOHZtf5F/lWURqRu4FRhKMcHennc9m+iS8iH5Rin9E1rTp2VHXquBrREB7hgQRfaWB9mcP4Qdnh58ubaAlokO7vhgDd6AzufZ+XXFoezdFWTtKifKbuaybmlomgrviyrEWUKKQ+JX6dv9lgYfS07qBpXT2Vm8gb6nMJMQ4shcngDBSC/O41zWH2U3s8cXKg4VVRYTaymjFkiKTjvsuESnjR1BC+WGu+7Y1qJqkhy7Q8WhpgOOL9hJEhtphWAk1Vo5fn8tBVVuBiTm8JXJTxfdwpjGx9bQ+1yRmNiBzyeuQTP9/HYjLQgvFC7CrSn+1GgYfyuYQ8DYyhfZe5nU//ScOSaEEGeL3EIXJnwUmkBXis3bvudvPzRhSKMfWOLw0ceVzErnPioqX2B46z/xlTvALbEdyYtrgx7UKTNpDFJOioNuvnEv4JEOrYmo3s2qtQZ7q0fw1zGdmLZsDs10+GrSOmpq9lFUkkOrlsPYPLUn8+2hHcqambZgaKGfDQGl2Fn6IGviqujsnIHmGsqrc36kxG2iUYydpnGRlOx+lNe/jGHChW9w49RVlFSHlnk3i4+kT6vTc0m6EGcamQMvTri2zbpi0w22lklTaiFON1VuP37lw3mc3/6j7BaqfKHm0+XVJcTaQruPJR2hKXO8w4opYKdC/Vyd2lpcjSWiCKdukJzU+bhynSxxkRaCQScA5eU7Kaz04LBUAPDogMe5YuS/wpju9HZgYQigd0Qqbk0xIbIVV458gZa6hs9eSmGVN0wJhRDi3JFb4CLVup2ACs22Wbl9PtuLa4iN3oVdN3jo8o/JqI5hXXQpCbyPoRQ9mw9n7r1DaGdyADA4pRdT+k4hEsWdW97mO9ts8tJm88EVxZwXvYcVystvErqiNA1nVCqtWg4DYOJ5E4gPGnSutpJnhQWVm2gdVETpBnONKmy6wXpLgJ7x/6Q88T7SI99n6vW9GN5kLavitvBGySo+X7OLkmovz1wemmm8Oq88PC+kEGchKQ6JE65LWgIpfshzF4c7ihDiAEHdwOUN4FMBnOr4Jo5G2c24g6E3iVW1FcRFhrYjT4xve9hx8Y7QDByXpvD7azEMg637qqkyV9Ia62nbtyfOYcUfjAYgr2gb/qCBWasAICG2VRiTnXkm9n2IPyb05t5x0wFob4unyOahyOU5wkghhBDH4sAG0z/ZtM9F48iddV+vKw01pd5j7KOjstEyJYGbh/wTm2HwjnslVsMg/bzLAGgXmQrAoPRJdOwwhk+vXcLfm4/htc630URX/Cn7aZ6YdTsAo7vffshzD+x1J/MmraN36s2hLJpOekQyAyyhmT9/b3sN8brB5+zEqylK47NoHKXzVcFLGEC1pvh68ce0S3HS2raQtHb3syH3FioqdlLk8pBf4ZYdz4Q4Dqfnu3BxRmuZ6CAmYKfAqD3yyUKIU8bl8QPgVgGcmuW4rhVlt1AbjAGg2leJ1VqFMgwS4tsddlx8pLVuBk5lxS4KKj24vAHyTT5a20/faeGxkRbc++83v2Q3AAFCBbGY2OZhy3UmatliCJNGv143o+i8mDYUmzWqKraHOZkQQpw9ymt89P37bB7+7EcMI1QwcfuC7CytoVViGQDt/Bo7guW0TzKRq/lJdzYDoG/nftzf7GJ0pUjHjs0e+vl33aC/8mzrq2mUmgmA1RbF6CF/pW/3W3h2wN8BWKC7GKqiSUvrU28upWnceekNJARDmTrHd+LGPpO5O74n5/ebzIOtL+dCUzyPpA5nlwkmvD+QzSadQdXpAAT9S/jdgJbM+PEtajTFInshf/7sOno9MZt+T85hypcbTtIrKsTZT3oOiRPOpCliiCfXnE8w4DuuprdCiBOnyh0AwI2O02Q7rmtF2c3U6tFogMdfjcleQ5wBZov9sOPinVZ8gdAMnPLKXWysjibWVEiZSaNV9OnbbyY2wkptILQT277KvUBzvEY10bqBxRIZ3nBnuPapPaB0OdQuB8aFO44QQpwV3l+RR2mNj2VrP+PB0qdo1/4vtE6JxjBAWYqJ1HWSvWkscezmytQ1fOBXdEnpXjd+zNAn2fHpFjKb9K87lpKSzgUp6fU+X/t2o5ndbjQAhn74rec1k5m+tiS+CpTQqdkg2rW5kHZtLgRg1KBHGcWj+P21vPZuLzaagtwRl8EFF7/Cts/7EJmwj0vTE3hxfT79jVhK3R422cpok+ykWXwkH63czf+d3461eyro0iSGROfxvd8R4lwiM4fESZEYkYZfKfIL14Y7ihBiv6r9M4dqlIHTdPgizpGEikNOlGEQxEOtqiWJI+/YFR9pxROMBaDCtZel20ppE7UZgNZJXY4r08lkNWv4VTIApdVFAFTrtcQb8mP0eHVsPQqrYVBjnXXEXyiEEEIcmS+gM3XJTga0jsWR9glfW9by/aIp3PJuFgAlRgWNgyaKKpuhK8Umz/8ASG87uu4aStO457LPGNr33mN+/qNZIj6u0wT6EUG7VqPqfdxiieSvXW/ngeT+/H70VFomOugdmcp6VcOqtW9SqSkGpo3A4kmkwAy/7xvHgxd2wBvQ+d3UlVz/1koe/uzHY84uxLlM3tWKk6JZQicAsrctCXMSIcRPqtw/FYfAaT6+2S5RdgsGZiINAzQvVcpLonbkglOcw0pNMDQDp7y6gGXbS2kWmw9Am9N0p7KfaNbGAFR5y7GaNCp0N/HHuTxPQExsC36jMljv8PHBD3eFO44QQpxx/v5tDl9k51G0bz0An2TtpsjlZVij79lhgTjdYHej1XRPfpQhKf8iT3fTxh7La7c9QYZuYbXJR3LQoFGjjFOWuWfGDbw6cQUWm6PBc/p2v4XfXvhKXbGpe6NeuDTFo+tfJVI3uLjfbfj8LTCUoo3jR9qmRDGktZXiwmXERFj4YeM+ftxTyW3TVpO1SxpXC3EkUhwSJ0WX1qFN7DcXrK87FtQN3L7gQefV+gJ166CFECdXlcePGS8eTeG0Oo/rWtH20KrkSB10zU+JCtLIGnPEcRaTRtCUAkBBZSE7S2vRrIVE6gYpKV2PK9PJ5nTGEqnrVPsrSYmxUa77iDdFhDvWWaFd+8do59aYmj833FGEEOKMsGjFi6xd/yHFLi+vzt/Otwsnc+G3VzEnexl/+WIjvVtE823JFzQLwtSh/8aEYrejhqz4AvJN0MyRSkJMIv+9ajbjrI24OrH7kZ80zIb2uI2x1hRilYnfxnbC6UxgeEZoOdq2wpWsWPM6haZ7qGn1Fm9d4cSkFJe/uoSvfyzghw2FYU4vxOlPikPipOjWrgc23WC3a1fdsRfnbGHQP+dS4w31Pdmyz0XGYzOZt0l2NRPiVKhyB3CYKgCOuzgUZQ/NmLHpiqDZS5kGyUfZUNpsawLArooCAEpUOa2xnLY7lf0kLtJKlK6oMWpIjY6gXOnEWY7vdRQhjWIdONyJFGlH7lUhhBACHl3/Kn9f+STzNoWWOpdrm/ApxdszX6dZQiSXNP+EXC3ILS0vpWWLISyYuI75N6znemdoV9FWce0BsEfE8ZerZ3LjJVPDdi9HyxmVymNXz2L69Wu5Y+xHANw44jdE6QbL9mVxe/bzAASUYt22N/lN18Z4/DoOq4ntJTVhTC7EmeH0ficuzlhWi5VmARP5gWIqa0NLWb5aV0Cxy8v01XsAeGPRDnwBnRU7y8IZVYhzRpXHj8NUBYDzKGb5HE7U/plDVl2j0uLFUIoUZ+OjGhvtjCEmqFPsLiPKbman4aG17fTdqewnMREWHEGNWjw0ijJRriDOdnyvowhJjrKjB6IIKEVVVV644wghxGnLF9D5aNEiikyKDVqQRRtWEWnR2RXhAcCwbuKR4Wb+XTiHXoaN0YMfA37uA3T32P/xepc7uKDvfWG7hxNJaRptlY2ZegUeBf8Z+i8662a+KV5FpvM1Brf7MwNaO9ghxSEhjkiKQ+KkaWtPoNDq44OVeewuq2VrUTWagrcW76Sk2suna/YCsKnQFeakQpwbqtx+HKbQ9utR9rjjulak1YRJU1h0jYL9bXdSYloc1dgEh5WYoEZlsJquSbWUmhStok//7eDbJkdhC5ioVQFSI8sxlCL+KGdLicNLjrLhC8QCUFK6JbxhhBDiNDZz4z6mzfuk7uuyohlc1nYb1SYNq25QHlnBvI2P4VXw56HPHTIrV2kavbvdhNUWdaqjnzTtIxoBcL4pllYthzEquSc5WpCnixew2uSjMe9TXr6LLdtmhTmpEKc3KQ6Jk6ZLYjvKzRqfLVnIjP2FoLvPb8eOkhpGv7AIX0CnS5MYKQ4JcYpUuv3E2EKfnDmOsziklCLKbsaimwkoBUByfJujGhsXacURNONSXlpF7wagaezRjQ2nW4a0wqnZqTUFibeEpvHHRyaHOdXZIcFpwx0IFdpemrWAzfvk54IQQtQnp6CKGPt2AJy6jm7PxWldBUDHqjh2WeFz717G2tNo3nxgOKOeMl1TuqMZBr/reQ8Ao3rcjjIMWukarYOKrMBikpv9g9/N/z9ZuizEYUhxSJw07Rv1BMBhrOGZmZtplejgliGtuapHGp2bRPPHC9oxqnMj9la4qfL4ce3fZlsIcXJUeQI4rW4AoiITj/t6UXYzJt1c93VKUqejGhfvtGL1W3GZgsRaQw0iGx1lYSmcbGYTrWMTcJmgRWyoyBYfdXRL6cThmTQFltBrubcsjxdmy+whIYSoT26hC92+j6SATusaJ7sc1WS519MiCO0TfwNAEJjU/9HwBj2FLhz4Z74bMZVOHcYBkJKSzhtd7+a/oz9gYvNR7DAb7LEqyk2KyspdR7iaEOcuKQ6Jk6Zti2EA9GpRAsD5HVPw1BSw1HUtY5p/wR3D29KhURQDU5/knvcGkPHYTFbskP5DQpwsVW4/EeZaABwRJ6A4ZLOg9NCaMrtuEB2VdlTjEhxWtGAkFSaFpoVm4DRK6nzceU6FhIhYajSNQCAfgLjopmFOdPawRbQAwGqp5Nv1heytcIc3kBBCnIY27auiwu6mkc+O5smg0qSxUQsyPKY991/2Bxy6wUWWJJo27RvuqKeMZjKT2vjg3dZ6Zv6OpOROXDzgES7QYulaGVpGtzt/VTgiCnFGkOKQOGli41qSHDSoNPL56o4B3HNBO9bkfEyZpnhzxxcYuk6LGB+50eWsNdWg634WbS0Jd2whzlpVHj9Wc+gXbqcz5bivF2U3YzZsAKQY6qh3G4uLtKIHovBqilJfHhbDID6+7XHnORVibaHleNvLNwEQf5R9lsSROaOaYDEMmiaFdrScumQnAKvzylm/tzKMyYQQ4vRQ7Q1QVF7CHrNBt4RW/OPG55g54h3m/+Yz7hr7MVZbFB8Pf4VHxn5y5IudI6y2KJ757QJKq0YDsLtkPQCGYfDp6j14A8FwxhPitGI+8ilC/HrtzU42+8ro3CS0o0/WnkUAbNF01vz4HoUV2/Fo+/uVmHezJq9R2LIKcTYLBnwkeP+LsoV6uUQ5U4/7mhnNYindHQ3sI0WzHfW4BKcVvz/0PWGTr4gUQ6GZzowfR7GRSQDsqA7NHIqNbRnOOGeVni0T2b0dsNdySdfGvLFoBw6rmZfmbiXeYWXhA0OxmOQzLSHEuWtToYsW9h/JV4qMxt1oFBsJsZkHndOs2YAwpTt9KaWwR6cDH7C7ItSvaXVeBfd8vBaAcd2ObuazEGc7eZclTqr2jjS2qyAlxTkAZFXtoIOuEaUbvLH2Zb7Y+S3KMAAY0KyA7LwKdN2oG59bWMXEN1dQUesLS34hzhaLs15icewqsq3bMRsGVuvx71Ly4IXn0b1ZqE9MsuXorxcXacUdDDUf3qICNDqGwlK4xTlDBewd/kpidAOzxR7mRGeP24a2IVmzUBao4a9jOtM+JYrnZm3GaTdTWOXhmx8LgNAvR797eyXV3kCYEwshxKm1qdBFnC1U3Giddu4sGzsR0pKakBDQ2V0T+lmyvbgaCPVwEkKESHFInFSXdr8DBTz1/c24a8vYoHz0i27DdfEZLDCqWUwtQ43QMo3kqHxc3gBb93+zBvjXrC3M31zMtOV5YboDIc4Oa/OXAVBq0ogyOOolYEfisEYDkHIMW7onOGxU+UPL2gJK0egYCkvhFusMFcO2mgyaYw1zmrNPoimCEt2D02bm7et7MqlfCz6/rT+tkhy8sWgHhmHwwYo8ZucWMTe3KNxxhRDilNpUWIXdXoTJMEhr0ivccc4orZMcxPvN7PaVA7CjJLSxRF7erTwwbUgYkwlx+pDikDipWrQYzE1xGXwXLOeJGVcQUIruaYO45dL3eCfzAa6wNWHyyOeJ0g1q9FAlf01e6Jv27rJavt9QiElTvLN0J76AbD0pxK+1rmpH3Z+dhjph13XYQ8vDkh1H38MowWnFpf+8y1ejYygshVvTxr3ooGtcZmvMMxe+Ge44Z50Ei5MSI8iyrFdZnvU4Uy7pRNP4SK7v35J1eypZubOcuZtCRSEpDgkhzjWb9rkw7FWk6QqLJTLccc4oHRpFE+mPYLfuBWBnaag4tEcrYZlPep4KAVIcEqfA70a9Sh8i+Ny/D2UYZOzfZjIz/bc8ctV3pDbuTkss7A2UMijtcWauupbnZ23m4Rnr0ZTi8TGd2VflrVtSIIQ4NmvzSlmv19DaEyoKOZXphF3baQ/N/EuJOvpduxw2M2/fdAnm/UtKGznPnO3gI53JfHL9Wh696nsaNcoId5yzToI9jjINHl37bx7K+5z3vr0FgPHdmpBgD/CXLzewq7QWh9XEvM3FBA9YhiyEEGe7HSU1VJjdNDM7wh3ljNOhURSaL5Zik8LjLmd7cag4VGrWKdMUFeU7Ghw7b1MRu/YXk4Q4mx2xOKSUaqqUmquUylFKbVBK3bX/+D+VUrlKqXVKqc+UUrENjB+llNqklNqqlJp8gvOLM4DF5uC1Cct4tdMf+EerK4iOOfSXyBa2eH7U3ayJqma9vYwXZuWwYHMxV/RsypU9mpIcZWPB5uIwpBfizPfClx9SrWlEVHSiWQDiT2CPn67nXc4Nznb07XrDMY3r0jSOxP2TARvJjl9iv8SIJAylyDdBWhCeKlrMwhUvsHTl09DiYXxlcwC4fVhbymp8rN1TEd7AQghxitR4A+yrcpNv0mkekRzuOGecZvGRBIKhvoF5e1ews7SGLikeqvdvdLBzz5J6x3kDQW56N4t/zdpyyrIKES5Hsz1MAPijYRirlVJRQJZSaiYwE3jQMIyAUuop4EHggQMHKqVMwEvABcAeYKVS6gvDMDae0LsQpz2lafTrcWuDj7eKaobbH1oiUKNpfHODRvu2F6GUCm15n3gvwfLmwOenKLEQZwdfQMdTsxScUFCbzl3tf0uP5vEn7Pr2iDjuHj/9V41NVBYKCdAovt0JyyPObInOxrAPInSDD8Z+ycTPLuXx9f/Fj4HPpEhJ+BYtMJSrezVl6Zpb+WLufLpN/Ee4YwshxEm3o6SGJPNuPJqiRXSLcMc542iawmFvA2Sxac9qPP50BjerZOf+VqdvL5rJ7xNG06lxzEHjNuZX4Qvo5EjjanEOOOLMIcMwCgzDWL3/zy4gB2hiGMYPhmH8tFXIMqC+PQB7AVsNw9huGIYP+BC49MREF2eTlgnnAdCHCADWbP8epUJLYNb8+B459iDbTNvDlk+IM9XGgio0204cus6QbhcxrNsImjY9PXY4STSF/r03SkkPcxJxukiICr2VGGJJIDauJY92v5d8E5Ro0MOwkRNVzf8NsmEOlrI2bi/Znu/4ZNXuMKcWQoiTb2dpDY1sWwFoltgxzGnOTIlJPQDYWpQLQErEzy0ryjx5XP/WSrJ2lbGp0MWmQhcef5DVeRUA7CwqI7/wx1OeWYhT6Zh6DimlWgCZwPJfPHQD8G09Q5oAB75r27P/mBAH6d7xCgbg4M/DniM5aLCm5OdvvtM3vA3ALiuUlmwOU0Ihzkxr8spxW6tphZUpl3YlJtIS7kh1UqwxOHWD6Kj6PlsQ56JWzQbSLAhXp/8egG5dr+PexL48kDKQhwf+DZ9S5Oe/QnbO/9CVYrtN58kZs2TZsRDirLejuIYo2x4AWqT2DHOaM1Pbpu2JCerscIV2QQ4E8wGICerYY2pw+4OMf3kpI59fwMjnF3D3R9l1G+V0i3mHMd9eTU11YdjyC3GyHc2yMgCUUk5gOvB/hmFUHXD8YUJLz6bVN6yeY/V2j1RK3QTcBNCsWbOjjSXOEjGxLXh5Ymir7W7WeNb4SgGoqtzND94i2gQ1tloMsnI+ZsTAP4UzqhBnlDV5FXjMQVJNp9928TcO/huj9q1FabI3ggiJjWvJ1zcc/MnsxItfq/tz94U2Pitexfm+0PR+Qyl6Ji/hD++lMrFfC1onORnfXYqNQoizz47SGiIiSrDpBikpXcMd54zUoVEUyevN5KsybGaNSt8+zIZBpimWHcEqvrlzID/urQRgVs4+Pluzl2i7hVZJDgxbHm5NsW3XfNI7XRnmOxHi5Diqd+RKKQuhwtA0wzA+PeD4RGA0cK1hGPUVffYAB3YfTgPy63sOwzBeMwyjh2EYPZKSko42vzgLZSZ2odCkeOmzq7nh09F4NEWfqN8RoeuszK+/WZwQon6r88qpNukkWJzhjnKIRqmZ9MiYFO4Y4gxyadNh7DLBp1W5dNJNxOoG0XFbSY2N4D/ztvHHT9bi8QfDHVMIIU64HSU1+KxVNMOEZjrqz/fFATqnxRAdcFJkDjCwbSL57mJSdEW76DT2aAax5nIuaBfNRV1SeWBUB8yaotLt57LuaZTY3QBsK8wK810IcfIczW5lCngDyDEM49kDjo8i1ID6EsMwahsYvhJoq5RqqZSyAlcBXxx/bHE2G9HjDtJ1C69UrafECPKvthOIbTSaFm4rK2v2hDueEGeMYpeXveUuKjVFnDU63HGEOG4jet9DhG5Qril6RrWknzWR5YFivr+zL/+4LNS7qtjlDXNKIYQ48XaU1FBq8tLcfPrNBD5TRNstDGlxHuVmjWfGpFAYqKaxZqNlXDuCSjHo05EMf783L3x6OTkbX+KyVt/SJ/Z9uiZ7KLCEFsTM2rKGoU/P44a3VxLU610QI8QZ62jKzv2BCcCPSqns/cceAl4AbMDM/Y2DlxmGcYtSqjHwumEYF+3fyex24HvABLxpGMaGE30T4uySmNiBadevprRkM5GRiURExlO0Ig+bO5Ucx26qKncTHdP0yBcS4hy3u7yWKK2cgFLERySEO44Qx83hbMRwaxJfBUronjYAXQ/yzZZ3+WzuZJKbTQZgX5WHpvGRYU4qhBAnTnmND1dtDQVmgxGRjcId54zWMrEjlC5n5+4lFOheetmT6XXelWTu/IbzIlPJ95TxelUOhis39JtyKqzJfRwAZRiU6KWkxUUwJ7eIWTn7GNlJ/j7E2eOIxSHDMBZRf++gbxo4Px+46ICvv2noXCEOJyHx5+2tYyIs+P3xwG4qKndJcUiIo1Ba7SPWUkQ5EBeZHO44QpwQE3vcTfmyJ+jZ+VoiI5PptvkjXtzzA8+2vBmAIpk5JIQ4y+worSHVup1KpWge2yrccc5oLVJ7wqa32FKwgiINGkUkkZzSmXcm/bxcrKpyNzt2L8ZssnDTskd5q2o9KEV7t5kyu49vJ/Zk8D/n8caiHVIcEmcV6QIqzggxkRb8wVDPFFdtUZjTCHFmKKn2EmUqASDeIW9exNmhQ/tLeGXichzORihN44E+j1Cu4OVFvyXJvIs9u+cR8HvCHVMIIU6YnSU1JNm2A9AiKT3Mac5sTRr3xGwYLC5cga4UjZ2HbmIQHdOUrp2votN54xntaIFPKVKCBv0SO1JoUnjdRVzXOwVTxb9YsmFVGO5CiJNDikPijBATYcH7U3GoRrYsFuJolFZ7iTCXARAfLbPtxNmpY4cxPNpkJKtx42n7Mi8W/41PZt8b7lhCCHHC7CipwWkL7enTrHGvMKc5s5ktdprpGrP0Smy6QWabiw97/vhutwFwnjma9CahXeKyNnzE8l0TWd9oA6/Pu5uSapmxKs4O0upenBFiIiy49VBD3Wp3WZjTCHFmKKn24bBVARAX2yK8YYQ4icZf8AydNg3m6e9eJTt6F3muvHBHEkKIX+3lGdeSVbmZ1yeuBGB7SQ1WeylRukF8fJswpzvztbbEkBcs57lON9Gq5bDDntuuzYXcuPYNujcdTFpyOmx5jztz/osJaBPUyIko46a35zPtpuG8PH8bM9bsPWh8pNXE29f3olGM/STekRAnhhSHxBkhNtKKW48BwOUtD3MaIc4MxdVebNYaAOJjW4c5jRAnV4f2l1A0M554/RbKfFXhjiOEEL/a/PINbFIBggEfJrOVnSU1xNiraY4FpcnCj+N1//kv8PuqPM5rf+lRnX/X+P8BEAz4SA4aJCkzjw38OyUVO7h5w8uYXR9y0QtWdpTU0L9NAslRoUKQy+NnVk4Ra/dU0ChGlveL058Uh8QZwWE1UavHAlDtrQxvGCHOEKXVXmLMtUTpBhabI9xxhDjpkqNslHtNlAZqwh1FCCF+FZ/XxSYVIKAUxcUbSGmUwY6SGpo099HNmhjueGeFRqmZNErNPOZxJrOVb65ZjMXiQDOZaR3wkbzuPziSf2TFlhouTk/lxasy0bTQXk4l1V56PD6LwkrpgyfODFJ6FmcEpRRmaxIALq98IizE0Sip9hHQPMQb9W04KcTZJynKjj1goVT3hTuKEEIcM8MweHfWBwRU6Of23qJ1FLu8BP1V7DNBC0fjMCcUNnsMmik0v8JktnJFQiarzB7+MmA2z1+ZUVcYAoiPtGI1aeRXusMVV4hjIsUhccaIjozEoeu45BNhIY5KabUXt+YlTrOEO4oQp0RKtA0tYKOUYLijCCHEMdtZWsucDTPrvs4v28z2khqa2XIwlKJZrPQbOt387qL/0hs7L5T8wJYtX7Bv3zpue6cv/5p+GVlr36RdTCElpdvRg4FwRxXiiKQ4JM4Y0REWInWo9teGO4oQpz1/UKe81k+18hNvigh3HCFOieQoOyrgoELBTVOXUO2VN+NCiDNHbkEVyr4Xp64DsLdqFztKamgUNxOLYdCr45VhTih+yWyx84/ffECsDvcveYSHv/sdS3QXb7lyuWHd8+xKeZYfgpN57OOLwh1ViCOS4pA4Y8RGWojQNVxBmZopxJGU14SW1VRqOnFm6Tckzg3JUTaCgSgMpVi9+Uf+8F4W/qB+yHl7K+TniBDi9JNb6KLC7qKlz0Zi0CC/tpCde9ezMbqCS2yNSUruFO6Ioh7x8W14MvNu8jSD5Xh4qPEFzB/zFa92vIULfV1p5oNcT1G4YwpxRFIcEmeMmAgLdl2jWnpJCHFExdVeFAEqNUW8LSbccYQ4JZKjbfgCsQCMaBdg4ZYSPlxx8Lb28zcX0//JOazaWRaGhEII0bCt+XnssRpEeBJprKzs8Vayfc/z+BVc3++RcMcTh9Ez83dMbjSY30a04LLznyEmtgX9et5GXNrDxHucFBsyk1Wc/qQ4JM4YMREWLLoJl+4PdxQhTnul1T6iTaUElSI+IiHccYQ4JZKj7NQGQv+9X9xR0SrRwcycgz+tfW3BNgCyd1ec6nhCCHFY/or/ElSK/MpupJqd7A662Ra5lz6Gg+bNB4Y7njiCa0a9xANXfInSfv4VOzU6tNy5VEP6DonTnhSHxBkjNsKCKWim2pBGo0IcSWHJTro0eg2A1OgW4Q0jxCmSFGUjOb4FAGXV+QztkMyy7aXU+kJvyHMKqli8tXT/n13hiimEEIeo9njIi9xAa68ip7Y/5kA0hWZFsVljdPPh4Y4nfqVGMREEA9EElaKsfGu44whxWFIcEmeMmEgrWtBKJTq9/zaL3n+bRb+/z+aDFXnsLqvlspeX8MXa/HDHFOK0sDjnftZHVTMxsi2De/1fuOMIcUqYNMW/JvwGgLLafQzrkIwvoNcVhN5ctIMIi4n0tBjc+57juwV/CWdcIYSo892il9hrVfSKHAhoFJU7ATAbBkO6/yG84cSvlhpjx+uPB6CkdHOY0whxeOZwBxDiaI3q3IgNOdGs1yoY0TYRpWls2ufioc9+JDXaTn6lh7V7Kkh0WOnXJjHccYUIq62UcF6tjT9OnI5SKtxxhDhloqKaYDEMimqLqFh7K11a5fDJ4igyms7l8+x8ruiZRgQuvihfSem2bEYNejTckYUQgpV7fiDC0Llk2EP8d0M2ZbVJkAB9NSfRMU3DHU/8Sqmxdmr8SQAUV+6kQ5jzCHE4MnNInDGaxEbQsVEyAaX4y+jmPDk+nfdv7EPXtFhKqn3897oetEx0cOeHa/D4ZemZOHdVuwrYbTJwBhpJYUicc5SmkaDDd65tvF6dg8uks8xSxVOfz8UX1Lm+f0scvo+o1TT2IP0fhBCnh1JfFXEBxXlNGtMkNoJCTzs0w+DiZiPCHU0ch0SHDVcwFYDiqrwjnC1EeElxSJxRoqzRALhcoeVjEVYTH97Uh9l/HMwFHVOY8ptOlFT7+Dx7bzhjChFWi9d9jqEUrRO7hzuKEGGRoMwUmRTxusH97X6PoRTbd33OsA7JtE5ykl2zGIAqTVFVuTvMaYUQ57qSai8VuptYzJg0RctEB4WBVrzb/w0uGjQl3PHEcdA0hTmiJQDFNfvCnEaIw5PikDijOG2xALgO+OZqt5hoGh8JQN/WCXRoFMUbi3ZgGEY4IgoRdvNy5wIwfsAVYU4iRHgkmCIAGO1szbAeE7EYBkmxW7hzeFsK8rPI0ry08IbO3Vu4OoxJhRAC3lu2ixpTgGSrA4ARHVO4OD2V9La9D9r5SpyZWqc2Ijqos89dEu4oQhyWfLcRZ5So/VtyV9cW1/u4UorfDWjJ5n3VLNoq34DFuafGG2C3ZweNAgZtm3UOdxwhwiLBEvoFa0zmH7BHxNEFG9WRpWQ0jeX71S8DkFI7AIC9xRvDllMIIXTd4L1leVSbDJJtUQBM6NuCl67pFuZk4kT5bd/mxAQVe2vLwx1FiMOS4pA4o/xcHGq48HNJRmMSnTbe3D97aG+Fu+6xvRVumVEkzmprd1dQZK2hnRYd7ihChM1vOlzNLdGdadtmFADdo1uxQfmprS5iZnEWHXUTrZqHZtZtLdlMsctLtVf6DwkhTr3yWh/l1S4qNUW8LS7cccRJMLhtEtFBC8WB2oN+D9ldVsuy7aVsK64OYzohfibFIXFGcUaGdiGrcpc2eI7NbGJCn+bM3VTMwzPW0//JOXy1Lp8v1ubT/8k5vDJ/+6mKK8Qpt3rbFgqsGp3j2oQ7ihBh0zPzd9w29oO6r3s0HUJQKd6d/UfWaQEuSMxgwuDeRAV11u3byfnPzueSfy+ivMYXxtRCiHNRkctLnKkIQykSImS33bORpimSrVFUmIKs2FEGgMvj56IXFnLVa8u48PmFVLr9YU4phBSHxBkmytkIgGpvBQC5m75gwfLn2LlzPgCVlXnk5S3i2j7NsJo13l+eh1Lw2oLtvLZgG0rBU9/l8vW6gnDdghAn1ea8tQA0i20R3iBCnEZ6pk8iXTfz74psAEZ0vZGm8ZEkB02UBCswaYo95W5uencV/qAe3rBCiHPKvioPMZYiAOIdKWFOI06W5tGJlJsUbyzcAsBHK3fj8gS4eVArfEGdtbsrwhtQCKQ4JM4wPxeHqtizZxlXLX2I23LfZOy821ia9QqTpo9m3Oxb2LXtQ24f2obR6an86eKOrNtTyfq9Vfx5dEfOS43mpblbw3wnQpx4hmGQXxbaeSnWkRzmNEKcPiw2B/8Z+xnt9f9v777Do6ryP46/z52S3gshBRIg9F6liaKCoNjFXrC7dte17rru2ta6/uxlLSiKioIiKiq9915DgJCQ3jNpk8zc8/tjsiwoKCjkpnxfz8PDzJ1bPncO5Ga+c+45Bv21k3btfOMNtXOGUOGs54NJg3j6/F6szijlu83y5YEQovEUuNwE2X3DJUSGJFqcRpwobYJi8SjFml1b2FNYyQfLMhiUHMHtozuhFKzLlPGIhPWkOCSalcDAWAytKXeXMXnpP1HAm91vpo2puGnLa+wxTCI13LHuOc5LzefVy/tz2eAkwgIchAc6uHRQO87tG8+23AryymutPh0hjqt9xdVoj++Wy/DgthanEaJpCQtP5rOrVvPWJXMOLEsObkOBHXq2Deb8fgl0iA46MF6dEEI0hkKXmwCb71ajKOn122K1DfNNZ98uYCvjX17M/tIarh+Rwv593zGy3T/YtPtqPvzhfS59eznFlW6L04rWSopDollRhkF37eDjih3MqM7kbGccwwfdzv+NeJoIU3NvzFDeH/setQqmrngGgECnnZcu7ctLl/QlwGljdFdfj4p5OwqsPBUhjrv1WaU47eUAhIUkWJxGiKbHZnfiH/C/AV8Tg5OoV4qCwi0YhmLS8GQ27i/ns9VZLE0vYtnuImrrvRYmFkK0dAUVtQT4uQCIjOhgcRpxogzreyMhpiax7SomDkzintM7c0b3ON5d/QLb/KtZ71fJ/F3vsWJPCTd8uIaaOrn2iMYnxSHR7Lx81hTaaoM6BZOGPgRAl85ns+DqDVxz1jskJAzmFFsE31btpd5dBcCpXWI5pYuvKJQaG0xCeIAUh0SLszW7Aqfd928+PKy9xWmEaPpS2w4CYN3OGQBcOCCRiEAHD07fzBX/Wcnl76zk6ndXSYFICHHCFLjcOJ1V2LUmVG4ra7ECAiM5NyiFpUY5dw63c9fpqdRW57OgvoTRqi0dam2UOsq5fEg7NmSVceen6/Ga0otVNC4pDolmJya2Bx9eOIuPB/2dDimnHVhu2OwHHp/X+QJKDcWita/+YnulFKO7xrI0Xb4RFi1LYaUbp7MGu9YEyaCWQvymPj0uJc6r+XbfjwDYzCpm3TmSz28eyuc3D+Wf5/ZgVUYJ93+xyeKkQoiWqsDlRttriDR9PeRFy3XxoHvwKMVni/8BwLzVr+A2FKd3vpSg2nCynSb/OKszj03owU/b8rnmvVX87astvzoURqHLzaNfb+Gh6ZtYtruosU5FtFDyE0g0S2Fh7ejV4+Ijvj6s/61EeTVfpX/9i9dmzPkLcd73qan3kl5QeSJjCtGoSqrq0PZawuQXTCGOimGzMy6sM0tNF89MO4ehnw5nw4anGZwSyeCUSK4emsyk4cnM3JgjXyYIIU6IAlctbqOWKGX/7ZVFs9YhZTRnGGG8U76Zbxc8yrR9s0nwwmmDryXKryO1hmJ/znKCq17hrkHZ7Cpw8fHKfbw8b9cR9/n6gnSmrNjHrI25THp/NWv3lTTiGYmWRj49iBbJ7vDnvLCuLDIryMlZw4w5f2HmvIepdOXyxP7vebPyR0ZGv05+hQxKLVqOkqo6PIabcPnRLsRRO7vPjXiVYkr1XoI0PJQxne8XPnbg9S5tQgAorqqzKKEQoqXSWlNQ4abKqCfS8LM6jmgEj5//BZ20jQf3zWC9quPyuKHY7DZuHn0eAJ+uep7Hcn7kA9fLXNH1bS4ekMT0dfspPcw1qKK2ns9XZ3Fu3wQW3n8q8eEBXPLWCno/9gMfLN3byGcmWgL5BCFarEuGPoQCnpxzB4/t/57H983ky0WPUqcUfU0HG2Iy2bt3ttUxhThuSqvqqDXqCTMcVkcRotno3Gkcg7Ufp6gQZl88h67aztu7p6NNE4CoYN8HNpk9RghxvFXUeHB7TMqVlyhHkNVxRCMICo7jjbM+4f6YYcwc9QpXj38bgI7Jp2HXms+qMwgyNeMcMbzj2s6QiO+prTf595w0FqYVHvLn/+bsoqrOy3XDUyjM/pFbe8/hht47iQ8P4NX56dLjVRwz6b8oWqy28QMYbYvgJ7OMUA0VhuKlwuUkmIpnx09mzA+Xk5H/LXCN1VGF+MO01hRX1REd46GNLdTqOEI0K+9cteLAuHUXJ5zKP3PnsG3nDHp0u5DoYCcARVIcEkIcZwWuWsCkzIBIZ5jVcUQjiYntwVXj3zpkmcMviA7aRpphMt4/gYfO/5IdHw/lzX0fMaF9e3Zui+LD5Zf8Yl9DUiLpFOnltJ8exGUoAB7o4uavC3sxc2MOEwcmNco5iZZBeg6JFu3qfrdiaM3fOk7kZBWMRynGh3elbVwv2tfBnvp0qyMKcVzU1Htxe0xchkm4PdDqOEI0KwdPaDB2yL34mZqvNr1LSUk6mzc/xsjoNyisqLYwoRCiJSpwuWnvtxW3oUgKlVlGW7uuflEAXNjnRhx+Qfx94P3kG7AgMJP0tuv46Mp4vrx12CF/3r56ID+teB6XofhX+/NJ8So+yv2YXm1M/m/OLh6avold+S6Lz0w0F9JzSLRofXtezuKkkYSGJREf1YUdKx/n3AF3ApBYH8eqwFyqKwsIDI61OKkQf0xxZR1gUm4owpwhVscRotkKDUtitCOKz2oy+fSb830LYyB5+/1cMniateGEEM3airVvsSzjB0zT5K5zPqbAVUtSyDJKgJE9r7I6nrDYxb1voO2umXTv4rv29Ot9JT+16UthaRqXrvw7O/e8xA3nTP7Fdl9k/kB7E8af/BhtwjswaeMLEPkwMR6Tb9Y+TIi/g4fHd2vs0xHNkBSHRIsXGubrTtm7xyXM7fG/7phhzpOoV1+xessURp10r1XxhDguSqvrCDIqqFeKcGe41XGEaNZuGvoI/queJTm4HUNSz+bpOc/wdfB2zt3wAQP7Xmt1PCFEM+T11HHvpleoVVCvFLZZV+MX9Qy1QZl08iraxg+wOqKwWN+el9O35+WHLItt05PYNj0ZsvJpPi1ay4idM9mSuYBV+Wup1168WrNe1fHn2CEow2Bg32t5qTqfNdlLmVK9l2GxM8kr727RGYnmRopDotUKiTkbv5IZrMhcIMUh0ewVV9URZi/CBYQHRFodR4hmrVPHMfyz45gDz/Nm2iD4EVbt/UGKQ0KI32VH+ixchuLZ5AtZmbOM9107GV3wDLsDPFwd0sXqeKKJu6LzJdyZNpmLVzwCQBuvJkTZAOivnJw3/JED65427AFGmybrJ/dnf9BWAsuqLMksmh8pDolWKy4yhjb5kFVTaHUUIf6w0qo6goxiXEBYYIzVcYRoUUKDo6kxNSV15VZHEUI0U2t2fw/AwG4XM2rQ7Wz+9DTmBq4AFCM7TrA2nGjyThlyL2/Y/KitqyQxpgddUs9GGUcePlgZBpe3H88jWd/Qr+7PfDJ7IJef+VojJhbNkQxILVqt+PAAgjwOCrw1VkcR4g8rqaoj0F4GQHhQnLVhhGhhooL9CDUVhbUVfLxyHwAr9xQzfd1+i5MJIZqD/Ipa5uVsILFes6M8lsDAaK7v/zn9SmIYYgbQt8elVkcUTZwyDEYMvoPTRzxE1y7n/Gph6L/OHP4QqfUG2wOqeCZvIZ762kZIKpozKQ6JVisuzB+nJ4AiPFZHEeIP8xWHfL0awoPjLU4jRMsSHexHoNdGvruKv321heo6D/+ek8bfvtqC19RWxxNCNHGfrtxNmq2a2Jpwrp+8hlV7S1i02826sgd4/aoV2B3+VkcULZDTL4Rzu39N58JumEpRXJJmdSTRxElxSLRabcP8MTxBFBu+QQKFaM5KquoI9PPdUx7WMAi7EOL4iAl24vTYqVQeTA3rM8vYtL+cqjovaTJFsBDiN2zeMYtKm8F53U8lKSKAS95ezqersxiZGo3TLh/HxInTNsyf2vooAAqLd1qcRjR1MuaQaLVigv0wPWGYKo+Skl3ExPY45HVXbT0FLjcdY4ItSijEr1ux9i2SE4YQF9eXiooslF8BAGFh7SxOJkTLEhXsh93rh8vwdcn/dHUW1XVewFco6tY21Mp4QogmLL/cRaljKv6m5uQ+V3HSwCSmrsyk3tRc2D/B6niihWsbFkBFfSwA+WV76GlxHtG0SXFItFp2m4GfIw7Yyd7cbb8oDj0yYwvzdhSw5q+n4++wWRNSiCPQpskdm14hduOr3NvlCtbwETVBBm28Gocj0Op4QrQo0cF+KG8AFbYKnHb4bnMuAE67wbrMUi4fIgVZIcThvf3N9aQFeLk3cgxR0Z0BuHeMzE4mGkdcmD+lHt9wA4UVMk6e+HXSj1G0aucOGAjA5CVLqa33HlieU1bDt5tzqXR7WLGn2Kp4QhxRRUUmtYYi0wZ3p39MtEcxvv5sPj/vK6ujCdHiRAU7MT1BeJTi7C42vKYmOtjJyE7RrM8stTqeEKIJW+zeRo8aB9eMf87qKKIVigpy4tLx2LSmoDrP6jiiifvN4pBSKkkpNV8ptV0ptVUpdVfD8osbnptKqYG/sn2GUmqzUmqDUmrN8QwvxB81pEt/AMqqsrn38w2YDQOLTl6egdYaP7vBvB0FVkYU4rCKS3cDcIYRxigVTFXeffjFXEFkZCeLkwnR8kQH++Hx+m4d6xHrG9urb1IE/RL9SeBfZOXusjKeEKKJmrxoM3k2SHG2w7BJL3TR+AxDERMaTKRXU1ArX2aIX3c0t5V5gD9rrdcppUKAtUqpn4AtwAXAW0exj1O11kV/IKcQJ0RUZGeU1qTE1jFlcx6pW79HAR5Tc1avtrg9XubtKOAf52iUUlbHFeKA4rIMADqHTODF1b2p85pEBjmtDSVECxUT4ofbGwZA26Ayggx/+iWlElE3nfXR2Xw870kevOIDa0MKIZqUHXkVfDhvJjpFMbxDb6vjiFYsPiwAj2mjoL7C6iiiifvN4pDWOhfIbXjsUkptBxK01j8B8oFZNGt2hz9RJhgB1bw4sQ+7CysBsCnFxQOTWLSrkDnbC0gvqCS1TQgbs8romRCGzZB/98I6tfVedub6eg79lGbQPiqQcT3jmDhQZikT4kQIC3Bw/oB+PJe/iJqa7QSmziZen8/+at+0wJtLt/Hxyn1ENRRoeyWGkxAeYGVkIYTF1mSUEuHcSwHQIa6/1XFEKxYX5k9JmR+Ftlqro4gm7pgGpFZKJQP9gJXHsJkGflRKaeAtrfXbR9j3TcBNAO3aycCOovHEKDuFdS4u6J/4i9eGJNTTq8ODzJh/GSMG3sTl/1nJvy/pw/n9frmuEI3li7X7mb11O8TCnvIInr6sC2f2jLM6lhAt2mm9evNcPizNW0GtoZiXPZcaXQ9AXkAVj8zYcmDdrnEhfH/XSPkCTYhWLL2gkmB/3+D1yYnDLE4jWrOEiADKCvzJ96+xOopo4o56QGqlVDDwJXC31vpY+qQN11r3B8YBtymlTj7cSlrrt7XWA7XWA2NiYo5h90L8MW1sgRSah/9huXLzi2T4wdaiWby+wNdTY3WG3K8rrJVVWo1hr8SmNSGh7TmjexurIwnR4kVEdABghafM97e3gk1mDUGmpsBuMPXKML6/ayQPjevKjjwXS9NlMgMhWrPdhZUYAaXEejWBwbFWxxGtWJ/EMHR9KC5DUVNdYnUc0YQdVXFIKeXAVxj6WGs9/VgOoLXOafi7AJgBDD7WkEKcSDHOUArx/mK5Nk2+yF0CQFZAOUvSC1AK1u2T4pCwVmGFG8NRTbipeeTsXnKboxCNIMA/Ej9T4zIUSmtqDUWNoZgYkgpAWfEcurUN5ZphyUQHO3l3yR6LEwshrJReUEmFvYoUm9xiKqzVr10E9Z5wAAqLtlkbRjRpRzNbmQLeBbZrrV88lp0rpYIaBrFGKRUEjME3kLUQTUaMfxQlhqKkJP3Asjq3i3krniPdpulp2im0G6T4p3H54Hak5buodHsOrLsus5ShT88lr1zu4xWNo8DlxmN3E63sjO0ht5MJ0RiUYRDhm9CSk40QAhpmt5x40gMEmJoN+b4JWf0dNq48qT3zdxaS/OC33PvZBrwN6wohWgdXbT255dXk2D0k+0VbHUe0cm1C/bHb2wJQcNDnHSF+7mh6Dg0HrgJGN0xHv0EpNV4pdb5Saj8wFPhWKfUDgFIqXin1XcO2bYAlSqmNwCrgW6317BNwHkL8boNTxmDXmgu+Oo8bJw/mzPd6MWjqUO7eNYVwU/P3Yf8A4PweOzmjextMDZuyyg5s/9q8dHLLa0nLd1l0BqK1KXDVUmOrJ8rwszqKEK1KhPIN1dgnPJUR9ggSvZCYeBK9jQAWVu6jvr4agBtGduAvY7swcWAi09dn8/isQ7+pTS849EsGIUTLsruwikhbHi7DIDmsvdVxhCAuqhMAmcW7D/nMorVm/s4CZm3KIbO42qp4ook4mtnKlgBHumdhxmHWzwHGNzzeA/T5IwGFONEG9LmGqf4RPLv8n1SZ9fTxi+LswDhSIjozsNtFxMb0JH7pI+yt3cY1SREMCfuUOcs+Z1inyewtqmLujgIAiirdFp+JaC0KXG50qJcu9mCrowjRqkQYTqCGrnEDmTjqCWqqfeMKXdnlUu7Y+QEz5j9Mu6huLNrzHeX1lTw6YQqBTjsfLMvg7N5tGZgcSW55DeP+bzFd4kL47KahBPkd09wgQogmaOv2L+maOgGb3TdjYXpBJSmBa0kDkqN6WBtOCKBLu/78sB++37qOB+ctYfJ1gxnaMYoftuZzy5S1AHRvG8p3d420OKmwkvxGIgTQtcs5vNflnCO+PjSgLbNrc3BQTkHsOrI9kPPhavaV1mI3FB5TU1xZ14iJRWvl9ngpq3ZjNyDKL8zqOEK0KuH2QPDU0DX5NMLC2hEW5ptdddTge+i34xOey55Dbe5c/EyN21B0X/JP/jL2Faav28+7S/YyMDmSycv24TU123Nd3Dl1Pf+5ZqDMaiZEM5aVtZxLVz3GY/uXceEZLwCQnrWZ4rjFtPca9O95mcUJhYABqanE79FU2vJpG+7PTR+t4ctbh/Hekr0kRgRwdq8YZq+cxfyVu8jTo4kK8WeMDF3Q6hz1bGVCtGbjulxElaF4ZdYkiuwG5TaDsqJVeE2TO09LxWk3KKyoQJum1VFFC1fochNslOM2FFH+UVbHEaJV6RbWic6mQUzsoT0BlGFw78A/4wBuCO7CssuX09O080XuUgIdBpcPac8PW/PYkVfB1FWZnNkzjgfP7MrcHQWs2iszxwjRnGXkrgZgad4qwHebzs68f1BpKF4Y+S8CA2XMIWG9nvFhJJohFATU8vENQwi0m1z29gpWZZRw7bBk8gpvpbjDJ9y54998Ouc1/jV7B+D79yxaDykOCXEUBva+llivZkpNxoFlV/bP48d7RnHnaalEBdpZl3sN//riyL2PhDge8ivcRNhzAYgKkinshWhM1579H764Zv1hX+vb83KWXrOJuy78AqdfCBcljibdplm+7k0uHRCGoRRnvrSY8pp6rh+RwlVD2xMR6ODdJXsb+SyEEMfLmwt3M23NCgBWeUoxvR6en72D3Q4XQ81IuqSeZXFCIXycdoNRSb0osCmKs2dCwl/oEvUQHYL2ckpSEfN0Gf2rgjG0JixwI3sKq9hbVMVl76zg/i82Yh7FxAoFFbWc9NRcVmfIlx7NlRSHhDgKNruT8aG+6YpPVsEEmJrNBf/7gNAzZBk7nSa7a/KtiihaiUJXLSH2QgCiguMtTiNE66OMI//qdPBr44Y+QJCpuXnrG1z87Rk8MGQp957RmWcv7E3/dhGUl2zlwpTv+Gl7LvuKq9Bas2pvCbX13sY4DSHEcbA0vYgydx4A5Ybip1WfM23pPErtBifF97Q4nRCH6pEwHICnVv+LGgW7AmrRCW/y5eon0ErRIfJO2rsVtUEF9A7+katnDmZP5jo+X7P/QE+iw1m7z3ft+nFbPnkVtczZJp+HmispDglxlCb0vQmb1pybchbdlT+bq7L/96LjRwBKTBl3SJxYBS43gXbfNzJRMgOKEE1WYHAsL/e9m/uih9IFJ6+Ufk1nx1QmDkpCKcVzP93OZ+ZcRkR+yF+mbeK1+elMfGs5szblWh1dCHGU9hRW4XFWEOb1DSuwLG0mSYGbAOiRONzKaEL8QreO41Bas83wMkwF8eGwJyk3YEr1XgZpP8YOHkN4TRS7/TwExCyizGbQK2oeVw8MZMPG53hv0S8LRJv3l3PhG8t5ac4u5jdM0pOVcS+PfDK6sU9PHAdSHBLiKHXuNI45Z3/BGcMfpndwEjtUPXVuF8VFaaz3KwegTMs3vuLEKqhw4+9oKA5FdrI4jRDi1wzudwPXnPU271wyhy7axmvpX6BNk6rKPBbUl+DUmi0x2ynL/57nf0wDIL+i1uLUQoif25U+m1dmXHLI2JK19V5yymuotLtpV+9HR69iV20a0aH7MLSmS8dxFiYW4pcCg2PpYPo+/p/f4Wy6dTmXe2J9Rczz24/lpA5RXNb/TOqUYpu/BwB3SAZOz3Nsj1/Nt9su4dZ3v+Sf32zD7fF95nl3yR4A1mx8n7rC53EYXjb5ZzK7roB6d5UFZyn+CCkOCXEMoqO7ogyDXnGDqFeK+z8/k4kzL8CroEeVg1IDGZRanFAFrlpsgblEmpqoyM5WxxFCHIWAwEiubD+ODJtmzaYPmLvqZdyG4t/dridQQ2rSPC7sn0iAw0ZJlfRAFaKp+Xr9m7xdsY2s/csOLMssqUZrKHaY2N2BjArtwha/OrL9s+lgGgQERlqYWIjD6xsQR6SpOXXw3QBceeYbfDH0ac4e9TgAw3pfitIapTWDa4PZYnfzVU0mPU07+/y8FHse5/2lu7hv2iaySqqZtSmXQckR1EZ+x6aYrUzsOJdym0GdUqTtmW3hmYrfQ4pDQvwOowbdwUV+8azzlBOpbNwQfhv2qkQ8SuFyZf/2DoT4nQpcbgr9XPS2hf7q2CdCiKZl7NAHCDE1kze9w5eZP5DghZGD7mJsQCKrVRmPj29LZJCTYletfMkgRBNy3mtL2V7hu91z054fDizfU1hFsFFKhc1A14WRVXU5Tg37HNDdX2YoE03TfWdP5rNxU3D6hQC+sfK6dD77wO+UYeHJ9NZOTrWFcefwu/AqhdtQPHnK8zyUOJbt/l6u7f45e3ZN5fTnZuHVmrsG5bDPD0ylWKzmHjjWpn3zDzzWWnPlf1by0PTNjXvC4pjIJwshfgenXwh/v/QHFl6ziWmTNpKYfA4ebygAZeX7LE4nWjJXeRZZDkWv8I5WRxFCHAP/gAjODUphoa5knapjYswglGFwVrfLqDEU89a8QlSwk+ryu7h9ioxVIkRTUF5dz4asMnK07/aYTfnrDry2t6iKNk7fbIOxIclM3+6kW0UEAN0jujR+WCGOQnBIW+Li+v7qOm9f8iPPXvwdvbpdRJxXM9oIpUPKaVxw2nMM0n58oTeR2f57+nZ8ilcuSmbJ7sk4tKaH106pTdG51iDSY7I8dxPT1+0no6iKNftKWZJexLQ1e1m95bvGOVlxzOxWBxCiOftvlT062A+3NwyAkopM2lkZSrRYWmsc7iUA9E4YYXEaIcSx+tOZb9Jnw39IiRtA507jAejX8wrarn2OLzO+p5O9kp8Cyoj0/vaUwUKIE29vcRV23OQ1fGLaVJ1NeVkGu/ctIqOoL/FBuRQAlw89md2ecDCvo59+lZN7XmllbCH+kMDA//V8mzphGoEBUYDvc8+/xn3Ago3/od7r5tn8xby18TIKlMloRyRjk8/k3t1TSVGdcNRmsNNZwszPNxLib6dzmxBC/Oz0Dv6A69bu4GPlonePS6w6RXEEUhwS4jiICnZS5fH94CyrlJlmxIlR4HLjtG9HaU3PzudYHUcIcYxCQhM48+S/H7LMsNm5os1Qni9aAQFzAChXYHo9GDb5NU0IK2UUVdHWuZsypYj1anYaHm6bfgEbbfUMqg4hJMh3a05K4gCm3dIBr3kS/o5JFqcW4viJjul2yPPYNj2ZOOYlACIXPsane78hFsWkgXfTtdPZPFSZzZlDHmDKvId5p3Ijn01K5i9fbMVW9hlXDr6TJbm+Gc+mrH+DZ6U41OTIbx1CHAfRwX646n1V9tLKPIvTiJZqR54Ld0A+KV6D4JC2VscRQhwn15z1Dp3Xvslb697F41ZsDKnBVZlDWJj0QxWisZSXZWC3+xMUHHdg2e4CF9F+eykDutclsiAgm422ek4yA1gdUIFXuQgwNRHhHVCGgcNmWXwhGt24UY8xbtRjhyy7/MzXABjacTTvbNzIK8uuwtm2ju02RWjhjWQ4oE29yU+6iIL8LcS26WlBcnEkMuaQEMdBRKCTCjMGgNKaYovTiJaoqjKPyYvOYluQh0FBSVbHEUIcZ0MH3MKgTlPxVPpmISwvz7Q4kRCtx1dzH2DMjLP585fnHli2cMWLzMy+kKjQnQBszh0FQIob5u58hOA9kzhPp3J321EyQYQQPzOw97X8Ne5UinQ9IcrGWfZoVqpaAk2N3n8JXuDL5U9bHVP8jPQcEuI4sBmKgMBoMDWl7lKr44gWaN7qV1jtqGFwWTx/vvEjq+MIIU6AqCDngfHrSiv2y/h1QjSCzVun8bf93xEBLKWa7OxVVBhdWbD3J0psBmtD8gnzajLcvblBpXPmsEtY17UjhurFhf3vICLIafUpCNHkKMPgkrEv898bxzz1tTimnU274HY8uXMAvb3T2OHKsDKiOAwpDglxnCREBFJpakrqKqyOIlqgilpf0VEF3EpAYKTFaYQQJ0JEkJNqj+//d1lljsVphGgdMgo2AvBM79u5efOrfLXq37y/9XqSY3PADzxKkaDtuAIc/OnCN4gMcjLQ4sxCNDd2hz+PX+4bV++1DT8SbvqR56myOJX4OekDKcRxMnFgIoFeg0J3pdVRRAvkcvuKjslxckuZEC1VVJATl9c3FfaPW7dTUFFrcSIhWr6ssv0ARLc5g5NUIF+Xbqa00kWmw0PnGt9HpU4BUax8+DQipZeQEH9YUkQgAd5A8rXH6ijiZ6Q4JMRxckG/RAK9doo98su8OL5MU1NUXYGfqema0MbqOEKIEyQiyEmFJxaAfaX5/LAt3+JEQrRsxZVu1mdn4TQ1t36WybjEseTaFCdFTqHGMHCU9eSmoOFcNeAu/GW0aSGOi8SIAKgPptimqHO7rI4jDiLFISGOkwCnjUhHEBXKw4o9Mii1OH5u+HANO4uKCTQ13dqGWB1HCHGCRAU5qTTDsGuNYatiZ57cpizEifSPb7ZRQxWRJuwrqWFe9ukEmyYZ0b7ptgtqu3He6Bfp2uUci5MK0XIkRgRQVRMOQEHhVmvDiENIcUiI4ygpJIIKG9z04Ro+XJ7B/B0FaK0prnSzfLcUjMTvszPPhc3hJQiD7m1DrY4jhDhBQv0d2AwboV6NttWwM0++URXiRErLd2E664gxHNw4sgOztlfStSqSCpuBn6n5ywVXkRQZaHVMIVqUxIhAXHW+WZ7zinZYnEYcTIpDQhxH0QHhVBsGYc56Hv16K5M+WM3Lc9O5/J2VXPnuSspr6q2OKJohV2092u4l1LChlLI6jhDiBDEMRUSggyCvwmNzsyuviDoZx06IE6bA5abKqCfKFsA1w5KxG4qc4lMASMXBuN7trQ0oRAuUFBlAWX1bAPLL9licRhxMikNCHEcR/tEAfHRVG5Y/NJrxveL495w0dua78JqaTfvLrA0omh2tNZVuD27lIVjJBJNCtHQRgU4CvHY8Di89op/gtqmjrY4kRItU5zEpqaqj1DCJcgTTJtSfs3vHs7NmMIO8/oyO6mV1RCFapMSIQArr2gGQ58qyOI04mBSHhDiOerY/BYBV26bQNiyAFyf25dJBSTx7UW+UgnX7ytBaY5ra2qCi2aiq82JqqFVeggw/q+MIIU6wyCAnfqadGpuXzMAq1lBNTU2Z1bGEaHGKKt0YeCg3FNH+kQDceVoqZ/dO4JUrlnPjOR9anFCIlikhPIBqHUaIaZJfXWB1HHEQKQ4JcRx1TZ1AJ9Pg65zFAPg7bDxxTmcu7p9Aamwwu3fP5IXvVnLqCwtwe7wWpxXNgavWdytiDSbBNikOCdHSxYb646cDyLZpymwGHqW46v+eYXuuDE4txPFU4HITYSvAVIqoAF/P75ToIF69vD9BftJTV4gTJcjPTnSwkyivQZ67zOo44iBSHBLiOFKGwbkxg9hk1PPV3Ae4b8rJDJ0ykL99OoYhYTOZ7/8BW9L+yb7iamZtzD3ifrbmlJNeIAORCnDVegCoUpogu7/FaYQQJ9r9Y7vQJToWz0HjiwXYNzNrU46FqYRoeQoqagl3+H4Xiw6OtziNEK3LGd3jCKxzkOepYsWeYgoqaq2OJJDikBDH3fhBd2Nozd/2f8eq+hIGGEF8XZ/P18YPANT45REd7Me7S/ai9S9vL9uYVcZFbyznoembGzu6aIJ8PYdMqgxFsF1mTBGipUuKDCQh1NeLwa41cR4TgvOYu1263gvxR23eOg1Pve9DaIHLTbC9CICokEQrYwnR6lw/Ihmnx5886rn07RVc/OZi0jM3WR2r1ZPikBDHWWybnvwtYQx/jz+Dny5byhtXLefGkK60MxXdquzk+Lu59/RObMut4KI3l/P0d9sPjEFUUFHL9ZNXU1PvZUeu67DFI9G6VNR68FM1eJQiyBlsdRwhRCMID/BN8dtZ2xkcEEeGs4bo+heZ/O0T3PvZBvLKD/2GdX1mKQ9+uQmP17QirhDNwv79K7h8zT/5ZuHfAN/vXAH2EgCiwlOsjCZEq9MpNoQIRzSlNoO+8XZSHM9x8bzLmTn/EaujtWpSHBLiBLjojBe56IwX8fMPQxkGd14wjZnXbqKTX2/KbAYDotMZm/I0oZ5VvLVoD09+tx2A95dlUFJVx7XDknG5PWSX1Vh8JsJqrloPwUY5AMGOEIvTCCEaQ3hQLAA9A+LoH9OXMpvBxtjdfJA3lRnr93Ht+6vILquhus532+kzs3fw6eosZm/NO7CPeq8pXzAIcZCMnNUAbCry9U4ocLkJ8vfdwh8dlWpZLiFaq1O7jALg4tRv2R2WjQIeyZzJT0uesjZYKybFISEaiWEorhh+LgD/XvoIy/zLCQufxrXDknl3yV5em5/OJyszGdsjjgl92gKwI6fcysiiCXDV1hNoKwMgyC/M2jBCiEYRGeq7xaVHdE9GD/gTZ9oiGOyKpMhucN+Q3aQXVDD8X/MY+MQc3luylxV7SjCUh6+WTmT52jcpqnQz4PGf+GRVpsVnIkTTsb8kDYDtNfmArzhkc1Thb2oCA2OtjCZEq3TeKffQ1TR4IX8eZTaDnkWnkVSvmbzrC6ujtVpSHBKiEXVOGYtTa5ZSDcA8bzmT+lYwtkcbnvthJ+U19Vw/IoXObULoH/IN/1x5Onm56y1OLazkqvXgb/i+2Qz2D7c2jBCiUXRLPYe/x5/B+OGPEBHZkeeuXMQ9Ez7A39TsrfqKXp0eZmTq3+gWnsM/Z20j0GnjT303szKwnDc2vsOUFfuoqPXwxoLdeE3pPSREbnkNaSUZAKQpD/X11RS4avHaq4nSCmXIRyIhGpsyDG7sdDH1SpHshWEDbieqLIWNRj3fLJ1hdbxWSX4SCtGIHH5BdNUOAG4N7YkNeG/pozxzXjJDO0QxvFMUA9pHUFW2lfy2iym1GWzZPdva0MJSrtp6Au1VAAT7R1icRgjRGAybnYvOeBH/gP/9n+/ZPoVTHJH84C0lS5nsNOrIjHiR/ikPcWXnOWTX+a4V6211fL9qLjEhfuwvreHHg241E6K1euHHNHaW+v4v1CvF7j1zKKhwU2lUE2M4LE4nROt1+rAHOdMWwW2dLuayIcnsrzkfm9ZMW/sCPyx5hTq3zN7cmKQ4JEQjGxTakUhTc+3YVzjXL57pdXmc+cUp3DlgAx9eNwSlFE/++CfqGqYx3luy3eLEwkquWg/BTl9Ps+DAaIvTCCGsdHGPqwkxNc91vZbPTn2V8wLbYTrgc89s5nvLGKl945LFOmfx/MV9OL3NNL5YfDF19Z5D9vPRin38Z/EeK05BCEukF1RS4agl0et7vjVrMXXV+9np8DAwpIO14YRoxQybneeuXMSZJz9KWKCD7x+8hqGEsD6snPt2v82b315HfkUtd05dz3dLPmDp6lcBeG/JXt5fsI6PvrtZCkjHkRSHhGhkt53zId9c8D2BgdH89aKZvNXjVuK0wYObXqW0eAe5OWtZaFZwmu5AtMckvTzrwGxmovVx1Xrwd0hxSAgBg/vdwOKr1nHq0PtIST6FRy75jk8mzqGHdmAC95/yND08NsrCMxnaPoA9YWtYFVTO4588f2Bw6rLqOp76djvPzN5BQUXtrx9QiBZib1EVRXaTHiqWIFOzpXALXUPm4FWK0V0vsTqeEKKBv8PGX8/4P85096d7tZ2p5du5+b0fWLplDU+kPcdtW99kzrLX+Nf3O1iw9jGeLVzG1wsf/cV+6jwm85Y9S3b2KgvOovmS4pAQjczhCCQ0LAkAu8OfYQP/xPOjnqcKePC7q/lq1Qtopejf6Wai6hzsrC7msW+2WhtaWKKsdC/1pffjdPgGJg8KamNxIiGE1Wx25yHPA4NjeeeSn5g2/BmSk0dxecp4Mhxwz2dnUGhTGFqz2/UlL89NB2Dqqixq6r14TM1HK/ZZcQpCNKrSqjpMdw6VNgPDE0VX5c+amv3o0G1EezU9up5vdUQhxEESEgZz6dh/U5I/gUpDEcZLDOzwLrWGoo0H/r7jdaLULgpCfT1gP9k/F22aB7afuiqTsU+9zd1pH/L6woesOo1mSYpDQjQBnTqO4ZGkcaykljfLNjFI+3HesHF0CIgh3+Fl8/5SqyMKC3y66G8sDMglz8938QuW4pAQ4jACA6PpknoWABNOeYLB2o9FupIkL1wZ1JFtwTV8suAHnvpuOx8s28vwTlGc12EX32RdwNad31qcXogTo7gojbUbJ7OnqIo4514ASquiuaLTBWQamm1B9YwKSMSw2S1OKoT4uQHtI7nv4j8xwOPHuogiltmruDSgB3XZ1+FREJr8Nvudiq41NtJtmlmLXwHAa2peX5BOYuAstFKsqs0/pHAkfp0Uh4RoIs4//TkuD2iPqRTntx+L027Qp00nKm0GleW7rY4njpNKVy5Pf3429005+bAXq+zsVfx5ykj27J3HN8UbAdjtMHFojdMvpLHjCiGaGWUY/H30S0SamhvbnckVw/+GAnolfcLbi/ZQ4HJzy6iOOJzfUGw3+HDli1ZHFuKE+M/8+7hu/XNsS/uJMGc2ABllbWjX6Q665w8g2DQ5r+dVFqcUQhzJ2B5xvHTBNF7regMf9X+Qv1w8lQcuvIwuxYPIcSj8Tc3u/bcT4TH5x553uH/KKGZvTCOrpIbS0H0orcmzKbL2L7P6VJoNKZUL0YT85fwvOH3LxwzsMwmAlOieULAEP88Wauu9+DtsFicUf0R9fTWXTRtDRkMz3p2zisTEkw68/v6irXybdiM7HSbr599JoU1h0xqvUgTLuFNCiKPUrt0I5l65BrvDH4Abw3rxRsUW3pmQxvBBd6A8Fdxv5mMomG/mU+nKJTikrcWphTi+dlXnYirF0n3/R6AzEoC8ug5c+e5KiisnMv/6V2gfHWpxSiHErwmPSOHkIXcdeH5mz7aM6f4+b359OUHOEC6+4lqmzvVnQdqbfB9eQtXSvzMwagA7/WBAeSRrw0pZueNL2rUbwU/b8lm+Yys7yv/MPf3uYFDf6yw8s6ZJeg4J0YTYHf4M6nc9yvD910xOGAJAqH8m2WU1VkYTx8HWHTPIsMG1QZ0AWLNzxoHXPl65j/lr72Snw+RcWzyFNkWAadKnMgyAIK0sySyEaJ7+WxgCuGH823T0Kv6Z9i670r5gzsoXqDQUvYuSqTEU3y37l4VJhTj+3B4vu8wa7FqzzF5OZsQeIkzN6N496RoXwp/HdJHCkBDNlGEo/nT+VK45620CnXauPOMytrseI7XWYIf/Zvwjp+JvajblX0WMV7OyYB1eU/PEt9tI2/0Kmw0PX2/7mHqv3G72c1IcEqIJi2vTF39T4w1OZ82GyVbHEX/Qij3fo7TmutHPE25qVuevAWBXvot/zVzCzvA8ersC+G7vffQrSqBzcUdqXKkABCv5cS2E+H2cfiG8fPrrhGjF1Wue4OHMmSR6YUnRjbTzwIL8lVZHFOK48XhNznzmE0oMxbUhXYn1Qluvkxf63sP/XdqPj64fwm2ndrI6phDiOPGz27jqpPboouEUOAw22ut5qN05uEigbVUQS+uK+MeHl1JWtpfi8F0ALKnN47wXJnPN+wOYMecvMi5RA/m0IUQTZtjs9FOBbAuq54mcN8nJWWN1JPEHrCzdQarXhseRyAB7GGtrCwB4d8le+oZ/RbVhkBR0ISVVdezx3M+SopvZX9MPgCDlsDK6EKKZa9duBB+d8yXXhHTm7siBvH3G24QGBBBl+lHmdVsdT4jjZm9RFUFe35h9fRJOJmff83RtO4VB/a63OJkQ4kT506kduW/iY5xuhHFbeB8uOO0pplw/hNGdbiXGYzBDbSOo4wvsdyq61doothkEBb/MOqOOR7Nnc8PkIXy/8LFWXySS4pAQTdzrVy6la85IADJyVlmcRvxeNdUlbKSWIFckT3y7jYHRvci2wY7dK5i+PouyiB10M21cecZNBPvZeebC3jhtBjl1HYj0moQYzt8+iBBC/Iqo6M7ce+F0rp/wPklJQ4kKcuJnOinTHqujCXHc7MhzEeafAcB7a8KprvPSNync0kxCiBPLYTMYnhrLv69awi3nTgFgSIcorh93Lc+fu4yueZcQoQ0ivCbZ2VcDsD3IQ+9Kf/oWtmePWc39GV8ya+GjVp6G5aQ4JEQTZ7c78Nh9vUeyS3ZZnEb8Xuu3fUq9UriquvPtplw6tR0DwIcLn2dg6IdkOOCydmPomRjBln+MZXinaHokhAIGV0Zdwg3977T2BIQQLU5EkBOb6U+5kgHvRfOnTZP1m6awcePT2PzzCDJNFu2P4ML+iZzTJ97qeEIIi3RuE8Ln9z/CjCuX8Wj/j8iu60KHOt9Yng+OfoSbz/2AjF1PkeyBjzJmtereQ785W5lSKgn4EIgDTOBtrfX/KaUuBh4DugGDtdaHvd9FKXUm8H+ADfiP1lpGPRTiGAWFd8OuNdmuLKujiN9p7b4lAMS2PRdzVz3fZ6QyxBPILNsO7LEwjEDOPeWpQ7bp3y6C9ZllpHa9hT5dYq2ILYRowSKDnFDhj0uB11OHzS49FEXzsmTVK8TH9CC53cnc8NFJrFa+WyT9QzSdtJNzR3XivjFdUEomdRCiNVNK4fQLYVSvvlyV4aRnwLnkV+2kV7fz0FrTIyGS+MpeLAvfzKqNkxnSb5LVkS1xND2HPMCftdbdgJOA25RS3YEtwAXAoiNtqJSyAa8B44DuwGUN2wohjkFSVCgxHsiuKbA6ividdpflEeY1eWDCMMZ0j2PyikwWp/+ZHm4nMabi6QmfYNgOrdcPSo4AIDrYz4rIQogWLjLQSX19IFopKirkywfRfNTXV/PEZ+O5dfvb/Hn+3Sxd+zqrlZtbQ3vSt8qfWkPRJSCGh8Z1w2GTGyWEED4Om8Hj5/XkkrGPc+cFnwO+wtH1I1JYmHcOoV6TGza9yLD3e5Kfv8nitI3vN3sOaa1zgdyGxy6l1HYgQWv9E/BblfjBQLrWek/Dup8C5wLb/mBuIVqVxIhA0vPt7Le5rI4ifofaei+F7grCnQYdYoJ54vyenNG9DXab4rQuK3Aabpx+Ib/Ybkz3OD65cQg94mW6XSHE8RcZ7CSrLhCA8or9RER2tDiREEdn2ty/8FltFkPwZ6Wtlke3vEUkMKL/C7z85iJGd3qV8b0nWh1TCNFMnNsnAT/7KL6ev556+2JWB7nYu385bdr0tjpaozqmUrpSKhnoBxztnKcJwMFfRe1vWHa4fd+klFqjlFpTWFh4LLGEaPF6JoThXx9Itq5DaxkbormZuSGHaqOOKMPXAyg62I8LByRybt8EggOchy0MARiGYljHaOkOL4Q4ISIDnVTX+4rPZZXZFqcR4uiYXg9TchbRx3Tw1hVLSfRoimwG7csSmPifjdTqEM4f+iWD+91gdVQhRDNhGIrxvdoSkXAFhRUXAlBSmWNxqsZ31MUhpVQw8CVwt9a64mg3O8yyw36y1Vq/rbUeqLUeGBMTc7SxhGgVRnWOITGoLaU2g0+WbrA6jjhG7y/LoMpuEucXbHUUIYQ4IDLISY03DICKqnyL0whxdBaueoksG7StH8bOgloiioYQ7jX509h/HriFrGvc4b90EUKIXxMV7CS7MhKA0urWN5zHURWHlFIOfIWhj7XW049h//uBpIOeJwKtrwQnxHEwolMvAOasW2BtEHFM6r0m23PLKLVBtDPM6jhCCHFAZJCTSm8UAGVV0mtbNA+fp31BrEczfc9pnP/6UpaVXsAbY5dxUo+T+GDSIG4YkUJiRIDVMYUQzVB0sB+lnkhsWlNcU2x1nEb3m8Uh5buf4V1gu9b6xWPc/2ogVSmVopRyApcCM489phAiKbobAOWunRS4ai1OI45WUaWbIKOCWkMRHRBtdRwhhDggMshJhcf3DWlZbZHFaYQ4Onu9VbStCWJYajwaGJwSSc8E35cvA9pH8tezu8vt2EKI3yUq2A+NnXATStxlVsdpdL85IDUwHLgK2KyU2tCw7GHAD3gFiAG+VUpt0FqPVUrF45uyfrzW2qOUuh34Ad9U9u9prbce97MQohVIaNMPgEBnPgt2FhLktLO3qJL2UUGc3bstSim8pmbG+mxO7xZLeKBMSdwUFFS4ibTnUAZEBbaxOo4QQhwQGeSk0owgVGvK3eWs2FNMVJCT1DZyS45omrRpUqw0sZ5Anjy/F26PSUSgw+pYQogWIjrY9/kpXBuUeqosTtP4jma2siUcfuwggBmHWT8HGH/Q8++A735vQCGET2RkJwJMjQrK4bkfdlLoch94Lb+ilutHpPD4rG18sCyDB8d15ZZRMutMU1DgchNiL6QMiA457Hj8QghhicggJxo7oaamuLaca99fhdNm8NkN/eiWGGt1PCF+obAsu6EnbhRJkYFWxxFCtDAxwb7JY0JxUOKtsThN4zum2cqEENZRhsGlIalsCKqmi/M1xnRvw47Hz+SsXm154tvtnP7iQj5YloFSsD6z1Oq4okGBq5Ygu++e5ajwZGvDCCHEQQKdNpx2gxBtkFdVQW29Se+g6Vzz06ksXjOF2VvyuPmjNZRV11kdVQgAZq5aDkDPtsnWBhFCtEhRDcWhYPwpNestTtP4jua2MiFEE3HXeZ+x5+NTWByzi69GefB32Hj63A7EeqZQqEdxVu9u7CuuYk/GQjZsTqNvr8utjtzqFVS48XP4inXREakWpxFCiP9RShEV5CTQNCjx1jAyNZp4xy42aoNHNz5N7b5qcusSKK1cyYc3DMPfYbM6smjFTFOzeNtGiIJuCXI9FUIcf+EBDmyGwo9ASlS51XEanfQcEqIZsdmd/HXMawB8s/YFVm94jws/H8EX/EQVj3PXqcn0bVNLZcw73L36KbRpWpxYFLjcOJ2VGFoTLj2HhBBNTGyoP7Z6GzWGh+tHpLDNU0RHj6LSULSPf5N/nOGg2HELD04eK9cUYan1WaXUuHMBiAlPsTiNEKIlMgxFZJATuxmMy1DUu1vXuENSHBKimYlr24+TjVC+LN/OX9a9iB+KScGprFFunvziHJZl3EWR3aDYppi66Ceq6zxWR27VCl21KEc1kaavuCeEEE3JS5f0pW1ACG67pld0ORk2zYTYAVwfPpytAfVM2XcvRXbFXEc+/55+MZ+tzuSlOWn8uDXP6uiilckqqcFpb+iJGyk9h4QQJ0Z0sB9ebzAAJWW7LU7TuKQ4JEQzdHGXiykxFBUGvHjys9xz/hdMsMcwzZ3NCqOGPq4AAKYvm8abC/dYnLZ1K3C5qbPVEq3kdgwhRNOTEh1E2+AwyhVs3OmbZ6Rfu1O56ZzX6Ked5NkUfwo/hT7lwXxQuZOXvv6Kl+bs4o6pq9mRPg/TK19AiMZR4KrFsFdg15rQ0CSr4wghWqjoYCe1nnAASssyACgq3N4qes9KcUiIZmj4gNs4zQjl0aSz6NxpHMowePKyOfw09iMWTpiB1/6U75enoH18vGIf6zNLOe+1pZz+4kLeWOCrgD8xaxsfrdhn8Zm0fAUVbqqMeqIMf6ujCCHEYYU7w6g2FKv3L8ahNT26nIths/PC+A95NvlCbpzwfyhuBGBE8lz+NmwJ8SkPcvHSu/h20WMH9vPa/HRembvLmpMQLU5B/hb2Ziz43/MKN9peTZQJhk2GTRVCnBjRwX6U14YCUFKRhTZNrvxmIo9+OsbiZCeeFIeEaIZsdicvXbWU80575sAyZRjExfUlMrITt4zuQ4rHQIeUUlxVx8S3lpNTVoNpat5ZvIeSqjreW7qXZ2fvoMot3/qeKKapKaysoczmJcoRbHUcIYQ4rDC/cAB+qNxLD5z4+YcBEBPbg3GjHsOw2bj/ggvp6/FjtbGbN4u/IcRrEOY1WZy9GPD16vi/Obv4YcXnnPleLzIzl1h1OqKF+NePt3DbvDsOPC9wufE43EQrKQwJIU6c6GAnedURAJRU5bFq46dk22Bg3ECLk514UhwSogUa1TmG3kFx7FS1jEn6N8PbPMtH1w/hrtNT0bX7eG3Gi5gaXLV1fLZ0pdVxW6ziqjqGRb5BoU3RPaKz1XGEEOKwYkITAXArmNT50sOu0ysxjMtSJ1BsUwQA7R2P0qE2mFV1xWjTZMqKTOq8JuGh35Btg7mb3m/EMxAt0fb6crJs4KrIBnwFyCpbPdG2AIuTCSFasqhgPwpqowFYsSed1xa+hUNrRg+84ze2bP6kOCREC9UjqgcuQ7E8OJ+1YcWUZn/C6q3XoFNf4nPvxwwMX85ZCbN4NfNmdqZ9Z3XcFmn+iufZEJPJKWYYl415xeo4QghxWKMG3cUb3W7ip0sWMHrY/Udcb/SQexhni+TZ3ncwsudJ1Ls6UGxTvDD9A6as2MfolDq2B1cCsLx4c2PFFy1QdXUR2YYGYNfeuYCv51CFzSTaEWJlNCFECxcd7IfLjMKuNZnl+WSFFNGl2o+dJS2/MC3FISFaqH4dxwFwkV88cV7N7Zte4WtPPoNrojC0pl3kJlTwFuqV4qWlj1uctuXRpskXmdOIr9NcNXKqjI8ghGiy7A5/Rgy+g8DA6F9dz88/jGevXMhJA25mdLdYSr0nA7Bh7zdU13noEf45dYaiR42dtbqa2prSxogvWqC9+xailQJgZ+4qAIoqqig1FFH+EVZGE0K0cN3bhhLkdBDm1WSG5VNkNwiu68f09dlWRzvhpDgkRAvVqeMYZp3yOo9O/J57O16E21DcGNKNft3eo71bkWfLYiPl+JuaJUYl23d+bXXkZk2bJo98Mpp/fT4BbZqs3zyF7XYv0aVdaRsZZXU8IYQ4rqKD/Zj98K0keqEkKp2hHf/GB7Vb6Otx4i4eRp1SrNvyCW6Pl7s/Xc/o5xdw3esfsjtjucxwJn5Teu5qAAytSSvbRXWdB4cnB1MpogNiLE4nhGjJuseHsvWfZ3JKYAKBGIxSwTx6+T944tyeVkc74eSrbCFasPbtRwIwbtRj9OtyHm1ie1NSXc+e3UnMtmcBikuMAXxbv5p3Vr7Ii13OtTZwM/Hy9ImkVWbxl1HPHniPf1jyODPrC6G+EP3FOWyuzCYUE0/wDSSEt/xuqEKI1mli7GCmFqyk1Kzj3tjBjBnyBFf8ZwUOvZAf075javowvtmYw4R2b7EgaC/nLYQbQ7py5wXTrI4umrD0kp04tKYXfqTVFFJQ4SbCkUM+EB0cb3U8IUQr8NhlP1ododFJzyEhWom4uL4owyAq2I/z+5x9YPkVp95LalU4S71FcgvAUfhpyVO849rOEtPFhfNuZc2GD6h05fJc+jS6mTbOtkfzSc0+dqp6erh68cY1ozEMZXVsIYQ4ISad/S4/XreFr67bxKSz3yUhpi1vTTqdrtV+fF+XweqtS7hr4A4WBe6hV5UfHesVC8vTrI4tmrj0qlw6aBvdAuPZRR155VXEhy0EoF2bPhanE0KIlkmKQ0K0Qv26X4pDa1JNg5TE3kQ7T6HaMFi89g2rozVpla5c/r7rE3qadr4b8wFttOLhdc9z95fnUGzA/f3v558Tv+XOiGupSXuYK8a9QmSQ0+rYQgjRqLrEhXDf6JfQKNp0eIfPXe+TYCoigp4muqodaYZJcZEUiMSRpXsr6eSMpHNkF2oMxbwVd7AhooAJtji6pJ5ldTwhhGiRpDgkRCsUEBjJn6IGclPHCwDo0vkKwr0m3+353uJkTdu+7OW4DMX1qROJjx/IU4MfocCAlaqWbvm9eH19KsrwZ8bewSTEJHBy6q8P7iqEEC1V/64jubftqeyxaQbZwnjz9DcY1aMr+8t8vT5Wb5tqcULRVFW6csmzKTqFtKNn8mkATPVsI74ebh872eJ0QgjRcsmYQ0K0UjdM+ODA42GpCSzZFMmS0FJqqksICIy0LlgTVubKAWDdfgfff76Rpy+YyNjlC8gsKSe2/f18vSGHof+aR6HLzdMX9EIpuZ1MCNF6XXrmK5xZupfwiBQA/CNqeeiLgcSYX/HZ5p94ZtUo7j8lgO4xdQfGbxNiX85GAPxsCXTuNI4vtMmMtXv5ZFcMbaPbWpxOCCFaLikOCSHoHh9KXW1fasMXsGH75wwdcIvVkZqkkso8AGZt02TW7WddZil7iybwwJldufWUjpzUIYpVe0sIC3Bwfr8Ei9MKIYT1/lsYAogN8eeB8b1ZtiOQPQGltDcf5tHNFTiAJVdvwLDJr6UCtu/fA0B6kQOALqlnUbB+AyHBJfKlixBCnEByW5kQApuhCI89G7vWrMqYY3WcJmtbXiYAgzr34M7RndhbVMXVQ9tzy6gOAFw2uB3/vqQvj53TA3+HzcqoQgjRJN10ckcu6XIWNUqRHlROjFfhMhQlpelWRxNNxP7iLAC25zvRWlNc6WblnhKZ+VMIIU4wKQ4JIQA4qXNnkmsNVpTvtjpKk7RyTzHb8nKwac0TE0/jnjM6892dI3lsQg/5JlMIIY7BuFGPsWrSFnrYJ5NQdQoAeQWbrQ0lmoxCVwEAWRUhbMgq4/rJayiqdPPAuK4WJxNCiJZNikNCCADO75dAWE0c2416Kl25Vsdpcj5dnYVy1BJmQoDTD6UU3eNDZZp6IYT4nZIiAslxxQKQU7zT4jSiqSirLQGg3BvNpA9Ws3F/GS9f1o8B7SMsTiaEEC2bFIeEEACEBzpJjhqJVykWr//Y6jhNTlGlG9PuJlJ+bAohxHGRGBFAVnUSALkVmRanEU2BaWqqPBU4tCalbQJl1fX845wejO0RZ3U0IYRo8eRTjhDigMtGX4+/qfl210yrozQ5hS43tUY94YbT6ihCCNEiJEYEUGFGEWhq8qqkx6qA7LIaPKqGMBMeO6cXz1/ch6uHJlsdSwghWgUpDgkhDuiSGE+fqhiW2ErIylpudZwmpaiyjirDS4RNBsQUQojjITEiEDBoYxrkukusjiOagB15Lrw2N2EYDEqO5KIBiVZHEkKIVkOKQ0KIQ4SH3oZNw7tL/m51lCbDNDUlVW7KDZNIR7DVcYQQokVIjPQV2yO1k1xPlcVpRFOwM68Ct80jvXSFEMICUhwSQhyiS3J/uleE87U7h9qaUqvjNAml1XWgPVQYinC/MKvjCCFEixDq7yAswEGwDiYPj9VxRBOwr7iaWpuXCJu/1VGEEKLVkeKQEOIQPRPCqKnqhkcpduz+3uo4R622ppTrPxjIwhUvHvd9F1fVEWYrRCtFhH/kcd+/EEK0VokRAdi8YZQYSr6QEJRU1VFl04TZA62OIoQQrY4Uh4QQh+geH8q+6v4AbM1abHGawysuSqOm+tDxKZasfZNVys2j29+jpCT9V7cvKtpBcVHabx5n6epXeeKz8RSW1xBqLwIgIjDm9wcXQghxiMSIAGrcUQDk5m+0OI2wWnFVra+XrjPU6ihCCNHqSHFICHGIsAAHgWFdifaYbC7ZYXWcX9iZNovx31zAmZ+dzLQf7zmwfHbG94SYmgoFT343CW2aPDZ1DFd/MABXRfaB9fJy13PRzIs4fdYFPDr1dOrcriMe6+2t7/NZbRY70iYTYmsoDgW3PXEnJ4QQrUxyVBD5rmgAcou2HVi+M20WazdOtiqWsEh1dREepQj3C7c6ihBCtDpSHBJC/ELP+DDi6wLY4i6yOsohigq3c9uSBwnW0F758c/cOeTmrGV71j4W1pcwLiCJ2yIH8KO3jLs/HsmXdbmsV3XcMf1c3LXluGvLuWv2JGoUnO2MY0ZdPj8tf+6wx8rL28A6VQfA0vxp+NvLAIgIjm+s0xVCiBbv3L4JFNYlALC/eCe19V7embuMW5Y8yB3rnqO6umldh8SJ5XX7vswJ84+wOIkQQrQ+UhwSQvzCqC4xGFVt2GeDivKsP7Svxate5qoP+lNfX/2Hc32w4CGKDXht+FP8dcQTAKzc/jlvfPMMtYbCX43iurPeZbQRyjyzgp6mnSeSzmKtcjNjwV/5etHf2WZ4eTL1Cv5xyWwSvPDVvtm4KrJZtPLfaNM8cKwf170OwFn2aFbbawgK2gVARHjyHz4PIYQQPt3jQ0lOHEBcvebb3CXc+/kGFm69jyKbwmUoZi/7FwBrNnzAae/1ZM/euRYnFidKncfE8BQAECa3cAshRKOT4pAQ4hcuHpBISsxAAG5+6yUGP/4dk168jGtfHcENbw3jlemXUl6e+Zv7ue2TdXy1dQYbVD3Z2av/UKb6+mpmunbRo8afq74IZG1RFyJNzZLsleSzgiiPyRvruzFtXQ43jvyI4ZVxXNTpcc455Sm6mTY+z13E5/vnk1wHD8wfwAtz0jk3shcrdTXXf3kWt+14j0c/HYOnvha3x8tX+1fS2WPwl7FvEWiabAgrBiAiPOUPnYcQQohDXT8ylbiyFNapOirzH2JjmIsBZbF08io+zZrDw9OW8Ne1z1NgU3y88pe9Pauri7jw/T58/P2fLEgvjpey6joCG3rphgfFWRtGCCFaISkOCSF+QSnFPefegL+pKYv6gdS4v7Imagu7AkvZayvnPxVbuOvLC8gtLTviPgpdbr7dlMtuj6+okpm/4Q9lmvrjs5TaDILqR+K0GUxdk8NgRyTLPYXsCKzjnLDuDE+N4+EZW7ju4z3Mzrqbh36wsTazjIsSTmGXYbLTZtK2uhtJkUG8s2gvo3reDsAO5WGMLZyv6vP5x7Szef+bp9nlZxJd1ZGIyFRGuEdjKkWQqXH6hfyh8xBCCHGoU7vE0r/bvfiZmvVRufTy2lmWdyu9VH+2G15Wld9Mtl3R1Wswq2Y/k7+9lfPe601hwVZMU/PGt7eSZpj8kL/yV4+zcMWLvzrOnLBWcVUd/rZyAMJDEyxOI4QQrY8Uh4QQhxURnsQb/e6jTsE2Rx2PxY9hybWbuazLN3TP78Vam5vrvxjBJe/3JStr6YHtysszcdeWsz6zFAe17HP4btXKKtl5TMfXpsnnP9zFHR8O4/L3+/FB3jSiPCZPTfonlw1OYtP+crqE9KHCZmAqxcST/swbVw6ga1wIlW4Pk68bTEJ4AHdOXc+YIQ8QaJr4mZo/X/AkL0zsQ53X5M3VAQwoTWZYxSD+ftE8bgrtzlf1+bxfNpXEOs383MtZkFZAuvdSRld34jS/Nsf1PRZCCAGGobjnrFO5PCSV9l54+ZypDEhJ5LO08fQriaWN9qN/cQLt9RVUG4rni5aw26aZs+5N7v/wIz6p3I6fqdmM+4hjFO1Mm8XtO9/n2yWPN/LZiV/jqa/l09l38Ny0cylx1WK3+4p3YSFJFicTQojWx251ACFE0zWw77V81eEMSsv20q7dCABuGNmBYR3f4rOfbmaLZzvpDg8vzf0rwYF3kVPxL9bYKznDHkVU9Fsk+28hTykAslyHjl1UUpJOcUk6qZ3O/MVxPfW1PPHFOXxZl0uKVxGhnYR4bIyNGUlUSAiju2qe/zGNH9K7QfQChpj+JCaeBMAXtwyjvKaeuDB/Hh7fjRs/XMPz84voWNiD3olBdElKBWB011hmbswhOvhuyqrruHXKWv5z5WTWfTKSNbZaro29gcmFEby9aA9FLjcdU/7Ok5f0PYHvthBCtG73XPAld5kebHYnb1xZx7bcTgQ5x9A7MYy7P9vAFxv2M7C9DYWi0s/D91nL0TXrUCFwif9IPqxbwoZtnzNs4KG3l23eX87CzXMASD/GLyrEiaNNk+s/Hn5g8ofgrf/GZlQBEBbWzspoQgjRKknPISHErwoJTThQGPqv7vGh/PXKj8kufYE+lVHMo5B1ZX9jg62Sjl4bP3mK2b5nI9EB2wEINTWZtYWH7OOZ72/g8sX3UZC/5RfHfHXmlXxZl8uNId346pr15LtepLb6VW49/1UAurUNoW2YP6sLkxhd0557hj50YNsAp424MH8ATusaS3JUIFNWZLLDfSN3X/yfA+vddVoqfZLC+ej6wTxzYW+Wphdzz7StpOU+TNf8K5k0/nZuPaUjK/aUkF1WQ3SI3/F5Q4UQQhyWMgxsdicA4YFOhnWMpk9SOEopbju1E32SIjml86es3vcEfYxEtjhq2R5STu/qcNKqz8euNav3zfvFfv9v7i7W7N8MwO7qvEY9J3FkeXnrWafquDGkGx29im9KZlEZlEeIqbE7/K2OJ4QQrY4Uh4QQv4vDZnD1sPbsKLgADWT4wQDXSOzl1+NRCmqnEBScS5Bp0odQsjz/m63MU1/L4roiag3FG/P/fGB5ndvFjLn3827lTga5wnl/yw30e2IuO/JcXDciGdXQC0kpxaldYwGDS8+YTI+uFxw2o2EorhvhG0D6iiHt8HfYDrzWJymcr28bTre2oVw4IJH7xnRm9tY8KuoDefKaP+HvsHH10PZMHJgIQFSQ8zi/g0IIIY5W5zYhfH3bcG4a1ZlgPzvb9/eiXinchiIl8loW7fXSXTtZUbGb2prSQ7bdmV9BjcO3bLe3yor44jB2Zi4A4OTUc7mz65Vk2WGvv5db24y0NpgQQrRScluZEOJ3u3ZYMk7bBOzl2wlwOHH0up97P9/ISSF29ofuwaEUCW47EQGRLNcVeD112OxO5q7+CJehSPYqZtRmc3XGAmyGnSvn3kKpoejgVmTVPMiEPvEAhPjbOa/foYNT3jqqI51jgzmpQ+SvZpw4MAlXrYcrT2r/q+vddmonIoKc9EoIo3Mb36DTSimePL8XnWKDObt3/B94p4QQQhwPTrvByZ2j+WHzUOK939LdFsQpA8/l3Y2rSFZJzFR7GPzZSCY4Y7n/rA+w+ceTVVKDX6QbMMizKSpduQSHtD2hOWuqS/hiwUNcdsb/SS8YYNqP9xAf0ZHhg24/sGxnw0QVqSmnERgYy3k7d7E+tyNXXfugRSmFEKJ1k+KQEOJ3C3TauWFkB+BNAOo8Js/O3omncAAF8SvQSjGgIh7Drw0eYx95+Ruo9+vBJ6s+xR6uefW017l43q28svhvBNv9qAb6FZ5Ceu0Ypt0+moTwgCMeOykykGuH//a08v4OG7ed2uk311NKccWQXxaQHDaDm07u+JvbCyGEaBxje8Tx/ZY8Hu31LwZ07EZQaCSh/nZm7LyE3mGz6RRfyKy6LDZ+eRaPnvIDgaqcfIdB53qDNIfJ3swl9OpxMZmZS1BKkZQ0/JD9vzrjUrrF9uW04b+/SDF31b95tnAZHTe8y7BBt/3RU27W3LXlPJP9E52y5x9aHKrIINELQcG+aetL/G6l2q/CqphCCNHqSXFICHHcOO0GX902nMySfgTZqmgXbjDxvXQi6uaB/yqy8tbz/f5ACgPz6VRrp038MK4J78WbFVuwuzUDqqNYXnEWn98y9FcLQ0IIIVqvc/rE0y8pgnZRgQeWfXvnSHLKanji23Z8uauSvw1bxtMFM1i+9iWS/P3IAdqbnUgjjZ05q5mb24dFmbdhV4rPJ20AoLjSzSeLl/FO+RZ6laX9oeJQerFvzL1dBRsY9kdOtgXYsO0z3IZim/ZQWrKbiEjfFy5p9WV0cYQeWK+kso7IQLmFWwghrCJjDgkhjqu4MH8Gp0TSo10SIaEJdIgNYU+Fb9ye7bnr2JP2BFl+Cj9XMtPXZXPF6OcJ8/qmuy+uvpw3rxpAj/gwK09BCCFEE6aUOqQwBL7epEM6RPHetYMI8rPxY+5YErywouwnYgN3A5BbORKn1qzZv4Vpi2axy2ay3fBSVOgr5Hy8MpPFGz5EK8UWVUd5eebvzri7KgeAtPI9R1xn5bq3eeLTcWjT/N3HORbfLniUd7+ZdNz2V1qym1Hv92Txqpd/db3le38EQCvF8s0fAlBdXUSmoekS8r8eu6XVdUTK+H5CCGGZ3ywOKaWSlFLzlVLblVJblVJ3NSyPVEr9pJTa1fB3xBG2z1BKbVZKbVBKrTneJyCEaNo6RAexqTiWNvUm/y5ayqaYLZxkBlDuvJ23Fu3mhzQv0TmjuS74FGb85WZGpsZYHVkIIUQzFRPix1UnJbMgrYyzwvqzxemhNHwzfqZmTVEHkk0b+9x5pIQsOLDN8i1TAJi3owBn0E6U1phKsWrzlN+V4anvtpNW77s9ape7+LDrVFcW8MiGl/nMvZ+s/csOu05pye7fdXzwTRP/0Xc3k5W1FICdabP4W8Z03ipajddTd8i6ZaV7qSjPOvDc9HrYs/eXs7793IrNH1FiKGanf3VgWXlZxi+Kaisq0uljOggzNUuzlwDw9dLpaKVYsiuUtxf5zrO4SopDQghhpaPpOeQB/qy17gacBNymlOoOPAjM1VqnAnMbnh/JqVrrvlrrgX84sRCiWblkUBI3jEzl5IgXGeNpx3BvGP938SwemdCPnLIaHvhyMyXOC/jTBa9YHVUIIUQLcMVJ7XDaDXZXXUyMx8RjaCbYU6k3bSR4o9juX0dexG7a1WkiTM2ynGUUVbrZuL+E7KByetX4E2xqlu1f+LuOP3vDdnLsCrvW7MHzi2IMwFs/3Eq+zTcD5/r0Wb94PSNjIafOPJdFK/+PkpJ07vhwGHl5G371uAf3QMrNW8ezhct4YcH91LldPLj0EeqVosZQ7MtafMg21391Hn/56sIDy16beQXnLbyT9N0/UlWZx8p1bx/2eCtzfEWtZbUF1NaU8tjUMYz+6mwu+fIsXBXZAJSVZbBNeRge0ZWhjkiW1eZTXp7Jkr1TAQgOHcJT3+3grYW7KZXikBBCWOo3i0Na61yt9bqGxy5gO5AAnAtMblhtMnDeCcoohGjGEiMCeeSs7jx64Viev+E7Xr9+KYHBsZzUIYpnL+oNwI0jU7AZyuKkQgghWoLoYD8u7J/IV9sUe3Y9yzW9vmPS+I8BmLf3OuI8kO8wiHLF048IltUVMn97Lp39V1FkN9CujvQ3QlhWnUOd20Va+vf8sPjxw97+VVyUxsff30qlK5fy8kwe/vg0orXvNqphKgS3ocj8Wc8gd205H1fsZLw9ihBTsz5/3S/2u3T7p3iVYlXmfBauf5sF2sWMFc8d9ny1afLKjEs464M+lJdlALB97xzf+XrLeXL6BaQbJndFDvC9tu9/Ra81G98nzTBZpaupri5iz955vFe+Fa0Usza8zb9nTeKGza8c6IF0sJU1ufiZmiKb4okZF/NlXS6nO6LJMzSPfn0JL3xxPhdNPxutFElRpzM2eRxFNsXIGeNZ5FfE0NowXp50FcM7RfH09zvwmJqECBlvUAghrHJMA1IrpZKBfsBKoI3WOhd8BSSlVOwRNtPAj0opDbyltT781w9CiFbn/H6JDO8YTUyIn9VRhBBCtCB/n9CdiwYkYjcUPeJDsdsM5tx7MuU19eCK4N+r/0ZO1ZkE2bdQEraayRsmUNROE2jCropTGBq0jpzgFYz++CQqDIVWigcqs7ly3JsHjjF36b94JG0KVYbCNe8vBDuD+cZTQGRcHmAwMHIki0q+Z1fWEpLbncwNHw5maFRP+rc/HbehGBR7Gq7cb1lfk/eL/CsLNwGwuSqLSk81AD+UbObWg9bxeur4bvE/WJKzlO88xWCDr5c9xdXj32ZbwXpsWqOA6XV5DK0PZsxJL/LGtyezo2gzZzXs49OtH6C0xqMU67ZM5cPtHxGgoYN2MLN8BxUKMBQLNn/IVQfN6rZg/Tz222BScGfer9zF1/X5DMGfZ65YQPsZl/FGxRbslWX08vgTnteXHXHDuW9sFz6O6MD3W6eydnckfYc+jJ/TzgeTBrMluxylFD3jQxFCCGGNox6QWikVDHwJ3K21PpZ5JodrrfsD4/DdknbyEfZ/k1JqjVJqTWFh4THsXgjRnMWG+qOU9BoSQghx/Pg7bAxoH0GfpHDsNt+vu51iQxjQPpIBPc9iyqR1nD5wPBsrJzKktCOBXjvDzSi+GjuZk3qcxKryifQpHEv7mkAGlLXlZB3Ms/lLWL7WVxzSpsn/7fyEOG3Qw7Qxq3gj3+etBKDEbuDQGlv4JRhas6toK3v3zWeVcvN14Vq+XOu7jWzR/h70C+/MHps+0OMHfEWfNd5yALZpN2trcrFrzW6bJn33jwfW+3D2rTycOZMf64u4OrADvU0Hn+ctx/R62Faxjw7axjhHLEGmyfqMq/hqUzGdtJ3tVfsBKMjfwjxPKRMD2uHQmv9sm8xyarg5diiXd5hAoU3hNhTRXs2CgrWAbzwigK9WfATA6O430NHru4bf1u8uAG6eMJk3ut3Ej2d/zYacJ1lTcT7zdhQA0LvHJQzu/Taryi+kX5JvuFKHzaBfuwj6HtRWQgghGt9R9RxSSjnwFYY+1lpPb1icr5Rq29BrqC1QcLhttdY5DX8XKKVmAIOBRYdZ723gbYCBAwfqYz4TIYQQQgghjtKD47ry4LiuwJmHLH/lsv8+OoOcshrOf30pATWVtG3zN97e/B+6dr2OP73xPHtjNKdV9+Hk1Lb8PXs24GF0XRxL7bnE1St2FfuRbBqsKk/Dv2HQ6wwb4N5KnKGZmxnI5X1OgdL1vPnjHYxIGcuwAX/itVnv4TIUp6gQFhguMoDLA5L5tDqD2Zve4/aOY9CmyfSC1fQznLx/5XJsdiffzP8rD2d+zfvfv8hWr4sRfnG0jX4ac/FqKkhhXWYp3fxjmVObgzZNXp97Pxo4o8d9ZKx9gJXUEuo1KTNu4MIBHQja8wU9zCD6RLTnvYrtPPTxqSyrK+TW+DPY6FxFbD1k1PRigH0o4aVp3PB1G5625TGmRxwjBt/Bij3FVNR66JsUzoasMvLKa4kL82d9ZimGgj5JMjOpEEI0JUczW5kC3gW2a61fPOilmcA1DY+vAb4+zLZBSqmQ/z4GxgBb/mhoIYQQQgghTrT48ABenNiXjHIHJzt7s0a5+fDHKTjsP2LXmnlZp2MGXYqf6ftec2fhBQyrHkFy3anszHNxYdxJrFN1TClcTYzXt06GH3S3RVJV56XWbxSRpmZKTQa3bHuLuz8eyeqcdwG4otf/biIbnjyBoSqIL0u3UF1dxMZtn5Jh05yfOJpcl4fqOg9jhv6FKK/my7yPKLUZBOtE3ltZRq9Ogzm/XwLrM8voGtmVckOxYcsnzKzLpFdFKMvzEhkc3h2AjmUJvLGshNk73fhnXElx+Z85pctFeJVilqcIu4Yn8+ZQr0BlX8KMDbl8vOs8XM4naRPqzx1T1/PF2v3M31HAp6sycdgUj07w7fv9pXuZv6OAhbuK6BoXSqDzmEa3EEIIcYIdTd/N4cBVwOiG6eg3KKXGA/8CzlBK7QLOaHiOUipeKfVdw7ZtgCVKqY3AKuBbrfXs434WQgghhBBCnADDOkbRrW0oqwrOxc/ULM9/lX2hhYwwQnEEJPDwrAK6ucLpWeVkR0U7IpPuIDThRnbkVXDhqCeJ8JoU2RRnBfekbb2vQDQ4rg9Ou8GiPW5+vGwpC876knsiB7HEW86GoFpSawxyzFGEeU1sWlOqhnFL/zspsik+nnMvUze+TYCpaZN4Pae9sJA/f74RP/8w7ks5jyyHL/eKjHhKq+u58eQO9G8XQXlNPTHhgwCYtO5faCC94FLm7yjAL+gyelcEkpr8ALX1Jg9P30yGuzcbCoIJjxvHqSqUP0cN4dvLFjO+vivBOZPo3nkCC9MKqa03eer8Xky5YQjx4QHcN20jkz5YzVcbchjWMZp+SeGkRAfx1qI9TPpgNRuzyhjSIdKi1hRCCHEkv1my11ovAY40IMhph1k/Bxjf8HgP0OePBBRCCCGEEMIqSimuH5HCfdMqOCMgkhWBpQSbcE3vm0hp256X5+7CP/wl4sP8WZ65jy5xIdR7TT5Z6aGwJpDOrk6sDN+Dh9OJq8omN7yMgR3HMjQ3iq83ZFPprueaYclcN+E93HPW8tq87aw3Q6ivz6S9CqLG7mbRXpMXJl7BqPWv8nLpegBOqW/Dnz7PxGNqZm/NY19xFX16P0jXHbNID/CQXtWLHvGhDEmJJKphivgSYxRPtdvB3N0rKSiOJq73yUxfl01RZQARQc/z1/NHkFa6isW7irh4QCLT1u5n/s4SuiRNpk/HKAxHGAsKbmZgSiRje8Qxc2MOI1Oj6RIXAsC3d44gLb/ywHvXISYIpRTTbhnK/tIa3/sJB9YXQgjRdEh/TiGEEEIIIX7FhD5tmbYmi/TS+xhtz+b5a67D4fQjudLN8t1F3HVaKuGBDrblVjCiUzRuj4nTZnDp2ysoqLiOLq4tTK5LJIpzmBi9lNSOZ3JFfRFPfLud7zbnMXd7AV/eOoz56XUktWlPvddkc3Y5Ifb7OTk1goVpBZim5t6RT1K78AEq83qwxD2R9tFB/PWsblz+zgreX5pB//YRpO2/k8dOr+FLT0euH5GCUoqOMcGE+NtZv7+cUzrfwcwfhzGhTzzXj0hh+rpssstquG9sZ5RS3H16Z9z1Jn89qzurMkp4+vvt1NabhPjbGZISSX6Fmwv6JzCkQxRDUiK5+/TUA+9ToNNO36TwX7x/0cF+RAfLzKRCCNGUKa2b3tjPAwcO1GvWrLE6hhBCCCGEEL/LNxtzuGPqetpHBXJOn3hemZeOUrDx72MI9XccWG9vURUXvL6UiloPXlNz26kdKXS5+XzNfvq1C+faYcnc9ekG3rxyAGf2jOP5H3by2oJ0Ftx3Cu2jggC457MN/LA1j2Edo1iSXsTmx8bi+NnMX1e9u5Il6UUA9E4MZ+qNQwhw2Bj69DxMrVnywGic9kO3+cc3W3l/aQYXD0hkYVohBS43957RmTtPS0UIIUTzpJRaq7Ue+PPl0nNICCGEEEKI42xCn3iC/exEB/thas0r89JJjQ0+pDAEkBIdxNSbTuLrDTnYlOLqYe2Zu73AVxxKimBM9zh6xIdy7+cbqHL35OOV+zijW5sDhSGAe07vzMK0QuZsL2BwSuQvCkMA94/tSvf4HAIcNq4emnxgQOgXJ/bBbjN+URgCuP3UTnSLC+WiAYnsLa5i7b5SLh6QeJzfKSGEEE2BFIeEEEIIIYQ4AU7tGguAaWoSIwIY1jH6sOt1jQul65mhB54PSYnEZiiGd4oiwGnj/WsHcf7ry/jztI0A3Hhyh0O2bxcVyLvXDOSyd1ZwUoeowx6jV2IYvRJ/OX38sE6HzwQQFezHxEFJAHSMCaZjTPCvnK0QQojmTG4rE0IIIYQQ4gQrr67Hz2Hg77Ad1foFrlpigv1QyjcvTJXbw96iKgKdNjocoUhTXOkmNMBx2J5DQgghBMhtZUIIIYQQQlgmLNDx2ysdJDbE/5DnQX52eib8sufPwaJk0GchhBC/k3ytIIQQQgghhBBCCNGKSXFICCGEEEIIIYQQohWT4pAQQgghhBBCCCFEKybFISGEEEIIIYQQQohWTIpDQgghhBBCCCGEEK2YFIeEEEIIIYQQQgghWjEpDgkhhBBCCCGEEEK0YlIcEkIIIYQQQgghhGjFpDgkhBBCCCGEEEII0YpJcUgIIYQQQgghhBCiFVNaa6sz/IJSqhDYd5SrRwNFJzCO+OOkjZoHaaemT9qoeZB2ah6knZo+aaPmQdqp6ZM2ah6knZq+ltJG7bXWMT9f2CSLQ8dCKbVGaz3Q6hziyKSNmgdpp6ZP2qh5kHZqHqSdmj5po+ZB2qnpkzZqHqSdmr6W3kZyW5kQQgghhBBCCCFEKybFISGEEEIIIYQQQohWrCUUh962OoD4TdJGzYO0U9MnbdQ8SDs1D9JOTZ+0UfMg7dT0SRs1D9JOTV+LbqNmP+aQEEIIIYQQQgghhPj9WkLPISGEEEIIIYQQQgjxOzVacUgpdaZSaqdSKl0p9eDPXruj4bWtSqlnj7D940qpTUqpDUqpH5VS8Qe99lDDfncqpcYeYfvbG9bRSqnog5aHKaW+UUptbDj+pON1zs3RkdpJKfVZw3u/QSmVoZTacITtI5VSPymldjX8HdGwPEopNV8pVamUevVXjp+ilFrZsP1nSilnw3KllHq5IdcmpVT/43zqzUZTbaOG105pOP5WpdTC43jazU4TaKcj/cy7ouH/0Cal1DKlVJ/jeNrNShNuI7kuHeQEttMZSqm1SqnNDX+PPsL2cl06Ck21nRpek2sTTaKN5Lp0FJpwO8m1qcEJbKPBB22/USl1/hG2l+vSUWiq7dTwWtO8LmmtT/gfwAbsBjoATmAj0L3htVOBOYBfw/PYI+wj9KDHdwJvNjzu3rA/PyCl4Ti2w2zfD0gGMoDog5Y/DDzT8DgGKAGcjfG+NLU/v9ZOP1vvBeDRI+zjWeDBhscPHvTeBgEjgFuAV38lw+fApQ2P3wRubXg8HvgeUMBJwEqr3y9po1+0UTiwDWjX8Pyw/5dbw58m0k5H+pk3DIhoeDxO/i81yTaS61LjtFM/IL7hcU8g+wjby3WpebdTOHJtaiptJNel5t1Ocm068W0UCNgbHrcFCv77/Gfby3WpebdTOE30utRYjTMU+OGg5w8BDx30pp1+jPt7CHjj5/tqeP4DMPRXtv35D7qHgNcb/hOlAOmAYXXDWPKP4Vfa6aBlCsgCUo+wj51A24bHbYGdP3v9Wo7wYalh30UH/Wc7kAd4C7jscMdpTX+aeBv9CXjC6veoKfyxup1+tt4hP/N+9loER/jlsKX/acptJNelxm2ng/ZRTMMXVT9bLtel5t1Ocm1qAm30s3XkutQM20muTY3eRilAPj8rOsh1qUW0U5O9LjXWbWUJDW/8f+1vWAbQGRjZ0OVqoVJq0JF2opR6UimVBVwBPHoU+z4arwLdgBxgM3CX1to8hu1bkqN5L0cC+VrrXUfYRxutdS5Aw9+xx3D8KKBMa+05zPH/aDu3FE25jToDEUqpBQ3dla8+hv22NFa309G6Ht83TK1RU24juS79T2O104XAeq21+2fL5bp0dJpyO8m1ycfqNjparfm6BE27neTa5HNC20gpNUQptRXfe3zLQT/X/kuuS0enKbdTk70u2RvpOOowy/RBGSLwdX0bBHyulOqgG8pqh2yg9SPAI0qph4Dbgb//xr6PxlhgAzAa6Aj8pJRarLWuOIZ9tBRH815eBky14Ph/tJ1biqbcRnZgAHAaEAAsV0qt0FqnnaAsTZnV7fSblFKn4vslfIRVGSzWlNtIrkv/c8LbSSnVA3gGGHOMx5fr0v805XaSa5OP1W10NNu39usSNO12kmuTzwltI631SqCHUqobMFkp9b3WuvYojy/Xpf9pyu3UZK9LjdVzaD+QdNDzRHxV5/++Nl37rAJMIFop9X7DIE3fHWZ/n+CreP/Wvo/GpIOOnw7sBboew/Ytya++l0opO3AB8NlBy37eTvlKqbYNr/33HsyjVQSENxzn58f/o+3cUjT1Npqtta7SWhcBi4A+x7DvlsTqdvpVSqnewH+Ac7XWxcdrv81MU24juS79zwltJ6VUIjADuFprvfswx5fr0tFp6u0k1ybr2+hXyXXpgKbcTnJt8mmU3x+01tuBKnzjQx1MrktHp6m3U5O8LjVWcWg1kNowYrcTuBSY2fDaV/gq0CilOuMbMKpIaz1Ja91Xaz2+4bXUg/Z3DrCj4fFM4FKllJ9SKgVIBVYdQ7ZMfFU7lFJtgC7AnmM/xRbh19oJ4HRgh9Z6/38X/LydGta/puHxNcDXR3vwht5i84GLDrP9TOBq5XMSUP7fbn6tTFNuo6/x3SJqV0oFAkOA7cd0di2Hpe30a5RS7YDpwFVN4RsKCzXZNkKuSwc7Ye2klAoHvsU3BsHSwx1crktHrSm3k1ybfCxto18j16VDNNl2Qq5N/3Ui2yjlv8UEpVR7fO9xxsEHl+vSUWvK7dR0r0u68QaFGg+k4Rs1/JGDljuBKcAWYB0w+gjbf9mwzibgGyDhoNceadjvTmDcEba/E1+VzoOvavefhuXxwI/47hfcAlzZWO9JU/xzpHZqeO0DfPdU/tr2UcBcYFfD35EHvZaBb2aDyoa2ONyI8R3wFffSgWn8bxY7BbzWkGszMNDq90ra6NA2anjtL/hG398C3G31e9XK2+lIP/P+A5Ti6xq+AVhj9XslbSTXJSvaCfgrvm/7Nhz05xczhhzpZx5yXWoW7dTwmlybmkYbyXWpebeTXJtOfBtdBWxtaJt1wHlH2F6uS824nRpea5LXJdUQTgghhBBCCCGEEEK0Qo11W5kQQgghhBBCCCGEaIKkOCSEEEIIIYQQQgjRiklxSAghhBBCCCGEEKIVk+KQEEIIIYQQQgghRCsmxSEhhBBCCCGEEEKIVkyKQ0IIIYQQQgghhBCtmBSHhBBCCCGEEEIIIVoxKQ4JIYQQQgghhBBCtGL/D7am0bKN3kK2AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAEvCAYAAAAzXwbsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACs8klEQVR4nOzdd1xWdf/H8de5LvYUZKiA4gIFZInixL3NWVqaI1tqNqxMszTvxt3yttK8m+YuzRyZmuXeW3EjgqKiogKy93V9f39Q3PnLHXoQPs/Hw8cDzvmec97nUuG6Puc7NKUUQgghhBBCCCGEEKL8MegdQAghhBBCCCGEEELcG1L4EUIIIYQQQgghhCinpPAjhBBCCCGEEEIIUU5J4UcIIYQQQgghhBCinJLCjxBCCCGEEEIIIUQ5JYUfIYQQQgghhBBCiHLK4n5ezM3NTfn6+t7PSwohhBBCCCGEEEKUa/v27UtWSrlfb999Lfz4+vqyd+/e+3lJIYQQQgghhBBCiHJN07QzN9onQ72EEEIIIYQQQgghyikp/AghhBBCCCGEEEKUU1L4EUIIIYQQQgghhCin7uscP0IIIYQQQgghKpbCwkISExPJy8vTO4oQDzwbGxu8vb2xtLS87WOk8COEEEIIIYQQ4p5JTEzE0dERX19fNE3TO44QDyylFCkpKSQmJlKzZs3bPk6GegkhhBBCCCGEuGfy8vKoXLmyFH2E+Ic0TaNy5cp33HtOCj9CCCGEEEIIIe4pKfoIUTru5v+SFH6EEEIIIYQQQpRrmqYxaNCgku+Liopwd3ene/fuOqa6NQcHh1u2mTRpEpMnT75pm2XLlnHs2LHSiiUeMFL4EUIIIYQQQghRrtnb23PkyBFyc3MBWLNmDV5eXrpkKSoquu/XlMJPxSaFHyGEEKKU5eQkc/DIAlZteovk5Bi94wghhBAC6NKlCytXrgTghx9+4LHHHivZl52dzbBhw2jUqBFhYWH8/PPPACQkJNCyZUvCw8MJDw9n+/btAFy8eJGoqChCQ0MJCgpiy5YtwLU9dH766SeGDh0KwNChQ3n55Zdp06YNY8eOJT4+ns6dO9OwYUNatmxJTEzx+4XTp0/TtGlTGjVqxIQJE254L++99x7+/v60b9+eEydOlGz/5ptvaNSoESEhIfTt25ecnBy2b9/O8uXLGTNmDKGhocTHx1+3nSi/pPAjhBBClJKjMUt4eGYITX5szeP73mNswhI6rHiYdxZ0Ji/3qt7xhBBCiArt0UcfZcGCBeTl5XHo0CEiIyNL9r333nu0bduWPXv2sGHDBsaMGUN2djYeHh6sWbOG/fv3s3DhQl544QUAvv/+ezp16kR0dDQHDx4kNDT0ltePjY1l7dq1/Oc//+GZZ55h2rRp7Nu3j8mTJzNy5EgAXnzxRUaMGMGePXuoUqXKdc+zb98+FixYwIEDB1iyZAl79uwp2denTx/27NnDwYMHqV+/PjNmzKBZs2b06NGDjz/+mOjoaGrXrn3ddqL8kuXchRBCiFKwaecUxhz/DmcFI1yC8fcIxd25JsuPzGRB3jkOL2jDlA5f4u3dRO+oQgghhG7+9ctRjl3IKNVzBlRz4q2HAm/ZLjg4mISEBH744Qe6du16zb7ff/+d5cuXl8yVk5eXx9mzZ6lWrRqjRo0iOjoao9FIbGwsAI0aNWLYsGEUFhbSq1ev2yr8PPLIIxiNRrKysti+fTuPPPJIyb78/HwAtm3bxuLFiwEYNGgQY8eO/dt5tmzZQu/evbGzswOgR48eJfuOHDnCm2++SVpaGllZWXTq1Om6WW63nSgfpPAjhBBC/EO/bXmHcfEL8ceCzx/6ATf3+iX7GgQ+QoudU3j9+Hf0X/MUU0JeIDL8GR3TCiGEEBVXjx49ePXVV9m4cSMpKSkl25VSLF68GH9//2vaT5o0CU9PTw4ePIjZbMbGxgaAqKgoNm/ezMqVKxk0aBBjxoxh8ODB16y49P+X3La3twfAbDZTqVIloqOjr5vxdlZtulGboUOHsmzZMkJCQpg1axYbN278R+1E+SCFHyGEEOIf+GXDG7x55mdCsWb6wytwcKz6tzatmrzMQq9IXlgzghcOTmWukw9+dbrokFYIIYTQ1+30zLmXhg0bhrOzMw0aNLim2NGpUyemTZvGtGnT0DSNAwcOEBYWRnp6Ot7e3hgMBmbPno3JZALgzJkzeHl58fTTT5Odnc3+/fsZPHgwnp6eHD9+HH9/f5YuXYqjo+PfMjg5OVGzZk0WLVrEI488glKKQ4cOERISQvPmzVmwYAGPP/448+fPv+49REVFMXToUMaNG0dRURG//PILzz77LACZmZlUrVqVwsJC5s+fXzKBtaOjI5mZmSXnuFE7UT7JHD9CCCHEXfplwxu8ceZnGmm2fNHvt+sWff7k49OcL7vNw0HB85tfIyfr8n1MKoQQQggAb29vXnzxxb9tnzBhAoWFhQQHBxMUFFQysfLIkSOZPXs2TZo0ITY2tqTXzsaNGwkNDSUsLIzFixeXnPODDz6ge/futG3blqpVb/y+YP78+cyYMYOQkBACAwNLJpP+7LPPmD59Oo0aNSI9Pf26x4aHh9O/f39CQ0Pp27cvLVu2LNn3zjvvEBkZSYcOHahXr17J9kcffZSPP/6YsLAw4uPjb9hOlE+aUuq+XSwiIkLt3bv3vl1PCCGEuFcOHlnAE3vfJVyz5fN+v2Nj63Jbx23fM51nj33JxzUfoXPUxHucUgghhNDf8ePHqV+//q0bCiFuy/X+T2matk8pFXG99tLjRwghhLhDeblXeXn3u3iaNf7Tc9FtF30AIsOextWsWH923T1MKIQQQgghRDEp/AghhBB3aP3uT7ls1JgQPALnSr53dKzRworWNlXZXJhCQX7mrQ8QQgghhBDiH5DCjxBCCHGHlib8ipcJmoTd3epc7Wp1JdugsfvgrNINJoQQosxSZjPb90xnxcYJnDu3Q+84QogKRAo/QgghxB04f343u1QOPV2DMRjvbnHMyJBh2JkV606tKOV0Qgghyqo5vw7n2WNf8vqZZUxc97zecYQQFYgUfoQQQog7sHDnBwD0bDz6rs9hbeNMC0sXNuScx1RUUFrRhBBClFFnz25l2uXttNIc6GHpzjGVh9lUpHcsIUQFIYUfIYQQ4jZdunSI7zNi6WbpTrVq11004ba182lLilHj8PFFpZROCCFEWXTk2CJGrh2BFTCx0zdEeDQkx6BxLlGGewkh7g8p/AghhBC3kJ2VxM/rx/H2b89i1mBU6w//8Tlbhj2DhVKsO/FTKSQUQghRFm3YMZlBu/9FPopp4WPw8Ayivk9LAI6fWa9zuorl0qVLDBgwgFq1atGwYUOaNm3K0qVL7/l19+7dywsvvFAq52rdujX+/v6EhITQvHlzTpw4USrnLU2lmXHWrFmMGjUKgC+//JI5c+bcsG1CQgLff/99yfel+brfrqeeeopjx47d12veLin8CCGEELfwzW+jePPcSjarLIY5B+Hl1fgfn9PRyYtIzZ51GXEos7kUUgohhCgrCvIz+WXDG7x6Yhb1lCU/9V1Fw5AhANT2bYeFUhy7clDnlBWHUopevXoRFRXFqVOn2LdvHwsWLCAxMfGeXzsiIoKpU6eW2vnmz5/PwYMHGTJkCGPGjPnbfpPJVGrXulv3IuPw4cMZPHjwDff//8JPab/ut2Iymfj2228JCAi4b9e8E1L4EUIIIW4gJ+syhYU5/JweQwvs2fTQUkb1XlBq5+/i04ZzRvhxzUuldk4hhBD6SkjYRKf5TRl/djk1lZEvei3B2bl6yX5La3vqKguOZ937ooMotn79eqysrBg+fHjJtho1avD888WTbCckJNCyZUvCw8MJDw9n+/btAGzcuJHu3buXHDNq1ChmzZoFwLhx4wgICCA4OJhXX30VgEWLFhEUFERISAhRUVF/O8fu3btp1qwZYWFhNGvWrKQ3zKxZs+jTpw+dO3embt26vPbaa7e8p6ioKOLi4gBwcHBg4sSJREZGsmPHDqZMmUJQUBBBQUF8+umnJcfMmTOH4OBgQkJCGDRoEABXrlyhb9++NGrUiEaNGrFt2zYANm3aRGhoKKGhoYSFhZGZmcnFixeJiooiNDSUoKAgtmzZctcZ582bR+PGjQkNDeXZZ58tKQbNnDkTPz8/WrVqVZIFYNKkSUyePBmAuLg42rdvT0hICOHh4cTHxzNu3Di2bNlCaGgon3zyyTWve2pqKr169SI4OJgmTZpw6NChknMOGzaM1q1bU6tWrRsWin744QcaNGhAUFAQY8eOLdn+/++pdevW7N27F4AZM2bg5+dH69atefrpp0t6Lunl7pYjEUIIIcq5aUv7MyP9KN2tqpBs1Ojv/wiurnVuekxWfhFL9ify6+EkTiVnoaHRwNuZ9vU9eCikGnZW1/7afajVu6yet5GPLq6nQcwyAur1uod3JIQQ4l7LyrzIC+ufx6TBF/WfoWn4sxgtrP7WLsDGg3V5F1BmM5pBnsXfa0ePHiU8PPyG+z08PFizZg02NjacPHmSxx57rOQD/PWkpqaydOlSYmJi0DSNtLQ0AN5++21+++03vLy8Srb9Vb169di8eTMWFhasXbuW8ePHs3jxYgCio6M5cOAA1tbW+Pv78/zzz+Pj43PDDL/88gsNGjQAIDs7m6CgIN5++2327dvHzJkz2bVrF0opIiMjadWqFVZWVrz33nts27YNNzc3UlNTAXjxxRcZPXo0LVq04OzZs3Tq1Injx48zefJkpk+fTvPmzcnKysLGxoavv/6aTp068cYbb2AymcjJybnp636jjMePH+fDDz9k27ZtWFpaMnLkSObPn0+HDh1466232LdvH87OzrRp04awsLC/nXfgwIGMGzeO3r17k5eXh9ls5oMPPmDy5MmsWFG8YurGjRtL2r/11luEhYWxbNky1q9fz+DBg4mOjgYgJiaGDRs2kJmZib+/PyNGjMDS0rLk2AsXLjB27Fj27duHi4sLHTt2ZNmyZfTq1euae/qrCxcu8M4777B//34cHR1p27YtISEhN32t7jUp/AghhBD/z/xfR/J1xjFcFPxceAkPk6JFw+du2F4pxeztCUxZE0tGXhF1PRxo5edOkUmx50wqa45d4t2Vx3mtkz8DI2tgMGgAGIwWvPfQPPot68XTO97kC1M+wYH979dtCiGEKEVmUxHjlvbhnMHM16Ev0yh02A3b1nPxZ/Gli1xM2v+PFwt44Pw6DpIOl+45qzSALh/cdvPnnnuOrVu3YmVlxZ49eygsLGTUqFFER0djNBqJjY296fFOTk7Y2Njw1FNP0a1bt5KeJc2bN2fo0KH069ePPn36/O249PR0hgwZwsmTJ9E0jcLCwpJ97dq1w9nZGYCAgADOnDlz3cLPwIEDsbW1xdfXl2nTpgFgNBrp27cvAFu3bqV3797Y29sD0KdPH7Zs2YKmaTz88MO4ubkB4OrqCsDatWuvmZcmIyODzMxMmjdvzssvv8zAgQPp06cP3t7eNGrUiGHDhlFYWEivXr0IDQ297utzq4zr1q1j3759NGrUCIDc3Fw8PDzYtWsXrVu3xt3dHYD+/fv/7e8iMzOT8+fP07t3bwBsbGyum+Gvtm7dWlJga9u2LSkpKaSnpwPQrVs3rK2tsba2xsPDg0uXLuHt7V1y7J49e67JNHDgQDZv3kyvXr2uuae/2r17N61atSp5jR955JFb/pu616TwI4QQQvxFZsZ5PkvaTAuDAx/1Xcw7ywfQ1DsSC8vrv7HILzLx5tIjLNqXSJSfO6908CPEp1LJfqUU+85c5ZO1sUz4+SjR59L5T7//PfVxda3DrI7f8szvTzNs9zu8eGY9AztNx2CUX9FCCFHWKLOZY7HLsLV2pmaNNhQUZGJl5QjA1GWPskllMb5K65sWfQDCanWCSxvZfXwRvSpa4UcHgYGBJR/8AaZPn05ycjIREcWv/SeffIKnpycHDx7EbDaXFBMsLCww/2Uevry8vJLtu3fvZt26dSxYsIDPP/+c9evX8+WXX7Jr1y5WrlxJaGhoSa+SP02YMIE2bdqwdOlSEhISaN26dck+a2vrkq+NRiNFRUXXvZf58+eX5P6TjY0NRqMRKH7fcT1KKTRN+9t2s9nMjh07sLW1vWb7uHHj6NatG6tWraJJkyasXbuWqKgoNm/ezMqVKxk0aBBjxoy57rw7t5NxyJAhvP/++9e0WbZs2XUz/v/7uFPXO+bP69zqdb/Z9f56T/80470m7yqFEEJUeGZTERMXdgbAv1Jtcg0aoyJfw9HJi48e33TD465k5jN83j72nbnKC+3q8lK7uiW9ef6kaRoRvq7MezKSD1ef4MtN8XQPqUobf4+SNt7eTZjTYxFvrXqCj65s58D3rRkcOoKvD0xjVONxMgRMCCF0ZDYVceDIfLbFr2RD+gniDMWFAFuzItegUcdsoLLBil3k0deqKo92vPWEsn51uuK2dRzbLu6g1z3OX+bcQc+c0tK2bVvGjx/PF198wYgRIwCuGaaUnp6Ot7c3BoOB2bNnl8w3U6NGDY4dO0Z+fj55eXmsW7eOFi1akJWVRU5ODl27dqVJkybUqVM8FDw+Pp7IyEgiIyP55ZdfOHfu3DU50tPT8fLyAiiZK6i0RUVFMXToUMaNG4dSiqVLlzJ37lysrKzo3bs3o0ePpnLlyqSmpuLq6krHjh35/PPPSyZhjo6OJjQ0lPj4eBo0aECDBg3YsWMHMTEx2Nra4uXlxdNPP012djb79++/6YTLN9KuXTt69uzJ6NGj8fDwIDU1lczMTCIjI3nxxRdJSUnBycmJRYsW/W2IlJOTE97e3iXDrfLz8zGZTDg6OpKZmXnD12T+/PlMmDCBjRs34ubmhpOT021l/TNTcnIyLi4u/PDDDyVzQ91I48aNGT16NFevXsXR0ZHFixeXDHnTixR+hBBCVHgzVg7j58JLAFheTiJYWRFY7+9dtP8qKT2PAd/s5EJ6LtMHhNMtuOpN22uaxugOdVl7/BJvLj3C2pdbYWv1v6dEbm71+Pzxbcz59VkmJ+9kzf7iN8aV93/OO1L4EUKI++pqajy7jsxj+/ktbM1N4opRw6gUwZo1k6q1xqRMxF09SSUrJ9alHeOoOZdxVaJ4tMOntzVnj2Yw0NymChvykygqzLthr1JROjRNY9myZYwePZqPPvoId3d37O3t+fDDDwEYOXIkffv2ZdGiRbRp06ZkmJSPjw/9+vUjODiYunXrlsw3k5mZSc+ePcnLy0MpxSeffALAmDFjOHnyJEop2rVrR0hICJs2/e8B0muvvcaQIUOYMmUKbdu2vSf3Gh4eztChQ2ncuHgF0qeeeqok9xtvvEGrVq0wGo2EhYUxa9Yspk6dynPPPUdwcDBFRUVERUXx5Zdf8umnn7JhwwaMRiMBAQF06dKFBQsW8PHHH2NpaYmDg8NNl1e/mYCAAN599106duyI2WzG0tKS6dOn06RJEyZNmkTTpk2pWrUq4eHh110BbO7cuTz77LNMnDgRS0tLFi1aRHBwMBYWFoSEhDB06NBr5gaaNGkSTzzxBMHBwdjZ2TF79uzbzlq1alXef/992rRpg1KKrl270rNnz5se4+Xlxfjx44mMjKRatWoEBASUDOPTi3Y/uyFFRESom02SJYQQQtxvR2OWMGDnRDpZVMbSYGR54RU+qNGbbq3fvuExqdkF9P1iO5cz8pg9rDERvq63fb0d8Sk89s1OJnYPYFiLmtdts3rzv9h7cRdJ+Vc5bMpk/aD9150cVAghROlaunYMC86t4bhWhNI0HM2KJhYudKjejpbhz+Lg+Pciv/pjKNCdTtK8evPbjDm9iLkNXyc0aECp5C+rjh8/Tv369fWOIcR9k5WVhYODA0VFRfTu3Zthw4aVzEtUGq73f0rTtH1KqeuOHZUeP0IIISq0z3d9hKOCiT0XYGXlQNdDs2kaPvyG7QuKzIyYt4/zabl8/1TkHRV9AJrWrkxkTVe+2hzPgMjq2Fj+fWx456i36ExxAWjT6Z84eHQB4SF33pVaCCHE7cnLvcrknwewMD+R+hgZ6RJKszoPEejf+5aF99sp+GTmFfLD7rOsj7nMh32DqVHZnqbBgzGc+pHNsUvLfeFHiIpm0qRJrF27lry8PDp27EivXr10zSOFHyGEEBVW9JHv2Uo2L7k1KnmK27zRqJseM/n3E+w6ncpnj4becdHnTy+0q8vAb3fx495zDG7qe8N2LcKeweLUIjacXCqFHyGEuEeiD89n/J4POGeEJ+zr8GKvhaXay/LPocGnkrMxaPDR6hNMHxiOcyVfWhgcmZt+nA4nfqa+/82HjwghHhyTJ0/WO8I17qw/ohBCCFFOXLl8lLd2f4CrWfFYu49v65gDZ6/y7ZZTPNa4Oj1Dve762s1qV6ZJLVcm/3aCyxl5N2zn4FiVSM2eVRknyc5KuuvrCSGEuL7jJ35m+N73UcA3QaN4+eGlpVr0OZGUyaNf7+BSRh7fPxXJqDZ1WHn4IkfOFy8l/XbX2TgreGnbm1xNjS+16wohxF9J4UcIIUSFYjYVsW77hwxe8SgXNTOTw17Gzs7tlsel5RTwyqKDeDrZML5rvX+UQdM0/t27AflFZt5YduSmy34OD3+BKwb4+Bfp8SOEEKVFmc2s3vw2w7e/gaOCWd3m06Ths6V2frNZ8c3mUzw0bStZ+UXMeTKSZnXceCqqFpXsLPlkTSwAld38+LTJWyQbFGN+eZSiwhs/DBBCiLslhR8hhBAVyvs/9eClk/PQgG8avUmj0GG3PCYlK59BM3aTeDWXKf1CcbSx/Mc5ark78EpHP9Ycu8RXm0/dsF1og4EMdfRjccFFJv3QkcTEnf/42kIIUdF9sqQvY04vwh0jX7WZiqdncKmcVynFlpNXePTrnby36jit/N357aUoGtZwAcDJxpKhzXxZF3OZU1eyAAgKeIQJPt3YRR7frHyyVHIIIcRfSeFHCCFEhXHq9Hp+zD1LX6uqLB+0h5CgR2/aXinFFxvjifpoAzFJGXwxMJymtSuXWp6nWtSie3BVPlwdw8/R52/YblT32Txq48Py/As8suYp1m59n2XrxrLnwIxSyyKEEBVFzInlzM46SS9LTxYO2kOtmqWzrHZKVj6Dv9vNoBm7ib+SxUd9g/l6UEMqO1hf025gZA2sjAZmbU8o2dar3Ye0Mzgx9+pBsjIvlkoeIYT4kxR+hBBCVBifb52IjYIXOv0XC0ubW7b/78Z4PlwdQ7M6bvz6Ykva1fcs1TwGg8bkR0Jo7OvKiwui+WpT/HWHfVlZO/JG/1X80uE7qmFkdPz3TEhcxfCDn3DwyAIAcnKSOXhkAas3/4vFa15h+frxxJxYzrGYZcTHrynV3EII8aBSZjPvbp9EJQWvdvuu1Obz2XfmKt2mbmXX6VT+1SOQbePa0q+RD5qm/a2tu6M1D4VUY9HeRNJyCkq2P93oFTINGgs3ji+VTOJaly5dYsCAAdSqVYuGDRvStGlTli5des+vu3fvXl544YVSOVfr1q3x9/cnJCSE5s2bc+LEiVI5b2kqzYyzZs1i1KjiRTe+/PJL5syZc8O2CQkJfP/99yXfl+br7uvrS3Jy8j8+z1/v535fW1b1EkIIUSGcjFvNGnM6Iyo1wNW1zg3bJaXnMXzePg4lpmFW0Cu0GlP6hWIw/P3Ne2mwsTQye1hjXll0kPd/jWH/2as8FFKNOh4O1KvidE1bL6/GzHnkN37d8RE+lesxKXoaw/e8i+vu9zhvUJj+/weMc7+UfNljlwevdP7qpvcuhBDl3cFjCzhoKGRClXY4O1f/x+c7nZzNvJ1nmL09gWqVbFkyohlBXs63PO6ZqFosPZDIlDWxvN0zCIDAen1ouusD5l7Zw2NZl7Fz8PjH+UQxpRS9evViyJAhJcWBM2fOsHz58nt+7YiICCIiIkrtfPPnzyciIoKvv/6aMWPG/O0eTCYTRqOx1K53N+5FxuHDh990/5+FnwEDBgCl/7o/6KTHjxBCiAph/p4p2JgVA9u8f8M2Jy9l0mv6NuIuZ/FMVG0mdg/go4dD7lnR5082lkamPRrGm93qsz7mMqO+P8BD07aWrPryV/YOVXi4wxQiw59hepvPaGrhQoCVC086BzLVbwiLm3/Emo5z+DnqMz6u+TCf1hnIUw7+rCq4xEM/92L5+uInycpsprAw557elxBClAVmUxH/XtiNTTun8POR2diaFd2av37H58kpKGJT7BWmb4hj5Px9NP9gPW0mb2T29gR6hFbjl1EtbqvoA+BfxZHHm9Rg3s4zHL3wv5/1zzV8mVQDTFslc/2UpvXr12NlZXVN8aBGjRo8//zzQHHRoGXLloSHhxMeHs727dsB2LhxI927dy85ZtSoUcyaNQuAcePGERAQQHBwMK+++ioAixYtIigoiJCQEKKiov52jt27d9OsWTPCwsJo1qxZSW+YWbNm0adPHzp37kzdunV57bXXbnlPUVFRxMXFAeDg4MDEiROJjIxkx44dTJkyhaCgIIKCgvj0009LjpkzZw7BwcGEhIQwaNAgAK5cuULfvn1p1KgRjRo1Ytu2bQBs2rSJ0NBQQkNDCQsLIzMzk4sXLxIVFUVoaChBQUFs2bLlrjPOmzePxo0bExoayrPPPovJZAJg5syZ+Pn50apVq5IsAJMmTSpZIj0uLo727dsTEhJCeHg48fHxjBs3ji1bthAaGsonn3xyzeuemppKr169CA4OpkmTJhw6dKjknMOGDaN169bUqlWLqVOn3vJ1v9Fr26tXLxo2bEhgYCBff/11yfYb3c+NXveUlBQ6duxIWFgYzz777E0XALkjSqn79qdhw4ZKCCGEuN9SUk6q8JmB6l8/dPrbPrPZrPadSVUrD11Q4W//riLeXaOOnk/XIWWxK5l56nBimmr07hrV/j8bVW5BUamcNy7udzV4ZrgKmhWk/vNTb9XvuxDVcUaQSkjYXCrnF0KIsmrZurEqaFaQavxdoIr8LlCNn9/mto89fzVHzdmRoIZ8t0vVfWOVqjF2haoxdoWK+mi9Gjl/n5q59ZS6kJZzV7nSsgtU+Nu/q4embVEFRaaS7e8s6KIazAxUB48suKvzlkXHjh3T9fqfffaZeumll264Pzs7W+Xm5iqllIqNjVV/fm7dsGGD6tatW0m75557Ts2cOVOlpKQoPz8/ZTablVJKXb16VSmlVFBQkEpMTLxm21/PkZ6ergoLC5VSSq1Zs0b16dNHKaXUzJkzVc2aNVVaWprKzc1V1atXV2fPnv1bzlatWqk9e/YopZT66KOPVL9+/ZRSSgFq4cKFSiml9u7dq4KCglRWVpbKzMxUAQEBav/+/erIkSPKz89PXblyRSmlVEpKilJKqccee0xt2bJFKaXUmTNnVL169ZRSSnXv3l1t3bpVKaVUZmamKiwsVJMnT1bvvvuuUkqpoqIilZGRcVcZjx07prp3764KCgqUUkqNGDFCzZ49W124cEH5+Pioy5cvq/z8fNWsWTP13HPPKaWUeuutt9THH3+slFKqcePGasmSJUoppXJzc1V2dvbf/q7++v2oUaPUpEmTlFJKrVu3ToWEhJScs2nTpiovL09duXJFubq6lmT6qxo1aqgrV67c8LX96+uZk5OjAgMDVXJy8k3v50av+/PPP6/+9a9/KaWUWrFihQJK/s7+6nr/p4C96ga1GBnqJYQQolwrLMxh8q/PUKBpDGz0yt/2T1kTy7T1xU+jPJ2s+eHpJtRyd7jfMUu4OVjj5mDNx4+EMOS73Xy4Ooa3Hgr8x+etXbsDM6q35I0fOzMz6yTOKAwaDFk3gnkdv8Xbu0kppBdCiLIlJyeZqQkr8NOMXMREpkGjZ/0BNz3mbEoOP+1PZO2xSxy7mAFAjcp2PB5Zgzb13An2roSz7T9f3dHZzpJ3egUxcv5+pm+I46X2fgC81HUGmxZ14PVd77KwehQOjlX/8bXKkg93f0hMakypnrOeaz3GNh572+2fe+45tm7dipWVFXv27KGwsJBRo0YRHR2N0WgkNjb2psc7OTlhY2PDU089Rbdu3Up6ljRv3pyhQ4fSr18/+vTp87fj0tPTGTJkCCdPnkTTNAoLC0v2tWvXDmfn4h5jAQEBnDlzBh8fn7+dY+DAgdja2uLr68u0adMAMBqN9O3bF4CtW7fSu3dv7O3tAejTpw9btmxB0zQefvhh3NzcAHB1dQVg7dq1HDt2rOT8GRkZZGZm0rx5c15++WUGDhxInz598Pb2plGjRgwbNozCwkJ69epFaGjodV+fW2Vct24d+/bto1GjRgDk5ubi4eHBrl27aN26Ne7u7gD079//b38XmZmZnD9/nt69ewNgY3PrORu3bt3K4sWLAWjbti0pKSmkpxf3tOvWrRvW1tZYW1vj4eHBpUuX8Pb2vuF5rvfahoWFMXXq1JI5o86dO8fJkydJSkq64f3c6HXfvHkzS5YsKcnm4uJyy/u7HVL4EUIIUW4VFeYx4vtW7CKPZ5wCqF27wzX75+08w7T1cTzc0JsBkdWp7e5QKm/mS0MrP3eGNvNl5rYE2tbzoGVd9398TgtLG/7d/3dabHmbyIBHycq5xKMbX+TTja8x+fHNpZBaCCHKlkUbxnPZqDE5bAy5+emsP7WSiOChf2unlGLNsUvM3XmGLSeTMWjQsIYL47rUo319D2q7O1x3ouZ/qmuDqvQO82La+jg6BHgSWM0ZB8eqfNjwNYYd+Ii3f36UDwdsYO7q4exLOcpng7bd+qTibwIDA0s++ANMnz6d5OTkkjlgPvnkEzw9PTl48CBms7mkmGBhYYHZbC45Li8vr2T77t27WbduHQsWLODzzz9n/fr1fPnll+zatYuVK1cSGhpKdHT0NTkmTJhAmzZtWLp0KQkJCbRu3bpkn7X1/1Z/MxqNFBUVXfde/pw/569sbGxK5sxRNxgapJS67r9hs9nMjh07sLW1vWb7uHHj6NatG6tWraJJkyasXbuWqKgoNm/ezMqVKxk0aBBjxoxh8ODBd5VxyJAhvP/+tcPvly1bdsv/Zze6vzs95s/r3O7rfrNrb9y4kbVr17Jjxw7s7Oxo3bp1yb+VG93PjV73mx3zT0jhRwghRLn1/ZoX2EUeE6u255GOn1yzb0d8Cm8tP0rbeh580KcBFsayN+3duC712BqXzPM/HGDGkAga1nD9x+c0WljxUJt3AfAgiMHRQXyVcZQnYpYQWO/vTyeFEOJBpcxmll3eRTAWhAU/DkCzRs/9rd2VzHzGLT7EupjLVHW2YXR7P/o38qGK8617EpSGSQ8FsuXkFcYvOcySkc0xGjTCQwYz8swapl2NpurSR5iTeYIiTSPt6mkqudS8L7nulTvpmVNa2rZty/jx4/niiy8YMWIEADk5/5vnLj09HW9vbwwGA7Nnzy6Zb6ZGjRocO3aM/Px88vLyWLduHS1atCArK4ucnBy6du1KkyZNqFOneOGE+Ph4IiMjiYyM5JdffuHcuXPX5EhPT8fLywugZK6g0hYVFcXQoUMZN24cSimWLl3K3LlzsbKyonfv3owePZrKlSuTmpqKq6srHTt25PPPP2fMmDEAREdHExoaSnx8PA0aNKBBgwbs2LGDmJgYbG1t8fLy4umnnyY7O5v9+/dft/BzK+3ataNnz56MHj0aDw8PUlNTyczMJDIykhdffJGUlBScnJxYtGgRISEh1xzr5OSEt7c3y5Yto1evXuTn52MymXB0dCQzM/OGr8n8+fOZMGECGzduxM3NDScnp+u2vZvX9uzZs7i4uGBnZ0dMTAw7d+4EuOn93Oh1/zPrm2++ya+//srVq1fvOOf13PJdrqZpPpqmbdA07bimaUc1TXvxL/ue1zTtxB/bPyqVREIIIUQpSLp4gOmXttNSs+fh9v+5Zt+hxDRGzt9HTTd7Pns0tEwWfaB40ucZQyJwsbPisW92serwxVK/xtD2n+BiVny664NSP7cQQugp5uQvxBnM9KjW8oZtDiem033aFrbGJTOxewBbXmvDi+3r3reiDxQP+ZrQPYCDienM2p5Qsv3JrjNogi3fZcVi+mPbsbhV9y1XeaJpGsuWLWPTpk3UrFmTxo0bM2TIED788EMARo4cyezZs2nSpAmxsbElQ3l8fHzo168fwcHBDBw4kLCwMKB4uFH37t0JDg6mVatWfPJJ8cOlMWPG0KBBA4KCgoiKivpb0eK1117j9ddfp3nz5iXFpdIWHh7O0KFDady4MZGRkTz11FOEhYURGBjIG2+8QatWrQgJCeHll18GYOrUqezdu5fg4GACAgL48ssvAfj0009LJqq2tbWlS5cubNy4sWSy58WLF/Piiy/eLMoNBQQE8O6779KxY0eCg4Pp0KEDFy9epGrVqkyaNImmTZvSvn17wsPDr3v83LlzmTp1KsHBwTRr1oykpCSCg4OxsLAgJCSk5O/jT5MmTSq5x3HjxjF79uy7yn2j17Zz584UFRURHBzMhAkTaNKkePj8ze7nRq/7W2+9xebNmwkPD+f333+nevV/vvoggHarrlKaplUFqiql9mua5gjsA3oBnsAbQDelVL6maR5Kqcs3O1dERITau3dvqQQXQggh/j9lNnP4+CL2nFrNzOQ95ANL2n+Dj0/TkjYrDl3glR8P4uZgzfynIvF1s9cv8G1KzS7g6Tl72X/2Kk+1qEmvMC8Cq93eyjG3Y+6qZ/noyna+DnqOpg1vvlyqEEI8KD788SEW5pxmQ68VOFfy/dv+VYcv8vKP0VS2t+abwREEVLvzHgClRSnFU7P3siUumWUjm5dkSb5ynBdWDKCXVyveubiOF13CGdD2Y37bNZmjVw4zov1nVHbz0y337Tp+/Dj169fXO4YQ5cb1/k9pmrZPKXXdNexvWfj52wGa9jPwOfA08LVSau3tHiuFHyGEEKUtK/MiWdmXqFIllCmL+zAz6yQAjZU1r7f8N3VqdwSK31RPXRfHJ2tjiajhwpeDGuLmYH2zU5cpeYUmXl9ymGXR51EKujaowpvdAqhW6e9jw+9Ufl46D33fHBfNgh8G78VglJHgQogHmzKbaTsrmFDLSnwyaOu1+5Ti8/Vx/GdNLOHVK/HVoAjcHfX/fZCSlU+Xz7bgaGPBL8+3wM7q2p/F3b5rgJ+lMwrFOnPxpNPjPVvxWOfP9Yh7R6TwI0TputPCzx29s9M0zRcIA3YBHwMtNU17D8gDXlVK7bnOMc8AzwCl1k1JCCFExWY2FbH/8DymHPiMw4biSfhaYM9Wsult5cnINpOpUiX0mmN+3HuOT9bG0ifci/f7NMDawqhD8rtnY2nkk/6hvNGtPt/vOsvn6+NYdTgJP08HXO2tsLOywNbSiMGg4WBtQSU7Swwa+Hk60srPnUp2Vjc8t7WNM8/5dufNcyvZunc6UZF313VbCCHKitNnNpBs1GhZ9doVC01mxauLDrL0wHl6hxX/PrCxLBu/Dyo7WPNp/1AGztjFv5Yf48OHg6/ZH2DlwvbCVDI1eMKhLj9nnuRoKa+OJYQon2678KNpmgOwGHhJKZWhaZoF4AI0ARoBP2qaVkv9vy5ESqmvga+huMdPqSUXQghRIX26+GFmZ8ZQpGl4KsWoSmFkFmQyLzuO+sqCN3ovxtrm2mFQMUkZTPz5KC3quPHxwyEYDaW/WsL94uZgzQvt6tIr1IsVhy+wN+EqWXlFXM7MI7fAhFlBZl4haTmFmJXCrMDSqNG2ngfDW9UmrPr1lwXt2nIiU+atYEnsj1L4EUI8sJavH4+rQ1USU4uXTG7k3/ua/Z+tO8nSA+cZ3d6PF9rVuSer5/wTzeq4MbJ1baZviKdZncr0DPUq2RdYyY/VKbswKMWA5hM5+fsIjuZf0TGtEOJBcVuFH03TLCku+sxXSi35Y3MisOSPQs9uTdPMgBsgP32EEELcE8lXjjM7M4bGmh2dvKLo3GwcdnZuADyauBNnJ5+/FX2y84sYOX8/TraWfNI/9IEu+vxV9cp2jGxd56ZtTGbFocQ0Vh2+yJL95+l9dDvNalfGwdqCKD93eod5YW9d/FbA0tKOHo51mZd1kuTkGNzc6t2P2xBCiFKTlBTNW2eX42qGQAtnqpgU3l7/m+NtQ8xlpq47ycMNvctk0edPL7X3Y9epVF5fcph6VZzwr+IIQKBXU0jZRZTBiSpVwwh08mV7+hFycpJLfheWZTdaTlwIcWfuZkn721nVSwNmAMeVUlP+smsZ0PaPNn6AFZB8xwmEEEKI27RsxwcUaRqvt/qYPu0nX/NG19u7CY5OXte0N5kV45ceJiE5m88eDS0TczjcT0aDRlh1F97oFsCm19owsnVtMvIKOXEpkzeXHaHTp5u5lJFX0r53w+cp0jR+2fmxjqmFEOLuzNsyiSJN47JRY4PKoJG1B5qh+OPOudQcXloYTf2qTrzTM6hMFyAsjQamDwzH3tqC3v/dRvMP1rPm2CWC/HvTHDuejRgNQGCVCMyaxom41TonvjUbGxtSUlLu6gOrEOJ/lFKkpKRgY3NnKw/ezqpeLYAtwGHA/Mfm8cBa4DsgFCigeI6f9Tc7l0zuLIQQ4m6ZTUV0nR1GNYM13w299e+StJwCXlgQzebYK7zSwY/n29W9DykfDEopdsSn8PScvfi42vHj8KY42VgCMHhWQ66aC1k+NLrkA5MQQpR16eln6bikK62t3IgtuEqcwczb3l1o3/w95uw4w6K950jJLuCXUS0eiNUcAY5eSGfezjNsjk3G1srI7y9FYfhLr9XLl47QbvVjjPVozuNdvtQx6a0VFhaSmJhIXl7erRsLIW7KxsYGb29vLC0tr9n+jyZ3VkptBW5UEn/8jlMKIYQQd2HFpomcN8JLNR+6ZdtzqTkMmbmbxNRc/t27AY819rkPCR8cmqbRrI4bXw5qyBMz9/DaokN88Xg4mqbR26cdExN/5cDheYSHDNY7qhBC3Javfn+eXA2ejBxL/PldTDj1E00DHmPCsiMsi75AAy9n3uvd4IEp+gAEVnPm/T7B/HLwAs//cIDfjibRpUHVkv0enkF4mBRHU0/omPL2WFpaUrNmTb1jCFFhyaM8IYQQZV5ycgwfnVlOmLKiY/M3btjuQlou7/96nK5Tt5Ccmc/cJxszILJ6me7Sr6eWdd0Z27keq48mMXNbAgCdIl/FzqxYcnSOvuGEEOI2xcX/zvfZ8fS18cKvThe6tJrE1ke3kJhfg2XRFxjVpg6/PN+C5nXK/jw419O1QVVqudnz2k+HaDt5I20nb2TsT4cACLasxO78K5hNRXz7y1B+/P0lfcMKIcokKfwIIYQo8z5a/Sw5Gkxq9TEG4987q55LzWH0wmhafrSBbzafIqquO0tGNieyVmUd0j5YnmpZk7b1PJj8+wkuZ+Zh5+BBF5tq/J6fRGbGeb3jCSHELU3eOgF7BS90/G/JNivrSkz65ShVnW0Y2aa2jun+OaNB473eDWhTz4NAL2fcHa1ZuPccu06l0M6nTfGcRjsnMz1lLz+e36B3XCFEGXTby7kLIYQQetgbPYtfTakMd25ArZptgeI5atYcu8T0jfGcvpJFdoEJS6PGE818GdrcF28XO51TPzg0TWNC9wDaT9nEtHVxvNMriP7hz7F455t8u+YFRvddrHdEIYS4oWMxy9hGDi+5NcLF9X8Fnl8OXeDI+Qw+7R+KndWD/5Gnae3KNK1d/DAjr9BEy4828Nm6k3zz2HNYn17KpNh5FBk0EpQJU1EBRgsrnRMLIcoS6fEjhBCizCoqzOPDA59QxaQY1mk6AOk5hYyYt59n5u4jLaeAPuHejGhVmw2vtubN7gFS9LkLNd3seayxDz/sPsvp5Gzq+/ekh6U7czNPcO7cNr3jCSHEDX23dwoOZkW/Vu+WbCsoMvOf32OpX9WJHiHVdEx3b9hYGhneqjbb41M4ctmSlhaVSDNoGJUi36Bx4eI+vSMKIcoYKfwIIYQos75a8QQxBjOv+Q3A1s6VuMuZPPT5VtYev8TrXeqx7uVWTOoRyKud/KnqbKt33AfaC+3qYmVhYPJvxZOEvthuKhYK3lv/MspsvsXRQghx/507t401Ran0c/LH0cmrZPvcnWc4m5rDa538r1kFqzwZGFkdd0drPl17ks6+nQDoa+MNwOkLO/WMJoQog6TwI4QQokzafeBbvko/TE9LTzq0GE/c5Sx6/3c7OQVF/Di8Kc+2qo2FUX6NlRYPRxuealmLlYcvEn0uDQ/PIF6u2oZt5DD/t5EAnDi5kik/9cZsKtI5rRBCwKxt72AEHm/5dsm2y5l5fLomlig/d1r7u+sX7h77s9fPjlMpOFZ9hq8ChjOqY3HP2FNXjjLph47M/3WkzimFEGWFvGMWQghR5pw4uZKXoj/F12xgfI/vMZsVYxcfwqBpLB3ZnPDqLnpHLJeeblmTyvZWfPDrcZRS9O/4Ga01R6Zc2sqBQ/MYt3U8M7PjSDi7Se+oQogKLjk5hmV5ifSwroa7RyAX0nIZ9f1+Bnyzi7wiE5MeCij3Kzr+2etnwLd7efqX2lzMc8fVrNiWcojFBRdZlbRD74hCiDJCCj9CCCHKlOysJEZsGYudgq86z8TOwYPZOxLYd+YqE7sH4OMqc/jcK442ljzftg47T6WyKfYKmsHAOw/Nx8OsMWz/B8QZiod8HTr1u85JhRAV3febJ1AIDG36BgATfz7KmmOXsLe24N1eQdRyd9A34H1gY2nkvwPDeb5tHcwK5uxIoKZmw05yAYilEFNRgc4phRBlgRR+hBBClCm/7ZzMFaPGhw3HULVaQ46cT+f9VTG08XenT7jXrU8g/pEBkTWo7mrHB7/GYDIrKrnUZFrUx1gpiNIccDArjlw5RGFhDsnJMXrHFUJUQNlZSSxIP057YyV8fVuxIeYya49fYnQHP35+rjn9G1XXO+J908jXlVc6+tMjpBrLD17A17p45S9NKfIMGmcTt+ucUAhRFkjhRwghRJmy5Nx6apk0whsMIiOvkJHz9+Nqb8V/+oWW+277ZYGVhYExnfyJScpk1vYEAOrW6cyqh5bwaf+1BBpsOZx7kak/D6THLw+Tn5eub2AhRIXz06YJZBo0hjV8kfwiE//65Si13OwZ1rym3tF0MyCyOjkFJgpziws/3SyL5zc6IUNzhRBI4UcIIUQZEh+/hoOGQvp4RoKm8dqiQ1xIy2X6wDBc7a30jldhdA+uSrt6Hny0Ooa4y1kAVHbzw9LangYONYjVivgp8ySZBo1DMYt1TiuEqEgK8jOZc2kHjZU1QQGP8O2W0ySk5DCpRyBWFhX3o02wtzMhPpXYeiaY2nkazWu9gYVSxFw5rHc0IUQZUHF/OgohhChzFuz9BAul6B45htnbE1h9NImxnevRsIar3tEqFE3TeL9vA+ysjDz/wwFyC0wl+4KqNqJI08j6Y4nkvQnr9IophKiAFqx7hctGjSeDhnExPZfP18fRKdCTKL/yu4LX7dA0je+fimTGc89xMWUKPx53opYyciIrsaRNTk4yew7MICvzoo5JhRB6kMKPEEKIMiHp4gEW556lp3U1rpqr8f6vxfP6PNWy4nbd15OHow1T+ocSk5TB6IXRLNmfyOWMPILrdAcg0GzE32xgX3qszkmFEBVFeloCX13aTjNsaRYxkk/WxGIyK97sFqB3tDLB3tqCOh6OPB5Zg82xV6hl4cIJU3GvzS27p9Lyx9YMO/Qp3/7+vM5JhRD3mxR+hBBClAlfb3odBQxr8S6vLDqIrZWRD/sGy7w+Omrj78HL7f1YfTSJl388yEsLo3H3CGSofR1eCXuBRvbVOWjOpTA/W++oQogKYMa6l8nS4JXm/yL2UiY/7UtkUNMastrj//NYZHWsjAaMBVW5YtS4cGEv3x2bg7tZw9ekcSgzQe+IQoj7TAo/QgghdHf8xM8szUukr211lp904eC5NN7tFYSHk43e0Sq859vVZefr7Xilgx/b41PYEZ/CKw8vpVHoMCK8mpNn0DhyYqneMYUQ5Vx+XjpLMmJpZ3TBr04XPlodg721BaPa1NE7Wpnj5mDNwxHebDvbFKNSTF73Enu1fHpXDiXS3ptjKg+zqUjvmEKI+0gKP0IIIXRVkJ/J+O0TqWSGTqEf8dm6k3QPrkr34Gp6RxN/qOJsw9NRtfBwtObtFceYviGOSxl5NAzoj5VSvLr3A1ZunKh3TCFEObZm52TSDRr9Ah5n9+lU1h6/zIjWtXGRif+v67k2dbhUVJfIgkqsMRevvtgpbBSBlQPJNmgknN3ElMV9iI9fo3NSIcT9IIUfIYQQuvrviieIM5iZFPAkH2/MxNnWknd6BukdS/w/NpZGXunoR0xSBh//doIR8/bhXMmXGQ1fx0OzZHzCEk6dXq93TCFEOfVTwq/4mKBR6DDe//U4VZxseKKZzAF3I16VbHm0sQ8nzncDwC/XQK9Z6fh4Ngfg6+3vMjPrJAv3fqpjSiHE/SKFHyGEELo5eGQBMzNj6G3lCa7FT3Gfb1tXnuCWUf0bVSfuva582LcB+8+msfzgBUIbDOTzhxZireDzrW/pHVEIUc6YTUVMXdKPfVo+/TwiWXM8mQNn0xjdoS62Vka945Vpr3T0Z3CHRxlo0YKW7sNJzy1k7bmaWJsVK4uSAdiTk3iLswghygMp/AghhNDNv/a8j6cZxnSfw8e/xZQ8oRRll9Gg8UhDHxp4OfPuyuOcT8ulspsfQyo1YI05jU07p+gdUQhRjnz+8wC+yTxOX6uq9G//GR+tPkEdDwf6hnvrHa3Mc7a1ZFiLmowb+AUv9R1BtwZVmbvzIn5YAuBiVsQZzFxNjdc5qRDiXpPCjxBCCF2kpsZx0mBmgEcTtiZoHDmfwegOflhbyBPcss5g0PiwbzB5BSYGfbuL5Kx8hrSfQh2zgVEnZvLt8iF6RxRClANnzmxhZsYxulu48Vb/1SyOTuZUcjZjO9fDwigfY+7U823rkl1gwiLdEU0pXvR+CID9xxfpnEwIca/JT0whhBC6OHF6LQB+VRox+ffiJ7i9w7x0TiVuV0A1J2Y+0YgL6bm88MMBbO2r8H3/DbTU7Pk6ZR+FhTl6RxRCPOAmbxqLtYJXOv6X1JxCJv9+gsY1XWlf30PvaA8k/yqOzBgSQWP/N/FNbM/R7D7YmBV7z2/TO5oQ4h6z0DuAEEKIiunExb0AJOQGEX8ljS8fD8do0HROJe5EhK8rb/cM4rWfDvH5+jhebF+XHr5d2XJ6ETGxKzl1aR/5hbn06/SZ3lGFEA+YpKRoNqpMRrqE4OZen5d/jCY7v4j3egWhafK74m61q+9Ju/odOZ9bhTm7E2lZ14aV2afJ+L4dgyNG4+/XHYC90bPYfmol2UW5ZBfl0b5WF1o3eUXn9EKIuyWFHyGEELqISY/H06SYvi2fBl7OdAqsonckcRceaejNzvgUPlkbi6uDFZ3r9YXTi9h1aiVzk/diVNBP75BCiAfOnj+GH7UNeIw9Caks2X+e59rUpq6no87JyoeXO/jz65EkTCmNqea6nQ35l/h92zhGnFiCGTPTUoofztgryNPgTMx8KfwI8QCToV5CCCF0cSI/hRrKjvNpuYzp5C9PcB9QmqbxQd9g2tf3YMKyIxxKcaO6CeYm7yXVoHHFqHHp0iG9YwohHgA5WZcZODOchb+9wK6Lu6hkVtSu1Ym3fzlGFScbnmtTR++I5Ya7ozU/PtuU2IK+HD37Ie+Ff0ugZsMnqXv4LHUfUQYndjy8nu1PHKG7dRXOmQv0jiyE+Aek8COEEOK+y8u9ymmDGbJciKzpSsu6bnpHEv+AlYWB/w5sSI3Kdny+IY6Gtp6kGjQ0pQA4Ev8r587tIOniAZ2TCiHKsmm/PsUhQyGfX1jPzrwkGllU4qf9Fzl8Pp2xXfyxs5LBCqXJz9ORxSOb4e5ozfBFV2lRayEr233H/Ig3+XTARuwciudS8rGvRopRIyfrss6JhRB3S356CiGEuO/iTq/FpGmkZ/swultd6e1TDlhZGBjWvCZvLT9KN68GUHCJLpZu/FaYzJGLe/g4Zh7VDNZ8N3Sv3lGFEGXQkWOLmJ99inCs2W8o7l1Sxz6QicuPElnTlZ4hMvn/veBVyZafhjdj9MJo3l0Vw/sGDYPmCBQvwGBraeSNpjWAA5y7uAf/ut10zSuEuDtS+BFCCHHf7T31GwCWtg1pVruyzmlEaXkkwpspa2JZHhuCj8saugc9S/yhD/gpI4Y0o8YVlUdBfiZW1jJHhxDif5TZzEe7P6CyGaY/soJnf+rKIUMRv8X64elkzX8HhmOQyf/vGVd7K2Y90YhNsVfYfTq1ZLsCvt58ioS04jn4Ei8fxsJgxU/7p3Es+zwWaNgYLPG19eDVvkvRDDKYRIiySgo/Qggh7qv8vHTmXN6JX4GR3s27Sm+fcsTOyoLXOvszf6ctcac/ZrlzNYJsPDlRcBGAAk3j6ImfCQt+XOekQoiyZP3OjzmgFTDRuwMOjlV5rdFYZmz/llUZ/vw8qiGVHaz1jljuaZpGa38PWvt7XLP96IUM1p/JAk84kxrLv0/MI80AgVhTiOJ8URabc7IYdPkQVaqE6hNeCHFLUpYVQghxXy3eOJ4rRg3D1Q70CPPWO44oZQMja7DqxZYMiKzO0gPn8XX0B6C7RfE8TvvPrNMznhCiDJp+4ntqmjR6t3kfgFSLtiw/NZoRresSWM1Z53QVW/cGVTmRao+z2cy65GguGzUmVu/OnKH7mDN0H/8KfR6AMxd265xUCHEzUvgRQghx35iKCph1YRN+eQaq1XgMG0uj3pHEPfJsq1oYNI1f40LxLzDweKNJ1DRp7L8ao3c0IUQZkpCwiZMGM49Wa4mFpQ2ZeYWMX3qYuh4OjGorq3jprVNgFSyNGu6FRg4ZCgHYfqERL/8YzSs/HiTHUA+AM1eO6hlTCHELUvgRQghx3+zY/xUXjRqGlAi6BFfTO464h6o62/JSh7qkU5fo0+8z74gL4bZVOGDKxGwq4sixRYyY3YS83Kt6RxVC6GjT0fkANPQbyIytp3lpQTRJGXl8+HAw1hbycEBvznaWDGrii2ORLQDVCxTbzruw+3QqKw9f4L87wNasOJ1xWuekQoibkcKPEEKI+2bJiYVUMpmJye1OlJ+73nHEPTaydR1WvxTFoKY1WLjnHLWdQsg0aOw9NIupez5mK9kcP7lS75hCCB1turKfOmYDU7ZZ8c6KY6yLuczzbesSXt1F72jiDxMfCiCiSg0AWlWqzdaxbdk6ti0vtKvLnjOZVFdGzuTKUu9ClGVS+BFCCFGqCvIz+WRxX9LTEq7ZnpIcywZTGnWyPGnm54OdlawvUFG80LYuDtYWrD3fEU+TYuKBz9hBLgAnL+7ROZ0QQi8Z6efYTx5hljX57eglXu3oR8w7nXm5g5/e0cT/U925JgBNa7Qr2dY7zAtNg8pmO84UZV/TvrAwh7Sr0gtIiLJCCj9CCCFK1eGYJXyXFcsvOz64ZvuPWydRpGmcTu3IqDZ1dUon9OBib8UrHf3ZdKqA3s5dOG8sHhpgZ1bEpp3UO54QQicrd3yISdOIvRRCLXd7nomqLXO/lVEdIkczxr0pTcOeKdlW1dmW5rXdMOc4cd6g+HXTJEbNacqJ2BUMnNeM/kt7oMxmHVMLIf4khR8hhBClKjXzPAA7rxws2ZadlcS8q4cIyraiUWAXGnjLKi0VzeNNahDiU4mvDrejUZ49va0b4KdZcTL3Erv2f83IOU0oLMzRO6YQ4j65cvko0y5uJKTQkq1XIpjQPQArC/loUlbZO1RhcNevsbC0uWb7M1G1yMnzwKRpTDq1iE0qi4d3vM5xg4kLRog/vVanxEKIv5KfrkIIIUpVanYSAHtMmRQW5pCfl863v40iw6CRfbUbYzr765xQ6MFo0Jj8cDBBXpU4dOVdliU8SR1rd06qfGYf+Y4tKpv4U/IBQYiKIDPjPG/++gT5GqRcepzmddxpLfO+PZCi/Nx5pk0nAHIMBqIygwjLt2aEY2MA9pxczrlz2zgas0TPmEJUeDLBghBCiFKVmpsCQI5BY8aqZ5iVGk22QSMg25JWzQfj4WhzizOI8qqupyPfP92Edccv8eTsvTgafMg0XGCrOQs0jSNnN1LPv4feMYUQ91BSUjRDVw0iyaDoY4jku0x/Vgytj6ZpekcTdynULwqOfUi9QgNn1QgSLuRyKduaKs672HMlmkVrt5CpTKyp10fvqEJUWFL4EUIIUapS869iY1YUaDA97SC1lIHKqW05XdCBYc1r6h1PlAGt/T2o7mpHzGUvcAKlaRiV4kjyER7WO5wQ4p6as+UtLhkUX4aM5dnlnnQIcCXIS4b/PsicnavzkmsEzf16U88/itVHkhg+bx9dHSux3pSGyaABGpcvHcHDM0jvuEJUSDLUSwghRKlKLcykqjIQpCxxNCvqGl5m4+UO/PvhJjJppwCKh30NbebLjovFhcCqRYpGmh1H8y7pnEwIcS/lZF1mWVY8HSwqE53RjPTcQka1qaN3LFEKnnxoZkmPzU6BnrTxd+dqig8mTcPGrAA4HL+SnKzLZGcl6RlViApJCj9CCCFKVWpRLq4GK/7VZjotDS/zU4w7YzrVo2ntynpHE2XIkGa+zBvRi5ACSzxSa1PL2ouTmom83Kt6RxNC3CO/bHuXTINGV78n+O+GOFrWdSPEp5LesUQp0zSNrwZF8GS7p7BQiqCr/lgoxZGLe3j+p668tFiG9Apxv0nhRwghRKlKNRfgYrThtVWKH2M8ebWjH8Nb1dI7lihjjAaNEJ9KfD5wJ9FZI0nL9MWkacTE/6p3NCHEPfLzhS3UMxv49pA/hSbFOz1l2E95ZWVhoH1EOz5vNIsNl4fiW2RgVXoMu7V8os05FBXm6R1RiApFCj9CCCFKVapmJi/HggPn0pg+IJxRbevKpJ3ihirZWTG0mS8bzxYP9zhybrPOiYQQ90JG+jmOaoXUN9Ria1wqb3Srj6+bvd6xxD3WPDCC9vWr4pDtxAVj8XuBPIPGqTMbdE4mRMUihR8hhBClJjc/hzSDRna2FRO6BdC1QVW9I4kHwJMtapKl1aRGIaxI2okym/WOJIQoZXuP/oBZ0ziUWJdWfu4MjKyudyRxn0wfGEaHOsXLu9fML9529MwGJi/qxawVT+mYTIiK45aFH03TfDRN26Bp2nFN045qmvbi/9v/qqZpStM0t3sXUwghxIPgk5XrAfBz92JYC1nBS9weF3srBjerhXOqP0cNJg4fXwTAiZMrWb35bZ3TCSFKw67EzVibFYlFzfno4WDpCVqBWFsY6RA2EHeTojCpG/ZmM+vObWVudhwLL+/SO54QFcLt9PgpAl5RStUHmgDPaZoWAMVFIaADcPbeRRRCCPGgOJJwHIDGvrV1TiIeNE+1qElM9sPYm838EP0lAO9um8C4Uz+SfOW4zumEEP/Ujqyz1MqzZHjbBng62egdR9xnVas1ZN0Th7Fy7Y5XvgWbtEzMmkaiEZKvHMdsKiIu/neiD8/XO6oQ5dItCz9KqYtKqf1/fJ0JHAe8/tj9CfAaoO5ZQiGEEA+ErPwisnMSAXB19NY5jXjQVHawZnDLhvilV2Z14RV+3/Iu0VohJk1j5e4pescTQvwDly4d4rRRYZ/nzaONZYhXRaVpGnOGRRLiWPxvwNlUPKw3+sQynprbhN5bX2HQ/g+4eGGfnjGFKJfuaI4fTdN8gTBgl6ZpPYDzSqmDtzjmGU3T9mqatvfKlSt3n1QIIUSZsfC3F3hsZtg1q3IcTkzHxli8FLers7yxF3fu6aiaJOU+ia1Z8Vr8AiyVoo5JY9nl3TLvjxAPsMm/v4CFUvj7PIqDtYXecYSOnO0saeTdEADfFH+slOKrmAXs0fKJUo4AnDi7UceEQpRPt1340TTNAVgMvETx8K83gIm3Ok4p9bVSKkIpFeHu7n63OYUQQpQRhfnZfHV+PUcMRWzZ+3nJ9oOJaVhaZABQ2UWWbxd3zs7KgokPd6NhbggmTSMw257ublHEGcws/P1FsrOSuHL5KM/PacaYeVGYTUV6RxZC3MK67R+y2pxC8NVqPNGxr95xRBnQpvGLvFI5Evdqo6mRbyTG0oyDyUxS6kgATl6+ab8CIcRduK3Cj6ZplhQXfeYrpZYAtYGawEFN0xIAb2C/pmlV7lVQIYQQZcPq7f/milHDUimWnFxSsv1QYhq2NjlYKIWjDPUSd6lFXTc+fXYWTzs04GrmAOYcbkltk8Z7lzbSZHEHOq7qz1ZzBqtNV/l25RN6xxVCXEdhfja79n/NlJ9683LsXGrkg2fVt2VuHwGAja0LQ7t/yycDW9LCrXhOwNbG6uy77EJVk+Jkxhni4n9n+tLHpLenEKXkdlb10oAZwHGl1BQApdRhpZSHUspXKeULJALhSqmke5pWCCGE7uYmrKS2SWOQoz9bzBmcjFtN8pXjZFxcSKb1FVzMYDBKV35x94wWVrzQ93v+M3QYBmtPDp98hz70Z7B1ID0tq7Oo5ad0MboyPfUAm3d9xvY903lmdmOZBFqIMuLVHzvy1OFpzMyOo0WRC2cSXuPpNoF6xxJlUKs6PXE0K55s+ToudpZ4FtpwsuAq3+58ny8zjnD+wm69IwpRLtzOO/PmwCDgsKZp0X9sG6+UWnXPUgkhhCiTEhL3ctxgIiK1Dr9dbInmdYI+28YU7/xjNG97QyXd8onyxb+KI78834KPV8fww24rCkxhAOxLtWFch69I2PEorxz7BrMGBZrGjA2vMbbfLzqnFqJi275nOuvNGTzp4E9wrdE8syidzkFVqOvpqHc0UQY1DBnCtgaD0AwGHmscw5HjziS4XOJSwWUwGDh2ei3e3k30jinEA09T6v4tyBUREaH27t17364nhBCidKzcOJG63k35ec8a5hSsoSdPYazUDovsreTn7USpQmyt/enXshd1fYLQDHe0doAQt3Q5I49jFzO4mJ7HtHUnuZiRx7ORBrakvIadZsDb0pEtRWms7r4IN/f6escVokIyFRXQd04EBSg+7bKGATOO4GRjwbJRzXGysdQ7nijjcgqKmLH8Nb7OXlOybZiDH238+rDz1K8M7zlPx3RClH2apu1TSkVcd58UfoQQQtxMYWEOjec3JgI7CjNsOeqYwvbHd2Npaad3NFFBZecXMfHnoyzen4gledha2/BeR8WbJ8fRTHPg7S4zcPcoHlaizGZ+3vA6Z9NPUWguotBchEIR5B7CQ23e0/lOhChfduz7kmeOTGe850N8ur8thSbFj882oY6H9PYRtyc27lf6bnsNa7PC06xR1WgDGuwij11912Hn4KF3RCHKrJsVfmQSBiGEEDd19uw2ijSNPSoHD9tsApWtFH2EruytLfhPvxBeal+X1OwCxi05zIsrMnjcP5QVKpruK/vTy96XdnV78fuJxSzMT8SoFFaq+I1PAbAsO4Hu5nekd5oQpWjliZ9wMCu+PdiMIpPih6el6CPuTE2fKCyUIrDQFnOeFYcd08hDA03jzPkd1PfvqXdEIR5I8m5HCCHETcVd2AmASdO4aGUgvJIs1S7KBh9XO0J8KvHT8Kb0CfdmTsxjBKSPoIWxMj/mJPDkoc9YmJ/IEw51OTD4ELufOML2J47wUpUW5Bg0rqad0vsWhCg38nKvsjY/iaC8SpzLNPLNkAj8q0jRR9wZS2t7/l3zYUY1fYt6rvXJMRgwaxoACUkHdE4nxINLevwIIYS4oaz8InacPoCmFB5FikuWBkK9musdS4hr2FtbMPmREDoEeDJ+iRW7Lo+lTyD42kYDikpVB7JwbyIARoOGm0NNuLyN8xcP4OpaR9fsQpQXG/dMI9ugcSklgrd7BBJe3UXvSOIB1aXVJADsLYtYsGsXVQsVSRaQcDWW9LQE0jMSqV69hb4hhXjASOFHCCHEDX2+Po7YzLNUsVKEanVYb44npF5vvWMJcV2dAqvQsIYLn6+PY8Ges+QVhvyx5+g17UY2rAzA+ZRjNLjPGYUoj86f382HcT9S1QzKqQf9Inz0jiTKgbo1O+C6/U2qptdGVYrndNZ53l/5BHvyr7Bu2BG94wnxQJHCjxBCiOta9Pur7D1oINctHz9LZ9559Huev3wIZ+fqekcT4obcHKyZ1COQMZ38ycgr/Nv+0QujWX+mENwhMf00+XnprN/1CVvPbybPXNzezmDN2Ifm4uBY9X7HF+KBk56WwIjfniJfU6hzj/PmwAYYDJresUQ5YGltz+8DtvHCwlhccp7hmCmVNAsz6UYDaVdPU8mlpt4RhXhgyBw/QgghSiizGYBDx5by9sXfuOy+kgsWCj9HL6yt7fHxaapzQiFuj721BVWdbf/2p3twNWKSLalkUpzPvsi/lz7MawmL2Zp/mbiCdI4VpLGs8BL7jv6g9y0IUaYVFuZw8cI+XljWl0SDGZ/L3anm3YaWdd30jibKEWsbZ97oHoi3lRtnrCHdWPzxNSFxu87JhHiwSI8fIYQQJV6Z34ozBRmYihR2VmauWhS/wartWl/nZEKUjk6BVZjw8xE8zUYS868Sa86ho6ULHz++AYPRgqup8UT90ouzqSf0jipEmWU2FdFnbiQJRkCDAcYOfHU1imUD6qFp0ttHlK7qle1o5OXPmktJJdtOX4om0K8XZlWEtY2zjumEeDBI4UcIIQRQ3NtnZ9FVMi00sIBHtAjOm2PYruVQu2qE3vGEKBXujtY08nXFMs+aA8Yc8g0aVy9Xp+mHGwHoEuiJo1lxNvOcvkGFKMNOxq8mwQiP2vjQ1PdRnl/pQedAd0J9KukdTZRTvu5BcGkTvvlwwUpx8upJJi3uwbmCNOYM3ad3PCHKPBnqJYQQAoALl46SadBoeNWTVyq34fXHvuDNdp/ypIM/dWt31jueEKVmbOd6eFhXJv+PeUi8qnSljb8HVZ1tmb/7HN7KgnN5KTqnFKLs2hG7DIDHm7/HRzt8sbQw8GZ36Rkq7p1a3s0AqGHyoUoB7L1yhvX5SRwmn/y8dJ3TCVH2SY8fIYSo4OLif6ewKI+52/aDEZrX7MDQ7mMB8PFpyks+P+mcUIjS1bCGC6dq1GPtxUQ8TYq3Bz2GZjBwODGdhz7fihv2JJgy9I4pRJm1M+UwtUwaX+42cuJSJrOeaIy3i53esUQ55ukZzDT/oXhW7clnawez0yoDk1bchyE+YQMB9XrpG1CIMk4KP0IIUcG9u2U8l035uKT4gSf0bNJN70hC3HNernXh4loaWbujGYo/PAR5OVHLzR4tz4kLdukUFuZgaSkfZoX4q4L8TPaZs+lo4c383ecY3qo2rfzc9Y4lKoDWTV4BIMi1OtsyjpZsP5G4jZMXdmJWZnq3+0iveEKUaTLUSwghKrjTKo9zFmB2TMDBrHB3D9A7khD3XC3vZhiVolm15iXbNE2jZ6gXqZkumDSNixf365hQiLIp+thC8gwaZy7Vpn5VJ17u4Kd3JFHB1HQp/jdXN8+AndnMb3G7mXzmF/57ZpXOyYQou6TwI4QQFVh6+llS/5jn5KhtPrWwLOn9IER5VqVKKCvaf0v3Vm9fs/3hCG/yTNUBSJDCjxB/syV+JRZKcSi9GZMfCcbKQn5niPurZpVwAMLs/PEptGC/dTJpBgNJRo2kpGh9wwlRRslPaiGEqKCUUqzctfp/32satawr65hIiPvL27vJ3wqdXpVsebhZJwA2nZCVYoT4K2U2szYjjro5lvRrEkZgNVlGW9x/9f168LpnFC/0mEyYsxe5BgOaUgAcPPkLUxb3Ye6qZ3VOKUTZIoUfIYSogFZunMgHC/qzfP9mAOoWFPf6qeVUQ89YQpQJj7WMwtZs5lDOQaYteZzC/Gy9IwlRJsSd+p1EI9jm+PGSDPESOtEMBgZ0no6zc3XquRavJhecbYe1WTHvyHJmZ8YyI2kbZlORzkmFKDuk8COEEBXQjwkr+TH/GDZ25zAqxWM1OgBQyy1Q52RC6M9gNFJLWRFja+LrzIOs2DJJ70hClAlrD89DUwqvagNwsJY1YoT+wup0xagUnWv1o3aRJdF2eZg1jRSjxqHjP+odT4gyQwo/QghRAZ1W+RRpGrEOyXiZNXpETWScRwuahUnXaCEApnaby1D7l/DNh+/OrpYnx6LCS08/y4rUg9TON9CjSQu94wgBQK2a7djS5zce7/IqkS6+ANTJ1bBQig0nFusbTogyRAo/QghRQaSnn+Xs2a0cOHmQq39M6JxpNFDDwh5rG2cGdvkCS2t7nVMKUTZ4eAbxdPfBOKc1JMEIm/d8pnckIXSTnpbAsCUPcdGocMxsS2NfV70jCVHC0ckLgHDv4oJkiG1H6uRasC49Vs9YQpQpUvgRQogKYtrq4Qxc9ywTF8wGwNlkBsDX1lPPWEKUWU42lgQGjsa9yMwPMTJkQFRcCzZNINZgpnpiW0KCR2D44+GBEGVJq8ajmRX6KqN6v4NdTh3OGGHD3mVs3/cNg2c1JC/3qt4RhdCNFH6EEKKCiMu9TJrBQKVKOwDo5Vg8IaKvk6+OqYQo255s6Y9Ppge7ySYz47zecYS475TZzMqUgwQWWHA0tzODmsgiAKJs0gwGGoYMwc3Jlkb1n8agFDO3TOOLfV9yQCsg9tTvekcUQjdS+BFCiArirDkPgOMOmdiaFcPafUBTbGka8KjOyYQouzycbKjh2o0iTWP1zs/1jiPEfXcsdhmnjQrLNH96hHjh4WSjdyQhbum5Lh1pZLYjwTmJg1b5AJy8sFvnVELoRwo/QghRjpmKCsjJusz2mFiuGIu75ucbNGpigatrHb4eshsfn6Y6pxSibBvc6SncisysPrNe7yhC3HcrD8/GUikOpnXmqZY19Y4jxG3RNI0+tbtw1WhAaRqWSnHyqsz5IyouWYdRCCHKsXm/PcfMSzuwSewJNcCz0MwlSwO1rWRiTiFuVx3PSgQUebLL6jIXLp+jmoeP3pGEuC8yM87zc1Yc/jm2+Ec2on5VJ70jCXHb2jR6EftTi6lZaEmeMhHLRb0jCaEb6fEjhBDl2JGrJ0gxang4bQOgT+VwAGo5ygdXIe5Ez+AnyTdofLb8Vb2jCHHfzFn3KhkGAyq3N6919tc7jhB3xNbOlRlN/sXQsP/gkO/ASXMuymzWO5YQupDCjxBClGNnCjMAOOV0BYBHW71FF6MrbRsM0TOWEA+cjk0HElxgyW7tCDvjZJJnUf6lXT3N3LRDBGVZM6jjMOysZKCAePAE1u9Lx4g22ONFmtFAckqM3pGE0IUUfoQQopxSZjPnKAIg3WjA3aRwda3DR49volbNtjqnE+LBMyxwMMkWBmaseJX0nEK94whxT81cP4YcTcOicCBdgqroHUeIu6ZpGiHVGwEwf+NSDp1L4d2FXYk+8r3OyYS4f6TwI4QQ5cy5c9v4bsWT9Ju6kCyDhrVZAVDDICuxCPFPtG3yAqEmS/ZUOsw7c0eglNI7khD3RHJyDN9nxNAgy44B7R7FYND0jiTEP9KzaS8A9p7ZxZjvPmNh3jkWHZqhbygh7iMp/AghRDkzbdN4PknZjUX+zwA0U8UTOdewlgmdhfgnNIOBL/utIrjImt+tdzLlx9cAKCzMYcriPpxO2KhvQCFKgTKb+WT1KAo1cLJ4ks7S20eUA9U8/fAxgWXlC3g5Fy/rfiDvss6phLh/pPAjhBDlSHr6WdYVpQCQW+kYAEMaPomFUtSpVEvPaEKUC/YOVfhqwBr8C418n/MrE+d8wOQfX2Bm1kmW7puqdzwh7lpRYR7HYpbx9o9dWW66RGi6O+P7DULTpLePKB96u4Wx15DPGadEAM4ZIfnKcZ1TCXF/SOFHCCHKkZU7PqRA07A1m4m3URiVIrjewyxqOYVH2nyodzwhygVbO1emdF+EuwnWFs3l17wdABzKPKtzMiHuTmF+Nk/Pb0H/XRP4Kf88YVfd6Bg5Ex9XO72jCVFqejUZi4VSXDZqhORYA7D3+BKdUwlxf0jhRwghypGl57dSp1DDL8sRgKpmDUtre+rU7oi1jbPO6YQoP3yq+vFNp2+wROOqhQH/fANHVR5FhXl6RxPijr2/tC97tXweNQZT+fRAXKpM4bHIGnrHEqJUuXsE0tpYCYBe9V7E2qz4/eQmjpxP59DRH1m16S19AwpxD0nhRwghyonLaVeJNZpwzPDEmF8HgOpGW51TCVF++fg0ZWabz3jSthOGlHDyDBqx8av1jiXEHYmN+5VF+efpVOTNN0cG4OPThn/3biBDvES59GLL93jVrSl9Ww2kdqElcUUX6T5tMxN2vMuE04vJzUnVO6IQ94QUfoQQopxYsu03zJpGqzrBTHpkFADVbdx0TiVE+VarZjue6/sRJqumABw4vVbnRELcma0xPwGw6fRDPNbYh++GNsLe2kLnVELcG76+rRjS7Ws0g4E2nkGctoFHas3llKWiQNPYd2Q+6WkJLFs3lm+WD5ZCkCg3pPAjhBDlgFKKfSeL5xlpWKshNWs0YaRzML1CntI5mRDln6XRwKiuPXAtMrM1MZptccn8a0FnnpndWO9oQtyQ2VQEwMaLB/EuUDzRviP/7t0AS6N8PBAVw6B2H+NhUqy2Po692Yy1WfHNjp8YurAHExJXMfXqATbukUn7RfkgP9mFEKIciD6XRm5hAgA1qkUCMKLXfALr9dExlRAVR5v6VahZZE+sdpUXZy7m57xEdpDL+fO79Y4mxN+cPbuV9rNDmbJwKMcs8qirqjCydR0Z3iUqFHuHKoyt+ygAna1qUN9kzXGnFOJsFKFXfLFQipMpx3ROKUTpkMKPEEKUA8sOnMdonYqjWVGpUk294whRIQ0M7MtlSwPVa/6Xwj8+QK+N/lbnVEJcq6gwj9fXvcAVo8bMvH3kGzR6BHbSO5YQuujQfDz/qdWf0d2/pH3VcHINGp4mRXT6MLyKNOKyzusdUYhSIYUfIYR4QCUkbOLluS1JTT3DysMXKbLJpgaWaAb50S6EHto3G0OEsuakpRn/fAM18uH3S3v0jiXENb5c8QSHDIV0KQjAwWTGqBRNgh/XO5YQutAMBjq2fBNn5+q0DHgMg1I8Va0N3cPq4JxvQ2xhOuui9/Dugi5kZyXpHVeIuyafDu6QUorcAhMFRWaUUmSkn2P15n/x7fIhzFn1DGu2/puzZ7eizGaSkqLlB4QQ4p6Zsnk8a8xpzF33NslZBVyxKMDH0knvWEJUWJrBwJgmb2KhFANq96BKrg+HjEXEn9mvdzQhAFi/4zO+Tj9MSIY9P8YPpqtlb0a7N8XBsare0YTQXa2abVnV4Tv6d/yMJ1v4YlXgxgUjzN80gYX5iew8OEvviELcNZmy/w6lZefz6H/ew6PSRq7YXeWCJai/joe+sgPif8DObCbHYMDBbKap5k6COZUAGw9e7zEPe4cq+t2AEKJcWL19LhtUBgalWJ+2G2er7lwyQA37anpHE6JCC6jXiy1ekTg4VsXRcRV7j73Gu7+O5Ksnt2JlKW+7hH4OHV/Bm8e/pnqRgc5hX/NKTx9CfbrKvD5C/IWXV/Gk/HU8HHm8cSv2xs0nxvEcYODY5QO00zeeEHdN3oHcodTkA1zwXUayUoQU2RJu9sbJtgUmu2bkF2SSmnIIc+F+8g2J5Oe6YrJNZJNdMjUKDPxiSOLQjx35ttv3eHgG6X0rQogHVFZ+EXOiP8XZxkzNVF+i3c/Ss+Y6ftY0qleqrXc8ISq8P3tPdGjclb6xs/jR9jhvzx3JO098JR+yxX2Tnn6WHQdn4uroRVzSCb68uAorBQPq/psBLYL1jidEmVfHuznEzSfzj5XuDl09zdlL59h7+DN6t/1IhtaLB4oUfu5Qbd+mfJI4gMYNHsfJ2ec6LTqWfJWRV0h6TiEpmXn8evQS5gPfcrHaap5aMYDZvZfh4lrr/gUXQpQb32w6QbxtHu0svBj26H/ot/ZhNrMR0KjuLkVlIcqS8Y/O4/jMJqy22I7X8i95stuzZGaeZ8HGsZzJvkC+KsTdypnX+y7DaGGld1xRThw+uohXd73NBeP/trkreNH/HXq2eEi/YEI8QLy9IrE2K/INGjXz4KRFNh/+9BybHU7jFxNJUMAjekcU4rZJ4ecutG/x+m21c7KxxMnGEh9XO0JruBIXMYkpi2zZZbeMgUt68t8OX+Bbo8U9TiuEKC8mL+qFScGm2EhyfAw09W5MHe96TKreg8Vnf8PDXERd37Z6xxRC/IXRwoqpvRcy4OfeLEj+nFmTTNT1+J5DThl4FCk0TSPJnMHjiTvw9W2ld1xRDuw7OJvh+z+mkoJ6F9qRb9Ko4V6HV/o8jq97Jb3jCfHAMFpYURsLMk0mOrs35ovM3Ry3iQcMnDi/Uwo/4oGiKaVu3kDTfIA5QBXADHytlPpM07SPgYeAAiAeeEIplXazc0VERKi9e/eWRu4HltmsmLzoY5Znz0YDFndfiIeHPKEXQtzcsnVjmZC4CkulCEyuRbT7aVa2+YLq1aV4LMSD4MiJX3lq+6u4mDXOG6Gz2Yfj2W/gmLeSwx4r+CpwBM0iRuodUzzALl06xNKdHzEzNRqXIrh67kWaBzVicFNfQn0q6R1PiAfSsZhlKMzk5WcyNHpyyfYBtjV4vd8KHZMJ8Xeapu1TSkVcb9/tDEwsAl5RStUHmgDPaZoWAKwBgpRSwUAscHvdYCo4g0Hjtf6v0dNpDLmaxvjlT6LMZgBMRQU6pxNClEXJV47z3tmVeJugUNM46xpPJbPCx7uZ3tGEELcpyL8LkwOHc8EIrmaY+Mh3DG5ag9PpxfMBXbgap3NC8SDLzUll8MqBTE87SPU8C1xyxrD81UFM6RcqRR8h/oGAer0IrNeHerU7AaApRdVCxb6r55j600S6f9eA3JxUnVMKcWu3HOqllLoIXPzj60xN044DXkqp3//SbCfw8L2JWD692ncIl79ZyWrrGEZOfxZbxxbsN3/MSK929Ov0md7xhBBlyO7jK8gzaDhd6kYlt19INRqI0hxkUkEhHjAtGj/Pl0ZLnOw9cHCsSpt6+bxu8sFBKS5kJuodTzzAvl1dXFT0PdsBm2r9+WJYQxysZUYHIUqLvUMVaps0KmlWOJid2Gd5mZ1XVnLGDk6f3UxAvV56RxTipu7oN4Kmab5AGLDr/+0aBiy8wTHPAM8AVK9e/c4TllOapvGvwXM4Pa8Jh+23UzV3Dyl2Gv+5sJaopINUqRJCfl46BQVZODp56R1XCKGj7fHRYIBqns3wMu9iDckEO9fRO5YQ4i40bTi85Gs3B2tCqnuSboIzWZc4kphKTMzXbL/wK1mmPDQDWGsWvNh8ErVrd9AxtSjL4uLXMjPjGMFZ9rjXHcRHD4dgZSEPBoQobVPb/xdrayc2Rn/LpqQNHLXNBzTOXj4ohR9R5t32bwVN0xyAxcBLSqmMv2x/g+LhYPOvd5xS6mulVIRSKsLd3f2f5i1X7Gxs+bDNZHIMGjF2JprmuGJC48VlQ3ni04n0/L45A3/qIkPAhKjA0nMKOZd5FkeTmSmDuvNIcH8AInzb65xMCFEaOgZ44lxo5HROGu9//zT/Oj+f3UXJXCrI4VJ+LhtUBmuPzNE7piij0tPP8vzGl7A3K4KqTWBKv1Ap+ghxj1Sv3gJPz2D8q0UCYNY0AM7IUF3xALit3wyapllSXPSZr5Ra8pftQ4DuwEB1q1mixXXVrt2BcdXa0wJ7pg79hf42TYi1KWSvy1KSNThtVHzww2t8tLA3XywboHdcIcR9UliYw1s/dGD2mkXkWGbhgyWawUDThsNZ1fZLGoYM0TuiEKIUDGnmS3UbZzKsTNi6JVK9CMY3XEH7OkuIPvU+lU2KCzlJescUZZDZVMQrix8myQitjIMY17sbBoOmdywhyr26NdsB4GoyU7nIzIHLp9l2eDurN7+tczIhbuyWQ700TdOAGcBxpdSUv2zvDIwFWimlcu5dxPKvX8dP6ffH12Me+5ZHz23jp12fciG7C4cLprDcYg05ZgPkQfiBeUSGPa5rXiHEvRd3ag1LCpJokjyTNLtCwq3dSvb5+DTXMZkQojTZWBqp5VyV9emp5KhsOthWpWtITfIKTXy5KR53k5HzBWl6xxRl0NQlT7LLmEvLjAa8OXwMmiZFHyHuB3uHKoSYLfGz9uZw5lkuaRnM3fYG22yTaRoyFGdnmd5ElD23M8dPc2AQcFjTtOg/to0HpgLWwJo/ftHsVEoNv+4ZxB3x8WnO6D8+2C1de5yJ51cTnmvLWcts3tnzIYF711LX048mwY/i6ODGqfglxF/agpkCOoU8Q40aLXW+AyHEP3X28iEAkqyTuGSEGnZVdU4khLhXvBx9MGccI1ODUPdQoLgg1Nrfg4w0G84b5fmaKGY2FfHvRQ+xIvcc2QaN0Bwb3ho8AxtLo97RhKhQ5j2xH2U286+FnVmXe5480xVA4/TZLYQ2GKh3PCH+5nZW9doKXO8RwqrSjyP+vx6t38NlbxWahD7JovWTmXx5GWe0fXB1H59t+gFNKdRfnvBs2/ASswbvITPzPJeuHCU7L5XCwlxCAx7F0tpexzsRQtyJc2nxACRYA2hUd5HJnIUor6q61IHzvwEQUrtLyfaOgZ4s3uBAkn02H646TN6VzzlSuJNEYxE2SmNGm8+o9ceQA1ExTF7Sl4X5iYTk2GFn8mBs36l4OtvpHUuICkkzGKju4E1awUXS/qi9nrp0QAo/okySdR7LOKOFFa2bvALAoK7v0iX5cXLzs9kTs4ljSbspNOXialuTI2mtyE2bzX6PeIZ91oOjlU6T+5elnofGr+CVh5eSmhpH0uUjeFUNl26IQpRRlzLyOJp85ppZ2Gq4B+sXSAhxT1VzCwTA2azwrR5Vsr1NPQ9+2eBJkXaZ/QencqzaTqqbFX55ldjvmMHB+NVS+KlA9h+cw9ycU4SnuXIyZwI/Dm+Gt4sUfYTQUw1XP0jdU/L9hviDODktIz9nP91ay5w/ouyQws8Dxs2tHgA+Xg3p85ftJrNi1qbanD/9GHtdz+BdpNFYa8PpZANFNtuYp05y9NNO7K90HpOm4WpSvBM+DStTHHY2TgQH9tfnhoQQ11i79X1WxAdxLu8qNYxw3kpRpGlU947UO5oQ4h6pWiUUgBCjIwbj/96aOdlYMqxlC3YdPYyH11GOKXg2eDqjl6XiWG8C5zIS9AksdDFj31c4YqbQ6nWWDWuBh6ON3pGEqPCqe4ZC3HwczWZciwxcMacw78C/ibbOoX3eK1jbOOsdUQhACj/lhtGg8WSbYDy1Psw5/QufdvmWatUiyMgr5Ns1GzidPJo9LhcIybfGdDWQBPd9jNs/ikyjASul6L1vM7nGE4R5BPNwhym3vqAQotSdObOF0fHf0zDNnTSHQiKsPahUmM5ZVSA99IQox6ysHXnMpjrNa/y9946XewMAtpoz8DZrdIpogd2va/E0wbmcS/c7qtDJnuPb2GZIp0lONaY+01GWbBeijPDxKn4w18iiElaWRg7kp5Kt5WPSDMQlrCOwXp9bnEGI+0MKP+VM99bv0L31OyXfO9lY8vJDHQnZPpjDF/fw3IA5pOQY2LDrK2YkfkNotjdnLBNZaLUZimBd4m/4n47FkH8Edxc/PDyDdLwbISqWLcfmA3DR7jKXLQzUdPSip9cjXEo7rXMyIcS9Nr7/yutur1olFE0V9/wLt3HH2sJIh0BPElMtOatlkJCcTX5uCodjZpKZn4iLrSs927yPZpDCQHmRk5fN9I0vo2xhRNuJUvQRogyxsXXhJdcIGtbswI64Faw2XeXP6XG3ndhIrZqd0cz52Ni66BtUVHhS+Kkg2jUby5/PEas4w2MdX+QxXgQgJTmWGWsncuCMC0eqbOX9VQM4bp9HOwtXJj++Wb/QQlQwmy/vB+CCVfEbBh/nWjSLGKlnJCGEzqysHXE3w2UjhP2x4tdDwdX47jd7TlldZci0aRTUmEuW8X/FgPrxUfjX7aZTYlGaCgtzGD4vigN2BTxmEUBIPVm5VYiy5smHZgKQlBoH6YcxKoWFgq2nozk+7yHOGpJZ/MRBnVOKik4eGQgqu/nx2qML+GzEJ0SYrDnskE+RprGrMBWzqUjveEJUCMv2HGKvyqF+zv/q8dX/GOIhhKjYvA3WAITXKS7mtPZ3p4GnLxlGAy1rbyHLaKBzQQ98z3UF4EzSAd2yitI1+achHLAsoEt+BOMH/qh3HCHETdSq1giAYGVNHWVJjl06u7QkYg1mUpJjdU4nKjop/IgSHk42vNJkLA1N1oQle5Fm0Hjy8w8ZPrsJqza9pXc8IcotpRSrtn9Doabhb9sTN5MCwKdahM7JhBBlQU3rylQ2KWrWaAOApmmEexevBLbFdAZ/s4EhXV/jVE7x6n9nr57ULasoPYvXf8mP+cdpmGPPG49/rXccIcQt+Pq0oJJZ0bFKIwLsPDlhbSbzj96YR+OvP5xXiPtFCj/iGkEBjzBr2F66N34NgFSbhWwjmwWnV+icTIjy61BiOnnqIDZmxcTHxhBlWxU3k8LZuYbe0YQQZcCLnb5gTvsvr5m3x9u9uPCTatBoZF+dwGpOeFb2wrXIzNns8yXtEhN3cvT4YpKSou93bHGXlNnM2LltmXRuOpVMird6zMLZzlLvWEKIW7CyduS3/hsZ0PFz/F38ALAxKwxKEZ24S+d0oqKTOX7EdfVr2ZbvT2rE2xT3PDhIPi/M/Ak7y+k80mAoDUOG6JxQiAdfVuZFjsf/ypJTEWTaplEfayyt7RnTfQ5PpSXI5KxCCABcXGvj4lr7mm0+Xo1Lvo7wboGmafQK9WLjSQuOpF+h1VsfYO89j3N/zBlmZ1ZsfmybLC38APht2zRWma8QkeHC2J4zqOlVV+9IQojbZGfnBoB/tUhI2kATzZnTBRnsvxqnczJR0cmnCnFDTRyKext0LKqKWdM4n/8OK03JfLF/Ohl5heTmpOqcUIgH24KNrzPs4CfsObqWc1Zmghy8AXBwrIqPT1Od0wkhyjJ7hyq4mhWaUkQE9AdgSFNfvCydSbUqIrz6Wq5YQIuMekSmVyHHoHEmcbvOqcWtnE7OZtbR2bgWmRneZR71qkvRR4gHUb06XQk2WzIo5AmqmStx0pBLTl6h3rFEBSaFH3FD/Ru/wjAHPz4YvAw3kyLW1oyFUuzWchg+9TmiFkaxdO0YvWMK8cCKzzgDQFXnxeQbNALdQ3ROJIR4kNTQrKmnLHCu5AuAs50lwe6+pBgNHNWSiDA40LPNVBJSWwBw6sIeHdOKW1m89nXeX9CLo7aF9HIMIbJOdb0jCSHuko2tC/Of2E/jsKcI9wgmw2jgm9+W6h1LVGBS+BE3VNO3NaP7LsbS0o4o26oAPF+5MwBHPbaTZ9D47uxqlNmsZ0whHkhKKU4XpAFw1CkdgEDfdjomEkI8aP7V+j982ObTa7ZVdynuIXLRqNHELZh29T3JsQhBU4r9iYfZcOIye45tY/Xmt8nOStIhtbie37fPYNL5FexwTMLJbOaJDu/pHUkIUUraBncHYE/sTyQkZ+ucRlRUUvgRt+XZVu/zfo1eDHtoMpGaHWZNIzzLgQQjrN3xX73jCfFAMZsVD03bwmkKACjUNBzMiuo+zXVOJoR4kNT0bU1N39bXbKvh8b+eg038emJpNNCnUX08ixRHUhP49ufnGLZnOGNOL2LJZlmxUy+mogIOH11EUWEeX284ztQjn+JRaGZ87RlsGLCTSi419Y4ohCgldWt1oq7JQJrzcd5cdgillN6RRAUkhR9xW6pVi6B763cAGNfiPT6o0ZtXui3C2WRm9uFZZOUX6ZxQiAfHnoRULl0+So7BQESRDQABmg0Go8y3L4T4Z/6c9NnVrKhbqxMAL7SrSy2jA7l2+eRUPoFvPlQymYlNi9czaoX26bL+DNj7Nh3nRPDDqYc5Yw0v1RnAYy0aY2XtqHc8IUQp0gwGHq/egTPWkHZhMcsPXtA7kqiApPAj7ljt2h3o1vptgn296WYbyEHbfN6c+RaFJhnyJcTNbN71Gdv3TGfx/kSq2xWv7jA4oD/2ZkWYcx2d0wkhygN7hyp4maC5lUdJMdnKwoCfYzVOG8zEWSiqF9ahWqEVcfkpOqetWJKTY5j4Q3v+vfAhZmXH0SDbGo98a2qZHfioVj+6R72ud0QhxD3StfkbOJsVTp7reeeXQ/x71XE2xiSyaecUmTZD3BfyeFn8Iy/3/oYt81twzOJnXlvQicmPtcRo0PSOJUSZU1iYw9hj35Bl0AjP+IG67jWIBerXbM8y33a4uNTSO6IQopz4rvNMHOw9r9lWq1IdTNnFBecmfo/y+7HpnLBK4fFvtuFWNJerhv1kGPNwsLDgo47fULVaQz2il2v/+W0EKwuvoDQN33xwtv8PozqEEljNWe9oQoh7zMbWhWc9m/PRle00rjSZ77a+QlzMt+ypfJKZNq5EhA7VO6Io56THj/hHrG2ceSvseS5aapxPf5Een67kiZm7+Xb5cJavH693PCHKjG0HvifLoOGXY2S/Uzp7jQexNSs8PYKpUjUMaxt54y+EKB3VqkXg5OxzzbaaVcIA8DbBw1F98LTxJddgoFL+TNbZbeOcRTaWhUaitUJ2HPtBj9jl2v6Dc1hRlEzLHB9s419mTIulfDGklRR9hKhAHu/8BY/a+LDb6TKvRqzijNMJAI6e365zMlERSOFH/GOR4c/wtldnYuwKsXd4k9zLs/ns6jamJCzHVFSgdzwhdJeeW8gPu3/CqBStfacSVGTBJaOGLxZoBvkxLIS492r5tMSgFK0dfLG1tmRAk/YAnLPbjaVSfNFxJfvOTsLGrDh5NVbfsOWMMpv5eP8nuBeZWX9uMON7dyQqQIb3ClHRaAYD4/ouIxIb/puxkcuWBjSlOHAlhuSsfL3jiXJOhnqJUtG7/cfYbLJn/OmfKKqyGSuzIsWoMfrbDwn1SqKORx2iIkfrHVOI++6jRT1JysjlouVFAsyWPN8lijbHxvPYnrepaVVJ73hCiArCydmHrxo8T/3axRM+1/ZtDdEfc8qoaKk54O/jS5t6V7iSb+BY5gV+P5qEqTCblKQV2Fmk4l3Zh8ZhT+l7Ew+oHfu/5IihiAZXAnmiZzN6hXnpHUkIoROjhRXvd5nFwyv742ACh3xLYi1TeWPmv4izX86PPZZQ2c1P75iiHJLCjyg1XVpNwsbKgf8cn00n50f4LnMRl9QSPk0ppMqVTfza8DmMFlZ6xxTivlmz9d/MzTlV/JPWAp6rFAhAUMAjfHTlKLW9IvUNKISoUJo0fLbka2fn6ribFFeMGm2rNgNgWPOa/HeVPaftM3j/xxnk1fieLOMfvRLPw3KXOn9bPl7c2peHZ+BmNhMcMJZBTWroHUcIoTN3j0B+7Po9oDFrwyR+yDuBY+FqLhs19sf8RIcWMl2GKH0yxkCUqjZNX2XFsMM83/ctIjV7jtkVoQEXjRq/75iudzwh7puM9HO8F/s9dQo1wq66Fg/zqtevZH+XVpPwq9NFx4RCiIquttEOTSlahz4NQLM6brTwCeCqhYGwWv/X3n3HR1Hnfxx/fWc3vYcklAChhCa9ClIERMSCBcSGonIePz3Pcl7xVNS707vTu9OzoCJnP/EUFAVUBAtVKdJ7lRI6IZCQhLTd7++PrIhIFZLZLO/n45EHm5mdmffuB/JdPpn5zmSKHcNg76U03toVgFWbp7oZt0patPRtFjkl1Mtrwq/6tHI7jogEierVW1G9ekva1W6PzxhWxpQCsGTHty4nk1Clxo9UmD61yj8oDo3pRILPz9vL3uHS52byysejePr9qygrLXI5oUjFmb30bfZ6DGU7LqR2nef48rJxNG1yuduxREQOGVj/Mm6Na0JKarNDy1rX7QjAlzaH85w47rr6cTaUXozXWtZkL3crapX1woLnSPD56dzqQeIjw9yOIyJBpmlGr0OPY31+FuZtci+MhDQ1fqTCXNHjMf7d8AZ+fdVILopsyMrog9ThLd7e9SyvF6xnxvxRWGvdjilSIWauXwDAFd2u468DWul6bREJOv16PMJvBn7wo2WNMnoC4DeGPuk9iInwcu25jUkvMSzK2UxWTqELSaumFas/ZK5zkKYH6nNzj7ZuxxGRIFQ7/Vzi/JY0n6XlweqsdUopOFjgdiwJQZrjRypMWEQMfbo9AMAdff/B4onX8nXCHMKsIdrv59X5o/lg/mJyYxbzTP/RP/qNo0hVlltYyubCraRFWm7r1dHtOCIiJ61acmOS/JYDBnq1vwOAO3tlsvmtBFY7++jz9HQGn5tBalwEvRr4cUrW67LVY3hp9r+Iwc/5bR4lMszjdhwRCULGcbgtpRMpMTXYUwCzcyZy76sj8MX2Jqn4fZzIecRFRPDwNZ/qTrByWtT4kUqRktKU/w76nKc/vpkWaR2ZsWkWM2N3Y5jLQcfhtvHX8sagT0lMqO12VJHT9uqs79gfVkB9J9rtKCIip8Q4Dp3CkrFYEhLrARAfGUaX9HP4Ons2/eu+yRe7l5GxNoMP129hjxcmx9UhrXoLd4MHma3b5jPL5NIxvwbXdWvvdhwRCWJD+78GwI4dC3lmykTC7ELyc2uyIOETHAtlxYbb96zUz1k5LWobSqWJjk1j+HWTuLL3Xxjc/maKHIPBcEVZJzZ7/fzm3QEUl5S5HVPkZ7N+P5NmPM7YuSvZEWZpHFvT7UgiIqfsnzdM4183TP/RsiY1ypsXX4Qvp8gxLE7J4qBjKTOGcbOfciNmUBv5xZ8AuKj1/YR59HFbRE6sRvU21PRZCuLW06v+5/iNodnu8jvCbtg6y+V0UtVpJBJXtG0xmN5OPMPrXcnjv3iVK51WzI88yAOvDaXM53c7nsjPsnzVB/xh43tkxj9NsWNomJjpdiQRkVNmHOcnlxQ0rn8BAD5jGNXhAV5peRfDW/+HzCLDxD3fsnZHrhtRg9K+3F185dtI66IYBna70O04IlJFGMfhF+m9WWhKeGXvIjr4I9hQ0AeADbsXuxtOqjw1fsQVjsfLszd9Tf9ejwPw8OC3aFcWwYyIhTz+3uua9FmqpNXbvgFgecI+ABpU12SeIhIakpMzqeuDC50E2rQczLnthnFR+/O4uHo3toQbHnrrabbs1cTPAC9OeIADHofLm9yGMcbtOCJShQzo/QT1fHDQMQyo14/zmrYn3udndc4Gt6NJFafGjwQFx+PlX/3fJMpa5uc/w5i5q92OJHJSfGUlPP/htTw9/iM+Xl1+J6+ywAf9BnW7uRlNROSMGn3VBJ64ZtKPll3b64/E+i1b0t7n8beHkFdU6lK64JCTX8jMonk0KnEYcP4v3I4jIlVMWFg0D7X+NV2Ios+593Fv3ybUKPGyumC3roqQ06LGjwSN1LTmPNbsNjZHwGfz7iCnoMTtSCIntHbDJEblrWTpxhEURubRoNQQ6bek+H6YGFVEJBQkJtUnPCLuR8sSEury3gUjaUUMsxPX8Ne37sPvt2ftmbsvfPg3toUbBtS+RHfgEZGfpXP7/2PUzfOIik4mo1oMDSJT2eYt49nP17gdTaowjUgSVHp2+Q0DvXWYn7CXB197gAfGLWPjzm0U5u92O5rIUa3fPg+AnKhdbAsrpX1sLYYmtaZ/QmOXk4mIVI66dbvx4g1TaVrqMD3sK7r96Tmuf/ETHn/3EnbtWup2vEozd81aZhV9RFqZ5do+D7sdR0RCRJvqjcn3OLw7azqzN+x1O45UUWr8SNB5YOD/aFBmWBv9GRMWbuDB8f0ZNraf27FEfmJH7kFmb1kMwMZIOOA4NE5sxB1Xjua+gePcDSciUonCImJ46qKR+DE0qT2a8OLneK84iy8WvuR2tEqx70AeL3x1IzvD4E+t7iEsLNrtSCISIjKrtwGgRbUN3PW/hSzdut/VPFI1ed0OIHKkiMgEftviF9y5+hUGNH6Fj2z5fAFZWbOpU6eLy+lEfvDQh8vJL9xORJSl2Cmf16dRzQ4upxIRcUfdOl24rVpbnt+3mPCwQsCwZv86t2NVuOWrv+DBmb9hYzQMiWxN946/dDuSiISQhnW6w7Ln2ZwwiRbh3zD45d/RsEYaYf4ckjxPc8CTS7HxYYCIMIfLa3bjun7Pux1bgozO+JGg1K3DndTzGT6ym4nwl88T8Ob05/H7z845AyT4ZOUUMnXNbrIjSunpTSY28HezUb3eLicTEXHPkAufo4bP4jNQq8SyvGAPk1fspKy0yO1oFWLumhXcN+tecjx+7km6kt9fO9rtSCISYlJSm/G7lC60CktgQWwe59V5ivhIQ0z448yN3kOJ4yPSevD4HLbaEsbvmOV2ZAlCavxIUHI8Xm5M7wnA1TH1aVhimF+wnAYPfspto8bx6sTbKC7KdTeknNVGz91CgiebPV5Ds8SGdPEmUscH8Ql13I4mIuKayKgkRnR7gsfq3UDd4jS2eHz8+4MXOXd0B5avHOt2vDPq/XkrePrLm9jjhd81uIfbLn/M7UgiEqJuvnQUz9z0Nb9KaMk3Ebmsc4axILKQ+1K78MEvlzB62AI25fyTZqVJZNuz++6KcnS61EuC1hU9/syuSTu4ocdjxM98jJfylvJ/7fezfNczPJNTxIbRd0Li70mxM2iaup9O51xNSmozt2NLiFq3M4/nPhhKrskizBfNvF13cFHGZiYDjdLaMKDrcPILNAm5iEiTxpfRpPFl+P15zMn6hMTUj9lmDGMXvEVa7f6kxUe6HfFnKystYvHaaXw45xOW+qaxKQbuT+3NlT2HuR1NRM4Ct1/+NrWnP8y3O+eSEpHMkItfBsAYQ4d6SZTsjSI7Yj/W79edBeVHTGXebrNDhw52/vz5lXY8CR3bts3j6ilDCQdyHEOE35Lks9Q+mMr8+PLZ7S/xVuPJwdNczSmhaerq3bz56c0sqLaVGmWW3R5oWuqlWUwtPijN4vO+b1GjZlu3Y4qIBJXVayYwaM5Dh76vU2yJ3jeIktQPeLnf69Ss1d7FdKdm1rzneXvFaOaTf2hOtzi/n8eaDOWC837rcjoREXh11kamzr6PJWnrmdH/I5KSG7odSSqZMWaBtfaoE46qDShVQnp6J17p8hf8QEOf4fGGg9gZ5jA/fi89iqvRIj+Cr4v38OXKrW5HlRCRl5vFGx/fxjNjb+LVL/qzoNpWLnaqMeXWpTzZ4BrWhpXxQWkW1XyW6tVbux1XRCToNKjXC2/gF4xNfA5ZEYaipPfZ6LGMm/u0y+lOjvX7ef6DG7lj1ShW+w/QMr8aV9OVl1o8wtTrv1HTR0SCRsd6SZSUJQGwJ2ety2kk2OhSL6kymjcdwIS01jieMGJjatBsw4ckOxH85bqJ/OHV35AbO5dnxj3Fs7O/5MY6vbmm7zNuR5Yq7OPZT/DU3rkAJEb7uTIsneEDxmIch349HqFdkwHszF5BalKmTqUVETmK8Ig46lkPm/AxvNP93LTg72yOgHC/5ZO9S7i9zIfH63E75jFZv5+H376M8TaL1vnRdDvnP9zctTlR4cGbWUTOXs1qxlPiTwXgk0ULmLqtMb6C1eTsfR+/LaV6fCQNUhpwYbcHXU4qbtClXlJllRYX4A2LwjgOu/ds4MJPriDFZ9ntdcgsNdx53ud0rRdGZGSi/mMup+yB//ZhRukOYvY+zitDL6ButXi3I4mIVDnvfHYn2YV7uOvKd7n4jdYcNJYLve14z7+IVnuvw0now3WZMzknowP16/V0O+4h1lruf/0SJnm20qWgGsOvnaBxQESC3u9ef4PJzlM039EKr+cAK1O/o9SYHz1n2qUfUC2lsUsJpSLpUi8JSWERMYcaOmmpDWlhw9ntdYjy+1kfZnl+3F/p/V53xn5xn8tJparZc6CYNYV7qFUaxtv/d7E+7IuI/Ew39HuBuweMwTgOf+9wP892eIC7+j9OmLXERn9G7s7PeHDjGzzy1X1k5RS6HReA4jIff3zleiZ5ttKjKJVnf/G5xgERqRL+POhiAHqfE8bGlO9oSQRjuz7LZRH/ovWu8nnVduxe4mZEcYkaPxIyzq/WHGMtTza9DYAd6V+S7zhMzJrJ6p15LqeTYPfSR4P5z4QhAPxu7CK2hZfRLKZGlb77jIhIMGnb6kbatBxMQmJdro1pwDdR+8mrORa/MSz2lHL7iL9w42vtmPCVe5chfDrjSQa/1o5Pw1fQuTSG526bTFREmGt5RERORUxsdaL9ltW5G8hzDP1qdKFpZm+6N2/FrsIMAHbmrHc5pbhBjR8JGUMufI6x5z1Bry6/oa0N56DjkFLmZ5mnmHv+8xJXvtaK+YvfcDumBKn3c5bw6t6FrNy6nbXfzaPQcWiR1tTtWCIiIem3V46hh4llr8fwm+TuhFtLdp2JLPGU8vrGj5m+dg++spJKy+PzW0ZOHMXw7/5LvvFxrbcZzw+ehMejpo+IVC2p1jCnbB8ATWp2AuC8htXYW1YHgJ0HNruWTdxzwsaPMaaOMWaqMWaVMWaFMeaewPJkY8znxph1gT+TKj6uyLFFRiXRpPFlAAzJvJpuxPDwOXfhMwZfzbfY4LFMW/eRuyElKOXkrGe3x1DgGMZ8+Ry1Y9YA0LhmR5eTiYiEJm9YJE8N+pS32t7PrZeOoF94GoWOQ0YxrPda/j3mL5z/Vlvem3z3Ke13587F5O7fRO6BPdz2ekdufb0DIz+8nTUbF+L3H31eyy17C/m/l9/g/V3PkuizPNZjNMMHjyEySh9tRaTqSXEiOOCUz+vTqP4FACRGh1O7RhMi/JZtB3aQe7CUkjK/mzGlkp1wcmdjTE2gprV2oTEmDlgAXAncAuRYa58wxvwRSLLW3n+8fWlyZ6lsvrISev23HfsCP/za+MJ4csDX1EqMcjmZBIMVqz7gQGEOq3ft56k9bwHQ9kAsaRG1mBy+lm+u+oy4+HSXU4qIhL49u1fw1aKXOa/lL7hsymDCLBQ7hvQyy/ghC4kICz/u9tZaFq+exp1z7iLcWqoXRbAquoQapZYd4eW/58wsMlQrrkWYiSXMicVxwikqLaGwbBvrErdjDYzsOJw2La6vjJcsIlIhfvd2Dyb79lHLB5OHLju0/Kkpa5i8eQApxdEs334n7Wu9yrqYfQxveA39ejziYmI5U443ufMJb+durd0B7Ag8PmCMWQWkA1cAPQNPexOYBhy38SNS2TzecHpH1uKzou00KIhiTUwhN704lua1R/KH3k9Tu3ZntyOKi/4x929s9BeRkVMPUuGcgjDWRecRbnzU9Fk1fUREKklqWnOuveg5AM410cw2B2le7GVFRBm3P/8APTvfRUa1aBKjw2laI47IsB9uqb51XyH/+Ogzvit9FLwWrx9WxpRyjbcpPTq/wO6dM1ix5T2WeNYyN2HbT47tWEsbG8lfL3xBnwtEpMpLDU+Ag/to7I370fKhXeuzaEsEpZGlXNjgXb707sMA327/hn7uRJVKdMLGz+GMMfWAtsBcoHqgKYS1docxJu0Y2wwDhgHUrVv3tMKK/By/7/8Ww/K28vmi91iW/RmNY0cy1R6gzaJRDNUHvLOW9ftZa4vJ9zhEJG4mzQdDWw/j/nUjmGsO0tPoDi4iIm4Y1vpX1F39Hr8dNJp+7/YgN/ZzPpu5nYLSNBJjl7IiYQ+ZxWEkFjekjHwKvdmsjS7CHw53JN9A5+aXs33bOPp2fQjH44WmgxjEIABKSwspLNhNQWE2RcV5eD3hVE9rSURkgsuvWkTkzEiJSoGDm2gcV+dHy5NiwsmITmJu0S7CzW4aFnvAgc1mr0tJpTKddOPHGBMLfADca63NM8ac1HbW2lHAKCi/1OvnhBQ5HTGxNYiJrUH34jz+NeMzlsbnAYavdy+n07ZcWqTrw97ZaMfOheQHLgHcGWbobmK4qOvttKjXjmUbJnFOvQtcTigicnbq0OYWOrS5BYDba/Xk7zunYWssB8BYS6eyGNaH57Myqnw+tvQyy6Xh6fyi23AyMroD0Kphy6PuOywsmoTEeiQk1qvw1yEi4oaUmOqQA01SfvpzsEZUCntKdrHfltDDk87uolw2efJdSOm+5z+8lp6Nr6Zl80FuR6kUJ9X4McaEUd70GW2tHRdYvMsYUzNwtk9NYHdFhRQ5E+rV7UGs35LvGGJ9ftaYAh584xn21RrLa93/RaNMneQYygoLs/nFexfymzZ3ktl4CH/98G2IhZQyP9leh6ax5b8VSU/vRHp6J5fTiogIwPX9RnB1cQG79ixjR/ZKkuJqk9mwL6WlhRw4sJ3YmOqER8SdeEciImeJdo3602rzFNo3u+Yn62rE1MKft5JiA+2rd+CzVQvZFVdAYWE20dEpLqR1x47tCxiVt5L53z7Bm2dJ4+dk7uplgFeBVdbapw9bNQG4OfD4ZmD8mY8ncuY4Hi/nmEjCrWVYWhdyPQ5OygfsdwyfLH4D3zHu9iGhYdnqcSx3yvjvstd499st5BWtBeCiqHMBaHyU34qIiIj7wiJiqF27Mx3bDCWzYd/yZWHRJCdnqukjInKEOnW6MvrWhVRLafyTdTUS6x96fH7ry0mLaQjA9MVfVlq+YLBo3QQAFpoSHnzzBYrLfC4nqngnbPwAXYGbgN7GmMWBr0uAJ4ALjTHrgAsD34sEtV+3u5fH6g+kV4ubANgQWd7smbZ3JcNe+g/3/bc7eblZbkaUCrJs2zcAzPLnMWHuN3hj9lLbB/cNfJb707rSq9M9LicUEREREak4NZLLm0HJfkt6zY7c0K0PAGNmf8GBolI3o1WqRTu/JcpvifBbdhX876y4tf3J3NVrFnCsCX00CYZUKW1b3Uhbyif2TfZbchxDD188MyNy8fpfZJ7fR5e5TzOo77/djipngK+shHveOZ8Bja5nYfYaYvGT7zikOOPYE1ZI47B4wiPiuPHikW5HFRERERGpUDXSys9wb+WJxzgOzRp0gwXgYytPTVnLny5v7nLCilN0cB//GH89yWHtmJObRYbPS6wvliUx+7HFOyGyzol3UoWd0l29REKFcRz6Rtdlb0keN7f/NTMW/JU10eWn+E3MmsHZcaVn6Nu0eTrTbT7Zy19nl1NCg4Mx5IUfJCt5Hfs9hotjdadBERERETk7xMWn04UoLqpbfv5GdHQK1X2W6PgDvDl7E1e1Tad1nUR3Q1aA4qJc7h3Tj68pJK4wi4JwwyX+DK46916iTTbxCaHd9AE1fuQs9tC1nwLlZ4XEf/s4PqB1UQpzorJ5/tMp1K3VnB51i4mJSdUcAlXUyi3TAVgRXgY4DKjRkoy0rozZMIIcU0q7uue7G1BEREREpBKNunnej76v54lipdlPRuYfeOnDnoy483m8npOZEaZqKC0u4L5A0+cSXz2mOBvxG0P/VhfRqXkvt+NVmtCpqMjP5PGGc3/G5fyp4TXcfv4f8BvDnBUj+cvYT+k/vj/PTxzidkQ5SVu2zGLEh9fhKyvB77cs3bWEMGsxtnwup+5NenN5j6G8fetCZg+YQpf2t7ucWERERETEPU2ia7HPMRQ7sCZmGq9MW+R2pDPG+v3cP6YfM2w+rXY15b21t9P1YB2i/ZbWTQe4Ha9S6YwfEeDy3n879LjZ3AfZnLKWzNiNrHQcluZvcTGZnIoPv32GV/LX0G7xK8zb34eF+7dQ1zjEOF5WhJXQNPOSQ8+NjavpYlIREREREff96uKXuWbvOnbnrGXo0meYs+RhLm37PnWSo92Odtre/HQYn/v302ZPBqn1HuLFi6tzbr0P8fp2EhNbw+14lUpn/Igc4ak+L+EBVkaXEe33s84WY/2hP9N7KFiVX35HtvGrx/D6rPVsiyijcUR1/tDtr/y9/tVERiW5nFBEREREJHjExNYgI6M7Hdv+gvOJY1XSZv467mMKisvw+63b8X621Wsm8Gz2HFrmR1Ac+wBPDmzFJS1rUi0ukoTEem7Hq3Rq/IgcoU6dLozq9iTXhNejUXZDDjiGXbuWuB1LTsD6/azyFwDwVWk2acylwHHoXLs1rZtdzMXn/8ndgCIiIiIiQex35/+dEmMoKHyW5o9O5pej3uW+/3YnO3u129FO2ZvznyHcWrL23ceIG9oTFkLzFv0cZ/erFzmGJo0u5eHrJ5IS3xGApd995XIiOR5rLXe88i45jqFNfgxFjiEqfRwATWt3czmdiIiIiEjwq1fvfK6Nrs/S+FxubLaRkuKX+Ny/nxmLX3E72inZv28jU0p30zgvmT9ffQFp8ZFuR3KdGj8ixzG410AApq2Zw4GiUpfTyNHk5m7h9Y+Hk509FYBGCQPoXpLEdq8lwW/JrH+BywlFRERERKqGO/o+T5IflvpGsSo+B4Ale5a6nOrUjJ76Z0qMoXbiDfRuWt3tOEHBWFt51+116NDBzp8/v9KOJ3Im9Hm1BdUPRvP11kf5dZsFFPA1j1wzCeOob+q2vdlrGTZxEGsdP+kllu1hMOeaaURHp1BaXEBR8X7i4tPdjikiIiIiUmXMmvc8d6wahbGW9FJwLLSM/Tup4a9x56WvBfW8mWvWfcKtM/9ArRIvI2+cR0pshNuRKo0xZoG1tsPR1ul/riIn0MgbS35UEb2apDIz933eL97Oxs1T3Y511rN+P3eOv5bN+Mgohm3hhnp+h+joFADCImLU9BEREREROUXdOt3F71O7cEdiG9qHZbI1HLbt+SdvFKxn1oKRbsc7pl27lvJ/M+8nwkLfjL+cVU2fE9Ht3EVOoElsbeYcWM29TRdw95ryM+Se/ewlfM4q8IzloLeA+7s9RuPMi11OenZYt/4zLJZpq9azwlvGufua4/f2ZEf4C7SISHU7noiIiIhIlTfkklEAzJj7b8av3sCyhBzAMGfrTPrwgLvhjuGN6cPJdaDB7qHcfPNlbscJKmr8iJzAZW2G8faM+/j9qhfwGkjxwU5nAwXOGvZ4/BQah69WjFbjp5I8OPN+tlJGrWIvsRF+nh76LPHxNVi1phYpSZluxxMRERERCRktGvWH1a/hM4Z4n59vDmxh1Y48mtWMdzvaj+Tu38QHBd/RPD+WKy+4lgivx+1IQUWXeomcQGbDvjxQ+yKKHUMvTyL9EhqxMrKMzeHQcE8napda1uRtcjvmWaEgfydrjY98x2FtlJ/LoxsQH18DgGZNriA1rbnLCUVEREREQkdycia1fZDms1wR3ZqscMOwUf9j/OJtrNl5gDU7D7Bw7VKmzX+fJSveZ/eu5a7kfOOLBznoGOK8NzCgraZ7OJLO+BE5CQMu+CeRM2Jo33QAW3bM542lz5LpM9RreDfsHMYqZz+Tlu3AlGygOPdT6qW1onWL69yOHXJmLHofvzG0y6mOLyGHm7s/6nYkEREREZGQ9nDL2/F6I4iNSuG/c5fRoPqrjP5mJNt33kiDpE9ZlLz70HPj/JaZNy3E4w2vtHx+n4+Pc5fSrCSM4df/EscxlXbsqkKNH5GTYByHS3v+BYBqSY3otex1bmx7K0m1Mnns7VS2xWbx7LgRZNcdT7FjqLtpIp+o8XPGTJr+J7bu38OsDd9BNbig3WMMOb+L27FERERERELeeR3vBMDvKyNh9nAWRh0kzFrC6r/GIsehtz+JsoIWFLOauXF72LlrMenpnSot39jp77DTa7gw+lzSE6Mq7bhViS71EjlFYRExPDfkazq1vY1G1eO4pkNvAKrVmYTPQLvcJLZ4YMf2BS4nDQ3fzH+RP258nxf2TSc7Lov6PqOmj4iIiIhIJXM8Xp5ucy+jWtzJ++c/R7J16O9N5embvqBrxz+ya19bALbsXFhpmYrLfHyx4h0ca7mlz72VdtyqRmf8iJymTk37waY3WeoppauNZdP+vpDwHn8dN4LMGsXUik/jmr7PuB2zStq5YxH3L3uRDOuw3fjZEm64KjzN7VgiIiIiImelTm1vO/T4k7qLcDzlLYULz6nOsx83ACArexWV9WvaF6ZuYFtEFq384aSlNq2ko1Y9avyInKbU1HNI8lv2OYb+9fpi2t3C3+f/j+1hC5mR7yM1Dwb5/RhHJ9idCl9ZCfd/dhvFWPK3DKFF4iQWJO2mdUprt6OJiIiIiJz1vm/6AKTGRZCR3orv/JavN69iwXtz8Oa/zS7fArzhli6prbj50lE/+1h+Xxkjxt9AWnR1ure8ieioakxd9BGLVo8lK95wQ1rlXVpWFanxI3KajOPQxIlmib+QXp3uJjo6hS+WJPO5Zz9g2O2BFya+Tp24jdRNaUrbVje6HblKeGfK3Sx0Smi7pw2NO1xC6+q9aLLxUfp0vMvtaCIiIiIicoSbz8vkhbmQ7cshcvdDzIvfTTX84IfFu79hyGn8Mnz2wpH858AqOLAKdk07tDw61s/AsDoMPP9vZ+hVhCY1fkTOgLs7/J7svM1ER6cAcG5aWz7fOZVzi2OZG5HP7C2j+E9cAS02hzNajZ9jys3dws7dy2jS6FIm7JhNgzLDZT3+xjWdMgDo3/FjlxOKiIiIiMjRXNqqJp8tjmert4D9djfnEUVi3Ei2b36SxWkr2bZ9HrVrdz7p/ZUWF3Db/3rQI7kd3+xaSoLHT0zWAFKi1pAY7aNeShuu6n4Lmel1KvBVhQY1fkTOgJbNB/3o+ws73s3iScv47aUv8euJ17E0vhAwLDWlvDtjKjnZk9lcOJcIj4dHB31aqbc7DFbW7+e3Hw1kqf8go/zJrPX46FGSwaCOdd2OJiIiIiIiJ6FuVCozC/LwOYbr09rRplVDfr+qIbCSpRumEZPUjihvKdl7lp2wCTTt22dZaEpYnDMbEwY9imtz6dV30rl+NRKiwyrnBYUINX5EKkByciZ/HzwVgB6JzViRt5zWhZEsiS7ik8XDWRKfS5S1FPocrlo5Rpd/AR9Pf4S5FIFjeGbavfgjDVe0uRxjjNvRRERERETkJNSNz8BX+B0AXRoPpGF6ArHVumLsBN6dP43Rc79lQ+pqChyHl5vfwXkdfnXU/Szdup+3Vo4jxeMn3G/YHm74bb/hZGTUqMyXEzLU+BGpYAM6/4Fd0/7AXf1fY8hHl7A4IY8En6X0uzvwZo7kwyXvsj4nijmbRrDLl0sJfoyBCMfDI93/TmbDvm6/hAp3sDCHf236iFaEsceWsiCykAi/pUe7G9yOJiIiIiIiJ6lOchPYOZU0n6VB/QsAePLa87lzAoQl7mODyaJGiYfsMB//Xfo28dUHUrb/C1o3vx7jOOTu38RD428gN9/PkpgiuuTXoWeLu6kZuYqMjO4uv7qqS40fkQpWo2Zb/nz95wD0jmvIm4Ub+FWtnqyu1pPV215ldvhG5q99lL1hlvRSL16/AwYWRZcwbcXos6LxM3Hmn8lxDP9odTevzHqHHfE7aetEEx4R53Y0ERERERE5SXVqtIOV0Dky7dBEzg1SY2kanshXvv34jcPgpKuZs/lL5iTu5cBHl7MkvpABCyeyq7gvm83T7AoDb7TFwfDIVX8hPb0TcIm7L6yKU+NHpBLd2O1RYub+k0EX/BOvN4rXPu7KMznTARhe8xpatriX77Lz+fU7i2jS6H7W5m1yN3Al8PvKeHvbVDJ9hvu/yMBT0APix9A5ubnb0URERERE5BTUqtme/t5Urmk17EfLG8dl8EVuLol+yy8v+x3nrm7FLQsfZkl8IUllfj7yLCcybBke4PrIm+jb8UrinG2Bpo+cLjV+RCpRjZptuePKdw59f0XnO3nuk2l0MTFc02c4xnFoVjOOETXWk1IaxRqzD4DS0kKWrXyf1ORG1KnTxa34FeKbBS+x0WM5Z1cb0lOj6dzuOjompdG66aATbywiIiIiIkHD4w3nb4O/+snyxmmtIHcpfaNqExYWTfuWV9JhweOUWD9PXz6GX00cSIzj5Ym+L1OrVofAVk0rN3wIU+NHxEUpqc34T+t7aZTR69CpkMYYbuycwZRvktgUuZ1fvfwyK8KeI8fj0Nzv4d1bF7sb+gz7ZvPnRPgtOd4bmDz0XBzHAI3cjiUiIiIiImdIu6ZX03LNu1zb4Z5Dy0Ze9yVebxQebzhjb16A41F7oqLonRVxWae2t/1k2VVt01m4uAl+s4N8+yo5Hod2xREsCS+isDCb6OgUF5JWjHX5u6hRariu+zmBpo+IiIiIiISSpOSGvHProh8ti4hMOPRYTZ+K5bgdQER+KibCy939rgZgUdRBzinxkJ/dCZ8xrFg7weV0Z1aWr4CE0kgGtqvtdhQREREREZGQo8aPSJCqU7sLkX4LwEU1OpNVVD6x2ZKsmW7GOqP2HtjPTi/UjKhOVLjH7TgiIiIiIiIhR40fkSDl8YaTSRjGWvqfexdDenalVonlm50rsNa6He+MGP/1Z/iMoUV1TdwmIiIiIiJSEdT4EQlil9fsyg3R9UlNa86dvTJpQCLrnQJen/Wd29FOi/X7KczfzYL1swFo10C3aRQREREREakImkFJJIhd32/EocfGGM6v245ZO6cydvUVbN/SmCH93uBfn1xMu+Rm3HLZKy4mPTXvf/Fb/rntc5r4kgDIqN3Z5UQiIiIiIiKhSWf8iFQhPVsPpb0/Ao81jC1dy/C3rmSqzeO/u+fg95W5He+kWL+f0Vu/5KBjWJawjySfJSGhrtuxREREREREQpIaPyJVSI0abXjj1vk8c8k44qxlUfIeIv2W3R7D0lVj3I53UhYte5sNHkuSz4/PGOo7EW5HEhERERERCVlq/IhUQZm1G3F3rT54rKXezu6EWcvkle8CUFZaxPbt811OeGxjl79OjN+SsO1iADIiklxOJCIiIiIiEro0x49IFXXNRc/Sd99GPl3rYcKCeUzxfUf3dTv4YsFQxhdlMeWycVRLaexqRr+vjKUr36N18+sxjsO+vB18XrKHZgcSmFnQi/vj93N+s8tczSgiIiIiIhLKdMaPSBWWmFSf6zvVITOyB7u9huemXMb7RVmUGMOU+c+5HY+vZv+TmxY+wcfTHwHgPx8/SbFjaJF2BS/c0I47rnqFc5pe6W5IERERERGREKbGj0gVZ4zhL7c8zUBvXVbEllDNZ6lbBp/u/MbtaMzeOh2AFzaOZ2fOXhbtn0lqmZ/fD7qPS1vVdDmdiIiIiIhI6FPjRyQEOI7hkevGc09yezo7Q6i2vy6LTSnbts0Dyu+kNXPec0yb81SFZ9mxfQEDXm/NmnWfMK9wO2k+yzYP/GnsVayOLqZXdAMcj64yFRERERERqQz635dIiHA8Xm7r/waFJWUMG1kNeJYnJv+Wmzo+xL/nP8Byp4wwa5l+znXExadXWI4vFo9inePnb7MeYZPHMshpxdaiTXwduQ8wDGhzS4UdW0RERERERH5MZ/yIhJjocC9P33oj5+XVYZpnP79c8DuybAmX+OtSagzTFrzIli2zWLHqgwo5/qw9iwBY6JQAMHNDI6ZseIievkd4u8PDNG82sEKOKyIiIiIiIj9lrLWVdrAOHTrY+fOD9zbTIqHEWsuIcUNZuH85cdzNJ+vjqd/oIeqYSLbYIgoNTBk4mbj4dKzfj3FOrw98IG8bXm8U3cb0oG1ZDN96C4ixlo+vnofHE058lBdjzBl6dSIiIiIiIvI9Y8wCa22Ho6074aVexpjXgMuA3dbaFoFlbYCRQCRQBvzKWjvvjCUWkdNmjOGuga8DkF9cxrLnZ1ErL4X5SXsxFqwxvDP1jyzNXU+E8fDU4Bk/u/mzePk73Dr/bzT1hVHiNezf3Zke1VaRmRJPclzMmXxZIiIiIiIicgpOeMaPMaYHkA+8dVjjZwrwb2vtJGPMJcAfrLU9T3QwnfEj4p6duUVMmPkGz+99gbb7kimLPsCyiNJD6x+vcymfZH1FnYhkHr7us5Pa55Yts0hOasht71/MOlNGiTFE+C1t7QgevaoTtZOiK+rliIiIiIiISMBpnfFjrZ1hjKl35GIgPvA4Adh+WglFpMLVSIhk2GW3035pLGNWN2bDhjGYmp/RKa82u2O2MzzrEwBmF2+j+oSbmLx3KfXDEvjzlWNYsuoDaqQ0pUH9CyguyiU3N4vXpj/A6IObiPBbih3D5WXdydq3gy4Nk7njqp6uvlYREREREREpd1Jz/AQaPx8fdsZPM2AyYCifIPo8a+3mY2w7DBgGULdu3fabNx/1aSLigrmrFnHPhzmklE0iP30SrYt7sivya1Z4fCT4LXkGwi0UO+Vz82T4IMux+ANz9QwMT2dL3n6KS/18vfVhbu3agEf7N3fzJYmIiIiIiJx1jnfGz89t/DwHTLfWfmCMuQYYZq3tc6L96FIvkeCTX1zGpuwCFm/J4W+T1pDIGjKTPySv7GaaJS1nm3867RJ6Uli2mY1FW6gdVouDxfHsyq/D0gPnk1dUyv/1aEitxCgGtEsnMszj9ksSERERERE5q1RE4ycXSLTWWlN+m55ca2388fYBavyIBLvdeUVszC5g2/6DvPttFjtyD5J3sIzcg6U/el5chJdzGyQTGebhlvPq0aFeskuJRURERERE5LTm+DmG7cD5wDSgN7DuZ+5HRIJIWnwkafGRAAxoVxsovy38lpxCDhSVHXpeZlqszuwRERERERGpAk7mdu7/A3oCKcaYrcCjwC+BZ40xXqCIwBw+IhJ6jDFkVNMt2UVERERERKqik7mr1/XHWNX+DGcREREREREREZEzyHE7gIiIiIiIiIiIVAw1fkREREREREREQpQaPyIiIiIiIiIiIUqNHxERERERERGREKXGj4iIiIiIiIhIiFLjR0REREREREQkRKnxIyIiIiIiIiISotT4EREREREREREJUWr8iIiIiIiIiIiEKGOtrbyDGbMH2HyST08BsiswjpwZqlPwU42qBtUp+KlGVYPqFPxUo6pBdaoaVKfgpxpVDaFQpwxrberRVlRq4+dUGGPmW2s7uJ1Djk91Cn6qUdWgOgU/1ahqUJ2Cn2pUNahOVYPqFPxUo6oh1OukS71EREREREREREKUGj8iIiIiIiIiIiEqmBs/o9wOICdFdQp+qlHVoDoFP9WoalCdgp9qVDWoTlWD6hT8VKOqIaTrFLRz/IiIiIiIiIiIyOkJ5jN+RERERERERETkNJyRxo8xpp8xZo0xZr0x5o9HrLsrsG6FMeYfx9j+MWPMUmPMYmPMFGNMrcPWPRDY7xpjzEXH2P7XgedYY0zKYcsTjDETjTFLAse/9Uy83qroWDUyxrwXeN8XG2M2GWMWH2P7ZGPM58aYdYE/kwLLqxljphpj8o0xI45z/PrGmLmB7d8zxoQHlhtjzHOBXEuNMe3O8EuvUoK1ToF1PQPHX2GMmX4GX3aVEgQ1OtbPu8GBf0NLjTHfGGNan8GXXeUEcZ00LgVUYI0uNMYsMMYsC/zZ+xjba1w6CcFap8A6jUsBQVAnjU0nEMQ10rh0mAqsU6fDtl9ijLnqGNtrbDqBYK1RYF3wjkvW2tP6AjzABqABEA4sAc4JrOsFfAFEBL5PO8Y+4g97fDcwMvD4nMD+IoD6geN4jrJ9W6AesAlIOWz5g8CTgcepQA4Qfrqvuap9Ha9GRzzvKeCRY+zjH8AfA4//eNj7GgN0A24HRhwnwxjgusDjkcAdgceXAJMAA3QG5rr9fqlOR61TIrASqBv4/qj/lkP9K0hqdKyfd+cBSYHHF+vfUtDWSeNSxdeoLVAr8LgFsO0Y22tcqtp1SkTjUjDVSWNT1a2RxqXKqVM04A08rgns/v77I7bX2FR1a5RIEI9LZ+LN7wJMPuz7B4AHDntT+pzi/h4AXjpyX4HvJwNdjrPtkT/IHgBeDPwDqQ+sBxy33/RKL/JxanTYMgNkAY2OsY81QM3A45rAmiPW38Ix/hMU2Hf2Yf+QDuUBXgauP9pxzravIK/Tr4DH3X6P3P5yu0ZHPO9HP++OWJfEMT74nQ1fwVwnjUuVV6PD9rGXwC+gjliucalq10njUpDU6YjnaGyqYjXSuORKneoDuziiqaCxqcrXKKjHpTNxqVd64I393tbAMoDGQPfAqVDTjTEdj7UTY8xfjTFZwGDgkZPY98kYATQDtgPLgHustf5T2D5UnMz72B3YZa1dd4x9VLfW7gAI/Jl2CsevBuy31pYd5finW+NQEsx1agwkGWOmBU4jHnIK+w0lbtfoZP2C8t8Kna2CuU4al8pVVo0GAoustcVHLNe4dHKCuU4al37gdp1O1tk8NgVzjTQu/aBC62SMOdcYs4Ly9/n2w362fU9j04kFc42CelzynoF9mKMss4ftP4ny09E6AmOMMQ1soCX2ow2sfQh4yBjzAPBr4NET7PtkXAQsBnoDDYHPjTEzrbV5p7CPUHAy7+P1wP9cOP7p1jiUBHOdvEB74AIgCphtjJljrV1bQVmClds1OiFjTC/KP1x3cytDEAjmOmlcKlfhNTLGNAeeBPqe4vE1Lv0gmOukcekHbtfpZLY/28emYK6RxqUfVGidrLVzgebGmGbAm8aYSdbaopM8vsamcsFco6Ael87EGT9bgTqHfV+b8o7x9+vG2XLzAD+QYox5PTDp0adH2d87lHerT7Tvk3HrYcdfD2wEmp7C9qHiuO+jMcYLDADeO2zZkTXaZYypGVj3/TWPJysbSAwc58jjn26NQ0mw1+kza22BtTYbmAG0PoV9hwq3a3RcxphWwCvAFdbavWdqv1VQMNdJ41K5Cq2RMaY28CEwxFq74SjH17h0coK9ThqXyrldp+PS2AQEd400Lv2gUj4/WGtXAQWUz8l0OI1NJxbsNQracelMNH6+BRoFZrcOB64DJgTWfUR59xhjTGPKJ2DKttbeaq1tY629JLCu0WH7uxxYHXg8AbjOGBNhjKkPNALmnUK2LZR33DDGVAeaAN+d+kus8o5XI4A+wGpr7dbvFxxZo8Dzbw48vhkYf7IHD5zhNRW4+ijbTwCGmHKdgdzvT707CwVzncZTftmm1xgTDZwLrDqlVxcaXK3R8Rhj6gLjgJuC5TcLLgraOqFx6XsVViNjTCLwCeXX/H99tINrXDppwVwnjUs/cLVOx6Ox6ZCgrREalw5XkXWq/32zwBiTQfn7vOnwg2tsOinBXKPgHpfsmZlk6RJgLeUzbD902PJw4G1gObAQ6H2M7T8IPGcpMBFIP2zdQ4H9rgEuPsb2d1PeYSujvOP2SmB5LWAK5dfoLQduPBOvtyp+HatGgXVvUH4N4/G2rwZ8CawL/Jl82LpNlN8BID9Qh6PNrN6A8qbdemAsP9zpzQAvBHItAzq4/V6pTj+tU2Dd7ymfqX45cK/b79VZXKNj/bx7BdhH+enai4H5br9XqpPGJTdqBAyn/Ld0iw/7+smdNY718w6NS1WiToF1GpeCp04am6pujTQuVU6dbgJWBOqzELjyGNtrbKqiNQqsC9pxyQQCioiIiIiIiIhIiDkTl3qJiIiIiIiIiEgQUuNHRERERERERCREqfEjIiIiIiIiIhKi1PgREREREREREQlRavyIiIiIiIiIiIQoNX5EREREREREREKUGj8iIiIiIiIiIiFKjR8RERERERERkRD1/9pLgqYgkqSJAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2718,7 +3025,7 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 79, "metadata": {}, "outputs": [ { @@ -2747,6 +3054,7 @@ " u\n", " y\n", " u_1\n", + " u_2\n", " y_1\n", " y_2\n", " y_3\n", @@ -2761,63 +3069,69 @@ " \n", " \n", " \n", + " \n", " \n", " \n", " \n", " \n", - " 2017-07-19 15:05:00+02:00\n", - " 680.640000\n", - " 28.0\n", - " -14422.100000\n", - " 22.583333\n", - " -14336.689655\n", - " 22.600000\n", - " 22.733333\n", - " 22.783333\n", - " \n", - " \n", - " 2017-06-22 02:25:00+02:00\n", - " 3.403067\n", - " 28.0\n", - " -62.586207\n", - " 22.566667\n", - " -90.517241\n", - " 22.600000\n", - " 22.650000\n", - " 22.833333\n", - " \n", - " \n", - " 2017-07-16 13:45:00+02:00\n", - " 885.935000\n", + " 2017-06-21 08:00:00+02:00\n", + " 258.371200\n", " 21.0\n", - " -12772.700000\n", - " 22.716667\n", - " -13091.586207\n", - " 22.866667\n", - " 22.850000\n", - " 22.633333\n", + " -12847.137931\n", + " 17.174013\n", + " -12796.551724\n", + " -12868.500000\n", + " 17.036159\n", + " 17.091241\n", + " 17.196910\n", " \n", " \n", - " 2017-07-15 03:50:00+02:00\n", - " 3.090000\n", + " 2017-07-10 02:15:00+02:00\n", + " 0.000000\n", " 18.0\n", - " -13.233333\n", - " 21.566667\n", - " -12.758621\n", - " 21.516667\n", - " 21.533333\n", - " 21.558333\n", + " -156.500000\n", + " 18.854145\n", + " -145.000000\n", + " -152.241379\n", + " 18.854145\n", + " 18.854145\n", + " 18.854145\n", " \n", " \n", - " 2017-07-18 07:05:00+02:00\n", - " 91.620000\n", + " 2017-06-20 23:05:00+02:00\n", + " 4.039867\n", + " 26.0\n", + " -75.620690\n", + " 19.798158\n", + " -93.206897\n", + " -96.931034\n", + " 19.841970\n", + " 19.885761\n", + " 19.696626\n", + " \n", + " \n", + " 2017-07-15 22:45:00+02:00\n", + " 3.390000\n", + " 19.0\n", + " 25.100000\n", + " 22.849435\n", + " 29.275862\n", + " 24.413793\n", + " 22.985754\n", + " 22.985754\n", + " 22.985754\n", + " \n", + " \n", + " 2017-07-18 07:00:00+02:00\n", + " 80.510000\n", " 19.0\n", - " -5.793103\n", - " 22.566667\n", " 6.517241\n", - " 22.533333\n", - " 22.566667\n", - " 22.566667\n", + " 21.003325\n", + " -12.310345\n", + " 7.100000\n", + " 21.030239\n", + " 21.030239\n", + " 21.030239\n", " \n", " \n", " ...\n", @@ -2829,100 +3143,120 @@ " ...\n", " ...\n", " ...\n", + " ...\n", " \n", " \n", - " 2017-06-11 13:20:00+02:00\n", - " 916.328067\n", - " 22.5\n", - " 2138.344828\n", - " 23.100000\n", - " -15974.793103\n", - " 23.200000\n", - " 23.383333\n", - " 23.583333\n", - " \n", - " \n", - " 2017-07-19 16:05:00+02:00\n", - " 450.750000\n", - " 28.0\n", - " -14195.275862\n", - " 22.833333\n", - " -14086.500000\n", - " 23.000000\n", - " 23.033333\n", - " 23.166667\n", - " \n", - " \n", - " 2017-07-15 20:30:00+02:00\n", - " 95.620000\n", - " 22.0\n", - " -6755.379310\n", - " 23.066667\n", - " -2.793103\n", - " 22.833333\n", - " 22.833333\n", - " 22.633333\n", - " \n", - " \n", - " 2017-06-22 04:05:00+02:00\n", - " 3.310567\n", + " 2017-07-18 00:05:00+02:00\n", + " 3.390000\n", " 23.0\n", - " -42.000000\n", - " 22.691667\n", - " -65.600000\n", - " 22.658333\n", - " 22.583333\n", - " 22.583333\n", + " -23.689655\n", + " 24.136657\n", + " -18.310345\n", + " 5.566667\n", + " 24.193921\n", + " 24.231217\n", + " 24.251695\n", " \n", " \n", - " 2017-07-15 11:30:00+02:00\n", - " 801.415000\n", - " 21.0\n", - " 2374.068966\n", - " 21.350000\n", - " -12525.620690\n", - " 21.350000\n", - " 21.216667\n", - " 21.250000\n", + " 2017-07-18 20:45:00+02:00\n", + " 23.950000\n", + " 29.0\n", + " -2823.300000\n", + " 26.411437\n", + " -61.448276\n", + " -58.965517\n", + " 26.832942\n", + " 26.871086\n", + " 26.801725\n", + " \n", + " \n", + " 2017-07-16 23:30:00+02:00\n", + " 3.440000\n", + " 22.0\n", + " -6.103448\n", + " 23.780358\n", + " -12.551724\n", + " -10.827586\n", + " 23.826292\n", + " 23.906094\n", + " 23.747423\n", + " \n", + " \n", + " 2017-07-18 06:30:00+02:00\n", + " 28.720000\n", + " 19.0\n", + " 2.896552\n", + " 21.094534\n", + " 7.241379\n", + " 15.310345\n", + " 21.094534\n", + " 21.154323\n", + " 21.154323\n", + " \n", + " \n", + " 2017-06-11 12:35:00+02:00\n", + " 886.534233\n", + " 22.0\n", + " 34.034483\n", + " 23.341083\n", + " 35.233333\n", + " 34.586207\n", + " 23.222502\n", + " 23.089790\n", + " 22.949199\n", " \n", " \n", "\n", - "

150 rows × 8 columns

\n", + "

500 rows × 9 columns

\n", "" ], "text/plain": [ " SolRad OutsideTemp u y \\\n", "timestamp \n", - "2017-07-19 15:05:00+02:00 680.640000 28.0 -14422.100000 22.583333 \n", - "2017-06-22 02:25:00+02:00 3.403067 28.0 -62.586207 22.566667 \n", - "2017-07-16 13:45:00+02:00 885.935000 21.0 -12772.700000 22.716667 \n", - "2017-07-15 03:50:00+02:00 3.090000 18.0 -13.233333 21.566667 \n", - "2017-07-18 07:05:00+02:00 91.620000 19.0 -5.793103 22.566667 \n", + "2017-06-21 08:00:00+02:00 258.371200 21.0 -12847.137931 17.174013 \n", + "2017-07-10 02:15:00+02:00 0.000000 18.0 -156.500000 18.854145 \n", + "2017-06-20 23:05:00+02:00 4.039867 26.0 -75.620690 19.798158 \n", + "2017-07-15 22:45:00+02:00 3.390000 19.0 25.100000 22.849435 \n", + "2017-07-18 07:00:00+02:00 80.510000 19.0 6.517241 21.003325 \n", "... ... ... ... ... \n", - "2017-06-11 13:20:00+02:00 916.328067 22.5 2138.344828 23.100000 \n", - "2017-07-19 16:05:00+02:00 450.750000 28.0 -14195.275862 22.833333 \n", - "2017-07-15 20:30:00+02:00 95.620000 22.0 -6755.379310 23.066667 \n", - "2017-06-22 04:05:00+02:00 3.310567 23.0 -42.000000 22.691667 \n", - "2017-07-15 11:30:00+02:00 801.415000 21.0 2374.068966 21.350000 \n", + "2017-07-18 00:05:00+02:00 3.390000 23.0 -23.689655 24.136657 \n", + "2017-07-18 20:45:00+02:00 23.950000 29.0 -2823.300000 26.411437 \n", + "2017-07-16 23:30:00+02:00 3.440000 22.0 -6.103448 23.780358 \n", + "2017-07-18 06:30:00+02:00 28.720000 19.0 2.896552 21.094534 \n", + "2017-06-11 12:35:00+02:00 886.534233 22.0 34.034483 23.341083 \n", "\n", - " u_1 y_1 y_2 y_3 \n", - "timestamp \n", - "2017-07-19 15:05:00+02:00 -14336.689655 22.600000 22.733333 22.783333 \n", - "2017-06-22 02:25:00+02:00 -90.517241 22.600000 22.650000 22.833333 \n", - "2017-07-16 13:45:00+02:00 -13091.586207 22.866667 22.850000 22.633333 \n", - "2017-07-15 03:50:00+02:00 -12.758621 21.516667 21.533333 21.558333 \n", - "2017-07-18 07:05:00+02:00 6.517241 22.533333 22.566667 22.566667 \n", - "... ... ... ... ... \n", - "2017-06-11 13:20:00+02:00 -15974.793103 23.200000 23.383333 23.583333 \n", - "2017-07-19 16:05:00+02:00 -14086.500000 23.000000 23.033333 23.166667 \n", - "2017-07-15 20:30:00+02:00 -2.793103 22.833333 22.833333 22.633333 \n", - "2017-06-22 04:05:00+02:00 -65.600000 22.658333 22.583333 22.583333 \n", - "2017-07-15 11:30:00+02:00 -12525.620690 21.350000 21.216667 21.250000 \n", + " u_1 u_2 y_1 y_2 \\\n", + "timestamp \n", + "2017-06-21 08:00:00+02:00 -12796.551724 -12868.500000 17.036159 17.091241 \n", + "2017-07-10 02:15:00+02:00 -145.000000 -152.241379 18.854145 18.854145 \n", + "2017-06-20 23:05:00+02:00 -93.206897 -96.931034 19.841970 19.885761 \n", + "2017-07-15 22:45:00+02:00 29.275862 24.413793 22.985754 22.985754 \n", + "2017-07-18 07:00:00+02:00 -12.310345 7.100000 21.030239 21.030239 \n", + "... ... ... ... ... \n", + "2017-07-18 00:05:00+02:00 -18.310345 5.566667 24.193921 24.231217 \n", + "2017-07-18 20:45:00+02:00 -61.448276 -58.965517 26.832942 26.871086 \n", + "2017-07-16 23:30:00+02:00 -12.551724 -10.827586 23.826292 23.906094 \n", + "2017-07-18 06:30:00+02:00 7.241379 15.310345 21.094534 21.154323 \n", + "2017-06-11 12:35:00+02:00 35.233333 34.586207 23.222502 23.089790 \n", "\n", - "[150 rows x 8 columns]" + " y_3 \n", + "timestamp \n", + "2017-06-21 08:00:00+02:00 17.196910 \n", + "2017-07-10 02:15:00+02:00 18.854145 \n", + "2017-06-20 23:05:00+02:00 19.696626 \n", + "2017-07-15 22:45:00+02:00 22.985754 \n", + "2017-07-18 07:00:00+02:00 21.030239 \n", + "... ... \n", + "2017-07-18 00:05:00+02:00 24.251695 \n", + "2017-07-18 20:45:00+02:00 26.801725 \n", + "2017-07-16 23:30:00+02:00 23.747423 \n", + "2017-07-18 06:30:00+02:00 21.154323 \n", + "2017-06-11 12:35:00+02:00 22.949199 \n", + "\n", + "[500 rows x 9 columns]" ] }, - "execution_count": 101, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -2948,7 +3282,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.2" + "version": "3.9.3" } }, "nbformat": 4, diff --git a/Notebooks/31_gpflow_first_test.ipynb b/Notebooks/31_gpflow_first_test.ipynb index fa01316..8d26327 100644 --- a/Notebooks/31_gpflow_first_test.ipynb +++ b/Notebooks/31_gpflow_first_test.ipynb @@ -171,7 +171,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAFlCAYAAADoCC5oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABDTklEQVR4nO3dd3zV5d3/8deVk0nIICEECAkhIYAsGTGAgAstjop7olIXdbTa1p/dvet939Va6+iwDhwVFffEVcXFUFbYG0JISCCEDLLJOOdcvz8SvVFBNOt7xvv5ePSR5IycNz0cfOfK51yXsdYiIiIiIhLsQpwOICIiIiLiC1SMRURERERQMRYRERERAVSMRUREREQAFWMREREREUDFWEREREQEgFCnAwD07t3bpqenOx1DRERERALcqlWryq21SYe7zieKcXp6Orm5uU7HEBEREZEAZ4wpPNJ1GqUQEREREUHFWEREREQEUDEWEREREQFUjEVEREREABVjERERERFAxVhEREREBFAxFhEREREBVIxFRERERAAVYxERERERQMVYRERERARQMRYRERERASDU6QAiIiIinWV/TSO7Kxuob/YQHe4iNaEHfarWYQqXQPpUSM1xOqL4MBVjERER8WvbS2t5YUURH2zeR/GBg1+5bpzZznMRdxGGG+MKJ+SMv8DBCpVkOSwVYxEREfE/RSuo2foJb21vZM/ePWw0IxiWNZlrJg8iIymamMhQ6po8RK9YSlieGxde3O4mvG//ApcB4wqHWfNVjuUrVIxFRETEr9jdy/E8NYMeniYux2LDDCY0AnPKW5A66Ks3jpoBBY9jPc0YY7BeDwaL190MuxYTomIsh9Cb70RERMRvNLZ4mD//JfA0E2osGAjBYjwtULD4m3dIzYFZ8zGn/A7XWffhCovAQwhN1sW925Kob3J3/x9CfJZWjEVERMQvVDU0c/3TuXj2DODMqDCstwWDF0wIuMJb54YPJzXny5EJkzyckF2LWVCTwSOfhfPxw5/z1NU59I2L7MY/ifgqFWMRERHxeZX1zVzy6FIKKxq479JLCEuY3LpCHJX4/d5Ml5qDSc1hBhA3pIyb563m8seW8cKPJ9InRuU42BlrrdMZyM7Otrm5uU7HEBERER9U1+Rm5mPL2Lqvln9ffRzHZ/butO+dW1DJVU+uICU+iudnT6R3z4hO+97im4wxq6y12Ye7TjPGIiIi4rOa3B5ueGYVG/fW8K/Lx3VqKQbITk/gyR8dR9GBBn707xUcbPZ06vcX/6JiLCIiIj7rjvmbWZJXzl8uGM2pw5O75DEmZiTy0MxxbNpbw+2vrMMXfpsuzlAxFhEREZ/0cm4Rz6/YzY0nZXLh+AFd+linDEvml9OH8fb6Eh76dGeXPpb4LhVjERER8Tmb9lbz+zc2cnxmIredNqRbHvOGEzM4Z0x/7v1gG0t2lHfLY4pvUTEWERERn9LQ7Obmeavp1SOcf1w2llBX99QVYwx3nz+ajN7R3PbyWg7UN3fL44rvOOrfNGPMk8aY/caYjYdc9ldjzFZjzHpjzOvGmPhDrvuNMSbPGLPNGDO9i3KLiIhIgPrLe1spqGjggUvGdPsuEVHhLv5+6Vgq65v59WvrNW8cZL7Lj2BPAad/7bIFwEhr7WhgO/AbAGPMcOBSYETbfR4yxrg6La2IiIgEtM/zypm7tJCrJ6czKTPRkQwjU+K4ffpQ3t9Uyku5RY5kEGcctRhbaxcBlV+77ANr7RdnKC4DvpiIPwd4wVrbZK3dBeQBOoRcREREjqquyc3tr6xnUO9ofjl9mKNZrpuSwcSMBP70zhb21zQ6miXQ7Cyr48KHP2dDcbXTUb6hM4Z2rgHea/s8BTj0R6vitsu+wRgz2xiTa4zJLSsr64QYIiIi4s8eWLCdvdUHufeiY4kKd/YXziEhhj+fP5omt5c73trkaJZA83leObmFB4iN8r0DmDtUjI0xvwPcwLwvLjrMzQ47nGOtnWOtzbbWZiclJXUkhoiIiPi5rftqeOrzAi7LSWP8wF5OxwFgUO9obp2Wxbsb9rFgc6nTcQLG5zsrSImPIi2hh9NRvqHdxdgYMwv4ITDT/t9kejGQesjNBgB72x9PREREAp21lj+8sZG4qDB+OX2o03G+4vqpGQxNjuG/3txIfZP76HeQb+X1WpbmVzAxIxFjDree6qx2FWNjzOnAr4AZ1tqGQ66aD1xqjIkwxgwCsoAVHY8pIiIigerV1XtYWXCAX58+jPge4U7H+Yrw0BDuOn8kJdWNPLJQB3901NZ9tVQ1tHC8Q2+sPJrvsl3b88BSYKgxptgYcy3wIBADLDDGrDXGPAJgrd0EvARsBv4D3Gyt1aHjIiIiclgHdy6l9J27uLRfSZefbtde4wcmcO6Y/jy6KJ+iyoaj30GO6POdrQenOLXjyNEcderZWnvZYS5+4ltufydwZ0dCiYiISBAoWkHovHP4saeFkJpXCdkzGlJ9czOrX50xjPc3lfLn97bw0MzxTsfxW5/llZPRO5r+8VFORzksnXwnIiIijqjb9gnG00Ko8RLibYGCxU5HOqJ+cVHcdFIm727Yx9KdFU7H8UvNbi/Ld1UyeXBvp6MckYqxiIiIOOKZklRaCMUaF7jCIX2q05G+1fUnZJASH8Xd723RiXjtsLaoioZmj4qxiIiIyKHy9tfy181xPDfsn5hTfgez5vvsGMUXIsNc3HpqFuuKq3l/0z6n4/idJTvKCDG+O18MKsYiIiLigAc+3EFkmItzzz4Ppt7m86X4C+ePTSEzKZp7P9iO2+N1Oo5fWZJXzugB8cRFhTkd5YhUjEVERKRbbSmp4Z31JVw9OZ3EnhFOx/leQl0h3D59KHn763htzR6n4/iNmsYW1hVXM8WHxyhAxVhERES62QMLthMTEcr1UzOcjtIu00f05dgBcfz9wx00ubUr7XexPL8Sj9f69HwxqBiLiIhIN9pQXM0Hm0u5bmqGzx3m8V0ZY/jl6cPYU3WQect2Ox3HL3yWV05UmItxA+OdjvKtVIxFRESk2/z9ox3ERYVxzZR0p6N0yOTBvZk8OJEHP8mjTkdFH9XiHWXkDEogItTldJRvpWIsIiIi3WLbvlo+3FLK1ZPTiYn03TdgfVe3Tx9GZX0zzy4rdDqKTyupPsjOsnqfny8GFWMRERHpJg9/mkePcBc/Oj7d6SidYkxqPCcMSeKxRfk0NGvV+Eg+y2s9EMXX54tBxVhERES6we6KBt5aX8LMCWl+O1t8OLdOG0xFfTPPLdes8ZF8lldO757hDOsb43SUo1IxFhERkS736KKduIzhOj/dieJIxg9M4PjMRB5dlE9ji3ao+DprLUvyyjk+szchIcbpOEelYiwiIiJdan9NIy+vKuaC8QNIjo10Ok6nu2VaFmW1Tby4ssjpKD5nW2ktZbVNfjFfDCrGIiIi0sWeWLILt8fLDScG1mrxFyZmJJKTnsDDn+7UvsZf8+m2MgBOGJLkcJLvRsVYREREukx1QwvPLivkh6P7MzAx2uk4XeaWaVnsq2nklVXFTkfxKZ9s3c8x/WLpG+cfvylQMRYREZEu89yK3dQ3e7jhxEyno3SpyYMTGZsWz8Of7sTt8TodxyfUNrawqvAAJw31j9ViUDEWERGRLtLs9vLU57uYMrg3w/vHOh2nSxljuOmkwRQfOMg7G0qcjuMTPssrx+21nOQnYxSgYiwiIiJd5N0NJZTWNHHtlEFOR+kW04b1IatPTx5ZmI+11uk4jvtkaxkxkaGMG9jL6SjfmYqxiIiIdDprLY8vySczKZoT/WjFsCNCQgyzT8hgS0kNC7eXOR3HUdZaPt2+n6lZvQlz+U/d9J+kIiIi4jdW7Kpk454arp2S4Rf713aWc8ak0C8ukkcW7nQ6iqO2lNRSWtPESUP7OB3le1ExFhERkU73+JJd9OoRxvnjUpyO0q3CQ0O4dsogluVXsraoyuk4jvl0+34Av5ovBhVjERER6WS7yuv5cEspV0wcSGSYy+k43e7SnDRiI0N55NPgXTX+dFsZw/vF0sfPDnRRMRYREZFO9e/PdhEWEsKVkwY6HcURPSNCuWpSOu9v3sfOsjqn43S76oOt27SdPMy/VotBxVhEREQ6UU1jC6+sKubsY/vTJ8a/Vgs7048mpxPuCmHOwnyno3S7z/LK8Xit380Xg4qxiIiIdKJXVxXT0OzhR8enOx3FUb17RnBxdiqvr9lDaU2j03G61Sdb9xMbGcrY1Hino3xvKsYiIiLSKbxeyzNLCxmbFs+oAXFOx3Hc9VMzcHu9PLlkl9NRuo3Xa/lkWxlThyQR6kfbtH3B/xKLiIiIT1qSV05+eT1XBels8delJfbgrNH9mbd8N9UHW5yO0y3WFFVRXtfED4YnOx2lXVSMRUREpFM8vbSQxOhwzhzVz+koPuPHJ2RQ1+Rm3vJCp6N0iw827yM0xPjlfDGoGIuIiEgnKKps4KOtpVyak0pEaPBt0XYkI1PimJrVmyeXFNDY4nE6TpdbsLmUiRmJxEWFOR2lXVSMRUREpMPmLd+NAWZO0BjF1914YibldU28tnqP01G6VN7+OvLL6vnBCP8cowAVYxEREemgxhYPL67czWnDk+kfH+V0HJ8zKTOR0QPimLNoJx6vdTpOl1mwuRSAU49RMRYREZEg9fb6Eg40tDBrUrrTUXySMYYbTsykoKKB9zftczpOlylc9wn/nfA+/Ws3OB2l3VSMRUREpEOeXlrA4D49mZSZ6HQUnzV9RF8G9Y7m4U93Ym3grRpXblvMHyt/w5UNz8DcGVC0wulI7aJiLCIiIu22tqiK9cXVXDVpIMYYp+P4LFeI4fqpGWzYU83nOyucjtPpCnM/IAw3IXjB0wwFi52O1C4qxiIiItJuT39eQHS4i/PGpjgdxeedPy6FpJgIHlm40+kone71A4Nwm1CscYErHNKnOh2pXVSMRUREpF0q6pp4e30JF4wfQEykf27P1Z0iw1xcM3kQi3eUs3FPtdNxOs3+2kae3ZPM66MexpzyO5g1H1JznI7VLirGIiIi0i4vrCyi2ePlyonaou27mjkxjZiI0IBaNX5/4z68FsZPmQ5Tb/PbUgwqxiIiItIObo+X55bv5vjMRLKSY5yO4zdiI8O4fGIa724oobCi3uk4neLt9SVk9enJkAD4e3DUYmyMedIYs98Ys/GQyxKMMQuMMTvaPvY65LrfGGPyjDHbjDHTuyq4iIiIOOejrfvZU3WQqyZptfj7unbyIEJDQnhscb7TUTpsf00jKwoqOWt0YBwD/l1WjJ8CTv/aZb8GPrLWZgEftX2NMWY4cCkwou0+DxljdC6kiIhIgHlmaSH94iL9+jAHp/SJjeT8cSm8nFtMWW2T03E65L2N+7AWzhoVJMXYWrsIqPzaxecAc9s+nwuce8jlL1hrm6y1u4A8wH8HTUREROQb8vbXsSSvnJkT0gh1aSqzPWafkEGzx8tTn+9yOkqHvLVuL0OTYwJmnKa9f5uTrbUlAG0f+7RdngIUHXK74rbLvsEYM9sYk2uMyS0rK2tnDBEREeluzy4rJMxluOS4NKej+K2MpJ6cPqIvzywtpLaxxek47VJYUU9u4QHOGxc4W/V19o95h9vZ+7DHu1hr51hrs6212UlJSZ0cQ0RERLpCfZObV1cVc+aofiTFRDgdx6/ddNJgahrdPL200Oko7fLq6j0YA+eOUTEuNcb0A2j7uL/t8mIg9ZDbDQD2tj+eiIiI+JI31+6ltsmtLdo6wagBcZwyrA+PLc6nrsntdJzvxeu1vLa6mCmDe9M3LtLpOJ2mvcV4PjCr7fNZwJuHXH6pMSbCGDMIyAL887BsERER+QprLU8vLeCYfrGMH9jr6HeQo7plWhZVDS0842erxrmFByg+cJDzA2iMAr7bdm3PA0uBocaYYmPMtcDdwGnGmB3AaW1fY63dBLwEbAb+A9xsrfV0VXgRERHpPqsKD7B1Xy1XThyIMYebnpTva0xqPCcOSeKxxfk0NPvPqvFrq4vpEe5i+oi+TkfpVN9lV4rLrLX9rLVh1toB1tonrLUV1tpp1tqsto+Vh9z+TmttprV2qLX2va6NLyIiIt3lmWWFxESEcu7Y/k5HCSi3TMuisr6ZZ5f5x6pxY4uHd9aXcMbIfvQID3U6TqfSHisiIiJyVGW1Tby7oYQLxg8IuDLktPEDezFlcG/mLMrnYLPv/6L97fUl1Da5uXD8AKejdDoVYxERETmql3KLaPFYrtRJd13i1lOzKK9rZt5y3181fnZZIZlJ0UzMSHA6SqdTMRYREZFv5fZ4mbeskMmDE8lM6ul0nIB0XHoCx2cm8vCnO316h4qNe6pZW1TFzAmBOWeuYiwiIiLf6uOt+9lb3ciVE9OdjhLQfnn6MCrqm3lsUb7TUY5o3vLdRIaFcEEAjlGAirGIiIgcxTPLCukXF8mpx/Q5+o2l3cakxnPmqL48vjifstomp+N8Q21jC2+u3cOMY/sTFxXmdJwuoWIsIiIiR5RfVsfiHeVcnpNGqEu1oav9vx8MpdHt5cGPdzgd5RteX7OHhmYPMycE7py5/oaLiIjIET27bDdhLsMlOalHv7F0WEZSTy45LpXnVuymsKLe6Thf8ngtTyzZxbGp8RybGu90nC6jYiwiIiKH1dDs5uVVRZw+sh99YgLn2F9f97NpWYSGhHDfB9udjvKl9zaWUFjRwI0nZjgdpUupGIuIiMhhvbVuL7WNbq6cGLi/OvdFfWIjuWZKOvPX7WXjnmqn42Ct5ZGFO8noHc1pwwPrpLuvUzEWERGRb7DW8vTSQob1jeG49F5Oxwk6Pz4xk8TocP44fxNer3U0y2d5FWzcU8PsEzJwhQTeFm2HUjEWERGRb9i+6iNOLH2Gnw2tCsj9an1dbGQYvzpjGKsKD/D6mj2OZnlk4U6SYiI4d2yKozm6g4qxiIiIfFXRCga9czm/CH2Z6atmQ9EKpxMFpQvHDWBMajx/fm8rNY0tjmRYnl/BkrxyrpsyiMgwlyMZupOKsYiIiHxF7bZPCPG2EGq8GE8zFCx2OlJQCgkx/O85I6mob+KBBd3/RjxrLXf/Zyt9YyO5alJ6tz++E1SMRURE5CvmV2XQQijWuMAVDulTnY4UtEYNiGPmhDTmfl7AqsID3frY72/ax5rdVfz8tCyiwgN/tRhUjEVEROQQjS0e7tsSz99S7sWc8juYNR9Sc5yOFdR+dfow+sVFcfsr62hs8XTLY7oLl1E0/07OTijmgnGBefzz4YQ6HUBERER8x/y1e6msb+bEaWdBZm+n4wgQExnG3ReM4sonVvDAh9v5zRnHdO0DFq2AuTO42tOC8YTj2js2aH440oqxiIiIAK0zpU9+tothfWOYlJHodBw5xNSsJC7LSeOxRfms2FXZpY9VveVj8LTOmId4W4JqxlzFWERERABYml9Bj9JV3JP8IaZ4pdNx5Gt+d9YxDEyM5ifPraastqlLHsNay9939v1yxtwE2Yy5irGIiIgA8OmH7/BcxF2M2v4gzJ2hbdp8TM+IUB6+Yhw1jS3c8vwa3B5vpz/G62v28GRhEh/nPBaUM+YqxiIiIkJhRT2hRZ8RjhtjPaBt2nzSsL6x/O85I1maX8Ff/rO1U7/37ooG7pi/ifEDe3H6GefA1NuCqhSD3nwnIiIiwFOfF7DRDseEhoOnRdu0+bCLslNZX1zNY4t3kRQTwewTMjv8PQ82e7jpuVUA/O2SMQF/9PORqBiLiIgEudrGFl7OLWbaqBMxk49vXSlOnxp0q4X+5I4ZI6iob+Kud7cS3yOci7NT2/29PF7LrS+sYdPeGh6/KpvUhB6dmNS/qBiLiIgEuZdyi6lrcnP15EGQGq9C7AdcIYYHLhlDzcFcfv3qeqy1XHJc2vf+Ph6v5fZX1vHB5lL+ePZwph2T3AVp/YdmjEVERIJYi8fLE4vzyUlPYExqvNNx5HuICHUx56rxTMlK4levbuDP7235Xm/Ia2h2c/O81by2eg8/P3VI6w9GQU7FWEREJIi9tW4ve6sbueGkDKejSDv0CA/l8auymTkhjUcX5nPhI0vZuq/mqPdbV1TFOQ9+xgeb9/GHHw7n1lOzuiGt79MohYiISJCy1vLownyGJsdw8tA+TseRdgoPDeHO80YxISORP765kTP+vpizRvXj0uPSOG5QLyJCXQA0u73kFlYyb/lu3t1QQnJMJHOvyWFqVpLDfwLfoWIsIiISpD7dVsa20lruu+hYjAnOXQgCyYxj+zN1cG8eWbST55bv5u31JYS7QkiOiyDEGEqqG2l2e+kZEcpNJ2Uy+4RM4qLCnI7tU1SMRUREgtTDC3fSPy6SGWP6Ox1FOkmv6HB+c8Yx/PzUISzaXsbq3VWUVB8EYPqISMalxXPikD5EhbscTuqbVIxFRKT7FK3QVmA+YvXuA6zYVckffjicMJfechRoIsNc/GBEX34woq/TUfyKirGIiHSPohWtxwx7mlsPj5g1n4PNHpp3LqQyaQIHk8cTExlKfI8wYiL1692u9ujCncRFhXHpce3f/1Yk0KgYi4hI9yhYjPU0Y6wHj7uJ+U/dy+nuT4jGTTihzGz+LavtEACSYyMY2jeW4wb24uRhfRjRP1YzsJ1oe2ktH2wu5ScnDyY6QlVA5At6NYiISJeqa3Lz6qpiVi3tyV+8LsKwuE0oSTERRFS5CcFLCB7+PK6ademjKa9vYkdpHVtKarhvwXbuW7CdfnGRXDh+ABdnpwb1qVyd5R8f7aBHmItrtG+tyFeoGIuISJeobWzh0YX5PPV5AXVNbo5NHcknIx9ncuhW4o45mSkAcxeAp5kQVzhDJ57J0NSv/lq/rLaJRdvLeGv9Xh78JI8HP8nj9BF9uWVaFsf0i3Xkz+XvtpfW8s6GEm46KZNe0eFOxxHxKSrGIiLSqbxey/Mrd3P/B9upqG/mrNH9uG7KIMam9Wq7xTn/d+NZ87/1zXhJMRFcMH4AF4wfwJ6qg8xbVsjTSwt5b+M+zhrVj1+fMUwryN/TF6vF103RgR4iX2estU5nIDs72+bm5jodQ0REOmh3RQO3v7KO5bsqmTAogd+ddQyjB8R36mNUN7TwxJJ8Hlu8C6+13HhSJjecmElkmEu7XhzF9tJapv9tETedlMnt04c5HUfEEcaYVdba7MNdpxVjERHpFK+sKua/3tyIyxjuuXA0F40f0CVvmIvrEcYvfjCUS3PSuPPdLfztwx28s76Eh090M/i9mV/Z9ULl+Kv+8dEOosNDtVoscgTauFBERDqkye3ht69v4P+9vI5jB8Tz/s9P4OLs1C7fRaJ/fBT/unwcT119HLWNbl5//UW87iawHnA3wrrnu/Tx/c0Xs8U/Oj5ds8UiR6BiLCIi7VZZ38xlc5bx3PLd3HBiJs9cm0P/+KhuzXDS0D68//MTCMs8gRYbggUsFlY/DW//vHW8Qvj7h62rxddO0U4UIkfSoWJsjPm5MWaTMWajMeZ5Y0ykMSbBGLPAGLOj7WOvo38nERHxN7srGrjg4c/ZtLeGh2aO49dnDCPUoRPU4qLC+NnVV1A08Hy81mAA63VD7r9bDxUJ8nK8rqiKdzaUcM2UQVotFvkW7f4XzBiTAtwCZFtrRwIu4FLg18BH1tos4KO2r0VEJIBsKanh/Ic/40BDM89dP4EzR/VzOhIAg0+7HhMagQcDFsC2zhwXLHY6mmOstdz17hZ69wxn9gmaLRb5Nh390T4UiDLGhAI9gL207sMzt+36ucC5HXwMERHxIZv2VnP5Y8sIc4Xwyg3HM35ggtOR/k9qDiE/egv3mFm4TRhuG0ILobjTJjudzDGfbNvP8l2V3DIti5465U7kW7W7GFtr9wD3AruBEqDaWvsBkGytLWm7TQnQ53D3N8bMNsbkGmNyy8rK2htDRES60cY91cx8fDlRYS5emD2RwX16Oh3pm1JziDj374Rc/Q6LBszmksbfcP3HIdQ1uZ1O1u08Xstf3ttGemIPLstJczqOiM/ryChFL1pXhwcB/YFoY8wV3/X+1to51tpsa212UlJSe2OIiEg3ydtfx1VPriA6PJQXZk9iYGK005G+lWvgBE65/i9ccO75LNpRzoUPf86+6kanY3WrF1cWsa20ltunDyPMoflvEX/SkVfJqcAua22ZtbYFeA04Hig1xvQDaPu4v+MxRUTESXurDnLVE8sJMTDvugmkJfrPaXMzJwzk3z86jqLK1jcL7iyrczpSt6huaOGv729lwqAEzhzV1+k4In6hI8V4NzDRGNPDtG5WOQ3YAswHZrXdZhbwZsciioiIk6oamrnqyRXUNrp56uoc0nv79krx4ZwwJIkXZk+iscXDRY8sZX1xldORutwDH26n+mALd8wY0eV7SosEio7MGC8HXgFWAxvavtcc4G7gNGPMDuC0tq9FRMQPtXi83DRvNbsrGphzVTYjU+KcjtRuowbE8cqNx9Mj3MVlc5axZEe505G6zNZ9NTyzrJCZEwZyTL9Yp+OI+I0ODRxZa/9orR1mrR1prb3SWttkra2w1k6z1ma1fazsrLAiItJ9rLX815ub+HxnBXedP4pJmYlOR+qwQb2jee3G40lN6MHVT63g7fV7nY7U6bxeyx/e2EhMZCi/OG2I03FE/Iom8UVE5LCe+ryA51e0nmh34fgBTsfpNH1iI3nxx5MYm9qLnz6/hmeWFTodqVM9t2I3KwsO8Lszj9FhHiLfk4qxiIh8w6fb9vO/b2/mB8OT+eX0oU7H6XRxUWE8fW0O04Yl84c3NvLPj3ZgrXU6Voftq27k7ve2MmVw74D6YUaku6gYi4jIVxRW1PPT59cwtG8sD1wyhpCQwHzjVmSYi0euGMf541K4b8F2/uftzXi9/luOrbX8/o2NuL1e7jpvlN5wJ9IOOgJHRES+1Nji4cZnVxNiDHOuHE90gJ+UFuoK4d4Lj6VXj3CeWLKLqoYW7rlwtF/u+fvKqmI+3FLK7848xq+20xPxJYH9L56IiHwvd8zfxOaSGp6YlU1qQnCUq5AQw+/POoaE6HD++v42qg+28K/LxxEV7nI62ndWUF7PH+dvYmJGAtdMGeR0HBG/5X8/EouISJd4ObeIF1YWcdNJmUw7JtnpON3KGMPNJw/mzvNG8sm2/Vz15HKqD7Y4Hes7afF4ufXFtYSGGO6/eAyuAB19EekOKsYiIsLWfTX84c2NTMpIDOotvmZOGMg/LxvL2qIqLnl0Kftrff8I6Xvf38a6oir+fP5o+sdHOR1HxK+pGIuIBLnGFg8/fW4NMZFh/OOysYT64XxtZ/rh6P48Mes4elWs5fV/3EbJxoVORzqi+ev28uiifGZOSOOs0f2cjiPi9zRjLCIS5O56dws79tfxzLU5JMVEOB3HJ5wQtYsp4XfibWnG/cpLbGl4nmNyTnU61lds2lvNL19ZR/bAXvzx7BFOxxEJCMG9LCAiEuQ+2lLK00sLuW7KIKZmJTkdx3cULCbE20IoXkJx8+5bL/P6mmKnU31pX3Ujs59eRXxUOA9dMY7wUP3nXKQz6JUkIhKk9tc28stX1jOsbwy3nx54h3h0SPpUcIWDceEKDedAnxx+/uI67vtgm+N7HR+ob+bKJ1rfHPj4rGz6xEQ6mkckkGiUQkQkCFlruf3l9dQ1uXlh9kQiQv1na7JukZoDs+ZDwWJM+lT+q182zW9s4J8f57FhTzX3XzyGBAeOW65vcnP1UysprGxg7tU5jEyJ6/YMIoFMK8YiIkFo7ucFLNxexu/POoas5Bin4/im1ByYehuk5hAeGsJfLhjN/547ks/zKjjrH4vJLajs1jiV9c1c/vhy1hdX8c/LxjIpM7FbH18kGKgYi4gEmW37arnrva2cMqwPV0wc6HQcv2GM4cqJA3ntpuMJc4VwyZxlPPRpHp5uGK0oPtDAhY98ztaSGh69MpvpI/p2+WOKBCMVYxGRINLi8XLby2uJiQjlngtHY4wOg/i+RqbE8fYtU5g+Ipl7/rON8x/+nO2ltV32eEt2lHPuvz6jrLaJZ66dwGnDg+vwFZHupGIsIhJEHl24k417avjTuSPp3VNbs7VXbGQY/7p8HP+4bCxFlQ2c9Y/F3PnOZqobOu+0vGa3l3vf38aVTy6nV49wXrvxeHIGJXTa9xeRb9Kb70REgsTWfTX8/aMd/HB0P84YpcMgOsoYw4xj+zM5M5G739vK40t28fKqYm48MZPLJqQRGxnWru9rreWTbfv509tbyC+v5+LsAfz3jJFEhesNkiJdzVjr7LYzANnZ2TY3N9fpGCIiAavF4+W8hz6jpKqRD35+AolaLe50m/fW8Of3trB4Rzk9I0K5ODuV88amMDIl9qsjK0UroGBx65ZwqTlfXtzk9vCfjft4dlkhKwsOkJEUzR/OGs7Jw/o48KcRCVzGmFXW2uzDXacVYxGRIPDFCMXDM8epFHeR4f1jeebaCWworubxJfk8vbSAJz/bxYBeUUzN6s2I/nGMC9nBsA9mYjwtWFcYG6c9wxo7hOW7Kvh8ZwVVDS2kJfTgjrOHM3PiQMKC/Hhuke6mFWMRkQC3dV8NZ/9zCdNH9OXBy8c5HSdoHKhvZsGWUt7fuI/cwgNUH2zhJteb/CL0ZUKNF7cN4X73RTzkOYeU+CgmZCRwzpgUpg7uTUiI3hQp0lW0YiwiEqRaPF7+38vriI0M479njHA6TlDpFR3OxdmpXJydirWW4gMHKdsSivn4TbyeFkxoGGeccRGXD53MgF49nI4rIqgYi4gEtEc+1QiFLzDGkJrQg9TJ0yHtrS9njEcdMmMsIs5TMRYRCVBb99Xwj4+1C4XPSc35ypvuRMR3aKpfRCQAaYRCROT704qxiEgA0giFiMj3pxVjEZEAs6VEIxQiIu2hYiwiEkA0QiEi0n4apRARCSCPfLqTTXs1QiEi0h5aMRYRCRAaoRAR6RgVYxGRAKARChGRjtMohYhIAHhYIxQiIh2mFWMRET+3eW8N//x4B2cf218jFCIiHaBiLCLix5rdrSMUcVEaoRAR6SiNUoiI+LF/fZLH5pIaHrliPAnR4U7HERHxa1oxFhHxUxv3VPOvT/I4Z0x/Th/Z1+k4IiJ+T8VYRMQPfTFC0Ss6nDvO1giFiEhn0CiFiIgfevDjHWzdV8tjV2XTSyMUIiKdQivGIiJ+ZkNxNf/6dCfnj03htOHJTscREQkYHSrGxph4Y8wrxpitxpgtxphJxpgEY8wCY8yOto+9OiusiEiwa3J7uO3ltSRGh/NHjVCIiHSqjq4Y/x34j7V2GHAssAX4NfCRtTYL+KjtaxER6QQPLNjB9tI67r5gFHE9wpyOIyISUNpdjI0xscAJwBMA1tpma20VcA4wt+1mc4FzOxZRREQAluVX8OiinVx6XCqnDNMIhYhIZ+vIinEGUAb82xizxhjzuDEmGki21pYAtH3sc7g7G2NmG2NyjTG5ZWVlHYghIhL4qg+2cNtL6xiY0IM//HC403FERAJSR4pxKDAOeNhaOxao53uMTVhr51hrs6212UlJSR2IISIS+P7rzY3sq2nkgUvGEB2hDYVERLpCR4pxMVBsrV3e9vUrtBblUmNMP4C2j/s7FlFEJLi9uXYPb67dyy2nZDE2Te9nFhHpKu0uxtbafUCRMWZo20XTgM3AfGBW22WzgDc7lFBEJIjtqTrI79/YyLi0eG4+OdPpOCIiAa2jv4/7KTDPGBMO5ANX01q2XzLGXAvsBi7q4GOIiAQlj9fyixfX4vVaHrhkDKEubT0vItKVOlSMrbVrgezDXDWtI99XRETgkYU7Wb6rknsuHM3AxGin44iIBDwtP4iI+KDl+RXc98E2Zhzbn4vGD3A6johIUFAxFhHxMeV1TdzywhoGJkZz1/mjMMY4HUlEJCioGIuI+BCv1/LzF9dyoKGFf10+jp7amk1EpNuoGIuI+JCHF+5k8Y5y7jh7BMP7xzodR0QkqKgYi4j4iEXby76cK74sJ9XpOCIiQUfFWETEBxRW1PPT59cwJDmGP2uuWETEESrGIiIOq29yc/3TuRgDc67M1pHPIiIOUTEWEXGQ12u57aV15O2v48HLxpGW2MPpSCIiQUvFWETEQf/4eAf/2bSP3555DFOyejsdR0QkqKkYi4g45OXcIv724Q4uHD+Aa6cMcjqOiEjQUzEWEXHAwu1l/Oa1DUzN6s1d5+nNdiIivkDFWESkm23cU81Nz64iKzmGh2aOIzxU/xSLiPgC/WssItKNdlc0cPVTK4mLCuOpq48jJjLM6UgiItJGxVhEpJsUVTZw2WPLaHZ7eeqaHJJjI52OJCIih1AxFhHpBsUHGrh0zjJqG1uYd90EhiTHOB1JRES+RrvIi4h0sb1VB7nssWXUNLbw3HUTGZkS53QkERE5DK0Yi4h0od0VrSvFVfUtPHvtBEYNUCkWEfFVWjEWEekim/ZWM+vJlbi9Xp6+NodjU+OdjiQiIt9CxVhEpAss3lHGjc+uJjYylBdmT2JwH80Ui4j4OhVjEZFOZK3lyc8KuPOdzWT1ieGpa46jX1yU07FEROQ7UDEWEWcUrYCCxZA+FVJznE7TKRqa3fzhjU28urqYHwxP5v5LxtAzQv/Mioj4C/2LLSJHZa1lb3UjW/bWsHVfDUWVBymtbaS0pomy2iaa3R48XovbazEGYiPDiI0KIzYylOTYSNISepCa0IOBiT0Y2jeGPlXrYe4M8DSDKxxmzff7crylpIafPLea/PJ6bp2Wxa3TsggJ0THPIiL+RMVYRA6rsr6Zj7fuZ8mOMpbvqqSkuvHL65JiIugbG0lKfBRjUuOJDAshNMTgCgnBay01B1uoaWyh+mAL20tr+Wjrfprd3i/vf3uPd7jB24QLL15PMy15C4nw02Lc4vHy+OJdPPDhduKjwph37QSOH9zb6VgiItIOKsYi8qXaxhbe3VDCa6v3sLKgEq+F3j0jmJCRQE56AiNTYhnaN/Z7jwd4vZbS2kZ2ldezpaSWurwDtBS8jLVuWqyLKxaE0rxxCcelJzAhI4GJgxKJ6+H7RyWvLariN69tYEtJDdNHJHPXeaNI7BnhdCwREWknY611OgPZ2dk2NzfX6RgiQWtnWR2PLcrnjbV7aGzxkpEUzQ9H9eO04X0ZmRKLMV0wElC0gua8hWyOGM3HdemsKKhkze4qmtxejIER/WOZlJHIpMxEjktPICbSd4pyUWUD97y/jbfW7aVPTAT/c85ITh/Z1+lYIiLyHRhjVllrsw97nYqxSPBaVVjJIwvz+XBLKeGuEM4bm8LFx6UyNjW+a8rwUTS7vawrrmLpzgo+31nO6t1VNLu9uEIMo1LiOD6ztShnD0wgKtzV7fny9tcyZ1E+r6/ZgyvEcN2UDH58YoZPlXYREfl2KsYi8hXb9tXy5/e28Om2MuJ7hHHVpHSumjSQ3j42BtDY4mF14QGW5lfw+c4K1hVV4fZawlyGsam9mJiZyPGZiYxNiycitGuKcmOLhw82l/JybhGLd5QTGRbCReNTufnkwfSNi+ySxxQRka6jYiwiAOyvaeSBD7fz4soioiNC+cnJg7ly0kB6hPvH2w3qm9ysLKhkaX4FS3dWsHFPNV4LEaEhjB/Yi+MzExmX1oshfWPaXfKttRRWNLBiV2Xrmw/zyqlrcpMSH8XF2alcMTFNc8QiIn5MxVgkyHm9lnkrdvOX97bS5PZw5cR0fnrKYHpFhzsdrUOqD7awYlclS3dWsDS/gi0lNV9elxAdTlafnqT0iqJPTCTJsREkRIcT5grBFWIIcxmaWrxUH2yhsqGZosoGCisa2LS3huqDLQD0i4vkpKF9OHt0PyZmJGr7NRGRAPBtxdg/lolEpN12ltXxm1c3sKKgksmDE/nTuaMY1Dva6VidIi4qjNOGJ3Pa8GSgdYu5zXtr2F5ay/bSWvL217E8v5L9tY20eL59ESAhOpzUhB6cMbIvY1LjGZvWiyHJPR2ZtRYREWeoGIsEKK/X8sSSXfz1g21EhoZwz4WjuWj8gIAuegnR4UzJ6s2UrK/uI2yt5UBDC5X1zW0HkXhxeyzhoSHERoURHxVGtE6oExEJevovgUgAKqtt4raX17Foexk/GJ7Mn84bSZ+Y4H2jmDGGhOhwEvx8dERERLqWirFIgFm8o4yfv7iO2sYW/nTuSGZOSAvoVWIREZHOomIsEiC8XsuDn+Rx/4LtZPXpybzrJjC0b4zTsURERPyGirFIAKhrcnPbS2t5f1Mp549N4c7zRjlyAIaIiIg/UzEW8XMF5fXMfiaXnWX1/OGHw7lmcrpGJ0RERNpBxVjEj60sqOT6p1v3AH/6mhwmD+59lHuIiIjIkagYi/ipt9fv5RcvrWNAryie+lEOaYk9nI4kIiLi10I6+g2MMS5jzBpjzNttXycYYxYYY3a0fezV8Zgi8gVrLXMW7eQnz63h2AFxvHbj8SrFIiIinaDDxRi4FdhyyNe/Bj6y1mYBH7V9LSKdwOu1/M/bm7nr3a2cNbofz1w7gfge2ptXRESkM3SoGBtjBgBnAY8fcvE5wNy2z+cC53bkMUSkldvj5fZX1vPvzwq4ZvIg/nnpWCLDtPOEiIhIZ+nojPHfgF8Ch26WmmytLQGw1pYYY/oc7o7GmNnAbIC0tLQOxhAJbE1uD7c8v4b3N5Xyi9OG8NNTBmvnCRERkU7W7hVjY8wPgf3W2lXtub+1do61Nttam52UlNTeGCIBr6HZzXVzc3l/Uyl/PHs4t0zLUikWERHpAh1ZMZ4MzDDGnAlEArHGmGeBUmNMv7bV4n7A/s4IKhKMqg+2cPW/V7C2qIp7LzqWC8cPcDqSiIhIwGr3irG19jfW2gHW2nTgUuBja+0VwHxgVtvNZgFvdjilSBCqaWzhqieWs2FPNQ/NHKdSLCIi0sW6Yh/ju4GXjDHXAruBi7rgMUQCWm1jC7OeXMHmkhoenjmeU4cnOx1JREQk4HVKMbbWfgp82vZ5BTCtM76vSDCqb3Jz9b9XsqG4mn/NHKdSLCIi0k108p2ID2lodnP1UytZU1TFPy8by/QRfZ2OJCIiEjQ644APEekEB5s9XPtULrkFlTxwyRjOHNXP6UgiIiJBRSvGIj6gscXD7GdyWbargvsvPpYZx/Z3OpKIiEjQ0YqxiMOa3B5+/MwqluSVc88FozlvrHafEBERcYJWjEWcUrQCd/4i7t2SxMKC3tx9/iguyk51OpWIiEjQUjEWcULRCuzcGRh3E7+woYw/8QlOz9HR6CIiIk5SMRZxgCd/EbibcOElwng4vecOpyOJiIgEPc0Yi3Qzt8fL3/KSabaheHEREhoO6VOdjiUiIhL0tGIs0l2KVuDdtZgHdybzzx0JZB7/KOf22tVailNznE4nIiIS9FSMRbpD20yxdTfxYxvKgImPcu6M851OJSIiIodQMRbpBt5di7GHzBRfmLjL6UgiIiLyNZoxFuli1loe3d1fM8UiIiI+TivGIl3IWssf52/i6Y2x9Bz/EFck74ZBmikWERHxRSrGIl3EWsv/vL2Zp5cWcv3UQVxx5jEYY5yOJSIiIkegUQqRLmCt5a53t/Dvzwq4enI6v1UpFhER8XlaMRbpZNZann7pZcLWf8jvRp/CdT8crlIsIiLiB1SMRTrRF6X44s03Ex7mJiR/PqY4QzPFIiIifkCjFCKdxFrLn9/bSun6Dwk3blx4MZ5mKFjsdDQRERH5DlSMRTqBtZa739vKnEX59BpxCiGhEWBc4NLWbCIiIv5CoxQiHfRFKX50UT5XThzIdeeMaB2fKFis455FRET8iIqxSAd8sfvEY4t3ceXEgfzPOSNa32iXmqNCLCIi4mdUjEXayeO1/P6NjTy/YjezJg3kjhkjtPuEiIiIH1MxFmkHt8fL/3t5HW+s3ctNJ2Vy+/ShKsUiIiJ+TsVY5Htqcnv46XNr+GBzKbdPH8rNJw92OpKIiIh0AhVjke+hodnNj59ZxeId5dxx9nB+NHmQ05FERESkk6gYi3xHFXVNXDs3l/XFVdxz4Wguzk51OpKIiIh0IhVjke+gsKKeWU+uoKS6kYdmjuf0kX2djiQiIiKdTMVY5CjWFlVx7VMr8VrLc9dPZPzAXk5HEhERkS6gYizyLT7aUsrNz60mKSaCuVfnkJHU0+lIIiIi0kVUjEUOw1rLu+++yeal73J24nH88rqrSIqJcDqWiIiIdCEVY5GvaXJ7ePy5F7lm562cHuompH4+pupYiNFJdiIiIoEsxOkAIr6krLaJyx9bTv22T4kwblx4MZ5mKFjsdDQRERHpYirGIm1yCyo5+59L2Ly3hsmnnktIaAQYF7jCIX2q0/FERESki2mUQoKe12uZszifv76/jZT4KF65cRIj+sfB4PmtK8XpUyFVYxQiIiKBTsVYgtqB+mZue3kdH2/dz5mj+nL3BaOJjQxrvTI1R4VYREQkiKgYS9D6ZNt+fvXKeqoaWvjvGSO4atJAjDFOxxIRERGHqBhL0KlrcnPnO1vYtvJDbojdyYkXnE/muHSnY4mIiIjDVIwlqCzZUc5vXl9PUtU6Xoz6M6HNbsy7r0DSfI1NiIiIBLl270phjEk1xnxijNlijNlkjLm17fIEY8wCY8yOto86P1ccV1rTyE+fX8MVTyzHZQz/mFhPmHVjrAe0HZuIiIjQse3a3MBt1tpjgInAzcaY4cCvgY+stVnAR21fizii2e3lySW7mHbfQt7ftI+fnZrFf352AgPG/qB1GzZtxyYiIiJt2j1KYa0tAUraPq81xmwBUoBzgJPabjYX+BT4VYdSinxPXq/lnQ0l3PvBNgorGjhhSBL/M2ME6b2jW2+QmgOztB2biIiI/J9OmTE2xqQDY4HlQHJbacZaW2KM6XOE+8wGZgOkpaV1RgwRrLUs2lHOfR9sY31xNcP6xvDvq4/jpCFJ39xxQtuxiYiIyCE6XIyNMT2BV4GfWWtrvut2V9baOcAcgOzsbNvRHBLcPF7LuxtKeGThTjbtraF/XCT3XXQs545NwRWiLdhERETk6DpUjI0xYbSW4nnW2tfaLi41xvRrWy3uB+zvaEiRIzlQ38yrq4t5ZlkhhRUNZPSO5p4LRnPO2P5EhLqcjiciIiJ+pN3F2LQuDT8BbLHW3n/IVfOBWcDdbR/f7FBCka/xeC3Ld1Xw4soi3tuwj2aPl3Fp8fzmjGGcNryvVohFRESkXTqyYjwZuBLYYIxZ23bZb2ktxC8ZY64FdgMXdSihCK1vpsstPMA76/fy7sZ9lNU2ERMZymU5qVw2IY1hfWOdjigiIiJ+riO7UiwBjrQ0N62931fkC6U1jSzaXsbiHeUsySunsr6ZiNAQTh7ah7NG9+PUY5KJCte4hIiIiHQOnXwnnatoRbu2QGtodrOjtI51xVWsLjzA6t1V7K5sAKB3zwhOGpLEiUOTmHZMMj0j9NdWREREOp8ahnSeohUwd0brSXKu8NZ9gg8px26Pl301jew5cJDiAwfZWVbH9tJatpfWUXSgAdu2N0mfmAjGpfXiiolpTB7cm2P6xhKiuWERERHpYirG0iHWWmoa3ZTXNRG+5gNS3E2E4MXrbmbBO6/werSL8rom9tU0UlLdiMf7fzvzhYYYMpKiGTUgjgvHD2BIck9GpsSREh/1zT2HRURERLqYirEcVkOzmz0HDrKn6iD7a5uoqGumoq6Jivpmyutav66sb6aivokWT2vZHWeimRceShhuWnDx/P409vSso3fPCMYP7MWAXlEM6NXjy48p8VGEh3bkVHIRERGRzqNiHMRqG1vYsb+OvNI6duyvpbCigT1VB9lbdZADDS3fuH1UmIvEnuEk9oygX1wkI1NiSYiOIDE6nN4x4fTumcO+ujEkVawgMutEnho40YE/lYiIiEj7qBgHibomN+uKqliz+wBrdlexpaSGvdWNX14fERrCwMQe9I+PYkxqPCm9okiJb/1fcmwkiT3D6RH+Xf66nNz2PxERERH/omIcoGobW1iWX8niHWWs2FXJttLaL9/cNrhPT3IGJZCVHMOQ5BiGJPdkQK8eOhhDREREgpqKcQApqmzgPxv3sWBzKat3H8DttUSFuThuUAKnj+zL2LRejEmNJy4qzOmoIiIiIj5HxdjP7ak6yBtr9vDuhhI27a0BYHi/WGafkMHUrCTGDYwnIlSHYIiIiIgcjYqxH2ps8fCfjft4ZVUxn+0sx1oYmxbPb88cxukj+pGW2MPpiCIiIiJ+R8XYjxRVNvDsskJeWFlE9cEWUhOiuHVaFheMG0BqgsqwiIiISEeoGPuBVYUHeHThTj7cUooxhukjkrlyYjoTBiXoRDgRERGRTqJi7KOstXyWV8GDn+xgWX4lvXqEceNJmcycMJD+8VFOxxMREREJOCrGPmjpzgrueX8ra3ZXkRwbwe/POobLJ6R9x32ERURERKQ91LR8yOa9Ndzz/lY+3VZGv7hI7jxvJBeOH6BdJURERES6gYqxDyiqbOD+Bdt5Y+0eYiPD+O2Zw7hqUjqRYSrEIiIiIt1Fxbi7Fa2AgsUQlUhLXTmvVabzh9XRGOCGEzO54cRMHcAhIiIi4gAV4+5UtALmzgB3ExYvIRhm2DCKB93P5RdeSL84valORERExCkqxt2pYDHW04zBCxZcxhIR4uG2IftBpVhERETEUSFOBwgWXq/l7ZpMGr0u3NaAAWtCCHGFQ/pUp+OJiIiIBD2tGHeDnWV1/OqV9eQWhnFt+l+5NaOU2IRkOFjRWopTc5yOKCIiIhL0VIy7kNvj5fElu7h/wXaiwlzcf/GxnDc2BWN0Wp2IiIiIr1Ex7iKFFfX87MW1rNldxfQRyfzvuSPpExPpdCwREREROQIV405mreXlVcX89/xNuEIM/7hsLGeP7qdVYhEREREfp2LciQ7UN/Pb1zfw3sZ9TMxI4P6Lx9A/XrtNiIiIiPgDFeNOsmRHObe9vJbK+mZ+fcYwrp+agStEq8QiIiIi/kLFuINaPF7++v425izKJzMpmidmHcfIlDinY4mIiIjI96Ri3AH7qhv5yXOryS08wOUT0vjDWcOJCnc5HUtERERE2kHFuJ0+yyvnlufXcLDFw98vHcM5Y1KcjiQiIiIiHaBi/D15vZZ/fZLH/R9uJzOpJy9eMY7BfWKcjiUiIiIiHaRi/D0cqG/m5y+t5dNtZZwzpj93nTeK6Aj9XygiIiISCNTqvqM1uw9w87zVlNc186dzRzJzQpr2JhYREREJICrGR2GtZe7nBdz57haSYyN55cZJjB4Q73QsEREREelkKsbfoq7Jza9eXc8760uYNqwP9118LPE9wp2OJSIiIiJdQMX4CLbtq+XGeasoKK/nl6cP5YYTMgnRgR0iIiIiAUvF+DBeW13Mb1/fQM+IMOZdN5FJmYlORxIRERGRLqZifIjGFg///dZmnl+xmwmDEvjnZWPpExvpdCwRERER6QYqxm12VzRw47xVbNpbw40nZXLbaUMIdYU4HUtEREREukmXFWNjzOnA3wEX8Li19u6ueqyOWrC5lF+8tBYDPH5VNqcOT3Y6koiIiIh0sy4pxsYYF/Av4DSgGFhpjJlvrd3cFY/XXm6Pl79+sI1HF+YzKiWOh2aOIzWhh9OxRERERMQBXbVinAPkWWvzAYwxLwDnAD5TjKsampn99CpWFFRyxcQ0fn/WcCLDXE7HEhERERGHdFUxTgGKDvm6GJhw6A2MMbOB2QBpaWldFOPIoiNCiQgL4W+XjOHcsSnd/vgiIiIi4lu6qhgfbsNf+5UvrJ0DzAHIzs62h7l9lwpzhfD0NTk61llEREREAOiqbReKgdRDvh4A7O2ix2o3lWIRERER+UJXFeOVQJYxZpAxJhy4FJjfRY8lIiIiItJhXTJKYa11G2N+ArxP63ZtT1prN3XFY4mIiIiIdIYu28fYWvsu8G5XfX8RERERkc6ko91ERERERFAxFhEREREBVIxFRERERAAVYxERERERQMVYRERERARQMRYRERERAVSMRUREREQAFWMREREREUDFWEREREQEAGOtdToDxpgyoNChh+8NlDv02NJ99DwHPj3HwUHPc3DQ8xz4nHyOB1prkw53hU8UYycZY3KttdlO55Cupec58Ok5Dg56noODnufA56vPsUYpRERERERQMRYRERERAVSMAeY4HUC6hZ7nwKfnODjoeQ4Oep4Dn08+x0E/YywiIiIiAloxFhEREREBgrgYG2NON8ZsM8bkGWN+7XQe6RrGmAJjzAZjzFpjTK7TeaRzGGOeNMbsN8ZsPOSyBGPMAmPMjraPvZzMKB13hOf5DmPMnrbX9FpjzJlOZpSOMcakGmM+McZsMcZsMsbc2na5Xs8B5FueZ597PQflKIUxxgVsB04DioGVwGXW2s2OBpNOZ4wpALKttdoPM4AYY04A6oCnrbUj2y67B6i01t7d9sNuL2vtr5zMKR1zhOf5DqDOWnuvk9mkcxhj+gH9rLWrjTExwCrgXOBH6PUcML7leb4YH3s9B+uKcQ6QZ63Nt9Y2Ay8A5zicSUS+I2vtIqDyaxefA8xt+3wurf/oih87wvMsAcRaW2KtXd32eS2wBUhBr+eA8i3Ps88J1mKcAhQd8nUxPvoESYdZ4ANjzCpjzGynw0iXSrbWlkDrP8JAH4fzSNf5iTFmfduohX7FHiCMMenAWGA5ej0HrK89z+Bjr+dgLcbmMJcF30xJcJhsrR0HnAHc3ParWRHxXw8DmcAYoAS4z9E00imMMT2BV4GfWWtrnM4jXeMwz7PPvZ6DtRgXA6mHfD0A2OtQFulC1tq9bR/3A6/TOkYjgam0bY7ti3m2/Q7nkS5grS211nqstV7gMfSa9nvGmDBay9I8a+1rbRfr9RxgDvc8++LrOViL8UogyxgzyBgTDlwKzHc4k3QyY0x025A/xpho4AfAxm+/l/ix+cCsts9nAW86mEW6yBdlqc156DXt14wxBngC2GKtvf+Qq/R6DiBHep598fUclLtSALRtCfI3wAU8aa2909lE0tmMMRm0rhIDhALP6XkODMaY54GTgN5AKfBH4A3gJSAN2A1cZK3VG7f82BGe55No/bWrBQqAH38xiyr+xxgzBVgMbAC8bRf/ltb5U72eA8S3PM+X4WOv56AtxiIiIiIihwrWUQoRERERka9QMRYRERERQcVYRERERARQMRYRERERAVSMRUREREQAFWMREREREUDFWEREREQEUDEWEREREQHg/wO73P2ad562lAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsYAAAFlCAYAAADoCC5oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABDpklEQVR4nO3dd3zV1eH/8dfJvVmEkBAIOyEQwt6GJaC4B4p7ICruqrX2Z62rrdUOrbVVv6114aio4F7UjShLZth7JCQkEJKQQBISMu695/cH0aJlZn3ueD8fjz5uctfnbT/e+M7J+ZxjrLWIiIiIiIS6MKcDiIiIiIj4AxVjERERERFUjEVEREREABVjERERERFAxVhEREREBFAxFhEREREBwO10AIC2bdvalJQUp2OIiIiISJBbtmzZbmtt4qEe84tinJKSQkZGhtMxRERERCTIGWNyDveYplKIiIiIiKBiLCIiIiICqBiLiIiIiAAqxiIiIiIigIqxiIiIiAigYiwiIiIiAqgYi4iIiIgAKsYiIiIiIoCKsYiIiIgIoGIsIiIiIgKoGIuIiIiIAOB2OoCIiIhIYyksq2J7SSUVNV5iIlwkJbSgXWwkxhino0kAUDEWERGRgLa5oJy3luTy1fpd5O3Z/z+Pd4yL4oy+7blyWDJ9O7VyIKEEChVjERERCUj5pfv50yfr+WzNLiJcYZzUM5EbRneje2IMsVFu9lV7ySrax6KsYt5emstrC3M4vU877j+nDz3atXQ6vvghY611OgPp6ek2IyPD6RgiIiISAKy1vL00l0c+3YDHZ7n5pO5cd2IKCTERh33N3soa3liUwwtzsqj2+LjrjJ787KTuhIVpikWoMcYss9amH+oxjRiLiIhIwKiq9XL3u6v4dHU+I7sn8NdLBtK1TcxRXxffIoI7Tk3jimHJPDRjLX/9YiOr8/by98sGEROpOiQH6N8EERERCQh7K2u4+bUMlmbv4b6ze9drxDcxNpJnrhrKy/O38ehnG9i2u4JXrx9Oh7ioJkotgUTLtYmIiIjfK6mo4bLnF7Iqt5SnJw7htnGp9Z4GYYzhprHd+ff1w8nbs5+rXlxEYXlVIyeWQKRiLCIiIn5tX7WH6/+9hO0llbx6wzDOH9SpUd735J6JvHr9MHaVVfHn56ZSMetxyF3SKO8tgUnFWERERPxWtcfLra8vY+3OMp65aignprZt1PdPT0ngnfEu/lrxO6LmPYr99zmQ8WqjHkMCh4qxiIiI+K2HZ6xn/tbd/PWSgZzet32THKN/zWoiTS0uLPg82M/u1shxiNLFdyIiIuJ/cpew5rtP2LSqNbeNO4dLT+jSdMdKGUtYmAvr82AAn8+HyZ4HScOb7pjil1SMRURExL/kLsH36vn08dTwZlQ4rj6jmvZ4ScPh3Cfgs7vx+XxUWzebXQMY1LRHFT+kYiwiIiJ+pSZzDi5vDW7jw4UHs/076DqyaQ+afh2mfV88mXO5d0lLlswO44tBNbQ+wqYhEnyOOsfYGPOKMabQGLP2oPv+ZozZaIxZbYz50BgTf9BjDxhjthpjNhljzmqi3CIiIhKkpu5Mosa6scaFcUVAytjmOXDScMLH/ZqfTZpISUUN93+wGn/YIViaz7FcfPcqcPZP7psJ9LfWDgQ2Aw8AGGP6AlcC/epe86wxxtVoaUVERCSoLdi6m0dWxzK999OYU38Lk2c0+1zf/p3juOesXny5roB3MnKb9djirKMWY2vtXKDkJ/d9Za311H27CPh+RvwFwFvW2mpr7TZgK6CZ6yIiInJU+6o93PPearq1jeGqSy6DsXc7dgHcTWO6M7J7An/+dAOFZdr8ozFlFu3j0ucWsCav1Oko/6Mxlmu7Afi87uvOwMG/WuXV3fc/jDG3GGMyjDEZRUVFjRBDREREAtlTMzezs3Q/f79sENERzv7BOSzM8JeLB1Lt8fHwf9Y5miXYLNi6m4ycPbSK9r9L3RpUjI0xvwU8wLTv7zrE0w45OcdaO8Vam26tTU9MTGxIDBEREQlwG3eV8eqCbCYOT+aErq2djgNAt7Yx/PK0ND5bs4uZ6wucjhM0FmQW0zk+muSEFk5H+R/1LsbGmMnAecAk+9+Z6XlA0kFP6wLsrH88ERERCXbWWh78aC1x0eHce1Yvp+P8yM1ju9OrfSy//3gtFdWeo79AjsjnsyzMKmZk9zYYc6jxVGfVqxgbY84G7gMmWGsrD3poBnClMSbSGNMNSAO0dYyIiIgc1vvLd7A0ew/3n92b+Bb+tTxahDuMRy/uT35pFc/PyXQ6TsDbuKucvZW1nJjaxukoh3Qsy7W9CSwEehlj8owxNwL/AmKBmcaYlcaY5wGsteuAd4D1wBfAz6213iZLLyIiIgGtotrD419sZEhyfNPubtcAJ3RN4MLBnXhhbha5JZVHf4Ec1oLM3QCMCtRibK2daK3taK0Nt9Z2sda+bK3tYa1NstYOrvvfrQc9/xFrbaq1tpe19vMjvbeIiIiEthfnZVFYXs3vxvclLMz//rT+vfvO6Y3LGP7y+QanowS077bupnvbGDrFRzsd5ZAaY1UKERERkeNWWFbFlLlZnDugg99ccHc4HeOiuX1cKp+t2cXCzGKn4wSkGo+PxdtKGN2jrdNRDkvFWERERBzx1NebqfX6uPes3k5HOSY3n9SdzvHRPPb5Bu2IVw8rc/dSWeNVMRYRERE52NbCct5emsvVI7uS0jbG6TjHJCrcxS9PT2NVXilfrtvldJyAM39LEWHGf+cXg4qxiIiIOOCpr7cQFe7ijlN6OB3luFw8pDOpiTH8/avNeLw+p+MElPlbdzOwSzxx0eFORzksFWMRERFpVhvyy/h0dT7Xj06hTctIp+McF7crjHvO6sXWwn18sGKH03ECRllVLavyShnjx9MoQMVYREREmtlTMzcTG+nm5rHdnY5SL2f168CgLnH84+stVHu0Ku2xWJxVgtdn/Xp+MagYi4iISDNak1fKV+sLuGlsd7/bzONYGWO49+ze7Ni7n2mLtjsdJyB8t3U30eEuhnaNdzrKEakYi4iISLP5x6wtxEWHc8OYFKejNMjoHm0Z3aMN//p2K/u0VfRRzdtSxPBuCUS6XU5HOSIVYxEREWkWm3aV8/WGAq4fnUJslP9egHWs7jmrNyUVNbyxKMfpKH4tv3Q/mUUVfj+/GFSMRUREpJk8N3srLSJcXHdiitNRGsXgpHhO6pnIi3OzqKzRqPHhfLf1wIYo/j6/GFSMRUREpBlsL67kP6vzmTQiOWDnFh/KL0/rQXFFDdMXa67x4Xy3dTdtW0bQu0Os01GOSsVYREREmtwLczNxGcNNAboSxeGc0DWBE1Pb8MLcLKpqtULFT1lrmb91NyemtiUszDgd56hUjEVERKRJFZZV8e6yPC45oQvtW0U5HafR3XlaGkXl1by9NNfpKH5nU0E5ReXVATG/GFSMRUREpIm9PH8bHq+PW08OrtHi743s3obhKQk8NztT6xr/xOxNRQCc1DPR4STHRsVYREREmkxpZS1vLMrhvIGd6Nomxuk4TebO09LoVL6aDe88DLlLnI7jN77dWEifjq3oEBcYfylQMRYREZEmM33JdipqvNx6cqrTUZrU6MhM3ox8lP6b/4WdOkHlGCivqmVZzh7G9QqM0WJQMRYREZEmUuPx8eqCbYzp0Za+nVo5HadJmZz5hOPBjQ/rqYHseU5Hctx3W3fj8VnGBcg0ClAxFhERkSby2Zp8CsqquXFMN6ejNL2UsRh3JB7CqMGF7TrG6USO+3ZjEbFRboZ2be10lGOmYiwiIiKNzlrLS/OzSE2M4eQAGjGst6ThmMkz2ND7F1xV/Rvm7A+BXwaOwFrL7M2FjE1rS7grcOpm4CQVERGRgLFkWwlrd5Rx45juAbF+baNIGk6vSx8mv9VAnp+T6XQaR23IL6egrJpxvdo5HeW4qBiLiIhIo3tp/jZatwjn4qGdnY7SrCLcYdw4phuLskpYmbvX6TiOmb25ECCg5heDirGIiIg0sm27K/h6QwFXj+xKVLjL6TjN7srhybSKcvP87NAdNZ69qYi+HVvRLsA2dFExFhERkUb17++2ER4WxjWjujodxREtI91cOyqFL9fvIrNon9Nxml3p/gPLtJ3SO7BGi0HFWERERBpRWVUt7y3L4/xBnWgXG1ijhY3putEpRLjCmDIny+koze67rbvx+mzAzS8GFWMRERFpRO8vy6Oyxst1J6Y4HcVRbVtGcnl6Eh+u2EFBWZXTcZrVtxsLaRXlZkhSvNNRjpuKsYiIiDQKn8/y+sIchiTHM6BLnNNxHHfz2O54fD5emb/N6SjNxuezfLupiLE9E3EH0DJt3wu8xCIiIuKX5m/dTdbuCq4N0bnFP5XcpgXjB3Zi2uLtlO6vdTpOs1iRu5fd+6o5s297p6PUi4qxiIiINIrXFubQJiaCcwd0dDqK3/jZSd3ZV+1h2uIcp6M0i6/W78IdZgJyfjGoGIuIiEgjyC2pZNbGAq4cnkSkO/SWaDuc/p3jGJvWllfmZ1NV63U6TpObub6Akd3bEBcd7nSUelExFhERkQabtng7Bpg0QtMofuq2k1PZva+aD5bvcDpKk9pauI+sogrO7BeY0yhAxVhEREQaqKrWy9tLt3NG3/Z0io92Oo7fGZXahoFd4pgyNxOvzzodp8nMXF8AwOl9VIxFREQkRH2yOp89lbVMHpXidBS/ZIzh1pNTyS6u5Mt1u5yO02Rmrt/FgM5xAf3LkYqxiIiINMhrC7Pp0a4lo1LbOB3Fb53VrwPd2sbw3OxMrA2+UePC8ipW5O7ljABdjeJ7KsYiIiJSb5szZjEm/zV+1Wcvxhin4/gtV5jh5rHdWbOjlAWZxU7HaXRfrivA2gO/AAQyFWMRERGpn9wlpHw6kV+53+WcZbdA7hKnE/m1i4d2JjE2kufnZDodpdF9tjqfHu1a0rN9S6ejNIiKsYiIiNRLxebZhPlqcRsfxlsL2fOcjuTXosJd3DC6G/O27GbtjlKn4zSawvIqFm8r5twBHQP+rwYqxiIiIlIvn5f3oBY31rjAFQEpY52O5PcmjUwmNtIdVKPGX67dhc/CeQMDf2MXt9MBREREJPB4vD6e2hjPmsS/8odBew6U4qThTsfye62iwrlqZDIvzs0ip7iCrm1inI7UYJ+szietXUt6to91OkqDHXXE2BjzijGm0Biz9qD7EowxM40xW+puWx/02APGmK3GmE3GmLOaKriIiIg4Z9bGQnbs3c+ocefA2LtVio/DjaO74Q4L48V5WU5HabDCsiqWZJcwPghGi+HYplK8Cpz9k/vuB2ZZa9OAWXXfY4zpC1wJ9Kt7zbPGGO0LKSIiEmReX5hDx7iogN7MwSntWkVx8dDOvJuRR1F5tdNxGuTztbuwFsYPCJFibK2dC5T85O4LgKl1X08FLjzo/restdXW2m3AVkC/QoqIiASRrYX7mL91N5NGJON26XKl+rjlpO7UeH28umCb01Ea5D+rdtKrfSxpQTCNAup/8V17a20+QN1tu7r7OwO5Bz0vr+6+/2GMucUYk2GMySgqKqpnDBEREWlubyzKIdxluGJYstNRAlb3xJac3a8Dry/Mobyq1uk49ZJTXEFGzh4uGnrIqheQGvvXvEOt0XHI7V2stVOstenW2vTExMRGjiEiIiJNoaLaw/vL8jh3QEcSYyOdjhPQbh/Xg7IqD68tzHE6Sr28v3wHxsCFg1WMC4wxHQHqbgvr7s8Dkg56XhdgZ/3jiYiIiD/5eOVOyqs9XDOyq9NRAt6ALnGc2rsdL87LojJzIcx7ImA2SfH5LB8sz2NMj7Z0iItyOk6jqW8xngFMrvt6MvDxQfdfaYyJNMZ0A9KAwDjDIiIickTWWl5bmE2fjq04oWvro79AjurO09Lovn8d4dMugG8egakTAqIcZ+TsIW/Pfi4OomkUcGzLtb0JLAR6GWPyjDE3Ao8BZxhjtgBn1H2PtXYd8A6wHvgC+Lm11ttU4UVERKT5LMvZw8Zd5VwzsmvA73DmLwYnxTOx3XaMrxasF7w1AbGD4AfL82gR4eKsfh2cjtKojrrBh7V24mEeOu0wz38EeKQhoURERMT/vL4oh9hINxcO6eR0lKAyYMx4aj95gzDjJSwAdhCsqvXy6ep8zunfkRYRwbVXnNZYERERkaMqKq/mszX5XHJCl6ArQ07rPex0/trucZ4Nu4Lqqz70+81SPlmdT3m1h0tP6OJ0lEanYiwiIiJH9U5GLrVeyzWjdNFdUxg//gL+Xnker+/w/w1T3liUQ2piDCO7JzgdpdGpGIuIiMgRebw+pi3KYXSPNqQmtnQ6TlAalpLAialteG52JvuqPU7HOay1O0pZmbuXSSOCc565irGIiIgc0TcbC9lZWsU1I1OcjhLU7j27N8UVNbw4N8vpKIc1bfF2osLDuCQIp1GAirGIiIgcxeuLcugYF8Xpfdod/clSb4OT4jl3QAdempdFUXm103H+R3lVLR+v3MGEQZ2Iiw53Ok6TUDEWERGRw8oq2se8Lbu5angybpdqQ1P79Zm9qPL4+Nc3W5yO8j8+XLGDyhovk0YE7zxz/RsuIiIih/XGou2EuwxXDE86+pOlwbontuSKYUlMX7KdnOIKp+P8wOuzvDx/G4OS4hmUFO90nCajYiwiIiKHVFnj4d1luZzdvyPtYoNn219/9/9OS8MdFsYTX212OsoPPl+bT05xJbed3N3pKE1KxVhERET+V+4Str7/R9Kq13PNyOD907k/atcqihvGpDBj1U7W7ih1Og7WWp6fk0n3tjGc0Te4drr7KRVjERER+bHcJdipE+i36WmmRz7KMJf/zXcNdj87OZU2MRE8NGMdPp91NMt3W4tZu6OMW07qjiss+JZoO5iKsYiIiPxY9jzwVuPCRwReTM58pxOFnFZR4dx3Tm+W5ezhwxU7HM3y/JxMEmMjuXBIZ0dzNAcVYxEREfmxlLHUEo7HhmHcEZAy1ulEIenSoV0YnBTPXz7fSFlVrSMZFmcVM3/rbm4a042ocJcjGZqTirGIiIj8SEHcQCbV/IY5nW/BTJ4BScOdjhSSwsIMf7qgP8UV1Tw1s/kvxLPW8tgXG+nQKoprR6U0+/GdoGIsIiIiP/L6whwyfGmkXfKQSrHDBnSJY9KIZKYuyGZZzp5mPfaX63axYvte7jojjeiI4B8tBhVjEREROUhVrZfpS7Zzep/2JLdp4XQcAe47uzcd46K5571VVNV6m+WYtV4fj3+xiR7tWnLJ0ODc/vlQVIxFRETkBzNW7qSkoobrR6c4HUXqxEaF89glA8gqquCpr5tnSsX0xdvJ2l3BfWf3DqkdD0Pnn1RERESOyFrLK99to3eHWEZ1b+N0HDnI2LREJg5P5sW5WSzZVtKkx8rbU8njX2xkbFpbTu/TrkmP5W9UjEVERASAhVnFbNxVzg2ju2FMcK9XG4h+O74PXdvEcMf05RSVVzfJMay1/PbDtVjg0YsGhNy/ByrGIiIiAsAr87NJiIlgwuBOTkeRQ2gZ6ea5q4dSVlXLnW+uwOP1NfoxPlyxgzmbi7j3rF4kJYTeHHMVYxERESGnuIJZGwu4anhySKxXG6h6d2jFny7oz8KsYv76xcZGfe/txZU8PGMdJ3RtzTUhsjzbT7mdDiAiIiLOe3VBNi5juGZUV6ejyFFclp7E6rxSXpy3jcTYSG45KbXB77m/xsvt05cB8H9XDA76rZ8PR8VYREQkxJVX1fJuRh7jB3akfasop+PIMXh4Qj+KK6p59LONxLeI4PL0pHq/l9dn+eVbK1i3s4yXrk0PySkU31MxFhERCXHvZOSxr9rD9aO7OR1FjpErzPDUFYMp25/B/e+vxlrLFcOSj/t9vD7LPe+t4qv1BTx0fl9O69O+CdIGDs0xFhERCWG1Xh8vz8tieEoCg5PinY4jxyHS7WLKtScwJi2R+95fw18+33BcF+RV1nj4+bTlfLB8B3ed3lO/GKFiLCIiEtL+s2onO0uruHVcd6ejSD20iHDz0rXpTBqRzAtzsrj0+YVs3FV21Netyt3LBf/6jq/W7+LB8/ryy9PTmiGt/9NUChERkRBlreWFOVn0ah/LKb1CayOHYBLhDuORiwYwonsbHvp4Lef8Yx7jB3TkymHJDOvWmkj3gVVGajw+MnJKmLZ4O5+tyad9bBRTbxjO2LREh/8J/IeKsYiISIiavamITQXlPHHZoJDbyCEYTRjUibE92vL83EymL97OJ6vziXCF0T4ukjBjyC+tosbjo2Wkm9vHpXLLSanERYc7HduvqBiLiIiEqOfmZNIpLkobegSR1jERPHBOH+46vSdzNxexfPte8kv3A3BWvyiGJsdzcs92REdorepDUTEWEREJQcu372HJthIePK8v4S5dchRsosJdnNmvA2f26+B0lICiYiwiIo6pqPawp7KGsv0eAGKj3MS3CCc2qu7Pu7lLIHsepIyFpOEOJg0+L8zJJC46nCuH1X/9W5Fgo2IsIiLNJrNoH1+vL2Bpdgkb8svZsXf/D48NNZsZGbaBRb4+7IgdwPjWeTxQdC9u6wFXBGbyDJXjRrK5oJyv1hdwxyk9iIlUFRD5nj4NIiLSpPZVe3h/WR5vLMphS+E+AFITY0hPac2kDsm0jYkkqWINw+c9hvHW4A0L55mOTxJXsAzjrcUYHx5PNQtnfkjKhf1DeleuxvLPWVtoEe7iBq1bK/IjKsYiItIkyqtqeWFOFq8uyGZftYdBSfH8YUI/Tu/bns7x0T9+8rx3wFcL+AizHv5fjwI4/Rrs1HfweWrxGjdPbW3Hir99y9n9OnDnaWn06djKkX+uQLe5oJxP1+Rz+7hUWsdEOB1HxK+oGIuISKPy+SxvLt3Ok19tpriihvEDO3LTmG4MSW59+BeljAVXBHhrDtzWzSk2k/+DyZ5HZMpYno4dwLRFOby2MIfP1+5i/ICO3H9Ob40gH6fvR4tvGqMNPUR+ylhrnc5Aenq6zcjIcDqGiIg00PbiSu55bxWLt5UwolsCvx3fh4Fd4o/txcd4oV1pZS0vz8/ixXnb8FnLbeNSufXkVKLCtfzU0WwuKOes/5vL7eNSuees3k7HEXGEMWaZtTb9kI+pGIuISGN4b1kev/94LS5jePD8vlx2Qpcm3TRi5979PPLZBj5dnU9au5Y8cfmgYy/hIeqO6cuZvamIefeeomkUErKOVIy1cKGIiDRItcfLbz5cw6/fXcWgLvF8eddJXJ6e1OQ7qXWKj+aZq4by6vXDKK/ycNGzC3hy5ma8PucHfPzR93OLrzsxRaVY5DA0x1hERI5f3bSHsvYjue5rWL59L7eenMqvz+yJu5k3ixjXqx1f3nUSD89Yxz9nbWFZTgn/uHIIbVtGNmsOf/ePr7cQE+HmxjFaiULkcBr008sYc5cxZp0xZq0x5k1jTJQxJsEYM9MYs6Xu9ghXW4iISMDJXQJTJ2C/eYSI6RcSvjODZycN5f5zejd7Kf5eXHQ4T10xmMcvGUhG9h7G/3MeGdkljmTxR6ty9/LpmnxuGNNNo8UiR1Dvn2DGmM7AnUC6tbY/4AKuBO4HZllr04BZdd+LiEiwyJ6H9dZgrBc3Hp4cUc65Azo6nQqAy4cl8eHto4kOd3HFlEW8tjDb6UiOs9by6GcbaNsygltO0koUIkfS0F/t3UC0McYNtAB2AhcAU+senwpc2MBjiIiIH9lRE43HghdDmDuCzoPPdDrSj/Tt1IoZvxjDKb0S+f3H63h4xjo8Xp/TsRzz7aZCFm8r4c7T0mipXe5EjqjexdhauwP4O7AdyAdKrbVfAe2ttfl1z8kH2h3q9caYW4wxGcaYjKKiovrGEBGRZpS5/BsS5j2EwYcJcxF29l/9cpvmVlHhvHBNOjeN6carC7K5+bUM9lV7nI7V7Lw+y18/30RKmxZMHJ7sdBwRv9eQqRStOTA63A3oBMQYY64+1tdba6dYa9OttemJiYn1jSEiIs1ka+E+PvvPu4TjwY0lzFrYX+x0rMNyhRl+d15fHrmoP3O37ObS5xawq7TK6VjN6u2luWwqKOees3oT7tD8b5FA0pBPyenANmttkbW2FvgAOBEoMMZ0BKi7LWx4TBERcdLOvfu59uXFLA/rR5g7AozrvzvU+blJI7ry7+uGkVtSySXPLSCzaJ/TkZpFaWUtf/tyIyO6JXDugA5OxxEJCA0pxtuBkcaYFubAYpWnARuAGcDkuudMBj5uWEQREXHS3soarn1lCeVVHu6+4RrCJv8HTv0tTJ7hl9MoDuWknom8dcsoqmq9XPb8Qlbn7XU6UpN76uvNlO6v5eEJ/Zp8TWmRYNGQOcaLgfeA5cCauveaAjwGnGGM2QKcUfe9iIgEoFqvj9unLWd7cSVTrk2nf+e4A2V47N0BU4q/N6BLHO/ddiItIlxMnLKI+Vt2Ox2pyWzcVcbri3KYNKIrfTq2cjqOSMBo0IQja+1D1tre1tr+1tprrLXV1tpia+1p1tq0ulstJCkiEoCstfz+43UsyCzm0YsHMCq1jdORGqxb2xg+uO1EkhJacP2rS/hk9U6nIzU6n8/y4EdriY1y86szejodRySgaCa+iIgc0qsLsnlzyXZuPTmVS0/o4nScRtOuVRRv/2wUQ5Ja84s3V/D6ohynIzWq6Uu2szR7D789t4828xA5TirGIiLyP2ZvKuRPn6znzL7tufesXk7HaXRx0eG8duNwTuvdngc/WsvTs7ZgrXU6VoPtKq3isc83MqZH26D6ZUakuagYi4jIj+QUV/CLN1fQq0MrnrpiMGFhwXnhVlS4i+evHsrFQzvzxMzN/PGT9fh8gVuOrbX87qO1eHw+Hr1ogC64E6kHbYEjIiI/qKr1ctsbywkzhinXnEBMkO+U5naF8fdLB9G6RQQvz9/G3spaHr90YECu+fvesjy+3lDAb8/tQ3KbFk7HEQlIwf0TT0REjsvDM9axPr+Mlyenk5QQGuUqLMzwu/F9SIiJ4G9fbqJ0fy3PXDWU6AiX09GOWfbuCh6asY6R3RO4YUw3p+OIBKzA+5VYRESaxLsZuby1NJfbx6VyWp/2TsdpVsYYfn5KDx65qD/fbirk2lcWU7q/1ulYx6TW6+OXb6/EHWZ48vLBuIJ06otIc1AxFhERNu4q48GP1zKqe5uQXuJr0oiuPD1xCCtz93LFCwspLPf/LaT//uUmVuXu5S8XD6RTfLTTcUQCmoqxiEiIq6r18ovpK4iNCuefE4fgDsD5tY3pvIGdeHnyMHKKK7n0uYXkFFc4HemwZqzayQtzs5g0IpnxAzs6HUck4IX2Tz8REeHRzzawpXAfT14+iMTYSKfj+IWTeiYy/eYRlFXVctGzC8jI9r+9qtbtLOXe91aR3rU1D53fz+k4IkFBxVhEJITN2lDAawtzuGlMN8amJTodx68MSW7NB7edSFx0OFe9uJgPV+Q5HekHu0qruOW1ZcRHR/Ds1UOJcOs/5yKNQZ8kEZEQVVhexb3vraZ3h1juOTv4NvFoDN0TW/Lh7ScyJDmeu95exRNfbXJ8reM9FTVc8/KBiwNfmpxOu9goR/OIBBMVYxGREGSt5Z53V7Ov2sPTE4cQ6Q6cpcmaW3yLCF6/cQSXp3fh6W+2csPUpZRU1DiSpaLaw/WvLiWnpJIXr02nf+c4R3KIBCsVYxGREDR1QTZzNhfxu/F9SGsf63QcvxfhDuOvlwzkTxf2Z8HWYsb/c16zzzsuqajhqpcWszpvL09PHMKo1DbNenyRUKBiLCISYjbtKufRzzdyau92XD2yq9NxAoYxhmtGduWD208k3BXGFVMW8ezsrXibYWpF3p5KLn1+ARvzy3jhmnTO6tehyY8pEopUjEVEQkit18fd764kNtLN45cOxBhtBnG8+neO45M7x3BWv/Y8/sUmLn5uAZsLypvsePO37ObCZ76jqLya128cwRl9Q2vzFZHmpGIsIhJCXpiTydodZfz5wv60baml2eqrVVQ4z1w1lH9OHEJuSSXj/zmPRz5dT2ll4+2WV+Px8fcvN3HNK4tp3SKCD247keHdEhrt/UXkf7mdDiAiIs1j464y/jFrC+cN7Mg5A7QZREMZY5gwqBOjU9vw2OcbeWn+Nt5dlsdtJ6cycUQyraLC6/W+1lq+3VTInz/ZQNbuCi5P78IfJvQnOkIXSIo0NWOts8vOAKSnp9uMjAynY4iIBK1ar4+Lnv2O/L1VfHXXSbTRaHGjW7+zjL98voF5W3bTMtLN5elJXDSkM/07tzqmKSvVHi9frN3FG4tyWJq9h+6JMTw4vi+n9G7XDOlFQocxZpm1Nv1Qj2nEWEQkBHw/heK5SUNViptI306teP3GEazJK+Wl+Vm8tjCbV77bRpfW0YxNa0u/TnH06hBLXHQ4LSPd7Kv2sLu8mi2F+1i8rZgFmcXsrawlOaEFD5/fl0kjuxIe4ttzizQ3jRiLiAS5jbvKOP/p+ZzVrwP/umqo03FCxp6KGmZuKODLtbvIyNlD6f7Dzz/uHB/NiO4JXDC4M2N7tCUsTBdFijQVjRiLiISoWq+PX7+7ilZR4fxhQj+n44SU1jERXJ6exOXpSVhryduzn8yifeyr9rCvykNMpJu2LSNJSoimS+sWTscVEVSMRUSC2vOzNYXCHxhjSEpoQVKCCrCIP9PkJRGRILVxVxn//EarUIiIHCsVYxGRIKQpFCIix09TKUREgpCmUIiIHD+NGIuIBJkN+ZpCISJSHxoxFhEJBrlLIHsenuTR/PrjWk2hEBGpBxVjEZFAl7sEpk4Abw3WuInc/wB/vupKTaEQETlOKsYiIoEuex54a8B6MT7LdZ3zNIVCRKQeNMdYRCTQpYzFuiLwEIbHuDn5zIucTiQiEpA0YiwiEuiShvNuv2fIzviSsWdcyKieY5xOJCISkDRiLCIS4NbvLOO3GdHk9r+NUePOdTqOiEjAUjEWEQlgNZ4DG3nERWsVChGRhtJUChGRAPbMt1tZn1/G81efQEJMhNNxREQCmkaMRUQC1NodpTzz7VYuGNyJs/t3cDqOiEjAUzEWEQlA30+haB0TwcPnawqFiEhj0FQKEZEA9K9vtrBxVzkvXptOa02hEBFpFBoxFhEJMGvySnlmdiYXD+nMGX3bOx1HRCRoNKgYG2PijTHvGWM2GmM2GGNGGWMSjDEzjTFb6m5bN1ZYEZFQV+3xcve7K2kTE8FDmkIhItKoGjpi/A/gC2ttb2AQsAG4H5hlrU0DZtV9LyIijeCpmVvYXLCPxy4ZQFyLcKfjiIgElXoXY2NMK+Ak4GUAa22NtXYvcAEwte5pU4ELGxZRREQAFmUV88LcTK4clsSpvTWFQkSksTVkxLg7UAT82xizwhjzkjEmBmhvrc0HqLttd6gXG2NuMcZkGGMyioqKGhBDRCT4le6v5e53VtE1oQUPntfX6TgiIkGpIcXYDQwFnrPWDgEqOI5pE9baKdbadGttemJiYgNiiIgEv99/vJZdZVU8dcVgYiK1oJCISFNoSDHOA/KstYvrvn+PA0W5wBjTEaDutrBhEUVEQtvHK3fw8cqd3HlqGkOSdT2ziEhTqXcxttbuAnKNMb3q7joNWA/MACbX3TcZ+LhBCUVEQtiOvfv53UdrGZocz89PSXU6johIUGvo3+N+AUwzxkQAWcD1HCjb7xhjbgS2A5c18BgiIiHJ67P86u2V+HyWp64YjNulpedFRJpSg4qxtXYlkH6Ih05ryPuKiAg8PyeTxdtKePzSgXRtE+N0HBGRoKfhBxERP7Q4q5gnvtrEhEGduOyELk7HEREJCSrGIiJ+Zve+au58awVd28Tw6MUDMMY4HUlEJCSoGIuI+BGfz3LX2yvZU1nLM1cNpaWWZhMRaTYqxiIifuS5OZnM27Kbh8/vR99OrZyOIyISUlSMRUT8xNzNRT/MK544PMnpOCIiIUfFWETED+QUV/CLN1fQs30sf9G8YhERR6gYi4g4rKLaw82vZWAMTLkmXVs+i4g4RMVYRMRBPp/l7ndWsbVwH/+aOJTkNi2cjiQiErJUjEVEHPTPb7bwxbpd/ObcPoxJa+t0HBGRkKZiLCLikHczcvm/r7dw6QlduHFMN6fjiIiEPBVjEREHzNlcxAMfrGFsWlsevUgX24mI+AMVYxGRZrZ2Rym3v7GMtPaxPDtpKBFu/SgWEfEH+mksItKMthdXcv2rS4mLDufV64cRGxXudCQREamjYiwi0kxySyqZ+OIiajw+Xr1hOO1bRTkdSUREDqJiLCLSDPL2VHLllEWUV9Uy7aYR9Gwf63QkERH5Ca0iLyLSxHbu3c/EFxdRVlXL9JtG0r9znNORRETkEDRiLCLShLYXHxgp3ltRyxs3jmBAF5ViERF/pRFjEZEmsm5nKZNfWYrH5+O1G4czKCne6UgiInIEKsYiIk1g3pYibntjOa2i3Lx1yyh6tNOcYhERf6diLCINl7sEsudBylhIGu50GkdZa3nlu2we+XQ9ae1iefWGYXSMi3Y6loiIHAMVYxFpmNwlMHUCeGvAFQGTZ4RsOa7KWsisLz7g09xOnN5nLE9eMZiWkfoxKyISKPQTW0SOylrLztIqNuwsY+OuMkzeUtqVLGWBtw+pFSu51VeNGx+e2mr++eLLvBVZRqvocFpFuWnfKorkhBYkJbSga5sW9OoQS7vY4Fu/N3vFt3T4+HLOsh7OjA7HdfKJhKkUi4gEFP3UFpFDKqmo4ZuNhczfUsTibSXkl1YBMNRsZnrko4Tj4QITziedfondGY7X1mJd4bTpdRqnuttRVlVL6f5aNheUM2tjITUe3w/vnRgbSd+OrRjYJY70lARO6Nr6yCOrfjxVo9br46V526ic9Ra/dHlwGx9YD2yfD11HOB1PRESOg4qxiByQu4TqrXOYV9uLF7clsjS7BJ+Fti0jGdE9geEpCfTv3Ir+WeuJnOsF68OFh4t7R8HZn0D2PFwpY5l8iOLq81kKyqvYtruCDfnlrNtZyvqdZTw7ezde31bCDPTrFMewlARGdE9gZLc2xLUI/yGXv07VWJm7lwc+WMOG/DJuSz0RV8FH4K09kDNlrNPxRETkOKkYiwh5a2bT7oPLcflqGY2bj2L+xB2nnMIZfTvQv3MrjDH/fXLYyfDdE/8tqt+P4h6hrIaFGTrGRdMxLpoTU9v+cH9FtYfl2/ewdFsJS7JLmLY4h1e+24YxcEniDsbHZpIWtZfO3hqM9R44ZvY8x4txbkklj3+5if+s2km72Eiev/oEzu7fAXL7+O3ItoiIHJ2KsUgIW5ZTwvNzskjbPJ1fuWpxGx8u4+XpkRWYk3od+kVJww+M2jZCAYyJdDM2LZGxaYkA1Hh8rMrby7YV33LBqt/hKq3FSxg1GFzGYIDM8giSarxER7jqfdz62lpYzpS5WXy4YgeuMMMdp/TgZyd3JzaqbnT7KL8giIiIf1MxFglBm3aV85fPNzB7UxHxLcI5dciZuDZ8DN5ajCsCuh1lGkATFcAIdxjDUhIYlpsNxgP4CDOGzPgxdNszH3w+khb/kWsXeDFdRjAytQ0nprZhSHI8ke6mKcpVtV6+Wl/Auxm5zNuym6jwMK4clszPT+lBh7jgu4hQRCSUqRiLhJDCsiqe+nozby/NJSbSzQPn9OaaUV1pEeGG3GT/mQaQMvbANA1vDWGuCNJSu8Oy+YAl0nj5edIunqzy8q9vtvDPWVuIdIdxQtfWnJjahqHJrenZIZa2LSPrdWhrLTnFlSzZVnLg4sOtu9lX7aFzfDR3nd6Tq0cm06ae7y0iIv7NWGudzkB6errNyMhwOoZI0PL5LNOWbOevn2+k2uPlmpEp/OLUHrSOiXA62uEdvBIFHPICvNL9tSzZVsLCzGIWZhWzIb/sh5cnxESQ1q4lnVtH0y42ivatIkmIiSDcFYYrzBDuMlTX+ijdX0tJZQ25JZXkFFeybmcZpftrAegYF8W4Xu04f2BHRnZvQ1iYOVRSEREJIMaYZdba9EM+pmIsEtwyi/bxwPtrWJJdwugebfjzhQPo1jbG6VjH7xiWbCupqGH9zjI2F5SzuaCcrYX7yC+torC8ilrvkX/WJcREkJTQgj4dYhmcFM+Q5Nb0bN/yxxceiohIwFMxFglBPp/l5fnb+NtXm4hyh/G78/py2QldQrLoWWvZU1lLSUUNXp/F4/Ph8Voi3GG0ig4nPjqcGG3GISISEo5UjPVfApEgVFRezd3vrmLu5iLO7NueP1/UPyh3mztWxhgSYiJI8OepIyIi4jgVY5EgM29LEXe9vYryqlr+fGF/Jo1IDslRYhERkeOlYiwSJHw+y7++3cqTMzeT1q4l024aQa8OsU7HEhERCRgqxiJBYF+1h7vfWcmX6wq4eEhnHrlogCMbYIiIiAQyFWORAJe9u4JbXs8gs6iCB8/ryw2jUzR1QkREpB5UjEUC2NLsEm5+7cCKLq/dMJzRPdo6nEhERCRwqRiLBKhPVu/kV++sokvraF69bjjJbVo4HUlERCSghTX0DYwxLmPMCmPMJ3XfJxhjZhpjttTdtm54TBH5nrWWKXMzuWP6CgZ1ieOD205UKRYREWkEDS7GwC+BDQd9fz8wy1qbBsyq+15EGoHPZ/njJ+t59LONjB/YkddvHEF8C63NKyIi0hgaVIyNMV2A8cBLB919ATC17uupwIUNOYaIHODx+rjnvdX8+7tsbhjdjaevHEJUuFaeEBERaSwNnWP8f8C9wMGLpba31uYDWGvzjTHtDvVCY8wtwC0AycnJDYwhEtyqPV7ufHMFX64r4Fdn9OQXp/bQyhMiIiKNrN4jxsaY84BCa+2y+rzeWjvFWpturU1PTEysbwyRoFdZ4+GmqRl8ua6Ah87vy52npakUi4iINIGGjBiPBiYYY84FooBWxpg3gAJjTMe60eKOQGFjBBUJRaX7a7n+30tYmbuXv182iEtP6OJ0JBERkaBV7xFja+0D1tou1toU4ErgG2vt1cAMYHLd0yYDHzc4pUgIKquq5dqXF7NmRynPThqqUiwiItLEmmId48eAd4wxNwLbgcua4BgiQa28qpbJryxhfX4Zz006gdP7tnc6koiISNBrlGJsrZ0NzK77uhg4rTHeVyQUVVR7uP7fS1mTV8ozk4aqFIuIiDQT7Xwn4kcqazxc/+pSVuTu5emJQzirXwenI4mIiISMxtjgQ0Qawf4aLze+mkFGdglPXTGYcwd0dDqSiIhISNGIsYgfqKr1csvrGSzaVsyTlw9iwqBOTkcSEREJORoxFnFYtcfLz15fxvytu3n8koFcNESrT4iIiDhBxVjEQTUeH7e9sZw5m4v4y0UDuCw9yelIIiIiIUvFWMQhtV4fd0xfzjcbC/nzhf25cri2RhcREXGSirGIA2q9Pu58cwVfrS/gDxP6cfXIrk5HEhERCXkqxiLNzOP1cdfbK/l87S4ePK8vk09McTqSiIiIoGIs0qy8Psuv313FJ6vzeeCc3tw4ppvTkURERKSOirFIM/H5LPe+t5qPVu7knrN68bOTU52OJCIiIgdRMRZpBj6f5YEP1vD+8jzuOr0nPz+lh9ORRERE5CdUjEWamLWW3328lrczcrnz1B788vQ0pyOJiIjIIagYizQhay0PzVjH9MXbuW1cKned0dPpSCIiInIYKsYiTcRayx8/Wc9rC3O4eWw37j2rF8YYp2OJiIjIYagYizQBay2PfraBf3+XzfWjU/jNuX1UikVERPycirFII7PW8pfPN/LivG1MHtWV35/XV6VYREQkAKgYizSi70vxlLlZXDuqKw9P6KdSLCIiEiBUjEUayU9L8R9UikVERAKKirFII7DW8phKsYiISEBTMRZpoO9L8Qtzs7hmpEqxiIhIoHI7HUAkkH2/+sSL87Zxzciu/PEClWIREZFApWIsUk9en+V3H63lzSXbmawL7URERAKeirHI8cpdgjdrLk9ndeDNTa25fVwq92jzDhERkYCnYixyPHKXYKdOAE81P7Nuuox8gUvP7u10KhEREWkEuvhO5DjUZM7B56nGhY9I4+XSNtucjiQiIiKNRMVY5BgV76vmwZWtqbFufLgIc0dAylinY4mIiEgj0VQKkWOQU1zB5FeWkF/amYvOeI2RYesPlOKk4U5HExERkUaiYixyFCtz93Ljq0vxWcv0m0dyQtfWwDlOxxIREZFGpmIscgSzNhTw8+nLSYyNZOr1w+me2NLpSCIiItJEVIxFDsFay9QF2fzxk/X07xzHy5OHkRgb6XQsERERaUIqxiI/Ue3x8vuP1vF2Ri6n92nPP64cTEykPioiIiLBTv+1FzlIUXk1t76xjGU5e/jFqT246/SehIVp4w4REZFQoGIsUicju4Q7pq+gdH8tz1w1lPEDOzodSURERJqRirGEPJ/PMmVeFn/7chOd46N577ZR9OsU53QsERERaWYqxhLS9lTUcPe7q/hmYyHnDujAY5cMpFVUuNOxRERExAEqxhKyvt1UyH3vrWZvZS1/mNCPa0d1xRjNJxYREQlVKsYScvZVe3jk0w28uWQ7Pdu35JXrhtG/s6ZOiIiIhDoVYwkp87fs5oEPV5O3Zz8/O6k7d53Rk6hwl9OxRERExA/UuxgbY5KA14AOgA+YYq39hzEmAXgbSAGygcuttXsaHlWk/grKqvjzpxv4z6qdpLRpwTs/G8WwlASnY4mIiIgfaciIsQe421q73BgTCywzxswErgNmWWsfM8bcD9wP3NfwqCLHr8bj441FOTw5czM1Xh//7/Q0bj05VaPEIiIi8j/qXYyttflAft3X5caYDUBn4AJgXN3TpgKzUTGWZubzWT5dk8/fv9pETnElJ/VM5I8T+pHSNsbpaCIiIuKnGmWOsTEmBRgCLAba15VmrLX5xph2h3nNLcAtAMnJyY0RQwRrLXO37OaJrzaxOq+U3h1i+ff1wxjXM1ErToiIiMgRNbgYG2NaAu8D/89aW3as5cNaOwWYApCenm4bmkNCm9dn+WxNPs/PyWTdzjI6xUXxxGWDuHBIZ1za0llERESOQYOKsTEmnAOleJq19oO6uwuMMR3rRos7AoUNDSlyOHsqanh/eR6vL8ohp7iS7m1jePySgVwwpBORbs0jFhERkWPXkFUpDPAysMFa++RBD80AJgOP1d1+3KCEIj/h9VkWbyvm7aW5fL5mFzVeH0OT43ngnN6c0beDRohFRESkXhoyYjwauAZYY4xZWXffbzhQiN8xxtwIbAcua1BCEcCXs5gdq2byxb4eTNnWlqLyamKj3EwcnsTEEcn07tDK6YgiIiIS4BqyKsV84HBDc6fV931FvldQVsXczUXkrp7D7dvvoqP1cDVuSro8Qd/zTuf0Pu2JjtB0CREREWkc2vlO/EJljYctBftYlbeX5Tl7WL59L9tLKgH4dYsFhOPBZXy4jJf7ehfBoE4OJxYREZFgo2Iszcbj9bGrrIode/aTt2c/mUX72FxQzuaCfeTuqcTWrU3SLjaSocmtuXpkMqN7tKVPbVvCXv8AvDUYVwSkjHX2H0RERESCkoqxHF7uEsied6CIJg0/5FOstZRVedi9r5rifTV1t9Xs/uHrA7e7yqrIL63C6/vvynzuMEP3xBgGdInj0hO60LN9S/p3jqNzfPRP1hweAZNnHDWLiIiISEOoGMshVWUtJGL6hRhPDd6wCGYMeo71rt4UV/y38JZU1FBcUU2t93+XoTYGWreIoE1MBG1bRnJC19Z0aR1Nl9YtfrjtHB9NhDvs2AIlDVchFhERkSalYhxKfjICXF5Vy5bCfWwt2MeWwnJyiivZsXc/O/fuZ2L1e/zKXYPb+MBbw9YlXzAtrAVtWkbQpmUkHeOi6N+5FQkxkQfKb+yBAtwmJpK2sREktIjA7TrG0isiIiLiB1SMQ0Rl5kIip1+I8dZQa8L5hfthvirv+sPjke4wurZpQaf4aAYnxZMadjas+hhrawlzh3Pn5Ou5t/soB/8JRERERJqWinGQKq+qZVFWCfO2FLFkWwmn7n6DX7lqDqzsYGuZEJ/FoBPPpGf7WHq2b0mX1i1+sjHGABjaBbLnYVLGEqVpDCIiIhLkVIyDSG5JJV+s3cXM9QUs374Hj88SHe5iWLcEuiafiVn3MdZXi9sVwXkTLoekHkd+Q83rFRERkRCiYhzgduzdz0crdvDZmnzW7SwDoG/HVtxyUnfGpiUytGs8kW4XMByGJWtlBxEREZHDUDEOQFW1Xr5Yu4v3luXxXeZurIUhyfH85tzenN2vI8ltWhz6hRoBFhERETksFeMAkltSyRuLcnhraS6l+2tJSojml6elccnQLiQlHKYMi4iIiMgxUTEOAMty9vDCnEy+3lCAMYaz+rXnmpEpjOiWQNiPLpgTERERkfpSMfZT1lq+21rMv77dwqKsElq3COe2calMGtGVTvHRTscTERERCToqxn5oYWYxj3+5kRXb99K+VSS/G9+Hq0Yk0yJCp0tERESkqahp+ZH1O8t4/MuNzN5URMe4KB65qD+XntClblUJEREREWlKKsZ+ILekkidnbuajlTtoFRXOb87tzbWjUogKVyEWERERaS4qxg6qqvXy/JxMnp2diQFuPTmVW09OJS463OloIiIiIiFHxdghszYU8PB/1pFbsp/zBnbkt+P70DFOF9WJiIiIOEXFuJnlllTyh/+s4+sNhfRo15JpN41gdI+2TscSERERCXkqxs3E57NMXZjN419swhh44JzeXD+6GxHuMKejiYiIiAgqxs0is2gf9723moycPYzrlcijFw3QWsQiIiIifkbFuAl5vD5emr+NJ2duJjrcxZOXD+KiIZ0xRrvViYiIiPgbFeMmklNcwXNvvElC4RJuTBnN9VdeQbvYKKdjiYiIiMhhqBg3Mmst7y7L46MZH/Jy2J+IDPdgCmZg9vaB2OFOxxMRERGRw9CVX41oT0UNt09bzr3vreb8uEyijJcwfBhvDWTPczqeiIiIiByBRowbyfwtu7n73ZWUVNRw/zm9uTylLeb1t8FbA64ISBnrdEQREREROQIV4waq9fr425ebmDI3i9TEGF6ePIz+neOAVJg848BIccpYSNI0ChERERF/pmLcALtKq7hj+nIycvZw1YhkHhzfl+gI13+fkDRchVhEREQkQKgY19N3W3dz55sr2F/r5R9XDuaCwZ2djiQiIiIiDaBifJx8Pssz327lya83k5rYkrevHkqPdrFOxxIRERGRBlIxPg57Kmq4652VzN5UxAWDO/HoRQOIidT/hSIiIiLBQK3uGK3YvoefT1vO7n01/PnC/kwakawd7ERERESCiIrxUVhrmbogm0c+20D7VlG8d9soBnaJdzqWiIiIiDQyFeMj2Fft4b73V/Pp6nxO692OJy4fRHyLCKdjiYiIiEgTUDE+jE27yrlt2jKyd1dw79m9uPWkVMLCNHVCREREJFipGB/CB8vz+M2Ha2gZGc60m0YyKrWN05FEREREpImpGB+kqtbLH/6znjeXbGdEtwSenjiEdq2inI4lIiIiIs1AxbjO9uJKbpu2jHU7y7htXCp3n9ETtyvM6VgiIiIi0kyarBgbY84G/gG4gJestY811bEaJHcJW5Z8zh/WJJBLT166Np3T+7Z3OpWIiIiINLMmKcbGGBfwDHAGkAcsNcbMsNaub4rj1ZcnZxF26gS6eWt52bjZe9n7tFcpFhEREQlJTTVXYDiw1VqbZa2tAd4CLmiiY9XL3soa3nn3TYy3FrfxEWG8tC9Z6nQsEREREXFIUxXjzkDuQd/n1d33A2PMLcaYDGNMRlFRURPFOLyYSDdbWgwGVwQYF8YVASljmz2HiIiIiPiHpppjfKgFf+2PvrF2CjAFID093R7i+U0q3BXG72+7DpPXD7LnHSjFScObO4aIiIiI+ImmKsZ5QNJB33cBdjbRserNGHOgDKsQi4iIiIS8pppKsRRIM8Z0M8ZEAFcCM5roWCIiIiIiDdYkI8bWWo8x5g7gSw4s1/aKtXZdUxxLRERERKQxNNk6xtbaz4DPmur9RUREREQak7Z2ExERERFBxVhEREREBFAxFhEREREBVIxFRERERAAVYxERERERQMVYRERERARQMRYRERERAVSMRUREREQAFWMREREREQCMtdbpDBhjioAchw7fFtjt0LGl+eg8Bz+d49Cg8xwadJ6Dn5PnuKu1NvFQD/hFMXaSMSbDWpvudA5pWjrPwU/nODToPIcGnefg56/nWFMpRERERERQMRYRERERAVSMAaY4HUCahc5z8NM5Dg06z6FB5zn4+eU5Dvk5xiIiIiIioBFjEREREREghIuxMeZsY8wmY8xWY8z9TueRpmGMyTbGrDHGrDTGZDidRxqHMeYVY0yhMWbtQfclGGNmGmO21N22djKjNNxhzvPDxpgddZ/plcaYc53MKA1jjEkyxnxrjNlgjFlnjPll3f36PAeRI5xnv/s8h+RUCmOMC9gMnAHkAUuBidba9Y4Gk0ZnjMkG0q21Wg8ziBhjTgL2Aa9Za/vX3fc4UGKtfazul93W1tr7nMwpDXOY8/wwsM9a+3cns0njMMZ0BDpaa5cbY2KBZcCFwHXo8xw0jnCeL8fPPs+hOmI8HNhqrc2y1tYAbwEXOJxJRI6RtXYuUPKTuy8AptZ9PZUDP3QlgB3mPEsQsdbmW2uX131dDmwAOqPPc1A5wnn2O6FajDsDuQd9n4efniBpMAt8ZYxZZoy5xekw0qTaW2vz4cAPYaCdw3mk6dxhjFldN9VCf2IPEsaYFGAIsBh9noPWT84z+NnnOVSLsTnEfaE3pyQ0jLbWDgXOAX5e96dZEQlczwGpwGAgH3jC0TTSKIwxLYH3gf9nrS1zOo80jUOcZ7/7PIdqMc4Dkg76vguw06Es0oSstTvrbguBDzkwjUaCU0HdPLbv57MVOpxHmoC1tsBa67XW+oAX0Wc64BljwjlQlqZZaz+ou1uf5yBzqPPsj5/nUC3GS4E0Y0w3Y0wEcCUww+FM0siMMTF1k/wxxsQAZwJrj/wqCWAzgMl1X08GPnYwizSR78tSnYvQZzqgGWMM8DKwwVr75EEP6fMcRA53nv3x8xySq1IA1C0J8n+AC3jFWvuIs4mksRljunNglBjADUzXeQ4Oxpg3gXFAW6AAeAj4CHgHSAa2A5dZa3XhVgA7zHkex4E/u1ogG/jZ93NRJfAYY8YA84A1gK/u7t9wYP6pPs9B4gjneSJ+9nkO2WIsIiIiInKwUJ1KISIiIiLyIyrGIiIiIiKoGIuIiIiIACrGIiIiIiKAirGIiIiICKBiLCIiIiICqBiLiIiIiAAqxiIiIiIiAPx/U+zyDiv8grYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -280,17 +280,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "╒════════════════════════════════════╤═══════════╤══════════════════╤═════════╤═════════════╤═════════╤═════════╤═════════════╕\n", - "│ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │\n", - "╞════════════════════════════════════╪═══════════╪══════════════════╪═════════╪═════════════╪═════════╪═════════╪═════════════╡\n", - "│ GPR.kernel.kernels[0].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 194.668 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────┤\n", - "│ GPR.kernel.kernels[0].lengthscales │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.33927 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────┤\n", - "│ GPR.kernel.kernels[1].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 24.6737 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼─────────────┤\n", - "│ GPR.likelihood.variance │ Parameter │ Softplus + Shift │ │ True │ () │ float64 │ 0.0654709 │\n", - "╘════════════════════════════════════╧═══════════╧══════════════════╧═════════╧═════════════╧═════════╧═════════╧═════════════╛\n" + "╒════════════════════════════════════╤═══════════╤══════════════════╤═════════╤═════════════╤═════════╤═════════╤════════════╕\n", + "│ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │\n", + "╞════════════════════════════════════╪═══════════╪══════════════════╪═════════╪═════════════╪═════════╪═════════╪════════════╡\n", + "│ GPR.kernel.kernels[0].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 280.828 │\n", + "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────┤\n", + "│ GPR.kernel.kernels[0].lengthscales │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.96707 │\n", + "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────┤\n", + "│ GPR.kernel.kernels[1].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 22.1453 │\n", + "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────┤\n", + "│ GPR.likelihood.variance │ Parameter │ Softplus + Shift │ │ True │ () │ float64 │ 0.212818 │\n", + "╘════════════════════════════════════╧═══════════╧══════════════════╧═════════╧═════════════╧═════════╧═════════╧════════════╛\n" ] } ], @@ -306,7 +306,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAFlCAYAAAAd9qXYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACL8UlEQVR4nOzdd5xddZ3/8de5vc6d3mt6JyGBEHqQIiBSNIgIFkRdBd3i7m/XbbrrFlfddd01rF1BRSUiiogiQiBAGklIndTJ9Han3N7POd/fH3cyJCQDEzLJTJLP8/GYx8yce+653zuEmff93s/389WUUgghhBBCCCGOZ5nsAQghhBBCCDFVSVgWQgghhBBiDBKWhRBCCCGEGIOEZSGEEEIIIcYgYVkIIYQQQogxSFgWQgghhBBiDLbJHsDRSktLVWNj42QPQwghhBBCnOO2bt06qJQqe6vzplRYbmxsZMuWLZM9DCGEEEIIcY7TNK19POdJGYYQQgghhBBjkLAshBBCCCHEGCQsCyGEEEIIMQYJy0IIIYQQQoxBwrIQQgghhBBjkLAshBBCCCHEGCQsCyGEEEIIMQYJy0IIIYQQQoxBwrIQQgghhBBjkLAshBBCCCHEGCQsCyGEEEIIMQYJy0IIIYQQQoxBwrIQQgghhBBjkLAshBBCCCHEGCQsCyGEEEIIMQYJy0IIIYQQQoxBwrIQQgghhBBjkLAshBBCCCHEGMYdljVN+76maUFN03YfdewLmqZ1a5q2feTjpqNu+5ymaYc0TduvadoNEz1wIYQQQgghTreTmVn+IfDOExz/mlJq8cjH0wCaps0D7gLmj9znIU3TrKc6WCGEEEIIIc6kcYdlpdQ6YHicp98K/EwplVFKtQKHgIvfxviEEEIIIYSYNBNRs/ygpmk7R8o0ikaO1QCdR53TNXJMCCGEEEKIs8aphuX/A6YDi4Fe4D9HjmsnOFed6AKapn1c07QtmqZtGRgYOMXhCCGEEEIIMXFOKSwrpfqVUoZSygS+w+ulFl1A3VGn1gI9Y1zj20qpZUqpZWVlZacyHCGEEEIIISbUKYVlTdOqjvr2duBIp4wngbs0TXNqmtYEzAQ2n8pjCSGEEEIIcabZxnuipmk/Ba4GSjVN6wI+D1ytadpi8iUWbcAnAJRSezRNewxoBnTgAaWUMaEjF0IIIYQQ4jTTlDphKfGkWLZsmdqyZctkD0MIIYQQQpzjNE3bqpRa9lbnyQ5+QgghhBBCjEHCshBCCCGEEGOQsCyEEEIIIcQYJCwLIYQQQggxBgnLQgghhBBCjEHCshBCCCGEEGOQsCyEEEIIIcQYJCwLIYQQQggxBgnLQgghhBBCjEHCshBCCCGEEGOQsCyEEEIIIcQYJCwLIYQQQggxBgnLQgghhBBCjEHCshBCCCGEEGOQsCyEEEIIIcQYJCwLIYQQQggxBgnLQgghhBBCjEHCshBCCCGEEGOQsCyEEEIIIcQYJCwLIYQQQggxBgnLQgghhBBCjEHCshBCCCGEEGOQsCyEEEIIIcQYJCwLIYQQQggxBgnLQgghhBBCjEHCshBCCCGEEGOQsCyEEEIIIcQYJCwLIYQQQggxBgnLQgghhBBCjEHCshBCCCGEEGOQsCyEEEIIMU6rV68mGAyOfr1nzx5Wr14NQDAYHP1anDtskz0AIYQQQojJsnr1amKxGPfddx/l5eUEg0G+//3v4/f7eeCBB44798EHH+Shhx7i3nvv5XOf+xxOp5NMJkMsFuNHP/oRzc3NAMfdV5y9xh2WNU37PvAuIKiUWjBy7CvALUAWaAE+opQKa5rWCOwF9o/cfaNS6k8mcuBCCCGEEKfiSPgF+OEPf8jjjz/OHXfcwYEDB7G4vPSmLVx6/a30hNP0R9J0epfQdO+/0z/Yx3/98BdYrVYymQxWq5WvfvWrDA0NMW/ePFatWjXJz0xMJE0pNb4TNe1KIA48clRYvh54Ximla5r2HwBKqb8eCctPHTlvvJYtW6a2bNlyMncRQgghhHhbgsEgV1xxBQcOHADA6iumcOVH8c65As3y1pWqhp4j3fIqyX3rSLe+RkmBh127dlFRUXG6hy4mgKZpW5VSy97qvHHPLCul1o2E4KOP/eGobzcC7x33CIUQQgghJlF5eTkvvfQS8696F9bl9+CsmIamaaO32yxgt1pw2y34nHYCbjs+m8nLr+1FK6zCarPjnX0p3tmXokwTI9TNF585xKeuddFU6sPtsE7isxNvJp7Rx33uRNYs3wf8/KjvmzRNew2IAn+vlHrpRHfSNO3jwMcB6uvrJ3A4QgghhBAnltUN1rzayT/9Zg/eWz8PgDJNkoe3QfPv2fX8E8fNEAeDQVauXElXczMlJSUkvDX4l78XZ80cLA4XtpI6nmoO83Tzy9y9vJ73XFhDXYmXQrcdm1V6KkwlfZH0uM+dkLCsadrfATrwk5FDvUC9UmpI07SlwK80TZuvlIq+8b5KqW8D34Z8GcZEjEcIIYQQYix/bO7j/ke2jn5v6lli235LfNtv0CP5ThdXXXUV69ato7y8fPS8NWvW0NzczLx580YX+Kn+/WQyGe7/h6/xbFsGo3gauDz8eFMHT+3s5QPL61k+rZjqQjflBS4KXPYz/nzFsXTDpH0oMe7zTzksa5r2IfIL/96hRgqglVIZIDPy9VZN01qAWYAUJAshhBBiUiil+OJvdvH99Z0AWMkSfOY7JPY8z6xpjbz8yvMjC/wOsH//ftasWXNMV4sjX69atYry8nL8fj9XX301L7zwAg888ADBYJD/fvhx1qtZtA2nCadyrH6hhSd39HDjwkqWNRZRHXDTVOrD65SGZJNlOJFl/aHBcZ8/7gV+AG9cuKdp2juB/wKuUkoNHHVeGTCslDI0TZsGvAQsVEoNv9n1ZYGfEEIIIU6HeDrHbatf4tBACoB7L67jC7ct5Jv/99C4W8eNV+dwkr97YicbDw+RNfLHXDaNumIv71xQwYX1xdQVe6grduO0SV3zmfZq2xD/8bv9PP6py8a1wO9kumH8FLgaKAX6gc8DnwOcwNDIaRuVUn+iadp7gH8mX5phAJ9XSv3mrR5DwrIQQgghJtqB/ig3f+0lciPf//f7LuC2JbWn9TEjyRx//+tdtATjNPfGRo/XBFw0lHq566I6Cj12ppX5qCxwSU3zGRLP6PxkYzvP7OnjiQcun/BuGO8/weHvjXHu48Dj4722EEIIIcTp8OT2Lj7zsx0AuC3w+KcvZ15V4LQ/bsBj579WLeaLv21mWqmXZ/f2k9EV3ZE0xT4HD73QwiVNJRimomM4yYwyH2V+5zHdOMTE64ukWHdggJOprJCXMUIIIYQ455im4i/XbBsNygur/Wz4++vOSFA+wm6z8E/vns/c6gJuWlhFZYETgF3dUYq9drojKf7zDwcYiGbY0xNlT0+EjG6csfGdb3KGyc6uCKFUjkhq/K3jJCwLIYQQ4pyilOLu76znF1t7Afjwijp+/eAVFHocZ3wsmqbxwMqZXDWzjEW1ASr9+cC8vmWYwXiGD1/ayLfWtfD4ti4G41m2toeIpHJvcVXxdoQSWZ7Z04cyFW77+GvFJSwLIYQQ4qy1evVqgsHg6PfBYJB3/eOP2dgaBuB/37+YL9y6CItlcssbbruwltuX1HJBfSHVARcAr3WE+fZLh/nCLfMp8Tr4t6f3ksrobG0fpiuUPKlSAfHWDvbHaB1MkMzqRFLZcd9PwrIQQgghzkqrV6/mwQcfZOXKlQSDQYLBIMs/+NfsyRUDiq+9bzG3XFAz2cMcdePCKhpKPFxYX0hNYT4wH+iP8+ePbeemhVV84orp/PNTexmKZTnQH6e5J0pWNyd51OeGWDrHU7t6yRn5n2dPePybkkhYFkIIIcRZadWqVcybN4/m5mYWLFjAonfejXnBewD4xIoabl8ydYLyEX953Wx0U7GguoCqgBML0B1O88kfb6GiwMm/37GQ77x0mC1twwwns2xtHyaalrKMU9UXSbG1PUQmZxJO5TiZlyASloUQQghxViovL2ft2rWUlZURsRXhuPZP0TSNm+YU8blbl0z28E7IYbfytzfNRaGxoDpAqd+JzQLDSZ0HH92GzWLhK+9dxPbOMI+sb8eCxta2EL3h1GQP/ayVM0x+v6efeDpHKmcQSemcTFGOhGUhhBBCnNU0fzkVd38Zi8WC3rGDz984fbKH9KbqS7zcsaSGQq+DS5qKKfI4cFo1wmmdv/nlDtA0PnfjXCoKnPzL0804rBrNvVE6h5OTPfSzUiiR5fe7+0jnDJIju8SU+Ma/2FPCshBCCCHOSsFgkKtueBeOd38ei82GMdhF98//kWuuueaYRX9T0TsXVlHksVPqd3Ljgkq8LhsacHgwyVee2Q/A+y6q5/YltXz+yT3EUjoHgzEJzCdJKcWmw0P0R1KkciYZ3cRh1bj3koZxX0PCshBCCCHOSo/8dA2RFZ/C6vTgssAL/3gL8+bMprm5mTVr1kz28N7SX143m75IGtB439I6Am47AC8fGuQnG9sBuKixmM9eP5vVLxwilMhxsD9G+2BCOmWMUzSt86ON7SSyBulcvlJ5Rrmfa+ZUjPsaEpaFEEIIcdYxTZPfZWfhKChDA579q6uZXl/N2rVr+cY3vsEDDzww2UN8Sw67lc/dNIeBWJreaJqLm4ooHSkP+PmWTl7Yn58dry3y8BfXzeLb61oIp3IcHozTNiSBeTwO9MU40B9HN0wU4Hfa+NyNc07qGhKWhRBCCHHW+dqzB2gZyvfK/eWnVlBX5AXyi/7OhqB8RF2xl1uX1OBz2XDaLATcdioLnCjgf54/yN7eCJAPzJ+6egbffamVUCJL22CSwzLD/KbSOYNvrWshns6RM0ED7riw5qQ3p5GwLIQQQoizyrb2EP+7tgWAv795Dkvqiyd5RKfmnQuq8DislPtdXDevAtAo8znIGYp/eWovvZF8J4xpZT4+fGkDP9zQznAiS/tQkpZgXALzGLpDSTa3DmOM/Hhqi9y858Lak76OhGUhhBBCnDViqRzv/+Z6ABZW+7n/iqnd+WK8PnPNLLrCKYLRDO+cX4HbYcXnsBLN6Hz+17uJjuw4N7cqwHsvrOXRTe0MxzN0hJIcDMYkML+BYSq++3Ir8bSOAuxWjb+7eS6alm8apxvj77QsYVkIIYQQZ41P/mgzGQU24NGPr5js4UwYn8vGjQsqqShwEk3rVPhd1BS5sQC90Qxf/O1eDDMfiJfUF3HD/ErWbO1iMJalO5SmKyR9mI82GEvz2529o5uPXDWrjJpCD5Avz9jZFRn3tSQsCyGEEOKs8PPN7bx8OAzADz56MX6XfXIHNMFuXVxDZyhFY4mHlbPLyOgmF9QFANjXF+Mbaw+OnrtieimXTS/hNzu66Y+kOdAfYyA2/i2cz2VKKX6xpYtoWgfA67Ty4MoZAMTTOi8fGmA4mR339SQsCyGEEGLKax1I8Ne/3A3AqqW1XDGzbJJHNPE0TePjV06jN5rm4ECCO5fVEknlWNZQCMBLBwZ4Zk/f6Pkr51SwsLaQ3+7qJZU12NMTJSZbYxNN63z75cOj3//JldOxWiwMJzL8fk8v9cVe/vy6WeO+noRlIYQQQkxpWd3kvf/3EgAlHiv/8Z6Fkzyi02dRbSF2q4WLG4toHUwyq6KAdM6kttBFxlA8vrWTg/2x0fNvXFBFXbGHx7Z0okzY2RUhnTMm8RlMvpcPBomk8rPK1YUurpxVRnc4ya+293DLBdW8Z+nJLfKTsCyEEEKIKe3zv9rFUDIfAH/5wBVYLOd2fPn0NTPYcHiIumIPy5uKUQrK/E5sWr5++QevtBI6qozgzmV1uO1WfvpqB6ap2N0dOakFbOeSdM7g757YPfr9526cS8tAjN/t6uOvrp/NssaT75xybv9rE0IIIcRZ7YX9QX66pQuAz98yl4YS7ySP6PQr87uYXx3A57SwvTPMvSsaiKZ1VkwvBWBPb5Tvv9w6GoitFo0PX9ZE1jD57a5eEhmd/X0xTPP865CxpztMeGRW+ZKmIqwWWLt/gH+/YyHVRe63dU0Jy0IIIYSYkkKJLPf94FUAFtUU8JHLpk3yiM6c+y5r4tW2MDfMr2BnV4T51QGGEhkW1gQwFbzWGeLRze2j5/ucNlYtrSMYzbCtPUx/LE3bUGISn8GZZ5iK+x/ZCoBVgw+uaOI3O3r5/C3z8Thtb/u6EpaFEEIIMSX9xc+3YnKkTdwlkz2cM8pus/DepbXs7I5Q5ndyUUMRdqsFv9OG32klktLZ1R3hub39o/epL/awYnoJe3qj9IbzYbkvfP60lOscihNK5hc4vufCGn63p5c/v24WpT7nKV1XwrIQQgghppwX9wdZe2AYgO98+CJ8znOrTdx4vGNuBQPxDAtq/GxqG+aaOeWEklmum1cJwL6+ONs7Q+zri47e55JpJdQWuli7P0g2Z7K3L0YkdX50yHjPNzcA4HNYQdNYdWEdsyr8p3xdCctCCCGEmFISmRwf/WG+/OLSacWsnFM+ySOaPJ+8ajp/3BvkurkVJDM6VQE3B/qjvGPkZ7Lx8DDP7uk7JhDffmEtTpuVX2zrwqLBnp4IGf3c7pDRMRRnKJH/GVw6vZjFtYVcOXti2gtKWBZCCCHElPL3T+xGV6AB3/rgsskezqSaUe6nyONAN00SWYN3zCnH47CjlKKm0E1aN9nVE+Gnm9pHd/izaBofXNGAhsaarV3ohsmB/nN7S+w7/i+/BXqZz8GMCj/vX14/YdeWsCyEEEKIKWNL+zBPbO8B4H/uWnzO7dL3djywcgbrDg5yw4JKtnaEmFHuIxjL8K5FVVg06I1kGExk+fX27tH7eBw23ru0lpxu8tLBQQZimXN2S+x9vVEG4/lZ5UW1Af7iutlomjZh15ewLIQQQogpIaub3PvtfN3pwmo/tyyumeQRTQ1+l51Z5T66QilmVfiZXuqlKuDi5UODvG9ZHQDbOkKEk1m2dYRG71dd6Gb5tBLaBpMMRLMc7I8RSZ799curV68mGAwC+a2tb/9GfsOacr+Dr9+1BJt1YuOthGUhhBBCTAn//vQeUiOltQ/ft3xyBzPFfPTyJjYdHmJxXYAd3REW1hZS7ncSTevMqvCRMxQvHRpka/swg/HM6P0uaiymosDJM3v6sGgau8/y+uXVq1fz4IMPsnLlSoLBID9dl/83owyDax0H8Z2GdyIkLAshhBBi0u3rjfKD9R0A/Mut8yk+xXZf5xqXw8aCmgAHBxLcvLCKcCKL12GjfTDObRfUYLdqDMaztA0mWbOl85gd/N67tA6rVWPN1k6UUuzrPXs3LFm1ahXz5s2jubmZBQsX8je/OQSApWMTf/ah956Wx5SwLIQQQohJZRgmd38nv0CrsdjFPSsaJ3dAU9S9KxrY1h6iwGVHV4qLm4qZXVnAb3f18oGRBW17e6O47VbWbO0avZ/VovGBi+tJZA02Hh5mOJmhczg5WU/jlJSXl7N27VrKyspIVS/FYrNjZpI8++UHKC8/PV1TJCwLIYQQYlJ947kDDCfzpQGPfvzSSR7N1OW0WVlSV8iBYIxbFlWxtT2E22mjpshNMmsyt9JPzlS8cHAAp93C+pbB0fuW+JxcM7ucnd1hwgmdloE44WR2Ep/NKbK7KLrukwBk1/+YAvfb36HvrUhYFkIIIcSk6RhO8LXnWwD47LUzqS50T/KIprb3L69nZ1eYjK64oK6QmoAbr8PKjs4Q91zSgMNmYSieZX3LIC3BOD1H7eC3pL6IphIvT2zvwm6zsLs7Qjp3dtUvB4NBVq5ciT7vXVgsFvSBVvo3Pzlaw3w6SFgWQgghxKS599sj/XG9Nh64ZsYkj2bqs1stXNxUwoH+GEsbitjXF6Wx1MvVs8t4bEsnH1rRAEDrQGK0ndzRgfj2JbU4rBZ+saULTdPY13d21S+vWbOGAz3DFCy5EYBvfuKG0RrmNWvWnJbHHHdY1jTt+5qmBTVN233UsWJN057VNO3gyOeio277nKZphzRN269p2g0TPXAhhBBCnN3WbOmgPZwvBfjZJy7DYpE5vPF479JamnujRFI53n1BNYOxDD3hNIUeOw6rhfnVBWQNxY7OMNUBF49u7hjdkMRq0fjgikYG4xm2tg0TTmZpH05M8jMavwceeIDZn/hvsFi4Zk4Z77p4JmvXruUb3/gGDzzwwGl5zJP5V/lD4J1vOPY3wHNKqZnAcyPfo2naPOAuYP7IfR7SNM16yqMVQgghxDkhlMjwV7/YBcBHLq1nerlvkkd09rBaNC6bUcLBYIwSnxO3w8ai2gCzKvz8bncff3LldFx2C0OJLOsODdJU4uXpXb2j9y/yOHjXomo2HB4ikdFpHUwwdFS7uans2T19xMn/W/n8LfOB/KK/0xWU4STCslJqHTD8hsO3Ag+PfP0wcNtRx3+mlMoopVqBQ8DFpzZUIYQQQpwrHvjxFgB8do2/vWn+JI/m7HPrBTXs740RTmW5aWEVOzojxNM6715czY83tfPhS5sAaB9M8ErLAArY2RUevf+CmgDzqgI8uqkDl81Kc2+UVHZq1y/ndJNP/ngrAPdf3kRDifeMPO6pvt9RoZTqBRj5fKRnRw3QedR5XSPHjqNp2sc1TduiadqWgYGBUxyOEEIIIaa69YcGWd8aBuCR+1dgt0n5xcmyWDSuml3GwWAMUymum1eB22GjaziFqRQVfieLagNkDMXhgQSdw0le6wgRjKVHr3Hr4mq8Ths/f7UTq6axtzeCMYXrl7/6h33oChwW+LNrZ56xxz1d/zpPtCH3CX/6SqlvK6WWKaWWlZWVnabhCCGEEGIqyOQMPvS9TQDcvKCSCxuK3uIeYiw3LaziUH+CcDLLtDIfWcOk0GPn1gtqeHhDGw9ePR2vw8pAPMv+/hilPiePb+se3cFP0zTuv3wa3eEU2zrCRNP5koypaDCW5lvrWgH4wq0LTstOfWM51bDcr2laFcDI5yM9O7qAuqPOqwV6TvGxhBBCCHGW+6ff7CanwAZ8ZdUFkz2cs5qmaVw3r4JDA3HSOYPbFlfTF0mx8fAQNy+s4rGtXXzq6nyHkfahJOsPD3FRYxE/3dw5uuDP7bDyiaum8/vdvaRzBu1DCQaOmn2eKu753kYAqvwO7rqo7i3OnlinGpafBD408vWHgF8fdfwuTdOcmqY1ATOBzaf4WEIIIYQ4i+3vi/Ho5vzOct/80DI8ztO3kcT54h1zy2kdTBBLZ3HarKyYXkqx14GmafRF0tQUubhmTjm6qegOpXhmdx/zqwp4Zk//6DUqC1ysWlrLQ2tb8Dlt7O2Nkszqk/isjvXr7V3s68vPeH/97gvPeNeUk2kd91NgAzBb07QuTdM+CnwJuE7TtIPAdSPfo5TaAzwGNAO/Bx5QSk3tqnEhhBBCnDZKKe761isAXNwY4Nq5FZM8onODpmncsqiag8EE8YzOotpCUjmDrlCKT141nf99/hAfv6KJqoCLoUSW/miGja1DmMpkT09k9DoXNhSzoCbAd9Ydxm610twTRTfMSXxmedFUlj/92Q4A7lhSxcVNJWd8DNqRafipYNmyZWrLli2TPQwhhJiScoZJIqOTyOgcWYNj0UBDQ9MY+dBw2ax4nVZsVlk0JaaO77x4kH/93QEAtvz9tZT6nJM8onPLP/xqN1fPKqPM7ySRMXh0cztuhw233UIwluHauRX8v8d3YpiKeVV+Lp1eSiiZ76RR7ncB+Rc0//67fSxtKOKixiIqAi5mV/jRtBMtRTszbv/GS7zWFcVr03j1H66f0HcjNE3bqpRa9lbnyfsfQggxRR0Jx5FkjsF4llgmh8br4Xh0qkO9/kkpBSPBudBtp8znwu+24XXYsFgm7w+eOL/1R9KjQflfb5svQfk0eM/SWta3DOK0Wwi4HcyvDrC3N8olTcU8vKGNZFbnAxfX88jGdjpDKba0D/O+ZfU8sa2b911UR6EnX7rx2etn8blf7mJelZ+ecAqH1cK0ssnpgf30rh5e64oC8IOPLp+0sh2ZdhBCiCnEMBXBaJotbcO8cmiQ7Z1hOoaTKBQlXifFXidFXgeFHgdFRz68+Y9ir4MSn5MSr5Mit4NMTnEwGGNre4hXDg3S3BNhKJ45q7a2FWc/pRTv/06+/KKp1MPdyxsmeUTnpsV1hQzEMqR1A8NUXDq9BKUUf2ju57PXzeLh9e1cP7+SBdUFxNI60VSOJ17r4tbFNTy6uYNEJl+j7LRZ+asbZvOffziA32mjbTBBVyh5xp9PJJXjUz95DYAPLK+dlPKLIyQsCyHEFJAzTHpC+VXszb1RlIISbz74FnocOG0ntwmqpmm4HVaKR67hd9mJpnR2dkXY1DpEXzg1JeoRxbln9erVBIPB0e+/9exODg/muyv84MMXTepb+ue6uy6qZ19vjEgqi6Zp3HFhLRYNXjo0xG1Lqvn6cwf482tn4XPaODyYJGcoHtnYxqqltTyysZ10Lr+8rCrg5j1La/nib/dS5HFwoD9GMHpmO2Tc/8N8e0G/Q+Mf37XgjD72G0lYFkKISZTRDTqGEmw8PMTBYBy33UqJ14nLfnLh+K1YLRpep41SnxOH1cq+/hgbDw/ROZwkq0toFhNj9erVPPjgg6xcuZJgMMieli6+9McOAK7yB2kslS2tT6fZlX6iaR1DKXKGSYnPydyqAjqGEjSV+vA5bbx8aJAHV+bbye3qDmOYip9s6uC9F9by8Ia20RfRV8wsY8W0Ev7l6b0EXHZ290QIJbJn5Hn8blcPr7bnFx/+6GMrcE7w78OTJWFZCCEmQTpn0BKMs7FliMODCfxOO8VeB/YzsCjPYbNQ4nXiddhoGYizoWWQlmB8dFZJiLdr1apVzJs3j+bmZhYsWMAN//4UWCww3MGX779psod3XvjA8np2dUWIpPPB9urZ5fjddh7f2sVHL29ia3uIigIX18+rQDehbTBBOmfwq+1dvHtRNQ9vaMccaf7wrkXVLKoN8OVn9lPgtLOzO0I0nTut448ks3xypPziI5c1sLhu8jetkbAshBBnkFKK/kiaV1uH6QmnCLgdlHidWCdh8Z3Nmg/NAbeDnpGNDFoH4+SkPEO8TeXl5axdu5aysjKSVYuxldahDJ1f/dW7qKiQVnFnQkOJl6xuYgFS2fwL4Lsvrkc3FX/Y0897ltbyo41tfGB5PQ3FHnoiaQbjWYLRDOsODnDt3HIe3dQxumnJHUtqmVHm42vPHcRts7CzMzyhPZjfWLbzoe++DECBy8rf3jh3wh7nVEhYFkKIMySVNdjZFaG5L4rXaaPQ45iUkPxGVotGodtBodtB+1CSTYeH6A2nZCGgeNs0TyElN3wagOyGR6gOSPeLM+neFY1sbQ8THwm1dquFD1/ayK7uCIVuO3XFHn66uZPP3zKPUp+D/f0xDKXY2xdjX1+UZY1FPL6te/R6d11cT1XAxTfWHsKiaezsDE/IO1FvLNv58bo9bO9JoUyTW/1t2E9yrcbpImFZCCFOM9NUdIWSbGodIpHRKfU6z0i5xcmyWjRKvE48Dhv7+mK82jbMcCLLVOrHL6au1atXs2fPHq5euRLL9X+FZrGQ626m75VfjoYhcWZUBlxYLRYcVo3YSNlEmd/JbUtq+P4rrdy5tI5YOse2jhBfuGU+XoeVV9tCBFw2Xj40RDSVY0a5j59v6cQYedH8oRWNFLjsfPflVnK6Ykdn+JRLMo4u25l/+Tv5u6daALDs/R2fvveOU/shTKCp99taCCHOIfGMzmudIQ4F4xS6Hfhd9ske0luyWy2U+pxYNI0dnSF2dkVG/+AKcSJHZgivvfZaurwzcRZXo/Qc/b/6EpWVlTQ3N7NmzZrJHuZ55d4VDWw4PERGN0drkC+sL2JWhZ9HN3dw86JqdnVFSWUN/u7medgsGs/vH6ChxMOvtnfjtltYMa2E7750mOGRhX0fv3IadovGIxvbMUzFlrZh2gcTo4H6ZJWXl/Pcc89TuuhKPLd+Hs1iRR/qYv13Pk95efmE/SxOlYRlIYQ4DUxT0TGUYEvbMDldTVpd8qlw2a2U+lwkswavtg6zry86WgMpxNGOzBAOJEyKVt4PwNDv/5fZ9ZX88Y9/5Bvf+AYPPPDAJI/y/FLsdeBz2nHbrYSTr3exuOeSBjqHk+iGSU2Ri3UHBnDaLPzFdbMA+PX2HuZXF/DD9W1YNY0PXdrIkzt62NEZRtM0Pnn1DAyl+N7LrSTSBq1DCba1D7+tF9QZ3eC/X2jDc/2fo1ltZMP9ZJ/64pT7XSnbXQshxATL6AYH+mMMxjMUuc++kHwiSiliGZ2cYVJf7KGmyH3SvZ/Fua2/v59l//pHrJ5CUm3bUc9/nd27d0+pGcLzTSyd4/9eaOGqWWVo5HuvHzn+t0/s4t9uX8CjmzqxWTWumlXOnp4I3325FZtF466L6tnZHeaWRdVcMq2E5/f1E07muHVxDbpp8qMN7WQNE4/DypWzyihw2ZlW6qW22DOu33nhZJaPfX89r7aFwObAyCRIP/aXDPZ0Mm/ePNauXXva/+2Md7trmVkWQogJFE3n2NoeIpLMUep1nRNBGfKbnBS47BS6HXQOJ9l8eHh0dkoIgC//sQ2rpxBTzzL4m69O9nAE4HfZqS50o4BENjdajuF32fnIpU185ZkD3Luigaxh8tLBARbUBLhtcQ26qXh8Wxc3zq/k6V29/HB9K1fNKmdpQxHfffkwyazB/VdMY3lTCemcyfpDQzy9q5etHSFeaw8RTecwTDXmeofdXRFWfXM9r3ZFweYAPcfPP7qUPa9tGa1hnkplOzKzLIQQE0ApRV8kzb6+GF6HbXQG51ylGyaRdA671cKMMi+l/nPnhYE4eY+v38dnf30INI302ocwW19lYGDgjM0QirEZpuKff7OHe1c00BVKUeJ9vTPJt186jDIVdy6rY83WThw2C1fOLOPxbV2sOzhIodvOA1fPYEvHMMPxLJ9+x0xcNis/39LBvKoCLqwvwlTw1M4e0jkTqyXfQ/7ymWX4XTYSGZ1ERieZNUhmdRIZg3Aqy6bWYXpCSTIGgMkXr2/i3mvyu/QFg0HWrFlzRsp2xjuzLGFZCCFOkW6YHBqI0xtOUeh2YJuCnS5Ol5xhEk3nsFks1Be7KS9wTfjug2Jq64ukuOTfnwM06N7F5v+8D4CVK1fS3Nws9cpTwL6+KBtahlhYHcBQCo/DNnrb/71wiIxu8p4La3h+/wCmqbhiZikPb2hne2cYgBsXVDK9zMcf9/Zzz/J6FtUWsrMrwu6eCIapqC/2UFfsZu2+AWZX+BmIZ8joJgUuGz6XDaUUveEUA/Esad1kW/swiayJBty5rJZ/u2PRpLzYlrAshBBnQDKr09wdJZHTKXI70LTzc3ZVHwnNinzbqqqAmwKX7bz9eZwvdN1g0T89QzKncJDh2U+voKGmCjizM4TirT30wiFWzi6jP5qh0H1sj/cjHS9uWljF/v4YkVSOa2aXs6U9xE82taObisoCF/deUs/vdvexoCbA3RfXo2kaSik6hpNsbQ8Rz+iEkzmyhklWN4mk8ov+3A4rFX4nHoeVFw8MMBDPLzhcWl/II/ctx+uynXDMp5uEZSGEOM3CySy7uiLYrBZ8zsn5ZT/VKKWIZ3QyuonfaaO+xEPRm2zjvXr1alatWjX6Nv2XvvQlAP7mb/4GkMA11d309XU098YA+MOfX8msCv8kj0iMJZ0z+I/f7+PDKxpoHUoeU46hlOKH69voi6a5dFopWcOkYzjJNXPK0YD/+uMBWgcTaMCti6tJZg16I2kWVhdw+cxSaos8oy+MI6kcu7sj1BS6qS/xYNE0Xj40wPdfbh0NyQDLm4r4f++cw9KG4jP8k3jdeMOy/HYXQoi3IRhNs6cnit9lk64QR9E0Db/Ljp/8H+fm3iiQX1BU5nMQcDvwOq3YrJbR3rwPPfQQa9eu5fvf/z6f+9znRq913333jb6VD0hgnmL+4Ve7RoPyl+5YIEF5inPZrbxzfiXbOsLUl3iIZ/TRF/mapvHhSxv54YY2NrYOMaPMx4KaApp7owwnsvzDzXP5/Z5+frG1k19t76G+2MO9lzTQE07x8IZ2oqkcboeVBTUBVs4u57IZpXSHUvzLb5vZ2xslnnm95aTTZuGK6SXMri6Y1KB8MmRmWQghToJSiq5QigPBGEXusWdMp6JQMkNvOE06Z5I1TDI5k4xh5D/rJpqW7wdd6nPmg63HMSH1x0opMrpJKmeMrsYvcNvRUhHef9tN7N+3l9LSMkzTZHh4CDQLJTWNWFx+QqEhmhoa+dYPfkB5aRmaAotFw2qBIq8Tr8OGy26Rco8z7Pe7evmTn2wD4MZ5ZfzfBy+e5BGJ8frKM/t4/0X1HBqIH1eOYSrFw+vbiKVzOGxWLplWwoxyH0/t7MFhtTCz3M/qFw7RHU4B4HfZKPc7Kfe78DmsRDI5BmNZsoZJNJUjms5vt60BPoeVgMfB+y+uo7k3xtfuvADHJK9vkDIMIYSYYKapODwQpyOUpNgzNfsnh5JZ2oeS9EXSDMbSDCazDMYy5AyFy26h2OPAbrNgt1qwWzUcNit2i4bDZsFUinAyRzSVI5bOkdbN0Z253viXwmmz4HHYKHTbKfY68DrzHUA8DitumwWH3YrDasFus2DVNCyahqbla5uDsTSdwwlaB1N0DkbYs3cfyuHF4vKi2ZxoFuu4w69dg4ZSD1fOKued8yuZXeXH67CdV4ssz7SOoThXf+VFTKDUa+flv74Gl0PeqD5bRFI5HnrhEB+8pJH9/VHKfK5jbjdMxQ/Xt6JpEEvruOxW7lhSi6kUT+/qpbrQTftQgmf29JN9i9aRVg18Ths1hW5cDhufunoaz+8LcvfyehbUFJ7GZzk+EpaFEGIC6YbJ/r4YA/EMxZ6ptZBvOJFlQ8sgg/EsoEhkDKxWDZ/TxsxyP/OqCya0ptpUilhaZyieoT+aoT+WJpHRSeUMMjmDjG6SzBrE0zqxTI54On9bVjcxxvEnRymFUiZKz6IBdqcbDTCB8eyq67RqLJ9WzBduXcC0Ut/o8TfWR0s99MlLZXUu+tc/Es8YaMBzn72KaWW+t7yfmFp+t6sXj8NKocdBNJ2j0O045nbdMPnB+jaWNxazpyfCzu4IVYVu7r+8ia5Qihf2B5lV4UcpiKRzRJI5Iqkc4VSWSCpHNJnDAGaUeRmIZbh8RinXz69k4+EhZlb4ueWC6sl54m8gYVkIISZIOmewpydCPK1TfNSimCMMU40ExzT9sQyD8Uy+If/I7V6HlellPqaX+fBOUGgNJbKsPzzEYCxDkddBXZGb1zrD1BS6uWx6Kb4zsLrcMBU9kRRtgwnahhIc6o/TGUoylMi+ZajVRj7MbBo9k0DFgmT3vUCoeT1GMkJJcREWi4WBgQHmzp3Hb595luLSMgxTYZiKaCrLCwcGWH9oiLahBEPxDOGUftzjVBU4+IdbFtDywuN85jOfprIyv/1yWVnZaD30qlWreOyxx07Lz+hcks7pXP+1dXQM59+C//pdF3Dr4tpJHpV4O5RSfPGpvXzmHTNoGYiTyBgUeY4NzDnD5OldvYSSOa6YWUrHcJKndvRQGXBx98V1ZA1FJmcSz+gMxjMMxDOEEll0M3/9yoCLTa3DfPbaWRR5HRwMxsiZio9dMW2SnvXxJCwLIcQESGZ1dnble4kWuOyjxw1TsXZ/kK5QCpfdQonXQXmBi4oCF6XeY3stx9M6LYNxWoJxktn8QhePw8qF9UU0lnpPajyHgnFePDBAqc/BiuklZHImz+3rpyrg5po55aethjqe1mkdSnCgL0ZzX5S2wQSD8cyYodhtt+J1WjFNhW6agIbVki/FsFss+Fw2CiIt/PrLf8qc6Q288IYFfv/+7/9+zAK/N+vVe6QmOprKsu7AIM/vD7K+ZZBw8vXwrAGZrb+g/6U1kEtRWFjI8PAwTqeTTCYjgfktZHSDd//Py+wPxgF4z4XVfOW9i7FMwVIkMT69kRS/2NLFn1w9neaeKKFk9pgOGUfkRnb3ax1MsLShmFRW56mdvRR5HVg0sFvzJVlOmwWrRSOR0ekOp7BbLfzVDbNJ5wz6o2n298f463fOmVLvyklYFkKIU5TM6rzWEcaiaaNlDIapWHdwgMMDCa6eXcb0t/kWdCKjs6l1mPahBHXFHi6fUfqmi+kiqRxP7uihssDJNXMq6IukeXZvHxUFLq6dWzGhIVk3TPb3x9jcOkxzb5SecGp0oc4bBdx2fE4rfpedApedhhIPVQEXB/pjHOyLE8vqWDRwO2z4HFbKCpxcMbOM2xfXUOh1nLbWcaapeLV1mC8/s5etHZHR40qZJA9sJPTHb2EmhlFKjQZm2TzjxNI5gzseemW080VtoYs//PlVeKRd4llvzZZOSv1OrpxZxv6+KP3RDCXeE5eZKaXY2h5iR1eYaWU+fE4r8YzBcDzDUCKH1aJht2qU+JzMLPcxq8JPLJ0jkdV58cAAX7hl/pRbSyBhWQghTkEio/NaZwibZsHrtGEqxSuHBjnQH+OKmWUT2iarfSjBy4cGUcAVM0ppKHl9ttkwFX9o7mMokeXWC6qxaBqPb+uixOfkurkVOGxv74+PUorhRJbucIrucIqecIreSJpgLMNALEM8c2w4tls0aorc+Jw27FYLhR47lQVuFtUGmFnhw6ppbDg8xIaWQVoGEmR0E6fdQlOJF6/Ths9p49q55VwyvZQij/2Mzi6lsjo/eKWV/1t7gNhIm1fTNIm89GOir/4SDF22ZR5DOmdw57fWs7Mr3wIw4Lbx209fQW2xZ5JHJibKjza0UV7g4rq5FRwMxugO57fEtrzJ/6MH+2O82jZMZcDNtFIvtUXu44JwLJ3DMBVP7+7lb2+ai/+od+amCgnLQgjxNsUzOts7QtitFtx2KxsPD7GnJ8plM0qZW1Vw2h43nTN4+eAgHaEk00q9FHsdbDg8xPXzKmgq9XGwP8YLBwa4c1kdAff4//AkszotwTgHg3FSudf7nXqdVsLJHPv7YuzpiR7T8cJlszCtzIvfZcfrtFHsdVATcDOnyk9NoXs07GZ0gzVbOnmtI0wsncNUUOSxU1PswWm1UFXo4spZZcytLKDU55y0t+2DwSArV67kQG+Yktv+Fld5IwB6MkL2xW+z+9nHJCi/QSprcM/3NvFaewgTcNo0nvjUZcyrDkz20MQE+9nmDnwuGzcvrKJlIEHHcOKUOv7E0jk0Df7Q3M/9V0yjptA9wSOeGBKWhRDibYilc2zvDOOwWnDarDy6uYP51QVcWF90xsYQz+h8Z10L8YzB4rpC3jGnnLX7gyjg5oVVbzorqxsm7cNJDvTHGBrZLcvtsDKj3MeMMh8Om4Ut7SFePDDAq63Do62fLBrMqSwg4Lbhddoo8jioK/awoDpAmf/YOsacYbKnJ8LTu/oIRtOggQUNu02jMuDC67CxsDZAU6mXphIvjaXeSX/79cgGKEdKLlxNSyi97e+xOvLPbXqRhW995HJmlMvGGpB/gfXhH2xma1sIQ4FNg59+YgXLGoqmVM2pmDhPvNaFacIdF9bQMZSkZTB+UoHZVIp4WidrGATcdta3DHHVrHIW1k7dF1cSloUQ4iRF0zl2dIRHd+T70cY2blxYRV3RmXvLuS+a5levdXPP8gZ8LhstwTgPvXiIaWU+7r6oniKv47j7GKZiR1eY3d0RLBaNaaVeZlf4KfE5j7nuL7d1se7AAIns67PLNYVuKgqc1BV5mFbmY2HN8eEYIBhLs7U9xEAsQyiZJZ7WqStys7MnimGY1Bd7KPQ4uGxGKVUBF4apmFPlp8zvOu5ak+XOO+9kzZo1o4G5qLgUY9Y1BK64B4slH+bvXV7P3948F/d53Dc4kdH52COvsvnwMLrKL4783oeWctXsiinZW1xMnN/u7CWWznHXxfV0h1IcCsZRKCxouB1WnLbjNwDKGSbRdA6AqoCLqoCL3+7qo9Tn5Lp5FZPxNMZNwrIQQpyEaDrH9o4QbruNZNbg51s6ueuiuuPaKZ1O+/qibDw8zAeW12O3WmjujbKhZZD3XVSPaSr+uLefeEZn5exyqgvdNPdG2dEZBmBRbYD51YHjwkx3KMWarZ2s3R8c7VxR5LFTV+xhflUBl80opb7Yc8wfQKUUvZE0e3oi9EUzAJT6HNQXe9jUOkxFgZPt7WEODsSpDrhZUFPANXMqKC9wMpzIEnDbmFsVwO2YetuAHwnMR2qUBwYGuPZdd2Bc+jE8dXMB8Njg4Y+u4KKms2Mr3okUSmT41E+2sbU9RHakKfb/3LWYGxZUyrbu54k/7OmjP5rm3hWNGKYintGJpnIEY5l8eQVgtViwWTRSOQOn3UJ9sYcyv5O9vTF+vb2b6+ZVcOn00sl+Km9JwrIQQoxTJJUPyh6HjWAswzN7+rj3koYJ2ep5vF45NMhAPMOtF1SjgCd39OC2W7l+XsUxQbY/muI7L7USTuaYVeHjzovqjttQAPKLBh/b0sVLBwdGa5GbSry8a1EVK9/QYs5Uis7hJLt7ooQS+dKNqoCL+TUBKvxOcobi19u7sVk1dMPkie09eB027lxWy9Wz89fK6AaRVI6mUi8NJd4pPQM51uYki69fxb3fe5Uje5Ldc3Ed//ju+TjOg5ColKJ1MMEDP9lG+3BytMXhF989jzuW1k1Yf3Bxdnhhf5BDwTj3v6Encs4wiad1QsksyaxBVcBFkcdBdzjFjze2M7vSz22La86aloISloUQYhziGZ1t7cO47TYO9MfY3R3hfRfVn7Gwp5Ti1zt6KPE6uGJmGbph8qON7Vw+o5SZR3XcSOcMnt7VS85U3LywCp/TRk84xSuHBklkDRZUF7CkvohDwRjfe7mVvX35Nl8WDS6fUco9lzRQFcgvsjHMfDBq7o0QTemgQX2Rh/nVBceUbgC0Dib43e5e6ovc/HxLF6ZSfOLKaVw56/XFcNF0DqUU86sDJywTOZukszof/O5GNo+0myvy2PjJ/Zec04vaDFOxqWWQ//fLXQzG0qT1fC74s2um85HLpxPwTL0uBuL0W98yyIsHBvA6bMyp9LOotpCKAucxL94jqRyPrG/DZbdyzyUNU/LdpDcjYVkIId5CKmuwtWMYu8XC5tZhElmDmxdWnbHHzxkmP9nUwSVNxcypKiCVNXhkQxvvXlx9TLB9bl8/veE0Ny6spPwENcChZJY1WzpZd3CAyMgudlYN3jm/kjuW1lLudxGMpdl0eJhwKodFg6ZSL/OrAyfsqqEbJgeCMX65rZt0zkA3TDpDKa6ZU86HVjQes1hvOJHB77IxrzpwRmfiT7dndvXwiZ+8Nvr9J6+czl/eMAvrFOsTe6rSOYMnXuvia88eZDCWGZ1V/8il9fzJVTOpCEydmnMxOTK6wf6+GDu7IvRH02iAw2bBYbMQS+t8cEXjCdc5nA3OWFjWNG028POjDk0D/hEoBD4GDIwc/1ul1NNvdi0Jy0KIMyWdM9jeGUYp2NAyiMdh47IZZ67GLp7R+fHGdm5bXENlwEUklePRzR28/6I6Cj0OlFK82jbMzq4I75hbTlPp65ufKKXoDKXY0jZMLK0zEM+wtT1EPKNj1eDymaVMK/XRG0nTE06RM00qClxcNbOM2mIPmZxBRjdJv+FzKJklnTPJ6AY9oRRXzSrj+X1BhhJZ/vQdM4+Z6VZKMZTIUup3MKey4LTtHDiZwsks7/r6Oroi+brtCr+TRz+2nOnnSMeMSCrH6rUHeWJbNwMjnVM04M/fMYNbl9TScJK7S4rzRzpnEE3lKC84u19MTcrMsqZpVqAbWA58BIgrpb463vtLWBZCnAlZ3WRnV5isnt+pLpzIce0ZXLWdzhn8YH0b9yyvx++y0xdN8+vXuvngikbcDit9kTS/2dnDsoYiloy0rFNKcSgYZ2tHiEzOpL7EQ3XAzY82trGjK18ysKC6gFsuqKZ9KEnOMKkr9nBRQzFep5VgLEPrYIJ4Rsdlz69qd9ksOEe+dtqtBFx2tnaEaB2M43VY2doeBuD/vXPOMTPQplIMJTJUF7qZWe6f0vXJE+G7L7bwL7/bN/r9A1dN47M3zB7toHE26g0l+eJv97Lx8BDDyXwnA4cV/vGWBVw2o4TGEq+0iBPnvPGG5Ymu2H8H0KKUapf/yYQQU5FumDT3RknlDIbiWQ4PJLhzWd0Ze/ycYfLwhjbuWlaH32Xn8ECcFw4McN/lTditFra1h2jui/LhSxuxWTQO9MfY2h4iZ5hML/PlF8+M7OL3P88dRDcVPqeVd8zJh/2MbnL7kprjSiIqClxUvMksUCpr8PMtHRR5HCTS+U1MyvxOPn3NzGPCsGEqhhMZGku9NJWeH4Hq/qumc/MF1Vz7X2tJZBWrXzzML7Z1caPrAJ+69/iFglN5y+yMbrC7K8K/Pb2XA8E4sZFtzEu8dv7p3QtY1lBE5RTdQEKIyTLRYfku4KdHff+gpmkfBLYAn1VKhSb48YQQYtxMU7G/L0YklUU3FC/sH+AjlzWescc3TMUjG9q5dXENRV4HO7rC7O3NB2MN+NX2bgpcdi6fXsovtnaRM0xmlPuOCb/7eqP893MH6Q6nAJhX5aexxMuyxmIuqA28rfDaG0nx+NYuPE4bGnB4KMGKphJuv7D2mPN0w2Q4lWVWhZ+682y746pCN7u+8E7+7em9fPflNvpjWX4QruOR+7/IK9/6O6xWCytXrqS5uRlgSgbmgViaX27r5mevdtATSpEZaQ03u9zH39w4hyUNRRSewVaJQpwtJqwMQ9M0B9ADzFdK9WuaVgEMAgr4IlCllLrvBPf7OPBxgPr6+qXt7e0TMh4hhDiaUor9/TF6w2ncdiuPbGzn/pHZ3DP1+D/e1MGVM0tpKPGyvmWQ4USWdy2qJpnVeXh9G16nDVMpGkq8rJhWcszssGEqfrG1k0c3d2AqCLhtLK4r4j0X1tJ0CrWl2zpCvHJoEJumcfnMUr790mHuv3waF9QVHnNeVjeJpLPMrwqc94u+OoYTXPfVF8iMrIYzYoNkfvcfDLTuHe3fPJW2zs7oBs09Ef73+YPs6IwyNNIeEOCqmaX8ydXTWVRbKO3hxHnnjNcsa5p2K/CAUur6E9zWCDyllFrwZteQmmUhxOlyeCBO21CCQped77/Sxt0j9cJnypotnSyqLWR2pZ+1+4MYpuIdc8pZd3CAJ17rZkl9EdfNraD6BG+BD8Yz/Ocf9rO7JwrAnEo/f3HdrNGOGW+HUorf7OzhQH+cWRV+aovc/HB9G/9w89zjdt3L6AbxjM6imgDFvrNz1ftEM02Tv/jJJp7YPYSmaSjDILf/BV5Z/Vma6mome3ijBmJpntrZww9faac7nEQfCfgOq8a7F1dzzyWNzK3yy4Yj4rw0GWH5Z8AzSqkfjHxfpZTqHfn6z4HlSqm73uwaEpaFEKdDbzjF3r4oxR4HP9rYwTvnV1J5BmdHf7uzh5oiD4vrCnlmTx8Oq4W0bvBaRwiHzcJnrpmFw3biGe4Nh4f43+cOEsvoOG0WPryikXddUH1K40nnDL73ciuxVI73LqtjMJbh51s6+dIdC3G+odY5Z5hEUjmW1BfKW/RvEAwGWXDR5Tjf829YHfkXLlbgnhUNfO7GObgmccvsdM5gf1+U1WsP8dLBQVI5c/S2uRU+blpUzbXzKphVce4v0BRiLGc0LGua5gE6gWlKqcjIsR8Bi8mXYbQBnzgSnsciYVkIMdHCySzbOkIUuR38ZmcP86oCzK48c62/nt/Xj9tuZcX0Uh7f1kVPOEWBy47NqlFf7OGKmWUnvF9Gzwfa3+3uA6CuyM0/3zqfUt+phfxgNM1DL7ZQVeDiQ5c28sqhQZ7Z08e/3b7wmP7JkA/K4VSWC2oLj9us5HwXDAZHa5TLysqwXnw3jvnXjtaMO60af3L1dD59zczjfq6nUypr0Dmc4Nm9/TyyPl9bfURVgZPl04q5ZVENc6oKqC50nRcLNIUYyxnthqGUSgIlbzh270RcWwgh3q5kVmdXV4QCl531LUNUBtxnNChvah1CKVhQE+ALT+7G77LzgUsa2N4RpshrZ3lTyQnv1z6U4MvP7KdjOIkG3Lmslg8sbzjlYLO1fZifv9rJLYuquGJWOb/e3s3m1uETBmXdMAknsyysDUhQPoE1a9bQ3Nw8WqMMcNU11zK86AO46+eTMeDrzx3iO+ta+Oz1c/jQpY2nNTQfCcm/eq2HNds6GYpnMUfmwlw2C4vrCnn34mqWN5VQV+wZ850MIcTxZAc/IcQ5KaubbO8MYZgwGMuwtSPEe97Q3eF0OhSMs7l1CKtFY0dXhHdfUMUl00p5trkPr9PGpdNPvAHKC/uD/O/zB8kaiiKPnc+/a96EbILx2JZOXusI8RfXzaLM7+LRze0c6I/z9zfNPS7EGWa+j/KCalnM92ZWr17NqlXHt4677e6PcOs3XmYwkRs91++0csm0Yj7zjlnMrSoYV3Ae6/pHd9pIZQ3aBmP87/MtPLevn4x+7N/0+dU+Lp1exu1Lamgq9Z112xELcTrJdtdCiPOWaSr29EYIJ3M4rBZ+tKGd+6+YdsZqMwdjGf77uQPMqvCTzhlcM6eCGeU+ntvbj8NmOWHpRc4w+f7LrTy1K1+tdvn0Uv702pmnvIW0YSq+8sw+XHYLD66cicWi8b2XWxmIZfh/N8weMyjPrSygukj67Z6KV1uH+OD3NpPSzWOO+xwWFtQW8qmrZ7BieskJO7KsXr2aBx988JiZ6yNlH1/92td53wc/yvbOMP/9x4McGkgcc1+vw8KcCj+VhW7uuqieC+oLKTiDi1mFOFtIWBZCnLcO9cfoDKUo8Tr4/iutvHdp3TE70J1Ou7rDfGvdYT5x5TQ2tw5z3bxK6os9vLA/iKZpXDXr+KA8GM/wH7/fx76+GBrw8SuncfPCqlMuuwgls/zLb5u5ZnY5Ny+qJmeYfPPFFjI5kz+79vha2iM7880sP//6KJ8upqn46eZ2/vXpfSSzxnG32y0wrcxHTaGbqkIXNYUeagrdeM00D953F/t3baOsaS6WmvnohQ34audiKyznDfkbgLoiF02lPuZU+rlhQSVNpT6KPHapSxZiDBKWhRDnpZ5Qin19UUp9Tn63u49ppV7mVBWc9seNpHL8ens3LQNxPnJpI7/f0897LqylzO/kpYMD5AzFNXOO7727syvMl3+/j0hax+e08oVbFkxIXfWurgjffqmFP3vHLKaX+0jnDB56oQWLBg+unDFmUJ5e6qPhFPo2i7ElMzr/89wBfrypg3jm+OB8Iso0QLOMGXhdVphRUcCi2kJuX1LDrEo/fqcNi3S4EOItSVgWQpx3Qoksr3WEKPY6Odgfo2Uwwc0Lq07rYxqm4o97+xmIZ7BqML3Mx7aOMPdc0oDPaeOVQ4OkcgbXzq045n5KKX75WjcPr29DATPKfHzh3fMnZAZ8zZZOtrQP84VbFuB2WElkdL69rgWLReNTV8844dv+A/E0DSVepp0nW1hPtoxu8P2XDvPNdYeJpXWUyreOOhGlFCgTZRgU+5zUl/qpLnLTWOLlsuklLGsskVpkId4GCctCiPNKMquztS2E22ElnTP5xdZO7rus6bQGv55wiid39HDt3Ar6o2n6o2lCyRwfXNGA3WphU+sQ4WSOG+ZXHjfW//7jQTYcHgLgpgWVfPzK6adcU60bJl/6/T4CbjufvmYmkJ/x/sErrVg0jT+5avoJuyAMJTKU+53MqSyQGclJoJTCMBWGUpgmGErR0tHNez/ySfqSFtzJPlS0n8Herim5Q6AQZ6vxhmXpHSOEOOvphklzTxSbxYLNYuFnmzt4/8X1pzUor90f5KVDg3z08iaUUrzWESJnmHzkskbsVgv7+2L0hFPHBeX2oQR/8dgONhwewmbR+Ot3zuaTV8845aDcNZzkLx7bwRUzSkeD8kAsw8Mb2rBaND52xbQTBuVoOoffZWNWhV+C8iTRNA2b1YLTZsXtsOJz2nj5D09x6JXfUZ9pZfe6p9mzfSvz5s2jubmZNWvWTPaQhTivyEbwQoizmlKKQwNxEhmdYq+TX27r4ob5lXhO0+5pyazOz1/tZEl9EStnlzMUz/CTzR1c3FjETQvzO+v1RdNsODzEh1Y0HHPfdQcG+J/nD5LRTQrddr50x0Jqik59Id3Tu3r4Q3N/fqvqgnyrt55wil9v70YDPnJZ0wnfpk9mdSwazK8OnNGNM8RbO9Ie7ujWcWvXrj2udZwQ4vSTMgwhxFmtN5xf0FfidfJaZ5hIKsfK2afnLer9fTFePBDkfRfVE3DbSWZ1Pv/kHt61qIqrZuUfM57W+fGmdj56edNobbBumPxgfRtP7ugBYFqply/dsRD3KQZ63TD5yjP7cNis/Pm1M7FY8o/XOhjnub1BMobJPcsbTlgHndENEhmdpY3F+JwybyKEOP+c0R38hBBiMkTTOfb3xyh0OxhKZNndHeGDKxon/HFMpfjNjh7sVgsfu2IamqYRTmb5xyf38KEVDSxtKAbyvZJ/vKmde5Y3jAbloXiG/3hmP3t7o1g0WDGthL9+55xTLhHpDiX5j2f2c9vimmO6bOztjbKlfRjdMHn/SKh/I90wiaZzLKkrkqAshBBvQX5LCiHOShndYHd3BI89/2tszdYu7rusccIfJ5zM8vNXO7luXgXTynwA7O6O8MjGNv7kymnMqw4A+XKQn2xq57YlNfhcttHz/uOZfYSTOXxOKzfOr+KDl576GJ/Z3cfTu3v5u5vmUFHw+sYhrxwapD+aJpU1uGNpLcVex3H3NZUilMoyt7KAohPcLoQQ4lgSloUQZx3TVOzvi2GaCrfbys+3dPLuRdU4bRPbPqtlIM7z+4Lcu6IBj8OGYSqe3NFN53CK915YOxqUAX61vZsV00qpLHBhKsXjW7v48aZ2TAW1hW7efUE1N55iG7tQIstX/rCPUp+T/7rzAqwjZRdKKZ7a2YvfZSOUzPKuRdWU+0+8TfVQIkNjiZeqQtmdTwghxkPCshDirNM+nGAonqXU5+TVtmGqAy5qJnhr5pcPDRKMpvno5U1YNI1QIstjWzppKvMyvdzHxU0lo+euOzBARYGL2ZV+Qoks//XHA2zvDANwQW2AGxdUcdmM0rc9FsNU/GxzB1vah/nU1TOYWeE/5rZHN3ewqCbA5rZhbl5YRfUYQXg4maGywEWTbDoihBDjJmFZCHFWGYpnaB1MUOJ1Eoyl2d8X455LGt76juNkmIpfbuuittjDHRfWAvBaR4gdXWGum1fBKy1D3LO8fvT8PT0RIqkct1xQzbb2EF/74wHCqRwBt52Lm4q4fEYZF9YXve3x7O6O8PCGNuZXF/Cfdy7GclStczKr8+ON7Vw/r5Jnmvu4bXENFQUnnlGOpXN4HfkWcbLpiBBCjJ+EZSHEWSOVNdjTEyHgcoyE2m7uu6xpwq6fyOj8ZFM7N8yvpKHEy3Aiy5M7emgq9fKeC2t5dFMHH7389Y1OukJJtnWEuWtZLT9c38rj27oBWFQbYE6lnwtqC1lUW/i2xjKcyPKjjW0MxDJ85pqZ1BUf22JuKJ7hsa1d3LGkhl+91s17ltZS6nOe8FrpnIGpFAtqpEWcEEKcLAnLQoizgmEq9vRGsFusOGwWfrq5g1sXV59wo423ozuU4qmdPdy9vB6nzcqvXusmY5jcuawWu9XC915u5Z5LGkbDZiSV47e7ennXomo+98Ru9vfHsGhw9/IGrBrMqvCfdFBWSrG/P8bm1mFaBxPMry7gwZUzj9uwpHUwwfP7+rn7ojp++mondy6rO+FiPsj/3GKZHEvri3HZZUtkIYQ4WRKWhRBnhdaBOPG0TonXyabWIRpKPFQFJqZOeVt7iP39MT56eRObWofZ1xflpoVVVAXcKKV4ZEM7ty2uGW2zltENHt3UzrQyH599bDuJrEGpz8lfXj+L/X0xZpT7TiooD8YzrDswQCSVQwOyusl9lzUdN5tsKsUf9vSTzOrcuayOH2/q4O6LT9weDvLheziRYU5lAQHPic8RQgjx5iQsCyGmvGA0TUcoRanXQV80TUswzt3LT71OWSnF7/f0YbdaWN5UzPdfaWX5tBI+evm00dsf29rFJdNKqAzka4FNpfjOusP0RdM8vbsPgOVNxfzpO2bybHP/uINyLJ1ja3uItqF8/XV9sYdtHSGWN5VwQd3x9x+IZfjla12snF1OdcDNIxvbuPeSBvyusUPwUDJDbbGb6gle/CiEEOcTCctCiCktmdXZ2xul0G0nZyh+9Vo3H7381OuUdcPkJ5s6cDssdIVSdAwlWDG9FIfVwqFgHKsFnt83wPQyL4UeO5FUDpfNwlf/sJ8dnWFSuonXYeX+K6bxjjnlPPFaNzPLfSx8Q1COZ3Q6hpN0DCUZTGRGj/ucNi6oDTCnsoCnd/fic9m4/4ppxyzgg3xgX7t/gP5omg9f2kgomeNHm9r54IrGN91QJJrOUeh2ML3MP+Y5Qggh3pqEZSHElKUbJs3dURw2KzaLxsMb2rnjwprR3fHGI6ub7OuLsrcvhmGYAKRyOptaQ3gcVqaX+bh0eikehxXdMMnoBoap2NAyRKkvXwe8qyvCQDzDb3f1EEnpAFQHXFzUWEx/NM0//no3xV4H6ZzBru7I6GMrwOOwUl/sZWlDEaU+x+jiwEgqx9O7enHbrXxgpE76jUKJLL/Ylp/ZvmZOOa91hNjdE+X+o7bSPpF0zgBgblXBcfXOQgghTo6EZSHElHV4ME4iq1PsdfL0rl4uaiwac7ONIwxT0TqYYGdXmETWwG7VmFtZwG2LqwF44rVudnZF+ejlTSypKySeMYimcjhsFsr9TmxWC7/d1cvlM0pZ1liMqRTP7OnjF1u7yBomPqeNj185jatnlY1e785ldcfNKJ+IUvnNVDYeHsLrtHHTwqoT1hsrpVjfMkTLQJwPLK/Hbbfy5I5uvA4b975FmzzdMIlndJY2FsmCPiGEmACaUmqyxzBq2bJlasuWLZM9DCHEFNAfSdPcG6HE62RHV4TBWIZr51WMeX5zb5RXW4exWjWml3pZWFOIz2XDVIqNh4d4amcv0VQOu1VjaUMxmgY2q4UCl40Cl52MbhKMpTnQH8Nps1JT5EY3TF5tC9ExnARgxbQSPnnVdIq8jnw985ZOFtQEmH/UTn4nktENXjowSGcoyawKP8ubik/Ywi2e0XnxwADBaJol9UUsrisklTV4dHM7V8wsY1bFm5dUKKUYTGSYXxWgIvDmLyqEEOJ8p2naVqXUsrc6T2aWhRBTTiKjs68/RsDtoDeSZnd35IQbjximYlPrEM09UeZWFXDPJQ2jZQeHB+J8+6VuukMpGku8LK0vwueyccP8yjEf9/l9/dQWeZhb6efhDW2s3T8AgNUCFzUUUVfsZmPrELMr/bxycJDl00reNMB2h1KsOziAoRRXzCg9YdhXSnGgP86m1iGcditXzSqjcmRjkZ5wit/s6OF9F9VR6Dlxa7ijDSWy1Bd7JSgLIcQEkrAshJhSdMNkT08El81CzjB5ckcP979hQV9GN3h+X5DeSJrlTcWjG4UEo2n+uLefPT1RHDYL75xfycLaAI9t6WROlf9NZ4DXHRjAMBXdoSRff+4A6ZyJVYOmUi9fePd8Au58WO2Ppvn2uhaKvU42tw6zvTNMVcBFVcBNmd9JdzjFjs4wWd2kutDFrYur8TiO/VWbzhkMJ7Ls6ArTF0kzq8LP+y+uP6YO+dW2YQ4F43z08qZxbSQSTeco9jqYJltZCyHEhJIyDCHOY0opMrqJRdOwW7VJ3wZZKcW+vhjBaJpCj4PvvdzKncvqRut6U1mDp3f3kswarJxdRm1Rvg9xNJXjRxvb6I2kmV3p58YFVZT6nPSEUzy5o+dNN+0A+OPefg70x9jSHmIglu9YsbiukFKfgweunjEaVnOGycPr27hxQRU1I+3YIsksLx4YoLk3SjxjEHDbqChwYbFoWDUN8wS/Y502K8VeB3Mq/VQXHtvWbSie4amdvUwr83LFzLJx/dxSWQNdmSxtKDrhQkEhhBDHkzIMIcRxcoZJMmuQSOuEkllCyRyGaaIAq0XDY7fhd9vwOqy4HTYcNgtuu/WMdVToDqfoi6Qp8Tr4xbYurp1bPhqUt7QNs6MrzG2LaygZ2dY5qxv8cH0bB/pjXDmrjI9fOX10dnZz6xAtAwnuf5OZ2axu8LU/HqRtMEFXOAXkZ5JvW1xN62CCD61oHL1vZuSxrptbQXc4mS+vMBUOm4XFdYW864Lq49q+GabCojGuFyFZ3eTpXb1kDZNVy2qPm40ei26YJLL5BX0SlIUQYuJJWBbiHJfOGXSHUgzFMyRzBhr58OawWvA5baNB2FSKnGEyFMvSZ5jkIzTYrRaaSryUFzjHVQ7wdkWSOQ70xyj2OFnfMkR1wE1TqY9QIssvX+tmfnXB6GYhumHyo43t7OgKc928imP6Exum4pevdVEVcPP+i+tP+FiGqfhDcx8/2tBOLJNvBVfotnPPJQ3MrSrg2eY+PnxpE5qWrxve1R3h97v7mFvlZ2dXhLlVBbx3adFbtrAbz4uMI50v9vXFuHlh1ejmJ+OhlCKUyjK/KkDBm2xOIoQQ4u2TMgwhzlFZ3aQ7nKRtKInNouF12E6qP/EROcMkms5hs2g0lHipKHDhsE1saE7nDLa0D+O0WukcTrKjK8IdF9bw3N5+BmIZbltSg8dhI2eY/PzVDra0h7hmTgXvvqD6mOtEUjl+9moHNy6oov4NW0UfeS4v7A/y6KYOBhNZAIq9Dm5fUsP1cys4EIzz5I4eppV6AA1Ng4Dbzt7eKB+7Ytq4FtmdjJaBOM/t7eeSaSUntT32EYPxDHVFbma8RZcMIYQQxxtvGYaEZSHOMbph0hdN0zqYwDQVBS47hwcT9EfThJJZ4mn9mPMVoBRYRhazzaksoOgE9b36SGjWNI2GYg+Vha4JedvfMBU7u8IkswbD8SzrDg5w9ewyfre7j6tnlTO70o9Siuf3Bfn97j4ubCjizmV1x83abm4dork3yp3L6o4rYUhkdJ7bF+SJ17oZjOdrkku8dpY1FlM4snAvmsrRH0tz7yWNNJV6sVo0Dg/EeW5fkA8srx93WcRb0Q2TrR0h9vZGqQq4uXZuxdsqc4mmc3idNhbWBGTjESGEeBskLAtxnjFNxWA8w6GBOJmcicdu5ZWWQTpDKeZU+qkr8lDoseNz2k5YQ6sbJm1DSfb1RQklcwAUefKB8kgrM8iH20gqPyvbUOKlrthzSmHtUH+MzlCKdM7gD839lPsc6AretbAKm9XCnp4Iv9zWjcNm4eNXTDsuyIeSWX65rZuFNQEubioePa6Uork3yjO7+3i5ZZCckf9d57FbWFhbyLKGYmZV+Kgv9tA+nOTFAwN8aEXj6HN55dAgfdE0ty+pOa4W+e1oG0yw4fAQuqlY2lDE3Er/215QKQv6hBDi1MkCPyHOI/GMzr6eKLGMjm4o1h0cIKObXDmzlOvmjd1X+Gg2q4UZ5T5mlPtGjw0nsmxoGaQ/luHixmLmV+e3Ty72OjFMRdtQgqFEhnlVAdyOkw9twWiajlAS3VA8uaMHq0VjVmUBsyr8dIWS/Hp7D0OJDDfMq2D5tNJj7ntktrkvmub9F78+m9wbSfH4ti42HB4imnp9Fr3Qbed9F9Vx08Kq0fBrKsVTO3vRgA9f2ohF0/I1z9u6qC1y854La0/6OR0tksrx8qFBBmJp6ou93L6k5pR31ZMFfUIIcWbJzLIQZ7mBWJrm3hjdoSRb28ME3DaumVNxwm2U3y7DVLzaNsyenihNpV6umFk6Wv8cT+tkDYO5VQWUF4x/cVo8o7OlbZisbvLIhnaK3HbuvqQBw1Q8uaObYDRDmd/Je5ce3xmiN5LfrOPyGaUUeR1s7wyzvSNMx3CSnkgKc+TXmt9ppTLg5sYFlVw7t+KYmdyheIZfbOviurkVTCvLv0BIZHR+sqmd6+dV0vg2+hXHMzp7eiIcCsYxTIXfZePS6aVUnMTP5c2YKv/uwcKawEn9rIUQQhzvjJZhaJrWBsQAA9CVUss0TSsGfg40Am3AnUqp0JtdR8KyEONnjszsHgzGeK45SHWhm6tmlZ3WjhWQ3xnvpYOD+Fw2rp2bD+U5wyScylJb5GZaqe8tx5DVTbZ1hAgnsnxj7SFWTC/hpgVVPLcvSMtAPmheN7eCOVUFx9wvv/VzBz2RJOU+F/2xNAOxDF2hJLqZP8eiwbzqAnwOG5dMK2HlnPLjyijWtwxyeDDBey+sHZ3p7Qol+e3OXu5eXo9/nJ0loqkc+/piHArGMBR4HVbmVweYUe47LXXEg4k0jSVemkp9b32yEEKINzUZYXmZUmrwqGNfBoaVUl/SNO1vgCKl1F+/2XUkLAsxPlndZF9flD3dUdYdHOA9F9ZO2OzleIUSWf6wtx+lFDcuqKLAZSOUyuKxW5lbHcDnfH022DQVqZxBIqsTTuYYimfoDqf4xvOH+PiV03DarPxudy8AM8v9XDevArvVglKK3kiajYeH2NI+TCJjUOZ3EErkOBiMc+S3lwbMqfSzqDZAMmtQXejmhvmVx3X/SGUN1mztZE5lwWh9s1KKFw8M0BtJn3Dh4BE5w6R1MMGB/hjhkZpuv8vG7Eo/M8re+gXCqRpOZCj1OZlbVYBFFvQJIcQpmwpheT9wtVKqV9O0KuAFpdTsN7uOhGUh3losnWNPd4QXDwwQzxjcsaTmlIJaKmsQSeVI5wzSukFGN8nkDNI5k7Ru4LBaKPM7qShwUeRxHBcmI6kcv9/dC5rGjfMrsVk1UjmDGWU+fvjdb3HpdTdj8xahlGJ4aIBX/vBbFly3ih+ub+PP3zGLtQcG6I+mmFnu5+ZFVZgmvNYZonUwQVcoSVcohW4qoqkciawx+rg2i8biukIW1ARAQSKr43fZuH5eJV7nsWUbSil2dkfY3DrMe5fWUjTSAq51MM6zzf1cPrOMeW+YxU5mdZp7ohwMxtFNhc2i0VTqZXaF/4TdQk6neFrHbtO4oK7wbbX/E0IIcbwzHZZbgRD5LlTfUkp9W9O0sFKq8KhzQkqpohPc9+PAxwHq6+uXtre3n/J4hDhXBaNptnWEeHpXL8saillSf9z/Um8plMzS3BOldSiBUuCyWyjyOHDZrbhsFpwjn112K067haxuEoxlCEYzhJJZDKXQyP/P7rZbmVXhZ2a5j3TO4Pd7+rBqGtfNq+AXP/4e//PFz9E0czbf+/lv0DSNj77vFgaLFjBz5SpuXTGfrZ1hGks8LG8qYUv7MN3hNMlMjuFklt5wGuMNv55KvA4W1uTLHNK6QSZnUuRxsLyp+IQ1vMOJLC8eCBJJ5ZhXVcBFjcVomkY8o/Pr7d0Uex1cP68SqyV/rHmk3thU4HZYmVtVwMxy36QG1HTOIKMbLGssPuXFgUIIIV53psNytVKqR9O0cuBZ4NPAk+MJy0eTmWUhTkwpRcdQkuf2BdnSPsxdF9WPzo6+lYxu8MqhQVqCcdK6icNqodjnwGG1kMwamCPhF/I7+7ntVlx2K26HFbfdgt9lp8TnoNjjOG4GO5nV2d8X42AwTkY30TQo8znpDqWwmhme+NKDHN61haKSUrDasa74IN7yBmoaZ6DQsFgsxNI5Ymkd8wRjrw64qC/xUOJ1YLdZcVo1TAXVATcXNRWfcBGjbpi82h5iX2+UIq+Dq2aVjf6sTKVYuy9IdzjFuxZVMxDLsKMrTDpn4HPamF8dYHqZ97SXVIyXbpiEUzkubCia0AWbQgghJrHPsqZpXwDiwMeQMgwhTplSipaBBL/Y2klWN7l18Vv3/TWVYktbiN/s6CaeMShw2Sj2OfC7bPid9vxnlx2v04oFDZtVw+Wwks4ZhBI5QskskVRupPRBJ5U1SOVMlFK8/tAaNks+XLsdVmxWDY18ycBwIks0nWM4niYej2OYJlaXD4tl7BDqtGkUuh0Uee0UeRyU+10UuO1UF7qpKXRT/YZNUJRSRNM6A7EMQ4kMg7EMw8kcSikuaixmzlF9jI/0XH5+X5ASnwPdUFg0jZkVPhbVFL6ttnen25HOFwuqA1ScxBbYQgghxueM9VnWNM0LWJRSsZGvrwf+GXgS+BDwpZHPvz7VxxLifGOaikMDMX6yqYMyn5OrFpaPeW5/NMW6g4O82jpMMJahwGVjXnUB08t8NJbkd6QbimfpDic5PJggkzNRKLSRbZ0zuonVouVrkpVCAT6njTK/K/+9gnROJ5Y1iKd1EhmdwVSOcCpHKneieeE8i8vHkYisVH5mu9DjoDLgpsLvpNTvpMSbr4U+UiedG2ltoRsmHUMJOoYSHP2y/kheL3DbKfU5KfU5mV3hJ+C2H9MeriUY47e7++gJpyh025lV4WdZYzF1Re63vSHImTKczNBU6pWgLIQQk2wiNiWpAJ4Y+cNjAx5VSv1e07RXgcc0Tfso0AGsmoDHEuK8YZiK/X1RHl7fzuwKHxc1lRx3jlL5DUh+s6OHRDY/g3z17HKunVuOw2alO5Ti1bZhNrYOY9Gg1OektshDQ4mXoXiWnkiK3kia4UR+JjmcypLIGCcYzVuzWbR8zbPNgmbRMHWd4XAMQ5lkNv0Mo2cPsYxJ9coPUHnJSioLXBR67BR6HEwr89FU6p2Q2uDd3RGe3NFDKJml0GNn5exyLrxi2llV7zucyFDuc9FYcvK9noUQQkysUw7LSqnDwAUnOD4EvONUry/E+cgwFc09Eb77ciuXNBWzoKbwuNsf29LJ5tZh3A4L08t83LakhooCFwf6Y/zytW7SORO7NV8q0RtJ0R3KB+NU7s3DsEWDQreDgMdOwG2nwGXH67CSzBlEUznsVo0ij4OFtQGaSrwEPA5i6Rxb2kNEkjmcdo142uD5na0kO3bi3/trfvTTJwC4/3230PLzL7JqfiGzl97G4YEE3aEUe3uj2CwaAbcdu9WC32WjwJ0vFylw2Slw2ylw2XDbrWiaRiKj0xdNs78/RkswTu/IRiRKQXmBk/ddVMf0srOzF3E4mSXgcTC70i8t4oQQYgqQHfyEmGJyhsmurgjfe/kw182rPCb0xdI5vv9yK+3DSaaX+bBY4OpZ5ThsFl46OMBgPItpKsLJLAcH4qRPUB7hdVqpDripLnRTFXBRXeim1Oug0OMg4Lbjc9nQgM5Qitc6QkRSOZw2C/OqA8yp9GO3WsgZJvv7YuzpiZDRTSoKXJQXONndHaVzOEF/NMMVM0sJbXmKlTfeQlFJGQChoQFe/P1vuP0D9+Fx2EZne9M5g4P9Mfb1xUhmdUwF2SNt7EY/DHQjXx5it1rwOW3UF7uZVxVgTpX/nNj6OZrO/6ylRZwQQpx+k7bA71RIWBbnu6xu8lpHiO+93ModS2qpKXID+drd/3n+IL2RNFfPLqMvkmFaqQdN01i7L8hgIkPncIo3/t9cHXAxr7qAuVUF1Bd7qA648btsJ6zXTWZ1dnSGaRnI1wfXFblZXFdIoceBYSpaBuLs7o4Qz+jYrZbRzTi2tA/TPpSkosDJSwcHKfE5eN+yemaU+yj02kdrojXy3TY0wFCKfb1RbBbLcT2Rz1fxjI5FgwvqCs+qkhEhhDhbSVgW4iyT1U02tw7xw/Vt3H1xA2V+J5Dfmvmnmzu4eWEV4VS+20MwlqG5N0p/NI1x1DbP08p8zKsqYP5IQH6z9nKjs7n9MVJZA4/DxgW1AaaX+4indQ4PJjg8EM+HOIvG9DIf9UUeeiMpDg8myI60ilsxrYSNh4fY3DbMJ66cTonPwYwyH/UlnjddRHcknCvFuLeXPlclszq6qbiwvmhKduYQQohzkYRlIc4iWd1k4+FBHtnQzocvbSLgthNNZ/nKMwfwOa1cNauc5/b20xdN0x1KkTNf//+23O+kodhDXbEHp+3Eb90rIJUzGIxlCKdyMLLpRm2Rh3K/k2g6R28kjW6YKAVOu4VSn5MSn4NUNt+hAgUBt52Z5T4aS704bRZ2dIX56eZO5lT6uXt5PdFUjrlVBVQVusf1vNM5g51dYXKGouA8DczpnEE6Z7CkoeiYLcKFEEKcXmesdZwQ4tS8MSgXuGys2dLJKy2DfODiev64N8g3nj9AJP36wrwij50ldYVcN7+SuZUFx2xBrZRiMJ6ldTBO+1CSRFYnkTFQSlHmd1Jd5MYC5AxFzjCJpLJUFLhYUl+Iy2bFatGwWDSsWv5zwGUfne1UStE+lOTXO3roi6QIJ3J88qppVAbcxNI6i2oDlPrH3+rMZbdyQV0he7ojhJLZcW+0cq7I6iaJrM6SegnKQggxVclvZyEmUVY32XR4iIfXt/ORy5oIp7J88ak9zK0q4IKaAF/5w/7RHsZuu4WbF1azck459cUeIL9xRU84xe7uKPv6ovn+xzkdt91KoTvfzcLrtDGt1EdlwEVVwPW2Sh7ahxJsah0mlTUo9jqIp3PMqSzgHXPKyRomqZzOhfVFBDwnf22nzcrC2kKae6IMJTKUeJ0nfY2zUc4wiaSzLK4tlN35hBBiCpOwLMQkyegGmw8P8/CGNj5yWRNr9/Wz7uAgFzcUsea1brIjG3P4nVZuX1LLjQsqSWQNtneEeWxLJ8OJfOcLn8tGbaGbK2aWUlPoodR3/LbU42UqxWAsQ1coRVc4RSydQzcU9SUerplTxtp9A2R0k/dfXI/HYSOe1jFRXNhQfEozo3arhQU1Afb3RemPZijxOqb8piGn4siM/oLqAMW+8+PFgRBCnK2kZlmISXB0UH7/RfV8c10Lum6yty9GeiQkF7ps3H5hLRUBF+sODDAUz1LgstFY4mFpQzHTy33HdU0wzHxpRVY3yRnmaKlF1jBJ5wxSOYNU1hj52iSVM/J1yox0qwBK/fmNS2oK3QTcdnTD5Nm9/QzEMty8sIoSnxPDVIRTWbwOGwtrAxPWvcE0FYcH4nSGUhR5HMeUl5wr0jmDeCZfslIiQVkIISaN1CwLMUVldIPNLcM8vLGNlbPL+aenmtFNg55wBoASr50FNYXE0jk2Hh6iutDNbYurKfQ46BxOMpzIsbM7wvau8HHXtlo07FbLyIeG48jXNgtuuzW/fbXPidtuxe2w4rJbx+znG03l+P3uPrrDSa6dW0HDgvxucvG0Tlo3mFbqpabI/bZnsU/EYtGYXu7DabdyoD9GkcdxTvUbTmZ1srrJhQ1FUnohhBBnCQnLQpxBRwflEo+D/3p2P0OJHJCf1a0KuCjyOChw2bhiRglDiRxDiSxb2sOU+500lXqZXuaj8DTNuiazOpta832TC1w2Lp1eyjsXVAJHamxzFHkcLKoLnLb+yJqmUVfswW23sKc3hstmweM4+39VHSlZka4XQghxdpHf2EKcIemcwYaWfNeLjqEE68Ipsnq+DMrvtNJU6mVuVQGmAoumkdYVFzcVU3qa36rP6Abb2kMc6I/jcli5pKmYlbPLR29XShFJ5dA0mF9VQJnfeUbqiUv9Li60W9nVHSGWzp3VvZij6Rw2i8biWumjLIQQZxsJy0KcAcmszvqDg3zzxcPs6Y2MdriwWaCp1MusCj8Bt4OrZpVRPc4exScrls7lF+6FkgzEMhzZCNtutbC4tpAPrig5JgQbpiKVNUjpBrVFLhpKvGd8S2m/y86F9UXs6YkwnMhQ5Dn7Fv6Fklm8TisLagLnxJbcQghxvpGwLMRplsjovHAgyJd/t4/24dTo8Qq/gyX1RcyuLOCKmaXYrRY6h5NsaRsmmtaJZ3IkMgamUmgwupX1WFFRvcltJuBz2qgtcrOotpAyvxPLCUKnYSoSGZ2caWK1aJT6nMwrLJjU+lqX3coFtYUcDMbpjaQo8Z547FONqRTDiSwlPgdzqwrOqdprIYQ4n0hYFuI0iqVzPL2rh39+spnEyGyy06px1exyrp1bgQL29kR4dFMHhlJUBVyU+51UFDiZ7vLisVtPWJt8JDhbNQ2bxYLFQv6zll/kN57ZV6UUphqZQc4Z6KaJzaJRXpAfg99lnzLdKGxWC3Mq/XjsVloG4/id9gnrwHE6pHMGsYxOQ7GHxlLvlPk5CiGEOHkSloU4TSKpHP/3/H6++VL76LHGYjdLGopQCjYcHqKp1MPyaSVUBFwUexwUuO0jYXeklZumjXwGDQ2FImcoDFOhj7SDy+gmad0km8tvS50baQWnFKMz0kd/5sjXWr4Ew2G1UBVwUep34nfasEzRYKdpGg2lXgIeO3t7owwldIo8jik1y6yUIpzKYbNqXFhfSOF5tiOhEEKciyQsC3GKVq9ezapVqygvzy+KCwaDfP/HP2WrexmvtoeBfEhdUlfIrEo/75hTTmOpl0KPA4/DittunfCAapgK3TQxzHywNk3QLGCzaFhHtrIe7wz0VFPocbCssZj2oSQdw0n8TtuUmGXOGSbhVJaqgJvpZT4cNim7EEKIc4GEZSFOwerVq3nwwQd56KGHWLt2LQCX3XwnyYs/it0fBqDIY+f2JTXcvKiKaaU+Cj320x5SrRYNq2XyA+TpYrdamFHuo8znZG9flOFEhsJJnGWOpnOYSrGwJkCZ3zUpYxBCCHF6yA5+QpyCYDDIypUraW5upqysDG3G5Tgv/zCWkaB619Ia7rtiGjVFntPWl/h8pxsmHcNJ2gYTeJ22M9qT+Uhtcpnfwcxy/5SY4RZCCDE+493BT94nFOIkrV69mmAwCEB5eTmPPfYYvqJS1OUfx33lR7FYrFR6LTzzZ1fwT7cvZFZlgQTl08hmtTCtzMfSxmKsmsZgPEMsneN0TQQopYhndAbjGUCxoLqABdUTt+W3EEKIqUVmloU4CUfKLubNmzdadnHpzXeRvuR+bN4ApmmSefkHbHv8IWqqKid5tOcfpRTRtE5POEVfNI0GFLjsE9K2zTAV8UwO3VCU+BzUF3spcNvOyrpvIYQQ459ZlrAsxEl4Y9mFZd4NOJffiaZZMDIpMr/5IgMtO0fD9JFFf+LMS+cMBuMZOoeTZHQTl82Ka4xWfGPJGSZZ3SSjG2gaVBd6qC50nRPbbwshxPluvGFZfuMLcRLKy8tZu3YtCy68GOvKz+CsmZ2/oaeZF//1A/g+9+xomF6zZg0PPPDA5A74POayW6kt8lAdcBNJ5egOpwgns+imOqaFnlXTsFstKCCnm5i8vgmMy26lwGOj0OWh1O+UDhdCCHEekrAsxJs4UVu4zz/0KK67vobF5kApRey5/+Olh7/MtLpqANauXStBeQqxWDSKvA6KvPmex7phkjVMcroiYxikswbxrI4FDb/Lhtthw2W34LSd3Cy0EEKIc5OUYQgxhjfWJ5tKccmnvoqacRWapmHmMmR+9Y8ED++RsgshhBDiLCPdMIQ4RatWrWLevHk0Nzez4KJLueiffgczr84v6BpsZcNfXsquDc+PnrNmzZrJHrIQQgghJpiUYQgxhiP1yYtuvAfnNQ+gWW0opbjE3sn//tudo7PIUnYhhBBCnLukDEOIMWRyBh/+zsts6IgDYGSSZJ/4B3ZtXiflFkIIIcRZTsowhDgFu7rDLPmnZ9jQEUcpRbZ9O5lHHyTYvp+VK1eObkoihBBCiHObhGUhjqLrJv/wxC5u+d9XSOoK0zSxbPoh27/+MXbv2iX1yUIIIcR5RmqWhRhxoD/KXd/eyHAiB0DAbeP9BS3c99hDUp8shBBCnKckLIvznmmafPX3+3lo3eHRY396zXT+/Po5x51bXl4uQVkIIYQ4j0hYFue1tsEEd397Az3RDAAFLhtPf+Zyaou9kzwyIYQQQkwFp1yzrGlanaZpazVN26tp2h5N0/505PgXNE3r1jRt+8jHTac+XCFOzurVq49ZjBcMBlm9ejU53eRfnmrm6q++MBqUP3ZZA9v/8ToJykIIIYQYNREzyzrwWaXUNk3T/MBWTdOeHbnta0qpr07AYwhx0o7swPfQQw+xdu1aAFauXElLzMJ/d9aQww6A127hlw9cyuzKwGQOVwghhBBT0CmHZaVUL9A78nVM07S9QM2pXleIU7Vq1Soeeuih/A58CxaAy492+ceorFtADg2A+y5t4O9unofVKo1hhBBCCHG8Ca1Z1jStEVgCbAIuAx7UNO2DwBbys8+hE9zn48DHAerr6ydyOOI8d2QHvgULF5GdcwMFF78Hi9UKwKJqP9/9yMWU+12TPEohhBBCTGUTNp2maZoPeBz4M6VUFPg/YDqwmPzM83+e6H5KqW8rpZYppZaVlZVN1HCEwDRNntjRj+v9X6dwxZ1YrFbM+DD/fdsMnvzMlRKUhRBCCPGWJiQsa5pmJx+Uf6KU+iWAUqpfKWUopUzgO8DFE/FYQhzxZov3vvfyYeb+w+/49+c6sLh8KD1Ldusv6Vz9Qf7uo3fIDnxCCCGEGJdTLsPQNE0DvgfsVUr911HHq0bqmQFuB3af6mMJccSJFu9dfc076LTX89XOOhT5cgvT0LEE9/PsP91NoecyVq7cOLoDn/RLFkIIIcRb0ZRSp3YBTbsceAnYBZgjh/8WeD/5EgwFtAGfOCo8n9CyZcvUli1bTmk84vwQDAZZuXIlzc3NlFZUYV1wE44lt2Cxvv767+rZZcyJbOG+u987ugNfMBiUoCyEEEIINE3bqpRa9pbnnWpYnkgSlsVbyRkmyaxBNJnhey/s5Xtr92LxFKFZ8hVFGnDTwkr+9faFFHockztYIYQQQkxZ4w3LsoOfOCNMU6GbCnPkxdmR12iKY783lHr9XFOR1g3CiRzhVI59vRH+0NzP3t4YiawBgNVXkr9+Lou+fy3rv/k3NNZWn9knJ4QQQohzloRlccqUUmR0k1TWoG0wzqGBOJGUTiSVI5rKEcvoGObr72BoY11n5DZTKZJZg0RGJ57WGU5miaV1khkd/eg3QpRJLtKPvuVxVMdWBgYGuPmG51i7du1o2YUQQgghxKmQsDyF6YZJImvkQ6KpUCo/D6tUPlAqFEqB227F67Thsltx2izk11yePlndJJnV6Qmn2NoeZndPhPTITG/Abae2yI3HYcUbcFFT6MYCZAxFIqOTzOqkcgbJrDEaoDXyQVkBmZxOXyTNQDxDMmsQimfImsc+vk2Dei3I2i/dz7y5c47ZnU8W7wkhhBBiIklYnkIyukEyYxBN5RhMZIlnciiVD5OWkQB8dBA+8pVu5qOmUmC1avhdNgrdDnwuG16HDbfDespjM0xFOJnlpUODPL83CCgsmkbAbcfvfP2fUcYwOTyYwG614HVY8TjzY/A6rVQX5kO0x2HFbbeSyOps74ywsytMMJohnMrSH02TypnHPb4VKPU7+NTKGVw3t5LyAiffqkmyatWq0VnktWvXSlAWQgghxISaUgv8FlywRK3ftJkCl32yh3LGZHWTwViGrlCSZG6kDlfT3vYssWEqsrpJ1jDJGSaaBi67lcoCF0VeBz6nDavl9WuuXr36mMB5dLcIpRTRtE7rQJxfbe+mbTCBUlDsdeKwWyhy26kp8lBT6KbE5xgN9G8cT180xYG+OC0DMVoHkwwlMkSSORJZg7H+9Tms4HfZCbjtXNRYxDsXVDO7wk95gRObbE0thBBCiFN0Vi7wS+dMtrQNU+hx0FjipdBtx2I5vSUFkyWWztEbSdMbTqEAv9NOiffU/3NYLRpuhxU3r88m5wyTzuEkbUMJLJpGmd9Jmd/Jj773bf7izz7DN1av5jdPP4uuTG676Qb279vLYCxD7WW38dy+IJFUjroiDwtqCrmosRiPw0o0nSOa0ommc+zoDNEVTtEVShKMZQgnsiSyxsiCvrces82iYbNoeBwWynwu3E4bDcUeLptRyrRSLw2lHoq9zmNCvhBCCCHEmTClZparps9X//DdX7O0oYhkzsBtt9JY7KHUf27MJhqmYjiRoX04SSylY7da8LtsJ5yRPZpSilTOIJzMEUpmCSdzhJNZomkdU6njFszphklaN8nkDHKmwmbR8Lls+J12vA4bTocFl90C6Rhf+uzHaN+3k6KKGjRPIUnTSsXFt+CfeREOuw2/00rOUETTOVJZ89gFduNkt4Ddmp8lV0phtWhYLRolXme+ptmiYbFAwOVgdpWPmeV+KgMuags9FLhtp70GWwghhBDnn7Oyz/LMeReov/vOr9jZFWHVsjocVguxTA671UJTifesfQteN0x6I2nahxLopsJjH7uO2DAVncNJWgbi9EbTo8e9DiuFHgeFbjsBl51wKsuhgQSdwwlyhknOUPnPej7QGmb+e2OkDVsml5/pPfrYkVlfpdRJB1KbVcNu0bBZLVi1/Iw2mjYa3A3DRNPyofjIi4JSr5OqQhd2q4WMbmKzWij1OZhV7ifgsWG1WKgudFNd6MLjmFJvegghhBDiHHNWlmFkDJM9PVEUim88f5B3LqhicV0hOcPkQDDG4cE4jaVeKgrygWuqM0xFMJqmZTCObigCLvtxYT+Z1dnRGaZlMAHk65Xrij3MqfQzr7qAHZ1hdnSF6QmniaRz+TBsmKDlSxfygTR/P4sGpsp3lcCEjGGQzhmcYL3cMTRNQ5kmytAhHaesogyLxTpyG1g1C5olv6BQ0/KLDa2ahtWqjZRQWLBbNfwuOz6njQKXHY/TSjpnjvZVPqLQ42BeVQHFHjv6yCxzqc9JRYGLApftrHwxJIQQQoj/396dB8d93vcdf3/3vrC4iYMACZEET4k6TLm15CiSJSdW4kq2PPZY7YylZGpZHqt13T/qtOmR6bTjTnpMO03aRGqlxI2PkWPHVlI5paNEliVZMklHFiXe9wHiXIDA7mLP39M/dglBJFcUCYC7JD6vGQywv13s7wvymd988MPzfJ/rV0PdWd6y9Vb37edfpFj22H1qiuffGiadL/H4XWsZ6IhTKnuczRXx+4yB9kpoDgUaL1x5nmM8nefQWJpCySMZCb4r3A9NzbLz+CSTmTyeg5ZYkNlCmeGzOcYzedL5MmezBfIlD58ZoYCP5miQlliQaNBPIhwgFPCRLpSYzBSYSOdJZYpzG3VcTCzooysZpa81Sm9rlNZoiDePjfDqz3czc2IP3pt/DsVZplITrF2/kW987/8SSbYyPVuqtqmDgM9HyG+VO9Ulj1LZUfLOfXbVO9YeQb+PjkSY5mhloWahVFlsWPQqqT3gM1YkI3QmwiSjQc1FFhERkavumryzfE7Q7+O21W3ctrqN01NZfv9vDtMSC/LIhwboSkYolT2OjKc5Np6hry1KT3OUSHDh7dEWyrlKSD48lmG2WCIZDtEUDuKcY8/QWV7YN8pEOo/fZ3QnIxTKHhPpAvuGK/2Hs3mP2WIZnw/ioQCr2mJ0JMKEAj4y1U06hs7OMjJd6UF8Md3JMKvb46xqi7G6PU5/a5Tu5nemNRRKZZ77xRC7TqSYOnOS03/671jX28Zf7vwZoYCP++79CHv27GHniz+c64iRK1b6Ks9UNwjJ5UqYQSjgI4ThAJ9V+j+/86uXY2q2QNDvIxEO0N4UpCkcJBz00xQOXLcLN0VEROT60pB3ls/nnOOlA2Ns3zPCDR1xPnnrStoTYcqeYyZXpOQ5eloi9LZE69Z2bipb4NBImplCiUQoQDjgY8/QNN//xWkmMwU6myLcsbaNdK7Mz45NcCI1S77kVecLQ2ssyG2r2rilv4VMocTJ1Cz7h6fZPzJDOn9hMI4EfKxbkWBtZ4KBjjgD7XH6Wmv/0lD2HNv3DLPvzDQBv/HALSv5+Nbe92wdV8v8rasrH5X3d65yd/nc3fBwwKdpFSIiItKQrskFfrXC8jmZfInv7DrJyHSe/tYo99/YQ2s8hHOOmVyJfLl81dvOpfMljoylGU8XMBx7hmZ45fA4E+k8XckI92/p4pUjE7x6KEWuWCIU8JMI+2mNhehrjTLQEWe2UObgaJq9w9OkMsULzhEL+Vnf1cTazjhrOysBubs5cskuGlD5RePVwxPsOp6iPRGmKRzgH903uKx6WYuIiIic77oMy+fsOzPNC/tGiQR9RIN+fnVLN+2JMFBZMHeu7dyq1hhtidCSTNHIFcucSGU4MZHl8GiGvz05xdDZWbqaImzobuKlA6McHs/geY6ORJjb+luYzpeYzBbxPI+R6TwjM/kL3jfkN9Z2Jljf1cRgVxODKxL0NEeuqH3aGyeneOnAKINdCVKZIg/c3Msd6zoW48cXERERuaZd12EZKhtt/PCtYUanc4AjHAzw0U1ddDdHgMqispl85S5tMhpkZXOElniIcOD9Beda0xMee/yLDE3O8tqRCXYcSzE8naNUrnR1ODaeYXK2iBn0NkdojwU5fTbPZLZw0akUfoMbOuJzoXhwRRP9bbEFL3jbe2aaF/aNsH5FglDAR9nBF+5auyjbXouIiIhcD677sHxOsezx8qFxDozMUCh6JCIB7t3Uxaq22NxrZgtlssUSDmiPh+bmNp/fSeNcQP7Od77DE088wYYNG3j00Ud59NHf4J6P3MP+g0d48Kv/jY7B25jKFhlN50llChRKHj6DRNjPbKFEunDhv6nPoK8lyoae5FwwXt0eW9QWeIdGZ9i+Z4TVbTG29rfw6uFxPrOtn619LYt2DhEREZHrwbIJy+c459hzZpqfHp4glSnQHAtya38rN61snrujem4nvNli5S5vPOSnLR6mJRbk/zz9JF/58j9m8+bNPPvsszz00EMcOHCg8rqu1QQGP0zL4DbifevJFSut1Gpt5ew35nolr1vRVNmyuT2+ZG3uTqSyPL/7DN3JML9yYzc/3j9Gf1uMz2zrV1s2ERERkYu4JsPywMab3P94djudTeEFzTMens7x13tHGJ3JM5Ep0BQO0N8W5e+uaWegPT43/7dQqrRqK3keUxNjfOWRT3Hs0H7ae1dBcx9e/y3EBj+EP5YE81103nDIb6xqj7O5J8nazgRrOuKLMpXiUjzneOPEJDuPT9IaD/GJW3rYN5LhZCrLP/zwDXNzuEVERETkQtdkWF67eav7p7/3PYanc0xmC0zPFknnS5gZTeHA3KYctZgZ4WrLsnDATzjoo+w5jqcyHBnNcGY6R65YxmfM9R32PI98yVEol8kVyuSKJXz+C9tPO+cqu9SFA/Q0R9nQ3cSH13Uw2NV0RYvvrtREOs8L+0aYyBTY3Jvkl9d3ki96/Pkvhvh7N/eybaDtqtUiIiIicq26JjclyebLnJzM4rNKR4i+1ijdyQiecwxN5Tg+UVlAB5Xtnftao3QlI3QkKlMpAM5MzbLj2CQnUjOVDTKcIxkN8oGBVuKhAKlMgYOjM5xKzTKRyZEtvvuXBZ8/gPM8ytlpCsMHsewEVi6Qm52lpaWV2z/xaWKxGPFwgB3HJ3ntaAqfVbZs3rIySV9LdNHDc9lz7DiW4o2TUySjAe7duIItvc2MzuT44e5hepoj/KuPb1ZPYxEREZFF1lBh2cOxsiXKnes6Llj41hYPc+PK5rnHpbLH6alZhs7O8uMDYxwdz1D2PKKhAD3NEZLRIJ5zTGYK7B+eYXQmz+hMntJFJhoHfZUFePnUGSZe/wHu8CtkpicBWLtukD/51rP8xuf+Pvt+spcNH1nLww99nreHzrL79FlOpLKUy479IzneGjqL5zmaY0FuX93K1r6WKwqw07NF9g5Pc3AkTa5YxsNx88pmvnLfIG3xEC8fGueZV4+xqaeJL983+L47fIiIiIjI5WmosBwO+GlPhPn2jpOEAz7u2bCCzqYL594WSh47jqU4NJom6DduH2jj0TsGCPiMk5Oz7DqeYtfxSd4eOkvJO/8cRks0RCToI+Az/H4frbEQyRMv87/+4J+xafNmXjy4j6effppnnnmGAwcOsOv1V/jxiy++a2e73pYoH93cjXOOfMljtlDi8GiGA6MzHBlLs33vCN/82Qk8B82RIGs643Q0hXHVHe+cY273u3MLDzOFEgCJcICN3Uk++8F+upoixMJ+Mvky33/jNNlCiY9t6eGBW1Yu+f+HiIiIyHLXUHOWB7fc7P7B175JJl8iHvKTL3mUPEc8HGBNR5xi2WPf8AwBXyUgr1uRIFf0ePP0FLuOT7LzWIqxdOFd7xkLVsJwKOAnHPDh80F7PEw05McM7t7Qyer2OBu7k3zrj5667K2f30up7JEvldl9aprte4YZTxfwmxEOGj3NUXpbovQ2RwkHfcRDfjqTEYzKvOTTZ3OcTGUZr94Nb0+EeejWlbTGQwv9ZxYRERFZ9q7JBX7zW8dNpPP87GiKQ2NpTqayZAolIkE/nYkwQb+PkucxOpPn4Eia+T+BD4iH/SQiQaLBykK/5miQrX0tbBtopTsZ4blfDNEaC7GpN8mq1iirO+KL2u/4UrKFEsfGsxwZT3N8Iku++M6GJaGAj/62GP1tMVa1xWiPh67qAkIRERGR5eCaXOCXyhT4xuvHmcmVODWZBaC7OcrfWdPO9GyRo+MZ9p6ZJpUtvuv7Qn6jJxlhsLuJNR0JWqJBmmNB1nTESUSC73rtC3tHiIX8bBtoZWNPkubou5+/GmKhAJt7k2zuTV71c4uIiIjI+9dQYdnnM4plxw0dcR6+vZ9ssczLh8bZeTzFW6en33mdwabuJB/d3MXtA20k32fgfe3IBGdzRT79gT7WdzWpe4SIiIiIvKeGCsuJcIDPfWg1u0+d5amXj/LTwxMUypUVegbc0BHn127q4c61HSQil1f6m6emODg6w5fuXseq9pimNoiIiIjIJTVUWJ7OFfn813cyOpOfO9bTHOH+G7u5d2PX+76DfL4DwzO8fjTFv/z1jaxIRherXBERERG5zjVUWE5lCoRn8kSDfm7tb+Fzd6xmZUtsQe95dDzNX+0b4WsP3URLTJ0kREREROT9a6iwHPT7+M07B3jg5l78voXNJ3bOcSKV4fm3zvC7n7r5iu9Ki4iIiMjy1VBheXVbjE/e2rfg93HOcXoqy1++PcLXPnmTgrKIiIiIXJElbwdhZh8zs/1mdsjMfmupz+ecYyKb58X9Y/zrj2+mNX7hDoAiIiIiIu/HkoZlM/MDvw/cD2wGHjazzUt1PuccE5kCJyayfGRTFyuSkaU6lYiIiIgsA0t9Z/mDwCHn3BHnXAH4NvDgUpzoXFCOh/2cnsrxq1u6l+I0IiIiIrKMLHVYXgmcnPf4VPXYopvIFOhujvCjPSN86Z51S3EKEREREVlmljosX2znD/euF5g9ZmY7zWznZGriik4yns7TlQxzZCzNnes66rKFtYiIiIhcf5Y6LJ8C+uc97gOG5r/AOfekc26bc25ba1v7ZZ9gIlMJyu3xMHvOTHP3hhULq1hEREREpGqpw/IOYNDMbjCzEPBZ4LnFevOJTJ7ORJj1XU384UtH+OLdmn4hIiIiIotnSfssO+dKZvYE8P8AP/C0c+7txXjvqdkCrbEQG3uS/MWbQ9y3eQWJcEO1jRYRERGRa9ySp0vn3PPA84v5nulciUjAx6aeJGMzeQ6PZXjwliVZNygiIiIiy9iSb0qy2HLFMmXncePKFoJ+4w9fOszjv7ym3mWJiIiIyHXomgrLxbJHOl9ia38L0ZCfP911il+/qYdYSNMvRERERGTxXTNhuew5JrMFblyZJBkJMjqd4/TULNsG2updmoiIiIhcp66JsOycI5XNs76ric6myhbWT/3kCJ//JU2/EBEREZGlc02E5VS2wKrWGH2tUQC2vz3MHes6iKv7hYiIiIgsoYYPy5PZAu2JEGs6E5gZM7kiu45Pco82HxERERGRJdbQYTmdKxEL+dnYncTnq+yc/dRLR/j8XZp+ISIiIiJLr2HD8rkWcVt6mwn6K2XuPJZidXucjkS4ztWJiIiIyHLQkGG5VG0Rd1NfpUUcQL5U5i/ePMNDt2nzERERERG5OhouLHvOMTlbYFN3E83R4NzxP3rlGI/eMYCZ1bE6EREREVlOGi4spzIFVrXF6W6Jzh07NDpDwO9joCNex8pEREREZLlpqLBc9hwdTSHWzAvFnuf4k9dO8LkPra5jZSIiIiKyHDVUWDaDDV3vdL4AeHbnST51W9/cIj8RERERkauloRJoNOQnFHinpKPjGSYyBW7qa65jVSIiIiKyXDVUWPbNW7yXK5Z55pWjPKaeyiIiIiJSJw0Vluf77399kC/evVbTL0RERESkbhoyif7gjdPcPtBGT3P00i8WEREREVkiDReWD43OcGpylrs3rKh3KSIiIiKyzDVUWPac4+s/Pc4XNE9ZRERERBpAQ4Xl0ek8T9yzjoDmKYuIiIhIA2ioVJqIBFiRjNS7DBERERERoNHCcjhQ7xJEREREROY0VFgWEREREWkkCssiIiIiIjUoLIuIiIiI1KCwLCIiIiJSg8KyiIiIiEgNCssiIiIiIjUoLIuIiIiI1KCwLCIiIiJSg8KyiIiIiEgNCssiIiIiIjUsKCyb2X80s31m9qaZ/ZmZtVSPD5jZrJm9Uf34g0WpVkRERETkKlroneUfATc657YCB4B/Pu+5w865W6ofjy/wPCIiIiIiV92CwrJzbrtzrlR9+BrQt/CSREREREQaw2LOWf5N4IfzHt9gZn9rZj82s1+q9U1m9piZ7TSznWNjY4tYjoiIiIjIwgQu9QIz+yug+yJP/bZz7gfV1/w2UAK+UX3uDLDKOTdhZh8Avm9mW5xz0+e/iXPuSeBJgG3btrkr+zFERERERBbfJcOyc+6+93rezB4BPg7c65xz1e/JA/nq17vM7DCwHti54IpFRERERK6ShXbD+BjwVeAB51x23vFOM/NXv14DDAJHFnIuEREREZGr7ZJ3li/h94Aw8CMzA3it2vniLuDfmlkJKAOPO+dSCzyXiIiIiMhVtaCw7JxbV+P4d4HvLuS9RURERETqTTv4iYiIiIjUoLAsIiIiIlKDwrKIiIiISA0KyyIiIiIiNSgsi4iIiIjUoLAsIiIiIlKDwrKIiIiISA0KyyIiIiIiNSgsi4iIiIjUoLAsIiIiIlKDwrKIiIiISA0KyyIiIiIiNZhzrt41zDGzMeB49WEHMF7HcqTxaEzI+TQm5HwaEzKfxoOcb/6YWO2c67zUNzRUWJ7PzHY657bVuw5pHBoTcj6NCTmfxoTMp/Eg57uSMaFpGCIiIiIiNSgsi4iIiIjU0Mhh+cl6FyANR2NCzqcxIefTmJD5NB7kfJc9Jhp2zrKIiIiISL018p1lEREREZG6ariwbGYfM7P9ZnbIzH6r3vVI/ZnZMTPbbWZvmNnOetcjV5+ZPW1mo2b21rxjbWb2IzM7WP3cWs8a5eqqMSZ+x8xOV68Vb5jZr9WzRrm6zKzfzP7GzPaa2dtm9uXqcV0rlqn3GBOXda1oqGkYZuYHDgAfBU4BO4CHnXN76lqY1JWZHQO2OefUK3OZMrO7gDTwdefcjdVjvwuknHP/ofqLdatz7qv1rFOunhpj4neAtHPuP9WzNqkPM+sBepxzPzezJmAX8AngUXStWJbeY0x8hsu4VjTaneUPAoecc0eccwXg28CDda5JROrMOfcSkDrv8IPAH1e//mMqF0BZJmqMCVnGnHNnnHM/r349A+wFVqJrxbL1HmPisjRaWF4JnJz3+BRX8EPJdccB281sl5k9Vu9ipGF0OefOQOWCCKyocz3SGJ4wszer0zT05/ZlyswGgFuB19G1QrhgTMBlXCsaLSzbRY41zjwRqZc7nXO3AfcDX6r++VVE5Hz/E1gL3AKcAf5zXauRujCzBPBd4J8456brXY/U30XGxGVdKxotLJ8C+uc97gOG6lSLNAjn3FD18yjwZ1Sm64iMVOejnZuXNlrneqTOnHMjzrmyc84DnkLXimXHzIJUQtE3nHPfqx7WtWIZu9iYuNxrRaOF5R3AoJndYGYh4LPAc3WuSerIzOLVSfmYWRz4FeCt9/4uWSaeAx6pfv0I8IM61iIN4FwgqvokulYsK2ZmwP8G9jrn/su8p3StWKZqjYnLvVY0VDcMgGr7jv8K+IGnnXP/vr4VST2Z2Roqd5MBAsA3NSaWHzP7FnA30AGMAP8G+D7wLLAKOAF82jmnBV/LRI0xcTeVP6s64BjwhXNzVeX6Z2YfBn4C7Aa86uF/QWWOqq4Vy9B7jImHuYxrRcOFZRERERGRRtFo0zBERERERBqGwrKIiIiISA0KyyIiIiIiNSgsi4iIiIjUoLAsIiIiIlKDwrKIiIiISA0KyyIiIiIiNSgsi4iIiIjU8P8BD74RMNrRYPsAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAFlCAYAAAAZA3XlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABm8ElEQVR4nO3dd3yc1Zn28d+Zrt6bey+yjTEY04tpgdCTmJAO6YlJ303ZZDfZkk17k93sYrJptITqFAKEFsCEjnuVu9V7l0bT5znvHyMLW7bBfWT7+n4+jqRnnhndUobRpaP7uY+x1iIiIiIiIm9xpbsAEREREZGRRiFZRERERGQYhWQRERERkWEUkkVEREREhlFIFhEREREZRiFZRERERGQYT7oLACguLrYTJkxIdxkiIiIicpJbtWpVh7W25J3OGxEhecKECaxcuTLdZYiIiIjISc4YU3sw56ndQkRERERkGIVkEREREZFhFJJFRERERIZRSBYRERERGUYhWURERERkGIVkEREREZFhFJJFRERERIZRSBYRERERGUYhWURERERkGIVkEREREZFh3jEkG2PuMsa0GWM27nHse8aYRmPM2sF/797jtm8ZY3YYY7YaY951rAoXERERETlWDmYl+R7gqv0c/y9r7emD/54EMMZUArcAswbvc6cxxn20ihUREREROR7eMSRba18Cug7y8W4AHrLWRq211cAOYMER1CciIiIictwdSU/y7caY9YPtGAWDx0YD9Xuc0zB4bB/GmE8bY1YaY1a2t7cfQRkiIiIiIkfX4YbkXwCTgdOBZuCng8fNfs61+3sAa+2vrLXzrbXzS0pKDrMMEREREZGj77BCsrW21VqbtNY6wK95q6WiARi7x6ljgKYjK1FERERE5Pg6rJBsjKnY48ObgN2TLx4DbjHG+I0xE4GpwPIjK1FERERE5PjyvNMJxpgHgUuAYmNMA/Bd4BJjzOmkWilqgM8AWGs3GWMeAaqABLDYWps8JpWLiIiIiBwjxtr9tgwfV/Pnz7crV65MdxkiIiIicpIzxqyy1s5/p/O0456IiIiIyDAKySIiIiIiwygki4iIiIgMo5AsIiIiIjKMQrKIiIiIyDAKySIiIiIiwygki4iIiIgMo5AsIiIiIjKMQrKIiIiIyDAKySIiIiIiwygki4iIiIgMo5AsIiIiIjKMQrKIiIiIyDAKySIiIiIiwygki4iIiIgMo5AsIiIiIjKMQrKIiIiIyDAKySIiIiIiwygki4iIiIgMo5AsIiIiIjKMQrKIiIiIyDAKySIiIiIiwygki4iIiIgMo5AsIiIiIjKMQrKIiIiIyDAKySIiIiIiwygki4iIiIgMo5AsIiIiIjKMQrKIiIiIyDAKySIiIiIiwygki4iIiIgMo5AsIiIiIjKMQrKIiIiIyDAKySIiIiIiwygki4iIiIgM40l3ASIiIiLp5jiWzoEoA9EkCcchkbQkHUvCscQSDgPRONkBL5NLssnL8OJymXSXLIch6diDPvcdQ7Ix5i7gWqDNWjt78NhPgOuAGLATuM1a22OMmQBsBrYO3v0Na+1nD6l6ERERkePEWktjT5j/eW4bj69vJhp3sMCBolR+wMVtF0zifWeMpSQ3gM+jP8qfSJp7wwd9rrH27RO1MeYiIAjct0dIvhJ4wVqbMMb8CMBa+43BkPzE7vMO1vz58+3KlSsP5S4iIiIih81ay/qGXu58cQcvbW0nnHAO6f4u4KyJBXz5sqnMGVtAtl9/nB/pookkf9/axrtmj1plrZ3/Tue/4/+j1tqXBsPvnsee3ePDN4D3HXKlIiIiIsdZ0rE8ub6ZP61pYHlNFwPR5NBtU4ozuPq00WT53GT43GT53ORkeMkLeMnweajpHODB5XW8sasLB3izupsP/GY5BZlePnT2OL5w2VT8Hnf6vjh5W3WdIV7Y0n7Q5x+NX3s+Djy8x8cTjTFrgD7gO9bal/d3J2PMp4FPA4wbN+4olCEiIiJyYPVdA3z7zxtZW99DXyQxdHxcgZ9PXjiZy2eWk5/lxe0yuI3B4967leK0MXlcOqOUxu4wf17dwMMr6uiJJOkOxblj2U7uWbaeP3z6HJ5/6nEWLVoEwNKlS1m0aBFLly5l8eLFx/XrlbcEowm2tvQd0n3esd0C4EBtFMaYbwPzgfdYa60xxg9kW2s7jTFnAo8Cs6y1b1uV2i1ERETkWFpb1823/rSBzS39Q8fKcrx86sIpXDmrjIr8DLzug+8vTjqW3nCc1bXdLHlhG2saegGDExmg8a7FTB1VhLWWbdu2UV5eTktLC3fccYeCchrsbq154M06rjmtgounlx5Uu8Vhd5sbYz5G6oK+D9nBpG2tjVprOwffX0Xqor5ph/s5RERERA7VkiVLaGtrG/r44Ve28IlfPDsUkAsy3Hztymk8+Olz+ch54xlXlHVIARnA7TIUZvm4vLKMBz9zHv965XhIJnEFshj9md9SG81m27ZtuN1uWlpaqKysHFpdluOrOxSnuiOI1+OiINN30Pc7rJBsjLkK+AZwvbU2tMfxEmOMe/D9ScBUYNfhfA4RERGRQ7VkyRJuv/12Fi5cSFtbG3c8s4Fv3PMcHU4WAGeMzeWhz5zHpy6cxKSSnKPSQxzwuvnYpXO47yOzSIb7cLndlN78PfIXfoJkMklJSQnLli2jtLT0iD+XHJqkY9ne2s9rOzq5ZnbFId33HUOyMeZB4HVgujGmwRjzCeAOIAf4mzFmrTHm/wZPvwhYb4xZB/wB+Ky1tuuQKhIRERE5TIsWLaKyspKqzVs4/cPf5gcPv4gtmoAxhrPGZvHLj57F9PJcAt6jf4HdjPIcIg9/jXDTZowx5C24ifJbfw5GM5XTpa0vQn1XiCy/h+zAoV2Kd1A9yceaepJFRETkaKltbOa8z/4Qp3gq/rKJAFwyKYf//tA55Gcd/J/bD0VbWxsLFy6kqqoKt9tN9oW3krfgRowxOJEQGS/8kJefe0qrycdRLOHwZnUnj65p5Ob5Y8n0pULyaWPzj21PsoiIiMhIE4ol+MnztZgxc4cCcnj5H/jnqyYfs4AMqSkWVVVVlJeXk0wmKWt6GfPGPTiOgyuQSfjyf+LeBx45Zp9f9lXfFaKpO0xxtn8oIB8KhWQRERE5KVhr+e4fV/PEyl148sqw1hJ6+T7alt3D9VdfudfFfEfb4sWLueOOO1i3bh133HEHL7/8MsuX3sn7i+oAcPkC3Ns1mUg8+Q6PJEdDKJagrivEm9VdXFlZfliPoZAsIiIiJ4XfvlLNY+vqITMPrOXW+SWsePi/Uz3KVVUsXbr0mH7+xYsXU1paOvS2tLSUn3xjMQ988mwAgjGHS36yjETy0Hb3k0O3qz1IS2+EUfkZh711uEKyiIiInPBe2tbG4+saiRIALJ85t4xv3Tif8WMqWLZsWVpnFJ83pZj/vHEWAC19UW5a8goj4Zqwk1VPKEZbf4w3dnVy2YzD7wFXSBYREZETWn1XiN+9XsO6htTeZbecNZavXnvG0ASL3au76fTBcyZw27ljAdjQ1M9nf7cqrfWcrJzBkW91HQPMrMjdZ9fEQ6GQLCIiIiescCzJT5/dyt82twMwvSybf7l21lGZf3y0/cv1c7hgSiEAz1S18u+Pb0pzRSef1r4IwWiCVXXdnDe56IgeSyFZRERETkjWWn709BaeWt8EQKbXxa8/Op9M/6FPMjgejDHce9vZjCvMAOC3r9Zw1ys701zVySOWcNjZHmRTUx/nTS7GHOF8aoVkEREROSHd/WoNL25pJTp4HdwvPnwm44qy0lvUO3C7XTz9pYvI8adWuv/tiS38bVNzmqs6OTR0h4gmkmxvDTJ7dN4RP55CsoiIiJxwXtnewcvb2qjpCgPwj++ayoVTS9Jc1cHJ9Ht49isXs3vowmd/v5rmnnB6izrBhWIJajtDrKjp5orKsqPymArJIiIickJp6Y2wdGUdy7Z1AHDJtBI+deEUXK4TZ/vnivwMHv7MuQAkLdyw5GUcR6PhDteu9iDJpKUzGGP8UfprgkKyiIiInDCstfzvC9t4bF2qRaE028d/vX/uYc/CTaczxxfyvesqAWjrj/P5+1enuaITU08oRmtflJd3dPDuORVH7XFPvGeUiIiInLKeWN/ME+uasIDHwN23LaAgy5/usg7bredPZMH4VP/s05taeXhFXZorOrHsHvmWSFqS1lKc/fbPhWji4Hc8VEgWERGRE0L3QIz736ihN5IKOj963xxmHYULtNLtd588l2xfqlXk23/aQHV7MM0VnTja+iIEYwme39LGNe+wimyt5cHlB/9LiEKyiIiInBD++7ltvFHdDcA1c8q4cd7YNFd0dPi9bn73iVR/csLCh379OvFDWPE8VcUSDjvagwTDSfIzvGS/w+i/5za3csa4goN+fIVkERERGfH+vrWNv6xtACDL5+L7N52G+wS6UO+dzBtfwGcumgRAU1+Mz/5eO/K9k9rOARwLz29p5arZ5W977rbWfsJxh9PG5B/04yski4iIyIg2EE1w54s76AmnVlf/+5Z55Gf60lzV0fetd89kRlkmAM9vaeeuV6rTXNHI1ReJU98VorknzOSSbLxvs/10bzjO37e1c91ph3ZRn0KyiIiIjGj/8/w23hxss7hyVhmXzTg6c3BHogc+dR6Z3tT7P/xrFZsaewBoa2tjyZIl6StsBHEcy7bWfjJ8bl7e3sFF0w48HzvpWB5aUccHF4w75B34FJJFRERkxFpd283SFfUAZHgMP7xpzgk1D/lQFWb7uTy7CScRJ2bhU/e8SUNTMwsXLuT2229XUAZa+yL0R+Isr+7i4mkluN4m/D66tpGrZpWTdRhblSski4iIyIgUSzj8+OktdIUTAPzs/adT+A4jvk4G37ntBjx1K7DWobEvztmf/xlVVVVUVlayaNGidJeXVpF4kh1tQbzGRX1XmBkVuQc8d2VtF8XZ/sPeXEQhWUREREakO5ft4I3qLgAunVHCu2YdvY0iRrLS0lJe+fkXcLrqMcbgnnIepadfwrJlyygtLU13eWlV0zkABv66oZkbTh91wPM6glGqmvq4+G1aMd6JQrKIiIiMONtb+7n39dSFawE3/Pi9c0/qNovhPG4XseeXkAz34/L48J37UfoGV9RPVb2hOE09YbqCMfIyfQe8eDPpWP6wqoH3n7XviMAdbQc/g1ohWUREREYUay3f/ctGukOpUPjjRadTnHPyt1ns1tbWxsKFC2mrriKx4SlsMok7t5TL/+V3tLW1pbu8tEg6lq2tfWR5PfxtcytXzTrwyLc/rWngmjkV+D3uvY4nkg7Pb2496M+pkCwiIiIjyhPrm3htV6rN4oIpxVx72oH/rH4yWrp06VAP8toHf0xlRQ4ATulMvvHrv6a5uvRo7g0TiiVZXtPFBVOKDzgje219D0VZfsYWZu5z2+Prmw7prxEKySIiIjJixBIO3//rZgB8LvjZzadWmwXA4sWLueOOO1i2bBllZWXc/fGzyfaAy+1meaSU+q6BdJd4XEXiSXa2BfG7XdR0DjBr1P63Iu8eiLG2vptLZ+zbt13TEWRFTTcLpx98T7dCsoiIiIwYP356Cy19UQD+7cY5lOYG0lxReixevHjoIr3y/Ey+fs0sAAbi8Kl7V2CtTWd5x9Wu9iAet4snNjRz/dzR+z0n6VgeWVnP++eP2+e2UCzBT/+2jc9dPJkppdkH/XkVkkVERGREaO+LcO9rqYv1ppdmcfP8fS+8OlV99NwJXDClCIAtrQN8/69Vaa7o+Ojoj9DSF6VnIEaWz0Nh1v4v1ntsXSNXzionw7d3H3JfOM6/PVHFx8+buN8WjLejkCwiIiIjwucfWE3cSb3/Px8885Rrs3gnd3zgDMpzUiHxntdqWFvXneaKjq1IPMmWln5y/R6e3tTC1bP3f7HepqZesvweJhbvPQ+5rT/Cb17ZxexRecwbX3DIn18hWURERNLujZ0drKhJhb6Pnjue6eU5aa5o5MnP8vHP183CAAkHvvDAKmKJZLrLOiastexo68cYw8rabs6eWITHvW9s7Q3HeWNXF1fM3Hur8sbuMI+uaSTT52HR/DGHVYNCsoiIiKSVtZbP3b8KgGyf4ZtXzUhzRSPXNaeN4po5qRXV+p4oX3tkbXoLOkZaeyO098dwG8PW1n7mjs3f5xzHWh5eUcctZ43F7LE1dXXHAM9WtTCpOJsLpxbvMwruYCkki4iISFr97G/bhmYi/+zmeWT6PWmuaGT78fvmMrEoA4DH17fwt6qWNFd0dIViCba09pOf4eWRlfW894z9rwQ/traJy2eWkbXH82VrSz+v7ujgyllldA5E95mEsb6h56DrUEgWERGRtBmIxlnywg4AzhqfzxVvs0mEpGT6PXz/pjlk+VKrp19+cA394Viaqzo6HMeypbkPv9vNG9VdnDYmn7wM7z7nravvITvgYVLJW9MqNjT0sK6hh/fPH8Pj65p5z7BwHYkneXNwm/ODoZAsIiIix9WSJUuGdo776G+Xk7pWz+HnH5i315/N5cDOm1LC+88aD8BA3OHDv33zpBgL19AdojecIJpIUtM5wJn7ueCuMxhlTX0Pl+0xD3lFTRe7Oga4ef5Y/rKumWtPq8A7rIf5z2saec+8/Y+Q2x+FZBERETlulixZwu23387ChQv5+7qdrKrrAaDzb7/iz/ffnd7iTjDfvqaS+ePzAVjX0MdvX96V3oKOUH8kzs72AfIyvPxhdQPv20+bRSLpsHRVw159yK/s6KAjGOWG00ezqamX3AwPYwr2Hve2ubmPkhw/RdkHv725QrKIiIgcN4sWLaKyspKqqio+8ts3AYj3tDA2Us2iRYvSXN2Jxe0y/PyWt8bCff/JLdR1npi78SWSDpub+8j0uXm2qpXLZpQR8O57wd0fVjdw/dxRQ7c9v7mVeNLh6tkVBKMJXtvZuc+ki1jC4eXt7XutPB8MhWQRERE5bkpLS1PbLZ/3PkxGLtZa4s/fwYvLXhjaYU4O3uiCDL5x9Uw8brDATUteJemceG0XNZ0hwrEk7f1R4glnvzvjvb6zg/GFmYzKT120+NcNzWT43CycXoq1lodX1PP++WP3adl5dG0jN54++pBbeRSSRURE5LiKxJP4z/swxhgGNr0IvY3pLumEdtMZY7h2zigAOkNxvvLwmjRXdGg6g1FqOwfI8nt4emML180dtc85TT1hajpDnDu5GGstf1zdQEVegPMmFwPw923tnDm+gNxhF/ltb+0nN+A9rO3N3zEkG2PuMsa0GWM27nGs0BjzN2PM9sG3BXvc9i1jzA5jzFZjzLsOuSIRERE5abW1tXHRP92HcXuw8Riu1Q/R3t7OwoULhy7mk0P3w/fOYWpJase5x9Y188aOjjRXdHD6I3E2NvWRn+Hj0bVN3DBvNO5hOy1GE0keW9fEojPH4FjLg8vrmFmRyxnjUvGzpTdCS1+E04fNUo4nHV7Y0saVs95qv2jpjRx0bQezknwPcNWwY98EnrfWTgWeH/wYY0wlcAswa/A+dxpjDm+Cs4iIiJx07rhvKbZ8FgD/ePlENq5dPdSjvHTp0jRXd+IKeD387wfnke1LRbsP3fUm/ZF4mqt6e+FYknUNPWR43Gxt7ac4y0f5sBVfay0PLa9n0ZljMMZw3+u1nD2piMqKXCDVy/zntY37naX86NpGrps7Ctdgm0V9d4hv/Gn9Qdf3jiHZWvsSMHyo3A3AvYPv3wvcuMfxh6y1UWttNbADWHDQ1YiIiMhJy1rLH/smYoyhNNvD4qvmDvUo33HHHSxevDjdJZ7QZlTk8aXLp2OApAOX/uQFIvHUttVtbW0sWbIkvQXuIZZw2NDYg9u4SDqW5dWdXLqfC+ueWN/M/AmpNoq7X63mspmlTN5jNvKf1zTud9zb+oYeCjN9Q/3L1R0DfOtPG+gaOPh50ofbk1xmrW0GGHy7+6saDdTvcV7D4DERERE5xd31yi4GYqmLyn73yXOHLqQqLS1VQD5KPnXRJMa4+7DW0j6Q4KO/fJn6pmYWLlzI7bffPiKCciLpUNXcRyzh4HEZfvdmLe8/a9w+F9a9uqOD/Ewvk0uyueuVaq6fO4qxe4x2e3l7O6PyM/Y6BtAbjrOytnsodG9r7eef/ryB3nCcefvZ3vpAjvaFe/u7bHC/l1gaYz5tjFlpjFnZ3t5+lMsQERGRkaQ3FOff/7oFgGvmlDO9PDfNFZ287v3sxZj+VH/3m/VBzly0mKqqKiorK9M+Zs9xLNta++kNxcjyebj39RreP38s2cO2Iq9q7qMjGGXumHzufq2Gm+eP3eviuy3NfXQGY5w/pXiv+1lreWTlW1MuNjX18p1HNxKMJjh7YiH/fG3lQdd6uCG51RhTATD4dnenfQMwdo/zxgBN+3sAa+2vrLXzrbXzS0pKDrMMERERORHcdvcbAPjchp8umpvmak5uk8aO4vefuwQnMoAxhowLbqNo+nz+9tzzaR+zV905QGt/hPxMH/e9Ucv1c0dRmOXb65zG7jAra7qYP76AB5fX8dFzxlOwxzktfRHeqO7khtP3nYLx1MYWLppaQpbfw5q6bv7lsU2E40kumlrMN6+asU9bxts53JD8GPCxwfc/Bvxlj+O3GGP8xpiJwFRg+WF+DhERETkJrKjuZHV9HwA/fM8cAj7PO9xDjtS0smwiz/0cm4hjjIus6/6ZFTXdOGmcodzQHaK2Y4CCDB8Pr6jnkmklVORl7HVObzjOExuaOH1sPi9sbecTF0wka49V5oFogj+vaeRDZ4/fpz1jV3uQeNJhenkOr+7o4N+eqCKWcLhiZhlfvWI6nkMIyHBwI+AeBF4HphtjGowxnwB+CFxhjNkOXDH4MdbaTcAjQBXwNLDYWps8pIpERETkpJFMOnzoN6lV5LEFGbznzLHvcA85Um1tbSxcuJD2Ta8RWfEI1kli3G6+9IfNvLh2B9Ye/6Dc1hdha0s/hVl+Hl/fzJzReUwq2XvDkGgiyQPL65hYlEVdV4gPnz1ur2CbdCy/f6OWDy0Yt8+KcCSe5G+bW7lu7igeX9fEj57eQsKxXHdaBbdfOmVorNyzVS0HXfM7/ipnrf3AAW667ADnfx/4/kFXICIiIietnzyzmdjgctmDnz47vcWcIpYuXTrUg/y3h37Gpx+uYmPTAHj9fPaRjTxeUca08pxD3oHucCQdS3V7kNquEAWZPl7Y0sqovACzR+ftc959r9eQ7XeTm+HlnElFe91ureWB5XVce9qofTYMAXh4RT3vO2MM971eyx9XNwDw0XPH874zUqPjko7lweW19EUSB127dtwTERGRY6Kxe4D/e6kGgBvmjmJMQVZ6CzpFLF68mDvuuINly5YxqqKcBz97IXmZqWAZw8fH711BVVPv0Hi4YyUUS7CmrpuGnjAl2X5W1HThdrlYMLFon3MfXF7HQDTJuZOK9wnIAE9ubOH0sfmMLsjY57aXt7czsyKHe1+v4Y+rG3AZ+PJlU1l0ZurivVAswX8/t5WWvijXzKk46PoVkkVEROSoSzqW9935KgB+N/zsZl2sdzwtXrx46CK9nICXvyy+AJ87tXLc2BPhCw+u4YUtrbT1RY5J+0VbX4QV1V3Ek5aiLD9vVnfREYztMwvZsZZ7X6uhpnOAD509niml2fs81vLqLjK8buYMW32G1A561R0DPLG+mWVb2wl4XfzLtbO4bGZql72mnjDfe3wTowsy+crl0xhfdPC/qCkki4iIyFF357LtNPendnz76c3zcB/iRVNydI0vzuLH7z2NwZxMdUeIHzy5hYeW17GxqZdw7OisKieSDtta+9jY1EtOwIvLwL2v1eBYy/Vz955GEUsk+Y8nquiLxPnaFdMpyfHv83gra7to6g3vd6ORcCzJQyvqWF3bzZr6HvIyvHz/xjmcOT61XfULW9r40TNb+OxFk7nlrHH7bHf9TnR5qYiIiByxJUuWsGjRIkpLS9nV3s9P/7YdgCklWVw7d99RXXJ8GWN492mjeGl7O4+ubcKxqVXWh1fWs6s9yDWnjWLWqDzK8wK4DjFM7haMJtjS1MdALEFxlp/1Db2srO3ivWeMIT9z+Ji3ED96ZgvvmTeGS6bvfyzdc1WtWCw3nr7vvnRJx3Lnizuoau6jrT9KeW6Af71+FqPyM4jEE/y/Z7fhdbv46fvmHvJUi90UkkVEROSILFmyhNtvv50777yTp//2HO//zRoAnHiUq1zVwCVprU9SfB4X371uNlta+tnW2k/CSbUrvFHdRW8kwcIZpampE8XZBHwu/B732z6e41iCsQQ9AzFa+yL0RxNkej1k+jzcv7yOcQWZfPz8iftcIPjUhmaeqWrhO9dUUpoT2OdxrbX8cXUj44syOWtC4X5v/+FTm1ld300sYZlSks2/XFdJQaaP5dWdPLC8jvedOYYLphzZPhwmHWNAhps/f75duXJlussQERGRw7B75FhVVRVll3yEwNnvx3EcvJue4PW7/z3tG1jI3ra39vGZ36+ivjNE3AG3gZIcP/PGFlCRF+CiacVYDD6Pi9wML3kBD1l+Dxk+N26XIRhJ0BGM0t4fJeFY3MaQ4XPj97jZ1NTLazs7ec+80RRl790+0ReO89tXqwnHkvzDldPxefZd4Y0nHe5/s5bzJxcztSxnv7d/59ENVDX3A3DR1BJuXziFWNLhvtdr6AhG+dKlUynM3rd1Y7fTxuavstbOf6fvk0KyiIiIHLG2tjYqF1xE5qIf4XJ7SPa2svJ711BWVpbu0mQYay2v7ujgn/+ykeaeMJGExQWMK8pkRkUuWV43HreLicVZTCvLxut2kbQWAzgWjAGf20Wmz4PLQGt/lG0t/exsDzKuMJNLZ5TutXociSd5eXs7a+p6KM8L8OFzxuPaz/i5UCzB716v5YbTR1Oet+8Kc0cwyrf/vIGm3ggel+GTF0zk6tnlLNvazoraLkblZfDBBePesb3iYEOy2i1ERETkiA1EE2S86x9wuT04iRiRJ3+A+ddr012W7IcxhgUTi/jsxZP51Uu7aO2LEowmqO0MkR3wUJYTYGJxFn6Pi5e3dxCMJvB5XMwsz2VcUSbVHQPsbAsSTTgAlOb6mV6Ww/lTive6OG5ne5DXd3ZisSQdmDMmj6tn738EW2cwyiOrGvjQgnH7nYO8rr6HHzy1mYFYkuJsH9+4agZuY/jVy9UkHMuFU0o4f0rxUf0+KSSLiIjIEWlqbmHhl36Ke9qlWOuQ2P4KHXU7WLhwIcuWLVO7xQjk87i45rRRtPRGeGJ9M10DMToHYmxs7GPMrAza+6NEE0lCMYcxBRnMH19AbVeIV7Z3MLE4i+vmjiLg3bdnORRL8PL2Dpp6wowvyiI/00tHMMqVleWMyt93xjGkAvCKmi4+fv6EffqgHWv5w6oGfv9GLRY4fWw+Hz13PK9s7yAvwwvWcsPcUYwtzDyor7ulL3LQ3yOFZBERETkiP/jtUpxJF+ICcvwenv2/f+SKHU9TVVXF0qVLWbx4cbpLlP3I9nu45axxtPdHeGNXF9l+N7VdYZ7e1Mq8MXlMLs1hdH6AqSXZPFvVSiiWZEx+Bk29Yao7BogkksQHV5MBkha8bsP5k4rxul1Udwxw+czSA84m3tEWZNnWNuaMzuMTF+x7gd+u9iC/enkXm5r6ALjx9AoyvB42NPRSlO0jmnD4xIWT9tmi+kC6B2L8ZU3jQX9/FJJFRETksDX1hHjNmYbLk8AAd3zwDEZVlLFs2TIF5BNAWV6AW8+bSNdAnKrmPk4bk8v6hj7WNPSyqbmPM8fls7a+h3fPqaCyIpeWvghul8HvcRPwuvC5XUPh1rGW13d28nRVCxdPK9nvbGNIjZ57elML4wpT0y+Gzy/uDce5/81antnUgmPB6zJcMr2EgNfDmeMLeHFrO5fNLNvvxiMHEowmeGhlPTedPoolB3kfXbgnIiIih6V7IMZnf7+SN6u7AThtTC6P3X5hmquSQ5V0LGvquvnf57dT0xni+tNG8ZvXqoc2GJldkUPA5yYSd7hx3mj8HjfdoRjdAzFC8SQGMEDCsZwxroDZ+9kZD1LPl79uaCY3w8O7ZpXv01qRdCxPbmjm/uW1DERTn7soy8eCiQVce9po1jf0EEs4XDd31EGvHgNEE0nuerWGsycWsKauh59/4AxduCciIiLHRl8kzo+f3jIUkANeF7/7+II0VyWHw+0yzB6dx0fOHc9vXqnmL+ub+Ml753D3azWsqu1hY3M/2X4Pn7t48uBW0w4Br5vyvADnTCxkYnH2PqvBjrW09Udp6ApR1xUiGE3g97q5cd5osv37xs91DT38+qVd1HaFAMjL8DAqL4OvXjmNeNLy5PpmrpxVxsTig189hlTwvve1Gspz/TT1RPj4+RP5+UHeVyFZREREDslANMEDb9Ty+PpUf6fbwBcWTiYv88CzaWVkC3jdnDWhiJ5QnCc2NPPjZ7bx2Ysn8a5ZFfz8ua0Eowl+8uxWFkws5MMLxjGhOIuugRhbW/tZUdNN0kl1JhgDltTKcllOgDGFGVw5q3y/wbgvHOf1XZ28vL2ddQ29AGR4XUwozuKqynJmjc7j2apW8jI8fOKCiYe8c55jLfe8Vk08aZlUks3cMfmHdH+FZBERETlo4ViSZ6taeODNWoLR1EVb5XkBPr9waporkyOVl+nlnMlFeNwuHl/XyL2v1XLh1GLuvnUBP3x6C6vrelhe3cXy6i6y/G4qK3J595wKbp4/dp+V5APpDcd5Y1cnr+zoYF19D7ubft0GLp1RRobXxcyKXHa2DxCMJXjfGWPI8L39zn/7k3Qsv355J73hBLedP2G/O/u9E4VkEREROSjRRJI3d3Vy9ys11HWnRmlleF3c94kF+0wmkBPT6PwMIqOSeN2GP69pZHVdDy29Eb5x1QzW1HXz+zdqaemLMhBNsqKmmxU13XjdhgnFWVw6vZSibB+JpCXhWOJJZ/B9h2jcYXlNF1tb+oeCsQFmlOdw2YxSKityeXBFPW6XoT+a4AMLxu13R76DEYkn+cFTmynPC/Dly6e+4/baB6KQLCIiIu8onnRY39DDb1+tZn1j6k/jAY+Lj583kckl+24fLCcmYwyTSrKJJR3eP38sf1zdSNdAjHteq+Hq2eX84sPzaegOsXRlPesbehmIJQnHk2xvDbK9NfiOj+8yMG9sPudPKeaciUVE40keW9/EM5tauXJWGVfMLDvktoo9NXaH+NEzW3nfGWO4aFrJ0HFrLVtb+llZ133Qj6XpFiIiIvK2ko5lY2Mv975WzVMbmgknLBleF2W5AV742iW4DvJP7XLiSCQdNjb10RuK8YdVDXQGo0wty8HncXHp9DKyAx4ca3ljZyePrKonHEuS4/fi87rweww+jxuf24XX7cLrceF1GcYWZjCpOJvazhANPWFqOweIJx0unV7KJTNK97tV9aF4fnMrj61r4jvvnklJbqq9oq4rxOu7OonEkkwvz+HM8QWcOaFQ0y1ERETkyEQTSbY09/PUhmZW13YTTlh8rtSK48OfPkcB+STlcbuorMhlfX0Pt5w1lkfXNrG5uZ8PnzOOpzY1MxBNhc6zJhZy3pRi6roG+N0btYRjSbJ8XkpzfXhcb60IW6C9P0Yi2U/nQAwD3HrehANuNHIoookk//f3nfRHEvzLtZVsbunnmapWHGsZnZ/BdadVkOk79MirkCwiIieEJUuWsGjRoqEtjtva2rRZxTHWG46zsbGX7a39rKnvpqYrDIDb7eKrV0ylLG//2wzLycHncTF7TB6r67p535lj+OuGZn77SjVfvHQqJTl+trb08/CKegDOHF/AP109E8fCttZ+1jX0EIklKczyMaMiF5cxrKrtoi+S4OrZFZTkHJ1JKOvqe7j7tWr8bjezR+fyyo4O5ozO47zJRUe8Mq2QLCIiI87wQPzDH/6Qb33rW9x5550sW7YMgIULF1JVVQWgoHyUWWtp6omwrbWf+q4Qb+zqHJqHXJjppSTHz8fPn5TmKuV4CHjdzB2Tz+rabq47bRQTirL40TNbuGRaKdfNHcWMilziSYdVtd38/s063Hvk0ky/h75Igr+saySRtJTl+inI9LGttZ/uUIySHD/5Gd53vOgznnRo7o3Q2BOmqSdMOJ5kIJpgR1uQaMLh3ImF3HzWuIOesHGw1JMsIiIjhrWWn//vHXzlS19kxsxKHn/qWay1XH3FpezcsR2AouLUxTidHe1Mmz6TRx57ksLit7a/dRlwGYMZfIvZfdzgNgaXMbhcqQ0UXIMfu13mqP+APVHFkw472oK09EZo7A6ztr6bP69pJGlhYmGAtmCcF79+CSXZhz5SS05cveE4q2u7ycvwAvB/f99JU0+Eb1w1nfxM30E/zkA0QXt/lLb+KO39EXrD8b2mXeyP2+2iIjfAqPwMcvwent/SSiiWJJpIctXsCiaXHNoGI6eNzT+onmSFZBERSYt40iESTxKMJFhT181L2zvY0NhDW2+Y9rZWEo7F5fGBy43F4HK5sYCTiGEj/ZjoAGfOm8uYolzGFGYwOj+DUXkZ+LxusKkeSGvtPj95ze7/sal37OCPaI/L4Pe48XlcZPjcBDwuAl43HrcLrzt1m9dtTupRZwPRBFVNvYRiSeo6Q2xq7uOPq+qJOzA6P0BXKM4/XTWdj5w3Md2lShp09EdY39BLfqYPr9vFttZ+lizbwcLppdw4b/Qx/dzhWJKnNjYzEEuQSDqU52VwZWX5Yf1yq5AsIiIjirWWgViSl7a18cCbddR2hugaiBKKORytn0SG1NzegiwfYwsymTcun0kl2YwtyCRrPzt+7cmxlqRjSSQH3zoOyWE/I10GsnxesvxusvweMnxu/INh2nsEY6vSzXEsHcEoVc19BDxutrT0s72tn6Ur64klLaNy/SQtlOT6eWzxBbpY7xTW0R9hQ2MfOQEPfo8bay2/+PtO6rtCfOmyaZTnHd2/MPSG47yyvZ2OYIyyXD/NvRFuOH00hVkHv3o93MGGZPUki4jIMRWJJ6npCPL/nt3Gazs6CMWdA56bl+Fhamk2OZ4kTz7wa4LtTdh4lMz8QrLyiukNRcmsmIzJzCNpDYHcYtw5RSQHs6wFQnGHUE+Exp4Ib1R34XUZvB4XBZk+Zo/KZXJpNrNG5TG2IGOvVWGXMbjcBu/b7Dvg2FSI7g7FaeuP4uwRov0eF7kBL3mZXrJ8HgLeVIAeyYEy6Vg6g1F2dQwQjifJC3hZU9dDbecAf1iVCshlOT4qK3JZXtvNXR87a0R/PXLsFecEOGOcm3UNqa2oM30ePn/JFLa39vOzv22lIMvHrIpc5k8oZFT+4V3Y2dQTZnlNF72hODkBD1NKs2nqjVCaG+Cq2RVH+Ss6MK0ki4jIYXm7aROJpEN3KMa9r9Vw/xt1dIfje93XBeRmeJhZkcPVsys4f0oxBVl+Mn1uers6uPTSS6mqqqKkJNV/3N7eDsD06dN5ftmL9IbjXH/rF+kkmwUXXsp1l13AjLJsmnsjPLyinu1tQaLJ/f98y/C6yAmkLj4blZ/B2IIMZo/KY3Jp9hFdDZ9IOsSSqZ3FdrdwGGPIDngoyPSSG/AOtnG40x40E0mH9v4o1Z0DxBIO2f7UquDruzpp6Q3x4PJ6wnGHwiwvt5w1lntfr+XrV07nY+erzUJSgtEE6+p7cJF6jsNbG3a8tL2Dtr4weZk+CrJ8zCjLYfboPAJ7/AZqB/9yE0+mduZr6gmztqGHWMKhIi/AtLIctrb209wTIS/Dy9Vzyg9757zhtJIsIiLHzJIlS7j99tv3O22iO5TgDf88NjX179NGMSrPz9evmsGFU0vI9HkIeF379Pj+9g9/oKqqisrKyn0e+9Zbb2V0RTmjgdf+8EuWLl3Kpz79UV7d2ckr29vpjyb4xIWTKM7209Yf5ZUd7exsC9LUE6FrIIYDhOMO4XjqwqFd7UGKs3ysrO3CYCjPC3DmuALmjSvY6wf6wfC4XXjcLva8hsmxlljCobE7Qq0TwpAKzjkBDwWZPrIDHjK8bgJe93G5cDCWcGjti1DbOUDCseQGvOT4Uxdi/X1bO33hGA+tSAXk/AwPX7x0Cj99djsXTy3hI+dOOOb1yYkj2+/hjHEFrG/ooS8SJzeQmlIxoyKXGRW5ROJJ3tjVya6OIGvre9jU1IfXvfdz3O0yeAf/uynP9XPOxCLW1vfQ1BNhIJZkwYRCrqwsT9NXqJVkERE5DD/84Q+555572Lp1KyUlJTiOQ2dnJ+Nv+DLMuHyvczO9hg+cPY5PXziZgiw/Ps879+4e7kzk3lCcu16tpmsgypnjC8nP9OJ3u3izuovqjgEmlWTx1/VN7OoIkXD2/vmX6XMzoyybTL+HnlCCvAwPMytyOXdyEaU5R6/PcndwjiYcEo4zdA1htt9DboaXvICHgM+D3+PC5z78dg1rLdGEQyiWpC8cpysUoy8cxwC5Ae/Q1r/RRJKHV9QzsSiLJS9uZyDmkON38y/XzuJHz2yhLCfA0s+de1ibMcjJL5pIsrGxl2AkQWHW/mcft/VHeGV7B5F48oCPk3As5XkBFkwoPKRpGYdDF+6JiMgxsXsVedq0aXR2dtLZ2Ulg6rmUXP+PqWkUg84an8+/3TCHCcVZZPiOzp9JD1ZvKM69r9fQE4pxxriCoRXbtfU9VDX1ccHUYrxuF3e+uIPazhDRxN590sXZPs6aUIDHGBp7IwDMGpXHZTNKKco+Opsg7Mna1J+dYwmHaDI5OJAjNXnDPzhtI9O396rz7p/fdugxwGKJJxy6QnF6QjEcJ3XM43Lh96T+7blyX9s5wFMbW7h8ZgnfeXQjAzGHTK+L/7hpDkte2E4k4fC7T57NpOJDG7Elp5Z40mFLSx+dwRiFmb4RPwFGIVlERI6Jtra2ofYHb/F4St//fTzZ+UO3Ty/L5q5b5zMqPzPtPyx7QjHuf7OO3lCMM8cX4PO4yQl4eHNXF9vb+rloaglTy3J4Y1cn975WQ0cwSmSPwOwCxhVlctb4AhwLO9qDuI1h7rh8LptRNjQz9lhK9W06JJKWuOPsdbEggNljjF2qZoPf68LvOXALh7WWv21uJRhJ4DJwz2s1JC0E3IYfvvc0fv9mLbWdIf71hlm8e86oY/r1yckh6Vh2tvdT3xUmP8N3UH8xSheFZBEROWaeeXUlH/3lSwQqpmGMwVqHRE8rGW/8kpefeYKK8rJ0l7iXnlCMu1+tIcPrYuaoXLCQE/Dy8vYOqjsGuHRGCROLs2nrj/DLv++kumOASMKhP5IYeoxMr4spZTnMKMshFE9Q2xnG4zKcPbGQS2eUHffV8sMVjCZ4aHkdp4/N5/dv1LKzYwCAkmwf37mmksfXN7GuoYcbThvFt6+tTPsvOnJi6eiPsKUldT1CfsaxbZs4XArJIiJy1CWSDo+tbeCrj6wFk5qR6kSChJ/9L4qcHrZt28Ydd9wxYreJXt/Qw9KVDVw8rQS3y+Bzu8j0uXl+Sxutfan5q3kZXuJJh6Ur63ltZycWS1tfmD3yMmU5fqaUZlOaE6A7FKO1L0KW38MVM8s4e1LRiN29b3NzH6/s6GBCUQa/ermayOA4vvMmFfGly6eydGUDb9Z0Mq4gk7tvOwvfUZomIKeWaCLJzrYgrX0R8jJ8I26GuEKyiIgcVT2hGN/84zqe3tQGgJNMEHnjQdj6Au3t7UybNo3bbruNb37zm2mu9O0lkg73v1lH10CMi6YV0RNKkOP3knQsj69vIjfg4V2zyvG4XVhreX1XJ4+tbSSWtFgnyY6O8NBjeV0wrjCL8UWZeNwuWvsihKJJSnL93Hj6aGaU54yIldgdbUFe2t5ORW6AN6s7WFPXi0Nqc5TPXTyZKyvLeHRtE6/t6MAB7v/k2ZTmattpOXzWWtr7o2xt6ccYc1xakw6WRsCJiMhRYa1lTV03n7hnBd3h1HJqor+TzJf+m5XPPw28NaItJycnnaUeFI/bxcfOm0BjT5jfvlzNWRMKMAFLJJHk5vljaewJc/drNZw5voAzxhVw3uRizptczObmXpaubGCW10O238PGpj4GYkl2dgyws2OALJ+LMQWZjC7IwFrLnS/uAGBsQQY3zhvDtLLj/72pau7j9Z0dlOYG8LgMD66opTuU+v+wKMvHd6+bxZiCDO5+rYb6rhDRpMMPbpqtgCxHzBhDaW6A3Awv21r7aQ9Gyc/wjrhV5bejlWQRETmgSDzJfa/X8J9Pbhk6dsm0YuYFV/CBW24+5BFtI421lmc2tbC6rofrT6ugPRgj4HGT5XfzZnUXGxt7efecir12DqvtHOCPqxvoGoiRn+mltjNEQ3d4r5FyBZlexhdlkhvwEowmaO2NEHcs5bkBPrhgHLNG5x3Tr2ldQy8rqjtxu1zs6ghS1xkiHE8OXZR4zqRCvnr5dCKJJL99pRpjoKM/yhWVZXzp8mnHrDY5NVlrae2NsLNjgHjyrc1r0kXtFiIickTa+iN84YFVvFndA4DHwE8WzeXGeaNHRAvB0dQTinHnizs5c3wBpTl+ekJx8jK8WAtPbmgmlnS4fu6ovTYYaemN8Ni6Rpp6IhRkeWnpjdDen9qkZPdPVq8LCrL8FGb5GJUfoDMYo6E7jGMtWT43Z4wv5Jo5FVTkBY7oe+pYS03HABsae6ntHKAjmKojFEsSisaJDo6n9bgMn7pwIlfPrmBn+wCPrKxnVH6Auq4Q4woz+fH75o7Yfmo58e21DXosSbbfc8ib9hwNxzwkG2OmAw/vcWgS8C9APvApoH3w+D9Za598u8dSSBYRGVm2tfTxgV++Rmc4la5Ks308/oULKMvLeId7ntj+ur6ZquZe3jdvDPU9IdwuF7kBL+39UR5f38T0shzOm1y0V6DtHojxzKYWGnrCeN3Q3h8jnnToCcVpGpyxDKn+3+JsH0VZfnIzvBigqTdM90CMpAWv21CaE+D0sfnMG1dAXoaXTJ97vzvyOdayqbGX57e0Ut8Vpi8Sx2UMHpch7qS2++0JxYgNbs0d8Lh495wKFs0fS7bfw9+3tfHKjg4WTChkdV03RVl+fnrz3KENRkSOJcexdIdiVLcPEIzFyfB6jutmNcd1JdkY4wYagbOB24Cgtfb/Hez9FZJFREYGay1v7urkY3e9ObT6eO2ccv77lnmnTIBq64tw54s7uXJWGfkZXlr7IuQGUnNf19X38GZ1J1fPrmBsYeZe9wvFEvytqpXm3ggGS21XakTc6PwAuzpCbGnpY89N/koGA3NWwENuwIPjWGq7QrQHoySTNrVZiIHUJGQwBlzG4BrcSMTtMuQGvGT6PSQTSSJJSyLp0BGMDbV+ZPs93HD6KN57xhi8bhdJx/LwinpqOoPcOG8MT29sJsPn5n9Oof9/ZeSw1tIbjlPTMUBPKA4G/J7UL4bH8i8axzskXwl811p7vjHmeygki4iccJKO5ckNTXzxwbVD7QL/fv0sPnLehHSWlRbWWpaubKCtP8J75o2mujNEIulQkOkj6Vie2tjCQCzB9XNH7bMCFk86LNvaRn1XiOJsPxubeukaiDGuIJMJxZlUNfezpq6H8LAteg0wKj+DCUWZVORlkBNwY4whnnQIxRyC0Th94fjQltaReJLeSILOYJRhO2xTkOnlpnmjueH00bgGV71rOgZ4dG0jsaTDredNYOmKehxgyYfOOKEuppKTUySepD+SoD0YobM/RtJaXMaQ4XXvs1Pk4dq9Mc+CSUXHNSTfBay21t4xGJJvBfqAlcDXrLXdb3d/hWQRkfSKJRzue72G//jrZiAV2O6+dT6XzBhZm4Icb3WdIX77yi5uOmMMWT439d1hsn0eMnxuugZiPLaukXGFmVw8rXSfla+kY1lV282mpl4KMr1keD28tKMdA8woz6EkJ0AolqC2M0R1xwB1XaG9Lv47WAbIy/SSF/BSlO3jgiklXFH51v9vO9qCvLC1lb5QnOKcALecNZZ7X68hGInz64+dpYAsI47jWAZiCfrCcdr6o/SFE7DHrpIWhtqLdv9359jUL7e731qbaktij/8sPS5Dlt/DGeMLj09INsb4gCZglrW21RhTBnQMfg3/DlRYaz++n/t9Gvg0wLhx486sra09ojpEROTwhGNJfvrsFn7zSg0AATf8cfH5zBqVn9a6RoqkY7n/zVrCsSTvPXMMO9uChONJ8jN8uF2Gba39/H1bO/PHFzBvXMF+H6MjGOXFre0EowmmlGSxq2OAhu4wAa+LomwfHpcLa1M/xBOOJRiNE01Y4skkscEtqWOJ3VtTWwyWDJ+Hwiwfp43O48zxBeRn7r272ZaWPv6+rZ1gJE5Rtp8rK8sZlZ/B3a/uoqU3wj0fP3tEbx0sstvQ1uxOqqUonrRE4snUv4SDC3APBma3663w7HG78Lpd+Dwu/B7X0C+ExpjjFpJvABZba6/cz20TgCestbPf7jG0kiwikh69oRjf+tN6ntzYCkBRpofHvnAhowsy3+Gep55d7UHufa2Gm+ePJSfgYWf7AAGvm2y/B2stK2q6WNfQy+UzS5lYnL3fx0g6qZnTGxp7yQl4yM9MXRQYT1qKs/1MKMokGE3Q0B3GkrqYz+t24Rv8Ye/1uPC6DWPyMynP23eWsbWWTU2pXfUGogmKs328a1YF5XkBrLXc90YNdZ0hfveJs/GnYaqAyEhwPEPyQ8Az1tq7Bz+usNY2D77/FeBsa+0tb/cYCskiIsdfdyjGp+5Zwcq6HgDGF2bw6OILKMjyvf0dT2FJx/K712uIJR1unj+W6o4BesJxcgbnviYdy3ObUxfvXXtaBcXZ/gM+Vm84zvqGHmo6Q1hryfJ7SCRT/cZ+j4uSnAD5mV4KMr3kZ/jIzfDu1dIRjCao7RygpjM0OCHD0h+OE3fsYDgupzQnFaRb+yL85pVdGOA3H5tPln/k7H4mcrwdl5BsjMkE6oFJ1trewWO/A04n1W5RA3xmd2g+EIVkEZHjq2sgxqfuWc6q+l4A5o3L5/5Pnn1cxzCdyHa0Bbnv9Ro+uGAchVk+drQHiSUc8gJePG4XoViCJze0EEskuWxmGWXvsIOdtZbm3ghr6nvoGoiRdJzBiRapSRZJBxKOg2dwVXn3hXvWWvxeNwFv6viYgkwqR+VSMNh6kXQsj61rZH1DL6ePzeMbV83EqxYLOcUdt5Xko0EhWUTk+OkaiPHJe5azejAgXzytmN989CyFp0OUdCz3vlZDOJ7kw2ePoz+aoLp9AIDcDC8uYxiIJnhhSxsdwSgLJhZSWZF7UFfpW2sJx5P0RRL0h+P0RxL0RxP0R+IEowkyfR4mFWcxoTiLbP/+f7HZ0RbkiQ1NWAs3zRvFdXNHH9WvX+REpZAsIiL76ArG+MS9y1kzGJAXTk8FZLcmHBy25t4w975Wy9TSbN49p5zGnggN3SG8Lhe5Gam2hqST6lmuau5jQlEWF04tPmZTJcKxJH9a3UDSWkKxBF+6fCrTynKPyecSOREpJIuIyF46g1E+cc8K1jakAvIl04r57ccUkI+WtfU9PLqmkWtOq6CyIpfqjiDt/TG8bhfZfs9QP3F1R5CXt3fg97qZPSqXaWU5RxyYHWvZ0RZkXX0P3aEYk0qyaO+P8u1rZqr/WGQYhWQRERnS3hfhk/euYF1jHwAXTSnirtsWaJe1o8xay2PrmtjU1MdHzx1P3uCOfY09YayFLJ+HwOBUiVAsQVVzH9tbgyQcS6bPzaxRuUwtzTmo3cYGognW1Pewqz0IwOj8DKaWZbOpqY+CLC+fvGDSUdmAQeRko5AsIiJAapvlT967gvWDAfniqUX89lYF5GMpHEty3+s1DMSSXD93FOOLMukKRqnrChGMJvG5XWQHPEO74UFqWkVVUy872oI4Fg6Uky2p9o0sv4fKilxKclIX6e3qGKC6I8S1p1VwzqSi4/BVipyYFJJFRISugSi33rV8KCBfOLWIuxWQj5uBaIK/rm9mZ3uQ6eU5XD27nLhjae4J09oXTe0IBnhcqc0O3mn73aRjcaxlIJog4VgCXhcbG3tp6Yty1exyzppQeLy+NJET1sGGZM36ERE5SfWGY3z2d6uGAvIFkwv57UfPUkA+jrL8Hm4+aywAm5v7+MWLOwG4ek4F500uIpJwCMeS9IXj9Ebi9ITjqS11GdxN1wD2rQ15PS5DwOsmN8PLqzs66I8muPH00Uwvz0nDVydyclNIFhE5CQWjCb760FqW13QDcN6kQu66dQE+7bKWNjMrcplZkUsknuTJDc08sb4Jt8tFwOtiYlEWk0qymVmWA8YQiScxJtVy0R9J0tAdor4rRGNPhITjYIzh/WeNZXR+Rrq/LJGTlkKyiMhJJhRL8O0/beD5re0AzBuby923KSCPFAGvm/ecMWbo43AsSXXHANvb+nlucyvReHKv8wuzfIwvzuLMCYXcUJBxzEbHicjeFJJFRE5wS5YsYdGiRZSWlhKOJfn2Iyv4y8YuAKaVZnL/J8/Fr4A8YmX43FSOyqVylGYZi4wk+nVUROQEtmTJEm6//XYWLlxIXWMz//Hnlfx5QycAOYT4w+cuIPMAO7KJiMiBKSSLiJzAFi1aRGVlJVVVVcy//uP8fnUbGAN9bTzymXOGdnwTEZFDo5AsInICKy0t5dnnnqf4tIvJuOxzGOMiGezmL1++lJkTx6a7PBGRE5ZCsojICSzpWJ7c2EbmlV/BuNwkQn1EHv0XKjT1QETkiCgki4icoBzH8sgrVXz/mV0YtwcnHib2l+/S0VjNwoULaWtrS3eJIiInLIVkEZETkLWW13a28+0nd4LHC4kEv/7AHDaueGWoR3np0qXpLlNE5ISlS55FRE5Aa+q6+dR9q3BwAw4/vWka75o/HYBly5axdOlSFi9enN4iRUROYArJIiInmC3Nvdx29wrCcQeAn79/HjfMe2tzitLSUgVkEZEjpHYLEZETSG3HAB+9azm9kQQA/3p9JdefPjrNVYmInHwUkkVEThAtvWE+dvdy2vpjAHzp0sl85JwJGGPSXJmIyMlHIVlE5ATQ0R/hE/espKYzBMCHFozli5dPx+VSQBYRORYUkkVERrjugSif/f1qNjX3AfCuylK+d8Ns3ArIIiLHjEKyiMgI1huKc/sDa1hZ2w3AmePy+Z8PnoHXrZdvEZFjSa+yIiIjVF8kzpcfXs2rOzsBmF6Wzf2fOge/x53mykRETn4KySIiI1B/JM7X/7COZVs7AJhUlMGfF59PwKuALCJyPCgki4iMMAPRBN95dCNPb2wFYGxBgMe/eBGZPo22FxE5XhSSRURGkFAswb89vom/rG0CoCzHy1NfvpgsvwKyiMjxpJAsIjJChGIJfvjUFh5e2QBAYYab5762kGwFZBGR406vvCIiI0AwmuCnz27hvtdrAcj1u1n29cvICXjTXJmIyKlJIVlEJM36InH+7bFN/GF1IwCZXsNLX7+UvAwFZBGRdFFIFhFJo55QjG/8cT3PbEpdpJfpdfHKNxaSn+VLc2UiIqc2hWQRkTRp7wvzhQfX8EZ1aqOQ/AwPy/7hEgqy/GmuTEREFJJFRNKgqTvEJ+9ZTlXrAAAVuX6e+erF5KoHWURkRFBIFhE5zmo6gnzkrjep74oAMLUkiz/ffoGmWIiIjCB6RRYROU4cx7K1pY+P/PZNOgbiAJwxLo/7P3kuGT7tpCciMpIoJIuIHAeReJLXdnSw+P5VhBMWgMtmlLDkQ2dqq2kRkRFIIVlE5BjrDce599Vd/NdzO7CDx953xmj+8z2n4fNoTycRkZFIIVlE5Bix1tLQHeKf/rSBl3d0Dh3//CUT+eoVM/C4FZBFREaqIwrJxpgaoB9IAglr7XxjTCHwMDABqAFuttZ2H1mZIiInlnjSYX19D5+5byUdoVT/sdvAfZ9YwLmTinG5TJorFBGRt3M0ljEWWmtPt9bOH/z4m8Dz1tqpwPODH4uInDIGogkeWVHHzb98fSggF2f7eO2bCzl/SokCsojICeBY/K3vBuDewffvBW48Bp9DRI6xJUuW0NbWNvRxW1sbS5YsSWNFI1886VDdEeQbf1jPtx/dRHKwAfniqcW89PWFlOVlprdAERE5aEcaki3wrDFmlTHm04PHyqy1zQCDb0v3d0djzKeNMSuNMSvb29uPsAwROVJ7huIlS5Zw++23M3fuXNra2mhra2PhwoXcfvvtCsqD9vx+OY5l0846Pvnd/+Gan7/MExuagdQL7LffPYPf3HoWmT5dAiIiciI50pB8vrX2DOBqYLEx5qKDvaO19lfW2vnW2vklJSVHWIaIHIndoXjhwoW0tbVx/oUX4/P5aWlpYdLkycyaNZuqqiqmz5jJxVddR1N3iLb+CJ3BKL2hOP2ROOFYkmgiSdKx7/wJ9/P5T6RV6z2/XztqG3lseRXX/OgpXoxPJhR3AMjyufnjZ8/lkxdOwqsL9ERETjjG2kP/gbbfBzLme0AQ+BRwibW22RhTAbxorZ3+dvedP3++Xbly5VGpQ0RSlixZwqJFiygtTf0xp62tjaVLl7J48WKstdR2DrCzfYCW3ghbG9r43SOPEowm8ecWYQLZOB4/Lo8f3B6M24txuTHuvVdDDeBxGbxuFz6Pi4DXkOH1UJLjZ1pZDvPHF3DWpEJyA14CXvdQWNyztt2Bs7y8nHXr1gGwcOFCqqqquOOOO1i8ePFx/b4djLa2Ni65ZCGbN1dRfu2X8c28BONKfW/cwBkTCvjFh8+kONuf3kJFRGQfxphVe1xLd+DzDjckG2OyAJe1tn/w/b8B/wZcBnRaa39ojPkmUGit/frbPZZCssjRtTt4VlZWsmzZMsLxJFe+/5O0xP1cdNUNFIyfQc9AjP5InI5gnP5o4pjW43FDfsBDQZYfuup55fc/Y1xmjOeee46+7i7OPPNMotEoWVlZZGZm0t7ezrRp07jtttv45jdHzrW/jmPpi8Rp7o3wwCubufeNBlzeAAA2maAsN8AP3jOXi2eUarybiMgIdTxC8iTgz4MfeoAHrLXfN8YUAY8A44A6YJG1tuvtHkshWeToamlp4eL33karKSAjKwfcPqLxOLnjZ2GKJ3Gg/+qtk8SJRUj2dxBr3Um8uxF/rA+np5melnomThjHA4/8gbLSMroHYrT0RWjoCdPSG6G9P0rXQIzOYITOgTg9A1EiyQPX6DhJbKQfp7eFUM16Bra8QrxtFwBFRUUUFxezdevWEbGaHIol6OiPsqM9yN2vVrOyppvwYFuF4zg4A93ENzzN6/f/hEljR6e1VhEReXvHPCQfTQrJIkcu6VjW1vXw1w1NtAej2FiYPz3xHO7RM3EHsvY532VSfbNjCjKZPzqDh3/wZbaveY2SkhLC4TDBYBC/38+qVasoKSk5pBaIWMIhlnSIJRx2tvXz6s4ONjb2Ud8Vor0vTFd4/+nZOkmSoT5iLdsIbXudctvBE489xrjRFQQ87uM2Os1aSzTh0BeO09Ad4oXNbTyyqoH2/uhbv2BYSzI6QLJhI4nlD9Jev3No5X53i4uIiIw8Cskip4BE0mFzcx9/WddES2+Egkwv7f1RXtreTijmDJ3nOA7GOng8Hoqy/Xz47HF8+NwJFGb5gH3bMwDmzp1LS0vLUCjes6f5SMQSDjX1jVzw7kXEymYQGDUDT8EoXFn5uFzufc43QH6Gh8qKXC6cVsq88fmUZPvJ9nvwe9z4PKl+aPdhBmjHSQXicDxJMBKnOxSjKxSjum2Av25oZmNTL9HE3q+TPmL07NpAbssaXnr4F3jcrhHfRy0iIikKySInsVAswYtb23h8XTOFWT4CHsNTG1tp6o28dZLj4DgJjLU4oW56V/2V0ZFd/P25Z/e70vl2F/odTbvHyVVVVe21au3z+cgeP4dkxWwyJs7DWzgGl9cPZv/h1+82FOf4mT06lwUTihhXmEF2wIvX7cLjNvg8LryuVIC2FhKOQyJpSTqWhGMH30+F44buMCtquljf0ENrX5RIPDk043jPzzeqIJPppTlcOrOEhtf+woc/8P5j/v0SEZGjSyFZ5CTjOJbuUIwn1jfx6o5OxhZmsK2lnzequ4jvkegMYEgS7evG37mDv/znpyjLCYyYlc79rVrPmTNnaARcSUkJjuPQ2dnJ1Jmz+dJP7+PlujAbm/oIRt+myXmQC3C5DB6XweNOTdswWOKOxbEWx7E4NtWe4thUYD7Q1DoDlOV4mVKay4TiLG5ZMI6ZFbmHvWotIiLpd7AhWdPtRUa4aCJJS2+EP69pZHNzH9NKc+gciPL85tah1U4DuF3g87gpyfFz6fQScmr+zodv+cLQSueyZctGxErn7s+/56r1V77yFb71rW/tFZxToX4j7HqNBz73eQZiCULRBG19EV7a3sGrO9rZ1jZAdzDGntHZIfULRcKxkOCggvVuPrehPM9PRV4m+RmpVen5Ewu4ad5o8jJ8R+tbICIiJwCtJIuMUPGkQ1N3iKWrGtjeFmT2qDye3dTCpua+oZVPF+BxGwqyfIwtyGD++EI+e8lk8jNPvEB3qO0ekXiScCxJfyTOzvYg21qD7OoI0tobIRhLEgzHCUbjhBMOxoLH5cLjceFzG3wug8/nxu92kel3k+H14PO48XtcTCvL5vRxBUwvyyHL79GqsYjISUbtFiInqKRjae2NsGxrGy9ubWNmeS5Pb2phR3twKBwbwOs2jM7PYGZFDuOKsvjEBRMpyQmktfZ0Szo2NVljcLpGfzhGdUeIcCKBC4PZ3d9sBtsyjKEs18/44iyyfB7NNhYROQWo3ULkBOM4lo5glNV13TyxvpnSHD/t/VGe37Jjr5VjrycVji+cWkzCgc9ePImxhfuOeDsVuV2GDJ+bDF9qSkZJjp9JpTlprkpERE5ECskiI0DXQIzNzb08uaGFWMIhkXS4/806oonUGLfd4XhMfiY3zhtNQ0+YC6aWcEVleXoLFxEROUkpJIukUSSeZFd7kBe2tLG5uZ+iTC/PVrXSG44PneNzG8YWZvKhBWNpD8YA+N51s4ZWS0VEROToU0gWSQNrU33H6xp6+OuGZvIzvKyt76ax5605xx4XlOQEuPXc8WQFvGxu7uPjF0xkckl2GisXERE5NSgkixxnoViC7a1Blm1tY2dbkLb+KH/d0EJysPHYBeRkeHjvGaM5e1IRr+3sZH5BBv9x4+y3LjwTERGRY0ohWeQ4STqWxu4Q6xt6eWZTCwGvi5e2d+zVWpHhdbFweinvOWMMjT0hVlR386XLpg1tHy0iIiLHh0KyyHEQjCbY0tTH37e3U9MxwK72IJtb+oemVnhchrlj8vjEhRMJeFLh+YIpxXzsvInpLVxEROQUpZAscgxZa2npjbC6rpunN7YA8MKWNgZib+0CV5rj46tXTKM8L4P6rhCNPWG+csU08jK86SpbRETklKeQLHKMxBIOO9r6eXl7B6vrutnWGqSmY4Dd2/d4XYaPnTue86aW4DawbGs7C2eU8pFzJ6SzbBEREUEhWeSY6A3FWdfYzRPrmukJxXhpWzuRRCoeG2D26By+esV0PC4XdV0hmnrDfO3KaeQEtHosIiIyEigkixxFjmOp7wrx+s4Ont/aRm1HiO1twaHV4yyfm/+4cTZ5GV78Hjd/29zKwumlfOic8WmtW0RERPamkCxylETiSaqaenlqYwu72gZ4o7qDgZgzdPvNZ4ziutPHYAw09oSp7QzxlSumkavVYxERkRFHIVnkKOgeiPFmdSd/WdNIY0+YjU19Q5MrcgMelnzwDGJJB5/HxbNVrVwwtZj3nzUuvUWLiIjIASkkixwBa1PtFc9sauGVHR2sre+hN5wYuv2T503gwukluFyGvmCclbXdfPGyqZpcISIiMsIpJIscpljCYWtLH/e/WceO1iCr67rZ3VyRG/Dwyw+dQTjpkOl388ymVs6dVMQ3rpqR1ppFRETk4CgkixyG/kicV7d38MjKeja39NPcGxm67dMXTOD8qSUYl4uuvgirarv5wqVaPRYRETmRKCSLHKKWnjB/WN3AK4Pzj2PJVPNxtt/NLz54BnHHkunz8NTGZi6ZXsr7zhyb5opFRETkUCkkixykRNJhW2sfv3m5mg0NfWxvDw7ddtPcCm44Yww+r4uGjhBr63v46pXTyfbrPzEREZETkX6CixyEcCzJC1tauf+NWtY19A5tK+33GH7y3tPIzfSR5XXz5KYWrqgs4wMLNLlCRETkRKaQLPIOOoNR7nqlmpe3d7C+sXfo+Pzx+Xx+4WSy/V7WN/QSjiX5+rtmkOFzp7FaERERORoUkkUOwHEsW1r6+Plz21lV101HMAaA28A/XjGdGaNzsRaeWNfMLQvGUTkqN80Vi4iIyNGikCyyH9FEkr+ub+Z3r9ewpv6t1eMJRRl846qZFGb5eHl7B+V5Ab57/SzcLpPGakVERORoU0gWGaYnFONnz27juS2tNPWkRru5gA+cPZarZlfQ3h/l2apWPnXhJMrzAuktVkRERI4JhWSRQY5jWVPXzY+f2cLKmm4GJ7tRnOXh61fPpDQnwAtb2jhvcjH/fG1leosVERGRY0ohWYTU9IrfvLyTB5fX07THxiALp5fw0XPHs6a+l+6BON+4agYBry7MExEROdkpJMspZ8mSJSxatIjS0lKstbxZVc3Xfv8abaaA+OC+0tleF1+4bCo+r5tXdnRy2/kTGFOQmd7CRURE5LhxpbsAkeNpyZIl3H777SxcuJCGphb+9+m13HLnS9Qnc4cC8ulj8/ju9bOo6w4ztTSHf762UgFZRETkFKOVZDmlLFq0iDvvvJPN23ey4Cv/h2f0bFw5JbgAvxtuPX8i0YRDMJbke9fPwuvW75EiIiKnIoVkOaXkFxbz8R/9nv9+aj0mswCX2411HKaXZnDO1DI8LhefuWwKhVm+dJcqIiIiaaSQLKcEay1VTb186eG11HYM4M4pBiAZCRLf+ndmf/hjfPz8iUwozk5zpSIiIjISHPbfko0xY40xy4wxm40xm4wxXxo8/j1jTKMxZu3gv3cfvXJFDl1/OMaXHlrLLb96gx1tA8QdsI5DonUnyZ1v0L3+BZ75z4+T6YTSXaqIiIiMEEfScJkAvmatnQmcAyw2xuweHvtf1trTB/89ecRVihyGRNLhT6sauOxnf+eJ9U30R5Op46E+TNMGvvfhhaz+9TeYku+mqqqKpUuXprliERERGSkOu93CWtsMNA++32+M2QyMPlqFiRwuay07Wvv52tL1bG/rJ7x7bAUwtiDAuEAT3//6bUwYUwHAsmXLWLp0KYsXL05XySIiIjLCGGvtkT+IMROAl4DZwFeBW4E+YCWp1ebu/dzn08CnAcaNG3dmbW3tEdch0t4f5p8f3cTrOzvpjSSGjmf63Nw0bzRfuXwaxTn+NFYoIiIi6WSMWWWtnf+O5x1pSDbGZAN/B75vrf2TMaYM6AAs8O9AhbX242/3GPPnz7crV648ojrk1NYbjnHnsp08srKe3nAcZ/Bp7TJw3qRCvnv9LCaV5OB2mfQWKiIiIml1sCH5iKZbGGO8wB+B+621fwKw1rbucfuvgSeO5HOIvJ1QLMGjaxr5+XPb6RyIkXDe+qVvTEGAH9w0hzPGF5Ll1yAXEREROXiHnRyMMQb4LbDZWvuzPY5XDPYrA9wEbDyyEkX2FYwmWF7dwb89vpnGnjDx5FvhuCDTy79eW8mCSUWU5QVIPVVFREREDt6RLK+dD3wE2GCMWTt47J+ADxhjTifVblEDfOYIPofIEGstfeEEb1Z38oOnNtPYHSa2RzjO9Ln55rtmcOH0YsYUZGq3PBERETlsRzLd4hVgf0t0GvkmR5XjWHrCcV7d0c6PntpKa1+E+B5tFT634VMXTeTds0cxsSSLTJ9aK0REROTIKE3IiBVPOnQFo7y8vYOfPLuVjmCM5F7h2MWVs0r52DkTmFqeQ36mtpIWERGRo0MhWUYUay19kQTNPSEeX9fEA8v3nlYBkBvwcOnMUt53xhimlGRTmhvApakVIiIichQpJMuIEIkn6QhG2dLcx//9fRcbGnuIJvYeT1iW4+OCqSW894zRTCnNoTjbr3AsIiIix4RCsqRNJJ6kLxynuTfM0xtbeGRlPV0DcfaMxsbAuIIMFkws4n3zxzC1NIeCTK8mVoiIiMgxpZAsx8SSJUtYtGgRpaWlALS1tfHII4/wkU98hp6BGM29YV7f2cnj65uo7wqxx87RAJTl+BldEGD26Hyum1vBtLJccgMehWMRERE5LhSS5ahbsmQJt99+O0vuvJPHnnyWSDzBjddcxa5d1TzREKA5Yyy94cQ+98vxuxlfmMWoggwumV7ChVNLKM72k+Fzp+GrEBERkVOZQrIcEcexxB2HRNISSzgEowlmXfAuJkyZzpZdjVzwuR/gHXc65tr/ZJzHwxZcsEdA3h2M87N8TC3L5r1njGZ8URbZfq0ai4iISPooJJ/g9tfWsHTpUhYvXnzIj5V0LEnH4tjU26S1OM5b78cTDtGEQySRJBx1CMcT9A72FG9vDbKpqY/6rhChWAL73p8y1tp9gq4BKvICjCnIoCDLR0Gmj4umlXDupELyMny6EE9ERERGBIXkE9jutoY777yTZcuWAbBw4UKqqqpIJC2f/uznSAyu8iacVMiNJJLEEg5xxxJPOiR2v59IEncsoViSUDRJMBqneyBGS1+Etv4oPaE44ViSYCxBNJYkmnSIJ1MB2h6wQosTj5Ec6IFgOxeedzYl+bnMGpXL5TPLGFWQQYbXrRVjERERGXEUkkeIg10RttYST6YC7pXX3MD0O5ZQVVXFzMpZWKC7s4PxlWeSmHgu//P8NnrCcfrC8cG3CcKxBLGkQyzuEEumArIzuHrsWHAcJ/XW8jbh98CyvC6yfC7atq+jt24zAa8HO9BJ9861rF39O1584XnKy8uO/BsmIiIicgwZaw8nCh1d8+fPtytXrkx3GWmze0W4srKSJ599jrquCJ/4wj/Q3Bvm3TfdzIy5Z9IditPcE6ZzIEZfJE4olkyt5CYtSSeZmpU2uEv4sVyZNYDbldrtLtPnIcvvpijLR36mj9EFGcwencemZY/y79/4EjMrK3lx2Ar3HXfccVitICIiIiJHgzFmlbV2/juep5CcHp3BKK/t7GRjYy89ff088tCD9IZiZJRPxJVTDJ4Abq8f4/Ed1oru/rhgd45OfWxSB1wGXMbgcRvcLkOm101uhpfcDA8Br5sMj5vcTC/5GV4ml2QxszyX/Cw/mX43frcbn8eFz+PCvUc/8dHslRYRERE5WhSSR5iW3jAvb+9gU1MvwXCchp4IjT1hekJxYkmHRNIhnnRwuVwHfAwDeN3g97jJ8nvwuSx1VWvoa2/AGwtiw330t9VRVlzAd/7tx5SXFeP3uMnwunG7DZa3MnLA68brMfjc7rdCsisVkr0eFx5XKvTuPuZxGTzuA9cmIiIiciI42JCsnuRjxFrL+oYeHlvbREtvhJa+KB3BCD3hOKFo6iK54VwuF46TJBnqxXbU8r6rF1I5rpSxhVmMLcwkN8NLpi+1cut1u/j1L3/BV373DSorK3nhhRcwxqTaGt5cQXT79Vx7pVZtRURERA6HQvJR5DiWhu4wf1zdwMamHuq7wrT0RhiIJkgeYMF+XEEGU4s8PP+7/6Vx3cvkeBxcxtLZ0cFz6yv59rIXKCvb/4VuX/7iF/C6XXu1NSxbtkxtDSIiIiJHSO0WR8hxLJ0DUZ7c0MLL29rY3NJPRzBKLLH/0Wgl2T4umFLEnDH5TCrJpiTbz2MP3sU//eNXqays3GeUmy50ExERETl61G5xjEUTSeq7QvzXs1t5dWcnwWiCpLPv2DS/x3D+5GIWTCpkcnE2OQEvZXl+CjP9ZAc8uF2GWf/wFXIzfFoRFhERERkhtJJ8CKy1tPRGeGxdE4+sqKOuOzy4Q93e5/nchoumlHBpZSmj8jPIy/BSnhsgL9OrzTNERERE0kgryUdRTyjGIyvqWV7dybqGHrpDiaHNN3bzuQ0XTCnmylnllOUGyM/0MiovQH6WD7/Hnb7iRUREROSQKSQfgLWW5TVdPL62iW2t/exsD9IbjpNw9j5vakkWHzlvPOMKs8gJeBmdHyA/00fAq2AsIiIicqJSSB6meyDGH1Y1sLm5j7a+MNvagnQEY3utGntdhveePoZLK0vJzfQypiCD4my/grGIiIjISUIhedCmpl7+tLqR3nCM9r4Y29v6ae6N7HUh3qg8P19YOJkxRdlU5AUozQ2Q4/eox1hERETkJHPKheTh2yW/uL6anz/6GtNnzaauK0xdZ5CGnuhe95k3NpfPXjSF8vwAowsyyc/wavc5ERERkZPYKRWSlyxZwu23386dd97J/9z/OE9t7uCPD/2efifAjpCffjKGzjXAhVOL+eQFExhblEV5bgYZPrVTiIiIiJwKTqkRcG1tbVz03tto843CZ5K4CsdCThm+kvFD53gMXFlZxsfOm8jEkiwKs3xaNRYRERE5SWgE3DC1nQP8+tVWrvrMd1j6xLPYnHJ8RWOGbve64OrZFXzmksmMLcxUr7GIiIjIKeykD8mhaIJf/H0nNR0D1HQOUN/Rj3dC6pcH6zjYRIzLZ5byzevnMq4wSxMqREREROTkDcmO4/DH1Y08u6mF5t4IDd0hesIJYDAcO3FiW16m7Zk7eWPaFPJvWEbAm5vmqkVERERkJDjpQrK1llW13fzy7zup7w7R1BOmL5LcfStOIoGrfg1Lv/sxxhScxxWXP0tVVRVLly5l8eLFaa1dREREREaGkyYkW2tp64vy079tZWVNN629IQbie1+UePrYfOaFVvPpf/g8FeVlACxbtkwBWURERET2csJPt7DW0huO80xVM3c8v5OO/gjhxN5f0/SybH71kTMZW5iFy6WL8UREREROVafEdIveUJytrX3862NVbG3tI+Hsffvo/AAPfepsRhcoHIuIiIjIwTshQ3JvOM6u9iC/emknz25sJTns9sJMLw9+cgFTy/MUjkVERETkkJ1QIbk3FGdXR5A/r67ngeX1e60cG6A028v/fHAeZ00oVjgWERERkcM24kPy7p7j7W1BHl/byEMr64nt0XPsMjAqL8AP33sa501WOBYRERGRIzdiQvKSJUtYtGgRpaWlALS2tnLf/Q9x0U0f5tE1DfxhZQPxPVaO3QbGFWbwnWtnsXB6qcKxiIiIiBw1x2y6hTHmKuDngBv4jbX2hwc6d9y4cba+vp7KykqeePpv9Ifj3HDdu+kZfQ55C24EXEPn+j2GiUWZfOGyabx7ToW2jhYRERGRg3aw0y2OSUg2xriBbcAVQAOwAviAtbZqf+fPOW2ujcZi7KxtoHD2hfhPezfuwrEY91sL3Vk+F/MnFPLFS6dyxvgChWMREREROWTpHgG3ANhhrd01WMxDwA3AfkNyU1+MOZ/9HyIt3RhfBsb11spxwOvi5jPH8PmFUyjLDSgci4iIiMgxd6xC8migfo+PG4CzD3RyKJakpieGK5AFgJOIYaMDvP+cyfzzTfPJzfAoHIuIiIjIceN651MOy/4S7V59HcaYTxtjVhpjVjqDLR+Jvg5Cr9xHYuvLtPzuH3jqPz9JNNitgCwiIiIix9WxCskNwNg9Ph4DNO15grX2V9ba+dba+V6SNN39RTxr/8hHPv9VXvvFPzJtdBFVVVUsXbr0GJUoIiIiIrJ/x6rdYgUw1RgzEWgEbgE+eKCTRxflMPM9X+LqixbwmctnA7Bs2TKWLl3K4sWLj1GJIiIiIiL7dyxHwL0b+G9SI+DustZ+/0Dnlk+eZV94+TUqR+Udk1pERERERCD90y2w1j4JPHkw51bkBxSQRURERGTEOFY9yYfErQvzRERERGQEGREhWURERERkJFFIFhEREREZRiFZRERERGQYhWQRERERkWEUkkVEREREhlFIFhEREREZRiFZRERERGQYhWQRERERkWEUkkVEREREhlFIFhEREREZRiFZRERERGQYhWQRERERkWEUkkVEREREhlFIFhEREREZRiFZRERERGQYhWQRERERkWEUkkVEREREhlFIFhEREREZRiFZRERERGQYhWQRERERkWEUkkVEREREhlFIFhEREREZRiFZRERERGQYhWQRERERkWEUkkVEREREhlFIFhEREREZRiFZRERERGQYhWQRERERkWEUkkVEREREhlFIFhEREREZRiFZRERERGQYhWQRERERkWEUkkVEREREhjHW2nTXgDGmHagd/LAY6EhjOTLy6Dkhw+k5IcPpOSF70vNBhtvzOTHeWlvyTncYESF5T8aYldba+emuQ0YOPSdkOD0nZDg9J2RPej7IcIfznFC7hYiIiIjIMArJIiIiIiLDjMSQ/Kt0FyAjjp4TMpyeEzKcnhOyJz0fZLhDfk6MuJ5kEREREZF0G4krySIiIiIiaTViQrIx5ipjzFZjzA5jzDfTXY+knzGmxhizwRiz1hizMt31yPFnjLnLGNNmjNm4x7FCY8zfjDHbB98WpLNGOb4O8Jz4njGmcfC1Yq0x5t3prFGOL2PMWGPMMmPMZmPMJmPMlwaP67XiFPU2z4lDeq0YEe0Wxhg3sA24AmgAVgAfsNZWpbUwSStjTA0w31qrWZenKGPMRUAQuM9aO3vw2I+BLmvtDwd/oS6w1n4jnXXK8XOA58T3gKC19v+lszZJD2NMBVBhrV1tjMkBVgE3Arei14pT0ts8J27mEF4rRspK8gJgh7V2l7U2BjwE3JDmmkQkzay1LwFdww7fANw7+P69pF745BRxgOeEnMKstc3W2tWD7/cDm4HR6LXilPU2z4lDMlJC8migfo+PGziML0ZOOhZ41hizyhjz6XQXIyNGmbW2GVIvhEBpmuuRkeF2Y8z6wXYM/Vn9FGWMmQDMA95ErxXCPs8JOITXipESks1+jqW/D0TS7Xxr7RnA1cDiwT+ziogM9wtgMnA60Az8NK3VSFoYY7KBPwJfttb2pbseSb/9PCcO6bVipITkBmDsHh+PAZrSVIuMENbapsG3bcCfSbXliLQO9pvt7jtrS3M9kmbW2lZrbdJa6wC/Rq8VpxxjjJdUGLrfWvunwcN6rTiF7e85caivFSMlJK8AphpjJhpjfMAtwGNprknSyBiTNdhsjzEmC7gS2Pj295JTxGPAxwbf/xjwlzTWIiPA7iA06Cb0WnFKMcYY4LfAZmvtz/a4Sa8Vp6gDPScO9bViREy3ABgcw/HfgBu4y1r7/fRWJOlkjJlEavUYwAM8oOfEqccY8yBwCVAMtALfBR4FHgHGAXXAImutLuQ6RRzgOXEJqT+fWqAG+MzuXlQ5+RljLgBeBjYAzuDhfyLVg6rXilPQ2zwnPsAhvFaMmJAsIiIiIjJSjJR2CxERERGREUMhWURERERkGIVkEREREZFhFJJFRERERIZRSBYRERERGUYhWURERERkGIVkEREREZFhFJJFRERERIb5/15Hc8jifh81AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -361,7 +361,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.2" + "version": "3.9.3" } }, "nbformat": 4, diff --git a/Notebooks/32_gaussiandome_prbs.ipynb b/Notebooks/32_gaussiandome_prbs.ipynb new file mode 100644 index 0000000..e1c89d8 --- /dev/null +++ b/Notebooks/32_gaussiandome_prbs.ipynb @@ -0,0 +1,3433 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "from shutil import copyfile\n", + "import pickle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data manipulation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plotting / Visualisation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "plt.rcParams[\"figure.figsize\"] = (15, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Gaussian Process Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import gpflow\n", + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import gpflow" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from gpflow.utilities import print_summary" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "gpflow.config.set_default_summary_fmt(\"notebook\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "MATLAB engine" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import matlab.engine" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "eng = matlab.engine.start_matlab()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eng.load_system(\"../Simulink/polydome\", background = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load weather data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which experimental set to simulate:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "exp_id = 'Exp2'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Copy the corresponding WDB to the model input location:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'../Data/input_WDB.mat'" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "copyfile(f\"../Data/Experimental_data_WDB/{exp_id}_WDB.mat\", \"../Data/input_WDB.mat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timetimestampzenithazimuthdnidhiOutsideTempTsky_radrelative_humidityprecipitationcloud_indexpressurewind_speedwind_directionaoiincidence_mainincidence_secondpoa_directpoa_diffuse
0020170610160037.637775244.184376778.389320153.01499824.018.050-99990.5963000-999937.637775-9999-9999616.396540153.014998
130020170610160538.415872245.558388779.663530151.02021724.018.050-99990.5963000-999938.415872-9999-9999610.883028151.020217
260020170610161039.202383246.896456776.559233150.27216524.018.050-99990.5963000-999939.202383-9999-9999601.769888150.272165
390020170610161539.996665248.200516767.177588151.34961524.018.050-99990.5963000-999939.996665-9999-9999587.720827151.349615
4120020170610162040.798119249.472420762.559533150.94997424.018.050-99990.5963000-999940.798119-9999-9999577.270157150.949974
\n", + "
" + ], + "text/plain": [ + " time timestamp zenith azimuth dni dhi \\\n", + "0 0 201706101600 37.637775 244.184376 778.389320 153.014998 \n", + "1 300 201706101605 38.415872 245.558388 779.663530 151.020217 \n", + "2 600 201706101610 39.202383 246.896456 776.559233 150.272165 \n", + "3 900 201706101615 39.996665 248.200516 767.177588 151.349615 \n", + "4 1200 201706101620 40.798119 249.472420 762.559533 150.949974 \n", + "\n", + " OutsideTemp Tsky_rad relative_humidity precipitation cloud_index \\\n", + "0 24.0 18.0 50 -9999 0.5 \n", + "1 24.0 18.0 50 -9999 0.5 \n", + "2 24.0 18.0 50 -9999 0.5 \n", + "3 24.0 18.0 50 -9999 0.5 \n", + "4 24.0 18.0 50 -9999 0.5 \n", + "\n", + " pressure wind_speed wind_direction aoi incidence_main \\\n", + "0 96300 0 -9999 37.637775 -9999 \n", + "1 96300 0 -9999 38.415872 -9999 \n", + "2 96300 0 -9999 39.202383 -9999 \n", + "3 96300 0 -9999 39.996665 -9999 \n", + "4 96300 0 -9999 40.798119 -9999 \n", + "\n", + " incidence_second poa_direct poa_diffuse \n", + "0 -9999 616.396540 153.014998 \n", + "1 -9999 610.883028 151.020217 \n", + "2 -9999 601.769888 150.272165 \n", + "3 -9999 587.720827 151.349615 \n", + "4 -9999 577.270157 150.949974 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_wdb = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_WDB.pkl\")\n", + "df_wdb.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PowerSetpointOutsideTempSupplyTempInsideTempSolRad
timestamp
2017-06-10 16:00:00+02:005543.50000020.524.013.122.866667769.312933
2017-06-10 16:05:00+02:005028.72413820.524.013.122.666667761.799900
2017-06-10 16:10:00+02:004546.93103420.524.013.422.650000751.934367
2017-06-10 16:15:00+02:004550.76666720.524.013.422.650000738.959167
2017-06-10 16:20:00+02:004575.31034521.524.013.422.633333728.104467
\n", + "
" + ], + "text/plain": [ + " Power Setpoint OutsideTemp SupplyTemp \\\n", + "timestamp \n", + "2017-06-10 16:00:00+02:00 5543.500000 20.5 24.0 13.1 \n", + "2017-06-10 16:05:00+02:00 5028.724138 20.5 24.0 13.1 \n", + "2017-06-10 16:10:00+02:00 4546.931034 20.5 24.0 13.4 \n", + "2017-06-10 16:15:00+02:00 4550.766667 20.5 24.0 13.4 \n", + "2017-06-10 16:20:00+02:00 4575.310345 21.5 24.0 13.4 \n", + "\n", + " InsideTemp SolRad \n", + "timestamp \n", + "2017-06-10 16:00:00+02:00 22.866667 769.312933 \n", + "2017-06-10 16:05:00+02:00 22.666667 761.799900 \n", + "2017-06-10 16:10:00+02:00 22.650000 751.934367 \n", + "2017-06-10 16:15:00+02:00 22.650000 738.959167 \n", + "2017-06-10 16:20:00+02:00 22.633333 728.104467 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_data.pkl\")\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "def load_weather_data(exp_id):\n", + " copyfile(f\"../Data/Experimental_data_WDB/{exp_id}_WDB.mat\", \"../Data/input_WDB.mat\")\n", + " df_wdb = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_WDB.pkl\")\n", + " df = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_data.pkl\")\n", + " return df_wdb, df" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Experiment runtime: 136500\n" + ] + } + ], + "source": [ + "runtime = df_wdb['time'].iloc[-1]\n", + "print(f\"Experiment runtime: {runtime}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulink" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set the CARNOT simulation initial temperature `t0`" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "eng.workspace['t0'] = float(23)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set the CARNOT simulation air exchange rate" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "np_air = np.zeros([df_wdb.shape[0], 2])\n", + "np_air[:, 0] = df_wdb['time']\n", + "np_air[:, 1] = 2.75" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "eng.workspace['air_exchange_rate'] = matlab.double(np_air.tolist())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generate Heat Random Input Signal" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "Pel_max = 6300\n", + "COP_heating = 5.0\n", + "COP_cooling = 5.0" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "Define a function for generating random signals:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "jupyter": { + "source_hidden": true + }, + "tags": [] + }, + "outputs": [], + "source": [ + "def get_random_signal(nstep, a_range = (-1, 1), b_range = (2, 10), signal_type = 'analog'):\n", + "\n", + " a = np.random.rand(nstep) * (a_range[1]-a_range[0]) + a_range[0] # range for amplitude\n", + " b = np.random.rand(nstep) *(b_range[1]-b_range[0]) + b_range[0] # range for frequency\n", + " b = np.round(b)\n", + " b = b.astype(int)\n", + "\n", + " b[0] = 0\n", + "\n", + " for i in range(1,np.size(b)):\n", + " b[i] = b[i-1]+b[i]\n", + " \n", + " if signal_type == 'analog':\n", + " random_signal = np.zeros(nstep)\n", + " # Random Signal\n", + " i=0\n", + " random_signal = np.zeros(nstep)\n", + " while b[i]" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure() \n", + "plt.subplot(2,1,1)\n", + "plt.plot(random_signal, drawstyle='steps',label='Random Signal')\n", + "plt.legend()\n", + "plt.subplot(2,1,2)\n", + "plt.plot(prbs, drawstyle='steps', label='PRBS')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "power = np.array([df_wdb['time'], random_signal]).T" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "eng.workspace['power'] = matlab.double(power.tolist())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set the simulation parameters and run it" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "eng.workspace['result'] = eng.sim('polydome')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpret the simulation results" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "def carnot_to_series(eng, start_timestamp):\n", + "\n", + " # Compile the simulation dict\n", + " dict_simulation = {}\n", + " dict_simulation['SimulatedTemp'] = np.asarray(eng.eval('result.SimulatedTemp.Data')).reshape(-1)\n", + " dict_simulation['time'] = np.asarray(eng.eval('result.SimulatedTemp.Time')).reshape(-1)\n", + " \n", + " # Create the dataframe from dict\n", + " df_simulation = pd.DataFrame(dict_simulation)\n", + " df_simulation.set_index('time', inplace = True, drop = True)\n", + " \n", + " # Define the timestamps and set it as index\n", + " df_simulation['timestamp'] = start_timestamp + df_simulation.index.map(lambda x: pd.Timedelta(seconds = x))\n", + " df_simulation = df_simulation.reset_index().set_index('timestamp')\n", + " \n", + " # Resample the dataframe to 5 min intervals\n", + " # Taking the mean when there are multiple points, padding with zero order when data is missing\n", + " df_simulation = df_simulation['SimulatedTemp'].resample('5min').mean().pad()\n", + " \n", + " return df_simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "df_simulation = carnot_to_series(eng, df.index[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "df.loc[:,'SimulatedTemp'] = df_simulation\n", + "df.loc[:,'SimulatedHeat'] = power[:, 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "jupyter": { + "source_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAF1CAYAAAC9AVTpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmjklEQVR4nOzdd3hUVfrA8e+Z9N4TkkAavbeEIop0Uey9iw372n+6rru6dlfXVVd3XXtDRbErKqAg0muooRNII733zJzfH3cSkpAyaZP2fp4nT6ace++ZC5mZ955z3ldprRFCCCGEEEII0XuYOrsDQgghhBBCCCHsSwJBIYQQQgghhOhlJBAUQgghhBBCiF5GAkEhhBBCCCGE6GUkEBRCCCGEEEKIXkYCQSGEEEIIIYToZSQQFEIIIYQQQoheRgJBIYQQ3ZJSqqjWj0UpVVrr/lWd3b/WUEolKqVmdXY/hBBC9HyOnd0BIYQQojW01p7Vt5VSicBNWuvlndejpimlHLXWVd39GEIIIXoGGREUQgjRoyilTEqph5VSh5RS2Uqpz5VS/tbnopRSWil1vVIqSSmVq5S6VSkVp5TaoZTKU0q9Vmtf85VSa5RS/1ZK5Sul9iqlZtZ63kcp9Y5SKk0plaKUekop5VBv238ppXKAx5VS/ZVSv1n7laWUWqiU8rW2/wiIAL63jmr+n1JqmlIqud7rqxk1VEo9rpRarJT6WClVAMxvpk8DlFK/W19LllJqUYf+YwghhOiyJBAUQgjR0/wJOB84HQgDcoHX67WZCAwELgNeBv4CzAKGA5cqpU6v1/YwEAg8BnxVHVgCHwBVwABgLDAHuKmBbYOBpwEFPGvt11CgH/A4gNb6GuAYcI7W2lNr/Q8bX+95wGLAF1jYTJ+eBJYCfkBf4N82HkMIIUQPI4GgEEKInuYW4C9a62StdTlGoHWxUqr2cogntdZlWuulQDHwqdY6Q2udAvyBEUBVywBe1lpXaq0XAfuAeUqpEOBM4B6tdbHWOgP4F3B5rW1Ttdb/1lpXaa1LtdYHtdbLtNblWutM4CWMgLUt1mmtv9FaWwDvZvpUCUQCYdbXv7qNxxZCCNFNyRpBIYQQPU0k8LVSylLrMTMQUut+eq3bpQ3c96x1P0VrrWvdP4oxohcJOAFpSqnq50xAUq22tW+jlAoGXgVOA7ys7XNtelWNq32M5vr0fxijghuVUrnAP7XW77bx+EIIIbohCQSFEEL0NEnADVrrNfWfUEpFtWJ/4UopVSsYjAC+sx6nHAhsIkGLrnf/Wetjo7TW2Uqp84HXmmhfDLjX6r8DENTEMZrsk9b6OHCzdV+nAsuVUqu01gcb6b8QQogeSqaGCiGE6GneAJ5WSkUCKKWClFLntWF/wcCflFJOSqlLMNb2LdFap2Gst/unUsrbmqSmf731hfV5AUVAnlIqHHiw3vPpQEyt+/sBV6XUPKWUE/Ao4NLYzpvrk1LqEqVUX2vzXIwg0mzbaRBCCNGTSCAohBCip3kFY8RuqVKqEFiPkbSltTZgJJbJwkj4crHWOtv63LWAM7AHI7BaDIQ2sa+/A+OAfOBH4Kt6zz8LPGrNXvqA1jofuB14G0jBGCFMpmlN9SkO2KCUKsI4R3drrY80sz8hhBA9kKq77EEIIYQQ1ZRS8zHqE57a2X0RQggh2pOMCAohhBBCCCFELyOBoBBCCCGEEEL0MjI1VAghhBBCCCF6GRkRFEIIIYQQQoheRgJBIYQQQgghhOhlemxB+cDAQB0VFdXZ3RBCCCGEEEKITrFly5YsrXVQQ8/ZLRBUSrkCqzAK4ToCi7XWjymlXgDOASqAQ8D1Wuu8BrZPBAoxCt9Waa1jmzpeVFQUmzdvbtfXIIQQQgghhBDdhVLqaGPP2XNqaDkwQ2s9GhgDzFVKTQKWASO01qOA/cCfm9jHdK31mOaCQCGEEEIIIYQQjbNbIKgNRda7TtYfrbVeqrWusj6+Huhrrz4JIYQQQgghRG9k12QxSikHpVQ8kAEs01pvqNfkBuCnRjbXwFKl1Bal1IIO7KYQQgghhBBC9Gh2TRajtTYDY5RSvsDXSqkRWutdAEqpvwBVwMJGNp+itU5VSgUDy5RSe7XWq2o3sAaICwAiIiJO2kFlZSXJycmUlZW122sSopqrqyt9+/bFycmps7sihBCihzmcWYSbswOhPm6d3RUhRA/RKVlDtdZ5SqmVwFxgl1LqOuBsYKZupMK91jrV+jtDKfU1MAEj+UztNm8CbwLExsaetJ/k5GS8vLyIiopCKdWeL0n0clprsrOzSU5OJjo6urO7I4QQogc5kF7I+a+vIdjblaX3TsXJQap/CSHazm7vJEqpIOtIIEopN2AWsFcpNRd4CDhXa13SyLYeSimv6tvAHGBXS/tQVlZGQECABIGi3SmlCAgIkNFmIYQQ7Sq/pJKbP9yMBo5kFbNoU1Jnd0kI0UPY85JSKLBCKbUD2ISxRvAH4DXAC2O6Z7xS6g0ApVSYUmqJddsQYLVSajuwEfhRa/1zazohQaDoKPJ/SwghRHuyWDT3LNpGSl4pH94wgbgoP1759QAlFVXNb9xOtNY0MllLCNHN2TNr6A6t9Vit9Sit9Qit9RPWxwdorftZy0KM0Vrfan08VWt9lvX2Ya31aOvPcK310/bqd3t7+umnGT58OKNGjWLMmDFs2GDky7npppvYs2dPuxwjKiqKrKysJts888wzLd7v+++/z5133lnnsffee48xY8YwZswYnJ2dGTlyJGPGjOHhhx9u8f7t4eWXX6akpMGBZyGEEKJLeX3FQVbsy+RvZw8jNsqfB88YQmZhOT/vOm6X4xeVV3HNOxu56L9rKas02+WYQgj76ZQ1gr3VunXr+OGHH9i6dSsuLi5kZWVRUVEBwNtvv23XvjzzzDM88sgjbd7P9ddfz/XXXw8YAeiKFSsIDAxs835bq/rKpcnU8DWOl19+mauvvhp3d3eb91lVVYWjo/ypCCGEsJ9V+zN5afl+zh8TxtWTIgEYG+GLSUFiVnGHHbfSbOHXhAzySir4Yksy8Ul5mC2av327i39cPLrDjiuEsD9ZbWxHaWlpBAYG4uLiAkBgYCBhYWEATJs2jc2bNwPg6enJQw89xPjx45k1axYbN25k2rRpxMTE8N133wEnj86dffbZrFy58qRjnn/++YwfP57hw4fz5ptvAvDwww9TWlrKmDFjuOqqqwD4+OOPmTBhAmPGjOGWW27BbDau/L333nsMGjSI008/nTVr1tj8Wl944QXi4uIYNWoUjz32GACJiYkMGTKEm266iREjRnDVVVexfPlypkyZwsCBA9m4cSMAjz/+ONdccw0zZsxg4MCBvPXWW83ud+jQodx+++2MGzeOpKQkbrvtNmJjYxk+fHhNu1dffZXU1FSmT5/O9OnTa851tcWLFzN//nwA5s+fz3333cf06dN56KGHOHToEHPnzmX8+PGcdtpp7N271+ZzIYQQQrREcm4Jd3+2jUHBXjxz4ciapQdODiZCfdxIyi3tkON+tz2VGf9cya0fb+Hhr3ayMzmf164Yy10zBvD55mR+2pnWIccVQnSOXjvM8ffvd7MntaBd9zkszJvHzhne6PNz5szhiSeeYNCgQcyaNYvLLruM008//aR2xcXFTJs2jeeff54LLriARx99lGXLlrFnzx6uu+46zj33XJv79O677+Lv709paSlxcXFcdNFFPPfcc7z22mvEx8cDkJCQwKJFi1izZg1OTk7cfvvtLFy4kNmzZ/PYY4+xZcsWfHx8mD59OmPHjm32mEuXLuXAgQNs3LgRrTXnnnsuq1atIiIigoMHD/LFF1/w5ptvEhcXxyeffMLq1av57rvveOaZZ/jmm28A2LFjB+vXr6e4uJixY8cyb948du3a1eh+9+3bx3vvvcd//vMfwJiC6+/vj9lsZubMmezYsYM//elPvPTSSzaPWu7fv5/ly5fj4ODAzJkzeeONNxg4cCAbNmzg9ttv57fffrP530EIIYSwRVmlmTsWbqXKrHnjmvG4O9f9qtbXz43k3PZd4pBfUsnj3+/m620pjAj35rFrhzM83BsPF0e8XZ2YM7wPizYl8fPu45w5MrRdjy2E6Dy9NhDsDJ6enmzZsoU//viDFStWcNlll/Hcc8/VjEJVc3Z2Zu7cuQCMHDkSFxcXnJycGDlyJImJiS065quvvsrXX38NQFJSEgcOHCAgIKBOm19//ZUtW7YQFxcHQGlpKcHBwWzYsIFp06YRFBQEwGWXXcb+/fubPebSpUtZunRpTdBYVFTEgQMHiIiIIDo6mpEjRwIwfPhwZs6ciVLqpNd23nnn4ebmhpubG9OnT2fjxo2sXr260f1GRkYyadKkmu0///xz3nzzTaqqqkhLS2PPnj2MGjWqRefukksuwcHBgaKiItauXcsll1xS81x5eXmL9iWEEEI0R2vNX7/ZxfbkfN68ZjzRgR4ntenn787qA03nAbBVbnEFn2w8xv9+P0RReRX3zBrIndMH4FivPIWDSTEh2p+NR3LQWktyNCF6iF4bCDY1cteRHBwcmDZtGtOmTWPkyJF88MEHJwWCTk5ONW+yJpOpZiqpyWSiqsrIFObo6IjFYqnZpqGyBStXrmT58uWsW7cOd3d3pk2b1mA7rTXXXXcdzz77bJ3Hv/nmm1a92Wut+fOf/8wtt9xS5/HExMSa19LUa4OTM3AqpZrcr4fHiQ/LI0eO8OKLL7Jp0yb8/PyYP39+o2Udah+nfpvqfVosFnx9fWtGUIUQQoiO8PH6o3yxJZk/zRzInOF9GmzT18+N9MIyyqvMuDg6tPpYH65L5KkfE6iosjBjSDAPnjGYoaHejbafEO3PDzvSSM4tpZ+/7evshRBdl6wRtKN9+/Zx4MCBmvvx8fFERka2al9RUVHEx8djsVhISkqqWV9XW35+Pn5+fri7u7N3717Wr19f85yTkxOVlZUAzJw5k8WLF5ORkQFATk4OR48eZeLEiaxcuZLs7GwqKyv54osvbOrbGWecwbvvvktRUREAKSkpNfu21bfffktZWRnZ2dmsXLmSuLg4m/dbUFCAh4cHPj4+pKen89NPP9U85+XlRWFhYc39kJAQEhISsFgsNSOn9Xl7exMdHV3z+rXWbN++vUWvRwghhGjKxiM5/P37PcwcEsw9Mwc22q6fnztaQ0ob1wm+u/oIg0O8+Pme03h3flyTQSBAXJQ/AJsSc9p0XCFE19FrRwQ7Q1FREXfddRd5eXk4OjoyYMCAmgQuLTVlypSaaZYjRoxg3LhxJ7WZO3cub7zxBqNGjWLw4MF1pk4uWLCAUaNGMW7cOBYuXMhTTz3FnDlzsFgsODk58frrrzNp0iQef/xxJk+eTGhoKOPGjatJItOUOXPmkJCQwOTJkwFjSuzHH3+Mg4PtVy4nTJjAvHnzOHbsGH/9618JCwsjLCzMpv2OHj2asWPHMnz4cGJiYpgyZUqd133mmWcSGhrKihUreO655zj77LPp168fI0aMqAky61u4cCG33XYbTz31FJWVlVx++eWMHi3Z04QQQrRdYVklty/cSoS/O/+6fAwmU+OzcapH45JzS4kJ8my0XVMKyipJzC7hwTMGM6RP0wFgtcEhXni7OrLxSA4XjuvbquMKIboW1VOLhMbGxurqLJzVEhISGDp0aCf1SNjq8ccfx9PTkwceeKCzu9Ji8n9MCCFES21KzOGSN9bx9rWxzBoW0mTb1LxSTnnuN56+YARXTWzdrKK1h7K48q0NvH99HNMGB9u83Y3vb+JIdjG/3T+tVccVQtifUmqL1jq2oedkaqgQQgghRCdKzTOmeUYGNL/2LsTbFScHRVJO66eG7k4xsqaPDPdp0XZx0f4czizm3kXxfL0tmcxCSZwmRHcmU0NFl/P44493dheEEEIIu0nNM5KVhfq6NdvWwaQI921bCYmdKfmE+bgS4OnSfONaroiLYN/xQn7fn8nX21IAMClwdDARFeBOiLcrJqUYGurN7GHBjOnnh0MT01yFEJ1LAkEhhBBCiE6Ull+Kj5sTni62fS3r6+fepqLyu1LyGdHC0UAAH3cn/nXZGCwWzZ60AtYeyqKwrIqySjNHsorJKqqgymLh7T8O88bvhwjwcGb6kGBmDQ3htIGBeNj4+oQQ9iF/kUIIIYQQnSg1r5RQH1eb2/fzd2Pp7vRWHauwrJLDWcVcMDa8VdsDmEyKEeE+jQaT+aWV/L4/k18T0lm6+ziLtyTj7Ghi6sBA/jJvWIP1EYUQ9ieBoBBCCCFEJ0rJKyPchmmh1aIDPcgurmDGiyuZNSyEWUNDiI30azLbaLXdqcb6wBF9Wz4iaCsfNyfOHR3GuaPDqDRb2JyYy/KEdL7cmszZr/7BcxeN4pzRYR12fCGEbewWCCqlXIFVgIv1uIu11o8ppfyBRUAUkAhcqrXObWD7ucArgAPwttb6OTt1XQghhBCiw6TllzI+0tfm9ldPisTNyYFlCRm8t+YIb646TJiPKxeN78vF4/sSGdD4iNvqA1koBaNaMTW0NZwcTEzuH8Dk/gHceGo0d326jbs+3UZafikLpva3Sx+EEA2zZ9bQcmCG1no0MAaYq5SaBDwM/Kq1Hgj8ar1fh1LKAXgdOBMYBlyhlBpmr463p+TkZM477zwGDhxI//79ufvuu6moqGh2u2eeeabZNjfddBN79uw56fH333+fO++806b+/fLLL4wZM4YxY8bg6enJ4MGDGTNmDNdee61N29vb+++/T2pqamd3QwghhKhjd2o+x/PLmm1XUlFFXkklYS0YEXR3duSayVF8eMMEtv1tDq9eMZaBIV68vuIgp7+wkkv/t44vNidRXF5VZ7tKs4XPNiUxY3BwixPFtIcwXzc+uXki80aG8sySvVz/3kaW70mnospi974IIewYCGpDdbVuJ+uPBs4DPrA+/gFwfgObTwAOaq0Pa60rgM+s23UrWmsuvPBCzj//fA4cOMD+/fspKiriL3/5S7Pb2hIIvv322wwb1rb4+IwzziA+Pp74+HhiY2NZuHAh8fHxfPjhh23ab1s0VcS+NYFgVVVV842EEEKIVvp9fybnvbaGC/+zhvSCpoPB6oyhLZkaWpuniyPnjg7jgxsmsPbhmTx4xmAyCsp4cPEOJjy9nAe/2M6mxBy01izdnU5WUTlXT2pd/cH24OLowKtXjOX+2YPYmVLATR9uZtyTy/i/xdubPVdCiPZl1zqCSikHpVQ8kAEs01pvAEK01mkA1t8NVTYNB5Jq3U+2Ptat/Pbbb7i6unL99dcD4ODgwL/+9S/effddSkpKThq5O/vss1m5ciUPP/wwpaWljBkzhquuuori4mLmzZvH6NGjGTFiBIsWLQJg2rRpbN68GYD33nuPQYMGcfrpp7NmzZqafWZmZnLRRRcRFxdHXFxcneea8vHHHzNhwgTGjBnDLbfcUhOceXp68tBDDzF+/HhmzZrFxo0bmTZtGjExMXz33XeAEaydd955zJ07l8GDB/P3v//dpv3+7W9/Y+LEiaxbt44nnniCuLg4RowYwYIFC9Bas3jxYjZv3sxVV13FmDFjKC0tJSoqiqysLAA2b97MtGnTAKMkxYIFC5gzZw7XXnttq8+DEEII0ZStx3K57eMtRAV6kF9ayfXvbaKkovELkNU1BEN9WhcI1tbHx5U7pg9gxQPT+OLWycwbFcqSnWlc8sY6Zr70Oy8t20dfPzemDgpq87HawsGkuGvmQNb9eQbvzo9l3shQvolPZcaLK/l8U1LzOxBdysGMIrYdO2lVl+gG7JosRmttBsYopXyBr5VSI2zctKHVz/qkRkotABYARERENL/X9+Y132bQGTDlTyfaj7kSxl4Fxdnweb3pktf/2OSudu/ezfjx4+s85u3tTUREBAcPHmx0u+eee47XXnuN+Ph4AL788kvCwsL48UfjePn5+XXap6Wl8dhjj7FlyxZ8fHyYPn06Y8eOBeDuu+/m3nvv5dRTT+XYsWOcccYZJCQkNNnvhIQEFi1axJo1a3BycuL2229n4cKFXHvttRQXFzNt2jSef/55LrjgAh599FGWLVvGnj17uO666zj33HMB2LhxI7t27cLd3Z24uDjmzZuHh4dHk/sdMWIETzzxBADDhg3jb3/7GwDXXHMNP/zwAxdffDGvvfYaL774IrGxsU2+BoAtW7awevVq3NzcuPLKK1t8HoQQQoimrD+czY3vbyLIy4VPbp7ItmN53PLRFpbtSee8MQ1fv64OBMN8bc8a2hylFHFR/sRF+fPYOcNZsjONj9cfZXtyPn8+c0iXqe3n5GBixpAQZgwJ4fbp/Xnk653835c72JdeyMNnDsHJwa7jFcJGFVUW9qQVsO1YLr/vz2TlvkycHBS/3T+Nfv7und090QKdkjVUa52nlFoJzAXSlVKhWus0pVQoxmhhfclAv1r3+wInzQfUWr8JvAkQGxt7UqDY2bTWKHXym29jjzdm5MiRPPDAAzz00EOcffbZnHbaaXWe37BhA9OmTSMoyLjid9lll7F//34Ali9fXmcdYUFBAYWFhXh5eTV6vF9//ZUtW7YQFxcHQGlpKcHBxsCts7Mzc+fOremXi4sLTk5OjBw5ksTExJp9zJ49m4CAAAAuvPBCVq9ejaOjY6P7dXBw4KKLLqrZfsWKFfzjH/+gpKSEnJwchg8fzjnnnGPzOQM499xzcXNza/V5EEIIIRqz7lA289/bSD9/dxbeNJFgL1emDQ7CwaQ4mFHU6Hap+WUoBSHe7RcI1ubh4sglsf24JLYfR7OL6efXNb+oRwZ48MH1E3jqxwTeWX2EDUeyefGS0Qzp431SW62Nr3gt+e4kWq/KbGHjkRxW7Mtg67E8dqbk16zrDPNx5bZp/Xln9RFe/fUAL1wyupN7K1rCnllDg4BKaxDoBswCnge+A64DnrP+/raBzTcBA5VS0UAKcDlwZZs71cwIXpPtPQJavP3w4cP58ssv6zxWUFBAUlIS/fv3Z/v27VgsJxZMl5U1PFd+0KBBbNmyhSVLlvDnP/+ZOXPm1IyWVWvszdFisbBu3bqagMgWWmuuu+46nn322ZOec3JyqjmWyWTCxcWl5nbttXj1+6OUanK/rq6uODg4AMZ5uP3229m8eTP9+vXj8ccfb/TcODo61pzD+m08PE5kUWvNeRBCCNHzaa154oc9LFx/DBTcPXMgd0wf0GBbs0VzJKuI5NxS7li4lQh/dz5bMKkmEYuLowORAe4cSG8iEMwrJcTL1S6jX01lE+0KHB1MPH7ucCZG+/PXb3dxwetref/6OCbGBNS02ZGcx52fbKOs0szUQUH8dd4wfNydOrHXPdfv+zN5Zfl+9h4vpKTCjLOjiVHhPlw3OZJxEX6MifCtmdJcXmnh/bVHuG1af2KCPDu558JW9hxzDwVWKKV2YAR2y7TWP2AEgLOVUgeA2db7KKXClFJLALTWVcCdwC9AAvC51nq3HfveLmbOnElJSUlN4hWz2cz999/P/PnzcXd3Jyoqivj4eCwWC0lJSWzcuLFmWycnJyorKwFITU3F3d2dq6++mgceeICtW7fWOc7EiRNZuXIl2dnZVFZW8sUXX9Q8N2fOHF577bWa+9XTTZvr9+LFi8nIMAZrc3JyOHr0aIte+7Jly8jJyaG0tJRvvvmGKVOm2Lzf6oAuMDCQoqIiFi9eXPOcl5cXhYWFNfejoqLYsmULwElBd22tOQ9CCCF6rrJKM2n5pby0bD/vrUlk9vAQxkf48a9l+zmQXtjgNq/8eoBZL61i/nub8PNw5qMbJ56UjXNgsCcHMhreHozSEe05LbQnOHNkKEvuPo1wPzfmv7eJx77dxWPf7uJPn27j4jfWYbZoJsYE8PW2FP61fH9nd7dHyi+t5L5F8WQWlXPJ+L68cfU44v82m8W3ncJf5g3jzJGhdda13j69Py6ODvx35aFO7LVoKbuNCGqtdwBjG3g8G5jZwOOpwFm17i8BlnRkHzuaUoqvv/6a22+/nSeffBKLxcJZZ51VkxF0ypQpREdHM3LkSEaMGMG4ceNqtl2wYAGjRo1i3LhxXHvttTz44IOYTCacnJz473//W+c4oaGhPP7440yePJnQ0FDGjRtXk4Tl1Vdf5Y477mDUqFFUVVUxdepU3njjjSb7PWzYMJ566inmzJmDxWLBycmJ119/nchI27OOnXrqqVxzzTUcPHiQK6+8smZNny379fX15eabb2bkyJFERUXVTCUFmD9/Prfeeitubm6sW7eOxx57jBtvvJFnnnmGiRMnNtqf1pwHIYQQPdOx7BIuemMtmYXlAFwyvi//uHgUOcUVTH9xJX/7djef3DzxpNktB9ILCfNx5ZF5Q5kcE9BgSYYBwZ4sT8igosqCs+PJ198Ts0oYF+nXMS+sGwv2cuXTmydxy0eb+WpbCial8HZzZOaQYJ46fwQBni54uTry8fqjXDs5Ukah2tm/fz1ATkkFH9xwKiNsqDkZ6OnCOaND+XFHGk+cNwI3Zwc79FK0laqeZ93TxMbG6uoMmtUSEhIYOnRoJ/Wo93r//ffZvHlznRG4nkr+jwkhRNvlFFewan8m544Ow9SBiU1yiyvIL63k5g83k1FYzgNnDMbf3Zk5w0Nqpmp+sDaRx77bzZe3TWZ8pH+d7c99bTW+7s58eMOERo/xzbYU7lkUz9J7pzIopO469IzCMiY8/SuPzhvKTafFtP8L7OEyCsuY/sJKThsYxBvXjG9+A2GT/emFnPXKH1wS25dnLxxl83brDmVzxVvreeXyMY0mRxL2p5TaorVuMKtipySLEUIIIYRoSKXZwq0fbWFjYg5+Hs6c3kGlDj7fnMTDX+7AosHRpPjwxgmc0j/wpHbVpRYSs0pOCgRT80oZHnZyMpPaBgQbI1UHM4pOCgTjj+UBMDbCt5WvoncL9nLlxlOjefW3gxzLLiEioGsmwulOyqvM3P1ZPD5uTtw/Z3CLtp0Y7U+4rxtfbU2RQLCbkLy8osPNnz+/V4wGCiGEaLt//LyXjYk5ODuY+HprcoccY9uxXB79ehcTov15/qKRLL7tlAaDQIBQH2P9Xlp+aZ3HyyrNZBVVNFsIvn+QJ0rRYMKYbUl5ODkohoc1P/VONOzKiZE4mBSfbjrW2V3p9o7nl/HXb3aRkFbAC5eMIrCBqc5NMZkU548N448Dmfy8K42ySnMH9VS0FxkRFEIIIUSnM1s0zywxSgdcOzmSKovm660pFJdX4eHSPl9XKs0WPt14jJeW7SfEx4X/XjUePw/nJrdxdXIgwMOZlLy6mahP1P9rOhB0c3agn597gwlj4o/lMTTUG1cnWU/VWn18XJkxJJgvNidx76xBDa7DFA0rqzTzn5WH+HBdIhVVFkoqjMDtplOjmTEkpFX7vDwugkWbkrn14624OTkwdVAgc4b1YcaQYHxrZXeV0h9dQ68LBFtas08IW/XU9bZCCGEPf/9+Nx+uO8r1U6J4dN4wth7L5ZMNx/hl93EuHNe3zfvPKCxjwYdbiE/KY2K0P89cOLLZILBaqK/rSSOCKdZAsLkRQTAyh+47XojFomvWPJotmu3JeVwyvu2vrbe7cmIEy/aks2xPOvNGhXZ2d+ooKq/il13HqTRb8HFzYmCIp3WUuPO+i2qtWbYnnSd+2ENybilzhoUQGeBOgKcLM4cE10xnbo1+/u6sfXgGG4/ksHTPcZbuTueX3ekntTt9UBD/vHR0i0cdRfvqVYGgq6sr2dnZBAQESDDYTZRWmskoKCPUx61LX+XTWpOdnY2rq6QAF0KIlsouKuezjUlcMaEfj50zHIDYSD/6+bvxbXxqmwPBtPxSLvrPWnJLKvn3FWM5e1Roi74HhPq4cSy7pM5jto4IAgwJ9eLXvRnEPr2caYOCmDcqlCAvF0oqzIyNkIyhbTV1YBAR/u68+uuBOol+OluV2cItH21mzcHsOo+/cPEoLontZ9e+LNxwlO+3p7I7tQCzRVNSYWZQiCef3jyJyf0Dmt9BCzg7mjh1YCCnDgzk7+cOZ2dKPmsOZlNeZYw4FpdX8cG6o5z1yh98edsp9PPvGWs7D6QXMrDeOuCurlcFgn379iU5OZnMzMzO7oqwgdaazMJyKsyaRAdFkJdLhwbwFq2pMmssWuPsYGpxpjpXV1f69m3fK7vlVWa0RqYNCSF6tEWbk6gwW7jx1Oiax5RSTI4J4Le9bf/M/nj9UY4XlPHtHacysm/L1+OF+7qx/lDdL/MpuaWYlDE1sTl3TB9ATKAnaw5msTwhna+2peBg/YyRRDFt52BSPDpvKAs+2sK7q49wy+n9O7tLALy4dD9rDmbz5PkjmDkkmJziCm54fxOrDmTZNRBcezCLv3y9i0Ehnpw3JgxXRweigzy4NLZfhwfNSilG9fVlVF/fOo+fNyacc19bzRebk7ivhUlpWqu0woxG4+7cvuHP7tR8nvtpL6sPZvHjXacxrJkEUl1JrwoEnZyciI6Obr6h6FRmiyYlt5Tvd6Tywi9HuHpSBAs3HOPicX154ZLR7XKMiioLCWkFJKQVUFReRUahcTW6oKwKgAAPZ56/aBSzhrVujnx7WLU/k/s+j2dCtD//uUrSYgsheiazRbNw/TEmxwQwILju1fTIAA+yipLbtE7QYl1rOHVQUKuCQDASxhSWV1FQVom3q7HOKSWvjD7erjZ9kXZ3duSi8X25aHxfKqosrD6YyQ870iivshDRQ0ZDOtuc4X2YNTSYl5cf4NwxYXWKndub1pqXlu3njd8PceXECK6ZZNRHDvN1Y2JMAJuO5NhtqZLZonnqxwTCfd347s5Tu8yF5RHhPkyI9uenXcftEghuOJzNHZ9sY1CIJ5/cPKnd9rs9KY9L3liHh4sDfzlrKDFBHu22b3voVYGg6PoKyyq5+p2NbE/KA2D64CCePG8ElVWaH3em8fxFo1pdU8pi0aw7nM0321L4ZffxmqAPQCk4Y1gfLh7fF0cHxfM/7+OmDzezaMEkJsa075SJ5lSaLfxzqfEB4mBSrNyXSaXZ0mWmugghRHtatiedlLxS/jLv5BqskdZyAEezS1p9lX394WxS88t4+KzW13itnv6ZlleGd5/qQLDEpmmh9Tk7mpgxJKTVyThE4/529nBOf3EFn244ZrdRpoY8//M+3vj9EJfG9uXv5w6v89yEaH++355KUk6pXcpdfLklmT1pBbx6xdguEwRWmzu8D49/v4eDGUVtWpfYFK01765J5JklCTiaFGsPZXM4s4iYoLYfL7+0kjs+2UqQlwvf33Uq/jauOe5KJBAUXUZReRU3vr+Z3Sn5PHLWEEK8XZk5NASlFGMifFm0OYnk3Ja/ceYWV/D26sN8vTWF1PwyvFwcmT0shJlDQxgR7o2fhzNOJhNuzifeICdGBxD39HIWb0m2ayCYUVDGLR9vYduxPK6YEEFspB/3f7GdXSn5so5ECNHjVFRZeP7nvcQEeTC7gRkYUQHG1fVjOcWtDgQXb03Gy9WROW2Y4RHma0z/TM0vZXAfY9QyNa9MpnV2MREB7pw+KIjPNydz96xBNdNv7e2X3cc5fVAQz1806qRRvwlRRi3KjYk5HR4IZhSU8fSSBMZH+nFOF0uiA3DGCCMQ/GX3cQYED2i3/Wqt+W57KjuS8zmSVcxvezOYPSyEh+YOYc6/fufLrck8eMaQVu//hx2p/N/iHZRWmnFQii9undwtg0CQQFB0EVuO5nDvou0k55bwyuVjOWd0WJ3nh1g/ePekFbT4jfOx73bzw45Upg4K4uGzhjJnWEizV8XcnB2YMzyEn3cf56kLRuDi2PFX0Q5mFHLdu5vIKa7g31cY5yCzsByA9YdzJBAUQvQ47605wpGsYt6/Pq7BWQ/V7/eJ9RK12KrSbOGXXcc5Z3RYm0ZDao8IgjHDJC2/lHm+Xe/LdW93eVw/bv14K6v2ZzJ9SLDdj2+2aJJzS5g7ok+DUz8HBnvi6+7ExiPZXNyOGWPNFk1hWSUVVZaaxx7+aidllWb+cfHJAWlXEOrjxph+vvy86zh3TG97IKi15kBGEa8sP8CPO9Nwc3LAxcnEg2cM5rbT+2MyKaYOCuKrrSncN3twqy4UHM4s4qHFO+gf5Mm0wUFMjA7o1t/PJBAU7epIVjGJWcVMGxxk85vOt/Ep3P/5dvr4uPLZgslMiPY/qc3gPl4oBQlpBcwd0cfm/lSZLazcl8HF4/vyj4tbtr7w3NFhfLU1hZX7MjljuO3HbK27Po2nvMrMolsm1SyqDvJyYUCwJxuOZHPbtK6x+F0IIdpDcm4J//7tIDOHBDNtcMNf2L1dnfD3cOZoKwPBXSn5FFeYmTooqC1dJdjLFQeTqskUmllUTqVZ21Q6ot0d+g2KsyFqCniHQX4KHF0LA2aCuz9kH4KUrQ1va3KAQWeAc/dax9QSM4aEEOjpzMINR1v0XaS9pOWXUmnWja79NJkUsZH+rD+cw77jhYR4u+Dr3vRo0tLdx/lueypllRbKq8yUV1kor7JQUl5FYVkVhWWVFFc0XLz9b2cPo387TIPsKDOGBPPSsv0UllXi5erU/AYNqDRb+GzjMV5bcZD0gnIcTYqH5g7hlqkxJy0numR8P+74ZCtrD2Vx2sCWvS+k5JVy+8KtODuaePPa8Z26DrW9SCAo2sxs0fy0K423/jhSs7bvgxsmcLoNH7zfxqdwz6J44qL8efu62JpF+PW5OzsSHeDB3uMFLerbtqQ8CsqqmN7Il4ymTBkQiL+HM9/Gp3R4IJicW0JCWgGPzht6UmatidH+fBufSpXZgqOsExRC9ABmi+b+z7cD8Hi9NVT1Rfi7czS7uFXH2ZyYC0BsVNuu2DuYFH28XUm11hI8mFEEQLifnb8IZh2Ajy4wbl/5uREIpsXDVzfBLauMQPDwSvjxvsb3MfVBmPGoPXrbKZwdTVw5MZJXfz3ADe9v4ooJEXi5OjEpxt8uQWF1mZHIJpIATe4fwPKEdM54eRUmBWMj/Lg8rh/njQk/qVTW7tR87vxkGz7uTgR6uuDiaMLF0YSvmxOh3q54uTri7eaEl6sjXq5OuDiaqH6ZAR4ubZoSbQ/DrVO+96cXMj7y5IEAW9z/+Xa+257KxGh/7p8zmFMHBDa6fnfaYOO76c6U/BYFgiv2ZfCnT7ahgf9ePa5HBIFgx0BQKdUP+BDoA1iAN7XWryilFgHVK3p9gTyt9ZgGtk8ECgEzUKW1jrVDt0UzyqvMXPfuRtYfziEm0INHzhrCB2uP8tLSfUwdGNjsm+6nG48RE+jBhzdMaHbaztBQb3am5Leofyv2ZuBoUkwZGNii7QCcHEycNyaM99Ykcs07G3jyvBFEBXbMVdQVezMAGpzGMjEmgIUbjrEnreCkIFEIIbqTlLxS/rPiIMm5pWw4ksMLF49qtoZYVIA7m6wBXUttTMwhKsCdYK+213gN9XGtGRH8Nj4FTxdHJjYwg6VDpcYbv6/8AiJPMW5Hnw53bgEf6zTDERcZjzXkx/sg/hOY9mdjdLCHumfmQPzcnXj+572s2GeUH3lo7hC7zKw5mmMEgk0tY7lqYgQR/u5Umi3sPV7Iz7vSeHDxDl5atp8bT43m8gkReLo4UlJRxd2fxePr7sTP90zttuvQmjIk1AgEE9JaHwhuSsxh3qhQXrtibLPfOz1cHPFxc+J4flmLjvHflYfwcXfi05sn9Zi6h2DfEcEq4H6t9VallBewRSm1TGt9WXUDpdQ/gaa+6U/XWmd1dEd7g4oqC0t2pnHG8D51kqS0ZPuyKjOPf7ub9YdzeOr8EVwxIQIHk8LHzYmHvtzJrwkZzZZfSM0rY0w/X5vWbgwN9eLHnWktmj6wYl8m4yP9Gh1pbM5Dc4cQ5uPGq78e4PHvd/P+9RNatZ/m/LY3g8gAd2IaCDTHRxpXsnck50sgKITo1v7y9U7WHswmyMuF+adE2bRGKiLAg++2p1JeZW7Rem2LRbM5MYeZQ9tnRCTM140tR3MpLq/ixx1pnD0qrN3rkTXr+HZwcIH+08HB+rnm4gkutdZXufkaPw2JvR7WvgZFGeDdc9c3mkyK66dEc87oMI7nl/Hy8v288ut+zh4V2uFf4o/llODkoJocMXJ1cqhJjnTWyFDunTWQ3/dn8sbvh3jqxwT+/dtBLhgbzrI96aTml/LhDRN6ZBAIEOZjjGq2dMZXtUqzhfSCMvoHedo84hvq40paCwPB1LxSYiP9elQQCGC3eWZa6zSt9Vbr7UIgAQivfl4Z/3qXAp/aq0+9VVF5FTd+sIl7FsXz0frEFm+/eEsyY55YyqjHl/LVthTumz2IqydF1iy6vXBcXyL83Xl3zZEm91O92N7W9NtDrVeN9h0vtKl9ekEZCWkFja49sYWrkwM3T43hsrh+rD2YTVF5VfMbtVBphZm1h7KZPji4wTexEC8XlKImcYwQQnS0jMIyLv7vWnYk57XbPtcezGLlvkzunzOINQ/P4PFzh9v0xS0qwB2LhuTc0hYd73BWEbkllTVZGttqUkwAKXmlXPfuRoorzFwc236JPmx2fCcEDz0RBLbUsPPh5l97dBBYW6CnCyPCfXjivBGYlOKx73ajte7QYx7LLqGvn3uLEpEopZg2OJjPFkzm69tPYVKMPx+sS8TbzRiBaulatu5EKcXQPt7sTbPtu1196QVlWDSE+9o+6t/Hx7VFI4Jmi+Z4flmrysV0dZ2y4EgpFQWMBTbUevg0IF1rfaCRzTSwVCm1RSm1oIO72CNVVFn4eP1RznrlD9YeysbHzYk/Dtg+wHo0u5g7P9nKA19sZ2S4D4/OG8qrV4zlrhl1Mz05OZiYGO1fs4aiMTWL7W1cY1EdCL675gjfb09l7/GCOtmx6ntn9RGUosGU5C01e1gIFWYLv1unmLSntYeyKK+yMHNowwGro4MJP3dnsookEBRC2Me/lh1g89Fc3l+T2OZ9rdibwZM/7OHRb3cR5uPKdadEtWj76lqCx2xIGGO2aIrLq8gprmCl9f26resDq10xoR8Xjgtn89FcIgPciY20c6ZArSFtB/QZ2fp9VAfeG96E56Mgvndcew/zdeO+2YP4bW8Gn29O6tBjHcspadOo0dgIP/53TSzxf5vDD3edyiQ71zLuDENCvdh7vLBVQXqqNZNvS4K0lo4IZhaWU2XRPTIQtHuyGKWUJ/AlcI/WuvY48BU0PRo4RWudqpQKBpYppfZqrVfV2/cCYAFAREREO/e8+3vsu918uvEYo/v68OyFI1mekM4nG45RVmlucmpmWn4pr/56kC82J+HooLhn1kDunD6gycQl/fzdySgsb3Lf1Vd3+9r4hxXq48rkmAB+3nWcJTuPA+DhbEyviAzwwMXJxPTBwQzp48XR7BLeW3OEi8f1bZcipeMj/fD3cGbpnuPMa8daPPkllTz5wx6CvFwazJZaLcjTRUYEhRB2cSC9kEWbjuHm5GCU0KmoavUUyO+3p3L3Z9twcjDh4eLIcxeObHEZh0hrLcH//n6I9IIygrxccHF0oLzKzO7UAvakFmDWmoyCMhLSCqkwn7hAGOTlQnQ7re1WSvHshSNxMpmYOsj+2SgpSIHSHAhtWQbsBoUMh7nPw6hL276vbuKGKdH8tjeDx7/bQ4CHCyHerowI9273f8ej2cWM6efb5v34uLVy1LcbGtLHm6LyoyTnlrY4iK5et9uSIK2PtxtZReVUVFlOSs7TkBTrMTolS3AHs2sgqJRywggCF2qtv6r1uCNwITC+sW211qnW3xlKqa+BCcCqem3eBN4EiI2N7dix/25mc2IOn248xo2nRvPovKEopSirNPPemkS2HM1lyoCGk6l8sTmJv367C7NFc+XECO6cPoBg7+aH3/v5G38sKXmljaYtTmnhH69Sik8XTKKs0syRrGL2pxey7lA2P+8+Tl5JKgD/+HkfEf7uOJoUTg5G7Zj24OhgYsaQYJbuPk6l2dJgvauW0Fqz93ghT/6wh9S8Mj5dMLHJtS+BXjIiKISwjxd+2YeHsyMvXDKKWz/eyrI96Zw3Jrz5DevZcjSXexfFExvpzwc3TGjVenSAAA9nbpgSzXfbU3n4q511nlMKogM9cHF0wNfNietOiSTIywVnBxMuTg6MCPNp1y/6Lo4OPH/xqHbbX4sct772Pu1w/KgpJ26XFYCrd9v32cWZTIqXLh3D3FdWcdOHmwH404wB3Denfb4ngHFxt6CsqtHSEaJhQ0KNWtF7jxe2OBCs+S7ZgiyefXxcAGNaqS3Ha02w2V3YM2uoAt4BErTWL9V7ehawV2ud3Mi2HoBJa11ovT0HeKJDO9yDlFWa+cvXxpSc+2YPqvlQnBgTgKNJsepAZoOB4MvL9/Py8gOc0j+A5y9qPrNbbf38jLZJOSWNBoIn/rBals3N1cmBoaHeDA315rwx4Tx3kfGhmF1UzpKdaaw+mEVCWiH/d8Zgm4JWW80ZFsLiLclsSszhlP62ZyFNLyhj/eFsDmYUkVdSyfGCMnYk55FeUI5JwfMXjWo2U1agpwvbjuW18RUIIUTTMgvLWZ6Qzi2n92fOsD6E+7rx9baUVgWCS/ccRyl4e35sq4NAMC4C/u2cYTw6byjHckrILamgosqCk6OJ/oGe+Lj3kpGTtB2AMkbz2suPDxjlJu7cdGLaaA/Wx8eVpfdO5WB6EZ9tSuLfKw4yup8vE2MC8HB2aPNFg6M5RpmTpjKGipMNDrEGgmkFLV7Ok5pXir+Hc4veY/pYg8bjLQ4E2+87ZVdhzxHBKcA1wE6lVLz1sUe01kuAy6k3LVQpFQa8rbU+CwgBvrb+gToCn2itf7ZXx7uzskozt3y0hf0ZhbxzXSweLif+yT1dHBkX4cfqA1lw5snbfhefyin9A/joxoktWvQM1PxhJTWxuD8ltxRva92b9hDg6cI1k6O4ZnJUu+yvvkn9A1AKNh5pWSB4/Xub2JNWgINJ4e3qiL+HM5NjApgQHcCsYcE2pTWXqaFCCHv4cUcqFg0XjA3HZFKcMzqMt/44TEkrpofuSS1gUIhXq7M212cyKaICPYii5xZDb1BuIqTvhokLIOZ0I0toewkbA5vegu/uApdGRgVnPwEOjrDnO0jbDjP/ajy+baHRr6Y4udVtX5wJp95j3F//BuQdq9teKRhzFYQMa+0ralawlyvBXq6MjfBjf3ohN35gjA6eMTyE/1w1vsXfd2o7Zi0dESmBYIt4uDjSP8iDL7cmc8XECAI9XWzeNjWvtMUBWqiP0d7WdYKpeaU1dRp7GrsFglrr1UCDf11a6/kNPJYKnGW9fRhoh0nxvUtZpZlbP97C7/sz+cdFo5gx5OSrLJP7B/DKrwcoLq+qEyRaLJrkvFJmDwtp1ZtikKcLzo4mknMaX9yfmldKuF/3ebP0dnVicIgXW47aXs/KbNEcyCjkmkmR/PXsYTbNRW9IoJcLpZXmk/6dhBCiPX0Tn8rQUG8GWa/Qj+rrg9miOZxZzIhwH5v3o7VmT2pBo0mwRAtsehuOroPBZ0HEpPbd97DzYc0rsPubxtvMegxwhOSNRrvqwO7I77B3SdP7d/Ot2z774IlAcN8SSNlat31FERRnwYX/a+kraTE3Zwc+vGEC3+9IIymnhPfXJvL8z3t55Kyhrd7ngfQilEKmhrbCcxeN4pp3NnDtOxv57JZJNl9ASskrJSqgZReH+lgDwXRbA8H8sh65PhA6IVmMaJ2DGYU8uHgHj5w1lLhmUmGn5ZdSUFrFcz8lsHJfJs9dOJJL4/o12DYmyKNmmwHBXjWPVy+i7WtjRs/6TCZFXz83knIbDwRT8kpbvf/OEhvlx9dbU6gyW5pMllMtJbeUSrNmZLhPq4NAoObqWFZRuQSCQogOcTS7mPikPP585pCax6o/Iw5ntSwQTC8oJ7u4gmGhPX/tWYcbfiEEDemYqZsunsa0UFvMecr4qXbhmy07Vv321313cpuPLz6xFtIOgr1dufHUaMC4cPvmqsP8vi+TcZG+xAR6csqAAIaH2f7/Pj4pj8EhXvavL9kDxEX588bV47nxg808/OUOXr9yXLNTdbXWpOSWtmiWFoCXiyMezg4tGhHsiesDoZPKR4iWqTRbuO/z7Ww7lsedn2wlu5GkIVpr/rvyEJOf/Y0zXl7Fin2ZPHvhSC6f0HgG1er/2Cl5df8Yqqd09m3DiF0/P3eScpqeGtrdrrDERflTXGFmr421DI9kG+sFotqYtS7IywgEZXqoEKIjaK3517L9KAXnjA6reTwqwAOl4HBm0+WA6tuTlg/A8BYEj6IR4eNg7NWd3Qv7CB0FmXuhsmXFvtvD384ZxiNnDSHY24Wfdh3n6SUJzHt1Nde8s8GmepoWiyY+KY+xEb4d3teeatrgYP7vjMEs2XmcD9cdbbZ9QVkVxRXmFn+XVEoZtQQLbKtN2prpp92FXLLoBv6z4hA7kvO5e+ZA/vv7Ie79fDvvz4/DVGvKptmiefKHPby/NpF5I0M5a2Qo4X5uzaYwrv7jSam3li/ZOpLXlhG7vn5ubG/kzbOgrJLC8iqbawh2FeOtdaO2HM216er4EeuXp7amLw/0dAaQzKFCiA7x4tJ9fBOfyr2zBtW58u3q5EC4rxuHM4tbtL89qUZ1qCF9vJppKZpUkgMpW6DfxF6R2ZM+o0CbIWOPEQDbkZODiQVT+7Ngan/ASED3xZZk3v7jMOe9voYzhvXBt5HERLOGhhAd5EF+aSVj+9m5vmQPc/NpMWw4ksPTPyYwNsKXUX19G23blmyeoT5uNo0IllRUkVtS2WNHBCUQ7OKW7Ezj5V/3c+7oMO6dPYggLxce/WYXb6w6xO3TBnA0u5iSCjOv/XaQH3emcdOp0Txy1tA6QWJTgr1ccDCpmj+matU1/toSqPXzdyevpJLCssqTFthWB57d7Q8r3NeNPt6ubD6aa1NR5CNZxXi5ONYEcq0VZJ0amllU0ab9CCFEfav2Z/L6ikNcHtePP80ccNLz/YM8OZzVshHB3akFRAW498jkCnZ1bB18diXcuAz6Tejs3nS8/jPgzs3gH9PZPSHA04VbT+/PlRMjeGX5AZbsTMPSQMHzorIqliekc99sowyFjAi2jcmk+Oclo5n36h/c8clWfrjzNLxcHRv8XtuWbJ59fFxZczCr2XbVBeu72ww2W0kg2IWtP5zNPZ/FM7afL89bSyRcNTGCdYez+efS/fy86zg7kvNr2v/lrKHcPLVlb56ODib6eLs2GAgGeDi3aZ77iRISpQwLq/tlILWbFudUSjE+yo8Nh7MprzI3WfsP4Eh2CVGBHm1OSe3v4YxSMjVUCNG+Ks0WnvhhD5EB7vz9vOENvlfFBHmwKTEHrbXN72V70goYHtYLRrA62vGdgILgjsui2aW4ene5kU9vVyf+evYw/np2w/8Gqw9kcfU7G3h5+X68XBwbLZklbOfn4cxrV43j0jfWMfqJpTiaFG9dG8v0IXWTT7Wl0HuojyvpBWXN5nzoyTUEQdYIdllHsoq55aMt9PN34935cTX1UZRSPHfhSKIDPSgoreTReUP571Xj+O7OKS0OAquF+brW/DFVS84taXMil+qi8g0ljNmVUoBSEBPY/d4wLxnfl4zCcp75MaHZtkeyito8LRSMgN3fXYrKCyHa10frjnIwo4hH5w1r9MJWTJAnJRVmjhfYtm4rKaeEo9klkiimPaTtgIAB7Vsyoqvb9xOs/ldn98JmUwYEMCjEk4zCcsZE+No8I0s0bVyEHx/eMIF7Zw2ij48r//hlHxZL3RHZjUdyCPBwblG5iWpDQ72xaLht4VYKyyobbXcky5gW392SG9pKRgS7oLySCm58fxMOJsV78yfg6153WqGXqxO/3DMVk6LNI01gXEnZcqxuSYSU3FKGtvFDPNLfSDLwzbYUZg4JrnPFZc3BLEaG+3TLQsDTBgdz46nRvLP6CEXlZjxcjC9P0YEeXD8luqZdeZWZlNxSLhjbt12OG+jpQpaMCAoh2klucQUvL9/PaQMDmdVEmYf+1otZhzOLCfVp+stQpdnCnz7bhpeLY6uK0It6ju/oHVNCazu8EhK+hyn3dIsi90oprp8SzZ+/2snYCFkf2J5OGRDIKQMC6efvxn2fb2fpnuPMHREKQEWVhd/3ZXLWyNBWBd9njujDY+cM46kfE7jyrQ18fsvkBovSbzySQ5iPK328JVmMsINKs4XbF24lObeUhTdPJKKRoqRtKXhaX5ivGz/sSMNs0TiYVJ0agidZ9zooB5h0K1SVw4fnN7pfH2BNcClvJozkvs9N/OuioTh8fAFlo69l6zEf7pnoCe82UMm+vtjrYdSlUJAKi2+EqffDgFlwfBcsebD57eu3P+NpYxH64d9h5XP1TsZYmPtMs7t8aO4QjmaX8NvedACqzJrC8iomRPvXpJpOyinBoiGmHUYEwcgcKiOCQoj28sqvBygqr+LRecOavKgYY53qdjiziCkDArFYNMcLyjiaXUJSTgkpeaVUmi1UVFnYe7yQbcfy+PcVY+kntdSMZC9f3wrl9TJNX70YnD1g41uw90e49hvj8ZXPG4EQABrykyDuRjt2uAuY9TjMfQ7yk2HjmzDnyc7uUbMuGBvOjuQ8zh8T1nxj0WLnjg7jtd8O8sIv+xgQ7MWAYE/WH86msLyq4e+qNqgO4Pv6ubPgo808sHg7r10xts57odaaDUeymTowqF0GXroiCQS7mL9/v5u1h7L55yWjm60X2F7CfN2osmgyC8vp4+NKVnEjNQS1NorHegQagSCAqek1cmF+nswIDuXa7an093fibpMDh7JKqLJ4MyEqAHKb3h4AVT2SqKzHs/4xKtXs8Wu2q92++o9ZmepuX5AK6/8D0/8MLk1nunN2NPH2dbE19/NLKpn47HI+WneU56zrOauz7LXH1FAwModuOdayzH1CCNGQgxlFfLT+KJdPiGBwM5k9Q7xd8HB24NONSXyyMYlDmUVUVFlqnlcKHE0KR5OJAE9n/jRzYJ0SFL3a9k/hwC8QeWrDo1vKBKZaX8VM9T6XBsyCoed2fD+7Eifrd48Dv8DaV2H6X8Cpa4/GuDo58OyFozq7Gz2Wo4OJv50zjDsWbmXOv37nhinRlFaacXNy4NSBLashWN/sYSE8NHcIz/20lwh/dx6ae6KO6qHMIrKKKpgYY5/v451BAsEuZOuxXD5ef4ybTo3movHtM53QFjUlJPJK6ePjWpMx9KQagkrB9T8aI4EAji4w/4dm93+a1ly8eAf/WnGUYde+w/rD2Tg7HmXUsCEwuvnta3iH1j1eyHCbjt9o++jTjJ9q+36CTy+H9N0QMcn2/QI+7k5cMDacr7el8PCZQ/BydWJ5gjFa2NYagtWMqaGSNVQI0XbP/ZSAu5MD980e1GxbpRTDw33YnJjDhGh/5p8SRYS/O1EBHkT4uxPq64pTE8kWei2tYdvHED7e+OxsSNyNdUf8pj5o/AjwCDJ+d0IpCdH1TBsczKr/m84/l+3n7dVHAJgzLARXJ1sGBJp2y9QYknJK+O/KQ3g4O3DnjIEArDucA8DE6IA2H6OrkkCwi9Ba89QPewjycuFeGz6Y21N1JqTUvFLGR/rVCgTrjQhWFBtTWRxbtihXKcVT548gIa2ABR9txt3Jgbgov3b5421XfaxX89J2tDgQBLhmUhSfbkzito+3UlZlZtuxPK6YEIGPW/usgwz2dqG00mwtbNozFy0LITremoNZLE/I4OEzh9icZOGta2MxWzT+Hm0rhdOrpG4zgph5L3V2T7qnPiON38d3SCAoAKOkxzMXjCQm0IOnlyRw/tj2WYeslOLJ80ZQWmHmxaX7cXN25MZTo9lwOJs+3q5ENrJMqyeQS3hdxA870th6LI/7Zw/Cw8W+8Xl1/ZXqFLmbE3NwdjCdGBE8+CtsehteGAD7fm7VMVydHPhswSTmnxJFaaWZ2UNbN6e7Q3mHgZu/8aHTCsPCvLlwXDhHs4vJLa7gHxeN4pkLRrRb9+YOD8XZwcRLy/a32z6FEJ1rT2oBP+5Is9vxzBbNkz/soa+fG/NtqIVazcfNSYLAltrwP3B0hREXdXZPuiffKHDxtpbQEOKEm06LYftjczhrZGi77dNkUvzj4lHMHd6HJ3/Yw0OLd7D6YBYTY/x77PpAkBHBLiElr5S/fruLEeHeXBLbz+7H93J1wtvVkdS8UgrLKvlySzJnjw41sielxsPHFxoNHd0gbEybjvPYOcO5Z+YgvFy74H89pSB0FOQdbfUuXrp0TPv1p56IAHeunxLFm38cZv4pUYwI9+mwYwkh7OOlZftZtT+T0wcH4WmHi4C7UvLZe7yQFy4e1fVmZfQ03mFGEOjm29k96Z5MJmNUMK11F2dFz+bt2v5Z5x0dTLx6xVju/Tye77an4mhS7RpsdkV2+zaulOoHfAj0ASzAm1rrV5RSjwM3A5nWpo9orZc0sP1c4BXAAXhba/1c/TbdUaXZwl2fbKXKrPn3FePaNRtoS/Tzd+ePA1n4uDlRXGE+caV428fGFc2bfgWvUPBo+zzpLl0y4vJPwKnrTgG4ffoAvtiSzF2fbuPfV4yVYFCIbkxrzbZjuVSYLaw+kMXcEX06/JgHM4oAGBcpae47RFk+fPcnOO1+OOWuZhOPiWb0GQlbPwSL2cbkcEK0jbOjidev7D1Tke05NbQKuF9rPRSYBNyhlBpmfe5fWusx1p+GgkAH4HXgTGAYcEWtbbu1RZuS2Hosj6cvGNFu2SVb46G5Q0jJK+XV3w4yLsKXUX19obIMdn4OQ86GPiPaJQjs8pw9unTdIh83J/571ThKKqq44D9reOP3Q5jrFVgVQnQPSTmlZBcbCaCqS9F0tMNZRTiaFBFS2qFjZB2Ao2vAXAnu/uDQhS98dgd9RkFlCeQc7uyeCNEj2S0Q1Fqnaa23Wm8XAgmAras8JwAHtdaHtdYVwGfAeR3TU/spqzTz798OEBflx7mdnGp76qAg3psfRx9vV+6yZkti34/G1c2xV3dq3+yqNA++vMnIINpFTYwJ4Oe7pzJraAjP/bSXa97ZQFmlubO7JYRooa3HcgEYGOzJb3szsdjhos7hzGIi/N0ly2dH6RsL9yVIcpP2ElqdxG175/ZDiB6qUxZqKaWigLHABmAKcKdS6lpgM8aoYW69TcKBpFr3k4GJduhqh/p4/VHSC8p55fKxHbcQ9bOrjGQvDQkaDLf8btx+/2xOcXJn/SOfG/dfi4PsQ+DTD6JP75i+dUUuXpCyFSbf0dk9aZKfhzP/uWocn25M4pGvd/LSsv08ctbQzu6WEKIFth3Lxd3ZgQVTY3hw8Q52puQzup9vhx7zcGYxMUGdN/uk3aVsgY8ugCpraZ0znjbKMaTvhrdmwsXvwJB5cOg3+PTK5vdXv/38H4zgLv5T+OHe5revbi/aR+BgUA5GKQ6AjW/B0r/C/Qng5ge/PgnrXm9+P7Xbb3obHrbmAvj2Dtj5ZdPbOrrUbZ+8Ge7YYNxfeAkc+aPp7f0i67avKoPrvjfuv3EqhMfCOS83/xqE6AB2DwSVUp7Al8A9WusCpdR/gScBbf39T+CG+ps1sKuTLp0qpRYACwAiIiLas9vtTmvNW38cZsqAACbFdNCUy8z9sPcHGHiGEfTV5xl84vaw8+pOYRl9uTE6NnC2sWC7tzA5wFkvQMhI48MleBj0n97ZvWqQUoorJ0awKzWft/44zLRBQZwyoG2FVYUQ9rMtKY/RfX2ZNTQEk4IV+zI6NBA0WzRHsos5fXBQhx3D7g79ZsxcOeUuQBn1YgHcA2DCzeAXZdz36Wfcb0799tWfk0GDbNu+9ueqaDtHZ7jgfxBjvSAdMsL4d3Cwlj3pNxHMNtTXrd1eW048HjPdyBbeFFOtr8ox08G//4n7g8+CoCEnb1ObW631uIPPAkvViftFGZDwPZz9ry69LEX0XEpr+60vUko5AT8Av2itTyqsYx0p/EFrPaLe45OBx7XWZ1jv/xlAa/1sY8eKjY3Vmzdvbsfet6+DGUXMeul3nr9oJJfFdVDQuuwxWPtvY5qKVxcs19CVaQ0v9IfBZ8J5Nlxt7ERF5VWc+coqknJKiQny4MKx4Vw8vh+e1sysJgXuzl0wS6sQvVhZpZkRj/3Cgqkx/N/cIUx7YQXDw306NEnBsewSpr6womM/d+xt0TWQvgv+tK2zeyJEy234H/z0f3DfXvDu2dkpRedRSm3RWjc4VcGeWUMV8A6QUDsIVEqFaq2riyhdAOxqYPNNwEClVDSQAlwO2DDHo+vacCQbgAnRHZiAZfx8Y0RLgsCWU8pYpN4N6hd5ujjy5a2n8P2ONJbvSefFpft5cWndWoNPnT+CqydFdlIPhRD1xSflUWXRjI0wRgv6+buTnFvaocc8lGVkDI0J8uzQ49jV8R0QOrqzeyFE6/QZafw+vkMCQdEp7DlMMAW4BtiplIq3PvYIRgbQMRhTPROBWwCUUmEYZSLO0lpXKaXuBH7BKB/xrtZ6tx373u42HM4h2MuFqIB2ztxWVQF/vGjMqZ/2EPhHt+/+e5PQUbD+v0b2ty6e+S3Y25UbT43mxlOjOZhRyO/7s2oST3y/I5WXl+/nwnHhMjIoRBexbE86zg4mJsYY09L6+rmxbE/HZg49nFkMQEwnZqhuV2X5kJsIY6/p7J4I0Toh1glwaTtg0Bmd2xfRK9ntW6HWejUNr/U7qVyEtX0qcFat+0saa9vdaK3ZeCSHiTEB7Z8kRluMhCfxnxqBoGi9PqOMtQeZe09ctesGBgR7MSD4RO2qcZF+XPTftby/NpHbpw3oxJ4J0XtlFJYR5OmCUgqtNT/vOs5pAwNriiL39XMnq6iCkoqqDrtgcyizCB83J/w9nDtk/3Z33DqBSEYERXfl6g3+McaIoBCdoBdlAek6juWUcLygjInRzSxQbg0nV2PR/O1r23/fvU0fa9rqbjA9tCnjI/2YMSSY//1+mKSckibbxiflcd5rq3ln9RFKKqqabCuEsM1H6xKZ8PSvnP+ftfy2N50dyfmk5JXWKSDf188NgJQOnB56OLOImCCPjstSbW/VX5670YU6IU7SZ6QEgqLTSCDYCTYczgFo/0AwPwXWv2FMlxFtF9AfnNyNKRvd3CNnGVnNLv3fOg5nFjXa7vmf9rI7tYAnf9jD/Pc22at7QvRYe1ILePLHBEb39SG/pIIb3t/MI1/vxNGkmD3sxPrtvn7GMoGk3KYv1rRFcm4pkT2pkPzwC+CyheDVp/m2QnRVfUYZU5zlu5voBLJgyN6KMjm2dwux7jkMIAkyGrkyGzDAWJdWlAklWRBsrRFXkNr4m8W2j2HdazB4Lrj6dEz/exOTgzF/P3kTFKSdWMidkQDugeAZZKwfzD7Y+D6q23WyAcFefHrzJK55ZwOXvbmeT26ayMAQrzptNifmsO5wNo/OG0pReRUvLz9Acm5JzRdUIUTLlFRUcdenW/Fxc+Kd+XF4ujhy16fbWLYnndMGBuLrfmKKZj9/Y0SwIxPG5BRXEODp0mH7t6ucw0Za/6Fnd3ZPhGib2rOPok7t3L6IXkcCQXvb9BYPHHreuP3fJtrdv9/I9rnpLfj9eXjcGvytfBa2ftj4dtFTT9RBEm0XNhY2/s847+e+ajz2n0lw+sMw/c9Qkm3cb4yLN9y7q0sE5sPCvPlswSSuetsIBt++LpZxESfqG73620ECPJy5amIkafmlvLz8AMv3pDN/iiQcEqI1/v7dHg5nFfPxjRMJtAZg/7lqHG+uOszpg+peIArydMHF0VQnECytMHMkq5jMonIsWlNSbuZ4QRnTBgfRv4WZP8sqzZRUmHvO+sAvrgfPELjq887uiRBt0zcW5v3TWCuotfHTm+o3i04lgaCdlQ46lweWlzJ3RCjnjGoiVXB14DD8ghOjgQDjr4f+Mxrfrl8TQYlouWkPQ+Qp4Fur5tYl758oIOvqY9xvSGE6/PwQ7PoKYq/v6J7aZGCIF4tumcw172zgkjfWcdeMAdw1YyA/7zrOqv2ZPHLWENycHYgJ8mRAsCfLEiQQFKI1ftyRxqLNSdw+rT9TBgTWPO7kYOKO6ScnbVJK0dfPrWYdb05xBef8ezUpeSePEP5xIIj3r5/Qov7kFBtFt3tMIDjrcXB07exeCNF27v4Qd5Mx2+h/U+Fc68wuIexAAkE721kRxo/mSVw4JhaG2lDfL3ho3UAwfJzxI+zD3R+Gn1/3seEXnLjt5Fb3fm1aw4GloLrWlb3oQA+W3H0af/tmFy8vP8DmxFx2puQzpp8vN9QK+mYPC+HNVYfJL6nEx71rl88QoiuxWDQv/LKXYaHe3Dt7kM3b9fUzaglqrXnkq51kFpbz4iWjiQpwx8GkcHVyYOGGo3y+KZni8io8XGz/CK8OBP3cu3kgWFECGXsgYrKRHE2InsKnLww8Azw6fzmJ6D261jfUXmBHch4Ao/r6dmo/hB0oBdd8BeOv6+yenMTb1YmXLx/LsxeOZOORHCrNFl6+bAyODifeEmYPC8Fs0azYl9GJPRWi+1mxL4PE7BJundYfJwfbP2b7+buRlFvCF5uT+Xn3ce6fM4iLx/clNsqfsRF+DA315uxRYVSYLazan9miPuWW9JARwdSt8PZMSFzd2T0Ron25eMH5r0Pf8Z3dE9GLSCBoZ9uT8wnzcSXIq4cs2BfNM1fC93fDgWWd3ZOTXDEhgu/vOpVFCyYTVa/I9Ji+vrg6mdiVIpnMhGiJd9ccIdTHlTNHtCybZV8/d/JKKnn0m12c0j+Am06LOalNbKQfvu5OLS4+32OmhqZJyQjRg2kNecc6uxeiF5FA0M52JOfJaGBvs/UDIzW0yaGze9KgwX28GNn35GQ2JpMizMeNtPyyTuhV50nOLeHRb3aS2sDaLCGa8n+Lt3Pea6tZczCbaydHtWg0EKCfNUNvmK8rr185DgfTyVmlHR1MzBgczG/7MqgyW2zed48JBI/vNJLEeNmwtEKI7mbtq/DySCjN6+yeiF5CAkE7yiup4Gh2CaP6dX4GSWFHcTfBtd8aSX5KcqCy+wRWob6uDSar6InMFs1PO9M4+9+r+Xj9Mb7eltLZXRLdSHmVmc83J1NYXsW8UaFcOTGi+Y3qiYv2Y9bQEN6+Lg6/JgK22cNCyCupZOuxPJv3nVNcgUmBj1s3X+97fIeMBoqeK3i48Tt9V+f2Q/QaEgja0Y5kY4rdaBkR7J0yEuCfgyHh+87uic1CfdxIy+/ZgWBGQRmv/XaAqf9YwW0LtxLi5UqItws7k2VKrDhBa82x7MaLvecWVwJw06kxvH7luFYFXMFerrx9XSwDgpsuDREb5Q/AzhZM284prsDX3bnBUcZuo6ocMveeqLsmRE9TfZGjegq0EB1Msoba0bhIPz68YQJj+vl2dldEZwgcDF59YP1/wFLZcJvIKeAXaRSwP7wCBswCz2CjePKx9cb2TZUPaWdhPq5kFJZTaba0eJpbV3c4s4g3fj/E19tSqDRrpgwI4C/zhjJ7WAj3LIpne1JeZ3dRdCG/7D7ObQu3svSeqQwM8Trp+RNTLzt+xC3Iy4UgLxf2pBbYvE1OcUXrp4XmHbMtOUv06eATfqL9oLlG5uXM/ZCyufnt67cffqGRGTRtO6TvhsI0sFRBqASCoofyCjGmPu9bAm6+dZ8bdj44uxtBYvouGH2FkZQuaSNkH2x+37Xb5yfDiAuNxw+vhILUxrcLHCwJbHowCQTtyNPFkamDJC1wr2UyGXUgf/07fHNbw20ufs8IBDP3Gm2u/9kIBJM2ntjm9g0QPMQuXQ7zdUNrSC8oo691/VJ3l5pXytNLEliyMw1nBxNXTIhg/ilRxNQq0D0y3Icfd6SRW1zR5BQ90XtsPZaH1vD7/swGA8HqrJz2Ks8wLNSbPWktDARb27e07Y2/Z9V21WIjEKxuf+tqI7A78jsseaD57eu3HzjHCAT3fAd/vGi0MTlCeGzrXocQ3UHEZNjzDST+UffxmOlGILhvCax81gjsAOIXwpb3m99v7fb7fjoRCK7/L+z/ufHtnD3h/n3g0vRMBdE92S0QVEr1Az4E+gAW4E2t9StKqReAc4AK4BBwvdY6r4HtE4FCwAxUaa3lk0B0P6feCyMvBt1Ikgd3a+HpiElw93bwtGYdHHI23PIHvDUd4j+GOU/Zpbuhvm4ApOX3jECwrNLMjR9s5mh2Mbee3p8bpkQ3mMF3ZLixjndXaj6nDZSLNwISrEHXmoNZDWbzrB4RDPC0TyA4NNSbtYcOU1Flwdmx+dH6nOIK+ge18Iuc1sYIQv8ZxvtRczyCjd/V7b1CjfujLoOBs5vfvn57Nz/j/uQ7YNw1xm1nL/AIaNnrEKI7uehtmP33kx+vri848RYYffmJx2f8zfhuYasZf4PTal2YOedVqGpkCUj6bvjsSji6BgadYfsxRLdhzxHBKuB+rfVWpZQXsEUptQxYBvxZa12llHoe+DPwUCP7mK61zrJTf4Vof0qBrw1JJJzcwC/qxH0XT2M61KC5sH0RzHwMHDp+ClqYj1GwuSdk0NRa8/h3u0lIK+C96+OYPji40bYjwoxAcGeKBIL2oLVGqa69dq06EKyuu1l/qrTdRwTDvKk0aw5mFDEszLvZ9rklrRjd3vMtrP03XPZR3fej5jh7GD/VXL2NH1vVb+/ub/wI0Rs4ODX99+bmd+IiCRgXRlpyccQjAKjVvqkMvL6RcM9O2763iG7Jbot+tNZpWuut1tuFQAIQrrVeqrWusjZbD/S1V5+E6HbGXAXFGXBwuV0OVz0imJrXfTKdNiS/tJK7Pt3GZ5uSuGN6/yaDQAAfdyci/N2lhqIdrNibwdgnl7H+cHZnd6VRGYVlZBVVMCHan+IKc4PrR3OKK1B2zMo5LNQIlGyZHmqxaHJLKgloaSDo4GQUufaUUg1C9Eq1L15r3bl9ER2iU7I/KKWigLHAhnpP3QD81MhmGliqlNqilFrQgd0TousaONuYHvLZlfB0qDHPvwN5ujji7erYrTOHpuSVcsHra/hp13EePGMw988ebNN2I8N92JVi+xos0XLrDmVz68dbyCup5Jfdxzu7O41KSCsE4IYpUSgFaw6eHLTmFlfg4+aEo52SKkUHeuDqZLIpYUxBWSVmi7Z9RHDR1bDpbRgyD679psvWQBVC2IHFDJ9eAf8e19k9ER3A7oGgUsoT+BK4R2tdUOvxv2BMH13YyKZTtNbjgDOBO5RSUxvY9wKl1Gal1ObMzMwO6L0QnczBCS58C6bcDa6+xiLvDhbm69ZtRwQTs4q59I11ZBaV89mCSdwxfQAmG9PnDwvz5lhOCcXlVc03Fi227VguN32wiQh/d0b19WFTYk5nd6lR1dNCJ8cEMiLMh7WHTl6hkN2WZCyt4GBSDO7jXdO3ptSsX7QlEMw+ZJS4aSqLoBCi9zA5GBl8J9/Z2T0RHcCugaBSygkjCFyotf6q1uPXAWcDV2nd8Niz1jrV+jsD+BqY0ECbN7XWsVrr2KAgWdcjeqj+02HW43DxO3De6x1+uFAf1xaNCMYn5fGvZfv5NSG95gtoZziQXsil/1tHaaWZT2+eRFxUy9YYVSeR6czX0FPtTs3nunc3EujlwsKbJjJtcDB7UgsoLGukrEonS0grIMzHFR93J4b08SIxu/ikNq1ag9dGI8K82Xosl2/jU5psV/1/2Kb+xS8EZYK4m9uji0KInmDUJRB3IxxYDu+fbdT0FD2CPbOGKuAdIEFr/VKtx+diJIc5XWvdYLVepZQHYNJaF1pvzwGesEO3hei6Ik+xy2FCfd3Y3oLi6q/+eoDf9mbU3I8KcGdchB/Dwrzp6+dOuK8bEf7u+Lh3zFoqrTU/7kzjr9/swtHBxKIFkxpM99+c6qQfuSUV9PPv/hlTu4odyXlc885GPF0cWXjTRIK9XZkQ5Y9Fw5ajuUxrZv1mZ0hIK2CodU1esLcLWUUVWCy6zuhyTnEl4dY1tfZy54wBJKQVcPdn8by3JpEZQ4KJjfJjVF9fPF1OfLzbPCJoMUP8p0b9Uu/Qjuy6EKI7Usooa7HvJxh+fmf3RrQDe2YNnQJcA+xUSsVbH3sEeBVwAZZZs8at11rfqpQKA97WWp8FhABfW593BD7RWjdR9ESIXuLoWlj2mLGOx9kD9v5oFIdtzqzHT2T1q04R34hwXzdyiisorTDj5tz8WqGEtALOGtmH6yZHsfVYHtuO5bLqQBZfbTsxauHsaGLhTRNbPErXFK01qw5k8d+VB1l/OIcR4d68dsU4ogI9mt+4AdWFwWVEsP38mpDOPYvi8XFz4tObJ9WUJBkb4YuDSbEpMafLBYJF5VUcyixmzjCjlEuQpwtmiyanpIJAzxOlR3KLKxgZ3oLMmO0g1MeNz2+ZzPtrE/l+eyr/Wr6fASRzpcOv+Lk7EubjRlSgB25uY4Fg/FwssORBY+1fzDQoyoRV/zixw5IcKEyFM5+z6+sQQnQTMdPAO9yoY3h0zcnPBwwwylsArHzOyDo6xlq/8OdHwNLMrI+wcXXbR00x3q8qSmD5Yw1v49MXTvlTk99jROPsFghqrVcDDf0rLWmkfSpwlvX2YWB0x/VOiG6qohhyj4C5AvCA47tg5xfNbzf9EcjPgy+uM+oPDZnXaNMwX6OExL70Qsb0821ytznFFaTll3F9P18mxgQwMcZIUa21kbUwNa+U1LxSHv9uN0/+sIdvbp9i85q9piTllPDQlztYeyibYC8X/n7ucK6eFIlDG/ZdPSKYV9I1pyt2JxaL5oWl+/jvykMMD/PmzWtj64yeebg4MiLMm01Hcjuxlw1bfSATs0UzZYBR4zPY2/h7yCgorwkEtTYCQ3+Pk2tSdjRHBxM3nRbDTafFkFdSQeni2wg5vIySKg8qMzRkwA5LAXAJ/i7KeH8IHGR8oSsvOPn9InSMUaZGCCHqMzkYOQpWPtfwd43IKScCwX1LIHz8icBu91dQ1Uy+AUtV3fau3sb3E0tlw8czV0FFIUSeCn3Ht/519WL2HBEUQrS3gbPhwYMn7k97yPixhbOXUa+wweszJ0wfHIyPmxMvL9/P+9eftDS3jurEFcNCfeo8rpTC38MZfw9nRoT7UFhWxf1fbOf7HamcNybctv42IrOwnLNe+QMNPHnecC6Li7CpwHZz/K3T6GREsG0qzRb+b/EOvt6WwhUTInjsnGG4Op08shwX5c+H64/aXCDdXpYnZODt6khslFG3K9i6djSz6MQamZIKMxVVlppR5M7i6+6Mb+kBiDkdz2u/oaCskl8T0tm6PY2ZgJuXLzyUeGKDgP517wshRHMm3nIi2GvKLavq3r9/b8uOU7u9q0/D71VlBfDiIIj/WALBVuo6n7ZCCPtycITrvochZzXZzNfdmTunD2DlvkxW7c+kymxptG11IDg0tOk1eReMDWdYqDev/nqg5f2u50B6IYXlVfz7yrFcMzmq3YIIb1cnTOpEoXDROo98tZOvt6Xw4BmDeeaCEQ0GgQCj+/lSUWXhQEahnXvYOItFs2JvBqcPDq4pIF+dRCij4MSV7ZpkLHbMGtogcyVkJEDoKMD4P3zB2L68Mz+Od+bHdW7fhBCivbl6w7BzYeeXUNk9s5t3NgkEhejtKoph7xLjC6TF3GCTa0+JpK+fG9e+u5EBf/mJ99ccabDdntQCQrxdCPBseoqcyaQ4Y3gfDmUWU1bZ8DFtlWuduhnq49qm/dRnMil83Z0lEGyDxVuS+WJLMndOH8Ad0wegmljDMTzMWF+324a6ePYSn5xHdnEFs4aeWLcY7GX8P6s9IlgdCPrbOWvoSTL3GtPE+4zq3H4IIYS9nHY/zP/emLaauV8K37eQTA0Vorf77MoTCWamPwqnP3hSExdHBz64YQJLdqSxZNdx3lx1mKsnRZ5UPHtPWgHDQm1LmBEVaCQKScopaVVWz2rVgVpHjMb4uTuRWyxrBFvqvkXxrDqQRV5JBZNi/Ll39qBmt4kK8MDd2cGmAukdrazSzKbEHD5efxQHk+L0QSfKEbk5O+Dl4khGQa1AsKQF5Rk60vGdxm8JBIUQvUXQYON3QSq8Hgfn/hvGXdu5fepGJBAUorc77z+QshnWvgZbPzSurplOnizQP8iTu2YOZGCIF7d+vIVf92ZwxvA+Nc+XV5k5mFHEzKG2ZX2MDDCyeSZmty0QzLN+CfftgHIUfu7OskawhcoqzXy3PZUR4T5cMDaMBVP725S0x2RSDA31Zneq7aVK2kthWSVVZs2OlHy+i09l6e7jFJZXAXDu6DB8611kCPJyIbPwRCCYWz0i2NlTQyOnwNkvG2v/hBCiN3Hzg9MekGRXLSSBoBC9nU+48WOuhC9vhMRVRkbBRswaGkyYjysfrTtaJxA8kF5ElUXX1FtrTlSAMSJ4tIHi3C2RW1KJu7MDLo7Nl7ZoKT8PZ5JyGixv2iNlFJTx6m8HSC8o55+XjsbbteXB9e7UfKosmjumD2D2sJAWbTs8zJsvtySfVKOvoxSXV/H4d7v5YktyzWNeLo6cMaIP80aGMjbC96QgEE4OBFtUsL0j+UVC7PWd2wchhOgMTm4w86+d3YtuRwJBIYRhyNlGZq5tC5sMBB0dTFw5MYIXl+5n3aFsJvc3SkSsO5QNwOi+vjYdztfdGW9XRxLbHAhWdFiSDn93Z3Yk53XIvruaFXszuOOTrVRUGcmArnlnIx/eMAEft5YFg/FJxoje6L4+zbQ82fAwbz5cZ+ZYTkmr6z82pMpsYe2hbH7YkcrmxFzM1jUk+aWV5JdWMv+UKCID3An3dWPqoKBGE9pUC/JyYVfKiZHL3JIKHEwKb9dO/EjVGnZ9CZGngHdY5/VDCCE6087FUF4oF8VsJIGgEMLg5AojLoZtHxm1Cd384arPjeeWPgrFWXDBGwAsyP0n0923Yv7IQnkfb1wcTUw9Xsh4Tzf6uUwC3G06ZFSgB0ez2zbilldS2SHTQsEY4cktrkRr3WSik+7u14R0bvt4K4P6ePLaFeM4mFHEbQu38M+l+3jivBEt2ld8Uh5hPq419fZaorrsyO7UgnYJBLOLynnj90N8uTWFnOIKPF0cmTIgADdroGcyKS6N7ccka71LWwV7uZJRmFFzP6e4Ej935879P1KSDb89adQFHT+/8/ohhBCdaffXcGgFxC9svM3U/4NBc4zayz/cA3OfN8pPHP7deB9tTv32F74J/jHt9hLsSQJBIcQJk++AghQj86CL54nHndzB+cQXc2dXT2LC+7AtKY9dWRaGhXmSUV7KaQ7bjDffKX+y6XCRAR5sT8prU5c7ckTQz92JCrOF4gozni498+1y+Z50blu4haGh3nx0w0R83J2ICvTglP6BbDic0+L9bU/KY0yEb6v6MqiPJ44mxc+7j+PooAjyciEqwMPmbJyr9mfybXwqu1PzKa+ycDy/jPIqM3NH9OHc0eFMG9z8aJ8tgr1dKKkwU1xehYeLI4cziwjzbd+stTYzV0LeMfCLhribYeAZndMPIYToCk67H6rKQTeRkdzB+nlucgAXL+M3gIOTcb859dur9l+aYi8985uNEKJ1AvrDlYtOfnz6I3Xvz3sRN6BsbzpXvr+Z/rkeHKosZm/4P3Hd9jGcchfYMDoSFeDOjztS21REPK+kknBft1Zt25zqNV+51tGknmbZnnRuX7iFYaHefHjjxDrTQMdF+PHyr/spKKu0ea1gTnEFx3JKuGpiRKv64+LowPBwH77fnsr321NrHo8J8mBitD8Tov05pX8gIQ2MNr79x2GeXpKAn7szo/v64OXqxKkDArnulCgGBHue1L4tgqzlUTIKywk1KbYdy+O6UyLb9Rg2y0iA/50GF70Dp9zZOX0QQoiuInwcXL3YtrbBQ+Gar0/cjzyl7v3mtLR9F9TzvtkIIexmxpAQLhgbztfbUhgU4olr3LXw/d2Qvhv6ND+lMDLAA4uGlLxSols5FbCj1whWH6Ofv23TXbuLX3Yf585PtjIszKfBtYDjIn3R2hjhO21gUCN7qWu7dT3l6H6+re7X+/PjSMotwaQUGYVl7E8vYtORHH7YkcanG5MA6OfvhpODiaF9vLlyYgSfbDjGjzvTmDu8Dy9fPqZdRv2aEuxtBIKZheWk5pVSYbZwSv/ADj1mo47vMH5LyQghhBAtJIGgEKJN/nb2MDYl5nBpbD8YMQ4iJht1ffb+CH3jwLPxchKRtTKHtiYQNFs0+aWV+HXYGkFjvz2thMSmxBzuWLiVEeE+fHjjhAZH/Mb080Up2HrU9kBw69FcTApGhrc8UUw1Pw/nWtk3fZgxJIRbT++P2aJJSCtg9cEsdqcWYLZYWLU/kx93puHiaOKBOYO4bdoAm0pVtFV1UfmMwjIS0gpwMCniov07/LgNOr7TmLotJSOEEEK0kASCQog28fNw5o//m34iUUZ1cdcf7jWyj174ZqPbnggEW5cwpqC0Eq1pMMV/e6geacwr6TlF5UsrzDz4xXZCfV0bDQIBvFydGBTsxZZjuTbve3lCBuMi/PDogGm0DibFiHAfRtQKMvNLKlm65zgTov1r6lLaQ5CXMSJ4PL+MtYeyGd3Xp/OmDqftgJARJ9asCCGEEDZq3aKcVlBK9VNKrVBKJSildiul7rY+7q+UWqaUOmD97dfI9nOVUvuUUgeVUg/bq99CiOY1mC3x7H/B3Oea3C7I0wVPF0dW7c9EW1P6t0RuSXX9to4ZEaxOUtITRgSPZZfw7uoj3P9FPInZJTx/0ahm1/6Ni/Rj27FcLJbm/22SckpISCtg7og+zbZtLz7uTlwS28+uQSAYSYT6+bvx6q8H2JGc33nTQi0WY0Swz8jOOb4QQohuzW6BIFAF3K+1HgpMAu5QSg0DHgZ+1VoPBH613q9DKeUAvA6cCQwDrrBuK4ToqobMA/emp8sppbhzxgB+3ZvBm6sOt/gQudaRuo4aEfR2dcKkTgSc3dm/lu/niR/2sGTncRZMjbEpeBkX4UthWRXXvruRuz/bxmu/HeCX3cdJzCo+KXD/ZfdxAM4Ybr9AsLMopfjkpkkEerlgtmhO6d+y8hPtJi8RKgohVNYHCiGEaDm7zWXRWqcBadbbhUqpBCAcOA+YZm32AbASeKje5hOAg1rrwwBKqc+s2+3p8I4LIVov4Xs4sBTO/XejTW6ZGsOO5Dye/3kvXq5OXNmCjJN51SOCHRQImkwKX3fnLh8IllWaef7nvcwbGUpsVMPB99HsYiZE+/P2dbE2ZwGdPiSYUwcEkl9ayZGsYr6NP5HJ09/DmfGRfsRF+TFtcDC/7D7O0FDvHpdUpzH9/N356rZTWH0wi8mdFQimSaIYIYQQrdcpixqUUlHAWGADEGINEtFapymlGsosEQ4k1bqfDEzs6H4KIdoo7xhs/RDiP2m0iRp5KS9c/G+Ky82cs2QCP6w5l1/Db+fyUd5M/HoqXL+k0RGP6hHBjkoWU73vrjo1tMpsoazKwm0fb+GPA1nEJ+Xx9e1TGmybnFvKtMFBNgeBAIGeLnx804m32qLyKg6kF7L3eCFbjuayOTGHZXvSeWbJXgDumTWwbS+oI1SVg6Oxpo8ng4yC69MfgaJMeGlI89ufdn/d9mf+A+JuhLQd+L41nbMBvmli+1rteWs6XPqhMVp+YBl8ennzx6/f/salED4etn4E391l1K8KHtr8foQQQoh67B4IKqU8gS+Be7TWBQ2uLWpgswYeO2nRilJqAbAAICKidXWshBDtaNx1UFECVaWNt+kzEg8XR96dH8eGd6/i98wwlu1JZ19iEksqCmHzO3DOKw1umltcvUawY0YEAYaEerNybwYpeaUdVq+wNb6NT+HBxTuoqLIAcNrAQP44kMWe1AKGhXnXaVtWaSajsJy+fm0brfN0cWRshB9jI/y4YoLxHptRUMaPO9NYdyjbyBzblRSmw2txcM7LMOJCOOVPEDHJeM7JDabc3fw+6revHn3zDLZt+/rt/a3ZPf2ibNu+fnvPEON+yHA47T4IHmb0TQghhGgh1ZoEDa0+mFJOwA/AL1rrl6yP7QOmWUcDQ4GVWuvB9babDDyutT7Dev/PAFrrZxs7VmxsrN68eXMHvRIhREdaviedmz7czIoBi4jO+A0e2A/OJwcx//h5L2+uOsyBp89sOGFNO0jKKeGMl1cxIdqf9+bHddhxWiI+KY9L/7eO4WHezBoawshwH0b19WHCM79yaWxfnjq/bvKQw5lFzPjn77x06WguHNe3k3rdCda8Csv+CndsgqBBnd0bIYQQwu6UUlu01rENPWfPrKEKeAdIqA4Crb4DrrPevg74toHNNwEDlVLRSiln4HLrdkKIHmjm0GBGhHvzUmYcVBSSvXlxg+1ySyrxdXfq0OCsn787D8wZzMp9mXy3PbX5DTrYjuQ8bvpgM8FeLrxzXRx3TB/A1EFB+Lo7c/aoUL7ZlkpxeVWdbZJzjRHZto4IditaQ/xC6DtBgkAhhBCiAfbMGjoFuAaYoZSKt/6cBTwHzFZKHQBmW++jlApTSi0B0FpXAXcCvwAJwOda69127LsQwo6UUtw3exDf50dz1BJMwS/PUPTln+DYhjrt8koqOixjaG3XnRLFmH6+/P37PZ26XnDlvgwueWMdLo4m3r8+rqa8RbVzRodRVF7F9uS8Oo+fCAR7wRRCiwVWPg/f3AaZe2HsVZ3dIyGEEKJLslsgqLVerbVWWutRWusx1p8lWutsrfVMrfVA6+8ca/tUrfVZtbZforUepLXur7V+2l79FkJ0jhlDQlh67+lUTr4bL0pw2fUJ/Fw3oXBuSUWHJoqp5mBSPH/RKArLKnni+867BvXO6iMEebnw7Z1TGBDsddLz/QM9AWM6a23JuSU4mhQh3q526WenOvI7rHwG9v0EwcNh+IWd3SMhhBCiS7LniKAQQrTIoBAvBpx5JwtP+5VnKi6H1G2QfiIQyyuptMuIIMDgPl7cdnp/volPZduxXLscs77E7GLGRfgR6OnS4PNhvq44mBRHs+sHgqWE+brhYOr89Y0dbtvH4OoD9++D29eCq3fz2wghhBC9kASCQogu75bTY9jgOYttjqOpKjeCnOLyKhKzi+063XHB6f3xc3filV8P2O2Y1SqqLKTklhIV6NFoG0cHE+G+bhxrYESwV0wLLc2DvT/AyEvAqReMfgohhBBt0Cl1BIUQoiVcnRy48+yJXLDwIZ5O8uEqpx2sPOZAWaWFs4f4nCis3RSfvuDecLF1W3m6OHLz1Bj+8fM+NifmMCLcBwAnB1OHj7Yl5ZZg0RAV0HTCl8gA95MCwaTcUmYMbqhEaxeVuR+qyppu4+QOgQNOtHd0BkdXGH05jL2m4/sohBBCdHMSCAohuoUzR/RhUow/C5dt4CruJC3gQcJ8JjPWORn+d0bzOzj/vzDmyjb349rJUby16jAXv7Gu5jF/D2dWPjitRcXaWyoxqxigyRFBgAh/d37cmVZzv6zSTGZhefcaEfxiPmQ0sxazbxzctPxEe/9ouHxhozUnhRBCCFGXBIJCiG5BKcXj5w7nsteO85TfX/glrQ/nnBaGKSgELlvY/A5CR0POYTiyCsbPb3U/PF0ceevaWDYm5gCQUVDO+2sTWX8omznD+7R6v805Uh0IBjQfCOaVVJJfWomPmxMpedaMof7dKBCc+yyUFzbdxs23bnvnps+LEEIIIeqSQFAI0W0M6ePNi1eewq0fu2C2aM4dHQbuPjD0bNt2sOoFWPEsDD4LPFs/VTI2yp/YKGOaaUWVhUWbklh9MKtDA8HE7GK8XR2bzZIaaZ06eiy7hJF9fWpGErtFDcGCVEjeDDHTWpbkJeb0DuuSEEII0VNJshghRLcye1gI/75iLDedGs2w0BZmhIy9Ee7d1aYgsD5nRxMTY/xZfTCr3fbZkKPZJUQHeqBU02sRI/yNkbHqdYJrDmbj4mhipHU9Y5d26Df4/BooyujsngghhBA9ngSCQohu56yRoTx69rBmg6KTuPuDdxgcWAZvTodN77RLf04dEMjhzGJSrdMwO8KRrGIim5kWChBhHRE8mmOMBP6+P4OJMQG4Ojl0WN/azYiL4KbfwD+ms3sihBBC9HgSCAoheh8HZyjJhhVPQ1VFm3d36sBAgA4bFSyvMpOa13TpiGqeLo4EeDhzLLuE5NwSDmUWM9Xavy7PyQ36jgeTfDQJIYQQHU0+bYUQvU/M6XDWi0YwuP/nNu9ucIgXgZ4uvPjLPi55Yy1b27ngfFJOKRYN0YG2rfOLsJaQWLXfCEynDQ5q1/50CIsFlv8dUrZ2dk+EEEKIXkECQSFE79R/Bnj2gXgbMo42QynFvbMHMriPF/vTi/jHz3vboYMnHMwwMmjaMjUUYEgfLzYl5vCflQcJ93Wjf5Bnu/anQ+QegdUvQfquzu6JEEII0StI1lAhRO/k4AhjroA1r8Kmt8FkzcY5ZB54BBpFyo+tg5EXG6UJUuMhbXuju7vKEa4aA+/3j+XxnxNJ2PoHQ/VhGHctKAVH10HW/ub7Vbt9fhKMupRv41M5020PI9MzILOJ63dObjDqUv7vjCGEZ69j55E0AuMuMtZSJvxgjIA2xd0fhp5j3E74AZxcYcAs4/6OL6CyBAbMBJ++zb8OW2kNCd9D4mrjfp9R7bdvIYQQQjRKAkEhRO819hpY+xr8eP+Jx/qMMALBY2vh+7th4GwjENz/C6x8ptldXnrnTl5e5cSe3z9naP6HFAy7HG83F9ixCLa8Z1uflDLa7/2R9KhzWbonnZ+DV+L04+qmt/UIhlGX4ufhzJ0eKygJPUbl3L8Yz/3xIqRua3r7PqNOBIJ/vAgeQScCwWV/hcI0GDAbrl7c/OuwVfouI1MogJsfBA1pv30LIYQQolFKa22fAyn1LnA2kKG1HmF9bBEw2NrEF8jTWo9pYNtEoBAwA1Va69jmjhcbG6s3b97cLn0XQvRgpXlQUXzivkcQODpDeRGU5YNXHzA5QFlB80XOAbz68PJvh3h7+XY8KcXBJ5xv7zqVQIcSqCip0/SeRfHsSskHBUVlVQC4B/RjQkwAp4Q5MD7cjS8PmHlp2X5W3TGSCO9mMn8qE3iHGreLs0GbT5TKKMoAc2XT2zs41W2vHMAjwLhfkAbrXoP1/4F7dxvZV9vD1o/guzvhhl8gZAS4dINprEIIIUQ3oZTa0ljsZM8RwfeB14APqx/QWl9WfVsp9U8gv4ntp2utO7ZQlxCi93HzNX7qc/GsG5S4ettc5Pz2aQOIi/Inq6ic/1u8g9sXbmXhTRNxcvOraXMsu4Rvj8CfZsRyx/QB7EzJZ1NiDpuO5LBkZxqfbTICQ6XgtIGBRPSLaNnrqg7gqrW0dmL99t6hEHejEQxu/xROu7/h7Vrq+A5w9oS+EyRbqBBCCGFHdgsEtdarlFJRDT2njGJglwIz7NUfIYToKM6OJqYMMEo2aG2M/N27KJ5/XTYGJwcj2Pl00zEUcPmEfjg7mhgf6cf4SD9uPb0/Fotmf0Yhm47ksD05n2smRXbiq6nFPwYiT4VtC+HU+4wota2O7zRGAiUIFEIIIeyqq6wRPA1I11ofaOR5DSxVSmngf1rrN+3XNSGEaL3zx4aTXlDGsz/txWzRvHL5WIrLq/h8UxIzh4YQ6uN20jYmk2JIH2+G9PHmmk7oc5PGXgXf3AZ/94XgYXDLH0bindawWIxAcMyV7dpFIYQQQjSvqwSCVwCfNvH8FK11qlIqGFimlNqrtV5Vv5FSagGwACAiooXTqIQQooPccnp/HB1MPPnDHioXbqWgtJLC8irunD6gs7vWciMuNtYPZh2A+I/h6GqImdbKnWm49APwDGnPHgohhBDCBnZLFgNgnRr6Q3WyGOtjjkAKMF5rnWzDPh4HirTWLzbVTpLFCCG6mo/WJfLXb3cD8O8rxnLO6HZKuNIZqiqM9X3h49tniqgQQggh2l1XSRbTmFnA3saCQKWUB2DSWhdab88BnrBnB4UQoj1cMzmKIC8Xyqss3TsIBCOzat9mEzg3LXG1kcm0//T26ZMQQgghbGa3QFAp9SkwDQhUSiUDj2mt3wEup960UKVUGPC21vosIAT42sgngyPwidb6Z3v1Wwgh2tPcEaGd3YX2U1UBSx4wCtHPehwqS+HnPze/Xf8ZMOxcWP0vKEyH25qpjyiEEEKIdmfPrKFXNPL4/AYeSwXOst4+DIzu0M4JIYRoOUdnKM0F73DjvrkS9v7Y/HZeoUYgeNHbUCxVgYQQQojO0BWmhgohhOiuLvvoxG1Xb3iwseTPDXDzM36EEEIIYXdSuEkIIYQQQgghehkJBIUQQgghhBCil5FAUAghhBBCCCF6GQkEhRBCCCGEEKKXkUBQCCGEEEIIIXoZpbXu7D50CKVUJnC0s/vRTQUCktO99eT8tY2cv7aR89d2cg7bRs5f28j5azs5h20j569tutr5i9RaBzX0RI8NBEXrKaU2a61jO7sf3ZWcv7aR89c2cv7aTs5h28j5axs5f20n57Bt5Py1TXc6fzI1VAghhBBCCCF6GQkEhRBCCCGEEKKXkUBQNOTNzu5ANyfnr23k/LWNnL+2k3PYNnL+2kbOX9vJOWwbOX9t023On6wRFEIIIYQQQoheRkYEhRBCCCGEEKKXkUCwG1NKzVVK7VNKHVRKPVzvubusz+1WSv2jke0vsT5vUUrF1nvuz9b97lNKndHI9nda22ilVGC956YppeKt+/+9ra+1I3SB87fQ+vwupdS7Sikn6+NKKfWqdfsdSqlx7fWa21tHnUOlVIBSaoVSqkgp9VoTx49WSm1QSh1QSi1SSjlbH+8W57Crnr9az8cppcxKqYvb+lo7Qlc9f0opH6XU90qp7db9X99er7k9dYHz1+BniFLqKuvf7Q6l1Fql1Oj2eL0doaueQ+tzvfZzuAXnr1t/Dnfg+ZutlNqilNpp/T2jke0bew/sFucPuu45rPV8x34Oa63lpxv+AA7AISAGcAa2A8Osz00HlgMu1vvBjexjKDAYWAnE1np8mHV/LkC09TgODWw/FogCEoHAWo/7AnuAiKaOL+ePswBl/fkUuK3W4z9ZH58EbOjs89UJ59ADOBW4FXitiT58Dlxuvf1GdzqHXfn81erfb8AS4OLOPl/d6fwBjwDPW28HATmAc2efsy54/hr7DDkF8LPePrMr/v12g3PoS+/+HLb1/HXbz+EOPn9jgTDr7RFASiPbd9vP4K5+Dmv1r0M/h2VEsPuaABzUWh/WWlcAnwHnWZ+7DXhOa10OoLXOaGgHWusErfW+Bp46D/hMa12utT4CHLQer/7227TWiQ1sfyXwldb6WFPH72Rd4fwt0VbARqBvre0/tD61HvBVSoW2/qV2mA47h1rrYq31aqCssYMrpRQwA1hsfegD4Hzr7e5wDrvy+QO4C/gS6Ip/v9C1z58GvKxtPDECwaqWvbwO16nnz9quwc8QrfVarXWu9e56Trw3djVd9hzSyz+HW3D+uvPncEeev21a61Tr3d2Aq1LKpXabHvAZDF37HIIdPoclEOy+woGkWveTrY8BDAJOsw41/66UimvHfdtiEOCnlFppHQ6/toXHt4cuc/6sU1GuAX5uzfadqCPPoS0CgDytdfUX7NrH7w7nsMueP6VUOHABxtXJrqrLnj/gNYyrxKnATuBurbWlA/rQFp19/mx1I8bIQlfUlc9hb/8cbpFu+jlsr/N3EbCtOiCqpbt/BkMXPof2+hx27Midiw6lGnisOgWsI+CHMRwfB3yulIqxXvFq675t4QiMB2YCbsA6pdR6rfX+Fuyjo3Wl8/cfYJXW+o9Wbt9ZOvIctvX43eEcduXz9zLwkNbabFyw7JK68vk7A4jHuNLbH1imlPpDa13Qjsdvq84+f81SSk3HCARPtedxW6Arn8Pe/jncUt3xc7jDz59SajjwPDCnhcfvDucPuvY5fBk7fA7LiGD3lQz0q3W/L8bV5+rnvrIOyW8ELECgUuo9ZSwcX9KGfdvat5+tUzOygFXA6BZsbw9d4vwppR7DWEN0X2u272QdeQ5tkYUx3aT6glb943f1c9iVz18s8JlSKhG4GPiPUur8djhme+rK5+/6Wsc/CBwBhrTDMdtTZ5+/JimlRgFvA+dprbM7+nit1JXPYW//HLZZN/4c7tDzp5TqC3wNXKu1PtRAk+7+GQxd+xza5XNYAsHuaxMwUBnZhpyBy4HvrM99g3ElGqXUIIwFsFla6+u11mO01mc1s+/vgMuVUi5KqWhgIMbceVt9izGc7qiUcgcmAgkt2N4eOv38KaVuwhg5uKLetLHvgGuVYRKQr7VOa/Ur7TgdeQ6bZb0qtwLjDRLgOoz/e9A9zmGXPX9a62itdZTWOgpj7cLtWutv2nrMdtZlzx9wDGMkBqVUCEYigcNtPWY769Tz1xSlVATwFXBNFxvBqq/LnkPkc9gm3fxzuMPOn1LKF/gR+LPWek1DbXrAZzB04XNot89h3QWy9shP634wsjLtx8h49JdajzsDHwO7gK3AjEa2vwDjikc5kA78Uuu5v1j3uw84s5Ht/2TdvgrjCsbbtZ57ECNj2S7gns4+V130/FVZ28Rbf/5mfVwBr1uf20mtLFRd7aeDz2EiRpKNImubYQ1sH4MRZB8EvuBEdq9ucQ676vmr1+Z9umDW0K58/oAwYKn1/94u4OrOPldd9Pw1+BmCMRKYy4n3xs2dfa662zm0PtfbP4dtOX/d+nO4o84f8ChQXOu8xNNA1ky6+WdwVz6H9dq8Twd9DivrAYQQQogeyTq15iat9fJaj823Ptbm9WdKKQ0M1MY00Iaeb7djtbUvQgghRDWZGiqEEEIIIYQQvYwEgkIIIXo9pVSYUupLpVSmUuqIUupPtZ6boJRap5TKU0qlKaVes64nQSm1ytpsu1KqSCl1mQ3HSlRKPaCU2qGUyldKLVJKuVqfm6aUSlZKPaKUyrK2varWtiut65qq789XSq1ubV+EEEL0XhIICiGE6NWUUibge2A7Rg2nmcA9SqkzrE3MwL1AIDDZ+vztAFrrqdY2o7XWnlrrRTYe9lJgLhANjALm13quj/VY4RjJA95USg1ubodt6IsQQoheSAJBIYQQvcE31hG9PKVUHkbdsGpxQJDW+gmtdYXW+jDwFkYGObTWW7TW67XWVVrrROB/wOlt7M+rWutUrXUORhA6pt7zf9Val2utf8fIPHdpG48nhBBC1CEF5YUQQvQG5zeULMZ6NxIIswaI1RyAP6xtBwEvYdR1csf47NzSxv4cr3W7BCPTaLVcrXVxrftH6z0vhBBCtJmMCAohhOjtkoAjWmvfWj9e+kSdqP8CezGycXoDj2CkR+8ofkopj1r3IzhRZLgYIxit1qcD+yGEEKIHk0BQCCFEb7cRKFBKPaSUclNKOSilRiil4qzPewEFQJFSaghwW73t0zFqQbWnvyulnJVSpwFnY9SXAqMW1YVKKXel1ADgRjv0RQghRA8kgaAQQoheTWttBs7BWKd3BMjCKGruY23yAHAlUIixdrB+EpbHgQ+s6w/bYy3fcYyC6qnAQuBWrfX/t3f30VbV54HHv49iwKlifE0RZCCjxqDL4nh91w5qIrZNgm1woE4qVmehjknTdjpVkplo4zJLp2uZLrSJYVUHTWPE0VjoFJtK1SZNEMWW+oISaaV4lWVUrGBTjegzf5x9zOFy7uWce8655+37Wesuz/nt/dvndx8vZ+9n/172s8W2rwI/pZTw3V5sb2VbJEk9ygfKS5LUISJiFvCnmTmlzU2RJPU4ewQlSZIkqc+YCEqSJElSn3FoqCRJkiT1GXsEJUmSJKnPmAhKkiRJUp8Z1+4GtMpBBx2U06ZNa3czJEmSJKktHn/88Vcz8+Bq23o2EZw2bRpr165tdzMkSZIkqS0i4p+H2+bQUEmSJEnqMyaCkiRJktRnGk4EI2JCRDwaEf8QEU9HxB8U5QdExAMR8Vzx3/0r6iyKiI0RsSEiZleUHx8RTxbbFkdEFOXjI2JZUb4mIqY12m5JkiRJ6lfNmCP4NnBWZr4ZEXsBfxsR9wO/Bvx1Zl4fEVcBVwFXRsQMYD5wNHAosCoijszMd4GvAwuBR4CVwLnA/cAlwOuZeXhEzAduAObV29B33nmHwcFB3nrrrUZ/Z1UxYcIEpkyZwl577dXupkiSJEkNuXPNZpave7GmfWccOpGrP3l0i1vUXA0ngll6Iv2bxdu9ip8E5gCzivLbgYeBK4vyuzLzbeD5iNgInBgRm4CJmbkaICLuAM6jlAjOAa4pjnUPcHNERPHZNRscHGTfffdl2rRpFJ2NapLM5LXXXmNwcJDp06e3uzmSpCHquaCpNGfmZC44aWoLWiRJnW35uhdZv2UbMyZNbHdTWqIpq4ZGxJ7A48DhwB9n5pqI+FBmbgHIzC0RcUix+2RKPX5lg0XZO8XroeXlOi8Ux9oREW8ABwKv1tPOt956yySwRSKCAw88kFdeeaXdTZEkVTGaC5r1W7YBmAhK6lszJk1k2aWntLsZLdGURLAY1jkzIj4I3BcRx4ywe7UsLEcoH6nOzgeOWEhpaClTp1Y/aZkEto6xlaTOVu8FzbxvrG5hayRJ7dTUVUMz818oDQE9F3g5IiYBFP/9cbHbIHBYRbUpwEtF+ZQq5TvViYhxwH7A1iqfvyQzBzJz4OCDqz43se322Wefnd4vXbqUz372s6M61rp161i5cmXVbQ8//DCf+MQnRnXckTz88MP88Ic/bPpxJamf3LlmM/O+sXqnnzvXbG53syRJfaQZq4YeXPQEEhF7Ax8DngVWAAuK3RYAy4vXK4D5xUqg04EjgEeLYaTbI+LkYrXQC4fUKR9rLvBgvfMDe9FIiWCrmAhKUuPKwzTL1m/ZNqr5e5IkjVYzegQnAQ9FxBPAY8ADmfn/gOuBj0fEc8DHi/dk5tPA3cB64C+BK4qhpQCXA38CbAT+kdJCMQC3AgcWC8v8LqUVSHvOK6+8wqc//WlOOOEETjjhBH7wgx8A8Oijj3Lqqady3HHHceqpp7JhwwZ++tOf8qUvfYlly5Yxc+ZMli1bNuxxr7nmGi6++GJmzZrFhz/8YRYvXgzApk2bOOqoo1iwYAHHHnssc+fO5Sc/+QkA06ZN49VXS1Mw165dy6xZs9i0aRO33HILX/3qV5k5cybf//73WxwRSepd5WGayy49pWcXIpAkda5mrBr6BHBclfLXgLOHqXMdcF2V8rXALvMLM/Mt4PxG21rpD/78ada/tG33O9ahlmVj/+3f/o2ZM2e+/37r1q186lOfAuDzn/88v/M7v8Ppp5/O5s2bmT17Ns888wxHHXUU3/ve9xg3bhyrVq3iC1/4Avfeey9f/vKXWbt2LTfffPNu2/bss8/y0EMPsX37dj7ykY9w+eWXA7BhwwZuvfVWTjvtNC6++GK+9rWv8Xu/93tVjzFt2jQuu+wy9tlnn2H3kSRJktT5mrJYjGq39957s27duvffL126lLVr1wKwatUq1q9f//62bdu2sX37dt544w0WLFjAc889R0Twzjvv1P25v/Irv8L48eMZP348hxxyCC+//DIAhx12GKeddhoAn/nMZ1i8eLFJniRJktTj+jYR7MQHPr733nusXr2avffee6fyz33uc5x55pncd999bNq0iVmzZtV97PHjx7//es8992THjh3Arit9lt+PGzeO9957Dyg9dkOSJElS72jqqqFqzDnnnLPTMM9yz+Ebb7zB5MmlRyouXbr0/e377rsv27dvb+gzN2/ezOrVpeXBv/3tb3P66acDpWGgjz/+OAD33ntvUz9TkiRJUnv1bY9gJ1q8eDFXXHEFxx57LDt27OAXf/EXueWWW/j93/99FixYwI033shZZ531/v5nnnkm119/PTNnzmTRokXMmzev7s/86Ec/yu23386ll17KEUcc8f7cwauvvppLLrmEr3zlK5x00knv7//JT36SuXPnsnz5cm666SbOOOOMxn9xSZL61J1rNte9YuycmZO54KTqz0uWpFqZCI6xN998c6f3F110ERdddBEABx10UNXVP0855RR+9KMfvf/+2muvBeCAAw7gscceq/o5s2bNen8I6TXXXLPTtqeeegoorRq6xx57cMstt+xS/4wzztjpM8uOPPJInnjiieq/nCRJqkv5USK1rhxbfuyIiaBaZTQ3J8rG8iZFt7Szk5kISm1W6xeZX1qS1JvKjxKpxbxvrG5xa9Tv6r05UTbWNym6pZ2dzESwj02bNu393kG1Ty1fZH5pSZKksVLPzYmydtyk6JZ2dioTQakD7O6LzC8tSZIkNVPfJYKZucsjE9QcmdnuJkiSuszuhsc7LF6SWqOvHh8xYcIEXnvtNROWFshMXnvtNSZMmNDupkiSukh5eHw167dsG/ViEJKkkfVVj+CUKVMYHBzklVdeaXdTetKECROYMmVKu5shSeoyww2Pd1i8JLVOXyWCe+21F9OnT293MyRJPaSeJcwd5ij1LlcBV7fpq6GhkiQ120hDGys5zFHqbbV8F/g9oE7SVz2CknrL0Luv3mVVu9SyhLnDHKXe5yrg6iYN9whGxGER8VBEPBMRT0fE54vyAyLigYh4rvjv/hV1FkXExojYEBGzK8qPj4gni22Lo1jeMyLGR8SyonxNRExrtN2Sul/l3VfvskqSJNWuGT2CO4D/npl/FxH7Ao9HxAPARcBfZ+b1EXEVcBVwZUTMAOYDRwOHAqsi4sjMfBf4OrAQeARYCZwL3A9cAryemYdHxHzgBmBeE9reFvXMJ6nGXg/pZ8p3X73L2n5+t0mS1D0aTgQzcwuwpXi9PSKeASYDc4BZxW63Aw8DVxbld2Xm28DzEbERODEiNgETM3M1QETcAZxHKRGcA1xTHOse4OaIiOzS50CUezFmTJpYd91y74cXS1L96k1UTEzq43ebJEndo6lzBIshm8cBa4APFUkimbklIg4pdptMqcevbLAoe6d4PbS8XOeF4lg7IuIN4EDg1SGfv5BSjyJTp3b2xUQt80mqsddDGr16EhUTk9Hxu02SpO7QtEQwIvYB7gV+OzO3FdP7qu5apSxHKB+pzs4FmUuAJQADAwNd2VsoqbVqTVRMTFTmokSSutVohuyPdmSHuk9TEsGI2ItSEvitzPxOUfxyREwqegMnAT8uygeBwyqqTwFeKsqnVCmvrDMYEeOA/YCtzWi72mM0X0xefElqh8qeZHuKJXWT0QzZnzFpInNmTt79jup6DSeCxcqetwLPZOaNFZtWAAuA64v/Lq8ovzMibqS0WMwRwKOZ+W5EbI+IkykNLb0QuGnIsVYDc4EHu3V+oErq/WLy4ku1WL9l24g9ed7l1Gi5KJGkbjXaIfvqfc3oETwN+A3gyYhYV5R9gVICeHdEXAJsBs4HyMynI+JuYD2lFUevKFYMBbgcWArsTWmRmPuL8luBbxYLy2yltOqoulw9X0xefGl3arl76V1OSZKkkmasGvq3VJ/DB3D2MHWuA66rUr4WOKZK+VsUiaQkVXPBSVPtMZYkSapRU1cNlSRJUudq5HmfztWXeouJoCT1MC/61A71/N05d3dsjfZ5n87Vl3qPiaAk9TAv+tQO9fzdOXd37I1m8RDn6ku9x0RQknqcF31qB1cqlKTOtke7GyBJkiRJGlsmgpIkSZLUZxwaKkkdrp6FN1zgRZIk1cJEUGqRWi/eXTFPu1Prwhsu8CJJkmplIii1SK0X766Yp1rUsvCGC7x0vvVbtjHvG6u9ASRJajsTQamFXDVPUlnlDR9vAEmS2s1EsE+MNEyxV+cUNfIg7bJejY2ksXfBSVP9Pukhzt2VdlUe9VAP/320j4lgnxhumGIvzyka7YO0y3o5NpLUL5pxUxB2vVh17q60s9GMcvDfR3uZCPaRasMUe31OUSNDM3s9NpLUDxq9KQjDX6w6d1et1IybGGM5H3k0ox7899FeTUkEI+I24BPAjzPzmKLsAGAZMA3YBPznzHy92LYIuAR4F/itzPxuUX48sBTYG1gJfD4zMyLGA3cAxwOvAfMyc1Mz2i5Jknpbo/O1vVhVOzTjJobzkTWSZvUILgVuppSslV0F/HVmXh8RVxXvr4yIGcB84GjgUGBVRByZme8CXwcWAo9QSgTPBe6nlDS+npmHR8R84AZgXpPaLkmSJHUcF51TK+3RjINk5veArUOK5wC3F69vB86rKL8rM9/OzOeBjcCJETEJmJiZqzMzKSWV51U51j3A2RERzWi7JEmSJPWbVs4R/FBmbgHIzC0RcUhRPplSj1/ZYFH2TvF6aHm5zgvFsXZExBvAgcCrlR8YEQsp9SgydaqTTkerVRPrJUmSJHWGdiwWU60nL0coH6nOzgWZS4AlAAMDA7ts7xWjWZq3njHmrZxYL0mSJKn9WpkIvhwRk4rewEnAj4vyQeCwiv2mAC8V5VOqlFfWGYyIccB+7DoUtS+MdsJvvZOFnVgvSZIk9a5WJoIrgAXA9cV/l1eU3xkRN1JaLOYI4NHMfDcitkfEycAa4ELgpiHHWg3MBR4s5hH2HR9ILEmSJKlRzXp8xLeBWcBBETEIXE0pAbw7Ii4BNgPnA2Tm0xFxN7Ae2AFcUawYCnA5P3t8xP3FD8CtwDcjYiOlnsD5zWi3JEmSJPWjpiSCmfnrw2w6e5j9rwOuq1K+FjimSvlbFImkJEmSJKkx7Vgspm/9wZ8/zfqXtjW8EIskSZIkNaIpzxFUfepduEWSJEmSmskewTF09SePbncTJEmSJMkeQUmSJEnqN/YISpIkqePduWYzy9e9uEv5nJmTu+rRWuu3bKvpecuuKaFWMxGURlDty7rbTjiSJPWC5ete3CU5Wr9lG0DXnJfrWSPCNSXUaiaC0jCqffl22wlHkqReMmPSRJZdesr772vpWeskF5w01WsIdQwTQWkY1b6su+2EI0mSJFXjYjGSJEmS1GdMBCVJkiSpz5gISpIkSVKfMRGUJEmSpD7jYjGSJHWQ4Z6VNpSPslEnqPXvtZJ/u1Jn6KoewYg4NyI2RMTGiLiq3e2RJKnZys9KG8n6LdvqvviWWqGWv9dK/u1KnaNregQjYk/gj4GPA4PAYxGxIjPXt7dlUm8Y7q6ud26lsTf0WWlD+SgbtcP6Ldt2+dsrP+B9pL/XSv7tSp2jm3oETwQ2ZuY/ZeZPgbuAOW1uk9Qzqt3V9c6tJAlKNwVnTJq4S/mMSROZM3NyG1okqVFd0yMITAZeqHg/CJxUuUNELAQWAkydag+GVK+hd3W9cyupWi9QLXWqJQ3qXhecNNXRIVKP6aZEMKqU5U5vMpcASwAGBgayyv6SpBrVmwB48d97RtvTYy+RJHW+bkoEB4HDKt5PAV5qU1skqaeN5iLei//eYy+QJPWubkoEHwOOiIjpwIvAfOCC9jZJknqTCYCkVhnNcONyPUcdSM3TNYlgZu6IiM8C3wX2BG7LzKfb3CyNIYepSZLU3RoZNeCoA6m5uiYRBMjMlcDKdrdDY89hap3PhwpLknbH0QZS5+iqRFD9yxNH5ys/fqLWXtjyoyr8/6p2qfXmhaMLJEm9yERQUtP4UGG1w2h6owHWPL8VgJOmHzDifo4ukCT1IhNBSVJXq7c3uuyk6Qc4PFmS1LdMBCVJXa+e3mhJkgR7tLsBkiRJkqSxZY+gJEmSutbQx0s55FuqjYmgJElSFxntA9nLdXtpFdyhCzm5IrVUOxNBSZI6QPnivtcu1BvVSNJTrt9L8Wx0BdteWwV36OOlXJFaqp2JoCRJbVZ5Yd5rF+qNaEYcei2ePldXUrOYCEqS1GZe3FdnXCS1Qq0jDXptRMFQJoKSJEmS+kI9IwR6bUTBUCaCkiRJkvqCIw1+xkRQktQRRrsoSK8P3ZEkqRUaeqB8RJwfEU9HxHsRMTBk26KI2BgRGyJidkX58RHxZLFtcUREUT4+IpYV5WsiYlpFnQUR8Vzxs6CRNkuSOs+cmZNHncz1+tAdSZJaodEewaeAXwO+UVkYETOA+cDRwKHAqog4MjPfBb4OLAQeAVYC5wL3A5cAr2fm4RExH7gBmBcRBwBXAwNAAo9HxIrMfL3BtkuSOoRDdSRJGlsNJYKZ+QxA0alXaQ5wV2a+DTwfERuBEyNiEzAxM1cX9e4AzqOUCM4Brinq3wPcXPQWzgYeyMytRZ0HKCWP326k7ZIkSWNhpGHPDm1Wv3NaQPu0ao7gZEo9fmWDRdk7xeuh5eU6LwBk5o6IeAM4sLK8Sp2dRMRCSr2NTJ3qnWVJktReuxu27NBm9bNG/vb9t9O43SaCEbEK+Pkqm76YmcuHq1alLEcoH22dnQszlwBLAAYGBqruI0mSNFYc9iwNz38f7bXbRDAzPzaK4w4Ch1W8nwK8VJRPqVJeWWcwIsYB+wFbi/JZQ+o8PIo2ST3vzjWbWb7uxVHVdYiFJKnfeR5VP2nV0NAVwJ0RcSOlxWKOAB7NzHcjYntEnAysAS4EbqqoswBYDcwFHszMjIjvAl+JiP2L/c4BFrWo3VJXW77uxVGfiBxiMbbqudjw4kKSxobnUfWThhLBiPhVSoncwcBfRMS6zJydmU9HxN3AemAHcEWxYijA5cBSYG9Ki8TcX5TfCnyzWFhmK6VVR8nMrRFxLfBYsd+XywvHSNrVjEkTWXbpKe1uhnajnosNLy4kaex4HlW/aHTV0PuA+4bZdh1wXZXytcAxVcrfAs4f5li3Abc10lZJ6jRebEiSpHZp1dBQSZIkacyN9nEE5boOxVe/MBGU6lTrCcaTiSRJY6vRYfQOxVc/MRGU6lDPycGTiSRJY8vHEUi1MxGU6uAJRpIkSb1gj3Y3QJIkSZI0tuwRlLpUtefQOS9RQ+ew+jchSZKqsUdQ6lLl59BVcl5if5szc/IuSZ9/E5IkqRp7BKUu5nPoVMk5rJIkqVYmgmqZkR6z4HA1SZIkqX1MBNUSuxuK5nC1+jn3S5IkSc1iIqiWcIhac1VLmk2mJUmSNFomglIXMLGWJElSM7lqqCRJkiT1mYYSwYj4w4h4NiKeiIj7IuKDFdsWRcTGiNgQEbMryo+PiCeLbYsjIory8RGxrChfExHTKuosiIjnip8FjbRZkiRJkvpdo0NDHwAWZeaOiLgBWARcGREzgPnA0cChwKqIODIz3wW+DiwEHgFWAucC9wOXAK9n5uERMR+4AZgXEQcAVwMDQAKPR8SKzHy9wbZLkiTVxAW7JPWahnoEM/OvMnNH8fYRYErxeg5wV2a+nZnPAxuBEyNiEjAxM1dnZgJ3AOdV1Lm9eH0PcHbRWzgbeCAztxbJ3wOUkkdJkqSWmzNz8i5Jnwt2Sep2zVws5mJgWfF6MqXEsGywKHuneD20vFznBYCih/EN4MDK8ip1dhIRCyn1NjJ1qgtrSJKkxrlgl6RetNtEMCJWAT9fZdMXM3N5sc8XgR3At8rVquyfI5SPts7OhZlLgCUAAwMDVfeRJEmSpH6320QwMz820vZi8ZZPAGcXwz2h1Gt3WMVuU4CXivIpVcor6wxGxDhgP2BrUT5rSJ2Hd9duSZJ62dA5a7Xs75w2SVJZQ0NDI+Jc4ErgP2XmTyo2rQDujIgbKS0WcwTwaGa+GxHbI+JkYA1wIXBTRZ0FwGpgLvBgZmZEfBf4SkTsX+x3DqVFadQkToCXpO4ymrlpzmmTJFVqdI7gzcB44IHiKRCPZOZlmfl0RNwNrKc0ZPSKYsVQgMuBpcDelFYLvb8ovxX4ZkRspNQTOB8gM7dGxLXAY8V+X87MrQ22W4VqFwVeLEhSZ3POmiSpUQ0lgpl5+AjbrgOuq1K+FjimSvlbwPnDHOs24LbRt1TD8WJCkiRJ6j8NPT5CkiRJktR9mvn4CEmSep7zqiVJvcBEUJKkGjmvWpLUK0wEJUmqkfOqJUm9wkRQkprszjWbWb7uxRH3cTihJElqJxeLkaQmW77uRdZv2TbiPg4nlCRJ7WSPoKS2Gbroxmjqd2qv2oxJE1l26SntboYkSVJVJoKS2qIZvWH2qkmSJI2OiaCktnDRDUmSpPZxjqAkSZIk9RkTQUmSJEnqMyaCkiRJktRnnCMoScMY7aqmnbyaqSRJEjTYIxgR10bEExGxLiL+KiIOrdi2KCI2RsSGiJhdUX58RDxZbFscEVGUj4+IZUX5moiYVlFnQUQ8V/wsaKTNklSLOTMnjzqZczVTSZLU6RrtEfzDzPxfABHxW8CXgMsiYgYwHzgaOBRYFRFHZua7wNeBhcAjwErgXOB+4BLg9cw8PCLmAzcA8yLiAOBqYABI4PGIWJGZrzfYdkkalquaSpKkXtZQj2Bmbqt4+3OUEjWAOcBdmfl2Zj4PbAROjIhJwMTMXJ2ZCdwBnFdR5/bi9T3A2UVv4WzggczcWiR/D1BKHiVJkiRJo9DwHMGIuA64EHgDOLMonkypx69ssCh7p3g9tLxc5wWAzNwREW8AB1aWV6kjqcVqnSfnvDhJkqTusdsewYhYFRFPVfmZA5CZX8zMw4BvAZ8tV6tyqByhfLR1hrZ1YUSsjYi1r7zyyki/lqQa1DNPznlxkiRJ3WO3PYKZ+bEaj3Un8BeU5vMNAodVbJsCvFSUT6lSTkWdwYgYB+wHbC3KZw2p8/AwbV0CLAEYGBiomixKqp3z5CRJknpTo6uGHlHx9lPAs8XrFcD8YiXQ6cARwKOZuQXYHhEnF/P/LgSWV9Qprwg6F3iwmEf4XeCciNg/IvYHzinKJEmSJEmj0Ogcwesj4iPAe8A/A5cBZObTEXE3sB7YAVxRrBgKcDmwFNib0mqh9xfltwLfjIiNlHoC5xfH2hoR1wKPFft9OTO3NthuSZIkSepbUep06z0DAwO5du3adjdDkiRJktoiIh7PzIFq2xoaGipJkiRJ6j4mgpIkSZLUZ3p2aGhEvEJp3qLqdxDwarsb0cWMX2OMX2OMX+OMYWOMX2OMX+OMYWOMX2M6LX7/PjMPrrahZxNBjV5ErB1uLLF2z/g1xvg1xvg1zhg2xvg1xvg1zhg2xvg1ppvi59BQSZIkSeozJoKSJEmS1GdMBFXNknY3oMsZv8YYv8YYv8YZw8YYv8YYv8YZw8YYv8Z0TfycIyhJkiRJfcYeQUmSJEnqMyaCXSwizo2IDRGxMSKuGrLtc8W2pyPifw9T//xi+3sRMTBk26LiuBsiYvYw9T9b7JMRcdCQbbMiYl1x/L9p9HdthQ6I37eK7U9FxG0RsVdRHhGxuKj/RET8x2b9zs3WqhhGxIER8VBEvBkRN4/w+dMjYk1EPBcRyyLiA0V5V8SwU+NXsf2EiHg3IuY2+ru2QqfGLyL2i4g/j4h/KI7/m836nZupA+JX9RwSEf+l+Hf7RET8MCJ+oRm/byt0agyLbX17Hq4jfl19Hm5h/D4eEY9HxJPFf88apv5w34FdET/o3BhWbG/teTgz/enCH2BP4B+BDwMfAP4BmFFsOxNYBYwv3h8yzDE+CnwEeBgYqCifURxvPDC9+Jw9q9Q/DpgGbAIOqij/ILAemDrS5xs/fhmI4ufbwOUV5fcX5ScDa9odrzbE8OeA04HLgJtHaMPdwPzi9S3dFMNOjl9F+x4EVgJz2x2vboof8AXghuL1wcBW4APtjlkHxm+4c8ipwP7F61/qxH+/XRDDD9Lf5+Fa49e15+EWx+844NDi9THAi8PU79pzcKfHsKJ9LT0P2yPYvU4ENmbmP2XmT4G7gDnFtsuB6zPzbYDM/HG1A2TmM5m5ocqmOcBdmfl2Zj4PbCw+b2j9v8/MTVXqXwB8JzM3j/T5bdYJ8VuZBeBRYEpF/TuKTY8AH4yISaP/VVumZTHMzH/NzL8F3hruwyMigLOAe4qi24HzitfdEMNOjh/A54B7gU789wudHb8E9i322YdSIrijvl+v5doav2K/queQzPxhZr5evH2En303dpqOjSF9fh6uI37dfB5uZfz+PjNfKt4+DUyIiPGV+/TAORg6O4YwBudhE8HuNRl4oeL9YFEGcCRwRtHV/DcRcUITj12LI4H9I+Lhojv8wjo/fyx0TPyKoSi/AfzlaOq3UStjWIsDgX/JzPIFduXnd0MMOzZ+ETEZ+FVKdyc7VcfGD7iZ0l3il4Angc9n5nstaEMj2h2/Wl1CqWehE3VyDPv9PFyXLj0Pj1X8Pg38fTkhqtDt52Do4BiO1Xl4XCsPrpaKKmXlJWDHAftT6o4/Abg7Ij5c3PFq9Ni1GAccD5wN7A2sjohHMvNHdRyj1Topfl8DvpeZ3x9l/XZpZQwb/fxuiGEnx++PgCsz893SDcuO1Mnxmw2so3Sn9z8AD0TE9zNzWxM/v1Htjt9uRcSZlBLB08fyc+vQyTHs9/NwvbrxPNzy+EXE0cANwDl1fn43xA86O4Z/xBich+0R7F6DwGEV76dQuvtc3vadokv+UeA94KCI+D9Rmji+soFj19q2vyyGZrwKfA/4hTrqj4WOiF9EXE1pDtHvjqZ+m7UyhrV4ldJwk/INraGf3+kx7OT4DQB3RcQmYC7wtYg4rwmf2UydHL/frPj8jcDzwFFN+Mxmanf8RhQRxwJ/AszJzNda/Xmj1Mkx7PfzcM26+Dzc0vhFxBTgPuDCzPzHKrt0+zkYOjuGY3IeNhHsXo8BR0RptaEPAPOBFcW2P6N0J5qIOJLSBNhXM/M3M3NmZv7ybo69ApgfEeMjYjpwBKWx87VaTqk7fVxE/DvgJOCZOuqPhbbHLyL+K6Weg18fMmxsBXBhlJwMvJGZW0b9m7ZOK2O4W8VduYcofUECLKD0twfdEcOOjV9mTs/MaZk5jdLchf+WmX/W6Gc2WcfGD9hMqSeGiPgQpYUE/qnRz2yytsZvJBExFfgO8Bsd1oM1VMfGEM/DNeny83DL4hcRHwT+AliUmT+otk8PnIOhg2M4Zufh7IBVe/wZ3Q+lVZl+RGnFoy9WlH8A+FPgKeDvgLOGqf+rlO54vA28DHy3YtsXi+NuAH5pmPq/VdTfQekOxp9UbPsflFYsewr47XbHqkPjt6PYZ13x86WiPIA/LrY9ScUqVJ320+IYbqK0yMabxT4zqtT/MKUkeyPwf/nZ6l5dEcNOjd+QfZbSgauGdnL8gEOBvyr+9p4CPtPuWHVo/KqeQyj1BL7Oz74b17Y7Vt0Ww2Jbv5+Ha4lfV5+HWxU/4H8C/1oRl3VUWTWTLj8Hd3IMh+yzlBadh6P4AEmSJElSn3BoqCRJkiT1GRNBSZIkSeozJoKSJEmS1GdMBCVJkiSpz5gISpIkSVKfMRGUJEmSpD5jIihJkiRJfcZEUJIkSZL6zP8H5noEaaFWQYQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure() \n", + "plt.subplot(2,1,1)\n", + "plt.plot(df['SimulatedTemp'], label = 'Simulated Temperature')\n", + "plt.plot(df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", + "plt.title('Temperatures')\n", + "plt.legend()\n", + "plt.subplot(2,1,2)\n", + "plt.plot(df['SimulatedHeat'], drawstyle = 'steps', label = 'Heat Input')\n", + "plt.title('Heat Input')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Export the resampled data-set for further use" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "df_simulation.to_pickle(f\"../Data/CARNOT_output/{exp_id}_prbs_simulation_df.pkl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate_carnot(df_wdb, df, power_signal):\n", + " \n", + " power = np.array([df_wdb['time'], power_signal]).T\n", + " runtime = df_wdb['time'].iloc[-1]\n", + " \n", + " eng.workspace['power'] = matlab.double(power.tolist())\n", + " eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)\n", + " eng.workspace['result'] = eng.sim('polydome')\n", + " df_simulation = carnot_to_series(eng, df.index[0])\n", + " \n", + " return df_simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "## Try an iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "train_exps = ['Exp1', 'Exp3', 'Exp5', 'Exp6']\n", + "test_exps = ['Exp2', 'Exp4', 'Exp7']" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "dfs_train = []\n", + "dfs_test = []\n", + "\n", + "for exp in train_exps:\n", + " df_wdb, df = load_weather_data(exp)\n", + "\n", + " len_signal = len(df_wdb)\n", + " rnd_power = get_random_signal(\n", + " len_signal,\n", + " a_range = (- COP_cooling * Pel_max, COP_heating * Pel_max),\n", + " signal_type = 'analog'\n", + " )\n", + "\n", + " df_sim = simulate_carnot(df_wdb, df, rnd_power)\n", + " df.loc[:, 'SimulatedHeat'] = rnd_power\n", + " df.loc[:, 'SimulatedTemp'] = df_sim\n", + " \n", + " dfs_train.append(df)\n", + "\n", + "for exp in test_exps:\n", + " df_wdb, df = load_weather_data(exp)\n", + "\n", + " len_signal = len(df_wdb)\n", + " rnd_power = get_random_signal(\n", + " len_signal,\n", + " a_range = (- COP_cooling * Pel_max, COP_heating * Pel_max),\n", + " signal_type = 'analog'\n", + " )\n", + "\n", + " df_sim = simulate_carnot(df_wdb, df, rnd_power)\n", + " df.loc[:, 'SimulatedHeat'] = rnd_power\n", + " df.loc[:, 'SimulatedTemp'] = df_sim\n", + " \n", + " dfs_test.append(df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Trim and scale the input data" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OutsideTempSolRadSimulatedHeatSimulatedTemp
timestamp
2017-07-13 20:00:00+02:0024.091.71493324245.83536524.154504
2017-07-13 20:05:00+02:0024.0121.53870024245.83536525.009821
2017-07-13 20:10:00+02:0024.0101.48161724245.83536525.306365
2017-07-13 20:15:00+02:0024.0163.71015024245.83536525.533125
2017-07-13 20:20:00+02:0024.090.03956724245.83536525.737816
\n", + "
" + ], + "text/plain": [ + " OutsideTemp SolRad SimulatedHeat \\\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 24.0 91.714933 24245.835365 \n", + "2017-07-13 20:05:00+02:00 24.0 121.538700 24245.835365 \n", + "2017-07-13 20:10:00+02:00 24.0 101.481617 24245.835365 \n", + "2017-07-13 20:15:00+02:00 24.0 163.710150 24245.835365 \n", + "2017-07-13 20:20:00+02:00 24.0 90.039567 24245.835365 \n", + "\n", + " SimulatedTemp \n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 24.154504 \n", + "2017-07-13 20:05:00+02:00 25.009821 \n", + "2017-07-13 20:10:00+02:00 25.306365 \n", + "2017-07-13 20:15:00+02:00 25.533125 \n", + "2017-07-13 20:20:00+02:00 25.737816 " + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.drop(columns = ['Power', 'Setpoint', 'SupplyTemp', 'InsideTemp'], inplace = True)\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import MaxAbsScaler" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "w_scaler = MaxAbsScaler()\n", + "u_scaler = MaxAbsScaler()\n", + "y_scaler = MaxAbsScaler()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "df_train = pd.concat(dfs_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "np_w = df_train[['OutsideTemp', 'SolRad']]\n", + "np_u = df_train['SimulatedHeat'].to_numpy().reshape(-1, 1)\n", + "np_y = df_train['SimulatedTemp'].to_numpy().reshape(-1, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "np_w_sc = w_scaler.fit(np_w)\n", + "np_u_sc = u_scaler.fit(np_u)\n", + "np_y_sc = y_scaler.fit(np_y)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "def get_scaled_df(df, w_scaler, u_scaler, y_scaler):\n", + " np_w = df[['OutsideTemp', 'SolRad']]\n", + " np_u = df['SimulatedHeat'].to_numpy().reshape(-1, 1)\n", + " np_y = df['SimulatedTemp'].to_numpy().reshape(-1, 1)\n", + " \n", + " np_w_sc = w_scaler.transform(np_w)\n", + " np_u_sc = u_scaler.transform(np_u)\n", + " np_y_sc = y_scaler.transform(np_y)\n", + " \n", + " df_sc = pd.DataFrame(np.hstack([np_w_sc, np_y_sc, np_u_sc]), columns = ['OutsideTemp', 'SolRad', 'SimulatedTemp', 'SimulatedHeat'], index = df.index)\n", + "\n", + " return df_sc" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "dfs_train_sc = []\n", + "dfs_test_sc = []\n", + "for df in dfs_train:\n", + " df_sc = get_scaled_df(df, w_scaler, u_scaler, y_scaler)\n", + " dfs_train_sc.append(df_sc)\n", + " \n", + "for df in dfs_test:\n", + " df_sc = get_scaled_df(df, w_scaler, u_scaler, y_scaler)\n", + " dfs_test_sc.append(df_sc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gaussian Process Regression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Compile training set" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "def data_to_gpr(df, lu = 2, ly = 3, dyn_in = 'SimulatedHeat', dyn_out = 'SimulatedTemp'):\n", + " \n", + " df_gpr = df.copy()\n", + " df_gpr.rename(columns = {dyn_in: 'u', dyn_out: 'y'}, inplace = True)\n", + " \n", + " # Add the regressive inputs/outputs\n", + " for idx in range(1, lu + 1):\n", + " df_gpr.loc[:, f\"u_{idx}\"] = df_gpr['u'].shift(idx)\n", + "\n", + " for idx in range(1, ly + 1):\n", + " df_gpr.loc[:, f\"y_{idx}\"] = df_gpr['y'].shift(idx)\n", + "\n", + " df_gpr.dropna(inplace = True)\n", + " \n", + " return df_gpr" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OutsideTempSolRadyuu_1u_2y_1y_2y_3
timestamp
2017-06-01 20:15:00+02:000.7333330.0701930.655673-0.306488-0.306488-0.3064880.6587850.6624360.679143
2017-06-01 20:20:00+02:000.7333330.0722660.652978-0.306488-0.306488-0.3064880.6556730.6587850.662436
2017-06-01 20:25:00+02:000.7333330.0617550.650362-0.306488-0.306488-0.3064880.6529780.6556730.658785
2017-06-01 20:30:00+02:000.7333330.0443500.647877-0.306488-0.306488-0.3064880.6503620.6529780.655673
2017-06-01 20:35:00+02:000.7333330.0332650.645098-0.306488-0.306488-0.3064880.6478770.6503620.652978
..............................
2017-07-10 05:35:00+02:000.6000000.0000000.6186750.2758380.2758380.2758380.5965560.5952800.594760
2017-07-10 05:40:00+02:000.6000000.0000000.6453920.9812680.2758380.2758380.6186750.5965560.595280
2017-07-10 05:45:00+02:000.6000000.0000000.6526930.9812680.9812680.2758380.6453920.6186750.596556
2017-07-10 05:50:00+02:000.6000000.0000000.6526930.9812680.9812680.9812680.6526930.6453920.618675
2017-07-10 05:55:00+02:000.6000000.0000000.6613590.9812680.9812680.9812680.6526930.6526930.645392
\n", + "

2616 rows × 9 columns

\n", + "
" + ], + "text/plain": [ + " OutsideTemp SolRad y u \\\n", + "timestamp \n", + "2017-06-01 20:15:00+02:00 0.733333 0.070193 0.655673 -0.306488 \n", + "2017-06-01 20:20:00+02:00 0.733333 0.072266 0.652978 -0.306488 \n", + "2017-06-01 20:25:00+02:00 0.733333 0.061755 0.650362 -0.306488 \n", + "2017-06-01 20:30:00+02:00 0.733333 0.044350 0.647877 -0.306488 \n", + "2017-06-01 20:35:00+02:00 0.733333 0.033265 0.645098 -0.306488 \n", + "... ... ... ... ... \n", + "2017-07-10 05:35:00+02:00 0.600000 0.000000 0.618675 0.275838 \n", + "2017-07-10 05:40:00+02:00 0.600000 0.000000 0.645392 0.981268 \n", + "2017-07-10 05:45:00+02:00 0.600000 0.000000 0.652693 0.981268 \n", + "2017-07-10 05:50:00+02:00 0.600000 0.000000 0.652693 0.981268 \n", + "2017-07-10 05:55:00+02:00 0.600000 0.000000 0.661359 0.981268 \n", + "\n", + " u_1 u_2 y_1 y_2 y_3 \n", + "timestamp \n", + "2017-06-01 20:15:00+02:00 -0.306488 -0.306488 0.658785 0.662436 0.679143 \n", + "2017-06-01 20:20:00+02:00 -0.306488 -0.306488 0.655673 0.658785 0.662436 \n", + "2017-06-01 20:25:00+02:00 -0.306488 -0.306488 0.652978 0.655673 0.658785 \n", + "2017-06-01 20:30:00+02:00 -0.306488 -0.306488 0.650362 0.652978 0.655673 \n", + "2017-06-01 20:35:00+02:00 -0.306488 -0.306488 0.647877 0.650362 0.652978 \n", + "... ... ... ... ... ... \n", + "2017-07-10 05:35:00+02:00 0.275838 0.275838 0.596556 0.595280 0.594760 \n", + "2017-07-10 05:40:00+02:00 0.275838 0.275838 0.618675 0.596556 0.595280 \n", + "2017-07-10 05:45:00+02:00 0.981268 0.275838 0.645392 0.618675 0.596556 \n", + "2017-07-10 05:50:00+02:00 0.981268 0.981268 0.652693 0.645392 0.618675 \n", + "2017-07-10 05:55:00+02:00 0.981268 0.981268 0.652693 0.652693 0.645392 \n", + "\n", + "[2616 rows x 9 columns]" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dfs_gpr_train = []\n", + "for df_sc in dfs_train_sc:\n", + " dfs_gpr_train.append(data_to_gpr(df_sc))\n", + "df_gpr_train = pd.concat(dfs_gpr_train)\n", + "df_gpr_train" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "df_input_train = df_gpr_train.drop(columns = ['u', 'y'])\n", + "df_output_train = df_gpr_train['y']" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OutsideTempSolRadu_1u_2y_1y_2y_3
timestamp
2017-06-01 20:15:00+02:000.7333330.070193-0.306488-0.3064880.6587850.6624360.679143
2017-06-01 20:20:00+02:000.7333330.072266-0.306488-0.3064880.6556730.6587850.662436
2017-06-01 20:25:00+02:000.7333330.061755-0.306488-0.3064880.6529780.6556730.658785
2017-06-01 20:30:00+02:000.7333330.044350-0.306488-0.3064880.6503620.6529780.655673
2017-06-01 20:35:00+02:000.7333330.033265-0.306488-0.3064880.6478770.6503620.652978
\n", + "
" + ], + "text/plain": [ + " OutsideTemp SolRad u_1 u_2 \\\n", + "timestamp \n", + "2017-06-01 20:15:00+02:00 0.733333 0.070193 -0.306488 -0.306488 \n", + "2017-06-01 20:20:00+02:00 0.733333 0.072266 -0.306488 -0.306488 \n", + "2017-06-01 20:25:00+02:00 0.733333 0.061755 -0.306488 -0.306488 \n", + "2017-06-01 20:30:00+02:00 0.733333 0.044350 -0.306488 -0.306488 \n", + "2017-06-01 20:35:00+02:00 0.733333 0.033265 -0.306488 -0.306488 \n", + "\n", + " y_1 y_2 y_3 \n", + "timestamp \n", + "2017-06-01 20:15:00+02:00 0.658785 0.662436 0.679143 \n", + "2017-06-01 20:20:00+02:00 0.655673 0.658785 0.662436 \n", + "2017-06-01 20:25:00+02:00 0.652978 0.655673 0.658785 \n", + "2017-06-01 20:30:00+02:00 0.650362 0.652978 0.655673 \n", + "2017-06-01 20:35:00+02:00 0.647877 0.650362 0.652978 " + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_input_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "timestamp\n", + "2017-06-01 20:15:00+02:00 0.655673\n", + "2017-06-01 20:20:00+02:00 0.652978\n", + "2017-06-01 20:25:00+02:00 0.650362\n", + "2017-06-01 20:30:00+02:00 0.647877\n", + "2017-06-01 20:35:00+02:00 0.645098\n", + "Name: y, dtype: float64" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_output_train.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "np_input_train = df_input_train.to_numpy()\n", + "np_output_train = df_output_train.to_numpy().reshape(-1, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define model and kernel" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
name class transform prior trainable shape dtype value
Sum.kernels[0].kernels[0].kernels[0].variance ParameterSoftplus True () float641.0
Sum.kernels[0].kernels[0].kernels[0].lengthscalesParameterSoftplus True (7,) float64[1., 1., 1....
Sum.kernels[0].kernels[0].kernels[1].variance ParameterSoftplus True () float641.0
Sum.kernels[0].kernels[1].variance ParameterSoftplus True () float641.0
Sum.kernels[0].kernels[1].lengthscales ParameterSoftplus True () float641.0
Sum.kernels[0].kernels[1].alpha ParameterSoftplus True () float641.0
Sum.kernels[1].variance ParameterSoftplus True () float641.0
Sum.kernels[1].lengthscales ParameterSoftplus True (7,) float64[1., 1., 1....
Sum.kernels[2].variance ParameterSoftplus True () float641.0
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "k = (gpflow.kernels.SquaredExponential(lengthscales=([1] * np_input_train.shape[1])) + gpflow.kernels.Constant()) * gpflow.kernels.RationalQuadratic() + gpflow.kernels.SquaredExponential(lengthscales=([1] * np_input_train.shape[1])) + gpflow.kernels.Constant()\n", + "print_summary(k)" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].kernels[0].kernels[0].variance ParameterSoftplus True () float641.0
GPR.kernel.kernels[0].kernels[0].kernels[0].lengthscalesParameterSoftplus True (7,) float64[1., 1., 1....
GPR.kernel.kernels[0].kernels[0].kernels[1].variance ParameterSoftplus True () float641.0
GPR.kernel.kernels[0].kernels[1].variance ParameterSoftplus True () float641.0
GPR.kernel.kernels[0].kernels[1].lengthscales ParameterSoftplus True () float641.0
GPR.kernel.kernels[0].kernels[1].alpha ParameterSoftplus True () float641.0
GPR.kernel.kernels[1].variance ParameterSoftplus True () float641.0
GPR.kernel.kernels[1].lengthscales ParameterSoftplus True (7,) float64[1., 1., 1....
GPR.kernel.kernels[2].variance ParameterSoftplus True () float641.0
GPR.likelihood.variance ParameterSoftplus + Shift True () float641.0
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m = gpflow.models.GPR(\n", + " data = (np_input_train, np_output_train), \n", + " kernel = k, \n", + " mean_function = None\n", + " )\n", + "print_summary(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train model" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "opt = gpflow.optimizers.Scipy()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "from datetime import datetime" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finished fitting in 0:03:46.245137\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].kernels[0].kernels[0].variance ParameterSoftplus True () float640.0
GPR.kernel.kernels[0].kernels[0].kernels[0].lengthscalesParameterSoftplus True (7,) float64[309.67385789, 480.52101642, 609.04074522...
GPR.kernel.kernels[0].kernels[0].kernels[1].variance ParameterSoftplus True () float645.2754077941994154e-48
GPR.kernel.kernels[0].kernels[1].variance ParameterSoftplus True () float640.0
GPR.kernel.kernels[0].kernels[1].lengthscales ParameterSoftplus True () float641852.9511949822117
GPR.kernel.kernels[0].kernels[1].alpha ParameterSoftplus True () float64392.40951113657627
GPR.kernel.kernels[1].variance ParameterSoftplus True () float641617.2173270482824
GPR.kernel.kernels[1].lengthscales ParameterSoftplus True (7,) float64[1216.17281517, 1102.18486422, 768.25441948...
GPR.kernel.kernels[2].variance ParameterSoftplus True () float642.4218461287815772e-26
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.00010706922583533073
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "start_time = datetime.now()\n", + "opt.minimize(m.training_loss, m.trainable_variables)\n", + "print(f\"Finished fitting in {datetime.now() - start_time}\")\n", + "print_summary(m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate performance on training data" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "nb_plts = len(dfs_gpr_train)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAARuCAYAAABJOlfRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iUVfbA8e+dPuk9BAKEJr13EBCwi7337tr1p2tb19XVddVddy2ru5Z1rdgR7IqNjvTeW6jpfZJMprz398c7xAABEphkApzP8/CYect9zyRjMnPec89VWmuEEEIIIYQQQgghxLHJEukAhBBCCCGEEEIIIUTkSHJICCGEEEIIIYQQ4hgmySEhhBBCCCGEEEKIY5gkh4QQQgghhBBCCCGOYZIcEkIIIYQQQgghhDiGSXJICCGEEEIIIYQQ4hgmySEhhBCihVJKZSmltFLK1oBjr1FKzWqmuEYqpTYopTxKqXOa45riN0qpdqHvvTWcx4YhrmZ7DQohhBAivCQ5JIQQQoSBUipbKeVTSqXstX1pKMGTFaHQ6iaZPKF/2UqpBw9jyMeBl7TWMVrrKWEK85gQjgSK1npb6HsfDOexzUkp9ZhS6r0wjneNUipY5zW++1/rMIz9mlJqnVLKUEpdE4ZwhRBCiBZHkkNCCCFE+GwBLt39QCnVG3BHLpx9JGitYzBj/JNS6tTGnFyngqk9sOpQAmhIFdSxrjmqfI5Sc0OJsLr/doVh3GXArcDiMIwlhBBCtEiSHBJCCCHC513gqjqPrwbeqXuAUipeKfWOUqpAKbVVKfVHpZQltM+qlHpWKVWolNoMnFHPuW8opXKUUjuVUn85lESC1nouZnKnV2jc65RSa5RSJUqp75VS7etcUyulblNKbQA2KKU2AR2BL0OVGU6lVGul1BdKqWKl1Eal1I11zn9MKfWpUuo9pVQ5cI1Saloo9jmhMb5USiUrpSYqpcqVUgvqVloppV5QSm0P7VuklBq11/gfh76nFUqpVUqpQXX2t1VKfRb6fhcppV6qs2+/z3tvSqmzQmOXhuLvXmdftlLq90qp5UqpMqXUR0opVz1jdAdeAYaHnndpaPtbSqn/KKW+UUpVAmOVUmcopZaEnvN2pdRjdcbZY7phKJ4nlFKzQ9+DqSpUwdaYY0P7rwq9LouUUo+EntuJ+/meJId+7uVKqflAp7321/tzU2ZS8g/AxaHvw7LQ9mtDP48KpdRmpdTv9vfzaAylVKfQa3NA6HFrZf4/dkKd78lTSqn5oZ/f50qppN3na61f1lr/BHjDEY8QQgjREklySAghhAifX4E4pVR3ZSZtLgb2njrzLyAeM8EyBjOZdG1o343ABKA/MAi4YK9z3wYCQOfQMScDNzQmQGUaCfQEliizZ9AfgPOAVGAm8MFep50DDAV6aK07AduAM0OVGTWh43cArUMx/1UpNb7O+WcDnwIJwMTQtkuAK4E2mEmFucCbQBKwBni0zvkLgH6hfe8Dn+yVfDkL+DA0/hfAS6HnagW+ArYCWaFrfRja15Dnvft7dlxo392hY7/BTI456hx2EXAq0AHoA1yz9zha6zXAzfxW4ZJQZ/dlwJNALDALqMR8bSRgJglvUQfu73QZ5usoDXAAv2/ssUqpHsC/gcuBDMzXaZsDjPMyZsIkA7gu9K+uen9uWuvvgL8CH4W+D31Dx+djvv7jQvE9tzuhE4qvVCl1/AHiqZfWehPwADBRKRWF+Tp7S2s9rc5hV4Xib435/9iLjb2OEEIIcSST5JAQQggRXrurh04C1gI7d++okzB6SGtdobXOBv6BmSQBM8HwvNZ6u9a6GHiqzrnpwGnA3VrrSq11PvAcZpKloQqBYuC/wIOhaojfAU9prddorQOYH9r77VVF85TWulhrXb33gEqptsDxwANaa6/Wemlo/CvrHDZXaz1Fa23UGeNNrfUmrXUZ8C2wSWv9YyiGTzCTXwBord/TWhdprQNa638ATqBrnfFnaa2/CfXVeRfYnWwYgvlh/77Q98yrtd7d76chz3u3i4GvtdY/aK39wLOY0wVH1DnmRa31rtDP7UvMpEhjfK61nh36Hnm11tO01itCj5djJqfGHOD8N7XW60Pf348Pcv39HXsB8KXWepbW2gf8CdD1DRB6LZ8P/Cn0vV2Jmbys1YCfG3sd/3XoNaG11tOBqcCoOvsT6vz86jMslEDa/W9TnXNfBzYA8zCTWQ/vde67WuuVWutK4BHgIiXT+4QQQhxDJDkkhBBChNe7mJUZ17DXlDIgBbNSY2udbVv5rTqjNbB9r327tQfsQM7uD7/Aq5jVHw2VorVO1Fp311rvroxoD7xQZ8xiQLFnxch29q81UKy1rtjPc9rf+Xl1vq6u53HM7gdKqXtD043KQjHGY34vd8ut83UV4ApNo2oLbA0lf/bWkOdd9znW/iy01kboOdU9du8YYmicPb5HSqmhSqlflDkdrgyz4iil/lMbff39HbvH609rXQUU7WeMVMDG/l+vDfm5sdfxpymlfg1NASsFTj/Q8fX4NZRA2v2v0177X8ecSvmvUMVbXXs/D3sjry2EEEIc0SQ5JIQQQoSR1norZmPq04HP9tpdCPgxExO7teO36qIczIRG3X27bQdqMBM8uz/8xmmtex5myNuB3+31odqttZ5T92kd4PxdQJJSKnavuHfWeXyg8w8o1KfmAcyqqsTQVKwyzETOwWwH2qn6m2A35Hnvtos6PzOllML8Oe2s59iD2d/3Yu/t72NOkWurtY7H7FXUkOd8OHKAzN0PlFJuIHk/xxZgTr+q9/XagJ/bHs9XKeUEJmFWZaWHjv+GMD1npVQM8DzwBvBY3Z5CIXs/Dz/m/69CCCHEMUGSQ0IIIUT4XQ+MC01RqRWa9vQx8KRSKjY0hekefutL9DFwp1IqUymVCDxY59wczGk2/1BKxSmlLKFGuweaatQQrwAPKaV6Qm3T6wsberLWejswB3hKKeVSSvXBfP4TD3xmg8ViJiEKAJtS6k+YPWkaYj5mwuNppVR0KL6RoX2Ned4fA2copcYrpezAvZiJuvoSSQeTB2Tu1a+oPrGYFVlepdQQzGq0pvYpcKZSakQovj+zn+RM6LX8GWaiJSrUr+jqOocc7OeWB2SpUDN2zIo6Z+j4gFLqNMyeWuHyArBIa30D8DXmz7+uK5RSPUI9iR4HPg09R5RSjlCPKwXYQ68jeQ8thBDiqCJ/2IQQQogwC/VNWbif3XdgNhvejNl4+H3gf6F9rwPfYy6dvZh9K4+uwvwQvRoowfwwn3GYsU4GngE+VOZqYisxexs1xqWYDZ93AZOBR7XWPxxOXHV8j9mTaD3mdB8vB57mViv04f5MzAbe2zCbZl8c2tfg5621XgdcgdlMvDA05pmhvjyN9TPmSnG5SqkDVabcCjyulKrA7P3z8SFcq1G01qswX58fYibVKjCbRO89BWu32zGnpOUCb2E2et7tYD+3T0L/LVJKLQ5NS7wT83mWYCbDvqh7MWWubDaK/du9Clzdf4OVUmdjNgu/OXTcPcAApdTldc59N/QccgFXKJbdpmJOdRwBvBb6evQB4hBCCCGOOErrQ670FkIIIYQQR6nQVKxSoIvWekuEw2kySqlpwHta6/9GOhYhhBAiUqRySAghhBBCAKCUOjM0TSwas//PCiA7slEJIYQQoqlJckgIIYQQQux2Nub0wF1AF+ASLWXmQgghxFFPppUJIYQQQgghhBBCHMOkckgIIYQQQgghhBDiGCbJISGEEEIIIYQQQohjmC1cAymlXMAMwBka91Ot9aNKqSTgI8wlbrOBi7TWJQcaKyUlRWdlZYUrNCGEEEIIIYQQQohj3qJFiwq11ql7bw9bzyGllAKitdYepZQdmAXcBZwHFGutn1ZKPQgkaq0fONBYgwYN0gsXLgxLXEIIIYQQQgghhBAClFKLtNaD9t4etmll2uQJPbSH/mnMVS/eDm1/GzgnXNcUQgghhBBCCCGEEIcnrD2HlFJWpdRSIB/4QWs9D0jXWucAhP6bFs5rCiGEEEIIIYQQQohDF9bkkNY6qLXuB2QCQ5RSvRp6rlLqJqXUQqXUwoKCgnCGJYQQQgghhBBCCCH2I2wNqevSWpcqpaYBpwJ5SqkMrXWOUioDs6qovnNeA14Ds+dQU8QlhBBCCCGEEEI0lN/vZ8eOHXi93kiHIkSjuFwuMjMzsdvtDTo+nKuVpQL+UGLIDZwIPAN8AVwNPB367+fhuqYQQgghhBBCCNFUduzYQWxsLFlZWZhrMAnR8mmtKSoqYseOHXTo0KFB54SzcigDeFspZcWcrvax1vorpdRc4GOl1PXANuDCMF5TCCGEEEIIIYRoEl6vVxJD4oijlCI5OZnGtOwJW3JIa70c6F/P9iJgfLiuI4QQQgghhBBCNBdJDIkjUWNft2FtSC2EEEIIcTgKKmrIKauOdBhCCCFEi6GU4sorr6x9HAgESE1NZcKECRGM6uBiYmIOesxjjz3Gs88+e8BjpkyZwurVq8MVltgPSQ4JIYQQokUo9/q56t/f89nrf8H7wdWw4tNIhySEEEJEXHR0NCtXrqS62rx58sMPP9CmTZuIxBIIBJr9mpIcah6SHBJCCCFExGmteXjySv7geYbbPC/hWjcFln8U6bCEEEKIFuG0007j66+/BuCDDz7g0ksvrd1XWVnJddddx+DBg+nfvz+ff26uAZWdnc2oUaMYMGAAAwYMYM6cOQDk5OQwevRo+vXrR69evZg5cyawZ6XPp59+yjXXXAPANddcwz333MPYsWN54IEH2LRpE6eeeioDBw5k1KhRrF27FoAtW7YwfPhwBg8ezCOPPLLf5/Lkk0/StWtXTjzxRNatW1e7/fXXX2fw4MH07duX888/n6qqKubMmcMXX3zBfffdR79+/di0aVO9x4nD1yRL2QshhBBCNMbkJTtZsGwF/3Kt5MXAOdyalYe1xoN0eRBCCNFS/PnLVazeVR7WMXu0juPRM3se9LhLLrmExx9/nAkTJrB8+XKuu+662qTOk08+ybhx4/jf//5HaWkpQ4YM4cQTTyQtLY0ffvgBl8vFhg0buPTSS1m4cCHvv/8+p5xyCg8//DDBYLBByZX169fz448/YrVaGT9+PK+88gpdunRh3rx53Hrrrfz888/cdddd3HLLLVx11VW8/PLL9Y6zaNEiPvzwQ5YsWUIgEGDAgAEMHDgQgPPOO48bb7wRgD/+8Y+88cYb3HHHHZx11llMmDCBCy64AICEhIR6jxOHR5JDQgghhIgof9DgH1PXc1PyMqiEScHRXKO+ItZfFOnQhBBCiBahT58+ZGdn88EHH3D66afvsW/q1Kl88cUXtb17vF4v27Zto3Xr1tx+++0sXboUq9XK+vXrARg8eDDXXXcdfr+fc845h379+h30+hdeeCFWqxWPx8OcOXO48MLfFiGvqakBYPbs2UyaNAmAK6+8kgceeGCfcWbOnMm5555LVFQUAGeddVbtvpUrV/LHP/6R0tJSPB4Pp5xySr2xNPQ40TiSHBJCCCFERH2+dBc7S6s5v9VcKlP6sHVHKzzaRayvMtKhCSGEELUaUuHTlM466yx+//vfM23aNIqKfruBorVm0qRJdO3adY/jH3vsMdLT01m2bBmGYeByuQAYPXo0M2bM4Ouvv+bKK6/kvvvu46qrrtpjdSuv17vHWNHR0QAYhkFCQgJLly6tN8aGrJC1v2OuueYapkyZQt++fXnrrbeYNm3aYR0nGkd6DgkhhBAiYgxD88r0TYxLrSC+dBXWPmbJeFnQDj7pISCEEELsdt111/GnP/2J3r1777H9lFNO4V//+hdaawCWLFkCQFlZGRkZGVgsFt59912CwSAAW7duJS0tjRtvvJHrr7+exYsXA5Cens6aNWswDIPJkyfXG0NcXBwdOnTgk08+AczE1LJlywAYOXIkH374IQATJ06s9/zRo0czefJkqqurqaio4Msvv6zdV1FRQUZGBn6/f4/zY2NjqaioOOhx4vBIckgIIYQQETN1dS4b8z080GohGoWr34UkRtkp8dvB54l0eEIIIUSLkZmZyV133bXP9kceeQS/30+fPn3o1atXbTPoW2+9lbfffpthw4axfv362uqfadOm0a9fP/r378+kSZNqx3z66aeZMGEC48aNIyMjY79xTJw4kTfeeIO+ffvSs2fP2gbYL7zwAi+//DKDBw+mrKys3nMHDBjAxRdfTL9+/Tj//PMZNWpU7b4nnniCoUOHctJJJ9GtW7fa7Zdccgl///vf6d+/P5s2bdrvceLwqN3ZxZZk0KBBeuHChZEOQwghhBBNyOsPcvJzM+jFBl72PoTR7UysF73F2S/N4rqa9zjL8zHqT0XQgBJ1IYQQoimsWbOG7t27RzoMIQ5Jfa9fpdQirfWgvY+VyiEhhBBCRMS/p22iuLiQZ9WLGNGtsJ75HACZSVHkea0oHYRATYSjFEIIIYQ4+klySAghhBDNLruwklemb+K1tEm4q3ZivfANcCcC0C4pilyv1TxQmlILIYQQQjQ5SQ4JIYQQotk9/e1ajresZET5t+jhd0C7YbX72iVFUWE4zQfSd0gIIYQQosnJUvZCCCGEaFaLthYzbdVW5sa/SdDdAevYh/bY3y4pipnaXG5XKoeEEEIIIZqeJIeEEEII0Wy01jz1zVr+4J5CYs1OuOQrsLv3OKZtYhRVSHJICCGEEKK5yLQyIYQQQjSbn9fmU71tMVfoLzH6Xw0dRu1zTEaCi2oVShj5JTkkhBBCCNHUJDkkhBBCiKZXWUTwhf5Ef3Yl/3K9go5OxXLy4/UeardaiImNNR9I5ZAQQohjXF5eHpdddhkdO3Zk4MCBDB8+nMmTJzf5dRcuXMidd94ZlrFOOOEEunbtSt++fRk5ciTr1q0Ly7jhFM4Y33rrLW6//XYAXnnlFd555539Hpudnc37779f+zic3/fGkOSQEEIIIZpe/mqsJZvp6VtOR70dyxnPgjthv4c73XHmF5IcEkIIcQzTWnPOOecwevRoNm/ezKJFi/jwww/ZsWNHk1970KBBvPjii2Ebb+LEiSxbtoyrr76a++67b5/9wWAwbNc6VE0R480338xVV1213/17J4fC/X1vKEkOCSGEEKLpefIAuMH2JNW3r0D1OOuAh1vduyuHZLUyIYQQx66ff/4Zh8PBzTffXLutffv23HHHHYCZWBg1ahQDBgxgwIABzJkzB4Bp06YxYcKE2nNuv/123nrrLQAefPBBevToQZ8+ffj9738PwCeffEKvXr3o27cvo0eP3meM+fPnM2LECPr378+IESNqq2reeustzjvvPE499VS6dOnC/ffff9DnNHr0aDZu3AhATEwMf/rTnxg6dChz587ln//8J7169aJXr148//zztee888479OnTh759+3LllVcCUFBQwPnnn8/gwYMZPHgws2fPBmD69On069ePfv360b9/fyoqKsjJyWH06NH069ePXr16MXPmzEOO8b333mPIkCH069eP3/3ud7UJozfffJPjjjuOMWPG1MYC8Nhjj/Hss88CsHHjRk488UT69u3LgAED2LRpEw8++CAzZ86kX79+PPfcc3t834uLiznnnHPo06cPw4YNY/ny5bVjXnfddZxwwgl07NgxLMkkaUgthBBCiCaXsyObDOCkof1xp7Q76PE2V4z5hVQOCSGEaCm+fRByV4R3zFa94bSn97t71apVDBgwYL/709LS+OGHH3C5XGzYsIFLL72UhQsX7vf44uJiJk+ezNq1a1FKUVpaCsDjjz/O999/T5s2bWq31dWtWzdmzJiBzWbjxx9/5A9/+AOTJk0CYOnSpSxZsgSn00nXrl254447aNu27X5j+PLLL+nduzcAlZWV9OrVi8cff5xFixbx5ptvMm/ePLTWDB06lDFjxuBwOHjyySeZPXs2KSkpFBcXA3DXXXfxf//3fxx//PFs27aNU045hTVr1vDss8/y8ssvM3LkSDweDy6Xi9dee41TTjmFhx9+mGAwSFVV1X7jO1CMa9as4ZlnnmH27NnY7XZuvfVWJk6cyEknncSjjz7KokWLiI+PZ+zYsfTv33+fcS+//HIefPBBzj33XLxeL4Zh8PTTT/Pss8/y1VdfAWZSbrdHH32U/v37M2XKFH7++Weuuuoqli5dCsDatWv55ZdfqKiooGvXrtxyyy3Y7fYDPq8DCVtySCnVFngHaAUYwGta6xeUUv2AVwAXEABu1VrPD9d1hRBCCNHyrVy/niRt58LjezXoeLskh4QQQoh93HbbbcyaNQuHw8GCBQvw+/3cfvvtLF26FKvVyvr16w94flxcHC6XixtuuIEzzjijtkJl5MiRXHPNNVx00UWcd955+5xXVlbG1VdfzYYNG1BK4ff7a/eNHz+e+Ph4AHr06MHWrVvrTQ5dfvnluN1usrKy+Ne//gWA1Wrl/PPPB2DWrFmce+65REdHA3Deeecxc+ZMlFJccMEFpKSkAJCUlATAjz/+yOrVq2vHLy8vp6KigpEjR3LPPfdw+eWXc95555GZmcngwYO57rrr8Pv9nHPOOfTr16/e78/BYvzpp59YtGgRgwcPBqC6upq0tDTmzZvHCSecQGpqKgAXX3zxPj+LiooKdu7cybnnnguAy+WqN4a6Zs2aVZuEGzduHEVFRZSVlQFwxhln4HQ6cTqdpKWlkZeXR2Zm5kHH3J9wVg4FgHu11ouVUrHAIqXUD8DfgD9rrb9VSp0eenxCGK8rhBBCiBZsS2ElnsKdVLuTSYhyNOicaLeTahy4ZVqZEEKIluIAFT5NpWfPnrXJAYCXX36ZwsJCBg0aBMBzzz1Heno6y5YtwzCM2oSDzWbDMIza87xeb+32+fPn89NPP/Hhhx/y0ksv8fPPP/PKK68wb948vv76a/r161dbnbLbI488wtixY5k8eTLZ2dmccMIJtfucTmft11arlUAgUO9zmThxYm3cu7lcLqxWK2D2V6qP1hql1D7bDcNg7ty5uN3uPbY/+OCDnHHGGXzzzTcMGzaMH3/8kdGjRzNjxgy+/vprrrzySu677756+wA1JMarr76ap556ao9jpkyZUm+Mez+PxqrvnN3Xaej3vaHC1nNIa52jtV4c+roCWAO0ATQQ6ipJPLArXNcUQgghRMv36vRNpKtSopLaNPicWKeNSu1C+w5c9n0oqg9SSi6EEEK0FOPGjcPr9fKf//yndlvdKVFlZWVkZGRgsVh49913a/vftG/fntWrV1NTU0NZWRk//fQTAB6Ph7KyMk4//XSef/752iTQpk2bGDp0KI8//jgpKSls3759jzjKyspo08b8O767d1G4jR49milTplBVVUVlZSWTJ09m1KhRjB8/no8//piioiKA2mllJ598Mi+99FLt+XWfS+/evXnggQcYNGgQa9euZevWraSlpXHjjTdy/fXXs3jx4kOKcfz48Xz66afk5+fXxrJ161aGDh3KtGnTKCoqwu/388knn+xzblxcHJmZmUyZMgWAmpoaqqqqiI2NpaKiYr/fk4kTJwLmdLOUlBTi4uLqPfZwNUlDaqVUFtAfmAfcDfxdKbUdeBZ4qCmuKYQQQoiWp8oX4LPFO+norsSRkNHg82JcNqq0k4C3/jdLh8q7dQHOf3aENV+GdVwhhBCiKSilmDJlCtOnT6dDhw4MGTKEq6++mmeeeQaAW2+9lbfffpthw4axfv362ilZbdu25aKLLqJPnz5cfvnltf1vKioqmDBhAn369GHMmDE899xzANx333307t2bXr16MXr0aPr27btHHPfffz8PPfQQI0eObLJVxQYMGMA111zDkCFDGDp0KDfccAP9+/enZ8+ePPzww4wZM4a+fftyzz33APDiiy+ycOFC+vTpQ48ePXjllVcAeP7552uba7vdbk477TSmTZtW26B60qRJ3HXXXYcUY48ePfjLX/7CySefTJ8+fTjppJPIyckhIyODxx57jOHDh3PiiSfut0/Uu+++y4svvkifPn0YMWIEubm59OnTB5vNRt++fWt/Hrs99thjtc/xwQcf5O233z6kuBtCHUpp0wEHVCoGmA48qbX+TCn1IjBdaz1JKXURcJPW+sR6zrsJuAmgXbt2A7du3RrWuIQQQgjR/Dbmezjxn9NZF3sLzn4Xwhn/aNB578/bRv+vT6fDcb1xXfHBYcehteaKl6bysuduEmp2oYffgTrlL4c9rhBCiKPbmjVr6N69e6TDEOKQ1Pf6VUot0loP2vvYsFYOKaXswCRgotb6s9Dmq4HdX38CDKnvXK31a1rrQVrrQbubOAkhhBDiyJZf7sWBH6e/DGLSG3xejMtGNU4Mb3h6Dnn9Bpfm/4Nobx5+VzJG/trDH7S6FP3h5VAiN7SEEEIIcWQLW3JImV2R3gDWaK3/WWfXLmBM6OtxwIZwXVMIIYQQLVt+RQ0pmKtqNCY5tLvnkFETnuSQp7qGCdZ5vBs8iV/pDYXrDn/Q1VNQa7+CrXMOfywhhBBCiAgK52plI4ErgRVKqaWhbX8AbgReUErZAC+hqWNCCCGEOPrlV3hJU6Xmg9hWDT4vxmWjGBf4wtNzqLq6EgBXUhvmFZUzyjsNfJXgiD6k8eZvKab/isnYAaqLwxKjEEIIIUSkhC05pLWeBexv7baB4bqOEEIIIY4ceeU1ZNrKzQcxaQ0+L8ZpYzsulD83LHFUVZnJob5Z6cwsCq3yUbAO2tTfMLJeNR6MWc/xc6Avv/+lisWumaHBJTkkhBBHs/0tpS5ES9bY/tLhrBwSQgghhNhDfkUNHd0e8AExjagccpqrlVkD4Vl2fvfy9Q53NJ641lBNo5JDge2L0J9ej71sC/10HJdaT8dCEI1CSeWQEEIctVwuF0VFRSQnJ0uCSBwxtNYUFRXhcrkafI4kh4QQQgjRZPLKvYy2V6B9ChXd8AUnYl02KnGFLTnkDU0rszvd2FI64d9uw17QsKbUO5b+QPKUyynR0TwfuJEn7G/zgP1DdpFKRlK8VA4JIcRRLDMzkx07dlBQUBDpUIRoFJfLRWZmZoOPl+SQEEIIIZpMQUUNrW2lEJ0C1oa/7Yh22qjSLuyGF4wgWKyHFYfXayaZnK4o2qbEkb0tg475aznYqGvm/0C7b64glxTmjHqbnlGp1AQ64fz5Qb4ODOYqZz6O6uL9zqsXQghxZLPb7XTo0CHSYQjR5CQ5JIQQQogmk1/uJSWxccvYA9itFnxWt/nAXwXO2MOKw1cdmlbmiiIrOZp1RmuyDpIcWjv7C9pNvYFiSzKO677m8rahDwf6ZrYbLv7znYsz9UekV8ndZCGEEEIc2cK2lL0QQgghRF2emgCVviCJRnGjVirbzbBFmV/4Kg87Fl+NmRxyuaLISolio26DrWwr+KvrPX7DrEl0nHotudZWuG/6jjZt69w1VopWo66myp5Arj8KqksOOz4hhBBCiEiS5JAQQgghmkR+uReAGH8RqhHNqHfT9tAy82FIDvlrzCSQ0x1F++RoNhiZKDQUbtjn2FVb84j94T62WTKJ/d33pGS03+cYu9VC7zbxZFc5peeQEEIIIY54khwSQgghRJPIK69BYeCqKWrUMva7acfu5JDnsGMJhJJDNoebzEQ362hr7shZusdxG/M9fPXW07RSRSSc+3fS0jP2O2b/dols8jhQger9ViAJIYQQQhwJJDkkhBBCiCaRX+ElnRIsOgBxrRt9vnKEr3Io4Aslb2wunDYr3rhOVFjiMbLn1B6zvbiK61+fwfX6M6oyhpHS+6QDjtm/bQKFRihGqR4SQgghxBFMkkNCCCGEaBIFFTX0sWw2H2T0bfT5yhljfuE7/OXsg7XJIScAWSkxrLT1QG+bC0B2Xikf/edx/un/MymUEnXqo6AOvAZZl/RYSnSoUXb1sZUc8gcNfAEj0mEIIYQQIkxktTIhhBBCNIm8ci/9bdloZUW16t3o862u3cmhw59WZtSpHALISoli9s7jGF46l2c/+QXn8nf4vfUzqmLaYwx/Akv7EQcdMyHKTimhGI+RyqHcMi/v/prN+/O20SElmkm3jEAdJIkmhBBCiJZPKoeEEEII0STyK2oYaNuCTusOdnejz7e7QlU5YZhWZvi9oUHNOLKSo5nu7QJAzrKpXO2cRnXWeKLuXYZl5J0NGjPebadEh5JDR1vlUHUJNVPuwp+zCoCVO8u4/f3FHP/Mz/xn2ibaJLpZvK2EFb98AgXrIhysEEIIIQ6XVA4JIYQQoknklVXTXW/C0ubcQzrfHmUmh7TPw+HWpuhAjflFaFpZ++RoVuv2eLSLJ+K/IKqyGIbfdNCpZHvEZ7XgtcebD462yqGNP+Fc+hbBFR/ySdxVzM6zEeWwcX//wUwY1IXU8lWsm/I0vWZsQO8Yh7pqcqQjFkIIIcRhkOSQEEIIIZqEpXw7sboCWvc/pPMd7jgAAtUe7IcbTCBUOWQ1k0MD2iUwsEMqPj2QpNzZGLFtsHQ5cAPq+mhXEvg4+iqHSrcBsEx34cKS17jQEdq+KvQPyHKkssbbjo65q3BGJEghhBBChIskh4QQQggRdv6gQauK1eYE9tYDDmkMd1QUQa3wVZcfdnLIEvASxIrVar71SY5x8vHvhsP0sZA7GzXwarBYGz1uVFQUXr8LV1XJYUbYstQUbcWrYrnc/xDvnp3MwA6pqIAXI3cl+KqwtO6LLbk7PzxzL3dWTYTqUnAnRDpsIYQQQhwiSQ4JIYQQIuxmbyzkOGMjQZsda1qPQxoj1mWnEhe6uuKw41HBGgJWJ/ukf3qeQ3DzdKyDrj2kcePcdirK43AdRZVDgaDBmrWrsBkpvH7VUAZ1SandZ0nvWfu1C3C17gk7gcL10HZI8wcrhBBCiLCQhtRCCCGECLvPl+5ioG0LpPcCm+PgJ9QjxmkjTyehS7cfVixaayxGDUFLPZOfUrpgvfYriEk7pLHj3aEVy46inkNPfrMGd1UOCa06cnydxFB9Etqbq9CVb1veHKEJIYQQoolIckgIIYQQYVXlCzBzVTZ9LJuxZg485HFiXDaydStsZVsOM54gTu0naA1/Z5x4t51SHYM+SpJDWworeXP2FrJsRWRmHXfQ4zt16U61dlCcvaIZohNCCCFEU5HkkBBCCCHC6sc1+ZwV/BGnUQ19Lz3kcWKcNrboVrgrtoFhHPI4lTUBnMqPth5aBdOBxLvtFBrRR01D6twyL/FUmj+7hLYHPb5nZhKbdGuM/LXNEJ0QQgghmookh4QQQggRVp8vyuZG+7cE246AzEGHPE5sqHLIatRA+c5DHsdTE8CFD211HfIY+5PgtlMYPHqSQ2XVPjJVofkg/uDJIZfdSr6rA/GejU0cmRBCCCGakiSHhBBCCBE2v6zNJ2bjl2RQiPX4uw5rrN2VQwAUbzrkcSprgjjxo23hTw7FR9kpIcZcrcsIhn385lZW7aeNKjAfNKByCMCfdBzJwUKM6rImjEwIIYQQTSlsySGlVFul1C9KqTVKqVVKqbvq7LtDKbUutP1v4bqmEEIIIVqOcq+fv382k/uckwkmd4UuJx/WeDEuG9lGKDlUdOiVKZ6aAE78KHtT9RyKRaHBe+QnR0qr/LSprRxq16BzotuYK5jlbFzaRFEJIYQQoqmFcyn7AHCv1nqxUioWWKSU+gFIB84G+mita5RSh7YciBBCCCFaLK01z06ewz+9j5JhL8Z65n/Bcnj3oJw2K8XWZPzKgb1o8yGPU1kTIEn5sNgPvPLWoYhz2ynRMeaDqmKISgr7NZpTWbWftpYitD0K1cDnknFcP1gEuZuW0ab3mKYNUAghhBBNImzJIa11DpAT+rpCKbUGaAPcCDytta4J7csP1zWFEEII0TK88/NiLllzB52seVgv+xiyjg/LuBkJUeyozqBd4UashzhGpS9ABn6UvQmmlbntlBBrPqgqAjqH/RrNqbTaz0BbETo+E6VUg87J6tSTau2gbPFkri4aTGpcFBYF3VrFMaRDEt0z4rBaGjaWEEIIISKjSXoOKaWygP7APOA4YJRSap5SarpSavB+zrlJKbVQKbWwoKCgKcISTaWmAnyVkY5CCCFEhPy4aA0Dp19HF+surJd9CJ3Ghm3se0/uylp/GhW71h3yGLsbUlsdTZMcKtDx5oPKI//+V1mVn0xViGpAM+rdrDYbRYPvZZxlMRfkvcDcjYX8siaPrd8+R/yrA3n+z7dx7RtzeOnnDfy6uQhPTaAJn4EQQgghDkU4p5UBoJSKASYBd2uty5VSNiARGAYMBj5WSnXUWuu652mtXwNeAxg0aJBGHDGMj6/G4oqHC9+MdChCCCGa2bItOSR/cSVdLTvQF7+Ppcv4sI4/oU8GX/3YkejyxRSUVZIaH93oMXYvZW9zRIU1NjCTQ/k6wXxQkRv28ZtbWbWfdF2IShjVqPMyJzyIYa/kzLkvclrscoiNw1a4hgp3JvdWT2Tbzml8u6UfbxrHsVh3oVXr9lw7Mosz+7bGbpX1UYQQQohIC+tfY6WUHTMxNFFr/Vlo8w7gM22aDxhA+Cf9i8jQGrVzEbp8V6QjEUII0cx2FFVQ+s4V9FUb8Z71Go5up4T9Gkophg4ajF0F+ftHP2IYjb9/5AmtVmZzusMeX7zbTjFxaBR4jvzKoeqqchJ0WYOWsd+b5eTHCZ7xPEbmULQ9CmPCC8TevxIueZ/WGZnc6PyRVx3PscB5K/8rvop2U87l3aduZsribYf0cxVCCCFE+IStckiZE9PfANZorf9ZZ9cUYBwwTSl1HOAACsN1XRFhlYUobynaXxXpSIQQQjQjf9Bgzn/v5SK9kPzjnyBtwPlNdq209j0AyM1exSszenLrCY3r61O1e7WyJljK3m614HQ4qLQlEuNp4ZVDq78gsOEnlN2Ftdvp0HHf5tHOqtBzOITkEEphHXwt1sHX7rm92xnYup0BgRrIWYax7VcSclZi2bWBQcUf8ePk9fxx/VP89ZLhh/CkhBBCCBEO4ZxWNhK4ElihlFoa2vYH4H/A/5RSKwEfcPXeU8rEkams2o+xbSWJAP7qSIcjhBCiGX3wxbdcWvUp29qdQ7sT72zaiyV3AuCeuGn8YWoCgxMqGZAZizWlY4NOr/SZ08qwhX8pezCrh8pIItqTR4tsu+yvpujT/yN53Qf4LNG48aG3zkbdMmufQ63eYvOL6CYo8rY5oe0QLG2HYAGSgeC81xn37f10WH0teateJb2nrHYmhBBCREI4VyubBft9T3RFuK4jWo47P1jCoMIfuQMkOSSEEMeQhVsK6bXkT3jtMbS79Lmmv2BMOt5hd9FnwSt845hn1iQDXPohdD3toKdXev048UMTVA5BaGpZTSIZFfktLjkUrCxm57/PpF3lSv4TPJt/eM9nZv9ptNrwARgGWH7rMBA0NHZfuVnj7U5olvisQ2+kKCoL16c3k/rJ2eB7Gfpf3izXFkIIIcRvpAOgOCTbiqqYvr6AGM8Wc4NfVisTQohjgSd3IxXvXs4Ay0Zspz0FUUlNf1GlcJ7yZzy3LmdBrz9xv/9GSpxtCP78V2hAMXKNN3QDowmWsgeIc9spJAHlyWuS8Q9VddF2cp4fS7pnLR92eJIL7n+dhJhovs2LRwWqoWzbHseXV/uJJ/T33JXQbHEm9z6J5497hy26Nf4lHzTbdYUQ4mhizHkJcldEOgxxBJPkkDgkHy4w31C21zvNDVI5JIQQRz297lucrw5jWHAx2/reg3vgZc12baUUccmtGHzBvXh6XMrfq87AmrccNvxw0HN9NaG+eE1YOZRnJJhL2RtGk1yjsSp3rcXz8ljifXlMG/wfLrn6dlJjnVx3fBbf5MSaBxWs3+Oc0mo/8SqUHHInNmu8l4/uydxgN4xdSxqU8BMtQ9DQfLsihypfINKhCHFsK1iPZerDsPjdSEcijmCSHBKN5g8afLxwB7FOG52UuUqZCnhbzBtiIYQQTSBvNYGPr2NtsA3vDvqMduc+Cioyk6gePbMn013j2EUq1T8+CTUVBzzeXxO6gdGEPYd2BeJQRgCqi5vkGo1RnrMR/+snYwnWsGTcu5wy4aLafVcMa0+uo735oHDdHueV7VE5FN9c4QLQr20Cu6K64Qx4oHhzs15bHJpA0OCej5dyy8TFvPzzetg6B4xgpMMS4pjzl69Ws+bH/5kPKo/8VTNF5EhySBxUfoWXl3/ZyHM/rOe5H9bzx8krKfTUcNPI1rRVBQSsUeaBAakeEkKIo5K3HN97F1MSdPJcyuNce/rIiIaTHufif9cfz6tcgDt/KcYzHfF/dA0E/fUeH6hNDjVd5dB2f6gap7mmlnnLIeDbZ3NplY+f3v4LUYaH1ad+xOgxJ+2xP85lp1vHLEpVPBSs2+fceFVJwB4DFmuThl+fkvie5he7ljT7tUXjVPuC3Pb+Yj5fuovUWCfJ85+FN0+Dzb9EOjQhjikzNxTw31mbiVn/OQDaI8khcegkOSQOaOn2Us781yz+/v06PvhpPit/+ZCPFm6ja3osl3XyY1GaotjjzINlapkQQhyVjPVTcVRs4yHjVv502YnYrZF/+9C1VSxnXXs/F/sfZWb0ydjXTEYvea/eY/2108qapnIowW1nhz/OfFDRPMvZG2+cjPHN7/fYVlLp44rXZjOq+mdKM8czaviIes9Nj3OyUbdB7zWtrCw0rUw7E5oq7APyp3SlBjvkLI3I9UXD7Cyt5oJX5jB1dR6PntmDV/tnc50xydxZJFVfQjQXw9A89c1a+li20FbvQlscIMkhcRgi/+5OtFifLtrBTa9OpZWllJkTyvg14Y+84fgHW87dxff/N5qk6q0AbHN0MU/wV0UwWiGEEE1l66LvKNduTj79ArJSoiMdTq2B7ZMYfeJZXF1wKQUJ/dDTngbfnn+L/EEDb/Xu5JC7SeKIj7KTT4L5oDnemBsGqmgjavnHZgWRr4qayXfy19feoU3RbFJUGWmjr9vv6elxLtYGMqBg7R79fcqq/cRR2Wwrle0TV0IMa4x2GDulcqgl8vqDvDZjE6c+P4NtRVW8cfUgru1QSr/FD7OErviUY58m50KIpvP5sp2szinniU5r8Wkr61PGy7SypuLJPyb64YVtKXtx9DAMzV++XsO8OT8z3/kweIEfIdiqH4a7L+q7ByGhHSrP7Ia/jiwGg1QOCSHEUSgQNLBtm81qey8uHNIh0uHs4+YxnZi+voB7d53LO+pR9PzXUMffXbu/yOMzl7GHJu05VKATzAeeZqgc8paiDD8YfqZ+8grByiJOy32bR3QUOrUz2puK6nzifk9Pj3OyRrdB1fxkvuGNTQegtMpPN1WJNSq16Z9DPTLi3awwOtAnZ57Zx9Ai9zBbAq8/yAfzt/Hf6RvIqFjBX1I3MHTAAFq16k7wjcvAncyPWf8gfvmNZBZtwxHpgIU4BmQXVvLXL5bzWOJ39N71CfOcQ9jkSaGrtwz83iZbnfOYpDX6v+NRHcbA2S9FOpomJckhsY+352bzv9lbeDtrAzrPgnHK0yhXPNZe50HAi/H6eNQHFwOQb01nqzd0J1Yqh4QQ4qgzde5iTte7qOxxFRZLZBpQH4jVorh7fBcu+28x+e1HkTL3ZdTIu2qbZRdU1OBUu5NDTfNmOS3WRRUu/NYo7M1ROVTnGhkbJtLOUsgy1Z0urmKiipfD8NvBaj9gvF/qNuaDwnW1yaGyaj+JqhKLu0uThr8/GfEuvtMdudL3o9mUOqVzROIQvzEMzTVvzufXzcW8H/8fRjhnossVatoH6OkPoKxOLNdP5aRAO3YsTSEhbzNJkQ5aiKNcaZWP696cz7P6WcZUL8LX9WzWJt/O2ukfgx2oLICEtpEO8+iRsxRVug3aDYt0JE1ObsmIPWzIq+Dpb9cyvlsao9RSdOZgrMN+h6XfJWBzgCsOy7XfYEx4keDJf2VSu4fZFVrYRCqHhBDi6BIIGiyZ8QUAXYefHuFo9m9QVhIxThvzLf2xVOZD1W8rhhV4vDgJNW5uouTQ0A5JDGyfSE4wDl/pria5Rl3BCrPp9RLHQHpbsonHQ9+bXiXq+q8wup0JQ393wPPT4pxsNFqbD+o0pS6t8pOgqiI2raxVvIsVRkfzgfQdahHenpvNr5uLeWZCFsP9czH6XoZ6cCvGFZ/j73I66sI3IaMPvVrHkWtJw+HZEemQhTiqaa2568OlZJXNYwyLMMY9iuPSdxjdvweFOtT7TvoOhVXV0kkEsfKpp2+kQ2lykhwSADz59WrueOVLil85g9MdS3jmtAwsOUuxdD5p34NjUrEMuhrriNuoaTOcnKrQy0gqh4QQ4qgybV0BXaqW4rPHo9J7Rzqc/XLYLBzfOYWfC0IrhhVtrN1XUFGDq4mnlVksiifP7UWukcD2bdlNco268naZfV08A29FKytGj3Mhoy+kHoflkvcgod0Bz0+Pc5FLEj5rNBT+1pS6rNpHLB5wJTRl+PvVOt7NBt2GoLJB3qqIxCDMlch+XpvHF8t28cx3axnbNZWLkjejjACWfpeBKx5L5xNwXDYR1fU0AGxWCzouk5hAidwsFKIJvT0nmxnr8/h7wiSM+PZYRtwGQKfUGPzuNPMg6TsUNl8v20Xh/I+ZbfSkyIiKdDhNTqaVCRZkF/PNzPl84n6K1jqXvq5cXDtCdxS77L9nAUDrBDfe3bPL5c2AEEIcVT5csI0/29Zg7Tiqxfd/GdstlX+vTgYnZnKo3VAgNK1sd+WQvWkaUgN0axXHmpQ2ULiaVZu3c5yrFHvrpkmo5edupzXQpvsQVK8fUMmNm36VFOXAZrFQ4mxDesnW2u2VVZW48EWscighyo7NZqfcnkpi+c6IxCDglembeOGnDYD5M3nqvD4w8w9oezSq7dD9nheT3gEqoLowG3dG9+YKV4hjxrrcCv767VoebrOc5KL1cP4be9z0iEpsBYVI5VCYFFf6+N+kz5lkycM17l5Gj+kU6ZCaXMt+pyeaxcs/reM91zOkO6rhlL/iqs5Df/9HdFQKtDpw+VybBDfVhH4pSXJICCGOGrllXrauW0Ib8rF2OiHS4RzUCV3T2KFTCSrrPpVDCQ7DfNBElUO7dezQiQxLMbHvn4nt9dGQu6JJrlNRsBO/ttK+TSa0GQiu+Eadb7EoUmOdFFpT0HWSMMHKUvOLCFUOKaXIiHdRZElFl8n0pEjZsXIWb8e9ws/nKabdO4ZW8S70xp/QWcebLQb2o1U7s1dV9qZ1+z1GCHEI/F5qNs/h7g8WMcS5lWvLXiLYeiD0PG+Pw+JSQr3kJDl0+Lzl/PD5u1yqv0ErK2mDL4h0RM1CkkPHuBU7ynBu+p4O7MJ61gsw/DaM405D+Sqg87iD3iluneCmWu+uHJJpZUIIcbT4dNF2zrPMQCsr9Dg70uEcVHqci26tE8m1ZKDrJoc8NSQ7dyeHmnb1FmdCK6KoIdW/E78tlsDX9zXJ0rf+8lzKrIlYrYf+Ni4tzkWOkQTldXokeUvN/7oTDy/Aw5AR72YXSSCVQxFRXOmjT/G3jPHNoOM3lxLzyUWwYxGW0mwsB1gBD6BTl54A5G1bf8DjhBCNNP9VnO+cxnMlt/Nf29/AnYT1kon7fE5rm5pAmY4iUJ4XoUCPEoZBzRuncfH6e7jAOgPd8QSITo50VM1CkkPHuH/9vIHrHVMJxraBbmcCYDnpz2bp8F7Z6PpkxLukckgIIY4y/qDBJ/OzudgxG935JIhJi3RIDTK2axpr/GkECzbUbiuoqCHRGUrQNHHlEBl9CboSudPyEO/FXINt+1xY9VlYLxEIGtiqC/C5Du+Nalqsk+2BRFR1Mfir0VqjdieHIlQ5BOb7iq3+RDNpZRgRi+NYNWtjId3UNjzJvQmc/BTW7XPRb4Wa0Xcef8BzE9LbEcBKZd6WZohUiGNH0apfyNcJJLoUDqWxXvUZxGXsc1z7lGgKdALVJU2/MMLRTC//CGfBSv4SuJxt532J5cK3Ih1Ss5Hk0DFs/pZitq1ZwBBWYR32O7CGWlCldkU9uA1CTQYPxGW3Eh0dYz6QyiEhhDgqTPx1Kx3K55FkFGMZcEWkw2mwsd1S2WxkoIo31yYWCipqSHQEzQNsTddzCIDOJ2K5fzODx57NX3IGU5HYA2PqnyDgq/94rQmu/wHfpzdBccM+UG8qqCRJl6FiWx1WqOlxTjb5QtPRynfh9RtEGR7zcYR6DgFkJLjYVJOACvqgqjBicRyrZqzLp7tlG1FZg7GNuBV11edomxsjqRMkdTzwyRYrZfZUVPl2dBNUzAlxLCrx1GDdtZBFjkHE3bsYy72rIbVrvcdmJUdRSDx+qRw6dH4v3qmPs8LIoqzPjbTrMxpccZGOqtlIcugYZRiaJ75azS3uH9E2N/S/cs8DrA3vVZ4cH4eBksohIYQ4CpSUlvLFDz9zZ+x0DHcydDkl0iE1WL+2ieTZ22A1amqnJRVU1BBvM8zpcY3423aolMXClcOySI5185K6DEv5Dlj+0T7HBQIBlj89Duv7F+BY+RF67ssNGn/5jlJSVSnRiYeZHIp1salmd3JoJ5sLPcRTaT6OYOVQq3g3O4wk84H0HWpWWmvWb1hDHFVYWvUyN7YfjuW2eViumgJKHXSMQEwmKcF8LnhlLv+Yuo7ZGwup9gWbNnAhjlJaa5776FsSqKDPsJNwO+0HXFihfVI0BToei6xWdsiqfv0v7qpdvBl1LY+e3XJXaW0qkhw6Rn22ZCerdpZwqnW+2UsiKumQx4qPclCjnJIcEkKII111CfrloXzGPQyomY/qe/EBG9C2NFaLIiHTXCXJKNiA753zecD4L7G2YJP3G6rL7bBy6wmdeHVXB8oTexKc+U8w9vyAvH3HVvrULGaiPgVPp9PRKz7df4VRHat2lJBMOTEpmYcVY3qci1wd+ttfvosVO8qIV6HkUCQrh+Jc5NTG1Yi+QzUeqKlomqCOEevzPKRUhvp1pff6bUdsOiS0a9AYSW060dVVii1Yxdzp33L5f+fR58/fc8F/5vDJwu1NELUQR6+pq/Oo3DQXgDa9xxz0+PgoOxXWRFw1RU0d2lFr26+fs15ncu0V1xLjPPYWdpfk0DEov8LLk1+v5oKMApz+clSXkw5rvBinDS9OmVYmhBBHuHVv3Uqsr4ApbR9AX/EZatwjkQ6p0bp07w9AxfQXcWz+kRMsS4mxBZq+39BeLh3Sjox4N6/rc7GWbIZVk/fYvy17MwAzAz15oWgYFm8JbJh60HE3bd+BTRlYDrMPVGqck1wdajxdvpPlO8tIs4du8jRy9bNwykhwkaND/ZTKGp4c0pNuwPjoqiaK6tjw/apcuqtt5oP0Hoc0hj05izh/ARONh/jU/iizuk/mphGZVHgD3D9pOUu2lYQxYiFaoIAPvfyTfW4IHIo3Z29hlHsz2hkHKfVPJdtbMDoNl1EpN+0Pwab8ClI9a6hM6UfvzMj9HYwkSQ61JJWFGP8Z1WRL34JZnvjQpBVU+oI80GUXGgUdxx7WmDEuG17tkF9CQghxBPtlyv/omvcN3yddzoRrHkR1Hg+OqEiH1WhD+/SgUjuJ3/ELAO0sBcQZpc1aOQRmT75rR2bxUm43vAmdMOa9ssf+wpxsAM4fO5j/5XagxJJI+bx3zA8UVcX1jlnh9VOYG6q+OMzkUHqsi2pc+OzxUL6L5TtK6RgTQDtiwGo/rLEPR0a8m2JiCVicUN6IaWWF61FbZ8l7kUOktWbykp0cH5uLkZAFzthDGyi+LUobqKpCAv2uJHPLJ9yz+kK+sNzLp64nWTXxQfxF2eEMXYgWoaTSx60TF1E09e+oz26ArbMPa7x1uRX8urmY452b0ZmDD7qC9G7W2HTzC1nOvtHe+nYmyaqCLv1HRTqUiAlbckgp1VYp9YtSao1SapVS6q699v9eKaWVUinhuuZRJ3cFlrzlBGf803y8/nuM18aC33vYQ8/cUMD1by3g4ZfeInr9ZB44tRuJubPQGX0Pe2m+GKeNKhxSOSSEEEeoBZsL6LTkKbbZO3LKLX/HdhhLpEdaYoyTXLs55WpXO3MVzoSSlWBv3uQQwJl9W4OysDxmNGrXEvBV1u7zFJhJnpOG9OPpC/rzlTES95Yf8fy1I/ytA8Y39++T6Ji3uZhEXWo+ONzkUJxZSVXhTCNYupN1uRVkumsiWjUEkBhlJz3ORYFKbnjlkNZQkWM2sd6xsGkDPEot2V7KlsJKeli3oVr1PPSBup1BYMgtWG+ege2clzAufp9A5lBUalc6xMGl3o8ofuuy8AUuRAvx5y9XMX/FOmIW/svcUJF7WOO9MzebJJuX5KpNWNoObfB57sTWAPjK97p+wTp8PzyB7+dn8P3yN2q+/D2Vn/+enb+8TvlPz+J7/RSY9+phxXwkW5NTTsG6eQDEdBgc4WgiJ5wT6QLAvVrrxUqpWGCRUuoHrfVqpVRb4CRgWxivd/QJZXjVmi+46h8f8QZPYK/YDhU5kNThkIf9cXUet0xcxOnu1TwaeAanw4eRNAy1YwFqxJ2HHXaM00aV4UD7qzl4q0IhhBAtSUmlj4/e/x/Pqnyqz3gKu6P5kyjh5m0znPlbbPzsupIH+RJHxXZ02qFNkzkcGfFuhmQl8VlRW4YYAdixADqeAECgLAcDhSU6jQsH2ShN/yOl7yzhV29btCOGs+a/SnDDD1jHPgQ9zwOrjVkbC2ltKzcHjz685FBilAObRVFqS8VVvB1/UJNm84KKbHJIKcWNozqyZWoCMflbaVD9Sk05avcNqq2zocOxe9f3UE1evJN4m5+4qm2o9EsOfaCoJGynP1370NL9DJzdzwAgCfj0ubu4oOwtfGX5OOIP7zUsREvx05o8pizdxZOOz7AZNeZGz6GvGFZeXYN/yYe8Hb8IVamhbcOTFfGprWENFOXuoFW7IazdWUzZj/9g4NbXcGh/7XEV2o0FgzbKjFdb7GgLqKG/O+S4j2Tfr8qlj2Uz2mJH1e25dowJ261BrXWO1npx6OsKYA3QJrT7OeB+QNa1PJDQLxGLDvB42SNmYgig+tDnZ09dlcstExdxRfJ6njOewZbWFSOpE2rSDSgjAJ0Ob0oZmNPKqnBi1FQe/GAhhBAtyrNT13GW7yt87nTcvc+OdDhhkXnJ81xpPMZ/VwYo16Gpcc3cc2i3s/u14euSduY07q1mY9HSKh9RNQVUO5JqV1BLaNud1IdX0+r6D3gp5k6u8D1EjseAz24k+PJQyJ7FnE2F9E8KNa0+zMohi0WRHudiqz8BS8UuALMhdQRXKtvtsqHtKLKm4itu4D3FOnfojexZTRTVEaKyCDZPb9QpvoDBl8t3cXmnapQ2IP0wKocOosPQCQCsnPVFk11DiOZUVu3nD5NXcFpKAZdafua9wHgMq/OwpnVtXjqTv1leonNgAzUDb4Kshie8kzOyACj86UX+8Ne/EnxtHMOyX+ZnPYirkydyb9cf+Pvgafx7+DTeHDWDZ4+byEjvC5R3ORdKsg855iNdfkUNA2zZ5o2kCL1faAmapG5cKZUF9AfmKaXOAnZqrZcd5JyblFILlVILCwoKmiKslq8yH79y8kNwAFmWPMrtoRl43tLGjaPNHNx3K3O4deJizkvdySNVT6FTu2G95gss5/wbgj60PQoaUaa4PzFOs+dQsEamlQkhxJGmaNsaRluWYx96fUR7zYRTvNvOhD5tCBiwUbU3NzZzz6HdTuvVCq81mlx3Z4ytcwBYk1NBuiohGL3vcvSDs5L4+s5RHH/KhZzsfYo7gvfiqaqGt87g4qL/0DPWi7Y6wjL96+oR7VlSGoXbV0x6lMIZKEe5Ew973MMV5bDRqm0n4gNFLNu616o7m6djvHveHiu7BcrM5NYanYXasaBBq74drfRPf0a/ey74GvaeLGho/vT5SixVRdzoeRWtLNBmQJPF12/IWMqJoXzVwZuvC3EkeOqbNZRVeHjW/h+C7iSeC1xApT0RKg/982xlcQ4AJWe9i/PMvzfqb3P79h14Jng5WTXreMr/Nzo4Kyg6/XVOeew73r5jAv+4dAj3ndGfB07txu0nduOas04i15LGsspElCe3wb87jjb5ZV56sglLE/7+OxKEPTmklIoBJgF3Y041exj408HO01q/prUepLUelJqaGu6wjgh5u7aRa8SxrvP1FFmSeD3qRnNHIyqH9Na5BJ89jnk/Tea295dwcisPf61+Ah3bGuuVn5lL1rcbhh7/GHrEnWHJjMa6bFTjREvPISGEOOKMLP2CADbUwGsiHUpYXTa0LQA7nB0BUBG6E5gY7WBUl1Rm+Y5D7VwIQT9rc8tJVyU4Q70h9ma3Wrh5TCem3nMC1Z1PY2jpX/jcfhrX276lV/7nZtWQOvyJ3Dcc35G4dDN5dnwrv3kzKoLL2NfVq0cPbMrgsQ9+osgTmqZhBDG+/j2WTT9B8ebaY7O3bAJgSmA4KuCFXYsjEXJEGYYmO68UVn+B0kEo2XLQcwJBg3s/XsoPC1byU/wTxJetgQvfgvjMJovTarORlzyU4yoXsLXQ02TXEaI5zNpQyIcLtvNG1s9El6zFfs6/SE3LID8Yhz6MyqHq8kIAklLSG31uQpSDq37/D2z3rMJ7zhtE/99CkodctN/jU2KcHN85hZ/yos0Nx2j1kLU8m1gqoXX/SIcSUWFNDiml7JiJoYla68+ATkAHYJlSKhvIBBYrpfa9VXaMm7mhgI2bN+OxJXHlhRfzUv+vmFLcztxZXdqgMaqKdxL46CqslfmUT/8X/dom8HybaVgMP9arpkDMb0k3y6i7sYx9KCyxRztsVCOrlQkhxJGmsiZAh8BmCmK7Q2zj34S2ZAPaJdKzdRwV8aHlf23uiMVyYvd0fqnuZPbFyVnOmpxyWllKcSS0OeB5mYlRvH7VIO44pQ93VVzBt4zEVlN22P2GdrNYFBeONSuIx2UEoLqsRUwrA3Anm0krhyeH3727iE8X7WDFt69iKVpvHlAn+bFtq5kcmuEITb04BqeWvTJjE4+98DLKG7qhWCd5Vh9j0bs8/dGPTFm6i5e7rSSxZieWq75A9Wj6qaXp/U+ltSrm5U+/ZeXOsia/nhBNobImwIOfLWdMUgkjct8j2Ocy6Hoa47qnsbUmhuDeDaEbwe8xKyZdcYe2aFBGvBt3fDKufheYhQEHcW7/Niz1JJgPGpBYPhqll682v5DkUHgopRTwBrBGa/1PAK31Cq11mtY6S2udBewABmitD699+1HGUxPgpncW0dpWTqcOHYmPstM3M4F8f+iNbAMqh9bnlrPqxQsIVJYyNTiQcZYlvHN2IvY1n0GvCyCxfZPFH+OyUa0dKEkOCSHEEWV7SRXpqhQdW38Fy5FMKcX7Nw7j3FNPMTdEsIfAuG5pLDBCSaptc9iQU0IyZai4jIOeq5TitrGdee/6YURf9CrBrDGodsPCFltCqywAzmhdgfJXtpjKIeLNxNnD/b0s2V7Kw58sIHH+P6iMDS3QUSf5UZq/nSoVRb/efdik2xDYtiASEUeML2Dw1uxsJlh/pZLQ9MmiTfUeO2djIZ9+/wuWL29n8JpnuHNcZ4aUf4fRbiS0O/xWAw0R1/NkADJ2/ciEf82kw0Nfc9zD3/LGT8vRC97YY1U/IVqqv3+/jp2l1fwj5Su0zYX1lCcAOL5zCvlGHMGKQ68cMqpKCGIBZ1y4wj2gk3qkk28LvQ84BiuHtNak1mSbvQHTukc6nIgKZ+XQSOBKYJxSamno3+lhHP+olVtWTbU/SIatAke8WVTVJzOeGhwELK6D9hyq9gX567tfMZjVrOp2B4x/FCsG0ZOvQQWqUYOvb9L4Y5w2vDhRAUkOCSHEkWR7cTXpqgRbwsGTFEeieLedqDa9zDd8Eeo5BNAq3kVqRntyrBlUrJ9BQU5owYnYhhdSH98lhdE92mK95gs49anwBRdnfiDQX/2f+bilrNKS3IVgem96r3iKZf2/YlnKn8hUhUxMuh3tiodi8+72tqIqnNV51LjTOKN3BquNtvh2rYhw8M3rq+W7KK3wcKZzMVP1UMos8eh6kkNzNhZy+RvzWDPjUwBOsS7k/xJmYinehKX/5c0XcGIWRqt+/J/lQxYnPcw7nWdwXeYORk2/BPX1PfDrf5ovFiEOwYLsYt6em81DfapJ2fYtavjtEG32im0V56KABOw1xWAYhzS+qi6hyhIDliZpD7yPaKeN/l074CEKXRyGyqHyXZC/1myQfwQoq/aTpMvw2hOOmt6LhypsS9lrrWfBgVcyD1UPib0UV/qxEcDpK4EYs6w/KzmaWJeNSksM8QepHHr8q1UklK4AOwwaex606oWxfiCWXYswWg/A0rpfk8Yf4zSnlVmD3ia9jhBCiPDKKSgiTlVhTW66HiMR54xBdz4RldEnomGM757G7JldOHnrr2TZR5sbY1tAUs4ZSzBzGEGLA+sJ92PtcHykIzLZHFivn4r/q3uJWT4Rf2ov/pv0DP/Kbsv1GVlYijejgJ/X5tFbleBMymRYxyT+Y+tAVNWvUFMBzthIP4smp7XmjVlbuCZxOc5qD8lDLmXjvF20zl5N3VdXkaeGuz9aSoeUaO5P2EawvD2W6mL49j60PbpZppPVZbnmC4IrPiN22YeM2v4Ko4AKWxwbA61JnPU/oofdhctxbH9IEy1TaZWPez9exri4nVxT9j6GOxnLiNtr9ydFOyjU8Vh0EKqLa5NGjWHzlVFti6M5f4ON796K7PVptNu1nv3WK/kqCa6firXLSeCMgZKt+JdPQq/7BoJ+VPcz0QXrsK/+1Fz5EGDC8zDo2mZ6Focmv6KGFFWGz5VC5CagtwzNk44UB1Rc6SOJChS6dmlai0XRJzOeEh11wJ5DWmsmLdrJBa0K0DY3pHYzzx9whfnfwTc0efzmtDInFh2AoL/JryeEEJsKPHiqazAWvgUVeZEOp36VRRjT/96ify+W5psVLFFHc3IIsFzxKQy/LaIxjOuWxjyjG3G6nDs6mivRNKZyqClZb/gex3VfYu04KiyNrsPGEYX9vP/AHYux3zKTrqPOp6ImQL6tTe20sqmr82hjLSMqKROb1UJl/HHmuflrIhh485m7qYiynI3c63+NYKu+jDrlfKpi2qOKN7N4WwnfvnQXM584mUuf+5LSKj8vX3Acjp1zsfY8C4b+zvwA1+Ns84Nec3LFYx18LfYbvoe7lmNMeBHXbTNZ3uF6kn07efj511i1S/oRiZYlEDS444Ml3O95hjdq7sNWuAZ16lPg+i2dkhDloIjQapKH0JQ6aGhcgXICjsNfkbIxxnZLY5tOI1C0/35lwe8fxvrpNQSf64XvrXPQL/bD/sufMXxefEGwT3sCteZzfk29iE2jX8SIToOts5vxWRyaglByiOhjc1GsusJWOSQOXUmVj1RVaj6I+a0haJ/MBPK3RdG2qgTrfs4t9wbwBQ06+9ejW/VBWUM/0n5XgCMWep7bpLHDb5VDAPirwNq8v8zqpTXG1/di6Tweup0R6WiEEGE0c0MBN7z5K5+0eoc+xVPBVwEj7oh0WPswpv4Ry7L3zWWhO4+PdDj1qi7aAdCg3jfi8PTNTOBxV28IwuDKaebGllA5dCRI7gTA8I7JpMQ4WVqZyKll28krqWDu5kJSXcW1ibbqpG5QCuSthLZDIhdzMzAMzbPfruC/rhexWy1YLn4HbA769OlP/K8/Mu7fPzPb+SmJysNH1o1sOOVlulcvAcMPnU9CteqNkbN0j6qHiEhsj2XQ1ViA8y6/Ff/fnmN89fec83IH7j7xOK4dmUWUQz6yiMh77sf1VG2czQTnXIKDf4d1/MPg2vNzj9Wi8DqTwQA8eZDeo1HXKPLUEI8H7WreXoBJ0Q5qYtsTW7XYXBly03QsbfpBVBJef5BffvmBUxe9xdZWp1BZ6SF120qmGGfxVs1Ydu4wkyrpFOPFQdm2GLr5Yvk2oy9G3uoWX42SX+FlAGVYYlvItOoIkt+0LcCeyaHfViDpmBJNmY4mUFm83+RQkacGK0FSPOuw9Ljutx02B/S5sMlirstps+C3hBp9+qv3+SXZ3P7y1WoG6ZWcuugNCNZIckiIo8iqXWXc8t4inrH+mz7Fc8yNVS1wTvuuJahlH5hf5yxtXHLIMCB3OYGdi7H1vQQcUU0SIkCwbHcFiyQpmprFovjDFWfg/+gx7Pmr0MqKimr8dINjmc1qYUKfDKYviOU0a4Bp8xeToCuw6kDta9iVnIVnk5vovNUH7nVwFPh6RQ6pOdPp5tgMZ70FiVkAxLcxq8gf67iWxF0eGHUvcSsmMXjaFejkLuCIRrUbDjYHlismRe4J1McRha3vhZy67APuaXsiz39fwyvTN3Fi93RcdvMjptIG7mAFCoNTeqQxuH2ieXO1JVW9iaNOdmElr83YzOdJ32EYyVhPehQc0fUea7hToRKoLGj0dfLKa0jAg4pKPMyIGy8xsyv29QFKf32HhKl3E0zrjfX673h2ajanLniEQhXLmdkX4LfH0S0jlp6t47g6KQqLUsS77fRoHUdWcjTfrMjhvk+Xsz2jA20Lp5kV1C24l8/uyiF7wtG1auuhkORQC1BS6aO1rcJ8UCc5lBzjoEhHo6p37ffcokofx6kd2AwvtB7Q1KHWSymFYYsCjVk5FEHLtpfy31lbOD021MzQF9l4hBDhs6OkimvfXMCNtu84JziH54IXc3fcL6gGrOjYnHJLq/G8cyftXUnY7E7YuaRBH1LLty1nx0+vkrHjGxKDxaE/0BqaaFEBrTXWylxzgnkLmd50tBvcIRndYSSs+cL8MNtMzUaPJteOzOIP88038KtWLWNkegKUUfsabpXgZp3OpPeuFbtrmo9KvoDB379fx02xuWifBXXcqb/tDFVaXRT8Fo1CDb8d64g7CX72O6wbvkN3PcO8idhCqWG3oNd8yS25j3BDbDyfJ1zJPzeOJoCVXsZ6/hh8mY6YVY+EVp9m9H0w7o8Ri1kc/Z7+di19rdn0qJyHHvfIfhNDADomzUwOHcK0stxyL+2UB1/MoS1jfzg6d+0N68H148MYriQsBasoffNCztqVSx/LZspOfo6vuk6gTaIbq2X/72zO7teGZ6eu46vcBG41/FC0sUWvAlZSUkq0qkHHyXsheVfSAhRX+mlrDyWHon9LDiVGOSgjGkvN/udcF3lq6GMJzQ1tE5nkEAD2UPuuCCdjnv9xPT1UNgP8i0PxyHKoQhwNyqr8XPPmAjr713KH8S47W43nBf9Z1NjjoAUlhwxDM+nt5+jsXc6zvguobjUIdi3Z86DKIgJLPqDms9vw/fw0M9bs4NVXX8T1xgl0zv6ABb6OPGq9g0B0K/SWmU0Wa3Glj0SjGL/F1WzL5QpQ7UeYX8Q175SBo0X75GhOGjUcAKNoM2dkhT6ghCqHMuLdrDXaYSlYA1pHKsym5avkq2U72VZcxcmpRejEjr+9DwNI6mj+N28Fus0AiEoCdwLWSz9An/c66uQnIhN3Q6V2xXLvWrjiM1Sb/lxQ8BIz7bcxJ/ZB3jAepn2sxjjxCUrG/JUn9A1ssXXEWPN1pKMWR7EF2cV8tyqXp1O+RzvjUENuPODx7thEfNigsvHJofyySuJVFe645q8sbdPRrDp0GZX82XcZHybfRkLuHNIs5XhOe5H44dfSLjnqgIkhAIfNwrUjO/Blbqj6KX/1AY+PtJqyXABUnSKNY5VUDrUAJVU+WtvK0bZYVJ3pA8nRTkp1DLZgFQR89d7lKfT46Ks2EXTEYd39ZiAClD0KfJjTyiJkybYStq9fwt9c71FhuIlK64jF5znqy8qFOKIVbyH44ZVYT30SOo6p95BqX5Ab3llAUVEhX8b/G21vTfCsl+DFJZSrWJzVJS3m//N3f17EJcX/ZkdMLz6qHEvC1u+5xbcDPAUQqKbqm0dwbPgam/bjU1FE6SpaG28z3JJHbvRxlJ0zkbaxqXz48mxOcq5mRPZMlNZNMl1ie4m5jL3PnY5dpmM0n3ZmYkNJtdYhu3z8ELxzHWSpPIan+cyNoe9n6wQXs3VbbL6foCLn6EvCVRWjn+9Ntv1GOqeNJaVqEyq9557HuOLRUSmoqkIsnU/6bbvFgupzUfPGe6isdug8Hluncei1X2Gs/BwCNRhdT8M65j5wxZEIdI3dzkeTPTwY+JB5y9cwuFc3LAf54CpEY/iDBo9MWcn4mG10Lp6GPuGhg7bQSIpxUkQ8GZ7GTysrLTbPiYpv/uSQim+LtjrwxGRRkHI2swuq+UJlcvMFZzCmZ9tGjXXpkHa88H0bDKxY8lZDr/ObKOrDFywPLWwiySFJDrUExZU+0i3l4N5znmNitJ0yQiWL3tJ6X7BFHh/jLZuhdb+IzrW2OKLM8skITSsLGprVH/+ZH51v4ldOHgtczoOubGL8LaeiQAixr8DcV7DlryDw6Q3Ybp29z++5mkCQ3723iEVbS/ily1e4tuegLv2ethkZJEStpDAQTWpVcYSi39OC7GLiZjxGvKWapKte47/VGTz/39XcYoPKLQvI//kl0osX8m5wHDOjTyLb1omz3Mu5ufx5SBlA26sm0Tb0hvPRM3vy+RedON7+k7nqUiMbWjbEtuIq0lUJSBl182rVG+1ORkXwhs6Rzm6zYiR1YILTS0Ig9P//7mll8S7WGaEPMXmrj77k0LZfUT4P3apn0+a0S1FTN9ef8EnqAFWF0PnE5o8xnJRCdT8Te/cz69194cBM3t56Gqz4kA8+fIcHk07hupFZXD60vSSJRFi8PnMza3PLmZj5GUZVKpbhB2/gnhTtJN+IJ92T1+hpOpWlZnLIEpV0CNEeJosVfc4rxKb35N9p3UIb679xdzDxbjspCbHkBTJpld+ye8Dp3b2hZLUymVbWEpRU+UimFGL2fEHGOG14VKz5YD/L2Rd5vHS27MSa0adpgzwIizOUxIpQ5dDrMzcztPx78uL7sO7SX5kYPBGP4ZBpZUK0YN6qCmoWvsdC4zgClSVsePVyavy/LfteUunjhrcXMmN9Ae+MyKf9ts/QI+6GtkNQStG7TTw7alwRnVYW/PRGjF9fYVtRFf985xPOtczEN+wOVHpPBmUlcf2F52BoxYxPXqRDyWx+SLqUQTe/zv8eupGf7xvH3bffjeu+teZyznXuRF4yuC0bo/qbD7KbZmrZ9uIq0inGmdCmScYX+2Gxon43HcbcH+lIjmiOtM6ke9YSXPcdOioZbObCGCnRTjZZ2pkH5a2MYIThl1vmpWDVLwAMt67hnDblKDSk7Zs8Vmk90FGpkW050AyUUlxz7lkY7iTu6bSTOJeNH798nx8WtexpLOLIsKWwkud/3MB9HbJJLpyPZcz94Iw56HnJ0Q4KdfxvFSmNUFUeWmTD3fwNqQEsvc+H2sTQ4WmbGMVm1Rad17L/f7RXF5pfSOWQJIdagpJKHwlGCSpmz8ohpRTG7g8L+/nwU15RgQs/REd2xROrMzQdLgKVQ6t2lfHvqcvoaMkhrd/ptGtr3jEsC0pySIiWKmho3nn9OaK1h+39f8+3GbfRpWI+kz95F4CVO8uY8K9ZzN9cyGf9FjFyye8JpvfGMvah2jH6Ziawrdqx3+R5kyvPwbryY/TPT3Lrm9O4yPiWoM1N1Ji7ag8Z27cTFbEdOM0yl4DVxdk3/InemXuVo9tdYNlzTUqLRdG3d1926BT8m6Y3SfjrcsppZSnFlnCUVVYcCRLagjM20lEc0VRaD1TFLlT+SnSd6QoWiyIqPoUyaxIUbYhghOFVWuXjpH9OZ/uynwlqRSIVONdMNnfWkxzixMdQN/ywz++Wo5LFguo4hrYl85nUZz5vO57hhG/HY/z0l6O375RocjWBIP/3wUJutX3BLXmPYSR1hoHXNOjcpGgHBTr+kHoOBTyRTQ6FU9vEKJb7M7GUZkONJ9Lh1MvrDxLtD1WgSuWQJIcizR80KPcGiA0UmyuX7EXt/sXgLa33fF9FKNMZ4V8gDnfkKocmzttGb9tOLGhURl/iXHYSo+wUByQ5JERL9cvafIYWTaY4uiPnnnMR517/EFWWGBxrJvH8j+u5+NW5aK2Z1eNzBqz9B4HOp2C95ss9eq/1yYyn2IhB+SshUNOs8WutCW78CQCrr5yzyj/kLOscLH0u3uf3cVzHwQBY+l8B0Q1ffeSMPhnMDfbA2DLTXN4+jLTWLNu0DTc1slKZODIdfw/cPAvLg9uxnP73PXZlxLnJsbRCF2+JUHDh99acbPw1lfSzZlPY/gxz45L30Da3OYVsb1FJ9W8/SqmOY1GeHGw//5mZ1iGsdffHMvPvsG1upEMTR6i/fr2G0/Je5W7eRx93GpbrpzZ4lb/kaAeFxGOrLmr03+9gVagg4GhIDiW5WeI1FwugYF1kg9mPQo+5jH2NPd7sdXaMk+RQhJVW+XHiwxX01FvKZokK/WLYT+VQsHJ3djkC81LrsO8usYxA5VCxx8cw93bzQWh6XbukKIpqrJIcEqKFmjp3IX0tm4kfcZ3ZL83uwt77XE6zLuTVH1fQLjmab0ZvJXXDRwSH34n90on7vFHqk5lAGaHfPU09tUxrCJpT3oKG5tq3FvDN5Hcp0PH8qntxk+VzrMEa1NCb9jlVtR+JtjqwDL+1UZcc2C6RVc6+OP3lBH76S+31w2FdXgW2qtAdzdAqT0IcURxR0Kp3vR/WMhJcbDHSoXhz/ecGamDn4iYOMHwqawK8OTub67OKsOgA6cdfjRHfDmrK0Kldj43qoIPpeAIARnpv3s54hP/aLjG3VxVFLiZxxPplXT6zfp3DDbbvMPpdgfXidxp1cycpxpxWpnQQqhveF9HrD2L3hVapPiqSQ1Gs06EecC10xbL8CjM55Hc1/Od7NJPkUISVVPlIVaXmg3oqhxwxoaTP/qZN7G7EGommZXXsrhwyfM1fOVRa7aOHysZwJ0Gc2TujXXI0uV4byvCbK70JIVqMvHIv+ZuXA2Ct0w/D3u9i3Hh5uucOPj07irhf/kCw/fFYT3qs3ob76XFOKlQzJYem/w3j+T7gKeCV6ZuYsS6PcY7VFKYfT+sJ5lQ3o91I2HvVIID+V6DuXgnJnRp1SYtFYe19Pl8aI7DN/gc1/xmDf+6rULAeSreBt2zfkwwDKguhcOMBp1PM2lBoNqMGqRwSR52MeDfrfCmoipz6K5qXfQivjzWbvR8BPpi/jbJqP5e33oVGmX3XOowCwFLf75xjUWJ7uOgdLFdMok1qEutLQx9xvOWRjUsckf47czNPuD9AOaKwnPhYoxf9SY52kqdDyZ3yXQ0+b2dpNQmEbmwfZEW0I0FmYhTbdRpBiwMKW2blUEEoOUS09BsCWa0s4oorfWQQSvDUs6KGO3b/lUOBoIHNVwp2Il455Aolh3xeD65mvnZZdYBOwc3Qpm/tL+/2SVHkrrKar3CfB2yR/f4IIX7zycLtZBF6s5TS5bcd7UdixLbmzJJ34L2/ol0JWC/4337viiulUO4k8NPkyaHg2q+xVuwi5+1reGHXLdzcpZzo7eV0P/5c6H0GRvl9WLqdVv/JFivE7pv8b4gLhnbigsV38a1vEPfkf0rn7++H73/bH4jJIJjSHdK6Q9lO7Ft+xuIzPwwFe5xrfv+UMisokjrW/o6cvbGQ3rFVUINUDomjTka8i0XBdLACJVv3ba66e3rD6i/M/3dauI8WbGdIVhLpJYsx0npgdSegskbB0on19xs6VvU4G4CslCqm1DjARf1JdCEOYFOBB7V5GiMci9En/GWfBYMaIjHKzg4dOq90W+3MhoPZkFdBgvIQdMRitR75H9PbJrkxsFAW1Z7EgvUtcsWyjfkeTqMMR3x4mnAf6Y78V90RrrTKRyu1Ozm074oxCTHRlGs30dUl7P3xqKTKTwKh5l4RLj2MiXJRo234vZXNnhzyVFaR6c/G0vr02m3tkqJYpM2VS8ypbpIcEqIlMAzNRwu380h8CToYi6rb/M9iQfW+EDXnBfztjsd+4RsHTarYYpKhhKZNDlWXonJXsN5ow3EFs/izM4HzkpLQ2xWq01hQCsv4PzbJpbtnxLHgjyeyeOsgPt9yBdvXL8GeuxR0kGTK6enZSY+qLbTNnoFHxbDAPhRvRk9GJHtIXflfgl/GY5RkY8+ehj9zOLZRd+FdP41rs38lI9ZuJofqqVoV4kiWEe9iqw7dBS7evE9ySBdvQgHGmi+xnPBA8wfYSAWeGs5P24naMhc14CpzY5eT0JlDUF1OjmxwLVBWSjQe3OaDGqkcEo0z8ddtXGSbQdCViHXI7w5pDJvVQoUrAzRmcqiB1uV6aKs85o2vo0BqjBOX3UKuvS0JhRtaZHJo0dYSrraU44iXKmqQ5FDEFVf66ySH9r17mxRtp0zH4Kgo2ic5VFRZ81tyKMLTyqKdNrw4MGqav8dPincLNosfWv2WlW+XHMXM3ckh6TskRETpLTPAYkO1H8HsTYVsL66mX9tCtL0Laq9SbTXmPozMQdi7ndGgPhru+FByqKrhc/oba8Xc7+iNwaKefyCp+lsuzf4KloGRMQDVDCtFRjlsHN8lheO7pMDJXfEFLmJ9XgUrdpYxZ0cpn1fUmH0NUNQYil83F+HbEuQJWzZXLnmLGlzMSz6f/jk/Yv/gEuzKRqZOoaMnFx2VgmrAsrxCHElaJ7jZqkNJz5J6mlIXb0GjsOStgJJsSMxqzvAaRWtNJ+8qrtn8N4KxbbCPutfcEZ1irkYm9tEhOZogVvxWN3aZViYaodoX5MtFm7jfuhhLj4sa3IC6PpboZLyVblyNSQ7llTPE4UVFHfn9hsCs8M5MjGIzreleOg38XnOF1hbCMDQrsvOIoeqQKsSORpIcirCSKh+tVAnaEY1yxu2zPynaSRnRJFbue1e8yOMjUVUQtEVhtTmbI9z9inHaqMaJzdu8iZiaQJDOwU1m96yMvrXb2ydHUVvD5GuZSycKcazQ3z4A3jLU3Sv4cP52EqLspHi3Yck4ft+DnbFYepzV4LGj4kN/zJuocsgfNFgz91uOw875Z5+Hw3k5lG4juGsZ1vTITOdw2Cz0ahNPrzbxXDqk3T77iyt9fLF0J8VVT/B1zjC+r+rO9DwH0cHT6WesZnagKzX2OBbc2JGYQ3/fK0SL1SreRSkx1Nhice7dlNoIoos3M9M6lDHBXyld/BkJWf0xcpZjaTsY2gyECL+nqstTE+Avtv9RbU8g/tqv6r2RKPaUmejGZlF4LTHYa2RamWi4SYt3MMC3CJejGnqee1hjJcc4yfem07Z0a4MrZtblVpBqqwL30VPR2zbRzarCDCZoI1TJ2R3yVkGrXo0bSGuCKz7DmP4MBANoRzQ6qSMqvq3ZW87nMf/5q1ABHwS9EPBhHXgllnoWCwHYXOjB4S00p6BKzyFAkkMRV1zpY4i1GGJb19vsLDHaTqmOxqjnrnihp4YEVYnhStynqqi5xbps5Ook2pU1PDseDmXVfrqp7fgtLuxJvzV7TY914bOGSop9zb+CmhAiRGtU6TaUz0P5yu+ZuhquG5yOZelOSO5y8PMPIjEhCb+2oj1FNEWeY+KvWxlQs4zKtH4kuaJCF22PNbF9E1wtPJKiHVwzcvcS1j04o84+w9AUemowNMTGt5y7d0KEU3K0gyiHjVxrBu2Kt+zxwcwo24nF8DNd9yZV59B+xtMws6Z2hRbDmYDudxnWQddC6nFQnoMx9yWM8jyUxYr1xD9B/L5tAJpKuTdAiiqjKO0kEhOa77pHMpvVQtukKDw1UcRK5ZBooEDQ4LUZm/lL7GIMSzKWrFGHNV5StINdhalkljQsOeT1B8kuqiIxrhJ1FKxUtlvbpCgWbg1VWReuh9zlMPl3cPPshieItCbwyXXYVn+GkdqLYEoPVE0Z1pylWDd8i7a50Y4YM2Fkc6NtLrBHY/FXo757wOz51G7YPsMuzC4xm1FDvauGH4skORRhJZU+WltK621GDWa3+41Eo7yF++wr8vhoRwUqwlPKwJxWtlK3oWtZ8678UV7tJ0mVU+NOxW75bfE9i0XhdMWYjWplWpkQkeMtRYWq9wpnvIY/eCOXdfHDUiCl82EPnx6qEHCWF4Y9OeSpCfDmT8u4yrIV1fOiMI8eGRaLIi1OkkLi6KaU4rqRHVg+K4m0vA27u88AsGjpIgYD40YOo7UtE8esv/Ku+2peLBpCP8smLrXNZ8z812DevylJ7k9s6VosRgBiW2Et3w7th8Kg65rtuZRV+WlHDR5ndLNd82iQlRxF6Q4XGdJzSDTQtytzyS8uYUT0fFS/S+AwG0InRTvJDqYwtGyWuXroQVY821xQSdDQxBgVEe8lG05tE6P4xJtqVucUbsDYuchMxmfPbHhyqGQLttWfkdftalb1foDCKoPCyhqKUnwUeWooqvRRWuWn2h+kujJITSBIp9QYHjy5DX2/OgP92c1YzniWQPYcjOoyQGPvfhqLslPo68o3e0NJ5RAgyaGIK67yka6KUXED6t2fGG2nTEdj823cZ19RZQ39lAdrdP2JpeYU47Sx0WiNu2aGuTJEMy2/WFrlJ5YqtCN2353O3ckhmVYmRKSU5GwiEdhipNO2YAbjM2+gvd5p7gxD5VB6nItSHUNSRdFhj7W312dsZkjNbCx2Aw7zDqIQonndOrYTH89vg92zgGDAj9VmR2vNrwsWMhgYNnAQtqTzYcztXGm1cXK5lx9W5/HKspO5f8sWLrRO55yCWczWffhb4BIuPX44t8wcBp78Zn0e5dU+oqjB5q7nfY7Yr6yUaAqzXWhveYtsgitaFm0Y5Hz3LNPcX2ALVkPvCw57zORoB5v8SShdAd7SgyZ81uWVAxqHv+zoSg4luanGRU10axw5S1CbpwGgt85FDbulQWN48rYQA9y9PJO5S5fWbo9yWEmOcZAc7SQ5xkGUw4rLZsVpt/DTmnzOfWMF9xx3D3ds+z+YeD5WZUU541BBH2rxG/yJaGKpRFudqBZcEd6cwpYcUkq1Bd4BWgEG8JrW+gWl1N+BMwEfsAm4VmtdGq7rHunKKr0kGcX7rRxKjHJQQqz5iyIY2COLXeTxkWypbBGVQ7FOOxt1qNy5YD20Hdws1y2t8hOrqsGZsM8+izMGPIRWKxNCNLetRZW89tEPPAms6HILHTY9xlMdlkKh3TwgqeNhXyM9zkUJ0cSHsyF10E/urx8zbtY/6WvfiBHXFkvmoPCNL4RoclEOG/36DsC2eBKfz5zP2WNH8v2qXOzlWwk67NgS25p38kPvq9LjXFwxrD1XDGvPjpK+5JadSgXmm1rHZyuYtaWMm91JKE9esz6PCk8FFqWxu6RxfGN0SImmzHATrC6QO+HioBb8+BE3Vb9BbsIAjFOex5JVT0/ERkqKdjDPMPsi/jx3AWMHdCNQuAV75zH1Hr8u10Oi1WsuMHEUJYcyE80p+StqWtF/7bdYMdAJ7dDb5qIaUFEFkLttA52BM0cP5YGefUmOdoSSQfv/v7vKF+CVaZt4cZpio+sh+rWNJzu6H4mJSWQl2mi143tyF31JUtfjGXP2ddAMC4wcCcL5+zIA3Ku1XqyUigUWKaV+AH4AHtJaB5RSzwAPAS1/3dDmUlmAjeB+k0N2q4XttvZYdRAK1u5Rflfo8RGvPNACljuMdlrZqEPPoXBd8yWHqv20oQqre99sr3V3CbZMKxMiIh75fBU9a3IBOOu8KwlOnkPK0pchoy86LhPliDrsa6THOdmiY8jylh7eQJ58ApumU7n2F/SGqbQKFOClFXnHP0H6qOvA7j74GEKIFqVvn36wGL6bMYfhAwfy12/W8qSrEBWfdcDVEDMTo2o/0AAc3zmFDxdsQ7dKRzVz5VCVx+yH4Yzad9ESsX/tk6PZqd2hKSRC7F9ZtZ/cuR9TSRSpt36LxRGeqdc9WscxRZlTlT76cTbpy/5Fj4o5cNt8SO60z/EFOzfzhutFCFLv/iPVcemxnNE7g7yd7bAGFlNliSZqxJ2ob35vNqhuwHMtz92MoRWnDB9AcnzDqiijHDbuObkrp/RqxWNfJDA/p5qg9lDoKUJrgHbAbXx5wvEQ2zwzXo4EYUsOaa1zgJzQ1xVKqTVAG6311DqH/Qocfp3eUcRZlQsKsyH1fuyK6gZVQM6yPZJDxZ5q4rQn4svYg9n8r8DWioCyYytY22zXLav2E6uqsEUn7LPPHhX65SHTyoRodmXVfuZsLOT2dl50oRsVlYx1wj8x/j0Mts2FjmPDcp0Ypw2PJRa7b+ehDRAMEHj3fGzZ07ABFu1mnu7Bzg73ctI5V5GeKH0+hDhSqWSzr9kTxosseX4a3qpL6deqGJXcuKrFIR2SeGtONh57ErEVuc06Tam6sgIAZ7QkhxojI97FWqKw+ioiHYpo4Z79diX3GvPwdT6F6DAlhgCGdUzms4cuhWf/wGVZHjrtnItSASq/fZToK94zDzKC6PXfU73oA57c8R0oC8aEF7Acd2rY4og0h83Cy5cPgAWj4espTPX3pZurL93AfD/YgORQoHgrhSqRtAYmhurq2TqeT24eUfvY6w+yq7QagBiXjbRY6cNYV5NUWiqlsoD+wLy9dl0HfLSfc24CbgJo127fpXmPNNvWLWbd3K8Zdf5tuGLrT95kF1YS5y8AB/utHAKojG5PdbUbd85S6H85AFprSoqLsGC0mNJDt9NFgTWT9IJ1WA5+eFiUVfmIoRq7e983TW6XGz827FI5JESzm7Yun4Ch6eIshYR2ZtlwQlvUyX+Br+5GpRx+vyEwG8/6HQm4/Id2d1hvm4stexofW05joncEXfqM4I6TunNisiSFhDjixbYieM5rbPvlU44vncabCZXEVG5HJY1v1DCDs8z3cbnBeGK9K5oi0v3yVZoNlV1R0nOoMdJinVToKKxGDQR8YGuK9SzFkW5TgYetC78lwVEJg8O/8IQtOhHtjGW051uU8jPb6MnIjV/y7L+ep4utgOHFk0nz76Rax/FNcDTJJ97D6YNGhj2OFqFVbwBm2Ufw0Vw/E12JqK1zUf2vOOipjspdlDlaEY6W0S67lY6pMk13f8KeHFJKxQCTgLu11uV1tj+MOfVsYn3naa1fA14DGDRokA53XM0tb/4kTsp+Ce8/XiSv8zmkn/4HSOqwxzE/rM6jlQr1yThAcigxxs3G4o703LmkNumyvbgao6oInLSIaWUAPVvHsWp7K9Ly1zfbNUurfMSoalQ9DbBjnHaqtJN4WcpeiGb3w+o8UmIcxNfkQELb2u1q4DUYVSVYup4StmsZzgRcfi8EasDmbPB5O0urWTHlbcZpKx/GXcufrx1Kv7YJYYtLCBF51n4X06nrefz4wd84c9vfzI2N7HeWGuukU2o0m6pj6FKZ36CVh8LF5zWrny1O+TDTGPFuO9WWUJK/phxs0k9E7OudOdlMsC3AsEdj6TQu/BdQCh3fDkv+Kgx3Cu2u+JTK/w3n90WPArBCdeGt2AfxdjmdM/q2Y0C7hPDH0FJkDkZf/wO9t6Xy6Zer2dm2D222zj1oJabXHyTJn0tlSt9mCfNYF9YCD6WUHTMxNFFr/Vmd7VcDE4DLtdZHfOKnIQZf+SRLTp3C95YxxG+YTPDFgdRMvhMqf1tRZ+rqXHrGVKItdoja/x+tpGg7q3QWKm+l2ZQaWLi1mARC06VawLQygOuP78AqfwaWsq3gr26Wa1ZVlmPDANe+lUMxTiuVONEyrUyIZuULGExfV8D4bumosu2o+N+SQyiFZfQ9kN4zbNez7P4dWF3a4HO01lz62q8cVzqbvKTBfHzHSZIYEuIoFe+2c+a1fyDYMfThb6+bdQ0xpEMyK8tdqGCNufJQM/FXh6ZFhaFH27FEKYXa/d7QK32HxL4qvH6mLVrJ6baF0PU0sDfN9KLaVbC6nUHbNq2JuvRNfGP+CLcvpPejC7n/3of401l9Gdg+EdVMSeeIUArVdghXDM/ihK6p/C8nC0vJJnz/PQ0je+5+T9uYV04rirAnZzVfrMewsCWHlPlqfgNYo7X+Z53tp2I2oD5La31MlXD0HzaW8Q98yPM9P+G9wDisy97F93w/9LzXKCqvZNHWEnrHVUJsK7Ds/0eRHudiga89KlANhWZVzqKtJbR2hBIwLaRyaFSXFKriOqHQ6MINzXLNQGXoD76znuSQy0aVdhH0SnJIiOagtWZ9XgWfL9yEo6aIU46LRVUXm9PKmpA9Ntm8fnXDVyzbVebFUrKJjmoXbYedh83aXJNhhRARoRTWc/+DHnYbtBtx8OP3MrRDEtt9ofcazdiU2r/7PYxDpro2li0qwfyipvyAx4lj05wfPuNTdT9u5cMy5KYmu45KMJNDlh5nmY87j8Mx9j4I0/T6I43Vonjhkv7MjD+bZ9R1ULQR9c4E9IYf6j1+y5ZNOFSQhIzDX+FWHFw43w2PBK4Eximllob+nQ68BMQCP4S2vRLGa7Z4MU4bD140li7XvsINUS8w39sW9e196FfH0JuNtLOVQlybA45x5fD2lMb3AGDN4hmAmRzqkxw0D2ghPYeUUgwcNBSAtSsWNcs1A7tXoai3cshOJS6CNdJzSIjm8NgXq3jw+f8y+Jsz+Ml5HyNjzZXKmjo55Iwzk0OekoZ/YFuxo5TxliXmg+PCN8VNCNGCxbZCnfrXQ6rCGdg+kQJCU9ibcTl7vTs5ZJfkUGM5di9W4pXkkNiTUVPF6EV3Um2Nw/q7adBuaNNdrPOJBNuPgg6jm+4aR5h4t51Xrh7Ke8apXO56iUByN/THV6GzZ8Nek4zyt28EIKn10bOCW0sWtuSQ1nqW1lpprftorfuF/n2jte6stW5bZ9vN4brmkWREpxRe+b/LmT/qTW71302Np5hPnI8TXbQCFZdxwHPTYl38/eYLqMbFol9/YWN+BevyKugRH0oOtZBpZQBjRowggIWCZd81y/VqlyjdT+VQNU6CXlmpQoim9svafPLmfcKnzsdJc2sSlAfnjL+aO5s4ORSdYLYo9GyY2eBzVuws40TrYoIp3SAxq4kiE0IcLdokuCmzht5vVTRfcsjYvaiGVA41mjs2dPNUKofEXubN+Bo3XnYN/SOkdW/ai3U5Eeu1X0lT9L10Tovh+Uv6sTA3wKOxj2G4k1FvnU7w6Q74PrkJSrIB8ORvBsCSeOQvWHUkkDr6ZuSyW7nn5K7cfMv/cV/yy+QkDEL5PAetHAJIinVDq96cwlzyXzmbqy3f0SHGh0ZBPc2YI8XpimZh+kWMrvyO/CXfNPn19O4/+PUkh2KdNiq1C2S1MiGaVJGnhgc/WcIjro8wUrsR9X+LMNofD1vMSkfq9hxqAu7Mvvwc7EfGwr/j+/Gvv911KtuBsWJSvees3l7AQMt6rMed1KSxCSGODhaLwp0YWjykGSuHlH93ckh6DjVWTLyZzPNXlkY2ENGiBIIG2Qu+wY+NIWPOiHQ4x7Tx3dN58NRuvL/ax53Rz1I2/m8EupyKbe3n6H8Nwj//TXTJdvPgJn4vKUySHIqAPpkJvH/nabS/42v02S/DsFsadJ570OXgiicruIWHbO/T2r8V3AlgsTZtwI2Uce6TbDDa4PrmTqguabLrGIbG6gtVBdUzrSzaaaMKpySHhGhC/qDBbe8vZpRvOm2MHGzj/gCuOCwj7wJAWx0Qk96kMXRtncBDjgf5yjIWx6xnYO3XAAS/uhfLpOugeMsex2utCexchoMAZA5p0tiEEEePVmnp1GBv5uRQqF2nTCtrtLiE0JTjsob3oxNHv8+X7qKndwnlyX2xuGIjHc4x73djOvG3C/rwwzaDs389jvXDnsFy1xKCrQeipz5CByMbnyMBZMXGZiHJoUiy2lD9r4D4zIYdP+haYu5dyj2uJ7CrINa1X7aYfkN1tW+VwltpDxLtLyIw/Z8HP+EQVdQEiCH0pqm+aWWhyqHaN1ZCiLB7/MvVzN9cyJ/ivsZI6wldQ3fhupyEkdodHd/ugA33wyHebed/14/gj8ZNbFWt2TH5EV796HOsG0LTW9d8ucfxO0qq6exbaz7IHNSksQkhjh4d02Io0PEEy3Ob5Xo1gSBOw0tAOcBqa5ZrHk0Sk8zkUFVF092oFEcWrTXv/LyEXpZsknpJ5XBLcdGgtrx/4zBqAgbn/Wc2768JYDvjbzgCFZxpnYtNppQ1G0kOHWHcDiv/vOV8qjuehkK3mJXK9jZs1Il8ExyCXvhGo5aXboyyKj+xu5ND9VQOxYZ6DlkDkhwSoil8sWwXi+ZN57u0l4mrzMYy5v7fEkFKYblkIpbzX2+WWHq2jueNa4fzSdSlZPo2c+rq3+NVLozkLhirpuxx7IqdZfSzbKImKgPiWjdLfEKII1+HlGjydQI1pTnNcr3y6gBuvARsMqXsUKQlxFClndR4JDkkTIu3lZJRshALGtVpbKTDEXUMzkri27tGMaJTCg9PWcGbm+OYGhxo/qwSZUpZc5Hk0BGodYKb6LH3AKBaUDPquk7umc5HzguwByox5r/WJNcorfYRo6rNvkv1lFvHOG1U4sIWrNqn870Q4vDkV3j5bMonfOn8I51qVhMY9xh0P2vPg5I7QZsBzRbTwPaJ/P7ehwkmdaa9yucd/3h+jT0Zy65FULaj9rjlO8rob9mIra1UDQkhGq5jagwFOqHZKofKqv1EqxoMm7tZrne0SYt1UYGbQFVZpENpnKCf4AeXEXhzAsbUP0FF87zejgWTl+xgtG0Vhj0a2gyMdDhiLwlRDv5zxQC6tYrjz1+u5iXjfABUQvsIR3bskOTQkartYIy+l0HnEyMdSb2cNisnjTuJX4J9Ccz+N/jCX71TVu0njiqC9ph6p61EO21UaRcWHYSgL+zXF+JYpbXm4ckruT74KYYrCevdy7CN/r8mnz7WIBYrlpP+TDA2k53druPhdR3N7XWmlm3YsoV2Kh9ru8ERClIIcSTqmBpNgY7HVpXfLNcr9/px4zU/yIpGS4yy4yEKw3tkJYfKfnke67qvqSjKwTLnBVj8TqRDOirUBIJ8s3QHpziWQfsRYLVHOiRRjyiHjdeuHEhStIMOvUegL3oXht0a6bCOGS3gnbw4VJZz/wNDfxfpMPbr4sFt+cB5IQ5fCcHvHgr7+KVVfmJVNbqefkMADpuFGovLfCBNqYUImzmbishZM5dRluXYRt7W4nqfqe4TsN67iocvGUe3nv1ZY7Qjb8YbGJ4iPlu8A71joXlgG6kcEkI0XJzLjseRgjtQBoFG3HQyDPSLA2HJe426Xlm1n2hqULJS2SFRSlFtiUYdQUvZb1y7DOesv/FdcDAX/j979x0eVZU+cPx7pqf3hBQg9N67CCrYxYq9i72t7m+t6+7qurr2XtddexcLYu+ICIL03kJNKOk9M5mZe35/3CEGSELKJBPI+3meeZh77znnvndyNTfvnGJ5HB2RtFfPV9F8P63NY5L3JxJ8uVhGTgt1OKIBnePDmX3bUTxy5hBU/1MgVoaVtRVJDolW47JbGT/pZF7wnYx18Wvo318OavvFVYE5h+qYb2gPY884/eryoJ5biI7shVlZ3Oz6AsMRhRp1eajDqZfDZuGZ84axKONi4is2UfrYcJbMeJrT4zahlRXShoY6RCHEQUZFBVZfrMhrfKXKAlThRvSG75p0rtIqL2HKg3LIKj3N5bVF/bGybTtX5vay8/0/48PGqiF/Y2NuOe6wTlC6I9ShHRI+XriFm+yf4kseBH1OCHU44gAinTYcNklVtDX5xEWrOmtkBs+q81kXNRa+ug2KtpgHdq3AmPNUi+YCKqqoJopKLA0kh7Qj0BW7FYa1CdERrcguoSJrHpP1b6hRV4IrJtQhNchmtXDBlbfwzeHvsc1I4F+W/3Byxcfo5P7gkKEaQoimCYtNNd8Ub218pXJzzhi9c1mTzlVa5SUCN1aXJIeay++IwuE/OL4gfPqblYw2llE58AIuPm4cFgU5Rhxaeg612MbcMqLWf0JndmGbdCcoFeqQhGiXJDkkWlW4w8aR/TpxV+W5KMMHm38BQM99Bsv3/4AVHza77c35FcTZPFjD6v/jVO8Zpy/DyoQIitd/XMqzjmfxR2egDr8p1OE0ilKKKcccS9yffiHn1A/xDLoAy/iDI3YhRPti6TyKYh1B9ac3gbuRw5UCEwpbijY3aQXXkiovYXiwSXKo+ZzRhBkVUF2Bzl4U6mjqtWpHCcvm/4hT+UgeOImkKCfjeiSwvCwKyqTnUEu9+sMybrF/QHXSQOhzYqjDEaLdkuSQaHUnDUplUUUiXkcMZC8AoHLjrwAYX90BlYXNandjbjlx1iqoZ84h4I+eATKsTIgWW7+7jMkb7qOTKsR29usQFhvqkJqkc0IE6cOOwTn1eRh8VqjDEUIchNIyunCt92ZsRVn4P7wcDOPAlcp2/vF+14pGn6vU7SNSubE6pZdjc1nCYojUlVR/cgO8fEyznzlbk2Fo/j5jJROcWeaOzmMAOGlQGusro1DuEvDIc2xz5RRXMXz1QySrEhynPS29hoRogCSHRKs7qk8yLrudLGc/jG3z2bp5AxGV2XzgOwLcxRjf/r3JbRqGJiuv/IBzDlmdgW/bpOeQEC328he/cIJ1AZ5xN0OGLAErhOh4DuuRyK740TxpnYZ147ew5M0DVyrb/cf7JgwtK6n0Eq48IHMONZsjIpYwVY1jzcco7YedS0Md0n6mL9rO4m3FTE3ajk7sAxEJABw/sBM7Md/LvEPN9/PMN5hqnU35qBtl+XohDkCSQ6LVhTmsTO6XzA/l3bDkr+OLj14D4Kuwk/g27ATU8vcb3zU7YEdJFZXVflz+igZ7DtWM0/fKnENCtMSSbUVUbJwLQPigk0McjRBChIbLbuWRMwfzTMWRbA4fjPH9PQfujVK2Ex0Wj45KhV3LG32u0qpqwnGDrFbWbF3SOgFQYk82d+QsDmE0e6v2GeSWuXnwq7WM6RpLaukyVJexNcfjIxzY4zLMjVKZd6g5CoqKOSLrYXY4uxNz3F2hDkeIdk+SQ6JNnD4snTme7gAcV/oRPmsY48cfxStFQ1GGF7J+bFJ7G3PLcVKNVXvBGVVvuZpx+jKsTIgWefy79Yx3ZqFtYZAyMNThCCFEyIzMjGfa+O5cV3QeqqoY44d/NVyhfDfF1njyo/ph7Fhq7vNWHXBRjvLKSqwYMnl+C0QnmcmVv3svxR/bDb1jSYgjgvwyNy+++BRf//NEdj0yln/7HuHhw3zm8LEu4/Yq2ymjBwBGSU4oQj3orf7oftJVPvqEh8HmCHU4QrR7khwSbWJyvxT+ff0laCz0sOzE0mUMZ43pxhp7Pyos0ei1XzSpvY255URSZW40sFqSPSyQOJJhZUI0m2Fo5m8qZGLYJnTGSLDaQx2SEEKE1K3H9cGePpi39PFYFr2Cf/rlUFFQZ9mK/O2sKAnjnW2x6PwNrPzgXvS/0/E/PgDfjBthzWd19qAuKSky39glOdRsfaew/MRPmekeSnZY35Anh5avWE7OYxO4Ztc/ONK5npi4RI63LKTL15eaBWr1HALo2aMXAAU7NrdxpAe/8rxtjNj+OosiJpA+9JhQhyPEQUGSQ6LNdEtPQacMAMDSdRwxYXbOGtWNb7xD8K/7Bvy+RreVlVdORpjX3GhgWJkjPAq/VvgrWm8Cwi35FXy3dBPGjOsxXjnhgN8ECnGwKaysxuqvJLVqA5bARJlCCNGRuexWXrxwBM9aL+ZVx3lY1nyK8eKEmpXJavMW7yRfxTNwxASsGAxc/RhzjQEsN7qhV34E71+I8fQwKM+tqWMYmuKSEnNDeg41n9XOoFFH0Dslku9K0rCU5uz1ObelldlFeD68ih5ks3PiQ0TfuZ6uf/4edeozqKpCc9hhXOZedYZ1TyFPx1C8e0tIYj6YbfzsMez4iDjp36EORYiDhiSHRJuydAn8YRn4ZuTGST2ZYx2NrboEvW1e4xrxVVO2Yz194wNJmAYmpI4Ic5GjE/HnZ7Uk7DqVe3w89c6n/PfJf9Dl45OxLH0Ly7a54Gna/ElCtHe7StwMsWzCov01q6gIIURHlxYbxlMXjua+8lO4v9OT4C7CePd88LprypRVeYjwFhCT3JnJR5+ItoWR2+UkvhryNNOqbqJf+Qt8NuBJVGUBzP9PTb3dZW4cRqCHtMw51CJKKS49rBvfFqWZO/YM7WtDG3PLmfHyA4xSa/Aecx+pk64Bq808OOxC9JmvwvEP7reSVpf4cPJUAr7C7W0e88FMa403Zynb7N3o239wqMMR4qAhySHRtgZOxeg8FjJGAxAX4WDYUWfg0Ta2zftw77Jaw8qP9+qmvXvBR/ifHc3T+VdwpH2NubOBnkORThtbdCeMgk1BvQyPz89bL/ybm9ZfzP22/xGtKlmeeqZ5UFaUEIeYnSVuhqv15kbGyNAGI4QQ7cjY7gn87aR+/G9THF/2+CeWHYswZv6pphfx1wtWYVd++vTqBVGdUP+3muTL3ua+M4ax4K6jOXlYV25clMy25Eno3/8LnjIAsouqCMdjnkRWK2uxs0ZmUBrXHwOFkbNov+PGV3fC6pmtcu7thZXc/N+vuEm/SUXaeOIOm7ZfGTXwDNSA0/bfrxSeiFSclfv3SKuT1uYE6Ya/hVEf3BZvKyLTtxlLpwGhDkWIg4okh0Tb6noYlsu/2etbsHMP7898+yg6rX8Hz6a5f5TNXggfXgYLzG/SFsz6nJQvp5FXaVCuwzgq/x2zXAMTUke5zOSQrWRT0IZ7+Q3N3e/8zDlF/yEvbjj8aQnXJb/J25WBHhWlMmmgOLTsKqlihGUD3rheEB4f6nCEEKJdufSwTM4Yns4NS9PZOOBPWFa8j/71aQBmLVwBQHpGplk4PL6md4jdauHhMwczqW8yN2UfYU5IvOh1wEwoRKhADyS79BxqKbvVwnXHDWWjkcautfv0VN86D8v852HlR0E/b2W1j4tens/N3pcIt/qJmPrMfr2DDsQel0GikU/R+nkYj/TCmPMUGAZ610o8c19k18+vkPXxveQ9fhjGvUnwcDeYcV3Qr+Vg8tW85SSpEtL6jAp1KEIcVIKWHFJKdVZK/aSUWqOUWqWUuimwP14p9Z1SakPg37hgnVMcGuxWC+FnPEOOEY//7XMgfwMA+vf/mf9mLwRg17JvMbTi6NK/85r/WFy+wPCthoaVOW1s1SnYqssOvNRsI1R4fFz95kJGrH+CaEsVSee9APHdObp/J+bsDqyCID2HRIgZH1+NnnlT0NrbWeJmiCULa5fRQWtTCCEOFUop/n36IAalx3D6yvGU9jgZvr+b7PkzqCgwlyBX0Wl11rVbLfxpci+WGj3JSxyN/u150JrthVWE1fQckjmHgmHKoFS2uvoRt/s3yhe+V/OlofHLYwDost1BP+fy7BL6FM3iaBagjrwTEno0uY3YTplEq0py3r4Of0UBlu//wY5/9kS9OB7nt7fT6ac/02P5Y+QUu3mTE9HJ/dG7VwT9Wg4WldU+Nq9eAIAzfVCIoxHi4BLMnkM+4C9a637AWOB6pVR/4A7gB611L+CHwLYQexnZvxcf9XuSSh+UvjKVeYsWwqpP0MoCOYsoKvcQU7CUvLBunDy6L28ZJ2DYXGblAwwr26w7mRuFzRxapjW5j49n4aOnctFTnzNkw7OcZZuN5bCbILkvAMf2TyGXQN5TkkMilMp2oVZ8ALuWNa681ujqygaL5BeXkKhKsSR0C0KAQghx6HHZrbx40QjsNiuXFFyCkdgH509308lSbBaI6lRv3YFp0UQ4rMx1TUSV5kDRZrKLKkkLCwwNkuRQUFgsirRT72at0ZnIz6/G+9ZZsOoTLBu/A4sNyncG/Zw78wq41/4aVQkDsBx2Q7PaSOvcE4CBahNfZvyZmV3uoDqqC7O6/om3xn3B98d+y7JzFrDixE+4u+occuNHQEl2MC/joPLVil1k+reaGykDQxuMEAeZoCWHtNY7tdaLA+/LgDVAOnAq8Hqg2OvAacE6pzi0XHXa0dxlv42wimx6zTwd5fegRl+Fchfz8/zfGKI24sgczb9PH8hXfz0dNfJytCOyweRQlMvsOQRAYfMmpa6qLCe5dCUjy2fxQeU0brTNwDf4fNSRt9eU6ZkcSVpCNMWWOBlWJkLG7fVTtehdlDbAU964Shu+hUd6NtizrrookPCMqvubbyGEEJAeG8Y/TxnAkl3VLEs9myT3FqZGBeZHjEypt57NamFkZjxfFmWYO7IXsb2okrSIwHB4SQ4FzYABg1kw6V3u816Af/OvMP1S/LYIGHKeudJckFec9eYsJ0UVY5t0B1jtzWrDEmveF0Zcd0697A5OmXYnmbfM4sjL/sWFxx3O0YeNYUi/Ppw6NA27VbGyIsYcoujuYAukFG7G+/a5fPX7KkaG7cCISIaIxFBHJcRBpVXmHFJKZQLDgPlAitZ6J5gJJCC5Nc4pDn4xYXYe/ss17B77NxJVKfONvqxPOxUAz6L3iFUVxPY6DKUUCZFO1DH3oq777Y/VHuoQ6bSzTadgYGl2z6Fdu81JALO6nY/RfTL+0/6D7YwXwO6qKaOU4qg+yWz3x6Gl55AIkb+8v5Rds181N6orGlcpdw3KWwFFm+svs+eejk5tWYBCCHGIO2lQKoMzYrhxWWe82srIqjnosHiwORusN6Z7PN8XJGDYwiBnEdlFVXRy+cyDMudQUF05sRfZfS/nsMrHedF3Ms+EXQNJfVE+N7hLgnquqsCXK/b4rs1vJLEPOjwRy3H3N5hginbZGds9gTm5gefTkg62wln2QuwbvmJg9nsMd+6AFJmMWoimCnpySCkVCXwE3Ky1bnTKWil1lVJqoVJqYV5eXrDDEgeJmDA7Gcf/mapjH+Fh61XctwC8FheTKj4HQHWuNeeJ1QaxnRtsL8JpxYuNMlcquqB5PYfy8wJj0LuMw3HxdKxDz62zXI/kSHYacfiKpOeQaHub8yvYunoe3YytaFcMVDey51BlYDXAeuZa0FpjrQiskiI9h4QQokEWi+KO4/uSUx3BHIag0A0OKdtjbPcE/FgpiumPkf07O0vcJDn3DCuT1cqCyWJRvHDhcH6+50yKx/+NZwpGUuVKMg+WNXJVsEbylQZ+tzbQc+yAIhJQt26EvicesOixAzqxtDSwUEtHG1rmNYfIX2z9liT3ZiySHBKiyYKaHFJK2TETQ29rrT8O7N6tlEoNHE8Fcuuqq7V+SWs9Ums9MikpKZhhiYONUoQddhUnTDqK2VlFLPZlkqRKMRxRkNinSU1FOm2kx4axxUhBN3M5+8JCM1kZl9DwL/a0GBc7dTyqTHoOiTa2eiYxLw7jXft9eLSN0h6nmj2HGtM9fs9wsvK6H4hLq3zE+/PNjXomVBVCCPGHw3omcuaIDEp7nmbuaERyaFB6DOEOK2usvWHXCiyGlwSHF22xgc3RugF3QEopolx2JvZKxG9o1pQHhu6VBXfeIVWRh4GC8BYOb2rkCmfH9EshRwfOVbytZec8yBiB+RPjVTkWv0fmGxKiGYK5WpkCXgbWaK0fr3VoJnBJ4P0lwKfBOqc4tF04tiunDU0jpoe5RLxKHwGWpt2ySikuPSyTZZUJGAUbmzWWvKzI/MM4Nr7hpGVabBi7dAK26pLGD+kRIgg8a77C6S1hlvMI7vBeSa4lCaX94PMcsK6uDCR+6uk5tLO0ik6qCJ8tvMGVAYUQQvzh0bOGcOo5V6AdEaiYjAOWt1stjOgaxw9lXbD4PfRTW4m1eWW+oVY2vGscDpuFebmB4VpB7DnkNzROTwFuW0yDUyAEU6cYF6npXfBi63A9h7JzzZ7QRVG9zB3Sc0iIJgtmz6HxwEXAJKXU0sDrROBB4Bil1AbgmMC2EAfkslt58txh9B1xJAAqY2Sz2jl7VGd2WFKxVZdCVVGT61eWmj0rLGExDZZLiw1jp443N0qDv+KFEPXZvW09a3VnUs57gU+MCeR6Ag+hjRhapvcMK6un59DOEjedVAHe8AN/8y2EEKIWRwTqsq/hqLsaVfz4gZ34OjAp9VDLRqKt1WCX5FBrctmtDO8Sy485gZ459fwubI7dpW4SKKHalRC0NhtjXM9kdugEfEUdq+dQWXkZANWT7sPb7ShI6hviiIQ4+ARztbI5WmultR6stR4aeH2ptS7QWk/WWvcK/Fv/kjhC1CXzcHRcJvQ58FjrusSE2enc0+xaWrh9dZPrV5cH/ngOi2uwXLTLRokt8AAgK5aJNlJYUY0q3o4vqjOju8UTG25nZ5XVPNiYeYcCw8p0Pd+W7ipx00kVoWRImRBCNF3q4EYNKwM4b1QX+vfpS66OZagli3Dc0nOoDYzrnsjiXV5z+oIg9hzKLqoiSRWjI9p2LZ5xPRLIMRKoyN3SpucNNb+nkirtwNV3MvZLZshwTCGaoVVWKxMiqCKTUTctg4wRzW7iiHHjAPj2+2/RTRxa5q8sNt84Gx5So5RCR6WbG0Eesy5EfV78aR2dyKdX7/4AZCZEkF0R+F97I4Y3qkDPofqSQzsDySFH/IGHRQghhGg+i0Xx2DlDWWXtx4nWBahtc8EhK5W1tnE9EtAaKp1JQX1+yymuJJESbNFt2/N2ZNc4dpCE6mCrlRnVlVThIMrZNkP4hDgUSXJIdAgZPQeRG96TIbs/5v0Fje9m6/b6sVWX4rFGNGq8uD0ukBySnkOiNeWtQ784gV07tvH1b0uxKz/x6T0B6JYYwdayQLkGkkMVHh/P/7gW5S4GQNUz59Du4gpSVBEW6TkkhBCtLjbcQb/LnqUq8xhU+e6WT2QsDmho51hcdgu5OhZdGsSeQ4VVJKoSwuLaNjkU4bRhRKcT6c0Hv7dNzx1KuroSj3JisTRu8m4hxP4kOSQ6BqWIn3QT/Szb+erz6WRty4E1n4NhNFhtR3EVMaoCn6NxE/EmxsdSTCSUyoplohVl/YjatZwFP39BqhFYADK2C2Amh7aVH3hY2W+bCnj528XmhjMGKnLB8O9XrqJoFzb8slKZEEK0kU6dexJ36Ttw3XzUyU+FOpxDnsNmYXiXOLZURwd3zqGCQiKUB1t0C5axb6boTt2xoKnI24r+/l+wY0mbx9DWtLeKauUKdRhCHNQkOSQ6DNuQs/G54rnR+hGW146H9y9Az3m8wTrZRVVEUwGuhiej3iMtJoydRjz+Yuk5JFpR/noAyrYsYUKSuXQrsV0ByEyMoJLAw5Gn/uRQucdHnApM3pjY11zdbM/k1LVUFQZWO4lKDVLwQgghGiW5L8R2DnUUHcKozHg2VEaacw41Y2XbupQXBr4obOM5hwAyMnsDUPzdI6g5j6J/fqTNY2hryufGZ3GGOgwhDmqSHBIdh90FIy5jJKtJ8OeRFTkcfrofNv9Sb5WcQM8hW3jDk1HvsWfFMm9Rx1o+VLQtnbcOgJTK9YxLCCSHAksld0uIoGJPcqiBYWVlbh/xmMmhJe5A4mefeYd2l7qx7OkFJz2HhBBCHKJGd4tnt45D+T3NWtm2Lt7iwO/UyLZPDvXq3Q+A9Kz3zB0bvwd3aZvH0Zas/ip8Vuk5JERLSHJIdCi2w66ncuAFvDPwv5ySfz3lEV0xPpwG+8y3otd/A1vmkF1USQwVOCIblxxKjXWxVadgL9rYocZ5izaWvwGA/pat9HEVoSM7mclPIDMxnEq9JznUuJ5Dn++OD+zc+7+DhVuKSFGBh2RJDgkhhDhEDesSS74KPOsFYcUyw9Do8sCw7xAkh5zxXWrer+x9vZn0WvdVm8fRlqw+N4Y1LNRhCHFQk+SQ6FgiEgg/83mmnX4SPTI6cWn59eAuxfjw8j/mWynIgvcvQn9/L9lFVcRZq1AHWMZ+j/TYMBYafbD6q2DXila8ENFhVRWhKnIptsSRpgqJKFix17CDKJcdV0SUuXGACakTAsmhNf7ASmT7PBD/vqWQDGsxWlkhIim41yGEEEK0E+EOGxEJgUVFDjTvkN8LVcUNFtlSUEGcDpQJwbAy7C6MmK4sc47kjFWH4Q5PRa/86I/j67/FeKwvrP607WNrJTbDg7ZJckiIlpDkkOiQHDYLT587jLVGZ56PuA7L1l/Q3/4dfNUYM28yv2Ep2V5rzqHYRrXbKcbFQsMc582231rvAjqiA0we3hForfl94XwAZlSPBkDtXokKzDe0R0pCPAbqgMPKUuzm8fU6kFza54F44dZC+keUQVQKWKzBugwhhBCi3cno3B0Ab/EBFhWZ+wz64e5Uf3QtFNe9Au68TQUkUmJuRIRmxTnLtC/JvPZDuiRE8W7FCHTWj+aQuapijJk3oMp3oz+4xJyP6BAYcmbX7ppe1EKI5pHkkOiwMhMjeGDqYB7NHcnPESegfnsO49FeWLb+AvE9oGwnO/MKCdNVjZ6Q2mmz4o9MpcCeit42r5WvoONY8dX/MO5NwP9wL4xPrg11OCEzL6uAD77+AYDPjHF/HIjbOzkUF+HAjavB5FC5x0eKtQLtiKBcReC2Ru01vLLc42P1jlK6OkogKj24FyKEEEK0M7179QJgd/amBsvp/HVgsWFb/RHGS0fBnuFj5XlQbc4DOC+rgC7OMnRYPFjtrRp3vWIyiImN450rx7Ag4kgshpfVj5/MwqfOhfJ8Vh33PkuijkD9dB++h3pQ/dY5sOx9WPMZ/ncvwP/aKejv/gm/PoX+6d9mz/p2yu3148KDcoSHOhQhDmqSHBId2ilD0vj36YO4pOBC7gq/h5W6BxsTJ8HhN6PQJFYFHhDCYhvdZnqsizX2AWbPoSCteNHhaG1OnmgYfLtqF5vnfkSJDscdloJa/n6H/Vx/WpdLb8tODIuD52+70pxrCGqWsd8j0mmjUrmguqzetio8PhItZRCWQGpMGEXWeHStnkOLtxbh1G7SKtehEnu2yvUIIYQQ7cWInulsN5Ko2r6swXI7srex2ujM8uM/QXnK8X98DWz4Dv3UYIx3z0UbBr9tKqBneFVI5hvaV3KUi39eexFvJ/2ZdN82Rrrn8aLvJKbM8HJRyTXcEfsIb3gnUbhhAXxyFbx/IRVZcynI24We+zR89w/Uzw/BvGdDfSn1Kq3yEkY1FkkOCdEitlAHIESonT+mCw6bhXcXxHNtyRDydnlYHuHAhTnhL9DonkNgrlg2u6gHh/u/h8JNkNCjdQI/lG2eDW9NZdOkF7n+mxhmO7KY5+tPUuIERhWsAHdJkxJ2h4qf1+fxQEQeRPUgJTYS3WkQbNy1f3LIZaNCu0g8QM+heMrQ4Ql0iQgnNy+OlLJdqMDxhVsKOdv6M3ZvKYy4rBWvSgghhAi9+AgHq1196FnY8JyR/rLd7PRFc/UnJTyeeS2nbnoCNv0AYQlYNv9MzoKPyC8PJy2qrF0kh8BMEF1w/T3g+Qtk/cTx8YeTvquKI/skExNmZ+GWM3l19U7sOxZTXFLMV+U9KSgwcFLNpN4JPM8DsGtlzTNCe1NS5SWDaqxOSQ4J0RKSHBICOHNEBmeOyGBeVgHn/fc3FhRFMhEY4cwGg0bPOQRw8bhM7l3bC2xQtv4XosZJcqjJclcDsGHup/QKP4tU724+cBxPYamDUQCVBR0uObSjuIr1u8vpEZeDShoOgOo0EDZ+B/vMORTptFOunQeccyiWMlREF7qGhZOzM5pBZVtqjs/dsJtnnN9gpI7E0mVMq1yTEEII0Z5YM4bTadMcdu7MJjU1o84y4d5C7NG9OD69E7etHo3fMhGXdvNdyl95uOx2In/+Jw7uI9YoRkW0s563zijofwrdge6d/tg9MjOekZnxwAAA7gNK3V5emJXFC7OyKB7Zh9j10835Hy3tb+BJSaWHXqoamySHhGiR9vdftxAhNDIzjpgwO59vMf/TGO7INg80IRExrkcCd118KsU6kvXf/Y/ti7+BioL9h0IVbob138KazzrsMKl65a8HoH/lQv462FyO3Zs6gqUFgUmRKwtDFVnI/Lw+DwdeYtw5qMQ+5s7B56JHXg5xmXuVjXLZKNcu/J76l7Kv8PiI1qWo8AQ6x4ezzRuNKt8FhsGO4ioSc34g1diF5bAbW/GqhBBCiPaj66DDAVixYFadx6s8XmKNElxxqTx3/nDW3Xcip94zk+1Hv8gXG93cWHgWMVXbeSH8JWyVue2m51BzRLvsXDWhO2F2K98XJqGqy6F4S6jDqlNZufm843BFhjgSIQ5ukhwSoha71cKRfZL4bFUBu3UsXbyBOYeaMKwM4PDeyXj6nMoIYwWdZ54Nj3THeLALLHzVLLDpZ/Qzw+Gds+D9C2Hr3CBfycFJa823q3aRu2k5AJ0teYyv/AFtsZHQcxQbyhxmwcqCEEbZ9nzZixn5/TnMdd2E0gYkBlbES+6LmvL4fiuJRTrNYWWGu/7kULnHR6RRAuGJdE0IJ0unofzVULCRL1fs5Dzrj1RHdoZ+J7fmpQkhhBDtRlo/c7GHwg3myqD7fnm3Zft2bMogMj61Zp/Vorj6iB58cePh7EwYx+PeMznCmI/yVkJEUpvF3hriIhycNTKDd7dFmzt2rwptQPWorDDnWHSGRYQ4EiEObpIcEmIfR/dLocrrZ4dOxO43V51oyrCyPVLOf57dV6/k7qh7uN9/EaVRvdBf3QY7l2F8/hd0bFc49x2zcP664F3AQWz+5kKuenMRqmA9C4y+AKg1n6I7DWZYjzQKiTILdqDkkHf+y1heOZZIz242xIzHe9jN0Pu4ButEOm1U4kJ76p+QutpdicuogvB4usSHs8gIJJy2/8aXy7Yz2roee7/jZQl7IYQQHYcrmgJXVxJKVlG04Tf0wz1g1x9zEOVkm3NRJqTsP+SsV0oUH117GJlT/0nBJT+jR18F/U9ts9Bby+WHd2ONPx0DC+xaGepw6lRRYX4Z5gyXnkNCtIQkh4TYxxF9krBZFLmWWt/2NLHn0B4pqZ3587XXMzv+bKbkXk2lCqf6v8dhKdzAJ51uorjzZLTN1a6XB21L78zfRrrLTZIqZeBR52LEmBMtWzJG0T81mgpr4OfQUZJDvmpsX99KduRgjvc8gHHy09iP/Se4ohustmdC6vrmHNJaY68uNjfCE+gaH8EmnUqVLYbyjb9i5CwlDDcqc3yQL0gIIYRo36wZwxliycL32V9QVQWw5deaY3m7zOkGEjt1rrOuzWrhjOEZpHQbiDrxkUNiUZKuCRHEx8SS50hH726fyaGqQHLIJT2HhGgRSQ4JsY9ol51ThqYRkdwNAG11gD2s2e3Fhjt48/LRRCek8VfPpTiMKr42RvOXJcm8Pm87xHdHF2wMVvgHrcKKar5euYtpvb0AhKf3x9Jzknmw82gcNgs901PxYus4yaGyHSjt5z/FoxjZtzvjeyY2qlqUy0YlTizeupNDldV+4gj0KgpPICbcTrTLzpawAXg2/8YYyxrzWFdJDgkhhOhYYnqOIVkVk1QaSITk/jGUqiw/BwBbdEooQguZtFgXmyyZ7bbnkKfKTA7ZnJIcEqIlZLUyIerw+NlDYcFw+PIdc0iZatnincnRLr68aQIwAbKO5Pj0EYx/azUfLt7On7r2hNzAH+OGAb4qcHScX27+31/FqK7gu7IBVPsNTkorhfVAYi+wnYFe+REqkKQY1DmWol1RJFUWtNvlVIOqdAcAOUY890zp3+hqUU47Fbiw+CrN+RL2uX8rPD7i1J7kUDxgfjM4t7wHl3vmcmZEGEZkTywH8USaQgghRHOo9BEALDF6MbBrEtbdq2u+TfeU7DLfdLDfj2mxYawo6My44l/AU2auetaOeKoCX4a14MtcIYT0HBKifjGBLsPNHFJWrx5HgSuas0Z0ZnthFTnWdCjaDH4fLPgP+slB4KsO7jnbKV2Sg+WLP2P/7i7O+e00/pb0C52qt6GtTnN59u5HoO7Mhmhz4sfkKCcFOhJfeX6II28bRbu2ADBu2CAyExufMDSHlYVh0X7wefY7XubxEUtgsuqwOAC6xIfzbWkmAL2q16AyD29R7EIIIcRBKW0Yub3P4zbvlWyzdUPlrgHDoLLah60qH5+yN2suyoNZWmwYi6rSzI3dq0MbTB287j3JIVnKXoiWCFpySCn1ilIqVym1sta+oUqp35RSS5VSC5VSo4N1PiFaXeye5FBsqzR/3IBORDlt/FIYgzJ8ULwVvfZLVGUBFG1plXO2N3NnvIhC82fXP1liHczF7rfR239HJ/SscyLkxEgnRToKX1nHSA6tXbcWgBMOG9GkepFOGxU4zY065h0qd/uIVntPtp6ZGM4y3R1DmR1KJTkkhBCiQ7LaSTz3BUqjejCvPAXlrYCSbWzMLSeREryuhBb3KD/YpMWGscJnzgNZe5hde+H17EkOuUIbiBAHuWD2HHoNOH6ffQ8D/9RaDwX+EdgW4uAQ6DmkwoLccyggzGFlypBUZm43v+X4btZPkL3APFiwoVXO2Z58u2oX8Vkz2Ozqz+O338SwK5/H4S1Fbf8NS1LvOuskRjnNFcs6wJxDWmt2ZW+iQoXTJbVpcxuYcw4FHpCq91+xrMLjI4bAg1SgZ9ylh3XjuUvGQ6fB5v6uhzU7diGEEOJgZrEojhvQic93xZo7dq9m3a4yklQJKvLgXp6+OdJjXewkHsPigMLNoQ5nP4Yn8IWX9BwSokWClhzSWs8GCvfdDexZVicG2BGs8wnR6lzRaGd0q3YdvnBsV7KtZjdd/9L3UD63eeAQn6Da7fXzysef0c+yjYwjLkUpBZ0GYQw80yyQ2KfOeomRDop0FFb3vv+rOfSs2lGKq2oX1eGdmlzXabPgJjDuvo6eQ2UeH9GqAq1sNfNbJUU5mdwvBcuAU/F3PRxi0lsUvxBCCHEwO35gJ1Z4A78Lc1fx/ZrddLKW4ohp+u/lg11abBgaCxXhGe2yd7tRvSc5JHMOCdESrT3n0M3AI0qp7cCjwJ2tfD4hgkqd8DCMubrV2h+QFsMvd5+JdsVytHURBgrtjIL8Q7vn0HsLtnGkZxaGsmEffGbNfsuku9ARyfX2WkmKNHsO2atLwPC3VbhtSvu9aJ+HjxfnkKYKiUjq0uQ2lFIYjsC3Z/UMK4uhAr8rZv+u8YffjPWyL5oTuhBCCHHIGNstgbi4eHKtKVTvWMlPa/NIs5dhiexYK5WBmRwCKHSkodtlcqjKfCM9h4RokdZODl0L/Flr3Rn4M/ByfQWVUlcF5iVamJeX18phCdFIQ8+Dzq08VZZSkNATGwZrdVd8SQPQ+Yduz6Fqn8FLP29kqmM+9JwMEQl/HIzvjrplPXQ/os668RFmzyGFhqritgm4rX1wCf6Pr+GLFTvoYi/GEZfRrGa0PdJ8U12+37GKah8xqgKcrTNkUgghhDjYWSyKc0d1Zll1OiVbluH1+4jyFUMHHFYW7bIT5bSxy9rJXERF67oL1re/FXn9BlZ/IDlkkzmHhGiJ1k4OXQJ8HHg/Haj3r2yt9Uta65Fa65FJSR3vf7qiY1MJPQGY6+/HFtKgMJAcCsEv2db2yZJskstWk2TkYRlw+v4FGpjk0Wa14HHEmhuH6rxDxVsh60cKSyuI9RdCdDOHdzn3JIfqGFbm9hFNJSostvlxCiGEEIe4s0Z2ZgOdia3axoh4L0r7IKJjLWO/R1psGFv8SShPGVQV7V9g0esYTw4Gd2mbxlVa5SWMwCq/MqxMiBZp7eTQDmBPF4BJwKE9VkaI5gokh7JjRvBzQSyqIg+qitFf3or/1Sng2b/3x8HqkyU5nB+1BG2xQZ9957A/MB0W6Gl0qCaHvFXYPMWMtKwze0g1MzlkdZpzCdV175R7fMSqCizhsS0IVAghhDi0pUS7sKYOxq78/Dl5kbkzsqMmh1ysr443N+oaWrb5Zywl29C/vdCmcZVUeQlT1fgtjjpXuhVCNF4wl7J/F5gH9FFKZSulLgeuBB5TSi0D/g1cFazzCXFI6XU0uss4hk08hd9K4gB45s0P8C96HevWXzCmXwZ+X4iDbDmtNWt3ljJJz0d3OwLC4prchgo/9JNDAOdELDa3m5scckWZb+oaVubxEWOpRLXiZOtCCCHEoWD4sRewiQwO2/Yfc0eHTQ6FsaIi8NxWR3LI2L0aAD3v2UYP/dfZC/G8P43ql47B+9xhVL9zAf75LzUprpIqL06qMWzSa0iIlgrmamXnaa1TtdZ2rXWG1vplrfUcrfUIrfUQrfUYrfWiYJ1PiENK2jDUtK85dUwf/n7JKQCM2fkGNqOa6XoSlo3f4n/zdFj75UGdJMot85Dm3kiidweW/qc0qw17dGDY6SGeHJqkF5jb0WnNasYWtic5VP+E1MiwMiGEEKJBo3qm0n3ayyjDa+7owMPKVlUFkkPFW/c+6KtGFWyAXsdi8ZSif7ofynabw8+2/w7lubXKejA2/ED19CtR/5uMbfOPYLFhRKZi3bEI61e3Qnnj55/NK/MQhgct8w0J0WK2UAcghNhb154D0MrKaL2C6qjOfBB+C6uz0/lz9hdEv3ce/q4TsJ73DriiQx1qk63ZWcrx1gVoZUH1ndKsNpwxh3ZyyPBWYgWifYHra2ZyyOGKxEBhqXPOIS9RVIBLJqQWQgghDqjLWIwRl6GWvImK6nhL2QOkx4ZRQRg+VwK2fXsOFWahDB9LY49hYP9obAteggV/9AAy7OHow/+CdpdiWfwaFk8JNpsL77g/YT/yNqzOwBdaWT/Cm6dD/rpGT/y9u8xDtKrG4pCVyoRoKUkOCdHeWO0QlwmFWTiGnsM7R47j0W/iGT77GG5K+J0btr2A8epJWC6cDgfZA8q6XWVMtKzAmzoSR0Ris9qIjY6hSjuwledjD1JcHp+fn9bmMUBvJG3Vi1hHXAq9jg5S601gGFj9HvxaYVUabY9ANTOBExVmp1K7iKwjOeRzV2DDDzKsTAghhGgUy4mPwthrO2yv2z3L2VdEZBBduIW9lg/JNYeU3THHjzv2HG4fcRyDbdtJDLfiTO6BsfhtbD/9C60s+HpPwTfkfJbaBrF0l4f1MzdR5vYSZrfywDG9CAPIXQOZhzcqrtxSNyl4JDkkRBBIckiI9iixJxRmwaCzsFst3HliP0ZmxvOXD1ysJpJn8p+E58dhmfI49D4B7AdHV9oNOwq4zLIVR+ZJzW4jKdJJIVHElua1KDlU7fWzaP02fl2zhd2rZnOs72c6WwMjX23O0CSHfG4ANtt70NO3ER2Vhmpg9baGRDptVOAk3FO2//hhd7H5r/QcEkIIIRrHaoOkPqGOImTS48zkUJ61E9FF6/Y6VrJ1ORHaQo9+Q9ha4ufaX71AX+LC7RzbvxP9Mh8gKeFidnhcLCyNZu77BZR5lgGQHOUkOszOxtxyRmfGc54zCpW3bt/T12t3qZvxNh/KLskhIVpKkkNCtENq4JkYYQlYkvvW7Dumfwpf/GkCN7wTwXE58bxs/S+Z0y8FwHDFYTnzZeg5OUQRN453x3Ic+CBjZLPbSIxyUKSjiCzPb1I9rTVrd5WxeslcUle8QK/KJYxTJYwLHC9zxvOU+3QuSs0hLncNzUvJtFBgvqGtUcPpWbQRYpo3pAzM5FC5DiOuogjHPseUp8R800G//RRCCCFE06TFuBjTLZ4fdoTTw7LdnAPTav4puWP9Iuyk8o/ThpMc5WRbYSVLthXz07pcvlixk/cXbgfAanHTOU5x4qBUJvdLZkTXOBIinWitmfLMHF6ft5VzE/tA3lrzOczvBcPf4Jegu0s9RFl9YD/4plsQor2R5JAQ7dHgs7EMPnu/3Z3jw5l+zWE891Myp89J50jvL0zJ1BxZPQv9wcWoy7+FlAEhCPjAvH6DhOLlYAXSW5AcinRSqKPIqGjanEMzlubwzAdfMd3xT+xKsyluHAVdhtE9LQVHSh/CMsYy/fFf6FL+FqdVf7bXQ0+b8ZnJobLIbhj+DCyJvZrdVKTLxk4dT3pJ9n7HbHuSQzKsTAghhBCNoJTisbOH8NKTKSjtx1e0DVtcZ4o9mvDi9RTH9KNntJnE6ZoQQdeECE4blk61z6Dc48NnGMSGOXDY9l8PSSnFJeMyue2j5eQndSNp588AGJ9ciy7Mwnrlj1BPT+rdpW4iLNXSc0iIIAjaamVCiLbhsFn48zG9mXX7sUSOvpDLN03kGv1X/PZIjLfPgjqSAe3B5vwKBrGRKmdSsydZBjM5tEvH4yzbBlo3ut6aDVm86XyImDAH0TfOZujNH9L3jLtwjL0Cuk3AZrdzzRE9mFOShPJXQ9HmZsfYXIanEgCHKwKmfQOT7252W1FOG9k6CWvp/veD3VtqvpFhZUIIIYRopIy4cI4dPwYA4/lxGP/O4Md3n6AzuaT1GVFnHYfNQnyEg+QoV52JoT1OGZpGbLid2UUJqIpcKMlBrf0c647FsGNJvfVyyzyEq2qwy1L2QrSUJIeEOEjFhNv512kDefb8Yfya5+QK760YVaUYr50MpTtDHd5+1uwsZajaiLfT8Hq//WmMhEgHK3Q3wrxFULK90fVSt84knTxsF02HhB51ljlzRAY7HF3Mjdw1zY6xuSoqzKSNIywSS2xGi1aki3TZyNGJ2KvywOuu2e83NE5fmbkhw8qEEEII0QTjjziW3yMnMd17OLvCenDG9n9jUZqk7sNa1K7LbuWcUZ35Ylfg2Wf+i6hAj2q95K0661T7DAorqnFRDdJzSIgWk+SQEAe5KYPT+ODqcazSmVzqvR3Kd2O8eZo5Rrsd2bI9m26W3YR3H9Oidpw2K1n23uZGzuJG1fEbGnvZdtzWSEiv+5stMB9MnJ36mxt5a1sUZ3OUlZebcYRHtLitSKeZHAL26k1WUe0jRgVWMJNhZUIIIYRoAuWMpPd1H/Bs+HUcn38zGyzdzAPJ/Vvc9rVH9CDXabanF76CdkZj9D8dVkyvmZextrxyDwAO7ZGeQ0IEgSSHhDgEDEyP4b8Xj2SOuzvL+tyMJW9tuxpeprVmx+pfAbB1GdXi9goie+PD1mA349o251eQovNxh6cesGz39BSydRJGKHoOlZs9esLDo1rcVpTLRo5OMjdKttXsL3fXTg7JsDIhhBBCNE1MuJ0nzxlKWqdO+C+cgT7z1Xp7ZTdFbLiDK6YcToV2oqrL0b2OxTJqGspTCms+36/87lKzZ7TNcEtySIggkOSQEIeIwekxJEQ4+K003tzRhCFXrW3p9mLSylagUZDWsm7HADFRkWy1dcNoZM+h1TtLSVf5WOO6HLBsv9Qo1hkZeHeubmmYTVZVafYcCo9seXIo0mkne0/PoeI/7oWSKi/RVOK1RYLF2uLzCCGEEKLjGdM9ga9vnkjf7pmogWcErd3ThnVml6MrAPNsY9Bdx2PEdMU//z/7zTWZW+oGNFZflSSHhAgCSQ4JcYiwWBTjeybyTY7T3FG8reEKbejL+Su52Pot3i6Hg7PliY+u8eH8Xp2JzlkChnHA8qt3lJKm8glPyjxg2X6p0WzQGdiKs8wVy9rQnuRQVDCSQy4bu4jHwLpXonDdrjJiVAVaeg0JIYQQop1RSpHRZzg+bFz9Wxx3f7YGdfhNWHN+h6wf9iq7u9SDAx8KLckhIYJAkkNCHEIO75XI6opAYqGdJIfcXj99Vz1OtKrEcdLDQWnzL8f2Yb2tF1ZvGWU7Djw30KacXcSqikb1HOqZHMlGMrAaXijcFIxwG81TFUgORbU8ORRut2IoK2WOJHTx1pr9q3aUEKMqsYXHtfgcQgghhBDB5px8J+qCDzj38AG8MW8rr1dNwIjujP+H+8Aw8Ocshapidpe6ibRUm5VkQmohWkySQ0IcQib0SqQaOxWOpL2GEoXS/NlfMpUfyel7GaS0fLJCgE4xLs44+WQAXvng40C34joEehWV7AwkeWI7H7Btl91KVWwvcyOvbecdqq4yl7KPjGh5cshiUUQ6bBQ5OqGL/rgXVu0opZPDjZKVyoQQQgjRHsVlYu01mb+e2I9j+6fwr683ktXvOqw7l+B7YhDW/x6B/8kh9Nr0BpmRgQVYbK7QxizEIUCSQ0IcQlJjwuiZHEkOe/cWCZWNObl0nn0buSqR9FPvCWrbAwePxmcNI7F4GSc+PYd5WQVQkPXHahbrv0U/kEHh+l8Jq9ph7os5cHIIICytP24c6KxZQY35QHwec6JoizM4335FumzkW5NrhpVprVm1o5QEa5Ukh4QQQgjRrlksisfPGUqPpAjOmNuFkrgBGGHxVB/7MP6UwZye+xz/Mp4xC0vPISFaTJJDQhxiDu+ZyDp3LDrEw8qKKqpZ+Mr/0V3twHL681jDooN7AqsN1f0ILrB8yz95ntLXzoFnhlP9wkSqln6Enn4pyltB4dKvyFD5Zp1GJod6pifzlX8UesWHdS6d2lr2JIewBWfc/IC0aBYWR6LKdoLfR05xVWBC6gpZxl4IIYQQ7V6k08bbV4wlIzGGkbl/441Br+MfeQWOy2byP+fFDPCtMgvKnENCtJgkh4Q4xIzoGsc2IxFVkgOGP2RxzJ3zPWf7Pmdn7wtJHHxcq5zDeubLuEddz4n+WUy0reJl3wmUFOwibMY0qizh6NiuVG2aS09nMdpih8iURrXbLzWaD/xHYqkuhbVftErsdTGqq/BiA6stKO3dffIAcnQiSvvRpdms2lEKgMtfJsvYCyGEEOKgkBTl5L2rxjK2ewL3fbGGwx78gfd+384znin8knSuWShM5lIUoqWC8xeIEKLd6JcaxTydhNI+KNsJMRkhicORMx+L0qScfHfrncQZieukf2McfiMuh4uMTR5+2L2NyAVP8YbnSJ7tupiu6z7BlZwAvnSwNC4fPiAtmgW6HztVMvZfXiZh4FSUUq13HQG6uhKvcmIPUnud48OZMGoELIIfflvEKtsgHMqH1VcJMqxMCCGEEAeJmDA7b14+hoVbCnn023Xc8fEKAJb3u4XDT7salTo0tAEKcQiQnkNCHGIyEyLYbUk2N0I4KbVRugsvNiyRSa1+LktMKiosjuMGdOLcSaPpdvHz/O5O46l1sUSrKnqUL2z0kDKAxEgnz184iq9tk4jfPY+v7juDjU+fSuWrp+N77yL00nfBUxb8C/G58VqDO6Hi0WNHAvDDvAUsX7qQMfHmpNcyrEwIIYQQB5uRmfG8c8VYbj2uD1aLon9aDCp9eKO/ABRC1E96DglxiLFZLTgSMqEYczn7ruNCEoe1Ko8SaxyJbdDjZl8D0mI4Z2Rnfl3YA5xgqSpsUnII4LgBnfCm3oX7Pz8wpnoZefnhZOXbSHeUE792JsbXcVjOeRO6TYDKQlCqxV2aLb4q/E5ni9rYr81Ys+fY/Zb/YKnQfxyQYWVCCCGEOAhZLIrrj+rJFRO64bRZQx2OEIcMSQ4JcQiKS+sOxaCLt9L2qRmTy1OAOywhRGeHW47rwz1uL/7t8VjdhY1axn5f9vgu2O/cSDiQv6uMjxZsY/rCrQw21vGkfpXEN06jsuskIrf9BBmjUNO+ana81T4Du+HBCNJk1DXsLjxjb2Jrzg5e3hTLqT1tjIwpxdH9iOCeRwghhBCiDUliSIjgClpySCn1CjAFyNVaD6y1/0bgBsAHfKG1vi1Y5xRC1K1XehJ5q2KIzNtCKNZuKHV7iTOK8IV3CcHZTYmRTp69YAT6ndGw/usWz73Up1MU95wygGuP7MEj36Rz0tIMnrQ8wdAtv6DjMlC5q1rUfnFlNS6qwRbcYWUAzuPvpTdwdV45GXHhOGzS9VoIIYQQQgjxh2D+hfAacHztHUqpo4BTgcFa6wHAo0E8nxCiHv1So8nRiVTlbQ7J+bMLq0hSJViiOoXk/LWpzmPMN00cVlaflGgXj541hN/unUruae8zzP0fNmeeg3KXQFVRs9strvISpjxgDw9KnHXpnhQpiSEhhBBCCCHEfoL2V4LWejZQuM/ua4EHtdaeQJncYJ1PCFG/fp2iydZJWEu2gtYHrhBk2wvLiKcUZ2zjlo5vVf1PRXc7AtKGBbVZm9XCiYPTcDpdzCmIMncWbWl2e0UVZs8hi7P1kkNCCCGEEEIIUZfW/gq5NzBBKTVfKfWzUmpUfQWVUlcppRYqpRbm5eW1clhCHNpiwu1sdPQjxp2D/5u/tXmCKD93FzZlEJWQ3qbnrVNCD9QlM1tl6XaX3crkfsl8vj0wiXRLkkOVXlxUY3VIckgIIYQQQgjRtlo7OWQD4oCxwK3AB0rVvXSR1volrfVIrfXIpKTWX/paiEPdyozzmGE/Cetvz2J8+/c2PXdpbjYAYfFpbXreUDhhYCqrqwKrlBU2fxhfcWU1YXiwuyKCFJkQQgghhBBCNE5rJ4eygY+1aQFgAImtfE4hBDCyeyI3l51PQY8zUAv+Yy633kaqinYAoCLbwbCyVnZknyS0I5Jya2yLeg4VV3lxKa8kh4QQQgghhBBtrrWTQzOASQBKqd6AA8hv5XMKIYALxnQhNtzB0xWTUf5qWP1p0xpowVA0f9lu801kcrPbOFi47FYO75nIVp2CbtGwMrPnkM0ZivXlhBBCCCGEEB1Z0JJDSql3gXlAH6VUtlLqcuAVoLtSaiXwHnCJ1iGYHVeIDijKZeeaI3rw+pZYKqN7YCz/oPGVV3+Kfrg7lOQ0+bxaa1R5YO75DpAcAuifFs0GbwJGS4aVVXgJU9WoVlytTAghhBBCCCHqEszVys7TWqdqre1a6wyt9cta62qt9YVa64Fa6+Fa6x+DdT4hxIFdPK4riZEuPjUOx7JtLhRvq7tgdQXGF7dAuTkZvF7/DaqqEOOXx5p8zqJKLzFGEV6LCxyRLQn/oNG3UxTbdDKW0mzwe5vVRklFJTb8YJeeQ0IIIYQQQoi21drDyoQQIRTusPGXY3vzXIG5jLte9n7dBTd8h+X3/8KK6Wa57N8BUIvf2DuhlLce38I38c5/GQqy6mwqu6iSRFWCNywJ6p5//pDTp1M023UyShtQsr1ZbRSXlplvJDkkhBBCCCGEaGOSHBLiEHfOyM6kZ/blNwaif34YY8VH+xfaNg8AY9NPUFWEJX89jJwGSmF8dw+U7cI/70X0C+OxfX4D9q/+D+OTa+s838qcUpIoRnWQIWUAXeLD2WlJNTeaOe9QWVmJ+UaSQ0IIIYQQQog2JskhIQ5xFoviwamDucl3ExvtvbF8NA1jwct7lTG2mskhtfVX2DYfgMdy+rOj10VYVn0Ej/XB+s3t+LsdCTcshIm3Ycme/0fvocJNYPgBmLepgFRrKa641La6xJCzWhT2xO7mRjPmHTIMTXl5ublhk+SQEEIIIYQQom1JckiIDqBbYgSXHTOCk0tuYVfKEaivb4PsReZBTxlq9wpI6oeqrqBo1jP4teK1LXEcvvQobo18kFcir+Lp6Fs4r/xmnloKesQlaBQsew+2zkM/PRz94/1orZmXVUCytbRDLGNfW1JqV6qxNavnUEFFNQ7tMTek55AQQgghhBCijUlySIgO4orDu9ErPZHzC6bhi+iEf/pl4C6B7N/NuXIm3oJGEbdzDlusXfnujin89cQB7IgdxvcxU/kt6hiq/Zonvl/Pw/PK0d2OxFj2Lv6Zf0Kh0QtfZtOOfIrLK4jyl3SYlcr26J0aw1YjBc/G2eD3NalubpkbF9XmhqxWJoQQQgghhGhjkhwSooOwWS08NHUwWysdvJDwVyyl2fhn3GD2/FEW3inqy0ojE4C0QRPpFOPiyondefuKsbxzpfmacf14LhjThRdmZfFk3ggsJduxFqyHCX/B4i4m79fXSaDUPGEHSw71S43mBd/JOHOX4v/hX02qm1vqIYw9PYdcrRCdEEIIIYQQQtRPkkNCdCAD0mK4/sgePL42lrX9b8K6diaVvzzLKqMrf/1yK9tjRwMQljm2zvpKKf516kCuO7IHy6MmUKKi+MQ/nhcs5+PvNJguG17nqMjA6mYdbFhZn05RfGxMZE3a6VjnPole+2Wj6+4udROmpOeQEEIIIYQQIjQkOSREB3Pj5F4MSo/hvFVjmKOHEK4rqeo0ipcuGsFxZ1+LjkqD7kfWW99iUdx2fF9eu/pIwm5ezM/9/slD36zjJc9xpHm38aDvYXM+ovgebXdR7UBipJPESAcvhF2NP2UQ+pNrGj059e5Szx/DymzSc0gIIYQQQgjRtiQ5JEQHY7daeOKcoXj88FLCbVR2nsioKVdx7IBOWDOGof6yBmLSG9WWIyaZx88dyd9O6seb5SO5z3sBvw19CHXTMkju28pX0v6cPiydmasKeafrfQD43r8Yz89PUP3a6bBzWb31dpe5SXSaq71JzyEhhBBCCCFEW7OFOgAhRNvrmRzJnNuPIibMjs06pUVtWSyKKyZ05+JxmSzeNopRmfFgUUGK9OByxwn9yCvz8PfZOwgb/DfOXH8rtt3L0RYH/s/+jPWK78Gyf04+t9TDQJcBVchqZUIIIYQQQog2Jz2HhOigEiKd2KzB+1+Aw2ZhbPcErB00MQRgtSgePWsIZ4/M4Jbl6VzteICVZ86Gk5/AumMResUHULYL34pPwDBq6uWWuUl0BbYlOSSEEEIIIYRoY5IcEkKIILJZLTx85hDeu2osa2z9OG/6LlYlnYS/0xD0l7dhPDkY20eX7rWi2e5SN/F2n7khySEhhBBCCCFEG5PkkBBCtIKx3RN496qxRIfZufjVhfzW5w404O13Br6BZ2P99XGMZR/gNzR5ZR5iHYGeQzIhtRBCCCGEEKKNyZxDQgjRStJjw3j7ijFc9trvXPBNNemxr/HvwYM4onsMvpLtWD+9ltJtK7Dr4cTYvGhbGEp13GF5QgghhBBCiNCQnkNCCNGKMhMj+P7/juC/F48k0mnj0lcX8NiPm1Hnvou33xnELnqamY6/Ee/PkyFlQgghhBBCiJCQ5JAQQrQyq0VxTP8UZlw/nrNHdOaZHzdywdtrKT7uGRYf/hJd1W5St38pySEhhBBCCCFESEhySAgh2kiYw8pDZw7msbOGsGx7CSc+/QtvFfThT94b0Moi8w0JIYQQQgghQkLmHBJCiDY2dUQGgzNiuO7txXy8JAcYRfVp/8PuLUdmHBJCCCGEEEK0NUkOCSFECPRKieLTG8Zz72erKaioxjlkZKhDEkIIIYQQQnRQQUsOKaVeAaYAuVrrgfscuwV4BEjSWucH65xCCHEwC3fYeHDq4FCHIYQQQgghhOjggjnn0GvA8fvuVEp1Bo4BtgXxXEIIIYQQQgghhBAiCIKWHNJazwYK6zj0BHAboIN1LiGEEEIIIYQQQggRHK26WplS6hQgR2u9rBFlr1JKLVRKLczLy2vNsIQQQgghhBBCCCFEQKslh5RS4cBdwD8aU15r/ZLWeqTWemRSUlJrhSWEEEIIIYQQQgghamnNnkM9gG7AMqXUFiADWKyU6tSK5xRCCCGEEEIIIYQQTdBqS9lrrVcAyXu2AwmikbJamRBCCCGEEEIIIUT7EbSeQ0qpd4F5QB+lVLZS6vJgtS2EEEIIIYQQQgghWkfQeg5prc87wPHMYJ1LCCGEEEIIIYQQQgRHq65WJoQQQgghhBBCCCHaN6W1DnUM+1FK5QFbQx2HaJcSAZm3SjRE7hHRELk/REPk/hAHIveIaIjcH6Ihcn+IhrTl/dFVa73fEvHtMjkkRH2UUgu11iNDHYdov+QeEQ2R+0M0RO4PcSByj4iGyP0hGiL3h2hIe7g/ZFiZEEIIIYQQQgghRAcmySEhhBBCCCGEEEKIDkySQ+Jg81KoAxDtntwjoiFyf4iGyP0hDkTuEdEQuT9EQ+T+EA0J+f0hcw4JIYQQQgghhBBCdGDSc0gIIYQQQgghhBCiA5PkkBBCCCGEEEIIIUQHJskh0WqUUscrpdYppTYqpe7Y59iNgWOrlFIP11M/Xin1nVJqQ+DfuMD+Y5RSi5RSKwL/Tqqnfjel1PxA/feVUo7AfqWUejoQ13Kl1PBgX7s4sPZ6fwSOHamUWho4/8/BvG7ReO3gHrkhcG6tlEqstf+CwP87liul5iqlhgTzukXjtOP7I0Yp9ZlSalng/JcF87pF47Ti/TE68PthaeBnfHo99eUZpB1rr/dH4Jg8g7QD7eAekWeQdqwd3x8tewbRWstLXkF/AVYgC+gOOIBlQP/AsaOA7wFnYDu5njYeBu4IvL8DeCjwfhiQFng/EMipp/4HwLmB9y8C1wbenwh8BShgLDA/1J9XR3u18/sjFlgNdGno/PLqEPfIMCAT2AIk1tp/GBAXeH+C/D9E7o997o+/1morCSgEHKH+zDrSq5Xvj3DAFnifCuTu2d6nvjyDtNNXO78/YpFnkJC/2sk9Is8g7fTVzu+PFj2DhPzDldeh+QLGAd/U2r4TuDPw/gPg6Ea0sQ5IDbxPBdbVUUYBBXv+A9xnf36t/7hq4gH+A5xX13nkJfcHcB1wX6g/o47+CvU9sk+ZvX7x7nMsjnqSB/LqmPdHIJbnA3W7ARsBS6g/s470asP7oxuwm30e3OUZpH2/2vn9Ic8g7eAV6ntknzLyDNLOXu35/mjpM4gMKxOtJR3YXms7O7APoDcwIdCd9mel1Kh62kjRWu8ECPybXEeZqcASrbVnn/0JQLHW2lfH+RuKTbSN9nx/9AbilFKzlDmk5OImXZkIllDfI411OWYvANG22vP98SzQD9gBrABu0lobTagvWq5V7w+l1Bil1CrMn+81tX6X7CHPIO1be74/5BmkfQj1PdJY8gwSGu35/mjRM4itCScSoilUHft04F8bZqZ7LDAK+EAp1V0H0p2NPoFSA4CHgGObeP6Gjom20Z7vDxswApgMhAHzlFK/aa3XN+X8osVCfY80pv5RmA9mhzenvmiR9nx/HAcsBSYBPYDvlFK/aK1Lm9iOaL5WvT+01vOBAUqpfsDrSqmvtNbuRp5fnkFCrz3fH/IM0j6E+h45cIDyDBJK7fn+aNEziPQcEq0lG+hcazsDM4O559jH2rQAMIBEpdSrgcm3vgyU262USgUI/Ju7pzGlVAbwCXCx1jqrjvPnA7FKqT0J0H3PX19som209/vja611hdY6H5gNDGnh9YqmC/U90iCl1GDgf8CpWuuCptYXLdae74/Lap1/I7AZ6NvENkTLtOr9sYfWeg1QgTk3VW3yDNK+tff7Q55BQi/U90iD5Bkk5Nrz/dGiZxBJDonW8jvQS5mrMTiAc4GZgWMzMLOZKKV6Y07kla+1vkxrPVRrfWKg3EzgksD7S4BPA3VigS8wx3b+WtfJA9nZn4Az960faPdiZRoLlOzp1ifaTHu+Pz7F7A5qU0qFA2OANS2+YtFUIb1HGqKU6gJ8DFwk3+aGTLu9P4BtmN/6o5RKAfoAm5rRjmi+1rw/uu35o14p1RXz57ul9snlGaTda8/3hzyDtA8hvUcaIs8g7UK7vT9o6TOIbgeTOsnr0HxhrsixHnM297tq7XcAbwErgcXApHrqJwA/ABsC/8YH9v8NM4u6tNZrv5ngMWeQX4A5Edd0/pg1XgHPBeJaAYwM9WfVEV/t9f4IHLsVc7WQlcDNof6sOuqrHdwjf8L8BsiH+Y3Q/wL7/wcU1aq7MNSfVUd8teP7Iw34NvD7ZSVwYag/q474asX74yJgVeC+WAycVk99eQZpx6/2en8EjskzSDt4tYN7RJ5B2vGrHd8fLXoGUYFGhBBCCCGEEEIIIUQHJMPKhBBCCCGEEEIIITowSQ4JIYQQQgghhBBCdGCSHBJCCCGEEEIIIYTowCQ5JIQQQgghhBBCCNGBSXJICCGEEEIIIYQQogOT5JAQQgghhBBCCCFEBybJISGEEEIIIYQQQogOTJJDQgghhBBCCCGEEB2YJIeEEEIIIYQQQgghOjBJDgkhhBBCCCGEEEJ0YJIcEkIIIYQQQgghhOjAJDkkhBBCCCGEEEII0YFJckgIIYQQQgghhBCiA5PkkBBCCCGEEEIIIUQHJskhIYQQQgghhBBCiA5MkkNCCCFEO6WUylRKaaWUrRFlL1VKzWmjuMYrpTYopcqVUqe1xTnFH5RSXQKfvTWYZYMQV5vdg0IIIYQILkkOCSGEEEGglNqilKpWSiXus39pIMGTGaLQaieZygOvLUqpO1rQ5L3As1rrSK31jCCF2SEEI4Gitd4W+Oz9wSzblpRS9yil3gpie5cqpfy17vE9r7QWtpuolPpVKVWglCpWSs1TSo0PVtxCCCFEeyHJISGEECJ4NgPn7dlQSg0CwkIXzn5itdaRmDH+Qyl1fFMq1+rB1BVY1ZwAGtMLqqNri14+h6h5gURY7deOFrZZDkwDkoA44CHgM7mPhRBCHGokOSSEEEIEz5vAxbW2LwHeqF1AKRWjlHpDKZWnlNqqlPqbUsoSOGZVSj2qlMpXSm0CTqqj7stKqZ1KqRyl1H3NSSRoredhJncGBtqdppRao5QqUkp9o5TqWuucWil1vVJqA7BBKZUFdMf8A7lcKeVUSqUppWYqpQqVUhuVUlfWqn+PUupDpdRbSqlS4FKl1KxA7HMDbXymlEpQSr2tlCpVSv1eu6eVUuoppdT2wLFFSqkJ+7T/QeAzLVNKrVJKjax1vLNS6uPA512glHq21rF6r3tfSqlTAm0XB+LvV+vYFqXULUqp5UqpEqXU+0opVx1t9ANeBMYFrrs4sP81pdQLSqkvlVIVwFFKqZOUUksC17xdKXVPrXb2Gm4YiOdfgR4uZUqpb1WgB1tTygaOXxy4LwuUUn8PXNvR9XwmCYGfe6lSagHQY5/jdf7clJmU/CtwTuBzWBbYf1ng51GmlNqklLq6vp9HUyilegTuzeGB7TRl/jd2ZK3P5AGl1ILAz+9TpVQ8gNbarbVep7U2AAX4MZNE8cGITQghhGgvJDkkhBBCBM9vQLRSqp8ykzbnAPsOnXkGiMFMsByBmUy6LHDsSmAKMAwYCZy5T93XAR/QM1DmWOCKpgSoTOOBAcASZc4Z9FfgDMzeEb8A7+5T7TRgDNBfa90D2AacHOiZ4QmUzwbSAjH/Wyk1uVb9U4EPgVjg7cC+c4GLgHTMpMI84FXMP7rXAHfXqv87MDRw7B1g+j7Jl1OA9wLtzwSeDVyrFfgc2ApkBs71XuBYY657z2fWO3Ds5kDZLzGTY45axc4Gjge6AYOBS/dtR2u9BriGP3q4xNY6fD5wPxAFzAEqMO+NWMwk4bWq4fmdzse8j5IBB3BLU8sqpfoDzwMXAKmY92l6A+08B7gDZacFXrXV+XPTWn8N/Bt4P/A5DAmUz8W8/6MD8T2xJ6ETiK9YKXV4A/HUSWudBdwOvK2UCse8z17TWs+qVeziQPxpmP+NPV27DaXU8sC1zgT+p7XObWocQgghRHsmySEhhBAiuPb0HjoGWAvk7DlQK2F0p9a6TGu9BXgMM0kCZoLhSa31dq11IfBArbopwAnAzVrrisAfp09gJlkaKx8oBP4H3KG1/gG4GnhAa71Ga+3D/KN96D69aB7QWhdqrav2bVAp1Rk4HLg90MtiaaD9i2oVm6e1nqG1Nmq18arWOktrXQJ8BWRprb8PxDAdM/kFgNb6La11gdbap7V+DHACfWq1P0dr/WVgXp03gT3JhtGYf+zfGvjM3FrrPfP9NOa69zgH+EJr/Z3W2gs8ijlc8LBaZZ7WWu8I/Nw+w0yKNMWnWutfA5+RW2s9S2u9IrC9HDM5dUQD9V/VWq8PfL4fHOD89ZU9E/hMaz1Ha10N/APQdTUQuJenAv8IfLYrMZOXNRrxc2Of8l8E7gmttf4Z+BaYUOt4bK2fX13GBhJIe15Zter+F9gAzMdMZt21T903tdYrtdYVwN+Bs1WtXnla68GYSavzMZN3QgghxCFFxksLIYQQwfUmMBuzB8kb+xxLxOypsbXWvq380TsjDdi+z7E9ugJ2YKdSas8+yz7lDyQxkAiprSvwlFLqsVr7VCCmPedv6BxpQKHWumyfuEfW2q6r/u5a76vq2I6sCUapv2D2kErDTFZEY36We+yq9b4ScAWGUXUGttZxzdC4694jrfY+rbWhlNrO3r1q9o2hqRMh7/UZKaXGAA9iDv1zYCZWpjdQf9/zR9ZXsIGye91/WutKpVRBPW0kYT5H1ne/Nubnxj7lT8DsMdYb894OB1Y0cB37+k1r3VDPov9i9vy5KtDjrbZ9r8MeiLXmvtRau4F3A0PflmqtlzUhNiGEEKJdk55DQgghRBBprbdiTkx9IvDxPofzAS9mYmKPLvzRu2gnZkKj9rE9tgMezARPbOAVrbUe0MKQtwNX12ozVmsdprWeW/uyGqi/A4hXSkXtE3dOre2G6jcoME/N7Zi9quICQ7FKMBM5B7Id6KLqnjy4Mde9xw5q/cyUmZ3rzN7X2Fj1fRb77n8HM5HRWWsdgzlXUWOuuSV2Ahl7NpRSYUBCPWXzMIdf1Xm/NuLnttf1KqWcwEeYvbJSAuW/JEjXrJSKBJ4EXgbu2TOnUC37XocX87/Xutgxh4UKIYQQhwxJDgkhhBDBdzkwKTBEpUZg2NMHwP1KqajAEKb/4495iT4A/qSUylBKxQF31Kq7E3OYzWNKqWillCUw0W5DQ40a40XgTqXUAKiZ9PqsxlbWWm8H5gIPKKVcSqnBmNf/dsM1Gy0KMwmRB9iUUv/A7IHSGAswEx4PKqUiAvHtWYa8Kdf9AXCSUmqyUsoO/AUzUVdXIulAdgMZ+8xXVJcozB5ZbqXUaMzhTK3tQ+BkpdRhgfj+ST3JmcC9/DFmoiU8MF/RJbWKHOjnthvIVIHJ2Pmjd1Qe4Av0Ijo2eJfGU8AirfUVwBeYP//aLlRK9Q/MSXQv8KHW2q+UGquUOlwp5VBKhSmlbgdSMIenCSGEEIcMSQ4JIYQQQRaYN2VhPYdvxJxseBPm3CXvAK8Ejv0X+AZYBixm/55HF2P+Eb0aKML8Yz61hbF+grk893vKXE1sJebcRk1xHuaEzzuAT4C7tdbftSSuWr7BnJNoPeZwHzeNHEoXSGCcjDmB9zbMSbPPCRxr9HVrrdcBF2JOJp4faPPkwLw8TfUj5kpxu5RS9fVMAbgOuFcpVYY5988HzThXk2itV2Hen+9hJtXKMCeJ3ncI1h43YA5J2wW8hjnR8x4H+rntGSJXoJRaHBiW+CfM6yzCTIbNrH2ywMpmE6jfnlXgar9GKaVOxZws/JpAuf8DhiulLqhV983ANewCXIFYwExYPQcUYPYUOxE4SWu9o4E4hBBCiIOO0rrZPb2FEEIIIcQhKjAUqxjopbXeHOJwWo1Sahbwltb6f6GORQghhAgV6TkkhBBCCCEAUEqdHBgmFoE5/88KYEtooxJCCCFEa5PkkBBCCCGE2ONUzOGBO4BewLlaupkLIYQQhzwZViaEEEIIIYQQQgjRgUnPISGEEEIIIYQQQogOzBbqAOqSmJioMzMzQx2GEEIIIYQQQgghxCFj0aJF+VrrpH33t8vkUGZmJgsX1rcCsBBCCCGEEEIIIYRoKqXU1rr2y7AyIYQQQgghhBBCiA7sgD2HlFIuYDbgDJT/UGt9t1LqEeBkoBrIAi7TWhfXUX8LUAb4AZ/WemTQohdCCCGEEEIIIYQQLdKYnkMeYJLWeggwFDheKTUW+A4YqLUeDKwH7mygjaO01kMlMSSEEEIIIYQQQgjRvhyw55A217ovD2zaAy+ttf62VrHfgDODH54QQgghhBBCCBEaXq+X7Oxs3G53qEMRoklcLhcZGRnY7fZGlW/UhNRKKSuwCOgJPKe1nr9PkWnA+/VU18C3SikN/Edr/VI957gKuAqgS5cujQlLCCGEEEIIIYRoNdnZ2URFRZGZmYlSKtThCNEoWmsKCgrIzs6mW7dujarTqAmptdZ+rfVQIAMYrZQauOeYUuouwAe8XU/18Vrr4cAJwPVKqYn1nOMlrfVIrfXIpKT9VlUTQgghhBBCCCHalNvtJiEhQRJD4qCilCIhIaFJPd6atFpZYMLpWcDxgRNeAkwBLggMP6urzo7Av7nAJ8DoppxTCCGEEEIIIYQIFUkMiYNRU+/bAyaHlFJJSqnYwPsw4GhgrVLqeOB24BStdWU9dSOUUlF73gPHAiubFKEQQgghhBBCCCGEaDWN6TmUCvyklFoO/A58p7X+HHgWiAK+U0otVUq9CKCUSlNKfRmomwLMUUotAxYAX2itvw76VQghhBBtxOPzhzoEIYQQQnQgSikuuuiimm2fz0dSUhJTpkwJYVQHFhkZecAy99xzD48++miDZWbMmMHq1auDFZaoR2NWK1sODKtjf896yu8ATgy83wQMaWGMQgghRLuwMqeEs16cxxf9viXTWYZl6n9DHZIQQgghDnERERGsXLmSqqoqwsLC+O6770hPTw9JLD6fD5utUetaBc2MGTOYMmUK/fv3b9PzdjRNmnNICCGE6Ki8foPbPlxOpm8T3da/gspeEOqQhBBCCNFBnHDCCXzxxRcAvPvuu5x33nk1xyoqKpg2bRqjRo1i2LBhfPrppwBs2bKFCRMmMHz4cIYPH87cuXMB2LlzJxMnTmTo0KEMHDiQX375Bdi7p8+HH37IpZdeCsCll17K//3f/3HUUUdx++23k5WVxfHHH8+IESOYMGECa9euBWDz5s2MGzeOUaNG8fe//73ea7n//vvp06cPRx99NOvWravZ/9///pdRo0YxZMgQpk6dSmVlJXPnzmXmzJnceuutDB06lKysrDrLiZZr25SfEEIIcZB6cVYWq3eW8Kb9bRQa7fOEOiQhhBBCtKF/fraK1TtKg9pm/7Ro7j55wAHLnXvuudx7771MmTKF5cuXM23atJqkzv3338+kSZN45ZVXKC4uZvTo0Rx99NEkJyfz3Xff4XK52LBhA+eddx4LFy7knXfe4bjjjuOuu+7C7/c3Krmyfv16vv/+e6xWK5MnT+bFF1+kV69ezJ8/n+uuu44ff/yRm266iWuvvZaLL76Y5557rs52Fi1axHvvvceSJUvw+XwMHz6cESNGAHDGGWdw5ZVXAvC3v/2Nl19+mRtvvJFTTjmFKVOmcOaZZwIQGxtbZznRMpIcEkIIIQ5gybYi3vxhIZ/FvcygqpWUW2OI8DV+aVAhhBBCiJYYPHgwW7Zs4d133+XEE0/c69i3337LzJkza+bucbvdbNu2jbS0NG644QaWLl2K1Wpl/fr1AIwaNYpp06bh9Xo57bTTGDp06AHPf9ZZZ2G1WikvL2fu3LmcddZZNcc8HvMLs19//ZWPPvoIgIsuuojbb799v3Z++eUXTj/9dMLDwwE45ZRTao6tXLmSv/3tbxQXF1NeXs5xxx1XZyyNLSeaRpJDQgghRAPcXj83v7eE55zPM6B6Hc+HX0s3ax7Hu788cGUhhBBCHDIa08OnNZ1yyinccsstzJo1i4KCgpr9Wms++ugj+vTps1f5e+65h5SUFJYtW4ZhGLhcLgAmTpzI7Nmz+eKLL7jooou49dZbufjii/da+tzt3vtLsIiICAAMwyA2NpalS5fWGWNjlk+vr8yll17KjBkzGDJkCK+99hqzZs1qUTnRNDLnkBBCCNGAN+ZtoU/xbEbp5ehj/sXC5KmU+Kzgc4PWoQ5PCCGEEB3EtGnT+Mc//sGgQYP22n/cccfxzDPPoAPPJUuWLAGgpKSE1NRULBYLb775Jn6/ueLq1q1bSU5O5sorr+Tyyy9n8eLFAKSkpLBmzRoMw+CTTz6pM4bo6Gi6devG9OnTATMxtWzZMgDGjx/Pe++9B8Dbb79dZ/2JEyfyySefUFVVRVlZGZ999lnNsbKyMlJTU/F6vXvVj4qKoqys7IDlRMtIckgIIYSoR6nby39/Wsu/wt7Dl9AX66jLSYhwUFxtRWkDDF+oQxRCCCFEB5GRkcFNN9203/6///3veL1eBg8ezMCBA2smg77uuut4/fXXGTt2LOvXr6/p/TNr1iyGDh3KsGHD+Oijj2rafPDBB5kyZQqTJk0iNTW13jjefvttXn75ZYYMGcKAAQNqJsB+6qmneO655xg1ahQlJSV11h0+fDjnnHMOQ4cOZerUqUyYMKHm2L/+9S/GjBnDMcccQ9++fWv2n3vuuTzyyCMMGzaMrKysesuJllG6HX7rOXLkSL1w4cJQhyGEEKKDe+zbdZT9/Cz32N9AX/gxqudkHvp6LcavT3On9W24MxucUaEOUwghhBCtZM2aNfTr1y/UYQjRLHXdv0qpRVrrkfuWlZ5DQgghRB3yyjy8O2c1/+ecia/rBFSPSQAkRDioNOxmoVZYsazM7eXTpTlUVkuvJCGEEEII0TYkOSSEEELU4bmfNnKB8QXRRjG2Y+6BwOSJiZFOPASSQ96qoJ7zi+U7OeXhz1gz/V4efeE/VFQFP/kkhBBCCCHEvmS1MiGEEGIfO0uq+Gr+Sn52foG/1xSsGX/0vE2MdOLRwe85NHtdLm++/y7vOl+gkz0Xit7jt2e/Z+ytdU8IKYQQQgghRLBIzyEhhBBiHy/N3sRVlhk4tRvr5L/vdSwh0oEHh7nhc9dRu+m27Mgl6p2TeM/+TxLCLBiXfMmq5JMZXv4zSzZs3a+812+QWxqccwshhBBCCCE9h4QQQohaCso9fLpgPb/ZvscYdA7W5L1XwUiMdOImeD2HvH6D6e/+j1vVevLH3kniUTeAM5Iex/pxvPUZs776gPj466jw+Cmo8LBoaxEf/L6d/AoPv51cQnzP0ZDQo8VxCCGEEEKIjkuSQ0IIIUQtr/y6mVHGMhy6GoZdsN/xuHA71UHsOfTCrCz6FM/GHRZP4rG3gsUKgKvbYbhtUWTkzmbSI30wUOhAh9+hnRz8pfI54r+aA6OuhJMebXEcQgghhBCi45JhZUIIIURASZWXN+Zu5eL4tRjOGOgydr8yNqsFhyvM3Ghhcii31M3/Zq3lGNsyHAOm1CSGALDasPU+llNcS1kacyvL4v/K1+PXs2zMT3xYdQVTrXPwKgdU5LYoBiGEEEK0b7t37+b888+ne/fujBgxgnHjxvHJJ60/J+HChQv505/+FJS2jjzySPr06cOQIUMYP34869atC0q7wRTMGF977TVuuOEGAF588UXeeOONestu2bKFd955p2Y7mJ97U0hySAghhAh467etlHuqGeX9HXpOBqu9znLh4RHmmxYOK3vyhw2MMFYSpiux9Juy33FbvxNx+kpxhUcQ5nLRd9E9RK94DV/GWO6Ie5z1tt7oivwWxSCEEEKI9ktrzWmnncbEiRPZtGkTixYt4r333iM7O7vVzz1y5EiefvrpoLX39ttvs2zZMi655BJuvfXW/Y77/f6gnau5WiPGa665hosvvrje4/smh4L9uTeWJIeEEEIIYHepm5dmb+LSzCIc7nwsfU6ot2x42J7kUPN7DpV7fLz/+zZujfsZbQ+HbkfsX2jAGfjOeRf7db9iv34evitno+7cjuui94nqOY5sTziGJIeEEEKIQ9aPP/6Iw+HgmmuuqdnXtWtXbrzxRsBMLEyYMIHhw4czfPhw5s6dC8CsWbOYMuWPL55uuOEGXnvtNQDuuOMO+vfvz+DBg7nlllsAmD59OgMHDmTIkCFMnDhxvzYWLFjAYYcdxrBhwzjssMNqetW89tprnHHGGRx//PH06tWL22677YDXNHHiRDZu3AhAZGQk//jHPxgzZgzz5s3j8ccfZ+DAgQwcOJAnn3yyps4bb7zB4MGDGTJkCBdddBEAeXl5TJ06lVGjRjFq1Ch+/fVXAH7++WeGDh3K0KFDGTZsGGVlZezcuZOJEycydOhQBg4cyC+//NLsGN966y1Gjx7N0KFDufrqq2sSRq+++iq9e/fmiCOOqIkF4J577uHRR80pADZu3MjRRx/NkCFDGD58OFlZWdxxxx388ssvDB06lCeeeGKvz72wsJDTTjuNwYMHM3bsWJYvX17T5rRp0zjyyCPp3r17UJJJMueQEEKIDs3YOAt3/mYeXBqHx+fkxqSl6FwbqufR9daJiIiAPFqUHNpZXMXl6jP6l8/Df8z9WO2u/QtZLNj6nVizaUsfUvN+eJc48udFYZRnYd2/ZqvTWrNoaxFKKUZ0jQtBBEIIIUQb++oO2LUiuG12GgQnPFjv4VWrVjF8+PB6jycnJ/Pdd9/hcrnYsGED5513HgsXLqy3fGFhIZ988glr165FKUVxcTEA9957L9988w3p6ek1+2rr27cvs2fPxmaz8f333/PXv/6Vjz76CIClS5eyZMkSnE4nffr04cYbb6Rz5871xvDZZ58xaNAgACoqKhg4cCD33nsvixYt4tVXX2X+/PlorRkzZgxHHHEEDoeD+++/n19//ZXExEQKCwsBuOmmm/jzn//M4YcfzrZt2zjuuONYs2YNjz76KM899xzjx4+nvLwcl8vFSy+9xHHHHcddd92F3++nsrKy3vgainHNmjU89NBD/Prrr9jtdq677jrefvttjjnmGO6++24WLVpETEwMRx11FMOGDduv3QsuuIA77riD008/HbfbjWEYPPjggzz66KN8/vnngJmU2+Puu+9m2LBhzJgxgx9//JGLL76YpUuXArB27Vp++uknysrK6NOnD9deey12e9293htDkkNCCCE6NP3p9YSXZfOwtnLymOeJXf4+Rr/TsIbH11vHGYSeQ/mFhdxq+4Dc9GNIPuz6Jtcf3jWO94nC6i4CwwBL23QGNgzNd2t28+LPWSzZVozVonj87CGcOjS9Tc4vhBBCdGTXX389c+bMweFw8Pvvv+P1ernhhhtYunQpVquV9evXN1g/Ojoal8vFFVdcwUknnVTTQ2X8+PFceumlnH322Zxxxhn71SspKeGSSy5hw4YNKKXwer01xyZPnkxMTAwA/fv3Z+vWrXUmhy644ALCwsLIzMzkmWeeAcBqtTJ16lQA5syZw+mnn25+CQecccYZ/PLLLyilOPPMM0lMTAQgPt58Rvv+++9ZvXp1TfulpaWUlZUxfvx4/u///o8LLriAM844g4yMDEaNGsW0adPwer2cdtppDB06tM7P50Ax/vDDDyxatIhRo0YBUFVVRXJyMvPnz+fII48kKSkJgHPOOWe/n0VZWRk5OTmcfvrpALhcdXwxuI85c+bUJOEmTZpEQUEBJSUlAJx00kk4nU6cTifJycns3r2bjIyMA7ZZH0kOCSGE6LC04UeX7eQj/wSODtvAUUtuRPmrYdx1DdYLCws337RgzqHSgh3YlR/6nABKNbl+SrQLjz0OizagqggiEpodS2OtzCnhzo9XsCKnhMw4B09N8ONY+T4DP/4TX+W/yAlH/9HbqsLjY8GWQhZsLiQtxsVpw9KJcjX/2ywhhBAi5Bro4dNaBgwYUJMcAHjuuefIz89n5MiRADzxxBOkpKSwbNkyDMOoSTjYbDYMw6ip53a7a/YvWLCAH374gffee49nn32WH3/8kRdffJH58+fzxRdfMHTo0JreKXv8/e9/56ijjuKTTz5hy5YtHHnkkTXHnE5nzXur1YrP56vzWt5+++2auPdwuVxYrWYfaK11nfW01qg6npUMw2DevHmEhYXttf+OO+7gpJNO4ssvv2Ts2LF8//33TJw4kdmzZ/PFF19w0UUXceutt9Y5D1BjYrzkkkt44IEH9iozY8aMOmPc9zqaqq46e87T2M+9sWTOISGEEB3W76s3YMNP5wHjiT77eZS/Gn/6KMgY0WA9VyA55Kuuava5y4sLAIiKTWx2G/6wQEKosnXnHVq/u4zLX/udKc/MYWeJm9eP8vCDvpJTf7+I4zzfkmopJGfW/zj3pXkc8/jPTHp0FkPv/ZbLXv2d/87eyP9m/sC0B19lZU5Jq8YphBBCHGomTZqE2+3mhRdeqNlXe0hUSUkJqampWCwW3nzzzZr5b7p27crq1avxeDyUlJTwww8/AFBeXk5JSQknnngiTz75ZE0SKCsrizFjxnDvvfeSmJjI9u3b94qjpKSE9HSzl/CeuYuCbeLEicyYMYPKykoqKir45JNPmDBhApMnT+aDDz6goMB8dtozrOzYY4/l2Wefralf+1oGDRrE7bffzsiRI1m7di1bt24lOTmZK6+8kssvv5zFixc3K8bJkyfz4YcfkpubWxPL1q1bGTNmDLNmzaKgoACv18v06dP3qxsdHU1GRgYzZswAwOPxUFlZSVRUFGVlZfV+Jm+//TZgDjdLTEwkOjq6WbEfiPQcEkII0WF9/utiRgNDB/RD9ZyMd+pr2NMGH7DentXKPO7KZv8irSw1H3Bc0S3o8RORCJVART4k9Wl+Ow1YvK2IS19ZwDi1kkUxrxIWk4hrwWr8MV3xHvcIzt5HwSfXMXXLIn6szOcvfEpORG/cPUczLsnDwPm34SjdAsD1L5dw/vmXMbZ7AlZL03tLCSGEEB2NUooZM2bw5z//mYcffpikpCQiIiJ46KGHALjuuuuYOnUq06dP56ijjqoZktW5c2fOPvtsBg8eTK9evWrmvykrK+PUU0/F7XajteaJJ54A4NZbb2XDhg1orZk8eTJDhgzh559/ronjtttu45JLLuHxxx9n0qRJrXKtw4cP59JLL2X06NEAXHHFFTVx33XXXRxxxBFYrVaGDRvGa6+9xtNPP83111/P4MGD8fl8TJw4kRdffJEnn3ySn376CavVSv/+/TnhhBN47733eOSRR7Db7URGRja4tHxD+vfvz3333cexxx6LYRjY7Xaee+45xo4dyz333MO4ceNITU1l+PDhda5s9uabb3L11Vfzj3/8A7vdzvTp0xk8eDA2m40hQ4Zw6aWX7jVX0T333MNll13G4MGDCQ8P5/XXX29W3I2hDtS1SSnlAmYDTsxk0oda67uVUvHA+0AmsAU4W2tdVEf944GnACvwP631AfvijRw5Ujc0iZYQQgjREnrLr2SXGfz93Z95zfEIXP4ddB7d6PofL87mpE+HUDXiGmJPub9ZMbz80hNcvuMeuHYupAxoVhuPvP4ht26+HM56HQac1qw2GjIvq4ArXv+dC11zuMP7HL7YbhjOOAiPwzn1P38MZVv6Lsy4Bn9iX6z5a/dqwxfdGe9hN6N/+w+Vxbkc636QclsstlrJIbvVwj+m9GfqiOaPkxdCCCFaw5o1a+jXr1+owxCiWeq6f5VSi7TWI/ct25gvPD3AJK11uVLKDsxRSn0FnAH8oLV+UCl1B3AHcPs+J7UCzwHHANnA70qpmVrr1QghhBAhor/4P6weFynKnEyQqE5Nqh/lsuPBjrcFw8p8FYHvU1wxzW7DEZ0MgK7IJ9j9cOZm5XPZq79zavR67qh6Hl/XI7Cf9yY4o/Yv3OcEtMWONX8t/mP/jc4YjTd7McpThmvcldhcMZA5BtdLk5gbeTvzEqfye9oFdCpfQ2bRrxSWVlI8w8PGomPpefTlQb4SIYQQQghxIAdMDmmza1F5YNMeeGngVODIwP7XgVnskxwCRgMbtdabAJRS7wXqSXJICCFEaGiNKt5GpN9O/8j+5lcgkSlNaiLKZcODHZ+n+ckhXVVsvnHFNruN8DgzOVRdmovzAGWbYnthJde9vZiTojfxgPcR/Am9sZ/7Rt2JIYCwWIxBZ2NUlWAfey1YLNi6jNq7TKdB6GnfwE8PcVTWK0ws/BBrdSmG1YlhseO3VsOcHygffQaR0XFBvBohhBBCCHEgjZqQWillVUotBXKB77TW84EUrfVOgMC/yXVUTQdqz2SVHdgnhBBChEZFPspbSbRRwvCwXejwBLA1LbViJocc+FvQc8jiKcGPFRwRzW4jITqSEh2OuyS32W3sq6TSy1VvLmKMsZRHPP9ER6Zgu+hDcDU8+aH19Oexn/82WOp/tLBmDMd10fv4Lv2a6s7jcU+4E8sd27DdlcPWE9/EiZfvZr4TtGsRQgghgqE5q0wJEWpNvW8blRzSWvu11kOBDGC0UmpgI9uvq5d7nREqpa5SSi1USi3My8trZPNCCCFEExVvrXnbu2oZOrJpQ8oAol12PNqO4W1ecqjC4yPcX0a1PapZy9jvkRjppEBH4ysLzu/NUreXi1+Zj5G7lmdtT6Hje2K74luICe5cQLbMcYRd9B6uyXeA3Vxyt/fIYyizxmJf/xmb8yuCej4hhBCiuVwuFwUFBZIgEgcVrTUFBQW4XK5G12nSIita62Kl1CzgeGC3UipVa71TKZWK2atoX9lA51rbGcCOetp+CXgJzAmpmxKXEEII0WhFW2reOj0F6KihTW4iymVjBw5sXnezQsgt8xCtKvE5mj/fEJjJoUKiia5o+VL25R4fl76ygN07tvF93NNYDSeWC977Y9Lp1maxYu13Ekeu+JgHZ63hvjP3mydRCCFEazL8+F8/BdVpEJYTDriGUONp3aIvQkItIyOD7OxspAODONi4XC4yMhr/Bd8Bk0NKqSTAG0gMhQFHAw8BM4FLgAcD/35aR/XfgV5KqW5ADnAucH6joxNCCCGCaFtBJV9/NourAD8WrBioqNQmtxPpNOccCm9ucqjUTQwV6BbMNwSQFOVkiY6ie1VBi9qp8Pi47NUFlGWv5pv4Fwj35GO5aAbEdmlRu00VPuR0WPk2ecu+Jv/4QSRGBnMmJSGEOIT5vVCaA3GZzaq+dlcpP715P9dWzMG7/XcsR93ZogUTAL5dtYtem98kc9XzqGvmQMzBObuI3W6nW7duoQ5DiFbXmGFlqcBPSqnlmMme77TWn2MmhY5RSm3AXI3sQQClVJpS6ksArbUPuAH4BlgDfKC1XhX8yxBCCCEO7Me1u4mszKHcGkNVVKa5s4krlQHYrBa8ygE+T7PiyC3zEKMqsIbHNqv+HvERDgqJxuEpbHYbFR4fd700nRt23M53jluIcu9Anf8+dBnTotiapfuReMMSmcqPvDgrC78hHYmFEKJRlr6DfmooZP3Y5Kpaa56f/jUXVLxBtiUdu+Eh77d3WxTO+19+T9l7l9Nt4X2oqkIo3NSi9oQQre+AySGt9XKt9TCt9WCt9UCt9b2B/QVa68la616BfwsD+3dorU+sVf9LrXVvrXUPrfX9rXcpQgghRMMWbi2ih72A8JQeRKT1NXc2IzkE4Lc4UP7mJ4eiqcAe0bJVuawWRaUtljBvMRhGk+tvzC3jX08+zaP51zHGsYWKCXdhuXk5qtvEFsXVbFY7tuEXMdm6hM/mLGLCQz8yL6tlvaKEEKJDyF+PQmN8eCWU7mxS1d+/fJUH82/AYbMTfsmHbNAZlM57tVlhaK15/6MPmDr/LKZY5vOVEfiiwV3crPaEEG2nURNSCyGEEIeCRVuL6GbLxxLbBZXYy9zZjGFlAIbViaWZyaGdxVXEqErsEfHNql9bmSsNK34o2dbkun/7cDHXVr1EZWRXuHExEZNvg8i6Fh9tO2rExVgx+ChzBn/2v8rbrz7NgzMX88KsLKp9TU+ACSFER+At3Eq1Mx7lKYYF/zlwhZUf4Z/3IpXVPhIXPkautROOG+YR37U/u7qfSQ/PWnZsXtPkOB7/dh3dlj1KuT2eH0/8kfuqAzOKVBU3uS0hRNuS5JAQQogOIae4il0llST4dkNcV0jsbR5oZnJIW51Yjb2TQ8bS9/At/+iAddftKiVGVaDCYpt17toKogI9oHYua3Ldw4pm0JWdhJ/8IK6YpBbHEhTx3fF3n0zGru+ZanzNs7YnOXrh1Tzy9WqyPrgLVnwY6giFEKJd0VqTs2U9v1Wm4wtPgbLdB66z8FXU7Id46ftVdDF24Bx0MpZYc06gmIHHAFC6/tcmxTF94XaW/fwxoy3riD72Tnp3704JEebBVuw5lF/uYcm2olZrX4iOokmrlQkhhBAHq4VbCkmhCKv2QWxX6H8a2l2CShvWrPa0zYnVW73XvqofH8ZVng0ZwyG+7skrtdZs3pGLDX+LJ/sEqIrrgy/Xgm3nMuh/apPqHuP9iS1hA8jsc1yL4wgm6zlvYFQWYolOw7fgf4z85nbeCnuMfuuXYFRPwDLozFCHKIQQ7cbMZTsY795Jth5JucVHXNWB56HTFXlYqgrZOG8GNqtBau8/VohM7DaUCu2EHYuAKxoVw64SN4tnPM0LzrfxR3fBOvxiMi12/PZI/FixVgU5eZO7huq3ziGvSvOLuwdv+o7mqT+dR8/UNlphU4hDkPQcEkII0SEs2lrEUEeOuRHXFZyRqHHXg6WZvwptYdj36TnkK92N1fCw+Y1r0Ya/zmp5ZR78lcXmRhB6DsXFRJOlMzB2NL3nkEtXURme1v6WGHZGYonrAlYbtrFX48s8gsP0EgB04ZbQxiaEEO2Iz2/wyOdLSVSl5FmTyTci0BUHnqtNVZjLsp/OT+aOlEE1x1JiI1ipuxOdv7TRcWxYvYgHbC/hSxqI9ZJPwebAalH0S42mQkUEfVjZzmXf4yjdykZPPGfY5vKF8y66/6cnLPhvi9p1e/2syC4JUpRCHFwkOSSEEOKQ5/b6+XL5Tm4O+wIjIhm6jm9xm8ruwoG3ZrusooIYyskmhW7F89jwwDhm//w9y9auw/e/42ChObnn6p2lRKsKs1ILl7IH6JkcyQojE2/20ibV8/j8OKlG2cNaHEOrUgrbqU+zq+fZvOs7ClWaA77qA9cTQogOYM7GfJwV5hcfjsRMsj3hcKCeQ34fVJpljrIuQ9vC9urtarUoNjr7kVyxHrzuRsVRuHU1AM4T74P47jX7+6dFU2hEoIOYHCqqqGb2b/OpxEWnaz/Dceta7nfcRJklBrY2bSgcFfkYRdvRWvPZsh1MfuxnTn52Dqt3lAYtXiEOFpIcEkIIccj7eHEOvaqW0NezAjXhLxCEhIjF7sKh/0hSZG3ZAkDZyOuZ3f9fxFXvYtyPZ5Pw7onYsn/DmPMkaM2OrFWkqED3+iAMKzttaDo7w3rh9OTjK97R6HoVHj+ugyE5BBCXScoFL5HlGoAFA0q2hzoiIYQIPa+bDbM/oLezGIDE9J5sdzvRlQ0nhwrzd6DQAFgw0Mn9wGLdq0xe9EBs+GDXikaFUpW/BQBXYuZe+wekxVCsw3GXBW/lybtnriLZmw1x3eiTGg3h8ZT3PYv1/k4Ypbua1JaeeSM8M4zpj1zLk+99TidVyBmW2XR+cyz89EDQYhbiYCDJISGEEIc0v6F55+dlPOR6AyMqDTXi0qC0a3W4cCgfHq/Ze2j79q0ApKR1YeLZf8L+p4WU9phCgqWC9/xHYSnewoxXH+LsBWfyb+frZiNBGFbmsFkYPW4SAD/N+u6PA1k/4Z/3Yr31yt0+XHixHAzJIUApBXGZ5kbRllCGIoQQIVfh8bF7zqtcmXMXV8cuAKBbjz4U6SiUuxjqGdq8u9TNRU9/AUAR0QBYOg3cr1xlcmA+vuzfGxdQ8XaqlQMi9l7coGt8OCU6Al9F8OYcWrilkP7OfMI79arZN75nAruMGKqb8CUJgHv3eioNG2dXvssPzlv5qOpyHne8SFRVDuxcGrSYhTgYSHJICCHEIe2b5dncWfYA6XonljP+A3ZXUNq1OcykSlm5OUQsf6fZmyUuyVztJTYhmYSL30DdsZUlfW/Bg4OTtz6IDR8ZOvDNZhCGlQGMHjcRAwsFi2eyfncZ+H0YM2/C8v0/zOEDdSh3e3FRjcVxcCSHAFR8pvlGkkNCiA7M5zc47blf+emHrwEYUvID2mKjX+9Acghd7xw/O4qriNfmMWtvc1UyUvZPDsUkdyFbJ+Ld8tsB46nw+Ij27KTc2Wm/OewSIp2UEGEmrILA7fWzu6SCRN8OSOhRs/+wHonk6jgsFbmNbiunuAp/cQ5fWiex+dxZ+E5+Dt8Jj3Fn5H2scQ5GV8ncQ6JjkeSQEEKIQ5bWmvXf/Y/x1lXok56AbhOD1rbNaSZV1Jwn8c1+nLICc84HFZm8VzmX08lDFxyOvf9JWJVmuv/IPw4GoecQgHJFUznkUs62/MD9L7zCvx55AEvJVpTfAwUb6qxTUVWJRWnsrvCgxNAWwhM649E2/IWbQx2KEEKExq4VlD51GOW5WzkqOvB7RxsQlUZEmBOvI9YsV8+8Q2VuHwmY8+lEjzofHZFS5+/GzvHh/G70gW1zQesGQ1q/u4w0lY8R03m/YwmRDkp0BLbq4CRathdWkq7ysWo/xP+RHIqPcOBxJeEwqsBTdsB2qn0GN70+m0iqmDR6GN36DsM24kJsY67A3XkCu71h/D979x3fVnU+fvxzrvawJO/t7En2IAk7bCijrDIKbSmFbkp36fr2113aQgd7lrIpq1AgEPbKIoPsPZ1427Jlbeme3x9XDhneli3HOe/Xqy+ku3REsXT1nOc8D2kKaCnKkUIFhxRFUZQh66OtdZwXeJpG91jMM69J67UtNiOo4vvkXsTyh4g31xg7XAXtHq+d/EP047/HaT96kmTRVGOjzZO28bjP/Q1RVyn/1G7l+shDtAqXsaN6bbvHh0OtAJhtR05wqNjnpFLmE63bnumhKIqiDLjalggNL9xMTssGvpm9mILwdihKdRnzGYGZuM1nPA+1X+OnJRInT6QCNeWzET/cDAUTDjuuPNvBUn08lnAdNGzrdFwbqwOUivrD6g0BZDutNOPGGg90GWTqjp0NIUaIVPbtAZlDAHFHaklboKbL66yvaqGp2lgOnlcy4qB9YwuzqIk50lpEW1GOBCo4pCiKogxZnyx8jNHaPtxn/Cjt7dqtqYwbUyKI1ryHYllL3OQEawfBlsJj0M74P3KyHJjO/gPyhO8fVgC0T2xu7Fc/jnXYbLJNEX4ZvQZds0BN+8VEw2FjOZzlCAoOFXnt7JYF6KqdvaIoRxldl/zh7gfJrX6fhNS4PPESQibhhO8h7dmI3NEAxO3ZxgkdFKUORBLkiWakydbpBEV5jpMleipo1EUHsM2VdeSLFpwFIw7bZ9IEMYsHjWS3Mnq6sqshyPC24FDOwcEh3V1oPGjtuih1Q2uUYpH6d+QpOWjfuCI3LTiREbWsTDm6qOCQoiiKMiQ1h+McW/0EDdZSrJMvTvv1vVnu/Y8FktnaJuQhhTg7NPx4xOm/TPuYRPFU7F98BvmTPbzrOJ09pgpkB5lDkZARHLLaXWkfR38p9jrYLQuwtexKywy0oijKkeL1dVVc0/oAQUsu/ulfxxJPtVqvmIu4/k047f8AkPYcY3uHy8ri5IkWdGdep5MmuS4rVeYymoSPvavfRHbwmSulZOsWo4295qto9xjdlurMmYZlWjsbgoyz1CKtbjhkGbfJU2Q8CHQnOBSjWKSyq7KKD9o3tjCLFunElAhBMt7nMSvKkUIFhxRFUZQhafGi95ilbSI89dr0Zuik5PsObkM/RtuLxVOY9tfpDbvFxGenl7I8WorsoA1xPBwyjnUeOcGhtswhS6IVwunrfKMoijKYSSnZ9todzNC2Yj/nN+TNu9rY7io0Ahu5o8CVaxzsTAWHOlpWFjYyhw6tj3coIQRfPXkUH8vxWHa+y4t3/IBw1cbDjttc04poNhoytC1tO+xabfX10rBMa1dDiHGWWsgZeVhwy+ozGkIkutHOviEYo5DU98ghwaFSn4OIKTUBFGnp85gV5UihgkOKoijKkGRe/iBRLJSe8uV+egEbAHv0fHRp3KCKrMERHAI4psTDumSF0bml9fDuLdFIKnPoCFpW5rGbqTWlbuJVxzJFUY4SS9dv5erAg1Rnz8Q0/SoomICeOxYq5h4WILE5PMQwd7KsLE6h1oJwd53petPpYzntgqspEH4urL+f8D1nsvjjpQdlES1cX02pqDeetFOQGsDkSgWs0pA5tLuuhQnJTYiiKYft82TnE5UWIo17u7xOYzBKmakJ6cw7rIupEAKrOzttY1aUI4UKDimKoihDTpPfz5zWN9mUezqibTY13czGzeQnpgnsFakZ2A6KUWfC+CIP6+Uw40k72UPxiJE5dES1sheCiDv140MFhxRFOUose/NZvCJE9gW/M4JBQqBd+wrign8cdmyWw4JfZnXZrUx08/tKm341/GALq89/BQ3J8Jc+xx//8Eue+N8Ctmzdwqtrq5npbUUK02EZOG0srlSgpY+ZQ9FEkqKWT3DqrTD2zMP2F3js1OEl5q/q8loNrTHKzU0djllvK+ytgkPKUcSc6QEoiqIoSrot/ngp54gwvmkX9N+LpIJDY6adhHUfUFNzWP2DTBpd4GY3qSKb/l2HqY8SEQABAABJREFU7U9EjeAQliMnOAQgfcMghAoOKYpyVFhd6cdVu4K41Y6tYvanOzrI/PE4LDRKN3nBhnazAFrCMbJp7vD8wwgB7gKmzCwgWvAS+tNf5ebAP+DjfxBfZuLr+mxOt66D3NFgav+npd2TB0Ai1NinH5+VTWHma6tICjOmkfMP25+fZaNW+hjWnZpDwRhFogm8Y9rdrzl80ASootTKUURlDimKoihDzvoN6wAoHzGu/16kcCKJKVcx7tRrKByZSm/vbkHqAWA1a/jyU8GhdpaVJWOp4FBqedyRwpedQyMeFRxSFOWocM972znWvAXKZnUYfDlQlt1Mk8wiGWy/5lAy7MdColffV7byaeR8dxFc8wK1Z9/L7hGXca75Y7SyGYjLH+nwPJfXCA5FmtsfU3c9tng387WVRIrngP3wTmtGcCgbU+jw77xDNQZj5MsGhKe03f1ml894oIJDylFEZQ4piqIoQ0pdIEpL9Q6wgOigOGZaWByYL77LeJyXmnkcRJlDAGOKs2luduNtNzgUNh6Yj6zMoRKvnV16Ad7GHaS/zLiiKMogoCdBT9IQkby/bif/sOzCNKx7XTez7BaacCOD7S8rM4VTAZreTmZoGoyaT8EoKJh7Oci7sXbS9QzA5/USlyYigQbcnR7ZscrX/sHpy55gnFYJk77W7jF5biNzyB7Z1OX1AoEAHr0Zskra3d+2FE6Gm+n83SnK0KEyhxRFUZQhZcHaKopFA7rJNnCZPOVzkXYvFEwcmNfrpvHFHmp0L/GWmsP26fFUcOiQQpyDXVGqnX2yYUemh6IoitI/3v4d+p+Gse0/v2CG3ICJJJTP6dapHrsZv3QjOqg5pEVSHbocOekZaxeBIYDcLDvNuIgHe95lsjWa4Na//4WyRb+gSGsmWjoPJl3S7rFWs0bAkos90QLxSIfXlFJiDqWWnnnaDw7Zs4x/P/GQ6oypHD1U5pCiKIoypKzZ28zplibwlnXrpjUtCsYjfrJ7YF6rB8YXZVEvvRQ1VWE5dGf8yMwcOmVcPi/8rxBTYAkk42A67J0piqIc2eo2IZIxjt11D1OtVmNb+ezOz0nJslvYTBamqB+kPOx70BxLLZOye9M44M7luKz4pRtnN2oBHWrdlu3c0PhndjsnIL/4MraizptMtNhLIQw07YCCCe0eE4ol8SUbjV/CHXQZdbs9xKWJaKAJa49HrShHJpU5pCiKogwpzeE4pVoDwluW6aFk3JjCLOrwtVtzSLbNqh5hmUMlPgelIydgIsnO7ZszPRxFUZS0k6FGGrOn8aXYj9AtTvSiqeDI7ta5HoeZJulGkwmIthy0T9cltnhqm8OX5lF3LM9lY6U+mpz6j40lcz3QtGsNbhEh6+xfMqqLwBBAa9YI40F9x98PjcEY+SIVJHMXtXuMz2WjBSfxDpbnKcpQpIJDiqIoypDSHI5TJOsQ3n6sN3SEKMyy0YAXW7SdIqCJVHDoCMscAjhljjGD/swb7yOlzPBoFEVR0isebGRlg4a/9BTMN61Cu+b5bp/rsada2QOEDv7sD8YSZBE0nth9aRptN8bkMPM+04zlXntX9Ojc5rq9APgKujfhE/eNMh50Ehyqb42SL/zGE3f7mUM+p4UW6SQZ8nd3qIpyxOsyOCSEKBdCvC2E2CCEWCeE+E5q+1NCiFWp/+0UQqzq4PydQog1qeM+TvP4FUVRFOUgraEI2XqjsazsKGc2aURtudj0EMSC+7dLKdGSEXS0I3JZlrfEKADeULmZ19b1fJmCoijKYBby1+OXLv52+TSjMLKr64yZNp5UQWrjQgfXywlEEnjbgkMDmDkkhGCDYwY6Ara92aNzI37jM15ktZ/hcyifL5u9Mg/ZjcwhKUzgbL/2UrbTSgsuZFh1K1OOHt3JHEoA35dSTgDmAt8UQkyUUl4upZwmpZwGPAs818k15qeOndX3ISuKoihKx2yhGjSkCg6l6M5UB7UDlpZFEzpWGSOp2QauLlM6eUqQmoVznBv5w3+XE4jEMz0iRVGUtKgNRLAnmikpKmF4nqvH57tTrewBOKQodSCSwCuCJEyOAZ8YGFlRzhp9JC1rF/ToPD1QY0xkOLsXICv1OdimFxPYs77DYxqCMfJoJunIA639vpdtmUNEVXBIOXp0GRySUlZJKVekHgeADUBp234hhAA+BzzRX4NUFEVRlO5yR6uMByo4BIDZk0qZD9bt39YaTWAnRtJ0ZNUb2k8zkZz8OU6Kf8izsa/z4lP3Z3pEiqIoafHMoi3YRZzxIyt6db5JE0StPuPJIcvKWiJxvARJWAeuGHWbP10yhVW2WbjqV9Gw+vVunROMJrBFG4hYfB0GcQ512awyGhzDMTdtYV9TqN1jGlpj5As/Iqugw+t4HRaacWGOtXR4jKIMNT2qOSSEGA5MB5YcsPlEoEZKuaWD0yTwuhBiuRDihk6ufYMQ4mMhxMd1dXUdHaYoiqIoHUokdbLjqQwZVXMIAHu2kYqfDHzazr41YgSHdJMtU8PqM/NFd5L40gIijkI+v+Mn7Hn11kwPSVEUpU+SumTBxxsAyMltvxZOt65j8xkPQodmDsXxiiD6AHYqa+NzWjn5iu+zUxaT+9xlyKVdB/V31AfJFy0kHHndfh2n1cwJ8+bhJMqN977MnsbDA0SNwSiFWjNaJ0vV7BYTIeHGEg90+7UV5UjX7eCQEMKNsXzsJinlgSHUK+k8a+h4KeUM4ByMJWkntXeQlPJeKeUsKeWs/Pz87g5LURRFUfYLRBKUiHrjibe084OPEll5xr+H1vq9+7e1RhPYRQxpPkIzh1LMw+fh/fa7fCimk7vkFvSWVP2hXYtIfvD3zA5OURSlh6pbIsQCqWyfbnYna5fdayzF6mBZmRjAYtQHGj5qHE/PeIyPkhNJvPk7iBmBG/nJkyQfv3L/c2OjZFtdK3miGVMH7eY7kj98CgC54Z1cevdHbKpOBXiiAfQXb0Sv30qBaEa4O84cAohZsowi2opylOhWcEgIYcEIDD0mpXzugO1m4GLgqY7OlVLuS/2zFngeOLYvA1YURVGUjjSH4xSLRqIWH1iOvC5c/SGnoASA1saq/duMZWVx5BD4d5TlchE69XeYZYxtT90MQPK1n6G99eset0xWFEXJpKZgDJ9oNZ70ITiU5bDRqmW1s6wsgYcQmrMPgac++sYZk7nffAWWaCP+jx6E3Yvhv9/CtPkV9Ld/D4Bc8yzyD+UkNy8kTzTvz4DttryxAPw1+3nuif0My91zeOHOm9n04FfRVjxM3s6XyKUZuggOJSweLDIG8Uiv3quiHGm6061MAA8AG6SUh+Zsnw5slFJWdnCuSwiR1fYYOBNY27chK4qiKEeVpp3Ixy+HSNezd83hONmilURbSr1CaY6HRukm1vxpV6+mYAwbMbQhEBwCOP2E41jgupBRlc9z489+hmnfcoSegEBV1ycriqIMEv5QHC9pCA7ZzTSTddiyspZwHI8IYnJlLjjkdVr41peuYRVjsb7za2IPnscePZeXOBEW3UHznWcgnv0yIhbAuec98nuROYS7gOSwE7ARYVRxNjGLh8/W3sm4mpcBmJ5cg5lEh23s2yRtHuNBRBWlVo4O5m4cczxwDbDmgHb1P5VSvgJcwSFLyoQQJcD9UspzgULgeSO+hBl4XErZsxL1iqIoytHtk6cQmxdA7QaomNPpoc3hOB6C6PbM3fgONsU+B3ulD8sBNYeqWyIcI2KY2258j3BCCOZ+6Y9E7n2TW8Vdn+7w71GFyRVFOWI0hWL4RKrVfAct1rvD47DQRBZl4UYO7EfZ1sre3Idrp8OMYTnsuOD37F74ezaL4awquoy9MQf5u+uxVDexVjufq3K3kF+3BrsW6zLD5zBCYLr2ZUyABRiv64Tf+Suvv/c+1mSI07UVxnFdXDfiLIFmoGkH9DRApShHoC6DQ1LKD4B2+9xKKb/UzrZ9wLmpx9uBqX0boqIoinI007e/baS5hpu6PLY5HKdCBNGcw/p9XEcKt82MX/NR3roHkgkwmalujjCLOBZ7z9skD1YFBYXIM3+BeOUHbJMljBL7oHkPMC/TQ1MURekWfyiGL02ZQ426C4IHLysLhsO4RQQcvj6MMj1GzDgDZpzBeOCC1LaVu19l7b4W/u+FtQwLPsAJ4m1jh6uHwaFDaRqOU3/I1sQFJN69lXNMy4ztXWQOBbxjoQqoWQcVc/s2BkU5AvSoW5miKIqiDKRfP7sEuWep8aSbwSEfrWgZnhUdbNY6ZlMS2UrigbMh0kJ1SwS3KY44wgtSH0rMvJbqcdfw09h1xgb/btjyBvriezI7MEVRlG5oCsXxiVakyQoWZ6+v47FbqEu6DitI3VCf6uaZoYLUXZlekc3VcyqYWu7jw0AhZqEbO9zpaVb05eNHEMmb+OmGLoJDwltGQDqQtRvS8vqKMtip4JCiKIoyKO1pDLFzxUJMMlVUOOLv8pzmsNGm1+JWwaEDLSm+mj9Zv4l53zLY9CpVzRGcWhyGWHAIk5n8y//JNtdUWjQvjfu2kfzgNsQ7v8/0yBRFUbrUFIqRbwoaWUOi3YUb3TJzWDYNMotEawNICYCUksp9qTpsgyBzqCNCCK47YQSbZfmnG/uaOZSS7bLyf9df+emGLpaVZbusbJLlJKpUyVzl6KCCQ4qiKMqg9NSyPRwv1hKRFiSiW5lDLaEoHkKYXSo4dKATxuRxX8scdM0CteupaYlgJwaWIRYcAkya4IyJhexM5LB23RqSlSsREb8qKKooyqDXFIyRZw71rY09cNqEQkaWl2ORMV5ZsQ2A3Y0htGjqc3CQZg61OWdSESccd+KnG3pac6gz7gKkuwhptkMXdfcKPXY262VGzcNUkE1RhjIVHFIURVEGnXhS53/LNnKRZRGL9YnEzVkQ9nd5XizoRxNy0N/4DrQzJxaRwEyjfRh67XqqmyPYiIF5aHQrO9RPz51AccUYZps2Y02mirv6d2d2UIqiKF1oCsXJ0YKQhqYK82eMA+Avz3/IyrVrWb27Dm9bsetBnDkEYDFpXP+ZE5B2rzE55MxL7wsUTwV3UZfZWWcdU8Re63AsMT8Eqjs9VlGGAhUcUhRFUQadpz/ew5cjj5AtW7jHfCUB4e5W5lCirW3vIL/xHWhFXjtTy32sS5aiV68nmtCx6NEhmTkEkGW3kF8+FgfRTzc27crcgBRFUbrBKEgdRDj7HhyypOr0/MV6H9OfOZ5z/zudy83vGjvt3j5fv98JAfkTjK5tpu402O7Bpc/6PeLie7s8zm4xMW6KUYh627pln+7Y+DL6szeArqd1XIqSaSo4pCiKogwqTcEYry74H1eb30Aeez2u4bOoTzq6FRySodQxfUzJH4rOOqaQJa2FmAOVeAhikvEhmzkEgNeoVxGTJuO5yhxSFGWQawrFyZKB9HyHpRozzNDXsFifQLXM5lxtsbHvCMmuFdOugsmXp//CeaOhYk63Dj315FMAeP2dt2kKxiDSjP7id9DWPMXtDz3EQx/uIJ5UQSJlaFDBIUVRFGVQ+etr67g5eQ8JZwHaqT9n9vAcauJOYsHGrk9uW3p2hNz4DqQzJxbtL/A5SdthbByimUMA+Iz3ul4bS0Q4VHBIUZTM6EGtmqZQDJeepuCQ49Pae6tGfo3/JE8+YJ+v79cfCDO/iDjnDxkdgju7kLCrjLnh97nw9g949Y7vIUL1xDQHw3Y+zV9f+ph/3vprws99Gxp3ZHSsitJX6c3RUxRFUZQ+2Fjdgn3F/Rxj3gWfeRjsHsYWRWjBRTJY0+X5pqjfeKAyhw4zusBNJHssBGGq2G5sPAoyh6IFU9lV1UpF3XaG8LtVFGWQ0h+5CC1vLJx7S6fHxZM6sUgIqz2SpsyhXACS2SO5+OLL+f69dmh9Dml2IMy2vl//KGI/9UdMf+lGfsr9nB54lf8kTyGi27jK9Abz3XtwB/fCakjEmjFf8e9MD1dRek1lDimKoiiDgpSSf73wKj8wP0V0xOkw8UIAfA4LfunCFO2625Q5ljrmSJkVHWBTJk0hKG1M0YzuNUM6cyhvDHr5XIafdBV7ZD4tVdsyPSJFUY42zZVo299GVn3S5aH+UJwCkVoa7crv+2s7stG95WjH30iBx8EjP7gCvXzu/uVmSveJaZ8nmTOGs8MvoxdP57nCb/G0fhpmEjjM8OHxD3FH4gJMG180OpspyhFKZQ4piqIog8J76/fwxX2/Rbe5cV5y1/4uIl6HBT9uI/AjZYfdRXRdYksEjG82taysXWdNKmHLojJmm7YYG4Zy5pDFgXbdaxQCG3KG4WpeQGskjttuyfTIFEU5Wmx61fhna9eZr/5QjHGi0nhSMKHvr20yo9205qDvTO3C2yFQ1fdrH21MZkwX/oPY4nuxnn8rD1u9NAaPh5ZpmHJHc5wjm99+rHFd7HVs7/0FcekDmR6xovSKyhxSFEVRMi6RSCCev4Fx2h4sl9wN7oL9+7wOC83ShSaTEA10eI361iheWklo9qGdEdMHU8q8LLEcSx5+Y8NR8u9p5NiJuAnzwZotmR6KoihHEX3jy8aDYF2XxzaF4owVe4wn+ePTM4BDJ1PyxsCIk9Jz7aPNsOOwXv4vcOZgM5so9jqg/Fhw5iCE4JjRI1go58DODzI9UkXpNRUcUhRFUTJu9dO/5qTEIjZP+RGW8WcftM+TyhwCIOLv8BpbalvxEiRpOwJa9GaIEIIp538TXaQ6eA3lzKEDFFaMA8C/d2uGR6IoytFi3bbdJLe/h252ImKtEAt1enxTKMZ4bQ8xdynYPQM0SiVd5o3MZUs8H9FaDYlopoejKL2igkOKoihKRkUTSbQtr7PJMp5xn/3JYfstJo2oKct40kk7+801AXwiiOZUxag7M2/aZBhzpvHkKMkcshWMBqBo94s96hykKIrSW5+8+xwWkqz0nmZsCNZ2erw/FGOsqCSZP3EARqek27xRueyVecaT5srMDkZRekkFhxRFUZSMem55JSP1nWQNn4nQ2v9aSth8xoO2VvXt2FzTSq4phNmlgkNd0eZ8FSk08JRmeigDo2AiCx1nc0rjf9Df+2umR6MoyhAXTSSx736HZunk342pYE9r58Gh5tYQo8Q+zMXHDMAIlXQr8TlIesqMJ/7dmR2MovSSCg4piqIoGZNI6jz39mI8Ikzx2FkdHiftqaVinWQObakJkG8OI1Qb+66Nmo/4yR7IHZXpkQwMIVgw/McsFZNh1WOZHo2iKEPc2xtqmSs/YW/2sWyNpJaIdREcStRuxiKSmItUcOhIVTxsDABSBYeUI5QKDimKoigZ8/7WejwtmwAQRZM6PE60LRXrIDgkpUwtK2sFFRzqHps70yMYUBW5WSyPD0c07wFdz/RwFEUZwhYvXUSJaGTMcRd+2pa+k2VlSV1StXkFAKJQBYeOVBXDx5CUgpbqHZkeyuCi67DjPbWs+wiggkOKoihKxjyzvJJptn3Gk05a92rOHOPBgQWp9SQE6wGoDURpiSRw6a2qjb3SropcB3tlHkKPQ2t1poejKMoQVd8axbTjbQAsY05j5PARxo7WjjuWfbStnpHR9ejCDLljBmKYSj+YXJFHDdm01GzP9FAGl48fgIfPh30rMz0SpQsqOKQoinKEkqv/A/VHbvel1o3vMH7j7cz31qD7hoEtq8NjnU43McwHZw6tfAR560So3cjmmgBzxAYsyZDKHFLaVZHjolKmZvBVyr+iKP3kueW7+Yz2EVHvSMgexriSbJqkm3hz1cEHbn+X5Fu/R//gHyxcvIrLze+gj78AzNbMDFzps7GFWVTJfPQm9R3T5qklOwi8/TfjSRdLK5XMM2d6AIqiKEovhJvgueth1pfhvFszPZpeaXzrb3xbexvZbIaxZ3Z6rNdpxS/dFBxYkLpuMyIZJfj8TViCXp6yLSDhLMA8/tz+HbhyRBqW62TPgcGhirmZHZCiKEOOlJLkR3cwQ9sKJ98OwPgiD/XSC41V7J+6WPssPPNlNAQCybelF7uIo53204yNXek7q1mj1VFMeWiDsSHYgPzgb4hTfnzULeUGaA7FWfS/f3G5KdW9LdyY2QEpXVKZQ4qiKEeiXYsQyCO66KGrfg0AQia6rLHgdVhokm6SqWVkAPv2bDOuU7WIuS0LeDXnakw3fQKqXoPSjlyXlSZLofHkCP67URRl8Fq6ciVfjjxCZeGpMP1qAMYXZ1EvvcSbU8tZ9y4n+dxXWa1NYHriIX4Tv5p80Uxs4qWQp5aUHfG85WQn6tETCfRXfohY9A/Y+X6mR5UR/1m+h0t4gxrpMzZ00lREGRxU5pCiKMoRZnWln/rXnuNUQPr3INp27F2OXrkcbc4NGRxd9wQbKsnV6/mo+AvMtW5HG3tOp8d7HRZqZDYjmqswpbZFGitZzkRcw6aRM/5Ezpl3Vf8PXDliCSEoyMmmucWHVwWHFEVJM12X7Hz9TmYJnfzL/w7C+HYu9TlYbfKhhXYjpWTnUz/GnXTyy6yfcfms0RR5p5GouBZ74cQMvwMlHVyFI7DUJnnzib9w2rZnjY1NuzI7qAxI6pKHF+3kRdNuXk/M4DLze2gqODTodZk5JIQoF0K8LYTYIIRYJ4T4Tmr7r4QQe4UQq1L/azePXwhxthBikxBiqxDiJ+l+A4qiKEebf324k4KGZQBG5yUpQU+iP/c1xGs/PSK6QWxc/i4A3qnnoV37MpTN7PR4r9NKLdmIwKeFhO2RWhJZJYy/9i4KVGBI6YYJxR5263nEG4++G3VFUfrX/1btZn54ITWFJ2HLqdi/XQiBdBbgjDfw4JP/YUTLMpaVfJ6nbjqXm8+dwLXHj8BcPguszgyOXkmXihHjADht2x/YIcqQFhc07czsoDLgrY21hBqryaaF3ZbhhE1ZEFLLyga77iwrSwDfl1JOAOYC3xRCtIW2b5NSTkv975VDTxRCmIA7gHOAicCVB5yrKIqi9FAsobNkwzYmaruolx5EPIgMNfDus3ehNWw2OjEd2NFrkGravJgEGuOmHd+t443MIR+mUC3oOrXNIfL0Buw5Zf08UmUoufb44exK5tGqOskoSr9LvvJjeP+vmR7GgNB1ydKFT1Ig/BSdcv1h+63eQpwyzIwNfyJo8nLOl36KzWxq50rKka5g3DwSBZNYM+yLXBz+ORF3OdK/M9PDGhhSwrIHINLMwx/tZE6W0aHPUjiBRt2llpUdAboMDkkpq6SUK1KPA8AGoLSb1z8W2Cql3C6ljAFPAhf2drCKoihHu4+21TM+tg4NyRLXfABWrl7NsDX/QG/7SD+gLs9gpOsSV/0nVFuHY7Z3r0Bj27IyTSYgVM+azduxiiQ5xcP7d7DKkDKlzAe+ClzhfYSj8UwPR1GGJCklOzevRlt6D3LdfzM9nAGx6MO3uD54P2FbHtrYsw7bn5Vn/HSarO3E8ZnfITrpzqkc4Vy5mL/xIWWf+wstmpdKCqBxZ6ZHNTCq18DL36Phjdv4YGs9lw8LAlA4ehp1SSeRwOC+P1V6WJBaCDEcmA4sSW36lhBitRDiQSFEe72DS4E9BzyvpPuBJUVRFOUQr62rZr5lHdLsIHfOFQAsXfgkw7UaFop5xkHBugyOsGurK/2Ml9tIFk/v9jltwSEAAlVs37EFgKKykf0xRGUImzRxMlYSvLxoVaaHoihD0qNLdvPWv3+HQELz0K/vJVv2MfPNK3FoSSxXPgomy2HHTD7t86wb83X41jK0GddkYJTKQMt2WZk3MpdVrT7w7zoilvz3VbBmKwDhjx/DahbMcdcibR5GjBiNX7qJBxoyPEKlK90ODgkh3MCzwE1SyhbgLmAUMA2oAtrLGxXtbGv3L0MIcYMQ4mMhxMd1dYP7h42iKMqAq99C4rEr+GDNNs6wrkUOP55ZM+cAcGbCqN/zXPRY49jW2kyNsls2L3mVbNFK3qTTun2O12Ghdn9wqJravTsAsPjUfIPSM8NGjQeg4P2fo+/7JMOjUZShxR+KcfdrK7nM9C5xzIhwE0QDmR5Wv9ry0QvYibL0uLsxD5/X7jEuXx7HfP6PmPPUhMbR5OxJRawJZSPioUE/cZcO2zavB6CMWu4+KY6tcRPkj6PQ68CPG+0IKHtwtOtWcEgIYcEIDD0mpXwOQEpZI6VMSil14D6MJWSHqgTKD3heBuxr7zWklPdKKWdJKWfl5+f35D0oiqIMfTvexbzlVW6IP0phvBJt9OmYXTnETU5GatUknAV8QqoF7iC/ASna/DgB4cY17eJun+Oxm/dnDgXq9hCqr0ztKOmPISpDmBh+PNsqLmVqYjWRR6+AZCLTQ1KUIePWhZu5KfEgbhHhwURqeZV/T+cnHcGklOxbsYB6fJwx/9RMD0cZZD4zuZgqrch4kipKLd/8Lax5JnOD6kf+fVsIYkdanMwPvgL1mxAFEyjIsuGXbswxf6aHqHShO93KBPAAsEFKeesB24sPOOwiYG07py8DxgghRgghrMAVwIt9G7KiKMpRqNUI+FxjfsN4Pvp0EAJTzjAATMOPY0TFMHTEoK45VLtvN/NiH7G99EKwOLp9ntmkEbLlAbB12xYKRQNSaOAq6K+hKkOV1UXFF+/j95Zv4wztg40vZXpEijIkbKhqIbD0MS4zvYt+wvf5JOtkY4d/6C4te3XNPiZFV9JaegI2iznTw1EGmWyXlXHjjgEgVLsNIi3wwa3Ijx/M8MjSL6lLhH8XTbYymPZ5xCdPIkINkD8Bl81MSMvClgxCUtX7G8y6kzl0PHANcOohbetvEUKsEUKsBuYD3wUQQpQIIV4BkFImgG8Br2EUsn5aSrmuP96IoijKUBZo+DTpUvdWQO5oAITPaJcrKuYxe2Q+TdJNchAvK6t89yEsIon3hBt6fK7L4aBZ81Gzbyfjna3gLgSTuhlXes5i0iidczG79ALC7/0z08NRlCOelJLf/nclN1ueIFY0E9P8m3EXppZQDYbgUKiRxCs/Qf/rRNizLC2XlFLy8htvkidaqJh1blquqQw955w4F4C3Fi3l7deeRcikUbh5iNUg+qTST5Fei5YzHHHOn9BP/AFSM0OF8f6T9lRpgLA/c4NUutTlXbWU8gParx10WOv61PH7gHMPeP5KR8cqiqIo3bN9507csoTyXA+W8WeBMD6WhS+1cnfYPMr2OmmQHuz+alwZHGtnEjs/YrcoYdi4qT0+93Ozyql8z4s5XsO4PBvSUdzul5OidMdlxw7jnnfO4Vc1D8O+VVAyLdNDUpQj1strqijb8xIFliY44xdgMuPMLiayw4LdvyvTw0O+/nNMqx43imTvWwnls/t8zSVbqpne+AqYQRs1Pw2jVIaiY4YV0mjKJVy9lcbqPWAGEW0xilRnD8/08NLmnY21fF3UIUovAM2Edtov4JSffFqg3ZkNMSDcCG5VQmaw6lG3MkVRFGXgLdneQKylGou3GOu3FiHO+H+f7hx9OvqIk6FwEuXZThqkl0TL4Mwc2loTYERkA5GC6QjR87DOjaeNxplbRqmpmULRhPAUd32SonSg2OugYeSFJDCRXPNspoejKEesUCzBH/+3lm/bXiZZNBVGngJAsc/BXplHvDHzwaHY1nepKU7VBAo39f2CiSijnjqZr5hfJTZ8vqp/p3TKN3oulzhXcK5lOXUi19hYvSazg0qzDVu24BAx7PkHFF0/oHOf2ZVjPEjH35/Sb1RwSMm4dfuaWbRpL3LRnRALZXo4ijLo/OX1TRSZApSUVoCm7c8aAmDcOWhffBE0E+U5DhrwIAZpQepXP1pOvmim+JgTenW+EIIRI0Yx3lKDxb8NkTsmzSNUjjYXzpvEB8lJhFc9O+RS/BWlS7Eg8o1fQ7S1T5e5/a2tnB18gTJ9H6aTvr//O6rIa6dS5pNo2JmGwfZeqG4XttZKHqgsRVrdaflx2tJQTX6yhg9Kvoz1C8+lYZTKUKad/QeElOTJRh6InYFEg6rVmR5W2oRjSfxVRht7soe1e4w1K5UtpIJDg5oKDikZ5Q/F+MIDS1n86K8Qr90Mm1/N9JAUZVAJxRKs2O2nQDRj9hR2emyRx04DXqzRhgEaXffFkzqVa94DIGvUnN5fKKsYEQ+iWz1w3LfTNDrlaHXq+AJWZp2CO7yXROWKTA9HUQbW5gWID/4K297s9SWW7Wzk3ffe5CeWp0iOOw8mXLB/X5HHCA6ZWirTMdpee+WVFwBYnBhL3OpLy49Tf7NxDVvxRGPSRlE6kz0M8Zm/Is12VrhOYo+pDFk9dIJDK3c3UaynJiZ97QeHXD6jqUikZXBOYCoG9WmmZNQfXtmIJVzLDdp/AZD1WzM8oq7tqA+yra5vs2yK0l2rK5sx61Fseghcna/RNps0YvZc7MlWSEQHaITdUL2WvY9+nUmxT9A1CxRO6v21vGUAiLN+B668NA1QOVppmmD6mVcTkya2L7w708NRlAGzfFcju1a/bzyp39KrazSH49z05CpudjyPcPgwXfjPgzJbi70OKmU+1lhTn7OTequ2JUJw6wdEhJ31chgtIistwaFgSyo45PL0+VrKUWLalYif7OGSM05kRayMyJ5PMj2itFm8vYEKLVXSINUo5VCeHOMeNuhXwaHBTAWHlIxZsr2B/3y8i38VPIVdS9IsndTv3pDpYXVI1yV3vL2VM297l8/ft4REUs/0kJSjwIrdTeTRbDxxd922XbQFkAZTO/uVjzJ8x5NcY34DWTgZzLbeX2vSJSSveApt2pXpG59yVDt56hjedJzJ2N1PE132cKaHoyj9TkrJ957+hOqNi4znDT0PDkkp+fkLa2lsaWEeazBNvhicOQcdU+CxUSlTQfwMdSx7f0s9M8Vm4sUzyc1y0pB0ItMQHAoFjO9lp9vb52spRxGzlYtnlFFlH4MjXEWycWemR5QWi3c0Ms3ViHQVgNXZ7jHZ2fkkpEa4ZfBltyufUsEhpduklMjmvchnroOWfV2f0IloIslPn1vNHc77Ge9/l8T8X7JGjiRWszlNo02/P722kT+/tpFfe17i4ciNtN5+Evj3ZHpYyhC3YlcTU3NixpMuMocALG1LzwZR3aHojo+ol8bsqqmiD0vKAKwuTOPPPrjukqL0gRAC94V/5b3kZCwvfxdqNw7sAHQ10aAMrFV7/OxpaGWKthOAQGX3J+bCsSQ/e34ND/3tp8xf/3NumdGMKRmBMWcedqzdYqLRnuqo2ZCZzPDlG7YwQduNe/TxzKjIZm/UnpbMoXCwBQBXlq/P11KOLhaTxphTv0BEWtj8xI8zPZw+awlFWLXbzzQ2Q8n0Do8r8NhpxkWidRBNXiqHUcEhpVuklHznsaVsuf1ixNpnYOcHfbre/e/vwN2wmnP0d9BP+AG2k75DwDUcb2jnoCwK+vBHO7nn3e3cP/xtrgw/Tlyz42taA7sXZ3poyhAm6zbxnR1f41RvtbHB1XXmkCunCIBYc3V/Dq3bZLQVc+0ankrOp/qS5+GkH2Z6SIpymBPGl/Bw8c8JYyH+1u8H7oX3rUT+ZSyseWbgXlM56v131T4mmKtwEKFZujA3bdt/71XVHKY5FG/3PF2XfP8/q2j4+Bm+3HwnF5s+4Lx9f0Oa7TC8/UYDEc8I40H9wE/+6bqkbNuTmNARky9jeoWPfVE7MtTY52vHQkZwKMurMoeUnjtt7kzey7ucCXULWP/hi5keTu9Iif7STcT/PotcvY686G7EsOM6PLwgy45futFVcGhQU8EhpVueXLaHsRvvYGw8NaPah8yh5lCcu9/ZxheLjNam2tyvAWAvHINbBmltqtl/7O6GEPe9t52bn1vN1x5ZzpceWspV9y3m7Y0D16p7wdoqfvXSOr4+spbTq+8nOfkKXp11PwCt1b1bp68oXVm+q5GlT9/CZLYyP7TA2OjuOnPIk2e0023euaofR9d9b775GiZ0iiedTNHkU8GVm+khKcphhBBcf/ZsHkycjWXjf6FmXb+/5gtvfYD/vs8iQnVIFRxSBkI8QiLYxP9WV3F5iXEftcZ3Kk69lUSgjqeW7ebkW97hX088SnLhr0BP7j81ltC5+bk1bF77Mf+w3U2iZBZ60VRE43bk8BPA4mj3JX2+HOpFTkYyhzZU1nOJvoDq/OMhfyzTK7Lx44aIv88TkfFwKnPI7ev7QJWjjhCC47/4W2rIZeLCa0g+9rmD/t6OBHte/yfa8ofIje7hn0WphkKdBIc8DjObGEae/5NBmQigGFRwSOnSjvogv35pPZdal/BWchpRkwsCVb2+3lOvv0MwGuMMxyb0gon7f/AWjjgGgA1rV7JgbTXXPLCEk/78Nne8shRtzTMM2/cynubNbNzXxL1vroFg/65ZDUTi/P6VDXz7iZVMK/fxPcvz6K4CTOffxvxJw6iRPgJVg7+AtnLkaWiN8pUHFzGq9nUAcptTP1S7sawst3Q0S/Tx5C35I4kPb8/oF3AgEmftYuM9XHj+RRkbh6J0x9yRuaytuJoADmKv/apfX+vDjXsZ8843QI/zvj6F5Pb3IJno19dUFPnqjwj8bS6B1gDzs/YgbVnYjzkXgL888TI/fnY139ae5tt7vovpw9ugYdv+c2945GP++/FWHvfehcnuxnzlY2hnG1l22rhzOnzNIq+dHbIEvZdFr/ti9wdPUCj82E/4JgDD85z4pRtNJiEa6NO1kxHjfGFz93mcytHJ5cnm8ZmP82jyDExbXoPGHZkeUret21VDwUe/5p3kVPxkMavpFaTZAcXTOjxHCMFa+3Q88Xqo2zRwg1V6RAWHMqQ5FEfuWQabX8v0UDqVSOp896lVDDfVUqRXszv7OKr1bGQvMoeeWV7JKb98nGtXXs79hc/irv0YbeQp+/ePGj8NgOffeJevPbocV/VSFhbfxUrHN/id/Ds3h//KP/zfZJH2ZR6pvZTk36f1T0cmKUnqkhv+vZz73t/OZ6eV8u8zJJZd76IdfyNYnbjtZnbLAqyBzBRYVIa2v7+5hRmJleSJFqTH6M4lrVkdzsweaESBl2vjP2ZhcgbmhT9jx22ns+PlW4mv+S9Ur+3voR/k5Y83M1uuIeQdjcmV0/UJipJhXz17FnfEL8S6/XXY9la/vEZVc5hdT36fY7RdJC64i2c5DXMiCPtW9MvrKUqbpo3vkR2v5uFhr1G6+yXkiFM4ZupsY9/udTxS8hzfNj3HGj21FCxsLL+KxJO8s6mOf1UsID+yE+3i+yCryFhK9vVFMONLHb5mkcfOxkQRon7LgE5WNLSEGLvpbvZahuGbbASvfA4rzbiMA/pYd0iPpLqvWVx9uo5ydDt9+gSeSJxiPKkZ2Hu03pJS8thLr2MTccae8w1c0y81dpTOBLO103NtY88A4JN3n+/vYSq9pIJDAyCR1FlT2cy/F+3kiZff4Pd3P8Rlv3mAxMMXIl/5QaaHdxgpJW+v2cGLf7yGH/3hL6za4+eP04wbhPxpZ7En4SVU3/NCzKsr/czjEywiyanNzyMSERhx0v79trwRJDAx1lTFf6cv5674LxgV3YCc9y34ylvGDchF9xCZcCnv6lMxxVrSXxD6kyfR/z6VO19bRXzHhywc+R/+YLkf19OXoTvzYdaXAXBYTOyWBdhbK9P7+spRb0dVPdnL/sYfXE+gO3IQ8282dnRjSRlAjsvKc985nZ2n38t9nm+T27yeEcv+H5ZnvwB3H4++8FcDcoMud7zHZW+cwPGmdTjGnNT1CYoyCMyoyGZtxVVUiiKSr96c9mLRSV3y73/dxVW8in/KV8ibeSH1+XPQEbD9nbS+lqIcaPGmPXiDO9ERzK15AgDt7N/jyB9JQlj4P8fTnNj4LHvHf5mfx417nbYASl0gykixj9l1z5Ccdg1i9KmfXrhwIpjMHb5ukdfOdlmMiDbzwoeraAn3w6ReO9565i5Gib1o828Gzfi5YzVrhE2p1vN9LUodayUs7PuvrSi9ManUQ8Q3Gh0trcuZE2/9Ebnt7bRd70DvbKojXrUagJKxs7BMvwKg03pDbb5x0Xz2mUppXPMaexpD/TI+pW86/jRX+mTv4meJLP0XK5IjafQ3U6FXcqLYzQjNqKfzY6vAlJDIYD8PJNRorGHt5g9LKSW/eXE1J3x8IxeYVnEBL3L9qEsZH40i3cXMmHEsH72dg2zpeXpwMJrkTPM6dFsOJBOIeOvBHyQmM1rOCL7U+AJsgOT4CzBdfDdYD5iVKZyId+oVvLX3Pk5rWglNOyBvdI/H0qHKj9H8u2j58D7uyHqPguo6ZI1AH3sO5tN+vn8sDquJSlmAM/IhJGJdRsoVpbu2PP0Lvmv+DyHPFMQpv4WKucaObhSjbjO+yMP4Ig+c/FsaAj9nwYatvPrhMuY1vMAVH94Grjw47lv98wZS9m5eSRk670z6A6ec+aV+fS1FSacLZ47k789fwJ/r7zVmcounpO3aD736Pjc0/pVG70RyLjCW5JQWl7KxYQQTtr2NOPlHaXstRWkTjCa4++mXmCsksbnfxrLsHsSZvwVfBQBa3iicdRtJnvIzsud9l+ZPHjVOTBVurmuNcrP5cXSTHcvpv+zRax8/Oo+dJROgDoILfoNr4VsETB525p5Ac+50jq18CNMxn8V09u/S1oVy5arlzN11F1WOURTPvfygfbo9G2L0OTikxYNENSdd5/MqSseEEJw+ZRjbFxczbN8aLOm4aDKO6f0/oa8owHTjioN/R/WFrpN8/HLW1U1hpr0KKRyInBGQOwrO/zuM+0yXl7CYNDzHnMGxnzzB/cu2852zJqVnbEraqOBQP9m6p4qy+i1cpr1HUmi0eiow5U8jNnY+Zmc2y157jHgiyYnxDyEe7tZykd6Qz38N6d+N9o1F3frSvee97TiX/pNTLatInPUntJZKJiz6J+wFpl5JkddBszkPR/QjY0a1BzMmoWic2XI1cuQZ6OPPg5p1WOwHd3kQ064kvnMR5hlXY5p4YYfXn3jMVPgAAlWbyRpzRrfH0JVIYyV24Ifmp7DGEvC5RxATLzgsxc5pNbNbL0AgoXmP8cGoKH20a+1HnNr4JKvyz2Patx7bv10vno6W27sgaG6WnbOPncQp0ycw9f8VcLyrjrI1zyD6OThUW19PGTBh/pVgdfbraylKOp0zuZg7/psKCO36MG3BoSVba5iy5Ic4TEnsX3wUzDYAxhZl8eGq8UzY+6ZRd6iTLAxF6Y13NtVRGtkCFrDOvQHm/xhsWfv3i/NuQ49HMY2ejxPIzS+CFvYvK6tvCXO6tpL68V+hoJuTjW1KfA5+eNVn4O8/5fPmN6myjWRZtJyzal/HVvcye2UepUvuICmTmM79U5/fa2Dz+4x94VJ0YcJ06b8Ov490+NISHDIlgsTNKjSk9N3pEwrZ8FE5xekKDrXsRUgdU2s1+vt/QzvtZ+m4Kmx/C9PW1zlO305hbg7Yx4NmMvbN/FK3L+OedjGs/hfDlvyK5OlPYzKp7LvBRN2B9JNp530V/dwbwBTGZHbgPSSz5KO6GdS+cy8nWj6EYD34yvtnIHUb0fy7jNbzI07s9NBoIslfXtvIB65F6CUnYp5ndBGTOSPglR8gxp+HEALNW4rJn4RgHWQVdnsoOcGt5MhmGH0qpskXweTDC9SKk36ApRsrUEaPGEnofRv+vVvI6vrwbnljfQ1F2zYzXDpwizB64RS0Cee3e2zbsjLAyF5SwSElDRoX/JEsXAy/8raDtmtffBFMfbtlsFtMzByWy9q6UspaVvXpWt2RCLcQlyZyvJ5+fy1FSSe3zcy0YyZRubGAou3vY5779T5fsykYY+3jP+M6bSOR8+4+6DtjfFEWz+jDEMmo0dGpYHyfX09RDvTaumpOtu5B2nwIb/lhk4Vi2HEcuGV0WTHx9SbMoUYE0OxvRBMSe25Z7wbgLTfa3SeiFH/xIc4vnops3sfeHWu4eqGFX8k7OWnpPXDG/wOLvdfvMxCJs+6Z3zNK2mi48jXGj55w2DGaMwea6VNwSEqJJREiaVf1hpS+m17u407TcFyhxRBpAXsf75v8Rj1U3TccPryNtfVxyqefgTenAPLG9OqS4ViShtf/SRkwTWyDYA1i2IW9G9/Ik9k05no+u+U+Nr9+J2PP6d/JSqVnVKiun3gdFrJdVrB7211yNL3CR6NMdTgIpb/rlpSS9zZWIZuNmjjrX7qNP7yygcXbO36tmuYoo+VuiuKVaJMv3r9dzL4OcXMlTDgPAHe+kYYc9+/t0ZjGtH5sPDigCHVvTSz1slsWkKjf3udrgfHv66anVlEsmkiOP5/kzOvQzvtrh9lWJk1QbSoynjTtSssYlKObPxTDHthBrXcKvtxDlpDZPWnJLjx+dB4bgh5EsLZ/irkfQEZaCAoHFrOpX19HUfrD52aXsygxnsSOD/tcd0hKycL7f8p1+n+oH30Z9plXHrR/XFEWG6XxvXqkFCRVjhyxhM7bG2uZbatEFk3uVhb55HIffuki3FwPQMBvZBA5s3J7NwjNhD72HPTjboSSacZEo6+U0ulnc/aUUl4KjDEysVt6dl+5XzJOJBzkaw+8y/ToMkJjzmf8+MMDQwDmtuYIfQgOheNJHDJC0qI6lSl9ZzZpWFIZqnLxnehL7+/T9RKNxu+SGxPfYUF8OpM23Ib38XOR95/W65qTf3vmLYpr3uXt5FQ0IdFiAaPeWC8Nu+wPbJTDMK/9T6+vofQPFRzKkGllPhpkKjIcqk/79TdUBbj5X6+hySR10suYhndY9uFCbnpyFfFk+ze6e/1hPmNajBQajD8kY+aA9ar5pUYXi6o92+gJX7yGkHCCt7Rnb6YdWXYLdZZirIH0BGaaw3HC0SjZ0o+3cDim82+F8mM7PSdgziUurNC0My1jUI5uL67aSyl15Jf3blanO44blUsVqRvjQFW/vQ4A0QBhoZaTKUemeSNz2eWZgT3uR9Zt6PV1dF3y8kO/43NN97Ep/yzyrrzrsGPy3DaanMNJYlLBISXtFm1vIBSNUhrbjlY8tVvnFHns+GUW8Vbj/jQcMCYWzU5vZ6d1yvS5f2E689eHbT99QgG7k3nGE3/P7ukSG18levs8+E0e3DKKs6vvxibiDDvpmg7PcbtdhLH1KTjUFIrjEmFEumq5KEe98olG10Dxzh/QXvk+NPcuUFrdHOHJ198nKQWV1pHUnX0vP3b/nrfsZyAizRBr7fE1N1S1oK1/BpOQTPvaA+ju1OR4Qe+DQ3arhQ32aZSGNkAy3uvrKOmngkMZku2y4sxOLclKFfxLp92NQcq1OgDyL/wtpqx8nrX8ktsjP6H6gSshdngl7H3+MOdqSwiXzOu0gPWw4UY6fN2+nT0ak5aMkNBsPTqnM7GsCnJj+9LSeak2ECUfPxo6eIq7dY7DZqHJUqSCQ0pavLJsIx4RJrc0jQXWDzG51EuzOZWV1Msbj+7S4q3ETCo4pByZhBCMn2O0v9657JVeX+fOp17kjF1/Y5N7DmO/9niHy0NHFuWwUyvDv3MVSX3g2n0rQ997m+v4kuVNTHoUutFNCCDXbcWPCz1o3J+GA6lAir33waGOTCvPJmBP3XellsN0y8ZXMD95BdX1Tfw9cTF7kz6uMS1EzyqGso4n97KdVpqkC9mX4FAwhosIwpauwgbK0e7YKZN5NnkCKwovMTZsea1X13llTRWO0F6iziKe//bJfPH4EbjGzWdhMLWUOdjzhIS/vLaJ082fEM+fTHbpGLSxZxo7Co/p1Rjb7HFPxiajkOp8pgwOKjiUQcXFqQyaTv5QZcO2Xv0h7/NHKBNGcIjhJ6B9ayn63G/iNuuU71uA3LP0sHNqGxoZpVVhGTO/02tXlA0jITWCdT34EgdMyQgJrfdryQ9lzhuFnRiBhr63k68LRCkSqRuFrJJuneOwmPCbspH9kPmlHF0qm0IEqlNLJFPdY/qD2aThLRpuPOlt+n43WeKtxE0q5V45cp1+3GzWypFkf3IvxHrXcve4zX8ibHIz9muPIjopND13ZC6r42WE9nzCd/98N2teur3Py9kUBSBZt5kfmh4nOeoMGHdut87JdlrxyyxEqiB1Iug3dvS1Fko7TJrgmHHjiGNCNnXvvlJKyZaF91IrfXzDcwf55/8/qs9/FD2rFG3mtZ02S/E5rTRLN4nW3k/M+kNxXCKCya6+45T0KPA6eGv8b/j8vsuIe4YhNy3o1XX84Thloh57/ghEagnptAofNcm2UiY9/+9+865KprEZy/hUUOikH8KFd4C7+11021Pvm2Y82LO4T9dR0ksFhzLIkZVDAq3TZWXykYtJPnFVj7Nj9vnDjDDVG0vEPGVg92I6+3esPuleAOq3rTrsnNYG48eixdt5cEQzm/GbctCrPuGft/2a+9/4hM01AWQXYzTpUZKm9GUOZZcay292b1nX52vVBiIUitQHZnczh6wmolghHunz6ytHt7pA9NNgbj8GhwAcuani9/0dHEqGSFrVjbNy5LJbTDzivQFfvBb5wW1dn9COQr2Wnb65iC5uor996mjmn3QqJaKR34d/w+TlP2Pzn+ezYctWdJVJpPTBrLrnEAhMF/6z263ic102mqQbc6wZgGTYb+zoh8whgAlluVTpOcQbdnTr+FtfXk55/QdsyDmVZ751ClfNqeD42bPQvrsGTv5Rp+f6HBb80k0i2PvgUFMohpMIFqdquKCkz4/PHk9Sh8XmWbDj3V5NSrSE41RodWjZw/Zvm17uo7GXpUySumRSbBUmkjD6dGOjrwKmX93jsR3Kkl1KpcxH7lbBocFEBYcyKMthwy/dyGAHRaJDjWj+nZgql8D2dw7alUjqnQZjqpojjLE2QFbxQQWxx48eRb30EN235rBzIv5q44G76w5k7vwKTtE+4dvNf+Ws9y7h2X/8kNt+90Nuf/JFttcGDjs+qUssegzdlL7MobKRRjrj5o19r9HQ28yhsLRCQgWHlL5piSQOCA4N6/zgPsrPzaVZOkk09T3jriO6LnHoIaRVpdwrR7ZQ8VzeNB0PH/2zx3UREkkdG1E0a9fLK4UQ+EZMA8Bl1vlg2DcpC23A9MgF/OxPt7Dy8V8iW/q5TpgyJDmijTRb8rs98QXgcZhpFlnY4n5jQ8QIEmHrn+BQqc9Bpcwn3rCzW8eH17yMXcQ56bM34LAe0PRAM3UZAMt2WWjC3ad6n/5gFBcRrE71HaekT0Wuk2tPGM491WMRicjBS8vqNsOeZV1eozUUopDGg+4ly7Id6I5UMfkerkZpDsc5SXxC1OTudLlmb+S6rSzTxxrBoTSUCFHSQwWHMsjjMNMgPSRb6w7bF4olWPDmQgB0YaLupV/xwLub+fkLa7jk9ne5+pe3sf7uL6A/e0O7197XHKZcqz/sh+awHBeb9HKsDRsPO0dvaQsOdZ0maD/zFyRP/w1c9TSFPic3W57ge4n7+NbGazA/cApsWXjQ8eF4Ejsxo5VpmuSUjiaiORmz4xHueGVZl5lLnaltiVJqakJqFnB2rxuHw2oiLC0qOKT0WUs4TpmoI2lxgSO7X1+rNNvBPplLtKFny0J7wh+O4xZhhF3dOCtHthF5Ll6LHINIhHtWDwUIRBLYiaFZu9lpsGQG0pGNOPcWTrj298Quf5KR5gb+EP090zf/ndjt82DnB714F8rRSkqJNdFC3NKzDBchBDGLF4seJRQMYEum6lT2w7IyMH68Vsp8TC17ujxWSsncyPs0W/IR5XN6/Fpeh5VKmY81UNnrpZuB1lZMQmLrQ4FuRWnPTaeNpSZ7JrtECfoL3zICQlKiP30N8vmvdnm+KbAPDXlQFroQgvKyVNZ4D4OijcEYc7QNNOTPgU6WRvdGrsvKan0kWrAWgof/FlYyQwWHMshjt9AoPSRbD/9DfWtjLcsWvwfArbGLyfevYt6bl3Lmqm/zaMPlPGn5NcfUvIi25ql2o8BV/gjFeg0ie/hB271OC7tMFfhatx30pSilNP44oXtrSEediumEG2HsWVhvWgk3V8J31/Gg70Ys8SDyiSsOWtcaiiawi/QGhzBbsVz+MONMezlu8df44RNLiMSTvbpUbSDKMEszZBV1ulb9QE6ribBuUcvKlD5rTq0RT3rKu53231ulPgfVMge9uf8yhxqDUdyEMTlUyr1yZBuZ52K7nurM0ri9R+e2hGM4iGKydbMwuzMH8cPtMOMLAPgmnor5KwuIX/pvLkr+gbC0IN/5Y4/GoBzdWqMJsmQrei+Wg8VtPgCa6mvwiBAJk6PDgup91RYcskfqurynao0mGC73GvVKunm/dqBsp4Wdssgo0B3Y16vxBlqMTHOzqjmkpJnDauKPn5vFlZGbaRBe9McuhZWPoNVthObKLjNsHMHUvd0hJQpGlRYSleZ2ExI60xSKkSMCSE/fO00fKtdlo1amJkR7UV93IMWTOn9/YwtvbazJ9FD6XZefqkKIciHE20KIDUKIdUKI76S2/1kIsVEIsVoI8bwQwtfB+TuFEGuEEKuEEB+nefxHNI/DQiNuCB2+rKyhNcZEbRcxRz6fvfFWqs68m9HZguOyW7BMv5ItJ9/B12I3GQfXHtxmN5HU8QcCeBP17dYvaXSPwSoj4N+5f1tLOIFH9yMR4Mzr2RvRTGDLAm8Zm8sv4w4uQ+iJg4JDrVFjBhVLN2dQu8k07kzMl97PdG0rM9b/icvvXUxtS8+DNXWBKCWav9tLysBYVhaUZkiEe/x6inKgloiROWTK7t8lZWBkDlXJXCzB/lui0tASwimiWBxqVlU5so3Ic7FL9i44FAiGMQmJxdaDdteH/tgtmY5l0oV4RsxiuRwPzV1nVihKm7pAFC+tvcpIlXbjnObGWrIIkejHZcJeh4U6U1snzc4nLmoDUXJEC8LVw3vVlGynlR1tf9MN23p1jcamVBkC1a1M6Qczh2Vz/kmzuSzwPfR4FF78NgAiGe0yiOKKpO7tDvn9V5rjpBEP4eaeBYcaW43Jvv6or5XrttJI6m+ond/CmbRidxO//d96fvP8cn71wmo+e8eH3PbGZj7YMrjG2R+6E3JPAN+XUk4A5gLfFEJMBBYCk6SUU4DNwM2dXGO+lHKalHJWn0c8hLRlDmnhw/9DawrFmCB2YyqewuhCD8XHXYn1u59g/s4KzBfcxuhTPk+saAYAsu7gJWI1gShF1COQ0M6PzUjO+NSB6/dv2+sPk4+fmC2nT2mD5TlOqiOpmaXYp7WHQjFjWZlIZ+ZQijjms8jjbuIq81v8tPYHPHT7rwlGelYbojYQIZ8GRA/W5DusZoJJCySiPR2yohykJZygVNRjyun/4FCRx041udhjTf2W9dbSbNw421wqOKQc2YbnuajDS8zk7PEPyUCr8R1osfcgONSBE8fksTnihea9qouZ0m21gSheEcTkzOnxucJlLLEP+mvxiCDY+i8TVAhBNCu17MW/q9Nja/xBfASxePJ79Voeh4XdMlVbs7F3waFmf2ry09r3v21Fac93Tx+LJX8MP4kYmaT+nKnGjpbOg6e2mN94cEjwtNTnpFFmEW+p7dE4Aq0tmIXeL/dzeW4bjXJwBIeagjGW7WzkjSWruOyuD7n2ztcZu/Rn/OCTs7l21ecYE1zBgxeX8sszyjI6zoHQZXBISlklpVyRehwANgClUsrXpZSJ1GGLgaH/byvNPA4zjXgwR/2gH7wcKtAaYoxWial4crvnCiE4dfZUWqSDwJ6Di0tX+cNMFakvvIKJh51rLZ4AQLL60y5f+/xh8kQzurN3X7ZtyrIdBEkFgKKt+7cHowlsIo7obu2FHhKn/YLkiT/kGG+cH8fuYNmD3/009TIeAf8eiHec4VMXiJCdbABPzzKHQrrZuK4qpKb0QbS1EY8I9XunMjDa2YftqVnTfupY1pZy78jy9cv1FWWgeB0W8tw2ai2lyB4Gh0JBIzhkc3RzWVknThyTzz6Zi9DjqjaD0m11LWG8BLFmda+W4oHMLiOgFG6uw0MIzeFL8+gOJtq+/7oIDjU31qIJid3buzbaJk0QtBUSF9YeZwOCUYahtcVvPFEdOZV+YreYeOwrc5hx/je5UvyJB7K+buxo3ms0R9i7AjYtOOj3h5QSe7yZpDCD5eDvndJsBw3Sg95OKZPOtLYYxegd7vTXw8xxWTMeHJJS8uAHOzjplrd56b5fcfqrJ3Np/V28WnQPl5nfxzb1Uso9Zv4W/SWnvnIyvP7zjIxzIPUoRUQIMRyYDiw5ZNeXgac6OE0CrwshJHCPlPLeDq59A3ADQEVF//9AGgyMzKEsI8Mn3HRQlNfq34KFJBS1HxwCmDsqly2yjLK96zhwPmdfc4S52gaSVg+mds4vzs9nl15AXuUqXPvPCTNZNKNl9W1NaVm2k1aZCgBFD88ckv0UHMJkxnTaz3HP/ynL77qWU2of4ZbfOdgmhnFb/Lc4CSPHnIX4/NOHnRqJJ7FF6rHZw5Azstsv6bSaaE2aEWYJyRiYbel8R8pRxNSaSgPuQXCyL0LekdAAVK2C3FHpv37qxtmZ1b/FtRVlIIzIc7HHX0RJ43Z6UhEsHDQmSGyOvv+AHFvoJmgvgiTGspusrruKKkqTvxGTkDg9PQ8OWbOMe9LmhhqGaWEszqJ0D+8grrwKAnsdZFUf3k33QIFGo3mKO7t3wSEAr8tGXbyE4oZtPfqbBqNArzkZAhMqOKT0qwKPnavmDmPpzjm8snkb3wdo2Yt89nrE+ueNg657A8pnAxCJ67hlKxGzF9ch9SuLvXY+IQtTpPPg66HCrcZkn7UfMoecVhMRS+q6B5QiGUgLPlzGRQsvYq59FONja4k6irk89BL4gYvvQ0z5HERaYPNrEGuFvDEZGedA6nYlNyGEG3gWuElK2XLA9p9hLD17rINTj5dSzgDOwViSdlJ7B0kp75VSzpJSzsrP71v2ypHC67B0GDF1BnYaD/LHdXj+qHw3u00VOJu3HrS9yh9mnrYeveI4ox7QIYblulgjR6BVf7J/28rdfgq1Zqy+vn35lx+YORQ7IHMolsBBFHM3Wvr2iaZxzPUPsNNzLN/WH+N33EkTblbbZsCuDw7L0AJjTf5IkerU1oMfyka3MqvxRHUsU/pAD6faBNt9A/J6kfyptOBGbnmjf67f6gfolzXqijLQRuS52BDLR/h39aidfThsfAfanX3/ASmEwF2QWnbaxbICRWkTbDKyBByeni8rc/mM4FBNTTW55jCin2vIleS4WJkcTWLX0k6Pi/iNZTF2b+8DpD6nlX2mkh5nAwLsaQrjInXPZ1PBIaX/nTKugO0hG7pmNSYHdr4PeWONncFPl4n5wzE8IkjCevi9l91iImz2GSUFeiDSmro/7YdAqBACj8tFWHO130UtGUc+9QWoWp321wYIROJseevfZItWxltqoGAitu8sQz/9N8jP3ApTPmccaPfAlMtg1rUw/IR+Gctg0q3gkBDCghEYekxK+dwB278InAd8XnbQR1xKuS/1z1rgeeDYvg56qMiym2loy/k5pMCYiPiNB520VRdCkMwdS1bSf9D5rbU7Ga7VYBl1crvnDct1skYfiSO4F4L1SCn5YEsdeaIZ0Z1OZZ3Iz7IRN6UCQAdmDqVa+pq727WlD+xWM8O/eDd2LUlefC9rZv6OhwJzELEgHFKfCYw1+SO0VOZG7uhuv47DYiJCKjikOpYpfdH2996LjjK9UZLj5r3kZOTWN/qlfkk0lLqZ6McaFYoyUMYVeVgfzUfIpNHOPhFDvvBNqN/S6XmRUCo45EhPXRJ77nDjQT92GlSGllCLcW8oelFzyOvxEJZW9FAjXhHu98/zUp+DlXI0pvr1B5UlOFQskHpPrp5nQ7XJdlrYqRchmnb2+DuwsimEU6Tu+VTmkDIAThqbD0KjxZIPe1cgQvUw5kxjZ/jTYE9zOI6XIElb+/eSSUcudj3Uo1qp8WDb/Vz/FF/PdVtp0bztLytr2oXY8F/Y+HK/vPYtCzZxUuIjgrmT0b63Ae2r74ItC+2EGxGzr+uX1zwSdKdbmQAeADZIKW89YPvZwI+BC6SUoQ7OdQkhstoeA2cCa9Mx8KHAbNKImNvS6Q4ODmnRVHJWFz8WPRXGsrG67asAoytYcPO7xs4RJ7Z7TkGWjY2aEQSR+1ayqSZApNWPVcbA3bdUdSEEHl9qKckBmUPhaASTkJht/bSs7FC5oxAX34t+zl849ZzLqPNOAmDrincOO7QuEGGEqEI3WcHT/dJZDquJKKni26pjmdIHWlsgdYCCQ6U+B+/oU9CCtVCT/o/kRKh/byYUZSCdPDaPHQe2s69eg1j1KKz/b6fnxSLGrZFIU8ZsXn4BIWkj2rA7LddThr54a+oHVy+yUnOcVvbJXMpFLY5ka79/P5VlO1ipj0FIHfat7PA4va0VdyeTp105dkQOy1uzje5PLXuNui0t7XTwjIVg5wcHbdrTGMZN6p5PFaRWBkCOy8rUMh8bwx6SOz8E4OHqVCZp2L//uOZQHJ9o7fDv3eROlS/pQX2fRCT1e7S/gkMuK00yC9nemNqyohq2Hr6vj/63eh9vLF7BNG0brmkXGZ1C21ltczTqTs2h44FrgDVCiFWpbT8F/gHYgIVG/IjFUsqvCSFKgPullOcChcDzqf1m4HEp5YL0voUjW9yeCzEO+0O1xFtIChMmS+c3lSMmzoYVIP77TSo3fJb7E2dxbvQ14nYfloJj2j1HCEH+2GNhGzz70kvsPKaCPJH6MdfH4BBAfnYOtHLQzE80HDTel30AZ1kmXogGWIFfX3shLXf+mI8/WshCx9l87eSRpP67ZFtdkLGimqRvJNqhbYQ74bSaiEiVOaT0nSnWvWBwukwq9fLX5BSwAFsXQvGUtF4/2XYzoWZVlSFgVL6bqGc4RDGyhdqWkjTu6PS8eMT43sOcnkmRshwX+2QuBQ276a8Kd3LlY4i8MVCukryHgmQwlVXQi1b2OW4rm2Q5U7VtmGTcWFrRj8qynazSU0v7K5d1OMGpRVK1SfoQHPrqSaP407pxUAfVj1xHjmjFWr8OLn8UJpz/6YFL74E3foW88E70UCNy+b/JcV2BxZK6v1XfccoA+cV5E7G+OAxTwwZ0BP/aU8QXhAlxSOZQMUE0Z/t/75asAqgFGaxDdLPGpezv4JDbRoN0tx+wajWCQ3rDtu7XwTmAlJJtda34Q3ECkQSbagJsrmqhsWo7sn4Lv/Ethwgw4cI+vYehpsvgkJTyA2i3XtsrHRy/Dzg39Xg7MLUvAxzqpD3HCA4FP/2jiCV0HMkAUXsWTtF5qbxRI8fwQvlP8O1awEnr7uHn3IumgTj7H0YUtAN/+vyJ+P8yHJ9/Lf9950NO8DVDGHD1vd5TaY6L4B47rgMyh9pmUAcsc+gQIwuySIyYw4l7d3DVa++wav0GvnDmXGYPz+HRxbv4j7UWS8G0Hl3zoGVlquaQ0ktSSqzxgPFpPEDLsCaVejl55mRWrBnDpA/vxDr9GujjktI2UkojDVlDZQ4pQ4IQgsljR1OzOpu8yuX7Z19lw9ZOi9nGo6ngkCVNwaFsB/tkLnn+9C8ra2iN8u5br3Dxim/ApEtUcGioaPvh2ItOYzkuK6/q5ZxrStUA6ufJi/wsG8eMHs7OymJKdi3F2n5sCEu0iajJia0PTUBMmuAb11zF83d8wIy6xbS4PWRnj0K8/EO0kafs/+7SNy0wfpS+9B1MehzdnsPljb8GQJodCLO112NQlJ6YOSwbJkyEDxbQ4ihnR5MJme39tAwJqWVlIojman8ZqTPbSABoaajGW9zNn+dtme39uKysJuGCYDudA1OdOUXjViO7r4vfxMFogqeW7cG64y2sTZvYFjCzNujhq6b/MVvbQnVyHl83b2MMu43J0QjoFfPQ8rpfUuRo0KNuZUr6OZwOQgEnzgOWlflDMTwiRLydgmKH0jTBZ6+7mbrA91i1+h0q1t1FzsnfQIw7s9PzTJrAN+pY5q9/kVPE99GjqS/ZNGQOlec4CUgHllBzW+gk7TOovWGumE3Jjrd42/ZDorVm7nzofJbmjyXSXEGJs7pH9YbAWFamgkNKj0VbjRajqeBtOJ7ERYiEsGK22AdsGD//zAS+uvHr/DvyE8KPfwHznC9jKZoE+eM7DSx3pb41hjUZUsEhZUg5ZXwBH68aw/FbP0T4huGFLttgJ6OpFfdpCw45WS9zmRlM71JQKSU/fXYV39n2f8bfbazdSgHKESae1DHHWowfQb3IHMp2WtkoD+ge3EEdk3T62bkTWXbXGM7b/r4xaXpIXaHWaAKP3kzEkd3n7DmfJ4uzvv8QNz6xijc21PDo2RrHv3MlyZe+h+miuyDagqhcyu5hl5Bb/QGt+dPRL76XO++9i2NczXzujJN73OlMUfrEa3SUjuVPgiaImj04DsgcaglFyCJMzNX+37svz1ge7a+vojt/zfGkjjkeND5D+ul+Ls9lo07P6jRzSEQDRm1dd+cJDM+tqGTVK/fxD+sdn260QtzspqXkZK6ofBM9ZzTMvgUKJkLeGLQ0/O4dalRwKMM8dgt+4cV5wB9FUyiOhxC6tftfxPlZNvKPPwuOP6v7L15+LKY1TxMfcQqWPYuNbWn4Iyn02AhKO+5Qy/7gUCKaWp89gD9+DzNqPrz7J5jyOSzBBr6/7Rnww1WOfDQ93uPgkNNqIipTNYfiquaQ0g2hRuQ/piFO+yXM/gpgzPR4CBK3ZA3oB7LPaeUH11zErx7YzG/33Yvp+UUAJH0jMH317V79mADY3RjELcIkzE7Mav22MkQcNyqXu0zj+Ux0KeHqBqSmIYK1RovbDpbb6LG27730BIeynRbqtXycsQZIxCBNWQsvr97LyVv+wETzLpImO6a4Cg4NBbsbQ3hFK0nNiqkX/w1aTBrV9pHQVq95AJY9Tyzx8Nr4L2Pe/CH1z/2AvGseOmh/TUuEHAIk7T0vsN0ep9XM7VdN5+r7l/DlN5p5ffq3Gb7mHySCdZiPuQAhdW7aPJnV8kISzWa45QNgMtdPHoE2fmJaxqAo3eYxgkPOiumwGVqF+6DgUCTQhCYkVnf7fx/ZRRUkpIZ14wtw0he6nAj0h+K4RBhdmNHM/fP7bfaIHBbILEQibExMHFCjL9ZSvf93pF6/Ba2L4NC+Tcv4i/Ue9Irj0C5/1Gj2Ur8FS8k0crOKIB7BZLZ1mYF0tOv99LCSFh6HxSjEdUC3saaQ0Yqwv9d3M/NLcN1CLF98AXH1f5Bzvg696GhxKJ/TSisOkuFPu5Ul2mYiM5g5RMVcxM2VaBffjfnqp5E3rWXVrD9RKFPFDXsYHLKrZWVKT618BBFpPqjLUUs4gUeESFoHPstm9vAcTrvye8xO3M/nLbexZ95vMPl3IJfe3+tr7moIGcU6M/B+FKW/ZNktfOsLnwfAIWLUZc8wdnSSPST3f++l56ZaCEHUVYJAGkV006ApGKP5hR9xlflt7khcQJVnGlIFh4aEbbWteAmi9yHj51df/Ax6231bf9+Tpnz54vN4zHwRedueI/jmLZCM79+3zx8mR7T0qVPZoewWE/d9YRYj81yctfI4Ns7+HaZd78P/vkuDzGLOiWfyxg9O5/Hr5/CbC4/hKyeM4PLZFV1fWFHSrXAS0ubBNeF0fE4LjdKFPKAgdSxo1OPqqOZQWVERf9Kvprj6bfQ3ftXlyzWFYrgJkzC7+i2gMrXMiyWr/ULZ9dV7aZXG9+fD/3uLlpamQ08/iLfyHawk0D73byPrMHcUjDsbslINJSx2FRjqBhUcyjCP3Uz9IYW4/KEYHkJoTl//vrjJYtQVEAJGnIQ4549p+aPJcVoJSjv6Aa3sk4Mhcwg+LSQqBMJXzrTzvoY89gakyQp5Y3t0KafVrIJDSrfJZAJ92QPGk9Q6ajAyh7IIoWeo7fvpEwv599dPZ6dpOJd8PJHI8NOQS+7ufGlJJ61/dzWEyBJhNLsKDilDi7NiBtJkLGZ5JZmqydO4rcPjZVujgi4aS/RE0DfOeLBnaVqu98Az/+VK/RXqxl/N3abPE9CtEAum5dpKZm2rC+ITrWh9mPSbPiwXCiYYTwaoYYLXYWHiFb/hteQsXO//jsSD5+5v+rFqt59s0Yoruyitr5ntsvL49XMZkefigkWjeHbCP2mWLhbbTuC7Z05geJ6L40blcc284fz8vImMLlCFqJUM8JUjbt6DKJ3BuMIsqmOOg1rZd1WAPstuwXnit3gqcQosuh2aO69f1xSMkSXC6P1YeF0IwaQxIwHYs3fPQftCTVVs0kajCzMTal/Gcetomp75brv3oDUtEUqi2wjYi7tcfqZ0TgWHMszrsFCTzDLWUqY0BuN4RAhzB5HfwS7HZSWI46BW9vpgyBzqgDj7T4gbV/Y4a8ooSN22rEwFh5TOvfXyE2j+XUjNjDwgONQSNv7exQDdeLdnUqmX+784i+ZwnD8GzkEL1ZN4/ZefzthufZPk2380Hr/+c5J3n3DQbO6BdjeGyDVHESo4pAw1ZiuyZDoA99SmfjB3kDkUiSexyAgSAX0onHsovXAyjWQht73R52u9unofc7feRsScRf6Fv6PE56Q5YQGVOZRZNes6/HztiW11reSbwx1mEXSXVpjqfDuAExjHjinhk+Pv4Luxr2Peu5TkSzeBlCzb1USeaMHalmmQRjkuK09cP5fR+W5+sNzLtbmPMu2r92A1q59KyuAzviiLvRGbsXQqRQ+lHnfQyh7gG6eO5r++q5FSEnz/rk5fozFoZA7Jfs4EP/YYY3L+/VWb9m8LRhNYI/VYfCWI7OHM1daTRJC99kF2PfwVZDJx0DVW7GpinNhDMl8t9+wr9YmXYR6HhUaZKsQlJZBaVkYQq/vIDA5lu6y0Ykc7YPZR3z+DmuHMofZoGnjLenyaw2oi2tbKPqFqDikd03VJ5JPn8EsXdQUnHBQMbokYmUNaL7rJpNOEYg+/v2gy/9pbzLtZ52H++D4S950OdZvQn70e07t/gHAT+ubXMdWugxX/Nk7UdajduP/za1dDkBxzVBWjVoYkbdLFhErmUSVzabXmQ0P7waFAJIGdGAktvfUNynLdvJecjL71rU4z+LqypSbA+8/8gxNM6zDN/zE4fJRmO2iMW1QNvUwK1CDvPhHWPNPnS22tbSXPFEb0sn7cfiNOQjpy+tQ6vjduOn0sW4vP404+h2n1EyQX3cX6XdXYifXbWLJTAaJbLp3C418/mdLczE3aKEpnxhV5qEs6Iezf/12wv3NZJ/eTNrOJn155Jm/KWejL/0W4taXDY3c0BHETxuLs38Bwdl4xAKu3bCMYNYI+726uI5dm8orKIG8UAMELHuApxxUM2/UsH91yEc0rnt2f/fTJzhpGiX24K1ST9L5SwaEM89iN4JBIRvencgdaA9hFHEsH1eYHO5fVRBgHlsSnmUP7gyeDMHOot1TmkNJd722uZXpiFR/qx7A1cnCmYHMqc8jU38tIu+GSmWX8/DMT+WLdVTxY8v/Q6jYi7zoeLZxa9rrlDbT6TUgE+jt/JL7oHuJ3nwx3zkF//zaItHBa3SOUJ3chMrRMTlH61Zyv4rxhASeNzWdTvIDkAfXDDtQcjuMghp7mIp7Dc128l5yCKVQPNWsAkIvvht1LenSd51/4D/9Pu5fWkuOxzfsqACU+O40xk+pWlklNOxAyCYF9fbqMlJJtda34RGuv2tgfZPJliB9uHfDJPatZ459XTudueTGLLHMRC3/OqYn3jJ2u9GcOtfE6LXxuVjl2i2qooAxek0o9tEiXUYMuagR4TDG/sbOTzCHjXC/Zp36HLNmKfusEkgt+Bnry0wOq18KWhVRV7iTbHMXs6OcgaWrlhiPu5z8fG0vL3ly9A5eIUlRSgZh9PfopPyN3xoVc8oO7WDn2OxwffQ/vi19Gf+oLSCmp3PIJZqFjLp7Uv2M9CqjgUIZ5HGaaSM2wp9rZRwOpNaMZXGbSF0IIkhYXluQBN5jxQVJzKI2sZs2YFQZVc0jp1JsffECJaKS19ETWNFmMv/XUTE9LOGFkCroGx9/7V04cyQ/PGsevt4/hz3m/IYqFlpnfQmpmWGy0B1075uuIYB2W136ECDeQrDgB8fZvSPzzWL4pn6DRNQqOvSHD70RR+s91J4xgaXwkYu9y40b6EC2ROHZiyDRPiJw4No/1zlnGk61vQqgRFvwE+eHfenSd0xoeo0Xz4b7mMaP+IFDqc9KUsEA8uD8TUBlgbTVAwp0XXu1KXWuUQCSBU2/t8odil4SADHWeHJ7n4pbLpvOVwPXskMXcYrnP2DHAWUyKMtgcU+IlaklNwoWbiMSTB9Qc8nV5/uyTz2PBtNt5Mz4Z0+Lb0V+80bgvXfkY3H08PHYp5+y6BZ8p+mm91v5i9yGFic/bP2LPuw8TiiVYu8mYeNHcBTDmDLRTfgSA2aQx/apf8/Ccl7k7cR7avuW8u2wllvoNxrUKjunfsR4FVHAowzx2Cw0y9cedKkoda20LDvkyM6g0kFY3Fhnbv25etAVPhlDmEIDJmgp2qeDQ0BFuIvLubcSf/AJUftzny1U1hzHvfAeAspnnUpVwI6S+/+Y/GApiF/GMLys70Dfnj+YHZ47l0ephTA3fzXV7P4MsmgL7VqJLwVVrZjA/eQfnW+/ny977WTbvTiLZ44noGhdHf8WqM56CkSdn+m0oSr85aUweC7OvoFW4SL7644ODKaFGgs2NOEQ0bZ3K2tjMJs4/fjpr9eG0rn6R5Pb3jJnjymU9CujYEq3U2SoOKlxa4rMTljbj8ykRTeu4lW5KU3Box95abjC9hDUZ7HvmUIadPamIH54/k4sjv+R57Qyk2Qn54zM9LEXJKJMmKCkylmPJsJ91+1rIIkhSs4Gle7+1zrrwapbN/At/T1yMtupR4s99Hf31X5AsPRZ95KmUxXaQJcL9XyZA09CPu5FiS5BfxG7jv/f/Flfc6LyGu6DdU6484zg+zv4MAEtefZR57mqjuVDuqP4d61FABYcyLNtlpbEtOBQ0gkPx/QXFBkcmQa+0RZmjAZK6REsO4ppDfeCwmIkLq6rRMJQsuRf727/CsvG/sPF/fb7cE0v3cIJYQ8w7nJnTpuMXqb/rVFHqcGBwBoO/deoY1vy/s/jVRdNZtrOJN4MjAKg0V3DXdfM5edZUxo4ey/rqEFc8vJYp+37C1KY/skKOZVyhqjekDG1CCD534hRuiV2KadcHsOlVY4eU6P86nxEf/gg7cYQ1fZ3K2nx+TgWvMxd33UoWP/s3YzzBOmja2e1rWGQU3XTw93Gpz0G4rQOnKkqdGfuDQ/4+XSb33Z/yU8sTRPKnwvjz+j6uDPvS8SP49RUnYLvon4ifV6kfgIoCjBxWDkB1TRWrK/146VkwWAjBry44hs3jv8XtiQuxrH0SGWrkop2XsNU6gTLqcCZbBqQYvemMX+H4wTqWmWdwac0/ON+2wtjhar/zmNWs8aevXkKVpYKTkos407sH8sbtz4RVes+c6QEc7cYVZpGTXwwtkGitg6ROU0MdmDiig0Na2wdJrJX6hBM7qc4bQyxzyGk1EUvasKhZ1iEjsm8tCVc5LhlGRJr7dK14Umfd4oV8y7QWy9gvISwmTO4CiJAKDo2nob7WOHiQ1uj53KxyHl28i2eryznDCiWTT6JiTB4njDFqPoRjSd7aWEsknsRtNzMq363a/CpHhc9OL+WvC87mRm0Bee/+GW3cOVC5DK12LVZnFIewYbGlPzjkc1o58bPXw4tPcrxcSZ2lhPz4PiN7KGdEt65h0WMkDslqKs12ECK1LR4Cet8CXem5VXv85OzcQgUgQ430toz5xg1rGV31Ms9YzueSbzyS1oLomXThtNJMD0FRBpVJI4fBEqhb9zYn7fs9QUusx90JTZrg1ium8dzy3/DR5lEkNAubNw7j0a01/FpI0GMD1mBEM5sJnncv+547l2vFi8bGDjKHAHLdNuScSyn+4FaoA0760YCMc6hTmUMZpmmCL5w+E4A1m7ezqSaAPRkwdh7BwSGTM/VBEm2lqjmCXcSQaEMuomu3mIgJq+pWlim6jn7f6bD84bRdsmHnWpa05JG0efs8e/v2oiX8OfF7Ys4ixCk/AcCRXWjsDNYhpaSpKVWcepD+vZs0wT3XzOSKS69AWl2Yx5x+0H6H1cRnphRzycwyzjqmSAWGlKOG3WLiynkj+Vv4XLSqFbD9bWTqs8gWayTLlEDrh8whgNkzZqEXTwPgrtBpJM0u2LO0W+fqusRKFHFIJm9Blp2oSNXRU0WpB9xd72wlULPDeHJAe+puS8RY8/Z/2P7UD5FoHH/NrxBDJDCkKMrhSouNZWUjtz/OqPAapshNvcpCt5lNXDlnGMdd83+c9Pmf8pnJJXwcPKDou3Xg7utOnjqaVbP+gGwLj3eQOdRGTL8avXweXPIAzP/pAIxw6FOZQ4PAyZNGEH/OzIZt20kO9+MRqZuyQbbMpCdsqcr2yUiA6kAEe6pri2mI3ai4bGaiAavqVpYhun832t5lxGs2YBl3TqczDN2xt7GVvOgetsoJzBJJvH3IHNrrD2N942fYRBLbtS/s767izSuBKpDBOupbY5hiAbAyaINDAGXZTsqyJ8Dk7WC2ZXo4ijJoXDN3GGd9cCrf117A9+wNaLFWpNBwJ5rwmL3drv3QG9qkS6BqFZ/YZ7HRtIYJe5Z2a8YvFE9iI444ZGwmTWBzZEEctaxsgEkpWb7LT7FIdYbs4cSErks23X8dk6tfZDLQOvEqiitGp32ciqIMHiJVM84tW4lLExaRRKShxthVc8q5ekXRpxsGKHMIjKVuF15wKXrWFuS2t9C6SirIHYV23YKBGdxRQmUODQJC04jbcpgUXcn0hZczw2q08RvMPxa7YnMbS2SCAT81LUZw6NAb0aFgSpmXloSJ5NE4y7rtLdj6RkaHsHndcgAsiVb0N/5fn6/3/NuLsIk4OyilMelE9iFz6F+PP84pLCcy50bM+Z/epBcUFqNLQaipmu11rWTRFgwenMvKDmKxD5klCoqSDvlZNm4+fyrXh7/NBkYSlWaSky/HhE6+bOjX4BBzvw5feYvTTjyBN4PDETVru1XIuDWSwNbBd7JmcxkPVHBoQO1uDBFsbSZHtJJE61FB6kRS55b7/sWE6hd5x3sh4WsW4L7o1n4craIog4LFvr8j5q2Jy4ja88Fb3ufLzqjIZkxZIY3mVKb7AAaH2mjzb0b7ysIBf11FBYcGDasnnynaDiYlN3A+7yJNtiO6eLPT7QMg1OqnqjmCU4sflsI+FJwyroCwtOIPBDI9lAGzsz7ITXf8h+QTVyHf/HU/v9iHsG9Vh7u3bTAK1n1gOQ6x5uk+tV+OxJOsX2N0J0tkj6Y6ZoNo7zOHzqh9gGZzHrmn3XTQ9op8D41kEWysZnt98IBMwSM3GKwoR7NLZ5YxfNp8zmv8DuOD97DKaiwVdyeb+7fOnskCZTO5eu4w3jfPQ8gkrP5Pl6e1RuPYiWGythccSi2DOxonPDLo451NlKSyhrbqJYhEuNuNLv7y8iou2vsXArZCTv7GnThGzevfoKSiKINHKlMoecyl6F/7CM7o+325EIKnvzoPX8VEY8MgrYmp9A8VHBokTN4SQsLJdr0Iq4wd8T8UXVk+AMKBZmpaInjNySF5szJnRA4xYaW55egIDsXe+B2OO6bwnZqfYUqEoY8FmzsSiiV47u0l6I9egnzlh+2PJaET3beBBpnF+5ERiGQMor3//+H9LfUUx42sPW/FMewOW3tdcyiaSDJa7mJX/ilwSM2R4bkuGqSHeEst22pbydFUcEhRjmRCCG69fBpbfncOdovGO3sP2DkA33seu4Vj553CWn04kaUPdRkkbw3HsIokJtvhYzO3dRqNB/tjqEoHop88w3HW7QCsl8OMjd34/nlk8S6GLf0147RKsi69E2FTNd8U5ajiyEEvnMxPrzoDh6/gsHvO3rJbTGj544wn6nPlqKKCQ4OEOPfPrD33Of6TPMXYcIT/UMzyGutgI8FmqpsjeCwJMA+9zCG7xYTD4SIUOjpupKuWv4xTD1IiGqm1lve5YHNHbn19M9a3foGWCCOrVkMyftgx72+po1zfg985ggY99cXVg1T8g9RuxP3qjRxr2Y7uzGPciGE0JBxG8KsX2UiNrVE8hNrtGlGW7aARDzJYx/b6IOXOBFJoA1rwT1GU9LOYNKaU+Xhzt37AxoGZFLn2+BE8y6nYG9ZD1apOjw0FWwEwt9NJzWxPbetm1oqSBuEmrtr9f/yfuBeAzQw3tndUlDrailx6Pw8s/JhdL/2JK81vkzz++3BIswBFUY4Cn/kL2oW398+188YY/8zAsjIlc1RwaLDIGcGxs+dx7XXfNJ4f6cEhjw+AeLiFmpYIWabEkGtj38ablYWWiLClZmhnD22tCeAL7WBTwTl8pfx/vKUdB9EW0PWuT+6BTdUBli16i/NMS1gnR6AlI1C74bDjXly1lzHaPnKHT8Yv24JDjb16zfjWt5kXWMBZLILcMUwr99EsXQg93qvaG41NfsxCx+ryHbbPYtIIW7KxRBrYXtdKqT1qpOyqWj6KcsSbOSyb6uQBKfgDFBzKc9uwTbuciLQQ/PDeTo8Nh43gkKWtvtABLPbUZ2ns6JjwGAyCNUbGkJkkEoHfnapR18FkR8trv0O88n0+98F5/NzyGInxF2I6VXXpUZSjkRh2HJRM65+LT7oETvsl5E/on+srg5IKDg0yBSOnoOeNQ2QVdX3wIJbjzSImTTga1tPc3IRriNYcAijI8WEXcR78cGemh9KvHnp9KV4RYvzkmUws8bIzaEFIHWKtfb+4lODfjazdwC9eWMNp1nUAvD/mxwDoe1ccdHgoluDj9Vvw0Yqn/BjC5tSPsV5mDu2s+TSopBWMY1S+mwCpGfReLJ1r9tcBYHPntLs/7izAF6/hJP9/mRNYiMwf3/NBK4oy6MysyMaPm6RMBXsHcDn1NadO5b/6CVjXPwOhjgPl4VSmq9V+eOaQxZGaIVYFqQfM3p2bAKgcfRVy6pXYfKn7v3a+z+57+QOsy+/jXX0azTlTSM68DvPnHgKTaj6sKEqaObLhxO+DpsIFRxP1//YgpF3zHHzmyO404bCY+IgpjKl/g/9qP8Atg0Oy5hCAzeEi25rk2RWV1AWimR5Ov9hZH2TbhpUAuEsmML44i0Y99f9nGuoOJZ77OvxtMuLOuWTvfp1L83aj542n+JgTaZZO/FsXH3T8wvU1lCWM+kBawThy8lIdFTr5QdSZlpYWAJou/Dec+H1MmiBmSWXv9WLpXMBvjMPlaT84tHHY59mtF/Bry0MIhw/t0gd7NW5FUQaXGcOykWj4RerzYwAzZkt9DpYWXo5FxmD5vzo8LhY2Aj82x+GZQw6XkTmUiKrMoYHStHcrALYz/w/torvw5RQAIA/8PkvEWPX075m55DuYhWT8dfdQ9p3XMZ1/K2imTAxbURRFGYJUcGgw8pZBVmGmR9EnQgj+PfwWfpa4gTJRT3Zw25CsOQSA2UaWOUE8qfPwRzszPZp+8dTHexilVRlP8sYyodhDi0z9sOhrcKjyY8xrnuAjzznU4+Va92KKWz5BGzaP2SNy+UQfhV75aeZQLKHzv6WbuMbxYWo84ygpLjUe9zJzSI+HiUoznqkXgK8CgGTbGutevL9wi3FT7/bmtrv/mnNOpu7KBcTm/wrbdS+Dt7RX41YUZXDJcVkZme8iYE7VGxvgSZFRk2bzQfIYEkvu67BeWjRiBH5s9sPH5rLbiUoz8XAaMkKVbok27KQVJ/n5xn1fXoHxz1Bz/f5jKv/zI6at/xNl5hbEWb+lcJjKNlUURVHSr8vgkBCiXAjxthBigxBinRDiO6ntOUKIhUKILal/Hl551TjubCHEJiHEViHET9L9BpTB66o5w3gpMQtdCgRyyGYOYXZgSkY5a2IRjyzeRTCayPSI0iqe1PnPx5WcnNOENDvAU8qofDdhLQ3BISmJLfgFDXj5XsuVLLKfyNzYIkQ0AMOOo8TnYId1LNmtW4iFW3l60RYe+OON3LL3Gs7T30KfehV4y8jNM2ZaY4GGXg1Dj4WJYsWkfVr3R9pSM/8dFQXtRLTVCA7Zs9rPHMpxWTluQgXWk78LOSN6fH1FUQavv10+jbzCVMB3gL/3Th6bz2v6bMyt+yBQ1e4xsYiROdRezSG3zUwYG/GICg4NFEtLJY2Wwv1150oK8klIjZYmIzj0/qtPUbbpIV60fgbte2sxzft6JoerKIqiDGHdyRxKAN+XUk4A5gLfFEJMBH4CvCmlHAO8mXp+ECGECbgDOAeYCFyZOlc5CpwyLh+XN491bW1Zh2pwyGKHRIQbTh7JSdF3abjn/F4vbxpM9EiA5luPZfM/L6IwuIkZzjrIHQ2ahsWk4c3ONw7sS3CoaSfWyo+4O/4Z7rnuZM6/8luf7quYB0BryfGY0Fn953M55tVL+HriERLFM5HXv4N20V0gBHleNy3SQaSlrlfDkPEwMWE9eJvdZzzoxfuLBf3GgyO8sLyiKD03pcyHO6fEeDLA33sTiz3U2kcaT2rWt3tMPJqqJ9ROHUC33UwIG8mIWlY2EKKJJL5YFTF32f5tFblumnERbqlj1R4/vkV/YJ+plFNvvIc8ty2Do1UURVGGui6DQ1LKKinlitTjALABKAUuBB5OHfYw8Nl2Tj8W2Cql3C6ljAFPps5TjgJmk8YX5g1nhTYptWGIBofMDoSeYPLWe/mn9XYqGj8i+eGnbSXlojuhanUGB9hzjcEYD9z3d7wtmxjetIjnbP9Hrv8TRP7Y/cdk+VJLpvoQHGqt2QGAa/gMppb7oHwOMqsY6SkDXzkAOZPP4Efx65mmr2WMrQl55ZPkf+1FROn0/dfJz7LRLN29zhwSiQjxQ4JDJofPeNCLmkN6KHWOCg4pytHJlQqeD/D3nhCC/NEzAJC17QeHkm3BoXbGlmU3E5Y2kjFVkHogbK4KUCrqMOUM27+tLNtBs3QTam7gD4/8j8naDrJP+iput2onrSiKovSvHtUcEkIMB6YDS4BCKWUVGAEkoKCdU0qBPQc8r0xta+/aNwghPhZCfFxX17vZf2Xw+drJI7ns0quMJ0O0WxlmYybP/MGfqSqaz2vJWSSX3GMEFZp2IV67udPioIONrku++dgKptT/j2ZnBdFvrMDsK0VEmiF3zP7jzE6f8aAPwaHla42uZOcdP9vYoGmIC25HfOYv+4+5eEYpJ3zueySufw/rt5cixp1z2HUKsuw04UYP9i5jSyQiJLSDZ2RNfXl/befYPZ0fpyjK0OROBYcykDE7oryMaplNbN+advcnY2HjQTvfyVk2C2FsyCO0IHVLOMq+hf9A/nE4fPJUpofTpc279+ARYbxFo/Zvs1tMBE1ZNDXUMCf0DgCOaZdmaISKoijK0aTbwSEhhBt4FrhJStnS3dPa2dZuhUQp5b1SyllSyln5+fndHZYyyAkhcI4+EWlxfjqTOtSkbv6FHqdw/jd41nMN1kQrcsndsHmBcUzL3gwOsGce/GA7tTtWM0dswDv3i+QUlmH6/H/Q88fDyFP2H2fL8hkPehkcklKybetmAEaP/jToxJjT4YAAkM1s4oKpJdhLJ4GnuN1r5WfZ8Es3RHpXkFokDw8OuZ12gtLeq5pDWqyZmLDtDxwqinKUcWUuOFSe7WCTXk6yal27+/cHh9rJHGpbVibjR15wqKE1yhu3fYWSD3+BiDTBvpWZHlKXanZtAcBXMuqg7Qmrl3z8XOP+GL18nmpaoCiKogyIbgWHhBAWjMDQY1LK51Kba4QQxan9xUBtO6dWAuUHPC8D9vV+uMoRye5BfHMJzLou0yPpH6kubNLsQBt5EqfPP42FyZlE37+dlqWPG/v8ezq7wqARjiY45c3zedP2QyQCpl5p7Mgfi/bNJTBs3v5jvS4nrdJOopf1lVbt8WMOVhE1e8B6eGHUnvA5LDTjxhztXXBIS0ZJmg6eRffYLfhxofdwWZmuSyzxVqJmtQRAUY5aZbOR+RMgZ+SAv3R5jpNNshybfwvoycP26/uDQ4cHr902MxFpRRxhy8qC0QS33n0XF8de5OHEGbS6KqC1JtPD6lKgZhsAWvawg7abvUWM1/aQH9mBNvmSTAxNURRFOQp1p1uZAB4ANkgpbz1g14vAF1OPvwj8t53TlwFjhBAjhBBW4IrUecrRxlcxhJeVGe9LH3EyWOxcOK2EJx1XYE8G8DSsQgrtiMkcWrNhPaPFXmoqzkV8/plOZys9DgstOIm3FV/uof+trqJUa8Tk6/uMqKYJYhYvtnh3kxoPZtajyEOCQ1l2My3SSTLUs4BTcziOmyAJiwoOKcpRK38c4puLwdl+x8L+VJbKHDLpMWjcfvgBibZlZe3XHAphR0uG+3mU6aPrkl8+8Q7fCdxGwDOWOy1folb3IoPtzVkOHkldIpt2G098FQftm/zFvxG/+EESFz8IM77YztmKoiiKkn7dyRw6HrgGOFUIsSr1v3OBPwJnCCG2AGekniOEKBFCvAIgpUwA3wJewyhk/bSUsv08Z0U5UqWCXqZxZwPGMqi/f//LNJWcDMCevJMRET+Em5B3Hgdrn83USLu0c+MKADwnfNVY3tUJn8NCi3T1OHjSpi4QpczchMlX1vXB3RC3+XAkA6DrPT7XokeR5kMyhxwWWnCRbCsu3U0NwSgeQkibqjekKMrAy7Jb2GsbYTxppyi1SESMB+bDJ2xsZo2IsGFKDPLgUKAGueBnEI/wzze3cPa235Ojhcj6/L84dmwp2yNuCAzu4NCO+iAV+h6iFi84sg/e6crDMuUSzFMuAbO1/QsoiqIoSpqZuzpASvkB7dcOAjitneP3Aece8PwV4JXeDlBRBr2y2STHX4Bp4qeN+Nw2M1x8K/++50+E9JF8jbdh21uI2nXoH/4DbdLgTBNv3mP8kHCUTOzyWG8qc0gP967mUEskToFsRHhO7NX5h3Fko4V1iDYffqPdiURSxypj6IfMonvsRvBL9nBZWX1rDI8IIhzpCXopiqL0VDx7DMlGDVP1Gph4SJPYeARMtJs5JIQgoTkwD/bMoa0LEYtv5xNGse29bXzHuhx55u+h8BhOHLOHvevcJFvXd32Tm0Hr9jUzQdtDIm8iNtHRbbaiKIqiDJwedStTFKUdWUWYrnjk8OUDeaPZOeW7vFtjzM4mNr4KgFa1Cqrb7yKTSS2ROM6WrYRNnm4VD/c5LbRIZ68LUodCIbKlHzzpKbSpuVL//ntYAykYTWIXMYTl4PobHruZZlyIaM/eX13AyBwyObsfoFIURUmnwlwfO7Vy5L5VB22PJ3XMMkZSmEEztXtu0mzHrEcGYJR9kPqcr/roCb7mfJNk9ijEnK8DcOKYPOqkD3O0GRLRTI6yU+v2+hkn9mAvn5LpoSiKoigKoIJDitKvTh1fwO6EESQIrl1AVJqJSTP1z/6A5L8vhkNu3DNp2Y5GRol9xLNHQTdmMb0OC8240KK9q/NjC6eKhXpKenX+oSzuPAASPWxn3xKJYyOGdmjmkMMIfpl7GBzaUR/EI0I4swa+1oiiKApAWbaTVYnhxneM/LRJbDCawE6MpNZxDUDd7MSqRw46b7CprDJ6m5yurWBiYgOm2deCZtzSFnsdhK2pz99gXaaG2KX6PRtxiiimokmZHoqiKIqiACo4pCj9avaIbGKOApJS4CVAOHssS+zHk1e3GNP2N5GL7sj0EPd7dW01o8U+nKVdLykD8DmstEgXll4WgXZG0hscsnuN4FBrU8/qTAQiCezE0azOg7Zn2c3USw/mRBDi3V9isbUmgEeEMLt8PRqHoihKupRnO1iVHIEI1UHLp01ijc+7GLqp4zo2usWJhoTE4M0eam4wvj/MJJCa5dPOminCXWg8GKQdy3RdQk2qHlThMZkdjKIoiqKkqOCQovQjm9nEgu+fBllFAPiGz2DiV+7lan7Hm46zYePLEAtmeJTQGk3wwZot5IlmzAXju3VOlt1MACfWRGuvikC7Y6kZ3TQtK3P7jKVwgR4Gh1pTM+lm28HBIY/dQh2+1EHdv+bu2kasJMDu7dE4FEVR0qUsx8laPVWUumrV/u2t0QQ2EUNvpxh1G2FJfRZ21s5+73KSyx40Hvt3Q+2GPo64Z5LBRnZSgu6tQB5zEbjyDtpvzS42HrQOzsyhNXubqYhvRyIgf0Kmh6MoiqIogAoOKUq/y3Xb0HzlxpPCY8jNL+Iz517Avf7ZiHgQNr2a2QECby9ZyaREahYzf1y3ztE0QcychUBCLNCj14sndXKTbcGh9GQOeXKL0aXAtP2NHi2HaA2FsYgkZtvBy8qy7GbqZCrA083gkK5L/j97dx0ex3U1fvx7Z5a0KyZbZubYceIwMydtymnTNGmTlJPSW/iV8S0zvOW0ScPUMDtxwHHMEDPbkizG5Z37+2NmRV5Ju2JZ5/M8erQ7eHdH2pk9c+65tbXOshIcEkIMk8kFWbytp2IpE8rXtU2vaYngI4pyHV2MOinicwItDfu7XWbHIz/CfOJzPPrLTxL74znof14FifiAtb83RriBsDsf49aXMa7+zVHzc4rs84rVPDIzh17YVsV8dZBEwQzokrUqhBBCDBcJDgkxBFSekx3j1BZ437LJWJNPpYIiImv/076g1nB47eDVekjE2rN83n6Ulu0vc//zr3Pei1fzV8/P7enFs9PeXNzjDNeeYVHq5nCcMlVH1PSDb2CGfC8sKuW3iXcy4cDjJJb/OO31WoN25pbbF+g03WUaNLuSdSvSCw4dbgjZmVQgwSEhxLCZVOAHl48q77RORakrG8NON9rug0NV+cfbDw680e0y7oa9AFzTeBcq0mh3X9v/2kA0PS2eWANxb749EESKUdeKSu3RIptrDw9ZmzLx4rYjLPYcwiyTekNCCCFGDgkOCTEU8pxhzcfZF4KGofj+tUu4N34e3r0voPc5F9Xr7oS/nAf7Xh2UZlh3vovI3y7j/ieewrrvRjx3X8vCVz6OgcWeebdinfJxyJ+W9va01wnsZDjce1MoRp5qJeYZuBG9JuRn8cK4m3gwcTbmyz/CWntnWuuFQnZwyOs7+u5t1OvcQU9VtyIexXrr77D3FXtoaGBnVTN5ON0EJTgkhBgmPrfJOXNKeCs6tdMNhyNNYbwputF2pHMmcECXYu3rJtijNeNih3gr72KqZ72HjyS+QRgvsU0PQWttRt1w+yIcSxCwmjG6jhDawcSSfBq1n2BdebfLDJfKxjDZFSspS1Sgpp4x3M0RQggh2riGuwFCjAnLboLiOZ2Gu587Podnz/wsh994Cc99t1H0yWfg+e/YEduaHTD9rL7v7+WfYO17DePDj4CVIBxP8NLLL3DZ3pfxAhcd+ijNeKlzj2NBfC9c/jNmnHxzxruxfAXQDARrM1qvKRwjhxAJT07G++yOaSj+c8tpfO4/X6V0Tx2nP/ZZLJcXY/F7elwvHLQzfXxZgaPmxXxFECPllx294mcYL9sZSpbpI1F2PDNbNLe7nDodXgkOCSGGz6WLxvPK9llcZb0I1duhdB5HmiIEzDhmD5lDOT4XbybmMWn/G3amqdH5PmKo7hB+wrSWLKXkQ1/jxq1HeO4/T3Pehgcxtj2GEQvC6Z+2h5av24PedL+d3ZOIg8ePOvcrYJh9fl0H6oJMooVQTlG3y0wp9FOt8/E0jbxuZU9vKucrrruJ+svwnPDh4W6OEEII0UYyh4QYCoUzIMVF4KcuXsyzEz9DSXAn8Z/OxghWo5XRY62HtBxchbF3ObEDbxG5633U/uQEjBU/J6i9vOY+jXzVSvYlX2f651+Ed/8Dln20T7sJZzsZUfX7MlqvORwnmxB4By44BJDtdfH760/lnuk/YE1iFsZDH8N6+mv2l5JuuupFQ3Ywp2vNIYCAP4smI++ozCFduRlW/IKW2ddQfeUdNC/8IPFYHCvcxEnmdrvIqFOEXAghhsMF88axWjujT+5bAUBlU5hsIwY9FKTO9rpYpedhhOvsGxVdVOy169Nljbfr010wfxy5J76XbKuZA0E3q9wnoV75KdbP5sDfLiSx+p9Yr/8OverPqFd+Agff7NfrOnCkDr+KEHAGIUilLM9HDXmoQc5iylQ0brFj+X843tiN+8KvpewSJ4QQQgwXyRwSYhgZhuKDN93GC08W497+OG805vOF4lW4Gg70a7uxlhrcwM6/38wCtY+JwETzELEl13P65T+CHc9gLngHmC5YdG2f96NzJhDFhadud0brNYViTFZBlG9gilF35HEZ/Pz6s7jtrl/z9q5f8JGVvye4czm+UBVq5nmod/2l0/IRp1uZSnGRnutzUafyye34BUNr9v/7k+QkfFy46TLqN7mBC5wfOGuqn3+/ewIki5ALIcQwyPO7mTRjPkcOF1Oy7zWMk2/mSFOYgBEDd/fBoWXTCvi75Yxauf816DKCZdMhe2Syoqnto2ydc/VH2J9n8HDzAh7ZFsQbuZJ3ma/QqLO5I3ExQXwsLNQ8Hr4Btf0pyJ2I9cbv0OFmiIUwimejLvh6Wq+r8kglAPmF47pdxmUatLqL8IT7eaNlgD3w1l4+Gr2TlvxZZC+5bribI4QQQnQiwSEhhpnHZXDB1dezvfId/PFXr3C9uZ+y+v2ocCO8+X9wxm3g8ma0zabaCoqABWofzZ5xVJz5A2Zt+RXuMz9jZ+sc9+4BaXtewMd+PY5ZtXtQmbQvHCObEGbWwBSj7srnNvnDh0/lh09+h/9ZOYPba+6nxJvA1WHUnqRYxOkGlmL0nhyfmxqdz9TmI22vr3bdf5nWuoE7S27nq6eeicJOSorEE5Q3hjlnTgmUdN/dQQghhso7T5jEq/vncdXuV/BobRekVrGUn3dJCyfkMXXWIioOFlO05TE8J3XOLI1X7ySi3Uya2mHwAsNk6nk38nngc1dpyhtPJZ74EADvB3ZXt3Dzv9awOec4Jq3/L61vr2R84zqCniL8pkZtfQRO+BAUTOv1NdVW28GhrLziHpcLZ42jsGUlHHwLJp/U63YHVbiR4Kp/EX95LTONCvTl/7FvzgghhBAjiHQrE2KEmDMumxnFAbaFC+xuZZsfgpd+ADueyXhbWbEGdvqOAyDn0q8z5+z3YHzitbSHqU9XXpabfdZ4ErWZZQ41h+PkqCAu/+DV5TENxTeuXMAX/uc7nBn9LZsLL0o56lg8GRxKcSc9N8tFhZWL1XIErASxPa+SePab7NXjOe8DX+C9yybznmWTee9Jk7n+tGl8+dJ5nDpDAkNCiJHh8uPK2GguwhOpJX5kGzUtEbxEe8wcAvjEubO4L3427n3Lob5z9o2ncS+HjfH4PO6U6yqlmJifxdSiQNvP+fPG8c0rF/Bw62IKgvuY1LCKH0Tfz+LGX3Cz+T17xW1PpvWamuqdz/Gsngc02DjpOg7rYqL/uIrIK7+BYF1a2x8UG+7B/+LX+XDiIRqKlqLmXj58bRFCCCG6IcEhIUYIpRSXLhrP6sZcVLCWhi3P2TN2PZ/Rdpqam/ATpmb82XD7Zlh6/SC01paf5WGvHo9Rv88uXJpuG0N25pA7a/CLNo/L9TFvfC47gwE7G8sZWSypp8yhk6cXUR7PJdpQyZt//jTuf11BQeggz076LBOLBifrSQghBorPbVKw8CIAml78JZYGt472mDkEcOqMQvZMeidaQ8OLvyDx0o+h2q4/lB88QJ1vSsZtueH0aXz5ttsBsLLL+NL/+1/+ceNJvFyTzWHPdOJbn0hrO811TnCoh9HKAN5z/ql8u+hnrItPxfviN+An07F+d7JdnHuIJQ6tpZZ8vpf7HfJu+A+oTHJthRBCiKEhwSEhRpB3Lp1IpWHXUfDteRYAvev5bospp7Jrn32Xt6CkzK57M4gXoXl+N/v0eIxEGJoOp71eazCIV8VRvoEtSN2dE6bms6XR6ZrXWt1pXiLqBItS3Em/eskE3nHm8WSpKHMrHuWlxBLenXMHF73jhsFushBCDIjLzjqF38evpnDHvVxjvIorEem1q7JSiq984CJeV0vI3/RPzJd/CCv/gE7EGZ+oIJw7vU9t8ZbMQJ/6KYyrfonfn815c0v52uXzeSi4BHXgdbavWwFN3Q8/X9UUhnC9/aSXzKFZpdn84zNXYtz0FLfn/4Y/63dg1GyHA2/0qe390bTnLdYnpnP2lR9E5Q58rT0hhBBiIEhwSIgRZPa4HH5+y9UA+FSMI2YZqulwRnc6Dxw8CMD4somD0saOJhVksU87RUHr9qS9XizYYD/wDc1w7ydMKeBgzAlEdRm9xoomM4dSd7MYVzYVgHzVypSzP8zDn7+SGSXZg9ZWIYQYSHPH5/BE0U2stWbzNfd/MHQsrVGyyvKyCJ35Fe6Pn01LwQL04bXs3PwWHhXHPX5Bn9ujLv0hzL2s7fnHzprB2VfegInF3EevJP7LxVir/gbxSPtKVgLiUTaXN5JPiz0tq+fMIbCDXCdNK+T0M87nF5Fr7IlD3L0sGmoht3UvtTnzOHt2z3WShBBCiOEkwSEhRhjVoSDnz8JXAfDSA3+grnwPevmPYc/LEG0lcd+NJH53CtZd7+2UWVRZYWfw5BcP/t3JhRPymLfgeAAO79mc9nrxYJP9YICHsu/OCVMKqNFOIKpD3SGtNdFwz8EhskvtZZXBzDOuxTCkO4AQYnS5dPEk7k2cyzjVYE/oYSj7js48+2K+bXyKt8ylUPU2u958HID5p106oO1bcsp5hC/4AfeP/zyvxhdgPPl5+H4p1v+dB6v/jvWr49D3XMfmw00UqBa04QZPIO3tzyvLIYyXhOGF0NAGh5a//CImFguWnY2S7mRCCCFGMAkOCTHS+IvQ7gAaxYdu/Az7sxZyXtUdFP55KWr5D9F3vgvrH1dgbH0E5fJi7HwGGg60rd5QU9G2naFw2zvPJYyHN1atIhJPdJ4ZboRE7Kh1EuFG+4F3aOr2TC3yE88qsZ+0HGmb3hyJ47Kcu9Pd3UnPtjOjrIkn91rjQgghRqLLjyvjNWtR+4Q0MocAsjwmlywaz3+rx6GsGAvLH6DeVULuuBkD20Cl8J31ad596zfZfO5f+ET0Nv6g301d1SF4/HPQWgO7nufQ/l1M9kXsLmUZBFrmjMvBUBB05UGwfmDb3gOtNVvXrgBg4YlnD9l+hRBCiL6Q4JAQI41SkD8FXTKXJbOmMPX2Z6i8+I/cFfgwV0R+wCZrGkbFOr7PLbww43/sdSo3AhCOJYg1J4t1Dk1wKC/gJZY7jfMjz7P+Lx+3L+IBQvXo35xoj7jWVbjZ/j1EmUNKKSZNdgqotrTXHKpqiuAjaj/p7k567gS06cFceM0gt1IIIQbHrNJsssfN4BDj7QlpZg4BXLt0Em9GpgEwlUrik04dtFp2Sik+fcFcPnbr59i54DPclP0HPmt9nk96f4RCM6H8WSb5whkH6n1uk+nFARrIGdLMoa0VzUwIbiPkLkDlDn5XbyGEEKI/XMPdACHE0dSF30IZzr+nN4fxp1/H+055P5E39vNI1am8Ft7HK5UlPP1mCxcqA1WxEfzFVGxcQT7NWMrE8OUPWXuz3/EzNj74E5ZWPkjk18/jfedv0ftfQwWr0YfWcNTXiIjTrcw3dCN+zSwromFfgJzmSkxnWlVzGJ/qJTiUlY/69FuQN3lI2imEEIPhu9cswnrlXNh7T9qZQwCnzSxi9ux51B/Mo4BGihacO2htTDpxagEnTrULTq/ccwLX/+1NdnuncWb0VUoD2b0Wo05lXlkuVbv8TGqtPfqcNEheWLedd5ubMSYulRHKhBBCjHgSHBJiJOpQrDPJZRrcdOZ0YDqwjKV7ann/n1fSUDSN/MoNsP81pu5/gynqNLtQpzF0iYFqxjnM+MzpfPb3d/PZpp+z4N4PAgqtDKg5upi2GRvazCGAeeNzqNF5mHXlJPda3RzBRwzL9GL09H51qAMlhBCj0cnTCyF0uR0c6mW0so5MQ3HHR09B33kK7HoWY+rpg9jKo506o4g/fehEnnvgdD5u/Acagcnvyng788fnULHVjxWsbbtBMJi0leDENV+hWDXhvuCrQ7BHIYQQon+kW5kQo9SpM4o4eVohrzSX0bTjNdj/OgYW57o2oQJDPyJKjs/Ntz72Hj7u+ym/il/LFmsqVQtuQrUcgVA97HgGmiqwLI075ow2M0Q1h8CuOVGt84k2VLZNq26O4CWaURcLIYQYtWZfgj7rizD9nIxXVfMuR487DkrmDULDenbB/HHc8KlvUjXtavTlP4Mrfp7xNuaX5VKvc7Bah6Zb2aF1z3G6tZq1cz8Hk08ekn0KIYQQ/SHBISFGse+/cxG+SUvJowWFPWJZnm4atsLJZXlZPPvFC7jys7/h/eon/Ldxlj1j36vo/7wPXvs1jaEY2YTs6UOYOTSzJJta8lCtVejtT8P+N6hqjhAwYqgMulgIIcSo5fahLvgGZOVnvu6yG1GfeHVIs1I7yioso/Qj/0adfHOfupXNGZdDPdmYkQawrIFvYBfVVfbgEMWLLxn0fQkhhBADodczvFLq70qpKqXU5g7T7lVKrXd+9iml1nez7j6l1CZnudUD2G4hBPbF7iUXXgzALmsC+yx7ZK3hyBxK8rlNZpXmcO0JE7l7r9+euPJPKDS6chM7q1rIUSEShiejrg395XEZRLOKCUSr4YGbsP77WaoaQ+S6E0PaDiGEEENvYn4WzSoXAwsijYO+v1i4FQB/YOhuggghhBD9kc7tn38Cl3acoLV+n9b6eK318cCDwEM9rH+es+yyPrdSCNG9ssVow83mggvYYsy2p/mHLziU9KFTp7I3UUgYD+x/1Z54ZDPbK5vIJjikXcqSjNzxeHUEFWvFqN2Bp34Hea54RsVZhRBCjD6GoXAFnFE8g4PftSwesYNDAX/2oO9LCCGEGAi9Boe01q8AKc+iSikFvBe4e4DbJYRIV1YB6uMrOP/m/+Xks5z09SEaxr4nc8blcPuF86hw20PIJwwPKtxA5cHdFJphjKyhDw5lF5QBEC+ai1YGixteJNuMS80hIYQYA3z5JfaDIQkOBQEI5EjmkBBCiNGhvx3HzwKOaK13djNfA88qpdYopW7paUNKqVuUUquVUqurq6v72SwhxpjS+eRmZ1My9wz7+TB2K+votgtnM23eCQA8ZZ4PQKJiE6Xe2LBkDhVMmA7A+mkfRU89kzOiKwgYMckcEkKIMSC30O56bbXWDvq+tBMcMj3+Qd+XEEIIMRD6Gxz6AD1nDZ2htT4BuAz4lFLq7O4W1Fr/WWu9TGu9rKSkpJ/NEmKMmnA8nPs1mH/VcLekjSpbjKVc/KzlIgD89dsodoWHtBh10qIzr+Kbed/nhremUDHxUqZTzsTQDpRkDgkhxDGvqNjOHm2oq+xlyf7TsSBxTDDdg74vIYQQYiD0OTiklHIB1wL3dreM1rrc+V0FPAzIWJ5CDCbDhHO/DLkThrsl7U66mcStK4jlzaBcjWNGYi+5Rhg1DJlDXrebT950M36vm+tWTaVK5+NNtEjmkBBCjAHjy+xzY0NN1aDvS8fChJHBDoQQQowe/ckcuhDYprU+lGqmUiqglMpJPgYuBjanWlYIcQxz+3CPX8Bnzp/F5vgk5qv9+HUQfEMfHAIYn+fjR+88jv3Nil/Hr7UnSuaQEEIc86aUjSeuDXTlRqy/XQx1ewZvZ/EQUSXBISGEEKNHOkPZ3w28AcxVSh1SSn3UmfV+unQpU0pNUEo96TwdB7yqlNoArAKe0Fo/PXBNF0KMJu86cRJ7fAuZaVTgDVUOS7eypAsXjOOK48q4N3EuwcKFUDJ32NoihBBiaIzL89FADtPLn8A4+CZseWTQ9mXEgsQNCQ4JIYQYPVy9LaC1/kA30z+SYlo5cLnzeA+wpJ/tE0IcI9ymwZJ3foGmh54gN147LAWpO/r+OxaxbFoBvlNXgGkOa1uEEEIMPqUUrWYuxVYjANae5RhnfX5Q9mUkIsQMyUoVQggxevS3ILUQQqTttAXTyL3qR/aTYepWllQQ8HDjGdMxJDAkhBBjRsKbD0C8dBHqwEqIhQZlPy4rTEK6LAshhBhFJDgkhBhai98Ll/8MFr17uFsihBBijCmeMpddegL3Zl+PSkTg4JuDsh93IoxlSnBICCHE6CHBISHE0FIKTr4Z8iYOd0uEEEKMMbnX/pr7F/+NH28rQSsX7Hl5wPdhWRq3jqBdMhKmEEKI0UOCQ0IIIYQQYmzwZnPrpctwZeWy0VyAteovsPvFAd1FazSOjyi4JTgkhBBi9JDgkBBCCCGEGDMKAx6+d80iPt5yM7Wucei73gP7Xm1fIFgHsXCft98SsYNDSoJDQgghRhEJDgkhhBBCiDHlisVlnHDcIi5p/BqR7ClYD97cFhSy/ng6PP/tPm+7ORwnS0VQHv/ANVgIIYQYZBIcEkIIIYQQY853rlkIvly+YtyGaq3GevTTsOFujOYKdOXGPm+3ORwniyimRzKHhBBCjB4SHBJCCCGEEGNOcbaX712ziEcqS3hlyqcwtj+BfuZr9sy6vX3ebkskjpcopjcwQC0VQgghBp8Eh4QQQgghxJh0xeIy3rl0Ih/dcRKHis5AxYIw7jhUcznEQn3aZkswhFfFcfskOCSEEGL0kOCQEEIIIYQYs75zzUIm5Ae4/PAN3Bb9JPvmfdSeUb/PrkW09fGMthcKtgLg9knNISGEEKOHa7gbIIQQQgghxHDJ9bl5+vaz2F3Vyrv+lMvCyhZuAdj7Csam+8DlgflXpr29cMgODnmysgenwUIIIcQgkMwhIYQQQggxpvk9Lo6blMeF80u5Z5dpT1x3JwC6qSKjbYWDLQB4pVuZEEKIUUSCQ0IIIYQQQgBXL5nInlYvEXcuJEcsayrPaBtRJ3PIkNHKhBBCjCISHBJCCCGEEAI4d24JuT4X2yLF7RObM8scikXs4BBuqTkkhBBi9JDgkBBCCCGEEIDPbXL3LacSGD8bgKg7FxVuyGjksnhbcEgyh4QQQoweEhwSQgghhBDCsXBCHjPmHAfAhuyz7IkZZA8lwkH7gUuCQ0IIIUYPCQ4JIYQQQgjRgTHvMjb4T+X+1iX2hAyKUkclc0gIIcQoJMEhIYQQQgghOpq0jPVn/h9rm/Pt5xlkDkWCEhwSQggx+khwSAghhBBCiC7OmFXMEV1oP2k8hPXAR2Hfqz2uk7A0sbAEh4QQQow+EhwSQgghhBCii5klAUqLiwniw9r6GMbmB9Br7gBAb38KIs1HrVPbEsFL1H4io5UJIYQYRSQ4JIQQQgghRBdKKX5w7WIqrXyMw6sB0PtehYoNqLvfD6v+fNQ6R5oiZBGxn7h8Q9lcIYQQol96DQ4ppf6ulKpSSm3uMO3bSqnDSqn1zs/l3ax7qVJqu1Jql1LqKwPZcCGEEEIIIQbTqTOK0DllAGhlYDSXw2u/BsDau+Ko5Y80hfEpJ3NIgkNCCCFGkXQyh/4JXJpi+i+11sc7P092namUMoHfA5cBC4APKKUW9KexQgghhBBCDKWJU2YAsCrPuRze/CAA6uCbkIh1WraqOYKPKJbLB4Yk6AshhBg9ej1raa1fAer6sO2TgV1a6z1a6yhwD3BNH7YjhBBCCCHEsPAVTgLgG1XnE/I4Baqnn4OKBaF8XadljzSF8asISopRCyGEGGX6c0vj00qpjU63s4IU8ycCBzs8P+RMS0kpdYtSarVSanV1dXU/miWEEEIIIcQAOf5DNJ31LQ65JvFCaDaWVuw/6ev2vH2du5ZVNYfJcyWkGLUQQohRx9XH9f4IfA/Qzu+fAzd1WUalWE93t0Gt9Z+BPwMsW7as2+WEEEIIIYQYMiVzyL3g86w4JULd3kK+9eAjbF+R4J6S+ehND5Fw5cLmB1CeAE2J28hzxWUYeyGEEKNOn4JDWusjycdKqb8Aj6dY7BAwucPzSUB5X/YnhBBCCCHEcCrK9lJ03CksDJXx74c28eb88zlt7+8xn/ki8dwpmM2H+bRxCOXySDFqIYQQo06fupUppco6PH0nsDnFYm8Bs5VS05VSHuD9wH/7sj8hhBBCCCFGgvcum8xVSybwga1n8LNlL9Nyy5u4bt+A9Z47mJnYzbzIJulWJoQQYtRJZyj7u4E3gLlKqUNKqY8CP1FKbVJKbQTOAz7nLDtBKfUkgNY6DnwaeAbYCtyntd4ySK9DCCGEEEKIQWcYil++dwnvPnESv3v1MKf8aR9/fW0fiTlXcF3067S4CiBQPNzNFEIIITKitB555X2WLVumV69ePdzNEEIIIYQQolubDzfyi+d28OK2KhZOyGVLeRP/e8VU3n/SFPDlDnfzhBBCiKMopdZorZd1nd6f0cqEEEIIIYQYsxZNzONvNyzj5+9ZwoG6IACFhcUSGBJCCDHq9HW0MiGEEEIIIcY8pRTvOnESZ8wq5r8bDnPO3JLhbpIQQgiRMQkOCSGEEEII0U/j83zccvbM4W6GEEII0SfSrUwIIYQQQgghhBBiDJPgkBBCCCGEEEIIIcQYJsEhIYQQQgghhBBCiDFMgkNCCCGEEEIIIYQQY5gEh4QQQgghhBBCCCHGMAkOCSGEEEIIIYQQQoxhEhwSQgghhBBCCCGEGMMkOCSEEEIIIYQQQggxhklwSAghhBBCCCGEEGIMU1rr4W7DUZRS1cD+NBcvBmoGsTmi/+QYjQ5ynEY+OUajgxyn0UGO08gnx2h0kOM08skxGh3kOI18x8oxmqq1Luk6cUQGhzKhlFqttV423O0Q3ZNjNDrIcRr55BiNDnKcRgc5TiOfHKPRQY7TyCfHaHSQ4zTyHevHSLqVCSGEEEIIIYQQQoxhEhwSQgghhBBCCCGEGMOOheDQn4e7AaJXcoxGBzlOI58co9FBjtPoIMdp5JNjNDrIcRr55BiNDnKcRr5j+hiN+ppDQgghhBBCCCGEEKLvjoXMISGEEEIIIYQQQgjRR0MWHFJKXaqU2q6U2qWU+kqXeZ9x5m1RSv2km/Xf48y3lFLLusxbrJR6w5m/SSnlS7H+p519a6VUcYfpeUqpx5RSG5z1bxyo1zwaDdZxUkp9UCm1vsOPpZQ6PsX605VSbyqldiql7lVKeZzpSin1G6ddG5VSJwzwSx81Ruoxcuad66y7RSn18gC+7FFnBByn7j7zPuj8D21USr2ulFoygC97VBnBx0jOSx0M4nFyK6XuUPZ1w1al1Fe7WV/OS2kYqcfJmSfnJkbEMZLzUhpG8HGSc5NjEI+RRyn1D+cYbVBKndvN+nJeSsNIPU7OvJF5XtJaD/oPYAK7gRmAB9gALHDmnQc8D3id56XdbGM+MBdYDizrMN0FbASWOM+LADPF+kuBacA+oLjD9K8BP3YelwB1gGco3peR9jOYx6nLMscBe7qZdx/wfufxn4BPOI8vB54CFHAq8OZwv19yjI46RvnA28CUnvY/Fn5GyHHq7jPvdKDAeXyZ/C+NyGMk56UhOE7AdcA9zmO/cxympVhfzkuj+zjlI+emkXKM5Lw0uo+TnJsG/xh9CvhHcl1gDWCkWF/OS6P7OOUzQs9LQ5U5dDKwS2u9R2sdBe4BrnHmfQL4X611BEBrXZVqA1rrrVrr7SlmXQxs1FpvcJar1VonUqy/Tmu9L9WmgRyllAKysT/o4hm9umPHYB6njj4A3N11onMMzgcecCbdAbzDeXwN8C9tWwnkK6XK0n5lx46RfIyuAx7SWh/oaf9jxLAeJ2f9lJ95WuvXtdb1ztOVwKTeXswxasQeI+S81NFgHicNBJRSLiALiAJNHReQ81LaRvJxknOTbViPkbO+nJd6N2KPE3JuShrMY7QAeKHDug1A1x4zcl5Kz0g+TiP2vDRUwaGJwMEOzw850wDmAGc5KVcvK6VOynDbcwCtlHpGKbVWKfU/Ga7/O+yoYDmwCbhNa21luI1jxWAep47eR+ovS0VAg9Y6eaLpuP+e2jaWjORjNAcoUEotV0qtUUp9uB/7H+2G+zil66PYd5jGopF8jOS81G4wj9MDQCtQARwAfqa1ruuyjJyX0jOSj5Ocm2zDfYzSNZbPSzCyj5Ocm2yDeYw2ANcopVxKqenAicDkLsvIeSk9I/k4jdjzkmuI9qNSTEsOk+YCCrBT304C7lNKzdBapzuMmgs401k3CLyglFqjtX4hzfUvAdZjR/ZmAs8ppVZorY+KpI8Bg3mc7B0odQoQ1FpvznD/Pc0bS0byMXJhfzhegH1H6g2l1Eqt9Y5M9n+MGO7jlM7652FfhJ/Zl/WPASP5GMl5qd1gHqeTgQQwwdnOCqXU81rrPWnuX85L7UbycZJzk224j1HvDZTzEozs4yTnJttgHqO/YwfgVgP7gdc5OjtLzkvpGcnHacSel4Yqc+gQnaNpk7Cjzsl5Dznpb6sACyhWdpGn9UqpJ9PY9sta6xqtdRB4Esik+NaNHfa/C9gLzMtg/WPJYB6npPfT/V30Guz0x2TQsuv+u2vbWDLSj9HTWutWrXUN8AqwJM19HmuG+zj1SCm1GPgrcI3WurYv2zgGjORjJOeldoN5nK7D/syKOSndr9ElLRw5L6VrpB8nOTcN/zHqkZyX2ozk4yTnJtugHSOtdVxr/Tmt9fFa62uwa9Ps7LKYnJfSM9KP04g8Lw1VcOgtYLayK3Z7sC+Y/+vMewQ7Ao1Sag52wagarfWNzht+eS/bfgZYrJTyO2/+OdgFntJ1ADtqh1JqHHbRqYzudBxDBvM4oZQygPdg9/k8ihOtfQl4tzPpBuBR5/F/gQ8r26lAo9a6og+vcbQbycfoUewUTZdSyg+cAmzN/CUeE4b1OPWy7hTgIeD6kXCHYhiN2GOEnJc6GszjdAA43zmvBLDvIG7ruICcl9I2ko+TnJtsw3qMeiLnpU5G7HFCzk1Jg3aMnO+zAefxRUBca93pe62cl9I2ko/TyD0v6aGrGH45sAO7avj/6zDdA9wJbAbWAud3s/47saNsEeAI8EyHeR8Ctjjb+Ek363/WWT+OHbX7qzN9AvAsdt/ZzcCHhuo9GYk/g3yczgVW9rL/GcAqYBdwP+1V5BXwe6ddm+hmZKCx8DNSj5Ez70vYwdnNwO3D/V6N8ePU3WfeX4F67NTw9cDq4X6v5BjJeWk4jhN2QdX7sa8f3ga+1M36cl4axcfJmSfnppFxjOS8NLqPk5ybBv8YTQO2YwcKngemdrO+nJdG8XFy5o3I85JyGieEEEIIIYQQQgghxqCh6lYmhBBCCCGEEEIIIUYgCQ4JIYQQQgghhBBCjGESHBJCCCGEEEIIIYQYwyQ4JIQQQgghhBBCCDGGSXBICCGEEEIIIYQQYgyT4JAQQgghhBBCCCHEGCbBISGEEEIIIYQQQogxTIJDQgghhBBCCCGEEGOYBIeEEEIIIYQQQgghxjAJDgkhhBBCCCGEEEKMYRIcEkIIIYQQQgghhBjDJDgkhBBCCCGEEEIIMYZJcEgIIYQQQgghhBBiDJPgkBBCCCGEEEIIIcQYJsEhIYQQQgghhBBCiDFMgkNCCCHECKWUmqaU0kopVxrLfkQp9eoQtesMpdROpVSLUuodQ7FP0U4pNcV5782BXHYA2jVkf4NCCCGEGFgSHBJCCCEGgFJqn1IqqpQq7jJ9vRPgmTZMTesYZGpxfvYppb7Sj01+F/id1jpba/3IADVzTBiIAIrW+oDz3icGctmhpJT6tlLqzgHc3keUUokOf+PJnwkDsG2tlGrtsM2/DkSbhRBCiJGk1zuRQgghhEjbXuADwG8BlFLHAVnD2qLO8rXWcaXUacALSqn1Wuun011ZKeXSWseBqcCWvjSgwzZEN5RS5kgL5owSb2itzxykbS/RWu8apG0LIYQQw04yh4QQQoiB82/gwx2e3wD8q+MCSqk8pdS/lFLVSqn9SqmvK6UMZ56plPqZUqpGKbUHuCLFun9TSlUopQ4rpb7fl+5CWus3sIM7i5zt3qSU2qqUqldKPaOUmtphn1op9Sml1E5gp1JqNzADeMzJovAqpSYopf6rlKpTSu1SSt3cYf1vK6UeUErdqZRqAj6ilFrutP11ZxuPKaWKlFJ3KaWalFJvdcy0Ukr9Wil10Jm3Ril1Vpft3+e8p81KqS1KqWUd5k9WSj3kvN+1SqnfdZjX7evuSil1tbPtBqf98zvM26eU+qJSaqNSqlEpda9SypdiG/OBPwGnOa+7wZn+T6XUH5VSTyqlWoHzlFJXKKXWOa/5oFLq2x2206m7odOe7ymlXnPeg2eVk8GWybLO/A87f5e1SqlvOK/twm7ekyLnuDcppVYBM7vMT3nclFKXAl8D3ue8Dxuc6Tc6x6NZKbVHKXVrd8cjE0qpmc7f5gnO8wnK/h87t8N78iOl1Crn+D2qlCociH0LIYQQo4UEh4QQQoiBsxLIVUrNV3bQ5n1A164zvwXysAMs52AHk2505t0MXAksBZYB7+6y7h1AHJjlLHMx8LFMGqhsZwALgXXKrhn0NeBaoARYAdzdZbV3AKcAC7TWM4EDwFVOd6WIs/whYILT5h8qpS7osP41wANAPnCXM+39wPXAROygwhvAP4BCYCvwrQ7rvwUc78z7D3B/l+DL1cA9zvb/C/zOea0m8DiwH5jm7OseZ146rzv5ns1x5t3uLPskdnDM02Gx9wKXAtOBxcBHum5Ha70V+Dh2hku21jq/w+zrgB8AOcCrQCv230Y+dpDwE6rn+k7XYf8dlQIe4IuZLquUWgD8AfggUIb9dzqxh+38Hgg7y97k/HSU8rg52Wo/BO513oclzvJV2H//uU77fpkM6Djta1BKZZwZpLXeDXwZuEsp5cf+O/un1np5h8U+7LR/Avb/2G+6bOYVpVSlE2iclmkbhBBCiJFOgkNCCCHEwEpmD10EbAMOJ2d0CBh9VWvdrLXeB/wcO0gCdoDhV1rrg1rrOuBHHdYdB1wG3K61btVaVwG/xA6ypKsGqAP+CnxFa/0CcCvwI631Vqe71w+B47tk0fxIa12ntQ513aBSajJwJvBlrXVYa73e2f71HRZ7Q2v9iNba6rCNf2itd2utG4GngN1a6+edNtyPHfwCQGt9p9a6Vmsd11r/HPACczts/1Wt9ZNOV6x/A8lgw8nYX/a/5LxnYa11st5POq876X3AE1rr57TWMeBn2N0FT++wzG+01uXOcXsMOyiSiUe11q8571FYa71ca73Jeb4ROzh1Tg/r/0NrvcN5f+/rZf/dLftu4DGt9ata6yjwTUCn2oDzt/wu4JvOe7sZO3jZJo3jRpfln3D+JrTW+mXgWeCsDvPzOxy/VE51AkjJn90d1v0LsBN4EzuY9f+6rPtvrfVmrXUr8A3gvao9K+8c7ODiPKAceFylUSReCCGEGE0kOCSEEEIMrH9jZ2Z8hC5dyoBi7EyN/R2m7ac9O2MCcLDLvKSpgBuoSH75Bf4PO/sjXcVa6wKt9XytdTIzYirw6w7brAMUnTNGDtK9CUCd1rq5m9fU3fpHOjwOpXienXyilPqC092o0WljHvZ7mVTZ4XEQ8Dlf3icD+7upcZTO6+74GtuOhdbacl5Tx2W7tiGbzHR6j5RSpyilXlJ2d7hG7Iyj4tSrZrz/7pbt9PentQ4Ctd1sowS7dmV3f6/pHDe6LH+ZUmql0wWsAbi8p+VTWOkEkJI/M7vM/wt2V8rfOhlvHXV9He7kvrXWr2ito1rrBuA27Oyw+QghhBDHEAkOCSGEEANIa70fuzD15cBDXWbXADHswETSFNqziyqwAxod5yUdBCLYAZ7kl99crfXCfjb5IHBrly/VWVrr1zu+rB7WLwcKlVI5Xdp9uMPzntbvkVOn5svYWVUFTlesRuxATm8OAlO6yfJI53UnldPhmCmlFPZxOpxi2d509150nf4f7C5yk7XWedi1itJ5zf1RAUxKPlFKZQFF3Sxbjd39KuXfaxrHrdPrVUp5gQexs7LGOcs/yQC9ZqVUNvAr4G/At1PUFOr6OmLY/6+p6IFqlxBCCDFSSHBICCGEGHgfBc53uqi0cbo93Qf8QCmV43Rh+jztdYnuAz6rlJqklCoAvtJh3QrsbjY/V0rlKqUMp9BuT12N0vEn4KtKqYXQVvT6PemurLU+CLwO/Egp5VNKLcZ+/Xf1vGbacrCDENWASyn1TeyaNOlYhR3w+F+lVMBp3xnOvExe933AFUqpC5RSbuAL2IG6VIGk3hwBJnWpV5RKDnZGVlgpdTJ2NtpgewC4Sil1utO+79BNEMT5W34IO9Did+oV3dBhkd6O2xFgmnKKsWNn1Hmd5eNKqcuwa2oNlF8Da7TWHwOewD7+HX1IKbXAqUn0XeABrXVCKbVQKXW8sovFZ2N3Az2MXRdLCCGEOGZIcEgIIYQYYE7dlNXdzP4MdrHhPdiFh/8D/N2Z9xfgGWADsJajM48+jP0l+m2gHvvLfFk/2/ow8GPgHmWPJrYZu7ZRJj6AXZOlHHgY+JbW+rn+tKuDZ7BrEu3A7u4Tpudubm2cAMZV2AW8D2AXzX6fMy/t16213g58CLuYeI2zzaucujyZehF7pLhKpVR3mSkAnwS+q5Rqxq79c18f9pURrfUW7L/Pe7CDas3YRaK7dsFK+jR2l7RK4J/YhZ6Tejtu9zu/a5VSa51uiZ/Ffp312MGw/3bcmbJHNjuL7iVHgev4c5JS6hrsYuEfd5b7PHCCUuqDHdb9t/MaKgGf0xaAccC9QBP2/+w04Eqn9pQQQghxzFBa9znTWwghhBBCHKOcTJkGYLbWeu8wN2fQKKWWA3dqrf863G0RQgghhotkDgkhhBBCCACUUlc53cQC2PV/NgH7hrdVQgghhBhsEhwSQgghhBBJ12B3DywHZgPv15JmLoQQQhzzpFuZEEIIIYQQQgghxBgmmUNCCCGEEEIIIYQQY5gEh4QQQgghhBBCCCHGMNdwNyCV4uJiPW3atOFuhhBCCCGEEEIIIcQxY82aNTVa65Ku00dkcGjatGmsXr16uJshhBBCCCGEEEIIccxQSu1PNV26lQkhhBBCCCGEEEKMYRIcEkIIIYQQQgghhBjDJDgkhBBCCCGEEEIIMYZJcEgIIYQQQgghhBBiDJPgkBBCCCGEEEIIIcQYJsEhIYQQQgghhBBCiDFMgkNCCCGEEEIIIYQQY5gEh4QQQgghhBBCCCHGMAkOCVu4Cfa/MdytEEIIIYQQQgghxBCT4JCwrf47+o4rIRYa7pYIIYQQQgghhBBiCElwSNiaylFWHCItw90SIYQQQgghhBBCDCEJDglba7X9OyrBISGEEEIIIYQQYiyR4JAAQLdU2Q9iweFtiBBCCCGEEEIIIYaUBIfGOK01V/32Veqry+0JUQkOCSGEEEIIIURvtNZE49ZwN0OIASHBoTHuUH2ITYcbcYVr7QnSrUwIIYQQQgghehSNW9x6x5u897fPDXdThBgQEhway6p3oB/+BF6iZFtN9jTpViaEEEIIIYQQ3dJa86UHNnDarl/wfw23oFuqh7tJQvSbBIfGsp3PMuXgI5xibMVA29OircPbJiGEEEIIIYQYwTYdbuTp9ft4t2sF41QDkUc/B1oPd7OE6BcJDo1lzghlJxnb26dJcEgIIYQQQgghuvXwusNc6lpHDkFeSCzFt/Mx2LN8uJslRL9IcGgMSzgjlF2Yvbd9onQrE0IIIYQQQoiU4gmLxzaU89HclYSyxvP12E32jIb9w9swIfpJgkNj1K6qZg4fOgjA7JhkDgkhMqA1eteLEI8Od0uEEEIIIfpE97Eb2Ku7agi1NLIotJrm2e8ghMeeEY8MYOuEGHoSHBqDtNZc/7dV1FUfBsCVCLfPlOCQEKIHWmv0rudRd74TdsnoHEIIIYQYfXYcaeb47z7HrjefQO98PqN1H11fzkJfDYZOYE5eRgS3PSMe7nlFIUY4CQ6NQeWNYSoaw0zLCrVNi+GmiWzpViaE6NEPntjK6gd/bj8JNw1vY4QQQggh+uD3L+2iKRRh/Eufh5d+kPZ6rZE4T2+u5JopdpZQYPwcom3BIckcEqObBIfGoA0HGwDISTSA4QIg5CmgRXuxIi3D1zAhxIjWEonz/Kr1LA29aU+QO2RCCCGEGGX217by2IZyTjPeJjtcmdH1zHNvHyEUS3B2cTMAvtKZeNweLEy5LhKjngSHxqD1BxvIc0Ux4yEoWwJAxFtIq/YRD0u3MiFEak9urOCqxAu4lGVPSEjNISGEEEKMLn94aTcuw+C9rlfsCWlk/LRE4jy+4RATn/oI78/ZyCSrAh0YB95sCgMeYsojmUNi1JPg0Bi0/kADp45zvtxNPhWAqLeYIF60ZA4JIbpx/1v7eL/rJVZbc+wJcodMCCGEEKPI9spm7l9zkBtPKuIS4y17YqL3oM7vXtzFb+95jJOiq/hozhtQtwddOB2AomwPUeWW4JAY9SQ4NMbEExabDjeyrCQZHDoJgJiviBBetBSkFkKksKe6hexDLzNR1fLP+CX2RLkIEkIIIcQoYNcKquBb/91MttfFp2dWk0WEStfEXq9nLEvzyLrDfGicPVT9zNBmqNuDUTQTgMKAxy5KLTfNxCjnGu4GiKGzYmc1L2ytIhRLcFy+0x0kfwrW8R+i1ruM1v0HJDgkhEjpvxvK+aD5AmFvEU+HT8JSJoZcBAkhhBBiFPj4nWtYsbOGaaqCL1xxLjnV95DAYJO5kHHxlT2uu3JvLZVNYS4o3AGAEaq1ZziZQ4UBDxHtkptmYtQbsMwhpdRkpdRLSqmtSqktSqnbnOk/VUptU0ptVEo9rJTKH6h9ivQ1hWNsv/MLXLb6Jj7le5oFOc5IZf5ijHf8nvqplxPCi4pJcEgI0ZnWmpfWbeN8cz3RRR8gjouEIX3rhRBCCDHyvbqzhhU7a/jRyWFe8n6RGzwvYR1cRbl3JlUJf6/XM4+uKyfHazC+fg168mntMwqcbmUBD0HLnVb3NCFGsoHsVhYHvqC1ng+cCnxKKbUAeA5YpLVeDOwAvjqA+xRp+s+bB7iG5Sxz7+dL/IvcnY/YMwLFAPjcJq3ah5Kh7IUQXWw63Ehu/RYMLHzzLgIgLoUXhRBCCDHCWZbmx09vY2Kej3fX/w2Fxlp3F+rwaipzj6MpZqISEdA65fpbK5p4dMNhbpzZghFpQC37CJa/xJ5ZOMP+FfAS1i4SUcmoFqPbgAWHtNYVWuu1zuNmYCswUWv9rNY67iy2Epg0UPsU6QnHEty/YiMlqhHz7M+jXVmwbwXaHQBPAACf2yCIFyMeGubWCiFGmkfXl7PYtPvZeyYuJtvrckblkIsgIYQQQoxcT26uYNPhRn60tBb3wdfQJfMxKtahoq00FC2lJW7aCyZiR63bGIxxy79XM93byk2hf9oTp52FmmIP6JPsVlYU8BDBQywi36PE6DYoBamVUtOApcCbXWbdBDzVzTq3KKVWK6VWV1dXD0azxqwXt1WR37rXflK2BD39bPuxkzUEduZQCC+mZA4JITpIWJrHNpRzTm4lVt5k8BdSnJ0svCiZQ0IIIYQYmWIJi589s525pdmcvu/3WLmTUe+/q21+aPyJRJMleFPc8HpmSyUH64Lcn/UDcqveInTxTyBvIuqkj2KdeCNkFQB2zaGodhGPSnBIjG4DHhxSSmUDDwK3a62bOkz/f9hdz+5KtZ7W+s9a62Va62UlJSUD3awxbfn2KhZ5K+0nxXMw5l5qPw60v88+t0Gr9mHoGMSjw9BKIcRItHJPLVXNEearfajxxwFQlO11Ci9K5pAQQgghRqZ73zrIvtogPz1uP67K9RjnfRWKZmJNPhUrUIq3eIZ9swsgcfT3n6ZwjGmqkuzmPUTO/x5Zp99qz5h5HsZVv2pbrsAZrcyS4JAY5QY0OKSUcmMHhu7SWj/UYfoNwJXAB7XupkOnGBRaa17eUc1Z+XVolw/yp8Bsexhq1SE45HXZmUMASFFqIYTj0fWHKfbEyG7ZhypbAkBxtoeQJZlDQgghhBiZgtE4v35hJ6dMzWXhtt+SKJoNi98HgPGOP6De/x8Ks71Ek8GhFNc04ViCU4xtAGTNOa/bfSW7lWm5wS5GuYEcrUwBfwO2aq1/0WH6pcCXgau11tJnaYhtq2zmSFOEBe4KdOEsMEzIm0hi/jUw/ay25Xxuk1Z89pOoHCYhjkmtNRktXtca5alNlVw/owWFBidzqDjbS6vlklE5hBBCCDEi/f3VvVQ3R/jx7K2YtTswL/gGmE4XsqKZqMkntXUHA1JmQwejCU4ztmL5i6F4drf78ntMIrjtwtYD5eBbWGv/PXDbwy4VIERPBjJz6AzgeuB8pdR65+dy4HdADvCcM+1PA7hP0YuXd9j1m0rC+1Glc9umm+/7F5z2qbbnPrdBSCczhyQ4JMQxp2ob+qezoHx9Wotrrfmf+9dTGi/nutwN9sTxi4H24JAVk25lQgghhBhZjjSF+b+X93DpvAImb/wNifFLYP7VRy2XzPgBUnYrC0binGJsRU85HZTqdn8el0FUuzAGKDjUGIxhvfRD1PPfGpDtARxuCPH1736Tl157bcC2KY49roHakNb6VSDVf82TA7UPkbk3dteyuNSNu+kglHy42+W8LpNgsltZtGWIWieEGDJ1e+zsn8ZDMOH4Xhdf/szDfH3PV5jmPgIbwcopw8izB5sszvYQ0W4S0fDgjGoghBBCCNFH33lsC9GExQ8mvYW57yBc/euUwZ1cn5u46r5bWVbwEGWqtlNvi1S8LjtzyLT6Hxyqag5z4U+fZ417Ja4BvMi687Hn+BG/Ifr8n7D8v8JY+sGB27g4ZgxYcEiMTDV1NXzM/Zz9pHhOt8u5TUVIupUJcewK1tq/08gMTCQSTHnzW2S5NJELf4xrwmLMcfPbLqyKnT76iWhTsqe+EEIIIcSwe2VHNU9uquTr54+nYPUnSEw7G3Pm+SmXNQyF25sFFimDQ+ObNtkPpp7W4z49LoMIHgyr/zWHntlyhBmx3biNICQArXvMWkrH1oom6ra9Am6oMYope/47IMEhkYLc9D2Gaa25rfmXvLP+78TLlsGMc7tdVilFwpVlP4lKQWohjjkZBIfWPnsXM/UBKpd9Ce/pH8ecdnrbcK0AxTlee1QO6VYmhBBCiBFk1d46TENxQ/ReVKQR89If9Rhc8WU5339SdAlzRZ2Bt7PH9bhP01DElBtzAIJDT26s4BRja/uEARgZ9l9v7OMU105ajFyeSSyDcEO/tymOTRIcOobVB2NM0kc4UHQGrltfgKz8HpdPuPz2AxmtTIhjTzI4lEZmYN7q33BQlbHo4htTzi/wu4loGa1MCCGEECNLeWOIOdkRXGv/jrXkQzB+UY/L+3xOcCjVSGPJwIzp6XW/CcODS8fAsjJtcpualghv7q3lVOPt9omxUJ+3B3aywEvbqjnds4u6wqXUxHx24Wy5hhMpSHDoGFbeEKJENaByJ6S1fFtwSLqVCXFM2VvTSn1Npf2kl8yh8gO7mZPYyaGZ78d0pe40luVxEcE9IOnTQgghhBADpaIhzLs8b6CsGOZpH+91ebfX+f6TIkNHJwMoLl+v20kYTu3WfhSlfmZLJS4d4xTXjvZRpPs5UND2I81Em6oYHzsEU06hGScYFmnu13bFsUmCQ8ew8voWCmnCk9tzKmSSdieDQ5I5JMSx5P89vIlte/bZT3q5yNi9xq5RNmnpxd0u43MZdnBIhrIXQgghxAhS0RjiotiLWOOXwLiFvS7v9jhBmFTXNMkRzNLIHLIMZ5l+dAO7962DfD7vZfw6xGPxU+2J/bxpv3x7NScaOwDIn3sWLToZHGrq13bFsUmCQ8ew+upKTKXxF6aXOWS5A/YD6VYmxDHDsjSbDjXijdbbE3pJT47veZVWspg076Rul8nyDNyoHEIIIYQQA0FrTW7jdqZGdqY9GpcrGRxK0a3MSESI4wKj96/MluntdjvpWH+wgYOHDnJj/D4qS8/iBesEe0Y/M4dWbKvklqyX0KaX3BknY2Tl2TPCEhwSR5Pg0DGsubYcgEBhWVrLG24fFkq6lQlxrNCauuW/JxFpoQDnIqCHzMBIPMGkpnUcyl6MMrsfh8znMolqN6aOg5UY6FYLIYQQQmSsrjXKqXq9/WThtWmt4/Imaw4dnfGjElHiRu9ZQwCJtuBQ3zKH/vXGPm7yvIgn0Ur9Gd8ghLO9ftQcqmmJcOWhn3NSYh3xi34Abh8FhcX2TMkcEilIcGiQVDWHeWHrkWFtQ6jerjFi5JSmtbzP7SKivP2OUAshRoiKDRS/8v+40nyDQuX0Le/h/3v9tt3MVocwp5/R42YNQ5FoS5+W7CEhhBBCDL+KxjClqoG46YfskrTW8XjtzCGd4nrGsCLt1zu9Mft+XdQUjvH4xgrOLahBF0yjeMbxhLSzvX58L3vozR18wHyB6nkfxH3qzQDkFxTaMwex5pD1xBex7k4vc0uMLBIcGiQPrT3MR+9YTX3r8BVsTTQ7walAusEhgwjeflfFF0KMEI2HAJhjHCZPORcXPfx/H9zwIgCTjr+w10233SGTukNCCCGEGAHswXgaifvTCwwBeJzMoUSK6yMjEU07OKT7mjlkWbyw5m2icYsZrmpUwXSKsz0kzGRB6r59L0tYmpdWrQegZP7ZbdM9gXy7veHGPm23t33+fcUu9KYHUOVrBnz7YvBJcGiQnGW+zW/cv2XDgdpha4NqrbYfpBk597lNO4VRgkNCHBuaDgNwundv+7QeupW1HtiAhcI35YReN91+ESTBISGEEEIMv4rGMMU0YmSnd2McwO0Eh2KRzkGdaNzCTay90HRvkiOaJTJLDEi88Qcuef5SZueDv/UAqmgGSiny8nLtBfr4veyVHdXQXGE/6TBytdcJDkVbBz44tHx7FQ8/+RRmuB5aqoav9IDWEKwbnn2PchIcGiQz/UGuNt8guuauYdl/PGHhi9QSV27w5ae1js9tEsYrBamFOEboZOZQYlf7tG4uMsobQvhbDxH0lIA7q/eNJy+C+jEqhxBCCCHEQKloDFNqNODOG5/2Oj6vF0sr4rHON7tCsQReYug0RioD0K6+ZQ7FNj6IXwe5ZWoFKtwIBdMBKMjLdxboW7eyDYcaGI8TIMlpDw75nOBQpLWhT9vtyX83lHOWsREApRMQHKYkiQ13o391nIzA3QcSHBokvqXvZas5h5P2/B4iLUO+/yPNEYpUIxFvISiV1jo+t0EIj2QOCXEM+NPLu3nytdUAuHQMwMkMTH2iXL69milGFapwWlrbb78IGuWZQ1oPdwuEEEKMQfr138Fh6XozkCoaQ5SoJlQGmUN+r4soLhKRzt9/QtEEHuLto5D1QmUYHLIszUd//ySeynUAXKRX2jMKuwaH+va9rDUSZ5KrwX6S2z44UU52gIh2D3jmUCia4Lm3j3Bp1tb2ic2VA7qPdOn9r6OiLRCqH5b9j2YSHBosSvHClNspsOrQa/4x5Ls/UBukmEYSWen3ufW6TILag5bRyoQY9R7fWM5ks/NJ8ZBVTCKS+v97+fYqphnV+MfNTG8HrmThxVGcOXTwLfQPxkNTxXC3RAghxFhiJeC5b8DG+4a7Jb3b/zr6jmtGxc2gqvpm8mmG7HFpr5PlNongJhHrfD0TjMbxEIN0g0PuZEZ1eu/Ta7trKChfjqE0FiZ5B56zZziZQ15/wH7exx4dLZE4k8wGtC8PPIG26blZbprIIhFq6NN2u/P81iMQbWWRtY0trgVOI6oGdB/p0pVb7AfynTZjEhwaRAXzzqRcF9J6YMOQ73tnVTPFqhFPXvofjl63QdCSzCEhRrtQNMHWimamuuohd2Lb9MO6GCuS+iJjy4FqSqhDFUxLax+qrVvZ8BXd77fDq1HxcFvhbiGEEGJItFajtJVxfZphsfUx1N7lULlpuFvSq3Cjk6mSSeaQx0UUN4lU3cpUrP1mWG/MzLrb373qAJe61xMPlKGnnYkKN9gznOswr9ePpVWfb9q3RBJMMOrQOWWdpudluWnWfqzQwI5W9tDaQ5yeXYFhxdg3/mKnEUOfOXTT398gcSQZHBr63jujnQSHBtGSSfkc1KVEqnb1vvAA23mkhRLViDe/rPeFHT6XSav2oGUoeyFGtU2HG9FWgpxYNUw/p236YV2M6ub/Oy9agYFuuyjpjXEs1Byq32//ljprQgghhlJTuf17pAaHWqrRy3/MH1/cxuHtdhd1Dq8d3jb1oiEYJdbojNScQXAoy2NnDlnRztczdreyWPvNsF4YnmS3st6PaXVzhOe2VHCmsRlmX4Q5YTEAOrsMPH77JfjchPAQ7ybjuzetkTil1KE61BsCyPW5aSELIk192m4qlTvX8tqOCt471b6eCk48C4BwXfmA7SMdVc1h9u7cgttyAn3ynTZjEhwaRHPH53CQ8XiaDw75vndWNlKUYZ9bn9skiFdS8IQY5dYdqKeEBgydgIknoN1+Eu5sGglgJI7ODNRaUxJ37u7kT01rHypZtHoUpJmn8j8PbGDHjuSdJQkOCSGEGELJWiwDmX2r9cCdz7Y8jFr+Q15+/jE8ddsAsIazPlJrTa81AtceqKdEOXV0MuhW5veYRLQbK56qIHW8vZZQL0x3+jfNXtpexWRdgc9qxTXlZBhvB4foUPfR77VHkY6F+9itLBynRNeh8joHh5KZQyoyQJlDNTsZd9f5XGe8wOm5tWhXFtkT59Oo/bTWHh6YfaRpzb565qv97RPk+i5jEhwaRG7ToME7gZxYzZAHXKqqjuAikVHk3Oc2CGuvRFmFGOXWHqjnxHznhJg3GV0wg4SvkJD2YFoxSMQ7LR+JW0xWTr/wdDOHPKM3c6i+NcqDaw9jNh6wJ0hAXAghxBDRWhOqdbozD2Tm0IZ70D+bPTAD4dTtBuAq1ypKlJ1hEj2wuv/b7YvKTeifzYE9L/W42Jr99ZQaTnAokH7NVb/HJIoL3SU4FExmDrnTzBzK4KZZSzjOIrXXfjLheBh/HACqcEbbMgGPizCebmtF9iYYjpBv1XcaqQwgx+eihSzMWP+DQ2/uqeWJO3+JQnNF3h4CTbvRxbOZXJRNtc4n1ji0mUOr9tUxzzjQPkGCQxmT4NAgC2VPsR807O95wQFU2xLBCFXbTzL4cPS5TRmtTIhRTmtN6/61nFHoXCDlTUTNuoDYxJPtzEA4KgAcjCaYrKqIG96077aZozg49MK2KhKWRWnCST+XPulCCCGGyCPrD/OPZ5yRqQYwOGRteRgVbYXW6n5t5+3yJg7vsTNr3+1aAcCb1jy8DbthoLJNMqA33GsPi16+vsflVu+rZ1Guc03Sh25lXa9nQlG75pDpTi9zKHnTzIr1fl0Ujic4ztiLNr1QMg+KZqPzp8GUU9uWCXhdhLQXq48BDm+4GgOr00hlAIahCJsBXPH+X/v85vntHF//LACL2QnV21Alc5lUkEWVzkcPcUHq1fvqWWAcpEk7gToJDmVMgkODTOdPsx/U7xuyfe6samGacr70pJkFAMmh7L2oeEiGdxZilHp79cvcGf8S7znyK3tC7kTUxd8ldvUfCXcTHGqNxJmiqmjNmgBGeqcFlyezUTlGjMpNXPX4iZyitpGjnEC4ZEsKIYQYIq/urKXIqrWfDFRwKB5F7bMDOf2pJRNPWHz476uIHNkJgNeyz5P3Jc5FoaFiaAfZWbe/lta1zohudbvRWrNyTy3/en0PWw7VtS0XS1hsONTAnEAQ7c2BZBZPGpIFqbtez9jdymLt3cV64XKW6zrqWSrhmMVxxl6s0oVgusF0oW7fACd8uG2ZgMcu92H1Mbs5O+oEZjoMTJIUNbPx9jM4VN0cIb7vdSaqaph4It5gJarpEKpkLnlZbuqNQryhoQsOtUTibClvZKnnIOutWfZECQ5lTIJDg8xdYg8LHa/ZM2T73HmkmVnK6eNZPDvt9Xwuk5D22NH5RGyQWieEGCyWpal87tfEMfAkgmi3H7IKAKemmE4dHArFEkxRVYSyJ6e9L5fHvvDqmoY9kh2sC7L9xX/j1WE+G3iufYZcPAghhBgiGw41ME7V208GKjh08M32ASfCfQ8OrdhVQ31LkGlmDYlC+zuEDpSyPcfJaBniotT3Pfwg2ZEjJDCIVe/izjcP8Nk/P8XJT19N9V/exY7KJupbozy89jDhmMVkTysE0q83BPZQ9lHtQnU5FsluZaYnvUCTx+Mhpk0S0d6DQ5FojEVqH2rC8d0u4/fa3cr62qMjN+ZkkOUcPThR3J2Nzwr2Kxng6S2VXGW8TsLMggu/3T6jeC5KKUK+YgKx2iFLOFi7v54SXUdRvIo3WWRPlAFHMibBoUFWVDKeZp1F8MjQjVi240gL813lWDll4MtLez2f2+w2s0AIMfI9uXIjZ0ZeYf+09xE79bNYsy8BpQDwmHZmIHBUjZ1gNEGpaiARGJ/2vpLBoXh0dHRD1Vpzy7/XENlmpz+flnirfaYEh4QQQgyBpnCM3dUtbcEhPUAFqde+9GD7k3Bjn7fz8NrDzPM1YOg45onX2xNLF1BUOpEaVQhVW/vZ0vRVNYVZWPM0Ebw8bZ1M8+Ft/P7Jt3g08APmGoc4V63lV3/6A8t+8Dz/8+BGfG6DYhogO/2SGgCmoYgpDyrRJXMoGsdDHNOTXrcyr9sgigsrjWBOoGU/2SqEMXFpt8tke01Cum8DBcUSVnt2Wu6Eo+YnPDl2l7N+XP88ueEQl7rXomdfBJNPtbvIgd1NDrAC4/DqyICOitaTJzZWcIbH/r59MG8ZCQy5vusDCQ4NskkFfg7o0qHJHErEiD3+P+zcvplFnsq2f850ed1GtzVJhBAjX+2rf8er4sy44nO4L/0e5nv/2TbPMBQx00mNPqrmUBwfUZQnkPa+3N5kcGh01Bxad7CB6oqDLDb2Ynly7JHcgLhyy+edEEKIIbH5UCNaQ+kAZg41h2O49y2n1iiyJ/Thy/ih+iCPbyzn2bcrec90J0gy6WSsJR9AHfduZpVms8OagFW9rd/tTdfyjXt4h/kaodlXMm/pmRTqBt6hVlCWKIfr7iOUPYWvG3fw39K/8NqCh1l9+RHcjftQGYxUlmQZHgyr87EIReMZdSvzmAYR3GllDhW1bLcflB3f7TJ+j4sQHrvcR4ZaI3HyldNtLKvw6AW8OfbvPgZuDtYFCe9/i2Jdj2vBVeDyoMsWow0XFE4HwJVr33DUzUd63FY8YbG7uoVIPNGntoB9Hfv4xnLeWXwQ7fKjyxYTxCcDjvSBa7gbcKybkJ/FVl3KpMYMC1JbCfSh1agpp6S/TsVG3Kv/j/PjVzDFexCj5IKMdulz293KgKEtSl211U6BzeS1CiE62VXVzNTmddTmzqSoZG7KZaxugkOhaAIfUYJef9r78/ic4FBkdGQO3bXyABd6NgNgnP0FeP7btBAgYvgpkjtLQgghhsD6Qw14iFGknMLOif53zV61t45TVAUvxJdxjfFqxt3KdlTUs/X/buBkvYm7VBGTs8+zZxTOwHjnnwCYGTvAzkQZp9astLsJOVnJgym25t9kqzD63E+T33gINsDt+Suw4qUYsy8i64ofknXvhyhNGBiHGjH23G+vWLYk430lUgSHwtEohtLgSi845HWbRPDgSqPmkCfaYD/I6T5jO+BxEcKL0YfgUEskToAwMTMLd4paksqXaz/oY4Hxf6/cz6XmarRyoWZfBIBxwg0kShdimm4Asgonwj6oOLSH7bX57KlpJZaw2HiogdX76rGc7mYtkTjhmMVnL5jN5y+a06f2PLmpktZoguP1NqyJJzBzXD6tO7xkhZsl2JEheb8GWVm+j2d0KRcFN4BlpV3slZ3Pou5+P3zsBZi0LL11auwo9HvMl3EnQtDNF8Tu+FxD260sEk/w5+W7uXXrR3CbJuqTrw/6PoU4Vj245hAfM/bgn3ZFt8skXH6Ic9SdlFA4glslcHnTL+Do87iIapPEKOhWVt8a5fGN5TxQuAUdL0GdfAv6pR9RZ5ah42EJDgkhhBgSGw42cEJBGJKnzgGo8blq+0EuUGF2xsvsPiEZZIPUNIfZ+JdbeTcvUz3lEo6veAVj01/QnmxUhxG/ZpVm87iegBFthpYjPQY1BkJrOMppdQ9zILCQKRNPAJf9/cTXuBt93Hvt4NT8q+Br5bg8Aft9rN8P/kL7J0OW6cHsEhyKhZ2D5PKktQ2vyyCi3WSlUYuxrTuhE0hJxe81CWsPZiLzDO1kcCjh8pNqD0ay7Egf6lMFo3HuWbWfZ33rSEw8E5dT25ITrsc84fq25XyTjsNao7jnwfv5TYesoJIcL2fPLOTM5seJGNnsKr2QR9dXkr/rERJZXswzb8u4TY+sO8z8QkV2w1Y47guMy/bRqn3khlok2JEheb8GmddlUu+ZiMuKQnMF5B1dMT6l5kr7957laQWH9te2Urt2FScABck0wgy7ldmjlQ1d5tBfV+zlpRee4DPebeiC6YO+PyGOVZalWbluPV9WzTDtpG6XS7iy7OBQl+BvNGw/d2WQOZTl3CFLZ1SO4fabF3cyzTrAoqaX4fTPgCeAXvw+Dh5R5B5agY62Mvj3QIUQQox1l+/7MVN99g2JFjOPwAAM6rBjt11npZIiYoYXdwY1hx5/+E4+Yj1D1XEfp/RdP0a//FPUS9+3r8s7ZAfNLAmwW9u1a1569VXGH38xs0uzcZmDU6HkrXXrOVdVsOe4T9oTCme0zVMzzmlfMNkd3nRD8aw+70+bXlzRzoG6tpqK6WYOueyaQzre+3WRTmaMmd3XM3KbBhHDiyvRt25lARXGcmennO/y28GhWLAxZfCoJ49vrGBGZDvjOYS18IvdLnfcnJnsdM/hPYG3Of3aHzK//CE8O5/EcHswIwlch18CIFH9Gz6loeBIPRwBTrkV0uzKl9RQd4RPuZ5AaQumnEpu0E0IL1akfyOyjUVSc2gIhHOm2A8yGc7e+WBP7H0lrcX//MoeavZupEbntk/MMHPI63YKn8GgZw4dbgjx2xd3cp3rRXvCQI3WIMQYtLOqhfEtTpHICd0XN9QuJ/jT5f87ErYvVN2e9INDPrdJBDfWCA8O7a5u4d9v7OdnxU+AJ4A683MAGNf8loPHf5EW7SMS7FtatRBCCJEurTVnxldyfOtrAFSZ4/qdOVTTEqG5xh6h2F84kWYCaWcO7a5uYeKu/9DsKqD0mu8BoE7/DFbR7KNG0SoMeMiZuACAF159lct+vYLF33mWL93fv6HtLSv1SFYbt9u9IabOnG9PcGehk0OyTz8n5Tr9aofpxaW7ZA4laweZ6WUOeVx2zSHSuC5qGxmtl20nTD8uK5LxiF/N4TgBQuhuakl6A3ZwKNRSn9F2AQ7VBfmA+SKW249x3Lu6Xa4428vcM9/FpOBWTtn1G/Je/Aqu1grM2p2Y+18jccn/Yr3vLhKzL2dn9jJWKCcZog/fQb8f+iFXNt1DZMrZMPUMcrNctOLDikhmeKYkODQEdME0+0H93vRXCjcAYBxcBc5dhYN1QYIVO7DW3HHU4s3hOPNcFeTPO5tE6XFY/uKM0yp9rg6ZQ4NYwCtc/jaP//0HfFv9hSuNN+yJo2g4bCFGmjf31rLE2IM23DBuUfcLupPBoc53oWJO5pDbl2nm0MgPDv36vyv5ofuvHJfMGurwuTilyE8QL7GwBIeEEEIMrqZwnGxChNz5hJWXA2pCv2+Ort5XT6lqAGDS5GnUJ3wkQullDv39iVc4X621uwIlu065fRi3vgJX/rLTskop/vTJq9CeAF9e1MTa0u+xzvgwX9x8NfEHb23v8ZCJnc+h/nDKUd8B4gmLA/vtgXzM3A7DsJfMwyqaDfmTM99Xb0wP7i7BobbC0mlnDtkZ1Wl9p0nEsFBgmD0vZvowSWQcRGyNJAgQQXlSZw6ZeXYWWKw2w5q4gBVq5CrzDeILrgVfbs8Lz74QhUat/B2J2Zfh/uxqXLdvQP2/cszTPoEx/0o87/oDKxb9gCeizs3NPnT1z9cNbMw9F+OGR8GdRY7PTUh70VHJHMqUdCsbAv6SacT3GqjavfT8EdCBkzmk4iFa977JT7cWsWrlcu7z/wQj3gAL39npHzISCTFRV2KWziNxyq1YzVUZR/58brN9qOtByhzSwTrcfz6DW7EIe3JZk1hIXnYOC6P9u/MgxFj25t46bnTvQ5cuQLm6T1FWzvDzXU+88Ujm3cp8bpOIdmOO4ODQih1H+Mj+L7PE3Ev8pE/gOuP2TvMnF/hZjxcdyfzOWTqsN/6AUTgD5l561LxwLMEzWyp5dH0535qxncnuJozTPjko7RBCCDH8ahqbmKlibJl1A/+yruCEXb8F+hccqmmJUKLs7wzjJkylabOfWEt9r983dlU1M27XfRgu8J/2sc4zu8siVgpdNIec7Q+iUWyY+AHKD+zi8k33wJST4KSPpV6vO1VbUTXbobWmU9mN1fvr8UdrwQ10GHlMXfUr1ADUaErJ5cVNvFOx7bZu8xnUHGrU7rSDQwnlwuilsLfuWA4gzXaA3a1ssgqhvKlrQ/nzSqjWuaiaHWlvM2lmzfP4VQRO/mjvC5ctxfIXo8INmJd8356m1FG1libkZ7FXO0G4PgSH3DqG8gRwO90cc30uDuNFxWoz3tZYJ8GhIbBgUhHlbxaRU7GDgnRXCjcS9xVhhOt45c4f4Y9P4gH3o/iTHzjR1k7BodzgAUwsKJmLOePsPrXT16lb2eDUHHr6peVchsWTc77H5R/4DN/91Qo+z79ZGF81KPsT4lintWbV7hp+qvagJr6vx2WVKwsLhdEl+JsMDil3+gWpszx25lBWGn3rh1xrLc0HNrDxkSf5lLGL2FV/wH3CB49arCzPxxv4UIMRDLcs1Ivfx8qfgjH3UiLxBBsONvLG7lre2FPDgQP7WGjt4ApzFVP3vYr2F4EEh4QQ4pjVUGd/UfUG8sgmh+a4AtW/4FBLJE6pqkcbLrLyS2jWWWllDv1h+W4+aq4nNuk0PAVT096fUTIHKtahT/gwuyb+D9/d/TqXm6v61gPAcgI94cZOwaEXth6hzGhEKxPlL2pfPn9K5vtIVzI7KB5pq3eTiPZeF6ijZM2hdEagM6woceXptd6PdmdBGDs4lJWfVjsAmp2C1KYvJ+X83CwXu/VE5tVmHhzyh5yh6XsoY9DGMOCCb2IlYpg91IQqy/MRbEtQyCw4FEtYuImjOgTPcrPchPAddb0reifBoSFwwtQC9upS5lSn163s9y/t4oQtu8lK5FHLVC4zXucyN6zLOo23rLncEvnnUVHV4rCTFljctyEAAUxDceKsCXAIWluaSd1Lte82HWrklTfe4DIXXHrJVaAU+X43LU2mnVY7RENjCnEs2VPTSmlwB35vK0w5pcdlfR6TCF6yugR/E8lupBkUAMxym9ThhvgIrBf2yk/IefNPfAo4UnQK45Zel3Ixl2mAJ4AZH4SLh/q9qFgrqnorX/jjA7xRHudcaxVnGZv4gGsPpa4aAGLapME9jry49IsXQog+0dq+Lvam7kIzUjQ12FmqWTmFFFoeggkDVKRf17/N4RjTVCMESijI9nEEP0SqelynujnCc+v38FPPAcwZ785sh1NOw9qzHOOCb1J4MGHX2AHoy40iyxnBqkuNpDf31vG57CC4StMf5bmfjGTWdaI9OGTFMi1IbXcrMxINvS6rElESKo2v4cmbdhnetE8WpHZlpQ4O5fs9vGFN4Lj6VYSjcXyeDEICiSgxXLjT/Js1Tryh12Um5Ge1917JsLRJOJbAQ6xT5nyOz0Wr9g7O9d0xTmoODYEJeT6qXWVktR5Ma/n/ri8nVwUpKRnHcV96CutzW+Hjr/HYgl+wMVRsL9SlD+X4yD77QfHsfrX1tkuXAPDatvTamomH1h1iplGBNj0YBXb0v8DvoSluoNBgxQd8n0Ic697cU8c5xkb7yYzzelzW6zYJKe9RwWWrbUSODIayd2oO9emCcLA1lVNnFHGncTVF1/25x4tuty8btzXwr6F651ttj8+tf4DnPP/DD91/48L8cgrmnUXi4h/CTc9yVc7drMy+YEhGiBRCiGPStsfRP5sNoYbhbkmPWprqAMjJK6Aw4CGq3c71b6KXNbvXHI5TZjais8dR4HfTrP2Y0Z7r6O080swidtm1bCb3fFPpKMtuxPj8NggUU+D3dAgO9SVzyLnu7zC6WkskzubDjUz1tqA7dCkbbIbbCSx0uOEVCmU4lL0z6rORRkDCsGJYqvdxwpQ79UAivUkOZW94UweHZhQHyJ+6iIDVzA2/fYIDtelvX8cjxDIe46xnZXk+gn0cFCkUTeAh3ik45HWZRA0f7j6M9DbWDVhwSCk1WSn1klJqq1Jqi1LqNmd6oVLqOaXUTud32j2rjhVKKXTBdHISDRDpvfBpczhGiSvExPHjKc3xYeRNgPGLmFiQRV08OdR853+c/Hg1TWZB+5COfTRrgh182nbwCE3hge3X2xCMMdd1xB4e0ynAVhBw0xRz/gylKLUQGXt1VzUXeDaTKF0EOT1fSPlcJiF8RwUiEsngUAaZQz63QUS7USPw/zbUWMXOeAn1Z3wTV9G0Hpf1BXLsOgMDmAEVjVu8+PKLxDGIFC3gquhT+M0EfOxF3J/fjPt9/8Q8/VMw5RRyc3JpjJkonXnBSSGEEEDlJrt7cHBk1xcJNtmZQ4GcAgr8HmLJDhz9KErdEo5TqhpROePI93toxo8r1nMR3kP1IU5QO+0nk5ZlvlMnm6cw4AEUCcPTtxtFiQ7dyhxr9tdjaSihHjWkwSGnK5lzfRSOJTrUHEp/KPtm7cfdy/sPdnAoYaQRHPI63+syvIHUEo7ZdYG6+V6olOLK8+xR37Kb93D1719lzf66tLatElHiaQS2MpHjc0OyeHaGRaRDTuZQW4DPkXAF7BHoEpJ8kImBzByKA1/QWs8HTgU+pZRaAHwFeEFrPRt4wXk+5uSU2f0s6w/33rezORzHb7WAL7/T9EkFWQS7KdZlWhHiZvpf7LplGCRMH14dZsWOmv5vr4P6YJRplKM6ZDfl+z00Rp0/QxnOXoiMxBMWq3ceYonejjHrgl6X97oNQtpzVH9uHetb5lAIL+YI7A7VVHeEBnJ5/8m91yfICti126JHtmE99+0BuYi4c+V+ilp2EMydifeEDwCgrvo1TDrxqCymkmwv9VGndKhkDwkhREa++tAmdu1yrq37UMh2KIVbGwAws/LszKG24FDfb7I0heMUO4GU/Cw3TdqPywr3eLPhUH2QZcYOEsVzIavv9+zt4BDEjTRH6OoqRebQqr21uAxFIFaL6uWG10AyPXZgIRy2z8M1LRG8xJIz09qGx2XQhB9PvKXHoee11pg6hmX0vl3T07fMoWi41a5F21NXy5K5APzkHC+lPosP/fVNXt+dxnc/K0bCGPjKNDm5Ti3dDLuVhSJRXMrC7BIcstqyrkb258JIM2DBIa11hdZ6rfO4GdgKTASuAZJjr98BvGOg9jmalE1fAMCBXVt6XM6yNC3RGFmJZvDldZo3MT+rvVhXl6iqKxEhYQxAcAgwPAHyXXHWrl8zoNHWptYwZVZlp+BQgd9NWDsfMCMwA0GIkezAU7/gG4k/4CKOmnV+r8v7XKadtts1CJG8O5ZB5pDbNKimgEC0OpMmD7pgNI4ZriO7YBwlOb0XkczOsT9nQ6v+hfHaL6F8Xb/2H41b/GXFHo53HyR36lI45Vb42ItwXOq6DsXZHmqTAfKR2EVPCCFGqNqWCPe8dYBgjVN3c4QXn405wSG8ORQG3B0yh/qeNdoSCpOnmyB7PC7TIOZ2ggHhpm7XOVTXyonmLsxe6hT2Jtvrwm0qYqqPmUMdg0P1+2l66Vcc2L6BxROyUcGaTiOVDTbTGc01HLb/hmpbonhw2tfDKLAdeUw7c8gg0WOgMuoUUNZpZA6Zvr5lDiVCTk+VboayByB3ItoToGDz33k69EFeMT/Jzge/2+u2jUSUhEp/5LR05eXm2w8y7VYWtv/2umYO4XbeuwyDTWPdoNQcUkpNA5YCbwLjtNYVYAeQgNJu1rlFKbVaKbW6unpkfdkYCLPmHgdAw4HNPS7XEo3j1VFMHT+qKv2kgiyCJDOH2v/QE5bGpaNYaVbT75Uni4XZzXx5zw1Yb/219+XDjRDpPQUwq/UgLuJQ1DE4NDB3ToQYc2Jhpq/+PleZK4n7S2Hyqb2u4nMbBLUH3eWiRcUzzxwCqDGL8ccbR9SJ95G1h8nXzcyYOjmt5fPy8gGwqrbaEw6v7n7hdXdh3X1d24V8PGHRHI5R1Rxmf20r2yub+cdrewk1VlNs1cD4RfZF5aQTu91kcbaXxpiTOSTBISGESNuru2rQGnKiTgHmEZ45lEgGbLy5na9/+3Fz1BWutTNEnCwby+NkX4Qbul0nVrObXFpg0kl93i/YXZPs19HPzKFIExsf/RW5L3+L39bdwieznkNpa0iDQ27n5lg01DFzyOnRkGZwyGUatConWyXSfXAuEneCQ2bvwSG3060sEcnsbzsRTiM4pBS6aA5G7U5iE5ZRnz2TG4J3YK38U4/bNqxoWl3iMlVY4GSxZfh/HHWyvVxdgkNtXfJG+OfCSDPgOWFKqWzgQeB2rXWTSrOSudb6z8CfAZYtW9Z9Lt4o5csp4IA5lZwjb/W4XHM4Th7OH3GXzKG8LHd739EOf+jBaBwfUXSaH169cvmZHd6Ohzi1m5+j6NSP97i4dc8HwV+M8d5/9rhcYfiA/aCofSjDAr9dkA8YmaMeCTFS1e9DoflN7hf57G1fBbP3j3Of26RVe9HRIB0/mVU888whgFqzBBJAcwUUzcxo3cGgtebB17dwnbIYP35i7yvQfjHiqbfrL+jDa+jurHX49buZWL2Cv3zvZsxEhLPUBiwUFgqc36ejuNSfAAsYf1yv+y/O8bJTJ2vJSXBICCHS9fL2akBTYtWAYsRnDunkF3ZvDvmmp72obz/KKnjDTjegZCDFmwNRegxOuBr32Q/6McJxUmHAQ6S1j4NTOMGheGsD+/YfYJLKB28O59Xebc8fyuCQ177+iUTag0Me5QSvMrj5Hjac72nhJsidkHqZWMLJHOo9+8bw5wMQba4lk9t3OtnDpJdatGrBNUT84/C+7x+sWl3Bvqdu5qJnvgqzL+r2us6woljugc8cKs7LJaEVhFswM1gvErH/9lyeztewRlu9JgkOZWJAM4eUUm7swNBdWuuHnMlHlFJlzvwyoOfxFY9hNcUnMTe6hZZg96mBTaEYuco5uXWpOaSUIj8vGVVtz9QJRhN4VQydZsG0Xrmz8Ebson6+ytU99psFUPV74cDrPS6TsDTjYs4IaB27lQXcRCRzSBwjEo98Cl756ZDsq6l8OwDjpy9KKzAEdrHEEB50l0wflfzfyzBzqNHlJII2Hc5ovcHSFI5TXV0JgAoUp7VOvpM5FAgfAUAfSp05pLXGqNmOheJmHuYm80nMwimYpXPIGjeb7PGzyC+bQXHZVIomzSax8F1pZXMVZ3uJ4FxkxTNLGxdCiLHKsjRbduxgnCdKtnICEyMoi7UrrTVGtMku5Ov2YRoKM/kFux/BIX80GRwaD4CR7HXQTbeyaNzCHyy3n+T3XpevNwV+D2Ht7lvmkJOFe7Cikpx4HZ6CSRSc+C7MoNODJGd8v9uXLp03CQB1eA0ANS1RPMmaQxl8vwqZTqZOT5lDMcsOPKUxCpqZU0pUm8TrMxxFOtmjo6eaQ4A663N4r78XPH5mlObxp/hVdtZW/d7u22TFsAYjcyjbQxAfkVBmBakjycyhLsEhM/naJXMoIwOWOaTsFKG/AVu11r/oMOu/wA3A/zq/Hx2ofY42vjnnEjjyAOvWvcLSMy5JuYydOeT8U3TJHAIoLcgl0WRgdsocSuAlhhqw4JC/7WEg3gC1uzoFdI4SrMeItUJzZbcf5M3hGBOoJWoG8PgL26bn+z1EkcwhMbrtqmrhy3e/zgON98CMc4dknwd2bmIRsPC4pWmv43ObhLT3qLurZiKMVqrTMKDpaHKXQgRoKs9ovcHSGolTiHNn1l+U1jpmhwsnS5kY9XuhtRYCndffeaiKObqKt6dez1x/E+bi9zJj/pX9bnNxtocwkjkkhBDp+s+bBwi9+U+eiv+Ce2d8D/Y5M0Zw5lBLJE6WFSTmDbR9+dKm186+7WNwSGtNVrTO/jbnnLNcfue7QzfBiYrGEJNUNQnlwszuf/ClMOAhZLn62K0sAcCR6iNM8QYJFE5Dzb0cXvuVPX8IM4fGzVjMOmsWkzbfBVd8iermCLkuu33pDmUPEDFz7CGaeqj5FI7ZQ6+nU+ja7/VQqQspaMwsOKSS3xN76lbWxczSbBpxsm1CDSmXSRbT1mkW6c5EbpabEF684d5H9u4oFk2dOeTOyrEfjOCg8Ug0kJlDZwDXA+crpdY7P5djB4UuUkrtBC5yno9J0068GICmbS91u0xzuEPmUJeaQwCTCv12UeoOJ8DWiN2tLNMuId1yKuMH3faJpm7rK90vG4+gkul6FRu6Xaw+GCNPtRDzdA54Sc0hcSy4Z9UBco6sQlnx9pG/BlnT4e00kM38GVPTXsfnNgh1+fzQWmMmwvZoI2l2A05q8ZUkG5PReoOlNRKnQCWDQ4U9L5zUIeX61bg9cADla49abNXqlQBMXHwu5vv+BQMQGAI7cyic7FYmNYeEEKJHrZE4//v4Bq6ouwNDaa7m5faZIzg4VNMSJVuFSLhz2qapZM2ZPhakjsQtAjpZiiIfAE/A/t1dcOJgnR0cimZPbBuSvj8KAm6Clgvdp25l9uv2xFsoczWjskth0jIsv5P5O4TBoalFAdaXvoOS8D7Ce16ntjVKvsfpOZFBt7JosiB4pLHbZcIxu+aQSiPAEvCalFOc0XVWPGGhk5lDGQSHSnO8xN1OzapQfcplYgmNm5gd2Bxg+X4PQe0lHs4s0ycWta+7PV2CQ54s+7VHQ90H6sTRBnK0sle11kprvVhrfbzz86TWulZrfYHWerbzu26g9jna+PPHsc+cRl7lym6X6VxzKP+o+WV5WbRqH7FQe1Q1FLMzh4wMu4R0R7nt7cRnX0K9zqamp+BQxw+PHoJDDcEoebSS8OZ3mp6X5W7vcy2jlYlRyLI0T2yq4AzDGYlwCIJDlqUxG/bS4JuEYaQf0PG5TYJ4UR0uoMMxCy/RPo12aLj9NKscaBwhwaFoIuPMoWQwHOBN3xkkMLD2OF829q6AoH3KOrTdHsUsb0rvdYQyUZLjJdL2GSjBISGE6MkzWyp5h/Uc46lBmx78B5a3zxzBGQLVzRFyCKK9HYJDyWzdPl7/Nofj5OK8Zq/9pd6bbd8YSYRSBycO1QeZpGpQA9ClDKDQ76HVcqH7UZA6XwXJitVBoBgME+ZdiZU9fuBueqfp+Etvollnsf/Z31PTHCHPY6FRkEbh6KSYKzlaXA/BobhdcyidjKSAx0W5LsLVnH6GdnlDGB/OtWgvNYc6UkpRVOIE5LopaB7KIOspU/lZboL4sMKZdSuLRuy/PY+v89+Lz2//r4WDmWUijXWDMlqZ6F5NySnMi26mqSl1RLZT5lCK4FBuloug9rZXocfJHFJRlGdgu5XlTlnCVtf8o4toH14DlmU/DrbH+nT5+m432RCMkadaj8qGMg3VHuntR59rIYbLuoP1VDSGOdNwRiIcgi/4b1c0MVFXYHQo7p4Or8sgpL0YiUjb/7Bd0D5Gog93gQJeF0cowhohwaFgx8yhrHQzh9rvqp1yyhk8nViG9cYfeeuPt8AdV2I9dAtv7K4lt2U3lnJB4YwBbbPPbWI4Q+gORWBRCCFGs4fWHuYmzwskJp4M865EWTEsFAmMEV14tqYlQo4KYfhy26YpV/9qDjWHY+SoIDHT31Z7MOAMBx5uSf0941C9nTnkKZ7ep312VRDwENFurGjm5y8rbmcOTTTqUIkoBOw6hsYlP8D42HMD0r5MLJ01kVeyLmD6kWeIN1WS607YI5VlkFUdS2YO9dqtLIaRRlf+gNcODnlDlW3d8Hqzv66VAM61aIdgZDqmlhbYXd276VYWig5icMjvJoj3qBF1exN3upW5PZ2TJHzZ9v9aRIJDGZHg0BDLXvIOfCrG7tceSTm/qVPmUO5R87O9LoL4SHSIqoacmkOmZ2Ayh3AyhyidR3jymZQlDnN4jzPM875X4S/nw54XAWhttOuLV+s8wgfXdbvJhlCUfFox/QVHzfMlI72SOSRGocc2VDDe1cx8wxmNbwjS2lftKGcCtRRNmZfRel63Saitvo3dzmA0gU9FsczMg8tXL5nA/ngBDUf2Z7zuYGiJxClUzXahxHQviDrUWDvzxON5Ze7XqSGfk47cyxGKMHY9xwtP3M1CdwW6aGZGdxDTleV37uxJ5pAQQnSrsjHM9t27maYPYS64EjX1dACazEKC+EZ05tDh+hDZhPD428srtGUO9Tk4ZGcOJTzt3xfysv006SxiTUdSrrO7vIYS1YhRMECZQwEPEdxYfaiZV99iB5S82lk34HRV92YPSLHsvqhZcAMe4pzT9Bg5LivtYeyTtCtgByp7KEgdjlm4VaI9ONgDOzhUjKET0FyJ1ppP37WGD/x5JY1Bpzui1lCxEXa/CME69tcG24NDGWQOAcwsCVCvs4m1pg4uhpzAVqY1KtORn2V3K8s0OJRwgkNGl/czK2D/X8QkOJQRCQ4NsVnLLqJW56K2/Tfl/OZwnAIjiPZkp/wSkuNz0YoPq8M/Tms0gY8orgELDjlflkrms+S89wCw5sX77GnbnrR/19tfBg8esjMGXrcWkRUsR7dUp9xkfaudOeQKpAgOZTn7k8whMcokLM2Tmyr4RJk9DPpu16whyf6oOrgdQ2kCZXMzWs/nMu0LaGhrZyhmf370ZbTDq5dMIBYYD02HCUbjGa8/0ILRBAU0Y/kK07/T5/KilYFWJkbuBH78oXMYf+tDVCz6ODf6f8MBXcIHan7HMs8+zNLMgnHpCgScO42SOSSEEN16enMFJyvnZuW0M2GKPSJk0DeeVu3tdG080hysD5JnhHB3CA4Z/cwcaonEyVFBrA7BoQK/m316PNTuOWr5UDTBvuTN3vz06xX2pMDvIYIH3YfgUGuoyzrZJQPSpv6Yt+hEXkos4X3qOfKMcEb1hsC+CRdUgbQKUncNZqQytdCPr8gOlFUf3s3Tmys5b9s3+cqhT/DpPzzEVx/axHN//Dz831nw73fCs1/nQF2QXDOCNtwZB7dmlGTTqAMEm2pTzg9F7S5x6QS2MpXjcxHCi5HhyK3xWHLE3c6vNTuQg6UVsQy7qY11EhwaYi63m7dzz2J24+spC9c2hWMUuUIps4YAsr1uO6oa6TBaWSSGT8VweQcoODTlFBIzL4LsUoqmLKDGPZGcAy9xx+v7CL3tBIea7eGiKysrADAWXAXAkXVPptxksuaQO/voOiABvxMckswhMcq8ta+OquYIlyeWc8QzmdXW3CH5gh+u3GE/KJyZ0Xo+t9FhZCz7MyQY7XtwyDAUC+fNp5Amnl3+ComGQxlvYyAlM4d0ul3KwA4iebIhp6wtLZ+yJZS9+8fcd9ulPDPj/1FithCIVENxZsG4dOVkO1lO8hkohBDden5rFRcHdto3UMcvgdIFaG8u8ZwJBLV3RHcfOVgXJEd1vr43+505FCOXINrXMTjkYY8uw9Ow+6jlV+yspjRhZ/wPVGZOYcBDVPdttDLdtRB3YPiDQ8dPyed+LqRENTKleX1GI5UBeFwGrcrf81D2cbsgtZlGTSXDUHzsyrMB+PVDL/Hzh17hHebrLDH28LuWz3P8ph9wQdU/eDxxKvUFi9FV29hf28o4byzjrCGwi1I3EkC3pi4RHIol8Kh4Wl3iMmUYipiZhRnPLAMwkQwOdenqluv3UEcONFcMVBPHBAkODYPEvKsIEKZ8zRNHzUtmDqWqNwTJbmXe9hHCgHDEGcJvoIJDC9+J8aH77S9NSuGedzGnqi3857GnyGra6zTU/kerr7WDRLNOv4ZKXYD1duqMqNbWZrwqhpFiBDavz2m3jFYmRpnHN5Yzy11LSd1qdo6/kpqoOejBoXAsgavJ6cJWMC2jdb0uk6B2TuhO+n3QqVnW1p00Q5Om2gGqq15/F9z/kT5tY6AEo3bNIRVIsxh1ktuPzp981ORsr4ubb7iR3C9txLrgO7DsxgFqaWeBbCdzKMO7ZUIIMVY0hmKs3FPL6eZW9JRT7WC+YcJ7/8XeRbcRwksiMnIzhw7VBQnoUKcuz4Y7OVJl34JDTWE7c8jIas9Gyve72WNNICtUcVQ3u+fePsJMj5MRMkDBoQKnW5nqyzW81SXj2Kk5NJy8LhNj0gkA5IQOQYY3zrwugxb86G4KOkN7zSHTnV7gacIUu77k4pxmrvWsxMSCD9yLf/rJvE8/hS6cxc99n2FDfArU72F/bZBiT9zunpeh3Cw3TTqA6ma0tbZ6Se6BDw4BJFx+XInMroXaujR2CQ7l+FzssCbhb9g+UM0bEyQ4NAzmnHoFtTqH8Np7j5rXHI6Rr1rBl5diTfsPPah9GB2iqrGQfTIcsG5l2BXrk/IWX0GWivKfgr8AEM8qQTuZQ8GGamLKzbTxpTxrLaPkyApIkdYbbXYi0CmCQ+5kUKuPJ0chMlI9MCeJeMLiqU2VfK5kDRpF3axrCWsPyopBYvC6WO2qaqGYehKGJ/3h2h1tQ9lDWxArGE3gJYrq46ggKs8OqsS0iVG+ptvhT4dCa8QerczMLs5oPZ0/BWP84u4X8BdinHU75E7oXwO74fY62ZN9SMsXQoix4OUd1eRbDZSE92FMO6ttupp5Hqp0HkG8WCM0OKS1pqqhCRfxTsGhtsyRvnYrc2oOmR2urZOZQwrN48tf5d8r93PX67v597MreWXLAS7JO2x3N8oe35+X1CbH5yKCB8PqQ3CoQ+aQRqU/yuggmzdrDvXaCaxkWHi5KNtLneVH9zB8ejhmd81KO8Diy0V7c3nvbMUtuW+SKDsB5l6K+4aH4fbNmB97louXzuSN+jxUqJ7GuioK3dGMhrFPysty00gAVzR1cChZkDqdrKe+0C4/HivT4FDqbmW5Pjfb9BTymne3D6QkeiXBoWEwoSiX5a4zmFy9vL1PamsttFQ5Q9m3oLrpFpHttWsOdUy5i0bsfyKjj3f+ezX9HGKLP0h+pJwN1gwqs+dDcyXVzRHMSANRdz5ZXhers87EbUVg1wtHbSKeTE/M6qEgtWQOicG2Zzn8/mSo3NzvTa3cU0dta4Rzwi9gTTubgrLp7YGXQcwAebuiiXGqnoS/NKMRNMAeGas9OOR0K4sl8BHr++fH1DPYcspPuTX2eZS27KL1PbESPfbF749Wp1uZyvAC0/jwo3Dx9welTenI8riJaFfKrsZCCCHg2S2VXJu11n4y49xO87J9LkLaix6hBalrWqK4Y07dE2+HbmX9HK23ORwnV7Xi6lDHyO8xqXDbN22eWr6C1//7N854+jKuf/0S3uRDnNL4FHrC8WAMzFfAgMdFBDcuK2oXRs6ETrR3dc8qbO/aPcyuWTqJqiyn236GmUNLJuXRkPARDTZ0u0wklsCjErjSzBwC0HmTSGx+CFf1Fsyl17XPyJ8M/kLesXQieyx7GPqSWDl5ZqTvwSEdwB1LfZ0WjCWDQwNfcwhAe/x4dCSjYI6VTC7oEsjze0x2MgWPFeKn9z7DjiMjt9vpSCLBoWGyf+KVeHQUtj0OgH70k1j330hzOEaBVQ8541KuF/DaxbrcHTOHIs7jPtQMSYvLg/vaP2B8eQ+f9f6AfdFcaKlk/cEGClRLW/ZCy/hTaFI5sOOZozbRll6Zorucx7lr3hb5FWKw7H/D/h1MXWgvE49vLOcsz06ygwcxl17HhPysDvV8Bu9L/taKJsYbjbjyyjJe1+sy2ruVOW1sDEbtgvZefw9r9sB0Me+Sm9nmW0pYZaF3L+95+VV/Rv968aAEiIKRKHmqNfO7jx5/xnUFBlKWxySCh4QEh4QQ4iitkTgvbD3CR7wvkSg9DsqWdJqf6xSyHYrRQvviYH2QbOW0rWNwyN2/mkMt4Sg5hDqVbFBK8Y0b7DqgP1tSwR89v2Z8SRGh879H4pyvwnX3Y3wkdX3QvjANhWUku8dldh2vrBiNyn4/dCCzjN/BNLnQz9zFdrHzTAs6Hz+5gGb8JIKpM28AolH7fcok+0blTcYM1hCa+05Yev1R8+eX5ZI1fjYA09QRAoRRfag55HObNKtsPIlgp8yupHAkjlfFBi1zSHmyMdAZ3WTV8dSZQ0opzjrDrtd0YOtbXPzLV7j9nnVUNkqWdk9GRoh2DCqccwYH9pVQsuYeso6/Dio3obQmFAmRYzVCdurgkMdlEFZZmDpm/9OabhJO5hCD9I+apDx+Tpg1gS3b/ZxpVfPWriNcZLTgy7U/0GeU5rFx3zROr9x8VNRRJbuapOhW5ncyh2LRMIPTg1UIOFQfpHDfKvyQ8oSXiVjVTqo3vcAnClahg37U/KuYgG9IgkNvlzdxk6sRlTs943U7ZQ453T+rmiP4VBRPVuYXEUmmoTh/0URWbpjPWbtfxOxp4dpd9ufB1sdg6Qf7vM9UEqEmuy9+igzFkSzLbRLBjS8iwSEhhOjq2bcrmRffzoTwLrjwl0dlzWZ73QTxdiq5MJIcrAuSjfP53qFbmduTzDbu283RcKgFt0ocVYri+BkTsHInkbX1frThwveRR7q96TwgXD6wgHg4s+8iVoJmI49xiRrIHv56Q52MWwiAyrBb2azSbN4yAhjR7m+AxaOhjLetLvwWLQs/SPaSq7vNGv/aBy+D38JUVUmWDoF3YkZtT4q6c+3jGW6ELkG7iBPYcnkG5zun6XWuRaPB9Atqx1MXpAa4/ILz0W8qfnJ6gk9u/T+a367i2S1T2DzvNsaXloDWTAtt4ZLpbgKTFkFhl2vrWAgMV8oRxI9Vkjk0TE6cVsSL1lJcFash2opqOgwtR/BFauwFugkOgV2sC2j7chdzPmQGLXOog9NmFLE3Ykf5d+zZxXh3EDNgZw7NKs1mqzUZqrfaXUc6MJMfkikyh/w+FxHtJhaRSK4YPJ+6cw2xg2vsJ/3swtj48Bf4G9/m1Man0fOvAU+ALI+JmTyRDWJwaG9NK0W6HtWHegGdu5XZbaxqipClYhj9/Py4ZOF4XokvxKzfAw0Hul8waHcxTay/u1/7S0Uns5G6Ge1xpMrymIS1h0RUgkNCCNHVw+vK+Zj/ZSx3AI57z1Hzc5xuZeYILep/qD5kj1QGnc5PyeCQ1ceam23ZKanOecV2Fok15/LBDQxBe83CTDOHdJxW0w5sqREXHFpk/87w2sg0FFk5hXbmTTddo2LR1N2gem7PQrKPv6bHcgLjiwqIBcq4bGLI3n8fMocA4h7n7ynUcNS8SHIQJM/g3M53Z9ld4axIBsPPJ2/4pno/PQF0/jR8q/+P+Y0vM39cFh8yn+PjOz5G6/Jfc8KKm7l23Y0EHvoQ1p3vOqprpHXH1fDUl/v6ckYlCQ4Nk3llOewxpuKOt8LeVwBQOsHU2B57gR6CQ5Y7GVW1g0O6LTg0+Hk3Z88poRr7rnxj1UEKVavdTxg7OLRDT8JIRKB+H3rdnXBkC6FoAm+y72qKO/rZXhcRXMSjEhwSg+NIU5iaw7vJs5wLqX4OGa5qtnNYl6CzCjBOvrltepbf+d8cxAvUSLgVv9UCOZkHh0xDETOSwSH7DmtVcxgf0X5nHp4+s5jVLnuEj1RdS5Oa6o7Ybdm/AnY9D42H+rXfjnRy6NgOd2ZHgyy3SRgPiRHaJUIIIYZLdXOEt3Ye5kK9Eha+M+Xnu99j3/jIdJSjoXKwLshEnxMQ6NB+j9tDXBvtQ3FnyAong0NHD2JjOMEh8+SP9mnbmWgPDmV2HW9YccKuHDQKNQKGse+kdJ5dJLsPXc4LCosxsQh307Ws7fvOIGSjuEpmMd9VAZHGPtUcArC8+faDFAOMxJwM58HKHHL57Da3tmZQeiCRultZkhq/EBUPEZt9OTmfegnjhv8yNd/FN9x3crZ3B+sWfJlfx6/FqNvNz+58hLr9W6BuD8QjqMNr0FVb+/uyRhUJDg0Tt2mgS+cD8Pg9f2qbfpzhDBXfU5Tf3TlzqK1OhWuQClJ3MD7Px9zZcwAopZ6sRFNbzaFZpdlst+wieKEdL8Cjn4bXfs3bFY3kqRb7Q9Z79N2NgMdFFDcJGalHDJKXtlWx2NjTPqEf3coioRYKokfYXHIF5pf3wKQT2+a5fIObORRLWOTGnXpJfQgOAVhdMg+rmsJ4ifb788PjMpgx73j2U0Zia/f1DFrqq9hqTcZCwZ3vQv96KdaaO/q17yQj6hQbHGXBIZ/bJIwbLZ+BQgjRybNvV3KeWovXCmIsfm/KZZRSxF1ZuKxw5kWR+ykST1BXW4P12Oegfn/KZQ7UtvI+8yW0J9BpCHmf2yCGq8/BIZLBIW+KEY6XfID4KZ+EaWf3bdsZaMs8zvDGm6ETaMND4tKfwAk3DELL+sETQJctgdzMu2aVlthZUDv2l6ecH09mig3CTX1VOANVvhYVbjyqcHvakiVAkvViO4g5gS1jkBISvH77+q21Of3gkErW7DJSV8tRk5ZhuXy4L/uhPWH6WZif2wRf3IXxha0sfe/XyDvrFiwUOTsewvzXlVgP3QrV21E6AS1V/XpNo40Eh4bRtZdcCMCZ1ltt0xYpJzjUQ+aQTqYJRp2Uu+QXiiHoVgZw9RlLAZhtVmJYsbZsoHy/h4bADCytqHr6Zyg01pEtbDrUSB6taG9eytER/F6TKC4JDolB8+K2KpZ0Cg71PXNo7bq1GEozafbRQ5+7fckhyQcnA6Q5HKeUBvtJX4ehTX5OOAGspmYnoDIANcsuPW4Cz8RPQO1b0W3BaW+0nn2eOXwl7yd8NPoF1hoLMR77LPE/nEHiue+gV/+jz0O6tweHRle3Mr9TkFqCQ0II0dnTmyv5QNabWIFxMO3MbpezXH67kO0QFva3LM1N/3yLFb+5EWPN32HLw0ct89zbR8je/wwnxVbDuV/tlEHvcyevf/t2TZJIjoiVInOIiSfguuxHAzYqWU9Mr3NzKdPMIeIo04Xr1Ftg3IJBaFn/GB95HC76bsbrTS6zr8+27UudGW21ZQ4NwkAYhTPsfZx0Myy4uk+bUMm/0RTdymKR7uv7DARfwL5+C7Z0X9C7I601hhUlrjzdd7k77dPw2Q1H1xPKLmn7f/zIJafBpGXcbD5OXqIOytcRPrDaXq5VgkNiiCydPRUrbzL5qpUodmrhomTmUKD7vreG10kTdL6AWskvFINckDpp3swZJDA4K8/5Z3G6lQH89oYzafFPYqqyu46o6u1sOVRHqTuM8qcuEpvtdRHV7r7fORGiB5F4gld31bDM3Mlh7Yxi1ceRQQC2bbbrFs1ZcMJR8zzJQnqD9CW/ORyjVDXYT/qYOeRxu4kqL8RaSViallYnyDwAmYcXzC9ljfcUDB2D3S+mXCZgNeHLK+F/b7uZK99zE7cZX+PrsRvZXRtBvfYr1OO3w87uu6X1xHSyoUZb5pBdc8gtQ9kLIUQHjcEYb+/ez2nWWtSia8HofrgD7R7cmzOp/GfVAfL2PME1yi4P0bpvdaf5a/bX87N7nuLHnn8QL56POuXjneZ7XUafg0PRuEWkxen2M8x19tq6GGV4bWXqBMYIGb4+JW9On7J78vLt70W7DqbOHEq0Db0+CEWOj3s31rlfw7jkh33ehMupJZsqcyjelpAwOJlD/oB9/Rb6/+y9d5gcV5m+fZ9KnScnjWaUsywH2XLONg7YxsawYLIxOewCC7sLuwsfy0bSj13YJedobAzY4IRzzkGWZeUcJufOFc73R1WPNJrU3dMTVfd1+bK66uHu92UAAQAASURBVFSYme7qquc87/Mm82s7b9oSTVrYyhi/S1VHKRv/nllZfQ0KDh1UoDgmr97pVvaITP+Uis7TjS8OTTOizlXKNzpLcIRKvejFNCrHrHEdFIdyD0JT7BxCUVFi9ZwecQWgXFkZwEnNFcQWrAOgi3K3TeWB15gfSI/YqQwgbGhk0ZBFBvL5+IzFM7u7iWQ7WS+2cY99uruwyPda2rTpP+jWHut1y4etD4Qnt6xsIG1RL7ybwSLFoaCueOJQiq5EBkN6v4sSiMu6qrD2zMvokVHij38PbGvI+mSinyBZAmU1KIrgjac0cf/fXcKy13+CDwW/yuvwSmyLtPDqtid0zTLnUC5zSBQ46+rj4+Mzl3lgaxt/q9yMKm3E+uHtu49GTLE4dKA7yf/e9Tz/EfwFqdoTeUCeRnLfC4Pr793cysd++Bd+pP4XMQO0t/58mBgQ1FVMNJwichD3dyeI4f2sIzmHphDNKNI5JG3EXOwC5TXfaWk5jO0ML3N0xuiuNWHKm1Au/IeispJyGFH3uc5JDs8cGhSHJsk5FIm67+VMIj9xKJW1MTBxxhKH8mXdW3AWX0jm+p8CcJqy7ci646i0zBeHphnh2Sh3OI10SPcDoZSN3VVACw0tKxP25Kq4IxKbh2h71f33MS4n4bV//IF5JQDhni3UaCnECJ3KwHMOoR9xQPn4lJAHt7ZztfECCpI/2ue4C4ssK3v5QC9N8hCpYD0Ehgf9BbwuC3Z2cm5O+z3nkCO0IY69QghoKmkRhGyS9n63jT1QssyyG85czNftG4i2PIn1508PyX84eOgQANHKI8JWUFe58ZzFvO+8JexLewKV19GsEKSU6FZOHJpdzqGgLw75+Pj4DGPnc3/hHdoDWKd/eLC1+KgYuTy9yRWHnD1PIJM9fPb3r/DX4reUyz5Cb/wWavMGas3DvLb5FV785tv4ya9+wXeC36ZR6UZ7561Qu2LYvoK6QlbqRXUr291xlDg0zRMiuZL6QkqjpZRo2CjaHBSHaldiKUFOs19iS8vwEnvHzDmHpvC5rQBikRAJGcBMDL8XGyyJm6RnzmiZ+17OpPIUh0wbAwuplECsKpuH8p7baTrxIpxKtwStT3ifLV8c8pky6twvu/2ikRbHLbtSxnEE6Dn7aDaJ40jEYEr75AdS5xCnf5DMCTdgv/EHMP/UoSvXXIdzwpvZ1vxWslJlpdhPOfERO5UBRLzMoWLdHD6zGCuLc+8/lbRj1dFIKXlgaxtvCb1AqnwZr8mF7ooiA6lf2t/LUtGCUjvcNQQQCrviUCZVQAvOAhhIW9SJXqxQbdE5ArmuLphJOgYybqcyKFlZal0sSPyEd/JjeQ3aSz+F/U8PrmttdcWhyprhAvjaxjIsNEy9DJJdBR83YzlESbrB90W2b50uQl7mkJhAFtaMIBM/4mj18fHxmQDJrMUph35Nn1aNfuk/jzteHYxcmMRrULIb8fOr2frbz7N95y7eJu5DnnoTNJ7M+jMvBKDn5g+zvvsubjb+jVPMlxFXfQ2aTx9xd0HNdQ7JIpxDezoTlIkkUtFBn7r7/5EwvMyhXCerfEibDio2yiQ5UKaVQJTUokt4vfosz+7uGLZ68O89Q11TZSGdPiJY8eHikJWdxJI4oCxWAUDl/vswX/rNuONTpo0uLJwSC22K95l9xPJE6XhbSfc/k/HFoemm6TSkamDNO424UQOAGKtTGaB77gQrPUDStI883E2lc+jktxF48/dQT3rL8IfUhhNQ3vwjvvKOc9inNLFK7CdoD4xTVqZPKCR4LpCx7BHtp1OJaTt8+wffYfPv/xNr692Teqyv3ruVf//mt1Ce+t8xW59PhF0dcVLdrazMbMJa9QZsVByUolvZv7Svm6VKC0b9yhHXhwfFocm5OXUDqXtwxgisH48LVtTSY2ok4v1DxaESisvvPnsRX828kYwWw3n2+4PLu9tbAKitbxy2zeqGMhQBcbW8KHEokbGIkcLUIqOHEs5QwrpKRuqo9ux0Dpm2w+9fOID1s+uQv//gdJ/OhJjua7CPj4/LI9s6WM5+zMbT8xL81Vzm32Q6h/Y9gZAOYu8j3DhvLwoOilfuVrZ4AwDnqJsZaDgLa8OHsM/7e8T6d4+6u4CuFB2rsLsjQa2ecUvKpvk7L+A5hzLp/H/3yayFho2qzeDMoQkQWf9X1Io+el57aNg6mctmmqHCWFlQp09GsRPD78WcnMN5klxPRriMlAizauAptDs+OmpzkxzJrIWBWfrfpScOPea4USm+OOQzdVQtRnx2P39z07vYsM5TJ8d58Mu1+cumBugcyBDAc0FMVeZQntTGAtQtO5WzjZ0o6Z7BGtxjURWBJfQJhQTPVmxHctsLB7nivx9lzRfu5f0/e278jSaRXzy+nQ8c/CfWvvJfqLe8a9JawnbGM/zwsT2s7HnYXZAaXtdcCh7c2s7l6nMoOOjrrgdwQ+uKeK9JKdl7YD8xkoiakZ1DkagrDmUnTRxyy8ryCdYbjbedsYA0Qdq7emgfSBPMXT9KGGh/SnMFy5vq+ZO4GLHlDhhoBaC/27XlBstqh20TMlSW1EbpllFkUeKQTZQUpja83G+mEzLcsjJ1lgrkP39qH7/63a1oh5+b1dbruza1cPK//IW+ZHHOQh8fn9LxwKa9LFDaqVo0vDPoSAxGLkxS5tCOtgGeuP+PAKwS+7mp/AVkqAoavPOLVCPLmgCIXfy3aFd9BfWSfxpznwHPOTTuhJWUR0qRPPZ0JpgXyEx7GDVAIFS4OJQybU8cmpnumYmirLicjAiysOVe5DH30pn05Ob2TJTykM5hWY3oPzRs3aDrabIMCarGS9fez8ezf42QDhx8dszhadMmgFV6J9Pa65Fn/TXbqy/FkYJnNm1hX9fx4Yz2xaGZgB6iLKgTqJzvvh5HHAqHwiRlAGugg9b+NAFhuhkkMzDxv3zNJRgygz3/dFh73ajjHMVAOV7EIccB2yRrObzvp8/ynd/dyWWZ+7iy8jDbWvJr3TgZdAxk+MODT6ELm8NaM8IxCw4XzJefPLEH28pyqeKFN06SOPTAlnbeHHwBp2oZwfknENJV7CKFyEO9KcoTe90X1SOLQ2Uhg7TUMTOT5xyqFn2o4+SSjUVNNEAsFmMg3s+O9jhVAdtdUULnkBCC95y1iG/FL0A4ltueHkj3e/bqcPWI261tLKPFjBTnHMpaREUK25hdeUPgdqxJY6A6s885FM9YfPuhndykeU7DWSpw2Y7ka/duYyBj0d7RUnTpqY+Pz8TJWDYHtr2MgkTJs8W5EXKv/WY6v6ySQvn87a9S3fks3bj5oKG9D8DiC4a65xedg1OzEpZdmtc+c63s5TjXG/nnT2F974IhzS52d8ap0dLTHkYNEPScQ9lCxKGMiSokygSCk2c0Rph9DZdxjXyYg7u3DC62HYmZ6043Q3/28pDOQVlDIDFcHHIms9Oax5knrmFH+dnYKLDvqTHHprKO5xwqsVgVrkJc/m98933nE1fL2bF7N5/42g/5l1ufKO1xZiC+ODSTKPNKLcYRh6JBnX2yDrr30NafdstCprKkrBBOeSfin9vR3n8vzDtp1GGOYiCc40Qcevz/4fzv6Xzmlpc5cdf3uT/w9/xt6pv8b+LT3Jb5IJm//GvRZU8T4ZbnD1Btul8E28Uid+EkdN1q70/z8yf38bHFrVQIT0SZBHGoL2Wye98+TrI3IdZeB0JQFTEw0Yv6/b60v5clilsWRc2yEceUhXRSBLAykzNzOZA2KSeJOkp+V77Mr6shKNPc/vJh6kLejFYJnUMAV580j3h4ARtDZyCf+yEym8SOe+LQKC7CtY1ltGTDOCNYmccjkbGIkkLOQnFICIGtBFClPazD20znx4/vIZg4xBWK53qcpaLKnZta2N2ZoI4eFv76fHjw36b7lHx8jlte3NfLfHOv+6JudV7bGEGvrDtR+sy/p3Z1sXX3PlaJ/VRd+FGk4R5LLL1wyDhxzTdR3n9/3pmAAU0hK7Vx8+bkoRcxOl8jc88XAPf+ZiAep5qeaQ+jBgh5nVqzhWQOZdyfWZujziEA5ZJ/xkRF3PPZwWV9KRNDet+TM9U5FNY5KGsxzH5IHzNpPZiXNHnPnYoiuPaMFWxyFpHc+diYY+MZCx0LoU/O+cwrDxGraeSNyxR+E/0GH4p/Z1KOM5PwxaGZhJeMTuWiMYfFghr7ZANa7x5a+9JuWdk0h9GNiaKOO8RRDdS5Jg5tvRP59VXDAlrlwedQenazedPz3Fj2HHbTGciPPMXDa/+NPU4DgSe/BvuenPLT3Xigl1OjvQC8nPFcbCUOl3UcyWd+9wqmY3OT/hfSIsAB0VhUd6oxycQxv3cx39G+joLjikNAZUR3w8+LeIDdeKCXFWoLUg1AefOIY1xxyMCZJHEolUxgCGvCNvKyWBn1nijUECh95hC4dvm3nb6A/+i7DCXZSdtjPyFk9ZPRy0Z1Oa5tLKebWJHOIZuYSM66TmU5BsMUZ1HHsta+NN99ZBdfqH8CieBQ7KRpEbYnipSS7zy8i4AKX9O/i5HpgWTndJ+Wj89xy5O7OlmpHnLDlquW5LVNMOJe+/PtclQI/3f/Fm4MP+6+WHIhcuHZg/8egh4s6Ps518p+vHsS0bsPqYUIvPB9Ut+9lP7vXsFLgQ9RG9+GGOeZYSrIiUNWAeJQKuPee2j63BWHlixZwffFm2nqeAQOuU75nmQWHW8SaKYGUgc1Dkqv/L/3wJB1g/lYk+x6euMp83neWYXR+tKY9xW9ySyGsFAnSRwCIFpH+NAThMweGja8cfKOM0PwxaGZxIIz4YMPQ9NpYw6LBjT2ygaC8f209SWIqiZihuUNFYxqoDqzc8Z5VA6/hBhoge7dg4tsR2J1uq9vrHyVqtQ+1FWvR9SvIbPmr/h3653uwGno+PPqoT7WRboxlRC7LTccvdTOoZ89tZdHt3fwi1XPUr7/fp5f/BH2W5Vk44WLAWPSvZua3lc4TdmOXbMK6k8AoDJskJVaUaUvXYksK/U2nKolowqeZUGNtDRwJsFxBWAnvRmcidrIjTBlapY3rI5xQ+pmnLImqFgw8RM8hnecuYDnWc2h8BqCz32bGtGPMkpJGcCK+hg9MuYGMxcYKpr0AqlFcLaKQ941fBaJQ9+88zkMJ8UlqXt4QJxBuzZv1mXHOY7kxf29bGnp51+WbON8dZO3wp7eE/PxOY55Ymcn60OtyOpleT9AB8OTl/n32cMf55POL7CqVkDjepQzPoRz2vvHncwdj6CukEVHjHXdTPch0r10nfIx7qx6N9taeuju6eZe41Lif/VbuOrrEzqHUhAJu2VlVrYA51Dacw7pM9M9UwoURbB//lXui4PPA9CTyKIL7/tlhjqHogGNFpETh/YPLrdsB2fQOTS55z6vPES8fgOazOIcfGHUcb0pEwMTzZi852ARrUeYXmfAPEtGZzO+ODSTEAIaTxm360A0qLFX1qM4JtnuA5TrTslLQqYaqQbQ5Ox6qBiXXLJ9z17ALXs5+z/uw+7aA8ANzp/d9d4MVENZkCSe8j1J4sJodMUzHO5Ls1hpJxltPuo8SneTtbW1n/+8eyufWLCX03Z+E2vVGwie9zf0ECU7UNpZejvhOpF+MP8/UN53z+BnqjJskJZ5hD+OQCprs1AeRoySNwQQMTTSXpv4ycDOld+NUpaVN3oYzBRfK/stFdkWxJt+MCnXkHnlIa5YO4//Tl5ORfogF6sb0aI1o46viRoktQr3RYHuoXjGzRxSZkA4ZzE4OYF/ij/7xfLMM0/wxW3X8ljwb9Gy/dwRuo6ko80qccjub2PXtlf46ZN7iRgqr8/cyW6ngXikGZzZVd7n4zNXiGcsNh7sYzkHEXX55Q0BhCPutd/KuGVlPYkshzY+SN8tH8Vu21r0+aRNm+Uc5NXaq1A+8oTrmFh2KcrVExdlcoHUY8UqvLrZFay/8KTJP3RdzW9P+inZmx7gun/8FdG1V8wI90k0aJCVKnY2/8mNTNa9D9PnsDgEsHTxMjpkGdmDLwHQk3TFDGBSS7MmghCCfsNrfHKUONSbMo9yPU3+uS8//XIsqdDyzG2jjulJZjGEPenOIQC56NwZkfE12cy8BGOfcYkFNPZJN5dI691DTLNnbuZQnggtgCbngHOodRPyzk8j3nkbMt6GAOh2xaD7XmtDxFsJBk2kUNDTXUgthJh3MgD1ZUFS0vuSnCRxYTQ2HXIdKTXmYcyKpSQ7SytSZS2HT978MqcF9vM33f+GXbsG7Y3fYaUMsE1GUdLbS3KcHHsPHmQpsGzlWsRR+TxVEYO0VIsqK8tkM8xzWlFqRxeHFEVgKgbGZD3g51p6TvTLSQ+DmUTffBvZde8gkLPITwLvOXsR79h0Cn8fKKNW9EO4atSxQgiMshoYwBWHKkYu3xuJZNbtVqaEKiZ+0tOA1GaPc2hfV4K9d/83pwgFI1aDXXEihwZOIJF+claVlYk/fIjlex7ig3IJGxbeSNmB5/mW/XY+zlOzNjvJx2e28+yeLgJOiopsS955QwCxkEFKGljpBMmsxflffYgv21/j9eqz2Jt/zZ/VC3kofDk1epZ6LYERq8FYeQlrmmpY2RBDV0eeLx9IZqgVJnbZApQSCxm6KjDRUEZxzh/qTfGt2+7newacfsop/PuVF1EZmXliSjSokaEw13Quc2iui0OnLq5i8yOLWb//JQw8MWOGl5UBOKFqMqkggb4jZWU9iexRHbIn/+928SmrePjuDZyx7RYw/33EScy+pElIWIjJfA72soCVVVdN3jFmEL5zaBYSDWrscVxFNxLfT0y1QJ3dziGhGejMgZvxA88gDjwD7VuRA15L5569kO5j4zMPsj7WC4BYejEAcv5pgxfYmqhBRuREmakVh1491IfAIZw4iFG7lHROpCqwtGc0vvvILvpa9/JD7WvIUCXaO2+FQJRYUCehlREw++GYVp8TYdc+d6bj1JVDswoqwwZpRztiiy2AstRBNOxRO5XlsJQgYpIe8JVM6crKBBJhpQisuXLiJzYGGxZVsrShkt/ZF7gLxigrA4hUeIH8BTqHEukMEZFBC89O5xCzSBz6yh0vcLV8lMzKawl84jnU99xORcQgaSmzS1SJt9AVaKaBLt594As4isHv7POxheY7h3x8polndndzru51d5q/Pu/tYkGNLspQ4y08ur2DgbTJhYEdHKi7iOcabuBy+Thfj3+Wz/V8gZs6vsw7d/8dF911Ea9+59384jv/AYdfHnG/A3E3w0gNhCf6ow3DbUago4ziHOocyNAk3EYON77+ghkpDAGEdZUMOk4BzqFsNpc5NLd9Cic1VfAai4n07wAzTe+QzKGZ+fcEaK6O0CJqkb37Bpd1J44Wtib/3EOGSveadxFz+ul45rcjjulJZgkIa3LPp2EdMlAGvjjkM1MJ6So9WjWmMKjKHCCsmLO+rExoQfeCU0KBYFrwyn5+fs/j9LW7arvdvYfUA1/hH1s+wZsbWt1xJ78dAGXREceGpipEvEDFqRaHXjnYx4aqDMLOEKpfhqmGSnYeuzri/N+D2/lt2f8QlClXGCqbd2RAsBIVGzL9Ez5WjsMtblexsqq6IcurvEBqq4AbmBw1Gc9aWzO2OGSrQTczZxJQsyV0DgFSKLDo3Ame1dgIIfjkpct5uuJqd0Fk9LIygMoaV/g244WVGqbjrnCmhWanOCRy13BzZotDh3pTVO78AxGRJnbuhweXV4R0BixldrWyT/fznLOCfyj7CpmyRVgnvo0eyrCk4mcO+fhME639aa41XsQJlMGi8/LeLhbU2eY0E+3bwb2b2zgl1E7Y6qH5zDdx5ke+i/6pV+Dtt8D77oe/fhHnrb/BWHIu1+jPcVPnV+H7F0DLxmH7TXjdz/Rg6cUhAEfoqKOI0YmMRZPowNIiMMEupZOJoghMdGQBE28ZTxwyjNld+TAekYBGb/lqtxtp+2v0JE0CMzxzCODiVXXsMavIdOwdXNaTnNqyMoALr3gzu+U80k98GxzHXWhb8OLPwcrSmzQJCHNyf5dLLkT8w74jXcXnOL44NAsRQnD64hr2yQYW0EZIzP5AatWzlRbyxTIjSfUCcGjvNqKWKxQd3PUaO5+/F13YnNt7B1LRYNU1OBf/f3Dqe4dsXlkWw0FMae5IS1+K5/Z2c261OzsmqpdQVuaJD8WKQ927se74WzDT/OddWzhb386C7E648stQv3bIUDXiOUlK1M7+cG8KM96JqQSHiaaVETeQ2jILf5/VZz1rbfXIbexzOJMoDumm14WlROKQ3XDKlNRPX3HCPH72mRuQb7sZzvjQmGPr5rmd8no6WkYekOhEPvHNYQ/vHZ3u7KqYAW19i0HkOk5aMztz6DdP7+Md6v2kq9cOaZ5QETYYsATCsY7cwM1wnHQ/h1M6l513NsYnX8J4w39jqAoWqu8c8vGZJuLJNOc6zyKXXVZQ6Uo0oLFNNlOe3MMjWw7xjvqD7opc2XRZI6y4HJo3QPVSlNWvp/w9v+b2yx7jpuxn3DF9B4ftN5Vwv3eNUHRCP9doOKqBMkqswkDGolm0k401j5tHOt2YwijI+Zr1MoeMOV5WBhBeeCoA9uGN9CazlOmOOzk3SufWmcClq+vdjmVHZQ65+T6m+xyjTI2EUFcW4vnm99Kc2srAE99zF265A+74a9j9ML05wWqy41Wm6OedCRw/P+kc44IVteyy61gkWl3FdCa3ss8D1XuIT6dn9oPRuHgCx1plL7qwsbQwTaKDNdLtUGYMHECWN4NmoJz/t0MdNEB9eZA0wSkThzoGMrz9B89whf0Q78r8xl1YuZjKck8wKLZr2va/oL34I3Y/8CPu39LOZxpeQuoRlLXDW0AaMU8cKlE7+4e2tVNBHBkanm1TETLIouMUIQ7VWYeJq+UwTqaNo4fQndKLnKbtELTdGUwmKoB41wtl6YUT20+BiJVXQnnTmGOaGhqwpWCguw3atwx3E266FXHf52HfE0MWd3d7ZWiztJW9YuTcejPXOZS1HF577n5WK/sJnvWBIQ8rFWGduOl18ZsNodSOg2bGyahRrjmpEaEooCiEAyoWCsy17pk+PrOExv6XKZcDqGvfUNB2hqawWyxAlTbVmYOcrW3BiTZA1ZIxt1vTVM02x8u3G+E+JOU5h4xQpKDzyRepGKM2ZImnLZpFB7Ji4aQcu5RYigFW/tf+XFmZos3c3J1SsWT5GvpkmN5dz9GdyBLVnRntGgJorgqTiTYRtPog4wqkg2VlUxykvf6aj/KovY7AQ/8CvfuR2+92VyQ66E15ZXoz/Pc5m/DFoVnKBStq2SPnsUC0EbATsz6QWvNspYm+LmSJcm6mBU8cOlnZBYC24HRUbFRspNcqXFQuHnXz+rIgKYwpKyv74p82s7DvGf5TfJtYYh/WiqugYgFVFTnnUJEiVcq9wdKf/TYLYrC6+0Hk6jeAMdyWHa5w22WmB0rTzv6Z3d00GEm0yHBxKBJQyVJcRyXDSZFRx785FFoIQ5b+AT+etigTSTcPZaJisFfapSyfeS05F9WV0UuU+t2/g2+fCXseGTrAC3hn292DixxH0tfr3dTP0m5lR5xDM0scylhHHFp/ea2Vq7N3Y2oRWPdXQ8ZVhNySTWBWiEO2F+4+v6GOSODI7G1YVzGlivSdQz4+08K65DOYoriW0XVLTwbgnFgb9T0vwsJzxnXcrKyP0Se8SYURsu7SKVccCk2Sc0gqOqocOVYhnjZpFh0oVYsm5dilxFICKHYK88Vf55VXaZre94Qyc90zpeK0RVVsdJbCwWfpSZpENTkrxIyaBW4gfHzfywD0JrOEFHvKg7SX1cf488LPIR2Ltju+iLPtPgBksouepOmKq7Pg9zlb8MWhWcqyuigHgisJCItA/OCRMNNZima45x/943twfnfTNJ9N8cikKw4tEF4YdfOZ7nIE4sLPASCqxhaHko6BnSldC/nReGJnJw+/spv/Dv0Yu2oZ2ic3or3916CoVFa6te1Osc4hTyRrdg5yS+SrKNkBlJPeOuLQ8io3gLi3q624Yx3D9rYB6vUUYoSuWJGAhklxrexVJ4uj5CHCGmECo8wCToSBtEUZCUy9bOL28kXnY9547xG7/QyiLKjTL8qIZrzP0O6h4pDsccUhZ9vdgzfTh/tSBB3vvTpLy8rUnHA6k1rZ73+G7K0fJJ1w85xue/I1rlafRjnpbRAY+qBUETZmlTj02t5DACxsbBiyPBzQ/MwhH59pJGJ2M6BVg1G4U+fv3/kGpFD5Yt1jqIlWlBWXj7tNyFCZV1ONiT44sXU0mZT73RIMT444ZKtBFOSI9yV2vIOwyKBXL5qUY5cSRzFYld6IfsdHYNMt447POYeOB3GosSLEZuNEquM7kPEOIpozozuV5Wg69UoyUqfz2VsB6E6YxHRnWgwJf3XpWdxsXUj97ttQM+4zhhXvxLQsN89plpskZhIlE4eEED8WQrQLIV49atnJQoinhRAvCyGeF0KcXqrjHe8IIYgsPypIdo6IQ8HOVxEtL0/vyUwA59gbi2b3LS9rV8Oaa5GxRlhw5qjb15cFSGGQ8WaqJous5fCF21/l07H7qMi2ol73f0PyeSoiITJSK/o8Dh0+xEFZQ2tgCTWZg2RPfAcsPn/EsVU1rjg00NNe1LGOxrIddnckqBJxRHh4eGPYUMmiF1wy4jgSzcni5GGlVY0QQTJYVmkfLvvTJmUiiWWUoGxKUdAXjf4+nG7SegUAMlKLs/fxoSu7doOio/TsgY5tAOzpTBDFE1VmaVlZLmxUFtilbVLZeT+xbb/DvuW97Gztwdj/OAYW6olvGja0PKy7ny2YFe3sX97hdmBZ2jS0tDdsqGTlLOu65uMzh9DtJJZWZPizFkBWuQ4NJ1gFa67Na7M188vpITaicyibdu+DgpPkHBrQvdL6/kPD1smEm6WnlTUMWzfTcNQAhtd1WB58Ydzx1qBzaOaLJKUg3uhOxi1NvkxEtae8NKsY1i1t4nF5IpX77gbHoSeZJara0+LS2bCoijPf9a9YaK67N1BGtr/jqO5px8f7aCoopXPop8AVxyz7CvAvUsqTgS94r31KxIeuOptUxMvvmOXikBE4UiajDLTMrNnzPPnDSwcZ6Dmmw9L89UgthFh0DhgRxN++Bie+ZdR91JUFSRHATE2uc+jHT+yhpaOLd3IX9vIrhwlWFWGdNAbZIsShlr4Uew8eJKlXUfWZ51D/fgfG9d8GRR1xfF29e9OT7u8o/Ac5Cikl+7qTZG2HqDMAI2QORQMaWamiFOhsyFgOAfIUhwJhVCEZSJb2Pew6h5JIY/IDpKebgUWX8yPrSloWvRFx+KUjFnXHht597Jt3mfvy2R+A47C3M0FMeGNmqTgkwlVkpIbdP0oQ93TgOQcj+x5g9+1f5jz1VRw9Ak0bhg2tCOmYcvY5h6LlQ68TrjjkB1L7+EwHadMmKNM4xYpDAPVrAJCnvDPvTr5rG8vocqJkRyhvN9Pud8tgLlyJ6Qt4AnXfgWHrrNw9mDE5wlQpEUf9rp1DL4473jQ9AX6Ue8O5Ru2KMxiQIU7IvDwtpVnFENBUtlZdRLnZDodeoDuRJaJNjzgEsHLlavas+TC/si8hFZ6HHe88Shya+WLbbKFk4pCU8lHgWD+mBHIe/3LgcKmO5wPV0QCBJV5ZyCxvZR8IHvOl27Ov5MfY2trPzc/sxbEnp1zg3/+8hZDVT7viZuhIPQzBCrjxTsRF/+gOGqccqDJskMbAmcTcpcO9Kb75wA7+v8ZnMcx+1PM/PWxMRcggSRAzXbhI9f/dvplyOUBTYxOGriHG+ZnrK6IMyBDmwAQCqfc9iXnP59nRNgBIAmYfjFBWFjY0sugoTmEPrynTJiBMZB62VS3gWuG//8f72Lx7+ExgsQykTcpEAkJzXxw68S3/zHdD7+cXLc0Ix4SDz7kr+g8hHJPv7m3gqdjlKM//EOtnbyCx/2WqVS+rZ5aKQ0FDo11W4vTNJHEojow2EJ9/DicevoXLgpvdDI8RbmpnU1lZX9Kktd1zKh5ThhgxNLKO4otDPj7TQH/aJCwySL348Gel8WSkUFA35B9RsLKhjB4ZJd033MFs5e6D9MlpZT8Q8FxBI3RKs3IRAyPkNc40airca2l3zWkoHVvGneQdzByaBSJJKVi/uJZnnFWcrWwmNE3um6JYeRVZqZLZ9Acvc2h6yspyRC77Z75o3UgfZchk16BbzS8rKx2TnTn0SeCrQogDwNeAz402UAjxQa/07PmOjok5CI4nlAVnuP+Y5c6hptqKoQu8XJG8sS2yf/g4suWVYat2tA3w4e/dw7P/exPX37Ue5V+r4P4vFn2uI9EVzxBPDBAQJnXLvVn1SB0IgWg6dUShYiSiAZWkDEyac8rpb+WLv3kERdpcn7kde+G5blvXY6gI66SkgZ0u3Dm08WAv84zkYND0eOiqQr+IISfSrWzrnRjPfIuDB/YSI4WQ9mCZztEYmoItdJQCy8pSpk0AM6+ZiWWN7s/9qV3vI/jTS/jAN3/PS888BF4AbrF0J7KUkUQdp1vaXCCoq3z4gqX88vA8t93rvicBSLXtdP8fXcDbOt7Njyo+gWjZyIe3vIfPKL9CqsasmGEdiZCu0kYlzgxzDkkjwot1b6ZBdFFnHkZZdvGIQyvDsyeQelvbABGZK0McKg6FDJWsFL445OMzGfS34Dzy1RHDlwH6UyYR0kXlDQ1y+odwPvQ4jJHveCy10QA9RFHSPcPW2bnJuknqCpwKNeAgoHe4c8jJePdgkyRMlZLqeYvYRyM3q9e492Ctm8Ycb1s559DczxwCWD2vjOfFOpYorVRmDoM2O8ShU1Ys4CW5nNTOx+lOZAkr09sZbF55kKqIQbsdRU11u53KYPaIbbOAyRaHPgJ8SkrZDHwK+NFoA6WU35dSnialPK22Nr+HSh8GA49nu2Kqe5lDL+Am4w92JMqXzu0YG3+Bdd+/DC5KZCz+864tfOtbX+E/W97PO7QH+L19HqlgHbS9VqpTB2Bb6wAVeF/iDSe6/4/WFbyfsKGRIoCwJkccavvhW/h0y6f57oY29EQL6lkfHXFcRdggRaAoB1N/yiJq948ozoxGSitDSfcWfKxBvAc5++ALrCr3vihGKCsDQDVQC3UOZS1XHMrDoReJus4Vp3wB8/V+vtd9E6fcfR3tXzmV1154tKDjHs3eriRlIkkwlv/vdTbzjjMWUF1dw2tiOfbT30Fu+TMvb3wJgPdfewlfftOJfKXzLC4y/4evy3dwR9V74W03Tzyse5oIGQrtsgIRb53uUxlEZuOgR/j6vqW0Cy8XY8lFI46NBXW3wxAU1M54Okib9pEyxOBw51DG8cvKfHwmA/nkt1Ae+jfo3j3i+r6URZg0SmACIr8RRm1YW9AmlRGdHhlDG0EccrLe/dgkiUOaHqCDSmTf/hGOnXMOTUAsmyKU132J357yc3590O2GyjilZdZx1K0MvInQulMBqOzfMmvEjPULKtkklxHteY10OkVwmsUhIQQnzC/nQCaElunBEL44VGomWxx6D/B779+3An4gdampW4Nz7qdh5VXTfSYTw3Nk/MU8GUuPFu4c6twOgL77fmT7Vu58pYUrv34/C5/8HN/Uvkmwbhm973mYz1ofZCDYCCUWX7a0DlAhvC/x2pVIoSJi9QXvJxLQSGGgWqUvKzMti4r+raxUDnLOa1/Eic6D5SN38qgI6aQIIAsUh0zbwTIzBJzk6OLMSNsZFVRnD5LZ+Sg4TkHHBAadCrHOjayr8soGRxGnpBZAxS7oOKmsQwATkY9Db9G5pE96D9r77kG58c/0r7uJB5d9FtuxWX7HdfTc+jeQGcj72Dn2diYoE0mU46CsDFz30L9dt44Ppz5Mu9qA+O07KN96MyYaJ6xaw1s3LOD2j5/DikUL+L/sVbSd/DeIZZdM92kXTUjXaJOVaInSdO0rCdkEPZbOxsNxdq/+GNaiC6F25YhDVUWg694khV3aQGrr/n/FefT/lWx/WcsZNcA8ZKhkHN855JMnVgYyk9tAYq7w97e+TPyl29wXowTv96dMwiKNEpxaB2hl2KCHGIbZN+zeQJqT6xwK6iqt1CB7hjuHxKBraeY7h9AMXn/aCg7aFaQCNchDY4dSH2/OIYCapevJSA0hnVkjZgR1lYHak9GkyWqxD0PYiGk2JKybX8aeZJCA2UcQT2ScJU6s2cBki0OHgQu8f18M7Jjk4x1/KArKpV+AmmXTfSYTo3oZVu1aHlU20KY24owyqzQSyazF3m0vA2CKAA/84B/4h18/zrfsf+Xt2kOYZ3+K0Ifup3zBOgDSUkea6ZKe/rbWfhaEvH1GapDLLnGzOQokbKikZQDFLu35ATz38kuEyGArOiLdhzj1PaCO/KVc5olDmIWJQwNpi3I8kSzPUjqAeGwpC+RhAr+8BvY8XNAxATr73JvzBaktrCizxjy+yH0hF1D6ksscEvlke5U3EXzjN9HKGzCa11Pxpv/Hxe/8HJmbHuK39oVUbP45PPXtvI+d41Bnr/slGDw+xCGAc5fXsP6kU7is75/oCCxkjbOdTLRpMMByVUMZP3zPabzyxcu56dz8SwhmIiFDpV1WopoDM+Zh08nE2dYjWdUQ47Q3fQrtxtvHdGYZuey4UpaV9begPvnf8MpvSrbLrO0QE0kkYlgZYiSgkrH9zCGfPHngS8ifXTPdZzHjOdCdZPuLjxDLeM7I0cShtEmEDHpoarPjgrpKXClDwYFM35B1Ilfmr02WOKRw0KkZMZBa5O7BZoFzCGBVQ4yApnIguALZ5javdu79Z+SD/zZs7PEoDl26bgE7FfdeRcwScQhg3przADhZ2eVm/EzzuZ/QWE6nE0Mgma95kQ1+IHXJKGUr+98ATwErhRAHhRDvAz4AfF0IsRH4D+CDpTqezxwjWov2sSdZvmY9r6aqcLrydw59+6FdvPzSMxyUNfzMvJhLzYd5MfIJTnS2YF/3ffTLvgiqhqYqVIZ1klIHq4Tii5QMHHyN1RVHHCvKO26FMz9S8K50VSGrBNAmQRza9NKzAMjL/gOr6QzEae8ddayqCEwliFJg9lF/yqRCeK6YAsrKXjvxs9yQ/Wf3RaLwVt6Hu90vh5PV3ZyZ60w9inNJ5GYXCnA3JLMWAbIoEwh+X7RgIXc0/R37xXycEbKxxsJxJF3dXhZbsKLoc5iN/PNVaxB6kA/334iDINIwXAiPBjRUZXaWk+UI6SptssJ9EZ8Z7qH+vh66TZ0vvmEtmjr+7UIw4H0+SlhW5jz/E4RjIbr3uN3qSkDWcoiRwjFiw8SusKFh+q3sffJEdm6Hfr/XynjcsfEwr1efObIg0TniuP5kmrCYenEIwAx49yzH5B8KK40pDFAmZz49oKnsd6oR/YeGuZYGIwYmybVUajRVYdW8MvZYNYic2LXlT7DzgWFjreMskBrgxKYK1m7wSrNnkTh09ikn0iorOVnZ6YpD0+wcOntpDWndnShdEsiJQ7Pn9znTKWW3srdJKedJKXUpZZOU8kdSysellKdKKU+SUp4hpRzbY+hz3PPRi5ay265F9O7DObwR+sbv9tQZz7BSbSXWtIY3ffanJF7/f1C9BOfNP0Y9+a1DxlZHAySc0opD9nM/5Tu9H+Y8xQvfK0AUGQlLDaE76VEDG4shnrFIHHAFCe3kG9De/xeINYy5ja2GUO3CnEP9aZPKXPZSAc6heRVhdjueqpMt3DUhvQe5qEywMLnZXTjK32FQ4Cng4S9t2hhYqBPsCviWDc28ajWSPvxqQdu1DaQJWN7v5ThyDgHUxgL801WreUVZxe6zv4I492+n+5QmhVwgNQADMyN3yE7HCYRjnLmkOq/xek4cKpVzyMpiP/djpBpwu9b1Ds/kKIas5RATnjh0DGFDxUJFTlJXS5+5hUx0zvgA9pnAnzYe5vX6izzjrHIXjOIcSsbdyaVAeOrFISfo3bMcJQ5JKVHsFJYyeU1fKiMGh2SNe407ZmJAsTyH4yxqOrO2sYxXE2WIzAAkuxH9ByE5VAy0bAfH9tyZx5FzCID5bu7QbBIzFlSH2amv5BSxE02a0y7olYd1LjzZzaht1jynn19WVjImu6zMx6cgVjWUEZu3HFVaKN8/H3nXZ8bdJp7OsohDlDetpTIaJHL6OzE++jjq2uuGja2OGMQtrWTiUEtnF5n7/x2AE/q9sOEJikO2GnKtzSW84XxoazuL5QHS4XnDAlhHw9FCBTuY+lMWlYPOofzFocaKEEm8mYhcAGMBCNsc7JRkv/Yn7/ijiEO5LxArf+dQrluZakxs9u716xrYKZsJDewrqCPdwJM/5gb1QffFcSYOAbx1wwJe/PzrWHbZB2FR4eWas4GQodAmc+LQ9Hcs64pn0O0kNVX5CUMASu4BpkSZQ5uefQA91cHdoau9k9pVkv1mbIcYSWRg+ANoxNBcccgvK/PJA5Ho9F1m47C9bYDO1oM0yRa2lZ9DFn1UcSiddO8ftODUi0ODE1pHnVsiaxOUWexJFGcuXlXHQemFOB9VWmbZDoaTxlRCs6rRwpp5ZezKer/LA88iHGuYGyuRsdHwBHivTPy4oXG9+/9Z5piyG09jkdKGkWybESVcl562BoBm3ROHZsA5zRV8cchnxnHKOZfTL8NuoF2nG1Mln/8J7H18xPF6opUQGahZPu6+a2IB+m0NSpA5JKXk7h9+kXC2gwEZIpjtdltpTzA4UObsw0WIJKPxwJY2VquHMOatyX8jI4whCxSH0iYVonDn0PyKEEm8m69ifm7HZL/STGbpFWjxFvehb5Q8Ja2I0Nx0Oosu7AmLQ2FDozO8FIGEjm15b9e48Vt8SLvTfXEcikPgdsOayzSUh+gS3mdmBjiHHtzSRpgMTfU1eW9z5LNVmoflV19zXYC/7jvBXdC1syT7Nb1AajGCUB4yVGwUdxbfx2c8kl2+c2gc/rTxMKepbtOQ2PJz6ZIxUn0dI47NJLwSEWNqA6kB1IgnhKeOCBn9KZOgyOKokycOLa6JEKpZ5L44yh2ZyNiEyWBNUtbRZLG2sYxDObFrn3vfLrLxIffd8ayFJnLi0Nz+bh9G9TJkoGxWucEATrnq/ThCQ8kOzAiXjh5z32PnV/V6C2bX52Qm44tDPjOOFetO5wznJ7xQfhmid7+bM3HvP8Iz3xtxfEVyr/uPmhXj7rsmYtBvKiVxDm053M/lqTvZXX4GcqU3sx2qnPAMj8zdCBSY9zMalu3wyNZWlopDKHWr895OGBECsjAHwMDRZWUFOKgqwjoBXccUgaLKyoRtYis63PBLOs/+PNbpHxt1rGIUXlaWybh/Cy0w8S/zVKX3Pm3fkt8GtkU43X7kdSA/55fP7CIa0FizuIk0xoxwDj285SC6sKmpyl/kVQxPHCrAlTcapu3QdshtTLD4hLMZIIwskTiUC6QWI3yWIgEVC80PpPYZk/60yUX/eTfCTCDsTEnLwOcSUkru2HiYqysPIFWD8IJT6ZExrIGRxSEz7TmPpyGAWS/zBI2jnEMDaYsQmSP3ZZPEKevchik9B49MGg1kTEIig63OrofeVQ1ltFDrvtj7xJEVRzuyMhYaXr7S8VZWpijwxu/B2R+f7jMpiLL6xXDCm9wXM6EkzqtO0PY9igxVQf3aaT6huYMvDvnMOHRVYf3CCl4cqHBvug69gDCTOH0HRxxfk97n/mOUFstHUx0N0F+isrKnn3iA+aKL+rPfSdnKc92FJQgLFnppxaEX9/dSlTmALk2oy985pBph1/ZbQLhsf8qiQsSRil7QzJ8QgsaKICklVFxZmWPhCFdgqrnsM2gXf3bUsXoRD7BWxs1e0gMTbydr1C51S+DaX8tvg/5DKNj8xngz5lmfyEsE9ZmdXLK6gVankkTXyNe6qeTVPa5AJQr4HB9xDk3cSfH07i7KzU5MLcri+fXschrItm2f8H7hSCt7JTTchRc2NCyUkoVf+8xNXt7fS6bvKNHeFxNH5JWDfezrSnK6thM572TKYlG6ZRQ5SlmZlZo+cSgSrcSUKnb8aHHIJEj2yH3ZJHHZKct41VlE6rW7B5fFMxZhMsjZ0Mb+KEKGSllNIxkM7MMbj6w4KnconrHQ8D4zs6y8qhSIVa+HeSdN92kUjHLuJ91/zAQ3mxFG6mHXib/q6uPyfTRZ+OKQz4zk9EXVPN/nzepuvxfgSOeDY6gyW8mIIERqx91vddQgg46ws8O6QhSC7UjE1j9hoxBZdzU0n+mumGDeEHDkpqjANvKj8cBrrfyj/htXsFlwZt7bqUH3POwCxJr+tEmliLuKfoEOqsaKEEkZKEocUhwTedTskxjj2JrnHLLM/MUh03MOTTSQGmB+dRk7nfmYrZvHHSul5C9PPQ9AZ+2Z6Jd/adRyOZ/ZzyWr62ijkr72ka91I3LgORiYhO5mOQdfAQ9pg5+PEohDd7/aSpPajVI+n1UNMfbIeTidQ51D2+7/KfFvX4zzzfUFib1Zy6FMJFFGyDUJGyo2Koq0fDeIz6i8crCXKtF/ZIFfWjYif9p4mIhqUdv/GsqCM6iM6PQQQ0l1jzjeyeSuO1NfVlYZDdBLlOxRrqb+tFtWNtni0KKaCC9GzqVxYBP0u8J8POdammXiEMD1pzbRSg0qR4nsozqHjrPModlM/Rrk9T+AMbodTylefIU44Y3TfCJzC18c8pmRbFhcyT5Z577Y4YlDiY4R3TSqnSSrhvMSI2qiAdIyF0hcvHvoub3dnGc9TWfN6e7FqWYFTrACUQJxSDG8G4ESOIc64xl47vtcoryIc+mXoHpp3tvqQffmbKC/f5yRR+hPmdSqCQgX/ntoLA8x4BRZViYtHCU/m6vuiUPpdP6/XyvrvldECcSh5qow22QTsm1859Bze3u49/FnAXj7ZXMziNnnCAurI3QFmqnse23UVs9DkBL5i2vh4f8o6XnYjsRwvOtjAeKQHihdWdmrh/pYbPSjlDeysiHGHmceweRhMFM4juSXv/8Dyx/7JFrHayjduyDVm/e+s7brHBqpRNNtZe89rPjuIZ9R2Hiwj+pc8wXwxaER6Eua3PrCQf56/i6Ek4XmM6gMG3TJMvRMz4jbHBGHpt45VBUx6JYxzIEj195cWZlSAtfweOgnXAdA1wu/d4+dsQiLDGIafhcT5aMXLqN5setyTqredfaoUOpExjoiHB1vmUOzHHHiW/LKeJ0SQtU4oSpYdP50n8mcwheHfGYkpzRX0q7U4qBA66YjK45pbS+lRLPT2HmGBdZ4ziFgQuLQxhefYplymLJTPLVaUeCa/4FzPlH0PnOouZuQIp1D2fSR7b5891beIB8iUXcK6lkfKWg/RsgVh/oH+vLepj9tUa3EC+pUlqOxIkS/E8DOFC4OqdLMu249EChGHPLGahPvhtBcGWKb04yRaIHUyDfIOXZ3xJkv3BvV6vn5C3s+s5f9K29CdzIk7stD8Im3IbIJnKOt+yUgazlEyIlD+c/g54RXu4BS1JGQUrKnI0Gd7EKUzac6GqAz0Ozax7t28h93buKkl79IB+XcVuHNYFr5f57tbIagMEcRh1znEOCXCpUQ+5nvw+5Hpvs0SsYrB3up4qiJkwm+5+ci33l4Jzdkf8+H2v8Vq3IZLL6A8pBOj4wRsPpHzP0TWe/+ZRoEkYqwziFZg9K7d3BZb9IkRBY1MPnnc86Z57DTaSTxsisOJbyyMmUKjj0ZKJULANiuLnMXJI4uK7PRB8Uh3w3tUyRnfgQu+3ffUV9ifHHIZ0YSMlQuXD2fQ9LtHuHkZhaOKS1LmTZB8u8kUR0JuIGvMCFxqHrbzZhohE66fnCZsvY6WHhW0fvMoQUnUFaW7Eb7f8tJ/OpdbNrbwh0v7GaVOEBkxUUFl3kFw27JRSJemHOogjiigE5lORorgiRkEDM1MP7gY1Ck5XaKywM94NrDs5lCHia9sSVolbmgKsxrcqH7ovXVMce29WeYLzpxIvUlEaZ8Zj5rT9rAzfZFhDb+DLr3jD24Zy8AomML2KUTMjKWTVgU7hwKGDqWVLAn2A2yM54lmckQtbqhrBGAVN3JADz18J9pf+pm1il7ua3mYxw0vdKwQtxKWe8aM0K3skgucwh8cahEyFQPyr2fg+d/NN2nUhLa+tO09Wf8srIxaOtLsujpf+Jz+m9IL78a7cMPQ7CMoK4SV72sr2MmRxxHopheWfk0lJVVRQx2yUZC/XsGYwda+tIERZZAcPKdQwuqwzwTvoCmvheQh17yysrSs1YcotwVh57PNCOFMqSsLJ42j3IO+Q/2PsUhTn4byilvn+7TmHP44pDPjOU77zyVeYtWAbA/cqK78JhQ6njacsWhPMPRqqPGkbKyIsu2DrZ1cln2AXbXXgLRuqL2MRaadyNgpYto6d6zFyUbJ7LjDuTN7+C04GH3C7jxlIJ3FYq4N2fJRP5OnoG0RQX9EMm//XWOXDt7O124c0iTJiLPmYNg0BVZMun8H2Adr6ysFAJNVcRgj7bEfXG0K24E2gbSLNY6wZuB85n7bFhUxffFm0DaOBt/O/bgnDhkpUvW5h2OdQ7l/2AS1FVMNKzsxMrK9nQmqKUXBQfK5gFQ2bicg7KG3s0P8O6KTTiRevbUv47utCd6FyD2qzlxKDA8cyg0xDnkt7OfKI9u7+Bz//V1hGMhkyPnzMw2Nh7oBWBh8Kh7CF8cGsJ9d/6OG5QH6Fj3AUJv//mQz1rWqHD/cUwo9UDaIjx43Zn6nJ2qsCsOqU5mcCKypS9FRGQRU3Q+neveT7eMYd35d8TTJmGROTJhONuoaAZgl1WDHagYEkidyNpHtbL3M4d8fGYSvjjkM6PRqhcD8GB2tTvzcIxzaCBjESILeYYFRgMatjqxXIy9D/+MMpEkcu6Hitp+PHLlXJlU4SIJcTeY9lDdBZyYfoFPN3ttUYsQh8JRd1Y9VYBzKJ5KU+b0QaRw0awqapAggCgic0iVdt6tNQ2vbC+byf9hctAJoU08c0gIQbiykT6lEtk2jjjUl6ZJ6UKp8MWh44WgrrJ48XJeUdYgN/9x6MreA9h/+ChkPHHDE4cAaBvbhVYIGcs56iEt/xn8oKaSRcMuIOx9JPZ0xpknPCGhbD4Aq+aV8aS9lnO1Lay3XkSsvIKqWJD2jCcOFeBWUk3vGjNCWZmhKTi5mWw/c2jC/OjxPZznPAMwaoeq2UIya3HJ1x/mU796mialm5Wxo97nvjg0SE8iy66tbqlr7aWfHOZatoKes/iY90NLf4qwSCNRSvJdWygVYYNdjutUpHOHe069aUIiC1MUCl1bU8eXrRvQDz9H7eEHCZFFC069i6ok1LqTu9udJpJaxVDnUMbCEI7bSKRAV7uPj8/k4otDPjObykUAPDFQjx2pH9E5FBKZvDtJCCGO2IMLyKg4mtjuO9kn5jN/3UVFbT8ehncjkC3CObR9l+se+MzBcwE4peUWnHANlDcVvK9Y1J3pq936C7K/y08IU1JdKMiiHFUhXSUpg6hWYeV0tiPRsBB5trEMBt33ipktoPSlhOIQQHNViO3KImTL2OJQe3+SOqcDfHHouOL8FbX8IXMaaucW6DiqffuWO1A3/go23uy+7tmLjNS7JZWtm9z/xsmxyoeMZRMR3oNvIWVlukIWHWeCZWW7OxM0qd7P4ZWVXbK6DnXpBcRkHCUbR6y8kppIgITlCTmFOIfMsUNv1dy1xC8rmxAHe5I8veMQFyquUCBmuXPo1ucPsqsjwc/rfs0D4X+knqPEDV8cGuTnT+2j3mlzm0TE5g0fEB5ZHDrcmyJCGlvPr8FIqTE0hTbD+67t3O6dUxJDZqdMrJpXEeR2220+Ud6/3Q3DnoWB1AA0noz1sRfYrK2mhxjyqMyhRMYipDp+GLWPzwzEF4d8ZjbzT8VRA7zqLKZbq0f27h+yOp5xy8qEkX+bUS0X+FyEc+hgT5L56R301ZyCUCbn4xMIu+JQoWVlHQMZHnzeFRs+9M63k65ajbBSMO+kom60YrEKAFb2Porx6s3QNn7r9UDGu9mL1BZ8vJCukqBwcSht2mhYeTuHQiGvlX0B4pC0SldWBrCoOsJL2WZEx9Yxg0zt/lb3ZytvLslxfWYHF6yo4R57g/tiy+2Dy2WL+5BtP/cTt1NZ9x7MisU41SuRm25Bfvc87P85BeelX03o+EOdQ4WVlWXRcCYaSL3/WdZFet0XMVccqo4GeNOb3uau14Kw+AJqYsU1GJC58xvlgU/JlaiOEJjrkz+3PH+Q85VNRESGLXKhKwZIOd2nVRSW7fDDx3dzVWOC9X33EbD6ae57/sgA/70yyNO7u1gX7nbLikYoGRK5svNjxKFDvWnCZBDTkDc0SLiahBKDzu04jqRnIO6Wt05yK/scjeUhsuhk9TJCqRZ0YU+Za2ky0GqXsWZeGS1m9Mjfu3Mn1+36PGVq/o1EfHx8pg5fHPKZ2Sy5EPHZfWgV89lnVSKPcQ4NeJlDhcysiNwDfhGZQ3c/tZEa0U/z6tML3jZfgiH3RsDKFCYO/fDx3cTMLqxAJReuaSKw7loAlPnrizuRo26GbCnof/bXYw63bIew6c0MR+sLPlzIcJ1DmpMpKFw3ZbpdLxQtvxmokPf7NQvJRbFK6xx664ZmXrUXIBwTOreNfEjbIZz0uvNVLCzJcX1mB0tro6jljewMrMXefMfgctm6CakaqB2b4dALZDv3cOfBAPd11yD6D+PUrcWpXoFy+0dxnv5u0cfPTCBzKCs1ZKHCu5RY930JevZB+1b+seVveE/2N0g1cMRlAFDWiF23Frn8cjDCRTcYkDmXxyiCsvCdQxPGsh1uee4AH4s9SjpYy5+sM93rXRFlwzOBeze3caA7xT9E70IqBlILokqLDumVJvrOoUF6UyaNtA86v49Fj40sDh3uTRFV0iiB6ROHFtVG2S0bsTu20xnPoNredWWKBJrGCvceI67XEEl4MQqz1TnkcXJzJftSQUh4f+9td7K+/0GWcMjPG/LxmYH44pDPjEfoITYsquS1ZDmi/9BgFwnwrKkic8QNlM/+ci6jAh9gHEey5eUnAahcXHiGT75EgzpJGcAuUBzqGMjQrPejlDUAINa92X24WnJhcSfi3ZAMNF3A45xM5uVbkGNkcMQzFjV4be+LKCsL6ioJcsJd/j97KmujY6Fo+TmHwmH3vWIX5BzKOQ1K4xxaXh+jYYXrDBnY+dSIYzrjWZppd19U+uLQ8YQQgvNX1PKn9Emoba9A/2G3tLFjO780L8LWwvTd/1UCqTa6jUaeUk9jp9PIVyq/SOodt2OveD3KPf9A9rYPj9sRbyQypkNYpLHVYEE37yEvkLpg59BAK9oTX4eNN+N45xuQGWRs3jDXo3rjn1Gu+zbgNhg44hzK/3oubG/sKKWog84hP3OoaB7Z3oExsI+T0s+jnnYjfZrbefRYQWA2IKXk+4/u4qLKdpoP3IGz/t04iy4AoE164mWRGYZzkf6USZ3VijLK91ZZNMqADOEcVWYErjhUqZkwjd253nHGAraYDZhtWznclyaI5wjTp6asLBbUiQU0epRKqrLe5NAUuZYmi1MWVNDuxCDV7d6/d+8GoJreUa/BPj4+04cvDvnMCk5dWMmOTCXCzsJAy+DyuBdIXYg4pOS+aAvMHNrdmaA24YYUUn9CQdsWQthQSRLAyRRWXpXIWNSJXkTOtVOzHPG5A7Do3OJOJFSBefEXib3xG6gnvYVau51777h51OEDaYta0eu+KKKsTFcVMsL722TzF4cylo2Gnb845GUOWQWE5g4+TJYwd+CGKy/mNWch6Ye+NqJQ1dqfZrHSgiPUUWdgfeYu56+o5e7sSe6LHX+Bjq0o0uIpayUPxa6hfO89AFx/ybl89tOf49azfs8PN5lc++1n2HPBN7FOfT/a1tuRv7mh4GNnbdc55OiFPaQFvcwhWWggtee6sNs2077nFWwpeG7V38NZHxs+NlwFnrOgNhogU0z3yVwJ0GjOIc13Dk2U3zy7n/cHHwKhoJ9+06hukdnAs3u6eeVgD/+p/xgnUI520edQV10JQKusdAf5ZWWDOKleIs7AqN9bFWGDDlmO1dsyZPnh3hTlWhYKvO6UkktX19MVWkgw00VHeyuhXPbaFJZ2zasI0mKV0SA98Wwafx+l4OTmCrplDCFtSPfidLniUKXs9cvKfHxmIL445DMrWL+wkp3S7VpzdBlOPGMRIFtQq08lNwNU4ExfKmuzStlPMtgwtNShxEQDGmkMnGyh4pBNlexBxBqOLJyg00U//1NQvZRzrno3bdo8Nrz0D7y66aURx/alTGpEP7YSGLFFdD6YmncDVoA4lMrYBISFmqc4pHi/E6eAB1hlUBwqjXMIYEldGYc3fI5au41Xv/deMn/8hFtW49HWn2aJaCUba/Zn145Dzllaw06a6DUacLbdg2x9BYBtLOLTLZfQJ93PSuX8FYQMlc9duZrffOBMBtIm13z3BX5a8TE49aaiHsYzpk1YZHC0wh6Icq3ssQsVh9wHa6ftNbZuep7Dop6l1/wdyhkfHHOzyohBugjn0GAJ0CjXjCPOIf+Bvxha+9I8uLWdqwIv4yy9BMoaUSI559DsC6X+/qO7eXfoKRr6X0Fe9u/u9/+KK3C0EFulF2Dsl5UBbjlhVdYTfUYph64M67TJKuy+w0OWH+5NE1OyiGksK1MVwYITzwdg4Nlfud1wYUrdO/PKQ2xLhFCEl89lzN7MIYCmyhBmIBdC3o3wnENRZ8AXh3x8ZiC+OOQzK1hZH+OQ5t2EdRwlDqXSBISFVoANWc2VlRWYOZSxbFaL/SQqVxW0XaGEDY2UDBR8fgNpk0qnF2KF5/2MhwhECd/4BxQhqLjtrfR3Hho2pj9tUiP6MEO1RXcasdScOJR/LkUq69685SsOoSiYaERTB8j+4WPj/p4dRx4lDpXWWn7J1TewNXoGJ3XdReDln2Ld9sHBssn2/jSLRQtULyvpMX1mB+VhnfULqnhErkfsfpi+1x4kIQNcd/G5pNQyfhl4i1s2etT74/TFVfz5r8/jrKXV/NudW9jSA8JMFuxqyGUOyQKzLnKt7McKWR8R78Fa6d7Nwuwuwo2rqYqM/3nWVWUwo60QJ6gYJ3NIPR6dQ3ufwPnaSugbfm0vlFufP4AmTaoyB1EbXfebFp2dzqGDPUke3NbOR0L3YdWuQTvFDUWnbB7Jj2/mj15nKV8cculPWzSJXDn0ohHHVIYNWqlExI84hyzbobU/7WadTXPGzrkXX8tTzloubP0xTZpXKq9NnTjUWBGkzSk/smAWB1KDWyYdbVjivmh9BfqPusb44pCPz4zDF4d8ZgWaqrCgeQF9omyIOJRJeQ6TAh7a1dwsTIHOoWwmxVJxmGz1moK2K5RoQCOFgSggdwdATfegY0K0YfzBRRBrWk371T+jSvbS84PrIDNUwOmMZ6mhDydceElZDkcv3DmUzbglWaqRpzgEmGic1HM/xsZfwoFnxhybtmwCwkQiSu7gEUKw6MO38MGy7/B5PoZ28Gmcp78DQFtfmsWiFaNueUmP6TN7uOH0BfwqfipYaSp2/oEtciFvOX0h333Xei56z5cQf7tlmIuxoTzIj95zGtGAxr6E935N9xd03MFuZYWKQ7pCRuqFPyh741VsFiutVC9al/emsajnUiwkc8gZu6xMGQykPj4yh373wkE23fqvKPFWzK13T2hfjiO5+bkDXL8whZAO1KwEIFTufi/IY3JmZjp/ePEQa9lNQ3I7ymnvHTLxESmvQubeQ744BLgO4gVi7Ky8Cs85ZCTbBrvXtQ9ksB1JUKamXRwqjxg8uviTVJDgk/rv3YVT6BxqLA/RISuOLJjlgdQAFUs3kJEa2+77EYKjOhb64pCPz4zDF4d8Zg2nLqxim92I1bZlcFk25QkUBXxxa8HiMoeUvn3owsaqntyH9aCu0E0ZgXRhN9GhTIf7j0lwDuVYedrF/GXNf9Gc3sH2335uyLpndndRr/QRrCxenLI17yaokMwhr+uYVkDJlyV0VLwHv5ZXxhybyNgEMN1yuSIdUWMRjFbwuXdfyy3WuWwJb4BHvwpWllT3QcIig1LjO4eOV645aR57oifz6cpv8l39ndxcdhP1ZUEuXlXPmvnlkCvVOQYhBItqwhxI5cSh3oKOm7UcIiJdcEvpQK6srNByrGOdTTUr8t60MhrCQi2oW5kYzBwaWewddA4dBzkyfSmT7/zxQdbGnwagf/NfJrS/A7/+OO+Lf4+/WuiVRde64lC0vBpLKmTjs8c5JKXkthcP8jeVT+FoIZQT3zJkvRCCcMi7n/DFIcB9PzWLDky9DEKVI46pDBu0ykoUxxx0krX0ufdjhpOC6Wxl73HueRdzr3MaJzjeZOSUZg6F6KDiyIJZ7hwCuGBNM1vEMpb2Pjl0hV8y7+Mz4/DFIZ9Zwwnzy9nhzEe2bx2cbTLT3g1oAV+euldWJs38HyYAzJxDpYB8o2IQQnBAzKcqvW9IZ7bxiJjeTXcRbeQL4eo338gD4StZsuuX7H716cHlT+zspEEdQCmiU1mOwTKWAsrKcs4hzchfHNL0I2OdccSh7kSWACaOWrq8oWNZXBPhxnMW8+W+i1DSPbDjXmTXTnelX1Z23BLQVN5z1kJ+31LNd+1rufbaN+e97eKaKHsHvFnZdF9Bx81YNmEyBWd/uIHU2pEyzDyxjr0We4JCPtTEAmTR3W5ueaLInDg08mdaOY7Kym574SDXy/tACB611xE9/GRRjql9XQlu/Ndvs3DnL7lBe4iT9EOu27LGnUypjgXpIUqmr73UP8Kk8cK+Hvq6Wrkw8xBy9bUQqhg2JuKLQ0PoS5k0iQ4y0aZRx7jikOd47Hdzhw71pgGJZiVnhFPmrCXVPBq76siCKepWBtBYHqRDHlVWNsszhwBWzyvj5HMuRxPuPW1L7u/vt7L38Zlx+OKQz6xhVUMZO+R89GwveNZ0M+05TApwDoUMjbTUsbKFOYdy3a0KcagUy0GtGcNJQ//BvMZLKYmZntNoksrKcmiqwinv/QYDIor5uw/y0Ms7OdCdZH9XnJjTNzFxSi/COZTx/i56/mVlQc89ZqIjWzeNObYrniFAtqRh1CPx0QuW8Yq+nh6lkt4nf0q6dbu7wheHjmvee85iPnvlKv7yyfM5b3n+JZuLayLsjns33pnCy8oipFEKbCltqG6elyjQOdQbPyZ8vwDnUE3EII1RkHNI8TOHAPd745dP7eWvjKewl1zM7+wLCFgDcHjkpgNj8fMn9/JR82c4CMJkUF/9LbJiweB3c000QI+MYcVnT1nZ7144yF8H/ozupFHP+9SIYyJh7zMyh11m9955K1v/5RQy/7MBtt875ti+lEmliCNGcTUCxIIa7biuosdefIVfPbOPW58/wFqx1+1oNQPEIUURfPFTH8cpa3YXTGUgdcUxZWWzvFvZIAvOAqBfhtntzHOXKb5zyMdnpuGLQz6zhqbKEAdU74u6YysAdq6jVyHikK6QxsAusFW87QUf6wU4VIqlzfBq9Tu35zU+ZdrU4LkDJrGsLEdNXQOp1/8vSzlI5e//it3fezsfUe9AwYEJOIcGH0YLEIcsrw18IX8X4Qk9d9hnILp2jBlK3ZXIEhBmycOoj6U8rPPZq0/gt9lziBx4iEv0V5BaCGKNk3pcn5lNJKDx4QuWUldW2PtvcU2YPul9ngp0DmUth7BIoxToHBJCYAvDLRcpgEza/fwNRBfjlDWN6NAYjepogJTUsQsQ+xXpZYiNMmutacdH5tCTu7pQurdT53Sgr7mK7ZFT3RW7HipoP2nTZtcL93O6shV50T8hhYLoOzjEAVYdNeghhkzM8LKyTJzMC78klTF5/pVNvEu5F+uEt0LdyI0oopFcmXqBHfpmCa8d6qPhmf+k2ulC79sDux8ec3xfyqSMBGp45JIycIUXpdz9XrvryRf5rz88y5v3fYk7A/+Eo4WgaUMpf4SiCeg6yoabkEKFYMWUHXdBVZgrT1/jHhfmhHMIgOYzANgr6+nB+27xM4d8fGYcvjjkM2tQFIFT492geeKQU4Q4FNRVMujYBZaV2VbOoTL54lBHcJH3j/zEoXjGolb0YirBotvIF0rj6ddiX/tdVqotnJJ+hr/Tb3FXRIoPpCb3MFpIWVnWfRAtSLRTdexoI7urLkCRNofu+BL29y8eUZRynUMmyhTYyt9yWjPpde8kLQ0u4Tlk1RJQ/Mu0T+EsrokyIL3rYhFlZcU4hwAcRUN1CiuxyXruv52nfQHrHb8vaNvKiEFaGph5iv2OI9GkhS30UTPE1JwLcQ63spfPfJ+OP3+JK4Ob3QXLXkesuoEWdR60v1bQvv608TAXWo9jKwHUMz+C0+B2KFOOEodqowG6ZQwlNcNb2W+7i8CfPsaLD/+R6+x70aSNfsk/jjo8nMswnIPOISklv/jNzzlJ2cXXrb8iZVSNG27fnzIpEwm0yOjiEMCPPnY1EsFnz47y3Lwv8wb1KdJnfRrl01tg8fml/DEmxjmfQHzkiWHB/5OJqgj+/fqTjky0zYHMIQDCVZjzTmOjs5Re6d3rqb445OMz0/CfOnxmFQ3zFzJACOl1LJO52eICvjxDhkpaGjgFl5W5DzxGYPLFocqaBvqIIju3jT8YNzQ5RgrLKJvkMxtK4JS3oP3TIb59yh30Bz2HywScQ4YRdANtC3AOmZ7Ipxcg2skFZyJPvIEPvuU6AOZv+jbq4Rdg/9PDxnYnsgQxUY2pyRz42Jsv5+U3PkT8rL9DnP93U3JMn7nH4uoI/eScQwWWlWUtgsIsqpzBUQxUWdiDctZz/4my+Rj1+ecNAcQCGln0QQfhuMeyHXQsnDHKGXLOITkHH/hzZF/4Fdf1/oyb9Puwa1ZCRTPNVWF6nHDe4rzjuNl/v3tuL9fozyGXXwaBKMrSi9wBNUf+llURgx4Zxcj25H+Sf/k89i/elP/4UuAJqamNv+cN+rPYC8+FigWjDtd1HQcxJzOHntjZxTV9vyYRqOVu9ULiRMYNt+9LZikniRauGHNceTQMkTrK99xDsGcH1lX/TfDyL4waYj1tKCrUrZ6WQ8tIHVILzqlcHv2mO/lx7CP0es4h4TuHfHxmHL445DOrWNlQxh6ngUy7G9YrTW+2uICSn6CuksbAGaOUaCQcc+rKys5ZXssOp5HkoS3jDwYSGYuwSLuW7ClG11Q+e90Gyt7xc+zms6BuTdH7ChkqSQKFiUNeuZ8ooOuFuPobaJf9f5TPW0ZWjdIrI66Fe98Tw8Z2JrJEVGvSy8py6KrCeSevJnr5PyNOeOOUHNNn7lEe1jHCZe6Da4HOoUHhvIicDUcNoBbouMl6HQdDwcI/Y7GgRgY9b7E/YzkYmNhjiEO65xwyrbkrDmV63SDgyuxhlGWvA9xyll47gJ3KQ0x85nvIX17Pod4U7H+GatmDtu56AMSqq5GKPqQ8SFMVUloFQbNvsKHEeDj7n0LddT/05Ze9VxK8e4pzEvezQLagej/TaAQNjazU5qQ49NhDd3G2+hr6uZ9gSUMV3XYIOc61JJFIYAgrrzIsWTYPOrchFQ39hGtLdNZzBxGrnzuuoRx6kBWNFfRIv6zMx2em4otDPrOKlQ1l7JP1OF27SWYtNNubLS7EOeSVlRXarcy23Js/Tcs/+LhYzllaw06n0c3DyYOBtEWIDHI6gwubN6C+756C8kKOJaSrJGSwIHHI9oLCRwuXHQmRKydRFMyrv8nHxT+y11iOs3e4ONQdz4lDky8K+viUkkW1MVIiXLA4lHtALubBRCp6wc6hnOsnUIQ4FA1opDGQeYr9Wct1Dsk8nENWdu498APsaO0jmOmiVXc7SonVblem5sowcRnCykccankFZfdD3PXibq5Un8FWg7Dicndd06mIfzw0LKfHDFSiYuf9fhQ5UWjrnfn9YKXA++4JiSyOUBGrrxlzeEBzQ9jlHMscOtSb4rQDPyWplmGc/l5WNZTRYQbGdSFaCa9sMFg+5jgAUeaGEjvNZ+U1/nhD1K12Q93nGGvmldMrvfgDP5Dax2fG4YtDPrOKVQ0x9sl6AomD7G3vc0sfoMBuZar3MFGYOORYY3e4KSULqsN0hRYSNrshOX5GQyJjESEzI7p8TISQ4YpDMpN/5lCu3K/Y2vXIKW/ihDMu5S+JZXDoxWHh1F2JDGHFQkyRc8jHp1Qsqo7QLwsXhwYdmUU4h6RqoGGD4+S9Tc79N9gWvABiQZ2M1HHM/B7Os7aDLiwcZfTruG7MXedQ1nL45988hiFsIud+COevX4aFZwPu906cEE4+ZYh2FoHkxZdf5OzgXtcldPT3zwhieirslR737B139x29cRhoBeDQU7eQNqcoHDybwBS627Si+RyI1Iw5PKirZNGO3B/MEf7y0IO8Tn2B7GkfgkCU1fNidNkhrGTvmNvZufV5TBIJr9mCuur1EzvZucrFn0d5793TfRYl5/XrGljQ5ArTvnPIx2fm4YtDPrOKyohBd6AJVdq07d9JCO+BoJBAak0lI3VEAa2PAZzcg0IB5UsTITT/BACs1s3jjk1kLUIijZjt4pCukiCAU5A4VLhz6FjefdZCnpOrUZwsHHx+yLquRJaQ8J1DPrOPurIAvTKMzBTqHCq+rGzw+lhAmU2uOUCwKHHIdQ4JK3/nkDGOc0jPOYfMuScOvXq4j972AwDEqptQqhcPrss5h0Q+mUPe31d0bmexcwClYe24m8TLl7v/aB+7XHp72wA3fP02BJLDsor6nhc59PMPwKbfjX9eE8ROD9DrRPj5wv9Avfpr444PaApZ9MGGFXOBjGXT/Yrbsr7i3A8AsKqhjH4ZHresbDCTKB8nULknEOQcZz5DUfW506nsKJbXx/jENW7nMj+Q2sdn5uGLQz6zDqV6KQADLdsI4T2AFOQcclvZU6g4ZOdEiKkRh+avOQuAli1PjTs2nrEIk0EtorvQTCJkqCRlEDs9kPc2ds45NAF7cmNFiIpV5+NIQXbH0DbOXfEshjB9cchn1lEdMeiTYaxEb0HbCbPwoP9Bcp8TO/+H5Vz51mDnpwLIZQ7le7xBcWgMMTnnHBp0Jc4h2vvT1Ile90WsYci6uliAtBJCs/Io6/XEoUuMV9GdFCKPrDlZudjN5+kYWxz64WO7mYfb8j5z2ocBWHrgNuTT3x3/vCZIR3c3CRlg+VnXotSNH44e0BRMqebtXMuLaQ5Cv3tTK7XmYUy9bLDBxKp5MQYIo2UHxs6MyolHwTyCpU+9Efttt4J3T+dzHBHyur/5ziEfnxmHLw75zDpijSsAyLbvoiZguQsLDKTOULhzSOacQ1NUI33mCas4JGuI73pm3LFuIHUGNRidgjObPIK6SpwQZPIXh46U+03s7/K289fxpLOGzPO/HLw5N22HvpRJAHPKAql9fEpFbSzAgAzjpHoL2m7QhVOEc0jkRJcCymxyrgu1gI6DOSIBjYzUUew8u5XlMofGuF4Y3nlYc7CsrH0gQx297oto/ZB1iiIgEEOTJozjhEkk3dLDK7UX3AV5iEPVZRF2yUY6d79MPGONOKZjIMMfXz7EtYvdssSFZ7yRU8wfsaPyPMjTHTYR2ru6SStBzl5Wndf4gK5ilqisrGMgw9YXH8H58iLYNn3lRL98eh+rAh0o1UvAy+crC+rYRhkK9piZgFo2Jw7l4RwKV6GuvKwUp+wz2wj74pCPz0ylZOKQEOLHQoh2IcSrxyz/ayHENiHEZiHEV0p1PJ/jl6amRSRlgEz7DmpDEqmHB29g8sENpDZQCpjZBpD21GUOgdtt6EBoFeU9r447Nu4FUmuzXBwKGyoDhAsSh+wSiUPrF1TwTN1biGXbaH/uNgB6El6HOpn1nUM+s47qSIB+wsgCW9kfEYcKdw6JQedQIWVl3rW4iAcFXVWwlABqnsfLtbJnjMwhw3CvJfZcFIf6M9Qrve6LY5xDAKbmfYeMU9rb3uteo8OWJwbUju+yWdtYxnbZRPrwZk784r28/n8e49/+/Brff3QX//Knzbzvv29l/9cv4mbl81w8z/17KhVNxGLlDNiBYXlwpaYvZRLv7yMULiOg5dc+3C0rm7g4lMhYfPj79xG7/X0o2Th0757Q/oqlZf9Ont/Xwwq9E6VmqKNHj3huoFFKyyzbwbC8724/YNpnLILlSIQfSO3jMwMppXPop8AVRy8QQlwEXAucKKVcC4xfwO3jMw4r57kdy+qtw9QGnYIdHSHDzRxSCxSHBh92pqisDECZv55G2cqhQ0e18jVTyP1PDxkXz9hESCNmeX16SFcZkCGUbP4Ps7JEQeFCCN72jvdzgHr67/sK2b1P0xV33yOak/WdQz6zjpqYQb8MoxbweQJQJ+Ic0gsvK3OsLFm0gkT+IdtrAVSngLIyYcEYXSdzZWVzUhwaSLPA6Eca0REbGFiatywz9nvmaDHEKWuGYNm4x75wZR2XX3QxTaKTfz4ryIczP+ZNz72Vxfd9gBOe+xzf7v0Yp7KZ9cpOqjueRYarwQhTVxak39KOdNGbJO58pYUQaSor8yiJ8ghoKln0CXUrk1LyD797mY/3foVavAYUBXTsLBk77qPhx6exVuylPNOCqFw8ZHUo6v1eRnlv9KctyvD+Rr445DMWiuqGvev+fZWPz0yjZOKQlPJR4Ni2Sh8B/ktKmfHGtJfqeD7HL8vqouyjgUWijSrdKnh2O6i53cpUp9CyMs8GP4Xi0IJ15wKw+flHjix8/L/hJ1fCUaUiyXTG7dw2na3sS0BId51DqhkfO9fgKAaDwktgT26sitJ56idZZu/C+OnllP/lk4BEdXznkM/sI+cc0sx4Qd3DBku0inAOKTmRtoDcFGllsSj+uiq1IHq+4pDtZg6NJSYHBsWhOZg5NJBhvtaPjA53DcFR4tA4odTCOfL3lXmUlOUINrrB1e/Z+Tdcnf4Ti5qbubCshTcazyJPfAu803Vtyt0PI8vcwOL6sgA9UyAO3bHxEBVallhZ/sJGUM+1si/+vfLDx/aw6LXvcpG6kS9Z73Y76U2DOCR33o9A8qHYEwhpQ9WSIeujFW4pkJXsGXH7vpRJuUhgqaExxVcfHwD+6qdw9t9M91n4+Pgcw2RnDq0AzhNCPCOEeEQIsWGSj+dzHBDUVXqDTTSLdirUbMGz24oiMJWA+8BfCM7UlpUBNKw6E4C2rU8iPbHE3nonQjqQ6Bgcl814N5KzvFtZ0HCdQ0I6ed8cl7rc75RrPsr/t+J2vmddQ+Pe3/NR9Xa3i5nvHPKZZVSGdQYII5CQzb9UUx0Uhwp3Dim5meACnBTSzmKL4sVdoQVRscEeOcfmaHKZQ2KMh1fDcIVg2xp/f7ON9v4M9aIXEasfcb2j58rKxn6/KI5JBvf3pNTnLw5RtxoAtf8gzhVfIfT+u9A/8xrK5w4SvP5/YeklONEGBBJRkROHgnRn1UkvK2vrzxBTsggj//LsgKZiyuLFoSd3dvLYPbfwt/rv6FpyLb+0L3XFlSkWh17Y10P7qw8DcJn9qLvwGHGovLIWgJ6uzhH30dqXpowkljG+i8zHRyw6FyoXTvdp+Pj4HMNki0MaUAmcCfwdcIsQI/vGhRAfFEI8L4R4vqOjY6QhPj6DWJVLCAiLiuSeomypthJwQzcdu4CNTByEa4edKoLl9ESXcVriEZ7c0QZ9h1DbNrnrEkdu0Oy0N8s7F8rK8H6GccoacsicQ6GEjq7PXH8Ovym7idvts/l7/RZ3oe8c8pllaKqCrXsPauO1oD56uwmUlSleWZmdKeDh1spii+I/v2JQkBrfDTooDo0hJge9zCFnDpaVdcQzVMkexAh5QwC2kb84tNdYjtSCiIVn538CFQtxAuWYzWejnXaju0yIIy2thUAsudD9Z3kz4IpDfaaOsLN5CYDFksraBGWqoEkW1zmkFpSxleNwb4r//NVdfNP4P6yqFYSu/xYgSCtTKw7ZjuTvfvkYNfFt2FIQtL2/fdXQsrKaak8c6h5ZHNrRPkC5SKCGKibzdH18fHx8JpHJFocOAr+XLs8CDlAz0kAp5fellKdJKU+rra2d5NPyme1ULjgBAKN3J2iFCyKO6j3oFzC7LRxzQrPbxRK+7J9YrRxg25++wZ6n/nBkRbJr8J9WyhOHZnlZWdhQiUvvgTTfEN1JCAqPBXV+eOPp/Iv6ce62T3cXaoU/KPv4TDci5JXIFCIOSU9kKcKJmIwtAsBq35b3NsLOYk+gLFTJiVh5XM+ztj2ucyiga1hSwZnmluKlxnYkXfEMZVY3jFJWRp7ikCpNeo16rM/sghUFdJxSFOR770Z/x82gjHwLKpZe5P6j3HUO1cUCpMh1wZs891AyaxFwChOHAprb/bRQcahr1ws8/Z0P8jvnb4nqDsbbf0U4Wk5N1CBJcNyyvlLyxM5OmhKvogoJJ7wJwG30cUw3u7o69/VA78ji0LbWAarUJFok/8wmHx8fH5+ZxWSLQ38ELgYQQqwADGDkbxUfnwK4/IILANzyI6Pwh3Y5KA7lnzs0XeJQYN0b2Vd5Jm/t/wn6U98grXg3rskjHyUnN8s4p5xD45fBOI484hwqcUvUZXVRfnjT2bRd9m3sK78Ga99Y0v37+EwFg7P4BXQs0+00DkpRgms2toCEDOC0jN9lcRDbxJmAc0jJfQfk6RwyhIUyhhMwoClYqHNOHOqKZwjJFIaTgmjdiGNkwHOajSsOWaDq6EV0yFQb1o4dWLzsUpzq5bDgLMB1DqW8ErbJLC0zTdPtTFlIWZmXOSQKEIfka3dQ/YuLuSZ9J4earkB89CmoWQ5AU2WYhGNMer7S0fz+xYOca+xAChX1vE+651i5eFhAfH2dO3Gb7D82XtRlR1ucGi2F8J1DPj4+PrOWUray/w3wFLBSCHFQCPE+4MfAEq+9/c3Ae6TMM2XWx2cMtGgVTsS9uRVFhKY6Wv5lCDlccWga2m4Kwfx3/YCBpvOpFnH+pHtNAY8qKxu0oM+BzKF+mROHxnc6xLMWBl5p4CRkQa1fUMmN5y1HPeMDMEpGh4/PTEaPjt1+esRtnAymEiyqe1jQ0NkmmyFX/poHwsniTKClsVaoOIQ1WP42EkFd9cShuZU51D6QoU70ui9GKSsTgZj7j3GcK6o0xyzNmxCRGpS/fh6aTgM8cUjmxKHJEU0s20Gzc+WU+d9TBHUVE62gAPYtj/2ebhnlB2fczZIP/BK1csHguqbKEH12AFlIWeYEiGcs7t18mKsCr+A0rIP6E3Bi8xG1K4eN1QNhMuhkEr3IVO+QphFSSra1DVAhUhCsmJJz9/Hx8fEpPSWbapdSvm2UVe8s1TF8fIZQvRwS7UUFBcvcNtn8bzQVx8LRpt45BKBVLaDhA7/ja/ds5TuP7ubN0XsQyaNm73I3zLO8rCykq8TJv6ysP2WiMfVd5Hx8ZguqJwLIjm2IVa8fd7yUEkOmsdQgxaRsBXWVrc4CTux8wX14zENgEo6JnIDQoAfca4aTTY0745XxMoeUsQKpNYU4Cs4cC6RuH0izULS5LyoWjDhGCeRa2Y/tHNKlOebvsJTUlx1VVjZJzqGUaRPCK0ssqKzMdQ4pTn7i0ENb26k99BKtkVV85MrTh61vrgrTY+nIbJzCpdnCcA5v5K6Hn+NqZxvzMzuRp3/b/by+6w+I4Mih0iklSiBxGPmNtdhnfQLtor8HoGMgQ1/KJBKN+23sfXx8fGYxk11W5uMzaSh13sxWEc6hlO62ZD2649d4CMec0Ox2KVjXXIHtSLJGpVtWtu1unF+9BZETh2Z5WZmuKqSU/B5OAAbSFrqwkChTGxTu4zNLCFY38ZyzAvvFXw6Z6R+NjOUQEllspbjufEFdYYtcgJbtg/7D4443bQdNWjCBa6secK97qdT4bousPb44pCoCCw2Z5wP/bKG9P8NycdB9UbtqxDEhQ2dAhrDTo19/bUeOm9tUSspDOpbqvR8nyTmUMm0iIpe1VUi3MoWs1BB5dj/99zteZqVykOUnn8tI/VmaK8PEZfBIk4lJJHv7J3jL9k/zX/oPMRs3IE5y53iVupVQNm/kbbQY6zIvoGTjKE/8P+hvAWB7WxyBg2H54pCPj4/PbMYXh3xmLzU5cajwzKFUwAs9Hxj/4QXc2XRVTiwXoxSc2OTedPUr5chkF2y7C2XHvVQ5nouogJvamYo52Eo5P+eQjo0scd6Qj89coTpi8Fv7IrSenbD/6XHHZyyHIBnsIhyZAJVhgy2O50pp2zzu+GTWDYieSFmoEXTFoXQ+4pDlYGCijtPl0kZFzsGyshXiIE64FsJVI44J6ioJgtip0csQU6b7NxurNK+UCCEIhr3vhQLcvoWQytqEKTyIPairZAtwDpUN7ETHQm86ecT1zVUhkjJwJEdwsjDTaG2beNlZRqpiBdobvjFqQPjRaOFyKohjSQXLzLLxv6/n2W+/j23P3U+MFAIJfuaQj4+Pz6zFF4d8Zi+1K9z/F9HKPhny8mMGWvMan7UdtBkgQjSUBamNBeiwY8hEJ073HgAWiHZ3QBEuqpmG1CI4iLzKygbSFjrWhEpSfHzmMjXRAHfaZ2BpEaznfjLu+KzlECKLrRYnDp28oIIDutsCW7aNH0qdzLruPybgQgmEcs6h8YWDrGljCHtc14sj1IJyZGYD7QNpVmmHoW71qGOCXsdIZwznUDJjYgh7ysrKAMIRLwtpEsvKIoPiUP7fo5rnMlPzEIcyls0KZ5f7Yt5JI45prgyTJIhiTq44tPuVx9Gw2LHyg0Q/+QyiYV1e21V67exT1WvZuPBG1jjbWdd2B+/b/iF+GPxvd5DvHPLx8fGZtfjikM/spSYnDhUhiATKyWDAQEtewzNeiKmc5lwbIQQnzi/nYCbkBlIfKw7N8rIygGBAJ6OE8yor60+baNgl71Tm4zNXqI4apAhyaNH1qJtvRR5+eczxGcsmLDI4WuGOTHBbe5+8fAGHqcU6NPaxABIZG2OCJUqBnHMoOf4DtWV65T/jXMttoSKdueUc2nSgl6UcQhlLHNIU4gSRY1x/kylXRNGKmJgpFjXn5pmssrKs+74HCnLgCiGQqo4ixxeHBtIWJ4g9ZLQoVC4ecUxl2CBBAM1K5lUGWgxSSp54+G4Arrji6oK2FZ7wE11xHhtu+n/oX+wi/tdbeWHh+1kb8Mr0R/nZfHx8fHxmPr445DN7KZuPs+GDsPzygjcNGiptVCL78xSHzJxzaPpDj09sqmBvOozZ14boPwQc7Rya3YHU4IZSJ0Ukr7KygbSFwcRcBz4+c5mmyjCKgN+XvQsnWIV1xyfBsUcdnysrk0WKQwCXrKrnGXsFcs9j4Dhjjk1kXPefMgH3XyjsXvcy6fGFA8fyBIBxjuegwhwShzYf7qPz0C7CpGCETlQ5Qp5ziDGcQ6m0Kw6pU1RWBiByHekmyzlUZFkZgC0MNGmOK+b0p0xOUPbSV75m1KD2SEAlKYNuedYk/azP7e2hpncj/cH5xKrnF7ZxwA2qFgvOGlxUW1PNqe/9OpHPbofP7ISFZ5fydH18fHx8phBfHPKZvQiBctVXoenUgjcN6SrtsgBxyPJyMWaAOPSusxZyyqplBITp3kACC5R2pBoAdfY7aEKGSlKEh7belpLka/dA164hY91uZTaK36nMx2dEamMBrj6xkR8+30Pyoi+ht74EW+8cdXzGdMvKZBFZbjkuXFXL4/Y6jEw35ErLunbh/OULw8SiRNYaNyB6PHLikJ3sIdu2bcyxjpkTh8YWNtyysrkjDv3m2f2s0b2MvTGdQypxwmO2sk+nXdFCM6ZOHFJyrtgpCaQuTBwadBSPU4bYn7ZoEh1kK5aMOkZTFTJKTgibnJ/19pcOcqqyk8DiMwvfOJcntGCEbYWAaG1eHQp9fHx8fGYmvjjkc1wS0lVanIq8A6nTpoMu7BnRLr0qYrBhzbIhy6Kk5kRJGUDYcNvZD5Y1ZJNkfnkD4Vvein3n3w0ZO5CxCCr2hMJsfXzmOh+5cCmJrM1P+9fjhKqxN98+6tis7bgtvbXiryd1sSAdde7Do7PrIXfhpltRnvwf6N03ZGwykws3Lv4zHPbCilds/h/0758Pqd5Rx9p5lpU5QkPkUSo0I7FNzN5DSCnZ0tLPdx7exR9ePMQ18zw35iidysAV5xMEEdnRnUNpzzmkT6U4FMiJQ5PjpklmbcIUXlYGHPn+scfuWNafMomQRgvGxhwnc5+9MQS6YjFth1c2vUyd6CGwqAhx6JR3YV/1DYjWlfzcfHx8fHymn9lvM/DxKYKgodIqqxADr7hW8HFmugadQzNFhAjXDP4zIzUCwpoTYdQAy2qjdBwIsDLdhwCyr/6RwK57sKqWox54yp2d9R7s+lMmIdWZEaKdj89MZfW8Mi5eVcfPnj7ER9ZegbLlDrAyoA1/uM+YttvKfgLOIYAlS1aw44UmFu54AOPcTyC7diIA+g9B1ZFMkkTWQhf2hEqUIhHX6RE0e90Fux+CtW8ccaxj51lWpmhjlt/NZJJ3f57A89/nJ+r1bEzVslrZz08Chzm5dzdOpA5llE5lAEFdYUCGUM3RhYlMxhVo9CksK1MGM4emIJC6wO/SwXLzccWhDCGRJRkaW3yy9QhkgUnoWPb4jk5eb/4FR1NQVl5R+A5qlqPWLC/5efn4+Pj4zAx855DPcUlIV2mTlQgrmVe2TcZyM4fETBEhwtUAJGSAPXKeu2wO5A0BrF9YSa8TIptwy8q2bn4ZSypsXv4RhJmEQy8Ojh1IW4TUmeHo8vGZybx1QzOd8Qyby89HyQ7AnkdHHOdmDmURE3QinrqwkkftdagHnwYzhezc6a7oOzRkXDLrBlJrExGHwkOvffb2v4w61rFyzqGxxSEpVIRj4TiTEwpcctJ9pLfex++e3kX2+V/QIyPcZN/K/xjf5oPGvZxYkcZccB7y8v8ccze5VvaqmRg1QyfnHDICUxdIHQgEyEp10kqt0qZNSGSQQh1RNB0LmStRHEccSsZdwU0PlY29w5wQNgni0EOv7uHt6oOYK66CigUl37+Pj4+Pz+zGdw75HJcEvcwhAPpbxm29mjEdKrBmjggRcZ1Dh0QDnY43CxmYG+LQKc2VPC5DOF4r+3TbDg7Lar53cCH/h0DseRQWnAG43cqCijMjsqB8fGYyF62sozKs8+NDi/iGEYXX7kBZ/rph47KmTYgMqQk6EU9dWMnnnTW8z74bDr+E6PbEof6DQ8blAqknIg4pXtesXmJEV5yPsvN+N9tIGT7/ZWc9d8h413KhIRwb6/mfYiw+e8wQ55mA+adPE9x8KwH7TCrUOPte/wsiDY0INUCgYSXBPDOdgrpKXIZRpAVWGkZwkGUzXllZYOqcQ0FNJU0ALZuclFnNZNZzDhmRgjNzRJ5lZcm4O+ERDI9TtjaJ4tCyw3dSLhLIcz5W8n37+Pj4+Mx+fOeQz3FJRUinNScO5dHOPldWJgqcUZw0POfQQLiZTjxha46UlTVXhbD0GJo5gO1IQvH9HKCBu3dnyFSvwd79yODY/rRFwM8c8vEZF0NTuPbk+dy9tYfsgvNHdQ5lzQyacI5kvBRJY0WIluha98W2uxC5DLERnEM61sTCjYUgHajhNutcng+ehZJoh9ZXRhya8sKUx3OHSEVDdbLod30Knv9J8ec2FXTuQHvtNjLoXKM+jR1tZOGGqwgtPI1g0zpEAWHfIV0ljucIyoxcWpYThwJT6BwKGQopDOxM6QUTOKpbWYFh1ABCyy+QOpNyPwP6OGVlSmDyxKGlyZdoV+oQIwVK+/j4+Pgc9/jikM9xyVlLq+kUXu5CXuKQW1amaDPEoRIsRxpRwvPXQKQWAFHETe1MRAhBrKIaQ2bZvL+DJtlKRdNKBLBRPxHl4LODncwGUiYB4cyJLm0+PpPN9evnk7UdtumrUXr3Qrxj2Jjcw7dSgoD7JYsWc4g6nFduGVwm+4Y7h4wJdisD0D7yGPfO+zBf2tLoLtj98IjjciVR45aVKRoVsheBRCa7JnRuk03rn75ERmq8w/oC2UAlnPFBUNSi9uU6hzy30Cgl12bWzW0yjCkUh3SVlAwUJQ717n6ezsd+iLnrsVHHpEybmJIprjxby6+sLJt0f59inMBrJeCtnwRxSLOSpLRyv6OYj4+Pj8+I+OKQz3FJRdigeYHXTjYPcSht2uhi4g8wJUMIeP8DrH7zF7ju3FPcZXPEOQRQU+2Wzf3lqeeoFHEWLV/Llevm8bXD68AxMf/0GcB1DhnCOmLr9/HxGZV188upLwtw38BCd8HBZ4eNsTNupos6QecQuKVlL9hLUeJtAMja1cPEof5UFkNMPOxfq2jk7Wcv57WBINlQPbJj64jjMuk8y8oUjSrZ6553onNC5zaZtLW1UrX3Tv6sX87nP/RutE9vRT33k0XvL+RlDgGjdssyvdI8ZQoDqQO6SgoDJ1tY5pB5eBNlP38dNQ98GvV37x41RymVtYkp2SKdQ95718qMfS5pT+wZR3jVgjlxqPTdynQ7hTWBToQ+Pj4+PnMbXxzyOW65cN1C+mSYrgPbxx2bsRx0bJSZkjkEiLpVEIhBxGspW2j73RnM0mY3ZHvPpqcBiDSs4G9ft4IXrcU8XP8e9M234Gy6jf60iSH8zCEfn3wQQnDxqjpuPlCFVDQ4MFwcyiS90NzgxK8nbzq1ieqVZwOQRUMsOAPRP7SsrD+Zp1iTB2cucctt2wMLkB3Dr+um7WCZ+XUrQ1GJ4pWgzWDn0CN/+hmGsDnv+o9yUnMFihGckCskoCkM4IkHmZHb2eecQ1NZzhvS3cwhWWC3ss2//zIZqXFb6E0oqW4YaB1xXDJrE1EyRYlDg5NG45SVWSlP7Bnnu1oLea3uJ8E5ZDgpHF8c8vHx8fEZBV8c8jlued2aeh52TqZs5x+GzWYfiysOWVM6U5o30Zw4NHdu+Brr6wH40HKvrKFqMUtro7x5fRMfPXApqZp1OPf8E4qVQmfirgMfn+OFi1bW0ZlRGKhYjXPguWHr+wfcz1woMnFxqCyoc84FVwKwz6mnR5+HSPcOeeiNJzwnSAk+ww3lQRbXRNhuz0N07RjmEulPme71AkAd51p+tFiVnJnOoZ3tcar33U2P3kD9qrNKsk9FEWSVscWhvAW2EhLUVVLSQBbgHHrqla2s7riH+42LubVvtbuw/bURx6a9VvYiUPj7XsmzrMzJOYHGcfkaXiaRU2JxyLIdAjKDnCMl6D4+Pj4+pccXh3yOW5oqw/yh8n1IxyFz77+MOTZj2mjYqDMlc+hovMyhuVRWRoVb9nJC173u68pFAHzi0uXYQuUn0Q+iJVp4n3o3GpafOeTjkyfnLKvB0BS2aKsRLS+BbQ1ZP+CJQ6KY7JWRaFiHo+jskQ28GvcevI8KpU4kPSdIiYSGM5dU8/RADSLTD/H2Iet6kibGoDg09rVcKEeuKSLZNWo50nTyxOZdnKtsQjvhupJmyJia97cfJZDaGnQOTd33YUhXSRGAPJ1Dbb1JDvzhCwSEycXv+QIVC09yV7RvGXF8yrRdp1gxziE9P3FI5vKSxjlGJGiQkgZWamRxrlgG0hZhkZ5b9wo+Pj4+PiXFF4d8jmtOWnciP7SuJPjaLcjWTaOOy1gOBhbqjHYOzaHZwIYTyCx7PUq8BSdaP/izNVaEeNeZC/natmpa5l3KR7Q7CNoJ3znk45MnkYDG2Uur+XN3E8JMYm65a8j6RMJ7IB2hhXlR6EGcS7/EPZE38ESnl2VzVDv7ZKrU4lAVm7Ou85DObUPW9aWyRzmHxj6eOEpwFlYazMKybqaC0L6HCAiL6CnXl3S/tu6JeKMEUjuWJ4JMqXPI7VYmrPz+Do/9+B94i7yXQ6tuJNK0lkULFtAuK5Btm0ccn8xaRElAsKLgc8vXOTToehpPHApoJAhipUubOdSfNgmTORJ47ePj4+Pjcwy+OORzXHPZ2nq+a11NRo1iPfhfo47LlZWpMyWQ+mii9chlr4M51ppWv/I/cBQDKhcPWf7RC5cS1FW+138mUZEmlG7zM4d8fArgLac1c2t8Hb3lq1Du+Ch0HBFRUolc6UuJxCFAO/ujxFZfygOHvM+p5xySLa9AusddViKh4awl1exyvI5lnUNzh3qTJgZeLsw4rpdw8JhOXDMwlFrt2Q2AmHdSSffr5FxjowQi29NWVhZAsdLjjk2n01zX90s2lZ1P3Zu/DkB1xGCb04TVOnJZWSprE3ESEKoo+Nw03f09OOMEUium5xwax7kTDWgkZQArPQnOIdKogTk0keTj4+PjU1J8ccjnuGbNvDJiFbXcHX0j+vY/Q8srI47LmlkUIWdmVyxFRbzzd7D4/Ok+k5KiVC8m9Ybvw0X/NGR5dTTAFWsb+FPX/CMLZ1BQuI/PTOfS1fVEozH+q/wLoOjY9/zj4Lp0Mr9clEI5a2k1+8xy90X/Ibdk6YeX8A7pOZdKdG2tKwuyYOEykgSHhVKb7dvdzmhwpP34KFSXHfPzz8DcoWDiMH1qFeilbSkv9QgOYtTMIdvMOYemsKzMcMvKFGv8srJUKokmHOJ1p6JrrgOsKmKwXTajdm4Fxxm2jZ1NomNCsLzgc1O8vD8rPbqrKW3aGI4nbI3nHDJc55CTKW3m0EAiSUBYaCHfOeTj4+PjMzK+OORzXCOE4HVr6vm3rgtx9AjOsz8ccZyVnfqbYR+InPxGlCXDRa9rTmqki3L2OV5Jnf938fHJG0NTePOpzdy6U5Bc9UaUfU+AmSaesVBs7+G7hM4hgBObKsiiEw/UIXv2QM9ehJ1lgXDb3JfyM3zDGQvY4TTSe+CoEqK2zVzx0NVcoXgh3OOIUQHDc4PkbpOS3SU7v1JgO5KybBvxYEPJ9x00NNIiNKo4JK1pcg5hoOYhDqVTrqhiBI68h6uiBltlM4qdhp49w7bRsl4JXRHikOPl/tn9LaOOyeX9WEoAFHXM/UUCGikCyBK3sk/E3Z9RD8ZKul8fHx8fn7mDLw75HPdctqaeTitEa+25sP2eEYNHj3Rn8UWImcA5y2qoCOu8JJe5C2aio8vHZwbzV6c1YTuSp+WJCCsFB5+lrT9NFd5DcqC0D5DzyoPURAO0qI3Irl2DD+gNorRlZQBXnjCP/cp8Am0vkXz2F65TZNdDAKxW9nnHG+da7pWqHsAToGdYWVlrf5pGOrCi88cfXCAhXSUpwqMGUkt76jOHcq3sNSc9ovPnaNKeg0c1johD1RGD7U6T+6Jj67BtdNMTwopxDgXKSMgATv/hUcfk8n5sbXzRNRrQSMggZEqbc5Xy8sQCYd855OPj4+MzMr445HPcs2FxFWVBjUdYj5Jog5aNw8aYGc8O7osQMwJDU7hibQMvOcvdBYrfrczHpxCW1kZZ1RDjZ4ebkIqG3PkQ7f0ZzlJeIxFbBOGqkh5PCMHJzeXsMOuge4/7H1AvPEdOCa+tIUPlwIr3csiuJHzXx3Ge/g72nse84/XmdzzvmrLd9vKLZlhZ2b7OOI2iC61qQcn3HdQVEiI8aiA10xVILb3jjZM7lPFCzjXjSLldVcTgsKx2Xwy0DtvGMHPOoYqCzy2gq7TKKmTfEXHI2XIXztZ7Bl/3p0zCIoOjjZ/3EwmoJAkizNI6h9IJ92cMRMpKul8fHx8fn7mDLw75HPfoqsIlq+v5fstSJAK53Wuf3r0be8ufAUimPeeQL0LMGD71uhVccMnr3Re+aOfjUzBXrZvH4wcypOvX4+x6kM7ePs5UtpBdeOGkHO/EpgpeSVWjJDsHRfgyketWVlpX5vkXXMrrMl+mtWwd8vmfIPY/OXSAOk7nSa/054CswxYaJLtKen4Tpa3tMCGRJVy7sOT7Dhmq61wZoazJceS0OIeCmtfKHsZtZ5/xnEP6EOdQgF48N9wxJYJSSgJ2zjlUUfi56SptshIxcFRZ2SP/CQ/8y+DLfi8MWuaR5RUNaMQJopZYHMok3Z8xGPbLynx8fHx8RsYXh3x8gNetqWdPKkx/9Yk429zZPvnYN1Buex9ISSpd2nbLPhOnvizIxRdcgow1QmXpH5B8fOY6rz9xHgBbQutRWjcS3XE7IZElsOp1k3K8E5vK2eO4GTly90NDV5b42nrC/HJOmF/OzeYFqN07UDL9ZHEFKIkYN/clNxGQDVQxoJTPuLKy/lbXeVVWv6Tk+w5qKnFCyBG6ZaUt+0io9xSWWSuKwFRy4tDY5VZmxnMOHZU5FDJUND1AWokMc4FlLIeY9MKfiygrC2gKrVShJY44ksRAG6JrO1gZZKqH+EA/YTKIccKoAaJBjQ5ZSTjTOWKZe7GYKffv6bey9/Hx8fEZDV8c8vEBLlhRi6EqbAychtryImQGkB3bEFYaUj0k07myMj9zaEah6ohPbYb1757uM/HxmXUsrY2yel4Z3+lej9SCnL/1X8lKldDyCybleCc2VbBHuuKQONaJMwnC+1s3LOCHPSeTEW550bPGmUeOJcTYG3vX+nnzGmmzIljxjpKf30RId+0HQK1sLvm+g4bKgAwis8PFoYG0hY7luqnG+x2WGFv1xJ5xnENZbzLHCA516VRFDOJq+TAXWNq0KROe4FSMOKQrtMlK9FS7m4fk2JDsQDgWdGzD+ek1LHnui4REJq9OYSGvTE2VZklFSTOd60Tot7L38fHx8RkZXxzy8cHtDnJycwWPxb1wz/Yt0LXD/Xe8jbQvDs1cFP8y5uNTLO84YwH3tUbZeeZ/oGLzqroaUeIw6hxVEYOLzzp98HVOtAEm5dp67cmNLGxs4DbnAl5xlvKsVUCAveccWrpoEZ1OjIHutpKf30QQvQfcf5RPgjikqfQ7QcQI3cr6UiY6NlKZehetkwtzHs85lM2JQ0PDn6ujBr2iDJkYKg6lTJsyiheHgp6YozimKzwlOhHSC83ecS9q2ybCfTspVzJ5dQoTQtCjuR3Q6D9U8PmMhp0LGM/DveTj4+Pjc3ziP1X5+HhsWFzJfZ1eYOXex1BSXi7BQCuZtB9I7ePjM/e4fv18YkGNb7afzHdjH+cPle+d1ON99g3ryYbdcrZX5FElUZNwbS0L6tz5N+ex6F3/y3XZf2FrusJdoeUjDrllZysWL6JPKcMamDnOoWTWQhs4hCkCJQ8OBwgZCv1OcMRW9q44ZCGnYaJksNPXOC3eLU8cCgSGikOVYYMeGUMe4xxKZm3KRAJLDeX33jiGgKbQKivdFwOHIX5U4PWzPwAgkmmnTM2CMX7mEECf7nXJK6E45KS90rk8z8HHx8fH5/jDF4d8fDw2LKpin1ONpYWRm/84uDzb14K0TfeF4juHfHx85g5hQ+OGDc38+ZUWvtx5Nr01p076MZWapQA8by09snAShffTF9cQCwU4JGvzP5Z3rTditYQr6ghlu0nGh4sl08Gze7qpp4NstHFSSruCmkq/DLkizDGZN71JEwNrWiZKsprXZSvdN+Y4y+suGggNFUGqIwYddnRYSWMqa1NOAksvzjHnBlJ7It1AK8TbAXAUHeKu46zC6SYmUpBHIDVAPJAThw6PPbAQzJw45GcO+fj4+PiMjC8O+fh4nLqwEiEU2oJLEa2vDC7P9hxGZ+oDOH18fHymgg9fsJQPX7CUm85ZzIfOL33A8bFotW5518vOsiMLJ/HaqqkKF6+q44Csyf9YOfEjXE1k8elESaJ+cx0ceHbSzjNfXtz0KquVAwSqJyeIP2SoxGXILY06poQr5xwS0/BdaBn5iUP2oHNoeOZQqxWG1NBuZSkvc8g2imvxvqAqTJ/muY77D5Pqdt0+T5grAXCEhoZDzOrOW5ixgtVYaCV1DomsJw7lKVD5+Pj4+Bx/+OKQj49HLKizel4ZWxw3w0GqAaQewew9jC5sd5AvDvn4+MwxqqMBPnvlKj5/9RpOmF945krBLL+M3ZGTeU0uOLJskp0or1tTTz8RTC2S37FOuB7r6m9BtJZll36AG7Kfx3Qk9hPfmtTzPBarYydm6xYAzEMbif/sLXzi1TexSLSirX3DpBwzqKsk8PKgMkNLuHqTWQxhIooov5oo+YpDjhdYrRjBIcurogYddgxhJiF7RPRKZm3KSOAEinvvB3WVFUuX4iCQ/Yd55IVXAahYdwUALwU3HBmcZ0lXOGjQpVQj+0ooDlkpt1OfHhp/sI+Pj4/PcYkvDvn4HMXpi6t4tM8tPegNL0DGGpADrUc5h/zMIR8fH58Jseoqnr/wl3TKox7GJ/naevGqOj5y4TI3wDmfY8UaUE99FwCV0QDOwnN4SDkLZed9g8KC8/R3se/4xOSdtJTwm7eh/PqvwLZQbn47gUPP8D3ran562h9hw/sm5bAbFlUxID0B4Zjcof6UW1amaIFJOfaYBPIVhzLuP7Sh4lB1xKAbr3TsqNKyfV0JykQSPVpZ9Kmdv7qRTlnOth3baTu8l5QaY93r3sUm/UT+u++o7n95hkFHAhrt4ihxqGsX8qsroGN7Uedn2Q66ncRUQlPeZc7Hx8fHZ/ZQMnFICPFjIUS7EOLVEdZ9RgghhRA1pTqej89k8KHzl7J+w7kA7HQaIVoP8TY0POeQnznk4+PjM2HWNZWTIoipeCLDJLsyg7rKP1yxCnX+yVA2P69txFEP0a9bXc/N8ZMRVgp2PQiA3PgblG13Tcbpuvvf9RBa93bU/gPw6FdRBw7yDeODfMW6gTPXr5+0465siFFb7ZZJyUz/kHV9KZOQ6hQV3DxRDEMnQWhccUiaIzeQqIoE6JbDxaGtrQNUKkkC0eLDvS9aWUerrKT14B6WBBMYFfOgchEPn/ljXnUWHRmYZxv56ojBAbsSmSsr2/UgItEGh14o6vziGYswGSzNLynz8fHx8RmdUjqHfgpccexCIUQz8DpgfwmP5eMzKTSUB7nu8tfhoPBCog4Ra0BPtrsBnOCXlfn4+PiUgOV1Uc5cUoUV8B7Ip8iVqbzhm4i3/rLg7S5dU88zzmrSWjn25tvByqC0bYZUz7DQ5lJhPf1d7FA1jh7BeeQrxGWIPyRP4v/evp41jcXl4+TL6avcPKO9h9uGLO9NmYRVB6ahlX1QVxkgMr44ZI3sHKqKGCOKQ9taB6gQSUQRbexzNFaE6AvMY6lymFOqMohYPQAXrKylhxgZvHuHPMvKrjihgf1WpRtILSXO4ZfcFb3F3Up3JbKERRpH80vKfHx8fHxGp2TikJTyUaB7hFXfAP4emJy7Jx+fUhOq5JGzfsS305fRo1QSzHQccQ754pCPj4/PhNFUhZs/eBaBcq8r01RdW7UA6MHxxx3D4poIC2vLecY4HbHjHmjZiHBMhGNCLui3lPQeQNv5F+T6G9ldewkKDk+HzuP2T17KVSfOK/3xjuGs1YsAeOq1vUOW96VMgsKelhJrVxwKI9O9Yw+00jiIYe+phdVh4oorAGUHOgGQUrK9tZ+ITMAExCGAplOvpFl0EOnejIg1AHBCYzlVkQC9qmecz7Os7Lzl/z979x0eVZU+cPx7pqcnpJEQunRIQqiKFEHFgopgY12Exd53XQuudV3d1dWfnV3WXVcsKLYFCzaKSBWkS68BQk8vk0mmnN8fdwiBtElISALv53nyMHPPuee+d07IJO+cEkuxIx6zrxScWej9q42COiaHDuQWE0wJ2GWnMiGEEFVr0DWHlFJXAvu11usa8jpC1Ldz+l1CPiHscoVj9RYTpfzrLsiaQ0IIUW9USAxamcFkbuxQanRR95ZMz0/FVJIPS147XlCcc+qNlzrJO7wH7R+F5N32PQrN2/n9mJyehgczQ254gLjw2ie26iIswhjRtSF9PyUeb9nxXKcbh8kLltP/QUmQ1UyeDkYXVz9ySHlLcCtbhbV1YkLtPDB6IABfLF2P1pr9ucX4Sgox4Tvl5FD7c8ca1/e4UKHGyCGTSfGv8X0IjfMvvh7gtDKzSdHpnK4AvPW/7zAd3QqAL3dPnWIzkkMuLI7Ari+EEOLs1GDJIaVUMPAY8GSA9W9TSq1USq08evRoQ4UlREBatwimVWQQG/KNIdjtLP5BcTJySAgh6o0KiWk2SfeLusfxk6cHpeYQ2PL18YLiygZN146e/yzhU1Mp+N/vodTJvhVfk6Fj+NsvXkxtB1L8wG5s7c495esEzG5MvzKVFvL1ql1lh/OL3diVB9UoI4dM5PqCa5xWhsefHKrEyD5d8WHi4MEMPp2/nK0H8wnHv3NZUOSpBRjRCndcL+Oxf+QQGAt8h8T4k0MBjhwCODfNaKvF9k9R+NBBUZC7r06h7c91EaxKsAWF1el8IYQQZ4eGHDnUEWgPrFNKpQNJwGqlVMvKKmut39Ja99Va942NjW3AsIQITP/2LVh+1EgGtTX71yeQBamFEKL+xHaFiKTGjiIgqa2jCA0JZbXd2JpcH/tDvx5GDukDa/BZQwj79V0KZj9OTObPbAvpx/bnLuPj2wYSFn5qo1pqzWZMP/q9dSaXfjcYz6FNgDGtzNZI08qCrGbyCIHi3GrrmbyleFUV79UmMyooiuscK7hu0UgKvn+WCOWfFniKI4cAVGf/0puhJ/2qG55o/BvgmkMA0R374o7twTWmBQAcTbwQlZ8BPm/1J1biQG4x4eZSTLVITgkhhDj7NFhySGv9q9Y6TmvdTmvdDsgA0rTWhxrqmkLUp7S2UWwvNn6RSlT+5FAz+YRbCCGahUH3o+5c0thRBMRsUlzUPZ53c1MAOBjV3ygozsH304uUzLyv7o1nbkd1vwpXj+sJW/c2oRTTedBorGbTCbumnTbWILQyE0Mudp8L9yeT0O5icovd2JSnUUbROqxm8nUwlFQ/csjkK8FbzYLZOrgFLT0H8GJidN77/Mnxuf8Cp54csqRci88eCS17nVgQ5k8OBTitDACzFT32v3gtQRzQ0Sx3t0f5PFBwsNLqvl2LKHnvWnAXVyg7kFtMqCotS/oJIYQQlanPrew/ApYBXZRSGUqpm+urbSEaQ2pSJAe1sZ1va59/O1mzpREjEkKIM4zJbCwS3Uw8dnk3bvztLfygBzA3dJRxsDgHtn6Dfd27cGBt7Rt1ZmNyHsUU25lNXe6hRFvxYiYprcIGsKePUujwRLLjz+N29wMEZW/GtfA1vD6NFU+jLUidTwiqpAB8virrmX0leE3VfE+FGItDuy5+kV+DB3C+XoU3OBaiO516kLFd8Dy0G+K6nni800XorldAVLtaNWdr2RXXNR/wSdzvmX/Qv95UZYtSa433+8ex7/oB39oZFYoP5BYToly1GrkkhBDi7FNvf+lqrcfVUN6uvq4lxOnQpWUYbksI+3U0rZCRQ0IIcbYLc1g5v3sbrmn5NPZCNzcBOLMpyc4gCHD/+HesN35Yu0azdgDwf2vgw5xDTLSN5+YeiuBTXQPnFJX+bi7Bjkjypq1m5ZG5JK95H8XzWLS70aaV5etgFBpK8qtcI8jiK8Vrrjo5pFp0wF2YSciAifQ892ZK3F6sFjOY6meEls1Syeeu0R1RN3xQp/ZCul5IQkFnvvzf92DHSA61Pe+EOkWb5xByeC3aEoRv6RuY+kwAkxGHz6c5kOfCbnPVas0jIYQQZ58G3a1MiObMZjHRIzGc7b5y62HImkNCCHHW65oQxvrDLrQ1GF14BLvrKHk6BOv22XBkc63amj1/AQBri+PomhDGsAlPEzz65QaIunYckS1xOBxc26c177kGYyvM4DzTRiy6MUcO+Ue+VLEotdvrw6rd6OqSQ6NewXTbj2C2oJTCYbNgrqfEUEO5uHtLjprijCcnjRzSWrP5s7+QqVpQcOHfseTsJP/z+8hb+Rme0hKyikpxezzYfK7aTWsTQghx1pE5MkJUIyUpkm0HkhjGOjQK1Qy2WxZCCNGwurYM5wPXXryhEZQe2EQwmn95RvEH2yzUsqlYrnqt5kaAXGcp+7avw221Mu0P12BuhC3ia3JZcgLPfTmAAt7hevMCTI01cshmIl/7kxtVJIeK3V7syo02VzN9ymLH3IymMgJEhdgY0r01R7dHEpWdjgUjKaSUYue+/fT2/sqb3qv5YmEi02MH0XLTh6iN71O6oDVZnScRRYLRkEwrE6JO3G43GRkZuFyuxg5FiFpxOBwkJSVhtQb2+4Ukh4SoRmrrSJYsb2U8MVuhMRYGFUII0aR0SzC2BHeaI7Ac3ghAXkQXvnOdz+W/zoCLn4agqBrbOVpQQkd1gKLQdkQ2wcQQQKjdwpDurZm58TyuNy/A7FGNsiB1YmRQjSOHiku92HE3q3WsAnVdv9bs3hqPbccyIjyluN++DFNSGnvc3TlHadKGXsUX6yycu+9uerZ8kD913k/qnnfouvrPLLf7P9iySnJIiLrIyMggLCyMdu3aNc4mAULUgdaarKwsMjIyaN++fUDnyLQyIarRu03k8Wllst6QEEIIoHO8kRzKI5RgdzYAl57Xh38Wj8DkceFZ+V5A7RwtLOEctR93VMcGi7U+XJmSyLe+/tiVG5OvtFHeDzvEhFKo/LttVZEccpYlhxynMbLT4/xzYvjSdjkRRbsofncMtoO/YFr7AZZdcynByuBhl/DDH4bw0rUp5JcqfrOwBeM8f+bFli/ztvcycjtfA50uauzbEKJZcrlcREdHS2JINCtKKaKjo2s14k2SQ0JUo210CJMnXGU8aYRPSoUQQjQ9YQ4rrVsEkeE6PkLl3NRelMT0YK25F2rZG1BSUGM7WfmFtFFHMMV2achwT9mQzjFstfUwtpKHRkkO2SwmWrSINZ5UmRzyYKcUdQYmh8wmxcXX3sEG3YGgfYtwhyZichdxXv437A3uAVYHFrOJa/okMe+PQ3l+TC+ynG6mpLdkink8EeP+U+vd0oQQx0liSDRHtf2+leSQEDUY2LUdvvAkWYxaCCFEme4J4ewuMpJDPrMdc0gL7hvRiaec12J2HsXzU82LShdlHcKsNI7oNg0d7imxW8xc3Ks1i0g1DjTShyUJLeONB9VMK7PhQVnPvOQQwJAu8Zgve4FtOomnQ5+mJCgeK15Kk07cvcxqNnFD/zYsfOgCZtw2kP9M6Ct/2AohhKiRJIeECICO7QomWaJLCCGE4bHLujOw5znGk/BWoBSjkhPJj07hJ/sFmJZPqbCz1MlK8g4BEBQZ19DhnrI/Xd6N5OE3GE8aaZp1m8SW+LTCVZhdabmz1FiQ2mw989YcOqbbgIv5eeRspqeH8n5BHwASUiqfLmYyKQZ2iGZAh+jTGaIQogEopRg/fnzZc4/HQ2xsLKNGjWrEqGoWGhpaY52nn36al156qdo6s2bNYtOmTfUVlqiCJIeECID5vHvwnf9AY4chhBCiiWgTHUyH1v416cITAWPqz5UpiTyWfzUApd89WW0b7vyjAJhCYhsu0HoS7rDSuv+V+IJjGm16UteECAoJIi/7aKXlxppDpZhsZ+bIoWPGn9uWSYPak5lyG0f7PECLrkMaOyQhRAMLCQlhw4YNFBcXAzBnzhxatWrVKLF4PJ7Tfk1JDp0ekhwSIhAdL8A84NbGjkIIIURT4t+RTPmTQwAXdY8nQ8ewsd0EbFtmwr4VVZ7uK8o0HoTENGiY9SYoCvXgNuh+ZaNcvkvLcPIJpiA3q9LyYrcHO27MtqDTHNnppZTiySu6M/naC4i94ikwy8hmIc4Gl156KbNnzwbgo48+Yty4cWVlRUVFTJo0iX79+tG7d2+++OILANLT0xk8eDBpaWmkpaWxdOlSAA4ePMiQIUNITU2lZ8+eLFq0CDhxpM9nn33GxIkTAZg4cSIPPPAAF1xwAY888gg7d+7kkksuoU+fPgwePJgtW7YAsHv3bs4991z69evHE088UeW9PPfcc3Tp0oULL7yQrVu3lh3/97//Tb9+/UhJSWHs2LE4nU6WLl3Kl19+yUMPPURqaio7d+6stJ44dfJuIoQQQghRF0EtgBOTQz0Sw2kZ7uDfvit5Jeh/sPg1zOOmUzrnL9jaDTxhxyhzsT85FNx8pv0ok7nRrp0Y4WCzCsNccLjScmeJB4dy4znDk0NCiMbz5682sulAfr222T0xnKeu6FFjvRtuuIFnnnmGUaNGsX79eiZNmlSW1HnuuecYPnw4//3vf8nNzaV///5ceOGFxMXFMWfOHBwOB9u3b2fcuHGsXLmSDz/8kJEjR/LYY4/h9XoDSq5s27aNuXPnYjabGTFiBFOnTqVTp04sX76cu+66i/nz53P//fdz5513ctNNNzFlypRK21m1ahUzZsxgzZo1eDwe0tLS6NPHmCY7ZswYbr3V+ED+8ccf5+233+bee+/lyiuvZNSoUVxzzTUAREZGVlpPnBpJDgkhhBBC1IV/5BDhx4f2K6W4sHscn6/ajzdlBJadc6EoC9uSl/AevhhzueSQ1ZWDFxNmR+RpDrx5UkqRFdSBbkVrKi0vKSkBwGKX5JAQ4syTnJxMeno6H330EZdddtkJZT/88ANffvll2do9LpeLvXv3kpiYyD333MPatWsxm81s27YNgH79+jFp0iTcbjejR48mNTW1xutfe+21mM1mCgsLWbp0Kddee21Z2bGfv0uWLOHzzz8HYPz48TzyyCMV2lm0aBFXX301wcHGDphXXnl8NOqGDRt4/PHHyc3NpbCwkJEjR1YaS6D1RO1IckgIIYQQoi6i2qHNNlTLniccHtmjJR/8vJfN1h6kFH8Mq/4LgDq4tqyO1hqHO4diWyShJpnlHyhzYgoxO+dx5FAGcS2TTigrdhYBYD3D1xwSQjSeQEb4NKQrr7ySBx98kAULFpCVdXyKrdaazz//nC5dupxQ/+mnnyY+Pp5169bh8/lwOIyfj0OGDGHhwoXMnj2b8ePH89BDD3HTTTedsLOhy+U6oa2QkBAAfD4fkZGRrF27ttIYA9kdsao6EydOZNasWaSkpDBt2jQWLFhwSvVE7chvI0IIIYQQdRHRCh5Jh7YnbiV+XscYkqKCeHe/Md1MLzOG1puKjkD+QQAKSjxE6jxK7FGnNeTmrlXXfgBsWrO0QllBoZEcMp+hW9kLIcSkSZN48skn6dWr1wnHR44cyRtvvIHWGoA1a4wRlnl5eSQkJGAymXj//ffxer0A7Nmzh7i4OG699VZuvvlmVq9eDUB8fDybN2/G5/Mxc+bMSmMIDw+nffv2fPrpp4CRmFq3bh0AgwYNYsaMGQBMnz690vOHDBnCzJkzKS4upqCggK+++qqsrKCggISEBNxu9wnnh4WFUVBQUGM9cWokOSSEEEIIUUfKFlLhmNmkGNe/Df/bG4TbEY0qzkEH+3ckO2j8Ap1ZUEILVYDX0XzWG2oK2nTvD0DOzlUVygqK/H84WCQ5JIQ4MyUlJXH//fdXOP7EE0/gdrtJTk6mZ8+eZYtB33XXXbz77rsMHDiQbdu2lY3+WbBgAampqfTu3ZvPP/+8rM3nn3+eUaNGMXz4cBISEqqMY/r06bz99tukpKTQo0ePsgWwX3vtNaZMmUK/fv3Iy8ur9Ny0tDSuv/56UlNTGTt2LIMHDy4r+8tf/sKAAQO46KKL6Nq1a9nxG264gRdffJHevXuzc+fOKuuJU6OOZRebkr59++qVK1c2dhhCCCGEEHVypMDFeX+bz7/tr3KBXk7xoIdxLHkRNWwyDJvMit3ZxLxzLmHt0oid9FFjh9us5Dx7Dks9Xbnkya8wm45PTbh/yqe8dvQWGPMfSL62mhaEECJwmzdvplu3bo0dhhB1Utn3r1Jqlda678l1ZeSQEEIIIUQ9iwtz8MSo7mRGGzuw/K8oGV/0OXj3G0P9MwtLiFb5mENjGzPMZsnVohsdfen8/MsKtDOn7LizyJhWhsXeSJEJIYQQzZckh4QQQgghGsCE89px7e1P8lr8s7yw1oYnLhmdsZKsZR9QmHWACOXEFhHX2GE2OxEd+tBZZXDutyPxfPX7suPOYv9WzJIcEkIIIWpNkkNCCCGEEA3FGsSIK28i3+VhnqsTluJMor+/m17rngUgKFKSQ7UV3GU4PmXioKkl5h0/gLsYt9dHqavYqCDJISGEEKLWJDkkhBBCCNGAeraK4Pq+rblrcy++GPY9rjZDOCdnIYBMK6uL9kN4oe9CHnVNwOR2wq6fyCkqxa7cRrksSC2EEELUmiSHhBBCCCEa2DOje9C/XTQPz80hp9UIrHiMguCYxg2smbqkVyLLfN0ptYTh2fQVmYWl2Ck1CmXkkBBCCFFrkhwSQgghhGhgdouZl65Nwe318fC6cqOFQiQ5VBcpSZEEORysDx6Aadu3ZBU4sSMjh4QQQoi6kuSQEEIIIcRp0CY6mMuTE1mUHUEG/rWGZORQnVjMJoZ0juXTwmRMxVmwbzm2Y6OxzLbGDU4IIerZ4cOH+c1vfkOHDh3o06cP5557LjNnzmzw665cuZL77ruvXtoaNmwYXbp0ISUlhUGDBrF169Z6abc+1WeM06ZN45577gFg6tSpvPfee1XWTU9P58MPPyx7Xp+ve21IckgIIYQQ4jS5fUgHQLE78jy02QbBLRo7pGZrRLc4vnb2wGeyEr7nB1lzSAhxRtJaM3r0aIYMGcKuXbtYtWoVM2bMICMjo8Gv3bdvX15//fV6a2/69OmsW7eOCRMm8NBDD1Uo93q99XatumqIGO+44w5uuummKstPTg7V9+seKEkOCSGEEEKcJj1bRfD6uN50uO6veH77BZjMjR1SszW0cxzFKohdYf1ofXg+werYmkOSHBJCnDnmz5+PzWbjjjvuKDvWtm1b7r33XsBILAwePJi0tDTS0tJYunQpAAsWLGDUqFFl59xzzz1MmzYNgMmTJ9O9e3eSk5N58MEHAfj000/p2bMnKSkpDBkypEIbK1as4LzzzqN3796cd955ZaNqpk2bxpgxY7jkkkvo1KkTDz/8cI33NGTIEHbs2AFAaGgoTz75JAMGDGDZsmW8/PLL9OzZk549e/Lqq6+WnfPee++RnJxMSkoK48ePB+Do0aOMHTuWfv360a9fP5YsWQLATz/9RGpqKqmpqfTu3ZuCggIOHjzIkCFDSE1NpWfPnixatKjOMX7wwQf079+f1NRUbr/99rKE0TvvvEPnzp0ZOnRoWSwATz/9NC+99BIAO3bs4MILLyQlJYW0tDR27tzJ5MmTWbRoEampqbzyyisnvO7Z2dmMHj2a5ORkBg4cyPr168vanDRpEsOGDaNDhw71kkyynHILQgghhBAiYFemJPoftWrUOJq7FiE2ereJ4tuCNO4tXcpA6w7QyILUQoiG8+1kOPRr/bbZshdc+nyVxRs3biQtLa3K8ri4OObMmYPD4WD79u2MGzeOlStXVlk/OzubmTNnsmXLFpRS5ObmAvDMM8/w/fff06pVq7Jj5XXt2pWFCxdisViYO3cuf/rTn/j8888BWLt2LWvWrMFut9OlSxfuvfdeWrduXWUMX331Fb169QKgqKiInj178swzz7Bq1Sreeecdli9fjtaaAQMGMHToUGw2G8899xxLliwhJiaG7OxsAO6//37+8Ic/cP7557N3715GjhzJ5s2beemll5gyZQqDBg2isLAQh8PBW2+9xciRI3nsscfwer04nc4q46suxs2bN/PCCy+wZMkSrFYrd911F9OnT+eiiy7iqaeeYtWqVURERHDBBRfQu3fvCu3eeOONTJ48mauvvhqXy4XP5+P555/npZde4uuvvwaMpNwxTz31FL1792bWrFnMnz+fm266ibVr1wKwZcsWfvzxRwoKCujSpQt33nknVqu12vuqjiSHhBBCCCFEszSiWxzvfNedux2KkXoJ2hqMkpFDQogz2N13383ixYux2Wz88ssvuN1u7rnnHtauXYvZbGbbtm3Vnh8eHo7D4eCWW27h8ssvLxuhMmjQICZOnMh1113HmDFjKpyXl5fHhAkT2L59O0op3G53WdmIESOIiIgAoHv37uzZs6fS5NCNN95IUFAQ7dq144033gDAbDYzduxYABYvXszVV19NSEgIAGPGjGHRokUopbjmmmuIiTHW6WvRwpiSPXfuXDZt2lTWfn5+PgUFBQwaNIgHHniAG2+8kTFjxpCUlES/fv2YNGkSbreb0aNHk5qaWunrU1OM8+bNY9WqVfTr1w+A4uJi4uLiWL58OcOGDSM21th04vrrr6/QFwUFBezfv5+rr74aAIej5verxYsXlyXhhg8fTlZWFnl5eQBcfvnl2O127HY7cXFxHD58mKSkpBrbrIokh4QQQgghRLN0fd/WvDl/Bw+7b6NzlJnx428myCy/3gohGkg1I3waSo8ePcqSAwBTpkwhMzOTvn37AvDKK68QHx/PunXr8Pl8ZQkHi8WCz+crO8/lcpUdX7FiBfPmzWPGjBm8+eabzJ8/n6lTp7J8+XJmz55Nampq2eiUY5544gkuuOACZs6cSXp6OsOGDSsrs9uPj9g0m814PJ5K72X69OllcR/jcDgwm40p1lrrSs/TWqOUqnDc5/OxbNkygoKCTjg+efJkLr/8cr755hsGDhzI3LlzGTJkCAsXLmT27NmMHz+ehx56qNJ1gAKJccKECfztb387oc6sWbMqjfHk+6itys45dp1AX/dAyZpDQgghhBCiWYoOtTPxvHZ85h3K5tbXExR/TmOHJIQQ9Wr48OG4XC7++c9/lh0rPyUqLy+PhIQETCYT77//ftn6N23btmXTpk2UlJSQl5fHvHnzACgsLCQvL4/LLruMV199tSwJtHPnTgYMGMAzzzxDTEwM+/btOyGOvLw8WrUypkMfW7uovg0ZMoRZs2bhdDopKipi5syZDB48mBEjRvDJJ5+QlZUFUDat7OKLL+bNN98sO7/8vfTq1YtHHnmEvn37smXLFvbs2UNcXBy33norN998M6tXr65TjCNGjOCzzz7jyJEjZbHs2bOHAQMGsGDBArKysnC73Xz66acVzg0PDycpKYlZs2YBUFJSgtPpJCwsjIKCgipfk+nTpwPGdLOYmBjCw8PrFHtNJDkkhBBCCCGarduGdCAq2Eq76JDGDkUIIeqdUopZs2bx008/0b59e/r378+ECRN44YUXALjrrrt49913GThwINu2bSubktW6dWuuu+46kpOTufHGG8vWvykoKGDUqFEkJyczdOhQXnnlFQAeeughevXqRc+ePRkyZAgpKSknxPHwww/z6KOPMmjQoAbbVSwtLY2JEyfSv39/BgwYwC233ELv3r3p0aMHjz32GEOHDiUlJYUHHngAgNdff52VK1eSnJxM9+7dmTp1KgCvvvpq2eLaQUFBXHrppSxYsKBsgerPP/+c+++/v04xdu/enWeffZaLL76Y5ORkLrroIg4ePEhCQgJPP/005557LhdeeGGV60S9//77vP766yQnJ3Peeedx6NAhkpOTsVgspKSklPXHMU8//XTZPU6ePJl33323TnEHQtVlaFND69u3r65uES0hhBBCCCGOyXWWEmK3YDXL555CiPq1efNmunXr1thhCFEnlX3/KqVWaa37nlxXJmULIYQQQohmLTLY1tghCCGEEM1avX28opT6r1LqiFJqQ7ljLyqltiil1iulZiqlIuvrekIIIYQQQgghhBDi1NXn2NtpwCUnHZsD9NRaJwPbgEfr8XpCCCGEEEIIIUSDaopLsQhRk9p+39ZbckhrvRDIPunYD1rrY/up/Qwk1df1hBBCCCGEEEKIhuRwOMjKypIEkWhWtNZkZWXhcDgCPud0rjk0Cfj4NF5PCCGEEEIIIYSos6SkJDIyMjh69GhjhyJErTgcDpKSAh+fc1qSQ0qpxwAPML2aOrcBtwG0adPmdIQlhBBCCCGEEEJUyWq10r59+8YOQ4gG1+D7fSqlJgCjgBt1NWPxtNZvaa37aq37xsbGNnRYQgghhBBCCCGEEIIGHjmklLoEeAQYqrV2NuS1hBBCCCGEEEIIIUTt1edW9h8By4AuSqkMpdTNwJtAGDBHKbVWKTW1vq4nhBBCCCGEEEIIIU6daoqrriuljgJ7AqweA2Q2YDji1EkfNQ/ST02f9FHzIP3UPEg/NX3SR82D9FPTJ33UPEg/NX1nSh+11VpXWMunSSaHakMptVJr3bex4xBVkz5qHqSfmj7po+ZB+ql5kH5q+qSPmgfpp6ZP+qh5kH5q+s70PmrwBamFEEIIIYQQQgghRNMlySEhhBBCCCGEEEKIs9iZkBx6q7EDEDWSPmoepJ+aPumj5kH6qXmQfmr6pI+aB+mnpk/6qHmQfmr6zug+avZrDgkhhBBCCCGEEEKIujsTRg4JIYQQQgghhBBCiDqS5JAQQgghhBBCCCHEWey0JYeUUpcopbYqpXYopSafVHavv2yjUurvVZz/F6XUeqXUWqXUD0qpxHJlj/rb3aqUGlnF+ff462ilVEy54xFKqa+UUuv81/9dfd1zc1RVPymlPva/9muVUulKqbVVnN9CKTVHKbXd/2+U/3i0UupHpVShUurNaq7fXim13H/+x0opm/+4Ukq97o9rvVIqrZ5vvdloqn3kLxvmv/5GpdRP9XjbzU4T6Keqfubd6P8/tF4ptVQplVKPt92sNOE+kvelchqwny5SSq1SSv3q/3d4FefL+1IAmmo/+cvkvYkm0UfyvhSAJtxP8t7k14B91L/c+euUUldXcb68LwWgqfaTv6xpvi9prRv8CzADO4EOgA1YB3T3l10AzAXs/udxVbQRXu7xfcBU/+Pu/vbsQHv/dcyVnN8baAekAzHljv8JeMH/OBbIBmyn43Vpal/V9dNJ9f4PeLKKNv4OTPY/nlzutQ0BzgfuAN6sJoZPgBv8j6cCd/ofXwZ8CyhgILC8sV8v6aMKfRQJbALa+J9X+n/5bPhqIv1U1c+884Ao/+NL5f9Sk+wjeV86Pf3UG0j0P+4J7K/ifHlfat79FIm8NzWVPpL3pebdT/Le1PB9FAxY/I8TgCPHnp90vrwvNe9+iqSJvi+drs45F/i+3PNHgUfLvWgX1rK9R4F/ntyW//n3wLnVnHvyD7pHgX/4/xO1B3YApsbumEb5Zqimn8odU8A+oFMVbWwFEvyPE4CtJ5VPpIo/lvxtZ5b7z1YWD/AvYFxl1zmbvpp4H90FPNvYr1FT+Grsfjqp3gk/804qi6KKXw7P9K+m3EfyvnR6+6lcG1n4P6g66bi8LzXvfpL3pibQRyfVkfelZthP8t502vuoPXCYk5IO8r50RvRTk31fOl3Tylr5X/hjMvzHADoDg/1Drn5SSvWrqhGl1HNKqX3AjcCTAbQdiDeBbsAB4Ffgfq21rxbnn0kCeS0HA4e11turaCNea30QwP9vXC2uHw3kaq09lVz/VPv5TNGU+6gzEKWUWuAfrnxTLdo90zR2PwXqZoxPmM5GTbmP5H3puNPVT2OBNVrrkpOOy/tSYJpyP8l7k6Gx+yhQZ/P7EjTtfpL3JkOD9pFSaoBSaiPGa3xHuZ9rx8j7UmCacj812fcly2m6jqrkmC4XQxTG0Ld+wCdKqQ7an1Y74QStHwMeU0o9CtwDPFVD24EYCawFhgMdgTlKqUVa6/xatHGmCOS1HAd81AjXP9V+PlM05T6yAH2AEUAQsEwp9bPWelsDxdKUNXY/1UgpdQHGL+HnN1YMjawp95G8Lx3X4P2klOoBvABcXMvry/vScU25n+S9ydDYfRTI+Wf7+xI07X6S9yZDg/aR1no50EMp1Q14Vyn1rdbaFeD15X3puKbcT032fel0jRzKAFqXe56EkXU+VvY/bVgB+IAYpdQ7/kWavqmkvQ8xMt41tR2I35W7/g5gN9C1FuefSap9LZVSFmAM8HG5Yyf302GlVIK/7NgczEBlApH+65x8/VPt5zNFU++j77TWRVrrTGAhkFKLts8kjd1P1VJKJQP/Aa7SWmfVV7vNTFPuI3lfOq5B+0kplQTMBG7SWu+s5PryvhSYpt5P8t7U+H1ULXlfKtOU+0nemwyn5fcHrfVmoAhjfajy5H0pME29n5rk+9LpSg79AnTyr9htA24AvvSXzcLIQKOU6oyxYFSm1vp3WutUrfVl/rJO5dq7Etjif/wlcINSyq6Uag90AlbUIra9GFk7lFLxQBdgV+1v8YxQXT8BXAhs0VpnHDtwcj/560/wP54AfBHoxf2jxX4Erqnk/C+Bm5RhIJB3bJjfWaYp99EXGFNELUqpYGAAsLlWd3fmaNR+qo5Sqg3wP2B8U/iEohE12T5C3pfKa7B+UkpFArMx1iBYUtnF5X0pYE25n+S9ydCofVQdeV86QZPtJ+S96ZiG7KP2x5IJSqm2GK9xevmLy/tSwJpyPzXd9yV9+haFugzYhrFq+GPljtuAD4ANwGpgeBXnf+6vsx74CmhVruwxf7tbgUurOP8+jCydByNr9x//8UTgB4z5ghuA356u16QpflXVT/6yaRhzKqs7PxqYB2z3/9uiXFk6xs4Ghf6+qGzF+A4Yyb0dwKcc38VOAVP8cf0K9G3s10r66MQ+8pc9hLH6/gbg9439Wp3l/VTVz7z/ADkYQ8PXAisb+7WSPpL3pcboJ+BxjE/71pb7qrBjSFU/85D3pWbRT/4yeW9qGn0k70vNu5/kvanh+2g8sNHfN6uB0VWcL+9Lzbif/GVN8n1J+YMTQgghhBBCCCGEEGeh0zWtTAghhBBCCCGEEEI0QZIcEkIIIYQQQgghhDiLSXJICCGEEEIIIYQQ4iwmySEhhBBCCCGEEEKIs5gkh4QQQgghhBBCCCHOYpIcEkIIIYQQQgghhDiLSXJICCGEEEIIIYQQ4iwmySEhhBBCCCGEEEKIs5gkh4QQQgghhBBCCCHOYpIcEkIIIYQQQgghhDiLSXJICCGEEEIIIYQQ4iwmySEhhBBCCCGEEEKIs5gkh4QQQgghhBBCCCHOYpIcEkIIIYQQQgghhDiLSXJICCGEEEIIIYQQ4iwmySEhhBCiiVJKtVNKaaWUJYC6E5VSi09TXIOUUtuVUoVKqdGn45riOKVUG/9rb67PuvUQ12n7HhRCCCFE/ZLkkBBCCFEPlFLpSqlSpVTMScfX+hM87RoptPJJpkL/V7pSavIpNPkM8KbWOlRrPauewjwr1EcCRWu91//ae+uz7umklHpaKfVBPbY3USnlLfc9fuwrsR7aNiulnlVKHVBKFSil1iilIushbCGEEKLJkOSQEEIIUX92A+OOPVFK9QKCGi+cCiK11qEYMT6plLqkNieXG8HUFthYlwACGQV1tjsdo3zOUMv8ibDyXwfqod0/A+cB5wLhwHjAVQ/tCiGEEE2GJIeEEEKI+vM+cFO55xOA98pXUEpFKKXeU0odVUrtUUo9rpQy+cvMSqmXlFKZSqldwOWVnPu2UuqgUmq/fzRDrRMJWutlGMmdnv52JymlNiulcpRS3yul2pa7plZK3a2U2g5sV0rtBDoAX/lHZtiVUolKqS+VUtlKqR1KqVvLnf+0UuozpdQHSql8YKJSaoE/9qX+Nr5SSkUrpaYrpfKVUr+UH2mllHpNKbXPX7ZKKTX4pPY/8b+mBUqpjUqpvuXKWyul/ud/vbOUUm+WK6vyvk+mlLrS33auP/5u5crSlVIPKqXWK6XylFIfK6UclbTRDZgKnOu/71z/8WlKqX8qpb5RShUBFyilLvePUMn33/vT5do5YbqhP56/KKWW+F+DH5R/BFtt6vrLb/J/X2YppZ7w39uFVbwm0f5+z1dKrQA6nlReab8pIyn5J+B6/+uwzn/8d/7+KFBK7VJK3V5Vf9SGUqqj/3szzf88URn/x4aVe03+ppRa4e+/L5RSLfxlUcDvgVu11nu0YYPWWpJDQgghziiSHBJCCCHqz89AuFKqmzKSNtcDJ0+deQOIwEiwDMVIJv3OX3YrMAroDfQFrjnp3HcBD3COv87FwC21CVAZBgE9gDXKWDPoT8AYIBZYBHx00mmjgQFAd611R2AvcIV/ZEaJv34GkOiP+a9KqRHlzr8K+AyIBKb7j92AMQKjFUZSYRnwDtAC2Aw8Ve78X4BUf9mHwKcnJV+uBGb42/8SeNN/r2bga2AP0M5/rRn+skDu+9hr1tlf9nt/3W8wkmO2ctWuAy4B2gPJwMST29Fabwbu4PgIl8hyxb8BngPCgMVAEcb3RiRGkvBOVf36Tr/B+D6KA2zAg7Wtq5TqDvwDuBFIwPg+bVVNO1MwRtAkAJP8X+VV2m9a6++AvwIf+1+HFH/9Ixjf/+H++F45ltDxx5erlDq/mngqpbXeCTwCTFdKBWN8n03TWi8oV+0mf/yJGP/HXvcf7+V/fo1S6pBSaptS6u7axiCEEEI0dZIcEkIIIerXsdFDFwFbgP3HCsoljB7VWhdordOB/8NIkoCRYHhVa71Pa50N/K3cufHApcDvtdZFWusjwCsYSZZAZQLZwH+AyVrrecDtwN+01pu11h6MP9pTTxpF8zetdbbWuvjkBpVSrYHzgUe01i6t9Vp/++PLVVumtZ6ltfaVa+MdrfVOrXUe8C2wU2s91x/DpxjJLwC01h9orbO01h6t9f8BdqBLufYXa62/8a+r8z5wLNnQH+OP/Yf8r5lLa31svZ9A7vuY64HZWus5Wms38BLGdMHzytV5XWt9wN9vX2EkRWrjC631Ev9r5NJaL9Ba/+p/vh4jOTW0mvPf0Vpv87++n9Rw/arqXgN8pbVerLUuBZ4EdGUN+L+XxwJP+l/bDRjJyzIB9Bsn1Z/t/57QWuufgB+AweXKI8v1X2UG+hNIx752ljv338B2YDlGMuuxk8593z8iqAh4ArjOf49JGEmyzhiJv2uAp5VSF1UThxBCCNHsSHJICCGEqF/vY4zMmMhJU8qAGIyRGnvKHdvD8dEZicC+k8qOaQtYgYPH/vgF/oUx+iNQMVrrKK11N631sZERbYHXyrWZDShOHDGyj6olAtla64Iq7qmq8w+Xe1xcyfPQY0+UUn/0TzfK88cYgfFaHnOo3GMn4PBPo2oN7PEnf04WyH2Xv8eyvtBa+/z3VL7uyTGEUjsnvEZKqQFKqR+VMR0uD2PEUUzlp9b6+lXVPeH7T2vtBLKqaCMWsFD192sg/cZJ9S9VSv3snwKWC1xWXf1K/OxPIB376nhS+b8xplK+4R/xVt7J92H1X/tYMvMZrXWxP1E3wx+bEEIIccaQ5JAQQghRj7TWezAWpr4M+N9JxZmAGyMxcUwbjo8uOoiR0Chfdsw+oAQjwXPsj99wrXWPUwx5H3D7SX9UB2mtl5a/rWrOPwC0UEqFnRT3/nLPqzu/Wv51ah7BGFUV5Z+KlYeRyKnJPqCNqnwR7EDu+5gDlOszpZTC6Kf9ldStSVWvxcnHP8SYItdaax2BsVZRIPd8Kg5ijJQBQCkVBERXUfcoxnSrSr9fA+i3E+5XKWUHPscYlRXvr/8N9XTPSqlQ4FXgbYyRPy1OqnLyfbgx/r+uryxeIYQQ4kwjySEhhBCi/t0MDPdPUSnjn/b0CfCcUirMP4XpAY6vS/QJcJ9SKsm/EO7kcucexJhm839KqXCllMm/0G51U40CMRV4VCnVA8oWvb420JO11vuApcDflFIOpVQyxv1Pr/7MgIVhJCGOAhal1JMYa9IEYgVGwuN5pVSIP75B/rLa3PcnwOVKqRFKKSvwR4xEXWWJpJocBpJOWq+oMmEYI7JcSqn+GKPRGtpnwBVKqfP88f2ZKpIz/u/l/2EkWoL96xVNKFelpn47DLRT/sXYMUbU2f31PUqpSzHW1KovrwGrtNa3ALMx+r+83yqluvvXJHoG+Exr7fWvV7QIeEwZi693w5hm+HU9xiaEEEI0OkkOCSGEEPXMv27KyiqK78VYbHgXxsLDHwL/9Zf9G/geWAespuLIo5sw/ojeBORg/DGfcIqxzgReAGYoYzexDRhrG9XGOIwFnw8AM4GntNZzTiWucr7HWJNoG8Z0HxfVT3Mr409gXIGxgPdejEWzr/eXBXzfWuutwG8xFhPP9Ld5hX9dntqaj7FT3CGlVGY19e4CnlFKFWCs/fNJHa5VK1rrjRjfnzMwkmoFGItEnzwF65h7MKakHQKmYSz0fExN/fap/98spdRq/7TE+zDuMwcjGfZl+YspY2ezwVTt2C5w5b/6KaWuwlgs/A5/vQeANKXUjeXOfd9/D4cAhz+WY8ZhjBzLwkgsPeFfr0sIIYQ4YyitZZSsEEIIIYQ4kX8qVi7QSWu9u5HDaTBKqQXAB1rr/zR2LEIIIURjkZFDQgghhBACAKXUFf5pYiEY6//8CqQ3blRCCCGEaGiSHBJCCCGEEMdchTE98ADQCbhByzBzIYQQ4own08qEEEIIIYQQQgghzmIyckgIIYQQQgghhBDiLGZp7AAqExMTo9u1a9fYYQghhBBCCCGEEEKcMVatWpWptY49+XiTTA61a9eOlSur2gFYCCGEEEIIIYQQQtSWUmpPZcdlWpkQQgghhBBCCCHEWUySQ0IIIYQQQgghhBBnMUkOCSGEEEIIIYQQQpzFmuSaQ0IIIYQQQgghRGNzu91kZGTgcrkaOxQhasXhcJCUlITVag2oviSHhBBCCCGEEEKISmRkZBAWFka7du1QSjV2OEIERGtNVlYWGRkZtG/fPqBzZFqZEEIIIYQQQghRCZfLRXR0tCSGRLOilCI6OrpWI94kOSSEEEIIIYQQQlRBEkOiOart960kh4QQQgghhBBCCCHOYpIcEkIIIYQQQgghmiilFOPHjy977vF4iI2NZdSoUY0YVc1CQ0NrrPP000/z0ksvVVtn1qxZbNq0qb7CElWQ5JAQQogzj9eDe/EbUHi0sSMRQgghhDglISEhbNiwgeLiYgDmzJlDq1atGiUWj8dz2q8pyaHTQ5JDQgghzjieVe9hnfs4bP2msUMRQgghhDhll156KbNnzwbgo48+Yty4cWVlRUVFTJo0iX79+tG7d2+++OILANLT0xk8eDBpaWmkpaWxdOlSAA4ePMiQIUNITU2lZ8+eLFq0CDhxpM9nn33GxIkTAZg4cSIPPPAAF1xwAY888gg7d+7kkksuoU+fPgwePJgtW7YAsHv3bs4991z69evHE088UeW9PPfcc3Tp0oULL7yQrVu3lh3/97//Tb9+/UhJSWHs2LE4nU6WLl3Kl19+yUMPPURqaio7d+6stJ44dbKVvRBCiDPKrgNHSJj3nPEG5y5u7HCEEEIIcYb481cb2XQgv17b7J4YzlNX9Kix3g033MAzzzzDqFGjWL9+PZMmTSpL6jz33HMMHz6c//73v+Tm5tK/f38uvPBC4uLimDNnDg6Hg+3btzNu3DhWrlzJhx9+yMiRI3nsscfwer0BJVe2bdvG3LlzMZvNjBgxgqlTp9KpUyeWL1/OXXfdxfz587n//vu58847uemmm5gyZUql7axatYoZM2awZs0aPB4PaWlp9OnTB4AxY8Zw6623AvD444/z9ttvc++993LllVcyatQorrnmGgAiIyMrrSdOjSSHhBBCnFGWzXiBG0syjSceSQ4JIYQQovlLTk4mPT2djz76iMsuu+yEsh9++IEvv/yybO0el8vF3r17SUxM5J577mHt2rWYzWa2bdsGQL9+/Zg0aRJut5vRo0eTmppa4/WvvfZazGYzhYWFLF26lGuvvbasrKSkBIAlS5bw+eefAzB+/HgeeeSRCu0sWrSIq6++muDgYACuvPLKsrINGzbw+OOPk5ubS2FhISNHjqw0lkDridqR5JAQQogzxr5sJ5E569mt4mlvOgxuV2OHJIQQQogzRCAjfBrSlVdeyYMPPsiCBQvIysoqO6615vPPP6dLly4n1H/66aeJj49n3bp1+Hw+HA4HAEOGDGHhwoXMnj2b8ePH89BDD3HTTTedsPW5y3Xi71AhISEA+Hw+IiMjWbt2baUxBrJ9elV1Jk6cyKxZs0hJSWHatGksWLDglOqJ2pE1h4QQQpwxPluVQSuVyT4dh89sl5FDQgghhDhjTJo0iSeffJJevXqdcHzkyJG88cYbaK0BWLNmDQB5eXkkJCRgMpl4//338Xq9AOzZs4e4uDhuvfVWbr75ZlavXg1AfHw8mzdvxufzMXPmzEpjCA8Pp3379nz66aeAkZhat24dAIMGDWLGjBkATJ8+vdLzhwwZwsyZMykuLqagoICvvvqqrKygoICEhATcbvcJ54eFhVFQUFBjPXFqJDkkhBDijODzaT5blUFrUxb7dQxek13WHBJCCCHEGSMpKYn777+/wvEnnngCt9tNcnIyPXv2LFsM+q677uLdd99l4MCBbNu2rWz0z4IFC0hNTaV37958/vnnZW0+//zzjBo1iuHDh5OQkFBlHNOnT+ftt98mJSWFHj16lC2A/dprrzFlyhT69etHXl5epeempaVx/fXXk5qaytixYxk8eHBZ2V/+8hcGDBjARRddRNeuXcuO33DDDbz44ov07t2bnTt3VllPnBp1LLvYlPTt21evXLmyscMQQgjRjKzZm8MN/1jAVsdEXnJfy92hCwjqfglc9WZjhyaEEEKIZmrz5s1069atscMQok4q+/5VSq3SWvc9ua6MHBJCCHFGmLPpMK1Nxvz7DB1LibKDR9YcEkIIIYQQoiaSHBJCCHFGmLPpMCNaGsmgXFtLXNhkWpkQQgghhBABkOSQEEKIZu/wwv/yl9xHGBLnBMAT1opin7XeRg55V0+HwiP10pYQQgghhBBNjSSHhBBCNFser4/fTF0I8//CQNNm0pyL0cqMNbIVhT4ruj5GDuXuw/zlXehFL596W0IIIYQQQjRBNSaHlFIOpdQKpdQ6pdRGpdSf/cdfVEptUUqtV0rNVEpFVnF+ulLqV6XUWqWUrDIthBCi3ny38RCt9n1FPNkABO39CR2eSFxECIVeC7jrYeTQ4Y0A5K6bzevztp96e0IIIYQQQjQxgYwcKgGGa61TgFTgEqXUQGAO0FNrnQxsAx6tpo0LtNapla2ILYQQQtTVO4t2co9tNu7YnngT+xgHI1oTH+Eg32M55ZFDH63Yy6sfzgIgyrWXWXMXsHvtj+ApLatz4EgmXy1ezcvfbyHn8B5Z50gIIYQQQjQ7NSaHtKHQ/9Tq/9Ja6x+01h7/8Z+BpAaKUQghhKhgzd4covfPo63ej3nwHzB1uggAU2QbWoY7cGHDW1r3RI3b6+P1edtJtu7HZQoB4DXrFNrPGk3J1w/x8fLdvPHXBwiekswVcy/gzqWDifpnMr5Zd9fL/QkhhBBCABw+fJjf/OY3dOjQgT59+nDuuecyc+bMBr/uypUrue++++qlrWHDhtGlSxdSUlIYNGgQW7durZd261N9xjht2jTuueceAKZOncp7771XZd309HQ+/PDDsuf1+brXRkBrDimlzEqptcARYI7WevlJVSYB31ZxugZ+UEqtUkrdVs01blNKrVRKrTx69GggYQkhhDiL/WvBTu62fo07vC2mHqNRnS42CiJb0zLCjkvbTmnk0LcbDnEwz0W/4IPYOg7CG9uDXqbdZBKBfe00zpl9LfeWvk1uZA929nmMb2wj2W1uB4fW188NCiGEEOKsp7Vm9OjRDBkyhF27drFq1SpmzJhBRkZGg1+7b9++vP766/XW3vTp01m3bh0TJkzgoYceqlDu9Xrr7Vp11RAx3nHHHdx0001Vlp+cHKrv1z1QASWHtNZerXUqxuig/kqpnsfKlFKPAR5gehWnD9JapwGXAncrpYZUcY23tNZ9tdZ9Y2Nja3MPQgghzjLbDheQs3kBKWo75vPvA7MFEnvjGXgv9BxLfLgDF9Y6TfHauvcwM976Kwmzrmdi+GpCC3djiu+B6fz7OJB4MRe6/s5uEult2kXxRS/Q7vc/0PGKh8ke/Azfl/SEnD3ga/xfboQQQgjR/M2fPx+bzcYdd9xRdqxt27bce++9gJFYGDx4MGlpaaSlpbF06VIAFixYwKhRo8rOueeee5g2bRoAkydPpnv37iQnJ/Pggw8C8Omnn9KzZ09SUlIYMmRIhTZWrFjBeeedR+/evTnvvPPKRtVMmzaNMWPGcMkll9CpUycefvjhGu9pyJAh7NixA4DQ0FCefPJJBgwYwLJly3j55Zfp2bMnPXv25NVXXy0757333iM5OZmUlBTGjx8PwNGjRxk7diz9+vWjX79+LFmyBICffvqJ1NRUUlNT6d27NwUFBRw8eJAhQ4aQmppKz549WbRoUZ1j/OCDD+jfvz+pqancfvvtZQmjd955h86dOzN06NCyWACefvppXnrpJQB27NjBhRdeSEpKCmlpaezcuZPJkyezaNEiUlNTeeWVV0543bOzsxk9ejTJyckMHDiQ9evXl7U5adIkhg0bRocOHeolmWSpTWWtda5SagFwCbBBKTUBGAWM0FrrKs454P/3iFJqJtAfWHhKUQshhDir/XPBTsbZfsJri8Dc+0bjoMmE5ZJnAYgtcFGMHZO3dgtSZ819hYTFL9KFItxY6O3ZhvJ5IL4nqtc1JCRfz5/XHSAo9hs8piKCEso+K+Gq3om89kNLTL5SyD8Aka3r7X6FEEII0QR8OxkO/Vq/bbbsBZc+X2Xxxo0bSUtLq7I8Li6OOXPm4HA42L59O+PGjWPlyqr3gcrOzmbmzJls2bIFpRS5ubkAPPPMM3z//fe0atWq7Fh5Xbt2ZeHChVgsFubOncuf/vQnPv/8cwDWrl3LmjVrsNvtdOnShXvvvZfWrav+Peirr76iV69eABQVFdGzZ0+eeeYZVq1axTvvvMPy5cvRWjNgwACGDh2KzWbjueeeY8mSJcTExJCdbWxEcv/99/OHP/yB888/n7179zJy5Eg2b97MSy+9xJQpUxg0aBCFhYU4HA7eeustRo4cyWOPPYbX68XpdFYZX3Uxbt68mRdeeIElS5ZgtVq56667mD59OhdddBFPPfUUq1atIiIiggsuuIDevXtXaPfGG29k8uTJXH311bhcLnw+H88//zwvvfQSX3/9NWAk5Y556qmn6N27N7NmzWL+/PncdNNNrF27FoAtW7bw448/UlBQQJcuXbjzzjuxWq3V3ld1akwOKaViAbc/MRQEXAi8oJS6BHgEGKq1rvSVVUqFACatdYH/8cXAM3WOVgghhAAWbt7HX82roNtVYA2qUB7usFKCDYuvBLQGpWpss6S0lPDFz7JBdyDs8r9wTsso+K9/qlpcdwCUUlyV2qrS8+PCHNjizoFsIHuXJIeEEEIIUe/uvvtuFi9ejM1m45dffsHtdnPPPfewdu1azGYz27Ztq/b88PBwHA4Ht9xyC5dffnnZCJVBgwYxceJErrvuOsaMGVPhvLy8PCZMmMD27dtRSuF2u8vKRowYQUREBADdu3dnz549lSaHbrzxRoKCgmjXrh1vvPEGAGazmbFjxwKwePFirr76akJCjLUex4wZw6JFi1BKcc011xATEwNAixYtAJg7dy6bNm0qaz8/P5+CggIGDRrEAw88wI033siYMWNISkqiX79+TJo0CbfbzejRo0lNTa309akpxnnz5rFq1Sr69esHQHFxMXFxcSxfvpxhw4ZxbBbU9ddfX6EvCgoK2L9/P1dffTUADoej0hjKW7x4cVkSbvjw4WRlZZGXlwfA5Zdfjt1ux263ExcXx+HDh0lKqvtS0IGMHEoA3lVKmTGmoX2itf5aKbUDsANzlPFL989a6zuUUonAf7TWlwHxwEx/uQX4UGv9XZ2jFUIIcdZzub2kla4myFYEvcZWWsdhNeNWduOJx1VpAulkb3+ziLvwYO93E+f0v8Q4tdtozDt+QMV0Cii2sIROkA06ezeqw9DAbkgIIYQQzUM1I3waSo8ePcqSAwBTpkwhMzOTvn2NjcBfeeUV4uPjWbduHT6fryzhYLFY8Pl8Zee5XK6y4ytWrGDevHnMmDGDN998k/nz5zN16lSWL1/O7NmzSU1NLRudcswTTzzBBRdcwMyZM0lPT2fYsGFlZXa7veyx2WzG4/FQmenTp5fFfYzD4cBsNgPG+kqV0VqjKvmgz+fzsWzZMoKCTvw9b/LkyVx++eV88803DBw4kLlz5zJkyBAWLlzI7NmzGT9+PA899FCl6wAFEuOECRP429/+dkKdWbNmVRrjyfdRW5Wdc+w6gb7ugQpkt7L1WuveWutkrXVPrfUz/uPnaK1b+7eoT9Va3+E/fsCfGEJrvUtrneL/6qG1fu6UohVCCHHWyywsYZT5Z1zWSGhfdQJGWf2fxgSw7tD6jFyWrDCGYHfvkVJ23HL1P9G3LgBzYEN045M6UKItFB6s/lM7IYQQQohADB8+HJfLxT//+c+yY+WnROXl5ZGQkIDJZOL9998vW/+mbdu2bNq0iZKSEvLy8pg3bx4AhYWF5OXlcdlll/Hqq6+WJYF27tzJgAEDeOaZZ4iJiWHfvn0nxJGXl0erVsbo6WNrF9W3IUOGMGvWLJxOJ0VFRcycOZPBgwczYsQIPvnkE7KysgDKppVdfPHFvPnmm2Xnl7+XXr168cgjj9C3b1+2bNnCnj17iIuL49Zbb+Xmm29m9erVdYpxxIgRfPbZZxw5cqQslj179jBgwAAWLFhAVlYWbrebTz/9tMK54eHhJCUlMWvWLABKSkpwOp2EhYVRUFBQ5WsyfbqxvPOCBQuIiYkhPDy8TrHXpFZrDgkhhBCNLauwlEGmDWQlDqdVNUkbky0IXBgjh2qwZEcWbdVh40mLDscLbMGY4roEHFvnhEgydCxhh3cQFvBZQgghhBCVU0oxa9Ys/vCHP/D3v/+d2NhYQkJCeOGFFwC46667GDt2LJ9++ikXXHBB2ZSs1q1bc91115GcnEynTp3K1r8pKCjgqquuwuVyobXmlVdeAeChhx5i+/btaK0ZMWIEKSkp/PTTT2VxPPzww0yYMIGXX36Z4cOHN8i9pqWlMXHiRPr37w/ALbfcUhb3Y489xtChQzGbzfTu3Ztp06bx+uuvc/fdd5OcnIzH42HIkCFMnTqVV199lR9//BGz2Uz37t259NJLmTFjBi+++CJWq5XQ0NBqt5avTvfu3Xn22We5+OKL8fl8WK1WpkyZwsCBA3n66ac599xzSUhIIC0trdKdzd5//31uv/12nnzySaxWK59++inJyclYLBZSUlKYOHHiCWsVPf300/zud78jOTmZ4OBg3n333TrFHQhVl6FNDa1v3766ukW0hBBCnL3mbTrIsI+7cbT3vbQc/Zcq673+8l+4L/8luHc1RHests3HZv5K53UvcJP5B9Rjh8AU0GaeFeQ53az820WkhBcR89AvdWpDCCGEEE3H5s2b6datW2OHIUSdVPb9q5RapbXue3Lduv32K4QQQjSSvNxMzErjCI+utp7Z5p9/HsDIoYycYjrZMtFRbeucGAKICLZyxJpIaPE+YyFsIYQQQgghmgFJDgkhhGhWinIzAQiOiK22ntURbDxwB5IcctKGQ6jyU8rqyB3eFoevGAqPnHJbQgghhBBCnA6SHBJCCNGsuPKN5JAttPqRQ1aHMeceT/ULUmutychxEuc5iGpR/fSzQJS0NEbpela9f8ptCSGEEKLxNcWlWISoSW2/byU5JIQQollxFxo7VRDcotp69iAjOeQrrT45lFlYSrgnG5vPBS3an3J84R37Mcebhm/xq+DMPuX2hBBCCNF4HA4HWVlZkiASzYrWmqysLBwOR8DnyG5lQgghmhVvoT/hEhRVbT2HPznkKi4iuJp6GTlO2pXtVHbqyaFLeiYwedEkhufdy+b37qfLre9iMpvwbJ8PW77BMupFUOqUryOEEEKIhpeUlERGRgZHjx5t7FCEqBWHw0FSUlLA9SU5JIQQollRrhzjQY3JoVAAiosKakgOFdPOdMh4EnXqyaGIICsv3j2Ob6Ys4YpDH/G/58eTG9yOCfn/wqzdMHwyhMQE3qDW4MoFawhYbKccnxBCCCECZ7Vaad/+1H8/EKKpk+SQEEKIZsVSkms8cERWWy84xEgOuVxF1dbbl+Okh0rHZw3BVA/JIYBQu4VRv/8H2/9bypiMzyEPilUwQbiNhaprSA4Vb51H/pK3MR1aR1jpERyUUqhC2JdwCV1/+3+o4OoTY0IIIYQQQtSGJIeEEEI0Gx6vD7s7D5c9FIe5+rew4BBjWllJcfXJoYycYq6z7IGWvU5pG/uTKZOJTje/Tcmhh3jz+/Xs3LuXf+hnoaj6YekZP88k6buJuHQoS3098Ib1xxMcT3DOFobvn4Vz6hpCfjcLotrWW6xCCCGEEOLsJskhIYQQzUZ2USkRqgi3LYKaltcLDQ0DwO1yVltvf3YhXUnHlDi8nqIsRynsCd1I7B7Ct1tzwU61yaHpy3bR59snSFcJ/G/Ax0wc2o0WIcZUsq2HCvjta/9ieuGLsPBFuOrN+o9XCCGEEEKclWS3MiGEEM3G0cISoijAa4+ssW54WM3JoVKPD9fBLTgogYSU+gqzgj5to8jUEcaTapJD+Ss+oqtpHy1G/ZkHLkspSwwBtI0O5he6kR3UtsbRR0IIIYQQQtSGJIeEEEI0G1mFpUSqIlQN29gDhAfbKdEWPCWVJ4e0z8fMn1aQ6NxqHEhMrcdIT3RObCg+RwRezMaaQ1XoVbCQI5aWhPe5tkKZw2omKSqIPF8Q2pXXYLEKIYQQQoizj0wrE0II0WwcLSghiULMITUnh0JtFgqx4XMXVyi79b2VDE5/k5t8MxkSlIhWQajoTg0RMgAmkyK1TTS5+yKILqo6ORTkyaMwpCVxVax91CEmlMyDDjpJckgIIYQQQtQjGTkkhBCi2UjPKiJKFRIUXvNW8CaTwqXs+EpPTA75fJrYHZ9xk28mh3QUCd4D6JY9oYYFrk9V79aRHPKG4S2ofEpYqcdHiK8Qn6Pqncg6xIZwuNQOkhwSQgghhBD1SJJDQgghmo2dh/OJUEUBjRwCcCsb+qSRQ3uznYxnNkfDuxP58HpKe96Aqff4hgj3BB3jQsnUEZTkHaq0PLOwhEhViAqqJjkUE0KONwjtym+oMIUQQgghxFlIppUJIYRoNg4cOYIJDUEBJodMdvC4Tji26WA+56tMSpOG4wgJh2v+1RChVtC2RTA7CIeiXZWWHykooSuFlIRWfW8dYkP5hWBMpQXg84LJ3FDhCiGEEEKIs4iMHBJCCNEsuL0+CrIOG0+qGV1TntfkwOwpxrVvLfh8AOzYe4Bw5SSiZbuGCbQKbaODydQR2FxZoHWF8sycXBzKja3a5FAI+TrEeFIio4eEEEIIIUT9kOSQEEKIZmFPlpNQXWA8CTA5pM0OupRuwPH2UHxrPgDgyH5j5I41qnWDxFmVyGAbRZYoLL4SKCmoUJ6fY6xFFBwRW2UbLcMdlJj9ySFZd0gIIYQQQtQTSQ4JIYRoWOlL8L17FXjdp9TMjiOFRKoi40kAW9kDxERFEIIxrcy74m0Aio6mG4URSacUT52ExuEPokJRoT85FBJZ9WLbSinMwZHGE1l3SAghhBBC1BNJDgkhhGhY6Ysw7V4ABZUvxByonUcLicY/WsYRGdA5keHhAKzxnYP18Frydv2Cw3nQKAxvdUrx1IUtIt54UElyyFWQBYClpsW2HRH+E2TkkBBCCCGEqB81JoeUUg6l1Aql1Dql1Eal1J/9x1sopeYopbb7/610jL9S6hKl1Fal1A6l1OT6vgEhhBBNXFGm8a8z85Sa2XGkkDH2lfiCYyGqXWAnhSfgCW/LX8KeoAQ7WT+9RYLKQisThCWcUjx1EdLCuKa34EiFslJ/cqimxJdJkkNCCCGEEKKeBTJyqAQYrrVOAVKBS5RSA4HJwDytdSdgnv/5CZRSZmAKcCnQHRinlOpeT7ELIYRoDpz+pEdRVt3O1xpPVjpH927hPL0K1WciWGyBnTvyr/hu+4mL+/fiB29vwvf8QLegfHRoSzCf/g07o2KN0Up5mfsrlPmcOcaDGtZTKptWJgtSCyGEEEKIelJjckgbCv1Prf4vDVwFvOs//i4wupLT+wM7tNa7tNalwAz/eUIIIc4S+hRHDvl+norljRReKXwYlBnV7+bAT7bYsYVGMSatFT/rnsSQy/mWzY2z3hAQn9CKEm3B++tMKC06oUwVB5Ycsob4y2XkkBBCCCGEqCcBrTmklDIrpdYCR4A5WuvlQLzW+iCA/9+4Sk5tBewr9zzDf0wIIcRZQh9LChXVPjlUcmQHnh+eYqOvLUEWjU6+HsJrPx0sLsxBaJehAAQVH8TUSMmhNrGRPO6ZRHTmL3jev7ZsS3utNebSPHyYwR5WbRv2sEgAfMW5DRytEEIIIYQ4WwSUHNJae7XWqUAS0F8p1TPA9lVlzVVaUanblFIrlVIrjx6tuFCnEEKI5kk5s40HtRw5VOrxsenft+Lymfiyx6vYHtmF+ao36hzHo7+9Al+I/3OMiMb5nCIh3MFc+0XMiLwFy74lcOhXAHKdbsJ1ASXWMFCVvXUeFx4cRKF24C7MOR0hCyGEEEKIs0CtdivTWucCC4BLgMNKqQQA/78VV9c0Rgq1Lvc8CThQRdtvaa37aq37xsbG1iYsIYQQTdRHy/egy9Ycql1y6P1PP6G3ezV7e97Do9cPx2azgslc92CUgraDjMcRrauv20BMJsXtQzvy0qE0NCb0xi8A2JVZRKQqwmuPrLGNiCAr+QTjdsq0MiGEEEIIUT8C2a0sVikV6X8cBFwIbAG+BCb4q00Avqjk9F+ATkqp9kopG3CD/zwhhBBngde/XY3J5wZAV7J9e1V+Sc+m46Z/UGiOoOdVf6i3eEztBxsPGmEb+2MmnNsOc1gsG6w98W0y3jrX7sslgkJsodE1nh8RZCVfh+B1ysghIYQQQghRPwIZOZQA/KiUWo+R7Jmjtf4aeB64SCm1HbjI/xylVKJS6hsArbUHuAf4HtgMfKK13lj/tyGEEKKpcXt92Eqyy57rWuxWNn/edwwzr8N2/n1gC6m/oLpdia/71dD2vPprs5aCbGbuH9GJj519MGdvhyNbWLM3hxhLMdawwJJDBQThK5aRQ0IIIYQQon7UuI+v1no90LuS41nAiEqOHwAuK/f8G+CbUwtTCCFEc5PjLKUFBQDkE0JogGsOHc530WfPf3Bawwg+7/b6DSo0FtN10+q3zToY178NE36+AE/ue7i/epANR+8lxuxEOSJrPDcy2Mo+HYKqp63sfTt+xLtxFtbhf4Kw+HppUwghhBBCNC+1WnNICCGECFROkZsWykhgbPO1Or6lfQ3mzJvDhaZVuPrcXuPOXc2V2aT4w9VDeNR9M0H7FnFf0euE64Iat7GH42sOmUtrmRwqPIL7XyNwzn8RSgpZt2kzC/96BaYPRmNdM419L53PDx++it6ztI53JYQQQgghmqsaRw4JIYQQdZFdVEoLZYwc2uFLpG/pNvCUgMVe5Tk7DufTau3LOE3BtLjg3tMVaqPo0zaKj3v/llfWZPEH6+fgJeDkUIEOxuouqN0F0xdhPbgS68GVsPBZumszPmVifsub2RPRj9HbHuHibU+htyn44xYIa1m3GxNCCCGEEM2OjBwSQgjRIMpPK9uu/QtAO6ted8jl9vLxe1O4QK3GM+iPEBR5GqJsXI9c0pX3rWPZ7GtjHAggOeSwmikyhWDzFILWAV/Lc3AjPsxM8j3Oq95rWdXyOnx3LGX4HS/zu3HjWD92IX8ovROFhsxtdb2lRpHvcuP2+ho7DCGEEEKIZktGDgkhhGgQ2UWlRKkCfGYHh73+tWyKMiE8sUJdV+YeZr37MrcX/o/cqO5EXvD70xtsI4kOtfO3a/uwbtuf6brhdlSL9gGdV2oJw+TzQmkR2ENrrL9uXy4FPy8i3tcSyzkXMObyu2kTHXxCnUHd2vBicCp4gKwd0H5IHe7o9NJa896yPXzxzde8GPst7YOKMd06D5Rq7NCEEEIIIZoVSQ4JIYRoEDlFpbQkH0KisdhjwQlUsij1zh1biZh+KTfoLLLDOhE57j9gPnvenkb2aAk9xsBlF4Gt5kQPQKktClxA0ZGAkkNvzN/B0950bO368tZNfSutYzGbOD8tmeLlNkyHt1H15L+mwevTPD7rV1wrP+QT67+w5Pggh4ATZkIIIYQQ4riz57dvIYQQp1WO000vcyEqOJoQU7yRHDppO/sfl/5M0veTsCsni0fM5PzBwxsn2KagFotv5we1NpJDWbugRYca6zsLckjiCJyTVm29tLYtSP+5JYmHtjbJ5NDBvGKmLU1n2daDlGgLfTJn8YrtbbYE9Wa+J5m73O9CSb4kh4QQQgghaknWHBJCCFE3hzbg27uiyuIcZymxpkIIiSEiNgEAXXTU+Nfn46fpzzPg+ytJMOXiu2762Z0YqqXC0HbGg6wdAdVvUbTTeBDXo9p6baKD2aVbYs7eeQrRNYythwq47NWFtFjyLDNzx/J88dP81fo23nNGMrf3m2xyhhsVXbXcxU0IIYQQQkhySAghRN3oeX+G2Q9UWX5szSEVHE1cbDwl2krR1gXkZR1m/d8vZuj2v7ErqCeWe5YT0X3EaYy8+VMhsRQRBAEmceJd/nrx3aut1zoqmN06geCiDPC6TzXMerM7s4gn//0JL/Eyt1u+RrcdRIrejLfDcMzXv0eHhGgKtH8NJVde4wYrhBBCCNEMybQyIYQQdePMQRVVXEPomLyiYmJ8mRCWQNuYMF71jOWR9Bnkv9GbbtrFki4Pc94Nj6JM8jlFbYUH20jXCXTL3FHjpzxen6aNJ50SazD2iDbV1g2xWzhqa20sdp2zB2LOqb+g6ygjx8mX//wTH3un4TUH4R3yBJYhfwSPC8x2MJnoFBdK/rHkUImMHBJCCCGEqC1JDgkhhKibkgIozja2U69kdyhb4X5suCGmE22ig/md9wpiVS5XWZZx6LIPGDTgskYI+swQEWRlh68l3QKYVpZf7CaJoxQEt8YeQCLOFdHBWNg5a3ujJ4cKXG5mTn2S+73TyGl3KVHX/QOCWxiF1qCyem2jQyhSIcYTGTmE1pq92U5aRQZhMUvyVQghhBA1k98Ymgjvt5PxzLyrscMQQojAleSjvCXG7lCViCreYzyI7kRSVBBmk4l/Bt1Kwd0b6SyJoVMSGWwlXbdE5e0DT0m1dXOcpYQpJz5HREBtm48lhAJcz6ihaK15+LP1jHHNJDduAFHjPzieGDqJzWIiMspfdhYnh7KLSnl78W5GvrqQoS8u4NNVGY0dkhBCCCGaCUkONQVao379FPOmWeDzNnY0QggRmGPTd4qzKxS53F5aefcbT2I6YbeYeWNcbz65/VzaxQa+K5eoXO82UezytUShIXt3tXVznG7CcKICTA7FxLbkkI7Cs29lfYRaZ2v25bJ+w6+0UplE9rkGzNUPdm4ZF288OEunlf2akcewF+eT9e1fmVL4APdYv6DNqufx/Ty1sUMTQgghRDMgyaFGdiC3mOv++j4mZybKXQRHNjd2SEIIUTOfF1VaaDx2VkwO5TrddFAHKLGEQ3A0AJf1SqB9TMjpjPKMlZIUgSu8vfGkhhE+OUWlhCsn5qDAkkOtWwSzwJuC2jGvURel3nGkkP6mLcaTtufVWL9NfAxubcZXfPaNHNp4II/fvr2cJ8zv8bD1EzqElvKg+WMGHZ6O+un5xg5PCCGEEM2AJIca2ZfrDtDOub7s+aFNixoxGiFEs7bmA3wf/eb0XKuk4PhjZ1aF4uyiUjqogxSFta90PSJxapRSpKT0ASD/wNZq6+Y4SwnDiSU4MqC227QIZr6vN2Z3AexZeqqh1tneLCcDzVvQ9giIq36XNYCWkUEUEISrIOc0RNc0ZBeVsnpvDr/9z3K6Ww5yrXc23j6/w/z79UyKfp8fQq4Ct6uxwxRCCCFEMyDJoUY2e/1BRobuxuuIIkuHs2/9T40dkhCiOdIa3+LXUDvnnZ7rlZ+6U1zxj/EcZykdTAfxtmj83a7OVJf260qGjiHr1x+qrZdbVEIoLuyhkQG12yY6mMW+XnhMNvTWb+sh0rpJzyriXMtWaHsuBLCQdny4gwIdTEnRGZwc0hryD5JdVMpd01eR9pc53PSPuTjMmqnJ29DKjHnYo6AU1shEjniCUJ5i4zwhznD60IZKR7IKIYQIjCSHGtGerCJ+3Z9HH7UV1eZcjkT0okXOOo4WVL+4qBBCnGztyqWYsrahPC7w+Rr+gieMHKr4y3hebg4tVQ7EdGr4WM5S7WNCWB15KW1zlrNr3SK8b/SD9Z9UqOcsyMGkNLaQyIDajQ9zoK0hbLQm49vyzfHvJ08J7rnPUvLJLXiXNfw6NvmZGbTRB1BtBwVUPz7cTj7BeJxn5rSyHzYe4tupD+N7uRv3/u1NVm/ayteJ77Au6A7mx79B2LbP0R2HQ5ix9lJsmJ3sUv+veR4ZPSTOcIVH4T8jYOFLjR2JEEI0W5IcakSzfz1IHDlEuvZhansuYeecS0d1gC279jR2aEKIZmTroQIWffHW8QOe4ga9ntvrY/pPvx4/UMm0siPpGwAIb9W1QWM52w2+/g+gIG7m9ZiztqErGTnmKswFQDkiA2rTZFL86fJuvF0wAHPeHlzzXwCvB++nk7AufhHrju8wzf9zgychQ7L9a/Al9Q2oflyYMXLoTFxzaPPBfKZ8+BkXHn4bE5qnWvzA952/okfeQnTXKwjKWISp4CCm3jeWnRMb6iC71L+It7thfyYI0dj08n8ZH44UHGzsUIQQotmS5FAj8Xh9fLRiLw9HL0KjoMul2NoOAMC3f00jRyeEaE7eXbKTK0zLjh9o4DVGth4qYO7acosgV7JbmXPPagDsLSU51JCiEjtyKO58QinCZ7KiD1fc1KC00D/NyhEecLvjB7al58hJzPQOwrb4BfL+1hnz1q/5Lul+8s5/AuV2Qt6++rqNCnKdpcS6/bvdtegQ0DkxoTYKCMZUWsluZT4fetk/muU29x6vj0c+X89T1g9QIbEw8C465y8jYvc3MORBLNdPQ1/5Jt6OF0LnS8vOiwu348JmPJHkkDiTlTrRv/wHAF3J+5EQQojASHKokXy38RB52ZlcWfI13q5XQkwnwtumAGDO2tLI0QkhmovsolL02o9oZzrMr44046Db2aDXdJZ6CcP4Y1MrU4VpZc4SNxfkzeKoox3EdGnQWAREXfY003yXsTx6NCpzG/i8J5R7nbnGA3vgySGA24aeQ+KN/2KR5VwWe7rxML/nrp0D+HBXsFHhaMO9V6VnOWmrjuAxB0FofEDnWMwmSi1hWNwFFQsPrkV9/yiseKtiWRP39uLd7Mw4RKrahiXttzD4QbQlCF9EW9R59wGg0sZjHv85WB1l58WG2nFpf3JIppWJM9i6uR9gcuXgDYmTNYeEEOIUSHKoEWit+ddPu7g/7EdsnkIswx4CwBEZT5aOIDhnWyNHKIRoLj5dvIE/mj5kg6krX6kLjIMN/IdgUamHMGUkoI6qGPRJ08p2/fwV3Ux7yUq5PaCFhMWpCWrXl2Wd/sjc7Fhj8eGc9BPKfS7/SBpHYFvZlzega2uGPv4tlz89m78//WfG9W/DtB3+BEQDJof2ZBXRRh3GE9G2VrvdeW1h2D2FFQvyjVFIxatmsD+7EHbMBU/TXt/PWeoh8+O7SZp3N7e1O4xJe6Hd+RASjfrNDEy/+eiEZNDJYsPsFMvIIXEW2L19EwD7wvtUOpJVCCFEYOS39kbwS3oOu/Yf4kY9G885l0DLXmVleyxtiSraUc3ZQghhKCrxYF32Gi1UAUs6P8Jhp/+P6IYeOVTiJQzjGnt0HPqkT2pDV/2TQzqKpCETGjQOcdxlvRJY6WxpPDk5aVPin0pVh+TQyW46tx1HPcEU2aLh6NZTbq8qe7OctFWHscZ0rNV5yhFBsHZWGD11dP8uAILydrDulavhg7FseXEE02fPZf/B/WQWlpCRVUDOoaax5t+avTkMefYrQjd9zOWmZdwesghtskJrY/o5HYZBfI9q24gLt1MiySFxhisu9VKUtZ8cHcqWwmBwnsG7FQohRAOT5FAjeHdpOjc7fsThySsbNXTMIXt7Wpamn57dhoQQzdonSzZwjf6enHaXoRNSyHafnsVni0o9hKpivJjZ64k6cUHq/AO0yf+F+SGXERoS0qBxiOOGd41jj6mN8eSI8Sk6P/8T70c3Yj62Bk8tp5VVpkvLMAZ2aMHG0gSc+zeccntVSc8soK3pCObo9rU6zxzkv8eSE6eWHcrYRak241MWLjOvYLsjmQ4lm7nxl7EkTO3BN8/fSMZrFxH+zxQ2LP22vm6jTrw+zeOzNnCpdS0O5QbAsfNbdFJfsAUH3E50SLk1hxp4kXohGsviHZlE6xzyzC3YlGtBuYsafN09IYQ4U9WYHFJKtVZK/aiU2qyU2qiUut9//GOl1Fr/V7pSam0V56crpX7111tZz/E3O4dyivBu+orbzF/jaTeswi4suaHnEKRdkLe3cQIUQjR5bq+Pfy/cRc5P/yJcFRN98cMkRDgo1qdnlICzxEMYTtyWUHJ06AlrPBz5+WNMaHzdr27QGMSJwhxW+nRK4gBx6MNGcsi3/lNM278n1OefZlWLBamr8+zoXuw2tYGjWziwbTV6/+p6afcYj9fHlu3bseMOeDHqY6yhLYw2jq2z5OfK2ssRFQNdL8cb241OD3yH7a7FHBn+MluSrmG8ZS5p1j3kmiIImvMQOflF9XU7teLe+gMHXx7MXzPv4/7IxfjCEtBdLgPA1G5wrdqyWUxYHf4ErfyxLM5QczYdoqUpj4jYJDJ9ocZBmVomhBB1EsjIIQ/wR611N2AgcLdSqrvW+nqtdarWOhX4HPhfNW1c4K8b2H60Z7C9nzzMVOvLWG12LCOfqVBeHNXZeHCk4o4zQggB8NdvNjP/u8+4zfQlztZDITGVhIig07YzUVGplzBVjM8eRrYOw+Rxlv3x6VrzMRt1Oy4dNqRBYxAVXdorgU3eVhQf2AieEtThX1E+N+eYDuAx2cFir5frnBMXyvDBgwmmhNgZl6K/uLvObTlLPezL2Ifnm0fKpqkt2pFJaJF/J7QWtRs5FBQWCUBuzvHRbFprzIUHKQ5qiema/2K+/SewhUBcN+KG3Ez3W/+DunMJtvt+oeDCl+io9zFn2jNoret8X3XhyzuA6aMb8OUforP5IDFZKzH1uBo14HZjV9NOF9e6zeBg/x/LDTzVVECpx4fL7a25oqhXP+/KJsmaT0RcEsUW/9RZWZRaCCHqpMbkkNb6oNZ6tf9xAbAZaHWsXCmlgOuAjxoqyDNFSYmLTge/YFXQuVj/uBESUirU8cUa2z6XHmy44fpCiObr14w89v48k+m2v+KISiR49CsAxsgh/H/8N/AUEmephzBVjMkRTi5hxsHibPIPbKNN8Wb2tLyE6ND6SUSIwF3ULZ4ttMOeswN2LUB5SwHopvbgq4cpZeXFtjfev6w+F6rwcJ3b+e9XP+J5awSWFVPJf/+35BUU8fmqDLo5Mo0KUbVLDoWEGyOHcrMzy46lZzmJ8WZiiUoCs6XyJFl8D4hIot2ga9kXNYBhWTP4aOn2wC+8fzU6fUmtYj3Zt4t+xoyXxV0ew3rzN3jbDYW+k6DDMNRDO6B1v1q3GRrqTw7JbmUNyufTTPjvCv7w1mx8s+6BoqyaTxKnTGvNkYJiIr3ZmMJaQlCUUSAjh4QQok5qteaQUqod0BtYXu7wYOCw1rqq36I08INSapVS6rY6RXmGWD3/c6IowN5vIiaLtdI6kZHRZOgYShtwLQchRPOktebxWb9yu+07fOFJWG7/EaKNBXtP5+KzRSVeIk3FWIMjjWllAM5s1iz8GoAuQ69v0OuLykUEWznc6mLMeEmf8WDZ8Q7qIJagU1+M+gSt+vBT6KUsspxnfErv9dSpmY7b/0tLUy5v6OsJz9/G3L9fj2fjl1ze4gDaZIGI1rVqLzwyBoCC/ON/HK7YdZSWKpvI+HYBtdHq8j8Rp3LZ9P2/ySt2B3SOnvMUetadtYq1vN2ZRcxbsQaAcRcNxJKUhnnilxDTyagQElOndsNC/UlBWZC6QX2wfA+bdu3hgcOTMa19H/Yua+yQzgrOUi82dyEWXQqh8ejgFv4CSQ4JIURdBJwcUkqFYkwf+73WOr9c0TiqHzU0SGudBlyKMSWt0rkGSqnblFIrlVIrjx49GmhYzYp7zQzyCKP74KrX4ogNs7PV1xp1dNNpjEwI0Rws3J5J1v7t9Ne/YulzE9hDy8rsFjNBZVNIGn7kULgqxhwUQand+KTWV3CYoztX48JOx64VR0WK02P0JSM5YG1DO99e8s1G31iUD1UPO5WdwOpgZfKfmePqgkLX6ZP6Uo+PGOcuMkO7cNsT/+Rg5/GMNS9iqvUV+mV9ARFtjJE+tRDVwkiitPr1H3im3wBas37rTmzKS2TLtgG1Yeo4lIKoHvyOr1ix41BgFy44iCl3DxQeqVW8x7y7NJ2WGKNNVHirGmoHrmzkUFNLDuXsQa/4D3syCynZtwa94t+NHVGdHcpz8cK3W3gp+F06qAPGQaeMHDodMgtLiFW5xpOwlpiCo43HMnJICCHqJKDkkFLKipEYmq61/l+54xZgDPBxVedqrQ/4/z0CzAT6V1HvLa11X61139jY2MDvoJnYdySbfiU/k5F4MSZr1dMtYsPsbNRtCcrb2fR+mRNCNKp/LtjBxKClxvojKeMqlEdG+BMAp2PNIYrBHkZBuLFO2t6Ny0hw7aIosjOYzA16fVG1Pu2iSTj/JgCWebuQqf3fE/U9cgjonhDOUZ9/ZEpRJR/q+HyQf6DK87cdLqCD2o8vujN2i5mE37wJD++GW+bhu+hZuPSFWsd0LDkUl7cey/ZvcaWvYOt2Yy0jFZEUWCNK4bjoT3Q0HSRo0V8DO6fQn0TK+OWEwy63lxJnPhyu/gOfo4UldLTno22h9bZwOEBImNGWu6SJrTm0ahrqmz/y4it/p/DDifDtI81zl9aCQ3z89TeEenMYoZfzkW+EcVySQ6dFZmEpcceSQ6HxWEJl5JAQQpyKQHYrU8DbwGat9csnFV8IbNFaZ1RxbohSKuzYY+Bi4KycL7Vx3XKCVCktelW/oGRsmJ1NvnaYtFcWpRZClFm1J4etu9IZZ56H7nABRFacbhMVcXqmkDhLPITgBEc4YVFx7DO1Im/7Erqb9xLRVkYNNTaVfC0+ZWGxuysZ2kiWqHpecwigR2IEWbqa5ND279Gv9IAqdjPbsms30aqA8NY9jh8MbgFJfTENuhfVufYLMJuDoygJiudD73Dcysr+Re/RwuMfzROeGHA71u6jmBcyivOPfAg75lVb96eNe1AlBcaTfSsAYwrox7/s5ZFn/0rxy2noqYOgoOpRSLnOUhJN2VCPo4YAIkND8GmFq7iwXts9VbkHjJUI/s/yD6KL01HaC6UFjRxV7RV8/Ri3b7uNKQnfYdIelkWPwaXskhw6TbIKS4gjx3gSGk94aBhObYfinMYNTAghmqlARg4NAsYDw8ttXX+Zv+wGTppSppRKVEp9438aDyxWSq0DVgCztdbf1VPszUrWjpUAtOxc/YKS0SF2tmj/0PdDvzZ0WEKIZqBk23wWfz6F1x1vEeQtwHThU5XWi48IoRRLgy9IXVTiIUQXgT2chEgHqzwdOadwFVEUYEno1aDXFgGIakfpHcuZabqQDO0fiVuPo1GOSYoKwmXzf1JflFmxQtZOlPbhXfJ6pecf3W18VhTZpkel5XVitmJ/aAtZw/7OHE9vInZ9RbegXKOslomX3X0eI08H41w/q8o62w4X8MQHx5NH2VsX8+uqxTz61me89vmP/J3XMHmKUdoH1SzcnVPkJk5n1SqBFYioEBsubJQWF9VLe1prVu3JZsqPO/hw+d46tfH377awZ8dGsgnHrty48Y80bGZ/0Hu8Pg7u2ohDuembOQtfYh9antObbF8oXlmQ+rTILCwlVuUZT8LiiQqxkYO8/kIIUVc1TubXWi8GVBVlEys5dgC4zP94F3DWf4zs82nMRzbiUkE4ath5xWxSFAW3oliH4Di4vvIXXghx1tCZ2zHPuIH7fSUA+C56HhJTK60bFWzFpW1YS50N+rPDU+rEghfsYSSYg1jp7cho60KjML4e/9AXdeaIP4fzOuVydFe8/0D9TyszmRTR8UlwhMpHDhUZI3ZMm7+A7N0Q2eaEKYelh4zRsSq2S30Hxj3Dz+Hd3aOIyVjBTZY5aGyo4Not6jywSyvSF7Sk5cEdBFdR51Ceq2zkwm5akXh0HZ2+HM3jWChI6Ik5V/GMezwvWf4JxblVXiuv2E20LxMV3qdWMdYkKthGMTZKXbWYVubzoo9sZo+5HXkuD1lFJaxMz6GwxMPafbmsz8jjPvP/GGz+Cefa9gSPmQKxnQNq2u318a+Fu7jLcRRr8lgW+roxZ9Vm/mKdZrw+UXW6zUbxf3O28bvSgxSGJBHqzMDUZwL97C3IXhFGcPZhIhs7wLNAVmEJcSoXbQlC2cOJDM4lV4cSXZCJTG4WQojaq91Kj6JOth4uoL13NwUtuuAw1TxYKzY8mPVZrbGvXMS2lvu4tk8Sxuw+IcRZxefDPeteSnwWnnA8zt+v6ICt++VVVg9zWCnGhqOk6Ni+ZQ1CufzTPxzhJFocfOPrdLxQkkNNxl9G98S7vB8s+QLs9Z8cAmjXKgH3YTOWwqMVEpL5WQexqGAclKJeT8VntuNpOwTLwDvIThxMWMEu3BY71og29R6XUoobx99K+r/n0zZrITq2GyqA99/yuieE84OKIym/6hEy2UWlxPvXPGl93nVYlr5CfngngnQxoTm/sL3TLWzc0Mb4bcuVW2U7+c5iwk3Z9T5yqIV/5JDXFdjIoRW7s9nz3Wtce/hV1nvPZbZ3IF5MLFe9GGdbzD2WXSR1a0v33Z+xwteV1gdXwLZvA04OHcx1EeIrJNRXALEdiGhzA1t/+Y9R2IxGDu3JKuK/CzbziCMXBtwD3a6AmM70dbrZpMOIyT8zN1ZpajILS+hvyYPQOFCKqGAbOToUX5GsOSSEEHUhyaHTYMn2o1yn9mBqE9j2zn++qgeW71PocvALVsx6hKnLe3PthPuICa16IWshxBloz2JsGct4yn0zw64ai61H9dNiwoMsFGs7YSXFDZocMrn9G1baw+kQFcoW3RqPyYEpOBLTsa2ERaOLD3dA2y6whAaZVgbQLTGS7NVhBGcfIOyksuzDGRR44/in50p6WPbTJczLeQeWYftwLEciL6CbOoy3RUestUzaBMpqD6bdPV+AM7tOI+lMJkWuvRURJSvB5610ofXsolLilJHUsAy4Ba8jnPC030JJAfqX/2LqeTf5v/5gVK5i5FCJx0tIaRYmh6/ek0ORwTbytQ1zac0jhzxeH7e8+wv/ZAFOUwijWMGVZmNLdm2yonxutA5C7Z6Pr+OFfGCaTIftY4k4vBVrgPHsy3HSWvnXgIpqT9eEMApN/u+cZpQc+m7DIZKUPwEU1RbiugIQE2rHbY9COXc0YnRnj8yiUhLM+RDaEoDIYCvZhEFx1VM4hRBCVE2SQ6fBtq0bCVfF0CY1oPr92rWA/kPgi4+5zTIbz5FvefBlD/feeS8dY0NrbqCeLdmRyTtL0nnsora0b9lCdiIS4jTRuftQwO6wvvwlOaHG+mEOKy5seAIcJVBXltJCY7KxI4KU1pF8+4cLUPOGg62qyTei0UR3NP4NjWuQ5rsnhpOlIyD7UIXkEM5MnJYW3HjT/Xy34RDvbDhEfuHVPNliLr/J+QCTSUPC2AaJ6wSnkLB0hrTCUuqBgoNQyW5n2UWlxJvyjORJWCLmIQ8YBaFxqEueo63Xh9Pif2VceZVeI8/pJkH5RzrU94LUwVaOYMNRWsk6ZD4fesccVKeLQSnW7MulxOVkYPBmzP0mwcA7jdFORZl4N36Jud25qJ5jYd9yTIlpjD/gYsfWRDrt20h0gPHszXbSpiw51A67xUxsXEvIoXklhzYeYnCMEwowpkuW44iIJShrFT6vF9PBNdCqD8jo7waRVVhCLDmosHaAMY1ypw7FXLKlcQMTQohmqmE+rhNl3F4frn1rjSctkwM/sec1FF/6Kp67VuKK7s7zvv/j+7ceIyu/Yf/oK8/n0zz95UYe+s9sntp5A+3fOgffB6fhF3khBAB7M/YBMPb8FCzmmn9ch/uTQ74G3K1Ma43N7f8j1xEJQOf4MMw3fIBpzL8b7LqijqI7wqQfoOuoBmm+U3wo2YTjLTgCRVnGl19QSRY6NJZB58Twl9E9WfbocJ69pg9/d17BI55bjUpNfBqiL6Kd8SAnvdLyrKJSko5Na6lkBJTFbCIxNhYvpiqnleUWu2lZlhyq35FDVrMJt8le+Q6Ge5agPrwOtn4LwIKtRxho3orZVwLnjDBGxCSkwDkjsFz1GirlBjBbod35YAsmJSmSnboVIfk7QeuA4tmb7aSD+XhyCKBNK39CrJkkhw7lFLF572GGtfS/ppFtTyiPjGlJOEUcXDET/jMCtsxuhCjPDlkFLuJ9h8sSdFHBxoLU1tJ8Y7SfEEKIWpHkUANbn5FLZ98OfJggrlvgJ1odBA34HZa4ToTe/AVFrQZzl3saO9+9q+GCLSe30Mmsfz/D/GXLmZL4DXEql0NB56Cyd52W6wshYPfevbi1mVH9AluwN8xhwYUNHcAUkroq8fgIx5+kLr/Isclc6R/HogloM8D4o74B2C1mSu3RWFxZeD8ah/dDY/p0blEJkToPe0R8WV2r2cR1fVsz94GhXHfro3DnMhhwZ4PEVV/M0e0AcGftrrQ8u6iEBFNe2bSWynRNiKCAkCqnleUUlTbYyCEAr8le+Q6G/kXE9Q5jt7UFW49ybcQWtNkObQfV2K7NYiInqB0Ob0HlC5JXYl+2ky72LHRwdNlUx5bRkRRrGx5n014nxuvT/PWbzaz41+3Mt/+R1OBM47UKjT+hXkJLY4RZ3ub5ABTNf5HVe7L5JT2b9Rm57M8tprjUy+F8Fx6v77Tfx5nEXHgQmy6FFh0AY6Rcpo7AhC/g70khhBDHybSyBrZkRxYXmNbhTuyLva5TLkJiiL7lf8z7v/EMy/oSMndAzDn1G2g5n/28k/Bvb2eM+oVLgsMIyi7kI9to2tg8xLt/brDrCiGOc3t95B49QJElikh7YD+qwxwWsrUNGjA5VFTiIVz52w+KbLDriObDFBZLVPZizBmHjAM56Ww96GOA8hARW3EkTFy4g7hwB9D016cKi2+PVyuch3ZS2ZLeOUVuYlUuKqzqEVDdEsLI2RBMUGE2la0cmFvsJl5l4zPbMQXV/3ZdPksQJk/FxIvbmYsV8GyfS06+i80Hcjk/8hdoe17AU0RLo86Bw8DRrQFNXdyX7aS9+ShEtis71iLERi6hRBRkN+lfSv+3OoNvFv3Mw/ZvsCgvbJ+JjmxTISkeFWskCj3pS8EEIUfX8q9/vc4KXxcKCMZT7i7jwuxMOr89dwzteFrv5Uzg9vqIKskAG2XTZx1WM0dN/mRd7j4IqzppK4QQoiL5mLeBbdq6hV6mdKzdLju1hpRiT697cWkrrh/+XD/BVeKX9GwOzH6Oi9UvHEm7H1tES3RQC+ZF/4Zst7VB/+gUQhy3bGcWId48VGjg22+HB1kpxg4eV4PF5Sz1ElE2ciiywa4jmo/gqJZY8Rw/sOkL0vemAxDXsv53IjudWkaFc5BoSqsYOZRVVEILX3a1f4S2iw4hnxBKCiofGZPrNEYOeUMTG2RtGm1xYPFV/JmwK+MAANa8dG57/TOuNi8m0pWB6jMx4Lat8caoRt/RbQHV35vtJNF3CNWifdmxqGAbuToETxPeYcrl9vLynG38OfxrzBYr2h4GzqwK6w0BqGBjBaYepr1kRqXiskfzL9srrHHT4pn9AACKnUlEQVTcwQ7HTWwLuYVVkY8yp910PtSTuWzeSLZuXHe6b6nZyykqpZ3yJ6RbHE+uFTr8/xfzqt5lUAghROWa8oc0zZ7WmpiDP4EZTF0uOeX2enQ6h/cXXcQd274EV3697z6TU1TKXdNX8751He6EAcRd+Qy4/wSlhUR8nUHWUTN4ncbaArK4ohANavb6g4wzFRAaFfgaJMemlZm8DZccKio1Rg55TTbMVkeDXUc0H9FxrWCn8UdZcFQCbJjJQUskAKEtmvcn9wmRDvb54uhUxZpDBYVFhOr8apNDSS2COKJD8DgrX1Mnx+mmvcpGRdTvekPHKGsQFmdJheOFucfXh/pNyEqusM/BF5aCqduVAbcd06ojRevs+PZvrLgg+UkKXG6cziKiHIePL5QORIfayCOUhCacHHpnSTqleYcZHjQf+t8OJQWw9gNUVNuKlf3JITNeYs7pB4Pehz1LwZWHz5mDqTiHiJx0IvevwBudRNGhQ4TMug7a/CQjXWohs9BIDnlNNszlpmO6QlpBLsbIISGEELUiyaEGVOz2MpTV5NkTiIjtesrtpbSO5CP8n7bl76/f5JDXzeszf8RblEcX207UOdcYx60OsDpIiMzkaIkZZdHGqARrUP1dWwhRwfYjBcRbijDXYuSQ3WKmVNkxN2RyqMRLOIV4bBHIvoUCoF3bdrAMZjlTGJnah9if/4rF4t+AoYF2STtdEiOCWKVj6VW0sUKZ16exuY6CnQrrzpTXKjKIHYSgXAcrLc/171Zmjkypr7BPYLIFY9WlFY6XFGaTSyjh4ZFcl/eOcXD0a7VaO6xDbCg7dSJJh7eeWFCcW2Ha6b7sYjqpDGM9mLjuZcdbhNjYrkNRVSzY3dhyikr5x4Id/LHVdlSWD3rfaKxns/aDSkcOHUsOARDT2ajjr2fixCH7ZuDfH3zCzdvvYs/HD/FO7CO02Pstsc5dJEQ4GHb+YOh2RYOtGdacZRaW0F4doiSsLcHlvmftoVEU5oUQmifJISGEqC1JDjWgwmI355k2sC/2KiLqYaSNw2omJLaNseVr/v7aLXBdhVKPjz9/tZHk7f/g0aKPGd7pTtQeDR2GnlCvZUQQO7R/tYRSpySHhGhgzlIvEToPggNPDgH4zEFYGjA55PSPHPLZ63fkomi+zLGd0SYrP5oHs2xbHFOAC0vnG38Fh8Q2dninJMhm5pC1FaGlPxm7aZVbEyjXWUoc/tFAYQlVthHmsFJsDsPqrnx77bwiFy1VDqoBFqMGMNuCcVCCy+3FYT2e0vU6c3GZw4i49h3cB37F2ioVkvrUqu0OsaH8pFvTKWv98VHF+1ag/zuSI1dOx9VmKGHKRYuwEPblOOlq8v/BXm6XuhbBNvJ0CJbS9Hq42/r35o87KCrxcE3IWnzetpjie4L2oS94DNXzmoonBJdbSyumU43tDx9xCR9tGc5v980mdp+Nu9VnAPicCj77L1z/gZEgEifYdriAIeoQppheJxyPDLZySMXSMXcfMsZdCCFqR9YcakAFxU5CVAm+etyatlVbYyi2OyfjlNvSPh9PfbKMGct3c5HrO2zKy/l7/4G2BkOrvifUTYxw4Dy2lKa76JSvLYSoXklJMcG+IgipXXJIWx1YfBWnkNSXohJjzSFtj2ywa4hmJroj6k/7OX/4KGYfCOGIOf54EqCWyc2m6FCIf5TL/tUnHM8uKiVR+admRSRV34gjAoensNIt3z0FR401mxooOWRxBOOglFyn+8SCknw81jBU6/5YB9xc68QQQEyojXXmHgS5c+HIZgB+XTgTpX1kzZzM9Jf/SORrHeG5eFzf/5melgy0xVG2uxRARJCVfBWKzZ1/KrfZIEo9Pg4s/5yHOx0gZP9iTF1HGQkwkxk19GGIbF3xJIsdbfNPsovpXOM1uiWE0/GqyZhNirvVZ/jans9nl61hUMnrRoXCw/V4R2eORduO0M50BEf8iQm4qGAbGb5odK6sOSSEELUlyaEGVFxg/KJjcYTWW5ut23bEpxW5h/ecclsrvn6bP2+9gpntv6SFLxvd+lyU9qHbnAsW2wl1EyKCKD42cshdyZa4Qoh6ZSvJNR6Un6IQAG0JwoIHvO6aK9fBsd3KVFBlezeJs5bFzrV9WxNmtzKnpCcAOqgFmJv/AOWC6J74ULB/1QnHs4pKSVSZxpMakkPm4Cjj/6W74qYO5iL/dLN6/CCpPJsjBIvyoZa+hveL+wDIK3bj8BaC49T+HyulONSiv/EkfTGr9mSTvXUJbqx0N+3hT9aP+MXWh7W+cxiQ9y0XR2dBTBcwHR/BZDIpSqzhWH0lTe73i80ZmbxueoU79j6I8pZCt1GBnRjcAm0NCbhPh/RLQ6WNRzsiMV09lS6J0WQfW8WpOLduwZ/BXG4ve3Zvx4b7hMWoAaKCrezxRuPJ3suBHNlERQghakOSQw2ouDAPAEs9rg3UMb4FmUTgPHrqn4gc3boMm/KSfPBTfKEtUb+ZgS8+GVPy9RXqJkaWGzlUKiOHhGhodrd/ukotk0OmY1M+G+iPLGephwiKULKNvThJqN3CtX1bs9DnX28opHmvN3RMZFQsu0lEZ/xywvGcIv8uY9awGtcAtIcZU410ccVFqR3F/h2XGio5FGRsSx+6+RNMGz4Fn4/0zCLCcWINiarh7Jp1OKcbGTqGbcu/YdI7y0kz7UD3ug5fm0F42w8j8dZP+cx8GS1VDgk5v6DKTSk7xmOLNB40sUTIzm0bsCovrqRBeLteAa0HBHZicAw6+pxabd6hLv8/1O/XQ2RrOsWH4lY23CY7NNG1mBrTL+nZtPP5PySNPjE5NLRLHM6gRGzeIka9+DUvTvuEnN1rwOdrhEiFEKJ5keRQAypxGskha3D9JYc6xIZwULdA553atLLD+S6C8neRa0/E02qAMTw6KBLTnYsgpWJyKCLIitfs35mokk8+hRD1x+vThHqNnx+1nVZmshl/CDbUdvZFpV7CVRHm4MgGaV80b7cP7UB8ykVoZa71925T1S0hnNWejnj2rjw+LcxdTFZhCa1UJv/f3l2HyVVeDxz/vnfc1nezSTZuRCCKhOAeXArBpbQUK22htIV6+2tLW6S0QClQwQrFNbgHC4Eocfes786Oz9z398edTTbJ+s5kd5PzeZ48mbn6Tm6SO3vuec8x2zEdzJtrBXlrqyt2W+eLpqcNZWlamcdjZS9761ejEmGo38jqygZyVBhPoOvBoRtPGMlK70SKqr7gAHcFAUI4hx6Kcfkr2C59gQElBdx8ww1oZUPpFPQZs9sxtDvPetFM8Kw7Va5bDID7pN9iO/+xnTKeWqOO+yXGib/r2MkM2/ZMLrfDxuBCHw3K3+P+THqCLxev4LeOh0n5SqDvhJ3WTR6UzzVnHAXAi/l/5ea13yb/4aOoffRiSCWzOzDTBDOV3XMIIUQWSXAoi2LhIABub1sNXtvP7bBR5yjGGd7apeO8PH8zQ9QWbGWTsH/7TdSBV7a6vVIKnz8d5IpLcEiILjFNiDW0uDqSSFFIuv5GB2u2GK50cChLQdxwNEEOYexNi64KkdYnx81vZkzDnHAxasTx3T2cjDh1fF8WGSNwxKqhZi00lKP/NIz89W/QV1Vh5LVRbwjIzbcKc1dW7h4cyklUkFL2rNVnys+1Ag6KdOZExTLWVITIIbQ9aNUVLruNg485kwLVwANDZ1kLyw6yup6lM2dy84th8GHWupLdg0OGL/3/SQ8LhCQau7Dtkp3SpqFHwpDDu3TuUaUBakxfj8um6m51wRBHzruRPqoW2wVPNp+1l2t1hxsQWkjNyHP5u3kWeWteRc/8YXYH98Yt6MfPy+45hBAiiyQ4lEWJSDo45M9sV5+4ty858d2/YLaX1pqXv1rLIKOcQP/2dzwL5KRrE0jmkBCdsrI8yFX//IDqB05F33dIi9uFY0nylfX/R0ezLxzbg0PZyRxKRINW/RKpOSRaYTvjr3DY97t7GBmR43aQO2wqALF1s2Hdx6hEiJKKT+lvVGFrrijxLvKLrCl2tVXlEK7G/PJhqNtIfTRBsa4i5CrpUAv5jnC6vTsvqFjG2op6fCqGPUPTQz1jT8YM9Mez+H9oTz4UDt9tG7X/N6xi1H3H77bO5u15waHyYJSC6AbCjgLohmm0o0oDVKa8pMLVe/zcPZbWLH7wSibqJWw9+vaWi6in/02a7nzyz7qd9/p/h/dcR8PCZ7I7vpq1ULMmu+cQQogs6v2VInuwZGNwyJfZH6KMvP74gyGS4Trs3g4e2zSZt2AuDVtXYnOZUNh2m9VGXl86yCXBISF2tnUh5ovXY1zwJOTs3tLaNDVPfLGe516dya38kwJjBRq1o/XzLkLxFIUqiEahPB2b9mF3+QBIREM4OvdpWqUbn2JLzSGxDzn88COpX+3l3RefwOPP5USgT+1cCghCbtvTwYrTwSHv0mcwZ/8Aw4zDQVfx+eAf0pdqCGSn3hAAjXXIgKRyYK9YytpN6YBWFwtSb+ctwLj6I5Kv3IitYEjzga6Jl6BGndxswNsVsDKYzEhNj3lqOW99LUONLSTzO5g1lCH7lQao0z7iwWo8bW++T/j6xduZWv8anw+4koOPvKzlDX3FpAYdjpp4EXjymDQwnzkb+nC0PWjVzXT6sjPAVLzHFVUXQoiO6Cn34L2SmZ424shgtzIAb5GVLrt1UyeeTqx8m4kvHMMl7nTqd1H7g0MOd/pmKgWphdgunkiRevVHGFvmwfpPd16pNWvmfcA9d/2aAa9cxLPGTxhpbOZr1wQUusV/S6FYkgLqSThz213jopHTY/07DYeCnfk4bYoG00+xM/VDpRC9wJQhxWwpOZxjjLkMqJ8LwMDkWmtlbtuZQ/5cKyAytvY9VqeKiReMRG9dxIfLK+hnVOMrHpitoW8PDkWVi0VqJPGtS6mtqbLWZfLfsa8Q+4yHUcf/qvn1SrWYCenO64OpFdGKtZkbTxd9urqKoWoL3r6juuX8w4r91GrfjoD8Pi60+jNGzruN2Y4DmXzZn1rfWClsV7yCMeECwKpDtNXMs9Y1bMvaGHUqDqlY1o4vhBDZJsGhLGoMDuHKXM0hgPy+QwDYtmF1h/ct37ACgIuZaS1oJvW7JU5vOsglmUNZ99bibXy2uqq7hyHaoLXmb/fdhW3DJ9aCiqXb10XiKd7/160MeeF0bgjexWRfOeaRt/KbYU/yuramqBBrPoATjqcoUPUk3B2v6+NKB4ci4ewEcbcX1G0sICvEPkApxagjziPHrGWMsY6VZpNMn/YUkm4ShLkr+Q0WO8ZC+WI+Wl5OX6MaW152ilEDYLeCQw3+oSyM98UsX0ouod3G1Z1ycnJYo0sxt37d3UPZ7stlaylWddhLRnbL+Qv9Lurw4UjUtbmt+f4fYfmbe2BU3afy2Zup0Ln4ZjyE3d6xiQ+TBuZRQfrvekN5FkaXlkxkbUr33k5rTX000d3DEGKfJ8GhbGrMCshw+mq/gVaKc+XmjgeHNm/ZBIBdJ9D+0jbb7zblTnc8SUUlcygbFmys5Z8zP+b1v3yHHz7yPpf963OWLfyi7R1Ft3l70SbOqnqQ5WZ/yu190eVWcKgunOCSv73GpPX/Zon/YOq++TG+Hy3BOPrH9Cnpw8ZwOhso3nxR6lA8SQENmJ0JDqWDuNFI5jOHYskU4fosZBwI0RuMOB5tWD+U/is1fcfy3LYLUmPY0O5cUkWjSIw8ldfKC1HRWvrUfIVTxyF/cHbGDNszh7z99mOl7o87FWSkLd3Uoof8Oy70uViqB2CrXNzdQwFgU20EqlZZbzrwEC2Tcj0O6vDjSEUgGW91W/XZfZizH9hDI9vzNm7cSFnDQpaWns7Y4YM7vH+h34UzNz3lO9i1hi6tMuOQjOzoaijaRWvND/43j+P/+Drm4+fB2lndPSQh9lkSHMoiFQ9iorY/tcuUQNEATAyOXvEHYg+eZHU+aqdofQUpbdU40R2YUgYQ8LiIaCdxCQ5l3PJtQW584BWO/ewKTqp9kn8OeY+r3e8w6tnjqF8lAaKeKGVqFs78O0ONrayb8EPmxvpTs24B8eqNzL7nUq6v+zMBFWX0JX8hd+C47dPDBhV6qTPd1kFayByKxFP4VRjViR/cvF4rGB2LZD7Db21lmJzGjAOpOST2Ne5c9KDD0Mpg0snfwnTlWctz2lcvSE+/HdvZD3DZtKF8GbX2udr+krVy6NFZGHDa9uDQGJIF1n3/uMBaa10PCQ4V+JwsNQfiDq5vtZPjnvLR8gqGqi3Wmw7UZswkm6GIO9IP8KK1rW+cCMPWBVkfU3d5b+aT2JRm/DHndvoYfcsGWy+ymTmUiqO0CWYye+fYC933/ipemLeZ0+KvYax4Y/cp+kKIPUaCQ1lkJMLElDvzHUjsLjYedy+vmQfh2vRph/4TNRuqKLeVkBp/Eca4szt0Wr/LTgQnyWj3f3Hbm0TiKa56ZA6/t/2dAe4I5qDDmVzxPN81ngJgzvvPN7tfTSjOzIVbmLlwy54crkibOXct54WfpDpvf44783KSBSMJhNbz8oO/4PjwTI4y5qEnXAh9dm7bPLjIR0inA8YtBIdCsSReYhiujtcr83itHyb8S/9HYt3sDu/fmhXlQXJIB516yA+VQuxJxjE/Q5/0J74xbQyq/0S0rwTsrvbtO/486DeBQ4cVMnaCNbX0aNt8zPyhHW+V3hE5/TEHToURJ9B/v4MBOMS06iZ1JHs4mwr9TpbqgVYttsbpuVsWwJqPumU8H66o4GD3erTdAwVDumUMAClnnvWitS5uqQQqFcdo2LY98GGamkSq/Q8Oe7KV5Q34N7xHyJ5H4YiWu3y2xZtfQlIb6GxmDqXS06KkKHW7ROIpbn56Pne98TXjciJca3/RWiFT84ToNm1O2lVKDQAeAUoBE3hAa323UupXwLeBxp7qt2qtZzaz/0nA3YANeEhrfVuGxt7j2ZJhYoY3K10mBh52IQ9uGsoJi0+j4bMnKB48rV37GdEa4o48bGfd1+Fz+t12wrjx9YCnenuTD1dUkKxey0GuRTDtZzDubPQ9B2JLJQja8mHdp2yqjVATivPm4m1UNcTYWBNh1spKUqbJcLWJqRcPI3/ktJ260ojsMU3N+rfu4zRViXnKgyjD4LBp03DM/C8nhGdSWXwQRVe9gNFM1uCgQi8NpDOHWphWFo6n8KsIhqfj9cq8hf14NnUYp9bOxfbEefCjVR0uat2SleUN5KqQ1UXNJcEhsQ8acCDGgAMBUMf8DOo3d/gQSil+PeNQ9J1lqPqNGCOOz/Qod+b0YnzzdQCOop5ln5cxKrbRWtdDgrwlARfOfvtDJdSvnUtO2RTMF69DhSpRNy3Zo2PZVh/lvaUV/MS/CkomgS0bfR/bR3vyIAa0VpS6SWODTz95j9VBOy+sTNGQVLw6+l2Mg78N/Sdle6hZ86+PVvJDYz62ESd06V6W73NTSS6F9Vuz0skTsLqVASSlKHV73Pf+Sj78aiFf5vyW3PhWUFjfL5ISHBKiu7SnolsSuElr/ZVSKgB8qZR6K73uLq317S3tqJSyAfcCxwMbgS+UUi9prXvGpPIssyfDxDM8paypH542mU+WTWHS0hepC/2ZXF/r54olU3iStZg5fTp1voDLTkS78MRamVZWt9EqwN1DvnD2BrNWVDLD8bH1ZvwMyBuIPuF3YHeh1n7BpEUvMvG2t9EoDKWY5C3nOOMrDjnwLE7ffBf9Kz6Ep4ETfw9Tr+vWz7KveHv+as6LPEl50YGUDLemg+QOOACAgIoQOPAbLdYaK/a7MB3pdS0EWkNxK3PI7u54cKg0z8edvptY7fiMm4N/hM1zoWxKh4/TnDXbajjWFQRHTuYzIoXobbr676p0LNRvhGwHh5oY0y+H6MRjYP4j1g9hzsw2zOgspRQ3nXccDfd6eOeD9/hiSSG/b5wmFaoCX+GeGUgqyWMvvorDtDEgtgI14IY9c94WGN58qKX1aWVNmoSs+vB/nG97j28oG/Xag7GgHgqH9NrgUEUwhnvevymwBWHMyV06Vr7XQYXOJbduSxaDQ+nMoaRkDrUlmTJ55ou1/CfnAXLMeioO+gm/nBXmLv8juCQ4JES3afPbvdZ6i9b6q/TrILAEaG9bjYOAlVrr1VrrOPAkcEZnB9vbuMwQSZs3a8fP9ToYfOSl5FPPcw//Bd1GAbz1VWHyCWL3d+5LlpU55ELHW65lYj58JuYrN3bq+PuqWSsqOM8xC3Pw4ZBntTM2pl6DceA38Y84gjwV4pkhr7DC922+3v9/PG3cytWJR7hm/ln0q5zF39SFRA0v1Kzr5k+yb9CmSe3rv6dY1VN4+v9Z7ZkBikagVfq/1P1OaXF/pRT5+el/g/EWupVFk/iIYnN3fFqZ3Wbw3WOG89+KIWgUrHqv/TtvXUjqheutp56mid74JXrdp6S+fonY89/ljytO5fTUW2hvcYfHJYTYmRpwMNqdB4MP26PndQ9Nn8/ds4K8Q0tyiBbsxyi9ltINTRLR90AtHa01f3l7OW/cfik3rfomfx/0PspMwoCDs37u1ti9+daLVqaVmU2m+l9kfxebzaB+0IlU6HxMwwGx+mwPM2s+evlhfmY8THDQ8TDmzC4dK8/rpFzno7PYyl4yh9rvg+UVHB5+i9Gx+ahT7sB59A+ZaR5CQrlan1amNXrZ6x2qtyqEaL8OfStQSg0GJgKfpxddr5RaoJT6l1Iqv5ld+gMbmrzfSPsDS72a1hqnGSVlz15wCGDYoWdS5RnCFeW3sfof5+94atGMVRUh8lQD7tySTp0r4HYQaS04lEqialahlr/R6jjEDhtrwuRUL6BPagvG+At232CQVZdi8pYnseX2w7X6Tcw+B8DlM0lNuRJ1/hOsGHkVm80CdCemN4gOMk02/+cyzos9w9r+p2Ib1KT+gcODzh+K2W9Sm92LigrTwaEWag7Fo0EMpVGuzj3VP2dyGf6CPqy0DSW54u3277h0JrZ5j6K/epTUSzegHjoG9e+TsD19CfaF/+NlcxqvDPoJasajnRqXEKKJQ29A3TB3z08HTt9XemKGb9HYoxmT/Jrv2F9lqTnAWrgHgkP/nb2er999ghMjr2KiOHTLw9aKsgOzfu7WuALWvUK3EhyqC1qt7pOGG4VGjzkTfc4/OTn+B6L2XIhmMDiUSkBDuppEqBK2zLdem6mMf+9btK6CQ5bdxib3MAIXPQK2jrWv31W+10mFzsUWym5BakBqDu1qywLMh46z/s6kPTF7A9Od8zFzB8KEC8lx23HaDOI4obXMofWfop6YASveIJpI8fqirZhz/g1rPtwDH0SIvV+7g0NKKT/wLPB9rXU98HdgGDAB2ALc0dxuzSxrNr1FKXWVUmqOUmpORUVFc5v0KpFECi9RtCOzbex34/CQ/4NPeS5wMcO2vk7Ff7/TYgvNdeW15KgIOQWdCw75XXYi2olKtBAcatiK0iYqHoQNnze/jdjJrBWVHGXMtzI8Rp60+wZ5g9A5ZZg5AzC+9RbGrZuwfesNGDwN26l3wqiTOGJkMZtSeUSqN+35D7CP0dsW0n/9SzxhP4P+Vzy823rjnAcwzrq/zeOUFuaT0grdwrSy7U+CW5ia1haHzeCnJ4/mrdhY1KYvWgxC7abe+juk3/0ttnmPsqz/2fyl9DbO4zYmhO/l5vi3cR50BWqXIttCiE6wOcBbsOfPmzsAM9CvRwaHOPpWEpOuwGWGeUyfRI29BLYuzOopF2ys5e8vzeJO90OYpeMxjv8NSpvowhF7bjpbC9wB6+9HsqG6xW3qaq3AUW3hRACMqddRHHDhc9oIK0/7//9vj0/vQf9tIlu3bqL2qWtJPnAs5/z6n1Q89A30f1rOmO2oaCLF6/+9i36qioLT/g+cXX/Qmu91UE4ezmiVFczKhu3TyiRzqNFvX/6aNY9/F2PjF7DBapKxaFMd7y/dzFRjMcYwa2q+Uooiv5MojtaDQ40PQjfM5revLOa5/96P8cr34bO2v3sJIdrWruCQUsqBFRh6XGv9HIDWepvWOqW1NoEHsaaQ7WojMKDJ+zKg2fQGrfUDWuspWuspxcW9f8pCQ3paiHZ2fFpIRxlOD0dffRf/ss+geNWz1L76q2a327bV+qN3BYo6dZ5AelqZkWwhOFS3Izihl7/ZqXPsS7TWvDR/M8c5F6D7TWz+S6hSqIufwfjma9YPEc0UYzx8RBHl5JOqk8yhrNAac9ZfoW4TSxZZHX5yD74Eh72Zp5j9J0PxqDYPWeh3EcJDMtL8E12zMWjUhXogJ43rC0OPxqZTxO8YR/K1W9rcx6zbRMLmxYjWslEXceaqU3m6dhRD95/G/51/KJ/ecgwnjC3t9JiEED2AUqhDr4dxnW8LnjU2B47T/wLXzcZ10BV8GSsjumFu1k5XG45z7aNzuMt5Pz4jgfGNf8KB30IH+qKGHpW187ZXfsBDvfYQbahqcZtg0LqPVE+8Gn3Ji9B/EkophhT7qDczHBzathgVC/LWvd8jsPZN7DrBg+YvKN78LmzLXDnRZ2av4dzI09Tlj8M3tpkHZ52Q53VSofNQmDtlsGTU9mllkjkEVhBo3afPMqRhnrWgcjnaNLn95a84xL0Bd6oBmvw7Kw64iOg2gkPpa1e1/BPe/nwef3b8AwAdbjmAKoRov/Z0K1PAP4ElWus7myzvq7Vu7KF9FrComd2/AEYopYYAm4DzgQu7POpeoD6axKeixDv55L+j8n1ODvvW7Tx7fwXnzPkLFQ4/xcffuFMwoboyfbm8nXsS5rIbRHFja+Y/7XA8yZwv53EEoP2l6BVvok74TafOs694f3kFi1etZZx7JWrEj1vesGR0q8fpk+Omzl6EN/aJNQe7J9SQ2LaY1Cf3Yjv97i6ngne74BaMt3+OTjQwb94WxgDHTutaHYp8n5MG3Bjh+mYLY+po+st8J1rZN3Xx+Rfy1zvmckhqEQd9fh+MOxsGtDxNombrOr6K78cK7wQKRh/FK9OOZWiRD6WaSwIVQvRWqqc3LygexQ3HJnjyy6EcXfscOh5CZfj7lGlqbnxqPoeE3uFA+wKY/lcoGgGAuvZTyGJDkfbK9zqp034CrWQOBeutaWWBwgGoYZO3Lx9S5KemxoWOBZtN4++Mqk0rKAQusb2FRlE+5SZK5txBBBeeeNAKRHVyOnSjWDLFqvce5mKjHH3CXTvq+nVRntdBuc6z3jRsg0DnmrO0yDStOlUgmUNpd7+1lB87n2KzvQxnop7KRV+yaO39PLjlZ1QUHgjVwJAjt29f5HcRrrWjE5GW/86GreCQq3w+N+QOIhCLsM45goERCQ4JkQnt+SlyGnAJcIxSal7618nAn5RSC5VSC4CjgR8AKKX6KaVmAmitk8D1wBtYhayf0lp/nY0P0tM0xKzMIaMTBWU7a2RpDvt96yHeZwrFn/4fsbsPhKpVgJWiW1G+1dqwk2nsSimSNg/21O5PRN5avI2P5swD4N76wzEqlvD2befy3zt+wPt/msHzf/ker953M7Me+RXb5s7ct2sSLXiK+H8v5vevLObs3GUodJe71Zj+UmykINzy08U9RmtSL/8A2/zHrE48vV3jU6rV83DUrSXkKsblzenSIQt9Thq0h2S4rtn1Ot61aWWNcrxuRp71Uy4PXU/IUUDq7dYDtu7IVkLuPlzzkzs5/8wzGFbsl8CQEKJb5HodjJ50GDZMPv3orR0r6jZZHcy6IpXg/f/+kblLV/LT3DcwS8bApEt3rPfkg8PdtXNkQL7PSR0+UuHaFreJhKz7SH7+zqU/hxR6qUy40dHm7zOdoerWU6HSDxhHnkjJKT/n00Mf4reJi61lwa1dPsczX6zj4vjTBHNHoVpp7tBRDptByJEeezaKUptNvtdKzSEWbapDL3+DEWwg78RbqfQMoWHzUsJL38WhUvSr/gyz9ICdsuaLAy4aUo4Wg2vRRIqacitL3k+EGeZMVngnMScxGCQ4JERGtPlIX2s9i+ZrB81sZhla683AyU3ez2xp271ZQySBlygNezA4BDC2rJCl33mW799/N7+t+wfq2Wtwfut1Fmysw2+mp7B0MnMIwLS7cTQTHKoIxuinqojbfNRMuJ5XVhtMr38aW9SkVuWS1/hDcDmwGta+OozIqfcyesLUTo+lt9Fa8/SXGznkg/sYGJxL/8RYrh44F11bgOo3sUvHduT1gyAQ3Az+bp6Wufx1bBs/s1631nGit0gH3FJbFjHCHsBdMqLLh8z3OQnhwYw2n+5vJLo+razRSeNKeW7MIO5eeSq3rnsEvXQmar/dWwLrWAM+M4izaIAEhIQQPcK0Y8+kZu6v6DPrZ0QOORaPx4v57+mo4v1QFz3VsYMl46Rm3gyH/YC3336NE1f+gfd9BeSGquHEBzOWoZJJ+V4nW7WPfq384BsNW/cLt3fn+8WQYh9BPKQimzvWfaYFsWiYglQV75dewZGDPKiJF4JSjD7sDP72/hpro+CW7dlXnVHZEGP+mw9zkbEFffwfMn5N4p5iiJKd4FDjlDJodVrUulWLySsoITe/cyUeeou/v7eS7zpeIpkzAO+kGey3bQ6JBc8yJuBAuyZhOnzYxp210z5FfhcNKXuLwbUfPbOAkxcv53DDhU/FsCeCVI06k63zvrA6+mndI/8dC9Gb9ID5J3uncCSEXZnY3V3/4a6j9uubx5kXXsNvk5fg3Pw5Na/8ggUr1lKg0j+IejpfADNl9+LUsd1aSFaH4vQ3qrDnl/HzMydw6o0PYPvBIvjhCvJ+uR5+ug1+upWt3/maN0f/H4FkJcOfP4XoO3/MXmHAHubFeZv5xTNfUFpvdV65v+AJSra8B4dc02wtoY7wFw8EIFzV/Zk6Va/93iqwDa3PG+8t0sGh4sRmRtk2Yisa1uVDWplDbnQLtSCMxqLvXZxW1ujXZ4zlaXUi6+xDMF+6odl6CxvXW1mGBX0HZ+ScQgjRVTZfPuXH/5Uh5kZm3fsd/vu/RzFq18HajyAZb/sATVWvwvbVf3jv4d9Sv2AmUeUhoCKYuQNg7NnZ+QBdVOBzslEX42lY12KzkUQ4fR/ZJdN0SJGfoM5czaGvl1iJ/8UD90NN/wOU7g9YtXyK+w22Nqrf0sLe7fP7F+dyvflfovkjUWPO6NKxmmP60g1ZMpDhtJumGfHNfPdZUxnivtt/TukjhxO/9zCoWZv5MfQQaypDrF/8CePVCuyHfc8qL1A0Eke8Dk/VYtSwY7Bd8QoceOVO+xX5nUS0g1S8+eDQlroIZc4Gkn0moF05aLubginnUKv91pS+TNbXEmIfJcGhLAmHrCwdh6dr008666hRJZx52Q95hwPJ/+pvXPzJSRzrXWmt7EJ3FO1Id4zYpdhedShOmVGNym1Sfzy3P/jTN2KHGxweSvuWccKM77L14vd5w5yC+6Pfw+IXOj2e3mD5tiDvLt3Gr1/+mgtKN+FUKRg0DXdwHWZOf9Sh3+3yOQpLBwFQtWV9l4/VFXXhBK6aFWxxpP8e7EXBIUNpPKkGKOx6cKgxc0jFQ82utyUyM62sUd9cD98/cRxXhb6DjtSS+uskEg9N3+kL8qpVKwAoG9T1zyeEEJky6tAzmNPvQo4Pv8qkJbcDWF1TN3/VsQOl70fjat/hZM8inGNOxrh6FsZlL/XY2ni5HgdL9CA8iVorK6cZyWgDJgocO9dIGlJoZQ7ZEg0tBpY6YsUyq+D0kBG7d6ss7Gt9B2lpjG2KBXnt9VcYtOR+Bqpy3Kf+KSv1E72+AA3KBw1ZaGffNHNol6zpaCLFI/+6h2sb/soy5xgciXpS/zo5+9nVpol+6Xuw4YvsnmcXD3y4ikm21dabkSdavxem63mhYUBzPYygOOAmqp3oFv5cgtEkRUaQ3OL+mPvPwJzyLUYM7EfYlv5ZS6aWCdFlEhzKkng6OOTy7vnMoUaHjijGdeETnBX7NUqnOCbxkRXccXShyGJjcCi+c8ey6lCcvqoKldu/XYcZO3woD/f9ORFcmOnWlnub6lCcm5+ezwl3fciDjzzMxYlnuWHQBrRhh7PuxywcgXHyn7t2PdL6lw3C1IpQZfcGh17/ajl+FWGD6mct2Bvm3e9ax6mg68GTgMtOWLl3BIF2YW/sCJjBboeXHDKISQdO48rYjcwPHIF982zMD+/Yvr58o/VFrt+A4Rk7pxBCZMJBV9yOmTeY/YwNvJA61Fq49qMOHaOmzvpeVqpq8CWqMUaeCEXDoWBopoebMTZDsc6ZvudsXdjsNqlYAwnl2m06TY7HTszwYWBCCw8iOqJ8g/UAwVs8ZLd1ubkFBLWnU11TzSUzidw5iemfXcT37M9jjjwZ0u3NMy3f66CKPGjIRuZQy9PK/u/VxRwSfJOou4SG857hN4lLsAU3Qc2azI+jqfKvUV/9B5btoeoe9ZtJ3D2J5V99yCklVWh3LjQ+NG463bD/lGZ3L/I7ieFAt9DtrSGWJCdVC74ibKfeju2k32EzFK7cdDkF6VgmRJdJcChLRuRZN+muFq7tqsNGFjNo/JG8Y06yviB0IWsI2NEtJLHzF41gQwP5ug5yy9p9rMsOG8ZicyD1q+d0aUw9jWlqnvpiA8fc8T7vzl3GswOe4gnn77jJ9iR58x9A958CeQMxvjsHMlRscWBJLlXkEK/t3nb2s76ypsytSqZv1L28Y8e7S7fxymcLqdU+4splLczADxJKKZJ2P45U81/YHanMB4cMQ/H7s/an7+RTOXvjBWwZdCbqq4e3TwMIlq+ztsvtl7FzCiFERji9GGf8DdNbzGPOGayxDcFc3bHgUHXdjiknGgXDj830KLOi0pv+oXrrgmbXq0SIhM27+3KlUO70d9AuTrcpD0Yx6taRUjYI9N1tfXHAxTadT7ymg1PbYw3opy5lXcTFn3w3Ez3+jxin392lsbYm3+tkm85DB7OROdT8tLL5G2p54bOlHGNfgHv8ORw0tJgad/q7cl32SgG8vmgLDz/+sPUmVJG18+xk/pM4alZxAp9ygH0D9Bm3I2iZOwBtd2PmD92pCHVTxQEXUZyoFr47xqIRvGYD+HaurWk0/mwjmUNCdJkEh7JkYqnVoNrWDTWHdvWL08YS3u8c600X6g0B2FzNZw7ZQulU4pz2ZQ4BHDe6D0v0YDxVi3erYdQbReIpXluwmcvuf4cfPbuAs3JX8pn/ZiZVvkTq4Oswj/8tCo0x/LiMn9tlt1FjFGJk42lYO62pDFGz1QowLI43Bod6d+bQ+8sqMCLVRJyFJAtHWQsz9JTZdPhxpsK7pfvHkyZuHSFpuDI+1UEpxa9OH8uoPgGuWX80mEkSz17NuqVzcYa3ErXngnP3HzKEEKLbDTkC40crueS043kvNgpz/WcdegARjVjfW+qLJpAacSL4ekdBYKcvl622vuhmModCsSQOM0rK3nwG8vbSBl0MDr2zpJwyVUnK36/Z+1JxwMVWnU+qgzWHPnj/TWw6wRv9ruG6G36Ce9rVO8oRZEGe18HWVA56D2UOaa35zSuLOds7H4eOw7izsdsMRo2ypuYlqrOX7f3cV5soq00/fG2mzmCmvbpgC+s/sIJR033LcFUvQ6XrUgFgGOghR2KMbvmhaFHARQwHNnP3f9daa5zxGuvNLo117P70+3BN1z6EEEKCQ1mToVbUmVDgc/KNGd/EdOd3qVMZgK2x+9ou04Xc4fQXgg5kDrkdNmpyR+Myw9lPrc2yVRUNnHHHTFJPX8F/yr/BzDHv8PPwbRiBPqjvfIRt+u8xpt0A182Gw76flTGEXCV4oll4GtZOCzbW0ldZU7DWmH2shb28W1l9JEGpvYHS0v54hk7FLByZueCJy4+d1G4/3ITjSfxEmn0SnAluh42/XjCR1cli7nFchrHpc8qePJajbPMx8tof3BVCiO5w+vh+lPc5DLsZI/xV+zuWxaJWpmbl0X/GftH/sjW8jOuX5+FrcxB6y+6ZQ+XBGF5i6Ba+azp8edaLLgaH3vx6K8McVTgKBze7vjjgYhv52DoQdFm4sY7Zs94A4NqLZuBzZb/uU77XSYXOy363svR3n7veXsHmdSu5wf8uZk4ZlB0IwP77jSKhbdRuWZX5cWBlsH+1ppyDjSUA6CxnDpmm5qlXX2Ngci0VthIGxlagEiErc6gJ46Kn4IT/a/E4AZedOE4Mndo5EwuIJU1yzXTn410yh9w51nstmUNCdJkEh7Illg4OZajbUJfZnahz/4065mddO4zL+gKSiO6olZJMmeTE00GJDmQOAdjSLdzNzfO7NK7utHhzPb/++8P8O3YjJ9u/QPefwpjV/wTDhu3ip6C0yc2xeBTYHFkZh8obwIDkOr769427ZXbtCfWRBKVYN+Z1Oh0c6uUFqeujSQpUEOUrRB3/G4xvvZWxYxuudFbhLl/aw/EUXhUjZc9eBs+o0gD/+eZB3B89kQs8/2Cd6s8AVYEjv/3BXSGE6A5KKQ4/6XwWmYPhgz/u9kNkS+JR677o8Xb/Q7uOOGtif+bGB2DUrNntflERjOElumPK/y7cgTzrRayu1XOY7/0B84PbmyxIwbbFMPdxol88SmDVqwxVW1B5g5rdvyTgYpsuwBkpb3cm+NtLtjGeFSTzh+EI7Jksrjyvg3KdZ3UEzXRnq12mlf37zTl4P/g173tupiC0CuPYX2yfYjWiNJetuoBo5brMjiFt2bYgA6PL8KsoDXizGxxKRKm/50jujP4CU9kpPvtPO9aVjmt5v2Yo1aSw+i7fHxtiyR1dl3cJDnlzrAffieAuNSKFEB0mwaFsaSz+1wMyhxqpYUdDWfNF4NrL7skFIFa/I0OlNpKgmFrrTaBPh45XOmICcW2jdvWe7aSQKavK63nrwVv4l/lzivxOjG++gf1bb2Ge+Q+MS1+E/MF7bCyjZ/yKBf7DmLTun3x5/7eJJ/fsVL36aJK+qpq4u5Cgbuxq17uDQ8Fogjxdb2XcOdzgycvYse2edHAovmtwyMocSjmyG1iePCifBy6dwtxqB5dFf0DEkYcqGpnVcwohRCaM65/Hnclv4A1tgHn/bdc+iZgVHPL7u3+6f0ccNaqEbY11hzbP3WldeTCKV8Wwt1DCwBfIByDSUNvqOdSi51Af3wWJKOYbP8X8w0D4+1R48Vrcr17PX+1/wZMKwqBDm92/0O9km87HppO7N3FoQUUwymTbSuwDm+9clQ1W5pD1PTbjHcuaZA5tqaqh9KNbuMo+E2P0yRjXfw7jZ2xfP7jQx2YKs1Zz6LPVVRxhszLN3khNQjdkMThUs4a86vmspozYMb+BkdPRNhda2aB4dIcPpxxu68UumeehWJJCGjOHdg4mFuT4qNdeYvXZnz4nxN5OgkPZsn1aWQ/JHMqQZOEoYtpBqklbzJpQnD6qxpoG4+rYl67xg0tYrgcQX9/BlrQ9QG04ztf/+Cbf048RGnISrus+hgEHglIYE86Hvgfs0fG48suYeNOLzCq9lMnVr3DPP+7BNLvevra96iIJ+hk1EOhHFKe1sJcHh+rDCQJmXVZqU9i91hfUZGTn4FBDLIWPKOYeCCxPG17E7eeOJ7ffCCJXz4HjfpX1cwohRFfleh0szzmUKnsfWP1eu/ZJxqzp8D5Pz3lo1x42QzH8wBOJaCd1c3aeRrexJoKXKE5P8981c/KsjIpgXRu1WELlqHgDNW/9GePTe5iVGMmN8as5NvZnznXey58GP4h5yyaYeFGzu7vsNoLOdDZHsH2NMXTNOuuH/fRUqz0h3+ukHCtgRjDDdYeaBIfmr9nKKGc5euRJOM77924PCp12gzpnKZ5Ix2o0tdfnq6o42/EZyQGHslqXYUuGs5ZRXlexAYAFI6/Hc/h14HCjB05Fl4yxHqp1kM3ZfOZQMJqkcHvm0M7fyQr9Tmq0n0SDBIeE6CoJDmVLD8wcygSfz8t8PRTbxh3t56tCcUpULQlvx4sIDin0Mds4gJKq2VC5MpNDzaqUqfnJYx9wUvJdykeeT+6lj2c0q6SzbIbisG/dTrVvGDdW/Jy6uw6C6j1Tz6k+kqCfUY09v4ykStcO6OU1h4jWYsPscq2u5nj8VnCoob52p+VbaiP4VLTFJ8GZdsaE/rzy3cMpKCzO2pRHIYTItLH9c9loFqLbmQHSGBwynM0Xb+7Jzp46mjf1gTiWPL9Tnbp1VWH8RhyHu/ngUF46OBSub6UWSzKOitYCkPv5HYS1i5eG/oIzLv8hz/38Cp6+9WJ+dPl52Fytf59NetLfAevbFxwqqk3XUNqDwaHSXHeTzKEM1x1K7ggO2XWcge4oNl/LTWCS/v7kJysglczoMOJJk/o1XzBQb8Y+YQa2QPq6hLMTOHl3tnUdjz9o/PZlxtn/wDj/8U4dr6XgUEMsSaGqw1R2cOfttK7I56IGP6a0sheiyyQ4lC2Hfhd+sgEce1fnn4DLzhxzFN6qRdufQtSE4hSrWrS/tMPHMwzFl/0vJoaD6Nu/y/Rws+bxz9dRsO41nCpFydHX7mjV2RPYXeR9ZyaP+L6JP7iK6CcP7JHT1ketmkNGbn8K/R4SytmrupXple+Q/Od0WPTc9mW2WPOdMTLB7bO+oIaCOz/RXVcdxkd0+3ohhBC7G9svl42JAGawfT/kpxobadhdWRxVdhQHXFQOPRuv2UD9/Je3L19XFcKv4i0+iCwstIIT0VBtywdP16NpwIuhNEy8mNsvPZojRxaT623/A4NY7hDrRVX7iiznRtKduor3a/c5uqo44KK4X7puUqaDQ+nMoZh2MLLAji1W22qHYFvBAGyYxGvbF0xrrzcXb+XYxAekDAeMOYNAQfq7eQt1h1ZVNPDgk8+RuPcwePWmDp1rfVWYlatXADBwUJNOroFSyG++PlVbHI1dkXdpfNMQTVJIPUl3wW7fuQv9Tmp1ACUFqYXoMgkOZYthA3dOzwoaZECu18EccySGmYDN1lSwqlCcPtRgy+l4cAjgyhMP4lHzRJxLnye+cW7bO3Sz+lkPYLzxE77pnWV1ryrds9PH2sPIKeXAi3/NR+YBhOc9g24sEBmpgWjrhSk7KxIKkkMQcvpRmusmjqNDbYa71dJXUY+djX3DJ7DCKjqdMjXu7W1TMz+tzJ8uFGosfZnkgme2L19fHcZvRHF4elddDCGE2JPG9M2hQue2O3PITERJYLe+n/VCR550Llt1PvXv/WV7tsm6qjBeIi0Gh/rk+glrF/FQy/f9aK01vWrBgIsxi/fDe+T3OjU+T24x1eRCxdI2t9Va445VE7EFwO7s1Pk664gDRpDQNuorMlzvJx0cCisPZe4YKhkFT36LmwdKrGDatg2ZzZp/Y9ZszrZ/jB5+PHjyKepjNYppqN59Ctsrc9fx+j3f44olV+KoWIjeOKdD5/rv7PWUUIvpDGRspoTD1Zg5tPP3x1Dcmlamm3lYV+BzUoMfe6w2I2MQYl8mwSHRISP7BFhiTxeYW/8pANUNMUpULfa8vp065qSB+fQ/5SdU6Ry2/OdyaurqMzXcjEtUrsHz9q1czGsMTyzDGH9ejw0Aju6bgzn6TAqS5TzyzLPMnLMM8/4j0E9/Myvnc4TTT+Fy+lMScBPDuduTnx5rzUdohxfdZxw6ZP2g0RBt0hnD2/LTv87y51rH7Lv6GWwvXbd9Ct76qjABFd3r6pUJIUQmje2fQ4XOwx6vb98U5njEymjtpYaX5vJan+9Q1rCQ4Mu3EEum2FwXxqljLf5gnuOxE8RLKtLy96qNG62OWbYRx2Jc93mnMz6KAy5W6P6Y7QgO1UeS5FJP3Nly8CRbpu/fnwpy2bIpw53C0t3KEo4AKpgOxLTy3aG4bDgAVZsyFxxau3YlP9r6Q9w2jf1Yqztxv7KBAGzbsiMYljI1f3xtMZ7nLuM69QyvMo2lOdOgg5k3VQ0xBjjqrEyhDHF6rMwhndi5RlIwmiRHhVC7TCkDcDtshIwcnInsPPwUYl8iwSHRIQ6bwYjBA1ljDMRc/xkAoWCt1S0jp3PBIYBTDh7Liql/ZFByLeV/OZLaxy6H2g0ZGnVmJFImc//1PZJa8cb4u0lMvBwmX9Hdw2rV0WdcTgIHhQsfghevx6hbD2s/zEphQk+0MTjUjz45LsK692QONWyYzwbbQHRO/+0dTOqjCfJbKH6YCfmlA7k/eSpf9fmG9YRxw+cArK8K4dERcElwSAghWlKa4ybsTGcRhNqRPZSM9urgEMBx53+PR8yTCMx7gNDLt+LVURS6xRIGSimihheiLQeHyrdY07sGDxrcpbEVB1wsS/WHimWgW2+GUdEQpYAgSU/mp2y3ZUCBlwZ7IcHKjSRTmevqaqa/76ScgR1T1lqZVlY22OpA98lX87j837NZv2E9mF0bz4KX72WAUUHovKehz1gAhgy2gn015db0tfpogqsemYM5668ca5tL8oQ/8Hjfn7IiUQSR2g6dryGWpETVoAKd//6/K1e6YHwitsu0sliSABEMb/NT7hPOXDyphozXcBJiXyPBIdFhU4cWMjcxEHPbEgBS9eknJF28ORx60gWsP/CnxLUNx4rXiPzjeKhc0dXhZszzb77HQeEPWDrsck4863IcZ9ydlaBBJtm8edgmnM+pts842TabT8yxqFQcNnyW8XO5Y+n2tf4+lOa4iZgOUonsdMfIJNPUJLd8zacNpWxN5ewUHCok/YU6CzWHigIeZg//PtduPdVq+brmAxIpk4q6eqsI9l5WzF4IITJJKYUR6GO9ac/UslSMlNH76g01NaDAS90Rv+KR5PEUzL+fX9kftla0cr+I23x4YuWYT14CWxfutr62YhMAJX0HdGlsJQE3K3R/jFh9m53AyoMxClQ9KgtTttsjp2QAJfGNPPThSvTKd2DlO10+Zm2D1YjGcOdYATtoNXPI48+lyj2I83iLfuteou9DE1j8z6uIxFOdOv97S8uxlS+i1tWfolFTty8vzi8ggpOGmq08/f4X3PTn+zh61W382PEU5ugzsU+9hv3LclnT4ETF6rdnQLVHQyxJka5BZTBzyO22/i6Hw6GdzxVNElBhbJ7mg0MpdzoLLdJGZz4hRKskOCQ6bOqwQlaZ/bAHN0E8hNGQ/hLg79PlYw885Ufk3fAhN/pvIxQOEX3gBNgyv8vH7apt9VFWfPoSABNOvbabR9Mxxul/hetm03DuU9zivIUENr7++OW2d+wArTWueDqd15NPccBFFAeJaM8PDr0+eyF5uo5legBLg26raKNpUh9Jkq+CmIYza4Xlbz15PyoSLtZ7RmOuep8ttVE8ZvppmVNqDgkhRGuceekfSttRXNiWipKy9e7gEMDlhw3n9+pKPtQTOcVmZZy2FhxKOgLsF/8aY+lLMPex3dbHarcRUR5UFx9IFAdcrNRWfZu26g5VBGMUqCC2QPcEh/pMu4SBRgXu936BfuICzJk/6vIxa4NWMMPeNLOllZpDAIWXPkwhdfyev5Ey7IzZ9DSX/fIuRt76Mque+in67d+0+/x/emMZB9g3Ehg8caflSikabPl4KuZz+nsn8WDqF1xofx89+TKMM+8Bpdi/fy4VZvr6dyB7qCGaoMCszui0Mq/XGkd01+BQLEmOCqNcOc3uF/Gm/+5Vt68guhCieRIcEh02rl8Om+xlAOjKFSTqGjOHMnNzGFDg5U/XXcwP/X+kPmGg/3MqdHN7yn98sJqDWEQ8MABVMKRbx9JhhgHFo/CPPZF/XnUUKxyjMVa+RfkzN8GSVzJyilA8RYD0jdydR8DtIIaTVLznt7J/94P3AMgbMp4vKh0onYJINfXRBLmESLnzslZXanhJgAsPGshL9cNRW+aycetWfCodHJJpZUII0SpfQT8AzGDrmUNaa4xUHL0XBIcCbgfTx/Xlw+QYvCo9dbuVBxjKveNBg7ny3Z3WxZIpbOEKos6uZ8cOKfKxCuu7IRXLWt22oj5KPkFcuSVdPm9nqLFnEek3lcuN1zBSMYzqlR2eUrWr2qD1MMzjz9uxsJVpZQD0m4g6+x+khp+A+3tziPgG8LD3L7zhuJlhi++BOf9s9/mra6rpr7dg67t7k5SUp5CDjaU4lIme8RjGDxZhO+0ucFl/N/Yvy6VOp79zdKDukIrW4iTR5ZkDTfl81jiikV0zhxL4iFjNfprRUDjOerF5XsbGIsS+SIJDosPsNoP8gdZc5mVff4Wtca5/Bp8c5HodHDjlIG6OXWmluZYvztixO2NNRR1TbUtwDD+qW8fRVcNLApRNns5oYwMlix6CuY9m5Lh1kQR5qoGEzQN2Jz6Xjah2oHt4QeracJycemvq4pjxU1kfS385aignGE2Sq0JoV15Wx/Dj6fux3DsZpU0GvHEl37S9bq2QaWVCCNGq/GIrOBSubr0deCiewkUc0+7eE8PKum9MLuMLc9SOBa00MBjUz/puttK5H0bVcqjbtH3dsq1BCqlD+4q7PKZ+eR7OOXwiNdrP5pXzWt22vrYKp0rhyun6eTtFKTxn3Mkm+0Aes51pLdvctW659SErmOEONMkWak8zi7FnYbv4acgbiOeSJ3COPomws5AljjFWd1mz7WlmWmsGJNZgoKF03G7rS/qmg3YjT0SNPg12qRE6pNBH1JHOeOrAtCx3tMJ6Eej6zIFG3nRwKBbdOTgUjzRgx4QWModcef0o13mYXbyOQuzrJDgkOuXkI6eR0ooPP/mEMnst2u5p8T/szjpyZDFrdfqGU5PhrhIdlFO7BL8OoYYe1a3jyITAgRfyCeOpdPZHN1Rk5Jj1ESvLJum0vlwE3HaiONHt6SDTjRZtqmeU2kDcVcDUA/ajxkh/qWvYRn0kQQ5hlDcvq2Pwu+xcNOMC7kiei1m3kSvsb6CVAfmDs3peIYTo7foW5lCt/YRrWg8OBaMJXCqB2kuCQ1OHFtKQP4aYSn8eZ8uZQ57++1PjG8r3gxcDoJe9BgueglgDn6yqoljV4i3ITObH944byQb7QBIrPyAYbLlzVLTOeqioMhCU6rQ+Y/jytDf4U+gU6/2mL7t0uIaQlTlkpL8La4cP7B3MVCvdH9s3HuLp/R/gudhBVu2idmQ0xZIm+7F2+zF2ZaT/nI2DvtXs/oahyCtMZ3F1IFPfH6+0XmQwcyjgt7KZ4rsUpDYbi6q3kDlU6HexyBxMcqMEh4ToCgkOiU6ZMqyUbfa+9Euu54C8mPXUIMNTb8b0zSHq6YuJgtruDQ4Nb0h/aRh8eLeOIxNU4VDuH3g7CxgB4cqMHLM+kiBXhUi5rOCQz2UnhgOSPTs4tHBTHfsZ61F9xuJz2VH+9JejUIU1rUyFsHmz32r3kGHFHHDh75iu/8rpuc+gbtkIfcdn/bxCCNGb9c/zUqlzSdW1XgC5PpLERRzl2DuCQ4ahePq6I7ENPMha0Fqm6aHXk3vjlww/YBoVOhc982Z47tuYL1zLrOUV9LHV487LTOa322HDe8zNDNBbWPvgJS1234rXpx9MZaHZQ0ecMKYPpiuXcucA9KavunSshkiEJHZo/DvWRr2h1ozpl8O2ZPqahqva3D4YTTJarSdmD0BuM4XFhx6NOeIEGHpMi8dwNtZ/amfmkNaaQLIxOJS5mQMBf7pb2a41K6PpYGMLD6InD8pnoR6CvXoFxEPNbiOEaJsEh0SnKKVw9BnFcLWZ4e4g+DN3Y2hkGIqpI/uyjUJ0N2YOpUzNoMRqal39Mpo6253275/D2ogXQpkJDjVOK8OdB1jZMFGcVov2Hqx6zVeMN1bjGHYkwI7gUMM2gtEkeSqE4cnbI2M5fkwf3vj+kfzl4qkypUwIIdqhf76HCp1nNRJoRTCawE0Cw+HZMwPbAwp8TuxDpllvHK3fMwybwZ0zJrK+z3HUaS8LCqdjLHmRsesfI1cHwZe52j/Dp53NOwO+y/71H7DhoQsg3eK9Kd343aObg0Nuh43p40r5PDYY3YXMIa01kUgE03CAPf13rAvBobH9cqil/TWAQrEko4111OWMbP5B7QHnYlz0tFWDsgWunMJ2nw8gHE9RQq31JoM/A+T4PCS0jVR858whFUtnDrUQHBrXPxdn2SQMTOrXzsvYeITY10hwSHRa8aCxjLJtJlD+Bar/pKycY9rwItabRUQq1mTl+O1RFYpRQB1xdzemP2fY/v1zqTQDqEQI4l3vKFYfTZJDCCOdZeN32YlpJ0Zq9y+FPcnUjf8moryQTrX2BvKJ44CG8u3ZUI0Brz1hQIGXocVSiFoIIdrD77JTa8vHGW09OFQfTeAijuHcOzKHtpt4CXrqd6EdjTIMQzHpqvu5e+KrnLHpIuZ6pvJjI929zJ/Z7zeHX/pLHg9cyYDNrxO6YwLmm7/YHiQyTY1uzFr2dU+3sqbOmtSfOcmhVufd+tanJ7akKhSHVAJtOHZMJWtPvaEWjCgJUK/SQZB2TPNqiCUpU5XEcjrfMMUfKCCpDcxQ+4JDDbEkxaqWuM3X6rTGjnLYDOI4dg8OxRusFy1MKwM46fgTAfjs43db3EYI0bo2g0NKqQFKqfeUUkuUUl8rpb6XXv5npdRSpdQCpdTzSqm8FvZfq5RaqJSap5Sak+Hxi+5UNBKlU5i5g+DoW7NyimElfjbqYlQ3TiurCMYoVEF0Nz/hyqRx/XOppPGLR9ezh+rSgRS7z/oy1DitzJbquZlDwY2LOSr5CYvLZmx/wleU46aSPGgopyEStzpj7KHMISGEEB0XcxfhT1SD1i1uE4wmcakEdlfmfojtEXL7o078PzBs7dpc2Z384vTxnD6hjMtqrmAT6eBMBjOHANxOO2de/yd+n/crvgj3wfjkbvjkbwCsKG/Am6i1NvR2f3DokCGFrPGmO3wte61Tx6gIxnCSRNuckM5OU10IDjntBvlF6WycdmYOuYlhc3U+67gw4KIWP7Fg+74TBqNJAoRJOgJtb9xBMeVE7xIcsieC1otW6psOGTqSGlshnnXvEE20XchbCLG79mQOJYGbtNajgUOA65RSY4C3gHFa6wOA5cAtrRzjaK31BK31lC6PWPQcgw8jWTgK23n/3t4OM9MG5HvZoItxR7Y1m5q8J5QHYxSoemwZfrLWnfrneYg70ynPGZhaVh9JkEcIu886psNmkDBc2MyemznU8PZtRHESP/Dq7cuK/C7KzRzMhm0kI7VW5489mDkkhBCiY7S3GJeOQvXqFrepjyRwE8fu3HumlXWWYShuP3c8x04cxUsj/4BZegD0m5Dx8/hcdr515TX8yPkzPrQdgvnh7VC3kc/XVFGgglbnuAxmnHSWYSjGTJzGEnMg8S8e7tQx6iMJHCTB5oDGoudttbFvQ9/S/taLdtQcCsWTuIl3LTjkc1Gr/SQa2pc5FIol8aooZhamwSeVEzMRhVQCsLLNnMm2M4dQiuDYSzicuXz48UcZH5cQ+4I2g0Na6y1a66/Sr4PAEqC/1vpNrXUyvdlnQFn2hil6pMJh2L87G/pNzNopivxOthl9rI4NdRuzdp7WVNRFySeIs7tarmaBUmpHAcoMBIcawmG8KrZ9WhkANhd2nWixIGV30lWrKVn7Ms8aJ3DAqOHblxf7nVToXFL12zAbO4S4c7tnkEIIIdq0pe/R1GkfqX9Nh4plzW5TH03iIoHT3f3BiJ7AYTO4a8YErrvoXIyrP4K8gVk5T0nAzX0XTeIX0QtJJlMkn72Kr1ZupswZQvWAKWWNzp5cxlOpI3GWz4etizq8f10kgUMlUTZnk+BQ15pZ5OTmEdc2dDumlYUiMZwqhd3V+eBngc9JLX7MdgSjwJpW5ieKdmR+KnzScBGIl6P/OBiWvUY4kcJPugRCGw+jB5x4AxFcGJ/+Dd1KNqEQonkdqjmklBoMTAQ+32XVN4GWcjE18KZS6kul1FWtHPsqpdQcpdSciorMtNcWvZ9Sirg/3Xmhm6aW1dVV4VQpPPl7RzHqRq6cxralzQSH6jbCklfafaxE4xz1Jlk2urEoYw8sSr3hpd+R1Da8R30fn8u+fXmR30WFzoVQBUa01loo08qEEKLH8vQdwzfiv0Qno+j3/tDsNkHJHOo2UwYX8N2zj+VH8W9hrP+EC1b/mGHuYI+YUtZoZJ8AS4qnk8COnvtoh/evjyZxkETZnTu6lXVhWhlAgd9JLQESDW0/wItGrO5cDnfns3iK/E5qtL/d3cqC0SQ+FUW5shAcsrkZEV9i1Rla9wkN0SQBFUGjwNl6cEj5Clk38GyOiL7HW190PNAnxL6u3cEhpZQfeBb4vta6vsnyn2JNPXu8hV2naa0nAdOxpqQd0dxGWusHtNZTtNZTiov3ngwN0XVGwSDrRTd1LAtXWy1yHYHMzsnvbt4CK3NINzQTjP3iIfT/Lm5/S9NQersmT8p04xekHhYcilauo++6F3jDdQJnHLZzIfWigItKcrFHq3DE0p9JppUJIUSPdcKYPqyijEU5R8LKtyAZ322bhmgUm9I7fnAXe9Q5k8vof+Rl/ChxFQfrBYwKf4nqYXUcj5s8mrdTE0kueBbMFKlXb4Z5/23XvnWRBE6SGHZnxqaVFfhcVOsAyWDbmTyxsDXlqivBoUK/izr82BsfjLWhIZbERwTDnfmyEqbhwoP13VFXLCMYTVj1jey+VjuuNRp+8g04VYr5r/2TqoaeW95AiJ6oXcEhpZQDKzD0uNb6uSbLLwNOBS7SLeTuaa03p38vB54HDurqoMW+xVc0gIS2oWvXd8v5E8Fy60UPesqVCYX5BUS1g3jj52sqVGlN5dvwRbuOpZvJsjF6aHBo+bO/RWtNv1N+gt2283+BRX4Xm3URSpuUJdZaCyVzSAgheqwBBV5OGlfKQxWjrUyDtbvXGqkPpovZ2iU41F1uOn4U4TEzeDR5nLWgB00rAzh9fD9eMQ/FEalAf3IPti8ewPziX+3at7HmkOFw7Sju3cWpegU+B7X4SYXaERxKZw65PJ0PDuV5HNRqP85EXbu2D6WnldlaqwHUSUaTDD9dsZTVlSEChDFbKUbdlL10DOGiAzjFfJefPLdQppcJ0QHt6VamgH8CS7TWdzZZfhLwY+B0rXWzvbCVUj6lVKDxNXACIDl+okPKCgOs1yUkNi/slvOnGjs3+HrWU66u6pProYocorXbdl/ZmDG0YdcZpM2L1qX/jNw7MoeMdMcOEpFm9ugeFRtXMmrzC3wWOJEp4w/YbX2R38l6bX2xG6PWWAul5pAQQvRoVx42lLeio0kYblg2c7f1Ehzqfoah+MuMiUz81n2Yw46FoUd195B2UpLjxr//qTRoN/rtXwGgts5vVzOUukgCj820ag4Vj0Rf/yUMOrRL4ynwuajRflQ7upUlolZwaPv3rk4wDEXcmYvTjLTrMzfEkvhUBLsn85lDxXk7gkCqdj3LNpSToyLYPe0PRHkPvIQxah3lSz7m4U/WZnyMYt+zrwQZ25M5NA24BDgm3Y5+nlLqZOAeIAC8lV52P4BSqp9SqvHO3AeYpZSaD8wGXtVav575jyH2ZmX5Hj4zx2Bb/8n2zgV7koqkn9rsZZlDfXPdVOkcksHdp5U1FkA02xEcqo8mSIUbp5XlbV++/clPN3WZ25WOBQk9fB4J7Aw9+xfNbuN32dlmWNPtxqm11kKZViaEED3a5EH5jOxfzBe2CZhLZ+7W1r4+mO50JMGhbuW0G4wb3AfjkudgwoXdPZzd/P68A1lTdBQGJkH/EFQqDlvmWys3zkG/+N1mm2zURxO4VQplcwCgioaDUl0aS6HPqgFki7U9vT8RSz+jd3St4HrCmWe9aEdJgWC0MXMo88Ehj9fKgFpDPxSamvWLKHbGMTrysG7/b6DtHl50/YIpb57F/MVLrOXJOLzzm25rciN6rxkPfMZf3l7e3cPIuvZ0K5ultVZa6wPS7egnaK1naq2Ha60HNFl2dXr7zVrrk9OvV2utx6d/jdVa/y7bH0jsfcryvcwyx2FLhmDTV3v03Fpr7NF0cKiHpUB3VWmum2qdA6Hdg0N11VY2kblhTpsBueVbg+Qq66lV00CKrbFrRrIHZA5pzfp/XsKA+Go+nXQ7ZUNHN7uZUoqkvx9JbTBUbUEbdshCm1YhhBCZde6UMp4Lj8cIbt7xAz3WfTzYIMEh0TaboRhz2vcoV4X8xna9tXDDbOv3Rc+i5j4C23afAFEfSeA2UmBzZmws+T4nNQRwxut2C3buKrU9ONTFv9+NdSPb0SEtEgnjVElwZr4gNekMqBcSUwEwy5dS6IiiOjKFzVuAuup9wkf8nKFqCzlPncO/35zN8pl3w0d3wKLn2j6GEGkLNtYye001+d7M/RvvqTrUrUyI7jCgwMun5hirS8Hq9zt3kLqNULepw7s1xJLkmHUkDM/2m9XeoiTgpooc7NFmvgREaqnTXuypCPMe/Qnml4+0eJylW4Pk0hgc2vFUx+FMP8HqAZlD85/5A4PK3+PJ/Ks49rSLWt02P+Blsy7EUNoKdnXx6Z8QQojsO+2AfnzEJEyMnaaW1dRU4zDTte+kILVog23wobxx4ns8va0vUV8ZOh0c0lUrrQ2aq2kVSeIykhkNDvmcNoIqB5tOQqy+1W1T8cxkDsX9/a0XjZ+1FclIeqpmFrqVYXcBsDD3KJLYKI6uJVdFoKP1jUr2w3vMD6k+83H6UsEhs75JwZd/tdZVrdi+2W9fWcx5//iUT1a13RlO7IO05vlZ8/A4bJw1qX93jybrJDgkerxcjwPtKWCjewTmqvea38g0Md/4OVQ0k+6XjGP+azrm/Yd3OI102dYgBSpIwt21rhM9kdNuEHHk44nvEhzSGm+qjiV+64nNhLUPYbz8XfTqD3Zs06RA4rKtQYrtYbQrALYdbeEd6cyhZKzZkmSZpzXM+TfUrrdeL3kFXb2Gd/53N6MX3c4c91TOuuZ3GEbrwZ4iv2t73SGpNySEEL1Dvs/JpNEjmM9IUktetRaGKsm9bxzfsH1ovZfMIdEO35hURp7XwSJjJHpjOnOoahUAes3uwSGrW1kK0tPKMkEpRcKVZ71pI5PHbAwOdfHvd7RgNAlssOnLNrfdHhzKRuaQOw/tCnDQgYewxixlhNqEV4fA1bkpbGUTjsNx0f8YZd9Gkaon7CxCV1jBoZVba1Gf3cMtm77L8EcmU/7k9RDcmslPY6nfbH0/Fb3KlroIi999jFuWnM0VYyDHnbl/4z2VBIdEr3Dy/n2ZGRoFm+ZAQzPdtSqXY3z6V1IvXr9b+m3tx//EqFuPigdJPnousaevIv7QdBIPnQQVy6zMlurV1samCdEdnRrmrq+lkHrsgeJsfrxuk3QX4tQxiIe2L6uprcVJEvqMJXnBU9w58F7WmSWUP3kdby/cwNaPHoY/D4UvHwas4FCZJ75bbR5nuqVqNBIiq6pXW9dw1bvwyvcxn7iAxPt/gv9dhPrrBI5d8gvWescx7trH8bra/k+9OOBsEhzKy+7YhRBCZMw3JpcxMzEJW/kiqFkHaz/Clgwz0UhnQqQzEoRojcdp46SxpbxRNxAjuAVq1kLtOmvluo/BTO20fX00YU2xymDmEEDKlZ7m1UZRajOenr7fxcyh3JwclpgDSW1sOziUimUxc2ja99CXvsxZkweyUvdnnLEGR6IB2tmtrDm2EcdgXPoC9/lv4H09ycocijXg+PeJ/Mz+OKNK/XypR1K47An0qzdm8MNYzKcvR989nuTz1zVbt0r0MFoT2zCPs+/7hM/fexmnSnFJ4ZLuHtUeIcEh0SvcdMJIXjWOIWlC6uUf7D7/unIZALaNn8PXO+YRf758E9F3/8hX7Mefc24hWrWe0NJ32FYbRFcsI/HPk0n+dQr6b5NhywLMd/8Pfdf+EKkFYO6GGkrtDThzSvbUR92jkv6+1ouKZduXrVy/AYDC4lLso07k+5dfxFf7/4w+8Q2UPT2dvLdvwsTAfOuX6FAVS7fW08cZ2TFXPc3psb6kRCNZyBxa/znUb4H6Leh7Dyb06IWsnXkHccODsW0Rjg9+zxupKdyrLuCTYTcy/KZ3cOe0r9tcsd/FBt0HACVt7IUQotc4YmQxc9xW1itLX4W1HwMwTG22ltn3runhIntOHFfKZ4nhACTmP4Myk3xs7o+K1cPSV7ZnEsGOVvaZDg6pxi654TYKRCcyU3OowOdkvjkMtXlu2wGMWLqOlzPzBanxl2D0n0ifHDcbSo+nv6pCpWIdn1a2q8HTKDji28wNF6HCldx3zx8ZFFvKzMG34L32fR7q+2s+dxwMlW1Pq+soVbMWHF7s8x+DrfPb3F50s9Xv4frnkZTWL+TkYqs2a59tu2cN7o0kOCR6hSK/i1OPPZI7E+dgW/YKLH5hp/Vm+VIAInkjSb12y/b6QmveuIdSVcPng69ljnsqFxU8yQzfvzii6hZOqr+ViojJhpBByhEg9fL3UZ/+DRWrg0XPAFbmULGtYa/rVNaoss9hVgrx189vX7Z+ozX1rm9pP8Bqb3rWuZdRefJDDA5owo4CLorfghmtY/Xfz+W8xIsMii7bLZDi9liZQ/FohjOHovXoR07HfPpyQp8+hErF8a17m8HVH3NffDpPus9lg39/7Of8gytvvZdDL/klhr39aaBnTyrjwEkTrTcSHBJCiF7DYTOYPHEKi/QQEl8+irl2FgA5qnHajWQOifY5dFghG5xDiSsX5bP+A8ArzhOslU9div7HEZCMkUiZhOIp7CQzOq0MQDU2QmnY1vp2ycaaWl3LHCryu5ivh2EkGnaqydPsOePp4FA2MoeaOP+ya0l60n8Orq5P9T9tfD9cfUYBMD3yKjHDyxEzvg/AtOFFLAsHrBIUmWxbnkpCQzm1eeOs9+3oBie6V7LWeqAwo2A5JaHloAzU2lk7zbTYW0lwSPQalxwymOdcZ7HBPgjzwzt2+o+7eu1CNuoiLq75NjrWQOqxc9m8ZgnHVT7G2pwpXHP5ZTz1nam8+N3DeevGI/noR0fznbNP5NWjXuOM1B/5Y+gUbJu/JGEqUnlDML98hG0bVjA4+CU5Zh342pd10tvkFpbyUWp/Uguf2/6UaMsW6z9Ef/7OU+mKDjoX943zKfjxfL73rSt5MudbFAaX8jPH4yh3Lhx8zU7bNwaHEtEMdytb/gYqGcXY8Bn2T+7mg9QBfGWMwzScXPfD33H+Tx5iwA9nceyE4bgdtg4ffnCRj2MOOch6IzWHhBCiVzlnchlPJI/GUbkYo2IJJk3qzO1ljSVE9rjsNg7frx9zU0Pon7Qyqm+44nJuVTfwRuBsKziy8QuC0SQAdp35zCHyBpLQtjYLRKvGrrBdrDk0dVgha137AWC2MbVse3AoGzWHmsjx+7FNvsx608maQ035XHZ+eOGpAAxJrsI57HD8HuvP7bDhRWzShahEaKcSE121bPUqFJoPa9NBLgkO9XhrNlpJBmfo96y/62PPsrLXmqk5treR4JDoNTxOG1ccMYL7I8dibFsIG+dsXxfftpTVuj81gZF8O3oDunIZpQ9PpUjVE5j+q92OVZbvZcaBA/n20fsx83tHUHj0dazzjOW2xHn8NXQsxtb55P3rMJ5w/g67GdtrM4dG9w3wUupQbMGNkC66WFWZfkLlaaYIt80ODg+HDC3k4hv/jO9n66j9zlw8P/gK9jt5p0096Wll8a4UpA5us4r4aQ1rZ7F6+dfMf/NhqoxClpv9cakExiFXMfD6lzGu/QRHXr/On6up/MHW71JzSAghepXRfXPY/6QriSnrB745xgE7VkrmkOiAS6cOYqNvLADa6advvwGUHnYpN1dMRysD1nxIXSQBgE0nMh4cyvd7Wa9LSDXXbCUtmTKxp9JdYbsY/Mz1OJgx/RgatJs1c99tdVtbcs9kDgGoA69E9xkHfcdn5oD5g9CGleWlhh65ffGEAXlU29IPRus73uG4OSlT88CrnwDwecgqWSDBoZ4vWGNNJfOE01OSD74G7fDBije7cVR7hgSHRK9y8SEDecdxJBHlxZz9AABmMklBZB2x/OE8d+2heEefwPHRPzJTT2N+/xkUjj681WOW5Xu5+rhxDPrxJxx92S9ZUTKdOnzMTQ3hp6mriA88HIYetQc+3Z535MhiwkNPJKKdhF//FbW1NcSD6Vaeu9QQao7D4SCv79Bm2737/NYXhlQXgkPm4+ei7xpH8m8Hwn9OIf+/JzGq4TNm2aey4uDfoSddzuHTL6SooACKRnT6PLvx5KOP/hnsf27mjimEEGKPOP/wcZhjz6Zee3ghNmXHCulWJjrgwMEFnHP62dabgmGgFJccMoiEI4f1rpHo1R9Qnw4OGWYi49PK8n1OVuu+mBUtT/EKxVN4VJyUcoDR8WzpXZ0zeRBfuqdStv4FghsW77yyfgskoiRTJs5UOlspGzWHdpXbH3XNx9BnTGaOZ3NA/hDr9ZAdwSGn3cBXMtB6U5eZ4NAXa6upLbcyz5ab6TboEhzq8eKhHddIG3boewDq1Dth4kXdOKo9w972JkL0HAG3g/OmjeF/HxzGpV+/AMf9iq83VLI/cQqHHECe18k9F05kVcVIyvKv6PC0osNHFHP4iOMwYyuwb45yplI4B+99bewbKaX4+dkH8cu/fIvbNt9P+JFzyGeotbIdwaHWeD1eTK1Ixjs5rayhAmPrfLYGxlFZE+N18yIuUq+Tr+o548JrYfA04KwujbFFSqGOvDk7xxZCCJF1ntP+zA+3HEv1ltU7FkpwSHTUAGuauSocBlgBmwsOGshrs0fyndhMgsE6QKeDQ5nNHCr0OVml+3Fs3ZtWh7Rmgj+hWBIXcVI2N10PDVl1JkvP/TPRR4+g+smrCdz4rpU1XrsBfe/BqKnXsmn8D/CR/m63BzKHskGVjEJHqlElOwecXAUDoRKo35iR85QHY5SoWgA2U0zc8OBMN70RPZcZrqFW5ZJLA7p4NMrugvHnd/ew9gjJHBK9zhWHDuZx4zS0mcL86E6+nPMpACPHWk8HlVIML/F3qt5MI8PlY8qQQg7ciwNDjQYUeEmOm8GfuYSi6i851L4M7fB2ueuF3+0ghmNHi9UO0Frz0dtWkeyrK8/jj2X3Uj3xGrac8wKc/jcYOLVLYxNCCLGXc/kZt/9ENukm08IlOCQ6yl+COelyGHfO9kXXHj2ML9U4lE7i2PgZNkwUOvPTytKZQ0YqDrXrm92mIZbEQwwzg3+3Rw0fwbuDvs+Q0Hy2PXgOxIKYr9+KSoTQG+ewuiKEX0UxDUfvnap5wu9QFz8Lxs4/CucUl5HSimRNZoJDNaE4fVQNGkVhnwHUK79kDvUCKlpPvaMYfcD5GPuf0/YOexEJDoleJ9/n5JipB/Jk6ij0l/+h76qnAfD3z1C66T7o9PH9eDU2AYCD1OLm6w11kM9po5oAfco/7nBhv8/XVLNuzuuE8XDdhefw6JUH8/uz9mfSAQfApEt3u5kLIYQQuzp+TAlbtXU/08rI+LQfsW8wTr8bRp+6/X2R38Wkw06mWvsp/epOPKRr/mT471dxwMVqs6/1prL5qWUNsSRuFce0Z7bY+gkX3cT9vmso2vIByduGYCx9Ce0MwLZFrKposDKHnL6MnnOPyh8E/SbstrisMMA28olUNR+M66iacJwSasFbyMQhxVQmvZjh6owcW2SHaWqcyXpMdx7GWffBYT/o7iHtUfITluiVfnDcSN4rvpS4aXCibQ7x/lPBu/dn+WTLtOFFhDxlVOgcqx2rt2tTygDsNoNfm9+mMLqOxKPnWinR7bSmMsRUYzFq8DSO37+sy2MRQgix7xleEuCRqw7H9PWxsoaaqY8nRGdcdtRobrdfxaDoUr5rtzKdM51FM7TIR+6A0QBEtixtdptQLImHeMaz4nwuOzOu/Q0/LbyTh1Mn8HTyCFbv9x1UqIJtmzeQb4+jeumUstaU5XvZogszmjnUz14HgVImDcyn2vQRra/MyLF7pa0LoWZtd4+iVeXBGAHdgOHZNzsWS3BI9Epuh43bvjmdm0r/zZunfIrz269395B6NYfN4OQD+vGVOdJa0MV6Q41Cg47m5+ZVODZ9jrngqXbvV7ttPcOMLTiHH9n2xkIIIUQLDhlaiMob2Hunv4geyeu0M/6kK3gldQjfts20FmY4c0gpxY1nHEqt9vH1wuZby4diSdzEweHN6LnBytS/7YZvcukvH+Mu3/d5bIM1RVNvW0SJK7lnilHvYWX5HrboQmzBzBSkrg4nKDVqUYFS+ua6qcWPDu9708qWbQ3y478/ifnQ8fDGT7N/Qq2tX52wvjpMjgrj8O+bSQcSHBK9VpHfxX3XnMoJB8p0skz43nEjGHCAFYxRGZhWBnDHuRN4y3E0y42hmO/+AVKJdu1nL18EgG3gQRkZhxBCiH2Xyh+UlR+exb7tnEllPJZ3NWGVztrJcM0hgLH986j1DmJwxXtE/nsZNFTstL4mnMCt4hjOzE4ra8phM/j2EUN5YUseAIHapRTYY+Dc+zKH+uS42Uohnsi2TgcXmqoNxymmFvylFAVc1Go/Rqy24weq2wQVy7o8nu4QT5rc8uQnfGfLLzGSEXT95uyfdMnL6D8NhXiow7uurw6TSwhvTmEWBtbzSXBICAFYwbYxBx1vvclQ5lBprpu7L5jEbdGzsdevI/X5A+3aL1G/zXoRKM3IOIQQQuzDjvwR6vS/dfcoxF7GbjP4/aXHUzEpXZPElp3sNDX5MjbrAjzLX4Cvn9tp3ZbaCB7iOD3Zrf8z48AB4C2k2iikLLGaHCO2V04rsxmKsLsUh45BBmoD1TZEyDNrIFBKkd9FLX6c8boOBZ7Ka2oxHz4N/cw3uzye7nDPeys5oOIVhhpb2eQYBA3l2T/p+k9RkWroRCBqU2UtHhXHlyvBISHEvq7fBLTTD7mZq/MzbXgRRRNP473UBNRbP4cVb7W5jwqnn4z5ijM2DiGEEPuo4lEw/NjuHoXYCw0t9jPklBth+p9hxPFZOcfAY7/D93P+wlZbKXrVuzut21wXxW9LYDiylzkE1jS6K6YNYX6ijNFqAz4V7bVt7NuSDKS/A1et7PKxdKgSGyYESslx2wmqADadaHdGy78/XsMTd/wAo3oVRGq7PJ49bdGmOu59byVX+j9ji2ckr0YPgFB5RrKyWlIdipOqSBdwb9jW4f0rK63glT0D9Vd7IwkOCSF2cHhQ13wMh1yb0cPeesoYfuG4iTXGIMynr4D6LS1umzI1zmgVccPTuzthCCGEEGLvZ3PAwVdlrTGKUopzJpfxTmws5ppZO6boly8hXrkWr0rskWmTl04dxApjCMPVRryx8r2y5hBAQ8lk68XaD7t8LGck/bAzUIpSipQrXeS4He3s//fFeha9ej/X2F5EoyAR7vJ4qN0AqWTXj9OSaD3mQ8fBuk+JxFPc9NR8DvRuZUBsOdGx57HNzEWl4hCtzcrpEymTk+/+iKoNS6wFnQgO1ValM5syNIuit5HgkBBiZ/mDwZnZLxl5Xic/PH0y3wxfj5mIYb758xa3rQjGyKeemGvfLAQnhBBCCNHU2ZP6M0vvjy3RABvnAGD+dwbnVt6LV8Uy3q2sOXleJ4y/ALsyscXq9trMofzifnxtDiK58v0uHSeaSJGTqrLe+K0yCdqdDji0IziU/Pwh7nDez3y1H18WnNzl4FBq/lPov+wPC57s0nFatWU+xsYvCD9zDT+67wmuqb6N+wP/Qht2yo64jKA9/d0+S1PLPlxeQWV9A/mxLZ06j9aamup0QM8t3cqEECJrTh/fj0Ej9ucB8zSMRU/D6g+a3W5TbYQi6jA9RXt4hEIIIYQQPU/fXA960GGYKGtqWc06jNp1FCe34MxSt7LmXHnmicRHnWm92QsLUgOUFXiYZY7D2Dgb4p0PyNSE4/RRtdabQB8AbL72B4fK6r6kwl7Kr/N+z6ZUASoZBdPs1FhWzX4VXrgahe5UNk17zV/wFQDe4Br+UnM9J7vmE4htQ0+8BEdOCf6i/taG2RhD9Rrsr9/MaMc2HCrVqfNUNMSwx+utN+68zI6vl5DgkBBij1BK8bszx/EP8wy22fthvnTDjjnXX/6H1J3jMP88guC6eRSpemw5fbp3wEIIIYQQPcT0g8awwBxKw8JXYN3HAPSjEqcZA0f2M4fAKtjsPvYn1jSnvbQu5BEjipljHIBhxmH9p50+TnUoTgnpIJDf+k7r8KeLHLcRHNJa44lXE3b1oTTfR0XMZq3oRPaQ1pr17zxIjelDG3aINXT4GO0xZ201n8+ZQwI7mwafTbzkAJzXfYLtRyswTvsLAJ68vtbGGc4cqoskqHj+xxxZ9yK/Kvlox4oOnmdleQM5pH828eRlboC9iASHhBB7zIACL9cdP47vhq7EqF2LfvtXEAui3/wZyuHBCJVj2/gZhaoOZ25Jdw9XCCGEEKJHOHFsKa+pwwnULGblq3cBkKPCGDq5xzKHACjZD3X1LJh82Z475x5U6Hcx5uATiWk71Qte6/RxakIJ+qgaEq58sFud7Ny5Vla8biM4VBNOUKBrMX3F9M31UB5tDA5FOjyOL9fV0C+ygvnmMEyHr1Pt3dvjjjeXM8JRjioYQv/L/43nug8hf9BO2+QUW5lDifqtGTtvMJrg+jsfoXjDGwBMrHkdgI26iFhtx7qVrSxvIFel/3wkc0gIIbLvm9OGEOl3CE+ok1GzH4Dnr0bFghhn3Y92eLHXrKJQ1eOUzCEhhBBCCADcDhv7nXAlCRwMTywnjnPHyj1Qc2gnpeP26qYhVxw9lllMxL3oiU53CasJxylRtaR8Ox52+nKtbKtofWWr+66vDlOo6rEHSuib56Ym0Rgc6nhg55EPlzJMbeZrPYiY4YV45jOHKhtifL6mirHuSmxFQ1vcrri4D3Fto6Gq4y3mW3LHm8u5IPokcZufugHHYZhxEo4Ay8wBJOo6Nq1sZXkDxfao9UZqDjVPKTVAKfWeUmqJUuprpdT30ssLlFJvKaVWpH9vtqS3UuokpdQypdRKpdRPMv0BhBC9i91mcMd54/ld4nxWGYNh6SusdI3ln2sLIH8IxXWLsGOCTzKHhBBCCCEanTXtAGxjTgXg9dTkHSuy3Mp+X5PndbJk5NV4zQbin/x9xwrTxHz0HPS7v2uz/k9jcMgI9N2+LD83h6h2tBkc2lBZR75qwFPQl365HsI6HfzrYObQhuow65d+gV2ZfG0OJqI8WQkOzX//Odw6SmF8E6pgWIvbDSj0UUku0ZqWuxZ3xMryIDM/ncuJti+xH3wluYdeDkAqfyjlOg9buOPTygZ442iHF+zOtnfYC7UncygJ3KS1Hg0cAlynlBoD/AR4R2s9Angn/X4nSikbcC8wHRgDXJDeVwixDxvZJ8Bvzp7Mbf4fs84YwN2pb3Dba0uI5AxmYGy5tZFPClILIYQQQjRlHHI1McPD48njdiyU4FDGTZl6NG+mJsOn9+6o07N1Psaqt1Ef/gnz+atBazBTkIjutn9NKEGJqsGeuyM4VOx3UYufRLD14FDlNiuzJqewH6W5biKNWWIdKZBdv4XPX/w744x1AJT7RtFgujJecyi6cSHHzrmaO/2PYktGoKDlzKEB+V4qdB5mMDMFqZdsCXK28RE2UhiTLoVhx6DtHpx9RlGl8nDFqq3r004ryxvo54rus1PKoB3BIa31Fq31V+nXQWAJ0B84A3g4vdnDwJnN7H4QsFJrvVprHQeeTO8nhNjHnT2pjAdvvJBBv1jENd/8FomU5s0tPpyNHQb20kKHQgghhBCdNvAQvrxgIbP1KOLYrWUSHMq4gwYX8IrrFJzJIKz/DIB1s18B4EX7iRgL/wfrP0W/ciP6vkN2C0LUhqIUqzqMnNLtywr9LtaYfXFULmn13PUVmwBw5vahX66HCFbNoo4UpI5++TjfWPcbrve+hXbl4C4aQm3Khc5gzaH/fLyGB+6/HYATkukuxAVDWty+JOCiio5n9LSkLhznXNsHRPsdDEXDwelDXfQ0xtG3kHAXY2BCuKrlA4Qq0fccDBtmUx9NUB6MUeyI7rNTyqCDNYeUUoOBicDnQB+t9RawAkhAc3NA+gMbmrzfmF7W3LGvUkrNUUrNqaio6MiwhBC93Jh+OexXGuCT2ib/GftlWpkQQgghxK6mDCnE73JSbUt/V7JLcCjTDEPR/4CjiWsb9UvfJWVq6ha9zjIG89PwBdSpHDY9cQN89TCqZs32DnKNYvWVOEhBk2llRX4ns/UocuuWQCzY4rkjjdOufCX0yXUR0R0PDq3YaGXnlMbXo/vsz5ASP9UJB8RbPm9HLdlcz2n22cTsfisQA9DKtDLDUISdhbhj1Rk5v6t8HsOMLdgmXbJj4ZDDoWAoRmPt0lba2eu1s1CVS1n93K+55KHPKaaGPtE1+2ynMuhAcEgp5QeeBb6vta5v727NLNPNbai1fkBrPUVrPaW4WDIGhNjXnD2pP2vNHU9XJHNICCGEEGJ3TrvBbeccgLs43Q1KMoey4sLD9mORGsGWeW/xm2dns19iCcaIY/nF2VN4zjad/tEV1OPDtHth4TM77ZusSxdd9u9osJLvdfKl3s8KpGyY3eJ5E8F0Zo2vCJfdhssbSK/oQOZQeEeGkNFvPEOLfNSkXJjRzE0r89QuZQibcR3/C0xPIdqwQ+6AVvdJeYsIpGo6NN2rJfZ6KwfFMWDybus8+emgXCvBoaVffQjA0JpZHB96hVm+H+ENb0ZNvqLLY+ut2hUcUko5sAJDj2utn0sv3qaU6pte3xdoLj9sI9D0b0gZkLny5EKIvcY5k8roN9QqSaaVAZ5ma9wLIYQQQuzzTjmgL3ml6fouEhzKigEFXvJGH8Ow5Erq572AU6UYfsjpnDdlAFf84Pck3QX8TV3AO3oK5tcvQjIOQCSeomrbeusggR0PPg1Dsc4zFhMDc92nzZ4znjSxR9KzaNJZ9Dk56eBQB2oO6WSUGh0gfsaDMPU6hhb7CGsXZgZrDu1X+xEmBow9Gw69AT1yOtjsre6jAqXYMCHc9eyhZGOgy+XfbV1ucRkAoermQw/lwSj1qz5nm60UbTi4PvJ3HIVDUNd+CuNndHlsvVV7upUp4J/AEq31nU1WvQRcln59GfBiM7t/AYxQSg1RSjmB89P7CSHETgr9Lv7yrelohw+8RWDYuntIQgghhBA9V2OWhgSHsmbogSdiVyZ3uB5CB/qiBk21VviKsP94NdMvv5Vn4gdjxGqJzXkUgM/XVFFgpoMfTYJDAGcePIpF5iCWfP4GX2+ug4YKWP/59vULN9VRSD0pmxucVtAjJ5Auu9CBzCGdiJJQDpwTz4PcMoYU+WnAg8pgzSFvvJyQLQf8xRiHfx/j/Mfa3qloFAD1C2d2+fxmND2Zybl7cKio1AoO1ZVvanbf37/yNaP1atz7HQeHfpfUyOkYV7wKhS1Pi9sXtB7as0wDLgEWKqXmpZfdCtwGPKWUuhJYD5wLoJTqBzyktT5Za51USl0PvAHYgH9prb/O8GcQQuwtlLIK2enW24MKIYQQQuzz8gdbv7tyunUYe7Wyg9A2Jzi8qIufA7trxzqlmDyogHNnXM6nT73Kwa/fRNzu5MMtk+lr1Fnb+HcODv3g+JEs3zSNgWv+x3/uu5Yhrg/wpoJw7edQsh+frKykn6qzyisoq0KL19fxaWUqFSWhdrRj75vrJqzd2M0opJJtZvi0hz0ZIu7wdWif0vEnsHjuIFyv38ZNy0Zz0NAiPEaCk/Us8pPlqKN+sv1ztynemDkU2G3VgNIStuk8bGs/BG7Zad2CjbXMXzCXHFcYhh0Mky5FHklb2vxbobWeRfO1gwCObWb7zcDJTd7PBLoeGhRC7BPUwd9BJ2PdPQwhhBBCiJ5t3NlW8dxWOkSJLnJ6URc8icotg+JRzW5y3LgyXo48yscvX87hr1yPx3kN++dG0Mk8lMO92/Yjj72cxFMfcHXwFb5IjGSSLYrtiwfh5NuZvXIz33eFMJo0ZnF705kxiUi7h62SMZLGjkCW22EjYfOmjxMCW9c6cqVMjTMZJunpWHDooKGFbDz+R5S9cx1nbvgDelWYw40F5Kp04KvfBBg1vV3HUvEQCeXAYXPstm5ggZe7ktO5pfIJbv7LP9noGs5Ex3oGuxr4sNLHEe41ViXkfhM7NP69XddDhkIIkUmTLm0xGi2EEEIIIdLsrnb/IC26YPhu+RC7Oe3A4bxqe5QPXryCm+N/J5VwQFELU5QGHIjjpkUk4zHufmQeZ637LSfPeYzYhsXcsWUxdrcP5T9g++Z+j5uYdmCPNbQ7w8VI7RwcAlBuH8SBWEOX27XXRxL4iKKdHQsOAZRNuwBz0f2cXP4ByZwSQv1P4edb9ufKuntxv/Qrim88EZut7dLI9kQDMcPL7qEhKxiWc8TVBD9/lR8F/4ivrh6vtoJr56W30XY3qnh0h8e/N5PgkBBCCCGEEEII0QWnTBrCurLnefPluzjctRLP8CNa3d7udPGPSybz2hvfwfPVRxhbZpNDCiNWC75jtm+X47ETxoUnGmp/cMiMYdqcOy9z5VjBoQzUHaoJx/GpCLiKOr6zYcO4+iMAHEqRB/w0keLFf0eYsfkPfPDM3Rw54wdtHsaeCpNwtRycuu7ECejcn+J77/ekRp0F+52EzikjVr4C55Y5qPzBGZletzeRPw0hhBBCCCGEEKKLBpXkM+jK37R7e5/LzjdOP43a/D/z44/h1PDznKY+2d6pDCDH7SCCE0cH2tDbzRjmLl28HJ4ABIF4sN3HaUlNOE4eUYxm6v20yy51hdwOG+ddeROL//ACRy75FXqWQh32/RZ3jydN3GaYlN3b+mkOuRp1yNXbu3ApwF02GatPlthVu1rZCyGEEEIIIYQQIvPyDr+K2757OftdcBva7oHCEdvXBdx2ItpFMtr+gtR2M45p27nekcObLlyegcyh6lCCgIpg83QyONQMZXPw7kEP8U5qIrz7f1bh7BbUpae1mc10KhOdJ8EhIYQQQgghhBCiG+X7nIwYPR5101I4YMb25TkeBxFcmB0I6jh0HOw7B4fcPis4pGMZyBwKxfERwentWu2iXR01dgBvmlNQZgLqN7a4XV0kgU9F0BIcyigJDgkhhBBCCCGEED2BJw+MHT+m57gdhHGh4+3LHIonTVw6jrLvXJDa47cCObFwJoJDUXwqhsuX2eDQ2H45BL0DrDfVa1rcri4Sx08UwyXBoUyS4JAQQgghhBBCCNEDBdx2otqJbmcr+1AsiUslwOHZabkvYAVywsHaLo+pIVgHpOsYZZBSikHDxwJgVq1ucTsrcyiK4c7s+fd1EhwSQgghhBBCCCF6oByPgzBujET7MocaYklcxDEcO08ry8nJAyAaqu/ymCINtQCozhakbkX/gcOIaQfhbSta3KY2nMBHBIcnJ+Pn35dJcEgIIYQQQgghhOiBAi47UZwYyXZmDsWTuElgc+6cOZSbmwdALAPBoViDlTlEFoJDw0pyWK9LiJavanGbunAcH9EdRbZFRkhwSAghhBBCCCGE6IEMQ5EwPNhS7QwORRO4VAKbc+fMoUK/h5B2kYh0veZQIpIOMGWhIPSwEh/rdAlGTcs1hxoaGrApnfGaR/s6CQ4JIYQQQgghhBA9lGn34DCj7do2FLGCSHaXd6flBX4nYdykol3PHNoeHMpC5lCx38UWW1984Y2gdbPbRENW5pIUpM4sCQ4JIYQQQgghhBA9lGn34DSjLQZLmoqGrZb3DtcuBamdNkJ4MGMNXR9PNJ19lIXgjFKKiH8QLjMCDeXNbhMPZ29a275MgkNCCCGEEEIIIURP5fBiYEIq3uam0UjzwSGlFDHDA/GuBYeSKRPVeIwsTCsDMAqGWC+qm+9Ylghnb1rbvkyCQ0IIIYQQQgghRE/lTE8Ri4fa3DQWtbqaudy+3dYlbN52dz1rycaaCF7SU9yylLnjLR0JQHTzwmbXx7YHh3b/jKLzJDgkhBBCCCGEEEL0UEZjcCjRdlHq+PbgkHe3dSm7F3einviXj0G4ulNjWV3ZQID0OLKUuVM0cBTLzDL0p/dBKrnb+ob6GuuFTCvLKAkOCSGEEEIIIYQQPZTNlc6QaUfWT2NwyL7LtDKAlMPPkNRqnC9fR/LxGZBIZwBtnGP9aofVFSF8KoJWBjh2P0cmDOuTw5+TM/DUr4F5j++0rjYch1h2p7XtqyQ4JIQQQgghhBBC9FCO9BQxM9b2tLJELJ3VY3fttq5fvzIS2Hk0eRz2TbNJPP1N2PQl+j+nop84H5KxNo+/qiJEoT1uZe0o1bEP0k5DCn3UDzyOuXoEibd+A6HK7evWVYXxqcZpbRIcyiQJDgkhhBBCCCGEED2U3WMFQaLhYJvbJrcHh3bP6ik987ekrvqYDYf+H79OXIJt+UzMB4/F1KBCFbDoWcxHzyb12Lk7OoWFq+GrR2H2g/D5P8jf8BZ93ElwZm9Kl2Eo7rloEnc4rkZHawk9ffX2Tm1rq0L4sjytbV9l7+4BCCGEEEIIIYQQonkutxUEiYSC7F5JaGepeHrqmd29+0pPPm5PPrf2g+f7/oQHvtiP47c8wC/jl/JX38PkvngDNp0goRyk/nYw8dFn417+Mvbwtu2H+BGwyjs+61k7JQE3P7niXP7y4EJ+tPY/JG4fg/3oH7Oubhr+xoLYEhzKKMkcEkIIIYQQQggheqqCIcS0HbXwfzuWpZJgmrttmoq3PK2sqbMmlnH1VddT8MM5hPtO5a/Bo7DpBM87TuEbyd8xKzwQ99x/sbrBztmxXzEl+nceHvxHAAZHvt4jgZlx/XM5+Vu/4kfJq6lMeeDtX7K+soESVwJt94BNcl0ySf40hRBCCCGEEEKIHsqV35f7U6fxvVXPw9pZMPgwzMfPxcgrg9P/ttO2ZiJdN6idxaLzfU6eveZQguGJhFYey1ljT+aIqOadpSfzXDxEyubmXGXw3tJy/rh4HRe7FDaSe6zez7iyfFIHXMjdiwxuM+7D3LaYPu4EKMkayjQJDgkhhBBCCCGEED1UvtfJ35Onc6X/M7zv/B/GpS+g1n6ELhnNriWh9fZpZa1nDjWllCLH54XxZwJQ6IfzpgzYaZvjRvfhyJWVLNcDGK3W79EpXVceNoSr5o4CF/Sp/YrCQAIMCQ5lWpvTypRS/1JKlSulFjVZ9j+l1Lz0r7VKqXkt7LtWKbUwvV37euMJIYQQQgghhBACgNF9cyjMy+NdxxGoTV/Ahs9QZgLqNu62rW7sONZczaEuKA64+N6xI1hqG2ktcGWvIPWuxvTLYejw0WzRBYxNLCLPHpdOZVnQnppD/wFOarpAaz1Daz1Baz0BeBZ4rpX9j05vO6XToxRCCCGEEEIIIfZBNkMx48ABPFs1GGUm4bO/A6Ai1RDfpb19Ml2sOcPBIYDvHDmMM0453XqzB4NDAHfOmMAS5/4cbCyhKLZ+j59/X9BmcEhr/SFQ3dw6pZQCzgOeyPC4hBBCCCGEEEIIAZw7pYyv9EhSGLD89R0rmmQPRRMpyFLmUCNjQDrnYw93Civyuzjk6NMoVnX4QxtQB31nj55/X9DVbmWHA9u01itaWK+BN5VSXyqlrmrtQEqpq5RSc5RScyoqKro4LCGEEEIIIYQQYu/QN9fDcROGs9AcAkDUXWytqNuwfZuqUBy3imMqW/Y6eRXvhx56DAycmp3jt8I77lTMAVNRFzwBY8/c4+ff23U1OHQBrWcNTdNaTwKmA9cppY5oaUOt9QNa6yla6ynFxcVdHJYQQgghhBBCCLH3uPO88ew/7RQAvvAcbi1skjlUGYzhIoFptL8YdYcZNtSlz8PIE7J3jpbk9MW48nUYeeKeP/c+oNPBIaWUHTgb+F9L22itN6d/LweeBw7q7PmEEEIIIYQQQoh9lVIK28jjAXiodhJa2aB2R+ZQZYMVHNJZmlIm9m5dyRw6Dliqtd69RDqglPIppQKNr4ETgEXNbSuEEEIIIYQQQog2DDmCt098hw8iQ4l7++yUOVTVEMdNHOXIYuaQ2Gu1p5X9E8CnwCil1Eal1JXpVeezy5QypVQ/pdTM9Ns+wCyl1HxgNvCq1vp1hBBCCCGEEEII0SkHThiPzVCUG8XoJjWHKhpiuFQCw+HpxtGJ3qrNKlVa6wtaWH55M8s2AyenX68GxndxfEIIIYQQQgghhEjL9Tg4ZGgBS7fkUmZbt315ZUOMUUYS5ZBpZaLjulqQWgghhBBCCCGEEHvQWRPLWB7LQ9dvBjMFWNPKAvZk1trYi72bBIeEEEIIIYQQQoheZPq4UiqNEgwzAcEtgJU55DOSYJeaQ6LjJDgkhBBCCCGEEEL0Ij6XHd/wQwBIzLVKAVc2xPAYCZRkDolOkOCQEEIIIYQQQgjRyxx66NG8m5qA+fE9EGugqiGORyVBClKLTpDgkBBCCCGEEEII0cscMrSQJ9wzcCVqSc1+iOpwHLeKy7Qy0SkSHBJCCCGEEEIIIXoZw1CMnHIMn5hjSH72D5Q2ceqEFKQWnSLBISGEEEIIIYQQohc6e1IZjyRPwBXazNHGXOw6LsEh0SkSHBJCCCGEEEIIIXqhYcV+okNPYJvO45f2R3DFqsFb2N3DEr2QBIeEEEIIIYQQQohe6o/nTeZ54wQGGhUEB58Ih363u4ckeiEJDgkhhBBCCCGEEL1Unxw3ky/+P/5Udg+eix8HT153D0n0QvbuHoAQQgghhBBCCCE678BhfThw2CXdPQzRi0nmkBBCCCGEEEIIIcQ+TIJDQgghhBBCCCGEEPswCQ4JIYQQQgghhBBC7MMkOCSEEEIIIYQQQgixD5PgkBBCCCGEEEIIIcQ+TIJDQgghhBBCCCGEEPswCQ4JIYQQQgghhBBC7MMkOCSEEEIIIYQQQgixD5PgkBBCCCGEEEIIIcQ+TGmtu3sMu1FKVQDr2rl5EVCZxeGIrpNr1DvIder55Br1DnKdege5Tj2fXKPeQa5TzyfXqHeQ69Tz7S3XaJDWunjXhT0yONQRSqk5Wusp3T0O0TK5Rr2DXKeeT65R7yDXqXeQ69TzyTXqHeQ69XxyjXoHuU49395+jWRamRBCCCGEEEIIIcQ+TIJDQgghhBBCCCGEEPuwvSE49EB3D0C0Sa5R7yDXqeeTa9Q7yHXqHeQ69XxyjXoHuU49n1yj3kGuU8+3V1+jXl9zSAghhBBCCCGEEEJ03t6QOSSEEEIIIYQQQgghOmmPBYeUUicppZYppVYqpX7SZPn/lFLz0r/WKqXmtbB/gVLqLaXUivTv+enlFzXZf55SylRKTWhm/+vT59ZKqaImy3OVUi8rpeYrpb5WSl2R+U/fe2TxOjmUUg8rpRYqpZYopW5pYf8hSqnP0/v/TynlTC9XSqm/pse1QCk1KQsfv1foqdcove6o9Pm/Vkp9kOGP3qv0gOvU0v95F6X/DS1QSn2ilBqf4Y/ea/TgayT3pSayeJ2cSql/p6/TfKXUUS3sL/elduip1ym9Tu5N9IhrJPeldujB10nuTWkZuEbnpv8MTaXUlF3W3ZI+7jKl1Ikt7C/3pXboqdcpva5n3pe01ln/BdiAVcBQwAnMB8Y0s90dwC9aOMafgJ+kX/8E+GMz2+wPrG5h/4nAYGAtUNRk+a2NxwKKgWrAuSf+XHrar2xeJ+BC4Mn0a2/6OgxuZv+ngPPTr+8Hrkm/Phl4DVDAIcDn3f3nJddot2uUBywGBqbfl3T3n9c+fp1a+j/vUCA//Xq6/FvqkddI7kt75jpdB/w7/boE+BIwmtlf7ku9+zrlIfemnnKN5L7Uu6+T3Jsyd41GA6OA94EpTZaPSR/PBQxJn8fWzP5yX+rd1ymPHnpf2lOZQwcBK7XWq7XWceBJ4IymGyilFHAe8EQLxzgDeDj9+mHgzGa2uaCl/bXWc7XWa5tbBQTS5/dj/UeXbO3D7MWyeZ004FNK2QEPEAfqmzn2McAzzex/BvCItnwG5Cml+nbiM/Z2PfkaXQg8p7VeD6C1Lu/4x9trdOt1gpb/z9Naf6K1rkm//Qwoa//H2qv02GuE3JeayuZ1GgO8A9v/v6oFdn0yKPel9unJ10nuTZZuvUbpdXJfaluPvU7IvalRl6+R1nqJ1npZM6vOwHq4FNNarwFWps+367HlvtS2nnydeux9aU8Fh/oDG5q835he1tThwDat9YoWjtFHa70FIP17STPbzKDl/yhbcg9WVHAzsBD4ntba7OAx9hbZvE7PACFgC7AeuF1rXb3LvoVArda68UbT9PztGdu+oCdfo5FAvlLqfaXUl0qpSzv20fYq3X2d2utKrCdM+6KefI3kvrRDNq/TfOAMpZRdKTUEmAwM2GVfuS+1T0++TnJvsnT3NWqvffm+BD37Osm9yZKJa9SVY8t9qX168nXqsfcl+x46j2pmmd7lfYtZP+06gVIHA2Gt9aIO7noiMA8rsjcMeEsp9ZHWerenvPuAbF6ng4AU0A/IBz5SSr2ttV7dzvO3Z2z7gp58jexYXzSOxcqW+FQp9ZnWenknxtLbdfd1anuASh2N9SX8sE6MYW/Qk6+R3Jd2yOZ1+hfWDzpzgHXAJ+z+FFzuS+3Tk6+T3Jss3X2N2iT3JaBnXye5N1myeY3ac2y5L7VPT75OPfa+tKcyhzayc2S6DCvqDEA69f5s4H9Nlv07XaRpZnrRtsa0uPTvu6ZfnU/nLu4VWGldWmu9ElgD7NeJ4+wNsnmdLgRe11on0qlzH7N7KmslVvpjY9Cy6flbHds+pKdfo9e11iGtdSXwITC+S5+29+ru69QqpdQBwEPAGVrrqg59sr1HT75Gcl/aIWvXSWud1Fr/QGs9QWt9BlYNgF2fHsp9qX16+nWSe1P3X6NWyX1pu558neTeZMnENerUsdPkvtQ+Pf069cj70p4KDn0BjFBWxW4nViDnpSbrjwOWaq03Ni7QWl+R/s/r5PSil4DL0q8vA15s3FYpZQDnYs0l7Kj1WFE7lFJ9sIpOdegJ/F4km9dpPXCMsviwiqQtbXpyrbUG3gO+0cz+LwGXpvc/BKhrTJndx/Tka/QicHg6XdkLHAws6fIn7p269Tq1Rik1EHgOuKQnPKHoRj32GiH3paaydp2UUt709UEpdTyQ1FovbnpyuS+1W0++TnJvsnTrNWqN3Jd20mOvE3JvapSJa9SSl4DzlVIuZU39GwHMbrqB3JfarSdfp557X9J7rmL4ycByrGreP91l3X+Aq9vYvxCriNqK9O8FTdYdBXzWxv43YEXpklhRu4fSy/sBb2LNnV0EXLyn/kx64q9sXSeswnVPA19jVWe/uYX9h2L941qZ3t6VXq6Ae9PjWkiTivH72q+eeo3S625O77sI+H53/1nt49eppf/zHgJqsFLD5wFzuvvPSq6R3Je66ToNBpZhfSF7GxjUwv5yX+rF1ym9Tu5NPeMayX2pd18nuTdl7hqdlf4zjgHbgDearPtp+rjLgOkt7C/3pV58ndLreuR9SaUHJ4QQQgghhBBCCCH2QXtqWpkQQgghhBBCCCGE6IEkOCSEEEIIIYQQQgixD5PgkBBCCCGEEEIIIcQ+TIJDQgghhBBCCCGEEPswCQ4JIYQQQgghhBBC7MMkOCSEEEIIIYQQQgixD5PgkBBCCCGEEEIIIcQ+TIJDQgghhBBCCCGEEPuw/wfVGQ7U3OLbbgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize = (20, 20))\n", + "\n", + "for idx, df_iter in enumerate(dfs_gpr_train):\n", + " plt.subplot(nb_plts, 1, idx + 1)\n", + " df_input_iter = df_iter.drop(columns = ['y', 'u'])\n", + " df_output_iter = df_iter['y']\n", + " np_input_iter = df_input_iter.to_numpy()\n", + " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", + " \n", + " mean, var = m.predict_f(np_input_iter)\n", + " \n", + " mean = y_scaler.inverse_transform(mean)\n", + " var = y_scaler.inverse_transform(var)\n", + " var = y_scaler.inverse_transform(var)\n", + " np_output_iter = y_scaler.inverse_transform(np_output_iter)\n", + " \n", + " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", + " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", + " plt.fill_between(\n", + " df_iter.index, \n", + " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", + " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", + " alpha = 0.2\n", + " )\n", + " plt.title(f\"Model Performance on training data: {train_exps[idx]}\")\n", + " plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Evaluate performance on test data" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "dfs_gpr_test = []\n", + "for df_sc in dfs_test_sc:\n", + " dfs_gpr_test.append(data_to_gpr(df_sc))" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIcAAANSCAYAAAD/Ja6JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hU1dbA4d+ent4TAgmh9xI60kEFRey9IIjX3r16Ld9Vsd2rXnvvvTewgKKCIEXpvbeEFlJJz0ym7O+PM8QACWkTQlnv8+Qhc84++6wziUhW1l5baa0RQgghhBBCCCGEECcmU1MHIIQQQgghhBBCCCGajiSHhBBCCCGEEEIIIU5gkhwSQgghhBBCCCGEOIFJckgIIYQQQgghhBDiBCbJISGEEEIIIYQQQogTmCSHhBBCCCGEEEIIIU5gkhwSQgghjlJKqVZKKa2UstRi7ESl1LwjFNdgpdRmpVSxUuqcI3FP8TelVEv/e28O5NgAxHXEvgeFEEIIEViSHBJCCCECQCmVppQqV0rFHnR8hT/B06qJQqucZCr2f6Qppe5twJSPAC9rrUO11lMDFOYJIRAJFK31Dv977w3k2CNJKTVZKfVxAOebqJTyVvoe3//RvIHzdlBKfaeUylZK5SmlZiilOgYqbiGEEOJoIckhIYQQInC2A5fuf6GU6g4ENV04h4jUWodixPigUuq0ulxcqYIpBVhbnwBqUwV1ojsSVT7HqT/9ibDKH3saOGck8D3QEUgAFgHfNXBOIYQQ4qgjySEhhBAicD4Crqz0egLwYeUBSqkIpdSH/kqEdKXUv5VSJv85s1LqaaVUjlJqG3BGFde+o5TKUErtVko9Vp9Egtb6T4zkTjf/vJOUUuuVUvv8lREple6plVI3KaU2A5uVUluBNsAP/soMu1KquVLqe39lxRal1DWVrp+slPpaKfWxUqoQmKiUmu2PfYF/jh+UUjFKqU+UUoVKqcWVK62UUi8opXb6zy1VSg09aP4v/e9pkVJqrVKqb6XzyUqpb/3vd65S6uVK56p97oMppc7yz53vj79zpXNpSqm7lFKrlFIFSqkvlFKOKuboDLwOnOR/7nz/8feVUq8ppaYrpUqAkUqpM5RSy/3PvFMpNbnSPAcsN/TH86hSar7/PfhF+SvY6jLWf/5K//dlrlLqAf+znVLNexLj/7oXKqUWAW0POl/l100ZScn7gYv978NK//Gr/F+PIqXUNqXUddV9PepCKdXW/73Z2/+6uTL+GxtR6T35r1Jqkf/r951SKhpAa71Ia/2O1jpPa+0GngM6KqViAhGbEEIIcbSQ5JAQQggROH8B4UqpzspI2lwMHLx05iUgAiPBMhwjmXSV/9w1wDigF9AXuOCgaz8APEA7/5jRwD/qEqAyDAa6AsuV0TPofuA8IA6YC3x20GXnAAOALlrrtsAO4Ex/ZYbLP34X0Nwf83+UUidXuv5s4GuMKoxP/McuAcYDLTCSCn8C7wHRwHrgoUrXLwZS/ec+Bb46KPlyFvA5f1d5vOx/VjPwI5AOtPLf63P/udo89/73rIP/3O3+sdMxkmO2SsMuAk4DWgM9gIkHz6O1Xg9cz98VLpGVTl8GPA6EAfOAEozvjUiMJOEN6vD9nS7D+D6KB2zAXXUdq5TqArwKXA4kYnyftjjMPK8ATv/YSf6Pyqr8ummtfwb+A3zhfx96+sdnYXz/h/vje25/QscfX75Sashh4qmS1norcA/wiVIqGOP77H2t9exKw670x98c47+xF6uZbhiwV2udW9c4hBBCiKOZJIeEEEKIwNpfPXQqsAHYvf9EpYTRfVrrIq11GvAMRpIEjATD81rrnVrrPOC/la5NAE4Hbtdal2itszCqGC6pQ2w5QB7wNnCv1nomcB3wX631eq21B+OH9tSDqmj+66+cKDt4QqVUMjAEuEdr7dRar/DPP77SsD+11lO11r5Kc7yntd6qtS4AfgK2aq1/88fwFUbyCwCt9cda61yttUdr/Qxgx1jms988rfV0f1+dj4D9yYb+GD/s3+1/z5xa6/39fmrz3PtdDEzTWv/qrx55GmO54KBKY17UWu/xf91+wEiK1MV3Wuv5/vfIqbWerbVe7X+9CiM5Nfww17+ntd7kf3+/rOH+1Y29APhBaz1Pa10OPAjoqibwfy+fDzzof2/XYCQvK9Ti68ZB46f5vye01noO8AswtNL5yEpfv6oM9CeQ9n9srXTtW8BmYCFGMuv/Drr2I631Gq11CfAAcJE6qCpPKZWEkRC78zAxCCGEEMckSQ4JIYQQgfURRmXGRA5aUgbEYlRqpFc6ls7f1RnNgZ0HndsvBbACGft/+AXewKj+qK1YrXWU1rqz1np/ZUQK8EKlOfMAxYEVIzupXnMgT2tdVM0zVXd9ZqXPy6p4Hbr/hVLqn/7lRgX+GCMw3sv99lb6vBRw+JdRJQPp/uTPwWrz3JWfseJrobX2+Z+p8tiDYwilbg54j5RSA5RSvytjOVwBRsVRbNWX1vn+1Y094PtPa10KVFchEwdYqP77tTZfNw4af7pS6i//ErB8YOzhxlfhL38Caf9H24POv4WxlPIlf8VbZQc/h7XyvZVScRjJqle11lVWmAkhhBDHMkkOCSGEEAGktU7HaEw9Fvj2oNM5gBsjMbFfS/6uLsrASGhUPrffTsCFkeDZ/8NvuNa6awND3glcd9AP1UFa6wWVH+sw1+8BopVSYQfFvbvS68Ndf1j+PjX3YFRVRfmXYhVgJHJqshNoqapugl2b595vD5W+ZkophfF12l3F2JpU914cfPxTjCVyyVrrCIxeRbV55obIAJL2v1BKBQHV9dbJxlh+VeX3ay2+bgc8r1LKDnyDUZWV4B8/nQA9s1IqFHgeeAeYvL+nUCUHP4cb479XlFJRGImh77XWjwciHiGEEOJoI8khIYQQIvCuBkb5l6hU8C97+hJ4XCkV5l/CdCd/9yX6ErhVKZXk/4H03krXZmD8gPqMUipcKWXyN9o93FKj2ngduE8p1RUqml5fWNuLtdY7gQXAf5VSDqVUD4zn/+TwV9ZaGEYSIhuwKKUexOhJUxuLMBIeTyilQvzxDfafq8tzfwmcoZQ6WSllBf6JkairKpFUk0wg6aB+RVUJw6jIciql+mNUozW2r4EzlVKD/PE9TDXJGf/38rcYiZZgf7+iCZWG1PR1ywRaKX8zdoyKOrt/vEcpdTpGT61AeQFYqrX+BzAN4+tf2RVKqS7+nkSPAF9rrb1KqXBgBjBfa30vQgghxHFKkkNCCCFEgPn7piyp5vQtGM2Gt2E0Hv4UeNd/7i2MH0RXAss4tPLoSowfotcB+zB+mE9sYKxTgCeBz5Wxm9gajN5GdXEpRsPnPcAU4CGt9a8NiauSGRg9iTZhLPdxcvhlbhX8CYwzMRp478Bomn2x/1ytn1trvRG4AqOZeI5/zjP9fXnqahbGTnF7lVI5hxl3I/CIUqoIo/fPl/W4V51orddifH9+jpFUK8JoEn3wEqz9bsZYkrYXeB+j0fN+NX3dvvL/mauUWuZflngrxnPuw0iGfV/5ZsrY2Wwo1du/C1zlj35KqbMxmoVf7x93J9BbKXV5pWs/8j/DXsDhjwXgXKAfcNVB81au6hNCCCGOeUrreld6CyGEEEKI45R/KVY+0F5rvb2Jw2k0SqnZwMda67ebOhYhhBCiqUjlkBBCCCGEAEApdaZ/mVgIRv+f1UBa00YlhBBCiMYmySEhhBBCCLHf2RjLA/cA7YFLtJSZCyGEEMc9WVYmhBBCCCGEEEIIcQKTyiEhhBBCCCGEEEKIE5ilqQOoSmxsrG7VqlVThyGEEEIIIYQQQghx3Fi6dGmO1jru4ONHZXKoVatWLFlS3Q7AQgghhBBCCCGEEKKulFLpVR2XZWVCCCGEEEIIIYQQJzBJDgkhhBBCCCGEEEKcwCQ5JIQQQgghhBBCCHECOyp7DgkhhBBCCCGEEE3N7Xaza9cunE5nU4ciRJ04HA6SkpKwWq21Gi/JISGEEEIIIYQQogq7du0iLCyMVq1aoZRq6nCEqBWtNbm5uezatYvWrVvX6hpZViaEEEIIIYQQQlTB6XQSExMjiSFxTFFKERMTU6eKN0kOCSGEEEIIIYQQ1ZDEkDgW1fX7VpJDQgghhBBCCCGEECcwSQ4JIYQQQgghhBBHKaUU48ePr3jt8XiIi4tj3LhxTRhVzUJDQ2scM3nyZJ5++unDjpk6dSrr1q0LVFiiGpIcEkIIIYQQQgSEc+Z/8f54V1OHIcRxJSQkhDVr1lBWVgbAr7/+SosWLZokFo/Hc8TvKcmhI0OSQ0IIIYQQQogG+XHVHtIXfINj7hOYNk1v6nCEOO6cfvrpTJs2DYDPPvuMSy+9tOJcSUkJkyZNol+/fvTq1YvvvvsOgLS0NIYOHUrv3r3p3bs3CxYsACAjI4Nhw4aRmppKt27dmDt3LnBgpc/XX3/NxIkTAZg4cSJ33nknI0eO5J577mHr1q2cdtpp9OnTh6FDh7JhwwYAtm/fzkknnUS/fv144IEHqn2Wxx9/nI4dO3LKKaewcePGiuNvvfUW/fr1o2fPnpx//vmUlpayYMECvv/+e+6++25SU1PZunVrleNEw8lW9kIIIYQQQoh6m7s5m4c/ncXM4PuNA87Cpg1IiEby8A9rWbcnsN/fXZqH89CZXWscd8kll/DII48wbtw4Vq1axaRJkyqSOo8//jijRo3i3XffJT8/n/79+3PKKacQHx/Pr7/+isPhYPPmzVx66aUsWbKETz/9lDFjxvB///d/eL3eWiVXNm3axG+//YbZbObkk0/m9ddfp3379ixcuJAbb7yRWbNmcdttt3HDDTdw5ZVX8sorr1Q5z9KlS/n8889Zvnw5Ho+H3r1706dPHwDOO+88rrnmGgD+/e9/884773DLLbdw1llnMW7cOC644AIAIiMjqxwnGkaSQ0IIIYQQQoh6yS8t5+4vl/Os9TWsPie62/moNd+A1wNm+VFDiEDp0aMHaWlpfPbZZ4wdO/aAc7/88gvff/99Re8ep9PJjh07aN68OTfffDMrVqzAbDazadMmAPr168ekSZNwu92cc845pKam1nj/Cy+8ELPZTHFxMQsWLODCCy+sOOdyuQCYP38+33zzDQDjx4/nnnvuOWSeuXPncu655xIcHAzAWWedVXFuzZo1/Pvf/yY/P5/i4mLGjBlTZSy1HSfqRv7GFkIIIYQQQtSZ1pp/T13DaWXTGWpZw/3uq5ncrC22Nd+AqxCCo5s6RCECqjYVPo3prLPO4q677mL27Nnk5uZWHNda880339CxY8cDxk+ePJmEhARWrlyJz+fD4XAAMGzYMP744w+mTZvG+PHjufvuu7nyyisP2Prc6XQeMFdISAgAPp+PyMhIVqxYUWWMtdk+vboxEydOZOrUqfTs2ZP333+f2bNnN2icqBvpOSSEEEIIIYSos+9X7mH16uXcb/uMvXGD+dQ7ij0um3HSWdC0wQlxHJo0aRIPPvgg3bt3P+D4mDFjeOmll9BaA7B8+XIACgoKSExMxGQy8dFHH+H1egFIT08nPj6ea665hquvvpply5YBkJCQwPr16/H5fEyZMqXKGMLDw2ndujVfffUVYCSmVq5cCcDgwYP5/PPPAfjkk0+qvH7YsGFMmTKFsrIyioqK+OGHHyrOFRUVkZiYiNvtPuD6sLAwioqKahwnGqbG5JBSyqGUWqSUWqmUWquUeth//H9KqQ1KqVVKqSlKqchqrk9TSq1WSq1QSi0JcPxCCCGEEEKII2xPfhkPTl3FqyHvYLbY8I17EVCkFVuNAZIcEiLgkpKSuO222w45/sADD+B2u+nRowfdunWraAZ944038sEHHzBw4EA2bdpUUf0ze/ZsUlNT6dWrF998803FnE888QTjxo1j1KhRJCYmVhvHJ598wjvvvEPPnj3p2rVrRQPsF154gVdeeYV+/fpRUFD13wG9e/fm4osvJjU1lfPPP5+hQ4dWnHv00UcZMGAAp556Kp06dao4fskll/C///2PXr16sXXr1mrHiYZR+7OL1Q4war5CtNbFSikrMA+4DQgHZmmtPUqpJwG01ocsKlRKpQF9tdY5tQ2qb9++eskSySMJIYQQQghxtPH5NJe/vZDUXR9zj+kjPGe9irnXZfR4+BdubZvJNVtvgSu/hzbDmzpUIRps/fr1dO7cuanDEKJeqvr+VUot1Vr3PXhsjZVD2lDsf2n1f2it9S9aa4//+F9AUsPCFkIIIYQQQhzt3p63jaztq/in+Qvcbcdg6XUZSik6J4azPs/fS0Qqh4QQ4phSq55DSimzUmoFkAX8qrVeeNCQScBP1VyugV+UUkuVUtce5h7XKqWWKKWWZGdn1yYsIYQQQgghxBG0Ymc+z/y8jjfD3kHZgrGe8xL4m8t2SQxn1f4euZIcEkKIY0qtkkNaa6/WOhWjOqi/Uqrb/nNKqf8DPEB1naAGa617A6cDNymlhlVzjze11n211n3j4uLq8gxCCCGEEEKIRlbodHPrZ8u5Kng+bcs3wNinISyh4nznxDAyy43dkCQ5JIQQx5Y67Vamtc4HZgOnASilJgDjgMt1Nc2LtNZ7/H9mAVOA/vUPVwghhBBCCNEUnv91M7vzy7gp7A+8cV0x97jggPOdE8MpxoFGSXJICCGOMbXZrSxu/05kSqkg4BRgg1LqNOAe4CytdWk114YopcL2fw6MBtYEKHYhhBBCCCHEETJ7UxZXpuwjbN9aTH0nViwn269DQhhKmXCZQyU5JIQQxxhLLcYkAh8opcwYyaQvtdY/KqW2AHbgV2NDM/7SWl+vlGoOvK21HgskAFP85y3Ap1rrnxvjQYQQQgghhBCNI7vIxbbsEl4KnYm2BKF6XHTIGIfVTJu4UIpKQ3BIckgIIY4ptdmtbJXWupfWuofWupvW+hH/8XZa62Stdar/43r/8T3+xBBa621a657+j65a68cb93GEEEIIIYQQgbY4LY9gnHTM/hlfl3MhKLLKcR0Twsj3BUnlkBABlJmZyWWXXUabNm3o06cPJ510ElOmTGn0+y5ZsoRbb701IHONGDGCjh070rNnTwYPHszGjRsDMm8gBTLG999/n5tvvhmA119/nQ8//LDasWlpaXz66acVrwP5vtdFnXoOCSGEEEIIIU48i7bncb7tLyyeEsz9rqp2XEyojXxfMNqZf+SCE+I4prXmnHPOYdiwYWzbto2lS5fy+eefs2vXrka/d9++fXnxxRcDNt8nn3zCypUrmTBhAnffffch571eb8DuVV+NEeP111/PlVdeWe35g5NDgX7fa0uSQ0IIIYQQQojDWrg9jwuDluKNbgtJ/aodFxlsI88bhC6TyiEhAmHWrFnYbDauv/76imMpKSnccsstgJFYGDp0KL1796Z3794sWLAAgNmzZzNu3LiKa26++Wbef/99AO699166dOlCjx49uOuuuwD46quv6NatGz179mTYsGGHzLFo0SIGDRpEr169GDRoUEVVzfvvv895553HaaedRvv27fnXv/5V4zMNGzaMLVu2ABAaGsqDDz7IgAED+PPPP3n22Wfp1q0b3bp14/nnn6+45sMPP6RHjx707NmT8ePHA5Cdnc35559Pv3796NevH/Pnzwdgzpw5pKamkpqaSq9evSgqKiIjI4Nhw4aRmppKt27dmDt3br1j/Pjjj+nfvz+pqalcd911FQmj9957jw4dOjB8+PCKWAAmT57M008/DcCWLVs45ZRT6NmzJ71792br1q3ce++9zJ07l9TUVJ577rkD3ve8vDzOOeccevTowcCBA1m1alXFnJMmTWLEiBG0adMmIMmk2vQcEkIIIYQQQpygCkrdbN2bR6egtZjaXXlII+rKIoOsFOpgtDPjCEYoxBHy072wd3Vg52zWHU5/otrTa9eupXfv3tWej4+P59dff8XhcLB582YuvfRSlixZUu34vLw8pkyZwoYNG1BKkZ+fD8AjjzzCjBkzaNGiRcWxyjp16sQff/yBxWLht99+4/777+ebb74BYMWKFSxfvhy73U7Hjh255ZZbSE5OrjaGH374ge7duwNQUlJCt27deOSRR1i6dCnvvfceCxcuRGvNgAEDGD58ODabjccff5z58+cTGxtLXl4eALfddht33HEHQ4YMYceOHYwZM4b169fz9NNP88orrzB48GCKi4txOBy8+eabjBkzhv/7v//D6/VSWlrlnlo1xrh+/XqefPJJ5s+fj9Vq5cYbb+STTz7h1FNP5aGHHmLp0qVEREQwcuRIevXqdci8l19+Offeey/nnnsuTqcTn8/HE088wdNPP82PP/4IGEm5/R566CF69erF1KlTmTVrFldeeSUrVqwAYMOGDfz+++8UFRXRsWNHbrjhBqxW62Gf63AkOSSEEEIIIYSo1pL0PHqwBZvPCa2HHXZsVIiVPEKk59CxTmt8677D1PF0sNibOhpRyU033cS8efOw2WwsXrwYt9vNzTffzIoVKzCbzWzatOmw14eHh+NwOPjHP/7BGWecUVGhMnjwYCZOnMhFF13Eeeedd8h1BQUFTJgwgc2bN6OUwu12V5w7+eSTiYiIAKBLly6kp6dXmRy6/PLLCQoKolWrVrz00ksAmM1mzj//fADmzZvHueeeS0hICADnnXcec+fORSnFBRdcQGxsLADR0dEA/Pbbb6xbt65i/sLCQoqKihg8eDB33nknl19+Oeeddx5JSUn069ePSZMm4Xa7Oeecc0hNTa3y/akpxpkzZ7J06VL69TMqKMvKyoiPj2fhwoWMGDGCuLg4AC6++OJDvhZFRUXs3r2bc889FwCHw1FlDJXNmzevIgk3atQocnNzKSgw/n4944wzsNvt2O124uPjyczMJCkpqcY5qyPJISGEEEIIIUS1Fm3PY4hlPRqFShl82LGRwTbSdDBmdzF4PWCWHzeOJYu25/HZoh38LzULy1cT4KIPocvZTR3W0eMwFT6NpWvXrhXJAYBXXnmFnJwc+vbtC8Bzzz1HQkICK1euxOfzVSQcLBYLPp+v4jqn01lxfNGiRcycOZPPP/+cl19+mVmzZvH666+zcOFCpk2bRmpqakV1yn4PPPAAI0eOZMqUKaSlpTFixIiKc3b73wlEs9mMx+Op8lk++eSTirj3czgcmM1mwOivVBWtNaqKikWfz8eff/5JUFDQAcfvvfdezjjjDKZPn87AgQP57bffGDZsGH/88QfTpk1j/Pjx3H333VX2AapNjBMmTOC///3vAWOmTp1aZYwHP0ddVXXN/vvU9n2vLek5JIQQQgghhKjWn9tyOcWxEZ3QHYKjDzs2MshKIcHGC1fhEYhOBMrOnCKu+2gJU5bvJmfx18bBQlke2NRGjRqF0+nktddeqzhWeUlUQUEBiYmJmEwmPvroo4r+NykpKaxbtw6Xy0VBQQEzZ84EoLi4mIKCAsaOHcvzzz9fkQTaunUrAwYM4JFHHiE2NpadO3ceEEdBQQEtWrQAqOhdFGjDhg1j6tSplJaWUlJSwpQpUxg6dCgnn3wyX375Jbm5uQAVy8pGjx7Nyy+/XHF95Wfp3r0799xzD3379mXDhg2kp6cTHx/PNddcw9VXX82yZcvqFePJJ5/M119/TVZWVkUs6enpDBgwgNmzZ5Obm4vb7earr7465Nrw8HCSkpKYOnUqAC6Xi9LSUsLCwigqKqr2Pfnkk08AY7lZbGws4eHh9Yq9JpIcEkIIIYQQQlRp4bZcNu7KppNnA6r10BrHRwXbKNTGkhBJDh0jvB7KPryIgtdOxevzYjVpwtJ+Mc6VZNVvzk0z8Lx1KnhcgYvzBKWUYurUqcyZM4fWrVvTv39/JkyYwJNPPgnAjTfeyAcffMDAgQPZtGlTxZKs5ORkLrroInr06MHll19e0f+mqKiIcePG0aNHD4YPH85zzz0HwN1330337t3p1q0bw4YNo2fPngfE8a9//Yv77ruPwYMHN9quYr1792bixIn079+fAQMG8I9//INevXrRtWtX/u///o/hw4fTs2dP7rzzTgBefPFFlixZQo8ePejSpQuvv/46AM8//3xFc+2goCBOP/10Zs+eXdGg+ptvvuG2226rV4xdunThscceY/To0fTo0YNTTz2VjIwMEhMTmTx5MieddBKnnHJKtX2iPvroI1588UV69OjBoEGD2Lt3Lz169MBisdCzZ8+Kr8d+kydPrnjGe++9lw8++KBecdeGqk9pU2Pr27evPlwTLSGEEEIIIUTj0lpz8Rt/EZv9F696J8NlX0KHMYe9Jr+0nLsf+y9v2Z6F6/6AxJ6HHS+aTlm5l6veX8Rpu19iopoGwKohr/LVuhIezfNv4d1rPJz98mFmqcb0u2HRm3DpF9DxtABGfeStX7+ezp07N3UYQtRLVd+/SqmlWuu+B4+VyiEhhBBCCCHEIeZuzmFRWh43pOxGKzO0PKnGa8IdVorwVw5JU+qj2iM/rqN5+ndMVNNYFHsexcHJdNn6Fuc5luHSVjyRrdH1rBzy5W4FwLt2agAjFkI0JkkOCSGEEEIIIQ5Q7vHx9IwNjA3fTqe8mejEVHDU3OfCZFJou3+cJIeOWj+vySB9yXSesr2Nu+UQ+t/wJiGj/oklYzk9Mqcw19eNXFsLdHF2/W6Qtx0AtXE6eMoDGLkQorFIckgIIYQQQghRYc3uAia++B3/zb6JV8v/D1NpNqbBt9b6ehUUaXwiyaGj0p78Mj78egpv257DF90W66Ufg9mKSr0Mb2giZq+TuZaT2OEKQRXXrXJoaXoe/5u+Bp2fTl5oe0yuAkj7o5Ge5Mg5GluxCFGTun7fSnJICCGEEEIIgdaa9+Zv56JXfuf+wsfoYM3CNfZ5zHdthK7n1Hoec3Ck8Ykkh446Xp/m35/N5RX9H0yhsdgmTIWgKOOkxY4acS8+ezjONqPZUOSAkmyoww+YT8/YxA9zF2HWXp7dN4RSFUTxsm9qvvAo5nA4yM3NlQSROKZorcnNzcXhcNT6GksjxiOEEEIIIYQ4Bri9PiZ/v5ZPFqbzWcyHdCvZgu/8j7B2OavOczlCIvDlKEySHDrqvPr7Fmw75xNlK4ILvoDwxAPOm/pOhF6X02f5XjZtCEVZXcauc46IWs2fVeTkwtblsAfGnjyKWXM2MWjdD+zJe4rm0WGN8ESNLykpiV27dpGdXc8ldkI0EYfDQVJSUq3HS3JICCGEEEKIE5Tnh3+SU6a5Kesslu0q4ouW3zEgayae4f+HpR6JIYCIYDvFBBMuyaGjyoqd+Tw/czNvJ+xCFzlQSf2qHmi20icligXanxAqzqpDcshFm0hjKdqgfv3ZZikhetb1zFk4jeanXxKIxzjirFYrrVu3buowhGh0sqxMCCGEEEKIE5DO2Yxl6ds0W/cOD+T8iz9af8SArK/w9Lsey4i76z1vZLCNQh0sy8qOIj6f5sHv1hAbamOIfQu6eW+w2Kod3yzcQQ6VkkO14HR7KXJ6aOHLQFtDIDSBlIHnsE+HErPxy0A8hhCiEUlySAghhBBCiBOM1pr5X7+IR5uY0uw2elh2kJwxA/eoyVjGPgFK1XvuqGArBToYb2l+wOI9ovK24/1qEpTmNXUkAeFKX8xvv3zHql0F/PvUVliy1mBqOfCw14TYLZRZo40XtdzOPrvIBUCcezc6qjUohdkWxGzHyXTKnwMlOQ16jsqW79jHZW/9xTO/bMS76G28H50fsLmFOFHJsjIhhBBCCCFOMC/8uoFLMn5ga8RAzrnuYci5Am/BHqztRjR47shgK4U6BE/pPswND/XI8rjwfnEl5sxV0GEM9Ly4qSOqN19RFs6f/k3wui8Ygp2hyZ8wLnYPyueBGpJDACo0HkqAWm5nn+VPDkWU7UQldas4vqnFeVi2fYde8SmqDrve7ZdRUMasDVks3p6H26cpLHMzd7ORaPJlrsPkuw/lKwePCyz2Os8vhDBI5ZAQQgghhBAnkN/WZbJi9rc0U/toP+Z6lFKouA6YA5AYAv+yMoLRZcfWsrLXZm/l+2euxZy5Cm2ywM6FTR1Svbk8Xna/NAbrum/4Xo0gGBdPtFuD2v9M1fUbqsQeEYcXU50qh0z4CC7ZhYpuU3E8vGV3Fvs64Fn8fp12PgOY/vtcPnjqdp6dMp8/t+Vi27mA+3ffxBcp3/PQKc24r/wlIzEEAa1MEuJEJMkhIYQQQgghThD5peXcN2U1k0Lm4wuKwdTx9IDfw6gcCgbXsZMcemfedpb88glnlU3lO9s4PMmD8e34q6nDqrenvv2T5PJt/BgzkdmdHiY7ojvNNnyEL/1PfLEdITi6xjniI0IoIKzWPYeyi10kkovJVw6VkkMdm4XyuWcU1vytkD6/1s+gtca74GXutX7OwtB/8keL13iu7P/o4Cigf+YXXPnn6fQ0bWNHizOMC0pkNzEhGkKSQ0IIIYQQQpwgHvl+LcPLZjLEuwjV46LDNiWur6hgG4WEYHYVBnzuxvD5oh18Pu0XXra/RkFkF+4vuZApOUmorHXgPDaeobLPF+1gw4p5AJw7dhzPXpxK3Mm3Yt63FbV1FqoWS8oA4sPtZOkIdG2TQ4VOWpsyjReVkkPt48OY5huA2+SAdd/V+jlW7y6gpWsTeeGd8LYbg3XnAsr734T59pXoa37H07wfX3IK0x1jjQukckiIBpGeQ0IIIYQQQhzP0ubhWvQ+6/aZOGfXOoZZVuNu1g/rkNsb5Xb7K4esnmLwecF0dHYe0lrz6uytvD1jMTNCnsVmDyXoqq95Ik3x5RfrucimYfcSaDvqkGsLM9Mp+OkRfGX5eL1echwpbAtOJcOcSKlb0zLawfg+8WC2Q2y7I/ZMucUuHvxuLY/EZUMBkNjTONHlbHw/34epNAdanlSruRLCHGT7wmlblIm1FuOzi110deSAjwOSQy0igzDZgtkV3JmUnUtqXZ0wdWk696od6E7XYx/7OAD7U5mmFr2wXz2Nn95bhG/vVq4HKJXkkBANIckhIYQQQgghjmPuuc9j2jqbNtqKxWLCefJ/cAy6vtGSNvt7DgHGdva1WMJ0pDndXt766jus677lt9CFROkCTJdNh4gWnNkTtu48Fd/iJ1m/8De6th2FZ+7zeNxupoZcyNSl6dyz9046q3TSdQIKTW81h/7q/QNvssj/540LIb7TEXmu7TkllHt9jIzIwKeTMO1/7y12VN9J8MdTkFLL5JB/O3tdlF6r8dlFLvpas9FeByosseK4yaRonxDG6rJ2tMqcCm4nWB2Hnavc42PdyoXYlAeSe1U7rm+raF7fmA4OZFmZEA1UY3JIKeUA/gDs/vFfa60fUkpFA18ArYA04CKt9b4qrj8NeAEwA29rrZ8IWPRCCCGEEEKIavm8Xpzb/mK6dzAFpz7LNUPboBqwTX1thNjMZKh440XuFgju36j3qxWvB1fOdqzRLdmwcy/bPruLW9y/4LWY8SQNRw29DZL6Vgy/+fTe7FzRirwNc3nj06+4btNDWACrdzaXBUXQy7SFjUNfxtz9XMKDLHhMLtSeJXiLMnGVu3ni5010ijExPvdF2L30iCWHMgqcAEQUbEAl9jjgnBp2N7r9aFRUq1rNlRBuZ7mOwFyWYzSSruH7JqvIRStTFjosBWU6sD6oQ3woc9e34iyfG/auhuTDN8SesymbZNdmsAKJqdWO69cqmv8RhM9kxSTJISEapDaVQy5glNa6WCllBeYppX4CzgNmaq2fUErdC9wL3FP5QqWUGXgFOBXYBSxWSn2vtV4X0KcQQgghhBBCHOKzn2dxuS6iVeooBgxre0TuqZRil6M9eICMlZB8FCSH/nwJ+2+T8WEmRVvooNxs7zCJ1uc8gLmKyiaL2UR812HErfySsE1PkUsEc0JO5/ySz6EcvANupOPJ4ytd4YD2J2PGWPoUV7yJh37byOUhDkyZa47UU5JRUEYwTuwF21C9LjrooWyoGpIylSWEO8jREZi9TigvBnvYYcdnF7mIVzmoyJaHnOvYLIy3lqYYFT67l9SYHPpi8Q5G29LR1tADdj47WI+kCKxmE8XmSMKl55AQDVLjkk9tKPa/tPo/NHA28IH/+AfAOVVc3h/YorXeprUuBz73XyeEEEIIIYRoREvS8lj15y8A9B922hG9tysokWJTGL6MVUf0vtXxbZtLgaMFL3vOZEHwSIqv/JXWlz132CVvQW0GEUwZqWwi+qzHOO/uN/Cd9Qqe1Csxj37ksPebOKgVDpuVHdbW+PauDvTjVCujwElv204U+u9+Q/UUF2YnR0cYL2poSu3zaXKKXUR6c1FhzQ453z4hjEyicQYloHctOexcS9Ly+G19FkNCdqOb9QBT9T+yOqxmureIIEeHoyU5JESD1KofmFLKrJRaAWQBv2qtFwIJWusMAP+f8VVc2gLYWen1Lv+xqu5xrVJqiVJqSXa2lAQKIYQQQghRLz4vTreXO75cwVDHNnyOKFRM+yMaQlSInW2WtuijIDnk83pxpS9iWnFHVne4haF3fkpkm741X5g8AABvs56o1CsAMPW+Ass5L4H58C2aI4NtXDEwhQUlieiM1cayrCNgb4GT/kG7jRfNehx+cA0cVjNldn/yrIYlW/llbnxeDyHuPKjUb2i/jglG1dFGc0fKti9kX0l5lfP4fJpHf1xHizAric6tmJpX329ov14to9hVHoqWZWVCNEitGlJrrb1AqlIqEpiilOpWy/mrWpha5d+MWus3gTcB+vbte2T+9hRCCCGEEOJ4UpqHfiGVv1JuYWdeF0bGp6ES+h+2+qIxRAZb2bivNd2zp4PXXWMypbGUuDw8+fEPPOItwpbSn9cu743FXMv3IqoV3pEPYO48rl7v38iO8Uybn4LZNQsKd0NEUp3nqKuMAicXm9PRQTGo8OYNnzAkHoqpsXIou8hFDIWY8EEVlUMJ4XZ6t4xk2u4W3G/9gyGPfoMjIp42caGYTAqb2cSIDjGEFaexflcBr4yJQM0pq1X1U/PIILJ1GLq4do2zhRBVq9NuZVrrfKXUbOA0IFMplai1zlBKJWJUFR1sF5Bc6XUSsKe+wQohhBBCCCEqKc2Dwj3QzP+7200/o1wFdNv4Ehe2f52QnVug76VHPKzIYCtrPC250OuCnE2Q0PWIxwDwwNQ1mLb9BVY4/+xzULVNDAEohXn4XfW+d7MIB+t9/v47e9cckeTQ3gIn7Uzb0M17BKTxuDk8wUgOldScHGqm8owXVSSllFJ8e+NgCje44fPPeLyfi3mlPlrs/Y5wXwGR5Rn037aUeJVPp5D2tLdNMC5snlpjjPFhdjJ0BEoqh4RokBr/dlRKxfkrhlBKBQGnABuA7wH/f7VMAL6r4vLFQHulVGullA24xH+dEEIIIYQQooH0b5PRb58MpXlsyy6mYPkUnCqIWFXAw76XjEH+5VFHUlSwjcUu/++Im3Bp2Zo9BZwRswdtC0PFdjyi924W7mCD9ieHMhu/75DH62NfUTGJru2YGthvaL+gyATjk+LDJ16yipwkKP/G1VVUDu0X3qYfWpkZnfcxj+6YyI0lr3BF2cecblmGKWUQfyTfQDt2YPr132hrMMS0qzHGuDA7eToMk9cJ5SW1fjYhxIFqUzmUCHzg33nMBHyptf5RKfUn8KVS6mpgB3AhgFKqOcaW9WO11h6l1M3ADIyt7N/VWq9tlCcRQgghhBAiwHwzH8PUYUyNuys1Fb19LiaPk/nfvMjVa3uw3D6bL7zDGRhdTMfdC9DKjGrR+4jHFRFsZYOnGT6HA5WxEpV65KuXADILXXSwb0A3733I9uqNLchmxuwII9fWgui9q6vstxFI2cUuktmLWXsCVqkVFxHCXh1FfO7Ww1YVZBe5KiWHDu05VMEWgo7vgnn3YlwpI7Cd8QQqph1ms5VYYBhA+ln4PrkYmqeiTOYaY4wPs5NLuPGiJBtsIbV8OiFEZTUmh7TWq4BDOoFprXOBk6s4vgcYW+n1dGB6w8IUQgghhBDiCMvagGnu/6C86OhMDhVlYtq3DY2i+ebPuC0lkqDMclJHX0HbNi3h7ZHoZt1RTfDDcqdmYfgwsdvWluYZq6j5R/zAc7q9uMqKSdRbMSWf1QQRGNvBp3vaELV3TaMnhzIKnDRXucaLiOTDD66lhHAHK3ztOHnHohqTQy3MBUYyMiTusHOqM5+nvCATe5exUNXSt5RBmG5dStXtaw91wK5qJTkQ1apW1wkhDnRk0+dCCCGEEEIcK9b7uyGU5TdpGFXJLXaxfpGxTf2X6jRam/ZyrfsjtD2cnoPPwJLUG+/w+zGddHOTxDeqUwITTkphTmEzPHtWHrHduirLLHTSXW3HhBeSarE7WSNoFuFgAymovG3gKm7Ue+0tcB627099xIc5WOprj7Uw/bBNqbOKXKTYCiA0AWqo9lFJfbF1PaPqxNB+ofEQevgkU8VQu4Vic6TxQvoOCVFvkhwSQgghhBCiCt61U41PnPlNGcYhipxuxr44l79+/4EybeN/3ovx2KMw522BDqdV7AxmHnkP9LiwyeJ8YFwXyuO7Y/cU8+3M+Witweel7LcnKP/l4UZPGO0tcJJq2mK8aNE0yaGEcAcrypNQaMha16j32pNfRiJ5aNThl3bVQUK4nWW+9saLnYuqHZdd5CLRlI8+TL+hxqKUQoXEGi9Kco74/YU4XkhySAghhBBCiIPlbsWcZbTK1EdZ5dBzv24mq8jFuTE7KG/Wm2l3nY65z3gAVKczmji6v1nMJi46y1jO1fKPO3j6pefY9fJYgub9F9uCZ/EufLNR77+30EgOucKSa12FEmjNwh38Veqv4slc06j32lvgJNmcZ2w/b7EFZM6EcAdrdGu8yoI+XHKo2EUceZgClJSqK2t4vPGJVA4JUW+SHBJCCCGEEOJg6/wb8TbvFdBlZXpfGuTvrPf16/YU8v6C7VzVJ4aIwo1EdBpOQrgDNfg29NC7oOPpAYs1EEJb9aHg5CfpaN/H3XkPE5e7lHvd/2CWtxfMuB/fjoWNdu+sQhcpKgtTXIdGu0dNEiIc7PJFo00WKNjVqPfKKHTS0pqPDtCSMjD6+biwkRnSsdrkkM+nySxwEuXNO+xOZY0pPDyCMhxSOSREA9RmtzIhhBBCCCFOGFuyinHN/IiU2FRCE7rC5t8CM7HPh+/Dc1DBMZiumVn9uKz1uDbPZlvadnL35VNuCqLYFsPq6NOYnVZGZLCNOzvtQ63xQcuTjGtCYlEnPxCYOAMsYuj1FPe+gt2LPqcspjNXJ/Tg5emLab/9WuLfOwuTI8zYleqUyVh6BW5Xs72FTuJVAZbwpqlmAUgIs+PDRHlQAvbCPY16r70FThJVHqaI7gGb02o20SUxnJn7UrisbCZ43RXLFvdbvjOfclcpIaoAmui93r9jWZJUDglRb5IcEkIIIYQQopJf/1zMDWzjj5BbGebwBaTn0PwtObQrWkLCvu1G9VBJLoTEHDLO6/FQ+s45hLn20kErnNgIUS4Aeu36mHTzTfzz3IsIzXzL2Bkq6SjcRa0KoSGhhI78R8Xr5yaM5LNpr2Be+BphFivDI7II/e563MWZWIfcdvhmxbWUVVBCjCpAhSU0eK76ahbhAKDUEY+tYHf1+2+V5uF7cxSm05+AjqfV6157C5zE+nIgvEX9gq3GWxP68uarXTCXT2fDivl06jPigPPTV2fQwlxovGiiZWVxYXZyfGEkFmc3yc54QhwPZFmZEEIIIYQQflprMtf8AcD00k4QFInyOMHtrPecxS4P499ZyPKpz+JVZqM58bbfDxm3M6+U/776OmGuvbwaeRdzLl5H0EOZ8OA+9IQfaR7h4E3vg4z+vj96/kvoxJ5gD613XE3JZFJcfuYYEq98i/s91zA8526yW47FOvMhfAteCsg9SvOzMeMzdtBqIs3CjeRQgTUOXUXlkNen+WtbLr6132HK34533gv1uo/XpykpzCPIVxKwncr2axEZxPXjLwPgiynfcPdXK9m1rxQw/nv5aXUGpyb7jMFNtKwsPsxBjg7HU1T9jmpCiMOT5JAQQgghhBB+y3fmk1i2ERdWfsgIx22LME40oHooPbeEaF3AKWoJ77tHU2oKQ285cFlZQambs16eR5/cH3FaI7nhprsZ1aU5JpMCkwnVeijmm/7EM+oh3N0vwd3zckynPNSAJz06DO8Qx4+3DCE0JIQxOydQ2GoM/P4f2Jfe4Lm9RZnGJ02YHIoJtWM2KXJUDKoo45Ad2qYu380lb/7F9t/fB8C8cwHkbK7zfXKLXcTqXONFRFJDwz5EYnJbPKGJXBS9je9X7mL0c3+w48+vKXh9DPbC7YxssT851HSVQ7k6AiU9h4SoN0kOCSGEEEII4ffDyj30MKVRHNGREo+JnaX+XZ8a0JQ6PbeUC81zsOAlr/PlzPF0xbdl1gGJgo8XpqNL8xhjXoq99yUoq+PQiWwhWIbdif3M/2E7+3loM6LeMR1NkqOD+eCq/mAyMynzQjQK7/R7GjSn1hpV0vTJIbNJER9mZ48vGuUuAWfBAeeXpO+jucqldclK5kaegzZZ0Ever/N9Mvz9hoCAVw7tpzqdQefCeSyLfZhnzS/ScsbVRGYu5B+Wn+gZYVQSNWlyiHAszrxDEnBCiNqR5JAQQgghhBAYS3OmrdxDD0s6Ia36ALB2n/+fyw2oHErLKeYS8yzcSYMYMXgwv3u7Yy7ZC1nrjKndXt6bn8ZdzVZg8pWjeo1v6KMcc1rFhvDOhL6sKQ7lXfOFmDf/BBt/rvd8BWVuor37jBeh8QGKsn7iwx2keyKNFwctLVuxM5+b41djUpoHMoeyxD4Q34pPweOq0z0yCspo1sjJIfPYpyg+43WsupzR+k9e9pzDD96BnGtZQFBRGtpsh6CoRrl3TeLD7OTqcEzafUgCTghRO5IcEkIIIYQQAli0PQ97yU5CfMU4knvRISGUpVn+KoQGVA7lZGWQYsrC2uUM+rSMYn2wv4m0f2nZlOW7ySl2co6ehS+xFzTr1sAnOTb1ahnFuxP78UrZaLarJDxfT8K96N16VYLsLXQSp/KNF01YOQTQLNzOlrJw40Wl5FBpuYeNewsZ5Z6DN7EX1587mtcKB2N25pG1+Ns63WP5jnySTP5lZWGNkxzCZCa036XYbl2CvicN74h/85HnVIJ1Kaz8wug3FIBG4vURE2onD/97LEvLhKgXSQ4JIYQQQggB/LBqD32sO4wXiT3p3zqaRRle43UDKodKc/z9cyJbYjIp+vXozmbdgvJNv+Lzad6au40bYlcSWrARU79JDXuIY9ygtrG894/B3KDvZ4WnNdbpd+D56HzwlNdpnsxCF3GqAK8luMmbdjcLd7C+NMx4Ubi74vjqXQW0Yg/NSjdi7nEhl/RvybVX/YNdxKN/vo9Zf8yp1fxaa2as3UvP8FJ0SDxYbI3xGH8zWzAHRXDLqHbcMGE83qg2UF7UZEvKwFi+V2r3V4gV7GiyOIQ4lklySAghhBBCnPDcXh8/rc5gbGwW2mSBhK4MaB3D3vIgY0ADKod8+3YZn/gbBZ/RI5FZ3lQs6fP56KO3ycrO5hb3e3ib9YTUyxv4JMe+Xi2jePLqM7jCfT/vhV6LZdvMOu9glllgVA55Q5p2SRlAQoSDbc5QNOqAyqEVO/MZaVphvOhyNgAD28VjveILrCZInXkZL3z4OfmlVSTGtK6oqNqcVUxabintgwoDvo394ZhMipGdEjD3mQCACm+65BBAQVh745O9a5o0DiGOVZIcEkIIIYQQJ7x5W3LYV+qmlzUdHdcZLHb6t46mkGBjQD0rh5xuL46yDOOFPznUKzmSr4MvYYMviYu23c+3Ce8S5MrBPO5ZMJkD8DTHvp7JkTx5QSoP54xgVfhw1JynIG9bra/PLHQSRwHmJtpavbJm4Q48WPAEx0HR38mhlbvyGW7fjC+y9QE7jCW0603YjTNR9jCu33oTXz91LR//sY4Za/cya0MmruxteF/uj2/63QD8snYvAPE6BxVx5JJDFVIvQ5usEJF85O9diT0inmxTLHrv6iaNQ4hjlSSHhBBCCCHECe+HlXsId5iJKdqASuwJQEK4g8jQEJymoHpXDu3MK6W5ysVrskFwLGBUXIzp05FJ3vspD0mkQ8ECdO8JkNQ3UI9zXDg7tQU3jmjLP7Iuwo0Z7w931Lr/0N5CJwnmAszhTdtvCIzvIwCnIwFdUCk5lJ5Hb9ajWg065BprXFuibv2DknZn8Q+mMGrmGSz9dDIvf/Apha+egjl3E6bFb8HupfyyLpNeLSOxFGc0WjPqwwqNR109AwbffuTvXUl8mJ0NOgWdsbJJ4xDiWCXJISGEEEIIcUJzur38sjaTizuYMJXmoJqnVpxrGR1EsQqtd+VQWm4pLVQO7pBEMP39T+87Tu3Az/93HhHXTsMz6HZMp05u2EMcp+4a3ZEenTvyuOsizNtn41v8bq2uM3oO5Td5M2r4OzlUZItH+3sOZRU6CS7aRqivEJUyuOoLQ+OJHv8evgnTCWvWjvutn/GtfTIm7eVC98MUWWIo/e4uVu3K54wOYSjXkV1WdoAWfSAkpmnu7RcXZmelpyUqdzO4y5o0FiGORZIcEkIIIYQQJ7TZG7Mpdnk4p5l/l6PE1IpzydHB5PtC6l05lJ5bQqLKwxx54JIbs0kRGWyDyGQsox9usi3Aj3Ymk+L5S3rxV/TZzCMVfr4Xdi+r8bp9BQWE6ZIm38YeICkqiDCHhWX5wSh/z6HlO/MZYFpvDEg5tHKoMlPrwYTd8CvcsADv4H9iu2YGKakjebjsAoKzlnG2aT6jk/2N05sqOXQUiA+zs8abgtI+yFrX1OEIccyR5JAQQgghhDih/bQmgw7BJXRY8ww+WxgkdK04lxwVTI43CF/ZvnrNnZZbQpIpF2t0y0CFe8IJtVt4a8IA7udWsnUEns/HQ2neYa/xFGb6L276yiGH1cxT5/dgTVEIylVA3r48Pl24g4GmDXhDEyGqVe0mSuiK+dQHCWvRiacv7Mnl197DFkt7nra9SYt59xtjmmJZ2VEiLszBOp1ivJC+Q0LUmSSHhBBCCCHECS1jVxrvmx7BXLQHLv0cbMEV55Kjg8jXoXhK6pcc2plTRBz7oCkaBR9HWsYE8/ClQ7nWdSu6KBPPtzdU23+ooNSNqTTLeBHa9A2pAU7vnkj79h0BmPDCd8zfks2IoM2oVoNBqXrN2Sslhna3/oDqMxGVsdzYDa22iabjUL9WUew1xeM0haAzJDkkRF1JckgIIYQQQpywyj0+rix4g1hfNuryrzC1HnLA+eSoYAp0CLqey8pKcnZhxnfAblSifkZ2jGfUqNP5j/sSLFt+xrfo7SrHzd+aQxz5xoujYFnZfmcONRqOD4hx8suEZELLczDVsKSsRuGJWM58BtM/16OumXVCJyHjwx2clZrMGm8y7t3SlFqIupLkkBBCCCGEOGGl55bQTu0iJ34QqtWQQ84nRwdTQAhmV0Gd5y73+FCFu4wX4ZIcCoRbRrVjd4cJ/O7tiW/G/0Hmob1l/tiUTZK1yHhxFCwr288WZXwP/HtoJK1LVhgHq2tGXVdBUdCid2DmOoZdO6wNq70pkLkGfL6aL/D58Hw5Cf3HM40fnBBHOUkOCSGEEEKIE9bmzCKSVRa22FZVnk+McFBECBafEzyuOs29O7+MRHKNF1I5FBAmk+LFy3rzSbP72Od14H1jOK4Pzse7/DPQGq01f2zKpld0ubHMKiS2qUP+W5jRD8i3aQbemY/jC02EuI5NHNTxpUNCGDqhGzZfGa7sLVWO2bi3iKXp+1i9qwDfwjexrPsGvfS9apcpCnGisNQ0QCmVDHwINAN8wJta6xeUUl8A+/82iwTytdapVVyfBhQBXsCjte4bkMiFEEIIIYRooJ27dxOiXFibta3yvMVsgqBIcGPsWBZW+0qU9RmFNFf+HdBO4OU+geawmnlm0inc9ep/GZT/AxdkrsH+3fV4izPZ3vFq9hQ46RRfBq4YMFubOty/WR3ooGhM66bgDW0Bl39R735Donp9BwyH6c+wYN4sRp7f4YBzX8xdzZ6fn+M3Xx9KsTPD8SBWezimgp2wLw2iWzdN0EIcBWpTOeQB/qm17gwMBG5SSnXRWl+stU71J4S+Ab49zBwj/WMlMSSEEEIIIY4aBRlGdYEttvofCm2h0cYnzvw6zT1rQxYp1n1oRwTYw+oboqhCRJCVJ6+/kO+a3ULqvv+S1uw0zDMfYtfs9wBIshQeVUvK9vMlD8TZfCCW637HlNi9qcM5LnXvNYBSFUzpqu/JLHRWHM8tdpE78wXusH7DNPv9TAt6kFKfhXVDXjYGbJ/TRBELcXSoMTmktc7QWi/zf14ErAcqfvWhlFLARcBnjRWkEEIIIYQQjcGds934JLL6reaDw/1Lk+rQlNrn08zemEW3kCLpN9RIokNsfHrNAAa3T2B02qXsiOjHkHWTuTZiMQ5XTp2qvI4U86Wf4rh2BuoojO14oawOXD2uYDR/8cK3syuOP/3zOs7Wv1OSOBD3yY9ijmnN00G3cu28ULwhCehtfzRd0EIcBerUc0gp1QroBSysdHgokKm13lzNZRr4RSm1VCl17WHmvlYptUQptSQ7O7suYQkhhBBCiBOId/NMyN3a4Hk8Xh+WIn/D6MMkh8KjjOSQszi31nOv3l1ATnE5SeY86TfUiIJtFt6+si+np6YwNvM6Fns7cr/rOdi7EnUUVg7JMrIjI2rEzZiVJnnLxzz7y0Ze+X0Le5b9RAuVQ8iQ67EOvRX7TfM577LryCh0sszUHb39D+k7JE5otU4OKaVCMZaP3a61Lqx06lIOXzU0WGvdGzgdY0nasKoGaa3f1Fr31Vr3jYuLq21YQgghhBDiBGP67gaY/0KD59mRV0qizsJlDQdHRLXjomKN7dD35WbVeu5ZG7JQCiLKM1GSHGpUNouJ5y5K5aLBXbnSfS972l6E8nkgrFlThyaaSlQKno5ncIX1d96atYb/zdjIVUFz8QZFQ8exFcN6t4zirjEd+TKvDabSbHTWobvfCXGiqFVySCllxUgMfaK1/rbScQtwHvBFdddqrff4/8wCpgD9GxKwEEIIIYQ4wZWXgKuowdNsziomSWXjDUs+7Li4OKMCpTCv9tXtv2/MYkCSA5NznzSjPgJMJsUD4zoz7/4xNL/iTfQln8GA65s6LNGEbINvIUwXM3/QMpbf2JrhejGmnpeCxX7AuBuGt6V56hgAZv/0NR6vrynCFaLJ1Zgc8vcUegdYr7V+9qDTpwAbtNa7qrk2RCkVtv9zYDSwpmEhCyGEEEKIE5q7DNylDZ5mS1YxySq72m3s90tMMJJDpQVVLCvzuiFzHeTvAJ8P3GXsW/87HTO+48bQucaYiMMnn0RgKKVICHeAUqhOY6Vy6ESX3B93qxFEL3uZqHdPQvncqN5XHjJMKcVt559MtrU5nq1zGP3cH0xblYGWJWbiBFPjVvbAYGA8sFoptcJ/7H6t9XTgEg5aUqaUag68rbUeCyQAU4z8EhbgU631zwGKXQghhBBCnGi8HpT2ostLaGj3li2ZRVxtysYS3eqw4+IiQinRDlzFeZRunkvRzKfxuUowuYuJKd2GxecCwKUcmLWHKDz8zwr4e10T26HauYUQjUQprOO/wZW2EN/W37HaHVjiO1U51GRSxKaewSmL38bpeo2HPz2TtORMrmyWTlj/KyBZFr+I41+NySGt9Tyo+v+9WuuJVRzbA4z1f74N6NmwEIUQQgghhPDzlAEEJDmUlbkLB+UQlXLYcUopSkyhWLJWU/7xxSis7NQJOLWNDfoU1vpSCFEuOlszUBY7m2xdUfGdmXxGB5TZAtFtGhipEKJezBbsbQdD28E1DlWnPIQHxbglb3Om42fIBm+2wrv2M0znv4Xqek7jxytEE6pN5ZAQQgghhBBHB49RpUN5w5aVuTxeyrO3G/8aPsxOZfv57JH0da6jxBzOqjFfE53UgZahdjqbFOcC4UEW7BZzg2ISQjQhexiWM/4Hfa7Es3oKWTH9uP13N/cUPkbvryainS+g+kxo6iiFaDSSHBJCCCGEEMcOt1E5pMqLGzTNih35JPj8u4/VIjmUkNAMvWMbjks/YFj7fg26txDiKNasO5Zm3WkOvNrBxYQ3HNxf+CgDp/8Lc5vhENWqqSMUolHUeit7IYQQQgghmpzHafzZwIbUf27LJcnk332sFskhNeIeys//EHP7UQ26rxDi2BEbaue9a4fxYuhtlHlg5euTWLs7v6nDEqJRSOWQEEIIIUSAuTxe/tqWh8lVSMutn5B8yk2YQmOaOqzjw/7kUHlJg6b5c2suE0IK0KZolD2s5gtaD8Ne8yghxHEmPszBB7efy7KvNjFo05O88tbdtB7cGrs7H/Pox8Bia+oQhQgISQ4JIYQQQgSQ2+vjmg+X8temPbxvfZIU8zq25aXRZtK7TR3a8cFtJIeU1wU+L5jq3ufH6fayfEc+/4nJg5Caq4aEECc2h9XMoEvuofi1GdyU/SXM95/oPA5aD2vS2IQIFFlWJoQQQggRIFprHvxuDXM3ZTIt+VMGmdex1tSRlB1TIHNdU4d3fNhfOQT1rh5alr6Pcq+PZjoLVYslZUIIgclM6ISv+W/ck5xtedU4tmtJ08YkRABJckgIIYQQIkBen7ONzxbt5LPWP9E+ewbekyez8KTXKNYOin68/5DxTreXF2dupufDvzDi3x8y/8EhPPXADXT493T+9fXKJniCY0AAkkN/bs3hJst3hBRth4RuAQpMCHHcC41j+JgLWFkcSWFwS/RuSQ6J44ckh4QQQgghAuDHVXt48ucNPNFyEQMzPsHb52rMQ27nzIHdeNV7LmE7f4etswAodnn4+K90Tn5mDs/+uolLEvfyo+NBBprW8S/zp7wQ+iEzVu/G69NN/FRHIf9uZcbn9WhK7fPSY/mD3G35Am/XC2DI7QELTQhx/DupbQw9kyL4y9UavXMJaPl7WhwfpOeQEEIIIUQDLUnL484vV3Jds81cnP0innZjsIx9CpQiLszO7g7jydg2g6hfH+OptQl8sWQnJeUeLo7fxW0d/yRx53S8YYmYL/8Zz4rPOH3B8/TiL5zPx+Bo0Q3zRe+DUk39mEcHj+vvz+uxnX35n69zqnMG8xMnMPiCF+R9FULUiVKKqwa3Zt7XrRjtnQMFuyAyuanDEqLBpHJICCGEEKIBtueUcM2HSxgZtpt7ip/EG98dy0Xvgfnv38GdP6Atr7rH4di7lPULf2JM12bMH/AXTxbeQ7M9v+HucSmWa3+H+E5YRj9M5ikvssDXlVKfGfP6qeDMb7LnO+p4KlUOldexcqhoL3rmY/zh7Y7llAclMSSEqJd+raNZ7mtvvJClZeI4IckhIYQQQoh6yisp56r3FtGcHF7iCXRQNJYrvgRbyAHjhrWPI73leRSYo3ir9RyePclF81Wv4Ol6Iaa7N2E750UI+Xur+/jBV/If+x3MCL/QOFCcfSQf6+jmrtRzyF23nkOZX90JXjeLutzHgLaxAQ5MCHGiaB7hICuoLW5lk6bU4rghySEhhBBCiHooc7n54vVH+GfRU3xr/TcWrwvz+K8hrNkhY80mxYfXDSd85O2E7voD3+eX4wtLwnLms4ckksBYttAnJZKleVbjQIkkhyrUsyF1/rrfSdgxjS/s53PT+ac1QmBCiBOFUorOybFsMrVB71rc1OEIERCSHBJCCCGEqKMSl4cn33yPG4pe4mTHZnTLk1Djv4H4zoe9TvWdhM8egSrNwXz+G+AIr3Zsn5Qo1hXY/TfMCmT4x7YDkkO1X1a24pcPKdV2Blz5KEE2cyMEJoQ4kfRIimShqzVkrASvu6nDEaLBpCG1EEIIIUQdlLg8THxvEYMz/0JbFMF3LIGgyNpd7AiHc9/AW5aPJWXQYYf2SYnmDR1hvJBlZX87IDlUu4bUC7bmEJ23nJzIbnRMim+kwIQQJ5IeLSL4zteWSZ6fIHMNNO/V1CEJ0SBSOSSEEEIIUQdfLdnJ4rR9XJ6wA92sR+0TQ36mTqdj6XVpjeO6tQinxByBD5NUDlXmdqKV/5+wtdjK3u318Z+pS+liSqd5t+GNHJwQ4kTRIymCZfubUqfNb9pghAgASQ4JIYQQQtTB1uwSYh0+YvNXYWo9tNHuY7eY6ZoURYEpQnoOVeYpA0ek8XktlpW9N387ITmrseDD0mpg48YmhDhhxIc78IYns8veFt+675o6HCEaTJJDQgghhBB1kJZbwujwnSivC1o1XnIIoHfLSDK9YehiqRyq4HGBNQhtDa5xWVl2kYsXZ27hgoQ9xoGkfkcgQCHEiaJ7UgS/6IGYdi2Cgt1NHY4QDSLJISGEEEKIOkjLLWGodYOxtCnlpEa9V1JUMNm+cNyFmY16n2OKuwwsQWANrn5ZmdeNd/q9TPvmfZxuL2MjduCLaQ/B0Uc2ViHEca1Hiwg+LvL3Glr/Q9MGI0QDSXJICCGEEKKWyj0+du8ro1v5KnSznuCIaNT7RYfYyCECpHLobx4nWOxgC6l6K3ut8f14J+ZFrzFu+2Nc3S+G4OxlmJL7H/lYhRDHtR7JkWzTzSmO6Ihv7ZSmDkeIBpHkkBBCCCFELe3aV4pVl9O8eA2m1kMa/X4xITZydATmstxGv9cxw+OstKzswORQbrGLaa/9C9PyD5lpHkKsKuSfZS+iSnNBkkNCiABLTYrEbjHxh2UQaudCKMz4+2TWBnxfXVWr3mhCHA0kOSSEEEKI40aR080bc7aSU+xCr/sO9q4O6PzpuaX0Nm3GrN3QalhA565KVIiNXB2O2VNadZXMCUi7y8DiQNlC0ZWWlTmdTua8ciNnZL3JbNtwXoy8h10tz8a26UdjQJIkh4QQgRURbOW6YW14Zk8XFBrWf19xTv/5Cqa138K235swQiFqT5JDQgghhDgurNldwJkvzeO/P21g/pfPor68EuY8GdB7pOWW0FNtNV4cgUqUmP3LykCWlu3ncaGsDrAFg8toSO0ryWPnc6M4r+xr0lpfzIh/fcV3twwj6fz/oi1BaHsYxHVq4sCFEMej64a3pSi0DdvNrfEu/Qi0Bk95RaJIb5rRxBEKUTs1JoeUUslKqd+VUuuVUmuVUrf5j09WSu1WSq3wf4yt5vrTlFIblVJblFL3BvoBhBBCCHFiyysp578/ref8V+fhK3dyU8I6xu0wkkI6Ly2g90rPLaWdJQsdEg9BkQGduypR/mVlgGxnv19F5VBIReXQr1+8SHvXWmZ1eZRWE940ehIBRLSAcc+ih98HJvmdqBAi8ELsFv51WifecJ6MOWs17332CX/9+iXKmY8ObYbe/IuRMBLiKGepxRgP8E+t9TKlVBiwVCn1q//cc1rrp6u7UCllBl4BTgV2AYuVUt9rrdc1NHAhhBBCnNi01ry/II2nZ2xgou9b1linYHW7oQBW+NoQmdKDlKyZxj/KlQrIPdNySzjPmgXRrQMyX02sZhNlNv8OW5IcMnicYHGAUqjyEj78M43SbZtxW22MvODmQ4ar1MsIzFdfCCGqdl6vFsxecy752z6nxcYPyPRZKA+KwDbiXtSPt0PmGmjWvanDFOKwakwOaa0zgAz/50VKqfVAi1rO3x/YorXeBqCU+hw4G5DkkBBCCCHqrdzj499TVzN1yXbei/6IwaW/4e0wFk+LPihbKA/Na8G5+/5goqsIyvYFbAvz9NxSkvVeVMyYgMxXG76gWChDlpXt53GB1QHKTHlZMZO/X8vHMU4s5gSUVAcJIZqAyaR4ecIQ9K/XcOqCF3ApC9+XD2No81EkAGyaIckhcdSr0/9BlVKtgF7AQv+hm5VSq5RS7yqloqq4pAWws9LrXVSTWFJKXauUWqKUWpKdLb8ZE0IIIUTVcotdXPH2Qr5csouvUqYyuPQ3fCPux3zpp1iG34X5pOs5Y0AX5ueFGhfsSwvIfT1eH9l5+4jy5hyxyiEAFRpnfCKVQwZPGViCKPTZ8ZQV0aV5OP1j3RDarKkjE0Kc4FT/fwAKB+X84BvELd/vwdusJz7pOySOAbVODimlQoFvgNu11oXAa0BbIBWjsuiZqi6r4liVCy611m9qrftqrfvGxcXVNiwhhBBCnAA8Xh/lhTm4nunBSy88wcpd+bx5djN6ZP+I7ncNphH3HLB07PzeSWSoeONFgJJDu/PLaKH3Gi+i2wRkztoIDw2lSIVK5dB+Hhcek41pGwoIUi5eu6w3ppJMVFhCU0cmhDjRRSShu56HLzKFc865gEVpeSyy9EPtXgKleUc0FM/qbyF36xG9pzi21So5pJSyYiSGPtFafwugtc7UWnu11j7gLYwlZAfbBSRXep0E7GlYyEIIIYQ4kXz0ZxqdH/yZZ578N/aidG53v8nXV3bg1H2fAxo1+LZDrokJtZPStgsAOkDJobTcUlqp/cmhtgGZszZi9jelrq5yyOvBV5BxxOJpUlqDu4y5acWkFylMaJLDTajiLAiV5JAQoumZznkF0/VzObd3Chf0SeLJbS1R2ode9tERjcP83Y14fr7/7wNp8/F+eRX4fEc0DnHsqLHnkFJKAe8A67XWz1Y6nujvRwRwLrCmissXA+2VUq2B3cAlwGUNjloIIYQQx7/MdcydN5sHFqcwrF0UN2bPIc/chijnTiIW3wfb50CPSyAyucrLB3VtRU56ONY9m/dvBt8g6bkltFKZxosjWDkUFWIj2xdGq+KsKkuyvb88gHnhq7ia90d3ORdKc1A5m1AlOShXPphs6PBEzO1GYR543RGLu1F4y1Folu9x0iUl0fiVY9k+VFmeJIeEEEcHi71ix8RHzu7Kmel5/FHSl6GzHoXWQ6BFn7/H7l6Gb/4LmM57Cyy2wMXgcaE8ZZi3zjQqloKj8c76D+Yd86D0KQiVlTriULWpHBoMjAdGHbRt/VNKqdVKqVXASOAOAKVUc6XUdACttQe4GZgBrAe+1FqvbYwHEUIIIUQTKc0Dnzfg02Z8cy9DV9/HfclreWdwPhGuPUSf8SAMuR21eYaRKBhyR7XXj+oUz04dT1HGloDEk5ZTSjtzJjokDhzhAZmzNmJCbGTpCLwHLSt7Z952bn1zOr5Fb7MntBuFuRk4frsP24LnyN26jE1ZxSwvjGCnKxhT9nrMP/8L9lb1uzy/P1/B+1Q7vMs+rajQ8W36De/a79Drf4Sy/MZ90NrwOAEo8Vlo09y/bDBvu/GnLCsTQhxlgm0WXrmiD3e5ryeHSLxfTgRngXFSa3w/3YNp3VTI2RjYG7uKAVA+N79+8xZfzvjdSAwBlOYE9l7iuFGb3crmUXXvoOnVjN8DjK30enp1Y4UQQghxjHM70S/2whvXGculnx6wK1haTgmfLdrB7ad0IMhmrtO0Gdm5RGUuwKdMXJP/PGpOO3yhzTB1GofqcDq+Tb9A816o2HbVzpEYEcRGewuaFwXmH91Ld+zjHHs2RB25ZtQA0f5lZap4wwHH3523nRucH6G0h4tzryZDJdAlaB/lQfGEhIRiMSlKyj2s2V3I1X0i+XfJebDoLdRZL1R5n7LVP+AozUF9fwMZM/5HdPke7NpZcd6X0B3TdX9AU+4I5jbicWGjZeL+5NA2409pSC2EOAp1ahbOPeeexHVf38RXvkfxfnsd5ks+ha2zMO1aZAzK2x7Y3cxchRWfhm6ays6tlX4xUCLJIVG1GpNDQgghhBDVKtiJcuZj2fkn3rdOxnzF1xDTlp15pVz61l9kFDjplRzOmL1vo3peDPGdapxSa80XX37M7cpN7inPE7XgMdTelagR94HZCmYrpmt/B1VzksKR0IaYnXPJLy4lMjS43o+5JauIlTvzaRORiYo5pd7z1Ed0qI3tOgJzeYGxjbvFTk6xi/L8PVwcNBO6X8xP464kxGZGqQN/n6e15qkZG3lt9lZGJ4yk/+ovYfQj4DhooZ3XjSljGR94TmU7LbhYz2a+eTizVT+2lIVyfasMzsl4AVZ9AamXQsEu3H+9CUFRWKJT8GRtQu9eirXrmajeVzbem+EpAyAsNJTwMP8z7PNXDoXGN959hRCiAc7vk8SKnafy6OJtTN70ITNfuZEe7lXEhCZgKs78+++xQHEVAbDWl8IA83o663ScEW1wFG6TnS9FtSQ5JIQQQoj625cOwKpOd9Bh63vkfzie3wZ/xku/b6W03IvNbGLfmt9QG58FXzmMebzGKb9bsYf4jN8pt4cQM/BySGqPb/ZTmPpO+nuQqXaVSImtOmPZ5WPxytWcOqg/FGdCWN0rTL5eupsQUzmhrqwj2m8IjGVlufiXsZXkQEQLVu8u4BrLdMx4MI24m1B71f+kU0pxz2md8Pk0j84dzI/2n2DFZzDw+gPG7dywmGTtIq7LcCZcehNKKboAZ3q8vPDbZv45ZzMdHe1o/cvDOFoNxvvB2Vj2bUf5N6G1oNC2EHTGMlSPSwLbO6MS7XaigOax0WALMQ7u342nHl9XIYQ4Uh4Y14U7SiYydVsm5+R+BkDpac8TNOdhVF5gk0PlpQXYgN1tL6Hr9ieJVCXMaXElwwsnQ2luQO8ljh9NWBcshBBCiGPdpk1Gqfo1K9ryWOm5xBSs5Ysp31Lk9PDx1QPo1iKc5PRvAdAZK2ucr6DMzWM/rOE020osHU4xkgythmCa+H29KkOS2nQGYNnK5WT+9iI80xHfkg/qNIfXp5myfBfntyo3DsQc2eRQVLB/tzKAEqPv0OpdBQwzrcKdMhxiat457R9D27BetWV3SFd8i94yegpVsnLBLwAMHH76AdVHdouZf53WiS+vH8KrlitxlGbgfHEA7vzd3GT/D6muNxnr+g+3tpxK+XnvYSrNgQ0/BOjJD5WRsw+AlgnRYPNXguVtQ6MgRBqsCiGOXjaLiVcu78M5939CfovhrPe1ZJppOES1Rgc4OVSQn2d80rwX3sReZKpYPncOMI7JsjJRDakcEkIIIUS95JeW89fS5bTCyld3nYvZexred77how4r4fxbCLFbOKm5mX6Z89EmE+xdZSQlVFWtDA3P/7aJ5s5NRNvyoOPpDY7RHG30ByrdvQ4yv8ONGfOPt/Hi3J3sTDqTlJhgWsaE0CommNhQO0qBw2ImKuTvypf5W3LILHRxdm+XsTvWka4cCrWxV/t7ORXsgua9WL1zH9eZMrEnnl2rOeLC7AzvEMfbu07moZIXYctv0P5UY8pSN3rnIvJtscQ0r/rZ+qRE0e6OG1n18nQ6lSzhkfAHMSUO5Mq4UHw+zauzt7CzJIyvwltiXvwupm7nB+TZD7Zxdw7NgbaJMWD1Vw7lbYfgGGPJoRBCHO3MViKunsq5/5tJ0upsLoxujd61JKC3KCrIIw4Ij4zGdNEHvD9tNX9uK0YHRaGkIbWohiSHhBBCCFEvD363ltPcGfiikmkZGwqEontdTvDit1DlOWBvxml6HnblJrfjZcRs+BTy0yGqVZXzbc4s4sM/03kzeSs6U6H8yYsGCW+ONln5v8hfsJXk80PX5+m4/UNuKniGooLXsepyCghhl47jLx3HLh1LsQ6il30P7a05bE8YzTvOkUQEWekZ7C/FP8LJoWCbhT2WFsaLnE0A7N29DTvltaoa2u/cXi24c0Nf/hXdHPucpzC1OwWU4oslOziNTaikfodN3EUEW+lx+xQoyeKxg76GPZMjueWzZfwYP4Zz09+C7E0Q16HOz1qTrXtyGAk0j436e1lZeRE6smWVu6cIIcTRSJlMjE1N5vU52ygd1pKggqngdQcsyV1alA9AVFQMKiqFdp3N5K9ZiSssGsfRVjlUnIWe+yzqlIfAGtTU0ZzQZFmZEEIIIeps4bZcvl+5h94RhdjjWlUcV/2vMba1X/IeAB32fMc6Xwp/Rfg3Ms1YVeV85R4fD32/lg62HIaXzICkfhAS2/BATWaIbImtJANfi76cecFEOtz+I3rQ7QT3vghT36uwtR9Fq7hwTgnZxs2WH7jf+hkD1Rp0eQmn7niO/+y9lvcj30Etex8dHHtoM+cjwBESSb4lFp2zicxCJ2ElRq8nYqrfre1gp3ZJwGF3MD38YmOHnLS5ZBY6+Wr2UlqasonoMLjmSWzBVSb3Tu2SwLm9kng2ux/aZEUvebfWcdXFjkwjQWeyBf29rAxQ0m9ICHGMObNnc7w+zYriSJT2Qv6OgM1dVmwswY2NiQFgQBuj+jRfhaOPtuTQny+jFr4G2+c2dSQnPKkcEkIIIUSd/bx2LzaLiXhvJipy4N8nYtqi250CfzyFb/G72EuzmG65mqz8eMYqM2rvKuhy1gFzrd1TwF1frcK0dyXfhD2LyeNDnfZE4IKNTIG8rZiG3W1UxthCsIx+qOL0Ab+n9HqgvJiooEiitMa3aQYtfnuMls7V+IJiUL2uaJIKlagQK7tKWhKetYnVuwporfYaJ6JrXznksJo5o0cij67szdmhCajZT3K7+wE6uTeAGUjq36AYR3SM47NFoeS0Hk3sys9h9KMBXepVUOYmp6AQrIDF8feyMkCFJgTsPkIIcSR0TAijfXwoM/YEMwiMHcvqUA16OOUlhXi0iahw45cZSVHBJEUFkeEOIaGpl5XtXQ2WIN5cp1ixPZOX935sVKxkrIQOo5s2thOcJIeEEEIIUSdaa2auz+Lk1kGYduZBVMoB502nP4ln6cf4SrLQPi87i85i5a5SdGwH2LOyIrmSVejk5d+38OnCHYwJWs/zwU9jdkRjGv8txHUMWLyqw2i8JgvmDmNqHmy2QFCk/0KFqeNp2DueFrBY6is6xE5aSXO65s5m1a582qgMtCUIFZZYp3kuH5DCN8t28UzxGO4p/ZBe7ne5qFUZeq8NldizQTEObheL1az4wzqU853TIH0+tBnRoDkr25Fbil37m4JbHGCxoU1WlM8NYZIcEkIcW5RSnNWzOR//uoOHHRj90wLEV1ZAqQom3Pz3QqEBrWPYtj6IVJpwt7J9aeh3xlCCndeK/sNQ0xpMtlzj7/K9NW9aURdZBWX8MHseQ/Uy2uTMwhTWDNPFdduQ4kQjySEhhBBC1MnW7GJ25JXyr1422AlEtjxwQEzbAypzuszZyncbNuBO6YY5/Q+mLNnJ/C05/Lx2Lx6v5rF2G7h413/RMe0xjf8GwpsHNuCBN2AeeENg5zzCYkJsbPImMs5dzM70rQxy5KCj26BMdesQ0D0pgl/uGM7TP4azcts8/mX9AnaDr0U/lNXRoBhD7Rb6pkTzQZaF8yxBsO4HVACTQznFLuzKbbyw+GO1hYAzH0JlWZkQ4tgzumsznv01Eo/JjmVfWsDm1a4inKZgwisd69YinD2rQqA0D3w+qOP/PxqixOXh6Z/Xc8n6m2jp8WHzFfB+/BeEenJJL4knvGUfIjNWBaQyd3dWDvs+uZqW+Yu4WpUC4LFHYtr1l/HswdEBuMvxSZJDQgghhKiT39Yb26mfFF1iHIhsddjxvVpGAfD2lnBuKs/kqa//wBccx51t93Cp/omw9F/xtRyE6dLP/q7aEQeIDrGxxpUAJijLWE9rSyYqJrVec7WODeGViUPYkvUHblM2bJ+DtUWvgMQ5omMc//0pl7KuI3Bs+BE19n8B+wEku9iFA3/l0P6mpdZgf3IoPiD3EEKII6lDQijNI0PI9Daj+b7tAVu2rMqLcFtCDjgWF2Znhw4z+hs5849YkqTQ6eaq9xbTa/cndLSs5Jmg2+gb52b4jlcBeMV6JbY9mmvK06Esv97/Digt9zD5+7UEr3iPyZbZLIoaS1znodyxMJS2lhKecd0LO/6ETmcE7uGOM9KQWgghhBC1V5RJzorpdEkMJ8bt73tz0LKyg3VvEUFCuJ00m9FL4dszLSxs+y7Xpt1JSNYyfEPvwjR+iiSGDiM6xMaacmMJWaJrO3HuPagG9qZoFx+GNbYN1n5XQfPUAEQJIzoaSZqVoUMxFe+FPcsCMi9AbnH538mhypVDANKQWghxDFJKcXLneDaWx+LLDdyyMqunBK819IBjcaF2crW/lqgkO2D3OpzMQicT35rH0N3vcL/1c3ztx/DPfz3M8AmP4mvRF22203XsDcwr9lcM711d73t9vmgn3yxJ59bgn3El9KH/bZ/SesyN3HHJ6fyY2wyPshrJIVEtSQ4JIYQQotZcP/6L+/Me4LzWHshPR1uDITjmsNcE2cz8dd/J/O/mKwBImn0H5s0/4zv5YUx3rsN08gPQwCVNx7voEBtZRFKkg7gwchMm7anTTmVHSoeEUBIjHHya1xltssD6740T5SUHDizLhzouocgpdhFq9hgv/MkhvT85JA2phRDHqFGd4tnujUfvSwOtGzxfabkHh68EbQ874HhsmJ28/QvNGnnHMs/Sj8l+egDpz4zifzk3crvla3SXszGd94axMYTZgmn8t6hrZzOwe0c2mVobF+6tekfT2liwNZcrI1YQXZ6BfcSdxn2A4R3iuHxwR5Z721C2ZV4gHu+4JckhIYQQQtRo+uoMJn8yE/PGHzApzTg9G/alG/2GVM2F8EopcETgi2oD3nL0eW9jGnq7JIVqKTrEBih2mFrQ2bncfzAwu9oEklKKsd0T+WFzGUtVd4qXfIHrg/PR/2mBZ/o9xg8+xVl43xiB77UhUFz7317nFLuIsvnQZlvFUjVl9W9nL8khIcQxamCbGPaYmmHxlEJxVoPnyyp0EUYZJkf4AcfjwuzkaX/CqBF3LMte9iOmH24hr7CYECs0i4+HSz7FfOG7EBT190BHBCR0wWE10zK5Fbkq2tixrB48Xh8Lt+XwD/U9vpj20HHsAedvHtWO5aoztqxVh/6yQlSQnkNCVEVr2L0UWvSp1Q89QghxPNNa89iP67jc+RkW5WWHtTVJW782fitZw5Kyg6nz3wZlwhSgHjcnivbxoYTYzESndEOlbTEOHoWVQwD3nNaJzonhLJg1hL4lL5GXXo675UhCF72O1+uGXYtQxRkonwffrMcwnfVCrebNKXYRYfWAr1JC0R6KtoWg7KHVXyiEEEcxh9VMWGJ7yASduxnVwN0XMwudtFJl6KADk0NhdguF5kjjRSNVDv0yezaDfv8HG0lmycmfcfnQLphMNf8sNbBNDCt3pTBs98p6JSjW7imkq3s1LdRmGP3SIb3uokNsRHQchnnTVPasnUvzXk2/C+nRSCqHhKjKlpnw9smw5bemjkQIIZpcWm4pWQXFXGWfja/tybQ8+0FMhbtQ2etRkXVMDiX1QUliqM7axIWyavIYEtv2ADAScyGxTRxV1WwWExf0SeKWOycze8gnjPK+zEnp1/Fd0DmYl74DmevwXvABuu8k1PIPIXNdrebNKSon3OL9u98QoELi0DU0RBdCiKNdq679cWkr3k8uwTvzP+AqqvdcmUUuQinDHhp5wHGlFOb9/98oDex29j6vjykfPk//3y+j3BxE2FVfM35411olhsBIDq3RKZjyNoO7rM73X7A1l5Gm5UZlabcLqhxz8uiz8GnFqvk//10IIFVEB5DKISGq4Fv5uZE53bMC2p8agAl9uL+9Dl98V+xDbgGTueFzCiHEETJvSw5jTEsILs+GAddBmxFoRxTKuQ/qmBwS9Wc2KYjtAICOamss1TuKKbOFEaeM4/tepTz9y0a+LrmB7PxmzMsLY99vobx49q0kr/oS34z7MY+fUmOlbk6xi9BwD+hKlUOnPgKu4kZ+EiGEaFyDenXnohmP8mjYj/SY+yS6cCfq3NfqNVd2QQkhyoX5oOQQQGR4KCU5IYQEuHJo4QuXcm7hz6QFdaH5pA+Iju9Qp+t7tYzkE9UGk/YavzBI6lOn6xdszeEB20Zo0RdswVWOiY2NIyO4HVFZf/L15PO4QM2iUIUzP/pcchJOIiIkBEdIJGXBiWB1kKSyae7bS3irXoREJ9YpnmOVJIeEOFh5KWrjNAD03tWB2VIyez3WNV8C4F43Fct5r6HiOwdiZiGEaHQLtuRwlWMOvvAUTO1OMRLcPS6CRW/UeVmZaKDYjgCo2KNzSVlVWsYE8+Kl+6vFBtJidQb3frua8z/YyNyhdxL0+4PGDjWJPaqdw+P1kVdaTkikF1Sl5FBILKajtIJKCCFqKz7MQd+ThnPO/JYsS00hYu23cPqTcFDfoNrYty8PAHtIxCHn4kLt5OeGExLAnkMF+XmcVPgzS6LG0ufmj1DmuqcYHFYzKrEHZAE7/6pTcqjc42ND2k7ambehWlddNbRfXNeRJC55kwFs4PeI8wgt283puR9A7gcHjHNpC3ZlbIDg04rVtGFHm4s5Y8I9dX62Y4ksKztW5O/EN+dpKC9t6kiOa2k5Jcyb/jHKXYoOS0Rnrg3MxOkLAHCf/DCm/DR4fRjuOc+A1xOY+YUQopF4fZrlW/fQW6/D1OWsispHNeA6dNIASOrfxBGeYKJbG1VbAdp6vimc3j2Rj68eQG6Ji9fy+qBRsOnnw16TV1qO1hBsKj9gWZkQQhwvbh7ZjhC7hVf2DUB5ymDd1HrNU1SwDwBVRWIpLsxGji8MHcDKoZxso4m2tdXAeiWG9mvbvgtLfe3xzn8Z3M5aX7diZz49vesw4YPWQw871tL9XHzhLeCiDxl5x3v0u/8XuGUZevxUis7/lJzRL7Nv4L2UpP6DLQP+w7yT3mZx6+uJCHHQxrav3s92rJDKoaOJzwt52yFrHZ69a1EWO+Z2I9H70tHf34bJlQ/hzaDXFU0d6fHDVQQlOWivmyyiufTtlTxc+jmlwXEE9xoPf/zPSMhVU55YW/kb/0BZYrlxwwCcpue52/omA39/BPfGn7BOmAIHbTUphBBHi3V7CunoWo3F5oY2I/8+EdMW9Y9fmi6wE5XZCrcuA3vdf5t8NOmeFMEl/Vry6uKdXJ/UG8eG6ZiG/6va8bnF5QAE4QZL0JEKUwghjpioEBs3jGjLUz+7uSOuDY7ln2DqfWWd5ykp9Ccxqvj5Ii7UTpbXSA4FamFyXm4mbYHQyIZVcQ5sG8vTv1/EZ8WP8/07j5Lf8xousc3HnLEM82n/AYu9yut+35jFSaZ1aLMDldTv8DdJGYTpzoP63MW0RcW0JQyo/I5FA0aN7oXGAa3r9VzHEkkONYWSXNizHF2ai7dgN77M9ajs9VhyN6G8LgDMKBQaZj2MAjwJPVFFVtj8G0qSQw3nLMA15zmsi1/D5HGigBBCuFifyQjzSj53jmZcRCei0ZC93ti1rB4KnW6u/WAxz+2ZxzLdkZJyH4nNk7l79z/pXd6TZ/a8TuFHVxB+1TfQgEy7EEI0lvlbcxhiWo022VAtT2rqcASggqObOoSAuGt0B35ctYcfXT24qOA9KMyA8Kr7OuQUG/8+slGOsoYcyTCFEOKImTS4NR/9mc7nnqFM2vkB5G6FmLZ1msNZkm98UkVyKDbMTq4OQ5fsCkC0hqJ8owopPCquQfP0ahmJK2kwi7N7MGTvh3y4aw82y7cAOHPTcVz+KVhsf19QksvqLBdvz93GrJBN0Lx/tQmkgDjK+/wFgvw02tj2LMez6hssHcdAqyGwdSa+r6/B5MxDYXwB8i1xbFUtWekZzVp3CzbqJLboFoRRxqmO9Zg8JeQGX8QrzT4yeuF4PZJIaADP6in4frgde3k+0xnMzPLueDFxjmUBt5s+B+AH32DWLDXzFEDm2nonh37fkMWutE0k2vMYdeo5nDFkMAA+n+aPzd3535de7tv1Bhmf3ULi5a+eEH/pCCGOLfO35PCwbS20HNjgKkohKosJtXP7KR14e9p2LrJjLC3re1WVYysnh7BIjyEhxPHJYTXz4LguTP5kDxMdH2Fa+RmM+netr9daU15SYDSPqaLCNC7UznbCMZXmGpUwAfjZo8SfHIqMTmjQPHaLmW9vHAy7noO3T+Z2y7fMDxrJjMKWPLL9A5Y/PY5fE/5Bpj2FK9U0um95g3BfDINC/kly+VZofWmDn+VEV2OGQSmVDHwINAN8wJta6xeUUv8DzgTKga3AVVrr/CquTwOKAC/g0Vr3DVj0R7O9a/DMfAzL5p+MN/mvlygI70BY4WZ2mFOY7L2JdE8kOToCbQ+nU7MwujQPp0+zcEYFWQFIjHTQM+kyPliQxsc/rmN6z66Mc34Ce5ZBsvR4qDNXMXlT7iZ6w6es8LXhEX0vLbsOpG1cKACO1nfhcS9FZ63jdMby6LS1/Cc0BMveNfW+5Ya9RQw0bwQgqN3giuMmk2JEx3ja3/Iwn7+azSVbPmX9Y0uZ3eo2PM37Ex5kJTzIQoQN2od7SI4KBmuQLD8TQhxRRU4329O20cacDm0nNnU44jh0Ud8knvq5JbnWRKI2/oSpuuRQkbGszOpzNe5vhoUQoomd1q0ZX3bsyLy0Hgz+6w3M3S6A+E4HjNFrp6ISukJs+wOOF7s8WDwlYKPayqElOgylPeDMh6CoBsfrKsoFwBra8LkASOqL76RbwWxl8Kh/k5BTys8/xnLqjufolb6QcizY8PC7tyf9TJt413u/cV0N/YZEzWpTfuIB/qm1XqaUCgOWKqV+BX4F7tNae5RSTwL3AdW17x6ptQ7sfnlHuc1LfqHF1rn8Fnc1s0JOJ2LbNC7Pn84MRvB17C10TWnGucmRpCZHkhwVjMlUfdb2qsGtWJdRyP8tLeaMIBNqy2+SHKoLTzklf76Nb87/iHTv403ORo28n48GGU3fDjQaOo7mYpeHx3/aQKajDYmZa+rduX3j3iIuCN6KVuGo+C6HnG8RGcRpt73O9K87MzD9NW7YeiM5W8LJ0NEEUU6KysSqvABokwV1y1KIalXPaIQQom6+WLyTPt5VYAbajqxxvBB1FeawMrprIjM2pnLp9t+r7fOXU+zCZjFh8rqMX5YIIcRxSinFw2d1Y+Jzk/jWO5nwj87D9I9fIaKFMaBgN3x9FbrL2agL3z/g2sxCF6GqzHhRTc+hPO2vKCrJDUhyyFPi73HkiGzwXPuZxjxa8Xm7+FDaTXoQiq6DrTMxp//FltjhzMruiArfzbBF16HNFlTz3gG7/4mqxuSQ1joDyPB/XqSUWg+00FpX7kL5F3D4feNOMEujz+JGSzuKC0OwlCgG95zEju7/x9ltornIYq7TXEopJp/VlR9X7WFnUBeSNv+GaeT9jRT5Ma40D/enl+Ex2SEiGVWwA/PuRYR4y/jL15m5KY8y/oILaBZx+J1OQuwWOieGsb4smeaZC+pddrlxbxG92IBOHoAyVf11jwyxM3bCv8B1I56lHxKydx1t9u3CraysN53GV5t9TOxup+2GNyBrvSSHhBBHhNeneX9BGo+Fb0KraFSznk0dkjhOnderBW+vTuUyfsLz62Qsox8+JAGUXewiLtQOHqfsViaEOO61jAnm/JMHc9kvd/Gdehz98QWYr51l/N244lOU9qHT5h/yM8qOvBLCqD45FBtmJw9/cqg0h/0tlxtCl+3DiwlzY69wCEuA1Mswp15GO8BIH3WDXnOMZ6ncj0jUS50a1yilWgG9gIUHnZoEfFHNZRr4RSmlgTe01m9WM/e1wLUALVu2rEtYR6VLBrXjkkEN/49tv1C7hZM7JTBta1eu3/OlkekNiQnY/MeNLTOx7voTHd0JtXclGb5IfncNYW3YYM45/wrublf7Rml9U6JZsKQZp5jyoXDP39n6Wip0uinNzyTRkQ4pE2u+wB6KZdCNB/xHGezxMfXRX7Fg5yHegPwddYpBCCHq69d1mezeV8KAyFXQZjiY6ltDKcThDW0fyz1BqSwIGs2gxW/g2fgTlgvfOaBKOqe4nNhQGxRLckgIcWK4Zmgbvl3WlfvK7+Dp7MfQf76KGnIHvmUfosw2VEkW5G45YGnZ1qwSQvcnh2yhh8wZYjOTa443XuRtN/oJNpDJVYDTHEZIU/VOjUoxPkSD1fpfekqpUOAb4HatdWGl4/+HsfTsk2ouHay17g2cDtyklBpW1SCt9Zta675a675xcQ3rdH68OrNnIj+VdTN2Mdss2wdXRW+fg88ewaud3qdr6WucXv4E5aOf4vG7bmNQHRJDAL1ToljpTjZeZK6tcyybM4voY9psvKjnX7w2i4mRneL5blM52hIkySEhxBHz7vztnBu2kSBnFqrTuKYORxzHLGYTZ6QmM3HfJIounoJC451yvbEBh19usYuYUDu4nWCV5JAQ4vhns5h47JzufF3QhQ0Rw/DNfYaiJZ9hKtiBGvpPY1DavAOu2ZZTTJytHG0NgSpWLSilKApNwaUcRh/bBior9xLkLcJtPbT5tTj21Co5pJSyYiSGPtFaf1vp+ARgHHC51lpXda3Weo//zyxgCiDNcuppRMd4ttvas9eWgu/n+yBnc1OHdNRxbp7DPHcnnp+1jdO6NmPmP0dwzbA2WM11/41335QoNmojOaTr8Zfnhr1F9DJtRpss0LxXna/fb0zXZuSVuikLbgH56fWeRwghauuvbbks2p7H7eG/o0MSoPNZTR2SOM6d3zuJcq+PpzfFYz79Ccx5W2H1lxXnc4pdxIVYUF4XWKTnkBDixHBS2xjO69WCG7LOxlfuxD7tFlzWcBh8OzokAZ0+/4DxW7NKaOZwH3YTm5iwYLZZ2+HbvbTB8e0tdBJBCT57RIPnEk2vxp+YlVIKeAdYr7V+ttLx0zAaUJ+ltS6t5toQfxNrlFIhwGig/ls/neAcVjOndklkUvk/0cqE96PzoCizqcM6Kmit+WzGPIKKd7DM3I3PrhnIi5f2qrG30OE0jwwiPCKazY7u+JZ/Cj5vna7fuLeIPuZt6PiuDWqeObxjHDaLid3EofdJ5ZA4QtxOmPsMOAuaOhJxhBWUufnnlysZFJlPy9x5qH6TZB2/aHTdWkRw9ZDWfPBnOu/ldsGb0APv7CfB68bnKiWmZAsJIf4lC7JbmRDiBPKf87pz+8Wns731pdiUl2/cg9lXboJWg43KoUo1GluzjcqhwyWHYkPtrKMdau8a8JQ3KLaMgjIiVAkqOLJB84ijQ23KKQYD44FRSqkV/o+xwMtAGPCr/9jrAEqp5kqp6f5rE4B5SqmVwCJgmtb658A/xonjzNTmrHPGMqXz86iSbPTz3XG/MYryTy7D82JffI8m4HmhD+5PLz+hKou+XLKTZX98B8DV4ydyUtvA9GPq0yqadz1jMBekw6a6fetuzMinh2krpqQ+DYoh1G5hSLtY1pREQIEkh0Tj+uivdMa/sxD3sk9g5iOw5bemDkkcQVpr7p+ymsxCJy+0XYI2WaFP1VuLCxFo94/tzKldEnh02nrmJ1+LOT8N7zfX4n2+B9Ot9zAk9xtjoOxWJoQ4gTisZs5ObUGHix8jv/35vFF+Ok/+vAHVajCqKAP2bQcgv7Sc3JJyos3OwyaH4sLsLHa3Mioxs9Y1KLbMQifhlGANiW7QPOLoUGNySGs9T2uttNY9tNap/o/pWut2WuvkSseu94/fo7Ue6/98m9a6p/+jq9b68cZ+oOPdkHaxdE4M564FZi50/ptpQePYXeihbPdqCkNaUZ46EV9sR8xps/FNv6epwz1iflyVwSlBm/AFxxKW3D1g8/ZNieLL4p6Uh7bAu+DVWl+ntca9dyPBugxa9G1wHKO7JLDBGYUq2weuogbPJ8TBtNY8/9smHpi6hrmbs3EveM04UZrXtIGJI8Prxufx8MLMzUxblcE9IxOJ3fIVdDnH2B1EiCPAbFK8cEkqfVKiuHJeFBvMHTGv+5ay8DbM93al/9YXjYFSOSSEOBEFRRF5+bucNqQ/ny/eyRqr/2cef9+hrdklAISpwyeHYkPt/On0N3BuYN+hjAInEaoEe5gkh44HddqtTDQ9q9nEtFuGsCR9H9NWpfBaek82ZxZT7vVBHgSnm3n+4lRGJ38Esx6DzHWQ0KWpw25UxS4PC7fl8nLwWmg1tF5bzlenT0oUXsysaXERvTc+BxmrILFHjddlFblo694AViCp4cmh7kkRzNX+htr5O4+/r2lJDr7pd2M69RGITG7qaE4Y23NKeOzHdezcV0qH8nV4CzIY3eUsijfMJLjAX3lYtq9pgxSNz+fF9e4ZFO7dzl9l1zKhaw8mbboJyktRg25q6ujECSbYZuGLa0/i+5V7uGfGv1Blu4kNHsx8dzp/xr1AZN5K6TkkhPh/9u47vsrqfuD45zx3Zu9AyGDvvZWl4sCN4h4ozlpnf7auWlvbatVqtc5aR8WNA8RdZxEBZe9NICEBQvbOTe44vz+emxgggSTckJvk+3698iLP85znPOe5JyTP/d7vOadTu+OUvnyydi8PLHYzLzQeMhahRl1Fel45ACG6EuXo1uj5CREOMnUiXkc0xp5VqDHXtrgt+4vNYWXWcFlFuyOQ4FA7ZBiKcT1jGdfTjNC6vT525VeweV8p/1m0i5vfXsWLM87iZOs/0D89h3Fe0zNe2qNF2/NI9u0lyp0HvRpcDK/FBnSNICUmhFlrB7LM6cDz2gXYHU6w2vENuwzn2Ksh/NBV0LbklDFS7cBti8AW17eBmpunZ3wYe3S8uVG8u8MFh3zf/gVj4zzoOgRqV18QAVfmcrNgax7hheuJ3TKH3+2ZQo61G6f2sPPn3X8jwl6Kr0cUi3Z9Q5kRTbhRg5LMoQ5Na83auY8zYs9SlI5ijv0hfHuiwedFXfnhUU2mL0RLGYbivJHJTBt8Pn+Yv4G5q7IBJwXT3yJi7ZNYekxq6yYKIUSbCbVbuf3kvtw3bz25fceRsOM7lKeG9Lxy7BYDu6ccHI2vHhYf7gAUFfHDCN+ziqP5WL2ouBArPnBGH0UtIlg0fwknEXRsFoN+XSKYPiKZt64fz/DUaH41L4O9PWeg1n/Q4Set/nZzLtc4vjc3ep4Q0LqtFoPPbpvEneeM49WQWayq6sL35d3Z743C+cNf0U8OxPXGRdSsfg9qfpmXfW1WMSOMdHTSSDCO/r9ZqN1KTUSKudFBlrPXWvPUN9u4/tFXUavfAMCX/r82blXHtTOvnFnPfo7vw+s46YeLGb5/HrNDnuK7W0fzj7iPCdcV+HqfjPH9X5iilzPfOA1C46BKgkMdldvr43evfEbfDU+y0j6G4huW4xtzPTqiG8Z1X0HvqW3dRNHJhdgtPHHRMB6ZMZRTBnYhuVsylnP/KRmmQohO78LRKaTFhvJC8TiMynzY9iXpuRX0iA+FmrLDDitLjTWzL1e4e6LythzwHqZO1jJ8z46BgvTDtqOipMD8JiS6pbcigogEhzqYCKeN168dR1KUk78XTwWvG730323drFbj82kSNs3mKj7HM+oaiOsd8GtEh9qZNbEnN9/9GHrmR7za5fdMzv0t5+on+TH2AshZh/3jG/H+YwCuT+8mJ2MLby7cxAAjC3v3cQFrR0xCN6qxd4jl7Ks9Xu58fy1Pf7eNG6tepUiHkdH9QtTun6Gmoq2b1+Es2p7PNc9/wd8r7uds20oKR91Gwdmv0c2TRcLHV8DK2TDuRowrPsA34kpclnCeK5uC1xkjcw51YP9akM5Zu5/AZjEYedN/6JPSBePsf2C55SfoMritmycEAEopLhuXxitXj8Fps7R1c4QQIijYLAa3n9yXN/P6UBnSFd/K19mZX07v+DBzftLDBIcGJUXyqym9eCc7HqW96H1rDyxQth/fnCsxCrZD+veHbYerzB8cksyhDkGCQx1QuMPK5ePT+DgrhLLeZ8NPz0HetrZuVpN583eiKwqaVHbXdy9zl+81srpMxXr2P1q1XUopTuiXwAc3TWD+LRPpPWg01+2bzsDCJ3go4QlyEibiWP0qsbMn8Uf9bwx8AZlvqFbPhHBzOfsOkDn0/X/+wG83XcCayN8xTm3ko6ir+cP2viifGzIWH7mCvG1QVdzq7ewIluzI53evf8drxkP0tORjmTmX2HMfIm7MDDjlz6isn9FhiaiT7gPDgnHe86y4aCn7iaVMRaJlzqEOaePeEj747memWtZgP+G3GLHd27pJQgghhGiG80Z0o0dCBO97TkClf4+7YDcD4qwo7TtscEgpxb1nDGDAaHPExYYPH6Zy58/gdUNVMb4PZqGqS9GOCNi7utF63F4fvkr/c6JkDnUIEhzqoC4anYrNong57FdoWwje+TeDz9vWzToyrVGzz8D7wkR8uVsbL+cqpfr96+m9+C6W6YFEXv46GMfuE8URqdE8dckIltx7MneeOoBPS3oycceVXBryb77yjuYcwx/gCMBKZbV6xYez2xuPpyAjYHW2Ba01afu+JsSqCOk9Ac+EO5l564P4Usbj0jZKN33d4HkF5dV8uDKbH+a/jO/543D9Yxjr5/6dpTtyyC1zobU+xncS/FZkFHLd6yt4LOR1eqgcjCveg56T646rCbfhO/nPGBfPBmdU3f6haebqVHneMBlW1gHVeHz87oN1nBriX752wJlt2yAhhBBCNJvVYvDYBcOYXTkRDcxQC+gb7X8ePkxwCMwA0W9nTGFF/Pn0L11C6BvT4K/x8Fh3jN1LUOc+A6nH49vT+GpmuWXVROLP+JfMoQ5BJqTuoBIiHJw2uCtvrM/ntnMfw/7xr/D99ALGxNvMAuV5eN6fhXXCLcH1xqA4E6M8B4XC95/TcV/2PrbuY+sOe3M2UbPiTawb3sPmKuJpzwyyht7CE1GNT7rWmhIiHNx2cl9uPKEXH6zI5l8L0nk37c9Mm1KOKsnE1sBk1S3VMyGMbB0PJUe35GRbyy6sJNW3h70p5xJ3yUt1+/9+2XhWPj2I1PVfkXP8n9i1/Euidn9DeE0Brho3c0sH4NaKR60vs1r3pqrazqT1D+Na93f26jh22lMYderl2AefA+GJbXiHwWFtVjGzXlvOgMhqplQtRY2/CXqdeGAhpTAm/+aQc6NCbeYk6NVO+tZIcKijee777eYCBn0z0YVdUIkda4J7IYQQorMY2yOWX00/iUWfDuFK6zfoDLt54DATUtdSSjHm1tl8/NMGFn3+Fl11HlU42GtL5S+9phNfsAPSvzWnfLCHQe5mQEHiAABySsyVygDJHOogJDjUgV0xLo3P1+3jM99Epvc9A+O7P6PjeqP6nob3/VlYdy/Cl78Vo8fEA7IG2pQ/Oq1nvIL++gFsr51CdcIwvEkjsWYuxF6yCzsWfmAk//L8htNPP4e/T+jRtm0GHFYLVx7XnSvGp6G1udJKoPWOD2epTsBWXQTV5eAID/g1joW1W7dztqqiMu3AOU1SYkIpGTKNtA1/58lnfsMd1rlUY2c/McQrD49YFwLgShpL9wvfo9oIIXv7N3jTf6A6L4Ok/PXYv7wT/dXdqBsXQNehbXB3wWFrxm6uen0LMWE2Zo/ZivrBAyMub1Ydw1Oi2LnNxom+EjPr8Bhm5onWsz67hOcXpHPByCS6ZvwEfU8FFfjfV0IIIYQ4Ni4bl8arO24lbeuDdN/+vrkzpunDxacfP4SBve5nZWYRLreX/3y2iaQF6TzQd5Q5RG3fOkg7Dt+cK8AWivHrRQBszSknSjKHOhQJDnVgx/eOo1dCGH/7cgvJ5z/M6LIcLO9fhbfXiVh2L0Iffyvqp+fxff83jDMfa+vmmvauQlvsGIPORfWaQsWyt/BunE/o+nfZYBvKfM+JfOYdx5hB/Xno1H7073r4lMljTSnVau+zkmNCyFH+jJiSLEgc2DoX0tqcyM7ZOtlYe3asAyCx+6ET3g6eNB02/J07bR9SnnoS4Ve+RU9HuNmm/Rvw7V6Kc/glOGtTZcdNh3HT0Vpz8hMLmGjfxl+L7obs5Z0uOPTBiiy++P5/XOV6h5N8P3Gj5UrOvf5xIt57AF/SCIxmTjA8LCWarPUhKJs253cKi2udhotW5/Vp8sursaZ/jfuzJ0gLu4sHx3pRmwuh98lt3TwhhBBCHKVrL7uE8uoLUDZlrlYWEtOs8/t1iaBfF/P5euPeUt78OZMbRw2iC5jzDlkdGIXpaJS5WEloLOv3lNDLVoVWFtQRhrGJ9kGCQx2YUoqXZo7mprdWcdlbW5g1+hGuK/sdyTu+oWr4LEKmPYyvpgK1/GUYNRO6DmnrJuPbsxpX7CDeX7qHZRmFLNs1lPzy/gD0DAvj1BFdeH9sKr0S2mfWzNGwGApfZApUYi5n31rBoW1fod+/CvXrxRDfN+DVl+/ZAoCR0EDdXQbjTZ2ATuhP+FmPg8Vm7lcKug7FaCTgo5Ti8uO68/Dn5TwYHool7zDzVXUwPp/msa+2kPPjG7xifxG3cpAVMoCbXe+gtg6C/RvgzCeaXe/w1CjWaf8f+qpCCQ61UyVVbq56dSlrs0t43/4Q44ytvNHrKyL29DILHDzUUAghhBDtjlKKCKf/ubmZgaGD3XFyXz5es4dnlpbyUEQ31N7VUJJtXgcNmUtg4Nms31PMyWFu8EVJFnIHIcGhDq5PYgQf3zKRB+ZvYPbKPbyvf8MpxiqWbpzCX/rv59ST/4hv08d437kEy4x/o3pMarO2vrcsg7MzV/KhZxIPZm0iOTqEKX0TGNczlnE9YztlQOhg9oSekAl6/0ZUv2nmztqJmAP1S7lgB8pbjW/pSxhnPQ5a45l/C5a08ajRVx9V1fnl1URUZOCx2bFGpR5aQCks133ZorovGJXC37/ayj5bGsm5W+gMf6Jcbi//994aNm1cw9fO19DJ43Be9g6pVge+l05EffV7tMWOGnJBs+vuGR9OMf7/c7Kcffvj81K94EkeXh/Hptyu/G1KCOOWbaU6pAsp299C56WiEwdjRHRp65YKIYQQIoikxoZyydhU5izL4tzw7qRtWkSM3YOj9ymQuRiVsQhXnzPYmlNGclcX6KMLRongIauVdQJhDitPXjKCnY+cxYZHL+L6W+4lOiKcG95YwR2fZFI24x1QVph9Nu4v7zcnHTvGtu0v46WPviaMKnoNn8Sie05i8b1TefKSEVw6Lk0CQ37xXdNY7uuPb9mr5nKTgPebP+N9cfIvQaKjVVlg/rv2HXN42eZPsK59G/3dX8FTfVRVL99VSE+1j5qoHmAE9tdPTJids4YmsbKyCzpvS0DrDkalLjezXlvGtxuy+SD+FWwOB9aLXjUzfBzhGJe8hbaFwsDpEBrb7PpjQm24rP65yGQ5+3Zjd0El189ezjePX4lj4UPcUfgwL1zUn8vtC9HKguO6L9ARSaji3Rh9prZ1c4UQQggRhG4/uS8nDUhkd0h/krx7cVblUjnoYkgdj2/XQrbmlOH2auItVTLfUAciwaFOaEhyFB/fMpHfnNKXz9ft4+T3yvnfSXPxjLgK29Ln8Dw7Du/qd3Gvm4f751egbP8vJ5fnovdvCnibNu8rZbhKB2DyCdNIiQkN+DU6gl4JYTzvORdLWTas/xBy1mP89DSW/euhID0wF6ksQCsLRk05jz78e/bPuxePPQqjMg82zj+qqpdlFNLH2Iez64DAtPUgF45OYZOnG0Z5jjlPTgd281urWJ2Rz9d955NYtgnj3GchKuWXAokDULevRk1/tkX1K6UIifKvtifL2bcL2UWVXPbyz4zLeIFTq75gqXMSySqfU3JeRa9515x8Or4PxjlPo5UF+p/V1k0WQgghRBBKjHDy8lVjuOiccwGo1A4e3tEd1XMSRu5Gtu7KBCCSCpSsVNZhSHCok7JbDX5zSj8+uXUSXSKd3DBnK7+pnEXxJR+DPQzLxzdhm3cNtv/+Fu9LJ8H+TejdS/E+fzy8fHLA33hvySljhGWnmekQ3y+gdXckveLDWOAbQUFYHyq/fxz3J3eirSHmwYyFAblGUcF+tnmTWO/rye+Md+ji2csNFTdSFNId79J/H1Xdq3blkqpyG55vKAD6d41gu042N/K3tco1gkFljYf16bv5Iv5ZembNwzfptzDo3EMLRnQFW0iLrxMR458AXYaVBb2cEhfXv7yAu11PcSPz8I26mvH3fIYeORP18/Oo8hzUyJlm4X6noe7NhO7Ht22jhRBCCBHcuo0EYFf8CbyzuoB1VnP+T9eOH4kJtWH3lMoy9h2IBIc6uUHdIpl/y0R+d1o/vt6Yw4R3XdyT8AKrp76NvmkRXPsV+Dz4XjkVZp8NhhXlqYT1HwS0HVtzyhhjz0QnjZAlsw+jT2I4FsPgz0XTCC1Nx7Z3GZz+KL7wLuhdPwbkGuWF+ykigrTTf4MVD660Kfh6ncoLFSdh2bsS9qxsUb0788op27cDK16I6xOQth4sLsxOtjXN3OjAQ8s27S3lBetT9Cxbie/sZzBO+WOrXCcuPh6vVmgJDgW1vLJqfvvSfP5VcSfnqkXoKXdjnP0UKIU69S/okDh0aALUzlMGIKuKCCGEEOJIQmPRM16hz6V/p0dcKP+3yEBbQ4jc/zNDU6LNhAEZVtZhSHBIYLMY3Dq1L5/fPpnpI7rx7dZCzv9CMWNeKavoj+WG7/DF9MTTfRKWW37C22UY3hWvBW6OG2DHviL6+HZhJI8KWJ0dUXSonU9vncQFM2+lwNmDZb7+zPWdgOoxBZ2xKCB9YnEVUm2LJmrspXhGX49z+j954JxBzHFPotoIxbv4mRZd5+2lu+lj5Jgbca2TOaSUwhqTRrVyQAdesWxDdiFjjS1UjboBY8zRTRJ+OKmx5qTU1WV5rXYNcXQKK2q48pWlnFP2IWnWItRVn6Cm3v9LkD00FnXlB6hL3/pl9T8hhBBCiCZSwy7CkdCTv80YSnqhm50hgxlQtYZh3SLBVSKZQx2IrFYm6vTrEsEjM4bx53OHMH/1Hh7/eiszXljiP3ov0wZ35WlbFM4xs+DzO2HPKkgZfdTXLXO5iSndjN1RA8lHX19HN6hbJHSLxNdjIU/8ZzU7v9rG2adOIGTDB+ZQqoT+R1W/01MM4UPB5sR6zj8A6AOcPLwPr22axk2bPsLzyW+wnv0E3g3z8f78ojkcMLo7KrYH1rheGElDzewg/wpqLreXD1dm86ekcsgH4lsncwggOS6C3WXJ9OnAK5ZlZWzHrrzYklpn7qZaqbGhFOtwLCX5OFv1SqIlXG4v185ezu6CMmaEr8bodTr0nHxoQfm9KoQQQoijNKF3PJeMSeWd1f15wLYCFz+htFcyhzoQCQ6JQ9itBhePTeWsYUl8sCKLoko3xZU1vP5TJje9tZIXL5qB46s/oFe8hpEyGqqK8OzfjGf/FqzdhmFNHdOs623bX8YkY4O50XNKK9xRx2SERPHH80ZyznOLeHl3MrcD7Fp4VMGharebSF8Z9siEQ47dfnJfTl17AV1i7Zy/ejbFa+YRrUvJUim4jDCSstcS5SupK++O6oEacCbWcdfz6S47JVVuJkYXoSvjUSGtt+RlWmwom3d0o08HHlZWvs+cT0nF9WrV66TGhlBEBJEVBa16HdEMeVshtjfasPDHjzewJquYOdN82H/Ib3jeKSGEEEKIAPn9mQM5ffM5XOJewNBV/mkNJHOow5DgkGhUmMPKrIk967YHJkVy77z13Pg+vDzwfOzr3sOz7Wuslfux8ssPU/WQy3Cc8RCExZs7fD686Quw9Di+wclxt+aUM8nYgCtuMM7ac0STDEmO4orxaTy1NJMborvizFiEGndDi+vL2LOP/spHeEyXQ471Sgjn0nE9uHvFeWRGJnC+5wvmx/yapeGnUOGB0io3hYUFhFVmM9rYxqlFq5mw9CX00n+RbB3HrdHjSCzfAnG9j+aWjygtNpQt3m6cW7oIqss63NwqlTUerMWZYANiWzk4FBPKEh1O90pZyj4Y6OyVqFemktPlRN7t/mfeX7GH26b24TjXa2iLA9X3tLZuohBCCCE6sKhQG49fOpbvl/+Zvtt/Ze6UzKEOQ4JDoskuHZeGYSjum7eeW+Mn8VTXXViiU3EnDMDSZSC2hN7ULH8d+4oX8W77DPf4W7H3Pw3P53dj37ccz4iZWM977pB6d+7Zz4XGNmz9bmqDu2r/7j9zECsyivi2uB9n7PwRq9Z1w7maK3tPNv2B2ISkBo8/fP5Q/jp9CIZxJvAws4BZB5UprKhh9e4ifthRwL+3b+P4wo+4VH/PBM9SyAFGXdWitjVVWmwoi+uvWNbBhtRs3ldKmsrBa9ixRHRr1WuFOaxUWSOx1WS36nVE02xY8D6DtSIx5wcm7ruRnf0e4/9O7ot++hPofVKHC4QKIYQQIvhM6hvPpL4Xob/ZBIufhLBDRxyI9kmCQ6JZLh6TSpdIJ7e8vYopFXcyPjSWfp4ITopIZHh8FI4zH8Y3+ko8Xz+I88dH4MdHsDii8fQ+BeuaN9FDZqD6TD2gTiPrZ+zKA72nNnJVcTghdgv/njmal54dyjmuhVS9fQUhZ/y1RRk6+3P2AJDQteHgEIBhHD7wFBtm5+SBXTh5YBdgEHllZ7B5bzExUYUYe1di9GrdoYOpsaFs1ynmRt7WDhcc2rCnlO4qF19UdyxG668p4HPEEFJdcuSColVlFlSgt3/LDscAwk+4jTHf3cHokjswVt4GpXvgpPvbuolCCCGE6ETU1N9D6lhIHd/WTREBIquViWY7oV8CH/76eMb1iGVLThnPfr+d855fzElPLOC577dTENoLx8z38FzzNa4pD2C5bTnWS9/CG9Mb3ye3Q3V5XV1aa1KKluJRNkg7vg3vqn3rHhfGqRffylOeC1Dp36GfH4d32avNrqcobx8A9vDAfQKQEOFgSv8uWLsOxBh1JUSnBazuhqTEhJBFIh5lh/0bW/VabWH9nhJ6W/ZjjW/dIWW1jLBYHLoa3FXH5HriUF6f5s/vLWSISqfrqLPpNvEKjFmfo7QPvvgd2rBC/zPauplCCCGE6EwsNhhwJhyDDyvFsXHEzCGlVCrwBtAV8AEvaa2fVkrFAu8BPYAM4GKt9SETUyilTgeeBizAK1rrRwPWetFmBnSN5MWZZkZGqcvNf9fn8NHqPTzx9Tae/m47o7vHYLMYRDhP4uYSB0OSQ7Cc/wL6P6dT8/I0PEMuxjF8BgWWBMb41rE/biTJ9tA2vqv27cRB3dh1xgNM/vRk3k54g35f3IkPjTHu+ibXUVGUa34TGtdKrWx9TpuFhMgw9qmepORs6HArlm3ILiZN5aLizj4m17NHxEMBeCsKsESnHJNrthm3CzyuoJtY8e2lmYRlL8KwayKH+INAaeMxfr0I31d/AGckKjS2bRsphBBCCCHataYMK/MAv9Var1JKRQArlVLfYE418p3W+lGl1L3AvcA99U9USlmA54FTgWxguVLqE631pkDehGhbkU4bF49N5eKxqaTnlfPWz5mszSqmxuNj495S/rthEbMm9OSOU0YTes6z6J/+ReiCP6IX/pWq1HMZZGSS2f2itr6NDuGaiT3JLKjk7CVhfJNip/sXv8Vn2DDGXH3Ec11uL96KfPO3QjsODoE5tGxbcQ9S9q+Ao5iDKdi43F6K87Jx2F0Q0/PIJwRAaLSZRVaQl0NiBwwO+XyauSsyGVPyX7qveRKckRi3rWjrZtUpc7n557fbeSpqK5oYVLcRvxwMicZoYB43IYQQQgghmuuIwSGt9T5gn//7MqXUZiAZmA6c6C/2OrCAg4JDwDhgh9Z6J4BSao7/PAkOdVC9E8L50zmD67ZLKt08/vUWXluyi7mrsrnphAlcfeNleEoyqFjwNMkb3wYgbrisshMoD5w9iOyiKqZtuY6FaZqEL34LXYdAyuHn3tmZV0EM5eZEx/awY9Ta1pEWG8rq3FRO9n4FZfsgsnUnbj5Wvt+SS4rOMTdaeaWyWlFx5sp1BXk5JPY9Jpc8ZvaXuvjTOwu4ce/99DR2oG2hUJkfVAHFlxfupLCimuPta8x52QxLWzdJCCGEEEJ0QM0aIKiU6gGMBJYCXfyBo9oAUmIDpyQDWfW2s/37Gqr7RqXUCqXUiry8vOY0SwSxqFAbD503lM9um8SotGge++8WTnh8AW9vt3Jj4eVMcz/J5klPE95jXFs3tcOwGIpnLhtB327xTN83i+qQRLzvXQWVhYc9b3tuGTGU4QuJDZo3xi2VFhvKz5X+gFDOhrZtTAB9uDKbYaH+0buxxyZzKD6hKwDFBfuPyfVanc8Lu35k7Zrl/Pqfc7hv3+0MMnZzj+9W9In3obQXqkvbupUA5OXuY+uP83i4+2rsVXmoPqe0dZOEEEIIIUQH1eTgkFIqHJgL/EZr3dQn54beYeqGCmqtX9Jaj9Faj0lIkOXwOprB3aJ47ZpxfHjT8fSMD+NPn2xk6a5Cbr/oVAaeMqvdByOCTajdyqtXj0GFxHCL5zeoily8824yMyIasW1/GbFGGUZY/DFsaetIiw1li/ZPfJ2zrm0bEyC5pS4WbM3llK7laGWBqNRjct34RDM4VF6Uiy97NTpn/TG5bqtZ/yG8fjbD55/CPN8ddHPWsGTSbN6rmUCe158xd4RA6rFQWrgf30tT+bflUa7Y/wTasMmKjkIIIYQQotU0aSl7pZQNMzD0ttZ6nn/3fqVUktZ6n1IqCcht4NRsoP47mBRg79E0WLRvY3rE8t6Nx7F4RwEVNR6mDe7a1k3qsBIjnTx3xSguerGaed2u58IdL8DmT2DQ9AbLr8su4QxbJUZo+w/OpsaGUk4oFWFphOasD+yk1Onf4936FZbTH2l8dYbi3bBnFfQ/E6x2c1/pXnBGU204yNq7j+oVbxO+dzHhrhzs3goK4sdSlHwCcdExJIXUYOs6GLr8MkRz3uo9+DRm5lBUyi/1tjJHhPnzMHjXfzBeeRRfTC/UHauPybUDbX+pi73fvEU3Hc282OuZOdBC+OhLSPUkwrcLSS+30wWgqhA4NplZDVm1Mwf15vkM8uWxYOQ/OHHMSFRoDETI70shhBBCCNE6mrJamQJeBTZrrZ+sd+gT4GrgUf+/Hzdw+nKgr1KqJ7AHuBS4/GgbLdo3pRST+rb/7JT2YFRaDHee2o97vvJwUsJ3xHx5L0afU6DenELehU+i4/uxMtNKl5AKVNiANmxxYHSPM1e+2x/ahx4BDg75vnkQS85aSBwAY645tIDWVLxzNWG5qyi0JvJTyBQGV62mhycdDwYZvmRSVS6hqpp0XxJrdRdqiGRC5Vf0yProgKqyw4bgGnE1aZOu4IMVWYzuHkNYxe5jNt8QALYQ3LYI4msKyIseQkLRBijPhfCGRhIHr8U78rn1zZ/5kWXs7HoGN9x4P1aLGdzr5dOE2i1sLrYxAaDykIU3j5kNe0pIn30TFxmbyDjxaU48aVabtUUIIYQQQnQeTckcmgjMBNYrpdb49/0eMyj0vlLqOmA3cBGAUqob5pL1Z2qtPUqpW4GvMJey/4/WemOA70EIcRi/PqE3S9LzuTXzct61/Anfgr9jnPZn8+D+jVi+/zNlCaOprPktkc7Sdr9SGUBcmJ0BXSP4NCeO2y3/g+oycEQcfcV7V2PkrEU7ItDf/BGj/xmHZHP8+MVbTM5dxRve0ximsjir7EO2Wvvxeti1JDhq6O9NJydqPN5R1xDZawz9fRqP10duTTV5OevZW1zFjmIvpC9gSuln9Fl8FyWLHuRK7ySSh14Fq3ehBp9/9PfSDMbMj7hp3i5sVfm8wH2QtQwGnn1M23C03l+RxQTLZsJ9LoZNvRQsv2R9WQzFkG5RrM4vMXdUtU1wKL+8mrdmv8Cjxv8oH3cHPSQwJIQQQgghjpGmrFa2iIbnDgI4uYHye4Ez621/AXzR0gYKIY6OYSieungEZzxdxleWUzjt5+dg6AxIGo7vxycxgND8tYTiwl5T0iGCQ0op3r5+PC++vAJVovnyu+8448zzjqrOv32xmXHrH+MEw8H+c98jed75eL+4B8tFr4FhUFLp5q+fbuC6jY+xz9aNM//vNeKjwqG6jP6OCPof8QphkHQCvYHJAJxFadXDLFv6XxxrZnNl8ffYlnxlFj2WmUOAJW0sF5+Wxq1vLMEbYsWStbTtgkOVhfg++hXG8bdArxObfFp6Xjl3hK5Hu0JQvU445PjQlCg+/xnzr2LVsZ9zqMbj4643fuDvNf+iMm4Q4dMeOOZtEEIIIYQQnVeT5hwSQrRviZFOnrh4OP/32kWMD1+D4+0r2Xvai/TaOA/dZQiW/Ru4JHoLyqU7RHAIIC7cwW9nXgDP/Znli78lbv9iRqjt2M97BqLTmlWXz6f5eOlWfsP3fOQ9jrvfLOZOx/ncvnkOpX9bSFbcJD7NSySlpoiB1ix801/FiAo3Tz6KjKXIEDvjTjwXTjwXqoph6xf4dv6AMeDYB2ZOGZhIz65xbC/vQ7+sZc1b6vJoeGrwlefxWabim7WZPF71AM59y82MrSYGh3w+TXpuOWNClkKvE8AWckiZYSlRzPaEmH8VW3NCaq/HXI7+oEn4//LZRs7e9zRx1gqMi/4NFlvrtUEIIYQQQoiDSHBIiE7ipP6JXDhpGNcvvpk57ofoMncGXsMK57+C8a/jme5cDS46THAIwBmXhs8Zwx94GyPTh1vZ8f77BCyXvg3dJzS5nvS8cqZ6FhJqq2byZb/jscoebNqTyj93ptK/eBETc77lXlUJVvB1GYoxZEbgbyYkGkZcjjGibaZtU0pxfO84flrem/57vwVPzTGZFLvg68eIW/YECd5BXIgVp2UdOrwr7F3T5LmkckpdpHkyiKnJgf5nNFhmaHIUXizUWCOwt+KwMu/LU/FG98J+yWt1AaJ3lu5m77L5PGRfhJ58NyQNa7XrCyGEEEII0RAJDgnRifz+zIGsGNyVzNWV9F73BG97TyUqN4reOoXB5T+ZhUJj27aRgaQU9DwB3+6feSn6Dt7baedDxzPEvn4OnPscasRlTapm9e5iZlh+xBU7gKRBk7lEKRibBgzD69PklFQRpoqwFO/CiOvb+Cpm7VzvhHAWe/pwjfE55KyDlDGtfs28dd/iJYYh4cVEVO3lIfcVXJYcSq/ts8HtApvziHWk55VzsuFfYa3f6Q2W6REXRoTDSpkRSVxrDSvzejD2b8CSsxb34lHYJt3OzzsLeOKTpXzrfA1v3CAsU+5qnWsLIYQQQghxGBIcEqITMQzFuJ6x0P1+CpP78vTndso+WMe9egADPd+YhTpQ5hCAceErGMrgBgy2f7iOk1b9gU8TX6T7/JvwledhTLr9iHWs3Z3PdGMX9n43HjIcyGIokmNCgVCITm6luwgOvRPCecbXz9zIWtbqwaHCsipSqrawpctZjLnpZTz5O/lpTg6lOxbwd58bcjdC8ugj1rMjt5xBRgaeqB5YG1kO3jAUQ5KjKMgNI661hpWV7UNpLz5nDNbvHmSHpTs3/NfO4yHvEuMtRp0/95hkYwkhhBBCCHGwjvnxthDi8AyD2PGXcv0pw6lye8kMG/7LsQ4WHMJiA8OCxVA8fuEwzhw7gFNzb2dD9FSMbx/A99/fg8932CoKMtbjwI3qNuLYtDlI9U4MI5cYypxJ6KylrX69hUsWEa5cdBsyGQwL1sS+PHbBMJZUppoF9q5pUj3peeX0seRgSeh72HL9u0aw3x2Kbq3MoZJsAIxznsIVnkqfr65iubqK0z3fwYQ7oNvI1rmuEEIIIYQQRyDBISE6sWsm9mR4ajTxQ078ZWdIBxpWdhDDUPzt/KFcMbEv5+Rcy48x52P8/DzeeTeac+g0oKLaQ3jhRnMjaXiDZTqLhHAHEU4rO52Dj0lwKHPdQgC6DZpUt29IchSOuO6UGZGwd3WT6tm5v4we5KDiDx8c6hLpJN8Xhq5spTmHSrIAWFbZlTPKfs9D6leUDb0a75gbUCfe0zrXFEIIIYQQoglkWJkQnZjNYjD/5gkopfCl90BV5KLsoW3drFZlGIo/nj2I6BA7M7+9kMcSo7hkw2w8BTuxnvkopI47oPy67BIGq114LCFY4/q0UauDg1KK3gnhrK3pw/Cyb6FsP0R0aZVrbc0pI6FkPdXOCByxvQ84NiItlg2bejJ+75omfcJRmpeFk2o4Qv/Fh9sp1uHo1hpW5g8OzZq3l7QuSVw180ES4jr2/zchhBBCCNE+SOaQEJ2c8s+ho/qeio7p2catOTaUUtxxSl/+fuFwHig8nT9a78RbtBtePRXv3F+Bz1tXdk1WMYONDHSXIeYS5J1c74RwllUkmhv5W1vtOnNXZTPSSEcljz5kgu8RadGs9PRA5W02J6U+jFKXm8jKDHPjCMGhhAgHxTocS02pueR8gK3fuJFCHc5JQ3oy7+YJpElgSAghhBBCBAkJDgkhAFDTHsa49r9t3Yxj6uIxqcz79QS+t01mUuUT7Bn8Kyzr56AXPFZXZu3ufIYYmdhSZD4YMOcdWlbuzxbKa53gUH55NR8t3UZ/Ixt793GHHB+ZGs16X0+UzwP7Nx62rp15FfRS+8yNJgSHigg3NwK8nP2LP6STv2cHFc4knrlsJKF2SdwVQgghhBDBQ4JDQgiT1QHOyLZuxTE3JDmKeb+eQERkNKetn0pe7wtg4d9h5w9orSnYvZlQXJA0oq2bGhR6J4STSzQeWwTkbWn2+XrfOmreuJCa2dPRmT81WObJb7bR17MdA1+DK6L17xrBNsM/1GzvqsNeLz23nJ4qB581BCKSDls2IdxBsY4wNwIYHNpXUsWjX26hn7OE5B79sBjqyCcJIYQQQghxDElwSAjR6SVGOplz43F0iXRy5o7puKJ64Zt7Pe98t4Kkym1moU4+GXWt3gnhgKIkvBe6mZlDy166Ff3vKeisZZCzAfXa6VS/eiae7x+BbV9DeR5bc8qYs2w3s3r45/1pYKl6m8UgrltvSlTkEVcsS88rp7exD2J7HzI87WCxYXZKCDM3Arhi2d5iF6DponMxolMDVq8QQgghhBCBInntQgiBGSB654bjOP+FxVxXcQtv+O6j+8L/o0tCP3S5A5XQv62bGBS6x4ViNRR7rWnE5jV9xbLi4iLG7X2Tr7xjuMt1I26szLJ8zfmZP9InawmgAYhR8XziiGJgUSk6pgcqLL7B+oanxfBTzkBO2/olhqfazHxrQHpeOVdYcjASjj9iG60WA19IDHiBAE5KXVhRQyQVWD2VEJUSsHqFEEIIIYQIFAkOCSGEX9coJ69dM5aL/uXhD56ZPGp7BV2+Dd1lMMpia+vmBQWbxSAtNpStvmSGVuSaQZTQ2COel5Wxg2ig6/GX8PqQ08gqqqKkcjSfl/+WoqJCHPkbiS/dSIprG8PiNTo0CTX0/EbrG5EazVtLpnJ61VLY/CkMvfCQMtUeL2szcknSuUecb6iWERoHZQR0WFlhRTXJqsDciJLMISGEEEIIEXwkOCSEEPUM6BrJv2eO5pEvQimK2k/Mrk9RMqTsAL0Swlm9P5ELwZyUuvuRs3Lys3cAkJTWl8S0GEamxRxU4rhmtWFEajS3+wZTGpJC+PJXMRoIDn2xfh9hldkYDl+Tg0P2yHh/cChwmUMFFTV0U/nmhgSHhBBCCCFEEJI5h4QQ4iAT+sTz6e2TibnkBXz9zoQhF7R1k4JK78QwlpT4h3s1cTn7stxdAMQn9w5IG1JiQogLdzJPnYqxewk1+zYdcFxrzWuLMzg+2p8B1MTgUEREDB4sgR1WVl5DD6u/PhlWJoQQQgghgpBkDgkhRGOckRiXv9vWrQg6U/om8NIPsbgdTmxNnJTaV7QbLwaWyG4BaYNSitum9uXVryZyOW/w3b9/iztxGKMce+gSHUGBx0H1nv6cP7QKtgFxTQtKJUQ6KdbhxFUWEqg1xQorahhtK0LjQIUlBKhWIYQQQgghAkeCQ0IIIZplQu84hqfGsjO/G31zNzcpBdVesZcSawKxlsD92bl6Qg8uHZdKwRvzOWP3Z5C7hL06luJsRYwuY74dHEW90aHxqJCDh7E1LD7cQZEOJ6qikEDNMlVQUUOqpRAdlow6woppQgghhBBCtAV5ShVCCNEsZtZOHzZ6ulG1d/MRy5dUuYn15OIKSwp4WxxWC0mXPAOXvUfNb7ay/PxFXB7xGhNdT5MTMQQjb3OTh5QBJEQ4KCIcd1l+wNpYWFFDN/JQMqRMCCGEEEIEKckcEkII0WxTByQyO6wXYa5FeKtKsIRENVp2R24ZyeRjRDVv0ukmC4uD/qdjB6aPgHOGdWN5RiFJyRegV76MSujf5KoSIhyU6HB0gJeyj/floaJHB6xOIYQQQgghAkkyh4QQQjSbUophI8YB8PX33x227I6cErqqQkITexyDloFhKMb3isPpcKAm3Ap9T23yubXDyozq4oC1p7SigihPgUxGLYQQQgghgpYEh4QQQrTIqEmnU64i6LnsT2zZndNouX17MrEpL+GJPY9h61qmdliZLUDBocoaD1GefBQaopIDUqcQQgghhBCBJsEhIYQQLaLCE/DOeJl+Kou9b1xPZbW7wXKlOTsBMKJTj2XzWiQ6xEYpEVh9LnBXHXV9BeU1JFJsbkQEfs4lIYQQQgghAuGIwSGl1H+UUrlKqQ319r2nlFrj/8pQSq1p5NwMpdR6f7kVAWy3EEKIIBA19Awyh9/JVM+PVDw5Cvcr09BLXzqgjLswy/ymHQSHDEPhcUSbGwGYd6iwooZ4VWJuyDL2QgghhBAiSDUlc2g2cHr9HVrrS7TWI7TWI4C5wLzDnH+Sv+yYFrdSCCFE0Op53gPMi72etdVJqJJsWPAoaA1AmctNaNU+s2Bk+xhWVRXqz/DJ23LUdRVW1JBQGxwKTzzq+oQQQgghhGgNRwwOaa0XAg1+fKqUUsDFwLsBbpcQQoj2Qim6nHkf17vuYG3vm1BVBXWBlQ17SklW+bhtkeCMbOOGNs3+6FFUY0dv++qo6yqoqCEeyRwSQgghhBDB7WjnHJoM7Ndab2/kuAa+VkqtVErdeLiKlFI3KqVWKKVW5OXlHWWzhBBCHEsTesfRKyGMV7L8WTcZiwCYv3oPqZYCjJjgH1JWKyoqimVqKHrrf+syoFqqsKKaeFWCLyQWLLYAtVAIIYQQQojAOtrg0GUcPmtootZ6FHAGcItSakpjBbXWL2mtx2itxyQkyKerQgjRniiluHJ8d77c46QmrBs6YxEV1R4+W7eX/s4SLNFpbd3EJosPd/CVewRGSSbkbT3wYMZi9PL/NLmugooaEo1SyRoSQgghhBBBrcXBIaWUFZgBvNdYGa31Xv+/ucBHwLiWXk8IIURwu2B0Ck6bhbXWIZCxiC/W7aWixkuiLxeiUtq6eU2WEOHgW88Ic2Pbf385oDW+T++A/94L3oZXZjtYYXkNXS0lKJlvSAghhBBCBLGjyRw6Bdiitc5u6KBSKkwpFVH7PXAasKGhskIIIdq/qBAbVx/fg/fze6Aq81mydAlD4sDqLmsXK5XV6hEXRg5x5Ib1w7u1XnBo5/8wCrajvNWQv61JdZkTUpeiwru0UmuFEEIIIYQ4ek1Zyv5d4Cegv1IqWyl1nf/QpRw0pEwp1U0p9YV/swuwSCm1FlgGfK61/i9CCCE6rLtPH4Cj92QAwvb9zLX9XOaBdpQ5dGL/BKaP6MackkGorKV1S9p7f34RbXWahXLWN6mugooaYnSxrFQmhBBCCCGCmvVIBbTWlzWyf1YD+/YCZ/q/3wkMP8r2CSGEaEcshuIPV55J/qPxXGxdyKDNn+ALicNIO76tm9ZkSikeu2AYf849AaNwPt89dwvfRZ7Pwzlfw+Tfon96DrVvHQy/9Ih1VZaXEqKrZM4hIYQQQggR1I52QmohhBDiAE67lZhBUxmm0lGOcIzrvobIbm3drGZx2izcde0VfBsxnZMrv+BPOTfjwaBq5DXoxMHofWubVI9R6V99UzKHhBBCCCFEEJPgkBBCiICzjL8B76AZWK7/BuL7tHVzWiQ23MEpv32DmsvexxcSx/ueE3l3kxsjaRjsX3/EZe6rPV5CawrMDZlzSAghhBBCBDEJDgkhhAi81HFYLn4NItp/UMTefxohd2/h05Tf8tLCdNyJQ1GuEijefdjzCitqiFcl5oYMKxNCCCGEEEFMgkNCCCHEkSjFLSf3Y39pNd8V+4eI5aw77CkF5TXEq1JzQ4aVCSGEEEKIICbBISGEEKIJJvWJZ3hKFH9fZUUrA/YdPjhUWFFDAsXmhmQOCSGEEEKIICbBISGEEKIJlFLcd+ZAdpb4yHd0P+Kk1AUV1cSrEjzOGLDYjlErhRBCCCGEaD4JDgkhhBBNdFyvOC4ek8Liim649xw+OLR6dzFdLKUoGVImhBBCCCGCnASHhBBCiGb4/ZkDybD2wl6ZQ+XuNebO6jI8783C+82fwecDYOG2PHo4KzAkOCSEEEIIIYKcta0bIIQQQrQn0aF2hkybxf4vP8Xxn7NYM/Fpxu96AcveVSg03oLt7Dnpn2QUVNI1phQVPqCtmyyEEEIIIcRhSXBICCGEaKZTjhvDxvCPiZ93ERMWX4cbG5XnzSasMhvj6z9gyc0DbiPcUwjhXdq6uUIIIYQQQhyWDCsTQgghWmDwkBHE3/Y9O+JP5jrP3Zz6RQRrUq6AaX8jufBnLo9ch+GukJXKhBBCCCFE0JPgkBBCCNFClphU+tw6j7t//SvsVoNrZy8nvcel7NXx3KVfNwvJnENCCCGEECLISXBICCGEOEpDkqN487pxaA0XvbyCZz3TiXHnmAdlWJkQQgghhAhyEhwSQgghAqB7XBgvXDGKUpeH+fpEPBEp5gEZViaEEEIIIYKcTEgthBBCBMjEPvE8efFwsgorscY9gP7sTlRM97ZulhBCCCGEEIclwSEhhBAigKaPSPZ/1xc1eAZY7W3aHiGEEEIIIY5EhpUJIYQQrUUCQ0IIIYQQoh2Q4JAQQgghhBBCCCFEJybBISGEEEIIIYQQQohOTIJDQgghhBBCCCGEEJ2YBIeEEEIIIYQQQgghOjEJDgkhhBBCCCGEEEJ0YkcMDiml/qOUylVKbai370Gl1B6l1Br/15mNnHu6UmqrUmqHUureQDZcCCGEEEIIIYQQQhy9pmQOzQZOb2D/U1rrEf6vLw4+qJSyAM8DZwCDgMuUUoOOprFCCCGEEEIIIYQQIrCOGBzSWi8ECltQ9zhgh9Z6p9a6BpgDTG9BPUIIIYQQQgghhBCilRzNnEO3KqXW+YedxTRwPBnIqred7d/XIKXUjUqpFUqpFXl5eUfRLCGEEEIIIYQQQgjRVNYWnvcv4K+A9v/7D+Dag8qoBs7TjVWotX4JeAlAKZWnlMpsYdvaQjyQ39aNEE0ifdW+SH+1L9Jf7Yv0V/shfdW+SH+1L9Jf7Yf0Vfsi/RW8uje0s0XBIa31/trvlVIvA581UCwbSK23nQLsbWL9CS1pV1tRSq3QWo9p63aII5O+al+kv9oX6a/2Rfqr/ZC+al+kv9oX6a/2Q/qqfZH+an9aNKxMKZVUb/N8YEMDxZYDfZVSPZVSduBS4JOWXE8IIYQQQgghhBBCtI4jZg4ppd4FTgTilVLZwJ+AE5VSIzCHiWUAv/KX7Qa8orU+U2vtUUrdCnwFWID/aK03tsZNCCGEEEIIIYQQQoiWOWJwSGt9WQO7X22k7F7gzHrbXwCHLHPfAb3U1g0QTSZ91b5If7Uv0l/ti/RX+yF91b5If7Uv0l/th/RV+yL91c4orRudI1oIIYQQQgghhBBCdHBHs5S9EEIIIYQQQgghhGjnJDgkhBBCCCGEEEII0Yl1quCQUup0pdRWpdQOpdS9Bx27zX9so1Lq742cf5H/uE8pNeagY/f5692qlJrWyPm3+stopVT8QcdOVEqt8df/w9Hea0cQBP31tv/4BqXUf5RSNv9+pZR6xn/+OqXUqEDdc3vWWv2llIpTSv1PKVWulHruMNfvqZRaqpTarpR6z79KovRXA4K1r+odH6uU8iqlLjzae+0IgrW/lFJRSqlPlVJr/fVfE6h7bs+CoL8afNZQSl3h/x24Tim1RCk1PBD3294Fa3/5j8mzYT1B0FfyXNgMrdhfpyqlViql1vv/ndrI+Y397ZL+akCw9le94/JseCxorTvFF+aKaelAL8AOrAUG+Y+dBHwLOPzbiY3UMRDoDywAxtTbP8hfnwPo6b+OpYHzRwI9MFd4i6+3PxrYBKQd7vqd6StI+utMQPm/3gV+XW//l/79xwFL2/r1auuvVu6vMGAScBPw3GHa8D5wqf/7F6W/2l9f1Wvf95iLGVzY1q9XW38Fc38Bvwce83+fABQC9rZ+zaS/Gn3WmADE+L8/o7P/LmwH/RWNPBsGW1/Jc2Fw9NdIoJv/+yHAnkbOl+fCDtBf9donz4bH4KszZQ6NA3ZorXdqrWuAOcB0/7FfA49qrasBtNa5DVWgtd6std7awKHpwBytdbXWeheww3+9g89frbXOaOD8y4F5Wuvdh7t+JxMM/fWF9gOWASn1zn/Df+hnIFopldTyW+0QWq2/tNYVWutFgKuxiyulFDAV+NC/63XgPP/30l8HCua+ArgNmAvI70FTMPeXBiL8ZcIxg0Oe5t1eh9Om/eUv1+CzhtZ6ida6yL/5M7/8TevMgra/kGfDgwVDX8lzYdO1Zn+t1uYK2QAbAadSylG/jDwXNlsw9xfIs+Ex05mCQ8lAVr3tbP8+gH7AZH8q2w9KqbEBrLsp+gExSqkF/nS7q5p5/Y4oaPrLnzY8E/hvS87vJFqzv5oiDijWWte+Ma1/femvAwVtXymlkoHzMT8xEqag7S/gOcxPCvcC64E7tNa+VmhDe9LW/dVU12F+ct7ZBXN/ybPhgYKmr+S5sEmOVX9dAKyuDVzUI8+FzRO0/SXPhseWta0bcAypBvZp/79WIAYztXAs8L5Sqpf/k4GjrbsprMBo4GQgBPhJKfWz1npbM+roaIKpv14AFmqtf2zh+Z1Ba/bX0V5f+utAwdxX/wTu0Vp7zQ+RBMHdX9OANZif9vUGvlFK/ai1Lg3g9dubtu6vI1JKnYQZHJp0LK8bpIK5v+TZ8EDB1FfyXHhkrd5fSqnBwGPAac28vvTXoYK5v/6JPBseM50pcygbSK23nYL5aWftsXn+9MJlgA+IV0q9psyJAL84irqb2rb/+tNa84GFwPBmnN8RBUV/KaX+hDmXxp0tOb8Tac3+aop8zLTg2oD3wdeX/vpFMPfVGGCOUioDuBB4QSl1XgCu2Z4Fc39dU+/6O4BdwIAAXLM9a+v+Oiyl1DDgFWC61rqgta/XDgRzf8mz4YGCoq/kubDJWrW/lFIpwEfAVVrr9AaKyHNh8wRzf8mz4THUmYJDy4G+ypwJ3Q5cCnziPzYf85NPlFL9MCfiytdaX6O1HqG1PvMIdX8CXKqUciilegJ9McciN9XHmOl6VqVUKDAe2NyM8zuiNu8vpdT1mJ+MX3bQUIlPgKuU6TigRGu9r8V32jG0Zn8dkf/Ti/9h/tEAuBrz/xVIfx0saPtKa91Ta91Da90Dc9z5zVrr+Ud7zXYuaPsL2I2Z1YBSqgvmRJQ7j/aa7Vyb9tfhKKXSgHnAzE6cfXKwoO0v5NnwYG3eV/Jc2Cyt1l9KqWjgc+A+rfXihsrIc2GzBW1/ybPhMaaDYFbsY/WFOTv9NszZ2O+vt98OvAVsAFYBUxs5/3zM6Gk1sB/4qt6x+/31bgXOaOT82/3nezCjoa/UO3YX5qoUG4DftPVrFQxfQdBfHn+ZNf6vP/r3K+B5/7H11JuRvzN/tXJ/ZWBOdlvuLzOogfN7YQb5dgAf8MuqCtJf7aSvDiozG1mRIqj7C+gGfO3/f7UBuLKtX6tg+AqC/mrwWQMzY6iIX/6mrWjr1yoYvoK1v/zH5NkwuPpKnguDoL+APwAV9fphDQ2soIU8F3aI/jqozGzk2bBVv5T/hRZCCCGEEEIIIYQQnVBnGlYmhBBCCCGEEEIIIQ4iwSEhhBBCCCGEEEKITkyCQ0IIIYQQQgghhBCdmASHhBBCCCGEEEIIIToxCQ4JIYQQQgghhBBCdGISHBJCCCGEEEIIIYToxCQ4JIQQQgghhBBCCNGJSXBICCGEEEIIIYQQohOT4JAQQgghhBBCCCFEJybBISGEEEIIIYQQQohOTIJDQgghhBBCCCGEEJ2YBIeEEEIIIYQQQgghOjEJDgkhhBBCCCGEEEJ0YhIcEkIIIYQQQgghhOjEJDgkhBBCCCGEEEII0YlJcEgIIYQIUkqpHkoprZSyNqHsLKXUomPUrolKqe1KqXKl1HnH4priF0qpNP9rbwlk2QC065j9DAohhBAisCQ4JIQQQgSAUipDKVWjlIo/aP8af4CnRxs1rX6Qqdz/laGUuvcoqvwL8JzWOlxrPT9AzewUAhFA0Vrv9r/23kCWPZaUUg8qpd4KYH2zlFLeej/jtV/dAniNq/3/j64PVJ1CCCFEsJDgkBBCCBE4u4DLajeUUkOBkLZrziGitdbhmG38o1Lq9OacXC+DqTuwsSUNaEoWVGd3LLJ8Oqif/IGw+l97A1GxUioGuI8W/twLIYQQwU6CQ0IIIUTgvAlcVW/7auCN+gWUUlFKqTeUUnlKqUyl1B+UUob/mEUp9YRSKl8ptRM4q4FzX1VK7VNK7VFKPdSSQILW+ifMN7lD/PVeq5TarJQqUkp9pZTqXu+aWil1i1JqO7BdKZUO9AI+9WdmOJRS3ZRSnyilCpVSO5RSN9Q7/0Gl1IdKqbeUUqXALKXUAn/bl/jr+FQpFaeUelspVaqUWl4/00op9bRSKst/bKVSavJB9b/vf03LlFIblVJj6h1PVUrN87/eBUqp5+oda/S+D6aUOtdfd7G//QPrHctQSv1OKbVOKVWilHpPKeVsoI6BwIvA8f77Lvbvn62U+pdS6gulVAVwklLqLKXUav89ZymlHqxXzwHDDf3t+atSarH/Nfha+TPYmlPWf/wq/89lgVLqAf+9ndLIaxLn7/dSpdQyoPdBxxvsN2UGJX8PXOJ/Hdb691/j748ypdROpdSvGuuP5lBK9fb/bI7yb3dT5v+xE+u9Jo8opZb5++9jpVTsQdU8AjwD5AeiTUIIIUSwkeCQEEIIETg/A5FKqYHKDNpcAhw8dOZZIAozwHICZjDpGv+xG4CzgZHAGODCg859HfAAffxlTgOaNcRFmSYCg4HVypwz6PfADCAB+BF496DTzgPGA4O01r2B3cA5/syMan/5bKCbv81/U0qdXO/86cCHQDTwtn/fpcBMIBkzqPAT8BoQC2wG/lTv/OXACP+xd4APDgq+nAvM8df/CfCc/14twGdAJtDDf605/mNNue/a16yf/9hv/GW/wAyO2esVuxg4HegJDANmHVyP1nozcBO/ZLhE1zt8OfAwEAEsAiowfzaiMYOEv1aHn9/pcsyfo0TADvyuuWWVUoOAF4ArgCTMn9Pkw9TzPODyl73W/1Vfg/2mtf4v8DfgPf/rMNxfPhfz5z/S376nagM6/vYVK6UmHaY9DdJapwP3AG8rpUIxf85ma60X1Ct2lb/93TD/jz1T77rjMP8/vtjcawshhBDthQSHhBBCiMCqzR46FdgC7Kk9UC9gdJ/WukxrnQH8AzNIAmaA4Z9a6yytdSFmtkLtuV2AM4DfaK0rtNa5wFOYQZamygcKgVeAe7XW3wG/Ah7RWm/WWnsw37SPOCiL5hGtdaHWuurgCpVSqcAk4B6ttUtrvcZf/8x6xX7SWs/XWvvq1fGa1jpda10CfAmka62/9bfhA8zgFwBa67e01gVaa4/W+h+AA+hfr/5FWusv/PPqvAnUBhvGYb7Zv8v/mrm01rXz/TTlvmtdAnyutf5Ga+0GnsAcLjihXplntNZ7/f32KWZQpDk+1lov9r9GLq31Aq31ev/2Oszg1AmHOf81rfU2/+v7/hGu31jZC4FPtdaLtNY1wB8B3VAF/p/lC4A/+l/bDZjByzpN6DcOKv+5/2dCa61/AL4GJtc7Hl2v/xpynD+AVPuVXu/cl4HtwFLMYNb9B537ptZ6g9a6AngAuFiZmXwWzIDZbVpr32GuLYQQQrRrMu5fCCGECKw3gYWYGSRvHHQsHjNTI7Pevkx+yc7oBmQddKxWd8AG7FNK1e4zDip/JPH+QEh93YGnlVL/qLdP+dtUe/3DXaMbUKi1Ljuo3WPqbTd0/v5631c1sB1e1xilfouZIdUNM1gRifla1sqp930l4PQPo0oFMhu4Z2jafdfqVn+f1tqnlMriwKyag9vQ3ImQD3iNlFLjgUcxh/7ZMQMrHxzm/IOvH95YwcOUPeDnT2tdqZQqaKSOBMznyMZ+XpvSbxxU/gzMjLF+mD/bocD6w9zHwX7WWh8us+hlzMyyG/0Zb/UdfB82f1svBtb5h2IKIYQQHZZkDgkhhBABpLXOxJyY+kxg3kGH8wE3ZmCiVhq/ZBftwwxo1D9WKwuoxgzwRPu/IrXWg4+yyVnAr+rVGa21DtFaL6l/W4c5fy8Qq5SKOKjde+ptH+78w/LPU3MP5pv0GP9QrBLMQM6RZAFpquFJsJty37X2Uq/PlBmdS+XAe2yqxl6Lg/e/gxnISNVaR2EOaWrKPR+NfUBK7YZSKgSIa6RsHubwqwZ/XpvQbwfcr1LKAczFzMrq4i//BQG6Z6VUOPBP4FXgwQbmFDr4PtyY/19PBs5XSuUopXIws8X+oerNXSWEEEJ0BBIcEkIIIQLvOmCqf4hKHf+wp/eBh5VSEf4hTHfyy7xE7wO3K6VSlLk60r31zt2HOczmH0qpSKWU4Z9o93BDjZriReA+pdRgqJv0+qKmnqy1zgKWAI8opZxKqWGY9//24c9ssgjMIEQeYFVK/REzA6UplmEGPB5VSoX52zfRf6w59/0+cJZS6mSllA34LWagrqFA0pHsB1IOmq+oIRGYGVku/5w3l7fgWs31IXCOUmqCv31/ppHgjP9neR5moCXUP1/R1fWKHKnf9gM9lH8ydn7JjsoDPP4sotMCd2s8DazUWl8PfM6h8wddqZQa5J+T6C/Ah/57nAUMxBx6NwJYgfm6HDwsTQghhGjXJDgkhBBCBJh/3pQVjRy+DXOy4Z2YEw+/A/zHf+xl4CtgLbCKQzOPrsJ8E70JKMJ8M590lG39CHgMmKPM1cQ2YM5t1ByXYU74vBf4CPiT1vqbo2lXPV9hzkm0DXO4j4smDqXzv7k/B3MC792Yk2Zf4j/W5PvWWm8FrsScTDzfX+c5/nl5mut7zJXicpRSh1v56mbgL0qpMsy5f95vwbWaRWu9EfPncw5mUK0Mc5Log4dg1boVc0haDjAbc6LnWkfqt9ohcgVKqVX+YYm3Y95nEWYw7JP6F/OvbDaZxtWuAlf/a6xSajrmZOE3+cvdCYxSSl1R79w3/feQAzj9bUFrXay1zqn9AmqAUv9cWUIIIUSHobRucaa3EEIIIYTooPxDsYqBvlrrXW3cnFajlFoAvKW1fqWt2yKEEEK0FckcEkIIIYQQACilzvEPEwvDnP9nPZDRtq0SQgghRGuT4JAQQgghhKg1HXN44F6gL3CpljRzIYQQosOTYWVCCCGEEEIIIYQQnZhkDgkhhBBCCCGEEEJ0Yta2bkBD4uPjdY8ePdq6GUIIIYQQQgghhBAdxsqVK/O11gkH7w/K4FCPHj1YsaKxFYCFEEIIIYQQQgghRHMppTIb2i/DyoQQQgghhBBCCCE6MQkOCSGEEEIIIYQQQnRiEhwSQgghhBBCCCGE6MSCcs4hIYQQQgghhBCirbndbrKzs3G5XG3dFCGaxel0kpKSgs1ma1J5CQ4JIYQQQgghhBANyM7OJiIigh49eqCUauvmCNEkWmsKCgrIzs6mZ8+eTTpHhpUJIYQQQgghhBANcLlcxMXFSWBItCtKKeLi4pqV8SbBISGEEEIIIYQQohESGBLtUXN/biU4JIQQQgghhBBCCNGJSXBICCGEOIjWuq2bIIQQQggBmBkgM2fOrNv2eDwkJCRw9tlnt2Grjiw8PPyIZR588EGeeOKJw5aZP38+mzZtClSzRCMkOCSEEELUV55Hzdq5bd0KIYQQQggAwsLC2LBhA1VVVQB88803JCcnt0lbPB7PMb+mBIeODVmtTAghhKjH99PzOBY/BQNPB8eRP/ESQgghROfw5083smlvaUDrHNQtkj+dM/iI5c444ww+//xzLrzwQt59910uu+wyfvzxRwAqKiq47bbbWL9+PR6PhwcffJDp06eTkZHBzJkzqaioAOC5555jwoQJ7Nu3j0suuYTS0lI8Hg//+te/mDx5MuHh4ZSXlwPw4Ycf8tlnnzF79mxmzZpFbGwsq1evZtSoUdx8883ccsst5OXlERoayssvv8yAAQPYtWsXl19+OR6Ph9NPP73Re3n44Yd54403SE1NJSEhgdGjRwPw8ssv89JLL1FTU0OfPn148803WbNmDZ988gk//PADDz30EHPnzuX7778/pFxoaOjRdkWnJ5lDQgghRD2+PavNb9yVbdsQIYQQQgi/Sy+9lDlz5uByuVi3bh3jx4+vO/bwww8zdepUli9fzv/+9z/uuusuKioqSExM5JtvvmHVqlW899573H777QC88847TJs2jTVr1rB27VpGjBhxxOtv27aNb7/9ln/84x/ceOONPPvss6xcuZInnniCm2++GYA77riDX//61yxfvpyuXbs2WM/KlSuZM2cOq1evZt68eSxfvrzu2IwZM1i+fDlr165l4MCBvPrqq0yYMIFzzz2Xxx9/nDVr1tC7d+8Gy4mjJ5lDQgghhN+O/aX03LfG3JDgkBBCCCHqaUqGT2sZNmwYGRkZvPvuu5x55pkHHPv666/55JNP6ubucblc7N69m27dunHrrbeyZs0aLBYL27ZtA2Ds2LFce+21uN1uzjvvvCYFhy666CIsFgvl5eUsWbKEiy66qO5YdXU1AIsXL2buXHNo/syZM7nnnnsOqefHH3/k/PPPr8v0Offcc+uObdiwgT/84Q8UFxdTXl7OtGnTGmxLU8uJ5pHgkBBCCAHUeHzc8q+P+Ypic4e7qk3bI4QQQghR37nnnsvvfvc7FixYQEFBQd1+rTVz586lf//+B5R/8MEH6dKlC2vXrsXn8+F0OgGYMmUKCxcu5PPPP2fmzJncddddXHXVVQcsfe5yuQ6oKywsDACfz0d0dDRr1qxpsI1NWT69sTKzZs1i/vz5DB8+nNmzZ7NgwYKjKieaR4aVCSGEEMCarGJ61uz4ZYdkDgkhhBAiiFx77bX88Y9/ZOjQoQfsnzZtGs8++2zdaqurV5tD5EtKSkhKSsIwDN588028Xi8AmZmZJCYmcsMNN3DdddexatUqALp06cLmzZvx+Xx89NFHDbYhMjKSnj178sEHHwBmYGrt2rUATJw4kTlz5gDw9ttvN3j+lClT+Oijj6iqqqKsrIxPP/207lhZWRlJSUm43e4Dzo+IiKCsrOyI5cTRkeCQEEIIASzekc9QY+cvOyRzSAghhBBBJCUlhTvuuOOQ/Q888ABut5thw4YxZMgQHnjgAQBuvvlmXn/9dY477ji2bdtWl/2zYMECRowYwciRI5k7d25dnY8++ihnn302U6dOJSkpqdF2vP3227z66qsMHz6cwYMH8/HHHwPw9NNP8/zzzzN27FhKSkoaPHfUqFFccskljBgxggsuuIDJkyfXHfvrX//K+PHjOfXUUxkwYEDd/ksvvZTHH3+ckSNHkp6e3mg5cXRUbXQxmIwZM0avWLGirZshhBCiE7ngX0u4Y+/dTDA2YlU+uOJD6HtqWzdLCCGEEG1o8+bNDBw4sK2bIUSLNPTzq5RaqbUec3BZyRwSQgjR6ZVXe7Bm/8xYy1bW6V7mThlWJoQQQgghOgkJDgkhhOj0Nq36kdnWRyi1d+Ux92XmThlWJoQQQgghOgkJDgkhhOj0Kla8hwUfGed8wC7d1dwpwSEhhBBCCNFJSHBICCFEp+b2+ogrWEFmyACGD+iLC7v/gASH2ouabd9B6b62boYQQgQtny/45pkVQgQXCQ4JIYTo1JZuzWKg3onqPgGnzUJYeIR5QOYcah98PmzvXYZe9FRbt0QIIYJTdTnqn0Ngx3dt3RIhRBCT4JAQQohObdOy77ApL2kjTwGga0wEXgzJHGovXMUobzW+vG1t3RIhhAhOxZmo0mzI29LWLRFCBLGABYeUUk6l1DKl1Fql1Eal1J8POv47pZRWSsUH6ppCCCHE0dBaQ+YSfBjYexwPQGpsGC4cEhxqLyryAFCF6W3cECGECFJlOea/khHbbu3fv5/LL7+cXr16MXr0aI4//ng++uijVr/uihUruP322wNS14knnkj//v0ZPnw4EydOZOvWrQGpN5AC2cbZs2dz6623AvDiiy/yxhtvNFo2IyODd955p247kK97cwQyc6gamKq1Hg6MAE5XSh0HoJRKBU4FdgfwekIIIcRR2bq/jKGejRRG9AdnJAApMSFUajs+eYhuH2qDQyVZ4Ha1cWOEECJ4eGvnGaoNDtXI37X2SGvNeeedx5QpU9i5cycrV65kzpw5ZGdnt/q1x4wZwzPPPBOw+t5++23Wrl3L1VdfzV133XXIca/XG7BrtVRrtPGmm27iqquuavT4wcGhQL/uTRWw4JA2lfs3bf6v2pnPngLurrcthBBCtLnFOwroZ2RhSx1Vty8+3EGVtuNxVbRhy0ST1QaH0FC0q40bI4QQQcLrxv3O5Wxe8hk/rd1o7pOM2KP35b3w2lmB/fry3sNe8vvvv8dut3PTTTfV7evevTu33XYbYAYWJk+ezKhRoxg1ahRLliwBYMGCBZx99tl159x6663Mnj0bgHvvvZdBgwYxbNgwfve73wHwwQcfMGTIEIYPH86UKVMOqWPZsmVMmDCBkSNHMmHChLqsmtmzZzNjxgxOP/10+vbty913333El3HKlCns2LEDgPDwcP74xz8yfvx4fvrpJ5588kmGDBnCkCFD+Oc//1l3zhtvvMGwYcMYPnw4M2fOBCAvL48LLriAsWPHMnbsWBYvXgzADz/8wIgRIxgxYgQjR46krKyMffv2MWXKFEaMGMGQIUP48ccfW9zGt956i3HjxjFixAh+9atf1QWMXnvtNfr168cJJ5xQ1xaABx98kCeeeAKAHTt2cMoppzB8+HBGjRpFeno69957Lz/++CMjRozgqaeeOuB1Lyws5LzzzmPYsGEcd9xxrFu3rq7Oa6+9lhNPPJFevXoFJJhkPeoa6lFKWYCVQB/gea31UqXUucAerfVapdThzr0RuBEgLS0tkM0SQgghGrRyexbXqTLo2qtuX7jDShUOPNUVteuWiSC1cFseP81dxD3+7fte/oji7pX89rR+9EmMaNO2CSFEW/Ju+S/OHV+wJ9dOdmEVx1uRYWXt1MaNGxk1alSjxxMTE/nmm29wOp1s376dyy67jBUrVjRavrCwkI8++ogtW7aglKK4uBiAv/zlL3z11VckJyfX7atvwIABLFy4EKvVyrfffsvvf/975s6dC8CaNWtYvXo1DoeD/v37c9ttt5GamtpoGz799FOGDh0KQEVFBUOGDOEvf/kLK1eu5LXXXmPp0qVorRk/fjwnnHACdrudhx9+mMWLFxMfH09hYSEAd9xxB//3f//HpEmT2L17N9OmTWPz5s088cQTPP/880ycOJHy8nKcTicvvfQS06ZN4/7778fr9VJZefj/D421cfPmzTz22GMsXrwYm83GzTffzNtvv82pp57Kn/70J1auXElUVBQnnXQSI0eOPKTeK664gnvvvZfzzz8fl8uFz+fj0Ucf5YknnuCzzz4DzKBcrT/96U+MHDmS+fPn8/3333PVVVexZs0aALZs2cL//vc/ysrK6N+/P7/+9a+x2WyHva/DCWhwSGvtBUYopaKBj5RSw4D7gdOacO5LwEsAY8aMkQwjIYQQrcrj9ZGdsR0UEP3LhxJhDisu7Piq5SE62H25IYdUb5HZh8BxUUXctTmXLpFOHjx3cNs2Tggh2pB3xWwsgL00k0Tlf7MomUNH74xH27oF3HLLLSxatAi73c7y5ctxu93ceuutrFmzBovFwrZth1+gITIyEqfTyfXXX89ZZ51Vl6EyceJEZs2axcUXX8yMGTMOOa+kpISrr76a7du3o5TC7XbXHTv55JOJiooCYNCgQWRmZjYYHLriiisICQmhR48ePPvsswBYLBYuuOACABYtWsT5559PWFgYADNmzODHH39EKcWFF15IfLw5fXFsbCwA3377LZs2baqrv7S0lLKyMiZOnMidd97JFVdcwYwZM0hJSWHs2LFce+21uN1uzjvvPEaMGNHg63OkNn733XesXLmSsWPHAlBVVUViYiJLly7lxBNPJCEhAYBLLrnkkL4oKytjz549nH/++QA4nc4G21DfokWL6oJwU6dOpaCggJKSEgDOOussHA4HDoeDxMRE9u/fT0pKyhHrbExAg0O1tNbFSqkFwHSgJ1CbNZQCrFJKjdNa57TGtYUQQoimWL+nhBj3frADUb88wIQ6LGZwSOZmCHqrdxdxSkQ12huHNiyck1LJu/ZoVu0uauumCSFE2ynJxpbxPQDJvhyKlD+TUjKH2qXBgwfXBQcAnn/+efLz8xkzZgwATz31FF26dGHt2rX4fL66gIPVasXn89Wd53K56vYvW7aM7777jjlz5vDcc8/x/fff8+KLL7J06VI+//xzRowYUZedUuuBBx7gpJNO4qOPPiIjI4MTTzyx7pjD4aj73mKx4PF4GryXt99+u67dtZxOJxaLBfAvFNIArTUNjULy+Xz89NNPhISEHLD/3nvv5ayzzuKLL77guOOO49tvv2XKlCksXLiQzz//nJkzZ3LXXXc1OA9QU9p49dVX88gjjxxQZv78+Q228eD7aK6Gzqm9TlNf96YK5GplCf6MIZRSIcApwGqtdaLWuofWugeQDYySwJAQQoi2truwkm4q39yI/iU4FO6wUqUd4JFPWINZebWHbfvLSLNXoMPi0bF98OZtZ2RaDBv3llJZc3QPSEII0W5t+hilfexMPIUUlUdXZQ7B0RIcapemTp2Ky+XiX//6V92++kOiSkpKSEpKwjAM3nzzzbr5b7p3786mTZuorq6mpKSE7777DoDy8nJKSko488wz+ec//1kXBEpPT2f8+PH85S9/IT4+nqysrAPaUVJSQnJyMkDd3EWBNmXKFObPn09lZSUVFRV89NFHTJ48mZNPPpn333+fgoICgLphZaeddhrPPfdc3fn172Xo0KHcc889jBkzhi1btpCZmUliYiI33HAD1113HatWrWpRG08++WQ+/PBDcnNz69qSmZnJ+PHjWbBgAQUFBbjdbj744INDzo2MjCQlJYX58+cDUF1dTWVlJREREZSVlTX6mrz99tuAOdwsPj6eyMjIFrX9SAK5WlkS8D+l1DpgOfCN1vqzANYvhBCik/Fs/Rp2HX7CwJYqc3lIVvlowwoRSXX7w+xWqrBL+n2QW5dVjE9DvFEKYQmo+D4YeZsZVbUUi6+GNbuL27qJQgjRNsr2oW2h/OgdhkN5SKn9IEQyYtslpRTz58/nhx9+oGfPnowbN46rr76axx57DICbb76Z119/neOOO45t27bVDclKTU3l4osvZtiwYVxxxRV189+UlZVx9tlnM2zYME444QSeeuopAO666y6GDh3KkCFDmDJlCsOHDz+gHXfffTf33XcfEydObLVVxUaNGsWsWbMYN24c48eP5/rrr2fkyJEMHjyY+++/nxNOOIHhw4dz5513AvDMM8+wYsUKhg0bxqBBg3jxxRcB+Oc//1k3uXZISAhnnHEGCxYsqJugeu7cudxxxx0tauOgQYN46KGHOO200xg2bBinnnoq+/btIykpiQcffJDjjz+eU045pdF5ot58802eeeYZhg0bxoQJE8jJyWHYsGFYrVaGDx9e1x+1Hnzwwbp7vPfee3n99ddb1O6mUC1JbWptY8aM0YebREsIIUTn4HthIio8HnXVxwGv+98/pJP47W2cE7Mb650b6vZnFlSw8p8Xc1pEBuF3bwz4dUVgPP+/HTz+1VZ2JD2Apdtw1KDp+ObegOGrIcuXwNJ+d3LhlTe3dTOFEOKYy3nzBmw7v+X/3DfzhvWhuv266zDUTa3zgUtHtnnzZgYOHNjWzRCiRRr6+VVKrdRajzm4bKvMOSSEEEIEREUuOMJbperyag+jVD4q6sAJE8McVlzajuFxtcp1RcvllVWzPddMu/5hWx69E8KwVOWjwhJg8HnsTZyMd/sCar75CzN2/J5vP44gM24S5S4PZS435dUeqtxetIZhKVGcPawbXaOOPBmkEEK0Jzm5+4nwhZDcazDsNvd5MTAkI1YIcRgSHBJCCBGcfF5UZT5EdmuV6stcZqq9ihlxwP7apewtXnmIDiaZBRVc/+wnFLo0BZgrolw5pitqQwmEmSuDpCTE4Yubwd0Z3bh2y68Yu+puHqr5Kxk6iRCbhQinlVC7BbdX88navSzakc/sa8a15W0JIdqa1viyV2Gkjm7rlgSMp7IY7YzikVnT0A/bUd4a9ugEUmXOISHEYUhwSAghRHCqLERpH7qVMngqXS4SVRFGvWXsARxWAxd2rD7JHAoWZS431762jNn8iS5h5WwY/gdqhlzC0MgK2ACExdeVNQzFPeeMYlXav+mz8FK+Cv8HOae/BJVFKG8Z+Lxo7WPeit2syUuh2jMah9XSdjcnhGhbu3/GeO10+NWPkDSsrVtz1Eoq3djcZVgju4JhwRfdHUvBdjJ8iSTX7EF+27VMY6tlCRHMmjuFkASHhBBCBKcKcxUIPNWtUr2tIgcLvgOWsQdz4kevNQSL9oLXDRZbq1y/3cpcQkXWesIm/QqtNXOWZ/Ha4l28fNUYuseFtcolZy/OwFmwkVTHftyOroxadR81Awdid8eaBfyZQ7USIhxMm3Q8RV0/JPL9GXSfe/Yhdf4f4EVR/flqOPcJkId+ITqn8v3mv67iNm1GoKzJLiaNCsKi4swdMT2hYDuZuguT3NvatnHtlNPppKCggLi4OAkQiXZDa01BQQFOZ9OHz0twSAghRHAqb93gUGjlXvOb6NRDjmlLCHgBdyVYolrl+u2V/vlFQjd/wuaY43nop0oW7zCXlf15Z0GrBIdcbi+v/5TJ/Qmb0GUGNdd8Da+fjv72z9ScdB92OCQ4VCumz1jyL/8S145FeGN7gT0crSwYhsFHq7JI2/Iq569+BcbOhG4jAt52IUQ7UO1fPtpb07btCJA1u4sZoiqJiDEzKo2uQ3HvXUNBaSSGtxp8PjACuWB1x5eSkkJ2djZ5eXlt3RQhmsXpdJKSktLk8hIcEkIIEXT2l7qY8/Fi7gBopWFldpf/Ia/eMva1fFaHPzhUBU4JDtXSWlOwdyfxaBa9+wib7Nfwx7MH8fDnG0hY8SQ+32CM8TcE9Jofr9lDfnk1J4cux5M8nrCE7lRNvoeQL++gYsET/uBQfKPnx/cYgi9tMIZx4Ke94QXxfLhxMudbFplBQCFE51RTbv7rdbdtOwJkze5CblGVWMNiAFAn3EXZkFlUPvs3s4CnCuytk+XZUdlsNnr27NnWzRCi1UnYWAghRNBZtD2fsgJ/Zk8rBYcs7grzG/uhq6EpW6j5jQQN6mit+d0H6/AUZwMw07GQb24ZzZXjUng85HWm7n8Ntf79gF933qo9nBBfRmTpNoxB5wAQMuZKqrodT1jOMnzO6AYDfPUdHBgCiAuz49J2c0NW8BGi8+pAmUNaa7Zl52LF+8sHG7YQIhNSqMJhbtfI3zUhRMMkc0gIIUTQ2bq/jHhVYm54XKB1wOeEMWqDQ45Dg0PYa4NDMil1reyiKj5elcHjzmJ8vU7GufM7PB9eQbUtlBm+76gkBGdNOYGejSGzoJL7otdCOVgGnmXutFhh1udkFpcQF+YgvLa/miE2zE41/vmkWmnoohCiHaguNf/tAJlDBRU1uCtLwMkBWa9Wi4HX4p93RD70EEI0QjKHhBBCBJ0tOWUk+INDSvvA5wn4Naye2syhiEOOqbrgkGSU1Npf6iKRYgw0xuDpFJ/2DKG5qwnPWsDb8XfwgzEWVVMR0GvWeHzsL3MxsnIxnoTBENOj7liI3UL3xFjCw1o2PMIMDvkzhzzSz0J0WtW1w8raf+ZQem45kcr/e/igIdHaGmJ+I3/XhBCNkMwhIYQQQWdrTinxlPyyw+MK6KphWmts3krcNgc2y6F/Ci222ofoNviE1VWK64vf4zz1AYjocuyv34icUhdJypx8mshkovqcTEHyOHzV5eRlRuH7YSO6piKgmUM5JS7idAmp5evwjbongDVDfLgDl2QOCSHqhpW1/8yh9LwKIvH/3To4OGQLhWokc0gI0SjJHBJCCBFUiitr2F9aXZc5BAT8zXtljZcwqvDUfpJ6EIvTn43SBp+w+ta+h3Pdm/jWvHvMr304OSUuutUGh6KSUUoR330gif3GkhobSgXOX95kBUh2USUnW1ah0FgGHboc/dGICbNRLXMOCdHp6ZqOM+fQjtxyEqz+4dDO6AOOyVx6QogjkeCQEEKIoLIlx3xQTzRK8NT+mQrwpNTl1R5CVTUea8NDkqyO2uDQsX2Ifm/5bnZ89x8APFu/OuS41vqYtqe+/aUuUi1F5kZk8gHHUmNDqdROc5lkb+CGAGYXV3GKsYrq8BToMiRg9QI4rBZsDn9wUDKHhOi8XB0pc6ic3pH+38EHZQ4ZMlxaCHEEEhwSQggRVLbmlKHwEUMZOTrW3BngN+9lLg/hVOG1NRIc8mcOeauPXXCouLKG2Z/9j341m8jXkVj2LAXXL9lTet9avP85M+DZOU2VU1pNb0cx2hEBzsgDjqXGhlBRuxKOO3DzDu0pqqKn2oeRPCrgE5IDhNXOVyRzDgnRaekOtFpZel45PcIaCQ610YceQoj2Q4JDQgghgsqWnDK6O11Y8LJHx5s7A/xJZ3m1hzBc6EaCQ3Z/cKjGVR7Q6x7Oq4t2cYb3ezSKV8NvxKK9sHMBAP/dkEPe5w9jzVoChTuPWZvq219iZg7piORDjnWJcFKt/J9KB3BS6j3FVSQZRdiiD71mIISH+Veqk8whITqlt37OpKy02Nxo55lDRSVlqOJMUkL8Qa6DgvgWh2QOCSEOT4JDQgghgsr2fUWcFpEBQHZtcCjAb94rqj2EqSqU49CVygAcIWbQoMYV2NW3GpNfXs22RR9xi/UT3H3PJGL0RZTqUApXf8Jn6/byl7e+Ii77G7NwTdt86ptT6qIL+RB1aKDGMBTOMP8bkerABdQKCvIIowoikwJWZ32x4U5qsAV82KIQon146+dMtKt2Kfv2mznkKtgNr53Bt/bfkebLNlcmszoOKGOrnUsvwKtKCiE6DlmtTAghRNDQWjMz93Gmq4VoFJt93cGyKOBv3stcHhKpRjnCGzzuCDUfot3HKDg0+913eVI9SWV0P8Jm/IuzK2188v3xXLZ9Hh9s7scN1pVY8JmFAzhsq6m01uSUuohz5mFEHddgGUdYpLkSTk3ggkPu4j3mN5GtkzkUF2anGht2twSHhOhstNbsLqwkxPAH3NtxcKjslfOIqcrAqrx0zVt0yJAyAJvT//dOMoeEEI2QzCEhhBBBI7uoiiF6O1lRo9l79VJW+fqaB1phQuowVYXloLT7WmEhTsp0CN7SnIBetyErfvySm7PvptLZBeesjzBCokiLC+WLrjeT7kviNesjXGP9is26u3lCGzzYF1e6wVNNuKcIIlMaLmQP7KfSXp/GKPO//hGtkzkUF26nStvRkjkkRKeTX16Du6YaB/7hZO10WFl+9lYSqtL5l+UK3NiwugrRDfxts/szYn1tlH0qhAh+EhwSQggRNLbtLSRN5WLtPp7knv2x2J3mgQAPKyt3uQnHhcXZcOZQmN3KDp2MtXB7QK97MK9P41rwFJUqlJAbvsQW3a3u2LOzJhM68x0q0k7iyz4PcmvNreaBNniwzyl1MdbYYm50GdRgGV2bhRWgzKH9pS4SdKG50VrDysLsVGsbbpe8WRKis9ldWGEOW63VTjOHti75HIBzLpyF0W2YubOBzKHQEAc12oIngEN/hRAdiwSHhBBCBI2czC3YlJfo1MEARITXThgc2MyOimoPYVRhC20kc8hhZbsvmbCS1g0OzV+VzSDPRirSTiQ8/sCMnLhwByl9RxBy9Vysoy6nTNdOJnrsh5XllLqYbizBbQ2HPqc2WMZirw0OBaZ9GfkVdFX+4FArZg65sFNzDFelE0IEh8yCSsJVveCQr31mDnnTF1CgYugxYBQqdSwAyhl9SLkwhxUXDjzHaLi0EKL9keCQEEKIoFGxZzMAIUkDAIhopdWkqqoqsCiN1dnwhNRhDivbdArO6gKoLAzotWu5vT7mffs/YlU5qcOnNlrOajHoFu2kqnap+DbIHMorLOF0yzKq+pwJNmeDZZQzsJlDP+8qJMkoxOeMBVtIQOo8WHSIOeeQt0bm4BCis8ksqCSceh88tMNhZTnFVQx0rSE3bhwohZFSGxw6NHMozG6lEgceCYYLIRohwSEhhBBBQ9UO44rrA0BIqD9bJsCZQ+5K/+o0jaxWFuawsEP7J0HO2xLQa9d6f0UWKWXrADC6Tzhs2eToEKqwmxvu1n+w9867CTZ9UrcdkvkdkaqKkJGXNHqOxR9o09Vlh688ZwPubx8GrQ9b7Of0AvqGlLXakDIAp82CCztaJqQWotPw5m6lJuNnsgorCafe79N2OKxs2YqfSFAlxA45xdzhDw41NKwszGGlStvxSXBICNEICQ4JIYQICjUeH9EVmZRbYyAkGoCQEP8kxwEODnld/gBG7STKBwl3WNnm8w/zyt0c0GsDuNxenvluO9PCd+ELiYO43octHxViw2534FXW1l+G2OfFWDcH7Q8Oaa2x7PyeMsKw9Tmx0dNs/slOPa4jZA5tmItt0d+hdG+jRapqvKzOKiLNWtyqwaEQu4VqLUvZC9GZ6E/vwDrvOjILK0kN8/1yoB0Gh4q3LQEgcchJ5o7oNDw9p0LaoatKhjksuHDgq5ZhZUKIhslS9kIIIYJCel45PdReqiJ7UTtNdGhYKwWHqmqDQw1PSB1is1BsT6SSEIx9m2h4IFXL/fzFG7zgep7Bznx8qRMwlDpseaUU3aJDcJU7CWvtzCFXCQqNrzAdBfyUXkA31w4q4gcRYWn8sSHE4cClbVBVju0I9QOQsw6iGl6ifkVmIW6vJtZbgBE5vsW3ciShdguF2EAyh4ToHFwlWPYsR/k8FFTkcXo8sB+8yoalnQ0r8/k0Vbm78KEwov2rWSqF5ap50MDflHCHlSrs6GOQfSqEaJ8kc0gIIURQ2Li3lF5qH/Yu/er2hfmDQ+7qwM4J46sd+uRoODiklOLxC0ewzdeNreuWUVAe2DmPHFmLGW1sx1lThKXPSU06p1t0iDnvUGs/2FcWmP8WZQDwnx930N/IIr736MOeFma3UoETj+sIw8r8wSG9b22Dhz1eH1+szyHE8GKvLoDIhgNIgRDiH1amvIHtXyFEcPLt/AHl8wAQV5lO70hzeGulNbrdZQ5t2ldKnDcXlzMBrPa6/aqRDxvCHFYqtePogkM1FVRnrWn5+UKIoCbBISGEEEEhPXM3caqMiORflkqPDnVSra1UB3ip8V+GlTU85xDAWcOSiO0xjJ7uHbz63MNsWfghBRnrA9MAdwW5Ko6865ahRl/TpFOSo51U+BytPyG1PzhkVBWyK3svu7atI4QarLVLJDcixG6hQjt/Cbw1QlcVA+Dbu+7A/Vrzydq9TP77/3h3WSYXda9EoVttpTIw5xyqxobhlcwhITq6/PJq5r7/Bm5tAWCAkUUXpxkoKrdEoNtZcGjxjnySyccSk9ak8mbmkAPlbvmHLe7/PoB99mlwFHUIIYJXwIaVKaWcwELA4a/3Q631n5RSjwPnADVAOnCN1ro4UNcVQgjRMbj8n0YaXQbW7YsOtVGNDU+Ag0OuCv/QpkbmHKqVesLVVLz/E3e7nobvwWfYKJ7+GtHDzzmq66uaCmqMEFJS+zf5nG5RIZT57HirK7Ac1dWPoN7qbF8sXMJQS5a50XXIYU8Lc1iowEnkEeaz0K4SFKBy1pFb6mJzThklVW7eWJLBiswiju8KH4U+Rdd9K8wTYrofzd0cVojdgkvbMSRzSIgO78dtuRyvV7MjegK9yldxeXIZ/aLiASgjgq6e9jWsbEl6AedYC7DFDTpyYWqXsrdjeApadL25S7czff37ZqZlUQYkDjziOUKI9iWQcw5VA1O11uVKKRuwSCn1JfANcJ/W2qOUegy4D7gngNcVQgjRzvl8mriClfiMX5biBXMi5mps+AI4rKzM5cZwV4CNRoeV1VK9T6LwhpV8v3Ixb/24mb/a36Dvx9dSanmTyCGnt7gNFk8FbkvzlmdPig6hEgc1VWW0zsLufpW/vHHYsWU953QtRBdaUQkDDntaiM1KJU6obnxCap9P12UOGaVZnPbIxxRrsw+6RTn5+7QuTF9zA7ayPRSOvwdb8jAiekw5+ntqtM1m5pBFgkNCdHhbNq/nfJWPb8J09PpqBqg9WDyJVKkQKrW13Q0r21NQRhedjxGd2qTyoTYLpToMh7uk2ddyub0s+uQ/XGDzZ4YWpEtwSIgOKGDBIa21BmqfCG3+L621/rpesZ+BCwN1TSGEEB1DRkEFI/RmisP7EutfqQxqg0N2VE3ghv3sKa4iDH99jUxIXV9afDhp06YR3XMUV7zejfccf6PnR1fhdn6Arc8JLWqDzVuFxxHarHNiw2y4tL3VV5rxVRbWjTlP8u5jbEguvri+WKyOw54X5rBQrJ1Q03hw6MxnfuTNolxcOoFUI4+Xkr8kyVqO3VOBZdBZhG+Zh61iH65L5xLbd3IA76phFkPhNhxYfO3rTaEQonm01pTvWgmAkToW3/4NsGk+xPem2gilymsBb/saKuWszseCF6KaFhwyDEWekUCop9gcnmxv+t+grMJKLjIWkKNj6KqKoDC9ha0WQgSzgM45pJSyKKXWALnAN1rrpQcVuRb4spFzb1RKrVBKrcjLywtks4QQQgS5jdkFjDJ24Es7/oD90aE2qrUNbwDn2dlT1LzgUK0p/RJ46LLJXFR5D0W2Lhj/vavFbbD7KtG2ww9pO1iE02Zm5rTyhNT5uXup1lbKLDFc1tdLWNEWVNehRzwv1G4OK1PuhoNXPp9mS04ZUaoST9pEAMblf0Ri5TaiPHnEL7wf5/6V1Jz7L0KPQWCorl2GHZuuBq1bdH5VQVaAWySECLRd+RUkubbjVVZIGIDRZTCGqxh37jZqLGFUeg3wta9hZdE1+/zfNG3OIYACWxfzm5LsZl1rV24R443NfOSdRLklCl0gwSEhOqKABoe01l6t9QggBRinlKqboEApdT/gAd5u5NyXtNZjtNZjEhISAtksIYQQQa5gx3JCVTXRAw7MxIkKsVGDDV8AM4f2FlcRrlxoi/2AFV6a4vQhSUTGdeVn23EYhTvB52v29T1eHw6fC32E+Y4OFu6wUokD1crBobz9+ygiAkdib1JyvsVSvg8j7bgjnhdiN4eVWRppX3mNBwc12HHTs/8wys9/k/zLvoDbV2O9dSlFF7xP+Xlv4Bx2fqBv6bC8Fqf5jacFQ8uKd+N8dih6yxeBbZQQIqAWpxcwSGXijukDNmfdHGq2PUvx2sKo8BjQjpay9/k0sZ5cc6OJmUMAJfau/m92N+t6BdnpWJTGmTSQ7Z4u+PIlOCRER9Qqq5X5J5xeAJwOoJS6GjgbuMI//EwIIYSoY9n9MwDWnhMP2B/un0DT5w5ccCi7uIoI5WpW1lB9k/rGs6IkEuVzQ9m+Zp9f6vIQplyoZl4/wmmlSjtQntYd+lBRnEuVNQpbQm+Uq5ia+MEw6qojnhfmX63M6m0kOOTyEIk/q8gZTfjwc4nvPxGH1YLVaiFm6DTCR0wP5K00jcU/XM7Tgp+x8lwUGs/Wr49cVgjRZhZvz2eoJRN78nBzR+p4Sqc+SlGfGWxLvYQarPg87Wd4aaXbS4rKNzeaOOcQQJnDv/pjcfOCQ67cHQB06zmQnb4u+Ap2NOt8IUT7ELDgkFIqQSkV7f8+BDgF2KKUOh1zAupztdatvP6uEEKI9sbt9ZFYupZCexJEdD3gmFIKr2Fv2Rv3RuwpqiLe4W5xcGhy3wTSPXHmRnFms88vrqwhFBcWZ3ODQzYqcWBtxXkxSirdGFUFWMLiUIkD0crAmP4sWGxHPDfEbqESJ1ZPw8PKyqs9RCr/Y4AzKpDNPio+a23mUAt+xvxZUmr3kgC2SAgRSF6fZmt6OgkUYXTzB4cMC5FTfk3Ypa9S0O8iarQF3Y6CQxXVHpJVPi5b9BFX3azPFZKABwsUm8Nhm/qZva9gFwBhSX3Y5euKrSLHnLdICNGhBDJzKAn4n1JqHbAcc86hz4DngAjgG6XUGqXUiwG8phBCiHZu095S+utMquIbntfGZ3GYS+cGyJ7iKmKtNUdcqawxx/eOYy+J5kZRy4JDYbiwhDTv+rXDyqxeV4vnxzmSxen5RFNORGwijPsVNTcuwZo6uknn2i2GGRzSbmjgTVaZy01UvcyhoHFUwSHzHGvBVqjID2CjhBCBsmlvKSk1/mFQB82fZrcaxITZcWNFt6PVysr9waGq0G7NOi/M6SDfiMNXvJuard9Qter9Jp3nLN9NjbIT1yWNDO3/EKdwZ3ObLYQIcoFcrWwdMLKB/X0CdQ0hhBAdz9r0LK4y9lPW45A/IQBoiwPD2/yldxuzt7iKKFt1sz5trS/SaSMuuTfk0ezUfICysnIsSmMLiWzWeRZD4bWEoNDgrmrWSjNNtSarmONUGZFxXcEeiiOp6UsVK6VwW/1tclccMp9TmctDpPIHh+qtSNfmaldha8nQxfpD/DIXw6A2GBYnhDisRTvyGawyzI0uQw45Hu6w4saKakfBoYpqD11UIe6wvs06L9xhJcMTR96mjfTcfS+hVftg2LlgCznsteLd+ygLT6ZbdBi76oJD6XVzNwkhOoZWmXNICCGEaKq8HasAiOg+quECVieWAD2013h8WMv2kFS9C0JjW1zPwNRE9usYdFFGs88tKysGwBHavOAQgLb6H+BbaVLqTXuKiFIVWELjWnS+1+IPDlUfupx9ebWHSIJvWFndm6IWZQ79EhzyZSwKUIOEEAGx7Ss871/Lkh15TAjZjS8ytcHf+yE2Cx6s5jxy7UR5tYcwXChH8/6OzDy+O9bYNHr7dhFeugPDXYHe+l9qqsopKS7G5/slK9XtNRdcyCioIE3txx3Vg8gQK7k2f7bSwZlDXg+eb/4iWZRCtGMByxwSQgghmktrjW/fOnOjkeXSldWBVR/9sLLq7HXsX/I2c2xzsesa1An3triuHnGh7NYJROfvwtHMcyvLSwEICWtBcMgWCl6gpgLC4pt9/mHr1pqsvfuw4IMWBoc81rBf2ncQM3Mo+IJDhu1ohpWZwSFvdE/UntUBbJUQ4qjt+A7rprkUeo9nlH0Tuvu0Bos5bRZqsGD43OaQXaWOcUObr6LaS4iqxnA0LwN2dPdYGD4CfvgKAJdy4l7yMvZvHyKiLJvSnmfgGXIxll0LCMv8Dq75hIw8xYkqF1f8aSiliIqOo7w8gvCDM2f3rcG6+B/4bE6ME+8O0J0KIY4lCQ4JIYRoM9lFVaRUp+NyRuGMbHjuBMMegk0fZeZQZSGWt86jm6uYHXRjyyn/ZnhyI5lKTdAzIZxsncDQol3NPtdVYQaHnOHNDw4peyi4OCBjJVD2lbhQriJw0OKsKp89DKqB6rJDjpW7PPXmHAqm4NDRZw6pyG7gKgpgq4QQR81lDke+Qn9BuLcYek5usFio3YJbW80huz4vWIL/7VFFtYdQqnE3MzgEQJS5ulmJvSvzqkZwzd7/4sZKetdp9Nr9HZYdHwGglUHND/9grWs6Z6lqbEnmELakKCc5FYn0Kso8cAhKiTnJtW/L5xgn3k1Z1gY8lcVQU4GvLBdVkQvaC45ILF0HE9Xn+HbxWgvRmcj/SCGEEG1m1e4iBhqZuBMG42zk01rD5sSma6jIWo/bFkF01x5Uu924XG6UxcAwLIQ7G1lNa/dSCjZ8TfWeDSS6ijin+m+cetJU/u+4fkfV7p5xYazVCdgrfwKvu0mredWqrjSDQ5YWTIitas9xN7wi2NHYuLeUWPxBnRZmDrlt/qBP1aGBkrJqD1GqAm0NQVmbm2/Veiz22uBQC7LT/HMOGaEx6PL9AWyVEOJo6eoSFHCR9QdzR4+JDZYLsVlw174l8tYEVcDC59MYxqF/G8tdbkKogWaueglAtBkcCh18OucOuZqKd3/mMX01b2SMJ9F5GVOt60hK682NYYtwrHmTPE8EGGBP6AVAt6gQsrLj6eVf8axWWW4mEYA1Zw3PP3Qbt3jeOHw7Jv4GTv1z89svhGg1wfPbTwghRKezalce01QW9u5nNFrG4gjFgRvj/UuxumtYMuT3DFr/ONHVewDQKPTZ/0SNmXXIub5FTxG37UsA3rKcx++vvZDJfROOut3dop3sIxEDH5RkQ2zPJp/rrjKDQ9ib/1Bvqf2UuBWWEN64t4QYwz9XUEjLMofcjhjzm6rCQ46VudykWaqCKmsIwGL3DytrQTaWq6oCO4oqFUqotwWZR0KIVuOrLMYC2PDiC0/CiGn493SIvV5wKJjmHXJXUfHZ/YSdcDtGbI8DDlVXlWMoja2Zq14CkDgYb0gc1uEXEddjFNX37OCPhoXJW/P4ZlMOhZVJzNm0n3VJU3nJ9w5/Uy+Y5/lfv6RoJ+nuWE4sWX/AMLw9mdvppxWG0tzieYNdjgF8mXANHsNBhS2OSlsseZWa9dvS+TbmUUJKshproRCijUhwSAghRJvJ2bURp3I3Ot8QgM0RgkN5oCwbgAkrfsNeHcurngtRwPXhiwjbMA9LA8GhvD27yPANYGXSZVx99Y2EhQZmhS+rxaAmIhWqgKKMZgWHPFX+7JwWrJZmdfrPCeCE1NVuN+Wbv2X8iheYbt8FmpYPKwvxB4cqCw45Vu7yEGupRDujCKYZPSwO82fCW1OFpZnnbs/Oo4+2kVMJvTztZ6UjITqDytJCDO0gTFWju09sdC4hh9WolzkUPMEhz4b5RKx9leqKvTiunHPAsZoqM5Bvc7ZgWFl4Ap7fbsdhNX/jOWxm5uupg7pw6qAuAHy1MYd7567jupo7mRnyM5N6hOLw/53rFhXCZh2P8lSav+v9899V5mWy2+hGapQNo2Q33f+fvbMOs6M83/D9zZw5ftYl2WTjTgwJBHcpTikUKJRSpe2vLXXq7tQpBWq01LDi7hpiJECUeDab3ayelaMj3++PmbWsnd09a2Hu68qVc0a/tTMzz/e8z/vB2/jUpKVdTl3REOfEnzcT1wrwJ5vH1LXAxcXFFYdcXFxcXEaJ1pSBv34TaPQpDhXndWTzvDz360xK7kA99UY+PWkqH75jNcX7Ynyg4nm7LOigciVvvJrm0LF88vrPIbIcMmoUL8DaK6BiFcrMUzPez0o5JWGDEIe8bSUEPQQ+D5REtJbql/5M+O07KdYrmSMjNPjK0ctORcudPLiD+vIwUVDj3Z1DrSmDPDH2nEOaU1amD1AcklKyq7qOSXiJm+rgMotcXFyGjXSskXViCafk1uBZeEmv2wkhEKrXfjOG2tlb6/4NgG/748g9KxBTj21fl07Y1wAxiOsI0C4M9cbZh03gmOkF/PWVqQRmXI82oxCc8raJeX6elo4DN7oXQkUYpoUW208qXIY86wYSLXUEDxKGAMryAng9Cs0EKEhGBzV2FxeX4cMVh1xcXFxcRoV1exuZL/ZgKhpqUe8ZQMX5tpggFY0T3/c5LNXXnsHws0sX8+Nfzeca8ThUroWpx7Xvl04myJdRfAWTsy4MARSXlLF5z1Tm7HgB5ZSvZryfbAtrHkRZmdcpITBSsQFfwOO1e0i9/HtksJDGvZso3/8409FZY83lfyVfw7PwIs4/YjqeiG/Q3XqCfo0mwhT04Byyu5XFEIHSQR17uPD4beeQnozjH8B+6yuipOKtJFUvLYY6ph4qXVze7VQ0xMnVW8mdMA31+qf6/0zzeMFi7PwdN+1D2/sy1Qs/RtHOB1Fe/AXig/9rX20knRJgb3bcsD2RF/TyhbPmdltelhdgX2dxaNIRvLkvSrmsJ1V0OJ4F5/d6fVIVwfTCEA16gKnJWtc55OIyxnDFIRcXFxeXUWHN7kaOVHZjFc5F9Xh739BxA5klC/Fo/i7dUcoLgtQWLMNqFohdLyE6iUO79+xgDpBTMnVYxj+tKMQr5mHMr3zadvJkOoPblhc0iBlfXzACQCreMqALuLHndbT/XIUvFUWVJl7p5yH1NBKLr+Xs00/nqMhAZJHeCXhVGmWY/ERDt5v+lpRBRMYQ/rysnCtbeH22c8hIDSxz6MH1+1mm6OjCT4uuIIzkuGmD7eJyqHPHqzv5BgnmTctsckCobeLQGCkre+tuBJLL1i7gHzOqmVa3rstqo809qg3OOTQUynIDVAlHHHJyg17Zsp/PiSjJSTP63X96UYiaPV6E2jycw3RxcRkESv+buLi4uLi4ZJ/XdtSxUK3AU7a47w09tnAhJh/V4+qS0lK2i+lYO1/usnzf7h0ATJjc/83qYJhRFOJVayGKlYa9KwDQqzYi63f0uo9uWqhGDIkAT2DA5/Q74lBbSUEm1LWmqL3rs9QkFc5K/pTLcv/LM+e+zEXf+C/XXHweJVkShgBCXg/1MoLV2lPmkE5IxsZcWZnP35E5NBBqWpLke00s1U+T7txOjZUHSxeXdzGmJXl8zTsoQhLJK8poH0UbW2Vl1v717FMmUSFL2Rn3dwv5l+3lycPnHOqNgFflypMW0SyDVOzcgpSS19e/DYC/qP/JmBnFIapSPkg1DfdQXVxcBogrDrm4uLi4jDgtSZ29e3dTIKOIif2JQ7ZzSC1f1uPqmcVhXjbmoVSuBtNoX15XtQuAkkmZh0UPhIWTc3lTmY8hPJg7XgBAuedarEc+3+s+VdEkQZIYagCUgV+CAyG7rExPtmS0fTSe5qO//DcT41t5Mf9SfvSxS7n7hnO4+Jg5aGr2bwGCXpWoDCN7CqROpAlarRDIy/p5h4Lf50OXKqY+sMyglG4RII3l8RFNO99LN3fIxWXU2R9NIFKOK8WX0/fGDqpqhzKPFXGoqaaCvXouRWEvG6MaQo936VLZLg6NgnMI4IYzZlOnlrBz+xYee7saK2p3DyVnUr/7zigO02QFEOlYl2u2i4vL6OOKQy4uLi4uI85rO+qZx277TenCvjcuXYhZOBdmnNzj6pnFYTaaUxBmChp2ti+P19l2dyWv/5vVwZDj11g+t5w35Rzkjhch3oDasA1xYFOv+1Q0xgmSRA7yhj4S8BKXPoxkZs6hXXUxTtFfQiK46robWD6jcFjyl9oIej00yAj0EEitpJtRsCAwuE5ow4VfU0nixUwNrANcyrDwizTSEyCadr6nY+TB0sXl3czOuhg5wvl7ztCpqGhOM4Mx4v7Tm6po0Qq58T3zqUw714tOorts61g5Cs4hsAOti8pnM1fuoPmeT3Omz3YOkUEzg+lFIVpwxp1yS8tcXMYSrjjk4uLi4jLivLytliWevfabCf2IQ8VzkZ96HSITelw9szjMO9K5Ia3dAthlBTRXklICGc8cD4YLl0ziRX0Bas3bsP0ZAJR4LcS6O2fADkkNiRTCN/AwarAFqQTejjDSfmhoTXGBsoKmkqMhZ+KgzjkQgl6VKBGUZKOdv+NgWhKfHnU2GlviUNCrkkLDGqDrJ2WY+EkhvAEaUq5zyMVlrLCrtpUcBiYOtefejQGBN62bRPR6QoWTOXlOMY3SuV7E69q3EW3ikDY64hBATvkiJohG3q88x0d5wFnY/2TMzOIQzWNZHLJMzF2vjvYoXFxGBVcccnFxcXEZcdZu3cO12tOYpYsgkN/v9p4+SqCmF4fYIcvsN4449HZlE8WynlRgwrAGBJ8+v4S16mIEkqrHftKxonZzj9tXNMYJiSSqPzKo80X8HppkCBGryWj7ZN0uZipVmPMuHNT5BkrQq9Igw3YOU7pDwGpNGuThuJ3GmHMo4IhDcoCZQ2nDwifTqN4QKenENXD47gABAABJREFUgxupYRihi4tLxlgmlVXVlHgdodaf2eSAx+tkr40B59C67XsJiDQlZVMojviIFDrCfifnkKIPvrFB1jj5q9Rd9zqPHf13LMWLFSjIyMmUF/RieZ1rYHJsiUPbDrRQ98RPUf9+LtRsGe3hDBrz8RvhnadGexgu4xBXHHJxcXFxGVGaEjrXtPyFfLMBed6vhny8sM9Dbk4eddpErAObkHXb2fziPUwUjfgL+7e4DwW/pnLMCWcSw8/E5E5iWqG9oqYXcaghQb4njfANsqzMr7Hamkdx/RqwzH63TzXZIlKodHhCuQ9mVkmYRpybfqe0zHjrPpIVa8kTTk5SBmLgSBLQVJLSC/rAxKGUYeEljccXIIWTV+KKQy4uo8sbf+eGjZcyLzzQsrI259Doi0Nvbt4KwJSp9ud2YZHjmu1Urqsabc6hgTc2yBqan6Kp8zn/vItIXfQnzBO/nPmuwTz7RXLshFK3pgw+ddsThFb/3llwYHQHNFhMHWXlrbDx/ox32V7Twqf/9Qaf/tcb7KrLvOGFy6GH28rexcXFxWVEaWqKcoX6PNvKL2fulKOzcsyZJSF2HiinoHYrxqNf4fJdz6OrXrz5PXc4yyafPWsBZs1JsP0pnpNHcJ5vJaJmc7dW7mA7h3LVNHgHV1YW9nl4xVrI+40XYP96mHxkn9unWuyZZl94ZASZGcVhQnklEMOe5c4tR334//BPPZN8HHfXGCsr82sq1USYnKjrf+NOpAwLn0xh+kOk28Qh0xWHXFxGE1n5BiEZ43DPbnuBPy+j/TztmUOjX1a2c6fd8dKfb39mqpESe0XM/owyTAtNOs6oQXS9HA4CSy4e0PbeSIF9nRhDZWV/emkn16b/Q8DjTBQko6M6nkHTXIlAYjVX9usCaYyl+c3Tm0ms/jfCk8MStpJ6Zx17rvkPU2f1U/LvckjiOodcXFxcXEaUlsYaFCGxShdl7Zgzi8OsS5Ri1W5F3fU8KhZ+mYScsqydoy+UmacA8FJiOs3hWcg+nEMRJYUYZCmA16OwWlmMhcDc/qy9MB3D2PdGj9vrsSgAYgTdOgtm2t3hovUHILrHzsZoqSZfOGVmY8w5FPSqHJAFBJKZleq1kdJNNJnCFwi5ziEXlzGCWbsdgFnGNnuBL7MSXq+vraxsdMWh5qROvMHp/BW2HUPecD6GVLAccSiWMgmSQlf8g+p6ORYIRpzrwBgpK6ttSfHsyy9xhed5njSdSaVEdFTHNBgsS9K432nM0by/z20bmmNceutr1K++j59rt3Kz+DkfFQ8xi300PvvbERity1hkfH6iuLi4uLiMW2JNtpvFGynM2jGvXj6VgumL8WCiYHGbcZ69IoNwzGwgDruE1LRTWec9ijfTE+zso06BzACJtElda4ogyUE7hwAMfyGV/tnI7c8BIF+7GfWvZ0Gqe0i1TDTaLzIsrcgGRy+YBcCzb2xmy1srAfDEDpAnWpBCyXgmf6TwaypVsoBQuqbbz6wvUrqJZqXxB8OkpSsOubiMBax623VTFN9pd4Vsa1HfD23OIcsYZXEooVMiovabSCkA+SEfjYRJN9cC0Jo2CJDCHCOuocEQzrEdpNYYKSv74ws7uEH+C+kJ8gPjGnvhOHQO3bWmgh/9x84aEi1V3dbLlmpW7aznp/95isCvpnN49Gm+O+1tzPAEYlc/RvpTa3jJfwpzqh4eM8Kdy8jiikMuLi4uLiNKqsXOTQhEsucgmVMa4bL3nAlAbWQ+iZO/Teq8m2HhpVk7R5/klOG99n4uOP4IXmgoREk0IA+atauu2M6H1cfxm61DChGdURziFWsR6v7VkGrBqliNsHRo2td947Yb70DeoM83UKZNmQLA29t28cjTdgc3b6KGfFoxvbljbqZbVQR1ohDNSg3oYcA0dVRMfP4QpurklbjikIvLqNEUbcCbsB2AijQyDqMG8PpsccjQR/dvOKlblIgohuJv77SZF/TSKCMYrbY4FEsZBEQK0zN6ncqGSm6+PTmUaGnoZ8vhp7opSfWqezlDfQNx0hdp9U/ERB2XzqHH3q5igrQdZiLd2lXgidUjf7OY5+/4Lp4tDxIgxQ+Dd1FY9RJi0WWEZh2Pr2QWNfOvJUiClpX/GKWvwmU0GVt3aC4uLi4uhzzpVvtmMJRXlN0DF83FChRReMqnuOHMefiWXTOioogQgg+fMI23vIdjoJJ65KtdnCjq67fwbe1ONCM2JHHooqVlPNo6B2EZULESUf2mvaIHcUhNNWMIDTz+QZ9vwPhzkQg+ckQOc5UKADQzTpmoR46xkrI2GlXHxdbcfaa1N4Rh51IILUAw4DykuZlDLi6jgmVJPnPzfV2WSV/mjkmv1xaH0qlkVsc1UJK6SYloJBUobu+0mRvUaCAHq9V+6G9NGQRJIcexOFScGyYufSRbGkd7KNz1+LP8TLmFWNFiPMd+iiXl+bSIMCRGf2wDoTVlsHJnA/MC0Y6FLVXIpn08s2EfP7r1ryhmig8oT/B/pRuwgsUEUrUIy0BZckX7LguXncp6awbp1XfQktSRA3DUuox/XHHIxcXFxWVE0WP2DVc4N8vikDcIX3oH5cgPZve4AyDi1zjrlFO4Sb8M/7aHSa66o32dv3oVm61y6ua8H+afP+hznL+ojLfFXExUrLfuRWlra99U0W1br95EUo20P2SMCIoKgXzKvAkWeiqxnFuN+eo+1NDYCqNuo0krtl+09J3R0IZpSTym8xCpBQiFHLHPdQ65uIwKm6qaicT3AhArOAwAMSDnkC2gj75zyKSEKHqguH1ZftBLg4ygJOyJlZgjDqGNX3GoJMdHCwFSTi7eaFEZTXDYpl+iqBqhq/8Nmp+l5Xk0mEGM+PgSh15+p5a0aXF8cQLTue7Gqt5B3nw0O+79NjMTbwMwmRr8NesRx34Kfd5FGGXLYEJH+PRhZTk8q51KYes2LvneX5nzzcdZ+J0nOfHnz/HclnHawc0lY9xuZS4uLi4uI4p0rNpqWyvbLKKoataPOVCuPW4aZ71+GWemN3H401/DmHYsnrzJFLZs4UnfpVx95W1DEmtygxrL55WzYccMDnvrno5ZnoOcQ/G0QVDG0LXMAlmziQwUkK58iymykg3MZDHbKKMWGTxixMeSCS1aMehk7BxKGxZ+4WSTaAGCwSBEccUhF5dR4tXtdUwX9t9vaMHZ8MrGAWWteb2OOJQe3b/hhG4yUUQxQ0val+UFNDbICJ6UHbJd25Jiskih+LOX2zfSlET8tMggvvjoZg7d/Nw2Pi32wKzTIa8csMWRKCGKmurJXF4cPSxL8sr2Opqe+QUX+IvJTVWTKpxPoH4ja57+DyfrMc6VL1GYPwlLOwKie1HidYgFF6Ed/7luxxNCcObl12P952/8YvZmmtJbKIhtpzmeIvTver7jeQ+Pq6cgBEwpCLJ8RiHXHT+dgpB3FL56l2zjikMuLi4uLiNLsgkLgTIAy/94wq+pfOP8hXzyzk/wQvjreO75CPuP+SplWOTPOwmRBRfPh4+fzsa9i1iib7OdOcECRNNeOh+5vjVNLjHMUfg+W0d8kMAz3wbgeWMhiz32Q40YY23s2/AVlEEc6CHAsydShokf3X7j8ePxOsGwxuiWpLi4vFt5dUc9VwfrsHwTURwXhBiAOORznEP6qDuH7MyhdKi0fVl+0EsDEbzpJrBMqpqSzCGFLzDywn+2KI742ESQolHM9amMJnh4zQ5+4q2DSQval0/MDVAnQ1jjpKzsjy/u4IWnHuQe3184xTsV0VxD4PAPQP1GFjS/AgLKRS3U1sIJn8fKmYy+53W0wpm9HnPx3DmY009i6a47EEhSeTOROSqxeJpvp/7AsmKD+U0vknugmpr9EX766oVcdPVnOX52yQh+5S7DgVtW5uLi4uIyoqipKHERHHPBxNnkrAWlzJ09mxuNj+Ot20DwqS9hScHyk9+TleMfM6OQqy6/CoAdsgyzYBYy2tU5VB9LkyPio9IdTD3uMzTPscPAXzCXdqwIjE1xaHppIQ0ygtVUmdH2KcMigPMQqQXRvKPXBnvbgRZadq7GeOTLYFkjfn4Xl9EmZZis2lXPXE8NsnAWFDgPvQMQhwJ+O3PI1Ee3W1kqGSNHxBGRCe3LIn4PjeSgYEEiSlVTgrCSQvWN37Iyv6aSUEKI9Oh1xLprdQVTcEqJi2a3Ly/N8dFECGWMdFLri8ZYmtte2MZPw/9FIpiQ3mPn4RXORgYKKBZNmL48pOJ07ZtyLMrRH0W77M/9Hls94hpbGDr1u/hueAP/51ZT+PlXsQpnc/6BPzLFG8M//xym5Pv4ufg94j/vJ95UO8xfsctwc+jembu4uLi4jEk86RYSyvid8cwEIQTfuWABj6WP4BXv8eTpB9jnm0FRUXH/O2dK+TFIFN62plGnFHcrK2uIpcglhjIM5Xv9IRSFwPv+SOsHn8KadBS6cOzmwbEZSD27NEy1LCBR30PHtx5I6RZ+2srK/Cij5BxqiutcePOrbP/X5/GsuR2aMxu/i8uhxLq9UXL1OsrSOxFFs6Fghr1iAOKQ36ehSxVjlMUhKx4FQHT63FYUQVJz3sfrqW5KEhJp0Abf2GAsoHsiaHrr6Jz7ka9w4msf5ryJzvmL5rSvKwz7aCaElh774tAfnt/OKcYrzNTfQZ75A6TiFAXlTkZGJgIgpizHmnGavbz86MwPvuh9mF/Yiu/kz3cs8+fg+eD9JM77A9pnVxO+/I+EP7eSbUd9l6PMN2m8bfB5ii5jg6yJQ0IIvxBilRDiTSHERiHE95zlBUKIp4UQ25z/x+adoYuLi4vLiOAzmkl5wqM9jGFnVkmEa4+bxuebr6JVhClYeGZ2T+DPIXb+rfxNXMKWRB6iZT9YJgBGxRoam5rJFTG0UQqB1rw+wjOO4cH/OwE1175JHavOodklYapkAUZTZoHUKcMk0J451Mk5ZIzsg+W9b+xjhrGDw007aJT6HSN27kTa5GdPbKG6yS2lcxldtldH+b339yhCoCz/JPhzsC68GY64JuNjBL0qOh6sUS4rM1JxALSDXEG6z8kXitexP5okKFJ2E4ZxjOnNwWuOvDhUXV2JeOMOlsm3uSBnOxLR4TYDVEWga7n4zJYx7cY80Jzk36/v4JvB+zGK5qMc+2ms6afYK/PKETmTAFAmH4l65ncxzv0NDLBjqJozodsykTuJwLKrwWO77VAUZp//eR6b8CkmxbfQsHvD4L8ol1Enm86hFHCalHIJsBQ4RwixHLgReFZKORt41nnv4uLi4vIuxW+2omvjIeZx6Nz4nnn86dPn4/38OsLnfj/rxw8f9X4mzzmclQ1Bu7V9SzVEK1D/cgal2+8ihxi+yBiYkwk7+RljtJX9rJIwB2Q+Wqw6o+1TRifnkMePz2u7DkbSOSSl5F8r9/ClnKcxhD1bnKh+Z8TO/7PHN5N6+WaU247H+t/1I3ZeF5eDmVj5JEcrW6k9+SdQbDtAlCOu6XAQZUBAU9FRsUZY4D0YPZUAuotD6bbuZc37qW5O4pPJcd2tDAB/DiGrlaYHvgL71o7IKXfUtvK3m3+Ex7JFwPKKh5F5U0Hzd9lO+vNQkJAavbK3/vjD89u5hBco0StRz/g2KArqMZ/AypsOBTMROc6kTNnhULoAz9HXDet4lp5ti7GbXvjPsJ7HZXjJmjgkbdrkX835J4GLgL87y/8OXJytc7q4uLi4jC900yIsW0clJHk00FSFpeV5eHNKOmbZssxZh5WyJeF8P5v2wd4VCCT59etRhRw151Bn2m9Sx2ggdV7QS4u3mKDekJH7J2WY+OhwDgU0lTQezBHsVrZiRz3HNTzAqann2Tn9AySkl1TNthE596vb63j79af4tnYnhYndiH2rRuS8Li490dbivXDJuYM+RsBr/w1bo9xx0EzbArPmD3RZngzbnbT0up00x+J4pAHe8V1WpgZz8aGTu/42rFW3D/8JTZ0nH7mbq9Wnqck/nHSgxM7n6ZQ31IYSyLNfJKPDP65M2Ps6qTf/1/62Mprg/lU7+LL/AYyyZYi5Tp7hnLNQblgPvjDkTUEKxRaHRoBpM+ayS5tFZPdTpAxzRM7pkn2ymjkkhFCFEOuBGuBpKeVKoFRKWQXg/N9jjLkQ4uNCiDVCiDW1tW6YlYuLi8uhSDSukyPiyAFkQbj0zdmHTaDB41xamyqw9rwGQEmzbe0eSMee4UKEHWv6GC0rAxA5ZfaLDDqWpXSrU1mZn4BXJYWGmU4M4wi7svL5B/mh9jcS08+k7pgb2SNLseqGXlZmWZLalt4fkKWU/OTxzVwY2oQhFbblHgfm6D5Qu7y7kY6go/kC/WzZO7ZzyIMcZeeQ4YhD6kFOllA4h1oKSB7YRqCTMD2eSZUczgZrGom8uciqN4f/fE9/n0/t+Txloo6ic76GZ84ZACid8oba8ISdMr5R7KbWhdd+j/bEF0FKwHYNXak8RZ5Rh+fM70BPXVCXfRT5wYchVDRiwxTzzmWR3Mbjrw//z9NleMiqOCSlNKWUS4HJwNFCiIUD2Pd2KeVRUsqjiouzGNjp4uLi4jJmiMbt9upjQbA4VAh6PSxcYF9uk1WbkXtWAFBsOCJH2wzoaBJxysrGqHMIwFc4FQAZ3dvvtl3LygL4NJU0Wvus/3BT05xs/zkHrriDwtwIu+UEtOiuIR13d12MK/70Ost+9Axf+9/bNCX0btu8vrOBDZXNnBvcyEZlDg0iD0bZbeHy7qZNHEL1DvoYAU3FkCpyFDoOdkbqduYQnq5CV25AY7csxarf2dEpcZxnDi066WIu0H/Mm+HjUOreAX14xfUD295gmzWJVe9bgzL3bJRZp9srenAOBXLsa5URHxvt7GWq1XbIRfdS0RDnsdVb+az3YfRpp8D0E3veKZCHMv2EER3n1OMuQxGSLS/cMyLuoT31MW5+bhtpY+xmQ403hqVbmZQyCrwAnAMcEEJMBHD+rxmOc7q4uLi4jH2aWmMERQrPGCh1OpQ4f9lsXjEPI7XiNtS6LVj+Tt/fUWhl343DLsE6/vPgBGSORXLLZgHQsL/DfWMe2AzJ7pkTKcPs1Mo+QEBTSUkNSx9mcaipEuuua7lvxRbKqEUPFoMvTFHYy245gWC8AkxjUIfeWx/nkltepbJqPz8pX8m2Nc/ygdtf6yYQ/fnlncwKJihu3sRb/qOIGYorDrmMKu0h0kMQhzyqgi60UXcOWW0Cs6ercygvqLHLLEFr3kNQONuM825lZXkBTppdzIPVRQhpQs2mYTtXQyyNXr+LhsBUjl3ohE/PfQ/mER+Cud3LEUO5ttumuWGMPLamY/b/Veu5+bntfMXzH0JmM9qZ3xndcR2EmLCIRHASR6VW8J+V/U+0DIUXttZw/u9f4aan3mHlrvphPde7iWx2KysWQuQ5rwPAGcAW4CHgWmeza4EHs3VOFxcXF5fxRWvUvoBrYVccyibLpxeyavqnyJUtAKzLP6tj5VhwaRXMQDnzuz1b38cIs2bNxZKC2n1Obo+po/z5dHj9lm7bpgwLv+gIpPZrCmm04e90tHcFyuYH2Lr2ORaGoqj5ttspP+hlDxNQpTGodvaxlMHH/rEGS8Ijcx7nytrfcq/3O5xb91c+csdqdNOelX1lWx3PbqnhS7Psrm7bcpbTYnhglN0WLu9yzBRpPEP+fDGFB3OUW9nLtlD7gzLq8oNedstSgqlaCrA/58e7cwjgimXlvBJzSnqr3iLdWDlogbsvfvLoJspkLbPndSpq8YZQL/xth7O1Ezn5dhVLrGlsiA4ybcf6RrevYv+6J7hKeQbj6E/CpCNGeWQHIQS+hedzorqR+1cNPAPPtGRG21U0xPn0v97gqMABXvZ+jmkPXwZbnxjw+Vy6k03n0ETgeSHEW8Bq7MyhR4CfAmcKIbYBZzrvXVxcXFzehSSa7Rstf3hsdq0aryiK4AsfvprYtLNISo0fVSzqWDkWysrGAfMmF1FLHrEDTmlWdC9Cj0Fr95lju6xMx1L9oCi2cwgNOdzOIecBITe2mylKPcIRhxRF0OCzA2sH087+mc0H2HqghdvO9JH3zr2kll5HcuqpXBd4mXV76rjtxR00xNJ84e71zCwOcRqrsIJFNOUuoKXNOSQzu6l3cck6RhoDbciHqRalTIm9jRFvysKgBke7+7AH59BeaYsYR/gr7YXa4DOWxgqnzy/FiEyhhSCpN/6N9vslmC//KqvniKcNXli3kYBIU1DWvYSsJ/IL7Ry/RHNdVscyWITjHKrZ8irf8/yNVM50tDO/Pcqj6hll3nn4SDOjeeXAdtz2NPLO94LVtUQsbVj8Z9Ve3n/bCr738EYefauKL9y9HiEEv1m0m0mijqLWbbD2jux9Ee9istmt7C0p5eFSysVSyoVSyu87y+ullKdLKWc7/zdk65wuLi4uLuOLZIt9CQjkFo7ySA5Ngpffzk2Tf8dGYxIWziz6WHAOjQM8qkLUOxG1ucJeUL/d/j/d2m1bWxxKtT/A+bUR6nTkPCDMUiqJpKoReVPaV7WGbaGIhp0DPuze+jggWbr5JixfLr6zv4P/mA8TSNdzw8xqfvfsds7+zUtE4zp/uLgcbfsTyMXvJz/sp1lXEEiwsj/b7/Iux7IyEx3NFLoYujj0L9/l5FhRki//fsjHGjRtnyEHOYfaMocAjtJ22wvHeVkZgNej8Kdrl7FZTsO3fxXC0uGNO7sJBEOhJWlQ3pZq4gjq/VFckEdaqqRbx8hjq5NFNSe+jhliP9pZ3xm74uDU40iqEU4wVpLUB5A7tPd1PLueg+ieLou/et9b/Ox/r/HlA19h3coX+cG/n+bjld/kZ6fnEd7/Kts8M9mjTUemWrL8hbw7GZbMIRcXFxcXl55IOTdagYhbVjYciGA+y48/nRReot6JSAT4XHEoU6zccgr0KlqSeoc41MMNZ0o37UBqrUMcSkkvGMPtHLLFoVO9W+2HqE7ikBKZQApvtxvrTNjXmOBzwafwV7yEPPUbEMiH2WdheSNcl7Oa/JDG9MIQ//3EcmZXPYKwdNQjryUvqNGsO7eSbu6QS5aRT9yI9feL+t1OmGlMMfi8oTb2hxbwmvd4gmtugfgoiQJGz86hmcVhqpSJAJypP4fly4XSBSM9umFh4aRcSuYuB2BtwbmozXthzytZO34sZTBZOJ2w8zIThwrDfpoJ4avfTLJ+eLNzMiIdI6FGAEjmz0FZ0P/fxaihauwrO4sLldeIbhuAe6jtd792S/uidw608MD6Sm6a9RZHWW9xV/n9PLbwec5U1/KehjtR9q9hd+QoGg1fj9dql4HjikMuLi4uLiNGotm+4RYBt6xsuDh5bjEfOm4a3pLZ4IuA4l7qMyVcOoOJNLBudz2yzhaHepqNTBlOK3tn5tbOHPLAMIfZtjRHAZhsOu6mTuJQccRPPXnQcmDAx7Vqt/AZ65+kZ5+H55iP2Qs1P9a88wlsf4yXPrmAu68/liPK8+CNf2BMOgaK51IQ8pJuK+dxxaFxy576GAe2rMC44yJIjl5J1cHIHc8havsPKVasNIYydOfQqXOL+VXrGSh6DHZnT5wYCErbA/JBrezLC4Ks/P57sQIFqNLEPO6GQ8oVOu3Cr/P3mb/mA/svQ/eE0dfembVjx9Mm5e3i0JS+N3ZQFcE7ykxmN7+O9+bDMXa+nLXxDBjLRBgJXjAXYaLgOeNbY/66fuDor1FLLjmPfbIjTLs/2n73aza3L/rts9sIaYKTmx9FekP4qlZRsP1/SG8IZf2dCMsgOuFYatPe9lwml6Extn+zXFxcXFwOKdot2ofQTe1YQ1MVvnvhYYQPfy/WnO5dWFx6p7h8Npow+fX9L7F10zqgd3HITxrhiENtmUOYw+scqms4yM3QaRa8KOLjgMzFah24OFTU+CYeTLzn/KBLqK/nhBsQ0sS65zowdajZhNqwHfWID9inD3ptUQzAdMWh8Uh1U5Krbn4Gec91eHa/AHUDD5EdFtIxRP1228HTT4mRYqYxlaE7h644egpvy5nowoux+9UhH28wiLa/o4OcQ2CXvlI4CzNUinbs9SM8smEmXMwVV15LeUkhj8rjUTc9gKzZ0v9+GWCLQzWkfEUDCvHef+4/uJSb2GUW03LnNax95r+kK9YDYOxdhb7mH1kZX7844spafTqrLluL57ALR+a8Q6CgqJTv6B8i2LobMv1bcvK2TOfn/va+Jh57u4pvH1aH1rwbce4vMQpmYfoLEJfb33upevFMO45W6cdKdO8s6jJwPKM9ABcXFxeXdw9mImq/GAvt1Q91jvwQ6pEfGu1RjCv8RdMAmKnVk9OyBwSIVE+ZQyZBoYNmP2jYmUMaYpi7dqUTBwlVuZPbXxaFvRyw8rCaqwc082daEjVRCyoQmdh1Zck8ku/5FcGHP4nx2s14VNudIWadAUBB0EtKus6h8YppST7333V8Rv8rEzxV9sJMZ/mHm+oNdpaVNCHVZJc69oJi6Uht6M6hsrwAJ82fxJs7Z7Fk94ohH28wCDOFhYKi9PKIdsHvMEwT9RDoVHYwPo/Kty9YwOf/cjFnhVbguf/TeD/2FCjqkI4bSxuUi1rSkXJ8/W/ezvuWTeGcxdfx+LNTOW/VNRz5yifgFdigLmC+tRWPNGHqciieM6Tx9Ucy3owfyM3NY/mC6cN6rmxRmuNnt5xgv0lnWO7VyTkkpeS7D2+kMOTlwti9WP4ClMMuQZ15KlY6AQXTMMqWIfw5lJcWsY4AItPzuPSJ6xxycXFxcRkRdNPCm2okrfi7WeZdXMYEjhPn0wsNyoTj0ukpkFq3CCrp9tn9NueQMszuGTPZSlraD40yVNolkLQo7KNW5iIG6Bw60JykQDahq8EeZ9WDR15FatJyWPsPzO3PYhbMhtxJgN1Bqb2szG1nP+64+bntNO9ex+WeF1lhOfk1TvDtaJPe90bHm37yf1SZxsqCcwjguuOm8ZoxB7Xm7VHJMFGtFIbwdnHwdUYpnY+vbGGP6w4FTpxdzNL5s/mu/kG8VWtIv/zbIR8znrKdQ1ZuZiVlnQn7PFx27lnI/1vNY0f9jbvzPsY0czcvGouxhIpc/+8hj68/7lmxFYCzD5+J6OX3YqyRH9Tsez0YcFmZUr+NB9ftY+2eRn55RB3+vS/CiV8AzY+ITEAtnA5C4Ln2AdQr7mRaUZBWGUA1k2C6jRGGiisOubi4uLiMCNVNSYpE1LZ2u7iMRRwnTn61bYOP+Sf0HEhtWARIIxwxJeBVSUkPijW8AolMtbJXLUcikHnlXdYVhX3UyDzUVHRALp59jQkKRTN6oPe/S88RV+OJ7kTZ+Txi5qnty+3MIcfh4DqHxhUrd9bz22ff4ab8B0h7wvxCv9xeMQacQ/ujCR564omOBfH6PrdXLR2pZkccOm5WEebkY1Gw2PfMH2h5/jdZ7ZzVH6qZxsiS0DVe+c4Fh/GQPJ5VgRPQXvwRVsXaIR0vnkwyUTQgMuxU1hOhoimce/57ufyGm1Bv3M0tZT/mJWsJ1vr/gHVQRy5TJ/XSb5CxuiGNG6A5qXP/6+8AMGdy6ZCPN1IIIQiFnfiAdGaCs9QT9r5Ggjsee5HDJ4U5fudvMHOnohzz8e47+MLgDVEc9tmTG5C5S8mlV1xxyMXFxcVlRNgfTVBEE1aoeLSH4uLSM5ofs3AOebsfB2BfYC5Cj3W7+U8Zph1I7TiHfB6FFF7UYXbPqHqMhJaHLJ6HKJnfZV1R2Ectefab1pqMj1nREKeIJkQff5fqwouxPAEEEmXWae3L84Ne1zk0Dtla3cIn7lzDV8JPcFh8JRULrqdaOh0kx4Bz6JnNB5jPLpoV5+Gyj4dsw7TQyJ44BHDZxe/FlILJq39C5MXvIHc8m7Vj94cqU5jKQIqfDj3KC4J84cy5fLTxg8S9RcjHvjik4+nxJjRhokayc+8R8Pv4yAnTuUs/ETVWDTue77rBrpfwPfcd9H9dNWTRvKY5iWo4f5Pe0JCONdJEcnLsF3rmziHpXFOLEjv57byNeOq2oJz1ffD0/jchhEAL5dlveigDdxkYrjjk4uLi4jIi7G9KUCyaUCPjZ/bL5d2HfsW9RGdcyG4xmS3KLHvhQaVlKcPCR0e3MiEElqKhymEWh8wYeMOIDz6IOPvHXdYVRbzUyDz7zQDEoX2NCYpEE968Cb1v5ItgzrvQfgCfdkL74oBX7XgoN/oO495TH+Ou1XuRUmY8NpfsU9EQ5+q/rORGcQfX6/8gNfdCWH498bY0lgxn+YeTlzbvY47Yx4u6U+rWh3MooZt40UHNnqAyeUIJq0su5U7zTNK+AozVf+t3H2PjQ+2BuoPFMC00qWNmUegar1x3/HQsXx5rI6ei1GwaknsrnbTFCW8gnK3hsaQ8j+esw+03+ztKIGuak2xb96J9vv0raf7nNTTUVBKNpWiKpUjqZk+H65WkbhESzu+VN3vjHwnyIzmYKJm7EfUkyYIFmFLw5ZznmLTuVxiTj0EsuKjfXWXb98ZtZz9kXHHIxcXFxWVE2B9NUiyi+PPLRnsoLi694i+eiv/KO/jW5L+yN+lk+hw0G5nS7W5lnTN/TMWHaqVhmMQPw7TwWQlUfxgRKQV/Tpf1BUEvjUoeAP9+dhWJdGYPIfsa4xQrzajhkj630879KfoHHwVfpMtyv9/5HvQxQ75mdwMX/+FVvnrf21SuuBsadmY0Npfs0pTQ+dDfVnGh/iRXWI+ROuoT+N7/d8oK80i0iUOZzvIPE/G0QXDX02jC5EnzKGdhf+KQAZ7sCirTrr6ZH/NRXgqehWfbE9BS3fvGddvx3HMNctXtQzpn0umCaCluJp+mKiybls8bzbl2B7fWPr7//WAkbcHT48teiPfEXD85kQgxJQc65bz96LHN7H7rZbZZk/i+fg3+Xc8Q/MMSgj+fSO4vSvD+sBDr+8Xwym8yOk9SNwnSJg6NL+dQaa7f/lzJtKzMSLKhycePxceYndqAGq/Fc86Pe83f6oylOeKQ285+yLjikIuLi0umSImsfMNu6ewyYKoaWygQrXhyXOeQy9jGr6lMKwyxN+bk6Rw0G5kyTHykwNMhDknVi4IEa3gCMeta0wRJ4fH3PHvsURW+dpmdB7ThnW1cdttrVDUl+j1uZUMLebRAP+IQwQK8U4/uttjndx5Yeigrq2tN8f2HN3L5bStQFcF5yutMfurj8Pof+x2XS3ZJGxaf/OdaJjWu4hvir+gzTsd37k9AUQj5PAQCQUzUUXcOvbatjg+Lh4iFprKz+HRSePsWh9KOc6iPspPBMCE3wDXHTuUnB5YhpEl65V9637i5EgBzy2NDOmcibeJDx8ry1zJeOXZmIW+0OKWFjbsHfRwjZQueQsueOCSEYGl5HjXkdhEOq6IJjvTsJDxjGfMv+SqPHHsXW8su4e0pV/N06Ye52bwIXQtDZWY5SgndJCgc4X2ciUMlOX5i0oeRzMzNE4u1UhWHme/5DLGrHyf93r/C5KMyO5mvzTnktrMfKq445OLi4pIBhmmRWvsvxJ9OhS2PjvZwxiWt9U6r5P4eQl1cxgBTCoLUpp08nZ7KymRX55DVVtbST3nVYKlqShAiiS+Y0+s2Ry+ci0Tw0aUBdtXGuOjmV1lfEe11e9OSVO6vtEWtQWaBBYM9O4d++dRWzvjxwxSt/ClP5/6I5wp+xs80x1nRT/cpl+wipeSbD7xN0841/Nn3a8yCWWiX/bVLi/BJ+UFSwjfqmUN71z3NUmUn3hM/y5HTi2kk0ufvS0I38QoDZRgEletPnkmNVs6awPF4Xv8dsjeBwnGOqPtWQayO5IZHBiWyJXUTH2lkFkvkxjPHzSxir3TuFxr3DPo4Zsr5WWRRHAJYWp5HpZ6D3twhDnla91Mgo0xccAKXHVXOe885kyWf+BNHfuR3zLn8h/zKuJxWf1nGf2dJ3Rq3zqGSiI+49JGK9+/mMS1JIt6KLxDiimXlRGYsw7v40sxP1uZodcvKhowrDrm4uLhkwO/ufRLzEScUMdE4uoMZp6SbnBuosOscchn7lBfY7XGBbrORuq7jwegiDrVnnhjDkztUHY0REGkC4d7FIVQNgoXM0KK8MPd/nMQbXHn766ze3fPD9ab9zQTTjitjkOKQ3+88cB3kHHpyYzUfzVvLpzwPMSHHjypgt2cGNeoEZDI6qHO5DI4/vriDlWvXcFfoJpRgAdq1D0Agr8s2k/ICxPGPereyKfsfIyaCaEd+gLK8APVWGKO1ttft25xDIstlZWB34/vkqTP5bOP7saQg9dCXei4bdcQhIU3Mv1+I/94PkPrLuQPK/gJHHBLZd0GNV+ZPzKHZNxELMSTnkNkm1GnZLddbMjmPWvIwmjrEoUmxjc6LI7ptX5pjnz+BD5nh31lSNwkxPp1DpTl+4vhJJ/oXbB59uwrVSjNvcjGK0n8Z2cEobWXWbiD1kHHFIRcXF5d+aE7qzN74e4R0AhH1/ks1XLoipcRqduryQ65zyGXsU14QIEbPmUPts76ejocN6Rle51Bdgy1KhyN5fW4nwyXITQ9QvO0ufmH8lCuDK7nub6t5bXv3jk8rd9VTKBzha5COPtXrfA8Ocg7FUibLtJ2Y/gLER54k9MlnuHP+bew0S5CuwD5iPPLWfv72xEruDf2CgEegXHM/5Ezstt2k/AAxy4scZedQMFFNg3cyaAEm5QdokBHSzf2JQwZKlh/82/jw8dMReeXc7rkS/66niT/5/W7bGE1V6MJLq1aIWrOR1PTT0eo3Yz34mQGdK6HbZWWdP1fezaiK4MgZpdSIImTjrkEfR6ade7bOYn4WWDgphxqZh5aoBSkxTItZ+jsYQoPShd2292sq+UGNmOUdgHPIJCiSSKGMu9+L/KCXOD5kBoLNLc9vJyh0ppQUDOpcasB1DmULVxxycXFx6YdH1u3lJLGOpyyn9tlwxaGBsqO2lYjpuBfcsjKXcUB5QZCWNnHooLIy0daVqNPDRrtzwRxa6+LeiEZtQSUQzu1zOxGegEi3YuZMQZ90DN9O/Yov+/7HNX9Zwe+e3UbK6Aiqfn1nA/MjzufZIJ1DHm/Polg8bTAtuQUmH0XQZ5fnLSjLoc4MYsaigzqXy8BYu6eRb9+9grtCv6CQJsQH7kEpmdPjtpPzg8SkDz2DWf7hIpYyyDPrMUK2u3RSXoBGIsgMAqlVbXjcNn5N5UeXLOTnTafzRuEFBF//FfLt+7ps01izjyozl1viZ/CoeTQfin+e1Ozz4cCGAZ0rqVv40BHjTAQYThZNymW3WYRRP3hxyEoPT1lZbkCjQeThsVKQbKIxrjNNVNMSnNKr+2tCboBmS8u47DBpWIRIIrVQRsHMY4mAVyUhMytV3Vnbio80YpACnidgO4fMDPONXHrHFYdcXFzGP3oCmiqH7fBvv/40uSLOE+YyJMJ1Dg2CNbsbKabJfuOKQy7jgBy/hi/oCDEHzUYKoydxqE0kGSZxqClqn6efdsYiYj9Yi2UfwXvt/aQOez/Xpv/L7yc+xa+efofTbnqRD/z5dX706CZW725gSb4TsD9YcajNsXFwIHW6heLUHpTJR7YvWlCWQ5MMuc6hYSaeNrjlhe1c97eV/Np3O9OtCrj8TpTy3sNdy3L9xPGRjo/ew9WuuhilogE11+5oOSnPdg55kv1kDqF3/B4OA6fMLeG9R0zmyqr3k4xMw1z7jy7rU437qSWPiz/7SyrOuJUVe5rZmChANFcOqMw0oZv4SSOG8WsZb8ybEGGvVYJs2D3oY4i2Cb0si25CCOJe53OztYaGWJpcEcPy5/W6z8RcP1Hdm/F9ZEo3CZAadyVlAEGvSgw/itG3OGRZEsvUUbAG/TMK+v0kpBcj0TSo/V06cMUhFxeX8c9rv0feshz07Jdz7KqLMaX+FUxUXrEWYaoBVxwaBKt3N1LubUH6Ilm3dru4DBdTJjo3/geLQ2b3MoX22f5hEodam6P2i/4eEvKnIz0BlCOuBs2P7323oS98P+9p/CcPnGcxsyRMPG1y9ysbOTv9FPMCTUjVC/6+HUm9oTmt7GWnr1s3LeZZO1CQiEkdgsS8CRGihPCkmnrObnEZMm/va+K8373C7554i08Wrudk83Ws076JMueMPveL+DXi0occxW5lu6obKBQtBIomA3agbZPIwWe09NolNJlMoQqJ6h3enJ4vnTUXE5W1weNR974CiWj7OiVWQ4unkDmlEa4/eSaHleWwojGCQEJ0b8bnaMsccsWhDuZPzGGvLMGbqBl8J722e7YsO4cAUv4i+0XrAepbU+QQRxyU59WZCbl+GnQP6APIHBLJYRn7cBP0qsTxofYjDqVNCz+OiDrI3/2QV6WVAMYoOh8PFTyjPQAXFxeXIRPdi0g1Q8VKmHFyVg/97OYDnKqsJz7xaFp2BdEVLx5XHMoIo6ma9BPfRKndxJUNClogjPSXMr6M0S7vZmZNLCRd4cGTbLZn0ypWYe5bi2oAgi6t7Nsf6IZJHIq3Ru0X/YlDx30GuehyRMh5aBEC7YJfYuxbxZLnr+O2We9BLDoLI30z4egW5F6v7RoaZMmC5mQOmXqy/aYynjZZKnbYbzoFs0b8GqY3F8Uy7VK9tg4zLl0wn/8Zom4LymV/G9B+Gyqb+MhtT/Fzz+2c4l8F9WCUHYnn+M/2u2/Ip1KDD/TRawVdW7UbgLySqQAoisD0F4CO3QiiB9dpOmVfjz3e4RVUyvICnL94IrdsmsvxigHbn4FF7wMgpNcjcpe2b3vG/FJefj7EZ7zYQcpFszI6R9LJHFK87gRKG5PzA9R4nIys6F4omTfgYyjG8GQOARjBEogBrQeos2YyRcTwBPN73X5ijp9GXQMl825lIZIdrdrHEQGvSlz68WQkDjni72CdQz4PrdKPP+m2sh8qrnPIxcVl/NPW+WbXi1k/9PoNG5inVBBeeC4hr+q0+s2iOCTlITmDblSshT8eh/+dh0h5CzjKepvF8dcRbkmZyzhi3oQcWvHT3ObaWf0XlOe+j2L2UFbWLg5lXzyWUpKKOTOi/ZSV4Q2iFE7vuswXwXPdIyQP/zDePS/hf/T/CMYqMKafijDTyEGWlAH4vRppqWKkO0SxRNpkibKDpkA5BA8KGG2bVe/kvHDpRKwe5dVfIypeH9ButS0pPvn3FdytfoeTeIPUsk+ROvFreK74Z5eW9b0R8nmI40MZxcmP5gO2y0bLm9S+TA07ImcvuUPplP23qI2AoPLxk2ayIj2DmFaAselhAOqjzeTSSrCgrH27MxeUsttyunIOIEi5QxxynUNtCCFQC6YBkNo+uHs80cPndbYQbd1XWw/Q0JoihxjecO/iUGmun7j0IcwUWGav27WR1E3CSgoxDsvKvKpCUvjxmH27+lO6ha/NOTRIcajNOSRdcWjIuOKQi4vLuEfG7fwKa8cLWT1uS1InWPkqAGLmaUzMC5CU3qw+/FlPfxfrjvOzdrwxQbwBefcHkR4/dy66gw+bX2elNQ+BdMUhl3HFvIkRWmWA1iY788Rq2ofQ4/gspySg08OG6S+0X8S6dwUbKg2xNF7L+dwZ7ENC7mQCF/wc9as70T/6Anx6FZ4r7sTMKUcUTO93994IaCppNMxOZb2xtMFUcYBYzsxu2ysB58HJbWffI8brt9oZKQNwoEkp+ep9b3Fc4gWmUYm47G/4zvsJvtNvhJyy/g+AXQKSkL5+80GGk2Sjkx3YqZuaN8cRLnv5u0qn7d+74XYOgZ2ZNXdiHq95jkbZ/jToSbbu3AlAQemU9u0OK8tBjZSSFt4BtWBPpAx8pPG4zqEuaFOOYLWcj/bMNzC3vzCgfaWUeMwkplBB1bI+Nl+kgBQatFTT0JogRyTwhXvvuDUx108Cp3lBBu3sk4ZJWKT6nxQYgwghSKsBNNm3EJY2LfyiraxscL/7Qa+HGIGMOqO59I0rDrm4uIx79Fb7wU1UrYNk9sLoXt5Wx3KxgbSvAEoWMDHX77QgzZI4pCdh7d8QtZuzc7wxgvnol/DEDvDY/J/xndcl0Xia1yZea69sm2VzcRkHzCoJEyNAotX5XGnaB0CxcN53muXUg/bvtmzen/VxVDUlCQpHfBnqDLKiok0+HCVvMvgiqNe/hLjgd4M+nF9TSOPBTHd8LsZTJn5SiB5KIbS2WXXXOdSN+mgTLS//0X4zgCDj+9dV8tyWA3w18hRW8QLE/AsGfO6w4xxSzdFxDkkpEc1V9ptIhzikFdnCZXrnKz3uZzhlZcowdSs7mNPnlXBn8+Eoegy2P03FHtsZVDZ5avs2QggWledTJUqRAxCH0nrayU9ynUOdmTOxgI+kvkAqMgWe+MqA9k2bFj6ZwlCG53uaH/JSK3ORrQeINdsTlX1lDtnikPO7mkEXr6RuERLJcekcAuycTuhTCEsbdpc+oNcub/0R8qm0yAAi7WYODRVXHHJxcRnXSClpbqyhQpYgpAV7XsvasZ/ZWM0J6kbUmSeDolCWG6DF0pAZXND7I542+MvfbkVJNWU0ezSeEHtepX76BXzpNZUz5pfwzBdO5vPXfxLjuM/DostGe3guLhnj86gYWtgOubQsRIst/JQQtTfoFBKqBHJJSg2zpTrr4zjQnLRzJyD7XWuCBeDPGfTubc4hS+9wusTSBn6ho/QwC+zPsR1WltuxrBubVj9LPi3UB2eCkVmDhQ2VTXz3wbf5btHzFMR3oBz/2UHlRwW9tjikmYlRKXWuaEiQb9VjKl4IdJTl5EyYxTPm4SirboUeXAG64xxC9Y7IOE+dV8Kr5gKS3nyMt+5lz15bHAoUdHVoleb42WMVD6jLlp607y1c51BX5k/MoZkQeyZfiFq3FWI9lxj2RCJtC9XtIkWWyQ96qZF5GE3VJFuccfUZSB0gLh0BJBPnUHu3svHnHAIwPc41so/75pRhdgRSewbvHGolgJJ2nUNDxRWHXFxcxjVPbqwmaLbwqrnAXlC/IyvHNUyL3VvfoIRG1JmnADAxz0+r6cFKD31m9dYXdlBe8RDgtMU2jSEfc0xgWYh4Havq/QS9Hm66bAlCCBACz1nfhfJloz1CF5cBofgjWMlmbnl0BcJp114sovbKTp1VfJrKAZmP1VSV9TFUNSUJ4ogvY+whwa+ppGRXcSieNvCTRvF177ATcsSheFPmD3jvFlq3voQlBdtCRyIsHSyrz+331se54S9P80/lO3yo9c8YU0+EhZcO6txej0JK+O0OWxkKU9nkjb2NTBANGKEJXcStSfkBbjEuwpOKItd2D+g227KuRkgcWlqeR24owKrgSSjvPIFeu91ecZArtjTHxw6jGBHdnbHYZqTbXFCuONSZxZNzKQp7ebhxmr1g7wr7/6q3MH6ztM/7vljaxC90LHV4nGX5QS+1Mg+rpRoj5gjefXR+DPs8WFr/gkkbSd0iSBK8469bGYCpOuPuzzkkHOfQYLuV+VRi0o/HcMWhoeKKQy4uLuMWKSW/evxtgiJFDXn2QqvndrcDZfXuRhal37TfzDgFgLLcAAnpw0wNzelTVbmXkle+yWnKOpJK203CIeIeSjQiLIPVdR4+eOxU8oIjc8Pu4jJc5ObmE5AJnnhtbfuyknZxqOOGPeBVqSEPqzn7zqHqpiRhJWm3nPeMrb8pf5tzyOgsDtmz3WoPDohIvp07Fm/OfjbTeMayJAV1a9gip3BAOg+XZu+5Q2nD4rv/fJK/WV/nMGUP1kV/xPOhh4f0+9E+yz8K7ezf2NvIRCXaJYwaYGphkDfkHA7kLEJufLDbfnqbKDnIcpSBoiqCU+YU85fokShmkuvUx5EIu+NfJ0py/OyVJYh0K8QbMjp2PO583wcZynuooqkKlxw+ib/tzsNSvMg9tjgktzyCJ7oL46Vf9bpvPGUQIIU1SEdKfxSEbOeQ0noAIxa1F/rz+tzHF3S6NGYQUZAyTPwymX3H6AghtQzFoaEGUvs8tBLstzOaS/+44pCLi8u4ZX9Tksb6GgDq2m+msyMOPb3pAIepFViBIsifBtjOoQTeLtkaAyWRMmi44wouF8/ytHYy9wXfb68YhZtxAJoqST74eeIPfglj9wqIN6D/9XzYeP/gjtd6AIBGkc+1x03L3jhdXEaJyRNKmB6xWJLTMSPZLg51upH1e2znkGjNvjhU1ZSkSNPH5ANCwKuSxoPsLA4ldfxCx+PrPt78/EIMqZBszuyB+d3Cpsp6Fsl3WGnNoyntOGf6CKX+5VNbubLu90xQm1GvexTl8KsGVU7WGaut9GakJyve/C8ffOsaZqnVKLldy7Mm5QXI8XuoVkoR8e6CojXCZWUAHztpBiv0mfzDOJMJohEZLukWdlzqiENAxh3LYjHnM8YVh7px2VHlxC2NA5EFWE58gLXbFonUt+9qz4M7mFjaJEAaOUxurLygRrUsQEtH8Sbt+9G+nEMA3oDj/sygrMxIJ9EwxuRnfyZY3kzKyrLQyl5TaZV+PFYqa88B71ZcccjFxWVcoFdt7Bb0urW6mTxhX1wbZA5SKGBmHuLZG1JKnt5czWHBRnBaqIIdJJiUXuQgxSHLkvznTz/lMH0jm4/4Ds/N/R5bE07WxyjlDjXc/2W0dXfgf+tO1H9cgP6Xc9D2vgy7Xx3U8eKNdknNgtmzKAqPzEyui8uw4o1AuoX5wY4WuSXCKR/o9MAR8KrUyjw88ZrsnbupEtm4mwPNSQrHqDhkB1JrdsC+QzJpf555eigrK8nx00wQvdUtK+vMljdeJihSNBQdSWPauT3vRRzaUNnE1lfu50x1LZ5Tb4TJR2VlDB2z/CM7WWG88zSzzJ3kW41dwqjBDneeNzGHypQfesipMo2RdQ6BnYHz+TPn823jOm6e/TfMy/7VbZvSHB+V0nETRfdmdNxY3LkPGMGvZbwwpzTCksm5vJCYhXLgLUg2oVSuQc55DyAxX/tDj/vFUwZ+kUYMo3OoWtrdycoN5+fcR+YQgK9NHMokv7Ltb3GMlRNnitCca1YfWUBpw+rIHBqkiOdRlQ4nfsoNpR4KWROHhBDlQojnhRCbhRAbhRCfc5YvFUK8LoRYL4RYI4Q4OlvndHFxefeg3vchrCe+0WXZ5qoW8rAvOFHCWELLiji09UALFQ0JykUdSl5He9qIXyOBd9DdXP75/Douqr2V6pzFLLngM0wpCFKVUO2VoxCit+71ZynY/Sg3Gxdx08IHOZCzGK1+K9LjH3Sb6be2vAPA8YcvyOJIXVxGkXAxIh1jkdiBJW1nRqlosku8FLV9s4CTOaTqrT0G5w4G+diXkHd/iKqmBHme9Jh8QLADqT1dPnvTTrCu199dHCqO+GiSISy3W1kX2rpxpSctpyHlOIB6KCuzLMlN97/Mj7x/xcibgVj+yayNoV0cGmHnULzqHfbLAiyhQuGsbusXTMxhd9xndyM9qCW2bBMlhylTpjc+ftIMvn7uPC497xy0qd2z9Eojfiplkf2mqSKjYybaxSHXOdQTVy+fyhOtMxGWgfn8TxFGnB/vW0Tr1DMRG+7rMaMr5gRSi2HK7MkLeqnCFofmCOfn3I9zKNBWVpaBCCva/hbH4MRAJrR3rOzja011zhwagjBqeJzvUaq57w1d+iSbziED+KKUcj6wHPi0EGIB8HPge1LKpcC3nfcuLi4uA0Ikm6H67S7Ltla3MCNsP5BEZQhL0YZuJ43uZd8zt6FgEUlVQ35He9qQz0MSL0ofORC9sbmqGd+L3ydPxCi96hZQFKYUBonh3ASOpHPIsqh9+tcUPv5JGkUulfM/yq2r6jnxwOc4KfVrErmz7ZvwQfDOTjsYcsGs7jf4Li7jktlnA7Cg8bn2MhEf6W4PcAGvSo3Ms9845ZVDJlaPOLCBuqZWctQUaGPvAaEtkLqzyyWdsD/P1B7KykI+Dy0ijBikAH0okjJMAo3v0KQVE8ifSGOqd+fQ/au28fmab1GqtOC57M9ZdZm0P0CPhHOoYRfWK78FKfFGd/C0eSTN16+HIz7YbdP5EyPUGkE7LPuga1N7EPoIZ3GpiuDjJ81kUl7PToe8oEZKDZNUwxDNTBxKJtsyh1znUE9csKSMLYEj2K3NRF15CwAPNkzlEWMZSuwA7FvVbZ942iBAetjEoRy/h1pHHJqnVCCF2q+IHwjbjnGZwX2fYjjbaMMz/uFGtF0D+vhas9GtDCClOU78Qd6/uthkTRySUlZJKd9wXrcAm4FJgATaeqTmAvt7PoKLy9Coa01hWSPfftVlhDBTKI07u5QubK1uYW6O3eUrShhDeIbsHDKf+jZnbP8hl06osbvFdHIOBTWVJD40KzmgVr9J3eT2f/2X9yvPkzzyE4gJiwAoLwgSlyMkDrUcwPrTGdCwC7npAYpf/S7NhEhf8Ee+8d5jmJgbYNaEAvbKUloIIgcxq7+vMU68oQpDeBH9zJy5uIwbSuZjFMxGlQYVspgW6dy8HnSzPrc0Qg1OC+5stbPXYwhLZ4JeYbey70FsGW38mkoKDWF1fPaaKfshV/RSIpBUI3jS7g18G29WNDGRWsyccorCPrtMD7qJQ9F4mvQT32aJshPxvr/ApCOzOg7hHUC5y1BZewfKM9/mycf/h9+KkT9lAXmlU7q48dqYPzGHRum4LQ4qLZOG83s3ws6h/hBCUJLjo14tQWZQVpYyzI5OqK5zqEf8msr7l8/gC63XALCPUpYtXsDPd07FUrxYPQSWx9O28NBTOH42EEKQCkwAYLKos11D/WR/hR1xKJXov/xJbQutHoOu0UzwtDme+nAjdikrG4Iwmtac+84eyk9dMmdYMoeEENOAw4GVwA3AL4QQFcBNwNd62efjTtnZmtra2uEYlsshzMb9TRz7k2d56E1XezxkMVIIaUL9NsApW6jdyrSQfUFpkmEM4R2aONRSjbL5YQCuDK+3l+V1OIcURWAozk3bAFr9/vKprZzY9CBpLYfQWd9sXz6lIEgc50I43Db+ipUolathy6NsWvkUcelj/dn3UnrEeeQGNJ794sk88pkTCGgq9WZwUDMvb1Y0USyimKHiIQejuriMGYRALLgIgCpZSAtt4lDXB7j8kJdQ0WT7TUuW2tk7ovEiZReF8R0IJxx/LGFnDnkQnT57DUcc6i0/Qtdy8OluLkQbK3bUUybqCJdMpyjsI9WLOHTXvf/lSh7nwPxrURecn/VxqP7+80GyhTywEYDWFXcAcN4pJ/W67ZzSCM3CGdtBnb/09kBqjbHGhBw/1aIEmUFZWWNMx8fQ2nm/G7juuGnMPvJ0Xp3+WUKnf4kbz5lHswyyLbwMufmhbhN3sZRBQKRRe8g/yxa+UA7N0jl+BhNj4Yi9TTKWgThkju+yMtXJV7L66PKbNq1Ov/uDF/F0X579whWHhkTWxSEhRBi4D7hBStkMfBL4vJSyHPg88Jee9pNS3i6lPEpKeVRxcXFPm7i49IhlSb7zwNt8SfyTJc9fi/nUt/vcXq95h3RDz10NXMYwbTfJNZsBiD7/Wx7SbmS6WmvbeH0RDDyDLiuTUnLvn36IkAaWFCxsftFe0UkcAuw8HuixBam1/y2o39GxINHIqqfu5o6Xt/EebT2eBeeDr2P2pzDkxcqgzWdWaNwNQP3mF9D3rGJvYC5XLZ/RvtqvqaiKYM6ECNVp36DEoWgiTTFNECrJ1qhdXMYE6sKLAahVi2mWzk16D/b3mdPtckqjOTviUFvZweXqC3iNVphxalaOm028qoKOhtJJHDLbypJ6KREwfbkErK4PRtbGB961N/Urd9RQJhrwFk6lOOK1M5ygS+bQq9vrOHz7zTRoEym95CfDMo72MsARKCtrE4feo6y0z108u9dt/ZpKONd5Nuj0O2JaEqvNTTwGS7FKc/zssQoRGYhD9bFUxwOy6xzqlfyQl5+9bzHHX/sD8k/8OOUFQS5aWsZfo0tRm/fBjue6bB93Mod66pyYzTFVOaHUsp829gB5kSCGVEgl+hdhNaPNOTQ+xSHNb9/zmsnev9aUbuEXaaSi9egczBSrTRyKu50wh0JWxSEhhIYtDP1LSvk/Z/G1QNvrewA3kNolqzz4ZiWpinV8wvMok1veRHn77j63V+//GNz/iREanUtWsEzbNQTIA5t5YF0lB95+Dp8wmFS/AgJ55AS83UJRB8Lm/c0c2/QYb/mPJBqahrd5j70ir7zLdrLtYacHcYiHPo354GeQUvLvlzey97dnc/RrH+PmvH8TsFpRHPdBG0IICvKcMpQREoc8FSs4TNnD9KWnoCjd3T3zJ0SoiGuDCqSOxnWKRROenNIhDtbFZYxRuhD93F+zJv/8Ts6h7sLH4XOmkZIaNZV7snLatPPwcLSyFYmAGadk5bjZRAiBqXhRrQ4hw2p3DvX8kCsD+YRla8csf+NulHuuRb78q+Ee7pjDMC0qKnbhwYTcyRSGfHaGE7Q7VGMpg2/cs5alyg7CR1w6bA+KHr9TujUMZWVW/S6stg51iUaUFtvpHRQpe9Ilt7yPvSG30LmuJDoe/JoSOlqboDLGysoASnJ87EgXIFIt0E+pdn1rupM4NPa+lrHMJ0+eyf3po2nWijFe/EWXdQ2xNAHSKMNUVgaQH9Q4IO17uUxK6vNDPuL42j/fe8O0JF5rfJeVBf1eEtKL3oc41O4cGuLvfbsw9y6dZMgW2exWJrBdQZullJ2v7vuBk53XpwHbsnVOFxeAv7+2h/NzdwKwLXJM/86RRCPavtcg5rbRHTd0stan9m/gi/espzxmzzp6m3eDP5+cgEZaqoMWh1ave4NJop5pJ1xB/iy784gMT+x+sdJ6dw6JeANK5Rp+99QGCp/6LGXJbRxQSjg7+QRSC/X4YFdUUGi/GGYbv3TEoVxa0TDwTT2mx+3mTYhwQA8gjGSXfKdMiMbTFIkm1JwJQx2ui8vYQgi0oz9MpHQaLbQ5h7oLH0fPKOQAeURrMgug7RPZ6cEAsCYshmDB0I87DFiKF9XquPaabZ+PvZQIpAtm48HiwOt3AVD7jh0km37rfwPKczsUaEkalJg19pu8KRRFOmcO2dezN/dFyWveghcDby+f3dnA0zbLn6Vue13475WYfz4Tks28ufY1AF635gMgC2aA0vcjSTjfcaR2evBrjKfxYucOjnQgdSaU5vjZqTt/s/3kDjXE0p06NrnOoYEwuzTCqYdN5hb9PDwVK2DPa+3rDkRb0IQ5rIHOE3L81Kl2ZzrRTxt7gIKQlwQ+jD4EE7DzKoPCuf8dpkDt4SagqcTxYfXxmdKeOTSEMGoAnz9IAp8rDg2RbDqHjgeuAU5z2tavF0KcC3wM+KUQ4k3gx8DHs3hOl3c5O2pbWV8R5azwDirERGrUkn7FAaEnENLC2vr4CI3SZch0yvfRqzcyRVaRJzo5bQL55AY8pKWn/WZ6oDRstsvIcuaciJi41F6YP6X7hm0X6J5mVlMtCDPFzhf/zdnqGjjhi5Re928kAjn7rB5n0fNzwpgow2rjf2tflMbKd9jK9I6Fk7u33gU7+LO57eF3gKVlTbEkBaLFLStzOWT5yAnTmT5pIkCP3W9yAxpN2gSUxl1DP5mRREHS7LEfLpWZpw39mMOEpXhRZafP3jZxqJeb/SVnf5itcgrKM9/m5qc2cPcjjwLga91H4/buHYcOZVpTBpNEnf0mt5yQV+2YlHCufa1Jg8MVZ261l8/ubOAPBLGkQE9k38kqWqrQojuI3fURHnryKQD+p9qdAEVR7yVlbeQXFGFJQaqlrn1ZNK53iENj0DlUmuPraGe/7Unid1xKbMNjtG56iubnf0O6qaZ92/pY2u6CCK5zaBB8/KQZ3JE8mYSWh7ny9vblDVGnrfkQsmz64zOnz+akI5fYbzJyDnlJSB9mHzk8YItDIZz733FaVhb0eohLf59fa8owCYj0kLO2gj6VJsL9uvRc+iab3cpekVIKKeViKeVS599jzvIjpZRLpJTHSCnXZuucLi73v1GJKiymtLzJJu8iEqYCltH3Ts5DvbHpkREYoUtWaBP8ImVEEpVcErJb2ssJiwEQwXxyAxrJQTqHqpoSTGhaT9KTA0VzwRGHxEF5QwBK2w3GwYHUUiJTdobGD0L3AOA5/EooX4a86h6Us37Q47kjAS9x6RvWsrKfPLqBcGI/L1qLSPsLsXKnQKTn0q95E3I6MlUGKA6ZrXWoWBB2xSGXQ5Ml5Xnt4lCvs/uTjmC6sYONe4bWzr4to6EifzkSgZh37pCON5yYalfnEEbfzqGSvDBblnyNYvMADS/eysk51SSCZehS5f5/3cxpv3yBrfd+D+PRLw9pXC1JnT++sIPTbnqBK379COkdL4PZzz3CCBNLG3aXI4C8coQQhIKO8Ohcz1pTBkuVHaRDZZAzcdjGEvJrxPFhZNs5ZJmQbMLKm05o11N8QnkA3ZvHD77yZaQvBzFxSb+HKM0L0UyQRFNH05poPI23zW2jjj3n0PyJOVRhi0PyhZ8S3P0MoXuvJHz3ZeS8+B3Um5fS8uxNSFOnvjVF0HUODZojpuQzpbSQF5XliG1PtTufG5uGXxwqCvsoKnMm3zJwDkV8HhLC128r+6RhEWwTh7TxKg7ZziHZj3MoIIwh/96HvB6iMoRMuJlDQ8Ez2gNwcRkshmlx/7pKrpgaQ62Osj1vMRP1ir7FASlBjyMReHY9R1O0jpzcQoTbWWls45SVpeddiLLqdj5l/gvpDSOWXgVPvAWBfHJMjZSlIs00A/1pPrelhmOUrehly/ArCkxcjFS9Pc5mKr05h/Q4ChYAOXotZuki1MKZ9j5zzuz13BG/hxh+AsmWYftAbj6wF68w+fiFp2Pqx4PSe1eX3KAG/hywGHDukIg5s6CuOORyKNM2M9xLmcKMI07Ht+fvvPLKsxw29apBnybaFKUQiJYcg7j2dxAew806VK+d/SIlCIHSVpLaxwPZ2Re8n51bf8snw6sopAkx8yQaa6u5tOYVNlrLmfn2b/AIC479FBRM7/U4piXZuL+JtGFhSdjXGOfZLTU0J3Q2VDbRGNf5Tc5/uTj9ENwJvPdPsPjyLH8DBk/McQ6lvXl4HXdAKBSGFB3OoZTBKWIbRtlyhlMCCfk8JPDh7afcZcAkmxBIxDEf440X7ueI1GqsiSegBcLwf6sh0H+55MTcAI0yTKil48Gv0XEOSUVD9FOWNhrMm5DDVy89kcTDXgJWmtSp3yXlzQfNj1YyD+u5HxF5+QckN9zNFO+5WForSFxxaBAIIbjy6Cn859ElnON9Ana9SGrGGcTjLeBjyCVL/RIps//PwDkkhEBXAnj6cYwndZOQSGIqGuoYLJvMhIBXJUHfQljKsAgo6SH/3ge9HhqtMDLeOODnAJcOxt4nqYtLhvxvXSWV0QQfmGBnO+yNHEHcUBCW0XtmgZlGSIsDZWcgjTQv/vJqfvr45hEctcugcAS/N63p3GpegEfqyElHwmQn3z5gO4cSljqobmXrt+5glrKf8OwT7AW+COJjz8HyT3bbtr3jxUF5PEbcdtmkFfuBUTnskozOneP3EJP+fmvPB0t9a4pIstJ+kz8Ndfn1KEd/pM99fBEnB2mAziEt4czoht1AapdDGH+O/X8vFvjQzGMBaHnnVeLpwbtUGqN2bkIwnDO2hSFAtpX0OJ/VwmwrK+v9Zt+vqcw45VqKW7eitFYjJiyh4ILvExFxbop/k5TwY0rB/udu7fPcd62u4MKbX+UPt9/CH/50K1+7ezVrdtVzYuP9/MX/G1Ysf52L0w/xnP8MEvjQ967JytecLWIpkzJRRzo8qX1ZTti5zjgTI2bLAaYotWhThq+kDCDkVYnLvvNBBoUz0dAsIlzffB2tngKUKU52UmRCRnlBE3P9NBHG7JQXGY2n8aKPSddQG+87qpxUeDIVVjGf23U08QVXkHPUFQSmLCX0oXuIXfRXEIIrDvyaq+Qj9t+SO2E5KC45fBJrlUUklBDWpoc40JQi0FaqN4zOIQBy2sShvIw2N9QAitG/OBQkiekZn3lDYDuHWmTADmXvBds5pA/dOeRTiRLCcruVDQlXHHIZlyR1k988/Q6LJ+cyt+YJzMLZ6JFJxEzngtqbQOC4Pe6qLecO31VcqK7AfOOfyHdZAOa4w7lBfmprlIdzr0afciLKwkthwkJkIB/yp5MT0EhaKnKAmUOWJdF3rQBATDm2Y8WEReCLdNve4+vZOdTYaF+M9padjdSCiEWXZnT+iGPjH5YAUGBbTSvlwnH05E/LaJ9AjjOLO0BxyJtybtpd55DLoUzbzHBvM9HhEuKhcg6ztvLIm4Nvad/UFLUPF+l/JnrUaXu4N5JIKVHbym77C4E97BK7CxvAxMVQdjhcfBtIiXXqN3ldW4b37f+wqaKu10O8uqOO88Pv8DfvL/i792dsDH2Klwt+yMdb/8jS1Fomrv8dxpQTCL7vFrZY5UR3vZGFLzh7tDmHrJyObl3BYFdxyB/dAYBn4qJhHUvQ66GeHIjV9r/xQHACYv+7oYUamUf1h1bAqd8Y0CFKc/xEZRiR7AibjcZ1fMIYk2HUnYlc8WfWHv9Hntwa5fifPccn/7mW13bUIaUkdPil+P5vBV/M/Q1PBM7DPPza0R7uuCUv6OXMReU8ax6O3PIo+xtb7KBjGNZAagCK52It+xjM7t0p3hnTE8BjJrBiDV2arnQmqVsESWGNc3EoShg1Fe11m7Rh4Rf60DOHvB4aZXhQ3XZdOnDFIZdxyd9f283+piQ/WJZG3b8GZdlHyfFrxAznV9rqTRyyZzOr4gpz3vcdaiPzuTT9EJuqmkdo5C6Dwrlw7mjQ+fAp89A+/AgceS14fIjProNlHyU3oKHjwerlItsbm6ubmadvwhSa/WDSD5rfvkhb6YPFIVsYaZl2DuJrlRkLMWGfhzh+rGFyDm2raWWKqEEKFXImZ7RPTr7tUpAD6PggpSSUdh7g3EBql0MZX5tzqPeZaO/05RynbmHZE+djPP61QZ2mpdm+LuXmjANxqM05ZKRJGRZe0lgooPZewgpAzkSsKcfbryfYwoey8GLEV3YSOfnTzD//BopEEy///TtE492Ffykl7+zaww/kzZgFs0lf/h/0hZcj9ATGiV9B+epOjEv+hOeKO1lYXsgmayqRpi1jqiNaa1JnkqhD5HV8Pnt9zkOSaV/P2pylos21NkyEfR6qZAFa6+BFzR5xriVP7Ejz5bPnMmvyBFDUAR3C61GIe3LRUh2TFo3xNGGPNSbDqDujlh/JxWefyYtfOpWPnjCdFTvruepPKznvd6/wvzf2oVuw1pjGo1O+jOf8X/R/QJdeufLoKTyoH42abERue5oAzj3hEIWHflE1lPNugrweGpn0hBbEa8bhj8fCCz/tcZOUbhIUSazhFraGkYDXQ1SG0dK9TzamnG5lYojurvKCAE2EEYnGMfUZP95wxSGXcce+xji/eWYbp88rYWHlPVhaELH0SsI+DzGjzTnUs3ukLS2/vKSQE+eU4l/2QeYrFby55rUet3cZIzg3yKFgkIsPn9R1XSAfVI8jDqlYA3QOrdhRzzJlK+nSJRndPGgBu9WvnuoqDjVFbXEoJ6+g35a8nYn4PcMaSL2tupml6m5k7mRQM0s1Kii0xaFUa+biUDxtUiCj6EoAfOFBjdXFZVzQVjbQx42sZ+pycmlhurkbseYv0GZzjzdgbno4o9PEWu2b6dy8/KGMdkQQbd2VzBTxtImfNIbqz6g8Rj39m5gnftX+LG8jaLsXC5acS9208/mY/i+++JNfcsJPn6Xl9nORj30FgH2NCY6PP0e+WYd66W14F5xL4JLfon12FZ7TvwHeEJ4ll0OwgLDPww51On6jBZoqsv49GCypeAshkULpFDSt+doaH9jXM7NtMmKYHxKDPpUqWYg/UZ3Vh6u6Wjuc/cTFs/jUKTMHfRzTl4vf6HjIjMZ1wqo55p1DbUwpDPK1c+fz+tdO56fvXUTatPjC3W9y4s+fY380SWFofHwdY5ll0/LZU3A8UZFH8fZ77C5YMPzOoYHiDTJR1qC0VmPt67lXU9IwCZFCjtMwaoCgptJIGK/eDJbV4zYpw8KHPuQufcfPLEIJFqBa6X7Dvl16xxWHXMYVUkq+9cAGhIAfnlmKsvE+WPx+8OcS8XtISefht5duJG/vsmfDjpljCwyRIy7DREHb/L8RGb/L4GhptT/kT5g3CZ+n59nGnICHNJ4Bl5WteqeSxcou/DOOz2h7X8C+SKeTXS88sWb74S8/v3BA54/4NWL4EfrwXMim7fo3J4r1sOTKjPcpzc8lIb3Eor2XchxMNKFTJJpI+gb29bu4jDv8/TuHWHQ5tcu+xIeMr6GaKeT6f9vLX/sd6t1Xw4FN/Z4m3mo7h3yB7uWtYw3RJqwbKeJpgwApLDXDmfqpx6Ke/vVeDiwouup2WvPm8FvfbZyYfI7I/leRW+xuo2v2NDBT7Mfw5kLZEf2e6kBwjv2iekNmYxsB0o4ryBvocAUFvPb9jOVk28m2NtDDnJvS5hzymImslmas2GiXxV19ypIhNQCRgQJCMoaVbAEjTTSRJqgaY945dDB+TeWKo6fw1A0nccd1y5hTGiFtWkwrHGMCxjhECMHlx8zgbv14ptW/zCyfM8k13JlDA0Tt3Jq+bmuP2yR1i6BIgnf8TrgFvCpNMmw3bEn17B5KmxY+0kMODVcUwZLZ0wBY/86uIR3r3YwrDrmMK255YQfPb63ly2fPpXTjn8HSUY77DGA/ZBs4wkEvZWWvbN4LwOLpzgxduJi9ecdwbPw5mhMDK0dyGTk27LXzDw6fMaHXbXIDGrr0IAfQyr4lqRPfvRoNAzH12P53APwB++bNSHZ1DsVbovY48vrvutIZ2znkRxzc/SwbNO7hg023siF8HMrJX814t7I8P80ESbVmHuoXjacppgk9MLaDc11chkx/mUMA/hyKz/sWuQvPZh1zMVf/1c7R2fECAHLDff2eJhV3Ajy9Y/+BUfF0BFLH0yZ+oWNl64HdGyLnyr8QMpv5EbfY52uuhKZ9rN7dyCz1AErRrIxcSq25c7AQUP12dsaWBfSE/XP2BDoeAINelRQaRps4NFLOIa/tHAKgqTIrx2yIpdmx13ZqFRf3fg3PBDVku8usW47FvO+jNMZ0gsr4cQ4djKIITplbwp0fOYZVXz+dDyyfOtpDOiR47xGTeUCeggeT9yvP2QuHu1vZAFH9HeKQ0lrdY8ZjUjcJkUR4x69zyOdRiOJ8tvUSFJ3STVscykLp3+FzZwDw2Gq32dBgccUhl1Hh7jUVfO/hjf1vKCVmwv7AfH5rDTc9tZULl5TxocPzYM1fsOZfDE678Ijfg97uHOouECR1kzd32s4hb6ebsKYpZzJZ1BHd76rMY5VNFXag8qwJvQsvOX47c0gMoFvZkxsPsNjaYr8pPyajfQL+ALpUMVJdnT4ppwREDQwsHyTHCaRW++laMRhaNz6OB4tNC78yoFK3srwAzTKEHsu8rCwat51D0g2jdjnUiUxE+vParz19ccWyKfw9fTqexh2w6QFE1XoArLfv67dsJ51oE4fG/oOBorVlDqWIpQz8pJDZfBibsAh53GdRsHjIcxYA6d2v8+r2OuZ4qlCKZmd0mLy8PPaJicjqt7I3tiHSnifU6ecc8HpIo2Gmna5vbZMHwywUBr0eqqVznW3en5Vjvr6znrDVgukJDVnE8UXsyQdPcwXKtqeJx1rxK2M/cygTSnL8aKr7WJYNCkJeZi5cxnprJnPM7fbCMeYcKsq3hc6Y3xFM67Z12yapWwRIIcZxqb4QgqTHuS9ORHvcJm1aeOXQW9lDR7fdLTv30hQfePdiF1ccchkFovE0P3n4LbTVt2H89kioerP3jXc+j3LTLPZte5PP/mcd8ybk8LNLF2M+9yOUdCvqSV9s3zTi96C3OYd6KCtbu6cR6QRSd75IKAXTAIjX7xny1+aSfQzTYtt+O89H6WNWoS2QWvQWRt4DD66v5ATfNszCOe0ZF/0R9nlI4O0mDrWJmD11OOvzeH47kFozsyQOtdZi/noRbH6EXSsfZp8sYsHC/oO2O1Mc9tFMCJmIoq/6K0T39rtPNK5TLKIobht7l0Mdfw7ixj0w6/R+N10+o4BN+afSJHLQH/4iAglLr0aN7oL96/rc12jrYDgO8ibaPpstPUksZWcOZVUcApTTvoH1gfvxnn8TCenlqSceoqa+gUKzDopmZXSM0hw/m83JyNqeyzhGA7OtRLnTzzmg2c4hM207moXRdu8yvOKQqggaPI7A37wvK8dsSujkEkP6hx6sHsizry/xokUII87M5Nv4Ff2QEIdcssuVR5dzj3lyx4IxJg6VFdsixkOes+0FPXwmJXWTkEii+Mb+NaAvOsShnp1DaaeJQTbEobbsupDVwsNvZUfgfrfhikMuI87tL+3kU+Y/+brydzyN2/u2dx/YiDDTPHPPH/EogtuvORLf5vvwrPkTxtHXw4SF7Zva4lDvzqGWpNGpa0HHB62/0Lbx6vVjJ6DykKFi1ZBnH9/cF8V0rPV9hdUFfXbmUKbiUE1zkuSOVznGehNmnpbxeIJelSQ+rLYZXQcz2Uxa+PrvznMQqiLQlQCqNNrDR4eC9fofUZv2En38+0xtfoP60hNYODlvQMdQFEHaE2Fiywa0xz6PfPV3/e7TFItRIFrRcodWNuDicighhOCyY2bxH/0ktGQ9CeEndeq3kIpmu4d6QUqJTMUwhWdclMx4HHFITyWpbk7iJ43qz7KQoWoos0/j7CVT2OGdy+TYBj4w27TXFWYmDpVEfFRZedB6ILtjGwKyTQTs5BwKelXS0oPlTGipRgJdeAfc4WswJLyFdqe5LJWVtSR18kSsa+D4IMmbfwpf1j/O36b/Eql6OcZaj08YiHHwN+Iyshw7oxBtyfswFee+cYyJQ6J4LjGtgF/WLcdSvD3mDiUNkyApVP/4dQ4BpL1t4lDPbnRd123nUDZcss7nzNGROqpf/ZfbtWwQuOKQy4jSnNS547VdXOBZyRrLCYbUE71uH6+zBZvjUi9z2zVHUa7UwSOfw5i8HM/ZP+yybX+ZQynDJCDaxKGOi0S4dJq9yxjqXnJIYJnIf1wML/9qSIfZ15jAi+ME60Mc8nsUdDyoGYpD697ZyW+135MMTUI9rZcw1B4I+zwkpdatlb1It5BSB3dhM9tmg4caSp1shtV/wvQXkNe8lRwR57ATLxrUoQxvDj5pi3LWzhfAMjFe/jU099ziON1kl/758lxxyMWlM9ceN43DL/k8ACuMeVz/v73sLTge8+37eu3e0pw08FpJDHVsPdD0hsdrfzan0wkqGxMERBqvb3hcLkIIJhx2EguV3Xz2MOf+IVNxKMdPjcxDSTX3ee8xkrR31elUMmY7h7xYun3PopoJDGVk3DEBv4+oWohszo441JwwyBOtKKGB5fH1xGFTirGWXM2vXq2nvuAITlbexIcx5C5HLoceQgi+e/nxMP8CpKJlx5WSTWadTuv/baJB5FLnm4xV04M4lLYzh9RxXFYGkPbm2S96yRwShjMBnA0Bz6kCuDb9H77U8jMqN74y9GO+y3DFIZcR5YkN1UzW9zCBeh4znYyXtg+Fg9hc1cyK9baraI7Yx9HhWoyH7TIyz/v+1M2h0bWsrLtAkDYsAnRvaZmfl09UhlCzdCPkYlth31i32u7A1dKzmJAp6bYWlwBq77ODHlXBEh4UTLDMfo8bqXyVMtFA4+m/6AiYzYCQz0MCH+gdv7eJtInPjGNog7uAW21OtsG23jRSxJ/4Lq23nYWSaubrvhtplBEkAs/MUwZ3zEAeADJYiFq/DdbegefZ78LaO3rc3GyuBnCdQy4uB+H1KBxz5FEY5/6apqM/z0vb6vjl/oVosSoa1z+E8c/LYXfXG9jaliQhkliesR9GDfbnBIDRVMX+aIKwYqAOYz5O0eKz8GCSs+YP9oKCGRntVxrxUUue/aalengGN0BkW55Q57Iyr+p030xiWhLNHDmh8PhZRewx8kg3ZGfCrCWpU6DEUJxrylD59gULKA77+EfdbOYq+4gk9vV5b+Dy7kZ9z0+RV96VUWD9SFOaG+CchRNYnyjB6qGszEzFUYQc15lDAJavb+eQks2yWS2A9PhRpf0cUPPSX4d+zHcZrjjkMqI8tH4/7w3bQdRPmkfZC3sRh75x/9sUWfUk82YhEeh/PQ/Pjqfg1G9C3pRu20ecQGKgZ3HItDqVlXXcZAW8KlUU4Yu5tanZ4s8v7+SO+x4GQMYyb4feE2nTwtsmDvUzOygV5wYxg1DqtrKwUElmDxVthLwekng7AkKB6uYkEeLIQbYbbQ8iHYw4lGol9Y/3EXz91+yISn5gXM2j0WnsXvpFzGUfyzhL6WCUsB38WXvSTwGQT30LAHPPa/YGB1t1W23nEG7mkItLj3iO/jCXXHAxW35wDtdedz0J6SX00EfxbH8Sa80dXbatjCYJitS4CKMGMPOmEpc+RPUGKqMJwmp6eMs4pp+MWboY6rYiI2UZf59Kc/zUSKe8aYyUlintzqGuZWUpNKSRIpY2CIgU5giJQx8+YTqVVgGx2v6z5jKhJWmQS3bKysDOF/zppYv4Z+J4NlvlePVmVxxy6Z1wMcrs/vPhRotPnTKLTUYZanQ3iVdv7eImtdpLTse3OFRWEKaZUK+ZQ9nOVJM5k0mVn8irwdOYXfMEVmqIrvx3Ga445DJi1DQneW1HHecGNpAuWkAlxVhC7eLA6Ex9LE25pxH/lKNIHfNZUiVLSZ34NZTl1/e4fVBTMfvIHErpFgHhLD/IXlqvFhNMjo0bxfGOlJL711WyQHECvmO1QzpeSrc6ysr6CZ2UbW6yDNrZm4YtFPoDA7MaB30qSbyITiUJ1U1JwiKB4s8Z0LHaaJ8VSrcOfOcVN+Pd+zL3lX+DixLf5swPf58N3zubwy/5PJ7zfjGo8QDMOPcGruN7XPd6Kbq/EKHHkN4wSuUaqNmM/PGkLm4HNe78nENuK3sXl77QVIUjZ5cTLT8dLzoxXwnseLaL43FvQ5zAOMqa8GletspylNqNVEYTBIQ+vOKQEKgnf9l+nWFJGUBJjo8amWe/GSPOIWF070QW0FTSUkPqKVqTBn7SWCOUmTKzOIyWX04gWU0y3b25x0BpTqTJoTVr4hDAKXNLOPvow7g0/T0OzLoC5p2XtWO7uIwkCyflsmPalaxkIYGnv4r5Ysd9WyLmdKwc5iD64WbBxBwarRDplvoe13vM7s2ChoJ17aNo19wDh19DmDg7XvpvVo77bsEVh1xGjIffqiJfNjG55S20OWfiVRV04evVOZRM6eQa9ZBThv893yd83b34Tr+x10BGRRHtuQc9ZQ6lTctur6sFu7X1jmql5OqHtjgkpYR0vFcxLlts3N/MjtoYi9TsiENp08IrdKRQQfX0vbGauXPIdLIcfN6BXYw0VSGFD2F2fB/3NsSIkMAbHFw3FqVdHBr47Ia15zUaInP44rbD+NBx01g+o3BQYziYiRMncfX7r2RjdSuPx+ZgoBA//qsIPY718OfsksHtz7Rvryacn7Pbyt7FJSMmvO8X/Dbny/zUuAol0dCle9m+hjhhJYk2TsShgFdlkzWVQP0mKqNxfAyzcwhg3vmY005CzD4z412CXg9xb5H9Zow4h9T2B6OuZWUpNISZIpYyCJJCjmCJ4cyZcwiQ5rXVq4Z8rGQyZrt/sygOAXzngsP41dXHU/KBW2HR+7J6bBeXkeTaM47iiuSN7Co4EbHyj/a9OlDX4DhtxomDtDcWlOXQSJhYtKbH9R6rLXMoO59xntwJKN4AR5x0ARWyBLnuX1k57rsFVxxyGRGklNy1ei/fzXsMgUQc8UGKIz7SwttrKGRAb0TFhJyyjM/jaxOHeskcCpKCHtrrtvonELZaIDUI58Y44I29jRz5w2eI/f1yeOgzw3quB9dXoqlwhNfOKxCpZnBcOoPBbnGZYeDkAJxDltMZTNEGbkdPqkF8enP7+521McIigT+SN+BjAXjaHgDTA2xnb1mYFWt5MjqZk+cU8/Vz5w/q/L1x+vxSHvj08ShnfItP6F/iN9WLAFAqVgJgVqwG7LB3q+UASSU05jqCuLiMVUReOcdc/Ekejs23u0Nte6p93d6GOLmq3lFyOsbxexQ2yyloejNFRi1eKzn8AbCKgvqhh+H4zw5oNy1ShIk6ZpxDmhHHEN4ukx8BTSXtiEMtKbusTIzgZ+u05RfRQpClz12D7CELZSCIRNR+4c8b8rg649dUzlk4ATEGs2RcXAbCUdMKOGZ6IT9tPgcl2Yi17l9IKYlGnYyecV5WNn9iDk0yjN7avazMsiSa6TwjZDmnLuDT2FRyAXPia0nU7Mx4P+v5n6I//o13baczVxxyGRHW7mkkXrOTc1OPYy65GopmURzxkULrVTjINRwnwgDEIa+vd3EoZZgERRp6cIqkghPtF4dgKLWUku89vIlYrJXA/hVDDojuiz31Me5aXcFFM1UCeiNbpZMNNQT3UNqw8It0RpkC7e1sMxCHpOMc6q9UrSf2eKZTlN4HySYAdtTGyFWSKL7BlZV5As5+zvEypXLHW2hGK7W5i7j16iPxerL/kb60PI/zTz6e6cdewp/Xx6n22H+PsvQwlP3rwDR4e18ThTKKEXRLylxcBsLyGYUsmj2dDcxE3/JE+/KKxjg5SirrN8vDRcSvscmaCsACZQ8eKzVmheLinCCNIm9MOIdSholPJtEPyhMKej2OcyhNa9IgQArhGzmh0FM6j7/O/gPCSJJ67BtDO1ibOJRl55CLy6HE/502iydbp1GTswi54mbqW+IdHWzHySRBbxSFfSQ8uSjJ7oHUadMiILLrHOpMyYkfwpKCPc/+qd9tk7rJz5/YQvPKO9FW3sza//6Qu9dUcNfqvdy5Yjd/fnknL28bWjXEeMAVh1xGhFXP3Mvd3h8iVA+e024EoCTiIyG9YHR3DqUNixLp1KZGJmZ8Hl+7ONRdHEgbli0O9WDNNiOT7BeHUDt7y5I8saGanz+5lTcrohwmdqNIAzkEF09fxFIGH//HWoQQfHWR7YDZHjnaWdn3h6mU0i57izd0U+rTpoVfmBk5h4TauzjY7ZxtvyMHdb3LhF3eufYLpwxkZ20LIRkHX2TAxwIwcyZjSoFZt21A+9330AMAXH7RxQS8PZdbZovPnTGbsxdM4CWOYqM1ld1zP2qXltVu5q13drBI7MSbl/nfqouLi80Xz5rL/fpytANvwo7nAahoSDiB1ONjxnjuhAh1wVlYUrBE2YFAjllx6KQ5xVSauVRX7h7toRBLmQTpHjbt1xTS0oPilJUFSKOMsFB4wgmncLd5Mt7dz/fagjoTPOmo/cIVh1xceuWEWUUsmZzHb5PnoUZ307zqv4RwRJNxLg4BqOFCfHr3CdBUl07S2b9mLFm4iDXqYgq339cl7LsnVu5q4PYXthJO7CcufRy+5ZdEHryOXQ/8iJZHv0XgyS9R9dLfsj7GsYYrDrkMO82xGNdVfAPFF8S8+qF2J1BJjo+45ekxAyehm5QKR2HOmZTxubxex8ZudQ9RTBsWIaWXHITccgCMxkNDHDItyVfue4vr/7mWP76wg8PKcjhc2e6s7N9VM1CklPzuzrv5XeMnuW/pOgpe/DpWeAKJqacCEG/s3b6f1E0+8vc1fPfWfyJ/MQuckqU20oZFQMmwrGwgziEjjYnSa4ZVX1QGnfKtyjfQTYsDDU12CeQgA6mDwRC75QSM6k0Z76ObFgWNb5FUQ0ycuWRQ5x0IEb/GrdccyXlf+isf9v6CX2y085XkW/fynpXXMkGJ4j3lS8M+DheXQ42l5XlUzb6KfbKY+KNfpymeoimh45epcRNEqiqCkxdNZ48s4QjhiNw9lHCPBT5+0gz0QDHRmgo2VzX3v8MwEksZBEUS86CfsxACU/GhWGlaUgZBkUIdQecQwBFT8lkVPt2eVNr04KCOYVmy44EwS63sXVwORYQQfPrUWfy7eSENkbkUvvFbIqItrH78i0PBnCIixEilu05Qpwyzx07S2UJRBHWzL6fYPMCetU/0ue2BpiSTRB0eYWGe8T2ajvw0Zwa3caP2X673Ps77I2/y3vJDM36kM6445DLsvPTGRgIiTXrZp9CmHdO+vCTiJ25pWD1kDiXSJhNEA5bwDKj7UcDviEM9dStrcw71MPvmzS/DlIJU/Z6MzzVWMS3JV+59i3vX7uOzp81i3YmruH/2ExwxjOLQrS/u5PA9f2Wuso9Z636MSLegXH0vU2fOA6CiontL3Je31fKtBzbwsVuf5LktB1hadTdCmtDY9WeQMkz8wsio/EsdiDhkptHpJ+C6t30D+exXJmLuW0tFQ5yA5VzAB+kcivg1tsnJULsl433qW9MsVXbQkLuwW8D6cBLya9xw1nweq/TRquYhXvsNQSPKX2b8BmadMWLjcHE5lPjuJUdwm+cDBBs2of1uEZ9R/4dmxcfVQ8G5iyayTs5mmeJk1IxR55CqCBbMmUOJiHLtX1dR0TDArLcs0tpH2LSlevFYaadbWQrNP7K/C0IIlh97CtutMlrWDK7bTyxtkI8jwAWLsjg6F5dDjzPmlzK7NIffGe8lN76Hy9UX7RXj6DrQG7lFpQDsrNjfZXna6NRJWhuer/P486+lmRD7nru9z+0ONCeZJuxy48iUpeRf+CM8X9kOX69C+VYtnq/uwHPW94dljGMJVxxyGXbWvG27IcqnTO+yvCTiIym9pJPdb8wSuslE0UDCXzygB9++MofaA6l7mInNDwepohCzfnfG5xqLGKbFl+99k/ve2Mfnz5jDDcEnyV/9G7wrb+Z09Q1no+yWlcVSBvc//xpnqWuRx30O69K/olz7MExYxPxZMwE4ULUPgO01Ldz83Da+99+XuOYvK9m27kX+Vn81dxbewblihX3AVNeZ3JRh4Rd6hyuoDxQt87IyYabtENBBMKUgwFpjOvreNeyojXXM7gwycyji97BVTsbbtCvjbnJ1LUlmi0pSRYcN6pxD4fKjyvnQcdN5PLWYfbKI96a/y8RFJ4/4OFxcDhUm5Pq57EOf45vGR9mWyucGz32olj6uHgqOnl7AGu0ovMJx7o5RcQggWDCJApox9TSX3PIaz2wanfyheNp2Bckefs6m4kWVOq1JnSCpjsYFI8jlR0/hUU4gXL0SWbmu/x0OoiVpUIDTjjvkikMuLn2hKILrT57J3xsPo4IJHK04E4bj6DrQGyXFEwDYXdG1QiNtWMPqHALIjUSomHQuR8Zf4bWNO3rdrro5yTxfnf2mYIb9v6rZpoJ3UfC9Kw65DCs1Lcn2un4RmdBlXUmOjyQaZrq7cyieNiilgVSgdEDn87SJAz2UlaVMO9i4p44f+SGNPVYpNOwa0PnGEk0JnevuWM3/3qjkxtMm86nk7SjPfAtz3oWYxfPxk8ZCZN059PCb+3mv+QQIgTjm4yiLLoVJRwAQjuSRwku0rpIHX1zFe3//HA8//Qw3bn4v/5t4J/+c+hiqgBNjT+MTjqCTauly/LRh4RuwcygDAcxMY4rBOYe+fPY89gbm409U8/qbGwjj/A4P2jnkYZs1GSEtqM8sd6gx2ohP6Gg5Ix8CrSqC7154GDM+/GfuO+FRzjv1ZM4+bEL/O7q4uPTK4vIClGXXcWPyWlThZK+Nk7IysD8XTjrncrvzGgx/t7KhELHvLV4ovoknzY+S/s/VbP7zR5EVdut2Wb0BWoc/eLQ1ZRIk2XNXOtWHJtMkkwk8wkL1jfzvQm5Ao3Xxh6mXOSQf+BxY5oD2b0kaFIkmdE84s9JwF5d3OecvLqMoEuBu/YSOhePoOtAbhRPs+I7ayq7PWaku4tDwfZ1zzvkUfqGjPf5FiNX1uM2B5iRzvbVILQThkmEby1jHFYdchpUnNlRTRNR+c1CwdHHYTxIvVg/tu5O6SaFoxhxg9yNN672sKKVb+HtxDhWEvOyVJfhaupc/jRTba1rZVFGLXPt3MAYu4Nzy/HZW7zjAs9P/xcdXnom25naMIz+GeumfUC/8PXVKEVu9C7MuDt29cgdXaC/B3HMhd3LXlUKQ0PLxN+/mjOfO517/j3hw2n14VckRjU/g2fsK4uwfEVv6Ye43j7fFmoOcQ+3iUAY3lqrWeyD5wQhLxxQDD6MG+4b5kgvfB8Cpm77FVb5X7RWDDI/N8WtslfaFk5rMSsuaG+0Hl8AoiENtHDmjlM+dOY8vnDWXoHdwQpuLi0sH/3fqLHZ5prELp0vnOJsxPufow7DKjrTfjOUHmrAtZofr1hGcsZyl3kqmVjxE7O/v5/4nn0X+6XTMO87v6rQdoDCSCTGnrEzpQfiRzjXPiDv5i6P0/bzi5EX8UP8Agdo3sd7454D2bUnqFIgWdH/BMI3OxeXQwutR+ODyqdxnnoSFQGrBQWVjjjXUMjsbU6t+o8vytrIyS9FAHb77SG3y4TxT/EGWtryE8Zeze2xTf6A5xXRRg8yf9q5yCh2MKw65DBv6a3+katNrzPK3IIXSzVKcF9ScVvbdy2jiaRP/ILpzaE5ZmWX0UFZmWk7AZ3fnUEHQy15Zii/d0M25MhLEUgbX/GUlz935Y8TDn4XdLw34GLvqYlyat42ZVY+iz7sY68PP4LngJtD8UL6MG6f+l21ialbLyjZUNlFc9SJ5shnlyGt73MaXV8ppnjcJiRRz9K34q1YjzvsV5hHXYU5YCkd9hOBFv+J72g0klVB355Bp4UVHZCAOeQZUVqYP2jkEUHbYcew94WccpW7jSh5Hn34aTFw8qGNNzPVTISZiokLt5oz2iTfZMx+hPLd9vIvLoUJJjp9vnLuAyknn2AvGmTgEIOaebb/QxrBzqGQeUgtinvcbAtf8l8iX3+T7BT8mbDRw8msfxDQN1LotvPH3L3H7SzuIPvR1rF8vBLO7K3kotDph00pPrlPVmewaZXFoZnGY6MyLeZM5WC/+rGPyatdLxP92CalbT4Wqt3rctzmpU0AzVqBwBEfs4jK+ueqYKRiRSdQVHTPouIIxR7CAA76plLW8ZXcndkibtnPo4I6NWUcIfGd9m58YV+Fp2A7N+7ttUt2cpMzajyicMbxjGeNkTaITQpQD/wAmABZwu5Tyt866zwD/BxjAo1LKr2TrvC5jFMvC88w3Wczx5IaDSKsYcZDyHfSqJKUXpYcSoETaxC90lAHa0r1eZ6ZNT3FwmkzaMG3nUA832/khL3ukbSE06nbimTT83Z86c/Pz26lrauW9vgdAALH6AR/jQEuKK8QapDeM75Lfd3Pa5Aa8xAwBSv/CSabcs6aCyzwvYYZKUWec2uM2gbyJUPsWVqAAcdHNmLtfw3P4NahHXmsr90IgsG9AW+qChHoqK0PPqKxMcX7+0kjRn+avWGnMDHKM+mLKGddTt+AcYkaSwinzBn2cwrCPcxaXs3PzRMr3byCT3/pUsy0O+XPcHAcXl0OJa46dBrM/hbztLkTBzNEezoBRl7wfY+dLeEpGPg8tYwpmIL62D49zXxLxa/zksx9B//czFGx7nHtCV2K1HOD9Ff+gdfc68tS37f1a9kPelKwNw3YOJfH0FDbtiGsyMbriEMB1J0zn13+/mDtafo588z+II6/FfOFn+KreQk03w64Xe5wcaUkazBYtiNCcURi1i8v4pDDsY+XXT0c0zsSMVjD+fUM2zUVHsHjf0+xriFFeaDvtU7otDskR6G65fEYht2tz7TdVb0JuRzds3bRoaE1Q6K9CFFwy7GMZy2TTOWQAX5RSzgeWA58WQiwQQpwKXAQsllIeBtyUxXO6jFWSUYRlUGZUUK41t1u4OxP0ekjiRe1JHNId55BvYB8Wfq8XUwoMveduZd5enEOaqqA4SvE3//YIv3r6nRHrYLK1uoU/v7yTzxWtpkw02AvjAxeHaqJxjky+jpx1Ro8lWPlBjRZDzSyPJwNShslL6zdzqrIOZemVvdtBnW5zYvZZiHnn4TnnRx0h451smzOLQzSZPkh2LyvzklkgteY4h3S9/69RsXSkMriyss4UlU0bkjDUxsdPmsl6cwbsfgUSUWSqBVK9t8zUW53fkUD+kM/t4uIyxiiajfjaPph85GiPZODkTUH90EMQGuNukYMmrIQQaOf9HOO4G7jsc7/k8m/9m8Syz3CCupEq6XwtjdntaBpLGQR6CZtWnOu43urcFwzQSZ1NTppdzL7C49mqzsJ66ZcQq0PZuwLl6I/aZS/NVT3u15w0KBDNKGHX4eriMhCEEFAwHXXGSaM9lKzhnX4s+aKVPe+82b4sbZp2WdkINDDQVIXy+cswEZiV67usq2tNMUHW45F6Rxj1u5SsiUNSyiop5RvO6xZgMzAJ+CTwUyllyllXk61zuoxhWu0f80yxnwKroVsYNYBfU0jhRbW6l5Ul0iY+dFTvAMUhTcHAg9mDOGDpKTyYvabh//r6iwFYGm7k989t48SfP89pN73Aub99mYff7G4/zAZJ3eSG/6zlq957+XTsFt6Ss+wwz0TDgI5jWpKy+CZyzQaUeef3uE1eUCNmqAjLAMsa8tif3VzDnNRGVCzE/At739ApJxRz39Pn8WYWh4lafoxEU5flKcNCw8go3FRznEN6qn9xSJW6XeM8RlhQlsNb5VfhN2PUPvwdjFtOxLzrGgBkvKGbUCTjzu+IKw65uByaDKBT51hDjNe8hrwpeM76HnhDCC1A4LwfsubiF7g6faO9PppdcaixJYZXmD2KQ8JxDpltn/Wj2P1NUQSfOHkmNyUuRG3ag3zgkwhpIuadh4xMtB1VPdAcT1NAM1rOuzfc1cXFxaZ0gS10xXesaF/W1q1MekZG/D5jyXR2WGU07FjdZXl1U5LlihPrUDz0Cd/xzLDceQghpgGHAyuBOcCJQoiVQogXhRDLetnn40KINUKINbW1w98hwmWYidniUFgkCTZt61EcEkJgqT40K9UtGCz+/+zdd5xcVfn48c+5d9r2nk1vEALpCUkogdB7bwoiRVS+iig2FEUQ/VrwZ6V9xYKAiCJdEJQeOgkJJIF00vv2Pv2e3x/3zuzs7uzuzO5szfN+vfaVmXvPPffM3MnOzjPPeU4wgo8QrrSDQyYhXESTFHRWEWdFqU5Ss905ReisIi49KMJb3z6We+bt4Vrfy0wOb6Lmsa+x5s/XpjWWVPzmpY2Mr3yNL+gniM64mHvH/5IGlZt25lB1c5Dj1AdYyoQppyRtU5DtIRybSdrbotSWxWPLdzI7y/m/WtZFyvjImeicMjjoxC67PKgslwadTai5rs32UMTCrVObVub22H9Md5c5pLXG0OHWmg6DxPWXXcAStZCytQ/grt+KseMdiISwHjgH69mvt2mrAnX2DQkOCSFEn5k3cyYNvrH2FzcZzhyqq6uzb7g7TisznExYT6i+0zb96bw5Y1iTezSb1QTUphdpdBXzj92lkDcKK0n9DoBQcx0eFcXMlenPQhzofCOnUk8eWXuXxbfFVyvrp+D3ooNL2aAm46loWydtf32Az7v+Q0vhITDuiH4Zy2CV8eCQUioXeAL4uta6AbuuURH2VLMbgUdVkq+UtNZ/1FrP11rPLyuT9NOhrCkY4b3VrUV1lRWBJMEhgKjpZIO0C1YEQwEMpdNeutXrMolgEk0yrUyFnQylLn4B6aJJ6F3vU/7gIs5a+20urbqLu5u+wVWul5i+65/4t73f6bHp2rCvkfve2sr3Cl7CKpyI64LfM+Og8VRFcwk1pBcg3V8fZLyqwJ89GrIKk7YpzHITjAeHejG1rHY71s9G0bjpbY4trkPnjux6CfeZF6O+tRF8XRfVG12YRRNZ9nSqBKGohTvVaWUeu00k1PXjC0YsPETQgyw4VJ7vY8wF/8tuXcKa0jNQkQCs/zdmxcewe3mbtmawjpDyDui3yUIIMdy5TIOTZoxlry7Bqt2W0b7r6p3AT5IpY6bzu71AOVmjA/y73uMy+OZph/EnLgLghfBsfvCvtURyRnY6rUw323/LqBzJHBLigGcY7Mybw+TmD4hG7RkMQWe1MtVP02a9LpNI+SwKIlWE61t/b6ltbzDN2E504XUH9EplkOHgkFLKjR0Yelhr/aSzeRfwpLYtwy5WLV8hDGPPrtrDi8s+aruxk+CQjmWDhP1ttocD9v30M4cMwriwkmQOmdGuM4cAVPEk1P6PMVqqiFzyEFy/Auus37H6zGdo0FnUvPybtMbTGa01t/7rY47xbmaifw3GUV8Bw+Tw8UXUkktzXZrBoYYApdSjszsPrBZmuwnhTKNKYTWvTu1cihEJsEh9xMHmPihJoWBqCtMjsj0mTToLV7jt9Ck7cyiUUuaQx2sHGyPdZA4FwlE8RAZd5hDAlFlHcvOEf/DtOvsPcJbcDoCq3QahZsCeRuiLNBB0D5NVLIQQYhCbPa6QHVYZocotGe23qbHOvuHpOK3MdDJhC7F/7w9kQeqYiw8fy+23/IDwom9xyPnfJ2ppdkUKUU37oHEf1p3zYF/C33+xLOjBXn9KCNEvopNPYAyVbN5gZ+7EMof6KzgEMGbakQCs/+DN+LZJm/9Klc4nZ/6l/TaOwSpjwSEnG+g+YJ3WOvET9NPAiU6bQwAPUJWp84rBpzEQplTVow0Xlq/Q3pikIDWAjtWRabecfSRkF4NWaS6F63ObhDHRPQ0OldrTo/SFf8A1/VwoPRhjweeYPn8x/zJOZuSu/0LdzrTGlMzOGj9Lt9Zwa+kS+zmaezkAk8tyqdV56DSnle1vDFCqGnDll3fapihxWlkPl7NvCUWo3GRnTx2bsxNfw1ZU6ZQe9dVelsekkWxc4cY20wyDEcsuEJfCUvbulINDTh0jc/DUHEp05dETWdeUTUP2eKjaAIBCQ6V9u6Y5RAFNhD2FAzhKIYQ4MEwozmanLkPV78hYn5Gohb/ZWYAhyd8l8eBQLHNoAAtSt2GYuE+5lWmz5pPnc/FRYw4qGoL1/8ao2QxbXo83dfmdP/ez5TthIQSMnncWAJUr/wNAVWOQLEK4vP03bXbWguOoI4/cN39CNNAIjfs4uO4dnnedjJFmUsJwlMnMoUXAFcCJSqmVzs+ZwF+AyUqpj4FHgKu0bldgRgwr/pBlZ7HklKGdYAt5nQQtYsGhdplDkaCzUliaSxv63CZh7cJKkhljdlNzCIAjv0z0mpcxp7UtsGwaiopDLsXEIrzhxbTGlMzO2hbKqGNS1RLUnMvBY/9SLM310GDk4wrWptXf/voApaoeT0HnwaGCLDch3btpZd95fDXrV74DwCxrLaqlGkoO7lFf7fncduaQqSNtglehSCTl4JDX+WM6WUHyRH4nc0j1cin7vnLcISMYV5zFCw0TAWgsX2jvqFgL2DWmClUTlk/qDQkhRF+bUJrDTl2G11/R4e+VnqpsCuLTznuVp+MHI3c8cyg2rWyQBIccLtPgmINLea/SeR/d9LL9r/OFBoAr4BTTzpHgkBACyiYcyh5VTvZOO4i8rbqZXCOE2Y/BIV9OAeuO/i3jozvY9IcreOfxOzCw2Dr2/H4bw2CWydXK3tJaK631LK31HOfnea11SGv9Wa31DK31PK31q5k6pxicWsIRRhgNkDMCIx4cGpW8cSwzqF0mixXyt92fInu1suSZQy6r+5pD+Aowxyetmc78eQto0V72bfko6f507Kxp4RJzCYaOoOZ/Lr5dKYXlKyYrXN+hSHdXKuubKVaNGJ0F4ej9tLLmYISX1u5jrnsHluHBE3H+YM1QcCjLbdKIc20S6g7FpwimMAXM57UDSFaSmlOJ/KEobiKoFAJOA8E0FH++cgHj5thFvB9Tp9hZdhV2La+qxhCFNGFkS3BICCH62sh8H3uV8/6agexhgL31AbKV83dJkuCQy2u/H5aag2daWXvHTy1jfbM9JS66ZQkAVsV6ACJNNYTqnQWKJXNICOHYUXgEU/wriYZDbKtqJlsF+/3325GnXMw/Cq/l0NrXOGLb79nkm8F3Lk++2vOBZuiukyoGrUAoSplRj8odgTroBKzig6CTYoQqFqiJtMscCvUwc8hlTytrnzlkWRqX5QSg0gw4xcwcW8QWPQqV8K1YT+2qaeYzrleJTjgG2k3LMnJK7ALMTn2ZVDTXVWCgIafzmkO5XhdR5QSHejCtbMmGSooiVeRaDRjTz2vdUZKZaWVuU9GsnDeHoJ1qr7XGiGU5pRDI8XlMgtqF1c3j84ejuFUENQhrDsVMHZnHked8gdfHXMv/2z6FYNEUrP125lBVk5055MqVOg5CCNHXTEMRzBtn38nQcvb76gNkE/u7pOMHI10wjog2mMIONCql98D+dsLUEdSY9vtQLDtbVW2Encswf30Qp/M2YVdOj//uEkIMP/qQU8nFz55lT7GtugUvoX4vuK+U4tNfu51d876DqTQHnfE1sjxmv45hsJLgkMg4fzhKKXZwiJkXw/UrwHQlbWvG5naG29Yc0rH7af4xlOUx7bo67VY/C0UtfDjb0gw4xRRlu9nKaHIat/bo+ET+ik8Yq6owZ17cYZ8v3/6GzWpOvTRXuGG/faOL4JBSKl6wuSdL2f/n470cmb3bvjPnM2hloJUJRRPS7quz8YVMpyinExyKWNpexh5apyB2wQ4OurrNHAo608oM9+ANDgHgzeOQT/2YiPKyPjoWKtYAsL2qmUKa8eVLcEgIIfqDq9h5r8vQimV76wPkdJE55Mkp5AM9xa6P58kZlCvojMj38dz3L7aDV0CLrxwVqEMvvw+lLQ41dkrWkBCijdHzz2O7NQLz3Ttp9AftRWeS/A7sa27TYOy5N8M31mLM/nS/n3+wkuCQyDh/KEox9fFAhWF0/gdNvPBXu8whHZ9Wln7mUASzw7SpYMTCSyzI0LNv35RSVPomUhDaB7HMph4K1e6xbyQJrOQU26nrNZXJl4ZNylkultyul4v1ONOu0g0OBcJRXl1fwdllznnGLkCXHYoumpjRos5h03lzCNjBoZCz5DyQ0rSyWHDQ6ubx2TWHwpiD8JvY9kYVZHHO7NG8VFWC0bQfmqv4ePtevCqMRzKHhBCiXxSOGEeDzkY7GZzd6mZq+L56P/mm816V5IORz23yenS2fWeAl7HvSm52Vjw7/GV1lL3xoydoMuzVNF15soy9EKLV+NI8/mGew+imjznWcEp1DOTvuIIxA3fuQUiCQwKApmCENXvqM9KXEaizv+nqJlABYMZSqdtPA4oFi1LIFknkdZay1+2CQ6GIhVc523rxC6gxd5I9fav6kx73AWA1OIGfJLWYikrsbZUV+1Lqyx+K4g3Elovt+jl3e2PBuPSmlX2yr5bf6l9y0v6/YJXPBG8exok/QJ1wc1r9dCccW87XqTkUilh4VOpBvVjmULKaU4n84ShuohjuwR8cAvj8MZN4LTwNgOjyB9m6a5e9I6t4AEclhBAHjvGluXxkTSK8c3m3ba3Hv4D1zyu6bLO3PkC5L2rfSTKtLNvj4nVrVqf7BxOdb//dcl/dPACUFeYBzuWjnCNh7PyBHJoQYpBRSrF17HnU62yuNJ1FfgZxAPxAI8EhQcPGN/n+/z3MBXctYfPSf4O/rlf9eYNOoCK38+LIMbGCi7rd6h86ttpUusEhl0EYE2W1zxyKJkwr6/nc91ChU1+namOP+wiEo/gCTpHGJMGhsvKRANRXpxYcWrWrjlLlBPZyO59WBq2rn6SbOVSzYx2nmcupmnwBxuWP2hsPPQs186K0+umO5cqzb8SCQ9H0Moe8boNQKsEhpyC1a4gEh2aMKaBg0uG8o+YSfedu8oPO6ydLClILIUR/mFCSzWo9GVfVuq6/YNEatfkVjPXPwt7VnTbLq1rJpeF/YRWMT/rBqCTHwxo9kYCnGD3IPzip/FFEfUWUH3p0vHbgv/0zWHnMH1Bn3D7AoxNCDDbTJ45mlXUQhxvO56lBHgA/kCQvBCMOGC3BEK5/XMKd2k+jJ4u8//ih+UY48Qc97tMXimWxdB2ogNbgUDjYQuJHfxXp2WplSim76LLV9g+3UAamlQG4RxxMdLNCVWzocWR1d52fkaqWiOHD5SvosH9EuZ3e2FxXkVJ/72+toUzVo00PypvfZVuXp2fTymoq7FpDuUdcAfmj0zo2HRFvHjQRrzkUDFt2oTpIKajndRmEtdnt4wuEI7hVlNAQCQ4BfOn4g/j1/efyhP4R17uetjdKcEgIIfrF+OIcHrUOwrDCsP9jGHN48oaNe1F+ewl3/cr/EjXcULkB7fKC6bX/BgnU8fOadVS6R5N/1b+S1hMaV5zNC984HuPjayHU0IePrPfUMd+EGbv548wFWH+ahr96B0Wj5nDKtJEDPTQhxCA0Z1wh6/R4FqvYtDIJDg0WEhw6gAUjUW564EXu1H72lB1DZTSP8ur3yN7xMV2HGLqWHQsOpTCtzO2zfxmEA+2CQ/EVqtL/tsxSLoxoU5ttoWhicKjnmUMjigrYoUcwct86evo93q5aP+WqlnDOCFxJ/iB05xRhoaiq2MuK7TXMGVeE2UXdpmXbargyqwWyyrotWBnPHEpzWllLjT0NLquoY6ZTRsXqLjjBoVA02po55Oo+cygeHGw3rbC9cMAuAuryDp0VVBZPKeVPBy3i5e1zOdn80N4owSEhhOgX44qz2GgeZN/Z/YEdHPrwb0T3rMI865etDffbCweERx2O+5MX0WYWu4qPRlthVChIJNRCTcDDq+HLmHT8tVxaPLnTcx5Sngfl30N3U79owI1biOks5mac+hM8IT//mHLUwI5JCDFozR5XyFPW+NYNEhwaNCQ4dAD718o9VGxfBx4Yffq3yRl1DMtvP42Z+9b3KjjkizhTnFKoh+KJBYeCbaeVGZEAmPRo+VNLuVE60mZbMGzhUyEsw41h9HypwlGFPjbr0ZRX9nw5+501LUxRtRidZeAYJgFXPtOb3oX7TuBzrmspP+wYTjx0BFkekznjCinMtgMlkajFB9trubWgObVgXA9XKwvVO1lMKWSD9Ybbk0UINx5nWlkwsVaUmVqWT0R1XK2uvVDICQ4NocwhpRQ/OPswLrvjy7zguZUR0X0SHBJCiH7idZkct2Ae1Svy8W5dRu7CL2K9fSdG9SY48WbIKgRA7/sIBZy87XIuM0fx9+BJ7GhunWZfmutlxvh8rjhyAidMTa1YsxqEK5V1asJRyILQQoiuFGS5KZ48B5wSmlJzaPCQ4NABbEd1C5MNp65NyUEUZLtpzJ1EYctqsKLQwyCKimWlpPAf3eOzCxBHgq2rf0UtjcsK2cGhHmT5aMNlp30niGUOWYanV4W2Rhdk8ZoewwkNL/T4OdpZ08KxqhZ34fRO22QVjGBG9SYAfs/PuOPjS3j5Qy+vWHM5Lnsrn5vcSOWc64li0ByKUmbUo3K6X1LeGytIne5S9s0VRDEw+7gAcpbHpFll40m2WlmK0wGjyo1pdZ05FArZr9GhsFpZokNH5vOzzyym3niY4n0v4OrDKX5CCCHa+tLxB/PR8oM4+JNlvPP2Mk6tcr4o2v4OHHomAPs3LieiS1m0cCGTDjmLe4uyKc314POYZLtNXKaU+xRCiFuuvgD90+tQOgoeyRwaLCQ4dADbU+9nnrcKjQeVb9e5Mcqm4NkeJlKzA1fppB71a1p2VkYqgZ0snw9LqzbBoUA4ik/1vHi0NtwY7TKH7JpDIaxeTCmD1swh0wpD7TYoOSjtPj7YXsM3VR1GfhdTtAonEI2GMS/+C75Hr+L7DfeDBzQKZWn4BL6/LsAaawJfMT8mL1QFud2vCOJxgkPRcCDlb/aCkSi+UDV+XxG5Rt/+UetzmzSRTVHCamXxmkMpFKQGOzjk6ib4FXYyhzDdPR7rQDlj5ihgFEyXFWCEEKI/lef7WDn+WMbuupPl//0hmKCVidr6Bhx6JqGIRWDXKna7J/Ojc6fjlkCQEEIk5/KiS6agqtbLtLJBRIJDg0R0wwtghTEPO7vfzrm3LsDBrgp03kSUkwFTNO4w2A67N69mQg+DQyoaxDIMjBQ+eGd5XQRxE419WAdaQlG8hIgY3qQ1ebqjTTdmKMlqZSqMNnsXHMr3udnjcubIVm1KOzjUHIzwyc49eD3BpCuVxahPPYCJAm8u5tdWQEs1NFVgrfkXumgigeV/50c1j6EjYTyWH/ykNOXL67MzZcKhYMrBoZ01fkpoIOIrSfGInstymzTprISaQ+nXiooa7g6ZYx3ahGMBzKGVOSSEEGJgnfLZ7xK+4xHO97/DVqucvJGTKd76BgbwxNJNfMrajT7sPAkMCSFEN1T5dKhaL9PKBhF55xos/vNd1Gs/69dT7q33M07vRRW3BjgmTp0DQNX2tT3qMzYlLGp4ui2ODJDtcRHAgxVumznkJYyVYo2ZDgw3ZieZQ5kIBrTkO8Ujq9KoO7R7BdYLP+D9rdWUaHsVE/K6WMXDmwdee8odLq+9QtjoOZin/BDX/KvIveC3uMLNmEVj4aL7iI6YDhOP6XYYXm+sxlOgm5atdtQ0U6rqUXmp1UbojSy3Sb3OQgdaVyvLUs40xRRTTq0UgkORoNNnitlIQgghBIDhy8V1wncAWOk7gr9XTMCoWENo69t4X/kBptJMnHHEAI9SCCEGPzVyhn3DkzewAxFxkjk0COiarZh1W9G5/bfkp9aaffUtjHDvRpWcFd8+dsw4GsgmtM8OfOyt9xOJasYVp/bBPBCO4iNE1PCSyoSdbI9JEDc61FqQuiVk99Hj4JDpxqRdQeqIRRbhXq1UFlNYXEZ1YyFFlRtTj65+9ATGe/dQUT2JsWatva2LzKFulU9DfelNzPwxkFWIOfPilA7LyrIffzrBoe3VLRxMPd7COT0ZaVqyPSZNlhdCzYCdOZRNrIZVTkp9aMONEekmOBSOTVUbetPKhBBCDCw17yqitds5csplvPz4W9DyCJ4Hz+Q8rdg95TOMmXrmQA9RCCEGvwWfRxdPRuX0/ewEkRoJDg0gHQmxZncNT/3lbm5RQEsVWBb0cV0XgNqWMIWRatyuECQso6oMg0rPOIyaT7jo9+/wwY5azsjZyJ1Fj+E6/y576dYu+J2sn2iKgZ0st0lAe1Dh1mCF36k5ZPV0CliSzKFgxKKIUEaCQ5cuHM+mraOYtHU15d03pyUUwajZiQ+YuvkvVJacBvVAVzWHUlHeeUHrzuR4PYS1SSSc+lL226qaKVUNePNTebS94/OYNONDh+pQ2Blf8eBQiplD2nBj6m6mlUUkc0gIIUQPuTyYp/2EUcDPvjKFfzwWZsOeWkIjZvLTy89LKXNaCCEOeL4C1PTzB3oUIoEEhwZQ6LHPM/qTdzhdF4MCZUUgUAfZfbsiFMCeOj+TElYqa6PkYGbveZH/q7iScLaPUeFdmJUa9qzsPjgUiuJVqU8Jy/aYVOIhK5JYcyhi15npaSDH5cFFkmllKoxy9z5t8dRp5byadxC++teobgxQktf5OLXWnPTr17nLv555SjE7+jEl2glI9GOmWEy21ySEi0go9cyhDTv3ka2CkNs/08qatRdCTYB93bJU0C7EneLrQZseTCtMdW0dJUWFSdtEwxIcEkII0XsFOR4uu/r6gR6GEEII0WtSc2ig7F+Ld8MzFEerWGBspA4naNFc2S+n31cfYKJygkMJmUMABy3+DKr8MPKmLkaNmMoj0RPtHYG6bvuNTSvTKX6Qt2sOuSEhONTgj+AjBO6eBYcM040LC7SObwtG7MLGKgMFz5RSzJoznwKa+f1z73XZtq4lzN76AJM89ewZeQJNuZMY2/ABOm/0gCzbmONxEcLdWpC5G8FIlMq9u5yDuy943VtZbhM/PnBqUAWdaWXanZ3yN7HadDNSV1ByxwTY9FLSNpYEh4QQQgghhBAiToJDAyT4+q/xqyxujl6LhcEjkePsHf0UHNpb72eC2o82vZA/tu3Ow87Ge92bZF/6F1yXPczNkc8TMTwQqO+239i0Mp1i5pDPbRDCg0oIDlU2BvARwtXD4IlyOR/4o61Ti2IFqY0eBpzaK5s8G4C8jx9k9c7aTtvtrvOjsCiKVjN2yhxyv/UhfGMt6n/eyMg40pXjNQnjIhrpeqn3mHV7GymwnMfXH5lDHpNmvKhQM2htZw4RSGuJy4b8qezXRWhlwM5lSduEQxIcEkIIIYQQQogYCQ4NAN1UgWvtk/wtfAIHn34dlV9Zz9PWsfbOfgoO7akPMNnYhy6a2GWNoxF5XvJ9LvxGbmrBIaeYdKpTwpRShJUHI9oaHKpoDOJTIdy+HgaHYkWGo60BkFAsc8iToaUSJy4mcMh53OB6ksq/fQEraiVttqvWTykNGDpirzimFBSMgdy+z8JJJtvjIoQLnWLNoZU7ailVznXvh8whn9ukRftQaAj7CUai9pQ2T2rFqAGyjv0qRwfvojlrDFbVpqRtQkGnALoUpBZCCCGEEEIICQ4NhHUfvImJRfbMc/jcokmUl5UzcvQ4e2dzVb+MYW+dn4PN/ah2U8raU0pxSHkeDTob/HXd9usPR53aPqkHYUKGDzPSulpZRUOQHCOaco2Z9gwnc8hKWLEqGIniU2GMDBSkBsB04bvsQT4++H84Kfgy6x+5KWmz3XV+ypWzdH3+6MycuxdyPC6C2o2OpBgc2lnHxKwW5+D+mVbWjHONQs2tBanTyCJbOKmYXK+LXcZodPUnHfZblm7NHHL1cEU8IYQQQgghhBhGJDg0AD7+4B0ALjrjtPi2/OJyLFT/1Ryqa2GM3o9qX4w6iSnleVRFs9ApZA4FnGllKo0P3TVmKYXh/fEaQRWNAbKNcI9rDpluOzgUTFiuPRSxnIymDAYDlGLaZbfzovc0pm36Ay1r/9uhye5aPxNcdfad3ixdnyFZHntamU5xWtnKnXVMz3cCKf0RHPKY+HGuUdgJDqkgKsVl7AE8LoPFh5SysqUUo3qzvQJggsZgBFdsNTuZViaEEEIIIYQQEhzqb59UNOKpXkuDpxxffkl8e2GOzy5KnaHgUGPVLjbccS477jiNvS/8Bp3wATkStWis3ImXUMeVypI4pDyX2mg24ebOa+vE+J2C1OlM39rvHkuW1Rx/7BWNQbJUCFw9mwJmOFOFgqHW7JhQ1F6tjAwUpG57LoORl93NFmskLf+6EdoFXfbU+ZmaY6+8Rf6YjJ67JzwugzBudLT7zKGWUIRt1S0c7KlB+4rA1feBFHu1sraZQzkqlHbx7hMPLefj4AhUpAUa97TZV98Sxh1bzU6mlQkhhBBCCCGEBIf626PLd3GYsRPPmFltthdme6i08rGaeh8c2t8QYOW9X2BizTv4q3cx6t0f8eDPv8TyrfaUtRfX7iffv8NuXJxKcCiPBrKJpBIcCtm1fcw0gjCVHmdKnVMfpqIx6Cxl37MsH9NtHxdKyBwKhq1e9dmVWRNH8Nqkb1Ia3EHVK3e22be7zs8kTx3acPVL5k0qLMOFSiFzqM4JohxU8wbW5BP6YWR25lBL4rSyqJM5lEbNIYATDx3BduVM42s3tazOH8KjnCmHkjkkhBBCCCGEEBIc6m8VNfUcpPbgG9s2OFSU7aZa5xNp2N+r/jftb+R3d/2aYyPvsmPW1zC/8i4bRp7L1eF/MuqBI3j3qd9z/9tbmZdTbR/QTc0hgEmlOTTobIxgQ7dtW0IRvCqM4Ul9Slht1nj7RvUnRKIWVU1BPIR6nOXjSjKtLBIJ4SKacqHsdJ13ydW8xRy8S++AYFN8++46P2PMOsgb2WXh7/4UMTxgdR8cagiEWWyswheuw5xzaT+MLJY55ATwQk2tNYfSWK0MoDjHw+Sp9opygX0b2uyr9ydmDknNISGEEEIIIYQYHJ9WDyDZDVvsIEX5jDbbi7I9VJOP7mJaWXT7UmjY22H7/poGtj/zM1b+/hq+9fvH+E749zQWTWPK+d/j4PJ8pl77ANWn3k3AVcCslT9k27YtnDqqBe3ypTTVqSTXQz05uCMN8bpAnQk408pcaUwr82eNIogbXf0J1c0htAa3FexxICdWcyiUMK0svjpXHwWHSnO9bDz0evKsBprf/gNgB8pqmkOU6WrIG/hi1DGWcmNEUwgO+SNcYL5N0FMEB53YDyOzg0P+eOZQi7OUfXoFqWMuOG4hzdrLlvWr2qy0VyfTyoQQQgghhBCiDQkO9bPS5o32jXbBoYJsN1W6ALOl89XKjEcuJfrf78Xv76xp4c6/PEDD745kwge/YM7+J3iKb5Hnssi9/K+tH3wNk5Kjr2DSlx/DZ0S5o/x5pnkru13GPsbrMgm68jB1FELNXbb1OwWpjTSCQ8cfNoptVjnVO9ZS0RDEJGov/d7jzCFnWlmoNQBihZ3V0PooOASw6PjTeSM6E/XuXRD2U73hXe53/4Kyls2oQbBSWYw2PRgpZA41NTdzsrGChsnn9FsQJctj0hwrSB1qJhixyCIAaRSkjpkzvoh9rrFM2vE43D4eNr0EQJ0/jIeo3UimlQkhhBBCCCFE5oJDSqlxSqnXlFLrlFJrlFI3tNv/baWUVkqVZuqcQ9HIwGZCytNhOldRtocqXYAr3AjJlhmPhFD+GtTmV9iwu4Y//PFOtv/uFL624waKvVHemH8Pa058gGjBePS5d6FKp3Towig9CBZ+kaPrn8O96T/dLmOfSHsL7BvdrFjmDzpL2acRhLlg7hh2m6MJ7ttIRWPArg0EPa4P5PbYx4VDrdPKdDw41HfTiKaOzGNJ0cVkh2tZ9fbzBJY9yAnmKnyhGigc32fnTZc2PBhWuNt2/qYafCqMKj+0H0Zl87qMhILUTQTDUXw9zBwCsMYfiV+7CboLib57DwD1LSE8SM0hIYQQQgghhIhxZbCvCPAtrfUHSqk8YIVS6iWt9Vql1DjgFGBHBs83JOWGa2j2leAx2z71Rdluqsm37zRXQUG76V5+uxi0EWzgof/7MT9x30+1dxT7Zn2LEad+i8VeJ7Ni8QVdnt886VaCeeOwGveRNavrtm1kFUIQOzjUfmwJwqH0gzA+t0nB2MMo27GCP2/cby85Dz1erSyWORRtqibUUIknv6x1WlmGVytr77AjTyf8wo955+WnONVYzhI9m5kXfZeSKUf06XnToU0PrlD3waFAUyMA3uy8vh5SnFIKK5YlFGpGR4OYWGnXHIoZf/ldLPr5+dyc/W8u2PIgVG+mriVMmctCGy7UIKkDJYQQQgghhBADKWOfjLTWe7XWHzi3G4F1QCyK8FvgO0DXBWuGuUA4Sq5uIuzO77CvMNtDtY4FhzrWHYokrGL2I89DRN05FN3wNiPPuRXDm8aUG0823mO+QtYZ/wtj5qV8mCur0HkQdV22i8aCQ2kGYQ6bPhePivL60hWtwSF3z6aAuT12Nsi0pd/BfOTTADQ3O0Wi+zBzCOCiI6cSLJ/L5wpXcpCxl6ypJ1I8+0zIGUQJcy4Ppu4+OBRqsQuQ+3IK+npEbajYayfcggo70xjTXK0sxusy+cyRE/l5xUK0cqGX30+dP0yuy5KsISGEEEIIIYRw9MnX5kqpicBcYKlS6lxgt9Z6VTfHXKuUWq6UWl5Z2fvl3AejupYwBaqZqLeww758n4sa5Wxvquiwv2q/XYg6bGZj6gh6wRcxckv6cLRtefKK7BvdTCuLBHs2fSt7zHQATlTvMyKWJNLD+kCFuXYH3nA9RsVatBWlwcmC6cuaQwCGocg99AR8TTsBOOLE81BK9ek502Z6caUSHPLbz5nbl9vXI2rD6/EQUl4INWGEW+yNPcwcArhs4TgqdBHbio5Eb3ieupYwOaYlxaiFEEIIIYQQwpHx4JBSKhd4Avg69lSzm4FbuztOa/1HrfV8rfX8srKyTA9rUKhpDlFAsz1Fqx2lFAGv87ib9nXYX1lpB4dqDr2MaFYJrkVf7cuhduB1AlHRltou2/W48POY+dSPP5nvuB7hRM/6nvXhKMhtzTJRET8NlTtRkb5drayNiccCoL15MHJW358vTcrlwZ1CcCjitzOH8PRvcMjnNggaWRBqJhLoXeYQwKiCLGaPLeDN4EEYNZuJNleT44pK5pAQQgghhBBCODIaHFJKubEDQw9rrZ8EDgImAauUUtuAscAHSqmRmTzvUFHXEqJANWNkFSXdH812gkONHYND9VX2Nu+xN2DcuKnfpynlFhQD0NJQ3WW7+LSydIMwhkHepX+m0VvOdcE/2dt6Wh/IsDNCAtr+t37XenwqVseoH4JD4xaiTS+MPxoMs+/PlybD7cVNBMvqepZnNOBMxetFYKYnsj0u/MqHFWyitt4JRvYicwjg1Okj+U/tWABGNq0h27TA7NsphkIIIYQQQggxVGRytTIF3Aes01r/BkBr/ZHWeoTWeqLWeiKwC5inte4Y/TgA1DaHyKcZV27y4FBuTg6NKi9pcKi53p5qV1hSjhqAgEN+oZ05FGjsOnOISM+XjDeyi8i78h8YsSLBPa0P5LULKD8UPQWAln0be70CWlrcWXDRn1AndZswNyAMlxcPEfyhSJftdGhggkNZbpMAPlqaGvFEnYyvHq5WFnPqtHI+siahUUwKrCfbjMq0MiGEEEIIIYRwZDJzaBFwBXCiUmql83NmBvsf8hqaGvCqCJ7c4qT7C7M9VKlidJLgULixEr/y9bhIc28V5+fSrL0Em2q6bKdjy8f3MAjjGTuH6Fm/QxtuyO98VbQuFU2g6dKn+T/XZwkrN7pqc2twqI9XK4tR086DkTP65VzpMt1eDKWxnv0GvP/nzhsGY1O6+ndaWXGOhwbLS6C5niwVW2WudwGqg0fkUlZaxk7XBA6NrMdnSEFqIYQQQgghhIjJ5Gplb2mtldZ6ltZ6jvPzfLs2E7XWVZk651Djr7enZPnykheSLsp2U6EL0UlqDqmWGvyuwr4cXpdKcj3Uk0O0ubuaQ71fMt497zOo7++GkoN63EfuoSdwxEEj2cVIXHVbEqaVyVQi020/B7lr/oa19pnOG/ZypbCemjehkNqwm5amBrLITOaQUoozZ47k3eBEZqrNZKmwZA4JIYQQQgghhKNPVisTycWybtw5yaeVFeV42BMtgMb9bbY3BsJkReqJeJMf1x9Kc7006Bx0F6uVaa0J+DO0ZHwGgjjzJhSyKTKCrKYdlHqd+jr9UXNokPP67MCdQkOdvaoa1ZvB3zbwZ4absVD9lm0Vs2BiMS34CLQ0MCbHsjf2suYQwPlzxvChdTBFqonSls1Sc0gIIYQQQgghHBIc6kfRZmdKVpLVygAKs93sswpQTftBtxYL3lLZTLFqxMhJPh2tP+T7XDSRjeoiONTgj2Ba/Vj4uRuzxxayVY+kNLSbsiwnyDAIxjXQxpQUxG+rht1gWei/nAZLfhHfrrXGjLQQNrJAqX4d34wxBQSVD68VYFxsRlsGspemlOexr/RoolqR698NLplWJoQQQgghhBAgwaF+ZcWWge9ktbLCLA8VuhBlhaGltbbP5somCmnCm1/WH8NMSimF35WHL1DZJnCVqKIxkFD4eeCDMDPHFrCDUfhUmIPMCnvjIBjXQMvJbs3CUdEgVKxFNVdC3Y749mDEwqcDRFy9z9hJl9s0yMnLJ1sFMpo5BLDo8Ln8x1oIgJJpZUIIIYQQQggBSHCofwXq7H99hUl3F2W72a+dwFFC3aGVO+soVo3kFI7o2/F1Y1XWEZSHdxJd9WjS/RWNwf5dMr4b2R4XkcLJAEyObrE3Ss2h+HOwS5fa9ze/CoBuqog3afCHyVEBogMQHAIoLCwihyDlvswGhy5dOI6meV+y78i0MiGEEEIIIYQAJDjUr4ygMyWrk2ll40uyqdD2vmj93vj2ldsqyVctGDmlfTzCri0vPod1xhR48eYO9Wlg8GUOAeSOnwXA6JaNaJev36dIDUpOxszT0UX2/S2v2f82t9a6aghEyCaA1ctVwnpqzIgyslWQ0dkRtCsLjMz8qsrzubn0gguJHnLmoF1NTgghhBBCCCH6mwSH+pErVG8X+PUWJN0/fXQBFx83H4B/vracUCRKczDCvn1OoCh74GoOAZw8fTTf9l8NLTUEH/0CWNE2+ysagnhxMofcgyM4NHXSRHbrElw6JFlDMWMOJ3zQqTxtnAxAcPNb9vam1imDDYEwOQT7faWymJGl9op+JTT2eqWyZMzP/ANOvi3j/QohhBBCCCHEUCTBoX4SiVr4Io2EzNwusyAuPXEBAGN3/ZvGX0xn2/O/oRgn42iAg0OXHzGe+Ucezy3hq/FufZmWv36KwPKH4wGFlupd5JoRu/EgmbKz+JAytrsPtu8MkmymAVc4HvcVj3HtuSfQorLjAT0V8UOwEbCnlWWrAMqT21VPfScWEGquyNiUMiGEEEIIIYQQyUlwqJ/sqQtQoJoJe/K7bujJRnvzWGx+RHaomumrfsr/ue+w92WX9P1Au6CU4tZzpuOfdSW/i1yI3rUc37+vgzVPwqp/csPq85nm3oc2XGC6BnSsMSMLfBx9zIn2HQkOtfGp+ePwlEwAwIr9KmiuBKAxECGHAIZvoIJDznmbKmGAprYJIYQQQgghxIFCgkP9ZMP+RgpoxuhkpbJEOnckWhncXv4rfhK+nMmGM60sa2AzhwBMQ/GrS2az8bDrmdNyD8GcMURX/JXoe7/HwGI6m8GVNdDDbGvUbPtfCQ51YBaNB2Cr+yB7Q5Ndd6ghYGcOuQYsOGQHhHRzZZ9MKxNCCCGEEEII0UqCQ32lpYb6tS9T8/rv0XU72bi/kQLVjDev+wCPnv8FWk76OTd+/nJWj7+CD8ovQisT8sf0w8C7ZxqKn5w/k1yfhyf18Zhbl2Du/RCA8ujewVfbZ6RdlHrQjWsQUIXjAHgjeIi9wVmxrMFvZw65s7rJdOsrsSy5pv0yrUwIIYQQQggh+pgEh/rKigcoePQiil+7ifDj17J+bwMlZguunO4zh8yjvkTOMV8i1+vi0f85inlfug/r6x9DzsBOK0tUnOPhlrOncVfNEVhaEcBLi/ZioAdfhk7+aKzs0sGX0TQYFNjBobcjh9r3neBQTVOAbIKYA5U5NP4omo/+Dtr0oAoGR1BUCCGEEEIIIYarwVEYZjiafgENRdMx968m582fUJr9IkWqGVKYVtaBUpgFozM/xl66cN5Y5o2/mKWPvMlbexVnmkuZrrYPmpXK4pSCw85BDbag1WBw8En4N7zCO5umYykTo9kODu2sqsetogO2WhlKkXPqzTQvvJacLLluQgghhBBCCNGXJHOorxRPIn/GaeQc/w1CxVO5tvkP5FqN4Csc6JFl1MTSHEZeegf3RM9nuy63Nw7C6VvGOb+DM24f6GEMPiNnkvX5ZykvLaFeFcRrDu2vqrL3e/MGcHCQU1g24GMQQgghhBBCiOFOgkN9zXSx67jfENRuTKKQUzrQI8q4SaU5zBxTwI5YcMiUTI+h5tzZo9kTySNQt49I1KKmttbeMVCZQ0IIIYQQQggh+o1MK+sju+v8rN/bQHVziE8qSrg/9EueO62RQ+aePdBD6xPnzB7F1hdG2HcG27Qy0a0L5o5h+xsFlFbuIlDnx2MF7B0SHBJCCCGEEEKIYU+CQ33k+dV7+enz6+L3fW4PE469DFzmAI6q71x51ERWhY+FN++T2j5D0MTSHLbmlEHTarZUNpNDLDg0QAWphRBCCCGEEEL0GwkO9ZFzZo9m4aRiirI9VDcH8blNvMM0MATgc5sccfjh8CaDb7UykZIRo8ZTuOV1nlu9h2wlmUNCCCGEEEIIcaCQ4FAfGVngY2SBHSQZX5I9wKPpJ/lj0IYbJdPKhqRJh87Fu/V+Fn70Q5Z55tgbJTgkhBBCCCGEEMOeBIdE5hgm+qCTUCNnDfRIRA9kL7iCf7+7jE/V/Y3jjTVgIdPKhBBCCCGEEOIAIMEhkVHG5f8c6CGInjIMXCffwr/+uYXzeMfeJplDQgghhBBCCDHsyVL2Qoi4Ew4t4+W8C1o3SHBICCGEEEIIIYY9CQ4JIeK8LpO7vnMt1ujD7Q3uA6RelhBCCCGEEEIcwGRamRCiA+PM/4fe+CLKGL4r7AkhhBBCCCGEsElwSAjR0dj5qLHzB3oUQgghhBBCCCH6gUwrE0IIIYQQQgghhDiAZSw4pJQap5R6TSm1Tim1Ril1g7P9l0qp9Uqp1Uqpp5RShZk6pxBCCCGEEEIIIYTonUxmDkWAb2mtDwOOBL6ilJoGvATM0FrPAjYC38vgOYUQQgghhBBCCCFEL2QsOKS13qu1/sC53QisA8ZorV/UWkecZu8BYzN1TiGEEEIIIYQQQgjRO31Sc0gpNRGYCyxtt+sa4D+dHHOtUmq5Ump5ZWVlXwxLCCGEEEIIIYQQQrST8eCQUioXeAL4uta6IWH7zdhTzx5OdpzW+o9a6/la6/llZWWZHpYQQgghhBBCCCGESCKjS9krpdzYgaGHtdZPJmy/CjgbOElrrTN5TiGEEEIIIYQQQgjRcxkLDimlFHAfsE5r/ZuE7acD3wWO01q3ZOp8QgghhBBCCCGEEKL3Mpk5tAi4AvhIKbXS2fZ94E7AC7xkx494T2v9pQyeVwghhBBCCCGEEEL0kBqMs7yUUpXA9hSblwJVfTgc0XtyjYYGuU6Dn1yjoUGu09Ag12nwk2s0NMh1GvzkGg0Ncp0Gv+FyjSZorTsUeh6UwaF0KKWWa63nD/Q4ROfkGg0Ncp0GP7lGQ4Ncp6FBrtPgJ9doaJDrNPjJNRoa5DoNfsP9GvXJUvZCCCGEEEIIIYQQYmiQ4JAQQgghhBBCCCHEAWw4BIf+ONADEN2SazQ0yHUa/OQaDQ1ynYYGuU6Dn1yjoUGu0+An12hokOs0+A3razTkaw4JIYQQQgghhBBCiJ4bDplDQgghhBBCCCGEEKKHJDgkhBBCCCGEEEIIcQDrt+CQUup0pdQGpdQnSqmb2u37qrNvjVLq/3Vy/CXOfkspNT9hu0cpdb9S6iOl1Cql1PGdHH+9c26tlCpN2F6glHrWOXaNUupzmXnEQ1MGrtMvlVLrlVKrlVJPKaUKE/Z9z+l3g1LqtE6On6SUWqqU2qSU+qdSyuNsV0qpO53jVyul5mXwYQ8pg/UaOfuOV0qtdM7/eoYe8pA0CK5TZ7/zLnf6XK2UekcpNTtDD3nIGcTXSN6XEvTVdVJKlSilXlNKNSml7u7i/PK+lILBep2cffLexKC4RvK+lIJBfJ3kvcnRh9foFKXUCmV/rl2hlDqxk+PlfSkFg/U6OfsG5/uS1rrPfwAT2AxMBjzAKmCas+8E4GXA69wf0UkfhwFTgSXA/ITtXwHujx0LrACMJMfPBSYC24DShO3fB37h3C4DagBPfzwvg+0nQ9fpVMDl3P5FwnM7zenPC0xyzmMmOf5R4FLn9r3Al53bZwL/ARRwJLB0oJ8vuUYdrlEhsBYY39X5D4SfQXKdOvuddzRQ5Nw+Q/4vDcprJO9L/XOdcoBjgC8Bd3cxBnlfGtrXqRB5bxos10jel4b2dZL3pr6/RnOB0c7tGcDuTo6X96WhfZ0KGaTvS/2VObQQ+ERrvUVrHQIeAc5z9n0ZuF1rHQTQWlck60BrvU5rvSHJrmnAKwnH1gHz2zfSWn+otd6WrGsgTymlgFzsX3SR1B/asJKJ6/Si1jr2/L0HjHVunwc8orUOaq23Ap8454tzrsGJwOPOpgeB8xOO/6u2vQcUKqVG9erRDk2D+Rp9BnhSa72jq/MfIAb0OjnHJ/2dp7V+R2tdm6TfA82gvUbI+1KiPrtOWutmrfVbQKCzk8v7UsoG83WS9ybbgF4jp528L3Vv0F4n5L0ppi+v0Yda6z3O9jWATynlTTxW3pdSNpiv06B9X+qv4NAYYGfC/V3ONoBDgGOdlKvXlVIL0ux7FXCeUsqllJoEHA6MS+P4u7GzkvYAHwE3aK2tNMcwXGT6Ol2DHb3uru+YEqAu4T9hYptUjj8QDOZrdAhQpJRa4qRYXpnSIxqeBvo6perzCf0eaAbzNZL3pVZ9eZ1SIe9LqRnM10nem2wDfY1SdSC/L8Hgvk7y3mTrr2t0EfBhLICRQN6XUjOYr9OgfV9y9dN5VJJtOmEMRdipbwuAR5VSk7XWOskxyfwF+xfVcmA78A7pRbFPA1ZiR/YOAl5SSr2ptW5Io4/hImPXSSl1M/Z1eDiFvlM5fyrHHwgG8zVyYQdnTwKygHeVUu9prTd28liGs4G+Tt0PUKkTsP8IPybdY4eJwXyN5H2pVV9ep96eX96XWg3m6yTvTbaBvkbdD1Del2BwXyd5b7L1+TVSSk3HnsZ0aprnl/elVoP5Og3a96X+yhzaRdtsnrHYUefYvied9LdlgAWUKrvI9Eql1PNdday1jmitv6G1nqO1Pg97Dt+mNMb2uYTzfwJsBQ5N4/jhJCPXSSl1FXA2cHnCf7Ku+o6pwk5/dCVpk8rxB4LBfo3+66QtVwFvALN78ViHsoG+Tl1SSs0C/gycp7WuTufYYWQwXyN5X2rVl9cpFfK+lJrBfp3kvWngr1GX5H0pbjBfJ3lvsvXpNVJKjQWeAq7UWm9Ocn55X0rNYL9Og/N9SfdPQSgXsAW7MGesINR0Z9+XgB87tw/BTv9SXfS1hLYFqbOBHOf2KcAb3YxlG22Lq/0euM25XQ7sTtx/IP1k4joBp2MX2Cprt306bQu0biF5gdbHaFu46zrn9lm0LbC2bKCfL7lGHa7RYdj1v1zO/8uPgRkD/ZwdqNcpoX3733njsWvgHD3Qz5Nco06vkbwv9cN1Sth/NV0XZ5X3paF9neS9aZBco4R27X/nyfvS0LhO8t7Ux9cIO8lhFXBRN2OQ96WhfZ0G7ftSf16gM4GN2FXDb07Y7gH+5jwpHwAndnL8BdhRtiCwH3jB2T4R2ACsw646PqGT47/mHB/Bjtr92dk+GngRe+7sx8BnB/qiDOgLovfX6RPnP9hK5+fehH03O/1uAM7o5PjJwDKnn8dorSKvgHuc4z8iIUB4oP0M1mvk7LvR+SX6MfD1gX6uDvDr1NnvvD8DtQn9Lh/o50qukbwvDeB12oZdVLXJuRbTkhwv70tD+Do5++S9aXBcI3lfGtrXSd6b+vgaAT8AmhO2ryTJSlad/b5D3peGxHVy9g3K9yXlDE4IIYQQQgghhBBCHID6q+aQEEIIIYQQQgghhBiEJDgkhBBCCCGEEEIIcQCT4JAQQgghhBBCCCHEAUyCQ0IIIYQQQgghhBAHMAkOCSGEEEIIIYQQQhzAJDgkhBBCCCGEEEIIcQCT4JAQQgghhBBCCCHEAUyCQ0IIIYQQQgghhBAHMAkOCSGEEEIIIYQQQhzAJDgkhBBCCCGEEEIIcQCT4JAQQgghhBBCCCHEAUyCQ0IIIYQQQgghhBAHMAkOCSGEEEIIIYQQQhzAJDgkhBBCCCGEEEIIcQCT4JAQQgghhBBCCCHEAUyCQ0IIIcQgpZSaqJTSSilXCm2vVkq91U/jWqSU2qSUalJKnd8f5xStlFLjnefezGTbDIyr316DQgghhMgsCQ4JIYQQGaCU2qaUCimlStttX+kEeCYO0NASg0xNzs82pdRNvejyx8DdWutcrfXTGRrmASETARSt9Q7nuY9msm1/UkrdppT6Wwb7u1opFU14jcd+Rvey32OT9KmVUhdlauxCCCHEYCDBISGEECJztgKXxe4opWYCWQM3nA4Ktda52GO8VSl1ejoHJ2QwTQDW9GQAqWRBHej6I8tnmHrXCYQl/uzpTYda6zcT+wPOBpqA/2ZkxEIIIcQgIcEhIYQQInMeAq5MuH8V8NfEBkqpAqXUX5VSlUqp7UqpHyilDGefqZT6lVKqSim1BTgrybH3KaX2KqV2K6V+0pNAgtb6Xezgzgyn32uUUuuUUrVKqReUUhMSzqmVUl9RSm0CNimlNgOTgWedLAqvUmq0UuoZpVSNUuoTpdQXE46/TSn1uFLqb0qpBuBqpdQSZ+zvOH08q5QqUUo9rJRqUEq9n5hppZS6Qym109m3Qil1bLv+H3We00al1Bql1PyE/eOUUk86z3e1UuruhH2dPu72lFLnOn3XOeM/LGHfNqXUt5VSq5VS9UqpfyqlfEn6OAy4FzjKedx1zvYHlFK/V0o9r5RqBk5QSp2llPrQecw7lVK3JfTTZrqhM57/VUq97TwHLyongy2dts7+K53XZbVS6hbnsZ3cyXNS4lz3BqXUMuCgdvuTXjdlByW/D3zaeR5WOds/51yPRqXUFqXU/3R2PdKhlDrIeW3Oc+6PVvb/seMTnpOfK6WWOdfvX0qp4k66uwp4XGvdnImxCSGEEIOFBIeEEEKIzHkPyFdKHabsoM2ngfZTZ+4CCrADLMdhB5M+5+z7InZmwlxgPnBxu2MfBCLAwU6bU4EvpDNAZVsETAc+VHbNoO8DFwJlwJvAP9oddj5wBDBNa30QsAM4x8mmCDrtdwGjnTH/TCl1UsLx5wGPA4XAw862S4ErgDHYQYV3gfuBYmAd8MOE498H5jj7/g481i74ci7wiNP/M8DdzmM1gX8D24GJzrkecfal8rhjz9khzr6vO22fxw6OeRKafQo4HZgEzAKubt+P1nod8CVaM1wKE3Z/BvgpkAe8BTRjvzYKsYOEX1Zd13f6DPbraATgAb6dblul1DTg/4DLgVHYr9MxXfRzDxBw2l7j/CRKet201v8Ffgb803keZjvtK7Bf//nO+H4bC+g446tTSh3TxXiS0lpvBr4LPKyUysZ+nT2gtV6S0OxKZ/yjsf+P3dm+H+fYi7H/HwohhBDDigSHhBBCiMyKZQ+dAqwHdsd2JASMvqe1btRabwN+jR0kATvA8Dut9U6tdQ3w84Rjy4EzgK9rrZu11hXAb7GDLKmqAmqAPwM3aa1fAf4H+LnWep3WOoL9oX1Ouyyan2uta7TW/vYdKqXGAccA39VaB7TWK53+r0ho9q7W+mmttZXQx/1a681a63rgP8BmrfXLzhgeww5+AaC1/pvWulprHdFa/xrwAlMT+n9La/28U1fnISAWbFiI/WH/Ruc5C2itY/V+UnncMZ8GntNav6S1DgO/wp4ueHRCmzu11nuc6/YsdlAkHf/SWr/tPEcBrfUSrfVHzv3V2MGp47o4/n6t9Ubn+X20m/N31vZi4Fmt9Vta6xBwK6CTdeC8li8CbnWe249pFzRJ4brRrv1zzmtCa61fB14Ejk3YX5hw/ZI50gkgxX42Jxz7J2ATsBQ7mHVzu2Mf0lp/7GQE3QJ8SnXMyrsI+//Q612MQQghhBiSJDgkhBBCZNZD2JkZV9NuShlQip2psT1h23ZaszNGAzvb7YuZALiBvbEPv8AfsLM/UlWqtS7SWh+mtY5lRkwA7kjoswZQtM0Y2UnnRgM1WuvGTh5TZ8fvT7jtT3I/N3ZHKfUtZ7pRvTPGAuznMmZfwu0WwOdMoxoHbHeCP+2l8rgTH2P8WmitLecxJbZtP4Zc0tPmOVJKHaGUek3Z0+HqsTOOSpMfmvb5O2vb5vWntW4Bqjvpowxw0fnrNZXrRrv2Zyil3nOmgNUBZ3bVPon3nABS7Oegdvv/hD2V8i4n4y1R+8fhTnLuq4C/aq2TBsyEEEKIoUyCQ0IIIUQGaa23YxemPhN4st3uKiCMHZiIGU9rdtFe7IBG4r6YnUAQO8AT+/Cbr7We3ssh7wT+p92H6iyt9TuJD6uL4/cAxUqpvHbj3p1wv8cfpp06Nd/FzqoqcqZi1WMHcrqzExivkhfBTuVxx+wh4ZoppRT2ddqdpG13Onsu2m//O/YUuXFa6wLsWkWpPObe2AuMjd1RSmUBJZ20rcSefpX09ZrCdWvzeJVSXuAJ7Kyscqf982ToMSulcoHfAfcBtyWpKdT+cYSx/7/Gjh8HHE/HgK8QQggxLEhwSAghhMi8zwMnti9a60x7ehT4qVIqz5nC9E1a6xI9CnxNKTVWKVUE3JRw7F7saTa/VkrlK6UMp9BuV1ONUnEv8D2l1HSIF72+JNWDtdY7gXeAnyulfEqpWdiP/+Guj0xZHnYQohJwKaVuxa5Jk4pl2AGP25VSOc74Fjn70nncjwJnKaVOUkq5gW9hB+qSBZK6sx8Y265eUTJ52BlZAaXUQuxstL72OHCOUupoZ3w/opPgjPNafhI70JLt1Cu6KqFJd9dtPzBROcXYsTPqvE77iFLqDOyaWplyB7BCa/0F4Dns65/os0qpaU5doR9jF52OJuy/AnjHqV8khBBCDDsSHBJCCCEyzKmbsryT3V/FLja8Bbvw8N+Bvzj7/gS8AKwCPqBj5tGV2B+i1wK12B/mR/VyrE8BvwAeUfZqYh9j1zZKx2XYBZ/3AE8BP9Rav9SbcSV4Absm0Ubs6T4Bup7mFud8uD8Hu4D3Duyi2Z929qX8uLXWG4DPYhcTr3L6PMepy5OuV7FXitunlKrqot11wI+VUo3YtX8e7cG50qK1XoP9+nwEO6jWiF0kuv0UrJjrsaek7QMewC70HNPddXvM+bdaKfWBMy3xa9iPsxY7GPZM4smUvbLZsXQutgpc4s8CpdR52MXCv+S0+yYwTyl1ecKxDzmPYR/gc8aS6EqkELUQQohhTMm0aSGEEEII0Z4zFasOmKK13jrAw+kzSqklwN+01n8e6LEIIYQQA0Uyh4QQQgghBABKqXOcaWI52PV/PgK2DeyohBBCCNHXJDgkhBBCCCFizsOeHrgHmAJcKqtzCSGEEMOfTCsTQgghhBBCCCGEOIBJ5pAQQgghhBBCCCHEAcw10ANIprS0VE+cOHGghyGEEEIIIYQQQggxbKxYsaJKa13WfvugDA5NnDiR5cs7WwFYCCGEEEIIIYQQQqRLKbU92XaZViaEEEIIIYQQQghxAJPgkBBCCCGEEEIIIcQBTIJDQgghhBBCCCGEEAewbmsOKaV8wBuA12n/uNb6h0qpXwLnACFgM/A5rXVdkuO3AY1AFIhoref3ZKDhcJhdu3YRCAR6crgQA8bn8zF27FjcbvdAD0UIIYQQQgghhOgglYLUQeBErXWTUsoNvKWU+g/wEvA9rXVEKfUL4HvAdzvp4wStdVVvBrpr1y7y8vKYOHEiSqnedCVEv9FaU11dza5du5g0adJAD0cIIYQQQgghhOig22ll2tbk3HU7P1pr/aLWOuJsfw8Y20djBCAQCFBSUiKBITGkKKUoKSmRjDchhBBCCCGEEINWSjWHlFKmUmolUAG8pLVe2q7JNcB/OjlcAy8qpVYopa7t4hzXKqWWK6WWV1ZWdtYmleEKMajI61YIIYQQQgghxGCWUnBIax3VWs/Bzg5aqJSaEdunlLoZiAAPd3L4Iq31POAM4CtKqcWdnOOPWuv5Wuv5ZWVl6TwGIYQQQgghhBBCCNFDaa1W5hScXgKcDqCUugo4G7hca607OWaP828F8BSwsOfDHVhKKa644or4/UgkQllZGWefffYAjqp7ubm53ba57bbb+NWvftVlm6effpq1a9dmalhCCCGEEEIIIYQYBLoNDimlypRShc7tLOBkYL1S6nTsAtTnaq1bOjk2RymVF7sNnAp8nKGx97ucnBw+/vhj/H4/AC+99BJjxowZkLFEIpHuG2WYBIeEEEIIIYRIU+VGog+eBy01fXeO+t34N73FZX98j8dX7Oq78wghhq1UModGAa8ppVYD72PXHPo3cDeQB7yklFqplLoXQCk1Win1vHNsOfbqZquAZcBzWuv/ZvxR9KMzzjiD5557DoB//OMfXHbZZfF9zc3NXHPNNSxYsIC5c+fyr3/9C4Bt27Zx7LHHMm/ePObNm8c777wDwN69e1m8eDFz5sxhxowZvPnmm0DbTJ/HH3+cq6++GoCrr76ab37zm5xwwgl897vfZfPmzZx++ukcfvjhHHvssaxfvx6ArVu3ctRRR7FgwQJuueWWTh/LT3/6U6ZOncrJJ5/Mhg0b4tv/9Kc/sWDBAmbPns1FF11ES0sL77zzDs888ww33ngjc+bMYfPmzUnbCSGEEEIIIVrtff7nmFuX0Lzsr312jvA/PkvWw2exdctG1r7xZJ+dRwgxfHW7lL3WejUwN8n2gztpvwc407m9BZjdyzF28KNn17B2T0NG+5w2Op8fnjO923aXXnopP/7xjzn77LNZvXo111xzTTyo89Of/pQTTzyRv/zlL9TV1bFw4UJOPvlkRowYwUsvvYTP52PTpk1cdtllLF++nL///e+cdtpp3HzzzUSj0ZSCKxs3buTll1/GNE1OOukk7r33XqZMmcLSpUu57rrrePXVV7nhhhv48pe/zJVXXsk999yTtJ8VK1bwyCOP8OGHHxKJRJg3bx6HH344ABdeeCFf/OIXAfjBD37Afffdx1e/+lXOPfdczj77bC6++GIACgsLk7YTQgghhBBC2D7espNRClo2v0PO8V/vk3NUVFUxBnjP91WoB+ovgoKBmeEghBiaug0OibZmzZrFtm3b+Mc//sGZZ57ZZt+LL77IM888E6/dEwgE2LFjB6NHj+b6669n5cqVmKbJxo0bAViwYAHXXHMN4XCY888/nzlz5nR7/ksuuQTTNGlqauKdd97hkksuie8LBoMAvP322zzxxBMAXHHFFXz3u9/t0M+bb77JBRdcQHZ2NgDnnntufN/HH3/MD37wA+rq6mhqauK0005LOpZU2wkhhBBCCHEgsizNVL0NFOjm6k7bLX3jBfLfv4PDLvo+TDwmrXPsqfOzMVjEGHNH68ZQUw9HLIQ4UA3J4FAqGT596dxzz+Xb3/42S5Ysobq69Ze81ponnniCqVOntml/2223UV5ezqpVq7AsC5/PB8DixYt54403eO6557jiiiu48cYbufLKK9ssfR4IBNr0lZOTA4BlWRQWFrJy5cqkY0xl+fTO2lx99dU8/fTTzJ49mwceeIAlS5b0qp0QQgghhBAHor0NAQqVHaixQslnCezYV8mYV65jrKrC2vgiRprBodqWEHnK33ZjJNij8QohDlxprVYmbNdccw233norM2fObLP9tNNO46677iK2cNuHH34IQH19PaNGjcIwDB566CGi0SgA27dvZ8SIEXzxi1/k85//PB988AEA5eXlrFu3DsuyeOqpp5KOIT8/n0mTJvHYY48BdmBq1apVACxatIhHHnkEgIcffjjp8YsXL+app57C7/fT2NjIs88+G9/X2NjIqFGjCIfDbY7Py8ujsbGx23ZCCCGEEEII2Ly/gVycL3vD/o4NtGbfw19mrKoCIBQMdGzTjaZAhHyaqRp/On+f8ht7owSHhBBpkuBQD4wdO5Ybbrihw/ZbbrmFcDjMrFmzmDFjRrwY9HXXXceDDz7IkUceycaNG+PZP0uWLGHOnDnMnTuXJ554It7n7bffztlnn82JJ57IqFGjOh3Hww8/zH333cfs2bOZPn16vAD2HXfcwT333MOCBQuor69Peuy8efP49Kc/zZw5c7jooos49thj4/v+93//lyOOOIJTTjmFQw89NL790ksv5Ze//CVz585l8+bNnbYTQgghhBBCwM59FRjK/uLYiLQNDuk1T1Pz8m9Z2PgSj6gzqdZ5qQWHtIbbCuCduwFoCkbIU36ULz9eMiIQaM7sAxFCDHsqluUymMyfP18vX768zbZ169Zx2GGHDdCIhOgdef0KIYQQQhx4fvnoK9y49kKiGDQYBRTduq11520F8Zv/Xfwks1//Ap5DTqbk8j912eezbyzjnFdPAVcW/GAf/1q5m5Ofmkt4zpW8n72YU969gsrzHqZs7tl99KiEEEOZUmqF1np+++2SOSSEEEIIIYQQmda4j7LdLwNQb5bgtTrPCiofP5WwNgmHu58O9s//vgpANH8sAE0tAXJUEFdOER6fnTkU7sH0NCHEgW1IFqQWQgghhBBCiMGs+dFrubr+dQAa3SXkR6vtKWHtFoWJmFnkFxQSwo0Z6jqoo7XmYLUbgJbs0eQBoRa7jIQnuxCPmQVAOJikvpEQQnRBMoeEEEIIIYQQIsMqaurit5vdJbiwIBq2NySU9jBySijMchPCTbSbzKGdNX5OMVYA0KjtQFCkyV492Z1TiNvnBIdCEhwSQqRHgkNCCCGEEEIIkWGVkez47YC31L4RtgtFNzfbKwCHDS/GZx6hIMtNCBdWN6uMrd20iUXmGgBCTtFps3k/ACp/FN4s+5yRbjKQktIa3bivTeBKCHHgkOCQEEIIIYQQQmSQ1hoVbF01OOSzg0NWsAWAiio722fdjBth5ExcpkFEuSAa6rLfnVs3xG/H+vK07LU35I/B47Uzh6yeZA4tvRf166nw7j3pHyuEGPIkOCSEEEIIIYQQGVTdHCLXagJAFx+MP9cuHh0M2NsqamoAyM0vjB8TxoPRTXCoZu8W+19VCBE7O8hs2mfvzB9NlpM5FO1B5tCWT9YBEKncmPaxQoihT4JDadi/fz+f+cxnmDx5MocffjhHHXUUTz31VJ+fd/ny5Xzta1/LSF/HH388U6dOZfbs2SxatIgNGzZ0f1A/y+QYH3jgAa6//noA7r33Xv7617922nbbtm38/e9/j9/P5PMuhBBCCCEOHDtrWshTLeydeD7qaytQPnvZen+zHRyqcYJDBQWF8WMiyo1pdR4cCjTW8N2GnwOw1zUOI+LHsjRW/W4CRg548/A5NYesFFY9a+/jbXaQaffuXWkfK4QY+iQ4lCKtNeeffz6LFy9my5YtrFixgkceeYRdu/r+l+f8+fO58847M9bfww8/zKpVq7jqqqu48cYbO+yPRqMZO1dP9cUYv/SlL3HllVd2ur99cCjTz7sQQgghhDgw7K7zU0Az3rwSAFzeHACCfjs4VFdXB0BhQnAoqlwYVrjTPvdvXRO/3eItxWUF2LDsBU7VbxPIHgVAls9LWJvoSPqZQy7LPsZqrk77WHHg0Ov+DXU7B3oYog9IcChFr776Kh6Phy996UvxbRMmTOCrX/0qYAcWjj32WObNm8e8efN45513AFiyZAlnn312/Jjrr7+eBx54AICbbrqJadOmMWvWLL797W8D8NhjjzFjxgxmz57N4sWLO/SxbNkyjj76aObOncvRRx8dz6p54IEHuPDCCzn99NOZMmUK3/nOd7p9TIsXL+aTTz4BIDc3l1tvvZUjjjiCd999l9/85jfMmDGDGTNm8Lvf/S5+zF//+ldmzZrF7NmzueKKKwCorKzkoosuYsGCBSxYsIC3334bgNdff505c+YwZ84c5s6dS2NjI3v37mXx4sXMmTOHGTNm8Oabb/Z4jH/7299YuHAhc+bM4X/+53/iAaP777+fQw45hOOOOy4+FoDbbruNX/3qVwB88sknnHzyycyePZt58+axefNmbrrpJt58803mzJnDb3/72zbPe01NDeeffz6zZs3iyCOPZPXq1fE+r7nmGo4//ngmT54swSQhhBBCCMHu6kbylJ+cAjs4ZGblARBuqgWgocGuR2R6c+PHRAwPpu48OBSMWADUF07DcGfhivo57L+fpkw1kDVxIQA+t2kXtg6nFxyqbwlD2K5T5A3VpHWsOHBofx3qn5fDPy8f6KGIPuAa6AH0yH9ugn0fZbbPkTPhjNs73b1mzRrmzZvX6f4RI0bw0ksv4fP52LRpE5dddhnLly/vtH1NTQ1PPfUU69evRykV//bgxz/+MS+88AJjxoyJb0t06KGH8sYbb+ByuXj55Zf5/ve/zxNPPAHAypUr+fDDD/F6vUydOpWvfvWrjBs3rtMxPPvss8ycOROA5uZmZsyYwY9//GNWrFjB/fffz9KlS9Fac8QRR3Dcccfh8Xj46U9/yttvv01paWk8HfaGG27gG9/4Bscccww7duzgtNNOY926dfzqV7/innvuYdGiRTQ1NeHz+fjjH//Iaaedxs0330w0GqWlpaXT8XU1xnXr1vGLX/yCt99+G7fbzXXXXcfDDz/MKaecwg9/+ENWrFhBQUEBJ5xwAnPnzu3Q7+WXX85NN93EBRdcQCAQwLIsbr/9dn71q1/x73//G7CDcjE//OEPmTt3Lk8//TSvvvoqV155JStXrgRg/fr1vPbaazQ2NjJ16lS+/OUv43a7u3xcQgghhBBi+Br1ySMAeAvKAbBKDgFg76YVlI0cQ6ihwm7oyYkfE+1mWlkkYgeOdsz9NtGPn2Okqo3v805cAIDbNGjEHa9HlKrGYBgf9rlzIvXdtBYHqoeefJorAaKRgR6K6ANDMzg0CHzlK1/hrbfewuPx8P777xMOh7n++utZuXIlpmmycWPXhdzy8/Px+Xx84Qtf4KyzzopnqCxatIirr76aT33qU1x44YUdjquvr+eqq65i06ZNKKUIh1u/XTjppJMoKLDnM0+bNo3t27cnDQ5dfvnlZGVlMXHiRO666y4ATNPkoosuAuCtt97iggsuICfHfrO68MILefPNN1FKcfHFF1Naaq+2UFxcDMDLL7/M2rVr4/03NDTQ2NjIokWL+OY3v8nll1/OhRdeyNixY1mwYAHXXHMN4XCY888/nzlz5iR9frob4yuvvMKKFStYsMB+I/T7/YwYMYKlS5dy/PHHU1ZWBsCnP/3pDteisbGR3bt3c8EFFwDg8/mSjiHRW2+9FQ/CnXjiiVRXV1Nfb79xnnXWWXi9XrxeLyNGjGD//v2MHTu22z6FEEIIIcQwFPazeM+f2eI6mMmzLgWgvHwUllYcsflO2HwnX421TQgOWYYbs4sP3VEnOORyuSnJz4VKe7s+7x6Ucx6AsPJApOvC1u21hKJkOcGhXN0IlgWGTDIRbe1b+w64wRo5U6YgDUNDMzjURYZPX5k+fXo8OABwzz33UFVVxfz58wH47W9/S3l5OatWrcKyrHjAweVyYVlW/LhAIBDfvmzZMl555RUeeeQR7r77bl599VXuvfdeli5dynPPPcecOXPi2Skxt9xyCyeccAJPPfUU27Zt4/jjj4/v83q98dumaRKJJH9zefjhh+PjjvH5fJimCdj1lZLRWqOU6rDdsizeffddsrKy2my/6aabOOuss3j++ec58sgjefnll1m8eDFvvPEGzz33HFdccQU33nhj0jpAqYzxqquu4uc//3mbNk8//XTSMbZ/HOlKdkzsPKk+70IIIYQQYvjbv/lDynUDyw+7hcnOtLGDR+Tin3YxWeseY6fnYMqD26gsOZwxhRPix0WVB5fuPnPIdLk5KNtZqv7cu1FzP9umXQhP2plDLaEoWcouYm1igb8WckrS6kP0kbsXoCMB1Nd7OXPGXwe+Aujms1JntNaMVPbMkbCZhbeb9mLokYBfik488UQCgQC///3v49sSp0TV19czatQoDMPgoYceite/mTBhAmvXriUYDFJfX88rr7wCQFNTE/X19Zx55pn87ne/iweBNm/ezBFHHMGPf/xjSktL2bmzbbGv+vp6xowZAxCvXZRpixcv5umnn6alpYXm5maeeuopjj32WE466SQeffRRqqvtInWxaWWnnnoqd999d/z4xMcyc+ZMvvvd7zJ//nzWr1/P9u3bGTFiBF/84hf5/Oc/zwcffNCjMZ500kk8/vjjVFRUxMeyfft2jjjiCJYsWUJ1dTXhcJjHHnusw7H5+fmMHTuWp59+GoBgMEhLSwt5eXk0NjZ2+pw8/PDDgD3drLS0lPz8/B6NXQghhBBCDF9bd+0HYPKEiW22Z11wJ/r7exj3/RV4fljJmK+9CGbrd/WW6cHVRc2hxMwhGnbbGws6ZquHlBdvOL2pYS3BSHxaGUC4VgoODxpVG1F1O3rVxb4Ny+AXE+DjJ7pv3Ik9u3eywLDr3YbD6WWmiaFBgkMpUkrx9NNP8/rrrzNp0iQWLlzIVVddxS9+8QsArrvuOh588EGOPPJINm7cGJ+SNW7cOD71qU8xa9YsLr/88nj9m8bGRs4++2xmzZrFcccdx29/+1sAbrzxRmbOnMmMGTNYvHgxs2fPbjOO73znO3zve99j0aJFfbaq2Lx587j66qtZuHAhRxxxBF/4wheYO3cu06dP5+abb+a4445j9uzZfPOb3wTgzjvvZPny5cyaNYtp06Zx7733AvC73/0uXlw7KyuLM844gyVLlsQLVD/xxBPccMMNPRrjtGnT+MlPfsKpp57KrFmzOOWUU9i7dy+jRo3itttu46ijjuLkk0/utE7UQw89xJ133smsWbM4+uij2bdvH7NmzcLlcjF79uz49Yi57bbb4o/xpptu4sEHH+zRuIUQQgghxPC2x/nycuzIsrY7PNmo2DSyJFO2LMOdWnDI7YbRTk3N0kM6tNuWM4vpLcvgtgLY/FpKY7anlQWp9E2y+9i8LqXjxNDwweO/BGD/Ry/3uI/Svy7mMMMOUkXCnb9OxdClejLFpq/Nnz9fty/mvG7dOg477LABGpEQvSOvXyGEEEKIA8Mf7/op11b/P/jah1A8OeXjnvzNV7iw4W9wa23S4NG7/3mIo5Zez55P/ZfRhxwO9Tuh5KAO7d5/6VEWvP1F+87Ca+HMX3Z77mdW7eGIJ4/CO/loCrc+z3Ojv8pZ1/4k5bGLPnRbgfNvzwqF16x/k+JH7Pq2q3OOpmLeN5i5YDHl+d3XXY1pCkbI/XnrNMPqg86n5Ar5snyoUkqt0FrPb7+928whpZRPKbVMKbVKKbVGKfUjZ3uxUuolpdQm59+iTo4/XSm1QSn1iVLqpt4/FCGEEEIIIYQYnPyNdfYNb3olCLTpsW9Ek0/ZiTp1LV1uN7g8SQNDAPOPOyt+O+IrTuncLcEIWYRwFYymRWUTqd6W+sDFoBYLDAHMan6Hk9+8hL1/vASiqWf/LNtS2eZ+VGqsDkupTCsLAidqrWcDc4DTlVJHAjcBr2itpwCvOPfbUEqZwD3AGcA04DKl1LQMjV0IIYQQQgghBo1o7U5uCP3RvuPJTetYbTglfqPB5H07K5m5XO4u+1GeHCKmnRVSW13ZZduYllAUH0FcvhzqsidQ4t9KINw3JSxE6vyh3l+DqPORf1l564p2c5reQFdtSrmPbVs+adtnmqvhiaGh2+CQtjU5d93OjwbOA2K5ZA8C5yc5fCHwidZ6i9Y6BDziHNcjg3EKnBDdkdetEEIIIcSBIfjij1rvuNJbz0nH2keSB4csp+aQ2911cAig9tqVNOosKvbvTuncwWAAj4ri8uagR8zgGONjnnzhldQGLvrMn97c0nWDcACaqzvd3bTpTUws3h15OYd//g4CC7/K+9NvAWDPrm0pj6Nu55o29y3JHBqWUipIrZQylVIrgQrgJa31UqBca70XwPl3RJJDxwCJpe53OduSneNapdRypdTyysqOEW6fz0d1dbV80BZDitaa6upqfL7U5/QKIYQQQoihae3m7a130lwyPOrKsm+EmpPut6Kx4JCn277KykdR6ZtAQ9XelDKAgn77nKYni9GH2Au6fGb5JSCfvQaU6uL5r2gMsOX2o+CXnde1yn3YnlI2dux4TI8P35k/Ycy8MwDY3C4bqDORqEVwn12gvPG8+9lkjcHqZOqjGNpc3TcBrXUUmKOUKgSeUkrNSLH/ZL8Rk77CtdZ/BP4IdkHq9vvHjh3Lrl27SBY4EmIw8/l8jB3bcZlRIYQQQggxfEQtjTdYlfwTUCrHm05wKOxPuj+WrZFK5hBAuc9icnAV7732OEee+uku2xotVQConDKYfBzRF27GxIK9q2D0nNQegMiMYBN4ckApirM7fzE9+MpKbox2k1nkGDmq9bPIqLETAFi85hZeqdjISZ//KfgKOj1208fv8z0eAMAz41wan/op3qhkDg1HKQWHYrTWdUqpJcDpwH6l1Cit9V6l1CjsrKL2dgHjEu6PBfb0ZKBut5tJkyb15FAhhBBCCCGE6FPbKuuZ0mbSRJrc2fa/4Zaku7VlfyA3u6k5FJN16EmwdCOTP/wFdBMc8jU74y6aAPmjueege/na5muhcS922VnRLyo3wj0L4II/wuxPk2skLxpd0RjghA+/lnIg0p1XFr+tvK21sE6qfAg+OQFmXNTpsaGK1gwjr9tFFBOdRjFrMXSkslpZmZMxhFIqCzgZWA88A1zlNLsK+FeSw98HpiilJimlPMClznFCCCGEEEIIMWzs2vQRPtXzD81WbFpZJ8GhWM0hjNS+3zdO+ymPmOcwwr8ZrK6nljXvcwIAhXZWic/rjEWmD/WrlUset2/seBcAHUrIIotdw10rGPHrcuarDa37usvkUZ1/7G+qTZbj0SoctSf17DznEXsYytXt60kMTanUHBoFvKaUWo0d7HlJa/1v4HbgFKXUJuAU5z5KqdFKqecBtNYR4HrgBWAd8KjWek2ScwghhBBCCCHEkNW8bTkAoc88Bd9OfSWoGB3LHAp1EhyKBQBSDA5hmASzR9q3g42dNluxvZbC5q1ElRvyRgHgy7KDQ5FQILVziYxYs8p+DVFyMABWYqDQydbxv/fn+Kb/eO36QUS6uU6TT2h7/6sf8P55bwBQXbmvy0MjToF0M9fOPrKUiWFJ5tBw1O1vFq31amBuku3VwElJtu8Bzky4/zzwfO+GKYQQQgghhBCDV/mel6lSRZQefBwYZvodeOzgkBVqSfoNfmxaWTp9+3KLoBEINkBWYZt9UUtz+/Nr2Pfeo/za9QqRsUdgGvaZs7PtsQT8fnIR/aGiIcDBhrO6nHON22QORYPg9rGpJYdZzqaa7EkQxF7hztvxSoW1ydJRl3OM2e5jf8lBlNNCo84i2Nj5amcA0bBTCN1jr6YXVS6Uloyy4SitmkNCCCGEEEIIITqa2vIBKwtO4pieBIYgXnMoGmxKHhxKN3MIyM4vhr0QbK7HW9i6vTkY4Ym7vsPNTfe1fiK86N74/hwncygQDEhwqJ8s3VrD0coODkXDQUxoW5zcyRyqrmkN5nizcqGW5JlDWuNWUYz2gSFHSa6HWnKgpabLcUUjdiDI67FXydPKRGkpSD0cpbSUvRBCCCGEEEKI5BqamsilBVfRuO4bd0LFg0PJp5VhpR8cKi0tBaDl9Tthx3vx7f9cupXLGh9o7XraBVA4Pn4/ljkUDCRfOU1k3spN2yhR9vS/+PPeJjhkB2nCDRVYGPCNNbhitaGSBIciTo0q5fIkPV+2x6SeXFSgrstxxWpdeTw++74yMSwJDg1HEhwSQgghhBBCiF7YusNe7auwpLzHfYwsLQLA99J3Ce5d22F/TzKHRo8YAUDRxkfhb60rUllVm3CrKPr8e+GHdRifeqDNcTnZOQAEgxIc6g+WpdEb/hu/Hwg6wZ7EoE8kSFVTkJxwLZX5M6BgLIbbDtjocMfrFAzatYIMM/nqdkopms18XKG6LscWjcSmldn9WMqNIZlDw5IEh4QQQgghhBCiF3bu3gVAWfmoHvdx/IwJ8duRB8+H5ra1YOI1h7pYeaq9UeWtwapoduty5vkNG+2uRs4A1XE9dK/Xri9jhaW2TH9Ytq2GTwWfZJf3YMLaJBiwg0I6MTgUDbNx8xYWmWtw5dtBP9PJHAolCeIFnVpBhit5cAgg6CogK1zX5dgsZzqb6WQgacNEaVmtbDiS4JAQQgghhBBC9EJsOfDi0pE97sPtas0Iygnshx3vtG1gRYhgJg3mdMaTUxi/3eIuit/ObbYznSiZknwsTvFhnJWqRN96YdkaDjV2oqedTwAPoXjmUOvzHwr5Gf3MpwHIGTsTANPtBIcCHaciBp0+zE4yhwCqsyYyIrIH/LWdtrGcmkOxjDWtXJiSOTQsSXBICCGEEEIIIXrDKeqrsksy12dj2yXGdTSCRZrFrr358ZvRlrr4bTPcSAg3ONOS2nO7TILajY5KcKivBcJR6te9BoB78jGEMQmHneBQwvP/xrvvMTG6nbXTv4nvtB/a7Z3MoWCS4FAoZAd1THfymkMA+0uOwEAT3PxWp21imUM4QSZtuDAkc2hYkuCQEEIIIYQQQvSC8jsrPmUX96of7c1jS9mJhLWJv3pn233RMFGVZnDIySwBMIL18dtmuBm/ykp2BAAe0yCECx2RaWV97e/vbecMawlBbwnG+AWEcLc+7069HwD3nvcBmHb0OfHsMZfPLhyeLHMoFKs51MW0stlHnoRfe9i54r+dttGRtrWu7OCQZA4NRxIcEkIIIYQQB5ZICOuxa2DnsoEeiRgmzKAzLSerd8Eh9b1d7D3tT1RQSEPFjjb7rGgYnW5wSCn42kr+m30O3khT63gjzQSN7E4PczvBodgKWaJv7Knzs+uF33GK+QHu+VeR5fUS1q74dDKV8PyXN60higHl0+PbPB77GoaT1BwKO/WizE5WKwM4Ysoo1rimkbXjVbCSZwNpywlQGU7mkHJhIplDw5EEh4QQQgghxIFl9SMYa56Ad+8Z6JGIYcITqiegfJ1O00rH9NH5VOgiQnV72u6IRrDSDQ4BFE/CyB+FlyDama7kibYQMrsKDilCuFEyraxPPfLuZr5lPkLLhBMxTroFn9tsk7GlrNbnvyBcRaORDy5vfJvHZ2d/hYPJppXZx7q6yBxSShGYej5jonvY8ZPZ7LrzNKja1KaNjoTtoJThhA4MF6ZMKxuWJDgkhBBCCCEOKFs/tOt7UDx5YAcihg1fuJZmM7/7hikozPZQ4xpBVmPbzCFtRdAq9WXsExUUlQJQUWUXzvZGWwibOZ2297gMwtqEaLjTNqJ3tNZsWPk2OSpI9hGfA8PAbRqEccWf98TMoSKrlqCZ16YPT5Z9DaNdZA65uqg5BDD/gq/xlD6e8dZOxta8R+SeI7FWPdbawAoTTax1ZUrm0HAlwSEhhBA9sm79Gloe/BQEGgZ6KEIIkZYN2+xaLpFQxw9UQvREdqQBv6sgY/3VFEynNLIXmqvswtRhP9qKoo0eZA4BI0bYS9qv32K/9n26hYi78+CQPa1MMof60otr9zOz+W37ztgF8e1R5Y4Xok4MDvlUmJC7bXDIl2Vnf0VCAdoLh1ILDvncJvOv+wsvzPsDdx76N7ZFR9Dyys/j+7UVIZoQlNSGBIeGKwkOCSGESFskarHnka+TvfUF+OTlgR6OEEKkJZ9mABqbGgd4JGK4yLUaCHmKum+YoobSOfaNXcvh11PR95+F0j3PHBo7ZS4AtRvfQmtNltWClVJwSGoO9ZU3X3qa61zPEJ14HOSPim+PGm6UU+fHsNo+/1FP2+w0X1aufSNQ16H/SNjuw+XufFpZzLjyEk4791I+f8EZvKunY7ZUxfepaLjNKnnKcGFigWV1268YWiQ4JIQQIm3Lt9cy1nJqIWRy2V4hhOhjlqXJV3Z9jmYJDokMCEUs8nUjYW9hxvqMjpgBQHjvRwCoPStwYUEPM4fcY2ZRZZZRvucV/O/8iVGqBjy5nbY3DUUYVzxIITJr854Kvljzaxp9ozE/8482+yLKjYq2BodatNee4gfga5udlpWdzTarnJy6jR3OEQ7b2UfubjKHEuV4XVi+EryRhtYC1R0yh9zx7XHRMDTuT/k8YnCS4JAQQoi0vbRmH1ONXfYdqUcghBhC9jYE4plDQX9zv5xzS2UToYh8yz5c7W8IUKwaMXq5jH2i4uJSKnUB4R3L49uyCbR+ME+XUuwecTxHhZeS/dKNZKsg3pyup8GFlRtDMof6xOpX/skEowLO/BV42mZwWYY7njFkWGFCuKnDDuRl57f9Qi7X6+JjPZGJFS9jPfM1CLdOL4ukWHOoPV/hCAw0tNQAoKNhLKM1OGSYzu3E4NC/vwG/PqTN+cXQI8EhIYQQadFaE/zo6dYNEflDQAgxdOyrD1Cg7KCQEe3731/76gOc/dtXePHd5d03FkPSruom8mnBm1+WsT5H5vvYokdh7v0gvu0U84MeZw4B+Gae0+Z+Tn7X0+Aiyt1hWlOi1x/+GdxWAMGmHo/pQJW3/UXqjQIKZpzWYZ8dHLK/eDOtEBHDTa22g0NFJSPatPW5TWoL7Swz44MH4aflsP1diEbi08rcHi/pyC6y61OFG+3i5UTDbaczxjOHEr4cXPeM/W+446ppYuiQ4JAQQoi0bNjfyBn+5+L3AwH5Q0AIMXRUNrSQh12I2oz0fUHqd7dU8bjrFs5+5ZQ+P5cYGLV7PsFQmpyy8Rnrc2SBl63WSLx++wP6J9ZoAAobN3V1WJcOWXh6m/t5pWO6bB9VrniQor3NlU0s2vhL+46/tsdjOhBVNgaZENpMdfHcpME+bXgwdCw4FAbTS06uXYjanVPYof1hp1zddsP9p2M9eA4hpyC1z5te5lBhqV3/yP2Ho7H+fKpddyohcwiXExxKzByP7Zfg0JAmwSEhhBBpeXP9XhYa69lcdjIATc39My1DCCEyoaViC4bSAJhW36/EtGLTbqYZ2/v8PGLghPetBSB//KyM9TmhJIfNxqT4/Z9HLut1n8rlxT/+hPh937h5XbbvNHMoGuE/yzfiUs5USckgTsv7WysZr/aTM2pq0v3acNtBIezVyqKGmzEeJ5BdfFCH9vNnzcI67/+oOeNevpnzc96JTiNSsSFec8jlSi9zaER5a9DQ2LWUMlULZmtwKOy2pyNqZ9qZ3dDZH5Lg0FAmwSEhhBBpaanejVtFMcqn2fdbJDgkhBg6Dl91W/y2qx+mlQU2v916x5Lln4cjVbkOAPfIwzLWp9s0iIyaG7/vG3FwRvrNuvrJ1jvl07tsG1Je3EkCqKH//oDrl7YGmSRbJD1b1q/CqyKUjEv+etGmB5eTOUQ0iDa9cOpPiBx1Axx2TtJjjLmXU3zEZXz/y5/nYz0JFWomFHKunZneCncTp87iLdeRRLQdKjjCWN86lQwI+UrtoSUWoI5nDsnfhEOZBIeEEEKkxdWwE4BIkf3tVTTU99MyhMiUen+Yl9fKiioHMk+wGoDXObzPM4f21Pk5uLm1ZkybAq5ieNCag6tfZ597XIeVpHpr1CEL4rdv/+xiHl/4COEvLOldp4YBn38JfdrPwZPdZdOw4cNtdQyg1mx4B4DtpjONLix/B6TjU+tvAMA14pDkDUwP5bqS8Pr/OtPKPDDtXFyn/RiU6rLvkhwPISMLtxUg6mQOkWYRc68vm1nf/jeXR26Jbyto3hq/Hcqya2tFKze11puKTY+TzKEhrdvgkFJqnFLqNaXUOqXUGqXUDc72fyqlVjo/25RSKzs5fptS6iOnnVTiE0KIIc7XbK9SZpVMAWj940OIIeCCO15m59+/StPqZwd6KGKAWNEob3sWUacKkn7wzaSlW6s5yljTuiGV1R2tqBT4HUJqd61nmt7E5omXZrzvBVNGsdQ6FIC8whFcfOYZuMfO7eaoFIxbiDrqum6bhQ0fbt32PT4QjrK90WKjZxrLZ/4QgKBfXq+p0lqTHW0iaGTB+KOStlk34kwAWt64Gw9hDFfqNYOUUriz8wEwgvX2RiO9zCGAfJ+bhTNbM5sM3RrYDvvs4JD3P9+A30xzTuwEhySLbEhLJXMoAnxLa30YcCTwFaXUNK31p7XWc7TWc4AngCe76OMEp+383g9ZCCHEQMoO7APAKHWCQyGpNSCGhorGAMc1PsfnXC9grLh/oIcjBogv0ghZhYSUF1cfZw6t3LidGcZWmpWzVHUnxX3beOp/4OddFwoWg8emjfaUstLJXdfv6YmZYwr448TfsOzslyGNAEGmRAwvnnb/R7ZWNZMVbSK/qJSCfDtTqrauvt/HNlRVNrSQTYB1E6+0s7iSOOm087jXOp/cPW8zUtWg3L60zuF1gkNzG5fYG9KcVhZzzqLkgcjSEeWEtBMMcgJQYez70X9cxoonf8Oe1/4AEfnycKjpNjiktd6rtf7Aud0IrAPi71hKKQV8CvhHXw1SCCHE4OEN1eI3cvBl5xLWJjoswSExNKz9z5/4ofshAIJmzgCPRgyEYDhCrm7Ek1NM2PD2eeaQ3v42Jpo1WYfbG6IpTCv76LE+HZPIrJ3bNwMw+eBOpgj1gss0uO+aRSycv6D7xn0gbGThJtzmdRuOWuTRAt58igvt4FBDgwSHUrV7z257ZTtnufhkJpTk4D/kfEwsJhv7MN3pFZTOzS8EYEZwpb0hzWllMYeMG5l0+8yxRVTRdgplfdAuTm5aYQ5f/SNGv/4d2PjfHp1XDJy0ag4ppSYCc4GlCZuPBfZrrTtbV1EDLyqlViilru2i72uVUsuVUssrKyvTGZYQQojOhANgOauJJK4q0QvecAN+Mx+f2ySIG0uCQyIJ/fAlsHJwfW+0YP0v4rdlOuSBaVdFDV4VIauw1M6K0KHW35EZ1hKKMKlhBWHlZXvuHHtjKplDMVK8ekhortwBgLtw+GV7RUwnYyXSWlMoHLXIVy1YnnzKiosAaGhqHIjhDUkV+3YDUOAsF9+ZC884leejCwEo3P9eWucoLi5pu6EH08pi/jz6Rx22jSrw0ajy2mwLRlvDCv8edyMAodrdPT6vGBgpB4eUUrnY08e+rrVuSNh1GV1nDS3SWs8DzsCekrY4WSOt9R+11vO11vPLyspSHZYQQohO7Klpgp+Ww3+/C9vehv83CTa+0Ks+7bnyDQTd+WR7TEK40LKErUhCbXoRnv5Szw5e/Sj4azM7IGCNbl0WOhpOsjyzGPb2V+wFILeglKjhfBufTsAmDev2NnK4sYGG0jkoj5OplkrNoZh02rbnr4Wtb/T8eJGSUO0ervT/1b7jzhrYwfSBqOk8poQiw6GwnTlkeVuDQ/NX3Qq12wdiiENOXZX9O6i4bHSX7SaU5PD8oT/jfesQWo66Ma1zjChtFxwye5Y5BPDZq6/vsE0pRXFx28/rQau1UHbWkdcQ1YrK/RIcGmpSCg4ppdzYgaGHtdZPJmx3ARcC/+zsWK31HuffCuApYGFvBiyEECI1f37CLrhrLb+fdS/eZ2+sXN+rPpvqq5mhthD1FjqZQx6ZUy4yq2I9PPlFePorGe22qimIGfWzJ/tQVluTsCISHDoQNdZUAZBbOAIrNtUi2jevhbU7q5iqduIdfzhut3OublYrq29JCAj1Jmj12NXw4DkQsL/P1VrzyLIdnHHHmzy3em/P+x1KtLYzGDe93Gen2PfRK33W92AQjWUOJRQZtsIteFQUvPn4snLj21t+f2Jq0yYPcE219mqZrrwR3ba987L5lHz1NXJPTi84NGZEa+Bma/Zs8BWmdXwinyd51lHx6MmtdyJBAtHW4NDk8gJqyCNULyuDDjWprFamgPuAdVrr37TbfTKwXmu9q5Njc5Syc86UUjnAqcDHvRuyEEKIVIyqtReI3Ocej2uXnZKsXb37ZtP82wWUqXrMnGJMQxHCjZYP2aK93nxACNTZ/zZXZGQoMR/trqeUeoyyKfjxYklQ84DUUm+/rvKLStHx4FDfZA5Vb/kQr4qQM2kBhiu14FDdyqdb7/Rm2fv9awF4btkatNb8+c2t/POpJzmv8g8s3ZzZ/1uD1ZYd2+0Mxkev7LNzNO/dCMDWT7/WZ+cYSDq21P2qR6DBDirqgFNfyFcArtZaONmhKti6pJ9HOATVOx+b85LX80lkGIrJZbndtmuvqLAYgEpdwCMz/tDjgtQxumAsHHZOm23mGbfTgh081IF6rITfowVZbmp0PpO2P0b4d3NliuwQkkrm0CLgCuDEhKXrz3T2XUq7KWVKqdFKqeedu+XAW0qpVcAy4DmttVSmEkKIPhaOWkxu+hCA0cHNTDHs1N7G+t7VHcquWg1AvmFPJYsoN0ZUppWJdqK9CLyEndoWrvRWZ+nOR7vqKVX1FI8YSxQT3UfZImJwCzXYdS09BeV9njmk9q2y/x09Bwx7panuMtYmvPiF1ju9CbI6/38e++8r3PfKSja+8Hue8v6QL7me5caPz7Pr0Q1z3/zDMwDovM4L//aWrt7MXl3MqINn99k5BlJurr3qFa/fDg9fAoD2O9VFfPmgVNsDQs39OLqhx7I0RU2baXIVQXZx353IWdnOU34IX1w8uZvG3VPfWAOf/lvbjTklPFz6dQCa6mpwayc4NOk48nwuqrX92nHXbaHhjqMkq2yI6DaMqLV+C1Cd7Ls6ybY9wJnO7S3A8PxtKYQQg9iGPXUcrjpOIaupqSK/F/2GjCw8lp/slj0AhJUH1ZtAgBieevphu6UGHjrfvp3B4FC9P8zrS5fxNRWEgnI7Y0Ret0PLbQWw8Fo485e96sZqsqeVkV0KprM0eB8Eh0IRi/LGdfg9eWQVTUK57D+5o5Fw6gU/ezitLGpp9jRZjAMe8PyShjfvJt/dWlA4L1prZ+i5u89cGMrGYAcCI9nl9LziStd8jdvZa4xilNvsozMMrIL8hL8YGuwvmWKLUJieJL+jD4CgY29s2rSOC9VrVOXNJf18oDQUjodz7qTg0LMgJ72VztI6TVEJVEFtbSUewuwtP45Rlz+O2zSoM1pXM8uv34C17yOMMXP7bCwiM9JarUwIIcTQULn6BQpVM/tMezWMKrOMSp2P9tf1uM/qpiC7o4UAqCO/DNiZQ0oyMER7PZ1quOqR1tvuzAWHfvXCBr4YeMDOFDnoRCzDjeqjqUSiDy37Y6+7MPyx4FAJOraCTx+8FjZVNDJbbaKpaBoohXICUdF0pjP2cFyVjUEawq3Binzl79homL/+tdaMVXZwqMVT2mfn8YTqCXn7MANkgBUXJCxX7kwhi2W/mU52SqJgQDKHkooE0U9ei/vlHwDgm3xk35/z8Ksgp+9e+wClpXbdpPJnPsskYz/klMWzlppcRW3a7vj47T4di8gMCQ4JIcQwlL3lvzSSxZu5pwMQzh1Lg85BBXu+3Ozq3fW4CVM5+UKY/zkAQkY23khTRsYshpGeBgwTViiLF0LNgILNz3C6sQzj8Ktg1Gyiyo2hh/eHY5FcTqSOJiPPrsHRh5lDu9ct4zBjB+rQswBQTs2PSLjz111DoN2+HtYc2l3nJ0DHD+4A/y64zL4xzIP6e+sDjFN2bSW/1XdZPd5oE2ZWQfcNh6iSosLWO05wKBqxX6dmrI7WVf/mlaPsFdtaWiQ4lNS2N1Gr/8nkylewUOSe+oOBHlFGjJ5iZwJ5w3UAeLyt79t+Jzi0LWsGtTqP2o3v9Pv4RPokOCSEEMOQbqqk1jWCknnn8Vp0NtFTf0YjWRihhh52qGlc9xqFNJFf1LoKRoV7FGVhWapUtNPDD56V29fGb7dYvSugmejMZmeh1ZmfAsAy3Jha6h8MGVpnrKv8aC2NZqF9py+nlW1fBkDR4RcAYDhLScc+WCezo7ql7YZeBIesxIoQMy6y//3Mo1RmH2LfHuaZQ2v2NDBW2VlioWCSzKkMaNi/gzJq8eYW9kn/g8H4ka3v99qZ6huNxoJDzv+fScdijJ4FgF+CQ0lFw60Zg3uKFoK3TyeV9Zupkye0ue/ztS56UmHlAZDjho/dMxlf935Gf5eLviHBISGEGGa01pjBWqLeQk487gSO+9HrjD7sKBp1Nq4eBof+fd//cu7Ka8lVAbx5JfHttb5x5Oomu1aMEDE9/LBds3tj/HYgmLkP7DoaYUP+Ihh/BABR5cbszTLhon9pK2Nd5VsNNMWDQ323WlldbbV9CqfobGy1MquL4FA42u5x9nBcL6/ZQyEJH9JP+TF8ayNMORWP1/lAP8xf/7s3reR40y4IHgn1TXAo//czAcjOL+qm5dDlLhwdvx1RsaLq9mvH5W7NTsvPtQMBQb8Eh5J59p2V8du+0gmdNxyCIou+Fb/tTai99UmzHSjKdcP67MMpiVZA7dZ+H59IjwSHhBBimKlsDJJrNWLmOB9KDIVhKFqMHNw9mAL2yd4apu5IqAWTlfCHcPFBAFhVn/RqzGJ42VdTn/YxlqXJD1fH7wd7+G1/0/O3wm0FfPKnq6CpgnDUwqcD4M2Jt4lK5tDQksHgjQ8/IdN5LfRh5lCgqc7O3vHY5zLiNYc6P1co0i441IMAzraqZo5b90N7hcrDzoWvrYSCsZBXDkrhjhURHubTyi5eeU3rnZ7WQOtKQgZEQUFJFw2HuISl6kNOWW/tPJ+JwaEsr4eQNtHhvgnEDXWNlbvitwtGHzyAI8k81ym38h3zRvt2VetCKFmF9iqBPtMikGXXJqIXdS9F/5DgkBCDXTSCfu7bsPP9gR6JGCI27m+iUDXjzWtbiNBv5OLpQXBo93uP2x80YgrHx2/mjrSDQ3V7N/dssGJY+sVzH6V9zO7aZkqpY3fB4QBEexgcyl12BwAH736a7U/dRm1LiBwVwPC0pvFrw4UpNYeGjh5Or0rG0NHWQtRm3y1l77Va7CCUs9S3imcOdX6ucFRTpVtXh9I9CIq9t6Wai8y3nA4sKJ7UdlxOTZBQaPiu1lfZGLQzWh2G1QfBoYQgSGHxMA4OJQhZ9mvZinbMHPK6DYJ40OkUXD9AWJbG3VIRv++ecf7ADaaPfO/aq+wbvtb6W7d9ahEAKhrG7XWmmw3zoPRwIMEhIQYbrdF/Ohlet5frffmhn6He/xMs/f0AD0wMFdWb3mOUqiEvoTYQQMiViy+afnAoXLUFAP2drfa30IecFt83atRYAGqq9qXd7+bKJl5Ysw8tc9CHnZ5M49i2cyduFSV8yFmstCa3fsho2Iu+ewEkZKdZz36D6DM3gNU202LNKjuIvmbsp3nLmE/O9pepbQqRTQAzqzU4ZCk3LiRzaMjIYHDI1FFQ9tQHFauZ0gfTyrJ1C0GzNVstNq2sq5pD4ahFFkF2eiYDXRev7sx7m6ta7zR0rAfn9diPORAYvh/i1+6sIKoVteNPZQWHYfTFB1J/61Rqd3Zh5vsfRFrm/Q8AUef3uhVtV5Aa8LlNArglcyiJPfV+yrW9cp51zl1QNnWAR5R5ReXj4Orn4OzfxbcVjnSmzx1+Nd5YLaJIIHkHWsPSP0LDnr4dqOiWBIeEGGS2vPs0avf78NpP2FvXwoQt9nSeaM7IAR6ZGGz0vcfCg+d02H7esssByMpv+21myJWLVwfS/iCkGnbTpHJQ2cX2t9CqtdBpSZn9ugw1VqbV54c7avnFb3/Fcw/fxeYKWe1suBmRnf6fF3t3bwOgbNQEoirhG+gNz6OqNmI99jmwolS9dg/Gir9gfvAA7PkQgk1QvZnAxleZ/tTJAEw+5hLqRx1NaWQ/Vft2kkMAty8vfi5tunFJ5tDQkcnMIaJow6mLYTpTZjIcHNJak6X9hM3s+DbT7D5zKBSJkkWIsBNUCofTC+CEoxaFGxKmADfs7dDGdKaVRdLseyip3rEeU2lcMy/Er7Ixrcw/1trq/a13PNmdNxwGvGf/gv9YCyFsF0zXToBTmQmZQy47cwjJHOpg074G5hibqTj4EozDrxzo4fSdiceAU2MNsLOIbq2Bo75CVpb9fySa7PdOJEjlg1fCf26E52/sp8GKzmRuKRAhREZs+eAVJgP1RiFv/e0nXOJM5wkE/OR0fag4gOyu8zNm3+ou26jGth8Mwu488APBxrZv4N3wtuyj3j2CZGtrFOZm06CzoTm9gtTLtlTzR89vAdi0fiaUX5rW8WJwy3GlX0BY7/rQPrZ0HFHDg3K+Ydwd8DAGMPavhh8X02ayZEs1PPNVWPMkLkw2W6PYsfCHnDD1ZA6uaYHd8MYbr7BIabJyW9PdteHGTcT+tjIh2NknQs2w6SWYfn7fnmc4SyU4pDVsexPGLgS3r9NmhrbQyv7zNzbVK9NTHSKWJhc/YVfrb00VCw5FO38s0XAAQ+n47+pQKEQ6YYcPttdyhvU6QV8xnvHzUMd8o0ObWLZHJDR8p3fUV+4EILdsPBHDg9EHxbdfX7mB82N3urimw4FpKHBlxX8n69jjNdtmDtVrd7yNaLV942pOUE0EDzlmoIfS/5xAvM9n/yYL+Fs6fJbZ+vjNTNr2jH3HI590BppkDgkxyJjV9mo9BVYdl1Tdw3ueI9mvCwkGWro5UhxIXly2ptN9u1xOTaDDr26z3XI7mROB1IsFNwbCFIQrCOeMSro/P8tNDXkof3rBIZ3QvnDjo8g6V/MAAMUkSURBVGkdKwa/cDD9DwjH7v8rW9xTYMw8tOlBOR/YK6raZqW95zuWZ31nAxBqrqVu7csAuIhSe9afOOHsy0ApDpk2DwBPhb1iUWFhYbwPy3A+1GQwI6VTz30LHrsK9q7q+3MNV6lcp1WP2JmUKx/usplJFAz7z1+zj6aVhaMWecpPxNX6QSd2LquLc1kh+30+6vyuDqcZwFmxo5aJah8ccirqs0/Y3+S3Y7jtbKnoMP4Q31JrT3NWuSOIKg+mznwgrL4m4ffSqFkZ73+wUZ5szGgsOOQ8n0ZrjkEsc0iCQx1Ft78LgHfS0QM8koGT7WQOtbRbza72k/cZt+6++P1I3ph+HZfoSIJDQgwijYEwY6O72mzznPtb/NpLOCjBIdFq3ycrOt3XoPJY450NI2e22W44dREa66qSHJXcml21TFD7cZdMTLrfNBQNKh93sLaTwexhx5IHqG4M8PHuetbssQNTWU3bW9sEZVrZsNK4j3AovQ8ItZV7GG3tZdfoM8B0o00fhjMVpKXeXsGs8rjb2TbrGxz53WcJHW0vnbtzz25MK8x+itl7+RLmH3FsvE+VP4agK5fPuf4LgCtxWpnRd7VmOqiyA/59smJSf+uP56uH593/4m/sG0bXSfF2cMhuE/vAsumj98Dfye+wHghH7MyhiLs1c8hwd7+UvXZqumiv/VqNdNE2mTVb91Ku6vCOmNJpm1iQKtqDekZDRajeCdxklxA13LgynTlkWVy161b79jfXQf7ortsPA25v1v9n77zDJKnq9f85lTpO3Nm8bGSXXdgl5wwiAqKIWTArXhETevUqXv15xXC9XnPCjHpNCCKKSJScM0vanPPkmU6Vzu+PU9VhprunJ+3uzPb7PPts1emq6uqe6qpz3vN+3xfTH6AcKvqtGZogi4nm1cvKiiE9lyM7/0lKb4S2yr/LyY5YPFQOlfYNum/8JJ008ovlvwUgk04N2reOvYs6OTSOyLkez97+a1h/z74+lTomCLZ19jNP7OSp1gvokA10zjyd1hnzyGHijjC5p47JB8fzadv1IAAZa3B5mCbdfNlEMc4+QsWn/uvWv+Bve6am91r3/KM0igyNS06puE2/3kTELj+weu7PX2HuPR/jtm9cyrd/+F0W/nQx7HiWRP9mAPbIpqoz6XVMMOx8Hr55CK/L3lRoq8Fw/KUn7wVg9mFqZlUYJge5m+Hp35Hr78ZFZ+qZH2T+678IQjBjmorIzex4mQaRoevojzBz8VGlB9U0vLM+T6sIyMdiufo4plQNQujBYVjVt9vfselhuLoNNj2019/6+a0dVV/3fElLWhnnIyp3baWUaPj5Qe1FxyjD1MVrfk7u2otrulZrge35JEQGr4gc0gN/FlnlmguVQzKiEsucYSaKGV1r1ELrworbmHnl0OQcxKdtFzPXgY8O0WZ8fRyUQ91FkxvJ6WN77P0UZjSBRfA9hmRbUVmZEAJHWHVyaADaH/0Tx/ASnW3Hjn8J836MaEDE20Vjmf4/vIcFqWd5fsbFLFh+Ap0ySTZTnwjf16iTQ+OI6x7fzBEPfRR+c9G+PpU6Jgj2bN+MJTzalp6C+R9raH3vn5mStMhh4g1zJr6OyYvntvZwulTKIUdEBr0uiqOaizBvljKPvmj3j9B+dgbY1R/C6Z1ruPCZDwLQsOSMituljBaSzuDBW9p2eXGj8sy6RLuTX1jfJEYOdr1ANKfUS1vk1MmhqKhD4dk/ALCcQrIYq28bctDtrH8QR+rMX6FIyBYZlD7e9CG8dDcpkSjpWDc1JMlKE71XKS2tZHkPrfgxlxRWisihvakcymYmhzLO26VKWeXdX9nr7/2pPz1V9fUXNu/GCtPnZGW/K8+X6Pj5tLJYtODoE9n19JgRX67vkyCLbxSObwTKIVlNORQkPelRRSq5w7w3npL+Fy5G2XKyEPnytkl6393YnqaVXuxIC2gavrAwi8znfc9j8x+uJPOvb4z4PTa9pFIRbznxd3lPlcmOSCyJiUdm3cNMzWxQjQP6GY6IoHn1vmox+tY8AED/q3+yj89k3yIRU8/f4onu5Kq/ALDi9IuY1hAli0UuW1cO7WvUyaFxxPaXHtnXp1DHBEPfTjWgapy5iMZ4DMwoyYiBjYms13HXEeDFF57lEC0oPywzC61Lt3xpRaShdN2uMmiVkt3/dxlInzVnXgPNB1XctC86kxa/c1BKSX/OZQo9pCJTB+8UXM99JPZdqUodY47s9jJeWH94C+xcWXW/GR2Pss46BD2mFBPTnUJ57SvTN+MYpdduU8yklwTxjDJdjyabyx842ohsnKOWzSLl0DgZEQ+ElJKOnj61sjf8jcYR96zrBSC3c/Vef++4UZ1cfO65IvJIehW3c32JgQd6cH8sUj7kpEnXkzdA9xbwKx+jFjiuxMSDojSnkJSRVa6DMKEv/B14zvCuz0Pdl9iUOByS0ypuY1iRER17oqDn0f/jQv1RSCjrek+PYEobOjfQ8fh1/PX7n2Tuql8Su+/LIzaS3vHcv/Cl4JQTDxyDYatV9QFivz2P07r/qhqLfj8ArrAwxiEZbiLD2vU0j8pDWTy7beiNJzFicRVlP7Dk3ENj6rIzmNYQISstnLq/6j5HnRwaJ0gpadh2PwD90fJGrnVMbEgp6XvxLtgzdh3lzB41G9M0Y1G+rS7V3b/heD69Xbv3blrJauWh8oh+DHoZL4VKyiGa5yKXv4nrzdeodadyqWLXtlXM73+ae2e8m8Vnvq3q6WTigYFgT6lfVtb2mSp66GtcjH/EJTw/+80A5LJphJPFQ8PRouBPzkHKgYievr7yL1QhIjOZDAvddXRNPS7fFtfU7+kFX5X9RLXS31dT3KRXxml1VJx0rKG54vHFv90LZ/wHzD660JhXDo3vtdeRsokQ/EYneKJRd49Sc3n74HPEqpFDqQ4ufPqDhfUqxI7j+Wj4iHyUfYG8uYejaVn5C/jOcnjwO6M6X9vzVRqeURg8hylhsgoZHpJDVl45NDzi3JQ5XKuh6ja6ObmVQyc9+1kaRZpIQGZI3cLEJffj05nyj8t4ffevChuPZNIt08Wxu67joehpNBWZ3E92xGYfNrhRKyWHsnoc06sP7ovRkNlGb2I+hn5gD7kTiSDKvogccqTOI7PeAZpGU9wkh5VXT9ax73BgX6njiM2daY6yVSxvWgwniLSOiYKf3ngHDde9Hu+Pl47ZMb09a/ERiAEqjTo5tP/iQ7+8l8bvLoZ/Xb1X3s92fQ7uup/dkfnsiswr66WgS6+8ckg3EW/8OVsSgVF1lYfwQw/cA8BRp716yHNqmKH8LXp3rC1pTzsubaIHNzYV7eIfs/awjwGQSvWjeVlsEVEzjxNcUVFHAZl0ik4aB79QZRC26sVnMIVH49xC4o/57pvIvuIrfNj5KADJ3K6SfZKWQS9xGlAS9ERjS+WTSrTBWVeBUSjBFMbeIYe2dKYL5NA4xGnvTaRTivirFsU+XohVqdzJPvADmmU3j/uHqIYhysoMfBCDlUMbjvxkYcNRekW6nocpvHx8PYAReP1UKysL1TxmLFmyXgsczycqc0ijep/TtIZOTZuoyLkFYlDMOVYtBARgxFHKtz2HvY9tIvAJGoHvktO+EQOPnQddMLqTnWCYMn/F4MYByqGcliDq18mhEFJKon6GeLLK8+kAQTIWxZUaXtDvdF0XU3jowXM5YujkhAXOflIlISVsq17OPFlRJ4fGCS899zgnaC8BINw6CzrZIH2f8565AgBbHxvyz/MlB6eeZEf8EDBjJa85wkKvqyv2SzgblEeF3PjgXnm/5za3czQvk557JkK3MOTgDr4ih8wyeytEg9pvqtyb5K6VeGgcdMgxQ57T7AVLAdix8aWS9nTOpY0e/LiSU7c0KdIgnU4F5JAFuoU2wQfNdRQgnQxbo0vy679vCRQdVVQKO9Y+A8DcQ4oMpWceTvS0D/Ojj76Z307/D3JvKo0n1zRBt1bocFvxpuGdaKgYGUdT3qzj8fD6DiKhiesEH4ynU0r9JaqUbY0X4nplwsdZ+Vce8ZdxzcwvqYYq5JDjSXQ8hB6wTUV+MZecfzY/SajrNd29p9zuNcMJksCEXiAkDUPDlRoN3S8iv7kUujYO3jEsKwuS9bxhqHtSOZeYsMEaghwKSapJWFb25LoiEvngVwLgB38DXwoem/Ympr7pW9yYeIvaZgTKofYdSuE9Zea80Z3sBENbaytpWbiefcQgvyVbjxPx02Nm7D7R0ZvKEBEOkUSZCZMDDDFTx8bEd9Q9LpNVvz2tKKjB0yIjU/ONA/723Y/Az86C7U/v61PZ66iTQ+OEg7vvx9YiPGKdiF6vv510eOnl55mn7QYgazaPyTGfW7ORI1hD+qCzBr3maXVyaH9ETzrHFcZfAXBmHFV94zHCqpdXEhEuUw8+GqlHlH+GXzoY0nGrmmTG4wE5VEU51Jrdyh5t2iCishyWLllKn4zRs/HZknY73UdUOMiAHGptVB2kXCaN5uVwRQQ0o2xpXB0TE7qXRUab4dMb4BMvs7vtJPVClQ6ft+0ZPDQa5hw66LVlMxt5x+VXETnswkGv7TTnFFaGKKUZCN+IAoyrhP2zf1nJn267F0sEZMoEVsi5no8MDOwjMrfXB3/VysqM9C7Wags4cp7yNpN3fQn2rCq7rev7ypC6jLKyMWry1iu+zE/cV2N1rxvV+bpBypjQC+9jahpZLGbuvBvRt4P+u/5n0H7SDZVD6h7tDaOsrC/rEiOHNhQ5FHgOyUmoRl63eQsA2dOugjlqYiNMjNOExIg3A2CFRuQjGIim9qikzabpBxY5JITALUrf8xj8G7L1pOqT7CcD/H2NXe2KZK5W9nygQFlkGHlyKBuQQ7pZIBw9bf8wNN/Rk+HMrhvUyiQtv62GOjk0Tjj44s8TvfIZesxpmHVyaNLhxSfuAyArxy5FbNMTt6ALyazjBg+CXM3CkHvxOmpfA5nuvfd+ExQvPf8Mx2nKc8reS7dTe4dS5yRmH4YsUxojpZoZHyj3LkY8qQbSdpVUCNNNkdVrG3Anohad0YM4vv0veNsLBJGdVh4lekypOpoTFjlp4uTSGH4WR4vgaxYGE3fQXEcBfVkHU9pY0QTEW6FxJsmEGuT6FRQ6vi9Z2vsAGxJH1EREFqMjUlR+G0lW3rAcTDU4dHPjUwKxalsnb3zhQ9wb+UShcQKTQx0pmyjqb2jijqviqgROBuxU5bIy3yfip2ltbSNiqXuecNLw69eW3dx1fQxR5DkU4uBzAOVlldMSGNIeldIrTBkrnhU3dEEGCzsYVHsv3jx4x4CwMQLl0HB8gVI5pzZyyDTxpKjqfTRR0dulBuPR6Qfn2xyzoNqINU5Rr+fJoeFfx7murbhSY+qMuaM404mJeGMhFVIv89x2wpLGXAXvuQMM7R0qxTXZ2LxvT2Q/gUBw/J7rIddHJoisLyaHfCOKvh+Q1ve+tINGEfQN9oFSdl+jTg6NJxpnIo0oVhlPkDomNvwdz+Cis1IuwBttfeyuF2DPKpas/zX9IkliwYmDNvG0CEY15ZCbw7vxQ8g7x8j35gfHwq9fMzbHmsRYs3Fjftmx987vPNId+Pq0LS6ULBQ9TG3Px8ArmbEeiLCsLJuubBJsemkco/bBujv7eAB6b/tqvs3JqA6iEVMDnea4SQ4TN5fB8HN4ehRfM1W6Wh0THtu6M0SxicULqWANSUXaZDPlicj+/m4OZivd008e9vvZTQsLK0V+QrVAmEo55I0HOZTtJfGbczlFG5DcNoEH47mn/sS7jdvz63a6d++88XdWwFdnEa1QVrarvR0NSduUNkyj6J7nlP+7OoESRysmzz+zBd72x/yqEZhBY488UjmcHS8hhzRBVkawgkF1k9/DP2/4Je7LtxZ2DIh+K/Qccmu/N6bSGQzho0cSVbezDA0XI69SmkzIhOWAsULJqWcWJjkSTYocisUViTGSFFjZu4M9NDOjpfr3PBmhB8orAI3Bar68sqhODgHQ0dkJQFNT3XMIoJGgz/nwj/LKodADDUDq0X1fbZPtgcd/XlifwM/tkWJIckgIcZAQ4m4hxEtCiBeEEB8L2r8ohNgmhHgm+FfWmU0IcZ4QYpUQYq0Q4jNj/QH2exgx5TfgV66Br2NioSfjMD21io74IvpkfPTmaT8+GX54PId6q3jqkCsLEbtF8LQgirUC9jx3O/qzv0M88L+jOxfg9mc3qYWdz436WJMdHbu25ZedveTf0JzaQLfRBtGmgqluUSc/5wbkUBXPISOqOrXVIkMtP4Nn1N75nfLaq1nrz0Luej7f5mXUANIIYpmTEYMsFp6dxvRzeHoEXzMx6uTQpMDOnixRbKKxgnKhIamuoVS6/LVmBx1EaQ1T+QPMW3HKCM5SQQbEpzcKAqDisZ/5PXNya9TKse/LtzvOvp8RHSlan/p+yfo1/3iQXRtfHLSd70t6MmPYmU4FShC9fFnZy5vUPXj6tGlYZtE9r0KHPp+0VlxWFm0sUVrqATFTiWCqBW7wPCgxpNZVWVkxzl95JcYf3wIdQRlbQA5FAkJ9OKbRmYDsN6PVlUOWoWFjTErlUK5fKTWIFRQuXqRADk1pU0bUYVmZkxt+WamW7qBXa8I8ANOnxOt+XP31aKDSyo0jeex7E8bTqLu7C4DGaoEJByKkTy43uKwMM8osfwd0rt9HJwb+Hy7hrR0/LGqYfPfJoVDLnc0FPimlXAacCFwhhAiNAb4tpTwy+HfLwB2FEDrwQ+B84FDgbUX7HhgIZifr9beTBw+vbWe52IA2+0ikbiHHKO3GlRrTTryk7Gu+blUlh16867cAeKIyIVAr/t8f7gVAigOv4zNcZHsLpqXuXiCHso7HLHcLPYkFAAijjHLIHVo5ZIXkUK7ywDgqs/hm7Wbrzc2tPNR0Pq3ZrdCjBmx+VnUQrYQqK1M15xa+k8WUNr4eBc3A4MB7+E5GdPTliAmbaKxA9CQDciibKT8ICzuImmmVfb0aXn/8YnoaDkaWS+YbAsIKY3XH3nOovb/oXnDqldx46t8AyOYmJjkkpWR7dylR8tHV72b6tScN2u7tP7qTjq8tx3/q/8b0HCoph3bvUd5/09raMI2iUrEKHXrXUeRQVWVlPCAT7FGQQ1XKykLYF/+isMP3j4ZUOyLoT2iWIi9P2vzTmiegUv1KrWHFqhOtlq7hok/KGfG5/cGkVrxADkmrUFYWKoe0oG9uj4AcMnJd5MbIa3LCoW0xX2kb7JWVf7lV+Qv293aN2ynIa05F/rF8X3l/wxnrvgGAFh2eJ95kh/RccsHz0LQKCvWkCH6P3zsKnvhlvj1z23/h3vftvXJu/pbHShv2QTrnvsaQoz8p5Q4p5VPBch/wEjC7xuMfD6yVUq6XUtrAH4GLRnqyExEiHFzVyaHJASmxHvg6U0QfrYuOBSM6ZhHza8VclsydWfY1X48qE80yNyl71e2ckbpNbTfKSlE7l+Ph6EcAlKlsHRWRdTy0jJqlbJeNe4Ucenl7F0vFZmSbSoMqF8etlEM+mlGZKIyEs6ahcuhfX0F+pxBTm3M9YmTBHJ5s3jjkfAD6V/4dAD+QlkeKkqQcYeHlMlgyB0YUqVvq2q6rKyc8uvvU37u4rCweqIjcCgNtxw4TS4ZXFgYqsazpYw8hPrN52PuKwJDaHwdyaNuuosSkhhlEI+q9ctmJSQ7t6c8hKr1Y9He99v61fGjX/2OhthPvuetH/b7SL3g9GBV8H2SegG7BKiYYK/g7eSH5UsWwPxaSQ87oy8r0onMyNY0MhevcWvF69lx6R3595+N/KdzLdYu0odQGG3/5rprujz29yuMtmayejGTqGg5GyXNjMsBxPV7v3cqmxmOgqeBHJqNFSYbBsh4MSEfiORZ1evCiB64SxI9PqfjazOnKFN598AfIr84Z84G1v/UpxO4XEatugd7tY3rsMYfvMzcbGOMP1xNvkqOvfWuemA0N8gHmZYoSb2++ElD2BLGHv4Xxry+OuxdqV8qm1yudqJqMxv1DYVgjSSHEfOAo4NGg6cNCiOeEEL8UQpS7U84GthStb6UCsSSE+IAQ4gkhxBN79owuQnR/Qjj7449iBqqO/Qjbn+bsXb8CQJ99dBDDPUbKodhUNK18FzyMYi0XPb7l8X8AsMqfgylzSnI7Qvzkprvyy541zGjoAwzr96RooQ9Hi9IvY3h7o6zs3m8QFQ6NS1WinR7MfrpFpuhKOeRWVw6FfhZhx/i+/0F0b84/ePuzLgmyw+7QLDnsaLbKNvpfvls15FSZQ6gcAvD0CMem72O66EaPxJFh+dsBKN2dbJCdyg/LKipriUdDhU75CRI7p343xgiUQ2rHCFjD9/4IlUPj8Wzu3V1EVulm3lPBm6CD8bW7+hFl/EUAvD5FhD21aj19d3yNU3Xls5RNzCm7/XDwlwcLJaqVnmsiIKD1WBOWWZnwCeG66ji13B/d7Mh9U/zA20gfoBzKSrXuYICmMXXhUXiJaQD0PHlDXjmEbmF9/EkA5u+4FbY8ylDoC5RDsUT1+7auCRwMhO/gej5ZZ3IYru7p6iIhcnTNPA1EoS917JKiVLGANDKCvrmTG97Ebcb2aJB96InKBMmkR2JqxZfmzpoBQPOWuxB2H9jD/w25rof78DV5BXIenoP286I03+xe8j0bKYpJhRGUTU9G7HjVTwFIdWzDDhIdzWDyBCB1zgBVmu/T1dleWM90lj+wlMiV14+ajHxpZy8pWeq16di2KmM8gCYwayaHhBBJ4Abg41LKXuDHwCLgSGAH8M1yu5VpK9vDkFL+VEp5rJTy2KlTK994JhpCcihXJRWojomDTTt2F1amHwZmFGOMBrWxohSIgfDCBIgBAxkpJc76B3lOP4xHG1+lGkcRzbxjfcFA1bWqzz4e6Hjq6Se4zLgFEW3ERR9WqsxIIXY/z2Zm0nLsG9V6oLYo7uDajosuJJpeebAdDZQd3sCB8c6VAPRlHOJk0YbZoVk+p5mX5TxmbL0V+dcP5QduosjzYaqv1FbTRDdmMTk0QQfOdQSQkvevfAcAoih1LBk1yVVJdXScMr4DewFaRJ2jHAflkN6/Ux17iVLSGcFnG4658P6EtXv6sYpKP6Ve+Fv1duxgS2eazt9/gI/qN7BnyrFsk1Owx+B73bypyHeighJI2MEAMdKAVYMHTEjia1XSHM3A7yeTGjk55JUrK9NEXjnkiqBdN9E/tYbbmt7Ewr4niLs9wcYRjOQU2huWAbBjXSEFMo/VtyGfvzG/2h8o90QNis8MEXQ3zZ0/v4qX/vvMPGk2kdG+ewcA0abSMcTy+dMLK7FmAIxIOLEyPHJ4c3sfTaSINLaN/EQnOE46bHHF16bPXljqqzUC8v1LP/4Vxm3/Abd/rvSFbE/p+n7eZygxOx/BBMZkxPQT3sy9HI3WsymvHIpECs+TmcddxE8P/U1+Xf7kVLqLyaF0BXLo5X8gbngf3PeNUZ3fgyvX0yJK7/uZbA5u+jB86cBRC9ZEDgkhTBQx9Dsp5V8ApJS7pJSelNIHfoYqIRuIrUBR1ixzgP1cBzi2MILZyUy6Tg5NBtz9jJKIOrNPACuOZkRU5O0YoLl1WsXX/Dw5VJou9cKa9Szx1qItPINYIpTCj2wmfFt3hljfxvy6UyeHqmLmc8qwTjv1Spy9YO4ppUSkdpOOz0IEs6LhoLPYNyGcjak2+IlHVKS8b2fwfIkn1Iy7fPEmAHpSKQzhYwzhXTEQUVOncYoqjRTP/K6QWFJEMjX63fnlSCxRMIKdhP4XBxS2PlFYLiKHEhGdHCZeBTNmJ/AdGLFyaIRoa0jiSUFqFARAObieT8LpYEPTCYhLVAJWXjm0l0zrxxrrd3QyTXTn18WVL/DMCd8CoK99O09s6uREFLG845U/wpYG7jAVGeWg9xaE56LCJIweKhOijUTMobu0fjCzrOmVVUaRoKwsO4prI5wsKC4rE0KQEwE5pJVe7/qCUzFxmZpajYcGQdmb9m/3kJEW6158avCb/P7NiOvfnV/NpIPzNWODtx2AfpHAcvs4b8ePOcp7jifu+MNwPt5+ia52pWJraJk+xJZghp5jw/Qckg/9AE1Iks2V+2uTHecsn1XxNWFGWR9bXmgY5mRlKucyZdeDaiU54O84sKRoP1cbZzPqHuhosapqqwMJmibY3Hoy0+3NtO5WakjLipZs85YLL+Ba91wAxK4X6O0pkEN2XztlEU4eFAWiDBdrd/fzuqfeTVKov9vTR6n052wuB88EHnoTxAh9tKglrUwAvwBeklJ+q6i92BzlYqDcX+RxYLEQYoEQwgLeCvxtdKc8sWBE1AMoVyHGt479FFLCxgcHyQhzgQGx+WZVWqaZEcwxMtNtaapMxuSNgQck63S9cAeakMw49iK0ML52hOk7v3l4Iyu0Dfl1W6vdjPhAg+36HJJ9hhdaz0E7+UO46BUHL2OFjR1pWrwuIs2FW68WkkNFqgzHCaKaq3gOxS2dLCbSTrNuV3f+OheP/wxeupnd7Urdk2hoHvZ5HnXKefnllp4X1ECnwmAlGksgQoXTfj4LWEd1rH7pmcJKkX9QImKQw8SvYKobKoeMvawcWjKjgQwRenqHUZogJTz568Ez2EXY3p2lhT60REFZYAYEgTdBo8MjWx8iKhw44m3w3tshORVt7gkAZLp3sHVXO0mRxT3zczS0zcHGxB1tiifQ1v8yEAQtVEg01EJfICtZk3LIdWswpE6oZ3E2PQbkkFFKAomgFFgOIIcaZykfubneppJgidZklN3RBcxqf6BQBjzozdT9O09m1UQOJYm4fTxnqIG89cRP8P2JPfBJdSlld9OUweSQfM+t8PGV+fUw0c2toGgsi/7dLH1eKRNaGob+jg9UxE96f2FlmL5df358E6/THgDAjZRaG/zt0QHpiPv5hFImq4ixx5d9uqTM8UBH9rC3kZMmc7b9E4BIpJQcaoqb6EWWBsfe+dbCvr0VbGdCdfqqW+DhH43ovO5YuZnFWlDKuPRC+uacCZT2rw+UfmotyqFTgHcAZw+Irf8fIcRKIcRzwFnAlQBCiFlCiFsApJQu8GHgNpSR9XVSyhfKvsskRTjzbvePn3N/HeOAF/4C114Az5bOphm5YFAQJGHoVowIDnIMalG1Kp1VaQY3ygHEj0irQXx82nz0kBwagXKoM2Xz14df5ALjCTqWXsqL/rxC5G8dg7B2yw7miHb0Gapj7QoDrULZw1hh1Y5e2kQPySmFWTvDCqXxBVVGLhcOSipfT3FLJ0UUYfeR7dqBLiRfdN7FGjEP+5bP0rtLlXM0NTUP+zzNY97OI6f8HIDDM4+T0+IVO0bRWAJZVw5NCvT0F92bcoVBdcTQsDFLJfZF8OzAc8jau+TQlGQEW1j0p/qH3jhA14t3wt8/in/TRypu0776YeZpu0vKTsKIdc+dmNf4tO6n8NDhwu9AQAo1T1X2kW7PDnLblYmoMW0pzTETG6OiUmw4mJFeo95DsxAVPIe00IfPjBOpwXMojIavqqwMVLj2KMghGfytByriHC0YCJmlA6Lm2UvwpWC66MbTSs+t/cgrWMg2Nj5U3uTb7dnOd+9cg9a9UTU0lA+2KEZKJIi6/WjBYOdIdyV/uPvJIffbb+H7XPDM5QAkmgerNMS8k6B5bn7dCspKK5HWZRGkGDnoxJedO4qTndyYf/ql/MAKCKJHrqlZbeH5kl33/YJ5miL5ctlS1dG2jasH7LB/30/DhE5jwG/9QMfxS+bwmH8IM7LrADCtwd/PG5aX9zx1KiqHgueD9OG2zw77nOTmR7n8/qL0ze5NWEGfpETxO8LJ94mGWtLKHpBSCinl4cWx9VLKd0gpVwTtr5VS7gi23y6lvKBo/1uklEuklIuklF8Zzw+zP8JtWwqA88+rWH/D/ztgJGkTHutVnDvZ7pLmqNuDI6z8zFw4OLd3vTz69xSVO7a+VV4V5AUdm2g0jhGQQ3a29sFOiD/c8SCPau/Fkjkyh78DFw1ZJ4cqYmfg/9A8/wgAPHTEOJNDm3bsJCZsGqcWjF6NoIPrFv3Ns0E5h1lFiRGzdHbKVqKZXdj9qob7rONW8E3eiejbzhsevxSA+BCpN2UhBIeeehEdsoG4yNEXG5BBMO0wAPqmHI5YdiHUlUOTAn5xB6qo0y6EwBEmuBXKyoJ7WLkO4njD1aLk0jXeL9ffQ8uflddXduNjFTc7+rbXA9DYWlAvhGkse8OXbKzRk3aI251krZYSQqOtuYEt/lTa1z+Hvv1x1TjrSBpjpiIDR0kO7ero4lipBOmadBGBcsgfYGWpuRll7qwbtXkOuUOXlcWSamDiZIb/LA3he4PLyoC859BAj63pLU1sR5kc+wNURQtPeSNpGaF/7YNl3+uzv7iJ3Xf/iC+Yv1UNjUOTQ47ZRNTrxfSzdFkz0YRkxb3v5+lH7xv6w+2PKOqrifjQfkBWVD07veF4YwWk9xUtP4Epi4Z1epMOV75YosQaiN2BVxbP/h62Pl7TIR999AEuz/2KjZFDyEgLO1d0D2lfw+V7ri7dYaz7DM/fAF9sgp6tY3K4TJAGa0bq5FAxls1sZCUHFxrKEPXx6eV/X15/R/mDjvJa2LlqgOH/KR8vkEPFz+0R2nZMNIwu97qOIXHIApWScDBbWLjyOzx24/f28RnVUQtk57pgqbQjGnV7yRiFAbMZGI5HfnISo0aVaN0wUlwO8BwKO+CaFcMMVGrDNdHMOh7zn/lfAPw5x2POOQoPPT/DWsdgpHepVKYpc1UHyBNGfvAyXljy0g8AiLTNz7fJpEoGkX07823ZoENlWpVnxi1dY4dsI5HdQS6YHV80axofuewyLhf/yUp/Pk9qK2BOOSu5odEYs1gdVcSZ3XpI6YvvvwM+tZ6Gj9wPc45FBB0DWeHhvvKBm7FvuWpE51HH3oMXkD/2iR+Do99Z8porrIrkUDgrZ+5l5RCANKIYdi/y+vdCx7qq226862f5ZTM3tBI4XmSKG7EsfCnyCVYTCWv39NEmevFjpelMccvAmXooZzj3c6X7CzKJOdA8F10TeJqFrPD3rhU7HruRRpHmSX8xQnpF5HvpM1n3suSEGnzV4jnkBcfRqyiHGhqUckhWSsapAW5Q3msOUA34ulrXB5T9NsYMNvjB/XwAOdTSmGC1sYSGPaW+Q27gRfjF/qv5ivlL1XjY62s6Pz3eRMxPEZE5djcdjjflEA7XNrDgjvdOzEnM4udHbGjj2GjEwpF6RUVjOXR0qoHpccXpZwcqmmaXKLEGoqGhaGJp04Ow4f6qh/N9ycm3XUijSMPB55DDLCnnWXP7T/PLf1um+qtjXqb7+C/U/53rq29XI0LlU50cKoVlaLgNRZOG5cJTTvwQuWMuK2nqkzFkuoJyaGD/cZjVHLtlc2Hl0xtgxRvzXoElz+0DJHm8Tg6NM9qSEeSpn8RecA4vRQ5nxbNf5oVHbtvXp1XHEEj3BT4UmcIgwPF8GvxebLMgdzSjRTf95/8Cvof/s1eMrOZ1yXkVXxJB/a03IFpXOlk1k6oZeXJouCaaD65t53B/FbvnvRrtvbcSs/S6cmgIZLoVGWM2KnWAJwy0Ys8h368YvTwSuHaOo7tuZU3sCFh6Yb5dJKfiSg2tb0fh3AJyKFLF4FcIwS59Gg25XTgZda1H4g0cNquJL3/8cu46/c/suvjPqgM4Qiy7+NMAzDr6/NIXrAQUxQCHaT5ukfJEvngTcuODfP/WZ1lx56VYj/1wxOdRx95B3mPlzE+XeA4BzJdbWdF3P9zyqUFpI14YZ7sPlEMYMU71H0c8fwP845MVN/N9SXZbwVbRr6DyfPjlgoFyWHoMqrTOmaCEe+6Z63ml/iRGw+BSnYXL1aSIG20ldsrl+XZfswqR7COEseYWOmQjz5lHYBQphwbSFrqXwQ5KtZpilQmfEJ4TRsxXIYdiER70DmPe5r/AwAGo5yK3Pw1DlCPZgYJzoPfbBUcvBCAy4BISQrBJBmozY/C9u7tpKbPsjflBT0d/jg43SodoxZq+BP+ED8HHn4fX1jYBaSZb0fFpEz1okQT6O//CBn0+ze4e6Nky9AH2NwQkz/2tb4AqJfohIoYyyh9OWuHmHcrw+lVHHzzElnU0NhaVBd35Rfj1hRW3BXj25mvyy+6ic3Aw8imsUkr61j6cf10klRl4JjN6X7MSZIN+/xgli+WC849E6v5UAxGbUkQsliPqNZ3Ihd/g3oZX55v2yCZkpoJH4MBnqze8yQm7WPkcPLutYsVvWOrrpHC8yR9pXyeH9gLEOV/AetcNzP236+gSzcTu/OzEnJk5gLCtXQ1gert25dv6si6tog87UhjYzmwuSnO6/j3YL/wNbdsTw3LMz2HywPS3w5xjK26jRdX75NKlN0bp5rAxQQgiob/VMKXwnf0ZZohOom0LQNOJmzoeep0cqgKvr10ZLUebAfAHKod+9wb4Umv5nUeANc/cRxP99B7+vhKFWTRisYsWtL5CCKRt16bE6DanY0obPRgIhCasM5qifPycJVywYujShGpoXnoGfHIV+pFvq76hHiY5FR7m4rp3Iq69gDc9fFFhu/o9c79GqGIsF0lvEBClj/0Ubvn3ktdCHx4rsveVQ3tmnlFY0SoPKF/c0ctUWZCzl/UXy/bwyAtFnhhhiACKHHLRxz3RcDxw8tOfAiCabB784omXw1v+D+NTq+HkD+ebfc1E80dBDu1ZxeLOe3kqekL+PmZUOJ7h5bCDBLDW+NCJd+EgIPSBKoeGiMGN/mnEna7BRMmzf0D89Ez8P78HujapBCU7NWim2gnvZwMGPm1TlTpI5AY/pzMN89VncgfPTtsti4li43RuAuC5bT2Y0sZe8mrMy+9DO/9r0HxQwZh1CCQa1fMpKbLKr7BpDje3vF29mBveBNP+ADdIHetpO7qm7SOmRjdJjBpUgCE6OjtwMDhoavNITvGAwjGLy0wsVXmGH/XUZwDwL/gm5rwTsDFwg9/Quj39zPC25beNJBTxlBmDRMQShEEDY+AhCoUUWauuHBqEKTPnF1bKKYcAhGDauVfmV/uII3LlwyC2dgxor6JcfXDNHl58+J8lE7glJYwBopECOeQH9/Ev/OZWvnXH6kHbTjbUyaG9iETrTFYd/F4Wuuvo2lAmlrSO/QJSSqJS3Sj6ugrO+L0Zh6l04xXVs081Sjtx62/8MgDOAN8f/7p3w8M/xH/kGtj8SMnDR5devrSmEg6erWYUd+0ZUG/r5XBQ+0bjIzPR1Pp3YQoP0aKYfEPX8NGR4+yhM1EhpUTLtJM2mkFTt1BP6GjF5NC6f43pe+7YrEpeFiw9sqR98bQku5lC/57N+bbQkDpiVR8o6a0LAGjsVgkg8cQI/IWGQsOMIVM6RKgcsgcP/maIoo77GCqx6hh7hB4r5UiW30z7VGFloHIo6MQNjLPdG0gddklhpco9eNOD1zFF9JE+/qNcp7+69LcOalDx33O5cmVRSU+Reipi6BOWHAoh0mVKrGLNsOw1g747qVujIofkqn8SweaZRR/KK3wqkUOmn8UNlEOaNnQikO2ov51ZhRzSNIHfFMxsd28ueU2uv0dts/oW+O7h8PV58NVZ8KUW/Nu/AMGkihOGBAwc+ISlOKndg973rFNOBiCaG1w6oU9TJczdm5TPi+P6RHDyibjDRWNrIYo9nFiKRcNQizEedO8F7OpSg8PmxtrIsaip0y4bMbMVPEzKIN3XRVaLI7T60GkoHHvwnMGNmaGJOG3uiTTFTGxZIIe6urqZJTrZPf8ieMMviAeK/ewYK4d6e4JrYZiqk0qws3XlUCXMnre4sFKJHAKWHXYMuVM+xZ73PUavjKPZ5cc3L2xWY7VfGW9WDRWUq3v6cjx47VUcettbYfWt+fYwtbD/8qfzbRHTwJE6vuuQ89Wk7Jey/81bd35z6A84wVG/w+1leIteCYC7doKa/h0A2NOfIybUw0EUmRz2ZBzaRA9+otCpIlXasVjqKy+aEvWO56C9eCPcdhXarf8Bv3wV3tfnw+ZH8D0fQ/hVk8oAjpg/DUfq7O4Y0JFxcziBP0GkaQY5aaB3rS28XsMMiNGvZmSMloLMU2o61MmhstjTl6PJ78GNFpRBflFamRwHhUvPHmWQ2DqttMPVEDUxp8xnSfopMj84DXyPXDAoqRZlD9Bw0OEAtPWowUY+7W4vIxz8hdHX27sLMv/sirfzMOo88SfuwPpAgHRtbIyyZGDihHcXVmLNJa/ly9GqlEGOF45YtiS/LCsoh1aveoFXv6jUTvEZS8iazeh4pWTlwASTIy+FRWfnVyOmhoMxIdWYGREMbIYxYJJ6BH0Uv9f+oKx7xkEL8lHwEV/dF3RKn2mmn8XVaycWw/JVq4onG0DLTFX+xcs3l7Sn1z7ANm0m/UYrj097I3dNfy8PTHkTANpD34Wrp+DdehWOXYEsbTooOJHBA9uDT3j1oLYQjTNVKVPvrg0A2J4ihzRjZIq7abMW5Jebm5QSI55QJJGcgKar2/Z0AzC9tXzK0UBEDZ0O2UQkV7uvlOmmsfWRkXEHHMwy31OVckVPCvZE58OM5cQsXZnMB88G0aPUcv3zzoEVbyQRV/eknD02JA6opLSkDK77MTK6doOSxWisTg4NxJJ5RX3ZapPjmkbklf9JbNoieomj2+XLyrZ3qPZYqHAtpxzas5rea17Fp83r1LpT6GuG5FA8VugHh4pf37Pzk/AA806qzddtIqNODu1lGK1z2Srb0HY+s69P5cCE7w8Zf7mpI02coESiiBza09lBQuQwGmcUNj5Ulb2sO0EF8fWR4Hl/Pk62aLCQKqiP3m1/ms8570XP9cD2Z7DdoWN1AeIRE1N4nLjt2kJdNCC8nDJ7BZLJJM/JhTTtVLXZW+/7Ne7XF8DW6vG0Zn/gn9NSkAH7QkfIsVNq2K5P6sXbBqkGJiI2tKdoFb1QpCDzhYEeqAkeXFv7TGRNSHVw8a7vq+UyRptzLvqCeqn9Odj4QKHDVKVMBuDgxYfQJ2PMzgQSWWvfdHqFoQZ2fvCgvvclVSK3+fCPE33DD3nCCMoEJrDq4oCAZ+NS/po7b/kMnkYZk7vp7pLX8ilnVWYPxwvRoo6g7ZfvDj1747cKK8npeY+skgHEwMHESVeUkGSWruGhVTRd35/RLgIS/KLaffSEEcGQI/+sXb295KTJkumNiGDiJCKLyJSiSY+IzOINgxxyAs8hYwjyfP7CwFfm8Z/DnlX5diu7h7/Zx7K8//tcuu2NXLnrPN694/X8p/Oe/Db6Iz/EtIMyh4HXdWMVHzczBh98ED5w76CXps1Q/Y50j+pPuI6tJpZGGJPdNrtADiUSSm0TkkPZzMQjh3Z0dAMwq625pu1NXdBJIzGn9j5J1E9h6/tmEmXCoYxvVu53l0KZckopJT4a66acCaj7pYOR9y3zMuq3pMVV/ycRkC253DCS5obAnr4cmggm9saorxGW+EejdUJxIFqSRaR2Dc/+uKnTTxzLKa8cCq8VPRYoB8s8a9P3/4BFqYIyKFc0ie8F5JBWVBYfNXWcQPHrUGQSd8gAH81JiDo5tJfREDXpkzH8gTONdewdXHsBXF095rS9N0uMoDTHDjoO3ZvZtEb5CE2deVBh47knwBd7WHSSIon8o99Nh2zEyxU6V26vko9f7nyC0y+4hLWzXguAtFP5ZCndGNpAcUdMyTD9P16Kf5+SNWqejRcoh9oaItzP0bT0vIj3gxOJ3vWfGLlusrdcVcKQD4KjrkUjVigr8jHQxpAc+s9f3Uziujcj//GJitv0ZR18f//3ldnUnmKm6MRqKkRV+8LMl5rk3LEtf3Lv/u/CShk5e/O8Ffzw5AfolTE6H/4tdi7o2GjVBz/HLZjCk3JpocHcN51eGZg/ekHsqx/4XbS1qd9p3ji2rmTbv+HZuKL8NZeIGKTe+hce8A4j27m95DUZKlKGuF7HG+ky5bi+Lzkpc0+hoXUBRth5LOp89vYPGEwHXmQhNE0o4mwCKodiforHWl8D05YOvXEAoVsYcuQDrN6+PrKYLJnekC+5tmTRTHDRvcCSOTy9wsz8CzcOagqVQ2II8vzcFUXP+XZFoLu5DCYehy+aw6NXncOqL5/Hc198FU9/4ZVETvoAX3Dew43eKQCckAnU4QMnfsJBc9uAFMcQM5bDrCMHNU9tbiQlI3gpVZqTH8yMsBxTJAvPL0z1/SUCcqi/f+J5DnX0qEmzRDw5xJYKQgh69WblK1Wj2jcm0zhGbcevoxSeFET6t8DXZsOaO0tecz0fU3j5SVIhhHqWBPfYUNVhBNd6MqGu14Uv/LCqt8xwsL2nqI88RiS+FyiHItG651BZvO2PyEXnlFeZDYCmCTJaEssr76kqAqWqHg3IoTLXxePb1d/1uZlvBKC7u1DmmPe8LFJiWoFyCNdRqugDCHVyaC+jKWbgYBRmS+vYu9gcJB5sq+z55DqZ/AxC0mln273XwndW8M6VambQKlYOhWg+CN7xVyLnXEWGCFO6n4PtiqG+56kXAHj96Ufx3lMX8KrD5+FJQSbdh22HyqEqMfYBnj7/JvbIRrSN96H960vg+2h+Lk8OJSMGiy7+HL93z0Jvf4k20UuvjBPd/gjOQ5Vnff3QX8AodLClphdFB48e+sZ7ALCzg2ckX9zey3e/81X+7Uvf4pfX/M9+7y1j7XicOaIdY/FZ+TZf6HnlkGWM7W11tzf0g/Mdpy/lTnEisbU3k8gExo1DDH5ils4/p72v0FBmpm9vQASKJd8OHvpBIp8RU+UBYVlJnRzaz+E5JdLrgThm4Uy2MAMttbOkPe81NYR6cryhd66DVf8sacs5HnNEO0/Mu0zF27YtxgiN3otml/vTRZM9p34CGmcNOr7HxCvV9XxJg0wNIruGgjAjmKMgh1L9/eRElJaEVV451KvKbH1f+QP6RnlyyH9wcHKXE5L3Q9wfpzdGuWzKb9RKpyrl6u/tBtQAZHpjFBGowxqiJp+/8FA++blv8MSRX+YFfx6H+qsrv88nXoL33zm4vQrilkEPSUQ2IIeccKZ7hCUrRcEGYTpTWFpcPLk1UZBXOw2jzC7eMlORmJmhCSIpJXGZwTXqyqFa0XHiZ/PL/5h5Bb4M1JS/e0PJdrngGVDsvekJMz/gD8mhMLQgGVd9hlhujwo5GAPs7Cy2ghib8ZkTnLfYB6rYCYFDzke844ayk57lYCVbsPwssm/noNfCa8UPJznLlEG3795OlzkN/9yg0qOvYGLth2RS0d9K14QqB/cdcnLoMdpkQp0c2stoiJrYmIULsY59g5+dVfElL6c6+pvldAzpMvvuj2Fj8ETLeexc8naYe2L5HRedRTSexA/KZPjpmQD0daiZ8lcetxyAWS1x0kRJ9/eSC8ghvYaB0eEHtfCUX/DIYPWtRP00vla4mV101FweXfqZ/PotC67iUX8pmcf/r/KBQ++Dok7VWJaV7ejJcLr2HADtWkG11ZNxuPJPz/C+Xz7Mx7q/zu+tr/L+3V/l2mt/Qnv//vv7aOxSCjLr0II/hK9Z6KiBnzEobHl02JMbumPRGDXpP/oKPF/ywV1fVI01xPk2zqowe70XoQUDE2kHnftAOaTHlZLNCI1j62VlY4u7rkb+49+H3q5GCM/BE5WvuZil09+ylLjbA3tWKxNn38t7Te2LsjIA/w2/BKAxtRH+8NYS/6AwDUczI/l423D2ungAkckUzTqf/fmyvkueMCacb1Z3by8R4aDHm4e1n2ZGSYhs4Tc9TGQz/fi6eh5pwXURKVYOfe8oALrSNlGRQytjyny7PB5t+1MQGEiHcMNoem3ozv6SJYfQJZM47etg86Oke5RRtBEtb97fFDf53GsO53r9gkJjueu6cRZUOEY1pLSGfKl7qBzSR1hWBiDD0uiAwNID41xvGPHuNcFOwbN/HNfEyVyeHKr9+2hdoK6j7ru/C//VrMJCKsDxJAkyePtIYTsR0Xzuf+QJoZMPXVgo2xqAMPK92CexmBzyQp+w4PpMFnv4ZLpHf6K7XqB799bC+WTH5vp37cFqlDpGjuVzVFmh88NTBr2mSQdXmHmbAjnAVN/1fFpkD7bVypTGBlyp4RSVlflOTiUQD3gueBhIz8ENy86PfR8HAurk0F5GQ9TAkQayTg7tt/CDWbMtWiHKu/fUz3PSx3/PjEt+CJHqsmJjgLGvFnoOBUbWs5tjZIiQSfWSc0Iz1qHJodnNsRJyhT++jePk80i99MHzkXOX80v3PADOPedcVrKYeGpL5Y5ZeBMtmoGUYuzKyh5evZNTNKWeSvd1q7f0fK747WMsWPlt7vLeVbL91nXPc9sLg2cG9hf4AXkoIkVleJqBHnxfssinaiwiUd1ggNVz6a1Vt3vz+Wfz+YarcWVwW9eH7pBY45FQNkyIAeSQDNIo9CCS2QiNiifYwHq/x/3/i3j8Z2N2OOHbeEOUhskl6r7k3vxJ+O+5yL9+sCDn3kfkkLbiDdxhFk0WFHnEZYNBgl7Uuc/7wxWRQ+F2q0/+ZsVZ0JyIYLopejt3wxebypY87W/o7lTfhZkY7HVWDXpQeuf/4txhv6eUEjubQgTPozCsISqzg7bd1Zsjho0VHTxgv9Z9Fbsic/H//gnoLySDuU5Ydjs0eX7SwjbWy5mYT18LvzyX+ENfB8CMV75vxi2DWUedV2gYw+s6YzTmvYxkUCpujCIJSZx7tVpoUGpo3RoncujvH4Mb/w12PDO2xy2CYw9fObTkxAvYLltpfvw7qmHd3RW3zTgeMZHDN+r+MbVC1wSeUIPttrY2NreqND5PGCX90dCbp5gc8jUTLfQcckLlUHBPKFY5l+sX5PogNTjxryx6d8CPT+bkZwqJmv3psbn+Q+XQvnq2TTYsWX4cAFa2HTrWlbym+zauMPKeQe4As/K049EqerGjrbQkI6SJ4hanSrs2TpmyeE8YamJSuqxtPhUu+N8x/lT7J+rk0F5GzNRxhDFmssU6RoEKA3cZzByv8wrlY23nfLzmwxabnOLmMLPt5IjkpdvTGiOkZAQ3248TxI7XohwSQjB//sLB7WZpZ+jgaUlmvvnbvPS2x2idcwgiOVVJp3MVfAS8LD6i5AEmNX1MyCH507N4/T+OpFGEfjLqZvyjW5/i81s/wEeNvxKXwYP4/P9BCo3/NH/HyY98cNTvPV6QdlrNMBR1QmWRITXZglR1LAgN387gS0Fs/vFVt4uaOp/74Lt4ZfQP/HnB1XDQCUMe++KjysTN7mWEs/7h704LDSsjoXIoNACeWCU5+zOyztiXbgrfwa/gORTimBUrWOnPx9gU+LFsexrPsdX9pwYlx3hBxAvJg/QPJoc0q+gemzekLvy2w5lmrbny72mPNpV4Zid3fzsgw5/67SjPevzR260896INwyOHYqbqWuq7Vg77PT1fYvo2MpgBFsGAMcKACbVsL7t7UsTJES3jM3PK8kV8of8NaF3r4H8XK+UK4IX3kRqut6PnNXOrLCiFja716lyqkEMA77rgdK5b8GXWvf4fNSk4a0XObCLqKW+dsBx8NMohjrwEPvEyzFMz8UZQ4iureRSOALlNj6mFGgi5ESHTxaezQWhDDZMiIeZPbeCa6PsLDVX6YTnHI04OWYM/Sh0FmPOCfoiUHPSBP3EDr1B9pXQhuMO2Q+/NQh/U00w0GSqH1OuRSHCtF/92yymKf3oWfGNRbScYlB/NTxfuVQOJhZHCL+NjU8fIEV3+Gr4178cA+BsfKHlN8138IuWQO0A5lLE92kQvTqSVhKWTIYJXZI4uvRyeGEzieULHc3IY0kNGGmougZvoODA+5X4EIQRSM+vk0P6AMlGyAAQzUCefEHQKj/+3YR22KVbUAeraRMzuoFdvyZcaxC2dDFGEk84rhwyztk7TKZf+J9tWXFHSppfxHDj/8FksO0SVDMWaA+PJdPmZFM3N4WCVlEJIoaMx+gGk2K68nTZGDmGlOAQREAAdL93HIdpWuPDb8ObfwoXfgRP+DSEVYbeg66FRv/e4wU0rsq/4+9IMjKCsLCxLBAoeI04W97YvQN+uYb+db2fIYmGZQw9m2pIR/vWZV/HGd36kpkHJwdOS0DxP3ZP2ESzDICOt/O9OC5RDBMohKxyY15VDY4Yf37Nu6I2GCd138Ie4jo48qJn7jZMKDb3b8V0bT5hlS7H2FtrmLy+spAoqEztUDhUNwEUw+CxW/4apOZFoZRXHHmM6c71NXKSre1u2Ye7oT3yc0R94MsSTtcWDh1hkdRdWhllK5HiSqLDxgwSyUKkVlQMGbP99EIfe+mYiwsGccdig47z9pIU8bJ7IzUllPurfdTW4OTy3duVQ3DLyARIAfvB8iiSqfx+WofHmd32ERYefOuR7DAdupJlmr1MR5UH/JVT7jBiNM/O/PTM69uSQlBJ6AxP6cfIT9DbcX1gZxkBcCMGsk9/K63NfVA1FqsGByDo+Mey8oq2OGvGa7yHnnADzTkZEG9mYPFK1F5WDhQqbYkWQ1Ey00Ecmr7AP/rbFz4pyY6mONcFrNUwolbkmvTGq7NjXqthJByFYfNTp9Mg47atKS0B16eAJEy2YTAx9qkKkbY8W+vBiUxBCkBPRkhJy38mVVT57wgySIb1CGMUBgDo5tA/g6xFE3T9jryPreGxlaqGhAjkkHTVIXXDIkXD5Q3De14b1PlNjRZ3hlX8m4XaSNgsz0zFTJ00E3Unj5D2Hanx4WAmmv+7LJU1DycpF6CtQQWYrvNxgOeUYlpUB6I0zcPQ4utOPlJKW3sCsc/kb4NDXwrFBDPApHwdQypz9FU4GWyt9SEjNRMcHKfHcos5K8DtPbX4K4+Hv4v2wgl9VFUgng11mRqMShBB5o9Sa8OHHEZ/dOvR244RI8HvIK4fc4IEdmqTmy8rqyqGxwrbuMS4bATTfKfE/KwddE0RP+xjvsT/FD9yLEE6Kud5m/CpeRXsDRx5d+F2mO3fkl0MvjOJOYTiAcZzCAMIOUifjscr34lzyoJL1ns7dFbbcf5DqUyqVhobhlZ9Gne78cm7ny8Pa13Z9ouTwjLCEJCCHBiqHgJbel7nSvpzE8W8f9FpTIsrHzjmED7e/nqtbvozWuxXvuvdiOMFssahNqXb2kUt4TU49c6P96j4ZT+6bctzOGWfQRD/pZ64veGqMoSrBMi1sqY8pObSnL0eEoL87TvfwnZ1Fat1heA4BvOuk+WxrWMEGORO/yuRN1raJCCf/XKqjRrQdjHj/7ZBUtgrRZKBCzBX+ZnaooDcLzw9fKyQeyjK+mCEcu8IkL0DPlqHPr8xYzHfHZvJeuoEqf7wUcwcgzlg6nefkwUp9XFT9oUs1ORUa9HsDyaGcTULkEJaadLT1GKLYE8/Nle2/eMLAcx1M3IKK/QDAfjwCm7yQmonu15VDexsrt/UQkUXfe4XZgfCGoUeSMP2wYZc7zCxSHbtP/x+NXjfZ6JR8m6FrZImguWkcd3jKoXD/3JRD8+vmEFG2fkAO+f3lZ8V0L4sziOwYm7KyEMmWabhmAtNL05GyWSg30RedAdEBM7Cv/C+ua3iHIlr2UwJVdzM4Wul3LsOHv+fkzROB/KzUg6tVp1PPdg77/aSbGxY5NGwYERhNacIoMb0xQoYIft9O6NqECDuCgXw/TDCR5a6HDfcjv39MXnVUR20YFL1eDb6vUryG8M/SfAdZQ3nse85cyuev/DgviMUAnCmeQh8DleKoUBQrHr/9k/nSUDskh6wy5JBdTA6pwXQsVrnkJDJlfn45JaN0t++/vmp5dG8EIDlcMuRVX6W/Val5Ur9/97DUQ7bnE8XJe+npATkUI0dXdA47jvwYV2uX8znnvZyQ+R4vTD2fqFXm+akZvPvk+Xz2/KX8etdCftvwPrTV/+DDvd9SA7b4lMH7lMHFR89hrbGYVXIulqtUjfHG5po/z1ii6ajX0SdjdK1+sKBcGyYZUg2WoZHFKvgQjgHW7R77FKiBuOuxovLFYZJlMUvnqguWsVs2YW9fCVseL7tdLq3+9ppVLysbDRKN6ncns735NidUBhV7Cekmuh+SQ5UVOL1dgyc9pVBDW/njk4c+oaJr8rmlVwJF5WCjhZvb56rYyYbGqMnKKefRmtsKG+7JjxN06eIJI68u8wbcw3JBomhoY+DpMY7IPAKpdrKOhy5tZJnryxcGvmtj4mJadXKojnGEr1noo4h5rWNkaO/LEcGmTwT+BJXKytxg1myEA2YR7P+ovxSjbztLxWbcaGlHNKfFMLxMPsreMIZX1mNddis3eKcBEDWqP3hEQr233VeeHNL8HO4A8kFqxpiUlYVoaG5DmgkifppNHSmWis3kWpeV3dYMDb3H2PdgrKB7GdyB5FD4UPFypbNOQecmoo08pUW4mUF/n8mE6Y1R0jLCQbv+Bd89vEAOBZ380I/LKzOb5954BaJjLXRv2mvnOxnwke2frnnb/vu+p1K8XvpbxW18X6JJp6bIXiEEC6cmOfiE8/mrdzIr/fmsmfmams9nXJCYQuYtf86vys2PAgXSxygi4EPZulc0gHADEilapayscfr8/HJvYj4LU8+wcft+TBCtvp3z1n4JAL1MGlhVTFlE4iMP8vPou2ntexlZJQVqIBzPJ4qdT/009AI51BuZyczXfYnLPvZFjnjdJ/jmu1/BzR85rfyBhIauCf7tjEV8/Q1H8Pk9r+C7B32PW42z+M30z0DD9JrOJxkx+K+LDqPdb8i3JZLNNX+escQRc5vZKKeT3bkaLVA4M4ZlTpahkcMq9IHGANu3ri+sjBM5pPcX1H4jGYgfv6CVPbKZaPda+MU5ZROwnGw4uKwrh0aDxhbVH031FCbKQhVmMTkk9UICLOGzv8zzRaa7BrVlEkqlKZwaJkGCPtpN2jk4J30UTwrkGCiHpJTM9rbSHZk96mPVUYrGY95ISkbgtxfD1W1IKfPKIT14VnsDCL5ckEymB7/fRU5QvfCNRWxbeS8mXtn+S85s5BCxiVbRX7A4OABQJ4f2AXzNzMsl69h7aO/PEcUmZwSzoBXJoVHOyAUzki80nVFoaplZsokdkkOh59AwySERbeLuyCsAiG19oPq2CaUccnvLk0OGl8PVB3xWUUjfGilSuYKE3DBMpJUk6qf5xT0vs1DsIH7QEWX3M8PkmUp/n30Mw8vi6aUdci8ki5xsvj4eyMvoTW3kqWWamxtERk0mmLqGU/R9al5IDoWeI0oV4DqlHTbflxi9ASm0Dz2TJiJWOM/VvO1Td12vFqoMutKOh4mLMGonMT954bGsPfU7vMb+KmuPv7rm/cYLsWXn8o8zbwGg/eUHgYJvgRUp/P6EEaahFK7HcHCjVfn8Ry1fml+e0tqCKTzk7986Rmc/Dgj84oC8im84EELQcuaH6JVxOu7+Qc37OZ5PVNgQlpUFSZ66kHlvtBlNUd583EGctXQallGhG1uk+H3DMXP41KsO4TtrpvDB/st4bsp55fepgBWzm+iiQA5p0YYqW48fGqImmeQ8FvU8Qkt6o2ocwzIny9DISktNcHku/vXvg21PjuqY2a3PF1bGIVSgJ+PQ4FT2CqoFM5tibIksLjSsHpwM6gTJRnXl0OjQ2qr6xz1Fip/wXlpStqMXysryE25lVGEi1z2ord0OJpRqKVcOlCfPNZ2Npes4GGNSVpZzfQ4VG+lsLD8JWsfIcc6KedztH5Vfdx0bC09V5YTKoQGm4nZADhnB+EIvmvCZfdObmS325J/txdhx5JVMFUrlFqmTQ3WMJ6RuFZKN6thr6OrpwRIebkSVMjkV4lqr1TfXhHO/DK/5Hksv+hT/67yJPbKJaYeVzm46WhTLz2AHsbqREcgVv/CRD+DpUcRpn6y6XSzegCs1nExP2dc1v0ytraZXL/XI9SP/+RnorlzTfe/q0g6bGWukSaR5xdqvYgqP+JwVZfcTocHmfqgcklJi+lm8AbO1XkgkOmn84vKnYNkSoyCHvCzuMBJYJiL8InIo7nTjoucNtUPCIR9BHWD7lqIZ6bofUc3Y0tE/9EYB1u7o5HQ9KNmo4tHSl3WwhkkOAXzy3CX87cOncN7yGUNvvBdwzFHHsNKfj7fmLgCcwEvILPJ108sYXuaXqzwzpkwtJJlZrfMAWND/NH5v7Sb1L+/s5YNf/Dpb7/1VzfuMGMUlgiNMaDp7xQLu8I8muv3RmvexXZ8YuXxamT4g3rpmDLheP3TmIv7rtYdxysFTeO0Rs2o/DnDI9AZ2GUoBsDpy2D5NH4pMUylMr979E9UwhulZlq7KyoSb5YWVT6I9fz1c9+5RHbN114P5ZemNUblOEdbs6uMQUYO3zBAw5hd8x+RfL8f7w6X4z16XL4kMlUPh4LKOkWHqVKXYS678deG7dcqTQ2agHBJeTvlQlrF4MO3ekvW+rJP3itOlO3RJa9BHa22IYxkaNmOTJt25YyMzRWe+vLaOscOMpigvNRcm351cGhNX+VQFBI4/QP0YkrtGoBwS77sD3nUz/zrnFqLCYYW2cVDyM8Bhx55Bu1SCgkhk8k7SDkSdHNoHKDZaq2Pv4YpHzgLAtRQ5lMtUkJzmZylGeCOINMAx7+Lkg6cy+6Iv8KuTbiex/NUlmziGKrGygxkT0xq+8mFaUwL987vgxOqx7/GIQT8x/MzgKPus42F4uUEJHFIzqpJDT//q44hHf8yuO79XcZuSuGwhWHaEimJ/g34/fusimF8+yaVgKLf/kUO9GZcINmJAhzyvJHKzA8rK1HcgRkFeGH42n9wzWaEXSfUb3Q4cUezxon4bA5VDmUeLBsh1cqhmPLNq/dAbBVh52y8LK1WUfP1ZFxO31DOiBgghOHxOM6a+f3RFZjRFeTh2BjP6VsIj1+DZqkNZLCcveBoMLiurmkpTHIF7/td57NCrAOhYXXsy48/ueIZr+Cpz7v54zfuMGMWfZYRqiZaERZ81g5jdUXNSVd5zKFAOGSUJRsO4vgaYwAoheNfJ8/nd+0/kzEOm1X4cQNMEm5dfzjXuhfz9oE8Na9+xxs5D31/aMIZKloipkcVEuFmuvfluYHAkdM2wU8hvL+f8vut52VdlPrnc2JND4uEfcoi2lb4V71YBIiPEO970Ju6f8ka+4lyCkD76qpvRbrwMnvsTAH6QQmrUy8pGhRlTlZK9qfsFWKtIeLcMOSSNGJZ0INuD8OzBoSkBLKeUHFq7ux9LDu6DVUJITE1pSgbkkDkmZWXbHr8JgNbDXzXqY9UxGCeff0l+2c1msFCeh0ZwPxzoGxWSu1YssBWZtgwWnMbZp57CjZwJQCy9g4GY3RLnaf9ggLohdR3jDN3EpE4O7U3IXS/myQ7PUiywnS1PDmnh7NYYxE++7fi5fPq8pYPas0YjlrSRWUXYRMbxppMMyaFcQA61r4V2FfXZmVIJHNoAfyWhGfn0rYHoSTvI7U8D4G2oXNLmukXX+HGXET/mbcjXfA/e+Te0jz4FDeXVAlqgHLKzqbKv70vs6c8RJzfIg0OGM8lOGr/4cwf17N4o5PSGn0NOcnJo6aL5+eVmrwOnyGNJC36H/oDZvO6OIsVFOXJo6xOw49kxPc/JgFTHNgB2yilktcoDnWx/Nws2/DG/LquQQ305RQ4NvI9MRPRPVyQ2t/4HR6y9BgCryEsoJMA8JwfZXrDTheSyWp8ZsWa8wy/FkTq5jbWpanoyDues+Uptxx8DSG30yiEAo3mmepZUSMscCMf1iAgnP4tbrByiBsPzPIYZJDEUrjz/CJ5Y/HFOPun0MT3ucNE4ZQar/SIfE3MMy8p0jQwRNC/Lipj6e2VyI+yrtq9GBGlRqwzVB0plxn7C55hV/wtA4qg3qgCRESIaiXDsv/2Um6KvY5OYw86mIwHw7v8O5PowejcDYIaDyzpGhNZk0TOiXz3DQ3LILOoHb2o7DU1IvGf+gOfayti5DKJ+qqRc0fGkSpUL4Ve/fjt71QRAW1MCUxc4GDBahZuUtKz+M1uZzvylx4zuWHWUxSmHzue/xOUAuHYaU7hIzcQ0LVypIQdMLnsBuWvGBt8vT3zvN9VrqcHkkKYJtsvAM1Y/cFLn6uTQPoDUI6qzVONM2oEI2/X51u2r2NkzNr4zd9/8u/yyH5SVVSIfxADPk/FAzlQElZbpAEA3xu+mE48Y9MsYMhfMsPzgGPjBsQB09NtEsfOETAgR3gQHXqNujpV3/Jq5QsUwt6Q3VHxfNxgw9Z/2n9B8EAiBOOZdsPCMivsA6MG5ZDP7HznU0Z8jJnIY0dIOom8USuFKpPMBaeG5IyOHPF9i+PY+TRPbG9AaC2UeLX4nblF6Xjg49IrKyqSUdLQXRYEPuE5zrgc/fwX8ZN8O5PZHuN3bAWjX2xBVfMW6f30JR4o1+fVstvLAzm7fSIvonxQza60z5uWXmwNfF6vInyCMtfdcG/77IOT3jy4kowxVbnTRj5AXqMHs7KmtbJbT8DtqU3Ld9ew6jhCrCw3j4N9SjIxddPzhkDID4CeCSYC+7TVtH6bAiVA5VHRNGUMkc5ZAjG33tjlu8fN3HcdJi2pLORsvTG2wSKO+BxcdhqnWqwZLV55DmptltlRm6VG3lxfWjcDwv4gojTa2AoUyzbFEr9bESmMF2sIKxuTDQMzS+eR5yzgj83VO3PUpPm18Br39JfjaHE5+5j8AaGwcZnJfHSUQxd51nereF4ZNFKdBzVp2Mhv96XQ8fxfSyeINDE054XI6tRa1ki1YJjiej8Xg0v5K6OhV/cypTQ1YhoYjdeRoysp2PAv/1czBuRd5fv47EVp9mD1eiATpoK6dCUIMYlimToaIMiPf/RJ0qjFKSA5F44P94mbOPRjZdggc+96y7zNzdtAnsPe/Mcl4YcirVghxkBDibiHES0KIF4QQHwvavyGEeFkI8ZwQ4kYhRHOF/TcKIVYKIZ4RQjwxxuc/IZH3ZagQpV4H/OLOp7nwgYtZc+PoZ0pt10dsLsiNdV3NKNoVBjt55dA4+go4VjMAVq4jeNPxI4eSEZ1+YohcaVlZ5sdn0XLv51gitmIOTKMJZ10HKDJ23vZNTn36k7SJXlxhEpMZPLs8gecHnXx9mMRGKNt2Kii79iXaAzLNGuA7UCCH0sgi5VAYv+4XD+SGEevcm3HKkneTDkXk0BTZiVtUPpJPhyqSemcdH73Ya8B31YP7i03wxK/4zq0vjP85T1D4fWp2rEOfhlaBHEpns8zY82BJWypVoWPkexxx+5sBSebQN4/lqe4TzJs3v7AilVdYsVFlWFYWytZF3w58O4eHPrRa5ahLEcdfBsDM5ig9JPDT3UOeU9p2ef2tJzBLFIjTbF9HjZ9oZNi4a2yO7+TJodqS2cJyYhH87g2zQEwZwzEEHcdn6r5EWzJCWqrvISfGto+iaQJbWOh+DstVigpTeGy/+2fDP1iR51OyaSpQmDAaM0hJ3O9jd/ORY3bItxw3l4c/+wp++74TuK7/cG5e8V3c5gX51619ZEY+mXDDYcqgPrvzZXj6/9DT6l5jFv2+T1vSxsvaQoydzyJdG3+AKlOc/9/8bZpSjjhP/ibfbns+ERwcWb4POxCdfeo6n96SJBIYUoshCKWqWHd3fnH5ueXJhjrGBtFABeTlMsQCcsjUBRkiaqL2RyfB946E3h3YmeploeLDj8GF3y772rnHB/6o/aMzvp9IqIXSdIFPSimXAScCVwghDgXuAJZLKQ8HVgOfrXKMs6SUR0opjx31GU8G5GOvxyfWczJg7bMPsETbxmkbK3va1IqVW7s5nMIMeMRXnU+3gqeN8G1szBFFotYKNySHsuNPDsUtpRzS7FIj2tiup5iz5reYwiuV4UIh/anowSqlpOOpQpx1KjkfAPfHp5WdnfGD2XS9jMlbNRiB+auzn5SVrd/Tz5/++/30/O0qOvtSJMkQGTD7II2AXHOyJbNOnhuSQ8Uy59oVg90Zh6iw0Sd7QkqsJb9o4ZYqhwIVm1dEutmeT6MoIg99pxA/fOtn2LmhTg5VgplWUv4ec1pFX7GNd/0CgL6WQ3n27F8DkKnk0dazhVh2N19zL0FfUN5HbCLh9GUF42jTC54RRQOTPDlURFYKN40/zHu4qWtkjUb0Mmk7A/Hc7z6XX+5tXALArl2DJfBjicdX16b0GRJJRQ55vbWdb2juHfrgFSuHrOEoh8a4rGx/QVPMJCvU92CLsVeU2sLC8HLofo5t5jwe1Y7krG3XQG6wZ2FVFJXztEwJyKEx8HIpRndnOwY+ieapY3rcmU0xTls8lePmt/DpZ2fw5QX/V3hxDNPhDlSsOP11XOeeQXTNzXDTFZyw7rtAqeFvxNBxpx9Jq7uLi7V7y6oXT1i2EADzX1/Mt9muj4VLJvxtDEH0dPep59rUpgZMQ6i+/yjGZt1ZNaGQ1RLMmTU84/s6hod4Qin4PTtNVNhII0rE0MhIC+GmEaiJWP97RzGtPSjfHkmJdCK4v6Tq5FAeUsodUsqnguU+4CVgtpTydinzkVuPAHMqHaOOUuRnIevkUFn8c+UOGnrXjtnxNmxczxTRR3aRiq/NTVcR6k6uPDmkezncCvXNYwUvqgbDUbtTNYwjOZSIGPQTRXcUObRVzCRNlN8e+Xt+lXgfj4vDMQ8tNcwulJUVyKFHV21libua9hb1/XmL1fcZ6VrNmof/juuVJnKFHiXDVb2Y0UAqmts/lEO/v+sJ3pL9M01P/RA2PURUOEQWnFC6UfCblk66pFMc1tKXkkO1z0p1pW0aSaPFm0d8/hMCAx7YflE6W+jxUuzl5PmSJlJ0yqC8z3cL91M3S3x3UQx3HSWIZNtJaQ14ZgINH/wBSXrdmzn0cWWWHD33C7gHKcKnEplOu7pXr/Vn0xgb3/vm3oCuFSYF8uRZkXLIzKehFFQQbxV34A3HLDlAVm8g6vYOud2Jm67JL3ttKhr5pQduYlt3hqzjIYehRqwV0q3w9x4mjIR61tn93TVtH5bo6eF33jiHPUFajBUZxkRDlXS9iQwhBG4wGZHTxp4ccrUoup9F83K4WoTH4qerAJWQfK8VRf1bq1GV4nljrBzauEX5ADW1jU/a4XfeehSnHNzGtQ9v4pTsd/l1w2XQVB/qjBZLpjfw9+ZL8+vh/UsMIIBaTruM3bJZrZTxc1swZ+agNsd1MIVHRgT9ziGUQ739qp+pGyaWrpHDLFQPjAA7tqtrcsf7nh7xMeqoDYmEImrdXIYYOTBiWLpOmgjCydAlkzzgHUa/q3FGbzCxPRJyaGrgGzvziDE68/0fwxqRCiHmA0cBAx0U3wv8qcJuErhdCCGBn0gpf1rh2B8APgAwd+7c4ZzWhENYVibdHOOnTZmY2NqVZvWfruKL5l8AcLQIox1uJLpfBsA7/oPw2m+R6XDg0S9VTMPSfbvEEHc8oCVUDf5pPcENaxzJocaoga0nEIFyyJQ5Xmh5Be943auBV5fdR2iDPYd2r3oYU3jEzv40HHY+zRvuh6e+D0D09k/z+9v+wPSYz4rzL2PWUeflyy6Grxzaf8gh1/OZsvoP+XW59k4cTMzF55ZuGDxwvFxpWVkYv+57RQoNzwGzNsLM3rWGuMihJ8d2ZnS/w/xTcJsXYnQrDwKt6PvRAx8Cr4hgcz2fRpGii0Za6S8lh4A3izvVPmjoUo6rCnAiwfMlSXsP6Xhb4Z4jPUrmiXIFhaHZMoeYb+FIHb9C+ajsWIMAWucuIxmZHKU89rKLsV66sdBQNDAxgtnt4jSUiHDBHaayAhVMEMtW3096Tkk/IT59AayF87Z8i4/+j80zchHTGiI4jfM485BpXPnKJcM+j4HwfIl0ssPsIZZHLN6AJwVOupta7np+8FzWApWQFUvyB+9sPmr8lag+jN/xJC0rA5BmHHLgaGNfbuwIC8PPYfg2vh5RZRj9VE0rLIuiUmotUIb6zthOiO7erdRobVMHkwRjgdnNMX72zmN5anMXr//RQ2w+5L31Z8kY4cRjjqHrniQtoh87nIzVSnv7JyxbwE+087lC/gHLH3z9RZuL/u5OFsxo/jnlaDHwGHIyrhAmYGLoGmmiTHGDvqcXkKLD6H9le3azQ05h3szhJSLWMXw0JNWkQV9/P1Ox6TdjRAyNDiI0uWkSZOhuWcG1Xcv4qH692mkkKvwpi+AjT0HzvKG3nSSo2SlLCJEEbgA+LqXsLWr/HKr07HcVdj1FSnk0cD6qJK2sQ6iU8qdSymOllMdOnTq5B0Khcig0XqwZT/0G+fu3jsMZ7T94bH0HHzP+kl8X0q+ydW1IpFRihj51MTTNLtSphuRQz1Z44ca8B5Tm27jjTA6dsnxxacM4SuCFEESTzZhuCikllhzawyYkh2TRg7WpZxUA1txjQNPREgVjzqkRh3fqt/Mq+06m/f1dal83NBYdHjkU+vlUJIekVEZzewGPvbSeN3v/yK+/07+JbNOCQQ+YaEKVmaX6+0qVQ4GMXpYoh2o0kvVcTvzHKwGwmqaP5PQnDqJN6B97ioe9Q4FCaSEUoqyL42WdQDnUpylzec91SzzcjtDW4wpTGf8fQCaCQ2FHT4Y2unAT0yv6inV0FnnNNMwiZunkMEuUMsXo37aKXhnn1CMPHa/T3uuw3nItf48UEedF5JBpxXClhmb3k5Um/+e+YsTv41iNxGVqsHqrCOl00fV7/AdIHPeO/Or3rB9wX+RKrrc/xE3tr+biB18LW58c8fmE6E7bRAh+b+d9fVTHaoiZ9BPDzQytkIKCIitMvpvZHGOtr9QaVv/W2t94kpaVAYgwrtkYe3LI1SKYfg5D2vhaBCtM93GGOVlT9BwM1WPeGJeVpTpViWxL2/g+H4+e28KDnzmbfz/3kHF9nwMJbzpmDmflVEpULFRPDlAOGbqGvkgFmMTT2wYfZMoiboi+Xi0HptSh16VtBNdtNeN+z+H1nb8I3lvd4zNEMb3gWr/j/8H/Hgw1lsQCkGonZTSjaXUScbzR2KD63T29vcSwIfAcSssIWrYLS3jMmNpGw2kfKOw00nvmlEX1tLKBEEKYKGLod1LKvxS1vwu4ELhUVtA1Sym3B//vBm4Ejh/tSU906HlyqPaZGM+X8LePIFb/c7xOa79AprPwAPgHp1U0TB0OwoG5GRiRxWJxXKlBths23AffPgz+/G54WZEAhm+XGOKOB45cOJNb9bMKDeMsgU82TSFOht6+XqLY+USwShBBQpSTK7pGg5lDIzRkjCn1E5pB9KqNyM9u41F5KPlhTj7BZ3jS95C88yuVsdz3v/CjE2HX+PvKtD92HVNEH53LC8aCyTL+BgtmtKntu7sRZTyHZHEHpdZy0nRhkB5tnuTkEIrEfFkeBECkiBzSzcFlZa6dIyFypIwgedDO0dlbOvjc1KQs7vxMD3UobOpIM010ozfNKFIHlnae2zuLIsfjrcRMHRtDKUlCbH0ynzST3rmK9XIGx8xrHe/T36von100j1VEcFumQRdJtEw7Fi6LF8znsfP+jvPWSuLpynCtJjQk5Cpfo32pIq+4V16tkh/feRN84B645M9wwf/iH/YGtjYcznx24G98sOKxakV7v01UOKTic+DED47qWMmoQR/xmn+H4eAuTCZLRgw2SFU2JDprS3ZTG0/ewZkfDHy1Cuaqo4GrRTGljSlzSD1CNAxfcIarHCo854x4oBwaY3Io16s8QIxk25getxxmN8eIWZOXcNzbmNYY5bJXHctW2UbSD57dZdR+p591ftXj9AQebARpvJ4TeIrqwQReNeXQ8zfQIPtK3jurxTACrzl37V3qtW8thT2rhvpIgAqZcaLjfz3WAU0BOZTu7UATEswYlqGRwSKaVf0YK9HMO15xHNcv/zFdx37sgCJ4RoNa0soE8AvgJSnlt4razwP+A3itlLLslIIQIiGEaAiXgXOB58fixCcytMCzwM7V/rD910u7xut09iuYe9SAX77nn+zQZypPjFH6KYQD8zAuPha1WCdnsWL9L/B/fRF7pBpghmkqup8bkX/EcCA0jceP+mqhYZwl8MY8xclufOJ2Ijj50q1KcKxAkZHuzLeFKiIRzqLHA+XQcZepmPpIkvWxFRh+DqQsRLqXqRWvhkhM3fBlBQPMnoevVQvDlbmPAPaOF8mKKK2HFzooosznWTxLdQa6e3pKBtt5Q+riAXitSRhF5nfJ1vGRze9veFmqkuK4XfjseeVQcVlZUJ7gBoOkrO3w6Go1uxf6FXVOPRGAvp7xTXWaSNixYztzRDvRmYcV7jkDyKGeLvWb333Gf4MQxEydHFZpuubPz4bvHQWA1b2ezcxiyfTkXvkMewutK4pKR4uVQ7pGp2xES+1GExIrEuX4E0/HXHresN/DjwTPnip+Lql+pRx67ugvQ5j8uPBMmHUULDkXjr8M7U2/5I7j1Ax4brTluFsep+WfH6KRVN4UejRIRgz6ZAyZrU055IVedUUplz/4+CW4ZgOc8elRn89kQCpIKzOHY9BdI6QRRcMnLjP4RpRYXN1j7dzwFJj96cLkjhlLkpPGmJeVESQvFqdd1jFxMG9KnH5ZdI8pYzp96OxmeP+/FBleBrEG1Q+VoXIoeE65eeVQlf5W8bMvuMfnRAzLU9f6Rqcw4WE/8P1qHwWA7lSW2f4OaKpfj3sDLU1qrHDuOpVqrVnxgByKkHRVPyaWbMTQNd74xktoufBL++xcJxpqUQ6dArwDODuIo39GCHEB8AOgAbgjaLsGQAgxSwhxS7DvdOABIcSzwGPAP6SUt479x5hYkBFVJ+mlah+0bHn2rsJKFQn6RIfsUySYaJqDFj4ohpHuVPaY4cxBMBiKWwa2rh5I93I0/zHzVzhSJ92lyCHh5ZDjGGMf4hXLprHRDxQh42xOPn35meSkif3SP9GExIxU7/Q7UfXA9fsKg/S8l044qDSj8B+b4FVfyW8TTTarmXC7v1AGNMzvMhqL0C4bMTKDkwFyrkdTdhilBaPApo4U07Ib6WtYqGbrQamlysRdtiQjZLHo6ukt6QB7ZcvKaiOH+joKUmaRmNyltiHe/toLADC6N+TbwijrYlPv8HsNiTrPsdm0uxsA7W2/h7ffgDdVlTn1dNfJoRDelscBSC48och0vvT+2t/bBUDjCvW3iJgatjTyZaLFkP+7hBZnJ5nGBRh6zVXqEwKnHVbkfVhUomQZGl00EMmoZ9VQ99Jq8INgArLdFbdJp5VyyBrifZoSMXwpyGZGZyQtH/4B0zb9jXP0p9G10f9NG6ImfcQHp11VUKJIJ1QOFZ4b86ZPwfjcVjjsdaM+n8kAzVPfnd1y8JgfOxJTE0dNIgVGhGhADmVSwyOH/vTIuvyyFW/ARS9J8hwLRDK7SGkNNXv41bF/YV5rgv5iJzJtMDkEwJxjFBleBskmReD09ygyIFSc+4EPZLHieBCKJ/qC8UZOi2IFicZ6Zg/3eEfwjL8Iu2NTya7+r16N/M1FePd+Q93L0p103fcTmkUKMee4yu9Zx5hhSnNTybqw4li6hhlNYARhEsnGlnK71jEEhpQrSCkfgLK+ybeUaQvLyC4IltcDB469d43wEkoF4PeUqaGtgKVbrius+A5o409e7AvIjBqYEGtBFHtijEYKGJb0BKSGrgmWnvMeuOMqTv7Yb2jsjdH1ywbsPdsRtofhO4hhlkKNBMfNb+V1zkf5esN1LG8bvYloNcyfMZVHWMbi9nuBgq9PJbghOdS/O98mPUcZ/BYPGGLNJfuFxCe5PkSoHBomORQzdbbIFhKZwWq5F7f3ku8ijDNJ+thL63mFtgFz5qtg2jL42HPQPLdiuYKjxejv6cQzCzH3nquuvdKysho8hzrW0fv3q8gfKXlgmBuuOOoE+CeIbKEExTQHew55rnrw+8Hv1POcglIt1gqzjybR+wgAf//zL2l6djVvf+e/7Y2PsF/DbH8RAG32UQjtPtU4QDmU7usGFNELEDFUgosIyaEiJafoV7/R2PSxH6Tua8QtQ81Yb7inpN0yNDplA4faa9T6KMghEdw/vVQXlQpWQs+hcNBeCS2JCDYGdoUUzlrRnbYJu9ORrtpKKaqhOW6yWcYQuSLlUPcW+M5yeN2P4chLSrYPScjxUMVMFhx/UAxehNZlZ475saPxJHRAMyk6jCha4G/k2hUUaZseBjcDi84uafaKBuXReJIMxpiTQy1uO33RqdTD5ScmDp6W5Nlif88R9PNbWpVqu6uznQYK9w/PVEpW181RUbterFQKxgc5LY7lZMH3SdodpCNz8XIaC4sn86VE2/SAOsT6e2D20XibH2PBo/8NwJSlpw37c9QxfCQTpWplIxJDCMG8aS0QDK/bWuslfiPB5JrqmyDwG4ISkWGYnLVlNxYdoEZD2wkIke3CRQcriRY+KEbrOxR+X0W+PubJH4KrthNpmc3SGY10yEbsnp10pm0iwkEbZsLWSGDqGtd86r3M/cRdI3PQHwZ0TbCt9USmSVWHG0rFK0EGShWnt0AO4bvqb1MNkYDOyPUVBpP68L7LhGXQLlowUoPJoZe2Fcrcxvt3MGXNn2kV/SRPvVw1tMyr6mPR27yU1/l3cG62II4sKIcK1/CQHWTXxv/NxczOrgbA/9TGYRNsExZWAnn2F+A9BW81I/C/ksXleqGKSA9jxd1C/GzwXS07/DjSVhtXGH/j7es/DS/etBc+wP4No38HKS0J0cZCbPCA35GdDog5S3W8hBA4wkIEaoV0anB50PS5k48cAtSM9WmfLGmKGBpdsoFGT01kRKIjJzH0wIsl11dZ3ZZJq0F5dAhyqDluksPEzo6urCy3Zx1P+YuH3rBGtCUjOGYDfnFZ2bbANPuvl1dUFA3li3cgY/ZrvgCv/T7Jw18z5seOBwMu5eERzYdXVPQA/NV58NuLB7cXKWQtw8DBKCH4xwJtdNJvHhiq2smImKWzJFLUpxumBQFA2xT19091bgcK5JA0g+CZKsoh3y+yrAj6drYWQ0PSf/NnmUonsdbZdNGAnik6z+wA/7R0J2vWqJCUH824mqkLDx/256hj+BhY9tzSpJREc4zufJsZb9ybpzRpUCeH9gGSyQa6ZLJm5VAm5zDHLyKSavUsmYAwcj1k9EYQAl0v74kxXEjfxUODYsWLEGCph0ciYmDqGgs774fHfsZBYg/6XpIpH9QapzFaQUo7xnCPeld+uamx+g1z3qwZ2FKnp317vk0ph4aY2QnIIZntLZTKDVOFpWkCJz6dWG5wWZlXVOY23uSQlm7HwUDMObam7fVguyZRGJz5gXKo1IdoiA7yhnvRegoSZi3eXNsJTxKI0z8J807Kr5uGRkZa4BQGJ3lFVkAE+Z5TMAIPrjfD0Imd9D62NSjxqrtz7yTc7a+QUhLP7SZlqc60qJBW5qV7yIpYSSmVK8z893vH00ox8+eZBdJk0aIDJ8UnYpQmNUajIyf2jaQqicj1d1bcJpdRyqFYvLqnU0vcwsYsDREYARrS29gWC5SsVkP1jWtELNmM6RRIoN7Nz+WX/Z+eVaICDQd3Rl05VBmxZjj6neNiup1MFP7mhhXNk3ReGXLowVsqhRSDCPqp8pVXK4IZY8z7rlNkNylrytAb1rHfotVWfcy72y7N98mHg2kz1GT74me/Dr6fD07wQ3Kois9VrgyR7hnqfp586hoAph96Kp2ygUR2B/793wYnQ6pDjd3u8gIde6YLv3cnz/kLePu7Lx/2Z6hjhBiQSBn6lSZTmytuU0dtqJND+wALpybYKVtwumojh3ru+iZxkWNVEOc6WZVDfVmHiNuDE2kGQDPGxnMILyCHqqBZUx2f2Q99nmmim8be0cvp9zccMm82W6WSWMZi1R/Ch85qooMmUp07C42+gzdUqlpADjnpnqKysuHPBlkts2jyugY92Et8iMb7d5DrJyXiNXfAm87++KA2LxhQF6te3CFMOVOr78GWOpcbV9N+2pcndepOLbB0jT7i6EWDSzeYDRR5cqhIOVQ0+yjOuoo7T/oNnhTYw0iHnIzoz7m0yQ5y8SD5qYynm5QSmesrxAAHcDUr//2mepRi5qITluZfb5s5fxzPfP+DnHtifjkeHzk5ZCXVwNbpr6wcCgcwsSHeJ1QOec7Iy8qkkyUh+4k0z1RltB95csTHKkZk9nJa6KX9H1+C/t2seu5R1vkz+XPiErSONdCzpbBxcM8UB4pacj9DU0Nh4igWT+bLyvwBZWVbt2zmlMc+VPE4InjmiRVvBMATY08OWTj4I42mrmP/wNmfxzPiHP3e74xo95bmFq4Tr8Lwbch05oMT/BqUQ+VUlucfU1DBfst7C4tOeQOZIBVVu+uL8JUZZP727wA8O/utAKS6dxPN7cGJTdtrk711KPSc90N6Q1PzYKwhzv0KfrQV59RPw4y6s81IUCeH9gFmNEbZJaZi9tVmrGusVhHrj+kBSz1JyaFNHWma6YeYktrrejizPQJyaPdLsONZIFQOVVe8rD37Gr7mv4NuGSRzzDph+O+5n+OQGUqxBgxp4Bg1dXYZs0n0FJFk3tDfoxZVD9FcqhstVHIMs6wMwGs5GF1IUjteLmk3M8VlbqMkDYeAbveS1Wof+MWap/Fj8ZaSNj/wFxoOOdS/5kFWyoVcedl7aHvFR4ZxxpMTpq7RK+MYdoEc8oLvNfQG8z0H4Zc3QG+KmdiY1dMhtz6Rv19MVnSnHWaKTtxESA6p37Jf5IHV2Z9jGevJRUs9rlwtgh58v266GwCzWNFWJmVmMsNY/Mr8cnIU5NCsthZy0qS/u73iNtmMGsBEhkiYTEYMctLMGzqPBL19yvy6sbFJldE2TB/xsYox95WX84S/hLbHv4l/0xU0ZHewWU7j7/2B4qx9dX5bPyS3Rur7d9ndyIt+OMozPnAxra1g4NqQTKIH150sJoee/h1zfrGi6nFEPghE3Ru8MVYOSSnR8cY96bWOccbp/47+nztoio8sIVgIwdbmwAC6b0eeHJKBIbVbhRzq6RuciDu/Ve23YcZ5HHnp1URMg7mtpf3ltt0PAXDKMUeQkhESD3+Dhe563PiB4Q25P6HpxLfzgB/ci8LS5SXnon1mA+Y5nyutGKmjZtS/tX0AIQTdsbk057bUZKrrZXq5g+PJNQeM9iQtK9vQnqJZpDADqX1BOTQ8Mkyuuwd+dCL85HRAzWB5Q3jlnHjK2Vxw2Zf56EHXc3Hj7zEu/tGwz39/RzJi0CmDWUEx9E9/W9NRzLXX5W+4wnfU7F8VGDFFDjmpHjR/ZIbUAE7bMgDsbStL2qPjrRzKdMH/vQF6t2O4KWx9ePHcmcRBJevSCX6rRUTWUGVlkd5N7LTmsnja5IoGHykMXdBHHNMpeJaEhEYYd+27Dnreh6i0k9kYU34XlcptNrSn4OevyN8vJiu6+jO00YNMKhl+6OnmFl2Pa5+8kxXaRjqWvLVk3369OR8N6wex6yLWDB96BN719/E/+f0Ms1sLRM1owgsWTk3QQ4JsFc+hbFBWNhRZYugajjDzg6ORoLOnGxjak264mNnaxI/nf4+/cQZizR0sletomDaPQ5YfA4C/pzAJkSdxR+A/AsDsoxFHvX20p3zAomXmwvxyPB7HNKP4UhRIOyC14VEAHp/y2orH0UJyKLzPCBPhj/zaHAjHkxh4hfLYOg5YNExV/S7Zux0ChasfeOb5VSbj7nlhy+BGWxHkCw4+lLOXKnL84hOX5V9OyUJ/dvGiJSRE4ZrWGmeM8BPUMRqc8OFf4Bx+KRz8in19KpMGdXJoH0G2LCQqc8i+7UNuq9l9WPEWzDDadZIqh+55eSezRQexZnVD1sPZ6FoNqbc9CdkexG8vKm33vaHLoYAjDmrmN+8/mRs/8eohJfwTFccdFhiNhqlwVZCZcSw6PvbWpwBFsvlDfI9GYP7mZnoLyqGRlAe0LcaROnLXCyXNmtNfWBmP38Gzf4S1d8ID38byUrjm8AZJTusAY97gfEWNyqFUfy/Nfiex6QcjDvByshCmrtEnYxhFf/vQcyg0jpeeiyZDMrJ0EN0YNclh4NjlByaf/eXN43DW+x/6uvegC4nRqGY3RZ4cUt+l7Xho93+DHhpYeM77SvbtNGbQ4rWDays/MYBIo0rxWzC5SbVymN2sYuOBEZXNhmiImvSLJF5/Bzz2M0h38tRjD/DiE/dAkI4TKodquY+6wsoPjkaCzh5ltBpPjD0x/eFzlvLd3IUIlAms3zCTuXMOokfGye5am98uT+LuhcTQOgZDNBUmOIQRxTJ1slh5o3CAVRu3sklOZ+bbf8L/iQvJaYOVyEKGKbGqH9eht9Ga3YIsSjscDVzfV3HVdeXQAY+psxYA0LVrc0E5FJBD1SbjLMpMtB95CfKED8Fpnyi0HfteuOQ6nn//Jr5/4n2cYf2JO0+/ntbWUr+ryOGvG90HqWNEmDJ9LubrfzRkRUQdtaNODu0jNMxRfg3tLz9Udbt1e/qJ+Smmtk3FNEempJkI2NqVxnn+JlpEH8aiMwHQ9PKGqWWxZzX87Gy82/9fvsk2lYoF6eLXL3UA4mdeqeLmF5wx5LbJOcsB6NqkCBrhu/hDdMSsgBzysr2FMp8RlJU1JBJ0k8BLDTBqLRr4eLVEwg8XweeTvkfUT+GbwzNkXX50wUi5X0bRswEJV3QNV5vJeuFFpZSavWBZxW0ONJi6Ri9xTLdADvmBSig0S5W+g54vYxyoHDJxMHDLeA65ns9n+r+uls3JrdTKdCvVXaRJkUNaWO7hOPhbnuD+X/w7x3nPsOvoj2HFSr+L7sgMNCT0bkXkgqSWoIT0QMTM5igpAvJiBPe3YmStVlb03Q+3/Dvc/nmOvuXVHHrzRez68YUgJXYuIIdq6Ph6mlXwehsBeoMyi4bk2BhRF+OouS1Mnb88v643z2FqQ5Qdcgpu9zb89ffh3PkVmrPBbH7dc2jfoJjsNKJEDI0sZj4QwPF8ct07kMnpzGmJo5tRdH/wIDs/IRLcj51ZxzLH3cyG/zkVN5hwGg0cT6Ljjyj+vI7Jhblz5wHQvXNTPjhBWEN7DoWl0iWwEojzv1ZI3gVlarzkVSyf08xnzl/KvVedxzlnv7Jkt8OdX7Hk8JOoo47JgPqIeR9hxmFnsN6fgfXg/1bdbu2uHpIiS1tbW0E5NAnLyq7913N8TfsxXqQJAj+HfJR9Dd4y2+5WyQKdWwqJRLau1D/C94ZUvBwwmLEC8dkt0DhzyE2XLTkEW+q0PPw1sNMI6eIPUVYWi0ZJyQgy04Ph53AxRlTzq9Qe1uCElKJr37Zz3PbcVv7xu+9BqrJnx3DQa6syT9txSMhMaQehBrz6yPn55S7ZgJlT5FCtnkO53esBaJ41dlHSEx26JkiJOFYROeR56p6gW6HnkIsu7bLXW1PMxJYmXplymwefeIojtXUApBonaRx7ALtX+XXFQ3LIUL/lrdu2oP3iFbxi5y/ZFVvEkgs/OWjfhumq1GT3ljVEc+34CEi07aUz3/8QMXRcPTTBHB2J4TQvyi/7RfeJ6f0v8sK91+NmQw+eod9HkUMjjwvv7VXkUDI5PvG/l5w4n9+5SvqfbJ3JtMYIu2QLyc13IX73JswH/ofzcrepjevlQvsMsjUoLTOimLqmlEOuItdzrs80uvDiSuFtRmIYuIP6aXnCKFCAn3yOMqZemHmevl+/tSb1cjU4rocpvIKxfh0HLA6eNYWtsg1v98tonrpOZZC0KKuMl4ywzPHKF0f83l1v+Rv/WPEdvnHJyUTN+j2rjsmBOjm0jzB3xhTu9Y8gmqqeWOam1CytHmvCGKEHz/6OrOORXXkTCZFDf8tv84bUolZD6q1PMPvFXwCg9+9STbItP4OqyqHqs0vDxby2JJbwsNw+WHN78D1W74jFLZ1+YshcL5rv4A6xfSU0xpS5qjdA7SGKJMLd/RnWXHcVr17zefzHfzGi9xmIa+9Txqh96SwNIo0VH4E64kOP0H7JHXSRxAjJoSKVUzWZs9uvSK7klKHJuwMJMtJUQg75wWygXlRWple43hqiynPIH2jUu/tlFv/rMgA2+dNK/kaTEeG1FW8JyKGAfO958gYAnpv+Oqa+97qyZO7Zp52OLXXkLZ9mUfZF+rWmA86EeiBaWpQ33oi9cQIkZhdUgrmIItyenvcedoqp6PdcjZ4L1JM1lFlJ3UIrNxteI/r71W8sMQ5lZQCvOmw6X3TfxUftD7PopNcxrUGRQ5r08ONT4J03AeCI0X2ndYwO4q1/wD3mfbDoLCxDIystcBVJabs+00Q3uai6VkVwDx7odSWko1Jig/Jobe5xeJfcwJ1TLqXF2YV89o+jOkfXVf1CUS8rO+DRGDVZqx9MU/eL+VRNEQmVQ5Xvh4a06dOaoGn2iN+7ZdkZvPoN7+FVh9X9huqYPKiTQ/sIjVGTlNlCxOuvaiDpZRQ5ZMSb0QO5rzuEoe1Ew20v7OQY71lysWkl/hVaMPjwhxq0/bxgQtaa2QDAJmYVPG9kXTk0Uvxm5n+qhXQ7mnSRQ8zmxi2dfhmDXB+6b+NqIyWHVMKU7wwoBSoa+HT1Z3iFpuTp6dTg1ImRwEl1A7BpTy9JMkQbWqrvUA7TliFmHUGXbMAqoxzyq/x+ZVoNBONNB64qoxysRDMRmc0rx8KSQsu0cKQOvovh27ja4EFl1NCxMfIR2SHkXz/ErJxSaq2Wc5BlSiMmE7yAHNIDxU94f52S2YCDzuEfvBZtann11LRZc/nHjMuZntvIcd7T9JtTym53QCEoWxiNxw/AgmXH5JdzOTUAt5KtmGd+iqVs4iPGX9WLNZSv+XpERTqPEKngPirGybshYuj88fLT+eCH/wPDNJnaECEeGLreGHsDb/9XjMOzP+X3x1w3Lu9fR42YthTjNd+CRBuWoZHDQgTKITuXo0FkcKKKHJUhaTngd6BJF28AWa8vOYeNh18JQK5vQMn4MOEEClxRLyurA+hsOpRpzjYSrupzaYHqW1Ylh5yyfYY66jjQUSeH9iUSU9X/VUpiiskhI/Acsu3JM4hJ5Vyuv+1fXKw/iDX3+PwsE4AWzAi5VWShO7tS5Y9rtmIEBrVaDUbKdZRH57zzAXD7OwNyaIiyMkunjzjxvg1c7P4TV4ys5CJpGeQw81L2EMUlE17fHpZpyp8i1T96cqgrZdMg1OBsSu8LRIRLvHXWiI4VtwylHLK7AZBeQf1WjRwi04WLjoiMT1nHREWkUd0r/T6lDAxVPqZp4qEhPUeVlZVRHGiawMEYVG7TZyqSZHvzsbjoUIGEzuTcUSVA7S/ww+dMPEyDVL9l00uRJVJy7y2HI990FV92LgUgIibPM2jEOO796v/GOaM6jL7wNJ6c8w4ArE33qf+jcaac+l7cc65m09yLsZe/pbbyXN0q76NRIzLpQJ03jsaex8xr4dBZ6v4WMXT6WpUP0W93L+TlnX30kiQxs15Wu7/ACsrKtOBZHBr7i0AxJ/TyyiHdd8umm85oSZCVJqn+3kGvDQdhRHldOVQHgJx5FAALMy/go6FZylai2uSy4dt1lWIddZRBnRzah7AaVc02qT0VtwmTYaxEM4apbmJ2hdSdiYjrntjCFakfAiAWnFryWjgjFCYTlcMTTz4MQGr2KTwlCx1Kx2rGlA5IGXjl1MmhkeCgqc30yyip7l3ovoscQgnUHLfoJ0ZLr4omjvsjI200TeBqFnKgVL1I3aFlCqRqNt3PaPGre17gA8Y/AJjvb8GROvGj3zyiY8UsHRmbQiTXBRsfZIHcTL9QSgNppwsbdqwr2U/PdtEnkkMO1A80WNOVgX/XZmXYHXqzWJaJi470XAzp4FW4Pj1hllw7ANsz6vEn3/RrRQ6VKdd9bv12er66mL4fnzNmn2VfIZLeRUbE8gN/I1AORb00Tg0k7oK2BE9HjwdgSnbz+J3oRMHR74QvdEHD9NEdx4iw8ajP0CmTxHvWABCJJUE3MU79KPPeey3WG39a27H0KLPlTuS1r4HhKow9l+n9gffGXkx9efNHvs66Sx/ld599B49d9QpuuuIUXnvEyEj5OsYeYVlZnhwKynO10OYg9MIaMJGjVfAonNkUI0WUbGqU5JCj7ufaAV7eWodC86JjAVjqvoQjLHQzrDyofB80ZXm1cR11HOiok0P7EDNnqRnH3ucqRynLnHqAGvEmjKCsrFIk80TE3Ss3crS2FuadAseWxidr+ajlyrPUzkvKvDL+pmvYrU0rtFuBV4xnI6SHrJNDI8L8tjhdsgFvx/OcoL04ZGxsMmKgRQuqF2MUpTquiOTrx0Novk1WBg/9IrNqOzM6cqgzZTPnkf8qadtmzUdrHHkdudE6j7hMwbUXsFxsoF9T34uW61YbrPonfP9oeKnw+7ecHlL6gZsCVQnJg5S6oD8gh0LC2DLNgNjxMKSDX6Gj5wqzxIvF8yU793Sw2VjArFmz8YJjFENKycq//A8zRCcNHc+Nx8faqzgkt5Kt8UPz66FyKCbTOFptseFfeu/r2Jk8FHnRj8blHCccRmC2Xw4zm6JYFMjJWHyEnj+B/4vYeB/0bh3evjd/nLdm/6yW92KMvG4YLFq8VD07NMERBzVjGfWu6f6CiKGRwcob/dpBOVdIDml5cqh0EK7Kygb3F2Y1R0nLKLn0GCmH6mVldQCL589ni68Uxp5mYgbXp6wyfjCljTdCdXsddUxm1J/A+xCHLFSJEI2PfAN8X/17+R/q/wAyiLEVkSSGFZBDzsSQ9Hff9W38r80DKStuc2bHH7Fw4OzPl0aoUoiydyt8Xt+XLOy4hy3RJYjmuWR1pcxwMPBNJSnFzSmzy7oh9Ygwb0qCLpK07n4EAM0YepalpaXgR6IxdNJcJfi6NZgc8hyy4cPcKZBDwk0zGvz1oZVcqD1U0hZtHblJIYBx8Bkl654epV9GEdkgCrxdqQTY+EB+m4jTQ9aol5QNxKzZB7FHNuLtehkolJVZlqWUQ74zhHLIQCsiKrvSNpqbIZJoQAiB0AyELPKFevHvPPTIg5zZ9zcAMuYIvKf2Izj9HSxmM7vaTsi36cGgKkEGt0Zy6LDZzcz494cRR106Lud5oGJWc4wIheszlhhZlPw0rWjAneke1r5+16bCyl5UDtWxfyNMK9O9sKxMkUB6oNgRprp3SLc0WVSXTtl+V3PMIk0E7CGe2WvvQr54U8WXQ+9NrU4O1QHMaYnxolDJj74WQbfCsIoq5BCV+wx11HEgo04O7UMsWHwovgzKR1J7yD18DfzxElj55/w2wgkUEVYCM5BJOgNTd0aKvp1jc5wy6OjsoPn+L6LluvH7y5fNSSk53H6arYnlMO+kQa+HnQ+vQs3wmtUvcASr6Zt/LgC2rjrUOREtzHy6OeWVUyeHRoQpCYteUaQEquGOsXT+6EiVEL4WGeSfoUtb/X2hRMauDZC0D+t9fMn0R76MJVyk0PK/yWmRkRNbAAsOO54OWRjkCc2ghwR6LiCHIoE6oHcbbHoI57FfMcvdih+d2ETEeGBWc4ytchpar/KYCsvKIoHnEL6LJW08rfwsoKuVerE4nk9CZJFmYCqsGYgi5ZB23ds55bZXM1t00CEbRpUAtT+gfZdKxdSbD8q3hQEHhvDxajA7rmP8MG9KHFMUrr94fGTk0DyzmBwaXlT49l1Fz+k6OVRHAF0T5LAwvRR4Dm6gXA/vH5qlnsdurvQZrEsPv4zSOGJopImiDTGh49/zNbjnvyu+7gWKkFABWceBDU0T7GlQyY+WzGIaBllpIpzK11k1tXEddRzIqJND+xCmafKF+OfUyrYneerOINqzSA4u7MBw2YxjBkz4mCiHnr8BvnkIbH509McqA+M3r8kvd29fVXabzpRNs+zDSZQv3dGG8BxK/vOjAEw74S0AOGbQoRYaWhiv6uVUWdkQKVt1lIcQAjvSml8vLn2ouM+y17BRjj7W09cHk0Oa72AHyiFRRAiFs5ojwXMbtnGeezcbFrwV8f+62PCBl+mddhzaeV8Z8TEBFk9v4mH/sPy60A16ZRE5FM6cvvQ3+NX5mLd8nBZ6yc0+cVTvOxlh6hpd5jRi6R1AweA7VA7huZhU7ugNVA45riROFs9QCkOhFymHikiizrZjuYVT0cr4EU0kbN/TAUBra5Gqr2jG3TfqZMC+hBjgMaZF4iM70EU/5MHWi9XyMMkhEZa7AtSvhzqK4IgIjfZu+O4R+XIuLfDA1APlkG2XKocM6eCLwaoMTRNkiGK45cNEAOUV2b4GcpVLz7y651AdA+BNXwGA5fZjahopomhO5etMEZj1sUEddQxEnRzax4hMmacW/vg2TpLPApDZuVolmPlegfW2klhBDa3njH4W21t1u1roWJNv27ynj93rx8Zbo6n7hfxy77Y1ZbfZ0ZOlWfSjJ8vHdoczQl45WaiUTO1ZyT/NV9K24HAAbKsZAFM6aCXKIW9Ir5w6KiOTLKgNTFnDtTf/VD7XVHnGr1ZIIzLo/Qzp4Ghq4BJ6IGSlieFlBu1fK55//F50IZl1zIUALJo9g8YP3QmzjhrxMUHNuC46s1B+IzSdbplEtxU55KS786/9Zt7XeKN1Dcty12Kc+tFRve9kRSY2i2ZnF7x8C4fuuBEA0zDxpIb0XSzcyuSQZqHLwn3E9nwSZPPlp0I30AJyqL+vG4A7YhfQcvmtuHos/9pExa7dShUyY2rhXivizfllWVeK7F8Y6d9j6hI2HnoFAH1dlYMuBsLxfOJeUXjAGHkp1TE54IT31d5tuEH/Uw/6o7qlrlUnN4AcwsGrcD/OaVH0as/sdAci2w3ZyuRQmGJbLyurI0TL3BX5ZdMQpGV1hZqOB/WqgjrqGIR6D2Afo3nmwkFt2qqb4RuL4KHvobtpNTNuWFiBcsgdA3Lo7ufWqgUzjrvxYbq/soS5P5zDtN+cxu5n76Djiet54ZcfoufqhaS+NBv3oR8O6/h2UTxkds+6stts7uinhT6iQUz1QOh55dBgcijXuxsLG6YXDFbdPDmUQwtms3w7gya9elnZKHDCsQWfkprIIeAb7zht9G9sRAe9ny4dXF39bUXgR9RHHGOEyiEpJT1rlZ9SYsHxozjZ8lhw+qV81XkbABFsekhgBOTQ1h2qrPOM3Lf43rYlpBNzeNsJ81kyfWQlJZMdfuNsItjwx7exuOteQJnZekFamYWD1MsPRqRmlpBDjucTE7lCWZluKhIZuP1JpXRccsyZCN1ENyzViSzygptoaO/qBKCxsTnfJuJt+RJKUVeK7F8Yxd/jyCXzAdi0bVvN+2zetI4WMfrExzomJ9yict0CORQoh4KyMidbIHuklFhVSnZyIoZZhRzatWFlsGFfRc/KvHKoBh/EOg4MnHn8kfllQ9PoJ4ruVL6v6ZQvfayjjgMd9V/FPsZBs2aWrD/rL+QId71a2fwoumuREzEMwIoE5FAV9/1asKUzTcJPgw54Nr1//jCtzq7869NufCMAU4r2ST9zPcbJV9T8HjuNOcx11Oew+zrLbrNu81Z0IWmZOkRZmTfY+2XVqpc5HJg5txBfv8dXHi4afp4cymTT6Hj1RItRoG32ovyy7tfmdzWrbcrQGw0FI4JZZNLqej6GdJBGI15WYATkUEokaPRHRg51pmyOsx+lo+FgpiTKK9hGg6ip0yFV+ljc6yNnzIHsBgDSfZ1slW3844vvIhmpX59DQZ+yALYPaBQ6rjCQnkMUB78COeRrVklynuP5JMiRDpVDmpEnh1K96n510EwVUa6ZEbAB34EKnkb7FXY+j+zagFhWKO21g9hoESkQj6Zl0kkDbfRixRN7/TTrqIJRKLmWzWkjRZTdu3bUvM+i36gY6G3H/yezL/jUiN+7jskJpyjRyQuMoPWgrMwIlENurqDQcH2JJVx8rfx1bOvVyaGnnnqc8wGBBLsf7BSsuxuOfFt+G9+rl5XVUYrGWOH5b+nK26qxmnJIunXlUB11lMGQyiEhxEFCiLuFEC8JIV4QQnwsaG8VQtwhhFgT/F/WRVUIcZ4QYpUQYq0Q4jNj/QEmOg6eliyYUgOblryX37tnA+AjMLw0uSBJxrLUQ7BYOZSxPbqf/QekyxMwA7Fr7VN0fudUTtJfVO+R7WObVINi2Tib+z0VGb3bmMnL73yW5y+8maf8g8mGJsA1oocGOvQ22mUTfq6UuZdSctsLO3nyZUUemckKyqGwjK4MGbZ1kypVO3jRIfm2bbnCOYZJBX39/eh4denxaDCjINXVvRpVawM8NEYCzYwRxc7PHPZmXUxcdCOCi44REFUZLYElR0YOpfq6OVasZtfsV476fCuhefEJbPKnsWv5ZZhtC2lx23H+8Ha8/g5yerJODNWI6LzjBjdqRuBfkQ6UQ+XJG6mZGEVEo+M4xEUOAuWQ0AylDgK0nCqv0aKK1DOCQRBVUk/2K1xzCuJPby9pMr3AdyFSiEiPmwbtIXE5wnSsOsYQH3ywsGyO0HOIwNPFbGVF9524PTth6xM1X7tNDcmhN6rjgMO8KQXyOEyPNUJD6oSaCPKL+qCeL7Fw8CsQN7YWI+JXJofMrrWFY/3hEuWP+dcPQk9BDRd6URp1Q+o6ivGhR+GKxzB0QUpGMSp4Dvm+RMev+5HWUUcZ1FJW5gKflFIuA04ErhBCHAp8BrhLSrkYuCtYL4EQQgd+CJwPHAq8Ldi3jgALpyawAwHXZmZw6mvehXPBt7nbOwJ30yO8yr4jn8ATCeS7xzz7hbxp6g//cAPNN16C/bdPDPlerufz0p/+H0dohTKvnp5OHDvLZnMR4uPP037+T3h29iW0Xn4rSxfOp2nhMaRkFH+o2NEB0Hyb3dZc+kUcvSgtQErJF69/lKY/vY4v9P2XaoyXV5mEaWX+wLSyHc9y2stfAiA5o1CWtzFTmKUyImq5L5XGwK8rh0aDSJLzcspDSHi1KYcAOOVj8KZfj/htQ1Nx11bET3faxsJFt6J46BhSnUtWT2KNUDmU6e9GExI/OWvE5zkUPnnpa7n/gjuZc94nmHrquwEwV/2dw9OPjGoQeKDhiKWLBzdqOikRx3L7VdpcBXLI1yzMorKycJZbWsFgWDfQUGVjuh34XEQbg5dCcmjiJpbp4eypVRjkHdQao12qz5hM1EmBfY4Zy2H2MWrZHN5kzEBsPvITTKUb49uHwM9fAVUiwYuRqIsw6iiDY2YXrsdQOWSaITnUqiY4UwWPK8fzieDgV0qP1GNqQqdCyViyb0N+Wd94X+GFTBEBVVcO1VEO05bC1EMwdWVIbXjlxy6O72PgQT3Kvo46BmFIckhKuUNK+VSw3Ae8BMwGLgLCkd+vgdeV2f14YK2Ucr2U0gb+GOxXR4C4ZeSJjJkf/CutTY285biD2KO1YeXUg3Cqo2ZLIlZRyUT3ZgDmblGdvp4NT9GZqj54eeCRRzjefpTNcy9m1fnXAdDV1UXU6SabmAmaxsUnL+eIy36MMWW+eu+GCFkiyGGSQ7qfw9cjZEUMvejm/NNbn+BVz13JidpLzJvWgt88H6YtK3+MYEZoEDl0/fto8ILEp6JSoA+ef2x+OZQ69/f3Y9SVQ6PGl9+iErSEOwxy6JVfgsNeN+L3DL0MQr+r7oyDiYtpRXDR8n5EjpHEwilJmaoV2bSaVTKj40fSxC2Dt584D00THHv4ct6TvIaV2lIA3IbZ4/a+kw1TkhE+Ef0vXvILBuloOmkRx/JS6hqo5DmkW5i4+cGIHyTrhDHMSjnkg++jO4Exb0SpavQw+XACJ5aZ4T3YKpBAQghkYhoARqReVrZf4JI/w6XXl5B4I8GiM9/FJjmt0DCEsnibtQAAccx7RvW+dUxOxLXCvS8MRDFMNaiORiJ0k0Ck2/PbuJ5UAQEV7seOHkdDglNePTTF201Olhm0Z7rzi36gHNLN+uC+jsEwdaHGHxXKyjxfYggP6sqhOuoYhGEZUgsh5gNHAY8C06WUO0ARSMC0MrvMBrYUrW8N2sod+wNCiCeEEE/s2VN7ysZkgHHwWQCYjcrjImrqaFOXDNou9BwC8rM0C1C+AlNzm2j9xlTWf/kYtn33ldir7ijZN227xO/8NK4wmX3hZ5lx+Nn0yjjO1qdooRejQmJY1NSVAbA7vDQoQ6qBWlbEMIPI0gcef4p3P3I+J+ovIS/+CfoVD6N9/FloKj9ADsmhgWVldnJmuc15zVHz1YJmYgaDvnQ6HZSV1TsQo8Gxi+eqBXdkCp2RIB6UikXvvVo1bHyIRpHGDJRDkYAcyhlK/YBdJRq3AnIZVfI4nuRQMYQQXPSK03lN+vOck/sfNp/4pb3yvpMFb3vrO7nFKxikI3RSIkHM78fCBaNCWZleqv7xHEVyasH2eWWh72KE5FBQVkZ475jAyiHLS5MT0UEd4ZNOOVMt9O8avFMdex+JKbB49CWuTQmLdcnCZMlQ923P83ksesqoFUt1TE5Eikpy/WCCKCy3jRo6nbIRvUjV4wZlZZUCAnwjeN5WeGZbMkeXUPfftf4s3pT7gnoh253fJlQO6fWJvzrKQAiBGWtEd8tfY44nMfCQdeVQHXUMQs3kkBAiCdwAfFxKWTlfcsBuZdrK6killD+VUh4rpTx26tTyHjSTFq+7Bt7/L4i35puWnfeBQZsVK4fktRci7/wvWt1drIsdTsqawvboYjr9GDM7Hx9UZrZj83qOlyvZuux96NMOoSlm0ijSHNL3KDNFJ01TyptCA2DG0IeRBiWlxJAOwoiQ05TxYE/aYdc/vkpEOHhv+CXiiLcOeRzDCMvKShUh66UqAdp12lcH73TpDXDFo4jGgEDq2Rooh+oPgFEh9CoZTlnZKBGPFxE2mS6O/tclTBU9RCJRXDSVVgfkzGAQn+src5TqyGVUxyGyl8ghgIuOnMWpB09lrZzDIQvm77X3nQw4dGYjGYoIIM0gI+LE/DSRKp5DjhF46mSV4jBPDpkhORTcH3wXwy315xH6BPMcClFUsmEVedcVwzg0MK2OlbUMrGMC45S3/HthZQjFpybrg6Q6KkPMPjq/rNlqQiUkhxqiBh00IorKylzfr1rm64XkUAU/mKjM4gfKTTn3JM49WRGd/p3/BUFZmwwmDfV6WlkdFZBoaCLiZ5Blyhe9wHOorhyqo47BqIkcEkKYKGLod1LK/9/encdJWpb3/v9ctVfvy2w9OwPDMAPMwibIzoDsiMQoSJAoOZKcYI4xJuLx6CH5HU+M5yeKSeSnRuNy1GgSNRJRREQ2QUAdYFgEhm1mGGafnumtqp567t8fz9O1dFf1Nr3X9/161avr2e/uuaeqnquu+7q/F67eaWYd4fYOYFeFQ7cBJWMAWMzg+WYkUQeLTyxbdexRK/i304IhY86CfyYrCXBYPoM9eCsdbjedrcdT/6HNLPzwY6z76P18zV1EvHdP2fl6D4Zv3HMq1O0AWuZUDw550dSoarpkPJ8EWSyeIhupI+H38tLTj/B73M2uxRcSP/6qEZ0nVhhWVn5T1tOXYa9rYv7GCrOnrTwf2o8k3jiXfa6B9MEtRM1X6vHh6r9BPue/T9ol3al/wjY3h676ZXR1FQM/qVSaPNGgWDWQTYwiOLTvZfjVFwqL2b4g5TiZnryaK2bG1997Cvd+6ByWtqvm0GjUJ2PlNxyRKL2ReuroJW754hCwAbKJMLssHJbQXzejUuZQYehk/3X6t8204FDJMMuE30smUqGvtR+Ju/EBOPejk9gwmQzJpSdy2+mPknNR8sMMC4/ggaZ0lmo2XMcPUm8DYOH+R4FicGhZex1d0RboegM6twH9w8qGyByKV88c8vI+KTLsaj+J/O9/jZXXf57li4Ps8sjeF3C3HoP/4OcK5QaiKkgtVTQ3t5DAY+e+wfkMnu8HQ80VFBcZZCSzlRnwZeBZ59ytJZt+CFwfPr8eqFTx8DFgpZkdYWYJ4OrwOBmBt194Drn/cj/2Z5uCFRVexOosAy1LggCTGfFohFj9HJJ+T+EbFoC+nuDGOVk3eFaanS0biK44u2o7/GiKxAinMAfozngk8LBYkmw0mJUi1xkMW+g+4cYRn6dQc2hALRmXz5G3oaP9qXiULW4hTd2vECNfKG4tY2QGt3TCOR+etEsuntPKvfn1RDMHONhV/BCZ6N2JT4SoBd8G5RItwYZsV4WzlNj2OHxuPfz4r6A7CJ7m+oLzpuomtyBvJGIcMUd1XsYikS75u0Vi5GLF5XS6crAt399HwmEJ/ZlD/d86R0oyh/A9PKIQ6Q/Khzc4/gwLDpUMg4v7GXIVMocArGNt8P4hs057Y4oMcfr6hgkOOdXekCGYsb/xKADW7wy/Hw4/j5oZtB/FvNx2+MyxsPOZcFiZV70GXDhLZKXgUHc2T4oslqgneuyVEE+xakmxlID17CXys4+RC2sfldXiFCnRsHQdAHt+/e+Dtnn5MHNIwxJFBhlJ5tDpwHXAeWa2KXxcAnwSuMDMXgAuCJcxs4VmdieAc84DbgLuIihk/V3n3NMT8HvMWvFF66B1WbAQiZAP6+2UFutbdNJlZcc0tAbD8twT3y6sy3QHwaF0aXAoLE46/wO/gJK04YHykVQwhMf3R9TmroxHghzReJJctI6U6y0Ep+obmkZ0DoBY+MHCDSxInffwGPoFfVFLmufdUo7q2cR8O0A0puDQTJNORMnGm0l4XfT0FG9uIr5HnuKNTC7ZEjzJDDPa9Z82Fp/vfxUozlqVqhJUkOknUZrlFYnS0lqc7TCdTlc4ArxC5tB+APzwxiKa6A8OBa8nzvewfLb89SUMHDlvhtUcKgkOxVy2MOul1I72+gQZ4oXhs9UEwSHdJEl1DQM/u5V84bZ84x8V199+Ghx6PcwcqvKak6ieOdTd20fSPCLx4mv54rbi+3Ov1eEnGsnlgmB9fwaTyEALTrmSLX4H85/4/KCZ8fK+I45e90QqGclsZQ8658w5t9Y5tz583Omc2+uc2+icWxn+3Bfu/7pz7pKS4+90zh3tnDvSOfeJifxlakH0Q8/xo6ue48TM7Xzdu4Bvnvhd5q84vmyf9rnBEDG7488K2UPZviCrIl1f8gb/55vhr15mOH4sfJMeYVHqQ30eSTyi8RT5WBAcyoWFf+sbBmcuVROLVx5Whp/Dt6Ff0FvrE2xdcU1hOc7MnWmolkXrW4mSJ9cVDIvcsfJdcPltZZljfjKol5Lvqz6s7PnfbS5b7t75YnBMGBzSbE0zR7qu5N/KoiycX5wLob7KlOxeqgUAFwaHXDh0rH8YWn/mUCaTwfwc+ZLXl0iYXeTlpn9waE9XSYZnyetm3GXxI7qJqjVt9Qn6SJDrG/q9O0pe36DLkJoaBwSHSm6qj1y9gX+KFz9vcWgXSfOgWj2gRPXMod6e4LNipOQ9ORIJypfuci18IXcRkewh8tm+Qe0QKdWUTvL95JXM7X4Bdj1bts3zHVHymPqPyCCjmq1MpodL13bw4StPofntt3Ht5RcO2t7RUTL71/4g+NMfnKkrDc6kW8uKYFdTCA7lRlZ36GBPlqTliKfS5GN1RPFx4VS6dfWjCA5VKUhNvvzmrZrzzz2Pv/euBCCxZ/PQO8u0lGgI+mc+HJbYs/x8aOrAL8kcapkTzPK3/Y1KZc+A/a/wu59/E4BsWHfl0I4wOBROaU5Ms/TMFGUBoEiMxUcVg+P9sxQOFK8LAoi9B/cCxZpDheBQ+FqT83KDg0Nh4Cg/TFHf6eD5nSUBUn9AcKjKEA+ZvdobkmRcnFx2BMEh1d6QIbQ0N5evGDBUf/ei4ix7digsLVolcygSFvv3+4ND2W4IPyP2B4diyQHZvB96gfabn6QnEhwbzRwIT6abe6mud/764Mnu58rWe16emPmD+rGIKDg0Y1136jLeur7yFPBLF5fUAN/zPABeJnjDTaZHHpzp5/ffOOeGrlvQ72B3WOQ3mSYf1gOJ9QY37pYYeYZGf3Bo4LCyiJ/DH6bmEMCJy1q5v/2dwTGTOMuWjJ/65jkA5A/uACCVDPpi6b//accFtRC2PnUfHHit/ATO0fnFy7h85+cBePG6x9jlWvB2vwCAlwk/nMYrD0eS6aehNMAcibJk9Zt4jDXBsqs89HXJwmA47r69QQaaC4dcxcPgUH99s2w2S8TP4VlJ8f+waLWXm/41h5pSJR90w9/RORcGhzSsrNa01MXJEMcfpiB11OkbdBlax9z28hUD+suZJ28oPLeDW4NdqkwQ0DE3eF/ftTcI1vPFc+FTRwCQCYND0dSAz4oN84imm0mFXxglsvsrtkOkVOuSY/GdkX1jYHAoeD83ZUyKDKLg0CyUbChmA+3b8hgAfjh8ZkyFR/tnlsiNcFhZd1jkN50mGw75qe/dUX6uEegfVuYGFKQ255G34aP9Zsb7Lz2Z7yz5GHb1t0Z8XZk+6uYsBSAfBnNSYU2Z0syhxpZgWNHpB+7A//uT4dAbhW333f9zmnu3FpYXLZjPc/4S5r/2n3ivPlKYrUzBoZmjbHiDRYlEjC0LLg6WKwxTADh6YRuHXJqufUHfcLnyzKFotH/oWJA55Je8vvRnFfUXsZ7O8n5JXYVwWFku70gOVf9DZq2GZIwM8cIwykqcCwqz6iZJhrJ05dryFQMyzc44dgV+eEvh7w/ec9Opyp/3Vi8LSh/s2BUGh/b8Lvjp58mE9SkTA4NDocaWIEiVzHWG7VAhdaluzbJ5bHNzOPjak2Xr+2e7U1BcZDAFh2ajliUcvOLLPO5WUfebL0HvflwhQ2IMtVUKwaGRZQ51hZlDqVQduWQQqGrO7AhmAKo2Br3SZeNJfGfUdW8tW2++hz/CF/Szjp7LO2/4ELQfOeLryvTRuuw4ABr2PwMUC0f31xzKD+hTkXwffHpVYXn7Q98iT4T8dXfAe++iOR1nb2w+cZcj9s8XsrJnU7CjhpXNGE1NpZlDwVvYO/7LR3Fv/Tyc9J6Kx3Q0p3jZFnPMa9+GO/5bIXMoGhYzLcscch75SGlwaObUHPLKgkNhvbm8TwIPF1UfrzXJWIQsCWyIIeH9tTciCg7JUNIt5csV+st3L3mCHpekb08w4UOqrnJwaPmCYNKU6I5fl2/o3EYmLIFQNvFAaTOags+UqdyBYIVu7mUIJy5t41G3mobtD5TN4OyFz03DykQGUXBolmo64e08supmUn4Phx7+Z/KZLnLERhWcKUiEWRVVvpUfqDtMC44n03ip4FuettwbZG10NyfJZJI7OINj3/hB2bUjfg43gppDMvMds6yDrW4uR2SCbxb7h5VlrHx4md8xYLa9cBjFydlf8VLDCUSPPAuWngrAGVe8t7DbhvyT5CwBZhP6e8j4aW1rH7QuEo1iG66tmgFmZsT7Myp//dVCcMjCbJr+IayelyM6oOB9f3DInwE1h7x8ybC68HfM5PIkLYeLKXOo1pgZXiSJ5asHhzKeT5y8ModkdCrUqDrliDbecK0k9gc1/eqrzALa39fWdt4Lu58vrHc/+gsOHgxmHW1uqjyzbUNT8Pp/du/Pwnao30p1zXVxNjedTSrfBS/fX1jva1iZSFUKDs1il194IQ/5xxJ76FaSfbvIRcb4zXEi+KY+H9YtGk5vOO24xZL4YcHrOW4f3ii/uTYzXmo6hQg+HHy9sD7iPJyKZ9aEhmSM5+NriFswtDAaD/rQK7GgPgEWvIRF3vdzXjzmT4oH/u+gxkyz66IrXV6ba+6GS9nzwR30uTgJyxN30z8jRIpWLFsxpuN61l5fXOj/BjH81jAaBoeO+LcLibocfmnmUDj0LO9N/5pDlYaVZfM+SbKg4FBNykcSRPLVX+OyOY+IOUzvqTKMR674RXGhQsbFEXPq2Rxdw5EuyBxKpKoP1/7+ms8CkPlNcci/vXg367bcDkC6rnJ9zMbWoWsfiQwUW3ke3S5F/ukfFNb11xBU5pDIYAoOzWLL2ut5eNkfk84f4uzcL/GiY6urYuGUol7vweo77X+1cDPS2x3OmBNN4NLF+kf+KOoN9Uu3LQ6elAWH8jh9IKgZv1zwruJC+Eb+fCQYJhj3w2/EzThq8fyy4/J9XSTIVhwyNqepjvsbL5mYBsuEisTG9n+/45Sr+Kx3FQ4j4oVDZMNaQ/3DywAWul1lwefCrIkzoOZQrtKwMs8nSU7BoRqVj6aI+tUzh7LZMIsuppskGdq8JSuLCxWCiWbG3nmnFZeHeM2Zf+Ll3JtfR+TxLwPw/fzpvNp0Isu7NgU7VPm82LxgBY/6xaHjCg7JcDas6OAefwP+sz+CsNZQ/0Q3yhwSGUzBoVnuogsvZ49ros4yuDEEZwAiiWDsd673UOUdvCzcthb+nzk897/fzMe3vy9Yv3A9bz66g04XXHc0M5X1a1mwDICevduK7VHmUE2JN5UEfcIPmwcajx6845v+mM45xRlTMm88R5JcYVjQQGd/4J+57/z/xLv2e+PaXpmeOppTHIgvwHA0920PVobBoXi8+HpylG0re32JhH3O96Z/hlnerzCsLAwOmepq1aZokqhfve/mwuCQag7JcFbMLakDFKl8+1B3zMbiQuvyquc6aVkb37PzieeCLx1fiK/mgl1/xt/kruPF+CpoWVLxuI7Wet6V/WhJO1SQWoZ22pHt/Nh/E/HMPnj1IQDy+f7XPd1LiAyk4NAsd9ziVu5OBzP5eI2V32yHE0mHw8qqBYdyxXpAx2SfBqBvxYXQtoLVHU08lz4RgObO5yoePpSOxcHwoX1vvFJYF3VexZRmmZ0am1uLC+HNfGrussE7xtM0X/w/C4vd2zYHN8WJyhlzyViUs884k9jKjRW3y+xiZsTnBhln83pfClaGryPtA7qIK3l96c8qmgnBIS9fzBzKhwW0s9ksMfOxuIJDtcjFksT96llvWU83STJ+zjvpuOLC/GOr7peIRYgdewW/8o8B4PfWz+Pa01fylfzFfPaI/w+SlYeVLWxOcfKK+VyVuYUH266CZOXaRCL92uoT7O04i26rw236JgC+1585pNc9kYEUHKoBV9z0aX615qPUX/u1MR0fTQXfFvmZysGhwnTgQM9Nm+GWTlLXfaewbvVN3wbANS8e9bVXLFrAQVdH7+5Xi+1xnlKJa0hLc0txIQwObVxfIXMIYMU5vHLaJ8i5KLue/BkRc0SUMTH7vOcncNEnR31Yw7L1ACzpCYLY/f2p3d9ftl+05FvxaCLMHBpixqfpwgtT5QGy4TC4ru6gVlysSpBUZjcv0US96y4Mpxgolw2Gg0eVOSTjYG5jkl03PM6eP/r1sPted9oy/jJ3I1vcQhad8jY+ftkavnHDKXzkktVVjzEzPnbZGn7jjubuZX+hySRkRN58zBLu8N6Ee/Y/Ie+RzQbvj6VZwyISUHCoBtQ3NPKmd/wVqaY5Yzo+mUiRcXHyfZULUh/qCtY/vfzd1M0Js5NK3rCbGhrhA5uxG3426msvakmzhUUk9gVZR845oihzqJY0pUuGhYVDfE5fObfyzmYsueBPuc+tZ8meYGaKWEK1VmadZafBqX8y/H4DrFq2iC1+R3CzDIXgkB17JX7J22EyLIAOEAtrrpHrHXt7J4lfUjTbywQffg91Bb9rtWmlZXbbX38kcTzY+2LF7bkwiBhRzSEZiTP/ApdqHnKXeUtWMmfxUcOeasOSFtqXrOKWpV8lteBozIwzV85lUcvQgew1C5u446Yz+IsLVw25n0i/c1bN45f5Y4nkumHnZjLhcNpEYgwzOIvMcgoOybDSiSjdJMlXKUjdHX4z3TN3XfWTtCyBpo5RXzsSMXakjmJO94vgHLm8I0ZeqaA1JBYp+WYwOvwbeTRibEsdTZPfGR6ijAkJHLeomc0uGKrqY8V6FalmnnnLNwv7xUuDQ/EkWRctGz47XZUWze6/6T8Uvj7XVZlWWma3vrZg2E52x1MVt2fDWXuiCg7JSGz8OHbza+NyKjPjGze8idv/4MRRH3v84maaUuqzMjLHL2rm+WQ4zHHro2TCzKGEvjwUGUTBIRnW8Yua6SbNvv37K27v6QluPpLp0RecHonu1tXBN/2dW8l4eeLkK86UIbPTxtUlBalLi0/e+ADu3T+seEysoZglF0sqOCSBRS1pXowF32jnLV6W4Xjc0nmF53GKQ3BiUaOXJDYTModKpiz3wg+/3d1h5tAEvT7L9DZ3+VpyLsqBlzdV3O4pOCRTqCEZoyGpIY0ysaIR4+iVx9BNCva9RDYTvFcmlTkkMoiCQzKs9oYkySis3n0ndG4ftL03/GY6lW4YtG082ILjAejZuomebJ4YeaXA15BErMrLVMdabMXZFTelmkuCQ8ockpCZ0TdnLQD+wLpli07kET+odVGaOZSIRughhY0lc8g5/C33gZ8fft9x4OeKw8ryYeZQT0/Q7kRStbdq0dGL29niFuK9XjlzSMEhEakFa5e08Jo/l8yel8iGEzbE4woOiQyk4JCMyDx/NwDeg7cN2tbXGxSkrpugmhYty4Obuc6Xf0tXxiNGnphe0GUIiYb24vOUgkNSVL9sA74zXGTAa4gZf+9dCYRF70PxaIQeN8bMoQdvJfKNK+D5nxxGi0chXxxW5oXBoTe/enuwIq5hZbVoeXs9W2wp6f2VZwst3iQpOCQis9fqjia2unnk9rxMNqw5ZCrELzKIgkMyItuO+H0AYo99ATZ/r2xbpi/4ZrqubmIyh1YsWsAr/nzyrz9FV59HHE/BIRlSvLGYOZTQsDIpsWrZIl52C3AVhqbG08H0yRG/mIETj0XoJUnU6xm0/3Dcw/8YPJmszKF8sd2u7yDs3cKxhx5iU2wtLD9jUtog00s0YhxqO5bW3E7Y8cSg7dlM/6w9qr0hIrPXMQsa2ermkTz0KmTCCXY087HIIAoOyYg0v/N27nBnBgvbHsf939+Hn90CQCbMHKqvn5jg0NK2On7HMur2P0t3X06ZQzKsZElwqL5OtVak6E0r2nkxvRZrGDzj3aevPS14UhJkiUeMHpJExhAcInMo+OlXnkZ8vDmvWHPIevdy6Be34bko31r0cUjo/0Gt6jvuWva5Bnrv/sSgbblc/6w9yhwSkdmrvSHJ75rPIO5nOHX3vwYrVb9UZBAFh2REGlNxHl3718HCI/+IvfhTePAzAOQyQebQRBWkjkUj7K4/irbMNlbe815i5muccK258QG4+tsj3j3dXLzxT6Q0nEaK2uoTXPjBr5B6z+Bi5u0trcGTksLOyViUXpck4o1hWFl/UKjkfOPCz4Nzg1a7kqns52y9m/qnvsH33dm8/62nj+/1ZUY5cdURfCu/keRLd8PB18u2ZbJBn0noPVVEZrnW4zbyK381q3seC1Yoc0hkEAWHZMSOXNDGITdgiE7XLnJh5hCxiSt42r58HQBz37gfgLimn6wtHWvhmEtGvHtjU0txIaq+IgMkG6BC5lAhu6Ykc6gpHaPPUpAbfeaQOT883/gGh9xt63D/fPHg9SXXSffuwDnHrtM+xpI2BUhr2ZqFTdwTO5sIPv5zPy7b1p85FNesPSIyy523ah63e5cDkCUOLUumuEUi04+CQzJiR8xtIEGubJ179Ev09U18cGjFmVfzmH90YVmZQzKU5rqS/hFTcEhGKB4GvxuK09qbGS5eN+qaQxmvpM7QeAaHst1Y51bstYcHbwuDWr0u6P/bbAHvOe/48bu2zEjRiHHVhRt51Z/HwSfKM+b6g0NRFWYVkVnuhGWtbEqdzOWZ/8VHOr5U9l4vIoFhg0Nm9hUz22Vmm0vWfcfMNoWPV8xsU5VjXzGzp8L9Hh/HdssUWDGnnqSV185wD9zK8q5NwUJ84gr/rlzQzHet+E15Iqkbfqmuua5kHPkEBi1llkk2wtu+AH9QXnTfEnXE8qMbVvbCzq7igjd+waEdT907aJ1/z/8i//DtuHC2sjdcMDzO5q6iIambfoHL1i7kHv8EWrb/Ajq3FdZ7YXCIqGpviMjsFo9GuO7UZTzlVvBM35zhDxCpQSPJHPoqcFHpCufcO51z651z64F/B75X4bh+54b7njTmVsq0MHBowsdz1/OGa+O03CPBiujEZfNEIkZyQUnmUIe+DZfqGpMxPBe+vMWUZSajsO5qaF5UtiqabCDh943qNNv3Hiw8z3uZIfYcnU2PBkNrvUjYr50j8sD/IXrXzTT1bgXgUF2QKr9o3Xnjdl2Z2VrrEzzTtjFY+MyxuJ9/Anr2kcuF2cCqvSEiNeC/nnMUF6yZz7tO0ZAykUqGDQ455+4H9lXaZmYGvAMYeaVYmTXedu6buSbzkeIKswm93nEnnMlt3tv4incRtuLsCb2WzGxmRrblyHBBo2fl8ETqWkiTweVGnj3kZYrD0Hp7x1DMuor27hcBcP0FqXuKb8/1mT0ArH3Hx/Cu/xHRN980bteVme+4N13Az/PrAbD7PwWfOgIvFwYuFRwSkRqQTkT50rtP4rrTlk91U0SmpcO9azoT2Omce6HKdgf81Mx+bWbvG+pEZvY+M3vczB7fvXv3YTZLJkrnxk8Vnm9YuZSLzjqNfW5iprAf6NJ1C/mM9/t8LnHDhAeiZOare+8P4LyPQdOiYfcVGUq6tQOAXTu2jvgYl52o4FDwdht3Ocj1sb1kmFkqdyB4UtdO7IgzIBIdt+vKzHfOqnk878q/LU9n9gZP1FdERERq3uEGh65h6Kyh051zJwAXA39qZmdV29E590Xn3EnOuZPmzq0wi4xMC01nvI8dFv77JJv48/OP5usn/4Bd1z844dduTMV58pa3cMdNZ0z4tWQWaF4MZ31IgUQ5bHMWLAbgtddeKd+w5ee4L19YNrtZQUlwqK9vdEPSqtnbeYil/nYOunCI7+u/ZdFPbihsT+f2B08iqh8jgy1pq2N/pKVs3Yau+/CIQsuyqWmUiIiITBtjDg6ZWQy4CvhOtX2cc6+HP3cB3wdOGev1ZHowMzqaw8LT8TSpeJQPXHYy846YnBpATam4pmUWkUnVsSi4cd61Y1v5hv+4Cdv6COx6ZtAxrmR2s8LQncO05dnfErc8zyWOAyD7g/eXbU/nOoMnKi4sFUQjhtWXz86zPvM4T6RPgbq2KWqViIiITBeHkzl0PvCcc25bpY1mVm9mjf3PgbcAmyvtKzPMuncFP+vap7YdIiKToKFtIQCXPv3nQZZQrhf3T2+Bg9sB8Lc+NvigksyhfHYcMoe23MspP7kcgL6OkwFI7H+BB/LH8VQsCBbFsweCfSdwcgCZ2S47cTkAW1xxuO1jTRdOUWtERERkOhnJVPbfBh4GVpnZNjPrz2G/mgFDysxsoZndGS7OBx40syeAR4EfOed+Mn5Nlylz9ofhI9sh3TLVLRERmXj1xaHO7utvhR++H9v2q8K6/F3/A3fbetj1bGGd5UqCQ+Mxlf2zdwCwKXIc3sKTC6t3nf7XbLv0WwDUecockqEdd3wwcewLC68A4ICr57X2M6eySSIiIjJNDDs9hXPumirr/7DCuteBS8LnLwHrDrN9Mh1FIpCcnCLUIiJTLp7ileZTWN75KPbqQ4M353th/8vw+VPhHd+ANVdgJTObufGYyj4sGPz1lZ/l8o7iEKDLNp7NL7fsJ+NiNNEfHFLmkFQxfw188DmO6m1g7+3f5KfRM7lx4+qpbpWIiIhMA5rjWUREZBjPbPwa+yvMzNjZtIpvttxYWM7d9XHwMpAvDiXzxyE41NvTxeuujTWL21k4fx5vz3ycB0/8LMl4nHQiShdpUoQZSsockqE0dXDU/Ebif/pLfu+vvsyy9vqpbpGIiIhMA8NmDomIiNS6YzqaeMO10WpdZesbTr6Gq0//AA/8+Hgij32J0zufgCe/i/OCGcz6SMA4DCs7eLCTXpfk+EXNrFrQyN998EZWzAlu6usSUQ65OtrtULCzZiuTEWiau2T4nURERKRmKHNIRERkGMva6zlAY9m65y7+V6JnfIBoxDjz0uu4b8Nngw09ewrT2/eRxFWa6n6UursO0UeCYxc1A3Dk3AbMDAiCQ12kizsrc0hERERERknBIRERkWFEI8bTi99Ztq597nwIAzQATQ1BJo+X6cH3g4BQNpLC8oefOdTX04WLpWlIDk74rUvECsEhn0ihPpGIiIiIyEgpOCQiIjICl199I3+du66w3NRYnknU1pAm42L09fZA3gMga2nW9P0Geg8c1rW9TDfxVOXaMMGwsiA45JlGi4uIiIjI6Ck4JCIiMgLzGpN0R1sKy8l0eYHqtvo4GRJk+noK2UIL89uCjX+3DH71xTFdtyvjEcv3kUhXniUyXTKsLG8aUiYiIiIio6fgkIiIyAiYGenm9uKKeLpse1t9kgxxsn09hZpDEfziDj/+S+jcNurr9mbzpMgMul6/RDRCd/+wMmUOiYiIiMgYKDgkIiIyQo2t84oLsYHBoTgZ4uQyveAHw8roWAfAtfVfIEeM3p/97aivmcv7pC2Li9dV3G5m9EWCIWdOM5WJiIiIyBgoOCQiIjJCTfOWFhei5Vk6rXUJ+lyCfLYHwoLUvOcncPNW/ue7L+Vf/I0knvoWdG4ffOK8Bw99DjKHoO9g2aas55Mmg4tVzhwCCplDJfWxRURERERGTMEhERGREYo0zK+6rT4ZI0McvAz4Hj4GiTpINXH0/Ea61/8RUXzynzsRsj3lBz/9Pbj7Y/C3i+GTS8o25fI+abK4KsPKAA6GBanjfmbsv5yIiIiI1CwFh0REREbojGMWVN2WjEXoI4F5GczPkad8Svl3XXIuB6knmu+F7Y+XH+xc1eVMNkfSclVrDkExcyiq4JCIiIiIjIGCQyIiIiN0zIKmqtvMDM8SmNdHxM8Nmla+KRXntgVhzaFcX/nBAwM/XjHI4/VnGQ0RHGpvmwNA1M8O8xuIiIiIiAym4JCIiMhozD+u6iYvkiDiZzDfI8/gmcPqGxqDJ7nyYWXOG5Dxk+0qPM1ngn0jQwSHLjvrFAD6Ok4esukiIiIiIpVozlsREZHReN8vBg8DC+UjKaL5/UQiOfIVppVvbAwyj/xsT9m3Mzv27Gdh6Y7ZLqgPsoG8MMvI4smqTVp9wplw1LOk6tpH85uIiIiIiADKHBIRERmdaBxiiYqb8tEEUT+LOa9icKgpDA71dB8qW9/Zub98x0wxc8jPBsGh6BCzlQUnXwix6gEkEREREZFqFBwSEREZJ/lIipifJeJ7+BWCQy3NLQB0DwgOdXcHwaDfNp8frMh2F88ZBociQ2QOiYiIiIgcDgWHRERExomLJYm7DJEqmUPNTUHmUKanq2x9X28XvjOeX3Y1APm+YvAoH9YjiiZSE9VsEREREalxCg6JiIiMl2iShMsScZUzh+rTaXIuWigy3S/b20WfJYmlgoLV2Z6DhW2FYWVxBYdEREREZGIoOCQiIjJOMsk2UmRoy+/FReKDttcno/SSIJ8tDw55fd3kIkli6TA41FsSHAozh2LKHBIRERGRCTJscMjMvmJmu8xsc8m6W8xsu5ltCh+XVDn2IjP7nZm9aGY3j2fDRUREppvXWoKp5NfyfFC4eoCGVIw+kvjZ3mDFG5tx//ZHRDOdeJFUITiU6y0OK3P9mUMKDomIiIjIBBlJ5tBXgYsqrP+Mc259+Lhz4EYziwL/CFwMrAGuMbM1h9NYERGR6exA8xoOumBWMasUHErG6HUJyIWZQz+7Bdv8r7zZexQ/VkeiLqhJ5ClzSEREREQm0bDBIefc/cC+MZz7FOBF59xLzrks8C/AW8dwHhERkRlhQXMd291cACIVgkPpeJQ+kpALM4eaFwXrLYvFU6RT9WRcDL8kOOQUHBIRERGRCXY4NYduMrMnw2FnrRW2LwK2lixvC9dVZGbvM7PHzezx3bt3H0azREREpsaahU1sc3MAiMQGB4fMjIwlMS8IDj3wu52FbY2ZN0gnY3TSAL37iwd5wbCyeLJuAlsuIiIiIrVsrMGh24EjgfXADuDTFfaxCutctRM6577onDvJOXfS3Llzx9gsERGRqbNmYROvu3YAIrFExX1ykRQRrxcv79PbuYtn/SV8JHcD28/4W+qTUQ64eqyvNDgUZA5F4skJb7+IiIiI1KYxBYecczudc3nnnA98iWAI2UDbgCUly4uB18dyPRERkZmgKRVne5g5lHB9FffpijbRlN3FoT6PFusi2TSXdW/9AMvPuJq6eIxO6on2HSgeEAaHiGlYmYiIiIhMjDEFh8yso2TxbcDmCrs9Bqw0syPMLAFcDfxwLNcTERGZKZ5zSwGo2/+7itu3JNcw19tB157ttHGIROMcrj5lKZGIUZeMcsA1EM0cKOxv+TA4FK2ciSQiIiIicrhGMpX9t4GHgVVmts3MbgA+ZWZPmdmTwLnAn4f7LjSzOwGccx5wE3AX8CzwXefc0xP0e4iIiEwL8aUnAZQFeEq9Vn88APlXHqLVDkFde2FbXSJKJw20dz1P/iuXQOd2yGeDjTENKxMRERGRiREbbgfn3DUVVn+5yr6vA5eULN8JDJrmXkREZLa69d3nkvlsC8n176i4vf6Ik9i7s5HFD/wlMevh1blrCtvS8Sgkm8CD6GsPwT1/QyzrkydCNDLsW7aIiIiIyJjok6aIiMg4aq6Lw39/ter2c1cv5L5fruMq70E6XR2ZddcVtpkZp65og+fDFU/+C+cBGZJErdI8DyIiIiIih+9wprIXERGRUTp+cTMvuUUA7HVNNNeny7YvvvyjPLzub3kwf2xhnWfxSW2jiIiIiNQWBYdEREQmUTIWJdO0HIAIjub0gMBP4wLqTnoX3RSDRvWuaxJbKCIiIiK1RsEhERGRSda8aCUA6Rik4tFB2ztaUnRTnLq+L1I3aW0TERERkdqj4JCIiMgku+Hy8wFoP++mitvn1CfpKwkO/cext01Ku0RERESkNqkgtYiIyCRLN7XCx/YQqzIDWSRikKwHD77gXUpiwcmT3EIRERERqSXKHBIREZkK0TgMMQNZe3MTAH0kaa1LTFarRERERKQGKTgkIiIyDW1Y0gLA/OY6zj1m3tQ2RkRERERmNQ0rExERmYbmNQbZQlefsgwGzmgmIiIiIjKOlDkkIiIyHTkXPqk+9ExEREREZDwoOCQiIjIthcEhxYZEREREZIIpOCQiIjIdLTsj+Lnk1Klth4iIiIjMeqo5JCIiMh2tPB8+/CqkW6a6JSIiIiIyyylzSEREZLpSYEhEREREJoGCQyIiIiIiIiIiNUzBIRERERERERGRGqbgkIiIiIiIiIhIDVNwSERERERERESkhik4JCIiIiIiIiJSwxQcEhERERERERGpYQoOiYiIiIiIiIjUMAWHRERERERERERqmIJDIiIiIiIiIiI1zJxzU92GQcxsN/DqVLdjhpgD7JnqRkhNUt+TqaB+J1NB/U6mivqeTAX1O5kq6nuTY5lzbu7AldMyOCQjZ2aPO+dOmup2SO1R35OpoH4nU0H9TqaK+p5MBfU7mSrqe1NLw8pERERERERERGqYgkMiIiIiIiIiIjVMwaGZ74tT3QCpWep7MhXU72QqqN/JVFHfk6mgfidTRX1vCqnmkIiIiIiIiIhIDVPmkIiIiIiIiIhIDVNwSERERERERESkhik4NM7MbImZ3Wtmz5rZ02b238L1bWZ2t5m9EP5sDde3h/t3mdk/lJyn0cw2lTz2mNlnq1zzRDN7ysxeNLPPmZmF6z9TcvzzZnagyvFnmdlvzMwzs7dX2N5kZttL2yfTy2zrd2aWLznHD8fnryQTYRb2vaVm9tPw93nGzJaPyx9KxtVs6ndmdu6ANvSZ2ZXj9seScTWb+l647VPh7/Fs6bllepmF/e7vzGxz+Hjn+PyVZLzN0H73QQs+vz1pZveY2bKSbdeHbX7BzK4fv7/ULOKc02McH0AHcEL4vBF4HlgDfAq4OVx/M/B34fN64Azgj4F/GOK8vwbOqrLtUeA0wIAfAxdX2Of9wFeqHL8cWAt8HXh7he23Ad8aqn16qN+NZ78Duqb6b6pHzfa9XwAXhM8bgLqp/hvrMfv7Xck+bcA+9bvp+5hNfQ94M/AQEA0fDwPnTPXfWI9Z3+8uBe4GYmE7HweapvpvrMes6Xfn9r+HAn8CfCd83ga8FP5sDZ+3TvXfeLo9lDk0zpxzO5xzvwmfHwKeBRYBbwW+Fu72NeDKcJ9u59yDQF+1c5rZSmAe8ECFbR0EL6gPu6Dnf73/3ANcA3y7Sptfcc49CfgVzn8iMB/4abX2ydSbbf1OZo7Z1PfMbA0Qc87dHe7X5ZzrqdZOmTqzqd8N8Hbgx+p309cs63sOSAEJIAnEgZ3V2ilTZ5b1uzXAfc45zznXDTwBXFStnTJ1Zmi/u7fkPfQRYHH4/ELgbufcPufcfoIApfrdAAoOTSALhiNsAH4FzHfO7YDgPxrBf4qRuoYg6llparlFwLaS5W3hutJ2LAOOAH4+imtiZhHg08BfjuY4mVozvd+FUmb2uJk9YhpeMWPMgr53NHDAzL5nZr81s/9jZtFRnkMm2Szod6WupsoHXpl+Znrfc849DNwL7Agfdznnnh3NOWTyzfR+RxAMutjM6sxsDkGmx5JRnkMm2QztdzcQZB/1n3vrUOeWIJ1PJoCZNQD/DnzAOXfwMIdwXw1cV+1SFdYN/M92NfBvzrn8KK/7X4E7nXNbNQR9Zpgl/Q5gqXPudTNbAfzczJ5yzm0Zw3lkksySvhcDziT48PMa8B3gD4Evj/I8MklmSb8LLhB8Y3o8cNdYjpfJNRv6npkdBaym+M363WZ2lnPu/tGcRybPbOh3zrmfmtnJwC+B3QTDGb3RnEMm10zsd2b2B8BJwNmjOHfNU+bQBDCzOMF/oG86574Xrt4ZfvDr/wC4a4TnWkcwzOHX4XK0pBjX3xBEPReXHLIYeH3Aacq+iTSzT/SfY5jLnwbcZGavAP8v8G4z++RI2i2Tbxb1O5xzr4c/XyKoAbNhJO2WqTGL+t424LfOuZeccx7wA+CEkbRbJt8s6nf93gF83zmXG+H+MkVmUd97G/BIOIS2i+Ab9lNH0m6ZfLOo3+Gc+4Rzbr1z7gKCm/YXRtJumXwzsd+Z2fnAR4ErnHOZcPU2yjPUKp275ik4NM4sCKV+GXjWOXdryaYfAv1V0a8H/mOEpywbU+mcy4cvpuudcx8PU/kOmdmp4bXfXXpuM1tFUHTr4ZJzfLT/HENd2Dl3rXNuqXNuOfAh4OvOuZtH2G6ZRLOp35lZq5klw+dzgNOBZ0bYbplks6nvAY8BrWY2N1w+D/W9aWmW9buKbZDpaZb1vdeAs80sFt4Ank1QU0SmmdnU78KAQHv4fC1B0WrVNp2GZmK/M7MNwBcIAkOlQau7gLeE9xmtwFtQpu5gbhpUxZ5ND4IK7Q54EtgUPi4B2oF7CCLj9wBtJce8QjA7SRdBVHNNybaXgGOGueZJwGZgC/APgJVsuwX45DDHnxxetxvYCzxdYZ8/RLOVTdvHbOp3BLOnPEUwJv0p4Iap/vvqURt9L9x2Qfi7PAV8FUhM9d9Yj5rod8uB7UBkqv+2etRO3yOYoewLBAGhZ4Bbp/rvq0dN9LtU2N+eISgYvH6q/756zKp+9zOCwvr97f1hybb3Ai+Gj/dM9d93Oj4s/EOJiIiIiIiIiEgN0rAyEREREREREZEapuCQiIiIiIiIiEgNU3BIRERERERERKSGKTgkIiIiIiIiIlLDFBwSEREREREREalhCg6JiIiIiIiIiNQwBYdERERERERERGrY/w/7Op5otsNb7AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize = (20, 20))\n", + "\n", + "for idx, df_iter in enumerate(dfs_gpr_test):\n", + " plt.subplot(nb_plts, 1, idx + 1)\n", + " df_input_iter = df_iter.drop(columns = ['y', 'u'])\n", + " df_output_iter = df_iter['y']\n", + " np_input_iter = df_input_iter.to_numpy()\n", + " np_output_iter = df_output_iter.to_numpy().reshape(-1, 1)\n", + " \n", + " mean, var = m.predict_f(np_input_iter)\n", + " \n", + " mean = y_scaler.inverse_transform(mean)\n", + " var = y_scaler.inverse_transform(var)\n", + " var = y_scaler.inverse_transform(var)\n", + " np_output_iter = y_scaler.inverse_transform(np_output_iter)\n", + " \n", + " plt.plot(df_iter.index, np_output_iter[:, :], label = 'Measured data')\n", + " plt.plot(df_iter.index, mean[:, :], label = 'Gaussian Process Prediction')\n", + " plt.fill_between(\n", + " df_iter.index, \n", + " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),\n", + " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", + " alpha = 0.2\n", + " )\n", + " plt.title(f\"Model Performance on test data: {test_exps[idx]}\")\n", + " plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate_carnot_gp(df_wdb, df, power_signal, m):\n", + " \n", + " df_local = df.copy()\n", + " \n", + " power = np.array([df_wdb['time'], power_signal]).T\n", + " runtime = df_wdb['time'].iloc[-1]\n", + " \n", + " eng.workspace['power'] = matlab.double(power.tolist())\n", + " eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)\n", + " eng.workspace['result'] = eng.sim('polydome')\n", + " df_simulation = carnot_to_series(eng, df.index[0])\n", + " \n", + " df_local.loc[:,'SimulatedTemp'] = df_simulation\n", + " df_local.loc[:,'SimulatedHeat'] = power[:, 1]\n", + " \n", + " df_sc = get_scaled_df(df_local, w_scaler, u_scaler, y_scaler)\n", + " df_gpr = data_to_gpr(df_sc)\n", + "\n", + " df_input = df_gpr.drop(columns = ['u', 'y'])\n", + " df_output = df_gpr['y']\n", + " \n", + " np_input_test = df_input.to_numpy()\n", + " #np_output_test = df_output.to_numpy().reshape(-1, 1)\n", + " \n", + " mean, var = m.predict_y(np_input_test)\n", + " mean = y_scaler.inverse_transform(mean)\n", + " var = y_scaler.inverse_transform(var)\n", + " var = y_scaler.inverse_transform(var)\n", + " \n", + " df_local.loc[3:, 'gpTemp'] = mean\n", + " df_local.loc[3:, 'gpVar'] = var\n", + " \n", + " return df_local" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "#df_sim = simulate_carnot_gp(df_wdb, df, random_signal, m)\n", + "#df_sim.fillna(0, inplace = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Export Gaussian Process Model" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "def export_gpr(path, m, w_scaler, u_scaler, y_scaler):\n", + " m_params = gpflow.utilities.parameter_dict(m)\n", + " pickle.dump(m_params, open(Path(path, 'gp_params.gpf'), 'wb'))\n", + " pickle.dump(m.data, open(Path(path, 'gp_data.gpf'), 'wb'))\n", + " pickle.dump(w_scaler, open(Path(path, 'w_scaler.pkl'), 'wb'))\n", + " pickle.dump(u_scaler, open(Path(path, 'u_scaler.pkl'), 'wb'))\n", + " pickle.dump(y_scaler, open(Path(path, 'y_scaler.pkl'), 'wb'))" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "PosixPath('/home/radu/Projects/Master-Project/Notebooks/model')" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "export_path = Path(Path.cwd(), 'model')\n", + "export_path" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "export_gpr(export_path, m, w_scaler, u_scaler, y_scaler)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.io import savemat" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "table_cols = df_gpr_train.columns.to_list()" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "mdict = {\n", + " 'table_cols': table_cols,\n", + " 'gpr_train': dfs_gpr_train,\n", + " 'gpr_test': dfs_gpr_test\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/lib/python3.9/site-packages/numpy/core/_asarray.py:171: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", + " return array(a, dtype, copy=False, order=order, subok=True)\n" + ] + } + ], + "source": [ + "savemat(\"test_mat.mat\", mdict)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate performance with new input and disturbances" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "df_wdb, df = load_weather_data(\"Exp7\")\n", + "len_signal = len(df_wdb)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "random_signal = get_random_signal(len_signal, a_range = (- COP_cooling * Pel_max, COP_heating * Pel_max), signal_type = 'analog')" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":30: FutureWarning: Slicing a positional slice with .loc is not supported, and will raise TypeError in a future version. Use .loc with labels or .iloc with positions instead.\n", + " df_local.loc[3:, 'gpTemp'] = mean\n", + ":31: FutureWarning: Slicing a positional slice with .loc is not supported, and will raise TypeError in a future version. Use .loc with labels or .iloc with positions instead.\n", + " df_local.loc[3:, 'gpVar'] = var\n" + ] + } + ], + "source": [ + "df_sim = simulate_carnot_gp(df_wdb, df, random_signal, m)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAF1CAYAAAC9AVTpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydZ3Rc1dWGnztdvUuWLMtyk3vvGIONC6b3Eqoh9CQQEhIIkA9D6IGEJEAoCb2E3qsBG/febblbVrF6l6bP3O/HLTMjjaplW5bPs5aWZm6bc/vZZ+/9bkmWZQQCgUAgEAgEAoFAcOJgONYNEAgEAoFAIBAIBALB0UUYggKBQCAQCAQCgUBwgiEMQYFAIBAIBAKBQCA4wRCGoEAgEAgEAoFAIBCcYAhDUCAQCAQCgUAgEAhOMIQhKBAIBAKBQCAQCAQnGMIQFAgEAoFAIBAIBIITDGEICgQCgeC4RJKkhqA/vyRJjqDvVx7r9nUGSZLyJEmafazbIRAIBIKej+lYN0AgEAgEgs4gy3K09lmSpDzgBlmWfzh2LWodSZJMsix7j/ffEAgEAkHPQHgEBQKBQNCjkCTJIEnSPZIk7ZMkqVKSpPclSUpU52VLkiRLknSdJEkFkiRVS5J0iyRJEyVJ2iJJUo0kSc8GbWu+JEnLJUn6lyRJtZIk7ZQkaVbQ/DhJkv4rSVKxJElFkiQ9LEmSscm6f5ckqQpYIEnSAEmSflLbVSFJ0tuSJMWry78JZAFfqF7NP0qSNEOSpMIm+6d7DSVJWiBJ0oeSJL0lSVIdML+NNg2UJOlndV8qJEl674ieDIFAIBB0W4QhKBAIBIKexu3A+cCpQAZQDTzXZJnJwCDgMuAZ4D5gNjAcuFSSpFObLLsfSAYeAD7WDEvgdcALDATGAnOBG8Ksmwo8AkjAY2q7hgJ9gAUAsixfDeQD58iyHC3L8pPt3N/zgA+BeODtNtr0F+B7IAHIBP7Vzt8QCAQCQQ9DGIICgUAg6GncDNwny3KhLMsuFEPrYkmSgtMh/iLLslOW5e+BRuBdWZbLZFkuApaiGFAaZcAzsix7ZFl+D9gFnCVJUhpwBvBbWZYbZVkuA/4OXB607iFZlv8ly7JXlmWHLMt7ZVleKMuyS5blcuBvKAbr4bBSluVPZVn2A7FttMkD9AUy1P1fdpi/LRAIBILjFJEjKBAIBIKeRl/gE0mS/EHTfEBa0PfSoM+OMN+jg74XybIsB30/iOLR6wuYgWJJkrR5BqAgaNngz0iSlAr8E5gOxKjLV7drr1om+DfaatMfUbyCayRJqgaelmX5lcP8fYFAIBAchwhDUCAQCAQ9jQLgelmWlzedIUlSdie211uSJCnIGMwCPld/xwUktyLQIjf5/pg6bZQsy5WSJJ0PPNvK8o1AZFD7jUBKK7/RaptkWS4BblS3dTLwgyRJS2RZ3ttC+wUCgUDQQxGhoQKBQCDoabwAPCJJUl8ASZJSJEk67zC2lwrcLkmSWZKkS1By+76WZbkYJd/uaUmSYlWRmgFN8gubEgM0ADWSJPUG/tBkfinQP+j7bsAmSdJZkiSZgfsBa0sbb6tNkiRdIklSprp4NYoR6WvfYRAIBAJBT0IYggKBQCDoafwDxWP3vSRJ9cAqFNGWzrIaRVimAkXw5WJZlivVedcAFmAHimH1IZDeyrYeBMYBtcBXwMdN5j8G3K+ql94ly3ItcBvwH6AIxUNYSOu01qaJwGpJkhpQjtEdsiwfaGN7AoFAIOiBSKFpDwKBQCAQCDQkSZqPUp/w5GPdFoFAIBAIuhLhERQIBAKBQCAQCASCEwxhCAoEAoFAIBAIBALBCYYIDRUIBAKBQCAQCASCEwzhERQIBAKBQCAQCASCEwxhCAoEAoFAIBAIBALBCUaPLSifnJwsZ2dnH+tmCAQCgUAgEAgEAsExYf369RWyLKeEm9djDcHs7GzWrVt3rJshEAgEAoFAIBAIBMcESZIOtjRPhIYKBAKBQCAQCAQCwQmGMAQFAoFAIBAIBAKB4ARDGIICgUAgEAgEAoFAcILRY3MEw+HxeCgsLMTpdB7rpgh6IDabjczMTMxm87FuikAgEAgEPQ5Zllm5r5LJ/ZMwGqRj3RyB4LjnhDIECwsLiYmJITs7G0kSDxBB1yHLMpWVlRQWFtKvX79j3RyBQCAQCHocH20o4q4PNvPkRaO4dGKfY90cgeC454QKDXU6nSQlJQkjUNDlSJJEUlKS8DYLBAKBQHCE+HZbMQCHah3HuCUCQc/ghDIEAWEECo4Y4toSCAQCgeDI4PH52ZBfA0BhtTAEBYKu4IQzBI81jzzyCMOHD2fUqFGMGTOG1atXA3DDDTewY8eOLvmN7OxsKioqWl3m0Ucf7fB2X3vtNX7961+HTHv11VcZM2YMY8aMwWKxMHLkSMaMGcM999zT4e0fDZ555hnsdvuxboZAIBAIBIIO8O22Eqoa3QAcqhGGoEDQFZxQOYLHmpUrV/Lll1+yYcMGrFYrFRUVuN3KQ+0///nPUW3Lo48+yr333nvY27nuuuu47rrrAMUAXbRoEcnJyYe93c4iyzKyLGMwhB/jeOaZZ7jqqquIjIxs9za9Xi8mk7hVBAKBQCA4VuwqqcdokJg2MJlq1SAUCASHh/AIHkWKi4tJTk7GarUCkJycTEZGBgAzZsxg3bp1AERHR3P33Xczfvx4Zs+ezZo1a5gxYwb9+/fn888/B5p7584++2wWL17c7DfPP/98xo8fz/Dhw3nppZcAuOeee3A4HIwZM4Yrr7wSgLfeeotJkyYxZswYbr75Znw+H6B4/HJycjj11FNZvnx5u/f1r3/9KxMnTmTUqFE88MADAOTl5TFkyBBuuOEGRowYwZVXXskPP/zAtGnTGDRoEGvWrAFgwYIFXH311Zx22mkMGjSIl19+uc3tDh06lNtuu41x48ZRUFDArbfeyoQJExg+fLi+3D//+U8OHTrEzJkzmTlzpn6sNT788EPmz58PwPz58/nd737HzJkzufvuu9m3bx/z5s1j/PjxTJ8+nZ07d7b7WAgEAoFAIDg8imudpMVYSYg0U+f0HOvmCAQ9ghPWzfHgF9vZcaiuS7c5LCOWB84Z3uL8uXPn8tBDD5GTk8Ps2bO57LLLOPXUU5st19jYyIwZM3jiiSe44IILuP/++1m4cCE7duzg2muv5dxzz213m1555RUSExNxOBxMnDiRiy66iMcff5xnn32WTZs2AZCbm8t7773H8uXLMZvN3Hbbbbz99tvMmTOHBx54gPXr1xMXF8fMmTMZO3Zsm7/5/fffs2fPHtasWYMsy5x77rksWbKErKws9u7dywcffMBLL73ExIkTeeedd1i2bBmff/45jz76KJ9++ikAW7ZsYdWqVTQ2NjJ27FjOOusstm3b1uJ2d+3axauvvsrzzz8PKCG4iYmJ+Hw+Zs2axZYtW7j99tv529/+1m6v5e7du/nhhx8wGo3MmjWLF154gUGDBrF69Wpuu+02fvrpp3afB4FAIBAIBJ2npM5BrzgbsTYzdQ5hCB5P+P0y320vYdbQNCwm4YPqTpywhuCxIDo6mvXr17N06VIWLVrEZZddxuOPP657oTQsFgvz5s0DYOTIkVitVsxmMyNHjiQvL69Dv/nPf/6TTz75BICCggL27NlDUlJSyDI//vgj69evZ+LEiQA4HA5SU1NZvXo1M2bMICUlBYDLLruM3bt3t/mb33//Pd9//71uNDY0NLBnzx6ysrLo168fI0eOBGD48OHMmjULSZKa7dt5551HREQEERERzJw5kzVr1rBs2bIWt9u3b1+mTJmir//+++/z0ksv4fV6KS4uZseOHYwaNapDx+6SSy7BaDTS0NDAihUruOSSS/R5LperQ9sSCAQCgUDQeQ7VOBmWHktshIk6pxdZloVI23HCK8sP8PBXuTx1yWguHp95rJsjCOKENQRb89wdSYxGIzNmzGDGjBmMHDmS119/vZkhaDab9YebwWDQQ0kNBgNerxcAk8mE3+/X1wlXtmDx4sX88MMPrFy5ksjISGbMmBF2OVmWufbaa3nsscdCpn/66aedesjKssyf/vQnbr755pDpeXl5+r60tm/QXIFTkqRWtxsVFaV/P3DgAE899RRr164lISGB+fPnt1jWIfh3mi6jbdPv9xMfH697UAUCgUAgEBw9PD4/BVV2zhzZi1ibGZ9fxu72EWU9YbuxxxVvrToIgDDbux/CP3sU2bVrF3v27NG/b9q0ib59+3ZqW9nZ2WzatAm/309BQYGeXxdMbW0tCQkJREZGsnPnTlatWqXPM5vNeDxKaMWsWbP48MMPKSsrA6CqqoqDBw8yefJkFi9eTGVlJR6Phw8++KBdbTv99NN55ZVXaGhoAKCoqEjfdnv57LPPcDqdVFZWsnjxYiZOnNju7dbV1REVFUVcXBylpaV88803+ryYmBjq6+v172lpaeTm5uL3+3XPaVNiY2Pp16+fvv+yLLN58+YO7Y9AIBAIDg+/X8bt9be9oKDHUVjtwOuX6ZccTWyEGYB95Q3HuFWC9lBS6ySvUlFrd3Xw/t1f3sDj3+wUOaFHEDGUchRpaGjgN7/5DTU1NZhMJgYOHKgLuHSUadOm6WGWI0aMYNy4cc2WmTdvHi+88AKjRo1i8ODBIaGTN910E6NGjWLcuHG8/fbbPPzww8ydOxe/34/ZbOa5555jypQpLFiwgKlTp5Kens64ceN0EZnWmDt3Lrm5uUydOhVQQmLfeustjEZju/dv0qRJnHXWWeTn5/PnP/+ZjIwMMjIy2rXd0aNHM3bsWIYPH07//v2ZNm1ayH6fccYZpKens2jRIh5//HHOPvts+vTpw4gRI3Qjsylvv/02t956Kw8//DAej4fLL7+c0aNHt3t/BAKBQHB4/OqdDfyYW8buR8441k0RHGXWHqgCYEivGBKjLNjMBt5dU8CozPhj2zBBm3y55ZD+2e72trJkKPVOD+c9u5x6l5dhGbGcOzrjSDTvhEeSZflYt+GIMGHCBFlT4dTIzc1l6NChx6hFgvayYMECoqOjueuuu451UzqMuMYEAoGg6/H6/Ay8T4nu2PvIGZiMLQc0bcyv5oLnV/DNHdMZmh57tJooOILc8PpadpXWs+QPM5EkiWtfWUNxrYPv72wuuCfoXlzzyhryKxvJq7Tz+zk5/GbWoDbXkWWZy19axWp1AOD/zh7G9Sf3O9JN7bFIkrReluUJ4eaJ0FCBQCAQCATdmr1BYYB1zta9Ch+sLwRg1f7KI9omwdGh3unhh9wyJmYn6nn9I3vHsbesAY9PhAp3Z1xeH2sOVDJjcCpmo4Td03ZUGcAnG4tYfaCKRy8YidkoUd6gCPRVN7rZXVrfxtqCjiAMQUG3Y8GCBcelN1AgEAgER4YthbX65xp768XEK+qVTmNilOWItknQnA351RTXOrp0m498lQvA5H6J+rSsxEj8MhTXhBeCE3QP1uVV4/T4mTYwmQizEYe7bUPQ6fHx6Nc7Gd0nnssn9iEpykpFvYv8Sjtj/7KQuX9f0qEQU0HrCENQIBAIBAJBtya47m9NGzXkKlTvgcfXM1Nfuisen58Ln1/BL15a1fbC7USWZb7ZVsIpOSlcMr6PPj0zMQKAgmp7l/2WoOtZuKMUq8nAtIFJRFpM7TLgft5dTkWDi9/PycFgkEiOsZBX2cjZ/1qqL5NfJc57VyEMQYFAIBAIBN2anSUBQ7DW3pYhqHgMhdfg6KIZ6we7sJNeY/dQ6/BwyqBkDIZA8YEBKdFIEizbW9FlvyXoeopqHPRLjiLSYiLSYqSxHR7B77aVEBdhZuoApeZ1tNXE3rIG6pxefqnmCeZVCEOwqxCGoEAgEAgEgm6LLMvkFtczpb8SGljbTo9go6t9+UiCrmGXmrvVNzGyy7aZV9kIQHZSVMj0tFgbpw/rxf/W5IuSIt0Yt9eP1aSYGhGWtkNDd5XU8/W2YuYOS8OsCkJFmI1Uq4M/wzMU8aeimq4NPz6R6VaGoCRJNkmS1kiStFmSpO2SJD2oTk+UJGmhJEl71P8Jx7qtAoFAIBAIjjzFtU5qHR5G94kHaLXj/9mmIuxqZ9PRikdwb1lDu/KVBO3nkNo578oi7wfV+nPZyc2Ny3PHZFBt97CjuK7ZPEH3wOPzY1ENQZvZ2Oq96/X5+e17m4i2mvnD6YP16ZGWwPXUK84GKAJCgq6hWxmCgAs4TZbl0cAYYJ4kSVOAe4AfZVkeBPyofj8uKSws5LzzzmPQoEEMGDCAO+64A7e79cR3gEcffbTNZW644QZ27NjRbPprr73Gr3/963a177vvvmPMmDGMGTOG6OhoBg8ezJgxY7jmmmvatf7R5rXXXuPQoUNtLygQCASC45JctaM/Rq0Z525FKXJfWUBdtKUwtC2FNcz+2888u2hP1zVSoBuCznYqQ7aHvMpGJAkyE5obglmq57Gki8VpBF2H2+vXPXtmo9SqIfi/tQXkFtfx8PnDSY216dNt5kCt6FibmSiLke2H6njy2500ukT49+HSrQxBWUF7ipvVPxk4D3hdnf46cP7Rb93hI8syF154Ieeffz579uxh9+7dNDQ0cN9997W5bnsMwf/85z8MGzbssNp4+umns2nTJjZt2sSECRN4++232bRpE2+88cZhbfdwaK2IfWcMQa9XPDgEAoGgO/L+2gL2BhlzAK+tyANgRO84gJCSAU6Pj+B6yG6fjMVkIDnaqnsGm/LvxfsAKKgSBkRXoh3P+jbKe2jIssxv/7eRX72zQfHw2Kvg5ycDC3x5J7M33s6bEX/D9sEV8M5lyt/Sp4GAd6ikViiHdlfcQR5Bs9HQ6iDO9ztKGZgazenDe4VMj7QYQz7H2Mws3FHK84v3cfozS0LyhwUdp1sZggCSJBklSdoElAELZVleDaTJslwMoP5PbWHdmyRJWidJ0rry8vKj1ub28tNPP2Gz2bjuuusAMBqN/P3vf+eVV17Bbrc389ydffbZLF68mHvuuQeHw8GYMWO48soraWxs5KyzzmL06NGMGDGC9957D4AZM2awbt06AF599VVycnI49dRTWb58ub7N8vJyLrroIiZOnMjEiRND5rXGW2+9xaRJkxgzZgw333yzbpxFR0dz9913M378eGbPns2aNWuYMWMG/fv35/PPPwcUY+28885j3rx5DB48mAcffLBd2/2///s/Jk+ezMqVK3nooYeYOHEiI0aM4KabbkKWZT788EPWrVvHlVdeyZgxY3A4HGRnZ1NRoSSPr1u3jhkzZgBKSYqbbrqJuXPncs0113T6OAgEAoHgyFBW5+SPH23h3TX5+rR6p4eleyqItBj1chAenx+Pz89zi/Yy5M/f8k7Q8h6fH4vRQJTVGFYsxu+XWbZHeUe0ZCgKOo4sy3qIZnsNwZ93l/PppkN8taWYh7/M5fnXXse74jmo2g+Ao6YUqaGELHMt1Bcrf4c2wpKnQZZJjLRgNkqU1LmO2H4JOofd7cXu9uL2KvcjgNVkaLHuo9fnZ31eFVP7J+m1IjUiggzBKKuJGFsgVLSq0c25/1rOwh2lR2AvTgy6LpC7i5Bl2QeMkSQpHvhEkqQRHVj3JeAlgAkTJrStG/3qWW1vNOd0mHZ7YPkxV8DYK6GxEt5vEi553Vetbmr79u2MHz8+ZFpsbCxZWVns3bu3xfUef/xxnn32WTZt2gTARx99REZGBl99pfxebW1tyPLFxcU88MADrF+/nri4OGbOnMnYsWMBuOOOO7jzzjs5+eSTyc/P5/TTTyc3N7fVdufm5vLee++xfPlyzGYzt912G2+//TbXXHMNjY2NzJgxgyeeeIILLriA+++/n4ULF7Jjxw6uvfZazj33XADWrFnDtm3biIyMZOLEiZx11llERUW1ut0RI0bw0EMPATBs2DD+7//+D4Crr76aL7/8kosvvphnn32Wp556igkTJrS6DwDr169n2bJlREREcMUVV3T4OAgEAoHgyKEpQNYEqYJqohCPXThSDzHbVFDDmf9Yyh7Vc7hqfxVXTu4LKIag2ShhNRnChqEVVNupV8PJyuuFJ6mrOKTmcabEWCmvd+H3yyEqn+H477IDpMZYAXhvXQGJ9CJrwgLOjk4D4E759yz2l/H9TadCkhoauvJ5+O5P4KjGEJnIwNQYlu0tR5YHNzMgBB0jr6KR37y7keevHEefwxT8OenxnzAbDcTYTJiDPYIthIZuO1RHo9vHlP5JzeZFBIWGRliMuiGYHmfj81+fzMRHfuC77SXMGZZ2WG0+Uel2hqCGLMs1kiQtBuYBpZIkpcuyXCxJUjqKt/C4Q5blsA+qlqa3xMiRI7nrrru4++67Ofvss5k+fXrI/NWrVzNjxgxSUlIAuOyyy9i9ezcAP/zwQ0geYV1dHfX19cTExLT4ez/++CPr169n4sSJADgcDlJTFaesxWJh3rx5erusVitms5mRI0eSl5enb2POnDkkJSk3+IUXXsiyZcswmUwtbtdoNHLRRRfp6y9atIgnn3wSu91OVVUVw4cP55xzzmn3MQM499xziYiI6PRxEAgEAsGRY6nqqat1BPLmi6oVQzArMRKzUXlPfr21BIAXrhrH09/vxu0NePYUQ9CA2Rje+7C1SBk4HZwWQ3m98CR1FTV25ZxlxNkor3fh9vmxGYwtLr9ibwVL91Twh9MHkxJtZV9FAytWrWSdZTJnW6JYua+Sb7eXcPe8IWQlBRklcZnqD+ZDZCJXTcnivk+2sTavmklBBecFHefNVQfZWlTLf5cdYMG5wzu9HYfbpw/mWE0GrMaAIdiSR/C15QeQJJjcv/k5DPYIRpqNRNvMACREWkiJsTIuK17PTxV0nG5lCEqSlAJ4VCMwApgNPAF8DlwLPK7+/6xLfrAND16ry0cldXj94cOH89FHH4VMq6uro6CggAEDBrB582b8/qDcB2f40cqcnBzWr1/P119/zZ/+9Cfmzp2re8s0WjIs/X4/K1eu1A2i9iDLMtdeey2PPfZYs3lms1n/LYPBgNVq1T8H5+I1bY8kSa1u12azYTQqN7/T6eS2225j3bp19OnThwULFrR4bEwmk34Mmy4TFRWQn+7McRAIBAJB1/Dz7nJufH0dy+85jZQYK36/rBuCwR7BQ2r+V+/4CCRJwmyU8PhkoixG5o1I5+3V+SGhgS6vkpNkMhpwNykov7esgb8t3I3ZKDGub7xuUAoOH00gJjZC6aR7fP4QkY+mPPndLrISI7n2pGyirSawV1Gx5i88Vf0SMFwXCLpsYp/QFZNzoP9MiM8C4Pwxvbnvk22s2l8pDMHDZGuhMkhyuDmXqw9U6p8bXV49R9DSgpf+vbX5fLrpEBP6JpAcbW02PzhH0GQ0kKSGiGuh4hnxEWwrqm22nqB9dLccwXRgkSRJW4C1KDmCX6IYgHMkSdoDzFG/H3fMmjULu92uC6/4fD5+//vfM3/+fCIjI8nOzmbTpk34/X4KCgpYs2aNvq7ZbMbjUV6Ohw4dIjIykquuuoq77rqLDRs2hPzO5MmTWbx4MZWVlXg8Hj744AN93ty5c3n22Wf171q4aVvt/vDDDykrUxyxVVVVHDx4sEP7vnDhQqqqqnA4HHz66adMmzat3dvVDLrk5GQaGhr48MMP9XkxMTHU19fr37Ozs1m/fj1AM6M7mM4cB4FAIBB0DXd/uAW3z8+uEuX5vf1QHRUNLsxGKaROoF0N49RKEmj5RhGqpHxqjI3yukDH1eOTsRgNWIwSniadzmv+u5r95Y2cNCCZ2Agzji5UtzzR0fItA4Zgy9k5+8ob2FRQwzVT+ypGIEDVAZLlKuKrtwJQ2ejCaJCIV7enkzoEznsOIhWjL8pqIiXGSkEXFrE/EWl0eVmfXw1AXQulGdYfrOb619aGzb0NRsvBBai2e5qIxYReF+X1Lu7+SDnn/7pibNjtaeUjtEjjaQOTAUiNVYzGXrE2SupEmHdn6VaGoCzLW2RZHivL8ihZlkfIsvyQOr1SluVZsiwPUv9XHeu2dgZJkvjkk0/44IMPGDRoEDk5OdhsNl0RdNq0afTr108P/Rw3bpy+7k033cSoUaO48sor2bp1qy6w8sgjj3D//feH/E56ejoLFixg6tSpzJ49O2Q7//znP1m3bh2jRo1i2LBhvPDCC222e9iwYTz88MPMnTuXUaNGMWfOHIqLizu07yeffDJXX301Y8aM4aKLLmLChAnt3m58fDw33ngjI0eO5Pzzz9dDSQHmz5/PLbfcoovFPPDAA9xxxx1Mnz5d9yiGozPHQSAQCASHj8vr0ztuDaqh9/nmIixGA7OGpFETZAhqoWS6BL3aqdS8BDE2k74NAI83fGio2+vnUK2T66f147XrJmIzKTXN/P625QQEbaMZgnFBHsGW+HJzMZIEZ4/KCEysVQR/9rqUMtFVjW4SIs3h8wxddbDmZVDVYvskRFBQLQzBw6GoxoFPvRdaMgTfW5vPTzvLeG9tQavb0nJ9NcytiMV8tqkIgDd/OYn0uPARWgNTowHQbtXzxmTw1CWj+ct5ioRIlNWE03Ps7+WyOicv/ryPWvvxVeOwW4WGngj06dOHL774Iuw8SZJ4++23w8574okneOKJJ/Tvp59+erNlFi9erH++7rrrdHXSYJKTk3WV0bYI3t5ll13GZZdd1myZhoaAzPeCBQtanJeamhrigevIdgEefvhhHn744WbLXXTRRSG5hNOnT9fzIYNp2raOHAeBQNCzqHN6iLWZ215QcETYmF+jf65Wc8uW7qlgUr9E+iRG8PPugOq35kHQ8gO1TqUmIGEzG3F6Ap1Lj8+P2SRhNhpC6giWqcIwOWnRSJKk5x05vb6QgtUr9lXw4s/7+c+1E/TfErSNFhqqGYIhIYCuBkVc7+qPAeiz7mGWRq6n15tBHX9HDQB7VEOwssGth/4148AS2PAmjLoMTDaer7mFn3xjgamttlGWZR76cgezh6bpXiWBQklQCHadI7zHT6vlWNHQcm5tWb2TnSX1nDwwWTcIAx7B5nUEP9lYxJg+8UwflNLiNoemK9oNozPj1O0YuHh8pj5fu5cdHp8eOXC0kWWZez7eyk87yzh9eC/iIo+f94t4ygkEAoHghOH5xXsZteB7IRRyDFl7IBDUU9XoxuX1sau0nnF9E5Q8oiCvgdfnx2SQ9DzzQGio0vmLtBhx+/x41XXcwWIxQZ3OUtUDmabWntMMyWAjEuCKl1fz8+5yfXlB+2jVI1i2A/b9CAdXIMsyO+1x1MbmQNrwwF/2NFb0vo4ipxlZlqlqbMUQHHymouZuiwXJgE3ycop3eateSFA8Va8uz+PRr4VCeFO0631QWjR1Tg+VYYw9r+px87bieVuuGn/BCp6WFsRiNhfUsP1QXZtqn1aTkc9/PY1Xr5sUdn5kkCF4rFh/sJqfdpYxuk882clRba/QjRAeQcERZ/78+cyfP/9YN0MgEJzg+P0yT367C1A6PikxzYUJBEeen3aVMSozjr1lDVQ1unG4fcgyxEeYaXB58fllxQBUO47BnjlLk9BQ7b/d4yM2aHlFVCbQ6TxYqYQOZsYrXiibWdlOcOdxf3kgEqW9tfAECo5mhmCQsZA5Ee7OA1MEtQ4PL7lPJ3XcUIZP7x+yjS0/78O7byd2t496p5e+SS2UMIjvo/wBGE2Upc8g7cCnFNc4QxVGm5CnXgPB4iMChTJ1YKxfchSLd5Uz/uEf+OjWqYzvGxDg0e4nl6dlg3vpngoSIs2My0rQpwWLxXj9sl5a5KUlSr3IU3Na9gZqjMqMb3GeJkrkOEZ1QbcW1nLxCysBeHX+xDaW7n4Ij6BAIBAITgg+21ykfw4WJBEcPcrqnWwqqGHO0DRibCYaXV7dKxdhMeqdRs0r6PHJelgoBEJEtc681gl0qp1ATSxG8z68suwAt7y5ntdW5BFtNdE/JTp0PdUQ9Ptlbns7ILxWJ66PEMrqnVQ3ulucrxnUWsh1iHfuwM9gtILZpteF7B3fPB9MMyJrHR4a3d6AkEwbREQnEI2DgqqGVperV3PfWhOyOVEpqXUSF2EmOyngzdpRXB+yjOZhd3lbNrh2ldQzuk98SMmHYI8gBO5tu9tL/5QoRvSOO6y2H2uP4PvrlJzJ208b2LIXuxtzwhmCsiweAIIjg7i2BILui8Pt4873NuvfhSF4bPgxtwxZhjnD04gwG3F4fHoHzmY2YFUNQc3r0NQjaG6iGqp7BHVDUCkfoRiCMv9bm8+320vYX97IGSN6YVTFRyKaeBEqGl3sLAl0fOuERzCESY/8yClPLmpxvsPtw2iQiLQqx1UP7/V54a2LoUhR886rULxy4QqWhxiCLm+7871i4pMwSjLFZRXN5n20vpBnflB0A7Tct7ZUL09ESuucpMVauWxiH778zcmYjVKz2nyacd80nDqYRpeXWJs51BDUPILqvat7Fr1+vRTE4dD0Xj7aLN1TzmlDUvnd3MHH5PcPlxPKELTZbFRWVooOu6DLkWWZyspKbDbbsW6KQCAIQ26JUpfs6il9gdBadYKjx/fbS+iTGMHgtBhsZiMOt0/3ykWYjVhNoYZEi4agOTREVDME3V4/ZqOExaSEhnp8MueMzmDbg6fz10tG69tp6hG0u5T/d8waBAiPYDCaGmO9q2UDqtHtVc6f1tnX8jPri8HvgQrFGNtZUofRIOlKkMFo3pQDFY00un26UdkWMfFJAFRWKobgir0VfLe9hOpGN7//YDPP/LAHCKhhVrXi2TxRKa13kRZrw2Y2MqJ3HL3ibBRVhxqCmnBTax7BRrePKKsRmylwz2qeXd3b7w0Ygtr9fjhEtOIR/GRjITe9sa5d2/EElbNpLwVVdvIq7UwfdPyKD51QOYKZmZkUFhZSXl7e9sICQQex2WxkZma2vaCg2yDLMkv2VHDywGTdUyDomWw/pBiC156UzZurDlLjEJ3Bo02jy8vyfZVcNbkvkiQpip9ev96Bs5qNWEzKZ80j6PXJmE3NQ0MTIhWjQc8PUrcRIhbj82N3e4kMU9hcVw1Vf6dR9RJlxCuDeS1J6J+IFDXxDIWj1u4hPtKsl/fQwy9r1VIDCX1pdHn5cksxOeogQFPG902gd3wELy7Zj9vrJ9rSvi6qMUIJLayoLEOWZa7672r8slJaRKPe6dHzPltSxewsq/dX8vPucv44b0iXbvdoUlzjYGCQcmdSlFVX9NVoj0fQ7vISaTGFnF/tPJiNodeG0+MjoQvUNVvzCGpRIFrOcWs88Pl23lmdz5r7ZpEa0/agvtfn59mf9gK0qnra3TmhDEGz2Uy/fv2OdTMEAkE34bvtpdzy1nr+7+xhXH+yeDb0ZHYcqiUuwsyAlCgsRoMIDT0G7Ciuw+31c/IgxYNjMxtwNvMIqqGh3iDDzhDowLlUb4Im9KOVfnAEh4YaDZgMSmio1+8LCVPT0DyJVWpnV/MopsYqHUAhFhMgr7KxzWUqVZVPi+ximfV2Mt6tBUCW/UjA1sY43vxiOwcrG3n7hilht2E2Grhhej8e/GIHQPtLAdjiARhb8CaN7vPxyzB7aCq7Suv181hQ5dC9vG6fH1mWdSXazlJa5+TaV9boIcV3zB7UJR6uo82BikbK6l2Mygzk6kVajJhc1fBUDgw+A875Bx6fn93WqzHkSfCQeuzGXAHn/hNQPMd2j48p1Z8T+eTT7LYq91Re2T9g+NXERijns6rRTa84W5d5BPVnQBOPYHD0X53T22b+3hebDwFK6ZLWDEG/X0YGbnlrAz/kltInMYIBKceXUmgwJ1RoqEBwrGlweXl9RZ5euFVwbNHCQLTi1t425McFxyd7yxr4dOMhhmfEIkkSVrOhVeU7QevIsswvXlrFQ2qHvb1okvRpsYESDg5PwBC0mQNiMZrB1zQ01KZ2HDWDTcsr0+5hj1dWPIImCbfPj8PtC6sSmZMWQ1yEmUU7y4CAIRhrM2M0NK93diKjKa62RrXdTUKkhaiGPDKlCsrST4OTfsPa3lfzoOdqnlzr45ttJVw4LpOpA5Ja3M5lE/von6PaGRpKllo/0GNna6FigM4d1ouPbjmJm09VlEkLqu0hgz/uLnjWf7e9JCSv9HgtSbN4l3IPzBgc8GpFmI3UeY0w73HoNQpQ7sWXfWfxWeSFcNJvIDlHqemo4vAo6r/Z9RuRLNG87DuLl31nYUjJAWBwmlIPcKcapu/0+PSBn8NBu06alrzYF6QCXGNvPQLkQEWjPmhQ2dDysiv2VZBz/zcMuPdrfsgt5eZT+vPeTVMPe1DhWCIMQYHgKHL3h1t44PPtrN5feaybIiDYAJRpcHkZeN83/EPNJxH0HJ7+fhd+Wdbzv6wmo25oCDrOqv1VrNxfySvLD3RovQq1g5UcrXjzIixGnB5fQDU0xCMYPjQ0VjX8jGrHa1BqNMnRVhbt0gw6r6I+ajTg9vrx+uWwhqDZaGDusDR+2FGKy+vDrua/RVnVdcWgkE5BlWIISlLLomhVjW6SoixYvY2UyvHsHvRLmP0A/9dwEa/6zqDO6aXe6SUzoblaaDCRFhPD0mMBMLS3c222sfPmfG7z/JbvtpcAEB9pJjXWxi2nDND3IdhQ6wpD/8vNxSRHW7honJISUlp3vBqC5fRLjqJvkGKozWKkxmOGERfCxF8C4PbK/NV7Oa/YrqFowh/ZFjkRua4I/KHh1XHuEkgbzl+9l/NX7+XEucth+yf0S47CZjawMb8GUHMEw4QId5Te8RFkJUayMLcsZPrCHYHvbUWAvLe2QP9cEaaGosZXW4r1OoqRFiN3zxtCRhgF3OMJYQgKBEeRH3eWAlDYjpwLQSj5lXamPf4TeRVthymF47XlB7j8pZUh03apI5PFtQ5eUzu1n24qarau4PihqMbBpoKakGn5VXamDkhicn/FE2E1GYTHp5N4fP6QgtzhCk+3hCbSoef3mVTVUHewaqgqFuMNFIg3BYWG/vnsoZySk8L0HEWcwWCQmDUklSW7ynF5fTS4vMTYTCFexIgWcs3OGNmLepeXVfuraFTbEGUxKUXtxfWho3kEZTm8IIfX56eywU1ClAVfn6lMdj1PRexwQImCAdiseuq0c98aT186mn7JUYzNim93G3PSYomPNPPNtmIgIDwTH2kmxmpif0UjZfVOfVDgcM9vjd3Nmrwqrp6SzXXTsgEor3ce1jaPBU6Pj9UHKpvV8oswG7na/hZs+1ifpuUIbj9Ux/QnfuJ/eyQknxv2/wQogkuJ1JFaswniAp7d+Ny3YMlTmIwGpg9K4SfVC+/qIo+gJEmcNiSVNQcqQ87rD7ml+ueaVgxBv1/ms01FjO+r1D5syRBUNAXKmT00lScvHsUb10/C0AO0BYQhKBAcATxqDkIwH6wr0Ee+D7Yj50IQystL91NU4+Br9UXfEXx+mRd+3s/qA1V6WK4sy3poaHm9i9dW5AEc17H+Apj3zBLOf255SJhvca2T9LjAqK3FJDw+naGgys4ryw6wtaiWecN7AR0rw1HZ4CIuwqyHf9o0j6A3kCNoaZIjqOX8afRNiuKN6yfp9eoAZg9Lo97lZfGucvyyolJoCqo92FIB8ZMGJGMzG1i0s0wvKRBhMWI2GoTHOIj8qkBoaLjcyaV7K3B4fEzsG09kzS4icOpGQ0MTpdH4doiDDE2PZdFdMxiYGtPuNhq2/I+/R72he+XiVYNTkiTGZMXz4bpCPD6ZPglK2YqO3v/FtQ49hBJgi2rYTshOIFXNVy1vJaSwu7LhYDVOj5+TB4aqXkYb/cz3fQCf3qpPC64NedWUvjSmjFO+bHkfUM71WcZVyrTe4/RnhOG8Z2H+VwCcNCCJohoHJbVOnF4/VnPXmCGT+iXi9PjZdkg5L19vLWb9wWrOG5MBKGJGLbGxoIbiWidXTcnCaJCaieRo5FXaKahycGpOCpdO6MOE7MQuafuxRhiCAkEX4/b6GXTfNyGj5gCfbFQ8TQZJ6ZgKOsbWovaPKDdlye5ySuqcyHKg4+r0+HUvwI7iOj1sTdQPO35ZtKtM76hqKqFOj4+qRje94wPJ/1aTAdcxKj58vFJU42D6k4t47JudTB+UzIXjegOB3Lr2UFzr1DvNoHgEnR5/wCNoCYSGulsIDQ3HyQOTiTAbeWNlHgAxNnOI8diSIWgzG5k2IJkfd5bS6Ap4BIXHOIAsy+RX2YlRhVua5tZWNrj41dsbSIg0c1pfM6lvzeQXxkVUNLiRZZkGpzfk+Gs5nV1OdR4TzYFQ5Yyg+/1vl45hjOpdHJCqDPR19Pxe8NwK5r+6Vi+lsWp/JUaDxIjecXq48vFYcuTnPeWYDBJTmuRtpsiquv5ZT+vTPD4/KTFWXrhqHA+dN4LMYZNZ5h+By6M8c0tqnfSWKvAbLTDhlzx7xVjW3jcbY3QyRMQDMCpT+b+5sAa316/n/B4uE1WjbM2BKiCQ96iVC2qt2PwPuaUYDRKnDU4jxmZqUSjq4S+VnOhTco5fhdBwCENQIOhiPleVp15eGngpHapxsDavihun9yMnLabDinQneu1Lv19mh9qxr++ErPtbqw7qn7XwNI8/0BGw62FhRhqEIXjc8vmmQ/rnfWX1UFvI7t3Ky3tgajTYq6DuUMAj2Fih57cAUFMAtUVKDJwghJ93Bcou/Xb2IF3RsSOGYGG1I6SQeITFgN3tpbLRjUGCaNUIA3BqHXWvk1R/hXJuagqgoazZdiMsRi6dkMnqvaXE0UCMzURKtIUMKsiggkRPmbKuvarZurOGplFQ5WBdXhVmo4TNbBAe4yAqGtxK/nSaUvfP7Qs93y//sIV4dyn3nhStGN8Xv0pp2nTeX1eA3e3D65dD8gLjOzGQ1y5m/omoXy/Rz3mkvRi8yrM+JcbKOzdM5p0bJjNvRLqyHx00BLV8cs1btGxvBRP6JhAXYcZmNmIzG9oUJOmOLNxRyuT+iUR7qgL3WE0BfV1K3Uc5LlASy+2TGZYeqx/D6YNSuMp9L6O2XMiXS9dwqKycOjkKb9Z0MBgwGQ2Kuu/BFfDlneD3Myw9FqNBYl1eFQb8JPlKQ35X//Op72F3Y7uexykxVtLjbOwuVaJ8XF4//ZKj6JesGP6eVu7nRTvLmNwvkbhIMzE2U1iDvrLBxY87y0iMsoTkUvYETqjyEQJBV9Do8vLwV7ncNmNASKdG4011VLp/UIjhJxuL8Phkrj0pm82FtR0aOdyQX80lL6zkjesnMW3g8Vu09HAoqLbrHbOO1oDaVlTLj+qDfvWBKv1F7gnTEeiTGNkslElwfODx+Vm6p5xZQ1L5cWcZvbc9D188z3AMGKS3mNQvCRbeCfsWYYn4j9IRfP9a6DMRZi+gutFN3D9GY5B9MOchmHZHu353Z0kdeRWNeueop7JkdznpcTZ+/sNMLCYDG/OrgYBARGtUNLiIjzCTX2VnQnaCPn1ERhx+WRFgiI+0YDBIpMdHYDJIbD9Uy7mjM3io5k8M8+2EZ4I2eO0X0O+UkN+4YFwm49fdhQcTMbaZZMbbWGG7XZn5lbqQZITbN0JCX3292cNSue9TxZucHG1FkiQsRkPY58OJyB61Yz0iI46N+TUhIbOVNXXcuvE87rE1wjIg400YcSHzfIf46t2Nuhx/ZkIku0sVBcdgj3BXI3kcgXP+DDBoLlz5AQAmo4GTBibrYjIdCf0NLqBe3uAiKdpKncOjGxkA8REWaloJP+yO7C2rZ395I78d6YaXZkJdoT7vbPW/O6Yv2hnzeEMVfCf1S+TL35zM3z5dztk/zuHPnvl8arqIP1wzN/SHirfAulcgZSgRk28iJy2GNQeq+IvpVa5c9SOsCtO4325V8gyX/g1i02HiDW3uT6zNrA/kujx+rCZDsyL24ThU42CKmj8eazOHHajX8s5fuGp8m+043hCGoEDQQR7+agfvrikgPc7G7aoKocbBykY9Kb6o2qHXKlq5r5Jh6bFkJkQSazO3q0CvLCt5bU98uxOA9QerT1hDUPMGQsc9gl9uKcZkkLh91iCu/M/qgEdQLWprkECr5tEnMZJ1ec29BoLuz9q8Kioa3Fw6sQ8r91dSvnc9JYYE3oi4ihcuGa+IR4y5EgachnWVQcnXrdiKy2BlyY5Sbn93I2f7f8mD5jew1RS0O1xm3jNLAch7/Kwjt3PHGK/Pz/J9FZw5Il3vWGm1u+yu1j2C+8obmPfMEv1+0xQhAU4bmkp8pGIgagNn0VYTk/sn8mNuGX+aN4T+vv1si5zEiNnXgOyHPpMgdWiz3xnTJ56P/TlkS6WkSBL9kqP5g+cmAP7vrGHENOyHFf9UCpwHGYKpMTbG9olnQ36NLjCilZ4QwC7VEByeoZw3vVA88O2KdVwpNVI77EriBk6F9NEAzBvRi16xNu75eCtAiEewV2zbhbo7jclK/dxnkAwQnfsBlGxrtohuGHTg/P4nKLqnot4NvVTFyyChk/hIc6uCJO2lweUlur31Ew+TxaqXf+Lk6TD+c8Vzp7JsbwWvbGrgb1G9A4agz4+lSZj2iN5xPHPNyXz9yX1Y/TncP3xo81IKY66Ab++GOiU9ZnRmHP9bW8ACy0FqogcSf9pvmzcuIlGRqd36Poz+Rbv2J8Zm0gdyXV5FiEYzXFs6336/rAtMaduoC9PH2FRQg9EgMbJ3XLN5xzvCEBQIOsDmghreXaPIDIeLVvhyiyJkcs3Uvryx8iBOj58Ii5GqRrcuMRwbYSK3uO0XxktLFCNw+qBklu6poPEE9lQdUMV1EqMsHcrhk2WZb7cVM3VAki4SoI32aaEisRFmfSS3T0Iki3eVdUmxYcHRRRssGN83AY/PT6axAnvsQH716wWBwtR9TwLAsnYNdQ4v3r7TyNu5ha277+WBaJlV/X5Dde5HRNfX0Z7XffA96fT4sHWBFHp3ZHNhDfVOb0hujJb31ZZH8Lmf9urGw20zBnDphICaoNVk5PwxvXltRV5IqYBZQ9J46MsdHCwsoC9u9sRMZsS4q9ts5y9+/TD3frKV1zLjMRoNfOCbAcATU86E4o2KIeisa7be3OG92JBfo+cfa6UnBEoHOC3WSm/VmNOOi9PjY9WGTVwJxE38BfSbrq9jNhq4blo2j32jDGL2D/KcHVGVRaOZmJOuUz47ihXDxusGUyAc1Wps20PUlM82FWEzK4NH5Q1KiGjTYuhxEWaqGw8vNPSxb3J58ef9bFkwN0QM6Uix+kAVfZMiVSGtAZA0QJ9X7C/gpw1bKK1z6eG87iY1PTViY2I585o/cmZLP2SLhchkcCn33kjVEMyQKmhIPo341u7t325t9/5E20z6QK/To5wfSxvnu9HtxS+jH+9YmzlEHEljY34NQ3rFENFCvvHxjMgRFAg6wMcbCrGZDZgMEpWNoRLDsizzxeZDjO+bwIAUJZ9CU6JTOonK7RZrM4cdcWrK8n2VDOkVwxvXT6J3fMRxW6y2K6h1eLAYDaTF2jrkEdxd2kBepZ3Th/fSj78W5qONEGovgEiLkcQoMx6fLLwBxwFn/GMpN76xDlDur4e/yiUpykJytJXXzk9hjGEf/QcOCRiBQVhNRtxeP46IdAYbCpkTsYuLBkpcNjELp2zB7Whotk44PljXvtpTxztLdldgkGDawICghHZcHa3kCB6oaOTTTUXcOL0fmx+Yyx/nDWlmCGiG4d6ywDE/c2Q6BgnyF/4bAFdURmCFZX+HZyeCu0ln7eAKhrq388mtJxGnKlP+auYAxvSJV37Tppr2ztpm7Zw7LA0IlBwQ5SMCbMivZlxWgt6h1gbQnl+0l4tdnygLxfdptt6N0/vrn+eNSOcPpw/mgXOGHfkGa8T1AWTFoxREe0IFg6lzethT1sDF45VcOU1UqGnpg9F94lmfX82KfRWdbvKLP+8HoOooqI/6/TLr8qqYkhUNfx0EX/0+ZP4pOSkYDRLvrsnXpzncPiI6O9hli9XvvdGZ8ZjxUi7HI8c1v3aasf41qC9pc7FoqykQGur1YTUbMBgkTAapxRxBbWA5NkLzCJqpanQ302UorXOSFSYVqCcgDMFuwvqD1WTf8xX7ytvXAREcXQqq7FQ2uNhUWMu4rASykiKbdfw25Fezs6SeC8b21keNNCGFYG9BXIQSg75oV1mrksb7yhrISYtBkiRSYqyU9+COZlvU2j3ERpixmTsm6/7tthIkCeYOT9ML12olPLyql0JTsUuJsernyOkRncDujCzL5BbXsXCHUidK63ydq0qFT/OuVRbsPyPs+haTAZfXR3VvZb518CzMl/yX1FgrDqx4naHPYa3kSFN+3BkQLunJAzVL9pQzKjM+ROijPR7B5xbtxWw0cOMp/VtUixyWEcsvT+7HU5eM1qf1irMxbWAytsJlANQmjQ2s4HHAkLPB20R5edM78Oo8KN+pT/rD6UP49FfTlC+aIehq7hHsnxLN6cPTmKoqJ1pMRlxiMIjyehcFVQ7FEAwyoD7ZWMizi/Yy3qKKcIXpzBsMEn86Ywin5qTQK87Gr2YO5Lpp/Y5e47NPVv7vWRgyuWmdyrY4UN6ILMOYPkpuq1NVn3Q1KX3w29mD6JcUxe/f36wPAHeE4NIURyNPfV95A9V2D5OyYuG0+yAqVAkzLdbGpRMyeXv1QQ6otXsPK+rBFqd743PSYvBg4nnvufj6z2p9vbpiWPVv2LeozZ+IsZmo10NDA6G7rQ3saAPL2oDwpH4JlNW7QgTmQBkACecN7Qn0zL06DnnmB0WhaUthzbFtiCAs059cxLnPLsfu8hIXYSY5yqqXG9D4IbcMk0Hi/LG99U6SJlns9Pr1kTQtvOq6V9dy5j+XsnJfZbPRp1qHh6Iah6J0iJJ/0JF6XT2NWoeHuAgTlg7W9/pmWzET+iaQGmMLqBF6AvXJIMgQjA4YgqK0QPemaY7tTzvLiDAbuXveEGVCbQGYI2HERWHX1zoGpalKZzG95CeQZVJjrDiw4HcFvE2vLDvAgHu/DuuJLqiy62FvZT3UEKy1e9hcUNNMMt1qMhBpMfLhusKQHF6NvWX1fLKxiCsmZ5Ea03pe2J/PHqZ7XDQuHp/JNnc6z3nPxRLfKzBj5r0w+wGIbFLDq7YAeo8Pmz+oNDhWmR+REHb2i1dP4CpVal6EhipoAhljs+KD6jv6eezrnYxLtxLtq4XT/gyG8MbBzacO4PXrJx2t5oaS2E8ZCKotCJnc0RxB7b2bHqdcwy6vH6/Pj9cvh4SGRlpMPHHxKIprnby6PK9DTd1X3sBNb6zXv3dEibezrFFz4ccNyoTx82HGPc2WuXNODhajgXnPLKG83qWnunQKa8AjqJ2Dr/1TsGVPbn29iARlcKfJeQxHTLBYTFDortloCMltDUYTn4tRDcFLJ/Th1JwUHv4ql+LawHvG45OFISg4smgxyUaDOCXdjW+2Knl/RTUOHB4lNCLaZmo26rf+YDUjescRbTURpQopaDlEwaGh47Lief7KcTxx0UicHh+/eHkVN7+5nooGFws+3878V9cw+sHvgUBtnBO9Y1Lr8BAfaelQyFZeRSM7S+o5XS1qazUZkKSAkad1BFJjlVT44RmxurHeWs2hI8HmghoRDRAOnxcOroT9P4f8lW/5nqmG7UTixOeX2bUrl1/2zsdmUK+Nog2Kl6KFPE+rWh5AG3mPqdwCKKFFHsmGPyjs8CG1dtTOkvpm23F4fGQlKeFCPdUjuHxfBX4ZThkUKlQlSRLPXTEOu9vHpS+uZNme0JC4Z3/aS6TFyK9mDuz4j9YUcEbUbv5hnM9fvZc39yZW7IGNb4deF5X7wnqmdEwWuPEnGHVpmz9vMbUcSnYisbWwBoMEwzPisBgNWPAQW7ICq6OUOZnqwEh81rFtZGv0O0UXsKFiD7jqgwza9j3jNUMwOdqKQVLe5dq7Izg0FJT39eyhqbyweF+HSkl8u60Et8/Pv69UCrQfUT0AWYbCddRs+4F5kbvJ3vsm7PkhrOhBaoyNB84Zjsvr59ttxbh9h1H3zxYLDSVKyR7gTeuTPGh6te26kmYbRKVC0frAvZ63HHzNB+ZirCYcHh9Oj08XiwEtAiT8/aydJ60dkiTxl/NG4PL6uej5gHiO1+/HbOyZugFCLKaboHkpRA2z7scLS/brn50eHzaLEZvX1yw3ps7h0WPItVEzh9uHLMs4gkIqJEnizJGK1PzcYb14ZfkB/vXTXqrtbtbmVTM0PZaZg1OwmAyM6xsPcMLXtap1eEiLtWGQoLKdhqAmEz5vhGIISpKkFBJX19fk4c8ZncHF4zIZkxXPop2KitrRDA0trLZz3nPLAVj1p1n0ijuCqnrHG7mfwYfXN5s8FnjXAqe7Hqeq0c04+wrucrwKrosVT1HyIHBUt7hZi0kRfmh0eSmUk8mUKkCSkACTLQqfO5CPYjEq997O4jp9YEbD4faRmRCBJPVcQ3DJ7nJibCbG9IlvNm/mkFQ++dVJzH9lLfNfXcN7N09hfF/lGP24s4x5w3uRHN2JcgHbP8Gy8M+cN+J7Xl9fQXxkk87imxeE9xCMvrz17dYVQ8UuyJ7eohcLxMCbxtaiWgalKgIZFpOBOBo5adltnCJfjyfmRrhtFUSnHetmtsx0Ne/N64IXpsNlb5LUZwagqHq3By2fX6sX6PT49PdDuDDJ22YO5IfcFSzdU8E5ozNC5m3Mr+aC51fw7W+nM6RXQD230eXFZJAYoEYAHdHQ0PxV8Oo8fqV9/xbF0PrDnrCLXzIhk5eW7ucFNX8xwtJJZ0VMBuR+AQWrYchZDJ51DUl71rbPw5icA7u/Vf40zvobTPxlyGJaBNWuknqlfIQ6+G4xGloc2DmkRpekxwfeu1lJkYzoHcu2ojrVoDTi9cmYhCEoOJJoD5YG14kb/tcdqWxw6eG6Bkl5QEeYjTjNxmbGQnD8fGRQjqDb50eWw780EqIs/G5ODp9vPsTavGpsZgNf/uZkjE0EFVp7kJ0IVDW6GdwrBofb126D+NvtJYzsHUdmQiDB22oy6oMuXjXvK8piYlI/pfOqveSOpkfwqe926Z9nPb2Y7Q/NO2q/3e3RjLnL3g4J6fv7D7tZua+SfDmVRpeXLz0T6DtmMldYY5QFTrkrkBMWhswEpV7k/vJG7nY9wY93TEELPtybcR6fHcjnEfV7YpSFkjonRTXOZttxevxEW80kRVl6ZA6vLMss2V3OtAHJmFoIi0qPi+D9m6cy/uGF/Jhbxvi+ibi9fuqdXvomdVBc4Z3LYdi5MOJC6D2eS02D+GpXPYNSY0KXu/5bqA7N4UEyQMaY1re/4zNFxv6PB5qHlgbRlWIxh2oc1Do8DA0qm3G0WbangjqnRx+AbA+yLLO1qJYZg1MB5ZjUEM3nY19m4Uo3N9lskNq/ja10E2oLweuAqgPEDprDgJQonvp+N1dPzW7TI6V5BAOGoF/3Jjb1CIISWWI0SOwqqeec0aHz/vmjYmwt21PRzBCMspp0AabO5Bi2m3olwul37luYPmk8F4zpHVbsR0OSJO6aO5hb3lJCVzstFjP7ARh+PiQPBiB1wgWkTmlj4Ebj0tehPPCe5O2LlQiAJoxQSztsLarF6fHpoaGt3c+F1Q5sZgNJUZaQ6ZdPzOL+om3U2D2kxRrx+PyYemjEXs/cq+MMWZb1G194BLsXS/dUIMtw0bhM/LLS8YswG4kwG5uFlmhhoxBkCAaNHoZ7aYDyoJ3STxEpyE6KamYEQs9TsatzevhkY2HbC6Ik9ZfUOclMiGz3cahocLExv4bTh4eOVmsS4BAIDQ0e5dPCXpxHyRAsr3fxxZZi5p+UzfCMWBrdvhM6F7QZWvhP35MgexpkT0PuexLvlvZho2EYDmw0uLwU+ROoSp4ARrVTl5DdYi4YoHu3lu2toJEIIhMC10lF5mzedp6M1xd6nVQ2MfR8fkVd1mY2kBxt5Z3V+XoYeU9hX3kjh2qdTM9pvX5pXKSZ/ilR7FLDZ7XQtnCKrS3iboTd3ygd1bhMyJ7G8MxE1t0/mz5N1frU+SF/faeCOSL8tjWGng3zvwJLVKuLxUdaqLK78auDRbtK6vnTx1spCCMr3xYnPf4TZ/xjaYfX60qu+u9qbnt7g74/7aGq0U1Fg1s3YC3OCiYYdrHXNJAyEo5arbvDomgDPJENG99Svu/7Ef46kDlDFeN2/cG2a8ZqitU2swGbyYDD48OlvdPNzd/pVpOR7KTIEBVcjUPqYFJVkzITjW4fURYjUWq/oaGN2pyHhSqWtMI/nMZek5V7p43wXk1VF8IPaLcLS5TyHI9SlYcjE9u8D3WikkPv9ZzTlSLzTchMiCA+0szWwtoQMR+zMXyot9vrZ9neCnrHRzQrF6WVkqm2B+oO99TQUGEIdgMqG916Imv9CVwrrjuyeFcZiVEWJvcPjB5HWIzYzMZmoaHBidQRFk1a3avnpLX2AL3xlH5kJ0Xyh9MHh53fWrLz8ci9H2/lzvc2k1vcXGSiKYdqHMgy9EmIaHfI1oaDiidpSv+kkOlWU8CA10JDLUGeDpvlyOUI5lfaeXnJfl0YSJZlzn12GT6/zBWTs/jdnBxAEdnoLAVVdvb3pFzDwWfCFR+ANeARcnr8lNW7GJ0ZD6DXgOxIB2V4Rixmo8SaA1VIEnpOL0CKoZ7rjd/QWKDUr9Lu36adN22wIMJs5JZTlfpbb6/OpyexZLcSKn3KoJQ2loT+ydEcVA2lhs4YgqtfVP7HHcGcs7hMRU3S1Hq4au/4CNxePxVqiaCvtxbz7pr8Dp/fpiJgx4LgUkV7O/Bs0J6BWqHtuG9v513LI0hqSG7k8WAIxmbA8AthzcvK9wGzYPiF3DpNESbaU9r28ahzKIrVkiTpoaFaeoG1hXy5hEhLsxJRX28tZlep8mw/2GRAwe72Emk1Eak+h+xHsh+oCrbUEdVuY95gkPTroFvU0bvkNTjpN80mS5JS8H1zYY1iCBpbVg0tq3Nyzr+WsbOknnNH9262rYQoZVBRe+4rOYI902TqVnslSVIfSZIWSZKUK0nSdkmS7lCnL5AkqUiSpE3qX4t1K49HtHABEB7B7oTD7WPRrnJOGZRMrC3wwLSaDEp4qNcf8qJ3eHz6CFRCpBmL0cDqA1X6C7W1jurA1BgW/2Ems4aGz7foaR7Bg5XKi7Bp5zocu9WXZ9+kqHbnSq47WI3ZKOmhIhrBHkHNsA5+uGsewa5WDX1+8V5O+esiHvk6V+8M7C1roLjWyTmjM8hJi6G/Wntyf3ljp36j1uFh+pOLmPW3n7us3cechL6QMzfg6SMg8qDljdU4lGso0tL+jqnNbGRYhnJtJEVZQrzw/Ro383/mN3EXbVF/T7leKppcq9p9HWExcv7Y3lwztS8b8lvOSzweWbKnnP7JUc09cmEIVjbWRXg6YiwUtl7yo0uwV8GWD6C2qNXFescrnkXNg6NdAx09v5rsvrKNY6NEfCDoeVLZgfp0bm9oJIuxUlE23+NVPDFR3cEgaIuYXnD23xShIJMNJt4AZz5JXFwsqTFWdrfDENQUqwGs7QgNBbWMQZO+3KcblWsuI87WTEimweUjymrCYlJqFB/R1ARnHbJkxI5Vj1xqD/1UdeROi8V0JR6nUhakan+zWSN7x+nCXr0TlPvYbGzeb/jTx1vZVVrPb04byO2zmgtaaR7BGrsHWZbx+OQWw+OPd7rbXnmB38uyPBSYAvxKkiStAunfZVkeo/59feya2LWsP1jNGysPcumETAakRLVak0lwdPkht5Rah4fLJmaFdDIVj6ABn1/WjQmfX8YdVCIi0mLisol9+GpLMdW6x6Lzt1u4B9nxjBaFcaim7YT9b7eXEKuKVbTXIP55VzmT+iU2M75tZiNOr5YjqGwnONwjIsgj+O/F+xi54DveXHWQ3aX1nR7d/2ZrMU9+G8hvWK96K/eooUO3qt6kjHgbkqTkLDRFlmVFWa6Vfb9JLa7eDZwQXUdZLuz8KmSS1inX5L61+6ujIgaXTlC8Ak3LwDT0P5Ns5zsU9z1Hl4kHRdn19RV55KuDGFpEgHaNpcXasLt9x6zD39W4vD5W7a9k+qDWw0I14iIChmCnQkNrCiBnHkS37X3sNLWF8PENcGhDq4tpSrAHKpR7VPP+5h6q69BzYEN+jf65uvHYhHznB3mfOhLyrr1vzEaDot5bX8y/vOdT6VC20ZGBl2NK4XqwV8LUX4PBALu/h41vMygtmr1l9WwrquVgZcuDb4ohqDxrlDq2weke4Y2iaJu5WbmZbUW1nD8mg8G9YvSSBRp2l1c3rI/4oG/GWEoHXwVIHbo/NUOwqgNqqEcMr0PJE9zZ3BQYlRkY/B2XpaQHhIsk2l1Wz7mjM/j93MHNwkJByQ0HJTRUqyNrDpO20xPoVneyLMvFQLH6uV6SpFyguc+2h+D2+vn9+5vITIjgvrOGcflLq3B7e1Ivrpsjy4qKlaNJnoApAt+w8/nHj3swSDAhO4EthbX67AizEYdWeNzr04tTQ6jX7/ThvXhz1UG+3aYoEHaoU9QE7eUgy3LYh9bxxKEah348D4UR4AjG6fGxcHsp80b0wmIytPslmV9lD9uBtZoMen6Htp0Qj6BZqzXoZ21eFfVOL3/+dBsAk/ol8sr8iR3OjflaPf9L/ziT055erBt6utdE9TZbTUbSYmxhDcFFu8q45a31/G5ODrfPGtRsvt8vszYvcB1r4gPHPVvew7/iOT45ayMXqXXmtPOmeelrVE9dR0UMZqoiGE2JVTt9dQ6v3hmeMyyNklonD3y+nQXSdt65YQopMUpHQbvntfbUO71Yo7vBqPlhsi6vGqfH36x+YEvERZpxe/04PT49xaHNa7BiLxxUisZTnQdZbdQUO1xsqkDHrm8V4wAgMlnJHQyif3IUEWYjmwtquWBspm5A1bu8bC2qZZQaltwW324L5IzuKaun2u4+6qIxwV7JjhiC5qK1XG78iey8fVAvIck+Kg0pekRDlPU4ucaDlSYBtrwHeUu5LHE+K4oreev5T1juH87Sx5qrE4PyHEiOVu91VWxM8+g1U7NVibGZmil/Nrp9ukG5r0nUR6PbR7zqgTrig75DzyZXmgSb1nbII3jLqQP4fnspJw1IanvhI40tHq7/XlGHDsZVzyz7N7w8vByb2cjAgnIohLnOA8oA4vpdYI5CHn4+pbUu0ke2rNCtndvqRrc+GNhTPYLdtqcgSVI2ikr4amAa8GtJkq4B1qF4DZvFaEiSdBNwE0BWVjeubaOy+kAleZV2/n3lOOIizCd8iYCjgc8vB8LAKvbA+1eHXe673fXsLUtnav8kzEZDyEsvwmzUO39Oj49Ym1n3DgR3Rif1SyTGauKd1Yq6XXJUJ2TUVSyq18rrP/4TljerRYqBNoVRlu6poN7l5WxVhtuqviRbM4hdXh8Ojy/sSzo52sqmgho91ANCDcGESCVMsLDajtcvM7pPPE9fMppnftjNl1uKeeSrHTx24ah27+vPu8v5YvMh5g3vRZ/ESGJtQeFzzlBDEGBQWjTL9paHKNACfLBOEdbRQmqb0uD24peV0dAthbUcqnEwKC0m7LLHFZNv4awfU8n9YDPnjM4IGXTROlU1Ds0j2LHXmVYguumAQYzNxD/MzxK9uxBXxnUAnDQgieum9WNzQQ3nPbecH3NLOW+MMkap3fOah7LO4elcyYRuxpI95ZiNUrM825bQzketw6N7BIOv7bAUroUv7gh879X+e6tTRKWCJQY2vaX8afxmAyQN0L+ajAZGZsbpBdWDDajzn1vOaUPSuGRCpl6jNBw+v8yyvRUM6RXDzpJ6rv7vGgDyHj+ra/epDX7MLdVDFTsScpi18EYeN1dCoM45qTkTqNkWqKt3XDBoDix5UvkPkD4Ktn3IuQ1PcK76ivjWN5H8yst1T3AwtQ4PA1IUb1hyjJUVeysorlUGMBOaKE1qxNhM1DUJDXW4ldJTMjTLH1QG7gIewSOmEO6sVYRz/GMAOjSoOTQ9lty/dBNFa0kKP2jkqMb89Z3M0b7vVP7pRSa+UP7VG2Jx+/ykx7ZsCFpNinhPtd0T5B0/vvteLdEtzVtJkqKBj4DfyrJcB/wbGACMQfEYPh1uPVmWX5JleYIsyxNSUo5geEkX8fOuciwmQ0Ce2SjpAhaCrmfF3goG3Ps124pU7171AeX/L/4Hv8tV/m5bDUBV4W7SYq28eM14IFRMIi7CrHf+nG7lfDk8zQ1Bi8nA2aMz9BdCckz4l0Z70Irg9oQ8wTzVmImyGNssnPvz7jKirSZ9FFI/Dq28KHW578jmx3vW0DSKa51sLqzVX7bBD3eb2cjwjFjW5VVT7/QQazMxMDWaf/1iLNlJkby7poCfVQGNtpBlmUe/yiUxysJdpytCMG2Fz108PpPSOlfIKH5ZvZNvVK9i0w6Evs9qeGTfpKhWlzvekKPTyJX7ApCnhm81Dw3tnEdQkiQ2/nkOL18zIWR6WqyN2Yb1GEq2NBOFGN0nnnFZ8WwprA3K/VWuyVg1j6hpB/B4ZXNBDcMz4trtWQ42BLX8qDY7msPOCzx7f78bxl97WG1uE0sk/D438JuXva1M194FQYzpE8+OQ3V6KGBOWjRv/XIyMwensjaviucW7W31p/aXN+D0+JncL7RMxdEUkLG7vWwpquXsUUpeX0fqo26f9ToXuhaw/qIVyrH64wHmzg0YsenHS73TPpPgz5WQNUX5ftLt8Ptd8LtczjC+yBLfSLKkMj7ZGD5vtMbu1qMErpycRWWjmwc+3w5AYph3DCi5sW5vIJfQ6/Pj9vmJNJuIizBTY/dw3rPLuPaVNaw5UEVlg4skdaDYYmy5+PlhU3cIvrsXa8UO4DgR/GmJA0th/euh02IyAvd20N8nM39gsvNZDl6+CM/Z/+LnOkWLoVdc6yrD8ZEWxSMYZtC4J9Ht9kqSJDOKEfi2LMsfA8iyXCrLsk+WZT/wMjDpWLaxq1h3sJoxmfF6XpLwCB5ZPtygeFX0MM+kgTDnL9BnsqIuFpsBKYORY3tTWdfAjJxUYtXOZnCHpk9ipO6tsXuUDo+zBTnpC8YGIpsTWxg9bA/aA6gn1BLMr2okMcpCrzhbm4VzN+bXMLpPnL7/miHYmoKqZhTFh6kPNWdoGiaDxDfbigMJ/00MiAl9E9lUUENlg1v3aEiSxLe/PYXspEge+zq3Xfu5Ib+GXaX1/OH0wQxU66DFRpip0zyCbi8WkyHk5ZISo3QGqoPyMH7KLQMUkYE9pfV4fH7WHKjiteUHKKtTRqY15cw0dX1XBzp83ZmKLd9zoWEJgK6GqnWSNMNLO9+dqW+VEGVplkeaGGXBLVmpq6sLKwqRkxbD/oqGkPpigP6sqOsB5T9kWSa3uL5DYYypMYphsLesgdI6J5LUitfI54WncmDT24Fnb8xRKkxujQn8Zrpa6K22eSmbMX3icfv85BbX4/QqHvqTByXz3/kTOXd0BnkVja0addqA1/CMUMGqI1osvAk7S+qRZRjfVzFGO+IRrI0bwgY5J3CsIhMZmBrDnGFpXDI+8/hKUTAGGTySpIjIxGZw7ekn4U/oT29DBQXVyvkqr3dx53ubmPX0YkYt+I46p1cXDpnSP4lfzQx4jltS0NQMR+25rB33SItRf05sLqzl593lXPriShrdPtJilXvFeiRzBJMHw9157E04WWlPZ0tBdAe2fwI/PBD4bq9SyoOYIwLXrPo3ZcwIyqVEPjgYxX8bp/GbzxWjX/P0tkRilIVqu1svJdRTC8p3K0NQUp4s/wVyZVn+W9D04IIhFwDbjnbbuhqnx8f2Q7WM6xuodWU+wYuGH2k0UQi93500AKbdHlpYWJIovn49f3ecxfDegU5Q8Kh4epyNAanKA2RLgWJUhgsNBRibFa9/bimxvD10V4/gqv2VXPj88g7lnhystNM3KZJoa/M8imDqnB5yi+sYnxW4R7RSD60dh5omHfRg4iLNnDQwmW+2llDv9KqlA0LPy8TsBFxeP/lVdmKsgW3YzEZ+eXI/dpbUszG/mt+/v5nPNrWsPvjumnyiLEbOUcNatTbVBYWGNlVV1GsXBQlLLNxRSmZCBBePzySv0s6oBd9z6YsrWfDFDh7/Rol90YySNDXU5YiNKB9lHOve4XfmDwF0gQXNyNU8glohd80w7Ap8pkgaG+sDHsGgAZ7s5CgqGty6wIR2zmKDPGLHO+sOVlPr8DAu6PnVFuOy4ukVa+MfP+xhf3kjydFW/bnVDK9DKQ2S2K9rGtxZYtIVEZHUYc1mjVZrTd7+7ka16HTgOdE3KZI6p1cXKgqHVhu46QBgV10feRWNLPh8uy5k0dIyACPUd1nT57QsyyzaVdY8MsNRQ1ru62RLxSHldQBevmYCf72kSaX045TLJ2UxY/J44mikT/F3ADz05Q6+2lpMTloMF4ztze/m5HD11L76Or85rXmOdlOGZyjHWytjpAtLWYy6knVarJVPbjtJXydVNQSPqFiMwYBsi6farTwr2wzd7s7EZ4GjGra8r3xf8xK8dxWU7Wy2aHpcBCN7x7H+YDWWQ2t52fwUVtx6BE1LJERZqGhw49HFYrqVydRldLe9mgZcDZzWpFTEk5IkbZUkaQswE7jzmLayC9hSWIvHJzO+b2gnt7t19HsSFfVKh7Gq0QPOOvjsV1CwptlyOwqryJJKGZkcGP2xmAzMPymbU3JSMBkNDE6LoXd8BG+vPojfL+uheE2ND7PRwBvXT+L+s4YeVts1r1F38xjf+tZ6NuTXhC2e2xIHK+30TYwkympqNTR07YEq/DJMCUpOt5jarvOnjcKGMwQBzh6VTn6VncW7yom2mpqNbAffk01flGeOTMdokPjzZ9v4aEMhd/xvEx9vaO5NAPhuewlnjEwP8SY3DQ1tGnYXrFQGisG7cn8lpw1JZUK2MmAxKE0JVZ0zLI2vthZT5/RQqdY7S1PDtTpimHdnGh123LJaW0vtWGv3gDayXqLm68RHdN7j3hTJEonP1UiFamQGD+IMSlXKfHyx+RAQOGfpcTYsJkOIaM/xyg87SrEYDZw1qnnR5pYwGQ08cfEo9pTV8/nmQ62/y6wxcM4zMHD24Tf2cDCa4PRHlPDBJmTE2RjZO478Kjt7yxpCDMF0NaSsXH2nhEPr/Gv1yDS6yhA87enFvLYij8Lqlovca+V50uMiMEjNnwtL91Rw3atreeaH3aEr1hUxZONfGCYdbNmY7ymMuox/9vk7H7smAlBc42B8VgL/vmo8D543gttnDQrxbNvMRj669SRevHp8y5vMjCfSYmTlfkWQSPcImo1MHZDEJ7edxKe/msbYrAQ9bFcbRD6SYjFlO1fwwp+v5tt1O4iyGI9v8ZPRlyv/C5R0HmbcA5e+CZkTwy4+ND2WnSV15FT+RKZUzo3jY9u8tgekRLG3rEEvJyU8gkcBWZaXybIsybI8KrhUhCzLV8uyPFKdfq6qLnpco0nIB3c6zSI09IghyzIFqox2td0NjeWw5weob34plezbxBLrnQyzrwuZvuDc4bxxvdJhkCSJ383JYXNhLZ9sLNKNj/gwOQOn5KRww/T+h9X+9njCDpeCKrveqW5ruT2qcpw2Il5a1/Z6oHREDtU6yEqKatMjuGJfJRaTQZeABshJUzrhG1up56XVHcxuYbTvrJHpWIwGthbV6sZEMKmxNl0lLraJMZkUbWXawGS2FdUBysvld+9v5pGvduAPGpl3eX3UO71kNxEfyE6OIr/KTm5xnV47KphgpTKALYU12N0+ThqQzCk5KWx78HQ+//XJnDM6g5tO6Y/L62fUgu+543+bABisCsT0FI+g0+lEVmsI2tWXsfZS1jyAZfUuDFLXjm6bbVFE4GKjKv8fHBp6Sk4KQ3rFsFkNMdeU92JsZs4Y0YtPNhbpRsDxypbCWoamx3S4RMCpOSm8c+MUYmwm5rUipMKmd2D/4sNrZFdRtR9+WKCUrwhCkiQ++9U0PYfYFnQNBPJBW/MIavUuu94juCG/Gu1x09qgWGWjG5NBItZmUtSug67LQzUOfvW2UkZDe57ppAzh63nL+Mk/tscKZOjE9KI2bYo+UNzQDsXl8X0TWhUKMhsNTMhOZMU+xRDUrgXtWTE2K0EfTHjswpH8bk4Opw1RQqOPlEdQlmWW/byQW01fUFFT3+JA6XFDTC9IGxka1j14XmgYcBBD02Optnv4m+Fafh33LHddMqvNnxieEYfD49PrTR7XhnMrHMd+4eOUvT/CgZ/J3lrCYzEeElesBmssTPutoojYQzpw3Y1DNQ4u9n5BmqmGnH3RMPF3cNeusMuurI7lkO03/LHvRNj0LpSHzwm7UAYSiqj8+nOMM+8BILV0KaSdESiU10W0JzfucKhqdDP9yUWkxVpZfW/ro/TTn1wEwOYH5urT2lMPEJT8IVlWDJbCKnurhuD6g9WM6RMfMhI/NiuB+EgzP+aWcfaojGbruL1+vtpSzEmJ9cSteBTkpp0kiag5DzI2K57Eg98wmUrgNGXWxregQhkZP4VIPmakHuITzGUT+rBkdzlJURY++9U07nx/Ey8vPcCpOamcrCpQtiRYc/20bF5fkcfDX+3A4fY1y2O0moxEmI16eOuKfZVIEkzpr3gDg72LE7MTeXX+RBbmlvLO6nzG903QjaGO1rLbW1aPw+1nZGZc2wsfRVxOJyazFckJTrUzpQ2WRZiNShSFz098pAVDF9Z4skXGkGPYhX3jE/zCGIPNPFWfZzYaeO26SUx57EeAEI/yVVP68tmmQ5z77DK+/e0pIYXqjxf8flmpeRaU39wRpvRPYuNvR2Jc8wIs/DD8QuteU0o2HMni8e2lsQJW/Av6z1S+r31ZEZ2YfDMGg0SvOBsFVaGhoe3JB9UMtIQmz4CmNeQ6itvr56r/rNa/N7QiTlTd6CYhyoIkSdjMRhqDDMFleyv0Mh/N6ugdXIHHG4uTVsJ7exAn1X/LHN7H6ZlDo9vL6fYvoMQKvUZ2epunDErm4a9yKaiy64agLUxOYYzNHFISyNKeFCFZhlXPw9irlZIoar+SOQ8p83d8BkXrQ1ZZl1dNeuE6MEIdUfQ73g1BgPg+yn5+f79Sb3bmfTDy4rCLDumlDJJuyK9hWt9o+Pmv4K5vedsRiQzvPx+AzYU1QEC9vachDMGjTdF65FUvMtPrUzoJK2XweyB7OmZjhMgRPELk78vlAfObuGUjVBmh5mJIyQm77MF6cPQ6T4lB3/MA7GpetBRAAi6QZUq8UZz05bkMkgqJW/cJpPeD1MMLBW2KNpJYc4SKuX64XhkNL61rOdQJAt42QJdWb896GjsOKSPPwzNiWX2gssWOlCzL7C1r4KJxoZ1Ro0Fi5uBUFu0qCy0FovLiz/vYUVzHd8NXwbJXwdRU2U6COQ9y8sBkEgq2MdO1PTBr1zew9wfwuVlg7cXHPBXijdQ4c2Qv/vWLsQzLUEJLHr9wJN9sLWZtXlXAEGxBsCY+0sJvZw/iwS8U1bbzxjQ3ZiMsRt2Q211aT9/EyLCeZoCZQ1KZOSSVm6b3x2o26J7jjqgDAsz+myLIcrSl7VvD75fxepwYo61EmI16Z8oVVMz57FHpfLyxSA+B6yosfSeSXLiOWbWfEG0Y2mz0vFecjd/NydFDRzUmZidy9qh0vtxSzLaiWj3P7HjiQGUj9S7vYQ0KmFzVsObFlheQDJB9cqe336X0Hg/3l4HBCIXrYOVz4PfCkLMgvg9ZiZEUVDlCclD1WpOtegS9YT3VHR2kacr6g9XY3T4Gp8Wwq7S+1cG0ykY3SWrocqTVyLtr8nngnGHYzEYq1Zz5G07uxyvLD+Dx+TlQ0cgNr6/j3+77SB90LjCyWY5gTyTO4MKKgxq7h0aXj0vsz8CyArj4lU5vc+6wXjz8VS4vLdnP7GGKt6894iwWkwG7vY3Bgqr98N29Sj9jwGmKMbT6xYAheGCJMrCp4vXLjPT5MZokimw5uJzmsNEwxx39ToF9i2DNy2C0KuIwLTA0IxazUcLj8/Prxmdh5RrwthDJpE4feONMLCaDXvLK1ENzBIUheLQ59Y/803MBz/y4m8V3zaCvrwCenwy1BVhMQ4RH8AhRWqB4ev5g+z8aM6bxn0Hh48hBGXHVQ8EuebXV7RqAD3/cAwt3Y8CPIa43GLr+thqpJpivO1jN5HbW9eoIX20JhMi6vL4WhW0+DZLY3nCwGoMEfrn9anSasEevOBuZCRHUOb3U2N3NDJ2iGgcNLm/YWninDUnlk41FbMyv1vPmQAlZ/deivZw1Mp3BlhpIHAC3bwjbjlNyUjhv4S/BC3naxMtVKfkfHyJm+T/Y/sBsosLknUmSFCIAE2MzkxEfQX5VIFenNcGaKyZn8dKS/RTXOkkJo6oYnCvs9vqbqVqGIztZCYPVOoUd6WzuKmllVPQo8dAXO/jf2nx2PBSoU3Wo1oHR78VisSlhbZ5Qj6DFZOCBc4fz8cYi+oap/3VYzHmIO8vO4+utStmODcWLoNYMg8/QFwkexQ/mnjOG8OWWYn7z7kaW/HFm17brKKB5hwaquZAdprES4vvC/aVd2KojiCHo/sqcAFe8D29dCLUFEN+HB84Zzsb8amYNDaiaxqrGXWvePbvbR6TFhNlowGiQdFGXw33HL9tbjtEg8eiFI7jo3ytbNQTL610kqWHu543uzbOL9rL9UB3j+yZQ2eAi0mJkUFo0fll5tn+wrpD8KjtGSx3J5auAkSeER7Bi+Hxu2TiKrxvdNLi85CWMJ7tJqHBHyUqKZEivGN5cdVDPFYxuR/i6Uiu1jWukJl/5b1TfT6f+UflDibpZlXQ7V92vVFn7dlsJt7y1nvPHZPD0pWP4bkUefLkDr78H9DWn3Kr8tYNYm5nzxvTmw/WFLB7+EFPPaGWw3tUArnrM0WnkpNWxVU0DEDmCgi5jf0UDfRIiFcWiuExlYvlOVTX06NUYOpGoL1TCO91Rvdt8yHp8cofqxWjJ5LvkLLj4v5CQfThNDUtStJV+yVH6yNTOkro2a/B1BE1RFVoPNfp+h9K5MxokDlQ00jshguRoa7sNQa0TZDEa6J+sdDT3lTc2W07LoR0TxqOi1RTU8rdA8SA+/NUODBLcf/ZQqNgTuLfCMCozjgizkV9Mymo+My4Tye8lytX+jmx8pDnEW6t7BMMUtbeajFw6oQ9ASKiWPt8c6Ai4ff4OdcS0PKb2lo+QZZl//rin3ds/Uryy/AB2t08XhAHYVlRLglSPzRZBhCWQ36TlCFpNBuIizKy5bxbv3zw17HYPh2BvcNzGF2HZM+1aLzMhkuEZsZTXu45qzbiuwqHWRo3qYH6gzntXwruXd2GLjjJxyr1JhXJf5KTFcNnErBDBEE2xtqCqZaEWp8enlxcIzjE9HB2AfeUNPLdoH2P6xOs10Fp7D+RX2clKVAaJrlGVL7X86ooGxUgclh6HQYI/fLiFNXlVjOwdR4xkp8qnbP9EMAS1gcjvd5Tg9vqxR2ZAWfvKBLWGJiijialpJVZaw9IesRj12gz3jrvo3yu4/9Nt+vvomR92k5MWzV8vGY3RIDFMTXcYlRnfzr3oOfRSVbVtbSm4W6MhKgW8Tganxeoh1O0ZlD0e6fl3eDekwekNhItYo8ESA0v+itXoFx7BI4Asy1xe+SwAdZbUNg1Bt9ff4cKhS/44gzX3zgK3XZEwPgIM6RXD7tJ63F4/855Zyi1vrW97pXZS5/DoRktLI8yfbCxkb1kDGXE2fH6ZGocHm8lIhMWg52+1hcvrx2yUMBgk3YsTTvVua2EtNrMhbB2zpGgrKTFWdgZ5sj7dVMR320u5Y1aOkoQfndqqQS5JEtsfPJ3HLgyTA5KgStp//+d27RMoipXBIhCaimfT/CCNC9WQ15mDU5rNs5oMuiHn9vo7FJplUr0P7RWL+WzTIb7aGvAGe49BaHp9UHhdcK7pztxtDDEUEG2RQkJDNeNZ62Snxtj0shldiSbkZTRIGC5+Ga5qId8tDBeM7Y3D4zvsfLBjgaYs2Zm6jABMua3do/TdEq1z/fUfWlzEYlLCsP+z7ECISFQwikdQOYamoBD2w3nHP/29ktf+65kD9Xzh+hYG7modHqoa3fpzNjXWRu/4CD2kv1wtYj4yM45198/hs19N443rJ/HHeYOJxU65R3l29dQi2sH0V+vJfbZJUQJ2RvVW8se00gSdpG9SFLOHpgLKcySpHbWE2yUW8416bcaGpk7Isqy/h3YU15FbXMfOknquntJXP49T+iex8M5T+L+zm5dM6enMn5bN7KFpXDWlb9sLL38G/jOLERmBqCStzm9Po+ff4d2Qepc3RPSB2Q/A3EewGfy4ff7jchT5WPLh+kLufG9Ti/Mrauow46MgaRpGS0SbD9mOemEAIi0mUmNtsPFNyFsGjpoOrd8ehqbHcrDKzv4KZXRx6Z6KTm9rX3mDHubp88vUu7xkqCPMLXUs/vXTXgAuVr1ZlQ0uLCZDSNheWwQbNpoyWziFxTqnh4RIS4tiG0N6xbCrNKB09/OuctJirdx8iqrOOuNeRU66FVoUF8meroTc1Je0tTs6cZFmPRwUlJF4k0EiPS68gdI3KYp9j57J3DDKc5Yg9WBPJ65Fq8nQ7vIR767JJ9Ji5A41zLGlc38k+VwtwwBQWB0wBHPzSygzpmEYfy2RlsA1VuvwEGE2HvHR2eEZcVhMBmJtJqTYDKXkQTufzb3jlXupsCZ0kGNvWQNX/3c1v39/c5e3t6vQjrPN3MnuwbBzlfy64xVLpCJi43OBt+Xc019MUp6DG/Krw3rl7G6fbkwHPx87awg63D5+2lnGNVP7MnNIqt6HaGngTvNC9UsOqCdPzE7g++2lLPh8O8v3Vurhv4lRFkb3ieeUnBTSYyzESA5KnFYkKdSI7amkxti4dEImB9S6i/kDrlZmlGw57G33SVQM8VibqV2CVm2KxbjVCJqceWAMjTgpqAo8P//xwx7O+MdSDJJS9iiYQWkxXSqudbyQHG3lP9dOaJ9B53ND9nRmDorXJwlDUNBlhHgEASbdCCf9GqNF6TyI8NCOcdcHm/lkY1GLBnRhnhJGYc85H4ux7fh7xVjp5EMyOhXcDUp+SRdz0oAkZBk+2dByEfP2sGJfBbOe/pnfvreJ3aX1eihohtp5DdexKKiys7+8kT+dMUTvPFQ1ujtuCPp8WNXOkdZJsocxBBuDRtPDMTgthj2lDXreTaPbR4KmHOl1Q5+JrSaOt4rRBMMv7NA5jIsw6+GgZXVO3l9XSGZCRKty0y0ZuVZTQCymM95pa3tyTFAMqnUHq7l+Wj/da3AsiqF/t70U7VBooi8FVXa+r0jkg5O/hlGXEmU1sb+igTqnhxq7+6hIn1tMBkb1jlOEQWQZnhmplBloB9q9dKgmVIzgzvc2sXRPBR9tKOy2A37aIEI4hcN2UbQBGsq6sEXHgBGq8mD9oRYXOU9VVb34hZWc99zyZvPrnR7dWAt+p3fWEPx6azFOj5+z1E690SBhNrbs/dfSCILD6+87axhnj07ntRV5AIwOIwgUZ1Su2WKXhShL8zqrPZWsxECecUxiCiQNbFZSpDPMGKx4BFuKDmlKhMVIo8vX8vNBK5cw4qJms7YW1eqfVx+oIiPOxr1nDiUpTC66oA1m3gtnPkl2WkCHIKaNsiLHKz1zr7o5DU09gn4fFK3n9F1/5ymuUrwAW96C0b9oNuIjaM6dpg/JkQrw/e8dTKMvhWHnKZLgX/4WJt7IvlIPDb4RDO83AmuFAXcbQhqd8cLoxKk5Z1//AaKSlZHliTd0bltNGN0nHqNB4ufd5Ye1nWcWBnLCluwu1+sh9Y5XvFfhvEKvLs/DYjJw5sh0faS5qtFNn8RIDKbwXr1wBHsEtdC+cEakPbiW056FsOH1kPnzqx2Ml2qxv/k6MTYTNxZX8UrUjcrM/10B9gq4aXG72hSWnNMVQ1KWYeH/KRLdp7QcKhYfoXgE/X6ZZ37cQ3m9i4kjW6mj1gohoaE+uVPe6dbUDDWW7anA55eZOSSF6kZl+aNtCNY7PazcV8E5ozP4bNMhXe104Y5SZBnOVUV5bpzenxvfWMe1r6wh0mIMm3t5JLjr9MGKuqIkKSJQ2z6Cqn3KTINJ8TyHUR/unaAZgqFlVfaVN+g5QGX1rlZDWq97dQ1RVhPPXjGu63aoHeiGYFt5NOEo3QEvz4RT74GZf+rilh1F4tU8wb0/wsRfKqqMOz6H2Qv00kA5QUJWe8sa2FvWECKwU9XoDlvLtLM5got2ldEr1sakfoGOqdlowNOCIbipoIb0uNCw6ZQYK3+7dAz3nDGEb7eV8IvSp2HNKGUwGuD9a0h0KR6nan8EURE9MycqHMN7B4zi1BibkiuatxQWPRa4lr/8HSQPCoQ+f3i94jkKxmBSrv/UIQBMH5jMXy8exdz6j+G9/8DkWxTF3PJd8NPDSih130CO88DUaBpcXopqHGQmNBHB2rMQlv0dgBs/K+XaiApdqRqgwaU8v5OjrVQ0uPj4tmn0aiEqRdAO6orh+/v4t1kR55G+WQzzHg8VmOoBCI/gMaDB5Q1Vj5L98PMTxLoVcYq6fath9UtQtuMYtfD4oaq6mjtMHzPesAe5Yi841ELjPg9U7gNXPT9VJvCn6L+QmHMSVlPbidgeX8e9MDqpQ5XQQmetEiK65KnObScMZqOBjHhbSG5cR/H5ZbYU1XDdtGxibCbyq+x65z9V7TCECyvcVFDNmMx4+iRG6sIHLlVdNcJsbHcoossbMLKtJgMGKbwR2egK8gg6apRzGfSX5imkn1SCq3S38t1dSIxJPa+jLjv80LQRFyoh25KkjMDWFbe6eE5aDD6/zMaCGsrqXFhNBv526ZhO/XRwaKjb6+uwfPvYrHiW761oMXdJ4/sdJcRHmhnTJ0E/1u09j13F4l3leHyyXhNS+/0ah4ephu1kvjsTynYyc0gqz14xji2FtSzfW6nL9x9ppvRP4qxRaljV6F8o4aHadbj9E9jxadj1kqIsWEwGth8KjNA7PT7sbh/j+sYDcLCyZaERr8/Pol3lfLml9evucCipdYYdMHB6/Lq3qcNopXb6dr14z1ElfQxkTYWUwcr37Z8oOUPugLBVdBPvwKUvrqQoyPCvavToip3J0QFvUGc8gmvzqvhySzET+yWGeOgsppbDCDcV1IQV2+LDX5K6822umZqNqfZgqPe2cj+G+kNs8fdng39Qs33sycxUPXcAqbFW5R0QnQZ1QRE4NQehIUhErGp/s3cT2z9R/lQMBolLJvQhbtXTcHAFuNT3t8ehrO8KfZ9rtWu3H6qjGc5aXPUVrJWHsqIxnYU7QtMXGl3K8/N/N01m6R9nCiPwcPC64JOboSyX2an1zI4rgjUvQdWBY92yLufEucu7EQ1OL9HWoI6M0QxXfYSzshH+upjVB6o4v3Sr0gFNH33sGnocsH/fLhKBRzxXcOslf2JIL1VcJDYdbluJ1+dn2XsLmTNM8c5Ygrwt4fD75Q6rhoZgiYT5XyqfFz0GPz+hhCqa2hcW0hZ9E6NC8gBkWe5Q6I4WXjSydxzr8qrZWVJPWb0SCqTlszXtWPj8MjtL6nWlS3OQh8piNGA1G3DUdMAjqK4vSRKRFlMLoaFeLpV+hA9fhov+C6MuCZlvBv7vxZVUN7pZeNup3PT3JfSLUkffmyx72LRRQgSUen5mo8S324qptrsZ3zeh0zlsoR7BjnunZwxO5cstxewuqw/cD02QZZmFO0o5Z1QGRoOEVc0Hcx5lsaolu8tJiDTrSrBO1Vvf4PQim6OQUgaDWfGuzRvRi9/NyeGv3+1qtwe6SwmSaAfgr4NaDB+WJImMOBvvryvknjOGkhhloVINex2QEs2q/VWtel//8mVgENDp8R2RfMgpj/1IdlIki/8QWuLC4fFhMxk6FxLoqlPqeXWHQvGHQ0Q8XP9t4PusBTDnL7o3UOOUnBR2l9Rz71lDuf3djby8ZD8Lzh2OLMtU2916OOA7N07hlWUH+HzzIT2Us6DKzo+5pZw1KqPN3KMv1TzaW08dEDLdbDTgDpNKsresgfwqO9dNyw6d4fcpxcY1j+e1n4fOv3UZEnDtQ99T7fYw+gQyBAG9zEdSlAXGXaP8BXPVR6Hfw0WdPD2k+XPBWQuuWqXOn1aCJmMM3No8pHhoeixGg8T2olo9Wsft9fPDzz9jjB7Ir0sXEGkxERNrZHNhbci6WnRNVmLUCaH2ekQxWfX7wwzKwP5rZynnNnngMW1aVyOulKNIdaObr7cW4/b5mxWZBUVAIjspkiVl6ihOXvOHhCCUxv1rACiSk/UcrWB2ltRT5/RyqqrO2JZH0OMP1Cg7bOL7AHLoiOJhMm1gcsj39oYZFdU4uOzFlfzm3Y3kpEUzb0QvThuSypoDVfz6nY1AINTJ26RjkVfZiN3t02Wngz1UFpMBWwfFYoKl1Fta1+72ESfZob60WedL45xR6ewpa2BXST2Nbi+R1iMYrrH1Q1gQ32LOSFyEmWkDk/l+RynVjW4S2qEO1xLBOYIer9xhz8xkNXRs7YGqFpdxef3Y3T6y1NxArW6kq4MeQb9fZume8k7nu+WW1DGid5yeL6oZwA0uD3nWIXDpG5AQUHi79dQB/G5ODr+b0zwc86gT3wf2L25RQOamU5RO+21vr+fV5QeoVg1BLRdJC+MKx5q8av1zUZPw0q5AU4fNC+OVdASVPegwzlqwdb4QfbfFaAr7HHp1/kSW3j2Tc0dncNKAJDYX1gCKWJTPL5OoPgdy0mJ4/KJRRJiN+kDb1f9dzYIvdvC/Nfmt/nRRjYPXVx5kaHqs/gzWaElY5Msth5Ak9HxCncp94PcESmS0gFYeI+oEMwS/vWM6T140qtXc7jaJ6wP7fw59LpRsDcwLxtWg1N0MwmY2MjAlOsTIe3v1QSYuuYaKLx4iLdbGD787lcn9E6m2h4alNrq8mI2SMAKPBNq5y195bNtxBBBXy1Ekt6SO295WCly3lOMyITuRRfnqg33Vc+1WqTtRGbHvRQAOymnUhcltyy1WwitGaEZMGx7B4Dp3h03SIBg4Wxld7iKunhoqe9wez4gsy9zz0RY2FtRw97whfP7rk4m0mLhj1iB+MamP7pFLVUelmxqXO9QQFS1kJdhbajYqoaGVDe52hRU29XBFWow43M3PW6PLy+qMq+C6r1rc1hkj0zEZJD7aUBgi1X5EsMUBMix+rMVFTh6YzMFKO/srGklspzBAOILlwzvjEcxMiKBXrI03Vx1sVdoe0I+Z5nHqqEfw9ZV5XP3fNXp9yY7g88vsKW1gsKpgZzEZAh7BpuHzKgaDxO2zBjFzSGqzeUedtOFqGHhN2NkXje+N2Sixan8VD36xgxX7FJXfgCEY/n4prXOys6SOUaqQx5HwfpbUOVucd1geSGedkk/b06jYA5/9Csp3h0xWQmiV+zM7OYo8VXXyHdW4G9ak/E3wva2pDB+qbflcAGxS66XedEq/ZvPMRilsqOnCHaWMz0rQw/11Fj+q/E9q3aOhDVSfaIbgoLQYLp3YupHcJik50GskNAbl8i9+XPnf9Lj/74qwNTenDkhi1f5KXY120a5y7vHcyNLYM/njvCGkxFiJsZma5fMHK9UKuhhNfE7N0exJCEPwKJIaFP4RHxG+ozgxO4Fqh5c9/dRadPbKsMsJFKyeWlbKIygnIayE996yBiwmA33VpH1LWx5B1RvWJSNqfSbBWU9DRELby7aTpjkb7fHEvbhkP0v3VHDPvCHcOmOA3skzGCQeOX8kfzpjCAvOGabvc9MR5u2H6jAbJQalKh7D4GNjMRmYMywNu9vHF5tbVtjTcHlC6+IFlwUIJtJdwSB3rhKn3wLJ0VZmD03jw/WFVNvdnS+A3R4GzFKMwfqWc7am9E/SPx+eRzCg+unx+rEYO/ZilySJ8X0T2F3awE87w6s3aoXbI5sUvO5ojqA2SKCpfXaE0jonLq+ffmoNL1vQIE2908u58iJ4vK/iFe6OzPmLIh7Swv1tNRmJC3rOP/r1TkARfYKWC4Ev3lWGLMP5YxRVyvZ62zvC84v3tTjv8AzBWrD2QEPQUQMb34LqvBYX6Z8cRbXdQ3Wjm6oGN6kxVk5qEsER/P7RrvWmgkLByLLMQ19uB+CMEenN5pvDeASLahxsP1THnGFpzTdYXwrRvaDfKS3+JgRk8u1hBukEbXD6o3DOPxQFcY3GCkgZAumjQpe1xSn3TBNOG6LUO9ZqPu4prSd29Lm88McbdAGtGJtZV/zWfyZYZE3QtRjNMPZqRRwoKFe4JyAMwaNISnRgdK4lj+D0QUoI49ulqvpkTethIyc0rnqi/fXsipoAhE/Cr3d5ibWZdKl+q8mIzy/j9flxuH18uL6Ql5bs48fcUuqcHn0bXVJEV1JLGWxtfyHq9nDbjAFMVY2OtrwFXp+ff/24h9lDU5l/Unaz+QaDxM2nDmD+tH76Pgd3LGodHl74eR+DUmN0A7BpaOipOSkkRVlYua/tQQtXEw9XhMXYLEfQ4/NzkncN1++8SXmBtsIvJmdR1ehGlhW1zCOGwaDkPbUiJz40aPS/j6oa2RmU0FC1s+jzYzZ1PFfr8YtGArB4d3hD0KEXZVeOmdbxb28heg3t3HXmftFCHjVlPFuQ6FCDy0uc0aN42wzdtGMTEa+0rZVSCQ+eO5zLJ/bhH5ePAZSyJ+lxNgwSzTpxGloRes1APhIewVVB92rTsN4auyds6kK7cPVQj6AW7uoKI+ChotXrO1DZSLXdo4eFBmMxKh5BWZZ173dxbcuG4LaiOkrrXEwflBzWOA9nCC7crgiIhDUEawuU51gb+Z93z1MUL7XBP0EHsMVBZJLiHQclqqu2APrPDLNsbNhrSosG2FxYw+7SespqG5lt3hLy/om2mnD7/CGDd3bPEY6MOdGZciuc9xzQs0qqdNM3bM8kNiJwuFsyBDPiI7h73hC+/C4PrMAH8xXBmMveVBb4+GZFkOTsvysPmG/vUeRsT5BaPwC8Mg8Gn4Fv7LU877sIX+pkqAqfLxdcrgAC3iyX188/ftzDS0v26/PGZcXzj8vHAnROMS8cOz6FbR8rJS28LqXtw8+HU+7q9Cb/OG8I320vYeX+yrBCK8FsO1RHo9vH+WN7t1lANmAIBjqGH65XahadPTowGm1pIhYjSRKDe8VwsKplFUQNJUcw8KJKirKyv7xBEUb64DrwOJB9fn5rKsIvmTDEtF6CYXrQiHtG/BFWSIvrA7lfwr9PVgzDuQ+HjKwbDZIuNtA/pblsfLt/JsJMo9uLw+1TjlcnjKwYm5mTBybrI8pN0UND1c6lJhbTkRxBj8/PV1sVD2lDO8pVNKWwWrleMlWjOcQQdHqJMqtt6c4ldJ6fCgNOgwv+DcVb4NPbQmafpf5RBnMzfBgNEtKu+4mymnA4HGFDKbVjoAmNdLVHsNbhYX9FI/GRZmrsHhrdvpBIg6IaB6My49u3sdwvFPXDUZcq3rKSrTBobpe2t1ugnaPl/1D2uVL1qKYNhwuV9IRs1RD8fnspNUFCMcFooaEur1/P+mhsIUQY4JXlB7CaDPxTfS81xWxqLhazfF8l2UmR9E8JlLLgw+uVsNbaQojLbHN3h6bHsubeWUdNnbfH8a+xkDocrvifUibC3RD+uNvilSiT4i0h3sL4SAtZiZFsLazF55OJxsFZW34DGY/rpSti1cGaeqdXHySwu7xHdkD0RCdtuPK39GnY+1MgdeXbe+HAEuXzKb+H4RccuzZ2AuERPIoEq7DFt5JDNKlfArvkTAr7XQJpIyAmKCQkJg2i1JCDrR8q4SpN5Id7PHGZEJFAidvK056LsGRPAsJ7BF1ev17AHBTFPoBleyvYVVJPVmIkmx+Yy3ljMthb1qB7RLos2XrYeXDynUpnVjIoeQPbPz3szbZX7v+j9YWYjRLTBiS3uhwEjN/g47ipoIY+iRHcNmNgs+UgcJyirOHVP5vi9vpCxGKm9E9kf0Uj1TuXQOEaiErGHpnBJv8ADo74VZv1egwGiXFZ8YCSX3tEGXkJDDkT4rOgLBd2fdNskRumK3k8/ZOjm81rLzlp0cgy7FDzWzvrnR6eEcvukoaw90WzHEFTxz2C6w8GBE3C5ee2xe7SBkwGid7xmiFo0OsIltY5ibWobTF2jeLuEeGUu2C0muNjsirXRgt/ESn9sCRlgyWKGKuJ3285S6kj1gSX149BCuRpdXVJjxp7qGiNx+unssHF9a+tZdmeCoqqHfo5aZMdn8PqF5TPBrMSQj3u2i5tb7cgWvWuVewOlAyRfbDlf3qYWB/Vs/3fZfupanSTENXciLKoYd/Beeot3XMHKhr5dFMR86dltxhqbjFKzeoI7jhU19yQj0lXrsOh5yhlEdpBaqztiKjVnhBMuwPGquk9tlgYdr7y7miKpq4bRoBkVGYcWwprKW9wkWpTz7E5cF9qOdQNQSHmdU7vCVXy45gRkQhxvQPfo5IDz3rL8edFF1fMUeYv5w3nw/WFpES3LBc9PCMODGZm7LqQW2cM4PdzBwdmznko8NljV0aaemo4TlNkWfF8XvQfAPaphdUHq2qX4TyCLk+o4TFzcAoZcTbeWJlHYbWDkb3jiIswM6RXLJ9tOkStQ+kkdYlYDCh1qLRaVJZIGDCzS9RgtYTwloyv6kY3D325g082FnHF5Kx25axJklI7LDjUyOH2EWMN7dA0LR8BikHRnnwSpydUNVQrhlt4YBcJwLNpD/LuxkqKPA6+m9Z6HovGC1ePZ/HOcj0064iRMQYue0v5/OaFSk25Jtx9+hB+Oa3fYeUIDlFDTLeqCoSdHZTISYvB7fNTWG0P9Q4ADo9yrjR1SLNRQpI6ZnSs3FeJQQK/DHWdKES/Ym8FY/rE651Nq8mI0+tjye5y6pxeEm3qgEN3NgS1Qtyg3Oe/eKddq8VFLuXFxiv41aAzaLp3Wo6eZqQ3DQ0trLbz1qp8bjm1f6sDihqyLPPd9lLmDEvDaJB0D2Osqgzp8fl5dUUeP+0s03NKB7TXo336o2BXw7fjerd7/487JEkpBK4ZvTPuUd6/H98ItUWQkoPFZOC+M4fyyNe57K9oZMqApGabyUqMZPneSv0cKKGi4e+5H3NLkWW4Zmp2i81qKn7mcPsoqnHwi0l9lPflP8fAhOvh9Ec6veuCTjDxhsDn2Ay49PXwy/U7VfkfJk9wYnYiX24pZs2BKjKifNAImAP3pXb/vrRkP49dqKQCFFbb9fQiwRFkwnXKn8b03x27tnQBwiN4lLl6ajaf/frkVjt3NrOR9HgbXr/Mv37aS35LhYc14y/MQ6RHsuENWBAH+asB2KYWa9aK5jYdGYVA0XMNk9HAlVP6snxvJQcr7QxIVTrIWlhhXoVyrI+Y/LI1VqkndJhoHfhwBaHrnR7O/OdSvth8iAvG9ub/zh7W7u02zTlxhpGSDxdq21I9wKbUOTzEBYVFD06LIS3WSlXhLvy2BJ5aVEhRjYNTc1LITo5sV5tTY2yHr/TWUa7+GGbe22yywSA1V+rrIFmJkdjMBl0+vLPXYm815DJc+YGAR1AZC5QkCVtQbmJ72JBfTY6a89ZaTbxwFFbb2VxYG6L+aTMb2FpYyzWvKCVh4iwoOXiGnveaOntUOv+om8HzB3s3m+f0KoagNtgTHBr6zdZiTn5iES/8vI/vtpc0WzccH6wr5Ja31vPeWiW/SDMs49Swvyq7m7dWHtSXnzE4hfPGNG9XM9yNSu5T6tB2teO4R8sTvHkpZJ8ckJPf872+yJmjAtE76WGeA5P7JVHR4GJXqRLFExthblG8bEthLb3jI1r1zjZ9XmvXSrTVBH6vkpeW2L99+yc4+pgsYIoI24ebreZ47iypZ5hFzUMO8ghO6Z9EpMXIqv1Kvm+d00NpnUv3TAsE7aXnvWF7CKODQjs+XN+CQIX2YtKSkrsAWZbDhpJ1C9arhb1Vl/zesgbS42wkRlmQpBY8gl5fSE4awJWTs/TP09RR2zT1pZ1XqYT5dLqOVlvY4pTz5T+8YzwgJRqLycCzP+1tJvawv7yR4lonT10ymr9fNqZD4T1KxyKwPYenuRy1pUn5CFA9gi2oIGp4fH7qXd4QxVxJkrhsYhb/qppEZbRSG+6V+RN4/fpJzc5bt8LngcL1ijegizEaJAanxeihl51VgdNy74qqWzMEA8fYaja02yPo98tsLqhhbFY8EWZjh8tOvLHyIEaDxHljMvRpY7MS9KLrmQkRZMQYu7c38DC4+ZT+9LE5GbrxL3BwRcg8p8ePzWTQn0Fa5/4/S/dz69sb9PNaGOa8hmNrkdLJ1AaNdI+gmrP+1ZZi6l1e/nvtBO6YNYjnrxzXvsGHLe8rsvierq9z2C3R1FDjsxShoORByvcNb+iLBBttTb3wgF4HUPP2x0WYWnzf1jnDC84EYzYaQgZv9PJHJqOSjnDOM0o4qKD7YosLKxjTOz6CEb2V62WOZ5EyMSgcMcpq4vdzB3OgopHCajtPfquoEvc7jPx0wYmJMAS7KQ+fP4Ivf3My0wcl8/66wpBi6bV2D1sLa8HatpJZR3ni213k3P9N2CK1x5yGMhhytp507XD7iLGZ1JDG8GUh3N7mddjiIy0s+cNM/nz2MD2vLEl94WqdqyNWisAWC8hKSO/hbMZsZGh6LDtL6tl+KPT8N6ohmr3iOu6ZajbC7G4uJR8sOhOlFnGPshixe3ytFhbXwgfjIkKP7ZWTs9jOQM6ruRMIqEh2a9wN8J/TYPvHR2TzQ3rFkq+K73Q256NXrA2L0cDesubXmlbcPFgMwmYytluh8kBlI3VOL2P7JKgCGB3LY1tzoIqJ2Qkh5/q2GUoB9v7JUSy7+zSijP7uLRRzGJiMBuaO7M3pjZ/jz19DbnGdfuy10FCL0YBBCnjwVu2vpH9KFIvumkFmQgQFTcSZ/H45bN1Irei0FjGhGfta0fBStabghOxE7pyT036xieoDijfM2HKaQ49CCwVf+rTyPypZCRWf+5eQxWYPVTw5A1ObG4LatKe+V+oRxkaY8cuKunNT6p3eNtVbmxaUD6heS4qGwJ4f2rFjgmOKLbbFqK6RveMBiDZLigc6I1Q0aLqaWnHjG+s5oNawnDe8dYE1gaApwhDspsRHWhjRO45bZwygstHFg2otIYC5z/zMOc8uQz4CoaEv/KyoodlbUTI7Jvg8irpW2nB9kiOo3pXVaGhZLCbM6HZWUiS/PLmfXlYiQTcElc6VZuB0Oe2QIW8vT12sqIztLg0VC9LOXWeM2aY5guFCQ4PRjJRIqwlZRhf7CIcWPtg0rymtcTcPZm2mqkExwo+L0BZbPPzif0dMHWxwr0D+YWflwE1GA5P6JfLdjhLqVW+Q1+fH6/NzoKKRpCiLHh4Iihdub3n7Bih2FivX3PDesSFFstuDLMvsL2/QhZs04iMtfH37dN6/ZaoywefqsR5BgKHZmdTKkWzP3cYZ/1jK1Md/pNHlVfJozUYkSSLKYtJDe2vsHnrF2jAbDfSOj+BQjWLA7S9v4I7/bWTEgu+479OtzX5Hq1dY3qDU5HS4lXOlqQ5q92WHr7OaAkjI7pGhu2HRioEnDQhMG3oO5JwestizV4zlP9dMCLmHNaKtJvokBryG2v0XbhCz3tl2GQ/leR0w/t0+NffQZICfn4ANr7W6vqAbMP8rOO/5sLOGpSvXUILZGxAsCmJQajSn5KSQW1zH8r2VXDiu95FLaxH0WIRYTDfnpAHJnDM6gyWqMApAaZ3yQq+Vo4gHRXlu1KVd+rt2j5c4jvJo/FsXKf+v+kj5/++ToUor7yCD7A+RYA72VrXUGVVUQ9t+MMarL2TNI3jEJJht8cr/NS/DnAcPa1PZyVFYjAZ2ldbz1ZZi7vloCzdM709qrDJCH9kJYzZ8aGjLx083BNVOZKPbG2o42quQXzgZX2MVGX6Z7VYZ61dG+FqCyTcpBbntlVxa8hRf9f+cCQMyjlxYblciSTD4DEUa/BE1vNFogotfhYGzDnvzQ9IDncjDKRB80yn9uf61tfz+/c28dM0ELvz3CraouYfj+4YWQp/UL5GXluynwdW28pzmdY61mRXBiw5EEFQ2ukl25XN/7i2ww6Wobd59AIBha++FovVw20roNQr83WxAqguZOiCJQjmFoUUfsd36OfW+SF7+6g1cXis29Z47Z0wG760t4K65g6m2uxnSSxn8S46xknuojjdX5vHo1zuRJCXc9/NNh3jk/JEhXvsa1dArr1cNQU9ojmDvmnVstj6E+b3pcMV7ykrPTYY+k+HcfyrfH++rDMYF43UouXInCtnTYEGTQVdnHWz7CFb8C27fAIDtk+uYvecH+CRouUFzdMGQxy8cxZX/UfLcNcEPt9dPU90fxSPY+ju4aQSHZe93bLH+hsgvAJ8dBs7p+H4Kji7RqZC3DN6+VOn79J2qz7pycl+yk6NIXvovMDTPFZUkiX9dPpbRDyl5qkPCDD4IBG0hDMHjgIGp0Xy8oYgGl5eooE5yiS+aeGsc+Nxd/pvtEf7ocgafEfp9xIVgDypSbrIpoaEqTq9fN+DCFdaF8DmC4TAZDcRFmCmuVUbZj1hoqCYXXXf4uWVmo4H+KVHsLqnH7VXy7/7+w259fmc9gu4m4gNNcwSD0SSsNcPZ7vJBsKOndBtSXRFf+6ZSIithuJeNzVQ6oZlK2Q+ypsI5/+T18ad2uL3HnIgERT1MlmHVc1C8uWsMwV4BFeDDuRZPyUnhthkD+NeiveQW1+lG4KwhqZwzOiNk2Un9Enl+8T5GPPAdr86fGCLk0hSt3mCExdhhj+D+8kZGS/uIcFcppQYiggzSfqdColKCQ1Fluy7sNnoCveMjWDrs9yzf9h3pUiXnGFdRXbgDl2W0HsVw24wB/G9NPm+uOkhtkNBSSrSVJQ0uPt5YhMPj47vfnsK6g1Xc98k2DtU6QkJutbQCTWY+kCOobCu7cQtxUmOoZ2vkJYq3T2P8teGNcpF/pjzLgwdiB84JCMkAHFwO+37Svw5LD9zbmncw3P3TntBQc5N7z3ZoJVY8HBp4NVlJ0TB+fgd3RnBMiElXnndN6uYaDJKiAroqMvQ5GURcpJnBaTHsKq1nfN8jXEJJ0CMRhuBxgFbvqaDKHiKRX1rnYsi4q5URyS6gPkiBsr25Ql2Cz6vkm4y9WvEOaLQhyet0+4hQRV5a9Ah6woeGhiNY/fDIicXEwr3FIepfh8PgXjF8tukQ4xwe+iRGcPLAZN5do4gLddojGHQcHW4ftlaOhVZaIiVGOW+FNXaykgKd0KpD+0gEvku9gcdvPA+z0dBcvMZsUzqaxyPRqYo0uyzD2pe7LEw7WCTicMOUr5zSl+cX7+OBz5Xw8heuGs+8Ec3zSMb3TSAuwkytw8M9H2/h5z/MbFFoSDMmbGYjZqNBDz9sD/vLG+gtqSUHzngi9F4YdUm7t9MT6DX2DO7ZlMxw6QDnGFdRU1WJM9mnn//MhEjmDuvFvxcrIfsJqiGYHG2h3unlYKWdi8ZlMrhXDCVqrl9xrTPEENQ8gnoOoju0fES8u4RK4kmacH2gYafcFdrQ4LJFggC2WDjt/tBp464O/b78n7Dwz+CogYj4kNIyfROV93lTtV6fX6bB1bZHMCXaSpXdjcOthPCb6gsplJMpnnAfWYParh0r6CYkDVDeI/YqaCiH6CYlIK5uPRf9P9dO4L21BbqCukDQEUQw8XFAL9XYKa1zhrwwyutdMPdh+P3OLvmdD9YV6p8dXVzEuFV2fQXPTuiwQesIyl9rmiuh4fY1F4tpiWDJ9CMaZ2+JVEILu4Az1A79hvwaUqKtTAgaEYzsRDFgi8mAw+Pj7g+3sLu0HpfX36pHUDNSRvVWch835tdQWufk9L8vYfxfFvKPrzcCcNbJE4ixmXtugWJJUkuDdJ1wk8bhhIaCoog7b0Qv1hyoApSC9eGIsZlZe99s7j9rKKV1Lp78dtf/t3ff8W1V5+PHP0eS956JRxzb2QnZeyfsDWVDKbvs8e36ldFB6QJKoQVaKAXKKGVDGWWFECBA9t7bSZzhvbek8/vjyrKceFv21Xjer5delq7ueKxrS3ruOec57e6zeSxouM3iniS7q1bnlXKN7TN0VIrXLoj4q0mu7rnVGImbtbGSA6W1rcbr3bKgZUxagqv/YLJrHtrSmkYyXFPfpLmKQzX3agCjgEzzBPLNvTw8q4aGYOdc52IKLTL3WJ+Jd7UObvvguKeahy0c+//T3Hob08n//siBMWgNuwqroLGGxP2fcEgnyzgxf/W3afDULOPCYjcMSozkp6eNcNc8EKI7fOrdQik1SCm1RCm1TSm1RSl1l2t5olJqkVJql+tn223kAap5LEdVvd3dJQtcRQC8lFAAvLOuJRHs166hm940fqZP6tZmRrEY4084tJ050LrTInhZf81Ft/4/8IV3Jvg9/YQ0sl0tcMnRYa1akmzW7v97h1gtbD9axeurD3LqY18DdKlraEJUKGPSY/nTpzuY/ofF7CioIi0+nKT5N1OXNp0zJgzudix+p4Pqbz3RXIreG92Ur56V7b4/OKn98uKhNgtXz8pmUlY8b64+2G5LX12TgxCrwmY1EsGujhFctLWAFevWkqwqUFGSfMSGh/Db80/g7z88jYOjb2KnzqS8tvW0AeMHxburGjcnjrOGtLT2DHL1GGmuErztSKW7em9lfRPNhUSbE8Cy2kYiQqxEhNiYYjGS/UJby/x3wsvSJhg/PSoMv3/7bF6/cYb7s+nY3izNvXM66xraXJBm+9Eqd/fTPTrdqBoq/E9UKtQUQlle6+VvXgtr2pmUXohe8qlEELADP9FajwJmALcppUYDdwOLtdbDgMWux0GjeSxHZX1Tq6qM1Q12OLgS3roOqro2uXB76hodbDtSxUmucUF1jV3v6tVrFfkw5CRIHdmtzeqbWheLOXaMoN3hpK7J0eXCLwlRoZw4MpXBSX1ctTJ/datJiHtrlGvMSXp8RKtuRz2RFhfuLirRrPmLpqfmpDnWo+vSjfNaT1z83m1zuPPU0UTc9BnKixcsfFZYrFfn9Hz7llk8dul4r3RTnjI4gYgQK8nRYZ1eNQ6xWrjvrNFUNdh5deWBNtep70LF3ra2ufvtjWQ2dws9/cHu/RIB6gczBjMmN4OQ0x5gszb+h5KiWk/J8MTlEzll9AB3y3tWUiS/PW8MkwcncJZrEvPY8BCmZSfy1Jd7uPO19QDuiqMxYTZqXe/pe4tqyE2JItSmyFRGEbI3YwN3LKbpEnPg9jXwvWfci8ZlxjM9N8ndcnfshRR3i2AnXUMHJ0URHmIxqvhmzWL1nH/ykP0yaRH0V6f/0fhZfsz7btWRPultIgT42BhBrfUR4IjrfpVSahuQAZwHLHCt9iLwJfBzE0I0RfNVwco6O/Ue83XVNtqNFojD66GhGlSRUVkzPLbrXa7sjWALpaCsikRnGeMGZrJ4OzTU10FVQct63dlnZ5wOqClueVx+ENLGd3s39R6FTEKtioZj5jIrdXWJSoruenL07FVTuh1Ht539qDGhvOfr25aolC6VZm9OdAclRpJ4bOm5bjohI44PNx5ptayt+bB+d/4J/OiU4a26ep49Lp2jFfV8tOkIC0emYj26HpY/ZYyhic/qVVx+oZ2JgXtqYFw435uY2fmKXaCUYuV9J+FoY565tkwenMDcYcn86dMdfG9iBknRrROTYy/CHJcINtUb702RSUY11cYaPluxk9Kaeh5YGAvLaOkyJwAYaKthWmI9K0vDj3vPmjU0mVlDW4/5+sHMbH4wM7vVsuevncqPXl/PBxsO8+NThnPIVQV52IBodhdWo7Um/2ghY3IyCLVaOUEZ1VprI44vTS+8KHmo8f9QWwqRLd33Q63G/9DxLYLNiWDHX9GsFsWIATFsPVIBUaM5nDKHetZ1uReM8DHN74mFWyHF48L41R8a76NC9AGf/ctSSmUDE4EVwABXkojW+ohSqv1ydgEoIsSKzaJcLYKeXUMdRlnqYa4S0Y+MgOqjEJcF/7ex826jW/4LFQdh+i04inayKvxWvqx9BEgnumAlfHhTy7qxGfCjLd7pivr2DcdPxB3fva6DTQ4nTQ7tTgRzkqP438YjrrmXjKuopa5JsxO70Upm6a8+9vXl8OfhHa8z9QY468+d7urKGVm8vTafk0elkhDVuyk/hnkkfb84axT/+Hov2W10JbRZLQyIbT1hvdWiuGn+EG6a7xrTVLoX9i0FgqA1EOCEC8Fe3/l6JumsdeFY183OYemuYmPOweMSQadHt+zju4Y6/jEPa/EOjvzgG9KGjMW56jnOXfxL/jXgdYaOnw0Rv4BY7yS5AePJybxRV8YQXm5zvHNXRIfZuH5ODou2FnC4vI61B8oBGJYaw6ZDFaz9+gP+Vn8v23PfJcSmuNC6lHydTEREcI/V7HPFu4yJ6KsL4AfvQtFOqDpMRKgxF2x1Q+upObraNRSM7sL/WXGApm0fE3e0Fgh3J5jCz8RmgsUGn9xt3JrdtgpSOvm+IEQP+WQiqJSKBt4G/k9rXdnVbmVKqRuBGwGysgKnBUIpRWxECJV1rbuGHjd+5+T7jS6HW96BurJWVx7bdGQDrPkXzLiVqtAU7mu6jpMHjgOK2WlPY/ZpjxBus8D+72DzW8bVzKik3v9C0240qi0mu97YLDYYfW63dlHtumLaXEjj0qmDeGN1Pou3FXL+RKPoS2l19xPBfhMSCWc92v7zK5+BIxu7tKuJWQnkPXgWYEzWfcroAVwypWetLZ7VBq+fk8MNc3M7WLsDWkNiLnzv6eBp+fHXyqftaJ6Psri64bjnWrfGt7QIOpyaDfuOMKl4B584pnJgTxM3DoFvnWP5pOk6rp0/AjUwBwaO7b9fxF9c/jpbGYzj72uYM7TnFR9TXRV8C6vq+XDjYSYPTiAzIYImh+bjDQf5vlVz1ohIKqwWftJ0M4U6gTGR/TxnbLCJHgCDZ7VMCv7dX2HXIobdvgWlYMuhSk4c2dIq29Ii2Pl5mZmbxL++zaNx0R8YZo0HbpWuof7KFgrffxNK97VefmwVUSG8yOcSQaVUCEYS+IrWurnZqEApleZqDUwDCtvaVmv9DPAMwJQpU3p2SdVHxUWEUFbb2KpF8LiCLhMuNypSbnnHaOnrLBGsOAhhMWCxUmOJ4RXHyZw7cCgh1hIeWlbNKwlD+ObnJxofXpvfgooDxyWChVX1xHa3GuTgma0mTe2Jkhrjy2my60vPxEEJpMeF8/bafM6fmMEHGw5zx6tGxcrkY1ozfEJIOEy9vv3n0yeCtftfzpRS/LMX3VszElpaBno1ru/Fc4ypQK70ztQmfqG+0phCYshJkD7B7Gh6LcX1f1NUffw8pXXtdA195LMdfPrVUr4Ig08cU4mqMf6Gd6lsXnGczM9GZhy3L+GSNZ3R4L6o01Op7irTDdQ02BmdFuseZ/rs4WzU3De5Lz6DkLomPnUac3nOjvDBi2WBJDwWJl3V8jguC6oLiLU6GJoSzbqD5QBc8c/lVDfYjTF/QGwXWgSn5yShFPx72KMkhtjhYLkkgv5syIkwpPPVhPAWn3q3UMY3z+eAbVprz+aS94Hmy+1XA+/1d2xmGzEgho35Fe5E0GpR7gHlrTRPZLvimeOf81RfaVTrjDNaTpuTyshQm7sASL5rfAlxri5cK/7RahdOp2ba7xdz6ytru/fL7FoEJXu6t80xil1fTpNdrX0Wi+KK6Vks3VXM+oPl3PXaOgYlRjAtJ9E9D6NfyZhkSqtJtKuF9bwJ6Z2s2Yn6cqOlN5jYG2DxA0YBpwCQGBWKUlBcdXyLYG2DR4ugzYLdqXE6NSv2lnBt6GIAIlIGc6C01ljfVaikq4WbglLhNnjvdqNLdS9Eh9mIDLVSVNXgnmLH8z2wueUp2mNqgnhpEexfzb0kNr3JxKx41h0ow+5wsmxvCXnFNe6u1s2F4joSFxnCmPRYvjjgpCzUmE5IqoYKIbrKpxJBYDbwA+BEpdR61+1M4EHgFKXULuAU1+OgMi0nkfyyOvYV1wDGl7TmiYJbaR5gfHBFxzs8sMz46SrS0lxaPCLU6u6WAkZXQ1JGtLnP5kTxi+1tNtC2TWv4z6XGFAq9UFLdXAimpbXvsmlZWC2Kxxfvwqnh7tNH8cZNM/137rp/XwTfPNbvh93xu9N59JIJvdtJfaVRPCWYRCXDfQUw/UazI/EKm9VCfESIu/Xd04HSWnc34ubWh7LaRjbmV3BylJHINCSN5rCramV1g4NQ11QToh21JbDu5eMrBvZAdJiN6nq7MZbTZuGU0QN44vKJvDl+HTM/Og2cTqwW5U4Q43tZZEp0U5arR8yuT5mYlUBZbRMb8svRGn562gi2PnAaH981t8ufXb+0/ZtfH76Z4upGLEouuAghus6nPpW11t9orZXWepzWeoLr9pHWukRrfZLWepjrZ6nZsfa3aTlGN88/fmxMHn/iiFQ2HCxnd2FV6xVDI2Hm7VCRz9c7CqmsbyNZhJYvG7PvBFqmi4gItbYq/FBZZzeqhc66EyoOGdUuXbYfNSokdrvF7YeLYfI13dvmGEcrjaIcnuP/kqPDmJGb6E5M0+PD29zWb4THgq3/f4cwm7X3E9PWVxjTKQQTpYwuvwEkLiLEeA/wUNNg52hlPbkpRhGhEQOMucwm/+5z7E5Nor0AplxHdFyiu2BTbaOdyDA/vSDTX5ovnHhhCpKoMJu7anJ4qBWlFOeMT2dqUoMxJMBVjfic8cbUE5Kg97PEHKMLeflBJmbFA/D5NuNzKzEqlMhQm3taoK7ItRaitIPF2wqIiwiRicWFEF0ml438xKi0WEKsyl1N7to52by++iAr95UxNDWm9cpxmWCv4//+tZgL5oznF+MqITbdKOFvb4TDa+HQGrCGGhOYYswjCBAZYuWU0QNYtNWY2qCirom4yBAYfznkzIOaIijbB2njKattZAClTLPmw4EIoytjaPuTVQNGVcWoVIjr3Vih99YfIjcliuRjyqxfOX0w3+4uAVqPd/NLFz0PdeVwYHnn6yYNNVqk6sqNCnVp442B52ZwNBldQ4OtRRBgyR+NCydZM9pfJyEbYgb2W0i9ERsR4r6Y1ORw8p8VB/j38v0AjM+Mh7py5obvJppaqokkUxUS1lgOcYNIagijrLYJu8NJTYODKGml6FjzhZMj641iWgDh8d2eXxWMStNlriQ8wrNVqamu1TRAPzp5OLnJ0Zw+xj/+HgNK/CA4vJZhzn1EhVpYsXkXk9UusmtsUB1iFAiprzC6DKeMhIh4Y9qlkt3H7Sqpfj+bVQp7XHNECiFEV8kns5+wWhSPXDyeu1wTBY8YEEN8ZAibDlUcv3LSMHYkn0JTvo0GuxP+dSbM+RGc9Evjg+X504z1Uke7rwzXenQNfer7k/hw4xH+7/X11DRPLD9gtHHb+Aa880O4Yy1V9YrzrN9yb9Wr8Dww+Vo45y8d/yJf/tG44t3Zeh14deUBNuZXcN+Zo44raLJwZMvMIim+WCSmu46sh5fO63y9i543pi9oXv/0B2HGLX0dXdtWP2/8jArCSmc7PoKjnVR7PfMRmPbD/omnl2LDjWrFWmvueWcTb63JZ8SAGJ75wWTmDEuGPUsIffl8rh/2OH/dFcnzs8thNZA8jMQK40JEaW2j0SIYKi2CHYpMMsbVLv2zcWt210ZI6N70OpGhVndrbPhxiWBLomCzWrhwskzjYYqkYVBXhvWZeVyc8mdOLHyBeWGb4FMg8hkYfykc3QwvnAlXvQ+582Hvl/D28UXGLABJl8JhSJBuvkKIbpBE0I+MSW9pYVFKMTgpivyy2uNXHHIii9KgKt8oFsCVb7dM6B0eZ8xjBMYHkUt9owOlIMxmQSnl7nJ53BQVOfOM7WPSqGk4xEfOGdTHjuGBiNeMlqjOVB6BPV/0OBF0ODV//dw4zrltFDQJD7Hy7FVTSI0N613VS18xcFzL+epI6piW9W/80qg6apZqozWZKdeaF4NZLn8Vind2vE6y/8wHFRth42hlPe+tP8xba/K566Rh/OgUj/jTxsMP3uXW1PFcHxJLbOMkGDsdBk0neYvR1a2oqoGaRgeRYfJx06GwaLhpqTEXLEDRDmMusZLd3U4EI0KtlBS21SJY06pFUJho2g+NLqJb/stQlcTQ4kN85RjHlCt+RVSmq1DYgNHG+39z4bDsue18HihiHEPh+Y0kSOEfIUQ3yCezH8lJbt3lIyM+3F1muhWLhXxSgYPGVeEhC1ues4Ua5YmPUVlvJzrU5k6emufnO64yacxAd7e2mkY7+TqFFSoXUjd0rVpig6ubag9szC/naEU9Ryvr+fv3Jx03oXmzk0cPaHO5X4pMbPN8dbh+Z9OG9LX6SohIMKaPCDZxmS1VdttzeJ0xJ2fauP6JqReaWwQ3H6ogPMTC/53ccvGIyiPGfKU58wmzWAkDCE+DWGPc2Zj0OJSC615YxYDY8FZVKkU7mnteAGRMhuRhPbqoExVqo8JVTOz4FkFJBH2CLQxGngUjz2LorqMM2FDGm3o+80ed0rJORELr9/+YAcatDZO1ZvygA4xOD8Iu+UKIHpMR4n7EalHERYS4B5Gnx0VwqLzOqOx5jCpXAlfSxmTQbSmvbSTBo/BK85e2mgZHe5u4k8S6JocxbUX5fjjQSbXS+ooejR3bcriCc5/8lhtfXkNMuI2TRqV2vlGw2vgG/GVcr6fo6LEenuOg8c6Nva6a219iI0Ior2vicEUdaXERrVvZnz8NnpppJBdtyEqK5PvTsyiobGBjfgVxXSiFLzyEx8HQk3t0YcezG254iOtjvqEadn4CIX44nU4gczqY8coIrEpzSCf3eDdKKf576yx+fIr/9DgQQphPEkE/s+q+k/ng9tkADE2NpsHuZF9xDUu2F/Lj19ez46jRQtg8BURZbTtVQ49RVtvUqktJ8xeJ47qGeqh2HaO20QFjzjcW7vyk4wPVV/aomuR3rgIwAAtGpBJmk/FG7dLaSMrzlppz/BN/AZe8ZM6x/cGsO2DC5WZH0SVDU6NptDtZuquYtDiPFniH3fgbi800ujS241dnj3G/l0gRix7Y9gE8s9BI4rohwiMRdHcNbZ6fMDHHW9EJb9j3lftu/Amn92pXATEcQgjRryQR9DOhNgs2q3HaJg9OAGDN/jLeWpPPO+sO8f/e2gBAtavSX0eJnKey2sZWc0m5WwQb29++ed91jXZjrFBcFlTkd3yghp7NL7d8b0siODU7odvbB5UTLgRl7fxc9JWEwe75KUUbJl3lN6/PzNwkwLiwlB7v0aWw6rDxc/7POtw+1GZhSrbRotXtaWYEWMOMapGNNd3azLNF0D2nXHPL7diLvRSc8IrMaZCQAznzuffyk82ORggRZGTQhh8bkhJNbLiNtQfKKXJ1Ad10qIKq+iZ3t83jxvi1o6y2kSEpLVf2m8cIek4uf6xWXUPBKIddcdC4f2itUeRg3CXG47xvjRaE2hJjfrxucDg1K/NKmTc8haSoUC6YJFXuOmS1GeMw875t6YJoscHw07v92neqYKtRqTQqFYa5vsR8ep9xrJy53j1WoGiqhxfPMQpAZE4xloVEwqhzwHJMS/eeJVB1xDh/nv9LtSUw+lzj8e7PoboQBk2HpCFeDXVQYiQTs+JZd6CcBaHbYf0W44nSfcbPuEGd7uPPF4/nkU93cNKoABq721+Gn2rc9i+DPYs7XldZYPxlAIx1bGOKymO1Hkl8c0+PpKFw8YsthUeEbwiLNpL0+M7/l4QQwtskEfRjFotiYlYCa/eX0WB3kBgVSmlNI6v3l7kTuAa7E7vD6W5FPFaD3cHfluzhcHk9A8a2dP0KtVnISozklRX7uWl+bptdMQurjOTTqTGOseBuoyUKYMs7sOq5li+va/4Fm9407idkd+v33Hakkqp6OxdOyuC8Cb2bfzBoDBhjdNM98F3LslN/D7Nu9+5x/nszHNkAWbNaEsFNbxk/JRFsmy0MKg9D/kpY/VzL8qveg9wFLY9rS+Hl7wHaKPnv+b90aE1LIvjNX4xuwDnz4OoPvB7uaWMGsu1AAWevuxHWeTyhrMb8Zp1IiQnjoYt8vzCOT1v7EmzoZFypJcSdCM478DdOCt3M2IbnWsZ+RyW1dOEXvuXCfxpzRgohRD+TRNDPTcpK4C+LdxJisXDRlEzeWp3P377YTVFVAxEhVuqaHNQ0OIiLbEkE65scbDlcQW5yND99cwOLtxcye2gSN87LbbXvhSNSeHHZft5ff5iLp7S+Wqm15nB5S5GIBrsTW868lhXm/BimesyVdtofjbFjytKlVgRPX+0sAmB6TlK3tgtql7xktCQ1e+1K6IvxIzUlMPo8OP2hlmU//MJvJkw3hVJw23KjVQ+M1rznTjFa2TwTwbI8QMM5j7deftofweFRBOrCZ+Gjn8LhDX0S7o1zcxk9IAJtfQtlC29puQiNMZIL0fdO/S0s+HmXV68/92mm/30LTixENXcTrTgExTsga6ZUDvU1np+dQgjRjyQR9HOTByegNTQ6nOQkRfHzM0by2w+3AjA6PZqN+RVUN9qJc3UP0lpz77ubeGftIfc+bpqfyz1njDpu3786ZwyvrjzI8r2lxyWCpTWNNNid5CZHsbe4hga7kyjP2QKOncYgOgXo2QTjH248wsSseAbGtT1dhGiDLax1y+st3/TNcRoqISbdPWUAAHHSatupsBjjBkbBlbbGdDZ3s06f2Hoeuehj/o9iBkLyCNj+kVHExerdt3WLRTFvZDrQs2lfhBdEJRu3LhowaBgNGPOtuguI7P4cPrgTfrSl8ylOhBBCBAUpFuPnxg+Kczf0pMaGce2sbEYONL5gDk01xvx5Foz5dEtBqyRwZm5Sm0kgGNNVnDpmAEt2FNLkcLZ6bk+RUbxgiOsYDfb2p5nojbziGrYdqeTscfIltFecTljxjHenlHA6elz8R3hoHtO59JHWUzF8fLfxsytjh+KzQDtgxdN9E2NtqdHlt/JI5+sK06n6Ch4PeYKnQx5rWTjiTLj2E2M8rxBCCIEkgn4vJjyEEQOMxC81JhyLRfGLs0YTFxHClMFGi9yqvFL3+u+uyyfEqlh2z4n87YpJPHPV5A73f96EDEprGvlmV3Gr5av3G/ucnmMco6HJedy23rDdNR2GVArtpdI9sOpZo4iPtzQY58brBWiC0QkXwPAzWqYJcDqhptAo8BHRhb/9UecYPw+v63i9nirdB29fD0c39c3+hXeFx3Fm+GbmRx1oWRadAoNngi20/e2EEEIEFUkEA8Ak1zQSA2KNvplzhiWz/lenMGuIMX7njdUtXc4q6pqYOCiBtLgIzhqXRkx4x5M8zx+eQlSolS93FLZavnZ/GbnJUaTFGWNNGux9kwjml9UCMChBSs/3StwgOOmX3i3gUl9h/JQWwd475QG44rWWbp81heC0w/Sbu7Z9ZCJkz23pTuptA8bAbauMREL4PqWwzbqNiPpCsDcayw6tgQ2vmxuXEEIInyJjBAPAOePS2X6kkoyElgIASimyk6O4cV4u//p2H7WNdiJDbdQ3OYmN6Dj58xRqszAoMZJD5XV8s6uY3364lfjIEFbsK+XiyZmE2YxrCY19lgjWER1maymBLnomJNxoNdr6XkurjjUUpt7QeixndxxYbvwMkxZBr2iqh2VPwKy7jMIe8YO7V1gpblDrypIr/gGZUyFjUu9jCwmHlOG934/oP3GZgIZFvzKmKNj7pTHdy/hLzY5MCCGEj5AWwQAwc0gS79w6u80pHmYPTabJoVmdVwYYFUPDbd077RnxERwur2dlXik7CqpwODWnjxnI1bOyCQsx9tVXYwRLaxpJig5tKXggemfHx7D0z/D1I7Dk97D57Z7vq9I11jRlhHdiC2Zaw4tnwxe/M1oC0yfAhCu6N+db9mwYNKPl8cf/D7573DvxFe2AZX+DujLv7E/0vYzJEBoNK/9h/M8fWmP8XQkhhBAu0iIY4KZmJ6AUrDtQzrzhKUYiGHJ8wtiRtPhw1hwoo6q+iZgwG2/dMsv93Mp9xljBvuoa2uRwEtrOHIiiB773tHFzOuH3A6F8f8/3NffHxk30nlJww+etly24u3v7mHilcWv2yxLvVRDNXw2f3gsjz+ramEVhvgGj4d5Dna8nhBAiaMk37AAXGWojLiKEkhpj3rH6JifhId077enxEZTXNlFY1UB0eOsvls1dQ/uqRbDR7iS0my2YogssFqPrWNFOsyMRfcVqg8Za7+yrodL4GSJjdYUQQohAId+wg0BiZCilNUbBgLoetAimuwrC7CqoIuaYRLA5SeurqqGNDkkE+0xsOuz6FEr39mz7f50JH3d9kmvRzw4sh3/Mg+VemFLii98ZP0Ojer8vIYQQQvgE+YYdBBKiQimrNRLB+iYHEd1NBOONRHBnQTXRYe21CPZNIthgl66hfWbSVcbPgi092z5jMiRLARGflToaSnZBwebe7yskwpjKQhJBIYQQImDIGMEgkBAZyqHyOrTWNNidhHUzEcz0qEYafcx0ExGhxr6qPCat96ZGu/O4VkjhJUNOMn6W93DKgVN/671YhPeFx0LGFO9MKdFUD2Mv7v1+hBBCCOEz5Bt2EEiKCmX9wTLqXd03uztGMC0unNSYMAqrGog5pkVwYGw4ydGhrMkr5QczBnst5maNdqe71VF4WWQi3L7GGCu49FFoqoMT7zOeW/QrYwqDdmlj6onBszpYR5guLhP2LoG3rm+9fMjC1oVlOqI1NNUarYJCCCGECBiSCAaBEzLjeH31QbYfNQo+hLcxzURHlFJMHpzAx5uPkhQdetxzM4ck8+2eErTWXp/modHhJES6hvYNpSB5qHG/dA80VLU8V7QDind1sLGG//0EzvkrDJrWp2GKXhh1jtE19PC61suThxmFZL57AnLmdpzQO5pAO6RQjBBCCBFgJBEMAnOGJgOweFshQLeLxQDEurqEenYTbTZ7SBIfbDjMR5uOcta4tF5EejypGtpPzvtb68dXvG5OHMK7xl5k3NriaIKvHgJrSMeJYJOr8qgkgkIIIURAkW/YQSA7KZKM+Aje33AYgNiI7uf/c4YZyeSEQcfPIXb6CQOxKLjrtXVU1Tf1LthjNEqxGCH6hjUE7jva+VyQ2gm5CyAhuz+iEkIIIUQ/kW/YQUApxVnj0jhQalzZT44O6/Y+zhmfznd3n8i0nMTjnouPDOWPF4zF7tTsLKjudbyeZPoIIfqQLRQaqsHe0P46kYlw1Xsw8sz+i0sIIYQQfc7nvmErpZ5XShUqpTZ7LLtfKXVIKbXedZNvJN10y/wh7vvJx4zz66rmaSTaMmuI0WK442hVu+v0hHQNFaIPHVwJf8yAvKVmRyKEEEKIfuaL37BfAE5vY/ljWusJrttH/RyT30uIakn+etIi2JmM+AgiQ63sLPByIigtgkL0ndh042dHU4gcWgt/GQf7l/VPTEIIIYToFz5XLEZr/bVSKtvsOAJRVmIkB0pr3YVfvMliUQwfEOOuTOoNWmtj+ggZIyhE34geCMoKXz0Ma186/vm5P4Hk4ZA1EyKOHx8shBBCCP/lc4lgB25XSl0FrAZ+orUuO3YFpdSNwI0AWVlZ/Rye73vn1lnsK67BYvHuFA/NTsiI5Z21h6hvcvSoMumxmhwaQFoEhegrVpuR7B07vUQzWzikDIcL/tG/cQkhhBCiz/lLIvgU8FtAu37+Gbju2JW01s8AzwBMmTJF92eA/iA5OqxPuoU2O2nUAP69/ADL9pSwcGRqj/axdFcRryw/wEMXjnMv80ZSKYRox4n3mR2BEEIIIUzgF4mg1rqg+b5S6p/AhyaGI9oxa0gSUaFWPtl8tNuJoNOpufudjbyxOh+AmUOSWDjC2EdchPe7sgohhBBCCBHM/KLPnVLKc5by7wGb21tXmCfMZuW0MQP5aNMR6hod7a53uLyO+9/fQoO9ZZ1/Lt3LG6vz+eHcHOIjQ1h/sJyKOmNOQkkEhRBCCCGE8C6fSwSVUq8Cy4ARSql8pdT1wMNKqU1KqY3AQuBHpgYp2nXxlEFUNdi549V2xhwBt/x7DS98l8eqfcYwz8+3FvDHj7dz2pgB3HvmKIanxnCovE4SQSGEEEIIIfqIz3UN1Vpf3sbi5/o9ENEjM3ITyU2J4vNtBRwqryPjmLkHK+qa2JBfAcCuwirmDEvm9dUHSY8L5/HLJ6KUIj0+nKW7iimtbQSMCeuFEEIIIYQQ3uNzLYLCvymlePaqKQB8tuXocc//8+u97vvbjxhzDuYV1zAmI44wm1EUZvjAGEpqGrnT1aooLYJCCCGEEEJ4lySCwutyU6IZPiCa11cdpLSm0b38gQ+28uSS3Zw1Lo3ZQ5PYeqQSu8PJ/tJacpKj3OtdPyeHX5w1iuToMAbGhpMQJYmgEEIIIYQQ3iSJoOgTd5w4jO1Hq5j/pyUcKKkF4P0Nh0iPC+cP549ldFosmw5VMPS+j2m0O5mU1TJZdZjNyg1zc1n9i5NZfu9J7pZCIYQQQgghhHf43BhBERjOGZ9OcnQYN760mh88v4JfnT2a4upGfn76SOIiQ7h5/hAy4iPYVViNRSlOGT3A7JCFEEIIIYQIGpIIij4zc0gSj18xkWv/tYrrX1wNQHZSJABJ0WFcMzvHzPCEEEIIIYQIWtI1VPSphSNS+ccPJrsfTx6c0MHaQgghhBBCiP4gLYKiz502ZiC3LxzKofI6UmPDzQ5HCCGEEEKIoCeJoOgXPz1thNkhCCGEEEIIIVyka6gQQgghhBBCBBlJBIUQQgghhBAiyEgiKIQQQgghhBBBRhJBIYQQQgghhAgykggKIYQQQgghRJBRWmuzY+gTSqkiYL/ZcfSDZKDY7CBEn5BzG7jk3AYmOa+BS85t4JJzG5jkvLYYrLVOaeuJgE0Eg4VSarXWeorZcQjvk3MbuOTcBiY5r4FLzm3gknMbmOS8do10DRVCCCGEEEKIICOJoBBCCCGEEEIEGUkE/d8zZgcg+oyc28Al5zYwyXkNXHJuA5ec28Ak57ULZIygEEIIIYQQQgQZaREUQgghhBBCiCAjiaCXKaUGKaWWKKW2KaW2KKXuci1PVEotUkrtcv1McC1Pcq1frZR60mM/MUqp9R63YqXUX9o55mSl1Cal1G6l1ONKKeVa/pjH9juVUuXtbD9PKbVWKWVXSl3UxvOxSqlDnvEFo0A7t0oph8c+3vfOq+R/AvC8ZimlPnP9PluVUtleeaH8UCCdW6XUwmNiqFdKne+1F8uPBNJ5dT33sOv32Oa572AUgOf2IaXUZtftUu+8Sv7JT8/tj5XxObpRKbVYKTXY47mrXTHvUkpd7b1Xqp9preXmxRuQBkxy3Y8BdgKjgYeBu13L7wYect2PAuYANwNPdrDfNcC8dp5bCcwEFPAxcEYb69wBPN/O9tnAOOAl4KI2nv8r8J+O4guGW6CdW6Da7NfUF24BeF6/BE5x3Y8GIs1+jeXceufceqyTCJQG67kNpPMKzAK+Bayu2zJggdmvsZxbr5zbs4BFgM0V52og1uzXWM5tt87twub3WeAW4HXX/URgr+tngut+gtmvcU9u0iLoZVrrI1rrta77VcA2IAM4D3jRtdqLwPmudWq01t8A9e3tUyk1DEgFlrbxXBrGG8sybfx1vtS872NcDrzaTsx5WuuNgLON/U8GBgCftRdfsAi0cysMgXRelVKjAZvWepFrvWqtdW17cQa6QDq3x7gI+DhYz22AnVcNhAOhQBgQAhS0F2egC7BzOxr4Smtt11rXABuA09uLM9D56bld4vE+uxzIdN0/DViktS7VWpdhJPx+eW4lEexDyuiSNRFYAQzQWh8B458B4w+3qy7HuArRVmWfDCDf43G+a5lnHIOBHOCLbhwTpZQF+DPws+5sFwz8/dy6hCulViullqsg7WJ2rAA4r8OBcqXUO0qpdUqpPymlrN3cR0AKgHPr6TLa+eISbPz9vGqtlwFLgCOu26da623d2Ueg8vdzi5H4naGUilRKJWO0Lg3q5j4Ckp+e2+sxWhWb932wo337C5vZAQQqpVQ08Dbwf1rryl52+b8M+EF7h2pj2bH/EJcBb2mtHd087q3AR1rrg0E8ZOE4AXJuAbK01oeVUrnAF0qpTVrrPT3YT0AIkPNqA+ZifMAeAF4HrgGe6+Z+AkqAnFvjAMZV7rHApz3ZPpAEwnlVSg0FRtHS0rBIKTVPa/11d/YTaALh3GqtP1NKTQW+A4owuv3au7OPQOSP51YpdSUwBZjfjX37BWkR7ANKqRCMP/JXtNbvuBYXuD7Amz/IC7u4r/EYXb3WuB5bPQa4PoBxFSLTY5NM4PAxu2l19Vgp9fvmfXRy+JnA7UqpPOAR4Cql1INdiTtQBdC5RWt92PVzL8a4soldiTsQBdB5zQfWaa33aq3twH+BSV2JO1AF0Lltdgnwrta6qYvrB6QAOq/fA5a7unFXY7Q4zOhK3IEqgM4tWuvfa60naK1PwUgednUl7kDlj+dWKXUycB9wrta6wbU4n9atu23t2y9IIuhlyri08RywTWv9qMdT7wPNVYWuBt7r4i5b9V3WWjtcbyoTtNa/cjWjVymlZriOfZXnvpVSIzAGsi7z2Md9zfvo6MBa6+9rrbO01tnAT4GXtNZ3dzHugBNI51YplaCUCnPdTwZmA1u7GHdACaTzCqwCEpRSKa7HJxKk5xUC7ty2GUMwCrDzegCYr5Syub4kz8cYOxWUAuncuhKTJNf9cRgFZYK23oI/nlul1ETgHxhJoGeC+ilwquu7VAJwKv7aS0P7QMWaQLphVDjSwEZgvet2JpAELMa4GrQYSPTYJg+jAlw1xlWG0R7P7QVGdnLMKcBmYA/wJKA8nrsfeLCT7ae6jlsDlABb2ljnGqRqaMCcW4xKdZswxjBsAq43+/WV89r78+p67hTX77IJeAEINfs1lnPrtXObDRwCLGa/tnJevfZebMX4orkN46LNo2a/vnJuvXZuw13ndCtGoZEJZr++cm67fW4/xyje1Bzv+x7PXQfsdt2uNfv17elNuX4ZIYQQIiC5urffoLX+3GPZNa5lc7ywfw0M01rvbud5rx2rt7EIIYQQzaRrqBBCCCGEEEIEGUkEhRBCBD2lVLpS6m2lVJFSap9S6k6P56YppZYppcqVUkeUUk8qpUJdzzVXd9yglKpWSl3ahWPlKaV+qpTaqJSqUEq9rpQKdz23QCmVr5S6VylV7Fr3+x7bfqmUusHj8TVKqW96GosQQojgJYmgEEKIoKaMOVM/wBgzmwGcBPyfUuo01yoO4EdAMkY15ZMwptdBaz3Ptc54rXW01vr1Lh72EowJiHMwikhc4/HcQNexMjCKJzzjKmzQoV7EIoQQIghJIiiEECIY/NfVoleulCoH/u7x3FQgRWv9gNa6URtTqvwTo7Q4Wus1WuvlWmu71joPo7jHfHrnca31Ya11KUYSOuGY53+ptW7QWn8F/A8jcRRCCCG8RiaUF0IIEQzOb6tYjOvhYCDdlSA2swJLXesOBx7FqEAXifHZuaaX8Rz1uF8LpHs8LtNa13g83n/M80IIIUSvSYugEEKIYHcQ2Ke1jve4xWitz3Q9/xSwHaMaZyxwL8bk0H0lQSkV5fE4i5bJimswktFmA/swDiGEEAFMEkEhhBDBbiVQqZT6uVIqwjUR9AlKqamu52OASqBaKTUSuOWY7QuAXC/H9BulVKhSai5wNvCma/l64AKlVKRSaihwfT/EIoQQIgBJIiiEECKoaa0dwDkY4/T2AcXAs0Cca5WfAlcAVRhjB48twnI/8KJr/KE3xvIdBcowWgFfAW7WWm93PfcY0IiR8L3oer4vYxFCCBGgZEJ5IYQQwkcopRYA/9ZaZ5ocihBCiAAnLYJCCCGEEEIIEWQkERRCCCGEEEKIICNdQ4UQQgghhBAiyEiLoBBCCCGEEEIEGUkEhRBCCCGEECLI2MwOoK8kJyfr7Oxss8MQQgghhBBCCFOsWbOmWGud0tZzAZsIZmdns3r1arPDEEIIIYQQQghTKKX2t/ecdA0VQgghhBBCiCAjiaAQQgghhBBCBBlJBIUQQgghhBAiyATsGEEhhBDtczg1nvPIWpTCYlEmRtQ1TU1N5OfnU19fb3YoASc8PJzMzExCQkLMDkUIIXxCk8PJaysPUN3gcC8bkhLFqWMGmhiV9/Q6EVRKhQNfA2Gu/b2ltf61UioReB3IBvKAS7TWZa5t7gGuBxzAnVrrT13LJwMvABHAR8BdWmutlAoDXgImAyXApVrrvN7GLoQw3uReWraf6no74SEWvj9jMNFhfXON6K7X1rFkeyEAFovid+efwNnj0vvkWKJ9X+8s4toXVuFwtiSCUaFWPvvxfDLiI0yMrHP5+fnExMSQnZ2NUr6fuPoLrTUlJSXk5+eTk5NjdjhC+KyiqgZueGk11fVNAFw6dRA3zhticlSir2w6VMEv39vSall4iIXtvz3DpIi8yxtdQxuAE7XW44EJwOlKqRnA3cBirfUwYLHrMUqp0cBlwBjgdODvSimra19PATcCw1y3013LrwfKtNZDgceAh7wQtxAC403utx9u5bHPd/LHj7fzza7iPjvWugPlJMeEccGkTCrqmth2pLLPjiXad7CsFodTc9P8XH5yynAumJhBTaODwkrfb2Wrr68nKSlJkkAvU0qRlJQkLa1e4nBqCivrKaysp6KuyexwhBflldSw4WA5SdFhlNY08tXOIrNDEn2o+YLp89dMYftvT+fGebmtLqL6u14ngtpQ7XoY4rpp4DzgRdfyF4HzXffPA17TWjdorfcBu4FpSqk0IFZrvUwb/ZVeOmab5n29BZyk5FuAEF7hdL2h3XfmKOOx7ts3uPGZ8dx/7hisJv8LV9U38ebqg7y68gD7imtMjcUs18/O4Y6ThnHOBP9qlZW3/74RCK/r66sOcPfbG7n77Y2s2FtiWhz3vbuJaX9YzLQ/LGbiA5/JRa8AdOeJwxiSEm12GP1m3YEyXlmxn7KaRrNDMUWo1Up4iBWbHwyh6A6v9P9yteitAYYCf9Nar1BKDdBaHwHQWh9RSqW6Vs8Alntsnu9a1uS6f+zy5m0OuvZlV0pVAElAq6YLpdSNGC2KZGVleeNXEyJoBMB3wG757/rD/PK/mwE4edQAnr16iskRteZwaq57YRWHyuvcyy6ZkildkHxAdHQ01dXV7scvvPACq1ev5sknn+z2vtavX8/hw4c588wzj3vuyy+/5JFHHuHDDz/sVbxt7Tc0NJRZs2Z5db++4M+f7aSyvokmh6a6wc703CRT4iiorCcjPoKzxqXxzNd7KakOzi/PInD85I0N7C2uoabBLp9DAcQriaDW2gFMUErFA+8qpU7oYPW2vm7qDpZ3tM2xcTwDPAMwZcqUwGm3FX6trtHBve9uotLVPUgpuGZWDnOGJZscWXBrsjsByEyIoMnh7Pfj5xXXsHJfqftxamwYC0akuh9XN9j5amcRo9JiyU2O4rs9xXy1s0g+gAPM+vXrWb16dZuJYF/58ssviY6ODshEUAPfm5jJyn0lx39J6GdJ0aGcMnoAz3y91+RI+l5BZT2fbS0ArRmcFMW84SlmhyS8rK7JKJbS5DD7P0t4k1enj9BalwNfYoztK3B198T1s9C1Wj4wyGOzTOCwa3lmG8tbbaOUsgFxQClC+IE9RdW8u+4QuwqrKaiq58sdRXy48XDnG/o4u8NJXaOD+iZH5yv7sBCrObPo/P6jbfy/tze6b9f8a1WbY4kumpzJ374/qcMuSA12Bx9tOsK76/L5fGtBq2qgon8VFRVx4YUXMnXqVKZOncq3334LwMqVK5k1axYTJ05k1qxZ7Nixg8bGRn71q1/x+uuvM2HCBF5//fV293v//fdz3XXXsWDBAnJzc3n88ccByMvLY+TIkVx99dWMGzeOiy66iNraWgCys7MpLjY6zqxevZoFCxaQl5fH008/zWOPPcaECRNYunRpH78iIhg8/80+fvnfzfzyvS1c/+Iqs8PxK/9dd4j739/CwdJas0PpkCXYug0FCW9UDU0BmrTW5UqpCOBkjGIu7wNXAw+6fr7n2uR94D9KqUeBdIyiMCu11g6lVJWr0MwK4CrgCY9trgaWARcBX2j5piP8zC/OGsWpYwYy/Q+fmx1KrzU5nMx+8AsKqxoAePjCcVwydVAnWwlPjXYno9JiefbqKby9Jp9HF+3E3sOWySXbC7n1lbXuxx/fNZdRabHeCtVn/eaDLWw97N2xV6PTY/n1OWM6XKeuro4JEya4H5eWlnLuuecCcNddd/GjH/2IOXPmcODAAU477TS2bdvGyJEj+frrr7HZbHz++efce++9vP322zzwwANd7la6fft2lixZQlVVFSNGjOCWW24BYMeOHTz33HPMnj2b6667jr///e/89Kc/bXMf2dnZ3HzzzURHR7e7jqevdhbxtyW73X1wTh6dKq3S4jhNDk1UqJXvzxgcFC2g3vSbD7ZQVttEZkIEN8zNNTsc0U0HS2tbjQGeNTS5zyqv9wVvRJoGvOgaJ2gB3tBaf6iUWga8oZS6HjgAXAygtd6ilHoD2ArYgdtcXUsBbqFl+oiPXTeA54CXlVK7MVoCL/NC3EKIHmq0OymsamDhiBSW7CjiYJlvX8n0VaE2CxnxEcRH9m7etgZXN9fbFg7hb0v2uB+LvhEREcH69evdj5vHCAJ8/vnnbN261f1cZWUlVVVVVFRUcPXVV7Nr1y6UUjQ1db+S5FlnnUVYWBhhYWGkpqZSUFAAwKBBg5g9ezYAV155JY8//niXkryuWLK9kDX7y5iWncj2o5VUyfgg0Q6LUkSEWDtfUbTS3KohzRv+6c7X1rHuQLn78ec/ns/QVP8pItTrRFBrvRGY2MbyEuCkdrb5PfD7NpavBo4bX6i1rseVSIq+8e66fO59ZzNOrbFZFE9+fxILPcYrieC2t6iaw+UtZeUtrt6UM4ckSelsH5IYFWZ2CP2qs5a7vmR3OjlcVo9Ta4qrG9zVdp1OJ8uWLSMiovV8jHfccQcLFy7k3XffJS8vjwULFnT7mGFhLefXarVit9uB46t9Nj+22Ww4ncZFgd5MCxEdZuPVG2fww5dWk19W1/kGQoig12B3cM4T33CkouW959pZ2fz41BEmRuV9dY0OZuQm8ouzRgNG3QF/4j9tlwHuUHkdJdUNDB8QQ7gJV9R2HK2mwe7g6lnZ/OvbPPYUVksiKNzOffJbqhvsph3/hhdX8/k2o/Xjpnm53OOa6kIIs9Q3OSmvayTEaqGu0YHdVUDh1FNP5cknn+RnP/sZYBSDmTBhAhUVFWRkGIWwX3jhBfd+YmJiqKqq6lUsBw4cYNmyZcycOZNXX32VOXPmAEY30DVr1nDGGWfw9ttvtzpmZaVMZxDo3lqT7x6PHh1m448XjCUmvHe9D4Toqup6OzsLqpmRm8iotFg+2HCEDfkVZofVJ2LDQzghI87sMHrEnCoJopXaRjsL//Ql5z75Lb/5YItpcdisFn50ynDTji98V02jnQsnZfLmzTO598yR/X78XYVVjBgQQ0pMGLsKqzvfQIh+khzduhX28ccfZ/Xq1YwbN47Ro0fz9NNPA/D//t//45577mH27Nk4HC0FlhYuXMjWrVs7LRbTkVGjRvHiiy8ybtw4SktL3WMHf/3rX3PXXXcxd+5crNaWC4znnHMO7777bpvFYmob7Vz41Hfu2/82HelRTMJ8b64+yKp9pRwoqeXDjUfYWSDvnd1V3+Rg7YEy1uwvY/OhCve8u6Lrzhybxq/PGUOGn7WUBQtpEfQBDU1OGl1FIirrzWt1EaIjGfHhTM1ONK1lcFRaDHuKgnPid+FbqqurW/0fnHfJFQxOigIgOTm5zYRu5syZ7Ny50/34t7/9LQCJiYmsWtV2lcUFCxa4u5Def//9rZ7bvNmYAzMvLw+LxeJOOD3NnTu31TGbDR8+nI0bN7Z5zLpGB9uOVDIpKwGAEQNimDAovs11he87ISOOWxcO5ernV/Z4Hw6nxu50YrNYsAbYZNqdeezznfzjq5biN099fxLJMd7tgt/8ij786Xb+8vlOHrxwHOeMT/fqMYRojySCQgghhHAbnBTFv2+YbnYYwgc4nJq5D33B4Yp64iND+ObnJ/pVRcTeqq63ExNu4/5zxvCTNzdQ1WD3eiIYGWqjrLaJa2fn8MzXe9lZ0Luu4kJ0R/D8N4uAs2RHobtwQZjNwjnj0okIlYplwn+V1DSSFB1cBV9E72RnZ7tbB4+lteZoZT2NdicJkaHERsj4MNE9TQ4nhyvqSYgMoay2icq6pqBKBMH4fjE9N7FPj3HhpEzuPXMUzy41b+qN8tpGHE5NYlTocQWoROAKrv9mETAa7A6uf2EVnt31Y8JsnDE2zbyghOihUNek9qc+9jVv3DSTaTl9+6VDBAenhiLXXJ9aI4mg6LH4yFDKars/5Ukw2FlQzT3vbOTOk4aRFuef4+BeXXmAe97ZBMBN83O554zgKMhW1+jgpWV51DUZ47atSnHh5EzS4/3zPPaEJILCL2ltfMm5feFQFoxI4aKnl7nHWXp6duleth9t3c3iosmZzMhN6q9Qe8zp1Dg8JhayWZRcpQtQ54xPp6y2iYc+2U5pTYPZ4fg8rbX8L/QBrTW+Vgrjb0t287XHFDVhIVYeOHcM2clRJkYlhGHWkCTyy+p4deVBJg5K4JKpg8wOqUeap3hIjArlaEXPp5rxN8v3lfDHj7e3WqaBO08a1uF2WkNFnXFhxOnnE0BKIij8WlSYjYSo0Haff/iTHYTaLMS5roQ3d5Py9URQa83CP3/J/pKWidrPn5DOXy47bspO4YM25pdz40trWl2cOHlUKg9fNL7N9aPCbCwYkcJDn2xv83nRIjw8nJKSEpKSkiQZ9CKtNSUlJZTU+9aXmrfX5FNR18TQ1Gjq7U5W7Ctl3cEySQSD0KKtBazKKwXg5FEDfKLnxI9PHcGl07KY/eAXZofiFbHhwZUWNFeBfe+22YzLjCPnno9wdFIZ1ma1YHdqxv/mM/eyYakxfRpnXwquMy686vVVB/hw4xFGpcVyrw/P6/aDmYP5+enGlAcLH/nS3GC6SGvYX1LLrCFJzBqSxNtrD7GvWCpm+ovdhdUcrazn/AnpxISH8PWuIlbvLzM7rICQmZlJfn4+RUVFna/chxrsDoqqGmmICKG8rgl7SahXxig3NDlocF1AsCjVq/FYTq0pKDeu7leGWKgr6nj8aXh4OIsPODpcxwyzhibzxOUTySuuYYGfvIcfa92BMmoa7Zw4MpUQa+czd721Jp/8slpOHjXAPT/Z9qOVlFY3utdRSjExK96UuYfN8PAn29lTVI0GdhZUMS1nmtkhiQChFF2+sHjl9CwSIkNaDU2aPzyljyLre5IIih57e80hVuaVsnxviU8ngt219XAlVfVNhIVYGZcRh8XEctnTc5K4/cRhrN5fRllNY+cbCJ/yo1OGMzgpitv/s5atR2QCb28ICQkhJyfH7DBYvreEH76ynF+ePZrffriVp6+czOmjBvZ6v2f8dSnbPP5WvvrZAvfUFN1V02DnrF9/CsApowfwz6smdLpN/dKSHh1LdOzPi4xpPJ6/ZgonjhzQ4bq1jXZ++uYGAHYcreKpKydTVtPIGX9dyrG90H5++khuWTCkT2L2NU6tOWNsGofK6pDp/IRZUmPDuXa2+Z9B3iKJoBAe9hRVc+bjLRMsP/ODyZw6pvdf7vyR3eHk1Me+5mBZLVp3/WqZEKLnnE7NqaMHcPoJA/nxGxs67abUnxSw42gl4+43ksvU2HA+vGNO0LRIeUND0/Fj2Y/lecqbz3+93YHWcNO8XE4cmQrAZf9cTm2jzD0shOg5SQSF8FDjmiT6yhlZ/Hv5AWq68SFbVd/krjwFEBse4tdfkOrtTvYW1zBrSBKTBydw0eRMs0MSIihYlPLJibt/OC/XXU1vZ0EV3+0poay20W8rJfqjnOQoprvGuPveX4gQwt/0OhFUSg0CXgIGAk7gGa31X5VSicDrQDaQB1yitS5zbXMPcD3gAO7UWn/qWj4ZeAGIAD4C7tJaa6VUmOsYk4ES4FKtdV5vYxeiPTnJ0d1a/1B5HfMfXoLd41JuSkwYK+45yduh9buFI1L54bxcs8MQQphsanYiU7ONAh2vrTzAd3v8rxtpXnENZz2+lJpGB7OHJvHKDTPMDskn2R1Oth+torbR98aMCiG8xxstgnbgJ1rrtUqpGGCNUmoRcA2wWGv9oFLqbuBu4OdKqdHAZcAYIB34XCk1XGvtAJ4CbgSWYySCpwMfYySNZVrroUqpy4CHgEu9ELsQXlFW04jdqfn+9CxGpcWyZHshi7cX+lwpdiFEcDtSUcd/1x3GqTWZCRGcNyHD7JD61ZGKemoaHcRHhrCroNrscDpVWtPId3uKKe3nMeL/+jaP33+0zf04wo97twgh2tfrRFBrfQQ44rpfpZTaBmQA5wELXKu9CHwJ/Ny1/DWtdQOwTym1G5imlMoDYrXWywCUUi8B52MkgucB97v29RbwpFJKae3nk3eIgLNgRCqnjB5AaU0ji7cXmh3Ocarqm7j6+ZWU1zURarXwyMVtT2cgvK+2wcGXOwqZnpPkleqSQvTEaysP8tfFu9yPTxsz0K+7sPdUQmSoeyiAL1u9v4wr/rnC/TiqF1Vku6Oq3pgj7flrpmC1WNhfUsOv3tvSL8cWQvQfr76jKKWygYnACmCAK0lEa31EKZXqWi0Do8WvWb5rWZPr/rHLm7c56NqXXSlVASQBxd6MX4hAd6i8jrUHyhmdFsvWI5VsOVzBkJTudYMV3RcTHsLRynqu+dcq7jtzlHS19SN7i6qpa3IwcmCsT47b6y6HU2NR8JNTR/CnT3f4/WTI3qK15mhlPQ6nxmpRDIwNN71A1k3zclk4MtX9OMRqYcKg+H47vlK4K5y+vqqu344rgltBZT1vrclvVShrwYgUxmXGmxdUAPNaIqiUigbeBv5Pa13ZwRtoW0/oDpZ3tM2xMdyI0bWUrKyszkIWImhdODmTrR9uNTuMoPHrc0ZzyZRMvvf372TMjR/ZcriCsx7/BoD7zxnNNQFSMlwphS0Aklpven3VQe5+Z5P78R++N5Yrppv7PSI5OowZrsIwQgSLt9bk86dPd7RatvZAGS9cK/NG9oXOZzXtAqVUCEYS+IrW+h3X4gKlVJrr+TSguZ9cPjDIY/NM4LBreWYby1tto5SyAXFA6bFxaK2f0VpP0VpPSUnx38kdhRCBJTzEyni5mul3Kutaug5W1vt+N0LRc8XVDYCRAHo+FkL0L6erJXDH705nzx/OZMKgeJ+aRifQ9DoRVEbT33PANq31ox5PvQ9c7bp/NfCex/LLlFJhSqkcYBiw0tWNtEopNcO1z6uO2aZ5XxcBX8j4QNHftNas2FvCoq0FLNpawOFy6SojhBCB5IJJwVU8R/S9w+V1XPL0Ms5+YilnP7GU11cdMDskv2B1TaMjUxj3LW90DZ0N/ADYpJRa71p2L/Ag8IZS6nrgAHAxgNZ6i1LqDWArRsXR21wVQwFuoWX6iI9dNzASzZddhWVKMaqOCtGv9hRVc+kzLcNbpfS4CFZNDieFVS0tJmmx4Vikq6EQQhxnx9EqVuaVMmVwAtuPVrF4WyGXTpXhS92xp7CaBz7YilNrQqyK6+bkyPylXuKNqqHf0P68pm1Ooqa1/j3w+zaWrwZOaGN5Pa5EUgiz1DU6Afjl2aP5YMNh6mSslwhSP3p9PR9uPOJ+fOO8XO49c5SJEQl/4nBqmhzG+2kwViwV5njxuzz+t+kIY9Jj+fU5Y/r9+L84ezR3v72x348bCA5X1PP8t/uICbNR1WAnIz6iS2O2f/zGerYfqeLPl4xnVFpsP0Tqf7wyRlCIYDI4MZKY8P4p4S2ELyqqaiA3OYqHLxxHYlQoRVUynkp03Wl/+ZqRv/yEkb/8hGe+3mN2OCJIvLf+ECv3lfLqSuma6Y8iQqws/flCoI1qke14Z+0hth6pZPOhir4LzM/Jt1mTlNc28uJ3+2l0ONwtTUII0ZH8sjqe+rLli/OEQfHMHGJOVcGUmDAumTqIJ5fsNuX4wn8dKKllek4imw5VsL+k1uxwhBA+4Llv9rH1cCXbjlSaHUpQkUTQJF9sL+Sxz3caA2GB8BAL9U2SEPqav36+i5eX7QegtKbR5GhEMMtKimT1/jIe+mS7e9mQlCgW/2SBeUGZwO5wsvlwJXaHk4SoUJkH048s21PCv1fsp8npZNLgBPYUVQOwZEcht72yFrvDuM4/YVA8b9w808xQhRD97JFPd2C1KOIiQpg7LDkg5m31B5IImqS5Eu6XP13AoMRIAE7685fmBSRayYgP57wJ6e7k71BZHXl+fOX6293FvL7qIJX1TWaHInrozxePd5e2B/jJmxvYEoTdXd5Ze4j/5xpnoxSs+cUpJEaFmhyV6Ip31ubzyeajDE2JZlp2Im+uPgjA3qIaahsdXDc7h9X7S9kqLQI9snhbAXe8ug676wtGk8PJjByZh1D4jyumZ8l4834miaAQbQixWvjrZRPdj5//Zh8P+PEE7G+sPshHm44wKDGSkQNjGDEgxuyQfMr+khoeXbQTrTU5yVFcMCmz8436mVKqVWGNYJ0QvKrBmM/viulZ/GfFAWob7ZII+pEBMWEs+vH8Np+76+RhPL54F3uLavo5qsCwu7Ca2kYH18/JIcRqlIBYMCKFBrv0NhJCtE0SQSF8SPNEqs4+mCYzMyGCJT9dACBzIB4jr6SWxxfvAoxWpvMnZMh0CD4uNznK7BCE8Ek/OXU4kaEtX+++2llkYjRCCF8miaAQPuKBD7by/Lf7Wi2z9rKur9aa3YXVlNVKl9DORIVauXHeEB77fKfZoYg+oLXmYGkdTU4nFqUYnBgpyb4QQoigJomgED5iT1E1A2LDuGLaYMBIAi+aPKhX+1y9v4yLn14GIHPoiKD23vrD/N/r692Pf376SG5ZMMS8gIQQwkRFVQ088/UemhyadQfKzA5HmEQSQSF8yMC4CO46eZjX9lflKg7zi7NGcerogV7brxD+prnw0x8vGMuv3ttMea1UAQ4mWw9Xcsk/llHbaIwxVdIY7Bfyimu49ZW11Dc5OFhWy0i5oOkVWmuWbC/kn0uNSdotFsWUwQkUV8ucsMFGEkEhgsDU7ESykiLNDsMUFbVN3PPuRhrtmrAQC/eeOYqM+Aizw2rX8r2lTM1OxNbbfsGiTWeekMZvPthidhiin+WX1VLdYOfSKYPITo5iV2EV3+wqNjss0YkdBVVsPVLJvOEpjMmI45Ipmfz5M+m+3xuLthZw87/X4HDVJPj8J/MZEBsOwII/LemXGBrtTs554huOVLTUK6hrciDXZ/qfJILCZzmcmoWPfMmB0lpunj+Eu88YaXZIoh8drahns2t6hNpGR4/24XBqxj/wWatlp4waQMbEjF7H523xkSFYFLzwXR4RoVZuni/dFoXwth/MHMwJGXHc885Gs0MR3fDz00cwJj0OQBLBXtpfUoPDqbllwRAyEyJIjQnr9xiqG+zsKKhiek6ie9iKRSkuntK1it2vrDjA8r0l7sej0+Lcvam01lz/4mr3PKWiY5IICp/VaHdyoNSYu293YZXJ0XjX/pJaXlqW536slKKwqoFQm7QCNbv33U18sb3Q/Tg2IqTb+7A7jbLpOclRPH3lZE77y9dei8/b0uIiWP2LU5jz0Bc0drHce3F1I3e/vZG8Ev8rt+9wak5+9Ct37GE2C//54QwmZSWYHJkQQgS+WxcMISa8+5+rHTlQUuuer7h5PsuOnDk2jatnZXf7OLsLqymoqCcjIYLCqga+2lnkkQjCF9sLGTkwhmnZiazMK+32/oOJJIL9zOnUfO/v37KjILASG9E9y/aWsMzjalaz8YPi+zWOv3+5h3CbtfMV+1l+WS0FlfWMTovloQvHATBsQLS78E13XTQ50y+S7MSoUCxdHLw0ZXACy/eWsGSHkSyPHBhjypXdnmpyONlXXMOsIUkMSYnm5eX7OVhaK4mgEEL4of0lNcz/05f9drx5w1P42/cn8cePtvGix4X1ZmeckMYFkzKY+3D/dHf1V15JBJVSzwNnA4Va6xNcyxKB14FsIA+4RGtd5nruHuB6wAHcqbX+1LV8MvACEAF8BNyltdZKqTDgJWAyUAJcqrXO80bs/c2hNRvyK5iUFc9JowaQmeC7Y5VE38pOiuTtW2YBMOehJdQ19az7Y0+kxoTxvYkZFFUZA8MHJ0UyOt13BuGf/cQ3lNc2sWBECmMz48wOxyf9YGY2P5iZ3WrZEo8WVH8xd1gKp40ZwMvL95sdihD9Yk9RNVc+u4LaRgcnjUzl0UsnmB2SEL1WWWcUYrpt4RAcTnj6qz0mRyS6wlstgi8AT2Ika83uBhZrrR9USt3tevxzpdRo4DJgDJAOfK6UGq61dgBPATcCyzESwdOBjzGSxjKt9VCl1GXAQ8ClXordFCeOTOW2hUPNDkOYyGpRJEUbLTj9XcHOZrXw2DFfPnYc9Z1W6poGO+eMT+fX54w2OxTh43YWVHHRU8uot7dcSIkIsfLy9dMZmhptYmTeo7Xm529vJL+spbDC+RMyuGRq76aXEebYX1LDkYp6YsJtrJWy/SLATByU0KVuocI3eKWvlNb6a+DYTrjnAS+67r8InO+x/DWtdYPWeh+wG5imlEoDYrXWy7TWGiOpPL+Nfb0FnKSUFH8OJk4NdocT409DBINBCREkR/esq2N9k4Oq+iaq6+1ejkr4mr1FNRytrGfusBTOG5/O7KHJHKmoJ6/Y/8ZNtqe6wc4bq/M5UFpLk8PJxvwK3l13yOywRC/19P1NCCG8pS/HCA7QWh8B0FofUUqlupZnYLT4Nct3LWty3T92efM2B137siulKoAkoFXtZ6XUjRgtimRlZXn1lxHm+mJ7IUPv+5jLpw3ijxeMMzscn1ZYVc/SncVojLmzgs26A2Vc9PQyd2lsgBCrXDcKdLcuGMKotFg25Vfwv41HzA6nT1wzK5sb5uZySQ/HygohhBCezCgW09Y3Mt3B8o62ab1A62eAZwCmTJkiTUcB4sSRqUwcFM/rqw+yp8j/r/I3FwPpalGQ7nrqyz3869s892OlICEytE+O5YuOVtTjcGpunJdLakwYVovi3PHpVErroBBCCCGEW18mggVKqTRXa2Aa0FzFIB/wHNiQCRx2Lc9sY7nnNvlKKRsQx/FdUUWAmpaTyM3zh/DtnmICodv5L88ezYb8cqZlJ/bJ/hvtThIiQ3j/9jkARIZa3WMRg8kFkzIYObClAI4kgkIIIYQQLfoyEXwfuBp40PXzPY/l/1FKPYpRLGYYsFJr7VBKVSmlZgArgKuAJ47Z1zLgIuALLYPFOvToZztYvreUecOTuf3EYWaHIzycOTaNM8em9ekxrBbFoMTIPj2GEH2lpsHOkYp69+Mwm0X+nntACjYIIYToiLemj3gVWAAkK6XygV9jJIBvKKWuBw4AFwNorbcopd4AtgJ24DZXxVCAW2iZPuJj1w3gOeBlpdRujJbAy7wRdyB7c00+RyrqKa5ukERQCOFXvv/sCtYfLG+17MXrpjF/eIo5Afmh7UcrOffJb80OIyCs2FvC1iOVjB8UL/NcCiECilcSQa315e08dVI76/8e+H0by1cDJ7SxvB5XIimEECKwldc2MnlwAlfPyqawsp7f/W8b5bWNZoflV45U1NNod3LNrGw+2hSYxXP6y0/e3EB+WR0jBsTw6Y/mmR2OEEJ4jRnFYoQQx5iWk8im/AqmDJarzUIAZCZEcO74dPYWVfO7/23r8X601jy2aCdf7SrufOVeOFBaQ1FVAykx/Tse98Xv8lixrwSA1JhwfnX2aCyWlkJU501IZ8W+wBpSX1VvZ1dBy7ynA+LCiQ0P6bPj2R1GF9smp7PPjiH6xqq8Uqrr7UHRm+BgaS3rDpYTalUsGJFKeIjV7JCEH5BE0M+sP1jO9S+sAuCfV0+RbioB4oVrp5kdgggC+4prqG20c6S8vvOVA0RZbROPf7Gb2HAbUwYnEBXm3S9HEa4vW3/4aDvPLt3HyvtO9ur+O/PM13uprG8iPMRKUVUDty4YQmpseL/G0N9+9d6WVo9HDozhk/+TljrRWnWDnYtdU628c+ssk6Ppe7/472a+2lkEwCMXj+eiyZmdbCGEJIJ+Z29RNSU1ja77NZIICuFDtNac8del7CqsBvpuipCeWLO/jAuf+s79WCkIswXPFeOfnDqCq2dle32/2UmRvHHTTJ77Zq/7S1h/O3X0QCYNjue+dzebcnwzzB6axOXTsnhl+QH2Ffv/tELC++yOlhbc+iZHB2sGhga7g4z4CA6V19FgD/zfV3iHJIJCCOElTg3bj1YxNTuB08YMJDMhwuyQ3CrrmgC4+4yR5CRHkRITRlxk33WnCxrK6Nq9eFsBX9FxIlhW00iD3Ul4iIX4Xs7taXc6uenl1RRVNfRqP5V1dvYUGolUTkpUr/bVbN2BMm7/zzoaPb6In3HCQK/su1lWYhRnj0tn6c5iSQT9jMOp8Sz8rpTCavGdi2b+LNRmMTsEn6e15ssdRVTUNbHlcIXZ4ZhOEkEhhPCyucNSuGFurtlhtGlGbhITBsWbHUbQ2XCwnPP+ZlTxVAo+vmtuq3kuu6uoqoFVeWUMS43mrHEDW0230R03vbyaDfnGl6FTRg/ocTyedhZUcai8jvMmpBMZauPrnUWs3FfK2Iw4r+xf+K89RdWc9fhS6ptaLhKEWBX/+eEMpvbR3Lqie6rq7ewurGJQYmRA9hrZV1zDta4hVmC8H8dH9O7CnD+TRDCI1DU6uOjp7yiubmBwUhSv/XBGq6ICQggh+kZxtdFyd9bYNP636Qgl1d6pgnrD3BxOHDmAV1bs79H2lfV2xg+Kp67RTmVdE7ER3msl/vnpI0mPj+Cml1ezv6TWa/sV/utoRT31TU4unTKIzIQIymqbeP7bfeSX1Uoi6APCbFa+2F7IF9sLuWBSBo9eMsHskLyuwW5chPjNuWOYNzyFqDArqTGBPa66I5IIBpGSmga2HK4kOszGyn2lNDmdhFkC72pPoKtusPPJ5qPkpkTJGFHhdxxOzV2vretxC5a/m5gVz/98bDqHlOgwquqlS5noPxdOzmRaTiJ5xTU8/+2+455/8otdfLjxCFX1dhOiC15PXjGR7UerePjT7ZTXNpkdTp8aEBtGTrJ3usP7M3nnD0L9Xd5ceNcHGw7z0zc3cM3zK80ORYhuK6lp4MONRyiraWTusGTmDE02OyQhgs7B0lo+3HiYDzce9skxlou2FVJc3cAJGbFcPDmTISnRZocUFIYNiOGc8elB3VUy2EiLoBB+pslVgKFSrpQKP3bdnByunDEYMKohCyH6j+dUAxOz4nn31tkmR3S8Melx/OMHU8wOQ4iAJomgaNPz3+wjOszGZdOyzA5FtEOGd/qnF77bx3sbDnGkvJ7hA2PMDkcIEYQa7A7GZsQRHWajvC6wuwAKIdonXUOD2OOLd7X73OGKeu5+ZxOlNd4paCBEsLNYFHedNIzZQ5MZnRbLSaNSuW52ttlhCSGCVESolehw/2wPOFRWy3e7i80Oo5VVeaW8ufogb64+SH6ZFEcS/sE/3wFEr8wdlsy+4ho+3HiEn502ssN1HU7d4fNC9JRTa5ocwfX39aNThpsdguihp7/aw8vLjcqc35uYwYkjU02OSIjglBYXzvqD5dz87zVsvP+0PjlGVX0TVfV2ahs7n5g9OsxGqM3Cm2vyeXNNPgDnjE/nicsntrl+eW0TH248TPNUinVBMNm98F1+lQgqpU4H/gpYgWe11g+aHJJfOiEjjnPHp7PpUM8n0swvq2VlXqkXoxLBxqnhma/3ctqYAUweLGXDhe86aWQqqbFGefEl2wtZua9UEkF/oOGrnUVU1jWxMb+83w7b5HBil4uofebJKybx6/c3887aQ17f99c7izhcXsfd72xyL0uP63hqgbiIEFbdezKV9UYX26v/tZJGe/vJ3cq80uO+PyVEem/aFiG6w28SQaWUFfgbcAqQD6xSSr2vtd5qbmTB6dmlx5d7FqI7/t/pI3j4kx0cKq9n8mCzo+m+2ka7+4quUhAZ6jdvp6Kbbpiby8whSQBc9fxKKmVMVbftKarmYGktcV6cp7Arx7z6mOrK/XH8sx//hh0FVUzKiu/zYwUjq0UREeL9qa8KK+u5yuPvZWZuEudPTGf4gM7HcsdFhhDnSuZCrZ2PuooNt/HOrbPcj7OTZBoDYQ5/+uYyDdittd4LoJR6DTgPkETQBA6nJtRm4fo5OTy7dK/Z4Qg/dOrogTz8yQ6zw+iRvy3ZzZ8+bR37z04bwc3zh5gUkRC+6/vTB7svlPTnpOGeE0fPHppEdFgIAztp3elIXaPDPS4tPjKU0emxba53uLyO6TmJ3HfWKHcMgWjN/lI25hs9i7Yc7nkPI1/RfK5+fvpIzhmfRkZ8BEoZVdm8PebPZrUwNFWKhQnz+VMimAEc9HicD0w3KRaB0S9eCleKYHSwtJboMBt3njQUgMcX7+ZgqRQH8Ed1jQ6cuqUbX4jVQqhN6qh507zhKcwbnmLa8dPiwr3ypftIRT1XPLvC/XjlvSe5uwwfa0x6HOMy41kVwEMofv72JnYXtkz9MqILLWf+IDk6lMyESLPDEKJf+FMi2FbO0aoTvlLqRuBGgKwsmfZACNF3osKs3DjPaAF87hvpKu2P3lmbz4/f2NBqWUyYjW/uPrFfuzAK33fWuDSucs17uXRXMU8u2d2lQiKBxqk1G/PLqW9yUl1v54wTBvLHC8YCEBVm48kvdpsaX35ZLX/8aDsNdqd7zl1/9/cvd3OwtI5zxqcxa0iy2eGIAONPiWA+MMjjcSZw2HMFrfUzwDMAU6ZMkZHaQggh2pVfVgfA3WeMxKJgY34FH248QkVtU1AmgpX1dqkU3Y7oUBvTc41xoocr6kyOxjzf7CpuVUglPjKU+MhQEyNqbcXeUv636QhDU6O7NFbP19U22t1DKIqrGyQRFF7nT4ngKmCYUioHOARcBlxhbkhCCCH83Q/n5mK1KN5ek8+HG4+YHY4posJsrNhndGOcmp1gcjTCV1U32AF48IKxDEqMZGxmnMkRte35q6eSlRTJ8r0lXPbMcrPD6TGPXuut7gvhLX6TCGqt7Uqp24FPMaaPeF5rvcXksIQQAeqL7QUcKGkZ9zc1J5Ex6b75pUeI3nrk4vFsP1oJwNDUaJOjEb5uYlYCIwYGxphAITy9tSaf5XtLCLVZuP/cMWaH0+f8JhEE0Fp/BHxkdhzCPOsPljPnoS+obwqMvv/CfGGuwiDhHuXI7U7NDS+uxrOX3LTsRN64eWZ/h9ev8svq2Ow5v6hSnDp6AAPaKYghAkdiVKh0OxNCBLUrZ2Sxq6CaBruTFftKWZNXRk5KYE/t4VeJoPAuu9NJSXUDAPVNvj/o/brZOaTHHwXg3XXen0hWBKc/XTSeg2W1DE6K5POthQBoNE4Nty0cwg1zcrnllTUBXQa+2eOLd7HLowogwIGSGu47a7RJEQlft+VQJUcr6gHISY7yqfFiorUNB8sZkx7b6qKXr1h3oBybxcKotFhpkRam+d35RuGjQ+V1zH7wC5Oj6R+SCAYpm1VxsLSOyb/73L0sKtT3Phw8nTpmIKeOGQjApvwKdhVWExXm2zEL35flMc6lORFsFhFiJSEqlBCrJSgSQbtTkxEfwXu3zwZg4SNf0uTo/cCUjzcd4etdRYAxXYPwfxGuz4sbXlrtXhYMreb+KCbc+Kr3wIdbCbEqfjAz29yAPMSE27BaFC8t289Ly/YzNiOOD+6YY3ZYfSbMlYSHyxQ1PWKzWlDKGC8ZJq+hV0giGKT+76ThTBgU32pZbrL/XIV78bpp7C+pZdLgeHflPyH6UmFlA//6dh9RYTbsAVxZ0WpRJEeHAWBR3pkp9O9f7mHH0SriI41KnBnxEYxK69vxRb/5cAuPLtopVTD7yJlj00iODqPRVaL/8cW7qKxvMjkq0ZaJg+L58I45nP3ENz435UVSdBjL7jmRyromfvPBVnfrcqB67JLxbD1SyZCU/vm+9e/l+/l8W0GrZXuLanq1z6e+3MPLy/YDcOHkDH522she7a87osNs/OeGGRRU1jPDVcVX9I4kgkEqKymSq9q4KugvH+Tp8RGkx0eYHYbwAVpr7n57E3klxodbaU2j14+RER/B0l3F/OaDrYAU0+gujWbusGSeu2Zqnx9raGo0F0zKoLLO7l6WmxLFnGHBMf7t9VUHiY0IIfSYq+Vaa/7+5W6+3VPsleOEWC3MHtrymr664gAHSms72EKYRSlFrg+Pc0qNCSc1JpyYcBtHKzpf35/lpkST209JIMCrK43/y9xk4/zvK66hst7eyVZta35POWtsGgBLdhSyYm+pdwLthplDJAH0JkkEhQgADqemwW5c6bV7oStfd720bD/hIVZuWzi034/dYHfy+uqDDEqMID0ugsSoUE4bM4DBid774vOH743l7jNGsiqvjB++tBp7gExUHIgiQq08eskEs8Pod2lxRkGfPy/aCcCwYy5W7C2u4fNthYRYFWMzpPqt6B+7C6uorLczMDacvOIa1h0oMzukoDM9J5FnrzYuwt340mo+21rQyRbtO3d8Og9dNA6A7z+7nAYp3Of3JBEUIgBc/s/lrNzXcmUuOqzn/9qbDlXwv01HaOzimLgfnzKcf32bx9c7i0xJBJtdPi2LWxf0zfEtFkV8ZGivXlch+tKJIwew8f5TcTg08x5eclz35eY5yB67dAJnj0vnH1/tMSFK4cs+23KUb3YXE2azUOeFAnJ7i6o5+dGv23yuedyiEMJc8p8ouuyTzUdZf7AcgLVyVa9LdD/NAHuwtJZxmXEMjA3ns60F7kl/e+KTzUfZV1zDsNRoRg6MYWJWfIfr337iMJbu8k53M+EdRyvq2B8ZQlxEiFRxDFBH2hhLFRtujMH00tBO0Y+cTs2G/HIa7E6vJGE98cQXu9l8uAKtcXcl7I3mz6EBsWEUVBoVyv962QTGpMf1e/f6XQXV1DT41vjIvvTljiLKa5soqmpw9xYQoi2SCIou+93/tnK4vA6b1egnPj0n0eSIfJfVYnwTG3rfx8ct6ysjB8YwNiOuV90+moVYFYt+PN8LUYn+1DyG4+Z/r3UvS4sLp8nhdFc9lRzBvzy6aCcRx5T7P3dCOiijat7kwfI+HAiW7Cjk+hdXt1oW1c89EDSawYmR5JXU4s1LmJGhNsBIBIcPiPFaEuhwag6W1jIoMbKDYxv/O79+f4tXjunrYsJtJEaFsmhrAYtc3wUGJ/nu+FBhPkkERSsdfUnUGi6YlMkjF493L3v4k+19H5QfumBSBk6nxuFqEYwIscoAZ9Hnpuck8vSVk6htdPDt7hLeXpvPkYp65g5LJisxkpjwEEb2cbVO0T3vrM3nnnc2oTUMTmr5Qjs0NZqM+AiWu4oxpMWFMyotFoArZwzmyhmDTYlX9I3m1rNHLh5Penw4Noul094YwSwixEqD3cnch5fw9c8WkpXUdjI4NiOOt2+ZSbWrNfD99Yf536bD/Rlqr/zho23dWj88xMqq+07G7mwZ2hFqlWkWRPskERStxISH8LPTRvDEF7uol0HAPZYWF8EdJw0zOwwRZGxWC6efYFR0q2108PbafMAYP3mmq9Kb8C07C6ppcjiZkp3Iyn2l5Li65I1Jj+Pbu080OTrR3yZmxffb1AL+7IfzcnFqeHLJ7g6rnSulWrWaf7fbv4YxfLnDmH81xKpwak29R7fhMJsF1UY/cKtFYbXIHMuiayQRFMe5beFQYiNC+OV/N5sdihBC+BQFbD5Uwc3/XuN63PvOtjarhfnDU1oVfPImBex3Ta/ijXiFMFtMeAjjMvu/+u1fP99FXERIvx1PKaOH0e7Car7YXsjIX37ifu7MsQP5+/cn91ssIjBJIiiEEN1kVjEHYb7r5+SQHm8UX4gKtZnyZbS77jhxKEt3FxNuky7q4nhaa5xOTT/VNvNrh8rraLA7OXFkar92s//V2aNZmddyoejtNfnkFcu8naL3JBEUQoguai55XlDZwBAfnqC5pyrqmmSKjE7MG57CvOEpZofRLWeMTeMM6Ros2mBViu1Hq8i99yMAn5543lcsHJHCnzxqJfSHKdmJTMlu6eK6dn85h8vr+jWGQHCovI7VeX3T88Jf9eoTXyl1MXA/MAqYprVe7fHcPcD1gAO4U2v9qWv5ZOAFIAL4CLhLa62VUmHAS8BkoAS4VGud59rmauAXrl3/Tmv9Ym/iFkKInhiTHsvHd82lpsHeYaU6fzMgJhybRVFa08jIgVJMRoiuyC+r467X1rl7CAyIDef5a6aaHFX33H7iUHcRIoDs5Ejuem29eQEJ0YdufWUtG1zToMWE918XX1/W20u/m4ELgH94LlRKjQYuA8YA6cDnSqnhWmsH8BRwI7AcIxE8HfgYI2ks01oPVUpdBjwEXKqUSgR+DUwBNLBGKfW+1lomsvPw1pp88oprSIwK5drZ2WaHI4Tbmv2lfL3TGKBfXttocjS9o5Rq9aUpUIxOj2Xzb06jyeF0lXpvbdHWAtZ5zB3aWcn2YOVwal5deQAwytafNTbNPd2OCDw7CqrYkF/BzNwkKuqaWLqrmIq69guX+KITMuI4IaOle/PuwmoTo/FdydFhTBgUT3F1A1Nl6iy/VddoZ0ZuIr8+Z4xc9HTpVSKotd4GtFW16DzgNa11A7BPKbUbmKaUygNitdbLXNu9BJyPkQieh9G6CPAW8KQydnwasEhrXeraZhFG8vhqb2IPJE6n5mdvbXD37z951ABzAxLCw58/28l3e0rcj/t7IuFg5fm23JXyIOEhVsJD2q4097v/beVAaS02j7kwTx0zsJcRBpaUmDCaHJp73tnkXpYeH8HUbPnSGOjuOXMkGw6W88v3jp+rLtwm1RsDQXiIlf/eNtvsMIJSlOviZFSYd/6XEiJDA/KCbk/11WCQDIwWv2b5rmVNrvvHLm/e5iCA1tqulKoAkjyXt7FNK0qpGzFaG8nKyur1L+FPtIac5Cj2FdfglBHfwoc4nJrpOYm8ftNMs0MJKgtHpPKDGYOxWhTTc3tXIMSpNd+bkMGjl07wTnA+bsW+knbnJWvP9XNyOHd8Ok4N6w6Uccsra2myO9HaKMLhlLfloHRCRiwvXz+NdQfKeXTRTrPDYdneEpzaGCuVFhdhdjjCzzU5NeW1jX3azfKxSyews6CKzAT5e+0LnSaCSqnPgbYu/d6ntX6vvc3aWKY7WN7TbVov1PoZ4BmAKVOmyMeuECJopcdH8NvzTzA7DL+SEhMGwL3vbuLiKYO6ta1SitRYo5poYlQoAEXVDYz7zWdU1dvd61ktMn2Dr6hvcvDplqMA7OqjLpFKKeYOSyElJszURDDUamFgbDhf7ihyz003I0cqyIqes1ksbDhYwoQHFrFgRAo/OWVEnxwnJSbM/d4svK/TRFBrfXIP9psPeH6KZgKHXcsz21juuU2+UsoGxAGlruULjtnmyx7EJEQrNQ12SmtaxqxFhkoXHm/YW1TN37/cw+TBCVw+Lbha5oPdnqJqDpW1VLIbPiCGgXHhJkbUPfOGp3DR5EzeW3/IK/srqmqgqt7O2ePSGJYaQ0y4jZEDpUuSL4gND6Gy3s5NL69xL4sOs2FpY4LuQGCzWvjm5wuxezRNh9lk/KrouXvPHMWCESm8vuoga/aX8ZfPzW/xFt3XV11D3wf+o5R6FKNYzDBgpdbaoZSqUkrNAFYAVwFPeGxzNbAMuAj4wlVN9FPgD0qpBNd6pwL39FHcIoic8uhXHK6odz9WCv7cTknoZI+rUUnRoX0emz9btLWAt9bk8+WOQkkEg8z5f/u2VevX5MEJvH3LLBMj6r7EqFBsFu9+QT57XDqnn2B0rOmrSeNF9/z0tBGcNyED7dHBKCUmLKBbbG1WCzJksX85nZqHPtludhh9YsTAGEa4Cq48u3Qf249WMSQliiGp0ew4WmVydKKrejt9xPcwErkU4H9KqfVa69O01luUUm8AWwE7cJurYijALbRMH/Gx6wbwHPCyq7BMKUbVUbTWpUqp3wKrXOs90Fw4RojeKK5pZOGIFM4cm8buwmr+8fXeVi2Ens4dn870nESsFkVytHRREKItdY0OLpiUwfenZ/HQxzuorPevCooieIRYLYxOP7511iGDOYUXHa2sZ7srKcoK0ErL187O4drZOa2WSSLoP3pbNfRd4N12nvs98Ps2lq8Gjhu4orWuBy5uZ1/PA8/3JlZ/tPZAGaXVRmISGWaV/vx9YMTAWC6eMohvdxfzj6/3drjugFj/6eLmC8pqm/jjR9s4UFobsB+A4nhpceFMHpxIfGSIJII9UFzVwIgBUtZciK6qrGvC7nD69FQtD1041j12WAhf0lddQ0UvFVbWc8Hfv2u1TEoXC3/icGpeXJYHwBknpJkbjBA+7oSMONLiwrE7NZMHJ3S+gRBBLsSV+F3x7ArmDE3m3zdM79b2tY12Hv5kBzUNdiZmJTB3WHJfhCmET5NE0EfVNzkB+L+Th5EaE869726ittHeyVYCYGN+Ob/7cBt2p5NGh9PscILW1gdOa3Ny8vZsPlTBgx9vx+500uSQ7lkiuMwfnsKye04yOwwh/MbMIUk8fNE4XvwujyMVdZ1vcIxN+RW88F0eVotiyY4iSQRFUPLddnQBwKCESHJToswOw6+s3FfKyrxSwmxW5g1P4aSRqX1yHA0crajnUHkdhVX1na4vOrZsTwnf7C6myaGZkZvI/OEpZofULRvyK/jTpzvMDsOv1TU6+HpnEbWNjs5XFkIEtfAQK5dMGUR2cu++I8nQBRHMpEVQBKxnrprcp5OcrjtQzow/Lm61LFTKcffai9dNIzrMv96aRqXF8u3uYnYXVhFmszA0NdrskPzSi8v2s+1IJQAx4f71NyCEEM025lfwo9fXS0+ufuLUcLi8jjQ/mq7IV8gnrRC99OAFY7EoRXiolZm5UtAnGL1w7TSzQwgIda4vTe/eOotRaTLfnhDC/8wdlsynWwpYs78MgKGp0YxOizM5qsAVYrXQaHcy68EvuH3hUH58ynCzQ/IrkgiKflNU1eC+OqZQZCZEYAmAOZsumTIoIH4PIXzFxCwpliKE8E/3nTWa+84abXYYQePa2dlkJUXyuw+3UlTVYHY4fkcSwQB07QurfO6fYW9RNSc9+hXaowbIj08Zzp0nDTMvqF4YlRbLir2l5KZEoSQHFEIIIYTod0nRYVwyZRCPfrbT7FD8kiSC/WjzoQp+++HWPtv/9JxExmXG0dDkZOTAGFbllfXZsbqrrLYJreHGebmMHBjDL/67mZJq30pWu+PeM0dx75mjzA5DCCGEEEKIHpFEsJ9pDTNyE5k91PtlitPiIrjr5JYWtjteXceWQxVeP05vzB6azPzhKTzQhwmxEEIIIYQQomOSCPajEzLieOPmmWaHIUSfeXP1Qb7bU2J2GEIIIUTQaLA7aHJorJ3UK2iuyB1qtRBilSrnQhJBIQLKzCFJnDQylbGZ/V+hrKi6gZ+9tRGA9LhwQuVDRgS5ZR1cFNl+tIpQm6VHE2ELIYSnk/78Fflldcwe2nHl8t+cN4bLpmWREhNGeIi1n6ITvkwSQSECyNDUGJ67Zqopx3Y6jUpAvz1vDFdMH9zplUkhAlVqbDihNguLtxdis6hWc1tFhhpfvjzHiydE9t18p6LvvLQs77hlZz2+lKoGmTtO9K+jFfXMHZbMfWd1XLsgJjyEaTmJ/RSV8Ae9SgSVUn8CzgEagT3AtVrrctdz9wDXAw7gTq31p67lk4EXgAjgI+AurbVWSoUBLwGTgRLgUq11nmubq4FfuA77O631i72JWwh/Y1WKDfkV5NzzssS1WAAAGDZJREFUP3flVV9NtGxWi8/GJkR/yEmOYvP9p2F3OrFaFGG2livvY9Jj+e9ts6mub0kWMhMizAhT9NDEQQnMHZZMg93JsNRoclOiSYwK5YqjVTTZnViU4oJJGWaHKYLMuMw4Rg6U+VdF9/S2RXARcI/W2q6Uegi4B/i5Umo0cBkwBkgHPldKDddaO4CngBuB5RiJ4OnAxxhJY5nWeqhS6jLgIeBSpVQi8GtgCqCBNUqp97XWvlMSU4g+dsdJwxiT3vIG/8SS3cRFhJoYkRCiI6E2C6Ec3z1aKcWEQfH9H1A/OFBayw+eW8GRinqzQ+lT2clRvHz99FbLosNs/OF7Y02KSAgheqZXiaDW+jOPh8uBi1z3zwNe01o3APuUUruBaUqpPCBWa70MQCn1EnA+RiJ4HnC/a/u3gCeVUgo4DViktS51bbMII3l8tTexB4vaRgff7S5m0mCZoNmfTRgU3+rLY3FNI59tKTAvICGE8HD6CQMprm6gpsFObLiN08YMICUmrNPtPtx4hFCbjCcWQvie/64/xIkjU80Oo095c4zgdcDrrvsZGIlhs3zXsibX/WOXN29zEMDVwlgBJHkub2Mb0YHoMBtHK+u54tkV3HfmKM4YO9DskI6jteY3H2zlYGmte5lScMPcXMZnxpsXmBBCiC67YFImF0zK7NY2N87LZe3+cgAyEiKIDZeyBUII8yVGhjIsNZple0sCvodDp++6SqnPgbYyiPu01u+51rkPsAOvNG/Wxvq6g+U93ebYWG/E6HZKVlZWW6sElV+ePYoLJmVw8dPLqGns2eD157/dR1SolaGp0V6OzlDX5OCF7/IYEBvmvnq89XAlGfERkggKIUQAu3HeELNDEEKI40SEWln04/nMfvALtG4z5QgYnSaCWuuTO3reVcjlbOAk3fJq5QODPFbLBA67lme2sdxzm3yllA2IA0pdyxccs82X7cT6DPAMwJQpU/zyzK3cV8rt/1lLTReqjm3KL+fEkanER7RdcS4y1MaUHnYJzUqMxGpRPPXlHgDCQywkRXXezaenrpudw03zjS8FEx74rJO1hRC+5kBJbdtX6IQQoo+V1DTyp0+3s/1IldmhCOFXetUxXyl1OvBz4Fytda3HU+8DlymlwpRSOcAwYKXW+ghQpZSa4Rr/dxXwnsc2V7vuXwR84UosPwVOVUolKKUSgFNdywJSUVUDH28+yoHSWkanxTImo/0KUC8u289fP9/ZJ3HMH57Cjt+ezq7fn8FN83JxOvvkMKaoqGti6+FKv7/K43A62V1Yxe7CKpoc/v27CP+2p6iaeX9agsOpiejF3FSHywO7C47oG4VV9cx+8AtmP/gFJdUNZocj+tmIATFU19v5x1d7+WpnEQNiw0iIkilZzBQW0pJehMkYYJ/W2w75TwJhwCIjr2O51vpmrfUWpdQbwFaMLqO3uSqGAtxCy/QRH7tuAM8BL7sKy5RiVB1Fa12qlPotsMq13gPNhWMCVVJUKIt/ssD9ePne4yclfuOmmdz6yhrqm/ouQ7O5JgS3BNBUAGE2C1/tLOKrnUWA0dLpj8JsFspqmzj50a/dy2RyWGGWyromAP7v5GFcMzun29tnJkRy8eRMymobGZoa4+3wRAC7ZOognFq3GmNyyZRMVu47/nNTBKY7TxrGnScNMzsM4WHO0GSevnIyDqcO+GIr/q63VUOHdvDc74Hft7F8NXBCG8vrgYvb2dfzwPM9jzTwDIgNw2bxzyTGTE9dOZkdR42uIxYFM4ckmRxRz9xx4jAmD05wzymoFMzI7Z/fJTqs5W0jKkyKO4gWEwbFt/r76KpQm4U/XTy+DyISgW7y4AQmS1VsIXxKiNXC6Sf4XoFCcTz5FieCSk5yFDnJUWaH0WuJUaGcPS7dlGNPGZzAe7fNptHhDNj50ESLXYVV1DQ4Ol/RJOsOlJsdghBd9pfPd6ECp5ONEAGvsCqwu5tLIiiE6BalFONNTADLaxtZlVfKsNRo4iNDTYsjGCRHh/LtbqOLXXIX5oTrT6mx4QD8b9MRQqyKBC/+LTi1ZmdBFQfLajtfWYguyEqM5ORRqVS4ulGfODIVhTG+Vgjhm04cmcq3u4uJDLMyJNX/GxHaIomgDxmbEcfh8nrGZcaZHYoIYvn9/OVXa23culBzMjLUyop9pVz89DIWjkjhX9dO64cIg9cHd8yhtKYRgPS4CJOjaW3+8BTW/vIUmhxOIkKtxIZ7pzhEuM1Cg93JqY95jr+VbviidyJDbTx79dRWy+56bZ1J0QghuuK35x83ki3gSCLoQ/5y2USzQ/BrlXVNFFTWU1nfszkTg11OchSXT8uioq6RkQPbr1bbHmc3C5daXUWI7nptPXe9tt69vKPaRE9cPpGdBdX84aNtVHdhipWeOuvxb/ps313xztp8d0EjM0WG2ogM9Y2Pib1FNazZX8rB0pYLFYlR3m8Rvn5uLqPSYt1/z1FhVpnTVIgA0mh3cser63y2wuwL3+Xx3/WHAAJ+MnNhPt/4hBeiF0Jd1U1/+d4WfvneFsAoniLFdLon1GbhjxeM7dG2NqvigOsLurWLVWazkyL5zbljKKttdC/LTIjsMPFIjQ0nNTac+MgQmhw9q5i7p6iaFXtL2F9Sc9xzp4wewM7CKpxOzYiBMZw8ekCPjtEbN8/PZfOhSgBGDoxh/vCUfo/BlzT/Pfx18S7+ungXADaLcv/fe1tcRAhnjE3rk30LEYw8PxHMHh85NTuRz7cVsOVQBWD0xEqNCWNDfoW5gbn87LSR7CrwmAtxMFw6ZVD7G/ShVftKOeeJloui+4prGJshPdYCjSSCos+8vHw/m11vrsV9eOUtMyGCp6+cRGlNk3tZenw4EaEynUJ/ufv0UXy3p5gQq4XTxnStUphSiqtnZfdtYB4iXX8PT3yxmye+2A1AiFUR6jHH0ej0WP52xaR+i6ktt58oZdA9DYwL54Pb57S6YJAaGyb/30L4ie9NzOBwRT2x4TaGpER3uK7dqSmorKfJ3jdTY508esBxF/jufXcT+EgieMuCIWaHAMDl07L4fFuB+/FGH3l9hPdJIij6zCOf7qDJ4XSP3clNjiInyfuDbZVSnH6CXME309jMOMb6+NjWAbHhfHTnXMolofA7vv63JQLP35bs5vlv9wFQUddkekuWPxudHssdXZjnL8RqYV9xDdP/sBiAk+P7v0eGMFwxPYsrpme5H9/88ho+2XLUxIhEX5FEUPSpS6YM4v5zx5gdhhCA8YVECCHaY7Uo7j9nNPuKW7qOK6W4cFKmiVH5jv+sPNCl9fYWVXOorK5b+/7pqSOYntMyH+6M3MRubS+E6D5JBIUQQgjh8zzHH4dY+66J7prZOX2272PVNTn4bncxOz3HhfmgiVkJTMtOpMHhZP7wFAYltl1FOMxVYffEP3/VsszWtV4XgxIjW7VCCSH6niSCwqtqG+0cLjeuAjo7KSPZ6NBUS4VPIYQwjVN3s9yviTITInjs0vGU1jRxqgmFnLwtKsxGQWUDVzy7omWZj1TpPdbwATG8cfPMTte7csZgBiVEuv+uIkKsftKyp2nsYQEys+wrruGSp5dx71mjzA5F+DHffMcRfuv6F1azbG+J+3FYO/Nv2SyKV1ce4FVXNxNbH1UAFEIIcbzm1rX9JbWM6sF0MX3FalFUN9jJvvt/7mXNc+sqpfjexMDponnfmaM4b3y6+3F8ZCgD48JNjKj3YsNDOMfjd/IHNouiuLqRk1ytmLY+bG32lvMmpFPbaOe7PSWs8PjOJUR3SSIoeq3JoZnz0BcAFFTWMz4zjhvm5qIUzBma3OY2j106gR1Hja4wVovivAkZ/RavEKJ/5JXUcOFT37GnsIYBMf79BTfQfG9iBlobVRoXjvSdKUq+Pz2LqFBbq5bKM8Z2rRKxv4kKszE9N6nzFTtR3+Sgsq6pT+dWDWTXzc5hYFw4WkOYzcJJo3y/tfmc8emcNCqV0b/6lI2HKvymZX/zoQp++NJqGvuoKqzoPkkERa+cMz6dwqqGVm9C50/IYF4nc5/NHZbC3GG+8+VD+J8Gu5ODpbU0yAeKTzpnfDq1jQ4AJg9O4NwJ/tVKEOiSosP44bxcs8M4zuCkKO46WaZQ6Y5zn/yGnQXVAFgUWLxQ4rSwMngmMs9OjuLWBUPNDqPbQqwWYsJt/G/jEQCSo8NMjqhjp44ewIcbj5DvKiI0LjOOiVnx5gYlepcIKqV+C5wHOIFC4Bqt9WHXc/cA1wMO4E6t9aeu5ZOBF4AI4CPgLq21VkqFAS8Bk4ES4FKtdZ5rm6uBX7gO+zut9Yu9iVt4z6i0WB65eLzZYYggE2qzsHFPBXMfXtKyTLoX+5Rzxqf7XRcxIfxRQWUDM3ITOWd8OhnxEYSH9HxKnLS4cMYPiqe8tpFhqTFejFJ4W4jVwrd3n0hFrTG9SUZ82wV8fMVtC4dy20L/S7gDXW9bBP+ktf4lgFLqTuBXwM1KqdHAZcAYIB34XCk1XGvtAJ4CbgSWYySCpwMfYySNZVrroUqpy4CHgEuVUonAr4EpgAbWKKXe11qX9TL2gPDtnmJuf3Wt2WEI0a/uP2cMq8e1vAXYLIoTR6WaGJHwJxal+OfSvSilZH444de+3llEXaODkQNj+f70wb3eX1SYjfdum+2FyER/iA0Pcc/VLGDLkQqe+GL3ccuLqhvYV1wjXVLb0KtEUGtd6fEwCiNRA6OV8DWtdQOwTym1G5imlMoDYrXWywCUUi8B52MkgucB97u2fwt4UimlgNOARVrrUtc2izCSx1d7E3sgOGX0AJbtLWFnQTUjBsQwJTvB7JCE6BfZyVFkJ0eZHYZwKahsMDuEbvn9905gx1GjK11uclSraQkCRY2MFwt4kwcnsONoFRGhVsbIHKmiDzVfMPPlC2e5KVF8t6eEzYcqUQqykyMJsxk9hR7+ZAcPf7IDgAmD4k2M0vf0eoygUur3wFVABbDQtTgDo8WvWb5rWZPr/rHLm7c5CKC1tiulKoAkz+VtbHNsLDditDaSlRX4c9H89vwT+u1YTq1p6sfSyo0OTVVDU78dr9lnWwv6/ZhC+LMzx6axdFcRkaFWRgz0j65kgVR5si2xESHucTixEdJaEKjevHmW2SGIIHHNrGwSo0K5YJLvFvZ75YbpODymLWuuRv/y9dMoqW50L5/uF9OZ9J9OE0Gl1OdAWyW77tNav6e1vg+4zzUm8HaMbpxtXTPQHSynh9u0Xqj1M8AzAFOmTPGPEkpd0Dzw+/vPrqC5Jos3BoN3VZjNgt2pKaxqcF9d6UvHTS3RD1frByVEMiA2jG2HK0mNCWNwUmSfH1OIQHD3GSO5+4yRZochPLx322yOVNQTHWYL6pbzg6W1ZocgRECYnpvklQq3fUkp1ebUH1KYsGOdJoJa65O7uK//AP/DSATzgUEez2UCh13LM9tYjsc2+UopGxAHlLqWLzhmmy+7GFNAGD8ojrvPGOnu6pMYFUpmQvcGBb+/4TBr9vdsWOW1s3MYkhKNU2tmDWl7OghvMmNqiaykSFbc29U/dSGE8F1J0WEk+XgFwb72w7m5fLO7mIgQK5MHy7AJIYRoi9K9mHtEKTVMa73Ldf8OYL7W+iKl1BiMxHAaRrGYxcAwrbVDKbUKuANYgVEs5gmt9UdKqduAsVrrm13FYi7QWl/iKhazBpjkOuxaYHLzmMH2TJkyRa9evbrHv1ug0Fpz52vr2V1ojIcJtVl4+MJxftOFSwghhBBCCNEzSqk1WuspbT3X2zGCDyqlRmBMH7EfuBlAa71FKfUGsBWwA7e5KoYC3ELL9BEfu24AzwEvuwrLlGJUHUVrXeqapmKVa70HOksCRQulFE9cPtHsMIQQQgghhBA+pFctgr5MWgSFEEIIIYQQwayjFkGZgVkIIYQQQgghgowkgkIIIYQQQggRZCQRFEIIIYQQQoggI4mgEEIIIYQQQgSZgC0Wo5QqwqhkKgzJQLHZQYg+Iec2MMl5DVxybgOXnNvAJOc1cAXDuR2stU5p64mATQRFa0qp1e1VDBL+Tc5tYJLzGrjk3AYuObeBSc5r4Ar2cytdQ4UQQgghhBAiyEgiKIQQQgghhBBBRhLB4PGM2QGIPiPnNjDJeQ1ccm4Dl5zbwCTnNXAF9bmVMYJCCCGEEEIIEWSkRVAIIYQQQgghgowkgiZRSg1SSi1RSm1TSm1RSt3lWp6olFqklNrl+pngWp7kWr9aKfWkx35ilFLrPW7FSqm/tHPMyUqpTUqp3Uqpx5VSyrX8MY/tdyqlytvZfp5Saq1Syq6UuqiN52OVUoc84ws2gXZelVIOj328751XyT8F4LnNUkp95vp9tiqlsr3yQvmhQDq3SqmFx8RQr5Q632svlh8JpPPqeu5h1++xzXPfwSgAz+1DSqnNrtul3nmV/JOfntsfK+NzdKNSarFSarDHc1e7Yt6llLrae6+Ul2it5WbCDUgDJrnuxwA7gdHAw8DdruV3Aw+57kcBc4CbgSc72O8aYF47z60EZgIK+Bg4o4117gCeb2f7bGAc8BJwURvP/xX4T0fxBfot0M4rUG32a+ortwA8t18Cp7juRwORZr/Gcm69c2491kkESoP13AbSeQVmAd8CVtdtGbDA7NdYzq1Xzu1ZwCLA5opzNRBr9mss57Zb53Zh8/sscAvwuut+IrDX9TPBdT/B7NfY8yYtgibRWh/RWq913a8CtgEZwHnAi67VXgTOd61To7X+Bqhvb59KqWFAKrC0jefSMN5Ylmnjr/Ol5n0f43Lg1XZiztNabwScbex/MjAA+Ky9+IJBoJ1X0SKQzq1SajRg01ovcq1XrbWubS/OQBdI5/YYFwEfB+u5DbDzqoFwIBQIA0KAgvbiDHQBdm5HA19pre1a6xpgA3B6e3EGOj89t0s83meXA5mu+6cBi7TWpVrrMoyE36fOrSSCPkAZXbImAiuAAVrrI2D8M2D84XbV5RhXIdqqAJQB5Hs8znct84xjMJADfNGNY6KUsgB/Bn7Wne0Cnb+fV5dwpdRqpdRyFaTdy9oSAOd2OFCulHpHKbVOKfUnpZS1m/sISAFwbj1dRjtfXIKNv59XrfUyYAlwxHX7VGu9rTv7CFT+fm4xEr8zlFKRSqlkjNalQd3cR0Dy03N7PUarYvO+D3a0b7PZzA4g2CmlooG3gf/TWlf2ssv/ZcAP2jtUG8uO/Ye4DHhLa+3o5nFvBT7SWh8M4iELrQTIeQXI0lofVkrlAl8opTZprff0YD8BI0DOrQ2Yi/EBewB4HbgGeK6b+wkoAXJujQMYV7nHAp/2ZPtAEgjnVSk1FBhFS0vDIqXUPK31193ZT6AJhHOrtf5MKTUV+A4owuj2a+/OPgKRP55bpdSVwBRgfjf2bSppETSRUioE44/8Fa31O67FBa4P8OYP8sIu7ms8RlevNa7HVo8Brg9gXIXI9NgkEzh8zG5aXT1WSv2+eR+dHH4mcLtSKg94BLhKKfVgV+IORAF0XtFaH3b93IsxpmxiV+IOVAF0bvOBdVrrvVprO/BfYFJX4g5UAXRum10CvKu1buri+gEpgM7r94Dlrm7c1RgtDjO6EnegCqBzi9b691rrCVrrUzCSh11diTtQ+eO5VUqdDNwHnKu1bnAtzqd1625b+zaVJIImUcaljeeAbVrrRz2eeh9orip0NfBeF3fZqu+y1trhelOZoLX+lasZvUopNcN17Ks8962UGoExkHWZxz7ua95HRwfWWn9fa52ltc4Gfgq8pLW+u4txB5RAOq9KqQSlVJjrfjIwG9jaxbgDTiCdW2AVkKCUSnE9PhE5t4FybtuMIRgF2Hk9AMxXStlcX5LnY4ydCkqBdG5diUmS6/44jIIyQVtvwR/PrVJqIvAPjCTQM0H9FDjV9X0qATgVX+uloX2gYk0w3jAqHGlgI7DedTsTSAIWY1wNWgwkemyTh1EBrhrjKsNoj+f2AiM7OeYUYDOwB3gSUB7P3Q882Mn2U13HrQFKgC1trHMNwV01NGDOK0aVuk0Y4xc2Adeb/frKufXe/yxwiut32QS8AISa/RrLufXauc0GDgEWs19bOa9eez+2YnzR3IZx0eZRs19fObdeO7fhrnO6FaPQyASzX185t90+t59jFG9qjvd9j+euA3a7btea/foee1OuIIUQQgghhBBCBAnpGiqEEEIIIYQQQUYSQSGEEEIIIYQIMpIICiGEEEIIIUSQkURQCCGEEEIIIYKMJIJCCCGEEEIIEWQkERRCCCGEEEKIICOJoBBCCCGEEEIEGUkEhRBCCCGEECLI/H/5wAaQzOV45QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure() \n", + "plt.subplot(2,1,1)\n", + "plt.plot(df_sim.index, df_sim['SimulatedTemp'], label = 'Simulated Temperature')\n", + "plt.plot(df.index, df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", + "plt.title('Temperatures')\n", + "plt.legend()\n", + "plt.subplot(2,1,2)\n", + "plt.plot(df_sim['SimulatedHeat'], drawstyle = 'steps', label = 'Heat Input')\n", + "plt.title('Heat Input')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAE/CAYAAAAwiQR3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3hcV5n/P+eWaeqWe7dTnOLYTnUKcQoJCUkWUpYaUuhlKT9YAlkWdrOUpe7Sy1ITIBASAiEQIKQ5vTqxU1zj3q0uTb3t/P44d5o0kkayZMn2+TyPHt259dyZM3fu+d73/b5CSolGo9FoNBqNRqPRaDQajebQwxjrBmg0Go1Go9FoNBqNRqPRaEYHLfxoNBqNRqPRaDQajUaj0RyiaOFHo9FoNBqNRqPRaDQajeYQRQs/Go1Go9FoNBqNRqPRaDSHKFr40Wg0Go1Go9FoNBqNRqM5RNHCj0aj0Wg0Go1Go9FoNBrNIYoWfjQajUZThhDib0KI68a6HYcDQogFQogXhBA9QoiPjnV7NGOLEGKuEEIKIawDcKxXhBDnjvZxhoMQYrkQ4j1j3Y5DGSHETUKIXx/A410vhHjsQB1Po9FoNOVo4Uej0WjGGCHEW4UQTwshUkKIfeH0h4QQYizaI6V8vZTylpHeb3jj7wshkkKIbiHESiHEZSN9nNEmHJinwvPYKYT4XyGEOczdfQpYLqWsk1J+ZyTbqdEMhJTyeCnl8tE+jhDiZiHEF0dx/1uEEBcMY7v1QoijR6NN4w0hxLlCiB1j3Y5qOdCilEaj0RwOaOFHo9FoxhAhxL8C3wa+DkwFpgAfAM4CImPYtNHiSSllLdAI/Ay4XQgxofdKByLiYT9ZHJ7Ha4G3A+8dysYl5zcHeGU4DTgI3qNDHv0ZHJwIIY4ADCnl+rFuy6GA/h5oNBrN+EcLPxqNRjNGCCEagM8DH5JS/l5K2SMVL0gpr5ZS5sL1Lg3TgbqFENuFEDeV7KPPk9zSJ+BCiNOEEM+F2+4VQvxvOD8mhPi1EKJNCNEphHhWCDElXFZIsxBCHCGEeDBcr1UIcasQorHXsT4phHhRCNElhPidECI22LlLKQPg50AcmB8+4f192KZu4HohxHQhxN1CiHYhxKtCiIK4IoQwhRCfEUJsDNOkVgghZoXLjhFC3Bdut04I8eaS7S4RQqwOt9kphPhkOH+iEOIv4XvRLoR4VAgx6G+klHIt8CiwMNzPZWEkU6cQ4gkhxKJe79WnhRAvAikhxIPAecD3wuiho4UQDUKIXwohWoQQW4UQn823I4yYelwI8U0hRDtwUxhN8QOh0vOS4fKpQohvCSE6hBBrhRAnlrThxpL3bLUQ4oqSZdcLIR4TQnwj3HazEOL1JcsnCCF+IYTYFS6/q2RZv+fdGyHEmWF/6wr/n1mybLkQ4gvhefQIIf4hhJjYz37OFULsEEL8q1CRcruFEO8sWR4Nz2Vb2Pd/JISIh8seFkJcFU6/RqgorkvC1xcIIVb2c8xK/fQ0IcST4bnvFkJ8TwgRKdlGCiE+IITYEL5v3xdCRfOF/fgbQn23NgGX9jreQN+Bm4QQd4Rt6RFCvBT2oX8L34/tQojXDfA5lF4nbhJC3B72vR6h0sBO6bXuv4V9piPsB7FwWZ8UnvCcjxRCvA+4GvhU2D//3E9bLgz7apcQ4nuAKFnW7zVICPErYDbw53D/nwrn3yGE2BPu7xEhxPG9Dnkp8Nd+2jJgHxRCnB728U4hxCoRpssJIc4TQrxUst79QohnSl4/JoS4vMLx/ksI8d1w2hYqmvBr4eu4ECIrhGga6NjhsncKIdaEbd4khHh/OL8G+BswPXyPkkKI6eFmkQE+8+lCiDuFuhZtFiWpqKLC96DCeTWHfbc7fB+O6LX822Ef7Rbq+n12OP9i4DPAW8K2rhro/DQajUZTJVJK/af/9J/+039j8AdcDHiANch65wInoMT6RcBe4PKSZTt6rb8FuCCcfhK4JpyuBU4Pp98P/BlIACZwMlAfLlsOvCecPhK4EIgCk4BHgG/1OtYzwHRgArAG+EA/53E98Fg4bQEfA3qABuAmwAUuD88zDjwM/ACIAUuAFuC14fY3AC8BC1CDxMVAM1ADbAfeGR7jJKAVOD7cbjdwdjjdBJwUTn8Z+BFgh39nA6Kf85DAkeH0ccAe4N3hsfYBS8P39Lrw/YmWvFcrgVlAvPd7Hb7+JfAnoA6YC6wH3l3y/nnAR8JziwM3h+d3cvg+PQhsBq4N2/BF4KGS/b8p/KwM4C1ACphWsn8XFb1kAh8EduXfB+Ae4Hfh+2YD54TzBzzvXu/dBKADuCY8h7eFr5tL3o+NwNHh+S0HvjLA98JDiac2cAmQBprC5d8C7g6PWYfq718Ol30e+G44/ZnwmF8tWfbtfo55E3376cnA6eH5zEV9B/5fr/7yF1SU22xUP744XPYBYC2qT0wAHgrXt8LlA30HbgKywEXhsX8Zfvb/Hr4f7wU2D3Bd2ULxOpHf1yXhZ/hl4Kle675c0s7HgS/2/l738x25Ob9uP+2YCHQD/xy2++Ph5zqUa9AFvfb5rvAzj4b9YGWv5X8HLuqnPcvppw8CM4C28H0ywna1he2KAZnwfCzUdWFX2I54uKy5wvHOB14Kp88Mj/10ybJVgx07XH4pSlwRwDmo70L++nYufX8n+v3Mw/2vAP4DFXk6H9iUf8+o8D2ocF63AbejrskLgZ2l/QR4B+qabQH/Gr5fsZL9/7rX/vo9P/2n//Sf/tN/g//piB+NRqMZOyYCrVJKLz+j5GluRgixDEBKuVxK+ZKUMpBSvgj8FnXjWw0ucKQQYqKUMimlfKpkfjNqcOZLKVdIKbt7byylfFVKeZ+UMielbAH+t8KxvyOl3CWlbEcNrpcM0J7ThRCdqJv8twFXSCm7wmVPSinvkioaaCLwGuDTUsqslHIl8FOUYADwHuCzUsp1UrFKStkGXAZskVL+QkrpSSmfB+5EDSrz532cEKJeStkRLs/PnwbMkVK6UspHpZRygPN4XgjREZ7vT4FfoAba/yelfDp8T28BcihRoPS92i6lzPTeoVA+QW8B/k2q6K8twP+UnDPALinld8Nzy+/jj+HnlwX+CGSllL+UUvoooaYQ8SOlvCP8rAIp5e+ADcBpJfvfKqX8SbjtLeF7MkUIMQ14PUrU6wjfo4fDbao57zyXAhuklL8Kz+G3KOHjn0rW+YWUcn14frczcH9ygc+H7fkrkAQWCCFE2K6PSynbpZQ9wH8Dbw23e5hiP16GGvTmX58TLu+PQj+VUmbC9/6p8Hy2AP9H3+/IV6SUnVLKbShxJ39Ob0aJGNvD78+X8xsIFcE20HcA4FEp5b3hNeQOlADxFSmlixp4zxUlEXqD8JiU8q/hZ/8rlJhayvdK2vkl1Pd3JLgEWC1V1KOLEmr25BdWeQ0qQ0r58/A7lEOJCIuFirBECJEATmXgz7i/PvgO4K/h+xRIKe8DngMuCb9/z6H60ynAi8BjqLTd01H9vq3CsZ4EjhJCNIfb/gyYIYSopbwv9nvs8JzvkVJuDK+HDwP/QAnYA9HfZ34qSlD6vJTSkVJuAn5C8fsDvb4HpTsNr2VXAf8hpUxJKV9GXU8KSCl/LaVsC783/4MS6Rb019Bhnp9Go9FoQrTwo9FoNGNHGzBRlPgjSCnPlFI2hsvyKT5LhRAPhSH3XagogYrpLxV4N+rJ9Vqh0mryZsq/Au4FbhMqdedrQgi798ZCiMlCiNuESovqBn5d4dh7SqbTqMii/nhKStkopZwopTxdSnl/ybLtJdPTgfyAPc9W1FNvUJEHGyvsfw6wNBTPOkOR6WqUfxKowcglwFah0n3OCOd/HXgV+EeYRnDjAOcA6klzk5TyCCnlZ6USq+YA/9rr2LPCc6l0jr2ZiHq6vrWfc+5v+70l05kKrwufhxDiWlFMyepEPYkv/TxLB9zpcLI2PI92KWVHheNXc955pvc6P+h7jkPpT22yRDgtWX8SKpptRUmb/h7OBzXYPlqo9MYlqGiZWWFKz2moqJL+KPsMhEqv+otQqUXdKIGp2u/I9F77K31vBvsOQN/PujUcxOdfw8Dv30BtjIly75be7az0+Q6HsvcgFFwLr6u8BlGyvimE+IpQKY3dqIggSrZ5LfBEKNT0R3+f1xzgTb36+mtQAikokeZclIDzMCpa6BwGEBND0eS5cJ38dk+gBKPS7QY8thDi9UKIp4RKC+xEXecG+53o7zOfg0oNKz3WZ1AedHkGupZNQkXy9Ne3ESpFc41Q6XidqMjPgT7X4ZyfRqPRaEK08KPRaDRjx5OoyIg3DrLeb1ApK7OklA2olKS8B0YKNcAFCk9a84NbpJQbpJRvAyYDXwV+L4SoCSMk/ktKeRwqveAyVHpQb76MSttYJKWsRz11Hq1qY6URNruACUKIupJ5s1HpAqAGFGWeESXzHw7FpfxfrZTygwBSymellG9EvR93oZ7mE0YH/KuUcj4q+uQTQojXDrH924Ev9Tp2IoxqqXSOvWlFRbDM6eecB9t+QIQQc1BP7T+MSjlpRKXvVPN5bkd9Ho39LBvsvPPsovz8oO85jgStKOHj+JI2NUhlyJ0XtVag0g1fllI6qMH2J4CNUsrWAfbd+zP4ISpq6ajwO/IZqv+O7EaJZHlml0wP9h040PRu565wuvc1aCrlDNZny96DMFqr9FiDXYN67//tqGvqBSgxYW5+1+H/S1Bpi8NhO/CrXn29Rkr5lXB5b+EnH1k2WBTZw6i0rhOBZ8PXF1EuQvZ7bCFEFBXZ+A1gSvjd/mvJOQ/1urEdlSZYeqw6KeUlJesMtM8WVLpexb4d+vl8GhXx1hS2t6u/9lZxfhqNRqMZBC38aDQazRghpewE/gv4gRDin4UQtUIIQwixBOWLkKcO9eQ/K4Q4DTWwybMe9ZT20jBi57OokHkAhBDvEEJMCiNSOsPZvlBGpCeEQlE3SnDw6UsdKn2mUwgxA+WtM+pIKbejBuJfFsqIehEqeunWcJWfAl8QQhwlFIvCVIm/oCI5rhHKKNUWQpwqhDhWCBERQlwthGiQKqWkm/CchTInPjIcdObnV3o/BuInwAfCCC0hhKgJP5e6QbdU5+yjhKgvCSHqQqHmE6gIh5GgBjWgagFllkpoSl1F23ajDGJ/IIRoCt/XZeHioZz3X1Gfz9uFEJYQ4i0on6S/7Oe59W5vELbrm0KIyQBCiBlCiItKVnsYJYLlB+TLe72uljpUn0kKIY5BeSNVy+3AR4UQM4Uy8C1EmlXxHTjQ/EvYzgkocet34fxVwPFCiCVCGT7f1Gu7vSiPmP64J9z+yjDa5KMUI/Rg8GtQ7/3XoQT1NpQg9d+91n89/Rg7V8GvgX8SQlwURhbFhDIZnxkufwKVrnQa8IyU8hXCKEQGjiJ7GCW8rw5FyOWodNbNUqW3DXbsCOq63wJ4Qpmylxp77wWaRZjuVgXPAN1CmdHHw+MtFEKcWs3G4bXsDygD+oQQ4jiU91eeOpQw1AJYQoj/AOp7tXeuKBrsD3Z+Go1GoxkELfxoNBrNGCKl/BpqcP8plEHuXpRHyKdRgwiADwGfF0L0oMw2by/Zvitc/lNUJEAKKK3ydTHwihAiiSob/9YwxWEq8HvUgHUNauBRSWD4L5R5bxdqgPaH/T7p6nkb6mn9LpR3zX+GvhagfD5uR/k8dKN8MeJhWszrUF4Uu1CpDF+lKIZdA2wRKgXkA6joAYCjgPtRA8wngR9IKZcPpbFSyudQvjLfQxkWv0qFajeD8BHUZ7gJ5Q/yG1T1s/1GSrka5Rn0JKqfnYAy6a2Wa1AC4VpUX/1/4X6rPm9Z9GH6V9TA/FPAZYNE2AyXT4dteSr8vO+n3EPkYdQA9JF+XlfLJ1FibA9KbPrdwKuX8RNUyuUq4Hn6fr8G+g4caH6D+r5tCv++CCBVSfTPo97fDah+W8rPUL5anaKkElye8LN/E/AVVJ84ivJ+Odg16MvAZ8P9fxKVtrcVdT1cDeR9zRBCLASSUnktDZlQjHsjSvhqQUXG3EB4Py2lTKE+x1dCAQfU922rlHLfALt+AmUAne97q1HGy4W+ONCxw+veR1HXxA5Uf7y7ZNu1KG+4TeH7NGCaXijc/BMqDXIzKoLup6gIqmr5MCpFbg/K4PsXJcvuRQnJ61GfVZbytLA7wv9tQojnBzs/jUaj0QxOvlKHRqPRaDQajUbTByHEFlSVrfsHW3c8I1S594lSyk+NdVs0Go1GozmQWIOvotFoNBqNRqPRHPRsQVXi02g0Go3msEILPxqNRqPRaDSaQx4p5e2Dr6XRaDQazaGHTvXSaDQajUaj0Wg0Go1GozlE0ebOGo1Go9FoNBqNRqPRaDSHKFr40Wg0Go1Go9FoNBqNRqM5RDmgHj8TJ06Uc+fOPZCH1Gg0Go1Go9FoNBqNRqM5pFmxYkWrlHJSpWUHVPiZO3cuzz333IE8pEaj0Wg0Go1Go9FoNBrNIY0QYmt/y3Sql0aj0Wg0Go1Go9FoNBrNIYoWfjQajUaj0Wg0Go1Go9FoDlG08KPRaDQajUaj0Wg0Go1Gc4hyQD1+KuG6Ljt27CCbzY51UzSaIRGLxZg5cya2bY91UzQajUaj0Wg0Go1Go6nImAs/O3bsoK6ujrlz5yKEGOvmaDRVIaWkra2NHTt2MG/evLFujkaj0Wg0Go1Go9FoNBUZ81SvbDZLc3OzFn00BxVCCJqbm3Wkmkaj0Wg0Go1Go9FoxjVjLvwAWvTRHJTofqvRaDQajUaj0Wg0mvHOuBB+xhohBNdcc03hted5TJo0icsuu2wMWzU4tbW1g65z00038Y1vfGPAde666y5Wr149Us3SaDQajUaj0Wg0Go1GM07Qwg9QU1PDyy+/TCaTAeC+++5jxowZY9IWz/MO+DG18KPRaDQajUaj0Wg0Gs2hiRZ+Ql7/+tdzzz33APDb3/6Wt73tbYVlqVSKd73rXZx66qmceOKJ/OlPfwJgy5YtnH322Zx00kmcdNJJPPHEEwDs3r2bZcuWsWTJEhYuXMijjz4KlEfo/P73v+f6668H4Prrr+cTn/gE5513Hp/+9KfZuHEjF198MSeffDJnn302a9euBWDz5s2cccYZnHrqqXzuc5/r91y+9KUvsWDBAi644ALWrVtXmP+Tn/yEU089lcWLF3PVVVeRTqd54oknuPvuu7nhhhtYsmQJGzdurLieRqPRaDQajUaj0Wg0moMPLfyEvPWtb+W2224jm83y4osvsnTp0sKyL33pS5x//vk8++yzPPTQQ9xwww2kUikmT57Mfffdx/PPP8/vfvc7PvrRjwLwm9/8hosuuoiVK1eyatUqlixZMujx169fz/3338///M//8L73vY/vfve7rFixgm984xt86EMfAuBjH/sYH/zgB3n22WeZOnVqxf2sWLGC2267jRdeeIE//OEPPPvss4VlV155Jc8++yyrVq3i2GOP5Wc/+xlnnnkmb3jDG/j617/OypUrOeKIIyqup9FoNBqNRqPRaEaHIJBkXX+sm6HRaA5Rxryceyn/9edXWL2re0T3edz0ev7zn44fdL1FixaxZcsWfvvb33LJJZeULfvHP/7B3XffXfDKyWazbNu2jenTp/PhD3+YlStXYpom69evB+DUU0/lXe96F67rcvnll1cl/LzpTW/CNE2SySRPPPEEb3rTmwrLcrkcAI8//jh33nknANdccw2f/vSn++zn0Ucf5YorriCRSADwhje8obDs5Zdf5rOf/SydnZ0kk0kuuuiiim2pdj2NRqPRaDQajUaz//TkPKSUxGxzrJui0WgOQcaV8DPWvOENb+CTn/wky5cvp62trTBfSsmdd97JggULyta/6aabmDJlCqtWrSIIAmKxGADLli3jkUce4Z577uGaa67hhhtu4Nprry2rAtW7DHhNTQ0AQRDQ2NjIypUrK7axmkpS/a1z/fXXc9ddd7F48WJuvvlmli9fvl/raTQajUaj0Wg0mv3H9QMMXTFWo9GMEuNK+KkmMmc0ede73kVDQwMnnHBCmdhx0UUX8d3vfpfvfve7CCF44YUXOPHEE+nq6mLmzJkYhsEtt9yC76vwzK1btzJjxgze+973kkqleP7557n22muZMmUKa9asYcGCBfzxj3+krq6uTxvq6+uZN28ed9xxB29605uQUvLiiy+yePFizjrrLG677Tbe8Y53cOutt1Y8h2XLlnH99ddz44034nkef/7zn3n/+98PQE9PD9OmTcN1XW699daCgXVdXR09PT2FffS3nkaj0Wg0Go1Goxl5HC8gamkXDo1GMzroq0sJM2fO5GMf+1if+Z/73OdwXZdFixaxcOHCgrHyhz70IW655RZOP/101q9fX4jaWb58OUuWLOHEE0/kzjvvLOzzK1/5Cpdddhnnn38+06ZN67cdt956Kz/72c9YvHgxxx9/fMFM+tvf/jbf//73OfXUU+nq6qq47UknncRb3vIWlixZwlVXXcXZZ59dWPaFL3yBpUuXcuGFF3LMMccU5r/1rW/l61//OieeeCIbN27sdz2NRqPRaDQajUYz8rh+QCDHuhUajeZQRUh54K4wp5xyinzuuefK5q1Zs4Zjjz32gLVBoxlJdP/VaDQajUaj0ewva/d0MyERYXJ9bKybotFoDlKEECuklKdUWqYjfjQajUaj0Wg0Go1mjGhPObie1BE/Go1m1NDCj0aj0Wg0Go1Go9GMEXu6suxp68TduWqsm6LRaA5RtPCj0Wg0Go1Go9FoNGNEd9Zl4R/OZdbtr4Nccqybo9FoDkG08KPRaDQajUaj0Wg0Y0AQSF58dQfTRLua4WjhR6PRjDxa+NFoNBqNRqPRaDSaMcCXkt1b1xZnuJmxa4xGozlk0cKPRqPRaDQajUaj0YwBfiDJtW4pzvCyY9YWjUZz6KKFH2Dv3r28/e1vZ/78+Zx88smcccYZ/PGPfxz14z733HN89KMfHZF9nXvuuSxYsIDFixdz1llnsW7duhHZ70gykm28+eab+fCHPwzAj370I375y1/2u+6WLVv4zW9+U3g9ku+7RqPRaDQajUYzXHqyLrHU9sJrqSN+NBrNKHDYCz9SSi6//HKWLVvGpk2bWLFiBbfddhs7duwY9WOfcsopfOc73xmx/d16662sWrWK6667jhtuuKHPct/3R+xYw2U02viBD3yAa6+9tt/lvYWfkX7fNRqNRqPRaDSa4fD3l/dwothQeJ1K9YxhazSHAll37Md8mvHHYS/8PPjgg0QiET7wgQ8U5s2ZM4ePfOQjgBINzj77bE466SROOukknnjiCQCWL1/OZZddVtjmwx/+MDfffDMAN954I8cddxyLFi3ik5/8JAB33HEHCxcuZPHixSxbtqzPPp555hnOPPNMTjzxRM4888xCNMzNN9/MlVdeycUXX8xRRx3Fpz71qUHPadmyZbz66qsA1NbW8h//8R8sXbqUJ598kv/93/9l4cKFLFy4kG9961uFbX75y1+yaNEiFi9ezDXXXANAS0sLV111Faeeeiqnnnoqjz/+OAAPP/wwS5YsYcmSJZx44on09PSwe/duli1bxpIlS1i4cCGPPvrosNv461//mtNOO40lS5bw/ve/vyAG/eIXv+Doo4/mnHPOKbQF4KabbuIb3/gGAK+++ioXXHABixcv5qSTTmLjxo3ceOONPProoyxZsoRvfvObZe97e3s7l19+OYsWLeL000/nxRdfLOzzXe96F+eeey7z58/XQpFGo9FoNBqNZsTpXnU3l5pPs7P2BABymdQYt0hzsJPKeWPdBM04xBrrBow1r7zyCieddFK/yydPnsx9991HLBZjw4YNvO1tb+O5557rd/329nb++Mc/snbtWoQQdHZ2AvD5z3+ee++9lxkzZhTmlXLMMcfwyCOPYFkW999/P5/5zGe48847AVi5ciUvvPAC0WiUBQsW8JGPfIRZs2b124Y///nPnHCC+vFIpVIsXLiQz3/+86xYsYJf/OIXPP3000gpWbp0Keeccw6RSIQvfelLPP7440ycOJH2dlVV4GMf+xgf//jHec1rXsO2bdu46KKLWLNmDd/4xjf4/ve/z1lnnUUymSQWi/HjH/+Yiy66iH//93/H933S6fSA73t/bVyzZg1f/epXefzxx7Ftmw996EPceuutXHjhhfznf/4nK1asoKGhgfPOO48TTzyxz36vvvpqbrzxRq644gqy2SxBEPCVr3yFb3zjG/zlL38BlOCW5z//8z858cQTueuuu3jwwQe59tprWblyJQBr167loYceoqenhwULFvDBD34Q27YHPC+NRqPRaDQajaZaTuq4lwxxnpn/Ya548f04WvjR7CddGZfm2uhYN0Mzzhhfws/fboQ9L43sPqeeAK//StWr/8u//AuPPfYYkUiEZ599Ftd1+fCHP8zKlSsxTZP169cPuH19fT2xWIz3vOc9XHrppYXIkrPOOovrr7+eN7/5zVx55ZV9tuvq6uK6665jw4YNCCFwXbew7LWvfS0NDQ0AHHfccWzdurWi8HP11VcTj8eZO3cu3/3udwEwTZOrrroKgMcee4wrrriCmpoaAK688koeffRRhBD88z//MxMnTgRgwoQJANx///2sXr26sP/u7m56eno466yz+MQnPsHVV1/NlVdeycyZMzn11FN517veheu6XH755SxZsqTi+zNYGx944AFWrFjBqaeeCkAmk2Hy5Mk8/fTTnHvuuUyaNAmAt7zlLX0+i56eHnbu3MkVV1wBQCwWq9iGUh577LGCwHb++efT1tZGV1cXAJdeeinRaJRoNMrkyZPZu3cvM2fOHHSfGo1Go9FoDl48P8AyD/ugeM0BQEqJ5faw056Dn5gM6Igfzf6Rynmkcj5SSoQQY90czThifAk/Y8Dxxx9fGPgDfP/736e1tZVTTjkFgG9+85tMmTKFVatWEQRBQUywLIsgCArbZbPZwvxnnnmGBx54gNtuu43vfe97PPjgg/zoRz/i6aef5p577mHJkiWFqJI8n/vc5zjvvPP44x//yJYtWzj33HMLy6LRomJrmiaeVzl879Zbby20O08sFsM0TUD9uFSivwtDEAQ8+eSTxOPxsvk33ngjl156KX/96185/fTTuf/++1m2bBmPPPII99xzD9dccw033HBDRd+datp43XXX8eUvf7lsnbvuumvQi1d/5zfUbfLHqfZ912g0Go1GM/7Iuj4x2xzydo4WfjQHCD+QxIMkTrSZ2tpaALJa+NHsB91Zd/CVhoAWkA4dxpfwM4TInJHi/PPP5zOf+Qw//OEP+eAHPwhQlqbU1dXFzJkzMQyDW265peA3M2fOHFavXk0ulyObzfLAAw/wmte8hmQySTqd5pJLLuH000/nyCOPBGDjxo0sXbqUpUuX8uc//5nt27eXtaOrq4sZM2YAFLyCRpply5Zx/fXXc+ONNyKl5I9//CO/+tWviEQiXHHFFXz84x+nubmZ9vZ2JkyYwOte9zq+973vFUyYV65cyZIlS9i4cSMnnHACJ5xwAk8++SRr164lHo8zY8YM3vve95JKpXj++ecHNFzuj9e+9rW88Y1v5OMf/ziTJ0+mvb2dnp4eli5dysc+9jHa2tqor6/njjvuYPHixWXb1tfXM3PmTO666y4uv/xycrkcvu9TV1dHT09lo7xly5Zx66238rnPfY7ly5czceJE6uvrh/7majQajUajGVfs684xuzkx5O0cLyARGYUGaTS9yHkBNUGKrshcErV1al4mOcat0hysSCnpTLvhNOyvXuP6AR0ph8n1g2dRaMY/h/3jDCEEd911Fw8//DDz5s3jtNNO47rrruOrX/0qAB/60Ie45ZZbOP3001m/fn0hTWrWrFm8+c1vZtGiRVx99dUFv5menh4uu+wyFi1axDnnnMM3v/lNAG644QZOOOEEFi5cyLJly/qIFp/61Kf4t3/7N84666xRq7510kkncf3113PaaaexdOlS3vOe93DiiSdy/PHH8+///u+cc845LF68mE984hMAfOc73+G5555j0aJFHHfccfzoRz8C4Fvf+lbBqDoej/P617+e5cuXF8ye77zzTj72sY8Nq43HHXccX/ziF3nd617HokWLuPDCC9m9ezfTpk3jpptu4owzzuCCCy7o15fpV7/6Fd/5zndYtGgRZ555Jnv27GHRokVYlsXixYsLn0eem266qXCON954I7fccsuw2q3RaDQajWb84PkBWW9491OOHwy+kkYzAnSkHWpFmiBSXxhjpFJa+NEMj2TOw/EC1u8dmcpwqZxH1tXXw0MFMZz0mOFyyimnyN7GyGvWrOHYY489YG3QaEYS3X81Go1Goxl/JHMeOzsyLJhaN+Rtd3ZmmNEYH3xFjWY/eWFbB8f97Ehenn01da//PEf/eA6PzXwfZ7zra5iGTq/RDI19PVn++541nPfKZzjrlJOZ+MYvDntfHSmHfT05YrbBnOaaEWylZjQRQqyQUp5SadlhH/Gj0Wg0Go1Gozm0yLk+kqE/3AwCSRAcuIeimsObfe1dRIWHFW9kQl0cR5rgZXB11JlmGOTcgLtX7uCN5hNMfOG7w96P5wfs7MzgeAH6cnjooIUfjUaj0Wg0Gs0hRc4LGE5Qe3AAI+E14wf/AIxue2dZZF2f1tZ9ANQ1NtNUEyFLBOFlD0h7NIcWOc9nX3eOI8XO/d5Xd9YrXD8PZHaQZnTRwo9Go9FoNBqN5pAi6/rDE35ySSbc+2Ho2TPyjdKMWzKuT8YZHY/NPKVajpSSVM5j2sbfATBj2hRMQ5Aliumm8bTwoxki6ZzPiq3tvM18EIBMzYxh76srU6wMVtoT85FoWpg8OBkXwo9WEjUHI7rfajQajUYzPvGTrdRsf2jI24nnb6Fm3Z3w+HdGoVWa8YofSHLDNAOvltL7xrTjs68nx5z2xwGIzFRFYnaLyTRmt+HpVC/NEPECyStbdxeFn9jUYe2nO+uSzHoArN3dzepdXYVlHSmHrOuzpzu7/w3WHHDGXPiJxWK0tbXpQbTmoEJKSVtbG7GYLm+o0Wg0Gs14QkpJ3YM3Mudv10LLuqFt3L1L/a+dPPIN04xbgkAOK0JsSMco2b8vJZ4vMd0Uj9lnIiYtACDddAzTshvZ0Z4e3cZoDjkCKYlvf5SYcPGlgMAb1n52dypRZ+3ubnbc9Z80/uFq8l+OnpzHzs6M9kE7SLHGugEzZ85kx44dtLS0jHVTNJohEYvFmDlz5lg3Q6PRaDQaTQk5L2DH1k1MNcBZeTuRCz9X1XZ+IKEnFH7qhve0XHNw4kuJIUa3ilapf5QMIO14TPJ7sOubCvMnH3kyDc/eza5VD7B49j+Pans0hxZ7urK8PvtXuiITeMmZxrHB0CPYpJS4fkAgJbc+s4277DvVgo0PwJEXqMg4N8CK64pzByNjLvzYts28efPGuhkajUaj0Wg0moMcKSVpx6OBJABezz4iVW7r+gE9e7YwCUCYo9VEzTjEDyRilPMgZK+In9W7uzmBNA1NEwvz606+ko5nvs789T/F9a/ENsc8OUNzkLBq0y7eYbzEi7PeRW7j88hg6OlYjq9M8W97egvH7PoD2Gp+0LYZ40jwfNWJdcDPwYm+mmg0Go1Go9FoDglyXsDWli7mCmXO7Dm5qreVEjJtYUUcObp+L5rxhR9IRnssWxrx4weSHS1dJESO+sai8BNvnMYrxjFEs/voTLuVdqPRVKRt8wsYQhKdfSoBxrCuYVk3oDPtYK78JV+xf1qYn8tmgGIf1tUPD0608KPRaDQajUajOSTIeQF7t67HFmrQ47nVD559KYmLUCgaRpqE5uAlyPaM7mfuu1hPfhtcFYURSMnMHX8BIFJXTPUyhCATaaLW6yCZG55Hi+bwJNbyEgDepOPwMYbcn6WU7OvOcu8re7jO+DsAty2+BYBMNqPEUV3i/aBGCz8ajUaj0Wg0mkOCnOuT2r228NrznKq3dTyfKKFQpCN+Ditm/ugo6v9w9egdYMXNRJd/Hp5Q1eLW7+7ina1fV8uiDYXVDCFwos00yi7Suer7rubwRrpZrkreRqfZjGyYRYAY8jVsV1eW7ozH2pee5ShjJzvP/BKZiQsByOWy+K5DZN+L/PaZbfxp5a7ROA3NKKOFH41Go9FoNBrNIUHOCxBtrwKwTzbiu9UPnlt7nKLwoyN+Dh98FVkT2fJgISJnxHHDKl1ZVRr7hNvPLC6L1RcmhQA3PhELHzJdo15iXnNosGP7ViaLDp6bdT3CMJHCgiCoevus69OedLh/zV7OcR4mwKB7zoXUxqJ40sDJZhArfs6Cuy/j6pVXc8aj1xf6so7+OXjQwo9Go9FoNBqN5qChv4GGlJKcF5Do2UIndbTKBgK/euFnd3eWqAjTa6p4Wh4EkvaUjso42Amy3cUX6bZh72fAAXDeOVpKkJJGv7WwqDFWNBKPmAbUKM+fXOdeVWlOoxmE1Zu3AdA0ZQ4x2wDDRMjqUgUdL2BHhxIm42t/z0esu0jOOhevZiq1MQsHG9fJ8MLaTQAcb2zlTHM1csN9AKQdLU4eLGjhR6PRaDQajUZz0JDzKj/JllJ5pzRnt7PXnomLSeBV7/ETe+V3xRdVPC13/ICsqwc9Bzu79+4tvgiG56sTBJKOgcyYC8JPQDaTAuClxtey5/TPYR3z+sJqhiGw66cB4LRv08KPpiq27twNQOOEiTTE7VD4qS7ix/UDMk6AH0hmdD4HwO7TbwIgEbFwsPByWV7cXi6KZpJKME052ovqYEELPxqNRqPRaDSag4acW3lAE0hJKucxU+4iWTsXD5PA7zso6S8yY+mqfy+uM4gAkPN8cl6gq9scAmzaUeJXMkzhpyvj0pMtF37K+lmJ8LMrFJr2TTiFriXvB9Mq2y4+91RcaWJsfVQLP5qqEGHaVRBtoCFhgzARVXr8OKGQvrk1xQy5h131i3Ea5gIQsw1cLPAdavxuciLGE/M+CkBPjzpmOqfF74MFLfxoNBqNRqPRaA4a+vM9kXtf4cSfz2WaaMdrnI8vLKTfNwqjmtQE3x94HT+QJHMeWvc5+Nm1d1/xxTC9nTozbtgfVIdoTzk4folAmRd+kGzeuQcAO9GAWWEkdtbxc3nZWEDznse08KMZEC/sYxG/R/2vbSJqmYghRvwAvLyrizliL8aE+YVlTTU2OWykl6NW9tBtT2LXgusASPYUI35cPyDQfXXco4UfjUaj0Wg0Gs1BQ9rxK0btiLX3FKZjE2cTCAtC4Sf/VHt3V6YqXx6vQqRQKX4g6cm6Wvg5BMj0lKSwDDPiJ5XzCALY3p5ha1uKnR2Z8r4RCj+u59HZro4XrW3EEKLPvqK2yZ5JZ3GEv5Fkq66epOmf/LUs4iXV/5pGgFD4qTLixw9w/YAVL77ENNEOzUcAUBuzmNmYwJEW0svRSJKMVU9dTQ2+FDjZJFJKggD2dGXpyeqUr/GOFn40Go1Go9FoNAcFnh+QzPUzwMh2FiabmycihYkRGpy2JHO8ui9Ja49DV6ZvFJDvlz8d97yBBzFBAK4nkWjl52DHTXUVXwxD+Ml5fkHk6cq4dGfUPsqFHyXw+L5PLtUJQKy2EdPoK/wA2EdfAMCelX8dcns04wenHz+ykaIzvJbFPBXxE61tUgsMA4Pqju35kntW7eLDmR/iGjE6j7wcw4DZExIkohausAk8h0aRJGc3EItYZIgSOGm8MMqnM+2yvSPNvu5RqoqnGRG08KPRaDQajUajOSjIuH6+MFJfssUBfG39BHxhYYQD+azrkxkgxevelZvLXg8m/PhSEkip0xsOAYJMifBTZZREHs8P2NVZebBb7v+kBB4pA5xQ+KltaOpX+Gk44hRaZT0NOx/RBuIHKVnXJ9tPWupI4HgBOTdASknMT5ImTk08CoAUVtWpXq3JHJNXfJ0LzBdoPfUG3LrZ1MfsQt/0hEr1asoLP7ZBhijk0vi+jxkK7lJCth//Nc34YFDhRwgRE0I8I4RYJYR4RQjxX+H8CUKI+4QQG8L/TaPfXI1Go9FoNBrN4YrjBRhOD9JN91kmSoQfK1GPXxLxU2oIrYSjcsEmlewqe+0Pkurl+QFf/+Uf+OttP4RB1tWMbwynNOJnaAP17qxHsp8Ul7IeFqZ6ySDASavjJeomUBOx+m4ITKiN8kRwPFM7n68qNVEzvnC8gIzjj6ownPeQkhKifpK0kSBqmWqhYWIyeF/2/ICue7/M+8Uf2TvlHFoXvgeA+rhdWMfFBi9HDVl8u4aoZZKREaSbxnjiOxz360VYaWVYrs3uxzfVRPzkgPOllIuBJcDFQojTgRuBB6SURwEPhK81Go1Go9FoNJr9oj8DZ8cPOP6Xx2P832v6LkwXvVrsRAOBsArCT2+T3N7jE9FLSPIHifh5bmsHX8x9hX9p+yJsfnjAdTXjmzpn+B4/bckcAPVb7mX+n6+EoJhGWKmql5QBfij8NDU1UxurLPxELZNWYxI1XgdpXS77oMP1A9wgqNqcezgCUd7YOZASU7q4IlJcKEyMQSJ+pJR0Zlxeu/vHAOSOvQqEIB4xqC/pl75hIwKHCC52JE48YpIRMYSXYeMTfwAg1r6u0BbN+GVQ4UcqkuFLO/yTwBuBW8L5twCXj0YDNRqNRqPRaDSHF5WiKNKORyqcL9o39VkeuJnCdKSX8FOG7FuGXbgpAHJWPTB4qtf0f3yAuYZ6yk2uZ8B1NeOXtOMxWbYUZwxB+HH9oJDaMuf+91Kz9zlira+ohX3SAMPpIKAhuwMfk1htI3alsl6AbRo4dj22dAkc7ZtysOH6AZ4v8asUQnLD8AJyCsIPiMAnEGZhmTAMjAEifvxA0p3x2N2hrpnt9lS65l8GwMymBKLEdNwXNobvEMHDjsaZ2hDDEVEML83GTA0A2159qdAWzfilKo8fIYQphFgJ7APuk1I+DUyRUu4GCP9P7mfb9wkhnhNCPNfS0lJpFY1Go9FoNBqNBlCDps4KBswZx2fFy2v63a6lsyjAiGg9gbAxpVcWeeH6ASf8bC7G3R8u21Y4KuLnqRO/iivNfsu5d6YderIuS3qWF2f6OhXnYGVza4rpoo0u6gDwvb79rj/yxr3t29cV5m1d+QAAc/7xTmp+eWFx5TCFzEt3cpF8jPWNy8AsptP0piZq4UWUCFlqWq45OHBC4SeoUs8Zjo+T50vMbDsy140hPSRF4QdhDWju3J5y6M66bN2+DYDVc64FQ0X5RK1yecAXEWyZwxY+ZiRGQ9zGETFwM+RQfbh13ePc/cx6/GpPWDMmVCX8SCl9KeUSYCZwmhBiYbUHkFL+WEp5ipTylEmTJg2zmRqNRqPRaDSaw4GerIfr9x1AuL5k75ZX+t3OL42MsKIEwsSUPoEEI9dFS3eGFT/7GADGqlvLtjU8FfFjx2sJMPpN9WpNOmzYmyyb5+QyFdfVjH82tqSYLlrpiM4AIOtUL+LlhR9n1e8IpCAjI1yw7dvM/P2l1G9/EGvPyuLKofDTsPVeVRZ76UcG3HdNxCSINgAgtPBz0OH6EscPqo74GY4JtOc4HPfrJdi/extC+gSiJG3QMDAHEH5akzm6sy7tu5Wpfe3k2QDYliiL9gEITJuEVMK4FYkB4BoxTC9DA+q6eZX5GO9Y+Xa+ef+GIZ+H5sAxpKpeUspOYDlwMbBXCDENIPy/b6Qbp9FoNBqNRqM5vHC8oGLVLtcPaGh5DoBM7aw+y01ZEq0hBIFhY+Ah2zdz/K9O4IzbF/Fe40/qGLUzy7YVYZpYNF6Hj0HQT8qP4wXsbu8um5dO9zWa1hwc7Ny9m3qRIVen+pMzBOEnn55Tu+8FtlpzWN5wOQBNnSrtRVIygC7pT4/Gz2facWcOuG8hBLH6CQB4qY4+ZuSa8U0QSNq2rSGy7u6q1ne9oX2+Wdene9VdABjbnsCQPtIoTfWy8g3ps62UshCNlGpVET+JiXMAiubQJfhGhDrU9bEg/JhxrCBLo0gV1ptj7OPoTbeAo6+H45VqqnpNEkI0htNx4AJgLXA3cF242nXAn0apjRqNRqPRaDSaw4T+hJ+M43F25kEAcpEJZctcPygXfoBAWJjS46EH/w5AnByba08CIFk3v2xdM4z4sRL1+Bj9VncKpKS3dUEmqwc6ByvZ1q3qfygkVpvq5QeS9pRD5uW/cEawglTjMbw0/73c5F7LZyOf4hfeRbhGrLhBSZn4yDEXYYrKZdxLOfGouQCkX/qL9k45yGjpzrL0Lxcw6W/v6+skXwGnQoTjgPvvyeGsVte1nqmnY0ivzOOnIALJvtcxr6Qz+Z071P/aaQBMrov2WT8wItQWhJ+42ocZJyYzNJKku2YuXrSRlFnPJ4JbkKvvGtK5aA4c1UT8TAMeEkK8CDyL8vj5C/AV4EIhxAbgwvC1RqPRaDQazbAZzfK3moMDx/eR9O0HG3a1M5fdAAR++QC9LanMRwFy818HgDQsLOnTte1lAil46oqneOmCX/NscDSeWx7ZYXgqTSwSjRMgkBWEnyCQSAntHa0APHHMvwOQzfRvviulJJnTVZnGKzVZ1Z8yNUr4CQYx9c7j+qpi02lPfQiAuukLWHbCEdhnfpB/eusHyBDFDIp9zHWL/XXa5EkYxuDCz+JQ+Dl5xy34ydaq2tWb4XjHaPaT1g2cdPO84mt38FRQb4jeOGnHZ1aXin70XEdF/JSkeom88FMhcjGfRutnezg19TA+Jl58IpPro9RE+1aZk2YEQ6jrcT7iJ203MZEumkQP7ZNOY801L/KjhbcBkEl2DulcxhpnGMbaByvVVPV6UUp5opRykZRyoZTy8+H8Ninla6WUR4X/20e/uRqNRqPRaA5Vcp5ftSeC5tBESknWDWh+4fuw47nCfM8P2L11XWEAgl8+oGnpyRHBZcP86+i+4tdqX4aFicc0dyt7zanUNE+nPmbjSJvALRdrZDhAikWj+BgVhZ983+zpVOW/rTpV18QfYGDXmXYLZZc144+6nKrMlqlVHie9BcX+8ANJZseLAOwxp5NadD01UYs3LJ5BImKBFcXEL6Ta7O4o+kIFkdqqIn4itcWoNrlxeVXtKsXzAy38jAV7Xix/ne0aeP1sNzLZMqR0Pt/L0RyoyMPAzVZI9coLP+Wfv+MFxYqJf/0kS401CAG2bTKlPkYlArM434qqiJ9UdAoR4dMseiDeBEBNTS0A6VSy707GMRnn8PmODMnjR6PRaDQajWa0yJdG1hy+5LyAJ1a+wtRnv4r87dsK87NewIKNvwBgj2wqCDV5WpJZbDziiQRmGE0hDRsLnxq/my5TDU7q47aqROP1itIJ9xeJ2P0LP2E0WqpbPeuU8SZ8KQi8/n1hOjNuNZkemjGiPrcHBwu/ZioAgV9dxI8XSGLPfp+UjLL6kjvx481ly4UVpsz4OQByJd5BgV2LUYXwQ6KZp2a+U22/7dmq2lVKZ8YldRgNascNoSl3niDdMfD6PzmfY399UlkK1mB0tezECKMipZfFoHfETzjdK9XL9QN6ch6xl3/Dkva/AWBIn+mN8X6PlbWbCtN2VIlAfu3U4rx6JYDX1arKeOlUioOJjOsfNh5aWvjRaDQajUYz5kgpaUvm9CD5MCfj+Lz8+D0ABPUzCvO9bJKzk2qgsimYhgjKIzOyjkdE+Nh2tBBNIcPBjx3kCAxVdtg2DXwj0qcEe17oiUZiBBggw4pNXlAYFDy6fh933/x1ZnepQbiZaMTBRg4g/OQ8v0LSmma0qTZlNOF10i3qiUSVUFNtxE8QSCZ2ruJp62QmTZmBENCYKJZnN/LCj6eEH6ck1Suwa7DMKoQfIVh//P9jr2wkmxxEPKiA50vcwyiNZbzg9xKNs6kO0s4AgmKbqoTlVekVJqVkz44tAPTIOMLLYUq/UI4dBo746cl4HPXUjWXz62M2/ZGNFkXNWBjxM21W0SMt1qj8gRpqYuSkRS59cEX8eEFQMGo/1NHCj0aj0Wg0mjHH8QNSucreLprDh2Qmwyet3wGQm3BMcf4+ZcK7NXECLUYzolfETz7qRthRRHh3K0OxJyKzZaWOAyOCEUZi5Mnvz7SssoifjOuTDqMmVj71AP/ufZcPW6qeiV3ThIOFdMv3lSdfPedweZo8nqjWLNfwHTwRwbRUX6k24ieVzTLJ24vfoLxc6mM2dbFiHzNDL5S8wFjq8WPE6yp6qVRicm2UpIzjprsHX7kXUl9Nx4S97eWpXemuNnZ2DO7zQ/urVe3fDySde7cDsEtMwfBzKuKnUqqXLP8euH5A14t/KW/vmwauPOYnJhb3a6t+fdyC4rU52qiif2qjFjki+O7BYXafF4f9QBIcJtdoLfxoNBqNRqMZc1w/DFs/PO6/NP2wYc2LzDaUd4XrFgfh69evAWDT4k8gDLuPaWkQii9mScRP/gl4VBYjfgA8I4oV9I74UfuzbDuM+FFij+sHtKccgkByXPsDAGSaF9J17FupmTwXB7uQzlNK1vVxfWUGrbv0gaW/qnCVMAMHzxi68LN23Vps4ROfciQADQm7TMyJhCkxeS8ptyTVa/KEiVTLlIYYKWL4mZ6qt8kTSA6bAe14oqun/LNKdbWRdYN+o9C2BFMAaNn0YsXlvQkk0L4RgH3WVCzpqIifCubOvVNifSlpXP97umUCgOTUpciZSwc8XkPz9OILU0WyTZ42pzAr1jAZw4CIZZAlAm7/ZvfjidaUum4PJcXuYKc6uVmj0Wg0Go1mlHC8QKckaADYu/GFwrRbUnlr7w410Jky80iSpo0hywc0MkypMaxYmccPQIwc0rAQQHNthK1mBKt3elZe+LEi+LIY8eP6AZ1pl860SyK3l53mDNqv+Cs1UZPmGpsUdiGdp5Rkzit4Aumx94HF9QOqsdABMAIX37AxLDUkqjbVa++GFQA0z1qAh4p2MA3BtEYl+KxP1ACQSqepawK3pEx8Q31dlWcCk2qjbJdxGnKDCz9SSkTJiUspdd8bA1K9PG6yPcoMPpASg74dszMyBby97Nv+KrOr2L+X7uLy1B3sjcyk3ZiM7a/ExC+ktgIIU027rkekZFspgeRettrzSVz8X+Qaj2TKIGmH06bPLL7IpzAaxdgRq34qU4hhIMjICKK3f9o4pSPlErNNnt/awb6eHO9+zTxitjn4hgcxOuJHo9FoNBrNmLK3O0vW87HS+6Bj61g3RzNGtCZziJZ1BFKwQ07ELxF+vI4dBAion4YwLYxepqXFiJ8IllEe8ROTOQwrwuwJCaY3xpFmFEuWD/BFQfhRqV4iL/x4xZFz3E+SNdWg3TQEdVEbR1p9/IJADbD2ded49cUnMO/+UB+vDc3o4frVR/xY0sE3IphmODyuMuLnlG0/Y5+YRDDtRGxLFMTGibVRJtZGC2WvsxmV9uKVRK9VrUoBEdsgZ8Yx3MENc3v7lHS27ObIH8yAjQ9VfTzN/pPJqM/q4eP+CwAv1Qn0H/nnG6rvRbL7qtp/5zO/oUn08OAxN+FbcWzpYBJAaaqXqab9XkLmvq40TV4LonYK6amn4seasK2B5YDZs0rkqLzwA2Sbj1cTiQk010SYOzFBlgjCqyKtbT/wRyBCJwgkjhewdV8P0x76OA8/8lDxd+MQRgs/Go1Go9FoxpSs69OWdDj2N6cQ+8GJY90czRiRcXya0pvYY0yhRybww6gc1w9oSG+l05pMLBZXZdp7RfzkxRdhR7HM8PbWLEb8GKZNQ2i+G5hRbNk74sfHx8AyjbJUr3wJdyklNX4Pjl0PgCEElmngYiMqpHpJJK3JHFc881YmbPg9pFr2/w3SVEU+bbQaTOkSGBFMSw2Uq031muLtZm39GRCtYUpd3zLYeeEnnRd+vOoiifrsxzBwzFoifnpQr6jepduX/1IJDzx/y7COrRke2bQSflLzLiEtowQZ5fnTX9qdgRLsYtnWqvaf2vo8rbKehqPOIjCjmAREhVus5AUYoQjkeuX9efbvL2G20VLw5QGwjYHlgMaGkiplZlH42XX5HWy96h4wTIQQxCPK48fwRzfixwv2PzrYDffxyiureE3qPn5kfaP4u3EIc+ifoUaj0Wj64FVpfKnRHAi8QPLQ2uqedmoOXVqSOeb422lPzMPFxA9TqFqTOY5mG+21RxGxjFD4KR/k5lO9TKs4CC+YOwsfwyomPEgzgo0HJQMIEXj4qAFMgCikeuUH21k3oJYUXkQNgvJVmVxhI/qJ+HnpxWLaWm9PIs3o4QVB1b5KlnQIzAhW2D9kL+GnktiysyNJHSn8aAP1MZummkifdfIeP509KTpSDv4whZ+4bRJEaogG6bJIh2TOY2dnhp5scb9Zt9ifd695smBCzsQFwzq2Znjkwupc9fW1dJPAdJTw059uZ4bCTzxXnfCT7u6ghxqOmlKHDIWYGrJg9i3n7vcSfib0rAUg0aRKsBsG1VWYy1MS8WMmGvGmLilb7IjBhR/PD9jXPXxxaCQifvL7eHrdFgDqObhK0A8XLfxoNBrNYUjK0WkHmvGDH0heeuWlsW6GZozZsLuD+WIX/sQFeJjIcLCcy2Y5Quyio04JPxgWBr2FnzDiJ1IcmMgSEciwiubO+cFSmSmz9PEJoz6EiQir4UR3PkGkewtdGZcGoQb7QMFAeiDhp3nzn4oztPBzwJBtmzE2PlDVupZ0kWYEIxw09zbDzboBbsmDEs8P2LRjL6aQEGuiubav6AMQCcteu7k0OS/AD/fb+daBKyj1Jh4xEdFa4jJTZkIbSEl70mFLa5ruUPzJlET8tLWXiAix+iEdU7N/ONkUPgb18ThdsgYv3ckz995KsOWJiuuLUBFKONUJP066C9eqJWabhWtcgmxZOfd8xI9fImSu31OsNhbxQnEqZg8txalE+LFNo8+2ORHFGkT4cX1ZiKQcDiMh/HiBqraY6tgLgOUO3Tz9YEQLPxqNRnMYktHCj2acEAQS1wt4d+tXx7opmjGkPeXQtm0tEeETm3Y8HlbBaNfv2YctfLI1M0lELKRhqYid0sFDKL6YJQOTwCxJwTFLIn7y65SYkIrAIxBhJRyMgifPjLvexILbl7GzI009aayaJgCMcMDjCRsz6Cv8pByXRHJbSfu08HOgmP7LM0jc/uZB15NSYksXzAi2rYTB3hE/vpRsbi1GA+ztyZHuUma9Zk0TiUjlOjnRmOp7npPF8QLwPdqtyQSzzhjy+RjROqKURw2VVune26WO4ZR4/Di5oqjpuX3752jiHOZG/b6TxRUR6hI23SSo6VzPu7f/G4lbL6u4vghF7Bq3fdB9u36AcHogWodlioKIHRUelFQuNEKPn2xJRNiu7ZsL06kZr6EuZjGpLlpmCN4fBeNos3gMyyx6WxXaJ6JYFVJfS3GG4MFViZEQfjbsTXL9z58i7nYNvvIhhBZ+NBqN5jAjCGQfLwCNZqzwpeTZLe3MFirVKxWpvtSx5tAhmfUI9qmS7fa0YwkMGxEKP66jBhJ2NEZt1Co+2S4d/XrFcu55pF0S8VMyYCn4VJRW9pJBScSP8vjxM8VBQdu+HVgiYELzJOIRoxDx4wkbo7fwIyW7nriDeWJncZ6O+Bl3uL4kgqfMvi2LQApkUJ6SFUhJriSFqjvjku1Wwk+svrnffUdiKuLHz/Tg+D4y8AmEWeg3Q8GMq4gdJ91dmCdLktmybsDOzkyZh4ybKxrsOrnRr7LkhxEUrl8eIXVY4mXxRIT6mE23rOEIYzcAmfiUiqvnowtNOXg64J6uLDUyjRGrwzKMMs+dSqleXom5s92zHYBnTv8B1oILqI/bVVexar/yNrJHXgLRot9PxDSwe/nieEYUUw4s/Hh+9amYFbffD+Enn7q54YXlPC/fwrUT16n5NZOhyop+BzNa+NFoNJrDjKzn92syqNEcSIJA4mWTbF31EFPoAIrVlTSHF4GURNrXAxCZcgy+sBDhQMgNK3bZdhi1kxdxSm/Uw6fMRqnwY8YL06WpXuRTwEojfmQx4idv7vzAUysKyy9/8f0ANE+cwryJtTSGRtG+iPQZsHVsX8PZL3ycJcYmcoTtCQ79QcXBRs7ziQgV8WMZAg+jT8RPEA4y81EGUoKbUpEZtQ39i9SxmCrnftbKG8g6HgQeUpiIYYy8RP0MAJI7Vhfb1esnPJn1MLu3Fb4TrlMUfnLOwAPxkSDn+bi+ZF9Pbr8G9Qc7rh9geDl8M0rMNpkztSgOJiOTK26Tr1BoSrd/I6CQjOtTJzJ4dh22KcpSr8rMncOIH8ctXneMXCcAfmIyk+ti1McqR6tVwp9zNt1v+EVZGfeoZfaN+DGiRILBU70GMyrvDyll4TtZLaWelm0ph5aeHPGtqtLdyd0PIIVB5iMvl0UzHapo4Uej0WgOM7Lu/j1t0WhGitZUjpV3/Ddfav9XDCFJyShC6mi0g4mh3oT3R2tPlmOdl+mMTCWSqCMQFkYolviOiqix8sJPPqWhVCQMB7yi9Al4ScSPKB0g5cUhrzggFmFEBqAG6EGA27oFgBXRpTh2A+saXoMx/xxMQxTSI3zDxuoV8dPW2VmY9kSFtmpGje1t1Xt15LyAKC7CimKZQkV8BeXXn7zgk39YEkhJtkdF/ExontTvvuPxouhoJXer/RrDi/gJ5p6NLwXuuvsK83oPnPft3sbRvz0L7r8JAK8kyqc07Wu0yLkBjh/QnnQO6wdLyZyHKXP4Rij8JEoEX7eyIJKP+DGQg14nsq5PLRlktI6aqFV+jSsRfsxQ6PZKhB8/nDYsm4hlDKmKlW0YfVLCYnaFiB8zhh0M3N+SOW/YqV7ZJ37C5P+dAunB0+JKj5dnT1eWlp4contHYZ4UJhjVRT4d7GjhR6M5xOnOuod9vrWmHM8P+tw0uhXmaTSjTTrnk+4q3sDtFpMxepfp1oxr2tMj4x+y7cWHOdt8mR3z3kLEMpTwE/YFN0zJioTGzSJ/kx70jfihtHpXibmzWRrxY6toDJxkYZaQPgGlET8B8bRK1Ypf+T286/6O86bfYE6YW9burNG34pJbEmHxZN3rwvbpfn0g2LZt8+ArheS8gAgeWFEsw1CG4r0jfmT+f0nET1JdsyZMrJy6AxCLFYWfSMerIH0QVp8IiWqYMmUam+R0xL5XCtELvfXW//vDvWpi+9MA+G6xD7ruyAg//Ym8WdenLeUUvAMP51uJ9qRDDBdpxTANgZFRIuEOOQnhZSpuIyi5Rw+9yvpLl8vkPGrJYCcalOhSImhbJde4Yjn34jUyCPu2HalsSD4QpinorVkKIVTqbQmukSAq+4/4cbxg2B6TacfDXPET9SK5t+rterIeQSALglNn2mGWu5U9sSPonn0B7cdcPaz2HIxo4UejOcTJOv6IGKFpDj76+9yDIKBh5U8gpSpISCnZ1p4+rG/WNKNLf30x6/llXhQbjPkYOjLioKJzhISf1s2qqpu56J+V8GPYhb7ghRE/kWg4yCmkevWN+Ck1OMWunOoVROoAyPR0FJeXpHrJ0OMHV1W+CaLKY0WIoqlznpxZS02QoitTHGDlhZ+HTvk/1tafGR5U9+sDQcee7VWvm3F8IrgYdhTLEPgYFT1+QIkZQSBBShZ2P0yXqCfSOKPffTfWFytpzXz0BmVGbvRNjamGGY1x2qjHyHaQcX0c16fmj9cw/eFPYveoyIWpQolRbkKJUX5Jqpc3Qqle/VVicnw1mC94Bx7G9xKtyRxRnEI6aTDzNAC2mHMw+jE9FiVeZdlslu3tadbu7qko/ji5FJYIsBJh/4rUFJaZdqm5c+jx43qFh3pBKKDHokMXfiKmgVEhWq13f/asuOrrXuXfBccPePqu77Hj1g9DbmiVtHqyXjE916zuHFw/UN8ZPyCZVdfgDXuTTBHtpJoXsvV1P6fl7C8MqR0HM1r40WgOcbxAHtZhtwcLOW/k01tKByKl2FseYtIT/wUP/BegUr/SOf9wvlfTjCJBIPt9eun5EjPXyR5zGi+9azNt1hRM9AD5YMHxArLu/keU+oHE79hCgIFXN52oZSINGzOM+PELAxY1mBKVUr3y0yU+DaIkDSISLU7LmDIo7egolk/uk+olA2T49F2Gx6s0aM9adUTJkUwVKz+5oVBl2jbxUKySFUq+a0aeVPuu4otg4L7ZnXaICg87EsMyBR5mH4Gu8Y5/ZsqzXyOQ6l6q6aWfcKr3PCsaLiwz0+1NvHEy/zP1qwRSEEnvYZ7YA4Y5tNLZ+TYkbLpEHVGng7Tjk85mSGy6l+YNtzP/d+cSe/Z7zBEqAqLbmkAQyELET1baI1bVqz8BPx9Vni8nfzjfc7Ymc0wWnchQLPYv/BLr/vkh2q3JWLLy52CURPx0JVN0pkOfpgq/m15KGc5b4TWsVPixS4Qf01J90/Fc0mGETT7ip6YkGq1aIqZBNT3Xt1R7ksm+1bI8X1Wee0/r1zij7U7Y/syQ2tCTdenpCaM0g+rumdOOj+MFJHNeIeVrw95umukh3qBE0kTk8EjzAi38aDSHNFJKfC38HBTkRjgdL+14/ab4OTtWqolIbWFd6OsZoNHsL0EgcYPKpVuDQF2fIm43jl0PholhRUKfA+3zczDQmXGQcv+vHRs2buCD4g84Vi2RSBTTEEijmOrle+XmziI/4C5L9cpH/JRUtrEShel4ifBDOGhKdbUXBldlET8YymvKc/AxCvusJPw4tooeclKdhXn51BrTjlKbiIfztLnzgcDt2lN8MYhfWGdSiXV2NIZtGirixy/fJrr9USav+h7mcz9FyoD4qlt4NZhO29LPDNqWk8+7krc4nwNQlZ0Mq6rS2b0RQuDYTcS8LlI5j/ZuVd1rWzCJNXI281b9D+ebKwFI5TxyXkAQ+skkiRfSh/aX/u4l89+hth6HX//qxyTv/tSIHO9gIwgkbXt3cbyxlcz0MwAwIzGcxiPwjCh2P9WuSn3tstlipJbr932//TBKxoqr604hbRWwy1K91DVr7is/KNwLyvAa2VA7dOHHMAS2Nbhs4IfX3EwF4Sfj+uzpKkl3G0IVre6sS1vSwcz7Bw1ilp8/57Sj0rv2dGXJukoE2rxrL1HhImqVOXvcNhFVyVoHP1r40WgOYdJhmpcezo9/RtqHqSvj0t8n/+TTT6iJ+ukAhadBup9oRpp8CkClFAEvkLT05KgnSRBtRIiSqk2HQVnVg52047GvW92E7286cfrlvwIQ87oLT1/LIn7CiAUr0ivVqyQ6Q+QHAqURP5Gi2BOPlZR2D8tjk+0mnVPXP4GPFGqwJIWpSsX7Dh4lhqkVhB/XUgMwP91Z8EDJR1hYdoR4TPXp7AEw2NUAqZbi9AACspSSnlD4iUTjmEYY8VMqFpVct+xHv0bmof+lObedvza8laVHTxu0KcdNr0c2zSu8FvthIGvUNFMbdJPOuXR1q3ZvOOI6Npz3EzIywonGqwA42RRb2lKFVK+MjI6Yv1Sl77njBezoSPPYg39m7bP/4Ku5LzJr3S9G5HgHGxnXx9iyHIDGhRcBFMy8fSNCRDoVDZBKI35kieF8xYifbNhn4+rBnREtEX4iRb+faExNT2t7qrCfIPxdrU+UiOBDIFqN8BMKUW6mbxpXIGHdlp0lM6r/nU9mPfZ254gRipiD3CPkfYRyYUSqlNCWdHjvL59j+06VDurFVMU10xBYphZ+NBrNQU4q5+EFEjmymoJmhMm6JbnxI0TG8fv17DlShD+8vjL+7i8lTKPZX3JeQNrxKz4p9gPlLVVPCiPRhGUKzLzwo/1Qxj27u7KFa0x/3h/Vksmpm/k1y35A1A5vTQ0bqxDxo65RVliNywjFHVl685/vMyURPxNKnmyXDoqMWAOBFIhcFz25sNKN9JXgg/L4EdJH+DlcLGJhmypVZKprVIMHL9VRiNwsCD9WpFCJzPf0dfZAEMmWCj/9X0faUw4dYdpINBpXHj/SQJZu4xTT97IN89m29jn2yUaOvOC9VVVEEgimz5xLWoam5AOkhg1GtGESFgGprna6wnabdpwFRx7BilnvLKznZtN4vkr1yhHBwYJghCJ+KtxLOn7AQ2tb+OCmf+Gd6z4wIsc5WHG8gCktT9It6rBnnQioSBnDACMSxySoKFgIKfGlurYEJd44XoWInyCnPnsrlhd+agvLSlO9Ji04i24ZxxMRHL884scoMYQeCr0reFUiCFO93HRf4UdKSceeEvP1ITzgyYbRQjHhVrVtMoxk9zyX2u0PIYOA1X/7Ec/5b+Luuq+qXcTVtdsy+lYnO1Q5PM5SozlEcf2grExhb1KOr562D5Lnrhlb2lJOxR/4/SHnBRUH2zLwOVIoDwTXzeGVpOHoTC/NSOKG0T5px69YDcbNpVn66Ds5wthNLF6jbryMCik8mnGDH0i60i7tKYd0zufJja3ccPsLuPsZsehl1WDGnX02MTsUX0y74PeUHwzlq9EYhVLFJQPaCsLPrAnFVK/SSKCGmihJYnjpLjpSLsmchyF9AqPU48cH38UTNhNq1HErRfwcNXsmADv37C2ISPkIpUgsVqgm5vdjdqoZOfxAUuu0FWcMkOrVlnLo7FGD02g8jhACV9hlBrxt7cWKg242hZtN02PUM6u5piqTZkPA4lmNrJOzgPJy20OloXkqAHv37iadUabj+Qi4iRf8P/ac9An2yKaiqbPn4AobD7MYDbefVBJ4/UCyfnfftJ7DMV037XoclXuZTTVLEGYxuqsuaoMVitAVKnsZ+GRR15hS4ac1maOlJ0d3tqQke1gMoRjxU7zGRUqqdTXUxrlVXIolnUKaaaFi3SiWLhehEOVmuvukAAcSsm3bSmZU/4AnmfV46L67S7YduE93ph26sy4v3PpZ5t17HQ/9/Q6u7fguhpA0OiodNNGkPH7MwyTaB7Two9Ec1HSkHXL9RIp0pV3W7Ork/37wdV54+sED3DLNUNjfQVNv/EDi+bKikNO2YwMJEZo+ZjIEoT/Hq9t2EaTb+26g0QwTz5e0JnNkXb9P6WGABx+8l+NzLwAQTFlIpFT40aWvxyUpxyPleAUT1z89v5W/d7+R1L37VxXFz6mBrIgkiFnhoMS0sQhNSfPCTy+PH6/UN8fva+48o7HEy6Kk2teSmY10U0OmW4kEWdfHCMttQz7iJ0AESvhpro1y3PR6Zjb19cZYMFcJP3v37qYjFQo/YXubahMF4SfQfXrUaenJMUWU/I71Iz6kch45NyCbCQfRYUpgijgRL11Y74EXNxampZPG8LO4Qokt1Qg/QghOnTeB54Kj1Tb7kVA9df5CABKb7yWXDYWfqOqP0orRctL/o0VMBDcv/GQJhI2LNWKps/F/3AAv3l42LwgkF+74dt+VvcMvtXHj7g5msg+n6aiyCljxiIk0wyibCu+LQVAQfiiJDMx702xtTePlo3bCKLRITEXWRCtU8ioeWEW0uEn1nShESJZcI0eaudMnA9DS1t7Hu1JKycy2Jwuv815og+H5Aat3d/Nb66bizCr6dGfaobHzFQBO2n4LNaJ4PCkM6qfOJx4ZnuH6wYoWfjSag5jujFtxQAWwqyvDqlUv8L3Id3nto289sA3TDAnXD0bUWHlza2hY2bq6TxjPvl1bCtOZbIZASm5/7CWu+MfpeLdcMWJt0GgCqcTH+O5nMdfdU5gvpWRfT5bMJnUDuObNjxE58wPKP6Dg3aIjfsYjWdfH9QM8P2BnR4a5LQ8B0LD61/u13yCXwsWisTZBxCqmetl4+H5A0E+ql1fydFzIvuXca6IlA6GSwU5TTYSsWYub7gTUb6kI/KIHizARBAjfwRfFil6VjHljjdPwMFm6+9c4oXloXqiaPqFOR/wcQHZ2ZpguSiJ++oko6AnLOjcklbAjGlVEToo4ppdkd2hA66SUiXK7rEW4aUw/i2eEwk8VJs0Ry2BqfYwHA5X20zXndcM4K8XUY89iBceyaPfvuXDFBwGwI+VCZGDFWJhdgd2zDXwH34yGET8jIzrGV90Mf3hv2byNrUne4t/Td+XDrIpdV9pl46vrsERAdPKRZVbBiYiJDMu7F4S5ECklBgEZVL+Kta9hwgvfZ/Zt5zJpxTcL67WnHDpSDqmk6pP5FK9IaYpSr4iyeIMyLw5Sbeo+0+8bFTnSLJo3A4DdLa0Ff508ri85KfMELwbK98rJVddHXF+yasu+8pmD3CNICau2dxJHiT1nmy8D0DXvEl659hXWve0pog1TmD+xpirvokOFw+dMNZpDDJVGEVQ08M15Pp4v6dy3fQxaphkqHbteZd73Z8BLv9/vfQWBVBEWT/2Qqb95LWx9omx5S3tnYTqbyRD4ktNXq6f1tW0v7vfxNZo8+bSAI/5yFQ13Xw8o0/HujMferhyT06/SYkzCq59NIhaluTaKyA/OKzzNk1LiheljI9K+/TQkPhzJOgGuL3H9gPvW7OF8U0VsbU0sGtb+8imA0kmTI1om1AizaIpcSH8I+0de+MmWDBxEhXLuZfSa31Uzj6OzLyHdDO0pB1P4hfLcUhgY0scIHHwxyCCppplHplzL0cFGZNurpHJeQeQxrAiGmU/h0BE/o82+zh6m0EErjWpGPxE/+dSZo3ueJk0MZp0OQFokiPop2lMOQSDxsioVrEM0YvkZrCCHF0ZuxKsoAR23TaKWyennX8GR2V8Sec2Hh31ulmmwNnEyk71d1DrKxygSLTfpFWHbjvrDxZhBDmlE8ISFMQJCen8Pp57fsKPyBoeZ8JNyPNK71wOQmNIr4sc2wc6nemXLtvMDiUlATqrr08zHPs2MFV+lIbmJ+Lo7C+vt7c6xoyNT9J2KqBSvuphV8AfqLehMmaoKeMz569XkvKB4jTRGL+JnQlMTAKfs/CVeL5uJPS/8nZmihZ2J4wDIVWl473gB/pbHy+YFVXimrdrexUzRWjZPCpMgUoeon44QAqMfQf9QRQs/Gs04Ij8QqcboN//EqtJvsR9IpJSIrpETflIDeAlpho8fSH53x23qxfq/7/f+dndn8QPJ9Jd/qGb0yifv7OwsTDtOlhe3t3OesRKAroZj9/v4msOP/gYEQSCxO14tm7e7K8OOTpWmUON10m1NAMAQQkVUVKjWlGdvd44tbapizUgw0pX0Dgdyno8XBOzpyvGXF3dxdmQDAIEz9M+kK+OqtDHHJ3DT5ESsGO0DBaEm5+SKKQrhgEXYasCbTScLq4vAJUD08a+Q0YaybfPsO+ptNIok5vM3k3UDLPyiB4thYBBgBi6+EWEw0se+SbVn3f30ZL3ioMSMFFO9tLnzqNO9dxuGkLRaYcWtCteRrOsXIhGmZDayyToCLPUZp0WCWJAiCKA1lSMIhZ8es4lIoIQf34jTmLALXlQDYRqCupjF5SdO585/OYfJdcMz1QWVNtYz+ZSyeZMa6wvG4wB1hhpIm26SCB7SiuJhjYjHT1e6spDTvUtd45PTzihfcJilemVdn3ibSivyJhyBUZI+ZBgC8obKvSJ+vECWp3oBv4i8jZuDS4hn9va5yRd+KByFQtKimY3k8tv2En7mzFTRN/HMHlzHQQYePgYYozj8j6gUtNnuZkjtLc6XkiXLrwMgOlWlPjpOdX1kb0+GJd3LcUWEjfWnAZDJZvvfYMtjTHj5Zrbv2MZcY2/ZItNREVPVpGoeimjhR6MZR2xtS+H5QVUiS3dYiamSga8XSF5+8m98xfh+ceZ+5ni3pw6vpzcHCtcPmJ5/ItEwc7/2JaWkPemwdddeJtGZn1m2Tmd30YRRejmeWfFMIe9Z6kpKmmHgVCg5C8rI8Zg7zy+87sm6uJ4sVIapCbrJWWpQXsix7yX8+IEk5/n4gaQtlSPjBHi+rGgWPeR2a+FnyOQ89f7/7tltnCufY7KvTDJtv69h6WC09ORI5Xw2tiQxvQyOES1LWxChYNKTShejB8L+4ceUYJjrKT7NNQIPn76D8aBhdrht+aBo+pLX8aR/HNPX/5KM62MSFDwykmYjE4IOrMAhqOLp+LyjFtIq6zH3vkgy55VEKFkYoagQjJDPiqZ/cu3qYVcyriIdKpk756tYJrMejd4+vLri764SfpQw3dKTK0RXdFkTsPGIyzSBFa3o9dQfhiGI22ZZBMhwic87rez1lOYGjppSR01U9ftGs/g9vNh8FmFF8Ecg4sfzAzq6uisuS7SuAqDjaCV+PtP4erXgMIv46c64nJR5gq2xY4g3Tu2zXBQifsrFDiX8SHIUrzMnv/3ziIYZRGQOwyk3zjbzHlRh2fR4xFSV26CP8DNx2rzCtN+9G3xXCT+jSaRYZczds7Yw3Z0uemdZE48Eqhd+Vq9bz5vN5WyddTmPzf8kANncAMLPzZcy/cn/oH7fswDsW/TBwqKu+f+k2qCFH41GM9Y4fsCuzmy/vj2lpByPZM6rOHjxfUnX2ofLZ7pDvzEHNfDqTDvkvMOvQsOBoC2ZY5YIy8/W9r1ZGApuWBms+5WSyKFeg41sWGIzIyPgu4iNyvh7QzBDl9DWDItK1yDPD/qkUu3uLN745TyfRtmDE21CCApPR4tlutWgwQ8km1pSbG1LlZUS7m0aORxyvr6mDQXXD1i/p4dtbWnWrFvNdyLfJ9u0gKeME4kE6cF3UILjqZS91mQOKcHyM/hmHLukuko++qsnlSmWQg8HNkE8FH66Wgq/TaIf4UeG/i1kOsvmz5lYw5PWKTTldiJ79mLhF/rfntgRxMkyW+4gqCLipyFhs82cQ13Pq/iBLAo/ho1lh23WET+jjtethMhUTFXrqZTq1ZlWn8Pkv72bmaKV2klzCssyIkE8SINUArVwVERZLqq8UhpkD2YkMeTUkHwk2/5qP0uOmFH2WoRRJFMbYlimoFGUfw8ndK3GFxZC7t9vuxdIXti0q+Kyy7tvxcWme87reOk929jUoCJ/HGd495yDoawMxpdo73gBr+7uYKHYRPvkM6iL9U0PFbZKzfJz5dGRnh9gEhBL1BXXtaIY9Uq8NJN7ytY33AweZiFKDaAmrE7VO9oxMXEmX4p+XL3o2gHSw2f0/H1UGwzuOv8BdcitLxVm/+qRdYVpv1EJUl6Vvmddrz6FJQK8RW/DDCuXDSQaSaG+b2e4TwHQsvhDvPTurbz8zg10HKUESh3xo9FoxpwgUE+jKvn2lOL6Aemczw0//TMv3PaFPlEdrckcyVyvGx5vAHW83/ZIWnpy7OzM6FLfo8Tm9a/wZuvhwVesAje8GfL3vFKc2eupmxU+me+iBrwcb/X/zIbYCayWc7TwoxkWlUSY7qxHx1Plhr9uSVpOV9qlUSTxYk1lN2D5wX5+oC9RFepSva5n+xut09KT0x4/QySV8/jyHct5/ndf4EPBb7Hx2PK6n5E06ogEQxvkpZ1iqrIfSOwgg7TjZQNqP1oPgEjuwc2XbQ/9cogrHwkz205XOJA3pFfRj8c/NjStry8fNFumQWqSMt094+GrOd7YihGWYN4VV0+kp9GKrCLixzQEXbVHMN3ZRhD4RSNnM4IZDtCkNiwfdYy0MoBNRVRlobzwI6XyvkuFD8v8bU9zRJsyJm+cWhR+XKsGgwARpkibrrpmOTEl/NSKbKGS1lAoCj/7N9hsjNv8Zk5JBb3Q0ycRsZjeEIecisr5xJSfA+BH6vGFjbGfwo/rB/zf/S/3mb+zPcl0Wlgx5U3IaD1CgB1WSOvoSvZZfyRwvKBgdTBeyHo+O7e9iiUCEtOOLjeVzxOWXXez5e9LPtWrvq62fPUJKhKt5oUfYyd3IfwwMttJ4YjylMHcm39D8tg3w8zyiLDaqEVqwvHqRdcOhO8RiNEr5Z5n9px5dMsEzp41xTZm1HmnJi7BbwojkaqMgjT3voyPgTfxOCJhZccB/YGmqHO+0nwM34gQROpBCFVZLfwOWodRCfdStPCj0YwjCmlbg4xH2pIOj6zfy2PRj3F5yw+hc1vZ8s2vruEGu7zkpnSH/kR2V1eGlp4cQTBokzTDpPXVZwrT/n6mAjheQEtPjubM1uLMXmKOHagfyy5ZQ+A5NNHDnrqF6gmSFn40w6CSCJPKeRz9+CfK5hlu8Ya3pbOHOpHBTDSXCT9GQfhRA+f+BOf+0suqZV9PVovZQ+S5LR08Ev04n7Vv5UrzMVoXvhu3bjaOESc6ROEnn24DKkUihoMIvSHytE84CYDE7mdw8093w/5hRyJ0ywRWrqOwL9GP8BMcfxU7370SZi8tm28KwawTlvFCcCR1afUbGpHqOOnaucXtzcEjfkwhyE47hVqRIb32gRKPH7vg8SN1qteoY2fa8DHIRlUZ6/xvWiBVP8v3ldSztxa2MeyiQfK0KUowyiU7AbB8dd/kxpqL60eGLvzELHO/o31ACYx7Z15cnGEVBYCGhF3wfbn+4rN46MK/4b57OYGwMPfztz3nBVhB34eHL7yqjJ1rJ84kZhvK06hGCRwd3SPjxdab8SjYp3IeXTuVsXN00hEV/Z+ErYQdJ9NT5uPp+crcOTDLjbqjM05gWzCJWVt+zzG3nc7kFf+rFrhpXLNXH2w+irYLvgUN5eI2QE0Y0Ra0bQ4jfkZf+JnRmGAjM4l3lnj8hVkH7cddQyxiE0hRVRRkKucxKf0qbZGZSCtOJKr6fDrT/2+OUzurMC2tOEaJyNOYsGmqsbFG0+doHHN4nvUBYjxenDTjj1Kvimp0H9dXg/vWtSXVmnpF80Sf/m6f7XKZoQk/XhDQkSpelCt5CWn2n9S+LYXpwlPtYdKdddn00hNcZj7FTkv5WgS9QmmtIIuHSVbECNwsCZFDRBIEmIh+KqBoNANRKeKnkkG94YYDASmxX/0rAFOmTWf2hERhHWGpgbvnDiz89Hc96s9ouhTXDwgCfU0bKs9v2k1cFK8nXUdeCYBjJIgNQfjJuj7dmeJAtCPtkCCHGU2UrefVzWSXnEB877PIQuqU6h+2adAu67Cz7WTdgKzr9+vxIwTI2il95hsGLJ7dzK9lcSAdcVXExPTJk3Ck2pewBhd+DEMQWXg57bKW+nW347mO8tIQAsvOe/xoYX00cbyAeK6VpNlQ8FUq9QprSeboyri4rsOxHQ/ybPR0dp/2GVILrirs47i5auBcv/zfIfCxvDQ5EUXE6gvrmJHyfloNhiGqqgI2GHHbZFJtSbSH1css+rq/sPPMLyDsOBPnHA8T5iqPn/2M+Ml5QSFauJRde1WEVX3jBKKWScQyaKxXAkd3evSEn/F25e5Ku1zW8Uv1onlexXWMmHpfuro6aU3mCg9M3DDVq7fwM2/GNL59zK38yr8QgJpNf0O0ruVk+Qp+L+HHECCorCxOnzKJ7cEkvD0vI3x38CqFI4BhGGw1ZjE5t6UwLx9FJ60YtTEbF3PQkuwAq3d3M1vsIVM/H4D6WvX9y2b7j/jpSRf7quFnqYsWozZnNMaZXBermI53OKCFn1GkO6Of7mgGxw2NK/ICkB/IAQckrq9ucue1PlQys3iR8wOJ36VysQMzxtMzrwcgM8Qf4VLhcu3ubu5eWTm/W7N/2MkdZMMynq47/GuGlJKujEvtWhXptWHy64C+BniRIIsjonjCxgojMIQdRxr77wOgOTypFPGTc318DP5acwUPTn03AEG2h7rtDzLjnqu5atPnAGiYMq/s6Wi+9LXnFlO9ygh87O6teP08WMl5waDGz1nXx8y00fDQZw67yjP7Q8/ONWWv3RpVOcm3a4iThWDwKKys6xdKaedpTzvEyGFGy1MdFs5oZE0wB7NtPdJ3VVRiGDYxsylBB3XIdDsAacfHkH7FQY0hKpfrNYXAMg2CiQsK86zQSHX+pDraUYN9yx68ElPMNpncVMfTxhJmdjyD9HL4IoxOyqd6aY+fUWVXZ4Y6v4N0pBkRmnT7oY9XEHr2eL5k18r7mEA33QveROuiDxCNFQfR845RqX9HtT3AzEdv4M3OH8mKOFas2DdjifJ+Wi0zGoceKdSbCTURGhIlfdws75ti8jG0H3dd8bWAwLAx5f7dW7heQCToe60UjvIMtOINNCZsVb4+TIVLJdO0Jkf++pqvWjue2LZlAyeJdeTMWszQm6c3RlRFNKaT3XRlXDozRR87gURa5cKPYQiuX3YMzW/6Lv8dXEdNcgsL73od84y97Jr62vJ1heg3omzexBpWyznE2tYgpH9AUr1MQ7DdnEW93wGpNjUzFH5EJEF9zFLX8yqiILvTDrPFPpw6FVU2sV69j7kBzJ1TmWK/M/wcdTELIZQRtmEIIpZRVVW+QxEt/IwSUkrSVZTk1mi80JA3kBI/kNz4w9/S8fM39zsgcX3JSzs6uUA8W7KT4rqv7kuygM1smnA2q69ZRccklfObz6+tltLS8p+6cyXxx74Me18ZZCvNUMh5Pk3OXnYZytR5f4SfjOtjPfI13hrcQ0viKNZOV0/jez8VicosrhHDFzYxX920GZEaDNPCqFABRaMZCCklXi4FJdEMjhewp7Udk4D4hOm0TDgZgOiWB5h77/VM2PMYdwWv4YdH/Aj7mIvK9leogJT3+Mnf3wce0x/4MCf8fB7H3H421qYHK7Yn7fiDPg3OeQHOX26g7sVfwIZ/DP2kD1Os1rVlr/2wTLrMp2hVkU6czHns61bXpIlPfJ45f7+GTOdepooOInUTytY9YUYDO8yZNKS2gO8QlIg6c5sTdBhNRFPqgUTW9TGkW3FQo56GVzgf08C2BKecVPTFsHJK+Jk3qYZ2qYSfvGfJQNRGLRoTEXY2LaUh6OQIf1NBhLIsA08aumriKLOxNck00Y4bn4wZCj9589jSh2k1r95NihgTl1wGQG3Jk38xfQmfOOZBtsnJNG34PQCOmcBpnF/cvmZ4ws9IDDSFEBw3rRh91CfiB7CtktRZIVSq13481JGBJHjqh9wR/XyfZWZofm3E66mLKeEnFlcRGZ6bK0vpHAlyno8vx1fEjx9IOjatAODlc35K1K4cSWKGwg9OkiCAfd059fsZhBE/JcLPlIYox02rxzIFsyYkqD3rfXzbu4LveW/kNblv0fGaz5Xte6CKcfMm1rBOzqYxsxU7yJRdR0cLQ0CPFV7PM0qcx1VCjRmJY5sGHmZV6a9usoUakcOpm01dzGZCnXofHcfpt39lc1m2USyWEo+oaLT6wzTKpxQt/IwS41GR1oxP8oa8waaHmXHHxfw9eiPHdT0C7Zv7XX/XhheYb+xhVeMFAGRKRJ1V2zuYSDdMPFrlw8bCpwzpFD1Zt2IKRiX8QNKWzPGJ21dynrGSj1h34T/wxf05VU0vtrdnmCba6I5MJZBiv4SftOMz/9WbAagTmcJTN6dPxE8OJxR+agIl/ETiNQhz/8PBNYcfri85/hcLkLe/ozAv5/ms26YG5FMmTiSSUAOV2S9/v7BO44Wf5jXnXYJllg+GjF6pXmLfauyeHWRX/p7mzXcX1vNX/LJie7KuP2gKVyrnketQ3hRE6wdcV6PoSOeYmNlUnkolBKYhkGFZYTfTXVW0lZSwa9sGml/5BfU7HuZDz15EXDjYp1xTtq5hCMSkY4jgMtvfXoigUYcWtDcczzRvO0auk4zrY0iv4qDGMo1+K7g010RZNG8a5+e+ofab6wRg9gQVUQQQiQ4u/IASf9w55wBwOi8hw7bYhqHeN+3xM6rsbEtypNiJ33x0n4if/IMsx8lyYvJRXq59DUYkrqIAegkyZy+Ywl3+mYXXQghE42x8qfpQbW0dY0lNSdpKJeGnNmoVoj8EKuLH2o+IH/Hry5n/3BcqLsubX5txdR2NR0ziMfV98Zws6dzIVeCSUrKrM1t4WDoeyAs31t6XCBDEZi4i2o/AF4lEyUob4aTDbZWxs+tLLBFAifAzuS6GYYhClcPzjp/FCVd/jamX/zf/de0lLJrZWLZvQ/RfMa4uZpOKTcFAMsFvRRoHItVLgBVGuIUZCWaYKmhGa7BMgYtVla+k0ak8K7362dTFLBrCVK/Ac9jdlak41nYdh25bGbInF7yJiGkQt83KptuHGVr4GSV8KbVxpGZQMo5fKMEtVv+JST1rBtkC0jmfybvuB2DLVOVNkEwW07i6e7qJChe7diJCQDR8+pJJJ2lLOuzpqq66V2tPjq/+fS1NnS/zrcgPAcjWV85d1gyPrW0pJolOvJopeBiFwe5wSGY9NgtVBWLPa75IfU0o/PQqeRmRORXxY9jUSdVv4olaHfGjGRa5rOpDYt3fCvP2dmdp3P0oAHUNTdTUNwJg4fGnyGU8culDNM9bXFbGPU++AlIQVqOL/fw8jvndmZzw/GfZyExuW/hjng+OImjbVLk9XjCo8LN+b5JmlJcLQt8GVcNjG9o4Wuyku2ZO2fyGhF2I+Glrb6ctNfA1LOuqQaD19A+IiOL15qGlPycy6+Q+69cuWAbAmeKlvgOWWSpSx3z1PtK50OOnn6fZUavy5zyxNoJpCJqmqYgOIVX7bNMgYzeqbaus4hSPmMyZdzSbAvWkOd9eNcip7um2ZngEgaR75zpiwiU2YxFGXvgpRPyo9fatupdGkSR15D8B6rPpnQZ4/LR6HoudW3htSY/aWITlwRIA4ubY3twnoiXCQoVBfNQyC/3dEALPiBVMy4eD2FxeddQviarLCz9GKPxELYNEIh/xo+41u0eoAldbyiGZ9dj33B9J7lw7+AYHgECq35zm5Hr2mNOR0Vrq+hEXopZBmiiGV4yM9HxZECexYmQWX0f66j8XlpcaEE+qi7Jgap0ShXqJPAOVJm+I25j1Ki13ctDap+T7aFAXtTCi5cKPEWYm2LEElmFUneoVpDsBiDdOoiZqkQiFxcBzcT1J1g0KD9Ahn5roYlkRXrl2NenXfwvDEExvjJMYAZ+tgx19xzNKVJHqrjnMCQLlyeKFnWXr3tbyFfzKN9Bb21PMza2jJTqHdI0a6HtOUfgxMh0AyHgTMdskFlc35clkkp6sRzLn0dKTo61X7nXpU5kgkHzqzhd5taWHu6Ofox61/5yrI0JGko5Ulol0IWum4GPiDdMDwvUD2lMO9V4bzza8jp5Z59NQp26+/F7mzrEw1SswItjhwKumth5hRrTwoxkyXXu29JnnOxmu3v0VAIx4A3WT5tEt1U3gzEs/TdO0I4DK5VTzqV75cu75KLQYDu0nfYTjT7+YTfZRNOV2VnR+znn+oA9d2tY9zpFG6Fnma4+fwXD9gDW7uzlabMeZsIA1b3+WNW9fQdQ2mFIXRYbVatxskpae3IBP+LOuj+MFLOh8hHX2sQCsnnc9E0+4oGK6wjHHLeER/wRs4fcRfqYcfw6vBHOY/dx/Q+AhAq/fp9n9pdkIIUhETG78J+XtwqRjCsv8mEpViMUG9/gBNbCbNSHOekM9IJH5CmSmgY9R0dzZ8wMdHT4COH6A2KcenMVmlQo/6j03Xr2Puq3/ILHhbrpJMGGRemhmm32HQaZpcNLJZ/BF92pACdYzGuN8wv0gd/pnI4668ECcUr/UREr6eIXvTMQymDUhQWPCRgjwzSg23n5FFJfiUzy+7Snhp6a+KWyOIB4+bPynV/8D4efY252tqthN73vS3mRdn2TW4+QnPsTc3y4rSy8eK6SUdKYd5vmbaK05uuAhU4mGuE2aGF62pzDPDQKc8LdOGCbpC7+OmHNWYbndj2Dd+1ophCBSoS+DEoVqmpVp+TTRhjTsiuuNJEIITDs0QQ+9fYww4qe2thbbFNULPznVxxobVGqxaRq40qQpqyox9uTcMp/B9pSDCFwi0ShBpJZoWAXMNCp7vR1uaOFnlPC08qMZhIzrk3a8wg9ia4d6At1qqnKilYSfIJC0vngfrzNX4ExYgBGW7vRK0nmsXF74aaYmapKoUWHJqZS6eEoJe7qy7OrMknaKP5zbOzJsbEmysSXJur3dTNn7MC9G31t2/IHM1A5nBktv6A+/pxVTSIz6KXiYBUPbobKvJ8eWlm6m0I4ZlvOsCZ+KyF79KEoOz4iW/fg3NzYgTAsTLfxohkZqn0pJlTWTC/PstuLTWCNWz/wZE/nxiX/ksdf9lUhzMWLEqnCDbIapXr6rBgF7mcC98nSeuvgeYie+FYDWyAxqZApCY988QSBxvYHN8QFmrP5p8YWOwhiUnBeweVcLs4wW5KRj8RJT8BKTmNoQwzINCL0r/GwPfiDZ1JrqY+Cs9qNEuZdXv8xM0UL3EW9g7Vufwj//JoA+T7EB6uMWf42+HqDPgGXh7En8mKtIuG3U7H4KEXjQz6Cmv4gfgJqoRcw22fjP98M7i5FrzuRFANjtG/rdthQhBDHbJFmrhE2jED2UT2vo+54EYbqHZv9w/YD67rX4GBgTF2CEopsfigN1d76Nufe9h5NTj7KmYRlmJE5jwi4XUUIMIbj0hGm8GKgoMFv4HDe9nsvPOJ7nT/oyNM3ps82BxDQEzlW3kD3+rRWXR0xlXDulPoYQAs9QA18nO7TKrv3hlaRcWqHwE6tpLMzLp3oB2J2b8HxJsoqon1Ru4PuPnBfw1IadxRk9Y19wRAIbt+1ijthHpvm4fsUXgOOn15MVcejcRrRDlX7f1pYmmVa/daZpKcGk5EJo9yMiVRLJJ9f3n5LaNKVY3lwcgFQvACMWCj9h5JcRVh+OxGqxQvGmmlQvP6f6baK2mJZtC5+Tuh8gsedpOlJumedTW8rBIiASVlO0KzxgOpzRws8oEQRgdmzqvxat5rAnlfNwelppePhzBG6OXCbJ1siR/Gryp9QKFYQfCVzx0gcBiNZPwgxDKX2n+IOeF368WKO6oU2om3Lp9C3FuaMjLK8oJamcRzrnk875tPY4/Nj8GvEgRXrSEh4870+0yTpcRws/vZFy8IFmv9sm9wLQMGlm+ER4eINQxwvo2rkBSwREJ84FoCYexZeiTyUZU3r4hk1gFksUJ2rqEIaFSTBur1lZ1yfjaGFqvLFmrTJ890uEn9XPP1aYjiTqqY1avGXZYhpmLyzbttLNqxn6HPhh2qONR6JxMjUzTyg83e6JqbB1r2Nb2bb5AfRA4+jWZI50ieG5p69pg5J1fdK71mAgcSYcTW3MoiFuUx9TA0ARRvz4afUkO+cGBQPnUvJPZRMv/wqAuuMvxK2dDsJACCo+ja2JWOTmv47dckJZiglAzLbonnUeaaLUb/yzqkpoVhZ+BnrSO6kuSiJqIicfA4miwfQZF4UD6wo+Kv1RE7UwpqgqYYmcKnVthRE/skKEgkSOK8+SA00qNzJRG44XMDW7mdbIDMxYoiAgB71+/2pFlsjifwZgYm2Uppq+/cUM+0onql/b4QOR9y6bzzvPGh/p7uK4N5C+5LsVl0VCkTP/3zdCz53c/pVXz9bPZ59oxhHF74PthfuMFA2vDbsoQKx/WRUhSTqDf87uIA/MHS9g567dxRnB2N8PSAk965cDYMw6dUCB2TINIrE4x+Re4ug7L6B+89+wenbSXRB+TATlaVsTaiI0xG3ikfL9DjVwZebMOQWPqv6ukSONHS2P+DHzVeGsOJYh8PoRw3sjXdXHovG+3lqJlhdxvPKoSc+XWPhYtk1tzBowDe5wRAs/o8SqB37D9F+dBav/NNZN0YxT0o7PlCc/T93Kn9L1wh8x/SxmJIEdUT+q0usr/LieTxZ10e466grqa9WPbVAi6tihOWWkbiIJ26S+Tqnk+YtnKTlXlT52/KBsvN/SU7xp33Tp7cjJx5IlgpvTaRG9CSTDrjBhpJTwE2mariocDPNGxvECmrffC4A44rUYBiQiFi4WQa9+ZBKAsMqenhvRRMEMczzcTPUmCCRb2lJVG5NrDhxGlzJJzkWbi/Nail5ljY0TiNtmxRvVUv+CPCKmbu6CMBzekh6yRKQE8GPKtDFItvTZ/sg/XETs1jf2294VWzs4Uuxkuz0XgFR6ZJ6CH8psb08zMb0RADH5WOpiVpnPiBHN/w4ViwxUSu0IJATr/s6b0r/jpfpzcJuOLizrbyCTiJq89fT5/GXGx5FL/6VsmWkIFs+dyn3+ydRu/hu28AspPkMlVsH4M940jc2X/Q7e+P1+turLhJoIk489u2zeQBE/Ug4+4B0KOe/guka2D+IJVS1bW3tYKDbSVbcAyxDFql6h2JZNTCusax15HvGIQTxiErUqVIELL0tvfs0JACqSDCVUj5cx5EBt6T3QDcKS7+5+RvxIO8HT1qllKeFG4KqUnVLfmJLr9eRX7yAIAvwqxM3BiuL4gaSjfV9Jg8Y+s0Iiadz5KCkZJTr/rILY1h+zs+sL03MeeD9z772eXBjpbVoWRq+IH8s0mN2c4IhJtZT+XA5VzFgwvZFdUv1uDvcaOVQKwk/B3Dl8yGLHClW9RDUPO8MH23ZYqKaUni5VKr7058YPJDYq+jNiGdgV7jMOZ/S7MUqYz/yfmii5EdJoSsl5Aeku5euTkzYx4SKtWKGCSK7Ck+jnt3UQSINVM68mPfU0mhpVzqtXIvxEnE4AJk2ehmUaNDY2kyFCtm0HD67d1yePOusVDabztHWqtLPVx34MacWoi9q40sJ39dPx3gT7YeQuwlSVSG0zPkZVYa+9kVLi+gGzO57gVfMI/IbZzJqQIGIaarDR64fVkMorI2c3FGfaiWL47zgsOdyT83A9Sc4b+xs9TREpJYmMCrf3wgGnlJKG9NbCOma8AcMQfW5UGxM2jRWetudFBJnrKd7A9RJ+goQSmfxewo+UAfH2NVjbHqM/1uxoY47YS6pJ+cu09+jf6MF4bks7Rxk78A0ba9IR2IZR5o1ihDfkeS8GqCz8SM9h8aPvA0Acc2nZsv7KEUctJcicfsl12Ge8r2yZZQhOmtPEE8HxxNxO5ovdiGE+za6NWn3SNExDkJl+JtRMrHo/MdukecYRZfNsQ6U1GJWieCUjGvGTN88+GJBSVuX9Ug3Jl+5hmminbe6l2KZRGNwGnvI1TKYzPC5O5NmL/wxGMVqtEhNrozTXRjj9+CPVjPDzN8T48QgxBAiqa4tn5SPDM8NOS88TGHZZaXjhOypyo5SS6/VSuYpdK+8b1P4i5/n4gRwwWvO+1Xs5ovPxksaM/b2KlFCb2sY2ay51tTXUDdCvAJzj30SGYkSUlWkh56h7NMu0KvregYpYbExEqImazGyKV0yTHogp9THWyNkAhTTI0caMKOGnq1uNJ6y88GPFMQ1leC8GifgJAonMe5jafYWfts2r1ERJv/GCQD3gNG1iltGv59LhihZ+RoGWnhzHGGEIutV/zqXm8EVKieP5bN2tBi6OESVODt+MEQvzo9OZvqlZ67dsJyFy1E6eg2kI6ipE/BhhWGWsRkX6mKZBR2Q6p6YeYukj13D/739IssR/oTPt4vYaUHd0qKcqsXp1wxO1DRysPn4xGvXDL4cb8xMKw9GaRhXxMwyzwrTj09ad5mhvA61NJyIE1EYsIpYR7rP4WUsplY+PYZKKFFNzsOOFMtrj4WaqFD+QBS+qrozL5tb9C1fXjByBhEZnDwBeGFm2oyPDrGAXqydcwI5rn4LaSUBxYF8TNamNWcyakKg4+DIjMbLSxs90k3X9UPgpLeMNVp3ap9O9t2zbZ194YdA2x3s2Y4mAVNNxACST6YMuSuJAIqXkhe2dHGvuxGk4kng0imWKMt+EeF0jAKu37MIPjZ0rpb/Kto2FafPI1wLFSJ+BBjIx2yhbN49hCJprIyQblSHzJNE1bOGnLmopv6ISbNNgOA+La6MWWy66mdyVtxTamSaG6fX9TVepXodnxI8fSPwRSi02dj2PJw3s4y7FNETh98z3PZ7d3E5cZmiYtZDYzMUA1Mf77ycx22RyXRTsGLvP+RreNXcDyidqvIwhhRBV900ZRvz4TnpY77efHyqGD41MSu4RAq/M8wcA0yaz8O1sOv/HOFi4a/46YDq8lMoDSAk/ldd7eWcXf37wYT5j/7bk2GPf12VyH5PdHXjRRmqi5qCROM4//ZDfnPcoP/EuUa/rZuMUIn4G3n5GY5z5k2ppqokMS4BcI5U3lcWBucfLR+j0JFX0rh1kcESkEFLnYxWi6foj6XjgZtRDzAqRSmfkHqdjzfKye3A/kFhC3efGdRWvPmjhZxR4ZVcXtYTK5ji4MGnGH44fkN6zgTPN1YB6Wh7DIbBiGKGfgFvBSHnv9lcBsJpmUReziNk2OWkRlEbi5MWZkqcutdOOZoro5HRjDV/0/pc/3PZTHlyrxJ2OtIPT68azrUUNqKwa5XdgCBWqbmgj1D7sT8RPQfiprceXw4v46Ug77Fr3LAmRw5y9lMl1UQxDELFUxE+pWBdIsPDBsEhHJxV3Mo4jftKOV/AGcbzysp2asSWV85gSKPE6n1L44ksrmW20YE1eQNBQNEHNCz/TG+PMbOq/PHbENOghDrku0lkHSwSI8Fo2qS7KnOYE06dMwZEm2c7yiJ9nn1o+aJsbk6oMfGaCEn6y2Qy7O3UkY39k3YDabQ9yjniBXNORRC0zFH6Kt4/nL1K+J1fs/S7x310J4TWxd9rG6heeAODOk36Nl5hEbcwiETGxLTGgMWk+HadShEMiYtE4d3HBv8K0In3WqQbDEH1MQE1D9BuJNBC1UYueWecjj/2nwry0iGP7fVNtAsmIiR+g0rcPFnw5cGrPULB7trNXTKQxrGaZT/UKfI9UzqFG5IgkVBppxDL6rfKWxzINmmoi5E54B8YE1b9rotaw+sNoUSlVthKBqa63mVRqWH6EBeGndir0ivgxAreP9xZCkLr4W6TmX8yWupNYmHpywAc2OS8g6wXhNaPyOr96YiNfjNzS68TG/l4l/u1jmClaEAmV0jwYhiE4ed5kfpF4Fw/4JyIznThhCrtl2hWrzI0UWy1lVp7o2TxqxyglElZ3c3NpPD8g4SdJG0WfHl+YypetAn4gcbyArOsj3DRZUfn3oU3Wc8LT/0rk+Z8X5nlhpLAw7ao+k8MNLfyMAh1ph6gIB8jj4MKkGX/s6coy675i2LrnZIkJh2i8FisSljN2+0bXNLU+B0B2wvHUx21itkkOu5BDqzYMtytx7rcmzi/bz7neo+x+6Efc/dQrBAE8vL6FHz+ykc/96WXe/6vn2LRN+XZ40cZiG7EwAh3x05uBblYGQzhJAgRWtE7lO1dhdNcb15fEtj4EQOKY85hUp4RDJfyUl8t0fRUCKw2LKTPmFndiJ4p53yXXrAP59Li/AUAq5+P6AV0ZdR4jlRqg2X927tzONKFy7POeZM0v/phACuTxV5U9kTYExCMmMdsc8ObWtgRJGcdwkoWoR8OKIgQ010aoi9nMaq6hnXrcXhE/DaktAGTN2t67LdCYUdG43kQl/LhOVldVGoDdXRnel1E31U79PCKWQcQ0yiJ0otGikLcg/TzrHr0d6Ptd7dq6CheToxadBsDE2gg1UYsjJ9XSMEAERsFEusKYOxExWTJvKvcEpwMQCYbvY1JpID3UlAqA2ljfJ9MZYlh+34if2O1vo+6BG4d8jP7o/RBnPCMljFRz6zI7abOnFgQdM4z8CjwXN1tuQDxQXytlSl0UsyRNNWIZ1FX4bMeKan1epK3uCeb+/R0YK28d8nF2itBM//IfgVFe/dOQLn7viB8oSLRiweuZb+zhlWcf6nf/jh/gtW1h2hP/QZDprLhOtG01Z4qXymeOo/FVpG5idcJP6OHzb5cczzY5GSvTipuP+DEHjxjaH+TU4wGwsu2DrDky1CYSBFLgZdN4gaRWJsmapcKP1e89bzLr0ZrM0Z1xMb00rlEu/KTe/wxr3r6CJ2Nn0+S1kLj/08X9BjJM9RpeZNShjhZ+RoHOdElHHkcXJs34wA8k+7pzTMoWfTB8N0cMR5UYrQtL41bw01mSe46d5kychrnUREyilkGOCNIt+vaIwMXBKrtL9mcuLdvPpTzGV+yfcsSqr9GWzPHn+x7gs+uu5PrO7/E562buiH5ebRdtVKlDMQtX2MMSJg5lPD/AXP4FrL99Yljbm26KrIhhWwY+JnI4Hj+ZLpZ2/IWN9lGY9VMKP3S2KXClVZY+lg+BFYbFRacvKe7EjhXzvkvaMFh51f0l6ypRR0pJTz/VXVKOx/PbOnjHz57m109vHXYFNc3IYz7/cwwkG4Nphepxpptkt5iM13xk2U1sXcxmeuPgqc+WYZAkjuUmaetSEXH1tQlmNsULgtH8iTW0yXq8nvKIn+meEqwL1Usq7d9L4WARq20CwHGyWkwcgFU7OrHwcc0E7Yvfh2kon5P+bqj3GZM5fd1X2bzy4bJIFiklNZ3r2GvPQlgxLFNQF7Npron0SbHqTX3cwrZEReGnuSbCsdPqudV8AwANe54c9rlWKvs7nCfwtmmE71NxXkbEK4pS1sZ/UPvizUM+RiU8P9hvD5cDyUCpPUNBSslkbzfJ+Iyi8GPly7n7BBmVakJE3Vs1JqoTfizT6PP5NyaGF1E2GlQrSsZiSvAy3RT2Xz4y5CgrQ3o8V3c+icYpSNPGQBayGVTET18xLB8Z5R5zJW1GMxdv/Ua/x/V8SbD2b0xcfTPWXz5acZ2J4f3yvsUlBu/jwNw5T23jpEGvY1B8X2Y3J0hajUT9JEt2qfQ1yxpdUfGjV144qvvvzdyJtWSIkEknybo+tTJJxioKPx4WRj8RP24Q0J5yyDgBhpfFM3tFCU84Ai8xiRnHnt5n20LEzwEqW3+woYWfUWBnW3dherhVejSHLo4XsGVPK7Yo9g0nlyGOg7DjNNWpC2OliJ/6oIsWezqmIbBMoxDxI7yiSCQCp0/OtTtP+Sl0zruUV65bw67TbwLgjcbjrHvhEU5LP8wU0cHl7l95feruwnZBrJHm2ggzm+J4wsbUwk8Zri+JPPFN7BduHtb2tpciZyQQQuBjIIZxvciuuZfp7OPpeR8uu0mNhFUTKEn1ype5xLCgdjJuYjLd53wBABHeKHsl/W6kSu32R84N6Pz/7L13uGRZXe7/WWunyief0zlO7MkzDMMwZBAEJAcRRRQDXq5elXvV+1PvNXAvpmvGgBIUAUFQEMmSYYAZJjA59PR0TiefU3HH9ftj7V25Tu6e7p56n6efrtp71659qlbttda73u/7VrRvj9fFuNkLIqpeyEduP8or5LfYfvcfrzjZay2T+coKImefrOjmQ+LPHWeaAR5ROyBRA8bS/0LKqscig14tz9jLD8RSlqSkMhh+iamY+LEdp2XCtWUwzRwFZHW65bXbouMAWNES6YOxGenmkfg+69WWNR59MmP/8Wm2i0lO7vsprJgsWwozL/hzNotZXvq9Hyc68r369rIXslcdZi53MaBj2oEVTZaEEAxn7K6lXqYhGcnZpLffAEDlopev6O/q9T7tyKzRIyJlyZayIFeksLsofjYSXhitOWHyiUA0dxD71F3rPs/kfIlRsUCU21Infsy4PDAKfUI39hjJ5Enby5d5NaMbGXiuYKWmtVvGh1uer1YVZigfYVha/RSPExIlsYyCrsSPEJC2JWFqiFtHXstl0WMEs0e6nj8II77xoN5XXZzuesy4e4QQyeT1v8S7tv6h3ngOLaynUs7yB0HdI0oKgbVDKx9vOfVPwJknfoZyDqdv+O9Er37PGX2fBHvGstSwqVXL1PyIPGVcs1XxI3t8h4mFghdEWFEVZWZa9guh/+W2X9n0It2uwyjS49yzlF52vqFP/GwglFJEkaIcx8sBdQlfH31AbOocRpQev71le6lcJoWHtDOYcZx7FHROXqQKiITJUJyG45iSqnIgqNYnuiL0CdtSFqSd5qEfuY1jz/4TIivLzJVv4eEf/jaGiNh68GM8VTzIyew+HnjTfTz4o3ez/1VfYO7yH2Vo0242D6Tj6EUTqfrtuRnrieF1gxA7rOBJ3aGFwljTQGb+2MMADF76zJZUGiEEgTBaIoR12kHcIUqDx3/8Lmo36JLDRPFTdRvtruKFLNZ8vTIb11xvJGpBiBdGlN2w60r1VMnl8aky80cf5M/tv+bnzU/y5vd+t24guxRWM5lfqPotXkJ9tCKKVEfyH4BfWaBCGmnayKSdhXoikHPMNaklNg+kqcg0witSqegSDdNqHVQbUlCzh3DcuZbtA0pP8Gw8itUe5E8UEGCydSiDi4XpLhBFvUsNn8wII0X5xMMYQsHopSuaMAc7buE91/4rEZLavf9W316plNkmppnPar+UQnp1g/LBjN0z8n0gbfHCKzbxssLHka/b2EnNUibAS8GxjBaaqibS2NGZI36iSDE3P88lf7MN7v7gGXufjUTq0z/P3n9/BZy8d13nOXLsKADWwCZScZx24vUUBkE9bS6XH1j192ktE899PmBHG/HjBlHdQ2U5+KGeRMv48xQyUQbHCk/lE3Ut9RL1hKvpiWcAMP9o97TFoGne5PVIuJsIjjNtTKAMBzMhn86hhXVHrcwGQSfD6ZLmi29+GW/xf6W+zzjDRIVpSCav+0XEVa89o++TIJ+y8IWDV6tQ80MKlHDNQn1/ICyMHnOKpDuer3hkcFF2G/GDIG0b1MauJVDxbzRuk3qBM1qz0f+FjvP/jnYOYabscXCmjGqqUfWDvidKHw3UfG1Omzp9JwDfvFjX9ldL80ihMJwMVkz8hF3ajqEClDTZFBthSikok0b6pbofi4z8DsWPEIIguxllNuSSfn4b++19bKvtZ5c4RXnwUiJngDA9Qm3kcmae+weMDzbiEwNhNSZ3fQAQriOG9/BMBTssE8QRlZEw1qT4CWcOMskQ28ZHOvwHAixE2Ez86A4x8X+SorHKbcSrTZWa23R8xOHpCg+eWOTRySKlDVYAeUGEGyt4uhmcun7Itx6b5o+tv61vG/Ammassf19dTURyzQ85OF1eu0n3BQ4vjLqWZATVRXwz2xLxK6KAUGj/sdWsrCcwpECmCph+qa4+s+zOErGKNUw+mm/ZJpu8J45MznF0tsJksa2UK9SlCaYhcfB59sInKRz6Qt/npwumii7p6fsBqI5csaSHxcKPf4lHXvd1ADITe5kjT3mxQcy5MYkXWjksU6y6ZMY2O8tuEmRsk+t3DfHO1z+VlLOylfeVYq1mq1nbaFEQeUYaZyniJyYn1go/irj37tv0k+/+7dIHnwNQSjF5+iQA0ZHvrutcp05ppV9+ZFNdQWYYuq2GgV8nfoYGhlbs75PAPoNmu2cL2yfaFD9BxHzFo7YCD7+yG2ARYCTke5vix1A+kez8TA1DkHX0mCI7shWA+ZnTHccBBKce5G2mVpqHXvffiBNWqMTebbbVWZb+RMPcfv2KjpNSMJZ3GM05bB5Ikxnc3LTzzBoRPxFtOTQcRqsHqXo+Bcr4VoP48WQKK+oerJCMN2bLVbKihmwnfoQ20Uca/KXxJr0xXizX49wA0Vf8dMX5f0c7h1D1QipuiKot1Lf1FT8XJtZaR1/xAlw/JFs8yJwxzNGtL9U7qrrNSDtTX91u9u1JoNUaVsuAsiyypIJiPc2jm9leL7ny3MDlXCkOMiHmMYe2tb5Xm9FlKC2MvrlzC9aj+Dm1UCMrqihbS18jDOhR79wLYaTIVo4ya29BysYKW31/h+KnEecOehCSSI8TCXfN1d+xVjA2zuUHitmyt6HKiCBSVLyw/re0Q4U+5qOf5Tr5GMWtzwTgY87vMPXobcufexXETxDpv7XvH9Qd3YifKFLgFlF2jkha9Vp9qXwiof3Hkhju1cLMjTEQzqHiEo1EBdmMqjVIRlWhyQvNUI2JjPCrzFd8Ti+4dWNw6O5JIb/zZytSkT3ZMF/x2FJ9GFem8QZ2L/l9qk3X4A1oNc+mgRRFlcYrz9f3uzXtb2Pa6bpZ80Yia5s9FUFPBHKO2aL4EU5OxygH3UtpVfHUurymglDx6a/HBMrQznjbudumvTBiPh7ieJXius5VntUE0sSmxhjGjBUqQRgg3Fg5mBmoJ8StFBcC8eOkGgt4kbRxgwg/XJnip+QGWISYMdlS9wJMSr1UQNTFS8UxJVnbYDBjURjWCaK1HmVcmz7RUKCoHsSPoXxCob/T5FqC8IknfmYY5N7Ujdj7Xrri14zlHAbTFoMZi9TAaGOHOLNtzTYlUnYvaT1TeGToOVwWPop94IsURBXfHqjv84XTsyw7uRW+4vM3c418HDWwo2W/ENSJxST1M2mTQRhiCNVX/PTA+X9HO4dQjVeuDbdB/AR94ueCxFqTMypeyPG5KuPhKUrpbfUJjfS0L5TppHGcpNSrk2QxVadhWVlmSYWl+uqNEfmEbSswvQYv+X0vwhT6bzEH24ifts5ByzKf+I72XMK3H5tZ/qAu8IKImZJHjhoyFXuNrEHxU5yd5LLoAAv5i3FM2ZEIEQkT0bQqFoSRlsDG7cOSDR+KZECXkNXdFBBVL8TdwHKoMFJ1lU03Dq34ud/hnd7vATBzxU8CsEXMYj74b50Ht2E1pV6Jcqsv+uiOubLX8dlMl1wyqopw8kTSwlSJ54NPJEyk7G0AvByKW59BWngMnfgG0F3x49rxKnalMZkwCPFUPLFrSjpsngCLLsTP9vIDqIc+vaZrvZDx8KkiV4qDzBUuByFJLTFpbv6ux3IORTJE1cZYKCF+7FSGiSWi29eKtajLziRMQ7Z4sJhO7G3hNZQ9X3jgVP3x3NRxijWf2bK3Jm81P4zYKbSiQg1s1291DhM/i9VA+3AAM3PrSxlyarofTg1vqm9LPH6qNZeg1mruvBqs1EfnnIbVUEv4RhrXDwmiaEXET9kNMQmxLP2brU+m66VeQVfFj2VIhBAMZW1SjiaCRdOieDNst+n7D7orQBJlkWmIuuLH8574hUiDgFl7y6r6Ohl7dI7nHfJDE40dZ5j4gbN/n3z08l9gTuXY++WfAcBzGj5xvnSwVXfiR04/wtT9X8EOdb+R23Njy36BIGMZZB0DmajRQn2uKPa1rBNCfbSgT/xsILxAp9NkKifq2/qKnwsPUaTWXBZQ9UPc29/P0+RDqIEdGPGExoiJH8PJYpsGnjI6iB+lVF3x04yKzJEOS/UEpm4r2noQChnHwDIbHZS86Hn1x35uS8trDKOdRLAwV1jH/GTBHYfWNmD1Qp1YkBcVzLSeEChhIFZJrM3d9UkywuXY7teRcTpX3cK28rx2xY9lijrxk9TNu/FgKlw4ydZv/ioiaF2BK9YC/HVOKIIwYq7s1Ve4v/TgaQ5OlzqOqR1seGFVxm/g7pd/iaJKUyktLKm6C8JoVb9RP4pYrPr455BnwLmCIIxYrAa0u8a6QUSWKqGVQ0mzTgrLHhOB1cC5+DkESrJ9WpcOpdPpjmP89Ih+UNbJXmHctitCH5uUFkFrGaHoYUY6f+yhdV3zhYiHT85yuThCMHG1vlcsMQlOUqyE0I8rIovlN37TnqsH8E4qfUYii9O2cU4pftphZ/R93q82wj+aCZ7FuWmmSy7H56ocmV19JP1iNWBHTPx4sTLCD85dJvvR00WyQk/yFxfm13WulKdLCq3ceH2bacWKn8BHuUmc++qJnwsCpsOpp/8OAC42YaQIQkWxFiyrXi/FpV52vEjZrq4wVYBa4n6ftQ0yjsECWQx3vmN/e6CCkUze267LjHwiabNlII0Vf7feOTC/MlVYD8ZY9WsNyejwSGPDGS71AlYUOb+R2DUxyPeiSwGoKpuDWxvm+75M4SiX5hr7IIygMsvmDz6b5333J+rbzW2tpXSWofujrUNphJm0ST12jeJ2IfulXl3RJ342CDqSGA5MlRnzj+k0HXSn08eFBS+On14tlFK4fsQzH9YpSjlbkE87BEriBE2KH1PiY3aYOyd1q7KN+PHNHKmoTM3XBrm9aq4dUzKader+QAAIyfzeV+jzZDe3HN8eFRo2Te760Ng3/5U1vc4LIirzp9kmppHjlwM64UCo1REPc1M6vjq/7Upd79wG7cvUKM8KI53qlSh+TKkJQWiUevmxr4p5658w/MhHGDzw7y3nLLtBXd24VizWAmZPHuTSv93GiS/8MQe/9g9c9tFbWlQaD50s4jfFcofOIOb4JcxSwK8Wl1QezVa8VZFT0yWXH33vbbz3m4fW9PdcyKjFn3N7qZcXRuRElcjOoVoUP8G6JdY7J0Y4psa4zHsAgEyqk/hRqXjlsKonfX6sZqsKvbpdqzVIh+ayP6l8VFsprKusnv4TT2aUjjxIWnioTdeyudD5HTRDCtg8kKpHZVdlBjtofAe+q3/bTjrT9fXrRc4xz/qkZjVIZbW3xalJrVCbK3stCYpBZZ6q1/23thLsnyyyWeiFCN/TYwc3PHeJ7OPzVfJogkv45WWOXhopf44Q0ZI6ZyRq6tBFJASknVvX+5zPEDe9lQ9EP4gR1gjDgCA2d16uLy/XfCwR1r0nk0l2pVal5geYBB3305b3FYLxnMOCymJ5nYqfBw+daHluxgqQ6ZLLfOzlp5XKAdK0GchYpJ2Y1DsXiB/W199tH2m6H4ozf/9aa0rhWrF3LMe00uVdd0YXMzHaKG3zZQpJ1OJnWnZD/HJraMPh578bNl/dsi1RWDmmUW+bCRmp4v/7pV7d0Sd+NgiJ2ueLX/osbzU/QxRHz4V94ueCg7/GyNSpkkukFIfRypqZ63+BsbyDh0UqHiCbThbHNPAxUW2KHy+IsAgxrFb54vbNm3HwODo5x8nFWk/iJ5+yGMhYDMS1xUmqyrFn/T8OvugDeMOXtBwv25ZPQ2HXJ3d9aLzx8P9e0+v8MELEhpbZi58FaI8fuUriZ2F2ipqy2Dw22JX4qcgc2ahhyuwHgU7oiVdCbFM2YpUT4ieeNESxPNwqn2o5Z8kNqLjrm1DMVTyMqQcBeNHRP+cv7L9iIpqE4sn6MXcdmcMSTe8Tt0dPphFeuW5m3g6lFHPFGoWv/DrMHFjR9Xzk9qO8SN7Oa+/56XMqKeRcgOuHZE7dhnVXa1qSH0bkqGGkdKmXQQhKxQb06xtw7RjOYMsGcSetTsl2UiKpYuNWP9SJdZ6h261XbagmmifSMur0pJglD5X1lZtciEhN67Qld/xqBjJLf6dSCBzLYKKQQgioySxO1KT4iUu9Mpkzp7oYyW6ssfNGIpXXpYnTM5r4Waj6BF5jcac41yhZXIvV2KOni2yKiR/P8+IkxnVc8BnGqfkqWbTiR66T+JGRh4+FaFJMmFaKOZUj7U5jJOd/EhM/UkqknSUbFbns73Zhnr4H6AxVCCPFqYUaFS9AKcViJfHm0vdgFaumjp2eZq7sYxGglplgbxlKs0AOy1vs2Hfg8cdbntux50vJDTg2V6XsBtSCCBu/Tjo5jn6/8An2+EkSz5IEubVgx0jT/fBsKH7OMvGzZSDNnNTEzzx5Lt/cFOcu9f26uNhoFyUv4NRMoy8+fd0vsbjrBzvmI81wnHhRIkhKvWL1cV/x0xXLEj9CiO1CiK8KIR4SQjwghPjFePtvCyGOCyG+H/97yZm/3HMXU0WX+08s8vTFzwNQLezCV8YTfmPqY+PhBtGaBmYVN+TIdJkxNcNdm38EMXEFgxkLD5N0PEAWVhrblHhYddliAi+IMIg6FD8X7dBEUuXBL1Bxg54Tr5FsHMcpBNuHM+wcyeJYEmU4lLY/h+3DGXbE/y6eyHUYeTb7ePSxPrh+yKbpW6mKNHLbdQCoNj+elaC6OE3ZKLCp0L18omgMUogW6ua2UdAqgS2kzHr5hhmneo0/rv1zvvrwJADW4pH6+UYe+AdSk/esy+S55msT/LuOdK7+RZXGtrlimYvE8Y5jPCODEZR7lnJVvBA5+QCF+96P+tefWfZ6/vPeQ7z5gbfwbvvPuNx/AHr4EDxZ4YeKvZ9+Hbkv/38t2wPXxRE+pAogLSQKohCDoKMcdbWwTYlpNylMutTqO/XSGe3f4QV6EO6benLnP/TZehttbivdStFmVR7L7RM/zZgtuWyt7ceVaeToRcseL4T2krMMye7RLK6ZIx01JvSBqyf5qdSZUfwAHamG5xLyQ9rgtjg3hRtoj5WoyZjcLTXan1Ks+v56/ff/N5dKrQD1fU38qDUtUZ0dzC4s1P0FjWD1pW0tiEJCWie0liE4rYbIeVPYURUfE9YxQT/fIQSYqQbxlX/oI2RPfAfVRg4enC4xVXQ5MFnmoZNFDp7S/WFS6hXF5rx+aY6Zsrci4scxDUoyhxN09q2L01rxs7DzRTyUug4bPbaoeCFKwaGZcj1ZTJixiiu+f0dP8Pyq5gWYIloX8XP5pjxHIn1v6NbPbTRWa26+XhiGIExplY8Skh3DDaLLN3T1wWxTqWcUKaZntOLnm/t+h8kb3g5CLEn8ZDLxWCGeM/UVP0tjJYqfAPjvSqnLgacB/1UIsS/e96dKqWvjf589Y1d5jiOKFAvlKld+8Q28yfwSgTPIg8/6a0Ikqk/8XHCoemGH38VKYJy4g5f9+z4ywsUe3U3WMRhMW3hY5IgHyFYmJn46FT9uEOnOr+1mNjgwCMBr9v8qNT/E7KH4MbsYPG8f0oNwISDvmFoRlNFRzO0JUZG0dCrJBZJ81EsxslJEtVLbhpWdL4oUJ44+xguiWzkyeBMyNk1UcvWKH9Odx7MKPdN2SuYgaVVlYbFIxQvwg/h+FK8sNRsSJkqynYc+BsDCtFbfDD/2cQofejHbP/p8tnznf7P3U68ijFRLqdVqzEiLNX3sgwcbhNKd46/R7zk/Vd926clPMioWmbrqrTz8w7dixylRgZnFCitdyyGiSDFf9bl9vx5MRiswS7z1e3dwrWxSBoV9H6tm9DLJTgxThZNrDPxDT5eDdkl5WS2+fu3/azzpMoCz0rp0plbWkwk/1GWMUV5HB79g5oN898O/y0Pf/DfCuaONUykfFV9fNLgLt7CbOfI43hx9NPCNh0/ydPkAC4VLcZzlJySWlNim/r1lHZPILpBWNTzPo1jz6x4/1hkkfs5lI94tm3QpdWlhSnurKAibjGyDynzL8atN+Lpp/jONc3kuCnVWu+rVXm8wd6z+eDnip7ZcaXEUdBA/piHrxI8VVnHFxhuKn0+QQuBkG1HaIw9+gD2f/eGOfrTmN+73YaTwPN1Gk3IalYrPUVtguujqqPcVEBYVkScVdKa32a5Wuk1e/0sczF2LSchiudYS+jBddLGFLvUCMGLyIgyeuPlVzQ+puVphYtlrJ2wcy+CN/m/wa/7PwO5nbdTlnTMQorE4vWM403KPDmLiJ3Rb1bmzC7pPVwM769uXurWn41LwalWXE0dJ4tyTmOhdCsuOipVSJ5VSd8WPi8BDwNYzfWHnE/wo4tCD3+PqUPsRTF7/y4jCFgIM1CpX8Ps49+GXppEn717169KH/rP+ODW+h4xtkktpxc9AQvyYKQwpCJRZr1dNkKxotyt+ZGa4/rhS8+Ja6JVJ3lOWRAidwLDcoDmSdn1V/0JA1Vvf33Hng4+0bghXpoaaKXuYt/0Ng6LMzLX/pZ6eps2dV35NXhCRV2Vq5kB9wtWOijEIgFGdYaHqNyl+uhCDVmNbseoxapSYZpAv2c/ndDlgsLgfoG5A3Uz8HJurrnjgX3YDIqVa6rgf36wFo7ViY9U7SWo5deP/JChsZ+dIhpRlEFlZnKiK6vJ+XhgxW/L4zN1aPh4ZjpaK+yEn5qscnil3mEnKapvSw+8eJ/tkRa9yEeXpe5a0Mqh44K9Cff/ZiJXL/I6rWVQxSdDlfAnxUy3FxE9cxugPXcSR132BycxF/Gz1vbz+kV+i8K8/gusnKTRhnRh333YX+1//NRZFgbQ/v+5rvlAQRorqA5/mUnmMhSt+nFSP+0sz2vuPwNaKrANHT3JousJiURPlqS5+TU8GbJrQxE9tYZrFqk+kFFGTx4+sziKaSOfV8Ciz5VayOvA9mHqEsQ8886yVMK7W8P+3jv10/bEV9iZ+okixWF2mb41CwjZ/lLRlMCuHybiTOFGFmjxzhOP5ACkgkyt0bI/cTjKmGUlylu0kxI9W/Ah3gYoXYokQw1p+vOkZGZyos29Nx0rLID2KsPS94cRMKwl/uljDJkDE75P4ET6Rip9iLcBNiJ8V/P1L4Y9++uW89M2/Bisct59PkEJw1VbtvbVntLXMN5LxoqdfqyscIwWLi7pPT2W1Qk2HBixR6hX3KbNF3ZYTxU+/1Ks7VuXxI4TYBVwH3BZv+nkhxL1CiPcJIYZ6v/LCRhgp5h/9NgCPvvijzFzxk9imJOorfi5IbPvYS8j/0w+s+nWPTTVW96KBnaQsLYv3McnF6RbEHV8gTETotsQQu76WlbYnCMjLXswdE68DYOrYfmzCFTPdQoj4OpZfKa2riMLu8YvnE2p+uOZktgSPH2qtTV+pUsQNQqzZ/TzMbvJ7n1afMClhrkrxU3YDBkUJzypgd1FzAdQcTQoatRlNuAS9JbBppzHoqFRKDKoF5nIXMfHj76fyxk/XY7JDI43wK3XFlB/qWNhlV2WTawpCvnNghmyT/0cQJ8p5pcaALwo8AiRIg5xjkrIMHFOCnSVDlclSZztMJh+Jd0QgbGZKHgemSsyUPBarQUeEreNqgumLw2+ML+b8b98biQcOHGo8aSI3E2NNadkgE7NNT0c0b4DEeudIhkXiyVoXBWM6kyVUArcSl3rVkzwM1KarOP3Gr/D4iz/EQ/ISNrkHmTqkPaUM5dfPJwRkHJNFOUAmmF/3NV8oWKz6eDNaJeXvfv6afCHCOLZX1vRvOojNne0zqPg5lyHTA0QIgvIsFS8kimgp9Xp66Yts+9iLcOYeRXqLqzJ4vvvQDL4yeHjTyzgcjRMEHt/4u7djze6HA2sLIFgtVtOf1rwQCz02DpBYYW+yvbqSvlqFRG2KH0MK0qM7GApn+MHgK/jyyUk4JhBCsPPiKzu3zx1sed7e7DyvldyQaf27jqrz9RIscwXER2CmcVS14w3S/gwRArKjGHF5b+S2toeFSoCNX1/QbBA/T5z1wGLNx43LVw1rff3dZZvy7Bm7MBPnLENi7LwJgNKlr2nZ56T13yyDxsKhUgq/qseG6WxBlxAvs/CQLCaUyrrdqL7iZ0msmPgRQuSAfwV+SSm1CPwNsBe4FjgJ/HGP1/2sEOIOIcQdU1NT3Q457xFEioGFBynKAu6WpwHgGIaetFwg6og+NJRS2MWjyx/YhjBSPH5isv7cz2+rT9YDmjqNmPipiDRWUObkQoMJTzpg2R4dKQS1S18FwMlH78LGX9EKTIJCysLqQRw0I5KtkYnQGbl5vuDkQm1NySnNcOdOtm5YobrPCyKG3aMsZHa1rJIraSBZ+f2i5AYMiBJRaqDnasjEpm0A+IuTuEFU9xwTXVZCJnKNbaW5KYYoUrP0IG8k5/C9534IACOssvffX87kokvFaxg9TxbdZcmfMFIsVHw+8OU7ea3xDQAeffUXkelBAILmNIcgNuwUunQEtEH5tokxtohZ/E/8Qsf5g1BxcLrMM+V9AFSVyWLNb1GteG0r06l4xbGc3a73u+v0m7jAsOn7f9F40lSakqQOStOutyfPq2ERdm1fq8VQxsHJ6NXlbqRqxrEok8KraGPIIC6NlYZV9wMob30mXxh/CwB+cYaKG2AS1j3QhNBtSq9GVy6YMtb1Yrrk4pemiRCEdoHUGnwhojh1zazFipMwmSQ9SUtupKQic+yt3IOKFJFShH4ryTxYOsAl//oCLv7AdXDXB1Z86pMnj2GJELH5Oh0MEfoUwvhemh1d+sUbAD+MWhaplsOdh6bxlcHpgav5vHhmT8VPKVZrLqcmFV1KvQDS17+h/ng86PSLezLBlILNl9zYsb1ycn/9cTdfqSBpo/E98/qLthIqwdTUJCUvJn5WUOoUmDmtGPdajbxT/gIlsuQzqQbx47cSRDU/jINN9LjWjPuX6AlKrSvW/JZSr/V4/IBWSy6laDnfMbz9Uu776SOoi1/Ysn3TqF6YrJaLmtwNfdL7/4PA1W3ESmXJOuay3m3plO5TqjXdx6h4gdNonyv1AayQ+BFCWGjS50NKqX8DUEqdVkqFSqkI+Hvgqd1eq5T6O6XUU5RSTxkbG9uo6z6ncGqhxqh/koX09nryTMoyCPulXhccys1lIquYJFS9gJzXID6NdK5+o/ebozBNfQNbEAXSwTwLVb+eyJRIbruV6Yxf8hQ94Dt6W7wCs/KOaChrL8uoAw3D6CbvofZEiPMFXhCtyaepBaXJ1ucrVPwcm5pji5okGt7bYsi8WsXPbMVjkHJLqV87Lr70CgCKh+8lihqJXV1LvZpWXSuLs+RElcBqMoPcezOfFC8AID3/KEppI+WKr9tnqRbw2GRpSfLHDUK+/ugUHxa/yR6p08Lc4cuwUnkCJYmq8/VjVegSYJKxjTpJmrYNhlL68fXTn+o4fxApvvOFj/Djpi6rLIdm5wpmELWUJWSCOSIEtdSE3l/rl3o1Y/PMdxtPmhQKCdFimFa91Mur1eJ42/WvtOVSJu6N/0U/KWzp2D+ac6iQwq8U9cTTS0hNi+YxdC421a0sTPPwqWKLIkkgcCxJaOUwiCCorWoCe6Gi6ofY3gI1I0/KsdbmnZMdAUAmxE8ygTSfpMQPkIuK3MCDpB/5V/KHvlBXG3o7nsXMuF40rOGwoNK4+7+64vPOndZ+afbQVnwMCANGiY10N8BvazkUa8GqFD9Hjh7EEiHFS15DVWY16doFFS9gruIvu0gjVNjVz+3Ka5/Cr/CLANp77EmMrGNSGOokAeUdf19/3O1jTsYMSbnt5sEMFZljy+TXyRz+CiZh3fh5KSQpoV61tbRMRi6+sElZBlaczjR9+jgXfeAaMrf9KUQhxZqPjY/t6HvHE6n4ieLUM6UaY/LVjLe7wTyHvck2AinLQEoYz7e2k80x8VM5/Rih78H3P8TmL/4cz5z5FwCEnSFlScZyS7evdFq3rVqS5NlX/CyJlaR6CeC9wENKqT9p2r656bBXAfdv/OWd20hWIe48NMc2MU1U2F7fl3UMAowVqwD6OD9wz9GmVIJVfLeHZ8pcLLSZYWhmGM83Br+BbLo5xZ1jURbIhQsoBeVYUeHHfgDdbmbSznI0dRnPE3eSE1VMe+WDa8uQDGWWv0E2G7gmWK9q5myh3X/AD6NVeSh0g1VtUzCukPg5dfQxDKEwR/e0rKQraWAQrlhFdejULBnhIpYgfvZdegkPqZ2MnNBy/6QcpqsiY/dzeChzAwBucYYMLtiNsgwhBM/Z3rhe6RVZrPqUao3fgVJwdLbSk/wJIsWxR+9mlzzdsj3tmCySQTURP4Q+gbDIOWYLMSlnH2sc09b+Sq7PttI99eflsHMVeL7ic3S2wsHpMqcWauTDecrGAJGp/9agr/hpIPAYdY8wpWLlTZPiJ/QT4seux+z6XlUrfjZgpc0xJfOXvp5Tv3y6q2ph12iGskrh14q4QYSf+FeZVksCSGEwIX6mtCdFk0G+EHrQnXz3p6amma/6a06su1BwYr7KkCji2YOkrDWmwGQ08UNFkxthQhpegD4Wq8VF33o7O//zZ7hlRico1p7685x42Uc5fss7+Y9nf4YpNYRXLS1zlgb8mcMAhHntLSkinxERRySfwclxFCmqXshC1V+VWK54+hAAqdGdBDKFpbr3na4fUfVWpviJRGefZhuS0p6XrfzCLnAIIfjMTR+uP3938DI2zd9V70cjpTDLp8gf+TLSL4NSDcVP05ghY4RcymF++NG3k8bDWsF4U9l6EWl2rtVzSoYegdCBIoaj78P7v/sZ0v48e+/7UzIffwNy7iCmiOolPYaZKH7O/vzqxEKVmq+TfZNSr/USP4YUXNjUj/4ttgfM7Nqk+4ib7v9tjK+/k0Dp/dv9QwAMDQ1QSFldg2makZg7J99HPdWr39d0xUoUP7cAbwKe1xbd/odCiPuEEPcCzwV++Uxe6LkIP9Qrx6cf+ia75Gns0d31fRnbIOyXel1wmJ5vIn5WMaAq3/8ZLpdHeGD3W3jkzfcwnG10FJOGVhpEiPqguCQHyEV64DZX0dGsflJP3GVSZUjB47t+mIvkCUZEcUUdcTNWpPgx4ptoS6nXqt5m3QjClXvJNKPZHDIIdae93qjbtDfd8rw9ha0bokhROq0H6bnxXWScxqQqkja2cjtKkbqh4gVUF/SEysz0tldzTIP7sjezu3o/Rm2OSi2u1+82MZeSuy7Wq6PFuSnSeJhOruWQIN/w9S899GXKbtiSAgI6FaTX6m+pGnDt1KcIMZi+4ieZvuGXtReDZbCosqjqQt2DR4QeoTDJOGarB9XlL288XmyV73//6AJX0UjoSi8eRDSRFUqpOplaqgUsVH3y0QJVc6D+2wufZObOS06qZh7DJOSeaI9+3lLqlcipbSJT1+oXiwtYBMgNUPxYhiSfMumlgM/YJp6RQdWK+EHUpGYzW4ifXEz8eMWZuidFUjIghcCQoj4pmZ+f49RCbdUJRRcajs1VGaJImBomswZ/H4DC8CYAyvNaGRl48e/qSaz4eegH/6XleTbQ5VjSdEAIZi//MbIj26jgELanRi6BXCWOcR/cSShMiAIGRVxScwYXH4tuQMkNVpXqCODN6nJ5VdhKKG0s5XeVmyR9Ya8Ex2RBR6gA1UXxYxmSV16/nX8deSulV7x3Vdd4oeKi6xrJUVWroMuv4j5PTT7Irn97Kbu++JNc8Y+Xs+29V/Fbk/HULtMg34OJq+uPLRHiOCuYYMf32HJRt/lEyS4jj0DapEyJFcfNX1O7rf6yvYu38Yr73gZAOq0n+OYTRPzMlT3myo2xZFLq1Vf8LI9uMfLDI+P1x/LY7dxxZLF1f2GgXua/FJI4dy/xhkrmKP04965YSarXt5RSQil1dXN0u1LqTUqpq+LtL1dKnVzuXBcian7IDx95BwBhQftpbB5MkbJMQiX7pV4XGMrHHm48iVZO/NROPQrA7HVvw7JbTQaPSq0Uk6h6qaCfGsJRLiKoEoSK/ZNFpha1EsHo0skYQiCv/mFKSg+qHWfjB9f1Uq/wiSv1mq14yyd8dEGxSZUSRIrU9L0MfeKNazbyjSJFPpjlROoi/nXP/wGgUqst8ypdQuHP60GvHNxGrqlTK1mj5KlQLC70enlMWimOzlZRVT2AsnK9FT8A89tfgEFE+sF/aRA/PWryN2/Sk7XFqaNIobDTrYaDp278Ne579ns4pkYZfrixcmjU5hBNpt9h2L1d3Lr/NK+WX+fo5hdy8ubfofz0X2EwY3HxRI5FMgh3gcmi/hxFpFcC05bRsuIjbvwp/nz4N/STpsQaP4y4++AkT5GP1rftrNzP9i++hX+76xi/9an7edXffJs7DjVeM1/xKFDBNfMoM/YX8Jb/HpdDYnx9PmCpNJ7Zk9r484CKS61aiJ9Y8WM7dRn//NyCTh7coNr6sbzTk/iBuHzAL+OHEWE9sc5siX4dGBolUoKoqk11TRHWyXMBmFLWiR/DL6OUvkc8mVU/1sGv8AzjAUzLWZOxM8DNl+/AVSYLk0eRXomUN693PIlXYQcvfxafjxquCKlIkzOiqU8fydlUlINyyx2v74Wx8CRlkcPKDhNiIprHJmdwDOoFEWU3IHv0G4z81SWwTEJUAiMm7KP8VqJkQalLXxxFCqM6w/Ct72gpMS+5AQdnyszFaWaii7kz6An1lsE0l7zqN5BXvHKVf92FieZFviRFKyF+Zj79u6TdKb6mrqcocuSociRzBQ9d9Wuw6xn11y3+0N/zxed/Hlfp+2i3MWk7Bgb0ApVXLlL1QqaLLkopjMgnFDamIRFbriVUgpvkw5zIXMbBa38FgLFQK4STBU0zvn+fiflVt77bD3U7PzYXEwtKsfWbv0ru6Nfi61rfPc2QYu3KyvMEKasL3TCwlcez1wLg5rcTeq2LbgnBtxxyGT3+2DX5ZUCPHYGuoRB9rDLVq49WKKUncouR/tHP730FQsBI1sYyRFzqdf5MAPpYHmLyvsaTVaw2eAun8ZTJwOBoh5HypLOz4/jBEa0CCstaVeIHioWSJn7MLpMqx5KMD6Q4rPTr1tsRdUWyit9M/JzllfFSLaCyyhj2KFKU3KBhkh1G5D7x46QOfQXmDq3pOmYrHiPM46ZG68aG1eryhIE7f5K3zv4/AFRhCxm70bEVbb36UZzsbR6eKGy8IIKY+HEKI0u+56bLb+ab4ZVs//4f4Ze1Ssixu3eI27ftxFUWO+MO1ErnSNuN9mo4Gbj4hdxrXcNIWRMsd3z5X9j3wWuYuO336scFPaRgB+79ll6JvvSlgK79tk3J5oE0CyqLExSZr/gEYYSIfJS0W3yQAITUyV5Aa8pUqHjjQ/+FjHCZ3vcT9e0DJ77Fwe9+kitn/5Pftj6Ac9uf1/eV3ZCCqBDaBayYLG0ffKwFSXnm+YClFGYnT+n1HD+j7yvNHj9hQvwYVv37KJfmMUW07njbBBnbxFiK+UkNkAvmcIOQoMnQMZ+y6oRFPm2zSIaRhQfrip/k/iilVvzIlI4el75WWbjB+ktBz2dce/j9AKTcKdJrnJCMF9KUjAFumfooV3xgHz8c/LvecQGbmC4HxzQ4kbqo/jwTJxs2G15nbBNXpsBfOfEzEZ5iytrMYMbWJU/NauQzWeqlFGUvIPu1/4Wsza+4Px3wJ6mJNCI1WFcSR12UlqFSbPnqLzJ8z7vhaEMFUvVCKm5Y/40KFRGJLsSPIevNTT6J210zpIATr/4EB1/yYYxY0Ru6uh1Ozs7xKDux3/QxDv3Ugzz80weIfvTfyDznF1t+tyI/webd+/hWpFPChL98efSWCa28nJmdpej69XusqTzCxDj68ot51NG+hGrTNZSufxvfzzYIp2QMalqJx8/G97Pzlc7fy2TR5fh8o31apaMMP/IRnvKgHvOk1jneFkK0VAFciHB69CNfesq7Oa5GqBVn8ddYZp+NiZ+LF75NWJlrpGlvgPL4QkSf+FkHFIrpokdWlfj+8IsZGBph+1AGIbRDuy716it+LiRk5x5qPFnNd1ueZN4YIuWYWG1lVbc88wUdh2/epEtqTj16V32bF3tqdJPVDmdtUpZkeIsuyRBnwtSsTvw0Osazneqlo11XV1+W+A8kC/gn5qpsFrNLv2gZnJqvskXMEmXGseNVqNoKTIH9Uw/UH28dHWzZV3Ji2evi8Z7lbGUvYL4ar3LGMcmZgaVN86/cOsjf8RrMyGPb1K0A2D0UP4ODQ/yLeBHX+t8HwEnnuWg8zxVbClw0nqsrlGqFvQxHs9SKs+T2a5Nldeib9fN0IwSVUtjHvgNAZevT9flNiWNKpBSUpSZ+lNIrujLyG75SbTCTiVKTyiiIIrZ6hwA49dRfZ95qyIj/wf5Dfjf4U94kPscbi+/HD/Rvt+qHFChDaoDRQe1jsxGlXuUmovFchx/0/j0tzmsfK5HXln6qaYBfT86wbJSliR+vpH9X1kqk/ytE+/2yGaXRa9krTjB96lhd8WOYmvTZNZJhYsBhKGszKMrsK99GbupOLMKO+OFsfhCAWkmr7Wp+eN74l200Fioetq8l96WXvGtdaTNHr/klqsrmmNy2UZd3XsOQAkYvqT/PxIof2aaYCIwMZrhy5eFQNEfRHGEoYxOKVm/JM2mAG0SKUi1omPJbmSWPTzAaTjJvjWOasq748dzO+64XRAye0OmPnu/hBtrvJ+kfk9+oVCGqh4m1GZcJ94kfDSkEasfNmBc9FyutiZ9abLgsQh/fyJJPtfa77Q40CRmf+6H/qzdsuX7Z992xSffHc/OzFGsBXhBpTyHlEcVjS0MKhl706wAEe54P0mDbpommN46Jn3hcoM5AqVc34qfqhbhNJe21A98G0L81wEk9eVWMK4XTox/fOlLgSDRBVJ4l9NZG/DSnGPsLkw3FT7/Uqyv6xM86oBTsP73IKAuI3BhZ22Qg02hoShiIvuLngkEQRuTdU40Nqyj1SrkzVKxh0lYjoSjBTddf23H8ZVfoGuoX3fMLDD6kS2q8uASlG/FjGRLHNIj2vIDQLsC+V6742laMhPhJJNlRSPrTb4WT9/R+zQYiihRRtPrE5YW4NCx52YHHGx4way31Kh2+k3Exj7vlxrr8ODGWWwozJ7Wa5+t7f6VF7QPgZnSZlVk61VPV5AYR08W4U6vNA5AuLB3Xm7IM2P5UKqTYWbxTv0ePUhzblJwsNOr3nXSshJBCJ2plbYQAOa4nL4Nf/f+4Xuo42PHKfh59TKuAunn8VLyQ3eFBFqxxwrS+ZkOK+udQlTlSoV55XKj6yMgn6iHVTX4DzXHIj56cJS+q3LbjZ1FmipzZeg2T1/xXjozcAsCRI7qEaa7sURAVRHoQJ7VxpV4VLzxvksH9HmV5AO6iJnKcIU38hE2Kn8RA0bTs+oRPVTVxYm+Q4gfAkksMU3Y/G4DKo1+rK36SxDrTkIznU2wfznBn/nkA5E/eGqfQtE60r71Il9seOaX9aJ7MxM+p+77CpeIod+z+OcztXcNaV4zRZ/00f/m0b/CMyh/yR/7reWT4eRt0lecnDCm4+RnPrz9PkfhS6d9Lwk34MoUdVZcsw2yGpXwiw8GQIvb4aYxNkuShM4EwVBx7/CE2iTg6Xi1/vTU/ZIIZSqlNjOacuuLHq3VO+nKfeVv98cnTkzx6qsRDJxfrk/PkFypU0FXxA9QV1k8CG5UVIVlscUxJKqP7d6+i+12hfKIuBFo7Z2bEZFpm65U88tajsIIyus1jWpk8OzdLxW0Qd6bSyt4E3q7n8tAb72Bx54sAmLvqJ5veuFXxs9GlXjU/xAuijkWb9sXGo7dpU/YFUy+6bWR/d6GiF/GzfTjDHDmM2hxBPPY68py/oHLLr6385E3KnqA0iUjI7j7x0xV94mcdUMCxU1OkhI8zsKmjFj5EwpM8QvJCghtEZIP5xoYVrqTNVzwGo3m81AjZtoQi0D4Tj7383ym/9iP1banNV9YfZ7+v4zaTAZzTw7jZsSSz+97EIz/xAGy+uusx64LZVuo1d4jUQ/8G//LmjX+vLkhKUlY7HUtIiKQzzz34ocbOFSZxtcM6/C0A5GU/hB2TEJ63PIk0G8fuqmt+pKOEafuOvQBUpg72VDU1T0ajRV33bixh7gx6xfOK7aMcjsYZqWlj6V5x244pYXxf/bnV5vGTc0xMQ5DZo6OHL578HHvlSaYGrgLgRV/9IWbv+2JXxU/ZDbhMHGU6u7e+zYhLbQBEeohUWCSMFAsVv2NA2IzkM682qaz2H9BkTmFMqwtk1PhuH37Ddzl9469RigeRn/vGt/mDzz/MJ+8+Rp4KhcGReqKI8tdH/AShLsU7X2iDpSaXQWWOKg7pnG5jzVLsMGxE2Uonbic1TfysyOxzhTCN3jO20YufyqJKkztxK64bX08XUjN41XsAeP7J95ATtQ7z+0u2a9L12OlJ7IVD+PPHzxvibqMhHvp3atjMXfXT9QneWmFKyYuv2sL/feWV/E30Sg4+76836CrPT5hSEBR28tc3fYX7o10AzMthjMGtjORsCimLQtokNNPYUY3qCoMMTIL6JEdJE9E0IXZX0C+tFWXXZ983fq6xYQULnYs1nzExTy01hm1KVOz55LcpfioLU+w5+ZnGqatahdb8u0wUx1KFqB7Ez3jeIZcyO/rbJyscy8AxJYYUOLHiZ25uHgAj8rumo7WjufxWrvBzFZlhIiRy7mB9m1Lofr5pPCIEBJnxOttUG72a6T2vjF+g+yozNgreaMVPMlZsH74ETYsj1amDvEh+DwAr0IRZu2Kvj070Uo6O5x0WRR7HX0B5VVwsFi56Je7T/8fKT25YTNl68cZbONVE/PS/l27oEz/rgPW1d3DR4/8IQHpwU4eSIxJ9j59zHaspVTo+V2GIJvPCFa42HJ6pMCbmUZkxMrbRwXxLIaiOX0d4UaPkS5om1UGtqhgoH0R6RXwviXPvzmInyokzpmiOb6IqUcnIuPNdhfJpPfDDiNsOznDn4bkVvyaMFKcXq/zn5z9JcFSrXcR8k4fOGhU/ldIckRKMTWypR4x67vLnqs0ep0yK7ZvGO/Zdd9EWTqph/KkDLQONZiTt1Syf4iXFj7EgB8EpLPmetiG5eDzHYTXBQBQbR8veq6OFrY1ShHy+89yFlMXWrTv4v04jyHHypl/n3h/4KJNilGff9tMs3vbBjtcVax57xAnmcxchJRTSrelLF+/YSgqP7+0/gR+qlslMO3LZRKLemCxMndSkVnpoC1KCiL/bQy98H35OmxObIzp58d3B/+LmY+/h9Sf+AFuEZArDGLHp+nqJH3eJ0qlzDfMVr66I6wZRm6ckcmRy+vP2m1flg4T4ceqJLdKdBzaW+Gn3RGvGluEct6t9bJm7o56wIrsYQu4Zy/H1bW+tP29X/CQePz81+2dc+rFnsfPjL3nSEj+VcpFFMoyOjK47bSaZbF+9bZBPvO0WnrZnaT+yCx1SCKSEdGGYGroN3pZ/PsLOsGUwzXDOZudIFmFnSVOj5i7ft4aRwsKHxCtHmMhm4mcF/dJasFjzOXn/17hcNvWnKxgTLVYDhiihUnEogZl4q9UImkjoT3/l6y2vKy50lmcnv1FN/HQnLPIpi8G0ta6SxQsJWdvAiqO1Mzl936uUF4kipdPRuqhsOxQ/TfeFFX+sdpaDAzfxguDrLJZ0iWMYRdjK6yB+2s8rUroMOzEPtw2JrwzUBs+vwjrx07j5JymweofPwBd/iRCDY2qUvIqT9/omwmuGlILAHiQTLmD7C3joz3JVpZlC8Lmn6MWd6dPHG4rHvuKnK/rEzzrgfOfPeNGUNkGksLmD+Q4xEKpP/JzLWEl0doLDMxWGRJEFdGe5UsXP8dOTTIh5oqG9dYltM3qZDx557af5u22/h0GEPPwthLd0J5OxDF2Gc4YGOIlKpFZPr4rf5yyRmwcmS/zJZ+7mbz7xpRX7p5S9gM/dd5K3H/tvpP5BE2upWqNcL1zjJL9aKlITDo5tknb05+KvoETIrJxm3hjB7hJtuWM4w1GxmVTxYE/T7GTz4Hd/H0e5/OPeP4WlSmHQKp3do1mO0UQ29fBDMKTgoonBxmFtce4AWUdHrO+85tn1bWrL9YidN3PiWX8IwBW3/UrH6yrlEo4ICFPDFFIWE4VUy8Ry7w7ta/XQ979FseZjEyB6JADls5qkqTWV15WmdaRxkJ1gKGPX/X+8/I76MV5+e/3xf+VfeL2pJxcyPYht2wRKotbh8VOs+XWp+Png8eMFEYMPfxR18t6OfUEYYXmL1Mw8lq3VUM3ET1LqJU0b004RKsGOkja/b/fQOVMwDclJZw/D/klq8bXZ3VIPpSD/A/8ffx+8RF9z+z3Sjksahf7OrOrUsqVeZ9vf7GzBrZQIpINpyHWrJJp/3zL2Pnwyw5SCiUKKoYxNFPefNbNBriceaolnllvVbXqplEAviLAJ6orcSFjIJqW57238wkwQRjw+VeJ53/7x1h0rIX4WF0kLD5FNiB99r1B+jbkmfxU5o0uIZ/OX6vesdqZdtnj8dIlzT5BxLuzEpNXANCRSCEwpyOY0oeLXyoRxwla38ur2360UAtMQWKYAVv6bnr3yLWwWs0R3/xNmZYpapYRNQGQ0FJjJvXk0p5VaAKEVj7ndxfrfELHxqclRG/EzVXRbytbdr/0Jl1bv5qPjv8iBaEvjhX2CYc2QQuBmN2EQ8bzK58mix19L/Jy7YnyT/j6qc6dRSQJgX/HTFX3iZwNwyL4If/vTO7Zrj59+qde5jNWszh+ZKTFEkaIVr1quUOninnwQgNz2K+rG380QQneg7d2nYWfYdO2LOa0G2fSd3+FXTr493tF90i7jQeWZGluLeDJXqsSTv6Rtn0HzyGZ89cET3OH8F77h/DK18vKxsUopym7A7ON317d5QcRQMMUJpT1miuWVJ6c0w6sW8WQaUwpSaT0pHj/8mWVeBWP+CRbsTR3lfqDbQSm7kzH3aFePHNwihfv/Eat4lKFDn+E/1DO45inP6DyuDaYhGchYFDMNAqQX8QNw0XgT2dPFrDPnmGRsg6uvuo4vXfEH3Pec99aj0AcueQafFc/SB7bJsGtlPWgTdpaBjEWqLaZdpvQE6E+Kv8Kjx05jEfSMiU2nk7Ksxmr24OLDAPj5rQxnbURcbBXajYmVMlPc91OHOPyCv+fASz/WeO/0AJYhcLFQwdoVPycXanzmvpN8+G/fwfz3/nnN5zlbcP2Qbd/8FcS7n9mxb6bkkg4X8a0ChqO/X78p8awus5cmT9s7iiEUFwePACDO0kDYEAIvuwWDCLOoI6K7qY0MKbAMyWzuYr1h5rG2A0yO/ZcDfCr9SgBca5BoCTVg1QuZLrk9TdjPZ3i1CpGhv+/1Kn7aF8Oe7NU2UgoG0lqBYqN/P76Z7zwwJlqTtKXqEkmWNT/Exq8HOihp4qhG2w3XWM7cC0EYcXSuyiMHDnbuXMFCZyk2jLdi4kfEip9qtcxs2ePITEVHxJePEiC5+0WfpKwcoibiZ+L23+eq9+xg0z/eDIsnMQiX7NOcLgstT2YYUhM3qUwj1csLIkwClGExkrNjUkcvTLYvVppSsH04Qz5lrWq8OXbtSzigtnDj/j/l8g/fQObTP4ct/JYwkoT4yTraoD9lSRZ2/6Deuee59fcPzkB4TqgUuaNfQ516kMlijVMLNU4v1jBqszjf/XOuP/DXfNV8Ble+9G348T1SX/TKYsf76IQlJQztqT+XqDUtYO8YHWBeZQmLp1HJPa+vxOqKPvGzAaiMXc9IvnOCFIm+4udch7cK4md6egpDKGopTRqstL64UNRmwpmtV/Q8xjGNjhudISW7Nw3z3qFfZsg70dixRCeTc8xVrL+sDoM5vQo5sxCTLgnhc5bIzdMPfpOMiFUccdnWUggixekFlz1z2o+nnNvFoZkym5hl2tbqEn8FhsztUEoRumUCI61NtYe0p8zE5DeWfN1CqcJF6ijz+Ut6lq9449cwSJHq/i7n+uafsPlbv8FlH70FooiTl76ZveOdipxuKKQsaqMN36il2lAhbdXTKrDSHfsNqaNHhRBM3PwjcNEPtOw/lY/fJzafTlCtFONT5iikuqwq7n4mtaz+LCvf+ydsAsweflaJoiSJFAd4cfQNHs1cj1UY14bWMSKr7TMSksVdL6Ky+SaKWzVJJbfdgG1IXCzw12j47Qa4fsRffWU/v2+9h9HPv235Fz3BCCq9yyZPLNSYUNMEmXHMmPgJa2XKrv691wdXhsWWwbZ2MtdlUngGIKVADmlCM1XUpX6W1dm2EuXKy18UTyC6kDrSyZJ/xR/xz8Fzcfx5sn+5r+OYBBUvYK7i1z+L8wlLKZX8MAK/irLSulxynasI7cTRk13xA7p0cazgkJa67QwNd5a/CTv2zIoj3XuZ/YNevLIIMRLljDRJ0WTCHmzswowf6iSvmRNdfuMrUP/WFjXxY+f1OKqQ18TXo3d+FS+IWKj6PD5VRrgLVESWwVyaEul6mY8Iqozfq72iUsXDMHsgTvXqkzsrhSEFlpSks3pRZGjyNsLZIxgqwLJstgymuWxTgYsncly5dYDRXCuZLqUg55gUUqsbb6YdkwdT15GK9AKCMbM/Vqs1zp9xtHI9Y5sIIdg1msUdu5rDv3ACtt8I6N9QiCRcZZz7circyKuw+ws/jvOBF3N6QfcRxWKRfR+8lkvu/2PuFJfDy9+FYxqo5kWx/n1tzSikTfZdcU3LtpxjrnqRYNNAilOMYJdPIvqlXkuiT/xsAAYmdjKU7VyZ7hM/5zbCSK0qGlxM6ijumqOd/JsnnUvBdvXkyh7Y3PMYx5QdfUcyaH7qC3+El7jvbOxYgsW2TXnGBtcXbdYrdJPzMfETnRniJ4wUbhBS8RrnnSm5bJn9bv25Ovq9Zc+TeAI9X94FQM0a5MDRk+RFlWpOTxYDb/VlPX6oSKkagZHBkILxiU28N3jxsoPeUwfvxxE+1eF9WD1MU+W1P8ysymF9/x87y72aZKuf4Lk89WnPxFymzCvBSNZmYNe1TW/Ue5CcsiTeUOzz06PUyjJki2opZTUpdzKxhL8yU9+mlKonh2Rz3T2JzMGt7H/DrRywLuVF1c9iEfQsGTKaygMSjLLAqdTeDlIpsloNqptx5AXv5sE3P4AY3o1tSmrYa1b8JO3VKR5a0+vPNmp+yNEjhwC6RiFPTU2xQ07hjuzDdPKESlBanOP0ov58klKv9vtRoCRc+uIzeu3NyI7vBMBcOBJfT+ffktxLg9F9nH72H8BL/7jjGCkEI1mbihGXfbURl83wYgPvcA3lfMEqyovPBJa65umSi4OLsNJMFLqTrquBZUik1PcHQ4onveInwWDG5qIRfQ97ymV7OvaLuMRWVRdRSi1D/GjFj7T096WkRZrG2GSjy2GSMdPc9KnOnSt4r9qi7hfSg3oc9eob9d//wpN/i/QaSl7LL1IRWWxTUiaL9LRidOagLkv9XhT3UX4NSdTT46eP7pBS1D1+9p74D3LvfxYmAbKpz29eQOmGfMrCWeaYZggB02M31597wtZtt+k9845J1mmYcVuGpJCyWhZGDSkIMYhWSWoenqksSXxbh2JfqaZ2PPj4f9Qfn77x1xgd1uObltTQ4UZgRR+rgxCCp153bcu2wYy1asWPISQz5gT5WjPx0y/16oY+8bMBkPmxrtujvsfPOY2KF6zKwPNZ0/+Mi8PJ4ZsACPyVET/JwMt2et+EMrbR00BvopDiR1/xQxyOYo+WJVhsXdJwZkbXOyd0ss/MQpnpknvGSr3mKx7TJQ/Xb0yQTi7UuEQc47i5Q8u+y9NLnqPmh/iB4tSjd3CdjMs6ooBTx7T6KhrSJr/hGhJPgigiQw0/rktPWQbKTGFFtSWz5ueO6jKYge37ekrP9+2Y4GvqOrZM38rp+VLLPtXst7PzFr0qssI7uJSCZ+3bxqKKV6mW6BAztsnpl/0Tc8/8bcgvTVYm2D6cqbffIDbtbP6O5is+C4vzAOR6ED9CCIQUzO55GZfLo+ySp7Gd7pNPI1YCRbHqRCmFJEIYBuPxhFX9xGdYvOHnSTsGlikYyztsGUyRthvXHVlZRFxiZhkSV1mINRA/QRjh+hHH56rcKPX37FkDqz5PL2y0X1AYKUpuwPu/eLs+v9N5re5xPcEyNl+NYxkUySBqC5TdkIWq3xGZqoSkZg/xsZfeA1tv2NDrXQpbdl5KqAQTbqxA6EL8JJ4UCMHivh+FQme7ThQuuYHRZd8zUYqu5WvpWsZ5FtHLPwzA9SNSeERGqmOVfy2wTcklE3kunsizbTh9xvznzjfkUyYymZykOu+HYXYCgE1f/gWiWpGaH/acsNZcH1NE9bJYJU0s0Rh3RitcoFoJwkjV209xbhKAUzf8Cn8/8b/jN1u54mdoWI9npN1QCxpuo5zLCcvUjCxCQNXIcVnpNnZ/4Clc/S2dIva1wdfoA4MaUoVLLmb00R3N4Q3SK2IR9gwP6YXNqyCIDSHYeX1DIexVSzj42E6jDQgh2DbUqiAdylodKmnt8bPy+VXNDynWAvwlFnsr9/67Pnbiusb7TD4EwJ9t/gN2XvPcxjVJbXnwN+P/u+tvuI+VwzAt3mU2/MK04md1fYWQUEptYTg4jeynei2JPvGzAZA9GpeSsu/xcw6j7IYrjlx2/ZAR/yQP52+iltPlKIG/QsIj7pysJTrUfMpqicgEPWhOJvZXbR1gmnhytkzNfkfZxQYhFU/CS5WyLglISt02ONWr6ofMlb2WCVLZDdgipllwNhFiEC5Dus2WPaZLNQonbwXg+9FeVBSgFrQPSDCgVQJrMXf2A0VGuERmQ+prpvJIoiW/m5kpXa63Y/uOrh4/oEmXR1LXkg0XCWZapfTK1bL/d4WvYsctb9Dvu1LmB51s9Atj7+Pre97eEtneDfbQNio3/NySEmYnVvkYUpCyjPrqYJjSBKG70CB+vDBicVGv2OYLvQdJpiHIXvXyxnX0JH5ixU88qQkjhUGIbBr8i13PoPjM32Qk67B3LMemgRQjOQfbaJ0gNK8sutiIcPVk4ELVp+qH3H5ohhvEowAUM9uXedXKsdRkfS1wg5AgVOR8vfru263fSRgpokntmTSy51ocS7KoMhi+XpGfKtY6kjPm/9sBHnvjd7n5LCc37d0yxn62c4PUn3s34scyBFsG9H2xV5NO7r/X7Risb+tFuPmxamc5A+ilXvtEYalrdoNIq0XsjetDkglbIWV1eIU8WZGzzbr5PF1I1yi3CYD0/H7UHe9DKSi6Qdf7gBeHCtSN8Nvav2pbmFkPiVzzQ8JI8aWHTmN58wDMXfoGKnZMlq5gvBsUdb/gFOIF0ya1h6o2krvSURnPyJGyDL6+4+f5VngFd1Y38T1vF7dln4c/rE2fI7+KuYzHTx/dkU+3zl0sAqS5usnySuPcQfe1Y+ObObrrtQAIv4IjAuxU6/2mneTJOaYm7psQYqyovUWRDlooxWW5S/WlhaNfBVpDI+ZPH+VoNMblt7yy5dgRQxM/m7buXvYa+lgen7BfUX9stinKVwLHlAT5reSpkAniEvY+GdwV/V54rWhimv3N3Vc3lTD1SkQf5ySqrkvqoY/DCsq9vvv4DKMsIHITXf1FlkKi+JE9TJkhMdtr/TlmbZNNsVmzEIItlz5V71hmlWOp+ON1IR6gedUSYaTwYrWMUBs7kXEDHZ/ZXIZX8UK2iBkqqc0ESMJlJL5uEHH8+FGeE9yKL2xOqyEIA3LuaQCcMS3Njdbg5+KFWvHTXEJkp+PHXm+z6NKsfu/UYGeUewLLEKh4tTcoTrXsK5cWqSmLO3a/jUKcarWa1B3HNPgfr3w6l77i15btEFOWsWxZxljOIWVJsnFiyljOwTIFUVorfqqLjeuPlELFn02SJNINhhCEg7v4WqhrvnuVepnJ6nb8/QWRwiDqGPxbsZlq82+ifUCRrCzZpvb4WQvxE0SKU/M1Pnz7EW40dRrNRkbNbrRIxPUj/CDk16yP6OdmK/HjhxHG/OO42BQmduGYBotkMeNSjKoXNYjvuNRLOnmUmT7rdgcDGYvH7MsbG7q0bSEEGceIfy89yiwTU1Ea5Z+9Smz8MEl/Wd21BmFUf+0ThaWu2Qu04sd0epdHrgd9jx8NKQXE44dUYahjv4iJHwAVLzCcXKgyW/Y6Jq5JmmRd8dO+ENlG/NT8tfXXUaRwg4jFasBHvnk/77D+AYAgNVj31VpJWZldOUmIhJzu55I4dwB1QE+8lVJkojKBnSdlSX7kdW9g6C0fZ+E1H+HQD7wH9er31I2Ja9VK13t/H8sjZ5s8EOlFsFpmMxZBi9HyRiMZ4x5/5h/y/uBFpEKtak6lOj1SmyGE6BjXhmJlip+SF7B/slQvUe5J/EQh+VATBmGtMY6LSqdZMIdbFlQzjsHwDt3nPOOGq5a9hj6Wx/Ou2LL8QUvAMQ3Cce2jen31u/hYfe+lHugTP2tEGE84vrDpraiRi7oeo4SB4Ild3eujN3Lf+0tGvvDz8OAnlzwuihSPHJ9hSJRwBjfVpbArJX6IQkLEqm9CKUsylLHJ2HoiM3PLbzH3or+EXcsnOZ0RxAPKn/I+BAsnOkqRNgpJiVfQNEGqVoqMikVq2a1a8bNMeZkXRFzyhR/jOvkYgV0giFeHCt4UEQJjZBcA0VrKeqKIDC5Rk/GxkUyU/EqPV4GozOAKByvVJcUlhm1KrHglVFZmWtJc7n38OBUcfvSm2NPEEC3eOsvBkGLFRJFjymWltqYhyTgm6bh9DmQsLhrLYea04sNvIq6UgrCm20vduLTHNQIMXvlCfazXvY3Zlk2oRN1g2A8jTBF1kKuGFB0rkpYhWn6KyXvahvb4kWsgfiKl+NDtR/jR6D/Yi1aVbaS3xlqUJUvBDSImTxxim9Cr7zVaB/thpCiUjzBpbkYaEseUFFUGK2h4cHhu/DnFip8kfrUzn/DMImObTA00Db57TAAtQ7J3PNuT0EzaSemKN9a39TJvTiYPq410L7vhE+/xs1SpVxCSEm5XU/c+Nhh5TXw4mU4ifMvoYOPJ419h0+3vxA8UpxdrHdHunpsQPw2Pn2a034fWmkTnhRFhpPjyw6d5U/TJxg5pkU5pgt73l77nRZEiXzvJnDHaSCdtUvzse+CPyZy+g7IXkhcVlJNnMGMjY1Xp7tEcN+8ZIeuYZDK6HymWipiir/hZC6QU/O223weghkNWuBhnkPjJ2gamIcjYBr50SKP7kFR6+fuN3VHqtbTip1jzKbkBXqDLsJN1xF7rvFFtsfHEr0DkM3DPe9juHSTKNhbrhIBNhRTyh/6Ex1/yUVRh45S9T2b88I3r/xwL+17AwWiCrWKKsH8/6Ik+8bNGVGqxvNaw6iUP7egrfs5dKKUwT9+jnywzwXWDiPLsSQDSw1uQ8UQnXHGpV6BlqauEEKKengA6irq273VPHIvdtJJeO/0w5eraY697wQui+sSkuSRCLeoyKZXfgo+xrOJnuuSyqab9fCzlo4QBKiTjz7JIjlQ82F6L4icp9VJNpV5RkvDg9zaLzoULlGShQ7LcDNuQZIb0aq+7cJqi2/g7Z+fnicwsmwb0AH/7cGbVMbW2KVbUfOwuZuPdkE+Z9fYJmgzaPDqMrwyqxUZiVKQUfrKK1iUivv76uHRtYEecDDZ3qOtxliHxaZRLBPFkSLaVcbWr6EAbq24fzrB1KM1o3q4b/1qGwFUWRrj6dh1Gitqh2/lf1ofq28QGel9tPPET8uAD9zTO31Y6uVBx2RYepZjdiSFErPjJYPkN4keFniZU44aSlEo9Ebcnb8tTGk+WiXXOOt33Z2yDsbxDdtNFvF++mhBJsdb5HUaRYvi+93LZP16Bc+sfrcrop+j6+E+wx89SZJUXl3rJPvFzxiHe+DGmXvDnkOokfm7e2yiXtPZ/jrF7/xYR1FCqM4nUjwlYI1ZHBmbr/bU91asWrG1M6vq6b37swAFeZzRSJx1Lkk3HauBlSrCLrs9wMMmC01A0NSt+ALZ9/b8zd/IQeSrY2SFyTUa/zchkteKnVCrFip9+Wcda8JKbr+Mz4VMZrBwCQFpnjvgRQjCac7SfX9M4IJVa/n7TPm6KMKCH2lwpxamFGsWa3/F76WVuf2Jysv447c+x6fbfZ8f3fpcRsYg92FCjjBccso6JSBWobL25l4C0j1XCNgz2v+Y/qf38vWs+x1XbhviG0v5M/a+lN/rEzxpRi4kfadqM9TBBjKSBoYJVRYb3cXbghRGHD8Wmv10GXs2IlMJb0AkW1sAmjNUqflRItI6f2kDGisu9zv5qei9MnzhMqbL6RKzlUHIDgjDig989zKGZhtw2qOjVGDs3SKiWTnOIIsX+0w2liAyqKMNCRAEiCgiFSSplEyhZV+6tBn7UWepVj/ZcotSrEC1QMgeXLMUTQjA8rgcZ7sJpFquNFS07quEbeoCUsmQL4bJSOKaxohZkGXJF/kGFlEXGbr2O0XyKRTJ45bn6JFMp8GPFD0softK2LsdxB+Kkm9nuseCWKfGw6pMaP/7faJv0t8dJ62N0+ddw1tZpIfExpqHPKaPVt4mD02Ve5X2q/nxGFUBtnOJnoz1+gkixeEJ74jymthC1xZtP3vUf7JGnmN/yLExDkoo9fnLeJLlj8aQv8gmbknSk0Aq0pYjNM4WRHU2eVcus9CUKtXZYhmTTQIrNA2mkncEgwo3VFItNBJBbq7Dlu7+D5RcZv/NPVhxdH0WKqvcEK34e/zpDfzQGpcmuu10/JIWH2ECPnz56YGAr7hWv77n7Q3v+qOW5s/A40IX48RPiRxMofrupfNRZ6tWcmLlSuGFIqBQ/d/gXmRBzlDY/nfkbfoGcY5KLFT+et/SY6NFTJTYzhZ/b2thotI6fncWDvODLL2FAVCgM6rLhdv9DgFRcXl2rljEJEf0V/jVhopCiSoN8M631p/kthaGMHj/Xy+Np8qdaAt1KvWTUvb15YUTNjyi72tC55XU9+tIDx3Qp/rQaIBuVGLv/7+v7shPaxyeXMlvme1KIc2ZMfr7DNiVi4nLk4NqVP1nH5ED2WgCcaOPnJxcK+sTPGlGLV1ls2+5Zt+7JDGlVWVMn28eZhedHbBKxImEZj59IKdRiHF2am6hLYaMVruirKFyT4ieBYxrsHcsxnnfOmZLV8uTBDVP8JORAxQs4Mlvm7/79Szzvnl/m0o8/vy5LD2LSYGx4iAC55GcfKsXjUyUdKw3IyENIE6mCOgnnxMTBWkq9/CAkjdcgewAzTtyK3CWIH7VI1Rxc9vw7J4YpqjRhcYqqF9al/SlVrSeJbR1a28QsZRkrXgpZqxFrzjFZVBmku0g5vvepKEK5cRncEoqfsbzDeMHBz2+ntO3Z8Kq/7XqcZQg8TAgSxY9uD4nXRILlSIiMbTCcaaxw+sJGht6qDVDvfvQwL5W31Z8fE5s2zNhfKbViE/qVIgwjMouPE2BwVGxGtJmS1w7eTqQEXPdjgL4HlUmRDhbZ/fkfIzXzECr0iZqIHyH091dIrS4VZiNw6abBxpNlJoCZZeKHDSkwYuJD+TWUUkwV3fp96svfub31BcHKiMLj81Wi2UPs/MstcPyuFb1mI1H1QqJv/2V8Md3f3/NdXTJpnRmPnz5asdQiQHnX86moxiTTntNEbbtiYS42zbeduNzKavXravdB8cOoZUFhpQgjxcGpEuPRNI8XbuTgSz9C5Zm/oaO34/tuFPZWE0WR4pETs2xiFjm0o7FDSib/2+P1p68P38H3Au3BN5jPJYe0IG0b7BgbIFKCWrWCJMIw+8TPWjBRSFFVjT4w7aw/zW8pJAsJOzc1pScO71n1eY7Kbex093c1y098rKpeWCdKreJRdn/69chT3+96vpOnNRlesRtqu1/d/W986anvo3T1W0jbkt2j2Zb5XtYxelZ89LE62KYk65jLeksuBcuQLKR3LH/gkxz9FrtGJIqfXqkzAFUjT16VcP1ww+N4+1gfTi7WmoifZerSFaQqsW/HwPa6ieJSqpPWE6xP8QN6oDNeSHVVMJxNeBe/FIB9k5/FrW6Mx890yWW+4nFousIX7z/F38z+NC8y7mBrcJTZRf0eYUyoDA4MEGAShb2/szDw2PXwuzGF7vDLEzciDROhQoQKiTBwTAMPs24OvBoEnocUqmWVykzpiVKwBPGToUJg5XruT3DllgGm1QCXTH4W6RVZqPiEkSKFS2hkSFmyQ2WzUqRtY8UrVKllJsi9kHPM2Ah4kaof4s8eYce7tvJL4sP6gGVW94YzNkJKjr70g7Dn2V2PseulXnGqV0wQCqNd8bP0704I0aIA8aSNEbmxwfjK79mF/Z/AEiEnbv5dTl/3SxwztiM2yNw5OnQr9rf+cEPOBUDo43zrD3id+gJHC9fhihSGaiv1mjrGvBxg87CeROZTJqVsY0A1eOAT0Eb8JOlumR6KmjOJzQNNbWoZ4qdb+V877NhsVAY1wkjhhxGlmMQ8eVCnnT1kxSqjJXy9mhFEivzhL+kn93xkRa/ZSPhR1CiR7RE0EMTlmIbTV/ycDSzlubZtKEOJxvfgHr0b6FQsLJR0+0uldZsNnbbUxLZFkkgp1kIlh5Fi7rYP60TLHbcAWlGZtY1G+XuPBRmlFAtVn9lTRzBFRH6idaIvrByR4TB78et424++gX/c+6d8aPQXEdfriOd2v7mMbTBWSFHDxo0VP4Zx9gnnCwG5lIEnG/fPVPrMKn5AKzOu3LW5sWHbU1d9jgPZ6xkPTzF/8kDHvnYfLIDxu/6M3Knvkv/Sr3Y9X+Lx42e0n8+/yBfzxufewMTVL2B0aJCtg50LVo5pPCELHRcico6Jbch1BQAYUhA2GeP30R194meNSBQ/zhLsuGvmMYjwKkXcfrnXOYUjJ043nixD/HhBSKF2HE+kGB7bsmpzZ6FCQrExkyHrCY7Drb7qH7nTvpHN4XGGZjZm1broBhydrRJGikMP3dGyb+b0cY7OVurETz4/ECt+epuunrjnK7yl9gEA5i5+DbOv+CeEEfttRSGRkDiWVvyw0nK9JgTxa5KSPwBp60FBvZyp/TWhTstRxvITqkLa4iPWK8iGi+RO3MpC1afmh2SpEVkZ8usYaGQso2epSztWkxjWjFxKK35Mv4jrRzz+6P31fTVnZFkTGCmFLsFa4jjLkHjKrE9qgvj/do+f1f4NgXAwY+KnulIT1KlH+In5dwGwuOP5TN7wdoRhaYXZBsD4x5eS2kji555/Zuf97yInasxd9mOEwsZsKgeJIoVZmaTijJGOyT8pBS9882/wQuO9fNm4hdF7383l6gBRE8lixsTPE5Hc5FgGfiZOCdoAX70kMUh5VYJIEYSKmZL+3WcqRwH45tCr9cFL+Ho1I4wivv2oXkDgDBqo9oJSoJL7Zg9yLPL03yKdpVN2+tgYWEsQ0zuG05RUYxJuH78NozqNqhVbjvPiRch0vAgp0oMt+1vi3KMIY+7gmlICoyDkZY/9b/1ecQBBkkZqxPfdXv1yyQ04Pl/FnT4EQGZsZ8t+KeCxnz3A8Wf/MSM5h194wWVc/cr/jjGgy55NKZBSK3+E0IsSWdvExcKt6VQvafYn4GuBISUDqcb9IJ0688RPPmUyMjgIQGjnYQ3lZd6oTtUqHn+ko/zRbU+ui0IyB78IgCqe6no+EfvXpXL6uvZu3VQfP2Sd7uOm1YRr9LE0bFPbC6x3bXv3tq3LH/QkR7/VrhFJoslSN8mqqWutw8ps7CrfV/2cK/AO3tp4sgzxM3vP53iL8TmkUKRsEysetKsVp3oF61b8JGhPNjjrEPC50Z8E4Mapf6tvDry1lX1VvICK25ioFRYfbd0/c4KFqo8Xq4usdI5IGB2rmAlKtYDpU0fqzyev+XkKQ6N1o3WhQpSQ2IbUpUJrie6ODSxl0+RNxKleQa274qcWRDj40COevB2Ht76MEElq+n5qfsR8xSONi7Ia5s5rQbNZ+JnCQNqiJLTixw0iqq7+vOYKl1F+46dXdI5C2lySH0rMnZMSpSDQv2G5Tp+HbCaLEXp4QdQzyrsdi3PT9ceJd4Umfs5RY/8mJVJhfAehtFoUP1U/ZFzMUbFHW8r9do0P8sPPuZ5fLr+ZQFhcKw+0JAg9kVHdacvg6HP+An/8KsivLxYWIBsTP/s+/kzUnf+AUvreUqz5FGonqOEQxGkuvcjedoS+x7XTn9FPzDM/uWqHUqpBAsjuk+TI0+qRMxXn3kcrlipF3TyQptzkvbKt+jD7PnQ94//6ypbjvISsi/uWHVva2n/z+Oa7f83FH30Wxun7WQ1qfojz4Efrz8PUoL7+mLhKFD+9iJ+KF2riceEYAGKwtRxDCkGqS1BBMvEWQrBvc4HLNxW4bFOeoYxF2jaoYRP5NUxCzH6p15rgmJJbdjZ+7+YKxyjrQT5lIWID+aCwttKcwTHdzr2FyY5yL6/p+c4v/ASXf/AaUsECU2oA0Zze1QQZ+zNuGdKfxdaJsfq+Xsrh1YZr9LE0DEOsexzx6uu3bdDVXLjoEz9rhBtPdJMYy24ws0P62MVpgigi6BM/5wzk5IONJ8sQP+n7PgiAiOXRhp14/DRep5Si4gWUusX/qhB1gRA/QmiD5XZ4penOg5dBFCmOzTVWy4s1n83BUSIkX77uLwCozZ9EqYbHD1aWCAPRY1K9WPPx4lXFY9f8Et7gXixDoKSBQYiIQiJh4pgSV1mowF11GWZihCuaiJ8kzj3sMQmseiEO3oonfNfu3cKBaDPilE5emi67OklsCX+ccwWWITGzQ1rxE4TUanoy+eD17yAa3ruicwykrSX9L7THj4WIWokfYaxvIDY6WMBSHqcWqi2E5FJ4+IheQTw68QIQUvtRGAYG56a3W9RkphpkNxHJVsVP1Q+ZEPNUnbEW/wJDCm7cNcxFO7bzEf9ZAKSCjSn3XC9MQ+LvuIX5N315TavH7cjnGyWZ8t5GWdbJhRppf5Z5Y4hMVpfUFIvdJxLtyN3+F1wk43RC48xPrtoRKXoS5vVjYuLH6Js7nxUsmfBoSspxqddjI8+tly470w+2HJfEuWPo/ujS3W0T6abftor7E2tqdcTP7ImDTHz1v9efB44e2ybz4YR0iYLu97xIKZRSZMp6UcYYajVwlUJ0eKW0z7WTlFMzLgfJ2AaushBBDYOoRYHbx8phGZKhVFM7PFu2FL4mWoI1xqGPbdIT/MrcKYKw9Zq9aoXN3/ltrnrPDgpHv4LpLXIkGuPfw6djRxXoQlAavu7Lkk+iObzD6vE7XasPYh/d0etzXg16pXb20UC/1a4Rnqcnf9YSA6Q92/Xq79GTp/DCiGAZE+E+zh6cxUP1x2qZwbBY1PL8Y6/4ONAo8QmaPH5myh4Hp8scnCrz+FSpbkoMIKKNK/WST7DHjxSCTH6oY7u/OLPqc02V3BZJ7rG5KnvFCYrprYgJHecdxKbaIvHRsDMEwuxpnBtECjF/hBkGmLvx7QihJ6yJ4odY8SOEoEIawy+1rA6tBH6i+GnyFFjO46eWpOWsMCb5aXtG+F50GQOT30OELnMlnyy1JY2RzyUUBkfIRUUWKx7Vsh5Q2an0imW8QmjviKX2Nyt+wnqp1/o6/dGhARzhc+/ReSr+yoibh4/qstHyU38RiFcBpYVxjip+Ts/M1h+nhjcTGTYmTcSPGzDCAjVnpIVoNqRejfuZZ+7mD4M38NnwqRzY+bqzeu1LYSO9hQYLDZ+UaqYhHXf9iExQpGIUMJLyzmpvX69mnDhwT+Oc7aUIZwFKKQ5PxyRV1MOLJS5bM1J9xc/ZwFKlXpYhqQrdxgpbLuF9Iw3ihaihIA/isWjinTYUJ2EBBEq29JUqo1UMstI91a0ZyYJIGClKpdbysjA1RNYxGoqfeEwU9WhXkdKk6Y3qPk5nLsFKtXrdmYbAiMu5EixXpmsZEk9o4scSfcXPepASTX1duPry9zVh9FIASvveuKaXb9+8hUBJvMXT+E1zq7IbMHj/+xl94H31bb/jv4l37vx7gnysBnE7yXozJn4Y195tSbKoLi/s3haf6PH4hYaNWNgeztrsf9UXqP3Ef27AFV2Y6BM/a0RS6uXYvWv1L4tXXhZOHaLihX3FzzmE4doRjivt3h8sY9I8XD3Mp5yXIbffCIDZpdQrjFQ9HKzshuw/XWooSVSI2iDi54mGAEZHxjq2B+XVEz/N5FgQRnzirmNcLx/DG72C3Ig2/gsX9Ap54vGDlVlS8RMpRap6khlDG/RlbEMPrqWpFT8qqn8XizJPKijih6v7XYZdSr2S0oiwB/Hjeh62CFe8kr5zOMMdqZtwogrZE9+hWPVJ44K9vDn0uYDcrhtICR9x27upVTVp56QzS/r2tCO1zETeE9qIGZpKvdat+NHluUemZvEDtSI12MLCvH5vJ0vaNvQqYNze1ouW8uANWjiYmW0iflIZlLQxVRPxU61gCAV2tsMIWUptOvuMK/fwNv+XOHTdr23INW0EMraxYamH2yYayS5GeZLRe99dL5HLqUVq5gBG7IPjraDUKwgjFoqN44ptE+mzgTBSBH78PfcoyYni5D2rX+p1VrDUxNEyJNdedRUAws7ylFf+N/5A/gwAi1NH6gsWYRJQkCxENLEnNZwWRXNSOjZ/+L5lry0xka76IcJvbePKybJlMF0nZ4yYcFc9Ur2iSPHIY/u5QTxKeefzsduUEpYhMaVgsClhsVuEezs84WBGWvFkPgG+WRcMNl/beLyGpNM1YdOVPP5zB3F3/8CaXr5tJMcsBShPtSh+Zsse4sCXW441dz6Nn33BtRiJ/1VtoeN8ZlDBxYZn/DJHf+gjlLY9m8HM0srjPjYWG1EubhoSsfkK2HrDBlzRhYl+i14jPE9P/pYyd84P6gnya468g6obEK5ygtnHmYFSionwJAeVrhF2vd4rHGEYkVJVUrnBuizbsvV3HjYRRu1JG/p99P8y0klSFwKEgGdc3mmeFpbWQvzogevDJxf5n/92H9bhr7JFzODteBbpdJZjxnbMU9/n/uMLKK+CL2yQBpEwkD0UP0opLL+Ib+sJfC5l6sG1NDAJESqoEz8lkSUdLhKsUvGTpLk1S8tt28FTRs84d7cWr6TbKytDMQ2Bu+2ZVJRD/vAXcV29qinOE9PVbc/4Me6N9jBx7LO4camXZadXR/wsUz/vCgcz1IPUMCn1WqfHTy6rJ7ybDmsvopWQ9Uaov9vIzLB1MK1LFjaI+Kk0G0xvUDx8uThXf2ybkkjaGER1MqAWK1icdOfkP5no/dyz9/J7r7qKWy4a6TjmiULGNleYV7eCc1mNdpQ/eSubb/+/jD7wPpRSFKIinj3AwIC+xwQrIH6OnZrieh6qP69WVqYS2kgY3/lz9snD+klbW6oTnEFynzo/7jMXMgwpyEzo0ljHm0UIgZvXZTHlyYP1McdTqrFfYZfywSpOS1/56Tt1AtLu4/8Bkw8v+f5BnGY3W/K47aFD9e21oUuZ2HYJKcuoEzhJX7hU2uamAx9FCgXXdio8LEOXcY1kbTYPpnAsuSI1RSBsUkq3WdPql3qtGTf9HAs7X6QfB6v3PVwrpOmsmaw3pGBRDmJUZ1s8foJQwfT+lmNf9uybtS+gndcbuih+jLCGJxyQBu6OZzCYsdg+nGE0d/bLcvtYH9aaevtkQZ/4WSWKNZ8/+sLD3H9Ue5qklnLAH9jGtKHJn9TkPQSxqVi7A30fZxczJZdhFinaWhXieb0VP6fmFjGEIpXJ1WXNlmURKoFqMgbuRvxETYqfSFwYPzVDCgbSnQMsVVmdx08UDyofOzHFU/7jBfzY3F/x3tRf4KdGWdypV4CsnTdxvdzPb37yHhxVI4gTsSJhIHokJi1WA9JRBZw8piHqHUBiQmuoABV/FyWRJxsWV13qFQWJ4qfxOTimpIqD8rpHOyfkx0onVKaUXLlznK9HV5M9+HmUqxUChpNf1bU+UcikLO5JPZUd1YewqlMAKCvd4duwFNpXhdvhCQcrXu0N4wmHsc5SL+K28ZMzf4xZPkWwgnu1EU+WnWyOtK3jXYU0kagWI+XVIggjTi80rb5uEPHjlnU/9OCP3o1jSqLYGyRZ6XVj4ied6SR+dHKXRArBlVsHsNapsNpIOOb6omBbMHYpnj3Ysin1yCep+RGDokTkDDIcq8NCd/k49+IdH2ZYNAgitcII+LWiI0giihj5zjubnjf5vijFfCV+niSUrbAktY8zjJGLAbBifx8r8Y0szRNEipl7PseLgq/y/ewtMHpJ/WWl694KQFFkW0q9RHP/FJew90KkFGGkY9iPnGyUhp18+YcZyLW2D8NMFD89Sr1qC9xQ/AoH7UtheE/HfiEEtiFJWQajOYeLx3OMZJdX8NRkhq1Cjz2sPvGzdkiJ2nS1fny2FD/E3k5r9MmxDEkxtYkt7gFqTWP4hw+fYJNoqFq/PfBDiIxeoIgsPX7ySnO0wwir9Vh7y5BsH9ZjteEVtMM+zi3Yptww9e+FiAtjNnoWoYC/+uoBHjqmFQ5LOuALwad2/iYAF33q5Qx+6MWEkcINzk3vhycLjpyawhYhYXoUWFrxc2xSf8/pbL5ef2pKQZk0wm0M5LsTP/r/5vKi8x2OaXSVvkbl2S5Ht6L5M5oquSgF93778+yWp3iT/DwqPchjr/osYXYC0xBEF/8AgxT5sPV/GBFFIjMhfszupV5hwPzhe8iLCkZ6AMsQZOI4aqT+31J+/buoGHkyUXFFk/vWt4nj3Jt++ynLoEKq64TuyEyFhQU92ZbOyiZUpiG4Zvsgn4tuIu1OM3b6W/o9zxPvDUMIFoavwiBiU+URQBvarkbxsxxckarL/BP13XpLvSieqD+8/J+fCnf/w7IvMUP9nacyelCZsgxICKh1kDUzZY+7DjcNUDeI+AmqC0yKUWR+lLRloBLiJ/So+SFeotDqoi7bPJBmvNBY7DiXBldSig0xhwQgM8zRn36Az0dPrW8amL8fb/4kBSqo9BAD2QyuMgndckeqTDumT+tJ9h1P+X96g39mJ1d+e1lge3ph0wT9+Hy1riyrpxL2iZ9zAuqiF3Dypt8geu7/AiCV0/49qrpAFCke/b7uF6Z/4F0tJV7l5/wOUz9zF1NipF4OC+Copna3jLIjUo10JK/SKI0R6U6PP7Ou+Ok+th34xI+xl+MsDl/Vs3SmmQAQorXsqxe+59zMlniSb/bNndcF75If0g/2vfKsvacQ6zPjPb39JWxlkuC299S3lU5oZeXXr/1T/uhpt8PL/rzeUaVif8pKsXO8akY1fKH7tuUWnfo4t2EZErFh+t8LD/3WvUrkHRNTCswksWWZ0oLc1svqj63ZRwmiqK/4eYIxN63NWM28VmMl8dzdcGpKEz+5bB7L1DcS25QskkHVFliIV0q7lYQkip/m8qILAe0rNK4yUdX5ZV9XqgX1koLFqs/jUyW2TuuB69SVP8PBl3yEILuJgbTFaM4huORlzF38Wm6SD/NDxnexYtIjEgaym+Ln9r/jeV95BZvEHKncIJbRJBePf6dmE/EzNDKBQcTp6alV/f2NUq/GwNSxJBXlQJvip+aHLFR9pub1wHkpM/hmWIbk4okcx8efTQ2bi098Ql9/6vzw+JFS4EzoFehN1ccAyOWyG1ov36r40ROOZsPtNeGm/9LyVB761rIvscIaIZJUM6mXXMcyxvFLIYgUtea+YoPMoqVXxjMyFFKW/n0kJSKBS8kN6v4zTheSMeuYFFImWefcvJ9tZLyubUqCuGS0rByUguHvvAMpFJnCWD1OWnlVyt3SHJswPT2Fi0PpolfotL6gt+JntSmD3dCectOxit9EIi5Ufbwgwg8j/ES91Cd+zgkYhsHsNW8lMziGEJAp6IlrrTRHECkir0KkBPt2TrS8TkqJym+lSgorLkVVSpFSVSKl+8Swhzo1gVIKP4gIg4A3eh9vnLtL25CJ4qcbOV2dY3DqDgD8S1/Rc1K9FrXe7bnnUVb6/rVeY/8nO8T45Zx++2nYfPVZe09DinWZ8udveC0PRjvZ9sC76wvqYvpRAMZ2X8UPXrmJfEr3xbYpSRc0cVpZmG25z3pBhB3V8IyY+On7+pzXsAxxTi1KnWvot+5VQq9EWJiJf8MyE42tO1rji8NIrbq0pI+NxeK8nuinhzYBEC6RYrCwqJUamVxD8WMZkkWVxfKLLNb0xC5SCrMyifQ7vRuEioguIOKnfYBWxSHyq53lBW1ww5AjsxUOz5Qp1gI+9MVbeaP5FaZ2vpRTT/tfeAO7AW3SOpK1MU3JsWf9MaVNTwNApvUkTBM/XSbB5YYcfXh4pGXFMPF+sfAg/i6uuXgnAEf2L2902QzVtdRLTwJDr9xC7FY9fZ2RF3tnrFDxA5C2DK7ds40vhdexdV4PnM8X4gdgbPuleMpgqzpNgMHOsYENXUnzZAo7Xs0O6+bO6xz8FzZz4Ll/U3+aqMyWghVV8WSaVFNduZTrV/xEkaLiNb1+HWVjCWp+iBWWCcxM3bMsMmMFT1Cj6oX1ePJuHj+gf/8TsernXBtcbWT7klJQMnS616n8VfxL9Hz2TX0OgLGtu8jYRlzeWabsLfPd1Baomnmd1ISDWKKcYqHqU6ytnTBUSnUQP5HX+n5JSU7JDYgicIOQ6ZKLEXtm9YmfcwOGEPU0vaxjkh/UJStuaY5IaeKnho3RpnQ0pQABrkxhR7rvCSJFlhrzQisTyyvwmfLCiPs+//dcIrVi7cDPPobRRVVnxX1hV+LnlI6O/znxm6QueuaGkv+X79rMj3i/yYeC58MlL9qw8z4ZYRty2SS1jUbKMtZVnrtnYpivRdeQ8aaZWtTtPLVwgABJNLgLaPRRuZRZN3d2y5o4TcifYs3HjmoEUt/3rL7i57yGZcgNVZdfaOi37jVgMGNjJcSPXJr42THSOngOIsVs2VtWGv5EYSNWG891VBZiFc+IJn7UEoaEidnl4MBgPeHGNARF0tiBjm2vlebZ8/5ruPzDT+HyD13PxPf+AOku1BU/8gJK9Upw6iduqz9OVr2XIzSjSHvwLFYD7js8xa+Xfw/DsJi56X+2HOdYBlLqAS9CcPiF7+X4099B9Qf+UJ8niWZvR2a0/tDODrZ6EcUTcVt59bKv8XH9/T/r7rev/A+nER1uWE2KH1NSwUH4FSaLjUlW8pkE8cTLXoU5c9oyuGnPMJ8PG+Um5xPxs2fTAIeU/owDsfF18oFMYasaKEUUJR4/6/+dJel9AMXa8tG2tqrhyxTpppVLkajB1lmetVBtIgDWea6qpyf3mahMZOUbUdJNxI8fRvUUNrsH8QNa+ZN1jAtaTi0F7Lrm2QBsE5M8fPkv1PcVrvxBUpZBVdlEXqVO8HaDUoqcKlEzcqRsSQ0b2YX4SUi+qh92KnZWgTBSKFpff3JmvuW5G0eATy7q6/ADxXTRQwSJx0/f3PlcgJSinm61eSDFzolhHSJQntF9ilehJpyOX6GUAoHAFWmcmPhxg4i0cCnKWMVWWsaUvHgSv1wke+r2+ibbyWB1IQdMwyBSonuqV1z+PDY6hhAbWI4JvO05F3Gv2stvBD/V1Tuoj5XDNIQmDM8i0tb6+uuMbVJLjWEQUpw9jVKKgfIhTsnN9RLmrGOyZyzLeN7BysSLh5UFglDhxot0XhhhK5ewr/i5IKCJnyf6Ks5d9Fv3GjC0CsWPbUpC2fACCYOIKIKKe276/FT9c/O6NhJuURM/dl7Lo5ckfmIFT6FQqG+yY8WPE5Zwg4hjBx7ArOlz3mtdzfg9f8WlH70F8bBOBhIqrBsKXyhIjzeUbFVlQ1DF9ZcmfsJmUvHQN7hWPs7Rm38Xv7Cz5biklCyZmEZ2ntl9b0ZtuRYA1UPxc+hUo2TLSBdad8ZKEJtGqZd1yQsAKPirK/VKFD+W1fA60ZNABzOotkzWE/VPYpibz63cnNk0JLtGsxwYeFp9m509P8ydQSu3HrV0qWvdQHgD4csUBhEq9Ahjmfe6zZ2BKL+5/tidP7Xs8U5UxTdaFRKJwqyX2emKrkMpdh//VNOG9d2bvTDisckSW8U0fnZzXfGjElWTX9GroLHBr5NaevK/ezS7oZO4cw0Cwe4btIogyG7iJU+7ivdvewdfvvg3MdMF0pbBAlksf7Grx1uCMFIUqOAaeQYzFlVlI8NW4icII47NVXlsskixFjSCAdYAvZLduu3Q6VZPi2pNEz9uW9l55FWIEHAGfq99rA3JglPKMrh6+xCLZLn++AeZeP/TIKjhiRTtzI8hBVKAK9PYcepV2Q3I4lK1BgGo1ZYu9cr/1VUMffSH2Bc92rgWU5LqUppjGZIAiYo673czC7rMefv4qC5X28DEnZxj8tdvvJ4/eu3ZK0+6UGE9IYqf9Y2LTUOgcnpxySxPcf+9d/IU/w5mB64g4xikbZ08l3VMLEOSTjmUVArcRfwoopIoshU4yq0rfPvEz/mPDQt6uADRb91rwEDaxhIxWbAM8WNIgTIbxE9xXicQ1JYweJ4rL7/KfKZQWU6yfgEgiI2I7cJovErVm/iRsQmnaFoBtQzJImlSQRGlYHFOEwc/q36Dn3D/By9x38lJ1yH69rv0OQhR4sKqP29OZ6phI/zqkm0aWpNmjBlt+Ovtel7LMaYh6lJws21SmUg3I2FidPH4eexEI1LeSLUSJMlE3MavK36kk+XjmTfEF7fydq/CxNy58dvPp0y98hpUiaJGiVei7EtSvexlJtPtyDkmV+zeXn+ezRaWOPrcQiFlcSB1JQCZYGGZo1cPw9GKFLdaJkpUWOb6f2dSCO5/xReYUgWMZdLqokjhKLeeOFc/R1z64C3hH7YcokjxuqP/t2nD+hQ/YaSYn59nXMwTDu2u/84S4qdUKhKEDeJnubYqhLigB1dSQHZwlMdf8s8ced5fk7FNnvKDb2biOT+LlALblMxTIOPPtRA/7SSQF0YMiDKumWcgbeNiY8S+KwmCSOH6EVUvwvUjlqmaXRJa8dOKo1OtxI8ft8sOfsmv6kjjC/h7Pd/QPDnOpywG43Q4s3wSGegI6nblnW3ohDtfpkkpF9f3KbkBaWpUzUF9kN/aBrshv/AIl8mj9eeGEKS6+GgZUhAhu/ajJ+K2t318mIxtbCi5IIVg+3CGG3Z2Gk73sTpYhjjrxM96+w9DCuxBvVAjy6eZe+RW0sKj9NRfZPNAikLabCFxMrZBJCG6qwAAZkBJREFUkQzSW8D1o7rK0g8iUriEcV8o+3KRPi5g9ImfNWAoY6241MuSksqWW+rPU3f8LaP3/f2S0vDSMkaRZxLtK4AXIuyq9oIRmRG9SrUk8ROvijXFcBtSUBE5nFAPwIpzenL4ymdcxwd+8qncdPNz2B9tJYgn+0JF9ZjoCwXNA4Ra7FmxnGl5MiFSSpFdPMCiHCBMDbcck2tKeGiXASdvqaSBpPP3Mz033zjWa5WxtxA/TWV38/Y4BhEUl1d2JIhiPxmjyePHMiSGk0XGpq3TJTeOrNd/s5+srpopVoNC2uKKLQ2yR9jnT6nXaM5hKrN3+QPXiFysnvJrpY0zd0a3MzV2ObfJ60m5M12PCRJCL4jI0En8iFh55K+D+Nl/+Ejrhg0gfsLZgwBYo3vrA2IV+7kUi1q5kvhRiSd5uU/aNkhbBuUtt2APNVRgzfe+BVEgE8y3KHS8oDXAwQsiCmjiJ+eYeMLBaEvZag8HWE/JtTt3HPPhT7Vsq5T1/eeBra8DGgb1CsXg/n/jyvfuRriL4FcJjNXdo/o4s2hXyJg02pYRlAmk01HWYJsSyxB48X3Jq5aoegFZ4eLbBW3wvIpkueO3vJPTP3ufnmh38T8xDUGAgepC/MzHip+x4UFGskuk4K4ByQT9QiagzxaEOPvEz3phSkF2eCsAldljeFU97ssNjZO2DDK2ST7V+P1kbJOSSrP76Cfhkc9Si1XqFS8gI9yG+rWPPi5gXFiz0bOE4ZzdSPVaZqIxkLFY+MF38fH8mwAY//5fsPm2d1ByA04v1roO8J5I8+flDHovBNzkfodDzmUYqSwhRndDwhi9PA8GhkZJRWWiKMQr6RWt7OAoQgietmdE+97EK2pShahl0t/ONzQbp9WUDX61c/W4/TVzByAKeXyqyGXhoyzmdE1+cirHkozlGwND05Atg8zkPVUPj5/6dwWw9frWffVSr6Alia9oj+sHi8eXvvgmJIof0VYOkcoUMOMSjvmKzyOni6T2/wfbv/Lz9VLA1Zqm5hyTK7YWOBDFE8/zaDIupeBFz7z5jJ1/IC6/nJ1fIIrJW3MDUp204SS4qVHy4VwXWQR1Qs8NQjLC7TCBTgiowF9jqVfg8ZQvvb512zpLvSKl8E7vB2B426WNSVNMaoeLJ9nz6dcyWtJqPKwnNwGQc8zYWBcmCqn6farZB2NRDjAYTDF+++8Tludwg5BIKeYqDcLPCyIKogKpASxD4ksHM2qddIftZszr6Ibz//xyCv/xUxA0riGKPYWOjz0LaJQgisos27/+S7oceepRrhAHifrEzzmF9tSjE+lL6o8HonlCI8VwtrM0L2ub9RJUt1Ki6kc4eAgrjYuFWsJgvB0Lu1+KzE/0NL21pCREdk0xXFjUKYGZbK5lEr5RkLKj0q2PNcKU59eU0DQkQ5t3a9+rqUcJXE38FPID2hDdNkg1LSBmbAMHfV8c+ezP1hXZi7WANB5ihamrffRxPuP8+pWfI3j9U7azX23jwS2vXtFEzs7kODzeWtKCX2Ny0e2q7nmijJ+jLt4AFxpqlRKXc5CDw8/AkjJepVpC8dOD+Nm2dTsSRXjb3xNWNPEzMKTj4Qczli5/igdWkvCCVPxUn/6ruNufQQ0LEdRaPXzaUZllx4eeyZZbf4OHv/4RLpdHqezTZVYjOZusY7BrJNvSSYP+LBOIuuLHxOii+LGUy6y1iUfeehQ2XdWyT8QTcQe/pU6t4ujvjNLpJf/eZoK27tvSRvzk83kc5TJT0qv5QaiYuPOPGXz8U/zX0l/og1KDS75PN2wfznD3c/6RY0/7HciOrPr1TyQu2rl9+YPWiMHBQQBOTs/WiZ+N8PgZSFtYhiTKjGEREFbmOgjxRNFR8yPSuIRmqxFyogbzvVZlx4px8BsM145yN5c2tq0zzj2MFM7MA4RIcjuuqG8XcR+WO/hFsqdu52Wlj+kdT/LVz0RFIGND2mysRmwuAyiZg0gU4/f8NerWP6PmR4RKtfTtbhCRwkPYGQwp8GUKK2pX/LR57fS4l/phxEJlaTLRWjgUn6RxnPL1+9mx91mi+OE776ofU7j9T7hWHqCa2bbk+fs4u2hPwbJ/9kv8bvQWAEajGZSV7qp4kVLgZLQq0qsUqXkhNgHScnCxli71amp/J6/+ecLUEIYUdf+9dpiGIER2HUsVSw3i50yU0LSEOPSxLpxvih+Aq3aO8pjaRmrmYaKa9lJ0sloZ3f67yNhGvVRSmSlt8Oz7DNz5LgqiQip9/iiq++hjrbiwZqNnCXvHcrzvt/87e37y78HunXySwDElA2NbW7bZRV037YedEu/1JHqsB+sxlDxfcOyULvNKFcbqg5Vuq1QJjDAu0Wkj+HY+7yeYV1muf+CdbJu/Ex8Dw9GdRtoy8IWNDHW5j1TRBaf4MYQgfPavUXnDJ6jiYIVl7GO31vcv1nxOLTStKFa04mXkkQ/zPxf+D4GwcPe9FtC+BXvGcl0l5ON5h00DegW6ofgxMNomwVGksJVHIFNd42YT4kcK1VLqVS9nCZaeoNf8iFMLNWZKbmMy3/adjo6OkxdVDh4+pE8ZhASLp5mU4/xR+CP8/va/gdhQfDUYTNtcesllqKf+7Kpf+0TD2QAFTi+MDA0C2kMiIX7WHeeOVvw4poScJgVrcyeZr7beI7x6qVdIhhqqjRhO2lvVXSPx4+pI9X8Zemtj2zpLvYIwYqz0CCfM7RhN/Vb9N9A+EXySK34SGFJgSclwRhO9zYofK24jAJ5wtL9OzOFMF/V374URFgEiJgMD6XQQP0kZ7GLFw/ngyyh+8Z31fX4YUfVCDk6XOTxToeytsB0092uJuiOlv3cV+nD8TvYdeA+LSvdtO2e/xYPsZuHVH17Z+ft4QmA6aURhCwBjYr5DbdiM8RG9ULCwMEstCLHxMawUNWwIl7g3NasL48UKQ4ie93NTSkIMoq6pXlUiBDtGB5f8u9aKsbzT4QfYx5MHe8dyHLd3M1Z+BOktUsPGsbqTgcNZm4LQ/VyibKwdvJ3LH/gTANLnkYdiH32sFX3iZ41I2wbGCmWRjmmwfdtWQtXonCqH7wQ6yRY/fOJUN5ECWTymc7cvUBw/rYmfgcHhprr03gNpI0lfaSN+Bocn+K1R3VlcWb2dksjVJSlCCJSZwohqVLxAe8hcYHHuUupVcMsQuNiMuUfY+snXwREd864i7XPz2GSJIIw4carVQyfMbQFpkbJki69PO4QQjGRtBtJWPdaWLoofL4xI4xEaTksZWv08zTHfTeSAYTeirJeCF0ZMFV1OzNcoVeIJcluZ5+hNWsH0Y999CdKdZ/bEAXJRkffL13DX9p/g+puf137aFSFtG1jm+Vd/D5r0fuR136Dy1u9t+LnHh7U/1OL8bN1E2TQ3ZvXXNiXmgC6vO3zkEOUmZaZSCj+MOL1YY6rkkhZuhyIwUfx4rkdtDUmJrqsJ56GxLfzN5nfojev1+Ln1XTxT3cn84BUtvxHD0dcuF4+1vuBJrvhJYJsSKQUDGUv/FpsUGBdddFH9sRcJgiiq9+nFWkAYKXzfxxAKw9TEkS9TWMpFNfWzxuFvkjnwWd7z2Vu5pHYPlz74F1CdA2C27HF8vkKpFlD1wiUTxFrUQF2IH9POECidvqQ+qP1+jqcuxlW6vc5e9dNMjLT6rvVxbkFKQW5wtP48Mbnvhq1jmvg5enoG13V1O7QcaspGLtXnNd1rQmcAyxRLipaTsVS3clQjcvGEgzxDSUmOabBt6Pwpge5jYyGE4PCmFzKs5vjB0ieoiVRPZdpgpqHStqqTXPWeHbgzDS+9bH7wTF9uH3084egTP+vASqdhliG4eNMgZRorqDvv/VOg01On2QD3bEOduJtt/3Aj3PWPZ/29zxZOTeoErpGRkXqp11ITKhn7ubSb8hpSsOeya+vPh9QCjiVx4gQOYWo5f8kNkEStxMMFAlPqCVEzKabcRfxQT36U0ulWZTfk0997GIC7rvgNjj3r/3H0ee9CCNg6tPzkUkrBjpFMXSberdTL9XU5hTJTXYkf2aTOEbLxXSSR1dEyRpfNZq1h4p3RZuxubbqM9w+8DUv5DDz+WYLZwwDceN31/PpLLueqrQPL/ak9UUhZXf+ucx2OKfEGdiFGNt7k2dl8ORGCwdl78byNK/UC7Y+RG9ar6qWZEy2m95HSKoyposuR6QoZ3Bbzd6A+yXc9r4U0WilOzWhD1G1jg5jxudbl8ROF7L5Lq0iivS9oKbmwU7FSsXKi9TUb9Fme72j2JdkymGopLXnq817NIXQ7CcpzRBEtJa9BFNUVgjL+HkPDQaKYLzYM6Ef+9bXs/erP8f75NzfeuKZVX16g074SLEX8HJopN540lXqJWN1hORnd54UBRUuTAoXCIH81+HY+N/ijDN7wugutKvmCgyEEQyMN5aizRHnKREz87Nj/AZ72Dd22TFt7/Cypcm1qO6EzwGjOaSy8dIEpY/V0l7GUHdXwxcaaOvfRRzPsfS/l/mgXAJ5IdVWPJ3j8hz7W8tw4+p3648x1rz0j19dHH+cS+l38OrDSJAHT0KqGAD3hPCy3MeSdxKjOdJg4hlHI9q/+N9R9/7rRl7ss5GP/qR/MHjjr7322UC7OA5DKDTRWqZZK9Yo8fMyu8bbPvXwTt1k3AvDdPf+NXSNZLh7PsW0ojbDSWAQUKy4mYQvxcKFAChCIeroSQKj0xKRZyVbxA1RVT2Rzlz6HuUteT3XsGkZzTkdiyUqghIlJ2OJD4AYhKeGhzHTXTl8YzV5BDeInl9WrpYHXKHNpJ10Xa36L4XqY+GO0KX6EEMzuezMHowmsxz4LsYLCGt4BsC7iJp8yOc98F4GGQfcZ4awywxw0drOrdBde8p1s0IeUS5mMTOjy3Kh4ipof1pU7kVIUawFKgReEsSlku8ePbtee5+KFUT0FbKWYnteT/i2jg3Vj8nURP3HpGED68he17HreFdrTxUJ/hp+66q+Yv/qn1/5eFxiaiZ6Mbda9fgBSTooP3vAvTKkBgvKc9uqZP4R09f0uihrJbgkZmJTmLCzq72S61GMCHpfetSdttieANePgdFOaYdgwd06IHzuVwcdEhT4Hpb4vzT/vD/mB1/1Xtr3293oS532cOzCkYHxiS/15OtNb8TO84wpqyuKymS8xOnc3AJbtUMNuqJm7IGhKI1RWmqGMvaTiVAgd594t1ctSHr7sEz99nDlcv3OIb0RXAyCk7PDFasbElc/jT6M31J8H83rB45XB72EObun1sj76uGBwHk4lzh2sZniUsU2Mzdpwdi5/GQDR6fs7Sr2MRz7L4IFPIr7yuxt1mStG7ageGDBy0dIHnsdIYr6FU8AyJKHqvkqVQEQ+gehOTtimpPSqf+LN2z7P4A/8SjzBFQxlbezYS6FUqcSKnwuP+BFCJ94MFhp10WGtFBM/jeO8IMLytcFj6DSOTdtrVEHJxkQ4IWncQJd6RWaqIwZev6RJ8dNE2FhxikPgNQbBQaSoeiGnFmpMl1wOT1eYKzfFcicTqi6Jfk/ZPcyt0ZUMT34XZ1ErflIjeoK1nvlU2jLO2wlZxjbODPEDnMxcyrbgCH6SnrVBJZV6crUZTxmI0iRKwbG5mBx86FNs+fqvABB4FaRQyLZyC9PSk3zP8/ADxdwyhrztWIjVICMDhXr5mopWd45mFOenAfjYtl/Hyg217BtoSwTafdPL8H/gnfShsdQkQkrBjtE88yqHV5ohimD0PU/l0o89B9Dqn6Cu+NGT38Rbolop44cRdx6eZVoVODL2XB599X/y1fzL9MnjYAGvjfhZSvFzcKqZ+Gn0ayJWdzhOWpvwhoEmf9hGlG+d7JyHFaVPKhhScNGePcwqrfTJNi28tMPMj/F142kt2yxHK37kEsRPszeZbel0O3uZUq2wh3raitw+8dPHGcV43uG4tROAnCoteaxpCtyBPfXn9rxe6H7lM645cxfYRx/nEPrEzzqwmslMxjKoPue3iAyHmSt/AoArv/QmrMc+33rO0/cCoLbesFGXuSIEYcSxAw/GF3HhNgsjJiBkOo8pe9elJ5CRT0B33xBDCMYLGf7HD+5jNN86sDEcTSgUS0UMog0xnT0XYUjBvh0N2blfWSRUqkU14wYRVqA/98hqDFJ71WEv/6bx5D4KqPmJya6OqsVMdyWUZFNZltFUdmfF31PoJavr2kPjxEKVqaLLyXk9OG7mZ1VdXdLZLsbzKR4rPA1LeTzn1PuYVgOk4hVZsY7Q2fZo+/MJqTNIWnmFnYwyj4rLYpAbV1I5MZBhhoF64lvVC3GDEOvjb2b40Y+CUpSK+n2zuTZTSEe3c780gx9pP6DVeP0US3rwms5kMWPSMgrW7vFz6rT+G1L54SXbUTGvS/L6k/+VY89YlgWy7Dj9Zba891oAzJo2sw9DVVf8yNhwNCF+ZFBjruIxvVhliCLuyGW4w5eyf/i5+ji3QhSpDqJnKeKHyYeaDmyQ1TIp9Uql8TF0KU8UEMaLGs0/z/OVYH6ywBCCiUKau3PPBsC5+LlLHl9MtRJ7lp3SHj9LmDtXa419qa1XAiybyOVhYUSd53SUSyD7RvF9nDlYhmRa6LLGdLg08WMIgZy4vP58qPI4AJfv7Kt9+nhy4PycSZwjWGmpF+hOU22+lgd+cj8T+56FF5MJo5/5qZbjHtyvb0Jht3SEMwgvjLBjqf+6SgrOcZiB9kBIZwcxZO8I0gQy8ghFd+KneSDUXv+eED+1ShlDRMgL0OMH9N+dbfp4vMoiUTfFT1AiRBJZMQki1k781BPSoqCecNNc6tXtvKLJ9NdoepyyDVxlEcaKn8WqNmStuL1/A4049852YUjB1ptew2/4b8FVFt8yb6rvW+9kOtNFyXQ+wDblOiivpSGGdwPgLB7SGzawpNIyJEVzBKMyWb8nVr1Gu5DeAouLuqSnUGj1bxrYcSW+MjAn76PqhSgFC1Uff4UlX5VKhQjJaCGDFauHwiVKUpeCG4RMT2tT+3R+eMmV+8Ov+RzQn/yvBhN5R5v7A2bldH37lq+9XSt+6sbj+ntUcamXDDS57BZnMISCjDbsTYjiqfn5lhLTIIz42ve+z8K339czgGHz/F2NJ00KsWSSb1gpgrjUS0Q+YayQK6SaS2HX8CH0cdYgpSCfMtn9xj/nnld8CXnR0qEBhbHtLc/tVKz4WUJBWIuJn69e+lsMT+xY0XVVRBqny6TbxiXoK376OIOwTclpObb8gegx2rNuemrH9sHBoS5H99HHhYc+8XMWoc1wdenDPTf/JQBChXUTR4CpU3HMu7u02exGo+qFOCIeCKgLn/gx0gWEEITCQCxJ/PQu9bKa/ETaI8StuPQjWjwVK342Jm3oXIOUAi5+Ifuz1wPgVosEYUTuG7/DxPf+AFSEUpAKilRFpj6rGMnZqyJOmyESpU2kJ9I1P4xLvVyElep6XuE0DDCNprKvlGXgYhJ6VYIwYqHqEYSdK+rbv/LzbP3Gr1J4/NMUwjkiRFd1iRRw054Rvl54GZe77+drF/86mwdTZByD1DqJG/MMpaKcaTimPGNEQmZCK1TGXV1Wt9HpeUF2gqcEd3PV+3Yj3QXKTcSPWZulXNL3bivVarC6fWyY/WxnYPa+ulpsoep3lO30ggpcfGEzmLGxYqVIEKyt1OvkfI3FOV3qlR0YJWV1b0e1wYuwYrPzPvGzcliGged0ThoGDnySqDRJ6MelXpae/ObyWg1WLBWJIlBFHTggsnriYsVlwjOzC/hhhD11H//8+a/wpff9L37hnpdz8/2/hXvw2/9/e/cdJ1le1/v/9T2hTqXO3dPTk3d2Zmc2Z3bZJYdlCZJEBBEBxQwX9Cqi/IwXvYA5XkHhChcVr6KiXpCsBGGXXdLusmxOk1NPp0onfH9/nNMVOk33TE93T8/7+XjUY6pOnTp1uvs7Ved8zuf7+cy5L0PVtvp8bV29nKROiI/nus2pXiaJSIzHcHdAKUj/3/QU/I7vNVmbHMfgF0q4Gy465ffoNZdd0vHYDwqEeJiFAj/ZVC8/l5t3nZmmTIkgmpq1PGcbxAr8yFmU911e+9wbT70i6QX7rUM9fOaCt3HQph0Mp8gvW2MIkbVO3/AryHcNnpNO2chf+gJ+1X1z+kQlPShPEsuASU8kwsbKBn4OnKwSNDN+1m879+nMk+n2ywkLB35cGxE7cx/8jPTmKWcdX2Zm/OSyE6hbv/LqtLjzOs34AWDLdfy/K/+cyDpUJ8eIaxOU7/wzNnzrT7nkg5fQe//fk08q1NxWHZTewuIPKGeZDrjEEUmWSVEPY/KEmNzcXcJsrjXFzHPbAz8OdXyiRo37Dk9QbSTUZ2bbWUvvw/9C//0fYfvnfoofdD+Nw9zTLRxjMMbwyy+8hJt3b+AV125hsBxw4VC5oyjs+STnOqecJnC6erdfyXHbxQvc29MFyzjVC2DDSOtqt3vsPsarrZOlRz7xx4w9fGf6YEZxZ8cxHM5fwFDtUS7+8NX0PvAP1MNk0Rk/nq0TZZ87fhaojE9jqle1ETNRi6iMpVOPyr0Dc9bAOvkzj/Pgyz5BOe9RyDnrebbvsnMdgzu4u2PZh6Ln4iQx0Zf+uC3jJw3gPfvytBbFNx7OuqhV0+9/p5xOVchnXZompiZ47OH72fOxF/Jb+17Pz5v/09x+bSzN4JrZFdSLKs37tq1rU5BUqbsFPNcQ2nSq13Tgp7+Uw/ccXMewpa9w1v6vyvJyHbO47Kxif8dDPxcQGw83aczzglbgJ7fUwM8cGT8BDWJXgR85e1zHcOn2DQDYfO8p1y8HHrkn/xh/FL0cgBI1TW+W84YO71aQ5zq4Ds0aC950FkIjvUrSiBMGSKcOTF8lXCmPHa+0pnqt44yfXFyhZvLNzJPYeGAXzviJ58v4cZ1mx5eZHS+m24QDeMS46zTjZ9pIX4EKeXbe++d0/91Lm8vdqMLmL/0iuaRK6BTY1JtnU2/+9As7A4mbBXeiGjbrsDRWaZCngePPHfgx+VYNFq8948dzqZOjWqk0450zszLcrENPxRQ4aAcW3LeBcoDrGDb1Fnjb8/ayfWD+jivni7N5Itnb3cUnuLm1YJkjFv721lS9Y4/eTRRb6llr4lsnP8of5P4sW7E467VJ12YG7XG82nE2f+kXgdkdmubjJiGRSU+63CzjJ15ixk+SWMZr6WvCyigAQdfAnJljJlfEugGlnMtQlzo7LUXOc7juuhs6lnXtvJ4vJpcTPPKZ5ne5m2X8bBxIT8R/5KH/BtZia1n9s1z6GdXXm04bbFSn+OfPfbG5zQdf/DH++eLfB2D/wQMcGqs1/77TvLjVnTBs68xUSiapuV1ZJ0sPE4e4NsQ6Pp7rEHgO/aWcgj7nEM8xi/p/mvR0TtUKggKR8XHsAhk/WUHyfH7xtXkqpkgh6cz4sdbi2gg7Rz08keU0UAp44KX/Rv1Hv3TKdYs5l8FywMN9T2ku85TpKOcJjfQV5DkG13GarTH9QpaFkAV+6lHSzPhJVjjwc3CsLePHrt+MHyepE5rW1acYF7NATSPPNkgWOGjJ+w6ea2YFfvL5VgCiz0x2TC9ajzb3FpgkPUgsHLsbgN8wP5Fd+W6wJTlI7AQMlNPbmYi97CS7MYW1UAtjxiYns+5Ks0/AAWib6uX5rb9n4Kc1fpKwlWEX1iqYqPXY3X9b+vO4b+bnt/4trx76J+562efmfJuegs9wd+vnO1cLMp8r8jmPsfyW1oJlrPEDEF7+Ku598b8BMLX/HgCqtP6+x7c8l8nNT4UNl8x6bdDfqq0xXWNltNLoKHw+Hz9pNDMNp6eJLrXGz1g1ZCzLUHKqo8Q4dM2oRdTcv+zjy8uC2afq4CMtQ+WA3MCOjmUbBwc4bPtw6uPN7Inpdu74rZPp8Ye+im1MTz9Ojwd6e9J/o3qFwtR+APbf9E6qG64m3pYGOSsnj6b1gWYEEv2kLfCTva+1lpKdou6W8B0na2gQ4SRRs05Z4Lls7FEB3nOJs8jAD92b+V97P9R86ObyWcbP/IGfRjZ2CkvI+Kk6JQrJFLYtYzxOLD5xqy6fyFnSX8pRH7oCp2fzKdf1XQffNQyObOekLTERDDPSq88/OT/o03gF+a6D5xh816EUuASlbjgOZC3GG2HEkEkP3JJo/jTcs+HQeJ18VuMniqJ1OzDcuEFoWgcziXExC2T8eDYimae4M6RttvcMd826UtplJzrfd53PHx4sB1To/OJ82qUX8MVjF8OhT3OReZzH3CuW5b3irEC0rU9g3bTj1mTW/trNzR348bwcFRtQNPXmlAuArrxHA49cW6Bn64duwGI4eMMvE4w/yvDXfw+Apz/pWrZcsheAbQPzBJiA7oLPgawb2EKtoOXMlQOPsLwJpuPkyzzVy3ddog1X8J38Ndww9gkeGvs5ppKAXgOTG2/gwK3vpxi4lEvlWa/tGd4O97ceJ5UThMV+jk02GDxFjSvP1tsCP9NTveY/UYsTOyv4fLIaUs+63g3VH+OIt5nh7rkz4qZPIL1sGwpYLp7jGMzIFdzW+0JuOPn/AOjr7eUBr0wQTTBZSb/TvVwWMPRan5PFb36AV46ngeWNg/1E5SKTWb2gpFGht36YBIcTe18NQLncTd16UE0zuGZ2ivOTGmO2RI+ZohHWKQFTjZiSrdDwuuh2DSEuxSTEsdGyB0pl5aQZP6derxh4mKGL4LvZAjcgMjncGcc91trmZ1Ktnh5/FpaQ8RP6XXhhRKU6RbGUdTWMLT4RkXsGU7tFFsF1DIWcu+gpW57r8ONP38kv1P8vv3jrHnboWE3OExrpK8h1TLN7Rt53yRfT1O5qViC00Whl+dh45QI/jSih60irG0gjPL0ioueC9toZkAV+Fsj4cZm/xg+kheLmSo8fuPpF3JVc0NrOOs/48VyHhtM5rckrlNiw47Lm4+k2xmdqujNYfOgetv3xCMWDt5Fk7djdeWr8BL7DVJap4bf9Lbb1F2ngE9XT1/fe//d41WP41aNs+4//1gz6PMoImy+8vPm6hS60+q7TLKDru5o6cTa5jsHpbetas8zFnb3s7/fIk36VAnX8//gfOMQcLOzm0ed9EJi/EPKmbRd2PL7yb66i94GPcmis1tGtaaYo67CYZHUxmu3c24r1ttcKGquEjFZmf1/E2ZV3ay0XxI9wtLRr3qk8jjEUA3dW8EgWx3Md7tn7luZjv9BNEvSQt1VopHV3pruzUWgVgr765CfpSU6mi0s9dOV9NvSnz9tGlYHoMCe9IciyTnuKOcYoY2pp4CdsK0RvrSVIakya9PMxyo4nxiohXUzR8LrwXadZ2Ne1rYwfOfcUc96iGiSUA48Nfa0ad3g5EuPh2s7PjPaxFGYZ58XC4rNzg1IvANXJ0dZ2kgTPxBgFGGUFLKWRROA5bO4t8KZbLqe3d+5MWJH1SIGfFdZdSL8A875LUEy/jCcn0xoiYaP1RWxWMPCTWMtbH//p5uP1HPhxk5C4LeMnMj5eMv+0Ot82Tmt+em9vP+8c+WPGbJoZ4q3zjB/PMdjuTR3LgqBET/8GTtg0GyLxlifwM53xEz+adrbZ8M0/hii7qh7MXVNnY3eeqk0PYts7rOV9F+vlicIaJqqx9Qv/vfnc4eJuftv9Ua6svY/f2vnhjs5gpzq06CvlMEYZPyuhtGF768EyZ/xMB34277qKz5gbGDn6XxSoc3zgGqw/3QFr7tcmA7tnLdv6nz8DwEKzvRpxQo6IJAs4u950jZ/WFfrpKT61MOaJ0QpxMnuDcZK+kbnno2wzR5jq3TPvexoDG7qCZsaPLI3rGIaHh5uPnaCEk09PJrx6eiLsTgd+iv3s+8mH+NSe3+jcSFYg3M0aATznyAfYw2OM50eaqxRzLmO2hJfVHWufNnhovEaBGhUn/ZyaLio9Vm3QZSpEfheeY2hYHxM3cIiaASU59+Q8h5FFTs/b0td2QcQNSBx/VsZPezC5kWX8lPJzX0iZS6k7rV01MXqiuSyK06leCjDKSlhKI4m87zZrTZ5uh1mRc5HOSlbY9AdMV+DR1dMLQH0qnRbU3snLWWD+9XJ7+Mh4x+MoCuc8kTiVxdSuWG2e7ewwUTMFgqQ678/r2YjkNA9anr53hK8mae0Pb51n/BQDl507LuhYFhRLlHIej9qN6YJlCvxMn3CfzLIcnKPfwYZZxk8w94Hqhq6gVZtlRhE/L5cnCWvkj3yjY/mzT/wC/+g9n9c/+2recHPnz3aqA4XpTl6BpsycdcMb2+b0L3dx52ysuI5hrP9KhjhBr5miUGoVC5/vCmOh1MXJC15IFPTwcOnKjucW+qishwmBaWX8TAd+krYaP7UwJk4sB05WsTYN3s+UWEv3Y5/k8q/+LAADO6+d9z0dYyj4rg6AT5Mxhs0DravGxXI3brEXAK+Wngi7Xlv2RK7Ipie/qnMjc3zPXOw8TqXQGt/GGCadLvJhGkxq/9o6WQkpmjoNL6sRlGVtjNdCuqkQ5bpxHUODtKOTZ2NY5xck1rvFdorc1Nv2vejliI2Pb8OOD6L2wM90YfBcbvHHPj19gwAcOXKIehQ3t+mhzDJZGYG3+As/5cBrXphTpqucT3RWskocxzA8mF4hCatp4Cdq68KxUKvN5Xbbt7/T8TiO4kW3HW7Xniq8Vvm20bySDlB3CgRJhRNTnb/viVrI/Ycn8IiwC0z1WsjTLhrkE0na7cU9es/p7/Q5YENXHjZd3bEsKKQtzI/b7IRono5bS2X99Ip2fTxtaVxqHMPJ6mTNl/HjuU4r8DNjOlCpVOby5D52ffz7m8v+dcOP89uveQp//oPX8pyLhynPOMBezGFCIacT6ZWwbaCtvs4yTylwHIPjpBkxhQtanZu6yl0d68yl4Ls88aw/5d7XfDP9/zHNJljm/6xsxAkBDewCgZ9GlHB0os5UPT3BmituHSeW8uOtIuQDu66evVLGd82c3b5k8Qq51tgbHhyg1JN2AIwnj6YL24IsrmOwXp639//BKbcbdremMrqO4bC/mY31R9OOYG3jaKIaUaROlEs/b+OwQSNKmJiqUTY1yHdjjCE0Pk4S4hKBaq+cF0ptYxM3aGUxJ22fKXHSvHjXyI5FzRLGR/fGnQDUjj7SPBZMAz/xkrYjcrqWUpsu5zlp3VXX4Oo4Tc4jOtJbRYVimcQaolp60jp9lSW0Lu4CrTaX2/jBBzseR3HMscmldxU7nWDRSvNsSNx2EFJzigS2yrHJekcb79GpkLFKSI4Ie5pXq/pLAY+P3MrHkxsxN735jPd9rUuufA0fL3xP83FfbzelwGWcNOBjlinjJ19Osy3caiul/I0P/AQAufz8RZcrdjrjpzM4MNTbNWvdzRs3sqWv2MzmyPsOA+Uc3QUPzzUL1viRlbV7Q3vgZ3mnekE6Xa+n4LPl0puZtOkYnp6mC/NP9XIdg++74LgcuPmdzeWNk4fmDNQ0n48SAkJsliHiZVN/4rYaP3FiO4LVyYwN2iTGmziA/+AnWvs5o61zOwUoz1wx51K56GXpg6CLDUMbADCVY+mytu+d6c+Vvi1759xWfeT65v3+TbsIfIctfQW29hc41HMlPXac/n99Hdv//tZm1saxySpFaphCGviJwga1KObkaBp4KnWltYNCfJykgU+MUSbGeSHvt30uekGrbmHUOs4LY8u+0SpHJ+pMVrLs8yVkhA1vz6aSnnyUMDuWimJLDhURl5VxOhnW5cCbmQQusq6dcrgbY7YaYz5vjLnXGHOPMeYt2fJ+Y8ynjTEPZP/2nWpb0qkY+FQISOpZxk9W46dKgLeCgZ/kWGfgJ4kjKo35Cx7PJ2y7YrQWWWvJ2QbWaaXcN5wieVsjihImaq3feS2KqTZickSdKfpL4DmGNzx1F99+8h/ABU87091f8xzH4TtDL2w+HuztZc/GLiayOkdmnsLLS7VtOE0pn66d0c748wd+egayGhwzggP5gfSK+s80fpIvxGkB5/7+DR3r+K7Dpt4C2wdK7BnuUrvrNaQ902K5izsDDHfnKQUe+ZzPff3PAsCLq/SXcxRyLt4CR42e4xD4DvW+PXzxSX8OwCN3f3XBz8l6FBMQwnTGT1Ybxsatz+TE2o7pqTM3l3z9w+z9yI10J2P8lff93P+sv8DRmD2ryoHH2K1/xMHXfhGCLraMpLV5LkvuS1doq6czHWe79dqL5txW5Qc/zh1XvpPJ0nYKu25mc2+BvlKOrrzP9c94KQCbj/wHheP3wMRBAEYnJnGNJVfOMokbNWphTHHflwHIb78OSOvaOUkjy8RQ4Od8kPcdkmL6vYnjkkyPxbZakmGUMF4LOTRWo1bPAj9LCNgMD/RzxPYSjD/WvAgYJWnGjzLLZCUstr5Pu+6Cv+iC0CLrwWKOBCPgv1trLwZuBH7aGHMJ8Hbgs9ba3cBns8eyBKWcR4U8yXTGT9aFo0J+VuG9s2mo+nDH4633/C/c0YeWvJ21PtUrjG16Jb2txk/DLeJgMVG1Geyy1tKIEibrEb6JcP3TC/wEvsuVW3r53mu2LMv+r3WOAz19A63HuSK9xRyTWcZPqTQ7s+Z07BzqZtLmKUVjs5/0588q2n3BjjmX2+e+k8+/6L/Y/dw3Yqcncc0IUrWnEDuOpsWsNWFvOs3gbFxZ7in4zSuJ+Re9m7Edt5Ls+R5GuvPs2lBmqGv+z4ec61DIrrb3XvIsTtLN8AMfXjCwXo8SiqberGXlTrdzj0PqUUyS2Nk1yRoTHQ/tsVYf+Z5b3kZ95/NUuPksKwUerp9rFvXeuvsKHjLbuNR5LF2hLcjiGENPwceZJ6PCMYbg+h/ikVd/EW9oV0ctl627LuFbz/grPs2N6YIj9wIwMZ5+HhazKWaVWo1jEw22H/oUh20vAxenFx9Ck0tr/BDjeAr8nA+MMUy96mNMPektkO9tZjE3u8daCxMHyBoBkkTZRbAlFP92HMNBd4Se6uPNroWNMMEzybzjXGS1dec9fTfKeeWUZy/W2oPW2q9n9yeAe4HNwEuAD2arfRB46Vnax3WrFHhM2QDTmCBJLPUs8FM3eXzChSuALqOdyeMcyO3gO3vf1Fy2/WOvWPJ20oyf5dyz5ZXWzmhNoQBouOkJvhtONk/GosRiLUzVI3wivNzpTVEq+C45zzlvpgU5xlAYbGutndX0qdn0al9PYXkO/nqKPlWTp2zSgs737v6x1pPe/FlFppRd8ayc6FzuuAxu3MJTdw9x+bYscGVb0/4KOXdJc8dl5R1/5ceYfPmHz1qx2oLv4nuGJOjhwPP+gsKWyxZ1ddH3DHnfTVPJvTwPXfADPDW5g+hvXzvvaxpRQpFas8uT19bVK04sjXqFoU+9CX9iHwAb7vxdtr33Ihh9rLkNG6TTIT9vbuDCkXTcq9D42ZXzHFxjmlP/jJ/nny56T2uFtsBPwXfpK81/Ut1eo3zmZ4/nGJxdz+Jrl7wDgOhQWqNvaiIL/HSnn2G1Wh1bn+Si8a/weecmCkH6fpHj4yYhPpEyfs4jZngvU0/9JTCmWbdwqpJ+h/Ktj7Djg9dROPJ1oD3ws7TP00OF3WxrPES1lgaU4umpZMr4kTXKGKOpznJeWdKRoDFmB3A1cBswbK09CGlwCNiwwEtlDqXA5Rg9BPUT1KKYMOvC0XAKONgVa6u+jQMcLOzm0UtbgR+venTJ24mThUqWrr56GJMzIbQFfnp6sroH1QkaUULcdjV9shGRI8IPTi/jJ+c551XAwDWGvVtbLY2nu3iFpAePgVm+LLZxpzWztHHDf2s9sVAB6elU98rxjsXtab4Te18JQLLhEgbKOXoKPhcOlegv6sB1LXO7hol33XrWtu84hs1ZZxzHLD7jy3McfNfQnU9PsCevTmtR9R2/c97X1MOYEjVsLs2Q8/2suHMUEsaW5JEv0vXAP7H5y79I/70fZvgbf5i+cOJQcxu1iVFq1uff9r4HYwy+pyy1leA5Tkeh0P6te1pPtmVPFHMu5cDDdQyJGxAPX96xnfbPpJnTSqefc7s2ULM+tdEDkMTcuO8D6QpbsvpAcQNn/+3kaHB45BnN10fGx7MhHjGer8+184XnmNa4ygJ+jelOsvvTz6Ni1tkyma4ntsRAemXoKorUqB24hzBOmg1LjDLLRETWhEUfCRpjysBHgbdaa8dPtX7b637MGHOHMeaOo0eXHkxYz/Key1HbSyk8xlg1JMxq/IRZFsrJyYmFXt6heho1eSCd1pSnQeiVyJ9hkCKuT0FUO/WKq6SeFU1tbyt+6Y60Ve6Djz8BpG2SoyzwM1VPa/zkTjPjB9ID/MX1gDr3OY5hY0++fQEAEVndlXj5Apn787tbb9M+LWuBwI8pTwd+jnUsb8/cqOx6Eff/xBMMbr2ITb0Ftg0UMcac1txxWTkrUXOpK+/je2beYs5zKQcenuuwubdA4DsUu3r4cPTsBWv8jI6N4xqLE3Rm/CRJSJxYQpMGonPjj7Pha+9uvbDts/fxg4eZoMhTLxoCaE43k7Mr7QDXGiA7h9oKj7vtNX7Sq8y9RZ8DP/UQldd/tnM701lDhlkBu+lpCd0Fnxo56rUKYw/dzs3jH+de/1LczVcTW4ONQ44+kJ7Q77zi5ubrY5MjRwPPJPinOY1Zzj2uY5pHIuVS+tnSmK7lk08LgruN9NC+2UFwCVO9ALydTyGyDsFdf81opdEM/DjK+BERWRMWdbRsjPFJgz5/ba39x2zxYWPMSPb8CHBkrtdaa99nrb3OWnvd0NDQcuzzuuE4hhNOP13hccarEXGWXht7aW2H6WLPizFZP71sinqUkCPCuDlK+c6rOzM7xZzKjvfuwvnDy0+94io5WWkQEHZM3dq1Jc1QefmdPwTWcuBklTix5I/fy1Pv/TUCE5ILTj/wk/ddfPf8CRp0BbMPFN/49Oyqd7z48Xwqx8ptV9KNx9RwdpV7ocDP5mvTOxc+e/Zz2Z+ou+DjOE4zQ0PODb5nViS+WvS9JaWFF3IuRd/FcdKsn1LgEhofN+7smliPYh49NsXxyTonRtOpiE4+DRr4vk/d+tj6FFGcUKukNeGC8UdwG+P8Qvij6UbCanN7Bw8foe6WuXCojOeazq4+ctYEntsRGLxgsNR6MMe0qg1dAUEuh+t2/n0cYyjkXPw5AprudOAn71HHp1GrsO9ImsW476qfJe+7hHiYOIRD3+Ygg+y9oNXRLXZyacFdwM/phPx80Z7xsyHrZHnsZHZxsRn4SR/bKPuuXuJUr807dvPvyZMY2f8pjk7Um3UrlfEjIrI2nPJT3aRHue8H7rXW/l7bU/8CvA54V/bvx87KHq5zJ90BCskUYW2KOLs6Emd1SuLG4rJnqo2YKDm9VurNwI+Xo6/UeRCYNCo4+dI8r5ybmVqbWV1RnHBsos5eQvyg1fnJa8sWKR38KlObnkyy/1vs/qfnNZcH3pmdNPWeR9OESoHLoR/+GoXJffRky0YG0nojy5nxU+na0Qw153yXR2/5ABur9zOwQODHHbiAx378QbZvHJzzeWPSQr5RfHr/l2T1+K5DGJ9e1uNSFHIuUW1p42M6W6yn4KcBejfAndG18ehEnYlaxEQtwjamADBBGvjxXMMYJUztJLUwwU62ipq/K3o133GyzlBRK/CTiyeJC+nJ3UjP6QeuZWlmTu/tmOo7R9aD5zq47VNwMsbAQCnHaGV2sNwYQ85z6Mr71GwOp14lzk7UC/mAnOcwhYeJ62yqPcjh0kV0t3Wei03rJDyXU8bP+cIYg5ddhBrpT7+T9x0bY0+c4GfT3wfv/kuqA5fxguTz6YuWWANqS1+RL7GFF4S3YcMG41PpZ5JqSYmIrA2Lyfi5GXgt8CxjzDez2wtIAz7PNcY8ADw3eyxLNOmnJ6F+5TDR9FUWPw22TF8tOZWpRnTaRZXrUYxPhOMFDBQ7DwKj//ztxW/oNANPK6USxhwdm8QxllzQFhzo29G8O/L5t4BNmHjoKwD8WvhDPJBsxtt2/Rm9d0/h/Dno8VwHerYRbWtNLWD3LVjHg+t/ZNneZ9y0ApI9BZ8k6CHa9pRTvs4JSsxVbdt3HS4a7qIceOdVXab1wnedJU3BOl09Bb+ZcbFUhZybTknz8vi20SzeX2lEHVN1TZgGftws8OO7DmO2hN8YZ6wacny0VZx84Bk/zVU7N6YPsowfay1FW6Hhlgh8h95i2nZeVkYp17qe5hpDrXdX+mCeaTNzBX5yrkM5782Z8QPpFOLuvEeNHHGj2swWdrx0fB60g/RMPsgF7Geq7+KOMRs7rQBULjh/LkoIzfG0eTAN/Bw9OclkLeLxI6PNdbb+51u5nAfTB87SPjfyvku1OIKDxascolJLP5NcT+NMRGQtWExXry9Za4219gpr7VXZ7ePW2uPW2mdba3dn/5441bZkNrcvTcEuHbqdvom0Ba8N0iu1jUpnu+pZLXwztTA+7aLK9XqIZxJcf/bJQW1s8dk79z304GnuwcqoNmJOjKdpzEG+lfFD9whff8Mj/GL4RgrVQwQnH+Leb/4X47bIF3pfzq9u/QBc9Lx5tipzcZzO4qR0b2Lfm56ATVcv23t09bWKSJfzHsXAXVT3NG+eaXeb+wrNgM9K1IuR5TffSfJyynnOGQVyA9/BTBeXz6Y+jlZCamErcO5kGT9uPivu7DiMUSKIxtn1Ty/gmm/+MgC33/QX3LR3K6VSut7EZNodshEndFGh4ZWb+3qmWYuyeO31wBzH8PCL/oGx7/uHZs2zmdLAT+cyYwy+67Cpd+4Mxr5Sjh2DJer4JI1qs5aKl9XsecjZzqX1b+Iai7f5Soptwaj2qc7BGdSvk3PP9Gdkbzm9cHJ8bILJesTY5GRznd8I2zoOLrHGT851SLq3pPcnD1CvpxcvHQV+RETWhLPT+1YWrbj1CjgEW77wc2zJlo33XgwHwTl8N3BDc90oSXDnuAKTJOA4pxf6aWRZRZ4fzMp0qFcm53rJnP7mM7fx66e1B2dfI0o4OlFnMju4yReKHc/3lwJODlwN41A49i021B7hYH4nf/jqa5T9cRo8x5l1BXu5T8pfdtNl8LX0ftF3F30yPt9+lIPWR2GgeijnpJUK2J3J1M2ego/xA6iRFmP2AsKoM1syqqUB6mI5vSrve4YxW2JzNEEhuzgA4O9+BgDd2XpHT4xiGxE2gbKpMprrUq2qVdZb8BntGiQe2TzvOmkL+LkD0vNll5UDj3LgcYfJQVxrZvzksi5dG3dfAw98iVHTR3nPM+kttsbBUG8XZNeUfHX1Oq9MjyeTNbh468Gf5976qwizIs/ffNEneVbPLn7ny0/lB/JfZdNCXTLnEHgO3cMXwFEIjz1KEm4H0kw0ERFZfTqrXWUXbt/KPttZc6TafwlTNqBw+E4abScF1s5dcNliT3+qV/aF7+WCWQeZYX1q0dsxEwfSfTFrb0hVGzHWgp1KuzkFMwI/jjFsvPAKpmwA+79BT3KSSi4tRL6EOq6S8V3DzGFwutNj5uMVe5v3HcfQX8zNe/LUsW/zXHVvp4yfc9O50Hkt77utYvHZ1N5kxod3PavhUyz3AmkgdYwS+bjV5bGO38zuKJbTjJ/K1BTj1ZBaFFOmignKmuK1yjzXYUNXfsG64557+l0DQ5PDjevNwI+fS0+wL3rej/PEpT/Joy//fwRd/R0B7439Pc37qr1ynmpr0x7VKjTqNerWxwzvpafg87zn3Er+e9695AMgYwxbd+5h0uaJn7idRtagJH8GDTJERGT56AxnlV22uYfvJNs7lvV2l7ktuZi+Jz5Dra3OT2It8RwRHvf4/Qz/9TNhcs7Gagtqz/iZKa5XFr0dJ2uRHeb6lrwPZ0ulkXY6q4Zp/Ywrj/0roXVxdnV2dXIcuHbHIHfbCzAHvk4vE0RBb/rc2j+XXHNy3lwZP8v7i/T9zhMWxzHzTuPqeJ136nWU5SVnU2E68Jx19poZy98ynrbgJpdOx/Bdw5Qp09M41FynPcDe31Uktoa4UWWiltYLKlDH5JZWmF/Ojrk+D9udSTZkaALcuE6SBX7KxSxDo2sjJ5/8i3h9W+ia0a1zx3Dbd7QCP+cnv/XZUD98H2GjSojXMU5P9xv7sq2DfM1ezNDRr9DIGpQU8gr8iIisBTrDWWWbews84XSmgV+7c5hP+s+iXD9M/NjXmsutnbvOT/+XfoPc8e/CY19e8vuH2RezO0fgJ2lUZy2bTyE8CUDD717yPpwto5X0YHg68LOx8iD3OTuhp/P37RjDtv4iD3gXsaVyD/1mElvoz55V5Gepcq6DO+NEx1vmLJq5MogWk6mzEnVgRBbiZp0Ek+yz11qLN3WIjbf9JsNfexe3Vv6Vo+4GKKd1rIwxlHoGcNoqueVtGjTyPcPFm3qoEmAbFeLEUqvXyJm4GTiS1eW75qx9jYROgJvUm129BrrSoGL72xVnZH0N9bUyfth4+dnZMVnbBndx57XvAaC2/x7isEFoOoOAp5vtPNgV8PXyMxgK97P32KcByAXqHicishboLGiVGWOwpQ0dy3w/hzd8MQDx2L7mcsvsaQEA8eO3pXfyvUt+/yjL+HFnzPUPrYsbLz7w02/SaQixWRtTC6y1jFfTwE8tjMkfuJ1L69+gEmyYta7rpKn2j2/5nuYyU0wDP5rqtXTT7YbbeSuQOrWYwM9K7IfIQjw/vfo9ntUcM5XjXPgvL2Horvey4Vt/xpftFfzPnR+GXGtKanFkz6ztGAMjPQV6ij41ciRhFWuhOpV+FrtBcdZrZOV5Z7HjXOzk8JM6Nk6/64LsBLv9e6sws2ZZe5bPhkvOzo7Jmhdc9b1M2YD84a+RhDWimYGf04xWdud9juz4Hh5INvP0E/833ZYyy0RE1gQFftaAJ33vzxDZtj+F49OzYSsA0cmDzcXWWuLEYtuCP48cGaeLrBZPdvC3FGEz8NN5RaZiCnhxbdHb6Tfj6Z010ta9HiVEsaUexUSxZffHXwFAaXDLrHXznktv0Wdo13U8lqSBoWLvIFv7C4uqCSOzzczIORsBl9EX/xW1V36k+XgxdTKMInmyyrwgzfiZqlRgbD87//pGclMH+fjGn+Ld8Wt4u/MzvOiaHR2vGbj25c37/xlfweErf5qhroCegk9PIQ38mDCdmlvLivK7gTJ+1oqzlWkYOwGebZBE6bRmLyuiO33S7ntmdrZlkGbljt7w87qycR4b6Cpxh7mUraO3QdQgXmIHr4XcuGuYP41e0lqwjNsWEZHTp7PaNaCvr5+fc9/WWuD6jAxvpG59Jk/sby4ufOhW3E+/g0PjrYDMA3fd1npdsvTATxTOXeOnYop4yeIDPwNkgR8bL3kfzoZaNr1rrBLiNFpFUfs3zO6u0pX3GOoKuGxTN6OkhVK3bt5KbzHHlr6ldbWQuS33VC+AcPfzYfcty75dkbNpurhzpToF3/gwTpRmVr750Zv42qYf5J2veip7RzqnzF5+wQivrP8yf2lfQv+P/jO5W36Nvqy7WOC5+MRcPfrv+BNPMDqWFof28gr8rBVnq2B87Ab4tk6SXfSZzqyYrqkWeHNk4G65ngM/8DnGr3/rWdknOTc4juG+4rUMh/vZGO0jcXJs7MmnF8G6gjOannjVtl5u969rLVDGj4jImqB27mtA4DkUyr1Mx05wPEb6ihylBzveKujpHbgD78AdHL/515rLCifubW0obiz5vZuBn1xn4KfqFOlLxud6yextxAl92VSvtRL4qTTS/Tg6WWf87o83lxec2fvnOIbAcdk6UGR/0A/hQ+Td1nOyNnnKxpJzkJ9Pg8nVSpWwMMD0KdGvvPhyrtmWFt6dWQw48F1e88pX01d6HTgejtM5nXLYjAKw9+9uJtz8KgDcoHyWfxJZrLP1PZK4eXK20Qz8TJ9ge66D5xry/hyfkcYQDVys6nXnOQMcGrwJHv8LLrEPst/dTV/Rx3PTY8Hpi2eno5jz2L19KzyeLXB0qiEishbozGkNCDyXYnd/a4Hrs6knzxHbi189Oqugcxi3plMljbbOW6cx1StuZvx0dl2oOSVydnEZP9Uwpmd6utkameo1VU9T35MEdt/1+83l4cZr5n1NKefR8/I/ZOyCF+LvevpZ30c5M64xi2rhLrKWBM2pXpM8fijthvjr2z/UDPrA7G6Cxhgu3FBmQ3eAMbOfv8tt1Wq54OjnAPCV8bPuJW4en6h10aftBLu36DNQmruorjGa5XXeM1DefAkHbXbs6eY6MnPzM2tDLYHvOjxpRz8HpretwSYisiYo8LMG5HMOvX0DrQWOz+a+AvvtIN3VJ2hEncGU9kDQdOAGIInqLFWc1fjxc53FnetumcAubnvVMKZg0gNPs8oZP9amNZBq9QabvvwOSgf+i8HwAO8vvIF7f+BOajvnnxpUyLmEXVs4cMufY3S1fM1zXXPWiqaKnC1BPi26XK/VOHriJABPe9J1HevMlSHiuQbPcfBdZ1YNrd8c+p3m/bqTbl9TvdY/66WBHS/MLry01VIZ6SnMKrI/TefhknMdrtnez5fiywBwveWbjlXwXa7Z3sfvxGn2IaXZTTVERGTlKfCzBgSey8DIttYC16c77/OIu4P+xkFqk6Md64dxK/Bjw1ZWTqOxtMDPVD1ifCrNGCrkO2vZNNwSHjGNen3OFvLtao2EPNkVx1UO/DTihGoYUzp8BwP3/h92fjw98PA3X0VUHKKnOP/BTeA5GDN3q3BZe1xjVKxZzjlBIf2sjRtVGrUJGtalp9zZgWuuTDbXGLxsitfM55976Qh/EKUFoMuNIwDk8gper3fWS8dNLk4LeuMsLkvDGKPgz3muK+9z4XCZ2+3e9HF4dNm2Xci5dBc8tj7tDXzmld+F7pFl27aIiJw+BX7WiD2bBlsPshPaA/ndAEQH7+pYN7GW0alGmt0StQI/1dripmZFcUItjHnk2BRTlbSwqON1poRHfnq1OKxNEZ1i+lY1jJuBH2NXd6pXFFsmaxEHvv6JjuVbL3kSAF3B/HPNjTHkfVeBn3OE6yjjR849hSzj59nf+SXieoUq+Y6uT90Fj6787M8p1zF4rsF3Z09xfOnVm3m/9yq+nuwmSNJgflBUxs9618j1AFBqnCDCXXQqj2PmaPMu5xXXMRR9l4eTNChTrB48xSuWpq+Y4zmXDHPZ5r5TrywiIitCgZ814tLNPbOWjZcvBMAee7Cjdo61cGCsymQ96sj4qZ8i8DNeS2sANeKE0UoDa6Fez14zo+tC6KXdrRqV8VNm/FTrdXyTZvqsicBPPcI7eGdz2WEGGNywGcc5dTvvkZ78WWk9LsvPc5TxI+eeUlfrsz5fP07DBLiOYUtfge6Cx7b+4pztvwPfxXMcSjlvVsCzFHi8+Zm7OGpb2w4KXWftZ5C1IQrSk+qu6Dgxiw/kuMbQU1CnpfNdIedyPNgCLP+x21BXkB1zLetmRUTkDCjws0bkfZfJK17fsaw8tDW9M36go1X71s+/GduoUWnEmKhOaNMDvvmmekVxQj2KOTKePh9GltGpdHvNGkHujBo/QVqUb+LkMaJTBH7q1anm/VUP/CQJo1N1dttHm8v253fjOOlUrlMpBd6cJ12y9qjjmpyLegdH+CRPBmCosY+Gk2e4O6CvlGP7QGneYGZ/MUfgOfSVOouwQjo1bO9Id0fgB7+IrG9x0AtAVzxKbBYf+JlrDMn5p5jz+MFnXXtWtu27Dn3FnLrHiYisIfrmX0Mmnv0uxt52rPl410gfx2w30ckDRI1WNk/vQx+ja99/MFGLIK4zSVYzIpw78DNWDZmqx1Qb6W28FjazeFqBn86rf418OvUsmjxOHC8c+JmaTFu5h9bFsLo1fqLEcnDf4wyYViv68cGrKfgupQWmebUr5pQCLyJnhzGGr/a9FIBd8UNEbp5i7tSfTYWcS18pN+dzjkmnVtzT/ZTWwpymeq13cT69QNMTjxKz+JbZurgh05532QgHnvwbxD/w0WXfdlfeQ5EfEZG1Q9/+a4hrTMeX5N6N3Ry2fcRj+6nXO4M6XvUY1UaMievUTEBsDXHYmHO7UWKb7c2PTdY5WWllDyVR9poZGT9RIQ38mOoJYnuKqV6VNOOnQn4NZPxYkse/AsDDyUYA6pe8kmLOo7zIwE9BgR8ROYv624r5l0ydvH9mX8XGGIqBS7DnFt4ZvoZ39f4q+Pkz3U1Z6wrpVK8CNZIlZPyITCsFHscvfT3sevbybzvnzVmoXkREVocCP2uI43R22rhkpItDth9/6hCTlUrHuslk2oHBRHVikyPCawVxZoiStO4NpNk/HduZJ/CTZIEfpo4QR9GC+92oph1FaiaPw+oGfpI4offwV5myAf987Qd5cfxuNm27kMFyjtIirqpD2mVNRORsuenqy5v3e6ITZ1yrynUMw915vu+6rXyu75XsvPn7znQX5RwQlLppZFO9rbP4jB+RadMXxM5GeMZxjDKoRUTWEAV+1hDXmI4v38GuPEfdDfTU9nPsZDp16TPF5zNmi0yNHgLASerETo4GHvV6jVo4e6pVHFuibLpWe/KOP7GPm6LbsjfvnOqVlIcBuOC2X6Hv/TdiF8j6adTSoFTdKeCscjv3kf99LU8b+xgPebt47rUX85s//mq6Cx6e66gmjIisCdtHNvDv8fUA+El1WbZZ8F2Ge/L84auu5hl7hpZlm7K2bewpcJK0iLc1CvzI0uU8h5x39o6P1D1ORGTtUOBnDfE9Z9aV3+PdF1OwFeoH7gGgOnIjJ22ZvY//Ld7UQdwkJHEDQlzCRp0wnp1xM7Md++C3/ow9f3cze//uJp7CN3mwfF0zZXzayNAQNZsGg3ITjzNemz/rp1JJM35Ct7jqGT/eZNqSdKq4hSCbPqEDDxFZSwzwdt60rNt0HUN3Pv3MVre788NIT4FRWwaU8SOnrxScvWMkfRaJiKwdCvysIYHnzEq3jTZcCUDu4NcA6O8ps905AsCOT/0IXlIHL0+ERxyFc7ZejxNLcOI+Nnz998FaRr72LnITTzSfP/jM35nVc/OK7QOM0SoOOj1VDCBJLEnb+7QCPwXc1Qz8tGUlxd1b6Cum09fySjUWkTXEMYZ3vCTtphNvvHLZtuu7Jtv+sm1S1rBNvXlOkgZ+UOBHTlNeF8dERM4LOlJYQ3zXmRW46d52GeEDLsHRuwEo5vM87m5lW/wEheN308tWXH8jIR7EDcK5OnCN7+fCf/te3MY4tf6Lm4sfsFs4dNmPc/GeS2a9pLuQZ9zJQ7a5qC2TqBEn1KOEnkJ6dXm6nXvDSbuLYe2sQNKKqI4273aXS/QUfA6N1cirZo+IrCGFnMt1O/q59wfuYOeWDSzXJ5QxBsdBBVXPEz0Fn1GbTvWaOV1bZLEU+BEROT8o42eNmfkFvGdTP4/ZYQamHgCgWCzy+Rv/N28P3wjAxc4TuLkCER4mDmdN6yKO2P3XN+A20hpBWz/3082nzCUvpffJr5u7qJ/j0LVpT/OhbbSKSzfihINjVQ6crHLfoQleMPo3QDrVC4Bkler8TB1t3u3ZfhU5z8FzDTlPw1xE1o687+K7hqi4ASfoWtZt+66jwM95whjDWJbxY5TxI6cpr2MkEZHzgj7t17g9G7t4yG6iPzkBQG+5xK03XM5jI89vdvNwcwUi40ESNos4Nx1/sOOhk6Rdve7svZXajW8F5p+D3bjlPa0HlRPNu1FsCSPL8ckGjTBib3wf0Bb4Wa0Cz5PpFLj3lX8K9twK0MxKEhFZS3w3/fpd7iBNfymH7ynwc76o+T0AGGX8yGnyXJ0KiIicD/Rpv8b1FnMc8rc2H5dLRQLP4VlX7OTfkicDELiQGA8nCWnMKO4cTR5lLoUXvRubtXCf7xTBDFzAe3r+v/R+rTWNqr2AtFM72bzf8LJaA6uU8XPy6H4Aoq03Ucjq+gyWg1XZFxGRhfhumpG43PV4BssBxZyyP84XUZA2ZvCS+irviYiIiKxlCvysca5jONHdqsuTzxdwHcP1O/r5rP9MALqP3kFsfK6p/hflr/1Jx+u/+9DDs7b51zf+G3G+1cVrvgvOrjEMD48AMH78QHN5e+BncvQwAN/Z8EKquYF04Spl/Dx2MN2XnVtGKAfpiY+meYnIWpT3HfqKOXW9kTPSOzAMgBeOr/KeiIiIyFqms+JzQDR8RfO+6+XwXQfXMYxc+RwA7Obr2JbsA2D49v/ZUYj5wUcfBeDwpT/Cfd/3H3z7tfdwxWWt7cH8U71c17Bx19WM2wJdX39vc3lb8yxOHjsEwNiul2KcrD7RKmX8TE6kB75DA31q4S4ia1ox55H39RUsZ+aWZ98CQL5ycJX3RERERNYyHXWeAwa3tIos4+Zws7kBL75mB994xVdwXvEBilSbq9TrbSnfk8cAOHLDL9Ho2YlpKySa8xy68h7d+bZpASOt1sKeY9i6ZQsfcV7EtpO3QTZtzEwews2mfk1kGT9Dw5swbrYduzot3WtZW/nurm5dRReRNU/ddORMBVuv5tB1byN60R+t9q6IiIjIGqbAzzng4s09rQeuj+cYuvIexhi83s2YoMREbkNzlaStu1UxGmXClMBpFX50nDTos2tDmcGuoDNI8sOfpPrWtCC06xhynsv+4WfgYOHhzwOw5QNXc8mH0wBRZTTN+OnpH8Z10uEUR9Hy/gIWqVGbJMKhVCytyvuLiCxFoKmocoY8x3D0qjfB1a9d7V0RERGRNUxHneeAPcNt7X69NFCzua9AMXAxJp2q5b/5q/yq+cl0nYnDzdVL8RjjJg0cTRc8DjyH3qKP65hmLZwmv4Ap9QOQcx3yvkPSsx2AZEah6MFvv4+XH8umgJUGm+1ka2FjWX7upYprkzRMQFmdvETkHKDMRDlTjmPmrdMnIiIiMk2Bn3NAOe/xxKbnpw/ctEuV7zodQRun0Eej7yIAkrbAj5fUqDt5PNewsSfffG1fMTfv+00fRBpj6C3mKHWlgaN6dYJ7H29te+T2d2JsxN3lm3FyRRwvDSzVG+EZ/sSnxzamaDgFyupoIyIi5wnPNQoiioiIyIJ0hnwO8F2Hief/ESem7qe/PNRcXg48jk+m2TWOgZ6hzXACorFWkUcnibDGpxx4lHIuge9QCrwFu12Ztgbv5cCjv7tEaF0mxsd56KEHuBj47ehVPFy8komBy3ndUy9iszE4WcbPagV+3LhG5BVwlrs/soiIyBrlOe3f2iIiIiKzKfBzjgjyRaKe6zqWlQKvOX3LGMPQyA6i7zqcPPggWWN1HBthXY9SkNYEGijlGCgHC77XzLjJYDmgSsDkxEkcN23r/vznvQB7wTMA6C54lPMejpvuSxiuTo2fwNYI3fyqvLeIiMhqcB1H071ERERkQQr8nCPyvstcl/R6s3o2Btgx3MtjdhiO3Nd83kkiEsdvTgtbaIrXtJkp40PlgCnyNKqTuLl0qpfp2sR0V3fXMWmL+ayrVz1cnYyfvK0TOQr8iIjI+cNzNNVLREREFqYaP+eIou/izHFg1z0d+DGwpa/Ig3YzPVMPN593ibFOa2rXYqZBzVxlW3+Rig2wjSni+lS6TtDqnOU509tOM36iaHUCP4GtE7qFVXlvERGR1dCV1zU8ERERWZgCP+eIvO/OOYffzaI0xqTFmx8zI/TV9oFN83Ecm9b4WYqZVw439RWoEmAaFZJGFQDrtwIs0/vgZsWdvSN3p+tYy0qx1lKgRqzAj4iInEd6F5HJKyIiIuc3BX7OEYHnzJnx064r8Ki4vbjE0Egzc1wbgXtmVwN916HuFDBRBRtmgR+vNaXKywI/TvY+u7/4Fqy1TNZXrtZPlFgK1Ik9BX5EREREREREpinwc45wHEPgL/znchxD6HcBUJs8QZxYPBuBs7SMn7lEbgEvqmDDGgDFUrn5nOumgR8vK+4MMF6LiOKVy/iJYkvBNJTxIyIiIiIiItJGE8PPIXnPPeU6Ua4bGjA1dhyvsBGXmNg988CP9QpcWP868ZRHA4+NPUXGqiHlvEfRT/fLacss2jdaYbh75QotN+KEHCHWU8q7iIiIiIiIyDQFfs4hiynMbINumITK2HGirgY+MeEyBH5GOArARY3vMGlKlHNus5X8NNdrDackCknswm3jl1MUJ/hEmGXIbhIRERERERFZLzTVa73J9wEQV05yaLyOZ2Jwzjy+N9J4rHk/NHNn1bhtGT9uY5IkOeO3XbQwtvjE4CrjR0RERERERGSaAj/rjFfqBcBtjBPGCR4RZhmmP33x6t9t3g+duTN5hrqLzftOY5xkBbt6pT9rjFmG7CYRERERERGR9UKBn3UmV04zfkx9jDBO8Ikxy5Dx03vlC/nH+CkAxPMEftpbyrqNCeKwfsbvu1hRnOCbGMdT4EdERERERERkmgI/68zWkY1AWtw5jOyyZcHs3djNEZtNI3PmySDKOn4BbP7yL7H1T7dDHJ7xey9GGDbSO8r4EREREREREWlS4GeduWLbIE8kQ3iHv4U38QRlU8MsQxZMKfAY9QYBKDJPJk9Yad4tHv1meqc+ccbvvRhRlAZ+NNVLREREREREpEWBn3Vm51CZL3ANW0dv4zmfeg4AzjIFQ47QD0ApmSeY05iavWyFAj9xlvGjqV4iIiIiIiIiLQr8rDOuY7i/9ynkbCsrZ7mCIYezwE8uHJt7hb4ds5c1JpflvU9lup6Q2rmLiIiIiIiItCjwsw7F227ueJzLzV2Meamu2LsXAGPn6dO+8+kcf/0X+Imdn+UNjZ8HwJ7FjJ84aXUNi8K0ltByTGsTERERERERWS8U+FmHrtqxgdc33tZ8HATLE/j58RfddMp1zNDF/OwtFzFmSwCElfFlee921loaUcKxyVZWUxJNT/U689b1IiIiIiIiIuuFAj/r0M27B/kSV/Nv8Q0A5IP8smy3r1wEILnoBfOu4xpDIecxMjQAQFhd3qle9Sjm/sOT7D9ZpRG1Mo9iBX5EREREREREZvFWewdk+RV9j1c/aRvhnemfN79MGT8A973xAS4c7ps3Yug4aZ2hclcvjMP42AkKicVxzKLfI04sibX47ux3GauENKKERpRQzreGbxxlU73U1UtERERERESk6ZQZP8aYDxhjjhhj7m5b9mvGmP3GmG9mt/lTQGTFOQ48bfcQoU0DI8vZ6crNFTHu/PFCz3FwHUN3bx8AYXWcE5XGkt7jZKXRUb9n2pHxGmPVsPk4TmZn/Hi+Mn5EREREREREpi1mqtdfAbfOsfz3rbVXZbePL+9uyZkIPJf+Uo5wOqFrvmLMpyHnOiyUvOM44BhDX1/aAawyMcZELQIgihe3H5VGTGI7Az9JYjk8XqcWtrYRxq11kizjZ7la14uIiIiIiIisB6cM/FhrvwCcWIF9kWWS8xzKeY/GdOAnDhd+wRL4nsGY+SM/rjG4jmH7UC+hdalPjTNVj6iFMfVocYGfqUY0K+OnMUfQKE4sNgsQJVFa6NlVjR8RERERERGRpjMp7vwmY8y3s6lgfcu2R7IsugteK+MnXtpUq4Xk5qi70851DD0Fn2t39DNBgagyirVwZLxOFM+evjVTpRERRpaZM73mDBqFteby6YwfV1O9RERERERERJpON/Dzv4ALgauAg8DvzreiMebHjDF3GGPuOHr06Gm+nSxVbyHHrVduTR8sZ+DHW3jImCzjZ7g7zz42Up58FICxakiYnDrjZ7SSBnCSmRk/MwI/ffd9hMv+6iLCIw9RC2NsltWkrl4iIiIiIiIiLacV+LHWHrbWxtbaBPgL4EkLrPs+a+111trrhoaGTnc/ZYkKOZdtg73pg2Wc6nWqwM80YwxHCxcwWHu0uWyugs0zVRtpPaCZNX7qUQxA12OfYse/v5YtX3wbAJMHvsMjx6ao19OpXp4CPyIiIiIiIiJNpxX4McaMtD18GXD3fOvKKpoudLyCU73a2cE9DNhRkkP3ABCeoriztZZamBCM3of76Bc61m9ECSZusOWLb6Nr3382l0cTx4hiy8RUFQAvp8CPiIiIiIiIyLTFtHP/W+ArwB5jzD5jzI8A7zHG3GWM+TbwTOBnzvJ+yum44pUkhQG4+rXLtsmFCjvP5F/2Ek7YMiNffBtYu2Bx52OTdR44MolNLBd99Ln0/sMrGG1rA98IQzbe/lt4tRM8cN2v83PRT6bvUT0CQBSm6wYK/IiIiIiIiIg0Laar16uttSPWWt9au8Va+35r7WuttZdba6+w1r7YWntwJXZWlqh3G6M/fS8MXLgqb3/R3sv5vfiVbBi7i56H/xWeuJ1GlHBkojZr3bFqSD1MCEbvby47NtHg8eMVKo2I/tt/l8F7PgDAD995Af8QPZVJm8epHAMgyrp6GS9YgZ9MRERERERE5NzgrfYOyNnlOovP0Flu5bzH/f3PJhn/32z7/JsAuGvD47iOYbAU4LTt23T9n9Lhr3UsG6uGjFVDLtz/BQDeGr2JpNzFKy4e4NjdPXgn05hjkmX84GhIi4iIiIiIiEw7k3bucg5wVjHw4xjDnp07uDvZ0VpoE+LEcnSyTpzYZsBnutV74cjXW+smraLUufFH+Uz5e/gET+G3XnY5N+4c4Cg9uFOHAYizdu7NukYiIiIiIiIiosDPeucuoSbPsr+3Y7h+Rz//lVzaWlYbBeDoRJ3Hjk81u3Ul1uLUT1J++BPNdZ2w0nyNVx/jK6M9vPjKTfSXcvQVfR5ONtEz+TD+5H5sNtULR4EfERERERERkWkK/KxzqznVK+c67Bgo8s/Bi5vLvOpRAKyFqXpMGFmiOMFa6HriP8jFU3wkegYATpQGfpLjDwFQ697OK6/bCkBvMcd9divFaJS9H3kyPzH5p+kbKONHREREREREpEmBn3XOWcWMH8cxBL7Lc2+4iu+v/zLQCvxMq8cxsU2neQVH76JufW5LLgagdCit93Piie8CcP1V15H3XQAKOZdHvQvmeFPV+BERERERERGZpsDPOuetYsYPQOA53HLJRvJ9GwHwK52Bn4laxGQtYuibf8LwPX/BvXYrU04ZgG2ffxNOOIV78hESa+jZtAvPNewYLLKxJ88jpat4b8/PcHJnmlFUcUqQK6/sDygiIiIiIiKyhinws86tZnFngI09eYyBoc07Ca1Lz/1/z5bPvwUTp124KvWYse/+JxvveA8A/+o8h52bh5uv3/Tld9A3di8HGaC3u4veok9X3qe/lGPbYBf/8/D1vO7kG7m89pf8+qX/Dq4yfkRERERERESmKfAjZ1Xed+kt+ly0ZZjbk710H/wyfQ/9E12Pf7a5TnnfF7E4XFn/S05e8oMMDww0n+t78B+5ZOJLPGE2MVAO6Mq3avj8j5dcxi2XDPOtA5NMUCTvaTiLiIiIiIiItNOZspx1XXmfSzf18MHkeRzKbQdg8K734dRP4lUOc+LYQUZtiYpT4tbLNrJxKA38WBwee877uMu/gg+V38C2gSLloJXRs7Enz5uftZs/+P6r+P7rtvLiqzavys8nIiIiIiIislZpXoycdeXAY6ArR2PX83nKA9fzP7beyasP/w6X/p8riL0i385fzwnbxXu+90o2ducxcQ8A+/wdfCK6jt+v/hJP2zo0a7u+m05ju3CozIVDZbb0FVb05xIRERERERFZ6xT4kbPOdQxD5YC3PHs3Y5WQdzx2Fc8a2MPw1H24UYUgPMmU282uDWVynsP2PZfyYe9l/Pnk09n372lHr+dePDxru8YYcp5DI0qyxyv6Y4mIiIiIiIiseQr8yIroL+WoRQm//uJL+fl/+DYvm/gVPnbhPzL00EfZ2HiMB/w9FLP18jmfp//Un7F3vMadj41SqcfcvGtgzu3mfYc4scSJxaDIj4iIiIiIiEg71fiRFWGMwXcMxhje+JQLOFQ1/OJ3LwCg356kkesDoJhzs/Uh8FxuunCQ51wyTOC7c263O+9zwWCJvO9gNJpFREREREREOuhUWVaMm7WW3zvSzS/cupdHktb0rbIbA1DIAjyuY3DaRmcwT8euvlKOQs5lx2CJck4JbCIiIiIiIiLtFPiRFZNrC97cdOEggzsu513xawCY2vRktg8WcbLgkGMMvcXcnK+di+86zdeKiIiIiIiISEqBH1kx5cDDdQy9RR+A19ywnfdFL2RP7a8YfsaP0p33m+t6jmGwnGNDd4DnGnKuhqqIiIiIiIjIUmlujKwYYwy7h8tYC2PVkAsGS3zfdVv59r4xtvaXOtYNfJfAcxnudhkqBxi17BIRERERERFZMgV+ZEX5WeZOXynH6FSD1964HWtb9X+m5dumdmkKl4iIiIiIiMjp0fwZWRXDXQGbewvk/XQIejOCO56mdomIiIiIiIicMZ1dy6rwXIe+Ui4ryoymcomIiIiIiIicBQr8yKrKeQ6eo2EoIiIiIiIicjaoxo+sqmLOI4zsau+GiIiIiIiIyLqkwI+sqp6CTynnrvZuiIiIiIiIiKxLmmMjq06FnEVERERERETODp1xi4iIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisUwr8iIiIiIiIiIisU8Zau3JvZsxR4LEVe8P1YRA4tto7IecdjTtZDRp3slo09mQ1aNzJatC4k9Wgcbcytltrh+Z6YkUDP7J0xpg7rLXXrfZ+yPlF405Wg8adrBaNPVkNGneyGjTuZDVo3K0+TfUSEREREREREVmnFPgREREREREREVmnFPhZ+9632jsg5yWNO1kNGneyWjT2ZDVo3Mlq0LiT1aBxt8pU40dEREREREREZJ1Sxo+IiIiIiIiIyDqlwM8SGWO2GmM+b4y51xhzjzHmLdnyfmPMp40xD2T/9mXLB7L1J40xf9K2nS5jzDfbbseMMX8wz3tea4y5yxjzoDHmj4wxJlv++22vv98Yc3Ke1z/NGPN1Y0xkjHnFHM93G2P2t++frC3rbdwZY+K2bfzL8vyWZLmtw3G3zRjzqezn+Y4xZsey/KJkWa2ncWeMeeaMfagZY166bL8sWTbradxlz70n+znubd+2rD3rcOy92xhzd3b7/uX5LclyO0fH3c+a9Pjt28aYzxpjtrc997psnx8wxrxu+X5T64i1Vrcl3IAR4JrsfhdwP3AJ8B7g7dnytwPvzu6XgKcAPwH8yQLbvRN42jzP3Q48GTDAJ4Dnz7HOm4EPzPP6HcAVwIeAV8zx/B8Cf7PQ/ummcbec4w6YXO3fqW7n5bj7D+C52f0yUFzt37Fu63/cta3TD5zQuFubt/U07oCbgC8Dbnb7CvCM1f4d63ZejL0XAp8GvGw/7wC6V/t3rNu6GXfPnP4OBX4S+Lvsfj/wcPZvX3a/b7V/x2vtpoyfJbLWHrTWfj27PwHcC2wGXgJ8MFvtg8BLs3WmrLVfAmrzbdMYsxvYAHxxjudGSD8wv2LTkf2h6W3P8Grgb+fZ50ettd8Gkjm2fy0wDHxqvv2T1bfexp2cG9bTuDPGXAJ41tpPZ+tNWmsr8+2nrJ71NO5meAXwCY27tWmdjTsL5IEcEAA+cHi+/ZTVtc7G3iXAf1prI2vtFPAt4Nb59lNWzzk67j7f9h36VWBLdv95wKettSestaOkwUeNuxkU+DkDJp0mcDVwGzBsrT0I6X8k0kG/WK8mjVjOVWl7M7Cv7fG+bFn7fmwHLgA+t4T3xBjjAL8L/PxSXier61wfd5m8MeYOY8xXjaY9nBPWwbi7CDhpjPlHY8w3jDG/bYxxl7gNWWHrYNy1exXzHMzK2nKujztr7VeAzwMHs9snrbX3LmUbsjrO9bFHGuh5vjGmaIwZJM3Q2LrEbcgKO0fH3Y+QZg1Nb/uJhbYtaRqenAZjTBn4KPBWa+34GU6dfhXw2vneao5lM/8zvQr4B2ttvMT3/Sng49baJzT1+9ywTsYdwDZr7QFjzE7gc8aYu6y1D53GdmQFrJNx5wFPJT2weRz4O+D1wPuXuB1ZIetk3KVvkF7pvBz45Om8XlbOehh3xphdwMW0roZ/2hjzNGvtF5ayHVlZ62HsWWs/ZYy5Hvgv4CjpNMNoKduQlXUujjtjzA8C1wFPX8K2z3vK+DkNxhif9D/IX1tr/zFbfDg7sJs+wDuyyG1dSTr94M7ssdtW3Oo3SCOWW9pesgU4MGMzHVcRjTG/Ob2NU7z9k4E3GWMeBX4H+CFjzLsWs9+y8tbRuMNaeyD792HSuitXL2a/ZeWto3G3D/iGtfZha20E/DNwzWL2W1beOhp3014J/JO1Nlzk+rIK1tG4exnw1WxK6yTpVfEbF7PfsjrW0djDWvub1tqrrLXPJT0hf2Ax+y0r71wcd8aY5wDvAF5sra1ni/fRmVk217bPewr8LJFJw6DvB+611v5e21P/AkxXEH8d8LFFbrJjHqO1Ns4+LK+y1v5KlmI3YYy5MXvvH2rftjFmD2kRq6+0beMd09tY6I2tta+x1m6z1u4Afg74kLX27Yvcb1lB62ncGWP6jDFBdn8QuBn4ziL3W1bQehp3wNeAPmPMUPb4WWjcrUnrbNzNuQ+y9qyzcfc48HRjjJed2D2dtH6HrEHraexlJ/sD2f0rSAtAq47oGnQujjtjzNXAe0mDPu0BqU8Ct2TnGH3ALSjDdja7BipMn0s30mrmFvg28M3s9gJgAPgsaVT7s0B/22seJe3kMUkakbyk7bmHgb2neM/rgLuBh4A/AUzbc78GvOsUr78+e98p4DhwzxzrvB519Vqzt/U07ki7jdxFOg/8LuBHVvv3q9v6H3fZc8/Nfpa7gL8Ccqv9O9btvBh3O4D9gLPav1vdzo9xR9rJ672kwZ7vAL+32r9f3c6bsZfPxtx3SIvvXrXav1/d1tW4+wxpofrp/f2Xtud+GHgwu71htX+/a/Fmsl+UiIiIiIiIiIisM5rqJSIiIiIiIiKyTinwIyIiIiIiIiKyTinwIyIiIiIiIiKyTinwIyIiIiIiIiKyTinwIyIiIiIiIiKyTinwIyIiIiIiIiKyTinwIyIiIiIiIiKyTinwIyIiIiIiIiKyTv3/ZQqcJphLofUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize = (20, 5))\n", + "plt.plot(df_sim.index, df_sim['SimulatedTemp'], label = 'Measured data')\n", + "plt.plot(df_sim.index, df_sim['gpTemp'], label = 'Gaussian Process Prediction')\n", + "plt.fill_between(\n", + " df_sim.index, \n", + " df_sim['gpTemp'] - 1.96 * np.sqrt(df_sim['gpVar']),\n", + " df_sim['gpTemp'] + 1.96 * np.sqrt(df_sim['gpVar']),\n", + " alpha = 0.2\n", + ")\n", + "plt.legend()\n", + "plt.title(\"Gaussian Process Performance on new random input data/ new weather data\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "### Simulate the System with constant Zero Input" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "random_signal = get_random_signal(len_signal, a_range = [0,0], signal_type = 'analog')" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":30: FutureWarning: Slicing a positional slice with .loc is not supported, and will raise TypeError in a future version. Use .loc with labels or .iloc with positions instead.\n", + " df_local.loc[3:, 'gpTemp'] = mean\n", + ":31: FutureWarning: Slicing a positional slice with .loc is not supported, and will raise TypeError in a future version. Use .loc with labels or .iloc with positions instead.\n", + " df_local.loc[3:, 'gpVar'] = var\n" + ] + } + ], + "source": [ + "df_sim = simulate_carnot_gp(df_wdb, df, random_signal, m)" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PowerSetpointOutsideTempSupplyTempInsideTempSolRadSimulatedTempSimulatedHeatgpTempgpVar
timestamp
2017-07-13 20:00:00+02:0018.82758622.524.023.922.93333391.71493323.0015300.0NaNNaN
2017-07-13 20:05:00+02:003628.96551722.524.015.523.216667121.53870023.1377680.0NaNNaN
2017-07-13 20:10:00+02:004391.34482822.524.014.323.116667101.48161723.2344420.0NaNNaN
2017-07-13 20:15:00+02:004392.46666722.524.014.022.800000163.71015023.3026630.023.3632040.120147
2017-07-13 20:20:00+02:003777.48275922.524.014.022.63333390.03956723.3452630.023.3911120.120163
.................................
2017-07-20 05:35:00+02:009.51724122.522.023.622.7666673.26000024.3312700.024.3501520.119990
2017-07-20 05:40:00+02:005.66666722.522.023.622.7333333.25000024.3312700.024.3501530.119990
2017-07-20 05:45:00+02:009.13793122.522.023.622.7500003.24000024.1691620.024.3501540.119990
2017-07-20 05:50:00+02:004.20689722.522.023.622.7333333.34000024.1691620.023.9362750.119999
2017-07-20 05:55:00+02:004.23333322.522.023.622.8000003.38000024.1105530.024.1772650.119995
\n", + "

1848 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Power Setpoint OutsideTemp SupplyTemp \\\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 18.827586 22.5 24.0 23.9 \n", + "2017-07-13 20:05:00+02:00 3628.965517 22.5 24.0 15.5 \n", + "2017-07-13 20:10:00+02:00 4391.344828 22.5 24.0 14.3 \n", + "2017-07-13 20:15:00+02:00 4392.466667 22.5 24.0 14.0 \n", + "2017-07-13 20:20:00+02:00 3777.482759 22.5 24.0 14.0 \n", + "... ... ... ... ... \n", + "2017-07-20 05:35:00+02:00 9.517241 22.5 22.0 23.6 \n", + "2017-07-20 05:40:00+02:00 5.666667 22.5 22.0 23.6 \n", + "2017-07-20 05:45:00+02:00 9.137931 22.5 22.0 23.6 \n", + "2017-07-20 05:50:00+02:00 4.206897 22.5 22.0 23.6 \n", + "2017-07-20 05:55:00+02:00 4.233333 22.5 22.0 23.6 \n", + "\n", + " InsideTemp SolRad SimulatedTemp \\\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 22.933333 91.714933 23.001530 \n", + "2017-07-13 20:05:00+02:00 23.216667 121.538700 23.137768 \n", + "2017-07-13 20:10:00+02:00 23.116667 101.481617 23.234442 \n", + "2017-07-13 20:15:00+02:00 22.800000 163.710150 23.302663 \n", + "2017-07-13 20:20:00+02:00 22.633333 90.039567 23.345263 \n", + "... ... ... ... \n", + "2017-07-20 05:35:00+02:00 22.766667 3.260000 24.331270 \n", + "2017-07-20 05:40:00+02:00 22.733333 3.250000 24.331270 \n", + "2017-07-20 05:45:00+02:00 22.750000 3.240000 24.169162 \n", + "2017-07-20 05:50:00+02:00 22.733333 3.340000 24.169162 \n", + "2017-07-20 05:55:00+02:00 22.800000 3.380000 24.110553 \n", + "\n", + " SimulatedHeat gpTemp gpVar \n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 0.0 NaN NaN \n", + "2017-07-13 20:05:00+02:00 0.0 NaN NaN \n", + "2017-07-13 20:10:00+02:00 0.0 NaN NaN \n", + "2017-07-13 20:15:00+02:00 0.0 23.363204 0.120147 \n", + "2017-07-13 20:20:00+02:00 0.0 23.391112 0.120163 \n", + "... ... ... ... \n", + "2017-07-20 05:35:00+02:00 0.0 24.350152 0.119990 \n", + "2017-07-20 05:40:00+02:00 0.0 24.350153 0.119990 \n", + "2017-07-20 05:45:00+02:00 0.0 24.350154 0.119990 \n", + "2017-07-20 05:50:00+02:00 0.0 23.936275 0.119999 \n", + "2017-07-20 05:55:00+02:00 0.0 24.177265 0.119995 \n", + "\n", + "[1848 rows x 10 columns]" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sim" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAF1CAYAAABVrSOHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClaElEQVR4nOzdd1yV1R/A8c9hbxABARFxL0RUxL1HpqamppVlaqVpey8r62dmu8zKLM1dppmVae6dC9wD9wBBEJG94fn9cUBA2dx7gct5v173ddfznOfc+9zxnOec8/0KTdNQFEVRFEVRFEVRjINJZVdAURRFURRFURRF0R3VyFMURVEURVEURTEiqpGnKIqiKIqiKIpiRFQjT1EURVEURVEUxYioRp6iKIqiKIqiKIoRUY08RVEURVEURVEUI6IaeYqiKIqiKIqiKEZENfIURVGUKkUIkZjvki2ESMl3f2xl1688hBCXhRD9KrseiqIoSs1gVtkVUBRFUZT8NE2zy70thLgMPKFp2ubKq1HxhBBmmqZlVvdtKIqiKMZD9eQpiqIo1YIQwkQI8YYQ4oIQ4qYQ4jchhHPOcz5CCE0IMUEIESqEuCWEeEoI0UEIcUwIESuEmJOvrPFCiD1CiG+EEHFCiBAhRN98zzsKIeYLISKEENeEEDOEEKZ3rPulECIGmC6EaCSE2JpTr2ghxDIhhFPO8ksAb+DvnN7I14QQvYQQYXe8vtu9fUKI6UKIVUKIpUKIeGB8CXVqLITYkfNaooUQK/S6MxRFUZQqTTXyFEVRlOriOWA40BPwBG4B396xTEegCTAG+Ap4G+gHtAJGCyF63rHsRcAFeA9YndtoBBYBmUBjoC0wAHiikHXdgA8BAXyUU68WQD1gOoCmaY8CV4H7NE2z0zTtk1K+3mHAKsAJWFZCnf4HbARqAV7AN6XchqIoimKEVCNPURRFqS4mA29rmhamaVoashE1SgiRf+rB/zRNS9U0bSOQBPyiaVqUpmnXgF3IxlGuKOArTdMyNE1bAZwBBgsh6gD3Ai9ompakaVoU8CXwYL51wzVN+0bTtExN01I0TTuvadomTdPSNE27AXyBbIxWxF5N09ZompYNOJRQpwygPuCZ8/p3V3DbiqIoSjWm5uQpiqIo1UV94A8hRHa+x7KAOvnuR+a7nVLIfbt8969pmqblu38F2RNXHzAHIoQQuc+ZAKH5ls1/GyGEGzAb6A7Y5yx/q1Svqmj5t1FSnV5D9uYdEELcAj7XNG1BBbevKIqiVFOqkacoiqJUF6HARE3T9tz5hBDCpxzl1RVCiHwNPW/gr5ztpAEuxQQ70e64/1HOY36apt0UQgwH5hSzfBJgk6/+poBrMdsotk6apl0HnswpqxuwWQixU9O080XUX1EURTFiarimoiiKUl3MBT4UQtQHEEK4CiGGVaA8N+A5IYS5EOIB5Fy6dZqmRSDnt30uhHDICfjS6I75fHeyBxKBWCFEXeDVO56PBBrmu38WsBJCDBZCmAPTAMuiCi+pTkKIB4QQXjmL30I2ELNK9zYoiqIoxkY18hRFUZTq4mtkT9tGIUQCsA8ZAKW89iODtEQjg6eM0jTtZs5z4wAL4BSy0bQK8CimrPeBdkAc8A+w+o7nPwKm5UT5fEXTtDhgKvATcA3ZsxdG8YqrUwdgvxAiEfkePa9p2qUSylMURVGMlCg4HUFRFEVRjJ8QYjwy/163yq6LoiiKouia6slTFEVRFEVRFEUxIqqRpyiKoiiKoiiKYkTUcE1FURRFURRFURQjonryFEVRFEVRFEVRjIhq5CmKoiiKoiiKohiRapkM3cXFRfPx8ansaiiKoiiKoiiKolSK4ODgaE3TXAt7rlo28nx8fAgKCqrsaiiKoiiKoiiKolQKIcSVop5TwzUVRVEURVEURVGMiGrkKYqiKIqiKIqiGBHVyFMURVEURVEURTEi1XJOXmEyMjIICwsjNTW1squiGBkrKyu8vLwwNzev7KooiqIoilHIytYIu5XMhRuJJKVl4WBtTqeGzliamVZ21RTFKBhNIy8sLAx7e3t8fHwQQlR2dRQjoWkaN2/eJCwsjAYNGlR2dRRFURSl2vr1wFW+2HSWjKxsktKzSM/MLvC8b10HFozvgJu9VSXVUFGMh9E08lJTU1UDT9E5IQS1a9fmxo0blV0VRVEURamWUjOymLwkmB1nbxBQvxaN3eywtzKjsZsdjd3scLAy51REPG+uPs7DP+7nm4fa0sLDobKrrSjVmtE08gDVwFP0Qn2uFEVRFKV8NE1j2poT7Dh7g/FdfHh7cAvMTe8OCdGkjj3OthZMXHiQ4d/u4csx/gxq7VEJNVYU46ACr+jQhx9+SKtWrfDz88Pf35/9+/cD8MQTT3Dq1CmdbMPHx4fo6Ohil5k5c2aZy124cCHPPPNMgcd+/vln/P398ff3x8LCgtatW+Pv788bb7xR5vIN4auvviI5Obmyq6EoiqIoSo4fd11kVXAYz/VtwvShrQpt4OXq3sSVf1/ogbOtBVOXHeKXA1cNWFNFMS5G1ZNXmfbu3cvatWs5dOgQlpaWREdHk56eDsBPP/1k0LrMnDmTt956q8LlTJgwgQkTJgCycblt2zZcXFwqXG55aZqGpmmYmBT+B/HVV1/xyCOPYGNjU+oyMzMzMTNTXwNFURRF0bX9F2/y0foQBrV254W+TUq1TiNXOza+2IMnFgXx5urjeDpZ07Opq55rqijGR/Xk6UhERAQuLi5YWloC4OLigqenJwC9evUiKCgIADs7O15//XXat29Pv379OHDgAL169aJhw4b89ddfwN29akOGDGH79u13bXP48OG0b9+eVq1aMW/ePADeeOMNUlJS8Pf3Z+zYsQAsXbqUwMBA/P39mTx5MllZWYDsqWvatCk9e/Zkz549pX6tn376KR06dMDPz4/33nsPgMuXL9O8eXOeeOIJfH19GTt2LJs3b6Zr1640adKEAwcOADB9+nQeffRR+vTpQ5MmTfjxxx9LLLdFixZMnTqVdu3aERoaypQpUwgICKBVq1a3l5s9ezbh4eH07t2b3r17336vc61atYrx48cDMH78eF566SV69+7N66+/zoULFxg4cCDt27ene/fuhISElPq9UBRFURTlbhtOXufBH/fhbGPB5w/4Y2JS+qkP9lbmLH48EK9a1ny9+SyapumxpopinIyyC+P9v09yKjxep2W29HTgvftaFfn8gAED+OCDD2jatCn9+vVjzJgx9OzZ867lkpKS6NWrFx9//DH3338/06ZNY9OmTZw6dYrHHnuMoUOHlrpOCxYswNnZmZSUFDp06MDIkSOZNWsWc+bM4ciRIwCcPn2aFStWsGfPHszNzZk6dSrLli2jf//+vPfeewQHB+Po6Ejv3r1p27ZtidvcuHEj586d48CBA2iaxtChQ9m5cyfe3t6cP3+elStXMm/ePDp06MDy5cvZvXs3f/31FzNnzmTNmjUAHDt2jH379pGUlETbtm0ZPHgwJ06cKLLcM2fO8PPPP/Pdd98Bcliss7MzWVlZ9O3bl2PHjvHcc8/xxRdflLq38ezZs2zevBlTU1P69u3L3LlzadKkCfv372fq1Kls3bq11PtBURRFUZQ8u89FM3lJMAAv9G+KtUXZ0yJYmpkyqUdD3v3zJPsvxdCpYW1dV1NRjJrBGnlCCCtgJ2CZs91Vmqa9J4RwBlYAPsBlYLSmabcMVS9dsbOzIzg4mF27drFt2zbGjBnDrFmzbvce5bKwsGDgwIEAtG7dGktLS8zNzWndujWXL18u0zZnz57NH3/8AUBoaCjnzp2jdu2CP4JbtmwhODiYDh06AJCSkoKbmxv79++nV69euLrKIRBjxozh7NmzJW5z48aNbNy48XaDMDExkXPnzuHt7U2DBg1o3bo1AK1ataJv374IIe56bcOGDcPa2hpra2t69+7NgQMH2L17d5Hl1q9fn06dOt1e/7fffmPevHlkZmYSERHBqVOn8PPzK9N798ADD2BqakpiYiL//fcfDzzwwO3n0tLSylSWoiiKoijSpegkHpkvYxJ8/kAbRrb3KndZowPqMXvLOebuuKAaeVWEpmlExqfhZGOOlbnKaViVGbInLw3oo2laohDCHNgthFgPjAC2aJo2SwjxBvAG8HpFNlRcj5s+mZqa0qtXL3r16kXr1q1ZtGjRXY08c3Pz29EaTUxMbg/vNDExITMzEwAzMzOys/NyxxSW4H379u1s3ryZvXv3YmNjQ69evQpdTtM0HnvsMT766KMCj69Zs6ZcUSM1TePNN99k8uTJBR6/fPny7ddS3GuDu6NVCiGKLdfW1vb2/UuXLvHZZ59x8OBBatWqxfjx4wt93Xdu585lcsvMzs7Gycnpds+noiiKoijls+d8NGN/kg28BeMD6NO8ToXKszI3ZULXBny64QwnrsXhW9dRF9VUyikrW2PS4iC2hERhYWZCz6aufDLSj1q2FpVdNaUQBpuTp0mJOXfNcy4aMAxYlPP4ImC4oeqkS2fOnOHcuXO37x85coT69euXqywfHx+OHDlCdnY2oaGht+ez5RcXF0etWrWwsbEhJCSEffv23X7O3NycjIwMAPr27cuqVauIiooCICYmhitXrtCxY0e2b9/OzZs3ycjIYOXKlaWq2z333MOCBQtITJS78tq1a7fLLq0///yT1NRUbt68yfbt2+nQoUOpy42Pj8fW1hZHR0ciIyNZv3797efs7e1JSEi4fb9OnTqcPn2a7Ozs2z2ed3JwcKBBgwa3X7+maRw9erRMr0dRFEVRarpbSem89NsR6jpZs3BCB3o3c8t7cv88WDCw4GVbvpPPS+6H/T8UWu4jnerjYGXG5xvP6PkVKCVZFRzKlpAoJnT14ZGO9dlx5gZTlgWTla3mTFZFBp2TJ4QwBYKBxsC3mqbtF0LU0TQtAkDTtAghhFsR604CJgF4e3sbqsqllpiYyLPPPktsbCxmZmY0btz4djCUsuratevtoY++vr60a9furmUGDhzI3Llz8fPzo1mzZgWGM06aNAk/Pz/atWvHsmXLmDFjBgMGDCA7Oxtzc3O+/fZbOnXqxPTp0+ncuTMeHh60a9fudkCW4gwYMIDTp0/TuXNnQA5TXbp0Kaampe+yDwwMZPDgwVy9epV33nkHT09PPD09S1VumzZtaNu2La1ataJhw4Z07dq1wOu+99578fDwYNu2bcyaNYshQ4ZQr149fH19bzcg77Rs2TKmTJnCjBkzyMjI4MEHH6RNmzalfj2KoiiKUpOFxiQz4vv/iE1O54+pXe/ucTu0CBKuQ52WeY+Z5DsENbUAk8KPIxytzXm6d2M+Wh/Cz3suMaFrAz28AqUkKelZfLHpLG29nXh3SEuEEDT3sOe1VceYv/sik3o0quwqKncQlRGxSAjhBPwBPAvs1jTNKd9ztzRNq1Xc+gEBAVputMpcp0+fpkWLFrqvrKJT06dPx87OjldeeaWyq1Im6vOlKIqiKHdLzchi9A97ORYWx/dj23FvYQnMP2kELYbAfV+Xexu9P9tORFwqX45pw3D/uuWacqKU37fbzvPphjOsfKozHXycATn6adKSYDadiqRjA2feHNQC/3pOlVvRGkYIEaxpWkBhz1VKCgVN02KB7cBAIFII4QGQc122sX+KoiiKoihKpZi57jTHwuKY92j7wht4WRmQHA127sUX9M8rBYdw5mNlbspfz3Sjlo05L644yt/HInRQc6W0Np+K5NMNZ+jfss7tBh7I2AffPNSWV+9pxpWbyYyeu5eNJ69XYk2V/AzWyBNCuOb04CGEsAb6ASHAX8BjOYs9BvxpqDophjd9+vRq14unKIqiKMrdNp+KZPHeKzzZvQEDWhXRiDu/WV7bl9DIu34cdsyCjMKDqbnaW7L9VZkH97lfDhOTlF7eaitlsPZYOJOXBuNiZ8kb9za/63krc1Oe7t2Y9c93p4WnA5OWBNP+f5vo+/l25mw9x9WbyZVQawUM25PnAWwTQhwDDgKbNE1bC8wC+gshzgH9c+4riqIoiqIoVdgPOy/Q0NWWV++5++D/NjNL8AoEr0JHlOVxzplrF3Z3sLlcjtbmfDBMRlD/clPJaZ+U8tE0jfXHI3hm+SGeWX6YtvWc2P5qLxq52hW5Ti1bC5Y+Hsi0wS0Y0ModN3srPtt4ln5f7uDXA1dVQvtKYLDAK5qmHQPuyratadpNoK+h6qEoiqIoiqJUzLXYFIKv3OLp3o2xMCumz6BRH3kpSbeX4OgvkBBZ7GJjO9bn3T9PsvzAVd4e3ELlatMRTdM4FRHPplOR/HviOiHXE6hta8HDHb15d0jLUr3P9lbmPNG94e37Idfj+fCf07yx+jhL9l1hSq9GDPHz1OfLUPIxaHRNRVEURVEUpfqbs/U8ZiYmPBhYQsTzmEtg6wKW9sUvZ5+TUy+h+Pl2piaCuY+046mlhzgWFkdgA+dil1eKd+jqLX7ceZH9l2KISUpHCGjnXYtPRvoxsr0XpiblD3DT3N2BhRMCWfjfZb7afJZnlh/mp12XmDHcV+U8NADVyFMURVEURVFK7VR4PCuDQnna35S6Z5cWvlDjfnII5vLRUL8r3PdV8YVaOoCZNVzYCubW8rHAJwtdtHNDFyzNTHht1VH+erYbDlbm5X8xNdi2kCgmLw3Gwcqc3s3c6NTQmV7N3HC1t9TZNkxNBI93a8CDHerx5aazLNhzifu/20Of5m58N7Z9hRqRSvEqJbqmsQoLC2PYsGE0adKERo0a8fzzz5OeXvLE4JkzZ5a4zBNPPMGpU6fuenzhwoU888wzparfhg0b8Pf3x9/fHzs7O5o1a4a/vz/jxo0r1fqGtnDhQsLDwyu7GoqiKIqi5LgWm8Kg2buwMjdlStZyWPdK4ZfIE3KFPu9AnVYlFywEuPvCxW05Zbxa5KKONuZM6dWIyzeTeeSn/Zy4FqejV1dzhN1K5qmlwTStY8emF3vw+eg2PBBQT6cNvPxsLc2YNqQlu17vQ5dGLmw4Gcm4Bfv1si1FqpQ8eRVVFfPkaZpGx44dmTJlChMmTCArK4tJkybh7OzMp59+Wuy6dnZ2RSbqLsnChQsJCgpizpw5ZVqvV69efPbZZwQElDARWs+ysrKKTKRenjpmZmZiZqb7DurK/nwpiqLUZFdvJrMqOJTT1xO4lZRObTsLGrjY8VTPhjjZWFR29WqULzed5est51g8MZAeux6RjbMxhfTmWdrLoCtZmWBayv/lrAxIzddgs3UpdvEl+64wa91pNOCbh9rSt0Wd0r+QGkzTNKYuO8S2M1FsfbkXnk7WBt1+drbGwz/tY9/FGN4a1FwlUq+AKpcnzxht3boVKysrJkyYAICpqSlffvklCxYsIDk5+a4etyFDhrB9+3beeOMNUlJS8Pf3Z+zYsSQlJTF48GDatGmDr68vK1asAGSDJ7dh+/PPP9O0aVN69uzJnj17bpd548YNRo4cSYcOHejQoUOB54qzdOlSAgMD8ff3Z/LkyWRlZQGy8fn666/Tvn17+vXrx4EDB+jVqxcNGzbkr7/+AmQjc9iwYQwcOJBmzZrx/vvvl6rcd999l44dO7J3714++OADOnTogK+vL5MmTULTNFatWkVQUBBjx47F39+flJQUfHx8iI6OBiAoKIhevXoBMi3DpEmTGDBgAOPGjSv3+6AoiqIY3qGrt7jvm90EfriZ5389zLL9V/hhxwXm775EVHwqx8PiGPzNLmZvPc+FqEQszEw4FRHPj7su0u+LHawKDlOR+wwk6HIMX285R7fGLvRo6gqJ18HRSzbG7ryY5fQIlbaBB2Bqnre+uTV87Q9BC4pc/NFO9dnyci9MTQRPLg4iNEaF6y+NXeeiWX/iOs/2aWLwBh6AiYng+7Htcba1YOa6ENYfV3kP9cF45+T9PLjkZZreA12fy1ve/2FoOxaSbsJvdwxhnPBPsUWdPHmS9u3bF3jMwcEBb29vzp8/X+R6s2bNYs6cORw5cgSA33//HU9PT/75R24vLq7gEISIiAjee+89goODcXR0pHfv3rRtK4OWPv/887z44ot069aNq1evcs8993D69Oli63369GlWrFjBnj17MDc3Z+rUqSxbtoxx48aRlJREr169+Pjjj7n//vuZNm0amzZt4tSpUzz22GMMHToUgAMHDnDixAlsbGzo0KEDgwcPxtbWtthyfX19+eCDDwBo2bIl7777LgCPPvooa9euZdSoUcyZM6fUPXnBwcHs3r0ba2trHn744TK/D4qiKIrh/XviOs//ehgXO0u6NKrNtjM3+PNI3jD9/62V0xQcrc1Z83RX/Os53X7uvwvRvP3HCV5ZeZSrN5N4aUAzQ1e/xvlq8zkAXh+YkzKhboBMj6APZlZQtz3YFx+N0d3Ril+e7MSQb3bzW1AoL6vPQYl+3nMJFztLnswXCdPQatla8OukTgybs4cpyw4xbXALHu/WACHUHD1dMd5GnoFpmlboB7Oox4vSunVrXnnlFV5//XWGDBlC9+7dCzy/f/9+evXqhaurKwBjxozh7FmZK2bz5s0F5u3Fx8eTkJCAvX3REa22bNlCcHAwHTp0ACAlJQU3NzcALCwsGDhw4O16WVpaYm5uTuvWrbl8+fLtMvr370/t2rUBGDFiBLt378bMzKzIck1NTRk5cuTt9bdt28Ynn3xCcnIyMTExtGrVivvuu6/U7xnA0KFDsba2Lvf7oCiKohhWeGwKL644gp2lGUseD6Shqx1pmVlEJ6bjZG3OtdgUtoZEYW9lRp/mbng4Fuxx6NLIhY0v9uDFFUeYu/MiD3esj7ujVSW9GuMXdDmG3eej6eBTi9ZeOZERR83X3wZNTEtdvm9dRwIbOPPN1vPc08pdRW4sxqXoJLaducHzfZsUn/rCAJrWsefvZ7vy8I/7mfHPaWwtzXiopGitSqkZbyOvhJ63Ype3rV3m9Vu1asXvv/9e4LH4+HhCQ0Np1KgRR48eJTs7+/ZzqamphZbTtGlTgoODWbduHW+++SYDBgy43cuVq6hGY3Z2Nnv37r3d2CkNTdN47LHH+Oijj+56ztzc/Pa2TExMsLS0vH07MzOzyPoIIYot18rK6vY8vNTUVKZOnUpQUBD16tVj+vTpRb43ZmZmt9/DO5extbW9fbs874OiKIpiWJ9uOEO2prHm6a7Uc7YBwNLMlLo5w8ea1rGnaZ3iT86Zm5rw+sDm/HviOt9tP88Hw3z1Xu+aavXhawB8+3A7+UDoQchIhoY99bthTZPz/krw+sBmjPx+L0Pn7ObA2/1wsdNPAJHqbvHey5ibCsZ2rBqNqcZu9ux8rTfj5h/gzdXHqWVjwUBf98qullFQc/J0pG/fviQnJ7N48WJABhR5+eWXGT9+PDY2Nvj4+HDkyBGys7MJDQ3lwIEDt9c1NzcnIyMDgPDwcGxsbHjkkUd45ZVXOHToUIHtdOzYke3bt3Pz5k0yMjJYuXLl7ecGDBhQIABL7hDQkuq9atUqoqKiAIiJieHKlStleu2bNm0iJiaGlJQU1qxZQ9euXUtdbm5jzcXFhcTERFatWnX7OXt7exISEm7f9/HxITg4GOCuBnV+5XkfFEVRFMM5GR7HmiPXmNC1we0GXnnVc7ZhVHsvfj0YSmR84ScJlYrZcz6aXw5c5YH2Xrg55PSW/jdbRsHUp+86wx+TS7Vo+/rOvD+0FdkaDPp6FzcS0vRbt2roxLU4lu+/yhA/z7z9WAVYmZvy+eg2ADy1NFjNrdQR1cjTESEEf/zxBytXrqRJkyY0bdoUKyur2+kRunbtSoMGDW4Px2zXrt3tdSdNmoSfnx9jx47l+PHjt4OVfPjhh0ybNq3Adjw8PJg+fTqdO3emX79+BcqZPXs2QUFB+Pn50bJlS+bOnVtivVu2bMmMGTMYMGAAfn5+9O/fn4iIsk2A7datG48++ij+/v6MHDmSgICAUpfr5OTEk08+SevWrRk+fPjt4Z0A48eP56mnnrodeOW9997j+eefp3v37kVG5Czv+6AoiqIYRmZWNu//dQpHaxkGXxem9mpMVrbGFxvPqiAsevD99gu42lowra8HJMfIy70fw+jF+t2wMIWkG6Ve/LEuPkwb3IKohDS6zNrC5egkPVau+tA0jb+OhvPI/P242Fny5r3N8vZj7iV/VNOMIk6WZKQWXCcjRWd1rOdsw88T5DHgzHUqjoIuqBQKSoWUN4VDdaM+X4pS9czffYkNJ64zoFUdRneoh4OVOSHX4/lhx0WiElLx9XSkrbcTBy7dwkTA+K4+eNWqWK+RUnHzdl5g5roQPnugDaPae+ms3Lf+OM7y/VeZ0qtRXmAQpcIuRSfR+7Pt/NpsJ52u5Jw0NTGHd6P1v/Ef+8C1YHjlHNi5lXq1f09E8NTSQ3g4WrHn9T6Y1OCE2+ejEnhm+WFCrifg5+XINw+1pX7QTNh7x3Fb3QB4cotsyM3vD8O/A/fWec9npMIXLSAlJu8xM2t44TjYueqsvi//dpR1xyM4/G5/rMyLPqGvSMWlUDDeOXmKoiiKUcrK1pi1/jQ/7rqEh6MVM/45zRebzlLHwYpL0Uk4WJnh6WTNDzsvAmBpZkJmtsbu89H881x3TGvwAV9l++1gKDPXhdC/ZR1Gtqur07LfHdKSPeej+X77Bbo1dqFr4+JzrCklS8vMYvQPezE1Efibh4K9B3R9AYSBBoI1u1c28uLCytTIG+jrwb2+7qw/cZ1l+6/waGcf/dWxCsvIyuappYeITU7nswfacH/buvL37/pxqNUAOj6Vt3Du+xsXBknR8pJf/DXZwGvzEHj4Q9QpOLRIPq7DRt4wf09+PxTGiyuO8P0j7UteQSmSauQpFTJ+/HjGjx9f2dVQFKUG+eXAVX7cdYnODWuz9ImOnAyPY+m+K8QkpTO2ozcj2nnhbGvBvos3SUnPIrCBM5tORfLCiiNsC4miX0uVMLkyrD0Wzmu/H6OeszX/G+ar81DpVuamzH2kPfd+vYvpf51k+ZOdcLVXwTcq4s3fj3MjIY1HO9XHKjoKXJpAp6dKXlFX6nWS1+llH3Y58/7WrD9xnel/n2Jkey9sLGreIe+vB0M5H5XIT+MCCv7uJVwHd9/C96VLY3i5kOGSFnbQ83VodT+4tYCLO2QjLz1Rp3Xu3Kg2jd3s2HDyOpHxqdSpQnMHqxs1J09RFEWpNnacvcG0NSfwrevAsic6Ymoi8PNy4pNRbfjpsQ480b0hzrYWAHRqWJvezd2wtTRjiJ8HLnYW/JETIVAxrKiEVKatOUGbek5se7mX3lIdtPBwYPHEQMJupTBpSRBZ2dVvSkpVcSMhjdWHr+HuYMV797WEhEjZk2dIFjmRs8vRkKhla8Hsh9qSla0xaXFwjZurmZyeyewt5wj0caZvizt6QROvg10ZI1ja14Heb8kGHshGH0Cabht55qYm/DgugGwNnl1+mMys7JJXUgplVI28mvYFVgxDfa4UpWpIzcjig79PYmoi+HikX5nm2ZiZmnBPK3e2hkSRkp6lx1oqhXl3zUmS07P4/IE2mJnq99CjR1NXZo1szeGrsfy466Jet2XM/rsgh+v99FgAZmH7IO4q2Bm4F9wyJ4VGORsSQ1p70LVxbXafj2b+7ks6rFjV99OuS9xISOP1e5sV7DU/s14GWbEvZl+ungQfuBQMwLJ6kkybkcu2NjToCVYOOq97Axdbhvh5cOByDEv3lS3iu5LHaBp5VlZW3Lx5Ux2QKzqlaRo3b97EykoNF1CUyvbl5rNcuJHE/McCaOVZ9mTHg/08SMnIYtuZKD3UTinK9jNR/HvyOi/0a0JjNzuDbHNoG0/uaVWHLzadVREWyyE9M5uF/13GwtSEZu72cGWPfKL1A4atyO2evITilyuCiYngu4fb42xrwYx/TvPPsbJFD6+ujobG8s3Wcwxu7UH7+s4Fn6zfBQZ/Ab6jii5Ay4bsDIi9mvfYha1wbEXe/Vo+8Nhfsjw9+OahtnRv4sL0v0/R4cPNPLbgAKuCw8hWvfOlZjQDlL28vAgLC+PGjdKH2lWU0rCyssLLS3cR4BRFKRtN08jM1thw4jp9m7vRq1npAzDk17FB7dtDNge1NvCwsxoqPTObWetDqOtkzRPdGhpsu0IIPhjmS7/Pd/D8r4dZNDEQJxsLg22/unt55VEOX42lff1amJuayCAcVk7g4WfYiuQOCSzHnLxcjjbmrJjUianLDvHSb0doXdcR79rGG2U3LjmDqcsO4WZvxYzhvncvYOUIHR4vvpB24+D4SkiIANem8rFXz0NWpu4rXAQhBHMeasdPuy9y7VYK28/eYMfZG3y6IYTvH2lPO+9aBqtLdWU0jTxzc3MaNGhQ2dVQFEVRdOhydBLP/XqYY2Eyh9NDgd7lLsvURPBwoDezt54n5Ho8zd11P8xIKWjO1nOEXE/gp3EBWJgZdvBQHQcrZo304+nlh+g6ayv73+6HnaXRHPbozcnwOP4+Gs4wf0+m39dKPjhwFvR5x/CVsbCDxzdDrfoVKqZJHXuWPN6RXp9t44nFB/ltcmejbPRrmsbrvx8jMj6VlU91ppZtIa/xyHLZYG8+qOiCcudeJkYWfNw03/cnOwtm+0PgJOjybEWrXihHG3NeHtAMkJFCfw8O45ut5xnx3X+0qedEvVrWDPHzYKCvOmlXGPVrpyiKolRJKelZPLpgP6ExKYwJqEcDV1vGBNSFoJ8hYIJc6PcnwKNN3kHG0pHy4MPeHYbOge0z4doh+Vyt+kzs8wkL9lxm8pJg/pja9XaQFkX39l64ybfbLzCibd27I5reugzrX5fDwsauLL6glFj465mi52U16A7dXy70qcF+HlyLbc7MdSGM+v4/1j3XvUbnTCuNLzedw97KjA+G+uJoYw7LRkPzwdD+McNXxsQE6nWAfd9D6H54YGG5i3J3tOKl/k2ZuS6EBbsv8VJO48GY7D4fzb8nr/PGvc1p610L/psD5zfLJwMmQMthEHEU4sOLb+Tlzr3c8YlsFMZeAcd6MORLqN1IPmdiCj49wOmOBnhGCqyZCim37i63lg/c95W8fXB+yT2K+ZibmvBgoDcDfd35fvsFtp2JYufZG6w9FsH3Y9txrxqdcRejmZOnKIqiGI/0zGxeWXmU0JgUlj/RkY9H+fFUz0Y4ZcXAgXlwfotcMCMFMvMFB0hPgrhQOPoLxFyEPV9D9Fm4eQGCF+JkmsozfRpz5WYyQ+fsJi4lo3JeoJHbcfYGj/18AJ/aNryX2xuU34WtcPZfSI2X94MXwvIHCy8sLAhO/w2JUXL/3nnJTCu2Lk92b8iUXo0IuZ7A08sPqbn7xfgtKJTNpyP5sHUUjpfWygfTkyArvXIrlpkG6cmQlQHhh2UKgHKY1KMRzd3tmb31PBdv6DYqZFXw3bYLuDtYMaGrj3xg3/cQeSJnH+b81nV+GloXMx8PZMCbto+AdS25ro0LmJiBzR3z+4Z/Cy2HFnzs+gk4uVoO9bzru5rzWx3yD/w3W+7TMnKyseDNQS3Y+GJPvnrQH4Apyw7x+qpjZS7L2KmePKXGi05M43xUIldjkvGqZU2XRiqBrqJUtg/WnuSf4xE80N6LLvmTWidcl0l4cw/sH1xWcMWJ/8LF7bB4mFwuOxO6PCfPOq97BTLTeKpnI9Iysvly81lmrT/NzPtb6zxnW012OTqJyUuCaOxqx7InOsreoDslRAICxuc0JDLTZZh8TYM790VizgH9g8vAuezTMoQQvDqgGYev3mL9iet8s/U8z/VtUuZyjN3hq7d4bdUx/Os5MSR9Gey4JHOiTfinsqsG3V6Ql6SbMK+XHD7aaUq5inpnSEvG/rSfsT/tZ/frfWRycCNw+Oot9l68ybTBLbA0M5XfpcRI2ajr/37egk7e8lIcIWDYtyVv9MYZuLwb/MeCeU6Autzv64h5cpRFYWzdZCNSq1h6hD7N6xDyv4GM/Wk/K4JCOX4tjr+f7WY0+7SiVE+eUiOlZmSx+VQko3/YS8CMzTw4bx+vrTrGwz/u5+0/jhfIrRSTlM7aY+GEXI+vxBorJcnK1thx9gZL9l3hwo1ELt5IZM/5aMJuJasz99VMeGwKS/ddZVzn+nwy6o5AD7ln8IsL/507nyTiaM59dzC3lrczUgB4vl8Thvh58MuBUJYfuFpIIUp5vffXScxNTFgwvkPhc4JAnuW3dQHTnAZgx0mywVdYY7uOL/R4regcbWtfgsXDi62TiYngp8c6YGFmwhebznI8Z46nkmfBnssAvDOkBSaJ1w2fLqE0bJzBxLzcPXkAXRu7MKJtXSLiUnnNiHp/ftp1CUdrcx7MnbecHCMjZOozt+GVPfDPSwWHZubum+Ly8NXrAD1eBcuKR9u1Mjflp3EBtPN24lREPHN3XKhwmcZC9eQpNc7ZyASe++UwIdcTsLc0Y2qvRvh5OdK0jj2/BYUxd8cFTlyLo6WnA0dD4zgTmXC70TfM35MZw32xtyrkzLRSaWKT03l6+SH2nL9Z6PMOVma08HBgdEA9RrSrq3ptqrDw2BTu+2Y3IIOs3LWvDi+V18UduOQenO7+ImdZd6jTSuZ0yrfeh/e3Zte5aObvusSo9l7y7LdSIeejEtlx9gav3tOs6ITnWZlwaBHUaV3w8fhwiAuDeoEFH/f0l5eiuLUAa6cS62ZnacZvkzsz/Ns9PLH4INtf6Y21hdrnAKfC4/n7aDhjO3rT3kWDa8HQ5qHKrtbdhJDf74Pzod/0wk8KlMKskX4cvxbH6sNhTOzmU66ULFVJWmYWW0OiGNXeKy+40Jl18rq4E2IVZZGTxzB/9NMGPeTcPdtiRkVlZ0P0GbgRInuLK6iWrQULJwbiN30jn244w9A2ntRzNt4IqqWlevKUGiM9M5vPNpxhyDe7iU5M4/ux7fjvzT68NrA5A309aOhqxxv3Nufjka3JyNLYdCoKS3MTJvdoyMqnOjOgZR3+PBLOg/P2kZlVsSEGiu6cj0pg+Ld7OHjpFm8Nas6GF3rw4f2+fDrKj2VPdGTGcF+GtPHkVnI6L688yuQlwcSnqnlYVZGmabyx+jg3k9IZ1NqdZnXs717o6l55bVtMGgWrnAM2E3N4KwLqtpdzTJzqFYgO52htziv3NONidBLtPthEUprhwoMbq4X/XcLcVDA6oF7RC13P6WF1yNdQT4mFL1rAri8KLpsSCxvezuuVLUzgk9D33VLVz7+eE6/e04zI+DSeWX5I5dzK8dH60wCMbO8FITlDaOsUEn6/KrCtLfPm3Sp/cnMLMxN+ndQJN3tLRs/dS7ePt/LttvM6rKRhbToVSUpGFn1a5PtdDMkZZuuux7QXheUxdG0GARPlEPmiZKbAd51g6wydVcXBypxlT3QEYNDsXWxX+VBVI0+pOb7cfJY5284zyNed9c/34N7WHoX2yI3p4M2657sTNK0ff0ztymsDm9PBx5l54wJ4d0hLTobH88APe0nPVA29yqRpGuuPRzD82/9ITMvkl0kdmdSjEc3c7RnbsT4PBNSja2MXHulUn5n3t+bf53swbXALtoREMWzOHk5HqOG3Vc3J8Hh2nr1Bc3d7vhvb/u4oiFkZkBIDPd8oGMr7TkJA/w/kUKXsDDkk8NYV2PEpxIYWWHRMQD1GtK1LUnoWX246q4dXVXPsOR/Nsv1XebCDN672lkUvmDucq9ebeY9ZO0HTe2XQnPwSIyFogYzGWZwyDMme3KMh7byd2BISxa8HQ0tewchtPhXJrnPRPBRYT+Yey90/gZMqt2JF6fuevK7AkE2A2naWLJ7YkSF+npiZCH45cJWEangCUNM05u28SAMXW3o0cc17IjESGvXJi4apD7nDLXMj38ZHwMrxMlhScSxsIXCyDKakQ10bu/DWoOYkpGYy/ueDLPrvsk7Lr25UI08xeplZ2Xyz5Rw/7LjA6AAvvnqwbfEHIMWY0NWHp3o24vDVWFYEqYODypKSnsVDP+5jyrJDNHK15a9nutG+vnOx65iYCJ7o3pBfnuxEYlomQ+fs5q0/jhN2q+zRvRTd0zSNh37cB8DiiYGFL5R7QGBfzFyPXLmBBTa8La/jQmHbDBlxMx8LMxNmjmiNEPDT7ktsPFmxA8ea6pcDVxn/8wEautjy2sASQtPfnld5x360r3P3gbtrM3grHJrfV3R5u76AD5xl6oxSMDM1YdkTnfCpbcP7f5/kbGRCySsZsSX7rgAy8iQgA2dYO4NZFU0vkvu5qWAjD6CZuz0fj/LjkU71CbuVQuvpG9lWjXqAMrKy+WDtKY6FxTGlV6OCAUfqd5GNPH263ZOX08hLjYXrxyGtFN8pe3dIi69QovvCTOrRiOBp/Wjoast7f51kytJg1h4Lr5Fz89WcPMXofbP1PF9vOUff5m68W1go7zIQQvD6wGbsPHuDLzed5f62dVVyXQPTNI231xxn/6UYpg1uwaOd65dpLlVgA2f+fb47M9eFsHz/VZbvv8pzfRrzfL+mKiKXIV07BJEnb989fPUWAzNCaVPfEbf0ZkBjSLwhw+w36gOOdSHsgFy4NI28ZoOhzzSo10ne9+4M027kBfrIx8rclD+mdmX4t3uYtCSYT0b6MbpDMcMNlQL+PHKNN1cfp2dTV2Y/1LboOctHlstGm3MDOd/rziG3du6QHA2HFgM530VhIufsWBQzv8bMUkbpiwuVebhKwdrClN+e6kz/L3by1eazfDe2fanWMzYXbsg5lJN6NKSBiy3cOCu/m6X5jlWWohJ1V8CDgd5YW5gya10I0/86SecXamNlXrXna2qaxku/HeXvo+GM61yfUe285BMRRyHiGAyYUe45i6WWOyfv7AZIipZzZ58NLt26uZ+xAz+CTW1527XZ3XNyy6G2nSV/PdONZ5cfYv2J66w/cZ1zfRMZ1NqDZu6FTAMwUqonTzFafx0NZ8LPB/h223mGtvFk/vgOOmmQCSF4rEt9YpLSmfbHcR3UVCmLrSFRrD50jef7NuGJ7g3LFSyjtp0ln49uw8YXe9zOmbR8/xU91FYp0qoJMsF1zqXdkXf41Hwej0R+CqGyR49bl+TzN+R8IZk2QYBL05LLN7OQ0dsadJf3TUzlY0Uc9PjXc2LTiz0AeO33Y1yPSy10OaWgtcfCef7XI7TxcmT+YwE4WhcTlOrvF+DUX7LRfv/cu4fcurWQ1389m/fZ2PQubHm/+OGYucmYgxeWqe5u9laM6VCPjScjiYyvmfv72eWHGWBykMdTF8v3+MpuiDgCrs0ru2pFs64FphayJ+/0Wtj1eYWLtLM0Y2zH+gxr68mVm8m8uOIIKeml6xmuDJlZ2Ty9/BB/Hw3nxX5N+WCYb97w9jPr5XfHEOzcwMwKgn+W2zy3sfTruub0+G9+L+/7vuwB3VXN0oyfJwSy782+eDha8fWWc9zz1U7OR9WcnntRHbsvAwICtKCgEsb7KjXaX0fDee6Xw3g729CzqSsv9W9adCjvcsjO1nhycRBbQqL4+5lutPaq3pG5qovsbI1Bs3eRmpHFppd6Ym5a8fNUmqbx6PwD/Hchmh/HBdC3RRUMG26MPm0MDXtD33eJSU5nyOzdjO3ozdO9G8uDOEs72ahLjJJR2sytZeLczNS7E/KWRlI0bJ8FfmNk+O4ibDh5nclL5JnoXa/1VhHainH1ZjKDZu/C1d6S+Y8F0NC1hHDosaEyAE5xkTATruclbc5l5QhWDsWXPd1JBmAZ9Glpqn7blZtJ9Px0O8/3bcKL/Utx8sCI/HviOk8tDWZZg3/pmrgZXj4th9mlxMresuLmvVa22W2hyT1yeOCpP2XPcOsHoH7nChf9wd+nWLDnEp6OVrw8oBl1HKxwsjHHt27V+J9Py8zijd+P88fha4xq78WsEa0xMzWBVRPBpRl0egpS48HRS/89eSA/L7nDM60c8gJflUZS9O20Nlw/JvOathiq83rHp2aw51w0U5YdwtnWgq0v98TJpooORy4jIUSwpmkBhT2nevIUo3MtNoW3/zguJ9a/3JP/DffVaQMP5PyuNwfJM52PLzpIWmbVPeNnLNIzs3n3rxOEXE/gpQHNdNLAA9kzO2O4Lw7W5jy+KKhaR1irVrIy5MG+Uz0m/nGdcFxo2bKVjICZO5nfzFLez81xZ2FTvgYeyAOJgz/m9QoWYUDLOrx6jzzD/OVmFYilKBlZ2Tz362GEgCWPBxbfwPvvG/ixrzzoLCnVgb273Of5LyU18AAc6pZrbk/92rb0bOrKLweukppRc37Hr8el8tTSYMxMBL7jvoCXTsknColCWyU9ewjunSVPCth7wMnVJQfnKaV372vJJyP9uJGYxssrj/LI/P3cN2d3lZi/nZWtMXHhQf44fI3xXXz47IE2soEHEHoAYq/IRpZTPcM08OD277j8rpaxIWzrkrdu88HQcphe6u1gZc69rT14bWAzYpLS+W57zcilpxp5itGZt+MCaZnZfDWmrc4aAoVp7GbPRyNaE5WQxsu/HVWhuPVI0zTe/uM4S/ddZXwXH4a01m1yVx8XW3a80puGLrZ8vfkcUQk1c+iWQfV+C5oPJjw2hSOhsUzq0ZBeTV1LXq+8chuKcdeKXUwIwdRejbCzNGP1oWtq2GYRvtl6niOhsXw0ojVetUro7Ty/Rc6X0+dBp4Vt6YI9FOKJ7g2ISkhjzA97OXO9ZgzlmrDwIACfP+CHY1qE4RoEuiIExF6FsINymO/rl8Ffd3n9Rneox743+7Lyqc589kAbNA2OhcXprPzySE7PZMrSYPacv8krA5ry3n0tCy6QlpAXCKU6SkuAE79D9Dm9bWJKz0b413Ni3s6LvLPmhN62U1WoRp5iVG4mpvHn0XD6NnfDu7b+h1k92KEe3Zu4sPZYBCuDVbRNfZm/+xIrg8N4rk9jpg9tdXdofR1wtDHn0wfakJ6VzSM/7dd5+codOk6Ghr14dZXMfzbEz0O/SepzD372fVfiokKI2/mWRv+wV391qqaOhMby7bbzjGhblyF+nsUvnBgFF7eBRQlDOSvK0q7cUfq6N3Hl6wf9OREez/Bv93AsLFa3datiQmOSOR0Rz/1t6zLM8QIsGCiTi1cnR36Br1rLqI62LnJod8zFu4f6VkBtO0s6+DhzXxsPLExNWBkUSlYlncxNz8xm4Fe72HgqkvFdfHi6d+OCv5eaJt8LfX/P9CkxClZPht1f6m0TQgg+GtEadwcrluy7wqZTugveUxUZrJEnhKgnhNgmhDgthDgphHg+5/HpQohrQogjOZdBhqqTYlyu3Exi0pJgktIyDTa3QgjB4omBBPo4M+Of01ViOIex2RoSycx1p7nX150X+ul3v7avX4vh/p6cjUzkyk3dhnVW7hB9juuR4fx34SYtPBxo5ann+S7m1uAVKIMElEKbek4MbePJ1Zhk3lIBlm5Ly8zipRVHqGNvyfRhpYhWfCsnoFHnp/VbMQvbvDDu5TDMvy4bXuiBs60FExcGGfVv+e+HwgCY0qsRxFyA+Gsy+mx10rAXmOQMKe32Ipz8Q87Ti72q801ZmpkyqLU7287c4PfgMJ2XXxqTlwRxNSaZST0aMn1oq7tPiGWly/ls1bknr3YjmLwDhn2r18208HBgac5JvCcXG/cUDUP25GUCL2ua1gLoBDwthMjta/5S0zT/nMs6A9ZJMRJR8ak8NG8f5yIT+HRUG5rWMVyIXCEEnz3QhrTMbKP+sagM645HMGXpIVp4OPD56DZ66cG70ys587FeXHGkRubVMYjsbJgTQPiGr9E0+G5sO8Okr/BsKw+GSumTUX7413NixcFQ/jxyjZT0rBo//3bJ3itcjE5i5ojWOBSVKiG/xJxcZnX1nKLAwr7C+bYau9mxcEIHUjOymP7XyZJXqIZiktL5avM5HKzMaOxqBwmRyIi1TSq7amXj4CFPHJhayOiqdjkBsxIi9LK5mSNaY21uymu/HyM0xnAnAJLTMxnx3R62nblBW28nXh9YRNTT3GTkltU8PUCdVgYZOtzYzY7lT3bEq5Y1n244w0ojzXtssEaepmkRmqYdyrmdAJwG6hpq+4pxm7fzIlEJaSx/shPD2+Z8rNKTIStT3s7Okvf1dNDuXduG4f6e/HkknKS0TL1soybRNI0vNp5h6rJDNHO3Z/HEQGwsDBMIwKuWDYE+zhy6GsvXW/Q3N6DGGzmf5fFtaFrHTubnMgQzSxmds5SszE1Z8ngg7evX4vlfj9Di3X9p8c6//HchWo+VrLriUzP4dtt5ujdxoVczt+IXzsqQv7lxOT0f9rqdR3uXAf+DBxbmRGAtfUP+Tk3q2DO1dyM2n44yyv28+lAYlqTz5YhmmGSmQHyYHO5YSP7IKu/KXnnSRoi8z1fsVfkZSE/W6dBNGwszvhzjD8DYn/YbZNhmdrbGoK93cehqLD2buvLz+A5FnwxLz5lLWp178kDOyfu2493zazPT8vZrerI8pgN5jJeeLE8cllGXRi6sf747jtbmvG7gxruhVMqcPCGED9AWyJ348owQ4pgQYoEQolZl1EmpvlLSs/gtKJR7fN3zQhxvfh9mesghHABX98r7617VWz0eCKhHcnoW647r50xiTZGemc3Lvx1l9tbzjA7w4vcpXahtZ2nQOiyaGIiFmQlfbT7H7nPGd6BX6UxMSGgyjNXXHBnQ0oBJl82sZCOvDCd77K3MWTwxkBnDfXl9YHNMhGDP+Zr5mfjj0DVuJWfcjj5arEOL5G/uv2+AiblsSOhT7UayN+rz5jK3XgVM7NqAuk7WPLP8MJejjWvYdti+1Zy2mkDf1W3k/jm8VP8NcH0JO5B3Ozex9pop8nXN9IBZ9XN6KnVjoK87w/3lEO5uH2/lWmyKzsouzMrgUC7fTGZMQD0WTQwsPuT/vu/ldVmjW1Y1WRlwI6Tgfju3GT50z9uvMz3g0g75XMjf8n70mXJtzt7KnN+ndCFbg5d/O0pmVtkbi1WZwRt5Qgg74HfgBU3T4oHvgUaAPxABFJrVUggxSQgRJIQIunHjhqGqq1QDfx8NJz41k0c71c97MPwQOHmDe2t536k+DJ9b5hxKZRFQvxYNXGxZWUlj9o1BXEoGjy04wOrD13i5f1M+Humn1wipRbG2MGXdc90AeGT+fkKuxxu8DkYtK4Pwwxtx1WJo6+1kuO2a58zHy0wr02pW5qY80qk+U3o1omkde77ddoFen26rcUM3/zh8jRYeDvh5ORW9UHaWbER7dYB+78vL6MUyGb0h9H4Tmg2Emxcg4mi5irAyN2X60FbEJKUzceFBo0mtEJ2Yxs1bt4i2bwF93snbP4O/qOyqlc9Te+QFZBj/UT/nvaaAiZCRBNG6TYPy6QNtGB3gRURcKiO/+4/4VN31Fua37+JNXv/9OB6OVsy437fkFZJj5HWjvnqpj8HkNtZzh3kDRBwBLRv6vpe3f50byefcWsn7tiWMLChGYzc77vV158DlGGZvNa4pNwZNhCKEMEc28JZpmrYaQNO0yHzP/wisLWxdTdPmAfNAJkPXf22V6kDTNBbvu0zTOnZ0bJAvf1ZCJLj7gVvO+HWnejoNr1wYIQSj2nvx6YYzXI5OwsdQQ9CMRERcCuPmH+DyzSS+HNOG+9t6VWp9GrvZs+TxQB6df4BP/j3DgvFFJ9BWyigllmYbHmaA6XiauY803HY92kD78UD5/0I+GNaK3w9d45cDVwmYsZl1z3WvEQnTL0UncSQ0ljfvLWJOUK6gBbBxGrx4Erq9YJC6FdBpirxe/qBM2zBlT7mK6d+yDk92b8CPuy4xddkhfhwXYJh5o3q0MiiMv7O7MOWh13HzLEXuwarO/Y7Gj++IvNs3L0BUiM6HoZqbmvDJqDY0dLVj1voQen+6ndp2FjhZW9ChQS0e7OBd4d+Ds5EJPPTjPgDmPNyudCc6/R+Cxn1lLtHqzC6nkZeQr5GXGCl7KLu/dPfyrk3l5dASOLEKxv1Zrs3OebgdATM2MXvLOVp5OnBPKwOOMNEjQ0bXFMB84LSmaV/kezz/OIH7AeNPXKFUyK2kdH7adZFZ60N4bdUxTlyLZ3yXBgWjTSVE5J0RynVhKywZkXfGSw9GtvPCwtSEUXP3Eptc/nkhNU1KehZPLg7ielwqiyYGVnoDL1f3Jq4826cx289E6X1oTo2SLc9+m5lZUNfJ2nDbbdwP7vs6L2deOQT4ODNjuC/jOtcnITWTMT/sZdoa44++uTIoFFMTwf1tS5hK794aOjwB1pU888K+TsEDxXJ4894WtKnnxNaQqNsRKauruOQMvtl6jj7N3WhpDA28ktRuBBPXg3cnvRT/VM9GzHm4LR18nGnoYpczX/UCPT/dxkPz9rEtJKpc5WZna7yy8iimQvD7lC60r1/K71GjPtDmwXJts0qxzw2gk++7mxCR1/grSlIUXNwu5+eVg6mJYNkT8rMyeUkwO84ax4hBQ46D6go8CvS5I13CJ0KI40KIY0Bv4EUD1kmpZjKysnlk/n5m/HOan3ZdZGVwGN0au/BAQL5GwbnNkBp7949Cahxc2AL75+qtfu6OVkwb0oLoxDR+M9JoTbqmaRpPLz/EyfB4vhzjT5dGep67U0ZjOtRDA1YcVPtTZ3ICItR2tNVvbrzCZGdXOACTqYngg2G+vDWoOa72lizdd5VR3/9ntEGX0jOzWRUcRs+mrrg5lJCCwrsT3POh4YZnFsXOHZKj4cK2chdhYiJYPaULfl6OvLPmBL8Hh7H7XHS1G7554UYi3T7eSnJ6Fh85rpEnO2sCTZN51/QUcG2InydzH23P3Efb8+8LPdj0Yg8e6+JD6K1kHl90kOPlSJ7+34WbHAuLo1PD2qVv4IHstYw1gv8oKyeZGiN3Xm1iFJz+O6/xV5TceaVB5c/32NLTgVVPdcbcVPDkoiDWHL5W7rKqCkNG19ytaZrQNM0vf7oETdMe1TStdc7jQzVNU1ErlAIOXb3Fd9vPszIolGl/nOBkeDzfPNSW8zMHEfK/gSx5PLDgcIbLO+W17x1/ZA16yutI/YbGHtfZh8AGzsxcF0LQZf31GhqL/Zdi2BoSxZv3NqdfyxJ+yCuBVy0bejZ15beDoUY3KbuyaDmNPDcnAyfuPbEaPqils3k6k3o0YvHEjnRq6EzQlVsM/3YPV28aX4S2tcfCiUpIKzjvuTCJN2DL/+BG+YIg6JRvzjDgy7sqVIypieDn8R2oW8ual1ce5ZH5+5m/+5IOKmgYcckZ3PfNbhLSMnmsc33cPOrJ+eo1wbHfZLTGOyM16kmTOva8d18r/nmuO3aWZvy462KZ1k9IzWDykiAA5j5axpQjv42DDW+VbZ2qSAg51UbLkvst97fEp3vx6zXuJ6/Dj1Ro8wE+zux5ow+1bM15YcURPvznFD/tusitpOo5MqtSomsqSmmkZWbxv7WnGD13L5/8e4ZXVx1jRVAo97ety31tPAE5Qf6unoCE6+DoLYdr5GfjDA176y2PTn5v5Mxbmf73yRoXnKEs0jOzeeSn/ZgIGBNQdQ88Hgr05np8KtvPGMcQjsoWHS8jFtYxdCPPrSX0fEOnQwkdbcz55clOTO7ZkIi4VO75aifv/33SaHIshsem8NmGMzRxs6NXM9fiF465CLs+qxo9Cq5Nwd6zwkM2AWrbWbL22W78PqULjd3sWH0ojIV7LlX5fZydrTHs290kp2fx9qAWvD/MF9HpKbjvq8qummE06A6Pb6zQ8OzycLQ2Z3jbuvx1NJxDV2+Ver3PNpwhKT2LtwY1x86yjCEzBn0CXZ8vY02rqI5PyeuE63IfvhcL3V8pfh07N6jXSc7fqyA3eyt2vNqbbo1d+HHXJWb8c5rZW6tnOiXVyFOqrFnrQ5i/+xJD23iy782+bH+lF38905XPHmhT/IoJ14vu2rf30GlI5aK0867F3EfaceJaPA/N28eKg1f1vs3qJjUji/u/20NmtsZzfZvgaFN18zT1ae6Gm70lvxxQ+1EXLkfFAuBey8CJe92ay+iLduWPxFYYIQRv3tuCDS/2oKGrLT/vucyMf07rdBuVISYpnUfn7ychNZMvx/iXPLQ2NyJeSUOrDMXeXSeNPJB50trXr8Vwf08uRicx/e9THAmN1UnZ+pCdrfHk4iAu30xmRNu6PNmjYWVXyfAcPKFuu0rJAfhQoDxp+eKKI6XKqXfo6i0W77vC+C4+TOrRqMTl79KwF3gFlH29qujOeXlCgEkpmiv27jo7iZ+bI/XUB/fQsYEzP++5XC2Hbxo0uqZR0zT4pZDojf4PQcthhq9PNRefmsGy/VcZE1CPj0f5lbzCwZ8g9ACMmAcNe8ox3YWxrwMJ4TLyGkDd9tAzJ3fe6snyRzLwSTlv59eHC67b4XFo0r/Ur2GgrwfvDmnJB2tPcehqLH2a18HV3rD53qqyr7ec42R4PFN6NeK5Pk1Kv+LGdyC6kLNqlnYw8id5e9fn8g8iN2VG7jpmlnDPTHAsIXjEHcxNTXiwQz1mbz3P3B0XeKpnOf6EldsuXo+lA1DPxcABILIyIOIY7PgYRM5Bg2sz6P++Toqv62TN71O60HHmFubvvkRgA+dqG6VN0zRe/u0IobdSWDIxEF93W9g2E3rnDAnb8gFEniq4UlxOD15JQRIMxd4dLu+Rv/cP/6qTIp/p04SHO9an/YxNfL3lHPMeDcDCrOqdL/9q81m2hEQx3N8z7z80JRY+rg9+D8KIHyq1fgaRngTBC+H4KrDLaTjYucLgL8FUv4e/LTwc+HSUH6+uOsZbq48za2TrIk+SZGRl89bq47g7WPHKPc3g7EYZpfb+uTI1xNEVeTl/C6VBLR/oOBmcjaAxX6c1jJwvf5t/eQgcvUqX/sreHc6sk9/3Rr3l+wGyjFb3g99oeV/TZMOxBEIIbCzM+HikH1OXHSL4yi2GlxR4qoqper9M1Vn8tYKXy7vgYPkngdZkvx64SnpmNg93LOUQvtS4vDM43V8uethCk3tkGPXcfZSSb85c4nUZsCVX/n15cbtM7ltGE7s1YOEEGXq/w4ebiYpPLXMZxuhkeBzzdl5kdICXTDBd2tDkaQnw32y4fuzu71v+M/bJMXLCdq6kaIi9AqfWwMXyBWJ4okdDnGzM+XrzuWoXeKGquRgZC4CNtWGHUZGWICf0J4TLz0zEUdjzFWToLnKqlbkp8x+TZ9QnLwlm38WbOivbkP48Es62Mzd4e1ALOjasDbcuw95v4VLOnOek6Lu/g8JEntS0qV2pdb+t1f1Qq76sG8DZDXB+S4WLdba14MV+Tdl+5gYP54S6r0r2nI9m9tbzPNDeiy/H+OfNWQ8/JK8rO/KpoZiYy//u7Ez5GYg6BYcWQ8wFg2x+RDsv2nk7sSIolEX/XS5yuUX/XSbkegIfDPOVwzQzkmR9tZw54Gnxd3/X7ryE7oe46tfTVCjb2tB6lBxxUbsRmBaTBD6/ZvfKIfnx1+QJjVzx1+R7CLB4GKx4pEzV8XGx5fcpXfhgWKsyrVcViKo+prwwAQEBWlBQUGVXo2QrHpG9B0/vr+yaVCuhMcnc89VO2UU+IbCyqyMtGioPBJ/YVOZVs7M1vt5yjq+3nKO5uz0PBXrzWBcf3dexGnl6+SF2nr3B7tf6lG2YZvR5mNMe7p8HbcaUbaMZKfChu0wC3KOE8f1F2HXuBo/OP8CM4b6M7eht+MiQRmLy/77mh6x3Ydxfsue9shxeBn9OheeOgHMDnRZ9MjyOwbN3Y2thysFp/bCxqD4DZ9Iys+j7+Q4crc35+5lu8iRMarxMQ1O3vcw7Wh392Efm23q0uF6R0tE0jddWHWNlcFjZQt3rWXhsCl1mbcXdwYrtr/bCyjxflNPTf8vjksm7wKMUI2SMzaVdsGiIQX93cofNbj97g98md77rc5KcnkmPT7bR3N2BpU90hMx0MCtlo0YpuyUj5Mn9SdsruyY6I4QI1jSt0LG6qidPn+x0Nz64Jvlso4ymNOP+1qVbYelI2PqhHmtEheZ2mJgIXujXhAc71CMhNZNP/g0x2lDrpXEsLJZ/jkUwrnP9ss/Dq8icH3NreYBXgTk6nRrWxsnGnGlrTrCwmDOzStGu3EwiOMmVHb4zwa1F5VYm93Okg8n6d2rl6cgno/xISs9i2b7qNZdzyd4rhN1K4Y178/WyWzlAq+HVt4EHMHoxjPpZJ0UJIZg+tBWO1ub8VMYoivqSmZNiCOC1gc0KNvAA0hLltaWBAx5VFbm5c/XwfS+KiYngk1F+WJmZMOaHvVy8kVjg+fXHrxOdmM6zfRrLB77rJKeOKPphoLgMVYVq5OlBXEoGH/8bwoozGZAaR1q4fkP2G5N/T1znzyPhPBzoXbokyYlRcH5zwWGW+mBXB+Kulns4hBCCWSP9mP2QP0npWbyy8qiOK1h9rAoOw9LMpHzz2hy9oO+74NKsfBu395BzNLLLlwrB3NSERRMCsbc04/0qHnihqvps41lihCNN+k3UeQCUMsudO3Z8pV6KHx1Qj+5NXJi74wIp6dVjiG9UQirfbD1P9yYudG+SL5pmQqQc6piWWPTKVZ2jF9wIkakedMDW0oxHO9Vn/YnrzN1xodKjbX6z9TwXbyRxr687I9p53b1Aes6+s6ihjbzceXmHlxh0s7XtLFkwvgOWZiZMWHiQRf9dJjZZhuTfeiYKFztLOvg4y+9YzAUZCVzRj9y4DLHV68RbealGno5tDYmk/xc7mLfzIgcyGjIvczCv/XWe9EyVX6skyemZvLn6GAATupVy6FTuwZlHCRE3Kyo3atWR5RUqpp13LerXtmH9iesEXyl9aGVjEZeSwd9Hw+nXsg72VuWIeFbLR865dPAoXwVsXCA7A6LKf+KlTT0nOawGGP7tHm4mppW7rJokLTOLWetD+PtoOAsa7cAz+LPKrpL8PEGFEmaXZEqvRtxMSmf9iao/quPEtTju//Y/UjOymDa4ZcEnL++CpSPy5rdVR+nJsGe2zJ2mI0/2aEgTNztmrQ9h+l+Vd0I3LjmDr7fIgFRfjvEvfKGa3sizzInme2mX3hKkF6Vjw9rMGduOrGyN9/46Sbv/beLxhQfZdCqSe33dZY/5sRVyYQ9/g9atRvGSMRI4vLRy62EgqpGnQ78FhTJxYRC17Sz58+mufP768zgMncWfl80Y+9M+/j1xneT0mjtMryRfbjpLbEoGv0/pXLpePID4cDCzAv+x+q1cy2Ey2lMFI6UKIVg8Uc4zfO6Xw5V+5tfQ3v7jOIlpmUzs6lP2lTUN1r1WscAJfd+V1xUMq96mnhMfjZDDiQd+vYv41IwKlVcTfLbhDHN3XMDeyoxApwS4VQUSSlvawfh1MuKqnnRuWJv6tW1YcbAK5I4rxrYzUYya+x/Zmsaqp7rQzP2O9BbG0EAwt4ZzG3U6jcLR2py/n+1Gc3d7Fu29wm9BlbOfpywLBmDZEx3vHqaZKy1RBscxcN64KkMIeCMU3o4oVXRFXevdzI3dr/fhn+e6MaClO1tCojA3EUzMPamdEAHmtmWfb66UXrN7wdZVZ6lVqjrVyNORm4lpzFh7io4NnPljahd86zoC8KBHJL/0judUeDxPLQ2m9fSNzFh7SkXnu0Nyeia/HgxlaBtP2tcvw1CFxEg5BMMQP9itR8kEuxVUv7YtE7r6cC02hU82nNFBxaqHbSFRrD0WwbN9mpRtH+fKSJY9t5EVOFvu4AFO3jKUfgU9FOjN+C4+3EhIw2/6RmZvqZ7JUg1h38Wb/LjrEve0qsPRdwdgM+p7GLWgsqsl+XSFZgP1VrwQgocCvdl/KYajVXR47/YzUUxeHExjNzv+eqYbrb0c717IGOZzCSH/L3Q8J8vK3JQfHm1Pc3d73lp9nONhcTotvyTBV2L478JN2nk70aVRMZFN05NkI70mB4yycqj0Rm4rT0fmPtqetc92Y8vLvWjgYiufKC7Hr6I7du4GnZdZmapPuK8qbvn+q8SnZvLh/b4Fz6Lt/YbOUac5OG0vZw5sZN/hYyzYHcPlm8nMe7R96UPHG7lVwWEkpGbySKf6hS9wco08OK/bDrKz4MRq+XjkKTnPyhCiTkPIP+WOzJjfywOa8e+J63y//QIdfGrRp7lx/7Anp2cybc0JGrvZybl4USEyTHTd9nJ+XGmGT9VuCK9fqtgwGydveOG4HI9/bCU0HSCDsZTTu0Na0tLTgZ92XWTOtvNM6tGw6LPoNdR/F6IZ//NBAJ7r26Tq/eYlx8iog/UCZSCY+HB5AODZVmebeKRTfebuuMA3W8/x02MddFauLvxzLIJnfzlECw8Hlj7eESebIiL7XflPXpvbGq5y+mDvDtdPyO8/yAZP474VTitQv7YtKyZ3pvdn23lhxWG+G9v+7t5QPflq8znMyOTz1qGI46vAxBR8R8gnr+yVKYaaDYT0hOrdE6sLcddg6/8gYKL8zkeFwPXjJa/XbGDecM/8MlLh7L93nzh08ACfbsUW6VvXUa53eq2M/hxlwOOZmszeXe6zXFf3y/yCdq5Fr1NNqUaejvx78jqBDZxp7HbHj0D//4EwwcbCjLbhK2h7cw0ta/XjsdMTmbjoIHMfaV/jDwrjkjP4ctNZAhs4E5A/vHBGqkxeLQSsfQFaP5DXyFv9RN5ybcuW86TcghbIvIc6aOTZWZqx5PGO9PtiBxMXBvHKgKY8U5aE4NXMl5vOci02hZVPdZaJg1dNkGfUx60BtIL7sygBj8tGoS7OQocFyW1O3V+hRp6JiWB0QD3ikjP4cN1pPvznNP8b7lvx+hmJy9FJPLkoiPTMbF4b2IxWnjnv9Z9Py1xq/T+o3AoC3LwAfz8n03K4tYBTf8lk6a/rbjipnaUZj3dtwOebznLiWtztkR6VKStb48ddF5m1PgQXOwt+HBdQdAMP4Mw/8lrPSaT1zqUpHF1e8Den5xvQ+80KF+1obc7UXo2Y8c9pRn7/H4fe6a/3ROnbzkSx61w0X7S5QYMtL8sHLezzGnkH5slGTLOB0PVFaPuoXutT5YmcuW8dn5L3z/4Lm98reb1nDxXeyLt1GU6uhlN/3rkheONKyf8vN87Anq8h7IC83+6xkuuiVIxLUzifLx3Wv6/LY4vBn1denfRE5cnTkcS0TKIT0vBxKeYsZ3wE/PoQ2ea2PG81g7+PhuPtbMMjnbx5pFP9apVHSVeyszVeWXWUNYev8fez3fIOAgHWvghn1sPLIfJAzNJBnmnRNHk/V636YFqOIB5llZUpI2zaucMP3eWfROCTFSpy17kbvLjiKNGJaTzbpzEv9W9qdLnXQq7HM+jrXYzp4H17HhsRx+TZ5Qbd796fRbFy0F00xrQEGcnMxhl2fiYPgBr0KHdxmqbxzC+H+edYBKue6kyAj4qOdjoinqFzdmNjYcb657vjmX+e7ffdZCj+h36pvArmF3dNHoxZ2sHWGbDzU3grHCx012sVn5pB11lbcbO3ZPXUrjhaG+A3qwgxSelMXRbMvosx3Ovrzpdj/Is/2ZidBR84Q6epMPAjw1VUHzLTC0bWWzAA/B+GATN0Unz+vKgv9W/Kc331d/Ju7bFwnll+GIAD/S7gtvsdeHyz/F2rnRO9OOE6ZKbmBRlSZFRuKyeZjy45Rl5KYm4NN05D/W5gblXwuaTogsm3T/8JWz6Qo0acvEsuO38dDHU8U5NlZULslbzvyP55UKdliT2vVVVxefJqXqtCT+wszbCzLOHtzJkPZBJ5im8mtGVAyzp8tvEMM9eF8MWms3RuWJvmHg7YWZrxYId61LazNEzlK0lkfCoTfj7IqYh4nu/bpGADD+Sfk3XOwXLulxHkmTiXxoaraC5TM9mlr2nyoPDW5QoX2b2JK/++0J1hc/bwzdbzJKdnMW1wC6Nq6K0+dA1TE8HrA/OlPcifiLcy9qelvbxkpsG+b8HaqUKNPCEEU3s14p9jEXyw9hR/PVM9/yx0JS45g2Fz9pCRpTH3kfYFG3gAWelV60DGsW7ebed8B8f5f3cqyMHKnKd6NuLTDWd4/++TfDzSD3NTw0+LPx+VwOOLgoiIS+WTUX480N6r5N+b9CR57eCp/wrqm5lFwd+bVy/odI6aSU4gja+3nGNVcJjeGnnpmdl8/G8I3s42LBgfgNvxYBCmskfCJN/nKjc3nJIn/8lCG+fSpSw49husfhKePlhwbn7KLflfYuuS91itnEAqpU03Uto6KLphalbwt73jpMqri56pwCuGZucON89Bdjb3tfFk+yu9+HVSJwb5enDmegLzdl7k0w1naD9jMx//G0JWdvXraS2N7GyNl347wqXoJD4d5ccL/e74I9Q0iDhaNSchCyHrFaGbXHcudpb8+UxXXOwsmb/7Ei/9dpTPN54xiuA8yemZ/HH4Gl0bu+QNBYsPh11flDvnoE6ZWcq5ODrYl608HZnSqxHHwuJYsu+KDipXff11LJz0rGzevLc5nQsLBJGdASZVqJGXX+5vTozuo38+3bsxw/09WX3oGm//UYp5QDp2JDSWEd/9R1JaFr9O6sTogHqlO6F0O7JmNZ+PVxg9nFBztDbnjXubczUmmXXH9ZM644G5/xEak8L0oS3lNJGIo3IIvIk6rNOLhr1h4gaZazG/NVNhXu+Cj+UO60wvRSPv0GL4tAkk3dRNPZWyS7guh+lXw5GNJVG/BoaW+wMRNB+QPQCdGtbmizH+/PdmXy7MHMTvUzrTxsuR77df4PdDYZVYWf1ZsOcSe87f5N37WvJAYQcal3fLfEw2xUQKq0xWjjJvVKxuwmW72Fmy7ZWetPJ0YOPJ63yz9TxbTkfppOzK9NOuS9xISOPZ/PMN170KW97XSU+oTlg5Qsja0g3ZKcFTPRphbip4Z80JQmOSdVC56udWUjoLdl/Cp7YNk3o0LHyhrMyq1ZOXn1NO8Kct7+ul+E8faEMTNzt+Cwoj5Hq8XrZRmENXb/HoT/txtDHnj6ldaOddhkAjmWnyBGUFg5NUSTs/k8NzdeyeVrIHbcFu3Z8sOB+VyNGwOHo1c6V3M7ecRPWb5ZB2RT/sXMG7E1jYFHy87aPQ7YWCj1k5ye9LdilO1NbygeaDKz3iZ40WtAB+e1T21hoZ1cgztA6Py+tiDnDb13fm9yldsDY3Zb2ezgJWpuT0TD7feJZ+Ldx4sEO9whe6eV5ed3nOcBUri8DJ8lqHub7srcz557nuHHlvADYWpqw7EVFt8+jdSkpn5rrTzNl6nnt93WmfP6BOSqwMDODdudLqV0BAzncy/zydcnK0MeerMTIq46x/QypcXnU0aUkQl6KT6NnUteheouwMMKmiswVqN5JDNnOHKOqYuakJ7w9tBcD8XYbJFRh8JYZx8w/gbGfBikmdqedsU/JK+Tk3gFfOQKv79VPBynQjREZY1LEGLra8MqApQVduMWfrOZ2NzMjMyubpZYcA+Hikn/yO5R5PVHCOuFKCnZ/BkhEFH2s+CPxGF3ysXgf5falfiv+4Bj3gvq/ubjwqhtNpqrzOPe40IlX0X9aIWdjK8dolJGM1MzXhkU7eLPrvCvGpGThYVdGz3mWUmZXNQ/P2kZKRxcSuDYo+CEyMBISMdlcVeeWEQddDQk1zUxMmdPXh220XiIxLpZatHOYogPFdfOjS2KX4AirZ5egk7v9uD7EpGYxo68Vbg5oXXCAhApr0qzrDiup3kdc6ypsz2M+D4CsNWLDnElZmR/lklB+mVS1tgJ6EXI/n4OVbBDZw5tWBzYteMCuj6vbkATQZAIeX6K34Lo1d6NvcjZXBYTwY6F3wJIiOnYtMYNz8A7g5WLH8yY54OKoegwJG/qS3oh/v1pCdZ6P5bONZtoZEMXNEa5q7V6y37Z/jEZyJTOBeX3fqOOQEAEnM+R+q17GCNVaKlXJLphLRNDnM98I2OLMO+r5X/vyRWRlyLmVV+T+siayd5FDnEo7LqyP1qaoM9h5yaJim5V2g4H1NY2ibuqRnZbNkr/HM71kZHMbRsDjGda5Pp4ZFDMXUNNl4sqlddQ8Ec+ftJEToZRz3y/2b8VyfxiSlZxF2K4WwWynsOHuD5Qcq3tukT5qm8drvx0jLzGbts934fHQbattaFPxsJ0ZWrVxAdrrfly/2b0JgA2d+PxTGZxtrTsL7j9bJHpFXBjQrPhBVVZ6TBzJYRXpiXuCE/L/T+e8XdynBSwNk8IaXfjtCZla2Pl4FWdkab/9xAnMzE355slPZGnj5X0foAVg2Wi/zFKuEwv6DdcDawpQVkzvx5Zg2HL8Wx8CvdnHPlzuJTU4vV3nnIhN4a/VxWnk6MOfhdnl1bn4fvHYJXIs5saJUnL07ZKbIyNCaBlf3yRQVZncEyUuNl9+X02tLLnPzdPiobomLKXpm7y6POwv7Hdfhb4KhqZ68yvDoH/JHIfSADN/8yGqZjPXUn7AyN0eKoPWwbxnYqjmfbjhDRFwKL/dvdrtXpzqKS87g683naOftxPtDWxXsxUu4Lg+onBvC8d8g+Geo07ryKlsSSweZFHjTu2DrKkNwZ2XK53SQR8rERPDSgGa8NCAvIuX4nw9wKVo/Q8h05fsdFzhwKYYH2nvlRUtdM1XmpcqvKkV8s6sDwgT+fh6uBcPQbypcpL2VOSsmdWLiwoMs+u8yT/VsVKkh8w3hn2MR7Dh7g9EBXgQ2KCFSXFWekwcyiqRdHRkFFGBOAHi0gVEL5P2PvIoPqlC7MTwTVGxQj1aejvRvWYdNpyKZtuYE04e20nnO1K82n+XA5Rg+HeWHu6NVySvkykiF2W3lkNU3r4K5jQzDr+mnMVqp9v8A61+D9hMgeCGgyd+DUQt0MjxVCMH9bb1oW68Ws7ecY/Xha/h/sKnMqVZyT6BZmZsy/7EOeaMD3neCnq9D77cqXFelBLknJz+un/eYrevdv2Wm5vKkoV0pAsdlpoJZGb6bin7Ye8LZ9fL7lGvsKmjSX87ZX/sSvHqu0qpXXqqRVxlyc6w41oVeb8r5DiDPwvXKSci66wuIPMHHo0aTlJ7J0n1XOXAphr+e6VZtk6e/veY4N5PSmPto+7uHaQb9LBMQvxMNdVrJ98Gne+VUtDSEgBHzIPIE1PGVyWbndoMxS6HFfXrZZAMXW/ZfjCElPQtri6r3GbhwI5FvtpwnsIFzwYTgQ76UOWhy5ziZmEGbhyunkoUxs4ARP8rx+B5tdFasEILn+zVl+Ld7ePfPE3z9YFudlV2VaJrGz3suszJYBol6Od+JiSLVblS6A6DK0uxeMDHNC2seOLlgpN/uL8lhVoW5dgjObZBDu0oIiz7n4bZ0mrmFXw+G0rSOPRO7NdDRC4CjobF8u+08o9p78UBAEXOfixIXBgnh4DdG3nf3hR6vypNwxia39+vIcjmdosuzsOtzecJHh3MQfVxs+WKMPy08HPhw3WlGzd3LH1O70LYUAXA0TePllUc5fDWWzx5og3tGKBw9JAN29HoT6nfVWT2VYjQdCP3elw2zXJ6F/K6bW8M9M+XcvJKoRl7V0Pst8PQv+Fju751LU/m7UA2pZOhV1WfNoOmA270KfxwO48UVR3miWwOmDWlZyZUrm6xsja83n2X21vO83L8pzxaWNygqBKJOgu9Iw1dQF5JuyoipLYeBaykOcsvhwKUYRv+wlym9GvF6cfOdKsGOszd4M2eY5t/Pdrs7L1p1cfMCHP0VAibKvJYVpGkaXWZtJSIulc0v9aSxWznnbVRh320/zyf/nsHC1IQnezTg1Xuq1mfT4JJjIC0eHOvJhmIJEtMy6f/FDqzMTXl/aCua1LGr8Ly57GyN+7/bQ3hcKlte7ln2Od2Xd8PCwfDoGmjUu8TFq7XkGPgkp3Ht3Rkm/gtf+cn5bSN/1Msmt5yO5PFF8hjmgfZevHFv82Lz4v574jpPLQ2mT3M3fhoXgMmBH+Df12WOP9uqPUe7xoqPkAFxvDsVn6Zj1eMQfgieO2ywqinGpbhk6GpOXlVlYVsgkeb9bb14tFN9ftp9ieX7r1arqIufbzzD7K3nGdzagym9ikgu7Na8+jbwAGxrQ8/X9NbAAwhs4MyItnWZv/sSEXEpettOWWiaxucbz/DYggOYmgp+eiygYAMvLRHWvwFh1eSkTHy4DKcec1EnxQkh+OuZbpiZCN7+47jR5b08dPUWn/wr5xweea+/auCB7L2r5VOqBh6AnaUZn49uQ0RcCuMWHGDc/AMVrsJvQaEcDYvj7UEtyhe0KzegVFWaO6svFjknXvpMkw08yJmfo78gDH1b1GHlU51pVseelcFhdJ61lScWHWTd8Yi7onBmZGXzyYYQGrnaMu/R9piYCBloxcQMrFUC7SrryDL4eWDekO+iqJ48RY9UI6+qsrS7a87Hm4Oa08DFlrf+OM7GU7qJBKhvt5LSmb/7Eve3rcu3Y9thZlrIRy7hOvz5jF7CWBuMpsnk3jrItVacF/s3JTtb454vd3IzMU2v2yqNTzac4Zut5xkd4MWGF3rcPfQoLR5iLlSf0MTeneWQYR/dDX9ytbekX4s67L8Uw29BusmrWBUkpWUyfoFskKx/vjs2FqUc/Z+ZBvMHGGVOIkAOS97yPznHs5S6NHJh2yu9eKxzfc5FJbJk3xVuJZUvOMeR0Fje//sUHXxqMczfs1xlsG2mvLavwkNqdcUsZ577wQV5wRXs3WUeVD3m8uzg48y657sz5+G2dPCpxbYzN5i67BDt/reJB+ft5YVfD/Pm6mP0+2IHF28k8ea9LeT/Z1YG7P4SbN1URMaqLDcheloxc3czUuR8rzsDtyiKjqhfiKrKwv6uPE02Fmb881w3fGrb8NqqY6w7HkFyemYlVbB0Pt14hoys7KJ78EDOfTi8RE56rc6+8oW93+p1E/Wcbfjwfl/iUzOZuCio3FHadOHEtTi+336BMQH1+HikX+EH+Q6ecj5Toz6Gr2B5mJrJHpi0BJ0W++3YdjR3t+fN1ceZue60TsuuLO/9dZL41EzeHtSCFh5lCAuvZcs5K6Xs6ap2zKzh4rYyzzn0cLRmVPt6CAHvrDnB3J0Xyrzpc5EJjPhuDykZWUy/M7hVaWkaxF+T0Y2tnMq+fnWVEJ7Xg9l6NNz7iQywpUemJoIhfp4se6IT+97syycj/binlTs3E9MJvnqLdcev4+1sw5dj2tCvZc7nKS7nRJGHn17rplSQha28Li5AU2zOvqzlo/fqKDWTCrxSVVnYFjpcxMbCjDkPt+PhH/cxddkhrM1NWftcNxq5Vr25PuciE1i+/ypPdGtA0zr2RS+Y+zr9HjRMxfRBCDnsp7gfdB0Z08Gb2OQMPlofQuDMLex+rTduDoYf7vHV5nM4WJnx9pAWxeQ7vCGTvZpVo6iwW96Hvd/BtMji51KUgamJ4KMRrRk3/wDzdl7k4UBvfFxsdVJ2Zdh8KpJVwWG09Xbi8bIGCzG3hnF/6qdiVYGJCTy5tVyrtvZy5Mg7A3h80UF+2HGR/i3qlDoCY2pGFhMXHSRbg5/Hd8iLbltWaQlyCFnvt3T2+a82cue3tRhi8E272lsyukM9RncoIUhObkM0cJL+K6WUX+4w4OKOCTJzpl34jtJ/fZQaSfXkVVX93oNhhfcK+dZ1ZP9b/Xipf1NSMrIY8OVOluy7UuXm6S0/cBVTE8FTxfXiASTkJD63dTVIvfTGQI08gMk9G/HNQ21Jz8xm7E/7DZ5a4WR4HJtPR/J4t4bFz/mZ3x/WPGW4iumCjQtkpUFqrE6Lbetdiw0v9sDWwpT7v9vD5CVB/LDjAjHlHJZXWXafi+aJxXKO5ZyH28k5QsrdsjIgO6vk5e7gaGPOM30aY2Fmwqi5e3l84UHiUoqI5JnPioOhhMaksPyJjvRu7laeGkuJOVMB7KpQmhN9c2sJzYcUDIV/fjOEHqy8OhXl9nzJGrR/qqPc5Ojpxfw3Z+ZMuVBz8hQ9UT15VVWdVsU+bW1hynN9m9C0jh0v/XZUDu/ZfoHn+jbm/rZepGVm8c+xCMJupWBtYYqrvSU+tW3xqmWNh6NV+YbxlMGe89H8vOcy4/xscNn0ghxzft9X8sndX0LE0byFI47m5Jqp5h9HC1s4vBTu+8YgcyXua+NJfGoGb/9xgud/PcyaqV0NdsC94mAoVuYmjO/qA3u+hvAiIoPFhUGzQQapk87kHjytnpQ35MazHXR9rsJFezpZs/zJTvy0+xLHw2LZcDKSzzee5R5fd94e1KJsucwqSW5y9zfubU7dwqKoZmfB748XXUBiFFzZA6N+Bt8ReqplJTu9FlaMhcb95cFe6wdkuPtS6tXMjV2v9eb77RdYsu8KA77cwdA2nnRv4opvXUecC8mXuvPsDRq42NKlcb5oi3u/g7BiArk06AkBE+TtleNldGAPfzlcUY9BpKqcqNOQFF3wsbUvQYfHZRj8w8vg/Ka71zO1lCdkHco597Gszm6Uv7dQsxrh1VFuT97m98HOVf4P+o0uuEwdX5i6Dxy9DF8/pUao5kfVRizhOqx4VOZjanZvkYsN9PVgQEt3Zm89x9wdF3j99+N8t/0CSWlZRCemIUTeXPJctW0t8K3rSAMXWwa0rFPwoEAHUjOyeP7XIwCM79MGErJgz1d5C9y6ApEn8+6bmMmDoOrOOifoSFwo1Kpf/LI6MrZjfTafimTbmRtsPBXJQF/9//GnZmTx99FwujZykQm+Y68W3J/51W4MTfrpvU465dVBHujmBl1IugHnNumkkQfQpp4T3zwkcyvtu3iTb7ed5++j4Ww4cZ0PhrViVHuvwgMUVQGnI+I5EhrLawOb8VTPInroNa3oz0Pu83Vay8+GsfL0l5+h2Cty3k1KbJkaeQB1HKyYPrQVA1rW4dvt5/lp9yV+3HUJc1PBcP+6TB/aCltL+ReekZXNvos3ub9d3YKFbJspT54VNUrCpWne7ciT4N1F5m3VU+qAKqv/B3m9KrlaPwAdc0YhJETc/ZnOzpJBpbw75TWU9S35JmQkQ9N7S8zBqFQyl6ZQNwCSouDKbkhPvruRZ2EDbi0qp35KjaDy5FVVyTHyzGqXZ6FJ/1KtEpucztJ9V/jj8DV8atsytXdj2nk7kZaZTURcKheiErl8M4kjobGcjUzgwo0ksrI1nuzegLcGFTOvqoy+yEmZsGhiID2bVvMhmGVxcg2sfAym7JXJvw0kMyubTh9twcrclA0v9Lh94Kcv438+wPYzN9jTdAV1G7WGnq/qdXuVbttM2PEJvBujtx7abWeimLI0mNSMbAJ9nJk3rj12lmZVqrGnaRqdP9rK9fhUtr/Sq1rPKTSoxcPlkK0nCukJKoMbCWmcjohnwZ5LbD9zAxc7CxZOCMS3riObTkXy5OIg5j7SjoG+OWkPMlLhy1byP6TbCxV+GcodMtNhhqtMRt7rDf1uKy0BLu2UJ6DsKjAUV6laos/JYcF+Y1SjXSm34vLkqZ68qsrGGR77q0yrONlY8EyfJjzTp2CycStzUxq42NLgjoOy1IwsZvxzih93XSIzW+O1e5pjbVGxiHc3EtKYu+Miw/09ZQPvzHp5JrtjDZgkXpqJ1npgZmrCY519+HzTWR76cR+/Te6Mlbl+IhemZmSx7+JN2ng54ulgBlrZ5xxVO/bu4NJEztMz0U+S997N3Aia1p9Z60+zdN9V/D/YhLW5Kf++0J36tatGY+r4tTiux6cyvotP0Q28rAzY9J4c9ufd0bAVrKosbPPmuVWAq70lrvau9GjqyvL9V3nnzxMM+WY3gQ2cOR0eTyNX24Jz8cyt4LULdw/lUHTDzEJGIM2dI6dP0efg14fhwV+geTUb/q4ULfwI/PuGHNatGnmKHlSd08SKwVmZm/LBUF9GtKvLz3su8+CP+yocBOLXA1dJz8rmub5N5MHF6smw7zsd1biKy51orePw+6XxdO/GDPbz4FhYHM/+cpi45JIDNZTHtpAoUjOyeXlAM8SoBfo/g10VBEyEZw7KqJB6ZGdpxozhrVkwPoCXc4Iq9fx0O9vOROl1u6URl5zBxIVBmJsKXuzXtOgFk29C8M9wwzjSROiEpb3OT/w83NGbna/15pFO3txISMPKwpTPR/tjaZbv5M61YIg4VvMiZBpS1xegsQGGo7s2hye3Qf3O+t+WonuXdsKXreHSroKPtxoOr12SQ6QVRQ9UT15V9n1XOR+vzzS9bcLERPDZqDZ08HHmnTUnaPe/TfRvWYcnuzckoH6tMgXy0DSNXw+G0r2JCw1d7eDGWUiLqzk/YBaliKalJyYmgjkPteV8ZCKbTkXy8YYQZt7fWufb+f3QNdzsLenqEAVXc+ajKDrVp3kd+jSvg7OdBdP/Oskrvx1l2ZMdae6u35xdRcnK1nju18NEJ6bx6j3NcLQpJpqqvTu8Fa56j/KzsC0+IXI51XWyZsZw+R3XNO3u4fab3pO/vUO/0fm2lRw6mqdbIgsbqNvOMNtSdM/CDuq2zQvklcvUXPXgKXplsJ48IUQ9IcQ2IcRpIcRJIcTzOY87CyE2CSHO5VzXMlSdqrzkmwYZCmJiIngo0JvVU7swqUdDtoVEMfqHvXSetYVnlh9iy+nSDTU6GhbHtdgUhvvnTP5PCJfXA2boqeZVjGtzeP1KmQMs6IoQgjVPd6VfCzeW779K0OUYnZYfdDmGbWeiGNHOC9P938Fvj+m0/Cor9CAsuFeetDCgsR3rs2hiIDeT0hm/4CCJaZkG3X6urzafZcfZG3x4vy9P9y4hWEpyDGRnGiS6bLVhgNQqhc6n7jQFmtyj1+3WeEnRsOUD2WOqTz/2hd1f6Xcbiv7UbQejFt7dUL+0U56MyaxeaXSU6sOQ/8SZwMuaprUAOgFPCyFaAm8AWzRNawJsybmvgEHzrgH4eTnx1qAW/PdmH967ryVN69iz6VQkjy8KYsrS4BLz8P1zLBxzU0G/FnXkAwk5jUN7Dz3XvIowNQNrJzDRz3y40rC2MOWVe2To8xd/O0J2tm56VP49EcH4nw/i4WjFpB4N5b6tKXmaTEzkPs02fCOrSyMX/pjahciEVL7YaNhGJsCBSzF8s/U8YwLq8XCgd8krLBwMv43Tf8Wqk67Pw/N6bgQUpvngSknqXaNkpsnGV3HRZCsqK1MOvc1I0d82FP2LvQKX9xR87Op+GXlcqJNiin4YbLimpmkRQETO7QQhxGmgLjAM6JWz2CJgO/C6oepVpVnaQcwlOP23vC9MoWHPu7v8CxN1Gm6eL/w5YZLX2xRxDGo3KlCmm70VE7o2YELXBqRnZjN5SRDrT1xn3s6LPNm9YaFDOONTM/j1QCj3tHDB8cq/8sFLO+W1fZ3SvuLqLTsLNrwFnm2hzYMQHwHXCokCa10LfLrprRrN3R149Z5mfLrhDF9sOnu70VdeP+68yIfrTuNmb8mKyZ1xjg6Wn62akkerbnsYv7bSNt/WuxZjO3qzYM8l7KzMeKl/MXPidCg9M5u3/ziOVy1rpg9tlddbFBdWdF7E+GtqCO+dbJzl77GFLVjpccjtzQsQdUrezkqXvQPNBualdlF0z8ET3rkBqXF5/9Nm1tCot+5O9iVFAVrN+R81Vv99A8dXwfBv8x6LPC6P66p7jmClyqqUT5YQwgdoC+wH6uQ0ANE0LUIIUWh8YCHEJGASgLd3Kc4oGwOHuhCyFlY8kvfYgBkyJHZJFg8rOqKbmRVMi5TzZv59A5reI882F8LCzIQfHg1g6rJgPlofwu7z0Yxs58WR0Fhu5gRpycjMZmtIFOlZ2UzpVg8W5kv5YOsmAw/UBMIEjq2Q+bFANvDy77v8ngmSERv1ZGLXBizZe4U5287Tu7kr7euXb9z/ltORfLjuNANbufPZ6DbYpUbCzwPlk9UtyXlFXD8uz6TXC6yUzb82sDn7L8Ywd8cFOjZwppm7PS52lnrd5k+7L3IuKpEF4wMKRt298h+sfrLoFZ2LyJ9Xk21+HzzaQO839beN3x6TB435jVkKLe7T3zZrOiHkQXr02YK/9WN/111+0IQIea2Sn1dvtRvLGAV3HhPYe1ZOfZQaweCNPCGEHfA78IKmafGlzc2mado8YB7IPHn6q2EVMmIexFzMu//zoNKF4s5IlcsFToJ2hQ2dynnPhZAT812bF1uchZkJP44L4JcDocz45xS7zkVjbW5KHQdLTHL2X69mroxs70Urb1d4anfeyjVlqCbI9/Ppg2CWc/DdoEfB9wLg+glY85QcuqHHRp61hSnzxrVn6Jw9jPx+Lwfe6oubg1WZyth/8SZTlh6ikast3zzcFnNTE4iJlk8OnAUBj+uh5lXUlv/Jg62ndpW8rB44WJmz+PFARn2/l7E/7cdEwOaXesoAR3pwPS6V2VvOcU8rGQSmgCb97/5c5xKmNaeHtyxsaoNb8b+zFZYaK0+89H5L3je11OtvjJKPe2v5nUi+KU+wxl7RXdm3pz2oRl611nEyNOx1d9qhmnSMpBicQRt5QghzZANvmaZpq3MejhRCeOT04nkAlR8vvKqwsJV/HrleOSdzH5UkNRYcvMCzXcH1CzPs2+KfzyGE4OGO3gzz9+RSdBINXW2xsbjj43N5D/z5Pgz4H9i6lKpco2OXL/m7lePd73/usNiEiufNKomflxOfjPTjtd+PMXLuf2x7uVepk2unZWbx9PJD2Fia8ukDbWQDD/Iih7o2l3miagpLO7hp2PyHd/JwtObPZ7qy7ngE7/55ksV7rzCuc329NPQW/neZtMxs3h7UsuATx1bKecIBE3S+TaM2vHS/sxWSmSobAiX95iu6l/tfnZUJCJ3kRbwtMSf4mmrkVW8mplCnZcnLKYoOGTK6pgDmA6c1Tfsi31N/Ablh+h4D/jRUnaodcytIulnycvbu8NJJ8H+o5GWzs+VcjlKytTTDt67j3Q08kH9Gl3fJuWlK4XKH3CTqP2oqwOgO9Rgd4EVoTAqzt54nNaN0+2bjyUiiE9P5+sG2tPPON6cnNxR8TRmCm8vCrlJSY9zJxc6SRzvVp66TNQv/u8wTiwuZ81lBJ67FsWDPJe7z88S7tk3BJ4+vhCPLdL5No6dpMlG8PmWkyqH4SuUxNZMnOHPnRupCVIi8ti10JouiKEqRDBnSpyvwKNBHCHEk5zIImAX0F0KcA/rn3FcKc3gZzO8nIzIV59ZlGcq8NP6YBN+0gyt7K1w9fEfCiyfUBPHiWNjAQ7+C7yiDbfKjEX70b1mH2VvOcf93/xGbXHy45oysbH7YeQGvWtZ0b3xHj2xutNfSBP8xJhZ2esl1Vh5CCNY+242JXRtw8UYS56MSdFr+h/+cxsHKjOlDW9395NjfYPw/Ot1ejfDzvbBMz9/5TNXIqxKsa8kgLEnRFS8rKwMO/ACWDio4h6IoZWbI6Jq7uT0Z7C59DVWPas2jDfh0l/M7irN8jJzk+2Apzrh3nCLPzt88B/U766aeSvGa3WvQzZmaCL4f245XVh5lzZFwuszaShsvJ1p7OeLhaEVtO0tszE2xMjclOT2Tv49FcOJaPN+NbXd3JNUW98GrF8DKyaCvodJZ2kFGkuz5rgI54GrZWtCrmSsL9lyi3xc7CZrWTyeBWP67EM3eizd5Z0hLnG3vGI6bkSqHHJnpN+CLUTK3htR4/ZWvafJ3pU4hDXPFsNqNg43T4NaVik9bSMyZveI3puL1UhSlxlGnhqoTd18YOrvk5fpNlz0PpS0TdJN0ff8PMm1CaRqXNVlYMGx6F4Z8Ca6GCYdvZmrC56P9ebhjfVYGhXL8WhwLdl8is5A8eiYCJvdsyKDWhUwINzWvmfMtc79PGUlVZqhqt8Yut1NlvPDrEZY+0bFC5SWmZfLaqmO4O1gxtmMhEYyDFsCGN+H1yyosf1lZ2MqUKvoiBIxZor/yldJr2BvcWkK2DobnWjnKCKnufhUvS1GUGkc18qqb+AiZlNmpXtHLlKWnyMwSrJ1108iLPAFhBytejrEzMQUtG7LSDLpZUxNBYANnAhvIdArZ2RqxKRnEJKWRnJ5FSnoWFmYmNK1jj61lET8N57fAlT3Q5x15YFlT5A5PTUusMo08ExPBlJ6NWHssgt3no5m6LJgvRvtjZV6+/Fzzdlwg7FYKv03uXHgZiddlxMaa1ourCxb2eUOdFePm7gtTdTD9AeQIApUCQ1GUclKNvOpmyXC4EQKmRUU2FDK6pd8YsHYqXZkOnvIs/eF8Z4JHL5GJdM+sh39ehqn7ik/km5kGhxaDU/1SvpAazNMfJq6Xtz/0LPmMr98YGDZHBrT5qS88uU0nDSwTE4GzrcXdw/KKY2ohk7r2fbfC269WrBzl9bcd4c2r8vYfU+BaMDxzQN5fNBTs6sDIHw1WLRMTwZLHA3lw3j7WHb/OgUtbWTQxkFaejmUq51R4PHN3XmSIn4c8CbD3O9g8HcjX05uVIU8u1aTGva5Y2kNcKPwvX/Tdnq9Bj1d1U358OHzXGQZ9Cn6jdVOmUjE/9pUNvvu+lvfjwmB225LX6/k69HhFLv9DTznio/lg3SVXVxSlxlCNvOrmnpkygmVxkmMocHBWkgEz4NKOgo/V8pHXaYng1QEykotv5CXdkNdeAaXfrgKdptydN+dOHm3k9ZFlEH4YUm6BTfmSm1dYg+4w/PvK2XZlatwPer1ZMHJsk34Fc59Fn5NJkQ3Mxc6STS/2YMY/p5m/+xKDZ+/m9yldaF+/dEMqNU3jzT+O42Rtnhds5coe+X1ve0fi3nqddFz7GiLwyZze4Jzf5bMbIPaq7so3s5KNu9zfbaXyuTaD+l1lAzzumsxJ2/npktfz6iCvLeyg3aMyHYNq4CmKUg5C06pfXvGAgAAtKEj3ocOVCogKge86wqgFMsqmonvpybIXxdy6crafnQ3pCfLgQx103G3LB7Dna5h2o9KCs2w5Hcnji+Rv46wRrXkwsJC5dXc4FhbL0Dl7mDHcl0c65fTE7/1ODi/s+Zo+q6soxm/vd3Iu62uXKu/knKIoRksIEaxpWqE9LJUfJk6p+rKz5XDM4twOra/7xMxKDgubymvggeytneUNwT9XXh2qMjt3OV82uRS5LPWkb4s6rH22G90au/DmH8f5cefFEtdZf+I6piaCIX75Au10nqoaeNVJdpb8ja6GJ22NVnqyPPnZfBA8/JsKVqQoisGpRp5SvKxM+KAWfNW6+OVUI0//UuPgz2dgTSmG/OiD2sfFy80PGbSgUqvhW9eRHx5tj6ejNR+uO82Kg0UPC9Q0jX+ORdC1sQtONjlzM68Fw6b3DFTbGurUnzDDXUYj1oUNb8MMt7uH3SuV59QaObrl7AZoeo+ay6ooisGpRp5SPFMzcPKW8wKyMoteLjdRtKVqAOiNhZ0MjnNxW+VsXzXyile/q7wOP1S59QBsLc1Y93x3TE0E09ac4HxU4ZEdT1yL52pMMkPyp8s4vxX+mw2Z6QaqbQ1Uuwm0eRDsC0lTUh658/s8/HVTnlJxDXvJ6/WvweXdlVoVRVFqJtXIU0rW9QV5nRRV9DLpSfJaNQD0x8RU7ovEqMoZlqUa8sWzdZEBWnSRjkQHHK3N2flab8xNTej3xQ7m7rhAemZ2gWXWHgvHzEQwoFWdvAe7vQAvngSzMkRdVcqmTku47ytwaaKb8jJToW770kdUVvTPwTPvdpYOcuYpiqKUkYquqZTM3l1eJ0QU/OPKz6ONjNJp52a4etVE9u4y5UJyDNjWNuy2VU9eyezcIfJkZdfitrpO1ix5PJBXVh5j1voQVgaFcl8bTxq62hGbnM7SfVfo1cwtb6gmyIT3RX3PFd2JPAVp8eCtg4ilmWlgVonzdZXi5f6HKoqiGJBq5Ckly/2D2vJB3vAirw7Q4XF5+69noUFP6PJs5dSvJsndF38/l5eU291PBsrQh8w0+Pt5eTs2VF6rRl7R7N1lT2t2Flw/DvvnQrNB0HJoweWuBcOBnyg01YmJKQz7Vt4OXgjXT0C/6eXuQW1f35ltr/RiW0gUH/8bwlebz91+rpWnAx91zoI1U0HL6eWLPCF7jFuPKtf2lFLa9qFMVdF0YNHLBDwO9TrIAB57voLuLxfe+5eZopLUV2WqkacoSiVQjTylZC7NwLMtxFyUFyh4QHF1v0qCbiie7cC1BVw/Ju/HXoWr+2S+PV1O7M/OAmEir6/sKbh9p3q6246x6TRV5kQTJjKfYfw1cKx793LBC+HYisKfM83Xq3YtWEa3TY2t8DDZ3s3d6N3cjetxqSSmZWBmYkI9ZxtMN74FR5YX3K+VGCG0xmh6j/we5/9+3anlMHmdGieX6/CEvJ+dVTCNSWaazJWnVC0PrYAD81QDXFGUSqHy5CmKcrdDi2UP3vPHVKNOH5Y9IOfuPbWrsmsCa1+E02vh1XMlL6tUvjmB4BUAw7/Le2x2O/D0l3lKFUVRlBpD5clTFKVs6vjKoWEqt1PFxF6Fk2tkz0t+miaj1pZGUrS86EtGquoFqk4sbO4O7qN68hRFUZQ7qEaeolRnNy/ADz1h31zdllu3HfSZpiJpVtTZDbDyMTnsMr9HVsGDy0pXxuy2sKCYeVsVlZkKZpb6K1/RLTt3uLAFMlLyHstUDXVFURSlINXIU5TqzMpR9ra5NddtuckxkHhDt2XWRO5+8jp4Ud5jue9taYfKm1vDzXOQpKd5cpmpYK4aCNWGo5e8Prcp77HHN0KPVyunPoqiKEqVpBp5ilKd2brA2JUyuqkubfsQvu2g2zJrIu+O4NYSkvI1mPd9B583zYtmWZJ7P5bXCeG6rx9A56ehzzv6KVvRvV5vyOuEiLzHajcCBx0lVlcURVGMgoquqSjVXfJNGfa+YR8w0dF5m/QksLDXTVk1naNXwQPyZoPkY/mjIxbHPidnXUIkuLfWff18uum+TEV/rJ3BxCxvXl52ljxxUL+rHGatKIqiKKhGnqJUf6f+hPWvwaifwdJBPla7ITg3LH+ZYQfBwlY39avp7N0hLAjObc673358GdavI68vbst7zMMP7Nx0U79rwWBuq/shv4p+mJiAXR2IOArhR6B2Y9g4Dfr/TzXyFEVRlNtUI09RqrvcxtyqCXmP1fKB54+Wr7z4cLh5HlyaVrhqCnL/pMTAspHyvt8YGDGv9OvbuYOZNeydIy8AY5ZBiyG6qd+fz8g6ljYQjFL5nBvK4Cvm1jBmKbwZJnv3FEVRFCWH+ldQlOqucT94arcMhQ8y0fbRX+5OmFxaueH6uz6vsyrWaJ2fgQY9ZFJzABvnsq1vbgVP74fEqLzHajfSXf2GzVGRGaub0YtlZF1rJxACLNXQakVRFKUg1chTlOpOiIJztcIPw5Glcq5eeYb0pSfKa4e6uqlfTWdqDnXbV6yMWvXlBSArA67uk/P6nBtUvH4VrZtieDbOZT9ZoCiKotQoKrqmohib3Dlc+YN9lEVaTiNP9Q5UTdlZsGgIHF+lm/IOLZbzuxRFURRFMRqqkacoxsalGfg/IoNplEduT56FSoReJZlbwWNroe0jFS/r3Gb461k48kvFy1IURVEUpcpQwzUVxdi4NYfh35Z//duNPBVds8pq0F035cSFymv/h3VTnqIoiqIoVYLqyVMUYxQWBAd/Kt+6fg/CqxfAwVO3dVJ0J/QAzO0OkacqVk5mTrAeR6+K10lRFEVRlCpDNfIUxRid/RfWvSrnb5WVmQXYupQvMqdiIAKuH4O4sIoVk9vIU9E1FUVRFMWoqOGaimKMOj8jL8IEPmual16hKK2Gw9DZ8vZH3tBxMvR5W+/VVMrJ3l1e/zYOTC3ufr7lfTCsFEN2M9PktWrkKYqiKIpRUY08RTFG1k55t/1GQ1Zm8ct7+ufdbj8OnLz1UStFVxy9oP8HEF9EBFWPNqUrJyNFNhJN1KAORVEURTEmqpGnKMZuwAz9Lq8YnhDFJ6tPvAGXdkL9rsUPu81MU714iqIoimKE1OlbRVEUY3P6T1h0HyRGFb9cZopq5CmKoiiKEVI9eYqiKMam6UCo3aTgsN3C2LiAazODVElRFEVRFMNRjTxFURRj4+hVurQIfd/Rf10URVEURTE4gw3XFEIsEEJECSFO5HtsuhDimhDiSM5lkKHqoyiKYtS2z4JVEyu7FoqiKIqiVAJDzslbCAws5PEvNU3zz7msM2B9FEVRjFd8OFzaVfwy616Df142TH0URVEURTEYgw3X1DRtpxDCx1DbUxRFqdHs3SHpBvz9wt3PCQFDvgRTc9BU0ntFURRFMTZVYU7eM0KIcUAQ8LKmabcKW0gIMQmYBODtrXJ4KYqiFKt+V3DwhJB/7n4ut5F3z4eGr5eiKIqiKHonNE0z3MZkT95aTdN8c+7XAaIBDfgf4KFpWomTSAICArSgoCB9VlVRFEVRFEVRFKXKEkIEa5oWUNhzlZonT9O0SE3TsjRNywZ+BAIrsz6KoiiKoiiKoijVXaU28oQQHvnu3g+cKGpZRVEURVEURVEUpWQGm5MnhPgF6AW4CCHCgPeAXkIIf+RwzcvAZEPVR1EURVEURVEUxRgZMrrmQ4U8PN9Q21cURVEURVEURakJKnW4pqIoiqIoiqIoiqJbBo2uqStCiBvAlcquhwG4IKOPKsZF7Vfjpfat8VL71jip/Wq81L41Xmrf5qmvaZprYU9Uy0ZeTSGECCoqLKpSfan9arzUvjVeat8aJ7VfjZfat8ZL7dvSUcM1FUVRFEVRFEVRjIhq5CmKoiiKoiiKohgR1cir2uZVdgUUvVD71XipfWu81L41Tmq/Gi+1b42X2reloObkKYqiKIqiKIqiGBHVk6coiqIoiqIoimJEVCOvlIQQ9YQQ24QQp4UQJ4UQz+c87iyE2CSEOJdzXSvn8do5yycKIebkK8deCHEk3yVaCPFVEdtsL4Q4LoQ4L4SYLYQQOY9/mW/9s0KI2CLW7yGEOCSEyBRCjCrkeQchxLX89auJjG3fCiGy8pXxl27eperJCPettxBiY87rOSWE8NHJG1XNGNN+FUL0vqMOqUKI4Tp7s6oZY9q3Oc99kvM6TucvuyYywn37sRDiRM5ljG7epeqnmu7Xl4T8Dz0mhNgihKif77nHcup8TgjxmO7eqUqgaZq6lOICeADtcm7bA2eBlsAnwBs5j78BfJxz2xboBjwFzCmm3GCgRxHPHQA6AwJYD9xbyDLPAguKWN8H8AMWA6MKef5rYHlx9asJF2Pbt0BiZb+nVeVihPt2O9A/57YdYFPZ77HarxXfr/mWcQZiaup+NbZ9C3QB9gCmOZe9QK/Kfo/VvtXJvh0MbALMcuoZBDhU9nus9mup92vv3N9ZYAqwIue2M3Ax57pWzu1alf0el/eievJKSdO0CE3TDuXcTgBOA3WBYcCinMUWAcNzlknSNG03kFpUmUKIJoAbsKuQ5zyQPxh7NfnJW5xb9h0eAn4pos6XNU07BmQXUn57oA6wsaj61RTGtm+VPMa0b4UQLQEzTdM25SyXqGlaclH1NGbGtF/vMApYX1P3KxjdvtUAK8ACsATMgcii6mnsjGzftgR2aJqWqWlaEnAUGFhUPY1ZNd2v2/L9zu4DvHJu3wNs0jQtRtO0W8iGfLXdr6qRVw5CDpFqC+wH6miaFgHyg478UJbWQ8izB4VFv6kLhOW7H5bzWP561AcaAFvLsE2EECbA58CrZVmvJqju+zaHlRAiSAixT9TgYV93MoJ92xSIFUKsFkIcFkJ8KoQwLWMZRscI9mt+D1LEQUlNVN33raZpe4FtQETOZYOmaafLUoaxqu77Ftmou1cIYSOEcEH2DNUrYxlGp5ru18eRvYG5ZYcWV3Z1YlbZFahuhBB2wO/AC5qmxVdweP2DwKNFbaqQx+78sD8IrNI0LauM250KrNM0LbQGTw+4i5HsWwBvTdPChRANga1CiOOapl0oRzlGw0j2rRnQHfkHehVYAYwH5pexHKNhJPtVbkCenW4NbCjP+sbGGPatEKIx0IK8XoJNQogemqbtLEs5xsYY9q2maRuFEB2A/4AbyKG4mWUpw9hUx/0qhHgECAB6lqHsakP15JWBEMIc+QFepmna6pyHI3P+nHP/pKNKWVYb5NCr4Jz7pvkmi36APHvglW8VLyD8jmIKnPUVQnyYW0YJm+8MPCOEuAx89v/27j/IrrJM8Pj3MSEJSlxDCBryw45rRsg6mcB0kCEoQQX5JTgr5cDoEMRZCndx0VnWiVCrjFVWMTO7MJNCRWawCDWOMruIZnZjIUEYHQ0DHY38SIiJMUKbiCEoBBAh8Owf5zTetLeT27k33vR7v5+qU33Ped/znqfP0+nOc8857wXOj4irWom7VAXllszcWn/dTPUM19GtxF2qgnI7CHwvMzdn5i7gK8AxrcRdooLyOuQ9wK2Z+XyL/YtVUG7/ELi7vrX6KaqrBce1EnepCsotmfmpzFyQmSdTFQcbW4m7RGMxrxHxduAK4KzM/FW9eZDdr8g2G3vMsMhrUVRvSdwArM/MqxuaVgBDs+8sAb7a4pC73SucmS/UvywWZObH60vbOyPiuPrY5zeOHRFvoHoodHXDGFcMjbGnA2fmezNzdmb2AZcBN2Xm0hbjLk5JuY2IKRExsX59GLAIWNdi3MUpKbfAvcCUiJhWr7+VHs1tYXltGkOvKiy3DwMnRsT4+j/BJ1I9r9STSsptXXhMrV/Pp5qcpSfnOBiLeY2Io4HPURV4jcXnbcAp9f+lpgCnMJbvrsgDYPaXsbBQzQSUwH3A2no5HZgK3EH1Ds4dwKEN+2yhmintKap3B+Y1tG0GjtzLMfuBB4AfAtdC9eH1dduVwFV72X9hfdyngR3Ag036XICzaxaTW6rZ3O6nel7gfuAD3T6/5rZz/26Bk+vv5X7gRmBCt8+xee1IXvuAnwAv6/a57fZSUm6pZtT8HFVhtw64utvn19x2LLeT6pyuo5q4Y0G3z695HVVeV1FNgjQU74qGtguBTfXy/m6f33aWqL8hSZLGnPq28z/NzFUN2y6ot53QgfETmJuZm0Zo79ix2o1FkqQh3q4pSZIkSQWxyJMkFS0ijoiIWyJie0T8KCL+a0PbsRGxOiJ+ERHbIuLaiJhQtw3Ngvj9iHgqIv6ohWNtiYjLIuK+iHgiIm6OiEl12+KIGIyIyyPisbrvexv2vSsi/rRh/YKI+Nd9jUWS1Lss8iRJxYrqc0H/meo51RnA24APR8Q76i4vAB8BDqOaefhtVB8zQ2a+pe7ze5l5SGbe3OJh30P1AbpzqCZkuKCh7TX1sWZQTUZwfT1RwB61EYskqQdZ5EmSxrqv1FfifhERvwA+09C2EJiWmZ/MzOey+miRv6OaYpvMXJOZd2fmrszcQjVRxom0Z1lmbs3Mx6kKzAXD2v9HZv4qM/8F+H9URaEkSR3jh6FLksa6dzWbeKVefS1wRF38DRkHfKvu+zvA1VSztb2c6u/imjbj+WnD62eAIxrWf56ZTzes/3hYuyRJbfNKniSpZI8AP8rMVzUskzPz9Lr9s8BDVLNWvhK4nOqDjfeXKRHxiob12fz6w3afpio0h7xmP8YhSSqYRZ4kqWT3AE9GxJ9HxMH1hxi/MSIW1u2TgSeBpyLiSOCDw/Z/FHhdh2P6i4iYEBFvBs4E/ne9fS3wHyPi5RHxeuADv4VYJEkFssiTJBUrM18A3kn1XNyPgMeAvwf+Xd3lMuCPgZ1Uz+oNn9DkSmB5/bxfJ56d+ynwc6qrd18ALs7Mh+q2a4DnqIq55XX7/oxFklQoPwxdkqTfgohYDPxDZs7sciiSpMJ5JU+SJEmSCmKRJ0mSJEkF8XZNSZIkSSqIV/IkSZIkqSAWeZIkSZJUkPHdDmBfHHbYYdnX19ftMCRJkiSpK9asWfNYZk5r1jYmi7y+vj4GBga6HYYkSZIkdUVE/HikNm/XlCRJkqSCWORJkiRJUkEs8iRJkiSpIGPymTxJkiRJB4bnn3+ewcFBnn322W6HUqRJkyYxc+ZMDjrooJb3sciTJEmStM8GBweZPHkyfX19RES3wylKZrJjxw4GBweZM2dOy/t5u6YkSZKkffbss88ydepUC7z9ICKYOnXqqK+SWuRJkiRJaosF3v6zL+fWIk+SJEnSmHbIIYfstn7jjTdyySWX7NNYa9euZeXKlU3b7rrrLs4888x9GndP7rrrLr7zne90bDyLPEmSJEmq7anI218s8iRJkiSpRdu3b+fd7343CxcuZOHChXz7298G4J577uH444/n6KOP5vjjj2fDhg0899xzfPzjH+fmm29mwYIF3HzzzSOOe+WVV3LhhReyePFiXve617Fs2TIAtmzZwpFHHsmSJUuYP38+55xzDs888wwAfX19PPbYYwAMDAywePFitmzZwnXXXcc111zDggUL+Na3vtX29+zsmpIkSZI64i/++UHWbX2yo2POO+KVfOKd/2GPfX75y1+yYMGCl9Yff/xxzjrrLAAuvfRSPvKRj3DCCSfw8MMP8453vIP169dz5JFH8s1vfpPx48ezatUqLr/8cm655RY++clPMjAwwLXXXrvX2B566CHuvPNOdu7cyRve8AY++MEPArBhwwZuuOEGFi1axIUXXshnPvMZLrvssqZj9PX1cfHFF3PIIYeM2Ge0LPIkSZIkjWkHH3wwa9eufWn9xhtvZGBgAIBVq1axbt26l9qefPJJdu7cyRNPPMGSJUvYuHEjEcHzzz8/6uOeccYZTJw4kYkTJ3L44Yfz6KOPAjBr1iwWLVoEwPve9z6WLVvWsQKuFRZ5kiRJkjpib1fcuuHFF19k9erVHHzwwbtt/9CHPsRJJ53ErbfeypYtW1i8ePGox544ceJLr8eNG8euXbuA35wRc2h9/PjxvPjiiwD79cPjfSZPkiRJUrFOOeWU3W69HLri98QTTzBjxgyguvI3ZPLkyezcubOtYz788MOsXr0agC9+8YuccMIJQHVr5po1awC45ZZbOnrMRh0p8iLi1IjYEBGbImJpk/aIiGV1+30Rccyw9nER8b2I+L+diEeSJEmSAJYtW8bAwADz589n3rx5XHfddQB89KMf5WMf+xiLFi3ihRdeeKn/SSedxLp16/Y68cqeHHXUUSxfvpz58+fz+OOPv/Ss3ic+8QkuvfRS3vzmNzNu3LiX+r/zne/k1ltv7djEK5GZ7Q0QMQ74AXAyMAjcC5yXmesa+pwOfAg4HXgT8LeZ+aaG9j8D+oFXZuZeP3iiv78/h+6xlSRJktQ969ev56ijjup2GAeMLVu2cOaZZ/LAAw90bMxm5zgi1mRmf7P+nbiSdyywKTM3Z+ZzwJeAs4f1ORu4KSt3A6+KiOl1cDOBM4C/70AskiRJktTTOlHkzQAeaVgfrLe12udvgI8CL3YgFkmSJEnqmr6+vo5exdsXnSjyosm24feANu0TEWcCP8vMNXs9SMRFETEQEQPbt2/flzglSZIkqXidKPIGgVkN6zOBrS32WQScFRFbqG7zfGtE/EOzg2Tm9ZnZn5n906ZN60DYkiRJkjqh3Xk+NLJ9ObedKPLuBeZGxJyImACcC6wY1mcFcH49y+ZxwBOZuS0zP5aZMzOzr97vG5n5vg7EJEmSJOm3YNKkSezYscNCbz/ITHbs2MGkSZNGtV/bH4aembsi4hLgNmAc8PnMfDAiLq7brwNWUs2suQl4Bnh/u8eVJEmS1H0zZ85kcHAQH6naPyZNmsTMmTNHtU/bH6HQDX6EgiRJkqRetr8/QkGSJEmSdICwyJMkSZKkgljkSZIkSVJBLPIkSZIkqSAWeZIkSZJUEIs8SZIkSSqIRZ4kSZIkFcQiT5IkSZIKYpEnSZIkSQWxyJMkSZKkgljkSZIkSVJBLPIkSZIkqSAWeZIkSZJUEIs8SZIkSSqIRZ4kSZIkFcQiT5IkSZIKYpEnSZIkSQWxyJMkSZKkgnSkyIuIUyNiQ0RsioilTdojIpbV7fdFxDH19lkRcWdErI+IByPi0k7EI0mSJEm9qu0iLyLGAZ8GTgPmAedFxLxh3U4D5tbLRcBn6+27gP+WmUcBxwH/pcm+kiRJkqQWdeJK3rHApszcnJnPAV8Czh7W52zgpqzcDbwqIqZn5rbM/C5AZu4E1gMzOhCTJEmSJPWkThR5M4BHGtYH+c1Cba99IqIPOBr4tw7EJEmSJEk9qRNFXjTZlqPpExGHALcAH87MJ5seJOKiiBiIiIHt27fvc7CSJEmSVLJOFHmDwKyG9ZnA1lb7RMRBVAXeFzLzyyMdJDOvz8z+zOyfNm1aB8KWJEmSpPJ0osi7F5gbEXMiYgJwLrBiWJ8VwPn1LJvHAU9k5raICOAGYH1mXt2BWCRJkiSpp41vd4DM3BURlwC3AeOAz2fmgxFxcd1+HbASOB3YBDwDvL/efRHwJ8D9EbG23nZ5Zq5sNy5JkiRJ6kWROfzxuQNff39/DgwMdDsMSZIkSeqKiFiTmf3N2jryYeiSJEmSpAODRZ4kSZIkFcQiT5IkSZIKYpEnSZIkSQWxyJMkSZKkgljkSZIkSVJBLPIkSZIkqSAWeZIkSZJUEIs8SZIkSSqIRZ4kSZIkFcQiT5IkSZIKYpEnSZIkSQWxyJMkSZKkgljkSZIkSVJBLPIkSZIkqSAWeZIkSZJUEIs8SZIkSSqIRZ4kSZIkFaQjRV5EnBoRGyJiU0QsbdIeEbGsbr8vIo5pdV9JkiRJUuvaLvIiYhzwaeA0YB5wXkTMG9btNGBuvVwEfHYU+0qSJEmSWjS+A2McC2zKzM0AEfEl4GxgXUOfs4GbMjOBuyPiVRExHehrYd8x4YlfPs8LL2a3w5AkSZLUQQeNCyZPOqjbYYxKJ4q8GcAjDeuDwJta6DOjxX3HhP900wD3/OjxbochSZIkqYPOnD+da//4mL13PIB0osiLJtuGX9IaqU8r+1YDRFxEdasns2fPHk18vxUXLurjjN+d3u0wJEmSJHVQ32Gv6HYIo9aJIm8QmNWwPhPY2mKfCS3sC0BmXg9cD9Df33/A3Rd56hst8CRJkiR1Xydm17wXmBsRcyJiAnAusGJYnxXA+fUsm8cBT2Tmthb3lSRJkiS1qO0reZm5KyIuAW4DxgGfz8wHI+Liuv06YCVwOrAJeAZ4/572bTcmSZIkSepVUU14Obb09/fnwMBAt8OQJEmSpK6IiDWZ2d+srSMfhi5JkiRJOjBY5EmSJElSQSzyJEmSJKkgFnmSJEmSVBCLPEmSJEkqiEWeJEmSJBXEIk+SJEmSCmKRJ0mSJEkFsciTJEmSpIJY5EmSJElSQSzyJEmSJKkgFnmSJEmSVBCLPEmSJEkqiEWeJEmSJBXEIk+SJEmSCmKRJ0mSJEkFsciTJEmSpIJY5EmSJElSQdoq8iLi0Ii4PSI21l+njNDv1IjYEBGbImJpw/a/joiHIuK+iLg1Il7VTjySJEmS1OvavZK3FLgjM+cCd9Tru4mIccCngdOAecB5ETGvbr4deGNmzgd+AHyszXgkSZIkqae1W+SdDSyvXy8H3tWkz7HApszcnJnPAV+q9yMzv56Zu+p+dwMz24xHkiRJknpau0XeqzNzG0D99fAmfWYAjzSsD9bbhrsQ+Fqb8UiSJElSTxu/tw4RsQp4TZOmK1o8RjTZlsOOcQWwC/jCHuK4CLgIYPbs2S0eWpIkSZJ6y16LvMx8+0htEfFoREzPzG0RMR34WZNug8CshvWZwNaGMZYAZwJvy8xkBJl5PXA9QH9//4j9JEmSJKmXtXu75gpgSf16CfDVJn3uBeZGxJyImACcW+9HRJwK/DlwVmY+02YskiRJktTz2i3yrgJOjoiNwMn1OhFxRESsBKgnVrkEuA1YD/xTZj5Y738tMBm4PSLWRsR1bcYjSZIkST1tr7dr7klm7gDe1mT7VuD0hvWVwMom/V7fzvElSZIkSbtr90qeJEmSJOkAYpEnSZIkSQWxyJMkSZKkgljkSZIkSVJBLPIkSZIkqSAWeZIkSZJUEIs8SZIkSSqIRZ4kSZIkFcQiT5IkSZIKYpEnSZIkSQWxyJMkSZKkgljkSZIkSVJBLPIkSZIkqSAWeZIkSZJUEIs8SZIkSSqIRZ4kSZIkFcQiT5IkSZIKYpEnSZIkSQVpq8iLiEMj4vaI2Fh/nTJCv1MjYkNEbIqIpU3aL4uIjIjD2olHkiRJknpdu1fylgJ3ZOZc4I56fTcRMQ74NHAaMA84LyLmNbTPAk4GHm4zFkmSJEnqee0WeWcDy+vXy4F3NelzLLApMzdn5nPAl+r9hlwDfBTINmORJEmSpJ7XbpH36szcBlB/PbxJnxnAIw3rg/U2IuIs4CeZ+f0245AkSZIkAeP31iEiVgGvadJ0RYvHiCbbMiJeXo9xSkuDRFwEXAQwe/bsFg8tSZIkSb1lr0VeZr59pLaIeDQipmfmtoiYDvysSbdBYFbD+kxgK/DvgTnA9yNiaPt3I+LYzPxpkziuB64H6O/v99ZOSZIkSWqi3ds1VwBL6tdLgK826XMvMDci5kTEBOBcYEVm3p+Zh2dmX2b2URWDxzQr8CRJkiRJrWm3yLsKODkiNlLNkHkVQEQcERErATJzF3AJcBuwHvinzHywzeNKkiRJkprY6+2ae5KZO4C3Ndm+FTi9YX0lsHIvY/W1E4skSZIkqf0reZIkSZKkA4hFniRJkiQVxCJPkiRJkgpikSdJkiRJBbHIkyRJkqSCWORJkiRJUkEs8iRJkiSpIBZ5kiRJklQQizxJkiRJKohFniRJkiQVxCJPkiRJkgpikSdJkiRJBbHIkyRJkqSCWORJkiRJUkEs8iRJkiSpIJGZ3Y5h1CJiO/DjbsdxADkMeKzbQajjzGu5zG25zG2ZzGu5zG25eiG3r83Mac0axmSRp91FxEBm9nc7DnWWeS2XuS2XuS2TeS2XuS1Xr+fW2zUlSZIkqSAWeZIkSZJUEIu8Mlzf7QC0X5jXcpnbcpnbMpnXcpnbcvV0bn0mT5IkSZIK4pU8SZIkSSqIRV6HRcSsiLgzItZHxIMRcWm9/dCIuD0iNtZfp9Tbp9b9n4qIaxvGmRwRaxuWxyLib0Y45u9HxP0RsSkilkVE1Nuvadj/BxHxixH2f0tEfDcidkXEOU3aXxkRP2mMrxeVltuIeKFhjBWdOUtjU4G5nR0RX6+/n3UR0deREzXGlJTXiDhpWAzPRsS7OnayxpiSclu3/VX9faxvHLsXFZjbv4yIB+rljzpzlsaeMZrXP4vqb+h9EXFHRLy2oW1JHfPGiFjSuTPVQZnp0sEFmA4cU7+eDPwAmAf8FbC03r4U+Mv69SuAE4CLgWv3MO4a4C0jtN0D/AEQwNeA05r0+RDw+RH27wPmAzcB5zRp/1vgH/cUXy8speUWeKrb5/RAWQrM7V3AyfXrQ4CXd/scm9f289rQ51Dg8V7Na2m5BY4Hvg2Mq5fVwOJun2Nz25HcngHcDoyv4xwAXtntc2xeW87rSUO/Z4EPAjfXrw8FNtdfp9Svp3T7HA9fvJLXYZm5LTO/W7/eCawHZgBnA8vrbsuBd9V9ns7MfwWeHWnMiJgLHA58q0nbdKpfGKuz+sm7aWjsYc4DvjhCzFsy8z7gxSbj/z7wauDrI8XXK0rLrX6tpNxGxDxgfGbeXvd7KjOfGSnOkpWU12HOAb7Wq3mF4nKbwCRgAjAROAh4dKQ4S1dYbucB/5KZuzLzaeD7wKkjxVmyMZrXOxt+z94NzKxfvwO4PTMfz8yfUxXyB1xeLfL2o6hukToa+Dfg1Zm5DaofdKofyladR/XuQbNZcmYAgw3rg/W2xjheC8wBvjGKYxIRLwP+F/DfR7NfLxjrua1NioiBiLg7evi2r+EKyO3vAL+IiC9HxPci4q8jYtwoxyhOAXltdC4j/KekF4313GbmauBOYFu93JaZ60czRqnGem6pirrTIuLlEXEY1ZWhWaMcozhjNK8foLoaODT2I3sa+0AwvtsBlCoiDgFuAT6cmU+2eXv9ucCfjHSoJtuG/7CfC/yfzHxhlMf9z8DKzHykhx8P+A2F5BZgdmZujYjXAd+IiPsz84f7ME4xCsnteODNVH9AHwZuBi4AbhjlOMUoJK/VAap3p38XuG1f9i9NCbmNiNcDR/HrqwS3R8RbMvOboxmnNCXkNjO/HhELge8A26luxd01mjFKMxbzGhHvA/qBE0cxdtd5JW8/iIiDqH6Av5CZX643P1r/cR76I/2zFsf6Papbr9bU6+MaHhb9JNW7BzMbdpkJbB02zG7v+kbEp4bG2Mvh/wC4JCK2AP8TOD8irmol7lIVlFsyc2v9dTPVM1xHtxJ3qQrK7SDwvczcnJm7gK8Ax7QSd4kKyuuQ9wC3ZubzLfYvVkG5/UPg7vrW6qeorhYc10rcpSoot2TmpzJzQWaeTFUcbGwl7hKNxbxGxNuBK4CzMvNX9eZBdr8i22zsrrPI67Co3pK4AVifmVc3NK0AhmbfWQJ8tcUhd7tXODNfqH9ZLMjMj9eXtndGxHH1sc9vHDsi3kD1UOjqhjGuGBpjTwfOzPdm5uzM7AMuA27KzKUtxl2cknIbEVMiYmL9+jBgEbCuxbiLU1JugXuBKRExrV5/Kz2a28Ly2jSGXlVYbh8GToyI8fV/gk+kel6pJ5WU27rwmFq/nk81OUtPznEwFvMaEUcDn6Mq8BqLz9uAU+r/S00BTuFAvLsiD4DZX0paqGYCSuA+YG29nA5MBe6gegfnDuDQhn22UM2U9hTVuwPzGto2A0fu5Zj9wAPAD4FrofqQ+7rtSuCqvey/sD7u08AO4MEmfS7A2TWLyS3VbG73Uz0vcD/wgW6fX3PbuX+3wMn193I/cCMwodvn2Lx2JK99wE+Al3X73HZ7KSm3VDNqfo6qsFsHXN3t82tuO5bbSXVO11FN3LGg2+fXvI4qr6uoJkEaindFQ9uFwKZ6eX+3z2+zJepAJUmSJEkF8HZNSZIkSSqIRZ4kSZIkFcQiT5IkSZIKYpEnSZIkSQWxyJMkSZKkgljkSZIkSVJBLPIkSZIkqSAWeZIkSZJUkP8P5uCJW4GRBjUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure() \n", + "plt.subplot(2,1,1)\n", + "plt.plot(df_sim.index, df_sim['SimulatedTemp'], label = 'Simulated Temperature')\n", + "plt.plot(df.index, df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", + "plt.title('Temperatures')\n", + "plt.legend()\n", + "plt.subplot(2,1,2)\n", + "plt.plot(df_sim['SimulatedHeat'], drawstyle = 'steps', label = 'Heat Input')\n", + "plt.title('Heat Input')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAE/CAYAAAAwiQR3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gc5bX48e8721e9ufcK7jYYm2ZTQwmhhgRCKCE9gctNISGdm54bbnp+6QmEQCghdELH9Gowxrgb966u7VPe3x+zGu1KK0u2JVvlfJ7Hj2en72p2dubMec+rtNYIIYQQQgghhBBCiIHHONw7IIQQQgghhBBCCCF6hwR+hBBCCCGEEEIIIQYoCfwIIYQQQgghhBBCDFAS+BFCCCGEEEIIIYQYoCTwI4QQQgghhBBCCDFASeBHCCGEEEIIIYQQYoCSwI8QQgiPUuo/SqkrD/d+DAZKqalKqbeUUi1Kqf863Psj+iallFZKTTqE29uklDrtUG2vO5RSMaXUhH1M73P7PNgopX6vlPrW4d4PIYQQhUngRwghDiOl1CVKqVeVUnGl1J7s8OeUUupw7I/W+iyt9S09vV6l1FVKKTt7A9eslFqmlDqnp7fT27I34fHs+9iulPqZUsp3gKv7CrBEa12itf5VT+6n6J+UUkuUUp843PvRXYcqKKW1LtZav5fd5s1Kqe/39jZ7Sk/vb189RrTWn9Faf6+3t5P9LXmht7cjhBADjQR+hBDiMFFKfQn4JfBTYBgwFPgMcDwQPIy71lte1loXA+XAX4C7lFKV7WdSSvkP9Y7tp9nZ93Eq8BHgk/uzcM77Gwu8eyA70A8+I9HHyDEj9occL0IIMbBI4EcIIQ4DpVQZ8F3gc1rrf2mtW7TrLa31ZVrrdHa+92ebAzUrpbYqpW7MWcdJSqlt7dbrNXlQSh2jlHoju+xupdTPsuPDSql/KKXqlFKNSqnXlVJDs9O8p8lKqYlKqaez89UqpW5TSpW329aXlVLLlVJNSqk7lVLhrt671toB/gpEgAlKqRuVUv/K7lMzcJVSaoRS6gGlVL1Sar1SyguuKKV8SqmvK6U2ZJtJLVVKjc5OO0Ip9UR2uTVKqQ/lLHe2UmpldpntSqkvZ8dXK6Ueyn4W9Uqp55VSXf4+aq1XA88DM7LrOSebydSolHpJKTWr3Wf1VaXUciCulHoaOBn4TTZ7aIpSqkwp9Xel1F6l1Gal1Ddb9yP7lPtFpdTPlVL1wI3ZTIL/p9zmebHs9GFKqV8opRqUUquVUnNz9uGGnM9spVLqgpxpVymlXlBK3ZRddqNS6qyc6ZVKqb8ppXZkp9+XM63T992eUuq47PHWlP3/uJxpS5RS38u+jxal1ONKqepO1nOSUmqbUupLys2U26mU+ljO9FD2vWzJHvu/V0pFstOeVUpdlB0+QblZK2dnX5+mlFpWYHthpVSydX+yfxtLKVWaff19pdQvurHtiuyxtjf7OT6klBqVnfYD4MScY+I3ObtwmlJqXXaZ3yrVlhGolLpaKbUqO+0xpdTYnGlaKfV5pdQ6YF0nn+Xl2eOtTin1jXbTjlFKvZz92+5USv1GKRXMTnsuO9vb2f398L7eX4Htfkwp9WDO6/VKqbtyXm9VSs3JeR+TlFKfAi4DvpLd5oM5q5yjunkuUkp9MvuZtX4X5mXHH5k9DhuVUu8qpc7NWebm7Gf/cHa5V5VSE7PTlHK/m3uy21+ulJrR2f6qA/wudnGMtC7fOq31n6WyvxvKPa/ek/37bFQ5TUzVfp6HC2zXy2xSXX8/b1bu9+KJ7GfwbOtxq5Qal/17+3PmX6KU+oRS6kjg98Cx2ffW2Nn+CCGEaEdrLf/kn/yTf/LvEP8DzgQswN/FfCcBM3ED9bOA3cD5OdO2tZt/E3Badvhl4PLscDGwMDv8aeBBIAr4gKOA0uy0JcAnssOTgNOBEFADPAf8ot22XgNGAJXAKuAznbyPq4AXssN+4DqgBSgDbgRM4Pzs+4wAzwL/DwgDc4C9wKnZ5a8H3gGmAgqYDVQBRcBW4GPZbcwDaoHp2eV2AidmhyuAednhH+HeTASy/04EVCfvQwOTssPTgF3Ax7Pb2gMsyH6mV2Y/n1DOZ7UMGA1E2n/W2dd/B+4HSoBxwFrg4zmfnwVcm31vEeDm7Ps7Kvs5PQ1sBK7I7sP3gWdy1n9x9m9lAB8G4sDwnPWbuNlLPuCzwI7WzwF4GLgz+7kFgMXZ8ft83+0+u0qgAbg8+x4uzb6uyvk8NgBTsu9vCfDjfXwvLNzgaQA4G0gAFdnpvwAeyG6zBPd4/1F22neBX2eHv57d5k9ypv2yk20+B1yUHX48u9xZOdMu6Ma2q4CLcL97JcDdwH0521hCzjGRc8w9hJspNwb3u3Bmdtr5wHrgyOxn+k3gpXbLPpHdl0iB9zQNiAGLcL/nP8t+rq3nkKOAhdl1j8P9jv93oe9Dd95fu21PABpxj8fhwGZge860BsAo8L27Gfh+gfNed89FFwPbgfm4549JuNl3gexn+XXcjMtTcM9RU3O2Ww8ck/08bgPuyE47A1ia/Rup7N9j+D7292C+ix2OkX38fszJHi9zs9taCnw7+/4mAO8BZ2TnvZH9OA8X2Jb3Pun6+3lz9rNtPe5+Sdvvw7js39ufs27vPZPzWyL/5J/8k3/yr/v/JONHCCEOj2qgVmtttY5QbrZEo3IzCxYBaK2XaK3f0Vo7WuvlwD+Bxd3chglMUkpVa61jWutXcsZX4d5I2VrrpVrr5vYLa63Xa62f0FqntdZ7cW8K22/7V1rrHVrretwb3Dn72J+F2Se0u3Bv+i/QWjdlp72stb5Pu9lA1cAJwFe11imt9TLgz7gBA4BPAN/UWq/Rrre11nXAOcAmrfXftNaW1vpN4B7ggznve5pSqlRr3ZCd3jp+ODBWa21qrZ/XWut9vI83lVIN2ff7Z+BvuDdpf9Bav5r9TG8B0rg3zbmf1VatdbL9CpVbJ+jDwNe0m/21Cfi/nPcMsENr/evse2tdx73Zv18KuBdIaa3/rrW2cQM1XsaP1vru7N/K0VrfiZsBckzO+jdrrf+UXfaW7GcyVCk1HDgL90a6IfsZPZtdpjvvu9X7gXVa61uz7+GfwGrgAznz/E1rvTb7/u5i38eTCXw3uz+P4AYwpiqlVHa/vqC1rtdatwA/BC7JLvcsbcfxItzAX+vrxdnphTwLLM5mIswCfpV9HcYNIjzf1ba11nVa63u01onstB/Qve/zj7XWjVrrLcAzOZ/Lp3GDSquy55If4ma+jM1Z9kfZfelw3OF+Nx7SWj+n3SzDbwFO68TssfVK9u+1CfjDvvZ3f96fdmv2tGTfy2LgMWC7UuqI7Ovns+eD7uruuegTwP9qrV/Pnj/Wa6034x6zxbifdUZr/TRuwO3SnGX/rbV+LftZ35azDRM30HUEboBmldZ6Z2c7eqDfxf34LFBK1QD3Addqrd/CPUZrtNbfzb6/94A/0fa9gP07D3el4PczZ/rDOcfdN3CzeEbvz3sUQgjRfRL4EUKIw6MOqM5NZ9daH6e1Ls9Oa23is0Ap9Uw2Nb8JtwZQweYvBXwcN3titXKb1bQWU74V9ybrDuU23flfpVSg/cJKqSFKqTuU2yyqGfhHgW3vyhlO4N44deYVrXW51rpaa71Qa/1kzrStOcMjgNab5labgZHZ4dG42RbtjQUWZINnjdkg02W49ZPAzUQ4G9icbVpwbHb8T3Gf9D+ulHpPKXXDPt4DuJlCFVrriVrrb2ZvksYCX2q37dHZ91LoPbZXjfsUfnMn77mz5XfnDCcLvPb+HkqpK1Rbk6xG3CZquX9P72+ptU5kB4uz76Nea91QYPvded+tRrR7f9DxPe7P8VSncwKnOfPX4GacLM3Zp0ez48HNhJui3OaNc3AzrUYrtxnXMbjZO4U8i5vJMA834+wJ3ADFQmC91rq2q20rpaJKqT8ot2lVc3Zb5arrAuGdfS5jgV/mbKseN+Okq+Om1Yjc6VrrOO75h+z+TlFuc61d2f39Ifs4/xzA+2v9TBdlh5fgfqb7CsB1prvHTmfnjxHA1nbBpm4dn9kg0W+A3wK7lVJ/VNlmgIUcxHexW7Ln838Bt2ut78iOHguMaPdd/Tr5AaX9OQ93pbPvZ4dtaa1juMduofOGEEKIHiCBHyGEODxexs2MOK+L+W7HbTYyWmtdhtskqbW+Rxz3JhPwskZab27RWq/TWl8KDAF+AvxLKVWUfQL7P1rracBxuJkyVxTY9o9wU+5naa1LgY/mbLun5WbY7AAqlVIlOePG4DbPAPeGYWKBdWwFns0Gl1r/FWutPwuQfcJ/Hu7ncR9uRgnZDJsvaa0n4GaffFEpdep+7v9W4Aftth3NZrUUeo/t1eI+Ic/N1Mh9z10tv0/ZDJA/AdfgNq0qB1bQvb/nVty/R3kn07p63612kP/+oON77Am1uEGv6Tn7VKbdgtytN9JLcZsbrtBaZ4CXgC8CG7IBnEJews1YuAD3OFuZ3f/30xak2Oe2gS9l17Eg+51alB3f+nfY37/xVuDT7T7/iNb6pZx59rXOnbiBEHcnlIriZgO2+h1uVtbk7P5+nX0fM129v/ZaAz8nZodbs7H2Ffg54O9BVmfnjx24AcDca+NuH59a619prY8CpuMG3K9vnZQ730F+FzusrxO/xs2m+mbOuK3AxnbHSonW+uxO1t3Vefhg5R53xbhN9Hbg/q5Bzm8bbcH79vsohBCimyTwI4QQh4HWuhH4H+D/KaU+qJQqVkoZyi1mWpQzawnuU9eUUuoY3F6kWq0FwsotAB3AvcgPtU5USn1UKVWTfYLdmB1tK6VOVkrNzAaKmnEDDnaB3SzBTc9vVEqNpO1Gpldprbfi3mT/SLlFdWfhZi/dlp3lz8D3lFKTlWuWUqoKt1nGFOUWqw1k/81XbsHWoFLqMqVUmdbaxH3fNnjFiSdlm+m0ji/0eezLn4DPZDO0lFKqKPt3KelySfc927iBqB8opUqyN4dfxM2y6glFuDdMe8EtrEu2KHU39m0n8B/cY7Ui+7m23tDvz/t+BPfv8xGllF8p9WHcGjMPHeR7a7+/Tna/fq6UGgKglBqplDojZ7ZncW+8W4MLS9q9LrTe1oDR53Pmewm3udWz3dx2CW5gqFG5Pdp9p91mduPWXumu3wNfU0pNz26rTCl18X4s/y/gHOUWuQ7i1mTJvTYswf1OxJTbBOuzXexvV++vvWdxi5xHtNbbcIuln4kbfHqrk2X29zNq78/Al5VSR2WP2UnZ79uruEGHr2SP8ZNwA8F3dL4qV/Y8syB7Ho4DKdrOIe3394C/i52sr/2+fBo3cPaRdtlLrwHNyi0yH1FukfwZSqn5hdbTjfPwwTo757j7HvCqdpvC7sUNLn00u49Xkx+o2w2Myi4nhBCimyTwI4QQh4nW+n9xb+6/glsgdzduDY2v4l5wA3wO+K5SqgW3KOddOcs3Zaf/GfdCOQ7k9vJ1JvCuUiqGWzzzEu3WghmGe8PXjFsE9VkKBxj+B7dZSxNucd9/H/Sb7r5LcYt87sCtXfMdrfUT2Wk/w/0cHsd9D3/BvXFsAd6HW7NiB25ziZ/QFgy7HNiUbYLyGdwMJoDJwJO4Qa6Xgf+ntV6yPzurtX4Dt7bLb3CL0q7HLUK6P67F/Ru+B7yAm+311/1cR2f7txK3ZtDLuMfZTODF/VjF5bgBwtW4x+p/Z9fb7fet2+owfQm3OdFXgHP2kWFzML6a3ZdXsn/vJ8mvL/IsbpDiuU5ed+ZZ3GK1r+1juX1t+xe4RXNrgVdwm4Hl+iXwQeX25vSrrt6k1vpe3GP8juy2VuDWY+oWrfW7uIGs23GzfxrIP4d8GTfY3IIb0Lqz3SpuBG7JNh36UDfeX/vtr8X93j2ffd2Me/y/mA2GFvIX3FpdjSqnd7nu0lrfjVt76Pbs+7oPqMxmfp2L+/nV4hY1vkK7vfd1pRT382nAbQ5VB9xUaH974LvY1TFyKW5gaIdq69nr69nP8wO4zRs3Zt/jn3EL7HdmX+fhg3U7bmCwHreI+GU50z6J+6ChDjeDKjeD7WngXWCXUqo3zh1CCDEgtfYQIIQQQgghhBC9Sil1M26PlN/sal4hhBA9QzJ+hBBCCCGEEEIIIQYoCfwIIYQQQgghhBBCDFDS1EsIIYQQQgghhBBigJKMHyGEEEIIIYQQQogBSgI/QgghhBBCCCGEEAOU/1BurLq6Wo8bN+5QblIIIYQQQgghhBBiQFu6dGmt1rqm0LRDGvgZN24cb7zxxqHcpBBCCCGEEEIIIcSAppTa3Nk0aeolhBBCCCGEEEIIMUBJ4EcIIYQQQgghhBBigJLAjxBCCCGEEEIIIcQAdUhr/AghhBBCCCGEEIebaZps27aNVCp1uHdFiP0SDocZNWoUgUCg28t0GfhRSoWB54BQdv5/aa2/o5T6KfABIANsAD6mtW48kB0XQgghhBBCCCEOlW3btlFSUsK4ceNQSh3u3RGiW7TW1NXVsW3bNsaPH9/t5brT1CsNnKK1ng3MAc5USi0EngBmaK1nAWuBr+3/bgshhBBCCCGEEIdWKpWiqqpKgj6iX1FKUVVVtd+Zal0GfrQrln0ZyP7TWuvHtdZWdvwrwKj92rIQQgghhBBCCHGYSNBH9EcHctx2q7izUsqnlFoG7AGe0Fq/2m6Wq4H/7PfWhRBCCCGEEEKIQUgpxeWXX+69tiyLmpoazjnnnMO4V10rLi7ucp4bb7yRm266aZ/z3HfffaxcubKndkvsQ7cCP1prW2s9Bzer5xil1IzWaUqpbwAWcFuhZZVSn1JKvaGUemPv3r09sMtCCCGEEEIIIUT/VlRUxIoVK0gmkwA88cQTjBw58rDsi2VZXc/UwyTwc+jsV3fu2eLNS4AzAZRSVwLnAJdprXUny/xRa3201vrompqag9tbIYQQQgghhBBigDjrrLN4+OGHAfjnP//JpZde6k2Lx+NcffXVzJ8/n7lz53L//fcDsGnTJk488UTmzZvHvHnzeOmllwDYuXMnixYtYs6cOcyYMYPnn38eyM/Q+de//sVVV10FwFVXXcUXv/hFTj75ZL761a+yYcMGzjzzTI466ihOPPFEVq9eDcDGjRs59thjmT9/Pt/61rc6fS8/+MEPmDp1Kqeddhpr1qzxxv/pT39i/vz5zJ49m4suuohEIsFLL73EAw88wPXXX8+cOXPYsGFDwflEz+gy8KOUqlFKlWeHI8BpwGql1JnAV4FztdbyFxFCCCGEEEKIAkzbyXudsRx2NaXY3ZxiT3OKlpR5mPZMHG6XXHIJd9xxB6lUiuXLl7NgwQJv2g9+8ANOOeUUXn/9dZ555hmuv/564vE4Q4YM4YknnuDNN9/kzjvv5L/+678AuP322znjjDNYtmwZb7/9NnPmzOly+2vXruXJJ5/k//7v//jUpz7Fr3/9a5YuXcpNN93E5z73OQCuu+46PvvZz/L6668zbNiwgutZunQpd9xxB2+99Rb//ve/ef31171pF154Ia+//jpvv/02Rx55JH/5y1847rjjOPfcc/npT3/KsmXLmDhxYsH5RM/osjt3YDhwi1LKhxsouktr/ZBSaj1uF+9PZIsLvaK1/kzv7aoQQgghhBBC9C91sTQ7GlNUFAWoiAbZ3pjEdjSW3dZgQik4YlgJft9+NcgQPeR/HnyXlTuae3Sd00aU8p0PTO9yvlmzZrFp0yb++c9/cvbZZ+dNe/zxx3nggQe8WjmpVIotW7YwYsQIrrnmGpYtW4bP52Pt2rUAzJ8/n6uvvhrTNDn//PO7Ffi5+OKL8fl8xGIxXnrpJS6++GJvWjqdBuDFF1/knnvuAeDyyy/nq1/9aof1PP/881xwwQVEo1EAzj33XG/aihUr+OY3v0ljYyOxWIwzzjij4L50dz6x/7oM/GitlwNzC4yf1Ct7JIQQQgghhBD9nGk7NCdNGhIZABriJg3xwpk9WsOu5hSjKqKHchdFH3Huuefy5S9/mSVLllBXV+eN11pzzz33MHXq1Lz5b7zxRoYOHcrbb7+N4ziEw2EAFi1axHPPPcfDDz/M5ZdfzvXXX88VV1yR1wtU+27Ai4qKAHAch/LycpYtW1ZwH7vTk1Rn81x11VXcd999zJ49m5tvvpklS5Yc1Hxi/3Un40cIIYQQQgghxH5oTprUxTOkTafrmXEDQ1VFNpGgr5f3TLTXncyc3nT11VdTVlbGzJkz84IdZ5xxBr/+9a/59a9/jVKKt956i7lz59LU1MSoUaMwDINbbrkF27YB2Lx5MyNHjuSTn/wk8XicN998kyuuuIKhQ4eyatUqpk6dyr333ktJSUmHfSgtLWX8+PHcfffdXHzxxWitWb58ObNnz+b444/njjvu4KMf/Si33VawTycWLVrEVVddxQ033IBlWTz44IN8+tOfBqClpYXhw4djmia33XabV8C6pKSElpYWbx2dzScOnuQSCiGEEEIIIUQPS2Tsbgd9Wm1vTKC1xnEK9psjBqhRo0Zx3XXXdRj/rW99C9M0mTVrFjNmzPAKK3/uc5/jlltuYeHChaxdu9bL2lmyZAlz5sxh7ty53HPPPd46f/zjH3POOedwyimnMHz48E7347bbbuMvf/kLs2fPZvr06V4x6V/+8pf89re/Zf78+TQ1NRVcdt68eXz4wx9mzpw5XHTRRZx44onetO9973ssWLCA008/nSOOOMIbf8kll/DTn/6UuXPnsmHDhk7nEwdPddIZV684+uij9RtvvHHItieEEEIIIYQQh5rjaFbtasbZv7gPANUlQYpDfkrCgZ7fMeFZtWoVRx555OHeDSEOSKHjVym1VGt9dKH5JeNHCCGEEEIIIXqI7Whq4+kDCvoA1LZkSJo2tmT9CCF6iNT4EUIIIYQQQogeYDuabQ0JWlLWQa2nOWniODCsLNxDeyaEGMwk40cIIYQQQggheoDbk5fFwVbTSGYc9raksewDTBsSQogcEvgRQgghhBBCiIOU6oXmWbtb0j26PiHE4CSBHyGEEEIIIYQ4SPG0hWX3bOCnPpahKWn26DqFEIOP1PgRQgghhBBCiANkOxqfoUhkbCLBjtOVnaF4+/PERhyH9kfAMQm/exel6+/HdDSxyCjC1WOIz/0UTqCow/LxtEVZRHr4EkIcOMn4EUIIIYQQQogDFM9Y3v+x3KLOWhNo2cqIey9g3OMfY8ztiwnf9WFm/nUik1/9GkPrXqG6/k1qtj/OuOU/p+i5/ym4/qRpH4q3IQ6D3bt385GPfIQJEyZw1FFHceyxx3Lvvff2+nbfeOMN/uu//qtH1nXSSScxdepUZs+ezfHHH8+aNWt6ZL09qSf38eabb+aaa64B4Pe//z1///vfO51306ZN3H777d7rnvzc95cEfoQQQgghhBDiAKVNB8t2MC2d15vX8Je/wxF3Hk9l4zv8xLwEOx1jcvPLPKUW8kTZRfxt8Uv859w3+c9ZL/IAJzNs47+x967tsP5kxkYfbLVo0edorTn//PNZtGgR7733HkuXLuWOO+5g27Ztvb7to48+ml/96lc9tr7bbruNt99+myuvvJLrr7++w3TbPvzBy97Yx8985jNcccUVnU5vH/jp6c99f0jgRwghhBBCCCEOkOU4xDP5N41GJkb1ypu918df9QPeOP1fLDvxDwz5+F0Mu/jnHD15FJOGljF7VDn+U75OUgcJP/HVDuvXGlKm9O410Dz99NMEg0E+85nPeOPGjh3LtddeC7hBgxNPPJF58+Yxb948XnrpJQCWLFnCOeec4y1zzTXXcPPNNwNwww03MG3aNGbNmsWXv/xlAO6++25mzJjB7NmzWbRoUYd1vPbaaxx33HHMnTuX4447zsuGufnmm7nwwgs588wzmTx5Ml/5yle6fE+LFi1i/fr1ABQXF/Ptb3+bBQsW8PLLL/Ozn/2MGTNmMGPGDH7xi194y/z9739n1qxZzJ49m8svvxyAvXv3ctFFFzF//nzmz5/Piy++CMCzzz7LnDlzmDNnDnPnzqWlpYWdO3eyaNEi5syZw4wZM3j++ecPeB//8Y9/cMwxxzBnzhw+/elPe8Ggv/3tb0yZMoXFixd7+wJw4403ctNNNwGwfv16TjvtNGbPns28efPYsGEDN9xwA88//zxz5szh5z//ed7nXl9fz/nnn8+sWbNYuHAhy5cv99Z59dVXc9JJJzFhwoQeCxRJjR8hhBBCCCGEOECWrdnekMwb52x5xRvePvRkyiIBysZNA6YVXMfoCVN5ZvllXFj7B1Y9ej1Fk0+kaeK53vRExiIS9PXK/ovD491332XevHmdTh8yZAhPPPEE4XCYdevWcemll/LGG290On99fT333nsvq1evRilFY2MjAN/97nd57LHHGDlypDcu1xFHHMFzzz2H3+/nySef5Otf/zr33HMPAMuWLeOtt94iFAoxdepUrr32WkaPHt3pPjz44IPMnDkTgHg8zowZM/jud7/L0qVL+dvf/sarr76K1poFCxawePFigsEgP/jBD3jxxReprq6mvr4egOuuu44vfOELnHDCCWzZsoUzzjiDVatWcdNNN/Hb3/6W448/nlgsRjgc5o9//CNnnHEG3/jGN7Btm0Qisc/PvbN9XLVqFT/5yU948cUXCQQCfO5zn+O2227j9NNP5zvf+Q5Lly6lrKyMk08+mblz53ZY72WXXcYNN9zABRdcQCqVwnEcfvzjH3PTTTfx0EMPAW7ArdV3vvMd5s6dy3333cfTTz/NFVdcwbJlywBYvXo1zzzzDC0tLUydOpXPfvazBAIHV+dLAj9CCCGEEEIIsZ9Spo2jNbajO3Tj3vzu41ja4J7FTzB94thurW/E6f/N+n8+wpHb7oRtd/LOhA+AUgC0pCyqikM9/h5E1n9ugF3v9Ow6h82Es37c7dk///nP88ILLxAMBnn99dcxTZNrrrmGZcuW4fP5WLu2YzNA03a8ZoClpaWEw2E+8YlP8P73v9/LLDn++OO56qqr+NCHPsSFF17YYR1NTU1ceeWVrFu3DqUUptnWi9ypp55KWVkZANOmTWPz5s0FAz+XXXYZkUiEcePG8etf/xoAn8/HRRddBMALL7zABRdcQFGRW7z8wgsv5Pnnn0cpxQc/+EGqq6sBqKysBODJJ59k5cqV3vqbm5tpaWnh+OOP54tf/CKXXXYZF154IaNGjWL+/PlcffXVmKbJ+eefz5w5cwp+vl3t41NPPcXSpUuZP38+AMlkkiFDhvDqq69y0kknUVNTA8CHP/zhDn+LlpYWtm/fzgUXXABAOBwuuA+5XnjhBS/Adsopp1BXV0dTUxMA73//+wmFQoRCIYYMGcLu3bsZNWpUl+vcF2nqJYQQQgghhBD7aW9Lmvp4BtNua4YV3fUaxRseYsbeh3g1dCzTpkxG+wp09VVAUVERzqxLvdeVr/6YQGwHALG01SG4JPq36dOn8+abb3qvf/vb3/LUU0+xd+9eAH7+858zdOhQ3n77bd544w0ymQwAfr8fx3FwHI1pOySSKRyt8fv9vPbaa1x00UXcd999nHnmmYBbgPj73/8+W7duZc6cOdTV1eXtx7e+9S1OPvlkVqxYwYMPPkgqlfKmhUJtwUafz4dlWRRy2223sWzZMu677z4vMBQOh/H53Cy1zmpUaa1R2eBmLsdxePnll1m2bBnLli1j+/btlJSUcMMNN/DnP/+ZZDLJwoULWb16NYsWLeK5555j5MiRXH755Z0WW+7OPl555ZXeNtesWcONN94IUHAf27+P/VVomdbtdPdz3x+S8SOEEEIIIYQQ+yFjOTQlTdrfu0186IPe8O7Zn6d0f9d71KdYtWctR+66j5ErfkdTwyq2nPV3tIaGRIZqyfrpHfuRmdNTTjnlFL7+9a/zu9/9js9+9rMAec2UmpqaGDVqFIZhcMstt3j1ZsaOHcvKlStJJFO0JBI88/TTHHvc8TQ1t5BOJTn77LNZuHAhkyZNAmDDhg0sWLCABQsW8OCDD7J169a8/WhqamLkyJEAXq2gnrZo0SKuuuoqbrjhBrTW3Hvvvdx6660Eg0EuuOACvvCFL1BVVUV9fT2VlZW8733v4ze/+Y1XhHnZsmXMmTOHDRs2MHPmTGbOnMnLL7/M6tWriUQijBw5kk9+8pPE43HefPPNfRZc7sypp57Keeedxxe+8AWGDBlCfX09LS0tLFiwgOuuu466ujpKS0u5++67mT17dt6ypaWljBo1ivvuu4/zzz+fdDqNbduUlJTQ0tLS6Wdy22238a1vfYslS5ZQXV1Naen+njG6TzJ+hBBCCCGEEGI/NCQyeUEfZaUo2fq09/rPRZ9i0qzj93u92hfEPOtn3utYwx5vOLfHMNH/KaW47777ePbZZxk/fjzHHHMMV155JT/5yU8A+NznPsctt9zCwoULWbt2rddMavTo0Vx88cXMmzuHq6+8gtlz5qDR1DU0cs455zBr1iwWL17Mz3/+cwCuv/56Zs6cyYwZM1i0aFGHoMVXvvIVvva1r3H88cf3Wu9b8+bN46qrruKYY45hwYIFfOITn2Du3LlMnz6db3zjGyxevJjZs2fzxS9+EYBf/epXvPHGG8yaNYtp06bx+9//HoBf/OIXXqHqSCTCWWedxZIlS7xiz/fccw/XXXfdAe3jtGnT+P73v8/73vc+Zs2axemnn87OnTsZPnw4N954I8ceeyynnXZap3WZbr31Vn71q18xa9YsjjvuOHbt2sWsWbPw+/3Mnj3b+3u0uvHGG733eMMNN3DLLbcc0H53lzqUXQMeffTRel8FqYQQQgghhBCiL7Nshy31CeLptpvk4a/8D9Ur/gLALfYZ1Hzol4yuiB7wNoIN66i592IqnXqeP/U+ysfPQymYNrwUw9h3sxPRPatWreLII4883LtxQCzbIWN37Okt5DfwGZLbMRgUOn6VUku11kcXml+OCiGEEEIIIYToptpYpkP36oGWbd7wsBFjDiroA5CpmMym0/5Mi44w6dlrwHGbldUnMge1XjEwOJ0kb1i21IEShUngRwghhBBCCCG6IWXa1MXTbYWWtcP4hz5E0a627tsnjp/QI9sKjDmau4Z+geHWNny73R6n9jSnpcjzIKd1x17kWtlaH1ChYTHwSeBHCCGEEEIIIbpg2g7bGpI4Ock+vnQjxbtewZ9u8sb5S4d2uS6loDjspyjkIxry4fcVbr5VPnURAE3r3cCS7WhiaYt4Wur9DFa2o9lXaEcCg6IQ6dVLCCGEEEIIIbqwszFFMpNf/NafzO8aOx6oJFWZX3ejKORjRHmEvS1pWlIWQ0tDBP0GJeGAN49pO6zZ1dKhl7BxE6ay97kyjB1t3X7H0xY+Q1EUklu5g9VZd+J9WVdhHcvRgIOjIeBT/e79ia4dSFaXnC2EEEIIIYQQYh9iaYumpNlhvErs9Ya3Vi+m8fxb26YpKAr5qSkJEQ74GF0ZxbQdAr6OjS4CPoOq4iC1Lfk1fIIBH5tCRzA09i6tnUI3JkyKQ34aExnKo8GeeYODUDgcpq6ujqqqqn4THNHdaMrlaE0mW+tHKYNAJ9lkon/SWlNXV0c4HN6v5STwI4QQQgghhBCdMG2HzXXxjhMck1ffXsHk7MtQ2ZC8yWWRABVFQaIBnzeuUNCn1bDSMI0Js0OB3kTNbMZtf5Wn9u5hSM0QbEeTNG3iGYvikB//PtYpOjdq1Ci2bdvG3r17u565j7CyPXntT2suyfoZeMLhMKNGjdqvZSTwI4QQQgghhBCdsGydV9en1fhHL2fmjpcAeG/sh7BnXZ03PRr0UbwfzbGUUgwvC7O1PolSeM2+iicdB9v/yO53nmLIKZcCkLHcHbIcjc/of82V+oJAIMD48eMP9250WyxtsXGvG4A0gMjetxn17BfYffRXaB53ZqfLlRcHGVEeQWuNaWuCfgkUDkZd/tWVUmGl1GtKqbeVUu8qpf4nO75SKfWEUmpd9v+K3t9dIYQQQgghhDh0zEJRn72rKc4GfQDip/6IVNW0vFlya/h0V3k0SHk0QDgnSyg04QTiRKnY+kSH+ZMZG1O68B7wLNthW0Mib9yQV75PuHE9o5/8DKGVd9OhQFRWfTzD9sYkq3a2sGZXC3tb0odil0Uf051wXxo4RWs9G5gDnKmUWgjcADyltZ4MPJV9LYQQQgghhBADRvumVwDW87/whhOhIWDkB3nKIoEDzqwYWR4hGmwL/GhfkHWVizkh8yK1de2KSWcsHOm+e8CrjWUwrba/s795C6W7X+V31gdY5kxgyktf4oi/TiZc926HZbWG+ljG6+1rV1OK2li6YM0qMXB1eTbSrlj2ZSD7TwPnAbdkx98CnN8bOyiEEEIIIYQQh0sik991um7azoz6x3goci6rLn2NzRf9x5umFAwtDTG8fP8Kr+YyDEVx2E95NKfXr1kfpUQlqX/r/nb7Zmd7cRIDUVPSJJa2aEjkF/02Xv41tlZw1NVsOfffvOWbTUBniDz/w26td2djirqYZP4MJt0KQyulfEqpZcAe4Amt9avAUK31ToDs/0P2sQohhBBCCCGE6FeSGZuGeFtmRKhhHdP/dQIBbJx5V2MVDcOK1njT/T7FkNLwPos4d0dpOMCI8gitpXvCE46jmWKi21/Imy9tOtiOJmXaBdYi+rNkxmZ7Q5KNe+N5WWfKSjFh67/5N6ewYN5cJg4rR116G++pUURrl+MUappYQDxtS9bPINKtM5LW2tZazwFGAccopWZ0dwNKqU8ppd5QSr3RnyqmCyGEEEIIIQa3llT+jfHI576MT7tBlnFTZ+dNC/oN/EbPFc71Gaot68fwsa1iAQsyr7Bx2868+dKWZP0MNLWxNBtr417zrFy+7a8TwGT38FO9AKMvXMq6KZ+ikiZ2v/lQt7ezrSHB3pY0TQkJAA10+3Vm0lo3AkuAM4HdSqnhANn/93SyzB+11kdrrY+uqakpNIsQQgghhBBC9DnxTFsmjaM19bW7vdfK8OXNGw36CPh6tnetURVRItl6P/ax11KpYhS/9nPCdSu9eVqzfkT/lrEc9rSk2FqfYGdjqtO/qbniPjLax7CZJ+eNH7rgEvZQSdnK27q9Tcdxa/7saEqSzEjW2EDWnV69apRS5dnhCHAasBp4ALgyO9uVwP0FVyCEEEIIIYQQ/VDuzXDzK7cy0nGzbbYt/K43vrU5VjTow2f0fLfqpeFsl/Aj5vFS8HhOqb+DyfeeiZFuAiBl2jgS+OmXmpImDfEMDfEMa3e3sLspTeM+sm+UnWHqzvt51FjM5DEj8qb5gmE2Vx7Pkem3WbujYb/2w7I1W+oTxNJW1zOLfqk7GT/DgWeUUsuB13Fr/DwE/Bg4XSm1Djg9+1oIIYQQQggh+jXH0WSstkya4O5lnPjuN1mpJrDsoytpmHGVN29rRk5RyE8k4Cu0uoMSye3ha8qZ3nB0z1sY6SbSloMtPXv1O4mMxZa6BNsakmxrSHbWG3ue5N5NhMgQG74QQ3UMMpbOPJtSlWD2w2dTdNv7Ce14vdv7k7EcttYnaExk0HI8DTj+rmbQWi8H5hYYXwec2hs7JYQQQgghhBCHS10843XHXr389wx/7Yc06GJePuGvLAwX580bCfhIZmzCAR/h3gj85KyzZsoCWOEOj3/sCuI1c3nvvPtxHI1lO/gPsqi0ODQSGYttDcn9W0g7FL/0IwDGTjiy4CyZSWexd/3pTNr+BE5iB6lHr2DTpc9jR6q7tQnL1uxoTOH3GThaUxoOdL2Q6BfkzCCEEEIIIYQQOZqSGeLZZi/DX3O7yH7FfzTHHDGuw7x+nyIa7PmAT9v6DS8IlS6fhBVoCzwV7X0LAFtrWlLSTKe/qI9nSJvd632rVcnGRziy/ikAKkdPLTyTMth15p9Zedmb/HTSrfjtFM4TN+7XdmxHs6UuQX0s0/XMot+QwI8QQgghhBBCZNmOJmNpr6vrtL8EgO1zvliweY3fMBhWFu7VffICS4afVVeuJFU0yptWseYObEeTMG0yloNl719AQRx6+1tLRzsO1nM/915b0SGdz6wUdqSaMxafyEORc5m2+0Hiu9YRbNxAyZanUFaqy+3ZjiZjO6RMKfg8UEjgRwghhBBCCCGykqaN7WgsW4N28Ftx/qouZN6sWXnz+QxF0G/gMxTRYJcVNA5KcSh//esvfprbjXMAGPX8V0iZDvG0RXPK3P8mROKQSmZsTGv/aug0P/MzJlnreKzkIjac9BtQ7m18Sbjz485nKCpO+QIACx86lan/Oplxj3+MUf86G1+qvsttZiyH5pR08z5QSOBHCCGEEEIMarWxNMmMTVPSZHdzipaUiWk7UuB0ELIdndeT19atW/DhMGL0BALt6udUFwcpiwR6vAv3QkrCfnKTjbQ/zISx473XyYxN2nTY2ZiiJWVJpkYfpbVmU118v5Zp2LWJ+e/9jpcCCxl60U9JTDoXgIBfMbYqysiKCAUS0QCoHjGOd6ZfT6OvijtKruLbvv8i3LKZaf+Yw5Rb52KYne+L1tCUMDvtVl70L70bmhZCCCGEEOIw2J9Ct7WxNHVkyFhtTWTCAQPT1hwxrASjF7roFn1T+8BPw+blAIwcMz5vPsOAquJQr3TfXojfZ1AaDnjNzwDGVBfDRne4aPsLxEee4E1rSGSoKQ5Jsec+Jp6x3UyyblDpFoY//mlCe3cSUibO6d/H52+7fS+LBFBKUVkUJBww2FSbKBikMY67hq3Hfp7pSjHRtPnz48O4ZufXCaXr8L/3JJmp53W6D2nLIZayKItKkef+Ts4EQgghhBBiQElkLNbsbmF7Y7LLrB3b0ZiWzgv6AKRMtyvveMbCkSfeg4ZbK6et/sqxm35DigD+kfmdHFdEg4cs6NOqLNLu5tsX8gYn/OcjeZNiKYvGpDTT6Wsa4t0rmBxLZUjc9Ukqdr3IFGcDO8uPomzEFG+6UlBV1Pb3jwb9TBla3GnmT+uEcMDH4vd/lIdPeYwGXYx6+TdYZrrT/dAampKm1I0aACTwI4QQQgghBoyUaRNLWzgO1McybKyNe1kcW+oSbK6Le3UrMpbD7uZ9FzqtjWXY0SQ1UwaDjOWQttrqr/hiu5iQXs090UuxStqKKSsFxfuordJb2m+z/sjLaAiPKThvynS6HWQQh053aubs3rKW6G3ncEz6JR4ZeS0vHPc3mt73i7x5SsMBr6e3Vn6fQaSbvcuNmXAkz035GlOsNUy5ZTbT/jKB6O6lBedtSZs0JExp+trPSVMvIYQQQggxYGxrSBD0td38xNM2a3e35DWvMLNPr3c3pUh10aVyLGWhFESDGSqLgr2z06JPyNgOiZxmXk0rnwRAT35f3nyVRUHC/t7rvr0zPkNRGvHTnHQzkrQvRPOxX6HimWsAUHYanZMFlLYkS6MvSZk2Tid/Em1bNL/1b6IbHmFm81sUqyTLp1zL2BO/BErRPlxUFCp8/FUVBUmkuxeonrD4cp7L7OTYTb/Dh83EBy9g0+l/pmVs/vHuOG7AKhQwKAn5UZ2mFYm+TAI/QgghhBBiQEiZNsmMQ0rl3121r6mRzDhsrk10e71aw47GJKVhv9RMGcDSpk0ypyhycsubpHSAqbMWeOP8PkV1cahDtsWhMrQ0TEsqRmvyhRMs9aYZmRbsSFvgR2s3yNm+KLU4PNLtgsy+ZC1Fb/6BnXWN6Lr1nGAvZZeuoD40im0nf5/g6LkF16MUlLZv9pdVFgmwTSXpbnJOxelf4YW9V3Dy/ccAMO6JT7D92P+hfvrH8uZLZmwa4yYBw/B6shP9iwR+hBBCCCHEgFCfbdrSGy0StHYLs5ZF5CZ6oEpbjlfYufLdmxnS+DRbgxMIh9xgilIwrDR82II+4NZoKQr5MW2HtOmgnLZcECPdhB2pzpvftB0USMCyD0hZ+T2tld1/FSNjyxmlFY7ysWTsfxE98b+IhIPsK7ewOOTvNJinlKIo5CeWsgpOL6S6Zhibjv4W4974HgAjX/4OwYZ17Drhh948WrtZPz6fojTspyQsxZ77GzkDCCGEEEKIfi9l2tTFeremSW5vT2LgyVgOWkOwaSMjX/42Q6knXjnNmz60NExFH2juFw36KM3eeMdGnkjGiABQ/fg1FG97Lm/ejOUQl+O2T8jN+Bnx7/MZGVvOzUUf5+nz32TtFcuoOv3LRMJdH19dBR5rStyMtPL96ImrZc4n2XjKH9rWsfofjL9jEaGGNd44rd3i1Ak5nvolCfwIIYQQQoh+r2U/nnAfqESm97chDo+UaZPJ1n4q2fqUNz46eg7g3mxX9YGgD0B5NEDIbxAN+dD+MCtO/isA1c3vMv7Rj+bNmzIdUqZdsJtvcWi1ZvwE9rxDVf2bxAlzxNnXMKymKq/JXle6CvwUh/xMHVbC6MrofgV/YhPOYt35D7WtJ7aJso2PgG4LWGkNzdJbXL8kgR8hhBBCCNHvHYqgTCJjS9fuA9TeljQZy2Hk819hxCvf9cYbI+ZgGDCuOorRR+qahPw+wgEfI8oiGAYUl+U37xry5s9RtttFdyxtkbEcWrrRm5ToPSnTJpMttl239N/YWnH3CY9QVFa1X+sZWrZ/9aWGl4Ux9uOOP1U9i5WXvcnrVee523vz51S/8+f8ebLBxJQpmT/9iQR+hBBCCCFEv5c8BDchbp0fyfoZaFKmTVPSRGuoXHNH/rTKIwj6DEKHoRevfYkEfUSCPgI+AyeUny0y9M2fU/Lew4DbPNG0HVpSltyoH0Z7W9Ju7THtMGznU6z3TeCoIybt1zpCAYMhJWGKg90v0+v3GVQVhbqeMYcdqSZ95s+819GdL3eYpyGRkaav/YwUdxZCCCGEEP1axnIwrQPLxAm0bGPM058luvdtAHbWnEj9kIVEh0/FLBtPpmQ02h/25o+nbSlsOsAkMnaHguDro7NJXvoAKNWnCyOH/AbJoioyxSMJxrZ741PL74PJFwLu+wsHoDFhMqysbwWwBgOtNc3ZjKvAK79korOJZ0Z8iuoulsulFIwsd2s57W/mWVVxENN2qCgKEvYbbG1Idln8uSyn17CyrU9RtP154iNP9MbVxTIMKQ1hO1p6+Oon+u5ZTAghhBBCiC4kMhY7GpN543ypeko2P96t7r3K373FC/oADN/7PNPf/Snjn/wEU+45lZoXv5M3fywtTWYGmni6401wSUC5d9uAvw/f2EaDfoxAmDUffol3rn6PNRc9xUOh9zO1YQljHryYcN0qtIa0ZdOSMomlJfPnUNvemMRxAO1Qs+Z2ljpT8C360n6to7IoSFHowHI2Aj6D0ZVRikN+/D6DsZVRoiEfkeC+QwGbZ/23Nzzusfzu3bUGy9aSAdmPSOBHCCGEEEL0Wy0pK7+ws9aMfuQKxj3xCUbfegzOznf2ufyu9W8BsEWN4J4J3+Pm05by+9n/Zll4AQDh9Q9TuvyvXs2UZMYhbcmN80DS+vdUjZu9cbk1cUOHsfv2rhSFfG7GhVJg+MlUTMaZ7mb6lO1+lSFvuk12HMftrn5XUxJL6lQdMrWxNA1xN1js3/oyVdZu3hhyERXFkW4tHw4YBPyKyh4sLG4Yiok1xdQUh/c5X/MxX2xbxslQuvE/edMzliPNvfoRaeolhBBCiEOuMZHB7zMoLvAEU2tNxnY61NRwHN1niquKviO3a2EjE2PMw5dSUr+cTc5QitNJJj70Qf4z8RuUmrXM2fUvQjpFcth86k77JdaLv2JO6jWWRxfiXHInU1qPr3E1MP9u7nnk11y046eUvXYj7xkB4jMuB9xmDtXFIfyGkmOyn3McTSbbTHDGv9qasthlYwG3B6Wakv2rkXIoRQI+fEoR8CuvueO4OafAm+70uFHizau1G7i0bEfOp73IdjTbGhIYStGYaMsQ1O/eS1yHKJ17frfW4zMUoyujBHxGrzSnKo34iQQNkhmn65mBsU99mhUfW4f2ud+HeMaSZl79SN8NXwshhBBiQHIczbaGJJtq45h2xwvO2liGtbtibKyN0xDPAG7x1ZU7m9nTnDrUuyv6uNxmK1WrbqGkzm22tfHE/+PNM+5lh38kF7/3Tc7Y+gvqMgE2Z8oYvu0/mP/8KHPW/QaAsiknFryBmXLa1ZiGe5Mz4ZVv4N/jZg/VxzPUxtKSOTEAtKStDl2dx8qPYPvxPwSgJOxHqb57c6uUIug3COTUIVKGj3fm3AhAsnFnh2UsRx+SYuiDVWMiQ3PSygv6AITr3uVdJjB11NAu11EU8jG+uohwwNdrwRWl3MBSUchHOFA4LLBn9ufzXo9/4CJv2HHo8N0RfZcEfoQQQghxyDSnTOIZC63dp887GpPehWPGcthcF6c+G+yJpSzqExkSGYv1e2JoDbub0zQlpMaKcFm2g2W33XhY79znDQ+ZOI/hYyaT+ci9bDziUyw/9TasTyxh94ceZqtvNHPTr/F60WIeP+lBWuZ+uvAGgkWsufxtVg89x3390i8B99iti2WwHAfdjTpCou9p7b69OemeT4xUgzetZdJ5OEE3U+ZA66ocSuFs1k8u56iP8ZQ+mnB8R4f5c7sWFz2vKVngN0prhqbeoy46KS9Il0spKA77qS4JMr66iEiw9wtxh/w+JtQUu5lF/o4Bpt3zv0qy8kjvdVHdcipX/NV7LefA/kMCP0IIIYQ4ZJoSphfYAWhOWmysjZHM2Gyqi9OctPJuSJIZm20NybwavS1SXFcAm+vi7GjMyQDbs4pRqTW8zRS2HPkpnGAxADpURuyEb6LGn4hSiuHlUWIfvpfVH36J8KW3MnzSbLSv8/oZOhAl8/7fcK/xPsbVPgdOW6aEaWlSptxA90em7RBPW8SyhZ03rV3uTfOn24JAkUDf7wUrHOjYFMhQinhkBCMzG5n55zHgtJ03kxkby9E4kq3R49KWndf8tFXDzvUUkYSh0/LGB/0G4YD7b/LQYsZXFzG8LHLIs8zCAR+jKqIEC9Sz2nryr/Nej3zlRq9wvuW4TbMl86fvk8CPEEIIIQ6ZtOXkF+LFrTmxfk+MdIEbaK3pMF56pBHxtEVz0sp7sl79zJewtMHWE39K0/Hf3OfyVnQIZsmobm9PGQbJYfOJkMLcvdobH8tYZAo0VxR9n+1oEqbtZYw1b2/7uzZOPA+l3BorhW6E+5qw31ewXk+4eqw37E/WesMp071Rl+ZePW9Pc7pgZ4J7skXkK8fN8cYF/QZThhYzeWgJk4eWdKhrd6gVh/yMrYp2yDRKV0xhzcXP5o3zNbwHtAW/CzXbFn1L3z+TCSGEEGJAiKXdbJ6DzQpPmZJaPtjlZo0B+FINDG15l5t9H2TMlDm9ss0hUxcCsHf1S964RNqSG55+Smv37wdQvO1ZLt3+AwBWfGw9qeqZlEUCh6SpTU8wDIVPKdoniUydOsMbnnjv+1FWW4ac5TgFM1PEgdNa05wqnJFq7lwBQNHomYAb9BleHu5z9aPCAR+jKyNeFlKrTNl4Vn3kdWKhYQDUvvMoRiYGQEvKlIyffkACP0IIIYToVWnLxrQdGuKZHrk41BppXjOI2Y7uUEOjec2zGGiMyaf22o3UkPEzaKSE0I5XvHEp08lmsUnzw/7G0W3N9Ia+8n1vfGuzv4qiINF+EvgBNzupJJxfjyhTMtIbDqZqKdr1mvc6bTlkbEdq/fSgpGnjFPg4TdthZPMy6vxD0aFSACqKApSGA4d4D7sn5HebfQ0pze/u3YoOZf1HXmEjI1m07idM//s00A6xtJVXa030TRL4EUIIIUSvSqRtEmm70yehB7TOjNX1TGJAiqWsDlljsQ2vkNE+ph21qNe2qwwf7xXPY2piKZmcJjIN8QzbG5O9tl3RO+ycgyiZzs8gUwpCfoOySN+8MS/EZyiiQT8+oy3zxyzOb844/tGPEq51e6ZLZmxsW8u5tAd1lkG1/e2nWKSWsXH0Bd64vhr0aRUJ+gj6jA4Fn30+g20jzmh7nW7EtDSm45C2JIOsL+sy8KOUGq2UekYptUop9a5S6rrs+DlKqVeUUsuUUm8opY7p/d0VQgghRH+TsR3q4umCT0IPVEqeUg9KactmbyyVN05rTVnDO2wJTKAoWtSr20+NPpHhqj6vELDWbp2LpDSb6Vdam4s6qWbKE5tooIx177sFcIsl+w1FuB8Udm7l9ymiQR+RoI/hZW6mhh2qYOf8G/LmK972HP74LrR2m3vFMzaWNFc8aI6jvR7i8sZrTfqd+0gTIHD8tYAbpOsPx1bQb1BSIEA1Yt7Z3vDku05C2RksW9OclCBiX9adjB8L+JLW+khgIfB5pdQ04H+B/9FazwG+nX0thBBCCJHHdjTxdM/eFKelKOmglEjbJDM5N6laM+ZfZzJfv0N9zYIDXm9x2E/ArwgFDEojfgyDDvVSAEqPPA2A5JonO0yrjaUPePvi0GuNdTSsfxWf0rw48/ukxpyMUhAJ+vtc7ZWulIYDFIX8jKuKUlkUxO9ToBS1sz9Hy6iTvfmGv/ETjvyn+7w+bTmkTLvHz8+DUUvaKvg5Ln3zNd6XeYrtlcdihEsAGF/duwHqnuIzFOWRQIdzYWLIPHaFxgMQyDQSbNlCc8rs0axe0fO6DPxorXdqrd/MDrcAq4CRgAZKs7OVATt6ayeFEEII0X/1RtHHtGT8DErteyEKtmymvGkVAM6Czx3weoeXhRlVEWVSTTFjq4qYPqKM0ZVRxtcU5d306Irx7PGPYHztEmLtbnKakqZ0j92PONmMH3OzW/emaupxQLbJVD/IxuiMUgqlFJVFQe/Y3XTmLdRO/lD+jFpj2e6/lrQU5z1YhTL+Nm3dxuI3r0MbfpKn/QiASNDoN0XDASIBH0Wh/NpRGH7q3/9X76Uv1UDadEik3Xp+tqOl6H0ftF81fpRS44C5wKvAfwM/VUptBW4CvtbTOyeEEEKI/s9pV5DFl6pnzJOfZujr/4uyOtZGCTRvpmTz4xhm3BtnZFqI7HkTHPfi2rK13KgMMgV7zNn6KgDfHflHiqrb6pmEAgaThhRTUdR1HY3Wei7FIX9el9hlkQDFIX9+kwylqB//ARaqFUy5bT5j/nNFzv653buLvq0lZaK1e/4o3vYcp+/8A/WUUVxeA4DfUP3qxrwzJWF/Xo2inYtvIj50vvd62GtuL2am7fbu1ZjIdFiH6L5Yuu27X/PmL5l080w+8NhxjFW72XTK73BKRwNQHg0erl08IIahKCuQ9aNLhrXNk6j1hmtjaXY0Jlm9s4UdjUkpHt6HdDvwo5QqBu4B/ltr3Qx8FviC1no08AXgL50s96lsDaA39u7d2xP7LIQQQoh+JDdAY2SaKVnyTco2/Ychb/+G0FPfypvXat7FmLvPZNwTn2D6LUcy7tYFRLe/wJg7TmbSA+dTdef78dWvB5BCkoNMQ8LEtPKDfXXrXiOhQxy94HhvnM9QFIf8RIJuzzTDy916J4YBNSUhhpSGvG6KlXJ7b9pXs57KoiA1JSHvtT7642RUiCpdT9n2JXnzNiWkqUNf15gw3cwxM8X4Rz8KQDLkBn18hiLoNwj5+3//N5GAj8qi/CDDxjNv5W9lbmZczTt/BMctlG7aDs0pS2r9HKC6WNrL+FFmgrJlvydiNbHTGMY7p9+JMf5Eb97+VDC8VfsgIoATaGuu1ly30xuubcnQmD0P1sUy7GpKecFWcXh166ymlArgBn1u01r/Ozv6SqB1+G6gYHFnrfUftdZHa62PrqmpOdj9FUIIIUQ/42X8ODbT/z6D0dse4gkWcKdxNhO23M36F+7GcRxqn/4Nc+86hqiO84/Sj7NFD6UkvZOJ//kIJZk9JHSISGwL1Q9egbJSpKVL90GlPp6fkWC07GBC7TPsDIxmdGWJN35kRSQvS6e6OMT4miKOGFbKsLIwQ0vDDCsL4/cpxlRFGVke2ed2WwM/0ZC7TqtoGLVzr/GmF+140RtuSprSxKEPi6ctGhMmtZtWMOPmKd74qN89R4UCBpGAr9/V9ylEKUWkXZM1HYgyZ9Y877Uv3QiA47g9Jbb/jomutaRMdjW3FZxvfPshIk6cX476GbuvfAX/2LZbZL9PEfD1v6BiwGdQGgkQCfryMn8eu2AFAOWbHia6+42CyzYlTerjGfZKDbTDrju9eincbJ5VWuuf5UzaASzODp8CrOv53RNCCCFEf6O1Jpa2vBTv1vvg4h0vePOUj5/H+A/+gAZfFRes/hKxv57Hye+5/URsrFrM7Iu/zXuXPO/NvycygY0ffYVbq7/IEHMb/p1Lpc7PIJK27LwaGuHdbzL9zoUMoxZ/+UhvfDDbBXdpOL8mRXHI7ea6VUk4wBHDSrrdpbLPUIyvaqv30zj387xtTAdgwiOXevNpDTsbU2itJXuiD4pnm+I5dRvzxkeVe1Ma9PWv+itdMQyVd9wDFFcN94bHPvYxr/ms47hZdaL7HEezuS6R12NlYPX91FPC8ad8AF+7IE/7QFx/UhLyUxENEPQb3nlwWGUJjbqYsU2vM/HBCztdtjlp0RB3a6BJ5s/h052Q4/HA5cAp2a7blymlzgY+CfyfUupt4IfAp3pxP4UQQgjRT+xqTpFIW+xoTLKrKYVpOyg7Q2z5A948w0aOJVJaxY6PPMOGorkcz9tsK5/P2x97j9gFt4JSVJWE2XX0V6ifcgl7LnkMJ1LF8NmnANC44TUaEhnJrhgk8roJ1prip77qvSyqHu0Nl2QDPv5uPFXf36wOw1BtRU4NH2r6BW0Tnbb9a0qabGtIdihELQ6/1uBhbv0wgJZxZwBtGT8DSdCvMHK+Dnao3Bsuqn2bYGyr9zpjOaQtW+qndVPCtMmNY+jtb7Ig9TxLKz9AKBjqMH9/6MK9M621fsqzmT8AhlKko0O7tXzGctjemGRXc4qmhMnOpqT8fh9i/q5m0Fq/AHT2y3hUz+6OEEIIIfqzWNqitiWDz1DYjqYlZeGP72Tomz+ncsfdAKyfdi2pSe7TQRUuI/Hhf7GuYS2piikYRv6lyd451+S9njh2HDt0NcauZVi2Zm9LmhFdNNUR/V9Tsq0Jit6+lOGJNfy++POcetwCMsPcpitBv9Hrx0I06COWcoM8FVVtJQxie7dSPHS897oxYVIc8mM7ukPGhTh8EtnAj5lo9sbFhh7DzmO+AUDI5+tW0LA/Cfp8+AzDO27N4lHsnfwhatbdBYA/sZdM6Thv/ljKwu8z+mUtmkMtns4v5p5Zdidp7Sd5zHUF52+tLdZf+X0GFUVBHA2JbNf10YoRkNzQreUbEyaGAfVkcBw387I/Nn3rr+STFkIIIUSPaX2i3vrE2B/fyZH/XEDlmjva5jnuerQ/3LaQESBVNR2Mrm80Aj6DreEpDI+vBty6LxnLkfTxASyRsUhm2p4M26//hbgOMWbxVaTGnIQTLAWgKNT7T9NzmwFp1TY84eGLwUrlzWvaDs1JaTrTVzSnTCzbPU9s39PWC1GmfAIYfvw+Raif35gXEgoYRHNrsyhF3VFf9KZPfOgigk3vea8bEiYpyVbrkta6Q02kYbuf403fLMaNHFZwmZC//2b8tAr4DIpzmtI6gbZgu0o3F1okj+PgNY2zsl2/i0Nj4J3dhBBCCHHItd4otE/d9qfqe3xbzZUzGK13kmypd7vQTlvEM3KjMhA1JU021yW819o2mVT3DC+GTmT08PwmBsWhLhPZD1pR0O/dQDeNP4uGiW5zr6HOHsyX/l/evC1pi4TcQPcJWmu25BxHTU2NAOw46np2HvN1AKqKgwQHYPZBUciPP9vTXSsrXJE3T7h+jTeczNhYUoulS7G05QUSARpqdzPK2U7TkPkFm5H6DDUgeosD91zr9yn8PkXz2DO88TNunUH52ru7vR7T1myui3c9o+gRA+PoE0IIIcRh1ZwyaU6ZXkHnVoYZy3u99cT/PehtqRFzAWjY4PYikjRtmpOmFNMdYFKmzdb6RN7NVcUjn6SEBOaEUzvMfyjqZ/gM1bYdI8C2xT9j14zP0EAJpe89lDdvMmOTMqVeyuGWtmyS7WqxJGKNmPipm3stTqicgF9RVRTCGIDN8qIBHwG/QUnYvVkH0P4IVqjMm2fsU58m2LTJe23bWmpU7YPjuM2MczUs/RcAVVOOLbjM0NKBdXyVRwMUh/w0TrmYlUd/3xtftvZf3V6H5TgkMjZNkhl5SEjgRwghhBAHLZVx2Fqf6NDTli/TFvhZ+pF3aZx6yUFvq3LsLHebO93mXs1Jk7Tl0CgXjwOG7Wh2NqXybtaVmWD07qcBGH7UOXnzG8ahK5xakttjmOFj78Kv8/rIK5lkraduw5veJK3d4E9z0pTsicOoOWl59W1a6XSMtBH1XhcF/QO2FpNhKKIBH+GAj/JoW3PaVR9dnjdf+fp7vOHWG3JRWMqyiafbPh9tm5y89TfUqioi4xcWXKakmz0I9hc1xSH8PoVS4Bt3vDe+PtP983Ai4wZk9zSnsGxpst3bJPAjRB/hyBNBIUQ/ZjkOjkOHjB8z0QjA76q/QTBa0iPbClSMIkEYX8M6d9u2JpXN+hEDQ3PS7HCznt7u3qj+YcT3CUTashWCfoOhpWEOlaICTcpKjr2amA4TXPrHvPFaQ108TUay0Q6btGUTyynCm0k0EbFbsHxttUkGUhfuhfh9BiG/W7A5FDAI+g1o1xxp6Fu/JBDbDriB12TG7nA+Fy7Tyr9m37bubUqJs3TStehAtMP8VcVB9zMfQPw+A7/h1o/KlE/0xiea9hLe8Rqlmx7FH9+1z3W01gRMmQ6pbK9fovcMrCNQiH6mNQ08lrbYXJ9gY2087+JECCH6utagtdPJk7oVG9yugscf9b6e26hS7A2OpjyxyXtCaNnayzaSQHr/F890/C3c885TAEybtyhvfGnET3Vxx66Te0tR0NchO6S4vJp3ixYwueklUpn8AGQy4xBLWdIU8TDQWmM7ui17RTscdftMzvO9hB0o8uYbaF24F+IGf3wMKwt7Tb5WX/JK3jwjnvsKABnb7dY9UeB7KOgQyN298kUARkw/ocO8JWH/gO15MugzvED42oueoDY6kWn2GiY/8kHGPvkpjvznMQx/6hovoNhe7mVDS8qUZrG9TAI/QhwGrTcqW+oTvLc3zsa9cWIpNxV5T3OqW8sKsT/k4k30lpTV2otX4emNjW5x51HD83s5iQR9BPwH3rQiXjKBcXo7O5vazpmWrUlkLG+fRP+VbNfMRFkpjtt9O8v8sykfNi5vWjTY+0Wd8/ZFKSqLgvgMlZc04Ux6HzWqkffeWtJhmVjawpKbmkMubTnZQsXu68a1L7VNDBYDbuLLQMvG6IzPUJSGAwQMA6XALB7BzqNv8KabdZsBt9cl09bZAsYSsGzPcto+k6bmZk6qu429/uFQNQlwj6mhpSGqioOMqeyYATRQREM+rzv2dMVU6s/6PWmf+716OrAYgOqND3DEHcdStOPlfa6rJSXnyN42OM5yQvQhWmvW74mxvTFJxurYjWE8bdOS6thcQWvNnpYUK3c201xguhCFaK3ZWp9gd3PaO27Sls32xiSxtEVabpDFQTItXfBcFmpcjz+xByfZhIUP7WtriqMUjKuKMrGmuH1rA8AtGjltRClDy0JeF92GAZOGFHv1VYyaKYxStazduidv2T3N6Q5p+KJ/0Vp3qBUVe+dhymhh1cSrO8wfPgxdcFcXBymPBvIyf0pmn0eKIKWrbuvwfYilLTK2I01nDrGUabcVB9eaEa/+jzctGHBrrkSCbTevg4XPp7zvTe2cz3nji9I70TH3nNqaKdWSkgdH7bV+j5WVIvTItYxXu9h47I9AuZ9paTjAkNIwI8ojA6qgc3sBn5F3DkxXTGX9Za/x7uXLqbnyVu4/+lZv2oRHPowvWdvputKmg+NoOUf2osF1lhOiD2hMmKRMh/pYptN5dudk/WitqY2lWb2rhd1NaRzHLYImN+yiO7Y3JmlMuLUyttQl2NWUYlNtgvpYho1746zdFWPd7hb2tqQlm0zst4zlYDluk4Dcpl7hvcuZ8q9TmHznIgJWjIyv2KsnEQkahAM+/D6DgC+/NkvuU1KfoRhSEqamJEQoYDBlaAmRoI9x1UVEQz4iw48AYOuG/AKlLSkL05ELx/4sbTm0Px35V93DXl3GhPln541XCkL+Q99Mx+8zGF4WJuBru+nRoVLWjPwgZ5jP0Hjvlxjy6o+8aY4DibSNKdkTh1TKdLzsDLPuPSZm1vB0+QdpGXUSmRmX4DMUZZGBVXS3O4LZZl+tmsa6TXGD2sJ87W+A2wwnbTrysLEd29FeMKzkma8zP/YMD1R/ksjUU7x5BtMxlXsOBHCCxTihcgAmzFnM66fe6U1rfOlmirY/T4cTfJaVrS0lesehzY0VYpDb05Jid1O6y/mSGYdNtXEA7wlh7jkymXHYWp9kbFV00D2lEt3XnDJpiLddsGlNh+5Hwb0w3tWUoimZYUJ18YB+OiV6VjLjdlVdF8t456hg8yYm3+/2uOS3E1zhf4LmwEhvmcqi/FosNSUhgj6DrQ0JxlZFO/R8Eg36szfYbee6skiA+oopAIzb/QSJzFl5zX1M281AcrSWc2Q/1L43oeaGWo6Ov8pLFedSHW47foaWhuAwnq6UUgR8Bk7AvUEGME75BvX/eJSTGv4FDbDnmBu8oGcsbREJ+rAdPWB7kOpLTNshkbFojQPvXPE8APbsj7Bp8tEMKwtTlLEoLlCse6ArCvkwbQel3GuDLaf/GdN2CP71VCZsuh39XC3bT/ghGAFaUhaOo+XaICuWtrzfu6KtS3hUH0v1mW3N5QyjXc9/A5zPUPh9CjunSWWu8PhjWfmBh7Af+QrHbfwVbISGyFiaomMJjDma+qP+25vXdjQJ06LE8cvx1gvkakiIQyCWtmhKmgVvujvTkrJoSVmkzY5PPsG94drekJQsDVFQyrTZ2bjvelHtJTMOO5qkRwXRPVrrbAFQp60pgGNT8vBn2uZBsbvoCOJHXOSNC/kNyts9DS2LBpg2vLRgd7c+Q3UYHwn4SFdMYdPws/iU8QDrV72dNz1jOTQnTeJSLL9fat87245X7iKkTMLzLvHGhQIGQ0rD1BzCos6FRII+grnBxVAJDafe5L0c9uyXveGU6Wb8FCpcLXpeLGXlBRGN7a8TJ8LQCXMA99wSDfoJD4LCzu1FAj78hsprJhnwGWyrXECF00Dl2jsJNW4A3MBQfSJDLG3x7o6mvKz0wShlusdU0+6NVDu1pEYck/cbNaQkPKiCFsFsj3H7eshiD51F8tw/ea8rkpspql3GkLd/m5f9o7X7vW2R3+5eIYEfIQ6BuliaLXUJerr1QUvK6lAHQQitNe/tjR9QO+mGuNwsi+5JZ+v6tN5Y+VL10LSNEfGVvMRsGitm8e5Vq9lz6ePUHu3e/IYD7sVhoYvi/blQjgR8oBSxxd/FVH6mvP1jStff701PmY63f6J/sR2d17tl2rSYsv0edvhGUjz+GG98RTQIuFk3h1NR0E+gXWHg1LjT+GfNdQDUrL8bX7IOcG9qEmkbU47NXmdlA2xeZsbaezkr+SDbIkegfNk6YQqvhthgo5TCZygi7Qqjj5zX1pTSZ8a84Z2NKfY0p3AcBn0B3tbAT+bNfwJQM+uMvOnl0cHTzAvcY6k47O8yizFSNZp3r1jJliM+zvojr+E24zwCTpribUsw0k3efCnToSVlEktb7GkZ3EHGniaBHyF6mda6VwvjpU3H+xESAmBPS/qgbiq2NyalO2yxT5btkMzYWI7bFLVo5ytM+8cc0i//HoD40dew9aKH0H63C1u/T2EYUFkU7JHecwxDEQoY6OKhvFh2LvMzrzJ2ybWEGtcDbsZP0rTl5rofaky0NRs0Ms347/sks1nHzqlXeE2mlHKPpb4gGvQR8LnHY655x7R1OR+oW+0NxzMWpq0LduIgek7aars2UlaKCc+5gThf1XhvHsNQg6Ib984E/W6mRu4NuxqzwBse9cy1KKstCziedj/PwX59EE/boDXTdt7LUmMmpaNneNNaH24MNqXhQIdaP4U4wWKaTvgOyeO/Qqjc7elz/GNXUvPKD8Fpu1eKp20a4plsqYvBfbz1pMF3ZApxCDnZJ5e9ec5qTpnUxzsvFC0Gj+aUSTJj71eTwkLSpsN7tTEJKIpOZWyHlNUWWAk2bQTg6B23ATB6/BF58xcF/RQF/ZT2YMHL1hu24bNP88ZNuud0jHQjAPG0ha21FNPtR1Kmzc6mtie80ce+yPTGJdxfdjnBhZ/0xheFun66fKgopaiMBhldkd9lsy4Z4Q2PfvzjlG1wM9IsW5PIWCTl/NqrTNshla27NOWuxW3jj/uCN2woddgzxg6naNCP31BEg23BL+0LcdcRvwQgFNtO+Yb7OyxnOxrH0YOyk5FU9oFCaPW/GebsZsOw/GLzg7HZIOB12ODvRvCn1VHTpnrDQ9b9k9GPfcx7nbHcouLu/5KF3lMk8CNEL7Fsh60NiV4/YTUlTelxQZC2bDbXJli/J9YjgcZkxuG9vXEJ/oiCMpaDZWvvxqp9n+xW8fC81+GAQXk00KNPQlsvsH0jZnvjDG1TuuUpwG1W495kyzHcH6Qtm20NSe/8FdrwKON3P86tgQ8y6oLvgeE2SfEZqs9k+7Ty+wy31k9ONptZNILtc9wgQ9hJMOaZa71piYyNaclT7N5kZQvN+lINBBM7AVg54oNYpWO9eXyDOOgD7nfJZyiKQv68U/jkeSd7w8rpeA1ra01dPMP2hsFXE7C1vtGI139InS4hNOuCvOmDqahzewFD7df7rxgyKu91+fZnCdcuB+1eVziOm7nXEM/ItWgPkcCPEL0kado0Jy0aupONozXF257DyMS6nrfjopiWliYNg9ye5oPL8inEdjSb6uLUxdJS90fkyWRrlLTWkUo01+VN1778G3PDUJRHe/ZmvbVpjVk0Im98qrnWG3a0JmXaNCYyco7sw5IZm7W7Yl43vspOM/bZ69ihKyk7+bq8gEpxyN9nu0quKMrZL6WoP/oLJEI13qjWrB+t3UBXXaznz9vCzba2bPf77t/xmje+qrwsb75BHvcB3OZekaAvr2czf6Ttcxr54tcpyQbTWzmOxnIGV52qRMZiw94YzUkLZacpzuzlLuNsxo1se8hRHPb3+O9cf1IU2r+sXitS3WHc5PvOoXj7C23z2Jp4xqIuniGZsQd9YfGDJYEfIXpJ6wVsZ9kXys5Q9c6fGHbfxQy7/STGP/pRpv99GtX/+SQ4+x/ZlrTxwcu9se2drC/T0uxoTBHPWBL8EZ605XgFPqvf+RPGmoexteLZi1fw7hUrOszfG0/WQ63BAKV45xNbsHxuU5uSFX+nfM1dAJi2Jplxg/DS5Kvval+IPrT7bUJOklvKPseUsflPhcPBvnvpWlUU6hBMiE8+zxvOzfpJmY400+4lTUkT03YwMs1E3/idN96v8z/vvtJc8HAK+d3evYrDOVk/7Q7iki1P5L22tRtYswdR7ZW6WIZEtsYRLW4GWbR6DEbOZ5XbZG4wKgr5KdmPZrhWpJqGSRew4Zx/sbzyTG98ILY9bz7HgYZ4hrp4mrqYnDMPRt/99RSin9tXICay923Sz/yEEa9+j5raV6lJuvUx1upRDN/+GGr944UX1A6RPW/mFUDztpexB33BvcGqq4CMkYkx8f5zqVx56wFvoyFu0pg0pSCpANxmFFa2m8Lhr36PSakVJH3FVJaV4gRLO8zfG13bhvy+vPuTVVe+w1o1gWHmVkY/7/YiljLdAtRpy+1GezA9oe4vUqZN2s7/vaxb/RwAI2ed0mH+klDfzPYBsr0k5d/87Trm62ypPsl77Y/v8oZTphyTvaEhm+E34uXvMKr5TQCaRp/C3tmfB/C6MDck5Qdwu+MuCvopDRf+blWtvp3ibc95r23HrZ1m2fqAeg/tj3J70N22cR0AQ0dNyJun/Xd/MFJKURrxM6Q0xJHDS6goCnQeCFIG2076JYlhxzBszOS28XXrveZerbSGxoSJ7bgtHGolW/KASOBHiB4US1ukswVPOwv8GMtvZ9L9H+CoTX8iToSXh3yYJ475GysueY015z3CDl1F5MX/xbHbbrCVmaB446NU33k2kx44n+EPfRRl55/0UqZNPCMZGYON1nqfT439W15k+t+nEd27jJEvfYNUOk3s2V9RfNdF2E//EGvF/YQa1nU4ntrLWA5NCZOmpAR+BrPW3jVsR2NamlDDGm9axl/S6XK99WQ9lNtDmBEgMmGh91LZbu9Qpq2zPfxID4h90baGpNdbkGfXcrZTw6wpE/NGl0b8ff7mqkMzNMNPUVVbc5Aj/3lM3mTJ1u15iYxN0rTxJ9uafW4542bMYrdZaEVRkFDAQBJ+XIahCPgUZdEARvaUuuKqNXnzDH3jf71hx3HPq1q7170DOXjpOJrdzam8QtYNuzcBMGpsW7CiONx54GywGVURZWhpGL/PYFRFlOqSYJfn7dxmX6NW/Ymat/9fh3laE8yakyY7G1OSxXsAJPAjRA9pTGTYVBtn7a4Yq3Y2FyzcmGraw/DXfgRArapk9zFfpfjcnzJs1qno4mGMG1LO0qlfZKK9gc2P/gozVoez/U1G3H4y45/6FMNjK3nankP1npeY8bfJFO14yVt30rQ7XjyLAa/1hragXcsZ/fjH80ZN/vscjl13E77GTcx57/fMfeVaptxzKhX/PJvMrpX73Jbt6LynXmLwydhu9+2O1uBYTLnndG+aE+qY6dOqt4qohvz5F5N6zLHesD/hZlZYOTcoliO9fPUlGcshmbGJ5XSCoLWmJrGe3eFJHQKGfa2ocyHlkUCH5l4NR3yk0/kT8sCmR5m24xV2N41wh+mhgEFVUZCa4tCg7tGrPb/PIBr0eYFL7Y9ghSq86S06kjd/63k0ZbpBNmuAnldrY2lqY2mcnLdXXfcGKYJQPgZw6ySNLI90sgYxpCRMeTRAebTzwFjdkVew4ZQ/eq+LNz7a6byxbJa7aTvS0mE/SeBHiB7QnDJpSJheNLpQs+dU/XbG3XMmlTTxwlG/ZOfHlxGfdXWH+caecBnvhI/itB2/Z+I/j2f2f86n0tzJs75jeWTWb2i+4DZv3gmPXELJZrftdcZypBnOIJTuJOijbYvyRz9Piw7zx3n3885H3uLZmT8mHaxk7fBz2XTp8zxywr95ZNzX2OIfx8jUOmY/dDapZXfvc3sp0/ayPsTg4zjQkjJxtMaX7Ta9VbBdECYSNLwbd6OXrjZaCzy3appwLq9VnQ9AdMU/KV9/rzctnrawbIcdjYOvJ5q+qlChzm176hird5CpPiJvvM9QeQVo+yq/z2BoqRtwaI0rJGtms23RTd48w5Z8yRuui2XknNpDMpbjZVBVrL2Lyi2PdZinOORHKUVFPwgiHmoBn0F1cch7vfqSl73hXc1pcGx8qQaMdJN3nZs0bVpSJrWxzIC8CW9MmnlBHxybY5PP8kZ0MdofRimYWFOUV4BedFRdHKKqeB/fOcNHYkJbnZ/iuuVE9iwrOGtL9kFBMmPLw8j9JEepED0gnrbynljm0ZqRD1/O/H8fS4Vdzz0z/0DZ3AsKzwsow8B/7i/YW7OQuuIprI/M4pVjf0/lx+5k9DHnMnFICatntF00jnvi462bIWU6WLYjF5GDSPvaGADKSmE9fD2jrc28NOELHDtvLkSrqFzwEfZc+SLp9/+GipIoo484mtGnfZamq57jsbNe4h2mMuONrxHbsbbT7TkONKcs74mLGFxsrYmnbWzbZsRL386blph0jjdcWRwkGnTb+ZdHA/h7KfJT1j67QikaZrrnxDHv/pbRS67DyDQD2e7d99EMVxxanRWlT6x8DL9yCE5cnDe+NOLvNxkaNSWhjs0bcmrz1ay/23tt2ZrMAM2WOJRa63m13hSOeu7LBecb7AV4uxIO+PD7FEqBDkTZfOofAJhtLmPmX8cz7R+zmXbrLEL1qwH3c6+LZWhOmdTG026z8KRJU8LMax7V36Qtm/p4psPDtZYdqykmQd2QBUDr5yW3090RDfqpKXEDQJGgQXlO08JCJjx4Ib6c5pqtWpsWtqQsMnLPs1/kSBWiB7R2G1pIYutbVO58FoD1oy5gyoKzul5f6Viaz7+V+KUPkLzsIYqmn5033Vx4HVuGuU0skr7i/GUdTYvclA8KW+sT3kVunqe/y7w99/BS6AQmnXx5t9Y1YuQo6s78Hab2U/L4f2EXCCi12tuSZm9LWuqlDEK243atWrz5Sco3PuSNX/PBZ/IKpw4vDVNZFKS6OMToymiv1fgJB3x5T6gBho+bmvfal2rwhpMZe5/na3Ho1HVSm6xiy6M0UUxg4qK88X21C/fODC+LEPQZXmCyacK5WMG2brLH/Odyr4CpKcfkQdvT7AYdCj2E23jmP7zhvl4jqi8oDvm9AFnz+LPYNa2tyfi7zlgUmmDLFsB9GKS1m31cF8uwpyXFlroEWzq7PuknamOZghmJe9a9AUDNpKMBKArJ8bQ/hpWFqSkJMaayiNGVUcKBzj8/Q1tMu20egdiOgtNjabe3zkRGrkW7SwI/QvSAfT2t2/vKHdha8eTx/8Q882c9ts2W9/2cdwKziNgxpv9lPIHmzYBb9CwhtX4GvNan5e3/1i071jJl8z95wn8Svg/dgrEfmRZDR03glSnXM8NaycaH/6/TpyitNTn2tkivCoON42iCO15n7OOfyBtvhyu94WjIj2GofV7Q9aTq4mDeU0Plz6/rEUi09aIUz1hozYAuRtofmLZDfYFueddt38v8zGtsqj4JjLZmXUG/QUk/LJwa8BlewVcnWMzmM272ppXtfBF/Yg8ApjRXOGim4xDP2AV7mYqNcoOI4YDRoS6Y6Kg0EqAop1ll3fwv0zTWbYbzwMgvAuDLtHRYzrJ1Xhaf008zMbTWNMQzBR8S6J3LMPFTOno6ABVRaTK4vwI+w2saF2h3jbr+vAc7zF/z8ncL9masNSTS8jBnf0jgR4geUOikE2pYg17/NDOalrAuOpehRx5Ph4qPB8EJltIw1S0YaWibki1PAe5TisHSveZgZdkO6/fE8sb547sY+vzXmfCfj2DhJ3TW94geQLfHw078GO9EF3LO7t+x9T83FS5YlSU9fA0ujqOxtSbYtDFv/K6jrscOV+D3uee34CFOe/dnb64jwcLbnfjQxQRatgJ4tRqkB8TDq1AmgNaa6meup5gUgXmXeePDAYPRlf2zcGo05COakxFgRofmTQ+0bHPHS1Ovg+Y4mng227mhsbHgPGOrig7hHvVfZRG3C+7WS1YnUMSW037Pqo+8gapye9oL7nyN8nX/xmgXAMq9ZHD62WFtO2739M1Jq+ClTzxtMSn2Jpsj09G+EJGg75A94Bio/D7FqIq283uyZjapivys3arNj1CxtnD9yZa0ieU4NCY6791WtJHAjxAHybSdghdtY5/4FLOWXMU4tQv7iPN6ZdtVc9/vDbfs2gBkf7hsh7RlD8hCe8ItNtj+oqTq6S8xZM0/GKb3sGrSJ6gYOvaA1q0MA3XB73gnuoD37/g1iQevd5sjOB2DPG5X2f3syk4csIZEBtvRaF9+06raGW4zgNJIgHDAOOSBH3CLPJeG2+r9bPjAv9ky6gNt09sFq1IZW7J+DhPb0expyW9CYZhxdj/2Uxalnub54VdhjzkecG8KJtQUEw32/aLOhRQH/YT8bc29zJJRrDu/rYnkhhWvAm6ThaakSSJjDdjekXqbrbVXj2XH9s3e+G0n/Bi/TxEKGFKAdz/4DUUo9/NSBlZ0CNVVNQAMXftPRj/731SsubPTddj9LOMnZdrE0xZ7Y4WzmVe++jjT1SYyYxejFFRJgfCD5vcpSiOBvCaYG8+6nd1HfYl49Rxv3KgXvkrx1iUdlncc9zeltkAGqeioyzOgUmq0UuoZpdQqpdS7SqnrcqZdq5Rakx3/v727q0L0TQ2JTMcnA1rja33CjIGa9oGOC/YAJ1TGpvlugVVjzwpvfMq0vaJnYuBpbp9ps+sdqna/yIMs5tFZvyJ40lcOav06UoVxyW38p/gCFuy5i5l/Gcf4u08Hp2MTwozlSK2fQaIxaZI2HZTO/3trv/u0rijoY2xVUYeetg6F0nCAcE5XxImhRxM/8Vve9PGPfpQhb/zUe5223G7ppSjkoVcXS2Na+Z979X2XcPq237A2eCQVZ9zgjR9aGu61+lCHgmEookE/JeG2wFWqaia1R14BwBmbfoLRvJV42mZrfYI9zelOax+JffMCuY7F3He+B8Ca026m4YiPUBL294se4foSn6EK1kOaMaYm77VK7O10Hf3p4aPtaEzboTllkmxfM8ax8T/1bT665hp2+kfA0Z8gHDCkZ7geEA748BmKoaUhr8m2Fa1hz9zreO/8B/LmHf/YFVTe80GKtz2XN95yNClTHnZ3R3euzizgS1rrI4GFwOeVUtOUUicD5wGztNbTgZv2tRIhBqpC9XQ2vrcGv7Z4pOhC1i7+f9iR6l7bfsvsT/B4+EyGJtZ7ObZau93kdtbVt+i/khm7QyG78mduoFEX4Zz0TUYec36PNCn0+XwM/eDPWFrmFhEvbnmPmX8dT7BpU9588YzlpdeLgct2tHvsmRaG2dbMcPOpf/CON5+hCPqNw5L6Hg74CPkNyqJtzRvtUHnePEOX/dobTpk2iYwlRXUPsbRls6ddbbB4IkFN03Ie959E84fvRwXcQGJpxE/lALix8hmKyqKg1xQSpdh5/Pe96fG37wfc3+0W6THxgLU2Kyre8SJTY68BYBQPASAS8OXVrBFd8xsG0aC/Q+C1/eeYau7Y61Kr/lTjJ55xH5YWaobqrH+KIzfezHLjSHZ94DbscDkB6cmrRxRlszlLwgFCfh9Dy/Izild/+IW81yMbXiOyLj8glDJtt96PacvDnC50edRqrXdqrd/MDrcAq4CRwGeBH2ut09lpe3pzR4Xoayzbyd48dAz8bFrunqjGLb4cc/LZHaa38hkKn6EI+BUjysMMKwsf0NPydPV0ymih5onPE2zeBLgXQal+3JWmKGxHUzK/DX2ykRHxd3k8cjYTJk3tfMEDEPD7CF78F+6c+Wdv3NS7F+GPtxXLbU6acvM8CNTF027TPkuzZWfbz33z+LO8OOPhzswI+X2Es4VblQLdrsgzQM1rbnJy2nJ7ArEcR5p8HUKxVLvaGY7FyPsuwkBTNfMMQqG2v1l/bd5VSEk4QHHIn1eE/K1L3mSrHkJ4a/7T62TGlia0+6kl1ZYF66td5Q1b2YdufsOQjJ/95PcpwgFjn71W7dbljN98N0Nf/0nB6U62kH5/aL6YsRwSabtjBr9jE1t6FwBN5/yZYPUEAOnCvYfkXjeUhP2EfPnHm1kyhg3ntNX32aErGbbhLkL/+W9KNj0GQDKbdR5Puw9z5De9c/t11CqlxgFzgVeBKcCJSqlXlVLPKqXmd7LMp5RSbyil3ti7t/N0QCH6E9vRbG1Ism53zDvBKCvFiBe/gXrplxy/9w4cFM6Q6ftcz/jqIibUFDFlSAlVxSFqSkIMKQntc5lCoqPnADBsy0OMfL4tTd5thiYnwIEilrY6ZJjVL70XHw6lR566z2UPprbB9KPyu1UO1a/2hpMZB6u/VXAU+621B7dw7XJiW5bnTWutA2H0YPH6AxX0G9msI3ef7GBp3vRhy38DuNkVSdMmnralqeIhFG93/kq9eSejE+8CUD5ySt60gdZNcnHIn5cl4C+uZlPRLIYl1uTdqGgNm+vi0myhm1KmTXNOlsa2FS96w1akioBf4fOpwx6Y7m8CPgO/YVDULmCZK+4rA2DI278tON12NEnTxurjx3LKdHuGKpRtV/zstzk+/jgAQ4YO98YHfHI89bSSsB9fgc81MWwBm0/7E7tnfpp1ajwAU7b/m5LXfwHkdNqQtkhZNtsaEodql/udbt8JKKWKgXuA/9ZaNwN+oAK3+df1wF1Kdbzq01r/UWt9tNb66JqamvaTheiXNuyNEcu50DAyLYy9+3SqVt3KjJX/x1HGWuIlEwo+cQYYUxWlsjjo9Qhg5FyQlGULpBZSGvEzcUhRh+lDJ83zhk2zrT6AaWl2NOUX0RT9157mjn/Lyev/ykrGM3L2aZ0uV10SZEhJyOv1yDCgoijQ1vSgC9of5p1PbGFj6TEANG99N2+6PF0Z2DKW411YTb7vHE63ngFg2yK3hXfQb+D3Kfx95MaqpiSEP3unsvKKFR2ml6+/F39iL2nTIZa2JLviEGlOmTSn8uuTqRV3ecOZ0vyC9OEB1u12cdiP31D5591hsxlCA1u35BcfT2acDp+VKGxvS5pE9oY9ULeGacmlbRONAJGAr8+cm/obv6EoCnZeH2lktO3cWf3MlzHMeN50rd3aK5aj+2QgU2s3G6kl5f4OtH9OmmrczfgNtxZc9nB0YjDQRYPuObJQkLZ53BnsWfANZoyq9MZVNb1Lybp7vdeJTLa+qfRs3KluHbVKqQBu0Oc2rfW/s6O3Af/WrtcAB+i9QiZC9BGOo/Nq5/iStUz/+3RK4pv5tXEZNx/5R5Yf/1t2nfabgstHsgVIR5YX7p5WKcXQsvyAUWnEz/iaIsZURokG/Qwvj+SdGHWoxBtusPJrIsQKtFcW/YvtaHY2JTs8LU+nUwwzt7Kp/Fh8/sIXZtUlQYaXRagoCjK2qojyaICxVUWMqogydWgJ00aUMroyQnG46zT4PeffQYMuoWnLO/hzCjqats5eNPW9Cztx8NIFmowmfCU0TPkQ/uyT9KDf6DNP1CuiAQI5GW5rLn6ObSf8yHs9esl1VL37F8B9QigXiYfG9ob8Zqq7Vr3EXHMZ71SfzZaTf4MVHeJNC/qNvAciA0HA52ZP5Gb9RCadAEDJqn92mL9QrRHRUVPSJJW9Jjvi3tMpVzHWDTmTlR9dBrj1vyTwc2AMw23uVRIO5I3fuvhn7FzwLXxWW6Bn+Ia7GPvQh1BmW7aFrbXb/MZy+mTpgUTGzRZrSZkdfueUlcR86gcArK88Ke83RCmk6WAvMZQiWqCoeKuw1QTAap9b2mDcs16fU9k6aSZp+U3vVHd69VLAX4BVWuuf5Uy6DzglO88UIAh0XuFLiAGi/Y9XqHGDN1x9+pc46vgzUUd+gFRVx2ZeZZEAE6qLutxGaTjA0LIQQ0tDjKmKMqoiSnHIT2tSXVHQx8jySF76rRlxM+pKmtdR9e7fvELPGcvpF+2rRec27I1R29Kxp5fVq1bgVw4Vo44suFwkaDC8rC3AGPAZjK6MehcsRvbJSnk0yPjqIkZXFg5GtooG/WwtmsHi2CMceftRlG58GADLcXtI6uvp3OLAeBdROXftUbsFIPs03aAsEqBA0u9hoZQi4FMo5V6gZ8rG0Tjxgrx5nJh7uaK1e+O4tyVNImOxuS7O5rq4BDF7WGtTilwjX/sejZTiLP4aTRPPzZsWOQwFwg+FaNANQrR+VUJjjuJ1ZjBxz+Md5o1nJPDTFdvR7mlJa0Y+/1VvfGjIJOxwJYaRDfxIdsYBU0plz+9t4xonf5DamZ/skOFTXPcO4x+4kLKlv6b8jV9SsuJWWpImCdPuk7UAY2mL5qRJPG2TzORfJ4968BKOa7iPvb5hJC/8Ow1HXOZNKwr55ZjqJX7DDfx0djnRNP4cAEpmttVPLVtxizdsWu45wbQd6XikgO4ctccDlwOnKKWWZf+dDfwVmKCUWgHcAVyp5UpJDAKpdj1l+WI7Afh20beYPqqq4DKhgEHArxhWFu72U8whJWGGlIYpiwQ6PElXSlEWDTCstC0zaN1FT7A+NJ0aZy8jXv4OgfjOtn2W6He/lTLtgr2zFe14mY++cSEA1eM6Bn4MA0Z0klXWmfJokJouakw5Mz7kDY996rOUbnoM09LEM26qtDT7Gni8plBmx3bzrTV1qov3vzZZbwr5fJSGA5Rmn1TrQJQNH/i3N92MN3jDKdNhd3OKrfVJmpMWzUlLjuMe1r4ThM3r3mGa+S5vj/gwRsXYDvOXRgbm0/SioJ+A38h7ol0XnUC5ubvDvKalC2bbiTat56aSLU9SuaYtayoUdDOfi0PSjXtP8BmKopCfcMBgfE0RFUXuebVu+scA2Lzo5968RQ0rGfPWTxm97P8Y+cLXCTRtIpG2vA5R+pKM5RSs69O8fRXldW8BUObr2MR+oAam+wIje6x1lvVTN+1K3r1yFbp0pDduzCvfon07vd3NqYKd7wx23enV6wWttdJaz9Jaz8n+e0RrndFaf1RrPUNrPU9r/fSh2GEhDrf2EeTtW9yMn/FHnd7pE++a4hBHDCs9qAK7hVQWBb112uFK/BMXe9MC8R3ecFJOfv1SYyLD+j2xjhMcm/CSbwNgqQCZiikdZpk0pPiAesUZWhraZ89yvhnnoXN+OipW/h2ApoQp9VIGqNZMjdWbtrWNC5YRChje07m+JhQwCAWMvEKRVrgtMD961xOUbHnSe601eU2+bHmO1aPa/25Wvvq/xHWYyuM/1mFepejQtGSgMAxFJOAj6De8J9rBqjGUkGDP3o6d49bHO2Z6ijatvzfhhjV54zMlYzAMNzOjrzRB7e/GVUWpKQlRHPITzgY+ds3/Gu9cvYHmKRex8ZTfe/P+bNYDfMn4CgC+TDMp08G0NYmM3WeC6qbtkClQ1yfYtImyJd/E0YqML8qu47/fYdnO6nCKnhEN+iiNBIgEDcqj7X4LlMIJFNE85vS80e2zzxriJhm5Hu1Ajlwh9lP7pwP1uzaRIMy8SWM6XaakG/VTDoRSilC2sCqAPaGtZ6fkztUo271o7GtPWUT37GlJd+xaFIg88y1GJNZwe8nVrLhyFU6oPG96RVGA0AEWRlVK7TtTyPCz6qPLaIyOA6DecZsupkyHWMoiYzt9soijOHCtF09Va24HYNOC77Lu0ucJ+334DOX16tWXhPyGu385wfjcGjIA4x6/utPlpaO6npX75HVPfQNzky+zrPIsfOUjO8xbEh7YN+tFIR9BX1v34tWjJgGw5PU3OzQxbEy4BZ6luXZhrUHphoY6b9zemZ+mcdIF7jlAMjN6jFJus3Cg7byqFBjujXlswtlsPvV37Jx/A6cfM4fScjfQ3npDnsi49dS21PeNHpdaCzrnGvraj5h69yJmJF9nZdExrPnY6g7NUMGt1Sl6j1KK4pCfskiw0wdLdriC9ec+4L0edfcZXvmBVqa0duig712tCdGHWbaTV6fAdjTRxHZaAtUYnfR3GQn2bvvy4rCfyiL3xzgx9Cgaatyel2a88XUm3O/+YEm6eP/TlDQLNvEyE42M3Hg3L6h5jD/36/j8bcW8Wwvs5tb1ORDFIT9jKqOdduFqh8tZf95DrHZGE2xYS3T3G4B7c5exHKlNMcCYtoMvWccpu//mjigfQ6CoknDQ7e63r9T2yaWU8gIIrcexEyhixcfWs6nmlC6Xd7SmKWFK4eceYDs673Nsef73RFSGotnndZjXZ6hOOz4YKEJ+H6GAz7uhida43RPfuP3TlN9+JjWv/QS0+3lZtqY5ZRZsjiLa6o/V5mRLxUaeCEoR9PmkSU4vaS1Z0P7U3zz+/dTO/hwA0ZJyd96Mm7WcyNhe3ZXDmfWTyFhorWlOmh3qjg1Z/jtvuLST2olBv3HAD9ZE94UDPsqjAYJ+g6JQ4c87XTbOGy5LbiW87qH86ZYjLR7akcCPEPsh2S5zZtfObZzAMnZVH9thXqVgWFm412sVlEcClEWyqZDKYNt5/yKl3Hob0fqVQMe6RKJvS1s22xuSBadtf/0BIqRpOfpaiiNtQR+foZgytJgpQ4t75Gl5WTTAxJriTrt8DxWVsjU6jRHp95j44IX4Uo1o7TbpMG0tT6gHEMvWFG9d4r22AyUEfAYBw9hns8DDrbV4eW6TR+0LUhFou4ke9eRnCy5ra822xkSHc77Yf7kPHmL1O3nfnr/yVmQhvokndZh3ZHlkUBRNLQn5vWbarR1B+JRmTHIVw5b/lnB9W9Ol7Q1JabJQgNaaRPYhg5lopNaoYtsJP3IDP4DPV7hbaHHwfIaioijAuH10VlJcUgZAKtEMuM1p4xnL+/9wXSOkTLeuTyxt5WVUj3juK3nzGUM7dtACeA9aRe8L+NwagpVFwYLXok6onA3n3OO9Vg0b83qVa63hJFnobQb+r6sQPah9AGX3skcJKQt75kc6zBsJ+qgpCVFV1LtFT/0+g1BOvQAAytqKZSo706F+hei7UqbNlrpEwSdi2nEYsuEe6lUZI2cszptWXRxEKdWjN03hgI+xVVEiQV/BNu1lY2Z6w/6U20tSLNs9dvuu50X/1NprTsuKthRqO1jqdbfdF5t55fJla6pEQ229hPjttqBqxaaHCy5n2xrHcbM85aLx4OT+bgaf+hYhMsRO+DaotmMn6DeYNqKUsvb1HAYow1AE/QYlYT/aF2Td+Q/z3sIfeNOtLa+1Ddsay9by5Lodtyc+GyuToiazjWSwxu15Sbm9pgUk6NNrfMo9fn37yPYcVl0NQOPuLRhptwtu03LPpc3Jw9Pltmk7WI5DbSyTF/RRVoqqtXd4r+uOvIKGKR/KWzbgV4woD3fZAYboWSG/j6KQn6qiIAG/6lDzxwpXesNDWlYy8V/5tX+assea9D/l6ttXbEL0MbkXXpF1DzJlx72kVYjAqNkd5m1NMT4UT5yUUnlt2bec+v+84T1bVgMds5VE36O1ZlNdvNMMrZ1v3McC5y3eGXsVyteWxRDwK4bk9PDWk6JBP5OGFFMU8nfI7qiastAb9qXcGguOAy0pk7Qtx9tAYNoORrqRsQ2veOOcQBFBn5Htlrpv31z5DUUk6KMqpxC+YeXXmKh+/aYOy7VmWFiOZmtD36hJ0V+1Fna2Eg3MbXyCR4svoHzsjLx5wgFj0GVnRIN+7yYyVT2T+IzLeen9TxHTYRrffTzvRsV2NC1pU25ecqRMtzDvsKf+i5nGRggVe9OKpbvtXmUYEDD2/Z2dMGoYAAs3/ILpt87Mm9aSskhbDntaUmysjbN6VzMtqd4/vlOmW1w6lsppOunYBFq2ei/NYDm75t/QoR3bkJIwVX2s98rBIuBzs36qikIMK8u/1rXDFXmvI/GtFG1/Hhz3b5zM2O4DScmaBCTwI0SnCj3ljWcs0JrIe48y4dlrOFatoLFyDhgdm3Md6p5uosG2J9rpiim89YHHAdj1+n0ANEjvIH1eY8L0noi1lzFtRr3zW3aooZQuvjZvWtEB9N61v8qjASqiQSLBtp+NZFXbzZvVUusNt/bgIfo/y9HULP05QSfJz0f9gvfOvgOzZJRXT6qvC/kNAj5FyO/LBqpgx3H5vbQMf/tXHZZrzZC0HE08bUvWz0Foyd5kbXxrCYbShKefnTfdl81+GYxyf7cBSoZP5p2h53Fs6nkan/+DNz5t2d4NjHCZ2Qrsw7c/CkCJbusBsyIa7Bfnp/7KpxT+bFO6zj5nIycQ155la+piafY0p4mlLExLs6k2wa7mVK92RpI07Q51fcY883mm3tPWMcrGc+7GCXbc98F6juor/D6DimjA+x1vrftjB8s6zDvhP5dRtuk/3ut4NhNdWj5I4EeITu1sTtGcMr0L/njawrI1lav+zqSnP8UGZwS3Tv4VDaf93Fsmt4vWQ92bRCTgy9umf+gRrI3O5cKmW3B2Ls8+YbE7dKsr+obaWJrGpNnp9OXP38d0vY6tR34KfyC/jXmH7i57QTTopzTipyLatm0diPLk3N8A0LB3Z978UuNnYLBtjW/XMt7SkwlOOJH4iOMAMFTfb+YF7sWi33Cbwwazvfwkhh7F3pmfzpsvty4AtNWlaX1CnLJsVu1s7tALjNi31s9P2Rkmrf8LaYIMPeK4vHlGVUYGbRHe9tm6AMWnfY2tajhz1v3a65kzmXEwbYemffxGDBatvy22o/HvXemNL8rs9YZLwn7pcrsX+QxFwOcG/0vC/g5FnoG8ppwA5StuyXvdmrGVq7Ylw96WNC0ps1cCQBnLycv8KNr+PGUbH/FepyNDyJSNz1tGKfcaqz/83g10fp/hddwwoSZbz9Lw8c7V79E85rS8ea3dq73heMby7oEGe9akHMVCdCKWsthcm2DN7hZ2NiXZ2eTWhTDee5p6XcxvJ/+ZOYvPxywZBbjR54k1RRw5vJQpw4oPeeAnHPB53cO2WrfwJ4SVSXKFW+m+NpaRC8c+yHY0OxtT+enHOXYvfZDzNnyLeqOKogVX5E1z60QcmroYrb3R5Co6wu0haeHK7zL+oYu98ZLxMzCYtk1x01rWOqOYPLSYgL/tKW9fb+bVqrUeUUnIfVoIsGfudWSKR3vzbHnribxlWutPtDbvjaXcwL8EfvZPazfuxW/8mlnmcu4Z8WV0ztN0n6EoCfnbOigYhDp0DR2t5IXxX6BUt5Bc95w3OmVKDzUA8YwbTLRsTeT132Dr1vOQ+79hkK0/NjiDiYeCUopgtildOPvQsaufg9GvfKtb625MmGyuS7ClPtHjN+mOk1+yYcJ/LsubvuGix9G+jg/WhpWFCUjTwT6j9V4n6HezfzD87JmTnwmf3LacUMM6oLUEgUXKdGju5Dp7sJCjWIgCUqbdlupva2pbMiQz7mt/7SpeYSYfPnaqN38k2Fp13n0CcjguOMIBt1BkrpHjprJRDye09x3Abe51OArqiX2znM7/JtYbt3DaW58nbUTZvfgnaF9+G/ND/RQq3G57xUXFxHG7Xy7e9ao3vjfTtcWho5t3ELLjbPKNZVhpGH/2Ca/RT4I+uYrDfvw+xejKCE6wmPXn3e9NO3v5tYTuu5rht5/MqNsXU/36zwC8J9KtTWxMW7O7OXXI972/au11ybfhcV53plB57JV501uL0veXIGJvqCrQS9Couadja0XT2me9cVq7AcnB3FwhY7mZT4mM2yW407SNpXoqm+Z9jU1n/cMr5i56X2uX7q3XnpVFwS6DP4GWbd1at9aQNh2akz13k661xnLasowCjRvypqcjQ7FDFR2WqyoKSdCnjynO3uuE/D7vGjg5ZC6b3vc3b57pTc8y5Z5TwXEfdmcsh6ZkZtAHz+VIFqKAlk4iwirdQo21i3jpFO/EA1AaCVAePbxdPCqlKAr5MXK+1T5DsT0yheGJtYD7YypNcPoWrXXBHrwAEukMpW//kbWMZe0Hn8aa+L4O8xzq7rT9PoNoKL+XL39R28XSiGe/BLjHmgR/+j/d5F6o67IxKKUwWs8z/fA+vbV5Qms2ph2p5t3L3/GmT6l9krUtIdLxRoIbHs1btjVzJW3ZNCYka7K7UqaNMhMMT6zlvehsRlZEvGm9WZS+PwkHfAT8+V+o8ooqNgUmULH3jbysB61h3Z4WMpbD6l3NrN3dcqh397Bq7TVye6ObgR1O7iEWrKFl3mcxa6YT9Ku8azPR+yIBt3h+RTRIWSSAUm6WZdBvkBgyL2/eI+48DpzuXxfEMz0X+NnTks671tq1dqk3XD/5YtZd8mJeQefWZmzSZLDvaX24XhLOL+LeMuZUVn/4RTaOv9QbF4jt8IaTGYd4xqI5NXh/w+VoFgJoTOQXPu4sIpx47yV3YNRReeMDRt/5KgV8Rl7qeLJqBsPYS3P9LsB9Yu04Wm7K+wjT1t5NZS6VbmHYHe9jot6KOeksKstKO8xTXRIkeggKO3fYbnGI6uIQfp97keTkdKdZte5ub1iOsf7PbHBrN5VUjwTci+GikK/fFk4N+315T2+dUBnvfHwz64/9CVsmXMLms/7BK86RqEwsb7nWe++WlIVpO14NINE5rTUp0yG16TX82OjRC/OmVxzmhyV9SaGMgtrhJzPXWcnmDe/mjXcceK82hmkNrqaHacvNxI6n3WLAGdOmwq6FkuEAXnOcktDgbTZ4OPh9Bn6fQThgUFMSYmhpmKnDSpg6rISGjzzCxjP/kTd/2XsP4kvWdrK2fIWujQ5EPG2xtyXtNUGP7HmLk5Z/GYDdI9/H7qO/3KGJV3VxkGFl4UGdjdjXFYf8BHwqr9MRs2Q09qyPtM3UuDlvmUTaZleTW0R8Xw9eB6q+c7cqxCHmOBrLdkiZNtsakjTEM176cGddn1sbniOjfVQduShvfKAPFX2LBn2U5jzxCo12n7jUrX0NaO0WVro27CssxylYcHvPCzcz1nyPl6ovRi38bIfpfp9iWGn4sNTGKIsEKI8GqM52bdq+qF71m790x/dgmrY4PBpr3Yyf8qFuPRy3qLOv314MR7NBq7zdV4rk9EtpOuV/OWJkJQki+M1YweWTGRutoSlhSr20LrSkLbQGc+OLOFpRNvkEb5phQI10jewJFgj8BI+5GoDRL36dEUu+SG4l3NbeH/fRSnjAaQ26pkz3TW/dtZOIyhCpcussBv0G0aC/Y80kcUi0FirP7WzCpxSxEcfTMupkb9yYJf+/vfuOk+OsDz/+eaZs3+tFvRfLlmS527hiMBhTTO8dAiEhgZQfISEhCUkILSH5hSRUh1B/FIMxYIqxjQ24gLssy1bv0vW+dWae3x+zO7tztyed5JPubu/7fr3updkpe6u753ZnnvmWP6bjvn+Y0nNO182jruEcWvvnv2aun/ZHPxNs677+CzjJhROOaUlGznitTnFyLNP/m4+Y4d9Ttv1cfnP23wLgPfnDUNQP+GmEY3mH/X0ZnjwyPK9uUs6eq1UhzrDukTy7ekbpHyugNRwayLK7e4wdXSOT5tCn+x9nl7GS9paW0HprFt39bk9HQ20nm1dfCIB79LFgXfdwbl7XCZhNiq7fLrrawb4RVuz5OrvM1SRe8incWDjvXClY1Z6c0YtvpRQtpdoU3ee/n8HVNwbbFj78L6A1w7nivO+gMNcVB4/iakVDq39iPFcjfcrKkRWTXRxapoFrJ0m5gyR/+Te0Pv650PbycB7OORweyJIruvMq6mKqMgWHo4N+LaRU76PsYgmLFi4ItqejdlAjRNSO+LGal7AztpEtxUdp3fVdzPxQzWNdTzOWd+r+vTZbcEM35QaP7gUg2eZPSptKBS2excypHsuGARgmR57196F9zK6tGJOM52rTkTJedL3KOZbncPbXttB4oKqYf9V5lFL+TbVk1AylEInZKx2zME1FYtzfvnX+Gyhqk7MPfYu1333OhON6RvNB7b75FPUjo1rMW2MFP1y4bzSc5uVM0o2o6Lgsye+hP70+tF6p2nfrZkq0lMpgmaW72vFmBoxmolWF7HJFTy5WZgG3FHVW/aFTcDyGf/QhVqkj5C99X80L7ca4PSs6lpS7O6EMDj/rH/CMyp2+5T9+LdqrncYm5pDRY/TRSHtDgoa4NecnfsoSkcm70FhxP61y1a7/ZdFv/ykoDlktW+ostLd3TIo913BsqHJzoT27h6OxNUFBcKX8NFVREbdN4hG/Lkr1uLTPr6QsNO75Yc1jc0WXPT1jdd1Jsej65yz5UrQPnss5e/1CrpHF5wL+JIMUdp5dyn/zhdRisq0bg/XNY7tY/81LJzss5JkWNK+u2WmPHTnOnn69rUTEpC0t0YhzhW0amErROa5eXCIWI2s3AWA6YxOOKzo6uJHjyMSPEPUvOIGYov3799CsRlCd54TWNyVm353LqGWQilpB5M9AYiULiwdCtYwGM0XG8g65ohvMeosza0/PaPhnrzVdt36Y1xZv4enFr8A768aaxzXMotbH5SKOXrSJfc//crC+4dh9GIUhGVtzmON62NleemiiMW7TnIzMqknuZyJmmRMusssuXLcs9LjhwJ0Y+cGaz+O4fh0bbx6dOJ7IwFghuMOeHRlgge4h17wu2N6UsGekNtls1piwWd6apD0dpTVVmRTLrH8FDv7PavG9HyIyrhMREHTq9Oo04sf1NPv7MqGJrdThX3HRyC8AKDatAvyIn7maglqvzPLvw7DZ9dIfh7ZZ5Ytx7WHmBid9jmd6jlpOybUyPZz1rStC23a84o5guXwTtyFm0xCbPedY4sTK3fzG//lHo5UJvIV3/BGTKd+EnQ/q4wxOiJM0PspiKoZ2+62qm1aFCzvPxkKClmnQ0RAN2hx6rWtZrQ6z7fBAsI/jag4NZDk0kAla7oozZyhTJDeuXenIPf/BDf1f4fHUFRSv+yi1rkptS5GOzp6LpnjEv0MGkKu6owdgj3UxLHVQ5izH0yTyPQyZLZiGIlVH9TOitkHcrl2kOp5qCj1e/ovfo+P+j076XEXXm9buM3NZuWZeWe/uBwGILPJvmJiGX5tMTGSbBi3JCKmq93dtxfjNdbcGjzse/Q/Q4QuUcqHxer1r3TOSJ1twQ1EfxSG/6Py29BWg/POceolGrCdG9TmMUjz12vvpX/fqYNXZX1zBii+dw9lf28z6m84isf+OUC0r8As8j07SafdEBjOF4Fgr0xXalmtYRb55bfA4ETGxTDWrbqyJqYnaBqahJnRgy3VsCZbb9v5g0uMd16vriMlqMvEj5qXJijcHtKZ5x7dDdyEiRx+kiIVeeB7gX5MrNXmtiJkWtcwgHchceRUNKov71E9IHbon+GAtOB7ZwslPgolnpuh6HKtKD1FOjtxgF+t3fJ4HzS04r/wq2orXPHZhQ3xWRZj5aWf+R4kba+bJN1ZqSTFy1O/qI3VQ5qSi65F2+hmzW2mI+ZGN9VLsMmb5E5a2qSbMr3p20v9XVS7Anf59/udBjbQvx9US2VbSPxZOnY7vu5OiNmlYdzUwsf2umCgZsahuFNq2YGmw3LzrezTsvS20fzl6uR4/x3tG8vSO5iesP3joIAB7rvo0APGIIdE+s5Bh+OfJ5fFcTC1iZGml0LOJx47I2dzPRiJehtW3v422H7459ByZgnNKE+taa44OVc6zjGIl3efgpR9h3wu+Gto/apskI/WTzjyflFM8k1Er6DYLcOjKT5JrXB08XvONy2oeny26aOrv/bMW+fQV89KJTtITXQ+y5J4/Z8UtL0J1b2NP9wjn5h+iK3kW2vLvVi5qirNhYUOokPJsU+74NLrqevrNNv6w68Os/OkbSR75TWg/19NkCo6kK5whQ9li6O7l0rvey0XfvYhWNYxz0e9jT1K/J2YbNCZm192oVDR8ouTGmvnN+r8CoO+o30azZyQvkT9zkFN0aNKD5GPtLGisrygNw1AkIhYx25xwl9CzEoDfFrZsYd/9nP21zSy5LXxRUjaULZIpOAzn5vc4Hxl3Z37ZwH08YZ1NJOUXqE/OomjF2cowFEuaEsGEpBdpCG1X49JicqWIH9fTaK3rqsjzULYwPgCEZbe/k2cd+gJ5IqxY0IFtKRrjUjNqNjJKnb6qCz4Pr3whT73mNwyuegmHrvoUkTffTOytt/DQgtcCsLD7bjZ8cRXRuz8CWuN5/uS662lGTuL99chQLlSz06pK1x1d9cLQ+7tlKmxDioPPVeXxlSyVuFjc7N849SJpxhZeEuwXzxwmcfDuCcfPp1qUs/eKVYjT6ERteHNP/RyAxOgBNt76As6+5XmcY+wnv+GVAKxoS9CSjMz6OwPxiEl7OgqGzZG1bwzWW/mB0H6up+kfK9RtqPhsM75LRcMBv1bBkNFE8uzrJj2ufZYWHBx/B9863x9rwz0HAP/vbVAmfuac/HAPFh5esnNWT3CfqphtkI7aE1rBqlJUT6HqwqAs0vtkzedyXD0hHWW+GcwUQv//fGaU5c4+epq2AKWJa0mjmJLGhF1J+VKKg1f/W7DtyIFdoX3Lrd0d16N/rMDwKabFzDYFp0b6hefQuP/nxMmTsZtBKVoSkSDdWMwu5fQb0whHVhbTSzl47WcYKKV9mVaEyAs/zrbL/hUAC4d1O79I/tFvBcf0jeVP6gJ9YFz04UNP7wmWnapOqUpVIhElGnFuS9gm6ZgVupkztOrFoX1W/+xNEyJ3J2vqU49khIt5p3skF5wo1aK1xth9B4+qs/jC5m9x24L3EItGOLDw+WQ3vg6lCOXgz3ZNpQgR48K3BeuKw92hfRxPUyzdURGnV9H1yI0rLH7EXMzDei0PX/9DMGpfGDUl7Fl70WQZKpSakEimGFCNGAN+u12tmdcXxHNVf7c/cWc3LjjBnnOTKrV/tq3wBH4x0QHA6KJn0X3uH5Bp2wRAjghJZ4D1N62nYe9PQsdo7YeLO259RVycjIFM+GT6yNMPYCmPyFK/Lt7SlsSsv1kym1TXGhlc+3KOnfcnAJx76GuMjY1h5Af9uiWl8TZWcDk2nKub99qRXDF8QeY5bLppVfDQjbcB0JqKysTPLKWUn7poG0aQEn68nb1zXsm2t2znySv+L0doY+Ujn0C5/gROz0h+QkThZAqOF44U0x4bD38HgHysHQz/HD4e8Ys5VzdDEXOXVSrOXd2EYmzR5ey54Vuh/aKH7kU52fGHzwsyysW84nma7uFx+eJah2Z/n96zhw16F2NLr+HSiy9j6Yv+ksG33M3QC7+AtuJErbmVSx4tda5xY8385qL/BCBzZDtWpjL543maouvheB5Hh7ITIlLE9Dk2lCNbddfK2/Z9FjsHybWeQ9ui5TWPWd6WYGlLYtaOO9NQRK1wodyu+FoW5XcFFyEyqTj3DHUfAiDZtniGX8npY5l+B8SmhE3EMuhsiNKw5jJ2vezH9G7+fbou+mBQtLwn6XeminhZ7CO/nfBcuaKL43mMzaOw8TLP04yNS6HO7HsIgNZ1l2KZ9VMf6kwZP5nRc8GfcKzzGuIUuPSbGzjnq5vZ8I2L6HjwEwCM5R08j7qop5YruhMisyOjh8KPEw0oRSmaZHZ+Ns53lmGQjvlNAaY6seLZSdyzXsovFr+XVq8X9+hWf70H2cLEcVHL+L+Bxqf+H+s8P1JuxxseDNanojYNcYumRGRO3dAVk4vZJpZpYBgEkT9jiy5j33VfDPZZ9/M3sfgXfzhTL3FGycSPmFdGC86EfPEFv/0oZ3/tvKDw275H7wKgdWPtlJu5dvKqlAoKUCc3vYijupVNR77Nhm9cGOzjeJqC4+G4mr7Rgkz8nEbjixSee9/7AGjvWFRzf8tUs761aMw2Syd2lXDufPsm1nKQnUf6gNL8qqendNImZods/xEAmtqXzPArOb3SMZvOhhhLmuN0NMToaIhRaN8cdAvqOv/9DKx5Od4lfxAcs2j7l0jvuDn0PLmi/x56MnUo6sX4z1atNen+xxkwWqBhEUlp337SYjW6zvU9/7/Y3nA5AHv0Irp1E/T7KSzln/9cn/jRWjOcK4bSeqxMN+u/fVXweGjFC+i94E9CtWPE7GMaCss0SEbN0vLUJ+ia1vut10d33xdaP5V6gaGoN60pPPT1yuOqScKIZZCe5edX4tS0paKhmnIjy5/Hnuu/FjxuPvQL7OH9xHofx8z2zsRLnBHyjinmlXxVik28+2HUnrto3/o5zMIwmW+8ibtv+SKben+Ci4nTsanmc8zF4pTlySrTUBTiHZUNXqkNrKvR2i8SqTXzpq3hmeZ6OpRmWJ0Skmhsn7B/MmqyojV5Rl7bM9UUt4lHKuHS0ZWXElEuIzvvCfZxPE3PSG6ypxCzSKbg4A4fA6B94bIZfjWnX8QyQu/t1amLTnIhh675N5xEZ+iYFff8Ca5TmcjVGgquNyHyZT4Y/3/e2zPCJnc7/U1+tFRCiqaekpZkuGixF0nhvfRzDC+7jh2XfZIjuhUnMxTaZ65P/OQdj7G8G5pIjAzvC+1z6Kp/YWzhpdgnMZEgZk68VOD5ZKJqlixfQ5duxj72SGj9SM5hLO8cN6U2XzXxY+38MWtyftSQVpX3IcMA21SSflqnOtLRCRPDY0uu4sA1/zd4fNa3r2TtLS9iya2vPtMvb8bIxI+YN9xSOhOAPXKAVT9+DRvvfAsAWRVnS/FR3tv7Ea43f4e240H3rvHmYtX/WFWIbXrZucGylekK7Ve+w+Z4c/vEcbYaf0L+yN5Kup3pTsw37myIBdFas10yavkFEktFHJ0V15AlysIjvwj2KZTqG0n3uNnv2FAOK9PNiI6Tbmic6Zdzxpk1UkcyHVvoPfutoXVj33o7Tb/8K6xMD+DfXMg782+Mj1bX3tCaBXe+j2VGD4WzXgogET+nqFyjr3o4epEG9j/vS8RWXMywTpAa2U3Lk/9LvPthALIFb85O/jilidPxE4lP7aoUtN533RfxIikAifiZI8qR5xHLYGlLfErH2KbBocgqmsfCxczLzUjyx6lllXcq0WLqsW/QpZv46UseYdtbKsX501Fbxk8dU0rVTC8cWvNSHr22Evnzc/cComNHzuRLm1Ey4qeJ62mcOfpBO19Ut9BO7P05hpvnIW8tGsWRG77Cjjc/ys6X/YSu8/+EI1d8rOZzGAZEJ2m1PZtVp6cNrH1FsLx3V7hDTbn2zHwuUHo6jT8Zd7b/MFjOtJ8b2haPmHMuuixViviJR0y0FWdX6iK25B4gX/RP4vtH/da8flqIjK/ZLFf0iOZ7GTBasObhHVGj1I2mOvIHw+bosz5CtmUDAA82Xc/l2V+ydNfXaNhXKfbsedAzOq6WXB0bX7D+6G+/yyWjd/Bow7NxznopShHqsiKmzk+j9eukjNeSjJAxEjQWulh879/Qcc9fBtumkg4z23iexvE0mUI42scojPDcp/4meDyyrJKGLwV5545kxAqifqZakinTtI613l42fXFZMLEJ/vn88Sd+/G1eIcPKoQd4IH4Vizta/TqdpfeidMwKFQEW9SdqGTXfI8yVV9K/7tUcu+gv2BVZT9TLYOz9ZZAFUc9OOOKVUkuVUncppbYrpbYppd43bvufK6W0Uqrt9L3M2e/IYJbtR0fY0TUy0y9FTGIwUwguvLv3bmVQJ3no2v/HE2/fQ2bhJXiRBnKt59B9/p8wtPolNZ9jrtX3KavuppBZeAlPvfB7ACx5+FOkf/NRlv387SgnF5xsOZ4mK3V+pl11Cl3f/V/nHUc/AsDBq/+NscVXBtsMA5Y0T+2u2GxiGMrvjmH6BcVHllzDEtXLgR2PAjBcqn0ylncknXCWKt8pdT1NqtDHsN06L0+ODaVY2ZasGamy/7mf5/DlHyX6is/x86bXALD43r8mMlRpFzyf6qT1jFQmudzsEGu2fpoDahHey74AhjXnGiLMNkuaEzUvXpRSLFu4sPJ4rFKnYihbJFtwQ5EPs13R86PlxrfsHvnxXxPF/+zY+dIfhcKf5kpErPBLDSQifuHdRMSc0uRP0/LKDbH0/tuDZa39rm+5okvfaD50I8kr1awE6HnsZ0QpotZWJgvjpZqEDXEbYx7e1JhPopZfX2rCWFOKw1d9ip5z/5BYg19mIfbNVwD1Px6mcjbnAH+mtd4AXAr8oVLqbPAnhYDrgAOn7yXOblprjg3lgoKl+aLHwFhhhl+VGG8o4xcKLN8FMPt2csRaymVr2sGY+onDXJ34sUwjlMdcXHAB2xe9nM3ek6zY/lkaD/yC6LiLFv+um1ycTxetK11visU8a574dLAt31hpUWsaiiXNiTk71pKltqipqEXDpusByD/1M6BSfHQs75B33DmbjlCvtPZD6MvRq41uP9lI67w8ObZKRUlrFSMtNiynf8MbQSkKz/67YP2ieytRCce7G11PckWX/qpzntiP38tyfZjdW/4C2/br08zV97LZolzkOVojaqqjtSVYjjrDwfJY3qVvLM9Yfu5M/rieJltwQ4V5B4/s5rzeHwWPc22bg+WmhE1CxtacUn4vSMfsKUUBRpdfECz3Z8PnowNjRXZ2jXJkMMfunjEGM/77ULboR4wpJ8dZT3yKo7SyZIs/8WMYfsOM1mREavvMA0opGuN+x87JJhovOnttsDyYq//6fCf8q9NaH9VaP1xaHgG2A+Xerp8GPgDMy6vDoUyRnd2j9IzkQ2Gphwayc+aDdj4ouh4HBzJo7V94DozlWeoeCF1sT9VcPskIfcgqhfOCf+XpZa9jlAQAZn4w2Oy4msFMUaIyplHXcJ7BjD9BnL3731lCN3dv+jiHrvwk2ao0rxVtCRrjc7fLhG36RXKjtoFuXMYRezlb+n7CWV/ZRPLwrwG/BsVo3pGJn1nG8TQDY/7ffa7o0sYATqLjxAfWoXKEhW0aLGqqXe8NYHlV8fWcigezmwXHq/uJ85FckV3do8H5j9fzNGcN3s23k6+n7YKXBftJVMYzZxu1C+Mq14+26lUtRHQer1CpFTcwVqR3NI8zRz7Hx0caJ449wJW3PZuoKvL41V9i94vCXfTSMQtrHkYj1oN0zCJqmTTGbRY0xljelsC2Jl6Z55sqF+WFw48T63tywj7glyk42J8NakQBRB/6HEvcg9y2/C+xov55brw0iVqunSXqXypqkYxak3aUSzT5TRtcw57T595TdVLvmEqpFcB5wANKqZcAh7XWj52OFzYXDGYLoS5R1UbmwazhXJErhvPFu3Y/Spsaxll8yUk/11zuTNKcCHcHQRkUnvdx/m3pvwOw6Nd/RdOu7webswWXbMHFnWdFSk+XgdLdKCvTw2X7/pP7jfNouug1DKx/TRC6no5ZJOqgCGoyYgZFE4+uehUbjAPYhSHatt0U7DOa89O9ZJJ8dnBLtTVcT7O/f4yBgT6SKo9KdZ744DpUTm8zDUU6Zk8pLaH90M9Z841LgrTZeo76Gc4VOTSQDX22Dj3sf36kn/XO0L616tOIkxOx/PSY8ZNohpMBoJBcBEDX3V+gYd9Pg+35oofjzv4alHnHxXV1UGcQrdG77gDg1vZ3o9ZeR2bBRaFjZNJn7orZJk0Jm4VNMdrTURpiNus70zQn7fAFujLo2/BmAM4d+zVrv3/9ceuwjOYdekbzpA/cwdqt/8K93jmsvPTG0Pe1DEk9nU+UUsE5aa0oLzfWBIARbZgX42LK75pKqRRwM/B+/PSvDwEfnsJx71JKPaiUerCnp+dUX+ec0zWcm1c5/rPZ+JNvY9fPAYif9ZzjHtfREA3l1UdtY04Wdi5rjNuYpYKl1Vrb/Au72PAeFv7qg6Ft2aKk40yHTMEJ7rr27nkYA82ede/AqKocm4yadXMXSimFXfq/RS9+G2PKj4oYTSwN9skV/TtzuaJHwfFkgnGGOZ5HplBKRXQ0mf6jANhNi2byZc2Y8nt/uThkxDJY0ZaoeeK46+r/CJbj2WNBt8TxtUrqhetpDvVnQ5Ekys2z5vD32WasY9nySjRtxJrbn5uzRaLUEakhHp5E00YUgHjnagCet/9TLP/Fu1BOLtin4HoMzvJizyM5h6JX+RxY8NuPsuapz9Kv07Q87wOhfcvXZvOx6Hw9ScfCXbWU8tPcW5MRonYlzfbI5f/IscXPD/azBndP+pyHB7N4HjTu+A4Av2h7M+3paLB9smK/or4loxbpqFUzvdCNNvv/rj7+NWG9mNLoV0rZ+JM+X9dafw9YDawEHlNK7QOWAA8rpRaMP1Zr/Xmt9YVa6wvb29un75XPcp4He3vHODaU4+hQVi6eZ1B1vrgeOswVfd9lR/QcdOOy4x7XELNZ15liVXuSpoQfjjqXGYaiNRWZEMp44VmVk3RrXEvxTMGRjnXTIIgA1B4rHvY7xq3fXIk4UwpWtiVpGh+VNYeVT9p0NM3Ws/8cgLGRodA+Izk/3WtP7+ic7EJTTxxXM5avTFTkBg4DkGpbPNkhda18cVAu7pyKWqRjNpEa6QjZtTfimZXPh5ZH/xuqanrVE8/THOzPTJioLT75YxZ5R3ls5e+F7pomJM1rWiiliFom6Wj48/vYxX9F1/l/wuDaV4bW22NHg+VswZ31Y7EcYQxgFIZp3/o5AOKmN+GcJVnqCiU1WupTR0OM1e0plrYkgnXOymuC5YNbfzXpsV7pVNXt38fd7mYWbnleaLtlGMTncMkGcWps0yAds4naJslxmRtOooNdN/6Qwg2fnuTo+jKVrl4K+BKwXWv9rwBa661a6w6t9Qqt9QrgEHC+1vrYaX21c4zjanpG8vSOFHj62AgjObmwmQnVd12tX36ENgbZd+6fHfcYy1TEI6YfIhi1WNqSoCE296Mx2lNRYuNOxGOJdOjx4u+8gCW3vxvwI35yRZeCTPycMq11UNsnceRelhb8u1WRhkoKjWWqugsxre4kx/lv4SlvKYXR3tA+BccjW3ApOn4bXzFzHE+HolTzA0cAaO5YMlMvaUaV70SXC1unSulKlmHUjMwz3EqERceOb5A8ei9D2WLdRbJli27NVHZnx+0M6wSLL3hRaL3U95k+pqEmRCu4sSa6z/+T0MQjgB46FCyP5p1gkn22yjteMPG8+ocvD9bHvbHQfobhT8r6KTv19ZkpKsxSh9DyRfrg6pcxuPLFAGzY9Xk89/jXU7HRQxxVnZy/rDm03jBkwnC+ikdMGmJ+vZ/xsu3ngjW3b+5P1VQifi4H3gRcq5R6tPR1w2l+XXVHa7+9pqR/nVlF1wvuImnPZUHPvdxhXcWCTccP6avXmgSGUUnBCYybcGgZ2kbz/p9gFEbxPH/irOjquruAOVMGM8Ug6szZfTcAX9345dA+9XgCa5lGUKwxGbXImA0sGtnK0jvfS+rQ3cF+5YtIr84L4c5muaJf26f6V5Ac2omHwmxdOXMvbBZJlSJ/IpYRSh2YjBrrRmuCTjP1olbdIu15LBu4n63R82hpSIa2yd316WUainULUhgGLGtNsKzVj4rItW0k076FX23+OABdh3YFx5T/todmcVSl65XOMbQmNrAjWK9V+HylIWZjm4qFjbG6u1kiJipPuGs7wcHn/Ce3rf8oS/VR8vd/CXv0SM1jdG6YlDcMzctDE6XNSRtr/PmvmFfSMZt4jVpp88lUunr9WmuttNabtdZbSl+3jdtnhda6d7LnED6/vWZ9nQTOdtVtZo8deJoWhvCWXz7hhGF80eZkHRTYnYwfXULNDgqh/bJ+Ta5Mqb1quf6HmDrH9UIn2+7B37FVr2L1liuDdZap6rbdcfVFnxtvodkboGnPrUH+PRBMKLqexpPJxTMuW3A5NpTD8SoX9M1PfZ1Xjn0TBxsrlprBVzd7VEf+1CoSufvF36N7yx8Hj/sP7wRgIDN7L7ZP1rGhXM3Pge59W+mkj9HFV03YJhM/0y9qmaxsS9IYt4NOX56dZPeNt5I61y9kO3hs34TjRnMOnqcZnYVpX+VopFVV0T4Ae1747WDZNBRRyyAZqX3XXtSf8c0u2s57CTltc/H2j7L2O1fXPKbv4FMANC5cE6yLWAYLGmIS7SNIRy0WNsZOeA1Ur2Tq8wwqpzVI1M+ZU+6kpIoZzv31ewBYuPLs0D4Ry2BZS4J4xAiCX+p5Ntg2DeIRM1Rwc+/1XwtdtAAYY90AwaRPwfHq7u716aS1Zmf3aCgtIpk9ylhiKemqtEHbVHU70Vj9/+zorBQJtroex8z2hfZ1Pc2YTC6eUVprekfzjOYdekcqf9vxPX4B/AgF7ElaoM5XqYgVtAOu/pzIdF5I14V/HjzOH/OjFrIFty5qpOWKLr2j+SBttdroNn+8tG6+PrQ+HjGDCTMxvcoXxON/vFY0Qbe5gOb+x9HjoijHCg6Zojuryg6UJ/zLLzXZ/VCwLde4isyCi4PH6dKkq0z6zB/jJ47jqQYy8YUAmG6+5jHZI/7ET3rJOcG6BQ0xLFMKOwuCEh7JiMXCphjrF6Tn1biYP//T0yzW/Qi53b9idHjwuPsVHD8CQO5sn355x68dAtC882Y6c3sBiLYuB6AtHWF1RzI4mVjTkWbj4kZWtSfD9UnqUEc63LFsdMlVZDrPB2As0gaA8cR3iJZCrkfzDo6n6Rqu/UErJiq6OtT1pmc4R6fuRTeGa6ZYRv2eyDZUpUzanWdV1o/tY/23nhXa1/XCxYXF6TdWcBkrOGhNKJXzqONH+Tyy+cMSGj9OeSIjHbNY0hzHNFQoW3bf8/6Hw/Zyzh+9C2P4IFAfUT/HhvwW9eMzMl1P0979aw6bi4m2V9ICbctPxxGnl1L++Kv+Mz3UeS2X6Mfo2f4rogNPB+s9DwbGCqHPpZl2eCBLsRRtuOC3Hw1t674gXIsxGbWI1ujKI+qXaagJkRlWeyWSJ5fLodzwDUnVtwNXK9KL1gH+38b4bnhCtKWitCQiRKxKB7n5QN5Bp8HI7gdYe+uNXHTXG7j4W+eSe+B/Jt3X9fxCr/0SOXHaDVWdbO87sD9YdpL+3YJ0zCYRsVjUFA8d53eMqO83gXQpT75atnUTAAcu/jAAqw98m3U3PxfwTxhzRT/lSyLWpqY6dQZg74EDxFSRRFu4m5xlTizYWS8s0wjaZ44svTa0zXSyoZbDrp6dKQj1KO+45B2XoWwxmBwHaH3iSyz76VsY6D7MDmMV6sJ3SMTPJFJRi5htsqo9SUdDpebPyLLncO+WTxCjyNBT9wDQO5qfEH0xV+SKLru6R2oWdAbYvv0JLvS20rcgnOa1oCFWtxPas03MNjhnUWNw8RLd/FKiyuE5976RdTdfh1EYDfYdyhZnTT214VyRoWwxiCJrf/yzwbb+ta9kaNWLg8dK+dGx41N/RP2LWWYoRevwlR9nNLEUgIVfvZylX7sc1bU12J4c2U232YkR8c/t01G77s/pxcmrjkitxzqbk6nPq40zqP/gdhrv+iAOBt9e8RF2q2VctPVv6d/90KTHFByP/rECueLsb7E5V/kpDP7kmpHp5rJDX6hsM/2W2fUe1XMiDTE7mOmO2QZOop2t7zyAs/7GmvuXT/wHM8W6SF043aovqAHMvXcC0NCxIli3rCVR9yey5eKMhcaVHLns7xlt3Rxs2/C184Jlt9RVyvX0rO4+Uw+GMkVGc05ochxg0f1/T+Ohu7hQP0G0sZOIZcgJ8yTKP5eYbZKMWKGon2VrN+NqRfaYn3LguHpORvp6nmZf3xjZQu2/x9FMns4H/gGUgfGsPwrWxyMmTYnImXqZ8145bbt8cewtvpiiUZmMPOcrlfT2cnTfTH+GF10vOP/trhFJ7MZag2WlYGlzIui0J+aXmG0GtawAnEQnh178LfJmkiWqh8ZiFxt/+EI2fXEZqa1fZlXhabpTG4L9JdpHnIihFMY8OdeRd9FTlR0gecvbeNbPbmAZR3ns4n9hw3PfirronQAs+tUHjnuHL1/02N+X4fBglsOD2TP1queFg/0ZukfyQepCwy//GgNNb2INRy77CFC+ezS/h3/MNlnSHGdxczy4OAcmdPlKHfwlUAnxH8oWyRRduTg/gWJ1xM/QQV7V9a/kiJJv80/CE1GTxoRNc43W0PWkus5P3zlvI9++MXhsOmMox3//KzgeWsNIrjirUhHqkVMq8Fqd3hXvfrSyrArYDZ3zKvz5mSjXTStLJJIcMxcQGdwdrMsWXUbnWA2r3tH8hAnssmIxT/Tbr+Za7352r35zkMJqmYpVbcmax4jTo5z+FERFKIPBs9886f6e1jW7s51JIzknPLa8SiTxWNu5dF3wp8Hj5mSExoQ972/WzVfxiBk+RwWK6SXsfdUvOHDtf/LjZ32LR/R6AJY98HcsUb0UF10I+OdZMgktTsQ2DSLz5JpwfvwvT4PcfV+g8eAdfF8/mwde8BMim1/hr9/8JnY0X82K4h7ufHzvcZ+j4Hjkix4DYwW6hnP0jeaD4s/SQenUeJ5mOFes3EHSmraj9/D/vOvY8fKf0XfOW4H6Lt58MpJRi4aYPaHTQd9ZbwyWV/4sfAJZcDyGSi3K52r6wummtQ51lBu+9yZiOs+PLv8OxYblKOWnQgB1H1GRjJjYlgpqUBy76IMUEp3B9o1f9k/YykNpOOtMSJMT08ut0dlnza0vCT22GjrnVfjzM2GbivS4tKbBxAoW5PYGqbH5ojdputRsNDBWoHtkkppu+RHMb72e851HuGfVn+Je/aFgU0syIgWdz7Ag4qfqs+TYxX/FkUs+HDxecM8Hg2XXY8YnfkZzDoWqm0ebbqrUhxpe9WK05afpNMQtOtN+9FK9f1aK2pIRk2R04jl7MbWYoVUvZtnZl8FbfsjD6mxM/DGV3nAdAIvHlXIQopaYbcybzy2Z+DlFn87ewEsLH8F5wb/SubjygYUyUM/6I2zl0nz/P/PDRw9QGDx63OfS2g91PTKYY3//GDu7RtndPUbRlQvrk9Uzmqf6mrE4fIy4zmAu2BCKPEhJ7YEQU/kF9MrnVUee9RF2N10+6f5D2SLZokumIPV+askWXfLFykDsOHoX28wNrN+wBfDvYM6X+hdKKVqSERpKf39etInu898f2id16G4Sx34L+HUfPA+JKDsNCqWLPb+TTu19DnVcQ/e572XgrDfM+6jIqVJK0RC3idqVyJ9Cx7msVkfYfegYAJmCS7bgkCv69ZVms1zR5fBgdkIh57Kun32Sc3O/4972V9N87fvBqFyUNcTqO4JxNipHwoRu4BgmfZveyfda3wVA+45vYGV6gEpa7Uwpd3Asv8eXX1dZrqXSCKA9HcWS96F5zSpFYyg1+U1bKxKj+Rx/sqd7+YsptJ5FaypCzJabvOLE5lMwgLybnoJsweVrDxxi4fqL2bSkacL23MKLOXzWO3iL+TP+6sEruOC7l7D3B/+E7n7yhM9dHfraN1qQNLCTMJQp0jcaLpq9f8fjALQvPye0Xk5OwyzDoD0VrZw4GlaoFebSn709tL/Wfq2fguNxoC/Dnp5RREV1d6ojB3ay1ttD7+JnB+vmW8h6azJKY1VK28C61zC48kXB45U/fROrfvQqzFw/WvtpclJEfPoVXQ/P07jjruiri73a7WvpuugDFBpXTIgEFJOLmAZx2wxOIBMrL8VQmp6n7wX8i92Co+mpSkOejTxPBx28asluv50ru77ObxNXkXrJJ0PbklFzXp1AzxblzxPLVDTErVB0xJYLLguW8/vuByqpXjM1uV50PZyqrpfx3seCbYcv/yijS/xC4aahpKugAPzJ9ca4fdybtvlzXkP/+tfSc/U/A5WoaiFOpBw1OR/IO+op+OXT3YwVXG7YtHDSffqf9SGOnFdpRfmSns+x5EdvQLtTD/XurUr9EifWPZKbcEKdO/IEAB0rKsUNG+KWnJyOY5oK2zJCqR2mU5nMaTr4iwnHZAsumaLfGUgif8Kq/2ZHH74ZgJYtftFspZh3d6FMQxGr/mA1LHrO/YPQPgqNlesH/LEldX6mn6s1Bdeb8D75yN7uYNnyKp3WpMbP1BmGIh4xsUvvoc7iC8kTZeHhnwYTa+WunrN54qd7JD9pSprWmlX3/QUDpNEv+OSE1JvWVLTmceL0Kv8eErbFwsZ46PPFi7cFy4WttwD+jZu8M3PnluMnnIb2Px4s55rXBsvpmCVdBUVgQWOMRI2Ur7JiegmHr/wEXqQBy1TzJnVHiJMhEz+n4K6nu2mM25y7tHHynQyLvgvex9Z3HmDHy29nZ+I8Wrw+Nv/PKmK9T0zp+/gfzh5D2eKJdxY4NU6ml/bfR7fRjtvgt9BWCpY0J870S5v1TKWImAamoWhO+t2+qlupAnTe/48Tjit3BdIaSUuski3X9chluLbnqzwZPRezw69ls6AxRnIeTjyOrxeTa9vIwas/HVpn5of8bUWXoueRlQnFaeV5GsfToYmHWN82rrr/HcHj7i3vDZbnS7HD6RK3/bbD8YiBF2lgd8fzuN77FXsOHwvtNxu6KtUymCkwmC1Mun3X9kdp83rZtuS1JJrDN76UkhTqmZaMmkQsI5SiWUwuCpbPH74DL+NPrjuuJlc882MwV5w4qd97dH+w7MT8iSrb8tMnpa6PKLNNg4aYfdzJn+p9hRATyV/GKXhw3wAXrWiecghqvmU9Iy/6UvDY2vMLJo2jHkdrGMhMfiImKsbfRe3vOshFziPsabk66FQVj5iSvlCDaShs08AyDBY1xonbJmOLLufgVf8S7NPxxOdDnTcg/DOfzXexz6ShbJF80SNx7HfEb/tjmtUI3Zt/PxiDqag1L09mDUOVcvQr75tDK14AwEOpawBY+ot3o4oZ8o5XswCxOHVa62DCofpvtfOHb2BVxr/jvv85n8VJVi7o51P483SI2yaWaQT15Nzz30pK5cg/+t3Qfo6nyc1wcd3xiq7HoYHspF28Mr0HePm9ftTiyvVbJmyXz9aZV66FUz1h6yTa2fbmbfzo/C9iKY+G2/+UJXf9ESo/PCMRPyM5h9z4GldjPRw1F/H0q++h0LQa8LtBji+YLgRAU/zEpRrmWzq9EFMlfxknqWckz57eMS5c0XJSx9kNbbjK/xBb+fi/0rTzuyc4okJSHk7M9fSEubTib7+EhYN38buCdfF5lmIzVbap/HScUmX7coqHtsI50iu//yLS+2+v+Rzj64bMJ32j+aBo68H+DABLf/k+zun/ORnitG30iw7OxzSvapapWNBY6bKh7QRb37Gfx1a/B4BItpum3T9Aa8gVvVlfBHcuyRU9XK3pGs6jNUQHnsa86+9pcPqDfZx4a7AcsQwicvJ8UgzDj5wMIl8WX0iX0cnCrl+GIiLzjjerIn6c0qTPZG/hrqcZ/nGlQ1SxZe2EfSTaZ/awrfAEnBdJs+DsK8hpm5U9d9K8+wckuh8l77i44yIAT7dc0WW0nErouTQ89F+sKO4mH2uj0LAC8N97UlFLUnVETQ1xm5htcLz7Z/LZJURt8pdxktIxi/9520W88Dj1fSaz/Y2PBstL7/kz7JFDUzpOaz9EX9Q2mCnQNxZuO+tpTVv3vey215Je5HeIUErCPyejqiKioFLbY2jlC+lf/7pgv9TANlI7b6n5HPM54qfgeuzsGmXHsdHg4imj/btSPzjvC2gzAsj4swyDhG2GT9iU4uINq4KHbmYA8Ov8FGawAGm9KadYlDt7rfn+Czl795dwUey65r85etEHyXScH+zf2RCVCI5TELONyt1mpTjWeRUXeY/z1L6DwT7Zgovj6Vnzud6fKVQuxmu49+6fcF3xTp5sfwFHL/4QhcZVE/aRiZ/ZI26bjA9Ij8YS5NLLgsdGYTiYXD8ymA3eF063bNENUswa9/6Y5Y98jNXGUVSq039dBiQi5rxMhxZTY5sGTYnIcc+nJOJHiNrkL+MkxWyTZ6/vYGnLydeJ0dGG0OPWn7xzysfWql8jfH1jBfrHwulwu/bu42xvJyMLKh0t0jFLalacQDkiyi6fNSqDo5d8KLRP274f0rr1ixOOLTh+TZZjQzmeOjYc+qr3+j+1ovJUtp/v8lzWb7kiWDffC1U2JeygCG5IrFIvbezYTvCcUsthj9Gcc8YuSupV0fX89KJSasfiX/0Fhue/Z3rKJrvmhfSe+wdgVELok3Ihf0qUUlimQWvKn+y1LnwrCZUn+nDlPTNXdPE8PTHlZYYMZyeZ9NEeA7d/irfueh+DZiv6BZ+id/O7GX+rvXyxLmYHpVTNzqWqdU2wbGa60RoOD2QZzBQZzp3+WpIjOT8NGgDPwb63kkoea1qAUqWbAxFTWriL42pNRo47uSNpykLUJu+s06SzMcr6BWmWtsSPu9/oosuD5fbhJ0l/9XnoPb884fPP52iK4/E8TbbghuoSGLkBovd/GguPyAVvCNY3xSMTQqBFWPlkyzQVUdtf9iINbH/9g6H9Fj3wEZSTDa0byTns7hmlZyRP0dGhr3ofvuMnZnsGh2n0hmjoWBa6KzXfI35aEv7FcDpqhTpGVacUnn3kZs75X78Ln+tpekbzDOeK0t3wGcgW/ZSObNElMrSPlqe/GWwzxoUGlKN8xhfjFicnGfEnzrzOTTwUvYQbB77Mgjvfj3L8lCrHm5niuuM57uRF1Lvv+i+u2v9/eSK6hf0vvQUvkq65X0syMi/rls1mDXG/SUP1++yRy/+Jhxe+FoAl9/8djbtvDcbgsaEcA2MFMgXntKTY5oou+3r9NOhE14NsumkVC/N72W2uBMBpXY9t+umliYhMOovjK99AskxFclyxZ6Uk4keIychfxjRojNu0JqNELD/8sLp46Xh7X/ANRhdcGjxekX+KzXe+me6HbkXlhyc9Tu5415YpuqG6BLGex1n/9Yt4UeYW9jecD+1+mlfMNkjHrHBLaTGpqOXfdSufyzvxNrKt54T2Wf/Ny0KPxwrOpDUivDqO+BnJFSfU6ziwfy8AHYtWhNaXJ9Pmq3LNhmTUImIZE9IRgv3cSkvxfNFjMFMgL++BpyxXdCm6Hp4HkeF9oW1HLv+n0OOWZATTUHIh/wxV/60fWPZSANr3fI/GvT8B/CisguPNeLpXz2i+5vqjx45w/u7/4nF7M+br/h9G8/Ka+xkGdKRjNbeJmdMQs2hK2KXoGf9v2Ul00HfF3wf7pA/cESxrDYcGsvSPFYI6ddPp2FDlPb1l+9eC5R2X/xvb3rSV/g1vwixFjsXm+eekmJrOhhir21OsaE2ytCUejJtyrUohxETy7voMxCMmy1oSLGtNhGohrG5Phe6yhCjFvud/madf9Uv61r8+WP2cR97Lxq9upPi93+fAPV9l8P6vYA9VWlyOFqS7TS3j6xL03ftlLO2nMMRX+hNshgGr2lMYhpIPgymKWiYNcbsyrpXBrpf9hCOXVAp82vl+kod/FTyerBsM1O/ET67ocnQoNyHiJ37wlwCkFlRC61tSEblAKklETFLRcOpl1/l/SqZpfWUnr/K3nS145CXi55Q5ribveMT6tpE5+FiwfnjJsxlc96rgsWkompP25J9fYsqqx/b6jRdVNuQGMHP95IoejueRncFx3T2So3dkYtfQwnAP7be9g5TKUnzuR4lMUpA+Zhus7UhLLahZSClFRzpKWyoaijStLq7vWhNLFgyMFSk4OugCOB201oxUnaspXRnzS1asw4s2glKYhkHMNmXSWUyZfwNJ0ZSIsKYjhVJIxJgQxyETP89ARzpGY6JGHrVSxy10qO0EhcZVHLnyY2x9+152XvC3wbbz+2/jhTs+xJVP/DUNP3gTxd49AAxni0Er3pm+Qzhb5IouvVV3K3M9+9jY/WMeiF3BgSs+Qd957wX8ukxyYnryGmI28XGFePs2vp2BNS8PHq/6yRtqHDlRnc77MJp3yBe9CTV+Lu6+mafMdWQXPytY15qMnOmXN2uV3yNts5KK0H3++xla98pgn003hQvIzoa0mLmm/Fnhlur7rP3+CzjnyUpdjYGzKoXblfJvZkQtk0VNx09ZFidmGCroLOM2rwzWL33g79nwtfNK0T6QKRUxn4k6aONr44F/kc6t7+Uc9yl+u/kfiSzeXPPYmG2wtCUh3XNmMaUUyaiFbaqaHZCczEBogr3M9TQjeafm+DhZBceb8N6dH+qpPIgkAX/S2TKUdF4Vp6w83ttS0Zl+KULMWvKJfZp0TLUjimGSO+8dPPG2Xey+/mscWfkKnrjkk9xuX8uiwj7Ov+Ua4scexHE89vaOBfUupNMNdA3nggmFpp3f5aIfXEVKZcle9TcMnfVaPNs/oZBc31MXj5jhujTKoOvCD4T22fClNZzzxRW0Pf7ZSZ+nXiN+anXCOdbTyzJ3P0fbrwDl/+yitjGv27jXkoiYJCJm6ER/cM1Lwzt5lTvDMxkZMVeNlSJFHU9PmHx94m27GF5xffDYMlXQSUc6NE2PoOCxYZNPV1KlFP4vo+j59XW6RyZGDZ5uuaJbM0rz0P3f5YLcffxy8btouLj2xL5SsLQlIe9pc4RlGjTGJ96kXHDwNhY+8I81jxnNOdNynpktugxlw4Wji727J+zXEPfrvslEongmFjfFZQwJcRzy13GaRC2TlW1JGuM2zUm75t2WatqMkFlyFX3P+TR602vYcME1wbY1P3o5rdv+h2zBpXekwJHBHJlJijHOF1prRvOVi+74wXsAeNreQOuyDaF9pbr/qYtHzFK9j8q6YmoRe274VvDY0gUMPMyjD0/6PPUYpOa4XmgMlu3fdh+m0rSuC3eUE2FKKdIxG9syWNORoilh4yQ62XddpftR+mClBkXB8XBnUQvs2a76PdL1dOjOfk7F0GY4As0yjInd1sQzUt3pasdrfhXe6Dn+5IvnkS+N7TNpODuxi1O2ew/P3fYX9KlmFjznjyc9dkFjTCZ95pCEbU76GZTef3vN9SOliZ/JCn9PVbYQnvgZHBmlXfdxOLKKvdd/tfIaI5ZE+4hnTCZ9hDg++Qs5jeIRk2WtCRY3xVnbmTpu0efxhta/iiOb3xs8Tu37abDsenre17vIFl28qptRh0f8n8e2qz8/YV8pFHjqErZJ1DIm/AzHFl5K9+Y/AKBgJnnQW4czNjjp89RbxI/naYZztYtZuwf9DmjW0guDdbXutopyapERTDACuNGmYPuK29+JURgJHueKLpl5/t43VWMFl7G8Q6bg4HgeZmE02Ja3Gibsbxkq6EQlpkdjPHzTZ/eLv8+vLL/23KabVuF55c9z74xG8bqepnskXNTZHDvGxbdeQwSHrdd8CRVN1jw2HjEklWKOSUYt0jE7KKa/54ZKV7+irn1XsuD4Y3Io63dUPJWJyYLj0TuarzQn0Zorv3U2UeXQtfqVjC65Oti3/DkghBDi9JEr4jNAKUXUMmk8iXbinp2k7+IP4Cr/RLzXWhjaPpwrzss7347rsat7JHQHSWvNUO8x9hgrWLN8WWh/w5C0hWfCMv3uXpZhhKPWlKL7/PfhRJvZdek/M6wTkBua9Hl0HWUmaq3pGyvQPVLpUhId2AmeS9+u3/Hu/P9QVBHceCvgR/tIscHJle9Elyd+tBGORLFHDwfLYwVn3k96T4XWmtGcQ97x2N09RtHRJO79WLDdsMITkaahMKX4/bSzTIOGWOVnnem8gKOdz67s4LlBJNuZjPgZrTFpPfSzjwKwu+ESWldfWOMon0TQzj0Ry8A0VHADYmzR5cG2vDv533ze8RjNF+kdzZ9Sqm1mXKdPK3MsWG7oCJ+rmYaSsSWEEKeZTPycQemYRctJFnh95IYfApAbC19UZwsew7mJodr1biTnkC14oU4kx4aypN0BjFT7hG4QTYmIdIh4hhIRC7vG3Thtxdn+psdwzrqRjJHCKEw+8eNpTd6Z+xfsRdfj0ECWkVwxqI9hD+9n3c3PYeV3n8f6X74bgKHFVwF+LQyJ9jm+8sm+ofyUwmzbOWRbN1Z2GDwQLA5nnTNeC2UuyhZdRnLFSlSkV2TFnm8E262qiR/bUixsjIVreYlp05wM//1ffPbqYNksDAcXxk6pAPfOrhGGMqf3s713LBztY/zus1zWfwt3pF7MyCu/PelxTQlbUrzmsFTUQim/5lzZUN4j8vQtxLsfnbC/5/mTP9lSAfLDg9mT+n7jSxJkD20NllU6fDNT3n+EEOL0k3faMyhmmyQj1pSjfgCiC8/hUc5CZ/onbBupUVi23o2/62QUx9jy4xdynrELO9UyYX/ppPTMxWyDZCklJxGdeNKvlKKxuQ27OMKu7lG/hZdXRDm54Mv1vGnpEDKTtNYcHsgymCkylq+Mw0gpIiU1vJOF9NLVcQXd1/wrAKvakzTV6PwnJrIM5U8uGjb7nv8/wfp1d76Tzt/50SrZgiuF7adgNOeEOunEBnYGy5m2TXRf/JfB47ZUlMa4LeP0NElFrSDFBsKpjEtvf1cQDpktuOzvywRt3k+XguORqXr/MrL9rHvsE/TqRpLX/eWkTSksU7G4KX7SN6/E7JGKWsRsk+ZE5Xe4Sh9k/a/+mJU/ekXNY8qTP2N5h4GxAnnH5ehQdkpd6DKF8Dnq3m0PBMtOoh3wb44ohXReFUKIM0DyD84wu9RdoW+0MOUW106siWT+KLlx64eyRTpKURTzJUR2/MRP8ckf0ZH1O0S0ZPZRPT1mmUruTk6DcuvtvOPRmoz6kzvjrFyyiNbBEdb88KWsMHpIuwOh7aPrX0n/tf/GwsYz9aqn34H+TM1izl1HD7IK+GL0zZx/ydVEV1yKF0ljmUpSvE6CYfjjLJN3cWLhSdyOx/6LwdUvJd9yFo6ryRQc+dlOIltwGaxKhTVzA6z9fqV71+ErPk6uzY+oikcM0jELw1DEDHmvPB2UUjTEbAZLUTyelQi2pbsewMr24iQ6Sunb/nr3NNVEyztupd5KyeBD38XG4ZaN/8ElrUsmPbYjHZVUwDnOMg2aEjaGUowufBapo/cG20yviDt4iEg0HqQpl2ntn29qDd3DeQYzRZriEYqeF0plrJZ3XLKFqrFWzHBx/w85Zi4kd+0/UGhYAfgdcOf6TSEhhJgrThjxo5RaqpS6Sym1XSm1TSn1vtL6TyqlnlJKPa6U+r5Squm0v9o6YJuKpnjkpNI/zGQbaW84VFME/A/jnpE8A2PzI+WrVoeJwrYf+fVlgKHVLw5ta5AUm2ljmUZQfLFWxJoZ92d0NukdmE6GT7uv5lPu6/iE8zp2eYtwjm0nX/QoOLU7Yc12RddjOFu7mPPTu/cCcP6Nf4y97jq8SBrw/9bF1JmGIlmux2XYPPHWp3GsSoHZdd97HgAF1yMjkT81aa0ZzhXJV0X7mLlwtKgbSWMY/sR4Q8yeNzcNZlJ7ulIMuZAOT66YeT9FtjrIp7w83XX8ckVvQqSwtecOjtLGhRdfVfMYw4AlzXFapaBzXWhJRDCVYt/1X+HoRX7k393n/gsAW777LM7++nk07fwuZi5886b82Veur9g7mufwQJahbJHhnF8Auuj69aoO9mfYcSx8g6jhtvewlGNsW/l2Rpb77+XxiElHOiZF5YUQ4gyZSqqXA/yZ1noDcCnwh0qps4HbgY1a683ADuAvj/McokQpP52hNRXBMtWUWg82tC6gmREe3NMzYdvAmP+BW+88T7OrezR04V1wPJaNbWV76lKeeOsOerb8UeiYtpSEpE+ncpHspngklLoAYOYHAci2nsPRl3yT5777Uzz/3R/n7Fd9mB16CZ7j1wboHyswMgdrU9VqfQwQ7Xmctw7/FwB2ui20zRr/QxLHZRmKhG2ilH+xqa04R678WHgnz5/UGMwUZOKnhrGCO+HC3iwMhx670SZakhFSUYumhLxHngmxUjttpcCLNrHjFZUW2it+/GqUE76p42rN4cEsx4bHx/memlzRxXH9iffqxgjDh59iU/5hDrQ8C7NGjRWlYFVbimZJ76obhqH8z28rQu+572Hr2/fQctGr+M3idwT7LL37T2l58n9rHl8+BxvMFHFczaGBDEcGs+zqHmVH1wi7e0aD6LYy+/ADLO+5i6+YL6flyt8rvQ5oiPvnFEtbEgghhDj9TnhlorU+qrV+uLQ8AmwHFmutf661Lp9h3g9MHiMsJkhELJY0x1ncHKf1BBMU9qLNRJXD3q2/qZlXnXfq/wIo57g4bvj//vRTT7BA9cPSi9BWjHLbqfZ0lKaE3MmeblbpwqAxbhO3zdDkTzls++ilf0ums9IRpiUZIUsEo+hP/JRbu06lPsBsobVmIFM7FL3jx2+tPFDht1N7CpO6oiJiGhilqJ9IaawNrb6RA9f838o+g3sAv7h9wfE4NpSbkLoyX7meJpN3Jt4IyFYifna+7Cd40UYswyAVtaZ040FMj0TEDArkV9f5ieT6SB77bWhfz9MUS92+psNApsCOrlHyVZ+jZq6fLT97JRrwLvvjmsc1JWxpsV2HTKMqDd7wJ18an/eX7Fzx+mAf6/BvSXQ9eMLn8jwoOtov7ecRijYsUw/8Nz26EePqDwTnEemoHbzPCyGEODNO6l1XKbUCOA94YNymtwM/mabXNG+kYzapqMWChhiNcZtUzMIyVVDsrmx08RUAbBz9DVtv+RQNT3499DyFUuG9oWwR19N12eZ9fIoXWrPk8X/HwSC98YWhTa2pCIub4mfw1c0v8YhJY9wmWnXROLD+Nex45Z2MLbw0tG8qapEniuH6XWS09tMNxuZQqs6RoVy4VkHJyLE9NDm9kx4n3bxOTrl+SGPcDhX6HFp9Iz9d8RcAZKq6wmQKLqN554y2wZ7NHM9PgSvPqRrFMTp/9wnue/SJYJ98o99RyjIUqZikV5xJUcuP+gFwI+FiZ027w12VXE/jeNM38ZMtuLieDkX7WI9+laQ3zH8u/gSphesmHBOPmCxslM/ReuS3Tg+f/mszQu65H+Ohy/6bXd4i2rp+zeofvhx75NAz+l5rv3Mt6/vv5ClrA5tXVjp5pWKWdPISQogzbMrvukqpFHAz8H6t9XDV+g/hp4N9fZLj3qWUelAp9WBPz8RUJeFf8CxrTbC8JcHy1gRnL2xg4+LGIKLCjbcxuOIFvNf6AW/o+w+W3/uXtN75f0LPcaA/w9GhLEeHsozMwRoqJzKhLej2n3NV5nZ+2fo63KYVwfqWVAS7FDkgTh9/4sckHikNUmWQb1ozYT+lFNhxbK+SslCO1BjJOXMiWmN0ku55vY/8AIBtF32MPTd8M7QtahtBapw4OQ0xC8swKhFlSmGd/yYcbYTaAQ9mSnUlTmMHpLkiU/AnwKrfJ1uf/DIdj32G63q/CoBWBkbEv5A3DCUXXWdYPGKSivo3d8xonCOXfSTY1rzzuyz5xe8Hj12tKboaV+tpmfwpRwVX/6monT/lMb2aS69+4YT9bUuxsi0pnZbqlKlUqKV7NfvsG4gnUsHjhn0/PfVv5DnEhnYBYLWv9s8H8G9sJqOmvAcJIcQZNqV3XaWUjT/p83Wt9feq1r8FeBHwBj1J7obW+vNa6wu11he2t7dPx2uuW4bhdwEqT1o0JyJ0NPgFFY9c/lFGFl0R7Ltoz7eCNrAAjqspOpqBsSIFx6u7qJ/xEz+Dj/+IrI4Qv+5Dwbp4xKBdClCeEZZp0FhKp+tsiLKwKTbpvsqOE9HhWhXZgkvPSH5ORP3Ueo2e1rQf/SWHjUV4576esUWXh7YnJD3ilFmmgWkq4lUd+Tqa0+xXCznn2Pfo/N3HAT8qQmsmpIDON1pr+scKOF5lksDK9NDx8L8DsEB3A/DE23YRsQyU8iN+xJkVsQxs06A1FcE2FX1nvyW8PdMVLHul36Xr6WmpiTZ+8sgZ6WFlbjuHmi+tWb+nPRWVSZ865kf8mDV/x0op2q2x4PGiBz5C6tDdp/aNencGiws7FwTLEcsgYhqSaiqEEGfYVLp6KeBLwHat9b9Wrb8e+AvgJVrrzOl7ifNXZ0OMdCn9y423su8FX2fHy38ebB85urPmcUV3YueOuaxclBIAz2Wk9wgrhx9kf2oLDanKnalFTXE5kTiD0lGLqG3Qno7SfJwisQ3pNCYevUPhLh8Fx6PoerN68qfoejU7eXX97ntc5j1C14Jn1zxOWo0/M9HSRXKZUoru2CoavSE6HvtPVCl1EPz3B9fTdI/Mz3o/BdcjV3RxqybAFj7wDxhuVZSdEQfDwjSUH3EiF/UzwjYN2pJRjPH53ICrjKBybt7x33dcTzOad+gezp3yBJBT4z0s+suP4KHgnJdN2L8tHZEOXnVOKUXMNiaN+sl0XhR6vODu/0Pjju+e9Pdx7v3PYFkv2BwsW4YKon+EEEKcOVO5Sr4ceBNwrVLq0dLXDcBngDRwe2ndZ0/nC52PTEMRs0yaEqVaIUqRbzmL3z33OwAcefDWmsdlCg4j+SIH+zNzPvKn6HoUqiYGFvzuYzzrlktZaxyGVdeE9pUuSmeWUoqmeASl/AvJyc7j1izuAOA3Tx2csK2c9jVb1ZqUUtu+y/Me/xMA0psnpkkAoWgVcfISEXNC18O2VecFy1a2UlspW3R56tgwXUN5DvSP0TWcm/PveyfDcTW5okfO8aMirUwPjbt/EN6ncbm/rZTiJRM/M8cwVJDKuPUd+4L1ti6Sywyhihko+u+JruenfHUN59nflzmlSXJn/N+C57Cs+w5+alzFkrPCF/jxiElTXDp4zQeWYVQKPI9z6IqPsfNlPwsex7PHWHbPn1LzLsgklJtnY+9tfN+4ju2v/g2jS/2bJJYpaaZCCDFTTnhbWmv9a6DWWeJt0/9yxHiGoWhOROgdqXQVii07n332Gq7v+iLbs+8lFg8XYMwWPAylyBU98o4fLdOYmJuFZoezRcrnraqYofmJm4Jt5ppnU30P1DblYuZMq74wV6r2eWEqlQbgdU+8i8wlvwpt65+kW9ZsUHA8ik7Vf8hzafrFn7L0wPcByNtN5BZdMuG4qG0Qm+ROqpiamGUyajgko2YQxRNZtBGe9LebmR6KqcUADGcr0Y1+ty+/1XtbKV2l3i8ynFLKW/kzYumdf4CiMm6fftXdOPFWoFTbRxuYcrd9Rpmm31Up40HXee8jsutnNI88xUXf9KMiHDvF06//HZ6dJF+a0NParzdWLhBtTXFcj58syj35E1J6lMyK5/iRRyWGAStaE1N+XjG3+TcWa/+utZ0g17qBsfYtJHseDdZv+tJyDl3xMQbOen3N46qNHngUG4eRxVfjNCwN1jfEbWyZeBZCiBkhn/BzwIQLF8Pm8Ob3klJZdjx8V81jMqUuHoPZAj2jOZyqlBrX0+zoGuGJw0Ps7xvj6FCWbMGd2AZ4FhjLuwxl/Qua4pHHsXSRzzT8Kbuv/HdyLWcH+xkGEjo8wyaLuPJMv/7Par2fnv1PhrYVHY3j6lmZojOWdyrRZl6Rtrv/Ipj0AdjxpofA8CdUG+JWEPW0uj0lY/EZMgxF1DRDkVPVxcO93XdijR2reazraQYzRQ4PZhmrw0L31cbGdTWzxo6ROlZpupltXk+hcSVepIGo7U/4tKQiUvx+hkVMI2hl3X3BnzF02QdC263iKGYpqq168vnwYJad3aP0jOYZyhanFAEUqu/jObQ9+l/s0wtYeukrgtVKwYKGmEz6zDMx25zQRbbanhsnRpUv+fUHSd/8Ohp3fOe4z330iXsAWLvlqvD3tAzpKCiEEDNEPuXngFppNI0brsXB5DlP/iWrv3ohRn4otL0cedE/ViBX9OgdLTCULaK15shglnzRz/sfzjr0jhTY1T3K7p5RdnWPcHQoOyvaJGutGckXg1bah7b/FoCNl7+YzPqXBWcryahJQ2xuRjTVk8muGTyrEpFWeOy7xPq2hbZrzbQUMJ1uo3knuLBq3vEdFu7+NgC/uua7PPWae4NJH/BTJNZ2pjhrQVrSaKZJImpiW5XuXvnG1ew5y+98tH7bv7H2+9dPeqzWkMm75IoemUL9Tv6MVY1RgNW3hmu27L7xh8Fy3PaLuUq3uZkXj5gYVZ/rnpUItv3Q9se1WRiZcFy5mHnvSIEDfRmePjbCwFjhuJ/V+apJ9Y03rWZlbhs7UhfRkEoG65sSttT1mYfKtdQ60pMX8957/dc4dmF4YnLFwG9Yds+f0XDnB7HGjk44xsuNcnHXtzhiLibVuSK0LR4xJRVaCCFmiEz8zBHjP5R1rInty9/IAjVAIt9NvO+Jmsd5nn+y6E8AuRwezDKYqX2R7Xl+qkTvSIH9fWPsKU0EDWWKMxKRcXQoF7SfVW6BtmO/YkilaV20KrRfaypKm5y0zjjbNLAtRXPSZllrIvhqa2kK9rm++4us/f4LMHMDoWNH886sq8uSKbjBRZOz3c9svWPBO2laczHF9JLQvrbhn0DLHfPpY5sGMctvgW0a/m3psUv/LNhu5fpP+ByjeYehbJHe0TyTNJ6c0/KOR7bU8TDR9RCRscPBtkJyEdryo+3KRZ0nK+YqzqyY5UdfRUupNtm2TWTaz2XnS3/EE01+LZTYwNPEex47bl0VraFrJMex49S1Gs6WPu+9YpAC2LhkQ2ifpuMU5xf1yzINFjXF6Cg1EqlldMlV9G56F8NLr8Wx/bTth0w/JXH5nm+w4ZuX0PHtG/Ae/B8ie25n5LEfsPib17CYbvoWXRN6rohlkIhYEhErhBAzRG79zRGWoSa0LbYu/yPY/78ADB7ehT2upXQ1vy2sM+XWx54HudKsy4H+DOmYxYq25AmOmj6up+kbrdR/6fzln7PReYBft76SxqqTBqX87lKSujDzklGLRU1xTKXCv4/oxEm56NAeMrELgseZgkvR84gas+NOoOdpiq6H43no/BgL+u7n+/YLWfGCv665vyn1pU6LiGXQlopiqAJjBYci4bFkFEbRZgRt1r5wzRZcLEMxlC2SjllErdkxvqZLuYYbwOofjov2ecktwXKslOYld9pnB6tUYDtmm+SKHl4kHURnJRuOQg8svdsvIL/7hd8hs3BiLbGyoqPJ5B36M4UJN0Dyjks+l2X5L96NO9YXrO9YsoZyj0WlIBmRcTFfpUvR0gsbY+QdD0/7qdfV843ajLD/+V8mMryPpp3foym1An71/mB75/ATdD5aufm4Sy/hzsUf4Oxr3hRUG7NMxZqOShdWIYQQZ55M/MwRtmmQK4ajbpxEB9uf/QU23PV7HNv3JCvP6cGJt02asD3VSZ9aRnIOQ5niGSsSPTYuPSN+yM8XH7rgj2isWh+zTZn0mSVSUat2Id38sP9Pw3Kiw/sBUNtuJhpJkW9eD/hj03E1pvJmRdRMznHR2r+jPvzIzcQoYG54Uc3XFrEMbOkod9okoxaaUocjx6H73PfS8dhnADjnK2czuuBS9r7o25MeP5p3SumEDjrKpJ1s5qJiqZX9eIXkQpzkguBxPGJimUbdF7qeS2xTobUxoSj++mWLYXfVfjVSacbLOx6DmQLJiEW8ahJnLO8S69tOw8E7w/u3V1prtyQjEoEhsEyDlW1J+kbzJKIWe3vGJuxTaFhB9wV/Cp7LQeXixNuwjz3MSPcBjqY2kh3qosMYRl3zQTakWqh+Z+psiEkatBBCzDCZ+JkjklGLkdzEWhXO6udz9DfLOX/wpyz4xjfpOfttDK15GdmOLdP+GnpG82ds4meoKh1N5QZJFfv5nP1mLlu6IrRfMlo/F3Fz3aQX1EsvBuDQVZ+CY0+w+sG/Z9Wer8Ger/HkGx/HjTUB/kVswfFoTs582kF5kjU68DQXbvtHtupVLN7y3An7RSyDpS1xOaE9zVJRi5FckZEcdF34f9idTXLZjo/7247df9xjyxfVfaMFbMPgQH8GQ9XH3efypI+RHwyt33/dF0OPbdMIdeATMy9mm7ieJmYbQR07gGULO0P7GbnBEz6X1v57VvdIjtZUlGTERCnFSK5IrD9cUP/pV91DMbUI8Gv7LGyMPfP/jKgLpqFoT0dxTpR2bZgMrnuVv1xq095+nN2VguY52llWCCHqiZwJzhENcSvovjD+5tzoRe9jgfJrprQ/+T+sufUl4E1/QdNswWX4DBThdVwv9H26nva71HSuuzB0Z9I0lNT2mQsal7DzPYfILLiEzJZ3UDAqhUw3fP28YHkk5zCcK86K7nLZ0mto3PFdDO3w+cUfJRKZONaSUZNExMKWVK/TLlZO01KKpgtfFaz3MMA78ZgpOB4DmQL5ohe0yJ7Liq6fjtG083uc89VKBMfIwmeRa9sU2lfSvGafqGVgGQbxiBX6THcj6dB+S+7/MJHB3ZxIuVnD4YEs+/oy9I3mGck5xPq3M0ac1xb+hqOd11Coqk/Wno5KtI8IUUphGYpE1KQl9cxvwpiGImIZMs6EEGIWkImfOSJqmSxpjtOcjJCImKEIg9yGV9J9zjtD+7fe98/HLQp5qrqHcwxlijhTaCN7qvozhaCoM4C3/z48rVi8MdwWdGFjTFIX5ojqk76uK/6hsl5XLsCHskWyxTMzuXgi5YK5uZ69HPZaOWfdupr7lTskyUnt6VedwuIkOujb8GZGVRIDD2MKhZ6BIGrS8/yJk9nYTW4qsgU3qIHWsv2roW0jK54fLJd/ZqapJCptllFKYZqKhG2ysLGSBqPNiRPMy297/ZQmN8Gf4BzNORwZzKE15Hv2sd/r4JJnv4TeF38FDP89yzJVXaU9iumjlCIds4hMw/lVIiJdV4UQYraQq+Y5pCkRYXFTnEVN8dBFEEDXZR9mxytu55621wKwaPsX/LbZ0xz5ky14HBzIkDmNURnFcbWIWvsfYa+5nFi6JbQ+NUkXCjH7VM+LDK57Fbte8oPgcefP3k2857GgVfFozmEs78xo5E/5e+uBAxylnQuWN0/YRynkhPYMilpGKOLxyOX/yK/W/w0AT//sc7R+/9W0bP0iRo022LWM5hyGa6TPzgXdIzkGMv7Ej5XpCtYf2/J++s5+a/C43KnHlInJWSlmGdiWn4YXRA3W+F3FMkfZdNNKmp/+1kl/j8LwMfpUE1esaQutb4jLe5eYXDpqE5mGFNF4xKRRxpoQQswKMvEzB8Vsk1iNtrz55vW0XfOHweO1t9zAwl+8d9q/v9YwOObfKR/NT/+FU7GqdXzrr/+W851HGGg4K7RP1JZCpXOJMe5iJttxHj9d+/cAdBz8CW2Pfx7wx1bR1YzmHfLF0xdVdjz5UmFnihlS+WPkU4tq3hlviNlSWPwMUkoRs43Q72Lt6tUAvLzv8yzqu5/FD3yEc75yDgse+CeUmz/u843mnaAj1lziuF6oQ2NhdCDYVmxaGUwcxCMGqaifRiTRPrOTZRpYhiJqmRN+R6MLnzVh/857P3zS3yNR6MeJt4X+bpSCBQ1S20dMzi8Ir2iM21immqxnyHGZhqI5EZlwo1IIIcTMkCvnOaqcYjKe27Ao9LjtwG00/+jtRIb2hdabuX5/nT61C5+hbJEdXSPs6x3D8zR6GtPKCqU0MiM/xKKn/geA+AI/1UYpWNIcD+5ki7mh1nXn2nVnB8sZHQlSGYquR77oBePgTMsVPOzh/Wz637NoYxC7ZcWEfZoSNm3pmS9CPd/EI1Zo0tspFakdat3Cf1xyD4/hv0+0b/0c675xKS1P3DTpc40VnFKdHE1xhsbaqRjJOUEWr9p7D2kq3XcK6WXBcipqE7UMNi5ulJSeWawcVWFVdQbc+vY97H3B14PH+y/8azLE8FyH4fu/QuPO703puV3Xo8kbxEuES+8mo5ZMBooTilgG6ZhFezp6SpM3yagpReWFEGIWkavnOSods2mIWwxnx0XcGDa7X/RdVv/olcGqJcd+Qd8vehje/A5G176U6CNfYs1DH8FA06+a6Y8sZtfCG1iQsuGsF2GlWtBW/ISvoRyRcXQ4B/hdGxKRZz6kynfh3f33BetSC9YyjB9l0ZyM4J2o64SYVQzl1xipbj2dazmL4fQaGkZ2sWjfzcR+bXL4qk+hNWSKDtYMFEx2XI+RfJF437ZgXbxtRbCslF8QNWaZ0zLWxclpiFlkCpUUwGJ6Kbtf+B2yHVu4xoySWf9THv72Gzg/dx+RfB+L7/87hle+ACe5cMJzFR2NUtp/D1XQGJ/9FyhD2SKHB7MAKLfAxjveCMDvNnyQ9OYXU0z5hXujtn/BZklU5KxXjhos12Fa1BSjf6zAWL4yzoe3vItDxmIu/+17uPyJvwbg2GNfRS86n6HN7wi6dI3X29tDVBWxGsKdwloSMmktTqwcVa2UX1csnjKD2mJTIZE+Qggxu8hZ4RyWnCTqJ7PgYo5e9JcML746WNc68Bgr7/5jhrbfyfKHPsr93tl8Nv57PGZtxsj1c/2+T7DliX9iy3cvY+OX19Pw/14MT/0IVRg9YVHJ/tEC/aMFjgxm2d83xmjeOeXiz7miG9zN7t/6s2C9k1oAQCziD1lJsZlbDEPRMq5NuxdtZPcrf8FO7V+stuz4drCt6PhRGKeziHgtXSN5BsaKWNm+YF2qc2WwvLgpTkc6SqO0pp0RqaiFNe5vP7PwkqAgbiJiYb3+GxxrqnSL2/DNSzAKwzWfT2s40J+ZM12+uoZzwftjZHh/sL6pYwnF9NIgzSsVtUjIRdecErMMlrcmaEpEiJYitHbd+EP2Pv8rADRsfiFbr7mJxxuvBWDB4EMsfPILrPrW1bT89pM16/n1dR0AINFcmRgyDSXvX2LKbNMgbpvEIyYLGvwi5E1THD9JuTkihBCzirwrz2FNcZvuYb+OhTsuAqb33PcwuOZl2D9/O/G+J4L1V/zmrfTQTOaGz3D5Er8+xqjrcO+Rp1Bbv8Wi/gdYnnuK5aOPwa//AH7tH/fE5g+hL373cV9PtuCRxSNX9IjbJstaE8fdv5axUs2g5MFfsmngZrZGzqXhyveQ6bwYQFoSz1G2qUhFLXpGwnVXLNNgSbwIuYnH5B2PsbxLY+LMzE87VV2eIiMHgvW6aSkACxpjNMRt6eA1g5RSWKZB1DYmrQGlDJO+G7/B1m2/4roH3wXAOV/ZyJGLP0Tf5trvYbnC7E/16h7Ohf7P0cFdwbKZ6giWI5ZBo4zTOcevpVK6sVH61WXbzw3vtOa5qDXP5aGBQxzd+Qixp2/hufnbWfz4f5Ac3s2hZ/97qCtY/JD/AR5bugXwO3lJ6o04WUr5tX4MQ9GWjtCRjpEpjKAUk74PGwYy+SyEELOMnAHMYZZp0JaKTIikKHOSC9j1sts4eNW/MNh5abB+z0u+T2dp0gdAmRbppRtJ3fAPDL/x52x7/YM8tvGvyBtxxlQSgI2P/xP9O+6f0usqOB7DueIptUrOlrop2Y/4tX12rXk7wytvAKVKJxIyVzkXRU0/NcowmFCYPOKOAuCNezvKF/1xNJ31oyZTcDyODuUoOv736jmwPdhWTC7EMKAtFZG6GLNAxDRIRv2xNBnPTrJw07ND6zoe/BeiAztr7n86itRPt57R8KTpwZ2PBstOtNJ1riFuTRoNKmav6rS8E3VhizQvYfnFL6bldZ9na9SPbmvadxvNO74T2m917x3sVsugYwPg3zhJy9gQp6Cc9tWa9CcWW5IRlrcmiEdM4hEjKP5cTode15mWyWchhJhlZOJnjmtLnbjo3uC6V3Hwxd9maOUNHLri4yQ6Vh13fy/RgXHp77Pj7U+z5+1P8viVn2WEOI2/+QfcKabeaA1HBnMnfdGedzzQHs29D3KzfjZLLnoJ4J9MrGhNyoX3HBUtTfY0JyITWrsOr3gBAAYeS3/wCsxcpUvRULYYTAaeLrmiy7GhHIOZykRl4/DTAHjKAsOmISYRFLNFPGLSELOIniByQZtRdrzsp8Fjy8ux7ubnoJycP8aq3ptcT5MpOGdkkvFU5Iou3ri33mxvJSrNKRXvjUcM0jFJ45nrDEPRno7S2RA97n62ZVJ43feDx4t/81c07L0NgMzoMGvz29jZcFnQlcm2DEnzEs9I+RysLRUhapksa0mwuCnBhoUNrFuQYllrggWNMem6KoQQs5C8M89xhqFOeAFUduA5n2XgrNed3DdQCrX+Bh5Z88dscbey89ffOfExJQXn5DszFRwPDj9MyhthbOGlQTeaqGXIXew5LFI6CexsiBG1whOVh6/4GI8ueBUATT2/o+WpSjcbrWEs757WWj/7+sYYylYmfdzsIIt1F7d1vItt79gDIBdLs0w6ZmObBi0niMLKt55N95Y/pqtpS7Bu45fXcfbXzqVt6+dC+3YP50PjYDap9brsTDcH7RVse9PjuLEWlPLrviUkHXbOM5UiHjGndPEcsQy2XfnfwePld/w+7b/7JEd++z0iyiW94bm0JiOsbk8RtYwJ779CnIryjZCIZRCPmJiGImqZNMjEsxBCzFoy8VMHopZf8+J0dlBouvL3OGIuYtOO/2Cgaz9mbnBKx2Xy7oT6Q7UM54r0jxVwXI3x+DfJa4vkphcH26Ud8dwWdK4xVGmsGkGqjjYjNG+oFCJf8OAnSO//efA4U3BwPH1aojGKrhekd5WN7n8MAKdjIwBt6YiczM5CcdukMW5jn6D7W9eFf87oFX8TPC5Sei/p2hbabyTncHQoN6X3qzMpW3An1MYa6j3CxfpxCvFOvGgT4NdvSdiWFL6vA4ahsE015d+lt/6FoccLHvsPXrbnw4yQpHHDNcQifnHe8dGWQgghhJg/ZOKnDiilWNqcYHFTnM6GKOnY9EfGKDNC9/l/wlnqAFf98EqW3nLjlI47NpzjQH8muJjyPM3OrhEO9mc4OpTl6FCW7uEcfaMFDg9kscaOcdaR7/EDfTWrllQ6kUiRwPoRs03aUzG/Q1Ppon10ydWhfarbqWcKLtmC66cBTqNswfUjzMbJHXoUgPRyv3ZGs7Q+npUaEzYJ25xSy/LMgovY9/wvA3BsyfU84q1h4f4f0Pmzd2EURoL9HNfvJjebDGWLjJ/zvOCH15FQeSINflHniGVgGUraJ9cJ01BYhv87nWqG6Y5X3snw0mtD6w6vezPajBIrRflI+o0QQggxf0nuTJ0on/BHLYOjwzVaJE0Dc/OrGNv6ryRzR0mP7sV1XUzz+BcajqsZdR329o7SELcZzjrkin7nr1piA09j4rK17Xo2VJ2kSppXfWlM2EQsg8ODWRzXxYs2cvTiv2bhb/8RgM6HP409tJ/Dz/43HFczVnCwLQOt9bTU2vE8zZ7eUdpTE2toRHqeoI9GWjv9bl4RuVialcopK+Pbu09mZMmzOXTFPzOw4sUMfu1tAHQc/Clj3W9kdMlVwX7lzoL7+sZY0Zqc8WjD3LgaVwNP/4a4609WNRePMQg0J23G8q50bKoTpvIjfjztd0McyZ24+Hi+aQ37n/9l0Brl5lHaxbP95gwniooTQgghRP2Ts8Q6YxiKiGmQOg1RPyiD/a/4MUcatgBw3y3/jfHzDxEZ2nPCQ7MFj66hPNnC8Qv1Znv2AtC+ZF3l2ypJ9apH8YhJxKykfPVufhePb/zLYHvL7u+hXD/FJVOKzpmuQs+ZUrHc3tFCaL3Wmo6xHRyOrkEZBqYx9XQLMTPKUQzpmHX86AilGDjrDahYA5uXtgSrvYF9od2ODuXY35eh6Gi8WVDsefyYjzz4WVzt/0f7z34ztuVPDkx1AkzMfrapUEphKEUqZtEYt6c+qacU2ooFkz6GgRSmF0IIIYRM/NSjeMQkHbPoaIhOOUx8qtx4GwMvuol+q5P3DHyCcw58lcKdnyB67KFpef6hY3txtMGa1WsAarb/FvXDtvzuNWXq0veEt48dBfzW7qM5Z0I9nlNVTvEaX8+lZ3CElfogYy1+++OIJRdMs13EMljbmWJFW5KlLQmaplCIO+pU0ruWPfB3dN7zweCx1pOPjzMtV3Rx3MprONY3wLmZ+3ig5Ua2vvMAQ6tvxDIMIqYhHQ/rSDl90TIUEctgSXOc1e2n1tVS0ruEEEIIATLxU5dSUb/VcVPCJmpNf9FnL9FG16tupXvNqzlkLGJT322s+9HLWPXVC7GH96OcU081cwcO0K1aWdKSAqAhZku0Tx1rik9s715NDR8OlkfyRYqeR6Zw4rSHE8k7tSOHIr/9T6LKwV68BdNQctE0BzQnKu8RjXGbzoYY7ekolqmCaLLxMh3nBcs2Dh07vgF6Yvqp501eC+p0c1yPrqq0XeXkWPaTNxFXBVLnvjRYbxkKyzRY1BQ/469RnF7lCF6j9DtOREyU4qRu6EgkmBBCCCFAJn7qViJiEbVM0jGbRU2x0MmiUrC0Jc7qjiSdDVGaEvZJn0w6yYV0XfMphp7/GRzlX7gn892c9e0rWfOVLVi7fnpKr7s5u5+B6KIgND0VtaQTSR2LR0wsIxyt4EYaguV1P30dbY/5rYo9z4+AyJwgXXAq8jVqTFn9O7nyoP+9kqsuIRW1ZOJnDhifxhKxDDrSURY1xklHa793dF3wp+x4xe0MLXtesM4ePjBhP1drDg1kgro/Z9JIzmE4W/m+uQduYn3ucb7T8X7UGr+Ib8yWSJ96F61K8VrSHGdlW5LmZISobUzpM9uabPZTCCGEEPOKnBHUqfLFQEsyQtQyaU1FghSIjnSUpkSERMSioyHG0pYE5yxqYF1nmsXNcZoSU68n4C2+kO1v38UTz/t2sC7mZdjwy3eR2PPTk4r+yY0Nsd7bQ0/TlmBdKmaRksLOdc00VOh3vOOVd7L1xbcFjxf+7p+D5dG884y7LnmeZnTchXys93FW3fIiAL68+es4DctJRk2Z+JmjDEPRmLCJ2gbRWqmihk2+eT0Hr/0MDy15EwDHdj8yYTfX0xRdjTsDtX6GssVgOXHsAS7c/jF2s5SVN7wvWJ+KyeRkvaue2LRMg2TUYnFTnLUdKdZ1pkmdoLaVLemqQgghhGAKEz9KqaVKqbuUUtuVUtuUUu8rrW9RSt2ulNpZ+rf59L9ccbIiln9HuCUZIW6btKejdDTEJuynlF9LoCUZYWlLgpVtSZa1JljSHCdmG5OmTJQORi+7lB2vuJ2dL76FY+lNAKy+810svut9xzkwbHT3/VjKI7/oEgBaUhFs05DClPNAQ7xy8eIkOqBzY2h7eQKx6GiKjiZTcE455atWe+zVt76MqJdlVKW44OIrAb+TnHRJmtsSEZOmuE16kmL32ophXP2XFLXJ8M57J2x3PA/XO/NFnh3XC3VyMrZ+B4AnVr496GYGELNM4pIKOy+VP7MXlFIbJ9MQk4hZIYQQQkwt4scB/kxrvQG4FPhDpdTZwAeBO7TWa4E7So/FLBW1TJJRi47jnCBWi1gGjXGb5mSE1e0pFjaeuH5Evnk9uc7z6X71j8grf3Kpef9PpvwaRw4+4R+z8nyUgkWNEyeoRH2KR0yscS2Hi9HKXPLam68LlkfyRfb1ZugfC3fkmqrhXCWSQrl50vf8HYbnr3MaV/jrlZ9ikZjm+ljizErHbKK2yYLG2KSRD1Y8xb7ERtYN3Yve8VMig7uDbeWUQO8Ml/gZ38nLOPoI93ob6bjiLaH1kdNQw03MLeVmDrVSoi1TkZSIWSGEEEIwhYkfrfVRrfXDpeURYDuwGLgR+N/Sbv8LvPQ0vUYxTWK2eUqtqY1SxFAyOrULDKUUh67+FwAOm4unlprjOejenYyRIN68sFTEUiJ95ouo5df6qf6V73vBVyvbR/YHy57np+AUHI+hjD9ho6cYkeF6OhRJ0bLtf1mx4yZ6dAMPrP8Ax57/+dLr8SPNJI1m7ktGTGK2STIyeQRXYf2NnGUcZPM972Llj19dWV967/K0pnskN+Vx9kzlqmpQFYeOsii/h4HmTRPSXm3TkKg0QayUzj1+LEiatBBCCCHKTuqMUSm1AjgPeADo1FofBX9yCOiY9lcnZpXW1NSihQAya17MI52vYrF7mAd+8N+Vtsjawx7eT3WujXYdln7rudxYvI2BxApQigYp6Dzv2KYKpeTk2jZzbHXlIrxp1/dD+xddTc9ojgN9Gfb3ZegdzTOSK6K1rnmBnndcjgxmQ2le+slbeNxbyWfPu5XEle+lmF4CIJ3k6ki5NXZrKkLUMljW4qewVtPnvbmyf7YvWK5u654reGekvbvjepUaVFqTvOODGHgY571xwr62KZPjwr85E7NN2lKRUE0rmfgRQgghRNmUzwqUUingZuD9WuvhqUZjKKXeBbwLYNmyZafyGsUs0Ri3iUcMsoWp5T0sbUtBF7yn/+P8520prnjhm3Hv/hc27foPuuwljBiNeMpkzFE0OXsAcJdfhVJIJ695KBGxsAxFtuhSdPwL7Jg3Fmxf+sv3MbjmZcHjoutRdAnGYzmSp9yhTmt/Asc2FZ6G0apIH3v0MC1P3ETH6BM8Hr+el1ywMvRaZOKn/iQiFo1xj8aEjTMuClGbEXZc/w3W/fT19BqteFpjFYbRZhSsGFr79X4cT2Od5qFxZDAXjNXIwA7W99/F1yOvYNPqcN0r01ASFSkCQS2/iEmm4DKULcoNFCGEEEIEphTxo5Sy8Sd9vq61/l5pdZdSamFp+0Kgu9axWuvPa60v1Fpf2N7ePh2vWcygzoYYiag5pTayg6tvxI00MGK18O6jf8vgl17Ohp2fY5tewVPFDvryBkM5lwXOYUasFu571aMMX/5XNCcjkmIzDzUn7FK9isrFSq5lQ2ifxt23BstaM6FIc3m95/n/Zgsuw1knNOkD0P7Yf9PxxBcAaFpyFsa4AS11U+pTubOhZfoF62NV0RH5JVdw/6I30+H1sO6mDZzz1U2s/MGNgN/W3fE0rqcnTBpNt5F8pQbV8J4HAcie9crQJE/EMmhOykW9CFNKkYhYtKWirG5PBd09hRBCCCFOGPGj/LPNLwHbtdb/WrXpVuAtwMdK//7gtLxCMaukYzYx2+Rgf4axvHvcfbMd5/Pkm59A5YcxfvoXnN3/IE83XIt53d/R0rAo2K9Xa3q1R8rwL7ajUrNiXrJMA9PQpGMWY3kHT2t6zv0DYgNP07TnhwAsu+u9bF39kmf8vVJ7fxosL1y0jJFx22MyButS9eRJOmqTiJocHcwF65Yv7IQjENcZAKzhA4Bf48dxNXnHQ6lK+th0yxXdUCHpob0PkdM2GzdfENqvLRWRor1CCCGEEGLKpnL2ejnwJuBapdSjpa8b8Cd8rlNK7QSuKz0W84BtGkFUxmSdcqrpaAPujf/Nsbf9DvMVn4eqSR/Az8sxKhEWEu0zfymliJh+R7m4bYJhkem8KLRP6tA9z+h7mLkBorlubnavoDe2nOySK0LbbUudtgt7MXsko+aE95qhtS9ndNHl5BtWcKt3OVF3DLSHV4r2yRQciq6mdzR/Wl5Tdcc5rTWdQ4+xP7KWZLzS4VApaE5EJB1RCCGEEEJM2VS6ev1aa6201pu11ltKX7dprfu01s/RWq8t/dt/Jl6wmB3a01GWtSRY056a9ueOyEX3vGabBlHLCC7K+896PSNLrgm2r/zpG1HuqbVyB3B6dgIwsvJFHH3jr3CSC0LbY6e7iIuYFZJRK4guNEpvOcXUYvbe8E12vPoeDkbXAtD+2H+ReOJrgB+RU3Q9+kZPffxN5kBfhu7hyoRS8u6/ZxM76eu4JLRfOmadUndGIYQQQggxf8kVtjhljQkbyzRoTUVoS0emFP0zFdKpZn4zSx1qyhM/2oxw6KpPhfaxMsdO+fl7DzwJQMfKcyZsUwoSUt9nXiiPsUTUJBGZmDZlJRoBWPDgJ1j8qw9iZXrIFT3G8g5F1yNTcBgYm54JoLzjF+Mt16xSbp7Vu24CILrxpcF+8YjBwsZ4jWcQQgghhBBicjLxI56xRU1xOtMxljQn6GyIErONKRV/rkXSbARUunGVx5GT6GDHy28Ptud699eu7DwF1pEHyWmbhcvXT9jWkY7S0RCrcZSoR6ahWNGaDBV5LtuwcmnosVEcQWsYzTtoDUPZIjnn+HXOpmpkXPFxc+/dAHys+e+JLD0vWL+wMU5E6k8JIYQQQoiTJGeQYloYhiIZMWlPR1nUFGdh46ldPCdr3HkX81PUMkMFbItVKVlb7ngDm760HGvsJCN/vCKbhn7JQ7HLsCLhMaoU0v54HjINVTO9b+mCcAqgURwFCIovD2cdCo5HtvDMJ3/yzrhOYY99nT6d5pwrbwxWNcZtKegshBBCCCFOiUz8iGmjlEIpRTJq0Ri3a95FPxFpoy3KYrZBOmYFUT9etJGdL/tZaJ/GvT8+qefMPHk7zQxzaOmLQutNQ9GRjkrB3HkqEZ34e3cj6dBjszAWelxwPIqux2C2gOudWvRZ9XMFtGbJwG+5P3IpKzpagtULmyQSTQghhBBCnBqZ+BGnhWUaLG4++VoU0spdlCmlaIrboTGRa91A/7rXMGr69VcW3f/3tD5xE/bw/ik9p976HQZ1kmUXvThYZxqKtnSEtlR0ev8DYs6IWibRcRPV3riJn1W3vYZF9/x5aF2u6DGac+geyaFPMfUQwhM/Q137STOG7twUrLMtJd0OhRBCCCHEKZMzSXHaJCLWSRd8jkpHJVHFMg0SUSvougRw+KpPct/Lfhs8XnT/33HWt69k0xeXsfDu/0Pi2G+J9j9FZHA36NIFtefgbfsBm0Z/zRONzyaVTAbHr2xL0pGOSaekea4tFSUVq6RSeVZiwj6Nu24NPdbaT9MayhbpOcUW71prim5l4kc/5Bd17lhdqe2TjkkKohBCCCGEOHVSMECcVjHLxHGdE9bhLad4SeFSMV7CNhkzDQraC8bRgqZKNNkOtZJ1ei8AbTu/RdvOb4WOHzaaMHWRpB7jEO1Yl/9hsM00lKQXCgBakhESEZNd+VG0hmKik4HVL2N45QtY/ot3AVBQkQnHaQ1FR9M7UqA9FUWdZGX7bNENxnWi60E2Hf0yWWIkl5+Hhx/t05GWaDQhhBBCCHHqZOJHnFYLGmOM5R2ODuWCi5tlLQmyRTe4y+1pTUPMpjk58aJKiHjEJGoZaB1OiTl68V+jDZP8xndw12iewzseoau3n8TwLixnlEy+wGpnDzEvh2NE2LfgeSy++KWsaG8A/EkfmWgU1WK2ScQyyBc9MEwOPfvfMfJDwfaEO8zyW1/B/pfcPOFY19OM5B0sQ9VsDz+Z6o5exYe/wYiO89ktt3B9xB+nzYmIpHkJIYQQQohnRCZ+xGkVs01itollGgyMFWiM2zQmbBqR1AUxNTHbJBGxcLwihaqu172b3xUst6WitJ1/6XGfZ3HVslKwpiN1yuk5on75UYqaJS1xjgxmKXrJ0PaG7t9NemzPSJ501DqpiZ9csdIVzDr2CE8Za3nO+etDr0cIIYQQQohnQm4jijOiMW6zoi0pUT3ilCSjJhHTIB6ZnrescmRHW0rGowhb2BRjeWuChpiNZRhgTJzEWfnNy0kfuGPC+kzepehp8s7UW7yXo9gGj+5hhbOXXMe5oQif2DSNeSGEEEIIMX/JGaUQYtaL2ybJqDVtKS/lTmFSTFyMZ5sGyag/2WNOUvA7NXaQ+MG7wXMmbCs6HsPZiesnU3A9El0PcuWPr8FSHua5r668FkvJGBVCCCGEEM+YTPwIIWY9pRTpmIVlGhPabp+KqNT2EVNgKhXqKFetc/uX2fCVjZi5/tD6gusxmp/axI/raTwPOn/3CbJE+Yf4B0gvOxfw0xFbk1LUWQghhBBCPHNy9SOEmBNs0yBqVaIxngmJohBTYRiwqi3FoXfvYPvrf4cTbQptt5wM6YN3htblix55x8VxvVD9nloyBQcjP0Ti2O+4yXk+HZe+NtiWjlm0SzcvIYQQQggxDWTiRwgxZ6SiFrZ5cu2yx1PKrxkkxImYhsIyFSregJPo5OlX3zNhn6V3/ynJI/eF1hUdTfdInpGcw1CmOOnzD2WLJHoexcDlqfgFXLqqNdjWGJcC+EIIIYQQYnrIxI8QYs6I2X6RZ9s69VbsqaifMibEiZhKYZsGpvInG71oE1vfeYC+DW8O7bfkrj/CzA2E1vWNFugeydE9ksP19ITnzhVdBjNF3L69ACxavQmj9H0MAxpiMvEjhBBCCCGmh1z9CCHmlETEYkVrktZT7MglkRRiqsopgeNrPB+99MM89dr7g8eRbDdt93xowvGeB7mix67uUQ72Z8gUHLIFl/6xAocGMmgNo8d2kdc2a1avCY6L2SbGJIWlhRBCCCGEOFky8SOEmFMilhG0Y0+cZMqWUtAgEz9iisqFxA1D0ZSojBttRiimFnH0wg8E61IH7sAc66r5PAXHYzBTZE/PGLu6Rzk8kCVb8Nu4G0MHOKTbWNXeEOwfsyUVUQghhBBCTB+Z+BFCzEkR06CzIUZHQ5QFjTFSMQvrOPV/lIL2dHTSFt1CjBcppQQapa5y48dO75b34pl+AWZbF/Du/Q+sTPekz6cnZnzRNLaHbntxkLqoFCRk4kcIIYQQQkyjZ94eRwghZkDENIiYfs0egLZS6lfe8fBKV9i5oofjeiilaE7YUttHnJRyulW5rbtpqAn1ep567X04jsPQt9/Dlfu/Avu/wrY3bcWLNp7w+a2RQyxzD3Bf8w2cXVq3oDFGc/LU0hiFEEIIIYSoRSZ+hBBz0vgaKKpUGLc6TSYh189iGigDv8izoVAqHLnjxttQQP6sl8P2hwCIjB4mN4WJH/bfC8DI4iuCVVKDSgghhBBCTDe5/S2EEEIch6kUpqGIWgYxu/bH5sKLXx4sr/3+9USG953weTNduwBoXLIBANvyu4gJIYQQQggxneQMUwghhDgO01BYhiIeMbEMg4b4xGBZz07y42d9O3gc633ihM/r9u/jmG5m5YIWoJK2KIQQQgghxHSSiR8hhBDiOCxDoZQibpvYll9UvJZlZ10QLOd792IURo/7vNHRQ/RZC4lapl+kfJLnFUIIIYQQ4pmQiR8hhBDiOMpFweO2STJiEjENorZBOjYuQseo1OdZ9/gn2fDVzRiF4ZrPmc07LHAOkUstxTIVnQ0xKT4uhBBCCCFOCznLFEIIFOrT6QAAC3lJREFUIabAMBTJqIVhKBrjNonoxLbru1/8fRzlTwAZ2uGcr2xEufkJ+/Xs/C2dapDc4mdJipcQQgghhDitTjjxo5S6SSnVrZR6omrdFqXU/UqpR5VSDyqlLj69L1MIIYSYeeXiyw0xm6hpErHCH6OZzgvoveBPQusK938R5eRQbiFY17H1v8lrm9jGFxGPTJxAEkIIIYQQYrpM5Tbjl4HPAF+pWvcJ4O+11j9RSt1QenzNtL86IYQQYhaKR0w0mqaETc9IPtTivefcP2RswcU0PfR/MY4+yvnbPw7bP46nTLqWvYiejMtFY3fzo/Z3sLyhfcLkkRBCCCGEENPphBM/Wut7lFIrxq8GGkrLjcCRaX5dQgghxKwWtUyIgac1vSOVaB6UIrPgYjIv/BrDo2OM/vivef7IzRjaZeH+H9Cgo9wfvZQF138AgIjU9hFCCCGEEKfRqRYWeD/wM6XUp/DTxZ41ba9ICCGEmANMQxG1TJoTCsfVDGaKE/ZpSCVpeM2n+VX/h4g+ehNHraWMLr2Gc5YvwDQUIBM/QgghhBDi9DrViZ/3AH+itb5ZKfVq4EvAc2vtqJR6F/AugGXLlp3itxNCCCFmH9NQmIZJZ0Os5sRPWVNLG1z7AVaNWx+1DYzSBJAQQgghhBCnw6neZnwL8L3S8neASYs7a60/r7W+UGt9YXt7+yl+OyGEEGL2ilgGiahJ1D65j9UJLeGFEEIIIYSYZqc68XMEuLq0fC2wc3pejhBCCDE3tSWjJz2Rk7Bl4kcIIYQQQpxeJzzjVEp9E79jV5tS6hDwt8DvAf+ulLKAHKVULiGEEGK+akzYFEc9TEPhevrEBwC2JWleQgghhBDi9JpKV6/XTbLpgml+LUIIIcScZpsGDXGLgbHJ6/1Uk8LOQgghhBDidJMzTiGEEGKaREyDdMye0r5KgSUTP0IIIYQQ4jST4gJCCCHENInZBoZRntRRFJ3JU75itnkGX5kQQgghhJivZOJHCCGEmCZKKSKmQUsygqc1edMjk3dr7tsYn1pkkBBCCCGEEM+ExJgLIYQQ00gpxaKmOO3pKJ0NMVSN+s2WqWhJRs78ixNCCCGEEPOORPwIIYQQp0HUMolasKItyWjOYTBbwPU0UcukPR3FNKSjlxBCCCGEOP1k4kcIIYQ4jVJRi1TUoiUZwTIUhkz4CCGEEEKIM0gmfoQQQogzIGJJdrUQQgghhDjz5CxUCCGEEEIIIYQQok7JxI8QQgghhBBCCCFEnZKJHyGEEEIIIYQQQog6JRM/QgghhBBCCCGEEHVKJn6EEEIIIYQQQggh6pRM/AghhBBCCCGEEELUKZn4EUIIIYQQQgghhKhTMvEjhBBCCCGEEEIIUadk4kcIIYQQQgghhBCiTsnEjxBCCCGEEEIIIUSdkokfIYQQQgghhBBCiDqltNZn7psp1QPsP2PfsD60Ab0z/SLEvCPjTswEGXdipsjYEzNBxp2YCTLuxEyQcXdmLNdat9facEYnfsTJU0o9qLW+cKZfh5hfZNyJmSDjTswUGXtiJsi4EzNBxp2YCTLuZp6kegkhhBBCCCGEEELUKZn4EUIIIYQQQgghhKhTMvEz+31+pl+AmJdk3ImZIONOzBQZe2ImyLgTM0HGnZgJMu5mmNT4EUIIIYQQQgghhKhTEvEjhBBCCCGEEEIIUadk4uckKaWWKqXuUkptV0ptU0q9r7S+RSl1u1JqZ+nf5tL61tL+o0qpz1Q9T1op9WjVV69S6t8m+Z4XKKW2KqV2KaX+r1JKldZ/uur4HUqpwUmOv0op9bBSylFKvbLG9gal1OHq1ydml3obd0opt+o5bp2en5KYbnU47pYppX5e+v88qZRaMS0/KDGt6mncKaWePe415JRSL522H5aYNvU07krbPlH6f2yvfm4x+9Th2Pu4UuqJ0tdrpuenJKbbHB13f6r887fHlVJ3KKWWV217S+k171RKvWX6flJ1RGstXyfxBSwEzi8tp4EdwNnAJ4APltZ/EPh4aTkJXAH8PvCZ4zzvQ8BVk2z7LXAZoICfAC+osc8fATdNcvwKYDPwFeCVNbb/O/CN470++ZJxN53jDhid6Z+pfM3LcfdL4LrScgpIzPTPWL7qf9xV7dMC9Mu4m51f9TTugGcBvwHM0td9wDUz/TOWr3kx9l4I3A5Ypdf5INAw0z9j+aqbcffs8mco8B7gW6XlFmBP6d/m0nLzTP+MZ9uXRPycJK31Ua31w6XlEWA7sBi4Efjf0m7/C7y0tM+Y1vrXQG6y51RKrQU6gF/V2LYQ/w3zPu2P7K+Un3uc1wHfnOQ179NaPw54NZ7/AqAT+Plkr0/MvHobd2JuqKdxp5Q6G7C01reX9hvVWmcme51i5tTTuBvnlcBPZNzNTnU27jQQAyJAFLCBrslep5hZdTb2zgbu1lo7Wusx4DHg+slep5g5c3Tc3VX1GXo/sKS0/Hzgdq11v9Z6AH/yUcbdODLx8wwoP03gPOABoFNrfRT8PyT8QT9Vr8OfsaxVaXsxcKjq8aHSuurXsRxYCdx5Et8TpZQB/Avwf07mODGz5vq4K4kppR5USt2vJO1hTqiDcbcOGFRKfU8p9YhS6pNKKfMkn0OcYXUw7qq9lklOZsXsMtfHndb6PuAu4Gjp62da6+0n8xxiZsz1sYc/0fMCpVRCKdWGH6Gx9CSfQ5xhc3TcvQM/aqj83AeP99zCD8MTp0AplQJuBt6vtR5+hqnTrwXeNNm3qrFu/B/Ta4Hvaq3dk/y+fwDcprU+KKnfc0OdjDuAZVrrI0qpVcCdSqmtWuvdp/A84gyok3FnAVfin9gcAL4FvBX40kk+jzhD6mTc+d/Av9O5CfjZqRwvzpx6GHdKqTXABip3w29XSl2ltb7nZJ5HnFn1MPa01j9XSl0E3Av04KcZOifzHOLMmovjTin1RuBC4OqTeO55TyJ+ToFSysb/A/m61vp7pdVdpRO78gle9xSf61z89IOHSo/NquJWH8GfsVxSdcgS4Mi4pwndRVRK/VP5OU7w7S8D3quU2gd8CnizUupjU3nd4syro3GH1vpI6d89+HVXzpvK6xZnXh2Nu0PAI1rrPVprB7gFOH8qr1uceXU07speDXxfa12c4v5iBtTRuHsZcH8ppXUU/674pVN53WJm1NHYQ2v9T1rrLVrr6/AvyHdO5XWLM28ujjul1HOBDwEv0VrnS6sPEY4sq/Xc855M/Jwk5U+DfgnYrrX+16pNtwLlCuJvAX4wxacM5TFqrd3Sm+UWrfWHSyF2I0qpS0vf+83Vz62UWo9fxOq+quf4UPk5jveNtdZv0Fov01qvAP4c+IrW+oNTfN3iDKqncaeUalZKRUvLbcDlwJNTfN3iDKqncQf8DmhWSrWXHl+LjLtZqc7GXc3XIGafOht3B4CrlVJW6cLuavz6HWIWqqexV7rYby0tb8YvAC11RGehuTjulFLnAZ/Dn/SpnpD6GfC80jVGM/A8JMJ2Ij0LKkzPpS/8auYaeBx4tPR1A9AK3IE/q30H0FJ1zD78Th6j+DOSZ1dt2wOcdYLveSHwBLAb+Aygqrb9HfCxExx/Uen7jgF9wLYa+7wV6eo1a7/qadzhdxvZip8HvhV4x0z/fOWr/sddadt1pf/LVuDLQGSmf8byNS/G3QrgMGDM9M9WvubHuMPv5PU5/MmeJ4F/nemfr3zNm7EXK425J/GL726Z6Z+vfNXVuPsFfqH68uu9tWrb24Fdpa+3zfTPdzZ+qdIPSgghhBBCCCGEEELUGUn1EkIIIYQQQgghhKhTMvEjhBBCCCGEEEIIUadk4kcIIYQQQgghhBCiTsnEjxBCCCGEEEIIIUSdkokfIYQQQgghhBBCiDolEz9CCCGEEEIIIYQQdUomfoQQQgghhBBCCCHqlEz8CCGEEEIIIYQQQtSp/w9pxqAr/cbKrAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize = (20, 5))\n", + "plt.plot(df_sim.index, df_sim['SimulatedTemp'], label = 'Measured data')\n", + "plt.plot(df_sim.index, df_sim['gpTemp'], label = 'Gaussian Process Prediction')\n", + "plt.fill_between(\n", + " df_sim.index, \n", + " df_sim['gpTemp'] - 1.96 * np.sqrt(df_sim['gpVar']),\n", + " df_sim['gpTemp'] + 1.96 * np.sqrt(df_sim['gpVar']),\n", + " alpha = 0.2\n", + ")\n", + "plt.legend()\n", + "plt.title(\"Gaussian Process Performance on new weather data with constant zero input\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "### GP prediction N steps ahead" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PowerSetpointOutsideTempSupplyTempInsideTempSolRadSimulatedTempSimulatedHeatgpTempgpVar
timestamp
2017-07-13 20:00:00+02:0018.82758622.524.023.922.93333391.71493323.0015300.0NaNNaN
2017-07-13 20:05:00+02:003628.96551722.524.015.523.216667121.53870023.1377680.0NaNNaN
2017-07-13 20:10:00+02:004391.34482822.524.014.323.116667101.48161723.2344420.0NaNNaN
2017-07-13 20:15:00+02:004392.46666722.524.014.022.800000163.71015023.3026630.023.3632040.120147
2017-07-13 20:20:00+02:003777.48275922.524.014.022.63333390.03956723.3452630.023.3911120.120163
.................................
2017-07-20 05:35:00+02:009.51724122.522.023.622.7666673.26000024.3312700.024.3501520.119990
2017-07-20 05:40:00+02:005.66666722.522.023.622.7333333.25000024.3312700.024.3501530.119990
2017-07-20 05:45:00+02:009.13793122.522.023.622.7500003.24000024.1691620.024.3501540.119990
2017-07-20 05:50:00+02:004.20689722.522.023.622.7333333.34000024.1691620.023.9362750.119999
2017-07-20 05:55:00+02:004.23333322.522.023.622.8000003.38000024.1105530.024.1772650.119995
\n", + "

1848 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " Power Setpoint OutsideTemp SupplyTemp \\\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 18.827586 22.5 24.0 23.9 \n", + "2017-07-13 20:05:00+02:00 3628.965517 22.5 24.0 15.5 \n", + "2017-07-13 20:10:00+02:00 4391.344828 22.5 24.0 14.3 \n", + "2017-07-13 20:15:00+02:00 4392.466667 22.5 24.0 14.0 \n", + "2017-07-13 20:20:00+02:00 3777.482759 22.5 24.0 14.0 \n", + "... ... ... ... ... \n", + "2017-07-20 05:35:00+02:00 9.517241 22.5 22.0 23.6 \n", + "2017-07-20 05:40:00+02:00 5.666667 22.5 22.0 23.6 \n", + "2017-07-20 05:45:00+02:00 9.137931 22.5 22.0 23.6 \n", + "2017-07-20 05:50:00+02:00 4.206897 22.5 22.0 23.6 \n", + "2017-07-20 05:55:00+02:00 4.233333 22.5 22.0 23.6 \n", + "\n", + " InsideTemp SolRad SimulatedTemp \\\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 22.933333 91.714933 23.001530 \n", + "2017-07-13 20:05:00+02:00 23.216667 121.538700 23.137768 \n", + "2017-07-13 20:10:00+02:00 23.116667 101.481617 23.234442 \n", + "2017-07-13 20:15:00+02:00 22.800000 163.710150 23.302663 \n", + "2017-07-13 20:20:00+02:00 22.633333 90.039567 23.345263 \n", + "... ... ... ... \n", + "2017-07-20 05:35:00+02:00 22.766667 3.260000 24.331270 \n", + "2017-07-20 05:40:00+02:00 22.733333 3.250000 24.331270 \n", + "2017-07-20 05:45:00+02:00 22.750000 3.240000 24.169162 \n", + "2017-07-20 05:50:00+02:00 22.733333 3.340000 24.169162 \n", + "2017-07-20 05:55:00+02:00 22.800000 3.380000 24.110553 \n", + "\n", + " SimulatedHeat gpTemp gpVar \n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 0.0 NaN NaN \n", + "2017-07-13 20:05:00+02:00 0.0 NaN NaN \n", + "2017-07-13 20:10:00+02:00 0.0 NaN NaN \n", + "2017-07-13 20:15:00+02:00 0.0 23.363204 0.120147 \n", + "2017-07-13 20:20:00+02:00 0.0 23.391112 0.120163 \n", + "... ... ... ... \n", + "2017-07-20 05:35:00+02:00 0.0 24.350152 0.119990 \n", + "2017-07-20 05:40:00+02:00 0.0 24.350153 0.119990 \n", + "2017-07-20 05:45:00+02:00 0.0 24.350154 0.119990 \n", + "2017-07-20 05:50:00+02:00 0.0 23.936275 0.119999 \n", + "2017-07-20 05:55:00+02:00 0.0 24.177265 0.119995 \n", + "\n", + "[1848 rows x 10 columns]" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sim" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OutsideTempSolRad
timestamp
2017-07-13 20:00:00+02:0024.091.714933
2017-07-13 20:05:00+02:0024.0121.538700
2017-07-13 20:10:00+02:0024.0101.481617
2017-07-13 20:15:00+02:0024.0163.710150
2017-07-13 20:20:00+02:0024.090.039567
.........
2017-07-20 05:35:00+02:0022.03.260000
2017-07-20 05:40:00+02:0022.03.250000
2017-07-20 05:45:00+02:0022.03.240000
2017-07-20 05:50:00+02:0022.03.340000
2017-07-20 05:55:00+02:0022.03.380000
\n", + "

1848 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " OutsideTemp SolRad\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 24.0 91.714933\n", + "2017-07-13 20:05:00+02:00 24.0 121.538700\n", + "2017-07-13 20:10:00+02:00 24.0 101.481617\n", + "2017-07-13 20:15:00+02:00 24.0 163.710150\n", + "2017-07-13 20:20:00+02:00 24.0 90.039567\n", + "... ... ...\n", + "2017-07-20 05:35:00+02:00 22.0 3.260000\n", + "2017-07-20 05:40:00+02:00 22.0 3.250000\n", + "2017-07-20 05:45:00+02:00 22.0 3.240000\n", + "2017-07-20 05:50:00+02:00 22.0 3.340000\n", + "2017-07-20 05:55:00+02:00 22.0 3.380000\n", + "\n", + "[1848 rows x 2 columns]" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sim[['OutsideTemp', 'SolRad']]" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "df_sc = get_scaled_df(df_sim, w_scaler, u_scaler, y_scaler)\n", + "df_gpr = data_to_gpr(df_sc)\n", + "\n", + "df_input = df_gpr.drop(columns = ['u', 'y'])\n", + "df_output = df_gpr['y']" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "N_pred = 8" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "idx = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OutsideTempSolRadu_1u_2y_1y_2y_3
timestamp
2017-07-13 20:20:00+02:000.80.0855680.00.00.6964570.6944180.691528
2017-07-13 20:25:00+02:000.80.0707320.00.00.6977300.6964570.694418
2017-07-13 20:30:00+02:000.80.0665490.00.00.6987910.6977300.696457
2017-07-13 20:35:00+02:000.80.0673850.00.00.6997360.6987910.697730
2017-07-13 20:40:00+02:000.80.0927210.00.00.7004980.6997360.698791
2017-07-13 20:45:00+02:000.80.0695570.00.00.7018270.7004980.699736
2017-07-13 20:50:00+02:000.80.0350910.00.00.7026080.7018270.700498
2017-07-13 20:55:00+02:000.80.0239600.00.00.7030110.7026080.701827
\n", + "
" + ], + "text/plain": [ + " OutsideTemp SolRad u_1 u_2 y_1 \\\n", + "timestamp \n", + "2017-07-13 20:20:00+02:00 0.8 0.085568 0.0 0.0 0.696457 \n", + "2017-07-13 20:25:00+02:00 0.8 0.070732 0.0 0.0 0.697730 \n", + "2017-07-13 20:30:00+02:00 0.8 0.066549 0.0 0.0 0.698791 \n", + "2017-07-13 20:35:00+02:00 0.8 0.067385 0.0 0.0 0.699736 \n", + "2017-07-13 20:40:00+02:00 0.8 0.092721 0.0 0.0 0.700498 \n", + "2017-07-13 20:45:00+02:00 0.8 0.069557 0.0 0.0 0.701827 \n", + "2017-07-13 20:50:00+02:00 0.8 0.035091 0.0 0.0 0.702608 \n", + "2017-07-13 20:55:00+02:00 0.8 0.023960 0.0 0.0 0.703011 \n", + "\n", + " y_2 y_3 \n", + "timestamp \n", + "2017-07-13 20:20:00+02:00 0.694418 0.691528 \n", + "2017-07-13 20:25:00+02:00 0.696457 0.694418 \n", + "2017-07-13 20:30:00+02:00 0.697730 0.696457 \n", + "2017-07-13 20:35:00+02:00 0.698791 0.697730 \n", + "2017-07-13 20:40:00+02:00 0.699736 0.698791 \n", + "2017-07-13 20:45:00+02:00 0.700498 0.699736 \n", + "2017-07-13 20:50:00+02:00 0.701827 0.700498 \n", + "2017-07-13 20:55:00+02:00 0.702608 0.701827 " + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_iter = df_input.iloc[idx:(idx + N_pred)].copy()\n", + "df_iter" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "for idxx in range(N_pred - 1):\n", + " mean, var = m.predict_y(df_iter.iloc[idxx, :].to_numpy().reshape(1, -1))\n", + " df_iter.iloc[idxx + 1, 4] = mean.numpy().flatten()\n", + " df_iter.iloc[idxx + 1, 5] = df_iter.iloc[idxx, 4]\n", + " df_iter.iloc[idxx + 1, 6] = df_iter.iloc[idxx, 5]" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OutsideTempSolRadu_1u_2y_1y_2y_3
timestamp
2017-07-13 20:20:00+02:000.80.0855680.00.00.6964570.6944180.691528
2017-07-13 20:25:00+02:000.80.0707320.00.00.6991000.6964570.694418
2017-07-13 20:30:00+02:000.80.0665490.00.00.7026910.6991000.696457
2017-07-13 20:35:00+02:000.80.0673850.00.00.7078230.7026910.699100
2017-07-13 20:40:00+02:000.80.0927210.00.00.7154420.7078230.702691
2017-07-13 20:45:00+02:000.80.0695570.00.00.7270100.7154420.707823
2017-07-13 20:50:00+02:000.80.0350910.00.00.7449870.7270100.715442
2017-07-13 20:55:00+02:000.80.0239600.00.00.7733420.7449870.727010
\n", + "
" + ], + "text/plain": [ + " OutsideTemp SolRad u_1 u_2 y_1 \\\n", + "timestamp \n", + "2017-07-13 20:20:00+02:00 0.8 0.085568 0.0 0.0 0.696457 \n", + "2017-07-13 20:25:00+02:00 0.8 0.070732 0.0 0.0 0.699100 \n", + "2017-07-13 20:30:00+02:00 0.8 0.066549 0.0 0.0 0.702691 \n", + "2017-07-13 20:35:00+02:00 0.8 0.067385 0.0 0.0 0.707823 \n", + "2017-07-13 20:40:00+02:00 0.8 0.092721 0.0 0.0 0.715442 \n", + "2017-07-13 20:45:00+02:00 0.8 0.069557 0.0 0.0 0.727010 \n", + "2017-07-13 20:50:00+02:00 0.8 0.035091 0.0 0.0 0.744987 \n", + "2017-07-13 20:55:00+02:00 0.8 0.023960 0.0 0.0 0.773342 \n", + "\n", + " y_2 y_3 \n", + "timestamp \n", + "2017-07-13 20:20:00+02:00 0.694418 0.691528 \n", + "2017-07-13 20:25:00+02:00 0.696457 0.694418 \n", + "2017-07-13 20:30:00+02:00 0.699100 0.696457 \n", + "2017-07-13 20:35:00+02:00 0.702691 0.699100 \n", + "2017-07-13 20:40:00+02:00 0.707823 0.702691 \n", + "2017-07-13 20:45:00+02:00 0.715442 0.707823 \n", + "2017-07-13 20:50:00+02:00 0.727010 0.715442 \n", + "2017-07-13 20:55:00+02:00 0.744987 0.727010 " + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_iter" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "mean_iter, var_iter = m.predict_y(df_iter.to_numpy())" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFlCAYAAACqbgrWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABChElEQVR4nO3deZzVdd3//8d7ZoBh2EVEZFdRURDUgTRwA7dcMkuvVLRFk8xsvbIsr351dV10s2/LlZXlRWZaF2qZWtomKZJbiqiggorsiwubrMMyy/v3x+cMszMzMDOfc2Ye99vt3M75rOd15u0Z58n7/Xl/QowRSZIkSVL2y0u7AEmSJElS0xjgJEmSJClHGOAkSZIkKUcY4CRJkiQpRxjgJEmSJClHGOAkSZIkKUcUpF1AfQ488MA4bNiwtMuQJEmSpFS88MIL62OM/Wqvz8oAN2zYMObOnZt2GZIkSZKUihDCivrWO4RSkiRJknKEAU6SJEmScoQBTpIkSZJyRFZeA1ef0tJSVq9ezc6dO9MupV0oLCxk0KBBdOrUKe1SJEmSJDVRzgS41atX06NHD4YNG0YIIe1yclqMkQ0bNrB69WqGDx+edjmSJEmSmqhJQyhDCOeEEN4IISwOIdxYz/ZeIYSHQwjzQwgLQgifzKwfHEJ4PITwWmb9F/a10J07d9K3b1/DWwsIIdC3b197MyVJkqQc02iACyHkA7cCHwCOBi4LIRxda7fPAgtjjGOA04AfhhA6A2XAv8cYRwInAp+t59gmM7y1HH+WkiRJUu5pSg/ceGBxjHFpjHE3cC9wYa19ItAjJKmgO7ARKIsxvh1jfBEgxrgVeA0Y2GLV56jZs2dz/vnnA/DQQw9x8803N7jvpk2b+PnPf97s9/j2t7/ND37wg32uUZIkSVL2aUqAGwisqra8mroh7GfASOAt4BXgCzHGiuo7hBCGAccBz+1rsc2ybAb8cRjcnZc8L5vR6m9ZXl7e7GM++MEPcuONdUal7rGvAU6SJElS+9OUAFffWLtYa/lsYB5wCDAW+FkIoeeeE4TQHbgf+GKMcUu9bxLC1BDC3BDC3HXr1jWhrL1YNgPmTIWSFUmpJSuS5f0IccuXL+eoo47i4x//OMceeywXX3wxJSUlDBs2jO985ztMnDiR++67j5kzZ3LSSSdx/PHHc8kll7Bt2zYA/v73v3PUUUcxceJEHnjggT3nvfPOO7n++usBePfdd7nooosYM2YMY8aM4ZlnnuHGG29kyZIljB07lhtuuAGA73//+4wbN45jjz2Wb33rW3vONW3aNI488kjOOOMM3njjjX3+rJIkSVK7l0KHT0toyiyUq4HB1ZYHkfS0VfdJ4OYYYwQWhxCWAUcBc0IInUjC24wY4wM0IMY4HZgOUFxcXDsg1vTCF+G9eQ1vX/8sVOyqua68BJ67Gpb8sv5j+oyFE36817d94403+NWvfsWECRO46qqr9vSMFRYW8tRTT7F+/Xo+/OEP8+ijj9KtWze+973v8aMf/YivfvWrXHPNNcyaNYvDDz+cj370o/We//Of/zynnnoqDz74IOXl5Wzbto2bb76ZV199lXnzks87c+ZM3nzzTebMmUOMkQ9+8IM88cQTdOvWjXvvvZeXXnqJsrIyjj/+eE444YS9fh5JkiSpQ6rs8CkvSZYrO3wAhk9Jr64maEqAex4YEUIYDqwBLgUur7XPSmAy8GQIoT9wJLA0c03cr4DXYow/armyG1E7vDW2vokGDx7MhAkTALjiiiv4yU9+ArAnkD377LMsXLhwzz67d+/mpJNO4vXXX2f48OGMGDFiz7HTp0+vc/5Zs2bxm9/8BoD8/Hx69erFe++9V2OfmTNnMnPmTI477jgAtm3bxptvvsnWrVu56KKLKCoqApKhmZIkSZLqMf+mqvBWqbwkWZ/rAS7GWBZCuB54BMgH7ogxLgghXJvZfhvwX8CdIYRXSIZcfi3GuD6EMBG4EnglhDAvc8pvxBj/ul9VN9JTxh+HZYZP1lI0FM6Yvc9vW3vmxsrlbt26Acn91c4880zuueeeGvvNmzevxWZ9jDHy9a9/nU9/+tM11v/4xz92ZklJkiSpKUpWNm99FmnSfeBijH+NMR4RYzwsxjgts+62THgjxvhWjPGsGOPoGOOoGOP/ZdY/FWMMMcZjY4xjM4/9C29NMWYa5BfVXJdflKzfDytXruRf//oXAPfccw8TJ06ssf3EE0/k6aefZvHixQCUlJSwaNEijjrqKJYtW8aSJUv2HFufyZMn84tf/AJIJkTZsmULPXr0YOvWrXv2Ofvss7njjjv2XFu3Zs0a1q5dyymnnMKDDz7Ijh072Lp1Kw8//PB+fVZJkiSpXYoRCnrUv61oSNvWsg+aFOByzvApMH560uNGSJ7HT9/v7tCRI0dy1113ceyxx7Jx40Y+85nP1Njer18/7rzzTi677DKOPfZYTjzxRF5//XUKCwuZPn065513HhMnTmTo0KH1nv+WW27h8ccfZ/To0ZxwwgksWLCAvn37MmHCBEaNGsUNN9zAWWedxeWXX85JJ53E6NGjufjii9m6dSvHH388H/3oRxk7diwf+chHOPnkk/frs0qSJEntTozJMMmyLRBqDUZsgQ6fthCSeUeyS3FxcZw7d26Nda+99hojR45MqaJkFsrzzz+fV199NbUaWlraP1NJkiSpTb38LXj1O3D4VOh3Msz/j2TYZNGQJLxl0fVvIYQXYozFtdc3ZRITSZIkScptr/53Et4OvQrG/QJCHgy/Iu2qmq19DqFsBcOGDWtXvW+SJElSh7HgZnj5mzDsyuTSqpC7MSh3K5ckSZKkxrz2Q5j/dRh6OZz4a8jLT7ui/WKAkyRJktQ+vX4LvPQVGPJvcNJdOR/ewAAnSZIkqT1a9HN48Ysw+MPw/v+DvPYx/YcBTpIkSVL7sng6zP0sDPwgvP8eyOuUdkUtxgDXAXTv3j3tEiRJkqS2seQOmPNpOORcmPh7yO+cdkUtqt0GuBkzFjJs2HTy8n7AsGHTmTFjYdoltaiysrK0S5AkSZKyy9LfwHOfgoPPgpPvh/wuaVfU4tplgJsxYyFTp85kxYotxAgrVmxh6tSZ+xXili9fzlFHHcWnPvUpRo0axZQpU3j00UeZMGECI0aMYM6cOWzfvp2rrrqKcePGcdxxx/GnP/1pz7Enn3wyxx9/PMcffzzPPPMMAG+//TannHIKY8eOZdSoUTz55JNAzR6zP/zhD3ziE58A4BOf+ARf/vKXOf300/na177GkiVLOOecczjhhBM4+eSTef311wFYtmwZJ510EuPGjeOb3/zmPn9mSZIkKWcsvxue+yT0nwSn/BHyC9OuqFXk5JV8X/ziLObNW9vg9meffZtdu8prrCspKePqqx/hl798ud5jxo49iB//eNJe33fx4sXcd999TJ8+nXHjxnH33Xfz1FNP8dBDD/Hd736Xo48+mkmTJnHHHXewadMmxo8fzxlnnMFBBx3EP/7xDwoLC3nzzTe57LLLmDt3LnfffTdnn302N910E+Xl5ZSUlDT62RctWsSjjz5Kfn4+kydP5rbbbmPEiBE899xzXHfddcyaNYsvfOELfOYzn+FjH/sYt956a6PnlCRJknLait/Dv66EfqfAqQ9BQde0K2o1ORngGlM7vDW2vqmGDx/O6NGjATjmmGOYPHkyIQRGjx7N8uXLWb16NQ899BA/+MEPANi5cycrV67kkEMO4frrr2fevHnk5+ezaNEiAMaNG8dVV11FaWkpH/rQhxg7dmyjNVxyySXk5+ezbds2nnnmGS655JJqn28XAE8//TT3338/AFdeeSVf+9rX9utzS5IkSVlr1QPwzOVw4Pvh1IehoCjtilpVTga4xnrKhg2bzooVW+qsHzq0J7NnX7rP79ulS9UY2ry8vD3LeXl5lJWVkZ+fz/3338+RRx5Z47hvf/vb9O/fn/nz51NRUUFhYdKde8opp/DEE0/wl7/8hSuvvJIbbriBj33sY4QQ9hy7c+fOGufq1q0bABUVFfTu3Zt58+bVW2v1c0iSJEnt0uo/wVMfhb7j4bS/Qqf2P3lfu7wGbtq0iRQV1cymRUUFTJs2sVXf9+yzz+anP/0pMUYAXnrpJQA2b97MgAEDyMvL47e//S3l5UlP4IoVKzjooIO45ppruPrqq3nxxRcB6N+/P6+99hoVFRU8+OCD9b5Xz549GT58OPfddx8AMUbmz58PwIQJE7j33nsBmDFjRut9YEmSJCkta/4CT10CBxwPp/8dOvVIu6I20S4D3JQpRzN9+lkMHdqTEJKet+nTz2LKlKNb9X2/+c1vUlpayrHHHsuoUaP2TCBy3XXXcdddd3HiiSeyaNGiPb1os2fPZuzYsRx33HHcf//9fOELXwDg5ptv5vzzz2fSpEkMGDCgwfebMWMGv/rVrxgzZgzHHHPMnklTbrnlFm699VbGjRvH5s2bW/UzS5IkSW3urUfgyQ9D72Ph9EegU8+0K2ozobK3KJsUFxfHuXPn1lj32muvMXLkyJQqap/8mUqSJCnnvPMo/PMC6HkUTHoMuhyQdkWtIoTwQoyxuPb6dtkDJ0mSJKkdenc2/POD0GMETHq03Ya3vTHASZIkScp+a5+E2edB9+GZ8NY37YpSYYCTJEmSlN3WPQOzz4Vug5Nhk4UHpV1RanIqwGXj9Xq5yp+lJEmScsL65+Dxc6DrAJg0C7oenHZFqcqZAFdYWMiGDRsMHi0gxsiGDRv23I9OkiRJykob5sLjZ0NhP5g8C4oOSbui1OXMjbwHDRrE6tWrWbduXdqltAuFhYUMGjQo7TIkSZKk+m18CR4/Czr3gcmPQ5F/u0IOBbhOnToxfPjwtMuQJEmS1NreexkePxMKeiThrduQtCvKGjkzhFKSJElSB7BpAcyaDHmFybDJ7sPSriirGOAkSZIkZYfNr2fCW6ek563HYWlXlHUMcJIkSZLSt2URzJqUvJ40C3qOSLeeLJUz18BJkiRJaqe2LoHHJkFFGZwxG3odlXZFWcsAJ0mSJCk925bBY6dDxc5k2GSvo9OuKKsZ4CRJkiSlY/uKpOetbFsyYUnv0WlXlPUMcJIkSZLaXsnqJLztfg8mPwZ9xqZdUU4wwEmSJElqWyVvwaOnw671cPo/4IAT0q4oZxjgJEmSJLWdHe8ks03ufAdOnwkHjk+7opxigJMkSZLUNnauTe7zVrIaTvs79Dsp7YpyjgFOkiRJUuvbuR5mnZHMOnna3+CgiWlXlJMMcJIkSZJa166N8PiZsPVNOPXP0P/UtCvKWXlpFyBJkiSpHdv9Hsw6Eza/Bqf8CQ6enHZFOc0eOEmSJEmtY/dmmHU2bH4VTn4QBpyVdkU5zwAnSZIkqeWVboXZH4D3XoKTH4CB56ZdUbtggJMkSZLUskq3wexzYcMcmHgfDLog7YrajSZdAxdCOCeE8EYIYXEI4cZ6tvcKITwcQpgfQlgQQvhkU4+VJEmS1I6UbYd/ng/r/wUT7oHBF6VdUbvSaIALIeQDtwIfAI4GLgshHF1rt88CC2OMY4DTgB+GEDo38VhJkiRJ7UHZDvjnB2Hdk3DSb2HIJWlX1O40pQduPLA4xrg0xrgbuBe4sNY+EegRQghAd2AjUNbEYyVJkiTluvKd8MSH4N3H4cQ7YdhlaVfULjUlwA0EVlVbXp1ZV93PgJHAW8ArwBdijBVNPFaSJElSLivfBU9+BN6ZCe/7FQy/Mu2K2q2mBLhQz7pYa/lsYB5wCDAW+FkIoWcTj03eJISpIYS5IYS569ata0JZkiRJklJXvhueugTe+iuMnw6HfbLxY7TPmhLgVgODqy0PIulpq+6TwAMxsRhYBhzVxGMBiDFOjzEWxxiL+/Xr19T6JUmSJKWlohSevhTWPAzFt8Lh16RdUbvXlAD3PDAihDA8hNAZuBR4qNY+K4HJACGE/sCRwNImHitJkiQp11SUwTNTYPWDcMItcMR1aVfUITR6H7gYY1kI4XrgESAfuCPGuCCEcG1m+23AfwF3hhBeIRk2+bUY43qA+o5tnY8iSZIkqU1UlMO/PgYr74PjfghHfj7tijqMEGO9l6Slqri4OM6dOzftMiRJkiTVVlEOz34Slv8Wxt4MR38t7YrapRDCCzHG4trrm3Qjb0mSJEkiVsCca5Lwdux/G95SYICTJEmS1LhYAXOuhaW/hlHfglE3pV1Rh2SAkyRJkrR3McLc62HJL+GYb8Dob6VdUYdlgJMkSZLUsBjhhS/Cm7+AkV9Nhk6G+m73rLZggJMkSZJUvxjhpa/Aop/AkV9KJi0xvKXKACdJkiSprhhh/tfh9R/BEZ+D439oeMsCBjhJkiRJdb38/8HC78GIzyQ36ja8ZQUDnCRJkqSaXvkOLPhvOOxTUPwzw1sWMcBJkiRJqrLgu/DKt+DQT8D4/4VgZMgmtoYkSZKkxMLvw/ybYNgVMP52w1sWskUkSZIkwev/A/O+CkMvhRN/DXn5aVekehjgJEmSpI7ujZ/Ci1+GwRfDSb+FvIK0K1IDDHCSJElSR/bmbfDC52HQh2DC3Ya3LGeAkyRJkjqqxbfD85+BgRfAhN9BXqe0K1IjDHCSJElSR7T0TpgzFQZ8ACbeB/md065ITWCAkyRJkjqaZf8Hz14FB58BpzwA+V3SrkhNZICTJEmSOpLl98KzH4f+p8Mpf4T8wrQrUjMY4CRJkqSOYuV98K8roN9EOPUhKChKuyI1kwFOkiRJ6ghW/RGevhwOPBFO/QsUdEu7Iu0DA5wkSZLU3q35Mzz9b3BAMZz2V+jUPe2KtI8McJIkSVJ79tbf4MmPQO+xcPrfoVPPtCvSfjDASZIkSe3V2zPhiYug1yiY9Ah07pV2RdpPBjhJkiSpPXpnFjxxIfQ8CibNhM590q5ILcAAJ0mSJLU37/4T/nkBdD8cJv0DuvRNuyK1EAOcJEmS1J6sfQr+eR50GwqTH4PCfmlXpBZkgJMkSZLai/XPwuwPQNeBmfB2UNoVqYUZ4CRJkqT2YMPz8PjZUHgwTJ4FXQekXZFagQFOkiRJynUbX4RZZ0Hnvkl4KxqYdkVqJQY4SZIkKZe9Nx9mnZHcIuCMx6Hb4LQrUisywEmSJEm5atMrMGsyFHRPet66DU27IrUyA5wkSZKUizYvhMcmQ16XJLx1PzTtitQGDHCSJElSrtnyBjw2CUI+TH4cehyedkVqIwVpFyBJkiSpGbYuTsIbMQlvPY9IuyK1IQOcJEmSlCu2LYXHToeK3TB5NvQamXZFamMGOEmSJCkXbFsOj54OZSXJNW+9j0m7IqXAACdJkiRlu+2rkmGTpVtg8mPQZ0zaFSklBjhJkiQpm5WsSYZN7t4Ikx6FA45PuyKlyAAnSZIkZasdbyfhbedamPQP6FucdkVKmQFOkiRJykY73k2GTe54C05/BA58X9oVKQt4HzhJkiQp2+xcB7Mmw/aVcNpfod+EtCtSlmhSgAshnBNCeCOEsDiEcGM9228IIczLPF4NIZSHEA7IbPtSCGFBZv09IYTClv4QkiRJUruxawPMOiO5ZcBpf4aDTkm7ImWRRgNcCCEfuBX4AHA0cFkI4ejq+8QYvx9jHBtjHAt8HfhnjHFjCGEg8HmgOMY4CsgHLm3hzyBJkiS1D7vfg1lnwpY34NSHoP/paVekLNOUHrjxwOIY49IY427gXuDCvex/GXBPteUCoGsIoQAoAt7a12IlSZKkdmv3Jph1FmxeAKf8EQ4+I+2KlIWaEuAGAquqLa/OrKsjhFAEnAPcDxBjXAP8AFgJvA1sjjHO3J+CJUmSpHandAs8fg5smg8nPwCHnJN2RcpSTQlwoZ51sYF9LwCejjFuBAgh9CHprRsOHAJ0CyFcUe+bhDA1hDA3hDB33bp1TShLkiRJagdKt8LjH4CNL8DE+2DgeWlXpCzWlAC3GhhcbXkQDQ+DvJSawyfPAJbFGNfFGEuBB4D313dgjHF6jLE4xljcr1+/JpQlSZIk5biy7TD7PNjwHEy4Fwbt7UolqWkB7nlgRAhheAihM0lIe6j2TiGEXsCpwJ+qrV4JnBhCKAohBGAy8Nr+ly1JkiTluLIS+OcFsP5peP8MGPKRtCtSDmj0Rt4xxrIQwvXAIySzSN4RY1wQQrg2s/22zK4XATNjjNurHftcCOEPwItAGfASML2FP4MkSZKUW8p2wBMXwruz4aTfwtCPpl2RckSIsaHL2dJTXFwc586dm3YZkiRJUssr3wlPXARvPwIn/hoO/XjaFSkLhRBeiDEW117faA+cJEmSpBZSvguevBje/ju873bDm5qtKdfASZIkSdpfFaXw9Efhrb/AuNvgsKvTrkg5yAAnSZIktbaKUnj6Mlj9Jyj+GYz4dNoVKUcZ4CRJkqTWVFEGz1wJq+6H4/8Hjvhs2hUphxngJEmSpNZSUQ7/+jis/B0c93046otpV6QcZ4CTJEmSWkOsgOeuhhV3w5jvwsivpF2R2gEDnCRJktTSYgXMmQrL7oLR34Fjvp52RWonDHCSJElSS4oRnr8OlvwKRn0TRn8z7YrUjngfOEmSJGl/LZsB82+CkpVQ0A3KtsHRN8Lo/0y7MrUzBjhJkiRpfyybkQyXLC9Jlsu2QSiAXqMghHRrU7vjEEpJkiRpf8y/qSq8VYplyXqphRngJEmSpP1RsrJ566X9YICTJEmS9kXpNnjhi0Csf3vRkLasRh2EAU6SJElqrrf+Dn85Bt74CfQ/E/K71tyeXwRjpqVTm9o1A5wkSZLUVDvXwTNXwOwPJLNNnvkkTJ4J438JRUOBkDyPnw7Dp6RdrdohZ6GUJEmSGhMjLJ8BL34RSrfAqG8lN+fO75JsHz7FwKY2YYCTJEmS9mbbcnj+Wnj7Eeh7Irzvduh9TNpVqYMywEmSJEn1qSiHRT9NbgcQ8uCEn8KIz0BeftqVqQMzwEmSJEm1bXoFnvsUbJgDh5wL434B3ZxVUukzwEmSJEmVynfCq/8NC78HnfvA+++GoZdCCGlXJgEGOEmSJCmx9kmYcw1seQOGfwyO/xF06Zt2VVINBjhJkiR1bLs3w7wbYfFt0G0YnP4IDDgr7aqkehngJEmS1HGt/hM8fx3sfAeO+jIc+53k/m5SljLASZIkqePZ8Q7M/Rys+gP0PhZO+SP0HZd2VVKjDHCSJEnqOGKEpXfAi1+B8h0w5rsw8iuQ1yntyqQmMcBJkiSpY9i6GOZMhXcfh4NOgfG/hJ5HpF2V1CwGOEmSJLVvFWXw+g/hlW9DXhcYPx0Ouzq5ObeUYwxwkiRJar82vpjckPu9l2DQRVD8Myg6JO2qpH1mgJMkSVL7U1aS9Li9/iMoPAhOvh8GfzjtqqT9ZoCTJElS+/LOY8m1btuWwmHXwHH/Dzr3TrsqqUUY4CRJktQ+7NoIL30Flv4aeoyAyY9D/9PSrkpqUQY4SZIk5bYYYeV98MLnYNcGOPrrMOqbUNA17cqkFmeAkyRJUu4qWQ3PXwdrHoYDToDTZ0KfMWlXJbUaA5wkSZJyT6yAN2+DeTdCLIPjfghHfh7y/PNW7Zv/hUuSJCm3bH4N5lwD656Gg8+E8bdB90PTrkpqEwY4SZIk5Yby3bDwZlgwDQq6w4l3wfArIYS0K5PajAFOkiRJ2W/9s8kNuTcvgKGXwQk/Tu7vJnUwBjhJkiRlr9KtMP8/YNFPoWgQnPpnGHhe2lVJqTHASZIkKTu99TeYcy2UrIIjPgtjvgudeqRdlZQqA5wkSZKyy8518MIXYcXd0HMknPkU9Ht/2lVJWcEAJ0mSpOwQIyz/P3jxS1C6BUZ/G46+EfK7pF2ZlDXymrJTCOGcEMIbIYTFIYQb69l+QwhhXubxagihPIRwQGZb7xDCH0IIr4cQXgshnNTSH0KSJEk5btsyePwc+NfHoMcR8IF5MPpbhjeplkZ74EII+cCtwJnAauD5EMJDMcaFlfvEGL8PfD+z/wXAl2KMGzObbwH+HmO8OITQGShq4c8gSZKkXFVRDot+kkxUEvKg+Gcw4jPJa0l1NGUI5XhgcYxxKUAI4V7gQmBhA/tfBtyT2bcncArwCYAY425g9/6VLEmSpHbhvZeTWwNsfB4OOQ/G/QK6DU67KimrNeWfNgYCq6otr86sqyOEUAScA9yfWXUosA74dQjhpRDC7SGEbg0cOzWEMDeEMHfdunVN/gCSJEnKMeU7Yf5N8PcTYPtymHAvnPqw4U1qgqYEuPpubR8b2PcC4OlqwycLgOOBX8QYjwO2A3WuoQOIMU6PMRbHGIv79evXhLIkSZKUc9Y+AX8dAwu+C8OvgPNfg6EfhVDfn5ySamtKgFsNVP/nkEHAWw3seymZ4ZPVjl0dY3wus/wHkkAnSZKkjmT35uSebo+eChWlcPpMOPHX0KVv2pVJOaUp18A9D4wIIQwH1pCEtMtr7xRC6AWcClxRuS7G+E4IYVUI4cgY4xvAZBq+dk6SJEnt0ao/wtzrYOe7cNS/w7H/CQX1XlUjqRGNBrgYY1kI4XrgESAfuCPGuCCEcG1m+22ZXS8CZsYYt9c6xeeAGZkZKJcCn2yx6iVJkpS9drwNcz8Hq+6H3mPglIegb3HaVUk5LcTY0OVs6SkuLo5z585NuwxJkiTtixhhya/gpa8kE5aM/jaM/HfI65R2ZVLOCCG8EGOs8y8eTRlCKUmSJDXNljdhzlRYOxsOOhXG/xJ6jki7KqndMMBJkiRp/1WUwms/hFe+DfmFSXA77CpvyC21MAOcJEmS9s+GuckNuTfNh8EfgeKfQtcBaVcltUsGOEmSJO2bsu3w8rfgjf+Bwv5w8gMw+KK0q5LaNQOcJEmSmu+dR+G5qbB9GRz+aRh7M3TunXZVUrtngJMkSVLT7dqQzC659E7oMQImz4b+p6ZclNRxGOAkSZLUuBhh5e/hhc/Dro1wzDdg1DeTCUsktRkDnCRJkvZu+yp4/jp4689wQDGcPhP6jEm7KqlDMsBJkiSpfrEC3vwFzLsxeX38j+CIz0NeftqVSR2WAU6SJEl1bV4Iz10D65+Bg8+C8bdB9+FpVyV1eAY4SZIkVSnfBQtvhgXToKAHnPQbGHYFhJB2ZZIwwEmSJKnSun/BnE8lvW9DL4cT/gcKD0q7KknVGOAkSZI6utKtMP8bsOhWKBoEp/4FBp6bdlWS6mGAkyRJ6sjW/AWe/wyUrIYjrocx06BTj7SrktQAA5wkSVJHtHMtvPBFWHEP9Doaznwa+p2UdlWSGmGAkyRJ6khihGW/hRe/BGXbYPR/wtE3Qn7ntCuT1AQGOEmSpI5i2zKY82l45x9w4Pvhfb9Met8k5QwDnCRJUntXUQZv/ARe/iaEfCi+FUZcCyEv7cokNZMBTpIkqT17bz489ynYOBcOOR/G/Ry6DU67Kkn7yAAnSZLUHpXtgFf/C177f9ClL0z4HQy5xBtySznOACdJktTevPtPmHMNbH0TDv0kHPcD6HJA2lVJagEGOEmSpPZi9yZ46auw5JfQ/VCY9A84+Iy0q5LUggxwkiRJ7cGqB2HuZ2HnuzDyBhj9bSgoSrsqSS3MACdJkpTLSt6CFz4Hqx6APmPh1IfhgBPSrkpSKzHASZIk5aJYAUt+BS/dABW7YOzNcNSXIa9T2pVJakUGOEmSpFyzZRHMmQpr/wkHnQbjp0PPEWlXJakNGOAkSZJyRUUpvPYDeOU/Ib8rvO92OPQqbw0gdSAGOEmSpFyw4fnkhtybXobBF0PxT6DrgLSrktTGDHCSJEnZZtkMmH8TlKyEokHQaxS88wgUHgwnPwiDP5R2hZJSYoCTJEnKJstmJNe3lZckyyWrksdBk+GU+6Fzr3Trk5SqvLQLkCRJUjXzv1EV3qrbttjwJskeOEmSpKyw411YekcybLI+Da2X1KEY4CRJktISI7z7OCy+DVY9CLEM8rok93WrrWhI29cnKesY4CRJktraro2w7C548zbYugg694EjPw+HT4UNc2teAweQXwRjpqVXr6SsYYCTJElqCzHC+meT3rYVv0t62Q58P4z6j+S2AAVdk/16Hpk875mFckgS3oZPSa92SVnDACdJktSaSrfA8hlJb9uml6GgBxx2NRz+aehzbP3HDJ9iYJNULwOcJElSa9j4UtLbtnwGlG2HPsfB+Okw9DLo1D3t6iTlKAOcJElSSykrSYZHLr4NNsyB/K5JYBtxLRxQDCGkXaGkHGeAkyRJ2l+bF8Kb/5tMTFK6GXodDSf8BIZfCZ17p12dpHbEACdJkrQvynfBqgeS3ra1T0Be52QykhHXQr+J9rZJahVNCnAhhHOAW4B84PYY4821tt8AVF5pWwCMBPrFGDdmtucDc4E1McbzW6h2SZKktrd1CSyentx0e9d66H4YjP1/cOgnoLBf2tVJaucaDXCZ8HUrcCawGng+hPBQjHFh5T4xxu8D38/sfwHwpcrwlvEF4DWgZwvWLkmS1DYqymDNw8lMku/MhJAPgy6Ew6+FgydDyEu7QkkdRFN64MYDi2OMSwFCCPcCFwILG9j/MuCeyoUQwiDgPGAa8OX9qlaSJKktbV8FS25PHjvegqJBMPo7yW0Aig5JuzpJHVBTAtxAYFW15dXA++rbMYRQBJwDXF9t9Y+BrwI99vYmIYSpwFSAIUOGNKEsSZKkVlBRnvSyvXkbvPXn5AbcA86Bcb+AQ86FPKcQkJSepvwGqu8K3NjAvhcAT1e79u18YG2M8YUQwml7e5MY43RgOkBxcXFD55ckSWodO95NrmtbPB22L4fCg2Dk1+Dwa6D78LSrkySgaQFuNTC42vIg4K0G9r2UasMngQnAB0MI5wKFQM8Qwv/FGK/Yl2IlSZJaVIywdnbS27b6Qagohf6nw9jvwaAPQX7ntCuUpBqaEuCeB0aEEIYDa0hC2uW1dwoh9AJOBfaEsxjj14GvZ7afBnzF8CZJklK3a2Nyz7bF/wtb3oDOfWDE9XD4VOh1VNrVSVKDGg1wMcayEML1wCMktxG4I8a4IIRwbWb7bZldLwJmxhi3t1q1kiRJ+ypGWP9sct+2lb+H8p1w4Elw4l0w5BIo6Jp2hZLUqBBj9l1uVlxcHOfOnZt2GZIkqT0o3QLLZyTDJDe9DAXdYfiVcPinoc+YtKuTpHqFEF6IMRbXXu80SpIkqX3a+FIyRHL5DCjbBn3Gwvj/haGXQae9To4tSVnLACdJktqPspJkeOSbt8GG5yC/Kwy9NLnhdt9xEOqbXFuScocBTpIk5b7NryW9bUvvgtJN0HMknHBLMlSyc5+0q5OkFmOAkyRJual8F6x6MJmUZO0/Ia8TDL4YRlwL/U62t01Su2SAkyRJuWXb0uRm20vugF3roPuhyX3bDv1EcvNtSWrHDHCSJCn7VZTBmj8nvW1vPwIhHwZ+MOltO/gMCHlpVyhJbcIAJ0mSslfJalh8Oyz5Jex4C4oGwej/hMOuhqKBaVcnSW3OACdJkrJLrIC3Zya9bWseTm7APeAcGPcLOORcyPPPF0kdl78BJUlSdtjxLiz9dXJ92/ZlyfVsI78Gh18D3YenXZ0kZQUDnCRJSk+MyQySb94Gqx+AilLofzqMvRkGfQjyO6ddoSRlFQOcJElqe7s2wrLfJMMkt7yR3KttxPVw+FTodVTa1UlS1jLASZKkthEjbHgu6W1b+Tso3wkHngQn3gVDLoGCrmlXKElZzwAnSZJaV+lWWD4jCW6b5kNBdzj0k3D4p6HPmLSrk6ScYoCTJEmt4715SWhbPgPKtkGfsTD+f2HoZdCpR9rVSVJOMsBJkqSWU1YCK3+fBLcNz0F+YRLYDr8W+o6DENKuUJJymgFOkiTtv82vweL/haV3Qekm6DkSTrgFhl+ZTFAiSWoRBjhJkrRvynfD6geT3ra1syGvEwz+CIz4DPQ72d42SWoFBjhJktQ825bC4l/Ckl/BrnXQbXhy37ZDP5ncfFuS1GoMcJIkqXEVZbDmz8l9296eCSEPBl6QXNs24MxkWZLU6gxwkiSpYSWrYfHtsOR22LEGug6E0d+Cw66GokFpVydJHY4BTpIk1RQrkl62xbfBmoeTG3APOBvG3QqHnAd5/vkgSWnxN7AkSUrsXAtL7oDF02H7MujSD0Z+FQ6/BrofmnZ1kiQMcJIkdWwxwton4M1fwOoHoKIU+p+eTEoy6EOQ3zntCiVJ1RjgJElq75bNgPk3QclKKBoCY6bBwHNh6W+SYZJbXodOvWHEZ+HwT0Ovo9KuWJLUAAOcJEnt2bIZMGcqlJckyyUr4NmPAwFiGfQ9EU68E4b8GxR0TbNSSVITGOAkSWrP5n+jKrxViuVQ0B3OfBL6jE2lLEnSvjHASZLUnsQKeG8evPMYvPtYMmyyPmXbDW+SlIMMcJIk5bIYYeuiqsD27mzYvTHZ1utoKOgBZVvrHlc0pE3LlCS1DAOcJEm5pmRNtcA2K7nZNiShbNCF0H8yHDwJug6oew0cQH5RMpGJJCnnGOAkScp2uzbC2tlVoW3LG8n6Ln2h/6RMYJsM3Q+DEGoeO3xK8lx7FsrK9ZKknGKAkyQp25SVwLqnqgLbxheBCAXdoN8pcNg1SWDrfSyEvMbPN3yKgU2S2gkDnCRJaasohQ3PVwW29f+Cit2Q1wkOPAlGfyvpZes73htrS1IHZ4CTJKmtxQrY9EpVYFv7BJRtAwL0OQ6O/EIS2A6amPS6SZKUYYCTJKm1xQjbliZh7Z3H4N3HYde6ZFuPI2D4lUlg639acl2bJEkNMMBJktQadryTzBBZ2cu2fUWyvushMOCc5Bq2/pOg2+B065Qk5RQDnCRJLWH3Zlj7z6rAtnlBsr5Tb+h/Ooy8Iell63lk3ZkiJUlqIgOcJEn7onwnrHs6E9hmwcbnk2vb8rtCv4lVwyL7HAd5+WlXK0lqJwxwkiQ1RUUZbHyh6jq2dU9DxS4I+dD3fXDMTcmQyANPgvwuaVcrSWqnDHCSJNUnRti8sCqwrZ0NpVuSbb2PhRHXJdexHXQKdOqRaqmSpI7DACdJUqXtK5KwVjkscuc7yfruh8KQj2YmHjkdCg9Kt05JUofVpAAXQjgHuAXIB26PMd5ca/sNwJRq5xwJ9AO6Ab8BDgYqgOkxxltapnRJkvbTznVJUKucLXLbkmR9Yf9kOOTBk5Pr2LoPS7VMSZIqNRrgQgj5wK3AmcBq4PkQwkMxxoWV+8QYvw98P7P/BcCXYowbQwhdgH+PMb4YQugBvBBC+Ef1YyVJajOlW5ObZlfOFLnp5WR9p55w0KlwxOeS0NbrGGeKlCRlpab0wI0HFscYlwKEEO4FLgQaCmGXAfcAxBjfBt7OvN4aQngNGLiXYyVJajnlu2D9s1XXsW2YA7EM8rpAvwkwZlrSw3bACZDnVQWSpOzXlP9bDQRWVVteDbyvvh1DCEXAOcD19WwbBhwHPNfAsVOBqQBDhgxpQlmSJNVSUQ6b5lVdx7buSSjfASEPDihO7sV28GQ48P1Q0DXtaiVJaramBLj6xpDEBva9AHg6xrixxglC6A7cD3wxxrilvgNjjNOB6QDFxcUNnV+SpCoxwpY3as4Uufu9ZFuvo+GwT2VmijwVOvdOs1JJklpEUwLcamBwteVBwFsN7HspmeGTlUIInUjC24wY4wP7UqQkSXuUrK45U+SONcn6oiEw6EPJkMiDJ0HXAamWKUlSa2hKgHseGBFCGA6sIQlpl9feKYTQCzgVuKLaugD8CngtxvijFqlYktSx7NoI7z5e1cu2dVGyvsuB1WaKnATdD3PiEUlSu9dogIsxloUQrgceIbmNwB0xxgUhhGsz22/L7HoRMDPGuL3a4ROAK4FXQgjzMuu+EWP8a0t9AElSO1O2HdY+VRXY3nsJiFDQLRkKefink9DWe3RybZskSR1IiDH7LjcrLi6Oc+fOTbsMSVJbqCiF9c9l7sf2GKz/V7IurxMceFJmSORk6Ds+WSdJUgcQQnghxlhce71zJkuS2lasSO6/tmemyCeSXjcC9DkOjvxiEtoOmpj0ukmSpD0McJKk1hUjbFtSdfPsdx+HXeuTbT2PhOEfSwJb/9OhywHp1ipJUpYzwEmSmm/ZDJh/E5SsTGZ/HDMNhk+p2r7jbXhnVtV1bCUrk/VdB8Ih51bNFFk0KJ36JUnKUQY4SVLzLJsBc6ZCeUmyXLIC5lwDG1+AWJaEts0Lk22d+yQ9a0d/LbmOrccRzhQpSdJ+MMBJkppn/jeqwlul8h3wxv9AflfodzIM/3hmpsixkJefSpmSJLVHBjhJUsN2vwebFsDmV2HTq8lz5XDIOgJc/B7kd2nTEiVJ6kgMcJIkKCtJhj1WD2qbXoUda6r2KegBvUdBQXco21b3HEVDDG+SJLUyA5wkdSQVpbBlUa2g9gpsWwpk7gua1wV6HQ39JyWBrdeo5LlocHL9Wu1r4ADyi5KJTCRJUqsywElSexQrYNuyuj1qW99IQhxAyIceI+CA45Op/CvDWvdDIW8v/3uonG1yb7NQSpKkVmGAk6RcFmMyZX/toLZ5Qc0esm7DknA28PyqHrWeR0J+4b697/ApBjZJklJggJOkXLFrYz1B7dVkopFKhf2TgHb41KoetV5HQ6ce6dUtSZJajAFOkrJN2fZkQpEaQe2VpKetUqdeSUAb8m9VPWq9joHCfunVLUmSWp0BTpLSUr47uSatdo/atmXsmVAkvzAJZgefVXNCka4DvSG2JEkdkAFOklpbRTlsX1Y3qG15A2JZsk/IT65JO6AYhn+i1oQi3ghbkiQlDHCS1FJiTO6bVjuobV4I5Tuq9ut+aBLOBl1Y1aPW4wjvoSZJkhplgJOkfbFrQ92gtulVKN1UtU/XAZkJRa6tNaFI99TKliRJuc0AJ0l7U7otmZK/dlDb+U7VPp16Q+/RMOyymhOKdOmbWtmSJKl9MsBJEkD5ruSatNpBbfuyqn3yuybB7JBzMr1po5Lg1nWAE4pIkqQ2YYCT1LFUlMO2JXWD2tZFEMuTfUIB9DwKDnwfHHZ1tQlFhkPIS7d+SZLUoRngJLVPMULJ6rpBbctCKN+Z2SkkE4r0HgWDP1zVo9ZjBOR3TrV8SZKk+hjgJOW+nevqBrXNr0Lplqp9ug5Mglr/z1abUGQkFHRLr25JkqRmMsBJSt+yGTD/JihZCUVDYMw0GD6l7n6lW5MJRWoHtZ3vVu3TuU9mQpErkudeo6D3Mcl6SZKkHGeAk5SuZTNgzlQoL0mWS1Yky9tXQLchNYPa9hVVxxV0y0wocl5Vj1rvUVB4sBOKSJKkdssAJykduzdDySp48UtV4a1SeQm8fFPyOq9TZkKRCXD4p6uCWrehTigiSZI6HAOcpJZXvht2rIHtK5OQVrKy6vX2lcly9evT6hXgvFeTCUXyOrVJ2ZIkSdnOACepeWKEXeuqwlidkLYSdrwDxJrHdTkwub6tx+HQ//RkeGTREHjh8zWvYatUNAR6Hd0mH0mSJClXGOAk1VS2HbZnAln1HrM9QW1VtWn4M/K7ZgLZYBjwgarXlSGtaBAUFNX/fhWlNa+BA8gvSiYykSRJUg0GOKkjqSiDHW9nAlmtoY2Vr3dvrHlMyIPCAUkY63M8DLowCWWVIa1oCHTpu+8Th1TONtmUWSglSZI6OAOc1F7ECLvfq9lrVqMHbVVyXVosr3lcp95VYezAk2qGs25DoOshrX8N2vApBjZJkqQmMMBJuaJ8J5SsrjsZSPUetLLtNY/J65wMXywaAv1Py4SzwTVDWqceqXwcSZIkNZ8BTsoGsSKZyGN7rclAqge1nWvrHlfYv2qyjwFnV7vmLNN7VniQU+1LkiS1IwY4qS2Ubql7zVn1kFayKpnMo7qCbsm9zooGQ5/j6p8YJL9LOp9HkiRJqTDASfurohRK1ux9YpDSzTWPCfnQdWASxvqeCEP+rWY46zY4uTZtXycGkSRJUrtkgJP2JkbYtb7+iUH23PPsbere86xvJogNh4NOrTsxSOEAyMtP5SNJkqSWN2PGQm666SlWrtzCkCE9mTZtIlOmeD/TbJarbWaAU/uzbEbTp6QvK6kWzhqYGKTOPc8Kq64zG3B2PRODDEqGP0qStI9y9Q/LjmrGjIVMnTqTkpIyAFas2MLUqTMB2l27xRiJMXmuqKh6Xd/z3rZXbWtse939km0NnXvv2yvP+8gjy7j55jns2pXMzp1LbRZijI3v1caKi4vj3Llz0y5DuWjZjLo3hc7rAoddk4Sr2hOD7NpQ6wQBug6o22NWPaR1OdChjZKkVlM7DAAUFRUwffpZrfaHZeUfzOXlyXPd1xWZ11R7vbf9W/48LVtTBRUVtNh5nnhiFTt3ltf5uXbpks/xx/dvIHg0NQw1HpYqKhoOUY1t31tNtbd3BEOH9mT58qlplwFACOGFGGNx7fX2wCl3VJQlwxl3rYdd62DnuuR51/qq16v/BBW7ah23C978WfK6U6+qYNb3fXVDWtdDIL9z2382SWpF9ubUVF5eQVlZBaWlVc/VXyfP5ZSVxQae69u/5c716KMr6oSBkpIyrrrq7/zwh3P3IeTUDip1j2/v8vICeXmB/PzQhNd55OVR7XXjx9YX3gB27SqnW7dOhJCcLwQIoe5z3W2Nba/aL9m2t3PXv76xmuqeu+k17X373muqeWxjNdXdb28/j+o1nXvu/fWG0pUrt7Tyf437zwCn9JTtyASwBsJY7eXd7zV8rs59oEu/uuFtjwCXbIJOPVvjk0hS1mru0K4Y414Cyb6Hmqadq2nn2N+glEZPQqdOeRQU5DXhOb/BMLB7dwUDB3avFipocsBoOKjs63maH3KaU0NL1pSX1/qjZoYNm86KFXX/8B86tCf/+Mclrf7+ar4hQ3rW22ZDhmT/34oGOLWMGJOZFqsHserBbGe1dZXL1Yc5VhcKkmGKhf2SUNbnuJrLhf2S5S6Z5S59IS/zn/Ifh0HJirrnLBpieJOUdSoqIrt2lbFzZzm7dpWzc2cZO3eWZV6XV3tdd33D+5XvOefOnWU88cTqPdd4VCopKeNjH/sbX/rS43VCUBq9Mfn5odFQU1AQaj3n0aVLPt26daqxf3OCUn3nbI1z5ecnPQJNtbcw8PDDH27JH71ayLRpE+sd9jpt2sQUq9Le5HKbGeBUv4qy5Pqw+sJY7V6yynAWy+o/V35RVfjqciD0HNlwGCvslwxz3NdrzMZMq3sNXH5Rsl5Si2kPQ/LKyipqBJ3awadmIKodmpoauvYerkpLK/b7c+TlBQoL8yksLKBLl+S5sDCfLl2S59rhrVJFReTii49odqhpPOTUd46Gz1VQkNcmPSS5JJf/sOyoKn//5frvxY4kl9usSZOYhBDOAW4B8oHbY4w319p+A1A5zV8BMBLoF2Pc2Nix9XESk1ZQtqP+IFZjuVo42/0edabGr1Q5XLF6r1jt5eqBraCoTT9qs2ahlNRs+zvBQoyR0tKKZvUi7T0Q7Vu4aomepk6d8qqFpsrgVLWcvG44XNVdX/vYxvcrKMjba417683Jlgv1VVd7+EcSSfunoUlMGg1wIYR8YBFwJrAaeB64LMa4sIH9LwC+FGOc1NxjKxngGhEjlG5pJIzV6iUr217/uSqHKzYaxg6sNlyxU9t+XrV7/qHSfBUVda/rqe9an/quA9rbtUFNWffzn89jy5bddWrq2rWAk08etCc07S1EtYSmBJ+GwlRLhKsuXfLJz997eMoGacxoKEnaf/szC+V4YHGMcWnmRPcCFwINhbDLgHv28diOqaIcdm+o/zqxhib2qCit/1z5XWv2gPU8quEwVtgPOvV2SnylqqXvnVN7drn6Jj9o6rqWOEfT1zU8iUO2TMIASY9TQ8P+duwoY8uWXRQWFtCnT2EzeqQaDlMNhavOnfObdU1RR5bLw4QkSXU1pQfuYuCcGOOnMstXAu+LMV5fz75FJD1th2eGTzbn2KnAVIAhQ4acsGJFPRNRpKW5Q/LKd9YMY40NWdy1kQaHK3bqXXM4YvVestphrEu/th+umIXszWm+GJNppEtLy9m9u6JZz6WlFeze3dznqnM88MCiGj0Dlbp0yWfMmH7NDlVpBpva1wDtbbKDhq4Fau11+3OOyt4mh+RJktT69qcHrr5/4mzoT6QLgKdjjBube2yMcTowHZIhlE2oq23UvjF0yQp47ipY83ByY+f6esnKttV/rpBfbSjigdD72L2HMYcrNltL9+Y0V3l5RY2gsm/hpv7n5oer5p2rtYNP5875e0JO5evOnfPrDW+Q3DvngAMK650UoeF1ewtJDa/b3/N2tAkYnGBBkqT0NCXArQYGV1seBLzVwL6XUjV8srnHZqf5N9Wd7r5iN6z8XdVwxcqesR5HZAJYrVkVK/fp3BtC9l8vkS0qKiK7d5dXe1Tseb1rV911u3eX86UvPV4nEJSUlHH99Y+xYsWWJgalfQ9ZFRWtm4IKCvLo3DkJDY09d+qUR69eXeoEpprPTT9Xw+do/HlvU2jvrTfnb3+7uFV/nto3DsmTJCk9TRlCWUAyEclkYA3JRCSXxxgX1NqvF7AMGBxj3N6cY2vLqklM7s5jxtNjuen3H2Dl+t4MOXAT0/7tb0yZMA8u3//pn9NQOQNc7WBUFYrqBqPdu5Pptmuury9Q1T62qcfVfb+ystb5+ebnh3pCSvODSVOCT/MCUuP7tMdrfpxgQZIkqa59HkIZYywLIVwPPEJyK4A7YowLQgjXZrbfltn1ImBmZXjb27H7/3HazoznJzP19tMp2d0ZgBXr+zD19ouhc1+mXF5z38rriKoHkSSg1A0nTQkwNUNRU46rL4jVPa4l7jtUn8rptDt3rnzkVXudv2dbYWE+PXt2rrNP1bE1j+vcufZ5Gz7uwgv/yNtv151xc/DgHrz55tUdcrhbtrM3R5IkqemadB+4tpZNPXDDBv6IFW/VDTz5+dC/f/c6gak1fpyVw+bqCzANB6bGtjcUmOo7rvGglS29Q/bmSJIkqT3Yn0lMOrSVb9ffW1VeDueeO3wfAlPzglinTnk5cZ+hbGFvjiRJktoze+Aa4XTZkiRJktpaQz1wdu00Ytq0iRQV1eyodLpsSZIkSWkwwDViypSjmT79LIYO7UkISc+b11NJkiRJSoNDKCVJkiQpyziEUpIkSZJynAFOkiRJknKEAU6SJEmScoQBTpIkSZJyhAFOkiRJknKEAU6SJEmScoQBTpIkSZJyhAFOkiRJknKEAU6SJEmScoQBTpIkSZJyRIgxpl1DHSGEdcCKtOuox4HA+rSLUJPZXrnHNss9tllusb1yj22We2yz3JOtbTY0xtiv9sqsDHDZKoQwN8ZYnHYdahrbK/fYZrnHNssttlfusc1yj22We3KtzRxCKUmSJEk5wgAnSZIkSTnCANc809MuQM1ie+Ue2yz32Ga5xfbKPbZZ7rHNck9OtZnXwEmSJElSjrAHTpIkSZJyRLsMcCGEO0IIa0MIr9Za/18hhJdDCPNCCDNDCIfUc+zYEMK/QggLMvt+tNq24SGE50IIb4YQfhdC6NzSx3dUWdxmd4YQlmXef14IYWwLf/SclXKbDQ0hvJB5jwUhhGubc3xHlMXt5XesAWm2WbV9e4YQ1oQQfrYvx3c0Wdxmfs8akHabhRDKq7XLQ809vqPJ4vZq2+9YjLHdPYBTgOOBV2ut71nt9eeB2+o59ghgROb1IcDbQO/M8u+BSzOvbwM+09LHd9RHFrfZncDFaf98svGRcpt1BrpkXncHlgOHNPX4jvjI4vbyO5aFbVbtPLcAdwM/q7bO71jutZnfsyxtM2BbA+v9nuVWe7Xpd6xd9sDFGJ8ANtazfku1xW5AnQsAY4yLYoxvZl6/BawF+oUQAjAJ+ENm17uAD7X08R1VNrbZ/nyejiDlNtsdY9yVWexCZjSB37OGZWN7ae/SbDOAEMIJQH9gZrV1fsf2IhvbTHuXdpvVx+9Zw7KxvdLQ4f4nGkKYFkJYBUwB/r9G9h1P8i/HS4C+wKYYY1lm82pgYGa/4hDC7ft6vPYuxTarNC3T1f4/IYQu+/2BOoC2aLMQwuAQwsvAKuB7mV/Gfs/2QYrtVcnvWDO1dpuFEPKAHwI31Dqd37F9lGKbVfJ71kxt9PdHYQhhbgjh2RDChzLr/J7tgxTbq1Kbfcc6XICLMd4UYxwMzACub2i/EMIA4LfAJ2OMFUCo73SZc86NMX5qX4/X3qXYZgBfB44CxgEHAF/bz4/TIbRFm8UYV8UYjwUOBz4eQui/t+PVsBTbC/yO7ZM2aLPrgL/GGFfVPmVDx2vvUmwz8Hu2T9ro748hMcZi4HLgxyGEw/Z2vBqWYntBG3/HOlyAq+Zu4CP1bQgh9AT+AvxHjPHZzOr1QO8QQkFmeRDwVmscrwa1dZsRY3w7JnYBvwbGt8gn6Tharc0qZXpyFgAn78vxqqGt28vv2P5rrTY7Cbg+hLAc+AHwsRDCzc04Xg1r6zbze7b/Wu13Y+VohBjjUmA2cFxzjle92rq92vw71qECXAhhRLXFDwKv17NPZ+BB4Dcxxvsq18cYI/A4cHFm1ceBP7X08aopzTbLbBuQeQ4k46FfrX28amqjNhsUQuiaed0HmAC84fes+dJsr8yy37Fmaos2izFOiTEOiTEOA76SOc+Nfsf2TZptljm337NmaqPfjX0qh9qFEA4k+d240O9Z86XZXpnltv2OxSyYUaalH8A9JDPLlJKMY706s/7+zA/0ZeBhYGA9x16ROW5etcfYzLZDgTnAYuA+qmZVKwZu39fjfWR1m80CXsnU8H9A97R/VtnySLnNzsycf37meWq1c/s9y6328juWhW1W61yfoOaMhn7Hcq/N/J5lYZsB78+0y/zM89XVzu33LLfaq02/YyHzppIkSZKkLNehhlBKkiRJUi4zwEmSJElSjjDASZIkSVKOMMBJkiRJUo4wwEmSJElSjjDASZIkSVKOMMBJkiRJUo4wwEmSJElSjvj/AW4D8CAoEIvBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(df_iter.index, mean_iter.numpy(), 'o-', label = 'predicted', color = 'orange')\n", + "plt.plot(df_output.iloc[idx:idx + N_pred], 'o-', label = 'measured', color = 'darkblue')\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [], + "source": [ + "nb_predictions = 100\n", + "N_pred = 8" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAFlCAYAAACqbgrWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA/j0lEQVR4nO3deXzU1b3/8fcnhG2AKCKLApnYVqzRuqZqvVGpC6Bely5aNWp/XnWk93q91lqrpotd0qrFaxe1JQXttY11q73aWwvYupW6QLBWWUTRZkJEBaoYIAiEfH5/zAQnyXeSSZhkttfz8ciDzDnf78xnDjDkwznnc8zdBQAAAADIfkWZDgAAAAAAkBoSOAAAAADIESRwAAAAAJAjSOAAAAAAIEeQwAEAAABAjiCBAwAAAIAcUZzpAILsueeeXlZWlukwAAAAACAjlixZst7dx3Zuz8oErqysTPX19ZkOAwAAAAAywsyiQe0soQQAAACAHEECBwAAAAA5ggQOAAAAAHIECRwAAAAA5AgSOAAAAADIESRwAAAAAJAjSOAAAAAAIEeQwAEAAABAjiCBAwAAAIAcQQIHSVJd3XKVldWqqGiWyspqVVe3PNMhAQAAAOiEBK5AdJeg1dUtVySyQNFos9ylaLRZkciCndeQ3AEAAADZoTjTAaD/tSdoLS2tkj5M0CTp3HP317XXPr2zr11LS6uuueYpvffeVl1zzVPasqXrvVVV5QP4LgAAAACYu2c6hi4qKiq8vr4+02HknLq65aquXqjGxmaVlpaopqZSVVXlCodnq7FxY5frBw0ymZlaW9t6/VrhcIkaGiLpCBsAAABAJ2a2xN0rOrezhDJPBC2D/H//74+aMmVOYPImSTt2uL761U9q9Oihgf1jxgxL+nqNjc1piRsAAABA6kjg8sR11/2lyzLI1lZXY+NGjRo1JPCecLhE3//+MfrpT09QKNRxNW0oVKwf//h4hcMlgfcOGTJIK1e+y/44AAAAYACxBy7HdF4meckln1A02qzVq4Nn2bZt26G5c6d32AMnxRK0mppKSR/uZQtafimpy71DhhSpqEg64IC7VFRk2r49tgST/XEAAABA/2IPXA7pXIyk3eDBpiFDirV58/Yu97TvVUu2Py7V1+187wknhPXRj/6iSyzpek0AAACgkCXbA0cCl0PKymoVjXbdezZp0ijdeOMxgbNstbXT+i1pKiqapWR/fG666Rh9+9vPDmg8AAAAQL6giEmO27ZtR2DyJklvvrlRVVXlqq2dpnC4RGaxWbD+TpZKS4P3x0nS177WdU9eS0urqqsX9ls8AAAAQL4jgctCnQuD3HTT8zryyLqk17cnUlVV5WpoiKit7Wo1NET6faarpqYysPjJT396fNJ7qF4JAAAA9B0JXJYJOg7g2mv/otdff09XXnlYYMLUXoxkoCWb9bv88sOSVq/sbtYOAAAAQPdSSuDMbIaZrTSzVWZ2bUD/V83sxfjXUjPbYWZ7pHIvOqquXhhYGGS33Ybq1luPH/Blkj1JNusXNDsnSWedNWWgQwQAAADyRo9FTMxskKRXJZ0kqUnSYknnunvggV9mdpqkL7v78b29t10hFDEJqtD4+c9P0bBhPwq83kxqa7t6YIPcRYnvceLEkRo0qEhvvrlJv/71KfrCFz6e6fAAAACArNXnKpRm9ilJN7j79Pjj6yTJ3X+Q5Pp7JD3h7r/o7b3t8j2BCzoOoLjYNHRo8FEA0oel+XPZ++9v1Wmn/U4LFzbpoosO1J//3MgRAwAAAECAXalCOVHS6oTHTfG2oBcJSZoh6bd9uDdiZvVmVr9u3boUwspdQcskW1td7q6vfe2IrNrnlk677TZU8+Z9TgcdtKfuvHNph31+kcgC1dV1OzELAAAAFLxUEjgLaEs2bXeapL+6+7u9vdfda929wt0rxo4dm0JYuWn79uTHAWzZ0qobbzw26/a5pVMoNFjvvbe1SztHDAAAAAA961ploqsmSZMTHk+StCbJtedI+k0f7807iXvAJk8epZNOCuvxx1cnvT7xOIB8SdiCrF69MbCdIwYAAACA7qUyA7dY0r5mto+ZDVEsSXuk80Vmtpuk4yQ93Nt781Hn4wAaGzdq7tylMnN95SsVebtMMhXJjhKYMGHEAEcCAAAA5JYeEzh3b5V0uaT5klZIut/dl5nZTDObmXDpZyQtcPfNPd2bzjeQra6//i+BxwG0trpmzZqa18skexJ0xICZtG5di371q4L44wEAAAD0SY9VKDMh16tQLljQoOnTHwzsy8XjAPpD52MUvva1T+q++1bqqaeaNH16WCtWvKvVqzdSoRIAAAAFqc/HCGRCLiVwiYnIhAkjNGbMcC1dul6DBpl27Og6tvlwHEB/2b59h04//XeaN6+hQ3soVFxQM5QAAADArhwjgCQ673N7663NWrp0vaqq9tfcudMLep9bXwwePEgrVrzbpZ0KlQAAAEAMCdwuSLbPbeHCN/XFLx5Y0Pvc+ipZJUoqVAIAAACpHSOAAK+++q4aG7svh5/vxwH0h9LSksBz8gYPLtKqVe/pYx8bnYGoAAAAgOzADFwK6uqWq6ysVkVFsxQOz9Z55/2fDj74blnQMeVKXiYfPQuqUDl06CAVFxfp0EPv1mWXLVA4PFtFRbNUVlarurrlGYoUAAAAGHgkcD0IOs/tN795ReXle+inPz2BfW5pVlVV3mXp6dy50/XKK/+mSZNGqrb2JTU2bpS7FI02KxJZQBIHAACAgkEVyh6UldUGLukrLR2laPSyLuXwKXnff8Lh2YHLVqnsCQAAgHyTrAole+B6kKx4xurVsUSCfW4Dp33MO6PACQAAAAoFSyh7kGw/G/vcBl6yMXeXTjnlt7rppud37lVkfxwAAADyEQlcD4KKarDPLTOS/V6ce+7H9eSTjbr22r/s3KvI/jgAAADkIxK4HgQV1eA8t8xI9ntxzz3/qjFjhne5ngPAAQAAkG8oYoK8UFQ0S8n+KP/616eotbVN3/rWM0mLzVCMBgAAANmEIibIa8kOAC8uLtL55z/aoS0abdally5QS8t2nXXWfnrggZX6r/96Qlu2tO7sj0QWSBJJHAAAALIKSyiRF5Ltj7vrrhkaN67r8sotW1oViTym0aNvUyTy2M7krV3i8svEg9wpjgIAAIBMIoFDXki2P+7888u1bt2WpPfdeuunk/bFZurm69JLF1AcBQAAAFmBBA55o6qqXA0NEbW1Xa2GhsjO5Y/Jjh8Ih0t05ZWHKxwO7i8uNs2Z83KfZ+eYuQMAAEC6kcAh7/V0FESy/l/+8mSZBT9nNNqsH/zgOUUiwbNzdXXLk/YBAAAAfUUVShSEnqpMJusvK6sNLI7Snd12GypJev/9rV36wuESNTREdu3NAAAAIO8lq0JJAgd0o30mraXlw2WUoVCxfvjD4/Qf//HnXj+fmdTWdjXHFgAAAKBbyRI4llAC3UhWHOXf//3QpHvnSktHqbR0VGCfmXT66Q9RGAUAAAB9wgwc0EfJZudqa6dJUpe+oUMH6ROf2FP19e8EPh/LKwEAANCOGTggzZLNzlVVlQf2zZ07XYsXX5C0MEpjY+/22gEAAKDwMAMHDLBkhVGYgQMAAEA7ZuCALBF0bIEkXXzxJzIQDQAAAHIJCRwwwDovr5w4caT23HO4/vu/67VkyduZDg8AAABZjCWUQBaIRt/X1Kn3acOGrfrTn87S4YdPyHRIAAAAyCCWUAJZLBzeTU888QXttttQHXvsvdprr5+pqGiWyspqOxwvUFe3XGVltYF9AAAAyH9dN+IAyIiyst105ZWH66qrnth5/EA02qyLL56vlSvflSTdfPNibd26Y2dfJLJAkjgEHAAAoECktITSzGZI+rGkQZLmuPuNAddMlfQjSYMlrXf34+Lt/yXpUkkm6Rfu/qOeXo8llChUySpUdofqlQAAAPkn2RLKHmfgzGyQpNslnSSpSdJiM3vE3ZcnXLO7pDskzXD3RjMbF28/ULHk7QhJ2yTNM7M/uPtraXhPQN5JdhZc+9lxQf/fwvlxAAAAhSOVPXBHSFrl7m+4+zZJ90o6o9M150l6yN0bJcnd18bb95f0nLu3uHurpKckfSY9oQP5p7S0JGl7d30AAAAoDKkkcBMlrU543BRvSzRF0mgze9LMlpjZhfH2pZKONbMxZhaSdIqkyUEvYmYRM6s3s/p169b17l0AeSLojLhQqFg1NZWBfWbSd7/7LwMZIgAAADIolSImFtDWeSFXsaTDJZ0gabikZ83sOXdfYWY3SXpM0iZJf5fUGvQi7l4rqVaK7YFLLXwgv7QXI6muXqjGxmaVlpaopqayQ5GS9r4xY4Zr/fotam7elqlwAQAAMMB6LGJiZp+SdIO7T48/vk6S3P0HCddcK2mYu98QfzxX0jx3f6DTc31fUpO739Hda1LEBOiZu2vatAdVX/+2Xn31Yo0dG8p0SAAAAEiTXTkHbrGkfc1sHzMbIukcSY90uuZhSceYWXF8qeSRklbEX7i9oEmppM9K+k3f3waAdmamn/zkeG3atF3XXfeXTIcDAACAAdBjAhcvPnK5pPmKJWX3u/syM5tpZjPj16yQNE/SS5IWKXbUwNL4U/zWzJZL+r2k/3D39/rhfQAFaf/9x+jKKw/T3Lkva9GitzIdDgAAAPpZSufADTSWUAKp27hxm/bbb64mThyp558/X0VFQdtWAQAAkEt2ZQklgCw2atQQzZo1VfX172js2NtVVDRLZWW1qqvbeVSj6uqWq6ysNrAPAAAAuSOVKpQAspy7q6jI9O67H0iSotFmRSILdvZHIgvU0tLapS+xuiUAAACyH0sogTxQVlaraLS5S/u4cbHKlGvXtnTpC4dL1NAQ6ffYAAAA0HvJllAyAwfkgcbGrsmbFJy49XQPAAAAshd74IA8UFpaEtg+fnxI48cHnw+X7B4AAABkLxI4IA/U1FQqFOo4oR4KFeuWW6bqllumdukrKjJ973uVAxkiAAAA0oAllEAeaC9GUl29UI2NzSotLVFNTWWHIiXtfaNHD9O7736g9eu3ZCpcAAAA9BFFTIAC4+4688z/1fz5DaqvP18HHjg20yEBAACgE86BAyBJMjP94hfTtNtuQ1VV9ai2bm3NdEgAAABIEQkcUIDGjRuhO++crpdeWqevf31hpsMBAABAikjggAJ16qkf1cyZB+uWW+r1xBONmQ4HAAAAKSCBAwrYrFnHad99R+tzn3tYkyfPVlHRLJWV1aqubvnOa+rqlqusrDawDwAAAAOLKpRAARsxYojOP39/ffObz+i997ZKkqLRZl1yyXy9885mSbHqlR98sGNnXySyQJI6VLgEAADAwKAKJVDgyspqFY029+qecLhEDQ2RfooIAAAAVKEEEKixsXfJW1/vAQAAwK4jgQMKXGlpSWB7OFyicDi4b++9R/ZnSAAAAEiCBA4ocDU1lQqFOm6HDYWKVVNTGdgnSS0t2/Xyy+sGKkQAAADEkcABBa6qqly1tdMUDpfILDbzVls7TVVV5YF9NTWVGjasWJWVv9H11/+FCpUAAAADiCImAHqtsbFZRx9dpzff3NyhPRQq3pn8AQAAoO8oYgIgbUpLS2TW9eOjpaVV1dULMxARAABAYSCBA9Anb765MbCdCpUAAAD9hwQOQJ8kq145atQQbdu2Y4CjAQAAKAwkcAD6JKhC5aBBpubmbfrkJ3+t73//uaQFTurqllP8BAAAoA+61gcHgBS0Fyqprl6oxsZmlZbGKlTutttQVVX9ocNeuGi0WZdeukAbNmyVJH31q09py5bWnX2RyIIOzwkAAIBgVKEEkHaTJ/9cTU2benVPOFyihoZIP0UEAACQW6hCCWDAvPlm75I3KVb8JBv/QwkAACCbkMABSLtkBU7C4RKFw8F97tKJJz6g733vWfbOAQAAJMESSgBpV1e3XJHIArW0tO5saz/kW1Jg3+c+N0W/+91r2rRpe4fnGjp0kK655pOSpJtvXqytW3d0eU72zgEAgHyzS0sozWyGma00s1Vmdm2Sa6aa2YtmtszMnkpo/3K8bamZ/cbMhvX9bQDIBVVV5aqtnaZwuERmsZm39kQrWd/dd5+i0aO7fjxs3bpD3/3uc/rud5/rkLxJHBwOAAAKT48zcGY2SNKrkk6S1CRpsaRz3X15wjW7S3pG0gx3bzSzce6+1swmSlooqdzdt5jZ/ZIedfdfdveazMABhamoaJaCPpLMYr8m+7hau/bftWBBQ5eKmMzMAQCAXJVsBi6VYwSOkLTK3d+IP9G9ks6QlLj55DxJD7l7oyS5+9pOrzHczLZLCkla07e3ACDflZaWKBptDmyXFNgnSZMnz1Zbm2v79rad13E0AQAAyEepLKGcKGl1wuOmeFuiKZJGm9mTZrbEzC6UJHd/U9IsSY2S3pL0vrsvCHoRM4uYWb2Z1a9bt6637wNAHgg6HDwUKlZNTWXSvptvPlZFRbYzeWvH8koAAJCPUkngLKCt80KmYkmHSzpV0nRJ3zCzKWY2WrHZun0k7S1phJmdH/Qi7l7r7hXuXjF27NiU3wCA/NGXvXNf/eoR+uCD1sDna2wMnrEDAADIVaksoWySNDnh8SR1XQbZJGm9u2+WtNnMnpZ0cLzvH+6+TpLM7CFJR0v69S5FDSBvtSdrvelLtvRSkq688nF95CO76b//e0nS/XF1dcvZPwcAAHJCKgncYkn7mtk+kt6UdI5ie94SPSzpNjMrljRE0pGSbpU0QtJRZhaStEXSCZKoTgIgrWpqKrscTTBs2CAdfvh4/eQnL3QofhKNNuuSS+Zr7doWnX76x/TII6t0/fV/0Qcf7NjZz/45AACQrXpcQunurZIulzRf0gpJ97v7MjObaWYz49eskDRP0kuSFkma4+5L3f15SQ9KekHSy/HXq+2XdwKgYAUtr5wzZ7oWLjxPe+89ssv1H3ywQ1dd9aQ+9rE5uuqqJ3cmb+0S9891d3g4B4sDAICBxkHeAPJasqMJJOnuu0/WhRf+Mem93/9+pb73ved6dSA5B4sDAIB0SHaMAAkcgLxWVlYbuD8uHC5RQ0MkaX93xo0LSZLWrm1J+rwAAAC7IlkCl0oVSgDIWd0dTdBd/+zZJyV9zrVrWwKTN+nDypd9XXrZH30AACB/MAMHIO/1VGUyWX+y2bnx42MzcO+80zWJKyqSPv3pyVq4cI22bv1wb10qSy/7o4/lnAAA5CaWUAJAL9XVLe9V0jR06CAddtg4PffcW4H77oYPj830bdnS9dy6/uhjOScAALkrWQKXyjECAFCQ2mevupu9C+orKpoV+HxBSVZ/9nGQOQAA+YcZOABIs+4Kp0gasL699hqhNWu+1IvIAQBAtqCICQAMkO4KpwxUnyRt2PCBnnpqdZreFQAAyAYsoQSANOvr0st09n35y4dr9uy/a9q0BxWJfEK///0bvS7iAgAAsg9LKAEgT7377hYdffQ9WrnyvQ7tiRUquyvUQhIHAEDmsIQSAArMHnsM75CYtWtpadUVVzyuOXNe0hVXPN7lmpaWVlVXL5TE+XIAAGQbllACQB5ratoY2P7uux/o0ksXJL0vGm3WDTf8VT/84eKdCV402qxIJHYPs3MAAGQGM3AAkMdKS0sC2ydOHKnVqy/TxIkjk9777W8/2+3sHAAAGHgkcACQx5JVr7zppmM1adIo3XTTsYH9d9xxgsyCn5Pz5QAAyBwSOADIY1VV5aqtnaZwuERmsXPjEguUJOv/0pcOTTp7l6wdAAD0P6pQAgACBVWoHDTI9Mtfnqzzz2cPHAAA/YkqlACAXuk8Ozd69FDt2OFatmx9pkMDAKBgUYUSAJBUVVX5zuWW7q6ZMx/TjTcu0pQpo3XRRZ/IcHQAABQeZuAAACkxM9122wk68cSwLrvsMX396wuTnhHH+XEAAPQP9sABAHplw4YPVF5+l956a3OH9lCoWLW10ySpy9659j7OjwMAIDXJ9sCxhBIA0Cu77z5MFnDGQEtLq7785Sd2ft+5r7p6IQkcAAC7iAQOANBrb721KbB93botSe/h/DgAAHYde+AAAL2W7Cy4CRNCmjAh1Kt7AABA6kjgAAC9VlNTqVCo4yKOUKhYs2ZN1axZUwP7amoqBzJEAADyEksoAQC91r6Xrbp6oRobm1VaWqKamsoOe9yqqxcqGm1WcXERBUwAAEgTqlACAPrNnXe+rIsvnq+//vVcHX30xEyHAwBAzkhWhZIllACAfnP22ftp5MjBmjv35UyHAgBAXiCBAwD0m5Ejh+gLX/i47rtvpTZu3JbpcAAAyHkpJXBmNsPMVprZKjO7Nsk1U83sRTNbZmZPxdv2i7e1fzWb2ZVpjB8AkOUuueQT2rx5u+6775VMhwIAQM7rMYEzs0GSbpd0sqRySeeaWXmna3aXdIek0939AElnSZK7r3T3Q9z9EEmHS2qR9Lt0vgEAQHY78si9VF4+RnPmsIwSAIBdlcoM3BGSVrn7G+6+TdK9ks7odM15kh5y90ZJcve1Ac9zgqTX3T26KwEDAHKLmeniiz+h559/S8uWrc90OAAA5LRUEriJklYnPG6KtyWaImm0mT1pZkvM7MKA5zlH0m/6FiYAIJddcEG5Bg8uopgJAAC7KJUEzgLaOp89UKzYEslTJU2X9A0zm7LzCcyGSDpd0gNJX8QsYmb1Zla/bt26FMICAOSKsWNDOuOMj+nuu5dr69bWTIcDAEDOSiWBa5I0OeHxJElrAq6Z5+6b3X29pKclHZzQf7KkF9z9nWQv4u617l7h7hVjx45NLXoAQM645JJP6J//3KJHHnk906EAAJCzUkngFkva18z2ic+knSPpkU7XPCzpGDMrNrOQpCMlrUjoP1csnwSAgnbiiWFNnjyKYiYAAOyCHhM4d2+VdLmk+YolZfe7+zIzm2lmM+PXrJA0T9JLkhZJmuPuSyUpntCdJOmh/nkLAIBcMGhQkS666EA99liDotH3Mx0OAAA5ydw7b2fLvIqKCq+vr890GACANGtoeF8f+cgv9M1vfko33PAvmQ4HAICsZWZL3L2ic3tKB3kDAJAOZWW76YADxuh733tORUWzVFZWq7q65ZkOCwCAnFGc6QAAAIWjrm65Xn11g3bsiK3+iEabFYkskCRVVZVnMjQAAHICM3AAgAFTXb1Q27bt6NDW0tKq6uqFGYoIAIDcQgIHABgwjY3NvWoHAAAdkcABAAZMaWlJr9oBAEBHJHAAgAFTU1OpUKjj9uvhw4tVU1OZoYgAAMgtJHAAgAFTVVWu2tppCodLZBZrO+20j1LABACAFJHAAQAGVFVVuRoaImpru1onnhjWwoVvdilsAgAAgpHAAQAy5itfqdCaNZt0772vZDoUAAByAgkcACBjpk8v04EH7qlZsxbL3TMdDgAAWY8EDgCQMWamq646XC+/vF5/+lM00+EAAJD1SOAAABl13nn7a8KEEbrllvpMhwIAQNYjgQMAZNTQocX6z/88VPPnN2jp0nWZDgcAgKxGAgcAyLiZMw9WKFTMLBwAAD0ggQMAZNweewzXRRcdqLq6FXrrrU2ZDgcAgKxFAgcAyApf/nKFWlvbdNttf8t0KAAAZC0SOABAVvjoR3fX4YeP1403Pq+iolkqK6tVXd3yTIcFAEBWKc50AAAASFJd3XK9/PJ6tbXFHkejzYpEFkiSqqrKMxgZAADZgxk4AEBWqK5eqK1bd3Roa2lpVXX1wgxFBABA9iGBAwBkhcbG5l61AwBQiEjgAABZobS0pFftAAAUIhI4AEBWqKmpVCjUcWt2UZGppqYyQxEBAJB9SOAAAFmhqqpctbXTFA6XyEwaPXqo2tpcI0YMznRoAABkDXP3TMfQRUVFhdfX12c6DABABrW2tunQQ+/Wxo3btHz5RQqFSOQAAIXDzJa4e0XndmbgAABZqbi4SLfffoKi0Wb94AfPZzocAACyAgkcACBrHXvsZFVV7a+bb16sVavey3Q4AABkHAkcACCr/fCHx2no0EG64orHlY3L/gEAGEgkcACArLbXXiP17W8frT/+8R8aP/4OFRXNUllZrerqlmc6NAAABlxKCZyZzTCzlWa2ysyuTXLNVDN70cyWmdlTCe27m9mDZvaKma0ws0+lK3gAQGEYM2aYzKR167bIXYpGmxWJLCCJAwAUnB4TODMbJOl2SSdLKpd0rpmVd7pmd0l3SDrd3Q+QdFZC948lzXP3j0s6WNKK9IQOACgU3/zmM+q8erKlpVXV1QszExAAABmSygzcEZJWufsb7r5N0r2Szuh0zXmSHnL3Rkly97WSZGYlko6VNDfevs3dN6QpdgBAgWhsbO5VOwAA+SqVBG6ipNUJj5vibYmmSBptZk+a2RIzuzDe/hFJ6yTdZWZ/M7M5ZjZil6MGABSU0tKSXrUDAJCvUkngLKCtcxmwYkmHSzpV0nRJ3zCzKfH2wyT9zN0PlbRZUrI9dBEzqzez+nXr1qUaPwCgANTUVCoUKu7SfuWVh2UgGgAAMieVBK5J0uSEx5MkrQm4Zp67b3b39ZKeVmy/W5OkJndvP4H1QcUSui7cvdbdK9y9YuzYsb15DwCAPFdVVa7a2mkKh0tkJu211wiFQsX62c/+rvXrWzIdHgAAAyaVBG6xpH3NbB8zGyLpHEmPdLrmYUnHmFmxmYUkHSlphbu/LWm1me0Xv+4ESZQMAwD0WlVVuRoaImpru1pr1nxJ8+d/XtFos04//X/V0rI90+EBADAgekzg3L1V0uWS5itWQfJ+d19mZjPNbGb8mhWS5kl6SdIiSXPcfWn8Kf5TUp2ZvSTpEEnfT/u7AAAUnMrKSaqrO1XPPbdGxx77G4XDszkjDgCQ98w712XOAhUVFV5fX5/pMAAAOeDCCx/Vr37VMWELhYpVWztNVVXlSe4CACC7mdkSd6/o3J7SQd4AAGSrp59u6tLGGXEAgHxFAgcAyGmcEQcAKCQkcACAnJbsLLhJk0YNcCQAAPQ/EjgAQE5LdkZccbHprbc2ZSAiAAD6DwkcACCndT4jLhwu0VVXHa61a7foiCPq9IMfPKeystqkFSrr6pZ32w8AQDahCiUAIC/97W/v6Pjj79eGDVs7tCdWqKyrW65IZIFaWloD+wEAyBSqUAIACsqhh47XiBGDu7S3tLTqqque0Pz5/9BVVz3RIXlr76eCJQAgW3XdNAAAQJ5YsyZ4D9zatVs0Y8Zvk95HBUsAQLZiBg4AkLeSVagcPz6kZ545T+PHh3p1HwAAmUYCBwDIW0EVKkOhYt1yy1R96lN765ZbpgZWsDziiL3U1pZ9e8QBACCBAwDkraAKlYkFSjr3T548SkcdNUEPPLBSp576W/385y8mrVBJ9UoAQCZQhRIAgATurtmz/67LL/+z2tpcif9MtleolET1SgBAv0pWhZIEDgCAAHvv/TO99dbmLu1F8bUrbW1d7wmHS9TQEOnnyAAAhSBZAkcVSgAAArz9dtfkTQpO3NpRvRIA0N/YAwcAQIBklSjD4RKFw8F9VK8EAPQ3EjgAAAIkq2BZU1MZ2CdJl1120ECFBwAoUCRwAAAE6K6CZee+iRNHao89huqnP/2botH3Mx06ACCPUcQEAIA0WLZsvSorf6MJE0bor389V3vsMTzTIQEAcliyIibMwAEAkAYHHLCnHnnkM/rHP97XUUfVqbR0NmfEAQDSjgQOAIA0OeaYSbrssoP02msbtHr1RrlL0WizIpEFJHEAgLQggQMAII0efvj1Lm0tLa2qrl6YgWgAAPmGBA4AgDRKdhYcZ8QBANKBBA4AgDRKdhbc3nuPHOBIAAD5iAQOAIA0SnZG3MaNW7V48VsZiAgAkE9I4AAASKOg8+NuvvlYjRkT0nHH3aerrnpCZWW1VKgEAPQJ58ABADAA1q7drKOPvkevv97xoO9QqHjnAeEAALTjHDgAADJo3LgR2ratrUs7FSoBAL1BAgcAwABpatoY2E6FSgBAqlJK4MxshpmtNLNVZnZtkmummtmLZrbMzJ5KaG8ws5fjfayLBAAUrGQVKpO1AwDQWY8JnJkNknS7pJMllUs618zKO12zu6Q7JJ3u7gdIOqvT03za3Q8JWsMJAEChCKpQaSZdf/2RGYoIAJBrUpmBO0LSKnd/w923SbpX0hmdrjlP0kPu3ihJ7r42vWECAJD7OleoHD8+JDPp4YdXqa0t+4qKAQCyTyoJ3ERJqxMeN8XbEk2RNNrMnjSzJWZ2YUKfS1oQb4/sWrgAAOS2qqpyNTRE1NZ2td5++991220n6tFH/6HvfOeZTIcGAMgBXU8a7coC2jr/N2GxpMMlnSBpuKRnzew5d39V0r+4+xozGyfpMTN7xd2f7vIiseQuIkmlpaW9eQ8AAOSsmTMP1qJFb+nb335WFRUT9K//+tFMhwQAyGKpzMA1SZqc8HiSpDUB18xz983uvl7S05IOliR3XxP/da2k3ym2JLMLd6919wp3rxg7dmzv3gUAADnKzHTHHSfqsMPG6+yzH9HEiT/jkG8AQFKpJHCLJe1rZvuY2RBJ50h6pNM1D0s6xsyKzSwk6UhJK8xshJmNkiQzGyFpmqSl6QsfAIDcN3z4YF1wQbm2bNmhNWs2y12KRpsViSwgiQMAdNBjAufurZIulzRf0gpJ97v7MjObaWYz49eskDRP0kuSFkma4+5LJY2XtNDM/h5v/4O7z+uftwIAQO760Y+WdGnjkG8AQGfmnn1VryoqKry+niPjAACFo6holoL+STaT2tquHviAAAAZZWZLgo5hS+kgbwAA0L845BsAkAoSOAAAskDQId+SdPzxVGYGAHyIBA4AgCzQ+ZDv0tJROuSQsfrlL5fqwQdXZjo8AECWSOUcOAAAMACqqspVVVW+83FLy3ZNm/agqqoe1R57DGc2DgDADBwAANkqFBqs3//+M5oyZbROOeVB7bUXZ8QBQKEjgQMAIIuNHj1Ml112sLZta9Pbb3NGHAAUOhI4AACy3KxZi7scMcAZcQBQmEjgAADIco2Nzb1qBwDkLxI4AACyXLKz4CZPHjXAkQAAMo0EDgCALJfsjLj9998jA9EAADKJBA4AgCzX+Yy4cLhEJ59cpvnzo/rxj5dkOjwAwADiHDgAAHJA5zPi2tpcZ531iL785ScUDpfozDP3zWB0AICBwgwcAAA5qKjI9KtfnaIjjthLZ5/9iPba647AM+Lq6parrKyW8+MAIE8wAwcAQI4KhQbri18s16JFb+ntt1skfXhGXLtIZIFaWlq79CXO5gEAcod554NlskBFRYXX19dnOgwAALJeWVmtotGuxwkMHhxbZLN9e1uXvnC4RA0NkX6PDQDQd2a2xN0rOrczAwcAQA5LdhZcUOLW0z0AgOzHHjgAAHJYsjPiwuEShcPBfcnuAQBkPxI4AAByWNAZcaFQsWpqKpOeH3fJJZ8YqPAAAGlGAgcAQA4LOiOutnbazmMHEvsmTRqp0aOH6u67l2vTpm2ZDh0A0AcUMQEAoIA89dRqffrT9+miiw7U3LkzMh0OACCJZEVMmIEDAKCAHHfcZFVXH6U771yq++9/JdPhAAB6iQQOAIAC881vfkpHHbWXIpHHFI2+n+lwAAC9QAIHAECBGTx4kO6551S1tblOOukBhcOzVVQ0S2VltaqrW57p8AAA3SCBAwCgAO2zz+664IJyvfbaBjU2bpS7FI02KxJZQBIHAFmMBA4AgAL1hz+80aWtpaVV1dULMxANACAVJHAAABSoxsbmXrUDADKPBA4AgAJVWlrSq3YAQOaRwAEAUKBqaioVChV3aDOTrrnmkxmKCADQk5QSODObYWYrzWyVmV2b5JqpZvaimS0zs6c69Q0ys7+Z2f+lI2gAALDrqqrKVVs7TeFwicykCRNCKi42zZ27VBs3bst0eACAAObu3V9gNkjSq5JOktQkabGkc919ecI1u0t6RtIMd280s3Huvjah/ypJFZJK3P1fewqqoqLC6+vr+/B2AADArvjjH9/Qaaf9TlOnTtYf/vBZDR1a3PNNAIC0M7Ml7l7RuT2VGbgjJK1y9zfcfZukeyWd0ema8yQ95O6NktQpeZsk6VRJc/oaPAAAGBgnn/wRzZ07XX/+c6OmTr2XM+IAIMukksBNlLQ64XFTvC3RFEmjzexJM1tiZhcm9P1I0jWS2rp7ETOLmFm9mdWvW7cuhbAAAEB/+OIXD9QXvrCfnnvubc6IA4Ask0oCZwFtndddFks6XLGZtumSvmFmU8zsXyWtdfclPb2Iu9e6e4W7V4wdOzaFsAAAQH959tk1Xdo4Iw4AMi+Vhe1NkiYnPJ4kqfOnepOk9e6+WdJmM3ta0sGSDpN0upmdImmYpBIz+7W7n7/roQMAgP6yevXGwHbOiAOAzEplBm6xpH3NbB8zGyLpHEmPdLrmYUnHmFmxmYUkHSlphbtf5+6T3L0sft/jJG8AAGS/ZGfBTZo0aoAjAQAk6jGBc/dWSZdLmi9phaT73X2Zmc00s5nxa1ZImifpJUmLJM1x96X9FzYAAOhPQWfESVIoVKwNGz7IQEQAACnFc+Dc/VF3n+LuH3X3mnjbz9395wnX/NDdy939QHf/UcBzPJnKEQIAACDzOp8RFw6X6D/+4xC98cb7Ou64+3T77X9TWVltYIXKurrlSfsAALumx3PgMoFz4AAAyE4LFjTotNMe0vbtbUr8ESIUKlZt7TRJUiSyQC0trV36qqrKBzpcAMhZyc6BI4EDAAC9stded+jtt1u6tI8aNUSStHHjti594XCJGhoi/R4bAOSLZAlcKlUoAQAAdnrnna7JmxScuLWjeiUApEdKe+AAAADaJatQGQ6XKBymeiUA9CcSOAAA0CtBFSpDoWLV1FQmrV4pSW+8sWEAogOA/EYCBwAAeiWoQmV7kZKgvmuu+aQ2btymiopf69prn+5T9UoqWwJADEVMAABAv3v99Q2aOvVeNTVt6tCeSvXK7vqobAkgX1GFEgAAZFRp6WytXr2xS/ugQSZJ2rGj688k3fVR2RJAPqMKJQAAyKimpq7JmxScnKXSR2VLAIWIPXAAAGBA9KV6ZXd9yZ4PAPIZCRwAABgQva1e2V2fmfSd7xzd7zEDQLZhCSUAABgQ7QVHqqsXqrGxWaWlJaqpqexQiCSVvjFjhmv9+i1dCqIAQCGgiAkAAMg5Z5/9iB5++HW98MIFOuCAPTMdDgCkXbIiJiyhBAAAOee2205QSckQ/du/zdOOHW2ZDgcABgwJHAAAyDnjxo3QT396ghYtelu33rok0+EAwIAhgQMAADnpC1/YT2ee+TF94xt/1auvvpvpcABgQJDAAQCAnGRmuuOOE1VUJB100P+oqGiWyspqVVe3fOc1dXXLVVZWG9gHALmIKpQAACBnPf54o1pb27RtW2wfXDTarEsvXaDm5q2SpK985Slt2dK6sy8SWSBJHapbAkAuoQolAADIWWVltYpGm3t1TzhcooaGSD9FBADpQRVKAACQdxobe5e89fUeAMgWJHAAACBnlZaWBLaHwyUKh4P7Jk8e1Z8hAUC/IoEDAAA5q6amUqFQxy39oVCxamoqA/skadq0sgGKDgDSjwQOAADkrKqqctXWTlM4XCKz2Mxbbe00VVWVd+krLR2l/fffQ/fcs0IrV3LsAIDcRBETAABQMN58c6MOOuh/VFa2m5555lwNHUpBbgDZiSImAACg4E2cOEp33jlDL7zwjqqrF2Y6HADoNRI4AABQUM4442P60pcO1i231GvBgoZMhwMAvUICBwAACs6sWVNVXj5GZ531sCZP/rmKimaprKxWdXXLd15TV7dcZWW1ve4DgP7Ewm8AAFBwQqHBOv/8cl1//V/U3LxdkhSNNuvii+frtdfekyTdeOMibd26I6W+SGSBpFhRFQDoTykVMTGzGZJ+LGmQpDnufmPANVMl/UjSYEnr3f04Mxsm6WlJQxVLFh9092/19HoUMQEAAP2trKxW0Wj6DvUOh0vU0BBJ2/MBKGzJipj0OANnZoMk3S7pJElNkhab2SPuvjzhmt0l3SFphrs3mtm4eNdWSce7+yYzGyxpoZn90d2f2/W3BAAA0HeNjcHJm1ns16D/4+6uL9nzAUA6pbIH7ghJq9z9DXffJuleSWd0uuY8SQ+5e6Mkufva+K/u7pvi1wyOf2XfuQUAAKDglJaWJG3vax8A9LdUEriJklYnPG6KtyWaImm0mT1pZkvM7ML2DjMbZGYvSlor6TF3fz7oRcwsYmb1Zla/bt26Xr0JAACA3qqpqVQo1HExUihUrJqayl73SdIVVxzar/ECgJRaAmcBbZ1n0YolHS7pVEnTJX3DzKZIkrvvcPdDJE2SdISZHRj0Iu5e6+4V7l4xduzYVOMHAADok6qqctXWTlM4XCKz2B622tppqqoq71XfxIkjNWJEse66a5k2bdqW6bcFIM/1WMTEzD4l6QZ3nx5/fJ0kufsPEq65VtIwd78h/niupHnu/kCn5/qWpM3uPqu716SICQAAyCV/+lNU06c/qM99bl/dd99pMgv6/28ASF2yIiapzMAtlrSvme1jZkMknSPpkU7XPCzpGDMrNrOQpCMlrTCzsfECJzKz4ZJOlPTKLrwPAACArHPiiWHdeOMxeuCBV3Xuuf/Xp/PjOFsOQCp6rELp7q1mdrmk+YodI3Cnuy8zs5nx/p+7+wozmyfpJUltih01sNTMDpL0P/FKlkWS7nf3/+u3dwMAAJAhV1/9Sf32t6/qvvtW7mxLPCNOkiKRBWppae1VH2fLAUiU0jlwA40llAAAIBeVls7W6tUbu7SPHTtckrRu3ZZe9XG2HFC4+nwOHAAAAFLT1NQ1eZOCk7NU+jhbDkBnqeyBAwAAQAqSnQU3YcIITZgwotd9nC0HoDMSOAAAgDRJdn7crFnHadas43rVZyZde+0R/R5zrtuVwjAUlUEuYgklAABAmrQXHKmuXqjGxmaVlpaopqayQyGSVPrGjQvpn//corvuWqoLLijXiBFDBvy9ZJO6uuWB41ZXt7zPhWF29d7ufh+B/kQREwAAgCz08MOr9NnPPqwZM8r0v/97pgYPHpTpkDKic6IlScOHF+uKKw7T7Nl/14YNW7vc034MX9CPuUVFpvHjQ1q7tkU7dnS9YNCg2M1BfbvvPlTnnPNx3XXXUm3dumNneyhUvPOg9+6Su772oTAlK2JCAgcAAJClZs/+u2bOfEzHHjtJDQ3va/XqjXmbFCSLNRyercbG4OIwfXXppQfpF794Ka3POWrUEH3+8/vqnnteCUzuJHVJRFPpy9bfL/Q/EjgAAIAc9LnP/a8eemhVh7Z8SwqCZtmGDCnSIYeM06JFbwfeYyZNnDhSTU2buvSFw7HiL9Fo1yqe7UczlJXVJu1Pdu/kyaPU1LQxcGavO4MHF6moyDokdu1GjhwsSdq0aXvSWJnVK0wkcAAAADko2QzUmDHDJEn//OcHverLxrPlkiVTgwaZhg0r1ubNwclNTU1lnxPYoKQxlXurqxcGxlpaOkqrV/c+uevJNdd8Urfd9rdex9ldH0lcbkiWwFGFEgAAIIsFHQwuxZKzoAStp75Mni0XVNlx+fL1gQmRJLW1uWbPPimwemf7bFJt7TSFwyUyiyV17QlKd32S+nxvskqj3//+MUmPfQiHS3bO7PWmz0y6+ebFHZIwSWppadUVVzyuK654vNd91dULdz6mCmduYgYOAAAgiyWbnZo4caQk6c03uy4h7K6vtHSUotHL0hxlz4JmvIqKTG1tyX8WTWUJYSakWhVT2rXZsttuO0EXXzw/7bN6zz57nlat2qDLLmP2LpuxhBIAACAHpTMpkKRTT91Hv//9Z2XtpRoHSLJEdLfdhurGG4/RV77yZF4kDOner5Zs3CZNiiXpQXsAu+trlyx5HjcuJElau7alS182Lr/NZyRwAAAAOSodScHkyaM0Zcpo/elPjfr614/Sd79bOWDxb9myXaHQjwP7zKS2tquzbpYtW6R7Vu/WWz+tkSOHqKrqD72OJZXfK34f04cEDgAAoMC1tblmznxMv/jFS/rOd/5F3/jGp9L+Gok/wE+aNEqVlRP1+OONeuedrjM6ErM6qeiPKpTJZvbGj4/NwCX7/dpvv9F64433tX172842ll72DxI4AAAAqK3NdfHF8/TLXy7T2Wfvp+eff6vXsyW92QMmSQccMEZnnrmvbr21nh/us0RvZ/aGDRukU075iH7/+9c7JG+p4DiEviGBAwAAgCRpx442HXPMvXr22TUd2juX2U81SRs+vFiXXnqQ7rprqTZu3Nbl9bK1GEmh60vSVFQ0q09FVT772Y/p0Uf/oQ8+4JDzVJHAAQAAYKdk58uNHj1UkcjB+slPXtCWLR2TtK9//Sj9+McvBBa46E773inkvr4cgD506KDAQ8wlacSI2JEMmze39qqvEJbecg4cAAAAdkp2vtx7723VTTct6pC8SdKWLbEzxJIlb2axIwqCJDsfDbkn2Tl4NTWVSfvmzp2uZEVPN29uDUzQeuqLRpv1/PNvFeRZdsU9XwIAAIB8U1pakrQ8/ZtvbgpcJmcWKzMfVOCifZld0HK3mpqBq3iJ/tW+bLG7pbBBfdXVC3s9c9ddnyQddVSdzLTzz2o02qxLLpmvVas2SJJuvPH5nUs2o9FmRSILOryHXMUSSgAAgALUXRGL7n7YTpak9bR3DoUt3cch/OhHn9Z11/1F//znB72KY8KEEVqzZqbMLOv/rCZbQskMHAAAQAHqaSYl2UxaT/dVVZVn1Q/ByA59nbnrru+yyx4LfK325ZpB81Rvv71Z++47VwceOEbz5zfk5AwdM3AAAADoIttnJ4C+FFQZM2aYDjtsvB57LBr4nNlUHIUqlAAAAADyRl+XZXZ3HEI2VUxlCSUAAACAvLEryzKTFfHJhYqpzMABAAAAKCjdzd5ly1JhzoEDAAAAAMVm72prpykcLpFZbO9bNiVv3WEGDgAAAACyDDNwAAAAAJDjSOAAAAAAIEeklMCZ2QwzW2lmq8zs2iTXTDWzF81smZk9FW+bbGZPmNmKePt/pTN4AAAAACgkPR4jYGaDJN0u6SRJTZIWm9kj7r484ZrdJd0haYa7N5rZuHhXq6SvuPsLZjZK0hIzeyzxXgAAAABAalKZgTtC0ip3f8Pdt0m6V9IZna45T9JD7t4oSe6+Nv7rW+7+Qvz7jZJWSJqYruABAAAAoJCkksBNlLQ64XGTuiZhUySNNrMnzWyJmV3Y+UnMrEzSoZKeD3oRM4uYWb2Z1a9bty6l4AEAAACgkKSSwFlAW+ezB4olHS7pVEnTJX3DzKbsfAKzkZJ+K+lKd+965Lkkd6919wp3rxg7dmxKwQMAAABAIelxD5xiM26TEx5PkrQm4Jr17r5Z0mYze1rSwZJeNbPBiiVvde7+UBpiBgAAAICClMoM3GJJ+5rZPmY2RNI5kh7pdM3Dko4xs2IzC0k6UtIKMzNJcyWtcPf/TmfgAAAAAFBoepyBc/dWM7tc0nxJgyTd6e7LzGxmvP/n7r7CzOZJeklSm6Q57r7UzColXSDpZTN7Mf6U17v7o/3xZgAAAAAgn5l75+1smWdm6yRFd+Ep9pS0Pk3h4EOMa/oxpunHmPYPxjX9GNP0Y0z7B+Oafoxp+uXjmIbdvUtxkKxM4HaVmdW7e0Wm48g3jGv6Mabpx5j2D8Y1/RjT9GNM+wfjmn6MafoV0pimsgcOAAAAAJAFSOAAAAAAIEfkawJXm+kA8hTjmn6Mafoxpv2DcU0/xjT9GNP+wbimH2OafgUzpnm5Bw4AAAAA8lG+zsABAAAAQN7JeAJnZjPMbKWZrTKzaxPa7zOzF+NfDQnnyHW+/ywzW2ZmbWZWkdB+RML9fzezzyS5//L4a7uZ7ZnQvpuZ/T5+7zIzuyiNb7tfZfGYjjaz35nZS2a2yMwOTOPb7ldZMKZ18ddfamZ3mtngeLuZ2U/icb1kZoel+a33qywe14+b2bNmttXMrk7z2+5XWTymVfE/oy+Z2TNmdnCa33q/yeIxPSM+ni+aWb3Fzl7NGf01rgn9pWa2KdnfYTPbx8yeN7PX4q85JN6es5+rWTymfKamf0xz9jNVyupxzY3PVXfP2JdiB4O/LukjkoZI+ruk8oDrbpH0zSTPsb+k/SQ9KakioT0kqTj+/V6S1rY/7nT/oZLKJDVI2jOh/XpJN8W/HyvpXUlDMjleeTCmP5T0rfj3H5f050yPVw6N6SmSLP71G0lfSmj/Y7z9KEnPZ3q88mRcx0n6pKQaSVdneqzyZEyPljQ6/v3JufJnNcvHdKQ+3ApxkKRXMj1e2TCuCf2/lfRAsr/Dku6XdE78+58rxz9Xs3xM+UxN/5jm5GdqDoxrTnyuZnoG7ghJq9z9DXffJuleSWckXmBmJulsxf7R6sLdV7j7yoD2FndvjT8cJilws5+7/83dG4K6JI2Kv/5IxRK41oDrsk02j2m5pD/Hr3lFUpmZjU/pXWVWNozpox4naZGkSfGuMyTdHe96TtLuZrZX799iRmTtuLr7WndfLGl7395axmTzmD7j7u/FL3tOH/4ZznbZPKab4m2SNCLZ/Vmq38Y1fu+Zkt6QtCxJv0k6XtKD8ab/kXRm/Ptc/VzN2jHlM7VfxjRXP1Ol7B7XnPhczXQCN1HS6oTHTfG2RMdIesfdX+vtk5vZkWa2TNLLkmYm/EOZitsUy+7XxO//L3dv620MGZDNY/p3SZ+NP88RksLKjQ+crBlTiy2dukDSvF7Elq2yeVxzVa6M6cWKzXDkgqweUzP7jJm9IukPkv6tt6+fQf02rmY2QtLXJH27m8vGSNqQMN6Jr5+rn6vZPKa5KlfGNJc+U6UsH9dc+FzNdAJnAW2dM91zlST77om7P+/uByg2bX+dmQ3rxe3TJb0oaW9Jh0i6zcxK+hLHAMvmMb1R0uj4eub/lPQ35casZjaN6R2Snnb3v/QitmyVzeOaq7J+TM3s04r9sPG1vsSQAVk9pu7+O3f/uGL/e/zdvsSQIf05rt+WdKu7b+rj6+fq52o2j2muyvoxzcHPVCnLxzUXPleLM/z6TZImJzyepNiMlyTJzIoVm7E5PKHtLsX2WK1x91NSeRF3X2FmmyUdKKk+xdguknRjfBp1lZn9Q7F9W4tSvD9TsnZM3b1ZsXFtn77+R/wr22XFmJrZtxTbj3lZqrFluWwe11yV1WNqZgdJmiPpZHf/Z4rvKdOyekwT7n/azD5qZnu6+/pUXjPD+nNcj5T0eTO7WdLuktrM7AN3vy3hmvWKLY0sjv8vfOLr5+rnajaPaa7K6jHN0c9UKcvHtV1Wf656ZjcxFiu2RnUffbiJ8YCE/hmSnkrxuZ5Ux83h++jDzeFhxX5j9uzm/gZ1LLjxM0k3xL8fL+nN7u7Plq8sH9PdFS8EI+lSxfYYZHzMcmFMJV0i6RlJwzu1n6qOm+0XZXq88mFcE/pvUG5tuM/aMZVUKmmVpKMzPU55NKYf04eb7Q9T7N8py/SYZXpcO/Ul/TusWIGDxCIG/x7/Pic/V7N5TFO5Nxu/snlMc/UzNQfGNSc+VzMfQKza06uKVaOp7tT3S8X2BHR3/2cUy+S3SnpH0vx4+wWKbV58UdILks5Mcv8V8ftbFfvHc068fW9JCxTbl7BU0vmZHqs8GNNPSXpN0iuSHlK8elIufGXBmLbGX/vF+Nc34+0m6fZ438vJPsSy9SuLx3VC/HmbJW2If1+S6fHK8TGdI+m9hPb6TI9VHozp1xLuf1ZSZabHKhvGtdM1Nyj5D3AfUWxVzSrFfpgbGm/P2c/VLB5TPlPTP6Y5+5ma5eOaE5+r7RkmAAAAACDLZbqICQAAAAAgRSRwAAAAAJAjSOAAAAAAIEeQwAEAAABAjiCBAwAAAIAcQQIHAAAAADmCBA4AAAAAcgQJHAAAAADkiP8Pq/MRQG3m6kEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(df_output.iloc[:nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Prediction over 8 steps')" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAF1CAYAAACZNBlsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADdEklEQVR4nOydd3wUZdeGr9kUktBLQk/oSBOQLipVBey9xF4idj/1tcX2qmBvrz32EnsvIEiTFgSk957QQkJPSM/O98fZzfaaAAmc6/dTkp2dybO7szPP/Zxz7mOYpomiKIqiKIqiKIpSfbAc7QEoiqIoiqIoiqIorqhQUxRFURRFURRFqWaoUFMURVEURVEURalmqFBTFEVRFEVRFEWpZqhQUxRFURRFURRFqWaoUFMURVEURVEURalmqFBTFEVRqgTDMD4xDOMZ28+nGoaxNszjvGsYxmNVOzpFURRFqVmoUFMURTmOMAxji2EYhYZh5BuGscswjI8Nw6hT1X/HNM1Zpml2DmI81xmGMdtt37GmaT5d1WM6mhiG0cYwjAmGYewzDCPbMIw3DcOIDOM4pmEYHQ7HGBVFUZTqhQo1RVGU449zTNOsA5wE9AMedX9COCJCAUPwdm99G8gBmgO9gCHAbUdwaIqiKEoNQ4WaoijKcYppmtuBiUB3qIjW3G4Yxnpgve2xsw3DWGIYxn7DMOYahnGifX/DMHobhrHIMIw8wzC+AWKctg01DGOb0++tDcP40TCMXMMw9tgiSl2Ad4FBtgjffttzK1Iobb/fbBjGBsMw9hqG8athGC2ctpmGYYw1DGO9LVr1lmEYhrfXaxhGLcMwXjMMY4ftv9cMw6hl27baMIyznZ4baRjGbsMwTrL9PtD2+vcbhrHUMIyhTs+dYRjGOMMw5gAFQDsvf74t8K1pmkWmaWYDfwLdfIyzg2EYfxuGccA2hm9sj8+0PWWp7f26LIjPaIthGA8bhrHK9v58bBhGjG1bE8Mwfrftt9cwjFk+RKaiKIpyFNALsqIoynGKYRitgTHAYqeHzwcGAF1tIuUj4BagMfAe8KtN8EQDPwOfA42A74CLfPydCOB3IBNoA7QEvjZNczUwFsgwTbOOaZoNvOw7HHgWuBSJRmUCX7s97WwkMtjT9rwzfbzkVGAgEtHqCfTHEU38CrjC6blnArtN01xkGEZL4A/gGdtrvR/4wTCMeKfnXw2kAHVtY3TndeBywzDibMcbjYg1bzwNTAYaAq2ANwBM0zzNtr2n7f36xt9n5HS8ZNvraQ90cnrN9wHbgHigKfAIYPoYk6IoinKEUaGmKIpy/PGzLXo1G/gbGO+07VnTNPeaplkI3Ay8Z5rmP6Zplpum+SlQjIidgUAU8JppmqWmaX4PLPDx9/oDLYD/mKZ5yBZVmu3jue4kAx+ZprnINM1i4GEkAtfG6TnPmaa53zTNLGA6IsR8Hesp0zRzTNPMBf6LCCyAL4FzDcOIs/1+pe0xgKuACaZpTjBN02qa5l/AQkTk2vnENM2VpmmWmaZZ6uVv/41E0A4i4mghInS9UQokAS2CeK/8fUZ23jRNc6tpmnuBcTgEaSkifpNsn+Es0zRVqCmKolQTVKgpiqIcf5xvmmYD0zSTTNO8zSbK7Gx1+jkJuM+WGrffJu5aI6KrBbDdbWLvLZKEbZ9M0zTLwhhrC+fjmqaZD+xBonJ2sp1+LgB8maO4HMv2cwvbcTcAq4FzbGLtXBxCLQm4xO19OAUROXac3zcXbOmEk4AfgdpAEyRa9ryPXR4ADGC+YRgrDcO4wdex8f8ZeRtbptO2F4ENwGTDMDYZhvGQn7+jKIqiHGFUqCmKoijOOAuvrcA4m6iz/xdnmuZXwE6gpVs9WKKPY24FEn0YlASK4OxAxAgAhmHURlL8tgd6IYGOhYx3h9Pv9vTH84BVNvEGMv7P3d6H2qZpPhfk62iEiKc3TdMsNk1zD/AxrhE5x4FMM9s0zZtN02yBpDS+7cfp0d9nZKe1t9dsmmaeaZr3mabZDjgHuNcwjBF+XoeiKIpyBFGhpiiKovjifWCsYRgDbG6GtQ3DOMswjLpABlAG3GUz3rgQSXH0xnxE2D1nO0aMYRiDbdt2Aa1sNW/e+BK43jCMXra6q/HAP6Zpbgnj9XwFPGoYRrxhGE2Ax4EvnLZ/DZwB3IojmobtOecYhnGmYRgRtvEPNQyjVTB/1DTN3cBm4Fbbe9UAuBZY6u35hmFc4nTsfYgILLf9vgtXsxJ/n5Gd2w3DaGUYRiOkDs1uTnK2zbjEQFIyy53+jqIoinKUUaGmKIqieMU0zYVIDdSbiGDYAFxn21YCXGj7fR9wGZLa5+045UjEpgOQhdRoXWbbPA1YCWQbhrHby75TgceAHxCx1x64PMyX9AxSG7YMWA4ssj1m/1s7EQF6MjYxY3t8KxJlewTIRaJY/yG0e+iFwCjb/hsQkft/Pp7bD/jHMIx84FfgbtM0N9u2PQl8aktzvNTfZ+TEl4g5ySbbf/bX3BGYAuTbXvfbpmnOCOE1KYqiKIcRQ+uGFUVRFOXYxDCMLcBNpmlOOdpjURRFUUJDI2qKoiiKoiiKoijVDBVqiqIoiqIoiqIo1QxNfVQURVEURVEURalmaERNURRFURRFURSlmqFCTVEURVEURVEUpZrhrfnoEaFJkyZmmzZtjtafVxRFURRFURRFOar8+++/u03TjPe27agJtTZt2rBw4cKj9ecVRVEURVEURVGOKoZhZPrapqmPiqIoiqIoiqIo1QwVaoqiKIqiKIqiKNUMFWqKoiiKoiiKoijVDBVqiqIoiqIoiqIo1QwVaoqiKIqiKIqiKNUMFWqKoiiKoiiKoijVDBVqiqIoiqIoiqIo1YyghJphGKMMw1hrGMYGwzAe8rK9oWEYPxmGscwwjPmGYXSv+qEqiqIoiqIoiqIcHwQUaoZhRABvAaOBrsAVhmF0dXvaI8AS0zRPBK4BXq/qgSqKoiiKoiiKohwvBBNR6w9sME1zk2maJcDXwHluz+kKTAUwTXMN0MYwjKZVOlJFURRFURRFUZTjhGCEWktgq9Pv22yPObMUuBDAMIz+QBLQqioGqIRBbgasfFb+VRRFURRFURSlxhEZxHMML4+Zbr8/B7xuGMYSYDmwGCjzOJBhpAApAImJiSENVAmS3AyYOgyspRBRC4ZPhfhBR3tUiqIoiqIoiqKEQDARtW1Aa6ffWwE7nJ9gmuZB0zSvN02zF1KjFg9sdj+QaZpppmn2NU2zb3x8fPijVnyTMwOsxYAVrCXyu6IoiqIoiqIoNYpghNoCoKNhGG0Nw4gGLgd+dX6CYRgNbNsAbgJmmqZ5sGqHqgRF/Km2HwywREPC0KM5GkVRFEVRFEVRwiBg6qNpmmWGYdwBTAIigI9M01xpGMZY2/Z3gS7AZ4ZhlAOrgBsP45gVf0Q3lH8TL4bO/6dpj4qiKIqiKIpSAwmmRg3TNCcAE9wee9fp5wygY9UOTQmLPfPl3xOfhnqdj+5YFEVRFEVRFEUJi6AaXis1iL0LIKoe1FXdrCiKoiiKoig1FRVqxxp75kOjfmDoR6soiqIoiqIoNRWdzR9LlBfB/mXQuN/RHomiKIqiKIqiKJVAhdqxxL6l0j9NhZqiKIqiKIqi1GhUqB1L7Fkg/zbuf3THoSiKoiiKoihKpVChdiyxZz7ENIPYlkd7JIqiKIqiKIqiVAIVascSexdINM0wjvZIFEVRFEVRFEWpBCrUjhVKDsDBNVqfpiiKoiiKoijHACrUjhX2/iv/an2aoiiKoiiKotR4VKgdK+yZL/826nt0x6EoiqIoiqIoSqVRoXassHcB1OkAtRod7ZEoiqIoiqIoilJJVKgdK+yZr/VpiqIoiqIoinKMoELtWKBwJxRs0/o0RVEURVEURTlGUKF2LFDR6FojaoqiKIqiKIpyLKBC7VhgzwIwIqBh76M9EkVRFEVRFEVRqgAVascCe+ZD/e4QGXe0R6IoiqIoiqIoShWgQq2mY5ri+Kj1aYqiKIqiKIpyzKBCraaTvxFK9ml9mqIoiqIoiqIcQ6hQq+mokYiiKIqiKIqiHHOoUKvp7JkPEbFQv9vRHomiKIqiKIqiKFWECrWazt4F4vZoiTraI1EURVEURVEUpYpQoVaTsZbB3kVqJKIoiqIoiqIoxxgq1GoyB1ZCeaHWpymKoiiKoijKMYYKtZrMnvnyr0bUFEVRFEVRFOWYQoVaTWbPAohuCHXaH+2RKIqiKIqiKIpShahQq8nsmQ+N+oFhHO2RKIqiKIqiKIpShahQq6mUFcCBFVqfpiiKoiiKoijHICrUair7FoNZrvVpiqIoiqIoinIMokKtprJngfyrETVFURRFURRFOeZQoVZT2TEBoupB/pajPRJFURRFURRFUaoYFWo1kdy5kD0FSg/CtBGQmxH8vlu+gkX3hbaPoiiKoiiKoihHFBVqNZHNXwCm/GwtgZwZwe2XmwEZV8OaV0IXeIqiKIqiKIqiHDFUqNVESvfbfogASzQkDA1uv52TxIAEQhN4iqIoiqIoiqIcUSKP9gCUEDFNyJ0DTU6GlmeLSIsfFOJBLKEJPEVRFEVRFEVRjigq1Goae+ZDQRac+BS0uza0ffcugFpNofNd0HRYGAJPURRFURRFUZQjgQq1mkbWd2CJglbnhbZfUa6kPna5H7o/cnjGpiiKoiiKoihKlRBUjZphGKMMw1hrGMYGwzAe8rK9vmEYvxmGsdQwjJWGYVxf9UNVME0Ras3OgOgGoe279XupT0u68rAMTVEURVEURVGUqiOgUDMMIwJ4CxgNdAWuMAyjq9vTbgdWmabZExgKvGwYRnQVj1Wxpz0mXhr6vlu+hPrdoEGPqh+XoiiKoiiKoihVSjARtf7ABtM0N5mmWQJ8Dbjn3ZlAXcMwDKAOsBcoq9KRKk5pj+eGtt+hTMidDW2uBMM4PGNTFEVRFEVRFKXKCEaotQS2Ov2+zfaYM28CXYAdwHLgbtM0rVUyQkWoTNpj5tfyb9IVVT4sRVEURVEURVGqnmCEmrcQjOn2+5nAEqAF0At40zCMeh4HMowUwzAWGoaxMDc3N8ShHudUNu2xySCo07bqx6UoiqIoiqIoSpUTjFDbBrR2+r0VEjlz5nrgR1PYAGwGTnA/kGmaaaZp9jVNs298fHy4Yz4+CTftcf8K2L9MTUQURVEURVEUpQYRjFBbAHQ0DKOtzSDkcuBXt+dkASMADMNoCnQGNlXlQI9rKpX2+BUYEZB4yWEZmqIoiqIoiqIoVU9AoWaaZhlwBzAJWA18a5rmSsMwxhqGMdb2tKeBkw3DWA5MBR40TXP34Rr0cUe4aY+mKWmPzUZCbNPDMzZFURRFURRFUaqcoBpem6Y5AZjg9ti7Tj/vAM6o2qEpFYSb9rh7HhzaAj3+e1iGpSiKoiiKoijK4SGohtfKUaQi7fHMMNIev4SIGGh9/uEYmaIoiqIoiqIohwkVatWdirTHEGvMrGWQ+Q20PAeiPAw4FUVRFEVRFEWpxqhQq+6Em/aYPRWKc9XtUVEURVEURVFqICrUqjOVTXuMqg8tRh+WoSmKoiiKoiiKcvhQoVadCTftsawQtv4IiRdDRK3DMzZFURRFURRFUQ4bKtSqM2tfB8MCsc1C22/NK1CWDw16Hp5xKYqiKIqiKIpyWFGhVl3JmQWZX4NphZnnQ25GcPvlZsCyx+XnJQ8Gv5+iKIrindwMWPmsXk8VRVGUI4oKterK6lcAU362lkDOjOD22/ghYA19P0VRFMWT3AyYOhyWpsK04SrWFEVRlCOGCrXqSFkB5M4CLGBEgCUaEoYG3s9aDrkzASO0/Y4mulKtKEp1JmcGWIsBE8pLdfFLURRFOWJEHu0BKF5Y9yaU7IG+b0PpfhFb8YMC77flc8hbDz2edIi0YPY7WuTOhSlDJL0zohYMn1q9x6soyvFH40FIdoMBETVg8UtRFEU5ZlChVt0o2Q+rnoPmo6HTrcHvV3ZIUnMa94fuj4NhHLYhVhlrXwezTH62p2mqUFMUpTpRuFX+bXcDtL9Rr1GKoijKEUOFWnVj9YtQsg96jQ9xv5ehcAec8m3NEGmFO2HHRCS906gZaZqKohx/bHgP6naEAe/XjGuroiiKcsygQq06UZgNa16DpMuhYa8Q9tsJq1+A1hdD/ODDNbqqwzRh/lgwS2FwOuRvrv5pmoqiHH/sXwm5c6D3iyrSFEVRlCOOCrXqxIpnpGi9x1Oh7bfsMUkd7PXc4RlXVbMlHbb/Cr1fFlGqKIpSHdnwnkT72153tEeiKIqiHIeo62N1IX8zbEyTGoh6HYPfb98y2PgRdLoT6rY/fOOrKgp2wMI7JfLX+e6jPRpFURTvlBXA5s+g9YUQ0+Roj0ZRFEU5DlGhVl1Y9oRY6nd/PPh9TBMW3wfRDaH7o4dvbFWFacL8W8BaBAM+AkvE0R6RoiiKd7K+g9ID0OGWoz0SxR1t66JUF3Lnworxei4qhw1NfawO7F8OW76ALvdDXMvg99sxEbKnwEmviVir7mz+HHb8Die9CvU6He3RKIqi+GbDe1CvMyQMOdojUZzJzYCpQ8Fapm1dlKNLbgZMHSGLz5ZaMGK6notKlaMRterA0kchqi50fTD4fXJmwbzrILYldAzBxv9oUbAd/r0L4k+Bzncd7dEoiqL4Zv9y2J0B7VPURKS6sWuq1GRjdbR1UZSjQc4M8RUAWTjwdi5q9FepJBpRO9qsTxNjjfYpUKtxcPvYV3HMUil03/tv9V7FMU2YnyI31YEfg6HrA4qiVGPWvycr5O2uPdojUdyx1LL/oG1dlKOL87kX4eVczJ4O00eCiUZ/lbDRGfPRJHcuLLBFw7Z8HvyKS+bXItIAzPLqv6K47DHYMUFqPep2ONqjURRF8U3ZIbkeJ14c/OKZcuTY8w9ENYAT/6sTX+XoUqsRYEKLs72fixvfB9OKRn+VyqBC7Wiy/CnAKj8H+yUu2AaZX9l+iajaFcXcDFgxrmpD9Ju/gJXj5OcN72n4X1GU6k3mN1B6EDqkHO2RKO4U74Xtv0mks/ujKtKUo8vWH+Tf/u94PxcLd8i/RhXP1ZTjCk19PFps+wWyJ8kXGIL7EpccgBljoLwIBn4KhdurrlF0RYF2CUTEVs1K5e55MP9mx+92Mao3V0VRqisb0qBeF4g/9WiP5MiSmyHX56q6pxwOMr+W+0i76472SKqGmvCeK77J+gEaD4S4Vp7bSvMk+tv6Ymh0kn7GStioUDsa7FsGc5OhUV/o9SLsyQj8JS4vgVkXwYHVMGwiNBtZdeMxTVj+pK1A2/a3KiuosqfAzPMhujEU73HU0+mKkqIo1ZV9S2VyddKrx5eJSG4GTB1mW6iLqb4phZs/hQYnQsNeR3skladicbRc6puq63uueCd/E+xbBL1f8r5926+yqH7CPdI3VlHCRIXakaYoB2aeC1H14bRfIK4FNBvqfx/ThH9uFLerQZ9VrUizlsOieyB7cmjRPX9s/RHmXAH1ToBhk6SZt64aKopS3dlgMxFpe83RHsmRxcW9rppmPhxYDXvmQ++Xj/zfzp4CWT9C26sg/uSqOea2nxyLo9X1PVd8s/VH+bf1hd63Z34Nca2hiX6mSuVQoXYkKS+GWRdC0S4YOUtEWjAse1T6rJ34DLS9ugrHUwQZ10hj1xPug9YXQM7MygmqjR/D/Jug8QAY+of0d4ttpjcgRVGqN9lTYeOHkDDcZhJQQ9k1E3bPCe06XquJ7Qej+mY+bP5UFhPbJB/Zv5ubAdPHSFbIpo9hxLTQ7me+0huLd9t+0PqlGknW99CoD9Rp67mtZJ+UtnS6S12ulUqjQu1IYZri8Jg7BwZ/DY37Brff+vdg5XgpbO/2SNWNp+SApCbmzJDQfZf75PHKhOjXvAqL7oVmZ8BpP0Jk7aoYqaIoyuElNwOmj5bJeM50+b0mLi7lZsC04eIGHEqt8Y4JEFkXTrgXmp9Z/V67tRw2fw7NR0Fs0yP7t3dNd3JZLg0t8pU9BaadKT8727NbyyH7L1nQbHWeZpvUNA5tlRTpnuO9b9/6E1hLIemyIzsu5ZhEhdqRYs0rshrX/fHgv7yrXoIlD0CTk6HvW1VTM5GbIX3bsr6Dgiw4OR3aXFnJY86VqN+u6VI4e/IXclNSFEWpCWz/zWkyXlZz09C2ficiDYJPpzuwCrb9DN2fgBOfPMwDDJNdU8VBr8/rR/5vRze0/RBG37a1/8PD2Tl+EOz8Uxyc+7zuO3VOqb5UpD1e5H175jdQp534EChKJVGhdiRY9TIsuR8ShkGPJwI/3zTh33tg3f/k932LYc+Cyk8ccjNg6nCwFsnvJ71WeZG26TOYdz1glbSUznerSFMUpeZgmpLpANT4NLR9y2w/hPA6Vr0AEXHQ6Y7DObLKselTEUwtzznyfzt3FkTUga73S7ZIsPdh07R9Hoakvzl/Hhvfh5iEo/N6lMqz9Qdo0APqdfLcVpQrCwtdHji+DImUw4YKtcPN6ldFpAHsmQe7//F/oS/KhXnXSSqKnaooNC7ZB4vvd4g0IqC8IPzjFe2WRtYb3gNMx+O5syDhlPCP64xaFyuKcrjZ+j3kzoSOt0rxf0293uxbJhPEtteIkVMwr+NQFmxJh063Q0wT/889WpQeFOONdtcd+UXAohw5PzreFtwiqzM5f0NBJnR9BKLqOD6Pwp2w/XepC7dEHZZhh4Xeb4OjMBtyZ/s+H7b+IFFtTXtUqggVaocL0wornoHlTl/mQIIrexpkXCVNPU+4F9a/I/tUZoXXWi6rd8seleMaEaKrIsI8prUM1r8Lyx+XG2jri2HH75Ufpzub00WwmlbX3H5FUZSqomg3LLxDTAH6/A8sNfiWuOwxcRPu85pTul4A1rwi/55w72EbVqXJ+g7KC6HttUf+b2/6WGqNOtwS+r7r3pLPoXsqRMY5HfMTmci3v6nKhllpakp7hurAtp8AU+Y+3sj8RhZKGpx4RIelHLvU4LtSNaZ4L2RcLVGxZmfKaq0/IWMthWVPwKrnoF5nGDoRGvaUC0E4K1z2lbGourDhfdi/DBKGSD58WUF4x1yfBuvegJK9UivQdIQcr0G3qluJs5ZKEe76t2U1suJxtS5WFOUwsOgeuV4P+6tmi7Td/0jt8YnPBC/SinbL/aFNMtROPLzjqwybPpH7YuP+R/bvmlYx80oYCvW7hLZvwQ6Z0He+x1WkmVbY+IEcs17H8MeWPVVaFVRV9KsmtGeoLmR9L+dj/a6e2wp3ytyl++Oa9qhUGTX4zlRN2btIGlMXbod+b0OHsbB7nm8hk/WjTBYKtsoKW5/XHG6J8YNCv1i616HFNINTvpeCZfuFI5Rj7lsuonP/UsdjHcbKa3M+XrgX9dwM2P6LpJjsmAhF2VC7jaSabPpIxFtNrhlRFKV6sv0PSfvr/jg0rOGr38seE4v9zncFv8+6NyT9veuDh29clSVvo6SZ9Xz2yE98d06GQ5uh17Oh77shTaJmHW91fXzXdGmUfOLT4Y8rNwOmnQFYQ3P29EeddrYfqnF7hupAUa4Isa4PeT8fs74DzODTHjXdVAkCFWpVgf3LVponqSQx8dInrckA2e5NyBTukpqxLV/I75ZoaHdD+Jb2pXlykVjxlFMdmiE3ikQfzkTurE+T/Opmo6AwE7Z8CcW5ns/L31S5m6ZpQt56WVlc87KsMoI0hhzwgVgwWyKgzVV6EVMUpeopOQDzb4H63aFb6tEeTeXY9bdYvfd+WbIogqE0X4Raq/NDjxYdSTZ/BhjSaPpIs/4diGkKrS4IbT9rKWxMk/tY3fau2za8D9GNKuf0uPkzvDpJVoacWWBEigFGy7Or9n67czLs/ffYuI9v+0UEuD+3xwYnBvedyp0LU4ZoeYcSEBVqlSU3A6aNkObRmGLHOnSCiDVvHNoKq1+UurHyIsfjZnloF9zcDFmdi64vjpBbv4eyQ1IMb0TZvvzR0Oz0wMcyTRF4y5+U37Mny79GBDQeKPUb699yPN/XRcrfWLf/KoXTh7Kk4L1gm9uTIsQBq+VZjocqE6lTFOX4JJhV6sX/gaKdcNpPcp2sqZgmLEuF2Bae0Rt/bHxfDKaqczTNtIooaTYS4lod2b99KEtqr7s+FPr5se1nSYHrn+b6eNFuSYfseKvUgYXLgZXyrxGGQ+nWHyVNttX5ju9GyX7Y/ImkwPYaF/64fP29WRcBlmNDjGz9QaKPDXt5bjuUBbvnQs8g38NNH0srENB0U8UvKtQqQ2m+iJvyQtsDhlwA3UVaboZ8wfPWws5JcnNte7U0Fp13fWhGHGWFEoladK/jSx4RJxfZdtdJVMpfquX6NBF1DXpB+SFbKsZGGYMzdTrCmOUQaXPZanCivIbWF0HHFC/HtG1rdy3krZPePAdWQc5MW72ZzRkyqp5YHHcbISuL866reiMSRVGOT3IzbKvUZb5NEbKnilDpcj807nd0xllV7JwkrQX6vQ2RscHtU14Cq1+W622TgYd1eJVi/btwaMvRMRHZ+IHcp9vfHPq+696S9P3mo10f3/yZ3OsqYyJyYLU4K7e7Hup2DC1KlZsBsy+VReF1bzi+Gxs/kkXezneHPy5frH7J9oO15ouRkn2yyNz5Hh9pj9/Kv4lBpj3uXy7/hiO4leMKFWrhUFYghhernofi3YAFMGTlrelwx/PKi2HtG7D0IUcT0lYXQZ+XoXaS/B6X6FtU5WZA9hSo1VhSEHdNg93zSJ/VjdRvHyBrdwMSm+xn3H2xJF/2KADp6atIfWAuWTsjSWw+l3HPWEkeuQt2/U36l2tJ/bwPWbtPl/0uzSB58GqIbkR6xkBSP+vlOOZDzUm2izRninIg81vYvwLy18Pu+XBok2zLngwLxlIhygwLRDVy/E4EdHkQuj/iOF5ca01vPJ7Z+iPsWyppQvr5K5Vl+ROOxtXeJobZ02DWJRKh6fHUURlilWGa4uZbuw20uzH4/bZ8ITXUAz48bEOrNLkZ8K+t3m71C7KoeaSuD9ZSEWotxkCdNqHtu3+lLEz2ek7S9+2Yphyz8UBo0D38sa1+UerSej3vO2vHF1u/92yG3ri/iLb4U6FR7/DG5CuCXZQrKY+G7X2o6WJk229ybvhze2zU1zPd1Rv7lsKef8RNtHaSzn8UvwQl1AzDGAW8DkQAH5im+Zzb9v8AyU7H7ALEm6a5twrHenSxi6biPZD1NRTtkptHj//Kl84eUWrYUyafWT9I6kTpQaeDREDjPhUiLT19FakPLSRreySJLRcybnwcyWeVwb5lpH86n9R3GtmE03bGXTqR5LMN0jc+QMpH9SmwZU1m7m5IylMGxH0Bh7aQ8t9ICoojAYPMHSYpY/+Gm74HIOWDiykoiXbs9+ElUnxeVkDKW3kUFEc4tqXmwfYzSD55MenT25L67elk7R5pE3jPkTx4sbyGOb1J/fYRh8C7ZiHJd14vjkj1OsHexZIaao+aNR3m+r5qeuPxh2mV79Lyp2H3bMCQCUhNT4tRjh520ZL9l++JYc4smH6GTFbLC2Dfkpp9vm37SSbCAz8OPj0vZzYseRDqdoLmZxze8VWGbT97iooj9Vlt+9WWujg29H3Xvw2WWp7CefdcOLi6cuK4YJuI7PYpoYs0gINrbT84RXC2/yZRy94v+dnRD86lHxG1YPg0x+e07g0RNieny9+o6WJk6w+ysOwtCp+3AfYuhN4vBnesVS9AZB0xqgnWpVU5bgko1AzDiADeAk4HtgELDMP41TTNVfbnmKb5IvCi7fnnAP93TIm0LV9CxrWOVMOGfcRJMeEU0t/9hdTHMm0iJpNxlw0l+eQFEgVLvIT0v08g9cV9DiHzdFeSOx4g/ZM5pNy9koIiAzDI3FZMyk1/+BRVN394GQfqFzPu/agKkWanoNDk7tSN8nOxa+57QUk0t39yAZhUHK9iW3EUtz20FQMoKI712Hbvh4PI2l7O0z+NoLDUSeB9cDHEnwJ12pHyUantNdi2vX06nHQiycliXZs+uT6p/3mCrGwLic2sjHuxPsnJKMcjJfvFanv922ImE1EbMACz5qfFKEcP04RF98HaVyVVrd21knLtPDEsLxLzEPvk3yyr2eebtRyWPS424W2CNNqwT6qtJbKAuHte9X39e+bbfjgKaWHr35HFVPfUxUCUHpT0xsRLPZuHb3gfIutWrgnymtdkkavLfaHvm79F0mRbXyKRM/t3Y8pQyeppdV54Y8qZ4ajPL3e6hpfmwbo3pRSkzRXhHbs6kT0Fdvwhi/F+0x4vDXys/C2Q9Y2kUKpIU4IgmIhaf2CDaZqbAAzD+Bo4D1jl4/lXAF9VzfCOHBLdmkrW9iISW8Yw7skeJA+cC5lfk/5HpGuq4V1lJLdfSvpbX5PyXAsKSuTLJiLmQuh0J8lXdSf9yzWkPLGNgiLH9pvvWsX2Ga/w6p9DKCiq5zKGgpJobvnwYsqtBkWlUS7bCosjuP3ZOHyxJ9+3W+SBAt+1CwcLfRc15xysyyPfet6sCkqiue7plhhGEaXlrqdQQRHcPfY7Wm/8kUWZSaR+MYiCEnktmTsjSLlpAgDJyV3lPf/Pb04i7hyHwEtfRWrqbLKyDpKYWI9x406p2KbUIEwTNn0q4mz/MunV02QQdH9C0s9mjNYaRSV8TCssuB02vAud7pL2JoYB8YMdzynNg5nnSUTDiAKsNf98W/G0mEr0eDr4/m87fnfUIodqXnUk2TFJxtY+RVIPj2Qk5uA6qUPqOc41dTEYNn8BZfnQ6XbXx0v2y0S+7TXhuzqX7IcN74kQqNM29P1XPS+lCH1ecRiz7FsiaZq9Xwy/h2DjflSUNkTUcnynNtQAs5pgyc2AGWfJd2bbL/K78/mYmyElLvV7BNePcM3L8lmc8H+Hb8zKMUUw386WwFan37cBA7w90TCMOGAUcEflh3bkSE9fRcrNf1JQaKUiunXbXIlu1e1CyocnuaQF3vR0KUv/+YOPZw70EqWK5Kb7t/H66wtYvKUlZVbXi31haRQPfnOOz7EcKo7yuQ1MGtctYk+ep/Bq0bgQwzDYvttTeCUmiNlJVo7nfklNDgAmmbs9V3YS6uWRe7AOJp4rSGVWi89R7smvzZAnrva6raAIbr/5B/5Ke4qv5/aiuExOQRFxf1Q8LyVlMgUFEsHMzDxISoo4UVYIPB8i7nBsUwLgXKPQZKC0b9g1Xf7bOQlK9sjzjAgY8DG0v86x7/CpWqOohIe1HObfJFHarg9677VVvAemj4Z9i2DQF3Iubv4S2t9Qc8+3bb+JSy/AqvHQbETg12Ithx02N9+jEaUKlvIiWHiHpGb2/Z9M/o8kG94Tm/p2N4S2n2mKM3KjPp6Nubd8KYZjHcIwJrGz/h0RgV0fCH3fgu3Sk7Td9a7umWv/J0Zk7UOob3Rn9zz5t+NtEtmNHyS1+WvsZjVep4qV50j2H8ue6rTA4RaJd+5bW7zHU8S5U5QLGz+U9yqu5eEdt3LMEIxQ89Ywy/TyGMA5wBxfaY+GYaQAKQCJiUGsPBwhUlNn20Sag4KSaG784CrKrVBW5rqtqDSKF/8Yji+KSqNo3LoTZZuKvG43gCbxMeTmem5PSqoPiDjxtm3cuLNIuWmCS/pjXAy88LpY5jsEp21brIXxr/jeNu61K71vizF55bEGpL5SQuZOz5XFpCb7ZZxeBF7zBgf45JZvOfP5m/B2+hwojOHTmX09Hi8oMrjumt+wWKCkzPVvFhSUcc8901m5cg+vvrqQoiJJYXIWceBb4IW7rUIYOkdbnxsRtMA75gVg9lRZbbSWyCphdBMo3iXbYprJzahkLxWXjKKdrvtrjaISDjmzJJJ2YLnUCXd/zFOkFWyXmrS8jXDqT1CwFf69BzDhwDJo0KPmnXtlh1wNm4JNGV7+JOxbCF0fll5r1XVhZNWLkL8Bhk0+8iIte4ZE/hNOg9hmoe2b87e4HA/40PM8XPs6xDQXARMO5UVyjOZnereFD8TqlyQa5BzdKsoVAdn+hvDT70r2i3toy3Ohn1P7ni3pULgDBnwU3nHt+BJjuRkwdShYy46M5X+Z01zMiHSre53h6FtrWgN/F9e9KaK9y38Ow0CVY5VghNo2oLXT762AHT6eezl+0h5N00wD0gD69u3rS+wdcbKyPEURQHGJ1evjINfi5s1rs2PHIY9tSUn1mDgjhTZt0rwKrsQkmbA7iwOAuLhIxo07BcDnNvskP/WBiWTttJLY3MK4F0a7TP59iYqwtjVf5UXgGYx7rCMUbCflyVIKnKKAcdElvJiyhjPO6knSJ8Vk7vIS4WsVx9bthZhezoAyq6Wil6c7u3cX8uyz/3g8XlBQxjXXTMRigbIy02PbTTdNAqgQd87bxo79C8MwXN5r+7b/u/M3lk35kde/jKa4RJw9M7cVc9ONf7Bt9VKIiOHJFzZTVCQDzsw8yM03T8ZqNbn66m4Sqa2MAPTzWR2WFUVvxzRNSWHZ+afk6Uc1lPTFg2uk3YRzPzyzXGozejwupjH1TpAVV2czmapaxT+SK6pK9SLzO5hzOWCVVMZmp7tOju3tULaki7A57ReJ7K591fGcmlgTaVph7tUyCbZEy/ctmO/U9gmw8hmJqPQaf0SGGhb5myVCmHgJNA+i/2dVkpsBM84Q84vcOYEjI+77LrzTVoN2ueu21a9KuxoMmDYyPFGx6VMxLwsnjbAoR6KEba5yTZnc8J5cxzvdFfox7ax5BUr3w4lO7qnWcnHpbNircmY1FW02yj3F2M6JjgjX4f4elxXCxo8dv5tuk5PoRrYfbK7f/r6LZYdEqLU8N7iG2DmzpRWD3uOOewzT22zZ+QmGEQmsA0YA24EFwJWmaa50e159YDPQ2jRNT/XiRt++fc2FCxeGO+4qxZegSkqSGjJf23yJrbS0Myom4oG214RUPL+C4t1fSH1svqN+79Z9JA+YCQdWkj6nt4spCoiQS7vpe1K/P4/MHM98/aQm+wBfkbqDZO+v6zUVU1aYvT1emW3hE1urnOJSC1ar57Gb1M3n7jNnM/7X4RQ6vze1Skm78x+wRJHyeh+be6d9Wzlpjx4k+RwL6b8UkfpGtOM9f7AJydcNhqh6pP+4h9TUDLKyTRKbGYwbN5jkS1vIaq61GDZ/BbumQOMBUsdTlic1PAdWweZPbWYLhvToKT8kEwRrqesLiIgTi+m6nSEyThp3WsvlRuVtIhKuqLLvF3+KROfy1st/ObPE8Q7Td68spebjft6UHoQV42DNS44JkxEBJz4N3R527DN1mJzrAN0eE1vyg6uh1QWy4GBfNKhp583iB2USfNKr8v0N5juVvwX+PEnc6s6YF3yvtaPB3+dKC5qz1xz5BtdLUkUkguc55Q/n1DcjEkbOdHweZYfgp1YiZkI9rh1rOfx+AkQ3gDPnezey8MeSh6U+7ezVYjwDYvrxaxvpjTrsz9COZ6d4D/zSVqJ8p37neNze4Hrw15UzTll4N6z7n/zs/r7Nvsxm3hHh+55TVax+CRY7Rb+cx2Ka8NdgqWvsfKf0h/U3jrX/g3/vhtPnQPzJ/v9uzmwRqnqPO24wDONf0zQ9U80IIqJmmmaZYRh3AJMQe/6PTNNcaRjGWNv2d21PvQCYHIxIq25UOrrlQ1AFs92X+PK37Ujjd5xjzyP5ogTbpOFsx8WkYAfJA6dA3I+kftLNISruiSD5wiuh9hxSXu/nKuJiJTrI3sWkPJLnIfBevPJ3Ur8d7VXEJcXngVnufZufOjy/KZxNY8jOKfIa+TNsqUe+ROPtI2fx0h9DvGyD3Xl1eOz7UR6PFxRHcc3LcgG3mha3bRH85+VIrNv/YOxHF7q2WUgthM1iJe0QxgaZOyFl7HRY+H1FO4UK9i6A9W96HZ+IVxOajRSBtH857Jhge9wC3VJde+E1PMnRniLYm4m1TGouds2QSF2d9uKUWrQLinOkH9HOSXgNr1pqOR6viZERJTDbfpMJnz1qdMK9sOlDOT9ajJEJvbXUNaJUlAuL/s8h0kAiSbEtYNgkWeGvqZHYDR+ISOt4qzQmNozA4y8vhtmXyHt46g/VW6Rt+02s4nu/eORFmmnC7jm2X0Ks39s13Sn1zXS9Fi17XESapZbUNoWTUbDtR0kFPeW70EVa8V6J4CRe6hBpAFnfSfuByqQmrn5Rrt89nnQ8Zpqw8jm5lre+KPxjmybkzrT94vZ5HFgt95qW50n92+H8HpcehJXPyj2wKNtzLFt/hN0ZMOCDwHV+1lJJE40/JbBIA3l/9R6n2AgYUTtcVKeIGqjRxGHD2RLabRU7/ZlHSH3dcIi4m7NIfuo9iIzzjNRdOpHkU1eTPquL9yjd/y2HZiNJeWh3hfGLbCsl7ZlaUP8EUu5a7rathLQ750GDbqQ808Bz203fk/rd2WTmurpzAiQl1hFhuLXQc1uTfWx5fTxt7k4lc3cDj+2BI4MQapSvQR1ZSNif77n2khSfx5Z300if2oLUb0e5vqeDF4OlFulzepH69QjHtutXk3xtP7BEk/7lOlLfbeLYdks2yZe2lAlgfqZYDZvlUqPW/EyIqi+T5fJimVjvXYTcdAxZGS4vkjx9X1hqySpi6QHHY60ugi7/J5G+vA22qEkpWKJgxAzPGgZfk/FdM6SursUYvfFVN0wr7JwMG9Kkj5Z7KXSTQdDndXGac/6MG/UW6/KV4yWK4SzuGw2A4RNrtg129lSYPgqaDoehfwTv0LfgNjGhOPVHaH3B4R1jZSgrgD+6SXR+9BL5Th9JMr+FOZeJCI5rHdrkf+njsPJpJPXNKfKxZwFMHijOlW2vCW9xwDRhUj8RDGetDt2Fcvl/pTZx9FJoeKLTMQdI3dVZq+SaHSpFORJNa3UeDP7S8Xj2NLnX93sXOt4S+nHtZH4jqc1dHpD7hfP7Nn20iKNz1ofXSy4Ulj0JK/4LREDLMXL9sY+lvETO2Yha8v4G+mw2fwEZV8OQ36Dl2f6fW5gNv7aX+6Rh1MzovxIy/iJqKtSUw4+/ouBpI+SiZyCT/bhW4t7W5krY/Y/s17i/WAmvfgmKsm1Ntkd7Cg4gfcFwUr8Y6NSAeynJff6AiBjSl11OaloLpzYLVpIHzoHc2SJUnI95byzJF9Yn/YulpLzQzlUYxkDaB2MA7wYtaa90JHnoJtK/WkvKc61c961VRtoTZaS+biFzl2eTWkn9tJC5u77HtiZ1DrE7P45wUjV79mzCyhU5lJU7bsy1okp54OzpALzw+zCKnVpC2IUq4DN9NXnwMtLn9HQVf5dPI3n4dklJsUSTPqUpqeknO7Zfu5zkixpCRBzpP+4l9cMOjm237Sd57PkiHN+fROrrOLbdWULydf1FnB1YDauek1VqIxLaXic37fJCqXPZ8bsthdMi7nGUS+F7yT5HL8SI2NBufv7EX02N0lQH1qdB5pcQ1QD2L4FDmRDdWK4D+5c6ntfuRhjwviOqkJsh0QyzFDZ+BAVZUhdTuMvJsMYQm/VQUs2qGwdWw+RBYspz+lyI9rwueGVzOmRcBV3uD74J79Fi6WMS+RwxHZoOPbJ/uyhHJty128IZc0OzqS/YBn90l55riZeKkI4fJNeoP/tC8W4RQ8F+Zu6sfQP+vUsES+/nQ9u39CD80kaMUU772fH4+jRYcAuccB+cFGaT60X3wdrX5LU5R+qmnSEtWM7bIqI1HMoOSapnrXg4c4GrANo+Af4+C3q/DF3uDe/4wVK0G35tK3WHZfkiDGObOravfRP+vROG/CEizh+mCRN7yj1pzPLA4njOlRI1HPSZOCjrfeW4QIWaUn1xnuSaZZK6tPdfaNRP0glK9jqtYhXJpGzxf6C8wO1AhkRi7Gkodvq9JyvwG9KkGal9PyMKRv4txy3Mhvm3wvafHfs1HQGn/QRRdUl//llSX8p3FYZnlUGnO0jP6EfqI7N9mn54jQwOXkL68stJebUXBcWOi7ZDHBmkfHCR99o+H6mfreMLICKWrdmeIi4uLpLSUiulpb7NcbwRYTGJsJiUlHneWJrWP8gDZ03n0e9Hu9bZVYi4xX5rFMG3APS3zX5cD6F+ynIR47O6k/r1cCehvpjkC+tDVH3SfzpA6gftHNvur03y/fdKGqZZBhs+hB2/Sa1B6wvlXCovlvPx33tswjBC0vBiEqS2L2+drABjBSMaRs4ITcgdjyKvrFAaGq94Ruol7cS0lL5Z+5fK5KgCC/R8xiG4cmbB1BEi0kBEnrVUairjEiWty7Qe/vqVw832CSK2AEYtkvcmGDanw7zroX5XGLUw/B5ZR4LMb2HulXK9HT7pyP/92ZdKb6xRi6BBt+D3M02JcubOhjHLoG57x7aVz8LSR0QghdtIOncu/HUqYA19UQmkLm3JQ1LX1rif7Zhz4K/Twj8mQMEO+K09JF4Ggz5xPL73XxGnvZ6rXO+0pakSGT99tmsvRGspTOgh7/uY5fLdPpwsuh/WvApYPV9TyQH4rYO4xg6fGjgl1S4wB34C7a71/9zsKTDtdOj+OJz438q+CqUGoUJNqTmYVkkTWHQflOzGI6UEYPkzsPwxxz4RcU4CLMIWTbFRux2cs0bSaZY9aes/ZDvnE4bA0IlSu+EtuleridhZNzwJ/h7jSN/sfI84T+1bIpPEFqNlxbvVhd5vfM6T8VqNIfNryPyK9ImxroLjqb4kXxQP238h/eO5pH411FWMnL6P9EVnkPJCG1enzVqlpN21AA5t8RQ4tcpJ+/Acrr56gvdaO9s9piovAxEWaJYQQXZOOeVetGHtWAOLBfIOef7RhnUkJXJfvmc9TfOG+Tx0wXwe+uIUT3F4y+9gQkra2Z4CL+UXME1S3j8/NPFnj9KGsu361SQnd5Hzxywn/adDpL7T0Cm9dzvJY4rALCX9j0jXiOLT/UkeKxO7GpWK7U9sWsth/u2w7QdZnbYWSjqsrw4vtRrL96hBd5lo2r9zQ/8UIZb1PWz5wuH6BoAhxgUdxkoEYfe8mi9+t/4sNXpYZQFqxPTgXsu6t2GhreFyRAwMn1Z93wMX4XAUxpr1nQi1nuNDj7puSIP5t0Dft6DTbY7HD66DCSdCy3NcTTZC5e/zYPuv8nOoJiTZ0+Hvc+Q7dOY8x+PTx8h9K5xj2ll4p6TTnrMO6rSTx3IzYH6KRH8u2BF+BDFvI/zRVaKTJ3/uum3Na7KIO+R3aHlWeMcPloJt8GsHEbO1Gknk0LlVhF1MjlooffMCMbG3vDen/QZNT/P9vPIiOXdMK5y1IvyopFIjUaGm1DyW/1f+s7sy9ngKejwq25xFFVbAIjf43Nnys7sBRcPe4kJVvMdTjNXtJMXACae6TjgtkbD0UcieDLEt5bHiXdD6EuiYYit4ngPLnxBjA5A0vOFT/V+M7ZimpLWse4uKSWvTkTDkF6nVqOgVY5+QRkh6X1E26XP6kPrtmZ4RvvY3k/7xbNfJ/6UTSb60FW2uOoPMbd769vlxNm0dB5ZIr9sSEmLJyfFVZ2Zy42V1+PCbI+crVCuyFIthUljqudJaN0Zed16R542vUe1DXHHyYj6YPoDiMof4jYkq5ZHzJNoz/peRFDmlhcZGlfDa1b9QK6qc2z6+0If4W2qLKHrZPvZPIIKUd0/3FNUvJYElkpT7s1xTauMiSHt3mDiCpvzl30n23u/IyokjMaGAca9c4irw7v2BrNwYEuOLGPfKRa7b/vMbWdkWEptZGffiOa7ib/GDUjzf8jyZ3JXslebRObNhyYNU1CDW6wbl+bK9rMCRauqMJVrOf3tEzE6TkyUiaa9R+vc+6fUUESPF/O7Rcjttr4FBn3rfVhPZ8rVExOyvN5hJtWlKOtqi+6i4noQ7GT8SmFaYNFBMjeDIj7Uo15bymChumKFEHfM3S3Sn8UAYPtmRymZaxQFy3xJxWYxtHt7Y9i6SOjLTGnqNUoWtfamrwN+3RCJedsKpezq0VSJJba+RNGT73/Plehkqf58r6cxnr4W4Fo7Hi3Lht47QZKAsrIZqqhIq88fCxg8cJjytL3RsK9gmY2l1IQxOD3yslc/B0ofxuuDsjr2m0G58pBxXqFBTah4VYqwIMKFRXxgxTZq12rfnzJBo19rXxHa72emQMxeszgLBkP8s0dDnVbEkzvlbhFdZvqwEHtoCHW+Tgvs9C1xX4nfNkFXEAyvkd0uMjMO+feWzUmOBLYoX0wJG/CVpR0G/RifhGNtC6mraXC3pYTkzREzumippn9ZSWeUr3u04TqvzJQXvwCpprFq0C3exmj6nNykfXuZqmGKb4IOXWrvoEtJu+hEa9yHlpU4UFJoe+6WmzvYu8JrsZ8vr42hz9yM+nDb3AYZXo5VWreoAsG1bvse2JnXz2Z1Xm9Br9MIzaAmXCEs5zernkX2gLuVWzyLzCIucK1W5rX5sIRf2W8aXc09yEZyxUSWMv2wCAI98M8ZFyMZGl/D2dT8SFWEl5cMQU02DiDb6pPEAaNgTouqJE5r982l7rZzXeRvkO+ns3ggQ2wqajZDvyOqXbZNRL2YyNZWSA7DwDokY1usG+RttrzHApLo0H/65SUx94k8T8VOdWxCYphidbHhXJveYR36ssy8XR8VRiyTyFCx2MbZ3kUQ9aic6tm34AObfDP3fhw43hTeukgPSTsFaAv3SpG4zlMjwv/8n90NwiN/O98CkvlKj2//D0I8Jcq/69x7Y9y+cu1Hq8sAhLgCIgJ5hiu0dE2HGGOj1PHR9wHXb/Fth4/uSYhrMfbUy5G2A37vIedlkgAhdZ2E47wbpz3j22sCpyPmb5Vj265i/xYiD62FCdxGFg7+qspej1BxUqCk1E7sYKzsk5hENe8PQCZ5uT6YVlj8laY3RDWU1305UI1ktLd4NWGXVPmGIpKbED5JJzrLHbDc3m6hzb7C5Yrw8xy5+2l7ryM93drU0IiRdorxI8to73xW4cNilRq8cFt8nAq1BT2h/g7x2+021cKdMUNe94Zr6Fd0IBn0u+y99xElURklB8tZfIetrT8MU91Q75155T/Yg+aQJsPFD0qcnOe13gHFP9yN57Hm++wS+N5LkUYdI/3AGKU9Y3dI0y0gbXxcKdpDyTB3PbS80g4Y9SblluqtwjIG08XGkvphH5k5PoZKUUAgRMWTu9BRjSQmHwFrqVRi2bLifHfvqe3Xg9J8W6k/8mdx4cSQffl/uZVvgfcPfVrVCtEFcAdedtpB3pw5yiSgGrCVM+YXkIeslJbkwB3CKnBnRkhpVXii1anh7jwz53jinMCcMg5HTHL8fa7V9OTNtzay3Q/fHpAXGngWBX+PBdTDrQukT13O8GE9U59RP0xQxuv5tqftpea5j4exIjTXrB5h9MZz4DHRPDW1fey+sAR/K9dlO4U6ZlDfsLQt54UR9TFPGte1XW/10EDbuzpQckEhfwVZceoxlfiX3jHAjNf6iZjPOhh1/ABbP+2awlBfLuDE868/2LYM/e0PH26Hv/0IfeyisT5MMmaIcwCoivlFvx/b9y2FCT6lRDmTEUl4Cf50CB1bK/MTfgotpwvQz5L5/9prwI7FKjUaFmlLz2fYbzLlU7JOHTfa+mrVjIsy62M1oxCJFvxGxsMcpX98S7boSP/9WWeG17+NsXuCRaonYhHe+07HdPjGq005WVbf/Ji5gAz92XXUNhGmKOcWi/7P1bvGSMmF3SbMT1RBK90HSlVC7jYha+zibj4ahv0uEYvoYyFvr2K/l+TDkJ//jKSuEjGukabCdjndAvzeAwPVSXs1UTlsDiZeSPrcvqc/tdGy7YjrJAzMgIpb0FVeR+kEbsnZFkdhc+utVNJF3j/7VKiftjllQuMNTOFQ4dJqk3PiHV/MWn735/ET+klrVArOMzO2eQqOiPcM9j5OZW9dze/NysJb7dv20RHtvBu8nTTUxsS5bt+aFUWsYXrQxwiLvf7nVcyGidZODZL3/CRgW0v9KIPWb0z0jbkaU/G3n1Mh63WDob3IOb3hf3Ons9HtPUo6PNXbNhOWPi1ip0x5O/kJSvAKRmyFiZ+uPkio9+Cvpe1idqUj3fhO6/EeiJ4c7jc2d7ROlt1xcS4mIhdIK4OA6mNgLmg6TWilnB9L5N8v2s1ZCvY7hjW3N67DoHuj9EnS5L7R9TasI9u1/QJ//Sf+2hKHS4mTGaOm91+e18MblK2q26VOYd5247tbrFL7YXvWCpE8PnQgtnPqLmiZMGylpm+esl0ySw4XdDdNOk8FwxmzH77kZMO9aMR47PzNwu49/74W1r8Ip30sGgL+Fky1fiaFO3zeh0+1V8WqUGogKNeXYIHeOrOBFxkKvF2Tl0P3it/g/YuMPgAXaXiXCp25HWaE/uNrx3LbXwaCPbce2izFb3ZW705NdjDXuL6uT236RVb4+r3nWN5gmbPxQxJZhkZukJUZu8MHeyJY/Lat79om0swtUxViLqSjEbz5abOktMfIazHJk8m2FFjbHqWWPOYlRG71eEAtvfxMm97+HBbo9JCv/wRQ8OwvZiGiZhG9Jd3L2M2TCNGwKUCYr3plfSw0UyKR+2GRoNhTwEv2zO20W7iL9uadIfbuBk/ibQfLNZ0L7G0j/7F9X0fjfPiRf0pz0j/4m5QnT06Dl6SgoyiFlXEPPyN//ekDttl7aMxikvdBc2jN8m0XK82082zO83BbqdSXllr/cooYmaY/uh0NbSXn5BM/9nq0PDU4k5Y4FXmvUfKai+qtD9CMMW7euy7Zt4Yg/uOiijsTHx/Hpx4spdBbHtaykvX8myVf39JwcuYux9WmORurHmkgrLxZDghVPA6ZE44f9GZzY2varrRl4GWDY6miqcZ80sIm0e2Dd/8QavveLR16kZU+BaWciBi1uKeyByJkNc5MlffDsNY4aKueaMGcn4VDZPR+mnCLX8dN+Dv29WTEOlj0KJ70GJ9wtjxXlijlFrcZidR9Ow3O7WNo1DZeoWVQ96fHWeAAMnxJ6jzc7234V4dyon6swAkd91wn3wkkvh3f8YJkyTO5RdhKGSL0suNaLB/MZb/sVZp4Hne6Avm/4/7s7J8t3ObaVbeEgzPdRqfGoUFOOHfavkItqyW68plvkZsC04bbaNkP6nEREiYuWJcq1iXJMMzhvs0Ns5GbAzkniBpa/AU77FVqc6TkGa7ncQFa/KA2eB3/j3ekqfxPMPF9SJoIpJnbGXRzV6SA3COcJQs4MqN9NhGnuLEi8BPavgoMr5TlGtNws1r8pfWm6PSLi0VpKhYgDaf48+Cu5+fobT84MaHSSiKhNn0C9LjDwo+AiAO6U5kukbptTRK/rQ9DrWfnZPd00sq6I5/Y3ujpweRuncypqg55Ss2NYoPkYqa3IWwetL3aZ/HtG/v4kefAiaDpCevO9fMhp2ySSB/8L9bqQvvIaUl+PICsbl8ifz+Ne9hfJJy+QdgErriQ1rTVZuyI99vXY78qZJA+QiUz6v2eQ+lnf4FNRfdUhxkDaE0Wwfzkpr/Z0FYaxkPb+mLDEX53YcurWjWZnjvfUz6SkemzZkiKC+4GJZO20en3vjkkOZcL6d8WswLnONBgzjQOr5bu++ROJoAS739Emd64soO2eC53/TybdR1qkFeXAhN5QtEN+D+V9y5kFU4fJ4pdzJoZpipX6rqmhH9OZ4r1Sl4YBoxeF3px9x59S35V0hURkDUPGNusCyTI5c77UhIbD8qcl4tvxNultmDBUMlQm9ZcSg9GLw0/Vy82AKafa3lc34bztd5h5LmCG30ogWMpL4fsGrpk4zr3rFtwu0WsI/BkfyhSXR3tfvkD3qimnyYJLKM6uyjGJCjXl2GLxAyKSAK8FzLkZUpC/4X2x6x72p9RtTD/Ts/9a4iXiCOlcS1ayT3LyD66VfRN8uDhu+AAW3Co3sMSLvdvz21c6AY+UykDYxZElRm6W0Q0lPcS934+1TETNqudsZiI7Xf9e81Ew5zIxJ2hxtkTcWl8M0Q0g42oRNbEtpdF44bbgUlh2TBIjloKtYqdcv4v0Hwu1QN3ZMCYiTiZxHVKk2XmF4IqUxqr7l4nQ6v6YGKzkzg6uN1n+Jolwrn/XUb/o7cbovF/tRNj0sUyoD2U6nmOJFgFfkAmbP7c5jeL7mO7HbdgTsv+SiOzWnyRFCWxRw0nQbJj3/ZoMFMG/80/Y8J68JjttrpaaScMS2NbfWyQSSH/2aVJfKXJNUTy/DukrryElNT948VerjLSbf+GKAf8QefXzXmv/AFJSTuTzz1dRWOjHvbI6tSCoDLlz5FqRtwH2zJXHWp4jdXdLH/Zt/GH//KMbwY4JYtceESsLDjv+CM5o5GiTOwemDHU0pw+n9qqy5G8RQVWQJb/bBVcw71tZAUzsA3lr5Hf7RL3rQ5Kut/pFeQzC+yxMU6IvO/+E0+c4ep4F/do2iZtjXGsRBpG2yPiG9+X6HE4apR17LV+bq8VV1S4AM66V++vwv8TcJ1xmnCNZIOAqgEr2S71fUbbntsPBpAFSH1aBIYZe3R52vL8l+5GFYT+fsbVU2k0cWCmCu24H/3935oWOhcqasOCiHFZUqCnHFrkZssJpLZYL3MhZ3i+cGz+Gf26QeojeL8hk/R+7G5eTYUHne8QR0pmiXElpKdgqqR1NBngfy9o3pO4CvKfTuKdU9nxW0gZDZe9iWTUtL5TUmKZDPZ+z/Q/pC+QsRu3pZKV5Ur+XPVket69S1mokjVsPbXHsE+zqXmkeZFwn7mkQejoROCajdTqIANk1VRqd9k+T4nhnobJzsgjSvQvwafzijxXPwLInqIjSNewtKZUxTXzvYy2Xc2bzJ47Hkq50rFwv/o+rc2H9HlITGExd4opxsOxxx3gia0OPJ6HjrY4JlzdcBC7yt+t2ghP+T6yzI+MC/21fx7SWSOS5/Y2yUp+/kfR/TiX1m1Fk5UR5Cjxv4u+KjpA7lza953k1frFYDKxW7/edxMS6jB9/qs/IYI0QcaYp4j53tvR92/4rDmfLa2RCZj8/fJmi7PhTJvB206CoehKN6nS7mCnVBDOVvf9KJkPhdvn9aExG968Qo4ayQhj6B2AE/74V75FU+z3zbDWVVhFjw/6CzHTpJ9bxNmhzpZjBhPNZLLxDWrR0/j/o80po+5YVwOST5VwbtdDRdDvzW5h7lWQTjPonsKGVN/YtgcmDxSV55HRH1on9HtrjSejxROjHtbPxI/jnRk+R27CnfF6754mwN8sO72JExnWw+VOkrY+Jixir2xH+OlnOg35viYujv8/YvoA8+BtIutT/362Yi1hCb8GgHJOoUFOOPXIzJMqUPcX/hdGetjD4a1kdW/ooFXVWEbXlIll2EHq/DF3udd23YLukJhTvlZtVw16ex1/5rNMxsfV7e8xzrNmT5Qaav1F67/iK0vnjUCZMHy3H6PaIXNw9avQehNUv2H5xi+CtGG+L7tkcAk98Bro/Is6Sf/SAQ5sdx+kwFvq/E3hM7q+/y/1SfxIOpgmbP4NF90JZnqzk1m4jdTv211ixomtviOr0OgLhLEawrQ7XaggnvQptkn2nY3mYyZjQ6jwp/j601fWYhkUmH10flAUCf6LJJU0zUiZFexdIo/UT7oPGfT3bRTjvmzMD4k+Bwh0iFvcukHqUludKOlKLs8MTzfa/Z1oheyqsHCdmFyDjHDYJmg0PeDivxi/RJbx3xzyuefU0n7Vv0dEWSkqsHo8nJYkoC1fEHTaBlz1DFiss0SJKcmdLvyWQRQ9/9twVta/95PzaNVXqgfYtcfoDFujxeOUmxkeSkn3SFHj9uxK1LzsUWhSrqsidCzPOku/gsEmh2fAfypQMjPwtMPhLyVTImQFNToFNH8h1qssDko4drsPjv3fa+mgSenpf7ly5t+1fIk7ILUbL45nfSfYEZngLZwCFu6T+DFNq22KbyXma+bXUOMefKu9nuPVUmd/C3Cukb2i3RyQlNmGoNI+eeb5EF0/5Ruq2DudixOpXxGUZi2Sr9HvTIcYa9pTavL2LYIRt8dAXuRnyvmz+LLj75saPRKQ1P1PuE7szqveCi3JEUKGmHJtYy2RFMX+juG3FNvN8TnmJ1KztXQz93hXzAnuq0Umvw8LbZHJbtAtO/graXO66f/4WEWulB6Hd9ZLm5zViZqslS7xUbjLeKN4jlr2FO+H0WZLrHyr2tMx9S/Ba9+YewXNu2Omeauh8U/lnLGx8z/F3Wl8Mp34XeDwuIqZc6v5GLZB00HApypEV4ey/5Hf3SYz762g6HIb86j8K5Txe+80/qi78c7OsmDc7AzrcDHnrAwuj3fPE6MWIlJq6Bj2lRjBhqNQQLn4Asr6FuEQRrXGtfFuQu4uj3AwxmNg50faEIGsbTVMEwtJUGQt4OpuGi3uvwKgGsvDhrX7TDdeIWy3G3RtJ8gnv0+aaMV6dNuvVi+bgwRIvRxLi4iJdRJqdQJE4ILDAc48MXtkFyotI/3wRqY/+Q9bOcmkGfmextB/I3yTp0XbTG4DoJpIOlnCqnCuleTYxbuv5NnyaONbmbZB62NUvujpfWqKlhUidDrIYcbgjClWJaZXJ6uIH5D3peIcYIB1YfWSjf7kZEp3P/EpSpX25BPti/3LJMigrkOtKwqm2xbapkDNdhHSPp6D7o+GJtLICmahnfuV4LJRoo4uBiZNdfm6GiAt7RkU4EczyYtv9ZTGcPltqkt3vKaf9Dq3OCv6Yzmz/Q8RYk4Ei9uwLWaZVrvmZX0k2RYebwzt+sOycLJ8xyP1l5N+yMAaSRTH7YklPP+U7SLzI93GcWxdgiDD2lu1iZ9Mn0out2ekw5JfgzLiU4wIVasqxy4E10mel6Ui5qXq7cRZmw5995KLY923Yt8gxaVj/HiwYK5Pqwh3Q7jpod4PrhCLzG5hjE3ARMTLZ8lZLsneR2NgP+Q1anu19vIeyYLJt3zPmOhqHhoK9wFsG5L1GL+s72JAm6TCnz4GoOo5tu6bLeLP/st2ILnZ1tgIx7zh3A8QkBB6P/fXHNBWzkphmMnmIbRr6a7PjEan8r0QVnP/mrunyma1/W6Kdp/0cWisEkAnC+nclhbG8gKCFUf4mmD9W3sN63STql3SZU6P0v6Xf0v6lSFoNoaVpOhewY9he/2N+dwE837dG/SUaHE46pB33yF9MM6nRS7pSUoaDOUecMU3S3/uVlHtWeTptvj2I1KfWeTUpiYmJoKjIV286iIw0KCvzvJ/VqSN/Iz+/1GNbfHwsd911EuPHZVBY5Br5S7v5ZzDLvPeKu20ayWeVkT65Eakfd3HU9t1RRPJNw2RBpWS/9IHa/LHDhdUS5doDsQJDFoL6vulw56sJ6Y3giLbkTBeR02QQ9HvbewbC4SZntkycTZth0pDfoGWQoiI3Q+pSt3wpkcBhf0oUzl2odLoz/J5ehzJFqOxbCh1ukbS7UJqTlxdLzZ+91YxdjNXtKPXG0Y1lQTCc+sXcubDwTrk/nvKt1G+DW014iHXWzuyaLhkhDbrLuOwGXM699dzdlg8HeRulBs4udIf96ai1M015D9a/ZWvBc5f/Y2Vc75QW7+Ve7MymT2He9XKvOO2X8Fw47eycJOm2lc2aUKoNKtSUY5s1r4lAcG9C6szueRIZa3iSFPI3He5w7vrnRrlBYyCmFm5izGXy61Ro7E55EUwaKIYco5dKrx5v7F8Of50qEcCTXpPVy1AunC4TB8N3UffOydJDp+W5EllzrlUoL3KsnI74G5r0t4mfaRIN2r9MUvHOXODagDTg2ObAtDOkn9zIGRKtDAf3SGXjAXI8byuQ2ydIKk1EDJz6o/80FV8sedjWfw6CTqc0TekxtMLWNsE9glWxMvuzbYcAN3Jn3KOG9brICnTt1sHtV5HeWQb1ThBXz8pMnJ1v8I1Oku/EqvEQWQc62GrqQmk/gQ+nzdNWk77tOVIeLaagyLHoElernLQPziL10bleRVzdutHk5fmOxIWDYci90TQ9F3/q1Yvm0ks78/lnyyl2+rP23nzJgxfLa5zT27XJ/I0bSb5xiETMSg+I82koE/XqROlBWPWitBmwLwx0fVgm8uHURVUG05TJ67zrJDsCCOn7tmumRKPsAs/e8sA0ZZEu61vbEysjVGaIFb21BE7+UgRkKBPnQ1tl/z3/iMDAlNq59jeKsGhysgiAvPWhT8Z3zZTrRoXpiy1Kt+tvqZUsPUClmlrvnifvb+0kud/Y64JzM2BZqog4ey354WTtG5Jab29t4Rwxy82AFU9J6uUJ9/lvam2asPZ1ORYQ0Ghk8+eSst9shJhRVUakrXtbhK0vR0xf51RFbX9JaA7UlUXFYVCoUFOObUyriI69i2DMMt9pLosfgtXP4xE1KSuE3zpIdMZOz/FeGl7bJs0DPoL213v/GwfXSvSuUT///WVyZsLUkY6Vdn8XeW/kZsCmj8SVsP1NMOB9789b+z+J7HR7RASmM0W54nhVXiAWzvZoVMkB+KOrvB9Jl8ukIpQUn+ypUhtSv5vk90c3CH5fZ+wX+NI8WPWstBE49UfvlscH1oid86EtcML9ktYYlvi1fcZtr5Vm5YFet3taYJtkMRpxPq7d+Aag/wfQ4cbgx5QzAzBkMhwRIyvd/lJrnPdLGArlh0QMFO+RBsOd7646a/QDq2USu3+Z/O4t2hwIe2TUWiI9tkr2AybpSy5wjVRdOpHkcyJIz3yClHtWu4q46BLSHthE6icnkrnNU6xJr7haZOZ4RhWb1c9j14E6Pt0pfWOr8/RCXKyFsTe2ZWeOlR9+3kJJiemyLe39UY50y5rSnsB+TjU5WaKFmV/C9t+cDG0gJGFUlexbIhHx7CnSXLh4d/A1caZVaqYW3iavC6h4HU1HyLVzzzzCMi+ykztXrhM7Jkhj6NN+FhfbUNg5WZoil5dIS5TYllLPuHeROAcmXirOjOGk0uVvlkVMe12lPUoX3QAW3iXuhT2elCyCcCbbmz6D+bfY+rnN99GDLsImDg+jI+jyZ2C5U1ZC0lUw2FbrnDtH2v5UjOVv3wt+5SWw8Ha597a6QAx+9sz3/d4se0IEYMM+cPrM8LMbrKWw/CmpGbabE7mnt+bOtd1vSl3nONYyiWbumuJ9v8PF9glyXzYJfY7jj+wpkD1dMpeOEfGnQk059snfLM09G/UVceBtRXfls7DUHiVxm1S4bAN6PA09HnX8npshK23r3oC6neGMOb5XjTd9IikO3oxFnJl7tdgcQ/gXTnsk6JTvvefSm6akdm5Ig5PTxaHMmQOrJBWzdpLUJNh7qR1cJ++ntdi70Uogtk+AWefL53Hi0/5vZMGwIU1u9i3PkdfqLcpXsg+mjYK98wm5bx04RMOeeTIJ7f4EnPhk4H0qavRsk/fTfoRW57o+Z+sPklJVdlBWvUO1tT6wRvoi5a2XJuUn/F/wgqsoV6LG23+DxgMlmlxVNzgXgxpce+GFSvEeWHSfzYXNmUipB9r4HhRmk77qBlLfa+oQcbfnk9zjS9KntSblw0tc0yljIO2xg7B/GSmv93drIl5O2mN5pP6vFpk5nivcSS0sEBFD5tYCj22J8XlszfUt8GJjLRQ6mag4U7t2JGPGtOfXX9ZR7E/EVQdnS2u5RJPmXWfrv2gbb614SfWt3wMW3XPko4K5GRKptresiG4I3R8Xx9S9/wa3gp89VSz29/4LddqLUDHLJErVdJjUicY0Fafeep3Cc3bcPhFmniPC0bDYjHiCaGpux7SKO+zyJ2Th69QfZCzZUyQ9Om+dpAr2HB9eFHPrj1IzZS0TkWKWy+tvPgq2/wwtzpL7hrc+ocGw+lVYbLt3OJubFO+BqSNsqeEcfuGw9i349w7Xxxr1F1fMgh0iGPM3BB5L0W6YfZGcC91S4cSnfL/vJQdg3o2w7Qf5vTL94PI3wZxkuTe1OEsyX9y/c4cypaF73lrX19HqfInm7V0gj1W1aPKGaUq94T83h18zuf0PicS2GOM6zlUvwZIHOCI99o4gKtSU44MNH8D8m33nljsX/rrb+q98VowYKmzWu8FZKzyPselTmbQM/Fjq2bxhmlIvkPmVpMIlnOr9ef4afgZLeQn8NVgMVcYs827iUV7isDweOVPSHJ3Z+ZekSDbqJxN4e1ro9onw9xjAEEvq5iGKi6wfpF0AEFbU0J3178CC28Rx8ZTvpN7HnRXjbI2ybVbL4aQpmVYp9t/0cWCxDU7NwPvKObR/CZz6k2dtTMEOcZLLWydmHK0vCG1cpXly7m390eaEeUrwvetMU6IOa16W38M939xxT1GNbQlnZARO0fRH9jSxdS/PdzzWYaw0oF3+X0l1tqchW6LkO9awF2xJJ/3tb0n9vJ9DxD3dn+Sx5wGQPv5JUl8tdU21vKI96csuJeX+LDd3ylLSbhIzHa/i74MxpD4yi8ysPI/hJzXZx+bXxhNx1Qs+hJzvaFztmHLOPDWC32cYlJQ6ibiqcrb0l4aUPQW2/SqLNaUHRcDsW+LWe9KQaPOA98ESGfiYVY1plR5hC+9wmLAkJYtjXzCR+9wMiQbuni8LOnGJco1okwxr35SFOHu/tRPulUyEqLqhj7Ngh3zX1r5hS6ck9InqjknS+iVvHbS5Cvq/KxPTFeNtNcqm7fz/O4z7RpFcD9a9Kdf9U76R+0DmVyJY8zfIosuJz4Tn7li8V9ICnRdd7K+/fldZdCvabVtsMg+fyC8vkXvbrmme21qeD22TZSxl+XKNtLdg8JZOmPmNLFqU7JWopvuipx3TlFr1f++W+nh5MHwxuvkLue8ZFuj/niyQOH/nGveX83bZozKXsJbL6zCipA5y43uSmt7vncPvpAly/swfK70e63UVkRlKzaS1FBbdLxkWzguuddrK9yHLyeTsGOo/p0JNOT4wTfj7HDF46HQ7tL7Eu8ve4vvkRn3uBkeapHvBOEiEyT39wbSKc2P+Rjh7re/JQWkeTOwtq16jl0i/Mm9s+wNmXyire2fMCuNFAwfXi6FK4/6Sbultha9oN0weIKllHW6Gluf5sPV3i0TZG3ZboqWIvvVFoV3gZ1/mqO+oiovq2jfF1jphqESlmo7w37du8FeSvhkq1nLpwbf5M9c02ECU7JdajP3LpRbB3RmxeK+khe6dL2mQvlJofWGactPe8K78HsqKorvRSDARw2CoaMzcGJb8R/4dMS00pz135t0sNuh2mp8Fw2zNcRfeA+tet23w1oLiMSpeY5OTpYYzMs7NFCVKhPLOSVCyl/RFZ5H6xSCycqIdaYhnlcPOSaR/MIXUz/o4BF7KdpIfe4n0H3I82w/EWkh7sy/Jw3fQZtAWMrMjPV5aUpMDZO2uF7KIi4u1MGJEEpMmZ7q0L4iJieDxxyVl7Kmn5roYrrgIPPeawJszSR6WJS60hdtc0xgjYmXhodFJEFnP5k55hBtsOzutWotlgWLrT45GyDLQ4NItC7Nhzauw+iUqzo1Od4lBUfYUWQSqaEERIQspiReHPub8LXId3fihTJqbni6vIZT3rvSgZHfYrfuNKOlrWbrfthC01PHcUK+puRkiIrb/LgLwhHslYrh3oW0R05ai3ePJ8NtBbP1RrlHFu6XFStY3ju9c0yHynWtwoqRqlhUePuGw51/5vpcekN9jW0PRTpvAj4QWZ0g6aqO+kq5evNf7WHbNkLpru+D2l76ev1kinTsnSj18p9tlUSGciHP2FBEs+5fKd+DkLzzNx/YtlUXFvQsl8tTvbRH4W76QWs28dWI4MuB9767YVYl9EWXxf+Tc7zlO5gx75gf/Ge+cDP/eAwdXOz1okcXZXdNl0ajttfL6amptrw9UqCnHD9t+k5xo8D2JLdgOv7azrQynOR7PzZAVxswvxYK8fhdxTHRPMdu7WOrQOt8FfV7zPZY9C6VhZuNB0jPFl9nCyudg6cMy1iD6U3nF3kC01/PQ9QHvz9mcDhlXyc/u741LRNFp8mua8NdQ2D1TnhdsM2w7VRE1dKdiou4jvTE3A7b/Im6Oca3hzH/CqwuwlsO8a2FLujS2jWsVZKPcvTJBOLBaml+7pzqVHYKZF0pvvU53Ss+zUCYqwZrbuOMe/WoySCKsFk8xETZ7Fkr0NrKOfNZ1O4R3HHcXUiNCFiGaDvUU4+1ulImIYXg3U6nbEQZ+IvUv7tGfskJZSFj1vGNyYESJU6Z9kcblfQNZda8FiZeSvuxiUp9e77XOzFcfubSbvif129Fe2xMkNTfJyjZ89JizPxhaPV2dOlGcd14Hvv9uFcUlzrV9paTdu5zks03Sf7OS+mEHh4i7vy7JDz7kOMiRjppl/SDXKmeHzMjaMhmt313SvX1N1OxjrdNBala3/STZBDi/qYZkTeRvlPMoso58L8OJfNjFz8E1MtE0bA6eXR8UU6Vg37vCnVJTvP4dh7iwjzWutUT66rSX6NrqF0KfqGZPlTolu+Do9YL0vdw1Xe4dh7bYnhhmrWHhLllEy/pOItwDPoJGvWF9mrym/M1SM9vtEUkbDMWkKhTWp8n3+dAmx2NdHpRWEZs+ldqy/E1Qug+6PiJi3Vt2RnmJZFUseUDEM+DTZXnXVJlXbP7Udv48IyLNEhn6d6eiD+E78rsRKddS58yc7Bmw4glxOY1pAn3+J3WK2VNkIdD+GXd9WO4PVVWX7A17av+uaWJO1nSEzKvqtAv+GHkbZQF92y9yjne4RRaIrXanXhMShkhEsV7nY9KgxJ9Qq8I7tKJUAw6soMK9sbzEtiLr9kWOawntb5ZeO91THatU8YOgyQBZwSrZK40ot/7gubLaqDd0HCuirv2NvvuhNe4rKVvr3pAeV74K0U+4RyIki++DMxeGl2rS7nrYMVEu8M1GSPNQdwqyEKt4q0w6nd+bhKEieuyT34Qh8q9hSE2EXahZiyXKFOzFMX6Q1GTNukhsmZsMDP21uRPbFMdnXOz5GccPkv+ajpBUwwW3BWcM4o4lQib4RbtsVvlB1r3VaiSiYupwifD2ekFSa+w3lcja0kpixhg5N0Ktp0sYKueS3fjEq927F+IHyd/ImSGRv9UvSCpJ37eq7kbeuK9MKqadLnUfw6dC/RNCP078IElp3DVdUkmzvpNjjvxbBNfwqTIx2D0XNn0o72mfV11fY8JQSXOed4NEwbvcJ5E5ZyJjod21YpxjF79mKcy5Eob+Iees+zGj6sn5sPkzkut9TvKLtvcuIgaGO8wQ7ILNpT/bs6NIPuMUaDGJlKdK3Gz/Sxl3wXe+RVyTA2Ttro83DWfYHvUWpcvPLyU9fTXuAq+gJIrb3h7ItJxOpH+xsqJeLnN3Q1L+a4FWq5xSLZeTlRVFYuJyxo2rH3Sqpdf+dBX7riT1wb/I2lFKYtNyxo3NIXngHNi/gvSZnUn99n6nOsSDJD/6gsMtL6aZXJvtEf6yAjiwUiJuq16gwtwHxDG19cXyGe+eY3vQlOhXu+sg8TKZXE8/wyF+EoZ6eZedsJaJ+Nv4gVwP7Z9K4qVw0suuKej265E37CIvb4PU2pll8ppqt7MZX9nGWnpQJqntrhdR0fzM4CeqBdskBXPt644JPBYRllNOk3tTdBNZoLCn/gV6/S6vYY4ce8efcn/oOU4cHC1R0rZh4W0O06wBH0H764I/dqgsvNuWMmcjsgEMnyj3nS1fuo6l37vQMcXzGNYycWlc8ZSI1/o9JDJl72no/N5kT5XruP0aHH8aDE4P/vN35uA6eR83feKWbmzKZ5Rwqpwny5+SHosg5+3Az+Tv2Q1OKj7jCEnbPVwizTRlgXh+Cq6uryEIw+yp0jc0d47c03o9B53vkairWU7F96rLQ9BrnCNbKNj39BhBI2rKsYXzart7HZozBdvg1/Zy4+v/ruu2LV+L3Xtca7kwn7XKc/WveC/83klWd0dM931hWjFe7IfB/0qtvVebvxYDgSjZJwYgGCIg3euX3G39R86EhFNct696Vkwnhk6AFqPl8fm3OlLtQCIYA53S0oJh3VuSAuLcnydc3F/HiBnQ9DTvz132pNjnD/hA3pNwsKd/AiHVvdldNQ9txqu1tctxQ1zFtq/iZn0vk4gz5kHDE0N7Xfb+SL1fEhFTlexfKZ8RppjRFGwNf/XTub7OEiVR7sb9bNuskh609lVJsxr4oefqeGmevNYN7+LTvc8lLTJCRFdZgUSnuz3q3U67NE+a9G7/1fFYx9ulXioIPNsTTCL50lakz2hPyvgmFJQ41cXFWkhLO53Uh6f7drbEIHN3A6/bsnY3CNnZMi4ukiFDWjFlShalpY6oYK1aETz0kNS5PvfcfIqLHaIoNjaS99931NKl3DyRgkKnWrtaZaTdOQ9KD5Dyzume/enuWwlxiaSMa+Tq7BlrIe2tQSSfX1vE++L7HRbrMc0kpc0rEVSINsMi5wsAFjGC6J7qeKq/VXq7eQkWyF8vkYvSA1QsGNn/VrDf4fwtEvFf86JjTC3OlhrhvQtF4JTZazQNWyri4z4O5kZFX8tmMs6sbwGrvK5dMx3vB6bUlHZ7WK6NexeHFqUoypWa0fVvU5GJcfLnIla3/yo28rumOp5/uOqJTFP+1oonJd3SmQZ9oOd/RQBl/+W0wctnlTNLFl93z5X5QaM+Mt7mo0SU29+bJgPl900fiqCrWCgLoyY6d65E7Q6slr9riZLat4RhYgJmTxnt+qCk5ubMwPWcM6R2K3+TRPmbjRDxYxeVhyMtsOSAZB1tSJMaVmc6jIX+7/jf3zQl8rbqBUmLBTk3TvlOoocbP5A5SDjfqxqMpj4qxxe5GRIp2L8MLtjpuz5swW1yUThng2ujZGs5TOgmEblDm6XX2Ql3e+5vdyI8+Sto46MOKjcDpg6REL6/tEHTtJmCbIZz1jsaVIeKXRD5Swtc/5ak8w38RKIJzpSXwB9dpOH16EUyuXFPQ2tzNZz8WWjjspbDpH5QlANnrwn/9bm8jndkZdFfk1RrOcwYJTfhM+eF10vMQxhOl1qLYFiSKv3GwIuVcobD3AaLRIuchXMwODdzH7VQ3O+CxbRKDeHW7x2Nz6uSg2th8ilQsptK9WCyY6+jtERD/zSJkNgnTitt7pMtz4HB33gXVvNusPVLBK+TKueJet2OEuHe/Jmk0HW+yzUq6ryPczophjhynviURPkCYf+b9U6Qc3Tj+1CWT/q/Z7rWxSXPJfmhR0mf2txnOiURcaS8N8ZT/PhJtUxsXYet2/J9pFrK+lOoUwTDgE6dGrFlywEXEWenXlwZGAYHD3lmDtSrJ2M/eNC7GN3y+njP3nSXTvTdt+7a5STfdiE07C0TzOmn267FUa49D8HRR7JuR0kNP7hGHPT2zJeaUzu14qVmpvkoiVjMPN9/GmJuhtQsRcRJVsPOvxwOgy5vXJREQyLrykJE7my5foViwrTtV0evNpC/2f4mqV/e/ptNtNk+0BPuk+9AMJb+Fd8N271sw3sS0XSJ5htiRHVwtXw34xIlVXXzJ7b3vAqFw/o0R+1z7hzbNdQLEbUl3TK2hQjhLZ+5jqVhLxGzG94T8wv76+g5Xu4p9gXY3Ax5/0oPivg8uEa+3wnDRACGIozKi+Sz3fiJCB7759Huevm7sc0kqrf0ccj8QhwyywsklbDtNWJUs9GpZCO6oYy13Y2SBnk40gLXpUk7IEukiKzyAjlPy/Jcn+dNqNnHU7cz5K0Rc5SDq20OlE7Xh8h64ooc01QWmbO+O/J1sUcRFWrK8ce+ZTCxJ/R+UfLwvXEoS/qntb9JinCd2fSZ1Cc16CnRgHM3ehqHWMvFoKNwpxiL+BIfu2ZIClz9biIWfLF7nljld39MJnrh4FJr5mMlyjRFNBXvkXG7Rwu3fAlzk6V/Wpsr5DH7ivLqF+XCeVGOw8o/WHIzpGavywPi4FcVzLQZQpy1yrd5RVGOGLtExMKof8Ozms7NEGG++RMRW90fDbhLxX52kWtE2VL33CaHa1+Vm9JJr8gkP5yxTR0CTUdKTVwoNt1lhSI09i0WAVoVqanOLLrf4TRZFSvqSx6RqK8c0NZk3Lb4YW8E27CnNHlvPsqLqBruMM3o95731CdnsqdAxnVQuF1+99dgtlEfMVLY8J6kU/d7F1qMCu31leyD9e+J8HSeBEU3knTs5qNJ33APqU8ud9TFjTuF5P4zYf07pE9u4CpULp9G8vUnk/4bpIxv7CniUn4h9btzydxVy2Mo/iJx/lItweTi08v5/q+qr6w4qXsUy1cXU1ruOMdrRZXz0K31IKouz72ZTXGx4/kuLQ/cI5hjc0k+8wAU7yZ9QpSrMLaLv5gE0mf3dHUSda/fW/ygfO6tL7T1G9sgaWx562RCvmOC47lGpKSpWaKlpqn8kGNbwlCp30oYItfkQBG+nBliWFGWLwJz11RZHHGm3gkSHSrLd50Yh/JdzJ0rVvp2oxFMiKovNd4YTsY+NpqPkpreFmMkfbwqhYPVKmYdG92yYCwx0O4GMVzJ/NLxeO22koqXeLGI8/VpkPW1PF56QNJNyw7JImrF67Mt4rS7QVJlM791FbgNekh6XuIlItQDvb7cOZIxY1pt58QsuQa5RHhtWTC1k2TBJneWk7GZIZb85YUyHpfehYbtfpRKpVmf5kgn7nAT7F8hbQg2fST3B3fikqSON+s7m1B1W/wwrbDlK2lVVJGOiezTeKBkXWT/6Xi8fg+Z97Q8S451DNah+UOFmnJ8MmWIiLFzNviu+5p/i+SEn7vRNa/cWga/d5YL+ME1IvZ6v+C5v11cJZwGPZ/zfUFZOV4E1Oil/lPU5lwpgujsteFZnLu0IIi0NRH1MqYdf4ptcd+3oNNtrttMK0w8SSaKZ612FXKzL5d0hc53+zdS8cW8GyVKMWaZmLVUlkNZ0pw7YZjUfflKQc2ZLYLJbmnvy9glELMvlVXrs1ZC3fbB7ZM7V/rYFO4Qp9HY5q7bTVNW5bMni0NoqM1wQdKoFtwqvaRO/G9o+xblwuSBks7b/sbQnT39EUiohsPEPrBvkeN351Xc5f+F5U/Kz75E1fbfJBJbelDq6bzVczqz/CnbMW33ykCOeDmzpG7j4BpIulKs3/cvDW3CsfxpmwW7jdYXyuRm5XiZYBoWz35I1nJZENo50bGffZW6dhvSMwaQ+mF7VzEyuoj0vxqT8u5oVxEXayHtzT6kPraAzB2ew0tqXg7lRWTmeEYNk+Lz2PLa07S5+2HvtXaJUjeTmXnQc1uTfQBe94uLi6SkxEpZmff+dL6Ii4tkzJh2/PbLWopLnc1USnjntjkQWYdb3+hNQbFDWMbVsvLO20MhMo5bx052jWDGmKQ9HUnyGftJ/2oDqR+08RrdAy8RvksnknzaWqjfjfRprVybuvszcGncV9Il89aLYcm6N3Gpw7PUEuv18gLXNNCohpB0qYimyDrw99mBTVgSTpNFuJyZci7vmOC6aNCorwjA3NlOBiQg0eR74aSXQvp8fGIXwAnDwGKR625RNulzerm+p1fMIHnUIdi/1PP9vi+O5JtOh32LSf90gWv/xStnkpzcHVpfQPrny0h9cZ/TttkkD5hp+wz7kPrtmUF8TkPECOPgKulPemCVzA+cr1VxSZKeWLejpA3aU/+ciWku9++KBuw2GvSUiGVsC7k2hON66CzGOqbINePQZknD3/yJ43mWaN+1z7XbSAZGoz5yv7Ufs9koqN9JXvOeeRKJLnX7jse2gOJcJ5OQij8YXiudYwgVasrxSdb3kgZy2i+uDYidyd8Cv3UUlyH32pKNH4r1bdMRclM6Z62nPW6wroYl++Dn1tDqQv9pg4cy4bfOslp38uchvVyXMc1Pkdd24U7vkT7TlELy/I0iZN1dEXdMlCJpdyFXuBN+aiUrshdm+04r9UVRLvzWSQxZhk+tmkLn1S9JDdOpP0Hr830/b+EdNsvrEM07nCnYDr93kVXBoROCH//B9TChh1jCD/7Kc3thNvzRDep2krYQoRrKmKY4t236WNoCtDontP3tNZJQ9U1Ec+fK9yh/I4xZAfU6Vu547jWTzkItWEfMQ1vle1uaJ+KxQXc/43dLb2x4Epw+039qY3mxjGXlM7YoRoipnx6N1K0i1k4cL59zhSmG2wQnNwOmDrNNsmz39qYj5PrjPGEEmQDvmQflhaQvGEHqFwMck9Hr15L85Ouk/3SAlJv+cK0Xiy4h7Y6Z0GI0KanFFBRbXLel/ELyJS1JnzeQlMdNCoojXLePnQj1u5LyYnsKipz2jYW05xKgaBcpj5e7CidbCufV71yBaXqJ8NkeOlLTmboxRVw8YClfzj2J4lKnWsLoEtJu+pHkEdtIzxhIyhsDXHvw1Son7cOzAcMzhTXGJG18HZJHFZD+TRapb9UJLr3Tvs2IIH3eYFK/PMW3qHCJmtws1/P8jbJwt+p5XMQfiPtxRIxbSwQkwpswRCbt69/xmaIWsOffAxNdHVMvaQU7JpD+xhekftbT4zWmz+lNygcXe0aG71kMca1IebaZ5/l20/cAnvvVKiXtroVQvIuUd8d4bns6Cup2IuXeDW6fE/I5nbGf9G8ySX2nkXehHhFD+uxepH493LV34+BF/j9HIH1OX1K/PcPJTCef5Cdfd7xv9/1MVk4UiQmljHv5fNf39D+/kZVtIbGZlXHPn0nyebUhbz3p7/3mNtbJJA9e6HsspyyDet1In9WV1A/bObbdW4vkq3pA/ibSv1xH6rtN3F7DEknHtESLaZVzWmrtdpB0CcSfKlGzQGnDxxEq1JTjE2sZ/NpWVv+G/+X7ef/cLFGeczeJI6Sd8hIxDIlqKKtk9bpI00jni8nKZ2HpY8gNzs/EEKQ/yLq35O/4i5bZ07vOnO8wTQgVe5phnzeg8x3en5MzS8Sat/RQ05RIyMG1IuScxd7cayXXv/0tMMAtBSUY7I2r/dX2hYK1VOq0SvZJBNBXCqqzsUtlCpTXvA6L7gndGMUe7Rk2GZqf7rl9y1cw90r/LRb8UVYo4uPAanElbX3x4bf8D5aCHSJEG/SAkTNCS890JzcDpgwF07biO/BzaHeVY5uzdb+3Okw7eRvl/DfLJfJcr5P/v5kzQyYVK56CJoPFFTJQM+R//w/Wvmb7JcRV44o+YqeK0cCyxyT9+oT7YNkTjgmQe4TPvl/jgVI/s/pFiZDU6wq7Zzue1+1Rqb1b96Ysdrg4zVkkWtfxNtLn9iH1v6vI2lOfxMYHGHd/bZJ7/Qx75pM+bxCpXw1zTNQeaiYRo6xvoTiX9Ln9Sf1mpNOE8xDJow5A9lTS/2riOjl8vCvJdyYDdqOVBba/uZ9x/6lP8uhC2pweQeYuz5qqpBZARAyZWz1rlZJaRZO1veSIiTjDgPr1a3HgQLHXv+lPVDasXcANQ+bz1l+DKfIQgN+DJZqUtHPdREU5aW/0hpjmpNzyVwjibxLJg/8FAokGt4jSXeUkPzoeDEsAV89VpKRMpqCgzDGeuEjS3h0ChbtIuWuZi8iPjSrhmUsmUlIWyX9/OsPl9deKLCNlRAZfzjmJPfmeCySNaksK6d5DIW6rUwiGwd48z3Oqcd0CDEx253nu17ReHreMyOCF34e5jDMmqpSnL/6T8/qu4vdFJ5D67WgKSx2fVWxUCc9eJrVwD39zlsu2uFqlpD1RClH1SXnUbQGkVhlpD24HazEpL7Z1Ff/RJaTdKnVyHpFxf0I10Lb710NZPimvneRqbBTEMZNHZkPdjqRPbkLqxyd4XTgIdO74FfhVvK06oEJNOX6xO+udtcp3ql3+ZonydLwV+v7PdZs9pcye3+8eNXM3mjh9lmeTbDuHMsVpsvM9/tNDSvOkdi6mmVhHh5umN/lkm3nHWt8RmumjxGXs3E2eNWd2sXfiM6458EW58FNzwIALtkNMQmjjqqjt22Gr7Qsw2Q2G3LlixnLCfb7f22DTQgNhLYNJ/cW2/+zVwdfqlReJK6dpwlnLPYv4TRNmXyzNaEcvhvph3ES2/iitECC0yJi7wBn2p1iAVyWbPpF6hT7/g853Vu5YuRny3dzymZgWnJ/pum3HH7IgENtCTFYiPGuwABG1U4bI9pGzgmvSnfmtCOrG/WHoRP81j+51cb1fgS5h1CGCGFrMvVrSKJsMFrFrb2rb7RGpVfEmgPevFAe53Nm4OMZFN4HTfpBUt2VPijuqnWajpA3Gls/FkCL+NLAWQuLlkjJlmlJ7s/QRqacBIEJEeMIp8h3Jnir9IZ3rW+zfzwonz1cc48GQFL1214kpzKZPXdO08NGbrlYpaTd+B/ieOKZ+dzaZuZ7f06QkecxrGmYLAyLiyNx6yGNbYmJdtm7N8yn+7rrrJP73v0XeNx5h6sYUcUG/5XyT0YviMseEOza6hHev/4GIiAhSPjjfTfyVkfZyW4htTsodC13e79gYCy+9PIySEisPPzzTpcF6dBRcc34EXdqU8NQ7BgfyPc/HyIhyTBPKrSFmDRwXmBiGiWl6ed8s8j6XeXnf/G2LiSrFwHQRhXbq1JLrUn6xp1BtEFeAYcC+Q3Ee2+LrFYJhIfeA53W1WbNYpk+/nMmTt/DQg39TWOT0XY218PY7ZwBw221TPET822+P9LktLU328yr+K7Gtuog1FWrK8UtRjqQctr/Zv232vBvFCfHcTRDXwvF4eTH8kCB1HoDXaENuhqyaZ31rs4r34wg450qZiJ+/1f8Eb/FDtj46lXDLs6d+nvqjpNx5Y89CMRbp8V/v9s8zzxc77HM3Qa3Gjsf/uUWcp9peA4M+DW1cALvnS11U0uUSZamKguF/UqTwedQi33WAFWmhm+CCHeEZi4Bj/IGanruTPUX6gfmqcyrKkchT7TZwRkbozah9NS4PhtwMyPxKertVpeGLHdOUZqw5f8NZK8RWurJMGSbRI2/v5/Y/pCYn0GvZt1TSBS0xEn1reW7gczHrB0kVbXQSDJvkaTTkTG6G1PlkfSs1Pad8H3pqqp3yEphvywAAGXPzM8QOvdUFMOgzH6nOVomY2o1YjEhxlyvcAd2fkNqX6Wd4plqecL8sdO2aZvt70a6GAS6RWOS8HTHN8dlWCNViKgyOOtwohkmHtjq1RIiS6PSuqTKmyLqyaGBaPa5/Xlfiz4uD7L9If/c3Uj/t4VjBv3EDydcOID19OSkvdvSsw3tfzF58iz+DlA8vcU3DtE3wUlNnexd4SfXYsiWFNm3SfAhAiy36V+CxrVWrOmzf7tuF89jASZh72WZU/N8Vw4Dm8bAjx3Ovls1E2GzP9qxfbNkswrbN04G0ZUv5rmzfnu+xrUWL2pgm7NzpKdQTEuLIzS3wHjEFPn+jJVfdud1zIxDo9VefbdWLiAgDwzC81qjGxMhn7LxoYKdOnSgMwyAvz4uTrO27Wh3wJ9QqkX+iKDWAmAQRA5s/9SxsdaZ7qqTQzb5EJhd2Imp59t9KGOr6e/wgGPiRFGvbJ1C+6PIfKcze8J7/51VEmawykcmZ4f/53mh1gbhbrXnF93Ma95XnrX5JXCDdOXGcOIatfNb18V7PyuRqyxeS1hYqTfrLqnnmVzLRmzbC9X0Ph17PSW783GRJc/R2vPhBIizLC2z9f8KkSX9b0/M3YG8IK+fNRsr5uHK81K25E5MgDqR7F0pN3cpnQ3tfEoa6RuoS/CwauBM/SCLKba+VvkOHsoLfNxgMQ5r2GhFSs1YVs9HTfhXxsOJpqfNzpuVZ0CFFUv9yZnnfH8QlsteLYsKw6rngzsXEi+DU7yVaNGmApD/72id+kKTZnjkPGpwIsy+SxszhEBEtqdz2W7e1CBr0khYi23+R1NetP3ueN4bFdk2xrbibZWKsk3QlLH9CxFiPJ8XooO/bkg69/TcZa1yi098rESMDu1tdwlC5RhoR8jkU5UjUeMP78vnGD4Lh02Rx67Rf5Tuz6WP4tYO4xfV4Smro+rwutbvnZcHQP0XomWWAVaKRTs6Jycld2bL1TqzW/7Bl652yIl6nDXS4meQHH2bLm69iTX+ILf97juQTv4fF95E8dDNp/9lEUpN9GJgkNdlH2q1/kTymlOTkrqS9P4qkVrUwDJOkVrVI+/A8kp/5mOSUMaTdOtV1v/F1SU7uyrhxpxAX57qQEhcXybhx0mJj3LhTiIt1nWLFRZcy7vwvGHfOB8TVcjVUiIu18Nxzp5GY6D1Cn5RUryIC6LEtPp+kZmVetyUm1j0MPY9NHJN8VwxM9n/9GYnxeV63JzU5SFIT7/fipCb7SWyy3+u2xMb7eOHiL4mLdp1wx0WX8PyFX/D8hV/42PY5z1/4uee2GJPnnz+N558/zevn+MILQ3jxxSFet73yylCfn1NiUj2S77jC92eVVJ+kJO8LhGFvaxkpEWBv25ocJKnJAR/b9pPk4/1u3XgfrRp73695g4M0b+D9M4xvUMqX4z2Fb2UpLzd9GgkVFZV7FWkA+fmlXkUaQFaWnzlhNUKFmnLs0+lOERubPvH9nMJdMpHcPddzotbS2YjElOJrdyJry4pw1nfSKNcXjXrLxGTt67bVax80HS6r3iCCyF0cBoMlQtwZc2dLBMgXJz4t788qL66WDbpJ1Gzdm64T91qNJFXUtMKie0MfG0gkDaiUGHWmViMxljiwQiaevibcjU4SC+k1r/r/rALRczzUagLzx0o6Z7Cc9IqIqYW3excriZfI57/hvdBFbPwgiT60Oh+wOjXNDYETn5Z/lz0W+r6BqN1aUt92TZN2B5Ului6c9KqkJc8Y47m998sy6c+4VlKKfVGcQ8XtsLwouHOx1Xli7pG3TkxDAn1O0Q2lVrbhSeIemvV94L/hDbs4so93xx/Q8RYY8ofYws+6wPt5kzDU5uAaIftmfie23wM/Eae2JQ9KxHfx/0lq5ZnzZcybP7EVVhmyX/YUmHWh9CWzn28nPi2RtrNXQ+MBErX++2wxq4gfJFHdVudIVsPZ66Sp79rXYMl/pI5u0T0yVksEtDhTWhtExFCRqrn2dVjzmv9rJjjG0/MZGDkbLtgGPZ+Fgm0kd/2QLa+Px5r+AFteHy8tDSb2hrlXk3xenKf4a9gTej5N8k3D2fL6c4794m+COVeQfJaVtLQzSEqqh2GIkHJOpfIqAD86j+Rxn5J826Wk3TbdVQA+kEnylSf4FYBexV+MlXE3b2bcxb94ipFYg/HjTw1P/DXZ53uC70c0JCbVp/5lyxj/6mWeY421MO61Kxj32hU+tiUz7rVkL9sMxr10Acmv/EXay21c37cXW5H8/I8kP/89aS80d932fALJ4z4nedynpD3XxGnbftJe7URyclf5nHx8jv62BSXU/X2OVbnt+TMZ98IY4twyGONisL3fV3puq1XOuLG7GHftUq8C99kb1/HczZs8FxRirLz4v4t58eXTiYtxFU5xtUp59YZZXNFmXIWDqztJrWqJ86u3bf7Ox8Owzdf3orqhqY/K8cGkQVCyR5ote6vjcEnhcUsZc0knQyY8I6d7HmPXDEmhOjldJiK+2DFJmjAP/FjqMXyR+S3MuQw63QF93wjmVXpSmiepn83PhFO8WAHbmXuV1Dedu9HTPv5QltTWNegp47CnPZXshx+bSiTyvM2ejpiBcHbMrCqnQWfDEH+9guxGKpWtl7L3nGt5LnR9KPjxr30T/r0TBn8NSZd5bl/6KKwcF/h1+KK8WNxM41qLi2SoS+pLHhLhPnpReE3C/WGakv65Z76kQDo3mw+XP7qJHfaAj6D99a7bcmbLZ93+Rhjwvvf9K2r0igDT9+fiTjgmLKUHRVTuniftFCxRoaf+2g1DyoskmtjiLDjtR1j8gJN5iRfDnAqjkX6w4hmxYO+fJmZJa161Pcnp+ldWCPOuczQXJkrMida9IQ14T/vJs5bStIpp0pIH5Xvd+R5J4XV/jYvudfqbhi392mlxwD7WuNaw+XNpX1Gng0T7YhIkhTbY98202lKjP3Q81vJciU6u+59sb3WB2Ka3GOO9qbm1RD6r1hdLC5WyfNmn5bkSjQ3nM3RJC0Vac3S6k/R5J4vxgS+jBW8mDNZS0p95hNQ3ol1dBi9LIn3pBaQ8tMd3/Y576mesQdq4OnBwLSnPxruaV8RYSXuzH8Q0DVj3E9AwIoxtFe+drx5b4W4Lg0AGFUfaFMOrk2Yw2975idTHFzo1il9Gct9Jck65G8081Izk++Se6Wr6c4BxT/cjeex5YC0j/eNZpNy+wNMV9qbvwRJFyvsXuKYUO6ciV3Edmr9tWqPmBxVqyhFlczpkXCXF/96a0DqbKRgRYizgYRhiq9+IbQHnZ3lOfk0r/NoO6naG4ZN8j8U0YWIvEShjlvufRP/ZX543+t9QX7GDxQ/CmpfgnI2+zRLyNkhbgCb9xfDAfaIy5TRbU0s3M5VF/5Fj1+sCAz4M/ea37m2JLIXT/8sbzn27LLUczZC98depYvByzgbPpt9B/725chysNst/H+0Z3LEbquRvFiHurTmzr/c8WOzv7fCp0Gx4aPuW7Bdx3qiv/3M5XPI3S7uC+t1lohuuYU7F8TLlu2eJhgtzJNLmzJKHxH58yG/Q8mzvx7D3WFv7PxnLsMmBBa67wOv7hnyegSjNl0WKfUuoVB0qSIPsBWPFeKjTHSKCrUWAIedjs6He9ysrgFkXS9+1TnfBxvcdZjL9P5BaMvCsQ+v+mKTwzr5UxErXh2Xxy33ye3CtNKQ/uBqvLTHc37t6XWD4ZNd+lnZMU5oTL7rPdjzb5K+yLQ/iB4v75bq3YMfv8jxv1w33CX7xHonyrX7F0bQ6nO+p/bhNBkPBVjnm3gUQUVsaMJuma6+8YF+jtUQyMlqdDznToShHxN9XQ20TbqdJNQFE0/PPkfpSnqcjZOOBpK+4nNRXIWtHiXdBpdQc3M/xskJJwV8xDrKd7gGRdSWC3yZZFm93z/Mpfj2E3OOdST4vBnLnkv7FMlK/GOg4r27aRPIDD0ODHqR/uVpdH523qVBTjgvKS+CXRGnSOPQP78/JzZCJbd4GuHivq5GD/SJWmicF+aMWem+Uu+xxiYScl+Vq9e/O5s8h4xpJV2rpJWXLzprXYNH/ie18/ROCeaWeFGyDX9pKCmgfH/VqLtEtN8HhL2pgN8cAT6OBYDBNcbis3QZGTA3r5Xmw62+JWDQeACOn+X6evVdcoMimPypja7/xI+mJ5auv29afJcWsTXJ4PfXKi0Rs1e0obnyhYj/3hk0Sw4qq5t/7YO0rVFqo2LEvGjQ7XSb8zpQXi1NnwVboeJtEoHz9rXVvSX1gsFG13AyJ9mx4Xz7HMcs8+xJ6w7k5d2XaRYCjl2D7G6Hd9ZJWuvkzaHcDDPzQ937lJeJgufUHaHGORPsOrBDhdUaGNHV37yNXv4fU25Xsg2lnwsGV+DyH7a67gE8jppwZsm3lOHnfTvlOnCi9YS0TV9Ptv9oeCLPlQcJpkia65EHJtGjUH/b8Q0Vkq+X5MCSIOsJlT0hE075fm6vC738Jcj3cPU+E9/5ltgctElHv/khwx3CfcFtLYeckWPKwfLYAGND1Qak1DuZ4FRHFaPleHFwrjqD7lzueF2hhTKmZuIj/CNt3ZZ4sItbvJu1DourJooC3z95XFNPlumLHKsdsc6UseOetq7LoZ3VHzUQUJSJamlrvmACL7vdtNNH9UTH7yJ3tua3bw9JvzBIFmV97/zttrpbI2pZ0/+NJulxWjpel+jeMSLpMJk2ZXwZ+jb6IayXH2fiB1JV4I2eGozbcWupao1NREwNguNbLZf3g+NlaEthMxR3DgLbXSc3SocyATw+KpkPERGL3bCja7ft5zUdJWt+q50KrMXPG5b0hNPOOol22H0zvNXqtz5eb386JDnv3UIiIkclYzt8iXkOl461iRrP4AYd5RFVS4SJaRTWKvZ+HmKZS8zShjzT3tRNRSxwMS/aJIPBXT9ZhrNSRLfo//wZEduIHiePkyZ9L/epyL26e3mh2hkxuQUqxnL9XodLlfolKb/xQIoJ1O4spzKaP5DFfRNgm3s1Hw47fIHcmlB2S823GaPn+ONd9nThOhNmsi21GTZdRUUfmrbav6XBJfwR5jvv1x35d7faQoyZu6ghY+4b3+k1LpKQYW+wFN1b5TIPF/vfiB0uK7DlrRbjvmYeLOcb2n2HhnSIM/dF8lK2WLgIwxFzp33sC19L5wjBkjP3edX2N234J/vpY8Rptk1tLlESR+6e51v2teRWWPyWfd6Dj2esQh0+FVudC1//IgkSnO6lwDLQWw793Sb23cuzgXod6xiy4YKeYXmGBDe/C6hdkoXebl0Vw9/PR/bg9n5H0/Auz5ZjRDaXUZPbF0v5j6vDKG43VcFSoKccP9gjYmld8T9Tsk6dtv3g/Rq1G0OxMyPzG++S1XkdocrK4TPqLVluiZBK+b4l/w4jY5jLZ2fJl5VzyTrhXBOjGD7xvTxgqkza7e5vzpNF+QW12JmD1HykMh3bXyL+bQhR5/mh/owjOLV/4fo5hSP+pg2thW5gufBXmHRfiywXNJwlD5b0GSVPyNlHvdIekWWV+E9742t8s4mXF06HvG1FLDFP2Lw288BAOTYeJUQ74fv2hYFhEnADsXwQLbnEVa4XbqJhUlvsRhpYI6P+uuEgu89KywhdNh8kCwZpXYM+CwM+PHyQRiIShEsku9bGIEiw9npT0x6xvJYqV+Q006gcLboe9flKnLZHiAGmfwFtLZEW7YCv8fY6kSNonW90fERGxcyJkXCcptc6Tf6ubQLF/P3o8LQ24V78AW3wsctXvAmf8IzVi/94F08eIkHC/LsYPkhTD7k/ItXb1i+EvJkQ3tKWrutWpNjlFDJRmjPYvBCsmm0/LZ9npLklf/GuwtAAJF/trPHGc9J47uBL+6C69AcNdNHF24DzlO3HdXf6EpLxv+kz64vlaNPQ12U66wiFUjUjYu1hqY1e94BYpUWo07p9/TBNZyGtzBRUywiyH2RfCyueCX1h0Pm5MvBzz9Fnijl2xAFAkix/H8QJAUELNMIxRhmGsNQxjg2EYD/l4zlDDMJYYhrHSMIwwlm8V5TBzYKXtBx8RDJAeRM1GilDzJYySLpdJzG4fqzxtrxFjg30BbNujG9l+CBBRSLpSVur3+HFuDESjk2RCuPZ176vE7qum3la/+r0lPzu71bW9xiE2QFaYQ6V2kojRzZ9UXeSmQXeZpG76yL/AbXUh1O0kdvnhCmG75X9kbfl7oew3bJJMdBJO857e0XSY1O6seyu8sUXGSh+xXVNlIhYqSZdKndrS1PCiev6IHwTDJsj503R41aS37Fvi+vtWp4ivc/QzUASrcT9H+wX3Y/qj1wsQ0xzm3RBcVCV+EAybKKYW82/x70wZCMMQ+39ArnGlkrIakyARsOK9vvdtOsyprYNVJvEnp0s64Nxk14hzh5vFSTHzS8ksGD5FbPYb9JTotLsojB8EPR4V4ZFwGmRcDdt+8z6O6PpiUNLuJsj+U4SEt0Ws+EFw4pMw8m+Z3K1+UfralRWG8IY5kXSFLfJnmxzWaih1ejl/S/uFg2t972ufbDYdAn1fl76VeRvEUTLrexl7qG027Mft/oi4pI5ZAU0GwoLbYNpIOW64x+z2MCReDKd+J7XYsS1g3rVSaxuuy2zPp2HkTDh7FTQdKimlf3SVNhS5c8Mbq1L9sV9TjQiJADfqL03ufz/Btpgd5j211QVuCwD/SonE8qcDR4CPQQIKNcMwIoC3gNFAV+AKwzC6uj2nAfA2cK5pmt2AS6p+qIpSSYKJYIDYbh/a7JTP7779XLmI+Ep/TLpUonKBIkTNR1HxFXSPYjnT+kI53pZKpD+CRNUKtorDYyirpnbqtoeGvZ0c4Gz7jJgBnf9Pfi8Is/dWu+tlBdo95bQytL9Raij2+qmFtURIKtW+xVLHES5RdSSakfmNGEUES9Oh0P4mcd/ztnJvGNDpdjEY8NdiwR8db4Fa8eFF1QwL9H5BzpuZF1T9ZKvZSPmcdk3zn6YaLK0v8v27PaLQqK9MLOp19n+snuMgujHMvzX4BYTo+tDvHbl2rHouuH0iYsStsmCr1BFVhqbDXFMNW4yW6EnhdhFIvl6HfcLd6W6Jcm78QCZLfV4Th8NF/+c66er6oER61r0pdao9HpW6wFoJMPN8z552IIsGQ36Va8jsSyDbR/2oYYG67XBEP/20S7BEQt+3oPdLIl6mjQzvPKpYqHpGrkXbf4OdE6SnW8l+mNhHxHcw53/rC2D0YhHfsy8RU6Clj1WuV2SdNmJu0/992P2PHHdpauX7TyacIvWGiZdSYbBSXhxaGrLzfaNeJ/mMh02W83DWheEJQKVm4JIWOU3SIodPhaj6snDy1ymw4cPQhbq3BYDmZ0gPx986wZJUqX89Ts6nYCJq/YENpmluMk2zBPgaOM/tOVcCP5qmmQVgmmZO1Q5TUaqA+EFwii0a1P5G34Kk5TmA4Tv9MaoutDhbBIu36FR0QxFzmV/6X1WPHwSd75KfB33mezzR9aXGIOubwDUT/qjVCDDkOOHeNBMvlVV2555q8YPEpKR+V7H4D4fWF4iblL9ed6GSdLlMFvzV6ICYdcS1lqhaZWh/g7jgZX0X2n7tbpD6ji1fed/e9mpppr4+3Khabalh2jlJJnmhYokBLOK6N+0w1At0vF1efyjRSJ/HSoG+7zlSKlu53arszemtJeJy6I/ohiIA9swT45dgaXWORGhWPgP7VwZ+vn1cne+Sz9hfc+5gjjN8qk2gWsUwo8kAaSi9Y4JMbvzt2/c16DVexNmWdBnTCfdJZHHGWY7P3jDEJr/ddRL1+vtcyNsIQ36RVN1ZF3lPfYuqJxHEuh1h5rliwOJtEpcw1C2l0s91zzCgy30iSPctEkfdRfeFH8Ea+JE0EN/6o9QznvQqlBdIo+6pw4I7bp02NufgU2yNu8srX4dpGNDhJqd2ImboosrrcS3SQqFC4FvlvK1MdkPz02H0ElsPUqv85y/dWKm5uC/wNhsOoxbJosLB1TD/pvAWFdwXAE79Qb5TUfVh1Xj/vVKPMYIRai2BrU6/b7M95kwnoKFhGDMMw/jXMIxrqmqAilKltDpHXIXyNvh+TmwzcQzc9rPv5yRdDkU5khrjjbbXQvFumdz6o+Nt8m+FsYQP2lwpz9nlx8UwEDkzceR9h3nTTLQFy7016219kZgRFOWGftzI2hKJzPo2tIiUP6LrS8+jzK/8N7aOiJac+NxZ8M8t4V/4m5wsUZpQBUej3mJq4mu/qHqSYpr5TXjvLch5VqsxrHgq9H2dz5Py0qqfbDXoJiYs698O39TFmU4pYk4B3l9vgx7SdH7dm5Ie6I+2V0u63pIHQ4vU9HldPrd/bgz+NfUcJ+6n/9wYfgof2BakvhWRsOQ/Ipw6jBVHwuWPQ8b1/s/xzv8nZhsL74SC7bKIYkRIXZqzUDEMWWQwLBKBmjpMxj3oU9g913dD91qNJfoW1UAaY3uLtlTUtj0lLpOrng2cgpp4kfRFLNzuvw45GE64GwZ9Ltf3JQ/gYphR4TgZgIhoSYW1Lxq4GzGFS8vzXEVVeSXOFTvOEcVWF0BmumReVKbOzMP4pVw+c+XYxxIhiwqdbAvRdrOhysxfQCLAba7CEW0vDL++vAYRjFDz1kjG/eobCfQBzgLOBB4zDKOTx4EMI8UwjIWGYSzMzQ1zwqEolaXpCJmU+6u5aXWe5EUXbPO+vcUYiXL4Sn+014Zs/tT/WOp1hDrtxSreHy3GyEpSZdIfXfLJ/aRa+sNb+qOd1hfKKqyvSGQg2l4n+efOdUWVpf0N4twX6Jj1u8u/G9PCn+DZJ665s/3XtHij3Q1yvu1b6n17J1vUKVB00BdRdST1dccEMZcI5fU5nzcRYZ43geh0u7ja7ZhQNcc74f8Ai7iQeovGdL5bvtuBIsCGAX3fFrfC6aOCf99i4kU07PlHojvBpP5E1paG3HnrnWz7w8SwiINayX5xTrOfmxhSC+rvHLdEwMBPZDHnn5vEMbTCEbYYdk13PDd3NphOImbXNFnM6faonKvr3vT+N2Kby+KT7Oh94che2zZ8stTzzjw/8EJF8W4qpjXlha5jDZW2V8Fpv9iOaVIxFdrxR2CBbyd+kLTGaNRXImt5IV4XfB1z+FRpEN6wj0T9fEXjQz1u91SJXPR6Tha4po+Sc6gyxxwxTRbC4hIlhXbrz5Ufq1IzaH6mU+2nKY68la11rqintX3PN34IewP4AdRwghFq24DWTr+3AnZ4ec6fpmkeMk1zNzAT6Ol+INM000zT7GuaZt/4+Phwx6wolaPZSLmJ+zIDAUfK1DYfq6eRseLauPUH7+mNlihISpaVZn9F/CB1JLum+b+ARcRIxGrrj+GvtgcyDAkWb+mPIGYCtduGn/4YPxjqdKja9MeEISKEA6Wu7ZlHUI6AgWh7jQiaTR+Htl+bZBHPvsZZv6vcoNa/E37UqXF/+Xf92+EZBlT2vPFHq/PF1CDc9E53ohtKRKks37WFhJ2WZ8l5sea1wMcqPShCZ9+/oVlFJ10hUdZ1rwdfo2Ov2VvzEuypZJ/RBj1EkG6w1TW5nON+6r4A6naAXs9LRkBpnq0hvN3dzSklzu4Wa99WvEf+PfG/cg1d9H9ite9NqLa6wKlm2OJ7ASC2mRiMFGZLk21/IqnCMMY+nkouCLc8C056HRFqJhAhda+LHwz+GPEnwxlz5bP952bftXmhED8IejwOp/8t53nG1d6zHMLBsPVYOzkdds+ROiP3a32oY+39Aoz6VzIHZl8k56Ry7FNRazZO6l9z/oZpZ4TWUsPnMZ+RczSyjtSBBlrsrsEEI9QWAB0Nw2hrGEY0cDngPnv9BTjVMIxIwzDigAHA6qodqqJUEU2HyGQ6e4rv59Q7Qeoo/EWHki6XC072X963t7tGJhW+om52mo8W4Zgz0//z2iSLxf6O3/0/zx+BDEOCwVf6o2FI+tGuKb77tfnDMKTmJWcG5G8Of3zux2x/gxwzb6Pv5yUMdfS0sviZNAYitpk0U970aWj1hLUaycR1yxe+04063SFmLeF+/nsWEHbqa1WcN/6wRIm1/c5JcHB91Ryzu81af+UzntsMi4iYPfMC1+3lzHCk8FlDqAkyDJvtPYTUK673S9JSYc5lsPyZytVg9HhSolcLbpXGtBU9/0xoHOCz7HSbuHGufxMGfQEnPiXidtOHjkUlZxHfqK8sUBTlyvs76HOJovx7l+/0xhHTJd3TEiPXW1807id9wHJmSITSF87jaTJYFiUqu9peug/HVKlc3re1r4ZWi2qJkvroep3FYONAFU2PImvDkD/EEXLOFeFnM3ijzZXiSluwVcxUFt5VuXMxpgmMsLV5mZ8CK56pXMsZpWZgv3f0fQ1O/kquuX+d6jtbKZRjtrkSzsgQ5+a/z4ENPtoP1XACCjXTNMuAO4BJiPj61jTNlYZhjDUMY6ztOauBP4FlwHzgA9M0fVjmKcpRJqqe1KBlT/X9HMOQFeGc6b5FR7PTZeXelxBr2Evsste95T/1qelQEQmBVoQShsik63D0tAoFf+mPrS4Ucbo9TDHR9hokPasKe6q1vVYmjv5qx+IHySQiqoFYDFdGkLS/AYqyQ1/ha38DlOz1XQPT8lxpXh6uVb/doKEyqa+Hkw4p4sa6/p2qOV6z4ZIyd2CFmGq40+46uRasfd3/cSqiRgCmk/gKglbny/sNwb/n0Q1EROZvkpqyytRaRdUVM4x9i6XGa/hU6a0HcGCZ/30NixhrYIiZSLeHpb/coS3SVNuO3YRj0GcSwVz6iONvt77Q9iRf6Y0nw5DfxKxjaQDHy3bXSP3cujfE9c1fz6/uj4ixSUwCzL4suMblvnCP0sWfDE0GiQvkgTXBHye6Pgz9Q1LBZoypur5QUXVg6ATpEzr7Elj1ctXZ4TcdJq6aJXvkfa9s8+HI2vK5tLkKlj0Gsy45rtz7jnvaXC5OqoeyYPIgKeWo7Lka10LadDQ7HebfLDW4K8YfU+dUUH3UTNOcYJpmJ9M025umOc722Lumab7r9JwXTdPsappmd9M0XztM41WUqqHZCLE895d/3/I8ER2+DEEiomUisu1n3+mICUPg4Cr/qU+RcSLWAtXnWCIg8XJ5XmVSB6qCivTHTNfHmwyQFLZtYaY/1m4tKUKbPqm6nmpxLaUVwqZP/KcNxp8sdSn7FlXOzKHFGImIhGoq0nSEuE/6Sn+0RIopRPZfodfAwZFJYawMsc3l+7TpY//mL8FiGNDhFvnZm6NnVF1pjZD1nf/VXfv71tbmkWVP7wuG+EFSqwbirBfse15x7vvp+RgsiZfIJGbZo1CnLQxIE/Gx6vnA9SK1k6DPq/L3/z4PImqL4+3KcWKm5Ez9LuISufFDR9pm64tEfIOYangTqg26y3uz8QPYPc//eHq/IJG7VeMDp5PWaiwr+Ic2w/yxleuTaP/eNOwLG96VtNCIWEnjC8X8qHaSCNOiXeJ6WRXnOdjcNP+E2u1gyf1Va4dfsJWKqaK1yH8mSjBYosRwJukK2PaDCLbjxL1PQRbQTp8p5/7c5Ko5V6PqSluIlmdLDe6yKmhdUY0ISqgpyjFHs5EyGdo1w/dzmgyS/lOB0h/L8n2LrMg42w8BUp+aj4a8dbKK7o+2ySIevdXdHEl8pj9aJIVvx8TwJyHtrpNV+0CpoCEd8wYo3BG4V1qLsytvQmCJkkn99t9DWzW3RMhr3zkJDm31/pz2N8nx170d3tgOdwpjZel0O5Tur3zPwIrj3QEYEvX21ii10x2ANfD7GT8IBnwoYjJUQ5eOt4rTrK8UaW8kDHWq34qoXPTTMKDvm3JeL/6PPNbjcfk+BJMqVK8LYJGU26nDJd2orMC74UmPJySKtfAOub7GDxJhYqklNZK+zrseT8gCz4Lb/C+mWCJt/SchqHTShFPEdCPzq8q1f6iI0v0kgnPJg5IOenCNpPGFIgIb94XBX0kq8owxVbf6H93AcV2uSjt89zrEgyFEEX1hWKSG0m4yURVtBpSaQ8NekkEChJQW7g9LlC2du5LO1tUQFWrK8UnjgRAR53910BIhKzQ7JvguYE8YKumPy5/0frNteR4VFw5/qU8tRsu/gdLlGp4k+djVJv3RS51G6wtlUhioNYEvWp0vK8RVaSrS8hyo1STwZK3pUEnP2f5b5f5euxvE5W3L5yHudz1g+nYLjW0q0cyNH8CyJ4+ZFcMK4k8VB871b1VN/UpcCzH0sBbD5i88t9dpK+fbhvcCLyxYIiWNducEKHD30/KDYYhY27vQVicYBPGDYPgU+R406Fl5YV2vkxhEbPlCDC2MWvJer3ousAW7cwsSa7EsonS8Vd4z9z5xUfUk2rTnH0f6cotR0O0Rad3h6/VH1YWTXpEUzUCpry3GhCZiuz4k0eqFdwbf184Xca2g31tiRLV3gdjZZ34l0cZQvoutzhPr8py/q7YfVIsxDjt8g6pJb3Y2b2h1gfQH3RnCooMv7KnYgNRM9qv8MZWaQ6sLJSpdlan4dkfI6preHyYq1JTjk4hoSUvc5adODeSGWnrAd7+0PQvEFe3ACu832/hBknYUWUcmXr4mXHU7Qp12gYWaYYipSM4MWPLQ0Z2o+0p/TDhN0o7CdX+MjJNIZebXVSdGIqKhzdVS/+XP4juiFjQ7Q6IHlREK9U8QgbDxo9COU6etGDhs+th36mf8aVLTs+KpYyq9A5Dzu9PtUk/lz5U1FLrYokirnvf+WXS+W2oDg1n8aHeDfC6h1lC2vVoWAEKpv0s4Vca+d4H3GrtQSRgOGCLyp4+E1pdIz7FAEcKKGi0AU87rHk9AZD1HhM6ZtlfLQtiSBx31vSfcI9eEpY/6/juJl0qmw7JH/Uei7ZbvMU0lehdogm+JgJO/EDH49zmw/L+V+84kXQGJl8niXExTiQ7t+C30+q2YBNsPZtVFv+zvTcJQMMslVbEqsEfiT/5CHGjnXRt+T0fnYw6f6khProoWA0rN4XCk4lf39P4wUaGmHL80GylpHP7qU5qdLqs+vtIfc2Y4JtS+0jdany/pkbHNfP8dw5D0x0A2/SCOlACrXji6E3Vf6Y+WSIkkbv/Ne+uCYGjYR1bvq1KMtL9RIqMZ1/k/Xsuz5ZzYH8BsIeDfuwEOrg5cd+NOuxskBdZX6mexvfFyFdQvVUfaXCWRmXBNU9xpeZb0IDy02ftnEX+qRIfXvhZYVNfrKAsRm0IU4FH1ZIEl8+vQ6kvtqa7r3w383EDsycAlLagsT0TXqmf9R9Xsk592tlSlQ1tEdHV/TJpg73BLJzYs0PcNmcjbG45H1ZPIVvZk3+d1RYpmga3JtB/iB0P/9+R7ujmIqHVsM+j6sJwDy/9buWuKYUiPupgEWSyr6CMXoOWBO02HOUW/qqgZNsjnNXSCOHTOH1u5ptXuRMZJ3V/xXmnMXtmod/wgMajp+pB8p6rStVKp/hyOVPzqnt4fBirUlOOXZiPkX3/uj5FxIta2/eL9puS82uyrF1CTwfJv7hz/42kxOjib/ny7zfxRnqgHSn8sPRg4YumLwyFGSg8CFkld8zdRazFG/g3XudJO4qUSRQm1Nqb1hSIsfEU6jtH0jgqi6kiKYdY34u5XWZFuiRSRDrD6Rc/thiFmFgdWyeQz0N9rd4M0pc6dFdo4Ot4q3+9NPtJavRHbTAw5qsJgxX6tsp83TYdJZKxgW+A04/hBMOADiaasfV2uhZ1uFzGw+D7PVhSN+8p7vvZ/Div6jrdLjd/SVN8T/Hqd4YT7JWKZE+D9bXmuGIus+G9wC0LlhThqoip5TanVCAZ+LH3aDIMKAVw7Kfhj2KNfjfrJmCoibFVAZKyIybx1kt5alTQ8UUxdtv9WdQ6tPZ6UuqV/bvY0qVGU4xwVasrxS4MeYhYSyMWq1XnifLVviec2+2pzTDOpH/O2ilO/m6woBxJqTYcFadM/tOpzu8PFV/pjs5EQWTf89Memw0K3NQ9EzgykaS3+J2qxzWTyVFmhFlVX3p8t6aGlcEbGimFD1rew7Anv6bTDpx1z6R0uNBkkqVurnq2aiGqHsfLv9l+9TwTtE+xNHwf+e4kXy7kdqqlIw17yuta/E1okouNtYrCSWcnUMG9pQc1OlzTFleMDix3DkLqqfYth91wRfb1fgAMrxWbd/T3rOV5SvjOuEcOMfUug26OQO9u/qU/3VOm/lnGd9Nry9VkYhryWQ5nS2y0QLotqVP6a0vwMMaMxy6QNiyUatv8R2jHiB4ldvaWWo61BVdH8DEnTXDm+alJnnel0p2SALL4P9ldBJ6aIaDFnKT0oYk37qylKBSrUlOMXwyJRtewp/m8MLc8GDN9pGfGDxKwib533uiJLhEzQAgk1u03/zgBCrTrlYftKf4yoJe/btp/9u7j5In4QnGBrbDvw06p5jc5OepYAJgQtzxYBWtnV3cYDZCU/1BTORn0lkrjiad+1j8dYeocLh7bYfqiiiGq9jtIfzyyHOVd5vp+751IRFQkUbYmsDW2ukEhyqP25Ot4q14ld04LfJ/4UMVhZVwUGK+7njWGIA2RBlm8DG2faXiW9Bu2952KaARbY/rPneRoTL+Y4exc6LNjrd5cG1/6iapG15X06tAmWBegj1/xMSYNc8Uzglhr2BY7GA+X32omBX28gWl0IGLB/qVz7M78OvXVGbHPocr8szARqvh4qJ70ii3oLbq1a8WMYMOgTifzPuaJy7UzsNOgGvZ6VxZRNH1f+eIpyjKBCTTm+aTZSmhMfXO37OTEJ0utnQ5rvCUOTAbLqnbfBx/bBsvLsr28byCrlwbWQv9n/86rLRL1ue3GhXPua53vT+kJJYcydHd6x7X2ryr3YqodD/CAYNln6OrU63/971/JswAy9abU7xXuQy2yIgqMw2/bDMVqHFoiEoY7+W1UVUW1hs3Xf9RdMHep6voYi4gHa3SgC3Feze18kXiL1XetDaK9gGNDpNolk7Zkf2t8LhuajJIK8crxvd1s7kbWhw80SKT+01dVkyVuNbq1Gth9sFty750ia275F/qPtwfaRMwxxXizcIS6UgYgfBINtrR/WvBL4+YHYM48KgW+WSxaAt559gehyv63m7YGqFVSxzcSFc9c0cfysSmISYOAnvo20wqHz3ZJN8e/dgVvVKMpxggo15fimqb1OzU/6Y24GHFgDRTt9O3s1HiD/7vGxIho/GDADO9kFa9NfXcjNEFFZsM3zvWkxWmqptobZ861+F4huFL7Q80bT0yRCkbfe//Ma9pa+TpVNf2w6zLUuKFjB0XRY9UlvPRrED4LeL8nPJz5TNQsSzpb61hJX50a7HX5EnFwTAv29xv0kpTnU9MeIGKlx2/YLFGwPfr82V0m6ZSgCL1gMQ2rVDm2B2ZcHnnB3/P/27jw+rvK8F/jvmdE22rcZSZZsS16wMQZi400sRrbBrA1QaEKSZmn25CY3ny630NuGm+WmaXrbJk1JS7O06W1zszRpljYkNIU4IcEQCLHZHWwwYLxI3rEtb9J7/3hm5EGes857NGdGv+/n48+RNDNHR69HR+c57/s8z/sBGF3CmZ/3lqw9+33atS4v4M42vO7/bS2I9NiHnWfbu9bo8wF9vdv7v2tIv89TnyzcK2+yxgGtKrv177UoRjFe9fPXaT7h9q8437BzUt2k/d6Gf1p8a5DJ5r1LV3Q8+nvBmrX7Ud2i/z97NwL3rik+WJOEBn+SAH56E/DEJyqrqi1RCAzUaHpr7NeEeLdAbXiD3i0FnO/uNp+r+RhOS1c6V+ofc6/lj37L9MeF29hUNejd+u1fDdfUVRIa4HoVFQgqs1qXKuVKhxf83qKzarvuCV+5Egi/TDVOy1tLZd67NEgdDdCzzE2iyv3xzKVA32t15sprVkNEi2Xs+0XwHJ1579HfmW0+mk3nVDfpDPMLXweO7/V+flA1bdDl3f/mPTvS2K9VXbd9XvPu3N6nuUbhADDv/fp5Iglc8DFdxfCCQ2PzXOXCRDXQc6X3+/+Cj+sy5V/f6e/nXXSbBnXFVhad/Ht60V/pMT/5yeD7mvsOLaay6bazi7MUQxLA8ru02uim2+ztF8ie/7O/K+MOVY+DapilM2sHHzuzZJbBGk1jDNSIuq8A9mxw/uPop7JjIql32Z1m1Koa9KLGK1ALUqY/DrzGpvUC4OTe8H9w05dqTo/NSmCZ1bq0au8D7s+bcb2WMB/xqMLpJewy1bgsby2VqnoN1L2K/fg18JYzszuQM0tr83Wv16XQBx/33l//b+tF+baAVT2b5uoNjK2f915qmG/++/RiOIr8neGf4EyOno8L7gUf0tmZF/6f9/t0zluy576836OZN+vXfnUb8LhDwZDuK7T34Z4NwKkj7seTHtRqrU99yv0GTE7r+cCM64Bf/7W/WTiv7537+VM9wNx362ztke3B9pOo1mWKh58JXinWS9sFmvO77UvAQ++xF/hkhrQQSO690zjXzn5zbQum69JvojwM1Ii6r9AL8n0PF348d9e0plP7DjldkHSs0JkapwCr8xIN5LwuzmZco72EbM8kRSE3Ng2zdTnT5LHJzbblclSC/sFNX6pbrwA3iM5VesHuNb7d63Q5U7HLHym8rnX6O1Vsc11A35uXfVs/TtToLPdkPet161aVMKcurSXit/9z8FnX+e/TmcIgy9xazwMyl2erRjo0Qw/Lz82oVz1/td6E2fJZfzlVA2/VoiK52UdJALN/W5eTP+5SMGTu27UH5UvfPPuxyS74mM4abfmM93MB7d11Yl/wQNtzv3+oP1+Ysvi9r9Vz3mN3eAenQfVcBW14/nl7s1S58/+i27Pn1J94v8aPrjVnckbFR84oUQVjoEbUtQaAuN+5Tw8CPVcAx15wfk7HSg3C9v/KYR+XaAGCQmX+Jx+PnzL9cZEe1OpnR7aeHYTOuA56t1XC5Vq1X6RjYTNPrapB9+s1U1ZVD3St1Ytplosuje4rdBukSqKbvuuBuh6dmTqw+ezH63s192z3f/rb39x3aMGcl78X7DhmXAfUz9Qlck9+0v9F8/z3a9PmnT8M9v285C64G+dpbqbXLK4IsOC/6/I0Pxfn/W/UC/n8ypLjJ7IfuMyadF6sxYr8BFPtF2kBo6f+HNj8Ye8xzVyqQdHTfxFsZtNLfa++L577By24EoQIsOT/AMf3AM/8pb1jAl692sPPrKlf6UHgNX+qM9TP/aOdPLhcj7madqBpwfRdVUAEBmpEWoWtbQmwx2OJVdsS7dnj9IdooqCIQ2W2tM/G11X1eufcq0x/nHQs15nEQ0+++uvpQb37XtMWLtcqWaszlTYDNQDIXKYzqF5lpXuv1+pjQUtukx3tF2kPQrem9EF1r9Xt7h85PL5eZ1v9NJjuXq8z7ZsDNuZOJHWJ8/5HgM1/4n+Go+9GLYkfRVGR9CCw8He1VH+uSbWb2W/Uc+eWz3o/ty4D9F4HPP8vZ5aYd605u9DIZCI6qzZyv79eYH036WqEJz/hb0wX3a4/b9DqnV4W3a7bpz4V/LWdq7Q66FN/Bmz6n5aXKWaXFIrYn6Va+Ht6I9JWE+z0JVrk5tDjzqtdiKYBBmpEgN6537vRPV+hbYlunWbE6mcA9X3OeWr1vbpE0M8yvhnXaK7Cr/6wPBKpO1botlCQ2rMeOLlfqziGkbkM2P9o8bkk+dKr9S6+V7nzGdfpdieXP5ZEokov6PdYDNRmXKvbHd8p/HjPVdnCCD5yE/f9ItuW49fOFWGd1HZkPwiwLDhZA8x7N7Dz+8Cv/of9c0PfDbp1Gpt8VSnNx3r5u/7ysQbeqvl/u7KzlelBYMUX9OMFv+t8E2fgLbr8zU9u3rHcDJbP3KYZ12pvt6c+ZXc5acMsYOBtwLYvBKvumTPzt/TG11N/Zn+ZYvsKHc+w52Mnredp7uWv77SXXz3nbVrtNNe3j2gaYqBGBGigNn7KPW9pIlBzWNoI6KyaU6AGaJ7a3p97L6VLdev26b8oj6pXjXN0mUqhO5/ty3S7/9Fw+05fCpjTdpvBZi4FIHqn3k3DLM3FYZ5a6XSt01lNr96CfmVW63bfI4VzyzKX6XLbXT6WPw5vOHOBHzQHs/c3MFGEIciy4Palun36L+2fG+p79aaLn0AN0Fw7A2DjW7yPY8Z1Gpw+/+UzX5vzVj13HHA5N6R6dPbx+X/yroaY3w/Pq6w/oDNLi27XlQAvf9/9uUGd90eao/vo7wVb3groMnIA1otppAeBFX+n+9z+FTv7zHfuH+iyze0O1TyDqm7WGdUXvwGM7rKzT6Iyw0CNCNBgQKp1yYzTH9S6Ts0rcQs4OlboRaVT8YP0JfoH5+h29+N5Jdfss0yqXoloQFYwULtIt/t/GW7fnYPQoMri8seaNm1i7mfWpPc39HufPGDv+5N/3bleh5Zm1er7gLouwJwqfFOlql6Dud0+Coq8qghHwOVk6UGg/00AEsDl/+F/WfChp6ABXkTnhr4bdabQz0zQsR36c4/c7x00JmuA2W/SHnK53yURYOYt+n/r1tNs7tv1vOlV5CU9CAz9QIO0Gdf7G9PZrwca+rUPm81c1MYBnWF68RuaMxckqA4acAbRvlRvOm79gv3c2661QOuFml9na9/nfFADdFtLKonKDAM1IkCXM5oxvSB3+4PatsR7Rg0oPk+tHBsed6wADj1xdm5PbYdeCO1/JNx+a1q1nLbtPLX0ai3R73WXvvd6fW/YLuBA/jSfq7Mqtsr0A2eCv10O++xZrwHRsR3u+8ktJ2tepLljQXMwB94CXfoYoJhFLtcoqnND34263fFd7+fm99HyU6Bizls1uMzPCZt1i86YuxVkmXEdUJv2V7a+e632w9v3gL/ljIkqnQnauxH4hcXS9YD2RQMAjAULqtODwNAP9f+35yr7xTTmvUurqYY9JzsRAc79ff3d2WXpfNk0V2+WPXtXebSsIbKMgRoRkP0DmrvgcPmD2rZEC0s45Uu1X6SlmZ0CtZbFupzDK1Arx4bHHcs1oCkUyLZfFH5GDdAZz70b7TaCzVym/49ugTcAtC8Hqls1jyXuS1ArkYguf9xzn708ou5sGf6dDuXxe67SrZ/lj+lBYN47gdGXg+cjpS/RQhpBcvCiPjc0L9RKi36WPwadUWxbojddnvvyma+1L9Pc3Rf/1fl1yRoNand8z1+rhpk36wzc3ge9nwtooA1oTpnN5aQzb0Go5a0A0L1Gi4qM/Cx4+wcvs98IJOt1Vs22Wa/XyqFPW6xaueBDwIkRYPtX7e2TqEwwUCMCXn2XOunyB7V9CQADHHis8OPVjRqMOeWpJZJAxyrNU/NSbg2PO5brtlCQ2n4RcGRb+OWD6Uu1n9JBh3EPtc/LdOu1/HHfL7TP3sHN5ZEvWIm6r9ALNT+NqP3IXK7bA5sL96tqWayzeH4CNeBM3lvQ3odV9bq0N2j7gSjPDSLAzJuAPT8GTh70Po619+qsZ21aKxZ67Xvgbfo7lassObH88Ufu32/O7+jM2/Z/8f4Zeq/XwOilb3k/FwD2PYgzDb8t54TN+R39+NJ/Df7/NftWLcTkVKE0rJoWYPbrgBe+ar9fW7JGA6s993q3ovGra43+Tm75a7ZKoWmHgRoR4P8udVs2kd8t+b1jpV6IOP1BSV+ijV+9LoLKTaonW/UyooIigN3lj/UztG+UV0GRVy3vKoN8wUpkO0+tsR+ozQAYLxyoi+is2+4fAeNjZz8+WeuFWp3OqzdfIV3r9PfCLUdrqvXdqEHRzru9n5seBM75gFZ0PLLN+/n9b9IbYvk91Wbdoss/3RqAt56n59ZtX/K+WK9u1v+/l77l78J+onS9x426MBZ8ULfH9wR/bfd6zad9IYKZpLnv0ptfL37d/r7nvRuoarQ3qyaiwd/Bzf7yiokqCAM1ohw/d6nr+zTnym25XOdKnTl65VmH73MpAON/WU45aV/uEKhlA9ywORENM3V5VNAZCy+Zy3Sfbkvqcsu7vGZbKTr1fZrvE0WemtM+c20l3G7K5CSq9AZMmIvIrrUAjL/G0VOlY4Xm3L30bX/P78kuJfUzA5nqylZx/OczQXDHSi3U5Lb8EdCiIoee9HcemXWz9r30s+Q6d6PuwgiWk7ZeqOcuv5U08yVrdLZxx3f89fULonNQZ0KjWP5Y06pNv1/4mneep1/9b8r27fuMnf0RlQkGakRBiGiexX63giK5nmIOyx87V+pFv59+auWmY4WWlp48O1DbATQMFJ+nNvIzu0tfMqv1YtytwW855gtWoq51OmNlK1+nK9v42mnWqPtK3XpVGszJrNYg4vjeYMfRsQKoarDb1LtYktCeart+4K+AQ+Nc/f3e7XOp6Jy3AaM7zwTJIppXtuse4NRh59fNer0WWdr2Je/v0ftarZjod/ljVMtJRYDeG3R2NkwvyNm36ut2Wm4fIKJFRfY9ZG9Jcb4FHwIwDvzq9uDtCQqpSgHz3qNFbmy16iAqAwzUiIJqW6LVDZ0uGJsX6bIPp4IiVQ1A22v85amVm1yeWqE73jYKihzfre0PbMnlFnktWSu3fMFK1H2FXrC69SkMIpen9sqWwgUq6tK61DlonlrQ5bnJGs2XDJqnFrW+m3S8/QSQIkDPlZrX5qeCZe/1uqQvv6farFu0MqJbz8KaFp1hev6fgcc/6n7xX9uuuU0vfrP0eU19N2jA6/e9lC9zuS4rj6KQRv+bNZcvilm1xgFdffDCV4K3J3Ay//16k/PXd1o5RKJywECNKKi2pXpBcfipwo8nkpqT5dagufMSfTxIWe5ykOuZVmj5Y8cyDbLC5uJEkafWMKAVypj3EH9dQzrTY2vmqWkeUNupH+/5ceHn9KzXaqNuszw57cs0zynMe6l7HXD4aeDYzuCvjUrXGs318rtkr3u9jpPTDap8yVqtPPjSvwGP3aEX8J2D+rv44jfdX9u5Ehg7Bjz+Me+L/1m36Ax/FDNGQWQu08DUT8uDyRJJYNbrdOb35CG7x1XXCcz8TQ18T4/a3Teg1UMBBG5P4KS+V/9Pn70LeOwjLOxE0wIDNaKg2pfo1m35Y+dK4OAm52VD6Uv0YuPAZuuHV1I1rZpL5FT5EfCX81NIyyItk28zUBPRmZDh+0t/153c1bTpTZI9lvLUcmX/IS55aldpUQ2nQC5fslYruoYqKJJdhunn+0yVZA0w41rtb+anoEr3Wg2k/c4atWdveD3xvzXg2vtQdvnjD9wrEU4EK+PeF/99N+ox+V3+GJVEtfaCe/nfw7UYmX0rMH4C2OEzZzCIue8ETh3UoNm2gTcjdHsCJ11r9W/nEz4CdaIKwECNKKim+bp80avx9fgp5/LEfhtfl6P25YWrXk7MtoUsKCIJHTfrja8v0x5YR5n3EHvdV+gF/alX7OyvawiAcc5D67xYf9eDLH888Ct/M3D5Wi/UQDR2yx9vBI4P66yil5o2/d33O1aju6EX8eZMwDXrFr255ZaP1bVGl78B3hf/dRn9/S51oAboWJ7cH+6c37FSZ//zG4Xb0rUGaJyjPeRsS18M9F4HJGqBNffYWTp+IpcDauzM0hHFHAM1oqAkoRdWXoEa4Lz8sb5XK4FVZJ7aCs0lG53U/LemTS8IislTy1wGHH7GX9Nb3/sM2QOLpl73Op3hsrVUNfd/f+xF4Mj2sx9P1gCZNcEKiphxYOSBYMeRSOoF85574zWzO+MaDYb8Ln/sWQ/s/4W/1iNda870rswFXJ2XaLVJt+WP6UHgvD/Rj5f/nffF/8ybtcjLoWf8/QxR6blKA5Yw1R9FdFZt93/ZPfcB+vds7ju16ujhX9vdNwAMvFVnA8XS5WZmSIvEAPZm6YhijIEaURjtS3W2zKmse/0MINXrXvig8xK9uxqnCzMbJhpfFyrTf1H4Ev1AXp6axQC3ZRFQ0848tXLQeYle7NrKU2s+V//vAQ2SCulZr/3BXvHRI6xzlV5Ehim137VWy8nHaWa3ulmXh+74jr/zVPd6PSf6mRksVE01kdScqZ3fd6+QOPcduvUzcznzN3Vb6lm16kadEd7x3XDn/P43AGbMu4VBGHPeBiABPPQu+0sJu6/QYHznD+zsLz0IXPRZ/XjxHSzwRBWPgRpRGG1LtFnoK1udn9O50j2xPn2Jlqje9IeVtc6+7TV6serU+ProduDEvnD7bl+mF+pW89QS2dL/nFGLvaqU/t5YzVNbA8ClSEnPVbr1U3q+qkHfo6H6qVlu6m3LzBs1UD30pPdzO1dq42+/yx8LVVOddQswNup+Yd8wE2jo9zfO9b1aqKTUgRqg1R+PPh+uuEnLYr2pFMXyxyPbdRXqyE/t533VtOoNjF0/tLfPee/UyspHX7C3T6KYYqBGFEZbtqCI1/LHI9uc+ypVNer26b+qrKToZB3QeoF7QZGwyx+TtTpjZztPLbNaG5SP7rK7X7Kv+wq90B3dY2d/mcsBjGufq0IzHU3zdTneljv9/Y52XQ7sfzh4g+LmBVqGPW55ar2vBSD+ml8nqjXw3f2j8N8vvRqoTXtXf0xfpoGFn9mpmTfrudpma48wen8DgISr/igCzH6D3lA6+pLd4xreAOSGcSyCvK+ea/Scf3zYzv4m3mch2h0QlRkGakRhtJynfyz2u1QwzOWpOc2qHcv9sfVRvazcdCzXJY6Tl4a2L9Vtsf3U9v8y+IWw6z4v0y3z1OIvN/P0yw/ZubmR66d2Ym/hWaO9DwInRrQdh58bKunVWkgoaL83EV3+uOe+eC2HTnXrbM6zd/kb7571GhD5WSpaSG7548vf1RL8Tt8zs1ov/F/xkVc182bdvljiWbVUt84uhclTAzRPDQBe/Lq1QwKgeV6JGv1YEvbzvmZcrdswfeScdBf5PiMqEwzUiMJI1ujFi9uMWvtF+kfP6YKtay2QTL06mb5SdKwATh3SWap8NW1A49zi89TMaXsX6oC2XEjWAVs+XTkzm5VqPNto/sVv2JmJbl0MVLfox4WWHQ5vOBM4+ZltSF8CQMIvfzw+7G+Z4VQZ2Zgt4LMTuHet93h3r9dtMbMdLYu0+uPjH3X+P54oAuRjnBv79Xwcl+WPBx4NNyvWNE+X1tpufp0eBNbdp/manavs5321LdFZUlt5aoDeEACKm70lKgMM1IjCaluigZrT3e/qRg3mnAK1Qsn0lcK1oMiy4mbUEtmKX9u+ZG/J6L5H9CJ874OVtQy1Eo3cj7PKuhdDEjqrJklga4FZo/zZhkTS+4ZKTYvmaYZqfJ3rpxaj5Y/DG87MjI+f8h7vpnmaP1bM7MlE+wWX1QZN84G6Lv/jPPNmPRfbXjYYVN+Nug2z/BHQ5Y8HHgUe/X2756n0oB7boSeci2SFJQnN9dx9j7+efH40zQfqZ9mdpSOKIQZqRGG1LdHlUpPL0OfrWKGlup/408J/VAsl01eC5nOBZL1z5cejLzjn7nmZWG5qsY/O8AZMJGlEkaNB9mSGzi7rXqyG2VpR7/AzZwfq6UFg7X/qxeas1/n7Xc2s1t5jYyeDH0fj3HgVFMkM6QoCSWbbFQy5P18E6L5Sg80wzZ0BXW2Q8Pg/nmhWHyBQA4CH31faGzHNC/TfyyEDtaZ5un3m0/ZvKnUNAScPhCt24qXnai0idcAlXSAIEZ1VK+Z9RlQGGKgRhdWeLSjilqdW0wmcfgV47MPTa6YmUaUBWaH8vI5lug07q5YZ8t/wNsg+k7UAfF6MUulEMROdP4NQKFDPXKZ5qScP+NtfZrVWLgzzHu9aq98/LhefYca7Z72Wznereuv1Pdfd5/0906u1B56f6n8n9gEQLf1f6nNx343Ang3++s1NNrEsNoKGz7l8zTDtJbz0rIeOv8Xqjz3rdYl9oRuCRBXCV6AmIleLyBYR2Soitxd4fEhEDonIpuy/O+wfKlHMtF4IQNzz1MZyBS8qsGCIl47lwMFNulwqX1uuoEjIPLX0IDD7jQASwJp77FyopweBtfcBF1bgMtRKZHsmOlekAXBe3tiyWJeF+ZErTjMSJk9trQY5bjeAplrQ8e5aqzOQxSxL8/M9g+Sp5Z97S30u7r1B82x33h38tVE2fG6YpctW92ywt8+curQue7dZpr9rLQBh9UeqaJ6BmogkAXwOwDUAFgF4g4gsKvDU+40xr8n++5jl4ySKn+pGoPkc90Bt1m9p369KLBjipX25FgQ4OOnitqYFaJxXXJ5a1xCAcSA1o5gjfLVKXYZK3iSJM38OpfBzWhfrzI2fJst1aV3+G6qgyBrdxilPLajadv39j7rQQ+tioLrVX7XWKJbMhtW5UvPrwlR/TA8C539EP152p/3zVddQtu2B5Tw1QKs/7nsQOLHfzv5qO7LBHwM1qlx+ZtRWANhqjHnOGHMSwNcA3BDtYRGVibYlwH6XQC1zKbDux5VZMMRL5wrdOi1/LKbyY9M5uvVTmpvIS36O4vjpwrMtLYt1e9BnRcbMau33F7R4QqpLv9eeGOWphdF9pRbvCLO8z6+JZvU+AuI4FW+ShPane/k/gMc/HnwZ5sBbdGuzRUlO5nJdJnroKfv77rlaA8DdlhrWA7r8cd9DwMlD9vZJFCN+ArVeAPllknZkvzbZoIhsFpEfiMh5hXYkIu8WkUdE5JGRkZEQh0sUM21LNEfixD7n50zXmZqGAb3jud+hoMixl8I3QG3OBWrPuj+PyI/MkPZFBDS/stBsS+v5uvW7/DGzWmffDj4W/Hi612mQN3Yi+Gvjome9FmjZ8+Nov09mNXB4i78G6HE6Fzct0DzGxz8SPGeuvk+bo+970P5x5fLUolj+2LFCW7TYXP7YfeXUvM+ISsRPoFZoHcjkeuSPAphtjLkQwN8A+E6hHRljPm+MWWaMWZZOpwMdKFEstWULirgtf5yuRHT5U6EZtfYiC4rUpoHqZuAwZ9TIgvQgsOof9eNFtxW+kG+YDVQ1nL2U13GfuSbqIfPUxo4Dj3ywfAsQda4CqhqjX5aWy1MbKbNm9cXkL4sAHau0nYhtDf1A/cxoCookqjSw2vVDe03dOwf195J5alSh/ARqOwDMzPu8D8DO/CcYYw4bY45kP74bQLWIdFo7SqK4ygVqbssfp7OO5Xph+/hHX33BOTFuIQM1EV3+yKWPZMvMmzV/ySk3RxJa+fGQz9LlDTN1VjlMQZFknW63fbH0FQrDSlRrvt3L/w48+cnofob2pdoKJExAXErdV2DiPniYnLnOVcCRbeHbnDgR0WMZ/om9YCpfz9XA6K5wM82FJGuAzBpgFxtfU2XyE6g9DGC+iAyISA2AWwF8L/8JItItIpL9eEV2vy5rwYgqRF2n3n3kjFphVU0ADPD4x159wVnTooFWUXlq87n0kexJ1mpgdfgZ5+e0nu9/Rg3Q2Z7d9zr3UXSy/5ew2tS7VBrna5/JzX8SXcCZqAbSF5dfoJYeBHqvB5IpYO1/BV+O2blKt/sesn9sXZcDJ0aAw0/b33fPVbq1ufyx50rgyFbgyHP29kkUE56BmjHmNIAPALgHwNMAvmGMeVJE3isi780+7RYAT4jIZgCfBXCrMVHciiGKobYl9pp4VpqJQgIFlve0X1Rc5cemc7QK39jxIg6QKE/zQuCVLc6PtyzWC1i/uZWpGdrnKWgfxThVKCzGROJExO1J0qt1hsZvn7u4mHGN5qnV9wV/bftF+v6IYvljlP3U6mdoaxub/dS61+uWs2pUgXz1UTPG3G2MOccYM9cY84ns1+4yxtyV/fhOY8x5xpgLjTGrjDEPRHnQRLFS26nJ7LvLvEpbFHJ3jAtdcLYvA47tADb9cbg77c3nADC8i0r2NC/QWVqnSo2tucqPPmfVxnM3EQIGKnGqUFiMmTcDiSkIODOrARhg5OfR7D8qEz0lQ9zoq2rQGd4oCoo0zgVSvcCeCAI1QMv0j/wMOPWKnf01L9CVLVG3gyAqAV+BGhE5GNkIbP8X/XjDdeWZSxIltwvOXB7OU38WbllU03zdsqAI2dK8UGdoj71Y+PGJEv0+89T6bsp+IMEDlThVKAwrfTGw7r7oA86OFTq+fvqpxUnrBRrEhl2R0bFKizXZ7nkmorNqUeapmdP2bm6KaJGS3fdqew2iCsJAjagYwxvO3H136r803TldcB7PldMOuSwqF6ixoAjZ0rxAt4cdlj/WdekMuu8S/ZcB9bO1+XU5z4wVYyoCzqqUFi4qtzy1qpS+N8LMqAGap3bqsHteZVhdlwPHd0dzfu28OFsR1Gae2nrg1MHi8p6JYoiBGlExMkNadUqS2epTQ6U+ovLRc3X2gxCzDQBQ0wrUZVhQhOxpXqhbpwtfEZ1VC1JQpP01mqs1HYO0qZRerRfpp4+W+kiCaV8afkYtV1Akkjy1Id1GkaeWrNFegTbL9HetAyDMU6OKw0CNqBiVkktSCulBoGkh0DQv/Ng1zeeMGtlT26kNeZ1m1ADNUzv0hP/lZk0LgFe2Oue9kR2Z1bqcLoqgJUptS7Vc/eiu4K9tmq/v1yh+5qb5QF13dHlqPddoMahHf99OykBdpwa97KdGFYaBGlGxKiGXpFRaFwOQ8GPXdA5n1MgeEQ2s3JaStSwGTh8BjjrksU3WvECX9h7dbuUQyUH6Yu11V27LH9tzBUVCtHiRBNCxMpqCIhN5ahuiyVOrTet2y2fstW7oXg/s3ajLQYkqBAM1Iiqdxn69qxo2Gb5pvt6JtlU9jKjFo0R/6/m69Zun5pX3RnZUN2urlHIL1Npeo9vQBUVW6lLcKM6BXUPA6E5trG3bK1tgvVdgz3rAjAEP/zcW9qKKwUCNiEqnoR8YP5FXWCSgpnN0y1k1sqVpQTb4d7gr33Kebv3mqTVlAzW34I/sSK/W2aWxE6U+Ev+qm/Q8VkxBEZhoimhE2U8tkl6B2cZ9278SXYN1oinGQI2ISqehX7dHtod7fTMDNbJsoqCIQ2BV06I9m/yW6K/rBGraOaM2FTKrtb1CuVX+K6agSMcK3UaRp9a8UAs27dlgf99R5HfvzbXwtThLR1RiDNSIqHRygVrY/J3GubplLzWyZWKpokueWuv5/pc+5vYZRQl1erX0pbp9/OPlNZvStlSXgJ/YF/y1te36/ooiUIu6n5rt/O7MkDZYR8QN1ommEAM1Iiqdxn7dhg3Uqup1doMzamRL41xdjuU2A9ayWAOv8VP+9tm8gDNqU+GVZwEIsPue8lr6lisociBEQREg2/j6wWiCqczlwLGXyqMYTnpQG6xfyCrMVDkYqBFR6VQ1aPWvI8+H30fTOSzRT/Yka4DGOd4l+sdP+r9B0LRAmwezGl208pe6ldPSt7Ylui0mT+34cDTBVC5PLYrlj1FgFWaqMAzUiKi0GvqLu8Boms8ZNbLLT4l+wH9BEVZ+nBqRFKiYArXteh4MG6h1rNTt3oesHdKElkVAbUc0BUWIyBMDNSIqrcb+4gK15nOAk/vD5XcQFdKyUIN/pybVLedqDyuW6I+XKApUTJViCoq0ng8kUxH1U0vojYkd3y2fpaREFYSBGhGVVkN/8b3UABYUIXuaFmjbiGMvFH48WafvO78zao1z9YKXgVr0ynXpW9tSvTkQZnlsogroWB5NQZGRjcDIA8Cpg8C9axmsEU0xBmpEVFqNA5pPMro73OvZS41s8yrRD+gsg98S/claoGGAvdTI2URBkU3hXt+xSouR2O4hN7xBm0gDWjynXPL+iCoEAzUiKq2iS/QPaE4KC4qQLX5K9LcsBo5sA04f87nPhZxRI2dt2UCtmIIi4yfDV450khnSGw2S1EI75ZL3R1QhGKgRUWlNNL0OWfkxUZ2dreCMGllS66NJdev5AAxw+Gl/+2xeoO/RsEt8qbKluoDUjPgVFCnnvD+iCsBAjYhKq2G2bostKMIZNbJFxLtJdWuu8qPP5Y/NC4CxUe1JRVRIWxEFRepnaE/JKAqKlGveH1EFYKBGRKVVVQ/UZeyU6I+i4StNT15LFRvnAola/wVFmlj5kTy0L9UZWr/LaSfrXBVNQREiKhkGakRUekX3UjsHOH0UGN1l64houmvONqk+eajw44kq7THFEv1kS/tSXRp78LFwr+9YpefRsIWZiCh2GKgRUek1DABHtod/fXOu8iOXP5IlfmbAWhb7n1Gr6wKqmxmokTMbBUUAYF8Eja+JqCQYqBFR6TX2a8+qYnupsaAI2ZIr0e9WUr91MTD6MnDygPf+RDT4Y4l+clLfp4VswuaptS3R6ozPfJr9zogqBAM1Iiq9hn7t0TO6M9zr62dqvhBn1MiWxjl60etVoh/wP6vWvIAzauRMRGfVws6oHdikN7uGfwLct47BGlEFYKBGRKU3UaJ/e7jXS0Jn1Q4zUCNLkjVaMMSzRD+C5akde0nzKYkKaV+q76cwjavzm1GPn2RzaqIKwECNiEqv2KbXwJnKj0S2eJXor+/TvLMgJfoBvk/JWftSXV1w6Mngr80MAck6nQlOsDk1USVgoEZEpWerl9qRbcD4mJVDIkLzQg2qnN5TIsEKirBEP3kppqAIm1MTVRwGakRUelUpoK67+Bm18ZPAsRetHRZNc80L9D3l9r6sTQP7HwZGHvDeX9N8AMJAjZw1zgGqW8IXFGFzaqKKwkCNiOKhob+4Ev1N2RL9zFMjW3KVH50Cq5GNwM67gbHjwL0+ijdUpYCGWQzUyJmIVm8MW1CEiCoKAzUiiofGfuDo8+Ff38ReamTZxFJFhzy14Q2AyS6L9Fu8gSX6yUv7UuDgZmD8dKmPhIhKjIEaEcVDQz9w9MXwOWZ1GaCqiYUayJ66TqCm3Tmwygxp0QYASFT5K96QK9FvjK2jpErTtlRnad0K2RDRtMBAjYjioaEfMKfD91IT0YIinFEjm5oXOl8wpweBoe/rx3Pe7i8vqHkBcPoIMLrL3jFSZWnPFhR5/KPshUY0zTFQI6J4aBzQbVEFRc7hjBrZ5dWkunstUNOmvfz87g/g8kdydmKfbl/6FhtXE01zDNSIKB5s9VI7uj1cs1iiQpoXAsf3ACcPOj8n1QuMvuxvfyzRT15G7odenhk2riaa5hioEVE8NMzSbbGVH804cOQ5K4dENDED5hZY1fcBx3b42199L5CsZ6BGzjJDQLKWjauJiIEaEcVEsg5I9RRZ+XG+brn8kWzxKtEPBAvUJKG5lAzUyAkbVxNRVlWpD4CIaEJDf3FLH5tzgRoLipAljXMAqXKvwFffp8sjx04CyRrvfTYt0CbZRE7SgwzQiMjfjJqIXC0iW0Rkq4jc7vK85SIyJiK32DtEIpo2GgaKW/pY0wZUtwIvfIMJ+GRHolqDNbfiH/V9uvVbsbR5AXMpiYjIk2egJiJJAJ8DcA2ARQDeICKLHJ73KQD32D5IIpomGvuBYy+Fb/Q6shE4dVhnK1gtjWypzQDDP3N+P6V6deu3oEjzAs2lfGWrneMjIqKK5GdGbQWArcaY54wxJwF8DcANBZ73QQDfAjBs8fiIaDoptpfa8AYA2UbCrJZGNoxsBPY9CJwYdg7+czNqfvPUWKKfiIh88BOo9QJ4Ke/zHdmvTRCRXgA3AbjLbUci8m4ReUREHhkZGQl6rERU6XIl+o+ELCiSGdKiJKyWRrYMbwDMmH485hD8Bw3UWKKfiIh88BOoSYGvmUmffwbAbcbk/poVZoz5vDFmmTFmWTqd9nmIRDRtFNtLjdXSyLbMkOapAUCiqnDwX90CVDX4D9SqG3W5JAM1IiJy4afq4w4AM/M+7wMweV3SMgBfExEA6ARwrYicNsZ8x8ZBEtE00TALgBRX+ZHV0sim9CCw/O+Bh34HWHxH4feWSLCm14Auf2SgRkRELvzMqD0MYL6IDIhIDYBbAXwv/wnGmAFjTL8xph/ANwG8n0EaEQWWrAVSM4oL1Ihsm3G1bmtanJ8TpJcakA3UngHM5AUqREREyjNQM8acBvABaDXHpwF8wxjzpIi8V0TeG/UBEtE009hfXIl+Ittq09qoenSX83OCBmpNC4BTB4ETzNcmIqLCfDW8NsbcDeDuSV8rWDjEGPO24g+LiKathn5g5OelPgqiMxJJoK7LO1Ab3QmMj+nzveQqP27+MDDnbVyuS0REZ/HV8JqIaMo09BfXS40oCnXd3oGaGQOO7/G3v9NHdbvtC+z5R0REBTFQI6J4aejXC94gy8iIopbqAY7vdnk8YNPrw89kPzDs+UdERAUxUCOieGns1y0LilCcpHq8Z9QA/zcYutYCyRR7/hERkSNfOWpERFOmYUC3DNQoTup6gBPDzjloQQO1XM+/4Q0apDFHjYiIJmGgRkTxUj8TgLDyI8VLqhsw4xqspXrOfry2U2fGgizZZc8/IiJywaWPRBQvyRqgvpczahQvueBs1CFPTRLaAzBI02siIiIXDNSIKH4a+oGjz5f6KIjOqMsFahZ7qREREblgoEZE8dPQz6WPFC+5GbXjDNSIiGhqMFAjovhpHABGdwDjp0p9JEQq1a1bPzNqxkzNMRERUUVjoEZE8dPQr4UbODtBcZGsA6pbnXPUACDVB4yfAE7sm7LDIiKiysVAjYjip6FftywoQnGS6vFY+hiw6TUREZELBmpEFD+5ptdbPgeMbCzpoRBNsN30moiIyAUDNSKKn6PZC90d/wbct47BGsVDXTcDNSIimjIM1Igofvb+PPuBAcZPAsMbSnk0RCrVAxzf7VwspK5b+6kxUCMiIgsYqBFR/GSGgGQKkCSQqNHPiUot1QOMHQdOHSr8eKIqO+vGHDUiIipeVakPgIjoLOlBYO29OpOWGdLPiUotldf0uqa18HPYS42IiCxhoEZE8ZQeZIBG8VKX10ut5dzCz6nvAw49PXXHREREFYtLH4mIiPzIzagd9+ilxhk1IiKygIEaERGRH/lLH53U9wGnXwFOHZ6aYyIioorFQI2IiMiP6hYgWecRqGWbXh9jQREiIioOAzUiIiI/RIA6Nr0mIqKpwUCNiIjIr1S3e44aAzUiIrKEgRoREZFfKY8ZtdQM3TJQIyKiIjFQIyIi8str6WOyDqjtZNNrIiIqGgM1IiIiv1I9wKmDwOlR5+ew6TUREVnAQI2IiMivVLbp9fE9Ls9hoEZERMVjoEZERORXnc9eaqMM1IiIqDgM1IiIiPzKNb0+7hGondgHjB2fmmMiIqKKxECNiIjIr1ygNupWop9Nr4mIqHgM1IiIiPyqTQOSYNNrIiKKHAM1IiIivxJJoDbjvvQxxUCNiIiKx0CNiIgoCK+m17mljywoQkRERWCgRkREFESqxz1HrboJqG5mjhoRERWFgRoREVEQdd3uSx8BNr0mIqKiMVAjIiIKItWjDa/Hx1yew0CNiIiKw0CNiIgoiFQPYMaBEyPOz2HTayIiKpKvQE1ErhaRLSKyVURuL/D4DSLymIhsEpFHRORS+4dKREQUAxNNr916qfVpHtv4qak5JiIiqjiegZqIJAF8DsA1ABYBeIOILJr0tHsBXGiMeQ2AtwP4ouXjJCIiioe6bt16Vn407kVHiIiIXPiZUVsBYKsx5jljzEkAXwNwQ/4TjDFHjDEm+2kDAAMiIqJKlJtRcwvU2EuNiIiK5CdQ6wXwUt7nO7JfexURuUlEngHwfeis2llE5N3ZpZGPjIy4rO0nIiKKKz+BWn02UGOeGhERheQnUJMCXztrxswY821jzEIANwL4eKEdGWM+b4xZZoxZlk6nAx0oERFRLCTrgOpW7xw1gDNqREQUmp9AbQeAmXmf9wHY6fRkY8xPAcwVkc4ij42IiCieUt3uM2o1bRrQsek1ERGF5CdQexjAfBEZEJEaALcC+F7+E0RknohI9uOlAGoA7LN9sERERLGQ6nEP1ETYS42IiIpS5fUEY8xpEfkAgHsAJAH8gzHmSRF5b/bxuwDcDOAtInIKwCiA1+cVFyEiIqosdT3A3o3uz2EvNSIiKoJnoAYAxpi7Adw96Wt35X38KQCfsntoREREMZXq0Rw1Y3T2rJD6PmDk/qk9LiIiqhi+Gl4TERFRnlQ3MDYKnDrs/Jz6PmB0J2DGp+64iIioYjBQIyIiCqrOTy+1XmD8FHCc7WiIiCg4BmpERERB5XqpHffRS+2JjwMjHvlsREREkzBQIyIiCmqi6bVLL7WT+3X77N8B961jsEZERIEwUCMiIgoq1a1bt6WPR54HIADGgfGTwPCGKTgwIiKqFAzUiIiIgqpuBRK17ksfZ1yrTa8lCSRqgMzQVB0dERFVAF/l+YmIiCiPiHfT6/QgsPZenUnLDOnnREREPjFQIyIiCiPV456jBmhwxgCNiIhC4NJHIiKiMFI97ksfiYiIisBAjYiIKIy6bvelj0REREVgoEZERBRGqgc4eQAYO17qIyEiogrEQI2IiCiMiabXe0p7HEREVJEYqBEREYVRl2t6zeWPRERkHwM1IiKiMPw0vSYiIgqJgRoREVEYKc6oERFRdBioERERhVGbASQBHPfopUZERBQCAzUiIqIwEkkN1jijRkREEWCgRkREFFaKvdSIiCgaDNSIiIjCquvh0kciIooEAzUiIqKwUj2cUSMiokgwUCMiIgor1aMNr8fHSn0kRERUYRioERERhXV6FDBjwM4flvpIiIiowjBQIyIiCmNkI/Dsnfrxz27Wz4mIiCxhoEZERBTG8AZg/LR+PH5aPyciIrKEgRoREVEYmSEgWQtIEkjW6OdERESWVJX6AIiIiMpSehBYe6/OpGWG9HMiIiJLGKgRERGFlR5kgEZERJHg0kciIiIiIqKYYaBGREREREQUMwzUiIiIiIiIYoaBGhERERERUcwwUCMiIiIiIooZBmpEREREREQxw0CNiIiIiIgoZhioERERERERxQwDNSIiIiIiophhoEZERERERBQzDNSIiIiIiIhiRowxpfnGIiMAXihyN50A9lo4HDqDYxoNjqt9HFP7OKbR4LjaxzG1j2MaDY6rfZU2prONMelCD5QsULNBRB4xxiwr9XFUEo5pNDiu9nFM7eOYRoPjah/H1D6OaTQ4rvZNpzHl0kciIiIiIqKYYaBGREREREQUM+UeqH2+1AdQgTim0eC42scxtY9jGg2Oq30cU/s4ptHguNo3bca0rHPUiIiIiIiIKlG5z6gRERERERFVnCkJ1ETkahHZIiJbReT2vK9/XUQ2Zf9tF5FNDq//LRF5UkTGRWRZ3tdX5L1+s4jc5PD6r2S//xMi8g8iUp39uojIZ7PH9ZiILLX8o0cqxuO6UEQ2isgJEfkDyz92pGI8pm/KvkcfE5EHRORCyz96ZGI8pjdkx3OTiDwiIpda/tEjFdW45j0+S0SOOP0Oi8iAiDwkIs9mv2dN9utle16N8ZjynGp/TMv2nArEelzL9rwa1zHNe3y5iIyJyC1F/qhTJq5jKiJDInIo7xjusPQj22eMifQfgCSAbQDmAKgBsBnAogLP+0sAdzjs41wACwBsALAs7+v1AKqyH/cAGM59Pun11wKQ7L+vAnhf3td/kP36KgAPRT0e02RcMwCWA/gEgD8o9VhVyJheDKAt+/E15fJejfmYNuLM8u8LADxT6vGKw7jmPf4tAP/q9DsM4BsAbs1+fBfK/Lwa8zHlOdX+mJblObUMxrUsz6txHtO847sPwN0Abin1eJX7mAIYAvAfpR4jP/+mYkZtBYCtxpjnjDEnAXwNwA35TxARAfA66EXUWYwxTxtjthT4+jFjzOnsp3UACibcGWPuNlkAfgGgL/vQDQD+b/ahBwG0ikhP8B+xJGI7rsaYYWPMwwBOhfvRSibOY/qAMeZA9mkP4sx7OO7iPKZHsl8DgAan18dUZOOafe2NAJ4D8KTD4wJgLYBvZr/0TwBuzH5crufV2I4pz6mRjGm5nlOBeI9ruZ5XYzumWR+EBiXD/n6cWIj7mJaFqQjUegG8lPf5juzX8l0GYI8x5tmgOxeRlSLyJIDHAbw378Kt0HOrAbwZwA8DHFtcxXlcy1W5jOk7oDMW5SDWYyoiN4nIMwC+D+DtQb9/CUU2riLSAOA2AB91eVoHgIN5453//cv1vBrnMS1X5TKm5XROBWI+rmV6Xo3tmIpIL4CboDNC5SS2Y5o1KJo28QMROS/I959KUxGoSYGvTb7D8gY4RNNejDEPGWPOgy4L+SMRqXN5+t8C+Kkx5v4AxxZXcR7XchX7MRWRNdCLitvCHEMJxHpMjTHfNsYshN5l+3iYYyiRKMf1owA+bYw5EvL7l+t5Nc5jWq5iP6ZleE4FYj6uZXpejfOYfgbAbcaYsRDfu5TiPKaPAphtjLkQwN8A+E6IY5gSVVPwPXYAmJn3eR+AnblPRKQKwG8CuCjva/8IYAmAncaYa/18E2PM0yJyFMBiAI9MflxE/heANID3+D22mIvzuJarWI+piFwA4IsArjHG7PP5M5VarMc07/U/FZG5ItJpjNnr53uWWJTjuhLALSLy5wBaAYyLyHFjzJ15z9kLXdJYlb1bmf/9y/W8GucxLVexHtMyPacCMR/XnDI7r8Z5TJcB+Jqu5EMngGtF5LQx5jthftApFNsxNcYczj3JGHO3iPxtbN+nJvpkwiroGtIBnEkmPC/v8asB/MTnvjbg1cUEBnCmmMBs6H9AZ4HXvRPAAwBSk75+HV6d9P6LqMdjOoxr3uMfQXklvsd2TAHMArAVwMWlHqcKGtN5OJP0vhTAy7nP4/4vynGd9Jjj7zA0gTs/Sfv92Y/L8rwa5zH189o4/ovzmJbrObUMxrUsz6txHtNJz/kyyqeYSGzHFEB33vt0BYAX4/o+nar/rGsB/Bpa/eWPJz32ZWhuidvrb4JG5icA7AFwT/brb4YmEW6CTmPe6PD609nvvSn7747s1wXA57KPPe70JojrvxiPa3d2v4cBHMx+3Fzq8SrzMf0igAN5X3+k1GNVAWN6W97rNwK4tNRjFYdxnfScj8D5D+AcaHGWrdA/hrXZr5fteTXGY8pzqv0xLdtzaszHtWzPq3Ed0wLHURaBWpzHFMAHsu/TzdBiQrG9YZOLJomIiIiIiCgmpqThNREREREREfnHQI2IiIiIiChmGKgRERERERHFDAM1IiIiIiKimGGgRkREREREFDMM1IiIiIiIiGKGgRoREREREVHMMFAjIiIiIiKKmf8PJjkW1KaubgMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "for idx in range(nb_predictions):\n", + " df_iter = df_input.iloc[idx:(idx + N_pred)].copy()\n", + " for idxx in range(N_pred - 1):\n", + " mean, var = m.predict_f(df_iter.iloc[idxx, :].to_numpy().reshape(1, -1))\n", + " df_iter.iloc[idxx + 1, 4] = mean.numpy().flatten()\n", + " df_iter.iloc[idxx + 1, 5] = df_iter.iloc[idxx, 4]\n", + " df_iter.iloc[idxx + 1, 6] = df_iter.iloc[idxx, 5]\n", + " \n", + " mean_iter, var_iter = m.predict_y(df_iter.to_numpy())\n", + " plt.plot(df_iter.index, mean_iter.numpy(), '.-', label = 'predicted', color = 'orange')\n", + "plt.plot(df_output.iloc[:nb_predictions + N_pred], 'o-', label = 'measured', color = 'darkblue')\n", + "plt.title(f\"Prediction over {N_pred} steps\")\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.3" + }, + "toc-autonumbering": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Notebooks/33_gaussiandome_prbs_loaded.ipynb b/Notebooks/33_gaussiandome_prbs_loaded.ipynb new file mode 100644 index 0000000..0bf04eb --- /dev/null +++ b/Notebooks/33_gaussiandome_prbs_loaded.ipynb @@ -0,0 +1,1493 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "from shutil import copyfile\n", + "import pickle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data manipulation" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plotting / Visualisation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "plt.rcParams[\"figure.figsize\"] = (15, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Gaussian Process Regression" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import gpflow\n", + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "from gpflow.utilities import print_summary" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "gpflow.config.set_default_summary_fmt(\"notebook\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "MATLAB engine" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import matlab.engine" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "eng = matlab.engine.start_matlab()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "eng.load_system(\"../Simulink/polydome\", background = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load weather data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Which experimental set to simulate:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "exp_id = 'Exp7'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Copy the corresponding WDB to the model input location:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'../Data/input_WDB.mat'" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "copyfile(f\"../Data/Experimental_data_WDB/{exp_id}_WDB.mat\", \"../Data/input_WDB.mat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timetimestampzenithazimuthdnidhiOutsideTempTsky_radrelative_humidityprecipitationcloud_indexpressurewind_speedwind_directionaoiincidence_mainincidence_secondpoa_directpoa_diffuse
0020170713200077.726968288.78333932.17459484.91301524.018.050-99990.5963000-999977.726968-9999-99996.83936984.913015
130020170713200578.534908289.630841167.59782588.43397224.018.050-99990.5963000-999978.534908-9999-999933.31356588.433972
260020170713201079.337991290.480180104.00938982.37750724.018.050-99990.5963000-999979.337991-9999-999919.24330082.377507
390020170713201580.135916291.331669767.55521533.32631824.018.050-99990.5963000-999980.135916-9999-9999131.49106933.326318
4120020170713202080.928349292.185610126.33467770.31771124.018.050-99990.5963000-999980.928349-9999-999919.91912470.317711
\n", + "
" + ], + "text/plain": [ + " time timestamp zenith azimuth dni dhi \\\n", + "0 0 201707132000 77.726968 288.783339 32.174594 84.913015 \n", + "1 300 201707132005 78.534908 289.630841 167.597825 88.433972 \n", + "2 600 201707132010 79.337991 290.480180 104.009389 82.377507 \n", + "3 900 201707132015 80.135916 291.331669 767.555215 33.326318 \n", + "4 1200 201707132020 80.928349 292.185610 126.334677 70.317711 \n", + "\n", + " OutsideTemp Tsky_rad relative_humidity precipitation cloud_index \\\n", + "0 24.0 18.0 50 -9999 0.5 \n", + "1 24.0 18.0 50 -9999 0.5 \n", + "2 24.0 18.0 50 -9999 0.5 \n", + "3 24.0 18.0 50 -9999 0.5 \n", + "4 24.0 18.0 50 -9999 0.5 \n", + "\n", + " pressure wind_speed wind_direction aoi incidence_main \\\n", + "0 96300 0 -9999 77.726968 -9999 \n", + "1 96300 0 -9999 78.534908 -9999 \n", + "2 96300 0 -9999 79.337991 -9999 \n", + "3 96300 0 -9999 80.135916 -9999 \n", + "4 96300 0 -9999 80.928349 -9999 \n", + "\n", + " incidence_second poa_direct poa_diffuse \n", + "0 -9999 6.839369 84.913015 \n", + "1 -9999 33.313565 88.433972 \n", + "2 -9999 19.243300 82.377507 \n", + "3 -9999 131.491069 33.326318 \n", + "4 -9999 19.919124 70.317711 " + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_wdb = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_WDB.pkl\")\n", + "df_wdb.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PowerSetpointOutsideTempSupplyTempInsideTempSolRad
timestamp
2017-07-13 20:00:00+02:0018.82758622.524.023.922.93333391.714933
2017-07-13 20:05:00+02:003628.96551722.524.015.523.216667121.538700
2017-07-13 20:10:00+02:004391.34482822.524.014.323.116667101.481617
2017-07-13 20:15:00+02:004392.46666722.524.014.022.800000163.710150
2017-07-13 20:20:00+02:003777.48275922.524.014.022.63333390.039567
\n", + "
" + ], + "text/plain": [ + " Power Setpoint OutsideTemp SupplyTemp \\\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 18.827586 22.5 24.0 23.9 \n", + "2017-07-13 20:05:00+02:00 3628.965517 22.5 24.0 15.5 \n", + "2017-07-13 20:10:00+02:00 4391.344828 22.5 24.0 14.3 \n", + "2017-07-13 20:15:00+02:00 4392.466667 22.5 24.0 14.0 \n", + "2017-07-13 20:20:00+02:00 3777.482759 22.5 24.0 14.0 \n", + "\n", + " InsideTemp SolRad \n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 22.933333 91.714933 \n", + "2017-07-13 20:05:00+02:00 23.216667 121.538700 \n", + "2017-07-13 20:10:00+02:00 23.116667 101.481617 \n", + "2017-07-13 20:15:00+02:00 22.800000 163.710150 \n", + "2017-07-13 20:20:00+02:00 22.633333 90.039567 " + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_pickle(f\"../Data/Experimental_python/{exp_id}_data.pkl\")\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Experiment runtime: 554100\n" + ] + } + ], + "source": [ + "runtime = df_wdb['time'].iloc[-1]\n", + "print(f\"Experiment runtime: {runtime}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Simulink" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set the CARNOT simulation initial temperature `t0`" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "eng.workspace['t0'] = float(23)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set the CARNOT simulation air exchange rate" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "np_air = np.zeros([df_wdb.shape[0], 2])\n", + "np_air[:, 0] = df_wdb['time']\n", + "np_air[:, 1] = 2.75" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "eng.workspace['air_exchange_rate'] = matlab.double(np_air.tolist())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generate Heat Random Input Signal" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "Pel_max = 6300\n", + "COP_heating = 5.0\n", + "COP_cooling = 5.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define a function for generating random signals:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "def get_random_signal(nstep, a_range = (-1, 1), b_range = (2, 10), signal_type = 'analog'):\n", + "\n", + " a = np.random.rand(nstep) * (a_range[1]-a_range[0]) + a_range[0] # range for amplitude\n", + " b = np.random.rand(nstep) *(b_range[1]-b_range[0]) + b_range[0] # range for frequency\n", + " b = np.round(b)\n", + " b = b.astype(int)\n", + "\n", + " b[0] = 0\n", + "\n", + " for i in range(1,np.size(b)):\n", + " b[i] = b[i-1]+b[i]\n", + " \n", + " if signal_type == 'analog':\n", + " random_signal = np.zeros(nstep)\n", + " # Random Signal\n", + " i=0\n", + " random_signal = np.zeros(nstep)\n", + " while b[i]" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure() \n", + "plt.subplot(2,1,1)\n", + "plt.plot(random_signal, drawstyle='steps',label='Random Signal')\n", + "plt.legend()\n", + "plt.subplot(2,1,2)\n", + "plt.plot(prbs, drawstyle='steps', label='PRBS')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the original electric power consumption" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "power = np.array([df_wdb['time'], random_signal]).T" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the heating power by passing through a heating/cooling COP" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "eng.workspace['power'] = matlab.double(power.tolist())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set the simulation parameters and run it" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "eng.set_param('polydome', 'StopTime', str(runtime), nargout = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "eng.workspace['result'] = eng.sim('polydome')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpret the simulation results" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "def carnot_to_series(eng, start_timestamp):\n", + "\n", + " # Compile the simulation dict\n", + " dict_simulation = {}\n", + " dict_simulation['SimulatedTemp'] = np.asarray(eng.eval('result.SimulatedTemp.Data')).reshape(-1)\n", + " dict_simulation['time'] = np.asarray(eng.eval('result.SimulatedTemp.Time')).reshape(-1)\n", + " \n", + " # Create the dataframe from dict\n", + " df_simulation = pd.DataFrame(dict_simulation)\n", + " df_simulation.set_index('time', inplace = True, drop = True)\n", + " \n", + " # Define the timestamps and set it as index\n", + " df_simulation['timestamp'] = start_timestamp + df_simulation.index.map(lambda x: pd.Timedelta(seconds = x))\n", + " df_simulation = df_simulation.reset_index().set_index('timestamp')\n", + " \n", + " # Resample the dataframe to 5 min intervals\n", + " # Taking the mean when there are multiple points, padding with zero order when data is missing\n", + " df_simulation = df_simulation['SimulatedTemp'].resample('5min').mean().pad()\n", + " \n", + " return df_simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "df_simulation = carnot_to_series(eng, df.index[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "jupyter": { + "source_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4IAAAF1CAYAAAC9AVTpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gU19WH39m+6l1IAiHRQRTRwYANBmPce1yIW9wdlyRfEttxd9wSO7bj2InjOO417g3bgA2m944A0QSSUO9l+873x+zM7koraQUChLjv8+jR7syd2Tu7U+6555zfkWRZRiAQCAQCgUAgEAgEJw+6490BgUAgEAgEAoFAIBAcW4QhKBAIBAKBQCAQCAQnGcIQFAgEAoFAIBAIBIKTDGEICgQCgUAgEAgEAsFJhjAEBQKBQCAQCAQCgeAkQxiCAoFAIBAIBAKBQHCSIQxBgUAgEAgEAoFAIDjJEIagQCAQCE5IJElqDPjzSpJkC3g/93j373CQJKlAkqRZx7sfAoFAIOj5GI53BwQCgUAgOBxkWY5SX0uSVADcKMvywuPXo/aRJMkgy7L7RP8MgUAgEPQMhEdQIBAIBD0KSZJ0kiTdK0nSXkmSqiRJ+p8kSQm+dVmSJMmSJF0vSVKhJEk1kiTdKknSeEmStkiSVCtJ0ksB+7pOkqTlkiT9Q5KkOkmSdkqSNDNgfawkSf+VJKlEkqRiSZIelyRJ32Lb5yVJqgYekSSpvyRJP/n6VSlJ0nuSJMX52r8DZAJf+7yaf5QkabokSUUtjk/zGkqS9IgkSZ9IkvSuJEn1wHUd9GmAJEk/+46lUpKkj47qjyEQCASCboswBAUCgUDQ07gLuBA4DUgHaoCXW7SZCAwELgdeAO4HZgE5wC8kSTqtRdt9QBLwMPCZalgCbwFuYAAwGpgN3Bhi2xTgCUACnvL1ayjQB3gEQJblq4GDwHmyLEfJsvzXMI/3AuATIA54r4M+/RmYD8QDvYF/hPkZAoFAIOhhCENQIBAIBD2NW4D7ZVkukmXZgWJoXSpJUmA6xJ9lWbbLsjwfaAI+kGW5XJblYmApigGlUg68IMuyS5blj4BdwDmSJKUCZwG/kWW5SZblcuB54IqAbQ/JsvwPWZbdsizbZFneI8vyAlmWHbIsVwDPoRisR8JKWZa/kGXZC8R00CcX0BdI9x3/siP8bIFAIBCcoIgcQYFAIBD0NPoCn0uS5A1Y5gFSA96XBby2hXgfFfC+WJZlOeD9ARSPXl/ACJRIkqSu0wGFAW0DXyNJUgrwIjANiPa1rwnrqNom8DM66tMfUbyCayRJqgH+Jsvy60f4+QKBQCA4ARGGoEAgEAh6GoXAr2RZXt5yhSRJWYexvwxJkqQAYzAT+Mr3OQ4gqR2BFrnF+6d8y0bKslwlSdKFwEvttG8CIgL6rweS2/mMdvsky3IpcJNvX1OBhZIkLZFleU8b/RcIBAJBD0WEhgoEAoGgp/EK8IQkSX0BJElKliTpgiPYXwpwlyRJRkmSLkPJ7Zsny3IJSr7d3yRJivGJ1PRvkV/YkmigEaiVJCkD+EOL9WVAv4D3+YBFkqRzJEkyAg8A5rZ23lGfJEm6TJKk3r7mNShGpCe8r0EgEAgEPQlhCAoEAoGgp/F3FI/dfEmSGoBVKKIth8tqFGGZShTBl0tlWa7yrbsGMAF5KIbVJ0BaO/t6FBgD1AHfAp+1WP8U8IBPvfT3sizXAbcDrwHFKB7CItqnvT6NB1ZLktSI8h3dLcvy/g72JxAIBIIeiBSc9iAQCAQCgUBFkqTrUOoTTj3efREIBAKBoCsRHkGBQCAQCAQCgUAgOMkQhqBAIBAIBAKBQCAQnGSI0FCBQCAQCAQCgUAgOMkQHkGBQCAQCAQCgUAgOMkQhqBAIBAIBAKBQCAQnGT02ILySUlJclZW1vHuhkAgEAgEAoFAIBAcF9avX18py3JyqHU91hDMyspi3bp1x7sbAoFAIBAIBAKBQHBckCTpQFvrulVoqCRJFkmS1kiStFmSpO2SJD3qW/6IJEnFkiRt8v2dfbz7KhAIBAKBQCAQCAQnKt3NI+gATpdluVGSJCOwTJKk73zrnpdl+dnj2DeBQCAQCAQCgUAg6BF0K0NQVmpZNPreGn1/or6FQCAQCAQCgUAgEHQh3coQBJAkSQ+sBwYAL8uyvFqSpLOAOyRJugZYB/yfLMs1nd23y+WiqKgIu93etZ0WCACLxULv3r0xGo3HuysCgUAgEJywONweNhyoZXL/xOPdFYGgR9NtC8pLkhQHfA7cCVQAlSjewT8DabIs/yrENjcDNwNkZmaOPXAgODdy//79REdHk5iYiCRJR/cABCcVsixTVVVFQ0MD2dnZx7s7AoFAIBCcsFz1n1Ws2FvF8ntPJyPO2mH7Q7U2Ikx64iJMx6B3AsGJhSRJ62VZHhdqXbcSiwlEluVaYDEwR5blMlmWPbIse4H/ABPa2OZVWZbHybI8Ljm5tUqq3W4XRqDgqCBJEomJicLbLBAIBAJBG4TjfJBlmRV7qwCoanR02L6opplTnv6Juz/cdKTdEwhOOrqVIShJUrLPE4gkSVZgFrBTkqS0gGYXAduO4DOOqI8CQVuIc0sgEAgEgtD8tLOMEY/M56edZe22+++y/drr2mZXh/t99Os8ALYW1x1ZBwWCk5BuZQgCacAiSZK2AGuBBbIsfwP8VZKkrb7lM4DfHs9OHglPPPEEOTk5jBw5ktzcXFavXg3AjTfeSF5eXpd8RlZWFpWVle22efLJJzu93zfffJM77rgjaNkbb7xBbm4uubm5mEwmRowYQW5uLvfee2+n938seOGFF2hubj7e3RAIBAKB4KTB4fZw6zsbaHS42V5c32Y7WZZ5c0WB9r7W1r4hWG93sXCHYlia9N1tSCsQdH+6lViMLMtbgNEhll99HLrT5axcuZJvvvmGDRs2YDabqaysxOl0AvDaa68d0748+eST/OlPfzri/Vx//fVcf/31gGKALlq0iKSkpCPe7+EiyzKyLKPThX4gvPDCC/zyl78kIiIi7H263W4Mhm51qQgEAoFAcMKwJL8Sp8cLKMZbW6w/UENRjY37zhrCU9/tpK4DQ7Cu2YUsQ3qshdJ6O26PF4MwCAWCsBFXyzGkpKSEpKQkzGYzAElJSaSnpwMwffp01q1bB0BUVBT33HMPY8eOZdasWaxZs4bp06fTr18/vvrqK6C1d+7cc89l8eLFrT7zwgsvZOzYseTk5PDqq68CcO+992Kz2cjNzWXu3LkAvPvuu0yYMIHc3FxuueUWPB4PoHj8Bg0axGmnncby5cvDPtZnnnmG8ePHM3LkSB5++GEACgoKGDJkCDfeeCPDhw9n7ty5LFy4kClTpjBw4EDWrFkDwCOPPMLVV1/N6aefzsCBA/nPf/7T4X6HDh3K7bffzpgxYygsLOS2225j3Lhx5OTkaO1efPFFDh06xIwZM5gxY4b2Xat88sknXHfddQBcd911/O53v2PGjBncc8897N27lzlz5jB27FimTZvGzp07w/4uBAKBQCA4mflgzUFSY8wkRZnbDff8YXspJr2OX4zrA0Bds7Pd/TbY3QBkJkbglaHe914gEITHSevmePTr7eQdajs84XAYlh7Dw+fltLl+9uzZPPbYYwwaNIhZs2Zx+eWXc9ppp7Vq19TUxPTp0/nLX/7CRRddxAMPPMCCBQvIy8vj2muv5fzzzw+7T6+//joJCQnYbDbGjx/PJZdcwtNPP81LL73Epk2bANixYwcfffQRy5cvx2g0cvvtt/Pee+9xxhln8PDDD7N+/XpiY2OZMWMGo0e3cti2Yv78+ezevZs1a9YgyzLnn38+S5YsITMzkz179vDxxx/z6quvMn78eN5//32WLVvGV199xZNPPskXX3wBwJYtW1i1ahVNTU2MHj2ac845h23btrW53127dvHGG2/wz3/+E1BCcBMSEvB4PMycOZMtW7Zw11138dxzz4XttczPz2fhwoXo9XpmzpzJK6+8wsCBA1m9ejW33347P/30U9i/g0AgEAgEJyM2p4dleyr55cS+rNhbSU07huDS3ZWMz44nPtKExajr0CPY6FAMv3ifWqjb53UUCAThcdIagseDqKgo1q9fz9KlS1m0aBGXX345Tz/9tOaFUjGZTMyZMweAESNGYDabMRqNjBgxgoKCgk595osvvsjnn38OQGFhIbt37yYxMbguz48//sj69esZP348ADabjZSUFFavXs306dNRFVgvv/xy8vPzO/zM+fPnM3/+fM1obGxsZPfu3WRmZpKdnc2IESMAyMnJYebMmUiS1OrYLrjgAqxWK1arlRkzZrBmzRqWLVvW5n779u3LpEmTtO3/97//8eqrr+J2uykpKSEvL4+RI0d26ru77LLL0Ov1NDY2smLFCi677DJtncPRsZKZQCAQCAQnOztL63G6vUzsl8COknpq2/Dyldfb2VnawL1nDQHAYtRjd7Vv2DU6FEMxLkKp3+v2ds+SaAJBd+WkNQTb89wdTfR6PdOnT2f69OmMGDGCt956q5UhaDQaNQVKnU6nhZLqdDrcbmX2y2Aw4PX6b5ChyhYsXryYhQsXsnLlSiIiIpg+fXrIdrIsc+211/LUU08FLf/iiy8OSwlTlmXuu+8+brnllqDlBQUF2rG0d2zQWoFTkqR29xsZGam9379/P88++yxr164lPj6e6667rs2yDoGf07KNuk+v10tcXJzmQRUIBAKBQBAeBVVNAPRPjiLGamB/ZVPIdtsOKaqf4/rGA2Ax6LG7PO3uu9GhrI+1Kh5BjzAEBYJOIXIEjyG7du1i9+7d2vtNmzbRt2/fw9pXVlYWmzZtwuv1UlhYqOXXBVJXV0d8fDwRERHs3LmTVatWaeuMRiMulzKTNnPmTD755BPKy8sBqK6u5sCBA0ycOJHFixdTVVWFy+Xi448/DqtvZ555Jq+//jqNjY0AFBcXa/sOly+//BK73U5VVRWLFy9m/PjxYe+3vr6eyMhIYmNjKSsr47vvvtPWRUdH09DQoL1PTU1lx44deL1ezXPakpiYGLKzs7Xjl2WZzZs3d+p4BAKBQCA4Gdlf2YxOgsyECMwGPU53aC9fWb0SaZPmKyBvMeqwt2jr8niDwkUbfTmBqkfQJUJDBYJOcdJ6BI8HjY2N3HnnndTW1mIwGBgwYIAm4NJZpkyZooVZDh8+nDFjxrRqM2fOHF555RVGjhzJ4MGDg0Inb775ZkaOHMmYMWN47733ePzxx5k9ezZerxej0cjLL7/MpEmTeOSRR5g8eTJpaWmMGTNGE5Fpj9mzZ7Njxw4mT54MKCGx7777Lnq9PuzjmzBhAueccw4HDx7kwQcfJD09nfT09LD2O2rUKEaPHk1OTg79+vVjypQpQcd91llnkZaWxqJFi3j66ac599xz6dOnD8OHD9eMzJa899573HbbbTz++OO4XC6uuOIKRo0aFfbxCAQCgUBwstHkcLO/somMeCsmgw6TQdemIVjuMwSTo5RIISU01D/mKKxu5o73N7Cvoomv75xKVlKkFhoa7zMEhUdQIOgckiz3zItm3LhxsqrCqbJjxw6GDh16nHokCJdHHnmEqKgofv/73x/vrnQacY4JBAKBQKAogN7yznoATh2UzNu/msB9n21lQV4Z6x6Y1ar9nz7fyndbS9j40GwALnh5OTEWA+/cMJFtxXVc8eoqTRzm3rOGcOtp/Xnqux28vmw/f79iNLe/t4Hv7p7G0LSYY3eQAsEJgCRJ62VZHhdqnQgNFQgEAoFAIBB0GV9sLNaMQIDsRKV2r9mgw+kOHVlUWmcnNcaivbcadTh8YjGv/LwXo17i6zumMjAliteW7ufbLSUUVdvIiLNi9NUOdHt6pnNDIDhaiNBQQbfjkUceOd5dEAgEAoFAcJis3l8d9P70oakAGPWSVli+JQeqmhiQ4q/tazHqqW5SFEZrmp30S45iRO9Ynr88l3s/28Kv398AwCn9EzHoFeE3t1fkCAoEnUF4BAUCgUAgEAgEXcau0nomZCdo76cNUGr3mgw6XCG8dl6vTGGNjb6JfgXwQNXQBrubaIviuxieEcsXt0/hD2cOBmBERiwGnWoICo+gQNAZhEdQIBAIBAKBQNAleL0y+WWNXDwmg4fOHYbJoEPnM9RMej0er4zHK6PX+cs3Ld9bidPtZUivaG2ZxajT6gg22t1kJkRo6wx6Hb+eMYCrJ/fFatSzrqAGEKGhAkFnEYagQCAQCAQCgaBLKKqx0ehwMzQthuEZsUHrjAbF+HN5vOh1fsXvv83PJyPOyjkj07Rlgaqh9XY30RZjq8+K8S1TQ0OFaqhA0DlEaKhAIBAIBAKBoEvYUVoPEFK90+QTdXEElJA4UNXEpsJarp+ShdngNw4tRj02nyHY6HBpoaGhUL2LLpEjKBB0CmEIHmOKioq44IILGDhwIP379+fuu+/G6XR2uN2TTz7ZYZsbb7yRvLy8VsvffPNN7rjjjrD698MPP5Cbm0tubi5RUVEMHjyY3NxcrrnmmrC2P9a8+eabHDp06Hh3QyAQCAQCAbCjpB5JgkGpUa3WmQzKsDOw8PsP20sBODOnV1Db9DgLDXY3h2pt2F1eos1tG4JGnbJfjwgNFQg6hTAEjyGyLHPxxRdz4YUXsnv3bvLz82lsbOT+++/vcNtwDMHXXnuNYcOGHVEfzzzzTDZt2sSmTZsYN24c7733Hps2beLtt98+ov0eCe0VsT8cQ9Dtdh9plwQCgUAgEIRgd3kjmQkRRJhaG26qR1AtKu/2ePlsQzE56TH0CcgBBJjULxGAT9YXAYTlERRiMQJB5xCG4DHkp59+wmKxcP311wOg1+t5/vnnef3112lubm7luTv33HNZvHgx9957LzabjdzcXObOnUtTUxPnnHMOo0aNYvjw4Xz00UcATJ8+nXXr1gHwxhtvMGjQIE477TSWL1+u7bOiooJLLrmE8ePHM378+KB17fHuu+8yYcIEcnNzueWWWzTjLCoqinvuuYexY8cya9Ys1qxZw/Tp0+nXrx9fffUVoBhrF1xwAXPmzGHw4ME8+uijYe33oYceYuLEiaxcuZLHHnuM8ePHM3z4cG6++WZkWeaTTz5h3bp1zJ07l9zcXGw2G1lZWVRWVgKwbt06pk+fDiglKW6++WZmz57NNddcc9jfg0AgEAgEgrapt7mIjzCFXGdsYQg++OU2dpY2cPOp/Vq1HZERy9i+8Ty3IB+AlIAag633K8pHCASHw8ktFvPGOR23GXQmTLnL3z73Khg9F5qq4H8twiWv/7bdXW3fvp2xY8cGLYuJiSEzM5M9e/a0ud3TTz/NSy+9xKZNmwD49NNPSU9P59tvlc+rq6sLal9SUsLDDz/M+vXriY2NZcaMGYwePRqAu+++m9/+9rdMnTqVgwcPcuaZZ7Jjx452+71jxw4++ugjli9fjtFo5Pbbb+e9997jmmuuoampienTp/OXv/yFiy66iAceeIAFCxaQl5fHtddey/nnnw/AmjVr2LZtGxEREYwfP55zzjmHyMjIdvc7fPhwHnvsMQCGDRvGQw89BMDVV1/NN998w6WXXspLL73Es88+y7hx49o9BoD169ezbNkyrFYrV111Vae/B4FAIBAIBO1jc3qINOtDrgsMDZVlmU/WF3Hx6AwuyM1o1VaSJB45L4fzXloGEFRsviWqR1CIxQgEnePkNgSPMbIsI0lS2MvbYsSIEfz+97/nnnvu4dxzz2XatGlB61evXs306dNJTk4G4PLLLyc/X5lRW7hwYVAeYX19PQ0NDURHR9MWP/74I+vXr2f8+PEA2Gw2UlJSADCZTMyZM0frl9lsxmg0MmLECAoKCrR9nHHGGSQmKmEeF198McuWLcNgMLS5X71ezyWXXKJtv2jRIv7617/S3NxMdXU1OTk5nHfeeWF/ZwDnn38+Vqv1sL8HgUAgEAgE7dPk9BDXhkdQNQQdbi9OjxeXR6ZfcmTItgAjevtVR3vFtucRVA1MYQgKBJ3h5DYEO/Dgtds+MrHT2+fk5PDpp58GLauvr6ewsJD+/fuzefNmvAFhDXa7PeR+Bg0axPr165k3bx733Xcfs2fP1rxlKm0Zll6vl5UrV2oGUTjIssy1117LU0891Wqd0WjUPkun02E2m7XXgbl4LfsjSVK7+7VYLOj1yoyi3W7n9ttvZ926dfTp04dHHnmkze/GYDBo32HLNpGR/ofN4XwPAoFAIBAI2qfZ6W7bI6j3ewTtTuVZbQ2RSxjIJWN68+mGIlKizW228XsERWioQNAZRI7gMWTmzJk0Nzdrwisej4f/+7//47rrriMiIoKsrCw2bdqE1+ulsLCQNWvWaNsajUZcLhcAhw4dIiIigl/+8pf8/ve/Z8OGDUGfM3HiRBYvXkxVVRUul4uPP/5YWzd79mxeeukl7b0abtpRvz/55BPKy8sBqK6u5sCBA5069gULFlBdXY3NZuOLL75gypQpYe9XNeiSkpJobGzkk08+0dZFR0fT0NCgvc/KymL9+vUArYzuQA7nexAIBAKBQNA+zU5PSKEYgEif8mdts4tmlzJZHGEKbTSq/PXSkWx88AzN6xcKgxCLEQgOC2EIHkMkSeLzzz/n448/ZuDAgQwaNAiLxaIpgk6ZMoXs7Gwt9HPMmDHatjfffDMjR45k7ty5bN26VRNYeeKJJ3jggQeCPictLY1HHnmEyZMnM2vWrKD9vPjii6xbt46RI0cybNgwXnnllQ77PWzYMB5//HFmz57NyJEjOeOMMygpKenUsU+dOpWrr76a3NxcLrnkEsaNGxf2fuPi4rjpppsYMWIEF154oRZKCnDddddx6623amIxDz/8MHfffTfTpk3TPIqhOJzvQSAQCAQCQfs0O9xtGnfD0mPQSbCxsJZmpyIO15EhqNdJxEeGDjVVMfiMRLcIDRUIOoUkyz3zohk3bpysKmiq7Nixg6FDhx6nHp28vPnmm6xbty7IA9dTEeeYQCAQdF86m5Mv6ByyLNPvT/O4c8YAfjd7cMg2Z/99KQmRJu49awjn/mMZr149ltktagh2ljqbi1GPzufBc4dxw9TsI9qXQNDTkCRpvSzLIVUVhUdQIBAIBAJBj+e3H21i2l8X4RXhg0cNu8uLLENEO8Xfx/aNZ+PBGhrsamjokctVqOUjRI6gQNA5hCEoOOpcd911J4U3UCAQCATdkw0Ha/h8YzFFNTZsLs/x7k6PpdGhGHeR7YR7ju0bT5PTw6bCWgCsHYSGhoMqFiNUQ7snW4vq+G5r51KKBMcGYQgKBAKBQCDo0Xy8rlB7LQzBo0dFgwOAxKi2FT7H9o0HYNmeCqDjHMFwMOp0GHQSTQ53x40FXYLXK7OuoLrDdtVNTs57aRm3vbehw7aCY0+3MgQlSbJIkrRGkqTNkiRtlyTpUd/yBEmSFkiStNv3P/5wP6On5kQKjj/i3BIIBILux/7KJj5cW6iVLrA5hSF4tChvUFS+U2PaNgR7x1tJjjazfE8V0DWGoE4nkRJtptxniAqOPk99t4NLX1nJ9kN12rIVeyo1T6/K49/4azaLcVL3o1sZgoADOF2W5VFALjBHkqRJwL3Aj7IsDwR+9L3vNBaLhaqqKnEiCrocWZapqqrCYmm74K1AIBAIjj3ztpYgy/DHOYp4ifAIdg67y0O93RVW2/J6xRBLiW77WShJEuP6+ufzEzpQBA2XlBgLZfWhawwLup7Xlu0HoKZJOTeqm5xc9dpqLnx5udampsnJV5sPae/Ftdf96FYF5WXFQmv0vTX6/mTgAmC6b/lbwGLgns7uv3fv3hQVFVFRUXHEfRUIWmKxWOjdu/fx7oZAIBAIApifV8ao3rH0S44E/B7BbcV15KTHCBXRDrjyP6vYeLCWgqfP6bDt3gplCJfcTvF3UMJDv9tWCkCUKiwjy3BoI7iagxsnDoToVLDXQelWiM+C2NbP2tQYM/srmzo+IMERU9noQPWp1DQ7kWWZuz/c2KrdpxuKcHtlrp7Ul3dWHaDO5uoScSBB19Htfg1JkvTAemAA8LIsy6slSUqVZbkEQJblEkmSUg5n30ajkexsISssEAgEAsHJQEWDg82FtfzujEFYjEoIYrPTw8/5FVz7+hr+cskILh+feZx72b3ZeLAWAKfbi8nQOpDs2y0lRJj1nNI/kQ/WHOSMYanad90WYwM8gpohXrgaXj+zdeMLXobRv4SKXfDxdTD+Jpje2heQERfBkvxKvF4ZnU4Y90eT0jq/57W22ckn64tYursSq1GPxytrv8Hagmr6JUcyqV8i76w6QL3NTVrscey4oBXdzhCUZdkD5EqSFAd8LknS8HC3lSTpZuBmgMxMcWMXCAQCgeBkZtHOcgBmDk3B6VZKC9hdHlbvV0QuDlQ1t7mtANwefzmGQ7U2spIig9bLssyv31dEQP5zzTjq7W7mTux4/DWyd1zrhZX5yv9L34DIJP/ypEHK/+TBcNmbkDk55D4HpkZhc3korrXRJyEiZJvvt5WyYm8lj10Q9tBSAPy4o4zx2QnEWIwA1Nv8ocJbi+v4avMhJmYnMGd4Lx79Oo/KJgcp0RYcbi/RZgOxVmW7Olt4IcaCY0e3MwRVZFmulSRpMTAHKJMkKc3nDUwDytvY5lXgVVAKyh+zzgoEAoFAIOh2/LSznPRYC8PSYsgvU8IWm50evt2q5C2JnKX2qWj0i68U1jS3MgQPVvsN6f8u20d8hJEpA5LoCL1O4oObJgULxdQWgqSDoeeB3th6I0ssZE0Fr0f50wV7HQelRgGwu7whpCFYUNnEre+uB+DBc4dh1Hc3mYzuSXmDnRveWkd2UiSLfj8dIChn9Ked5dhdXh46bxh7ypVrrNHuJiUaHC4vZoOeGKtibtQLQ7Db0a2uAkmSkn2eQCRJsgKzgJ3AV8C1vmbXAl8elw4KBAKBQCA4YSioamJ4RiySJGH1hSvW2VwUVtsAxcslaBtV/AXQCsAHUhawftW+auYM7xW2gTW5fyKj+sQpb9xOWPJXiE4LbQSqFK6BxxLgyztarRqQEg2gGfwteXnRHu11VaMzrD4KoLJB+a4C8y/rbcq5YNBJVPq+y76JkVpIsDrB4vQo4cSqwX+4Ey/L91TyzA87D+8ABO3SrQxBIA1YJEnSFmAtsECW5W+Ap4EzJEnaDZzhey8QCAQCgUDQJrXNLuIjFFVKi0kZ8gR6M0SoWvsElmNoDlF2o9kZbBzOndj38D6ouQpScqDfjPbb9Rrp61heq1WxViOpMWbyyxparSuvt/PlpkOkxypqphWizETYNRdrm1sbzeo11DdR8bzGRxiJMhu0yRa7z+BzuD2YDTrMhsM3BD1embmvreblRXvxeEWwX1fTrQxBWZa3yLI8WpblkbIsD5dl+THf8ipZlmfKsjzQ97/jCpYCgUAgEAhOamptTmIjFA+TOhhtDhgA21zekNu5PF6ueX0N32zxS9/LskxDmGUUegr/Wuz3orU0+sCvwHraoGQ+uGkSwzMOUwkkJg1uXwEXvtx+O6MFxl4PdYUhVw9KjWZ3CI/gWysLcHm93HPWEAAqGk+OMhPVTc6QpT8W7Swn5+EfWBtOQfgAQ1Atv1Zvc6GToHe8YghmxFsBsKqeP6dyXakCQ+pyx2EYgsv2VGqva0IYpYIjo9vmCAoEAoFAIBAcLnaXB7vLqwlVqAXlAz1bthDGDcCHawtZkl9Beb2dc0emA/DEtzt4bdl+tj96JpHmk2P4tLvcb1Q1OUJ5BJVlj12QQ9/EyFbrAaUsxIa3Fa9fIH2nQOZEpSzExvdg3K8UQ68j4voo+1ryrJJTCNBnAmRNZWBKNK8v3091k1OrT+h0e3lv9UFmD0tlTKaiVnqyhIaO+fMCUmPMrP7TrKDlf/YVed9X0cj4rIR291HT7Dckm50eIs0GyhscJESaSPR9x73jFIPQ2iI01OH2YjboWi0PF1mWeWFhvva+stFBUlT7pUkEnePkuJMJBAKBQCA4qVDDPuN8HkGDXikp0BRoCIYYmDY63PzdN/hUQ9/2VjRqBbSrm5wnhSFYZ3PRYHfzp7OH8PR3O0N6BJt935/V1E65iPId8PVdrZef/oDfEFz4MBQsgyveg47qOmaMBUkPP/3ZvyxxINy5jqFpSp7g9GcWseURpRTFuoJqaptdXDq2D2ajYjg63KE9wT0J9fwPzOMEJS92ny/fz+npONSypslvNNfbXUSaDeSXNdA/OYo4X9h1WpxiwLfMEVTFYrTlzs5978v3VLHxYC0Xjc7g843FrQx4WZZpdLiJtrSTVypol55/JxMIBAKBQHDSoYaRqR5Bg6+2nJq/ZDHqQg5Mn1+QT1WTE4tRR02zi91lDZz/0nJtfahcuZ5IoU8RtE98BJEmQ2iPoC/Mtt0i4bUHlP/Xfw/po/3Ldb5tYvvAvYWKSExHRiBAv+lwfynIvt9uz0JoUsTkz89N5+P1RazZX02Tw02k2cDOUiVncGzfePS+c+BkMAQf/nKb9lqWZa1eY2C4czgqnmX1/jDaK19dhYxSduWayX0ZnhEDQD+fmqzFZ2jbncFiMXqdhEmvw+7u3LXz7qoDJESauGlaPz7fWExlY7BR++3WEu54fyPz7prGsPSYDvcnyzI/bC/jwS+3oZckfvjtqdr94WRFGIICgUAgEAh6HKoiaJpPIESSlMGo6tmKsRhbCWaUN9h5c0UBV4zvQ22ziz3ljXy/rRSby8OTF43gT59vpTFMkY0THc0QTIjAatJT0eigvN5OSow/fFM1iq3tFZCv8uUZJvYPHfopSeGFhAZiMPlfDz1Xe2k26Ll8XB/W7K+mosFBpNmgGX1Wo16zMx2dNEhORHYF5ErWNLu0UNmvNh9iZO9YdpY2hMwfbEmgIVjV6GTaoCTOGZHGlRMy6ZMQwYCUKAalKp7YVqGhLkUsBtSJl/C/99pmJwt2lHHD1Gyt7y0nYZb78gc/21DEsPRhHe7z843F/O5/m7X3BZVNfuXak5RuJRYjEAgEAoFA0BWoxeIzE/y5a0a9pA0mY6xGbC6PJoAB8OXGQ3i8MjdO60d8pImaZic2lwejXmKgr05dqBDJnkhhjd8QLG9w8PXmQ8x67ucgwRyby4PFqNM8ba2QZZj/gJLLF5l8dDrqaIDK3UptQSA5WskhU2sgOn2GoMmg04wSRxsiQT2FeVtL2FFST0acIuKiKn/ur2xiW3E9549KJ9ZqDMsjWFpvZ/rgZFbcezpbHpnNP+eO5Y9zhmi1Gkf2jtNCP9UQYXuL8hGghI3aO5EjuGhXOR6vzDkj0vwGZgtDsKZJ6f9ry/aztaiuw33+b50iMnTF+D4ArTyMJyPCEBQIBAKBQNDjOFDVTIRJT1KU33tkNOj8hqDFgFcODhP8dmsJo3rH0j85ihiLkXqbG7svz0mthRYqRLIn8sn6ImIsBmKtRs2gqLe7WbyrQmvT7HS3HxbqccHE22Dq78IL+zwctnwEL42DJsU7lBKjGIL//nkfoHj/jHoJvU5SvMIGXadCQwMnCk4U3luthOPeelo/wF8DUi34PiE7gRiLQasH2BZ2l4cDVc2kxVpJj7Nq4aVtYQkoE+Hxyrg8sqbWazXpOyUWszCvnJRoMyMyYrXczpahpXsq/F7PBXml7e6vvMHO6v3V3D1zIHecPgAQhiAIQ1AgOCo0O93sDlHLSCAQCARHH7vLw6cbihieHhs0eDXo/IagKjAR6KWoaXaSFZDv5PR4sbncWIw6onwCMeHWXzuROVRrI7+sUSu98d6NE5l31zQguAZfk8OjGcghMZjgrKdh5oNHr7P9ZsDFr4FZ8dj2T1b+H6jyCaK4vZpiLIDZoAs7NHR3WQPZ981jRUAJg+5Ak8PN8wvyQx5HZaODlXuruPP0AQzupeTNqYag6gGMsSh1/zoKc563tYQGu5vzRqaF1S+dTiI+wsju8sYgTywoRmJnPII7SuoZlxWPTidhNuiQJH/uISglXg5UNXHVxEwAOiox+POuCmQZzszppSmPVp4k6rHtIXIEBScN324pYerApGOSGPzY13l8uLaQn/8wvW1JbYFAIBAcFd5ddYAGu5vTBgeHI5r0klYyIsb3LGh0uDX1Q1eA0aB6Muptbp9HUBkynQyhoUU1Sn7lYxcMByArKRKvV0avk6gOUJGsafaXaWiF1wOf/ArmPAUx6Uevs4n9lT8fRr2OuRMz+W6b4iFyuL2YA3IYzQZ92B7Bb7eWADA/r4xTBiR1YaePjH8v2ceLP+4mOdrMLyf1DVq3rqAarwwzh6Zq53KjQzEA1bDeGKsRc0ehmm4HqYv+j7etVUxemwRrQ3gDh5wDo38ZtOjiMb0xrHoJxxc64CwtHDcuwsjBalvYx+hwe7VrTpIkLIZgj+JPO8txeWTGZMYzf3sZVU3te/dW7q0iMdLEkF7R6HQSkSZ9yDIi87aWYNTrOGNYath9PZERHkHBScGOknp+/f6GIBWto8miXYqC2byt7YcqCAQCgaBrabC7eGN5ASa9jltO7Re0LjA0NNcnEvHxuiJtvdPjxRggbgGKDL/ZqCPS7AsNPQlUQ1WhnUxfHhj4vT2BBcZrmpzERwQYglV74blhsHuhkh9YvRe+vAPcRzkE78c/w5JntLdJUWZqmp24Pd7QHsEwcwR3lNR3eVe7gjrfbxBY2kFlf6WS29k/OZJoi2JI1aseQd//aItBydlrxyC2F21hSsP35BgPIdUVQV1h8F9sH8i5uNV2107OIk5qYH/BXgDGFb0Jq/7F7Jxe7CipZ7+vdEVHONx+oRlQrkd7wO/23uqDpESbOTMnlaQoU7vePVmWWb63ksn9E9H58lmtJkPIUNXb39vATW+vC6uPPQHhERScFKghIoGFUY8W6w9Ua3V73lpRQHqchYLKZtYdqObayVnMOklmmQQCgeBY4/XK/PK11RTX2rhodAYGffB8t1Gvo9qpDBhz+8Rxzsg0/rN0H7+akk1shBFHgNGgCmDU2VyYDXpNsOJkKB9R7DME02OtQcvjI0xUNwZ6BF3084ViAkqpiPpiMFpBb4Bblx2T/nJwJSDBqX8AICnKpNihzU7FoDAGGILG8EJDPV6ZVfuqAb+CandBNXpUz20gB6qaSIoyEW0x4vXZTWpoaIPdhdWox6jXYTHoKG/HI7hr13ZGAQdmvUrihKlh9y0zMYKCUX/gLz5hlr5Vy8Bu5YzzruXP3+Tx865yspOyO9yPWoNQxWr0ewS/3nyIJfkVXDu5L9EWIwmRpiBPdUtqm12U1Tu0yR8Aq0mHo8XxbzxYE/Zx9hSER1BwUrC3QjEEVTWxo8n8vDKMeol+yZGU1tu5+8NNPL8wn6W7K4Pq9wgEAoGga/lmawmbi+q4Y8YAnrhoeKv1Rr1OK4Ju1Evcdlp/mp0ePl6vDFqdbm+Q3D1Arc3py1GSMOolXJ6erTgJsLe8kV4xllaF4lNjLGwvqaPJ4cbh9lDd0iO450flf1yfY9hbwByjFKb3kejLAatocAQZ9xB+aOiCvFKtKHtlO0bG8WBLcS1AyBy/naUNmnGuerGrfWGT9TY3MVbFB9SRiufHNYO5gicZMWpM6AYlW+B/10LtQf8ytxP+NYU/JPysLdJZY8FeR2ZiBNlJkfycXxFiZ61RQnoDPYL+/v5t/i4Arp+iGJTWDo6lKaBkjLY/Q2vxmhd/3B1W33oSwhAUnBSowi2ejrKJfciyzOJd5Z1KbFbZXlzP0LQYXrpyDH+/IpeFvzuVtffPYmJ2gjbLKhAIBIKuRZZl/rNkH/2TI/ndGYNCqlka9ZL2HDDodAzPiGVCVgKvL9uPw+0JkrtXvRF1zS7NKDTpdbjCzC/beLCGopru5UlS2VZcx+nPLg6qERfIztIGBveKbrX85lP7UVhtI+fhHxjz2AIaHW4SA1RZWfua8j/6KOYEhsISG2QIqrUjS2rtinFvbCkW0/5vKMsyD3+1HYCJ2QlaKGZX4w1zTBJIVaODQl+uXUtDxu7ykHeontGZcQAY9DomZCXwr8V7eWfVAWqanZpIUstQy0A8Xpl5uxvpNeQUjOaIkG1oLFe8v6UBKTfbPoWybSR5q7RFpsg47bc5bVAyK/ZWUddBdJbXK+P0eFuEhvqNPYfby2Vje2vCTiaDThOnCYVadiJwYsNqCjYeZVlmxV5/v0+GWpMgDEHBSUK+r7BqbZg38+V7qrjujbV8s6Wk05/VYHcRH2FiWHoMF+RmMCAlmuRoM5kJEVpdq7bYWVpPeUPoB7NAIBCcrByqtfHnb/Jwt+ON21xUx9biOq47JUvLA2qJMcAzZNQrba6fksWhOjsbD9Yiy/42qvFXb3drRqHRoCiJdoTT7eWif67g7L8vDe8AjzGvLtnHvsom/vr9rpDhcIfqbPRNbG0AnDoomWsmK+IkmYmR3DA1W6vJhqMB3HalXIT+GGceWWLA4TcEM+KVkNbiWlsIj2DrkMCWHKhqpqzewa2n9WdgapTmGexK9lc20e9P8/hxR1mntttUWKu9bllX74uNxTg9XqYGCNv8/cpcBqZE8+AX25ifV8bIjFjAZ1i1YexsydvB567bmRuX13ZHBsyEy96CIWf7l1XtUf6fdi8PnjuMPglWTJHx4FByLS8d2xuH28vvP9nMr9/f0KbwknqNmdrIEbS5PEFGnVGva9dTr4ZzByrcWozBHkGH24vD7dXyYkMJyfREhCEo6PHYnB6tdk5tmDfzD9YooQ4FYSY1B9LgcGsy44GkxliobHS0OQPo8crMeWEpV7y6qtOfKRAIOkaWZb7cVNzuzLGge/KHTzbz32X72VLcdtFoRe1P4oLRGW22UY0/5bUyBOqfElxuIFDuXiXIIxiGIagO1uvtbl78cTer91W1v8ExRi2B8emGIi7654pWzyUlPyv0EPHR83PY9uiZfHf3NB48d5gWhkmtEl5L73FHrd9tYokFez1qUlxSpBmDTuLlRXt8oiP+3zLCpKe2A4/UUl+5iMvH9yHOaqLO5jos711beLwyD3yxFYAlYYZKqmw/pBhV4/rGBxkysizzzA+7GJYWw5T+fkMwLdbKN3dN5YLcdFJjzFxzShbQfmjo0l2lbGEAOYP6hVwPKHUho9MUz6CKKiJjtHDD1GyW/vF0JKvvt5FlhmfEMqp3LAvyyvh2SwlXvLoqZC0/VcwnKEfQpNdCPO0uj5bDCx17BJtDeAQVQ9C/jfpd9IpRvMn19qOvKdEdEIagoMez4WANTo+XCJNeq6HTHpWNDub7CpMePIwE8aY2DMFYqxGv7I9Vb8mbKwoA2FfReeNTIDjZkGWZp77b0fYAe/OH8MwA+Gt/7c/xVD+mfD6JHW//VmnjcQeFk1FbCH/tB1s/OfoHIAifks28XPwL1plvJefDSVC8vlUTWZbpvfE51ptvJebFIcpvvneRsjJ/vvK+LC/II2jwGYVqGGGBL2JDKx/RouQAKMZjOPll2w/5z6vnFuTzzA+7OnPERxVZltlcFGxQ55cH170NDJFtiSRJwc84j1v5fl+fo7yPy+zS/oaFJRaQ4Vnlmtdteoc+CRGUNzgob3AEHcuE7ER2lTVoyqihWJpfQe94K1mJEcRFKM/uhi6sH/nNlkMs36Pcu4z6zg3FG+xKqHJCpKlFDUwXVU1OLhnbu5VH3KjX8fcrRrP6T7M0wRSLQfGwySVb4LmcoHvl9sIKPsx8mIh+k9vvzMKH4dmB/m23faYYgoFYYkH2wI6vAMWrDHCL/mter7iKK19dpURCff8n+OcpgBKW+XfjS1y1dBbs/BZQ6kPuKm3A6fZid3mxGAK9+zqcnrYNdZtL+e0Cw8WtxmDPsOptTIpWQp0b7T2/TAwIQ1BwErBqXxV6ncS0gUltxsMH8v22UlwemfRYy2HldzTa3US2YQgCbYaYfLRW8UIOS4vp9GcKBCcbm4vq+PfP+7j+zbWhG+z5ETxOGHaB9rc15jS+80ygImqw0ubV0+CL26FonSJ3b4qEPhOPz0BW0CZOYyxfu8Yz3zMWc3MpHFjZqs3eikbGOVYjmaP9v3mUT6E5Jk15b4kJChFUB+DRFiPRFkMrj2BL6Xp1maudASco+U3//nkfMRYDv5k1kGFpMeypaESWu86jdCSU1tupbHRw8ZgM0n1GcGAYnMcr4/HKmPTtFIoHRRjEXq94hoZdACMuhWn/B+ltiIscTYZdCBNvVf4PuwDis/njmcp1fqCqOei3PH1ICqDUlQuF2+Nl5d4qpg1MQpIkTQznkn+t0KKLAnG4PZS3kWvZFmsLFDXShEgTVZ0UolEEjfStctzUsgxZIUJ6Q6FOdLgLVkF9EQyeo107ZQ49qdGWjncy5lqYcLP/mhtzDUy/J7hNzkXK/5LNgFLQPSPOym3pe0iS6thT0cjZf19KQ0IODJoNKGGa67yDMLkaYJ8iPDMxO5Fmp4cNvlDm4IkaHc52cvrCCQ1Vv0u12HxXGv7dGVE+QtDjWbWviuEZsSRHm8MSf1l/oIbkaDPjshLYXFTbar3L40UvSSFzULxemSanhyhL60tLVeqqt7khPnhdeYNdy2O0GMX8jEDQEYt2KuFIbUr51xVC6gg49zlt0StvruVHdzlP9h2hLJj8azBFwep/w8FV8NutcOUHR7vrPYp1vgHtuKyErt+5vR4+u4k9mVfxoPtXgMyl5jWY6gpbNV2QV85cqQLdoMuDfnMAevnOA7cTk85fM9AQcA9PijJTWqcM5rXQ0ICBpjo4NOrbH3AC/LC9lNJ6OzOHpPCbWYOIsRh57Js8qpuc/jDK48gWnzfwl5P6cv0p2Zz30rKg60gNsWvLI6hRtBbePBuu/qL1d36siesDZ/3F/75iFyPzP0THALzogkICB6ZEERdhZPX+Ki4Z27vVrjYX1dLgcDN1gOK5mp2Tyq3l/flo7UFmPfczp/RP5PxR6VwxQZkwemHhbv61eC8LfnsqA1NbC+y0xOn28tOOck4dlEy9zRUyNLLd7X3e2paql3srlDFEtk9ApSPU89tbcwD0ZjjvH6BTfvP96+eTazW2t7lC0gA4+5n228RlgjVBi74YnhHL8ntPh+fvhpGX8+/BY5XafZv68Z9rfkE0inH9jmc2f4haQYzvep+QrdxjFu9SQmmtAdenoubb9kSLFhoasI3VqA/KsVTzJdVrXXgEBYIegM3pYVNhLZP7JQbVoGmP9QdqGJsZT2KUqVWysCzLDLz/O+73xfa3RA37jDK3nkmNaccj+O7KA+gkGJwaHVIOWiAQBLMhQOAipLpb/aFWEvaFPg+/JlCQexUMnA1b/+f3Albugep9R6XPPZFLX1nJpa+09tB1CfZaqCuiqkb9rSXqTL1gzX/AG/yb79+8hBipmciUNuqTVe2Fx5OZ6vCLtwRGbsRYjZQ3KANy1WuYEOlXw1TDR01heAS/2FRMWqyFV69RcuXiIpR7f0M3GFjKsszvPtoEKNEnqoEUKNoRSqgjJLG9YdajkDL0qPT1iDiwnIyVj5CCcu4ElrjQ6STGZyWwZn91yE3XFSjbTO6fCCge43vPGsK8u6dx1cRMVuyt4t7PttLgyyH7YbuSSvLUdztZmFfWYS7hmv3VHKqzM3diZof170LhcCniN1ZTsCGztaiOSJOerMTwDEGrUY+EF+OG/yq/pc8I9HplGuwuYkJMaB82466HzIAw0+p9UHcQYvswO6cXv5k1kFX7qrn57fV4vLIWvWWPzIBd88DRoInuqZNPLXME28vdtbXhEQx0Dqh5iZpHsBtcr8cCYQgKejQFVU24PDIjMmI1Q7C98JyKBgcHq5sZ2zeepCgzjQ530I1CNdI+WNN6RhqgyaG0jTK3nklrLzT0260lnNI/iRG9Y7V9CASC0MiyzLYA0ZCQ4dZ3bQyaqZZlWcv51QZPXg/8e5ryOtEnivDxdfDD/Uej2z2Ozg5gO01cJty2nOWGSRj1EhEmPTWmVCXfKCBPsKLBQW6lkn9E7wmh92VWPDW9zP4+Bw4kY61GKlRD0NDaEEz1CUgY9VK7ohQOt4dluys5fUgKep/HUc2n6w6TfBUNDpqcHqYMSMRi1GsD48PyCMb3ham/geheR6u7h8/wS+D3u0nvo1zXsS28WxOzEyioag5ZPqPJ913ERwRvkxZr5cmLRvDm9eMBOPP5Jaw/UENJrbKPn3aWc+Pb6/hqc/v1glfvV9JVpgxIUoy5TpapcniUchiK6qeXvy/czZSnf+KdVQcYl5XQpmJuS4alxzBUOojObYMYf7mPJqcbr+yfvO4SZj6khA6rrH9T+e8zDu84fSCzhqaycl8Vb60o0PJwbfG+MP78HwDISopkl68cWGD0lFGvw+2V2zTC1Un6wBzBWKuRRodbuy79oaG+HEGHEIsRHGUcbk+nQwIEnaPGVy4iPtKIxaRHlmk30V/1MozpG0+ibxCw8WCttl6dMW4L9fds+QAB/0Air6S+1boDVc2M6B1LlNmgzTIKBILQlNU7qGl2McEXjtiqJpXLBpJOG/wDbCuuD5IeB0Cnh8p85fUMn/FnigBX96z91t1Q85yAw6q52iGFa6GhlLJ6O6kxFqxGPd+l3qqsCyhivWJvJelUYUsaDn3bELcwK7nXqabQ9/A4q1F7NgTmEf7ujEEAwfXK2vE8rC+oocnpYcbgFG3Z8TIEXR4vS3cHK1KqOW63Tx8AENoQVD2C+nYMCrcDvvw1FCzvyi53HZZYiEoht4+ShxHoCQIl3wxgdQivoMvjxaiXkKTQx3/aoGSeungE1c1OLvnXCmwuD3+7bBSr/zQTgH0VrfMIAymrt5MSbSbKbMBi0GueqHBRPYIWo6KU+fzCfBxuD/edNYQXLs8Nez8jM2IZEembUJv9Z215vb118fUjxusFZ4AQXl0RxGfDwFnaohevzCUzIYKnvtuhiS2VjrxDWem73vsmRGieupYeQaDNa3NfRRNJUaYg43FCdgJeGVb4FGLtvus/IdKEJInQUMEx4OnvdjLu8YWs2FPJJ+uLOt5A0GnUAWJ8hEmLDW9vwLJ2fzUmvY7hGTEM6hWNXidx9X9X8+jX2zlY1Ux5ffuGYFGNokLWO751snZSlJlpA5P4YmNxkFfS6fbi9spEmvREmQ00OtzdRlSgJ/LNlkPsCGGMB/KPH3fz/bbSY9QjQVjUFED1PuSqfWzYtJ5MqYwz021kSmXYyvawcu1a7nt7IV9vPgRf3AavTA3afN0B/4AvZF5hpG/gbrSCUxiC4bA2YBDdVmHyTuGyKyFj6t/b58Pyv1NvcxFrNWI26CjX+X6nukKtfW1dHbvlDKR+M9ret9ECOgPJnvKQqwM9RoGesLtmDmTpH2cwyJf7peQItj1wV73OQ9P9ol9qCGrTUTYEa5udQTXpnluQz9X/XcP6A/4w6gO+/ql5ZGpoqC0wNLQtj6C9zv/bFK6Bje9C7YGjcixdwvwHuHP7LwDQOeuVfruVyeGhadFEmQ0hVYddbm+7Sp6SJHHlhEwW/X46ozPj0EmKUZEaYyEuwkhNB6UpmhwezTC1mnSdnkRxeryYjXrNY62T4JNbT+GW0/oTH+DFbhdHI7ra/SQNmcJ1nvtpju2vrVLV1aO7MjT0f1fDaz6jr7FCqTfYInQ/wmTgg5snoZMkXvxxNwAJ8XFKfuFBpaxW73gr8dQDclC+nzp505YhuK24jmHpsUHG/fisBJKiTNz8znrKG+za72Ax6kmOMrMhwAnQkxFiMceRzzYUA3DVa6sBOHdkWtAMh+DIUesGxkUYtZuGzeUhLkRbu8vD5xuLmTYwCbNBz5jMeJb8cQZ//jqPN5YX8OaKAq6a4FcT9HrlViEYhb6HbJ8Ea8j+zBnei/s/38ae8kYtqVzNzbCaDEiSB6/PaynOhaPDHe9vBKDg6XNCrp+3tYS/LcgnPsLInOHdMOTpZOU/p0NzFRJwNnC2GdgAN5iBz5Qm9Z5xvON8kvMmnQ+24Jl+1dsTbTEEF2GWdCB7tfwYjBHQ1L1qvnVXAj2CXeLt+uBy2Lc4eFlCP+oLXMRYjDQ53DTIFrhlKcRnQdl2eO10Yoa+wG/dv+RXc84OtVc/xghSd3+AjnPwtpgHDzQErS28R30S/BN7ZoOO6nY8gur3EBUQghZ5jDyCry/bzz8W7WHrI2cSZTaw2VfLMDDKRI2SUY0Ik16HXieFDg0NVA2VZfjHWGhqUfMuvo2czO6AMYJYxyGMuJmW/xdYs0RRpbzsTQx6HeOz4vlxRzn3n+MOChlUPIId+0nSYq18dtsp1NvcxPqigOKsxg7rFTcGlJhqKfgSDk63B7Nex5UTMkmPtRIfadQ81mGz+wf45FfMOu8HXl6Xw5L9TcwcGoXbI2vaCGEbleEw6kpo9t1Xf3pMURAdc22rZhlxVsZkxrPSZ6AnRZkhoZ/SXyA5Qs8/jS/ysedULEa/91/9vVwtJmlkWebP3+xgZ2kDF7WoL2oy6Lj1tP48/u0Olu2u1EK5LUY910/J5i/f7+TDNQc1UaCeijAEjyMtZ4Hqba5Wg3+PV+ZQrS3oQSQIH7VobJzVFJAUH/qm++WmYqqanNwwzf9gy4iz8srVY1m2u5Jf/nc17632hyPZ3Z6gh0dts5O3VxWQHG1ulY+gMmtoKvd/vo35eWUBhqA/iVmNb3d3YeFagZ+OCok73B4e/yYPgIz40Ma84Biy63tY9zpc/G84+1nwOLnvs63YXR4y4q38esYAnl+QT5TZQHZSJBvrIqm1OWH4xa12pQ4QYixGmgPvvb/NCw5ZMnZ9aOjnG4t44tud/HPuGE357kTH7vKw7VA9w9JiyCup71BAJSzKtkP2aYqID4DOAIPPon75erKSIqhq8nnj0kYr6+Oz4KJ/s39PL6LNDm0g1yZDz4NN7xFFM/VEBa3qGyC5n9yOsmdHhavVHO/IAMGwKM0jeHTzvzcX1SHLSs5slNmgPVsCJz7qbW5Mep1WTkGSJCKM+o5zBBvLFSMw95eQ7curNUUp5Va6K7F90OHlyiF6Ui96FT65VDnHfPxyUl9ueGsdK/ZUMWtYqrbc6ZHDru0nSZJmBALERZiobW4/d7bZ6Tc81RIQsiy3GYraEofbS6TJgFGvC+p3WDRXQ0MppOXCRf9mxIDBxEWs5fttpXy2oZgfd5bz1EWKqrJaWL1LGHqu//Xoq6HvVOg3PWTTUX3iNEMw1mqEi16BcuW5nBQTQZTUjAuDJsIEbYeGvrZ0P68v38/kfokhDbrrp2TzwsLdbDhYw8iMOEDJPfzFuN785fudvPjj7h5vCIrQ0OOExytrM9RqzHJ9iNywfy/Zy7S/LuKFhfnsKKk/6qElPY3aZicmg6KupRrZtjYMwffXFDI0LYbJ/RJbrZs6MInPbj8lSDwg8MEpyzJ3f7iJsjoH/5w7ps0bemqMhVG9Y1kYEL4TaAgafTkZHRksgo4pb7DzqzfXUhMgaFHTwQP6i43FHKpT8jdqOwjvERwDXM3QWKZ47YZfDKOuYKFpBt6Rl3PXbx/EOm4uf7rvUe763YOcd83vaEybpAl+tNqVb4AQYzUGhcERk6ZIoKsYrV1uCP60s4LKRgfztpZ06X6PJztLG/B4ZcZlKTlYR3zPctkUQyNrGoy6QvkbcSmYIqm3Kx5Bs0EfrBAbmQijrqDYEx+esEXfKQDESM2tBrlj+vpr+iRHt20IGvXtqxM2OpRi34YAQ0I1Co+m+ESggJIa2qeOFwJDFetsLmKsxqBnlNWkb6EaqnzHQYagWrJj6Ln+32fouX5PenfEF3r42GkxxMfGQO/xUFuoeDeBMZnKb15Q1RS0mcvjbT8/sr2PjDB2+OxodHg0L7HFqMcrtx3SGAqljuBhfu87voZ/TQaDGUZdgSEynnNHpjFvaynz88rweGX++OkWwK9r0OX0mQCjLofo0EZsYOSVTidB0kClRiGQFG3hPOeTfO0NHo/5PYL+Canvt5XwxLwdnJmTyvs3TQw5Qa/XSeT2ieOH7WXaNWAx6kmMMvPo+TkcqrMfVj3pE4lufAX3bNQT7v6zh/LKL8cCoZXvfvDlKb2wcDdn/X0pf/fFTQvCo6TOrj3w1cTnT9YXhczBO1RrI7dPbJtG3JjMeNY/MIu/XjISCDYo31t9kJ/zK7j/nKGM76Ce1qyhqWwqrKW8wR60H6tRj9F3c29voCEIj2W7K/lpZzlbA9QlA1UOQ5Uc2FfRhNmg4/xR6a1Kh3QFZfV2rntjDQerevaDpcsYfjHc8rMi/ODD7vIQH2EKqWiYEm2hstGJJ4RH3emRFcl1o04TjQmJKRIaSpRyA11ESa2SOxyqLumJiirmMDozDugCQ3DD28r/FnlDoBg2MVZjm0ItqnHTIb7z6KsbhvPDb08NWtUvILQusKxES0wd5Ag2OjytVKMjTQbMBp1W8PtoUFJn1wqTq4ZgqS9vM3ACrN7u0mraqgxIieKnneVaTn0o0Rw8LkCC2Na/T7dF7etb58FfshVxKLcN8r4ElNDHWKux1e/i8tXpO6yPtBpDqxgH0Ox0ayWmVIOu3XtSCxzuw++fWstPFU8CuHFqv5DXVcsQ6WNFZmIEz1w6knvmDGm1Tp2kedjwFnGy/9nu9wj6n+uvLy+gX3Ikf79idLve1nFZ8VQ0OPjnYuWer+ZGDs9QvqPd5e2L/5zodCtDUJKkPpIkLZIkaYckSdslSbrbt/wRSZKKJUna5PvrIBGg+6MN/k16bZai3hbs7StvsLO5qC7I/V3fwQ1GEMzB6mYyfWG147PiOWt4L95cUcCPO1oLBjTYXUR3oJIlSZI2SFA9eQWVTTz05TZO6Z/I1ZP6dtinWcNSkeXAgth+WWMt4Vl4BI+YfRXKwz0wLyfQEAz1sK7ziVIkRZuxuTxBs+RdwUNfbmPxrgoW7QotWCHoGIer7fzZxCgTHq8c8rdVlQDNBn3711eGMjHHga5RQ8w7VM86n1hHT7p/byuuJ9ZqJDtJCbE84smrwWfDKXcpHsEAnG4vTU4PMRZjm0ZYfbg1zyzKwC5Bb2/lHQg3LC/SbKDO5mpbpt7hblVHVqeTOGeE4nU5WkJggRNeDXY35Q12TV0xMCqi3uZqpQZ5/zlDqWl28bcFu4DA0NCA76TvZBh7HSQNOir9PyrEZ/lfj7pSCWsF2LNAW5yZEKGJvKk4OxCLaY8Ik6HN9BOVJoebCLM/NBTA0UGeYJPDrQkBHZFH0FGvRFiY/KHRWUmRjPd59ufdNY2nLx7Bb2YNPLz9dxGXjevDbdP7t1qeFGUiWyrhKv2PmA+t0ZarHtyvN/ujLhrsbvonR3Wot3DTtH6YDDrKGxxYjDrMBqW9mpKlaj/0VLqVIQi4gf+TZXkoMAn4tSRJw3zrnpdlOdf3N+/4dbFrCAwHbKvQ+OJdSlL2o+fnaMvCrQ8j8NcNUy9mg17HP64cjdmgY/X+YDEIp9uL3eUlup2ZYJWIFgV4f9xZjleGZy8bFdbvM6RXNBlxVhbk+QxB3wMgwqzXZrWER/DI2VepzOIFSkCrXlgIUXIAvyEY2UE+6eGihi2qM/TrD1Qz67mf+Tm/or3NTl7W/Af+faoWyuXxyjg93iAJ8EDUiZxQJVhcHi9Ggw6TQRe6AL3KAJ+ynbtrSvt8tNYne54Y0aNqhG4rrmNYWow2edVeWZ6wiOujSNjHBgs65PtqhvVPicRs1IX8nNpmZ9CEaZtkjIU71ishgiFYdd9MFv7u1JDrVIb0iqbJ6WllPKg0OdwhPYpjs+Kps7korg293ZESWFez3u6issFv/AWKkYTynuakx3LeyDRFcRe0fM8gsRiA814AQxcKiBxtdHqY8YDyeuaDkDzIFx7qz/VPjTG3KgsVrlhMKCJM+uDQ8xC0FIsBOhSMeeSr7dzw1jq2H6rDeaQeQXN0q5DeV345lvdvnMiw9BiumJDJb2Z1T4NfkiRq5CjMklsJ8/UxzheJpUYqgBI9Eo7oXqTZwJXjFe9xVMC1mxxlxmLUsXpfNVOe/okb3lyrlV/pSXQrQ1CW5RJZljf4XjcAO4CM9rc6MQkyBH2Dl5Y5gkt3V5Icbeb8Uensf+psMhMiRI5gJ9hR0kB1k5MRGf6wMoNeR+94q/8hnj8fNn+IY/17XKRbSm7N97D9C18YTGj8ctvKb6jO8ocbTy9JEmcMS2XZngpsTo+2HyVHUDUEhVjMkaJ6BAOvq/2V/pm9UBLfqiGohZl0oWe2uNamyVEfqGrmyXk7uORfK9lT3siXG4u77HN6FPXFUL4DfN4a1YBr6+GuhvQ0hKj/pA7uzIbQxoSGNR4eqoEJNwFQXm/no7UHD8uTI8sy8/PKOGNYKjMGp/SY+3ejw01eST3jsuI1r1FncpwAXwmCtf733/wWSre1aqaG047MiGvTI1jV6CSxHYEXDVMkRCZB3hdBxoBKr1gLA1KiW28XwDBfWYjAAWcgDfbQhuCQXsp+d5U2dNzPw2BnaYNWCLve5sIeMNkROLFYXu8gJUQO5NC0GGqaXdTZXDjdXkZI+4gvXqSsrC+BlyfC3kVHpe9HFYPvWH3lB4jtA/uXaMrAQ8yVSHXB5bucHllL0+gsESY9zT7xl0DK6u18u6UEu8sTNOls0cpatX/9bPIpwK7aV43d7Tl8Q3DPj2CObbU4McrMKQOSDm+fx5jnr5uBS28NuoaToszcOKCOASXfwuYPYfOHnGb7kRzHZv+G2z6DvK/A29roHtk7DoDKgJQQSZJIjjaztqCa4lobP+4s5/ONPa/UW7dVDZUkKQsYDawGpgB3SJJ0DbAOxWtYE2Kbm4GbATIzu7fKj83lLxmgGhaBKqIer8yy3RXMGJKihaxEmg09akb5aPPdthJ0EpyZE5yQ3Ds+gsKaZqjcDe9fBkA08LwJ2Ob7u/JDGHxWyP1GmoJDQxsdbiJN+o4V6wI4Y1gqb64oYMGOMu13V1XAQHgEjxSvV9byPgJDQw8EiALklzVQ2ehgcr9ETSa7zuYiNcZyVAzBZ3/Ypb3+3Gf4XTQ6g+2H6tjWxqDypMfjAr3fA6EOlixtDILaMwSdbiVH0GzsIDRUkjTDU5Zlznh+CXU2F2P7xndoJLRkW3E9JXV2fnfGIA5UNdPkdHdKHbC7srmw1icUk6B5jTp9rXx9NyDBtV8pHt91r0NqDvQaHtRsqy89ok+CNaRip8crU9PsJClcqfuGEvj8FrjsTSVPqnid4im0xne4KcCgVKW+bF5JPWeNSGvVlx0l9Zw7Kr3VdslRykRhYHh6V1LV6CA7KZLKRidNTk9QkXL1O3N5vJQ12EmPa62I3DdRyZE86DtPXzc9Q+ICJ0y8UMmt1BkURd0TDTXUW+cb7qbmwPbPlLqkkYmc1vg9w1x5ON2X+yNy3IcvFmM16ZFblIDyeGXO+vtSqpucWsH3NN9vEOELI24vr9Dl8WqT15sKa6ltdh2eomdjBVTvhZgT278yY0gqJPT1Cxj5uLvsIaJdFfC58v4RYEfNqcB1yoLv/ghjrlFEoyKDRQFH9G5tHANEGA2U1Pq9gC1TuHoC3cojqCJJUhTwKfAbWZbrgX8B/YFcoAT4W6jtZFl+VZblcbIsj0tOTj5W3T0sAj2Caqx34I27qKaZmmYXEwKER6LM+h4zo3ws+H5bKROzE1vNFPdJ8HkEYzLgl5/BDQvZ+YslnOp4nlVn+O4g1fvb3K9quDf5wj8a7W6iOll4dXK/RPomRvD2igJNlCQxyuRXDRWG4BFRXGvTvD6BRsGWojoG+8p2PPDFNm5/bwNPztuhra+3+zyC6uC2i34Hp9vLD9tLuWpiJjMGK/emPglWnr88l1G943rkw6VL8DhbGILtewRj2gkNdXvVHMEOPIIA392Da9NHXP7qKm2Atq6g1dxjhyzIK0UnwcyhqUSaDXjlzolCdFfUfLSRGbGHHc4uV+/Dji9EUZLg7i0w7oZW7TYX1TEiQxHxUlRDgz+nttmJVyZIQbBdEvrDXRthwBmKJP27l0DxhrD7bTHq6Z8cSd6h+qDllY0O7vxgAw0ON1NDeFbUSYqjVUuwttlFSowFSVLyzYI9gop3qrTOjixDRlxrI0Itn3Gguolmu4tkqQ7XEEWpEVMEXPs1ZHbjUhFtkTUF/lTiL3kx9Xdw92bFIARiY+NY4c3RyhXAEYaG+u5NgWO1x77erk0AvL5cGVuk+36DHJ+HecPBtu8vmwprtdDRxT5tgf7JUW22b5PmSuX/6Q90ftvuRmyfYK++s5loVwWvus9hx2VL4K6NzHS/wIJ+9/jb3LhQyUNuYQRC29+nxaQPKucVSt3/RKfbGYKSJBlRjMD3ZFn+DECW5TJZlj2yLHuB/wATjmcfu4LmAKVIg05CJwXnWKgXfWAsf6TZoBkfgvbZU97I7vLGVt5AUDyCtc0uGrxGGDAT+oyn3JDOQTkVXdooMEa2mmkK3t6K2aBjS5EyGAqM9w8XnU7imslZrDtQwzdbDhFlNihiMUfBE3Uysi9ABU7NESyrt7O/solLx/Zm7sRM7pkzhEGpUczbWoLD7cHrlSmvd5AUZery32HDwRqanR6mD0omPkIZsKZGKwOBSLOhy0VpegxuR6cMQfU67Dg0tP3ICteeRSxYsoQ1+6v5w5mDAQ4rt2tTUR1DesWQEGnSBESOdlHxY8HW4joy4qzER5oOr+SNx41cX8Kru6P8uW3xfTVPrIrd5SG/rIGRvtl6U4AR/9rSfYx7fCFjH18IQEI4oaGg5Lgl9ANzlF9Vsp37fSgG94phV5k/xLOiwcHs55ewMK+cP5w5mLOG92q1TVQ73uquoNbmIj7CqBUoD5xYVr+zjb7wwqzE1sXHNUOwqhmnTTk2XepQf4OIE7j+pSnAk6nTKSIyRuX+m3XRw/xPOpPleyq1JkeWIxgcMbS2oJq3Vh6gX1IkuX3itHFDeqziEUyJtjAsLYa/zd/VanJBZeGOMgw6iVlDU2lwuNFJ/hDlTmH37T8qpfPbdjfiMoOvW19473ZvX36ujMIbl81edwqeiIBjjc8CRwPUHGi1O71O4sap2TxxUXBEQkTAsyYx0tSjBL9UupUhKCnxMv8Fdsiy/FzA8sD4i4tQgvdOaALzwiRJwmLUB4WGaiFQAaIISmjoiT+IOBb8sF0puzE7p/UDuU98BCAjvXMRbP4I8NcR6psUqdxgPG2H71iMeib1S+SH7aV4vTINDjdRHaiNhuKqCZn0jreyPeDmbxKhoV3CvgollCPGYqDRZ2Spnp30OCtPXDSC26b3549nDqHJ6eGXr63m260lONxeMhMjNUOwI4MhXJburkCvk5jUP1ErPqzmlFpN+g6FAk5a2goNbVMsRh1st35YO91KkWiTQYfD5WVvRSOzn/+Za15fw8uL9rAloLTDrdEvc/uhs/n97EH8esYAYiyGTg/gi2ttLMmvYGiaMmDzqw2f+Pfw7cV1Wu714Uya2Jf+HZ3soVhO5rttbddWVGsVjvAVeg404hftKkevgxumZjN3YianDjyM/KZo39Di67s7tdmglCiKamza83j7oTqqm5z8++qx/HrGgJCiYUa9DotRR4PdhdvjZfmeypBlTg4Hr1dWBHOsJl+Bcq/2PUVbDLg8XmRZ5j9L9pGVGBGyxFGEyUBytJmCyiY8zbUAGCLCC5c9kTEZdPwx4htSD36jLetMQfmWaBoCqgfPpxD92e2ncOO0bKYMSOSOGQM0wxvgT2cPxeWR+WjtQeZvL+VQrY1mp5trXl/Def9YxmtL9zNzaAp3nj6AuRMzee/GSVoob6dw+iYvLHGHdWzdirhMsNVoYzh+fBQAKS6TlXurNI94qxIYb5wFfx8JztZKoA+cO4y5E4OV3wO3T4mxUH+UJnKOJ93KEETJBbwaOL1FqYi/SpK0VZKkLcAM4LfHtZddgBomoIaztAxX0ma+Df6TMMokcgTD5YftpYzqExcyF6J/SiQm3FQ5JNj7I3e8v4GHvtyOXicpSfRznoQx17a7/0vH9qaoxsbSPZU02l1hqY22xGrS859rxgF+L0FX5AiuLajmnVWtZ7x6Kqv2VbVS8qpuciJJkBEfoc2Mq/8Dk+xnDEnhV1Oy2VvRxJ0fbASgb0JE1ykh+thV2sjAlChiLEYtfDHRJ+wQYdTj8sjC+A+Fxwl6/ySL+nA3txUaalVKDIRSdAwsH+HweNlWXEd+WSNL8it45oddPBOQw1lrczE8I4Y7Tlck1KMtxk4bgt/5isdP8xkoqqLpTztP7NIh9XYXBVXNWk6Nv35X+Ofvvi0rAPjOM56SWnub7dSyB6kxircvOymSBrubPeUNlNc7GN0nngfPHcYTF40gLuIw1Cz1Bug7VXntCF/EJcdXX2yzz8OmTjKpCtVtEW0x0uhws2xPJXNfW82MZxe3GxIYLg12N15ZKWZuMeiwB3gEYyxGXB4vS3ZXsrW4jtunhzZUAUb3iWN+XhlN9dUASJbD8DqdgFzs+Q5L8SrcHn8u5eGWZ4hooTjd5PAQYzEQF2Hi3JHpvHfjJH5/5uCgPOGpA5M4pX8iS/dUcvM76znl6Z+47vW1LMmvIMZq4PxR6Tx2wXBG9YnjiYtGMLl/69DGsBgwCx6qhvQxh7d9d2LUFcr/Il8JiYR+kDiA2IGTWVtQrd2vrS2fFaoqdE3b6T+BBBqCqTFm4RE82siyvEyWZUmW5ZGBpSJkWb5aluURvuXny7Lc9hTiCUJZgx2TQafVMlJyHwI9gq0HPBZjxyFNJytl9Xae+WEnDrcHu8vDlqI6ThsUOk90SK8YJg1K57zKO9g+6Rm+2aKcThfkpis35/6nQ9rIdj/vzJxeJEaaeGtFgU8l7vAKrw5Ni+GFy3N5zWcQGrU6goc/U3zZKyt58IsT3mkeFm6PlyteXcXZLy4NWu70eDH5ZuDVa0YtNBtoCOp1Eg+dN4ylf5zBH+cMZkJWAiN7x3Z5aGhVk4MkX+jaIV+IYbavgLX1KJWq6BG0zBF0tp4gC8So1zEhO4Gfdpa3Uu0LDA11ur3aQGH5vaczbWBSkPF4Ve2r3OZ+T3sfZTbQ6OjcAEDd/3k+4ZApAxLJ7RPHo1/n8cUJrBKrhnIO93kEjbrOXSsNdheOqgPkR4ylT3p6uzk3qldFvUbmDO+FJME3W0qoaHRoxaWPiPG/Uv7Xhh8eOiE7Eb1OYvleJZxQ9RK0LNTekmiLgXq7W5sIPljdzC9eWamVGOmIg1XNWjmNQA7VKeduSowFi1GJMLAHeASdbq/2u52f21rIRuVXU7Ops7nYkF+gLLCEFtDoadiMCaRRyY++SRqljuDhicX4Q0OVc8Lh9rY5cRXIuKwETekaYGNhDWfmpPLuDRN5/vLcsFXJO0Snb1U64oQkuhcMOksphQFK6Zk71zNxQCrNTg+rfDmfrQzB0b5akmFe74HbJ0eZO8wRPFp1Qo8m3VY1tMey63vYPZ9peyoZYnYgfbsALLFEGia38Ai2DoEyhSNycBJQ2ejA7vLQO94/+zr3tdXsKW9kXN8EcvvEARAfWFdKlmHJs4piHPBivJ5zD57COS8uA+CN68YzY4gvltxlh39OhNy5cNofoXg9bPQPCgFMwOvJtWzZozxcB5uiofJ+SOp8EdYLR/sVvFQp9sP1DgUOEhxuj1YYtaeilmNoOQiNaSzgIf2bJDcakBuAb1LJqLfzZ0MZg9d9C/kWSBsFYxXPb+Tih7m99zhun34RuJ0kH/gWiO86Q7DRSWamcr5ePyWb/LIGLsxVfnd14GBzeloVue7JNDvd2rG3SQuP4EFfYd/0EGIXKufnpvPHT7bwh0+28Oxlo7TlmiHou6eq3qZYq5ERGbGs3Fultenv2k2WpxS++R0AdzvLWdh4ETAu7ONrqSYcYTLwwU2TuPI/q/jNR5twe2UuHds77P11FzYX+gxBX46STidh1Et+j2DROijZBONvVN4vfARShsHIXwBQ/O5tDKAIR8Z5xDQZ2xVKUidE1cFYaoyFCVkJfLahWBFH6QpDMNanMP7jYxCTrqgKpue2u0mU2UBunziW76niD2f6Swi1LNTekmizgXqbS2u/+PfTue+zrTz4xXbOGpHW4fanPqOUbyh4+pyg5apCcr+kSF+aiVf77lRD0Ob0oNdJ7Xq6xmclkBFn5fTG1cqCEGUGeiIpfQZiyV9KyfL7YX8sd9uLKHZchCJc3zlU77Xq6Vaewx0bXmpBd4Cv7phCTnpsx0rkuxfAru867tTpDyg5ngsfhYZSOP8fijf8ROeqD5X/S56BwedA6jAm9VO8pWodbnPLNAI1L3jlS7B7vn951hQYfolSWmLeHyAiEabfq3l4rUa9L5+/7QnbrzYf4m/zd/Hlr6ccXoTCcaIHnAknGBU7kfO+ZLjNhQRKtqO9jpGRT2Nz+d39oeplhVJMO5koqGzi4a+2a8W31Yfh+6sPaqGBawuqGZKmzBAFCUrU7IdFj4MpGgxm4oDPk7cwpfA2nBg14xFQksjj+kKWL2SorhjyvmzVnxFAhl4ZTEbW6aHplsMyBANR1SoP1xBU8xEAappc9Irt2YageryJLRQDR5V/ySnSDzTaY/HKMuQZSfB4OUvvJvagEXSSYmT4DEF2fgsGC+RcBHt/JG3NE8CzXaYaWt3k1MLAh6XH8OUdU7V1ES1UaE8GFu0q5/o31vL57acwOrOdPKT4bLD685nyyxqxGHW+PN/QXDQ6gye+3cHKvVVBy50eGatJp02OVPkMwQijnt7xEbi9MpWNDtJiraxlGAPkIu26P9tWiQ0zcEnYx9hgd2nhoCpWk56Pb53MuS8u46O1B09IQ3DZngoGp0YHqTGb9Dpc6rNp9SvK9aQagvk/KLmeI39Bk8NNStEPePQWEkfOIWaTgQNVrXN1VGwtDEGAc0elaxEPqbFd4CVJGQLJQ6DIV9NwwKwODUGAidkJ/HPxXv7vf5uxmpTc046KVw/uFc3320oZ4zvnM+KtXDkxk5X7qiirs7drCH7lK/YOrcVMdpYoeeb9kiO1KAg1NDTaYuRQrQ2by4PVqG+3dIleJ3Hn6QMY+M0eZUFCdvtfQg/BOHg27F5O75IFyLVGLvBUs7vOA1zZ6X31SYhAr5M049zh8oZV1HxCtv8+NyAlKrxyVBW7Qo5NWjHt/5T/1ngoXKN4BXsSexfDjq/hkv+SkDSQIb2ime/TiWgl5BeZDJmTlfq05X7FcMzRiiEoe5V71tnPgNej3XusJj0Woz5IhCmQRoebuz7YSO94K7XNLmEICtph6m94tPoM3lxRwH1nDeGWYW54eQIZUiXbQ4WGBswkmQ06PF4Zt8eL4TATmU9kvt1aohmBKjanh6e/28GUAYnsLmukosERWlBCDQO48n3IPhWAJFnmvI+3YDLotDpyGtd+5X897HzlrwU64JZ/rWD9gRqeu2AUFycYYd4fYdTl/tpFncSoFmc+TIM/MFeuqslBr64YKHVTXB4vn21QQuzsLcRW1sfOZl51GlVZ51BQ2cwPvz2Vn7aVcuu76/n2lqnkpLeY6b57k/918XoMTWXo8XSJR9Du8tDocGuhoS3RxAVOotDQ77cqD+lth+o1Q9DrldlSXBc8KXPW09pLr1dmye4KhqfHtpnjBEp46O3T+/PUdzv5cM1BrpigeHzU2mBq2G91k5MoswGdTtLyNasanaTFWvmH91KKx/yGR85XJOYrnhhKvKusU8fY6AhdVsao1zG5fyL/W1eI1yu3eyzdDZfHy/oDNVw5IbhOr9Wkp7LRobyx10HSIP/K21dqLz9cW8if7a/w6W2nMLZvPDE7N7ebc6NeE4GhdWcP76UZgmp49RFhjoZfr/a/b6yAFS8pdWQT+7e52YAURW7+0w2KWmFb13cgUwcm8791RazeX0WESY9Rr9MmsSobnQxsLXINKOFmLyzM194fqGrSalranB7eX3OQKQMSiTAZlNBQpxIaqtdJWE16XB4vzU5PWAbJJWN7M2/1aVRHncsZJ7JSaGcYdz1zl/VnZ2kD2OBd4xMM9nTuelcx6nX0ibdqz+JwPYJmg553bphApE9BvF1qD0LJFhh7HZxyR/idm3KX8tfTuP7boLeT+ycqvyWKKmsQOh386vu296U3wu+2a2/V57PZoMNq1OP0ePF45SBD3eOV+cUryn3u3rOGkNUV96VjyMlnTRxnNhys4c0VBVwzuS83n9oPYpUZ4RzvrqD6Un5jJsAjaOxaAYsTjU2+xHwVWZaZn1dKvd3NHTMGEm1R3PaqNzUoLPKQr06UGhYASJLE334xiqcuHnHYfXrh8lymDUxi6sAkQIZN70PVvsPeX6BYjMcr88by/WEXIC6sbuZ/64q0G1RN04md1HzN62uY+9qqNtdvKaqltN7OiIxYmpwevxqjLFMjxfKzcZoSJqXlCCrXTYcP5dg+SLKHLKk0yBDcUlTL7Od/buVp6ghVkbZ3fGvhIgjwCJ5EisBqnoU5YELrmfm7uPDl5f5yAqB44338d9l+9pQ3tjJCQnGRL9z6w7WFWs6G6kWJ9H3f+WUNWm5vUpQ6GFeMGZvLEyQS0GBOY6grD3snvLYNdremYtqSnPQYmp2eoDInJwI7Sxqwu7yaR0tl1tBUvtp8iC83FSPb6pDbyC37ZsshRvaOZWxfZfsYq5HadgzBlqGhQJAnMlQZhCPGXgfz71dCXNuhpREalIrQBqN8Ajur9lVr3j81UqC9+/yrS/axr6KJQamK8Vnb7P/O3l9zkMpGJ3fPVIxvq++e53B5sRh0irfWI2N3ebR7TXsY9TouuPNvnHH9Ix227Uk8eO4w7fVrnrMpzLn1sPc1qk8c6w/WIMsy9jA9ggDTBia3urZCsvcn+Ggu2KoPu489mcn9/NF1KTGHET7u9cCmD2DXd1q5J68sa86FlhPPn28sJq+knvvPHsrZw9Na7a67IwzBY8yzP+wiOdrMPXOGKCEapkgwRnJW89d4XH71tFD1srpayfBEQpZlNh6sDZJcbnZ6+GR9ERlxViZmJ2h1FkN6BH96XPkfk0FX0ichgndumKjMOkWlwn2FMPKyw95flNmAJEF1k4sdJfU8+nUel/xrRVjbqoVq756phKfWneDqVkvyK1i+p22jSy3wfcYwZRpdq8+250cuKfkb0TqHosarqYaGmCAIhc8LcI/hw6DQ0N98uIn8ssZ25e5Dsb1YCdsalhZagU8dUG4NNIB6OKqQSq1NGfzKssx/lynn7+5yX55r5R54fhh8eQder8w7qw4wISuBi8d0fA2nxFj4/exBbCqs5cUflTC3ZqcS5nP6kBSizAZ2ljZoJR0SI5XBQlWjE5fHi8sjB9WPiuzVHy/w+cKfO3WMLUNDVVShle2HTqzffGOhcs2NzowLWn79lGy8Mtz94SYKS0v5cb+NR7/eHtTG4fawubBWU1EFZXKk2enhM59XrSU2l+LVainc8cmtk7lmcl/NgO9SErLhngItp7EthqbFcNHoDPolK9dvq6iSEGQmRGiTA6qwTKJmCDpCbuP1yry5ooBhaTE8cI5irKgTVHaXh1d+3svkfolaaKHqEay3u4iyGDDpdVqOYCvhjLbwnNjPjsNBvSYBFntHEzf6wsPe14TsBCoaHByoag7bI9gpci6GmxZ1+XimpzAxwBBsmTYSFpIOvrgNPriC7IAxpzoeb2kIvr2ygKFpMdw4LfuEivBQEYbgMcTrldlwsIbzRqZrAxAALniJtxJ/G2Tgqa8tgaGhvpPwZCw2XlRjo7LRwY1Ts/nLJYoHL7+sgeV7Krl4TAY6nUSkSamz2Kr0hrMZvG4YcZlSTPhoIUnKTFLNAXCH58VricWoJyPOyt6KRs2w2R+m12DjwVom9UvgAp8qXE9XmC2rdxBlNtAnQfG0aaVVXM2kOgqw6pWZWEcLj6Cpo4dy5il4I5JIkuqCrrUKn7co3N9D5fvtpSREmtoMY+sdH8GQXtEsyFNCkTqqLbajpL6Vd/xEo6ZZuT6qfV7rrcX+73p3mS+8OSoZLvwXTLqN9QdrOFjdzBUT+rSb4xTI7dMHcPHoDJ5fmM+CvDItTzMuwsR5o5RZW3VyLcknOlJUY2ulVAmQcvFf+Xvmizy5xh2yRmEoqpocbYr/DEyJItZq5JP1oQ2g7sqmg7UkR5vJaFGWZ3CvaD65dTJDekVjdjdQ5Y7QxBpU1BIHgeqHcyf2ZUJWAn/4ZAvXvr6GWc/9HBQCafd5tVr+5uOyEnjsguFhnwudQqdXcqm8bvC2/ay1GPU8f3kuj52vFKCube74ni9JkjYhpCqexmuGYOjzam9FIyV1dq6bkqUZker44KO1hVQ0OLhrpj83PS3Wwt6KJr7YdIhesVaMBkkJDXV5sIThEcTjhj8nwc/PdNy2BxFrNTJzSApPXDSczQ/Npt+6x2HdG4e1rwm+Oo1r9ldjdx1+KYo2scRAxpiel+vXRcRajQzppYROH1YalSTB+BsA6BehKPImR5u1iZSWdX8LKpsY1zf+6NyPjgHCEDyGFNfasLu8DPSFd2gMv5h1SRdQGVD6yu7yYNBJQSexuYuLXJ9IrC1QQiDGZSVoSbibCmvxymjFcSPNepocntalN7xuOO0emHDz0e/ornlKsdLyvMPeRf/kKPaUN3YqZ0yWZfaUNzIoNVrzeJ3InmNniJqaLamzuYi1Gon05VNooZXDzudPvd/CYYjRFPTAX0eww4eyTod3wGwypMrgyRnf9vsrm7j/8608/k1eh6I+TreXn/MruDA3o90H0hnDUll3oIZvt5TQ/0/zuO+zLZTUta6F5/XKnPX3pVz48vL2j6GbU+wroaEqd36wphCLUUeESU9Vo29AbYmF3KsgNYdNPnXYtkrChEKnk3jy4hEMTo3moS+3YXN5tLDCWUMVL7I6GI8yG5iYncBbKwsor1ciMwINQSkinqvPnEaD3c2FLy/vUCK80eGmsNrGoJSokOsNeh2/mpLN0t2V/ty6E4CiGhvZSZEhBzzjshL4/jenkmpyMiAznYKqpqB7WKPPCxwZkP9kMuj473XjmJPTi5/zK9hT3sirS/Zp13zLEN1jxrbP4PGUsGqNjeqjeJJuObXtfMJARvg8T6pBbNQrQjPNrtBhx2rIaHqsVZvEcri9ON1eXvl5L+P6xjOpnz+X78qJSui00+0l1mrE6PMI2p0erC0VFEMhe2DGA4qK4knGf68bz9yJfYmNMELpFqg+vDSPASlRJESaWFNQjcMdXm5m2JTvhBdGwL7FXbfPHsiXd0xh00NnHP4OfPUGM6QK/jhnMP+8aqyWnhWYxtXkcFNvd5PWjpJ1d0eIxRxD1OThAS0HBx43c6x53ND8LOUNK0mJMuNtriHaFDzY6KoBvjqICWf2osZXmPt4KyCt3ldNrNXI4NRozZugDhiHrfo9/LSXR3yz+Z5tlwKjsUpOeGUqTLwNZvzp2HQ0zpe/9PG1igjBgDNg1sOd2sWAlChW76/yhzpCh6ISe8oVD2JOeoxm6LRlQJ0IVDQ6yJZK+JvxX3g++xIuf1VZ8eFcqD0AwN3VzdzukUldaOFbUxNZn0aCSQ+9RuLyXIfRoNSMc7g9yLIcvkcQ0Cf0JVWq5cLVV4DpGjyT79S2L6qx8d5qpe7X5P6JzBzahsIDSriu0+1lTN+4dj9v1tBU/vHTHn79vpLL+sGaQj7fWMxD5+Zw1UR/Tpw6IdJd2FJUy/kvLWfpH2d0WExbpdHh1nKcqpudVDc5+WpTMeeMSGfDwRr/bGtDKRSuhuxTyS9rICnKHJQfFg4Wo54/zhnMDW8p+V6qKMy0gcncclo/rjslS2t7/zlDOf+l5by5ogAINlgARiy5hWUxO5la8QTbD9UzfP5VcMaj0Lt1SYmP1iriVMPS2y7IPXNoCs8vzOfrzYe4fsqJoc5Y2ehgaBshzgAcXAXORqzR8cgylNbbNU+4ej9rKaATbTHy8twx/M3lYf2BGua+tpp3Vx3ghqnZ2MMUOOlyolIU9cD3LgOT77xO6A+Xval4C1r0v2U5h/aYM7wXry3bHzQOsBh0Wo3Mlqg1CmOtRu3e7vR4WZBXRkmdnacuHhH0LO+fHMVHN0/i8ldXUdvsxGSIxunxYnN5lImPRU/Brm9DfhZwWM+sHsn185T/Pz8DO8JQ5rxlqXJuLH0OKWsq4/rGax7/oLSAT26Ayl2+NxJMvxeGhHH+LP4L7PwanE2KWIzxxBIkOdaYDfojK5/lG8tJn97A7eZo2AlW4jFyY9DYSp2wTY8NrQFwIiA8gseQ0wYls/SPM7QZQQ1JxwT7SsrleDYcqIX877l3yxzGmoPDhrTZwDbka8Nl3OMLufvDTWG1Hf3nBUz9y6Ij+ryuYE1BNeOzEtDpJM09X9PsJIpmkvZ9AV4P9eZeHJKTsOmVkACzyaCIw6gFR48FKcOUgqUpw8BeDxvf6fQuBqREYXd52VvhVwDtKN9PVVOdOjBZGzidyB7BRrubA3Iqz7gvx2aM86+ITlN+09g+lEnJ1BhTcEenc0hOotnqWxeZrAiD6CQsRj1eGVweWbtuTGGEikjDLmSNZQpF3gSwxmFvrKW/VEx6CxVW1bMVioLKJp5bkE9chJFT+ie12Q4UL4EaRpiVGME3d07F7vIGlQMBmLfVn5/YHQrX/nuJMmO+en/4BmpxQOH2miYnC3eU0eT0cP2ULCxGvb9OU/EG+N81UFPA9kP1WqhPZ5k5NFULH47xGSEmg477zhpKWsDDe2TvOEb1juXdVYqRn9Ayt2TIOSScch1Wo57//JwPB5YF16HyUd5g5+VFexidGcep7Xgwc9JjGJMZpxmNJwIVjY728/L2LwWgoc9M5X9AGK1qCEa3lHP3YTHqmdQvkREZsTz+7Q7m55WFrXTZ5aSPgVFXQvJg5Z7i9UDeF+BoXcy9s4zLSuCbO6dy07R+2jKrSR/kZQhEvffHWA1aeSGn20upz3MdpLLrY0J2AneePoA/XzCcGIsRh6+91aiHje+CrU67j7b6O1mUQsPFGtf2dxX4B8p5suIfkP8Dd8/yh+taDDqlPjEoWgLqNpX5SqmCcNj2KTRVKqVOcudCr8MXuROEQdJgGHOtMpaL7QM6I8mlS+grlQYZgod89SLTTmCFduERPIbodFLoWXOdjuhL/s5tW37g9kN1zBmhJAD3MwYPrroiNLTZ6aaqyclXmw/x9yty2/UKqid743FWM6xucrK/sonLxys3W3VgUGtzkSFVKo1O/T2fFQzl/TUHeSQjB9iCxRIBV35wbDtrMMEFLyuvf35GqV3osoEx/NmiHJ8X4dMAAYWaZme7YgSLd1UwICWKjDirlmN2pBMGxxOXx4sXHSu9ORSNn4JmRp3zrNbmT8/9zICUKH57xiBuen4JL00czbkjlfxI1ysrMOp1mkpeWb0dp0cRnggrZyBlCD+O+huvL9vPxpzZ6Bc8yDzTf/hV4lccqlNu/DoJyuvbDut7edEeDDqJH35zamujogU6ncRD5w7j/z7eTLTFyPCMWKYNTKKsIXj/C3f4DcN6u/u4F6BXjbrOZEYU1Sh14zLirFQ3O7WQ3vQ4KxEmvf8h61E8/s1eAztL6/n1jAGH3c/3b5zEQ19uY1xW+4Pcu2cN5FdvKt7DVr/ZmKuJAC6v384Haw7ijU9HV9vaiHth4W5qm53855qxQbXeWiJJErOGpfLX73dR2egIq/xAIBsO1rB4VwW/O2NQx427ALvLQ4PdrYXThiQqGfpO8dXhWxVULF4LDW3DEASljt1nt5/CmMcWsCS/glqbMyw1zi7HFAEXveJ/v+Ft+OpORVHU0o5HNEyGt5gMDlQ3bklgsXp1cs/p9oYUlFORJIn/mz0Y8E8IVjQ4iDHrIDoVhp4PU39zxMdxUjDhJuUvHCS94kmMySDHEsMV4/vw4dpCYqVGeCIVzvkbzHnS3/4f45RzKhxcNug3Ay76V+ePQdB59AY4/0X/e2cT6/eVs+fN7UGTNppHME54BAVHiMWoZ2BKFFuL66jQpwBwhntpUBstLOQIPD2BdeYaOjDw2iv0eyzZXFQLwKjecYBfSry22clsnU/iOzaTlBgzzU4P+WXKrG2XJ2h3ljjfLOH+JZ3abGTvOEZkxFJY7fectExODqTJ4WbN/mpmDFa8D6rKXlsDixMBp9vDc8Z/Mle/sM3zvVbNEfQNLJsd/uN1emSMBh2zhqai10k8O18pzxKON1Bl+qAUXB6ZZbsraRh0Ib9z3cYp/RVp7yvG9yEpykx5gz3kts1ON/O2lnDeyPQgcYz2mNRfUTr7w5nKAC41xkJZnX//sixTWm/XvJLhlhU5Wrg8Xq3UQ1Ubioeh+HidMsExPCOGmianXxjLqNRp0sqA+JQLl+6twyvToVe1PfokRPDG9RM6NLYm9/N/Rlttpw1MwuH2Kh7orf9TxDV85Jc18On6Ii7MzWBs3449KyMz4oAAgZxOcPE/V/Dij7vxdiAu1FWU+s7FlPbO57HXwfXziPFNUAR6BJucoUNDW2LU6xjdN551BTVUNzk1+fbjitln/IU7aO8kVp/SZyjUUivRFoMWFeR0ewJUkNu/p43OjNPue32To+Gmn4QReDRJGQolm8Hj0n6v5GgLzLi/dX1hSww46sPbr6u5UxPKgi7GFInFZGSitBO7y4PHK/P9tlL2VTQhSYT9nO+OCEOwG5GTHsviXRVMemE9AOPty5VQAx+BieKHS+CAQ5VwV7G7PHy45iBuXy6UI0SB++PBlsI6JAlG+GowaR7BZhcX6n2iGUkDOH9UBia9jtd8MvRR7cw8HxPU0I21/+30poNSg8Pg2hOO2XiwFqfHy7SB/jA0i0F/QnsE9ZU7uVi/jMv0i0N6wB1uD5WNDnrFWrS6cIGea7dHKR7eJyGCO2YM4MtNh1i4o6xTNYXGZcUTbTaweFc59XE5fOudRO/EGHY9PodHL8ghJcZMeUNoA2hJfgVNTg8XhVHqQCUjzkrB0+do4YS9YixUNDr8Hl63Ulsyw1eP8HiXB1m5twq3r29VYRqlbo+X+XlKMfmBKdHU2lxaKKjFoMdq0mNTz1uP8t1+srmc/smRQYIYR4tAYZK2vLjqzG+9KUURoirwT/T8bf4uTHod9509NKzPy0pSIkTUWpPhEqhQ2dSJ2oZHwi7fBFvLe1MoVEOwPsAQVJ834dyXx/eNZ1dZA/lljVpe53ElIhGi0zUvdVdjNuqZn1emKQcHUmdzEWnSY/CJygBazp/F2FpRtSVGvU7LUR7EQagp6OruCwJpLIcfH4V9P2v3xbjEVDjtj5A+OritJbYTHsFmf76q4LiQUrOBV01/o6rJwdLdFdz67nr+vWQfiZGmsLQHuisnbs97IBN9dYA8XnjMdbWysNH/YFBrUtWEIVPdFusO1GivW8qgf7K+iHs/28obywsAghQRK9oY8B4LthTV0j85ShtAaB7BJie9pGqco64Gazy9Yi1ce0pfAIx66fjklgSSmqOorw06s9ObqrWpVL7ZUsJ7qw+EzAtTB1uBM1Jmo+6EVpc11CuCMI+6rg3pESyusSHL0Cc+giizgRiLgc82FlHnEyFRi4cD3Da9PxlxVg5UNdMnPvwHqVGvY9qgJBbtKsfu8nCr/itG5j2rJaHHR5iCCjsHol4v/ZNDq0aGQ1yEEY9X1gxc1WBSDRTHcRYDWpBXhtWoJyHSRHVjePek/ZVNeGX422WjSIwyIctQXm/HpNdp+b82zSOo7HPzoWYuGxd+2Ygj5e6ZA+kdb23zwa5eZ8uy7lIW+AbW5Q12fthexnVTstoPnwwgPdaK2aDTohjC5avNh7TXTY5jcx7klyp9HNiGEioAn90Mn92s5WLe+9lW7v5wI16v7M91a6O2YiBzhvfSXncUVn1MyJ4G/7dDkew/Cqhqnje9vY6P1h4MWlde79C8sKpnTwkN9YZdF/CZS0cxbWAS03b+Gb6+uwt7LmiF1wNFa6FmP7ed1p/spEjOqXoTds5r3dYSq2gJdIQs+zyCwhA8niREmnjPeyb7y+u0Z/8p/RO5/5zwJv66K8IQ7EZcNq639nqf7HsQVu3Vkoz7JFgxSW4KK2pCbd4hhdXNfLDG/5AJzN8A/0NmyW5FeMTp9hsdx2rWORTbD9UHCeyYjTrMOGm02bjV9Vukibdo684fpXhgXJ7jL6QBwGl/UBKOXXblZh4m/VrUnHtzRQH3f76NB7/c1soYVA2+wBAhs6Ft8YEl+RVMefonzWjqNnhcyvfksmPyGYKFckpIQ3BvheJB6R1vxaDX8exlo8gvbeTSV1ZQXGvD5ZG1XECLUc99Zw8BCFvZUmX64BTK6h1sPFjDEN1B0ornK310O4iLMLXplVPDrqM7CINrD3XiQ82hU/9rhuBxFgNauruCyf0TSYg0hX1/2H5IGfQMz4jVjuNQnV07dyNMen8YtC801ImBUweGXzbiSPntGYNYds/pba6PjzBi1Evsd8aCzgDV+8HtpMZXB25YstlfkFuWtXO61Z/bgU4nMbFfIot2lndK/Gd7sX/w2Og4NtfxzrIGMhMiWuf4uR3K8XhcirJmQj8iTQZ0knL4X246xIs/7aa41kZCpCmschADU6O1EOmwi6Afbbwef11Br1c5Zm/XGOGBk5b3fLqVBXll/Pr9DWwrrqO41qbVbTTqlckQp1v1CHbw3fjOvz7ROt65djTGc/6qhCgKjh5RqaA3QU0Bw1PMLLp7ItbVL8LBFaHbGsMIKZRluPYbGHVF1/dXEDb6IXP4Iu5a9pfV09zchBknz18yhIuGJ/nv657jq6lxOAixmG5E4Iz3Q1efBR89A2+dC5IOHq7BbNDzXMTbTFm7Cc7cC3XFULFDSSAOo7CoOov8+9mDeHZ+PjXNTl5etAePV+aumQO1nDJ1cOsM8Ai2ZVQcbWqanJTW2xma5g9HMht0rDHfzmeeaTzOdRjT/epZwzOUXI6zAmaUjzur/gkLHoT7isEcnocou4VHUOXdVQe5akLfIFl69bcxB9SIas8jeNPb63C4vewsrWdiv8Rwj+LoUrYdXp2ueYEGAs2ymUpigs5DUEJAn5y3g14xFk10YXZOL9781XhueXs9176+Bqfbqw2aAM4Zkcau0xuYMSSlU92a7su7nLe1lFPkFCxNK5Skf+C0zAdZ1jwy5HaNdjcGnXREearqgFv1CKrGlmpAHUmu8JFysKqZgqpmrjsli882FvuVPjsgr6Qek0FHv+RIynyqh6V1Nq3mZ5BqqO9cSIyJCrr+jzeSJNE/OYo3Vh7kd/EZGFe8CPWHaJqgCBmd8e1kKP8VnPmEojL5dJ+2d3bBy5yZM437P9/GztKG9kszBLDtkD+crPEoeQT3VzZR0eBggi9SJb+0oXVY6IqXYL7PsJj0a00IQ4fiUVcnK15YuBvwC2GFw62n9SfGamROTje4lzub4Z0LwW2HW5ZA0Rp4/xcw4jJFAOQIUe8TcRFGaptd3PLOOryyohIsy2jfgSRJmAw6HB5FLKZDI/mL22Hz+8rrvlPh+nbKRgi6Bp1OUZlc+ZLypxLXt3Xbs/4S/j6zp3VN/wRHxEUph7ht7+1wEK6yAC+2aHDOc1ox+hMFYQh2M564aDg/7Sin35AxcP4/FLngAANxb/Lp7K3ux90AeV/CD/fBPQVgje9w36v2VTGkVzTnjkzn2fn53PLOem3dDVOztRwO1fPgCqOo99Fmpy8caUivGGWmpWY/Ulwm/5IvZas3Q5FlDkCSJHb+eQ6GdmruHXP6ngIzH1ZmCb+7RzF6rvum3U2yEhVDcERGLFt9ghwzh6Tw065y5ueVBhmCaoigJaBmjtmgD+kxqmx0+FXkulMh6+r9YLDC5F+DOYa8kgae3aQDpFa5jg9/uZ0DVU28f9OkIO/EKf2TuHV6f575YZcirBAgDBOootcZUqItDE2LYeW+KvZwBpeeMpS0aBMs/Rv9HTuosw0NWeOx0eEmymI4onBGVVSjsYVHUBXPOJ4eQVXAaUJ2It9tK203hzWQrUV1DE6NxqjXaQZtSa1dKeCM4hFssLvZUlTLUKcdIzBtSPoxCwsNl9+eMYhb3lnP533u5Re9SiF5iCZWdCj3N2QOnKQ0NJiVaz8Uy56HorXMnn4Zj32dxwsL8/n31a1rErbE7vKwq7SBcX3jWXegRjsvupoZzy4G0GrkHaq1MXVgC8GewtWKV2Pira3CJu87awifbCjivRsn8djXeXy6oYi4TiiA6nUSV08KMXg+HpgiIHOyv2ZkbB/Fszb2+i7ZvTqpc+fpA1m2u4JFuyq4eHQGvWIt/HPxXib390/YmdUC8S6PNoHSJoWroddIyLnIX+JAcPQ5/x/Kd6+iNymTBi2RZSWn0GBqfwznaIBd30PmRH+tYsFxYdLoXP6y0+eZleAPswcT9PgPUVe2uyMMwW7G3Il9mTvR9/Abc02r9dZhc3hy3k6ubLCTYvGFS9rrtJuIxytjd3lCSnRvLa7jrOFpQQ/jWUNTWLijnK3FddqAU/UIujzdwRBUQqCG9IpWCom/NA4ufIX/Gc+n2ukkMcSD8LjnBrak9zj/zcHZqIT7doDFqOen/zuNSLOBiU/+CEB2UiRD62KYv72MaydnaeUkVIMgyCNo0IUcnH+/rVR7XRqgSHncGXqu8ifLIEnsWF/ETxs2A+AIOA9/2lnGpxuKuOv0AUwK4c3s7RNSabC7u0w1duqARHaU1FNBPEy5BGKtsP0zEl1leGUlDLRlGYdGu/uIxYrU7Ru1CRrl9/QbgscvR1CdNFJD/cJRMLW7PKw/WKMN7tXzt8HhJtWnhDprWCr/XLyXlxft4azKA1wIzB7Ru409Hj/OzOlFdlIk75fHcfHFV2DQ62jarlxbDWNuhXTfvdlghmm/C72TvC+htpDkaDNzhvdibZi1GPNK6nF7ZU4ZkMS6AzWtRL+OBl6vTLPL07oGYF2hkgsd4hivm5LNdVOyAXj2spGcmZPaKvf5hOKMR+HASni6L1z5IQSkJBwpauHrXjEWLhnbm0W7KvjF+D5M6pfIb2YNCspXNRl0Wo6gxdjOPc7rhboipZ9tnYOCo0PWFOWvI2Qv/G0QnHYvzLiv7Xb1h+CzG+HS14UheJwZPTyHxzKuYePBWqLMBu45tfMaEN0NkSN4gjHeVwdrXUGNv56RL9l42e5Kch+bz4xnF7fKN5FlmXqbi8RIE3ERJv45dwwLf3cqf75wOKCUlVAHnJWNTm57d32L0NDjM+jML2skLsKoiC+se11ZGNtbC4npdkZfR5hjw5aL7pccFWS0x0UYOXdUGnkl9Ux86keqfB49LTQ0wCPYLzmS7YfqWknLf7+tlOykSMwGXZuKl8ccrxeWvaC89nl+As+9wBDIlxftpV9SJHecPpBQZATU8onpohp7F4/xGyIp0b58jthMMquWkkA96wqqW11vDY6uMwRb5QhGHX+PoNqXSLOeCJM+rNDQbcV1ON1eTRQrIaAsgGq0j8mM544ZA/hhexnPlY/h0djHmDzg2OUHdobBqdFsKqzlgS+2AWhlLyJNYf7u42/UvAS9462UNfgVYtvj3VVK/uwUn5foaHgEA8uiqPlostyiBmDtQTi0MSxPkyRJzM7pxYCU7hPi22kaSuGjX4K9Vim6XrkHnhkA3xy5kfXrGQP47axBzM5J5ZwRaXz/m2naRFdL0SKTQYfdFUZoaP53ivKuMBy6Lzo9nPd3GDyn/Xbx2XDHOhgw69j0S9AumT6tgUjzCTb+bANhCJ5g5KTHYjHqWLO/mmadMrv6yfLtADwxbwcNdjflDY5WQjBOjxev7JdHP3tEGgNSokmNtmAy6CisbqbR4cak16HXSazeXx00AD/aOYIVDQ5eX7a/leHSYHcRH2FSQsMKfHUVe43QZpZVKf0TBkus4hUMM6E4MLwx1mrkllP7c9fpA3C6vTy3IB9QPENGvYQ+ID7hlP5J1DS72B1QN1KWZVbtq2LmkBSiLYagcgvHleq9sORZKPKHKgd6owM9X2X1dkb1iWtT0THwfAhHnTAchvTyD16177jPeAAm6fK44a11nPH8EpocbrYW1SHLMo129xEJxYDfEFSFZ2p9nvpkX327Y6kaWm93sXJvlfZe7VOkyYClnRpogeSV+IViQLkXqQZg4ITO7TP6k5kQQVSvgdx75x3dLixU5aHzhmEx6thUWAv4PbYR4Q4OxlwNuVcCkBZrxeOV26xLqbK5sJbPNhSTFmvR8oibj8J5sGhnufa6zuYKMPwDzum8r5T/2ad2+ed3S7Z/Ac2Vyuv4bIhJg6aKTteJDcWI3rHcPWsgRr1SDmJIr7ZzKfsnR7G5qLZjsZgdXyv/s6Yecf8ER5Gx17UuK9ESgwmSBirjB8FxRzUETzhHRBsIQ/AEw2TQMbpPPG+uKGCj71n9w4Z8bE4PhdXNWhHk0vrgAYU6UGs5g6jTSfSJt7J6fzVVTU76JUdy22n9qW12BnkcjrZH8Pcfb+axb/K03CMVpzugCHhtoZKTYY3T5MWPt3Jip1Fv5GF6BQMHwb1ireh1EnfNHEhqjJn3Vh9k9b4qHG5vkDcQILeP8jnfbSvRljncXtxemXhfOF+4eV1dgdcr887KAipD5SVGJMJZT0OkP/8ocBIi8HVds6tVGGYgmseOI1PsDESSJH4zayB3nj7Av/CUu+GBchoHnAcoHvUn5+3gvJeW8cWmYqqbnMQdYSFstf9qzbiSWhs6CTITlYfQsTz3H/h8G1f+ZxUHfPXumhxuIkx6dDopWOmzHfZXNhFh0pMW6/+N1DzBwBC3CJOBH35zKl9fEoV574IuPpKuIz3OytWT+rKztIH9lU2d9wjKMix+GnZ+Sy9feYCy+va99G+tLMBq1PPtXdO0QUhnJgTeWXWA91Yf6LDdwh3BhqA6aRTk5a4rBFM0DL8k7M8/oVGLeY+4TBmYmyJh8h1K+GUnFF+PlBlDUthT3si+iibi2ot6qC1U8hpTTmxp+x5P5W4o39F+my/vgA/nHpv+CDpEVR8PVyStuyMMwRMQVcnwn6uUh/VAqYh/Ld5Do8PN+CwlV7CspSHoGyxEhJDuPn1ICpsKa1mSX8Gg1GgSIk14ZYIG7UfbENzuU8E7sHkJlOVpy7OaNjNO3gp7FoKtGuKUMKTZwxRDcFL20S8y3aWo4bz1h9pvFwLVM2XQ61j0++mkx1p4adEeHG5Pq3y47KQoTHodLyzcrf12Wi6hQeer13aMbmIlW1i76Avmff0/vvnyI2UGPfCvbDuM/iXE+4UhAst/qIag2+OlweFuV3Ai0CvaVaGhAL+ZNShYbEanA72Jt2Z5WXf3CCQJ3lutlGb5x097KK61kR5g8BwOcREm+iRYWbNfKRdTXGsnNcZChGoAHENDUM3VXbxLKS3T5HBr3qEIk0EzgtrD4fYSYdIrkxuyDEXrOc24k8m67eS6twadE1a9jH7jm/DVnUftmLqCqb6yFm+tKNDUO8MudyBJsOFtKFhGgtFFjrS/zXIkoBhk87aWcOHoDBIiTZo4VGfOgwe/2Mb9n28LXuhxK7lvvu/euXsxzt2LuTBuL5N123Ec2q4NeDLqNvhznGsPKvfjbuqx7XKcyiQI5gBvXWwfcNtg17zge1qzL9+z0ecxrCvusm6c7lM+trk8JEa1mGxyO5X7KSi/jxCI6f58dadSf3P/EihaF3pSofag4n0WdAtULYIjTf/oLvSMozjJuGlaP55bkM+mKgNY4GbzAnJ/uhBQitJ/t620lSGoPshD1XC6Z84QDlY388P2Ms7M6YXbVyspcB/2Tg46q5ucfLethF+M66MV9m6LQ7U2Kn0FqU/Z/hDYRsEv3gbg7vKHiJQb4V1f46RBACRHm1l+7+lamNwJQ3Sa8n/lS3DRK2FtctXETN5ffTAo/y3CZGBsVgKbC2tJjbG0ClHQ6yTuPWsIj32Tx4aDNZzSP0kzqMxGPVaT4YhCymRZ5rWl+zkzp5fmoQpJ1V749zQmAh+YgN2+v6DOmuDB4IdcoBfwn4v3Emk2kO2rrdieRxD8YgpdFRraJuteR1rxD5Jm/InZg/uQuvsDNnkHsKWiPwBpcUcetjxzSCrvrT7AtuI6Pt1QxJjMOAx6HQaddEzFYlQDZXd5Aw63R1FF9T0ELUalZmUo9dRA3B4vBp3vXnBgObx5Dk8DmIBS4K2AxvcWKgIKE287GofTZZw2KJncPnF8tLaQi8dkEG02tPsdtOI3W0GnJ2XjfL4138+ishEw6LSQTT/fUITd5WXuRCXny6iX0EldMEm39X/whf97NgFv6QG78qZs/Ub2z1Bk8EcvvxXs18CcpxRPoGocnQwkK88e+gX8Pkm+XOUPrwpue/UX0H8GHFgGPz2ueA7HdY3CaHZSJFmJERRU+SOANNb9F9a/CbethFt+1kqwCLox0Wmw/TN4S4ku4dpvWpeKcDWDKbzSU4Kjj6rqfunY7idkdjgIQ/AERKeTyEyIYHe5l3XScEaZSrG69MRHGLkgN4NHvs6jpjn4AdBWaCgoHqZ/zR1LdbOTpCgzS/KVQXmgqmSg92h3WQNbiuq4eExGyPwdm9PDr95cy6bCWrwyHUqAf7PlEBfrlrBJHsAbKfdwz3R/vPyTcY9g1ss8dO4wMFgg3S9RntEFA+1jTvZpShFqly3sTR6/YDgPnTus1QCzd7yV77aWYHO29ggCXDauN0/M28GKPVWc0j/JX3her8Nq1GHvwCNoc3rIL2tgVJ+4VutK6+08MW8Hbyzfz4r7Zra9E7cDBpzBX4py2FAXzeycVG6Ymt2iUetzyOXxopMUARyby8MzP+zS1nUkQT8xO4Gluysx6I+yp2Lo+ZA8GJIG8cLAGKx/mUNh7m+5ds9I9lU2dWiwhsOvpmTz9soCfv3+BgDOH5UOKF7dlmU1jhYVDQ4tZPHdVQc5UNWMQSdpifIxvhDWA9XNmrEeCpdH9v8mlUp+68vJD7OkyMuVEzO5MDfd39gYoXjPY9KOwhF1Lbl94thUWMt7qw8yMKWTgzVf/dcovXItuutK22y69kANmQkRWo6lJEk+Izw8Q7De3oa3sTIfdEa4+nOQJL7Zcoh3Vh7ksQtzeOiL7dw0YBySLzS0YPabDOjXT9luxKVhfW6PYcAsuHszxGf5l/WbATf+pHgFA0nNUf5nTYPzX4I+E7u0KzOGpPDG8gISWxqCyUMgY5wSsRBxgkXLnKyc+7xSd665Gv53NVTtDmEI2iCyczVwBUeP9Dgrq/80k5ToE8wR0QbCEDxByUqKZHd5IztNOYyzNrH6NzORUFzVRr1EdVPwQ18NDf1/9u47PI7qauDw727RqvdiWcVy773b2BgMxvQSeggQIAQSAiTABwQIBEICISEJIYEQOqH33gw21R333mRblq3e65b7/TG7K8lWtVba1e55n0ePtLOzs8caS5oz995zWhsRBCO59Nxd9Eyp85SEt5qVt1jA3pIaTvybsTi+weHiwqlZLRKUvSU1/Oixpd5ppct3l3SYCC7fvIenwh7nuegr+cRxfos1DetNI0mKCoOcaZ36vgQ8k8lYGF5f0fG+3pcowk1HnrfMhAgcLs2+0tpWi6fEhFsZlxnHd7uKuZnhLdpMRIZZOixMcenTy1mZW8bme08i8rB1T3uKjJGA/I5aUKSNgkve4Nm7PqFOO0lW6VyZM6n912AkgmEWEx9cfwxJUWHsKKzmvMeXAnS49u5vF0zgP1/tYlJ2x701uyU6xfgAIgCskWRF2Pn013N5bdV+zpqQ0e23yE6KZNbgZL7dWYzZpLhwmjEaZLO23ieyJ2zKb/l/9ZsdxcRHWhnjbpFw+vj+PPDxVl5btZ9bF45o8zh252HrfU0WKgacyPL9+1iYMgpyDr9B0DfcddooXlm5j3q766hHgSOSjDvLztqyNveprneQcNhNEM9obGfsLa5t480TYNA878Xn16vWsSsqkeTRc1j+touTLQNIcP/+VzkzISmERyaaJ4Fg/D7PnNz2/lHJxhroujJjRMfSvXXDHgtG9eOZ73LJOrxY2uDjjA/Rd0TEGwV9XE7jJnH5/iP3sdc2rVEVASEttntLPwKJrBHso8a67wq/GPkTuGEtseFWYsKtKKVIiAzzFpjw8IzotbZG8HCefSrq7FhMigFJUby15gBV9Xa2HGwqcvLbtzfw69fWeh/XNjr4+Qurqbc7+dfFk5g7LIXckvanDjmcLqbkvwhAfWTGEf3IWhSLCRYn/N5oRtxNSVFG4n6woq7N6lWzByezZl85q/eWNU0N7eQawZW5xkVpaz3i7v+og8XtYKx1eOXHOJ0u742IzvSbA+Mmg9VsYnBKNPGRYYzPjPc+Nzi5/QvR5Ggbd5w6qs3Koj0mPA7qK7CaTfx4+oA2b7p01Xh34Z+M+AjveY6wmo8Y9e8pm/KNn/kLpjStNyqvtTM204grLTacSQMS+HZHcbvHcTQfEcw5Bo69jetPHMmVxwzk7IndT5r9xWxS3hYj/WKP7g6xLSoeAGdd2zeImq/L9L7OYur0iOCGA03HbvGa2TfAJW94H24vqGZoarT3hmBFncM7Nbjd4iSidTsXwZ8Hwmfd/53vMXNwEp/9ei7Tmq+RL90DL13Qq4VrhA+ZzBDbH759GOyH3WBtrIWwdpZgCNENAXWFrZTKUkotVkptUUptUkrd4N6eqJT6XCm1w/25h2/1B76J2fGAMU3zcAmRYUdccHvWCHam3K1n+mhFnR2r2cRfzhtPaU0jT3y92ztd9M1rZwJGbzAw1ozd/Po6thdU8a8fT+LUcekMSo5i44FK7v9wc+tvBOwurmGkNooPFKTMYFtBFbnFTcljo3tkKKjkzPa2H+gOz9TD4urGNhN8T3XV577P9Y4ghVlMHVYNbV60ouyw0eXKeru3FYC1vemX9eWw9QMa1r7m3VTeTjGM5moO68PX/P9AZqC2DHEngr42a7BRTbWq2dS+6YOM6a8OZ8+PCq7PK2dAUiQPnjuOrfc19buaP6JpqtL4zDi2F1Qd0f6lOXvzNYJD5sOxtxBts3DXaaO6XWHV334+dxCnjkvn/GbJcpe4qwnruvI2d6luJREMt5o7vX57fbOKzN5pohV5sOcb74Wn1pqdhdUMS4vGajYRbbNQXtdIea2xvy8LMIWMbONvJYc2tr9fFw1Li2m5NGPfMtj+CZTt8en7iF7k+b9SsrPldnudMV1eiB4QaFfYDuAmrfVIYAbwS6XUKOA24Aut9VDgC/fjkOa5E3hK3F548fwW0wkSoqyUHJYI1tmNqT2HT/FrjSepKK+zYzUrJmTFc/r4/vz3m92sP1CBxaSYmJXAFbMHcrCiHq01j3yxk482HOKmBcM5dpgxXe7SmcaU0I82tL3uZcvBSjJUMVUDT+aUqcaU0EVbCrzPN7bSGqHPK9oO2z7p9mGar0Fr67yOyYhjxqBE8svrvGXmbRZ3E/B2RhKaTwc8fORp5Z5StIZjhiRjd+oWhV1asMXCL1dS0W+Wd1NnRy+qW2nI/vwV07jn9CPXSgYMW2yPJILTByZyzJBkHvzROO+240ekUlFn947W9RSXS7Myt4zJA4x7b+FWM5/9ei7rfreAKTlNoxEDkqJocLgoaGe6sd2lsVpMkL8WFt0DNe2PIPYlA5Ki+NfFk1p8T7okLBoXirqqtqeG1jQe+TPRlRHBdXlN/ze9fWa3fgjPnQYNxg3FXUU1VDc4GO7uYxcXYaWizk55rd297CDQLhn6AFs0jLvAaLfRkzzHjwn8dbWiDfNuh/m/O3J9p71GEkHRYwJqjaDW+iBw0P11lVJqC5ABnAnMc+/2HLAEuNUPIQYMm8XM+9cdQ0b5KvjuZeOO0c4vIH8NZ4VHctvmAWzOr2RUf+MPelW98Ye/RW+12lLY8DpM/7nxePN7UFtC5LhLAThbfc1gUyV8vYHfDRrAJxujeOuHA/SPC8dkUvSPD6e20UllnYOXVhi9qZoXAhmUEs0v5g3mP1/vxunSLUr7s+oZqC0hbnsRWaoQa+pAJg9IID7Syu5mI4INjiAcEVz7P1j2ONxVaFwU71zU+n7DT24qOtCKuMjmiWDbyXL/OKNPZKOzaWpolM1Cdb3D6MvXSvGVjQfaTgS/31VCmMXEnKHG2rWaBgdhh699KdpmNDSe8QsqS40L1ZhwS5ujkGv3l1NVb2eOuxx/dYOD6MP6AM4dlsJc902GgBQeBzs/N0q4+2gtEBjFnP53VctiE54bQct2l7RazMdXthdWUVrTyMxBSd5tw9JijtjPU0Vt66Eq0uMijBsdBS1HQE4t388ntoVQuBe+/2fAVwTtVSYTjaYIplQvabP6ak2D01ugx6OzxWI8hZ/GpZiYWvo+MSvXQuZgnKPOxpw81NvD89NNxk07T4uC9LhwvtpWRGZipE+KH4WsuCyoPABfP4S3ONaA2TBgpu/eo3yfUVBE1pL1XYkDYc5Nxt/O7Z/AlCvAaQeXQxJB0WMCKhFsTimVA0wElgNp7iQRrfVBpVSr5ZOUUlcDVwNkZ2f3UqT+MzYzDjLnwxh31cZVT8HyxznfZOUOnubvi7bzxKVTgDYSwXUvw6e/hcmXg8VmJIXFOwiffDlKwcWWL5ni2g5fQooyc+n0xTz1fR7J7kpJKe7PRdX12J2aS2ZkHzH1ND0+AqdLU1TVQL/mfdWW/weKtjAPcCmFKXsaKMWg5KiWU0Nb6ZHX5039GYw511jLcWA1fHlf6/vlrYKLX2nzMLHNzuXhF4jN9Y+P4FBlvXd6cJjFxGnj0nlsyS5eW7Wfn80ddMRrNh6oJNxqot7uoqzZ6LLTpflk4yFmDkoiwd0MvLrB4f3a65u/wvpXYcoVeNpRpkTbjhipBmM62ln/+g6AbX9YiM1ipqre4bOG8L3GPb2PfUtblpjvAakx4QxOieKvn23nxzMG9Fg/o6W7SgBjTVJ7Jg2IJzEqjDdW5XHcsBR480porG6xzwXA8pTZMOFiY4REBdnPdTeZTYqBroPsLywhq1/yEc+3PjW0c9VjNx+sxOnSXJiwnYurXoSVYM+fztCXY/jLeeM51z3FcNnuEkb0i/H+rv7TOWO54rmVrNtfzuj+se29hWhPpnspwJd/aNqWOgp+sdR371Gx39tnV/RxG980+kFOucL4PZk1o6l9iRA+FpB/iZVS0cCbwI1a607PfdJaP6G1nqK1npKSEsAjBz1lwf1w6sOYXHYuHWNjZW6pd81OZb2dMIup5TTLsr3GXSaz+yL+3Kfhmm9QShFpNXNh452cmfA2nPZ30E5+NTmSnKRIfjHP6JPmmY5Y1+hyF3U5MhlJd1dWOryvIdd8Q8VN+UxwvchdY7+E0WcDkBhlo6y2aS1UUK4RjM+C9HFGI+bJl8OdRUd+DDvZuMPbjmibxTvK2t6U35QYG06XptB9DmwWM6P7xzEyPZYPNhxEt1JcoLCq3jvy03wK6dr9ZRwor+OcSRne5KO6oZVm4rWlkDYGIhK8NyGSo23eojHNrd7bNB1uzb5ywFgP1+N9AH3tmF8bn+vant7nSyeN7kej08VHGw722Hss3VVCVmIEmQnt342ODLMwZ2gyP+wrM859Y7Xx+6jZ/+lzk9+lyOa+QWcyh04j8k46OO23AGzcvddbddnD7jR+x0Yf9nMeYTVT1drP32E86wNHJhg/6z+c9RV/Tf8rAIs2N03F35RfyYRmI8xD02J495fHcOywFKYMCPml+Udv+EK4s7Dp5+Enb8Nxv/Xte5TvlwbyweKcJ+Ea4+YoJjP89CMYdaZ/YxJBK+CusJVSVowk8EWt9VvuzQVKqXT38+lAob/iC2hmi7e89Yn9aimrtfP9rhIcTheVdY4jL6yLtkDCwKYLMrPV+AAiwiw4sGCzRXiPGV+fx5JbjmPhGGMNQrjV+O9T73AaiWArCZvnDnZNY7OLla//AruX8NGWEsobFRfNGOx9KjbCQqW7oIjWOjirhjZnMhvTCA//iM82EsF2KsAppbx929qbGuoZrTvkTQSN7+fF07JYt7+cZ77LPeI1VfUOo20HLZu7f7m1ELNJMW94qrcq5sn/+ObIZLCh0iibrpQ3EUyJsdHocOFsVlCkttHB3e9t8j7eX2qUuG9tjWDAi0o2pnvZjpw62RNuOWk4KTFNfT97wg/7ypmW0/5ooMfYjDgOVtRTnm/0CCQhp8X/6Xptxhps6319KHn2ZYxpeIpr3zvItPsXUV7byPn/Wcr/vbGOg+XGz278YSPvI9Nj2V5Q1aKQUGvW51WQGmMj2Wb8LNeao3hvg/FnNKVZL6zaRscRU0ATo8J47opp/P7MMd3+N4Y0s7Xp52Hw8TB4vu8qfLpcULpLRgSDhdnScnlBK+2jhPCVgLrCVkYJrKeALVrrh5s99R5wmfvry4B3ezu2PiPRWKM3Y9sDxEVYueSp5Yy6+1NeXrGvxVRCCrfCnq8hpl+rh/EkFlE2s/eYfHRLi3081UVrG51tjtx5koUW05e+/yfsXsJ3O4tJjwtvMeUoLsLqTQQdLo1LE3wjgp0xbAHM/KXRW6gds9xT9sztFFDx9B476K746vl+njclizCzifs+3Nxi+icYI8jxkWFYTKpFv7ovtxYxeUACcRFWspqNEn2wLr/lm9ZXeKdKetYY9o83Roc9je09lWY3H6zkPz8xenE98fVu/vb5dspq7EesEQx4Mf2MO7dD5vfK2ymlvOs0ne1U6+yOyjp7i0ShPYNSjJsSls9uNzYc1nPN4dRYArXQTwCIjIqhWkcACpc2irus2FPKa6vymPvQYoAjGtYfMzQZp0uzbHdpu8feXlDFyPRYrNr4HVCnbVS6b9CUN7vxVm93Bd9U/EC1/DGjaJIvfP8P4/PhfQ6FEKIDgfYbfzbwE+B4pdRa98cpwAPAiUqpHcCJ7seiNYmDICEHU30Fp44zRu48IzrNi7B4CzlMvarVw3hGkSJt7lHGxMFHVET0rAf03I1u7QLCM2rYYkrgrblwwu8prGxgQFJkixLYseFWqhocOF26qQF6KF6YDDkBjrvduDPYDs/0zf2ldW3uk+Auze9p/eH5foZbzTx68US0hjX7W05nrKwz1ujZLKYWI4L7Smq8jcSHpEaz8o4TiAozc9tbGzj1kW9YvNU9WN8sESypNhLB9DijiIGnYMyuomo+2nCIG+YP5aTR/UiOtrGjsJpHvtxBRkKEt/qsaNvMQUmU19rZU1zd8c5d5HC6aHS6OtV7FCA70bgxsGTqE3DOf48odNTodBlVQ0XrKvN5JPENhitjSrhnpHdysymZhxfqmTwggXCrie92tl+Btc7uJDrcQpizHqdW1DpN3lF8T89ZbzGpTrQYEj6we4lR5M0XirYZn8dd4JvjCSFCRkDdctdaf4u3pNYReuc2ezAYdyF89SBXzOjPdzuL+fOPxnHBE8taVlz0rD9ro6jFsUOTWbe/HKfTPdIw/iJY/Aej35TVGNkJb9ZvEFpP2Dyjhi0q2ykFZgtltY0MTml5h9vTp6qq3u5NQA4vkBAy1r9u9OKb9rM2d/GMCHr6SrYm0Z3U55UZFx3Nv59zhqYQZjHx1bYijh+RBhgjA541emGHJYKNTpc3uQdjWtknN87lnTUHePOHPK54biVvXTuLifWV3kSwtKaR+Eird6qn56bAoQpjHZSnIuXzV0yj3uFkVHpsp/pdBqQnjjNGBI+/s1febmS6MZq+9VAVQ1J9OyXVsza0s4mgZx3h9nINC84/4nmHU2OVEcG2NVRzmv0Tpp55MucuieCpb41+cL85cRg57iJaiYdNDbVZzEwbmMQ3O9qfHmx3GlPsLa566rBR2mwdtuf3d0jfePOHy9733bEyJhszEnppWroQIniE6BV2kIvPAjRDbBV8dctxsOoZdk5cgv3sp43nv/krrH4OIhIhLKrVQ0wflARf7mS3Z6Rh6IlGbxvtgk/vAGsE4RN/A8CkNXfxlHUflF0JtKxA6bmg944Ibnobvn8UTvkzZbV2EqJarkfxTF8tr7Xjcq+faK8iZlDb8p6RsE/7Gax71agkdphBwPZRLqy7TLALOOc/ENGyqENytA2LSZFXVovFpFpc6EWEmZk7NIUlzdaZ1TQ6cWmjwmzzRNDp0tid+oipulmJkfxq/lAun53D5PsWsXrpEibaa9hdZWaAS1Nc3UBiVBjhYS1vChRVGyOUnqmHo4KhKmHGJGMEvbYU3r6m9X2s4bDwQYjtfr+vIanRmE2KbYeqOG1c+/vuLqqm3u464vvc4HBiNZmOaFlQ2+BJBNv4M+F0wIe/hqoCmH8X4f3G8rO0bcxc8Q8Y/3dIG9Vid4fTJX3o2pMyDNMdB0l3OXlt9VlsraminGgyY2eSER9BRnzrbQHmDEnm/o+2cLCizjvqfjjPWmuLq54abN5RemiWCNplRLDX/fAC7PoCTvkrRCXBd/+A3O/af40lDC74n/H1d/+Akl1wxiM9H6sQIihJIhiMcuZA9kyIzTAeN1RhqSvB4rmzX19hJAtjftTmITzT/7x3oPtPMD4A6srBUe8d7bPUlzLTtJnSA29izOxt4k0EPf3jdn0JB1ahbXGU1xYQH9nyDrfnIvWTTYc4ZohRQj2qnYqYQe1HTzZVdG2shuqCVndr8R3U2lj/CZA6wnjeYmJIajRbD1URE25pMRUXYHBKFF/vKEJrjVLKu0YzNsKKzWL2rulr9I4YtH6hGBNuZWxmHOXr3wQr3Lo6jnVrP6HR4WLGoMQWa0oBiquMi9HkTq5B6xNONSoxUlPc+vlyOYxp2UNPgok/7vbbhVvNDEyOYuuhqg73Pf6vXwGQ+8Cp3m3/XrKTP3+yjRtPGMqNJ7QsT17rLvDU5ohgyU744Xmj4JTTOJfTBvfDsqqM3WUNDEpruXujU2ORRLBTMiyVYC0kw7UGGvcAbTeqP2ao8Xvy6+1FXDC19bZJnmJeeuB8nlxtp7LGGI2Pj7RS454i6vk5lxHBXlRXatwcHXUWjD4L6ivb/D3vZWnWhqm+EmpLejJCIUSQC9Er7CCXMACu+KTp8ezrjQ+PE+/t8BBxkVaev2Kad+pZC2f9C4Bw9wXE09l/4sSS65hUd2QZe8/Fv7fgSH0FJA+nOnoADtc24g+rUDe6fxzzhqfwzy92MCzNmDba56pH+oqlWYI09UrjozOeXgjJQ+HCF72bRvWPZeuhKqJauahPiw2n0eGivNZOQlSYd7QgMSrMGBF0rx1q7MTUsd+fMZoP35/B23URlOkpDMC4UP3JjAHegiZfbStiXGY8RdUN2CwmYoLx/EYlw8+/OnK7oxH+kGr0/PKR4f1i+HD9QTbnV7Y5qrqjoClR9CT8H284yJ8/MdYWLd5W1EoiaCQGEW0lgp5/w9n/MaamAROP/xHTl8Vz1Z5wbh/RcneHy4XVLFNDO2Qyw8+/IjlvHTw5Fyr2QebkNncf0S+GAUmR3PrmBo4ZmtLqyKHdqbGaTaiRp/Efp5UT3Ddh0mLC2V9mVOqVqaF+MOky+Px3xs+S1jD/LuOjs7qyrxBCtEJ+44s2zR2W0m7FQM9oX2WdnQM6mfjKrdBY22Ifq1lhUs1GBN1rx4qqjDvSSdFHHv9Xxw+lptHJG6vzgBBeI3i0Tnv4iB5Vo9wJfWvfyzR3r0dPewlPD7PkaBth5qapoZ4Rg/aquI7JiOPWa67i7F//k0W/OZbPf3Msd58+mkEp0QxNi+GEkak8+e0equrtFFc1kBxtO2KEMqhZwiC2/xGFl7rj3EmZAKza23blyE83HfJ+XVjVwMGKOm57awPjs+L5yYwBbD1YeUQ/SU8i2OaI4I7Pjc/NStYnR9uYPyKVF5buZV9Jy98FDncyIjrHljTA+GL7Z+3up5Ti53ONFjxLtrXeWckzImjb+zUx1FLk/hlPiwunttGJy6W9U7b77PrcvigiHsJiYO1L8KcsY4RdCCF6kfxVFkfNbFKEmU1U1tvZqd3TUFc93WIfpRQRVnPTGsH6CgiPZa+7X9yApCMbVU/KjicnKZKPNhgXr5IIdlHOMUdUbBztnuob2cr3MjXWSMY9ybnnIjEl2kaYxeQdKej0iEHVIahpfbrSDfOHUVFn5++LdlBU3dDp1gRB5Yb1sPBPPjvcvOEp2Cwmbw/G1ngKBQEcKK/j9+9txu508fcLJpCZEEGDw+VN/Dyapoa28fPn+VmPbtmC5u4zRmNWit+8trZFW4tGpwuLjAh2XkS88XndSx22kbloWhbxkVbufGej94aNh9aaRqeLFHs+5hfP5pWwP5Dn/r+S4/79W+9wyoigv0TEQ+FmYx1+TPfXDQshRFfIb3zRLbERFvaW1PKC80RjQ+nuI/aJCDM3VQ1tMEYEc92tLAYkHpkIKqX4+bFNTeZDtljM0XI0wHNnGIUI3DwjgtGtfC89U289a4U8U0OTY8KwtUgE3WuIOhoxePvn8PKFrT41NjOOS2cO4Klv97B6bxnJrYwIBz2zxbgh0uCblg9KKTISIvjvN3uOSAI8PEk+GOd566FKjh+RysDkKOLdfSY9/R492h0RrCsHlx1m/QpMLf+MZMRH8PszR7NqbxlvrzkAgMulaXS4sMmIYNfMc4/sVx1qdzelFLMHJ6M17CqsafGc3V35uS46C27N5XLuocTdN3RAklEsrKbB2VQspo01wKKHnHCP8Xn8hUbbICGE6EXyV1l0y9yhKewrrcWFiZqEUa2ufYq2WZouMusrcIbF8L9le0mPC29zROiiadnetWMx4dZW9xFtsNggfy0cXOfdFBdpZUBSJPERYUfs7kkEPX3FvtxaQEZ8BJFhLauGdnrEYNavYM5NbT59x6kjGZcZR22jMzRHBCvy4IFs2PiGzw45NsMY8d2UX9nq88XNRl9rGhxUNziJcVfo9RRsKm/WUgCaEkNPotiC5+c8Y0qr73f2xAz6x4XzmXtKqmdGgIzud1H/icbnTqwpvXaecfNsb8nhiaDxcxtmMUFEAqMHZnif86zRrm10NLvRI5cFvcoze2Pze0ZrJSGE6EXyV1l0y6whybzlvutvj8mEvd83PfnYMZA9nbGZl7BiTwn6oaGomiK2lJnYVVTDk5dOaXd92He3H8/q3LLQLRbTHfHZsPrZpmTDZOH5uQ+jhkw/YlfPiI9nBGjjgUounm5UH7RZTJQclgi2WCP4/o2w+Z2mx+FxcENTAtoam8XMvy6exNn//o7hadHt7huUovsZBZsypxrJ+vNngjUKLv8AEgc27edohCePNxLHw/3oKaNf4fbP4O2ruen013h3LewrqWVSdsIRuxdVNZCTFElRVQM1DU5qGhzearyeZODwRNC7jjfKZrSKeOoEI+6Bc2G7uxhVs/WBzSmlmD0kmUVbCtBaU+OZZio/y12TOMhIBrXLmB760GA45jdG8a/KfHhslnfX0RrW2OxEvGuGj0yQOgou/9B7Iyetdju89w8ePeXXjNlmtIvxzLaobWyaGhouI4K9K879M7R7iV/DEEKEJvmrLLplQlac92vHrBugckHTkyNOgcTBTKtL5P11+VRNP4PIMBP3rBnDtJxE5o9MbffYseFWjhvR/j6iDfN/Bzs/b3q86mkGVK6GpDOO2DWq2Yig1po6u9NbXdRYI2gkiE1Tx5olgnu+gshkGHyc8djaeh+zw2UlRrL09vmhWTzEbIHZNxhfl+83WkmsfwUOrG6ZCJbvhUMbjOliiS37c3rXEsX2h7HnkZaWBhRx46trGZMR26K5fKPDRUFVA8cOT2FlbhlV9XbjHLvPe4K7RUx5XcupoUVVDSREWo3Ev6HGSEQOrjMSwSEngtMO6RPa/GdOzE7g9dV5/LCvnCT3e7RWtVa0I3kIXL3E+NrlgrHnGQkeGD9rY8/z7qqAj1fsY1B8FDOiCmDvt1Bfjt1p/Ewm1ufB2ueInn4NX90yj3q7iwJ3gajaRoe3oFe4jAj2Lls0nPlvGDCr432FEMLHJBEU3TIouWlEJ3HYbDAd0/Sku3LldHfp+k+ybmRkv1hWffMt/zojJ7SqRfa2YQuMD48dn7U5vcxmMWE2KWoaHE2jAu4L9vS4CBZtLqSgst7bRqLFGqL6CqMH1ikPdTnEkEwCDxefZfQeXP8KlO9r+Zzn8Zyb2r5I7DcGTnkI247PeT3jFc47cAEfbzjEr+Y3JYJ7S2pwujTjMuN5ecV+Ct0jfZ6R9n5x4YRZTLy6cj/zhqfy2JKdpMaE897afNLj3T3LbDFwzTdN79u8r2gbjh+RitWsuPCJpbx41QygncIzomMmU8ufs4iEI37untn6FYPiopgx+YCRCJbvp8E2BACbNpI+wiIZkGCsDfQUBMorq6Oyvql/qOhlPugpKoQQR0OuxES3mEyq1a+bG5ISTUKklRV7SilxNzLuFxeCa8P8KS7LGH1qhVKKqDAztY3OphLy7mTvJzMG0Oh08dYPB2iwH9ZwWmt3O5DWe9eJTrJFQ3g8rHjC+J56rH7W+BzX+vTLFoq2MbXkPRbG7mNbs56BdqeL191tWMb0j8OkoKDS+Bn0jAjGhlu594zRfLOjmDF3f8q/Fu/i7vc2UdXg8BYZOhr94sL53WmjsDs1D3++zf2eMiLYk9Jiw43zO+REuDUX+o1tuoGj3QWDrE0FusZmxJGdGMnT3+6hwj01OFbWZAshRMiQRFB024o75vPtrce1+bzJpJiak8jSXSWU1nialUsi2KvO+S/85K02n462WahucFDvnv7paSKekxzFtJxEnvp2D+V1xoWid42gvc6oHBke1+oxRRfE9IOqgy1HbceeBzlzjOmfHcky1n5eHPY12w41JYKPL9nFE1/vZsGoNEb3jyUqzEJhlTEy1Dwpu3BaNte4K/XmJEWy4rfzWXr78fz1/AnGDgWb4dGpkPttl/5Z5042kthlu40eh232JBQ+kRprY+3+cnaWu4wRQ+3yFovxjgg2SwQtZhPXzhvMurwKPlh/kAirud0+oUIIIYKL/MYX3ZYaE05mwpFtIJo7fkQqB8rr+H6X0V8uMerI6pWiB8WmG9P7Dmsa7hFls3jXjgFENGsRce1xgymubuDvn28HmlWR9DRFt8mIYLd5+go2nx466gyjgIypE8lT1lToP4kscym7i2u86zr3lNTQPy6c//xkMiaTIjbCyrr95QBHFGG67eQR/HDXibx73TGkxoaTHheB2TPKX18OxduNdYFdEBFm5r+XNlUWlamhPWvBqDQA3luXj3PxA/BANo3un+kwlycRbLmO90eTMsmIj2BbQRWxEXJ+hBAilEgiKHrF/JFpKAVvrM7DYlLEhssFR6/SGv4xHj6/y3hccQDK9noTwwFJkewqqmm1YMTMQUkA5FcYF5JJntHcsCg45S9S5MAX4owqrRRsMj5XHYJtH0NDVduvOVx8FimOfLJ1Pnu2rYPinTQ21BMdbvGux714ejaV9ca6sEEpR1ZsTYwKI661NWJ2d7N6a/s3fFozv1nBp/COelCKbjlpdD8AHvliB4/tSoIZv8BeV8lAdZCIhkIw2464sRBmMfGL44zRYM+0YSGEEKFBEkHRK1JibEzMigcgNcYmhWJ6m1Iw+pymvm/vXw//GAdb3gNgVP84dhdVU+7uHdf8gj3cauav5433PvaOEoXHwrSfQerI3vk3BLO4TDBZmhqH56+Bly+Ekp2dP0biIKJr9rPYdhMjXj8OHpvJvOKXW4zCXXPsYO/0zJykLiR1je5EMKzriaDJpFh88zwumpZNVkLnqsqKo9P89+pfdvbnq8yr0UXbWGy7ifSdr0JEfKuvO889hVd+LQshRGiRYRnRa+aPTOOHfeXeipSil51wd9PXs66HnV8Ya79Gncno/rG4NKxxTxuMOGzk5pSx6dz0+mH9AZf+21gj6GmFII6eNRwu/wiiko3HWdPh4tfabc9whNk3QNoY/vrpVsLDTPzytNm88qmVyGZrvswmxdLb5lPd6OjazRh7nTvOrieCAAOTo/jTOWOP6rWia968dib7Smv59avr+N27G7ltbn+ub/wld5w6krSBrZ+DMIuJz389VxJBIYQIMTIiKHrNeVMyAThxZJqfIxEMOtboRecuTjK6v7HOb/XeMuDIKXwRYWYWjErzNpoHYP9y2Pt978QbCrKnQ5IxRY/IRBh2UteGaCISYOy5HMg+jeerp8GgY6lpdB6xLi8u0kpGfBdH5uw1xudO9okU/jN5QCJnT8zkphOHsbeklv+squA912xM485vt+XH0LSYFv0nhRBCBD9JBEWvSY0JZ9WdJ3DzScP9HYoAo4fd2hehrpyM+AhSY2x8ubUQaH0t1xOXTuGPZzcbUTj/Obj41d6KVnTSsLQYCiobqPrhTd4tO5tJjjXdP+iKJ43PRzkiKHrfOZONG29r3aP8MbIuWwghxGEkERS9KjnaJo3EA0XWNOPzgVUopZg/sqmoR6sFQ0SfMG1gIgA/1CTztukEaiMzun/Q2mLjs7QK6TMy4iP47SkjvI+lUI8QQojDyRW5EKFq+jXGZ3ej+YlZCd6nkqI70d7j1UtgzYs9EZnohnEZcUTbLLy2L4Z7HZdTF5PT/YM66mHaz6WaSB+zYFQ/f4cghBAigMlcESFCVUy6Ualy7/cw5aeMyYjjGNMGrDiwmk819tn6kdFD7nBaw5YPIHVUr4YsOmYxm5iSk8CHGw4yROWx4ODHsHZ6GzvbYMRpxuf2nPFPiMvyfbCiR+UkR3H6+P7UNTr8HYoQQogAJImgEKHKZDZaP7gLvgxNi+Zn5g+JVbXAncY+i++Hgo1tHyN+QM/HKbrszlNHsmRbEWeav2f6gXfgwLNt73zuMzDmnPYPOOpMX4YnetE/L5ro7xCEEEIEKEkEhQhlV3wGtSUAWM0mbrZfg1lplnme//Hr4Gxs/bUmC8T6YP2Z8DlP9ceHHecy7ZwbmT4w4cidHA3w7GlNrSHa4rRD7reQMgJi03sgWiGEEEL4gySCQoSysMgWTcI/uuPclsvAYvv3fkzCJ4akRrOzsJqkzCGQ0EZbgFt2dHyg2lJ44Sw49WGYeqVPYxRCCCGE/0giKITwSonpYK2Y6DOeumwKLy7fx8Dk6LZ3stdD2R6Iz4awqNb3iYiHn34MCTk9EaYQQggh/CTgqoYqpZ5WShUqpTY223aPUuqAUmqt++MUf8YohBCBbkBSFL89ZSRmUzuVPvcthX/PgAM/tL2PxQYDZsnosBBCCBFkAi4RBJ4FFray/W9a6wnuj496OSYhhAg+6ePhR09ByvC296kuhHWvQlVB78UlhBBCiB4XcFNDtdZfK6Vy/B2HEEIEvchEGHsurH0Z9i9vfZ+qQ7D9Y7j8Q4hJ6934hBBCCNFjAi4RbMd1SqlLgVXATVrrssN3UEpdDVwNkJ2d3cvhCSFEH3VwHWz9sO3nEwdD0pDei0cIIYQQPU5prf0dwxHcI4IfaK3HuB+nAcWABu4D0rXWV7R3jClTpuhVq1b1dKhCCCGEEEIIEZCUUqu11lNaey4Q1wgeQWtdoLV2aq1dwH+Baf6OSQghhBBCCCH6qj6RCCqlmncxPhvY2Na+QgghhBBCCCHaF3BrBJVSLwPzgGSlVB5wNzBPKTUBY2poLvBzf8UnhBBCCCGEEH1dwCWCWuuLWtn8VK8HIoQQQgghhBBBqk9MDRVCCCGEEEII4TsBWTXUF5RSRcBef8fRC5IxKqqK4CPnNnjJuQ1Ocl6Dl5zb4CXnNjjJeW0yQGud0toTQZsIhgql1Kq2SsKKvk3ObfCScxuc5LwGLzm3wUvObXCS89o5MjVUCCGEEEIIIUKMJIJCCCGEEEIIEWIkEez7nvB3AKLHyLkNXnJug5Oc1+Al5zZ4ybkNTnJeO0HWCAohhBBCCCFEiJERQSGEEEIIIYQIMZII+phSKksptVgptUUptUkpdYN7e6JS6nOl1A735wT39iT3/tVKqUebHSdGKbW22UexUurvbbznZKXUBqXUTqXUI0op5d7+t2av366UKm/j9XOVUj8opRxKqXNbeT5WKXWgeXyhKNjOrVLK2ewY7/nmu9T3BOF5zVZKfeb+92xWSuX45BvVBwXTuVVKHXdYDPVKqbN89s3qQ4LpvLqf+7P737Gl+bFDURCe2weVUhvdHxf45rvUN/XRc/sbZfwdXa+U+kIpNaDZc5e5Y96hlLrMd9+pXqa1lg8ffgDpwCT31zHAdmAU8GfgNvf224AH3V9HAccA1wCPtnPc1cDcNp5bAcwEFPAxcHIr+/wKeLqN1+cA44DngXNbef4fwEvtxRcKH8F2boFqf39PA+EjCM/rEuBE99fRQKS/v8dybn1zbpvtkwiUhuq5DabzCswCvgPM7o+lwDx/f4/l3Prk3J4KfA5Y3HGuAmL9/T2Wc9ulc3uc5/cscC3wqvvrRGC3+3OC++sEf3+Pj+ZDRgR9TGt9UGv9g/vrKmALkAGcCTzn3u054Cz3PjVa62+B+raOqZQaCqQC37TyXDrGL5al2vjf+bzn2Ie5CHi5jZhztdbrAVcrx58MpAGftRVfqAi2cysMwXRelVKjAIvW+nP3ftVa69q24gx2wXRuD3Mu8HGontsgO68aCAfCABtgBQraijPYBdm5HQV8pbV2aK1rgHXAwrbiDHZ99NwubvZ7dhmQ6f76JOBzrXWp1roMI+Hvk+dWEsEepIwpWROB5UCa1vogGD8MGP9xO+sijLsQrVX2yQDymj3Oc29rHscAYCDwZRfeE6WUCfgrcEtXXhcK+vq5dQtXSq1SSi1TITrF7HBBcF6HAeVKqbeUUmuUUg8ppcxdPEZQCoJz29yFtHHhEmr6+nnVWi8FFgMH3R+faq23dOUYwaqvn1uMxO9kpVSkUioZY3Qpq4vHCEp99NxeiTGq6Dn2/vaO3VdY/B1AsFJKRQNvAjdqrSu7OeX/QuAnbb1VK9sO/4G4EHhDa+3s4vv+AvhIa70/hJcsHCFIzi1AttY6Xyk1CPhSKbVBa73rKI4TFILkvFqAORh/YPcBrwKXA0918ThBJUjOrfEGxl3uscCnR/P6YBIM51UpNQQYSdNIw+dKqbla66+7cpxgEwznVmv9mVJqKvA9UIQx7dfRlWMEo754bpVSlwBTgGO7cOw+QUYEe4BSyorxn/xFrfVb7s0F7j/gnj/khZ081niMqV6r3Y/NzRa43otxFyKz2UsygfzDDtPi7rFS6n7PMTp4+5nAdUqpXOAvwKVKqQc6E3ewCqJzi9Y63/15N8a6somdiTsYBdF5zQPWaK13a60dwDvApM7EHayC6Nx6nA+8rbW2d3L/oBRE5/VsYJl7Gnc1xojDjM7EHayC6Nyitb5faz1Ba30iRvKwozNxB6u+eG6VUicAdwBnaK0b3JvzaDm629qx+wRJBH1MGbc2ngK2aK0fbvbUe4CnqtBlwLudPGSLuctaa6f7l8oErfXv3MPoVUqpGe73vrT5sZVSwzEWsi5tdow7PMdo74211j/WWmdrrXOAm4Hntda3dTLuoBNM51YplaCUsrm/TgZmA5s7GXdQCabzCqwEEpRSKe7HxxOi5xWC7ty2GkMoCrLzug84VillcV8kH4uxdiokBdO5dScmSe6vx2EUlAnZegt98dwqpSYC/8FIApsnqJ8CC9zXUgnAAvrqLA0dABVrgukDo8KRBtYDa90fpwBJwBcYd4O+ABKbvSYXowJcNcZdhlHNntsNjOjgPacAG4FdwKOAavbcPcADHbx+qvt9a4ASYFMr+1yOVA0NmnOLUaluA8Yahg3Alf7+/sp57f55dT93ovvfsgF4Fgjz9/dYzq3Pzm0OcAAw+ft7K+fVZ7+LzRgXmlswbto87O/vr5xbn53bcPc53YxRaGSCv7+/cm67fG4XYRRv8sT7XrPnrgB2uj9+6u/v79F+KPc/RgghhAhK7untV2mtFzXbdrl72zE+OL4Ghmqtd7bxvM/eq7uxCCGEEB4yNVQIIYQQQgghQowkgkIIIUKeUqq/UupNpVSRUmqPUur6Zs9NU0otVUqVK6UOKqUeVUqFuZ/zVHdcp5SqVkpd0In3ylVK3ayUWq+UqlBKvaqUCnc/N08plaeU+q1Sqti974+bvXaJUuqqZo8vV0p9e7SxCCGECF2SCAohhAhpyuiZ+j7GmtkMYD5wo1LqJPcuTuDXQDJGNeX5GO110FrPde8zXmsdrbV+tZNvez5GA+KBGEUkLm/2XD/3e2VgFE94wl3YoF3diEUIIUQIkkRQCCFEKHjHPaJXrpQqB/7d7LmpQIrW+l6tdaM2Wqr8F6O0OFrr1VrrZVprh9Y6F6O4x7F0zyNa63ytdSlGEjrhsOfv0lo3aK2/Aj7ESByFEEIIn5GG8kIIIULBWa0Vi3E/HAD0dyeIHmbgG/e+w4CHMSrQRWL87VzdzXgONfu6Fujf7HGZ1rqm2eO9hz0vhBBCdJuMCAohhAh1+4E9Wuv4Zh8xWutT3M8/BmzFqMYZC/wWozl0T0lQSkU1e5xNU7PiGoxk1KNfD8YhhBAiiEkiKIQQItStACqVUrcqpSLcjaDHKKWmup+PASqBaqXUCODaw15fAAzycUy/V0qFKaXmAKcBr7u3rwXOUUpFKqWGAFf2QixCCCGCkCSCQgghQprW2gmcjrFObw9QDDwJxLl3uRm4GKjCWDt4eBGWe4Dn3OsPfbGW7xBQhjEK+CJwjdZ6q/u5vwGNGAnfc+7nezIWIYQQQUoaygshhBABQik1D/if1jrTz6EIIYQIcjIiKIQQQgghhBAhRhJBIYQQQgghhAgxMjVUCCGEEEIIIUKMjAgKIYQQQgghRIiRRFAIIYQQQgghQozF3wH0lOTkZJ2Tk+PvMIQQQgghhBDCL1avXl2stU5p7bmgTQRzcnJYtWqVv8MQQgghhBBCCL9QSu1t6zmZGiqEEEIIIYQQIUYSQSGEEEIIIYQIMZIICiGEEEIIIUSICdo1gkIIESjqGp1UNzi8jxOjwjCblB8jEiJ0ldU08uYPedidmjlDkxmTEefvkIQQwi+6nQgqpcKBrwGb+3hvaK3vVkolAq8COUAucL7Wusz9mtuBKwEncL3W+lP39snAs0AE8BFwg9ZaK6VswPPAZKAEuEBrndvd2IUQgcnhdLG9oJqYcAtZiZH+Dqdb6u1Opv9xEZX1TYnguZMz+ct54/0YlRCh64MNB/nDh1sAWLEnhWd+Os3PEQUup0tz0t+/pqiqgTevncWQ1Gh/hySE8CFfjAg2AMdrrauVUlbgW6XUx8A5wBda6weUUrcBtwG3KqVGARcCo4H+wCKl1DCttRN4DLgaWIaRCC4EPsZIGsu01kOUUhcCDwIX+CB20Q6tNQWVDUTazMSGW/0dzlGprLezfHcpWmsARvSLJTupbycWoeCfX+7kH1/sAOD7246nf3yEnyM6evV2J5X1Dk4dm86MwUk88fUuCirr/R2WECHL6XQBMCApEodL+zma7rM7XVz30g8UVjVgMSnuPHUU47PifXbsnYXVAOwvrZVEUIgg0+1EUBtX2NXuh1b3hwbOBOa5tz8HLAFudW9/RWvdAOxRSu0EpimlcoFYrfVSAKXU88BZGIngmcA97mO9ATyqlFLac3UvesQjX+zkb4u2E2Y2sfT240mKtvk7pC57fMku/r1kl/fx+Kx43v3lbD9GJDqjos7u/bqq2UhaXzYlJ4GfzBjA2z/k+TsUIQRgUsExPbukupFPNxUwKDmK3cU1LN9T4rNEsKsaHE7OfPQ7782uCKuZF66azuAUSSB95fudxWwrqAJg/og0ubktusUnxWKUUmal1FqgEPhca70cSNNaHwRwf051754B7G/28jz3tgz314dvb/EarbUDqACSWonjaqXUKqXUqqKiIl/803rMuv3lTP/jIqb/cRHr88r9HU6riqqNX+SNTleLC/O+pM7uJDLMzAe/OoZZg5Oob3T6OyQhQlJ5bSP7S2v9HYYQQevi6dn+DoGqegdbD1UxNC2GWYOTya+oJ7e4xt9hBZXrX1nL79/fzO/f38yji3f4O5w+we50sXpvGStzS1m9t4xGh8vfIQUMnxSLcU/rnKCUigfeVkqNaWf31m7B6Xa2t/eaw+N4AngCYMqUKQE9WrijsJqCygYAdhZWMy4zvsXzDQ4nm/IrvVMaByRFkdwHR+QCgdmkGJMRR2y4lZLqRn+HI0RImvXAl9Q2Onn+imnMHZbi73CEED3o9HHpjM+K58MNB/0dStBxuFxcODWLb3YU43AG9KVuwHhx2V7ueX+z9/Gdp47kqjmD/BhR4PBp1VCtdblSagnG2r4CpVS61vqgUiodY7QQjJG+rGYvywTy3dszW9ne/DV5SikLEAeU+jL2QPOfr3bz8OfbvY9lSqMQojc1Olx8ubWQBocxim4xmZg3PIUo29H92ah1j8aX1crNGNF79pXUUlnfNKPFajYRBMsCRYizWUyYpAFcp9W4//48c/lUfvrsyhZVvEOdL6qGpgB2dxIYAZyAUczlPeAy4AH353fdL3kPeEkp9TBGsZihwAqttVMpVaWUmgEsBy4F/tnsNZcBS4FzgS+DfX1gdYODMLOJJy+bwqOLd1JS3eDvkEQP2l9aS4N7qkJSVBgJUWF+jefLrQUUVTVgNplYMDqtzxYLEkdvybZCrvnf6hbb7jl9FJfPHuiniITomn0ltcx9aPER28dn9k67iLpGJ2aTIszSt67YS2sa+eeXO6i3u3C6ZAqdCB6zhhyxqizk+WJEMB14Tillxlhz+JrW+gOl1FLgNaXUlcA+4DwArfUmpdRrwGbAAfzSPbUU4Fqa2kd87P4AeAp4wV1YphSj6mjQM5sUc4el8Oqq/ZIIBrHFWwv56bMrvY9jwi2s/d0Cv/WZK65u4IpnV3kf/75hNJfNyvFLLMJ/PDcmnrl8KikxNk7757febaLv0Fqzo7DaW3QpPtLa7cIdNQ2OFqNskWEW4iIC72aRJ8ZfzBvMhKx4qhsc/Oa1dS1auXTG5vxKtruLc5hMinnDUzq8ObbxQAWn/fNbv/8+PxrLdpfwzHe5JERasZgDO4nVWrO3pBan1iREhpHo55uoQvQ1vqgauh6Y2Mr2EmB+G6+5H7i/le2rgCPWF2qt63EnkkIEG89Uud+dNorV+8r4cP1BXFpjbnVpbM+zu0urX3/8EB75cqcsqg5xWYkRfbp9h7/sLqpmy8GqFtvGZsT1eoW/HYXVLPjb1y22Lb39eNLjju6c2p0uZj/4JeW1TYmgxaT4/rbjSY0N71asPWVCVjwLRvejrObopiVf++Jq9pY0FTq67eQRXHPs4Fb3ray3s6eohpW5xuqVqnoHDpcLs8l8VO/tD575Vq/+fCbD0mJYu7+cs/71nX+DasP/lu/jrnc2AhBuNbHmrgVEhPWd77UQ/ubTNYJCiKM3f2QqtY0OPlwfGIvrYwPwDr8QfcWNr65lfV5Fi23TBiby2s9n9mocnpHAmxcMo7bRyb+X7KKmG+tjHE5Nea2dk8f049hhKaw/UMFLy/dRXmcP2ESwuxrsLk4Z24+bFgxn/l+/osHe9s2xG15ew+JtgVG1XGtNbaPzqNf19gXl7uT+7IkZvL3mAPV2pySCQnRB8P52EC0UVtXz90U7vH/AcpIi+dX8oX6OKvjUNjq48IlllFQ3YjEr/nreeKbkJPo7LCFEL6u3OzlmSDK/O30UAHe8vYEGu//a14zNjKfSh22AxmfFc+G0bGLWH+Sl5ft8dlx/yiur5bzHl7YoJDE2w1hPGGOzMjApqsNjVNU7GJkeyy0nDeOFpXv9mhTe8sZ63lidFxIVEkf3j+XtNQf8HUan1DY6WrTkSoqy9bl1pMHoQHkd/168E4dTkxAVxi0nDe9TU7qPliSCIeL7nSW8tHwfabE2ahudVNU7uPrYQdgscufMl4qqGlifV8H4zDjW5VWw8UBFrySCLpfmptfXcaCsDgCb1cSfzhlLZoI0mhXCX2LCLQxLiwEgymah0SEVUwNZXlkdByvqWTi6H+nx4azMLeWHfWXER3Rt3VlilJXjR6Sx5WCVXxNBT99O6d8ZWOY9tITCqqa6D8cNT+GZn07zY0R9l8ulqW50+KSg3ZdbC3lx+T5ibBaqGhxcMDWLgckd3/zp6+QWRIh55eqZba5tEL5zxoSMXn2/qgYHb685QGFVPQ0OJ9/sKGbDYdPShBBCdOzSWQO4+/TRzB6c7O9QhB/8/IVVjPrdJy0+/vTxFp8dv6i6geNHpPLAOWMZ0S+mRVIouub6V9Yw7p7PeOa7PV163YfrD/LJxsOW4bgXx9544jD3w6BuTuAlI4JCBJGfzMxh9pAkFv79myOeK6yq52+f7+DlFftQCv509lgunJbthyhFKHvrhwOs22/cpDhzQn/GZ8X7NyDRaav3lnGgvM7fYQjRo9bnVZCZEMGxw1IAeG9dPhsP+PbG6pj+sVw4LZtFWwo4WFHv02OHEs/vI89sqM44aXQaS7YV8b9l+1g4Jr2nQuszJBEUIkR8vrmAl1cYa3m0hm0FVR28QgSS4uoG/rV4Jw0OFzHhFn5z4rA+ObX7h71l/LC3jOpGB+W1jTx8wQR/h9TnvL0mj482HCLMbOK2k0eQldjzU8DLaxv50WPfex8HYrsIIXxlQlY8d5xqrO9ds6/cv8GINnV1BZ9C8Z+fTGnxuyzUSSIoRIhwuWc5rLzjBI7/6xK/xuIvjQ4Xn2w6RGqMjRmD+lZj2e92FvPMd7lEhZmpaXRy6th0xmXG+zusTrOaFT+bM4j/WzgCgGMfWowrRKbe+NrLy/ezZn8Zdqdm7rBkLkjs+ZF9TxuZ644bwhkT+jOkm70IhX/YnS5Kqo21qkpBaowNpYK/IIYQonWSCAohQsa3O4u4/uU1AOz50yl+uwBqdLha9DSLCbd02LjZkzP9ZsFw7vtgM5JDhbaM+AhyS3q/CEh6fLi3AI7oe65+flWLAjY3LxjGdcdLBXEhQpUkgkL0cY8t2cVz3+f6O4yA8/KKfTz7XS4/mzuIcydnAk2jGv62fE8pE+/73Pt49pAkXrxqhh8jEkIEk30ltSzfU3rE9sKqBkb0i+GyWTnc98FmKVQiQpLWmo35FTQ4nH1yiYUvSdVQIfq45XtKaHA4uWhaNieOTPN3OAHjq21FbCuo4uvtgdHc+XAzByVxz+mjGJMRy8FyKRYghPCdZ75vu4piZkIEF03LxtZLvet2F9XwwMdb+dPHW3ht5f5eeU8h2hNls1Bea+ffi3f5OxS/kxFBIYJAdmIkfzpnLABbD1X6ORr/23KwkoOVgZ1cje4fy+WzB7J6XzmbfFyRTggR2lwuTbTNEhANsV9euY/dRTWYTQqX1pw3JVPWJQq/+uv545l2/xdUNzj8HYrfyYigECLoXPXcKtbtL/d3GCKA7CupZdHmAhZtLqCwKrBvEgjhCxazIhDyLa0h2mbhV8cPkbXNIiCkxoQTbZOxMPBBIqiUylJKLVZKbVFKbVJK3eDenqiU+lwptcP9OaHZa25XSu1USm1TSp3UbPtkpdQG93OPKPctI6WUTSn1qnv7cqVUTnfjFkIErwaHk1PHpZMaY/N3KCJAXPviaq56fhVXPb+K372zyd/hCCGEEH7ni3TYAdyktf5BKRUDrFZKfQ5cDnyhtX5AKXUbcBtwq1JqFHAhMBroDyxSSg3TWjuBx4CrgWXAR8BC4GPgSqBMaz1EKXUh8CBwgQ9iFwHM5dJc9N9l7C9tqoynlOKWk4Zz1sQMP0YWmtbnlXPJk8tpaFZw5fgRqTx2yWQ/RtW2+AgrUXLHT7jV2Z3MGZpMQWU9dXanv8MRQgjRjnq7E7uz6XrDYjIRERbahV16QrevkrTWB4GD7q+rlFJbgAzgTGCee7fngCXAre7tr2itG4A9SqmdwDSlVC4Qq7VeCqCUeh44CyMRPBO4x32sN4BHlVJKa5lkEMwaHC6W7yllbEYcI/oZ5crfXZvPD/vKJBH0g9ySWirrHVwwJYv4KCtfbilkU76sRwxFT3+7h7fXHPA+vmrOQM6c0Ds/k9UNDiwmRbi16xcEcRFWKutlTYjoHZ5pmdP/+AX9YsN597rZXa5QuHRXCU99uwcwLndiwq384awxcpNLBLVdRdUs/PvX2J1Nl/kmBf+7cjqzhiT7MbLg49PfJO4pmxOB5UCaO0lEa31QKZXq3i0DY8TPI8+9ze7++vDtntfsdx/LoZSqAJKAYl/GLwLTqePSuebYwQAs2lLg52jEz+YOYkhqNIWVDazeW+bvcIQffLrpEPvLapmUncD3u4pZsq2oVxLBbYeqOOnvX2M1Kzb+/qSQL/stAttpY/tTVNXApvxKVuwppbLOQUpM1/7PfrThIIu3FTKiXwxV9Q72ldZy6cwBTMxO6PjFAWrt/vJW49daU1Zr9z42KYiPDOvN0ESAKKxswO7UXDIjm5ykKMpqG/nX4l3kV8j6bl/zWbEYpVQ08CZwo9a6vWGC1pYu63a2t/eaw2O4Wim1Sim1qqgoMEvGCyFEMBieFsPTl08lNSa8196zuNroeWZ3aurtgdETUoi2ZCdFcvfpozl9fP9uHScuwsqH18/h92eO9lFkvvP4V7vIue1DpvxhETUdVGDsHxcBwB1vb2z1+fs+2MKk+z73fky493Oe+a7tNhgi+J06tj9XzRnEhVOz/R1K0PLJiKBSyoqRBL6otX7LvblAKZXuHg1MBwrd2/OArGYvzwTy3dszW9ne/DV5SikLEAcc0SlVa/0E8ATAlClT+sy00Xve28TDn2/n4fMnMG1gor/DEUJ009JdJXy305iwUC/r0YQQQWpnYTVg3KQpr7O325vw/KlZvLP2AEVtNLE/VFlHcrSNXx0/BID7PtjMIRkBEqJHdTsRdFf2fArYorV+uNlT7wGXAQ+4P7/bbPtLSqmHMYrFDAVWaK2dSqkqpdQMjKmllwL/POxYS4FzgS+DZX3gaePSsZgU76zNZ3N+hSSCQgSBv3y2jdV7y7w9vGwWEwOTo/wcleirtNbc/d4m8srqANhWUEVCpNXPUQnRdXERVu/IfmsSIq1cNisHgD99vKWXohIdqWt0YrOYMAVAX0rhW74YEZwN/ATYoJRa6972W4wE8DWl1JXAPuA8AK31JqXUa8BmjIqjv3RXDAW4FngWiMAoEvOxe/tTwAvuwjKlGFVHg8KtC0cQbbPwztr8dvfTGmobHdgs5oBoECuEaJtLa+YMTeaFK6f7OxQRBKobHDy/dC/9YsNJibGRnRjJrMFJ/Ofr3f4OTQgRYA6U17F8d4n3cUqMjTlDU476eK+v2s8tb6znhJGpPHnZVF+EKAKIL6qGfkvra/gA5rfxmvuB+1vZvgoY08r2etyJZCiymBS7i2sY9btPmTIggTeuneXvkIQQQvSyq+YM5Ko5gwDIL6+TRDCEVdXb2edurVRS3ejnaEQg+eNHW/hw/cEW21bfeQJJ0UfXV9czE2Ffs1ZeInhI/eE+4FfHD2FUeiwfbTzUoz+I9XYne0tqGZQShdXsszpCQgg/e2fNATYfrCTGZuGaeYPl51v0KcXVDZRUN2JSMCglWmbFAFc9t4rle1qWSpAeawKg0eFicEoUT18+lQ/WH+ShT7fR6Ox+cS3V5piPf9idLpyuoFgl5leSCPYBQ1JjGJIaQ25JDQfL63rsfW5/awNvrznAVccM5M7TRvXY+4SivSU1bDhQQU5SFGMy4vwdjggx97y/iXJ3WfZjh6cwLjPevwEJ0UlOl+a4h5ZQ5a5IeevCEVw7b7Cfo/K/ynoH47Pi+YX7exFmNjEhK77NipwitIRZzAxIiiIpKjjbb2itOfbPi6WdhA9IIii8ymuN6SUVdfYO9hQd8dw3e+CTrfxt0Q7v9zQh0sqa3y3wX2AiJLlcmpykSHJLapEbqKIvcbo0VQ0Ozhjfn483HqS8TqZBeqTG2DhpdD/v447aNwjhKw0OJ5vzjU5xI9NjCbf27mi0S0N+RT1zh6Xw9XZpF9cdkggK0QPiIqzcfvIIDrrvVmmtWbytqM2y2UIIIdo2vF8Mn2465O8whBDAvxfv4h9f7ADg58cO4vaTR/oljikDElidW8q76/JJjbVx9VyZLdBVkggK0QOUgp8f2/IXku2jLbywdK+fIhJCCCFCT0l1A7klNd7HYWYzo/vHSiuEbqhucBBuNWE1m6iub30k2uUy2t54bohHhJm5+/RRJB9l0Zq2XD47h5eW7+PDDYckETwKkgiKoLNmXxn3vLcJh0t7fwEJIYQ4OlprdhZV+zsM0UfZfVCopDuufG4Va/eXt9j2+CWTWDgm3T8BBQmLyYTN0nbhsbLaRl5YZrS9iQwzs7u4hjPH9+eEUWk+jeOWk0aw8UAl5bKs6ahI6TgRdFbvLWNdXgXJ0TYmZcfzM3e5dSGEEF33zY5iLv7vcgAipTKl6CRPdeK8sjqsZv+NvlU3OJiWk8jzV0zjr+eNB6CqjVEs4Xu/OG4w/7hwor/DEG2QEUERtB69eCIx4VZ/hyECxJur87jrXamoJ0R7Pt5wkNdX5wHGVK57zxjtvWj+84/GcerY/v4MT/Qhw9NiePTiiVTVOxiSGu3XWFJibMwdlsJ+6YUnRAuSCAohQsLmg5XYnS6UAt1G5cy7393o7c2VER/BE5dOkZ5lIqS8teYA3+0sJiMhgt1FNZw3OdP73ITseMLamQrmLwWV9Ww9VAUYFZsnZsfLTcBO2lday/c7i5k5OAmlfPu7zmRSnDZObhwI33K6NJ9vLvB3GEFDEkEhmqlrdHL3exuprDPugJ80Jo2zJ2Z28CrRV9gsZn45ZyB/X7Sj1ec/2niIMLOJmHALX2wtpKreTnxkcPZhEqItg1Kiuf/sMZzz7+/9HUqn3PjKWpbuLvE+ll64nRMXYWXJtiKWbCviw+uPYXR/6XErAt/6vHKu+d9qABKDtE9ibwq8W3tC+NGOwipeW5XHhgMVfL2jiP8t2+fvkEQvmzsshQumZvk7DCFEJ9XanUzIiufNa2cRH2mlptHp75D6hLd+MZv7zhoDQL1dvmeib2hwGMWH/nHhBH48PdvP0fR9MiIouq24uoE7395IbbM/JBOz4vn1icP8GFX33HvmaJ75Lpc6+eMYsBxOl/f/XLjFHJBT1gJRg93JQ59ubVHye2haDJfMGODHqITonrgIK5MHJHgLlIiOJUaFMSAx0t9hCHFUUmJsPp/OHIokERTdtuFABZ9sOsTQ1GiibBbyymrZkFfepxNBEfh+9Nj3rMurACApKoylt8+XZLATNuVX8q/Fu4gKM2O1mKhrdOLSus8lgqtyS4myWchMiCAzQS5mhcGk4JWV+3h91X60d5tcLIqe8/Dn29l6sJI7Th3JgKSoFs/956tdrD9QQWy4hd+dNpoIqborAoxPEkGl1NPAaUCh1nqMe1si8CqQA+QC52uty9zP3Q5cCTiB67XWn7q3TwaeBSKAj4AbtNZaKWUDngcmAyXABVrrXF/ELnznz+eOY2J2Ar97dyPvr8v3dzgiQFTU2nny2900OFzMHJTEcSNSfXLcvLI6Jg9IICEyjEVbCqh3OCUR7ATPxfFjl0xm7rAUHvp0K//5ardfYzoaVz63CoC0WBvLf3uCn6MRgeL3Z4xhw4Fy7+MIq5mZg5P8F5AIeo98Yaw5P2Fk2hGJ4KOLd1Jvd2J3ai6Yms2ErHg/RChE23w1Ivgs8ChGsuZxG/CF1voBpdRt7se3KqVGARcCo4H+wCKl1DCttRN4DLgaWIaRCC4EPsZIGsu01kOUUhcCDwIX+Ch20QMq6uyc8o9v+PWJwzjRx81DRd/y3a5i/vnlTuPrncU+SwQBRqbHkJMUxaItUkEslNxy0nAmZsfzv2V7+Xp7sb/DCQqlNY08+uVONudXEhvRdytuLhzTj4Vj+vk7DCG8MhMi2VNc4+8wRA9wujTvrTvQYqnFGeMziIvsO79DfZIIaq2/VkrlHLb5TGCe++vngCXAre7tr2itG4A9SqmdwDSlVC4Qq7VeCqCUeh44CyMRPBO4x32sN4BHlVJK67aKwAt/OnVsOocq6vlyayHf7SyWRDDEudw/pgOTo3DJT2y73luXz2ebDnkfD0yO4qYFw/0YUc/7YV8ZK90tO5SCk8ekk9XBuqWpOYlMG5jIF1sKeyPETlm9t5THluzy/h8/UFbH4BT/9k7riqW7Snj6uz3ER1o5YaTvbtYIIQzf7SxmaA/2U3S6NMv3lFBc3dBj7yFa2niggl+/uq7FtpmDk0MvEWxDmtb6IIDW+qBSyvOXJQNjxM8jz73N7v768O2e1+x3H8uhlKoAkoAWt4KVUldjjCiSnS2VhPxl+qAkpg9KYvzvP+uR4289WMUbq/M4e2KG9HgTfY5ncXtry5ae+z6XTfkV9I+PoLzWzgfrD3Ld8UOwWQJjXclHGw5S3eBAY/Rr84V739/M2v3l3sf55fXcc8ZoHx296+rtTq56bhUlNY3ebWYT3HnqKGYManuK4WebCvhiayFj3CX4B6VEM39k37kJpt2Thl//+UyGpsXww74yP0ckRJPCynpKa42fyQir+YgpmIEsIdLKHuChT7cRG95zl91fbS/kimeNKfPTBia2us+hinpW5pZ6H0/JSSA9LqLHYgp2dqdRwfTRiyd6/z7E97EZFf4oFtPa9UNb1xWe8YP2nmvaoPUTwBMAU6ZMkbGHIJQeF8GK3FJW5JYyNDWa8TLfXvQx1x0/hK+3F3HelNZbVEwZkMj/rprOvxbv5KFPt/VydK2zWcxMy0lky6FK1uVVMCg5ipQYm0+O7XRp5g5L4fFLJnHMg4txuFw+Oe7RKqxs4NudxYzuH0v/+Ai0hkVbClixp7TdRBDAZjHx/q+O6aVIhQgNtY0OjvnzYhodTb8bXvv5zDaTnUAzPiueh84bz/y/fuVtfdATat1tUx65aCJzhya3us/9H21pUcPh1LHp/OvHk3osplARF2ElOdo3fxN7W08mggVKqXT3aGA64JnDkwc0vwLKBPLd2zNb2d78NXlKKQsQB5Qi+ryDFXX8b9leHC6NSSkunJrV7p2+d6+bzeebC/jFiz/49IJRa83Owmq2Hary2TGFaM1xw1M5bnjfmnpnNileu2YmLy3fx2/f3nDkXbhuspgUkWEWn40y+sIVswfyo8mZOF2awb/9yN/hiCBSVNXA+rxywBhRyEmOYlhqDCaZ4dKqeruLRoeLC6ZkMSglij99vJWKOru/w+qS1G7cOHO6NO+vy6em0cHC0R2vfx3ZL4b4yNYbrTfYnQxKjuKJSydzzf9+kP6RokcTwfeAy4AH3J/fbbb9JaXUwxjFYoYCK7TWTqVUlVJqBrAcuBT452HHWgqcC3wp6wODwwfrDvKvxbsIs5hodLiwmhS/aWdNlNVsItrm+/+2Gw5UcMaj33kfS4lnIYQQnVHX6GRbgXETsbrBgc3a+kW4xz3vbeLDDQdbbLvrtFFceczAHosxkNU2Onhx2T52FFS3u9+o/rFMHpDQS1EFjk35Fdz46loAiqsa29+5E8IsJoakxhBulSrbwnftI17GKAyTrJTKA+7GSABfU0pdCewDzgPQWm9SSr0GbAYcwC/dFUMBrqWpfcTH7g+Ap4AX3IVlSjGqjoog4CkksvZ3JzL2ns/8Vkykyl3x6baTRzA+M57pAxP59+Jd/glGCCFEn3Hfh5t5afk+7+MTOlgbWmd3MjgliofPn0BuSQ03vLK2z41w+dJ3O0u4/6MtAJw0uu+sq+0tdqdu9rV/p86L4OOrqqEXtfHU/Db2vx+4v5Xtq4AxrWyvx51ICtGTJmUn9Jl1B0IIIfyvqt5BWqyNB84ZB8DojNgOXxMZZmF8Vjzjs+K54ZW1PRxhYHO67wC/f90xjOnE9y5QVdbbKapqID7SitUso22ib/BHsRghhBBCiKARFWbxaY9UXztYUcee4hpqGhwd7+wnZpPyVlXui/7w4Rb+8OEWpg9M5NWfz/R3OCGtst7OFc+s9I60l9Z0f0ptsJJEMIT96LHvMSlFuMXMX84b7+9wRACoqrfz4rJ9He8ohBCiz/jpMyvZ6i6G1lPVtj9cn4/FFHojYTE2C7ERVq6ZN5jXV+2noLLeJ8ctqW7ApaGiTpKYrsorrWPV3jImZcfTLy4cgJykKMIsoff/syOSCIagecNTWLOvHKfLRXWDgxW5pWzKr+jUa19ZsY/HvtqFWSnuOn1Un6t+2F0Op4uVuWX0iwtnYHLf6WPUWV9tL+LRxTuxmhXZHTT1DiX1didvrM6j3u5kYnY8kwfI9GEhRN9R0+hgztBkfnncEEb175npl3/8aKv3675aSv9onTS6Hz+ZMYBVuaWsa9YX9Wi9sGwvd72zsfuB9QKXNirhekSGmYnqgaJ+R+PquYNZOKbjSquhLDDOlOhVo/vH8eRlUwDYeqiShX//ptOvXba7hKKqBmobnazZV96tRFBr3a3iME9+s4eL/rvc+1hhVF7rSZ9uKuCXL/1AuNXE1vtO7tH38gfPWo2Pb5jrvYsm4Ludxdzp/qM8ol8Mn9w4188RCSFE16RE2zrshXk0MuIjePsXs2h0FzKxmk2kxcrfj+4oqKhHKbj3TKNsRqTVzE2vr/NzVK17ecU+Xl7RNJMowmpm2W9bLREiApAkgqLLUmJs7C2p7dYx6hqdzPnzYoqrjbtIpqNYF7D1UBU2s4kfzxgAwDPf7WHboSoGJPXcSFZto7G+ot4e3JW7+vAyjR7hcCfI2YmR3q+FEEIYUns58ftwfT7bC6pYkRu8LaVNSvET9/UNwP+9ud6P0bQvJcbG9fOHsmZvGW+tOUBlnZ1IacPVJ0gi2ItqGhzeBCq/vM7nx29wOLE7NRaTItwa2D+AlfV2iqsbOGFkKqeMTT/qeGMjrNx28ggAXlu135chdtq3O4pZvbcMgHKZyx/UzNLwWQghfOKHfWVc/fwqqt0FbDpzAzI1xkaMzcI7a/O92/rHhR/VzeSu2Haoiute+gEAi0lx/fyhDEqJ7tH37EsSIq38ZMYAwi0m3lpzwN/h+NQXWwr437K9gFFZ/lfzh/o5It+SRLAXrcsr5+JmUxkBbD5q6FlYWc/chxZTb3dhUvDCldOZPSTZJ8fuScePSOOcSZn+DqNbfv/+JnYUNjXCDTObyPLB+rpvdhTx1Ld7SIwM48Fzx0k5aiFESNlbUsNX24v8HYboIbsKqymubuS8yZlkJEQwNLXjxCo1Npz19yzA6dI4XBqX1ljNJl50X6j3hHnDU3hrTSObD1bicmlyS2oZkxEniWCIeG9dPt/tLCE63ML6vApJBMXRG54Ww+OXTPY+TooOIzUmnDIflLUtrm6k3u7ihJGpLNpS2CMjjqJ1Tq05dVw6/7xwonebyQcjRx9tOMSSbcZF0PXzh5IThMVpRM/61+Kd7Cysps7u9HcoQnTZXz/bznvrjJGf1JjQKj4SSq6fP7RLN0+VUljMCksvTXy67vihXHe8cfFfWW9n3D2f9dh7FVc3YHe6vKOkwchut5OXl0d9fdvVVSPsTv57RjoRNQfZsqUQh8vFf89IJ9FShrmmnP+ekU5kzSG2bDGuka4aG4ZLh7FlyxbAKOz33zPSSXIWs2VLWavv8Y+FKUTaHN7XjIhw8N8z0omPqOa/Z6RTU7CXLcUmzh9i4qycfoRbTdQ1Or37A1gcxvtE1xWwZUuxr75FRy08PJzMzEysVmunXyOJYC9Kirb1ePWiGYOSWLSlsFvHKK+zs7ekxkcRhQaFb5I/IXzpoU+3ERtuoX98BFNyEsnt5tpeIXqT3eliUHIUr10zk+Rom7dgkxD+9snGQ+wvNX6f1jt8c6Pts02HuPqF1d7HEQG+xOdo5eXlERMTQ05OTpt9I6vrHZiKqxmUHE10uIVGhxN9qIrMhEjCLCZMRdUMSo4iOtxIePYU1+B0aYa4R5XrGp1QWMWApCjiIlpPilwHKkiICqN/fARgtOs4UF5HelwEByvqGJYWg81qZl9pLXWNDqJtFirqHIxsVnW3psGBqaiagclRxIR3PvnqCVprSkpKyMvLY+DAgZ1+nSSC4gifby7g880FHfYacrm0t8qkECIwXT57IL85cRiLtxbyxuo8f4cjRJdYzCrkWhGIwBVpNTMmI5adRdXsLDKWhMSEWxmb2f2WHEXu4nm/PWUEseHWoJ0FVF9f324SKI6OUoqkpCSKiro2nV4SQdFCVJiZa+cN5i+fbaeyzt7mfmaT4tHFO3l+aa63vLEQQoi2ldY28tYPRjKeFhvut3XcTpfRM7Su0cHQtBgGy1onITrFYjbxwa/m9Oh7nDUho9ersDbncmneWXuAqnpjeuq6vHKfv4ckgT3jaL6vkgiKFganRjO9E32GHrlwIh9tOMiHGw5S4oM1jkIIEcwSo8JYsq2O37zW1Ats3d0L2py21JNW5pZ6p1kOTY3m898c2+sxCBFKPFVN//Chsb4skJeSbDlU2eL3VDCKjo5m+bam6qbPPvss3y5dzvV3/anLx9q6aQPb68o496wzjnhuyZIl/OUvf+GDDz7oVrytHTcsLIxZs2Z1+1h9KhFUSi0E/gGYgSe11g/4OaSQdeq4dBwuFx9uONjufst2l/DQp1u5fv5QbL21slsI0aOq6h1SvKOLHvzROG5wV5t7e80B/r5oB3anf/qR1ruLB2XER/hsfZMQom1RNgt/PncceWV1mJXi3CmBWy3d4TSW/PzjwgnMGZoCwM2vr+NAmRQhbM22TRvYv31jq4lgT1myZAnR0dE+SQT7TD16pZQZ+BdwMjAKuEgpNcq/UYn2TM1JYH9pLf9avIvN+ZX+DkcI0YHPNh3ix08u48dPLuOfX+444vmk6DDAqGzn+Vp0jtVsYkBSFAOSokiKCozvXZil9y4BahocvLcun7d+yOOtH/L4cP1BGiQJFSHk/ClZ/ObEYdxwwlAy3AVKAllMuIXEqDASo8IIC6H2VcXFRfzm6kuZPXMGU6dOZeXypQCsWb2KH59xIhMnTmTWrFls27aNxsZG/v3XP/LWm68zYcIEXn311TaPe88993DFFVcwb948Bg0axCOPPAJAbm4uI0aM4LLLLmPcuHGce+651NYahYhycnIoLjaqka5atYp58+aRm5vL448/zt/+9jcmTJjAN998061/b18aEZwG7NRa7wZQSr0CnAls9mtUok1PXjaVJdsKufyZlUhJGSEC38cbD7Eyt4xxGXHEhls5YWQamQlNZd1PGt2P7287HrvTRXpc4F/IiMDx1g953PXuphbbHr9kEgvHpPspIkODw0VBZT0K0PKHSvQxRdUNnPjwV1Q3OLxtgvrS8rvfv7+p1YECp0tTb3cSbjVjNim01tQ2OrFZzSgF9Y1Nz4Exy0FjVFod1T+W/ztpRLvvW1dXx48WHIPZpLCaTZSWlrLg5FMBuPP/buKSq67lotMXUHDwAMefsIAPv17BkKHDeO6tjxmXnciiRYv47W9/y/Mvvcovbvot+7dv5InH/93hv3fr1q0sXryYqqoqhg8fzrXXXgvAtm3beOqpp5g9ezZXXHEF//73v7n55ptbPUZOTg7XXHMN0dHRbe7TFX0pEcwA9jd7nAdM91MsQogQVV5r5+lv9+BwuThmSAqj+ne/Wpzd5SK/vI5Gh8vvJcP7xYbzxrVtTzfp3wfuZIvA0+AwpsF+eP0xlNXYueSp5d5t/mI1K1bsKWX6H78AYNrARL/G41HT4KCwyqggWVnfdtG23pZfUcf+0tou9fwTPSuvrI49xTXMGZpMelw48ZFh5CQFZ7VRX4qIiODNz771to/wrBEE+HrJYjZt3szffn87SkF1VSXV1VW46mq4/f9u4tD+PSilsNu7/rN56qmnYrPZsNlspKamUlBQAEBWVhazZ88G4JJLLuGRRx7xSZLXGX0pEWztHkeL+3dKqauBqwGys7N7IyYhRB917webUSgmZsdz+vj+nX5dcXUD935gTEQ4fkQpT18+tVtxWM2K/aV1zHrgS/cxU7t1PCECWVZiJBHWBn+HAcC9Z45hd5HRM/dPH2+hqKpn4/r7ou3cctLwDve78IllbDhQ4X2cHue/CpIANvcU4jveNgoMPX/FNOYOS/FnSOIwVx4zkHnD+97fjrtPH93q9up6B7sP6yO4tVkfwd2d6SN4lFwuF8+/8xnjc1Jb9BG863e3Mm3WHP541/vk5uYyb968Lh/bZmtaW282m3E4jMqsh1f79Dy2WCy4XMYNs/r6+qP8F7WvLyWCeUBWs8eZQH7zHbTWTwBPAEyZMkUmeQghjjCiXyxxEVbeWJVHnd3JJxttXUoEPQYkReLwQR/NmxYMZ3qzkYhpAzuu2iuE6L7haTHMcFfJ/scX23vsfUb0iyElxsaLy/cxZ2jHLUNKaxqZmpPAj6cPAPBe3PrLiH4xPPPTqewqrOYPH26hrFYqhYvgNe/4+bzy3H8Zf/cdAGzasI5Bw0dTWVlJaj9jKvuzzz7r3T8qOprq6qpuvee+fftYunQpM2fO5OWXX+aYY44BjGmgq1ev5uSTT+bNN9/07h8TE0NlpW9qb/Sl1Z8rgaFKqYFKqTDgQuA9P8ckhOhjFo7px7q7F7Dh9yfxo0mZHG0uZ/LRQoyM+AgumJrt/RgYpE2EhTic3Rka92un5iTywpXTgM6vQ8xOjOKsiRmcNTGDMRlxPRhdx5RSHDc8leNktoIIAfc/9DCb1q1lyqSJjBo1iheffQqAX/zq1/z9T79n9uzZOJ1NI45TZ85h65YtHRaLac/IkSN57rnnGDduHKWlpd61g3fffTc33HADc+bMwWxuWjZy+umn8/bbb4dWsRittUMpdR3wKUb7iKe11ps6eJkQQgSFRj+1GhDC1ywm4x70za+vo7SmgavnDvZzREKIjpTWNvLUt3sA2Nhs6nJfVF1dzaZm/4bLL7+c08+9iAPldSQlJfPQY08zPC2mxdTQydOm89G3P3jrAtx3333UNDiIS0jgq++WEhN+ZE/YefPmeaeQ3nPPPS2e27jRmGqdm5uLyWTi8ccfP+L1c+bMYfv2I2crDBs2jPXr1x/tP7+FPpMIAmitPwI+8nccQvjK5vxKNh7oeHh/e0EVhyrrsZoV4zLjsYZQKWcB//lqF3/6eCsAlgBuRCxEZ2QlRvDgj8by+/c3s7ek1t/hCCE6kJEQwSebDnHfB02F+oenxVBSExjrfXtCWa0di9lBo5+LWvW0PpUIChFMXC7N2f/+jgaHC6WMhrNtufqF1d6v//yjcZw/NavNfXtTSXUDf/l0GzctGHbEYmfhO/tKa4kMM3PP6aOlf5/o85RSXDA1m4c+3ebvUIQQnXDnqSO5fv7QFtsiw8zM/NMXfoqo51jNxrVMYVVTcRZbD/ZczcnJ8Y4O+oMkgkL0okani7veMX7gpw5MpMHh4uLp2Vx77GCSo23tvvaSGdn8b9k+qhscvRFqh6bkJPDl1kIeXbyTn8wcQFqsfyvbBbvIMDPnT83iy60F/g5F9IK6RicfrM+nweGi3i6N14UQ4NS6xTrT4ureGZFTShEXceTUx2AUZbMwun8cWmt2FFZjD/JlGZIICgD2ltZSVR8YCUawGpMRR0KklQ83HKS63sGXWwsBo29bZ/oyBVpvoB9PH4BC8du3N/g7FCGCzuJthdzyRss1IKlys0WIkGVWiseW7ALAZFJMyk5gybYi0uPCGRBg1wcd0VoH9Cwio1G9arVvXSDTna1G1YwkgiHO07z6Aff6o0BpqBuMzhjfnzPcbQpufn0db6zOA/B7A/G+pLbRQYPduDvnOopfeKJ1Lq1ZtLmAgxV1/g5FuHnuQr9xzUyykyKxmEwkRsm0YCFC1T8unMCuomqUUpw+rj/ZSR3fQA5E4eHhlJSUkJSUFNDJYF+jtaakpITw8K7dMJREMMQNSIri9WtmUlFrB2Bk/1jyy+VisKfddvIIThyVhlkpZg2RvnGdsb+0luP/uqRFyXlP9cFA8MWWAl5ZuR+AXYXVjM+K929AnRQbbsWl4arnVwEwJiO2V97XpTXvrDVawR4fomXpL3piGamxNp66bCrhbdwQSowKIzVGRgKFCHUnj033dwg+kZmZSV5eHkVFRW3u02B3UlTdiKs0DJvVjMPloqCiAXuJFbNJUVTV9BwYU2RdGuwlxhIbu9NFQWUDjpIwIsJa/916qLyOSpuFCveU1+oGB+W1dkwV4e4RQThUUY/DpbGYFOFWE3WNTlRFRFOcDhdFVQ04S8Pa/B3em8LDw8nMzOzSayQRFEzNaTkKKIlgz0uOtnHS6H7+DsOvXl+1n/s/2uJd7xBts/DmtbPoF9f6RW9JTSN2p+bi6dkMS41GKcWJo9L4aMPBXoy6bW+tOcBX24oYnBpNRkIk8/tIcnPlMQOZPSTZex4yEyLaf4GP/HTWQO5tVoGuuz5cf5BDlfVkxIezcExgXzDNHpLMqWPT2Vtaw3c7SzhYUS/9I4UQIcFqtTJw4MB291m6q4SfvbSMl382gwmDk9hfWsvpLyzmL+eNJzMhgp+9uIyXfjadCYOTAbjs6RWU19l595cTAKMi+8/+9w2PXzKZhSNbv9Y67+5PuWBqFnedNhKAF5bmctd7m1h15wnemg1XPfAlB8rryEmK5JihyXy8oZDVd53I/tJaVuwpZU9xDY8uzuWFK6cxcWiKj75DvUsSQSHaUVrTyPvrjFELs0lREyCFWoLBpvxKahucXDw9m7yyOhZtKeBAeW2biaDHiSPTAraxcVZiBB/fMMffYXSJxWzyS8Pqi6dn+ywRrKi188uXfvA+3nDPglZ7OgWKQSnR/OvHk3hnzQFufHWtv8MRQgS55btLSYwK67XiMsHujx9t4eONh7yPEyL77rR9SQT7sOLqBt5dm4/LpSmorO/4BaJL4iOtfLuzmF+9vMa7bUS/GD9GFHwiwszcc8Zovt5exKIt/qmGWVVv5+HPjYatkugHpsp6OzsKqtleUNXq8w6XsZ4uOzGSfaW1uIK7yJsQQnRKdLhxmd/8htPUnAQ/RRM8Gh0uhqVF8+SlUwkPM/Xp6fuSCPZhr6/K48FPtnofW0yqw9EU0Xl/PX88N55g9M1pdGhOeeSbgGndIHxjaFo0tXYnj3yxAwClYEhqtJ+jEoe75fV1fLqp6UZBZLM1H7WNDq54diWAd12HEEIIOGVMOu9dF9miBcLAZPkb5wthFlOfLdjTnCSCfZjTfdt77e9OxGI2YTEpiqp6Ztj/7TUHSIoKY1dRTY8cPxDZLGaGpBojgA6nC4tJkVfm//WTdXYn5bWNAN1anFzb4PSOJIdbzMRFBu5Uup5y1ZxBXDVn0BHbn/lujx+iEW2pbnAwNDWaO08bRbTNwuj+RkGbE0amsb2gCq1h3vAU0uMi2FMcOr+jhBB9X2lNIy8s28vKPaU+P7bJpBiXGe/z44rgIYlgEIiyWbCae656olLwzy93eh/PGBR6LSYsZhMvXDmdvLJaHv9qF4cqen8qrsU92vHQp9t46NNtgNF6YthRTFcNM5t4ddV+Xl1lVLlUCj781dGvbXvwk61Ehpmxmk1cc+xgaS4vfC4uwsqxw1ouxp85OImZg5uq7j79rSTwom965IsdvOH+fXxIlnqEjLTYcBZtKeSudzYCEBVmJsoml+ai98j/NtGupKgwltwyD0ezkv0x4aH538a44Exi26EqXl6xr9ffP8pm4fFLJnt7vW3Iq+CtNQeoqG0kLqJro3mPXTKZnYXVAOwtqeE/X++mpKbro8nD+0XTLzacr7YV4dSa8lo7w9NiuHBadpePJYQQoSw7KZKsBGOq2YXTsvwcjegN9505hhtPGOZ9HGUzExkWmtdYwj/kf5voUG9W36tucBjTMHtwhLMvWzimqQzyO2sO8NaaA0d1nGkDE5k20BjZXZVbyn++3n1Ux5k8IJFlv50PGP12ZvzpC4K5zXvzNWiyHE0I4UuXzszhlCDpFSc6x2RSpMTY/B2GCGHdSgSVUucB9wAjgWla61XNnrsduBJwAtdrrT91b58MPAtEAB8BN2ittVLKBjwPTAZKgAu01rnu11wG3Ok+9B+01s91J+5Q4nC6qKizU9UHipxYzYpnv8+luLqBRy+e5O9whDjCr44fwsGKetLjwnnmu1x/hyO64Yd9ZSzZWuh9nB4fwUUyki2EECKEdHdEcCNwDvCf5huVUqOAC4HRQH9gkVJqmNbaCTwGXA0sw0gEFwIfYySNZVrrIUqpC4EHgQuUUonA3cAUQAOrlVLvaa3Luhl7SLjiuVV8vb3I+9gSwMMYz1w+jTve3kBhDxW8aYvLpckv938RGBH4hqRGc+aEDIA+mwh+1ez3QSh75IsdLNlWhFKg3cPYMhojROdo9w+NDuYpIEKEgG4lglrrLQBKHZFcnAm8orVuAPYopXYC05RSuUCs1nqp+3XPA2dhJIJnYowuArwBPKqMA58EfK61LnW/5nOM5PHl7sQeKg5V1DEyPZaLpmWRGBVGZkKEv0Nq08zBSaTG2nD14B+W4uoG/vb5dsZnxXH8iDQAnl+ayz3vG42tw60yJVUEp/7xEYRbTXy9vYgIq5n+8aFd0Mfp0kzMjuftX8zmme/28Pv3N3svblvzyop93iQ6NtzCPy+eRLQUdfALrTUPfLLVW7Rrb0kN8VIZsdc02F1M/+MX3pu2WYmBe10helZchJXi6kbiI/puQ/VQ11N/xTIwRvw88tzb7O6vD9/uec1+AK21QylVASQ1397Ka1pQSl2NMdpIdnbfnOJT0+Dg+pfXsDG/wmfHzEmK5NKZOT47Xl81JDWaTzYd4h9f7CAzIcKbCJbX2QF49qdTGdM/zp8hCtFjhveLYcu9C72PW7mBJ1phUnDpzAHsdrfOKa5uYPXeMnKLaxiTIb8v/KG0ppH/fLWbxKgwYsMtxEdYOWZIsr/DChlVDQ4Kqxo4fkQq4zLjGJ8V7++QhJ+89YvZFFTW0z9ebgb0VR0mgkqpRUC/Vp66Q2v9blsva2Wbbmf70b6m5UatnwCeAJgyZUqfnLCwp7iGL7YWMqJfjHcKmvCNm08azs0nDeeW19fx3c5iAHYWVvP3RUYz8WOHpcjFsQhq8v+765RS3HvmGO/jzzcX8LPnV7XzCtFbbjxhqNzkbIXWbVwk+dhxI1L5yYwBvfBOIlDFRVi7XLU8UCjgpeX7eG9dPkCP9eEOdB0mglrrE47iuHlA89rHmUC+e3tmK9ubvyZPKWUB4oBS9/Z5h71myVHE1Kf85sRhLBjdWv7dt207VMVrq/ZTEyDFa3YWVgFw1oT+cpEshPCLm19fR2qMjb+cN156iAUYu1NTWW/3dxidYnL/DfvTx1sBo/2Ts5OL+H7//mbSYsP549ljeyw+IQLJrSePYFN+JQBFVfUs2lLYwSuCU0/9xXkPeEkp9TBGsZihwAqttVMpVaWUmgEsBy4F/tnsNZcBS4FzgS/d1UQ/Bf6olEpw77cAuL2H4hY97OUV+3j2+1xibBYSo8IYkhrt75AA+Pmxg/0dQtD462fbefKb3USGWXj8J5P9HY4QAWt8VjyzBidRUFnP6r1lXHPsYJlmF0BGpscSFWZGA2MyYv0dTociwsz85bzx5JXVAjAqPZb/e3N9u68ZkR7DnKHJFFU18PnmAi6e3jeX1QjRVZc0G81emVsqieDRUEqdjZHIpQAfKqXWaq1P0lpvUkq9BmwGHMAv3RVDAa6lqX3Ex+4PgKeAF9yFZUoxqo6itS5VSt0HrHTvd6+ncIzoe7TWxEdaWfu7Bf4OJej94cMt/OMLY9prTlIUs4ck9ej7pcbY+OnsHAqrGiiraeT7XSXsKKjq0fcUoi8bmBzFSz+bwZdbC7jiWZluGmjOmpjBWROblmi4erKSmY+cOzmzxeOOEsHUmHBeuHI6a/aVcfa/v+/J0IQQAai7VUPfBt5u47n7gftb2b4KGNPK9nrgvDaO9TTwdHdiFSJUDEyO4vwpmZTXGtOZ9hTX8MmmQ0zJSejgld1jMinuPn00YPRoO0cuKkJGYVU9+eV1PVIw4GBFHd/tLGHygJ79/yu6p7CygV2F1d7HyTE2puYk+jEiIYQQAtO9DAAAHKNJREFUHZHFCEIEGZvFzJ/PHe99/O8lO/nzJ9v8GJEIZlE2C9/tLOGnz6zk01/P9fnxn3X3awzk1jcC/vDhZrYeajkDYPWdJ5AUbfNTRKKnvLhsr79DEH3cJU8u5/tdxd7HEVYzb1w7i5HpgT8FO9hIIiiEEOKoPffTqdz8xnp2F1V3vHMnbcir4L4PN+N0afaX1qIU/O38CT47vvC9BoeLgclRPHbJJD7ZeIi/L9pBg8Pl77B6lMulKa1tpMHu7HjnIJARH8H8EamU1jYybWAiU2SUXhylbQVVjEyP5fgRqRRVNfDKyv2c//hSwiwmlILZvdwOxqSafx1ahQMlERRCiKP09fYipt6/CK01lXUOspMiff4eH64/SG5Jjc+P6yupseEkR4exu8h3x1y+p4QVe0qZPjCRYWkxnDs5E5MptP4490U2i4kR/WJZt7/c36H0it++vYFXVhptjoenxfg5mp4XbjXz1OVT/R2GCBLjMuO5acFw7E4XiVFh3uq8b6zOY31ey17antzs5tfX8a+LJ/k8ljEZcdy6cATRNjOJUWE+P34gk0QwSDlcmnq7kz6wtl0Escp6R8C0CukppTWNXDjV6JYzY5DvCvIkRBp/jH7z2jqAgKmw25v+e9kUYsP7Zo+qYPHE17txOOUPSWsOVdaTER/BNccOYmxmvL/DEaJPsppN/N/CEd7Hn20qOGKfjPgIpuYksDK3jIMVdT6PwWYxc+280KweL4lgkLGYjdsmt7+1gdvf2gDAiH7Bf6dSBBaryQTA9S+vadpmDs4RnTCzift7oPfWRdOymDU4CYf7bk5arKy1Er0nOzGSkemx7He3IhibEUd6XLifowo8ydFh/ESa2gvRo5RSXD13MCtzpbqyr0kiGGT6xYbz53PHUVzd4N12wsg0P0YkQtGo/rH87YLxVNcbo4FxkWG8tzafA+W+v5MXrJRS5CRH+TsMEaKSo218fMMcf4cRdL7YWsi+0loirGZ/hyKEEJIIBhulFOdPyfJ3GCLEmU2Ksye27Gf1/rr8ozrW5oMVVDc42JRf0fHOQvRhRVUNLPz710TZLN7pxiI4JEaFYbOYeGN1HgALR/fzc0R9w3+/2c0nmw75OwwhgpYkgkKIgPbrV9f5O4SAdOc7G4m2WTCbFL8+cZj02QsCuSU13hYMJ4/pW4lCZZ2dlBiZvtyW1Jhw1t29wFtJNcYml1+d4dJQUWfn7IkZzBue4u9whB95Fpf84cMtfo0j2MhvIhFUVu0tY1tBVcc7ioCUV1ZHXEQVFXV2om0WnrpsCvUOF40OFz97XtYGAIzuH8exw1Koa3TidGmW7jaarUsiGFw2HugbI+CpsTaUgpKaRsZkxPk7nIAWbjUTLlNCu2xQchR/u2CCv8MQfjZtUCJhFhONQd6WprdJIiiCxvjMOFbsKQWMUt6yBqPvsFmM4jI3vLLWuy01xsZ0dxXO+hDp09UZabHhPHfFNO/jnNs+9GM0oqe8szYfs0kRGxHYVVOn5iSy9q4FNDid3kq3fZXDJReYQgSq2HArvzpuCH/9fLu/QwkqkgiKoPHMT6d1vJMISFNyEnn68inUNDQlfAOlUIoIUQ+cM5ZpAxOJjbCSHB340y3jIq1AYCesHbGaTewvNYpZhZlNfo5GiNCW565WLHqeJIJCCL8zmxTHj+heddvLnl6BxaSwWcwUVzf6KDLR2/aV1lFvD+2RmcyESAaldK5vZGmNnf2lxkWT2aRIjwtHqeBs1dKTHrloIlsPVhFlMzMhK97f4QgRsn42ZxCr9pYSZbMwOiPW3+EEvW4lgkqph4DTgUZgF/BTrXW5+7nbgSsBJ3C91vpT9/bJwLNABPARcIPWWiulbMDzwGSgBLhAa53rfs1lwJ3ut/2D1vq57sQthOi8/3y9i9dW7aeqPjAbw88anMzcYSk4nC7q7E5W7iz2d0jiKMVFWPl6exEA4VZTQI/MrN1fTkWdnTEZccT5Yfqm1f29efCTrTz4yVbv9nvPHM2l0teuyyZlJzApu2+ss3115X6KqhrITIjwdyg9amJWAhsPVDAuM97foYhe9LO5g/gZg/wdRsjo7ojg58DtWmuHUupB4HbgVqXUKOBCYDTQH1iklBqmtXYCjwFXA8swEsGFwMcYSWOZ1nqIUupC4EHgAqVUInA3MAXQwGql1Hta67Juxi6EaEdUmJmfzx3kbSgNEB8ZxoCkSD9GdaRR/WN53r1mbk9xDcf9ZYl/AwpRhVUN/PrVtTx07jgsR5nAvfWLWRysqAcgKSosIAtrRNmMmO58Z6N328LR/Xq9SFVKjI1nfjqV4qqmnrG3vLG+xeO+wuXSnPLIN+wtqSU5JoxPbphLlFTVPEJGfAThVhOvrNwPwJDUzo0a91UvXz3D3yEIEfS69ZtWa/1Zs4fLgHPdX58JvKK1bgD2KKV2AtOUUrlArNZ6KYBS6nngLIxE8EzgHvfr3wAeVcb8lpOAz7XWpe7XfI6RPL7cndiF6I4Gh4s/fLAZwLjwSvdzQD1AKcXtp4z0dxiiD1gwKo0f9pbx9poD3LpwBP3iwo/qOPGRYcQHeMGRmYOSeP+6Y6izO/nX4p0crKhjT3ENYWYTp4zt3V8Exw1PbfH4/95c36vv7yt2l4uth6qIDbewv7SOstpGSQRbMSwthi33LvQ+linAvlVYVc+nmwqobgjM2S897bWV+zlUWe+9GSdCgy9/014BvOr+OgMjMfTIc2+zu78+fLvnNfsB3COMFUBS8+2tvEaIo1JRZ+ePH21hd1FNl187Mj2WCKuZl1fs826TsumhZ/rARPLL6xiXKed+4Zh0ymrt3P7WBn+H0uOUUox1n/NpA6VAlS8lRduoDNAp6IFCkr+e8/z3e3l08U4A+sUF97Tbw5XWNLa4kWSzmOgfH1rfg1DVYSKolFoEtNbZ9g6t9bvufe4AHMCLnpe1sr9uZ/vRvubwWK/GmHZKdnZ2a7sIwcj0WD5Yf5AXlu4FoF9sOGmxnR/B+NHkTH40ObOnwhN9xO2njJQRUxFw9pTUcv7jS2lwGBV4A310Y8m2IvLKVvs7DOG2Ob8yZNv12F0uwiwmlt0+n4TIvl0Ft6ucLuOy+t4zR/Pj6QNQgMkkNx1CQYeJoNb6hPaedxdyOQ2Yr7X2JGh5QFaz3TKBfPf2zFa2N39NnlLKAsQBpe7t8w57zZI2Yn0CeAJgypQprSaLgay4ulFK5vaCK44ZyBXHDPR3GEL4zKb8Cl5pNkJ97PAU0kPsjrYwbDxQwZ7iGqblJBJpM5MQFcaIfrGMzYjjuwArpHT6+P6syi2jtKaRCVnxDE+LYU9x12dpiO6Ldk/FfejTbd5toTg9VwGJUYE9Pb0nKaUwSwIYUrpbNXQhcCtwrNa6eQbzHvCSUuphjGIxQ4EVWmunUqpKKTUDWA5cCvyz2WsuA5ZirDX80l1N9FPgj0opTzmvBRhFaYKGxaxQCu+UBABbABZJEEIEnpQYG4u2FLJoS6F320XTsvnTOWP9GJXwtz+eMzbgi4ncffroFo9fW7WfV1ftb2Nv0ZOGpEbzyY1zvNWh4yOsZMjUQOFjD326jSe/3U15rbR4ChTdvd3zKGADPnfPW1+mtb5Ga71JKfUasBljyugv3RVDAa6lqX3Ex+4PgKeAF9yFZUoxqo6itS5VSt0HrHTvd6+ncEywiAm38srPZlDgrvYWYTUza3CSn6MSQvQFX90yj4o6u/fxWf/6DrsztPvwCSG6RinFiH6h07PN6dI0Oozfk2GWwG1TEywGpkRxwsg0KuvtuLTRruXEUakdv1D0uO5WDR3SznP3A/e3sn0VMKaV7fXAeW0c62ng6aOPNPBNHySJnxCi6yLDLESGNf0qt5jkokYIIVrjmfZ421sbuM1d3OoX8wbzfwtH+DOsoBdts/DkZVP8HYZoRehNABdChJS9pbW8unIf2w71bp83IYQIBKv3lVFeY+94xxCQHhfOA+eMpaTGmJr49Ld7yC3x7brURoeLTfkVgNEjU4hAJomgECLgNa+Ybu1Cs/KUaBsrcktZt78cgIHJUT6OTIi+w+T+Qbr/oy1Ay5+rnrDw718T7l7vXttorA6RMhS9a3T/WFbmlgEwIj3Gz9H4n1KKC6c1VZV/Z80Bnx4/wmomv6KeUx/5tsU2IQKVJIJCiIBns5h55qdTKa1uZNrAxE6/7oWrplFS3bQoPSHAm5UL0ZPmDEvm5gXDqLe7iAm3sDG/krX7y3rs/SrrHYzuH0dOciQAmQmRxIR3XJb/5tfXcc4kadHjCy9eNcPfIYSUW04aznEjmta+KWCG1HwQAUwSQSFEn3Dc8K4vLLdZzNIUVwi32HAr1x0/1Pv4N6+u7fH3vHBaFmdOyOjUvhOz4pkyIIGNByqxO/eTGmPr4egCS1dmO4jAlBRt46TRrbXeFiIwSSIohBBCCL8bmhbDG9fO4pInl1MXwE3N95bU8M2OIspqfFMC/39XTqegsp45Q5N9cjwhhOgsSQSFCECXPLm8042V88vriYvoeLpVIDhYUced7xiV2lbu6bkpaSLwWc0mBiRFsreklqEB0u8ut6SWmgaHv8MQAUopiAoz89aaA7zlXls2e0j3p/0dIwmgCDLvrj0gI9x9hCSCQgSQ2UOS+XZnMS4X5CRFkR4f4S10knLYNKmpAxM5dWw6DQ4nJ45Ka/OYhxeIMPmpWsOk7AR+2FvGxxsOebd1Zb2f6LyCynq+2VHk7zDaZTYpvrrlOH+HARhTiMHowejdZpWLGNGSUopPbpxLQWW9d9vglMC4iSFEIEiNDQfgL59tb9oWE+6vcEQnSCIoRACZmJ3AK1fPbLGt1D39KDGqZaGTjPgI/vXjSR0e86wJGdQ1OnG6NGlx4SRF+2fdzbXzBnPtvMF+ee9QEm2z8M2OYr7ZUQxAjK13f82/sXo/se4R6olZCYzNjOvV9z8aZ03sT1yEFYfL3WDabGpR8KEvcUq5+h6VlRhJVmKkv8MQIiAdOyyFtb87kUan8bvUajKRECVF2gKZJIKiTXlltcR2osKb6FmHJ4Bd1S8unF+fOMxH0YhA98JV09hXUguAyaQYm9E7iVi/Vu4Ej82I4/1fHdMr798dkWEWTh2X7u8w0N3M4Swmxb5S49xbzdKoQQSm8lo7r67cx6pcWR4QjOJ7sDq3qdmUJlNP978JEZIIiiOMTI/l/CmZVDc4mJiV4O9w2nSgrO6I6ZJChLrUmHC/TMU5bkQq6+5egMN9J/im19dxqKK+g1cJaGX69lHOSn38ksnsKa4hITKM7CAdtapvdFJWK83R+6qUGBuFVQ3c+qaxVtxmMckNZ9FpZ03MoLbRQYTVzISseH+HExQkERRHiLZZ+PO54/32/gfK6nj4s23Y25jiNDYjjjPG96e20cGMQdKfR4hA0bxoUVgAFQpwOF0cKKtjVHqsv0Np1fSBSdx56khqG51EhpmZlH10N+Dmj2x7rXAwsJpNPLd0L88t3QuA5WgzZuE395w+mmuObVoiEB1ukURQdFpGfAS3nDSizecbHS40Grv7hmR3XT13ECv2lDJzcBJbD1X65JiBRhLBPqay3s7v3t0IwPq8Cr/G4rmL/YcPNwNG8Ye21DY4qay3e+eNt2VYWgzL95Tyz8U7AWN608DkqBb7JESF8chFE7sTuhCdsrOwmphwKwfK6vwdijgKi7cWUlLTyB8/2kKDw+UtChNoIsLMXDVnkL/DCHiPXzKZXUXVAFjMitPG+386r+gak0lJb1fRI9btL2f4XR+3mGJv6WZ1vMtm5XDZrBwAb8XzYCOJYB8yLjOeTzcV8P66fO+2Sdnx3f6PfrTmDkvhphOH0eBwERNuYWQrd9s9d2wveWq5d1tyO8VK7j1zDPeeOcb3wQrRBeFWI2E49/GlrW4XgS+/vI6fPruyxbb/Wzicq19Y7aeIRHcdMzRZWi0IIdqkNdx04jBMJkWE1czsIfL7oiPdSgSVUvcBZwIuoBC4XGud737uduBKwAlcr7X+1L19MvAsEAF8BNygtdZKKRvwPDAZKAEu0Frnul9zGXCn+23/oLV+rjtx91UXTcvmomnZ/g7DKy7Cyq/mD213n6kDE/jj2WOpbWzqzTWiX2BOzxLC4+yJGSRFheFoNj05NtzKoMNGp0Vg8dQOOObBL/GcubtOG8WCUWmkxNgkkRdCiCB3zbzB0sOwC7o7IviQ1vouAKXU9cDvgGuUUqOAC4HRQH9gkVJqmNbaCTwGXA0sw0gEFwIfYySNZVrrIUqpC4EHgQuUUonA3cAUQAOrlVLvaa2l3FQfYLOYuXh64CSvQnRGuNXMgtH9/B2G6KKFY/qRX16H3WmkgTaribMnZnS78q4ILp42ISL47C+rpbLeKCbULy48YKeDC9/yFMfqHxeOWaqJdkm3EkGtdfOVk1HgvQl7JvCK1roB2KOU2glMU0rlArFa66UASqnngbMwEsEzgXvcr38DeFQppYCTgM+11qXu13yOkTy+3J3YhRAt5ZbUUlkn1fhE35UeF8Edp47ydxjCBw6U1VFW2+jTpQ9md0uN/aV1LR6Lvi/MnfCd8eh33m3zR6Ty1OVT/RVSn1Bc08jX24uo6ON/++89czS3nzKCMLOpRYsJ0bFurxFUSt0PXApUAMe5N2dgjPh55Lm32d1fH77d85r9AFprh1KqAkhqvr2V1xwey9UYo41kZ8solBCd4Zkud9c7G73bImQKnRAhweWCsppGahocHe/cS0b0i2H5nhJKauDkMb4rCBMbbuXJS6dwsLKe9NhwqVYZRM6a2J/ocIu3fc1/vtpNSU1jh69TCj7dVMDYuz+l3uEMqUq00TYLy3aXcunTK7zbYmx9s3SIUorIsL4Zu791+F1TSi0CWpsjdYfW+l2t9R3AHe41gddhTONsLR3X7WznKF/TcqPWTwBPAEyZMqWbrXmFCA2j+8fy0lXTqXJfCCZGhUlVN+ETBZX13Pu+UVXY0UY7GOE/FrPiQHkdE+/7vNk2/18I33naKO48rWdGdk8YFdwtNkJVZJiFM8b39z5+Z20+a/aWcdnTKzhQVsfwtJhWX3fzguEs213qfTyiX+v7BaPHfjyZ3cXV3sdWs4nR/eP8GFHg04Dd6cKlg+fvWYeJoNb6hE4e6yXgQ4xEMA/IavZcJpDv3p7ZynaavSZPKWUB4oBS9/Z5h71mSSdjEkJ0QCnFrCCprNV8Gpm/qukKw7jMOJbuKuH1VcaEjhhb65WF/WHjAaP1TnZScDZd76zrjhvaordiQlQYOSH+PRHB4aTRaVTU2SmvszOsXwwnjEptdb8Fo/uF7HrwhKgwJkcl+juMPsOsFKU1jQy942MAxmcGR9Lc3aqhQ7XWO9wPzwC2ur9+D3hJKfUwRrGYocAKrbVTKVWllJoBLMeYUvrPZq+5DFgKnAt86a4m+inwR6WUp8PuAuD27sQthAhOmQkRPPijsZTV2jnFh1PKRNddd/xQrju+/arC/rBgVBofrD/o/jo0LwA9spMiuXz2QJ8fd0pOIvOGp6CASdkJHe4vhK/9ePoAfjx9gL/DEEHkp7MHkhobjnaPBk4bmOTniHxD6W4Mbyql3gSGY7SP2Atco7U+4H7uDuAKwAHcqLX+2L19Ck3tIz4GfuVO+MKBF4CJGCOBF2qtd7tfcwXwW/fb3q+1fqaj2KZMmaJXrVp11P82IYQQQgghhOjLlFKrtdZTWn2uO4lgIJNEUAghhBBCCBHK2ksE/b8qXAghhBBCCCFEr5JEUAghhBBCCCFCjCSCQgghhBBCCBFiJBEUQgghhBBCiBATtMVilFJFGJVMA00yUOzvIESr5NwELjk3gUvOTeCScxO45NwELjk3gUvOzdEZoLVOae2JoE0EA5VSalVblXuEf8m5CVxybgKXnJvAJecmcMm5CVxybgKXnBvfk6mhQgghhBBCCBFiJBEUQgghhBBCiBAjiWDve8LfAYg2ybkJXHJuApecm8Al5yZwybkJXHJuApecGx+TNYJCCCGEEEIIEWJkRFAIIYQQQgghQowkgr1IKbVQKbVNKbVTKXWbv+MJNUqpLKXUYqXUFqXUJqXUDe7t9yilDiil1ro/Tmn2mtvd52ubUuok/0Uf/JRSuUqpDe5zsMq9LVEp9blSaof7c0Kz/eXc9AKl1PBmPxtrlVKVSqkb5efGP5RSTyulCpVSG5tt6/LPiVJqsvvnbadS6hGllOrtf0uwaePcPKSU2qqUWq+UelspFe/enqOUqmv28/N4s9fIufGxNs5Nl3+HybnxvTbOzavNzkuuUmqte7v83Pia1lo+euEDMAO7gEFAGLAOGOXvuELpA0gHJrm/jgG2A6OAe4CbW9l/lPs82YCB7vNn9ve/I1g/gFwg+bBtfwZuc399G/CgnBu/niMzcAgYID83fjsHc4FJwMZm27r8cwKsAGYCCvgYONnf/7a+/tHGuVkAWNxfP9js3Px/O3cTGlcVhnH8/2BU/OpKLSVVGqWuWxcilEpBBQvSqKCkiBYUtNIuihtRQcGVCLp1IS1W6IcVLXaldaUbK6V1obWCtX6FhhR0YUFQEh8X94xOYjIwYXImcJ8fhJw5uTNceHhv5sy896zrPm7e6ySbOtn0fQ1LNnWymff314GXyjh1M+CffCNYzx3AOdvnbf8FHAbGh3xOrWJ7yvbpMr4EnAVGezxlHDhs+0/bPwDnaHKMesaB/WW8H3igaz7Z1Hc38L3tn3ock2yWke3PgN/mTfdVJ5LWAKtsf+7mHdQ7Xc+JJVooG9vHbc+UhyeAtb1eI9ksj0XqZjGpm4p6ZVO+1XsEONTrNZLN0mUhWM8o8EvX40l6L0JiGUlaB2wEvihTu0vrzr6utqpkVpeB45JOSXqqzK22PQXNQh64scwnm+GYYO4/5NTNytBvnYyW8fz5WF5P0HxT0TEm6UtJn0raXOaSTV39XMOSTX2bgWnb33XNpW4GKAvBehbqVc6WrUMg6VrgfWCP7d+BN4FbgQ3AFE0bAiSz2jbZvh3YCuySdFePY5NNZZKuALYB75Wp1M3Kt1gWyagySS8CM8CBMjUF3Gx7I/AscFDSKpJNTf1ew5JNfduZ++Fj6mbAshCsZxK4qevxWuDCkM6ltSRdTrMIPGD7AwDb07Znbf8NvMV/bWzJrCLbF8rvi8BRmhymS8tHp/XjYjk82dS3FThtexpSNytMv3UyydwWxWS0jCTtAO4HHi1ta5S2w1/L+BTNfWi3kWyqWcI1LNlUJGkEeAh4tzOXuhm8LATrOQmslzRWPlmfAI4N+ZxapfSa7wXO2n6ja35N12EPAp2dq44BE5KulDQGrKe5GTkGTNI1kq7rjGk2WPiaJoMd5bAdwIdlnGzqm/PJbOpmRemrTkr76CVJd5br4uNdz4kBknQf8BywzfYfXfM3SLqsjG+hyeZ8sqmn32tYsqnuHuBb2/+2fKZuBm9k2CfQFrZnJO0GPqbZeW+f7TNDPq222QQ8BnzV2YoYeAHYLmkDTRvBj8DTALbPSDoCfEPT0rPL9mzlc26L1cDRstvzCHDQ9keSTgJHJD0J/Aw8DMmmNklXA/dSaqN4LXVTn6RDwBbgekmTwMvAq/RfJ88AbwNX0dy31n3vWizBItk8T7P75Cfl+nbC9k6anRJfkTQDzAI7bXc2zEg2A7ZINluWcA1LNgO2UDa29/L/e9IhdTNwKl0KERERERER0RJpDY2IiIiIiGiZLAQjIiIiIiJaJgvBiIiIiIiIlslCMCIiIiIiomWyEIyIiIiIiGiZLAQjIiIiIiJaJgvBiIiIiIiIlslCMCIiIiIiomX+Ae2kasUhvR3HAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure() \n", + "plt.subplot(2,1,1)\n", + "plt.plot(df_simulation.index, df_simulation, label = 'Simulated Temperature')\n", + "plt.plot(df.index, df['OutsideTemp'], '-.', label = 'Outside Temperature')\n", + "plt.title('Temperatures')\n", + "plt.legend()\n", + "plt.subplot(2,1,2)\n", + "plt.plot(power[:, 1], drawstyle = 'steps', label = 'Heat Input')\n", + "plt.title('Heat Input')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Add the outputs to the experimental df and export the result: " + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "df.loc[:,'SimulatedTemp'] = df_simulation\n", + "df.loc[:,'SimulatedHeat'] = power[:, 1]" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PowerSetpointOutsideTempSupplyTempInsideTempSolRadSimulatedTempSimulatedHeat
timestamp
2017-07-13 20:00:00+02:0018.82758622.524.023.922.93333391.71493323.0845814239.488599
2017-07-13 20:05:00+02:003628.96551722.524.015.523.216667121.53870023.4614984239.488599
2017-07-13 20:10:00+02:004391.34482822.524.014.323.116667101.48161723.5862364239.488599
2017-07-13 20:15:00+02:004392.46666722.524.014.022.800000163.71015023.6750214239.488599
2017-07-13 20:20:00+02:003777.48275922.524.014.022.63333390.03956723.7643614239.488599
...........................
2017-07-20 05:35:00+02:009.51724122.522.023.622.7666673.26000023.73448310384.873952
2017-07-20 05:40:00+02:005.66666722.522.023.622.7333333.25000023.80676210384.873952
2017-07-20 05:45:00+02:009.13793122.522.023.622.7500003.24000023.80676210384.873952
2017-07-20 05:50:00+02:004.20689722.522.023.622.7333333.34000024.00824110384.873952
2017-07-20 05:55:00+02:004.23333322.522.023.622.8000003.38000024.03289710384.873952
\n", + "

1848 rows × 8 columns

\n", + "
" + ], + "text/plain": [ + " Power Setpoint OutsideTemp SupplyTemp \\\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 18.827586 22.5 24.0 23.9 \n", + "2017-07-13 20:05:00+02:00 3628.965517 22.5 24.0 15.5 \n", + "2017-07-13 20:10:00+02:00 4391.344828 22.5 24.0 14.3 \n", + "2017-07-13 20:15:00+02:00 4392.466667 22.5 24.0 14.0 \n", + "2017-07-13 20:20:00+02:00 3777.482759 22.5 24.0 14.0 \n", + "... ... ... ... ... \n", + "2017-07-20 05:35:00+02:00 9.517241 22.5 22.0 23.6 \n", + "2017-07-20 05:40:00+02:00 5.666667 22.5 22.0 23.6 \n", + "2017-07-20 05:45:00+02:00 9.137931 22.5 22.0 23.6 \n", + "2017-07-20 05:50:00+02:00 4.206897 22.5 22.0 23.6 \n", + "2017-07-20 05:55:00+02:00 4.233333 22.5 22.0 23.6 \n", + "\n", + " InsideTemp SolRad SimulatedTemp \\\n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 22.933333 91.714933 23.084581 \n", + "2017-07-13 20:05:00+02:00 23.216667 121.538700 23.461498 \n", + "2017-07-13 20:10:00+02:00 23.116667 101.481617 23.586236 \n", + "2017-07-13 20:15:00+02:00 22.800000 163.710150 23.675021 \n", + "2017-07-13 20:20:00+02:00 22.633333 90.039567 23.764361 \n", + "... ... ... ... \n", + "2017-07-20 05:35:00+02:00 22.766667 3.260000 23.734483 \n", + "2017-07-20 05:40:00+02:00 22.733333 3.250000 23.806762 \n", + "2017-07-20 05:45:00+02:00 22.750000 3.240000 23.806762 \n", + "2017-07-20 05:50:00+02:00 22.733333 3.340000 24.008241 \n", + "2017-07-20 05:55:00+02:00 22.800000 3.380000 24.032897 \n", + "\n", + " SimulatedHeat \n", + "timestamp \n", + "2017-07-13 20:00:00+02:00 4239.488599 \n", + "2017-07-13 20:05:00+02:00 4239.488599 \n", + "2017-07-13 20:10:00+02:00 4239.488599 \n", + "2017-07-13 20:15:00+02:00 4239.488599 \n", + "2017-07-13 20:20:00+02:00 4239.488599 \n", + "... ... \n", + "2017-07-20 05:35:00+02:00 10384.873952 \n", + "2017-07-20 05:40:00+02:00 10384.873952 \n", + "2017-07-20 05:45:00+02:00 10384.873952 \n", + "2017-07-20 05:50:00+02:00 10384.873952 \n", + "2017-07-20 05:55:00+02:00 10384.873952 \n", + "\n", + "[1848 rows x 8 columns]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Gaussian Process Regression" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load Gaussian Process Regression Model" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "model_path = Path(Path.cwd(), 'model')" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "def load_gpr(model_path):\n", + " x_scaler = pickle.load(open(Path(model_path, 'x_scaler.pkl'), 'rb'))\n", + " m_params = pickle.load(open(Path(model_path, 'gp_params.gpf'), 'rb'))\n", + " m_data = pickle.load(open(Path(model_path, 'gp_data.gpf'), 'rb'))\n", + "\n", + " k = gpflow.kernels.SquaredExponential(lengthscales=([1] * m_data[0].shape[1])) + gpflow.kernels.Constant()\n", + "\n", + " m = gpflow.models.GPR(\n", + " data = m_data, \n", + " kernel = k, \n", + " mean_function = None\n", + " )\n", + " \n", + " gpflow.utilities.multiple_assign(m, m_params)\n", + " \n", + " return x_scaler, m" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "x_scaler, m = load_gpr(model_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].variance ParameterSoftplus True () float64672551.1934857197
GPR.kernel.kernels[0].lengthscalesParameterSoftplus True (7,) float64[2.96352201e+05, 4.54452962e+05, 4.06450919e+02...
GPR.kernel.kernels[1].variance ParameterSoftplus True () float64676495.6894024109
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.10898288218871159
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print_summary(m)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "def data_to_gpr(df, lu = 2, ly = 3, dyn_in = 'SimulatedHeat', dyn_out = 'SimulatedTemp'):\n", + " \n", + " df_gpr = df[['OutsideTemp', 'SolRad', 'SimulatedTemp', 'SimulatedHeat']].copy()\n", + " df_gpr.rename(columns = {dyn_in: 'u', dyn_out: 'y'}, inplace = True)\n", + " \n", + " # Add the regressive inputs/outputs\n", + " for idx in range(1, lu + 1):\n", + " df_gpr.loc[:, f\"u_{idx}\"] = df_gpr['u'].shift(idx)\n", + "\n", + " for idx in range(1, ly + 1):\n", + " df_gpr.loc[:, f\"y_{idx}\"] = df_gpr['y'].shift(idx)\n", + "\n", + " df_gpr.dropna(inplace = True)\n", + " \n", + " return df_gpr" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
OutsideTempSolRadyuu_1u_2y_1y_2y_3
timestamp
2017-07-13 20:15:00+02:0024.0163.71015023.6750214239.4885994239.4885994239.48859923.58623623.46149823.084581
2017-07-13 20:20:00+02:0024.090.03956723.7643614239.4885994239.4885994239.48859923.67502123.58623623.461498
2017-07-13 20:25:00+02:0024.074.42825023.8108384239.4885994239.4885994239.48859923.76436123.67502123.586236
2017-07-13 20:30:00+02:0024.070.02716723.8815274239.4885994239.4885994239.48859923.81083823.76436123.675021
2017-07-13 20:35:00+02:0024.070.90666724.4815024239.4885994239.4885994239.48859923.88152723.81083823.764361
\n", + "
" + ], + "text/plain": [ + " OutsideTemp SolRad y u \\\n", + "timestamp \n", + "2017-07-13 20:15:00+02:00 24.0 163.710150 23.675021 4239.488599 \n", + "2017-07-13 20:20:00+02:00 24.0 90.039567 23.764361 4239.488599 \n", + "2017-07-13 20:25:00+02:00 24.0 74.428250 23.810838 4239.488599 \n", + "2017-07-13 20:30:00+02:00 24.0 70.027167 23.881527 4239.488599 \n", + "2017-07-13 20:35:00+02:00 24.0 70.906667 24.481502 4239.488599 \n", + "\n", + " u_1 u_2 y_1 y_2 \\\n", + "timestamp \n", + "2017-07-13 20:15:00+02:00 4239.488599 4239.488599 23.586236 23.461498 \n", + "2017-07-13 20:20:00+02:00 4239.488599 4239.488599 23.675021 23.586236 \n", + "2017-07-13 20:25:00+02:00 4239.488599 4239.488599 23.764361 23.675021 \n", + "2017-07-13 20:30:00+02:00 4239.488599 4239.488599 23.810838 23.764361 \n", + "2017-07-13 20:35:00+02:00 4239.488599 4239.488599 23.881527 23.810838 \n", + "\n", + " y_3 \n", + "timestamp \n", + "2017-07-13 20:15:00+02:00 23.084581 \n", + "2017-07-13 20:20:00+02:00 23.461498 \n", + "2017-07-13 20:25:00+02:00 23.586236 \n", + "2017-07-13 20:30:00+02:00 23.675021 \n", + "2017-07-13 20:35:00+02:00 23.764361 " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_gpr = data_to_gpr(df)\n", + "df_gpr.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "df_input = df_gpr.drop(columns = ['u', 'y'])\n", + "df_output = df_gpr['y']" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "np_input = df_input.to_numpy()\n", + "np_output = df_output.to_numpy().reshape(-1, 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "np_input_sc = x_scaler.transform(np_input)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "mean, var = m.predict_y(np_input_sc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluate performance of loaded model" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAEvCAYAAAAzXwbsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5gdZ3n3/3mmnLa9qBdbluUqS3I3NjYYAwZMsTEQOoZACC38yAuBF14SQiChJSQhJISEgAkGU4wNxoCxjY0r7nKVLVlWr6vtp055nt8fM6ftnt09u5KslXV/rkuXztQze3Z2zjzf+d7fWxljEARBEARBEARBEARBEJ5/WIf6AARBEARBEARBEARBEISDgwg/giAIgiAIgiAIgiAIz1NE+BEEQRAEQRAEQRAEQXieIsKPIAiCIAiCIAiCIAjC8xQRfgRBEARBEARBEARBEJ6niPAjCIIgCIIgCIIgCILwPMV5Lt+st7fXHH300c/lWwqCIAiCIAiCIAiCIDyvefDBB/cZY+Y0WvacCj9HH300DzzwwHP5loIgCIIgCIIgCIIgCM9rlFJbJlompV6CIAiCIAiCIAiCIAjPU0T4EQRBEARBEARBEARBeJ4iwo8gCIIgCIIgCIIgCMLzlOc040cQBEEQBEEQBEEQDjW+77N9+3aKxeKhPhRBmBapVIrFixfjum7T24jwIwiCIAiCIAiCIBxRbN++nba2No4++miUUof6cAShKYwx9Pf3s337dpYtW9b0dlLqJQiCIAiCIAiCIBxRFItFenp6RPQRDiuUUvT09EzbqSbCjyAIgiAIgiAIgnDEIaKPcDgyk/NWhB9BEARBEARBEARBeI5RSvGOd7yjMh0EAXPmzOHVr371ITyqqWltbZ1ync997nN87Wtfm3Sd6667jieffPJAHZYwCSL8CIIgCIIgCIIgCMJzTEtLC48//jiFQgGAm266iUWLFh2SYwmC4Dl/TxF+njtE+BEEQRAEQRAEQRCEQ8ArX/lKbrjhBgB+9KMf8Za3vKWyLJfL8Z73vIczzzyTU089lV/84hcAbN68mfPPP5/TTjuN0047jbvvvhuAXbt2ccEFF7BmzRpWrlzJHXfcAdQ7dH72s59xxRVXAHDFFVfwl3/5l1x44YV88pOfZOPGjbziFa/g9NNP5/zzz+epp54CYNOmTbzgBS/gzDPP5LOf/eyEP8sXv/hFjj/+eF760pfy9NNPV+b/13/9F2eeeSarV6/m8ssvJ5/Pc/fdd/PLX/6ST3ziE6xZs4aNGzc2XE84MIjwIwiCIAiCIAiCcBAJQn2oD0GYpbz5zW/m6quvplgs8uijj3L22WdXln3xi1/kJS95Cffffz+33norn/jEJ8jlcsydO5ebbrqJhx56iB//+Mf8xV/8BQA//OEPufjii1m7di2PPPIIa9asmfL9169fz80338w//uM/8md/9md84xvf4MEHH+RrX/saH/zgBwH46Ec/ygc+8AHuv/9+5s+f33A/Dz74IFdffTUPP/wwP//5z7n//vsry17/+tdz//3388gjj3DiiSfyne98h3PPPZfXvva1fPWrX2Xt2rUsX7684XrCgUHauQuCIAiCIAiCIBxEBvIec9tSh/owhAn42+uf4MmdIwd0nyctbOdvXnPylOutWrWKzZs386Mf/YhXvepVdct+97vf8ctf/rKSlVMsFtm6dSsLFy7kwx/+MGvXrsW2bdavXw/AmWeeyXve8x583+fSSy9tSvh54xvfiG3bZLNZ7r77bt74xjdWlpVKJQDuuusurrnmGgDe8Y538MlPfnLcfu644w4uu+wyMpkMAK997Wsryx5//HH+3//7fwwNDZHNZrn44osbHkuz6wnTR4QfQRAEQRAEQRCEg0i+FELboT4KYbby2te+lo9//OPcdttt9Pf3V+YbY7jmmms4/vjj69b/3Oc+x7x583jkkUfQWpNKRaLiBRdcwO23384NN9zAO97xDj7xiU/wzne+s64L1Ng24C0tLQBorens7GTt2rUNj7GZTlITrXPFFVdw3XXXsXr1ar73ve9x22237dd6wvQR4UcQBEEQBEEQBOEgEYQac6gPQpiUZpw5B5P3vOc9dHR0cMopp9SJHRdffDHf+MY3+MY3voFSiocffphTTz2V4eFhFi9ejGVZXHnllYRhCMCWLVtYtGgR73vf+8jlcjz00EO8853vZN68eaxbt47jjz+ea6+9lra28Spke3s7y5Yt46c//SlvfOMbMcbw6KOPsnr1as477zyuvvpq3v72t3PVVVc1/BkuuOACrrjiCj71qU8RBAHXX38973//+wEYHR1lwYIF+L7PVVddVQmwbmtrY3R0tLKPidYT9h/J+BEEQRAEQRAEQThIhMZgjEg/wsQsXryYj370o+Pmf/azn8X3fVatWsXKlSsrwcof/OAHufLKKznnnHNYv359xbVz2223sWbNGk499VSuueaayj6/9KUv8epXv5qXvOQlLFiwYMLjuOqqq/jOd77D6tWrOfnkkyth0v/yL//CN7/5Tc4880yGh4cbbnvaaafxJ3/yJ6xZs4bLL7+c888/v7Ls7/7u7zj77LN52ctexgknnFCZ/+Y3v5mvfvWrnHrqqWzcuHHC9YT9R011EVJKpYDbgSSRQ+hnxpi/UUp9Dngf0Bev+mljzK8n29cZZ5xhHnjggf0+aEEQBEEQBEEQhOeaINQ4dvPPzo0x5L2Q3SNFls9pnXqDBoTaoADLmrrURmiedevWceKJJx7qwxCEGdHo/FVKPWiMOaPR+s2UepWAlxhjskopF7hTKfWbeNnXjTFf268jFgRBEARBEARBmOX4oaboh7RNQ/jJlgLyXshMDT+jRZ9dw0WO7mkhIcKPIAgzZMqrlonIxpNu/E+8ioIgCIIgCIIgHDH0jZYoBdNryz5SDMjm8yhvZh2jhvI+JV+jpVRMEIT9oCm5WillK6XWAnuBm4wx98aLPqyUelQp9T9Kqa6DdZCCIAiCIAiCIAiHiiDUDOS8aTt3Ros+vTd+mOX/fSLo6YlGAIGO3lB0H0EQ9oemhB9jTGiMWQMsBs5SSq0E/gNYDqwBdgH/2GhbpdSfKaUeUEo90NfX12gVQRAEQRAEQRCEWUu2FGAMmGkUPuRKAX5g6Nh0QzRj272Tb9CAMBaLpvO+giAIY5lWVy9jzBBwG/AKY8yeWBDSwH8BZ02wzbeNMWcYY86YM2fO/h6vIAiCIAiCIAjCc8rukWL0Yhr6y2DeQxvDOr0kmrHjwWm/rx9Gb6hF9xEEYT+YUvhRSs1RSnXGr9PAS4GnlFK1feAuAx4/KEcoCIIgCIIgCIJwiDDGEMQCzHT0Fy/QPNuXI0EQzQi9ab93f7bEV298mj3DhWlvKwiCUKYZx88C4Fal1KPA/UQZP78CvqKUeiyefyHwsYN4nIIgCIIgCIIgCM85XqgxBlRQJPHMb6beIMYPDVv2ZWlRkVsoCPxpvW8Qar7826e5fUMfd2zYN61thcODPXv28Na3vpVjjjmG008/nRe84AVce+21B/19H3jgAf7iL/7igOzrxS9+MccffzyrV6/mvPPO4+mnnz4g+z2QHMhj/N73vseHP/xhAL71rW/x/e9/f8J1N2/ezA9/+MPK9IH83KfLlO3cjTGPAqc2mP+Og3JEgiAIgiAIgiAIs4Sir1FBkd5rLqNr9AlYfALMPXHK7bwg5MIH3s98NQiA75WmHnzVsH7PKHt3bOIniW8w96F5cN71M/wJhNmIMYZLL72Ud73rXRVxYMuWLfzyl7886O99xhlncMYZZxyw/V111VWcccYZfPvb3+YTn/jEuJ8hDENs2z5g7zcTDsYx/vmf//mky8vCz1vf+lbgwH/u02FaGT+CIAiCIAiCIAhHEjsGC5Ru+CTzR59oepsg1Dy+eTervYcr83yvNK33/cMf7+WW5Mc5y3qao/tvn9a2wuzn97//PYlEok48OOqoo/jIRz4CRKLB+eefz2mnncZpp53G3XffDcBtt93Gq1/96so2H/7wh/ne974HwKc+9SlOOukkVq1axcc//nEAfvrTn7Jy5UpWr17NBRdcMG4f9913H+eeey6nnnoq5557bsUN873vfY/Xv/71vOIVr2DFihX81V/91ZQ/0wUXXMAzzzwDQGtrK3/913/N2WefzT333MM//dM/sXLlSlauXMk///M/V7b5/ve/z6pVq1i9ejXveEfkLenr6+Pyyy/nzDPP5Mwzz+Suu+4C4A9/+ANr1qxhzZo1nHrqqYyOjrJr1y4uuOAC1qxZw8qVK7njjjtmfIw/+MEPOOuss1izZg3vf//7CcMQgO9+97scd9xxvOhFL6ocC8DnPvc5vva1rwHwzDPP8NKXvpTVq1dz2mmnsXHjRj71qU9xxx13sGbNGr7+9a/Xfe4DAwNceumlrFq1inPOOYdHH320ss/3vOc9vPjFL+aYY47hX//1X6f83JthOqKzIAiCIAiCIAjCEYMxhuGCz/y994CKZ+pgyu1GigHZJ39XN8/3p5fxk33mblpVkd30kHEM7dPaWpjtPPHEE5x22mkTLp87dy433XQTqVSKDRs28Ja3vIUHHnhgwvUHBga49tpreeqpp1BKMTQ0BMDnP/95brzxRhYtWlSZV8sJJ5zA7bffjuM43HzzzXz605/mmmuuAWDt2rU8/PDDJJNJjj/+eD7ykY+wZMmSCY/h+uuv55RTTgEgl8uxcuVKPv/5z/Pggw/y3e9+l3vvvRdjDGeffTYvetGLSCQSfPGLX+Suu+6it7eXgYEBAD760Y/ysY99jBe+8IVs3bqViy++mHXr1vG1r32Nb37zm5x33nlks1lSqRTf/va3ufjii/nMZz5DGIbk8/lJP/eJjnHdunV8+ctf5q677sJ1XT74wQ9y1VVX8bKXvYy/+Zu/4cEHH6Sjo4MLL7yQU08dVxDF2972Nj71qU9x2WWXUSwW0VrzpS99ia997Wv86le/AiLBrczf/M3fcOqpp3Ldddfx+9//nne+852sXbsWgKeeeopbb72V0dFRjj/+eD7wgQ/guu6kP9dUiPAjCIIgCIIgCILQgFAb1u0aods4VeEnnDqrZyjvsWj37+vmBdMUflKlKNfnIXsNL9LTbwUvTIPffAp2P3Zg9zn/FHjll5pe/UMf+hB33nkniUSC+++/H9/3+fCHP8zatWuxbZv169dPun17ezupVIr3vve9XHLJJRVnyXnnnccVV1zBm970Jl7/+teP2254eJh3vetdbNiwAaUUvl89vy+66CI6OjoAOOmkk9iyZUtD4edtb3sb6XSao48+mm984xsA2LbN5ZdfDsCdd97JZZddRktLCwCvf/3rueOOO1BK8YY3vIHe3l4Auru7Abj55pt58sknK/sfGRlhdHSU8847j7/8y7/kbW97G69//etZvHgxZ555Ju95z3vwfZ9LL72UNWvWNPx8pjrGW265hQcffJAzzzwTgEKhwNy5c7n33nt58YtfTLlD+Z/8yZ+M+12Mjo6yY8cOLrvsMgBSqVTDY6jlzjvvrAhsL3nJS+jv72d4eBiASy65hGQySTKZZO7cuezZs4fFixdPuc/JkFIvQRAEQRAEQRCEBoTGkN1wB8db29llzY9mNuH4GejbxYvDu3m45xJufcGVDJvMtIWf9nCQkkpRdDtx9PSCoYXZz8knn8xDDz1Umf7mN7/JLbfcQl9fHwBf//rXmTdvHo888ggPPPAAnhedP47joLWubFcsFivz77vvPi6//HKuu+46XvGKVwBRAPEXvvAFtm3bxpo1a+jv7687js9+9rNceOGFPP7441x//fWV/QEkk8nKa9u2CYLG5/5VV13F2rVrue666yrCUCqVqmTmGNO4H54xBqXUuPlaa+655x7Wrl3L2rVr2bFjB21tbXzqU5/iv//7vykUCpxzzjk89dRTXHDBBdx+++0sWrSId7zjHROGLTdzjO9617sq7/n000/zuc99DqDhMY79OaZLo23K79Ps5z4dxPEjCIIgCIIgCILQgDA0LN/2c0ok+Vn7u/jI0JebcvyMPnoDGVVicOW7yXefTInEtIWfLj3IaLIb3DRu0SNqLTb5AFSYIdNw5hwoXvKSl/DpT3+a//iP/+ADH/gAQF2Z0vDwMIsXL8ayLK688spK3sxRRx3Fk08+SalUolgscsstt/DCF76QbDZLPp/nVa96Feeccw7HHnssABs3buTss8/m7LPP5vrrr2fbtm11xzE8PMyiRYsAKllBB5oLLriAK664gk996lMYY7j22mv53//9XxKJBJdddhkf+9jH6OnpYWBggO7ubl7+8pfzb//2b3ziE58AopKzNWvWsHHjRk455RROOeUU7rnnHp566inS6TSLFi3ife97H7lcjoceeoh3vvOd0z7Giy66iNe97nV87GMfY+7cuQwMDDA6OsrZZ5/NRz/6Ufr7+2lvb+enP/0pq1evrtu2vb2dxYsXc91113HppZdSKpUIw5C2tjZGR0cn/EyuuuoqPvvZz3LbbbfR29tLe/vBK+gU4UcQBEEQBEEQBKEBG/fl6A12sbfjBHKpedHMJtw32b2bAOg5ehWUwMcmDCYWfrQ2WFZV1AlCTY8ZIuf2EFoJLEwkODmJ/fuBhFmDUorrrruOj33sY3zlK19hzpw5tLS08OUvfxmAD37wg1x++eX89Kc/5cILL6yUSS1ZsoQ3velNrFq1ihUrVlTyZkZHR3nd615HsVjEGMPXv/51AD7xiU+wYcMGjDFcdNFFrF69mj/84Q+V4/irv/or3vWud/FP//RPvOQlLzkoP+tpp53GFVdcwVlnnQXAe9/73spxf+Yzn+FFL3oRtm1z6qmn8r3vfY9//dd/5UMf+hCrVq0iCAIuuOACvvWtb/HP//zP3Hrrrdi2zUknncQrX/lKrr76ar761a/iui6tra2TtlefjJNOOokvfOELvPzlL0drjeu6fPOb3+Scc87hc5/7HC94wQtYsGABp512WkWEq+V///d/ef/7389f//Vf47ouP/3pT1m1ahWO47B69WquuOKKumygz33uc7z73e9m1apVZDIZrrzyyhkdd7OomdiSZsoZZ5xhJgukEgRBEARBEARBmC18/+5neeWNL6J01IX82LyM/7Ptw/C2a2DFSyfd7pd/dzkXmAfY9p5HKQYBc//nHPwFp3PsB64et27BC6MA6Y5qLsho0WfX368m7D6WR9SJvHnwW/CpbZCSiOcDxbp16zjxxBMP9WEIwoxodP4qpR40xjTsFy8ZP4IgCIIgCIIgCDFeUM1PWXHfZ5mjRkh0zMdNRLkbJpy8ZGu06NPu9ZFLRg6htGsTYGMalIiNFH1GSz55rz7Do+CHtKgigdNKaMUun2B67eAFQRDKSKmXIAiCIAiCIAhCTMELcW2FUoqTh+8AIL/wBSS2RqVYJa/EZD171u0aYYnai996AinXIpWwyeGMC2gOQs3W/jyWUhjqqzCKnqaVEsZNY5n43YIigiAIM0EcP4IgCIIgCIIgCERuHy/UFPyQUBu2Mo/Hk6cyuuQltLdkACiWJnfejD76K5Zbu9BzT6Ej7dKedAmxMWO6gT27L4cxUct4raHoV3ND8n5ACp9EqgU7WRZ+xPEjCMLMEOFHEARBEARBEAQB8EJNoDV+YBgt+qR1Fj/RgVLQ3RYJP94Uwk9i76MAZM/4EO1pl5akTagc1Bjhxw913XTeC9E6cv4USgEZVcJKpNFW3NpZHD8HnOcy71YQDhQzOW9F+BEEQRAEQRAEQQD8QBOEBi/UbNg7Sit5TLKddMLGcSMBRk/Rzl2XshRIkMq0kHJtHNsiVPY44Wfs2G3nUIHtgwVCbSgWCwA4yRZCuyz8iOPnQJJKpejv7xfxRzisMMbQ399PKjVZwel4JONHEARBEARBEAQB8LUm0AY/1OwaKnEyBax0B4s602x1XQD0JG3ZAfCyFEjT01JtvR45fuoFo7F6gzEwXPApBiGl/CgATqoFUyyHO4vj50CyePFitm/fTl9f36E+FEGYFqlUisWLF09rGxF+BEEQBEEQBEEQAD805L2Aoq8YGMmSUSWcdCdJx8KyIwFGB5M7fiwvS8lK0+pUiyv0GOGn7DIxxrD5V1/m/JEb2PX66wjTPZR8Td/gMADJVAbtxI6fUBw/BxLXdVm2bNmhPgxBeE6QUi9BEARBEARBEATA2Xw7C/7wSYLQMDo8AEC6vQulFHbs+GnUlr0Wy89TsjK4dr3wY5lqqZcxYLTmqd/9F6/d8+90Fbagt9xdWZ4drXH8WFLqJQjC/iGOH0EQBEEQBEEQBGDedW8C4IM7XsZpc6J5rZ3dANhO7PgJg4bbAmhtSIR5vGSGxFjhpybjJ9Sau37xn3yg/x8q8/xtD+Gc8JrodTEHQCrdinEk3FkQhP1DhB9BEARBEARBEIQars6+B7LR697uSAGynakdP/uyJVI6T+j0YlmqMl9b9cLPfTf/pE702Wbm0NL/KGVPT74QvXmmpRVjR0M24xep7lEQBKF5pNRLEARBEARBEIQjnuH8eEEnxMJeciYAdtzVy4SNw529QLO5P0eaIirVVrfMWG5dqVf6sR8CsPFl3+XJtz/CWmcNc0fXsX73CAClfCT8qEQGU84W8sXxIwjCzBDhRxAEQRAEQRCEI54NO/eNm/dsZhW0zQPAdWxCozBB41IvL9TsG/VoUUUS6fa6ZWZsxk/os8E6hvxRFxGmulh08rl0qiwvuP5F3PrYZkpxqRdOGhU7fiYrMRMEQZgMEX4EQRAEQRAEQTji2bvj2XHz+k66ovLasSwCHNCNS71Kfkh/zqOFAonMGOHHcrBrhB9Le4SWW5lOn/wqgkQ7C1U/r7nnjbQPPBYtcNNYVlzqpUX4EQRhZojwIwiCIAiCIAjCEU9u37a66Q97H6HnjMsr066t8LEnzPgpBprBbJ4WiqRbxwo/LjZhZdrSHlpVhZ+gZQHr3vk4Gy6+ii67xP/n/Dx+0zSWbQOgwxBBEISZIMKPIAiCIAiCIAhHPMWBnQBoK0G/6sYc9woSjl1Z7tgWwSTCT8EL6dh1N7YypJecWr/QdnBMgNYGAEv76BrHj4pTm4tLzqf/wi9Vt0t1gBUdg9Ei/AiCMDOkq5cgCIIgCIIgCMJoJPyse9uD6GQHfw7YqtpHy7Eixw9jhB8v0BS8kKIfsmj3zYySJnPyJfX7jh0/o8WAjoyLY3x8qwMFpBM2HWmX3cNReHP+mFexof3XtGcSzMt0Y9u7Acn4EQRh5ojjRxAEQRAEQRCEIx43t5uiSuJkOivzrJrRUsKJM37GCj+hZutAnsSjP+Cl+V+zI3MydiJVv3PbxSFg10iBINQ4xkPbCTozLm0ph3TCrlu92LuScO5KAJQ4fgRB2E/E8SMIgiAIgiAIwhFNqA3z/G0MpReSSTr4BR9jokDnMo6lyBsbMybcOQg1AMfd+2kA2noXjdu/sRM4hPheQCnQ2CbAWAkWdaYxExyTFbuNLLsc7izCjyAIM0McP4IgCIIgCIIgHNHsHMxzinqWgY6TcG2LdMLGthStqepzcse24lKv+pIrLxZ+CkQun9KZHxi3/2xqARaGRHYbQ3mPBD6JVArLUtjxv6RbPzSz4iqzSrizCD+CIMwQEX4EQRAEQRAEQTii2b19I71qBG/eGmxLkbAt2tMOrcmq8OPaigAbNcbx44cGvzBMmiI3zH0f/pyV4/Y/3LIMgOTQRrYOFEgQYDnJunVak05daZkqO35UXAYmXb0EQZghIvwIgiAIgiAIgnBE0797KwAt847BtRWubTG/vT6nx7EsfJxxwk8YGvY8+wQA6XnHYTcYYZmeFdH/+9ZT8kNcAiy3XvhZ2JnmqJ4WXKcs+ETzbdsiNAqtJdxZEISZIcKPIAiCIAiCIAhHNEP9fQB0ds/FthSurXDGKDiurSjhYoWluvkGQ37bWgC6jjm1ks1Ty/KlS+gz7QR7nqLghyTwsZ3EuPVakw7L57RiWdWMH9tShFggpV6CIMwQEX4EQRAEQRAEQTiiyQ7tA8Bt7aYl4dCZGS/KKKUokcAeI/yknr2R83d+hzwpnN5j68rDypy0sJ1nzUJW7LiWVN9jseMnNW49ANe2OKqnpdLpy7YUGkvCnQVBmDHS1UsQBEEQBEEQhCMaVRoCwM50YFnjHTtlPBLYulg3b94N7wbg2ZY1oCza0+647TozCfKJORA8xYtvfxNKGRLJxsIPUCceWSpy/Ei4syAIM0UcP4IgCIIgCIIgHNEk/VEAnEz3pOt5KoGjq46fwItEoCfN0ex68dexLUXKtRtu27UgCnhWcQP3dCrd1LGVHT9S6iUIwkwR4UcQBEEQBEEQhCOaVDiCR4JkKjPpep5K1gk/tz/0OAC7j3s7HQuXs6hrYjEn8/LPsJbjq++Zbk74cSyFRmGMCD+CIMwMEX4EQRAEQRAEQTiiSYej5OzWScu8YLzjJ9cXdQNbsGQ5Cceio0GZV+U9WtpZt/hN1ekmHT9WHO4sGT+CIMwUEX4EQRAEQRAEQTiiyegsBbttyvV8K4lbI/wk8rsB0G0LSTqTD62SrkX6lNdWpse2c58IW5W7eumm1hcEQRiLCD+CIAiCIAiCIBzRpHUez26Zcj1fRcKPH0YijFMaiBa09JKYQvhJuTZL58/hxvCMaIY9vnNYI6SrlyAI+4sIP4IgCIIgCIIgHNG4xiO0Ju6yVcZXSVx8giASYUwQu3+cFOkJQp3LJB0L17boMx3RjFK2qWOzrbLjR4QfQRBmhgg/giAIgiAIgiAc0SRMidCeuvQqiNfxvXw8wwPAWO6E3bzKJB0bpeCcVSdFM7J7mjo22yJy/Ei4syAIM0SEH0EQBEEQBEGYgpGiz2jRP9SHIRwEglCTwMc4Uws/xo5cQUExFn7CSPhZ1NsxZcYPQEfaxRx/STRxzIubOj7bsgiNOH4EQZg5IvwIgiAIgiAIwhSMFHyG8iL8PB8pBpoUHsaZustWR1srAKFXiGYEJXwculpTKDV5RzCA+R0pgrkns+lDO2DZ+U0dXzXcWYQfYXL8UJP3gkN9GMIsRIQfQRAEQRAEQZgCL9AYc6iPQjgYFP2QlPLAmTrjp7szyucZGh4BQIUePk7T7+XaFknHmrJtfC2WlHodcUwm3pgGF6Ig1GhtGMx5+KFcqITxiPAjCIIgCIIgCJPghxovlFbas51ghr+joh+SxEe5Uws/c7o6Adi8ux8v0BB6BMqd1vt1pF0UzQs/jmWJ4+cIY7jgNxR4SkFIqMfPL/ghfdkSA3kPRPcRGiDCjyAIgiAIgiBMwpb+HEFoMDKimtUUg5kKP1Gpl3KnLvWa0xU5flY89o8UvBClPfxpCj89rUlcp3nhpxzuLMLPkYHWhoGc19BhWPR1w6tQwQ8peCF+INcpoTEi/AiCIAiCIAjCBBT9kIKneXjrELes23uoD0eYhKI/M2Gk6PmklI/VhOOnZ9kqAI4evIu8H2CFHuE0hR+IOnw1i1XO+JFSryMCL9RoPd64o7VhpOCjGyhCfmjIlqLyMClJFRohwo8gCIIgCIIgTEDJ1+wcKvDZXzzO53/15KE+HGECjDGUZuj4GclFHbqsxNSOn+ScY/iBeg0llSRfCrD09Eu9ABJNdAArUy31knLDI4EgLuUaK/DsGCowlPcbCjvGmMp80X2ERjSfRCYIgiAIgiAIRxjFIOQ3j2zhY85P2ckc0K+M0nZjjDFNdXMSDi7aRI6IZgm1wY4DlkdHo6Bmu4lSL4BSZh7JXIlSdgBL++gZOX6aF37K4c7i+DkyCONw5rKQUz6vhwt+3fxaauc1ygYSBHH8CIIgCIIgCMIEZIs+xY1381HnWr7sfBvW/waIgoRDbRoGrQrPPcaYhiUwjfACTVDjnhkcGQUgkW5panurfSEA9uhuLO0TWolpHm3U3atZJNz5yCLQGhWWMKEHRKVfI0W/xtEz/jzXxlD0Q372nS8RfPfVcq4I4xDHjyAIgiAIgiA0wAs0G/tydJa2Q9nUMbobiBwmXhBOy7khHDy0if41gxdq7NilFYSa4Vj4yWSaE3465i2FXZDbtw3beOgZCD/ToS3lEGKh9cQtvoXnD6E2nPT9U2DO8fDnt+OFmqF85PZJ7XsUisCx51c38At0/f6TPJxbxt+af4d+wMtCquOQHL8wOxHhRxAEQRAEQRAakPcCbly7mU86P6vONJFTxBA9YU9Mw7khHDyse79J79a18JbvTLluyQ9JuVG4cinQlIpRxk+mpTnhp+eolfgP2zibbsEYH203t91MySRsDBZhIC6O5wtaGyyrcYnops0bmRsWYfcjQCRAl/OrVlz36milzw1XN1j/W9qf+F8urd1JKCKhUI98UwmCIAiCIAhCA3KlkIVPX8lcNVSZp8Nq55yCFzZdXiQcXJyb/h9tT/+sqZZGxUATxusFoaFUyAHgJpsTcJYuWcrv9Jks33UDrvEx1vQzfqaDUgrLtgmnOZifaZcz4eCT9YJKZs9Y1v3mPwHwnVYgEif9UBOGE4R7N3L26Mb7Fo5cRPgRBEEQBEEQhAas2zXCuWYtAI92vQyAIB58a2MoiQNj9pHvn3KVgheUjVv4WpPO74omnGRTb5F2bdZlTqclHGY521Fuc9vtD7btVETHZih4IbuGiwfxiIT9wWjwJxByzsvdDEC+dSkAuVKAMfDH23/TeGeBV3n5dffPohdSFiiMYUrhRymVUkrdp5R6RCn1hFLqb+P53Uqpm5RSG+L/uw7+4QqCIAiCIAjCc8MjW/tZbW1k64p3ceOyTwIQBlXHT9HX4viZBdR1Mep/Zsr1i37k+NkzUiQIDW/t/9doQaanqffrbU2Q7V0NQIsqYbupaR/zdLFtBz2NwN7dI0UKngiTsxVtDEE4/tqRLQXMUwPRROijtaHka9yhjbxt4/9puK9sNupKFyiH0M1UthWEWppx/JSAlxhjVgNrgFcopc4BPgXcYoxZAdwSTwuCIAiCIAjCYY8xht2bnyKjSqj5J2PbUTlPEFQdP4mBDahdjxzKwxSIwppHVVs0Mbh50nW1NrQ/8wuS9/4r/VkPb2Qv3XqA21MXwvxVTb2fY1u0LjmFnImcPk7iORB+HAejw6a6yGltIpdIg+5PwuzA0Njxc/8zu2hXhWgi9DDP3MKCP36ewp3fImE8/qhPpODUl3Y9sXUvADdf+Cus+Doljh9hLFMKPyYiG0+68T8DvA64Mp5/JdTnSQmCIAiCIAjC4Uop0LD3yeh194kk3KgnSjlnJfmjyznumotIf/clh+wYhQg/NOR1FNaMl5t0XQMsvfUjtNz+d4TaMPLUbQCsW/xGUI3DdhtxwoJOHtHLAUgkDn6pl2M7mDBkZIJcmFryfogxTcUdCYcIbQxBAxFvz64d1YnQx/7h5fQ+/t8s2/1r7nPP4nG9DGtMfs/67X0ALJ3XjeUkKtseSPpGSwd0f8JzT1MZP0opWym1FtgL3GSMuReYZ4zZBRD/P3eCbf9MKfWAUuqBvr6+A3TYgiAIgiAIgnDw2Nyf4xz/j5SsDMWu4+luSwNV4Sex5Q+H8vCEGvyg6pwIvMKk65oxaki47tcMmRZOPeeiab3nCQvaeMisACCFN8Xa+08i4YIJGSp4GGMmDW4eyEbHI8LP/hFMFKZcw0wDtKNSr/H7N3FG1YjJoGoEnk5GKZ34Biw3iaPrRZigFHk0jJvBLgs/BzDc2RjDSFFKxw53mhJ+jDGhMWYNsBg4Sym1stk3MMZ82xhzhjHmjDlz5szwMAVBEARBEAThuePhzft4hXUfu5a8CuOkyCQjV0c540eYPezLljBEbp1cLjvpun947Nm66aVDf+Q++3QW9rRP6z3b0y43hacD0Lrn/mltOxNSyQQ2mq39efzQMJRvPBAfzHl13aLGCl1C8zRy5NRSCkJGizO8HhSGCIPxgqEqRMLPXrpRJsAou7JszqmXoNwUNmFdu3YnjIQgY6dIJcvCz4G7TpUCLefR84BpdfUyxgwBtwGvAPYopRYAxP/vPdAHJwiCIAiCIAiHgi3PrKNFlbCWnAVAS9JBG0UYSmDubGPLQB4rzrPJ5Scv9RrY+mTldVjK06UHKXUegzWNMi+A1qSDN3cNvwtPx7zqq9M/6GmSSbhYaLYO5gm0njC/ZygWfdZuG2Lbjz5K+MT1B/3Ynq9MJfzsGirOLEdJh/T81xkce+UaGBPYbcWOnwGrG0sHlOyW6rJEuhokHlZdP44uEmLRkkmTSUXLzQEs9cp7IU1ESwmznGa6es1RSnXGr9PAS4GngF8C74pXexfwi4N0jIIgCIIgCILwnJLf8QQAXvfxdLcmaEk6BFiEgU/em/7TdC/QaBk9HRQGsh4JooFuYQrhh92PVl7u2fIUAO29i6cT7wNAJuHw5TeuJnjTVdgnXjK9jWdAOhU5fnYMFgi0mXAgnisF+KFm56/+nlflrkXd8NGDfmzPR/xQEzboulVLMQiZie4TFLPY/iiONwLZPXXL7NIQACNON7bxyZGu39iJhZ+gKvy4uoSnknRkErRkouWed+DKDwdynpQNPg9oxvGzALhVKfUocD9Rxs+vgC8BL1NKbQBeFk8LgiAIgiAIwmFN0Q9pG43agvvdx7KwI0U6YaOx0GHAH56efm5lf67UsPW7mSDrQ2ie5O776VSR4OOXJs/46Rh8vPL64tsvBWDOgqOm7fgB6G5JcFRPZtrbzYRkwsVWml1DRUp+49KbINQYA4/fezOfdK8GIDf3jOfk+J5veIHG1xP/XYba4Acz65tWW45YGtxZt8zyRqP5bhe2CcjGwo+24hIuJw4SrxF+HFPEt1JkEjaOGy33D5DwkysFFLxQOsQ9D3CmWsEY8yhwaoP5/cD0UtAEQRAEQRAEYZYzlPc5Vm1nJDGPREsnSikSjkWIRRiG5ErTc/wYYxjM+fS2ju/+VPQ1tjV90UGo8roH3115bfzJuw8t9LeMm5fuXUhXJjHt980knJlnvEwTpRwWq324A+speMc3dCiVS5O61/+YEZNmhBZSZlrJHkJMKdCEE9iqyq4qmFmAdi6XpdyQPd+/g+RRVXHO8rME2IRuCy4BJR39/p59zTW0px3cZOwACoqVbVzt4VsJ2l0b243auQfB/nfhMsawfbCAH2pGilLiergjVwJBEARBEARBqCFb8jlObWew5RhSbhSumnRswtjxo8PoaXpYvpWeYPTnxd2mRgoBoTZ1q5VdPnkvkKfpBxBVMyBuhKPHOyESHQtJONMfFmUS9rRLxGZMEDmZvtb3Z+QKhYanXKgNW/pznOQ9xrMtaxgyrYTe5J+H0JhSEGJtvgP88Z+fF2i2D0a/j5n87eZyo9V9De0kWwrIlQJ2DBWwvBwFlcZ2IyEypfM80PIiCnNWM689VS31CqvnccKUCKxIVHacSPjxvf3P+MmWArxAc+Pvb6b9B6+A9b/b730Khw4RfgRBEARBEAShhmzBY7nayWjbsaQrwo8VlXrpEBMPBnMqDl6dIEi1FERPyQfzcXvtmkFirhTW/S/MDFMa08UrnNzp4JiAEaqBuQMLX0y6a8GM3jvl2jjPlVtrZFflZXLnfSR23jtOcAy04enHH+QYazfWUefh4RD6B7/V/PMRs/sJ5vz8DXDTZ8ctC00k4rZuv51531wBuf5p7btYk0PlDe1iU1+OZ/tyDGQ93DBHycrgxiVbbSaLSmRIuRYp10bFglCt4ydhSgR2JAg58fJGHcOmg9aG0WLkbDpx8/9yChsIN9854fplkXt/ke5hBw8RfgRBEARBEAShhtJIHynlU2pdRFsqSkYol3oZHVRcJQWrLPw0Fhu8QJMrBWTj0rDaMc1I0afoh2RLgQSn7gf+4La6aRVO4fgxHgUnKrTJphaw41Xfpz0zvgSvWVqT7oy3nRaj1SyYY379ZuZfcylmx4N1q/jFPBc/83kKpPBXvgkfB3MASn6OSEZ3R//3PzNuUTmra9EtH4wyeRqsMxnFfFWsNKP14c7JME/JyuAkIgGnS2Vxkhk641JE1SDcOWk8AisWfpxovWA/Bb+BvMdQ3ueBzQOsMJsBKE3iIiqL2/vLUN6vCObCgUWEH0EQBEEQBEGooZQdAiDR2o1rR7fLjqXQWKDDymC6WBZ+Jni6XvBDNu3L8Wxflnd99z62DuSr7xGEbNiTnTBHRGiOPds21k2rwGP3cJGhCQaiDgHajoQeO9NJyrVw7JkPiTozz5HwU+P4KaNzA3XTfY/cyEqznj8s+xhu+zw8XBF+ZoDWBlUciibKQksNxoC78wES/kg0w7Kntf98TbizLg7XLUuZPL5TdfwAJFIttCYjAVq5UcaPqc34MV4l/LksGO2v42e0GJWn/uGpnRyrdgDgeROfS0U/3K+Q+lIQEmrDYN5jX1ZcagcDEX4EQRAEQRAEoQY/PwhAsq2rMs+xyo4fjYoH0yWnNVo4geNnpBC5ea5bu5NXF69H3/H1yrJQR/k+3/rDRgZkoDNjNm7dXjdthSUG8x5Fv/Eg1DEBA6klAPSt/lBF2Jsp5Qyog44dCUwlUxWawjFB1v3r/oBnbFrPfBtKqUgMCOXcmi7DG+9jwc0fiiac8W4wbQyFx6+vmTG9gO/Rmowf5VVfG2NI6wKB00IiUX3fFteqZFBZTrlrV6GyTSRmxsJPvDwM9i90XBvDSMGnfevvSapoX35pYjedNlGpoZ6hkD2c9xnMe+S9kKIvjp+DgQg/giAIgiAIglCDHzt+Wtq7K/NsW0VhzjqoPG33nbZo4QSBwtoYhgs+T2x4hs+7V3LC4/9Yt+yH927luHXfYPQnf3ZwfpAjgHzNIBrA0iWC0FS6LtVSHiSXkr1s+chOhpe/Fsc+TDqq/elNPHvul9lHe2WWHuPmad33CJucY+hob0cpCJWL1SDM+kik2eyYoh8SbLu/OsNJj1tHGzB711VnTJDxNRF+Icr42WM6cfyq+2co75OhgEq1k0hWhZ82la10/rMTkQMpjEUYPzQk8DFlx0/c1Wt/HT/GGO58Zh9X2L9mKLmAPaYTfxLHT6ijv7mZlnyNFH12DRUxRnJ+DhYi/AiCIAiCIAhCjNYGPz8EQFtHT2W+Yym0scDoSsZPmIiEn4nKaYyBW9bt4XX8IZqmKjKE2nD7hj4+6vyc43f98mD8KEcEtXkpAHbsvvIaCD+lQJMgwHKSWEqRdK39dvw8Z8w7idIpb6FAVYjQNY6fvBfQ4g/gtSwEYG5bEm25OGb/uzs9H/DD5sSEUqDxVLW8y4x1/AQl5n17FacV/8guEwvD03T8BKWo5LPPdOLWCD97Roq0qCKJ9BjhR1fXsdzo2Px4H34YndMmdoQlyqVe+5nxow3kH7ues62n2HXcOyiaBMEkHeK0MZQCXckzmw5+qCl41b9X0X0ODofJlU4QDj2iPguCIAjC85/QGMLCEFDv+HEsFZd6hahYXNCJyH0RNHgSbn77fznlv5fy68d28rZk1A1nKLU4Wjayi92/+TKl/Oi47YTm0drgFWocE6oDx0QD3kaOn5KvcQmw3ASWpVjanTl8hB/AUhZt7Z2VaVPTavzxHSN0qxGctrkAdLUkCK0E9n46fg5Ut6ZDTaB1U2VIXqAZzBYq00UzJsMpP4CT3wvAH/TqaN40hB8/1BXRps90MLfwDJ3PXEvbtt9zyv2fYA5DpFs7SCWr4pPjOJXXKhmVl4aF6NoRhAaXAMqlXnFXLx3sn+C3fTDP27PfZU9qOf0nvgMfh3CSvKihvMdIwWe6lV55L2AoX3+sMuI6OBw+VzpBOMQ0+6TguUQCIQVBEAThwBJqA8UotNVOd1Tm27Hwg6kRfpKR46ect1GL+uO/A7Ai9yBH6ajzlIoH4c9e/Qleuv2b/E3nbw7eD3IEEA5u4Q3D3wVg2wc381DyLNxY+Aka3LeVghCXAOUksZUi6ViV0NzDgUzCJrloZWVa15QYDmQLdJHFau0l4UROptBysc3Ms16MMeRm4OCYjQTaVLpxTUYpCLnj8U2V6UJxjNjhR6LNJj2PtXNfF82bhvAzmPfQXtXxA7Dkto9y9I1XMHfPHWw0C0kdfxFLeqvXHi6ploiqVHTNyWejUGgv1CRUgImFHzfOBiqV9iPUOygx8MDPWWHtYPiEPyHT0oaPg57ARXTPQ4+Q/5/LWLtu/bQflAfasGckOo/v2biPf7jyWr5+41NTbjfTLKEjGRF+BKFJGj05OtRIu0NBEARBOLCE2mCKI2gUJKt5KkopjIq6epVLvcqOn0ahpyYduYX+O/GPaDvJjbwAFQ8QH9wTfX//SfGn0fbW+M5BwtTY17wbh+izdJIptJ3AjUubGmWFFEs+jtJYTgLXViilKqG5hwMp1yZ/0Rf5UU8UPNxy11cgH3X2sgoDWMoQpLppT0dilrYS+1XqVfBDwueJ4z0IzZROEq0No8UAUxqpzCuWxoi6XpTP873Mu+lojbv6TSPjp+CFmFgoHiJy76zVx/B+82k+suCH/OKcn5I4+dUk3Oh3OLDoJdA2v7K9HQs/uZFBhvM+fhi52FQs/JRLvUrefji97v1P3vDMpwAwK16Ba1tRh7gJgsKDx6/jxfYj9N73lWm7dYwGP9BcefdmfvLbm/mh/1H+49mXwpZ7Jt0uEOFn2hw+VzpBOMTMRqvrRB0rBEEQBEGYGaExqNIwBZUGq/5WOcRCmRCr4vgpl3qNF368dFRyk8JjeNklZK0ObB0NEPd5ifp1rfEBskIT1LTCdiyLktNOlxli2Q1vZtkNf0JYytWt7sUDbuUknrtuXAeQhG3hptp4eO5lAFilIfhtNEC3Cv0AmEwvc1oj14dWbkUImwl5L2zKJTPb0dpEpV5T/Cw5L2A4m+dl+u7KPK9YL/wMDkfn3DEL51Y6aJlpOH7ypYDXFKNMr5VxhFjy9Lfzofe+n0+9eg2XrFoYBTnHIksiVX9tSDgueZNEeVl2jxQrwg9jhJ/9CXfWXvXvxus4GsdWBMrB0o3PpeEw+hyOzj86bcePwfCH9X0sefTr/Iv7zeox3P7VSbcLtIyBposIP4LQJLPR8SPtDgVBEAThwKK1wfVGKdqt45YZIsdP5Ql/nLfhNxB+9lJtBb/zvC+CncAyQdSy2USDya0X/hvX63Ox9qMc50im9tbMtRXDySjYuHXX3bTuugfd93Td+uXyF9tJkjyMnD5lEo5FwrZoy2SqM+PSIzsWflq65uPEuUXaTuCwH44fL3xeBK54oY4cP1P8LEFocG77AiusHQCMmMy4zmnrt+0BYOn8XjpaIlEmaDJIOQg1dv96Oonyec5ZEP2eMl3zUaoa/G4pIH5fNSZcOulaZElj+Tm8QJMtBiQJwEnEy8sZP96M80n7stH44n9PvwaInGahclATCD+jI5HrLBOOYjbcDKXms8u0gae27OSjzrWcbG2pzC/2rpxkK3H8zITD74onCIeIRt0hDiVeoEX4EQRBEIQDhDGGbCnAeeh7XGJuo+h2jVsnVDbKhJVMDysRlXr4Y8tBgN2F6DZ7w6W/QrstKCfKW/FDQwtFht25DC9/LYOqE2Vm1z3G4ULtU3/HthhKLapbboa2102XBTrLTVTEkcMJ145K0zoyNY4xKwofVl402E61Vc9bbSWw0ZFYOQNKgZ52WO9sxA819sabUZtun3Q9LwyZv/23lekdprciwJTZtDsKdl7Q0017LPw0W1ZVCjTu4EYAfnbsP8BFf8PwUa9gdOlFlXWUispKy+9ruWMcP7ZF1qSw425gw3mvrtQr6dp4xsZon9IMqxV29w/gG5uFy08BoD3lECoXq0GplzGGIB+VxvWqEVbcdAXc/W9Nv1eoNW07qr+XPa0nAlDyJj9nJeNn+hx+VzxBOETMtnDnrQO5WSdGCYIgCMJsYCaDgi39efaMFGm9+RMABKnxwo8uO37igbSKw53HthQv+iHZXJ5tyeMo9q4CwHISOAT4oaZFFSrlXcqKxSRh2tQ2uXAsxcagt2756O5n66b9uPua445p0X2Y4NgWSceiq1b4idt46yASIzPJ6rJyi++x4kWzhE0GIs92/NAw7/q3k/zhpZOut373KN1U831KODCmZKqYj8qgrFQLmXR0HnlNBil7gYb+DQAMzjsXa84Ktr382xinKu7YVuz8mR85XvSxL63bR9K1yVEVfnLFEpYyFWdQwrYIcFBhMGPhp39omJJKMqctiWVBVyYRCT8NygaLvsaqyUQCKu6jZtiye4AXBvcQqAT7Tn43t572TbImVSnLnAhx/EwfEX4EoQm0NiQ331rp8nGo8UNNwdMNO1YIgiAIwpHOdANptY7cPvlSjQCT7hm3nlE2GI0pCz+ZKMB5dKg/KouJ6c95OMbHqhEYbCdyX3h+QAslfCcOhrUcLET4qaVZ4W64UB2IurbF+y55IQD3HvMRisbFH4wcP+WcRi8O4bYPU+EHwLIUS7prXCCx48eEkfBT7uoEYKz49QShvFORfva3zP/WiZVA48OVZnM6163fQEZFIk7QvoRAuRDWizomzo1yUi1kUlEou+c3J/yUAk1h5xPsNZ0cf1RUlmjVlHjVTS86nb4Prsc++XV1y5OORY40ThAdRy4flfqpWGyxyt0HdTDjJjAjI8MEVgqlFPPaU9E+LaeSUVZmOO8zkPMqx1LGqCbzs4zhjKtO5HX23ew+6jXsesHf4rTPw8dpGJhfJlcKxuV3CVMjwo8gNEGwbwMLf/U2uOEvD/WhAFENsl0cYumN70EP76r7QtuXLdXdCAmCIAjCkYQx03cpFPxwXP5He+v4wGUdhztXSr1aInHI8kbJe9WcnqDcYjkelCccqzIw870SLaqAb1cdP5Y4fuooNjFg9UNNqabk3bYUJyzqYd37t/HMce9jp+mBke3kvYChQpR30j8cuSRqxZHDkdOPqnGj2VH3pzA+Jx232p6+3OJ7JsJPvhTQ87u/wCoOwujumR/sLCBfau7n37v5cQA2v+y/2feuOwlVAjXms1NxptLcnm5cN/r7Dv2p77uDUDM42Meyfbdyv30qqxZ1AjUOH8B1FJlEVTSxMp3jsqh6WhMUTYIFww+T7nuk4mJTNS6bNlXg/IGfUShM7pqZCBUUCOwUCceitxIUnhjn+NkzWmT9nlHaVL5uvtcg86whNaHY/opXRceecvBwKj9XIwrP3MG8byyDZ29r7n0EQIQfQWgKPbgtejGya8b7OJCt1wOtGb7rv2jfejNDv/86m/bl2D1cZNO+HLuGioyI8CMIgiAcoWjDlCGuY8mWogFIrlQdiLTY410CRlkooyulWW4yHeVteCMUakQIPzQkCCoD764WtzJA97wSLZQIY8ePZbtRDsvzoKTmQNFM19LBnFdp5V6LpRSZhMMgbZj8ILuHixQ9zeb+PP0jkUsgFTs1DldaElVxB8vFGFNx/Djl8i5qhJ9plnr5oWZzf44W4gH9NLpWzUZufWTDlOsYY0jvexSAYs/JJFMZQstFhR55r+qesYLoM2ltba+UDOom2rmXAk16+z2kTZEn5r0Wy44En7Rrs3xuC8fMaeGE+e0s6a4Gd9uWqgt9BpjbluIsez0AR/3uPZXwaasmBLqPzui4tt43o4DnpCnhWylaU9XzTFtRRlktxsCOoQKtFBhqXc7T3S8BwCs2KfwE1fVyi84HoCXp4OMQ+I33EWqDevbWaGKKlu9CPSL8CEITFEf6ohexpXtG+ziArdeD0HDfhqjjgKeSeIGmb7REthhdkJ8P9diCIAiCMBOm+x1ojGG0GA3c1m4dqMxv1GkrKvUKK6VerusyQgbHGyHvhZVBVqDrWyx3phNgRa8Dv0gLBUzcEcx24sHVDAKeQ23qSsyeD3iBroQ2T1ais3O4QKsa72iwFLQmHUZNBiv+vRT8kGwxqIRwp1KZcdsdTlg1LhGtbAJdFX4su0YUcqbn+CmX2HmB5oktNS6foMmB/GykfyOnP/jpKVcbLvi83fyKza2n4rcsxHUsQiuBpT32jJTYOxI7a4JCVEplJ3ArrdOnFn68QBNsf5DAWCSXnl4p6UonbDIJh5akM26bWjdQLfes+D8AuIU+lu38FRBliJX5i86oLXpq7yP0jUbH3Wz5ZKgNKTxCO0VnuioiasvFGeP4MRge29LHBfZjqNa53LrqaxSNS2mSMq1aioVIRLt2/v+HcSIxtjPjUjIueoJ29LtHivQNDkcT7nhXpjAxIvwIQhPc+tCT0YuW3slXnITSAezANZDzSBFdyHfnxl/Ip5t3NtN2j4IgCAcCrQ2BhNULBwhtpm7bXEtftkTBi86/vv7+6n5Ofde4dU1c6qViB8S8jhZGaaE0OkDJ15VBVhAaEvjgJFnak4lLvaJBlO97tKgiKtHK0p5MVfiZQeelUJvnXXl3KQgpN+vyJ7ku7B7K00Yk5OiuZZX5tqXobo0EOdfPYkxVQPLjLJbD3fFTi+eVCEKDjoUfrNpSr/jnbFK40Sa6FpcCzcjG+6sLZhgOPSu47gOsKf5xytW27drLPDXEzrkXgFI4lsJYCRzjkS0GjBYDglDjhAU8KwVKVUq9mnH8eKHG2b2W9WYJxy6aS1nTSScmzsNxrMZD9SUX/TnHFH/AvuQSjt/2k2jdmvLFlSuWs9304u55hIF8JKBsHchP+vdUxg81KeVhnHSdGBV9FvU/Z8nXuI/9MPo52rpprZRpNVditmn3PgC6OtopG5sWdKTwcVATfKZ+oLlvffTwG/fwFnCfa0T4EYQmKA7Fjp/0zBw/Wps6C/j+8vS2XbzfuQGAYm50/PtNU8iRZHxBEA4lpUAjVyHhQOCHmmC0H0a2T71yTK4c6LzncS5fH3X02n7+V1DHvmTcukbZqJpw546WNHa6k0J2kLwXMJj3K8fhEmC7STrKT81j90/oeWQogZuhI+1ilx0aMyin0cZMO8h6tlP0deU+ZjLHT65/F64K2XrKh/Hfe1tlfsKxOG5uG6MmQzKov0cK4u5L5dbXzwe8UhFfa7RuIPzELgomKJsZiyG6Jyz4IYk9D1cXHALHjzGmrmvbjHGmFvmypYBdOzcDoNrmkU7YWEph7CR2LHaE2vDU7lHcsIBvRft03eg8KndUm4hSEDJaDGjLPstGtYTVSzpIOZHgk3YnFn4mcvwc1ZvhxIWd/CY4nY5iJIJkMlUR5Oxl3azXi7EGNuAHhqIfUgo0G/uyFKcYj3ihJkUJPeZzM7aLM8YFuaU/zyqeiX7Gi/6OjrSDh0swST5PLRt2RsJPT2c7bSmHdMKiNeUQKAcVNt5HEDuSAHH8TBMRfgShCdxi/ARQzexPZudw4YC2gy/c9e3Ka1MYqFvWN1pi78j0vqAPyBerIAhHJAfCqVMKxgfrCsJM8ENN5t9OJv1vq5reJu8FuDsf4JTrX8VJXpTxESbacRoMuqKMn7Daft2y6erq5gXqcdY+/kSlRCnQhoQK6sovymKD75dI4qES1XDnaOfTf0CkjZlR6/rZTNEPK/clkzkU/Dh/0V50GlaqvTI/4Vi0JB3ydispnavLTvLLAsjzSPgJvGLU5bXi+KkREsoDYz8/fsMGGFMtH1TZaqlXuSTnuaIUhAzm/aa7cU1KjVtf01hIyZUCBndH51OycwFzWpNYKspIcmtcLsZAmxml5ETnW9J1CI1CT1FK54eGYj5HV9BHtvVo0q5dKdebSNyZbJmlFK84eT43Fk6szMukq8LPKYvb2WQW0JrbAkZHgrjW+IFh+2B+Uqe/H2jSeGh7jPBjuTjUCz8b9o5ysrWZffNeiNV1FB3pRJTP02S4857+qGSrraWFjrTLws40SccmwEXpxo6fvcMFlqj4gbw1vjxOmBgRfgRhCop+QGsQiStBEzW8YwlCzWDOhwP0PFtrQ1f/Q5Xp4cE+bnt6Lzc/uYe/uuZR3nPl/Xz+F481vT9jjDh+BEGYMTuHivstHh+Qm3tBAPzAjOvCMxlBqNEagvv/p26+nekaF6oKseMHXSn1Qll0eNEA+SWPfbyiMfihJkEANYGrVhy66xfz2Mqgysus/XH8PP8e3uj+jbTf+UWKXkBpkmtDOBQ5HdK9S+taYrclXSxL4dmtOMbHCvIsvPP/kupfR+jH50ZNAPLhju8Vo/JGPbHwo5ssvTEY/FCze2CIecHOyvxsLnvAjrcZip7GCzTmANw7m0yt8NN46BtqgxndA0DH3CWkEha2pQjdFlpMvlKG6YeaOQyST0T7dG2LAKeSrzThMRhDuG8jFgbVcyzJSVw+tUwk/NhKce7yXta7x1XmuW71WtOeSjCYXkpCF3Hye/ACXSmfLHia/pw34UMbPzSkKaHHumnsRJRbFl/kfvHgZo6/4yOcbG0hnL8a21K0p1x8Y0+YzzOWsCwQuSlakw6ZOLQ8UM6Ews/jN3yTF9hxBMcE6wiNEeFHEKZg8748c9UgAH4T7RrHUi7xskZ2ULnq7s/x9Oc4kWd5cs4reUwdx3F6E3+85Rr+5fcbcAc38EDyz/nNyKVNJ90XfS3ZGoIgzJhCzdP5mRJoc0Bu8AXBm+b3WVlY6O2/nz9YZ7Pp5d9l7xmfwCw5q+H6RllYRoMJo4BXpShd+DcArPCfxssOYoyJu3r5dS2WrbgsxMuPAFQ6AlnlgfoM7hFCHbWuHyn6TeV3HA4suP5tdDz0b2T7Nk/+M41Ewo/duYja8XE5M0UnI1fGots/Ts9TV7HsN2/houwvI9dHy5yDdvzPFRtedz0QOX4i51fZhVZb6hUN3v1Sc8KNMTBaDFh+47t4mf0QJRW5PkrFZh1DB+Y6nveDSPg5ALvLUXWuOIQNs7RCbdBxy/pU5wKSjo1Sin2ZY0nikRzeCERutDkMU0xF50/CsQiwMFNk/GgDel30+8osOpmUs39DcMtSJF2LE5Yurs6sdRcq0N0rop+nf924uIl92RJ7RxuXUvmhJq08jF0v/FQ6xMU/a/Ghq3m1fS8AuYXnYSlFe1zq1az4boJIkEykMjh29TMJlYutx++j4IWs6L+1Mq1n8ED+SEaEH0GYgk37cswhsiKWQwGnQ9HXJAfXc8wPzoY//vt+H89j24foYRi3cyGdnd0cY+3mqsQ/cOeJP+dnma/Qq6IbSr3z4Sn2FJHzAnH8CIIwI4Iweiq7P8KPH0bbS6mXcCAIpimeeIGm0LeZ+XoPw3PPJrv0IgbP+CipdEvD9aOMn6jUKyQSGMyKi7nt9KiLzsbH70eb6G/DJay6eqiWegX56J5ClZ+o70/GTyz85EshT+8eJe8d3m23jTG4I1sByOVyOFtun1AQS+W2UyKJ3TqnoTvrpKMXAdC5KcpEdIoDnOE/yP90fhQ6lxykn+C5o3XZmazVy0mObiWx/oaq60RV3SRWfI5ls807dgbzHgsGHwDAS3RG/xebcwxN5tCaDgUvxAsPTPbb0OgY0apBUHWoDU52Fx4ubltPZX5xzikALLnhrSy645N4xQJz1RBeulb4sad0/GDgmC0/4ffhGo45+aw6kWOmWEpx+lFd9JmOaMaY8kV7yRn4xkZtvXtc5z8/MPRnvYbf3VHGj4dxx2QjxeH0ZbFmSbZaXZCfdwa2pehqScTBzE0KP/G4qqOtrW5+aLlYDdw8a7cN1ZWblZrMEhIiRPgRhCnYvC/LXDUEzMzxk/cC0n2PRBO71u738QwN9ZNQIYm2ubinXEZ2/tl4rUtYuPV6dLKNuxb9KQDZoDkbacHb/6f1giAcmeTim8n9CZf1Q40ujkK+f+qVBWEKpvt9lvdD9j32OwA6TngxALYFKXeCW2RlYZkQpUN0PMC2lWLeitMB6Nv4ALrW8VMzGCvn/QTFKHDYjrvw7E/GT/LOL9N53z8R6MgdcSDzBA8FRT9ExcP9zBNXs/RXb4GHrhy3njGGhaVn2Z1aNuEg+vzlXXXTg7TxGf9PeWLBZQf+wA8BXS0JPFx68xvpvP491TDcGsePigfv+SZLtawHv0fugasr046KhJzRbJbhfHOdqw4EpSB6qDDdZiWNGM7lyZsk/5V5bzSjQVC1F2rmlTbTl1xKJlktA7z0ZRfSTwfp4l66n/4RbZt/S1L5hC3zgFrhZwrHj5ejI9jHxtTJLOg8MIHEi7vTrFrcwUazMP4hcpVlScfinBMWs9Ysp3PTDfj5EZzc7nGCTM4Lxrm0ojJVHzUm3DlwI4GplB2KfyifPaqXx69Yj3FSWCoKqi4xcZnWOGIRqSVTL7SHqrHws2nrZlZamyvTzbaNFyJE+BGEKdjX30dSRRefYJrCTxBqRosB9zy8NprRsXjCdZu2x+biMOdMD6XV72DTq3/K02++iyfevYENl9/MhuVR+9lcdny3r0aUghD3kR/A6O6pVxYEQaghV4qevO2X4ycwLL7yTFJfX3GgDks4BMyWnCY1Mr3vsuxQP+du+gZ9dNO1bA0QPUlPTZDBYZSNRVTqVc4LsS1F0LKAgcRCLsv9hP7+fQShj6M0qiZ3w46FHx0LP1Y8KFczzPgJQk3mnq/R+8A/ofY+Fe3iMH6Qo7Vh+1DVWZLa93j0YmjLuHVHigEr2Mpg64qGIdwAidVv4Jalf0HBRJ/7G9uvIrvyHbz/Rccc+IM/BLi2ha4RFt0w/uxqhZ9kNKD2SzmaIfHbv+QFaz9ZmbaJ/q5Hslm2DebrogEa/c2X/P2/DgwXfIJQc8eGvsp3zP4wmivg4ZLKtEYzGjh+1u8eZbnaTq5jBa01Lcw7WtL8+JzrKtNzn/o+AF3zjgIgYUfCj+9P7nAJBjYDYHcfXcmx2V/aUy6nLGrnX4LXxwdXDXpWSnHKog6+676VztIOFt75fznxR2ex4J7P1e2jP+uNK/nyfU1SBXVlqgBeMhJS/ZG90XvogBAH46RQKnpP17Yix0+DMq2GlH8XY0QmbbmVbmq1LNnxW7pUlmxiLgClkjh+poMIP4IwBcX+HZXXYZNhZWW8UKO1IRyM28om2yZct1l7rFWIWh+alt6GN6btbVFNey470tT+ins30X3L/4Gf/WlT6wuCIJSFniB2F+zPYNMLNXZp+IAcl3DoKAbTd6scDBZ999Sm1w1CTbDxdjrNML866pOouOTKtqIBTCOMFbVzt0xQdfxYCpTi9pP+jgVqAP/hq9HxQLDO8RNn/JjSGOGnUuo1vc9w/Z7qAx41vBnYP/fdoSbQhq1bt1amdS5yARprfBCzlxukV40w0jqx4wc3xdyL/w//ddp1PHDJb/n6m9bw3vOPoTP9/OjopaCuvCcR5qL8Iqv6eZTLCXUpP6PrtBULP9ovYkyUM7l7uEjRDxnKj78nLh2A68Cu4QIPPvYk3/3NXdx286/2e3+jhQLacsCORdixjp/CIC/+5TksVvtoX3rKuO0vXH0svzv3hzyjF7Ik+yh9ppM5p70GqAo/U2XNlG7+ewDmHXXCxG7CGdDdkuT977qCJ9+/ddzD5Zaki738Raw3i+nc+AsAep76AXMf/MfKOtliwN6RUl2WVjnWwqoRrQGCZDcAg/t2AbHwE18D53dE1zLbUng0dus0pPy7cOrfK7QSDYWf8vo3vPDngDh+posIP4IwCVobMoPrKtPTdfz4oWGwbycvt6Na6XCSjKCx9bcT4RTjDmPJblLOeOGnNZPGN3ZTT3f2jhT55+v/GE14zTmEBEEQyjeJWmtS/U8QBDN/KutLjf7zgqI/O4SfZgl11NGysOE2CibB3FWvAKJQ1MnaK6NsLEIwGk2N8AMUF5zJNj0Hd/vd6LhteO3gyY6FH+KgXSdR7/gx03D87MuWeGpX9Xs7Nxw1oTicHT+hNoxsfbQyPToYdVnSDVqvl9tFl8OLJyLl2Fx4+kqSC06qzJvs13s4oRR15TiJMD+ua5XjptBGgV+cdv6OtlMMvzQWCeLzueBp+kZLPNuXa5gPub8ZP36oSWy9kyvufSV/TH2Etzz23v3aH0ChUIwEsnJmzRjHz77Nj9Maxg8fVr5+3PaWUiw46YX8cs23+B9eyw9P+FfsdPQg17JUlPU1hdCxeOeNABxz/OqGeVQzxbIUy3pb6GggZtqW4gXLe7k7rJ77w1Yncx/+VzJ7Hqxbt+yyAgjisYoa83fnpyLhJxyNHkBHwk907epIV8XZAAeryYwfNYHjx1gujhl/PTTx55xIRa3rwxlEcBzJiPAjCJOQLQUszD1JSSXZbnoJp5ke74eajjs+RyvRF+ZkNdZjE/cnwo2Fn/beeSQbPDVIuTYFEmhv6g4MI8WAF+R+H03E3S8EQRCmouz4SWy7nRXXvpK262fuGCz1bTxQhyUcQg5Eicd+M0XORi2B1pR8TbL/KTZaR7NkbiedGZeFnelJhR+jbCyjsXTV8QORyaIzk2SYFsJSvtLO2Kopl7Djp9rKi+4F7EqpV7SfcBoC6kDOY/O+6j3F7x99lo//9BHu3zzQ9D4OBZOVtQdaw54nKtOLVTTAbPTQrTzgc5zJ27JbjX6XzxvhR2EnqgPmpM5XxMgyS3paKJIglxtt+j4TYMTp4YkrniZ1ymspGhczxiUTatOwxLfghYwWZz4YD0JDuL255iTNogMPLKcSdE1YFX6ypYAnNkXO/seXvw+re3wZYFmnedlZazjzvf/GS85/MU6NqyqcKtw5Dif/VfISMp29E683QzIJZ0Ixc/WSDnaZKKx6g17Eufl/ZMiZw6I7PkH3k1dix2OKkYJfyQcLG4jWAE5rdOxhto9QG5Tx0crGsesdkoFysRq5dRpQyaUa4/gxVgKnwT5MPA5LJJN4xiaYZiXGkY4IP4IwCU/vHmWl2khfy3GUjIuexk0lRF9giwfv41f6HEZMhkJ+YheOH5eFTYXtR0/4envmNaxrT7s2RZKYKYQfrQ3Bpjv5U+c30QwRfgRBaJJyiVdiV+RmdHavndmOjOHJ+39/gI5KOJRMZ1B50BjdVT89SemUMZAt+fR62xltOQqlFPM7UrSnHNpSE4sJyooyfpQJ64SfJd0ZulrdyoMXUymXqA7My44f5ceOn2Q0EC2XeoVTdQaq/dGMoX+46vh5/+i/cXTfLdz5zL6m93EomKyLaBAa7JHt4+YPDIwPfi+7DC1n8rwUOx6115os1PNF+QGWz++uvD7bu7dSelPmlEUdGBSrt/0vxUJzOT8Ag92rQSkSjoWH2zAXJ9CGbE0GjymO0Pbsr9m8L8/jO4Z5Zm/zncTK+Fpz89MHLug/1AaHEG051b/FoMRQ3uOZvaNs6suRHYr+ZoaPvbRh2eBYIXisKzBUDkoHE7seY3HDtC8ksZ9t3BuRSdgTntMdaZdiOgqi7kjCi045hr/Mv4vU0DMsuvuzzL/vSwDkvZCCHzV7KVcnqDFizLLFCwmMRW5obyT86ACtHDKJ+nMuUA52k6VeFeHHrXfuadttKPyUr+mZhEuAUympFZpDhB9BmIQntvezUm2mNHdNlNo/zfr7zVs308sg4ZyTKeGSzeUmDEEN4pasU6H8SNCxki0Nn0pmEmXHz+StN71Qc/3d1VaMepL8IeHwJThAHTYEoZZyy+yhjZFdfMblWo9czSUbP3+gDks4RBhj8ALdfJOCg8XwjvrpSR7WGAMbd+5jgepHdy4j4Vi4toVjW3XhruO2U1Yk/KDrymraUy7z21KUSKK8fCUT0K4ZPNmJaHDjelEGnx0/Ubdj4SeYhqtYaxgeGaqb95+Jf+ayDZ+OfrhZSjBJ1zHdv5HVhXsZtjrr5vuF8ZmFYdic48e2FEpBWyr6jJOuVVeWcrjT0TO/bjpt6u/9Eo5Fi4ocHO6jVzW9X7PoDCwrEs48lUA16IQVasNA3BK8FISY336Ko275c1L7HseYyP2T96ZXBuwHmrAwNOZg9q9rpEOIsdyKO8r4BQp+SMGLvsf8fFTm1drRg2M3fqBay9j8L42NMuGEkQ1enENjuynaJxGVZ0ratSd0/KRcm0IqOkdSluZPz1vGps5zK8udQhTUbExUPlr0Q8L4+9waI/ycuKiTAdoJhnejjcEy0ec69mcKVKJp4ccJ4/PKrn8vrERd2/YyOgzwselpSxJgTzt79UhHhJ8DwP5YGoXZzcDmx0grj+RRZ0Q1vNN0/Gx98j4A5h17GkWToFTM0zfaeIAUakMzpflWUCDABieBUoru1gTzOpLYlqI15XDc/LboxtOfXPgpBZrCSPWpSui2Nv+DCYcNh3trX2F2EmgDxtAzFOVxuP5w5eZca4Mxpi4sckJ2PXIwD/OAccgFjVlO0dcQeBh9aIVmPbpnzIxJhB8MWzdGZUWZ+ceOe2o9IbHjx9IhZoy7Ip2w8e00KihggvEBqaolcme0+30AuIkxjp9plHr5oWbLzj3j5p9VuAOm+P5/rmjkYo7azjf+e+r5n3M4ip0U3c66+eXSuFrKn5VjT+74aUk6zGtP0Zp0aE05HNWTOSiui0OFmntC0+v6xeYdP8HRL6Yt6WJZihQ+F4zewMBPPlTXATbUhoIfsrEvy1Deh+GdADiFvso60710bh8s0KWH6mdOs9tdLX6ocQkwlltx/BTyuTqRRsdCk53uJNHA8ZNJ2HHXqmh6rDgUKgdLB+QmELmKsdvfTqRpmURUnimWpUhO0IWwJeHw8rNXAZCyDQnH4v0vOpZLSn9PzqRIDG4gMbIZqzREydeUAl1x/FQyyWLaUy5brcV0jG6IhZ8ALJuulvr1QpzGwcwNsLVHgFMXSA5g7AQJAogfKlTQPiE2c9tTeDhTdlMT6nn+XPkOEaE20cVOeF6i9katRM38VZHYMo0vn1Aberf+hiIJ2pafTQmX0C+yL1tiuOAzXKg/b5xdD6OHtk6wtypWUKCkqjeSizrTzG1LcdLCdpb1tuDaFp6VQgWT3/jtGSnS4lW/nH1r8oBE4fDEP8QDMeF5SOgTFrOEe9bRpQfYqBdEIYxedHM7VPDZ2JdlX7YJF1C6q/LSc2av+OyJc25SsqWAld89Fq5+6yE9jqe37qyfMcnDGm2gZUtUZphc9oKKI2QqjOWSwENRn/EDkErYBFYKRxchDje1E9XvayfViW9susM4HHVMxk8wjYdL1z28g97i5rp5N3W/JTrG0uxo1tDo7ybUZkoxwNSUnveZdqwGwk/ZHeUmJndQdKRdOtIuSddmWW8LyQZNMQ5n1JzmhR9vYPuUIew5UtzU+jr0/FWkEtEw0fSuAOBFI9ez6VdfYSDn4Y5up/f2TxN4BUq+pj/rMarjrnWFapfGZpzstWx79ine5txSP7PJoOBG+KGpCD8qEbW2Hx0ZJleq+RyKw9E9vpsm2UAU7MwkmNuWpDsWONwxIkWoHOYG28nmG99354uRU99NpBouPxCMdSVV5idsli4/Aa91CbvO/TsAVi7q4E2vuYQvBW8mld3G8T+5gKW3/gUQdWXTQVn4GX+8+1pWsNjfRBgEWCZo2HEvmKAVe8Pj01mK9vjv/tCNwpv9wkhdOSE6IMSmO+1Gjh8RfqaFCD/7SdhkeY5w+GGMIT2yCY2F6VoW3eA1KfwEoSZbCjg590ceTp+Lk+mMaqTjdphb+/PsHSkyUvQrT76Oue41JP/zBVPu2wkLeGryLw/fSmKHxUnbaj66fZi5aqjmmGdBPoMwIybLhvKn2WFDHIzCVJgfv52F/76coY33AnCTPh2A3PA+tg1ErsaCp5tyMJLurLwcG0o6m5isPEWA3f1RRylrw28P6XEMDQ3Vz5jkO9sYw7Khu9loLyc595imSzBGkgtJ4TNH949z/LQlHUInhauLFcdPbamX61oM0sYcEwcwx11zLNuND7e5ewytDf7j1/HdxFfr5udblgLgNSiNOhQ0yvMJtGGqv6ZkLOaMdK/iWbMQyx/vVCk7fmxn8tbsthXl1LQ06+g63Jhz/JSrPHrJL9FGYQa3UPDCCe8Z+kZLOCYk09pO0rGqYsJbf8z6y2/imbazeG3uZ7zoR8dywo/PpefJ75PcF3W+DbXh6cFov09uWF/Z53SvnMHaq6P9OS38uvXyaOZ+CD9BXOqF5WAlIjHBK9YLo6o4TN5qJeHaE3bc6mlN0pWJzrWyIFbm9sT5zA92ktp8a0VYC7WplNoX87Hwkzx4D1gnc7Et6G7n6TffhTrx1ZV5py3tYl3PxZXptu23kRx4Ojo/GrgVyxTnrCKFh//YtXGp13jBPFQT5PM0oMOMUBjj8APwEtG8vr276/PjwqiTWMK1CbHRgXdYdzJ8rhHhZz/RxlS+2IJQTzrQFg4vtg0UWKx3MJxciJtMYVRUw9sMI8WA7ftG6DWD5Nui0MjASmCF1Rrpoq/ZO1JitBSwYUsUZljO75kMRxfxrcmFn8CKbjwnaxF/56NP83r7zsr0dDuWCbOHyVw90yn1ypUCcTAKU6LWR4P7vr4oG2CHtRCA4sg+hvJ+xZbd1M1YzU1js9fXQ0FTZWtHMHfcc/ehPgQAirnh+hmTOGjs336SNeHjjLQuoyuTaNz9qQGjLUcBcLTZAVa9mKCUwjgZkrqIKXf1qhk8taVc+k0bSRUfV9zC2LKn19Wrf+0NfMH7yrj5XjJy0Hm52SH8NHrwEISmYalX7by0ren7yLM8cfGPGTVpnKBRqVf0GZY/u6k4kC20ZxXJVv7+2B9OusqiE8/hFnMamexmRosB2QlKkh7fMYxLQFdbhpRrV4WfTA+lruPxX/Mf5JNz6raxveq5Vox3m91XzdqazrNxYwxdA1H57zOX/Yah1OJowTRjFmrxQo2jIoFCJSPHT1Conk+hNtjeCCWndULXDEQCYjphs7AzRW9LvSByW/plACSHNjASu/n9ULMvG10DiqXICZRMHRpnfWvSwbJgTluSOW3JSsnaK888gReW/pl+Eznsjvv5yyj4YSUw2W4g/HjHv5ZNeh5q7VXYJgA1XvjRamrHT6gN+7Iluhih4HaNW+4nonn5wT2EtfexseMHIqeVCX28cBbkyx0miPCzn9S2M3x2X47SNJ+uC7OXJ3cNs1ztothxDGnXRitn0ryAWgKt2bNrG7YyqLYFtKUcQiuJpetLH0pByHDe5z+uae4paSkIccICvj258BPaKVxdmvB81NrQvuV3tKgit678MsMmM61QSWF2MVFgODQ/YDXGsH2wMOm+BKGWfH90c291xS6D7PQ7sRSKVTFcmdn7/SlZWRNT9EN0X/SEv9S6+JAei18YIcDmv3v/KpoxyXd2Zu13AHDb59OSbN4NYvUsB6BTZccJPwAkMiQpVbsg2VVHysKOFKNWTQfN2A1UdvyETQ5wSw82Duk1iahkwsvPEuGnwfeP2XwX7Hhg3Px1O6uinW1CrGQrTiJFgcjBPJZyBzR7ioyfI4GzVkz+d5dybXYml9Nb2sbI6MiEovxwvoilDOlkkpRrVzpcWbFSEGTmsOlNt7Dr7M8yYncCYOf3VrYPYyfN4uIGrr5vCw9uGZyW5Wf7YIHj2cTjva8i6Dq6Kjzsl+PH4BKC7WKVhZ8468gu9DP3xvfzWvtuSHYwr33qUqye1uQ4kdjJdDCgOkkOP8tg3q9k3GVLAVobcrlIaGprOTTlzEopkk7Udn1+R4o5bdHnetayHs4743RuCk+rrKs1ePH3stNA+Jnf3cF2MwddHMUmhAZ/f2G5FfskYsy+bIlNfTm6GKUUu3tqCWIR2yoOEtbsJ+okVhV+0D5FPyQ3yYNuoYoIP/tJaAxBaBgp+pR8PZsbKQjTZO9IgaPVbnT3sWQSDlrZqCZLvUJtGN0XuXgSXYtY1JVG20nssF740RpGiwELg2jdUrJn0v1uGyiQMCWCKfJ4QjtN0hQmrOV+avcoJwZPU3Ta2bXoFXEy/szD84RDy0TtcY0xMLytqX0MFyKnhlzChKYZ3oFnHLrnLQHAG61vI93M9+FQtraEY/YKP9oYsZNPQMnXtAw/A0A+vfCQHktQzFJUKVQspNBEe/TW3kXTyn1Jzzua0MQtwhuUOeCmo9KSsoO3pluNUoowXfM9XxF+yo6f5gYve4rR+o+8dS19L/oHcq//Adsu+EeIhZ9GXbCea7Q2dQM2iISgBde+Hud/XjZu/e27qwKCZQJsS5FKWJRIjLt3gqi7D1RFsyOZo+ZPfu9oKcVw50nYaFID6yYswy3npVhOos79UmuW0slO9p3yPq469UcALL39L0lvuyPqnhU7s15oP84XHz2fl//uQp6854amf47Htw/RzQhu5wJSrn1AhJ9yuDNWAifZgjYKisMcfdULOOmqU1m4I3rwuufs/zvj0O/VSzpZHy4gMfgMXqAZyvv4oaHoh+wcLpDLRdeCVCYz459jf0nYFk4sWM1tS5J0o5/1LWcupc2qfr7d6/6XbCH6XnYaZBLN70iRIw3eKLYJoUHGj7YcLEyl9XoteS9gpOgzkPPwQ023GsVLdI9bz2qNzukgu6/+gWSN40crB6UDRosBpSmyq4QIEX72Ex1n/JStfc2MmuSJ+mHCyA7SykP3HEvCsaI61ibbuQehwRuIxJyuuUtwbQvLdlgRbKDnie/WrRtqQ29c719wOibc50DOI18KSOoioTO58DOcXMAc049XaBzwuG7XCKutZxntWUUm5aKxmn7SKMw+wgncCOEzv2fJlWfBk7+cch8jhegmWuyyQrOkC7vIqzQtHb0AmPxg3fJm8u8GR6KBwpXBy2a146e2rFuoZ6ToM8/bAsyCkjgvh2dlqmJAEy7dZNeCab3F3PYWBmkDqqHMtVhxKKnrx+LLGGHC7T2mOmHXO350k9/D2ewoO60FWJlucqe8C33cKxg94U2YRHRcQX54ij0cfLJeME78nez+t39vtTxIaR+lFB2pBD4uth4v/FRKvRxx/KjE5PeESkE4L+rsxK5HJvw9mLAcmJ2sE0GsBmVyZ564vPJ67u/+HP+eb9FKga2dZ7H9/K+w7cQ/Q2Nx7ENfaPrn2Nu/j4QKSXbMI5OwseKuUuW8rJnglTN+bIeE41AgQab/UdoK0fl2depN/OKFv2Dhqa+Y8XucsbSLdXopqYEnIRYigjAyAwzmfAqxkJI4iBk/U5FyrUq5o1KKee0p2lIOtqUwF36mst6iuz6DLnf1Sox3/MxrT5IjheXlKtlJYwmt8u9tvFPPDw1b9uUJQsNwvkQXo5jMeOHnqMXRA6Whfbsr9xLGGJSpCdVXNmcU7yHXv2OcyCw0RoSf/WVwC0t+917ysbtj6sg6xnVzEmYnqaGNANhzom4GJnb8NJPjpI0hGIzOic55URnEPB21wJz34D9ilYbq1u9U0eBnooBlYwyjRZ+CH5KiBO7kXx6luaux0RS2PNxwIF/wApapXRQ7V9CRdmLHj6jlhysTDki33BP9v+eJKfeR92Ph50Ad1DQJDvWAUWgaEw9sO/29+HaGZFv0ZK4s/Di53Ti53bQ/8A0ojc/mqGXPYCRO+04L1mzN+DGGttv+BtPE39GRyPo9oyxXUTetMDi0HVbcMB+1U684fqa+33Ks6d0Kz2tPMmhi4aeB26ScI+KWs0+c+sHTonPeWJ2It7fLjp8mmix4gcYr5Cr3AZZS2JaiuyVBd3f8lHwWOH5yfVvp/sXbIW6VDaAnyaMr9FfdqeHFX8G2FO1ph8BO4ujx51W51MsRxw+p5OQlSpZSLFx6LP2mDXaunVCUL4tp6dTUJU/JmvdsN6Oc/dSXOErtxkp3MHj8mxk89zP8MjyX7vym5n+QXFQurNLdpGscP743c+EniLt6YbskXYs8SRYNRI0Jfn3+dZz89q9xzAmnYu9HBtRpR3XxsF6BExZJDTzFSNGv60SVjcOdU+lD5/hJjQk3b085LOiMfodHrTiFL3ZVBTrXi4TjRqVeadfBt1twwxyOChteA3XsAgoadNyqFR379+3FVoZM17xx65149BJCo2jfdRfHXHkaZmQXpUCjdIiJc4WWh9E4bcGdnxFTRZOI8LOf2Fe9no4tvyO16z6gOWv7YL76hyCDndlLIhfdyDo90dM5YzlYJqiEtU1GoA1zRx5jUHWS6FoEwDwvEoJsb4Sjb3w3i27/OHZxCIBMEF1krQbqOMCW/jy5UshgzieFh52avE74hNNeBMDg+rsb5vzYud2klYffsYzOTIIQq+knjcLsIgj1hIJzpaVvsm3KffhBvA+/8Tl4sClKPtrhQzzgXEAfodtCS2sbReNCYRB0wHHXvJQTf3QW3X/8B3j21kl31Tc8io+DZTmo2Vrqleuj9eH/xP3RGw71kcxKNu7YwzK1K5rYjyfzB4KkLuDbGSynecePWXr2tN5jbluKgUkcP3YyGtzZ5Qc8YwZGLcecxc6z/5rBd91WqaGxneYdP/uyJZKmCLEAa1nRwN6xFV1d0ZPzYAK373NJy91fJbXpZnji55V5j2zcPuH6amgzABvefCfWsRdiqSiUNlBJHOONu18uf1blz+5IpiU5+WdgKViztIsn9NG0DDw+ofBTdtYkk/UDfqviFJn8OLpVllRrZ7yuAtuNAoCbdGPYxUj4MS29UcbQfgg/5Yeefuz4UZZLwraYo6qi6OJjT6m8nqb+W0dH2mV3x2oAWnb9EWOoaxevvSjcOXWIwp0BMmOCq8u5P+WSrwtf9Wb+PbwUgJ5cVLqr7PHCT8Kx0IlWUjqPSzCB8BM5foIGv7fav+PCvs0AdM47atx6Ha0p9lm9nDByF05+L8GmqJxQmQA9xmXkFPvrOm8ecufpLEaEn/0kjNVpPzfMQ1sGGchPLgqE2pAvhZUTf7QouSqzlmL05ZBojQLGjOWgTMhA1qt0rZmI1LpreIF3D5syq+iI2z+aTFQO8T/BK2jZ+yDd63/CST9YxZyHv0FPELmBXF0Yt69SEDJaDAi1YSDvkVEl3PiJ4kQcf+xyNrKInj13NezslR7dDEDQeTRdLQlCI8LP4Yp59MfM/cd5kO2rn28M/f1x5spUwk/8pOTh++9k+beXN1UadqCZrAOdMLswNaWmKRXQmnQYJcOy9d/huJ9dVNflhSnKtwLPI1QOyrajTIDZaNeOr43KH399FsDZdBsJFTJEK2Y/sjj2F60NKVMgcFqqgb8TZfzEzpMbe6+gZd6x03qfdMJmWEUBzVaDYFMn/n524qfmjBk8ObZF/ynvRc85qTKvfLzNZO0V/JCU8tBxkwfbUpHwYymSmei4TPHQCz/+aJzZE9/7AFx756MTrt9W2EGIhdW1BNtSOJaFY1uEdhLH+Axk6x9KVDN+nqdt2qdBJmnzV8m/nnC5bSmO6mnhGedYFhQ24D7TuKFIudTLGiOmubbiuPmtLJ8z/qGjQfHYn25h65wXA5DoqCmdLAebN5mPaRcj12iY6iZhWyRiV1HgTf+BVD6+p/BCjasClJNgxbzqvdC9S99XJ1rYTXb1a4RS0LNoOevNEtq2/A6Ati2/o2XnXQCVLlmp9OT37geTclD3WDrSLumERVs6wfq5UbnbwsL6eKNEw210ohWHkDSlhuHOpuL4Gf97q3Woh/1RiXDr/MbX4B3d51Ree8YlCMeUesX4vl/n+JFGSxMjws9+kPcCgjhg6uGnN/KTX93Ak9eOb685dhuInm7vy5bYM3ponq4LU6O8qEShfCOFciqlCJMOUrN7WfT7vyCjSmSXvrhSJ63+9EaevfhKNp3+/3hjqfoFPf/Br3K6fhyAhBmvjteKTIM5jzQlkpnJHT+WZfF05kxWFB9jND/+HEvmI6FJty+hNWkTYKObsJgLsw/r3m9FL4a31s33Q8NDG+J5UzymMwaG8h5LHvpyNGPP4wf6MKdkoiByYfYxElZvlluCIVqTDp3E18uRTdwensIrSl+KVpii9Mc2PqFyscrOiSZz1J5LTDmkt8mujkca8/b9kRxpHrJOwT6En1HBD2mhiHYz1RbqExxPEGdY4CRpSU4/I6bcfrhRsHDYGT29XlqMB092/eCpPMCszU0pD7T9JkrlCl404NJOmt62RKXUy7Et0kmHnElivMlLLA82xhi2bI0GdbUPHpL+4ARbQI+3kz57Hok416V872Ri98DA8Ghd6Xr5nsURxw9Jx+ZZZ/mEy5VSJGyLgfYTAei9/oqGZZDV3KR6sbLsDkknbHpaEyRdC6Vgx3sfY93bHwGlGH7Nd3nmdddTOu/j1Q3L536TgrBbivIu58xfiGUprFh48BuUDE1FLi61Knf1UrZLd0v1b7Hj3D+tW79RjlGzKKU455gefheeRsue+7GLQxx903s55tdvwS7sI4wdP43aox9qeluTLOnOoBQk5x1H3iQ5tvRktNBuLPxY8d90uyo0dvzEYnfoN8jmigWa5O4Hee+ev43epvvohu/T9cIrKq9HhgYItMEyIWaM8OMMbyG5sSpmStDzxIjwsx9s2JON6kaBlQO/44bkp3nNzn+BSZ4KlgWDghfSN1qqs6YJswvbz5InTdKNbwotBzv+fXuT2Qhz1c42c1/wtsprq/tocksu5E1nLuW9b3sbH9P/37hNk6ZUeRJZpla5nrfjRtrJk+qYO+Xxe3NPIYnH3q3rxnWjMUF0jibTLaQdB42FMuI+OxyplHMl6sVAbQytxNeiKcovtDE8c9sPuNB+JJqRmbxDyMFAntAcHniBZvto9Xri+iO0phxcFX23vbr0Bb485x9YsSR+6tugG08tFeGn/NRwFub8jI7Ezo1D6GaZrWitWVx8mh2p4yipFLY5dMJPzgti4acFOx6MmAmcrPlieSDWeGAzFX7cathu8BRdz1nJkGnhJP10NGPMU/NyplDtONOOu4r5fnOOnzQexk0zry1FOmHHDhlFyrXJkUaVDq3jp+hruoiPocb1l/H6J9ymIxxkxOmplJ6UCWNnk/aKdbkpOiiXekm4M8C87ombgwBYliKztNq2mwbioImFx8nK5xZ2pjmmt4VFnWncjrmEqc74DWwKc1aTSFVzbJQzPeHHKUXX2ta4YUBZgAqnWerlh7pyT1Ep9RojUPiZ+lwZZz8cPwBnL+vmpvB0LBPStvWmyvwlf/gYl+79ZvwmU2cnPdfYViTqZRI2C7vbeMIcRYL4ujmB8OOWH4gDToNraNnxEzZwagXaUBrdx/xfvQMnLu+2M10N3yd9zAv5zFE/BEAXRwi1Qemgsv8yreEQC37znsr4W+4nJ0aEn/1g+0C+MrA6wappmTxJycxQHOw8XPAJQjMrXe1ChB3kKFpprPKXge2wwPSR2vfopJ2Pgrj872u9X6CltXpxVEpVbvQWdqY5/3Xvm2AH9cJh2fGT2n4nb9j4aTawhOS5H5jy+NuWrARgYNMjZL0xN5Px05OejnZcxyLAmpVP2oUmKN/gjzknjYF2FTkVpuqIkSt5XLTjP9ikoxshfQhyOiSY7/Bg13ABm5Dbw2o2Qq39/w0XX8TfvvZkWlpiS/sU55IT1+tb5Zr9WXgdenRTlF+jmixXOJLY1j/K8WxhqPMktOXiHELhZzDn0a1G0amuSjegRuGiAPlCdG1sFF7aDDpuye6G+XHLjp7TxqO6tnPXeMePUlQ67EA1oNj3p/78Cl5U6pXKtGJZitZE9LeTsC3Srk3WpDDeoRV+tg/m6VHxMdT8TZ9RuBuAQmL8w4WELhDYaZJjSrdMPPhXYbHue6Jc6iUZPxH/9zWrplznwnPOYpOeH000CN6vlnpNLog6tkVXS6JhMHratSt5OfY0QtYh+h0DWIno+8Ou/B1P754k74WVHKOJhB9q8rk6M+5+lXoBHDOnlb62k9jmLGXBvdWg5LbtfyBj4uvEFJ/roaQj7XJ0bwu3hzXn0UTCT7o6tnEb/f3F2zUK+5/3y7ex5idn006Wh7pfxb6T3z2hK92yoKUn6u4V5IfwQ41d4/gJ3nc7T8y/rLpBPnKMBaGR+IAJEOFnPwhLo9iq+iW0hfgJ5wQ3h36o2TtcJH/3t8kP9TVcR5g9uGGeklWtx00SXcCO/cXrmGyM+tSzkb152bJjcSeoqQVYMa+NLV0vqEzvUvHThzGOsVAbVFii6/d/xWY9j1tf+EPslsbqeC3zjomC5vzd68iOyZIy8VP4VCqFaytC7Fk54BImp+iHWOUb/DFOCW00LUQ3UaXS5CWlD93+a5aqPdzYHTnUvOJzX4IaTNLtRZg9eIEmQcCiBdH3XbD6bbQkHYrHvw6A049dRNKxScVta6cSEauOn/haOctaupeCkLufmjiQ9khn66ZnSCmfsOd4QitxSIWf4dEc7SqPyfSgKpk5jYWfQiG6xiWa6F7UCLs1ciSUHQq1HN2TYa+qaU/cICC1LP5UpmPXShA0Ifz4UamXlSiHO6vK/+mETZY0lLKTPqA62Gzuz1cePNTeE6/21wLgWeM/96QpEjrpujbiAMYuCz+lunsvo6XUq5aOtskjAAC6WpN8y35rNNHI8RM7cxqV7zTCttQ4wcS1FUf3tDCvPYlbbgfewPHTqLmNCoqEWJVAdCduU9+oZGgyCl5YOVf80JAgqJRTFt75Wza//LskXYvOjMvyuS0s7krXCbEzIeFYnHpUD18vvQ6nFJU0jpgxYc6z0PFTpj3tcuKCdn6crGliMKHjp+oucxu0fDfxdi1r/6d+gQ7JbL0Vx/jsdhbhvv5bDF7wdxMek2NZLOhpo2AS2Hsewd5xLxZBpYW8WrAKt/ZBeCHOiDKGjX1ZaaDUABF+9oMwX/+Ff6d7bryg8Re3H2puufE6zn7yCwS/+b+V+Yfyy1loTBBqUmEO36laVruDKKhQmXDCjggAz2yJclVWHLUEx67/IkmOuaEZuewH/OjEf+fGzjfzu+63RDO9XN062hisp66n19vOL+f+OS88aWlTX1Bt7e3stuaRGd5QCbmr/oDRl3AiGX3Zaaymw/eE2YMXaqyyQ2zM76/oa9IqulnK5XJjN62j/8nbol0c/2pgaqHoQGN2PMxRv3rzONFztOgzmJPymtlEKRZ+lJPgsT/dTPDqbwCQf81/8dh7qm170+nohrdUnDwQOXL8jC/1msn3Yq4UHPCsqNFigF88tHkps5l9u6MHHemeRYfc8ZMf3hO9aJmDVX7iPIGDpliMRIl0cmbtlXvnLgTA9sYLP45tUUxF5dga1bBdUCZh12WKlIWfZsKdi3Gpl92gyUPKscmZNG6QrwtRfa4Z3PpEdaLmuyllou8WNSZ7KQrmLqGdzDjhpzxYtsJSnePHhFLqVYvbxOeQdm2sVJy51MDxUxm/TDDgH4tjKXpaq+uWnWwtSYe57anK90CjcVG5HGfXcKHye7WCIh6JigOk7MibyLk3EUU/rOzTDwKSykfFXfBYfBajSy+iPeWypDtDJuHst+hT5qIT5/J7f2Vl+n3ex/nT1D9VV2jycz0UuLZFb2uSV5+6lC/4b2O7e/S4joQVOpdWt0s0KPUqCz9P/ghGd1fmB9koCuN+cyLbX/ofwOSh2ralOKa3lVEyLN5zKwuvuTTK+CkLP0Cps5ptpeOKC22iihop+RqPCD/7gSmN1E33OZM7fkp+SKI/+jIcHdzL5n05Hv/J5/AfvvqgHqcwfZ7py5LUeQK3+gSl099bee1u+cOE2+pcpDhbLT3jbmC6WhK0JGtszJbLyvNezcI3fAXfja2TYwa/qWdv5KR7/hKAledfOmU7zTJp12YgcwzzS1sYynt1OT+Vzivlm2Nlo2bZk3ZhasLajLAxjq3hgk8b0eBmeLQq/DQqqVpUeIrd7hLcli48Y+PNoIPGfvGbT9K68270tvsrs4wxFPwQX5xAswq/0iElCcqqDF5t26qzzqcz0U12cSrhhwCt3Gpnnvg8DrQZl002FeXuhweKINTsGiriFycXTo9kRvuiMvfWOUvQB9DxY4yZ9tNabzhyUtutvZWn+7WOn7o2wrHjpzIwnSbnrToeAFUcL/wA0BaV01g0Ph/ntqXq2itbqegJetkpMBmFUkBGlXAaiFaWpSioNG6YO6Tls9aWO6sT8T1xqE2lgcXYssm8H5JSJUhkxg0Eyz9n99p/r3voVi71alhqcgTSTEZNKmGRzETCj18YXw5oyl3wrObENNtStKUcetsSDculyl25Ggk/RT/EGMNAzqu037bCIr6qCgnlMGTdoDvUZHheidZ1P44yM0vR9Vulovv58j10yj3wQ+BzjunBae1hLdH1weleyi1D8/iX4DJ+veCDUzbaONR0ZVxef9oirk1dxgOv+vWEx+v0LsM30fUr0UD4qRO4atxedz76FADDK99FcvEagEkrIxxL0d2SIKeq1zqXoPKgSClIJpP8xwnfByA33AeDW1j+zUW0br99gqvvkY0IP/tD3O6771Xf4Yl3PlFtfzhBF4mNfTlOCKMuD3ZY5ONX38tbRv6HxC///Dk5XKE5Qm3YN1qilQIqUe1G0eHtqb6+6+8n3D7hD+HhYpx03Y0dRE/5Fnam46ciYzYst0j26zMDUg/9FwDrkyuZ09PTdOeBTNIh6D6OY9RONuwaqsv5UaEXdaSLn0RqbJBw58OOfdka+/MY4afQv52O2GpfLOXZNVxgz0iR/tx4y/QyvZWdqWNpSTr4OHjPoeNntOizW0eipz8cPRkKQs3GvizDeV+yf2YZUamXHwk/VJ/W1Q460gmLeZ0tBMaa1PFjjMExPqHlVjN+YgE61GbyEP0GlIKQ8AA6aMv7CktV4ccPpCS2liD+m012LUIrF4dwXIOCmZAtBdP+/etsJPy4bXOx4ywNXSP8FGue/nrxeTlT4ceJS73Gfl+XSXYtnnT7dMKu5gcCdrqdvaaT9tzmKd/bK8X5RKkJWkMnW7H97CF1/KihLdWJ+Ltp52COlIruj9WY0uR8KSBDqerKqOGFJywCoHfjzzEjO6u7jferGrSTPhKZqF13LUnHJtkSiYy50aFxy6sPBZsv9Uo6Ngs60nS1JMYJP+W/Q9Mg5L8URAHMWldbfDu6iG9VS4ecRNnxM71Sr877/on5t/4lPH1DpcOdijtR2ZaiM+POqJvfVLSlHC5YMYc3FD/Da0pf4E9e9kJeuXIBXw/eyL3z3zb1Dg4xSil6W1N8791nccFxcyZcr7s1xSYTidvJBqVedVlGNQ+z9+7aAcCypTWOoUnO26QTdY8jWc0U6lEjlVLEsrssFYeBjw7uhV1ro2Nc979SUdMAEX72A+VFwk+ycz460Va5wBE2HkA/uGWQ09QGIAqD/mkiamNnmN0K8JHGSMGnP+vRQgGrJsAseN232GAv5zfhmajBTRPe3CaDEUZVG6mEPe6LOO3apFybY+e2sqSr/smWiuv1x95IWrsf42f6xTz7qijZvtkAupaETeqo00iqgJFn72OkUBUkVejhU/1i18pCScbPYceuoZpB9Zgb6ZOvPrvyOvBK7Bv12DtSwh/TSVBrQ4YCnttOayz8+NPsoLE/DOV9bt4aHdPI7o0YY9iwN0vB0xR9LcLPLMMLNS4hlpMgk7SpZN/HWQ9J16KnJcmxc9vwcPFLEws/gTa4BBjLQY1p524MlafAU2GMYc9IkVKgD2hEkNaRMHm6ebwyr5ibwOFxBFL0Q5z8HgJsWjrnoitBrvtfnpkrhdP/289HNv9Ex7xKN6GwpkSk6IeUgpC9I0X6h6PBYCI5w/bKU3Q+bJ9/1LR2l3RsNuqFdOS3TOl0Gx6J7j3dCYSf7q5u3DBP/+hzH9IP0d9jJr+T0EQXBx27PTbvGaisY41x/GSL/oTlayctrXYxTTz9y+qC8j7GtHYWJqe9vROAwaEGHdbKzhyrOeHHta3KPWlr0uHonvrfXzmcOWxQqlXwQ0p+LPTH9yV2WKoTfhKJiduCT4Qfalp23xttZxRBIfp7Kbcgt1TU/W4ywWGmtCYdXnz8HAIcHjPHsLQ7w3vOW8YlpyzgklULD/j7HQzKTqjJRhpLujJsN5Ew1KirF1at8FMd07il6BoQpnur8+yJ38mxreiB+fz5lXkL1UDVaEH0mWc6omMpDPdDLB7b3qg4fhogws9+oOIsFjsWByZz/Bhj2LhpE0dZe/ESnfSqEVZZUR7C6LyznpsDFppiqOAzkPNoV3kSNS0L3VPfzODbb+JOTsX1R2Boc8PtE0GWot1CV8v4i2G5jjjl2rSlHOZ3pEi6saIddzGoVce3bNtGmxmlbckpLOrpBKDZxgNKKRInXIyPw7wdNzFU654IPUJVfdqhscc9gRNmP0N7qpkqk2U0hTU26bHlE/lya2AnRWvSxscheA5LvQZqMnz0vmfJeSFBjTgllV6zi7Ljx02kaEtVsxGc+CnqcfPaKiWt3hTnUqgNrgoxlosql3rF1yFtTN15MBlb+vPsHSlR8vUBc/yE2hAaw69+9XMute+uzC9lpy7FOVIYKfi0lfYy6vTQknIx5Zv9AyD85L1g2n/7yZFNaKNombMEKw6F1TXfp0U/ZNtAgT0jJYaz0f1bMjWzjB8Sk2934qqzJ10+lp6WBFvUQrrym/HDxt/FpSBkpOhTGI3OQSfV1nC9js4uWinw7L5DU6I4kPNYYPawTUXxB+VOZbv2RYM+DycKaI0p+iHD2REsZXBSDQKKnaoQ4D74nUoHy+mWJQkRLR1RcxA/36DzWyXjZ2blc2PjDez4d1dq8DDJC3TFie5rjRdoXF0ibOD4CX2vaSG46IfYA88AsG9omNxoJNbb6ejcslTUAe9goJRi1eIOXnTcHD72shV0ZlxSrs2fv2g5x82bOnx7NpCKKxUmqy6Y25ak38TjowZ/f8lkTYi1VxV+EmXhJxWF3ys1/pwZy7LeFrwz6ytjrJrzM+lY9HR2UDAJSqP7KjmptjcinbMbMOWZr5RaopS6VSm1Tin1hFLqo/H8zymldiil1sb/XnXwD3d2YeIbCju+AUin4otVgwGYHxq6dka5MP0nv6cy/wF9XNRRSZgVaG3IlQIKw3voVDncOcfULW9Pu9AaPX0y+cYDgIQu4Ftpelsnf5JoWYrWpEN7KqqLVvGNam248zNPrQWg96iTK/PaUs1/ISdaOlmfPpVTc3cShprh2PVjaY+gpo7aKEuEn8MQZ0c1E2fSrmw1nZX8UNcF4OaKPmlKGDfDoq4MHs4BGbg1QxBqdg8XyahIHAgKw+TjG0FtDD97cDtrt8lAezbh+SFJFeAkkpUbRIiezNVOZ1wHD7dOdByLH0ZB0bq21EtXhZ9sqfpdOpELwoxZ70A5xLxA44eaOYMP180PckMHZP/PB7YO5DlG7WCk5WiSjo0+QMJPOd9rOp3+glCzaOA+1qljaO/ornS80jXfp1pTafHrx4JkeoZdvQCyK98Ob/huw2UL4gc1zWJZiuGWo2jRo5UA1LFs3pdny748bjEaPKnWuQ3Xa23vJKV8uv/4D9M6hgPF5v48i1QfA4nI4eDFbo9yVlZeteDU3G8E2rCnL7rOu+lGwk/1d9SW3wqlSLAod/US4adK6cwPwmu/Mek6c3sjt1qQHyHUpr4cRu+f8DMWK3aDNHIRGwPD+ej9hgs+W/pzOLpEWNMFL5GsRiDUutYnI18skfIG4s1GKiHWduz4UUpNKTbsD52ZBB9/+fFccspCujKJ+D1BHSbVHSnXjlIgJjlcy1L0E3f2atAd7g1nVwOXvZosqYQfiXBBqovWlMNx89pIOpOPgZVS6OUv5ZtL/7kyrzbQPelYLOxMMUKGMD/Ik5uicrJ0/+MQPPcdamc7zZz5AfB/jDEnAucAH1JKnRQv+7oxZk3879cH7ShnK/EJZSXSOLaiNT1xiFnO8zmncDv97gIGT3o7AEPtJxBioaWb0qzBEH0Z2XufBCCzZHXdcoWq2KsLhfqLXdlJkdBFfLu53ICEY9GRdkk4Flbs+AlLNbbIkahDGN3LAJjbnmRee/M3qinXZveCizhK7WZg82Psy5YwxqC0X+/4UQ5KMn4OO+bvqQkZn+w6UpNzUQo02wby7B2Nrl/ZQgFbGexEhjltSTzjjOu4crAoBpq+0RItRDeFoVesuDyufXgH37/nWf7zDxufk2MRmsOPzyXLTZJukGFWeR07fibL+AkrpV6JarhzXKulTVQGOJT32DFUIOeNP7/7RksM5Ly6p3qTdVycDoHWrN89yhr9RN38UnZggi2OPNbvHmGF2kHYGwWZmgNQ6hVqw87hIlozLfdWEIYsK61jfXoVQEX4MV71/Ks9N7x4IJpKzSzjB2DkpV+Dla9vuMy1LZ65/LcU3nxN0/vzu1ZEx9m3ftyyUhDixRlFSS8u0cn0jlsPoFMPAbB68/80XH6w2bJ3mB5GKbVG2TyeF58P8cPSgpXBoir8aGMYHBoCIJFu4GIK6kWD0ZH4YUD5O8+Sh6dlvIs+D6e9c9J1etrbCYxFWBrFDzV1WnnFRXVghB+33JVrrPCz+U4W3/inhLG7LV8MKPoa15QIreo9biKZJGeSmOIwI0W/qcD33RurpbmWl8UJ66szYHyH3QNJR9ol6Vq4tiKTtEm5Fi1JB3UY1djMa09NnUPdEl9/cuOF6vaWqiNyZKTaCEkFJQJslO0ypy1JwrGaEuFsS8H8U6rTNRlCSil6WpNkyUBxmHue2lxZtu/6v51y30caU37axphdxpiH4tejwDpg0cE+sMOCuObUSaTpzLiVWlS/QS3rkztHWWFtZ7DnVMJ0L1su+k8eeOF/ERi7alcVDjnlG8PMnshJkViwsm552rUrNybFXH1Xt8G4lCqlC4RO8zeT6YTN/PZU5Ua1b3CwcoNnyk8q0h2kXIu5bdPLI0g6FokTXgpA8OwfKPmawbyPrT3CmhpcLV29Zi0T3ujokJOGb2edXhJNT/L7UzXBilpHrd73DJfYOVRgcCh6ApPMtOLaCh+noXh9MPj/2XvvMMmO+ur/U3VTx8lpZzZrtVE5ICQkokAEk4xJBmMwYJsXsEmO2GAb26/9Ov1sHLDBJAPGBIPJJkeBhIRy2KjNYXLodGP9/qjbaaZnpidJG/o8zz47fVPf7q57b9Wp8z2n5IfsPTNDGj0giPwiJS/k77+1jw/fepiv2L/PP03+Oiwx0aOFtUO5A2+YzhyPhDrFj23gKmvOoK0WfhgTP4aFlPWlXuLEnTgT+zg2XmQ859FIyDNZ8Dg5GbcNpRj87tto/++Xr+DTVRFFcNehkzxJ3lt/zvkW8VPGmWP7SAmX9Hr9nIzKSS4L/OaLwQ1CxnO6D7UU9ZY3eRKLALdtMwCmaVBSFqqmzKCW+AliQkiYDfwpmoS5gDcFQNR3CdGWJzd9PKNXEz/+mb1z1tV+FwkvJj7SjX2GzIueBEBOtjVcv9YYHz2ly7bateKnXOoVxd+5K9M67ays7osUxbxWBaQzDRQ/A5eS3/VSPpLUhMbEuDbxjsolcS3ip4Jmwj+6Mg6TZDAKozHxU21bMorHLyu4Lmph2GXFz6xn+KdfTduRr5MYu5+dH7+KDd/9TdwgxMEDq4b4MSRTpBGlSaaLwbxk8KmpIm4QMlPyGd53e2V5YWYSM9D3AMOpti3ZrGfCMiCEoCNpYRkSy5Bs68uQtIxzRO+j0Z22Fy2He+mTrtB/5Efmrqwpz6xV/IjQxcdka2+azBLMtQ0h6Onp030KwJyV5NeetMiLDHaQIxHF9xllse6RzzT9HhcKlsQ/CiE2A1cCt8WL3iSEuFcI8UEhROdqn9zZDhHGih8roct14htl0ID4uf/oCOsYw+reQtKWTG95FiLTT4hEtRQ/Zw2UAmv/V3h58ZM8lLkOo62/bn0mYZJIa+KnmM/VlR9MFX32np4moYqE5jxpG/Mg7ZgYcW17MT9TLXeJO0qWk6IzbVf8NJpFwjJoH9jGSXroOKMv29NTJWSkk3Qqn1tIZKvU66xErQdOHfwCCVVin4qJn9r7SNw5utW4hhOinysKt9K595OIoETqzB2VzcZyHsdO69maRDKNZUh8TMSjVOp1ZrrEf/zkCOm41CvyS/zu5+7jmw8N84qLXHbJo2xWJyidmTsD3sJjgwrx08jQsQYJ08DDgtBDKVVXXlhGGCmdAiWrxE+5fKPtY7ew/bM3V7ZtlM5Ru2T8yH10H/gMicPfXupHaohIKZ72019DCsXpq97OQ5f9nl5eaJk7l2Ge0mVw5vorAVBlb44VEMdls9fssW+T/Ok/N71f7rT2O7O6tKmybUgKOITlUq+ZM6z77PMx83FyYFmFYizT3Bkw5cJdaFOKJaU3tw3oiOTC6QNz1tVyYCI2sSbdOHVH7HkB3zKfSEHU+xA9akb5OZ2AKtv1HLEfxO0hVvyUZHxeUbmsF9x4cJjJts89nmExdcvfM5bdqQ+TnyaKVMU0ulXqVUUz4R+daZtDah3Z/GH8UNURP5VJInP5JZC1MMuKn9njojbdNtLf+2Os4ijtB7/AVMEngYe0qhOntimZUmlsX0+0ltvwdKl6j/GCiNEZj32ncxweLaDGDxIpgacMSvkpongCFacBqbhGyCasCjEshI68Xwsz6bWCiA2wF4Kx5Yn6jz0vbLCyZnzhFSqT2TIOlknZS7tmpYShzhQjcXmZadUTPwnLoCBSOEEOOyzgYfH+8Nkk/OlGh7ug0XQrFEJkgM8Cb1FKTQP/AlwEXAGcAv5mnv1+VQhxhxDijpGRBqzgOQwRVG+QacdExpGSgT+303P8yAFdTtG1mY645tOxDELkwt4cLawpZvtGqOGHGPzxu/ExOfiEv55DtDimpL1Nz6LlctMcGMlVBjRhpCh6ESnhoqylET+glWOgb5LF+JgqLidMZ5bGjpdhSIFlGRxKXcFFxbsJQ52SJCO/6scAKLE25s5hpFqpTCtAEOq404aIVTAFVfYWq/n9yikqyT0MKd0JX/+D32bnx6/moi/+PNbMseph4qjqZCqDKbXi59Eq9fr6/af5LfOTXCX1QKdYLHD7I+P88SWj/NmJ11S2Gxs986icz/mMZhOyFkMU35MMa+GBgZQCX1iI0KPkRxVvldnnZBOgDBsZ1+z7QeOJkEa3kVou6OF7b2u8YpkIooiEO0aIZOSKNzK6TXduo+Lkio99vmBg+l5cHOiLPegqpV4rUfzodrr5f19Nxw//pOn9Jk7pktC2AV0WbUpBEQe3kNfPoLs/RvL0HfTc9359imUVobF2ih/LkEvy9RjqyjJCO/7kyTnryoNzpRSiMIInnGogRAPMGB2ko+qgRynFaO7RSfkSsQJAtmnFT1gmfoKY+DHi846fU5FSuAU9OLcamTujPVISmQ79wp3WMeBl4qeV6lVBM0RjR9LiQDTIhpm7EYe+U3e7rCp+Von4sRuXeqmY+Bmc0Or6kkwxWdTEj1ljuJ60DKZJY3n1xM94ziOKtL/b1Czvn0TuGKfpYoIskTtTSfXCfvSIn6Rt0J2uksppx1yUSDnXYPds4pE3nYSdz5m7soZQj9xc9fkf+QRi6WWEhhB0pW1GVAfQOEmsINMkohxOlKckUyhp6pLSlsNzHZoifoQQFpr0+bhS6r8BlFJnlFKhUioC3g80jKZSSv2bUuoapdQ1vb2NZyfOVYiwpMsi4lmfsolZGMydLS+cOQSAl91AR9LSTuaGJMBY2JujhTXF5KwHhvNvN9DmneFuuYctG+fGsTqmZFO/bselfA7Xj5iMzemCKKLoh6QoLZr40Qi2Y+MqE/wCU0UfpRQq7pxu7O1a9kMjYRn4G26gixlO7LuTIIyQkY+oYeQjYa6J4ifnBuRKrfZdxmIxvbMxO3q9FqWSli8XiTtoNfcRFQ+8krP8K0xfz6raNcRPEMdtO6kMRkz8VDp/a4zhfbfzRrMazytDl+fLH/LKQ++o2y4sTD4q53M+Y7WIn7Cs+LEXV0qEwkJGHkfG8wQN2r5O9QrAsCoeP77XmHRs5N2jYs3Pw7d9jV8bfk91xSoYOp6cKpJQRe7tfR5IEzvVoc+5OMlk4dG5Ps5m+EHExd5DHE/trAzuKp39ZSoGlVJMl3ys6SO1C5vatzByGID+DdsAsExJSdnIoKAVtPFAs/3w11j343fz5ul4rnIFJrbmIuoKy5BLUvxs7U0zrDohdwY3qH8el7+GfScn2KP2U3Qa+/uUUTTbSKtCxd+t5Otwh+mSv+J7wWI+K2ZREz8iLvWKYjJXxIofr0z8xM8slRumIx+rnDL1KusypBC0xWlUbn4SNwhrSr1aip8ymin1Mg3JRGy8nf3GO+rurUaZtF0BIVoLKx4XlUr192Q1S62WjHLMzORICB/bqfafTUPi2x2Y3iRQJX4KXsih0TyHR/Ocnqo/dnvpJBP2IHmVYNfwV9hVuFOvWIAoXQs0o746l+GYcv6U4Zr2Mz0zU5nMlqGHvxziR2pD7hEVK37MuccoGhkSYR4nKuDKJKJc1dCkArWRqvh8RDOpXgL4d+AhpdTf1ixfV7PZC4H7Z+97vsMIS3g1yUjlOPdGpV47vAeIEER9uzENbWaVThhELcXPmkEpRRQ1LjEA/QCZrwNvp9sxG8gyTUPS3dUBVOtWx/JuJXq25AWkcBHLeMCkbJMiDpFXwA8U08UAghIuFnIFEtG0Y9B56TMJlcB48HPk3ABH+IiaGty1KvUKwojR/KMzy3guoNHgdyF4YTTvuGd0YhIAGc+QBjVKiWPDel1Pe3WG6xbz3/l5948AMHOnKsvDWPFjJzIIUSZ+1l7xo5Riw9gP6pY5+LzB/CJuapAHX3EXX3j8f+lzbBE/K8ZCJOJSIEp69tRIdiy6bShtZOThB7qcYHbHKogiLAIwbIx48Fb06u/JMk4MaUSaRhGceOBHvPi+X61f4TaIKV4itn78RnrFFJl4sJlMOORUgrAwOX/55QWEAydH2C0OM9Z5OVZZ+VLujDeY/FoMUaQ4Ol7A9SNSwzVJak2SeNHEUSZUhqE+PaC0pKSIgxGW4tlmfY527hg9D3wIg5i8MNeu1Ms2l0b8rO9IMUInTmlkThtToc/I3p9gffU3uVbuY/KqNy14rKLVEf+h/YCCKML1I46MFjg9VVryJEQtFruXOCVdima062FCGA+8RPxburOIn973XcKrJ/+JYdkLPdsbHlMKQW+vTjEr5aYYmXGJykqilsdPBc0QPwAnL3opAG52I5HSEwNBGGGssuLHjmO9Pbf+OvZqKiOOOLqEb/Ohj9HFNE6yvv9spDpwghk69n0aeeg7KKVihX04p3+UdwMGolOUMhvYKk9jKY/rort4MHt9q52sMhZMR5OS01e/HYDczFSFbDYij3AZxI8Qgs6UVVH8GMZcsteVGVKR9vhxjXSV1G+yP7tafaSzHc2MJp8A/BLw1FnR7f9PCHGfEOJe4CnAW9fyRM9GaOay2mkw40YWNmAXr4t+xuHELpw23SlJmAYbu1JEwmgRP2uEoh/ihVVFTi3Ksuf5BuJdDszHtfR0dADQPXI7KEUUaa8U0A83S4SIZdQS7+jPUsShEJscjuZdRODis7KZl7aEhdGxnnsS13LVxJeZzBWxCJBWLfFjIlh9c+dIUUlpaoElxRODJs7mSykandQD8ERalx56NQPmh07qjndfV9Xc869f/XSe9mTtmbLx+29F+prw8eKI3UxsqhkI61Ep9To9XWJnsJfhZDX2c5M4w055jLEdLyNMduOm9Sy9apXXrBirpfgRJT2QNNKL2/opabLdfQDp5QgjRcmvP4cgTvXCsCul0kXXr1N5OJP7EUERMbZ/zvHdIGTito8BcPzyt7I3eWW8YuXET7Z4HIBUthPblHHJQQpZmqLghRwZyzeVMHO+4vTen2KLEHfg6qp3xQoUP1NFX092AOrEz6orSs15NDj5k4wYfSTjZDnLFBSxkUGRghdWSloB3j70nzzD/Uu+0vOaeRUmzWAxxU/KNpZU6iWlIGd1k/HHKqURZbL0/i/8A0/9wUt4Pt/jke2vw7j21Qsey7Pi6zP2A6rt6kwW/GWXfYWRwltM8eNNE2CQyHTp944DTGRQVvzE/aNZavf709fPW6tkG5L+mNQLCpOU/IgwDPTk6RK9D89nNCsy2XXRZn4Y7iF94oeIh79MECrcIMKIXG1B0WBgvRxY5VKvWWTwvhNjlb/Hu64A4MlH34spIhKpeuIn09FDp5pmw/ffTttnXrLgAP3I0UfoF5OocvkpcEe0ne9c9rfz7tPC8rGQb5H55N9mgizO1KFKCa+MvDp/0aWgO+Nw5ROeAYDIzS3/d800Nj5ZNUMgkzWlx831Zy8UW4pmUr1+qJQSSqnLaqPblVK/pJS6NF7+PKXUqcWOdb7BiEoENYqfstllI4+fPjXOiL2RbELfTFOOoT1bpAmtGO1Vh1KKvBviBlGlHKCMMFIMz7gMT7tzLvSJjJaJH7/md3DMxrMDve1ahrp18kd07v0kAIXxk/Te9Q/MTOmHWSq99DSNTd0pXOFQKuhBS8ENIahXlS0HCcvAsSRjO36RPiY4dftnsWcRP8i1UfxESs35/i9kLEXxU/JDRnLuvN/e+JRuJ9m2DgC8oHrfmZzWKonubAbvzfey70XfBGD7hr7KNns+sovE6L2UYm8FO1Elfh4Nxc/dRyfZKY9S7NrFfa89wo86noch9Kf1+i4HQCTi66hF/KwYq0H8BGGEcDXxI5Jdi27fp/T9sOPAf8fET/09JggVNrrUy4hLvUqeXzGBBdjy1VdwyYd30PuRG+sIocMnhznzyTfz8ujLnOy+gYlr38oPu39Br1wp8VND0AonS3fGJmUbTKs0lj+NUjBdDOaUCl9ImDmjPXWygztriJ/lx7mX4tKm7NFvsmn/h2tWNGem3eaeYtoZIBmXRJtSUlQOZlii4IUcPaPT2H7e/SO+c8pin9rA3h1vWBFpsFgyUMIyFiWHZsNL9tEWTVEqxdHnZb+/vV8F4P4nvZ/cTX+wqFFs5MT3TlcTZ7PVduPLLFcs+uGi9xIryFGUaWzLwFcGqlzqFQeieOXwi9Cvm/gMNj953mM6lqSnS6eYPW7/3yL9PGEQENJScdSi2QCQ/jaHQlwmnv7cq7TPUhBhRD7+CvuctbBs/R6hXyUalVKMTFYJ3Wjo2srf9xq7sa56Rd0xNm7YhCOq99qGE2hx+546oL3e2i++jvdu+Sde7r2TD1z8Pp571VzrhhZWjoXuQ1JKDjq7uKJwK3LkQb1M+YQraF99N76a4ce/E25625x1rqnveV1qkshwkBXFz+Jj7CCcO1Y8X3HuWIyfZZgp+Rihhy+rg+dyqlfUQOYsCVGGRVtCN8TOVJzQJA1ES/Gz6vDCSP8L6ktlgjCi4AUMT+uH0Gzixw0ivh5dS9v63fN66tRFFg/rmcnuu/6RgTv/mh0P/yMAbe0dSz5nIQRZw+dxue/Qe+ff6WVBaVUewtmESe9Vz+W4GOSJJ/9dG+jVmLMqYWLMIn5WIgWvHEOplq9aDcIlqJ9KfojveWTv/VDDgezElB4QdcYKtFrCWcX3oEQygezYgNup5fP9WYeDDFW22/jtN/Hi4f9Pv4iTNEJhYqjGA1pvPqPpZeDhR44yKMYxBi4BIRA17TFMaYLKtkymVRLcVpLSSqHvhY3bX7PX+njBQxXiKOnk4oqfD3e8GdCeUsrLVwb3ZdQrfvR91fU8TgzrpLlT9iYMP1ezQ3XwcPiL/5dnFr6oF1/6MgCUrRMXwyZVIvMhdKvvGdlZOlM2GcdkijR2UL0W8+6FOWmjlMKb1HN9bb3V+0m5PEQtw2OprAZb/10tHv9g8Ey9wl38t3T9gL5oBD89WBn42ka11CuMFPm8/k1/5Reez0d+5XF89tdv4OXXbVzyeS4VS42NDrP6+zRmThKEkVa2RIrL2cdtXS9AXXwLCLmof4id0tcCcarZ7EvcD9QcH6FmUPCCRYkfO8xRkmlsUxIiieKJBBm3i8Aop3rVk7zrH/e8+Y9pSHqyVc+67JFvgApQojWMWQ762xLkqT5zNfETYih3WR4s88GJFT+13qdFPyTyXU4lt/HgK+7CvvxF3HnZH/O/z/8Z8le+hujbVX+MnbdU97W78UOFWRgBpdvh/nt/wtBHHsc9X30/m49/Hg+LzKareNVLXsJv/9rreeNTtpFaRjhKC4tjoch3Qwi+ve33AXAOfZMoUpizEoWXCsswmLjiDTCrjQBEpr6vdDBDZNgVtVlTxM8FovaBFvGzLHhBxMnJEkZUIjJqFT9xqdcs4kepcmStWekElB/aQq5NmtKFjpKv65W9MKrjcN0gqksAUKp+JizyS1hOEikEKXvxmSQjThqILN3JuuLMfwPLI34AZnqvAaD3nn+GKESGLoFcOfGTsk0M0+LkVW9npzzGNnkS065J9ZLGnFKvxeTczSCMWsRPLZam+Inov+Ov6fn+O+H+/56zPl/QHXonpWc5wrD6cIviAbKTSNXNAAoh+J/rPs1N7t/ze/5rcaYP0xcO65Ux8RMIC2MexU9xHr+s5WDqhI5oD7q0ys6wq536IKkl/SlHJ3rIFvGzYpQmz6CKjb/HZn/XghvilONRmyB+jrVdwTExSO99/8rG923DLZXqyMPA9zGEQhh2pWbf8wPuOqRTjd6bv5m/CF/JvwZxaohfqOzreJqAOnHDnzJ10fMBUHFqi1dYGfHzhdv3Vv62Um0YUsfxzqgUdlAlhS4UafhsuEGEyA/jYeJkuyvLyzOsYQOfw8WPGSKCEqY3xUeCp/PV6DqguTLP/PQkGVEiyA5WlrUlTUrY9Bb2kxy5p6Js7MjqZ7VtSoyzkDSwujcDEI49ghdGlPyQgheQxMWzq0rixZRETlJfC1FM/PzN53/M6R9/sm6bJVYeA1D0Qvxg4XafCPN4ZroSYKLKpV6xf0xYTj2NQtyS/l0+3PEmOrLzl8hLqeOl3ym0t1Hb0W9CFGq7hBaWjIG2BAVVQ/xEemxjRl5dJcNKUfb4UTXjIi+IsPFR0iFMdpN0LJzrXsNgb09DAZ4cuISRzc/DVwZBpPjI//6EXZ+4mp673kukFPbt76UrOMMrT7yHZ4jbOb7jV0ims5hSVrw6m/U+amFpsBZINjQMwfoNW3ko2oh99PvkvQBD+agVED8LJSmquA/bRgFl2NjlMc4ipV7HxguPWuLh2YCz76l3DqDohbh+iBF5KKN64zQrip/6RuaFERZhXYpSBdJsET9rADcI8UNFrhTUETsKqp4/StGx/zOEOT277AURIiiRTGXoa3NINzFDkD36Tboe/AiTk1pGPqEyPMRmzG1PXdZ5my/9EO/wfx0jcnGmDmojNLl888ky0jGJlbziRXwz1D4YyamD1Q2EMUfxM2+M+BIQ/vh9zHztT2D4oRUf61yHJsGaHyi6QUjH/pjwsZJz1ouy+iE2Eg+DWuJHd7JMy0aK+nSJp1+6nr9+/XOZ3v1Knu7+v+oB49n6aAHFj+uHq5Z8YBVOA+Cn1yEEGGVJOJIwLlPoSNrMqBRGE7P+LcwPNwjZ8R9XIv7p2obrmyV+SkFIMpzGxWrYJmdjfWeKI2GVGFDFSUZqOljlSRJhVokf1/cJ48HgU664mIMXv4aDKh7Qe1WfFkKfUToY3/2qSrlOMqMTP7zcZFOfZz5MT41X/m5v1yVtUkoKRgbTm64QPvP5b53vcP0IpzTKtNFFyq55TsZGyaE3y8g1iBZUlyildNnf1CMAHEhcylXbNwMQzUNW1h3fjQnBMqEAdKRsrrJ0Otj6772VUjFHSVlkEtV+2NkYujOwaQcAM6cPxt9bRKHkYomwznB3McWPGZfulvI5/DDi6Q//IU9/4Lf51o9urXhTLae0IecGqNrrcBamih5JVcA3MxXFT5n4EXEJYFjuN4c+P3lYJ0xuG+pranBe3PlivhldjT32cIv4WQF6sw5FUW1PfhSRd0PMyFvVUi/H0feE2koIL4ywCVDxxPlQR7IyoG/kiWUYktM3/yMfk88jGUzz8O1fB2Ddz/6G8S/+IbeoW9nb+0yOPunvOPyMD5G/8fewTVnXnowW8bMmaBSCU1knBbsH2/lZdDHZ8fuYKXqYyiNcwWS2aYh5q3OVqfskUigwHCxzYXPncp98qug39II9X9EifpaJvBfi4EFNeYJplYmfelmZF0QYhBXzyjpIY028VS50uL6eKZtd6lVbepQ++UM2fO9tiO/+OQD7zszg4JFOp+nJNEe2TDvrGLz1XTC6j2NRL1e6/8q7B94HqcX9LxqhI2Uz3XOFPr9TP8ZSLqGxcuLHNCQJS4KQmC/4JwCMqaOV9UqYSOrb4YrLegrjbLr9j7nu6PtR//nylR3rPEC0/1v0/sPmps1KvSDCKMRqnAaeGUbslyCdmPipUfyUZ9eE4SCEoDtjY5sSy9TKhZRt8utPuojXvvBZvNB+H3dseQNkBwAIhD0v8TPjBhUD1pUi4+rPFqQHdDJEPBgoyjQISXvSojNlU8SupMG0sDyUZ/ZFfnjOOqXmTz6sP4bCDxTJYJoZMk15o1y5oYMjUdVXKixNM1nwmIo7WVFZGWLYGLGnWtfxb+PHxM/WwT5+46kXYyfispUaxQ+hTzCrJMFKdwDgFVdGFKpStZwrUaP83Dy0jv7oDPlP/RrSy11Q8vBaTBRd2oJxik5PxUwZQMZ9oGKpWEmlcoOQw2P5BTvWfqify2MHfgrA9l2XI1MdAJRmJhY9H9/TZGJF2h9jsn03AMIvoLwSLnYdYdKsH8qjie0X78BTBsaZeyvl6vmCbve15bCLefxYCf1cmJrWZuTXSK1ie8tDL+PhT71LJ5EuofkWvZDpkk/68DfZ9K/b4ORdDbc7Pl4kS4HIyuCYhi71ip9NRuThY9ak7QQcPa19wIZ6u5oi4p6xZ4D90SDO9CFM5aJaxM+yIISoTFYDqOG9hJHS5s6rSPwkbJucStCZP1RZ5ocKW/hgWJiGIGlXvbAaBeUZUg/2jXQXJgHPST5QWfeU4Y9iiZDwyl9m6uIXMbPxaSAkliHrjnUWivvOexhSsKknxQNiG4kwR/H0PkxVJfyWA9uQ89vl1ybRmXa1qiFs3GcNoohCnAzXdf+HcT76rAsibKl1KSwTMyUfBx/ZiPgJ6yVjXhBhEiLNuY1dCQOD87+hPdrwSnmckftoO/y/JA9+pbJc1XAZhXs+D0AUs8TT8W/qJFKLzqblnvle3mW/gzf5v4lAsT13OzNGG//1q9fz7ufOrT1tFlLA4NZLeTDaRNuDH8eKXKIaVdlKkImNxbv713PyunfBL36q5o2NarxtjCCa3xNkMUSRYnh0tPI6jL03LmQY33kPIihCg3SiRpgpehWz40bEj4jvMyIub6lTGpbVQPE9J2EZXNyX4eK+LCmn2lHeM9jOn7zq2Qw+/92VgXwkLcz5Sr28cMnJZI0QRYqsP0KASWfvIF1pm0lfP458M0Nv1mFjd4r+9gSusiuftYXlIfIK867LuUFTJUsnJrUXRzqYZFo2Z15/zZYuPhA+u/K6494PEoWK45MFwkgRxYRereJnx8EP4hdjw/G4XMWK432np6vqDxH5dcautikrCXfBCku9VK2nll0tP9m9USdAPSH3Ncbv+fIFW+p1aCTPkBglSPXXed6JeJKiUCwymnOZKvocnyjixj4188ELI5yJvex+8O84qAbZfeX1JDK6lHB6apSxnA5imCx4HBnLk5vlrVQmfsp9sDLGnvbXfDR4Ok7+JClvBC9OYZUynjle+Vex6uhrT3G7vJyrRr9AOH4EL4jI5fT1UO5v2qZcnPiJr51CfpqC65Gieg99ef6jfPZr31jS833G9RnLeVj74v7UqXvnbOOHEQdHcmQoYqTasQxBiEEUl1rI0MUXdlX9HvmomMwVdgpnHl/FWly2vo1DrMdQAS83vtMiflaAXQNVhVzvR29i+6efjKn8VbEXKMMyBJ8Mn8aeiW9VJr28INLebqaDE8eBm3LhkiwpRKWs9KJA96ECK8v9G1/F3sf/FeHGJ1S2FUITo7Uqn6WarLewcphSYBuSmfad+vXYfix81AralxBifpVRjQpZmA5mOcBmnv6sUlWfPmdyP3JsP8jz/37SIn6WieliQAIPw05Vls2n+PFDhUWIac4t9VLCRKjVM0xtQaP7W2/n4s8/h03ffD09X34tnNGO8mVpfpgbZffJz+hl8UDWCyIcfOxEqvFBaxBd8XJ23/zL/Cg3wL3ZJwKQkT4p2yRhL99ETgrBtVu6+Vh4M9nJh7lK7EWYq0P8dKaqN9uxS1+H2HR9zRvPJSDDSC17RtsLI/Yeqwb9FbuWT4adN/BibxBr8fblhxFHjlRnyBrVKBsxGSRjSX9Ya2AXVpUUAI4pkVJgxA/i2ajtbIXSxmTu+0WxX1O4CuUtQaToDEeZtnrIJrVx7rXbdDmPne1loF23+YQpKWFV1E0tLA8qd3rOsrKh82TBb2rmv1z62esfZ8weXGRrjaGOJKJ7Gy923wVAz4MfJjlyF1EEeS+oKH6kaWOY1ftmuQywXK7ixEa1hXwNIRNVFT8dKYutvWkymTZCJQhLM02pmOaDiImf8WveBhseV1kux6vlsTfd81tM3/nZVTHBP9cwfHQ/F8lT+Ouvq1teTooMPBfXjzg2XtDplCxcFhd4JbZ8+eX4UcTfdb4T206QzrQRKImXm+TkZIkDwzlOTBaZLgaVUqXq/mXip17xc+229Xxd6XPcWbobTzr0tTnsGmhjR3+2Tq10tkAIwZd7X4ckInHff5IYe4ATo5OAJn6E0Amgi5o7x8RP6OYp5AtIobhv3YsZ2/lKAH7rzG9z/yMnmz4v14/wh/czdPgz8Ruk52wznvcYmXHJigJOugMhNPETlD1+lL5mRUzyRkFQIX6UmdRJt4sgZZtMDtzAhNL3BHmBJPGsBXb315frOlOHaFO5VSV+hBCccLYA4Oe0usuPS72E6VSI43Kp13zN2pCCTIf2/tvGcfZlH89Dv3Qv6hl/infJS+s/h1klkboyNoMdifqS1BYeFQghkEKQ6NsKgDlzDEv5K1L8gCa+G75fjU8kZgIZj7nVPCmTkVLkvTg1MTdMzlzct/B8QIv4WSamSz5J3IovBYAVmztHswZpnucjhZozGwXa3Lml+FldhJGi7fDX6hdO6w5OpBTJ4bu44pNXVToMuSktJfc9D1NEOE0QP1II9gy2c+PFvfzBuDYe3RgeraxbLoSADZ1J7my7mTz6JlbbxlaChGVUOrqzTzGSCW1AXtN2lVq+eakfRjx8pDrY9FcxDeqchT+/L8JsBKHi2d+rJpxEwVzFi4w0GWI4seKn1ty5AfFTRqPZktrOViAdbOUx25U70k7olcUr8fopuAE9aoK81U3KNkhYBu1p3c5FZzVpxzQkHjYyail+VoSZucRPKQgJQm1234xXTRBFZI9+i83RMXLpzU2/9QuvHGKG6j1VxgO9ohdW26lpYdaUQrfltTeLEZcxJlO6jbuFmUq7k1FAJPQ+fW0OliHJJCzyJCnOTFRKjZYD4WniJ7/7JfUrbnwbhd4rGd78AgAu/dkfMD594flPGY98B4C2y55Tt7xc6hX5+t5UV2a90CNgdD9WaZT3uC9n3cVXA9CesnW7qVEJlI8xO3ggiN9vdqlXOmGS67mMEElW5Qhlgt6Mg5SiYhZ8NiK1/lLyyqHzjr9jw3feTLGonx3t2SwX9WaaOu+OTBpPGbiFGYoF3Z5nshdx8sY/5+4nf5heMQV3f6Lpcyr6Ib3f//3qggaelTOlgJHpEhmKJLN6EBWi49xzboARugTCRsbPpSDwKuWbqUzbomQWaJPnqy7Zw9v9XwOg5PQ0/RlaqEeqARcypE6vSJHRCGZctjk9MQJor0AbHwyb9qRuRwnLoK/NoTvd2NrAkILBTToIwhQRXqp/XnVG+fqQUjDQlqC7SeuGFlYfQsC6/gFmVBJ35BFsEVT6pctFT6bx/rJG8SNNByMmfmoTb2sRxYqfghdw7NhhHphKMllYfr/hXEGL+FkOlOKmu97GRjkC/Xsqi8vEzuxULy8etIkGpV5Is+Xxs8rwggg5uzQkHmDY93yMbV/QCTB/I17FgWiQfOwhEHi6lMF0FjctNYTANASvuWEL94U6fvXB/udW1i0XUgiEEDxux0Y+G9wIQNJYPdKkO63b4OxT9Ky4nKFc4hAGdHzz7aixA8t6Hz9UjI5XDVJ9vzVwF2VDzEUSBkCTx05ULc/x3LmKFyNu4zL2P6lVGlaMn43y7139wS1D0N/u1KUjiFmKH/3HrAfgt9/Dpf++iSiugV5JwtdE0adLzOA5XdX3njkDgOrYVLetL+3KZ70QsRpm2nv36+s4qim59ENtaijcHD3f+R0oLuylEpVybP76a/Q5dTQfg/3iazbQ1lE1eC4nIY7nvYp3iWE6dcRPZ1GT6F2dnVimIBErfrxirpLKKCKfUJjYpsSJ/YGStsEMSZSbo+CF+OHyylVlTNJKp75EVW64hkMv+B/O3PwP/POGvyaj8ngP/e+K1EXnGpRSZMfvY1pksft21K2Txtzo5jIWUgoao9r8/6i1lafv6idpa4+vaZVCNEj088N6X6pyqZdhzx3gbR3q56FI31MiM7HkePXHAlv72tmvdL/CnnoEP6+/g/Zs8yqlPUNtFHHIzUxTzOnnuoxnxP1NT2JvtJ4Np/63qWMVvADXj3hkokE5cYyiF1LyQ0qTp7BFSLJNEzKRMFBRwETew1A+gawqfsLAR8Zx7l0d7U2diyEEj9/axXeiK/g/3m/wrcd/sKn9WpgLI9M7Z1mvmKzzkloNOBnteenlJ1BKcWKyqAkAsxqi0pmy6W9L0JluPKi3DcnQ9isrr9PdQ/O+X20ibzNkYgtrh4RlcOWmLo6rHoLxI9j4CGtlRFz5eT8bsqYCR1hOxV7Fnydlsuz5+vCpKbqjcdat30hHanVJz7MRLeJnGZD3fJyLx74NQOJxr64styqlXvUDO9+L5ezzmTvTUkOsJsZzDcpC4hrP7DfeBsDnwifQ/4x3xDOKU/EmugMim3joCQHZhElv1mFbXxu7Sh8k/4y/raxbLgwhcCzJk7b38sVQl2J1jd2x/APOQmfaJmHJOckJnhkPcEqT+v8z95F98BPYn//VZb2PF0S4NT4by4n3Pe9QNqadp964FmpMl5S83ft1ANzS3DZtRi4RAsvRD7uortQrfo8GMyuOadCbcdjWl9FtQdQrfiopcrMMlY3b/kX/Ma1L+PLu8hO+JgseHSJHlKiR1sad0GjjDXXbBsLGiJbffs71QflsdcNy4J68Xx8rNVBZppRiouDTc9+/0f7gx+COD827fxgpMke/XT3e5qc1/d7tSauO+Fn/vbdpY+RQUSzVePzUqBj6Pa34MdNdbOxKMdCr9/eLuYo0W6oADIuNXdXOXso2yKsE0s9R8kOmij5+uPQ2asSKHyM518uofH/3+68CIH/6wDnfxpYCL4jYWNrLieQOzFmSe8OyCJVANVAoLqQedU/cj68Mduy+ko60xdaeDGnHZIZUhSisRd4NODiSq3zvQfx8MRoMKPYMtnFnpJUCRqPJt7MQgx3JaimTCslO7wPASS6uRi6jLWHhySTF/HSlRLI8MHJMyR1qJ135gwsdooIyqXO8UL1GS7EPF+jf9pHRPFGk6D78JQDEjlv0OgyIAqaKPmacUiqMsjLM0753VM2oF4NjSjZ3p3nhlRv4SvR47PTygjRaAG58C3cbl85ZvFoq8zKSbfo38nMTsWG5wsFHmNXrdTGCpitj09Xejhv3Ve2O+nLjhKXvRUJAW3L5ceEtrD6u2NDBcfppm9mPTYDdgKBfDUh7luLHWFjxoyKIJo7wzG/czEY5Qm///GTi+YQW8bNUjB4g8/W38rNoG393/a2kOvorqyzT1P4Cs4ifcqMzGnj8IM01L/VaKEb1fMSB/Q/PXRj6dbrze7qfza51bcyoJKavOzDlCNram8d8kEKQjWNh//h5e/i9513N9nWd9LU5ONbyLyspBRf3ZdjSm6bQpwcW3tZbln28RuhvT2AZs4gfSz9M/fykXhAbJpZLHpaKkh8SxMk6RWU3nAG+0CDKxEwTqQEn9/0MADmwR8v1Gyl+Ig8PGzsuMa2Nc6+odeYZ6AghsAzJ1t4MW3rSFWNF0ObOwJwZXZXR6UyJg3qWuOiFHB2f3zR4IUwVfbqYgVSVEODKV3H8RV9Eba9v775MYNWUehW9pRFOo7lzWy0ULIO4mI2eibv1sWS1wxUp/V3aM5pkqfstZsEPI5yJfYQYbC99hO07djf93pYh6O6qUfwEBXrufz9QVbIZplMxdwbY6D9CiAQ7Q8o2SWf0/SkoVQf7MvJR0qxTQCRtkxxJzCCHUnBmurQsM3IzyONhYTtzB0DlAUpvdxehEhSnx1eFnDtXcHQsx0WcYKZ9B9asCJ62pIWHRWLswbokvvTJH5E4/qN5jzl5Yh/HVC837hzENrQfWco2mFYpDH/uM8j1ddnXTEnf88rEz2yPH4BLhtr5caSV2etzcw2Jz0as70wyRZUIaZ/UiqhEYvG+SS0MKXlq8etEk3EZelw6KYQgNJx50xtnQwGPjObrJimnakoc3SAkjBT7h3M8xf02p9K7MPq0r18kDIh0co6pPEJhVdJwQ7+AiCfcmvG+A13+25a0ePUNm/m/L7yUp+zsW3ynFhrDdLh73YvnLDaa6AMvBe2dWv1VnBkn74Z4oS71qiV+FkPGMTENSe5KPRkZ9O6srBMCNvek2didYmtvelHj8xYeXXSkLB5MXs1AeIqsKGI7zRPYS4FRQx5Ly6l6zs0z8Zz40hu4/LM30Y/2nrKD5Y13zjW0ro4lYthez6+Hv8U/b/57bt6zvk7dYZuSAHOu4qdsYNlg9l1IU3vNrEJSTiP44cJpGgthNUoMHguMH2nQuYsC/S/G5iueimUIZkhVLvYoLvVq5qEnBSQtg66MTVvS4sqNnTiWpL8tQV92ZbMlQuhO789duZHnZj5RiV9fLbQlrDlx9YGpS72CwqReUFanLJAGtBAmCy4iNjOeJEPUIn6qaKLUa/SINiPfdclV+JjzED8uvrCwTIGvDIKa+44sK2QWqaU2pCDtmJXEN4DIaKz4UWlNcnd+7/ehOEEQRUwXg2WpHUYmJkgKD6utxp9BSryBq+akb0TSxlQeJV8TPn4UMV0KtEfMIve2MFKrFj//WCAIo6b8dxbDQFGnoNT5QMXHHT4ez/rL+c0vXT/CGnuY42KAjb2dDHY033EzDcmzL6ufnU2fvBVUVDFdFKaNNcszJC/SFXlNOk7rCt18RcljqAAl6/dJWQY5lcSMS7WiiCUrfpRSWEGOkkw3NJEse7gNdqaZJo2fH18Vcu5cwZFH9uEIH7q31ZWLAly3pYuk8Fg/8n0u+fB2Ovd+kvYDn2frV17O+i+8BEb2NTymmDrGiNHHxq5UZeIkEyt+BibvInvk6/U7xOR5uW9T9kCzGhA/F/Vm+N/oGr4TXs7+PW9ZyUd/1NCbcZhU1TS59ilN/DhLJH66Qu2psvXgRwBIZWpKFw0Hs0klZckP2fvFv+XnjNsqy/xStW9QvsYevOc2LpGHcXe/uFJSFwmDPv8EKIWpfCJpo+LAisgrIsMy8dP8ZzOkwDIllwy1z2v02kJzePaeuR5JdhN2B0vB0KC+/89MjjJV9PEChU3QMOl4MUw+7m088KoHSW67CdCPiIxjYhm6PLRl4nz2QQjBqXVVlbC9xPtYs0jU+LNadrISqDQf8eM8+GkAHnCuZGznK/Ef/xtrcl5nG1p3zCUikzDZcdOLecl12xCi3hvDNiQ+xpxBblAu9ZpH8QPAGvn8eEHUVGJLI7jB8uO8HyuU/BCGteLny+Hj+KcgNsgNPYhnlv4yeiVXbB1ECEFepLEDTVCUDSmbIX4MKbAMwVBHsmJOt5q1xGnH5MZtPfz5y27EclZfFplN1D8cfTseWMXEz6GTwwAIf2nETxQpgjBi+BP/h/dYHwZgSqVRLeKnimZKvcYfYZQOhvp68DEJGngkSRVojxNDEiEJguZKvRqhtu1WiZ/695yuMeilOFkhDpZKTHhBhH3wGwB0dK+rWyeFqFMfAYRGAku5lLyAvBeiIjg2XuDAcI6Cr31c5kPeC1aFOHmsEERqVTJrnEjf+1QN6RgpRRgpuouH9YJ5rnU3CJk49iBdR/+XB4NBXv2Ezcgl9hx2rWvjwxv+tPI6c/o2uh/4MCKsqmHbZpHRBVkd+GYy+v505d6/hdIMkwUPqcI5xE9HysI301WvMpZuUD9dCkhEeVwjNUcZCfpaMaSgK20zTRpVnFiwDZ5vmDi+F4DUwMVzSNrZg671P/htNnzvLdUFU0cbHrPDO00xqZ/JybjkL+WYdAj9bN78jddh5U7Qf8dfseM/r+Pizz0ToKLmKpcSzzZ3BuhK2Vy2vpPX+L/D9LXnRsc+YRsUqE4gXeLfB4BpL2+mvFjUfZvuzg6kjPlUw9Zq8yYmHX9yzwP8odReOjPJ9QCoeKIMNEHtBRFDRz5HgEFp5wsq67ZFj7A5OETn3k9iKZ/QsJGxuidyCxjlCYYmFT9lnK3G3OcaEqI69nCVxZfDx+HteN4CeywduzYOaHXk1Bh5N8ALQ6w41WupMKUgsjO0Jy06UhZbetL0t61uaVoLq4+hDVu5N9LpbglnbUpuB2ompLKZNEZFDb+w6tvu387JG/8cVaMiO5/RIn6WiJRt8tobt7CufS45YBmCAKOaVBIjiBtduRHWQhjxwytam1lpL1i+4scLo9nBPmc9cm5AYuYwUyLL8Zvfx31DOuYxCvyKgqGzrb0y0C3KNE6oZ4dVJRlkceJHxCbMoH1zhGBOJ3glaEtoJcdscnG1MDvZyUxprxU3N04UKT74He0JopZI/ASR4vBonicXv1FZlhfpugHnhQivNtWsiWs9XTjGiDVIyjHwMYkaED8iCokwsExJgKwrMa3En5tL7xA1Uvz4YcShkyPVjbw8QXm2fQn3CD+MOD5R4Pn73wlQSX4pQxM/swaTqTQSRdEtkXeDiiEf6FKe01PzR73rsrDmz+9sQxCplZ+/UjjoZ5KqaXvOA5+hdP8X6RFxyYZfbLQ3UwWfxH7t2/HJxEu5fH3HnBKfxdDXlsC+5Pm8zns77930D+QGb6D33n9Gxe3atB3Sswju2vteOfENIDV8F36o1QNqlkpJCEGmrZP1wRFSD34SlDYBbvYZ6AURIzMlElERz0hjNygZaEtYrGtPIISgaGTZkbudID+x6j4/syPLzxb4I9ooPDFwcVPPJqEi3rs5Vq26uTnrJ6am6WYS1b6BTMKsmGu2Jy12iipRtPOT19N393ux86dITOxFBMWK0iqsaUezIaXgT194Ca+6fhN7Bud6Np2NSFgG11/UIK1qiQPlh296LwDtrk417WpvZ0tPmoxjVg1W54k6rsUjD/y08ne2eJySsuqI4iBS3LPvAC/hGxzvfxqk55oGtx3+KjYeGE5F3aP8ImZYJMBsmBK2ENJNmly3sDBEXJIHcEgN8Eb/LWQuefaqvsdAR5qcSBPkRlEKAj/AFFGlFGcpKPfdbUOyoStF2jGbNjxv4bHDJUNt/H3w87jKxB7cs/gOy8Bgzbg8lUxWPN3KPrtlzBY0ZPq0+f+FYgTeIn5WgNmx3YYUTKgsSX+yrmH5ZY+feUq9gDmDwdVS2uiBwzKJnyBaldnmRxOuH9JeOsmEPchNF/eyY1B7S7iey2Rck97bqdMjkrbEN5I4qgRRtCTFTy0yjkl3xl51gmZ2OdZaortbdzKnJ8dxg4gOI1apNaFOqUWkFHcemaBEta37wkKuEbF5rqAuIjJc/LvoD04xndxAxjHxMBuapQoVVhQ/4Wzip+yJswziRzVQ/EwVfd1BV/qRMT09iXPiJ3G8+9L8dvJudYAsey6qW2+ZYk7qTk98vR4fHme66NelAxXchQf1hdgI+FxTLpbhBRErvQnXJcKVCVilaP/aG3n87W+q/KalwtxBOUDJjxD5EXIqSduWqxv+Rs3gabt6MXc9h7/d28O+zidjFYZJ5o8BkGpgWtsRVlMB25MWt7h/obc981P8MMJQAci5g8UtPfpYF9362yTGH2Ys5zXtc+eFEUUvIqUK+Ga64T29LWmSdkxSjoFh2mRVjv6vvJbJwuqS2wulYD2WMKaO4mOS7N6w4HbPcP+SDwW38BL/j/jkw/qeF5XmGjVPj54AQLSvY3N3tR1kHJOvbf9jvh9eyrev/yj5vquZ2vJsjj1JhyhY+VMEscI0WsDjB/SA4MVXb5gz4XE2Y9dgBwATdo0qcon38+zVL+ZI1Mc6pRW8VkJ7Zm3oSmGUQywWSUwMIwXDutRsavOzuPXa91LEmTMxkL//K2RECfe632iYbNp2/LtcLg8hLQcR97FUUMQIi7hi6X2dvrYEKcdYUZhGCyCHruT1ng492dSd5r0vu3JNzJEPOTt5Qu5rmPnTEHtHNhOkMhtlxeVaTIi2sHa4bH0H34quZof7URKXvmBN3mOgvdqehJmoBC7N9hh1g1mTKnE/Yrba/HzFhfEp1wiz2UEhBKfpps0bqdQ8K6UqA7LGip8y8VPfMVVqdQYrSqlll3p552Cp16mpEuvUGYqp9WQck0xS3wg8z+W+wzouur+nA8eSbOxKExjxjSIoVToyyzG2a1+DB2Vnyp7jobBW6O3pJVKC4vQYJT+kw1xeaVYQKUZGh2kT1dnAUJiIJk0kz1dMzOSrLxYh06JI0U4Oz+6kK23jKbOhYkqqgEgYMfFjQBRxLDZbNkOXAAMaJQkugjLxkytUz9kLItKUGKVDv77/C2z54ovpvv/fl3R/mS4G5EoBOZXgJx3PwRy8rG59soF8f6Bbv+fh0xP4oZpTurVQKVdZaXWO3cYqyB/5GdYd71vRMU6PVWPaRfk5UzPL/5XoOlxlMT0zd1AOUPRD8uOnGFFtXLOpa94o1cVgSsmbn7aN7ozDvx3oAOCFJ/8GiNOWYsVRQen256jqwDKbMNmnNnIkeQkdh76I6/q6TKXBZEpXTzVwYctXXkrvXf9Qr7hbAEUvpOiFpCkSWJmG2zimgW1KLurNsE7pZ0rm9E9WvdxruUrdtYRSilTxNNNmD5nEwnL9333Vz/PDbb/FhsufwkCfNuCNSnPNM704HcpKZucM5p7xglfzFvvd/N6dab5zw3/wt22/x2e14Ii+n/09QRhycrJUUVXb85RFl0vQZk/Wnc0w4+vsyPqaspslKn46UxZjskZVGSttDCmqRtGLlGEfnyhwdXQvM3YfR2/+V6Y2Pl1P7NQoBEdmXLZO/Iic0Y7Xe8mCxLBpJ5DxeURuESty8eXyJrmGOpLLvh+1oGEZklc+QydpmoZkS29jwnuluHXTG7AJuPizT+d1P3oKwLIUP45pNCzBbeHsRtoxuWpj55qSdnXln6aNWSF+6vvPRS+sG3PnBp+AEC3FTwuLQErtJzAbI6KbNn+YIIqIIsWMGxB4calXAyOzquJnFvHD6gxWouIETBxeeJt5OpjuCvyBHivsOz3FkBhFdW4kYUtSKU3suK7L8RE9g7y+p4stPdq4MzLizo9frM5gLaPueC0M5QwpaEs8OrGUQ11pxsgSTZ+iFITY4fzlMwshjBSl0cMAnLj+PYy9+vtEwlyycuh8w/T0VPXFIuqnvOuREi7CSTPQnsDHbNg5lyogwkBKQYSsROZGkcKIXLxlzKICFePNkfHpyuDTCyJSosSUEQ8ipvUsffdDH0E1oWAqH8MLIu4+PExGlGjr3zqnA9DIt2GwR7/nsTNjREpx/PQwJbc6S73QLer2R8a46z9+F/++zzV1jmcTwkix4VO3kPr2H6zoOEfPVJUzQun2UVumMdLzeIrYDRU/UaQ0aZI7wyjtXLuli57M8urzy744v3rTFr491U9EzW9t2JVSjx9JnWYYiup6KQVbe9N8Qj0dZ+oQ9vDd2CKoTpzUQD3pd/mPyz/BlEphupMM3PnXTRE/MyWf01MlzkyXyFDESmYX3Sfjj1X+9rzl3TPnw9lI/EyXAvoYI5cYaEjS1qI36/CWm7fz6hu2sH3DAEAl6bEWZZPgRIM472zC5J3P3kWuFPCmT97NR247xucO6XWdBz9Hxx3vZaroE3rzmzuDjnoWQocynCswdj8XALmjpuxmiYofKQQ5q6ZkrMZHp6KOWkTxU5g4w5PlPewf1ARU2jF1qVdNH+HIdz/Mc4zbGNv0HBCyYYlk5X2dJKZp4iqTmdwMZlTCk8vzaGn5/KwcliG4ZEiratdSRdO26XJcZWF61b6QsQziJ2HJc0q514KGbUje9XO7+cIbn7Cm7xOW+xVmokL8eF71HhdFilIQUoz7O98YfAOlnksetUn2swGtq2c5ELCuPdnQUGzc7KE9GMX3A9wgwg8iim5Zhjx3EC9jj59w1oy+Uqtj6tn7kSfS9YFrF9xmvnKwkh+yOmfx6GHi2EPYIiS1TkfNtqd1R8f3Sqg4oSqZrsY9RqYmfvL5GfCX74uyVlgLJVEj9Gcdjqh1pGYOE4QKI6zx9mkifryyaaSwJh8BoNB/FapnJ6GwkOrCLvXKzdQQP4sQJYWcfiBJJxMbxpuV1JpaCBXqqFwgQrKxcD9K6XIqKyrhi+UN0MuGiyIskff0uXphRIYSeUuXTkZ5TSY400ewf/ovTR23EB/r9IguO+jsnuth4TRIaEml9IDw+Kj2n7rq45cy89GXcd+JKX2fnIchD8KIj3/hq7zK/QT251/X1DmeTSh/X8CKZgFOjk3q4ylH+0IpVTdb3739Ol264efn7FuKS6QS3hjTspN17QmyyySjpRQkTIPHb+2mPZvhl/o+U11pWNC3i+nnfZC/T7+F/+P9Bg8890t1+7/02g18eWozAPbog5jzKH6MRBsXX/Z4DqtqicwcaXcDjOX0czpx4ItslmdwUov7wRR+4eNExB3GmAxdLZyNxM9UwWeQMYrJgSWlKfV1ZCgqm9z0BDm3PgnQc3VbdJJziR9DCrb3Z/mLn7+MZ+zu510/t5vewS2V9f13/jVm4UwlUMO0Gz+7y0mZ51J5iFh3OfvecJzeHddVFy5xUkoKQS69ubqghvipePwE7oLKbn96GCkUufYdAKQdgxI2Mr6HRJHimkP/wj5zO9NPfg8A7TWTou5rvsXdicdVXtt2AtMQuNhEXkE/q+TapPy0sDiEEIg2Tcz6O567Zqq4HYNdPKg21S1bFvETKy5bOLcgpSBpG5XUxjVDd2wfYNg1xE914jRUCtePOBULAYSTJe0YpC+gNLjW1bMMZB2TrnTjQZXIDmISEk2fxg1CIkUlirncCOu2j2csXXeW+RSrU+plFIYX3SZqUA4WRgrr9N1w8u4Vn8OjhZIf0nXy+wA4Fz8F0xC0pXSHIvB9VNxRactWO/QqJn5Oj46vSPGzVkg7j87NyDQkZ8xBOt1jhJHCriV+FnHEr0UQKdqn9xMhcTsuxhCCSJoYF7jHTz5XnemeL1qyjEJek0RWQkuuA2ERBd4cZZ5UIVGsGOwVkwy5B8ke+TpjeQ9zBfL5TFqXuIRekbwbEz9+SIoSXjI27Zw6Xtm+WTVNMR7sTU2M6vNPdszZpuHALCZi/3L4DRgP/jcATxV38p3/+RB3ff8LFR+fOe/nhbzY+B4Aub5rmjrHswm1XkhLIV9nY2xSt72iSCJVoKn8+F64X27FHrqcorIbmjuX/AiUIhuMU7C7V9Rpsw2JbUraUxZP29nHj47WvF9M4IQ7nsufvuQ60lf+Alt3109YPPeyQSYsXca17fY/oI9JRAMVrZSCtGPy3e2/V1lWl3jXAGGkyMVt/aaH/gSArpm9i3+o7c/kn9f/lT7GxPF51bPLQXAWEj+ThRL9Ypwgs27ebdxXfZUDz/9i3bKejEOOBKXcFCU/ZKpYnejy3Vjxk5pL/OgQBdjck+bNT72Yazd3cemmfm5y/477b/oXBAord7JKjMv5n5fdj6Jn3mrBMmS9ce2SFT9gDdQk1dQYKFcSlUKf/Dz3UAA3VmSVSbX2pEUJBxErfu49PkG/GmVq4AaQFqYhyNb0W4z1VxG+7FP8vv9aANLuMJaUFLGRoYujSgTLVPy0sDow29dx4lcfRN349jXzTNrSk+agGqpbZizD40dKwWB7q72ci8gkTGBtyfeoKyZ+ihPYsdl/rcdPGClmSgH7T+iwEstJsb4zRV/bufd8WC5axM8ysKCx5YB2K3eP312JQ8/HUZqO3aiTqh/E3hzX8RV7ejaNcqxvLcJIse1/novzwac+SmexcuTcgG3TP+aYsQGzewuOadCZtvGUoWcEY2LHSVRnvVS51tzLVwkO68KcfZpMbKAzHCdyc1hRzaBsESl4BQe/TfY/nsGQe4AxewhlJpBCELUUPxTzVW+LgrtwSUgxH3tepHSpSShMROTz8OmZuplyqUKUqJe6O5MHCUKlfROWWerV361l39O5XJX4cYuYIqqktbR52tvkS+HjSUwdbOq4JT9i7+kZtp38H70g0dHcCcXXrSVC9vz4rZXF77f/lpfteyv//Z/vr4vvLuOe4xPcYug0GvccG1iU/JD9wzWfqYnknUZwg5Bi7NXkGSkMpVPRDp/W5Ntdm1+PbRoUcRBBI+InpOuhj5FVOYYzO0mswE/DMSWGFPRlE7z4mvV0pW0OR7EfTzxgl1Jw6foOXnX95jly/nTC5JrN3RxF7yOFajiZoo8DT37S0/mz6NV6QWGs4Xa1n1MpaLv7/SRCff2pGxaP/pZCsG7jNgCOH95fUUitFH4YYRz5IeRHV+V4q4X82ElsEUL70LzbqA3X4Q9cUTcrP9iRIKeS4M0QhIrJgl9JLQvLxE8Dg2+gos4t45Khdo6pfn44HBtyFkeqZHoDBVgZj5Z6djVhm5osPfbEvyHo3Lbk5CspBFt315DeNaN6EXu5BV6JXCmo3Otno0L8OCmkhIxjUVKatAF46OAjWCKko38joL0Jawl8IQS2KfmZ2g6ANXwvhhT6GEEJR7mExrl1fz7fYEmJke4mnbDpnmdSe6VwLAM/1Ve3zJhHobcYziXlXgtVtCXMNS+3DW6I+4jrr8WKq2yiGo+f8oRKsaD7V4m0tv24kLzCWsTPKiO75Vp8ZVA4eCuurz1yyn4UdqOo0bjUy/NnlXqx8hjf8gMbWNDAL4zmGqbe/sjCHeWzEYX8NJcH93Og7XoSlu4wOZZBgDbHFUGDUq5Y+iyDIpQHPmeR4ufRhJ/Vnfme77+TZFRT9hE0mYrzP28iMXw3TzfuJNd9KQlLIiUoaWJc4ObOyq1+n4spfoq5SQASscdIJCyMyCOMFIdG8pUBkxGbO9dCRnHJg/IIlqn4KZsp5/N5Sr4mr4M4hjnZoQfdCVymyHBU9WFGzRGDbhBy53c/x5vMmPhJtjd3Qhuvn7Mol91KKbsJRwT8Uf5P4b5Pz9nmob17WS/0wDlaxMD0bMNY3uPQSPOG4POh5EWV54BnpJBoguMne7Via/emflKOJn5kA+InmDrF0K3vZFS1cWLDzy0rzasMIQR2rGDY1pfluZcN8jLvD/ho+tWQ1aUG5cQWOyaJamEIwbVbOnlR6V2VZdZ8xI8QSCHI9Oh7mv3g3PZRi3Ip2KY7dKnK4f5nwJ4XLPqZTCnYtk0rKnbvfx/FeQbPS4FSitHpAp2f/nn46OLnsFZopF5yx3W8utW5cKJXR8pioE2X9PRmHTZ0pciRBHeGINJeX4fHCvhhRBCXYNdOyNSiO1MNORBCxwJv7k7x0XtiQqI4Vu3fLED8nIuwDT0gmdz+YiZ+5VaWKseQUtC95XImL3oB47/41bp15VKvwC8yXfLrVFi1E4FB/Oxqy2boy+rf1MNExmS0kdeqcpnVz4bZ3pcCfdpvf8XzCaSNeNLvkLJ1uRhBkUSL+HnMYRmico31NbCwWA2YUrDh2b/Frc6NlWXGBdrXvlCRcUycNfblUkNXc+w3TkHHBqx4zB351TFMWJzCmj6CG3v8ZDOLl3Sfb2gRP6uMTQPd7FfrMYYfwAu1n0KF1GkQPStNPdM5m/iRP34v8vbmvDPmw933P1B90cC/oYxIzU3G+fgPHphn67MXEwfuxBYBUwPXV2YbtUeKgapR/FAjLy0rfmRQqip+ziKPn0cTZvsgAG17P83N6tbqiqDE8LRb1zFsiBr/APfyVzHQHit+pKWjly9giKAm5SxY+Hs8M65TmBJp/UAKpI2MS+XCSHFsQg/QJSFK1Jc2WDntM2KvgPhZH5sp5/J5lNL+PkGsUspkqoa37eRQZkL/tk2UIu09eIh3z/xx5XUytbh5rn6jIY7/4nfrFg1f8SaO3PLhyuvIm0ta5A7dBkBJWXUzPucCokgxOtm8L9R8cMMQLyZ+fCOFGRM/QUk/D5KpLD0Zm2I8+z4Hp+8D4M3+m9m5oW/u+iWiTBy1Jy2eeUk/p+nmv1MvqQxoyzHQScuYEwmdsg2ef/kQYbqfEaWvDavBZApU0zl2XnwxAEO3/xlAhTSdjbLxeBnproGGkdSN3kfa+r43EJwgPHXfovssBi+MmJqMk9hG9634eMuFH839rvxxTRimejbPu58QkLJM2pImQ51J+tscUrZBniTSy1VIhaIXcmy8QLSAxw9AW8JiS0+a7ozN5p40OwbaeP+rrsHMao+w7LFvcVHhbr3xEhUxZztsQxOg3Rl72SU4iUSCY0/5B6LBq+uWlxOVvFIJ19ftv/zb5Gv8xbxSfO9PZ2lPWlhxn0rEZLRV1OrPKNNPW9JsaLicdkwG2lM8/NoD8LjXs60vQwkbt1gggVvxWmzhsYFpSMw1lmJIIWjvHuBTW/6s5o3PL6K2hYUhhGCoY22v9VqPKiuusglDX4cVRYr0J57Pzk/dRClOk+zq6FjT8zkb0SJ+VhkX9WY4rTqxisOEERgnf4bw4rSUBvXnIu6oeLNUANa33o359d9f9nn4YcSZ4dPVBV5h3m2jaK7Hjzl1bNnv/Vhh8pTOec2s215JlbDN2Bw39KsDm5pORrnTLoMiolzSZFyYsxBdAxsrfxu1hYahh1JwbLzAVGGBAbRdJX7sdbtJ2SaGFChpYdLcwHW1I5HPFtSaZasF/EZmSj6lvPZkScTESDRLMZUr6f1rPX7K6Nr7SZLDd2Mrj3CZ7bgjqwdgm4a/jVkY1gMCb26ZJFAlSZvwgZq58zMkhM/Bm/4/Jne/graNly26Txlh93Zu2/2HldeGk8XruIi/uupbAJRK9cRPEEYkxh4gQnKPugi1zFKpxxLJk7dVXyxT8RMEIb8+qSPTAzOFRBFFYUXdqMwEA20JSjgYYf13GEYKa/RBAB6INrGjv0mirkls6Erxh8/ZzXuef0llmYx7JAlbzlEXCaEHwNdt6eKE0oP+Ripa0APN7oxN384nMKH0eftuod43qQZeEHHP/iMAnMrsYfja32kq2lUIbVj5uQ2/C0DhzKFF91kMfqgozsTEj91YBfNoIAjnKn5EbGDd3r953v2kEBiGjuxtS1gIIUjbJtMqhelP49ccN++G5OIy2PmIH9uUJCyDwY4kmdg7JuWY7FivFSbtR77Ope7PdPrheVYCUp7A6krbyzbdLQ/oZ+9fJn6KMTEcRKpC+JSfMVAtxctmdEmEZQh8zArx4xS1V0aY6qcj2cDHUmhDaNMQlXNIOyaYCbxSjoTwUI9hO29BY62TshKWQXvSIpuo6bNcoH3tFtYOQlQnmJx4kl+FflyBozCH9eSMmNHj4872JpXn5xFaxM8qoyNlM2V201E6zuBXXk3/p57Nb4z8kV7ZIHrWjJf5i5R/LBVhpJgszxpCXXzvbKQ+/8tYX//dumXJ/LlH/PijOk2qb+NFlRpgx5QEGKha4qdG8SNt3dmUQREZuHhY1dHHBYbrL9/TeEVQIlK69HCyOH87VbVRsckODClwTIlaguJnUVXROQqjxjg3moeEiCLFqalSpSzMSesBq/7+/DnbGjUePx/a9P/4z+hmADoOfh4Hl3CZvjbCSnHC2sQu9x4Gbv9zTfzEiXe1Nfn3b3hFZfBAI7XIrPPdOP4jTptDFHb8PKNP/n9Lmu2TQpC75Jcqr8O4rZXJsWKx/v42Uwroi0aYsXvJq+SCpa5nIyKl2D5cU5oRLu+6UOOH6FfxwMzUpt2JD9+MiNujncqQTVgUsTHCUl1JpxuEJMcfYtzsJy+zbOtrPDBfLrKOxRMu7mZdR7VNlVU2qXkSNlK2ye7BNs6oLgAcp/HAYV1bgrRjYtkOH8r+KgCTJw8SNFCxgP6+n3jnGwEoPu43UU62aR+JnoxNfvPTAZg+80hT+ywEP4j4p6/9TL+wVvc7XwoaET9W/hQlZZHq6J13PwFz1AMpx2BSZXD8qTplFUAYK37seUq9GsEyBBf1ZeqPI+Y3dj5XYcXlN5Yhl+2NYRo6yn62gk3GZTZ+rOYMooiCG6KUYjzvsf/MDHk3wIuJn0xcEmFK3acq+/aZnp6oCJ0O0s5ctY8Qgoxj0pGy6ni59XKMy4L7GRJjOMnMnP1aeHSx1oof0Oa+dcRPq9SrhVWGFKJiH21bBgXlkCqdpuiFdQKHzpwWCsw34XA+48Ic4a4x3EQvKVUge/Sb9SsalHqJCvGzeqUwYaQIIsXM9GR1oacHk6enSgxP1w/SnP1fwbnz/XXLNkea+CmYHat2XmsNa/oII3SRSVdnpu2Y+CH0kdFcxc9AXNaSvecDDATHlx2BfT4g1dbZcHnglSqlgLM77bUoUh3AWY7+HoUQIC2sJhU/5y3xU+OfMl/Z0YnJIq4fVYifVIX4sbXnUk05VaQUBkGl1Gv7TS/i97xfYV/b9bQd/ipt5Jat+EFKPnPVRzgYrSN14laKXlAlfiyHbz33x7yw4zOoW/4v0mpO8XP/sXGuUA8z0q1jfZtRU8xGb7b6eaJ4QNyWcnCViVusL2Ut+iGDjDHjDKAMc9mKmccKBS9kh1tTNrTM8xen76keIv7OjNP3IGN1TzajCQ5XOJhhkZJXvb69ICIx9hAPRhu5ZLCNtLO6ZTTtKYuutF2X8VFuF6kFfACu3tjJGaXvVY0CE0DP+KVsg6RtELTrCOH8qf1zlK1lTB/4MdtK93Nr6mnkNz9tSe0z7Zj09g/pZLSpY7hBuKJETj+KmJzQHnuPpRJidqmXUgpZmmBStGMuYIQphJgziLQNyZTIkg4mGPju2+nY/9nq9jFpLKzmP6tjGFy9sYN3+r/CZHqr3r/pvc8dlFUYhhQr8tcyDYGY1dsv37vDwiTZI18nCHWyXRjpSZ6SH3FoJE8x9sIok/5W2eOnfE+K/+/vaptXNZIwDTpTdl27kKlqf6NNnlvE/PmI2Sbqa4GUbdBWa7J+npVmtvDYw4x9AkGP/74YXs+esW8wk5vRE9ixSv6505/QOyzhuXO+oEX8rAVio8o5aFDqJU1949t06/LLumbDDyOCMMLNVyOklZdnsuAxMuNWjCwXwjY08XMuESHdpaOMWuvqasxtU+IrAxV6yMAlQtTNMty0W5c3dUzcxw3+j8+pz7vasGd15mfQN0TfK1UGTN4CpVhTQfUhXuuQrwwLgwjmmW0vo+AF522pl6wp9Yoa+LV4QcRkXEZXNtN0YnPnh9PX0KPG6Xngg5XtFWAQgtTf89WbOrlmUyf/d+oZ2PlTrBejyBWk0+3cuI4Phs/CKZ4mGD1IFJd6mU6Sq3Zu409+4XEMdiSqs/SLKH7uvfcO2kQBe4s2am7GP6UWUoo6BUaF+ElYuFi4s0q9Sn7IOjFGIdGPkhZimYqZxwoHD+5jgxjh7iiOJl2Gx08QRuy960eV18quzqqXB9ttbVrm7MkEVlRV/PhhRKlYwJ46yF3eEDdu61nuR1kQ5VKgynnFfy80yN0+kOV0TPyY3tS821mGpC/r4Ge1EbE1c5xIKQre3O9y6qefxFUWwbP+ShPVRvPt0zIkQ50pTqge7NxxTk2WmnrGzocwUmSEbs+PpffJbMWPUiDdaUrGwuoMKeaWjQghyBtZTBXQte9TbPjeWzFK43pdGD+Xl2DM3JY0uWpTJx8Pb+b7vS8DwFEL34POddgrGJg7pjGn1MuMyySHfvxuNn/jdSSG76Hkh5XUmzIq/mlxWa8QgggTEfvOldWIPe3zl4JKKUhYRl3fzH/Jx/ld//UAtE3cv+zP1sLqYDmTMUuFY8r61LBWqVcLqwwhROU+Y0jBXezAVi5GYZTJgs9EWH2mTsqu+cfr5zFaxM8awOkcbLyiAbudiAeE2fGVm0KWUZ6tCYpV4qdUmOHkpO4Y1Ro518ZD12JTrPiR58hMuV8qsD08yKnspWRqpKTa3NlEBT5GVMLHrvMB6OuqV7ks1xD3fIAQgv+74zOV1zmhO/i+W4TY8yeK5jdInY6qD/SEVXNrKSvdFmlLw9PuYtzQOQszrCpiGvnN1BJqYZygRVyG+LPOZ/IzeQnrbnsP3fd9ANDXsFQRKv5uhYAXX7Oe77g7OJS8FABrCaUTs7FnsI3b1C59nGO3Vjx0DCtRGUBYpiSbjgeBiyh+isfvBUCu0+dmLGFgDXoWp7YC00joQUZbwsTFwnfrS72Knq+Jn+Q6lGEjz6VUOb/IFbe+CYADbdfpZcvwKBrPe3ROPVR5rZzqgL3s52PEihJfaOKn3A5PThbJnXgQqUIejjZy08VrQ/wkLGNJJAtANmEyTHzfnj61yLYWZpsuS1L5ESKlGJ2p/y79MGLD2A+5P3ElnZ36cy412aYna/MIg3TkH2GmFMwJS1gKztz/PV5paLVwZD6Gip9Z93kF2MEMgb1wCsp8JXJFo36/tsO6lFGGJdxZz+XFoP2eHNqTFp/Z10Ti5HmAlSgyEtbcUjEzVvCYvvZY2vY/z8WeODB38qVB6EUozEqplwo9TdzJxdN60k61b9Y+sIUHep/NQTWIfPofL7BXC+cLhBC01yp+WqVeLawBUnbNxHNS9xXsmWOMjI1hEvBQtJH3+K/gT3d8FpwLr8y0RfysAbKbLm+8ooHix++t+qo0ik9dDhTapC8s5SrLZqanK4kNtVGd//rdgw2PkSJODjpHiJ+jD/xIJ3r1XkWmxh9CCEEoTFTkY4Yu3mxFz6xZRnWBz0CkejYSKt1DLBp6cB14RYyJQ8i4lv/UVImZks90qb5tuKLaMaxV/BCr2hbyKVFKUfBCFKtzDZxtUPHsqKssVIPvwa0hYDuKx7RRaazQ6Erb/JH/S+S69jB425/Q+fAnCEKFSQixx49A8LjNXWzpSfP+mRsA6M3vXfb5pm0T1XUxE6KD1KnbKh46pp2olAwYQmA5evYkX8jNdygA+ooHCZG4Hdsq+y4F7UmLZM1scW93F5t6UrSlLFxslF9PPPn5KRwREKZ6UcI8t1LlDv+Q9QVN2Iy379bLlnEfDqOIzf6BymtZS/xU/M707xcYCSzlUyx5+GFEzg2wJ/S+hfZtXNS3usbOtZjPz2c+OKZBpleXby3kXVdGZybFuMqg8qOEkcKPorpn7Q8fPsEGdRq5Tj+3LVObEi/pnAyDY+Zmer1jWsGygtvYZd94OTcbdwEQGCtT/ITLPJHpQpH2r/8mnHmwsqxw+A6u5QGUs7z425LVUfd68Md/RNsjX0UGpbnP5SbxlB29HFU6be7OgZcs6xjnClaiyGhPWnOuM8OaS246E3vJHb2fzoc/UVkW+fWKH4CwJnBAhL5+XjWBTA3xI4Xg+Vdv5p92/yfGzmc2/VlaOLdx9aaaydYlqPxaaKFZ1JLkdqYbgK1feSk7/+sJtIkiB3ueSubJb+GXb7zosTrFxxQt4mcN8Pirrmm8ogHx077xEj4YPBPXSNdFaM6HMFKcmV5Y0qwUnBgvkqLaKS7UlH3VdgZVjelsrS+BgR6IzjaVfSyxEDE2cfIwAKl1O+eUCYSYEPqYysWfregRgqOvvY//F7wcgASLpxOdz1jXmSKHHmyUTN3Bz9/zBbb85xNZ/4WXglJMFnzOTOsI2FrUdv7qOqllxc8CqgU3jpJdwUT5WQ0RBfjKwMdANSr1imdZnYm9PMX9Nnekn1Qxg/+lx2/m/mADb3D+gpl117Putj8jPP2AjuaO7ylCQDph8rzLBvmfQKtEgg03Lv98Bexc184D0UbsyYNEsceP5SQrpI0hRaXUa3J6ZsHj9bgnOCMHUIZDR8rCXKLKI2Fpv5Yy2to6aEtY9GZtXGVBWH9P9OOkGiuRJlqCufjZgLLi6+N978Aqm2cvp9Rr8jgdzOBKfT3LRHXAboYlfb3Gs/RBbATulQo6YjsCZ2I/oRJ0DO2o81dabSxnQPvW1/0K41e+EZ71l4tu25W2GVPtdJ76Ae3f/j3CMKpT5EwefxhDKFKDuxECejJL/6yWKRnPbMMgwpk8sCLFT1DTLQtXWOq1XOLHPX4vbQ9/Cj7/65Vl2Y9q83gz1bGsY3p2NT3ljwf+kWL3JWz89hu4uHQfvlhe+3rXc3dzlHU8zf0rfrrjt5d1jAsBjchV055L/Gz47lvp/+TTWf/D361M9ER+CX9W6EUkau6poUfQJPFTTikD7cl03ZZuXnfT1iV8khbOdXTX3l9bip8W1hhOW1WtbLk68Kivbx037+qnJ3NhEo8t4mcNkHYMPr7hj+aumO2uB6xrTzBDCifMU3S9BT1Oil7IiYnigga7oCXZM599I79pfq6yzC1UB2ZhTae0264SO4dG85XSL6n0ezQbw73WCCNFcZ6yNIDC5DAAQ4NDc/cVBiL0MSO3YQcz0dHHdMdOALLu6VU643MTg+2JCvHjWXEM8ohWhbVPPkDfd98BkU/Ri+YMKhoRGkB1VmcBxU/RC9l/Zobhz/0+HP7hCj/F2QehAkK00XjU4Hso+2kM/ugPKSqbHwy9vrJux0CW1964hR88MsM/JX8dw5/B+d6fYIqwLikw45g8cXsvZiLDJaUPYDz93cs/XyHYMZDlUNiPNXWYKFbUWLYu9bJMbaBnJcqKnwIlP2Sm5FdKAWsTosyohCsTZBMmQx3Jerl3k+hI2uSf/++4666ptKlNXWk8LMSsUjOv7JOUSKGkhXkWEdi1aERmj4zpzom74UaMOPksXEYq2eRJHS3+5Z1/wfBbTpCwq9+5jOrVj2VlieFOViLP1ehejqh+dm6YP8HpsYLj2Ezc8PvQvn7RbTd2pRijjUzhGNn7PkxUmKh7BqamdRJX0HURjinpSi29M5i0DNpipa86/QBqmSWrUaTIqSrZ47My89PlElBBTptL00Dd42Q6lnVM3+6q/P3Jwym+edU/E9ptbI0OI5aZpGmbBpcOtXNQDS1oON3CXJTVmgAPRdoHS4aliso7ORarvfzSnBL4qEZFKaJgWYlqsuLnteRdWzhf0FL8tLDGyHQ26L/EVgGzfc8uFLRuuWsAIQSn1j+78vqRZ36MwtW/Bpn+OdsmLAM/jtn1CtMLmkIWvICpor+oKmK66HGL+426ZV6hseKn4icCFAtVhZCkTPyEi5ryPhrIucEc08Fa+DMjREow0L9uzrpQWAgVYEVuQw8fKQRiw+NX9XzPVWzoTFFS+mEsy7WxgW47nwufQP/BT9N2+H8BHf9aO7hXSv+de1V924vKrvne/OVABT/kh7ffxlNHP0b0mdeuzoc5mxAFBJha8dMg1UspyBz/HpnTP+Gfg+eRGthWt/75VwzynEvX8b4HLY60XQPFKW2YHSt+DCFIWgadaYsXXrmeTFsXbanlz6YJATv6sxxRfdj+FEl3VC83HaSEoY4kphQ4jv5tS4UcJyaLHB0vVAbVpRpFmBF5BNKhK2MjpViWX0XSNrAu/XnGX/alih+IEEIbss8ifoI4ItpJZc5qxY8bRHMSoE6OatPbDf09lbjywF868TMzfBiAZM9mhGHRblWvVSPy6ozso7iMY+cnr68sM8cPcFANcu3m6oD9bIFtyKZTnPrbEoyrmlI1L08UVZ+DVlFPGtA2qE1wl6FAMqRg6/ZLcZVJ6cR9yyJc3CDkgaNn6BIz3ONo1XAYrsy/ZqFn5oL7FWLT7GTHnHVt5vKuJdWzvfK3lcjwdz84xcEn/gPHVS9HsvOopBeBKQV//Lw93LithxvXyIfqfIXlpPCVJssOp+faE2z98ktI3/cfvFR8Yw47E5U9fpRCRB7Bcoif+Dq7UAdfLdAiflpYc/Q3GBOWI9wv1FtPi/hZI/S3VQddxe495J/8nnmnNkQswXdzk/OaLQOUYlJoMR+U0W//E6aoDroCJaE0hVEaJ/Gl/8P6TzwFxrSKo9YHSPqFCqlULvUCzoooZNdfOCJXFceYEWmSibmD3UiYyCjAVN68xM/1uzdxwhiidPHPrep5n2voTFsE6M5gtkPXxjqBbiN3xFJ6OR63nUgxXawZBEQhI3TA0FV1xwzKyqHC5Ly/4UzRo+/UdwFwu3asymeZjZVELMPKoub1rKgkxKj4/dQhd5r133sbR+V6vmg/m+ddUW8Qb0jJ62/ayjWbOjk4EeK7xdjjR3e4y6lXQ51JXnTVEO//5avnNVltBhnb5IZt3YxYWkHXX4q9wMwEjmmQjdOYnKQmfvL5PAU3rBtQ1/oWGZFHKO06/63lwJBizkDBFzZyVqlXEJs9VxQ/Z4lycTa8IJrjBzMcK376uztJJTUh4/tLL0H1x7VBf9+GrQgBbTXEjxMWCGqIn7DGS0YERYgC2gtHOSrXc8lQtUTnbIGUArNJqcBQR7KupED6ObywqlhUsd+RYafpyS5/IHL55l4OqiFSo/egcktXjk4XA44e3g/A/v5nciAabJgAuBQsp9TLDyNEcVK/SMz97ZPhwn5e8+Gyjd3cH20G4K1P387R8QK/c3cPN7p/z/f3LM/c1zIke4baefdzd7OpK72sY1yosC2jou7t7Z+rlN4XDbH1tnfiiIBkMF23LpIWEgVRiAh9QrE8ZVomYdZFvLdwgaFV6tXCGuPKLX1zliXjfuuFSjq3iJ81wlBnNY1DOukFmUU7o2dUo8IURa+e+KkdrJYHUov15S6790/rXk+RxnAn4XO/ysWnv0R77iDFoz/Txy9VS8CknyNSijBSWk1QxjISZVYbZQ+Y+WCWJsgZ7Q2VBJHUs1O2cgkbmDdLoZUu46/5Mbzko6t63ucabNNgCt2BNtO6XaZC3UZ2XbSJEdVOYViXkASRYqbG4FlFIRFyjnFv2Qx0cnKsoaJNKcXPjk7yRHUHAAVnbUpLljv7XcZUYSXET0iIoUm1BqVeXd97J7gzvK74Zl7y+G1knPqOtBS6tOoFVwxRwiLwYuLHqCdSHNMg5RhND4rng5SCbMLC79XmwlsKcdzurI5aIn6ABl7VKyyMFEEY1Sl+LOUSGc6y1BS1aET8BNJGhrMVP4X4/NIoaWGhZ6fPNrhhOOe+Njap1RaJVBrbLhM/S78Hi+kTTKsU6/t7kUJgR9VjpKJc3WCtosoDEuN76bvr77HwKbVfVOfLcTbBsZo7L9OQHNrzG3wmfCIAnfs+TTh+pKLKEbF/VWdH25KNpmuRTVgcSl7CtsLddP3LpUveP+8GTI6c1MfqHozLQh9d4kcpXVL9nXv26QXJzrkbpZenrLlqYycv8v6Id1z0Ja7Z1MVrb9zC3ccmAeojnpcAI1YPWoa8YGdvl4vaeHgzW//Mvav9Zn548//wW/6vNty3nCbpeiWkCoiWofgB2NC5vLLfFs4TNJEE10ILK8GO/my94hfdLxSCC5Z0Pjt7dOcBLu6rJqik05kFZemdnVpZEZYm5yQlzbjVjl/ZALZZGfnoJa/l4ed/hWmVYvfJz7I7fzv/GDwfgLGxESbyHlFN+Y3w8ij0jJ8kqqQ7LeTN8mjBDcJ5CS+lFI43gWt1NBykeCJBKprBVh6hMdfQUAjBxq7HLjb3bELCMmjv1moTEc/2pingYbK9v53jqhdj+iigBxUFL6y0WRWFKOQcs9bIjhU/+ck5htBlHNr3AI+TD+vt3IXNy5eL5RqdluEt4L+1GITSPgi+MlChX0eYATin7+DrXI/buYObd/XPid4daNftti1pUsIGv6hVeQ0M4/vbEqs2k9G3/mJGVDvr/CN6wSxpdjKWzIZe9TcLI0XODerKAC3lwyol5s2O/w6ljYxmRXTHxI+dTKPK59xIafUYQyt+6ttl5BUIMEk6DqalB0W+u0TFT+CyZeYOThvraE/auj0F1d8opXJ16kdVk9iz7rb30H/X3wNgr79iae/7KMJZAiH1ymc/mS9IbU7ce9+/kf7aW6r3A7+Ij0F7emVGyrYh8fcsL1mq5IcUvJDCpC6pzHb2ESFXTvx4pSWVavuhYni6RD72zKu9Zg9acanW09+zrHO5dH07f/uL1/HmZ19FR8riuZcN8ri4jHBzz8rUOks1i29BXz/lCT47283tz/wSxbjMO9nWzbVb+3jJ636PH657NYWr31C3bxgTP7lCERn5y/L4AU3KZpeYoNdCCy200CyEEPzXE7/Oh4JbKsvashk2dafoWIaf3/mAFvGzRqhVnqTjsoj5MDSgvX+KJx4kikDVdNSm87qzrpSqGMA2O3Gd778Gc/ByZtCkxj2JawmufysAhekJTk4ViWo8fvzClH6fSGES6QEmPObEz1jOpejNHSCVMZn36FXjRIkGs5PAYXsb68JT9DNG2KDUyzYkbUkTKS9c6V8ttmzRKRsWXsUDwMUmaRuMmOvYkruLLV96Cf1f+1VUGJArxYOTKCQSxlziJ1b8hPkpSsHcUkbl5rnq8PsJhMmUShF4a0f8LJQMtxgWMl5fDDIKiDB0+knkc3i0wIHhGcbzHrg5rMIwD7h9vOYJW7SqZdZ32J606MnatCUsSspChiVMIoQxt9OcTVirptK4fEMHt0c1pXdmPXGaSukB25P3/kmlJNQNIop+SMmPmCx4RJHS5srmXNJ1OTBnqfpC6WDWED9RpCqKH9tJV8mxs4DAng23AfFjhiU86dCWsDDjVK9giebO6sSdbAiP8cPel+KYUreH3p2V9RmVJ5DVTs9TLtlU+Tt95qcAfCJ4Kut3Xbfkz/RowVmCma9lSDo6OqoLiuOESuEFESIs4WGRsFY2+yylYMNlT+T74aVES+xanZkuEUYKLzZVlqlOQgRRtDKPn96/3wCf/ZWmt4+UouiG7BYx0VtDlgoVcJv9OIzk8uLcAS5b3xGXipoIIfiD5+ziX195NddsWpmPVMIyluUbdiHDNmXFyzHT1U9m4+X8INJKtbbYEDVhGbQ/508IZ5N98T21WCwhlU+0zFKv8nm00EILLawVrt7aXylrBd1vvZAJ59Ydd42QcqqdyLRjLKj42bLrSiZUhq173w9QN8s3lSsQhJEukQk8Oh/8KBs/9gQ4ff+i5xDa7XSmLbKmfrh3Xfk81vV2EyhJcXqMKAJRqtZuy9G9KCAMdalXkXKU8GNb6lUKIozSOPLEHQ3Xjz34bbbJk0wP3dRw/YGE7sz0i8mKiWktkrah/UpMOUdpcUEiq4lIx5tkAq3W8eI0tO90vwyDiMzpn9D+yFewcieqM+cqIhJzFT9mUiuH3PxEQw+r6L3X8Ozw20wkNnBU9RH6a0P8REotO+XGDeaW5CwJKiQSJiUsRKy8KHoRozmXYOSAfo/2zVy1sQNorGZY155k12AbLjZG6GEQYpqNZ1q7llk6MRtP3N7L7wfVhDFmEU1l4gfAyp1EBCW8Yp5SqYRZGGGmFDBd8nGEj7DWRvETSQdTeRWFUagUUVx6ZjpJVPmcz4KS1dlw/bkeP2ZUwpcJ7X9hxale3tLOfXhkBID0wMUIEZtpX/YSvtz2MkATP7Uk+NVb6ks9zqgO/jbxf3jclrPP2LmMpSh+DClI1aRRKSRhqHCDEBmU8FidttmTsblT7dQD6iWodcqJlUFOG3tnO3u1H9hKyMryve6Bzy28XQ2CSMGZ+3micR8AYc37yyhArWCAD/p3MKSgI2XTkdITYoMdyRWXaXWn7TnPnRYWRtI2Koqfjq4BOlIWnZc+C6CSJljG7InLcqlXsVTUkxoNlKcttDAfold/lcLT/uyxPo0WLhD0tTkVNSNoY/sLGS3iZ42QsU28a99A0L0DxzQWlCJvGOjn36IX0O6e5NIPbIRv18yuhD7jeY/RnMuWzz+X9bf+Afb0YRh+cNFzUFLPYm5K685b2LaBnqzDNCmiovaRcLyJyva77/wDjI+/GD/SpV5eRfGzxNnmBoPrKFLk3eXJ1v0gYvtnnkbvfz2n4fr8yb0AiF3Pa7j+eHJnxbBYLVBu4pjGigxxzxdE17ye3NZnU7rq9ZXa2EA6GFKw5dIb+Fz4hMq2ZmmiqkCLQhRzZ803Dw0AMDkxVuf7UjlG/hQAMtuPj1WJDl9tRGpxf6z5MJFfmVpEqoBIGhRIYARVP5wgVDz0sB5k7d59OUIIOlLWvGqG/rYEkeGQVjkcEczpoJexWr4JPRmHjYM1RtOzro9MplrS2v3gR7nkw9vp/9iT6frGW9j1iavJFV3OTJdw8JCrpPixZifMmA6W8hie1u0mUoqgpBU/wkpWy9POMsVPEEYkjv8Qjt3OiclihVi0oxKhkdD+JbY+d2+J18SZEV0yNNivCR3LkCAEJ9K7AE38RLKmjQjd3u6JtNrvQDTEa2/cuiLPm7XGUvyiLEOSba8qQpWXq/jGydDFk6tDlKZsE2XFM4s11/liCCNFyQ+R7gQRknV9fYRI1EoUP8HSCfQwUnjH7qoeosZbSqqgYWnpUmBKUSFu13cm6UzrNrjSx27rub10OKaBY+rvLdPZR8o2SFz/eo4+5b3MXP6aum1nX2pl4if0fQzl199LWmhhEYhN1+Nf82uP9Wm0cIGgLWHX2XwIa3X6oucqWsTPGkFKQfSMP2PqNT8AWLADbUjBaPvu6usf/0PlbxEFnJl2+en+U6QnHqruNE+nrtxR9ISD2vh4HVVe0iSPl9lAZ8pmRqUQrl6WDibxsDgjtfO5dfJ2gljx48WpL2qJxE8jE93RnLtgYtlC8IMQs6Ql8I1mUV1PD4o6Mo09GhKpNA+ozcDCTG/CMlqKH0AmOzjzrPdjtQ8wUUP8DHUmueGiLo4+4a94h3wHANu+8DzElE4PIgpRYu4tZddQF3nlkJ8eX7Bcys50EQhrzZQZagWKn5mSvyJvYKkClDApKgczLFSWh5GiOK1n+fv712FIoVOIFjqWVV1vWWvf4d45kJ13nWU7/JOtS0l679eKRXvmKG0Hv6Q3yA1zbLyIg4+wV+dhO3vArwwHW7lMFvzK7xT68aDbSiIqHj9nF/HjhRFbv/JyMh97FhN5j5If4ocRDh5BnLJlxd9Zvri0QfzEpCb0h/rrEy1MW9//UkKbbVew7jJGnvb/8Sbjj3iO+2d8evMfceO2niWpas5mGFJw055qOVty+hHS3/xt/FBhRC6+WB3Fj2MaSDu+Pv3miR+l4P4v/zNvNj+PJKIzk4gTAFdA/LhLT9+KIkV4+n4KymFSpfH96jVjqgDmIZqbhWVUFaFCCNa1J0naslVi/RhBdW4BQKa7MQ1JwjaYuuj5pNrrFYCzf58yIS0iH0MFFSKohRaagRCi1ddu4VGDIQRmosZHbpUmIc9VnB+9urMU5SQeYFEZctTfOAVExN4Vk4/oFK7vqGv0iqDxDHC5o/aDdb9MbzaJlBC1rwfAy67HMiR5mUZ6OqkpG00yY7Qz+uL/4Tvh5URCEoQBUij8uBQgmFVmoJRisuDVmbfWYnZJjFKK4RkXP1zeyFlNH6++8GbmrI9CfR4Ju3Hn48qNnfw01MaUidT8JpJl34ELHeXkJMcyGEcrOkJp0560GOxI8dRL1iMGqu01eehr+g/VmPhJWAZFmSYsTJI68WPCsHG7kUQEwsaIlkg0Nuu9M/wQTB1ffLsGUH6Jnnvfhzpx1+IbN4CIS72KwsEK6weEQVGXW1rJNnqziydfmTXkZbkUaC1RNpaeDwc3v3zOsnJKlJU/SckPcfCRazTLUrB7yVJAetOUfK3iKJd6YSaqyWdnWalX7aBaKe0hVfJDkrhE8eyUFf++pdLSiJ/c9CQAnR31pVqmU/0Nolnqx9Kel/Lqp14K6y7nhTdeqT1AzqPe+VBv/XeRve8jOsEyLNUZXa8EjiWRMbnWLPETRYoz41O8ZvSvKsuEEPpeugLiJ4hVvTS4J8+HUCkykw+xT63Hw6pT/BgEDT3FloJMwqzz4jGkYFtftuXP8xjBe/mnOfWM94GdwpSClKPvlR0pi7ZkdbJydrdofY8u3y4Uiy3ip4VloUX2tvBowTAEdqKqTm8RPy2sGaRoXoK8Yd1A5W/lVGfYJ08fBiA9qeNV7734jQCEXuNOpRsnIknDIhHPpHkv+zRHbn4/ykxiGoJIOlxW+AnWzFHaw0nyRgfJno3sU+sxIo/A16qa8iyoP8tzpeiHHBsvUvIaD7hrFT85N2A051UGNkvFqakiheM1ZW2NZjFjA0p7nkHwdVu6uCM2qE2lMg23AVZs7nm+QAr9zzFlRfGj4oFoWQEw0D9U3b4UlwuqECUaf4cnnYt4avHrbP3KSwl/8q+N3zgKCaU1J6FpMZyaKjUsL6w7dKTo+PATSfzjZUs6dhltD/0n627/c/jxPy5rfxl/NyUSWFH99RSWNJnZ3tlJT2ZxIsdJVokf+1FIs7l2cxdfC68lmue3vXHnIA9Em/hQcAv/EjwXAMOLyazcSYqer8vS7JWlJs2H8cxFACQm9hFEEZy4g0vzP9YraxU/Z1mp18H9D9W99kJtip0QXoX4cZyYfF9inHsxPwmAmay/39UqHmeXvUopePLOPv7i5y+jK22fd6ar6xskNwZRhBm5q0f8mLL6HTdJ/IRKcfyur89ZHgkD1PKJn2I+Jn6s5v0MoiBgyD3IfrGZAElQQ04aKpy3tLRZWIZsPWfPIoi2IUrbdYm8KQUZ20QIrVDf1J1mc0+K/nYHMculcnOvJn4Gf/A7mARz0h5baGExtDy5Wni0YEpBOl1L/KzO8/5cxfnVszvLoJUTzW1bG/8e2tXUjOu//WJQinT+KAEGXqce5BSL+YbH8eKOmjBs7S0kBaJ9PdObb4ln1zK0GVottPO/buR6dRd5qxPLkChpI6OgYugYxgMDb9Zsc97VnVE3DBmZcecoLsIaZc/pqRJnpvX+y4nDDkJF4cQDlddRaX7Fj+00nnXata6Nh6ydREqQbj97zUrPFgghsE2JZUjGY3NnIy45Kc/MPumyrZXtjcPfhyhCRGHFK2Q27l7/isrf4ehBvKDaFgL0zKLbvYtQ2hhLLMkp+uGiZVgzy/SXqmBCp9yoBW3a54ehAiJhUBIJuvzT9N713so6VZrBVRYXDXQ2RRQna1RrdtR8OclycfmGDlKv/E+m33G64fonbe/lw5f+B5NP+lOmVb2ibvzkIfJ5XdqWSK6NoV6h/WIAzLGHCUJF+qO3cFlwHyFSm1HH97GllqyuNX5w2+11r4NQUXBDEngVnxjbjs898JZEnEuvgItdUQyVYSWq5Jua1fkxhKgblJ8vZV5lOKZBceeLOMK6yjLP8zAjj3CVPH6EENjJ+Bpo0uMnOnwrv3zo7YRIDj/935l40acAUMJARMu/b91zQKsbldU84dr+79fTTo5C504CZeDHhKNSCpMAabaUHecTTCkw406qaUiSdr0fZTZh0Z125gzSN/drv6z+qXvoIIfxKChPWzi/0FL8tPBoIWEZZLI1lgUtxU8LawVRU+q1GHYOtPE7vk7P8VX9z2JNHqDdPcEZ2Uc6mSJUglKpcafSi/1uTLNsmlh9sA91JLEMyY/2/HH9TqkefZ6mjUFYmV0OpO4wjs3Uq2zKA5BcKeD0VImZUn3nNIjj6KcKPkWvOih3Gxj7LobIK7L96Ccrr3Mzk3O2UXHnOGk37nwYUjAwtJlXR39A4tpfXvI5XIgomwuPoomyLLoNWIZACHCsqgy8ffROOPJDxDylXgDp/ipR5GPVxbofMLdRJIF7w9sJpbWkUq8oUrh+xGJFhDOllak9Hty/HwDfW57xtFQhkTRxhX7gDNz5V2z90i/Qe/c/0pk/RF4kmi53yNTMXNg1fkFrhZRt0Jm2kfOoiwwpeNX1m3nazj5cs94PqPvQ58nntPonmZy/zHIlWL9lOzmVIDj1QF2ZablUVcYqhWCZv91aYV1wou51yQ85MVkkhYsyY+LHiX3WIr+OLF0MTlSgJJPYs9qUzFZJj9mKH8sQle3bkxZtq2QQfjZh5jn/zJeS1RCArf+yCUu5fU9x9QAAVphJREFUdcaPK0U6HaskveauTfn1dwJgEDGz6emEW56s91+h4uffv61N49USPpszowluZ8NVBBiVvoAXRpiEyJay47xCOWWtDNuUmLPM82dvA5BwqveOjXJkxUqwFi48tBQ/LTyayGRq+qbywladtoifNUazN7f2lIV5zS/zg/ASqIlYB/Du/hQ9/ilGzXW0p2xcbEqFxp1Kz9UdNbOGBDGkIGkbtKd0R/7mp93CXyTfXllv9W/HkKJSElH2xyh7QEzlinWzzeXBVVn5M9swN4wUZ6ZLHJsozFle9JYWi22eupMe/yQ/DPcAMDk5PmebMvGzkN/Jr964leue8gJEqnPebVqoImHpW8Nhof2h0sWTgCYS046JlDByzdv5dDr2d8mPgormLfW6+pI9lb/9OMGmDKFCHrYvobc9TSRtTNU8SVNWkS1W6lXyVmCSOn2Kp/rfA8BfZuKYVCEIE1dWZ9/NwhkG7vh/XFr4CUWaV8O0p2qu7WDpBq5LhWXIWO7fGAJNBgohsDP119dG7wDPeui3AUin1kbxc9n6Lg6oIcyxvRXSGWIzWiCKPVeCBmrBxxKp3CMA+JigIvJuyOmpEm0ij0roUgonVtqpwF+S4iehipRkao5Hj9nWz7SqN44uwzZlhfjpb3fIOGdvotdyYQjBS66sN7y2VbW0bjVgxSaSbrE54uekvVn/3/OEyjmCJn7kCjx+MsTPcbM5xY8XRJREkh+rPXTuvFETP4FPEEaUvAiLANEa4J9XEELMmXAoP/sXxCwC0LQu7NKJFpaOFu/TwqMJ3+l+rE/hrEGL+FljzI4eng/daZuL+7KUcLBnDeYuO/iv7IwOMJHcRFvCwsWiVJqH+Iln6Owa4kcITfyUkXZMnvLiN/KI0rO/HbtvxjFlpVMXxTOVgRXP0Ls5cjWqntlETx2PkxtGnLiDyUJ9ClLnvk+x9Ysv4pGRHGP55gfPalInRn08vBmAsDh38KbKZsHzkA4Al2/s4Gm7++Zd30I9yoqfa659PABmnAIHsKEzSW/GwX3CO/hZ18/phX4BocJ5jUQ7O9orf3u58TqVmFQRkTCwDBkTP80rfsok4mJUou8uvyQq+HQ12jZswmulUXqdQYCSBp7UA8zxHS9n34u/VynrLMnmyzG6nCoBIJaR3LMcJC1jXmm2lNX4+Ot3ba4snza1Wmxr/m4ALGdtPH42dCU5amxk0/QdWCd+UlleJiGVrWd63Nzkmrz/cuAFEZ1FfW+zCNjz4Z10HPgcrhfQQR6V1ASaYxnkVIKUO7IkxU9CFfAatKlMwuRQfN9PzFJg2aakLWnSkbIq1//5BikE7Wb99dnJNGoVpd92QhON+XxzROPpKf28HbnlfYA2ooSy4mfpKtky0kKXWIdGc4PyQqlEQhV5JHUFG7uShBhEYUAQKYp+iEWI0Sr1Ou/gzCJ6BtqauBZmzZib86itW2hhPrSCVFp4NNG9/qLH+hTOGrSInzVGs6koQgiGOhIUcDCodky9mpjZ8V2voDdr42Lhz0P8lGvynVkP4mSNd4MUgpRtUnzm3zG+4Rk4m64haRtYsZ9EmfhxbT1wk6UJJotVFcbsuHZVO+z+wM30/tdz6mani6Ui67//DtJnfgqF0SXFYk+e1rPiRv8uALzi9NyNooBICT0CnQcpe/6BawtzUVaqveFZmviJNlxXWWcakt6sgyklyVg+Gbo5hIrmlVDWKt+8mdG6QawkBGlgSIEyHKwlKH7CuDEt1KaiSHHngRPzb7AISjUz92GwOPEzXZx7/jJO9ZoqasLr6wdm+OMvPcSoqU3dPdm8GmYgVdOOnez8G64iLEPOSXYpI22blcHDlq7qfUd2X8QIHdUNFyBmVwIhBMVB3U67v//uynK/bSMAytalcVMN1IKPFcZyLoPRqcprGZYY+v47CLwCjvARZeLHlHw3upztUz/E9ZonRBNREbdBm0rZJoeVbnOJZD0xZBsSIQSDHWtD0J0NkFIge7bVLesW05iraDxuxYbahfzipGwQRkxPTXDC2oxManK8rPhBGki1fI+fsuInkM2RWsWcNul3sp10px0CJCrUSrOi6yGFQlot4ud8w+xyULOZkuNZqvTZXmIttNBCC2cTnrhn82N9CmcNWsTPWYT1nSmKqv4BOr3hqfxD8v/wjuR72HPF49kxkMVTJr5Xaqgs8OLBwewHca18tzwIDzfcwIlbPoBpOTimQSKeqYz8mPhJ9gJglibIu0GFzDFH97Lu1ndVDGrrBt2TsQluTYLO9Nf/ovK3lT81RzG0EArDhxlVbezatgWAoDBNNJt4igLCRSJrF1IstDA/LMvg4ZffRvSLn6lbXvavSqfjWNeZaU3gzDO4N4Rg35P+GYAoP17XBoQKEWV1hmFjsQTiJ1SI0EUtYKTqhRHff+Bw08ecjRN21Z8oaoL4aWQkbRCBNNmU1Z87mc5yZLzA/hl9nXpm88RPYt1OAG4Nd8Oz/rLp/VYC25ALKH60N0xv1qFt2/UoBMfWPYORW/6Zg8+paTe5xubQq4HO63+Zv/F/gcxE1QhePfVdAIhYVXU2lXodHJ5hUIwzTdWvSUY+ZmEYACOtSXfTkHyVG8kG45j7v9r08RPKrajLapG2Te6KtBl2tnC0bl15BvZ89l6QAuSeF/K/A79Wt7zW9HqlcOLnaKmweHvLuQGJqFghJ2v9VJQwNJm+DPhhxCZxRv8t6vsCs8MYyhgeGQUgke4gm7AIMYlCn4m8X0kLNVoeP+cdlmXinu4B4BE1CEDSHVvNU2qhhRZaaGGN0CJ+ziIMdiYpUd9Zl8l2nvKK3+WXX/HLdKQs2pPa44egRK7BALNsxmjOkmQnaqT7xqwBXLmjacaKH2KPH2GlyakEpjuOUjCe91BKkf7Ca+l58MMM3PlXoKKGRI7h5VFKIb/2W9w8/KEKoRVNnWha8RNOHOWaiS8xavYz0KM7GpGbm/t+UUjIwmoC7U1zfpYvrDVU2yCygbLElILeLj2ozudnECpCyca+IFKCe/HP8R35eGx3DPwSxH4sQkUIo0r8mISVdYvh5LFDXPKhi+Ezr5t3G9eP2G0cr/lAS5CcAUXX5YTq5ofhHlSwMCmllPaxmg1T6VKvF1+mB/TXbd/A62/cUklNC8wlGB9f9FQ+eOWn+ca1H4BE++LbrwJkTfpLIzimQU/GpqNvPQfecIzJ53wAq3M96XXb+drVH9Ab9e5as/Pbua6dY8mdldff63814fZn6hcJPaiOYrXgUrxy1grHT53CET5jiQ11y7PT2kTcrPEikzufxYjqwNn/FdygOc8XSYgSc6/Fjd0pvhNdAYDTd/Eyz/7chWVIpCG59Jqb6pYb2f5Vew8nVvy486hya1H0QzKiRGCmSTsGQx3J6nUmDU2mLwMlN+DJ8h4AolnkUX4ev7Mzw5qYTbd3k7AkShpsn7md/OgxDp7WaiCj5eVy3mFZJTfrr+HMK7/DB7reBoA1eXCVz6qFFlpoYXURxCrwCx0t4ucsQsYxkYnqADBM9nDm6t+qvE6YBlIKfGEjArdhSYkfx7nPNjquLTmTUtSVbVixp0A5/QZfEz+WZTKhsqwb/gEi9BjNudy5/yg9xUcq+2794osQUzWD6vJ7+DPcdft32XP8vwA4ndkNQDBxrGnFz9jeHyFR/Lj7RXRkM0yrFPbMsUp5TxkqCnR08yI4H81KHw2YUjQsWTQMwYauNAXlUIyJn/k8fhzTIO0YTGUuYig4xp4PbUd9U5flSCJEuUQs9qMIvOY8eX7ylY/qc3zk2/NuMzqT5y3Df1BdsNRY78DDx8LHXDQS3AsjlKqfVVdKYRCihEXimlcSmQkmL3oem7rTzCitDnCXaDz3zCfdxBufum3xDVcRC5UA6Bhgvb7cVsrR4ENXPoPDv3Iv7Hjmmp1bwpY47dXBu5PKVhRK0k4RKAnuDFGkKKzE6HuVMHFGKyNJaUJ7Uun7fu+ZHwCQ6eytbPuUXes4EA0STRxhLNdc25XzXIvtSYujqp8nlP4eedPbVvIRzkmUjWxF19a65XLwilV7j0RGk7FhYXLRbUt+RJoigZkim7DIJMyq4kqY2jdtGTh87Bgb5AgAUVA/QZRvMGGklGJyXCt+Ort7EUJUiMNt//Nccvm4T9DycmkhRtizi827rwFARCtLzWyhhRZaWGsMv+oHTL/96OIbnudoET9nEXTpTFVZMfacf4Ns1ZDYjiW5obQRoUuhQULWfIqf2VjfmcQ0BFJWZ3zKxI+KiZ+k49AnJmkvHKb/jr8iimB03+0AfK39JQCkh++k70OPh5I2/1WxFLyUm+Tie/8GgEjaHLjkrXjKgMljTQsuyh3R/NAT6M46/Cy6mKGRH6BmqUFEFBK1iJ81w3wDflMK+tu0L1VQyle8euZDJmFSGri2uuCeTwJgECLKSqG4DY5NLe6PUfRCuqcfBGCmrTEJMlnwCE8/VL/Qyy967DpEHpEwCTAhnNvBrb0Gp2MPn1py0g+VLvUyTOjbxcHXHyBo28hAe4JNQs+yT/c/bkmnZBoLK3AeSxhCkLRl5X4FVAiOtULCMkh3DVReZ9raK6khlmmQI4n0ZpgpBfOWujxaCCNFYSwmyzs3A3B7Qic6PX78fwBItVeJn0uG2jlBD3buRNOJiIIQNc+1+MFXX8MvPfMmMC48v5YyqSJ7LuIfr/pyZXlq89Wr9h7pVJoR1Yad175ibhDOmzpY9ELSokRoZUg72ues/DwW0tBpgMvA8UM1JY9RleiZKfkUvLnEjxtElGa0qqe3V7c9W+rrxCqcwfV0IINttxQ/LWgIATdfuZ1TN/4Z/OKnHuvTaaGFFlpYENJKIO0lqOvPU7SIn7MM2Wxb5W8h7UpaDlSJn0DamFFJKwui+jjr+RQ/s9GRshlsT2LWGCIbli4zi2LiZ6grjSP08RKnbgOgOKk9KPr2PKWyn1QBFOIa75j4Gfjf13ODuJf7L/ldHviVA6iNj2ef2kDPyG2oJpKIgjBiZly/17qBdfRlE9wW7SLjDSO/86d126ooJFqk1AtaKQLLxXweAI5p0JGyKSqHwM1hoKrKnQawDUnb9huqC7I6XUjWlHqVFT++V1r0vEKl2B4dAuo9pWpxaqrE/ru/X7esGe+NWojQIxA2kWxM/ARRRBQpcm7A6ak4SadmgO6FEaaokluGFGzoSpFJmHxePUmf/+YnLumcLCnPWi8Wy5SkbJO0bWKZ8SB2jU81YRp09AxWXnd0dCLiAPr+tgQ5kviFKcbybtPkyVoh7wUwrQm/rqe8mXtveC8zT35P/UbxtQEw0OYwZvSR8UcI/OYSEY0F/Lau2dzF03Zd2AmHtiG5cvdOfsF9F7/nv5aO3qFVO3bKNjihekgWTgKaVHHnSWQr+iEZishEti6AAQBpIomW3F6VUrgjhwE4rTrriJ8Tk0UaHc4PI9qmDwDQ36fbniOqpFOZ+HFaxE8LMUwpyTgmk3teBb07HuvTaaGFFlpYEFLAWdptflTRIn7OMlhDV1T+Ni2LjpQmfqSszlYmRcBO7wG6H/hQpVNY8nXHshw33Ywkuz1lkU1UVTAyJovCklZEGIbJkUveCICYPAJRiCpqZY+z/jLOXPkW/s38Rb2zHw/U41jcgeAkP+u4Ba59LQDdaYeH1Ub68w8x+O9XwNTCKUtFP8TLjeEqi90b+uhK23wovKV6LrVQAdEi5s4tLB8pe/6krrRtUsAhcvNIIuQ8Hj+glUOXbl1feR1ltEJDElUGqaETG/HmF09gmi569Ao9S92IkIkiRRAqGHm4bvnM9OQcg/CFICKfUJogrYaSdqXAjyJN+qiInZ94HOLuj1fW50o+JiEyVljYpqQ9aXFRb4ZvWE9hc+njrBsYnHPchWAaolK2crYhYUqSllYvdKZshGDNjdVtU7J9qFou56SyFbJpz2AbRRJkJx4k74b4jzHx4/ohGwoPUBIJ7O6NpK74eXq7u3mF93u8x38F/37tFyvmqQBSSmaSg0gUYnpuWW0jyAUS9srpXRcybFOyoTPFC57/Ii593m+u6rWUcUxOqB6ypVP4YUTJD+uCGGoVZyUvIE0JJ90+9zeJFT9L9aQKI4WYOgzAYTWACqvETxCqhopbpSJunvo0d5pXYnRqHwRbVPfzXN2vsJ0W8dOChm1IUrax5qR+Cy200MJqwDJkZULwQsbZOXK4gLHh6mfwjfAqQCe7pGyTlGOQtqsD6nIMcO89/0QYzwDnPV3CUI6bthYp9SqjK10liIy4zCZ0tSmlNCzSz3w3f578bTLBBKnTtyFcTfyQ6GT46rdxMhEbhMYqIVWT+iF//t9QsYLDNiUPdN0MgBnkYerYgudV9EJUYZIpMvS3JUhYBpsGerg/2oxfrFdsiCbMnVtYPhKzZ6JrkHYMijjgFTCIkMb821qGoCvtcDx9CQC+ldUG4DUeP25ClxkEU3rQ5M0zUw7wyEieDuKyrXBu+ULZSyqVrycZo1KOUpMmuQAy9AiFTSQtZIOoeaX0rH7RC0mM78UqnMb51h9ybLzA/jMz3Hd8WhM/8TVZG5/7ysdvAgQbu5cmP7WMs1fx41hGpc2kHZOEZdSXfa0RLuqtJmQZTqaiVLMMSb8xw5B3iPTJHxGGjy3xc3qyxBO5k0c6bsBxEhhS0NfmcNlNL+Dal72LJz/uqrrtLUOQS+nBuJx4pNEh56CWTJ0Nx5QX/KyXZUhMQ3DTxb1ctalz8R2WgLakxSn6aHNPEwQhrh9VJmYApop+5b7mFguYIsJIzDXP1+bOS1f8RAoSueNMiA5yKomK6u91igbHmzpORuW4J/vEijzPpnpP9eN+hvP/t3ffYXKd5cH/v8/pU3e2aler3iXLtmzLxti4YLAxvRkCmNBCSQglBEggpP+SvMQE8gsvL4GEnjcQQqhJIMaUhGaKwb3ghmxJVpdW26ac8rx/nDNtd7bJkmZ3dH+uay7NnDlz5mj1aHae+9zPfbvzaw0vOp9lKtKOOa1ZiBBCLEa2ZUigmnkEfpRSK5VS31VK3auUulsp9dZke49S6ial1APJnyf329MZan1/ltf5b+daPozRGxegHOryGCrUv3DloxEA7MmDmF/9LSAOlBydrOAnhRzteaZkN07qLSd+j7CSBH4sE8tQdO14DhPaJbrjC5jl4wQYRHY8UbWS1rUk7bQnwnqAqnFialuKV7/idfxeLmk/7c/e8WSyEmKUR5gwczjJOb7+snVM4OFPXaoThUQzTHLE4zdb4McyDcq4mOFkXKtnlsCPYxq4lsF/nPthStqmUi7ih3HgBzMeN34qXoKixg/yyJFJxkozF43ce+AQdnU5QotMnEjDeCmgLzzAruwOvpnUpQrL4y07b83EjCpo00YbNmaLmhsaXSuYmj4Q18AqFjYxMulT8uMr/hYhplXP+Kl621M28rnXXdwUgJ0Pa44uW+3kWUYt6JJxTJbl3aaugqfK+v4sd699FSW3l/TyrU0ZFN9clXSfOXIf/jw7xp0qD+76FYPqGKWhCzEMhaGIs0/OG2a4OzVtIuVaJn73egDsYw/O6z0MIpgh+04pRWqGLL4zhZOMUdNQJz0bzTQUY+mV2LpCMLKHchBSbMj4mayEHC/6HJ/08UtxpzkrlZ92HGVYmIQECw78aLrLezniDMVjoCHwozX0/PyD8NhtTa/R++KaQKXuTbVtDvXP1PRknGlmz7GEXJw57CRz8Ez/LBFCLA22efJ/3y9F87kMGwBv11pvBS4GflsptQ14F/BtrfVG4NvJY/E4KaX40MvO53+95hm1bltpx8JtmDgFqp7Nk77/q5T8kHIQcmS8QqVWhHHhhTurrVqrGT+mEXcYuXjzCr6jLmL53hvJVA4xoTL1q4LVLmR+keNFn73jrb+kDhdS2JbCTlX3n72GSxBpbP84ZStX+zkMd6eY0B5heUrgR4doCfy0TcXwMMNSnPEzy1IvpRSWaZDJdfGAHsYvT+KHERZhLeMnTMeBH2PiAMVKyEiLznVVBw/GNTRCrTBaBn40Dx8eZ4U6TLmwkTsKVyUnPMFYKeB40Z9XAMjUAdp0iQwbs0XGT6RhohwfJ3X4rvicnPoV/FIQYhK1DPxYybKvhbIW8XIdyzRqnb2UUuQ8G8859Rk/hqHIP/t/sec3bscbaO7aFGx9PkXt0H/7h+n7+mtP+bnMZmR3XJC8a2Xc6dA0FBnXqo2LVplc3f3LGdEZrEP3zpkBUu0iN1uh9Zx35hV2nsq1TSzj1GQ/+d1xsXl96H78UDct76qEEQdGS+wfLREU48CPnZ6e8WOYJoZeeMbP8UmfwegAk+kVRIaJ0nFQOoo01sR+Bn72PvjCK5tec+hXtwHQv25HbZvdkPHz+kd/L75zBhYEF61Vv5dNq00lhBCLkGNKtjPMI/Cjtd6ntf5Fcn8MuBcYBp4LfDrZ7dPA807ROZ5xtgzmGOpKYRut/3l+9NSv1u6HTp7jRT/5cqmZKMYBFXUCX9CqWUJBEvixbQvLiLvz7Frza2T0OE8pf4tJI8eavjRp18RLAjlhOc7OqLZVP7jjLfF5qDglOOfZ2KaBm0qWY8yR8WMeuJMLorsI3e7a0pjlXR6TeNO6MiktS73aqWhmSUfjmGr2pV5VPRmHEg5huYgfRk1LvbxcD2VtE47ESwFnq28xcuQAAEdUd1xgfAqtYWT33XSrcZyBDSgnHnu6Ms5YKeDRI5M8cnSiZZebRqauxEsYDQuz5fvoWg0P+9gD8WuqSyKBsh9hE9QCP1PriZyOZVDt5p6GjB+If5atruhsXd7FXt2HVzpE16++UStW2w7BofsBcJfFBVGrE6fqRKpV4Gdtf5bbo/X0PfgFivt/OevxI03cRW6WwE9GrtLjJMslT0WtLGvZFgDCg/cRBkGty18YaaIorrNTCSKOHY1rmdktMn4wLFKqQnjr5xb03g8fHGG5OkLYtRpUvTOYBtIHb413aigeDjC57wEO6S7O2bCqts1Jsim/3Xt9fcdo9s9KceaoXniQjB8hxFJQvfh8plvQT0AptQY4D/gJsExrvQ/i4BBwZrcJOYmUUnFB1BlCk5vPrreeDdxuRib92lXBySTwM1Oa/2ysasZPstTLcZzaJGTLhdfw3+G5QNweOefZOKaBl44n0xMTY/ihxiLk4f6rOLDzHQB0ZxyGuuIlZLZp4CWBn6Aye+DHuC8Obh1Y9YzaF4yBvEtRpTD9KYGfKEBLcee2OWQNMRgdxKOCYc497gbzHiXtEPlFKmGESVTreHX1tkEO08WGh/8Je2zPrFe7f/OxPwRgxOzBaDEhUXf9G79990sp4lI+60UoNwn8lOvjxw80Dx2cmLXFt6UDMG204bQM/Fg//wS5X90IOiJ16HYAjPJI7fmpGT9TJ5ozFc8WCzfT0p21fRn2UW+RXh49fDpPq0n2+INUsFGFlUB94lQNcLdawnf5xn7+T/g8FBp/7+2zHj+Iollr/IB0OIQ4SGgZp2apSu/AMKM6hXvbp9j+8bXk7vkcURjFtfgaPtP8WsbP9MBPNYje/623LKgYfXTHv2GpiPTgJrQyUTrp/PnozSz/Xvx7mYGtTa+xxx5lvzFId7q+lMtNijvf8NjZvCj8Sw6qPhg8e97nIc4Mp2MZrxBCiJNj3rNlpVQW+CLwO1rr0QW87vVKqVuUUrccOnToRM7xjGOo2euOD+Rc/nPgdQCUsakEEfbILgDCpMYPxgksH0lq/KikULNt2ViGwrUNBrs8/rM/XiLRV46zMTzbpLe7AMRZQkEYZzZUCzwrFZ9rIfky6ZgGqUw8+S6Oz95S2zp4F/dFK4nOuq62zbMtQiuNHRab9lU6kqVebXTQXYWpNH1qdF6Bn6GCRxkb/LjGj9mQ8dOVtvlO4YUApI7cRRTFGTWt9On4avm41Y3B9ICM97XXA/BoaiuZ7iHMZFniih+8CyfpelM1Xq6/vjyl8LOlfTBdtGlhtXif1E2/x+pvvY7h770Ti+S1xZH68Sohtgqx7db/J6ud+8TjZxutM34cy2Cft6H2WI+353fRyGSFs4O72JvdjmXH/1eqEyfLNPBso+UVqf6cS2owLqTvj80etAojjTVHxo+IZVyL/ClY9ra6L8NB3U169GEAhr/3e/g/+yR+0Lx0SyXZq06qa9oxHN34mTT/ulT9j/wHB3SBzPkvTAI/8XHMf305th//3tVTvmF0l/cy4q1outikwrhRxFlrhviZv5bX9X4aepqXUAox0wVKIYQQi8+8Aj9KKZs46PPPWusvJZsPKKWGkueHgIOtXqu1/get9U6t9c7+/v5Wu4gpDAWzRX6UUugn/S7/ElyJUT5Oet9P2PyFyyk88G9EyZe1E8n4cZKOHSpMlosZJoahWJaPt5//hCv5G+v17L/2HwHoStmk0vFkOqpMUgkjHBWgksDPsrzXlN3g2QaZJENocrI5a2eq3LF7uFuvZm1fuml7aGXwdJHGnrRKBxL4aaMjqTW1++Y8JptdKQdfuaigRJAs9WoMGB1eHwd+wiPxpKlV1k/UkKFzyB6Os3Km7pOMidHlTyLrWjgNnXNW/M/bmvZtDPzsOVbkyHiZkh/yyJEJHHyU5YDpxEtoZigO3P3Av/GV8BI+Fjwd2z9eG6PlpNOeNUNh1LSz8P+rojXTVLRaIWsoBWsurT2O2hT4+eWuvWxTj3B84Am1pbzViVPGNRkqpOieIRDY3Rcvz9Hjh2fNAAmiOJg6W8aPiDmWMWvx+hO1ri/DQV1o2uYfepBKGOEdvB1rYj8Apj8OgNGiq1cmHKndnxqMnlV5jD3mClLpXK0lPEDQtaa2S7X7J0ClUmEgOkw5t6I5GzH5LvHqK7Zy6YY+zlsl/TuEEEKIpWw+Xb0U8HHgXq31Bxqe+hpQrRD4SuCrU18rTkxPxmH2nB9Y1Z1mTGVx/RHc0bjF7/Kb/xQnuaLHPDIvprKTjB8rbF4u1pWySTkG24e7eNqr/hDvnOcBSaq8Ww38FAlCHbeANV3W9KXpzzV3FlNKUSjEKe1heebAjx47QD44wuHMZpYXpgR+7AwGEUdGRmqZIEpH0tWrjUazGyjpeLJqWHOPu5RtEpkeZlROijvXM34Admxay1GdpfTorSz/0R8RHnlo2jFK5Tjr67vDb6BsZuJitlMygw5mNnNI5ylf9BY82ySTSdWeSx9qXi5T8uNOO8cmKkyWQ/YdL/HgwXEOjpaxCVCWWw+mtigkDVAyM/yx/yoO6QKWDtjw5aez4ctP540/vRoAy822fJ04eawZlnoZCrY+6Xn8yNgJgJ44PGMm2WwWNAFvYfeuBzGUxhvaMm2JkWuZZF1rxmVYawa6OK7TBOOHmPRnPo8w6ZSnJOOnbZYXUhym0LRt3MhSKvts+Oqz2fjla4F64IcWnw25hsTqhWT8GP442s5gWwZaWbWlXrtLKe6K1rBH9xH49cBPuTiOoTTKzTcXmk9e56RyvOvaLbz2srXzPgchhBBCLD7zyfi5FPh14Cql1G3J7RnAe4GrlVIPAFcnj8VJkPNseudo79ydcXDy/djax5qMr16blVFeO/HReIcTyfhJZYi0ois6lhyjPnFoTIdvTO21HI9IK6JK3KGpmh0xUzHX5d1ZytommqXGz8jDPwfAXXnetKv31TbyBw4frX0ZNqSrV1ttXtHLT6O4mKk5j4CjYSgiy8OOypQrIYbSTd3Atg3l2GcOs+3IjfTe82n0TX827RiTk3HgR9ke2rAw0E1tiyFefninuY2ujIdtKvJe/T2UDlBBvbNcyY/Yf7zEofG46K/W8a3khzgEGJZTy2SrlFt3pPt+eDbLB4fY030RAKmj92CWjnJ799P4Q//VGBe8Ys6fjXh8LEO1LI5sGops2uNfV7w73jBxkIl5dHSbarz0+IrbHjmwC4BU7/CCM03W9WU5ovMEY4eYLM98HkEU11o7keC/ODks02DC7m3eqOFXd90cP186yuobX0V+8pH4OXd6xk839eXQ5aQA/WzF7qvP2+EkhpvDMQ20YcZBcaBUKlLBItQGvl8PXlfvWzME7U03vvgidaGEEEKIpW0+Xb1+oLVWWutztNY7ktvXtdZHtNZP0VpvTP48ejpO+Ewx17rpnGdhrrwQgMGfv6+23ST5YngigR8vy4N6OeeQZFg0BFPyDVcCG4uPOpZFCScJ/GjsZJI8U6cixzIo4qD9YsvnAQ48EAd+8mvPw5oS+dFJZybTH69fBZXAT1tduKaXO3Rc+2G+FfO15WHrMpPl+MqzaugGZlsmP9r4ztrjktc37fXFYpwxZtke2kiCpA2ZOFpr8CfxUlkMIz6vqatjlv/wPaT3/zTZP+6yU/abJ1aTlRCbIK5/lRRnPjbeOmi5N8jzhsvXM9p9Fje4b+bhp3+W+1/8fb44+DY+G12Nmy3M4ycjHg/LNGpLUxsppejJOAwNLqesLUqHH2WiHCwo60drzUQ5nLYN4gn3sYkKlTkyM5xiXJ/H7lo+7/etWtWb4hg5jOIRRkv+jOceRknGj3wmtlUl1by03aiMcfjeH9Qe53d/hyePfz1+4EzP+PEa/vkqE0fxw2jOzJ9Hj06SoYSVysfFwhu6ehlRhUrcX5CwIeOnmv1jWlMuNu18DQCuk9Tsm/WdhRBCCLHYSSukJSrn2ay+4Bo+Gzy59Q4nUNzZsw3u0OsxVDKhaMj48WyztjShcSlFYyDHT4o7m870iVdtf9OghIOuzBz4GT12kLK2WbV8+bSr94Eb1xkwS0dryy4MHUoh0zbaPpzngI7/XayGblazMWwPW/uUkrbajW3gLVOxdeeT+Up4CQBaT59ylIpx8MV0U/UgZ1gP/Ow+WsTRFdKZbK1b0pM2NAeQeh74Auv/4zpyu78z43mOlypxYWbHwzDj/1Pjkw1jt2HyPbhskA0DWQa7PD7rX87I4CXcvm+S+/aN4tmmXDFvM9cy2Lgszy/1SvT+OxmZ9KcFA2dT8qNaW+6qYrLk6sBoiT3HikzMkokDkKkk2Zn5oVn3a2VFd4pDukCqeIBiJeLBg+Mt61/5Sac8+Uxsryg/3PTYGd3FuePfB+BDwXMByJAEkVv8W6nrPsEuM26vro7tYrwUzNrlEODQWJksRax0Lr54ZFhxhzeSwI+28LGaavzUAj9Ta5A98wMcfft++nMujmUgH19CCCHE0iaBnyXKNBRbBvP8MH1VbdtHgmfVdziBL/2ubfKTZMlOq2P0Z93ae9deY8WBHPxJgjDAUWGtLXzL97AMitpBBTMv9dLlcSbxyLXotlLJDAJgjz9GMVmqYSBdvdop7VgcTAI/ZnGebbJtD5uAcrka+GnOKOtK2dz3xA+wO+rHn5ieTFguxePHclJQfW1DS/c9I5N4lPFS2dqSmoGGTJA3VN7G/d2XA7D6xlfTe9fHWp5mMQkwOa5XW+rll8v1CX5Yn0Ctuui5KBW3qx+Z9HnxR2/mPV+5izv2HufclYX5/VzEKWObBmv6Mtyj19J9/B4qfki0gIyfYov9JyshxUrIyGQcdJwaGJoq5x9hkhROevrSnrn0ZlzuUevpKz+KWTpKyY84ODZ92WEYRphKo04g61OcPCPpek2cR6IBCru+webirRwni37yH/G3flzE/qi7ovUBetbyT5s/QknbZO/9PHuOFYkiPWuWWuD7eMqv1wwyrFrGjxn5RKYTZ/wE05d6Tes6qBSmaeHZJpsHc1KEXgghhFjiJPCzhOU8C2dtvVPNV/reUH/SXHjGT96zuDX1xPqGKcGUrnRc5NmckvFT0g74JfxK/AVSTU0Zb+BaJiVcVDBzxo/yJykqjxXdqWnP+Zn4Srk9sZ+xUkCxEqKi4ISWtomTp9rBxpiYX+BHJUsbKsfjZoBWQz0SxzRIOQarejMcJ0NlfHrgp1SKx4/jevWx3pDx44eaFBW05dGXnR6IvKdwBdfs+02exKfY17WDvjs/Vsvescd21+r/1N8nhbLq7/Po0ck44yyIA1df7n410fBOPNvg4nW9DBdSXLt9kD985lb+5XUX8xfP2z6vn4s4dUxDkXJM9rtrSIdjmOVjCwr8jExWptYPp1gJ2X1ssrZ9tm5bAOlghFGjC9de+K9epRQPemcDkNn/MwCOjFem1X0JwiQoKRk/bXXZxfXfpePUf5dpZXLl5gHcp/4B54Wf4udP/dcZj7F57Sp+HG3DeSz+9w61pjJLnR9diesCKScOLCrDwCQkjDSWroDpEmASNWb8JJ9hrboONq60bir8LIQQQoglRwI/S5hnm1y1bYg3On/Fz57yBd5w+XouLf0dXxv+XXAyCz6eUor1q1fVN7SYOAwX0k31h5wk40cFRaLkC6RhzZzxU10a1lhYdyrDn6CkPNwWdYLMVDdF7WCOP4bWcP+BMQxC6WDTZiq/LL4zOb/Az7GubQBkDsQ1diy7HvixTINC2mFNb5rjOkM4eWza6ytJxk8qlalnNjTU+AkqZWwVYnqZpu5Jx990L/dc/ws++Gs7+IvnbcfNdfO/D5+PM/EY7siD2OOPseXzl7L+31+Ae+yX7HzggwC4noeRBDSjoEwQag6OlmuBn9DJoxT0ZV0u3dDHJ199IW+4fD1PWNtLxrWkPsYi0Z12UNm49opVPILWcwdrIK6bM1EOp2VbBJFuqgs1V8aPFVWoGC6pE2whfrhrOxXsptpUxyYqTftESeBHPhPba8e6ODu1nBnGp/75ZhP/+1y2sZ9Pv/7J7NiyYcZjbB/Oc79eQXb8VxCFRJGevc5PKe4Sls4V4sfJUq+iH2JFPobt4mOiG4LkQZLxM63GD7QslC6EEEKIpUkCP0vc5sEcv/WKl5Na9wQ2DGR5x4uvZscL3zn3C2ewfbir/qBFFs3UFsSOaVDERQUlIr+UvGzmjJ9qhpAxQ8ZPsRJi+JOUjXTLQsEZz+Yx3Ys9ErewrwRxPQslHWza6v2vvia+M3j2vPYf7dtBSdv0HfoJ0JzxA/GSwJxnEzh5VGlk2usrSSZOPpdpmfETJcXDc9l80+tUth+vsAzLNDh3RYEbXnguv3TPAWDTF5/Cuv98EQCpI3ex6YtXs+Pglzims9jbnkUxE9fssI7eD8DIpM/BkeMAGHaKrpRNIR2PfZkwLU49GQcnPwCAM/orguIowTwDPyos0/uDP4HRx2rbp2YMzVWDxYgqRMo54XpPQ71d3MkGMkngB5iWAVLN+JHPxPayTIP7XvZTDr7sW+wwHqpvp14gXKnWXeiqlhdS7LNXYusKzvhuKmFEEM4yxpKMH9NrWOqFZqJUwcLHcVME2poS+Kkku07P6DGksI8QQgjRMSTws8RVv5hVAzIbBrLk3BP/wr+utyFTSM09PFzLoKRtjKBI5MfZD7Mv9YoDReYMGT8HRks40SS+OX2ZF0DGNflutIOevd9mxXffSjmIsIgw5Op2Ww31Fnjkxd+E6z4xr/37C3l26UEyY7sAsJ3mMVPtCmdnelgV7kaXx5qen0y6erleplZ7pynwU2ko/tzAVIp8yq4tYXAsg8KKel0rZ2w3+y58N8fXPoPRlU/h/es/ydMq7yPVt4qx7u2UtE3mwC21/Q+PxOdlu25TNynLUCgVB4ByniXLJBYJxzLI9cSZGGtuei2pj18xr+VekdYUHvoqPXd+HL7/gdr2qRlAcwV+LO0TnsAy3Kqdq7u5OdiEd+QuDD/+P+BPCQRESf0W+UxcBPJDOLke9q95bm2Tpf2mXWaLEVumQaV7IwDdv/w87m2fmn28VuKMH8OrLvWKx8CR0Qls7WM5HoFqzvgJJeNHCCGEOCNI4GeJq7ZWzzhWbbL8eC7SrR/IUtLJxGQeEwfXMiniYoSlWuDHdFoHbaC+1MsMpwd+gjBirBTgRkUCM93y9b0ZlxuCl3A8s4bcnu9Q9oO4dfHjmEyJx8+zTaKB7eDOr2jt2r4M+3QPXeV9wPSMH8c0yHoWxwtxUKbyw79ver6cFF32vMbizg3t3MtJ4GfKkkdDKWzDaFpqs7qv+Zz/fP8T+MbWv2bXNZ/gTn8FZa8PpRSW4/HTaAu9j3wdlRR1PnY8Dvx4qUzt/x9Ab9Zlw0CWLYM51vRl6G1RZ0i0R/dAvZW6efyRaXV7WgkjzYFfxtlpdA03bI//VGGZQ4/tojgxPutxrKhMaJz4WLh4XS8/i7Zg6JD0gZ8DTGshH4ZxRoks9Wo/yzDwLBP7hR/l/NJHADAJ8RpqPBmzBFcsQ+EObQVg4Pb/Q///vHvWwI9OfgcbdvL7M/lc9f0QmwDDcuJGCA2F8KuFnk1r+gUjUzJ+hBBCiI4hgZ8lrpplkHJMerMzZ9rM17r+LIdJlntFs7cmhnqNHyMoESQt2g175nbulqEo4WJG0wM/E0mXLk+XiOzWgZ+L1/eC6XJT6plY5ePoicNYhHJ1exHwFlCwdk1fhn26l24d1++x7eZJh1KK5QWPPRtfTqANSmPNBZ4r5XisuV66tkShsUVxdamXMSXjxzDANFXTksV1/VmuLt/A6ytv47rwL/nGA5O860t38qbP3cp/33+IlUmRcdcy+ER4LV5xP7lHvw1AOVlylkk3j9esG3fDmW1SJ9pjeKi5zfZ8Mn6CKEIdvCt+YCaBm8duZfNHVuAcuI3u//tUrvr65az+9Pngz1y43tI+2jzxz+n1/RkecrdRUQ7LbrkBe2z3tOLOkSz1WjRsU+HaBp5j8+ZnPoF7Uhcw/rzP0Jt1GcjH42i25VSOabB6eHmteD6Ajmau8RMlmTxGEsSp1j+r+GUc4ho/kbLihgiJ6udmq4wf+fwSQgghOocEfpa4lGOSdk1cy6An7WAaCvU4Ssk6lsHRJ/5B/CDTP6/9SzrO4AkqcTDHdGYO/Cil8JWD1SLwM560yE7pIpHdujh11rW4cnM//3Ugrt3Ste9HrDf21b7oivaxjPl/nPRmHA4bffXXtvj3cy2T4a4Ux8lQLjZnUlRr/BgN7dyrtSoA8CeT55sDMoZSWIaikHJYlnfpStmcs6KLKy69jP82nsBE7zk8/7w4MKC15tWXrOHPn3sWAIW0zfejcyhbefKPfhOot5XPZ7Pz/ruL9lo/1FO77xfWEWnN/uMzF5sHeOTQBBujXQDo6jLV+28EYNXXX86w/wgAqXAcJo/MeBwLH22ceODHMAzWrRzi9/kd3JEHWfXdN6OjiP3HS4yVkpbyQbW4s3wmtpttGlhGXMdn59pewuu/jNr6THoyDr2ZpB7YLIEfw1BcsLqbR/VAfePI7hn3rwZ+rCSIY1Qzfio+rgowbI/ImH/gRwghhBCdQwI/HaCQsrEMhWHEWRKPt4VQ38Uv4/A7Ds5r2Y5pKErKxYpKtSwLc5aMH4CK4WFH5WnbR4s+kdakKKFm6Ur26kvXcIe/AoALfxEXsran1E0Qp5/Tohj3TJRStWLJMPMktTfrUMTFL000bfeT7DJMBzPJoGgM/Gi/GoRsDvyYSeAn5ZgM5D1WdKfoyTg8d8cw//r6J3LDdefyqkvW8JHrL+BDLzufF5y/gu5MfGX+kvV9pFyXm90n0fXQv5M6+Av8JNiZyyy8i55oj5xn897w1zmqswRhSBRByQ9nfc1d99xBTsVjrjSZBCFzQwCkwlEesDbxdz3vibeXjrc8RhhpHO2jZ+l6OB+Xb+zny8Ud3LLtD0gf/AWFB7/M4fEyR8bj8V/N+DFMyYJsN9cyMI16AefG+5ZpsGUo17REtJUNAzk+kv3t2uNln7wIotbjVVfrOyVZkNXP1cze7yXbXbSyMbRfq0dVXepl2bJcWgghhOhkEvjpAF0pu9YBq5B2TrhVcFXOW1j7aV+52FGlVuPHmqXGT33/ElHDEoUg6VYyWfLJqDLKnXkivW15njCzjIfsTbVtbnnmq+zi9LCthUUcx7q31x/MEPjpy7qUtEOQ1OypipKAC5aHqi31aqjxE1THYvMk2zCau+gYhmJlTxonmaBBnBU03J2qLcGo7u7ZJk/ZOsC7R56D7/Wy5sZXoZNW8xkJ/Cwp3uVv4cbwQlJjj2Dc91WCWZbPAHj3frF2f2IiDkLqsB5ofOwpHyLTFWewlacsS6yqBBGu8lHm4wv8XLNtGZ5t8KEjO5nsO4dlt7wPgjKlIG43H8pSr0Uj5ZgopTCUwjDi5gSNnz+2acxZQNmzTZ5y5ZN5Q+Vt9Y2ViZb7VoN+ph0Hwy0jDu6c++P4tZbjopOMn2ptqCjJELMk40cIIYToaBL46QBT257PdQVxLq61sMCRb7jYukRUrfEzy1IvAN/04hazxfpkvtoMJ3P3PwNg5YdmfL1jmpy/upv3l5+HTkJUTkkCP+22kKVeAO5QvZvWTB3k+nIuRZxal66qapARy63X+PHrWWQ6Wb5g2dMn2a1aaWfc+pj3bKOpQHpjDY5nnbOcfWGeL6/9E6zyCM988I8ByMlSryVl59oeSsQT3dzXfoNw9rgPZ439gF+wlRGdoZh0lDtyLA7wfGL5n9KzcgtOphuA0eOHWx6j5Ie4+GDN/vk4l4G8x3PPHeb7Dx3lzrWvxZl4jPTBWwkjTTmI6hk/stSr7aoXYUxDkXYsrGTp10JduKYXI9VV3+BPtt4xqi71ij8T+4sPNz3tuPHSWFM3BH6SAGY1WCSEEEKIziSBHzGNbaqWk+OZBEYcyDH9uMORmmNiU+1qU2qo2xJpjVEZZ9Pdf8uPo62Ut7901vM7f1U3X6/s4P9b/al4W/HQvM9XnBq2ubAJzcZleUZ1kh02Q3HuvGdRwp020XH8ZDmN5aKSK9Xlcr1Oi17gZCbjJMVQFazoTtOfc0m7Jmv60k1t2s9d0cXKnjT/8Mggx9Y9p9aa2XVnz3ITi8uynEuRelBwrgLP6WiCUWcZZexafalfPLAXgA2XvyzeyYsn5uWxYy2PUQpCHHx4nEu9PNvkBRcMk3Ut/unheCmjPb6HKIKJctBQ3FmWerVb4+/R7rSNaxkL+t1a5VoG6Xxv7XFUbp3xo6sZP8ln4j2rrsfXDUHtVBptWBg65PBEHCiv1wWSQKEQQgjRySTwI6ZRSmEtYBIfJEsXPD+Z8MwxsQnNeJJcmax/eY20pvfuT+L5I/yV/zKGegszvt4yjdpyh8//Mrm67c/eRlmcegud0GwYyDKik0wZ1XqSqpSirFzMoKH4blDmeeF/ccwaANNBJR3gjhwbqe1SzfiZ77KalGNSSNt0Z5y4/k/OZX1/lpxnN2XQZT2LF543zMOHJ/li72/WD/A4J/Pi9CqkbSqq/m9WrXcyVTlZPpXWk0ROlpJ2IIgDP0dHRigpj+5sHBg0UoX4NePHCBpSiEZLPiOTFfaNlHAIMFpkoS3UQM7jugtWcNPeeLJujz8GwEQ5pFxJ6rxIxs+i0pWy8U5wGbZrGwwPDtYe+6XWv+90EsSxk3o9E/kNbC1/svZ8OpVCJRk/k+WQsZJPlCyRtR35DBNCCCE6mQR+REv2ApbtmEk9nhfs/2C8Yc7ATzxRKjZl/EDXrq/zq8wO7tDra61uZ7J+IMt1F6xggjiI5K+4eN7nKxaH9f1ZjpEUEJ8h4wfimlBm2JDNc+wRCozz/eWvBqXQXgGAqDhCVJ3AV+uvmPMrWOpaBoNdHv3ZeNzNFMRK2SZXn7WMTcuyfPjnk3zOewn/4l4HXSvn9T5icXBME9VQ+HumhJ+Jcsjh8QpZiig3Rxm7VjjcjopUjHo2mJWOM34mjh9h15FJtNYcm6jwyOFJdh8tsvfoJC7+nBmR85FxTJ559hCpdIbjRgFnPM4+KvohY8X4/CSDY3FRSuGe4DJszza59oLNtcd+cRytNXrKwNW1bK/4c8+2DAIsbs1eAUDGCFCGhUW838hkPfBjyVIvIYQQoqNJ4Ee0tJBlO6v6upo3zLXUKwn86HKRchB3J4mKx/GO3sstavu8r4y+7rJ1AFxa+jv8l3x+3ucrFofujMOYqnaOm3m8+YaHFdUDP4f3PgBAubABAO3G488oj3JgLNmvFviZ32RGKYVtGnPWx1JK0Z9zed1l6zg6WeHdI8/hyz2vhQXWNxLtZZqKdKZel6n/tg8Rju6ftp8fRtz96EFc5WOk8pRwUEn2mRMWqRhx4Fkp6O3KMKFdKB2nWAl5+PAEe44Va8cqVcoYSk8rOH4i8imblGNy3soCu6NevCN3s/I7b8LYfweTxXgJjy0T+UXHXkDnw0auZWBkCtxsXQhAUBonSGo6NUlq/FSL5Q8X4vH5v4/Gr7PTXWDapClhTexnvGFpYLUukBBCCCE6k8xWREtTC0bP5qzMWPOGOSbbqXQ84VJhkUNj8STFePRmlI748tFVPPvcmQs7N3Itk+ecu5y99OOlu+Z+gVh0jHRcEJfy6Iz7+EbcBa7qjjvvBODss84BwHJTVLSJWRllZNKPi5YmSx7mG/hZiLxns2Uwz5M39wPxEg6xtNim4oU76p8zg7fcALf/y7T9KkFEaTwem3a6iwoOKow/s1xdwk8CP8vyHpuX5Rklg1UeAWCy3Nxye3IyDgK5qTSPl2ebbBjIsmUwz3/6F5I+fAeFh7/GwK1/R6lSXe4jGT+dwrVMutIOX+t+JQCV4hhBqKlMqUpezfjBiD+TrtjUz1Vb+vlOdD5Xl2+A7S+sZQNt+sKVBKHGT4rim9LVSwghhOhoEvgRj1v2klc1b5gj42eorweI09XHy8nVxoduoqQ87ra28aILVszrfVOOyWuftJYbf+dyjBPolCLa75yNa+M7k61bYAMEZgqnIfDD8UfxsVi2fDUAlmnGE+7KKEGomSgHC17qtRCebZJ2TV75xDWkbJPlhce/dEecXq5l0jUl8Ua3CD76YUR5YgQAL1OgohyMsEQQRni6RGilsS1FT8Yh61kc0XmccuviztVuYJ53cgqBe7bJhWu7+Uj4rPr5Zofxk/bcji0ByU4y1JUim80DUC6O40dRrTNXTS3jJ86YVUrxtqfGS8Qe0CvAMHBU/BoziAvmV8pJN8RT8FkphBBCiMVDAj/icRtYvpY36nfVN8xR42d4WZwpMfyjP8IPNGGkUY/9nJ+Fm7hs8zBZb35fQHOuheeYdKflC+tSpTdeHd8Z2DrjPpHp4eh6q/ZU5Rgj5DDMpLCtaTCq01iVeOI+Xg5qRU5PRcYPwKqeNEOFFB++/nxe86S1p+Q9xKllRpXmDS06JUVa40/GHeQy+W4C5WCGFY5MVEirMpGVYkV3GtNQZFyTw7oLr3Kk5fuVSvFE2/Mef8ZP1c7VPWgMPrD1CwD03f0Jth79FlAv8Cs6Ry4fZ7ZG5QmCcPpSLx0mWWYNQZzerMPrLlvHm6+Kl8YWwubxGQbNy8OEEEII0Zkk8CMeN6UUqrCqvmGWQr0AK7ZexL3RSrITj6KCuM7P5PhxjukMV29bNu/OJ4ah2DiQPeG6CaL97C3Xsu8Nd8O6K2bcJ7S8uA12FE9qVOQTKKtWFsixFKOkcSojQBz4UQus8bPg8zYNerMOfVmXtCMTpiUpM9D0UFdaBX6gOB4Hfgb6+vANFzMqsedYkTRlIjtN1o3//V3L5KjqIuO3zl4rl+KsNe8kLPWqyqdsluVd7pgsUMksB+CKw/GSNTXH57BYejJJxk80fpigXGS8FGd3lfz6ZyPQFMQppG1evHMFL7ogLkCfDw7XnjNLR9FRMO01QgghhOg8MmMWJ4Xbt3re+w73ZPmQeikGIanDdzJZCdHlcQw3y5ahPMu75r90RimFfYKdUkT7uZaBTvXOuk9kxRNlXYm7wKnIJ8SmurrPNg16GGP50R+T/9U3CELdUOPn1GU99GVdCml7lrLUYlHbcT0/zFxTexiWxqbvE5QpjsdLtwrdvYSGgxWVOTpRIUMRbWeadh81CmTDY9PbhOkIb2I3wElp595oy2CeHz98BDU1cKUk8NNpuvIFANbe8QEKn3sGlSDiyHi5nvkTNdf4AUg7FjnPptqoMLAbiprf8ZFaVy9Z6iWEEEJ0Npkxi5Oiu7tn3vsqpRjvPRuA9KHbGS8FOFEJ28vSn3NnbKU9k4V0IBOLi1IKa476TBU7Xt5QGYuXKKgoIFRmrQPXuv4spoon2oWHvpLsU8HHggWOpYXKezam1JdamgyDNVe9pvawUhzjeNGvPx9FbPrH9bx+z7sBUJlewmTZYdkPyalJIjffdMhU9yC29ln11eej/En0LR9nyz+dy7bPbOete98R75TpP6l/jZdfvIqSH6H88Sl/P8ng6DQ9XRl8HQf0nEN3AbDveIkwSgKNUUCEmtZlsDfr1D4Kf3bOn/PGylvYt+o59NzzGbwgqW0l40UIIYToaBL4ESdFap7Ls6r6h1azV/fhHbyNsaJPiiKRnT6hej2OLPVa0ubqIFdxk2Lg44cAUDogNGxcKx5zWdfi46tvACDz2I9QQREV+gTq1F/B7krbFNLSDWepSrn1MeIXxyhWGjpxTRyq3d1jroTCaiasArlolLLvk6MIXnM3wSdtXw9A1+FfsP3TWzjntj/DLh/jX/1L+X3/dbw5/0FYe/lJ/TtctrGfKzf1Y9HcRWyuJbdi6RnMe4QNX9tWfvctaA1BFFEOwjgozvR/d9s0aksSL9q2ga9HF/NfqWdgBpNcUPxRvJMEfoQQQoiOJjNmcVI8/ezBBe2/cSDLrdF6vAM/h6CIiQYnu+BsH+CEXiMWD2uOjC3fjVu+h0nGjxn5RKp5krLhrJ383+ApWJXjrPmvVzLs7yJAJjJidqauZ/jo8kRzl6TRvbW73xl4JSjFhN2HSYQ1thdbhagpgZ/uJ76cT61+L58Mnlbb9leFP+N7G36f4vbredpTrj7pfwfHNHjyloGm9wRkqVcH6su6TFBfCl3NcAwjTakSzRj4AcglTRPW9mXYMJDln3b3Ezp5VkR7CTBPeXakEEIIIdpLZkbipFjfn+WRl/4PvcYY2bl3Z9OyLF8Od/KsyZ+Qv+/zAFipzByvEp3INmaPP0epOOMnGDsIxEu9tNX80XXJ+j5eEr6Al1vfJrv/x5wPHDPmv/xQnKGGd1JJDXBwMiLlT1AJ64Gf++6/jy3Ai/R7eec1Lwag6MT1qFKjDwFgpJoDP6aT4pyrXsK7D69n70gfXwov42PPv7ZWgD7nnfxfuYahOH9VgWcHr2C1OsBV5m3VJ076e4n2KqQd9ukUvapej0qFFYLQpkgIOl4G20rjktTnnDvEB256gMfWXMzK/d+cni0mhBBCiI4j3wzFSeHZJkb/JqKVF89r/w0DOW40LmXM7CK/65sAuKn8HK8SnWiujJ/Qiyfb4XjcjcbQAZFqXl412OWxfv1GHtLL669TEtcWs7My3ex+zS+4OdqO6Tdn/Dz80AMAvPX5VzLUlQKg6PYBMHTw+/Hr082BH8swsE2Dv7huJ0PXvpO3P++Spq6DpyqpYutQnrdfvZm3+79Z3xhFM79ALEmOZXC3Xtu0zR7fS8kP8cMIIwoI53E979nnLiftmHxEXXeqTlUIIYQQi4wEfsRJY5sGxjxnNhnXYtvyAg/qFWSP3A5AKiOBnzORPUeNHyOVx9cm4fhhjk5UsLSPNpsnN4ZSXLSmG0sHtW2RIV1qxOwsU+GYJsrNYoVFwkjXCuWmygfwMenqHcRIsiUqXlyY+ey9cZainWnOKjMNhVJxIPyitT2cs6LQ9Px8Px8X/vcweOEFKzhGnv8Oz403Flu3lRdL268ueS/Hdbr2OHPgZ5h7fkIQ6Vkzfhr1pF2u3DzAF3bL71whhBDiTCGBH3HSOJYx79bWPRmH81Z1c1dlCDuIu9E4mdypOzmxZPVkXI6QJxo7yEQ5wNABeko2j2koNi3LYaugYaMEfsTsHDPO0HHTOTw9CVpTCSKCMMIIikySAmVgJgGbrZs3Nb0+k5++nHCuDLZTZSDn8uTN/bw3eCkPshJWPqEt5yFOrYu2ruFz4VW1xyu+9w7W/fsLCcMQIwqIZqjx08ixDJ6+fZBKEPGGytu4efD6U3nKQgghhFgEJPAjThrLVAu6on3eygL36VW1x15arj6K6db0Zdij+zGOP4IfRpiEaLN5qZdpKIa7U/yFen19o3SpEXNQSmGbiqhnPRYR3bd/lEoQMemHGEGZgDh4WC2X8+wL1vGC3D/XXp/tahH4MWb+DDRmee7xMg3F7169ifv0Kp5a+mtIFU7Ze4n2Gcp70OISS2VyLG7nPo+MH9cyeMLaHgppmxujC/nJht85+ScqhBBCiEVFAj/ipHFMY0E1LM5f1c1P9Nba43RWAj9iurV9GR7RA6Qn9uCHGkv7LYM6y/Iez3j+K/kz/9cBcHX5dJ+qWIIs0yB3Vtxta8Utf0Xl6CMUKyEqqlBRceCnmvGjlOIZF23jj/xXxS/OTe9maM1QVFmpeMJ9qiilWF5IsX04z+8+deMpex/RXoW0jSKu3/St8Lz69vu/gA79eS1xNQxFf87lkvVx/bSJcjDHK4QQQgix1EngR5w09gIDP71Zh6h7I0d13Aesb2j1KTozsZQN5Fz2qUFylQP45UlMQpiS8QPQn3VZ2ZPmoI7bv2cqh0/3qYolyDENdm7fxo+iswAoHXiQyUqIEVYIlINSkG3oxnXZxn7uW/lrfPTKW2BKO3eA/pzLQN4F4mDPpsEsW4dybB/uoi/rntK/S8ox+fvrL+AlF62ae2exJFmmgZkEfn6qt/Ev+d8AYPnNf0JveBg9j4wfiAOF1z8h/p27dUguugghhBCdTgI/4qQxDTXj1e5WPNtky/I8V5b/lqvUx0j1DJ/CsxNLlVKKifRKDDTGyKNx6+EWV7UNQ5FP2dxnrAfACoun+1TFEmSbinzK4W+8NwGgRh6hEkSYUZnQsFnZk8a16pNpzzb442edxTXbl7c8Xsa1GMi5FNI2m5blcC0Ta44C5idLyjbJulZT627RWVzL4NlnLwNgqJDhi4fqvzd79TH0Apa47lhZ4AtveCLXbFt20s9TCCGEEIuLBH7ESbXQCccT1/UySoaHi+m5dxZnrFLPZgCcw/fgEKDM1pOb5QUPCpI5JuavGpTRuWFCDJzRRwmiCCOqEBoOXSm75f7mLOmNSilW9qRxTuHSrpneN+Napy3QJE4/pRRdXhyIvGrbEMfI1p7r59iCapulHZO0a57S2lNCCCGEWBzk26Foq2efE181v2B1d5vPRCxm1uA2KtrEPXwHFgFY05d6AdiGwTuv3cJfp9/O6As/e5rPUixl/V0Z9tGHM76bKAJLx4GfqarFmxeQ3HhaOZaBI4GfjmZc8XuMb3g25nnXMzRYzzxLqcqCuhkqpRjIeah59+MUQgghxFIlbW9EW+VTNp945YUMd3vtPhWxiK0eKHCnXseOX34GU1U4OMPkxjAU56/qZsX1b8VbljvNZymWssG8xyNhP+eOPgqAGflERnbafpahUGrh2Y2nU7tayovTwykMsv/p/4BrGwwsG4Jj9efUArsZFtI2YaRP8hkKIYQQYrGRy4KirQxDsbzbI5+a/1VKceY5d0UX7w9ehBlVAFAtijtXxUtd1IIKjQsxVEixW/eTPXQrZ39sFefoXxKZ04sxZ1yL/pw761KvdrMl46fjWaYi5Zi8+KK1vCt6Y227WkDGD8Rj5VR2mxNCCCHE4iC/7UXbeZaJsYgnUaL9tg7m+ZVdb1Ft2jMHftKOiWUoGVNiQbYN5ditB5q26RYBRs82KaTtRZ3xIzqfZSqyjkXWswjPfgn7dA/AjPXPZqPks1IIIYToeBL4EW2Xdk3JzhCzsiyDZf0DTOg4A8NxZm6LrVTcXU6GlFiIrcvz7DOmdDeaIbPMtUzJUhRtZRsGhhEXET9vVYEfRtsBiNxCe09MCCGEEIuSBH5E2+U9u6ldshCtrO7NcFAXAHDcmQM/gCz1EgvWl3EZ6d3RtE2bM9cek+VUop2qdZzyns25Kwt8OHgO3wgvZPeFf9DmMxNCCCHEYiTfXEXbebY5rWWyEFOt6ctwkLj7m+fOXgzcs01ZviAWxDAUfSs2Nm1TM3SPE6LdGgOPfVmXh/Vyfst/G1ZhZRvPSgghhBCLlQR+hBBLwvr+DId0FwCeN3vgJ+NIw0KxcNuHu9hZ+nsmVSreYM2eWSZEu1gNNaZMQ/G+685huJBidV+mjWclhBBCiMVKAj9CiCVh02COQ8lSL9eIZt035cjSQbFw1541yIhR4JfhMACOl2rzGQnRmtWQ8WMbBlduHuAjL7+AgmTPCiGEEKIFCfwIIZaEtb0Zjqp4qZeaONTmsxGdqC/r8sonruG4jrMmUl66zWckxNw8x8BOav7IClchhBBCtCKBHyHEkuDaJlEmabc9frC9JyM6kmEo1g9kGSEJ/KQk8CMWP9cyMY1q4EciP0IIIYSYTgI/Qoglw9t4ZXxn23Pbeh6ic20ezHFvtBqArC+ZZWJpkC5zQgghhJiNVEAVQiwZr37WFTx0+V7W92fbfSqiQw3kXB70tkMIjtLtPh0h5sUxjVqLdyGEEEKIqeQSkRBiybAMhUxtxKnk2gb+8gt5j/UO1FP/pN2nI8S8GIZiTa909BJCCCFEa5LxI4RYMhzTkBoW4pTKeza///QtPHhwBaQK7T4dIeZNuhkKIYQQYiYS+BFCLBmGobAMCfyIU8ezTTYMZHGkZooQQgghhOgQ8s1WCLGkuJZ8bIlTy1RK2mILIYQQQoiOMecMSin1CaXUQaXUXQ3b/lQptVcpdVtye8apPU0hhIg5EvgRp5glSwqFEEIIIUQHmc8M6lPAtS22/63Wekdy+/rJPS0hhGjNtaSOhTj1bEMCjEIIIYQQojPM+c1Wa/094OhpOBchhJiTZPyI08GzZZwJIYQQQojO8Hi+2b5JKXVHshSs+6SdkRBCzMKU4s7iNMi40vtACCGEEEJ0hhMN/Pw9sB7YAewD3j/Tjkqp1yulblFK3XLo0KETfDshhBDi9ElLa2whhBBCCNEhTijwo7U+oLUOtdYR8I/ARbPs+w9a651a6539/f0nep5CCCHEaSPFnYUQQgghRKc4ocCPUmqo4eHzgbtm2lcIIYQQQgghhBBCtMecRQyUUp8DrgT6lFJ7gD8BrlRK7QA0sAt4w6k7RSGEEEIIIYQQQghxIuYM/GitX9pi88dPwbkIIYQQQgghhBBCiJNI+tUKIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KAn8CCGEEEIIIYQQQnQoCfwIIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KAn8CCGEEEIIIYQQQnQoCfwIIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KKW1Pn1vptQh4JHT9oZLWx9wuN0nIc5IMvZEO8i4E+0iY0+0g4w70S4y9kQ7yLg7PVZrrftbPXFaAz9i/pRSt2itd7b7PMSZR8aeaAcZd6JdZOyJdpBxJ9pFxp5oBxl37SdLvYQQQgghhBBCCCE6lAR+hBBCCCGEEEIIITqUBH4Wr39o9wmIM5aMPdEOMu5Eu8jYE+0g4060i4w90Q4y7tpMavwIIYQQQgghhBBCdCjJ+BFCCCGEEEIIIYToUBL4mSel1Eql1HeVUvcqpe5WSr012d6jlLpJKfVA8md3sr032X9cKfWhhuPklFK3NdwOK6X+/xne8wKl1J1KqQeVUh9USqlk+982vP5+pdTIDK+/XCn1C6VUoJS6rsXzeaXU3sbzE4tPp409pVTYcIyvnZyfkjjZOnDcrVJKfTP5+9yjlFpzUn5Q4qTqpHGnlHrylHMoKaWed9J+WOKk6qSxlzx3Q/L3uLfx2GJx6cBx99dKqbuS26+dnJ+SOBWW6Nj7XRV/h7tDKfVtpdTqhudemZzzA0qpV568n1QH0VrLbR43YAg4P7mfA+4HtgE3AO9Ktr8L+OvkfgZ4EvCbwIdmOe7PgctneO6nwBMBBXwDeHqLfd4MfGKG168BzgE+A1zX4vm/Az472/nJrf23Tht7wHi7f6ZyOyPH3X8DVyf3s0C63T9juXX+uGvYpwc4KuNu8d46aewBlwA/BMzkdjNwZbt/xnLr+HH3TOAmwErO8xYg3+6fsdw6auw9ufp7FPgt4PPJ/R7g4eTP7uR+d7t/xovtJhk/86S13qe1/kVyfwy4FxgGngt8Otnt08Dzkn0mtNY/AEozHVMptREYAL7f4rkh4g/Lm3U8oj9TPfYULwU+N8M579Ja3wFELY5/AbAM+OZM5ycWh04be2Jp6KRxp5TaBlha65uS/ca11pMznadon04ad1NcB3xDxt3i1WFjTwMe4AAuYAMHZjpP0T4dNu62Af+jtQ601hPA7cC1M52naK8lOva+2/B79MfAiuT+04CbtNZHtdbHiAOQMvamkMDPCVDxEoHzgJ8Ay7TW+yD+D0Q82OfrpcSRylYVtoeBPQ2P9yTbGs9jNbAW+M4C3hOllAG8H3jnQl4n2m+pj72Ep5S6RSn1YyXLHpaEDhh3m4ARpdSXlFK3KqXep5QyF3gMcZp1wLhr9BJm+CIrFp+lPva01jcD3wX2Jbcbtdb3LuQY4vRb6uOOONDzdKVUWinVR5ydsXKBxxBtsETH3m8QZw1Vj717tmOLOBVPLIBSKgt8EfgdrfXo41wy/RLg12d6qxbbpv4negnwb1rrcIHv+0bg61rr3bLke+nokLEHsEpr/ZhSah3wHaXUnVrrh07gOOI06JBxZwGXEX+peRT4PPAq4OMLPI44TTpk3MVvEF/lPBu48UReL06vThh7SqkNwFbqV8NvUkpdrrX+3kKOI06fThh3WutvKqUuBH4EHCJeYhgs5Bji9FuKY08p9XJgJ3DFAo59xpOMnwVQStnE/zH+WWv9pWTzgeRLXfXL3cF5Hutc4qUHP08emw1Frf6cOFK5ouElK4DHphym6QqiUuovq8eY4+2fCLxJKbUL+BvgFUqp987nvEV7dNDYQ2v9WPLnw8R1V86bz3mL06+Dxt0e4Fat9cNa6wD4CnD+fM5bnH4dNO6qXgx8WWvtz3N/0SYdNPaeD/w4WdY6TnxV/OL5nLc4/Tpo3KG1/kut9Q6t9dXEk/EH5nPeoj2W4thTSj0VeA/wHK11Odm8h+bsslbHPuNJ4GeeVBz+/Dhwr9b6Aw1PfQ2oVg5/JfDVeR6yaf2i1jpMPih3aK3/OEmtG1NKXZy89ysaj62U2kxcvOrmhmO8p3qM2d5Ya3291nqV1noN8A7gM1rrd83zvMVp1kljTynVrZRyk/t9wKXAPfM8b3EaddK4A34GdCul+pPHVyHjblHqsHHX8hzE4tRhY+9R4AqllJVM7K4grt8hFplOGnfJRL83uX8OcQFoqSW6SC3FsaeUOg/4KHHQpzEgdSNwTTLP6AauQbJsp9OLoML0UrgRVzHXwB3AbcntGUAv8G3iiPa3gZ6G1+wi7uIxThyJ3Nbw3MPAljnecydwF/AQ8CFANTz3p8B753j9hcn7TgBHgLtb7PMqpKvXor510tgj7jRyJ/E68DuB32j3z1dunT/ukueuTv4udwKfApx2/4zldkaMuzXAXsBo989WbmfO2CPu5PVR4mDPPcAH2v3zldsZMe68ZLzdQ1x4d0e7f75y67ix9y3iQvXV8/1aw3OvAR5Mbq9u9893Md5U8oMSQgghhBBCCCGEEB1GlnoJIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KAn8CCGEEEIIIYQQQnQoCfwIIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0KAn8CCGEEEIIIYQQQnQoCfwIIYQQQgghhBBCdCgJ/AghhBBCCCGEEEJ0qP8HVKdhIX6nuQ8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize = (20, 5))\n", + "plt.plot(df_gpr.index, np_output[:, :], label = 'Measured data')\n", + "plt.plot(df_gpr.index, mean[:, :], label = 'Gaussian Process Prediction')\n", + "plt.fill_between(\n", + " df_gpr.index, \n", + " mean[:, 0] - 1.96 * np.sqrt(var[:, 0]),from pathlib import Path\n", + "\n", + "from shutil import copyfile\n", + "\n", + "import pickle\n", + "\n", + "Load the general math/data manipulation packages\n", + "\n", + "import numpy as np\n", + "\n", + "import pandas as pd\n", + "\n", + "Load the packages related to the Gaussian Process Regressor:\n", + "\n", + "import gpflow\n", + "\n", + "import tensorflow as tf\n", + "\n", + "from gpflow.utilities import print_summary\n", + "\n", + "gpflow.config.set_default_summary_fmt(\"notebook\")\n", + "\n", + "tf.config.set_visible_devices([], 'GPU')\n", + "\n", + "import matplotlib.pyplot as plt\n", + "\n", + "Load the CasADi package used for optimization:\n", + "\n", + "import casadi\n", + "\n", + "Import MATLAB engine and start it in the background since this takes a while:\n", + "\n", + "import matlab.engine\n", + "\n", + "eng = matlab.engine.start_matlab()\n", + "\n", + "eng.load_system(\"../Simulink/polydome\", background = True)\n", + "\n", + "\n", + "\n", + "Copy the experimental data set to the CARNOT input location:\n", + "\n", + " mean[:, 0] + 1.96 * np.sqrt(var[:, 0]),\n", + " alpha = 0.2\n", + ")\n", + "plt.legend()\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.2" + }, + "toc-autonumbering": false, + "toc-showmarkdowntxt": false, + "toc-showtags": false + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/Notebooks/3_N_horizon 5/sim_1500.png b/Notebooks/3_N_horizon 5/sim_1500.png new file mode 100644 index 0000000000000000000000000000000000000000..26d5dc2edab5912b4e193960a09449d46e648320 GIT binary patch literal 16958 zcmd^nbyU>d*DoPmV-H9;QUVeK(xt;ANQs0Z4bt7+GJ=nk4Ba4zB1m@&I!Ghk43Y{% zOUFGk{_4H!{p0>|*ShOncP+<(Z=AEwK6`)m=j?qBe?NYtKtstuNkBkAqxkSI4FZA- zVgv+)R^+7MN?D%rEcg<4d+^Ln)6v4s)5OJ`K-I*}$~ejw=BH)n(j=kRT-uN zgYqq|lxHrgb)m)yynql*>g>b zWkgr<3p9pJ5yhscRQ}fQ`c2$VsEYU0V)$zszv!JF;;!Tl31QygFXdad!0-=g^aaV` zZn3?~APmFbQj#X7#ovnaA!Wqh;`;qRr6Ddl1o>)N!Y@cGx^UETxxQ)oBH|eYad59` zbu0$b`UTSZ)pzS?UXHxjJmCFxyYh_}5X7)Z^D$iKSP}_griK;L!R}DQ{CrY(+FwEp zX<&Bbu(&XY&&H=dn4$&)PK|M7aCBJ;iPz-=tC1>-!y-pL7!rl>issn7N;F2qNS;P>!i^LlzlrRp@FJ)oT_I2*JFD=NdBLXm(+tdkhR`L%ZAzFv z6C&w4;u$@nh9B7vD=$_fhlN7;s9|>~VGWlNHFuB#f=B@#WQhcFbEnYO0D|xmK|0xz z&rNqXpG9{~GzXH;iNcVtA+11~jhB$u)#Cf_VaO*f?l5GC9J!jsFWrlXBnU$6rt8T@ zkYUTYxetdQFH(R5S>l!2r#;!ligYp{pX-AmedWk)gQz?-G|wTex!smJ7ZGFY*H0jb zf^K1LiwQGb^0^jB>+cqdmOdfjGbz`TY#6c~L0%x($lu#tH!=-FP6{56TFf+m&bSOm z8-0Oh5{L+&Rnx+dA}#H~w$CG0pGWi&1d{ajFuF)=x+|K_w8Rh?w?48tGQy~5 zN%s@iR0i8-(5+?W7qdFim%z~nsu*j`Yn4cCvllPhgJvydmfr^%jqIj<6O-JTNe@a+ zmhc>nNp@QL4QUnDX?#jb^aPF`Esye#S@2X^S`HVM1Op8A);VTZoLI&g%TR+prJoSG zMhsn(%y#eKi%6U3nJBu33w?0Ag!w=&!dWL`ixh;cOeRrPgBG!UaPT z2h$N6y@nS>!}*86Hq;m@HCfMrfM+?QZr-PsfNyL zCeOBu2CKu68TDH_nM9lXi0+I-fpSyR`Ap$MFO%gj_O2^;@laL}6(d zFC(6%SAJr1jocrCn(8OgmkrvdPIz*o#bj3(m4U6JE-=axjKo}!8lNDv6?0<`KCCnclME4a+_f1#V+{bb)Y8}SIdo!8SRB_2)ggCuy=Dk4#-1nQDhX7H>^(}Jh zNO%=-FO0rwpnq#M_|(SGY-wPnp$9&`yjGG2ou7oG`_Rz(m|eF+bMox-Di*Opy+uhl zx-EGAp^tUi=)K7BAjQcFPcWaZI_*PyBLFvIRJLo)CikalV(RvMnQl|SsJ~4FUf6W8 zI9=>sO_7)&AhX0KvRP;1pjcza<%W}g&tC~JWG@VS$6nF zVIHKF9)@I2ZkvTskbkUdd_-o$ zM{bWGZ;$O((-@3hxNq!4J~yAd8h9h=s;OUP_Ff#DwUOzcF$#4I3Nh2b3Q00Jlh<55 zRbk0*+(@o4P4VR|q!Xc&bHtYa zVG;W$1i2@1xM{>}rzbCp&ANT<^S>f(PKz1(=n)O90gCVvM{cHf?*U*0@aZZjJGor{ z6d!e6zQVXkID|95C)%OKotB^QQF-yTv>2s|N?}*S zot`@}W*mFIf|DDBk8F>A;lucZB()gjWAbbMFo*_5M`cH6kZg?qSXDuQ0<=@+Qv zay_kZ6rloPIJ}4!rgGsCX+kKZ4h`i&kQ*rac-n2GZMAp>U1XL2@^kRLs7@nJ*r7Be z5d#{Dt!aBy=#9>N2oaN{M}_5MLIFIViem`9 zF>#}zm@?!KhZ1i6J!;gKbw30u;dZ+%l*Y6(j*CFwZ|iHrb|;UxceITEQOWbKubG&4 zPB#Jr6N`QKr#)T2Uez9&^cXepgxie?gwouQ55L9>6*MCU@6Z1#D4tnd6@8g`x@KuN zRsx$f|3L3bi>GN5e|N-k?tEj7-fX4f?=Le~ep>kKa{{j(LCt)WWJ*QCM&S9e-~5f) zvH4Yfueq1F&%H~9afyk8`I_&go7UG~!!McUey}<|r#&yvJdJSe6%RYzn=Jl5T3A?^ zoBO4>@tD#VPag*!X=!Qo=WBB6R@qV9d;chXW#rQh0#kH^$hb=77_KRiksthHBBT3NqUlIUc1QWb8{}D+Zx5eqte{G|x{Cwg~k7 ze-GPD)x?;zg*xwzTM|2MH150Xepe6zs^Dwf)%f`FV^D4wx+R#HUfSnwpUkmcj_hi5 zz%HwN6k|t!wp{Jrge~E-5@W(JW}n;Fjr`ytWOPew<$X(A?JUa&^U;ut4YNW5|cU|W2-lI>%y2kpovBS;tEXeSAf=kxMm(RvdTvo_h;R&Y@c@N z;=Q9&hAcI07xY*go2V+gH3dflr_0Mnf#UkcEK%k()#9;$azMvuu$b@;K}#XtLQHe{f!NdgB18q1RB`+~)H zbYcf>nP)yRjRv^&d+f)@$HQ?_2OL>3Y$2W?wt(A#iw> z`S$4dWo4+>uPF_^7q5oWGSw;Dd!p$rAM5LP*SW8Ht=BG#%|{5??Ay;YcqbOU+x-JJ zx$?L9_<*s%0UU?IVdd2|ucKd{!F;g@x3bptS(D_5_=javwC4=8TTGAvfiiwbKMRdfNHA^NU8!fF0{ z;{dI;M)Vxjb#?2MGdJeKSe5`tNvw_*TLLvzw%IVaP7B+P^yjJG*qaRuOyD!7J&fb+D0R~ z858Y?%#ijK^x8BAZ&gqGaHu4;EX(YR<76v!UwtZb*rCSYbmarYwA+)$CQm*BdePP* zBmwyMwmm>CMvpO*Lq0i4r)l?5^`}qK+RaD9eu-sWRi1$_Ar@bt3Jdvc*jt%zZ{cD- zN}~_Pjr-0`s{v!&Hh8gTviERy5{wh&b@9u@aLu2cy*&RD77ez%wBN zT;M2f*j5T@f0QN`vz*~uwD;S-dK&E*csw~Bu)#oe?T+y#=JW3=1J7yqDYrq@dbf1_ zVOA{HKg5gd2Tl)cnxX~3a1ZWH?WXPciPI-fo&Z4J*mmClF_~#SQ_T66xw$!`=ae&n zzQ?$E{Ry+LGPqFwQQ=tRPpIXV5}hGmT>M=fpU64sia}m}WV}9As{*6~u(b_9jw)>v?hDgNw%z!#W{%{Z%TtKuCbX$2WvsW6u)hoF%WVrLO zpy1S( z-e?E$nO@X^(Xr`}iYra8U~Y`a!Q}lV))*;7Hqm6&23x+3hU#6kJ!rIb>wr-ml?;^+~m{MoYC0 zYa2C&H&f)xgnhu}=ae$}{V4?79xx1jy5YAO(qGA=rPX2*_Sv&3_Rge`9rR?)lE%;h z;2xMP>W4l~`flGJNbOI#GWzd+-^ET|4^m+9j{}_z@5y@s@C4$}s!9L8l6f@r9)yfM zAZ41@kH0r+&vyD``#{V-o3M3X={E^u*_ig6HUIr<7)&KY5V)Bs)GL=grS#qqOzGX0%ag{bLXrZAywPGyM}J*K2aBM!zj|#Cl_b$q2-NK!+2f zO;3H-tly{0tE*oOV+jybPUM@OTaNcY@iGxqKCI+L!j}?b{dOe08sy zL9_yRZoi+j*7r=4l`Yd~;_{!&<$xubG_TDtwQ}te!@+PdX2RBFZLCpu1hjuY;CF$M z^N+tdHFR}5fn`0~U!V3qKc4Nwc@eO9DL|p+y}iY8zOkAvX)|!=zAvC@Y2Hi8C!1li zX25$YC!;0T#m)}eWnDmo7X&aqv){D8m@99s_eW|CxJoLij_bXL!v7WLeVwjk zC}EmSBlwY!2_hi`c{HIY(d^&wGr+6nx>w=eg_@wn3E!&g&xdvw-e|o6Yh0CxQlbyv z3X5rA-K2HI7p)S-?E;Mz1GwWroM7YH2TwdB&!%%?6CgRbv{?*kRlRr7N&k#H7Js|? z^|nFKUK9jDzj+;_3`YyMEC=zoLw$*iNCO62yc3a-yf8=}zfn`ePfA?OV)!h6p;FY# z=qf2#eO^J_W~UJ4_yT45W+%h)L8qBT%*S^b4Q+3SDuBoZ)aAW#od-xEtWogv)3aKa zcSiE@ns9l*-xa}yZG+c)Z}973*qhznBqq}n#gQWR7AxahPPYW!|17{s=wTGiEd8v( z3%+;vX;G!k@M~sipM`pAEQ~m+)m6%gZ&QQZ#KK}yG^meAGz_8?q}sxM$fbtUk@UNF z?*J%>&YC~8$-}E@i~i=_5??RP5qvDw&~*N@fJFTd%=6>O!2g93#%%$R^n@X|A+2kW z)-D*5-vWD#AfK!3-n+4*^PWv{VDAf5r{uYRQ`Z}|caIgDs2=w|Av$L=^@Ab%uO(eX zcu|W%#I8aaOs5zTE2vR!keGN#6e->{vUPG2FC`nuuDMkFd^nW1`(#gXZMN?2>>{8r zUxIR4zCd|`UUwf&Kw9mxBsX<1q0srI?k4lY0u2-!79@MR4XUC#bb`^Hzx4=KssefB zSq73#kKJ=~Z!gqpC~8bVovxHX5G!i{`PdO~ub5#g*#o_)cJj*%+j0?4!M zhQrbJz4aGrE@WvJ8>;G8g3wftCS_>fTYcC^OUi)Coq}U---97FP)??Zh^^r6rLQf- z$@ffc$g>$%F5Kyp5k-qJL+J#be|hCI2dYW~RbWVZO;H`m0;ZiO@rBPUvtWugpu9xF z!FE2ndBfNvVvAF!o|)*;1&&Y%DG_hbRaK*GTrrD@gn_Km_A3RkgsWXME#qV{Yoo*( z{%t{0#+S=p7=6q;NNaa@l_P;Ck!L96jM$E_ch3Xh;f21 zeZ^}(laS#^HrzF(>>5by$VgJ&rL`MH?f>3*Cb^L7sX$Bv^06kk1W^TDI9xFBs}Dz? zP(Lt%R9t#zKqi-?|64$3$9AQAFnS9NJ1#hsjmsQgBcps45hMDv&~n>@D3Z@!&t>Yf zyY$^7sMSN1MmH|>MedoNLBiopC>0F!u4IS^lw299qH0hgcAuMFf}C?GKDwa$!ymv5EZOwKl9rkx*s73=7p;m{|tl4 z;0X76X45Mp)wFh$rzpH|nb2>e;&X&}Zh1E7uO|rKAFbVl?pKz)rVh|wsaual=)OZA z4GT*rurYc&&|w5#L-y@x-X|(aWp9jRg)n}0#x?c^KlFs(sXVp& zhcBnjcKx0fPPRIec`l5oF?E!lN-Wji1qMWnS3*l&PyC6;HqpA*5zW(2v#p>n=fxVr zh_yl3>^q=hdHmA;xI#F!%B8QI>Y%6GvBanCDVlL0nLkY|Xs!{YhjFb@;RZS&^K+U; zuXeRov}Pw+^jUd6$~nwquG5)V?Cmn)A)hJ$08-q))q8XTKWDp>h$pswaxFb8^GsN0s8vLEDgMeqmIaMBxqX2&`Ijulb)5Jivhivj6e{ zuM^}kO+++&CavFZYPF04+~GmO+qynpnUI zJ#+yCJvH{tSvdMSg4{kB)ImTFyx6QY`kZK{+wpG{+hXtACpQj;bG@fz{Vx(^LT5s{ z+IQbuhMjKfCj-Y)!byOBMyO>rG8zi8Af67^4$34lB4+M2dI?@er}BtyhHuxNEWZ4D zL;zJRn>AfS>2vAk+nHS< z=KN=#nw2Q_RhBUcSr5XY$1CEH`mgS%SX;z z6#hR4M!%bly^9;?`C0DP z@WiHbV?LQ|{`5{=ycY~n(*t5RAM6^Oh#(gdnrymgdg6Nqvi9O!RCuG&srmtB*pFidq7_8rx-E@GK7dDlNFh3^<-uqkri#LKq~n)LA( z$0_OhjK1pVsovJKCYkfns|?Z`puSX$hYs<}rVAa~iO!%oFXyd#H`y%VSxI{V%ZQcx zU6(=tR9EcdU@cern(4xK?F1LxbKV^cJ{68VH1Fx=c5{6C-{#)N@snJCJWNj54-dx# zHlB!7ONl3rU$tGCc9wNG`SMuC!^~4DoJIs#*&se-)E9n~*p5Eea$3FY>TUm1_sHF* zO|4hz#kuESqDs`b=a}(5%NKl%k`lC~sFo2=tnC{4-mFY78t4LLp`VES@%GKecFIVk zXzRBa0S~+Bs%@7f5t^pG%9CMsfOegDkkT@LB23q(-^$;)jEl&$;w8MY=esd}R!*b- z{9_;BE^KMu98;b~mt5i!M;ifGSM9~UCv0U4-a9+y4N#X!e90r~^la2)%A;33&F$d+ z6>Pz0`N&e!Sb=#t7NwE*sv*Z4#j`oMx9D*Iy34G`U2xb%6@K{OQ2$zUdCceON%+~+ z+{x%1*`-z)W;-*6#-*aL!fmwIphpd~*Q&1Cl^gKY=nc4Bv z%(siud&~9jX`ipb45&q_mS@jHJC$khU$T0y?6kZ7$ljY6D_Rp5b!cWfJM*-fW+-Z6 zsB;e~4rKD#4T|=sKHIBiBL|f+-$-c?Iwr#Gr!@W*{Oqt6@_W{Os+NqOw@xJ)Y}UFf ztlck1Ag0q82lGDXDsE2LIxVL=?N2NAMXgWIwNlLqWd=9-@95OBDUxt~f$kWDq~!mj z(6?MqtvFyFo!f`fzaR-8&BYL}qsRZ85Z>&!3Oda}6@K!RJH`KP` z*t=Hag0okZPz(@6(nV9om<@>`F;YewTyVXb0AwaXkP?OFE^iyomWXo#cS;F!lDAYO7cjyM)ARKBzI zu6)j0+|(Eftl10vXe-LObFU%L*s@8iNVd(_^PB6t;}0LXL53t(yIqd%^T;Ow8?8%j zz^dZn7wZv46)*cw)Ij^Klvo^hs~byQAk?!J!*|q^XI0Jl#kkVE=R>FkTU*!{?B&H zJO-Z{`up-0KP@!zSX#DqEH*z);J$gtJXLLagBClHAV+7DcmZ(YcYw(E7Q~RkTNgSy zF6*q<(}~yx!Q@a`^J%VGA&vHI`T6utx#5Ii47hlEsQ!dWr^dzKzBnQ!GkkXZnXgLy zQ+CFYO1>{*g|?EU%wq{7ysvk_5_M_Xb1phi#m8MGGehOCqpfI8llGPGkG0}9DA}zu zjay>){xLmR{{m6F{MGmv3PD4?x&&3d0>ayr{l%_2Pv6As_TttYzUFH@7QHGQ?2Y?| z&l(wMWuSa@ad8V^ez<|*;1wy{ z9yGtDolpkMd!ph_o_)ckiHh6Vs$D3vMso^tUS%sCjfG|#rOtx*Rgs-vleV^U5x^vp z%I%o+xML0J*&hU-8FZF$oY}RT06n`-CY&9@pFPPtwkRlx& zD4|3DsCkHyIBI7-ty8m@e|8Se{vcaq?Y6BBLdX6EFBBUgt4 zjkZgQG?Re%HY~1|Wf-D%d!JQ#xMJbylU0ROf`YPi>-zHHmzEztrnQ@<3_R8wC;*wz zpkFp(TYnv_SXVZ7U|CIo z6N)LcVnRfWE6=`bAuR=y>uz0Y@^_pDTt1k>+^{mo7R)KD_QwL&8`V#TsSqRfN<^sNdNv~k z&#Jw7z=(#a)NNYh*IWy3Y-OseXBplr!}R!BWYx3+CmN&KPDcp0s zt`NqdxDgS*T0O+<`ndin<3wdZaYR%4#A98%VrpUH;o;4NSjFNfG8QDS9wx~YRV&de zK{Zj;j#xGtE|XA+HErR19$~q$GKHWObKyd>-N|2-)_5{mo*STs z+TWAXF*+`PU71={2AK7e$cM^^oAgg(fAVUKd<2B&>+jHsyNqv#s7E_?m8{hf>M<<`S9#7(g&-&h^8ZM>HFFf%2YR8~9zxjSFQWZ) z<2xj6&G2@7f7~lb~27Z`X>y#T_5jj9pm!PB6T-=PTrXPEpY zsIo$7mRL#+JcDs*Urk660>QMMulIY<7{$HBlbnlmCc3q3Q*>_ua6(c zb+3-=)@L*}rhJNz;Z3&JD-fLIiFK{gda`^{e&zbhedMhT8U;inmba`m4jXo-qbXrh z|NY&|04(?(_40B}^d65CzstQXX7(ZZ6?}W-S7c=)+|Xb0XL_me*Q1GSv*XI!y}O+s zQhDazgiMqLt`3}B;}?z>w#BFgDutG)q*LGiJ>+kNvW-tk8pDfY$5)4qARw}+^l zY!K%%iTmA!V*v=#T=t{WJ2k#28oW!z(@*qQhk~U0D zOndd?$6wEimpc-$yGr9#qFs;Lk_&Bzk^FiEAM*=~ER;EN^QAd2FKIm;ZT3(l(A<&n zU5#E&VTMnVa=5oeBQDjMjjSRP>$2D+kzBl7Z!2!w`uh^9fx$mZmuwO>aI4cO=w^qOCchCm> znJy5jgq>rvo;CX?W^T%W?VjwY_Af+!#5E*V6ouV(zA|X9@u(v67TDrw)qNG!gHn5l zMtyPJnX|jxYcPhW-#%Z=Hj2AR z%NBMuH}kRFwVItUL1+|pr;>TjPhpKPOE}fn2 z1I{vgmLL@XcBp_Kf4-M1czRg$7_}$y@5U7`5jZxI>`%o4^bM4$aHLyKi$yZYg)P-f zC{EboqOo-u$Y55OPS>}IHW9imwOm$f>ELWD4x~|FBvfFbnQ!M*vy5TmipHl~hQuB` zaQgB0=J9MBirs0ar^K06--pW$OPP5{Ew#_+YoA~SR!{g0gJOM=sY1;`ZMC;yK5q_Yw!Xf4Sfl|mZTQv1z&cg7Lz2>i2ZCJI^&Xq?#rLWmoJMpu$4ooe z-T_7o(gGm$+ZkC_w%}YA%h{&P|9M%KE?SnBGyTHp(dY9s{yT zn0H({m}fC*AvoBp&h~T^TfE}6d4H@?b;V-Ay5I$FF^Ec$?-7W9Ni`RvU_5mDU@O`La}Ut>N77f% z4*M3ywq3+_RG{L5&BDqkjW*mOL{YUMH`gJl^X-Gp5SEss-z6Trz$69y#L_%;1)YD6 zl^zy7Ma5l$9i_Pl8-ICq(HU&00!48!UaF4;bNTNvR7OGPC+{7Ov+fI6sFXFFpZ32~ zZsLxspreF!zk)}7^JKDN#8-~F&R@U2DerZRHOq)1rhS<4ZJ<$d%KbXnhrsA%e96o2 zY{%*Rw8YK2sUU$(n3esI?;eouW4h~n(=p0~i{;?n^y+>i9awb#eK~e9!xxj-tkNsF zCIFR|_&Epnxy$JGm{}Id#+AwV_AROSUk`vrl5aSwa9ruhaLs98%u@|1_WyKNs#gv6 zqOqB@gC)f7V2Oi4*~S~WU!fHd%rpk|BHzj0XuV>5i~1*#R8)G|*~zw3bct_*TInk!8l|EH|CD5TDIGV5Tx zu^gW}<2#xR8*zi0ypH&0T8eV%_zwYcu^);;wGH!c3>KHa^~Wj55|%XBxpnA#@^}Z$Rrri6$aS0`Gvf= z*)Z^-@`DFu8(AU0h@!ve%=OFBNaaf5N!~w2qxeGZx-`TxP-doBR;-+OB&SO&+1(;% zgZLBujS=M1!LvkUgu^Wd(D@!1lC~u?NT!7d(+!=Ml&nj@r(K!9knb!Fzht`1*{bKr zek|cx1f<(+1AR4q!;cWR$&{xbY!^n5XY&dWi_z2&JiBVz07E(n_XC6<#v?pP5>kVP zmPcu*3L+k)ce4Pw|zh93ZJi z+y+q`*zo=uI!~4SyRrq;ah$lF)RszoA0p^*B|lFXTXbUM%B=&e<6MtuEHg8Jf0i?+ zZSzgw%-M3WFkY5(u_+fSw-o}*jATC(JhMmHtcF# zdbRs29?2oBtge1KI?1=L7SNkSID5izf+6d;zWH--?pHzVXj>R3)?jCv`&e?MYSQDk zWmB*H$NlrZK+K39SY%+pn&WuAU^a)fZ|yVA4e=Et6(VpbK?Z_&Hk}j%&W%twQQRvw zYz*bsuPMn_0*M!mqC3ytTwns$975OnYqSR7Fx;h$2fAp>HC!L;yO_h6|VzMM)t5BvG~I~xh8CUaFE?J6c1 zHevwMAO1KfFv89>M{V3bu~NA=kYqYgaX#Zarxy64y!S#$!a=H)0(Jo-+Oh_nS1a>4y(-311KZh|lZxX6sjxf^ zq0IZLf9mj&PlUAO6jNok{xUFj`}r<_e)jU>;^uI1tI-*%Vm|-<`iwNUxmbtQoH(=C zbulHB#e z>H8mCy2Sx3{n>9UsImD_b1}p9KU@s#qsJ}xXx0DhbpF3k0R10z7z{U6Q}l>u*ANG4 zBUL6aPf~&{G$|)82UGS*AGMo)^Y_VgEV93;mh)?s|dQrHS6l=}tqWs(bV@p7P zFbt_IxZ|c`)a2(KdlmowK!yNjOf(H7Ccq8=D<{-<=sZBKSKwc7x}>P0GfprzEMR&5 zZI_JQEKdJ2e#C5xpF*zXw2+(@P#_?PAe49sxkfxnlu6=13yUL24N~6L1{F}843;hG z#?K=%ZHz}ZIe7oVwU*1V0J)00_y1q*{z?+0H64aDhau1H%1^0a$Wa72e;CA}TigGS zo@sD(VF%2@8Vw9t+LGVW51qe>$&(ra{s&5DhNgIBsu31cjh~4Bsk_6wQW^yC+T6Q^ zo1}ZVf_fY{{sw9N=64-G2O501gA&4jU&@kpx+8E2cSw&P4Xu_I_!s=8R6N8t;gKjU zwnq~lO!oXa_hTBjiJ4$HdJB%e2>yW`#SR014lhg?kTM>Jh6P@)D9j zOtoXs?%_uCbfNwgk!k8u0yf#V%GzN(qt^02e;L&W$D|@kU7Nxm&qJMVyCcX4O(R&h z4HRIds;*so-O`hHtL^%x%Kz&x@l^lq_^j{B%#vKW`QN_sr!g&GfT@3U`)eE*Ex|0| zj=JupfHRGd)*(o1I1HI6M?TvzF$zO&J|j1Iv}AdVO_K#jF2!Bf3n8sKI>$$$kUX>A zb4~K>2gJf@nc^0Y$mdQBq?^U9m$2TR`@nT92}Z{f9TLxXgc{4GD8VF z@$>9;e3asynzzpUB-z^lyabDxjG3JJ(LCOugyi3X#)SR6pZ2XNC+@oMTQ^M#txAXzHbp?R)sb= z{R-kjuz8Cq9L<$%KnC)N1cI{lYYP$zu_xiJQmAG-?RF@SQ2lk{X`%K=a@bVN_zcst zIQQg~c?PNGTH8FV&is*zXj^6|M0b7N($2=)VKCGydZ|j<)+>7beyYgc$x=~rl_kx_ z_i3v^2m(y^9aM8p063pmma{XMm0V>ViJMQmJ_zFCrYR<{sy1!^wz%UULw>zNyd){( z1lZvN4vw1KqrdyLn7NcM ztw5*^PKObQ5-z`lIE=mANv*UP$;)q6s9dHNs~AN>B*GxH-wLZqWe6Hl#!s~|C*4Pf zEp3zH%_N&QHz%R$X2pp|IrNaWd^D)sb|r zHIvitH+gqQ;*S%cy*wgHwIfRDHix_2i}rA)XHk@1=c^@tE%ozXH~C)H637Jy5|=+b zb2{`GX^LvO+>+MaM>{Eg&S=adAY@CQFg{9`MA=QU{@$T#<6;Yw≫4Qc^A3^z7L8 z!yaz{D2HsD8hJ&&9o>b~Q;8M>d1}O6!I5l@W-=?%b=nhyzHXuuZU7#7m4zJDfCbtP zo_99vhbLzyni)vC|Jz?(Q*90Iol?N@(+mvHz@;A99r@=k1H|e6w`lq=aQqWy{s;dZ j09+{kKcmOzEXC`O5@)og9)Z8*K%n^G(O*Rf;}`!6kZD^W literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_1800.png b/Notebooks/3_N_horizon 5/sim_1800.png new file mode 100644 index 0000000000000000000000000000000000000000..9746e9e84f1ff75fb4c052dd3df026170c1305d9 GIT binary patch literal 16922 zcmd_S2T+t-*Ct93P!X_2a#BDg2PH>6Bx#a1Npc3sjpPg>(1L(MBPdCMCg+^9peQ-# zbjUe18D=+}Z@zD8s-|YD=H9CR-YQ#L`tA2!d+lef^{lXY|3X=g=qB||EG#S{`RCFw zEUarnSXkJvuj7NC6s0Llfq#UZWL`O`+M7GM8oe>YQZjOa+t@qVSQ_7RF?-`^X>a$0 zi;s(!y)grt}kHrCg8N-V5r!Sd42 z)ZF6NC*0%p=guy+hb%rb7u_ekW120_F5iC~{q6O3N(fhGuG+RbiZE-S8>UbyLy?s= zpg}R3l}orE=KU*KUd=f7-s8{L?iY3b**}>Ze^P1jnDoYz%EfVaafXQ9*pqn21V`VE zUuLG0m3gbu&>QlR%<_?`V%aRt*qC?B@(f7q;LA7d;<&_@pCUc+X)ixxJ-8)w`4Mb` z3jX}^i{nqGKVJT*(xT!1<<)Px{G=|go=^O*a--;{(j07~D@?}nJ?HOWLkB+6E%Auq z@_y$WW$AHJ$fJ_Ev;6mn^qanEZ33bc5Qk^dHM9^y!qQuuB2(;)cHszDrrAKmp3{tfXQ;-D*Ca~EPS+aeF)6<{=%ZP9^j&n0`((LhLKTOw{U z;U|7Tc!zY_Q$p$yh_6it}aGeTddko=5BZL;W8f9bL;Pm=@1nHUOK7{n3;9Youo4=5V zVLnDKWqEHq!Y#?J;gO%CDl`-ZCBZ7kkt53!zvae=a#Dp_vcl>CBOi9gO3NedaIt>)fnIMMniamPs0sP-Rc|g`?nip0;|dh%9u}N;*h;B`RLxiS*G@xl=73rrok4hkyDz& z-nb@!Uxww=-!2}3Ex^$~L?d+LRV3^fA1(>E`rfKa*x01kuz53Sx357ZG(G%dSlS`+ z$N}8rd*{I%NrMKYP)S;iV&znBW?bN@9&~v*8U5tvxgx7qLJyn~wa2xk+v5%vb7^YM z90pi*pI~3(VA`_e_h=_=j$2(}Pz6<}E6yfPy$WmXXPC#AHHt&J(9t@4-9(r+P$JXT zUAUpN%}uYnLgJ`BJLoe1bZ|p@NM1q=?D!=#Qvg-MjM}q-F6SY8i;%sm4J1F`#*)m= zAbSl|q5Ds}4l*q9cy2El9G;Styy+q{ZEV$GMO7htOOU-|xh3M)W20clW;2cw_@`7t zH5nartf-TlzVuUAE@24HsWyw;`zO2ZH(&iFU^f4usdA&C$$XsxM|^OrhFN~K_D$?6 zn>iRe>WM8Ij<>#Q;>n*FE)d!qwuH2)(!YE`2+Tb3IKkw}fd@IJ}8C|?B*vqlm zA?cQf4bi53Vjg!#>nmlGvYdZxZtL?W$O}XozmcxF;U$T3(jz=LB^p@@lf0YOefpV$ zPrK)@G5>~OrrF$N6Lmg4nv}v;WN&g4GU2?#%7B#Azc6rAA6tU()WE3ZCu5Oc`YV;` zgr?O45pMZjk1oh1j<~TIlvr)mN}O3gbh=3jL?oB^*(7{$4?NJq-(&SiN@PXNvXcC0 zyl&d3dWVM*)gQG+vG+>p#MM8KNHnmN?^wWE)vLqG8p>J=z~KeWlpJ{;lO)@s(IE*p zDrrArMbY_9{FJq%oq&dMV;=~d__(UDCg}F3Ih4psJ3Z3*+fje_Ko6J6Uy@vQu|Eyz zBO@?jPB3lxjg7I)Zt(nl)9Ry}Cq&LpxDskk`jM&omrj=M_dr7+5uui>^b|tqZ`^Tv z(&-XJMmU1$=V0fd4m2~!Mm%&=PP(gUHjTlm%ty{q{HN@l8Zt;6u7S17xw_%=p7Xw^ zF$kf8f`t}A|IXZr(^{(#1QVli=wG{nznVg-7Jy^hhVa(h&ZtomFhhOU+oiTAD0`1c zxjB`x(v+M#Mp1h7N_q_fN%$%IQS2+s%3%+zCIrD{+Nk1e)YunPZ?A+M&cflQ4S~pg z3VY>VR*=?e;Abxr?)$v61M>u;nyp&UGiq}}%X2OjO)P03%KS%%UxAu?uCF}IZY+pmO@6~h<;*~U7{1^sZJ|f>J)S9U(_aAAf zHSJTocXCcoKSKICPm#4&s_f%(`cGN28XVof`tB{bn)WG7V#!8vij000{grlO9bZ?~ z?MyPzG3F!ZT@gCBP@A(bl~m*;Tf8LRu%FEYatilRIx-Q9CC7c|Mv-K*;ICupZ4cH+ z=G=qi zp%&3a8kZ4zG=xd0U9p{mZB2usOuFpO$$sG65N>eZ$;#z@tQhcV%~%-On2be6*w$Q8 zNP0X0PBEYS8D6hAWP$Y6E!5OA315sUunu6SFd8#WFCZw((uQPP-Z#9*ny7N7shw~c zD^>Y~;Q{@PN^t_VKG012%+>C%ywfZutf+FvS^8f!23@qzC!pAg4RJ&?{dYamg z*Q7NyQ#C!W*y90sP$tuR1O-$tU@%@)tzA)ikMqO$Jw^fG(i5-Q;f1sEiQ-qFnDL;O zk0GXQeCczHJtQanK+DhB1iFkyxKUQ{GKLfAUkhh3yOf2w^Z{=8<0#nI8*9T&+jtEU zt96W5>q)xgDyh1!3XSm`7dy?Cdr>GZ8M8En7%rQ_ALMG9nlV*(y|J!{&>N$T@yflW zo`7co_z(z+OU{fD)$$gPFjmx+D}aE6%USpsOV?Blhy~-~(5pgD)_T&|Whlv9tMxo^ zF?~VBbIF;IG(j|0B5jeZMxL`{R1WM+m|V_+e;}CIPj($k9e#Ha|GNY zz{7Zb&rb)+jy7EDs|OFx2J(G=WTq#M{yog?d!!&6M*Sn>Wy(^2CTVjpiA8_L%Xn|} zh_&~H^UTg~Zj0^NA1E#)N=NcDQU9nJ(-o}tIw*9zN~#w(xfE_PWQ?aX88dajqQ zmVDmyIjD|z>=b4=lxU-KrNz8H;;~0PR7zG!l3+Nj+th@8uX|&H@(+Z zBma5M)XC%lrKk%Blk5k>*_QWMf4)2kUN0L9Csh{mH);;T-06Hj-?#8&qq=y1Q0IyJ zjwx2B=%!e>$O;R3($l_d(!<*4d^f3n(Yt)g$5UB&{;tcYyzFGdaYqJ zZ6%g{OFbzBQ>P1pm8*Hx6-NtkM}y^cr5c;=6V5}twxfJ$$_ee!n)<&0N-GX$Lq`k) zh+-wYMFhv;xWyJ-3lYAjOe7MA_xjRR(u;~BY3wTezka2Ds2u+@fJEY_p6f(utLp2G znqB2Y_XVnlDv5vgmixX4*is)%xH4dMNt|#P9QVe=3OhbjkvL+mKbhEcoAxKDSS$Md zRWa@h__6D_0|ANTDbLh7y8Mfv{iN0ANx!O!!(NZv?xycWoIftXo0&k0$IdHi=AH4s zY7ZuVgIy6`FX>yFs+R<)Gww~5-#ijd^f|V~?9KMsrf(9dir6QHvn4sjIDxR=T-6^` zm4(f6&uNhi;RBz5-$9BlPNAW0xc zE{Rz8iZ=l6{6o4@wzi!7{QQ5u@`pm0WOD`%HV{nV-@qQqgpzM} zOOZIVK;-xmb;@i;v?mmfjQ(*omY)uU_4FnVrNcu)LRwil z$;in12M2LpsH@9(dwb9EbBZVKC3 z`tyBnaVln13wY;@u|Ymz35(A7)~=$eF8pkXPt1%Oo>O)cRs0*07pJ?rE+b}&Umgd7 zwZxi4h?fntm6O-2>vz zfnNJH-55{_J`|coFg<7G1vunC)@Sj((!{bjhjs~q+h;qp2KXp7b@jpl4IO^2)5U)xGG-g6I3u*(LQ2JJd`)z{gcRceD0Jc2 z7zYD12Lj!0RMP1?J(rO{;7KEZ=|}sV9T)Z~i}G_xREc0N0}jJ{NY53oC{wupY~4OH zCr5X#s~lYI2#kJbHkA9#M&)8}y|3@_!DhYe0iEz0W(?@1f{D$3e!Ra1+`N*+ft=*= z%j5mkwp95jj6)J$`W7(!<~JvmfDI)u4y(dMj1P)Zk@!N$RpCd*uCbM=;@$3-q9_B+ z?B~x2pnhVmX!VLn8^l<)(vf0|VxZ`ls$03O?u!X>z%-9mH0!ljV1wEUXY7n=C}b-# zgE{v>Qu0-}f78Xvh9M290uGbzi_ulra@%Md|F_E*CHQRY>{R?#cY%)QfVCNd*t&V5 z-$w7r;d|Vdge5fdjx?6vS|i(bvvQH1-ec)|>sfYw-B(~bLz^eHG?;(`0u8^g3wXH0 zh*?bTfcIz?{c^z0l~g780>g&5X(~y?4FF~p$1B-KJ2Ca+ZgqKi;qC41rFEO7L;BUD zyC7zeVEkG6gbVI;YLv3}>cMO7($Z48Ec)E3tMz1_>Uyv$e(m2IPL&_o7AROu^xRo1 z?!o{R<5whhzjX0<9l}>uRt`sp>RN{jO)$8SJQ?Z2dd}*wl9^uAOe_k=Z0o3XKL4aO zuz1A;5i&pD(>aE1?bz{M4SaI*zKhBLzQ8K5!@FwL<0QbBy-uRl$4Uxmwgi?vrmJ3piE z19Xj?4;L~V4g$5Df}mk>xHW^Nm?-vzkh|uiRRtMB72x#m)qO8;AbU(NTeFZoacWKdh{* zgw7A=DuFj$27Eo#Hbl}yD(s`T&vL*&bX_u=%CaZJNV~mqu}NLCvE@CFk5~2Q(u?yG z#{qTCLcqvWL1gJuk?dHAv+uk(?Yh`1PCEOL5+U(*NZ&I|KI-B2moBfgU!~O>RqPih z^%uW)yCl1SlXssB6I>d|rV#hon_e%U(x0yt7>7#y^-h$RjUi6u|rn1JWAm%_kbxp2IizX<$~G4O-8s2;yFINyn}MQaVB zCrQNjZmXs#8UdQE7%v3*DVwJYNU_(3W73@G)Cs-!3EH-g8f84g^KIu2Lzhlx|^}w)#f+f-pW3_O+(UGmPrVL;jov4v?%xkFJdrkNBLd59Ms5V$2Cc$b+e( z9yTIbUzFg#>;Hy2Cxi6Cpe9hY$iYaE=c;gSMI(DnAU(LTw!EhNbw87X3Xc4Ogb}>}8NIUfAAA9VJKe?IHd2QAmTX91Q_Pv`;EF;7 z<+ZizVmIT7PoFSy;j;NnKsCQ$K9#r4PVUFc@RpW#o$hK_23f9ul>ZYLR0qcbtN!(T z6)BUkm9(Pw+5XUwUL&}?ml{s=td!tH-JNHeMGEp#iQI1dBkWjVW{dY}^J<)5f=-nH z%1H@osR;gneHyEO1)gF_qaTWz+#d~euDh}A>&&cr`9!O zFG+}U2QC_C0~?K>sC6)ak#BQ~T*szyywcGjwQy8BhD&eQIFu8r7bI~HH+-j96n=Nh zOrP(-z#lE0K6gcW55DU_GbzCsz%|Aa#c65V*1wuaDw_Hx$M zHMYVss1GtN_YCExUmDUFb|KvO7&pQYg%3ED!J`1N`TKhKV=~Buza(yYI&v}`!DeV; zNMXnUH<7+2&x$f1O1K_>oyV}j&sn$hatAjffU&%gR*MRx5d>9un2;F7p+dVN{))du zN4^rPUKETP{OK#VpK{hLx%>u$A2w#qSU%W)lv&TdE%h7t*Am*6VT)kz4!Qedq+l+^ zP0v6kP57tywJ{lc%nS=RI5#*$wiyhC;flMPO%FyuXXE@%8;AGJ|{NPZNr5HyPZ77*PK?=M!!Cgw=%gbF1a84WZF8YZ@vmL zVS-KF-vKdcUk?|Z)~s(IbzQl}Bqu;5UN%9_#;$P8%PfCD?;(UKZ2ZR-D{!5`iN87VyWa9hbt``#9< z*|al1awOsX6`$Uut?6N0&REwY;Md+<3)Y^$4iq&g^*g5d&ljci@;_gr1Mg$u;`0%S z%SHqxiYw?8GnbOe!T%1$4%RlqWTk#<@*EN3gM533o4&=4kdb4$A1Pw8;qSQgpqOj1 zal^fMr(a}aVm>T;p({93RTG~+>QQrczWHKSw$b4h5Qtc`0+E?I&O7}R6i!OpF^$OF zLZsowcv^~BnxcRCRA;B_des|9Uy$w3+Z4Rf{okp81fd^51#vkb)Q_|LPgyhZ@9=@4 z<|kczL}ETWq_4_2M5nSf`x;EvUM&sfJ0(4fL|TUfIWBcHIvzr{m2|oU*AxET_uDn~6p$+uLn`;0-2=2}VmVGIsLI zB19hO|aO1G|8~9mK>>-`LWQX+Kf+#*;=Yz)>GoaIkZjC##<3_NmP8YTr{)${X zm8CJWcDox)uOdk#M}GsuENG)1@=wI1GU8(v`_h~-nW38-wf9PT4=W8jI1On|))Zmw zzwXzA0eI$G|6o&&mXcIN8$(yP6dL)tF~I29NoeNU;l$=GL1wUPOa}28ugqak{-;Va z`=StDnqk^lywlr4q!lP9GO$&pDOqfkyo_Vvk`kh2rZ@h?_VDe!s-euQx#Kc|CmYUT z+X4KaQNzntM&sKBOk1y|PbH`4k-Z;YOHil-0pe{7o{^ib6)BWSTHc}c5wfX#07&dD zO0301!t{iNJ}qX}w)kXN8e_63oEv_Bi^T9wfdSOgNcsl)6Bdj!u5?pUt7as!Mh}Um9ej*hNzt4fpj4EgtV4cJ?e5 zp4{OmqLFv=XHB1Ms;A-nFzQ3>avs*0V^|{16 zBMuu=2I8l_rfEJq4jZ+B#R<`(hUHLqnz32+>x#7P@vL=fwB&KQ!R~Bu(9T+SA+3Z5 zVXJ+)yg>3?gzr1w3(>fy$4)G|P7qqB?kp9fPbK=7CLI2lbmTN@)n5<>O)u{?C(iva z&0-FGh4xUQr#Ga$D`TeY%dQ)`RA%+`j2$P7jV&YNr;k=%&g(KVAEUgipLKPbaX|)u z;!5&uT=W#y*^Bd|$zEu^eEHhIP495Nw$OWK6cK%3%X#;;kmhMsQQ+-w?$r+)|9a`y zovJ4Vf7t`=zTG{O{wwX8@A;E>M`E$vTWggT=vN~_nVgY>q5$o))U@*!uG1{j+lW|w zAs1!nvOS6&#D~G!y;ftpB&}xKCkwpU3$~1gi_dCf;akLeD}&3mxNnnh8x8n_+(5jAUD9Dj>B%)qE>q6I73+ z(v`QO^BXklZ;E?aaH_j6|=;iEE7DF>BONMac)ztMKVkvfXV_YPZ37*7=(|@O3`G@eCfW}*4pa0KuS=xd2M^LS?S*L&Sze;t z`3Zh`M{Jv9qFZ2~f=0m%{s1i>W1LUX?~nRw>LQ8;tDiz{3azjR&0atJrBbxaCc1u& z^r0zX6fw2h%FPFswKI3gO4~72BERF~mJ*7ozssn0569;C{}`0S+a<7#*e{vWiWM<< z+6=@fs|Qiv!LqN74x6r+y_u08tf~^|*y%r6tDyHK^`McJ?O%bZ_m~~k@~4up(zaD> z!>uOhYoNliu6kqLm_0`Iymn(sOE5jHmB*-X>kZvlA&AdD`%({Xrv#0%C{fk1kSVLm zEuozsep0z0V5IIVK;J(ya1S1{=$tE~;;%VuHO^uWs4W|L7a)f=Nm>^~d0JSML#^lE zKbl@O2p+Qw=nxFv?Fu#t_h-A%iQH-UHz2en#SV@c?UG&sD_Y!MvkuM3x$biE!k(CZ zB%~SrL#G%iz56wnVQfIkh$Vz{a@1hKW(}XXW!nG&2-f#7;VtjV znLz_*VLUk|-Ow4};qd2s^WjoK$5LOdBS3ol??lfgDU!wxK?^1kV&QA(VJ6R#HM{EQ zDiL`$!hf0G{QN+9%$v49HmR-k23~}IFLmr%fQlTaw|s2MjADApS#r6ptY;|d{dPM8 zH1++ZNIGPlY|8aA*`xYDF#TIer#c0%seCWG*vAD-=%W^EoJ!1nNfLxDwSBJD z-Fm_H#dRu>;rupN?Ok&2pt*>yzao6jpkU{4{>_6}lgPQW8YPq50>>-{x2B7CGqY8^ zGVII$%IHbT6<7vl_khgv%(-G3r(%UIBQNMl=g+~_rIF(PX!%v~|G16hq@Kp_dh_~r z+b32Po6AF5`kGyzYXzpKA!ovFroLrkIRrDtL9jMZiGXiZZk zL4W*v&sK&%=Vi<#rt4!ifBfw4Y!1DbUFPD|aNtxh>tiY#?tUTFo&wl%PVw|cwb9nJ zjZ<5?1Rfa~Fg@)}3nYMccG_%_3pV@S8tYG^`qC)l z{=7aEKBTAB&Fd|)R-%e-iS|C=bT;etz=-6fm;?BWuAcYorwguWjG>(P>Kn~OlI^X* ze)u;Rzc7ipUz?G&XW)V=x&!LpF?iJV7v2JT^GpoC$`rW#>0CL0`S#CH0`At2Juvhr zt@iLC#(JmdeFKj|KlkLSJ~$zo_z)nwXVR5>(wo`-LW<3kjEu(!ht|if?D{eug=vZ~ zD6y{XPd8$GxX7*aj0|<nb7QQx!rPpPpD?DkGV85(*%YvnJ&RM9xNcNc zQNJ0K4HZaO455uNATBM1x3i8cg-dt?5U72QPmbiqr?rX(UF*_%x0^mU}oWD3TDJsd%NS(9{nBCw{d2S7F7n4<;n6o&ui1Z71Kt7u(m)u=u| zZ5#iM11lZw+QL{-`mVpi9xc==UHd@S9}2`-OlcNKQ90;DalM4;i*G#@2$}mHY*@WM zog6y-QL5+%^g*pXhD4UI%fo0qJeP0k$JWO#Qq=s8KN=a_I_~(vjzw8IFB|XKO-w6P z!w_dXjA|iMU?cQg`xHo9K8|B>A>ws9S1@J=Uq%(2Y@qU#BL{EDfuI0d(W##~wKd`b zDFUZwkB&lV47lA~-J{CR1lO9rNlZ}or_+F_l@MW5&x-3IDyI(<&B_flIKT5y`Q6vA zHq31@6pfe$!(&!g+Qv^9)vL?h655E>lIm!Bu(t%0iQpROsMF{vR^U&_X1gA20zLL4 z=gv1%zF*F5|muI!rycM@i`D*BgtFu+aKdFgq))8vz zeiC;!>tQ?`Un~lg7o4gAmRe~9{MbLw3$L?#d?0>yY&8aUctTW=NP=4bU=5}xRK9YQ z7??j%tp+fOy8pg}{#8|SI0ZS!!qLMN-lC!Wx(U9PrLmMJ0iLcVFOu?Zt@MR80s#sN zrb?rpNIY;h++A$Oqi9g^{mLofalAa@K}TcvYNb7uxa)FD!RUp}jZ^C3TNwm-@~nCg z$P_Ly{%71S>^2l~QhTCS1h9V1q*o<5pJjeqxmzsXoYbn?Sse=;3jI7NAe@+>GvWe_ zcV#MNO!J!3Uy+G2M$Zq-Q{+4Z2wzg?ujw!u-9fdW%CN%%e-_L8b>x*L4Cf0N*S{RN~AsV{4NZ=6IDO zEilfKPq(q6szbuPX@$g4d`8YgpRF5u$YD^9>|E}fPc?$>g?_!pBs24~Xm)pG+pKhd z^GKgYO*8LKn9WLqTAIz2ftT#$V~h#6a}!C_EKYns_mlr?Z!=ra0&5Zd~#%r(%azO^sdHWOf!K5aE+;G?`Og zXPrw{R;sExUP2tL^<-Yr_NztpJZ?Lk5w{#i^}hU$v8vYh+Atl>uHW{YMxAdLQg|ol zQGziqG?B)8OS~iVENVL0K}|NvZf|4o*Ehw; z(e@%U&=bS(=eKwx$Y???zxz@c=MB4pKoDaxbp_p_1$3D}rY!+p7Y|s1wHhxvujMg$ zw1K=A6E<=*-&kdbF$-1JBRCyk=oAK`E%PYu1$R(j*dGhJ(AzXY*7P`EbJV$^fiG_x;=AH{@ zTGZ%6h9DtrQToR>dMR1sD7JPDp7(r*x$-ZS!SgNR@~Fs{*%Z zxtzKJLx(7Sa}iDTyNR;BrSb^g3KcvL@}RnW`{Of~4Ts44Du;@|d*o|F(y41dr~_3DKX`Z;ttbztJRpOlC1%1U2*cZvX^ zI5k=`h>1M_nFexeAX7xLNeAxdCQm+mj?zpP8_U-^PC2jZbDguY3=Q-1ZgF_DSV?^> z)av4@qzPn{$4T_Mqb!6??{! z9_#OwmCWmu!|XI)dhDBtytE^jqqFBCf>-kbf*`I047bt~@I5zccVg9oKu||z_2WH{ z9IQorQ&lhPL@>)|^IP5-_h66r&=fBcSoeP{Ut87L1HrV^%)*q`2*v=Cg_;Hr~B&XZI;S~w}c{%G3`<uBS0vAZmLU=mszuT(z*5188`#0Iy%@>_{wu86PbjjvxJLvMw{($fGjFfzSPx?JA zt)C3ahI=&vI2g7uF_RiK4bqrSQKQ9#8PO?!f83ekq`+TM3VPpDX|K*jl-S8M$VuRo zPvC=US$aH9`Q%M7S^|>$)ANG@FZaxBB=X7C4WSmfXb~gome#Guv&L#S%AM!9YSyqv_(r zcPrl)Q1l+TW{?iAIOqYMS*)Eho2sGji_qY9S?wS{CZ?T2!P6cC0l!a7Msu-PsPFH+NYwV z$@%Sq^`2PorYMoTbqqhtSf!VHX{c8oQmW zgQ9&V-PH}*RJ>1`gclojyTB|1R-6q^dJ=J*Ju$E>6-hmigO}dFl5IY>idy1G-finy zteCLQhrN~TVh9}p{q>8}^ghkh$5%6*mS?;!9H+-aU|s<}=?<)d7LIj`?j{&g;?Tw< z^tCGgph+^$7N7Ky`Li~AUqW$@hKqB1^jeJ4JX9tBCTb)Nr^Pz60y z>cCY?JJlGhZ0bl^zOzUV+tQINZ(wiPOnJH|;^goikr;C0A012ILt;GU85I6g!oc7}w z$g|p#tl^y6ORr(Y6OAXpMyV^R3%G%!S+13C0I9ch<)Y? zRN(Fir-H zuL#Eeoi;j9@V%d{D7S53o|PKWI}T=j<#{HP=WmQ!!__np-^g zBjiBSHE(>Z^J}zt=|Z>E%%*QJjs3grxn&kcV{Op9{b%r571BdjK~cej+KWNBSu5d$ z{|8fnV`F-RmK~r;gmKPu49!JmsJw^1o#GUAX8@l)??6yci>|^dtwm(upWphYQ=ARy z;YO*E0=_$>jp-H>!HGG3WqQfSao-zp`LAC+f$T)|1Jff(*fMnHjoHi^9in>YI+Z~{a z)SZEXAn9hl&oOk4?aBWC75MQxvYsAZi1TVu!JnRjTbXx zBDMrKYKFtWuKXi2D5=ECx$KA-R7rVO{+xy?yDs%m@h?+YJs`^ZV?BOtu92x2af*H z+>-grgM9sEw2g&6LR3ObsFDY8{H@SIYB0?o=q!>}cYeIOn)CGX>k`*-!}ptc8w_sd z+v8~KnezSTe8P~t!{wfNzrd$m4R&wP4;=Eu?LroSGg_D@$6JHx3dEr}5AhNy#L@qK z!=gVsWAe>cH{)Mb-Mng$gTqfi@V#XXZ)WXCTYuu3ft3oHyA&@y<4WoO zIWhBHtSSx65ao>2UtVXA<}H16^$>=CPHun+8_@Ky!O6y+uf)Fyd&DU%jcy>G_$vB&f zsHh!rIMM8kuJSFFxln5xz&;*oK!BmCKEeYbOWQonHjR~Y_5Lz&3X2vZ=_5ImJ-2e* zn}c!Xret%PTuZLCXKi~7cJOH5W5Z2k?{mYu@TbyiFd>!`oupHUTQgk7gNC!C^n)PtDL2Vci)!~kht;L>Yi#ffMC}T$PWfh#& zC(oe^_w}H^I&vojzp-yoZp}2Et3Iu7TJ>pAwT4GfH4Hw*+V#(B+Sc>;E$cq-Yv>9= z`)UZ4$qrS|Td>PquvOX7!aaNH&a(fM!O;0-Rg<}McHm)8?WbkF)t_abmcjP94f(bR zre96B1)8AqACE(a+sI4de+E*u4@Rh# zu8GN^V+zY*(9*y@NB<7O^;YSY(!jYmTyC<7wC{S^L+l37@p^5O3pP?ZlyC0xetQg9 zJYx7Uqj}_+?@lDLw`M>u-;34kA_Q@B`lMm#>qO_dx-9hU$t?f~Ri@cb2%!=n$wPpV zd?ZY-J*dGBdyN*-Jcy=;^pG49!F8dTi5v-f^SL)S1^H1J0WORV=j<`v$bXl9q& ztb=!QO9s}CwL7T(Gj`M-3~G6;fD8_5fmKzj(cBL<4AQZD6HMU?LXU3t-QL z{pH0dnGiqY0#*#RoLtKfYlqr5scMqVHzli|v!0c2or~sm?6Uy}WF-jcDK~2Th8V^g zrf@5QA8UM@$$Z#`RbB%3el%@9J;aKNqYh6;-r>0+d9IERov4RFNnuc27&O2ypM1ly z>@3?0SrtKcZZ}oARYfw=RiK6D#pZgvGU!9YgL5dzLwZQEm7DBX`%6Q^CvB@#lW@qF z{1vt$_oyscClU5T+%6nJ>;%HLHmo7?i8;qWfv!j*UlV5xGFR`Nt@=zm8{QZ}d_P+^ zm@fntTbr~xu~Y2qcfS9r$+L^aOT2Jt5}hA!5764N;mi>zBMUApj;@NpuEvg_@Cgzp zrnP5qv>s0GhFrRm$Tz>QX3zicl9$We!#+#mr<6^ J`^)g{e*=+3v^@X- literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_2100.png b/Notebooks/3_N_horizon 5/sim_2100.png new file mode 100644 index 0000000000000000000000000000000000000000..e3e756e09443d6e1a80e2cf32f471b992c39007c GIT binary patch literal 17502 zcmdVCbySpH^fpW=DCsCE^*D++gn&p%ses5JUD6HG-K_#6sW6132m=Dr-6J3;Om3D`dW4BHc9s&GU4TL-r<&#mcX+@RB^ts?kjr_Yd{1oWqm zU^^rNXAPHW?Vg@C8|E2*d-_$S8T!WQ+YVj-Q#uO%3(9wY=sMKUv3Q4?vbwJPCY0() zllj*?BQxk^Dx$)RbHr0cVwe)b1~pWbIOKzpS-W^S8H^=B-f33W*-8vUAapkk6(zjv zf~GQ`G;Kf%VbBbzrh?ivpswj?tQsZXDrK7w`>Fdo#xGS@4s0#mfwICUc(#j1(Ien`yb|L%~aETL3WV}O}E4^;E$q8PM_V!5(tRm7bY zO7Nsf-9O52h05a4X5!FQvgs&5mzqldP;(9X+yVnb_5@SRfpd!>DQxVb7k zi)z<({0Cwn-|jE~*&X3;rj=DG#C36332rV9pHnO<_&wPGo5kUuono?njO@hF6D^NI;LPO#@+Bv0F~@^FjBb zm%{unukw5#6QB_w5@4vPiMAxf(YuJZ+y7W62$wMO=%Xxr&QNn(qB1Y3%k!=soyJN~ zf~(@M6Z~cTeH?MWl@j|d8Gqe?{cU_vA}cwVH?G@-U5V6Yd5V_-2mU88;aNSrG22B! zMLWfb;sabqV&}3JPrrU;INOl@@|_Q&s7=FSZ~3UB_eyTwRcjC7<~LUzil-uPEp1@Q zHLrb4u=^Np4wS;C;m741G(mU5i7H`6IWZMLcE^z2>&Wh_MS9~A7B0&U<61D(AhMg& zkJ_&oYWUZx==d)fDh!62HWnc}{)j1+QHGC6!+KFjzD%Sp95#}oG#Ia>iF-(=ab-hJ zI9aKR2i1eKIV>q#issU{o7iKro=Pq?{?hyfhT2DVFCx3E_&P=Cp2sQecQrV6;%49~ zCnRm;AiGzHeHry|!Xps)uG?WH5P-QAfMSf!P+ zXbAvONISNBqdMAt{0TGFv$dJ_mMz|qQG$1{lxR!z;TzE?TxJhJG#i9w8-TH1sEzK9Z3+i<+SG`L0>b4PwkQ8 zC5Unou*1{f43ioBw8lF=!B98G3*O@u%FHT%BGL0!cD>T6rHg}pMV!iJI7w;W!g97` zLh=I?N@iZR^0ch0f6Z#bdurB+knCghp71T{L3OMN?x`HU~S%}wDoc@j++OPhY66M#axwhkA&LC3ey;kMK1SAG~uGfmh28m^^J>nIPr9# zlb;cvF4SF8DR7{^BQv~`v>~p;JZp+5}2K2U6Q{3YZMd4Q8;8X5GeQxAjtkAo6 zy&_nNqskcj78Aun5Ux@Zlp5rbEXr`(xmpNB#D5HrM+vT8>L3jLNUWghHpUFiChn?x zXBCa~eS=tr*h4Xgx57lEmvNp*H6a^Bj%nj!l|1TlS26*iub&axHYzvSUQgmPVe(%I ziyKQGkyekp`M=*LN*c84Zj<@ugYgMx=c*v3DT(s*rlpbR+iA@I=5xb#S!)=j$75H4V+H#@qM3pnzYuup7fc34nZ|0LS zybe+rYRmZA`{Rom`Jw&(`M>TV_Lzz;YpUa3`*xeby5oSD*XL6KTxN=|#LkNbbLC^R zE_K59842@E`wwiG8rTW37dvW`{h>i;6wKH+Fz5TA#KxWySgl#fHiOE@TUja+O(y7R z7|NBpI;JKVk%AYZ4A*0K;fTCtKD+qk9}k+=MA5v_8H&ifIf+5+IvDtlAu7b6R1~@g z6xC{{Zg!g@=o2!o;o05@aod0@UIbnWUMHa%3Yiy%$ng_}p}MGw|9;Wa4jG5UD7a~9 z3|z%LTNGnkJfXGIZBb{zcGNv;fL447{U{8biR@_b@rBPx>+2ir)i#^#5>OOMoQ?G< z*pT{z2q#K~JTwF`ie`XtSJn1EX`)0^;*3^Jmz_2eT4KHGf$DYBqI9(Vl znDE1|#wclCgOKBz;n_+weL!{>A!sD}s?$m>ZSZXH;sops<9RLBf_m9b+e%BYv$~L4 zh+(IO_@noy@{xqoMLGOr!exTH9EmP4J9R}OBsSbI=PV$UnxnmN$PR7&j`vwh3BDuI zG==7XtQm}}j=wadI+dk6*%+;8s082eOVh;EUlk~wVgnL_)+=XG3zE3Bw3J=9CXPd^ zjG~$%I_|Dc6_@e1E39m6Av(dMxM%TCWr5q8p~vQ*FRK%cZxDvDX;({$iO;5NaKsyWwb#FXx` zJFi~f3X!7!GEitl%Wp$3FS>UNCsxl#uuEiTm~k(3qA_S=Cc$=jGcn(L$+FseEaiAJ z(`)it%8SAkv6BrkY@4a(u(a&#U~Z#kE}LP2ysG)^kvdA`fKYd#5AN39p zIgJm^sbe^_p49sseag!t_yC%dFbdQ7Nk`r0w(Miav9Pe%T{IJGdwuzuz*5PtI6=qT zQMY9ce}8*7?7cIB*78(N^xnn@Z~hRs-D}_I6pFZf?Y3PLM9S`$EI+PYuc~^X`-W+A z7+s4bwax`}m+!G-xZn&8_KUH@jxhy2J#u4_`%l8IfBnvq(jH37GkElQY`2+TVE<1V zt&j`5x}G;L4l(uJ-#RNE)L3<=Nkz2m9CY@ybc^_b8SPOqWj#82vp@mv9tzg5APEc&zf`)@GCX1~&;$m@2$aypzG z?KrkDxUP1c9ClT2y%*d2E*~f2$yaRJF&Ri_qYu!k?YUIyv@{r9={W1K(ZSE-d+g=2 z7NW;x)J!tdnIz-xF33OT#nTqUF*To)Z`vG6JM4RMw8Z$>am;(CQ2z^_X=md1;Y!E% zpx647qZM4YIaKU!Pp0VC8utyi?^;(nk*{L2|>#+5SV#}*|x#Be|)SfJou#jJ$9N~L7RlPO);jkb- z9FRMGcyFCEWx5izu>D7boM|{Jr%Ui-uMsaVFSdacqx);n=Y~JIm!D;RZCO_TL%<)_ zPT`GbIAG4=&d$8i(a``jfdRzS%W5M0!*=+t!}f$Y`L)~EiK*E2>yNfA?K|`sPMAGRMXS4Ut!Y2gou{7C8e3V<#H z$rxG@kef6-rX)C0^!67rlRa1=YcXa*JHw81gQaXb)h;IMzrVL93PwpWd6#q?kkRpl zPK68Q&FyR1R0bs2RK2OHdH^`q?ARsJ0?dc&f~V`3i_{9bx}AZfbZ(1j6#2`da^jF^le0cCGRI zZt!z#b81%<%xSo6Tdnp{N<$4Zca}zLJ%1gj>$(SE*9}ZMSk!yp4r3BqTIprE(S=z{ zZ1&{4fB#3dt1W9siQde=FCJ6!~^j^$Yw1vr6_$_J2-d>lloV&Ywb;?SdQTW8?;?Bul zb-igBz5T1N2+2(WZa-rW>jYr3W-ymK(RBT7Jey=imqSLODg zrQpG0vEV8ipH{@Ww6;boF;t z6|BpbR$3O6ki>fb5-DxR4&JYKA02Rc{(nzml!^lj2@J2%=AWP1c3&=94VKJVk1Z6n z-JL2MvcVr;Z{wT=-qmtrIEc{$(ZcBYdG08TfApL0QNM5PQkPAM-NfT35sV{-W4!&^ zja&VC^;$a^<*lbH$ed5uOp21wxpBs``zc9n4;F8I$Mq0mjKWwsdg(M@npP zZVlUgeEfAefr$$^qWeE1mbc9oIh>uHld>6?hR!0$tW9lKhG!|G4r7~hm}8Og^eDMW zRIKhK;ISbvD_*Own2g)wxO@8hH{?$?<>|dQe}*y$#V{R?6XK*Jcbiy5zW`I*sbQA% zb$z-mVVT#w`<7`({6(~_&jwv{1XCAwd9yN;TN?t1E7zLo_JE|WSpN&y()}^^D{vEn z0M<0X*{=AW9B9;fIR6q6JHT`~v~#y`S@hgtbpQQs#HTrF)zP$c6q|Q zMwJr`=-6_wwXIE~9xEpfJ&6KC5PbKIdUy$aGZ7;VqU#JG`4x;a2lM zp|v_^=_z>EPpQTLY8!IF4Ee56Chtw5I%gdn1}y!InnQ8*XWHL;ZRO}qgJqg(5j*Ct z_1KyOvpD?#*M1|vW}OIY>#;7XOL&6>czbd!5<&A4!>>f5>+d4CtOxHW`|O+B)NZK- zk~4KmiR~+jZoKc}a$VMzdoY(y)vxXFo!RSXLC*{j7wbbfefQcp<`Y4HGq&GXuDNKt zJRPfN1Az~_O@%F0?SRPF4S4juAm81f3~wxZmWM0blZ0X;ynf$&_WoXgL1W+8Za zodWm-q%Td{#tRz9+w?li`a(B^92%fStG4A4Aw$poMS>zhfkDR=te>>* z;{`E@&t@7E@78s9Y>;}iJ%n2Uyl3TlD_cUR$V$z|9X7V9)kgAJz^H+_4S2QTX|6Hr z{?=Sn09}3^k$8~l%9#I*quu@fTF;$~d}TNY5XL4#c{*R%cjo&ZSz_IfJZxz_aYRu^ zhtxPKt*^Itsqo-&o0*LbrpUw#L?biH)hij`Pp@OVn2}M~Tao%rIhs=g(VCL9S@NP= zfE`%5mnXaA75f%(!tVJo&ds!Dt4t?rOox}VHo|PZUL7ADto*!=nrX0k zh+>A4T{tElV0wXL1BZDFL7Q>;@pSwij8DN(?}e)So8DYgp0eu18p*>GNI4j zEPAdwe5o%sxQzCl+~#2~_y}M3d@9|hgcK{ouZ5^YxZ(09zEqPZ#*%QCzEFW?w8h-j*P)=Bht%{KEw@ltSohMS$$C7M1X;z|v_28Xjf2MsI;XRq{(>Q}Rpf?h#V_Ce1}(dX_`$}Oic>dKB&;;kd9FL)hIk-F zHA$^F0X=F~V%%{2Jt9tPV8?y@Cc6CQN4x<%ZN zA_=-67AIqnwE&87ra0ST-jerNsqPU1x($b52@>VJS8brho1F;w5x*|YLlb|$s9fBXMiNfkq+VkzHhB@$K zDC=~YARGSpei1kT3T0H`9Gtq*rwU)vAX9`HK)C4zh}^EyTuh{Z$UkXngxEVNhD2dI zF()q~lzJ2VHxjE5pK$hZT5zTC%O#q=A(aLvs@VM4aKI*H@QbPpw#Uuwfmdl4Bqf+N zD(oHMbK4EeU(ri2o@*~~_LtnO;d3CT*#v$7XI-^_o{CV54`6#6inq(nbq2SQ%ZW+? zW)un+YcLZRvCN7rp%#!pZ6;pQCK0{{aU?zvB|p5dD=l#d86eQEnp&m6&Ngzr^^|su z7e9tI`u4snJv~(FQKbI}J$?K?=PU`#<^KYXTm+6IAn%|b^$IP{(q8g8cU*7>r{?{9 zpTaucAQ;h$ATNm8)Rv&XR734nTETp#dNa(cQ)`Ao&QR3plD89*-Jw5r9f$u#nI(Lx z*li+^nWKU<`ltD^+??$4XNI9NL$sp7EC2+P#Z}-c5Ma*vlj4B!Zg;1R2a6|z5ioTr0V*OMp43(e+zXpu)!OqIq zI}@462mZOvTUNuGQt)t7Fqu6=ax80b4{733l=k`kklj3JKhs(E3%4_nqwMf^k?C@% z)EjHR*>d9e%(!<%i$lYP=CiWzq}i6U?mOjwwB3R4JLQ0XvX}Bla{g%TR@v^bdbsAK z%b2(qGJ!~csgXng-t`9k70mNfIhCR zDml=loHp6a$;!}^b*|3GXsUOC`Pg25sCnULLfP7W6-T>XS$H&Ed0}Z@YOiPX#m%`s zVK7Hj%hR?g-d;-Mn*z+zN-%7~G)tlbylP%d?KnG(s;M+!^R7}||6&yAaJ-98;P3?^)b<3q>Xl<*!vM2{-&dJE8t;znZ{p5xsrbsSxoU!)m6R`%+E6bO77t;5#_cp zaWA>*r&88!WbDaRl#|R3Qsf)h^jFsF&(G_lt7q;S3??#TC2U+ove~>2)EA+7((F*FkzrbBo^y8KB@xsFMT6;Q6zW(k$Lv9_m zwuF~&MMtt}x-;pfg0@X3SL;Z|@)JZJgG0C14JP9~F(8STp;2r~Sxq9{eb*{0ch-Ne z?L7b=d40vp{lKPy8?|xwd@jw>3&z!rUH(A1rTX*pVjP)Z7V+ZD z-qr?igw~9)P)zwY$;9hd`-;m%HyKR7?&o5=!~~$H-ZNWf<#rwG@P5>DZ6@#VaKp~y z)qa1)e#ouqw;}@TU;V_b?~T7r?=+a|d$4>oweT#VHm>CaETxgurb+AWjT+nbPuwZ9f|i8opz= zKB|unfBP(%^S<~6Z!uM_={_+hj)Ec;J$Hqf!QF_uXY`|)BRTC)Bh&l9ai4V&VbCq- znpkzKZ!s=MjaOsxMjl7Z6LpF@Tv2W&H)tpj%^Q8^n8R-~MV@aWB5cZ`+3_ns7Z4I3 zhj4Rw@P4`pSlSxPlVmc%$aH8ip;R4>-6vVF3GLzTvl?vXOwnyE5tNBL7`)z!H_DSO z20ERn4I)pML5b7Cd&{Z_lC{dhHHg)@XM5RqpV#@Y;Q*e|^Om^&(q@z*T@sgdekU}h z>&igyeg9cCiXZM}j|c{(1qxbY=tj=Z`h$sIg}HnMhvwiH8Tt(*b{CO6d7=YsN33TW|{Og^bW6%<0-u?@)O@# z!ITIu?WTGIT3EJh&kOFqs91emF&)GHJ5JR5z!Rie+8OCBKs0^JybBInTkLjzmQWm5 zJ$u(=y4iZMzcv`;ozZ(!C5cYC#FfcIfm%nceI# zGr-ns>e1)&s_wLzjC_8usUW-c)T5na&U99o^A@S_$^L%B)ly8Eafc~Rl}e2L@3*4? zmBK}oS{}|r#5s!~Q6PLQfQ)UVHA7>}%!d34m-o8By50MCsL?u((yig0VY*>aGwym{ z`-`NPv08&&3$*JTc(l2!rn-1l^>Iw@$S_#@?T@{}!oSp3tsbut+8yuSpzo>A7+|(wDm2$(aMaWK1=cB1GDo8vMds(js~XBQ z7<3uT^9j?BkojO2IpZO(&M>e8_L`zA@De;+k6j%w`tbwjV1?W)DLQ~5Gl^iNdgUui zOnPmj-%ULdfu7sIfmo#Ut65KO3(8a+k%wrMI9waaZWVOgJbuO?_Im2cvebJS@9b}Y zkDR#!3eS^WC>;T{CR$~2RH9?KO`me!CTn{fak+870JxR~ev2+vRyOs9+8tAa7F!?u zg}z75yonBQDi;Byq*6GR-?%}8#$e}etyPbT@l0_~0$$5>hAju-Hzl>)f?N|907E-* zZaXA*-^E&gOo$qFOs39Prr6I$THg3LH}{=wiG*&GEi^tlvK-Y_D7U5)UcWT#C{N{9 zbLdd!J6ys3M_`sdPT*%Md*lNSKostAg#@q_&O!n69U43Ods{GMucJ7>7**!~?x>2# zq~S`Z&^!*=pOMl5X1MK8%%I0{g)v7lk)wONyEAVNpAG&8^?rCW`BF#I1V)%qifm4{ zKih@O(j0kJ_{59KY1omxJ?^K&oi+e0wqoo&Sq#zdI0*n@K&_4mRZU^CxnqpoEK|%X zaJ0aGe;1S@n*=^gU>-escPTp(sWchQ&(GH}!EO1|LRYg6*Dtte{H?!;zz0`#f}Q0C z;J~>m)cZ5~{cE#bMe>8hHEvD&{R^ON6Ree5&Wych-Dx<(p)2FA!DX)EoAHdMAuEXV z#YuXo(q#?c1AW~%7AClTF%JNS8;VM`fY;jQnBC6FGE`9h^E2Scld|D$vJTB~H5E0c{kY&^tB!YN==O|#hr;mk< zsV54{ndOQvo0gW7lIBe1_LdC!`9lpwyjstzTzK;Hv7;vx;~2|sJ5RCR?byo6vVnLk zj^z-)@=)V(n6{)Bn0n-Kyj+eHQKM@*_5OKYI4_JnQ56NHeDzaXtE9+bH2>FqwajD3Kr>)P*;HWR=#?uS*DrM1P zT8D&k9uv~dhijLsthD95Re9;cefdevQe-=j8=vU8YXr!dvwqY51K2EzUjAFUTBUC; zw(+kHcROPPJK`AI57{3>e~~kNLtYjam>c&|K@L&s&c9eF@1gSWEm_3v9$+*6noUZ- zz5Xk4yZf1(xB2bHes=uvuSZhrLG~4CFxr8%!IKQ;S`GsG zJwtRVAE@tWEuMMQ9Af*~>f$zy>@sKo# z7`a&|Mmtti!5#0a|-~$9afb z`1|OPr-ViQ$mM(2gQ7yO54;j5=(8($6qsIa*~?n7Gs?aQmQ#O8^HW~n_o(86sl{T0 zKR;YXSW!)2#~_>9(p{=0;5w}DvA-eBN_z@YMMJ3J6|Os|`z%looMQhCzZ>XRFjN&{ z_rXK>T(MBKx*4g!D5x4pDC@1~y@HWeD9XdEg$afBkG!juN-w|n?QM^FZ(l=Ngw4uG zVWR?7ryyat==Ih_FBNQg6L1((Z$c2&ek&QsW!tiqBXke4TT-aHi~>L0HT$M#LqZ5M$6dUbRr9%NWICTkmq3o2*!G zo$Tc_kKn=v9N||fA-w2Dv^q%k@eiF`)Q8&nSWJ_PLGy6(aA+Pl{dp}JLglRRbugO2 zGvYqEM4xSz2?#v37UnUUL+F@{euA>TzT(n6e~y6u+}!1y%(CO8Blb_(cZR~QFcUwi zDsixJ)|%xbR*u(GSELGL^OW`$pX^mlh>y|fh|%W-=p-M+D8&3so9M3(9I|<(EZ@-( zM$GwI%f_76<7q4Nsnfjk2%>m-82^wDn@QZ(Bl4mU;6;^~tM3#Nw$!2OZqzdWWzP8W zKDl^VPZ?E)RlTXDaIOJdh{`Nw}FyMwof+x)~CZlENry)D#fib`P;7#|zU z{`&+hrCX#{Ic;UR&ZL+F(*uhIj+#ZWw3T_}EA)sOpa1 zb25KWc2qUbu-xmm$dU4k-A#J6>{X~Z!S;uYD#Hk$lv`Q1K5ItjHm{fFe<|*=8LJ=j z0aUpyt58|wHA#NFu(v%>>xM+vqKMiC}M zp|qIaX~jii7=+iFw$W2>So9kM7Y9B(;s`3GccxHLr7YLYdX2Rc_yx=$Q{9K0!&=#rDTXEndN(a^6S_C!g~^7gK0DR{mrUg zrQu&M4;HT_S1Xp(#GFKg(U-n2zbl-SKJFqzSZd4enu1OeL-lf%)xBTeqsqrD_cyJe zJ#6`lyR&acZ)5kN`bi*TnBKRwcsVmE#u{g9Yjv@h!_$4(UdrWj)%DwQ?RXK%A`>r( z$NRL3--45xv#sT%NJx65*?DpTjE@3yNoEN1Z&}1BXeBVPaRwC{O`u}OGsOZnx;QPe zx|cyd`(Ho|S|{+E-Dok2_!8lBftboljL+kKq61N)hecVs^~$Iuo3aHt5Dv!Xf{RTt z!=Lu&tuDKoIof^JCDq$~Ol1sC`wC8uK{=V-a%I7o4+hSWazH=qD`qvQve?Qzo#=Ra z>Ni*%-&M)&?$BqHwsv%x#aLXE(Ti&+ubwflmMS}Ye0QqYQC{$3xF7*5TgcI^NQb5y ztQJwHN3fe^i=C{j3;m605e@j{#{MnCm6*uVk!rKX=huTu=-qE2F}OMmZ8uo|4)XvE z8*{ZUlZ%wp2DNN-nH?N#2S`Vi?W_uHDj@Edq6P{7jemi@KWY`-S~yxm<6}S-1?Kq6 ztKtu7g+VPpQorUZgLABZc6Z=th86ZD<+#LKpzRfTLog+#@DB~`ceo+;f351Fk00XODZ}T6AU~;hFLKd8zoZ?fq*+_+ zd3L4cqL5akOM4uc+UN#jY&yq{|Mx(r%}*7Evb;IT`a%9Q(uu|1&4}y?OyZFC-26GD z{z7m~;?E#uUiIA}G57Ut&u1xQ@*)@2bv0^cf5`new4o}KhM`OXuKZ3#cBcwe_nlsz zvB=cnkQOq$0ICs&9f)goYQe$GL;&VsCN<~*<=JGg=Rdn5T-V)rQ9ad|!d@6kRH%CN zw6#aVpk^dhk^a;dLQ?+IrO+O(l#rAlEv9Ogz zQ%jy#FG|;1WO#Adg>G{$>LMM}LEJ=ONf7OSGyS>)M^6l1z^8;6+O(?qP)^Elb3^cR za(pC|p%0D*vU--vnKqXaNKJ5oI|7x}k=ryN>iH+rUv3(NE#~#|2F1Km{kK7jrQ++e z!@I{j;1Z4wvX=k%TWo`FN2ndQ9bBTF!^)RHo4AG_N`6cYDG=W6OP%9&MoXGoShAdtD?G8+I2+7x@M< zqS#*EWyl2t5>#w-8mdF1Db7lL=bxrYHGWdWWS>fXdi!bqDFnk6J@?CCy46tqW;Dt9 zi!YQjAA5@oPfrGRC!bX#NHZ*bO4Dz;6qNN89O7ZoaLc)**?<*Pm44PxUbIM$)IYl+ z^_9z+wWqIv(^q2={_mG|?c8?b{#@3Yg>3KOFVEUjieE_d6+N8cFYxg$%z5|sX;`qy zyvjfoC2%W1^uMobQMO%XK_4FoJ(C>7KRf-;dfwU!^k09>Yc>2FjIVuG^qg)O|A3Ou zx^-sq?Pl2-=9RdUoUU#z%yLoAF@Ur#5Ix;6`;*^JJ(JI#%s>%pp!aE|$+_@+&a74g zphiR;2tWMy%L&4?`#8cC`RVX;ol+@hpj)F? zR~x_PNwhMY_siZXe67mW6-dB$E`iz4Qno~As$n0Yo_^};>oE0mrSQDJcQJ-Dh?XZ9 zNWgY3!TUo@%A?r3WXkVcu!$S&(%t6e#c0!mB%Zi9R`reNQYB<58_X%Wt$)X=J`n6r z-XKyWn${7!M#bJ!(8)K5I66o%bTZDc?+)n2oVrt#E<2k(1G+>2FukEX-p;VCLkKQ| z+$Y?tY5_-WS{s? zDMH^Hh`ppia<~SY+UGw7cpz@Nwe-POPhgq?0C&k4U1(cDQBk|PmHRLuD)hf42);oS z*b4($q{^8MGMry(+=2e*H%SDxNoD+_i1kwN*zXvg76c3~)NFkC+}^8_?gEPUxFKux z=qYq6q)-4VO5$~4*Hl87)Qhy@V;nE`tkNR$_-NvHR57pSb1k9qo1}0FdTO&M!$MVGhQ~A={I0UA~;JO!1>v<4xC+g2V?eo`YgB zL#{(jNn_jtS4r!9^^1j04i|e3Se3A8LF{abg;pO5Y(EEc7cw|QxI32#QF}6JevJ}9 zxZF7!*Y#VGi(A`6AzDE_(&waM45hz3)dC1-@#+jS(_fLW)uw9&ZuS7j56+?48j_`4 ztPc9O{kwl|3yM(MDK5$^$}{vKSpcFzsIZVvU41o6`MmgB`27P)rI$j>cU+j2GS4lH zyTk4TxN9K@IPQNwq_hOzv+0Q-gRjAWBhJ^)d*nZ}PR{CBK}gTk(VB2G;`O_m3>i>f zqw|?wd$%>|HjewewhAyj>D=f{|Ln<9P$zU9)4|UFT)XQpCM9Sd^Z>>EJ+R`G1?$cT z;X)rJK-r%&ZNl<_O|>2xPxb`lQgJ#LM!kiB@D*WW3Ak7(!TR7_n4F?}0w-R(Tlt{I z4Mx=18AAEg-vRK{xL7walWc zokHZxb#!Gm9DucoG~6 zknOUJ#~=`Wa-j%twNy=_U9-?oQtH%V%q0nIsr>0BwyDkqESEF@e0)waoP3YRA6%rc zWcl9-d3wubjsfIr96SAip&T5H?TcE(CyE&>(j7nVOTv{0p+oUY>^K_&n|#uApvjM)X+C0C;+6z&j|x_ zA3G>YrYBSWDcXESTDbJivc@<2gQXuo6o7{!I|nApbYA6o8406r4bTC@-|u#4m_1UB zZd56eKc|S&uVR)&dxB>P1TZWJ#m_B24EQ%)Pts(MY;5a>^O1fE&OVe30Ij>ui{X`e zGRYHN;{W>%uQTi6oIIDS4FKQvIZ|0wXOoGir?Enxa{;be@55!TL}e%NOp>|tyn9Sf z*6L&k*#3Zp9?XHhpUfhK6yiNsS$v@RliaO%K=RYC;-pWtR%{mJLvIEfT|RCX<^FCd zKq{RWQm1Z%bBbk9AO>n|4Es|%J5HZ|60u@AeYvd+y2L=Hh_#3Rj}j|)C*?w7g}VcC zJ-TI-r9n#)O9n!Uo*1?CTD0J)c>`6?r@LIx5*sIM$0Pn+h49>*oI|+rLFZVNS(l^8B= z^cj+7QCxH>Vi|n@;0enMwnnI-3y9Z-r_!n&Yacu*9Fi_}^nB73iP&8ps?_yVH+#VX zQPkUYzsC<<9vxXgd4~asGIG%{z(0R`^m~ZC_QZfH8Xtxd_ah`)aV@!AaSP>i!S42I zF5-`lz_#=F7;%3-foRRtR}i{aTo<4cAgHLq=!sU>=rUw{T1p?MLx0U(EKhP`{A$DE z`7tTWh@v`|9bfJ#EbQjN!E82yriQLR2Yi`yf8Q6~D707%UQJ3(0+)Eh*sOd9<-0h1Xqf2MlY}u9YhfN47Kk0UOxPQIbfpL zE?w{__fAW?Uu|>MPQG}jEK075vN&lmYhh$NtPF3Fu!e}FEZ1o?_xaL=IGjT!JKEKe z22r5Ak>CM2zLKIYm&uvFW>a#qB~^$bBgD~v8hr#qu@DClWPo}^3SGj*NzoP@Rdk#2 ziN1D}QZ^gCE(yJYfUTj#;irNVobgiAa&zJQjs;bENgEdH!X&4ANvNcf9S=(R!XdZ> zJq={z+cDX`2i$zFGf&-~qBu!Hf_7DQJjJCVX(>Glw%v8@gA8^%zyh7D0dl?RA;1Ts zV6Ol>|6;(SzXnNj-C=}qU)r@D7l)w;ihA}rm{fObfHi2N(wd-gE3NQ!F8-t#;51zjpl-9ChNm3~s{H|+ZHW(6o#Dn_bIHfV3UXI1& zyTR{kXcnm94LcD#X$kFW0EbtU3$xM_vzK5fF-p;sPa~B;1{%8;`EL-%Vb@@i66)jk z$M+g0s{NZ)W$#{GwwT^$9VZ*FSAv)GEz850^&fCKoAu+@UzCeLhz5L@lxLw!85mvY z#eMKd$UJ%}-4W&@gwa}h=BW!9B2JVdGqI9wgbY)em&SFI=EL|A6^rV5L%RJ z_TV`tSWgkPJi+7fkM+~?pKmyRgN}$FnaU@gt&!;Cc$=iNQr1-#CFMtnHZ4jPGaHb5 z(66@WvhI@SI%GD~>Peh(s@P9pEI{>%RbC4J@j literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_2400.png b/Notebooks/3_N_horizon 5/sim_2400.png new file mode 100644 index 0000000000000000000000000000000000000000..95f9d5875e442de92521bc598f317a7386f9f692 GIT binary patch literal 18317 zcmd_ScUY5K^EMhlAWF-&5xS8kfz&qBOWwG_uCvjf<*Q%B~9YQ zTgym7NE=8zykcu2u#`rmnO}zH&?Ig`Qx8Zz&&rD<>>db=AV%hH&^;Gj_PdCt1R{tb ziXiJQ6d{1IHiM34!D@YBwfhJRYpjQY@ZsFy3aoY&R{I53dmn+ZL10P|n4bvDp}BR| zoB~t;1M>vq4ci_*q+*<30)xH{{UD9W6~ZiM!Q?$Z*`Z3koco@RE@S z^g|Qf76S9JRYc6NimN~#>LCvurf4HM5LO#Q8wa!fCGRZxd+vn+baa*ix8ndEO=>;J zip5#wPu&W%F%DdzM`DAJ*n1y)CQd+nYIsU!`gIEdV-DheHF z0z`*JUOcBG4^8PB>YnTQRaB6~lk5pe1B9D|o=ohzjiuEH{s!bgMh$oOIjo7&;zb}X z-|1n56y5T^99eH)$v+%Kx6nH(( zS876=IX#PiBP}V1Omp?aQbdXBm(nwl?3Ggw*Z2W<3O@za5M``dIjn~})x(oXi^vX{ zP&(kHv`TW2LeY>-?g>X_1|kngG@%vTm|v7JP-WQ#ke7l{V(;8LuJrHO4BeRQEb(Skif6 z1!%n2QUe^__e12+FJ%+EB&_h#Q}HaLx~R=OY~&lPc9H^rMhMrNiUlZYeV2F;WSVnM z{t9B|)#@-3d-&75h3tT73rsWp`))>I5XZ=?uT;4kkWJ;Vu1TU@>nh`;JV0W%9#%3z%zkKxST zXBXdreh_ZrNY03p6vX^WB6ao<+NPS>YZSGRR*!jnFyZ&&Dxr*+V}FuHAIy zSauG~OBnar+Ejq*$_tgwbOcQ1etA&gN1QBvbf=!p*|9W&@-uWT)18hs< zy@wq=IyFuns$t~od85;g19*}?WvGEX)WDwWQQ9Sjd{sA{F-A5rUq4v(PxqiR3PP{u z8YvodF3O8bVSWXtP&Ng^$7CzT>aNLOA?`{Cmw} z3eZG(s7Yw+LsfkExWV%$&`|{h=JLp}S1A%pejhEusbuPQtoEL_I_v(V!D^q57=<;- z(sfgZomRqytDJW=@=+3yqxeQP8G4F>j&z@3mt_Uv4tLi)Jl90I>U+Slg==l*JUojU zARVCIW7bsa{DdOkEv}Bkk_gK~@pr54B)>&g4gL_>F>cF%Op^Up@=d$3x=|^_!TW1~ z1vPL_D0Ie8$<-*6qN-)+W~&Fsxo?&nr#ZMp)OIO_L_DPn?kO)=SgT}aSCY&LO=Z4C zE;dP5F-+eOvT8mgP4-7tk-Upt8&}}4D0w^X_HopmCyb-e#bC*xG>n5s0|U#ZwEP>H zl(_J$^D1W9?D_4$75xI;01l;oIk*3M?nWfAy0F?-SZxLZ1J-o7(R_($Y%#gwcEd9G z!h1w#-KEO>F$^UyB;uCZD&+X4X067=i;k2D73hS4S(2AEz^fB}KI0_%cT*n1NFy>< zskO)`>7ub^s38|&*s$o3qU2Ab1~>7B&QXJ!P#<~dHUc9Qrq!DqjBJDK7)A|e==$b3 zT~v-BQi8PG7YxfGg%xm=$RkGiX$s&n;STSod|{TSEKf~$rTyk%zY{1feVaHoRbDZZ zwuB8NHq0FNfecj>TK6I_UIF^sOW9ilf$>CQS7GvUVM8qU6YT`71!{WpP-F9b1tFT1 zNArrqz@m)HDOkk)zK+Mh=C#$&e@#4Woj)#OZ}S3nNhsev51)e_;Azmty2KyZ$kA@=HEq zLMczaW@Z}J`(K#vFXY94zS401!Ud%D$c-~pR0X>JL*&OSDJ}O!{Tcs&00v3>D+r8v z^e5)OP=vBi8j%9=bl?_dDsPM9mTX zQZr(4st!Vz z>(~z7u}C=@mQxqLX#0M|0hdNTN9+B`YhWFV)X@9ju}c6gC&{=GAj@mXhkJkbtR^nG z`+-(7mUblB4!0V%w;JSVIleb{rK!zyXW+`K7C-nS&!RX4a%K+w4oB(GjdFW+a=-FW z4P;fu>gpHB$vx*Sc;`<#dtXtJpjYYIQRU$Vaow1`eR!}>0+$0CWYSLY-fpVReY-_} zGD7XaXf2h1;bd!UAe&s$r(j8cMK+J~y~SenZo|8JU+%{jwVUbL)L%%jZRSa^u01{A zwp0ljaGlGVA1Dn6^X0l9cdBN|b5rVp%*GS28r!Mp9q#mu4DS>_?DA-x#8SnY^XMCT z+O0~@CAVSJK#5HtgRn2&vYf_?Q#nfT#Sf@u$tcC0AjbL>rEurTSQGKN%mQ&jFDh2T zjtf#e>?wuQbGtT`jFxR+b>oxU?Q0)eDPva*9-oZ2nj8;*XuQ2T;XbRD{9?X0k2pSu zhCz?b!OUlc{-@7z2^!R5%5ogCDB0ZK&E-_HdVznE+R+DVDlvlI0_g3Qij5v^9oL!9 zN3*kQli<_L9r3EZc#r-VbFP&1`tHbQ$PPHrD>3g;0Jm@2|sj=iDR8<|N>mK{M{e<-tYK7d}p z7)S`*hcszpPVyjVL5AGd?#r&lwhKBf>Rja0tO1j5SZkMS*L4~!#O218+D)yd%I&|6 z)^mMp<+&CQ7R0m~r(0r;VB76&*uoDVVBaAWj<63@KUT_#|99#`lf{8j_nqI#U(kmK zDv6SjX=3eNZ6IkWtW$1PsY=wvqZ2Gx``?s zAvwHNEf!Op{_%E>i~Aw}0HNw!+yJiB&IF9U&aPdi0YJHQGR~}IELdvRm8Q!Sm(2o( z$OHML81e-u#QBRCg-eO&7C*daob2@}H#gVvc5p>SMH%9ni;K$>b#;WP8*74k) za9^}b{shEkK2Q>xrCn^>|0;DQw%y&AhDr3-XJvX;=Mj`A6sU4<*C7 z?tcU(3v?4!TU+bnidOrgGRmvJeFk4_Wzzrcl|!8=?ReRR3m5EXyWVE&mggJ)WK44Y za~d1MMt8%;2B}?anH3K$e3&dt)H?vaU_Um`m_L91cx2;1kDzBP8J%>Ex`yuUz)+w& ztiN#bGpOUped#$6?B1H(p>VvI)tC40y->jtUo8K$`#AJynRL@^!bMEab0@p6$~F)! z$pAn((ZYc~EOQXdVnfdCC~V*;(NY1ecc0T9{_`h5;LDdUzO}XT2f%a${C+5xh_|Xv z6mApu@!a3BS#9FR-IpzsBbuJIsrIQr;WkLv2Z`$4!6g79xsgq$*|gNvq|FLHqn4=YV;vl+2UL7q(&v~#2-X|_E?dnUdtr05VxBoZgY8mX9G3cl{R40z*4bU zxn%U~{mno|5q}GOk%$)2@@#jd%GMWGZCty`%e%eoCud$0`bjgvXoM#xqkrM{x7*QG!~4I#-2Vjdm*6rP z3mLHgeV=ll(N9@jT|FaR(IQ^vC}%T~B(;P|Q`;O8bui7ZBu@a|qykt+m3Yx0;E9$y zLOdgY;;ZTE{-m$ox{VEDY5;^|Yvv*P%#FZMZOhU(VBVTcw6Xh`Iwm*NW>8mgCKXAGxSD={zS!E+nA!<&SPDfjHg*2zkU0*7zG?q z=VxWDGJ76+9cvOIW?xhBKkv&oy3rXh@jLn8x=E4?mm-V96Wx%DGmnnbQ_V7C*zesM zI6r2!RIc`hAU9lec6$0BfWqfQ0}H%FxD|RA52#d#{@x#Y`-T2Utpa1DSr4Blp&)sM zfVWy(uA?ik9+lT~TM!|Bw;(c}(o^Ozw>8c!*916_qMpZwI?*8b(y}z)7aROBCA%pB zj!fHCJc&MK@q6A=qcDf%Z zu<_3NjQc2+{#SfYH5v_C0tRm^Jb90UZReLCFl^A`0b44fkBk9L0<-f6Ox=D^Vq#)K z`fzVe8W0mA`JwDP+d0Ji@iLKZddTi-HB!^RdU|+Z-NgAThbD4Qqck3ftKe%PT2MAO(rllq|=Ni;OoPjojzASaEFxRw;a-COR5dFLC zYG}y2Y-4tvq+khDy`iHaP|~i>N8+9wb#$(M*lJ z{Hm7vz##+`xCfZ(Brw)}b1@BU=mc1;XAT?6y#YmgXP2g0FM012;EG%-;+aOe zwoROS02iacF{kF{zPlZ85&66Z(k8R1;|W;HYF>y(V4)dK2>3eLosN)2heZaHgztyD z=)(}8{qZ13$g>%{Rzfx@}TK_inWKvsgQsJj>Gx;*8rPgL@{d!IdO?&!3Z9OY< zY3i9R`M{M(m^@OD8?$`fntM42K6Va)X%T8~Fv)uWG-YP_)zu$g7n%?}+zi&^F>sW` zqa>FK5sV-k9CGWu@?>syP5S(kE8tEg)fVBAMgx!>s!^(;9x13vR)9K@xYWe)`vuq_6*{D7=|ev6-Z|!s!!P^>j@DrOtV7;ZermL;1v}S!F=!ngzhP1Po6ya z0m#9gVEV-iN6{t-O^wRWS1Qv!ZURYy8=X=p&%hNq#`$OD36v^iZIl<;wr7b0R1gCJ z?9)t5Z<(O(PJe%YxVZK6qLyFfhBcvXZKT=cdQ^xAqau$BTO7-uVDconR3%8M3F6HC zz5rw&#k15(SrJEZvn(CP*fH6b!|W((p1Es7`+xqn0a1$o?{`Fq37VS-Od0|MQYIil zll&@o2|$EO7{AnNoJee&qcG*QIsN;K8szQ>?AAT#2YAdmd1uCHG9B7LkTar1thbp) z9^ZJ0ESUKmijT5cIHcGYHc3Y2^^nvFB#2E2SwHno?%@NukX%^pqY;kh6oSm++!#T2 zjGzogkUyiID73Jy*Yn>2UxFrj%aJArA)jJkXS^0`W@^Mo4q&y9k=Wkp3MOwR5(+w2 zcT7eUaeOnsdVSa_-@wi&)dn>ov3^4F8W6hrA1d!Drn|QW;A22LK@u{Llao_1`{hv| zAQ1uvDi5s@@Y)7h)|a_+e~s+5BI~>zYj)W6{*#bVcw*bGRa01FhQQ>v7UhsupYmjo zcV_7&)4@4A`xARsdSz4-iUMh7vJbI?ht~gv)!)aL|39%UMHI^aF1~D4pazei2BuI0 zPv~e6tk#5a;V>E|PmNe_ej0R)k#GMGU;;UO0gNED1gaS|c=kBar$tQkf%F=Dj5oGH z+k3mlt96kLqEGrFsyX~f=(&Rbn6*Gy?XGtu601?59eE^{Ywd`u5?3+57`E7#wZaT| z^~v~Uz1E27J-D>hon;pHaP4oqc|`clH3$%?BI69zfG73cFUOn zvW_f&i{UJdRs)UpY}(FTbyT;pSK{WE{Xl2N>!?;`M32_4iVebV&fDqPJih6%-0|4} zM(luP8ejM~|7~&(h7w@)ErpKOZ_0cBfSd`%>}r@E%263UsNOBTy<^JNu8D0e7E_I3 zE3tnf$CW4=^V@f$mph_YUF&C@zixz8U;XU0!cD30U4PwHft=_2MT0-?%o#bDN9(h> z+t2*^s(AM-#(qijB^1y$)fVD*5T9ngr_`a89Rppf)_3fJ8+_msd+`J2?~$q0DH>CR zpGg`|V%py&CBi!k)CwA&JjLZY&MoeYpp@%w7;+0#7AA>kJE`dwIGyRtz9ewYtBdZ< z4F0pn;JX;GVAI{DGA=H@mq6-v0|~Y-XP{}B*`oq$I6)VzP?B~<(q2W)ZT8*ej^7k^ z1Z3qiKJhE9?Wh~YwA9l*ANo+~W|!xR7lz6y@A_OaY|Fo&*_R(D(=FnbsPT?|I-G&x zcd^-H9|V$R))lkPZ~5?M)mn^lSPJ{mwCcMA}y zLGJ2c`7oz#fkEWGS$M+_cv`R4ZI|0)dY78kihC@^-iYA}9GtpkrwFqH*&Sz)ER574 zN=Z&HO^D*54J2lUuf4RW=O@mgI=L_*GTx~(!_Li;6-|u`Wcu-*m8C#eFMta1s}P0I zmAWYO(JI3pe4Lm~k=tn*KJyLq$N=wf{N4WEI^T zp6RR(#`yuYpR@jkm%F;P9ajiD3(|*^uFX+aTz95>^4=AM%+zmy!Wzzc?e1s@U~M z3Yj%=0X1npm&2J6m>~I$GW-EsD<}8*=dZsc*lAONr1!cnsOWzSo}t1aO=h^#O)n?n z>8&R_Wadaiya(;9!~sqlg-7m!{HF*JO0yPykDCq z!!VR8j-M#h(soi`{iDq^OBw`mD278Zrwip*&BSdUi4k>qGiYY%3|p2;U?>2G$<9XyF!Lw|D=Wi?>NL0C zxFmQ!X*bO89Oa~*>wXJM$b1sE-bO9nS?{Ir6VwKDJ+;8=)<@(=s(89EtTppa_wpyV zC{qf~eEa^BKRUg~1lTq`PdBpP^x0#5x97HYcNQSjvmJtPtxq{$9~in(?jS7hH+57~XrkYC2D17FO5!uiDN`WS^154_1n8%S?ou!S)NNcag?3n1)PH5o6MapuAQCjS@{5=EYp;5J z2WMi8eLqarc@PU<2LtE%EaqsX;|p!1WI{4CueN~tuH-wb5tvk;K9D!94u$Zg6)wbj|#vJ>gU@I_YM1N z3yDZqqtE6f9rKF@a6|;kW&ij!m<;)~_#g>T9$=!M2649XFl#w(pmoBuyJ87(}4vPtT zbVz==rqhrgBn5%@7oY|QSW?-#!-E&jzs z2MJC(Z_h>EQ@!}#AF2tP{4!sllPgKofyGVH_H(qK)4W?8{KkH%H#m4cp2@_`(!z0GA=<#WL^fR3>5UJ(9hg=8lVqWVSf%wS*kmg+gj#k9%T zZL=8FB7fj%RJB+n(lxk;^y4rrZMWH#uC*V-FtZ14?fwT>u+{Rq@aLjcbh082^g8$M z6f1DPTsQAFsK7cAr|*;*lZN&`|6#M&`5^$QT4ki+@ptIy>qF0q6KCVbhhrScU8t9S zOPogTTolgNrw^XfRsjs5K&LX|LA=xa=v$nI@Mm*Q;h~|sf!2R&vMZ|XAxliZLxuop z(f!CVaq4KHkD|XCEAOfsG}cyuD~brr63G%70b)hM7J{@K8ZLZ>sv&7QJYxlX*JNU( zd4HAPPbuEM3KSh+1NpBMIkg=Z4So~ui7u%WapE^~rGD>M@&F&RyG}9llqqojLR1&q z?<@tW{tG3{pZlX0$}@lz&A1xBKKGogdZD2{h$Jg>Xk2f;>uMM{t=;-7De;Q+_S2c% zE5rHW4SLt6Lh~al^3q>dKunki!&@FQ*KmH?=`2(*C{m6{={gc7F^-$2Tn|82ot3{r zF$vKC?7bQb&j6(c&(KMw@p{s~Us1cJ>*L_0ia|d!N4J)G=EKAoxK}VXd zEc=c_6SV-3@vUlp0P%T09-e?9o$^S27}iC74CTiNOk0ip2p(hrz}OiDFK#_I|G1(66(bcRrDm1h ziukM?&HBNg{E_atwBFcQ{S<@tcPf|ijZ8R!HSSec|GC(@pWSTgsL`F9k?%X`5Hh!v zLBK_hvy4xX`!l}bT8M)_jHA_vJEJ;V7ygmr=6#Rn;ml?^UQXQD#xjd?FcY5P=Dluh z7qbOX!V_-04&eBM`Da=i`w?8RyF>L0`|sH&a)H?<(lH*R45Iqar==5JxsF~xAX&S1 zDocONqpv7s`I9J?!L7&N!{iam@Z~8GW?t|0WU)SHeKXLeK}xp)RnZoka2(eZ6qgu{`C z3`NPWrp=4hfC@JgCiCj^TXZ88@Ub$oQov$q)dNGDXElfGQf@*!x2gUHI)ARrkTi09V9$dzhD#v|0Bvdtmx#;dRt^jW zq`7CK`KxZ_I1yNrZai08$4aVn;T@^YIX6DJr8+L{m|f;6&dTboN7=Q+uFhW7)2)hy zjdXpGDXFlBL8-*0ton6H{Wm@nwp7}|K*zVs;S5hw1?9TPFPCSS z_7;_U^7MR{k?f(l#t>V|2BPF`+NDrHfdM^G)Yq+NH{#viEn5KCX=Bo>-BqTv?r4;4 zYhq8kkNk&YN!k}G_{1$bgw1q!UV`;W-RRrgdR-yyyU8`nHk;*xhEz zxC)$67_s3v|3Q26=ynjoOb|WpZj9b}Nru7{W|M!IHHXq`!?W|TR#xL38XBvqr4vu) z(?2SvI#!t2=bvq9@+p_P`7I>@q+L&#I4H+52UNG6|5-bT7o>&JGysY4Us+^J?U_G_ zL8L)5-q5u-x9qsGd5 zMK@6Q`pWi$#AFq>01yDUpkJYf#J1&cC7?A%2lhg8aMh0==ZkrW_Cew>g_39B@0bH*9@NHPToZM+i$OFmK{FT>B z6KyEYUu2CHyQIYMUp^R?;$-%H_6(7XbmXgN0zwQ-BAB2+baHR9onQ2??DyaA@fFso zf<26qC0X&EmoZ{=>FMuF;QSRZ{!)(9(!SJ9L-Ao<#{cD8p!VzD{rlsQM)A%md|Gdf zeh1$xbG$O1-+GTPwQB#W3tN@(u!K0Mc;XmwUTqpLvVUd!{V(=eH>U(Qe*5WngJM^R zdjFaD3_ib34wY<%#H^_q6mw>NVj-lv}F3k5-l5MU>O zrGc=IAH)I?7*?8vfz$1>+HB5zn(xfnB)`ediy!V8ItOsDkp7qbDRqW^d$r4&E#lw66L>Qsj!IqAX?V?=E}PUJUVEYs+m_4cu)N16EdX-$V?ONJBF?odLXDH%88C7OGt;Do_{qGnJ54+>2T>%Szn^5#4T zqQ4knWdz=$%zGa@sQ`ByoUyPFdRp$z4-5Oa102V^^DIwq2~z3q1DV1qr-l-ncgfYs z8qr;V8U9y7oiBD5uU^dVdq(ffAtPIq@8AUZl7g$Fif?Iz{hx0^Xp`{_fzFN6Gz^3A z`!5t_P7hrjbX;F`wtPY#@>Q`bWqBXDk)u2b2hYzJfkYsZPsAelGm3@K4&=%`R;gTT z+|~__+X<@7u_Ze+4|K)DzZWEZ9_$xsYD1!k;BmP4%`Cc7jGc$~-?J@!31aYzS!oM1 zkI~h@75r%Y+d7-r*Ykhd4qh;z z?B2+A!dDtuAb|o~mQ?=O78k2_gFSqX;L9~rND(z7Hh4|o~aa_>@t(yV4RUrTnKIV#+7qa?bK1pRQuP8v66^E)#K6!Wy+!!6~oEdQNHd zI!}d5v(~({iL^qh`mF7B&+N>T;Dwk>;+TP{Kdo&Ms0)9ny0LZce8fJDSC+1u zpxu`EK^L0(H$`-Q9!lfP8kv65?v?U~l5c9M+NTmw%J9CNfWv^{r$3-{vQV)hutQI} zIe;qZ_*du&c3|XtGQCriUdtUylxFEar1t*F-XM7RL)e+ue!Mbd?{)m}p;24;jHzY1 z*5u)zsgKvRM}ovg3UOihxg73ICb1s2wT+xQvFg}L#zOjkX>=H^PaLE3#08>xB6KP@ z6+KA&J2LV~q7By@v>UnSGTBz6A}AU&*U0oKG@%3agHC_1^qb|HYwaWJ>jh2E2Lj8{ z{~f(gAILz)tHEeqc==xzmxF~QUi3RC6~wU6NkcAN*w~f#y6N+LYuUp}!S}|^n}pe? zXH~9gNBbEuqD)@1Y)?d)z*!*;dbD_ghE@P@SE)v6_991KCz`i~mDxFMB z5K7)9fPBYM#i>1px$zz&vUX=fX{2Mh$l1mgUzl;=nkdQ1mKh@BIK2GHZF9b&;ahK2 zrDsy0Z>3OAc9z^1jhvk%c%h8&191d{qwUw`mJew3R-4lZufEIXlESrG)_>9!z{w$; zhE9)R7xv`{lm-6x?t{|b4*M-oMe;~j7j2%Sw_%`I2N{n+y+<`fp{=q&dCsbcDf~qR z;o0g&`hH;72Zggb*O{LQnVw&tv2%89Ot4oy8z#ML-lDJV_pek~SPFBl$-~tTl{Q;o z)j{FpW**Jd?n}5QHA@`zTcuC%@a5E%<*@Cw@En>OdU~s}OqyT5S=Xjebcj! zS^9K?Wh|vQb&v=Gww4{7wfLWV?ye9t#FtdrD+3i6PjI?MtRF~WF1BC-^+HwO8*1O= zy4da8kdyDWZ9Zo5qK5x+o!ssH_G$eO4^`s@i%TQg9+klnkld=nZCxPnsL+MTNgrqw~`(e?C;<;S(6iI~Ow3?*Iny=}zII#NG7t zFvKmk9T+I->C3)Dv>F+pRQ!MJ=Ywt5c4h+8bH?0ZqUI}EJb^Y*F6dQ`1PT*|G}OXR zoeruC$ro~-{!lr!JKgbVMqMvhf-4q!fgpF-NM8j(AMOqzux2@&Il5}$%=l~;X0&ty z`e3M1=$Tr37@7Jb2)%v+9|JRLXEr(?)RRf@VFb@RUxbtM1t1;Ga;?+?ZK_uak1Dh5 zA6?}Q-F=FZd*qj%SVwor)uxUzm zQ?-ZtZ0`GW%lKg~g{S@bZ_j};ZGztZ?M^AM3nybjf+L;sgEb2kw|Gf;1;|4KyaR;V ziA53fagrCZs~8un*{ZgGjvvfs;2j&0HZO#<=7ie~%g^$tC-|^~?Ve=HxOnTa*X&y0 zbVb;Du<_4(@Cbh>EZZ==FXkswoXc>?_aLzZ(Odmt8W>H_mr>iiFxtP5&r}wQ?(f#U zcVW-iqXQyo{ZB66iPoL8&Fj1=c=GU9$5Ktdw7Zl)PHz76nzUs4vh%9a z-$;D--K>+7nuSl#ao09SF87=DW#1w)D9|xSTA^*J=8V^IA)Kn&1ZbAz_|RucPo`sO zufM;!#^plOgxRTyp?3f;FG@{!h+d)kww zL|K0WEB=a&Xxy+{e7Sim#-M1(M&o(+U)PRKy|kQMwx~1lUU~zIB6A|qZ?cpij(;f9 zo6KPSB^hlR30ZK_s9Md`i$EW*c9QCsi#4#?pja14;~eec#lJ5QtB+J zztP}G=!{t9AlIduUIwlV!N+>R3)EAwt0oXfq%Z=+u1782@2g(p65B9E7Equ`#CuBA z(SrgrwP!{|N5X4D{3F?5CJ3-BkBC1bM3Tiu>fruqf1oRXv^?xLH zJ)S5I$GIMWK%>ZG^nC97@%E9{jBTFj+6f4Lwn)B>rhw`lH$QPIIzXN272x(o865A?QCX5FY``2r5ZN zqY;=w1O~@saX1C5t%cPxAuv(}>d8bfRYf+D7mO;{~pgsFnnyW6=@dYY(T_waK%lZ5zINTdB;TrX`Q#7 zJX9DQ8&-ghOIuad_Ex~r-S7mDBH|hf zj=W@IC26CCBB&|*N#+W)PI}jsDj6XKqG|($e4twEkX(-xq>wYA2zSygPU|PeGrhxP zxcX_UBX9IGM*OcR{x{@Q#NqayCmwXmgpVo4^=;58euELwn5DR2n-?NS%dTi#d~rrF zkC-?C2Vcv+`{?pNl{h(C-%so?_{0bo0T4!x9g8vT8UW#h_=)Kxf>5IESd9H=z$3K( zdF11fJGer5flZAIuUg1o!1Lp) zEb<45Z{Sn++2i8m|D_13b9x9A#bxFl-A#Om3txHstlm=GvF`;xT~KhmxJtxAFc#7O z z$msihiTt)7esqSufzhIPfiB#<*iG4ec>343*F|h+zb%+}A116ud-!(G4W%?|zBOV+c zCL{eNu~q_$AxTJb@#MBPn_S7Naf%m5i(8vd+MwSvPe-|U$}Nw!j=6a~6tVH78(E6o zU5srQq+55lnz7hzt)lYUBnc7ex5Q7qEHD1C8C2X=R?p8mC^7Xumi)_dwNpm2nMo9vv zc8pjz$u6?ii0F|A|J+m6r8{p}luWW$`gTl?bnn~uwPfQWmS5XLop=IG8`DD{ueu^D zriCHZDK}*kJeiEQ5eND@o?!8Q!CTD>XioTPar0f#--O*$%taoq_^OT~&g*Q}TVhqk z##XeCI}9$!H_{;@NX)!bQGvoj;RQzOS52!&xV z6O;Uwi}5bxxr#VSl_LKQPqc9fe8`w5w$oeoy zH|buOU|#GIXyX!SLv2lMtqc9oe$b}T(qxMtrj}+!=?qP4;t!yWgmxK0ajf{ott-oQ zu-XpdP^Sb7_Yd^it5+OuP>b8&`T-Xs1IJ;7<9iG})4C6Aweejp2n>HsvKKlCS(VUN z!8(0W{z{`X8#L4O&-#U$_Z01BAyU8Ax=Hi92tV@{Lf)Ad?i%b=b=(AiUR2)Xv4bI`I3relN|jfC_8e>KYOFw+a+hTY^3LnIX=6$)#)kpBtD8lbsdkjw}76Pq`anTj3UTVM0uxWv3Gw!q8 zg^#7c$41~|k4E%`aHZWva(nrMgxKn(eiPQs%iE>NCU`bazl;UC*I-yKc^6bp{kbM) zRRbTfs?iy77#U`qpF6!ru9;A})bV5c5b}i7h{p1BtcN0ru(y~u<=12xG~e*82ZPzqvwW0RJs+9Xh1@>!sgi*72JR;HPmQO1B@}%9elr`u_sbB_`JZ literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_2700.png b/Notebooks/3_N_horizon 5/sim_2700.png new file mode 100644 index 0000000000000000000000000000000000000000..2cdb06ee848c7b44dc7611a3f12ffcbf25fe061e GIT binary patch literal 17840 zcmd_S2T)X5+b&8FXa$5B1)6LRL6O)XIVq@sBn1&ALxV`pNwT(}&;*gBgw~NDL2`}_ zNP}d_IY`bqr?WQB_sx7&f1Uf+y;ZmBKc|XRyZ3(gT5o*buy}J{O@ZIid|HJXu z@;AsQ$|4M?AkLI$e_)nDarBvColMXDi z@#P8a@2xtVMmI}WB)`GmvMWWfE8WYhu%^2L{T1O{LLqi`P2(rMy&`la>6_4a_}Qg5 z<~YRJO~1GM$wMEpb0iW5o_%yriumH$N0IKNOlKc)t^ZFU#6>O#lVljSl!uiwN>%d= zZ8HZ^%RPZjcn@TK7Du4x5$KH2j@-aNY8FaFCKbZ^0z!&jPOPftpnR8Mw~4xThjg(# zfSTnzVu=F5Lyquznmwt05mE7*TtAImEUg^eoqZHANy!W_PlNUwT(Wz_ZyFcKz~gyk zXnUC#eLtK$+X3xDdP2cOwRP?(aaiwH4AP*oujG{0{Y%ZsDe;ohswcg@Hf+Mwk6O-c z+<1KGrnV8^+9BI<01(~p5aV^;Qp*{@CIYByJE?2&)U_`W=&X5{mvS&9daabYHi)`* zhPt)~f$oxnfz9g5!DKD%Gr8qq{AlVG3WT-l>9()q%k2bkog5JvNd4#)^$8m~yt=RI zlv%F--0)>NID_1tZdn#30!=0dOXwOpy#OaTvMZCEh(n;?Aka~smDLA)Vbry%2(&Dk z+6O#Es#l8r5K4|{QLK&uk8xIy2T})hH4Mj|yl**=*rGrTQ^b=WUDKZo>m0&T%ehO8 zxU4^gO}wKF-EMZCt?xphm*@NJ@|^y_i%H`5^5K&ya1_nj7;YVbwpH!!XW0|8A2VpL zW=0MFhVn{$_}J0oc}y5#b_1L>2>FOWlrR-dt@bRPRw*L%4y2KVe0_whgq#H4eyvF- zd1D>)IDv7EaglLDzg@zs#8?W1O25^Ro8Jm91Xt(ce?E=BuLtLVOT&@iv{aXdh)d{U zIN#(&iQneb7lK8Q_-2dYH;&DORby1dzE^sV*Kj_T2d93ietb7&$J;0x;)$H^_4QGf zF!VE{j_Ah4$Cc+9sv|GbCX)KR^TA?Cef0Xo-?~0IC@d%5>~djwz3C^6#D}P69*X6# zxQiTniQT`1^2(?Y$&O&q?A*=n{rVcYaxPlrF~3qL60*Id-sxam^*6XS9?q>q0>k!O z9pF#tP?@ihG9*jqd>B!BbSS+$3*<*>ltubv!?dW(Amj;)`=z~`uuoU*k!wBh$u{_; zga$Ji)-q>x0X~_4#DkwJ@W~-0J{5(DLgKe^R7xbsz{z^}B-R8|c(dWS`ymO%xr3y! z(@px&CwH#*i}B$fUqZ#xp@yT4hp33mka)wSvDs!EtH1h<{uzEG-n?saogeoEfj()i zOrw^Q)u`$26S5X0DUrp)yV@lQbaw}za^H9KTjWrZnBnlw%3xP2eR^e05%#I5CXYd5 z*6d4uQO)Fts?=)7_mS(}iF~2Oz z+ELz=IbpSwonjZUkQ58_kmBeHes7aAbe~&egt1y#{nNg1TF004H#THM=4k4o8;>7_ z%iv{%@o=}K)TOO~jGgBQw1!3kr)((lr0C7|u@Z^A;j}7*GRCN=dzK^bnKFw)RA$ z>ye;M^`&RpyX@Y4A)S>)7A5NW!u9aJZ}4hr)RKI9*K`8{J-OpkH*XuY`VFp5gnzft zS@MT`2)7@-=Wzw_+1VC3s@}zSVV{W8-g#w>9=dcbmWN*uJz+vsl&0Bq7PerJRb55{ zx;JmZj32)=OC`uoWvx#1G1!$@_WwlLs~q9n0(tZ_mr}-((v{oM2sCgSfmD<3(te9_ zuvZAQvSNbdz+?jd%=r9SK&l=bgF6Lo#XquHyvOT z#0a$9xS_wu`-@f8ALL*$NvS?J)1BBO7Hlop(E?m(0YT<3)@;IN$+qQ{R$dfv7P%6s zW1;IR*n;hEq(c?5XnQr-r`He3zGuQGWkwhg=uq4{961utC|IekLD;~*`+QYWNuOhS zOdhr@4>Nx!A*-Z+^*bBxHFa%+Jggp9O-OEnvAeM;5y8%^356X?ecP)p+n7{2*pPpW zV#3nq{nkHR35iFY6*HC+l(95&{kIm(x1!*a<*H1dwVzkp;7p82(=4usAME@5 zk(71QNde;^nRe;DPtZecJj1x>jf*Be@(bs_#`)zYsYwh*hNV~?=^b3>btxuvVMJ56 z{o(SWJMcsQsm@2qaC3{gb+OiMloef$o!sjVbZ3G5{Zo z&SCc+;}|Nu2ZiWvjrcz!P@U#YcGxP6K4ML3jb*n&BJz3tBndHQ}j2AEt@IJ4Xwh1BnIaEFhF0n{l(nuLSJcCtI@OKM_*cc7a! zxJB(oD=3lpPV2r;#3SeJjWUm*fLio|bF%h_p+Fsm**QQ1@BN*pGC4wpKG z=~SL=>jRoP+N_+ESuFL-R4lceMVZq}YB}9;ZyX~I>(4dcnnDovH2LP)#zF}s#T?b` z#;d61WYP#0Yv7Y81e(sDOdf_MizbdS%~$-j{|G{b&^Jgv0yP_x{kujRKeB%zBeq{S zNaK%(T3We|)Az1lzn-TbykHbzlf)9I!t3Kl7`q3JmR_lO73``+At@ZeUl?FfZv_n&ew=f&REwvS9kXV{Ai zNg?XYzULXm_zPXl6AXK8w#IvHe8(^d2mSc0AY|3cLy%RraGjP{r~8j=KTXR2#?dvGXypKLl z6b;#;`m*!~_~gIF&YmH_q+|E>dODA#+y?jk=@^Ty6iP-BYoqo=X@X(T)k=lJ=+mS2 z(<$AtgI;6SStslv6ZUX;*6(4Cpv~ZoGPhNq{s!rX$h#((scGS3x4j|T@{o3)o%{l; zz7@Z)C;IxTxBLw~!)Sh~ai>pYOiWj$r`uqG1@X<@m67?bR4Rf?SJg~chD!;Y=Q{is zv#S$xQ4JeayOm)B`Q}0nKW_(6(AQ#5kIaq6Y=fwL)?TV$WxTO{M~wG>XS^XQjF2J@A@ z25fL#DV^QGGukn&waa}s`GwOD9coDEa!l$k1W>WI74{i4W9WrG4BO7OC8)%Uz4h3f zc>vV0`edER(RI_l2GU$I7{E_=L1sQ$@gAuaWB zp6U5~^Y*7FNBb>tqG9G(Z(6_NF`u|>uW4?c$2orBk(XmfGon(bN1MaX7r%z2v_hAw zkEZ!6_I?H*9af)8W@u;I?v&V7?Q?4DIgn&mY+N8FyEruyXZI8+1avpxW{yz}QC9hi z#KG2lU4cbctccB^&sc-5U1hycyHp*}2;vmAgr)?y(eD)=n7ba?O6yEwhRPx53lt#J)b?a~c^YROio^8SijweFbk{nRgC zUIPKZ{NA!Dbf%~>ULYr@7k6YgGczO8YG-yEu3-z4BEkjHa6=pzDRZ$ZXf-@N(1xg4 zq$ZH!Rz}L_e|#p(f7)vD^V^%q=x8GQ`Q(_5UR}H8U199=1+GN!ttP$wkid1Rzb1l1 z87^Q%@RE$`=~Uxe0!Uv}5~bc#*UGFe*Rh@m0P#Q~Qu%P>4KRq!qs?}6sTG_*vG`_- z(BiJ|S`8Vb{$H}PQYtFq?*!8#ExW(GJQ&b-{LV2oJDZPcxcIa!{yRsEo*REar zSX5NxgH7R6m+(GtPV|_eH}G1&GgxTV00_hl^WhsKxit5(PY<&1HlJ>#$})FG-7>)( zZOWbs86N$lW8~%M=FaftZ><#V-wk3%pr3{fRe2vC%&t})@)eIh=XRQD`J^1f2iXEW z|JdM~%g$)ZN^D_aq4Ub{d!UM|t6#av{_?r;Dhad-O>uTrN(Kfjbpe#bMnDBAn8en? zLxq87^f{Vj)zsB(PS?sp(-O7LKJ4=02b8Ski696lm*qm*vH&lA$7-&)$bS&I{dd3a$D! zzFkrm08WkI-o1PMRodH|a6;R^b{K*TAehv!tu(+IWrBR)@SE zkmNV`6JQ2}$2^fzzcTRxR!P^T@n*vlLER$jPai+}O@>NloqWTREdo!Kg?e!d&>b8j-t?#3(BLU$SzSdb|E8jhH1jrDY$RnNYLq`S9QsM@-}o$agY<8wk-UEQTF zn?U6?PRwIi6>sNzIJ7n26)593iL&GG@59pXD&fA>l7k z45GGrnUahJ0IEdV1k>@)0LHes(p%zHMMrK2US!@&^*u5*Fi`W~u7fxeY;11QOFzE>g@_1cK4TD41HCf2 zvnwJXw@#qv(xb(rQ*dpvs4G?7e5U37b~{jX+m-6m6M3Iy3E)XEaO9sq@}Nip9NG5A z&@PQ_#lYr_FOb9PBz!hh#Jf4$PIeZ4R?1gr77b6IA0K@9zyRJ$bx^W9>S>q1n5vFd z13QJw`bZII8+vcws>Z+7(AOVHU-*&R3gt2&^O}v;H5x3yH>ap7^V$&tN5N-TeJld4 z3Pc;P86m7Oa5~-H-D@FsUN5`UBtss2zPtVodvwkZ&SrSf86!5I^llGFCW9+;SzHJc z2AVt5mOzd>JsvwnK5c;mleo;Oo~Qz%CZuD~<<_|$pFKd_VsLo^g%#kV-$68gg!x3a z#)&E+%d9;w|rm0J5_0O%_@SjgBP z?5n~b?Qe>M-7qdY)zfINRjzu6k&x30I8G^6Z6>VVNO#&<8W?sRvI&V6EpVRiy!+|f z2w>RFhS5ATa-pX!|j@~!8 zcr_6=wy(C(8~Fo5fr2cy0DfUuq!|=l?7dDlv5=O=`y9*z)C%`YO?(~%-qr2KW<63C z#i1O%2E59~yt?m)qa!aU4)4!mtJ~KNpU-o&Nv>8Lpj?1=9Vjk#S$tGvJy452e~BPg z(Ck8to}<$7L74XviU7kb8J(Ax#~FqMDDS{RG+ctL!Jp}{Q<=Z@aUVH<1+H>;6vW<* zpTYbaYjsq__5h1+w%YmR`wWG7O|eZ)PdjufUCnh}9(+2MT_F3*2|8-V@TJ+K_8s8@ zSGJD?Zb*?S$OGST0Jz~2;+8HhF2T%n z4Arv%P0h{wN3*i+5XO`MtD6#`97E}cgg-y+ocI+fBc)oMb-FX+qJiJ9(|4;05v@&9 zQYgp->kcnpDGP>xU~R43=<`M1gPrAOkJ*F~I12K6%E}O)*z0eQ zxocy?EB$ET#vK|#SCt4M|mMTFDQ)N;P#J|F4s zlMi1)RY;=+7)ltgk*51wp)mPzlD!}YG#MF)=K%F;YuyTWR$~^iZ{i*MVVlxZ+aZ8?@-s8eB`J051nt7Ak4_u{PZhIwEM9I zzM>{2OeMS`O0O8HzQI}5_!Eh`rF~#x zm1*86%Fmn=z4m*k1i{}WS z1!OCiba8ZkL-H_^nRGme|{$pI|Hm z`6#9DYqP;$_wWF5=TO&P8GmR*E5IZsiWcBT3$UT>bsh!3gNUS&4AcOi1Y`D-B{B>_ z+L9wK6X^R1`FHt&8i>3J#v%I{s?U&8!0jV5qM;||JNj$hg3iLLq}mWN6AV=2`hR_Y9=5OY+4AqZrNX&d0a{YE`lzs;^83bG(S zN`=aQ6=J|b6Z8F>{XzY4f8K12$mimb6nc#zhb%U4ckA*QYa*Kb*c!gUv1D=qJy_`v zg=a+==K`^R1GWDHno-b3|GWAn&WY}jMGNqvbHvbV&tVhXo?lN>spTjT&h3vve(6ZT z3v0TMwAz$MD9rjawcL3De)O6%#^C|%lkA!sZeuC>8uUVq=De2>XPZ$N{!~^wGN4Oc z8K;bUoYeUb6Ct51DWE}xj~qckq(<@-G>2GouH*MCT{F&Jk~S@VheP4jFOPQ5aVLYi z);!?GfcrCbwTFy`z=xCv6y&L|;7h3Iei+3G8tGviJj$l1#9wm~A| zH4qjj1Zm9f7a3pOmD;`N8(SQ)@Ii-p->ORO16yj~ zguubh#$fu_VQCas7(Y+y75*@F%wj{gQ{W9oJ*F?UM^Xo_w#s8|HbSp5^WP+(Eab|OCeca@vEONgy#V>7^a(cC$<#t$TJ*X{KRNM@UFnJz%St#9b=6Uf- zRyy`XgDxO*pe#;!=(>kno!V2rk;a{%1@E2Z!KyFor8gyLyM&n0-7W#n&n6Ylf#i?J z=lNT9<}OQ1Hg$fTI{mJgjfJMKk$3nxX4Zf zxx=bZf|3OYy1}4=*6K_fC%$B6 z8IKg*YwFT8>RsxhiFkfdAX9-1lId>PQvJHLa>YR~J6GyoxTPFqa>N(SOmPS-n=|X3It0$p+bp0+GQATbyGVk){Q%x+LmVRRPsJ*UVi9I8D%qks+t`Mgu*m zKSi(Z&Ohr%C^d#>ldGdqxbhB9A6MBtKVHL6e1 zAKqM&loE3z@wBuootrX%=%sG0#xHj|*5a9?q$;2BhE*2@ytlLaSSHe0?4--b@*_A{ zVP~fMB;k9$(A|j0`+qNxW8lx8p%PEL#z|gId<6k3YgZV5yeRrpGIO53PTOFf6%`O{ z^QG*s6QvxBY3Xku@!Vm1zJBtyl3p?=xXTatRukM?9#W>JMn8Ft&TsJd+bf(aiMf&U zc3G+34`gBz#KWs)Jq0Qym`9W=Sr&`59k zIO9O}v>u^xMcTjQ!DVU1*3M(ltS=P3(X_z}toGX&Rw%YT5gD$wth1VI5Jn?;J!5}} zanaqxSiEagPvMRh@5msX!^G=uamhA#XH@M`g>?*V3=*?o$-drnnO8r3^#~P)y zw$OF?a?OWEK+=}X|DgEQ_0glvp@HW8fz4Hos=^nSJl&=i&dcxN8b>eppAU!AXbHEt zTS=?)@XWriU+jPIM77~3(aB1ZL4~g=e;a*of(QwzRz%Vg^50ueD;y|rqNasl`CM%VWdNhrU+HF97F|H0zI_!N$Dxkz%~9{?`!hdC=|9HE)D!yE5*r-U04!3MYA|RLjg8Q2>#8+ zrf6}qxDu-ajguX`#30S|=6n~~+P)KMSE|zxAjp%R7SiJ5b_p^Vpp?eIeu6G+#0peI zLRLL>$+I)JKVwEQLMQa^6)I@j*q9E+Ekaah_=Z&acJAnj`%r7g3x~HY2j%G}>b(Cj z*x1}Gy17^DnE1FP064#EEmZN6nUK~0Tvc0`UkzcO&!M+x4<-y01eFfw8xMQBH>$I< zW>)BxJ*<{50;dgW&)Ro~V+-9WC5}Sh!os)v+{J*Ejx2^H0b07Qn&EVCUp==`*+1#% z;)jE?mMJCKmB>J5^Mpby@-1Ot5}O53IUiYbl3kfyzKo)!nY}~~J!uCRD^pLP9RGH@ z{AHBsMEX~$Dtk&0In4J{^rvP?+L$_{z#?aA-+4aJ>Es+TyBG0$?LTN5Z?;JfpZ*l| z5#Q7oSxx_0a7(}B>CgL|%wu)RmFait;ZGh`gp)!a-K{^( z8-7AYV_E;VY%G;BikD^}{VC3m$uCb2*iGnvnQ@iEZ1`i=0H10Ds9M>59jTclZ}#vq z7FX_FCNLVt@##tBiPDA5O)FV*C>;v?t=t?uPs$U@%`56YZ)y{+o!;G@2nNw<&%j_o zYarir*)`Ffw`X7-|6!Q`voiJ`5^tcwZehNB#5uSZu4g`$-d4dE*ArNXsGeu=E3|0 zbPrvZjK7yHgQdN!=HW5lDUX{Q&I;!;r!;BWyJb)>_hxM+AmQjB*$nc(L)_`&X>JM- zxl_?Hs`^(3Jqi(_!hccJLE+XLxw*N080UYCy;Vlh7dN)`XJ*h?6T|}^$q;^!0QIDY|RaRdWIE9 zGQQSX)L4yIQhkHW^HJci%T^79FS_QKE?*qgDNf*}e1QR|jAHdkZB8Nw#o`bD329~c zXg+Z=hmG~3w%TjtMyF(4iQQ9rbzU7}956P=>AhPR*1^^>C#5Ebvu(dc$-$2O5B&{p z^4hCopnQJUpNi1aFBvxr`pq9CA6Zd|5xB0V8Fyt#TaT6ohDd7e#x2--@{Uz-7gmVW zWqS}R6-nTA&*7$X{rQ&7wk+-z^wn|sFH|LWfj7FSB5rksm9eW`jYFyF!N1p9 z=?_}pXLSmxaW*h$WCw#Ol zes*SmEeJI3z;?BS--7t@UeM>trNG^_iu)0f#Aj~cR~e?Ah|L5u#K3cEIKB%elthb9 zbD036;A{ZkXig|-CLmN*J`EWBaE^i9RB|BHAENtFB!DftvwxXxN>eXZ!NFL@hJ4dP zGxqr?xc;+tx3_2P!iL5njmT*6L{Y%C@3bh>k)7`DhyZ4KPcr(1AsWF7h3gex78}Ld zuE<+DEEZ|64L#v@H|iDawaGR$Dt6WLnYqbF--iX7kguP}K2Lq-s}({oAe;%F5{QBc zHrt#dLq7*xgUO|rta7mzR7gPE57!UM+sw&9VbY%IRs(tE4g?VwZm0Jb||@e)x|yOAZ%(`XL6iDNxZe3y!+y(H)iYZ*K)SUtUhjn*QF`XFt{=2nD2}S}z%i z6n@P%hHvYY_dq~mpTF{J17HH=GEo?zIv&dL_b-oI8aZMd`c6VoWD0^0dv08mzMf&# zUzr*mRAywVPD#@<@1lB+qr9t`JH2b@QP1+B!Rt=@A^Dz^E7=e3YmB|=H1g2@(mCuM zH`ALMrtM}J{*f;V&Sq7t)k_AqGlvP56>wX7`Czur%Tfv^_0AS*>6V_>3$i3se`s3J zfkF*;1JzIOt2-*)zF7A8$4}32pEzey)x2}ae>+=ZW%X;2sQ z7Cd^r%UI!#1U&6ax+)phd`{BDK>(s@bTNI5{K54M%dU~@t0USE`|QO|-!!$8hY*E{ z%-cqk9scxQ(Y<2I)tD+EYf8bm@B)LsdY~dbI(j?&fm?k_=zL#GWS)BpO!8fH=1AKyKi^~+f3|5~ zB7+)p$9qTsKYy#_x^90E#9m1ISEzxKJ&8OBSqGMK@AoJ-yMx@V%(bYTa^4wM7GTI`v&MZ5^;^GtO9)P9-a4xO;eCy-rQJ0R6w-8DLB1jh zmerJ~@0so~6{R&SnvW^&UHPaC1uh!`th5usaalpLt4D;hO3urFp&)jp0Xo!FvYUtl zu#H5W0#ZMKG2TJD&iphIU-gHQLO1|+XXU9h8ghhvZ-*^N{uv>-FjuOC67{a8mGd@VC!%M>vc94Ur-unf@QW69*W5 z`d2;|5n-T@^p}PX7dNq`@LiDmC#kKh~*7-t_S}lZ=L;hu<4jTdVTJw z2PD9bz2UYh^s?a)mtH_=&Q+zaiT@z)ST~d4xi=C|17ViT!Mr$`grL%+%v)YNErgMm zCB5%N2>zXKC~4THrG-HCh22&j)J$iHv!!n1Y&(5R&ns4kW`V8Fo-FoM=kzd6BP(&(YbJEinCC9med2Xi_0!U`#;7;XWFx~QodXXgYw6; zO9369lf;ISl{z1Qk+{E-*a-H@d>=B|4?7}ZZHB714911bDaJu2H$U*>qrAq-KNcIY z5NXr@{Zz#>F3|AF9Up^n&D8B#kf60>HA1}iuV-04a2N7$F#|Y z){Ia}uye%xLus6IdTlbsueMj!5$8wef~1ftOwGlasqeEqMD!&@)MJ3}Ca7qYepYBO zsXDHC=e`m*3xK!$UUgsZn%k-L%SE5V3(CE=vd>=)JCdu!^|}ufSfouyK;0hD=ue{6 z2Bj;z%G2A41NrZ8MD#H`OA%T_JbB{-_@(=9980?pZg42D4Y~> zC_S0D9L01=ZjNf0YKzFy-_ryG>hxtq)nufEX1J>;OdRm!&}@N*GL$;YdY&+^#Fb*0 zqk2GnhR#sN7k+hn-hIlzdGN+wN8tFdlkrT;!(F_B3{i4&`0Us|`!ZJZAy6;21~m0^ z;!04v4Wz#3=Ydo3$u4m2TI^nBXo2C9`-tZF}Z&Pcn-=- zM@#!|d*go=s>pmI>r-XHa~(?-4+pEpk#ca@FBh%_8{+z^FY1@!nxa-mW?K9eSO!GT zeQysOt&F3(b+D!MibFzTA%$6b&uD?%VWi+Q8EcEH880`X;el>Tu3(CUB`7o-Bha^S z`8b%72PW6)rAr(NqyJ%O44QOsPO{1P^7G`q+3?{}x%Gfn{kKWwQrisyJjJseRMUy@ z(Vqpobg2P`OoS%r5JpBaR@D*L73&H^SO*xXLMV<^rSbhP%zL*#m$=BbpV8L>dB3FLdnt^=%QBWhLfwPxab#`p*F&mXMYf=EyfX61_jE=+d}oGJcjMc2hivQ88$)9Opj#U)yJCEnE{8H* zmb-S2g*Xv|JQ1i|QZ+Kc7do)-%~B?;gQCr zNkY;(#@Z+n=;_=~PrRgc|AX)E<;xsLri|l-lNcuyRVl@ETvtbZVR^30RfkcL zON`H#hR^SglFRN9>UklhHYvQeGwhGI0igGPMXOsZGB!d@n8wA85NXZd zh`h*SNu*#D1YmUe8(dV_jpuB=puZtJ{}IInV!h+R$A=vbI}YO1&Ns~4SsquG?NcXJ z9N|*+3v4{c!4mW@f1POF%yryoJ?AxVhddA0{09h2EBpd_ExS&S?EAKoGY1~k^!w|V z0Mlt>?3FHl89MV&yY7Q1#j`HX=K2Lcj&bGF+;9H~F_tzU zA8@x{xwis>S4Qz8fihq7DnSqUr7(VJ*O#Gn;{30Yp8j3NVpsawlenOBB4EdHDzt3# z$Yua4IhU*)8LPh}|La@S4F8s+{6)+wSjO1HGJ| z>4&o$HImp_kkQ=N^~4c`m-l9Cp{;MO&kD<7&NMSHEuK3NPdYIqYIr0eeY*^@4yD21Mtqu<6IXmoq70wgzyZg#=H>38zL8G zL(@axY@yv4OSnqHlDf61GW3VK!S(4sfO2s)x)K6mX;^{c5#eOmV%y$i8S#BxMi2A4 z(1RS*XkP2lc8CkXQ2;@g3$#*1s|2B*5cn7M*=Wn{G^4et% zjDBgJA%h9F?-*<7E35-2-NlDa^}%9{(n7dDG7Ti*COy;IGHxCW-oBc;!Db=&_-p)P%bTkRvo*(fOme^3Nb`?WA(4XuFvxv$z3+_hq+jig)gW zq!eP7hTi;?s>;A=Kh%QO4r7dT4Y(3v0UGR|Y$pF!;1wipv~K z3Gm>{p*PezFLr?HYxld|gvhen%fN_7b;?KV=G+`$nf&?py0+dmhviUcYEz!1ItRH7jf-E!d)?YJZo{{vT@ zj6EAyh!ldx6)@{hjJigH!EjGQf?tn9;aQ(NA~XkrJD-1M;NBt7x=OEfCi8VeA$m%@ z%@;#ab;7tl6U?!HHlb{DficY3@<58&sW02mxBJ4`Tj%ZJ_DqZ^1XQW4vgb^tzCXjP zC&DL7z*lEy=Vy)hGfIKYev|z<46)%pUNSlC!M~;)x_^R+wb1j3BidM)GZiB9ob9

CB=YMwu;(xO> z=nND#kh=F3wZV|pJ}8^o1yCDMA%-Kq9-Q%6;&&kDc7Fe020nnah-4@*LC8dk;SaCM zetm56Z#6Io&L*s4L}jYj<*$692~*3XAX2q4_sN~@EbHKt z(n!1m_)1Pr{`)S%hTI8t+&%#UJ#q8597No|-UFT9l7m%~a1xEk!?^t!{jtQd>V^`o zR07Fq^IT_~;fOjL#PX4-OK)fCk^8l=p!h%kI9uxf&&Rm`8ppnX$Rq>jvqCwY$wW-c zVTIQkZtRMslr|t+r9&-N98{dbP#?UBQJCZbJ~=YHpZuFkaLEBrrba^Qc%kMlql|kQ+{1m`7ZxfBCPGMR)vCNFZ%%8rZ zE<#hY3|W<;p2PB_Q+U@UKjC$1VlPr4TEKZ|b=Jv+mji}}O*^q7{Y5C4u@-DXAuz9c zw2J|M1AYJ9iJOEhdTsXQh+zox1oBt|HnDs*(_@!HD!Y3RdDm_A^lPj&i<1lwi!t$xU+wXPE$^7ENj|c&>f&C} zlzEqTpwSVwTsVwW9gi*gwu&x(B${&PX57}~#hdgU4M^3MSP`+dWt^QKtMKEQSWagZ ze`fk<$&{~lD(WPp$)}!!(shf6rG0V5a7wWX<^;x$i|+JdY{y5cAKeZd?8aM(#qb$m zEvGj{2uS9q%?Z^-a*tE}u{YdL-fiU(502?BGIo(3swUmSO~i8gs_0t!+I_WB@wde} zYOwY)cbyC45}@5Lig?eSwc-+uuVOlPgjAoTEdua-@X1wsL;j+nQ&(Mw4u0$AZr_QSr;0r6SRO{Mcr3c-iNyD`E@vM%&%_2$Z}_nijP)UIW5mn>Pd3#N<$e!>&FnQ9EFkg6%qVFq(;Si&%{cff4IRLHT(# zkqkJX%@K8bbyH)$FOCsak#5^ZF=Pf(l$dE`t9zr$q1CBQT`Wt>$zZj0m<7h+4#wfK zJ(B#B|AYUsX@ZDpq8t7C#K~qdR`vBVWq~eWcD{QGx_8!Z|;C?AN2ZRQ3DZ z*to}tD^QUSZYzy4n8S4-zU3mw4?o$S1N_9slD=dP&$4g2TMkv+vXc={C5fMlC)3h zV^da24nG# zsY^a)87Zw%eW@YukwD6EXSVV|b*1^c4|XfDEPp~AThD_}`oSl!jAJ_+N^6kP&I2r6 zTjrld<{L(ojwSV{Vp+=Agj2|Bz^cGWOFM-XQVfv+AuT~R;c2gtzUX*1E@I2Ok8|gg z=RQe`ojqfMf#|td$_h%UZ=U8$tYpJO<8WW>=!}iVSDzcj)y20l^G>+uMxtrekM!nZ zIo(vK%zzgAsGRa04`!#VrizFap+4Y{Ba4r(dXmcc7w|tIonCe!M@o>Kp%8YCxWA5_{NMABI3S<=Uj+WqQ>ya{kCPi`^LoL5 QPa#mcqjoz>&gjMe0RVr*|p^3d23V`b}TW&ZT4v#GsMfU*=avF0_+ku3H`U3GyN)i(XBOy`DME-UA ziEG^Au#4xg>G08?-iUq?q)QnWb3qX8eX8n741KGz`XCe0eMCN}CN!>Nf&sPNG5 z75xqiWkcfFkoWWBtmv;2f5WY-GGOize@W^R8hdwqHO&kUKfb2c=Bq%w#Fm^u8gP8+ zzBD=Q@uhHgN~YsWTpKiE$CuQ8|DQ6D+GQ-X(Ly?10TOGGnHaygD-#5*8G_d2_Gh8Y z2`8s*lSEoaMKl=|n7?G8EXw8S_(s(~AzpsA5 zc(yVAw}-)C56=;|BIX@bUKui;4z0;}pyInH4`CMC+r>hkLdKs%YryL_v?dvjRfS{C zqYcQbzc^*C2}z%^X;_E3N@4}FdJdi8SV;wlk~}0(9x_S?pIpK$waG)i`dTVL4iq3q z4PAxTuoxA{N3ZE^S&~ZR;Rk+d_`WT~_yNRtoOU@oB}x%8J^-yTRDk%ZN|Mq*aRc0E}$|f$sXM~@95afWY2;z3;NRno3I!=BAqcaNQH=9 zDv=;)T}FA*x?U9HbXelT$07)OsGwLsOFwc2$X>U4ARF>#C=t02njAa;idOzP;Bs3yxLB%YEP`Y%kI7QFS}n1lf@beC_c@;&h~rH$JkBbTk;j7lg2Z zpN1+A8gCPhn$|D7lJ$`cF{1P?qxAk-rP{w;7_3h@bP<*D3UNr`O11qLk@a<^Ple0@6;$0+(Z+=*$D0=hyGaqYtx}|`&N5w= z@B3OMdJ)AG2j+0&ylTBfH~SCzS^^jqAe?f}PD=xWY7&y7@b$QNCC1o>Fj zQ^bvPV<^(mv2=UPJpZGxhyDi)mAT=@CM~c@x$4Ib$7b%?`%)AJXI4Ide5A$*H3)>@ zn*V%tnbYsi-n8_5^zcZjBkb1{w8mnL6G0g5v1^fiw?4A%fQGcNBIQ57kq91U6l25Y zr1TV3Gz*VtqJnaHg-lZGXbWvQg@PtWpf&5znl9LcC7Xj|L8en*&(wy~!eE(?7kcN# zrV_5}SN{tITvCcD>B=7%YELIbBYK2^^={iEo|{*rIZ<}gPDLc~mX*qbFw`QPuJFaV zd;Y0^89fWiy}81GGv?V~t|on!@5C+?b$5=ou1m%&Rrm*NG!S9Hgj%@W(K)3F$9g$? z)<%zT_x^yn5SMhBNa#r^QyOEtnHRMEq4yOaoL<;@ zC(=vgEP>)OjR*#8D9qeNWihVa4bAp&Xl>~T|{QxqSgco zkB8QXM`x>gqdR&IESc8~;n?d65DGTwdmIGVXs-v*#MvIeqL~Vi(W`TALI{WYWj|^K z2o)A8VN%87Vmh)%i7QX? z4O8n}b-*=nB|_jCR0h|g7uITH?g_%@&fs3lt2C{{e3LX4NLMZ+jaD>2>?vnCF$=_* zECtjd53gn~9{DbtEa|Nl!X|Xa?8j)0&LKmBUoH%_T3n%cKm!jC^?X|eL&ZI=6D~7t z)unnsl>lc*A#3Q}DtI^KH$4rTaL2uVa1@ZFN$_ARcFAP^zW>_fd5=0Cfa4AC>R{aNZnGoIxC3mSpu5PIybIxXV7gLlBw`#ttmM-W&6 zXOl^MhgFBR=&%zlzr~Hsv1jO~pLp|Q65am7MfWYYT2(WOxwUC>5-+Pw2#h`Rmxq+X zv1x4iIkF6>IEZ7*khkr;^>&#_?qA2w!<8onMbwXK0}&dewepZfzW{m23zrRGf!Xow zBzNxIxxP7QTTS3nBhD?iBR%sY~#HL{6Li7;RaxBjf#<*jh;7Qhs@Ivrj>`X0Ky#s>J7|<+!b(C7gbnlzgPT zB>&-Ys`4g{1?Atv_>cQvc`>Tl^5VojTYNsBU7c|I1tr39_L2WtM#A^k7f4HHKLxtZ zXBJaMhB&%kYm&ntHjzMWY8xE;NiHLB_TIs*fJw-@z4N zB33X>eWz|4Lm!orxs=$x5<65;)1wR1OvjGjI;nx@pF1ob3y72l(elQ|a2}0}4;2+m zzLHBNsF0r37p(ifwqEnPtUD6)dKgmT``sy?iMo(fhnZH^oibL9pitO#adD?3+5Ly2 z!{5zh)))o~%=4RiGcq#R_}gSXbkBGkd!`*!T6rd?<0V~Ea&n-)t?`nbpB3py2tf?B zNyspg8+?4zjHBC>*Y5_6^`SzhrlJhd&F>NG^SvR8tX>ygeQe*Tc&~;@9jtdQd$fe9 z$V8vJepldG`&FCrMG=y$vftby)&t*jjBCaA7V=5ACs>c_zfrL^ga6nbnvqddSHJXb zy&Wcoxe7+R)h2ti&sW{cdbC{^bVc~hM}+|U7U5nJ0hc8`09jeSve|2tbS%yNW{EA2 zRiuBMQ)K$)OG@s#GZjTzvN>QWJ`?94HvJw26EGqv9`)X%GH^LM*qT{w;y2q~8Ryl? z@onNO4+_1mDEO@XL(GIt)eibHzd>_fE{Z|Y*{Y@2{cH8%Ms}Rf;SLG$AI~WsL*s?M zT+a!{QKOy=?Kn)$=^z;5`OnXaYhXIdtG)7bPfuKV*0GX_VAQwg6f{g?@0$3lnpa^2O>VZor$hX zr86ae2#m#yB0|;!w^)4k?TC1*+Nxa6b^Y@z-e4=3*L)6jIea%*~bKHID# z3HcyaRi_-*}|1jq&Pa z!;tI5TRrccsq${x`*eH1i5h)Be*SQi!}g{@?}uKg4~n{3;&zYX_ud2sMgw78;CNuP zzx^l9Z8~~?B|tV~PB=&X_H9zmI1Cwyf5kMY^B(aR?#pBp7JHCyv>l9JY?C!mNVY*e5P)3iqm{g z5VK@tl%aR@OoB(&$ox{})(DgP>__35QI}D#A?HEsCmI@gV4FtV=WqJcGMDKZmUpVi z#t#kYfk(KGzoZufN@KZc-JfS#oRz#TaBNeO^xwtCHh~GigwQl#t>a7O%if0g(8NST z2gTsHxVRYjO>uE?Ff`e_s3=7zC#M#1r{RS4xzxnzwA6%OKj;mU9>$6UF$e+tJq?O; z8FAYmJvtb59%S|29;b6Mdk4Edx<4(t1GKMrc(c@Drl%q*zEafnh#4slk*u^)RaI@- zjT3huqQedB@ND}>@|i>*@5*A^%mWEYmi&#F?(Xga+tGxy$En`!x|%{p$2!2}^n2d? zr`Cwu470txJy8Wo0D_6oIegUnyEB!pdbd0KOI8;8=chZuYnoj}&Wkz{jP#^frp z2aYW{G5V!TWlr-qxVb;+mpk+7mxcT6Pp|@!QTpO==X0 zuS0?UE|(h&7Fo{?7V~e7`pBjxdP^YgraX)-QZl4Y4mq(9UcPyGf>kRo`E$@MS5{Y7 z`@n20I1Y#O6`Ab*YQcnjdqE}SxxKQ*>`-%>69cS#v0twiN4CJ7c4aQhtw5c3#_4?OIc0Z{fLQqf>psxd){fr*j3BM&+;8f6 zv^Sdi>C^M0ox~%=*s~P*AjF{Xm)BRs?M;Rx7z=;!y3I?nh<0AAUl)D`yDo`eB4A=gpF&1>C-i$QMQ2g8hBV2DLtY_)BV5B zhn#2*Ff1@BR{`SgFpApjxA#gM?XT_38y=m(-=Ww4u4`MVzMKnSaErfUMZRS>vv{O& z+2?4F?qEQ-C0;TLY>;j7;(%rL6oJupD0BYS6X_1cDg7tJ>6z0P*bK)2)RSQVtvZ0+ zTaC!}Oh)?vBUV~kTJAMWw9Tn|iQc>BfXKx6S87R1);pA3_Jpq}nVOo0r7PZyl|Ihq z2+N8NkxbOtR$K3Hn|P4Jq}^``nYB&=B}M~-6X(>U4R{Bep3Yqb43dyV*A2iQjkexv zj3iHk^z43IV#44_J%3$DGy>cq+YIGDKH{Lo+4uH=y3T6z45zSxObl*TJ?=+nel$)(E`RbHq~|U`g^*g zyO)WES@vkB&GNT)g)5@g|Lj*cV1op0N2I1(V(UumCSVedH-NgL4)=HDIs&H}d9o*0 zYUxr9tG$J#b&}|sj+0z!YeE(mo#B4>kvj8SV4BSErgvw|@n? z0TOUsEbJ{gI^3HBWD{lJ&SiMG8Wk@0Yt0#8 ztDAv)R4}|bfNqH?)W2Z|wsonaus1`yR;W#?RuiyRj5SajBOtX0@e&b%{8jIP?-2pW zK9(n|D_4A6%PET42C7c&ZI*W?| z)dK&e_NOB2S-jg!d>z1sOzpVf=mf9YBK@#WCD!#vbbZFa>%bDmY2uu+Xi-1ENQ=6~yY=ymW(?_Y|%{ zm4}CiaiJ{dz$44L0mrTf%%s%r?B|R0^u2Bm7Pm?Y@7^1!URQ-3d#?8ra$(TYT>Tu z`Gj?P;L@c_0M!ipvx>4$$MAl_gLJa{n8W=USsLZy|*2~CozSvtZwbw zy(K02x4EcdLt8d_eaCaaV>bm3>US8|&6`u>0j$&2M|;&fZ9a#!#5h3=V-#YV+RA-`}p2O(`fSxNRA3LG4U#VIU9jAg!h< zBkjgpBM6BBP=C^5vP|FmW2>-Z2@X&)TyM*iVJE zL4PL3BQ!tsFhM&soV$Ob)@hp^)(L6nR?i+2L?ITm`z zlP|*&=yV^j|J&3oD9TcW7TJO$RTR2_(j((-;LWCkKcI3aJNGPBJcBt$O!5-(len%G z8nKvMs65Cf8eLmq9|H*wMn9&pl?8PUq8(AIZESERwP1o{pN^3dvvN*&Q+yOE$b;07 zaw%h`0_0`Gz$=p9uxjQ^BpA=x&jFH-*!Jp{f?;kcz_Fe<%tQig;ze}J45@C^G8Jvs z{19vc$RrfJl9Q9)8fJjI3IahC`lB&|=K%HOEH|MZ{ALdPl_I5|ij%~!9}B(bZuTGq zaahok^#lJC--$=ygQN}P!L94#fPDjBQqwa0}tYRDhS*&d$zpFl&0x;u8=cuf3wl7D#AB3aiM zw_i2^mWqYm_icbG{W%F|3fmigHxkO|R(e5Aub1ECjgjm9i5VJHO`WUHIS0YYueZ23*XNEKI$uKPA)^`|dvy}lv z3U+~?yjyODx$P}tKBOAkrvQGmx z?iR?9$>49}ze8(MeeWO$y?MG3$NO@&4WR4^}9Q+LM;ZXVF|A8IOrW5QaX>`xsj|(2TFn3CGOWB(`TTk{OzAIKjx#Ko?`P; zM8cDQY*4}D1F6ji8wLIXQb{8s`)N=cspLTcGio8Sn*T0H{=X)Mp)(G$R4$psja5*x{+Ial;!w32~k?M>^kMtE` zYVV>H=6c$%U%-L|+$-unb?s&NW%`byLgQD!il78RXfDhs6czC&pL2BTPj6IvkvfZ^ zthXVb*e5#cGb2ZB`ZmfR3fShN|J)`%Pc$_~6E2-<3DvJ+$(I3T6X^t)eu*JsfxloTsEN-5iVSqSC@I0u1!;ecjiq!Zge1 z-6~^U)R_^j-*9k{e+bDP-AgeWF>rba%kx@(H&rMfy47Pd{q~Nfwzdikmsq~IVc{MS zezE5_18$C8P4C{Gh(8>Fju@uj&rO~eSqnUBo@~o*=EUO7LS~yxQM;XK+b=v!Z$-w% z$)*01m$*cqXIqSmXVKMX*3M76)_I-n^ljXuB+qiA$xQZnEo}{DQ)c6P2Ff3N%n^xK zdR{#C-%9c*?|Hk?12#RT06HII{E+N!FcSmk!+bgZA8edxTY!Md z`LF`w1Tn!ur)Ry}4T`w%EAt|nm^!TZ{${DT6>s+B(Ea8_D%CsINGnaYuaUzBr@9Sk@L`)5FNm9JUBQk%QyZQNJ&(b;`?zsi9>g%ev-^yG*T%3xu%5`^mEY-tSwWB2IEf%JS8IugJg zX>(264HuSIHa+J1i!DzZO50pzmHhDa+uiHj*%|14$tG7!qx|98rXY9vwLKTxrnFiQ z`;MH1@JN$o=W<}7C@7gge)Xd}DDe+mNJuPw&U!S@oWiH2kf?0Ey;?_U|Ery4WCKN~ zTlg`qy0Yj!RSK`kKuzJ~^r>JLtwt~!!sdvtps}sR8F22R-G4^2cn~&|`HSFF*%X)$ zGMM^2Sxln7j}_Oijh0@`vmtbBfPFnjS6TKhdA^9K>6|QmM2tUmUEbVG4`nNa{c9*1 zTRwv(l?2zQql(I))*lp}-U~9GyJI7p&}Yv96|}YKeS7iv@@kvtD9YiE@PP!qUE@kZ zoaZAIcc*7zi|5&q7Ek^)+P!~sOqP>OqGTEC4C_dM2!&fe-@|gFgXuGee|A0gof_p0 z67tXZ*6up}>N;1sy**}g@zOvrs9M$e{sXzQ#^2K44y||5u(&(HGuIqSSL&$!}bNt}ERyn{`V=dv;1aJu#xn%s&Icu=a-+k!tzI_)tDdrt~P%fTWP8 zb7d_EU97{4D-bR@TPNJS<9s%gfVTkmkljr z6OZ`LhXhaaAvt#!`)iGn=>D=6DJiFObPo)^ODgp~eivI?a!`)>y<)&rX`ANK7|NFH z|F5xr5LWMld9f7B2n80#a&KqDhqoK+DDzaJa8^+%yn%?->0eGn-49XLZ*Dw0<;cxF z_L!&)D+V;bfA;9M-p9q7iuqr7 z6g4@UTRi7ZPj{P+pCS%;lu#A4nr^WI*=pJZ)@1n4*KaJ_at0^;&1corTM`-Mn z5_f_P?|a?)Z(b@?*HmQj@H#E)v8q3v@!u3*vRRIGpxM+^O3V}vwBZ%IrRd`h?hwF8 ztwiN|x=ibBi^SzM{%2R;HGf{|S~uOFeC^`8SGlp!n~BZ#v^v&$AJ6n}Pt+9+Vk&V| z9Q>24wiR_LZ@70IEow^xHpYWgJyiAHM-lbm=DUA(LapgCYH}xx+8d zqk@_7uN6Grg`sjj5*`;N<9w?AuxwRHB?9~rXO~acAG=1kJhAA{j`Rrs*HFT4Bi!Em z*)Fc;o80aNmOto2nDJm4p)-rpg#izvt79ZNnx_+OD-@L>p1<)dM4L;s{w#K}12nn# z{yok^#MpM{_nl_L!cb*kS$MfWpzLn9*r$Gy*P$0f#21tUjSuX#dOE!-h`z})Q5wzT zx*IB_+IQ`cyp0{dgq(gO+v~l zH#++Us%Q0Vvz`VaL1CmOv>nmTIr6pHKP`?Y)RDR?)!u7ZqVt#8u&Z4+5D zGkI1Amp2!6YF>Wc1H{WhX@^UqG&|OKP|P*vAKQ`>{cxq^CSiLGS`*@T!O!04GUj%W zT}x|L_eFBrd(#wJ)yX(@)2WQ1N3B4eGX`?lwfU5Kimmz0ru=VOWqrw7(;<30&)-SN zhYk!%Ub+O>w90|*3o;OqS7Ak+A8CD$ENBY(0b!}l5ZGgtF3!h^H((xYuP%6hn0%+f zA?oRF)aB0HFINMXX%lwzOjt;W}@G64TaK(dn@HP6J59~p(Pox02YwfNw0Nli`bg2BS$ zucCL0i!v9Sk}gjyZuQs!Pf1G9>0Cs2=mgy?;fLae>Gu)fF2t~LC7(=;ff~L}nm|EW z2kY$~I20Y@M-XI}7WN~VFbi34(k(P>o3Si~{;gf~Z!$)-lsA;U*H`VyfMGF@I4z|! zGt&=jXsW9a zaz;e`Np4z&;F?}b%A5Nl5t_MapMaaE4xrk&@HM@^D(zGHi1=M+4p~tv)|jp{$lqt4 z3{1}aEW4W8Q)N<#F6EGGNYmb;d%Z~9sinrVlFcEigoP=_J}m=v2R-Chsm(bx%X>)k za|h)YJIhgw9$WXyjcX(CFC`ZEN+u@OK39*O9nL*V&(a^&skmuRrjP94JLdLa^bPDg zIw{J19>R8~&R`ok9|hqDOw_yGY2jNa3y@z+1aekY64L+v^lg!47%p5h7qM1Rx@mW5 z!|-#3{gy)b^C2c3`bo9-QK#UUtH8gRf9cjxl-Z^ml2%!@hAOUhHa6&lr~^mbtYjLM$vT57B;IG3m{EFFJiUTrkF3?Zb5pkJ zoyY5F;mC*l;j6!6rdlp_Tctg4kFm;n5Im};9dDJbtz2ZAm62j$HsK;8=WX*r-GJ|< z@VMfz@jd(I9(>ZFk*QgoO`qCM6`UPlJlB1qNL>5On*Honm1M-lpV}`Z_!c>M zj$r;`GHfDQvOJPBATK#DJ*K5lKE#^z-uZB=wE7I&V!e1?GqP~zkj&D%rrn!UnridI)i!ZkwzOoSf4l-*mm0wEub*jwrGS3WygZ*R2jyF3 zEBMWrhhm+rE0loO`Y%5drxOFa-d0f_H^|vM4GgUL<9AIA*SCJvT;I#ntP|EKmRO6WNeCCW{N$2CF@q*y7j`?#5s68$z{0zm9^O~%8-P?>S0 zX;4NU0Pxpt032ioCS2ikcBbEI)m6WHgg{~A2qFeo%? zCga!UX@~8tL8XSamhtcx?)E=ts}?$w*#@VOxGO}j&cHGEs+E~KvM&Ij z+08gOxEig>AMQ7j5teit0bNeyc*jG&xk-Rf{ldbxkM74kio^MNR@8v2WU77a_;^Ia zg}x~2@`{_^4g^kGl^?;6CT$S22!p>0bK``gH(u;H z|Ked~e7}fG<^Zwhe?>hY^+(**kDBy=yZf7Us{ED~b?m;K^V&{);n7*7?p@UM_{|ed z#U7h8{;;v#s z_WEq}hfip?y$!&wUpT*Bl@)FO`0)1Xjm9=9dhpxfUa{F`#Kq~*iN&|c`sjac;@O#v zmzG47viNwN2JAc(hxg_CL9^5!{7rg5FiBH#b9p3EghDwqk`fqvG7YUkjmFTR`Bt8-cfH#2T<*EfGv(^mK_%zFq?xa20;LW)3kqW)=ji^3gs;WZ5# zBSMEDP~M5*BLo?5#8ta@0b5R!x@ z22~5>AVVE~2Yw1OUOOFy$x ziWPy%h>XaGX&Pv^3_W<4EByU^u9dWdhSi5p7K1*Ui`}`xc44~syu(Bk=hr85lqw)BLB!DRGc%-gAoQdfPnYm*LOi(sG1(gL(kZ_!Ke zG``Nk>(RZRbq6(Wq7(dYMyNMy=fW9u@*KS$W(Sq>h^j?IrwN@RT1N7+i$XR>Sv0e1 z&Axo>>&t4B`<%FN`@_popk?Uwru7-Ir-`kAO=n`P=S4MFdVV=o#Q!oLv2 zd697G!Jny*Rl~}?W>Z$#>WR`@=6hHZ6y4MVd`3dd)$5|1?WvC$DIK|t<$Brhu)acU zReT_gAe)y->$gz8<0euI^uWbQVk{NZSFX@f)N)C^qTJD|WmuQUxaA3nx>=TQV7Xhbzm6yDy`sAnBA|Ts@@WmY+9iz6g{W2in5i8NFFm5NSmhE@=p&%sYfoKVu#W*G;+?;_XY0C=AuT; zSb{Y}_}pBsVKHve|3${2o~lqB+gwEGgWXcs#UkC&%ahaX*#)osqRS&_W_6lWr2xbD>yPOHp-_1}PZW;m))YU+pH5m60;*+jor( zX!jhsTCp&8VF#0i?vI7H{gXJ_fc_k}og~FKHZ=SE1kwZf9&%sUb!tu9UoAS)(mhtZ zGb@MjeW{iRa-lHq&EM_*LmVP*X>4h3M0H1Y*igfBfZ1H=&OOUXvy`xC&xWk=J}I;O z?~m^gi!&ZCiN{z{0-z%_a8E>jB?>a$0IdmXb_lTQ(xCBUxE)E+eM+kuA?pDx~L8aX4)QI%0*ClhnnGwwzH+oQLA1L<)Lh|0$8S z3lmCC;h?8xaX&y@3kI-wM9K7Dl?1gQyJ4F+7bL`34Px8@8Y>vH|8Cs{A-T{+`FhUN zqD!w4GVl8Rkk@ei0H0j3xk8Mzew{J4pE_Z6`o36&>VI+aof^U<;F z{fu{uo?7!&+;p@CPX)=n$OGTxRI^km;^c5w z5{{SWNekInU@7LbJU(4zu3|?-6}bL?#c3(xI{#g=B$lS0L^0a<{+TEq74i1W(?8DC z5_=|{7=+KXijg0#rdup`sMj(g9ZMCGE!V=TuO^2gg1!Y~t6d$>j5rq>;J z-=w#h$x>fetoi=>T^M=1q*?hjq?+{c9@W??K$^h0s;&VMUhE3kcnjk8kB?dP+yEx! z$^}l)V!1M>QoA}O;3)?BIv?rBFE+9vB|#m=dx=cB&v@{-f^Up>5t;{69Ei?zuo-eO z6r`(rLB~-kR<$WCwyC9+b9E3D>@5JGiNzbTug*g>1ueYAI!egf<5n2pdZN_3c* z3>#-X^6gYs+C0mA#^=yM1EiI$FFXwbE#_x=vF%i@yaX|^{3_WM{;Th>IstXC8LxJy zzY7gr?~?)ElRGoCF|Fb&zXCBm+AB?l@_U>8S@+e*so@WT5y8#Q%mc!p{>s2dUd4nO zqTUw7n0Zn8L-`t-I}zqPt5Y5s0P#sr=0;f)ye?O5NpCk9;zpQ2)8=A2TiP8VaAzwy zOEd2%U6*9Tv!Fjku!(x`>gec@R*M4~%RM#qty`0`QcS1V9~JDE?ZaGT)!=N3>$=8( zDWD1T`z+K{M{0wK33tDf86?Oo|Zt&DgG*s~2eh82fJBuUpJ@2c~2GJqQ4 zE;RDyi$H#VMb?*g6JuHBA3#%qCi|QM2KUo3mx>6nu6JdQegUlhgEmUjGcbu;rNbGZ z=6G_%@a#=&5`A4)ngHf%oEzF+x4+ObUq6~nSogTQM-9awK$74=n^k#vsZw;V<{rKo&8Un~bxEH_Hrf{1yh=E*FpJHmNKkET5=F;(Xa}}{ksOv_z$!ueYcX&qi zhDOm>ToStW7^VY{-vo|}R{JTk_}vLK`VJ|Xx@^nIgFK5rx!NhS!3CPXCPnfz4NkKj ziSZi5fqmiXKJKhZvYH*Zbhs&6ve9F5tplzwmhIExtd0xUIhk}3mLzdcPf%3x=n%6z zhdJEIvC%K$2}|li9Jk%(S&!i-`FKVT_(1nHX3P(nO$$QvlM|aU&-Xn`mde=r>Kpt% zhxpt23=THj@8CP;eq0Q$mi9&3UFYE3=TqYc9x6C_a@91X|owP-AJdQr!!;*OD8 zdtfiw51K!Z$3AI(dZ-V<>`V!mo>`wGPmLp^H-OCdni0nqJQ=&7&sG+6Pfadyy9`s* z`m+P=Jl+5<^)qM2_C^ED5+8CfGfQ8|s=C6>od>qpG~$>?!tW|Fg$^li4mpJ3Csu05 z<6ZLfBiKyeo?O(h9;{jRrlOM~$v3OLP4z9?XK~Slz3|?NkO$)J?}Lec4!+NEUHZ>o zT4lEe)j@O!Dpo|wr;>KZ%N~*z50M=mx`2-5E&CF15v{PB~!hL|uU58@yIPc9?TV1CI_#CZvGpP){h`-bn)o~-LM!(r`_EOkli=lLlHs(7;Wm6y>MM}ClZ?mU0x-7HYLk4 zT9sE?rRl47yC_3BkhD6Ihm6NVYhvN2CfopV zM9!{vjxQD)Z)3LSRKi~0lilDdSrmauiVSvx2i2!N83|=Fe%ZJhsx>M)1hjoE*|pBG!%0FLCQ1K{Ej87BKTum$a&)*)|Tc zQ<{En>QNy;lq++aRM?Q|)bFn!6{y5Ep15wPi>*DF?K#U=0Zs6}lKwScAM{=ck_Sf` zUlowR3Lvm64h*Ud8~}we9KJjwTl<6J`LJO z7t`72$cY4Y+^I4)j|Uwzk9z&!*nhQ8aaw|&gN_8yU^Ylbb1z}JoG#^oAE3a|1KLQw zmmbS6fkM{F`rm#5w0gV0ZLD%DPq&(_`}%iSzW$3V#DZ!pkM9CyoH?YbrpkS~YzoEnjmb(@r9PKk@J1p2w8?1cOih@I zyt;Z3PefM@0}wPE>)}W5=cNDvN8{+psws9&ZJ77W#wwomG6Q)pW*uz4SoUE>xA~hT zzRYiZ4oG$)_(kRB^K7rP0A>4MxVWg9K7ArOz~G^*&(_ec`+rOzO`}J&mo5poVg#{M z8TrSIe8cM*ttyiK?OSsfu>~o%6m~dz7i5Z7b-sPy8LuV3!`I bMY*<&NE3t~Wy z*?pq`{i7?dRpi}Ef#YY#~ie}e6TeX`~Aga@OO8A))Tce zC;T_CHc%W8$oJeV!B5-)XTa1HRm&d5w&oP)tkW_0xk3u8=>F+r6-D-Ur_y=O>#p?Z zHdHW0=~G_dAnxnd65zN7DVEk=xH;$FOFs+8zdDEMe343JR^MXX2?;q``3#wvRvj&#vsWaVlsjOPm(5!3wqZUA7NmP0R?n z5-~i$zKDQJ1V7yPFPs)N5zqMl20imDb+R?mTWrN2ZgPV{u*p)e&*25{gZasx97HI-{|`1@46q^-x{hba+jocQgoPawIW z1kU#npOX~ACQ2VHE#l_AZ?`?kIsP$V>{nnI{^?YsNmg)X+v60rrmq^^J}nxV&eAmf zyLwMdZd@}Bl@@!F4Xv>^GANq=qF`oprzo)9Cby;I$L4+3L0&Jb{PoH#6z~UAh3yx(*DL}Gc5@RSmO-sZ7oV#?2lLhYV)9E2|I9AAVah_5B z{d@5vemM5IyM-9PLo@hB0=IGxZ>5gE2IdptSa9~X&biOVqZ>YG-2=5A>A2-5G6+ua zi-YD%hqp>DGy9P@2CX&b`-{|45_FdC;=0xc|0XV)JrY z>qbRYBK_kYbo9i2^X%uP<+oP!W1mf>d`0jV$KEyXO3H0D+q;a#>z5EL@xIOc-IwGH z(0j)C>fd6Aop@V|%p;C`>!?=Sh7hX)&CE4I*I`}brp2yx&!d^*0>z?1n%Ps$oI4ov zSmALI^1CEHl&zc>Fn#EUWtAiJm_7rKsut%yk*HmAT3P;-j26&WMky<_+c!QAy(F9t zmA8QybLY^w3KGN+`Cl!A>`u!~mo`!9%^2a1+~V%6e)N18lq;C;0dE&_7^;WXFh?&+ z`%x6~HQAqeTP z2?6l!0~m<$%96o#Y&-KdIVgqZ#<0bEjVhTM*s2Bn`IMR3n?i+300D7Z-vklfRNf0|PMqR>% zZTB&o`TBFf$}Ic8X0gmZFX7}euU5u@c^2{tkwuz7sa$WR6SI?Cv=KF!SJp}mFQ8zd z0^jH0$(8R$(Jq617p1*S!J9R){t|Cc*i+0>{B@>SOWPuQx6h#bs;+gE<11173j(yY~nz-xDIw*fJMyO zY=-=ZESMVZ2x*{ctqTpR9qeAy4d-Y#aLTLv9knQ8nIU4^3J|@~Siu)P8mRa#D5R+6 zcj%%>AR+;D`+*m^=S_$BuU7eGrsb7_iQ;F3n&Oe(gb{Fiua_8%cL|E1{5izwj`sOh1nNYY>n$=r1ZGcG%d_iRnRn_S~45dC%sGN z(p5$<6RK-wn>!@55;4xvVQ|5B3eSN%QWYQBv?#OQG;Xz>3*l%-vo=+1T1L+(S?CXn zSU$Hdsx53a+bjP9ke*TLTkF>=B#X)>rynrTw$A54%BVcS?W-L2IIpff-5qRh3zGTm ziES2rPBf>WP3*)`_`mIIV8GJ;JIf!h_Wv*_rL+9E1*a(p-2bmB>^&7Z3ylgij%);G4n>l_~Hc<|_ZhRm;)R)x-3e1%aBWtCO9htDUvk4R?!Y zF4m3?LVS1m;5;{;y1F{Ki1YK?|9u0W<1;J%kpY@_V33PW_jO$e2q>=L--HD5iBJN9 zKg*Q<{6pI_adpBY*6>ly+2(%yWQ0H)I}9ep9`%N{FHKpNcH@(dy!A~r>t_{L^T{7? zoc?)f^Y!%Gn;&jNG~WhOeY*hRppvB}N_)eilpm>TSSQmRXByF&25*Z)&7XKDpL9xB zwamc8+Aipz}-0lEl>Km!dpLna(e9ZBio6FKPbxpE8gpDTY==M0ZIJl8{g>Ez!Tb z`ii#Un6}|nTpm(U7IH-na&0ZW^o}fqA4B{2CGGb>S|f58Q@{CH91K$?2U(VdbjU&W z18K!YMyA9t8=eqTEr{tKkQtY;Vi{@7#$(8PL5u(l^UcH207y;A0!UMn^eeREI=u;O z~OGPSyUHca~Rq@Dp;pl*agqqm~Ub=`Nj}f zAT1vR#zPLvxd=13E(>Lrjg4aw-YB|dpOnJ#&`IBWpk5z_*;L!}Acq|bVm|X=KC@#s zYG`HGL>5ljF`uuOOJf8CFdJd6hIat7L9}}+tY`Y~XtHQ_808?w6fi6mjAwHG=(?g8 zn4AVCd0DocAM=?7;m0Y=43+g1LGgm;y3qABu&e1~c2Fg_Fy@;S#);U8X`{$BL`H?x z&j~WKNZYWq0}1X=DBfMBZD3wJVeDIXB3d7oGSYs4U6tU8+~A zf7z8dMpYg#5VXgdwk&?(m)g<`5qPu9us3_VT9s!_$^{m}J>s<~CABje&)3>dzfqLu zz7**p7EfPZCNdzm3x%Vvc(RmB8qWS)G?}rU_E=n&q&V>*m-|w1P+SmX`)T?eK0>y!gc&?)P_0o$~rsGXsq>+WBnqJ%C9D>3X@ z6L>?-vah&sV2O2h#umKR_TLz>cbGcxTkIv$AWZNlGsAWuu`2gb{xToh3OWMx&9K7o z<|$%FVpa;6E15L80UdHY>Xi2M%5>+g1-=mYBt0@G1nv+D?|ucBW=7_`hUXES25Hl7 z|51Gvc`WBWAlH&KpiR6(;+>K2r%7S|{SCPYH5UH837Xjg9V&BLX$d%lHyfwtZ_`ab zoGwxeJ=DT(R=D~BDRX1KRi#tBhEuB;cP#iTjjbd^)yk(|+h8+6d+RWKc1XzhPRQ); zT*t1oYSg#x_LiM%Y=?w}1~wo%@>tQvD3EkrSa)i?bGh(Ve#}=WGIEIGen|Zt4)Qfw)y-5yPpG%@i$VZOnS5%}14+87|(x9pf^EIRNoUV5L3 zUFot39+UK4$eiRF|BQxV@?aPZwEtcup$>+2OAeA59xpN518=rSn=d+WhP+35KkE+| z>zpdcrA|}0oI?d;BJg!fI9V^)4LbDj2U^@B3puPW^KXd0KBcP$!}QBSYWjlmVRVlN z?8nq0rUnqxr{WKEHI|~^2F{k|ZYr4o+fUrtzbzwWy$l1|QnoYBK$52LMl}@fAnMJA zaWZdohGBltHVCIFOscA{%Sd3pai;BX2t{E0{!oD8H?!|=Q z!ED6Q%3j)FHnGHR=0?}1M6j2L;(b&JuMCH<*iS7OhN`|J?G|oaD^f}Aer3b}*-}q4 zR408uiQ+1OV+1)R3!(SQyWI7N$|N)94Ngtg)`TO%joh6`mDC zF(wX1VyD_&c_Y}ZTbRE5?aA3XFto2_AzHGK{Fk(o5SXuMO^wSr1h4E2ZK)1%%fl&!cMBxJnOcW#VVt{8wqXo)IJkcLEW$Q_4Tt*pv`+TzO z_6}D<8x*`*+yppLndwd12Gc5U2gr=sw3&ZjUtc&GtMA4nmnJ^Y7%gAy&&v&UaT(lv9`te0=CUT5OHWF~ZMeqaq8T z5Hx(@o>cbH9H`0APAioxq^bT@y?*_bdauRCZsOC}a3T);y`vONU&2w|1i-;RQzCgn z(*#YSgjHXVyefNe^D`}iH&R|1PtQO+U{Dq7e9P%ip)no8*?p8e{%iJC)bGIP^81X8 zz^349MHU^=sxcpUw6wMV%r~lO?dj=p$ zIL~w*02W{2ui3e*A$`c6U%f^C^5x4MgNlfyB^!dZTHG2+uVcUN3{|@s;^;f=&R0H7 zgn!?l%TbLL2zdSaHO=^1@@x2IBs*v3;aO1K&uIOF;{_QFC8ajLGF^Rr6{BQUpD_wN z!m=y%sq^TUVqd=|C#Rqw{P^+XJFA{#0xYvcv~_<5;e*GIn}vrA8e7BJ#5TWPi4(LS zN4A7o)cX@kg8$aU9#6aL#Wt1l$7fF*C;M6g7VX&WwC`s7sL$a z3iR$%+PZ@#e)rKeSP)Z#MT}wdUzgaP6hFOWeAE{M6}Gu57f5L>x%OS((PFVL9m^;h z>O9*ljLv72+-hY@^gBHy!2j?)>@c<*FLyR@=@RZtl8Dh#7ke4brub~!xn&bPy1KP5 z+h+DVoR@I!Q{pUm+Iy3fhNTlfUr~?r*ot$4h`rg$aDi%ybP_eQ_(rZHDmXI*9pA$0 zm$>e`AW^lOyg%+j)1Rqf1?*|udpQ@cpNx*x;Xi(uS$4*LIoY4;$t=%Xzy?)X{CM6I?#*PdWXn!e8^%?`+?%$aS%gxfHiI z=IF9kv9Pt2o!?jHXpC3-47G%2aJLs&$2c*UTRH~LBvL+m<_(yOK;=v`hc>$<);BtZ zdNyWR&til5Yh%Y8szLy=xPX~lMl51hAIsbpW6EX&7RTjWi}Q2bnD5)o9i4wKCGl*6 zGw^OzeohV++`oOi-6Le$aG@J9OX*O(+1&h)n2Ma79Pu+sivTL_dK(zR+`@v8>#qm% zJt=kiyLiD#o*v8+@aPr)HBw~NpRN*<8+wSFI_ut9>}QbjzDtlG>X@Nl=AfD^8CQU8 z=_|3-A;6D5>9vrQRJ(u|9R7Vtk%_RrIfOAz%0~oswDaEY>=YR3RezXVpaA;VQx-C2 zIL0Y+sPsBGn2V1OuNtaxf-iwAONJe$YEfc9c^G^Ae!UMWU(T!gn44<>7ODDhK7o=^ z#ICH?BQweUdPPNr-FSKUHDllKeszglXX8hY1|3S$=LF94!!*M;2?-s;1xN-7cOJPQ z>YtN7>l1v_0N5OTZz`&*tIzWCiiwF0eE&}LCMHG^g+k4Wbx9?={`mSza=TNgdZ$k% zDk@6AeP!4(EExU_u($bw_1GkP)$gE@b?;Z(4Y)$>>2AJD8%K;?3F`FtFl4AO)%L|| z%Kgi-!=_c~>FFW)z(5ThY7Z?l)RUCGyu=n#{LsN+j`l~=V=VpOEKw*a+-eys(68Z< z^gI8?$i!#`y%k=^x)TvV9p&}A5Pt?C%Wq|lQ&KkB#&zgp06dwswaFYR(RaIzdj~4r zmT&X(XQriL$|k*oV~o)i&c_Z9>b4SxbCHL8Wp!O6Rw-(_x(q7OJTMsNZ@aQNv7ZhNDV#%0tx^Agg0zB8_Br{=-dZ$Htej$hZaq(Yc94T7hEAcs)33B;* zNm0POm6nteS`TkwDjIb2+eu|jR}5ppyAM1B0pZQ=tW6{|QcGY%7)3?&d+=x!Q@g`~ zr|zMaR%4u1vUPoUx-1snFZ?m&y0DG5T`ZLza3}4>x%7HxzAyXi~HQQb8S}3pF8;h?!3CwBh{F9?wyzZpI1SuZitG; z;C;-nX^=Bmo`<@+6)pBj0L1Z#PGA813f>TTStOi){AuL7+0;CQUxB*AF2}ut8ph5P znH0dMUAFy@v7eOal<&4fNx$Cieby+Ahxn>an&ATjgHC|H1PI(pQN?Vi#KBff-FSIj zUS8<<`1pjw{#w=g~D zXt`{Ef;dsF=&V03ZthPs@VzzE~hNvodgt#wSZUc{j$H=0|2#u#_M z4`OL=k=}zx^BYeNe+N(zCt`n{!0%+)m;r8f0ayfLwk6C8m^ScI%*S(_GNuO`Gm>Y= z+xj7eKqE*MS-jZsLjuUZYx_ON+HO1EHqW#(7EZ|`8H+devV3Pnd%s!6sp*5+u!T&S z6KkZDN(`R`7$!u;!GVv0p2y_Na}q48Ofp_$fwj`}89>q$3Jjc^=$KGDy_8Uacg}wX z7ia#C!z@yIQ)hPir)b1(sot+)kvbw4HPqMdFh1S71~?_J2hO{ECXmq+IEllb{C-NA z>PfNUZroa#>OZg59gwWo;`qX3P7!!;$*(&V$NTlt%AaXpUenzv|Mel*bEj9)3xrUf zK&cl&>=k3=&81_E5(Wr0T|OH+wv_17BNfAXx)IcwC>Hr%E@*3F9qo}Vo~as#kGKj4 z_cG?Yld2xw2IBHq(HyfK%KHg`zmM4WYr$@uukHLuO4YhY^16Wl)8bXI1v z8Ni#6)JxxU^;>|G_X55dv7A!`!hv)UtR*@%TpTMo+v?!oo}uw8FUajq0={?)fAeUG ztr&2QgoyR(ZNzGE|MmS8@1-mPER$Ho;r4>)SaW>kmsuw79UD~mu|73eAKFKNDF#NE9E99XOJ9?R1|{b}mw5aw%5k?63zz>pqOeI%l@5gf=wD z-VheEvA4I+E}_sjcG2pH=A8{TKEA0Txp@Hu#9b`?JJ%U)Fax_PteD@^%#D1xAFM!C zmhOuibHc4UO}Gg-j2rPTgYoA<;Ie?ZqJBe0CdFgYD~OmH;ZFnH-#Bpfi9Tx;JjS(& z7q8sfsOUjCWV?g`)I6P)Ieh`RjREjpqt~-(m8~6P6Ui%~5Vf=gkegp{U-hdSl0+?@xbzL2OD|0+U<9pPfGS7N;KnA?O z#m4lPu0RsQD)*mxRck*6v^3Iz6LpxV+}!Ec*nXwq`@9FeS9H7?=7$$9&~%^mnivqq zMYXpp<8eJ7y_@~GDtf{m*L2O;d}$yHA28zI_iX0cbIT^%uhnjlpaJanme>wG&V6XZ zji9_;g`xE(t|QzdTMDQ$!^%*>D9P3cUi<4!gMvsDbBVCcz{g>MgdzZnQPxG4T|eH) zQIC|oaIEAKe*d&z0NHRMR-7)rlMp8S^uOTzvkQuQStO@-nh%sA?}-JZFdKKBu53&| zXN_ecXVGXWkr!_G)Xzu51*Xt=pIS+`%^#$|&=|swzGX&PNRdCWKg3m)_4~yq@p0tm zxugw926aJVN`oMZr8FQp=EXP(y&+~ws%Xcjib^(yVsU);d=w$?DLt>2b2pc>99(vC z!xo4-32$`JcUK`W0=yUj`=-})xI7c^fb}&*(7Qd-GXo1U;!vKevaOtS4&$syU!Iyn z$#8Vm->=1pd``_-Qgz{XG{RIm1w6d{uvYw#oWf6%wW03Wfs5!|{ z{mz9Klcw!?iNvj>-meL2d=chKkP$?iOj=2tav`t@nk@^N5Y$UQ*QMOn|C2HX`-2ks zqeWDQkj}sE>Co3Md;)pT>U2SX0ZPeqO*WPZlAr|$i^^f4q zyD*I8J0`?sC>5xFKxvWKu|yBJ6Z~F^G-}Uz5YHF;Dubev`FmPf=`5$&Q|K&mu`4*B z#jO46JC={bd*jeqLwNH;@B;WS;UTYre`JRc>V&Vs5TGx1zJ{M_L>l@LsNZK5g5D;0 zyte)C8cel32abt2k+_;gHa2{6k7}A_I+?aXCctL8+TKy)d>4x=>vsj_GOgb5$stNN z_*@RS*JU67H`~wpmxAF7eBME{z@9D73w#C@U8ngNS~JM|n_9xZYgVIMf`)N2Dh7PWQa`HT?4l;c`FE zZz$FQYgj-lD>Dr-c?Ox83gCb@4+-j@R|b`Gdw`Z{|Hib}pvFCQL4EY)HXkV;>979G z9;2KGczV;m&qDqa!YHAT9Wo;dSSOh`As~8h>i?iTF&5{_Qw%Da;TEzG!UGNgfYUMr zVBP=+wa_>kEZDQ?ydNG>Od;}k@Y#Cs_Tg^uc2;h7W_7WDHwQ^n4E+P6h`O$2BJr4c zEu#p%b?rnAb@kRA4xlX7tb)_6(k%oF1o=UR90fnx&9*WOJrmJ|&Wek+WX_;^Pr2@%`qvp%%430L6G zUVc)O6)*gDFefX=v@2ujR=yUjbxDotee0+pwY+$y;>){%Y-$QYX-1hu5!CWtfj5Cj z?eTF3SE|UP!L6~FYfeKh+xS5W7EO?z6kilx&=RG;^opXN@2zraU}SzeLZ&pF*EIu2(P4>rCw4t%5y=1MJ}NSp-7)}NkwJo zRIOx+L`qW2C$&K)(T~rw)tNe5Ykl~K4{pdpTyM8$$~`=F2)b!2GWfZ2(>=~+675JF zR#S+vvQ$g;X^~ZD97zyT*q{9A4t()IAuV#d(INd|szMVe7+O?PD(RZJxH0c*7}YcP zbX)vv4m3g1vfbk98JsuM{tpv~|idE9EiWN(cc!e&3-M3r_ zOf?K1+Wxy3Z4*uyl=l5|dPXSD=zKin&t~pWsn5^vXfS>KgW=OTVQT`}bg1n&MJ@gx=ZeW^_cJ@9W(M%$KzK%k_~JfWfBJj9OO#aZQ2Tp)A8M z@%+c0k}{5c$_|qh^&!ENCsY)zrNhe5UngW0ve>0av;4!-tRbTh=rAek@#>-^$7dMM6=`x>U9EMIyBRhtJ{E8qb;GZTKN-31bk1H0+MmmT*D!eBqxxkpdr#Uc#HGv{X~umNvEhpp-#6-`&4nw*VBSJEb^7phI1CARP{PD>tBEjMN|_dBzly)|NPfAWjR(3@8R zK)&4J&!$U>7`O@S0_?l8pe*1rxE7}9oQcj$sJ+=GAp7wfFG5N!0jg+p8?=LUh9i6R z$e+0&4nLoW*}6K0GJSiQ$b?ggNSiSITUGyTsg(oL4Q+So@4pB6{5{_0oQ zo!B4{(nl}$#Jvyo0YVn77y#2!o-q-S0avnU&_^gcx(xynwEBHKET zo(&T+SJ)hzG_#t0?oH;=Gi;OVr{DZmEMHw#`x?OH;YzC!01HtdHA}px1l#}Sk4s|k z`{4FhTa}7cRu@l?pSJ>cR$2jJ^MAewanCKyOMc~;Km8?(;;==(BP+~lr=BlSEQ5xV zW>MYL=-jBSQ-uCD!*)Km-EdAL{RVr#l*a0}35YaB#XNCmT2AKC2@^T}!=XxENlE)l zc+-g}N#NpdTNt=hg8=$Yz49H_5Bzv>&wnr(RC&}IDHOBSU)N(f`C5&s+K&tjCIALY zVoG`Up7~>bm}-1c1X(8ET$bo$YN@o~Cr2@>(8b1RxJM(ev}>6m*!l* zl&_CUUF>*zmUXy!m9M^{s(~^@p)Bjf<(? zF1^mgzxvbJ@uLlVqC`YA`OEPNPQMwgReMxYUHX)_|5}de=yT!fN++u2vH>E2avuhr zP}WXG8lmBDlW?m;1@z{)B#Vz590=EsarA{s7;CF3nQObNHPBS@zri7`l%u&7h&8U( zL~T~kcEo#$4MXsv%FX1@sb>lqF=#{OL`iMjSD)oFryh#+t*V%7h3`K_1EZggm?guz zlT(H$c8+*L#X_jlM|per^ufg3OCBRFrI=n@(#Q!Eu$>q^B z)bC+b8G@s}TsP8fe5Z7$wy&X@(jZ`<@DXFSr-kW~d!!D1&P+*@EdX4ycRF6qv#r>0REO9{ zA2Jz%PhFn?4AbQE&2%r!!yTJ$d3*59f0!k88f~4F_L7f?x_u6h_&}~EV2S`oyju_Q zgp@#9^aWp{kEHWN*S^^?7FHQP!JgyDZe0*QtIKXwJzNw( zf(5Gd;AwYi>RZds50jKymRj?4=ga3aP+90B>X!J#y1+6Rv(@+fTt?~)czsliz6jeP z@c#O*1dKR^$eZx&FF5E6Lqlkh)s~9(C4>G*5BsbvyuW&!PWAf&IX7WW%y>ILgFF)7&@x6IQ!&~`b5X@0SNmrjou#RA?d03Hxmr`xZp1WH zGjYy#T!t$EFEEa942%p=UiZNnGnOw`cpW=8U%t8V%2cX+?jV4vFBO@g63K2Y@q7K6 zWFaU13;vB}*yRMfGnwgqcr(u3741WbaM!WLQd`r?azg>h>E$ff;Yh zl+>i%D08k^JpJ*U>Gk$@sYD&1;zP9oD_vy_g5hH^E;?_b6R7Ub04|CVZNrw$7gf&| zH;Kib-LoQ=0Vx05iRp4<9*{~>jME~0bK3SCiBkQwkU~kUvgOcn=sS%RX|`)TPd2i?~$C9tfpJ}fCTqsTOQjS+A6-RxsvE(xvS}}hIOwVQG zRGpN2wY9SS`dUJ@zj4h5-yPA%E}r@72HwZ_)UOx%RUJymM+~_C)+u_>07$Gs)e!A zY*F7^+XNla)JmaNx6y|_>icZeF~8)^ZEG_UF=?c$HB>(7>8rL>-ZfaF{e7UI%I{=u zA@J6h`xIp>cGnW;ge7Ft7kQ;Q7RS7|T!<4sEqmJcjy6{al_pWT{+Xiv2L34pPotb6 zYR=K|I9MV%siU)L8NlG&bL7$HA@#=G>QCrwx`a)KznqU2HvH4*QSS4|z;O1gF=st;t?LaDmGq9wfLi0S7h)RmkqK8m zh84g)8OCdPqy$ro!1TB$*zlP7+#jJ<3!CE-cW(2x{>*`+4t_YFECOeRcPXP6|Mmb; z=5Pg@C9}wIHaCfC=1dq*TThp%=lTiagGa@gK2OOdM?S-zq@J#yZE+otdd?u$`t%kW zlL!0MaeQhKQ9u82P3$Ec!H;#eI)ERW9(W1jQmf-H6XmWe_Z0S*6Bql~m303JAVAMn zvA33RotL%rek~#epF6JTcXP0^)V~UH-FF_2NP7%wZ9LLdAjjrV27re5;rvDt$?K;$ z+DZMom%)A#Nnyuxy7(;Q)98dBc~lzxxa$?w*w4GA7q4iJab$(yn@W{lX&b!h@KW4I z{?KXO>K6*qijCToKJZPL?~wCZbv{@2UMxx_}0ShVZ%lc>e5G*osii--fp zZCSJ9Xm>qdwCrw~---9fTvT0GD6`h8^cE!1_t|`&+Gr3c3jI3}*3|4WsE(FMNoX-P zGFC8Br_KyT_yU>!TwCxq~}~wYA%uKV1HPEvhi@U99jSM^4ur%N<63xclDR zz$@H3jqwS$!Ly4|(P)3isDZt6Q$CLpm6R(F?}$3@r+I;(3qI(!o9Oz~gHH;5Lve?z z$JM&slB&%4_@L!mCXH%*6uDHl1Wl#Kloz7Fc~*Vu1D{OFrwD30E41BGIfjrx2R#PulG3bM&GQ}2D z1ox;Lw>b0!y?3~CHX$WoLQs9g?Yc;0d@6X{;&(4o-3M32ZGrh$)B$>h((DSJA?fg{ zGzH2eZV9$fkVwX`$oM;xxv^bHss8Yt4r#uclJcQHQ|1r#u05A816QvWRHR|se`t!( zMHjyRh@mG{Gy2n51-dwp)a%u72hn%O&{$|;`A0*q!T|fqx zSu7Aky_j#Yh-x~l=sM%MixCEUG}puXHjXNnr}O<@%A9b~Ie@+m11}5ioi~Ml{U^Ca zS)Zao4EiIcrw6%M$;&iQL!241)Ku_-8v!DZM(WjwqodX>sz)G{Y6Ib!ZgqxfmU&xz z7msdL+^11*hvSaiM6qoy7O4B>GFGqajN~dGdAQ$yPAi8$8Rq-z>61R3_}wZgI@MyR za&bn|gu{0GosEY zZ;;e04REr@_*ideJRi~ch+E5MdCALBjxJb7luBUI*tpc40_cf;lGek=^@Kk;c1H7K zjea&^V?|#$PgNueFQCI;{{9W1C5tw-I+nQa4~6`#%hbd9u|J-V@6$Le zmWBonjo9tkm2Wl=AT8wlDfs+t^OU;AU>tA$W3BdXHMfqf+ne;QXb-~=CkC}24~1Vb zd76KM5Rqy?{+aUZ^_Gjr&lD5YB%%W&)5p?kUmnUP?S7GV)~^bMZsq_)BZu(wr|SEbRil(U*b=i*i=8 znxx4E8>uOntW0J7^}IT<)9`_ae&yZWyKxe0{#^+(#r@L>Qy9}mLBqIWmH&WpYg@+B z0fCR~@naai^^kf#<55AXy9csYl0MCD@ z*r*#^0Sxe!!sW4`b+@una@A|9Ms|)caoM*D&e7;Du&LI>0Nd zIWYSQXK5@gNKoL!RnfwH#Ff#4pKTfFEJ#KU542aGSa6J^JZxn9I8>(PSd~M5fo2p+ z@qt_aq@hZh%UL;j7VTBp{cMtt;ULqyA^dFSSAgMlMNbey*%z_yWZN$5mU~}uiN7c) zVwYtvnTL>x37AkWqksc0k9HV@^FNWV)m%ew5XZ`}Qp-rvxh8sZ&msI?3%2~DuMvC6 zAZhTlUgI{3Es9vM$~SKt?IPIur9FVqUF;=uf3F|(0cA8c+PwRyVk;XP(AP7Kn+htM3Y4Q(k}}%s6oT>d_YY?M7wrLM z?$(CEw;>u<04}({+vgEZgA7|UpyeGOc5&)uVZ-;sH#$1307MH%ZXgFUmYQclQR$cQ z!z1*Y-jW$x-R!}e_L+IqEU2rs`%<1KZcqem?Wr4Lf$6qWpV8{?B;mXU77@h&3{W&C z&yi9xqtjT;&0fk&EP(B3WeCwQyD^CiuZwI+aRAj~Bk}5|*UdYPb(P!rHd@&>di)wPrAcH?;XCUo z*Lw?|KFr9DET;K=cuTn!CO2J+n_exOSt**?8`BDlsW~u<6{T^gym(7>_z1KmXpTj) z>*vXhQs8&rAn!dOrm_&z$B>y2+J?7_t4VSY4X}rjSr=_p`54TaHOTCFV;m*gnUp{- zir!{~N+N{07OkYW(Fg%kqC~VfmL+M#+hgcgZ&qa_nz_$tnu!T)Nq-~$1y1yEV7?K? zQiJ0=tWTJc)o_dx?*o?ed|QkRe;nOul|eeGyb4+rcf-!$L-i4TPutM@k5`;cO?#1~+9bKpUU4>;W7{U~x(hUl?y zoO!Ve);UOMA91b?X*JDah=F!rRl7YgQUnHfz-iT^(ydBn5+-}WHp1FL3| zjlCorOD_wJY`e~Z*Fzh7Ql^oGp?a<{yQ+%^4p?WzM$(Qg{z^n)AgGdovtwjAlkP&_ z;5CyMpHylDC*z;7>f3&J zDfBn-gY`*+zL@j5{|6p!#nb(Nv(o<;tlJWNeC=?207RT^NTVbCg+&d{eI7 zI+v@Fd3~=mC21%HOqCiY$tVj=T6})~oQ;|nXoSN3$?|}j=^~btg&aot7rfb?2B-t2 z0p+($jTDq#+WDP6?U#Tym`xYN3X*&zD!6WL5Hcc^g+u zd;Z`a?01tSsEqu7dpH`_9J_dZK;b3rV*+r1Nl}Q~|7{$f>{x;EC<`uawLoL^7B2mt zkG`=^<(+<#kGgv* zW5|?ZsXe7J^SXaNUJYPe&JW~(6XPxy{y7%DDh$Jbqk!PJr7a92DhrviFU?;}RwKW!N3!{&7waOq^*sIj&TL+sL`Zi}eK9CRw|Nrsts)7P{dN3l(v9n=cJAlz z6HHFN6fq(uO+O2Ga&a!bjFsd#H*U6vXw7cxsC%c>P+Vp#Ms-Iia=TgNq-9Xrn(?Gh zZ^3FTVo{o~l7K?#MAkONyxiD7y#7V~VHzoljx7A_u>~SE zK5(adN97M;n5zCU8UlJ@>x`Ll`W{Cb!EsJr>md}8eWtPd?(yD@ey~LNmN%uP^#ayr zXw2HL=R%qM#Xrxpx18g{awXeseT z`@ETvwk~Lk?snuKm91OpK3x4H1ION6e!Ce#iJ(P*Lxd>Bg|cf5YcU=EGA+<+_AYi+ zYcZ;4IRq#(Y^r|`VHt*&6i=@S|8868WY1Kc`yYY0^rl-05^f&L5u@b9)T>wE%_a4J zPDkxz?DzToA$lxdQ(dtQ`m6$E2&Z1dYZE7{FAwu$-o&6MD4vXVE(Qlosu_tgm1Qqj zl~C>~sjNg6tL}CfEe++oSxkAm(;6b`Kf5<~Z1?s(T8zA05+lG`&VUfbIL$gFrVI-1 z7Db#gz?u>KC#Q;lospckICGst+>pBYM`Jy+y4%@Mr>FU#WsnNC5@WzJ!`*wryc8+V3@5p@gYa-n)_GRmJW3@fj$?F zx}@Bj$5}Y;+D4QFNH4xc8~6G7G0QC_uegtKzBxp{f+sU0SFRve$b2~_x=U6oj0Gn+ z7yV`_`j_d_(2pmJHT3E<++WoB38zx+s1%L*)ZM0N5)rucmx?=Iy}X*5bPi$PQv1gNF@W;~Bnx5ua$J95P)6=(DG~NnwjAgNx&K*D+`!+q@`EUP| n|MJEEyWrqoe;s81j4%oQKKko^Hxc-|CIm|I>VM|Rnmqqsq7YXH literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_3600.png b/Notebooks/3_N_horizon 5/sim_3600.png new file mode 100644 index 0000000000000000000000000000000000000000..279534989cd40db97ce9982cb4167fa9cb52ddf3 GIT binary patch literal 19817 zcmdtKby$>L6fa6BjI<&+NI6m>5(6R)3ZDW}3JB6A(%lU*fI&z%h=g=Ww;+Qw(lDfS zcMfs)pkJJO?|IJo_nhZZk(vGOz4ltam3!^?-7|SfVuG6lSXfxZ(o%mZVqsn4$HKxk zhTwruiZf&;!4CoZ$1m-btX|tY>Dd}$$?4f!n_JnNo9N$iG_vBZK?Ka z4`7IB3CM~#gjxbZE)Gd|qwV8CY$`+aWFUGLkm-DNw7MS|9Wl(D7M8^Lm~(=2}m*#?A{faIRvIjE)KmW9uvCGyP2v! zRCRkib?S_)F=JQfygR$J-UTup4MR}C5QZ?sIU#Iz-C>;+?Aiw<4r%ctI}6V@vw-Ny zLQ)M+w zJeRDqDFF%U9U2=5*SCeFXhEh)rtGIAmu`ARh@K(H8v9^~Js1MeA2LuiXeACIO*^oX zu0IoXlm8BN`VL+A4$bkwQVt~$R8J?Z#Cb_)aPlb7#_afzYH7%X!2SB+lfa^T$ir)! zm#j^W$3n2IkWl(y_&Sy)t~?1Wp|G1C0QBZ9449XrS9}P)dAx%g@D#m93M`;KgcXnq z{KK1@qMtZ7i^v+O+-T7cdhjYJoL{Nx;+#-sUJAy?!=}f|A8Vimaar->h{7r!VkgW#?YUdqyb^|JN_x>W$m`)2XCw|R5fci{vjKOwR~E=40{@^B4+-&Ztb~siT>sO*bzPpd*Uw&W^0Ok9;YA z_u*l3t-sZY)p5bOflppTvVLHWL14R-hY!8-%J4vg2pstyI-}z)&`=3OI5v1;>qs3i zza%~(J9N&oi*A8#guqph(DD}OLJKrG7#`IE9l{d3Me&^`_zE1^(pyUxNBb#*;1hKZ z{PavGdnS$|?M={(LEsBGG7FCEbf9sgE962RuI!@SDGsSO#Y%&Z+yb}!cI#V)y!*r< zTFb5ya3uE9fi3)5HL?r*q|f@exY01Pl*0D7A)}U~^vWH1G0`4RAhnvb5Qj)cR+K$1 z&@knpQI*H0+WuN91Fkh5^xYp!MRX_)0!x!PZ|}`jQGX=Og}_!vqjB$LIhe1tAjn3; zj%_^!vp5F@(p+O`f=3H%KE+uw0t_lb^l&#%p)&>hHl35<%e7kzyJT@<9|?l)?%SC2 z>Ar;M8RS{GESc4$BB2Iqu0P~kYE364T%oPW;*hW6kUssuKIv0b&2@tlmWPmO%c+$# z*QSV2g2$$2c;?c7C>M4E8n0Y`5BrP_IsADr?|GFIvic`$|5HM#&hR4PQ^C21@#+PA z_mD5$en_n8UQ%pQy3KV9IZRZ6=r4?{3Z5jmKeERt68)rAyQN>$sGheOs)~dbyoWn7 z4)o2jzz{PBo=r;=cY%}?aGrczPPb8`<>kOmn#`&FpdUCiD43B^{sfZpwm;!!`+?`U z;4H34Ux?A_%$`#$;jAB->%gcZ_vY*4t@x#d>SbdB8dbA;Mrq;;+rQV2+dx~*TucOu zK#+Bb1+J7{&L@S<29R+u4rol#!;ute^Is1=At`FEwtX}EarFjP&1tUJ%!y$3IF`d^ z=XV{wVgvf4_n*KJb`p@IG*`CkgAQA`1J}hXxDY)89*1~}dXEMshOWQ@31GVl_;=%_ ziPc6N#wK`0FYl7TG~+B&Pd>(#?0r{nIdOtai!7xuo)gLj!s}8Go;HdL}OoWkX7{g zrsG3`t{hxzU`?C%JQT{}oGtahKXi4S3oG~z<-;DruE&ZBUH(}Vaf;HBlkk2ALvSlv z>>fd9-gs!HdK}kuHr$(XapY`q<;)V0dw?KY{{Xjy@rEw7Nbj}1ls0u48hzA3FD=(o zMaLi6pO%VNlrj|`c33(KRP{yopgl;75k&MzKw-MHttqlXWL}K%qvcw_v*ilGmebSOT zqjc}ti0?lRUoz?n>^=cZ7W^TF)li97h}71;fJ`ruHP-BUw95|N#d!AK&|hSc_rjA{ z>rGs#s@Fj)p(LUbP-`R-x$?zUTX)U;Xrw`)w8L4u#RxwX85YoG=c zTmUsV&i4^L8@k=ZFim1j;+_(dJ|zYIX+)}08YcP}uv7XXuSIQeuhpJbkROjm?H;lM zj@YEJCMmp&=z$?CZXBlY!eetiq!e4#<2J zOC~N|wSWghAREx$BMsyYb4yJe_;lS;KA545w3qj%eu&a~Px_PDN?(3S+6+wwJj0?R zfVtm%Nu(Lmdiyu=VMP4JvVk^uT*maMA#5XB^n1+H(t^jo11Ki($B!?|L~|In1k=WH zJXXtip8CXoeJu9m%Zo%1*!TzqcpsfPpv1dEgPVz~Guv-9y*qO&XXga>1Gq^L5Bc6+MqmW1EnBGGL` zToK;uSE@N)&bdxWS?su`?zld7rGe9P>w|%MdwKn-g=OVjR8w6Si`bF0=uxWzPL{6W zScMIc@O)tb+Oiq?4jvZ%b)&v%(ym)X)3%lAzDe)wrvf!KHEHc69XDzMjG+bS#Lj(L z^yY!Z=(CqEArIppSS$_~F<>!B2ES^HV8yylL1EJ;$7i#g^<}&6pf*H0oEdIAE9JVs z+DfhCS^Hw=$Y)@Cl?7x#=x- zGEGWED;NP-u^rp(?w_4~_ttIWGf5wsz%e1f2% z(T`AI8bMyM-Nv>wR6q|TI3H`2lu}X>pvaDWvz)`!a*d@Fp>$BX|5w zA5wR3CYh+7YA37w>UF^+ud^c$x^jmVl_$Y8t^HX_tQ;Kk00M#vVyE{*M33)Gp3L)+ zF7bNp<>A^(S+j7}m(fKL{Ed z(?kYRHNB@`s{k~)9L+_$94~z#b%k^e7a7FzS>zBDUQt!)bFc?z90ne+?!(Ioh8A*%-l3!k6t0J3~n3hI-BX@$5g$M}&!)J_ctaHn<6B$s)ry7SWw zyS)KbyYtfn9({SacL^+D_0)TL5fBo#c6WdAIzPLoS+V(X zxpJcp?Y#R_68mNGt1CP6ov98hgKjiCt6#gh!Rr1*R5%U$YbX;`89Oz zRugj8d<3FvYiomwc?tu;=yld@Z*NOfMTIr}PWnj1EiE}PN(V^X-Iz=U7NmRw!oR(< zW2Q3uqqQ}Qsy8e=T*AW3@3Pxe7>-qSE^&QVc@9swW=zPl3kq(48^T=FvR|C6yGVSDtt&a z>`D-rot^E;QRT$Skc)o;I5II%TIICSrQo?uo}H7UR%Wi&c|uVN9)1_auF;z&P5!z& zsgtdsM)51Bm{{`r_XJ?80xP*+`2oU?e%+{-0tQj7-cv-Q%v^7{P|y8rC)sGc%Hh7* zU|;~fXH2+)=#h76qR0M-`waD@?(X7GV5y4CN4UW>q)VqFXNNQHK)VcA2J?i0dF5>~ zC7G{^=d;Q%>C3opHIeWlM`a6GiSSScNt|bznjL^BQ)Y3Cp?un}uRA|0B#R0kFQ#6< zaif05wKI+vm>fFclg%bg=V`z1&{((u@=>W@Sj!*LVSv-^v2JHRRuNiLBOEMtb{O|g zjP!+xiAkq*i0A3CO&jZ%nwc12K?3mUoV~Ge@p`@}B#Zc4YkKSr5J9=TmE;Bdz@(dA z=LcTyQ@He>0IyF@+&xcb=y}`^tuf|JUTE#Up#5S4>z4#Yo}T;l@somAfy{)7~P37T>D%R+i+BPmg>ts1|YCPb(?0 z4>>s1Ip5Qs>5|1lk5=QT|+6`MYY}cBE{y?T`Jv z9SZT7n+7xqDPi_+H6K65xL-!5BnjmU2QT^EqI^7R=~}<{f1<1ZRXJtp*6jQ|#-{>e zTl{Wl|0uISP3)ECSNtM4J07b4$2kjzc&t}00M&Ev+`$N7@^sy401dc21+ z0JM%H$AL?b8WK?4lL}~maY5D6t^1Z^F#s{xT&}yubk0-Qb-U@D1FHqu*|+)l4n7v3 zKj@t3*P}67`2PKSC|v&%){v%MC#)X%QxW*tg5~E;uSqXzK_d(K)w*L9BIQBU(W9Q1 zF1$#xSn@)WTQCS=Y_^(j^a1OZot<4V?N1Hmeg(nBBbqW2LsMbFpNOJIx@~)2 zih+BJGYg^-2xC>sz}hVEI{knF4^W5LuU{0MJsH{g|*8 zy=Vde-sUu^R}3-rgMQ7OjCf1^#h#Si_3`){I__H^Cuh#`J=)pJt&vnl)*H14gZ*ED zf5ao9d1=?)*=hLm^W%H!C2ujSfO)J3)r^XqxAbofe3(04DKPr}_Ui8H$kzqGdv}P(F@5_a7gd>g<8}IzL$uTLSS97BE-8f`!&~=R0CgwxjFQfa#S@ z5{_*RXW7|FK2HF)Xmc?&gxjc#M%(Mu!4v5J27LBaG_Tp9^}q|&Ef4?&E%klb*=!>1 zt95hAubjVGci7CyZ83UZUhH&Nq^lBmu)}qy`u0F79!$VhKIw_3bC8d_|ITf_5*WtP zTHrz55Z6eBHya*lxy>MhFwV{Ws9h(2WU$CU64)^$h@~o)vvUp?CB>csn|8QrB-U;i ztpyw*4^+hU{*aEBN2dUrO72v8wDzy8FG;^J5#4vMD<%pg&qD#OBZPGhanb@l^k*4J z@}tccd$3h1nWzZ>s`Vd9AgW-fcq73dVC+_d}nm?J%CRf zP#bFJtna{tm~q++zl~Rou`Kr1@P+4KorG zVK-g98MPf`)u7--0OG^cC$s~_U7~1nPryA}5E_OhCwGrk+AZ~Gk#BfxxE+mjdm=GX zTOP=v;yq+W+j zKsnA+KyU+;(k)r_)=lil1_wA&8eKhz$^P<35l>~6kXF`}$7TUkGsthVtla zBUL3J%?~sf&Re)8UjF4esKF|Z`_)53+666I@fc9hEq>h@XP{aLmbNELka#BPE2cW~ z&6|M`)Rv|Fs15W3L(=$kNLF1>xVY?f7C>n<5Ka;dC*fda6*z8w3dq3E0;U_}m0g^v zf}ek9m>@7Tth!Fi{5v7OH6Uc561at5>d21Yg_VTcb!na!y$lvib1JY~=(?v>b=~de zij-M@=G8CI^Pl*ENMqn|z|R76rA$mvrLB@jvhW zu1LK3U6Ht4c>B~DoLo@$T&W|h!6N*{&mgd5nQ%3hU=tS@mVns9fo?+#R%wPUZ=ym?Tn9vb8(KrPGWEtt@<2WY-hoD|X ztjl73G|{AVG0)Sx|H7(n_Fq_$QDEr$-xk9EX@^?>)2(4jThU~V6=aRMWR3AKME6GN zIU5WC6*msgy7?O;y%#07ivQ8b!I7~r1V;nfr#Y7W`EL}o0~7$ub{lzUdb~xcOWDI( ziwFUbwl54N|Ma3yeDpd+PgSP(gU5a)mg-U~pK+ePS3Jo3pom6Yr|7*S z#@DnV4)!Un*AVLQ)JMi=NCMK=i?VzNKVz^1$1zg+fx-d?mz_>Lm~+Y_cD7(zP#aC^ z!N|z3mMijuQITKE%vo02+FUHQo?t$7Fd7go7$~_F{h%2vS7o$Wgg(kIO#4U~wA0#p zrR8w^X&4rGYNvm9PFAxpDLGKouYYokacP))>IXL*8SQ;~7IMvC)zdsXw7;iAr`FF( z^o)6CQeE;~zSCtYOo^($bPl^4RrmG1gN746{Ysl-F|$YVsCHM_9?BU*gB81x4uh7h z9Zp^xWlxm}HdCp1sFuj%3nrN8$?58EkVy*)qa0PZ_d8z*Kd_+U?9z~V;V_HXZ_Z^$ zNlV-4WweL)V`0K&64W4IC%RkM^XL~&-1XV*`Ww45zf!bXMSjpx1QFUUY4#wx*yCw7 zhqIS|AT5L@e^S5FQp;P=XjiMSWW$h_7d!!b?B~K;E2hrJ{z=XTX0d!Z5v3O=yzTfIFP$8G8MOHMnXJc?ZC{*2@e(qH|SdE8oqLibsJq)O)q zSCt4>Ou(qi)^Z1^(-LCY9_$RU%DA}B->oV!?P!*$wwa#lDiL@O3uYX^Cmgh#D;kR0 zIxI1~r&%8KriNz1NnfLje)t_g;hhe<%;dCVrtgbk9;4;oeDPaAUiGSqNP4fMEHU!L zdCZ;8ecIyY+}!pY>F#{k^!ShV&WXsDcD9_ugZLciPTOr}j+Y9amQx9yv`~>;wkFpS zTW%3)HG|G5+oZUngcfZL0gUc&@;eJU%pK$5v`rj#4m)RFTGvUOe0cF?} zK>%A~6c3N84cJw&eUl>)Z>Yu@`ma&mukqVw<|EI)8T3W*%tt=%(603R+$bz6oJpP< z;53KW@8s4>O2b>u<24jM8|9`;u1k2lQuaJ1x(N;Nd)Zge=E=r2f^DL_^s0Xu$SW%| zXf?CXGC3Qoma{Za_SPzKGNdoqEODv$8WZwI&Idkju$1uLF@d9sik)eBR3P18a~XW3UWFan&1o~YKw1Ydc*zp%@m5l{hs1Cdo!pJ@hh|7l4R+PJb&KY zo#YjtEX6?>oyKOiZd4dj#ys$joIx-H3I@Tocehf2tfLPRERJCAg4 zMx=K16+pMFzP+hlA*0E;V$;-v&0(|lBlJpE ztGLGf)`c2u+6u6g{Muk|WI`Il_kWnj>K3W0vi0G{4eN8S`Ku83_1u}tZ4r?~<8^3G zcCfIR6R&}`T8GzsE;Cl@af#vXW`4rYYWB+f*SE5wj&jMhYG&)K2XWT8;giZUzT);S&B+1rsX9(pKJXy5eUjN9dk zS5ggvSEFsI|1&%pI_eifyd;j&Z|RgF9$4-aa@Ie##Vj!tZE>6B;nJ1`zn3mc*E*`J zRXjblRT<$@yaGZpRD`iYmVGo{RgYm-?53#6+*0_4}FG*}2DgQ;+XU%{uI zB@*$ctrmVQj?<~F@kS>lN&+YKH8pr)na5QzW|Ace{30$BcrOwls*mk9F$odIQ;GF4_@2z!x zndtMSlv_<<8o2SF`IVl(=(K9#oDERuPX8=uJN{#)Vm@%jIAX&(!u)G#O&CiC=K^WL zy2l)Q8 z$aWiQ<#2w+ip%K*RqAnsH7ek^H_xF@Hab1^9`XlpDj4sRlu(pFOEEyS+WY2bQ~QRW2%?D;<4=i$~LWiQbff(isI8xP8g@Lq#%(@m$qMcZMCtjAlb4yNa z>08pB>DyTP#vPaseyh(9T}VgzkPDdri61m2$64PLWZ5n#UXW0Y2&uHUv(L_Dx4AZ`huy)m9iw z-PpFXw*7=VrXPsqc2M5Mhyxll;BN4irU9r8JL_UKeCM4!19af3B9{lTmB< zJ^PnqsP&0SuYQ!pusrIuUkN)$T3W^PZU3s_Jy{8gRNi2SHk;s2E(1}yg^HB)bC^Z^8j08_ zC13WH$L|StPGr)TBiph~DRal$aw9cjYHw2*cW4*I&c!?S)AVIMHt@9Hy4AHd`7K$8 zwhZ{Z0DOn}dbHD&0{IO)V99r;lLHrkjjNbm6{VRhk$(?>aYkC&~?C#$-*|g_aE|Z>IQC2kTo87li~>ZlzS^6p?vEb>U%}__-SX` z6_#cKIegJyGjbDnbQD$xTcx$|?Eg4tMqeJ5#7=t-esDdC*|PSR)R8R~$32{MR#-S-B1sX%3iDi#>MsAP`a>X0Bkj{N)`7d;EgMBFsUhV9+sr$5$ z4E7^#Rr`Jf8yZp6J__F1u@#rwe6E;-FC`c9(cUT)WNP_OJ~`bf$o-W!pkd}8)A976 zDYba2m(-LOLA6r8KHD-gzk|N=;Z}no2=B);XG}mA z)|W0##q01BZ{6iJ2PV(S$+)a}I+3I)SVJvG{2(nCRP2E1QR6^t@^7X>XZlLZJfMfk z(3!>4#Q0tBnP=vcYNg%Ux6FD)9;sN#`!TGPt-H5W!XD-@U(T9JRU!STB_eL>8gQNO zvyG3A=2yAE&=>LTv8A>=U;9M3Ul$BFYM8ZU%7&!h{n4J{RDE0CxV~EQN%DSk3G3Ys z>%HDOc2q^8TT)W{q_)=6@HfKwo>mH?r%804u}Z!?hSRR=9*%SvvRCX2ZQgzJ@Beh+ zu_P%8VfOgiSjWv!zM;`G#?5Hx4E?^7rvw2%i3$jN%-Z*tFNb;7WT@OJel6qD8I2l! zPq=f(GD33Zjb{Li#o(HWOr?z48Jnmpo=BiJ@puRzz?c;?OQ^NTtFL=EZPZ|T`j ze9@s%>o>wy#$`4)AE!+PTr5z9B9~MV|EPrFl$iCr_%I_*dZwP57aE5X^$T2%^LIg( zxmn5Mw)HMWi}lCOg4&41cH`a{xuVbQcc(hawDdd&*@Bv_3MF zmU$6FiQF02XXwQc*1Xod4~O!#6tqf=f5Nl*tCdwHADE-mcy9by?yPPK$(xG=zcmjg zMw+uJj9X2v9Mv&D&yxwa=L)NubRtu<(=qc3e`BAiSTW@BNZa>(8^nrB{%gG99$nh8 z1otWP$JKYN`uN47Mb|zk*%_8hihNIVA&HYhz(en(9~{h|gbPs> z-d&MZFHFK1>GqwWpBb6n-8BdNz(boB!gzHrtaPZKIOM27siEE=P%N|b)OPCTR4#O; z3|Fg#jwbf1L0V0*YsjrvW-b&c)5(ooeYAFWdE}Rk1Dlhw#1|1828{z%vkU%lSZQ0@ zDN?B?G&koKGAvyx@3(cQY~?Q;30$9FSl@CF@o>pnN$={+x>0+xt&J^K$*i#(BOs%> zD3N)?rNJs`IqxF2p2gAZcRK6+pT0v~^d{6X8|u(3iX|VtVK*b-0Uh{~M?Q6Ti@B~g z7-P5(%Ll=RJ_0}53PKth^}DU!40;%ymhxyjVJ{R#9{Q=Hy0Ja660RC(+HnnmIt2%C zqvko8*-K1-*OIr2EkMn~Eq*mKQ(y8i?_6XSdX3_RGVRmoaP@6loS+>$R$2U8L8gtN z>aeGRL?Cw~k=(ZJZQ1ZxP5LHtSE^MyfU9zL0WZpYxNDUn{@`V>!`AV*nhuC{SXP%q zL+dvB>V`+Q($%wb7!+#j-fV;`i)MZgXo67^E@RSQNrc zCNCT_rdl+CTLY<)H;sMit>KOK7T48sMX|w=X8TU;xFoc>@3T!ocvn>W`Th3$Wne+w z9=|xYp%A*8Gg9>RJ#A#x0?J8cNO$}La#m89W|yjzA&{EFJo<-SA(2^4wo zxR$bgeqKkfpU$9%>U!#Vx-CxUe8vs{akSYW@4j_fyVRR4ogovxPiF8+ys8EH{ql;5 zhUSk_hL9PMi5+{rNduYb-)XnB;7jWAwb?J-_03k=+ENaIAS(>&PI9Sfhq2A*2g+jT z6&4DS260tYXv>z3FR?T}sOkPm2Bmvb)Qe1n4n%}P0y6HUb8!Z+DQvU?SNy3Wl#OU< z_&uEaEKfNkNSbh{FJBEd6eOJV!QUP}{L#MWpY48Rtktl}W1Yb_SlB)oQtin$!9KU@ z-wLFg*XeNBZHBtIc$x+WwG#66)TuG#Q#;VmQ)_nn234=Wfl280XO5$gLB6fw(@1I_ z)#(0)|L#naC(3fx?L4XJ!_HtYaN>2Fb=vN;5nZ!Y9mT;PX(?XRRJxNFuusI)S?C^R z(ApbMyj^)h*W$M)GCXWJ#(y~6GSwm`Kfd95)+6EOPZt&p&Nlv}CXCXOZNL_6k9&2# zM)u0>nreI}HaeI-Whu3ryG#P&+hBaekqm4*g*4i>F$!B(9h zg$LQZw{B_~OEO}oJ0M?6Z{~^f>{b4q4p~(uUgLiwzp&smQ1@~*V49>B3Md~kH+(ik zIcDE=g=k|$urEC;X|y=?4V4UEdShTSwF@X^4O)#~c^Lji6VKkV>r*~ERe$0dYtL%j=GKKVDb&K;BfloS`-$b&dczIRKQC4h<|B!oGaGiDfKM0_e1A*t^IKmGUw=~R0wZDOE z@JIB-Wc<2C-0Q0Qw79^-zZwl2*F%Ex4~QDBJlsJZ5iO6td8DPzooPlWzdrV6Uar`k zDXDg0ER)tzcpuskce&Q}TPI%=Q}n|}k22VzZeIG2^jaD-)+mGz8#PXr)BTi{U+iq9 zXjPnbXqQ+-ZBFB5KL@$gDusq~9&^udL!$!<>qqAm5OO$&JWQ30&mgw)j5^Kxyd7DP zCJxT4y;XJmIJBnxsi)f5Qfy`dBk%EE`mX@f2jZPD`Touq=?|^lozw4o*H4`4NfP>t zVsr8tJKE%gOqsDgEVl4o-y8qS#gG?^so5`~xAbx67}co|-xuje+Wu_vZ=utZ=kk|n zIcqOjpcNM|5onP$$~<{j#uqSTcuo{l+}J!cE41-?+0dDQ^)Z z+D9V~4#eNAWoG``GpuI8Ni2KC!1iDb>(edH08iR@03!R$pTNcY4++f}gSH~&9=PMZ z5@YNko#d)g$6oCvDeiyD3}F${IS)3bBFl&1Hs4&C*aeF@9LiGw`8XpOr>aY zEt{X^=nOBXF&1xzf*OuSUJ7%Tp*mZRQZh?*nQ0iEX&3>I{Ay3&8{wwRRMYKOhx_G9 z5-;N($nDJ^Zbzqhpk-B=4KM#kYJ0694Z8Pe%SX$Q+~bo^Xv6MA1#fZj7+X33O-${8tlm3>bE3l==yb6OHOmppDkV(K)@lyPmkzmiE_w8Ow;F-(eaLRB^k3@pkrDV!oThP$}R8 zWCYJOGV|XvZk}4tGoIjYkEY3!aBz4vf?Vs+(L&Y?XvCCf2Udbgk(mRP;S!TNHm2}j zue1}#W$x&&C;1WnaToZ&vY+H3E>=8N1c8OWIq5JS+PL(9y4cDj6lHS#Czwl`F~ z{cl}Hx{Vpwg&2TR@=5uf6Cq8h>p#Ht(9oyN-Q+_vndlksj{JqNH`VNTH`l zg3If>i%?zy&4DMN3h}S>&C5Xb3Dm)6Bg>WSoMp8tlJb@&h(%EM4PSPvWHqEpnhBN} zC;S9}&Q>eIEFL+4paPlJ7C0$zR9PqC21glx71(=+65M~kG?4%Hbr6mA=aORX!;x;q zCRLSu*}d7r(V?j^J7U2!kALfTVf`PKRbK4OZ+G%as57%`c1O`>xv*l+5PH`0sKB0^ z+)6TJa*&ABO~b;^*>Rw3p23116H!3EDb*NJD;4^&I96=aX&t6j%N@*S^0erYKgnP) z?dFQk7iLDSk~_S7E$rnDl41mv`QnUg`u|j47_(rY1_{#f%GXluX_r^bqNLV(YM#q& z1nY@t{QN4{CqW<#swOWh95p&=sCLXQQ$-GBb-#u^jE<5seG_=G8tdn*oW@0|tW0mQ zGkEFu)dYc_FQjAcJb`qH>Xs^|Q~xpfCgsb^KTdcJ0lc(a)1&rsM-)jO#(!?yEiTFG zNmWJNwzb6p!gqG-9E_6|RmzDn*ZWyzp`7j;n1D5|&X>pAYGm5mJ@fRvvF4OcuS1~n zi*F1e4YW=TyGuQJ)ML&Jpqr%U4wYT6l%(&!LS-CaNB#hOiUkTCPMK@;3$^mH&IBKe zJ$|;Y#zqu)ZH7dHkMZP-gH=~*`*!rxaDwz*qwc3auY2Ub{0=%ze=c>ImYn$^dVh0{ zvx#@;;q&JiIpM(q|1na6&hU(=*NHJCLS^f@vU1z8NeroO@yyrfsb1ZI=_3}BWG>To zixTFke_IeEO-9p{n8z+H2j^bIGm30&tK60}vPlWc&7bl9txap+wBb{krg(ZMIqlLNYllGYm;*x@%(F`8Krq&cX(TQ3GFr47n0>y5m;7W zSJ}7P8{!)+boFyrqO0T*AP3|4^e49hX$eWi%qw7^Ze#Mh%nw$qZ5pezUP#>skJHr}Yi@;Yii3t_v%f5`Pq*DB~{x@#y+aMk?O zVY|*JyM=yJZgS>^!>z1ajL3eo{k3YLP5!m}i+u~5X3uL4ewPfG5k1(8WCrfMh-XBy zmpQQVu?E3SJ0jQ^QAr?tqNLvJqTg`o)3`P6mi5Yk&73NC3akji5V65 zrMUa8#+9RD7YP4v(hfre;gee<$nx>>@fJr*SF%1(vJ0v($$(p|???>aN=hidh+G~h zGUEujLataVie+o3l+&|HAp9gyO0L6{GsLy&B8|ZGlh8X896EuXq$LYG>$jN8H4!c= zgX!}d!@MPiy=nc+aI7`d29=g z+!?Pe96aA&Y5x?j|-Tgt5vA9Go% z2H*Lrb7DVt5mq@Cxle$1euMs0BXs8YR15S*fZhN_|6J|bg~F)Ta6R;Xf1P}yqMl^@ zgUv5u-;&RXjFQ(*SR{Q!{yAI(%P+rsPY@&O(cNP(-8hb}b_!tEn3@hC<_o?BxY+vV zmUbHMkM4kPzSDNezG7!rDermDwNG1l$;c^JS;K11PyMM)L5>6_1MC#E_l{!MYYppf zV+#>Wx|wmC_u22x!-&7C=f|86r~6IWYTdphQQKzvfJ0mGP#R;Lu*(7Bb9y?Llcnil z+iYuWzHA%hcYplT&(v09A`8g3SHVRy^%CoMFL_`7na@5wJqrzbGtFrg@h%`Nt=Q|Z zd}+Lj$~qI+mW!#)pQ*%=6qkif0AHBjQ;g$Nc4Y{W>N)pO<*?6?x*~|Xf#{*V&zdQ}S z<6S@_tY{79?Lm5ap*ht( z?S!SLX$F|9hk)P3K|9u&*nfC$-d8Vno#NZ!R&4%Xg0KGw5j8vaZF72m>Y4AK8#*J# z-ytz@TyUqso~akE_haNKG7(!c>K(ieD|gb3r{~^jg+Sp+3?-(8h?VE5OiC`1wwDNIn3i@1 zVGn%k^3)^@Q7!GK&cLk^e6if;lKT$l+wEM&&t98_26MYv-zOTv(Fue*V%I@Vit}+L zAgW&$mVS3Os(ivclKRO^b+NzIg}?t66pW6>4N0RHBkC7uHU1x3$P^PU1~Vd*IZ1$Q zvG8b!n{1~7cV~EfT&Qv}z52aH%IX9%QE8Tnlsp$TbunymZ&4T`9fnZARmGkpg~{UA z5o;#4UbIBfN-*>)Z3fXNj|irvc1S<@DjT>(?yxGj7ek5ZQq1xM7&7i<Um+BHrGF>S$is@cWi%$tsO}2`QOON2a?Oy{q-FKFW$cg$_ufV zzRGPePZQD}Z3Oh^ z?H~Q|*B=t5+5h#7@(*17^?Pm^j}3cEsDaaC447}eKXC_+=szEX0o`2V9j@ZVP!#cp zBF6OeXD=>?GaF*&{(G+3l0HR@LPf!U8w>w5LzzX?4P;0+;MLW?$&xc+m5sp~7{Dlq z{%_7?rBK0f9#|q`c`!=*{qHR*smE10(UBNl{jGea#=$})qh-8P&s6?ifcZB*{u%N1 zsm%0Rx!znGMi5v3W{d!7K=B`)=KbqS0#49PAOo|%S5bb3CE*Xf_yBa)H5Q0Na=^Qj6zLl&dodKi4dkvF{e+$`!SFIqK4U+=*=Wx+tjQ@c@bGHBg+1&^kU04RY3UC%Wr$ru)RF$4rH$c3u)iMbrj%^#C1qTTeFt#f^q)RWb zSO0!s8a^fKO(t&j3F~Ei>l-kHaey2E5JM!W+kg|FX@!PMpA;Z^CXngAh63-TrF4UH zB27Ajz}Q?R%$`Jk=G=$?K)thd(S`_$;VjF;4y|zZzcAl&Bd{2N@3^zI`t716lUU1y zwIi7{M+Ji=t-o<<32-{oVpK-5#PzqJoR+hmJ=1MS`Rng7`GsV7q>gkXAaB3$I;_01 zhRe#}wkSaA#``~?QCP2zUBR?afysZvhA}qc$;&+n{YvysXe zAJ+@}y%b}5L{wvy1DBCJ@C78Xe`Zbx#&3g*g6ZSmzbnuikB@pwyaOFg7|A`o0xOLJ zWL&%R7fZ-#Qn6cJTel znA5rw!D~V?2kYoyh<8gn=hwvVWTyJJ_qB8o!ZbZI7g%11n4rD<$R7BUC5@U@TXW7l(+s@-47D_b^72iN82r@KlFP zzmpIV%L=wdc|AaIiD6!XVzI9z;d_#RyO(i#nj7v@CU&j9Jfc}YaH57blA6r>^X`nh z?rkpN(-V%V`Q4d#pN;jIlZl4~yEDNJ1fL!sA4xQ{^o4-8fQ+{s<$0I)9kBO>Xwa=5 zN!J-xt@WY1a6}=(r9+OWvpZ#{p@-!%%XxGq9@x)fJT))fyCgWe-!ktc?|NR_K<`68 zF!~xrKUap|wmfW!sz;a6U$R#?r!!G%S>YS*7T8NU?Q1zwW8o1)6YqZwF2|kZ*7h#< zx516WD!^&#?Owp5?F|vavLpF*v(HC+NhjOPr)GD*&)aKb=1>7kENAb;XvqTK!Lw|P z`{#aX7quE%%mZ~cTzVQRD3(<&TQ1Ub^JT)>lp%`Vw+vtY@)?olBf+V{wGcH_Jp=eT z>4DlPwSYNzweHx-$`Py8GT`F*pw${R z)LbU!Z{bzAU=%J}?g2>w4e5AUlOmHraE{5zqY=h%3wrS%*mb01g+p`ZXoDT0F92Fk zA=8m$jhB}!%1*1T(5JKu3kmAnV`mN~WNSJ)qjfOP!JlVT){B|%;VR8ge4Ip|6d1xY zz%__W9DnMdfyE$jAgy=AsYdyDFXKD3V9ddk_8)RwTC2LcnfFrGNas$>!);ZE)!tX|LW{*Aln{NTf+LMlQ~8=>;~D+P{x>6A@eJ z51ZaE*a<@m?mb({-dL7E@%48Lf@Fwt&ea#wN~{z+ucn-Ws0sE-f#J|7Sda<_4(EDg6O#2 zjNH_&lbvUnVdk0wt|+zmOUM|pCZ%}A4p~<>LF{p*!g&q2RUveG>`MZ6WsN|c=^hEN zuuH7zMB@#d#hSW_tz>fG(FmG~LzrL)%B7Ydp9Ac#ebvcW913D}G|uky3pcPraOyw6 zMQhC50^v9_-sdBeM-BBpqzE!~|9+w_`dhpt;GGN#xvo9?=vOHE(=svjb4TfCq@#6q z#}3lxU93#J`@>~oZ5H$fG_(e*Hw{)v+?hNQ<1Nqz+jf)O2%sWk{{7vjvZ%B1@>7^` zVY1yP?UHj*Uc`R4J&JF(TTl>EL??Uc7rT&E1J)EcIo-tD>;!LI!tKV{={?BXw>e{a zc$q72&_dT$M?v=*7rk@LINJ>(JkRGVHz^CT-D@PdQxvaw}pR6QgYyDa>et#734 z^rsaXunv6u2vsk3I@;HFpgL4lX5kg#wa{NRNU>V^{=J2lz1O-VR>2pqbsckL{NvdpOu7SX_`Ux>(|TdvFN`G^ pg1I#M+XG1d-~6Jjnsd^xB+7DcT2CXuYtOKxAItxhFRuIM{{cV#D>wiE literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_3900.png b/Notebooks/3_N_horizon 5/sim_3900.png new file mode 100644 index 0000000000000000000000000000000000000000..94cd159385c1fba133a0a50649479eac80b2754a GIT binary patch literal 19757 zcmd_ScT|&07d{$5AV^h2LN^Bl=>$YND5!`iD2Vjll-_&Q07s-q2PpwTdPjN{l-@*o zsM320z1|6WzVm(eue$mP&2?=lJowDcI&)&0V&-?C~f-LD}+RG3KgjDX)eI*Fw zk}w2<^9o7;t`w)sPl68-hX-m7%GM?h&iZ!7kf-_%HWt(O(>o40&sOd&l?FYO|Uv@xh%vy_IOQ%S2)Ne^F>KG>j;)~{XDmWGo1 zQ#c_hbjaZzb|{P@8Jr6WUnPM*A%*W)2ll|_lr*qXjKoJYhmR5#k{mp%b=)_puJiPx zxNJ8q@p0H`O5m<@vcM+ZRL`#DP*j7k-Zj2!!UPpn6I)U^dk_g2Yz`l$elK!JtaH8}(`vR44PDKW(|)e=YRoiK9VO3|1KM+U=@esHAy za^i|A9Elb{mm5!b*GsS&1W_TH{SeKxHy{Hn_he%_d6;mmf)Q3hhU$Qsyf7?0xjT#-;u_fRGU-va z>F%v?;`u|E@T>^xNNea|Ly`rjU9`k@PaW6NlpwZeX=R zkh!^#F=M~`xDc{8EKOF{G066L?HX_RNqo3^omw@#xdP9nbizq4T;oF5G@^U(CPNVU zen7TpGqXu@17e46?o1#=9vygm&h(u@5TZZ$1#ygKzp$NGncx zHpCbPiSgGX=J+*lEAa2--?{QV>99 z{apEGFVkYg;YrVJo9@TqdWJSZMWW5ZoXr)bzMfK0u3*F&KSo3sat87EG9l^x4j~zJ zxPNfR#siw7E5mfFS(p{0E=km1uw~sa2S={Mkvc5;*YAoYUm7m%$tr_B?{53wz0dyBEffr=Xci?>X>+W z+h=ZfFYi2oLYh2WpNcK)#2`_&uW2?h^PJII<)@IGo6-|!sCz4&)-VVyAmenjs(h@&-}LBA2+1dfnT9O1HPBZmryp8t=r|kV(-8))n1<3i#pZ&z)U zD4rUUsVN89ItFdoBbp^yB(%@OkbEwaK`=Tg)zmhZug%pQ4*JPHd(C(QFrf z$aN-w?1c+dE?qh9oGdC(3QxKeF9Qw0nH)Afrsc2iH08n#lz}oq+t!{H5RBe-*e=gz zN7^_+Q>;z)pR(vb*sWV2f0zypzj96-XMsW)=Uv-4;|K0X+V$JYiK^Br8u(cVX ztcPxg6Uhxlkc1t)3bK_kK_A||!WYWIcOcPw3|Xj3njK8n^r`=FBCRv&4N)~+*V^8N z&0L=%ZqROc9L~tVDO`v*aGNpqy7aI@-@}*|Sj_4IeJy{BCH_2~VmOJiZ7OEbswznp2_;2vL;J{a>Trihv`3Q8eyQG`@!;E8)l$ft6|`1tTe( ztD8&AwEE?Rsi%D}^TO_lN&3lN9D0}vw+9k~XNp5-7$k(G$iF1o0xM`W$-8g`1h2c> z%*MtJC%LM}y50|u8{X*7t)~+%In0T`dI(vsVK%eL6w+Q${X1=3tD()X3>*o8^2wZ9 zQr%Fl=v&yvlu|ibop8)N5Y1+K7SI&RO+Bc7|5rvj=~&z+IIkw_PK#t2U5$QTW5*We z9?MlP8Ek=7n^u!C(Bp;BUpE{Bwi;KML5)&+k-?CQ9KOT4G+tD1xDHu|z=W){5=87x zN(MMDZkB^i?^+Bczg?h+q6fv3mMZT-Q@A&+^l&!WrrvZ~QA4~tAN&3u7!DX%(nP~J z9O)4bS*e4~G{KPzzQ@u~6n-?0scFe0Y>nZx5je6T?-1QMArn1Eqz$w41;4$g^xsYs zI~4~fr+SeAJ{1+!2+sqN^ookuI?rPzHMQ6^r5!TZ#k4&3qvCw|OhcpH2L}%dH>#$e z`y0kgcgI5Sdmt4Fy)YkoZjr$z{5iJ0tY^=k-y6!;CKc+>l!iL2jSeK;6KS|`%aqJu zR+;Pvwe6(8eL4qgx&0;<{+A;;UdGhJC?K%YHf!rnE5XA$bA@}9%N;xKx#^I z^89R{{II6}XrQ2Cr%!%gW4}Z9EWF6Dh2LpaEif<;CgFD5uq9-!owGoE79$i8Z(SFc zDCTTZO;W1Y{q@2(w4Od(KrKuMFwOf>>m)yozmuz5pCsYF2eBE_b`~_}#x_y8oSieV zc%W=~GZ`b2MaxX9xSgUYC?qJ8A{iiANlQdvR7&lKgk zmn^kH?tLKB9Lm%ai!iL%8#TvKt8!omkY&NjI`v`juQB_cIi~XiLbfEAzhwML^pAFy zAX?7jjtR~at_g0-StK<4NU@C?40n&1$AL}VrXR0OC!(d$#M3-w)h2gM;sX_FVPl8 zcP_R>hpWWbxr7(Xo>lz@T%V@!+Lxbdbsi!z0c3N;x(B$5l83Wi`{*J=LaZPMbJZiG zqwRJFR56RGq1#h$$+r_XJQhAoV5sX4@Jmd(41lP|+*a}|h6{b^tSWrVEYbY#dlu`p z`#SSIsGbe4eX%6ZJ#~|wq^Dk9lKT_xymNDNTJCG5;>W8c;zx_Agc8X4Fj+?ZtzX}t zpd=GVN=yaJ2f32mmf0aXu5(m8^(S_qiKaLB#0RMJL#8Cxc^a##rSw|=uFg1tfcld; zUh(r2%n7>wlrHCGp6HY-HIG&+fM8Gk*)H$V{zlJ!-M)lLcS0M`ewXbwwm1P(vKVbA z8qcF0{pJ3wCyAoF+)^!{9=tzjkvjY8eYW7uZ`^*(s(S5?N!Q2kPld+6QGwKZIQ?s=6d5_2^MZ)~k-quqqPIh*EAT06Iou8n}s8G*U!!esCQpZ{X zGobLcM@t!ad~Q3h08(Z2_2H?qp(aaxp95a>o zg49b)5MC!P5T~`#2ce7-u|Q|RjHJ2muR}am4Vesoe0pGgm=r3$4aL4?nLKYp(B;;q zK#ufY2h)HpKKw|P#p457&#IX81Umf`wH74MootCN`(lZXmWyCTcpfJRyP@Tj2SR65LP2pE` z`Jgw-b3aSM^yyR5L{UeBz10!x-5*hSzn8k76=Wp1Kejje5w~@87`A?ZLpqZr;?GWx z>+|eMVSGO4XB+3~>FNGaoT`Iey3Z%0xiuHZDg^*38Ge0(e}X}s=b~S#sXa0_zUk-Z z_asR?PM}-(ZGp!e=g#7fx50Em#g^zh?d|OqC)*t(h5C35q7GAM#~TZosUdD1qZ7vy z`*vM|LpJM`3rb2#jqOpK>|9*pX+8S@kYU!IE1H0E-U2CovQq2%n&7-LnD@ncGAV>X ztk|TB_H3`b9svXnc`PqKQf8?+em@hCtTl5VyA0}op)R?1tlg~?m|14&mUVA|H69;wA1A^pZnlAFHd zg%%_H`IYmufGA~9lAdJCHL?tj*RWt`mJKoLO}>}l^6Q&+U;=kcA^d+F7U{bOhHMJvIEYp-5IZ-(pw_L~Yr9PQot*906Ha}4&tm`- zk#zkSn5s>neFL?1U;++z3%pOuCaVYgKFiYxn)T~|w%0|m+$bZeXgI)Jt32`G0oE}g zlSY?W#!0x}fnW_;`J|T^);_G1sj8|*pithe3$@@*vWnApY)Q#!X-G;1VH}_Lymbd3 zCR4LssHl`?y7gC$yv4?Ql-4V^9>$6~Za6Auu&&U3m19f%##vC)NU13PHBBz!V3tj) zZShBHR(}3G-Q)qmOiQR~XDs4m)l>@aMsw@u7@hXNuP`4p5K1H)G5EJ=A0_I^W!qIHo z?c~7OV>vsU<3jHMp+nLYQQcS*Gv5{8(&K$*FY2_~3MvL300A)SY*;$_O2}k1-RM^X zJgPC*g+zB!k*rdyaZ${1J)Q=->wD8eG$p+u+Uz>^*psZO5IZD9@r{@&UF~aXuouR;_4~_ydV;CsS`d` zV0z(a@{io@{|*EQO4~Wyj)4nkrQP#9YH*(f%w(os6*98l@(Y=mOIm}(4J70la2i(1P>zG@5PJ93 zA};MJhx!HKUw<<%`;Xt{Cv5qeaBRqQtoGJX0u&qr%IjGBFvj=IpN6GjFnxqtS9}-F@-q zR?G77X7|bCiQ2ux72Wg4&}pBAP(e;-NY91b8}}C?7OE4 zr4Dd_fymSJ2Ke7ZPo70%y2V1>H)>;?Yge>`l~TX({*LZeX51O8*r;RakG=hRW9aED zmYRSa28IFg4Yo8m8Q^-d)j|Un3!v6dog&p{DQt!qj#Scn37vjE^>FG4HZv&=-RP-Fiv2En6R1jh zNj*hs8CyVFf>A@5p+V5xUDx?T5OVdH;=6&%z+dfn>7{Xo^o8A^Md8Sj5yMF!Aq43- zx&&v8(iKFlcnYmL##q{B5zMc#piWM|B7F-7#MDHZE2t_i9Xt*yV%nsdS|Fttx{2fi zp;-IzD#tF>LU4lvMS{$;r(ZWztoWu{@4=DM;Wjf9uo=9#0cuET&jumu>c%i^21vvf zyvD1Yt&a?_9e(>lORLkLl{K>TDUy3grdBwC1W6;kwi26j4!A|17tjw1`P@ZuMc_Pk<&6)?Aa0O;mTL z+7y|JrjW*YhV!IN!4(Xx53Q`G)(Ws%qV1n{z1@eo_+Xf0GE?JqaqJzttl?d0je|oSwjgtO5j-#Y!wK_p&3gGS9LV zxqmajkAeUqi}%wfr9lpkd<{bRGSHb4jf9Iy32tSi7vVrY!#%+{unV#^ho(RlN$3fK z2*I`kNg$%xGbA2_X#jCH#aEhL0DOWGL{31=2QF7(YaO)Z+qq2DfQLXZWa3nDv$3!lfxEBtFc}|9u3z-$BZy^P z4CVjBv|M!a|F})EFrdh%(okg?C`JZqF9VI)C^=n$BVp2u(Rs9h1%S#~;E(X!4bH!O zpb@m?M%Y3ezT|p1PC#ADE21#p-K^VGyrTk~Q8uUV!l(u#NEahDnzA zZy_W9Wi>yFGp0hY^I+hVb0N2^EdVlEKZ?gbQV?BMnzC)nsV{GZtuFK7Pi;1lTQ^?* z-4*e@{~@r3D-Cz2zEdrIXkY8}}W0490Rj1ACH-xz>T?}C0<&OeBZfAr(RO} zCfif`!>1E*w*kK!auj{;s3C1Mby$ok6evhqxe0J?M>{YDR#Vx8x(01W3?8$wby}ys z(+*a;{ZnU$uD(eOflDJPup`IO4M{=4uw5~y5;riEJEm_wDUVcE zuXTnh#iA0b71OC7o$A1A1q!O8z924P*F<3djlIZqf$?mnfcRj%bB=!EGsC_|S&%d7 z(%`Ly?hfLeTiofguMvhv>)xo3A6uIf-EU25-8+od&Yk$UL{u!YM78}ZuT5A>VhF`lFu*II>Ja?uWCmFMxekB~EI?*=dnEY=FjMRK4wc2L0E$ zh=AU*TlMNItsTS;oUdid!|w#Gql><32(1rC(3~mVI~-(zs3+1~#ca28i;G&5R z4ns>G3KaL8HTiw{8&T|PdUH;bL#@Juv);{#oi~42dT8%Kg7*pVL+hlp$@pd;0@8g6 z)qfdet5vqr`xP@A6K+L($qW#w_@=dqnuX#-?I;+;rElrSG#fZaD(T$vHGv-mD8 zXinZ%pV5>F9r|8@_R)F%T8VZN(BQ8m!hPT29O3=#oxGFnQRFq>-UBGM_pW>FcRt@) z>El5g3&v64wvaBj+rF(TcImpa?y@ZCC1yyoui&2eQ+C&&y-k*{%(v}1P{T;ZJvu_2yv& zA>y?f`9|wsa!;q5>GV%rVs9@6gB4?A5Y1+nwMhZb5;xFJZ4%-B8+c^w&f@#+ZuxGT zH>0hF+hjx6I?5-#r!?!!uA`k*x6n%+2j2zc)k;6V`6}@^)~@eHw{R7?<>iDAFT!cN z`m=1hMQkQL+ITHn2Jrp~!IS;}y}HT@%jufo>q z^rJjSj`=}Hf}Pi1zc~=ob;tGZayd_8#KR<4V+rgeDe~$l z9)I$XymMwF>E3sjY^DDWdQMJhZ*4RRNwqR0R5Rv0zPDyA*|Q)?=sfo0WLG`__)Y&v zCGn-jXxjjJZ6_u1knM}fkg?4$1j)uY9Bur$drU>M0+Tg#fJv}}ND8M5DJw8W9-$W> zx8np0qP}-05>h|w*IgeQ**p|=Lgs6yXqL}DKdy07*CCTSy7Da+$w;kzseF>`(0{|M z^1lX!CBzQXm`zkD*I$1oTS=4JiabgO?E2126ME^vLXATIlx`uAdyor7ogH zoUKnkk^)h0OZ|-A0-Y>$LR}(c;4#l>2Pul*8t(4>7Ab`nXk@e?wa|1 zKvI$7QyyzNE#czh2WxKB)hZYua|#sP9Ijn!=n`r&m5k`;EWPn>@c549-LG`t3>b*!ORTWIjNDfx;YBf$`z(8Q)C<(W>h)!>DJ4q|abuAvuOry@9 zM4Kj6o>QdSFGNdRGCH)Y*lbLrZV!-*d?GnoVp^6Hz6`TTdyf-9Yt#TQwdmo}=_zM& zdp9JsI-6kYS-E`LwAA0NS$`)6Fd^mp!R-<@UBl7v;K=LLn{CBShn?^603{0p9JM=^ z%1H85Uh+En=`b0VmQG+*OO;=9Rn*~;bcjHAtCPxAy@s$m1oUPfa02@IEk}z2HqMMC zyoWO>$oG4RZw)7h zUJE+&BsepktmwAcM8#YCD|v@-RR4<{jc6FNcS3ETx4R3YrnAcSp)$eNXXV;mbNOP6 zCIzpvPV*D1c{>gc^Vr+DV#*4VZ)OM_ZHGUkHUCs|e*XI1-m33PK>(eV&)MnpP`$r% zEhkzfi%Q@>%4{YQZT-aR^l0{zBmF=DrBH(4D4++uc&F8Ap>vPKYLsTXKZ85$XE`%a zgl|jC?$4)?Y2iDAAl9|iRb(W0byUk+;>+uZwe0@OH2)F4v95|EX}yONyOf*56<3_P ztqJ`E=bCb_r|$vVoozN=UUzdNk{{ei){QCC+R49{Ad%0z7D#(Yh94ejUS=Io;3XIr zF_W1(mE^A1pJ}1``DOFJ+FPxoQ|V_dv3Zp@Z>({a*?n`vG~|GYCZeUBvo$kE_Fswc7GM6-Wx2WJ!{`N*JXRmBp{YCfJZM+F(KBIV#`rHv zM~ci9u_(RbEK!2&UJI;PKM$V5O9k@IkF9iImU0KPiSQ=%J9NdGbdU8kUy@~=@U=dc ztT~Nxvh*ju0gP{y6@05V6y_H{e2m4B1zSOx_Xy~fFz#+!q8ChTJ@&n&Wq(FC}KDx^iV{=%9(1Gb=ZLTB6AvJI}Tj=R6}kPs26RVG(*W#T_>;Rjid6C6S#& zl3Bs>m*)=vJ?^XzH#svUwcwp=v?W`u9iFMDida1xvWWR?QfP&?@;W_H0`C=z5tX*0 zQ!&hEWkRgk+8Yf^J5{f`)-A=9KW9I z(&FEO)(O8ZEcdeXb6U^(RY%iNiCMatJ67|)=v379a2EcA-lP{UXRV}73fNG~Q_x|Z z1ngwhoS%;5KNk6yfwNw7qYERfrFO0YBJcST;QY(Kq?s>Q^>tZ?QuJC@_Vj+q%guKvHO%h%IQTMYi= z#&V@Qx0JOND{Hz%mZkKr1V@|hTUE?|WEm6w1qE@Tsfw9m?I=6ozh6Lt8!=Teo1}i? zxo&2*cR1<~(MFf2mKh;623=Yg3x21AJTT>NgZJ&I9us}4qeVLZgL;t2!($VFPJL^V9C^BF@p&7x8 zuY2JPpMXaZ3;Y~`XqJ@bMnN>>7DwyMqF3VL&}RnVO+Tyq{ARnWdblXVtzZU&>%eO% zQxIagBK<*<0bO^+ANIy*NLlfwy*-yMnW{GacZ4?s3msQ&M=US2nv0&u zOCx1IcF^nBXMl}lFoUnjx(iNTEe?->BjU2CE7!YqR=O4)wK(94Z-F;knV&a>L{dd z;hW%?;(GeF7zU}pkxY^OZLr#&gFtzJAQ3${mls#A06l zvQWPzNr*x71NEZLs6XT9IEpkK#SiO_J?P%b#Cwm-uNoT7&1=`x*l}Xanu1g`)oV*X zS)shNNBN7LuNnl2=i;RvIi$%3{Nj3?HP+zg8ffcSLO;Q>k1n%}Vm9F$nmZe4m^H9@30z(7lPY&QGq<+57>6KkDhb zLssv}#^^x-_-+ji0-Qebynf?~1 zqqpDC;F_LVk5b)jSH2CV0d%rVo;3Is(@{RK+Z%g$#Cpf%?A4DF89G*y)pn#WNcj3X zE?>Mi`9KE#=x`ppK-wW=pH%wVO(6YYROBwny$Sz;oN0U1+W;o8uMwfc;CXCP&G9+t zLZ4>~DH8EmRO-DQd&M*%58iob^O}8UZv}^ zuc8$zD;JMDN=4P1e+#u|$=~q_ceGS4dJTQ8x9%3o>6qvJ<#0oEO_6tXqX(}UZQFXb z+4Z~$9ieZtb1Ir@&+3A;quRckJojRh-Q(%HM8iNckbx(=w|p1=q-)uA=LN1<1NAfQaJakQR_h_SPZAaCBV(vXbd;7a^(UG-(3Gi~(RfXvJ$&zh2; z?9-sIJgPRESQ*lLkKYro^e#7mJQlCj zm4f<-CsYd|f$hsiYMo_)RnrJfPL7evjE@Y}IeQvbliJ_AB~(_2wG+AaUzB8I&nHjj zJiVuLHL#z6i4dwl2Fw29I@8EDBonb#ofE5D=Ufo<-Mnnz>6v<8y3du`i0PZ97-N$4 z=i!>v?(K2|f?@SFFS;#5xlOi4*XV!LO2j;6Y$R;iK`cJwSQ}IRPF!GZa?}_6M7P-2 zn;YG^-g(X(u*cPgq|uJ!OD3)roj-fla0GA7=59;4F&FP#WUP8qZ0|)0@EX8Jk-f8^ z7-z&>h(z0NbGO96iw!ZEW1MSq3j?Q!&wHWV)<`&h-0rSSxDami=t`InA-j5Av&*iE z@P@d{nd`xDOL%gse9Y=VYCj*=Lkpq5CVlG?BZyrao;&I?=jl3E|?@ z;;M8VXgHFol$uLyIRNgM(mH`&uFsd~S(kx64ZOU)eAcK8KvoTKb)A*^&RXF1N>VxZ z6CG-5V;-Nt%gf-OQFoM367}sBUJbfs*7GNB#vt<|>NA~F|5HhHspl1D0huQc_vGd~ zglpbMcyo-Knf>MMS(%{8q}lmN5KYrxE1@gu$j3zclWhU-$!BzQVpOMx#8M){vh5+( zNz4BDNXIA4Q*>~*8zz-ZtUXF?Ts`*U9iq58dp?+gh0<+xEb+wF*tFK%-v}i%IG|&{ z>bXicL>urS{@IHUpyM9-!l#cU5!0LL#|@-e*>C8qkzgx_QDTa^-e^NRE3a1bFbW6&5!)Nv>{LvZ)2(4B`FAH67rCnTGT;=aNCl?FW zPuIb~_GeK6j%L+E+CVr}+Z4k$L9MpEs7P3541k4X2!1>dc;lp5!Poq<5JoH%}sWHplp7~;C1qi3L zta;B=H~W(-+9j$7#JnuEBJ*8udA$%s5~HOZIud3-eybRW#7*Fflh)j~i&yi>@zM0X z)8OA(<=qV9mFxve(4ChCK`&km7Uu9*x@3{wTPB281H6_Le+(RbpV*#VwcvQ%@6WcI zq-xadddr&z7aG?lwX)w1`;mc{IC?lFS*ifWB|D!tAKjv(?{)Z+z`?SGnvHb6NtVf^ zH^rpX;AeMLbv)3Qu%W>XNV28AWXs-$7GM^OdWCD$qAg(`hx4^<22^Y?U3?C&?8HX4 zW=gc9G;aKH*+_&VEfEj*UJTuayUM|+E?BDM1zt5Oh?~j!# zu>2x5@?t!Rw`0kf>|^aaGk<)Cxmuov)Zzw5#XIBlrc@;JbjI=(aso$SQ!I1Ubrn&u zDSeAKz&u}0I#k-7WCKWRnd53SK^txPB>i~#WuJesul3lp5il(aqDmdbt^yuQ@^ZW(M3hrP^>S{G zj{qWrf3HF1DnTq`hIr7f!|;7vi2*SHO$SzVsV%e)i&MZZU^;*8it}3whIZ+8fMwRL z_MVwW!HaJLvrn&AS$9( z5fTsNgAGWjWt3sv^lrwXm^=90Zrt!C$@f2r_M4qg5Fn%T{^ zy>LD9i*07I64=E*=ro<$@D8w@nF{qrN_vJ{{wJzb{!ozfKl88&oy6J#27R zY9WAKuKT@{wdp?aB4988UWxce8aIBx0omq%fsijI>57DirI8|VuSyp}?PP;CqY4_h z%kREsA9JL3*dSX-h}hYVz0HoM%BJ~u2`QJS7!;O4U9b?{a$R6$_vy~^v(B58p;Lx4 z$F8RDUxI8UpkppZ>$Hq<`0xoNU zy+T=zlEA+U-*Alr7;{fuv9Bhh=C`2F@rxrVq|_+8OQ=|zihHsl+4=7}wWBVF z2UkOJLL_PgGJ;pz+#l{3=#}q{@F<(luf-m1SY zi64KxhVqUTvcQWfzxMhlx`aLEzvf{S^}4`v3d{m#EQfCKrP4Ro7SbsRW;dXtS>C|qj*%o3YlCZqbt3Wpr@guHVmQMYE1&~he`|;1s~wM(hFsBW{|CPXUXo(ZsxBQYnycEWasP8 zuf#8}dlVZe^UEz(oF$5Y)+Pi#vEe1KyfD+Mc5VX6P$2%4uib~4DM9&(yWgL?{I9Oa z1(*R}OCZ|f*A~8cT$K$sh& z!>=0Y+#`359n*lKM+7*S_Jv8r3g?QAKR&@fd1e8^RV~+Z=di41wj~N8M~lz28UXIV zz!Vi2M-%q|HU#To)2j7v3cMN0Eam5y4))4ZDumHdOAHr&$we3#Y><|1>mK}`Z4b>1_!rs$?bwaB>O6rh zfJ~;*t6H!=#4d>B znyT!V!z5gWJ`6fn_wAycOJ42Xxt>4L4Ez$c3OBml_gOU9P-pOj~A?sIXjS zf4IcaEiF5unj;R7{y649>97*LmhAxcZ~qBCvk1n3x-heij^cGT+=|>9EoFfmmoa#h zU}>lX*7wQlH%E9%epuvX8f|^FF|21hN&(yV>a)*QvfW4YtHBigB?aN-0; zJY-=CW^Z*&S-X5vKXG&r9|k54*bjDD2i}y5!Z~tOSfnwz6p8N1UtF35%IOW{UXVml z<7$qzrhg5u(nqW&Wn3?q0h;Y<_e1o~MlOpKFJHd5sX|xhIHE$fEq=aq7+7C`#e#UI z)H2iN`NSy4W3W%AOs&_ia3qo@OZ54B0Atc4r9`ld7Mt|dwDMgakC+o#5GHy}Z1A5D zAK3oP&Nh#&^{^iwV<3KMjhAe_P?q3kL>{<}S$-1)!YM-xs-x*Q;+Rq==xJo!qkBu! zo|Z`lrVUQ{QHSf$mzaD#o+Ot#BqD)*Sjz?xsL|g+$?!C-A~Ot6I*(Sz3}$G1HD~4B z75|;FYT4$(q|ZC+YO9IzEXJ}bR3`^5HoF59%plb3aoF+f*@v}u4Z;6{aAhX&k83De z_q%U~YkV^9nCg?C?(z07GMo+((>pn^P#rMC8Wd$$d2j;lGoMtCjf_%<gKf)AXYG+PZgi9!_n$+rr7Z9USxH>XLeqEZCd=}#e_xT?glB=WUmG5g+1fdp691jp;ST5)UbY1i98!VAby@}o%irB-%=D(!L`Stwkx zny{vU-34br&V2%G#THzWz10ed7(kt};% z9(%H9$H@_LK9HWW7dwNbOle0D0=`%!pNkMCfX#N>OeH-1=x&5QZ#mg zm*dKyp!UV-nu$0b?J2M}Z(~bIV_9lLxZ2sdkAQ8Q1pA9=VHb?2Fzj?9H8TSFOjG(( z8;E8m<3a9Atj(|v8ECC9I4asi=8$AN)BGJI_TTaRiWR^_+<5gg1{DB8-0KzLDDwSr z!U$I5>f#r~@XkO)NQV=Hs4&Pd0O3H$34N?Cot4oEQN<0+32sCDD|t{s<)^1~*pQj$ z#@nayQ!`9LW6yF7|7`jzkb+Hr@d@%VNDUjZ5ayydUkX}G(?U3Mh@X3GpR89$3@LFc zeOSZouP_Mefu#6$Ma2J3Kj}(y>JC2M2oUJ@*{@-9UE`xF{cG>yWOdq?cmy+%z{KhL z>|jyO%bNwJovlvBN+m_Vvxq;B3)LSsV}SeKBIQr1_+{T;gX;G&E+rmzPWkn0ep7`q z&ajVBzt3XNg%eSR&wY74k|$$k@*9ki@?=u~l_@{s}oACA{ zHd>XOf39RYefj~zw#4 zy_w)Yw^31jMYIgRmC5t}b5AxArQRS{W^Sj`O{Iw6$I{cZR9+HPJAECi9Lc|LX7{I; zISH>`Bv7-@q=18{~UOz%r#eqi4VVf7=`)M;USS9nHo5Mr0EExX-0)r`p0Rk z|46gj_1{MG>BO#ICQb~H5do_uKnY$~q}Ax8T`DK4ir`3Ze+rWT3KM?{R-=-K7x@Rd z6|fM|c1HU4*97#H3#tuE$GO#4DkPhQuOBG%cg+T_Y%#U&C)GD{qE}_C^Wo5l1rNK=U1;e+C z#*tmI!P&e!e|UQLZA8%jr0SGhW5X7vnVtK3u%&Q2JHfc&hiERYLYuf0m0H60i{w9J zd3Bna6aLlVFd(;w3-s80u+930`^lP6eS914|4Js*@xy9+u}LFxmWPA42EvvYxn`F3 z(D)+n67@>&XHl01HmN2pIs;%>A>O1RC1Hl*B4^)>+ieG&u>&9xY5V;s1C0nG%K!Pd zm|v}oRcgZ-Xjv!@{<1lt%=;Yj=60LT)2Jw)~})QOR7 zj{Z*(%l7tgMtVU(EI4ofF%6@UQC|o13ST`3$O0KZ7e@t3@03yoi#~ZE^6gK5;+aE{ zeM$gs3Wz_gvq~{F2ZNIZc7cCxd1!3B`Ro0&=NFRt1IoM~NTO#d_~%Ee*vkLtS}7>m z)~CPNkAvmm{VX< zeRYZ9pTXrieR>Y6p8H3TbRt(rOYJ{B|K|x4r6&0Jz#@U9ls_qzO6ICB3C@qGS4ScM zP|Cahbi5j{ip|V-YHW*T*d#!TMvxq6E(7J=C^?hAc-{aw>PlClg2K+|^-O>aAa!;V z!0%r82|C^np!!!Y5-5eQR?qu4+R;Yb4l`n;xRQ)v{9Unm+Q;K;2J9_&$2C1T~51n;kZO@9io;HF6; ztPy~lEMP;wNje3#V1_3{;7E2jG7h}J5g+sJi?lrBpGcxMyXK(PL3r&`Y_*rCd}CwD z`XS?c<%a*0KxrO!p$xA)(o@SZHn%=ws}Jx|#sO!&vB{Hnh_OHSH#)3BWf_;m=^t}r z=|TEHcgj^y4XXbDI$hGh>vJzov*ql1#f@fIiF(FA@*xsFalFU=;*Uwg>Q%-F zKve%+5CR%O%zM|^7=V`S-EZtHky5fYBZ{Tl*r%EVp+?}C7JID$kPOnaOnMWn|nMTjsY@G;Qw|Ft}aR*p!7!t zzm)T6>uu^SOk-oX7l(N#a&x(egbjf8>AOetgExnkLRyWmCTUG{FO{xP68+!{Zkheh zlHmA&wXq$GnR$INAqjMa>u~qeo;z0Jr-nh}CE7?b&`%{ckh={|5uqJtMbVW@Bh6h+ zPF8MZwwS`i_$13Qaf^j?Q@Wf|yNlBoEOP(zaFxfYV#V5bIsd0_#{X*8u=Mf2$8&6YIo((RMOJFz*D z2{XTBL?pS3$Gdm;)_{a)qz|^xB6T;-i7e@*GrK)vOamy+95P!n?opOwK7&V>NJA0G z-ZhAzOYn~!%T>XLl;!q@C!Jv$k+4*9rl;Ew+-KpgI?yM0Assb!S1R~1Cy%EHk43z0 z@v&fP$e)opwAa*;AGpjPt~J~|7O5lN)G!$l!PH>BGNSxt%h19lmi(LWscFx_h5K~n zNGGcx?~LfPS2&hhm%g-#^WsF~dfH_LYf6g^iS=+doI|AY%X!#FD{p>56xRCgiu`Eq z>g|@r!{e7CtPapzZZ2`}@ngc6?Bp-!c6PI4z!P{xA{{adfyjZ%YG7=((>zRTv9*_NRz zi$biILM_S>y;N$^mAxHpce+i)@LF)|@p)J%ZD!5HOpAgiuYoUgLQY~EC06XD=SquM zY1!6#vi=f$7*UR?Ygw=pJ8oSIka^LcCJjA=BS#uErhdR?zI3Kz{dS+u;ug&WQ`|OP zHQk$sbB5r-ARHyG_%>=L^|o+iHUA1ZUi6UI(={(rM$|)fs~P{<7j!ZmuNU4*NCp>= zH-imyI8uZ~O2~`CP|GoS<|jw|8ohKY-WlaVvt&j`mQ(khGtDhBcqa+`L;z`HVxp~3 ziny&V#`H?60P(Rrm@Zt|l7u@W(f*KDCNBUd;Ny#nXNX*1Bz^*g2Z{FEBPrbQ>Tx6) z40GXfk&`$UyhV84q4S3#&MRr$WFqas5Eh<-P)@>Kr@6T(x3WSG9pYdg7-cj{Z^%40fM8Z-?nl0(G?{I~`1tb(zgtp^Qn8ww1A_J{IA z5fAk^HhJ#IaC$nz8#<3g|!qgdg z=_EYj9~3big%wYBgZ*&BARshCh;C29Lc5mPf&!agj8FA);*3C?rw)9{uEjS*5uNJyW$R~ys2+8j?w5&pdCRe@ zqlatss4`jNS2O!Y6UW~>?Hq&(*2gbaTzogXTf=)`mc^6^WC-4ia9QGUY8?F$lU~c9zd^|9?Fj@PB`#*TgyD Z*0X-lk literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_4200.png b/Notebooks/3_N_horizon 5/sim_4200.png new file mode 100644 index 0000000000000000000000000000000000000000..be3f0739e69509a11e5d7f2110156385dcbdd67a GIT binary patch literal 19665 zcmdtKbyQSq|2IrXC~45;2%-oALpO>?kVYD5De3N(QO;39hHjN^8M+a4=#YjXM(OUZ z=Nj;wbKmRtyz5=>djEQ!wWwk5eZ@CE-@Nu;DoQdW*J!U{VPTQTKKnxz3+svy78dp^ zLVWNaM5g={_$BP}RNF<(-rU9A*vSk_(b&bo#@@xo^5tzeGbd+DdpllEK29jd?N=@? z4$dN6T(>rQSJ(5-@JU#R^ z>drU!+j}7l{Q}7g#K{3Med%U5Ua{dQQK?_Mb1nPN#_u}U9kEUV?|jty>izVa&L8oQ z|Hyd7=6vsdflGR?XG&IS*B3wkl}Nsaik6VoHVMy$lzA~>i`2UP!<4~BSqYuxnkOOG zW#KHc@N~Y84mWJfUo5igG1$Quf5?gBl3rYm^1`RTxW=|iEOc>6b&1B|*~Nncyyy=X z|H`pwgk0RM+7s~P;_i%;|5FAsdrW97pRDUj_^Gygny5s7O7yyvHo26LILdWJp77@) zc~eF(+Le2>tA0n%oKn=(hg$G3r@e3MV-}oegT5EIj_0Bzh?~!0QtwIR7g*$b{05zR+ z2QB~T9$LtVc%w|D=bY=y%>^7i!V@u=gZf-jazJpvIu=6!TcaWASmFm3wl^4VSp6YI z=m~*YOA&5AA+&x%xc`P+#583&GM-{1hrH<*dD9Vj(<}sb9Rgc~z(^pl)Is6lyAas? z6GC?wxq$iEkz{7~_No+N!!-y88H9rbGEObkIyF6Veif3BTSx|>XOuc{&n)DJz`Ugh zS9y=mu@~@8_<4zDm&lv4$(!KflZLAt;p9!b5Ey|Jp+7Oi28Yu#F(Hf)qR?6!3m&UG zd(9;EDnfXEtTRr56ykCfGJYkA_=H1kx`*eO>>4D52$D|(>AVU_(wf(60Q1Lt`Z>?- zPT9?UBMU$U^1BKmsr?yEd<2k{yvWL1l>|a;+ad)4;W$%&LGAv6N)U+Q`|vm)$OH_( z4B2m?uD~6}1suSyQ+x<#;ith!E>0vv*zu7++6R5Fu_B;9FfCwP ziZE-fc%6==1iuiMG54xMz!Y|L`ZQSJl3}gN`u&{JQamT~xN#rf3(I}Lx%+*fTl|p-PAu*$6lss$gQI0;Rr}y3 zM+oj&lxHdx*0~n1^PTCYPHT6ZOtYo&Jo2VzABiiSB`1&BRuX2RSlREO-38kxc`WCd zruFqNw*LrmWan<^-Ub`-yxdMIZasyG-VKxS$2V>#)wFDdo>Q5O0}|aBxi(H`q8AN# z&mqgLVnVSINp12pWRt6r9*qluaW)5P&3rc#XUWW9To{87vC6P-lRL%dz!>f2kcHlF2I=~LwV1wVD zDeuf2YD9{=p$JPyd*<)TT5UPKEXZS#6;2o2a3K7&#?`99;!9(dpYPn@!xgSO>{-i) zq+S*?c*cX9Ca6LP#B@L`mVl$M#D3x!MlKS`Q705XL$xdhr(s=}o*4G1NhoBEmxTfy zWjuHuvN`N6JkRvZ-2Ozk1U47W^6B|^gS}M}dMc?A6${#xh*J zs|w-J`pW%^1VTs>?l^H0qe;FF67hxwos;+Qi>G92EK5!s2J> z5kg8?Ew`#{xQ;`yl}I49lG~NI4mO0w+98{{otqZe4Ob+{O_H9^k5oN+O!&z^#L>VU z1zma3v_;$2mzW^(0y}tnNIDaUk`Cwd2(XE&o0U145oUy+0G#dB2pL+Si6F2h@+NKg zB#rVn>e$Ggl7r`jpKLR$7Jqv0tdFSC!Q-#cNf8EP8%|9hMn7s037^M#C`HHwFbro3 zKVjH?t0IpL#w`HrWiC1Pf`9pJ)w2yFmkuU>Yl;)C$Re+4wTCJ}wgh5BV9MsmY;G1s zU4r4!`BMmNA4Z-K(Rn+b+GN~$55Ms)%d{wmbE4FZQXh7;VM~@%Q3+a;q|z4eDLJR; zsP#AGFW!(V-C0yt<&B&%MlX;z$vh!^7_biSq>R_^agc)#%wRxwpz z$ND@(Rz{ePA}1PE;WP~LBNe`bd^mB`QX^74(uN_>`l?uGmoEB>t8sV=w{cBf$P48+c%VMGvmjlqH7Tp_GM}+IRnJmm^H12my;Cr3j1Ok{b{~#y^ZsLSWpS zFmA5xG9gr%9L8J^sOWu$n@Bn7*J;Lgj8Ne8U>jbMz{!6Pourql#J?W~^SH~^%ixMB3Sq*}=!3e1a55}Zh(>kIIz6N4_Z z0}+ejKQ8W}RexMgq|*Ezs)^kU%t~PJ6GEBw^ym|9xl=JEO>kFqSU0oYtdewHU^pkR` z1dJS^ALjH&NJN?SFv7I$#?jtt;;PdQ=ZL8~*n#Q;o2mNbFa}XtyX?nr$QMS6(|CiN z0xpLc;2!V&ir&|-6f9(r%vVsiRlDFjGN#7$k*Y0OH9-B#kje0F2S1g z;3T+7*>CG+xh*PYm1p43(VzQtG;zQT(Y}^t3hFVu1lxHoJ7=p?FxFWW?dq^ z%;)@gYJSYR$ai@Da3D+KdzQp5+wH5G$Z#g*ET!bhUC*f;YG$bP*4Eyc`$6i-%sro9 zH&Z`mXTNIb(b3V7eH_@ZCqQv2$LSTtK8H>su1kM_X|NXta&Au4xDyx+WItDk=fMjY zD$v~ywf70?>r+*dJau7JO!$`lJZ)jPh$&ork9uQh^cK?zn!xjDF>7ioVLr*3G$SK} z-gV&lxa+V!mY#DLe^hKNugwTIXYGa**4aUeB#+a~GYt9WCH94Lb8`bs-y#FBafNmV z)I84)=l756CcTymLa3pyKRpR{ns6P){$lhM2cLxYTSlxw`wtnWt~XQ$t!m2R-(~M5 z|8ahH8qa5W18dmOUmUYd;nmXqg{cO~hLc&YslD1D09-^E7Fw z>yr9dsbzCT!>KJYl&+>&{|-ytuc3|51Oc$6D2V=| z_sHdJucBe|*L$w5x^>@hvyPb6?ONx#&Yz#(bN-6fGWg`aJ~{5vuLxw}&0>ERuW{3r zOy$&Ws`?GQYWMZ-gUx9gNxu_ReR!4g{MLY)@@5*->7N~(H6fyFl|eabSxzY13dh-K zEymu4puXlR5ey!x&cAJ_M|PSe((WY5xY>8OGKp9f^_1C7B!CCDR!Vw!{7yW&CC_~T zHRi^2aQPGXt&utw$#{()AWvRR)(QiCC#K9R87 zSmArNTjY-+y>tjQ_9IVE;bc*F^IzZo3ZdnH2Z!Il!i+xGoqSwgbO;!_1-_kDid%5L zm~~LjbtTFa8PqMHD!87!CB{Z)r-i-jjDy0+C$}cMC5~+Xdt^Ie9s-%+i)2;&RW+ZI zw_jW5y+3y_9bP1UR)4%UU0AdB8G(S$cEs{J&ndhmW$=1rBIvfFy|ukPiZCPMs@=db zX$dRvwQC7uAaLQ#2)>NwR)bGYe56BZzXJuM<}oD%QnEgI!{HVs<&Z%HGZ$Bpo2p{;Uku(vyjF3@7R3R&5%EqGCu>w7YnXpdnU)N{-9-TU`d zKoyqie5@yiN1am>oHezy`s;nYfr#z7+3O28Uc{rSO9O)azl`E}El52*J$Kfpm;x;O zGk?^$ue-YxO86da_@D3lt7~bMxGeUKol&^jj#ozf`t|bNyLWLwB)RH#R9Bq=OV!oY zRkXER05!eDu4@o0kVR zGJ~O>@Y%t1)!EUq@K4yyg`onv=3ufSTZw8e4DtY@^9y!U2@9Sf?0+)N)Yj88wZ1P1 zP*!3iknGE=A9w1vlh=FeyxoDq)*H@?&&8Pt?TwfSFJ)iA_`PJ8KD+f}-*s=MiE3Aq zlY`B1pY1N6jUc9Ui=GsE-<=;|XJ$pa7~s)!{7y0MF&zq6wNV`I+Zn(t^M=}_+**ZM zLsOH|y85v^(C<+J4DrYqlU8|3$uPhS$UkRoc>JPVUf9U{`0N@)Aru;8mcznuyXf=R5{gY)5I{cMeG26{t6&6- z9#{eLTy;@EIEQN1`;{fTfcmK%A9RbZ&+IpxpNjge(h^Z}pn<4N+M;%c4SQ@WCfpv) zTV{KuyLaSeV^T4Fey>Imcl$FHanVggTr-$Q*$ofnR<|`YG-l@KnKnGvf!6yiAtY|#gtg)w)lo*}FQj$0{HSj-m zP4PRjln!U?YLPs11nz;9h6V-3I?zC0UU?EsI!o1XfQJQ@F05X95GJ;D$ylqw+%e}+ zfM>vbU~Po^p9KAE4h9<0!foD3P069%nCw2;c7D=x&JC<@itpa>-ooMqyS;t z`bp*=x4S$%oU%+x)@+(qf^gzvdVTjbjvZ`%itt{ zFr7*V2oV*hDF8)c29YSJ2@)e@x8uKWz2Wi+ys0b};dgp8*!?PElI_w!R#|)_6k4y< zhqN4QwoPAWp4`o0XJaWYjSj;zr;5Ax_%(|Rx-2A*br^j%9vk@XYG5?;XlJo`HrB8^ zw&BDKV+PyqrPiXLRQfL0B~N~m#Y^~#07(D&mdH~L?-bjJjPvhXMg!=oFfG4BWRyxoPi6&8j_Vz`38 z27$G}QIo`U_>zaRby@6OToxl=j34m?P4lK65@YNH;7hvwR6Uj$uu}@D5_N6@O~8wY z7qn;W5!)uF(sRHDvhT7!ncS}=y83Y5e=#FgXf{gCs%H@J*tfnelui&~+>EazzN?PK zS%2^nV3+RkiHyY7bu2k~c^%+e8T2?F{0tuEtO-mfXgNzdKH2Umswl*`7B%bjHEu(# z7*F&GnfR5)dti};^+!u%zCFV8^jlk7LR+oOI#o`y5>rJxZkISXoB8V(%eZzaq1Ub) zV*`<^x5L0-u14P2F;sf3a+xcW|{RISd;N8XW^AE%@~>-eCP7}`jkrl8(0suq@Nhm`9X`j z=pKMhbi?^^gXeaa;36>kV7@ez9!Uakb+0j6{9s})n-S(2xgc6Ga&U~bw{>6}6|-^cMAQVUm47#FUo z;O0AOq{2Vn`+V*`DPI*ieUzy0jm9I`oW zyk(l*k1Lg1T(Mq6-ZVgMq7x(6hwTIcz?>`fAfy(C_2S2YQ3=Lz#>q`iya|7v#yTJCG8j(F_Aoeqy#lHx$@3UMLTmwnas8JuNiu1Xj(adC6D0Gs- zgyTIlCORsL{^aGwQv;u$5)BpVFLR|?sX(Q{U-BR-Md-hqyc?T66Gtv}J3bl8jy#wa zQGST4gqMP^ggeJ@w1hEs?u9bpj2t?MD;BhQpUPhSc+Dv8Wm-dACy!5GHP3>MYz!f9 zD(x({4(!2^B!S$*LIrjp)Kb8cJKex11m4J$O)MlQf(P9Sg(BwzRC@X|f)OA?0q!8B z@czH4iU9WX|G7XS19B2O#E=j&Nar<3Ev3}K%j9_pCaJi{Q9pTs<=^=R3ey@a{z^G? z9uyh-gwQr12Lf|^M1{67dKKa*L-@&AGw0=X<80MrqKzc2zRYxSrb-TE8?8)^({jC~oBC`E|(2*YdH?+dN*pm_oe>bw|!XHfFi&DE7TNc2EFWnXO6QBA z$eNcSW>6#o4u?O{D!rHkBtbA6zk=3k%%`3XUl!XXba-K&iVae6T@Wr6jBKO_HQs&j z-vVZc+dv9AAsD%;S3AFT>tZ*3?E%a!->6e@rNou}f2j;zIBI>Le%-iC$^2hmxB^7@ zFOkEjau0da0eMqCd6P8+#5aE_f(%pIGQ` zL4v|I3>*8Xr}IV&E+$ETJAWgZo?h6y#5pl zVkUS)eoeM1)ca)!8FnzPZ=lu_LZSf1MzFF%Z$>(kT6Uy1r3nW+8=G*H8OCpi?}P~l zF@pjR&IY@YX2@m>78FVIXkO%)1FQXIh&4hrJv~1+J9lo)Vrr(I?fqhJE{*tm-M+NS zKN(%?-R!5}=6L34FpeA01 z3g52nlJF%}(C~5bE?N9UzEx8kaQG{puQCk8JNkRV^G$ z`mA;amRdfqL`mQsdhV>K{Lw@D^ifMiQrhR-1PU;CrQJa>XVrNhowbgHEn6{&zEY|7 zL~zq(z{*8S)2&gIx2OX^@Q?$L*Xu-XLA_Kgki=^%2r4k}-~}mKS11w>=AQ6+nEk+4TATWd zu17dwl0nz3h9iMu=0}zq`;p6-_e0SKdD`X1$96wkez~>{-?J!0bE#3P^<@g1$a`-T zU$0vtQ3WD3;DXsc>4?Ge@2lqtE&4sRk5MsiPI?Yo9J;?WKP#l4IN;}M&9cwZ+?kNa zQq|Guf>q^Jx%b^!OX5yF_x6&wx4-@kkJ;Pt2+e8GtqJyy1=DtaUaBqw(wIp+W^&~n zA9e&%5-Z-?i}M7%v955mvm`6@JvS05wTf9qkiMIx>!`Bdy0Mmsh|8dBUmVG$nUA?! zBC6#Dzdb#%-UBpezPGd7ir2FHt23>-xAwLq>aH9-o!+Q1f)k%UHx@g1Kf8Jg0VB>r+lhzDK7f~nl z*?HL}_8v%-fdE^dSV)}%Z}R&In)wNJZ-!!dht;jzJm#Jr z!{)k3%FP*T_MH5%kQG#5c=*b99T|691UBd*@R}zU>iZt>WS0m1fi^rjdhldxRPbQ2 zVeW^RWVn5;JvkH8==<7Q7ryJ_1Df`eUxT>rm55LlPDt0pyzwzTFxKNn#0G+K#_aLw z7hnD+RrA1`<*L0;G@UwC@%vd-@+@|_V#ZQFvA`2$&!ZVC5yxzvjIlrTvw2tvz%Oct^!M1oOJVyWhr72>o!8NqI+~ z-#aLe$)YqyXIe5Jnk;uez@RAxAi9f#e-vhvh_Easzk?!5aueq84na{U*X$o58*q3T zGA?O$RZtxI9_(8Wy5vwu?^`MPEn_5xA^K!@&qT}Pzu#BpLf`-n>Yu`~F+FkUX)<2zky(}0%~gDq2ia5D~& zW?Retr!H9!Izw;>iclt~KaWTg{_LCx=;5B@x{bq0J^G$VdheH{yx>+a71b7sigKe! zC$DmL{1g3pC%r72rjCX_orFy%?0Vwf4RsriA|sOt@-&}&DE8ca&ozOE*Io@HKDa$3 zvNTkG7F%9m2|krSBwFmt{0{L7hC4;@0^qQ4c(&f%-EM_})6~;r*B7_u99NGCoDFo8 zx3*S>Kjg92RfQEvZag3wwws3EJa*XC!DX|Wo4UbbrfjCc&n~!bv>L;3d|hef8nk>R zdwkwgm%pQk+?+x9vNtu>B(bM@rr8wqCmeDW$2cw<2N^ z$rPPBL>q}5Yvr&Sqq^lVR?F|W3CGKw<5x^LX<5&^^dNH?Gl~vD8;ixaPBHmY$iCfK zj!~6vIQXS+*!@lsm6JPp+;iMTwB<&`3fC=}FxMI&VYOncuze0JUhR_;rHmEsf22sn zfnCscJ_{I~R94PkU-lkWZ8ppBdKt|F`g6n`AYasl^;-4k^1`oAIiyleVM0+zY`h{U3#+w`_GO z`#$$dsPv(r|IF>>EiV|wyBS)h0345-Q+h3l*5z<2H1GOiN9>enqv5N>N^uM4aj!Kf z0BQ)z40IX^#App%KHA}94)* zlcU81?MaloUbOkg*nRdiW_;SUWvQe6=y{3H3;rqB2D1{McUJbU6=rKxa~5H2AA#;b zOta>nghaUNx(~&>7PGf%!>bxRkJsurf%KV~>)-m3rsNPY&h&F#iy7JW(_K%0%9$Ghl5O{lAX1+;XpE7L+ zGgmRzJ0+nCK5t;y9M*0%#>ZvkvHmjG#1z&2pnNs|vya7HU3bmrKq72K*>kcoz8Sp1 zdiv(Dv=heU8Wd6eShl0-HOn8CG0M+>uJu&d#3<+0U196m+SaZ!Yq1M_I&s@%@dyK% zZh2XX+c>0oBpffy*Qf?3*GF=7hHz+P?Jq$|m=)H0^FX|pA{&409rTP3=D@xIF}lai zbf6yM*j(Q|NR3Mx@GckQwspS?Md<)OcL+w6_)NRS*mD$3l$&>iRlsiBT1kD_d$>4M zjyEy3e(g!MS$T!sn$zpd{Av*%i&=Bl`r??s>{&k{$2telaDgu2LVJR+<>83wV>k4l z-36!E>g%mU+rtjKxcxfSpOTbQ2V#qof7+1pGXOFdjyF}tvr`LNQxtJdVm%7~6_X@U zNwhAGAYwjp8L`0apk@YsVC0vy&wx@7-0>h3u50W0FPFR9749S0?~iI8SMoS_7M_yv ziH#=y`rO1)`l{i$FCyV~n!fxw`cB4Q7p%vGR)QaOLpEp0rRa4f|L`I)?o#BE%D^0{cbU~&t8Wokeh~La;HZ_o^@yE z=bF!LDYn5Q0q}Z$6#=S+<)D2W6aOd;m-*N&UAg5BE(w1ekdUgw^^(J8`8Jy{6p}Qf zw4y{fDiOGK@h5X4NFeZPC7K8ieMIScT*|8FI=VZ_&y)(^&9eXg8I$hKlz}U^U7I7u z9;MIuJ*5Dc%x2l2#27zH6LY=$3;NDSkKoffAd-f1Mdv6MU#u(cR{yP7|u-HixE@s>!n>y((y>xNmQ zJ_i8zuQ%5dky4SZgI$m?t2Q9EU8a+~TGn&V+E0V;QO$w z%`!>C9B3S99)SX{92KXY$Da?BidHG&$lNyOGF!w< zx;=sP&g!GAp{^4B!qUWfLlA*-Olfy#+}odKUuQrA^|Bfqj93Jwf1s0PAg=Bu?}sa` zvXY_Q#LGHKk*R|41kmXN{Jqx45SSF&5uFM}G7XRVK^=s-S&@~itKHMYVL@5dBB}-v ze3Gbg=51FC3SIY=&9b#^Z<@P)YiRbBO2m`@;)&^!b1Tmw{YlvwQD+wL&HKA)D(_Cn+KN)EGCa2(%|co(D#yx zdVe&)HOB?^sNe282?W!IuTp4;ogXE1Duim}Pu2$2VgXD**U7jUccM9WRtFxS%;Z#q zE{tLr{Y`ioaRctqcj^Xpi({R}@IW<_ki7kQJ;16PCZ-k|yJrNf$A>3j?MtVHpSUGg zhMkf=ds!scx}F1Hu}t1Yzy=ksV+Ys!Ia6jvmlLM)fr@%8jRDAiD@Y^&(HQB#VINFM zu1K&K<4&eXEZ-iDJl-_3aK8V3$Y%6w18=Moh<|ATB)=NuNPUhg>U_x z#NAoeOIkxgqa0Qb4(~J0n?w!|9YlNSwG&78R6{nme3OA+`a#cSr0VPqAMDWVESzGs8%PNNbGdO%e2;-vfp9{Q~R5s|mo~-MP8Zn_B zD)BAvP;IxJH2BKv9O*}Uo>KQNbe4jzqh}h{ENX6U<&vpe6En)G21kHw;qORQ)=DoW zrR1Hx1Yb}zU__M~*}Qz#zI%KCX=@+J?1}Y|9I{KV4Os7t&kt1f)LR!GCj)ThOcMJD z8|tcyvhJ>&rKE=9NQY0B*`9dBiP03+i+H=rvb_Y3yx(h3NxPAT?>3ieDDj4lDYdO9 zHKj+5SIY@3R|q*upW71F{veY>yNB0Vi`RH`RzBWPV@V9Kd3)M6KmR!ex1$Qn= z4n%s(4?64etIuL>@8FMKFf?gmaGaLVCPQfbSba|ctK+W?v$*wJ|tKk+KOK0&2u)6L%LFB{>-eOw`IMk?TjL3lKcQ6$@hr2{ z7Ql}JmGg8LYDsU3VKKgBeqA@G?>WKShfo=zMCM=(4VkkN7v`HhC42@twSl=y&oE)D zgNKX~jY?C_srS}Oj|Riy76?yp3Hq#^N; z-9%e-8tMFY)^3(gV8c#k*WNn?=U&e?j?jd;kI63t=cBNbg%Vvc0Haim;(VEqV97-)5#;9byBb~?7JZG@D|PW$?85=EtZx(UQsO^cH4a% zTZSQeH8)-Q`@gy%SCM62IFm@$V{|%{tS5X#SV-#&D-ouR2%VL6?lp};CXCH}^c5}p z6?K*@WcKK4%YKP)HYp%!BBEToFO%;2Q&puX7N6FhNc zC2K%LeVrHs;{S<$aAK5xR7Ha!zSzZN^{(Es0D*XMrtm_*4KKGZ!r2I;F51ey7nR3$ z3w?NYbrhVny=LrITmM1oaj4y#TwxcG$^ltlYVmB|X0P(B?D!H~(oCSp!v?D}Rl~!W z_!nZD5VXhjGYb1IJu0uR>+zt6LP8XWZoC+ck_3(49xt^BA4)@3$K;>Ln`Jg8VU#{x zL02vWAh%Gix2~MGyU`!1FXfJJ^;aprw~39n0v=Rct&zTY43c&(Um+nVrqr^#?bMbu zH!8dEt>HOsVHN&RQSkYh{lVn^N8e+hstiv5CLdJo#wrV5$5Itov^Tjb7<@_5qOv!V zG2_Ro6Qz7URugyKS43r~CazijMP%&!t=%Jabq!wsUCI=H--kV&`d!}yBj-K>2mb!D zS|=N>oKQwX*W+l_<)OQ=5p~;2_t^rO&d52d3Ad6Q(=(g@<*pU2o2KS=su^8;_3f+T z7}yyr5XF84;&IEOm+eO`AM=%=Pe`q0-Z!0aX!$IFh^)$z03>E!?!D{k)G3Z1Wf$P} zAEb2Cy!%t7L8$=#$mG$zu=U{|vy$x$Tn$Max}KX)g?_?7mVe{tXrY`4%YSeylMUJW zx(o$q#-K)(Z?V1j$hYaShNOa%gbX64H9U(S z|IN?9)lEQ7KtaDUC5LF37dY7F923u;YHaa-`+2wE{&I5X#{K2~KnaHTs>SqaAQz8k zT>-WDZa$Yk@-4r!Gvw)V`QTcAu8st5H7f-9vCuYBCC!>{jA~Xhn|ZZ@gbv=(dbVPr zqDL%wfbBEK%c=Xk`#DOVi>9 zO_Wbag#aNcFA$Hg#EMuKHiv{se*H=>rb^YgC5Bk|z+CMfhray8E|(wXyG0Imp?lQRbU0HSL1Y z<5Rvrtx526vwkAGJeN}`^?qQ+b`-8Bz1Jf7_VXP8Bj|SaPmSEFAfNqr!X8vCCZmO& z;b!d9$gdwDZG)Oh!gm3d9e06gYK_Xk_4FVU^rM4$$)8^djHjiAcGVBQ-7`Ae0(itm zaM`6U;vp3f?sLVw>$SZv(OLr&K5+okDdB?$2>s-A`j;0+`4-Xa59E%VYWH3s6lSdr zgN&Qe&Z+W+wW`Ahn+_chb=cHYK{4WglpM{=-3c*=x;i_29(KDGVCrJ8!-Q}c{plIK ziQ7AV7S^DB*X0ZAabznUCq21e{^7P9g$akMvTht$g*b9Mh;2+kV9bHm0sh~qk8#i2 z#bUsYNbAVaPnhJ)o%Q_1)wP-r=kM`~N*p~u=rA7#`y*YY<0KN0Hs}Zzf zpl#6Z@e_UoNs-Ywm?j9?hq_I!!*{iGX@tmAd?^7?cW?$3`SE+|X+*C+=%0_#)!R#B zZ3|!yenWnQ)q-;~kQ0iW{Q$fDXr3d66;z&95k}bg`b3~ds??5zL1d*m-DbFOV^Mki zMc?NN!Iys^I^lb zGT|i8Q}S_*Yihcsd8W-_cd%_bS@dVT1v)|oj_S+!5KC|`mDnORdHiU%Lwa|#!r6jH zvqvm)JjI_;z<$yE36I9Kdt){AbnKE%1BEuI+zP`SNO~bi zkKOuiP^7@rKki9;9L};VckC;SCXI8yJ3B(CqXH|HH6G~+W zTSZ0Ahl%m%3^_05$YQzteAAmoU^5C5x9*ok6ek73pW=-rjl>^CN)BJZCFu9D>jIuO zj!;imUxYzG>Ov<^4rO~c0Zqr9+bDFr_Qv^3rU%qMec?uF)H^2%d?n&yF-F3!w%LTf zd&km9BfxQ$4=7T6m#Qk9Uae$h{$M&%x`0ePN-qQXVLISHun3;6u2V+~TGGLxlSpM& zMOjou@P312{HWuQj;#MXq|HP%OH{Uw)7Dmp>?<`DEHkqjoX|)mxk=RI0LO8>B$LFk zPMjbaCD)|yX!zdye*+v))+w+>8I4!6tQ;&GM&_0BS>u}^S&UnPC9X_Vo7Ko^7vH(c zXBCq)z)@v6NgpQ486W7>&IZ7AsDNx`yr>qZIk-9XJgF1ii_QB_q8HFY_!ELhXAaOp z7QKn2YulR+SB@zL#~_GlU0zw~l)f5X3AuXHXl>loJ5ST$*IzYWuRuro!xyzR!(&x9 z$I3y=FeB){ni!tE@?T^~y2)I-H&)1wP)JU&Vd6H@itL*XlTUCF_-5Ue+F}#H_ee%Bny2Ugm7LQGd#Vvf`Dp`Jig7pH@;q4vVErAh zW1x{`6*S!QSWk!W!dr&*B0IZ<&V3FJTIlR6v1O2po|M8W3e zB8!?Eiyt4fULF=7SQym1R$llc&Aq|K#zf;qf={vte-&*=R9e#4i+<>;l~(3Yp3WOM zIPH#?3yA8tMr1s~O&9uL{?ZVs7P3El6Kh!hBikwA@`S-`b%J!-_M91JCeTBGF=u*O z6+g10(k{Cy*@hWBL5|iq?fER+klWp^ zoIQf{+U5OL*V^0RMVxBSK|$|g{7j<_qgSJS;4z)cWe(gLd8IDgeMygmcYUfJvlQ96 z?QVBfgZ`eR3EcggssrknyF35B`*9FlIt`z`{qgUy)Cc%zcjX>nK7(xf#xi+RE_svx zk_{cDlm|E}`4Gl^7skz#c+sHK{u#joh=XY?Oqs&5SS?ukfU<+7{JBEZ$#4u8yitpYcOq3<(BB={KtJ;3f>(biuXr@3Lt(nC% zink{`4*Hng8t_E8B_PeR66e4vr1;*38Cq+1m0GHjqd&`}eQ7X{OeYXC9cjdg&*gIX zNT_hh%+{vJ22iGaNDr-$Vh*IXrmCvbvv-l;MwdTF0SQ{ch}!r`303~I++6R=E~YC7 z3oa)y@9D-Ym<>pdl{Pp_9{BuG7J1VRvvwYM9M z@qu+)V2*%-ZYDKTa1|6P!0@tG@8o!GkMuG>(;HvDu|VF*PCnfE1`!o-JY z=-V&Ojsu&iKFCK~kl*Qcx39+h_Y)eHY*Dc&u;H)2dHw)Q7X0^Q{6<)%cD7)~E5B#V zwc*SC?NrGs>R7VX9_5BgNB@4S!T_+)cSEHux`1@`)m*w>vWoHG2Ifn7&tWS8$^pAn z4t_IFPi~(|?BKs&vyf2Try3{FC7mY6|9iG2u=``TIALB?^t1K2-;cQhdH83Gh5r7p z`jHa!|2~3QpwZ>##s*)Ne!hcw_Rq^_*(~|0O@hICUR=sE3)t)5FM@FRb{!0yd#TEB zAodv<`1EoQFIS@ax%8HS?;u#(T?`+k4qOS1H3)x7dfS})5E?5H{wyPJdN`V^jNuTo zX8)_5vSEb&UoMTnlk2e$ELpMxek6W3{#ztP<(YXCR^&AoQn>&V+!EiPb) zJx*^j9x-Y$2;ow|3^wh4@UyqPKuh)c0~!ZD65N2uCxkb_mlPp0LjOYHrCY(Optxa~ zpRn%ZhY{41j#EhydZVB)2OUCVIYQ$L6)+3Em@x><2o7ceI0~Q!qsa#ZzkGQ^g~VkH z74~1vjV~~#Rnw(EmhxQ{1oVu80_|hOR>CEO5Mw1^TO)KXXU@&%I9%eP$N&}!^gxai z)e;gDLpZKNeDDwWd%2t!MG586UT3e(&&rrHJG5Zc`pwgq3DwO^P zBiM3Tyc38S+WN`ad15Q1-ohs9zNL) zs7Z6l^gi9)Rif|T|DUc-Mn``Qp#fJP{C;+?F!RSk2+e5WA6~k@S6zo$BFi`G68#`r z@D2+rBjfVrk@rfC2{u#_CiMMpXFUYOT1t(DQ%HKCw%TD9&CUvRG1H?Pw99dOVbB=U z8p2g3T+$3Bz)65oDA$=A|GT^Y9!Q*cwg|8AwcAG+4=hArIsUo-su%b32rV)qE^g~b{b z2!p11!|kyP+r}I44}KbiF=6fWjIWb&5R6$cP7(NUIG-z_-__AiVS6xx)8x(#9{%C> zHWfDE7IRh5#^8XK{gIUFO&em9G4gZP(8VD_WC=~Lm~#XF7p#SpACXID=0 zyUPbcElsGEjpW5qYJw@jMhfA0N2X`GYwA7A^8*&XCe;0%e!|S?Ed&f#u*=adK*%T*uvd4%nsP)+j`104F8 z(IO6*gS+{$apNzMtenxJ$!WS8j&KWKRne4Q52Onq@Crga1p)(Ki!A4>=iJCj8^e~Y z#{w;Uunz<$gy1a_S@NrK=EvT*UR{@pyMb{t9F)v;ty*r9j>WB6Hzb|q2j_=df&nu_ z&BUB%OBfN7nN#Vaai%O8tHpelxZiecYw}3ab2qA@T3E@-v!9Z__$#0j+_y_r;}P z=}|~&V~ykM-IA(2#0s-7MeK?v98R(z52WXI!^J;L)0N;e_Mb+Vr0#wwgBB<+weaaq z$LE1hr|UoTPHKm1K$9i_0F@h3uTra~ZU`~NC3_x0(Z4!R-v`ReJLn#EeT;Aqza>LIM(wt*-n;leb$&VioVmAH;LSjq`1Kz& zjTU`k7>#duw56jayQMXf;Mh6Zb0p1|d8zO|iPHcQLQNH%*S05hn-=-h`Qxnft+Q4bnVGjdce(ECF3~B9$~wmt$XZyySe*{hS1)PM$?t!*F1VVNN_k#zCOMpQjN}-DP?>%)% zSeZQ9CA1FM06p`eik{q%uHYBWUvZ+$fX-*O^)YMEiZb!sF5Xfx{qK(jLx6>#pw_!T< zzrA}b)gn?lS!akxb60o@e@YmROu^o%hU^mzK@xqiC`{a%{)6yH37q7G*x<+n>c#;$ zQVx#Xg(KZ%p^1IRN9hWL9szR&7~j4)mcZBFI7kq@5=e?wo1w%_1`l(W8?QxsBYwIOs3SK=;87riGjf_7Wdx zxtTNy%RsNlKyNs?c{`>`$UukusLxnrD#VeGiS)Mkgeb`25>a0K;IQgbLTTjVP#b&C zBde`9&=g(hG|`mHR5X^sJ67s!gSv5+y74`AV-0nq>+a~0F?4!w=S&$p;jt2U;du}rKyLjl!jH6TRB7cSs)7vR?++1iqV(_5+@gk2 zBwW&~inp)E7l!zv`PU_V*nB3_ynb=ExWL7O?^jyzW7cC)7+*@1bg-hs501$vyZvYjea46SV~$>0&m6oo^4;lq2PoE)mKkP^?hQoV$L^^ zwJ^LzWbW=ef>mFl>hQ`IFkyaCYV$oL5;I zND+8&wNzYdsYrb4W7n|2E91~r0`s`Ex@97A`@A}2Pij0pKAtg9!}K$g3bJPQ#GW5 zpZGjQZL&QV%<{>sb3$e8%s7wnEB4*PAz|9Qspv))Y{p)E9SYxZr&`@5ha=tK3an~Y z;x~!Q2=reBYEUFFI=h{v?v!0dv;em(_Ay+WKH$B(?6$jrFX!$OBsuuEu?J(t&56O+ zs4H+}rg0#dvsnIL2T~iSJ3}j&H2M4!8(|?n;-pUqFS~`IoJ^Y%d1wl6mYkH<>U@PF ziUf|NN>6saCd6U-G;p(hf{9g8`4}&TYSxdMs2N6=Rvt8)==ab(BF;@+SAlWru~U6$ z7P}%bN9H%2hm2E>Kdufng{E9b+Rb~F4AE5ZAVXPYM5587^yk3{+6bMV-X-4yVhhpcsB zPwzgiwHJpYKf;mI*t_Y0=*Xzi8K?YBqvv+e>BgO*>(Xho){K4TGE2+iJf86?JTDJbs`AzQ)!#kfr*xy(cz#rC3wMl)WJOYsBB@&+lVa%yDZ`D~?+ z7e#?mu%2{yygs67`0wfoCiZ&=_k9s*gI+F3H2>`GDfGbRsGY+w0P#6IuIx2eVL19j zFwM$HlBF1_3j$dfiym48_gn7N-vY;OxBFD0)YCGu?k+96t31&6ogakFaH^5TdL^L0 z1(y4=78_G<)2We_*g%5WOBWaUUIcQ0W36n{_zrbGpNZYIM7HKqH`1!5K3pUAdRFkU z2QTkIUi_9f%G@}xxZk>fqtvFA0$b2=Jp8)$Z^dv*H=|aI%5ZjWT_iOh9$yfGB^s*} z&V$@gcrF*XSsj}%7tX#K%l2z&qJXNsj@*1l%p(ncKJIZyFMM$MNSJ z-?jwweHZ|UF~DeK79kSUGO)7ph4<8a#C*gr`!l-2{8_zR`v2y}k&LeKKzhN!W>|oL zzW-h@o&qgU3z9kmKNFH83!N|yY=$G((&U|2))K^h#33!g%#4|;$zG_XC~&iB^X$mN z+x*G1(xI*`<#`q+e_@Dh9}NDYa^CA|cxl^0VDfq!4eT}SPT-6e%REafChixaO5sg%SvXfCJ_`U0x~Ns=)& z<+!1l`=zEvqCfq5$KQYd-J7GuzqP$BsQ+p2-35b6yZ`L_3qn6Xzn$fw5Ner>jwhc# zAd0+B-86Hb-8(-!71R&jdlwLhlhs4y*47&_=e1WADe^QjU+fpUgUQ?R|FEvVn(Sni z8@#nf8vYQpy+#V*aa3=LEIs1IrBwN#-_3M}m!|q2@tbxhhz4yjoF45OPgFU&OU(OA zpG-@YAGb=Mh21EqdE;;GebB@T6SDjp9Q9Q$fR>z9D&a}0{OjETt#$ij;zoY2O|mkZ zi8!nPI(dVf?JlLp1qx#hhN;>87kdWuExjpsuay zK(>Zbf=JlMD_nz~c~+;V>)s3DkNEJWz^~~WhKHnAxKw6w>kpvi{T->UG7VNYdoUBS z&?Sr+UoP+qZ~kK)lg)};i9fdHI_M=_ZY3X&FSsmaWjeW!1DWEaC1}?9rLZt`-D|&E zDM=!hn8n3s-E-ajcqgv@{B%7QVNBGYsk(r>A7Dn~E;B(TmII$+1`?{x;s4ZF86Oo8N3@HE(!JShLgjs53z{f?m*U zW2ax0pwMnwrtYAbU%+bc=A_5A^4V5&{l-dh&ztQo;q_bAW`nuf5?epnB+gH^Po{{a zp97J&zjB_ean*D9C0BE_l(Vxs7R_i=;fw9h6a?o;a$Djy>xygE(9)L+VUdgxFeO#b zP;wpGM|hukB)R-1@jB{Hesee%Z9isRjxcT^x2ZccliIKBSyh+5F3Oa{23(r^b=`Tv zNT;^O;5TbZ?5|*}9$3|wConeCmOy%m?M^|ZSOLEf&lO{wFdS2fEK6VhdaJG?O6W7) z+x`FjI{Szb=~|-h;%pZXYp4m-f)epAQ|n=FRIB> zJL{Naa6N)s4vUXDmE-P1jiUFR=3~wKvNdk#lv+0b_;|$?_=C&dh&kh{a$8ItljqJa z#|4c0dM(cUpK544(bEH}u!kXD{E+fo?Uvlv1L_+ASLn}Bo&gHY8!Pub-t)A4)MoT2 zk8_6$3rCY&;k;$kcobhLu9vhsvz zb+rT*ou%&j`y-dj+2Ml4M3vALPNm`1*9dvOx`P*9JE^Rzg{R5qCkyUX0ss|kJ(qPo z<^_{SjE=)O9xY9FBuz4|xXFc6H?oXbgZrA;E}wJ@h_|hajW+a(4Q3X9)5Z~f+vRZZ zsGxWoQEEMiMgtfmHtS9}w6WFKMqPM-+V9)9`@Uv%#tVleBrp+CFkC`)#tLG`%Gcd3 za}4XfPL77^Gcq#XN8QjG%rksqXko$4Ebf%%xI9>MI3HiL(MaZa40M{6o69aOovawa z`5MT1YmVPLHebKG$f$|vj`iq|y~oF(JXe6-Z6)pLKM^=B9xrnD?VRVvmhzw$j9 zUxiPZ^;prHxrg9v``A;-gQ<5O%et5s9iMrX62(ewbh;)>bTu{Qi=+CI~dtB|f+%jHiFS=6LryyH zz6k7$6S69(qkYKoCt-J^ix;+?Co??2=iuO&ots10O`)p%r1u97HfNSI+{qd51OjhZ zdDF?Anb5dej_C&YCIYVD6w~+`c#GhRA5dWYO_KZLO}j&eJpfSdD=SkR9v+@7Y1RK; zObwZ@TF#$|F%C{~-(Le^JHux4m!v2*Eh0wTnXi?}o;)-z&K>}4M0|Yp(7Nq-#p?v8 zQHz_pWq~-!ut>V~rYeNgS~}1E3=3qDj7yRA7kG|>w1lwMHyumuqSdjJwc@~$r&}0p zX8~?xIHV?iOOmEmXA z3?+aSL|T9_I`@Gs_@@K?=sO%N1AT0j7I^aZr>_)GoF0?HJ3k0<14qxIg9c%L6* z@G1Zv0xVT|*Q$~z76lYMAX$I9H+I;ce72KhSUm`w0CwlqFy&Z&^_m#Ks(DY#%@o@jpskOp z9&Z8MsO#%@4b`7H28%6Smk)$BoS&_q<5L^Yw%;f)`56kwDK%HSI3qs~2NRx04v@3$ z+hO4r7Q?@=_LDYh?N zDem^i%WU$uEc)0%gd<9m|E}japuyz6@|_%Z>x<3(fE|NBm8y0r1!ls9#C?^Y2-Am4 zhffq%o%=O3G$f7|QvnTP@&U2?BQCUv+RtxPV@`wjR>!utI`}VsKnVYgLn2(Xblslc zJX$W;2Jbofb90pr=IeKuM(ejopKVeZxUUM~obqUQxs^ssuOYhr#1yw!5Dx2`MCtS$ zE`x7{#0pu_Hu+O69AnPUC>`s7O`QCus~0S&EzM0J4l#XV9TO;pmI z16qc)A(HUbpWHk+`wm}tWcYT+A&h8u5sxdGe4<+RHG=8&C6Dvttg*E~2EzISxp!S4 zK;dW-Ue;wMV3(P(cdQv^T7pu&&(9zdX9qI?YjSLE%K+E}v1tmMnLK~8-NOZ91@LP- zfc$HHXMp~oaI32-6LVZDX)V{%(Rrw-NWzt1hYz7M^gsa8U^8(R0^$LL$#pjDrgo7@ zxiyp9Vv1wG&DBz(*2$97?;)PK4OPI|Mb~P!yQ`kC^+=yf>|?y8A#?^VaLhrA@KUhk za&Ga@wl*VRin#{0ZXxShZo+>kbCG&$aF(6%h`?e$*RF>&+VEX!9e{1LWH90lpaQSA z+PK#3IsxOcm4Ujyl5RQ3Z(Rw%vCgdKCpp>K40-y)o03CXK#-Zzrxq-3i}2Ah>*_J% zrTW%U2Keq-`stq_$?dv#tM9AIYDuJ3zAxs4D8H7LQ{`1(k&4uziPv^K1}Bg3GMjPAI)cO{MK5Uns0#LZ_cou#{m91WG%fn zY<#$Ec;41o*%Y6KcjSQ zYok;>m()*YxujFRef##rDsqX8lAxUrj+{g#`^fq*Oo2ifFC6&xC6)FIZ+=`>Sea-Lo`}?WT;dgjFeR-y5kTt_$YhsRdmF-$^oW-4 z^gN2kKQA+lWRf0O25v@C%fN53A#c%FkQ{ggZvLWf^zZB8GAUF6=%0mM;rsE8xed;J zgWk?07G{iioZwZ%jl4y-NOJ#+{!!r`D!cRPpLB9YaO&p^IMNICa!PLM5y}{jjQ3@l z8t&BK#Dx*Hnf5jZJWB>RvJ55d!`}?+@ae%f3`Xn`)sdg%`)>15!Ii*2!)m8h-y6@s z0i$I3@NXGY^*JlgQDJ_d@RHUT=3#7kNGrnZLL$Xl8{;@g=J)-fyWPTE~`*sMb zCjltgnVel%=&$!aSBi#b#r{c_&3$`OYiv{|yx^8VS@U{+!~fq}3t-{@qidqgiR=|e z-r_*s5=Pz#lrFv(XBEN&hMByH@v9)+Phar(zCEE_oPuTfqJA#Yywg}mwJ@;i^8Xf(BkEOiB$ zhx~MK4Ua?oq4)HqrtUQTw0R3zhgLCSw!Am)*bqFw`-Jgq!P7I=?%Cy;Bj@7d&s2L~M;^EHv(+m`r>^tf0o#83L^nS$DF}L;Xz6cIyNXAq6Oak8_I=jS#kA?u$v&||$w?e75jk~HhZ^zqUWp+%VLBk%cs|dAJ4^V}q5Ece*NrUQM%%1zJp6E3 ztgL(C^j$y<&`c{8&(}v|pMkjh?sfaH1^7`P;idZ0$wFC)G+SVXWN?$RTfh{AtgM8s z7h(ymVu5yhZa(X1$%{flQr(=V0wRbI(}nru>my0yOy2pCXb-TeENU5D(4vWcpsagH zY1e0v@ZT;RS15x!8=c00P^aEm_w}G5tKkhtG_s$A@}}9RNDJL z2^1R{e3pQUAfy@QO)CSVlpuMf%-Toxj4&_&Q8)2e+_*J32o#8Hx7+~UMA8okg}G<) zFPKLx6g%}hy|KqPK602sHpnT7*zwnjVMkQnW*s+p`{~5QKjZd8CABLkNHKU`p zOOFj^VhNW;PC{iS`ED$P4FzQ7yP6{n0>+u#9A8C|N-X)YdWvVRjg{@p+zqFs4H&eU z_YdiuYZD&o%`v{=wfhm_@$vv(p%R~#w#_wq^NO(t?eI*ddf<1AZ*zSG&yUMu%|PnmHeTii7SP<*I{C|5v_~ zZxoW2??PoqX+$Kn!;4TYyfoumv-oRXM%;vll^)xXO^34wUVqOnm{r|YwEP>8+{nA8 zb5VNxQ?J&%9XZ(COBWVc8Jm5+mN_18zp-CTWJyPOP312{+vJ&Oi*2|pl=*2z+rF~f zQAq9<4?g?mIo|S%H5{F*@pNDVi2TiR1ljOYgSOVz-RT>wOe?1P9Hz|PJW**#*VmhF zb#KWTC6c$|%2@L6b@(no}VYqzD>&SHE`sSQ~x)l#Fgiul_mDvM~K zy(~q5L25Fu3bN;cN!hpd2Vlptg!c7clLNbYwKLS#)1??RxH#?>?TL_oSiXAu$oN!z zy0zXwSFW~!HR~5^qE327or7i9lq{*J)l*dk&j)H(;%l=bmsyiKwgZOjUjmS{YkLCB z^QYq-c2gnm#>liwG5dR*bvxy;oxFTAC$BvZ)+`iE*x8}*-V{eNu@akx4+hLmBZk`g zP3=KrPV|T09Zoef_(y)uuWF2+3`_7ydO_%z`=cB2wU(mOT1ql<6XIEuTRjCeds8%| zq($tnFN7=?_pqI^bAJSQnMI$I_3`Aavb+NO-L>S#&zbIkmMvfSgn+*0yDfYB#i4YH z)2fmYQ^UY8t>|dGu?Vt*HskGz8Emtjo1Qlx3ns*gh&jB(u>D3(<#ufIiQCdOApL`# zgENomANNXZSI-N=DOunx2Wtx0FSkK4M8xxG2T(NT63wVrGgkYxEhTcxhp5XF6`L#5 z+QnDLb7?rnk7n_cVyfRazLk&?s*_G;z+hN^a9FT5!(10jHBJtG32STUbhpV?Z|13o z3|sf!w7~p_PZLlI{q&J-ParnWpN;dbyQiT%>z+w9ZLF}{-R|0Nn|pJv?3{1v`$!Hh zBs>aUZOsf>R&Bk*E1)08F61uw*=FioQX)FG;}L8$l^G*x4Q*u_740`w)Nb}+(LjTJUOX(LfmXPJx?3G*>TP{i?RK?UrahW0GvI&bvM)g zbKtWupbL*CO|O$=VOJMTgg%+>)@}sV%nG8m#xe?hiChF%FsBfh3Z=}oARF2oI5sfu z%2@TV=({QA0>F%XS%-gvxMQS5c1_dWQKTMiBim8WZ5+VpG{x*Y;HmyH$ZHRdvyLm^i4` zd2Jc(EcWvBrz>jr{3DtyY?ro1OZ54j2-h6p*S`>+hl5!Pz1ea$86B2)CUwgF43)Ki z5)|aK3v+FJ1jgM-La;bF$-2bB%#@^G7`)6H+Z1nW`{ETQSkL|_^qthDXi9d1U=zgD z<9FmDX&LJJS1!zKXY&x}@v7bQ4alY{v#MM(E9?>PiCg=%v(0wWH!@Q-scxGiBm`Kj zAwP#{mY>y~?Nslc{|3%F$EC|S;MA_1DnTdE+p!1W`7@ZH;6gz(jOANV?uIkz<#+7b zdu0!%75w|#a^9~*%`uj3#b?sK#_Y^N66{U*rG$;H){2*Q+nI)=Mef*SO?~E~v)d!Rz&g z>~QPxGxW8yqrNwmFJ@DX-L?)t5@5$fj|)WDxW#dxn7I&bhXci$+E3d66gya%l;{dL zIZPw*6pCPW-|i7Hsm+X3q`zH1+ooV~t&K@Na-20^2zrCQ$L3O9k}#I6^W(g>BrrSf zXKbpQ-P{jf^6QrI0O2eOe!yZS%!Q=gc9e12nIU$ZuFj;GE|et|1pWZ5vgMCeGPL$@ z4{d>fWjr%TT6faW;4y#dA09vRE$9Mb#FGpVCytI1pKmNp(c%4Z_hBm~uEb95kj6eg_- z>T7E1mb;4AdzvAgT=~~<_Sb@<(mgf{3W{E?(n^Wev0^0V?C3s-``mezHPvlSYd=)N@ha=v zJle>A1H=?WnnJZwG$;0|rh#^sZL&e9ZIaG?Q%8zurm>J4s!aEfH4kI?l+_6S_1Zms zN9EbQOxn%uwr%Wq8KH2pc=!x4jcHZxJI%I1Qm^wB-IM7`j#r}w&BXo=Gk`aVhRgTi zT`@LkZn0LeTXmD04dVNB(jWt=faXm?2N!yhsf^xl`j+5fW({)PRO@77+2@pS5PdUXUFH>&D zvZs(+x#r?^?xWPfEWM&l8V^Tx|20x~u9lyk{aPER-d&trm%Qu-A9phh^vnH@ODWoV zcy`;G#98W?mP7Z3C}7cA$_zikJjHP&faGaW>03bO1gzw^3wZgB20y6*N<(~=3pHiq z7q~c(bh%dS7ND%}_g*Rl2Pi%I_~IW}+F2X4o$M}O^GKs zRpTsPTDm?GBUKzjq01v;^PDa}?)Hb*r{bpIs$J;8Pdt;)v|Dm_ege@~ttE!@PJV^E3l<-#r_54Ix`v+fjJuvkEgoAuMaWdkO#Z`vsJNixWv< zU}3rD?sTM4MgMwZ-(6=~tzrKOc$$s+p0T$(k8r5gYx;hA3mb8OF`WTRoS8t4miv*jjs1qQPz{z-Wa)a0$Y!FodIqY4ze%_*tgD(C;=?ytG?@>~VdmnwUss@zs?;SMil9ji`B51=f@Eqy_q z&#J<-K3kh~XA5NaMdTAZSTy-5?9TyEUeQ~=={yYgJDDrm-&`NU%mWM9_%3cR)x_q$ zkw?X>vcJc7E$3YmAl@#31W@(xnAyA@@hXic`2u?L-$@Q=Dg7 zyOFjw>>%!1=}TyJN6^aEVq%nj`Hn5|Remlzmwg!(){%FYCDqw(6FFNgvnpJru}N@d zIl-#hEoEid&D3m9O}Y!}$Fi>q;xZj-8QUpU6#OoQokHN|XX-{(A3-0|=a)CyV8(4p zqn5#JB9>86T55V~-5?<4@=SboOQ_@Ln`i;B#FK65B$6p-L+M|l>UTA(*LdhwnrDuO ze+tWe@KKDqo+h1HO_2jzb9z?CG0p4(&eelg#=<~GWa5w29CPMTus67VlS|gAQ}Oo0HVJ+WwUqj z=(ap^vgz7aVQoxft1_*+X;DuTZ8L)@sP6(?Z*!^WFNpk}We=9kZ6oFKgrFOCIeUqr zeVLGZ9m!Ko#6hDWw6omz-biw+f3RoCQ(c=RRiSBR1k~j>(CS%f55n;j8bMlKN!|Dk z#cv!Kv21+|wNnY)d@Gq4KkH*`3kn2-HluZqHlB#%r&X9RS_#{lFW81T5xP3!JqV%9 zb0U$gqNRNtnmqF$lsreDrrxHituN@Nc0J7liYS)RR7vBbGVdJ$;4TXs%%pc}ZkCYhMLiq|^%?OV2yqqb;s zx;Wug>@i4dftH5nYHAYh8r@@A)tSp&BU{2OtQQqb*aSNoY}9dsPNCWAVxTEwY-KJ| z8C$9&R&Ei-kQi1+u|6`H(mu)$ggGu`O;RpV>9eXa;Bi!e2ND_I;0?9nGOukX7S9=L zmROC>0NcDw&PJmNQc=(Q&bVdZ$yp2Pe-%hMi(>>vW}ciFSF|-v)kHvbH&{Akaq16t zUKBcANGsqiF5b1P7`zsI)}U%E7|5MN%|Sq3B>Dz)5Q)G2o*mVEqEF|P%QMmf$o4Cq z0uyyt8o=~Dn|I;+IfR%(lXO4}3g zE=?6Q&@T%EH2kvhQi!s@k zm!mTzcb+71eP1r-a=};>Xi5Jm+i2PzH-ky#G}z3bvsLS5Cgsd3&Z5eiPk>Ie_ZdAH zDckWR=y9fe#FK5ccfcU(>ntCDW)3K_f zth;CZVs^$*9D0>4P5nuxv^mqfUR06|QyZVC)vjhjqzP0$Ao3^T%g9CI%D38=YAF?* zyz26b;&{h$mS~5^87oEMG#(`n2-!=g6@Z3HY+~y$qU;t=q?HucZM6%6PR1uxnz{KV z%9=*$i=C^UE-y;0D+$x1OY@@7HHtw+vC{eIjg8wY7C^iXejFcd3{bJiD-_hF5;w#5?TNl@4`rT+r-^en?AN;#$x(XCmzdL?%#G55272?fj6z%+<{H*V zaOwdqn3%jGBSPsy*xzn8!;0vO%d z@jL^IS6&SF_F!Rc_IprHz%=hG>H%NXu{ zQ|@U{!vFV7{y~io$C#~;~80En?THzk|-j^ob_I2>YFs09CaVd$#yk66Jtp#{nTc!S)Beg zuG?D2uDwuJ1Xx_l?)oegE>!Ej?nlPw^DA{)`rKEAs7y@cKTaQHY$ZoiuB!iIRh6F; zg#WpZ1cy7XPc32>=026WM-2!`RNFCA)oXUn*iV`Pz+l!{uy5~u`t9|OkBWhc9`R)T z86k*){;ZS{T(U#?vH1@y-~7w_)n;_cyl$MYhlwgB6~}oc>TcHxzPI~54JtvO<30jA zFnCtu>u;X-Te=vNVPeJMN9dYxdzKmykVH^de?6KcV7p}^vaPf@MwjG*@3zIwZ57{pL70:B4BWPywMS4LrH+@zwEyj zO+|@q0a4HHWQs3%=gBshezP03c>MH|suaoTk!jVnthWD(wnAV`3yp9paQIgReZGRm zSfYH-mv=yw%2=;nMQ?vPg&aGb4vR1Ys^_mQ^iH8yZThy z^4GPP+awPkPW@7tjxh$lfPVRJI-J&d9aPAAl4E+3lMH35H4i;@)0z%`R7lMp(VYk8 z+ z5S9>#2E?L@w#?)Nh2|faA$Cep@YjsxLoDCK6bd<}N62M0-y5<&B~GMg{3O?5DKTe*ueKh*kGSw#&V4z>~ z)6b-kBWDYBIwvNu!kDg;BsV>00wk_nbtLy zuY80Xlo0~3kIGd*H3IbK2zv9chNSjK+b~NPl7X6xqgd#Uf%POg>)9=(L{jH*yl4a5 zQucrRtCWZD+m{${S!AW(GOlH3psy(-=SXo_>HDiz{LKoG-U?_MU6tOSstQ+-)1U|# zvNoF>iwEgL3mNcz!2K<+flSZtX}yZ0mKX@twPckKgDl4Gh#aq=qcm(P3G=IXfFT@r z{>L>ltZ4>nYD@@vcy(G!z;%r^xDhhTw3PtWKW_SG42FsP4t1I}Y2)7kZKs?+kANI~H<_T#wp5c|o}IfSzmE;A>T63$q#wv6;N7n2`-n~}v-RKZ@h4{S zVLgTB*NNe-j$1KPIgg^+XN!Sr(fd?KhFDzdQafLEnKnTnS3Hw^ney&y z?42YWyn*`h_*X{>fgG4m60;6MN-~k7UyI};q6jp_=F6!3(m(C%*cLdetR zO*8^>=)&je_qk|`2Le*ic!T7xWb2H*ADsvfmDQR++Xz@4w@|GKSa5x9ED-mTs=T7L z7(Q#=G=jj!oezO!jZh&m|r?r4Hbz+51%vc&by!zt-H>4VcqbpDyE) zyi3jD9w!8JjuD``^yyKDc9jSVD#TIh6+9@{wp_^ zF}LtE3qXVo{|hv1z`%jpe4>||<)`+qa(0a*g)eZjiM;h^fG*BoF=Fa_>+=B~m-FN4 zymAn3(k_A4ssI?vf+M-%$jXaNM*JE7r%gtEe8J+BNgjVaeE59l9~Ws z{KE)z4WPJxTJUT>slGk_)bAl$1gb4CVm#H1WZdXTSI-lL1~lkrFOlA;Ki0QAj^wtR zbj><_SQl^eaM!|<=-DV05tBA&%QGfp4~|opE4YcQ1d{P6sTIDd+&?>fR)a3HscC6q z$Laa1$)yhN0ghC$rvnqA&dwIlPuUxKqL7ZCGaA|id34PE116~dF75#|g>~chE%Ily z#w(9)F<{3aOJ-Iev-lmAWT{$3E8LjQ-eO+4TKz`8Vg1Zr0@LCov)k_I=3w={c!>Ls z&&f$AIep!SY8LAAL^C$o4p0wp&Qt2(nF+cg%f;2g35&LZ>3HN|oz&@WOkD zKhxG4{6WWOdRHsrsJJ*Z%^S0Bq?V!bL{9=qb92_I_nDxcy>cxk zCS)lsABC7Slg3C(m%3PJkK`{nE|)D(rzdpQM1N0Kamv#Q=Fp_&?t0U{`{BsQh zO52)Ekf7Of*6fXn<2|+EBc~6Kb3$iOoXqiOot<>qsu@0#rL0xJX)^7-&4#pV>fTSi@M=VaaS|f zr#WCcD^pF&ZbUnpPy9Vgty@Ee@E@kRE?i)qFBaj<_f#u$ zuiTm}RX&|IfLVyg(KG=rtLFQ}+GiI<0Pd~V--)~=&2yFk+#1r3X@h)2>~X~8i8Yw* zGx$PPNG>AWQemWO{bzF&<->SkVWzieDNJEJYr3qD*XdMY(5Inqh8++ z=%eU0k=oe-Ep@{X9Z9z|{J+F*sK{f|O{ruse2q|CgWnDEMEkWbQ)*mWcK9yPhfc*3ceJ!rkx3zn}M=IV; zPrK51tgvQ7{_fh#dLFPCpO*@8%;AN1CKasMUkWs8!KR+LeC| z=1=U_ynTy?hSBmqA1iY%qhctT(V1S#NM-| zcFxQMe9S3dAPmpXFE;v+5Sk#%$t=eBWHk^Fj(Ess@dXJ%(XtATB@(&@+ZX9kSR66jn^J1Q#Q zUO55fib$28smR3g%n|o&{XI8`Ld? zn@XHM_aV6(P2EU3r86Zk^_g0R#NnQ^9LsGA=ww zyQdjs7q0PVB9@uj^{&Fy%c<*AlhlnqFyrw<)W3DxFLDvR71h5l?8KBJ0(IFP_| zA^C*3AyiN7FzM9q31wB>o*Q=Dlp`3s-8><3I_<&Zy?DHGIEuRTuG3Q8X@E`)J^^(&NII>&@ zjG&i42|5_0B8^?cP|IMb8v`BAyC~s$-}x7;dITowcZ03zWS-H>9GKQxd!4Uka;{-+ z$U@0vp$KHJDV5N{;n@8+#q*=XF{Hpms~6FYUoQeDYlPY;pm)c1W;{T2U)8u#Sgwpu! zg;wy$2i5}oK?ryX3?u=1;;Fhoz(o*Y90&qGqi-9E``E5-?+g77Kca=pSNZtZpd?3W z-!||&ZjSu4gadoo-|PHNu+l#NUFh_KFN_-pUUkf?X<0|YrzZojnQ&+Bh8_$jn*3-8 zynMz=?Fl|pG()9uf{pUHUH-eQ%eY*0nE!kN+~xeYkFb zx1+==dO<9f4#aAE_ri%0gn89yj2$&jy(g9kf4NjUfcCN znc1PT0Jjycv}X&26CZGI>=MQ89y?15Jvm>)ib#7?eZd{Sd0c+kq$=c;TvLtS?wevW zEXO!7)yDu;LETvBY0ZZ0Wj+wZ^;IddjNGeho*wOHw8HrFBujl~7$gjjIh#(axiI*Y z#KG5u?jOY;>qHA+K+kaw(Q+Aecj`B_Ou1xYfoH_@*(uY;I&5ZZf@yu4E#H&I2vv*oBYP=bE**f;R==Hj z$GiU2G6qMk{Lcq$R1EQU^7m`@DrzMS-MM8?t25m`^*4!^6L>>fRyz(ypJW^hpK7I! zpf=a%JXW>eAML}Y+Nm4=nlhXEO5GTQbvrq;z8^GR@7~daAz;5a9=u}`yJjr?F6#Cl zzxzrp4ZFO)-AAZLFY*AzIp2O{v*eeCxfq&8r7YS0wp z2YI(V|JoRqN+^(gNd#_c)KdC@AgeOPcBSL6-Q)Z{wOhJj^v?de%kv~meGps!DWh@C z)s|tdmSL&`ovOr~e(U4Y>g2d=?|t9odgX8QJL^f7+y5x)YqMElUsm}_4IZ11malf2 z)Ks08t)cmp;&T87{Wjg_tY7|$(O$p9Q)>&^_^Xh*BE(tKjfHF+v}aV)L$n`Qy0Ey5 zVRU~V?bAQ!Eet{%lB=rNp7U?GRpnPJ7TjOs6+I>MxOF;OkiO1eFjR)ACt1fNj#eR= z3%>r|x7}XDgDA?W+|QSJ{`UU>U*Rte literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_4800.png b/Notebooks/3_N_horizon 5/sim_4800.png new file mode 100644 index 0000000000000000000000000000000000000000..1893c80c1b539dfdda11d94c79f413b8e86ccc71 GIT binary patch literal 20363 zcmdqJWmuGL_b*IH2sq%4;Lwh!NHZW^3M$e{BQV4Wh)8#X44|ZdbSj9_f^?1`Lx-d^ zNOyPbbHL}h|9gMf$NTl&#~}{PHFI9)>a~7ro!7gkN-|eSXi0EzaIVNcd8mSeb4dsX z2lpj0A$X@SLw+2*2-`o>vRAb-v3D}GHO5giw6}h3W&hgD=!T=Qt(}>bB_G#4E;z@H zm-hD7b|T!|7XSSKmzAw4_h2u1Dp=&Q^%HG792`<=zZd?FMFM`>U7;R7}2#FbH} zSY6}6#*MY_oCy_!YTcx)_t^#&@8Zhh;Za{&Xpw(*6_;T7##e&}nSt|1f!+jE5AVm{ zkVB&&tncwI!|uDTc|>w{9yKaND>h{mG%v@Uc;=bs#R*%i4o0>wpYD1lQyK+7iMS;j zaqG6WQU>XJ>~FG%U&(~de^L2EV|{)#{U_hV#kF^)Xc+c05&v|0OJ96388_hk({f_? zkn>9)oC)dAFR^a?|79Uod@153^N}nm;)GXXk}N$tDjmU9v;iMxc~cuso(PP+CnPg%GI1oKi^LC9EN;Djv<^^XA5r!O!*9 z^sepII;%xfr;1xc)`xR(pAdh%vd**ayIn)+UAtE41d~`-O%#t;<(}r~%vGr}F4X!{;>mm%su)dB`889Mc(Q!kO`B2b_ayf|3{|%c*G#Xy zGbK&DB27FHNpjsYGH*k0VTGIo77T&qkipuBVTsyPT3#fuk#IyU*U4e!V&cBAwdgnZ z${BI*>&W1>Mku>aEnYyn{ufqj+I3&()FE^#2t9=^U+_>S7z>0;K#?5ydH95W6p*1u zoDsM9p;!&<>?TBzS+c;9M*V?tnpc0wqX$=ZZ?GIpiJgXtx{E~!`* zKM(FIE}J(3{Sm!^_7nYG%3v){@#JK4?5YrSUTX2Wg;DTap#@8eV&#FSG9e@0bG*IP zPZ=pV%J>cUO(zD5>9^cd@9OEBPZ$}f25-<#5KNda(AGvns2}6+eIB2i^FGTKwnwQ6 zHYh*wxWe*zY2+hC9Z%}DG9*#<8j-6X#UYAfv&Z37v^tOcDGk#73uZS`Hc7R6FS0c6 zE!+}kEV}>^kxq!Ux%9&sb~Ha6a{$M*r{ke|O6h7gBB4m_;0-ea{Pj}kR5x@APo);k z^c*?-8EpZ_Y(l5TeQ3~Mq=;91lyUUK;FfRUTm+t%6ZMeeesGLFV6IVcf>H1q1}f7C z6>NmY;MU%t`sscx|0k3w1g?S0>G(`lxa-P%tmhebzipeX%8$qSP^59NjZv_T1?R9Q zZ7c)w7TQ?W1uO@DPiW`%u>X9C6Z4odZy33Tf5gx-GZJZrO=@7s7Pzn zgd+yXw7!q-ntRVymSbt-X2(>>MSOTvfeUo{)#)2u*;fev+~{8CDl?+agg)n*8yKj$ zSc-HOej43-at;#MYrPo!w(J6n_C^%NP&lot&Am+h9J?nDvF_LS^^uzV9x-Yx4P_K{ zY!m&^DJDnjw%YfLV`Y-!sM-89 z&fW<#Hh=9^IzjquvsSEUQv3Y`+WelI7%jUd>2`xlD)p*2d3Z3t-}G|N8?p>r;l#i8 zh*-6LSve}ezc*;62*)(QG2D$%(TGL+gIWry{FQO*3Y{4lI7Zr=S=PZUQByu-%X_Zm z$W<^1j!;1+ELw(8Nb#vex^s=3I`|-cI{hiA11PA!=pXgdZha!dJ565g$b1Vweb;N9 zAnonsT}2_aM%zgDlZY~^Cd#v>I5Y$88cbG;KLL^5${jo9~qzW!knd<`TiM2of!-zH4%_r@n|e>Wrm&(Z|yNYI~vk2-N#5t<>MT*-JzY1jp7YqNh`2{$JYQbR+mjHcF#pj3g{eUF; zB^fk@ik+mG?Bey!cu$DCq{mEzRU>rZJ#C4N;5TnInMQXx4;z%l%OG<>!3p5#Nmd=NOSrfHa*2xry)H?!Pz}a+yu0d@q#l}=-Y5iX?G*y z@gf`hz?WLCfPxiwR^a)Z4TlZOBW|(kpeVR-xPsw~Q47x_*ih>%2A;tiM{#+NB5tiD zGW;8#3qh3PLGf^*c!W{w8pM+_3p2S=#A(vRd_8*&ae3<4K%QRlha!q2GMTm3?2y;- z03C#;LT92|pi@_1sBG^)(5a}noWCD5B9e)I$GX&`ywy|sxx;vW|qifSm&9oi6v_>lA zDg<$+bEX%PtR6f-BWYNlo^!wh4GCTD!7XD!y_aW0yWYU;KO~-{n((2hi}5Z;)5LM8 zTrlbdI^5VOSk+tF>6<%&_3~-{MgHV*ku9m*{16kv=XL7d($d1K7g(rZXb4LZb-E)d zDcSRRo|)%7$@)ONHP`vYWoy=cZ7hjGDx>vT^jmnLQ3J_rXNqzdqd2c#s01DhO%$Nu z1F^BOagpWdkhQb}8|wa2f9?ud3*JTc^-sOE^wFEMyh7iL{A|U4DZe(^^W+e2J#n9q zoUzS3znT#3cOB7GWY)7d&0pcP*0DL$>QvF*>ACw|Tw*olbepASw>aP8`*N7qF|#ib zxyky(k89Vi@fe_SunVYb>J>LOjx$+St_TQNj>InTs)Y#?ohO4Ub?o_7b(G3tKfq0u z(jJFs)wm1ml)T2BSgl+e%P&4&HkF)O%+5b;YCNdBUW2|~vrce>DkqqR&tJe|$bEWh zH5bYZe{5^(cY+0Q>EgwQt?4@i*P56?} zcFS`cH@%0oB?yMebCsjIyHyT%mNctJS4zh_>ikG)gl%sz%Y^2fKDXNGk|wwLL2w<% z8vM83Zsi#n&Mad)6Q#L1=C)?@=N*fRib~xt8K(AOtJ>;eebU=OfAyknqmikz%4KW5 z=L>lZ!j-jCd~XC&I{eKLpZRgH!JnV+?pci`u6dmu1v84r%P_j2m`>LN+_vMr_UoBq zg=}t8-cgv?9kw!U2&5XZuD@~*XaW$F&06&yug9VN>FHkW7N7!d)_u#?&aQlK%uT!K z<<$X%8z*=5_CIMdVPh+>d&-h0_xMaZUW}C4D8%1;_l}Zf^LVQhe;sIxZ3C4ik8#Vj zG0!6l@TUaAedCd3`AoEhf4f2)uOCZ_dxR#!#gFN1zmY??%=$}X5*$f5m*m7~RkcAl zTH!EtxRh^Nhq{dY@LaN6D649Q^}$R`PXST}6HHSd3r9L0NQ}A6F(kXp(pXmSXmC}` z-}F3L(&w}J^AOyKnyY%dTU>-(4&vs3^-s4u!cGsUd#LkrdytIX1q1`hy;cEB@%-kP zpYJGLCjG8M`Ao=6lN_i8M}Sohpfv~x2ojzDyu%@b@^}Lk4Npnw^v1=H6?fZZ?6W&s zDcx#f4#VNG8WS_=NR$O8Tsk;AXqsXS7*EC^a?M*YLEu-Oo+!d?h5vCd^uch61+LIi z&Ua@(qT@k4mT}mh07lolI7QC{H{oy|ywPshj}} z04pJ&8@!eyLV%eK&%=gubp#=j$LotHOwJRySk-4^W77gs>d8<1X@iyll4vzj=N(M^_sUX!Fz_06CKgf--$~_Pnw)(yktFEqI^m;G?sOQRJE<5SPzU2~!L^yY& zX!uOtM@CAojaB2u-ZT3LXwGmp(gC>Ov!mKGu-iZaQfjqM{bxNu)OWeKGQc8LC%eN{ zhl|;LOPgC;tlZozl9DONF!AU}Wr;W|_bIv}^MTMPcFjV|Q4xsfGEZLF9}eD@WxNda^OdyLe@7tj&?^)h#MbW*ZYa~!3Wog zfo*e3o-8N}pYBg(W@X(3>^M6aKbu*vC!Yf@ZR#y^XsUDogp7ta-F5R<682+p5*{Kl z^fs5?)5dQN)SgC-jEszWde!@1nNm$Tyks8o)^g27u(XaIk*cowKtJbw`zJ0v? zMe=i1RpR$fiD7SMc|RyJ!~ChZ`t#?sr5%KvfDy(++Y3Fy`xCx=dj5`oz@F2zzni!p z4Uc!&v%0;OIjfN(rbGsRreTwHYs&um7aOsA8;ErbnM%4&qYiOg53a=ikNgUIMfU#! zq*THL1!I2r67|%2d36X)k%2&3Hqclx@rKkH(20YM8gT*^&vS=E8APLF^gYWD4;Y+A zex#fo&sBS_R z%7EzhX9a7ut7{4iBLJ^Km>+c-ukP6a-2Dtlr3X5LqYIpZ+cE8t+@nX2s zwai!lbTfvGQ7ra4!r3r^D+n7>_9p}QK=LASG}u}AsxNC1iEx>TBBK)smhd3;G8-Vh1=rz0`<6Cf9u3+C(iitt*@{DSusBr+hWa&ivFCl~wX z`uj@y?8NURWQs$-c5(j>$Te*CMx8XBLa-4Vak$3-B$vUKlnjDQCjO~p6?gVyl1A(l4y-rd$M8$7;+6nfGQw; z`^DaOVIIrK<5j2HDewjoSPnKv?({m{8eVq$c~xe;FW)l?81An$8FGz0UD<4nT;TGB z%?I*8K1)SK^-Nc{jg-3zjZOTp7PS}}6!yw0R1bmZh%-%Y4iOxCk|N=e6~hD!f5hwT z1j{O{x1@LIedeH&RwRCb=??n5|9%4K$g;glsPlMoOM;ggNXYcDH|X*BbmZpttoSY## zrgqW5EAm<#ZZFWgum7kl-B1+#eCJv&jY%*K{#2uMi13Z{T*vJ-b`%dBqZR)#q9|Z_ zqDg`ZU1}7Z58wrSN@?OWp9F8F251Ti%$@hd{UPDf2e9OB5`!O9M^yNh@ooH24oal% zB@Q`B#C54yh&|rTuA9}`SHJP_QORL_vf3V*P@xv_M^Wp$>$K|*6Ou5LjyL^8Q=9so z^I$RB(rk}ABq&AP?(K!e>+%S=aBHq2m+{>3_dPg|^sY(80<`(t>%qbk&2Q&EK2iGV z-%?M8ngli-Ng}u!0+&ccxJ!K7+3-bwV_2a>R`Fr9XptNi!zC*<+!|mXLyCTWemPnN zb^4FhzZeCB-`>>K)hWb$3TuL~Y2QInJaI5p2!o$~!esfO;b<*`Ydm&mnk-<8E7cuI zqS!Ka`JRRzI|oNPh|_Ug(oEsFGP^X8L{fz-FaQ>$`5Fca3L9c)ppo?X~s4lKF^@|S% z08LW}wz>N4?uoM=v7t!U<$Ydj0E^hUj&`@HvtFp1?OQo&QkXpvgaCnmh$9m~0dOp_ z>r&A8Uw^PNkK7Wed;*XyLa8J#zn|2=F`^)cf@8XYcUZ0cbpDM)V(d0tipP!6FMbpiI7~#d zCM6HCw~1JcW}w%;gDJa<*>^qM5HS$xVy!-mK|A@xe%!oZGRwbi?K$xzANmb+YPwD1 zT)Zlyc5mgPNnrQzPjTIodcQ@PdrvtbYlFOla4H;ED#+QfF7#IB>hB-nep18->2)D) z$Y64OB0O>LW*BM^v{-g1>TrkG{x>&v%As>kK(z?~9WTQ!P3)n!p;O#A0DtpwtZg*RDh|W&q^~B~83*2SwRp{!d|7Hu@SZryam!jUoM|~xB1lI+d zzaU#N!Ah)Q|;2JPIOWzWGcvr3+Hk02>qJF@$?WQS=)u62k}dLAS9 zyJIFk$Eb8NIp64slI;#aL930vI_4A=-BXI?f%O>LAk>L5V7pW zeA@b8r&PAa(`UG0Vt8qfjVsv9YKdVA!SHC43djnhsL-v<+La_|Iwa^;YbAG%hs-~ksR}Lg7zMx1%rUZiM5WVRYQdzL zvC5wPTNlv~-9nz9J@#eOcP7DHRAVL}CWXI1@s($?)XJWP2ROE0S!^kJboR4-1Y@9s(Vp&SxDqBx=$j9pG^t`lm!q1D7XN z_3F4t4SD0XnRypX_VQD8D(%|OZ;BIIv@0{;@Pii}jbv9uv?roE=M7gRVkXc_qCrw7 zsosoRLg4@9yG13n#At9S~s(UWN*QPzJ$J1|w zMfVM-uaa)s&JWl$8rG!yH^SJmqNLT*J**ancx!ehULa!26P33mz3G$~o;-^@R){H< z2b9e$3G(eG8IPPUE6nB(Jv1vds&R1F4;A|6kkJ~Mo)M#RkrBdVO@sDIk}%JjgGR-Eb?U^aB-4snf($9`-C}IXgnyo zt00+=h}NvOTyktD*^-ELb~V*}COk(E;Fk$yuQz{;_9w|FBji(44aPk_rk}KVGi#Fx zsj=fj%*KD~K5M?BT;0y3AK(6f=-%8wifB>)$D6V$8i;0n{iJ%U#+t^!D>_hzr=m3n z8xqAG_%~&*3`PgCjXf{(-}tV{>$%Hzr$f7;<%&+$!1d{wbo_v-MV^~f3e$bW>=IQu zUu`7XNw=EDgM<@zho+m?SFGy!I?+Bvbs>UvnO`z6Nlz}DqQf}|>9eA61Jw4$^eU2D z&vprWsB>rDFjw03u|QfXvLj#r*8P!!NN!K+tnG|foN@njhU-2xC$RWcgbdDS8g}%t#+W4t1LBoxo0F-QT)lyW@_3);3x6ffil~?^Ae}f=997= z4WZ+81yi zS(P77W{L?rT*Yd}byG-&hrkI>B`Le$>q)21+D38i&WtKv+r#%Ax{j~8MS!=qH;YhX zDd|WlC>BN5EvvWbm0$J79F)@!6&pJQU_R;vne~6g)orpqaV?vnE;}%}%N@|lF0=!JFj=qBgvcV^cK) zv;Vwvx75L4C2_lD9KcDXUR7>=g|d6g6tE#eovs!4?@H2)ju2S(W2#98OM}q;jFE#Vo z@V;5^-0?gacXF|=6SK9$n`8JD5)>x&KvtVa3=B2=DUV%%S7n$^oP@X z+-;rq+B+R1RCMJlgHF!dAq3ZE=QbNA#rHRViL<`?Ga#p8va)+jGa6(zFv3+NzL|1{ zcB;Ww{gQF#M)gjAFDhL{-1xt$T{L%kGJ7-cxKWLbEqlM2^+ed=$(%xr+FEs`JwvU# z$sJ`S?T5e(afwv0=nG}Z)I-y_Sf^CBOmj@#McTevoCX_?>cGp)<0vUHNob&h^s`ltCOQ$x+r55ZmE}7N zG*vuy!WIdFf6STPY<9nK-D}~Se_yl*+*_Nf71y5)S<*NjQ>yhJ$29fb^@@p-%+l1H zZvcoee#RItsO;dV>ljBFo`vA~S5wNN%w8@I5J?YPkw+n02Muw)LKRNK3Ncaq2sbZ+ zQi&7Dlu3R%@)<0KX*i)rPUL7nO}5gaJ;U~NYu4yg*cirLU746g>@h4jm;Qi3$n2?1 zMR7?_9>Qg-z4u|dvN*wLWj!!Y)1;Y)=`DBhLtnrrp5~GXr4QwfeDhnAxaVh@!EN|r zykx{3b7RPv>b=NyrWFrYTIPQNNBJeMiubkFD`@L88IW`EKmAv_ zqPv@wtp^zVNUh?JiP;i16#CGy(dbzZ4ouVco*3Jud8gQ#mz>o@{8J#H)W17{+-OXd zezh*3skS*1YAjJF|F?434)Q@eqMUQvO_vU|Pu$HEH+&vMcGOoxW{G7$M*_#k_&@fL^ zRr(q~!2acr($KZ~uf9VEtwFtLH8qWmmLqm&_im}vlYXQADD|f!w^EcL^Ju`I7cciT z2vY|QrXKG%aH~vWX4|csZ?D%gNhJsXHM@esl_`W;f7KwQ?44`fMf^4AOteB~PN0~88E&aKUt~GEAa9wxe2s^@zW?4Ui!PXPK~`4N&+_c^yYo9- zWfyq;(IrhRbj=9|Fdn^*ut@yEqQi+G8_*+i8jXs7Yrk(@c5Ev&i6Sqd;UmO^DYs9- z`mX+~0v{Uha8AU_jNQ7le~^j4zl{!!y@Isb2pgDF?aqzWPZE#qXi((U zi*`)SsfsviY@ZQCjv)^Y+v$70a7qf7OX}&k)ugApIxUDWrWC#RQqukjlJ2I~%h>CH z6HPV&MPIa;E9Ys8OjG>w-3i9r$PagXZ_ASj7AgNXK7I6my?D&8yIVRCS82vvXNj0Mh)#+@?12D;CoY7)I(IOUh!y#2E(itb?UgP)j$8O(|sAwz8a zu(RLY%aw*1>Pf8;*BdfWJSN(ThJ&gX#d1=J)}Gv z7usEX8%yXHLi<#`pt?5duZQMsvAy3u)OdhK_rz98fZJNTy?P7pf9>rn3}}{uPFZxq z>6QR@n{LPDlOek)GyD^C!#5337yE9!JU4gRgckM#jEx62IxPPTU-VI@D_O@{!`!rA zm54b3yzU3X^Yyp~30=H0%V%{a z{7}g%p&+2l-37)lhCo`)@lx}#CjI9{G9Y<`JN$TsNGOf~L5tUBm#yC-FZCG$A}O{& zAt9NQtvS{74>nfU%Z&dSx8gLp|K+Bo1o8$EL)Xn7V_Angn5Hsqc9+HW1~oPHXR$Hz zX~!UmwPkHPo3H`D($37N#HK_(PmZY=-?e#_-~rDuKba+YtgO>E6-m8W*EXZ3_6Wq+ z7Fl1BO+eIqU!F@+ZARg5&`Ig~$kbN;OgoM?kJpi7#6!@1L7s+Fd9eOMklBY&YxgZ5 zS+SG;fBLQRew(;hDy8aeJ+{BgmM-0jvF8{Pz**=jd@rC#7d|C)OqdPS7({g=U6C$q zF5J?RjWa)*M^o=wWTX|QL2qMVKEz+jAVPOyzIfAfeLf+FlYK55#FvG)h-=d{!EEIk zmcQ%j^E>BiZ0uaT1_?n`* zvY<44NY+jz{g&B4HW6wn+wRoR#Cu^IvO3H`iwbrzrTBw-Kte& zLP^@Q7u5fu0Him-M_YVX28Gc|5bftTVJmOmLpVtnw0dKs6*o^Fu*>JLvzz`&B*zPB z-qKV>&|JoaEOfmw6n}05n1RhQ``c-aD|A;_uvuc`nR}273+Hqye!Sh*f-khI{4NlE zB`2mSdo6$3YHD_KP4N2n&xL_7J)O;RL%oAuG~^!Z{zS`7;Kp9(ef_{{} z-(S^JV>*@mXh6`PZYMDR8u&hj5>WjX%OB^kezFA(g=ff4Luo-!*yg#sU;{y5lAUR( zd8TnUgGW*jFsJx=fhXUYvxmf9SVH4bt6*0ZPgsw?{p_-#-eTYTY!E}DTP%D(Y_>ev z>sO?g%Q`XLS?sN%U#lVQ6vGc-N?r*3U~uj?!e^w2!*FZg!9(*3mcOIH@SUAwiB$xC z=;$+0J=b{hkq&$)c)63Yc=X6zVx9~Og{+9WC-Ao%bv=y*A~zeTx(W&>vuCj~L6`%O zjHcOm<}tvInz|i~`$hqUxzj5ROE`C%S|_`>IE6u=fh-NiOIMbR%yP$fYnTf}*_}l8 zI2+WtLtYPmNKj&WcwSfDR?p4~tU5d;S)~(hG4gEy+~*b?r=Z7?!Cs?-r-O{v%b|fSY|%Nx z$CEhek4>94cXVEjN^-LR?r~GO-|I+oN!#`?lmJC*&ytGIlc2h)?ZV?lV{Bo#$Bn>g z(=WD3xIc9=Lx=NHCGd?~bUzf&VrMKmr^ zlV2;umKL2q-X={sXLnXs-i9a$2la5GNIGQ-U4N9sO43`^A&c*(_3M)q%vJk0x0mC9 zbnahB=QFkkG3UJmu($y&&nr(!5^0^RH^DGG?sZ%+Wm5bCG*pi=|4a`7#s9-^%%NW! zS8Pm`!=7!Rr!8zQ_<60hrKgomtCDrcd8u%PMSe6K6k5ZVU^OZQ&!Lce{8}z{*=L_O2GU!sfHC^>LWvh>uIoB>aTnx>2UH+c<#9Fj}TCW>m!n+ zOZyeeCVPE=XTwG|!gP>SZMw1V50{mTiF5Yl!hxuPxJXmx$A7@oy2s)Lu7pa^J}*)5 zqh}C#QE~Hj@Oi3q4pOgQT2BGE;VTYFrZT9I0H(}Fv$4PzIi8&pn4?U@s3RS=BK>~x z+lwutkInr%=7Q?qKHD}@R#;Hs-D~drY?dY#&)<@UeGzE+Z1$tS(dC|b(aE7$Jhi)X zib=?B`?myO5Tfz}>H%1Vd@)$je*cwGMXn*{8)NSLaE;3!Ji6PBz}HN)cqtfm1cn@U zPU@8}QWEv#gi9wDt#RmSMz8kAHjYHmnGN1b>FKdEcOF#B3=O6uN_+eujB$O$t}9DD zgI(p#c|ZhEXy&-s8mMgqufbNkogw-rb4_fg`HEBWbMfaYU&Xh^#;HV~pwx z69lf-B?O&5yGyrslV<@W;Pn-yS&(}bMXw6O#xslDuwaZ6Q+%6StAMqMnQ7iZFAU)$ z!_?eeY%IoO$ha4l(s-<%@UpMSyGLHcuD^?m{&$HsK*m<)Ehg2z4 zIkx{d_42qz1tP-l2ofoQe&Q$nU+}{pyOe)$5*E4TkVlhmL^@^>GTixId!Yw5#4E<^4ZwZ0{K5SWVXPGYpk?6rqvT3XoS0JzOvQ<+G_(q_6b#5*Kl^)qgvoWF|X!-xAb zGuADv>%FR(vND}wd_7c|$^Qa55stZqY_^@P-^&*yts+w*>-keeV!!)479=o}=70kF zot*~Ua90k~iD>R6Fu$80jKX1B8jbE`>W_LxRLm?nV0nf07sw#MbjAQeUQc2dMaiod zzW8qucFSz9UAw@C{S5A>Ij-OQta@l2807x-lS}X5yrvD0@AMMi8`CMl^#%wnp(EEP zfC>2nr3D27XM!^o18a5;;tI1&o#+~R{+IPMsI8vt{99;76q$lauf33j*3L8jBw}5c zKMxY!oCR%dmuJ6PwXkPnOYA9At1I_33fxajZ~|%PREKiQM7rk3GvC%7kC16{n5F0x zUINZJn$veK+1Cf34{RRyzZK*yvo#K_>UV46Vo`JB+L&*vxn&#MKHD#+`tI?Xfn0km zwlWLkyvWs80#TZHU7yvF{*LC4%=R>}cBeUP;;*72&2I`JV}ejot^Wz?%GLy)(x2wP z5TdLbH>L^1#;r(}jDqq{fmTf8G2D!OzPesEW847bN7g0&pJ=5}I+9eb@^f8qw`HzS zYE$d6T$bVCwi=7f)@G85!D%`L`ZZ>!1(*3DpUC7E%p=(+5IT(4DyPiruYwwQ2llJCc z#q45dVnvooAV&WW97|>NEqrr-+V6NVF0QIpjNisMOh8dMLs{oBV{a&^0c=A9#DVL_ z>Q5Ga2vDd36IEdxi+Fwj{F2Xh3YAHd=G)#hTLUu?Df^emXfJh2khX)m@TM{7Q~gC0 zz}UiU&TsT@npP+-h8JG`?(#*~CYgBr&wr8FIlae^q>8VqbU966@(SO0XTPynCqpb{=}KgO$DkV*Nis(dceb2F)w~F0BmgcC`&Z$ks;&l zh1TL|M|P8^G0|7pmc!M;ju$o8ck=76*AhF8UvUh?9!G07I=(BbBK|8)QPs6*;m39V zJp&LV5guLypcpq^4mK7$+Euy1e+&6y+%b55IP{}U($!BnA z)$5S0R{RLNB&v0VUGWJkV+@$Ps;wm1@Dnaf~#Gcy^?nQE2)1G;~Ax%?BX1g76F z!bCwM1KWc01d4LH**n63H078n-qS1ubtg)>Pl9K8U+KZ%M@vf zjezj?N2}w2CQg8~NQr^Lmz#u+md)snN87K5+vMlvvc`>2t=s|Q$Aq4{eEVa2!1e6n ziwZ?FK(ObD$|>-ON-Quw76}`l(_FvV$P)m?`Q%#I4G=-xRHsT4Kx%Zj$MCbEYAOPk zqq#+x{6I9^xRM76x(7JZGnXKXU5U!%i%n>yM`ZK54^wvAs|(+yPhW=ds~PvPl^rgs zu{1VZH?3fk<^TQTS^98O+cWcqQ+2x@sx;5 zbrfBRS^!j)I>!(oG#m&W!uv|z5-SOOpofPq`lW*Jkg;pTh3}Se%;sh|7pbBy4~sDPE~b07PyE;{#aDR*|r!L6aVm;;qz#aQ?{>>g|@I&|9l(P z2(~mWvJm6nEqd%VAIlRuaQ%57%K1{o!0u~0p+V0bp^b;m2Q$5&Uq~J_1MlJSFLWg< zR{~{TX?|6mOICLc5(gJcuwoZsIU8O8WitqF8WtBS2TBj<8WURCg6i-WANKHvli z9p&0%;Hh?30qFP(6n?&IN)f!T+i9WvBpJ#9UsC+jLR;(~4H1z6NnP~c(w7T8?Fg_) zFE&Ds1b^nxjii0vUGVjNgL&&$xw9wM_k-%TDI(RJFhCgB1UZ`wW+K#-IduqSn67{p z&F=ypXKUbF8UF2$L=1lG0ZJ-aQQ>XIQJp8jHKi0W~el7p@L@f2{gc5@1v zxA~tS(iE{X01|<|kT+gubkv-34t5;+r#~v-$cc;uUd@DF@4wUOGU_ULf@AwX-bXns z0pt`QggT5x%M@y#a>;-*8m;vaXwl>P6#2Yp_LN4 zR7T<~fcZ`5EO4R=wyvT_%Xf!=VP3HIa(Q`XUZ}DsFTZ3!y2r(I)O9eDp)83YQXmq+ zWx?M|7px=_y3I_09qt)?wUkIlE{0P&MgkD{_V~}y%%T>Lcwl z;JpjSJbF*^z}u0A1IwxwiK#{~=a_3}8B9w6PQb+IfkP5MOeIOdL~4$H%Am++4l1MI zxV#5P_lZB!tkYY21aC}I)GcBUI4)^6Kqc>y%Um4A0`or6V4Bv{D~bb4em)Rl#nOa7 z-2@tca?H)}_csO2&wBsc1VG_aVi?mtk+l_Aa{JG17z(nm!{Gf{bVv~6Y#Ll}52G~% zMuJXMu|sViR!B%DOeK8_kgA4_;WBl~o_JJL0OM|zmN-=iid+1%K7bDPG zyH3BY&H$Dal<2DWA9BSg7Bj)$7t?ET-MKo8yoHiy!eYlfWc0*mCstq&|1@75ndfB{ zyq;G2O841T2rmXTv#gXvSRMSLo~2C`woXK*pc;bs^rF=A zFXow5JbG)y#WpS-ubtHado{S9^siaYmO%Jz5G~J4Z2c$k=!iVgl!kxinx0T zjIOH*Hlls3SIgHAI_nqvuzEmzL9krm>Zoc=c=f3(n3q@k4R?I)9~7}G`S)VQh;G^8 zE9V)imm|=}A#!>)#;wtSrWL^pnm%yK$xrSKOnwRi&SGM{esXx+AC4>;wFF4FD;8kJ zid#j%Z0Oo*89t*M*=)P-uvI{(`yB@t?I(V8rpcG3158SkGDH8eP~fo5)L>CfXjMq7 zmQiBk@_v6Qa5aBB5>K;K|K2qhB7~Fd{*UJt-PatH{xKd``A=(U?Z4Vls7-9$1bZJt z^ytz0@VKY55`^{dK@}B&VUalu!F6;zzx9A#=A1u07JUah1XD2B&P%yXzjo$a2;GCT0OZKP>GRHUU~5B>h|gt$~!MA{xM6r zIDwe%|EcI+-w&8E?1GK2?#js-tmNgWq38{rK`1-r;VsFP1dsRulzz(18}Ml=F8?Avo8m38t*TVG1eYdS2}`tOb&> zu@+o>^yv7qkWHnrAg*K}975&XRZ$b_+R`Wm|z5> zw4>Y&SpE)m%E>MNU6dNHF`X$4&&1>#HTF`R#&Z%DMam_P>%Id!X21NoM%40v6jq9T`Z_GMNj$g` zJDCca%zc+ZItSj({Akus1`%n3K#ZyWO6#qhe04-%Vc><~@jtwM``gQ_9J;X!a_J(5 z7w3JhJTo&}95ZBV`RA|jD6TM)2@4a_W8Ev*L_{wIzXb^q)3VsV?>vqA0D9X-ZT7dj zWla7qqi)8^fmj9`Ci#yNfDf%=nTGzWC0V(YAtK}fh2DR6qox>-h6R9JEyv*R8ro)N zS-$n}9!FXKUE_V!2Xy!6Zw3!C*uy3M`AbxjoV@B@NBu{DjANfflJ5Vy>qb+%10&@2 z-{+6;zX+j|uJv@ZzWev7BbguBS!Erpg?@eg=dUZFt>{+KDgjp93TQz5XQ90GTMlbt z^m06Z?=(*cK~;&(O+Nkf*Q%vU9X>r16~aQ+Sk|QX@hVSBAHs9C7-es{8YoNf?ea?q~H(U&69D}%V!P6fsm8`zo*Ivg?n`fTV z@!)K30g1hPf&Rs_jT;JqRZ&YhgY)3`dI+#L%nG38m-C|sd-ULa z%P;FG>K?&Rm%%@9sAV{XADfqCk;}8GA;(4PZrdIbO${*%uPu7SLR{3#Ac=ZgpDRAfd(oKsvCqFn$}Wdr+-=F zN|f%sA`18igRM=#fyELz`6RH@zh~fvGyrF{@z<(jfE-8vYWR=_)=+@xZu}L##m-Vp z{JAjy`wrDLbm{}ZpJx|-PnJnTC4xjKD~ng}U6Iaz-+NACJ|F^gvHrp^wheFJ&UC}7 z$VHTikjT-OeA(LsZUw4EEamCst)0q>=NqoO_)Zb>^XK)$C7>q{FC6u)6|6Ss5b>Fs z0Bwl*doNLq=kXOzz%uT?g_~3m_Nl^9#%OTRy#U|BdnS%ciYaamF6zwq-FFV|=FEkC z!Tu#Z4n=M$T>m&4i5&;_YJd)#RQNMohAF%~pWyVkm)y8K;nD^HFO%ixFWA3emrS)3 zDFXg;6z+dKCg|g>3O=&ajcA`$*|BEKwb)7e-NMzHoBJD0TPiXaB99;Wjc@V(pis?6Jf~ zuK)^-0E*<_mIo?V3^hShmdgPz;aYe%khw3Ho*FRPwRt zdi24T)|5~!-YWjZE_bHH7)k7vy~2t!XLe59+um%&j&*c4atOuj)5KBD6<}-f% zqj~)&#Yh^7uu5Bxijegf80xXxW({q;LP{frR18JkHI?xg!3;0w^&=Z{<4rMt3R`a- zpS50Fty(6h9tn{!(P6+Rj~n%KHk!wtBlvL=F`ke6Lllx_B$=0p@F6Rza1405g+VGG z4+pBtOF0ZYy#(i&U|%Y@AW#jAh#}ZcT)~60u3L^4N3XmZ)fbJP+$!T6$A{qgN4zSo zu~lAr^@P`h5gEK?6pZhKKp((RyQ0JAA9H41&xcM`F}z;en_~PeGiPI(KQ}ie@gBPX zVCF}K6nU_R$NrsZDd9UHX6^<-r(PLwSR1+iirDsI)H$Qnu1GtPBIfjF@d1xT(pTh0 zK#Is<)1OnE2&q>M_73jH&~}zumR25_i_!o>vrV5>Fxc>|%NYDlULJq?zXnWH%l>P9 z6)X61@6GxtJadmLHvp4)8uNCB=dA*H9@ig#e;l{s@#h`8|J1BW2J1im{`lT0FN#lk^?XX&Kgge*tIV*1Ubr-2XP=Khp!j2j>lsv2WMw zH*`zjDfo5n8~ZKK(s!*;x?DjSORSsD?PiI$es&}6B^0Nf+ zjF`IEOZWQ^H%dYh)^Ul)mWIdH86JCgVEg6cJGE+aKoPjls=xZc`Qugr{O2B@%lZtA zzk7b&F%-mv8U!UUjx-?%Vfk@69_d-jE7Btf;=yMse?- z{Rgg;#MZ0Y7H`}Bt6Z+Je|da$(XW4tq>g|4ZK(LXaCdU-fo;Y|e*cZIKlk|Q%m3=y z9)FjXzy7{pe*eu%IZ);-?wmg{vQTcj^)*&t_M8~)QGXCz{!J1(t*8Ym{#1s}acQ99 n8vni%a0NSw#FOCO|7UE9xc6^GRHYE`U_1s-S3j3^P6B?8jj z^{m1D-+SN3dw;m!Pw(;E@1f}Mo0%2Yy5hXfb*=SQK~9o{kctojfsjZ&eWD0~T;PR3 za9%<2!IPp4=}GV(pPjgxosyN2ouj^uAw*W+4rOj-XKwQHrh}o4t%;Q-C)-0d1k24= zc6KORes*??zdyicWn;`f+((uS8o7jes%{H`5M9Oo;6P&IVGxM4z0{M(%1-esw|%j-&3vQk zp^~(w`E%v#j@*|i9SkE3^}M`qd^|ZhnxXN(VK8)oG${si;vi6N+i5IN(B*8)%h}~z zKbb_1d=kzm70!77d(i`JFYGI+9sCv^!%+4PWUu` zzPLfmd;XT<&l{+x*hgt!Ij7#AKYDBYe@jC*$VKm&p>l}e=4R{1MKXisBBD@fF{rUY zRmk`yxXdNEmOFVUy%=w}GatHS&{5g@?BQA*K<(L0mVl$7%Bphi}7GH(f z)1|Yo_)DV!{hq ze#&Ygkw}*e9z+Ju9a}hFbanP6wulDI{deIhn z`eMeD#C9m$jtD+R8jpJ{s6ErwJ4#P0`th3R5V@!txoE}b#xEX}q7^)~9@2+9dpYw@ zf~+40Z45SOR)4N!U6+~~MWBmdGeix#-fg{cZn#d&=zX=IFSr#XyllRx?bE(nQi`_c zBAK3*Za8Q#c|@kikX66TvkliHM#|eCQ)*M6$eT!98!DeP3uD-RI*GXJ+ZlL!jZ4h()yl{pik4NjR z)6f;mI~V!r$j&{%+sxYnfwsc!!W+yqs}ZJUk-_yy67G`rKAV`Zy|q%bZAOV>+hf1l zSwh|vOWrgC_w{h~AcDY%`_M2-Zna(hEbiOxXNS8K2(*o!l+R8$W9hk3(dr13xpAT^ z9-!5vm>yN=WlmF{v7^;4Bi*R(5zvJou47=63_C=}E%>9?@fWppMgmbwvS)M2A0xp8anWe~~T5-o{r0twxllt3AW>ez_Xy7fl=LodPYF0R74+EcY% zj)Gn7Rb7d);Zk2}~x4m{Ibtd8MAzH^TiQ=adzm8}rD-SaKX zYAlN1Mog$8gTAl`8DwJQO09H7SWgO>d{KCXG0IlaJPsQpB#~i+PE<@6%9dwcq{1}> zU4j3yb5h4~V?+<7G_s0}3m`qWiAj2J6}Jp>pViCVR_L3uCqxF31PCs>rH8I%Mw5gh zuHz=%;WAIpT50p<9!*M{@A+NS%T2O3Y$1z4b0N@O-(arq7Z)}s;lADiNvNvwR>zk? z7|6`iot}zMZ>dxvN{%k|L@$E|xrQ?8$|ayFUVV&7ISwAk41aT@1KOgDb-}bcs~0UNg~JS?DbmpC8ZuN(enYeWUvgWH%ek~!i5KETp+epTz+jsiuUqnqLuU^toZWqO zHZ4DVbDUgsl)OnQZSL;yM8vO4dat0<5evxUyBs`d-ukRPrSP;UG}ePQx5-Os3(YK$ zH(j5iP>gV2El`z`eOi^+_aue#D@?j)DgWk9+wN!@u8#=rxT9_E8YJ~;$H}^*V*Pub zZTBh71?K2u$)GRS_Hj`nS-RV8-jT}_tEN;$HB_Sa7g`y;lm<~|wT;5XPL?$a*kO({i-im<-=xBgq{Ps96u z`k|X`ZUZlNS+s(%f*zc`P-c;Dbm9WpK%$7Ks`L$kQ-5FSVpg!?OO4GJG4whKZ` zeE6<$8ym&>6_y*j+rNG&+U_0OW(|*hd*Z#lN#M0b=5Bu;+i7X=X*v`RH|=bnb~Fj! zNAENJV0AyJU5TDvifz2|r-@`6fE!3_U`ST5(m!yVZuxT9S?!U)weYm?ew0~^c1zN` zZ#Ujo#5PE3TWr*!L62MxU*IosB<79%0-FJfc5TXB&jOm_8f0w`O%ceNpsgO67oHOK zLLkv!V>pfJid?W=EugN5szohOmF&@c>S^~SuS#>ZBo}=}5|7hPa7w5ZGqL<^iv7lY zg>w=3G|$U9DXlZ$d^L6*8^>F zd%NMQm~PlPa3M%K$2)0HKIi8f&9+7=D=QmRUE|_BI5^l|><=6p8fM zAzohKnRMF{rax1tI9jb9uCh1FX#1hx&UcR9OvrRR4h$3BHl>WZ5@mIC=#~ZxGPAP@ zy^hxE&)yGg)~>mSYFbv#;?d7@CLItb9kd&JDHlF)-ZXgk?w#q$(z4}z( zc-(QaBU9wWWTeETco37Dl?A_x(RI}%#JX32F6nZ0YGXfry0y8v3Ax9_^hq+54iZE! zk_c8BS3yCcL6&Fy>+kMVzL_A-kHYT!Gni201}~iBodVB`6O(a2$85U{TR+@ibM4sb z5=rV#m9$;{g0Y!&-@`#|b?_8hjB-l^!5R&twecH#$b?%qF!Wt-E;H;O&x^=gSg^id zOhGuU>&XeMJk)X9_*N@CNPoH>5JW2wHQgLwyOdXsTWGhS7$SW5D!=Z~)Sr~L6|{ur z>=JC2x|{Gd`LPdnNRaYz2kK~D55CMK4}KqflAo&ehy8S+0tPMQb?biY9HxEuRC3iC z?FY3n9}!4iu!KwH)$@t2YNe(WSMSK^HThoJS=({&Jf5MiT+GgaRDgf>TUG18^Q#pL z8F6Yw2A7PJ+__UFL+3sy$?2aSAGn_A+*AJpv`xr51-E3d9ZWU)95hkZHS}dEIaX>r zJM&>>HIS=bVm26J<-VjT6Z`P(-9)F?XUAPoO3H_*{F8n1cg1nb0#H%eWDo-`>} z5NsDRlZ?7QiOVDjCxGvAm<_OG$j0F}{QMSJIqgsVQNWRHYrboKul`Jky=EQPaok=t zRiD##zH@fX^Gtxf{`kS<$*QAzscFAuXtiD=Zhpm2LLJu?uEX7xHlW>|?J=A&pbe!= zIm6YlO1A}RU96hOBnrlSkGQ+GA$Xlls|C9#p&r`|`IU229=pX!2r!7%swFn;5-ckT z+~Zr$VE{&c-@0zAyxhsPe-6*39qDq-W(gBAK3nzrHLg)d>^Go8UBA9ZRPO%_tegoE zSac;ZAIyHi+$nry4)G_UmH?JeSy@R;%^j339lfd~gq54T;Kl_Avr4WW5CAad%5Ls1 z;UgB{*~ z7msSXv~whK_&asXanil7udmQ$$8^Hu$iknDzD|B^+>cV{DOf#2L&KWw9%(J7X}_H% zCT8Zn1+{0Se=@icqT%6Ttle$QU^vZ(IOv?Fy!S5BfZ6V-{%UD$&8F`OkBk(Tl_i1j z@$vQb_xGL0^xF~Z?-ysvFZiTu^dT=45?^2{T3*7I~LX>Y0Z zCPJcaBiL&Fpv$wadlN`+AgOJ&lVrkEJe<7AGISJ#hQs-_x+6BA9F&|!?a4??h?af- z3t64I(&?q;nvPxMK!1OCiWmXV#NtdPRZhM0Wb(ds?4pTvA&Xj}S8gr~J_*%@hIl^P z-=pPg9<({S^&ZE2o@YGv_VzV<6Rta3st=VlG@fBXXia)ENU$mysj8Eu8yy!XZEw#7 z<|-4<8@AOc5K3)T69!hTNWU4s%zU^hKzJK&Suu_O?Afz>EG)miVCZHlWF!)b9FJ9o#b{ZH z)nsC++2CfE=V=5GH{OqYZ2{1YqR3^_a?A0LJXUm)wD#AqdbKiA>N>eWNJO+SSuYYQ zv)iUDOL9>)S$A*^a=7iIB!a2FiIE9?^*kB$w4RGGR#a7$ zw6tWa-~YzWJMDY5Vx?@9cjN2Tg^5~$REgm1BsV)ptlOFEh{FJ%0!{Ou6WpKjF)%h> z+c}{1Jl=@6?c`(8t&6wvJR05p-R(msZ8%cnyajt;@DzkH%Q1&hi)+`et<#@v(8sVDCao+^szUWuf~;ly zpY;fDGBKTFn)@3xpKf7;KmSe3>XkB?=;Z6|bpLZI!xb(d5Qhz|cE1(aYSu-|EXS)R zF;!R(K0|*7Z2&>KW7MjC{8yP$hRk$&v`)6C$6D>)X8qYw{n5$DD64kWhZL~@ZVfQl za_d2D$CX}dQe~kYg4q|!SmLN8 zCA$$&PMMD!-tz8?N?5-(GNMtpTUvl{SXKkRqZ1n|Amqqjhf4+XACV!`U|mxxDk@IZ zu(1VLBII~U_v~fg=jSwzW7b&f0hVop9c4t)u`iIz`tep5&!Qp1xRXYXclrXhNsP#; zHMixMnrC~QW!2l6P?5w&AA&9LxwS36)zzW$F&m=H1P3aSlLh&uB@h!R0ND9lZ)j{> zY(D%Tid7T+_3c$G2D*Az&fs8k_E9!vTXfy_ZFDd-2I$nHYsu52wm(R0i_?Kc%dR`* zJ#zC`-_{qT$a;#Isp+ zWfmy6UgPVFH5+JZ>@(AczYMDFmj*T}yWB&tBdj?+ToMFcdV6Uw)U2R33hOvP1Vpvo z&wMyC|Bg9-ia=x^2Shrxytx4~l z47r3>EP6OJ6mr?t>x}0EkuRXjebv?t2s8~idM(eB9WCo`6zvHD(QRziLG11e(mO|3 z2n9TY_uVA7@HneFXL?Oh({}i|f``wy>H2S@!tU(+#xYK~I9}bn*w0}A1w+Xi%@2a% zI8KiLng-4n4N#GnGFeC$h@IFNK?96oP?1w!2o_uE zo*fP@l?$C6Z+&lV{Rvc2ANa;m~EDR{OmMLwx-i!6DXhK8gR_}WwJ zps=KqW#f4J0rlXr1E745q59>RP{gWroO@VwG(p-O$-JyAK0S;ddVcK3Vt>xTvav`T z=uVZ8kkFx0w%K+}has&~_weSQj&65Zx@h!`3bV|PPWtPfUa_pDxFf^+*)RcgaJ(5^ z|7*Kf{w@zsv>y>=PqDGQoY0Q)>AdG@0CRrD>z_Yg-jPpi&lKLtk~m6q`uXGKvZuj4oqvf(WVAV0l3v!2>gt_` z9v<(t+;{p}fbRiu;W9E!I-2bm1m-#5vUt0M_GrLJkn2;8)x<<#otoVD#xZw=H!dwM zF8&@VWsbNb`x8lj1f$eK;dmaj>Fy7Ac?`TtBA|2f!dgI{X88lX28hSe=ph13dLS44l49J8Y?C=iTM zB9Bd=`WH~_@5%Zgx^ED2ljC3h`1(1PfBE{B2@ALRgse;A)c!Xj?luSA_@PG%HL2D< zIUze;v-k&iy=ZKr$)*nKl<0Hphm-qm?T*6oNK3wtq5vuY}U$g-rI>A<#!JgOK1a zSQVS~Kx_)RtLWh&43PWjgKRt|^iwIROCTqWVH2l+FQyzDLoRx=UjV5Sw1FW}$-|Yy z%YbC!1(Kd;^F60a{W+A(s`+0N(fmI)x3(7gb5udtBrs^`K90YjMOt%N^kamM1JOF) zR3_Y)CKC_8_=s8W1kU~+ zE(Xw1T~ZCR4b*U7z6HZ_NIj0nRZ*v_pK+!rQ#uT?o1D|$xSSO1MV zDF$t` zpq=PZ^bLR|p=kxKB+VzIj7?GJg_yJ9qKb;Tw7NKn;lljv3oi4lArp5)uGz@aozV|3 zR)^~H8|4eu+}2VJ4E@>@;?u-Bv1*ugVdjq-;=By9f@o8l7hi*2MQSC5-MWpVprnZj zy~FxT*D627c2vcVxjoZNpH6#pwl|L>)Y32ODBtg(q^%83tMDw`PVI9}U@m)sfvm|z z>eif|6frKt$WjvAx3LnBzwYY2JSxh2QR=#*!KdzB=FE33&B|h{$Rs*RY;X5qVV+N5 zb<6f%OPfOvU)IG3APmXjvJp%`;q6lF)wj|6q3w~3CdS|5m@7{A3J~rK_;NRtpU7Gm zOvHA`Xsb!78+II(StZ12(>q{?s97yol_B=t-}~vP;F)GLqdTh9KFnT|NnN`tm@Azk zmn~1PV{Y4hfmZNkC_iCO4Dz$$AMqHpHv_B zxih7;WZYzrE^{6ZejQj7&*I}D<@!s$33!~1i+bf}M;O=Gi*2umAE>iYQ zo1)(n!buDx^PFY6cSBw!CAsK)l%IdCveWpax<+f{mtjQQ$__Cjtp?cmuzSClGrA=T|8dI*zV}n>!-M5nYW3>M z@a)(<0=VA+-;UTzMg5i#otw1+W%{qWM9&oONL^A^S85ySvFi%#Ai)cw6+#R|zPRGJ z=+w>66SqpM=>4sNA#l+rh>muX?^7Yy_~?9ZifsNQNjRw)c2Lj{mU(kIp|zcyTLU(o z>#N685zY7aAO|(MnBlEqr?q)!E^7?hQLQ>C!0o}vjGT~P6VTmsG+oCMR*x?ssg{fA( z*shoX)SJ{oqdP^GIfVby!p*dNwjygY3b3{h%!ctjcE?__)$AF{iBvJ`3M}38w__J% z+RqVilX#vyr8l?8m3#cM#Q|~-@L?RA56X9?dsW?)jFDDxt=@TL@7`ImE0A?*mm7dp>m5JW=G5-N+3Bo$ z;2~%Nm+#b;#c)?1ANhK_9s1V&njaC@P_)S#tB5oq8sxN?=GW0GN@S(rGPuZ_??@m= z+vgWSK+#=|q~cs%4>OMw1Qj@h8g997Qnb%R1C62uLs;(Z^!}nb5 z&Fi*a)O;!WAdnQ>wG}wfo9ZsCD~#kwg7rtlFXzfc-;r`HDb4m*og8lH^IQ5@_KJ2b zmzf~h^~ep|pAv!N^e=Dm5-TJ-S5`Xb)YI#KEua8U-1Tph_2}(%>WX9EI=7`UIO`m{ z8#}8`7g?f4!xA&MwLx^5+e&UK@6r$hjR@O9;T5F8X)LRZGyxUo#Q4(}7PP>5#&aZd zW|FQpW%;~=4V5;W)iZLvYzSk)r!fu32`DjUXTLukNLDZ5Y)InhW&@iK{vERrPFe|L zkgqNErxz~uy1mrO2V`T(e{>H`tNvl3hp|-ewqayVp_7mjW&X^8_>y{g`W3I#s?wRh zM)7$53L@l@z0I41wDAXjPsUV3Tl?39iFCzM)5q-GIg98ZHVTlY@4NQsOlC$lL`v_5Bi}8Ym_r|4D zi6l$9y6m#Tul#F~2A`FyZ1rR2*4t}dcG6BH2nh4VzZNw9KAHciDvCf?9o==8-KclK z6#HI5qVu(rz!9UWhf*Ewo8fsf+9e@CF*Y{Cue36mwR92&Esw(~UJ8$f$qE? z^@-0$L}nwoYHHFL$EA_9($ZzPKXQ;uhjdgk_zt^Q2Es{Ucp(OeDTN4P-Za{mLC5-N zLd%mSO*_lcce+~K@1DE!8&%~#Q7camPZBAAGbyht=b$o`ZGBR?TEbAv@0});ofBA7 z>tgGkj4&IP$Tnlhvn}S^Xz7gSzsI$m=J{N+*+`1O4@a^HhWadpPovmcmaS2@GtYC- zyBrz+;PabmcDl#&uWMwYBYE4T%Qhp7uW!!tt#z}p2P~n+e&{<0zE4k)l%Up=(RcST(%8nB!W%q08i|JH}5?F6Sovo;2+d-HRYy`|c8 zJn@J(f#~f!JOa$XNw&W4$?F%~*`+$&K%45Ql_bViJ3X5hFofQ=3>jG>uSz6JnRkT+_;}wWmJ`BWO!IjU9qLR z6;o->0Muf$pOav#J7xU)gGb>SzC9NGGA^#Ho=Mg3D6bb}R&n>_Ak8{&OeBPou5<$R zI61p{>5jaAs5`Ml@N4HSVxGQb7>Y3vCm`0KAtfrisw_m{j4Mf3=!^}sW7@^eMlD_t zVgW3m_!{z8<-xbHgMy1JYSn%zLPQ6L>XNp=Wn+4!JATZ)Gfi|p?>5#XaNxN%^}=up z*F5Q3r(}S=u~WgW$8N+Ov~mT)m{cYn+9epV@GcFn^`DtO0bT@kvS!SQT#(4;{lY#e zX#8fThRl1UszrCM1`~Rh)nFEF5zm{{Z%cepO<*oYT5_x(n9`Ln_#SahDJ7b|>c2h-cND3gT3>wK+an%fcwWzVWvz&8>FqJ*!+zQO~`f zHx)-u+Y~u-$VYn2u~R;%YTY(tMUFe>+=%L=8xiWgEyX$jEc_1pQ$MP%PF-n`)M$^) zZiJ;sqB;v#gBAwAx0#gNQFAx!Zxk9_l8L=AgEp+XWm5mI&X~|G&AqCq(aDK(AoH{6 zd63P6w&n@oEZsJyhimGJJ}}EIx3PjUIFJ0R4bK8Z#qC*@uBY80bO$Olnr(KU>D4z$ z{|pz?Ag;b2odda29p9g85i4ahyty2c|8#`?9})76sJv+7IXlJ=?eYj!!l$s_`^NBF z>wWY>QAu>R>EiyhQkL{SDR47gB3$7N)z=KFShCc!Kj#}RHrXG$ubL*tlt+O~2J0+~ z1Lzw0nya@`P7_GDN?hBbo4?-`6Tc`Ehc8K=04&7a=#LlgnTDZ`cfUERf6=F|<3eUUE*~G*BmGgJo538u z`}Qxt9e`}uh?JaPFW?z0EX^+K-h5pXul&0^#olKbUA*SY3FesP@uNZ8Z`5o`P5Yg*Uhs|`e&MV-}LL7 zx~t#zj4urrkb?lY4Av&o``$Q446)gRs=^GVt z(E*=ctHe7QT%HM8Zm(bv=*?83_Q^K_Y5L~Y{PnF~W6GX#TTPGCtT39Jv9c@*k0Us4zgDCF{CG8dxOv^t9Fl|K`l!;8_M$U55tSy0@EWGRYs^bWBsdPR9svl#Ff_d|V7EWR*7}6O@(6huK^E zu$uDxD?*5nJ=(dkC!fT^HM`0`q$U9HhIuB^M#f|(808z_z5P4Rp_ zDieK|Hj&Qx0$c61PQk0Eo0KhErbhg3=k8sSlS1?!Bm=h`1EaSpJdSICOLs8(rBt$VPpmoK#P)OGK-S5{siAduQY>{$ovXS#IjE*Z5Bj`aPxkd;kG-0Z;J)ML!<+7o?`Rd|+EM_1H4Q%mQc zvZuR;Omb91F-cm2uk%+nIkls%nD=K`2=d!r4DD2F%1bgJn)e?k9hc)0$^}mK$HQdl91z$b)L)M~XP#kD^zY z1Wgj+YTMoeof24Tb2hOyZTZf;_MuOHn?Lz8>s`9xmnJGGkXofLs|5U46@F7UWGc_uvOW(z#c;@4v&vMrk;wza zS*_9IH6~k0TnPW5&&+K;8+L=)$!?Aigm;@K`ofgKD;?rUm+qWY_(!{^eFIIi(ap_d z&FmgHy8EJ_Q3zg0nswDnDaAmW)pa`JwP9~|VZk^v`uL97yW6vI^TZp99jr3;7PMV8 zwNW6o>?8^tyy|sH(tZ}09mnZswqHYln)k5+2A zTzXS|Y;mP-s6NM;kH-V35E6%&wqFqDb~hc2jARwz6>ha+QmDvPzJ5e z3L-jWUdYnQ*Vp<3l+p;s8j(Q3d-6LUOJ`w8h+*}zayzyA%synEFr$vwcawZMyV~u< zO&k9qkNOm`5c)p|Xyz{j^f)n?>`b(fIrw( z+?ac(oczT}h@JKRbgk?tg!dCik~N;d)*0=fj}rc{rr5I&KVS0BUQ;W^2U+Fw)CbyO z8aMyWbQnvYU_*EG8AkvJb7Py`sg*WbA_2KH{#f>7QviS-10i;{`})?_Hz2elzifVb zbp}zZeU*}Q$N)6JsQj}c3TDMxp4K+~k%zo6aP{4u_p#C6 z0+odLii)NV=JgxAu$}xv)JUl_ zwCZ0gyv4yF!npI|Au6U}M(tj`@&OaI`isiHdv5nqWL@O=o6`zcEK^ptZM$lcYTtAE+Zq0RZwYL7!kK=z z32Zv-sPZ|RY`CaIsz83!x(m{x&I> zdJ5{Y%}^edt>v1RMr@;xw0+rDHhE7z=gZLaL;@0&&-a$aIeg4a^Pmd`Bp}Z3p*zvo z)Bz+EzXvOWRr$k8tms^c*(xvGk@KxTA=w1va#$?bQU8m$Uq&mV-AJNs$Y&7!P z9`N08_Pc=~z96ihs@|a+&lBH~7*f#rwrofp^TiyGot166<3;*csD(y)ft?LN>G%#t zEtho`p7h|Xk4`q#pHRnpdN8fGAhZU&jsIEam0AE%j9A7S(#i)nmyb(xhYCr&0FM&m zWXID9>j?%g<7DOi0OiqCs`;_jjiETo;#cWxoRgz_c7TMXgPuWB$j;U);=N~g!%3rD zSG}n%z2rTq=$vla-&bFN{6k}g@5%>-0VFNRX~o*r$!xT{8T=JGPPhg9j%7R|jTz|X zEfF4p-t^T{z!m{m$50$?^>Vi;xLy6r+oDz~$U8y}M3KCt#NJBFXJOhK6FKgmI%O4` z#ytewmNZf0_UnPVk2o)d+dKVB%}9g7i=N$KSHl!<4Lkshb!(34_pXkgzr3}1kxx~z z+ZozKWJxJ3Amwx%hz4Y72H+C|-?c$n2vOUY{el)pQ-pu~?)}d9kkL>f2vn7$<`YmG z-`3Zg1w=!>M<_){pBxTyYNlSn!dsfpccgkA4^-X^C6d_t2|)kn+^pG1NA7j=Dn|_1 z1j0pW73=~H34SY9Wh1jECh#FWx5$4`HOlw+Du{dWBI@iU3pI02&v9y}q=|i{1AMd)FXO`0JH!Lej_ZjD zBlET{hgVAOlKysk6yW+5re3Gd3>HyluXE_@Yp%E~=`&uA3Qe5U zLpuZIDo3=}r!qMx)BPKZi&MG9Q!&PRO&6R_>_J7NQfT^#0omUQy6{5-P^sUy0%IOp zv9hyhbd@b?jFhy_eRwR6onvq4>a*vKb=rhq0CQZ)EWLymJlw{usHk)C5kU0-q<>Bl zK|Wa{EwM^)<&cvNCk>9Jg7IIw&hk`fts4&=;)g&g?xjkKJ%4Uwru^w|f($Mdqx4+6 z4Qxj)-euA*u6#|d2O5bFqieNME_Vp_F9P#>p%F%9T4c^pz&hEYnZvCVv6|Rj|JkC- zQNr{z=&|-_n8g|~U{ZGV@6RX3RoN|Hy4%niDS%7nb$a4>fewjI6Af)@YVXf&j{O_N zfU{t45Ss(p9fAS{AC2b=3|CtfAubNDI&O$n^%Nt`=5mL=E*r+F6<6YV9gneuER`Z} z{QxNDhcmsa=TpT`594i-O}^+Z$>7(+#Y$I0z)n|{Zj~LTPLj5iVI9VaFA?I)ZSlZ? ziQnyCQw_*0jbnDQ^gv)y1(r80$_UY+)#S`>OxFlqodAvd(DH>N$N(Da3=w#s!HSM!-^)@J|5iI1(N|6$-6X-~^u^ed{Ui$yz}{$Q1& zAIg3aj2C)?GdYd1H2(!NOt@xaJqj7(O;fKjX4lOp;x#6# z>`i&4n-l4L@Y7wqmd!%1&_?~^ia~vXgQ6-y;B~Im1%xZN`Dm1euG+`giV`!`eT>M| zgzI#Vw0`Rcw5{*G%m3wDyP~or?Qw$@nV6*lF?)MccMsvdfsFjs&9Kn4xh>vZwO4~| z#r9_ZNsceUxA9LYd2v7Etp*}a!7!Khv zvWCGI#R>i>;V*pvlZ!2=5gaPIm?0lv!g2Vmp4W=pYr zg^3v)|3If;`m(?Q4S_O~$HOH^dKOPP6n?fxydHCNQ>!Frb`okK(+|C8HbQ!h4)Toi|cqCyD0?*!HFowz^) z_cik}gMhOMoG!yfh5^|I*qRg9D-5|>m#pfBdAC3EkY#5pjv5$e&TS4=mSd{dnr=rg zS7E+(ricb*9f(rlUl9nndQ_F4Z@D+WyJFSsSnrCOC_gbck5<^iI7+80PE6?ineC#B z4g0W}MRHL`y=OripT}u2=XKkPqROh7Y`WF9>l>W{KtiM3T+x`GbW}ScYXZ(7nUTL) zWD9$)5=F?jE3q`7pzywmNv7K2Xx9lG@+-8Sja;Ad*`4}9@P}2y&En$*C*|tL^bW|p z!|@}69Nr;T%jjdzkAryd!W9r-JI-lel?rDVYH0@ zrArm>-u>f!Km|8vxEI~k0BQgbzPH-pV2gFq#6Yz&S|9CuDQlk7$e@gE0rG_aY?zRp zpUP*A5dz!F|1YZ9|2Nd)J>-P@PWqC+6N6fDt8w4*U4I7E2d7nypws&@1Amo3fl{R7 zV^Ut%OhZT9Nl?NDIpsXjI+v$WGpHPTi;%c0w7uOe$o-o8jBGl64UW26-&eg5YJ+|99zXv;3UZihnk{M9A9M{233>-JnFvkfFUla+7 zuBZ}XW^W9#)h?Oz-blayf2r<$8ij$DG`*gn$IK)o55L^Su8#omAta_rEC?75MtfNVI20R~NpPG# zkUDpXUet-J_KX4Ut0LQnGIWU(hx;<`*`G!I;xH-j^uyk@kvL{@uqFy!19xwvSuv1K zW!+WD7-jMO!Q;!pJbnjskUt)MqWMXtT;0clNDR7$y`4iZCaGAPx5dK29jb2)h5M7g zb5Qb`G<03yFk!E6+kKod+P+rg9=*VAR+u+w=u!_$<*_1|#lMhz^MseuiGmk?ax6DB zw>=Z*O~3r|tg#_^dxoyTG+FHMAhqH40%i|)aOLHhT!R2OBEEp3-E%mLa%i)2O&^rK zAdD|q*}FN3Luqg*#6M;kW67CJ@jlu^3&L{IWm!6|yhJl&G`G>(gYcMc-`U5|qm$G< zF8IP>x`=?dY)##y;U&|8Z3mC&+n+nut68iq2BvsDqMcnQJLrI1Up`YmG_gD^bMJ}X z@*?O7rH6D*emf;X1_kzns^WZm6iqG)ks~+-2*tbDO9})<1Uk5ZacbFps9v0pcq9-u zQ``_m=EBA*4g`o+qd?}$h;%TFGymvP>wPe81cCc@gPT$o$ej3Dn;K1vx3>mg21)NJ zyq+{Xn&Nnc72NZ`1&3GP*7p#PlvWwsb3)!kqj+X5`wmeTtJBYluAsWba=IFt9lu)1?9T(HtCCY zi(TA-cG=p4VIz-d6L1jTPT?E&!VLy5orVp#Z_1HN5I{LoXI@=jVM|Z#16?Pj({-(k zf;JXcs=2>tM;w*g-LNbeKfp&l%&7WiHwYZMdx{RbDCBBdks>w&kPg|Yh z+;Om1Kzw5>+p`_;_31OJb``2`6ZRr5A6(tPVJ7;Qgr>Q-s%1bi+7I|;y+P`|J zo?`vNdOZS-DPs>sNa#I4HLmUwB;t00`4eZ|i0`_PI1+H8`Jp)(v^~1Z-ulRtWj^kx z$kR4*fg2RhKdWb3=o*r0z!gEtf|dLRV-G~^zD4Zfoiez`$Ms@%ZOe!VayoXs|0q?# zc>kQSIVI3OkLZ5#-?L6mWN zvkh=7^htsiq8yF$+KI*VkSAJ5rcWTH3P1?*ox}c`o?KI~sVjNJ{QTO4rKHtAj z*T3Ae?3hj3!Sz5pDw(@^t>|m%upFj}u)eK^tHN(v1Wm7o<2k a!-3TF$+M_xk$_vdAX4ITPx3|eUjH8`>0=83 literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_5400.png b/Notebooks/3_N_horizon 5/sim_5400.png new file mode 100644 index 0000000000000000000000000000000000000000..cc202c6a65b23f29fd26ceb749e6d812dbe48301 GIT binary patch literal 22487 zcmdqIWmr}1_by6ED5*$Exs(ve1tJX!(xr4GARyh{vVfOXx{;Qa?k?%>Zt3m?oM-9# z`~A<^pZ16IW$)`^Dc54oXFf5;J??RjF$3Pqis3wX@&E}52}eTwojelKJuW09xsRi&Kx1ETpor0yIoujUe0g{Zaot2rTotd%TQwIYZTVqQLcIH>iP{ya9?d+^< zd01G?|9b(mrHv8G)F|F}Fvxu?aWz{cBrF2N2N@|okpu}z<(J{}PaGrN7@GK>-_2Q2 zaS>mIM;>Bx{rRJO2m9jJKfjRWEwj)55jMW z#BXWNDb%+W!YuN~@1GBt2!p@~qo$AMUxvCeIh$!`nuiEs%Fzs@JQ3ouPq+1h;S1nE z^06V!S)k#UdBxyqAGA??A^)o;6YBbjUCLxrScjcOwtnQ zstGPdp6KH!ecmHpwL+L$5gV_NlkXKGKS56S_T107qLJtpM<)-b&isZiB#XI}i{C;F zf%!sUV#1gq;n#r?o~L(jF?C%qb*(X%;P^s!_$?RsE#derDKE9Qd+}Q|ATVBGOsNRZ z8!CBY&l~&}cL;0>0*iyd$b>Pg$&#)+@mroP*5J2TbR}b831eajVG0Xl;)Hh!Vwa)b zM(k8uiD2r!$JFf*-M4gS3Bzx(hrl|8F~eZ^(a1&~!ZNk~_@dMcJzwx!Xg!<3;;DlfN#nvJ44D$+36gMQYL*Tv3o4HH z>!u_n&13BE9wiMOO_xo%Br7aloZdm<9NLlCM1IJ3;tc}|UXA(N+~4ffkIEB}^dsyo z`pF<8h4V?n;Wo+27RgFa(}TqnXooYjBaYg`dtYmF(z(eT+A&PB z(&#K$5A=>u%ARn!%Y%>wDL^Bh(DljJ*U_Ud4E9zD`8kF^et(|Rt$>xQa=v3Z?thSazU{YQNZ({IU z?k%!3(Lg&&B=;?o)~HdEySI>OG^%vMGfWUbmvO>I!Nt&VG2X%Z8ak^hRfY?JNkYVU zAKCIsV~iuo=mi@nC6aNv+|I04P(nL^JL-E2ny+6FzS)&L-9VAyJbsc;K;OZI!A0j> zaO15aglXAELT72GNpHn(<$h#(#ut#xaBiN~vDx$w$qIz5QJZGl)f9%m6&|~4J8l@d z@SXgTuCEhz*>;DzT^hu;DoC(-53?|r|klRzB1UQI=e;$x-cHH}2> z8F|_>33-=lvMS@bchL}77MNAVic6mtl|TMbM5DMPa&j27pB9?ZP9=nSDx_yKGWR;Z zQD5Je+T{@=I8k)wh0k}I--RW3JS+)LL)!(gs)b zgRvs68}LSv1RxJd_;AZ+d&>(kuD)Iv+%!^qK#F!Mn^+!dkTHK{p^uJ7e2=786l(#s3))-L6#!6CNzwc5}~$X8%O67MHc=+6p{m45=D zzu*mEK_{z*NFuz<`Rsp!^79@T{sSS*eSiE8Uwm2^exaO&7pf!TW7B5#f6j8xig^z&wmBW5OPtKSig|h%Cfygtl)XRc71$D2pO5hXa5I~!76KgS9Am9zYL4C)k>Jx=dQ5C z2N4{?sm;9;ENTJ@wQ7gc#qeBCx7uCz>oJ<9j8gjOQrt>}wbQGrV$raO%+6vL;Om?k z?sJWIH~X4)Ln35mu8ZCnzsK^3>s?OML_?m~?awD^*SlDcDXEyBo;v!@Sk#6@F{otK zU}r)%{@7NA+m-s;jNM%4;6M zi)K9VH8AIw!^KtjiP()N2O9r=ewC9{gQGmZQ8+1jEH z-ulh?g3;jjw|2h=y^T`bi7s3$1D}WSg-_^s-k26S?-X|qS6b@SIP7-wpUL^<6~nCQwB&oTIpV)Ll5N|JMm$)gBM7Efb6dr`SLLHtY6x{Y z_=t{2S$At%-@g(j*dJ$rWxN(BRI!=!JR#9#wf^ zn%b+^1VOmb!lK5)712nxT(*8^DB^*^Bv8GG&H~lqFK>O&p@zLA53sN<*H}Eee(JV5 zZRKQNj1_s5D-}84-JAnkB@qpy?4xj;Z3aeKeYu{Hqm)Mk1~T|Pm@1vf^$oEhh`kA> z;EkT0)%3%q=-!zstv;JJb>1$hBzbK%Nrac`e7P1A_saOue&d}0;@;j^Xx(848Ip7| zUz`+kHSBPu^LR5m&%~0qamTpujp10gZ zbw>|8FIuU%&S!0_kNbH^*$uHP=Uo_xwVjrf%YE4V-R%*cWRSRh$L=j>$TX8WFJabuw-+)u#)B3q_$|dTtBTxAJ6%aj_yz4K!P+^>zHlW7r(l( zF;eg9m?a%oqI5cI-ATcBI;wyqog$C~%y_8EdIcxc`E*PL@%WqTbBvE;xk|50$Af|E zgn{!IDl=9xs?WQx?S1;7kF3eu={zTfgd~%z-2V=kiBV6zMTc6+a^}Kij z7mE`pp>R0-l)+|obv2)AI6NXkSWS%-$=TUiQBg5p&`6;tqT%*xyY8r)p$_c%XrWdD zSfu$;70Gj>L~HcMn_WxJ$y;EtmLuIyp`sqQ$0@e+&Ku@G-Mb^{w-T04~P4>mpxCjq5Npu%&oV^R9R6G_&;h#D8;pmrIuRL zpS)DQBPTbzz5fWH;kSs0R!Y|$Nb@L(8Ly7PcoM;xE{&r%W-f$YJ zUp+ng=W~uaf`=R9)0T}l<9O%4#|y~ZuTCzfp$JQMTyW>)cRBg4kS$Awy@c?W&7pJ* z@ONF{^s`PYA#U3m3u$R-U*K@JTlj`xDX=ZuIs1v?0fFnm5(BBLlg(0(qoKab@ydqw zwg3XK@$O!2gNb64&am0pStbup0JDq#JP-XiU1p5f8-%ke7pR*L*}Ijs14V(OM6u+Q49{aP{IBtSW#h z^h``^s}XXq7k|k^I%2n;L}p!`ZWB-Rp)&#B&YT9b*&NQ4%Iz66)O4J)M;u7X&5ltH zvq7Hu)`AMAu5@s*PN3wlvJD|20z84-fnd(yw`oXW?Ou&y%y*Ms%0GKbO}|3=C!~jG z1RMQ@+Hkf%xf-~-+v)Gdm!a9%+HQgfg9r}5$3CugN6okuun+J>bW(YedzB6dAiOZ6 zTOY(I`+1M+-O~YJa2AxnYRo-$?E#7iRa(rwo^$~FYmLCgF?$C^{^7HK=QoW~ZZf8~ zGg*v;u&-J7^Evn`ouFD{V_jV$*y@6YJ>dAYQ#VD8w>m`eO5L z$9)AJVF|ToV=6j*P2Q;0z%nK#*iFY7f$f*yMkgfnjOHlB@z}ovPe~OEqeP&h@kkbO zfHtGx?P1syFzU_0)YdCXrr`>N`~r^F{p#GGKn||+3+m>y?0k1S5cm^@Aw4Os>eoJ`04lu(ZU^l^&&87YX>V^&^t`>)beJ+g1WHs~u8%&p4S<3j*Dldzih=?ESPSu&L5iDdMWzt2T25m(wpZ7I{ZD;8|(ltlp$ybmDnl2m>oM zN5>|4bA7gp>;xh^sh|h^Y915N8H3>r2}EE|wCSc_U0)vtTn(4!_xB>LyE(^&wI)Sc6$J;dhHxC=P+Y_^OH=x zx4D>RLSQo^A~zp+!2I&O>%P{4=_-O2bkU{UTSRcHK!!q9Pr&dfrDSDsUH7W#Kpru- za~;(X@F#d>?2P`@eKs5W8fUs(if;ioYGd(7zHAcDHdQAHf(&q<3<`5{tzT}W(7}FA zZFiD19>x}Y0Mzy=l-op2Z3?%R+3X^jA%WlZwIF;6&-rZ1C`Y4mk2Wj^PB}4#8F0>G zj`x?D#~HEnGmUF-GOop&E*91&VHbxcX<`!q&&!+sTZhnio0kTkLxsWUpL^Sl{!*c-mY87Tv z6WVzo;dx~?`IU3QEdm&nmp_$)uk;N@zL=2Y@a>%_dnxdA44J3f?*;JFk=O zfvAtu?|jgV!43F~TD1)gfOU{?P)_RZ8<-XWC$?la8GTV$f2NN3JRP!K3+3Hg%rEU< z1{{wcJYX)BLoy1j7TF*MUr1vS@*V9x@+^UV9Y1UktBULeQnweDe(=8Ko;vW(plw6j zXyDlL=F4pXcALWnJ-7{P(QUA_sMg@6R^8DTKVD(L%KEcz-F@*p+DNW5e^8s#xLSQm zVOz|GcHjwN`ZmSlx3De}EnbnVU_oG(bSZd}x=8@ehx8kr<(t zMubTTVG?+czqz+XgO`WbD=FiP2pH760Q%J!Vehd|(C1N^(X<~xW*@8~U1t@t{Rt=z z`H70e-;2amg581y<3fUy1wC&I8B`H*2c;kKBdOU_ zWvbchIhHT}kpxg@^@HVTIa84HUEw6G9~Cw_NcIDuXFSo-#M&st!%+HHVbv5O7sYm8xCE=k76VedV%hOx{plZ zjS3_oUwly*{#AAv*I%1_3cMf(Ur1~5{vr^LOYns#2k|G#e&YcNbNPDQX9VB-}!-d)2KH;5q_e_wm9Gt!XjJkUd_d}P!HF7p874T5nN-dmO zyjd!t3ldeV#Nxw)$A2cv7KJPp9RP{|LWH%Al?*`hM~tpw{m)-D=0D8q|3AwpE1k2! z!lr6is#t0zn4#Il|Cid8p6=t(C0{gt)xS7sJHEY9(1?i?Ig;1%LQKe@zS(DKuXgF5 z=Zlm2x|6IyvI}zNcPya^7GFwA6jhl1Q=gmuAQ~)wGRSrK?uQydvMa8(Cq*>N zf>nP=3jAKO%Yzz6f1TS$=(sSJMrq?s`K-S|B4hV-NX%;W8|&xyX+|A4=dD%N0TLp@ zUJQj7SFkiODjfaJmcdk3U6hlZ`*?g`eqFRDm{5<@|%%-RLU8&5UfS}zb79uH}Vx*phg=aj>yabEI$hhJR! z_;C}}9cHWFTM3D0?=N>P3El=}$o!?988W0C4{&)f8*a>1i&1V*S)BIk+bXnxfJH#? zmC})1)7@S#DwdwR_XQZMX_2omo(#4`^)~b8p=V=bN=%%@g>`IDD)F1E zg91w$Wlgp6mt#>9^af4e41_Svg)v)&F+n|!KnOF&tnAJR0wWRn9G?3G=&~7+z_LBb zYaD#BSfm+muKIZc%#(OBYigJ#YB_^RQHgc1D;IEYu9_!{a|$ITNl`<06wu+XIwsL3 z$u2%%>dJ}3sG1;6Wsk?{fIsd&shmY=^|!17)EZQdWVw)!j+ds4blWf|UH2m+tL99` zzVPmO5$nL(g9r%H=WT*|x^mV31y?{0!o#Gz0^V$|?g^r(AjwuTg8A)CGzum<={;M$ zxX_<8q5^_I+xyV#Jt^r)=g|)V_xaf8QvF-RsA%Q~qEuSGLRjrha`VC+=ut!egT=o1 zq3DJkB%PTR2));sn3RuesCMa~l_0{p;apn}Whh5sDZliQt=gxEju3)YGfJnYP`gYq zJQAMKwNFas08jtLZ23p6${xsY6Rdt-P8cf>jMe29e#u*jP|=Nz;sgbUG*)`qQ}Y>% zcj*MZ8*gw-CS;9`d6fWd<+IRyHhMXKz8Ic1Y!M89o?f>8Sc>JFzuUq(csp zK-{7axyZ2^*m2T9x_qWHopMPqd)B$|YxbI2T zwMEsTsOnFohHEXZBk?M@4FYkkfapwMYm@J)trbj}^t7b6kZ4HQcfW*zK<4=+cfsFehZWD|SV!orN! zrrFRP%(~&>9CbJCDC^7`GVP+(HoH%%$$Tl%%FN!I`k0?SzKcEI!HW# z%X?hU+!fHubN7<)aUHsi{@5b4I@!jca{G$udV567wTyYOt+V7WILmtSjV+O%OA(M$ zaScm*W9~+Gk7sxd>`}~2+twTO^^^5#OIJ4rYlOWz4Ss4;%Irp)CWb6pQBHMcV^`+K zk`0t!MsvPN^`Mu3R%`T%KE?X{p>h1`>8H7hmM?HExCM=bWGcy0oYABDhXR-PuFiZD zEd6}&WbF+$cP}>x>bZ$nWKWh!*nxENdFsL0;x9&^5M)rS9#_+7!o%<`%`EO4?M@^! z;BLQrd+S$Py0NxCSmME?K3=4>W-r;p5UWz+$1Qb7?9!`V6F3E?=Q?E~kiedD*)!p0 zE_71EaU8xRmbM|*gO1j9@ciMIGL!c~JRCQcI^mIMAQTnWyexhxnJpU-B^=7j%p2`G zH`Q>n+x9-n{meT?`%4hZ>)H3?2XtBz)3Q)eN@vHHoVSk8e9@fw4t#F0_eRYUiegd{ zgtx)s=e`rU2fcQeHg-m{jVZtq1T*P+X-MY^>s70Xm)nT^`7s@z`W{z~jz%F@K6}X4 z=;Znpbxw_jhH`TYp{Z(>8`E(N-5xQsPHXP4&6&wU>}@+vSC2jOUDC1--r`msL1S#C z1m1i+A_J%P5EnRC@@+!ZxA;Y)L1J=_`{5 zBeHxs9Iv+5H`WKUbj_z<<-5eymKy}%f6_WQY#wdrJDPu`ec^-~Lp2?sfL`{Tv$N4o zLO%FgIEMk_3$@l3!hoN89&BZ*KLwgpd%mn58|3x8wk?+!W%#B4KHCs`b2#`dMZ$;1 z3SrF3nGA^lrT4ctmY+v4E$RuG>+nsK=AO$dsd8>~=-i@YC!ud7D)7^3D=FLH;wp7< zb7l0onjWDrU!SW+=QFN#xAGqQxCeDf95*e3g*l)1h}c4f z?^ShxMLsX;BR-qDSaUW?k#oU99_B$N#l1`%o1^W zo4NAI6r4d_wo)$uS&51m=T^BnY;41u-}T|_Z;xh3=;Az?kl?daucXD<9)0Rb z<{z)9_^zX0wZ)WRcl)8Y?I9JHS8A4rdKYv1i)S+gc^Qe0 zl<=dN!8+$$h8`f^SS@-7D19!IKqrrD_YzhDWT9a%4~^mCP*89+Jx+?-zQ{q-wk>%y z_uF+JT~_LvX?NAin8d8$5yRGK?~0MX!?L1(fp|C4iV@?|H^=Owohr3_=7R4(pN3^c zxhTCV9L-Auwg0dndw$jjrdftlyKz#=htqA z>fk}GobScECk`X)iKg*;uj$Ee_xtNscgaYT_xlgXmJM-RlEcx+VusMg_fgnf8FvBD zql;Kl&Fh_eCaY^!$JYE@`5HlrG3CP2@fs~f$#G4*I?Ndw+b*+K(wtXZW+L+OYULG) zMxA}DV7`Y#y_uuk18bA>1zhGu&uYs16SeJ-7{()^Hb*GHFk&VIk_Nu4nf|&zSoGsV zW-6n-{G+xEX=7tOl5QN%rbKS5(GON5GK2N5U^^|062HYp=uej^s)ScybFl>>`{#aY zg3vH(DRr|XU;VSuF<`il8*;HCQUAKO*OWF8dNg}6HG8oj7h7wFLw9D{8s%^AFd3K; znZQ>B6Pr)!AfW2~{>h${B4J|9)s@)VY=0bh8@!8`;pMXxBj&ZS09$AKWj=wpdTg(> zj&joBYHkciW6`@aHNMEqv}aK3-y9Q7#31bWR$UrSS~e=GDD!K&GR-m@rp#5&cTP3Z3=Buc9AX&trPSZVcdL2dy4bdCJ%v~a@DzF$$JF+^t3G$kL%$%p(m_vDs|wU~}2h3*8=x-wxZ8)Fra>nOBF3-d+!xS-4p|vyCoThc%d2 z9Ub(K9mQZv@X9%hd}`Y`c3Pb?#=bM7MCSToYuixi$csChZamG>Sf2;HTp+$WQbjPS zGml_{O;=g(g;cF*Irk4+cHF(;MC4tv56@X-gud8IeZ!@MH=3U>;DLOEfKDigC_tCq zC}nr>AH}O9sY!Frs(k^j?R-U*i0J>CXzJE)!4*U6Qw6Gr&u34PEXYUl>~p0gs|gX_ zUM?|vZm2ieJ%GF0W{j)xtt@FhCVy#YXymffbtJa>6QK;2sg2EDMIzsKiUP7v6MSO4 ztvi`{kNA0M`&SCOuv8V4-_FH5lTQ}k7v|yI_*&Sfz$?~uuw=CyaPT|*y=J27y8R^U z4+RX5L#&I#FoLisb<+u<0`&kIr=muIv9Syq)KE}WPJKyg^@B&PAuD)0IjLzy-*B*2 z3)Mm}hjaJIgsi=qvB6PY+s~*kO;ojf$b|O)cXq z*|!L}oSzpVFEKjaNfNiE(*Sq?Zd@FbBOr+CXHXN)UiXD>EZ->1q_1pdF9DL;_)bN! zNrJ8!#I6wdjyS{aG>ywN-^IsV1_`PEy3l)jsKwPI=F16xX^pb*AoTtIcHy%F|DBg@ zB+j?#+<*MM-i~8ocf>CbcVBu$2moj9^srJU-(@qlUjt_dpqvVg$^xC|=B+ud<@%Lb z_6l0s$~iy&fg8aY!MLg(9!^I6WK|klfpKhTXOpPi-HYK;ixo5SDnYppO~?V4av;OD zr!fXC;Ev2 z5D^d8ptQP2`8YzX^Jsk4mwdhejgxA^=c+t!;a%E{=~3O9=K0P&QCaObF^H3dYHg~R zP3Y(FAdcxSIHCRdzKj7p`2P#rg(+J{xgncD$~FggAs<2fhOd=1)HZl^+gf2$!cR9O zsU|d08!vJ4wQ(+Q8OxwRMoh^oelB#oS_<@B$AurvjWrDNRPG-Pd!r0mp z74D*M*v7&3hQQKA?ZQ%(K*8nZk`{TzGbQ$jji`fPwIfc;KBSTP%<1~aH6XsIgznDq zlt*YOE0~jwt&90MZru5~_miazY&3<+IGQ7;i<*-dVpAqM37AA8i`CFG%l3X_vo%~U zj%?m(PJKD$BRpjYcsJ*b<1@TQ-l)QYEo%U9Q}uEBjgFB~rae{1oJd4*N!4A z?N{x91*w^vtD&)YviXB}(Os*<{7jJ3%BeCMafnyMoUiy~i^nq8$Q@?LVE9gl!>B*v zHhw-eZ^@J3o@1QQw7Falsu+LEVTXwi5C-&T!oINg;x$n@q|Pf zHGC2p#$DazZmj0e^lV1M-qH5pgksoOCgJKm1d__m)KZ|Hf0mRDt>+jX`YzkYm2Zl5 z`^t^2^Tb4EMwHpRFr>^J3qoS`f`RLuh?31efoyXvYo=B3!^66>O+MVM*EiZ;YHe!`6;}M0H>66R zb!;48ZtAb7*5pR!;qCX5UK8;W@%c6+HYS>;BsC>O5Div~KpF)q$ZoXEMI@`0OnXQL z_3x)=Gt0uBj1ZN6GN4DoG1(ZY)M`ET79Dtv^FygM)je*jaH4V1k;S9?#^`M2dw-vT zR_Jiw?X|Er==gB~h{pRrh?b>RQxZumklZ(-Z*;U56EvBwrnSeF$*HA2E@f~0>@a2t zK(N>$T(?L@H5x5X}}CQ(O^oWaxZ& ze)X6mLpXv5m$&PgY0pb8_!;L5rm#Ay~V{ zSGM$(s|e#Ah`ORm=MRldUWc0yC5 z+;1_hMPZvAIp+Rvl(fLQF!Y3H$S0Yv3&0p$4)u&oSiU%R=J`X~YK8M)Jt@P+>8_ zg2aqIp#1`gXN|1-J0~>xni{xoj$Jr5RYw1z+FM9&5W$%O?LbFKSlQE4j_0)GW2J+!^Duk)Y_1W>vOf8J+ z?pQeVYD64y=BQdrqQ-^*Z0<-ogX9cZ(haq7IgV{|;!=(qJDs_^HoCySqrD3U)^9V- zow;@W@BM^|W-)43H(NyjI3airlB=3B##O+3erwGB16F3N)Y!DBf&^cl(Q-0h)+}^& zKsisDTJR*6R3$c%jsr12*bsb(8)X~2>Ra|;u)BM0>b)B`!Rv~nAEZ&EQlYO?^3Iw_pLE`-ZXS}c_47|F5 zHGhY7xOaa~>L`K*de#djxh}xN)udDuzNQGPIco~)v{!WBH&YWY8G@p9-Ebq*_R}x< z4IoOB^)n~By@@2IH}IA5XqBH?WnVZ92=nO~sV|7ki62lcB`<{BCKLYj6nI==w01(8}&`<mnGKz$Ktr+W}IQs`I|0i;e3M zRVDR)kd9j4HqHHxG3+6YQF-UTV(jm<-{YHTH&6@zd|;vJ@p(frCf#nZhJ)PY#jK|% zfK3JjYzl@MfL>j*j}AwmX;}B!AWz4IO=jynTBw|ed#%u059V4ueVM#dP*bF~T#D zj$a_QTTN{19Q4Ov<*0n^YzI^_*geQtv(hlPC&HoH&=(DUqCru;2Y47<%$6%ntOs#+ zFPZ&1DSb-VejOhx$8}MXtG$4I#pA=MdyJ^K&kP{-WB9d^sCbOn=j!8yQqXt&${jvB z)$J@90}H*Y3J(9oT4H9uiQcK`QFmwpCF{ALzyDTV_1KeN;^p~EdTBrE)0b$p+ZDt_ ztKTXKe0%}jM(90!H%rpAeHyabvL8QoW+4{ozcZBxLhixnI`B8kRTcR9Wq{ph^%z&# zeJPCE52g%JD(`^O_}a1l7LCA=Dc!j~KGF6KhAib^|Dg1kwwg1V*xe=*Lcq)ur1*Vr zU~G#2yvcc^c{Jxe&fTCIA%eYwf(F4O&wfvQ)yMjEWy5E!UU#VI;ME4pu5xTHc}sIO zk!P5f>Q75Htv+da$(LMtUN>}gw3<-yWb^6+RerIICt4@r_C@~A(YGUDI?{ivD6cQ9mY9dqjWmX!#=|CGl;mm1FY_zO3YBmZ2@ZWN*A8t5u65N zu-Mr}wj?iU=XfAhfzIhSgzM%6NCvO}M=~IJo+rf+-Ymv;A}%nm_*5PYEz9(PyF$gZ zrYt{Z>nO@sIVSq}m`-px2hYgnS90HFBY~^D>erO5l1N&Fg5X`*u)O4$4Q>p+akOkf z^KsB$n0sQ><|ZQll1a0{&*zr)3o{ee*6#O)V z#mVjj8&nJsSpYLh85#fdD{*^c`Hs(;m9z-)TSwpqIuM%B4y{+uuA$yFK|>o%^Ob6U znT{wdvw_%1wKI|2&$M-z?&;Q4?CB9Cm^>OJd}gN|x@EY$V*oH0E166%ArYzb)S|T- zmG@@?!I0$4Y9#V5c(9!XeE%J~qlGBH>n|n2_I7mg?$3oiFTgvM*E{2}cbavAAf7HI z`imZS>ZT|h;@Eb)IBq9#zRMGVFM6MI1FG!27Ezs8t^>8yw#IMdZSY_6E2FTnMQIes zBEyO1-pD%4?3oM_h&>bH3X2K6wwQt9u zSW1fT5VRV>DxnI*BR^zuJY2-ZWEZmkK`+-z0&nWLRG2r>qfQ?#@+xqp>X2=W=2`>> zEd|hhuOqk7GM9|&1f8iF!OCA#dZ=W7cb$qk8UQ7W`%KOfYHT5q+cS)dAOi|i{fh@P z3#&W+qKLXtpWd+bnquue6bEbfF<&=fNq(Fu<``Jv!tim1B?xv$aqW3&F6r z5DndZvCD=~ZW={pRw@VNR=+a$<><_$dX5QMTQ7TbKc4iwL(o40P$-vIHdbpSx)ZRZ zDs;ZmN648}1Df6Dbmv(fOrBhF7*Z<~zXs%W-S`o%tA`2)7A_1Z_C$qXK zCE!|@dw#jSdGmWTjTO*127qFhpU&7iWOQ1pHUr+T^q?_}@9z(0;9lE(mL90U`8||{ z3|Lh9(}h$z`I_J3H3HfDT5YZSvTJP~=9}X+fL#vvE9VitvfPt=*{uo@rNbT0I^CXN z38m!c88Z+cb|B?2cu355gv>Azedtf%V&ilkox@Cz2mrJL8vRw9QY5_3huBv}rf4E* z=w6s9t41W7lMUvXqq>yk$c2sL>>M#0cxC2Ek{+k?@?82;4sd8aHEZMJ~wqX~CfH4oxdSq)l%Xql84qtDw$5?Aa*xME1{ zVh9w1$S@;jgSBZJqz70>V5tHdl#||+=8sZEgRao%3)P1!e&{fy ztRn9s_P1hLkA$6eOzB_aJO$O^MV*bkKKlXLMHY}Q!qj@IR#xZFo=ys3#S~3_><sSknfUOQSnV^kj2YV#LHZ{zVXi0@UtpPJIgsQ)0CUo^xIeAt_=$@0FW|k%F0Rr z*Qe@JjsKkl)u&&{V$tnbRziXyxxUKl`P$$2d#C~#VMGc+LME%1s6Qk7gfM5V%v3_F z^r_Y0D&|0P#{!uCnZ09z~M+W1HsZ`WO8v3+opk zlT(@fDzN)xI7_#{q*AXF$UY?e1`pG-7!6M%McnvIN!PlZ+0{9Jh!j=eaJlb416cB= za{M$$V}yz#W9x@)kPH0dg5I9%HiPWWMD+ablPmzZjN8$HNjzg-!la!NqDnM$q*0N5 z|0&CViy+QV;Y~BvmAR@g6;DY+2il7Ggz{;riBcHJa|PnUPoRzwoLmz7L4l}1XDmZh z8@GP?^~X2X&s{1_-vE>TEMI9D$PgVVE2&IJOKz@QL^}Zg?76|#txQ1IlI#kaiLADA zatdkJ5~PE=P819@##Zg zdzWk9T#r^fJ$?z!Cv4udyod!Q<_xzOh7j7qtx`*GRZ0}OO=gXAk5ls-{%K1l!G5KDtM6ww08sU zZu4Im>T5=BpL)s5hfdV4&eE~v!6mD!iGP#Mwy)6wA~-;mT5p}@$mRORmVCVqXH&ZWYaN(xBK{MyRK# z?pw;6z$dgQA!i}K=Xq*rg`*;Gl?$0x76pU9YZtgB*E)F~4S)KP?C_PL5EMAQq8K3A zE|mqKlxZFQK_c7%?58GrncO|xufMIK=0lPl)c$2a(Y%kSbp>KV-gFxJB2GHRA%IXr zo#RJ40MBte&dZNmdXnMCMrA)#n!L_JNZ%)7a`14l*xh1F&@0u7QcjRp(-C9ec=^xA zb*o*2S3M=BzXb;A_C1N^C04JHw&xfoLUh_0(_up1k5=J|glt=Bro4Wm7tn4!5_8mC z_U`xL?1dWq_{La=w-U(Q z@G=>M6zGh~Yqen-!JXsDdp1>I4R9>0wA#a5SUc>44E&!A9xj-W}hspMj6qi z8MYm|C+RG*+HoffWkLRL}>xA_Tz;^@Op*uTR>#aK;Ac&r@J?+sPfDlib#y~!F$^9rjH#+MucAK3k%nONl*8_4z#vKSE-2yDp4yM6f-#_$*&TzWY_*>t%N0K~jz(UXk%q0;^xyniKe(r2xz1J? zGadYF45Tz3|9PbHlhGVfe+Tpaq#_x;j^!w@pEJ2XURYa#QV>3v?_;4~bPp}CL!bh2 zvwWPeLAL5f8dl5yrNg|C9?_Vtwx%LxPlJDPYMYW#^VmGEMdYJTMCe2OL^Q48ztHd)Jp5DT15pbXqo|SG91yi zrQc2>hLRdMC+uLr1n$Uf08#!RTfxN^w8bF$5^x)DWDq>D^VC=-ZKQZu+Zqa9uxrDt zh-35m+nKxj7;>*+rV@um(+0`4BEM6PimcODSn%UvV0jL+j7C}&iE;r7G1YrN)<5qM zl_`{)D<*g**K(>*%*UzF_OA`j%ztd#xE)SB8)qWiW+gPh{M(Spt7Rd(2=}f%JPA8X zf4l3}Uv=k>&{+ZTQ_zafU6wEIX8qe(><|aaO~*ST*S6yxyO-B93S3A1-`x0YjRAwt z0+o?g1o;4docZ9$_Hyil>(MW~bG^$gw$Phn4Q9H8P*C#o!@=Q-g#PuA%(h$CS4-_u zc#DG;Ocys&Db~X}3)b9Ib_$x<3fWmT4~&EU4k#IiUT%umt>exJm!qk~N4T}SIFuCp zNhG^{--rT(cAHa!b^kPc(gPL8E!&YyyXpj~ro3Jpxu%20yzg6%9Q@Id^h9$2Ra1!$GTtj9Po2oJP zI@pPK#nPuaE}Bu(tJXKe)XK-f&}mg%*85;bk^b(eakf;C3!m+fM`FFFE2W3yOR?EY zTG0I>VXrneP~+7aAR2}I@35Hw&^?@2li@2n^{SwFxpI5-+OdHrpydB4=j#8NUi4t=GAKx&MLtM{_-XuJ`r%e6Q>Jyx-HQ?zzX~Hf+=%2eVTQx>Wo$ zM&nfN(Eexd>-1@;IUCI9S?wYdpUjbRPKwI9^;XJiU&in-UK|VE$@5q}--EmL88J9n z^%WF7xiwbi<{k)eDK|s_c*(ag^}Vtc9C7VNUMniGez zYAmcrCkiBjW4e#24~C-kMCn!`L($k zW271LJ}yyD%|l?bBjBM#ET56>q1iBjQ?54jJ?XRb=FqK~S0UhlS5))h<%as@<3}?) zZm#gT9=rh=hdS6$(=r>XE4To6d+Kz31+DydW@`<~}^>P(A-o?AbT zPon30(^m$` zu!JzKuEv%*cwDtTeU~YHGJ;L61H_7CWK%NIF$JkoSnddd1b%bTX@~8`=KXG7P&}cj zs)<5GJNdI_O{e$|8SRk#1gVwYfAldS2C#+{9f;b+9FFhe3 zRpdYp&dFzW?FL-+jRW^8!_T!s)Q9W{a0QTVb=3D7lrHM7t_jN(phQZ!@Oh6&f5aa> zL;JL4{=XIS|BUPp;ESVc_la^naG=i*g5m>>|qTPrZWwqHQ>(WZp=hO38NNid$t=0fs?GwxYHLd3EJE2=R*l`XE5vFT=1E z2wZk^Dgxw9fj=QUo5_NW9+^3C=0r7;KmabYLQXX%jXvm|t zvoO~t`h4Q*J1s?OX=c3|0b`m0WA6aF&DX0C^jx@>k)p74+`$R;OB+!p8}FO1glv3w6sQcW z3UyXU_H_U1!f-vuqonLWr6}1mp_K>|*Jb%pIEN3fa=pTh>&PX~ z2vg6b5s&%OtJ2^pyIl~cF9P~KxIQZC!b0Wzs)$gzd~sH980+sK(RL9?3V|k|r(iP4 zdia44>Uc&pEdKIt;uGliyS8Hz)7ahFY_KRd zI3Q@83gHBcDZ*-kBS{MK4B~Ff*>jWJ;?<-MZ2adi97ojDep~1iDRsAf+pfdrp$e?R z_x`E!)g8(-P;1k9bZJ_$lkd^e>c3gmuFCeg+qfU`TOpW5NMbxJR^KOw%^Sk2s#}} zi!j@@);i3nt=)_C%CZsVw~A0TUl&;5&T~zRAOj-fG>OQlTUzYJAC8p50BI4ZA?EUC z#DPp^C$?o+w+U4o>+p5_T$tlG6&WmhkHe9og)VM%2}O63d*~;yHvrEC4OlTbjkKQ| z&ZJG~U$Ov7XDWw#t)$7LYqw^O(ctDPIgO}R#?xR}X;$;>8gx&7PwzK3Pkr1y`osO{ z#SuLLd4@L*&fPyULd{NV?Ef;Cz~Ymuc8^LMLEsRRvsy4n(lT7C6Mt#FRwc zMwHRvi?5~KPWpb~7t^N3B8!hl_}m!w#O$Et3nezMHvi@N^Y`;NyuCdwfkhfo#m%S~ z*i+?TIx;VOd~w7;AijW}j7^L9WbnhhG==#Vn;&CmA5(=(6$M}5EPWYA1T+rtb$ZwL z+otNTE^AvGKOs@3?SGG4e%&T|6OE={;nNcRnoxa2$|;yR0zIV9;=#|72mao?Uqons zr_Eyzd#>4WE??NWXK&ZK3+pCfyZl4j+AT{ctRcU41DI-9tE9{1pqQ(E9+0tCpEsHW z0+Yg)D~q2?0#$kKIn&(WHSBwFmYx}X_V^NtmVJz+=|S;eaK`Sd@RX=LpxA}PB@GRF z@qghLx4dsx8a^5_WR^WGNEY@Z(M5CvU!! zcSQVKLQ++i4|x=ONBO#0p>DWP(zO-Zjv-mGzKp)TQaDRem-XYw9B|H?0>XeCnM!<4 zZJS3+sC0>&)g5dEAhenE3Y&kw)Qh%USVLYM>#B95sc)c-0 z$n^82kUA{Gm1Yt>^ga(nhft-V{6j4@I%u1K%aJwgnmFLnAKIBj(4GFHnVban=6kG`@2KsX7iFOxlEZKEBpVep@Bsp~v zT#J4-s+uozGqJJ77CqPKIji!4c<#x|wdH2nPr-Z7@U}hF8N$=$Oh^yASJDP#A9^WP z&#qmjrhqkopY=;0=(~45va;=B-u^VFu$y)J!-)T0&g~D4%Pc?&;3s(Yn8)@9*f8J7 z&WC#S#$DT=9z_T5+5Yf{`~Q}K{2GZboCflVg}A2CS5_2X38G6JHuV>ZYwbQF9oyUU z(eIHxLf)x-tV6n6p+vnV0c&a#$xOf-gb&{NiWYF;e05;IbeY=J>hXmYb`l}p=GQnd)bWeL3mt00({ z-*jOsw%kCUfV&N!P42BCRnN8-VsY2_BjXl}aq+}>jty``L}N_@=Nh&? zIu+_(F0&_IY9@9k_gc4J@`?`Nxl&eyag!|5K`c4GEpA0zZ6|UtR|V3Qd^vKd6(WMmYDqZ#&;bRqPtH3_>@NzHlz>~J1FA9Rh!dEyXzd}RvXoC#( zMGCTmzmCt*&?BKtAYeAdzf0Ccn06H&KrHNk)4dy}{O%mkyL06he6-u}CjxdFec6pc zOU`m;`s{G37WytZoj;X7FATRpbeZGsFaD?VHn|8h)Weo|aqb5}Mc*E-4wo|x;oj{( z({Dkx#M~wiKSrSvI@Lms^m&mYG39Dx@f2h@sd{Z`fsw{blZHnMXs?GS&BRK<^-sWy z1Qd*0E;nmv?(a^>SH_1Qrw*j^YsYz`-Zm9HdH>-7e2cZ7bWlLS4WZz~>Hc7@IvJkC zUWl}=mne%wEIq?k;O&x;{H~Zq)j3ZScpRx(K)Q0pIOM9)9KEW>ScdAOVP<8k0H9~v zg5Hc#Fq^+p%&93N2IrJzC`2b#k-839lgX51e#bD}mJD@11xaW70}C>YbY0+Am`V}x zB>_b#!F9A=vLxqWijkyg57HPMtwCmzUK$)p@h8ff{74b;B#9zP+CHQ>S?X0d`cBBX z@jJJ{n`0>jnAr6b(s5c&fTqtDs~Twc=*oV(mpJwmq}U%BJ^fAY{$E;} zeQgXFOv;b=eiuyH!BLQ=Em85pRB^ z7cz8q>oDt^hwzZ^xsSyAD`ULNv99=%OTvCHdAcT2L=Ld_e(lLzvZVVmzVtXED4N1| zURSmF)>Q6)#`i?P(#n={o@sYl5=MY+hKh#4IIg1s@*Oqn)|Bg#rMznr73+~7y;ok! z;TW=e;eiW_qAnJPkWLfql{G3ei&$^ zh_j2qp!rAQaRF(g5&w5eDLz}=LU&tCNY!l8@uIIz+952RF46gDYa<)8PojOh+BNiZ zIOw}z4s#H8vxw?y5S%Hu;t}x(ggxhn-$`18CSpdbOX%*p{favZiHzlysTi`&m724|4a6bfs)7F-o%RG!yzCqBm(H zcljBXAyIZ)GUCua-Xj`j;zIt>+Ui>K= zG9t!10=Gh{R`uUN?1p`ZK@RDt8MofZI{^MP?`^3{UdP@Is zi)&{3FL6%~?A?clJ5@*94vOXBcO#W*@r}&$Nt+jFZSO@A*3*$<)?_10n(@e!O;$L) z+k3C(Nh=-|9FsRXrMZGktj4#&$aUJX3uG)okQ|RJ0uR09)dh#obJ3 zJC|5*yw8#Qn?;R#i_8TW2KUJAb#RjrauL&k+oV1#a+@=2s@dnB3bEHWSN%*}f*oJ@QgP>OWR#x0JFE&EtL!&iq1YzGy0ax!Yg zV5l}(6Ct4vB8L{bgNUA)tw&tdAI&<|J+y)6;Y3HH&&V6c4mG><}inY?^-Ufl8 z6OnE;*nkU;?{F59&a{-4%VqHg7H4|;6-Nak6L5uvm#*29QqTp!*}`Bd;n<=j!oDe` zXStzgB()AM4g7=stR)90pNG$CaGV%$d5No15IPDy8vHSsoAXCb7LM9_Nk0TeXQK}I zBd%JKMG!t%oHRzw&y*i}42B91<|E2b$F<~~#9OK~IE=U0w#DM{XD0-jdpbYwRb*bJ zla-ZamGD^N1Uq|9cagb>oLnDW--Bf*VEXfcfTG97#^RQy`&)>$V$3!lWOGE#D;)+2 zsLAhdo>0a{j!JyJ2+e1GQB>5($w~OfzR6gukhFAM+6|lF?T9Ma{ixfB#|TyU`qAy+ zt1<8$y||_`Q~d~IX3!jq#U{xjv-usTdP>aRdDx_0S6^G2u6VdG9^i&t9`xmz^Gx@j zk+lq9bk&F^OV~WVA}JY%#pWd@o@PvTX@S=XwCrToKYtiMeuVKDdwP~o?9PQ=X5Nkk z*F$L?IrO^ap$>|5P*G3MUDu&nQ+eN+Sbl|##SVs9%b@RYQL=me%0JOaT2{g&SxY?b zB#UwOZEOajHHmB9^GG~Wha{_dYieU_?ugR*Te12-_XYU*r@oLt zkU4k4%gd{?&{XnsQZF( z_vW))+vX@VHPx4Y!_+9nmePK6_X1YN64o}%wlC;ajkHilv*H*9G`#|6fbJ--KMa7QBl!qVZ62DQ}~Iv z)YPH`>p)ZMz?H1=*5sToUo^B+Wb|ZZWeJRKbH-SLwbT5suWJgS2r>?CM)1yqP6=qD zdy#qet1i~Xh#Lbs$gY->fD~8y1Lx3Rpi)_P1{_X9d_*@uCFXGz(?oRMH*o= zO1|9YsQ9lRyb31d@}Teg{4Gjb8E8=)+Uyyu3Z&-)}PeNL6-N3y5!qH z`EZyCg(mVzVo-E(^c2bx=o|EWo;X#8M{3r|FD6bU?p<|K^bM&V}R+#My-&@R{y&9BB;cT5Fj9Cc>cz3gW$MEOR@2ILiROwcp2wvJEMXNl z|JZ7$D_ZW~zaMP!i&YhpMLO2AE#dS+&uDzwIU%!4uGrCN=a&*(v3#VfZblR;q=h-7UW%a|u!@(?d8JU?! zCKz=aOZ}^(JX^V3@;(z~ZHfil#$`&)q8BgT$yAGs#b7c91}p;p{0M{ef?r5T2>$fx z)2I2p`9g=^145Nn&rrntxszZG` zrapBw)OO&VCxm*dOVb76Cj=+)K^p}St^kn<$;p{*ty7hxJw}uVefnKFq#XV+t8{^e zGS*cjhzq7aDlIK5lXm!i4j%GGR=jQz1JrDJjdA$2gmO-LAfda^G_zrSO#IuIFL%_` zngY41bkh~(CUY|(#YRo_=rwcuPr2dO0B#xqypXp0c5)Eerm(uw7F2xIwJ+DcEe$Ah zpR>XVL7mPx6RW(2O$HvE6orZ1Lb>r+Hc^&}I?SSHYHI36arq7mJeUI3(^cp1i*IRE z8~{t!ynVZKYh!rpq2;$-{rznT*j5zD?xEpv)}tnRJ7h+E^HDYk8&Uu2%$N?ZYk+sS6$Q}2)xzmWC1>(N9p&c z6X+jL*;!YseN8Kz;=til_m}p&)o3pd2W{=*$|;`Q#mcs`yx@(aJUn=St8k236lb1b znx9I;+Td(H1(>h!l`HeX(QAtxy0gd)`}Bb9PoHjaA&HkUIFaIaKZDapJpiPz0+id32}2GiLX4nMhi2&8*=23cg(>C!^@eGW z=HYM*QpdzPpd#w}yhdu^D(zcKOMznde;hU$SO*U1L_RoNj;k(-#zkgX&`OUeEdB#T zBaNEu97LNEldtLSVP-XiG_Tv#-VwsN=Gxy)XQl5o!cfzFMg}=L3L}(vc-!Ge3#}a2 z{oZmv{Pk)QebuGsHIYc1GzWqP;9JyHVB*~K)&^2p$XKPFyEP6h-me}{a`q-(Zib?S zE(NpTC#u_A)w%V>S@Bfgp(DJ_u|gru8*4oCZ-9L)g7_!j1aF1GnU*1F#WgeJ4^Iy= zh>~p=1q4*f?AyAhddnC0kK zO4V>+0T7N6Fg*&JiNzZ_zG2&of@q9G_DO-M{I{dLw*tX~mv1paYP@CPn|hK{OuyjeAzG{fE?zV% zg)`6Jm$uZur>gENF_t^CiusZ9p1x4@t8 z7nSNvBWFP#-W#YeP(l4OXU@n0jSli&KO>2l2tA>bt7zPjt-ZW5Kfkb05wPZSnEU!& zj1+=+8rVk$dZX7qT@*e^!KVW?si4?;Pj=>^dm>LJKCumo3fNqsQp_kI@W_MUgFyMR zNb6uUopsm1s6}#QoppQn2Hg(@e8-L*lbip-7nht|(?&VCesTu}f8@bql;4#gB0DQx zM}G6>$}+2KM{-E#*UzSO*hVX48|cW|Rkqh#lk>GCrYel>Pp=LNglw*0R5`8^=L6iRwJF6m1&3X-0D@=jc}@YmIbhl+^{Jy zh%NvDosB3R@&*8-#8bg>f?%N=BcRopZzPiH@nJuD{;QxgdeLEQYz!Eo5Md%C!l&Q& z`|BI4t?q%DaUv%9H^W%_2&jUjtFHMt96#I1lj{@J`uh5vIQR+eR5>Hy$7-z}{r)`3 z%^o&+FUr!&su-+L7aTaA;4^Jjx1MMl)gH99W(~Hi2?3^OGna{=^ltz2BM_P$4fJ_> z7GHauMfw@*;Kpy8D?U?q!3jW7Y8+C>(a{l2FRJnemPzZ-RWbrmPA7=K>Yg!yZ=j%p zq`2k+TtXheA}E*){2gIEF@S9A>UVD_0x0fM6_6IR`OwnyGn=rOm~nFym$c1?P&t25 zX7m)KOOR0&RSo5vyVn`%zovf6j8@FI-k3C5T^rsiE-x>aD>|0@bz{B<9k9%F;bhSn z#BJ>P)-=(s#67!v?A(>C5mza)31fP28D)^*DzRY#!I}3FG5oF4WnVEfG2S)EnVXXG zqJR9JhoPV}Hmq$(<)x*9EG$%Dca+3vO3SO*6SdY3h+d2t+zW$wlANW{H=_L%5+|%v z0X%|0Obc)cIA-JM{2Oh=nS_(Pw9~V~+gbW+H&s7N80!&9t=L5Zj-G;K!W74P*CC4| zadZI%gOl;^!7_4 z5C;}XUwlXkcWt}&0U9;n0__%Di{1c*!y_XVZi8m@?xGV4k$RM$KYw--P|m<{@}396 zYS!cspvg-nvs?I-;aUU~?j!UtngWpv+1IzyMPzR*o#x0Y9 z4AX<)dl-!IRQ7-GL}CB;)Dghe{VLC-pvn(=eoeI{Rf!5QtWVqT|qm!E(16k0DZ!vKX(& z%LiL8nd^(d6SN4;vL>f25~!AO&@-@3Q9y`XmUI@UU4%;tpyIr1v8_^NZLNh3IiI%! zojYL@??J?LNe{5Oz?HBin#STTVD@QFiqqI6=@ThP|EX)+WDRi43MQcb0CxKR4YT^` zD`gH$A0h!SdF^oo1&;p6M8p^hb; za^^ip!4Ss#zDIH~=03k`@$&BNmB<`AopC%cDo#q1?2EW6{%#5ZZ_`9~6HjUM2{{te zJ{oL~G$*ocg2@-YI++G|27rnH_)!k9c@9x`_oG+d|EC2GyuwITK#mGN~Hh3djiy$>gaNa|eVg|Hf@Hhr8BZNNlg& z+MhsVmsbkXnt7I8^ILqU@VixB_%#hL?zn9tsL|#|~bn@T)NU!K&VBwsyF6*h{XI-Ed%W_e_Z-SxPD8lOoa<)PQ1|XkTs#--yAq|7Jtcn zR#it^3WL#(b_1EUm0;B1t0dw$Q^Md>%35O$CV0-kXl!vA9>Ku3#TS?qoXisV?6k3T zyw$QyyFa2Os64d98}e4Tfhc6D|riNcoAh_Z59k zs_=?9peYjQJ%9)=c|Vt_CjL)T4f@Gm^y6FV#~(wI@V^P7SLS=u-S;B{0;A$xg~`(m zQ*YXz^a)8^nPT35S#L5nK3B&vyn;I?w@~Hmf>ybWzXZ!yaXr$K{@BS_r_b43t6sgQ z*y5(SA1A^c!%LicWvtE!c{;s1p7S!+58B>U?c<#_sBh6u(2h6`fB>pTSJK#}Jx;vU z$S$s9A%XR~r)3h?V##sa%+BhE7`bb@`KaU%WUsNk{vmr+{?Q+E5pQpLtS|aiw3DiJ zHP6r9jzjt-rCqI?*t*6_GzXyj+1>F zg$2NdAj#sLm7jn6_RR}9PW(+cbdG=BzMErXtcb}eIq9{1)1pZjBC=KtPLgGdH3lNQ zRc7MaaWf{t!T+~TBzLD3Wvj42|L4jmm$IKH$&ntFTJ!YOS>J<~HDk^1EM;wLbYHt|lZ)!V7<)N1c5np4Wr(f0+rMwoX(1Qb_~(q7J7P!~UEWN1vo&)U(BX>E{eF4)l*EHdj)gZEUNA5p%UU~N%c zu(eQ;EjCzK(v14fqf0N=;0a|q*iEI!SFumfrTbBa{Y`|0muZu|!k_7-FsXYa*`j`9 zeT5(M#UtmdM#5mW26|ZG0-voKsSCmxXv|pr`|2<={;i|;%5R4olzr-XvI=aa<1vG2 z_1=vr#dR_Dg36O3A8@<4k|xWoL{Xa2r!;k=3JTnJ!P3u<%(3rg?R*iu=Wy@5wkpTk zIwzQ`u!c05wNTpUXGz|bm+yrhO=b|NA6;B~OAPp;-3qqkS6B!(dvZ<2;*8MloBI@2 zRt|{v-F??j_|%ijgErsmZ&jY_*_8_n+X-{jQanabo?7l;`$o~?tsYNcLT1)O)hjWp z6|NaS6wD_&twg)>J=bmUdz2@5|GSzlpp&%8Ai!kjvM6|ZD%n-IPom(=q768UBidFO z?AdsI%}3>Kr-!tu_7yfg2ZBF3shd9Cl=m-6!xB`^&TDmLJ67XkGE#Td~%v0khH888?I_-INW|N(1qMc%0YY!7)okw=F2Jwz47qQ5E|1Lva zoJuJ0rmP)A-HLdiAWcX&y9S>l6w19yHF#}4Wc9kYpfXRFesa)LO_$-=(F4vZ6s!Hz z4n0#4hxS}`0t)Y-9F|SE@1cH});Cb~elovRe(}fS$W@0MQT3Jy;&8cAyHXu`m&!-~ zN<->+h4pdH;H_gGe-7?qc2aE&d4?;@&<}d(9Abqn)5%%Xpgf`4`Wejs+P-<9tDhfk*>OU;)?O>MyWnY*hHicWuQY7($gZ%4qaLq~_i{R1yviO& z`<5{7w3P2k82>~f%;1XaH*`lgFJ2O*@bQRuh2o8cE??CQk{M&MlzCkwe&G(&QL}oh zGHu^@r;jI)6$h@4CrkznyLW~i^pbKOGd7aVyIH0tS7CoJ zwXZA-U8#9t3ibi^-vzLoa=Z9_Oq|#b_Bp7O5gphr_>qp8Y{d+y49+j@ZoOM#q+l*U z2bh)bp14uPraV}X@3rc!m(~+|qA(sF**>J?#ZqSIn=m(nmO1?DukRsx*d}9rHLh5Kw+EGjRFab%AD8dS1Kf zWEbIwrDm6GjxUuuQM}A9T=n`k-)cp7WR4Foyk{%COv=;WgoPPPwTC&jJ|7Tm5z#Mb z`c0U6$12wll>GKA+4o}QbWh&b-s)9{_iEaf1o&8-jwohyw}~ySSH*NXnQY5CckEvs zJX)NBTy4&2S#10zFxin^lE%@c+Zr=kE7oG5YR872ipfGF`ZNVT-I`n$F-#Uv_F~z3`;5o}~c@BZM7NN3nbQ((a)u zVLEkI+O-#fa>o|Rw@v(@xBS{I;|E-t^pBRfBpGDni*Lf-E>y#f)leO|dM(NEco`P? zZ^BY`o@s9WRDWrm=k4+)JO!br(e}Cy3j$FwitUr}Cd&_HmErqOY za%koY56%BaN=MkitCOVVQ^JA`hW5*@S;;!n+2ioTH3b~#i9+e@Io9bjtJ_D&b z8OH0#T^XcfRN}ETfS1z0o=a_vcG#hvCJ$(DDw3JaPJIW@m!J9kKyD&=o9^5SCp zrEdln-l1X~-;EQvD0;32Cu+sS3ppuS*g*gL>M0ZMn`?5FM!~rAV+mJK8N;xIPO<^P)uymjVQC$Mfl~m0G z!MeZL6X;pk0-!)feHMn=Y^!HrS0LY%DKfE_d*5=rlx|G^qRk2BW#Hpxs+TZtxiR7puclexn7O1oU8(*o<@?;(`{!bRQGWWmWO>!t6PQ=)S|t|r53gA{SH({(4vC_uXB5ut+v`_Y`pt1A`@HDgbo^{L)%pGE zqkuX@4L>a*;EMOkZ!XjWwbClp3^P@`I5kBDg9XYMeQ=n&fYgeO-oqmBFCaC#Zz>=o z-5&af^krX|z+T?ydSl9m*K#_l*&@RDMHN|WYm3iw?buuA-P`W;>car1azJiwA-Pmr z)$DEkYq{@t-@Q>57>mQ;-c7J@^^Hf!U$vSkOK$pAo~HK8_WlOh zsE2ogkE%5O0L4luu3FE?DAf!KP%>`|sL*^;lTB+s7!A2#ik-9!B#0g=H5Z=gu;D+Y zT;ceQS?IM`oQbicsg)iI{}Sw2L_SA3Ys?6P`!k`z_@ZIlW-K(>C9JAoo|S80#y8$Q z7cL&}LQdRY=55t*m9RW8WRb0$^yIYB+w~wSz)a{q;6j{%mJo>K-zEg>6)(NPT(Txru+@@Eu(TmH_ zwA#X}RtZe-h^wb2e&*QceUq)5E7-LitYL!xsVqBx6!FN!mh@6p_GzE#85T(>{^sK| ztuxEYHK8l#w)0lJI?p2cK?fYQ7#f{@s<4d$05FHtdZJEjKhy%W9V;IA9Blg`L8Kzk zJiPCkGmf>DBQKy#%?Zod%=7SYFj6N1d5{73NmI0p&B0S#VvvxZLH~Mudpk}F&$R)D zO87&=3SShWglesIDCYWt(?vgAGAkOWz3JKh>P2*vp~`LCPuufsRrEmb$hG&)UDi*Q zZ8OhLE(-J6vBjCymUvXzT!^@KD!=y1-11$0i&!*b{pf>5r??Cs?GrL>(&qrkqxv!p z;^I#iR0Se0EqKDX`F0{W;gfr!hU>2D&ITnI462%7?q{6uEOt~uO|*+i-{8{U^F#gM zha=V^09Y2;%oiOcI`4wu8Pi!{^g?H<+d>efYZCqPL7&X6B4C^m>1lbu7jP&M(xYZE z<0v=_;L)|M>s7@`cZ=W$kpSpB3Gmu)!uf`!W%{4xMGR5FK}(5wa-4Z*Vm~qM`9~q4 zSzTRN?1KLOcBN1urYttIw_-;Tm%fS`s=j?5`^SOd!uXhS209;LIb!_>0_q>cG+me1 zVqbL6^e5RUvNmdM8{jd-|C`%ftHD`AoJTcID;3$lj4HfyNQOTz|C^)jjXY!5p*Ke6 zFDjf`SRs)YT%G+sS@gNjlyCicE2iXFp^w$vkC%+fIBFC^Ospz@g$jiR; ztwS(kUdok*h>JB5R+Q6kMmc8N3??}{RE=xujvwF(EXjL&J2MTN$Cm6f!Nbm#72{t% zN8k^AvySnqQ}j)}K(Z(rOZLh2R4FI5Ib}vfxfS^2DOqTLmCc#g%)z9_2@4(B%MD-v z0K4ID(znU6E^FVxVbi>y^O|wSvnDH<8=B6ShLbPsZwFd!S0#~&it+n!sB?05%N!S^ zV_F>6*4Bwtub3xrzJ9+AzEILHDp2A5mj%<5GthU2r^``=iBnc^FVY~W2|aacED<*{ z(vf{XXA5-Gtj;dX*o`&xoO9(#lW6<+-3cUTiquiRa`*0B0!4kTQw^jjW6>nEzR_6u zy_{Q{MN4I0I=>L?#j|3Znv@s(G z;q?C5qq?>J(N3Yr6&aZLHWa8QN|sd#Y?+p%O*Dj?C&cQUd^y6|lkvx1=sQ=nrIQK@AI;jjyG|K0;&FH=Pgp)66|zMK3w7C< zR3d9XT*1Nv`mg4(N`vtG=NhLP6fLbRAf;@_PHixVX&eu|reqCO1}O(Vk6C zt>!hBp6$ovB+KGJeiOCd^_UMJDZE!RJ36lmN$@b+DBaoG1`)oOSW|zvwZb~`|^td`4`CIj!|?K9l186LevxIXfB z#l0{0%U4JlC)c8G9{VuE)9awd|aWs6@(i`?rb9_fx4<&TWPRl4>s znb)CF3Pzj+Vc`P6rZ@t@$0hqZ*aqeu&}@mb*603XW>Ng1^uRQI`lOA%mjo>DOyIiA z$?zd(zvEnI^n%0*tcJ$2K)6NdiLV)vPcgWqy!{;A3YH%U(k8}h*)PK9DfAC-dcmIQ z*4Uh7kN_l|kf*Pvqg=ng=UFN${YC@3g$^j7V4$eY_`UeEpn%%+V93Tv1a8G%!Ci;!d)&)iTWpnus3^ z<*$hs{B(Bt_Ytg+SmUoQkCrRE4lER+|$vv_qZd)IWb)7|B9Ibckv2ZubLn1E<` z;p{MNOx77iE15>Mv_=1VBJ5KJkVd@CDsziyR>0`jiUo1%LFV!Uh_$+a)t_LxT}o;?4J<4yBS z-A%xuEwQNXZaJXUVsv_a)gVFf<;%A`AO7hXy!p?sKRnC=(tBboZ@?|QKSe7(F9skA z^llOe8Srlf!ucs2g14L}j)f?Xh88<|^E5}xP`#=Cz38QuI60+)$Qi|&g!9$;dQZkv zItt^=8Dyd~ly`p*Ml`Q(_<#OOV_>i+@zDH*td zKtN8T-F*QX0v@gTBCcHEoy#-i%!>f7h~SS(DagK(GOwyezN5i=XA`ElpPk%CVcR>) z9vfdUA^5CEL*EdkahyfTC)UWJD_+_Dbulfx>!vQq!$Xf0`~ifR!s2gzC^bkOs>$M( z6OZB5I(!H4Z9}VwI;)ftGcB)(*puv8$2R&Lel=FECvfz9jQ#wO;QhhH(%aj7Fu+(G z-?EDXN@2pGGK45p!SP>vuyP}S@_5x2q4_dW|GrDC8TT*My+DV2rV4Xem3H%fEr$JS z-UYt_uRd?^)06mFW4OdNc+%-k*mebP(6hTYuemUOwlX zM>xg3+qs#f$#97)TqDtntQWuDd2~o=Pvg)bg^X$_ztnwH58?782x@D^_QO;TfNCpT z|5hlIKSCm9FT;6Ye`@DNz!n5Lhlr(0nCnJ<)xUo!C&vTeabEN(m(GX|6KB$-E8y0? zi?2SI_z5D@9Ml1132g1hvY>BQijg^^nF7l21t(Ds-CyV!*trK1x0ovKKR*z>x(JBn z)j^TreDJM;uVWBMEPoUDJ6~0pM=)khofp4NRrHnG=JaJcSnHKE#=O zxL?Z~L@`}g1gzYxP=^$TgFim!75>Wrz;fMV>W6a+wl*Rmw2DaJDk{g_#cO@IkzeQq znN^*XZH1y`ieQXXp+7)ciyxA!0=)_~WyG!&#VB zVx@PPSddMW8SWD;t3JgsX5 zxLW=FmtS!VNNeXXobn9N#>t#8VF__KM|BCkwM7>)sE*^3f z?aQ+lqv1oi4C=)4Zd|-5N})zvqm52kXq(37JSHFbd`opAQ75lULE0=^B4^)G;hD{I z=A#XF-vn8B#|921gL5PNHwg;9Qv!+s>`Iab&Q+)A;d&cVi_gcc5>CcRgksRLPjhOxknrLgY0~A@4svp zOyz4gmpl+O76jjSj-&_0>dX#;YTqM#{x@1bs(;U$rVrOeNusg*D7UoS7(x!+Uj3>G zBKg9LUzp-xaVV4R;Kt^6YyV`d#(`wDlj+}N6&9NGnC!LT^uYzBoyju_IaO*8Du8_q z3-y}jIksG-k3OwleV~^H_&%X4A37TXPC!Qq0&%KRLvVCJt%QlKbz&yq8E8?G;2>oT zp@UR1fCanr17_@L%f1PUIH`-rDjClO68>L3ps>s~KYu`z0iV+^?ud6aHdT$o+|QKy z1Gto_FW!e|lCqojU$#ov|C%+$`vE~rss2e?5&k+==^cJysdC zmMVv)7s{_o+|0xIg(~!3?(@0b1*$f{HH|x^ouqnZ!D_z~;Ew@crJm3rq3+v|Uepg5 z0p&f)puRK*suvyBZBu!l-d%(!c(w$iNs^@hv$3q($b*`DY}DR{HBE|s#^9Rvw?kYH zls4}}Ib{Psv`B`XgF|H$4u1<~1qD$Fp5{EDFz1L*hpmHQ!TUZFy*uXIG@~NAhe3Mm z{;15#HL0nQl$V>j@8jW`8K196BQz@815RRh}OX_tXP(Tw5{3=Fc+MfIF~ODDcMpRw2f{7Gg0!-V`#YQL*-7LeoR=oVJd zp}RPN>ZfK&Cb!-NZVQyadp7=R=V<;s0X(QNPI=%u_!R=Sbed_;@1?O6Qe zL#b1)mty$=^_m~Fmd(*~*$5Cu`Sxn18Rx6}_6OgTq^(7AEdR8y^t$aoxYWW8*o;5> zfT06-1v^@q!N>QvBuA#L+Dtt(Rn0PX8+rpxpJWbJ@zgBEJQsfOnsB23Md1&fZ%i{M z)3^au-zA^`pEfwbD(nFPSs|Obv_j8KK7ZSgl$f6xe6d}{d7uvP3@DM&Y`4&h3*TXP znssK{RT|_fpFm9TJ|CC-9}1BE{CNY!t_oE2u(spFtax`}GI=0lL?S^sI=Z6&MFrja z%!xB^q8uZA4k{3`1p%WJI`}N=WSo)1(zl|n1&2$3#S#_-(3xx9e}SV@Na7bxH~AzX zVoxr+yhy&(&v1PC{RP%Ke}<>iaN#S8z%Jfs?*DM=FlFW6qywUD{d#z|EGS@SG8oy6a$`S*l`B2p?%>;K!$dlt_%FRso{tGXndB4Ms z%8eHfWk;kXy#amXjPw@f)o#X5>tETf~Rn!B*UW>7v@mI#$x z4-@CoM7=?r+__cX)|EOddU9)V?@`uwFQE2@?=VZW3p1#s0cx?xkbdDehyNpWyw>jE zn=0FFjZ$}l`0>DmvRtpJyL;0DL60rY9;p-6^2$;K}kq0Xr=x0ooyW8}l`PD>63iBnv3) z|I>lfdzn__9elpk`)jCapW$7=!@xWmp}RlWiUjXi92P@PMat@*+xx0>;3FB#cJ%%> zMX9ywY+!?JQdBYr%nTG1va;+_PrOog3y#+!kYr6fU~7?*WwMB?_Mqo546h8{3{4?k zjbub0T$==nKp0mV&dn(O27|gAEhcbwyNs?Y)23} z4Tj+z#qo8Z*2MiG?s;%&X4#AM(DFEJiXF72{I^HJxe%>RP8`{|j2SAP?E|lk9Ld~Q zLBTWoc4|p>PXMCb&yp23m2eS%P&rlJn0ygFjP0!*DNPm_I~T))1Dpo=Z=3*ekLzc76b)Hcky-cwNN_}b=k0Y|8sOC1UIkQu zsw~8+8tIvifdhSecBc<>&2HjYD}y5GKUwxUd68Om>I>-8hQsbe7UV*c_qann5{!P$ z#b}`xhop}O^)&adh2qGW1lZvAB2AKPU)$LqWkdZ)S`-Ai$k|~Su zqhbZ{JRK!FT>QSMot`t!w~3(WdpSQ{E=yqY1v}NLy=ga4)bEWu*STaae)Vim@^B0i z_@p*T-d`3MWBn7Xjzi+_?4p^TwHGX|C_l|&gR&*I_;@gR@IFxE25WERmA%4e3e33x zs$Dt#qyVmX9@x*}quZUK!8d(WC{i2KQ&vd??=m;^hP*5lXsz;|k4A>j);q(GnYxw- z`iFCG`sG3K21AJs>e4WdqdSwM#`|n6%K>T2z49Q>Ogf74aHHQ3n*H(i?8>Q^B?kk1 z#6dqr7tipz4h^8vfOIQV<%dBRZ9#vJj;gxa#P3%DUD670lR7DrVfQb~(E4CI>yt}3 z$zDVio5lm;(o)W*vfEu8gmEyNsGZ%}yaIhL`x992z#nFT6iaJGU<|0>xtD(>=Mv@c z3MVK&lLM%c2_V`0!VC~!!a{|1Rv*>{sv@*{q`xy@cL={LR<=zhSmM*p<~e=rxw_0i zD-6U078-*vGt7VhY${j+YIgx^x3ZAN#dN!hv@7LYG6BVuL7CcQ;F#*f4k{-?m%(AM zJL1IKzG>|@FTcv(Z(U4=N?h+3u5{&S+v2tM9Nm|=eL+&WF8syI@6+~+omwE@`k5Lh zw`Ofkdk>E=vI1)A2z#`%S>-zUVlBx4@4@|Ye3Cb#0|~e76*jZtf1N^Go`Ui0{LzDv za3CiIKdbCC&MsZqel5mAbGG9;dyA3jXCq@6r_9d2)8w+$4{pq^o&e#z6qNc}N`Si$ zE<#I$OEATo03C@_rjjj^WlYlXc1gX5B$MqCNTN${f;42Q{!W1Z78IMwfoen z8z?w47RO<4b@y@}{)obCx*?ne2E}R7L-CN#Pnq8ebzFSCv^v*!0>m8|#T&ENH^zsp zok6<|m<(zFl{#diNf?r)sF4|%v^>|Fl4sdda%@SUO@6XS84PjHT~5jwXM&eeyLL!P zC5C-`@>f{>caVgEO31mrX9jCOL<2vtn1(F2pYyE8HIZcP5f_ApWfN-gwi^1z#_`FL z_M{)8r@&A>y1lYYgw3&sX5}S!sCE_I)`5XIz+M3@u^|%2`CB5$G4=<+kMp&q6H*Aq%S$ zU-dRX?^C|@^{d-W6mdp}zA|t3cY*nAMq{}}7aQn0-@^x!={IA(|?=NyNS0m_f>X; zQMmD9G&o^q>>&iIefoyuz)&aug6h6Epmv2Gqdf5*opXaSdr-QW2B#0eM~!J`!}Sb8%3*cUAK7tb~?nP2$)Y442E{Fi9zFQ9<8c5p6mDhWAS zRE68M2lt%C@e_**D-87);5QN#bR^zH>O;FNZxITC5^_DT+g3EXhb!+oMV!TxY=p9IYPQ?r)t^<#;Ci^Vmy z#ruNW{$6Y*fq633wU&oOMDLEEq+yT#DpM7=pRy+WRa0b4em?ZP?%(H)%Mj$7N8lYf zTDpof==mL|7`!Z2FC$?wmYs}a(CfhSNB%yaW_s^Kd#ZevbMbEi2TXBi`{$&*C;10` zk{6rKlFi*8S{{a_1C*0QEEQtMu)U8J;R;2z0SL zBN5tsOV+#>9yAVu+lPm5?sQPEKEas~iA$Alu>TE38K!*TwYeuaobr(J5aQ?G#iW`RLA535yM?bu5tIpNl0oW*t9eC#Tn}U2yl#-QM?cHyr_|uw^ z==%sHXw|i%glyadDIfTGBYIwiL&-|`;y-~~{?I5HJIWba&#izdXUH325n~PCfgeDfR1WQ^>(=S(cL`Hhz*XTa z_XY;g9Ny3!kZTz5O^;0ywhXK`G==mJp!Rmpa*$)6A^O)b$0Zk9`qm=!!j3rwZ>0p) zdr#(tgsW2uAr<8Pi>Og2q+P1+q zHWXK@P4=6B8SY;^y_|DglF8sI$~=J;eD!RJg{xe3;1tY;-7B+E>J@52VTBdREODV@X%$-U$e z$_4*kr4C{?^Kz;?f(m~Bo`~4D9Mns^@04eA+aoy(adljI`3O5N`4kVf*GJOdJ$kGS zxGZpsq}Hzcht?5UtE#8i3dyqS_p=O;oqi6P;?b#fi{R)7!=okF)FbT}FxrReXWzP$4* zWwdGf?EpU(_i1Fq0bGMPd`Pigm#qDM?HZimE57C%*D2tqbW=YH*Yv&_uR%EHx3wQ` zGGn)ujWOQaaCQHXduhX3SVt?plBM|U1sXeMsNZ%4i6Jpo{X6gUsenH$(lfGg3tqr) z$EjidtOY!m>zSg?zhO>Ra=PSvXEp-u5S__iab&ahTEW+9Kbnl&nwqvZPmxqvQai%RdG+rf-{_a7wVc7E9T^G&xwC(7P&m@f zac*-T{2_)+B=VuXwshny@Ap$)q=55zb9byGh93@| zB2}l7s!K;c-evNi|6M;f9$av%f<_Si3! zxd-V_2*s7xlax!7sA^{Ze|GS(wdZD)t@pe+fvyx`Wara1?l#$6$@S;bj5l*;OU6tE zHb*Bed2s!iec>ENu0P_5JC}rb-kw`5dhqINm91QP(^J#@*{5%xv}N0|#IoG**Z&@# zdA#k1W;yF_cDt0cjqIOx{W>(|_k=GEOYE-{-C+B= zZvtO*^_y(#bCO#>?9i?AYOcz!xGOftxb8tJ$hjL2-<3PKP;;?Ltw_xo%frA{Z$X6R zbFI0>Gr3geGoM-WyixA(nJBNSz)MTd?bKr3)&2Ly%BJ(?$1TmvuCLpg19j7l>Goc) z)K>0iy89>3=EAN&$6jwMIJdU++}CMWA}>i8d*27nc>|rk!|M|Jxt&|9Z|*y|SAWUj zYjVG<>>%#?w)Eg$^F4Xo=OpccuCz#hvrz8V<3i7Pi|5PO=Jyx3@dKB`##uby=Kag( z(uW6&?mW<+61zX*)3-0Nd5U%`KalP#K z?)r#ND|Ekw`ulAVPnfxca}t}(iGOv^N~2l+bAR8v(L9q%wgUH8lS0UcZUMc@7cflX(lkSYA^xQ zA?VPc-sbO*Rp+W?1{Qp^o^*`megDKS-{QUj$z`A;p4PvMdN-$d(lQUL^7!B0zveHQ ze0EJIYns1ZX*(XOAoI1{l4k{(MhLN z&#o>!&9m(8n8Kjc#R!Ci4d1#WK&_5!ohq&l&hclpin$FEwL0n=zsw=M9bwX*qw`yKb{zglR! zj`QEWl>razGk4$P2fAxJFbT9cM0XUso!D|z?)Wa3ImUeH)gc9> literal 0 HcmV?d00001 diff --git a/Notebooks/3_N_horizon 5/sim_6000.png b/Notebooks/3_N_horizon 5/sim_6000.png new file mode 100644 index 0000000000000000000000000000000000000000..7a352275847d187801ed9c0b1a7e66585315bd88 GIT binary patch literal 20983 zcmdqJby!tf_dmJ;2~k23X>f~(v>T*L;Yfqh4bsxxty@qjK|&g&1O%iz1le?#ba!{d zoeR(RocF!|{OyT${9 zp}oez0-qG5OHYD-cpaXrIVf5iJ2>mv8Np=r9BeGC9V|@s?>QOS*_&Ehaj-sNMKIrc z?ciWz&&S4Q`Ogik)^;Xr!~FzFV36xJ66*Fa*bO4+7Y!B@M+$?<8%qB5Ovxo~ecbs= z_`taT_NhfObM+x(lEf`jmHQvZkFxUV5Rq!{ABxE;Dq2X&1opg^;V4o2{9D@M7V)j; zY23>ao7F5gG&@h5ZW=zj`>b`X(A_)NoYgqNZh_l>JM?^mckwzx?15w$_z7cX>cf

O)w6q7V{BSdUW3V{3Ns)D^?gbHbTEk{Qb9fFln@aH2LF4hltaYVqOB zH{suJzyq(t`&o)FvEj%@IFb{N6c@o!mR`@M5ph8vf54HC>5*F<>m$^JB42KcG!wvY z;=_xERTD+SQXjAb!7*Uy2XdAQ_>|WzrRB(Lj(eNf;9 zPs4?ek&1jF6H&V*;_?vrQn)(L5(n-_SVJZ9g+xS+Sfq>{*-ejpEQI{Qhum6Ju++XS za`YIvm9h8UmjRAMOFJ044i}&lQM)6e_KDi{Q}uZHA(Bu9z0{8o9|v9)n``chGo8tj zLL`Fo0+!=@nJS*FMI*9ABl4wod~uYol@@7Zjx$|OSpON0EUu%|eW~bASpR9yM4ejX z_cXx~9BH=9rJ8zb_!myHB+j%`63y14Ly)%|jrU6&J@8|Mqi2RQU8P_tNG?()TD>R+ox4*zb(4IfVo_aa;*VGPG+$d=o6;7RXpQ9s|M(D}2 zSkl>d7W}v8JGIZMOkiDTj=mW+N$I+1)@b`ak#&i!uXpv6LTh;q_bVV$#nzE zFe=$DgF{xapsQrkz z`-^lEoeOsP5y2XSV7<4Gah9AGtc^QHVZa=S5W1Q{)DT4@Jk$liqa3HOHFrJ`<^b6gx4)_ek}Yb zr9(vFrGS1nf=*$98iB>afq7Mi@I72VOMtOp`?t zlPTWEX_?Ck4<7evLYGKQapj1m%Y6OSWaN2qE06Q()#8ZtaKY(5&`L}w=<}!?fe#$QY6B5g*HHe17kF_}X5r0l3h>UmnhANMKWkV{htd+g zd%PsW7zM?Fhg7O*$B_Gg7-ZT17D*kyZB&Gl){CyNYRD{8+x0L>FY_>y%79sLKH1?h zdge02ttD!M?|2>o{Y4Q4!IQ8#OV>~x>69L)rf?yX49-SUk|xr;_XsX}&ffVvI1+!< zdus1>#HfBC_GgW)-R!#OM*Tblqy^gELxBh#<&`fvDV!oWoRTa%n5d|2YE2JZ zN`;kucwHFjEbc4vPedY1W#bnwoE@y(%sPO(t)*aYQblc`^_Q7oK&2>7abG|z^^frrs?qG{W)FU@5Q^NGq90w?6vPFy0Rw4+Bd@a8`XnBv}rQjXXunp7qYB-o+K97u1I-q>yL9K1*O?b)j`Q^$uD- zeW743TqU-Gz0>P;v!8${v&0C;AiHE?@LW++Sv1Sa2O1WMPi;;v*^k$v#LL0kSOk`U~Z zpFbh$9ib2&d@OQ8M;Q6|5%RI%xkcw*3_%ebM_&?A9Bt?QF~a(% zukJk!BIk6Ya_D|`nl1rNjd4*dh`d+;_4`quLqW)Bp(8KA(N*;7DTx3U~wK zR59nZr8sOKY?#~O29a`cw0PcOG5IKxhgl_+tjymKqK`R>@~yCUARzuwJ|l;DR;~z{{hV75+@V#V6&> z2ShM7{`k)W;yRym-Owu(bovJlrT+DZnc48-?D)=|JBAf^lphadDW@2JK=poH`h_&XA5`b=aJUrxtYEYN1br z*&NSDahUd|R_{<-j+Pi5@67WHE^yZ#cUYC4E~SLn?GLD07p~J>9$^c*?InqaP%C9B zyt5jw=t&VLu&UZdjazwpmmN;Hw{&%NIgl|nX}!I|e>HXDG@ie*^J-d`dQvhqiW%FY z*i3d8I$#2O-J++(k&|Z&+-GYh!lScJHRtQryX)586cU(BZ?Or|^&0%#$2Ovf4IZE* zR0e~+3A{I}4|j5`Jp-z$sNzkPcjN9nzm!%X?}3Ulhd>iPQoiN)_vS<2by-9Pk1 zW4NvHpI%;^lkwU;fN`1+&iPSTC8_4=PZSW_+o*LA&p0B^bHdi(qoMO-vEO0dSR`<8nVrTsEhI6fS zSAt+Pw>7n@wj*)1`(ZlRLd}rM&6-oSG8=dkwL3HTT^p>Km?>XOm<^L=MVkWunf4bx zySm6dW`n_D(m6Nx`9(UA!rtmo2!mq!nw{<=^*?}q`9_?}%!l?^?hv_nzU}c%uPC^v z-`Z9g9tBr-t+zL@u;)1%#Yc^7UO$tby>;1cBq={$h;?2Sq;Z|Q1+F$Whtifqv&q-T zbRM(C9>`WTS^J$Yu-~sJlOPbCk?0jeAbj>I-=HZhKE6Zog<#{?=K*E&k(x(a4FqIQ zUU##;NOoP#Dg7ek$p?f1eK(Mt^W)*9H;oS&hq29i@esS$nM=A%biMH9@e84&DU6MZ z)m+Q;jzAjWgdrXGpb(*x_qrE5QOsIpHW}++6%hff74H!SsP1%G3ai?4C$V74mZR-i zGIm3p*`|=i81vj@*WHDi)B<0AzQy*QUi`vkNp4+x&gDGm$&G=HKlj4>geXNUXePIE zW2SQQe8cKo@DVR%HZ3qY23xDst_&HCGN-%}SDW3DF*~;?s*P;*!iV4s`b*u((5Smz z!ioGFWd^I?d|9%TGV6if+ai&T)<6NNlszk&V*QE)GOej$|XeR=W3tRKe*8s4-o-E-Q#W`9t#3j9*K zEhWRg>((YL_hs}|IGT?Xn~Q_z!IpZ{ZeU>DyocN>?{Y$snY^rabIelB>&$PWZrhq} zIG%b-&}vaC8_PxMbu_Kn<-HJX0%`suMn-*LRWdP8K5UFvZmLYiyKj^mnwS)NoxAzr zQJ{dLRXR?l%f>oov(Wkf$@JFWtgTs`9B#eFgrWDM+^+ZZk@qaFHV5zZ3D-&+apdB8WklDzU}Oy6&M=8R`X@@;-GZY z!h1O_s-{2wnSS8eUWV{I|KxEe*QiNXLiK*(+FIey#Z8IZBEL;5InDZipSTTvS08g6 z(hej=yaASM+d>x=?s_`dyIFXS&>UfAU`PhOE0Bu+AV8?%A3v!$C=uXkw9=nxXk^rr zZy*js1yf1Ka#_|WX#$@(pXYtfL`O%*toGy8>IrdLj(VXV7#hsADV#y^=x8>ibfc}K zBkjkJPh(?RST{-Q$V}pX5_oN4kaJtLw?;6jms(NzQ#p|WO=V$H`JUvoJ|b|sR!C{r z4A)f~m86gVCCfej3zJ0aX-5pF`j1y=Ktn3`k9E9`jl53!5)1Siuz-xJbNbAj(#DI; zhZIu8@W5mn!sw)3W`nqwCToRZ#byKg;}wpYBqEl*snX|3Ji<4gVm_3+w>G?M-xTMu(=z6Lc@D)83<3e0SO!X9Fsbf`8{qoqj0Crjx|b(I zkV6R%5C0S!+Xn2C1Yh{f#;ST>C75RhCx+8p4EVEBR-p4 z-uXLVT-4Ohx8<|J{6{OQwNlwCIZGqOOshkAlX`+L1o!Vi-m~^%KaYW#d2UtrvI0#U zlUP46I``SU(&j|!8_@%+x64rC)AG_9*6z_>fJG?zSmX=^1^p0y%4 zDf)rc97{`jaJNsNxOi*U}a}JZP8Cm6{4GJK$N{n!DX?!db(Mg*hJ%fCS7}Yx6q_39c<31 zMJ4b8<*T`sPTBF*${|G=RRJF%6HcR3 zKQq_epVfMue?b^vf#^&P1tBP;Lw4WT*myQaFP!`$Q3z6!+RO7z*e}xZla*{<5Y>3s zi~7_m9F_-5fUD>Nkpss#gbV!;pfF0X>Dpk}T?P#nGw{f&%2C zpb-l@`2v))RV*!cp}-EpvBOIL2XNcQfytQqsPO4<7tg{MgCnqMWyJ~aZjkh*h==5a z0Oz#O9^DYfYft+46>PlH*`&?~tv#NfL?TGPd?Ci12dvz5vgUm77E5oG(G_CKoLTO} z?&RO}hBtu~4|$%f+4enu{v4nl3gE%Uwy0S0IYK9>3N*cY3|0~iavCbMQqAX9GHo5e)$1lw8E_F7?AZ;7R5Zq<&I*VbE_ z$6%{Y_E$?gcuBM!Zq=TSZ;}do2>{ccEg7{MP49%B2_$Y+SX~s&VPZuj1<9(i{{ZYV z6y1bRdO}L9%qOaN0g5mJLesKsB#!eu7%npH^8;`!1`3SZvrYCtF-dGXIEO3*O@N>G z*!qcG1vY35_>;QHHi>v zo6Tw?u2S1sF}J-Xv{W%0EvI24prL^^o~OOJ+WfEyw^bHY2u-cylX_r9P>ObOsZqWR@)i0}fF?s4m2$;wb(ZC^;KaR<3do=yj%i4vm@h_L-C+*}UT z9B{&b=WSdYE_D8lLc^x~;W&bqIym(^qNGds@{E1;1ON)xrDXq-VDe)CUR|c&k-*Bf z>Ti@^oUE2oyMy2s77@|-6Pus*W4yt z1%&gQE`z|c0#d>CzC4{QU-}vVtcC&Li_6R0bg<3C9FsDWk`-Km699R02b*kNNQt^d*ou6#~B6?v#Wt*Q-BQyH$-McvF z3D+}#EK?LS^&CkW~Ws6b0o5nTi=yewZLvoAJe_o-)@xB?s~IiPhMb zXK%4=PnI+6J9!tkcG}o>Glb7gW9yj9%JEI*9|1i}4y4e(NX&4CS;lSR{~z zmiK|O1W0gY0&Q>ocy#WejibljjsE`W`ktPn&%5Z%myk)NR(JWNpx=NOVd7&7q2*#+ zP>7V>Xhsii*D``GKUmjRk7j*(Du$E%a7(~OJJ6QJhIs2OsR7dzc3p!}9QR}7V|L_Y zyWs+()4W&Uep8Y%zoY}qT2xN1+47fPSH8+Fp8*WPuKn@glcEyi7ebMHoO}j$f!hRWPAu1g z(Izm0G150LSD+QJ<$;W~JyDoOoZQ?RgjsSH&60KyE=9rGyX5QM)gcM%fA5tfqN&2X zZ^Gwbn00mS;q+jxp1c6r0A*$EGm>D;xXHu#g>)AC=_3Q@ymNKH%R+(-Fuw{lVgElX zEr6x{KdqXGV-ktH1{z2y@`Y05=n2xsGShRC04^hIUCZ(LO54JUxaSQkVC#<0>q7Jc zQvea?BM(PDdrCBQGs!*BRuL!JRxCRllBX#fJH*EX2KYQ*UR)Ky`RseQj<}8rfs$SJ zl;%)PyOOzk6xi?|gd&=N-6l#R>SjZ3N#f{9;3U5g3;6tJ6uWBxD~Wu&EF4fu>PvRh^g}34LR^%@%y)Kb6r{XiG$f3_l!(S1SD9 z>ZsfENAJ-vf^i=r34Q#1TLAeSKC*w?M(gB@+*9IL$6joIOvkg1f$_gJECd#UBz%Y- z>l;v-m~bD`AO!_78>Pnx6oJo6)Q0tXm&Vl^M|9)9UR@6R-&~;jf1ySH)ZQSWb~7R$ z^B^DdBDYL&rbpHfE_slIqBwXQ$|-*oKvORLMz@aYwX;Vk9zNvD8>B$}?ij?~5qXUn z2W#)J`0!_kw6Dm$Ku{G(>FXLo1In~Keh3@FK#0ymk`F6-0TFO;WJz6e9X%X*i2-U4 zO-3bG9AemkP{uc_fT9Nm0yP1CKy(>NG?IoMyqCuNCIt|9*QWGdK`slB zrq`d&Dm1lYxiyhSnWRcE=%ur%H*HSDNl6CwXC_F;uax)8U8)bJXjt9NyrcxU|G_%J z|IK?flInJ8Nh;V?bGTj~x^QPMANE~v%;vCc;TyDIHq?IBBiEH379WBC%+86_$Ak4= z%jx9qO8KxKEtpZS)gQZ~f$^WWJVO0;x>Ta2Qwu5febVF)(Wbsmt zRIqxE3}!fwx>1f~Q4eGrZl2+RGM&bIehT^=sT}9c3ER2m&}dfC5o@t7?MCMW(neHA zZQ@n*tg@ewRhK_WNQZb zv#!WCJuGI|R*1fvGu$l8COfy@BE3BL72i2-JczYp)v$tDk{ECt5foe*;yU5f@AB!I zn@!f8Zah})X!-h_ujsWrH?e+d!eY-?9mkmdtdn=}^_ZY{feDo#ZxyPr+Z`~XI(0i1 zzTSr6zgD6ZtWOaF@=I|%7s%L>9Lc`P6V~|mtX?W<)l*r^OeYf<+ba2Eoz2Gz*7jGB zpK1n%4$(6&M5+oIDPI`pE)6BD25%mf7mGYFb)L6oovF@j`%>)Dz%|`iKag3Bkjhr) zq$k!0$3-ZlAa-8Mm-6A6s|>IDHl%;mf5@uVu%(_&%Ii)?yZBwd10@0@AIhq5l#&Kg z>zLW@P&qFf<~Gq75=pbPRg>fq`GDKbnYl&hB3i`2B;I*swoOe%>1mbpRI|7cf)p zYB_rUAuOyp&}fxR$efPWB+u~InljM3TQ*b#lJ1>8w1DYUdWeCqY{(Inv-q(|jNMvU zsFp87xjSS;454rk(M{^!8I|>+A2K%Ru8`Om|V^K1GM)PNkA*Ch2 zKM$O&LA>jfHQ$|TtTvS|bxUs>SryVQ^P@;itV3d&^VHZAc{v)B#0+G*Br5iTnlHQY zgjoUwXX0g`W^=`x`x^Z@oxIf=c5-=Jax>vz6uJN9m&`|H5+jZY8^d zg0ks3jPj`;T!u!+nv$99>IEe}Bw}n+gDzJIkvnq7+hYYffRlWFl3Xq2%71!U>i4 z6BBEn_$K#7^;OCWZtzr6P?1MXYEDUw*vEeS=<43909GFY?~9bbo$MUz7T1?em*HqF zmSdLNRmefXMQl4GxcOO?E_Nt)Sv(@nkVS~abd!Bb;w}b$M2n9o@z39`*U$9?4uB;O!N;3cH5sC&@-c&SPUJ# z;IihbvuipmJe4NWBivch%eRT<<6ET5*78Hoj(*8$d1^JuMA0(51vZ^F6WkT4v|P<& zEW|A!?29VS+Nn1Zw|m()63xm$D}oa@o=w+8`5O@7Cbti(1cQbiGS8LjuFB1`IxKND<37$I0Rbt9jSS z2b&!L;MbnQ0n5EbDU~%7)*NpwH@&&(jhbFx-5t8&CSNNSArqx+RmE>~z1GF{e!$>e zo1SUQqm~wI`NAyM((pU)8tK4A21uW$7^E2(KT!5&u`ceJwOl${Z?Jql45Kr@!E>ew3YowPS{&5Fob-3T77K8j39$vK*L}o`HB~EQ)Lk8ZWA9d+ zsz@|6I82goVegxlXoX<}8zQD&M&INKf0D?e*)<;$Vz}|q!|J@2 z)nj#wE1ETPj6%?v7=*e6Q|ZCofsKx``90PrS<0M!Mv_vR#d;ihz>Er077$>M?Fun4 z@XhMWt2OOpGQ{Rcr#2Mn=tAu`Xi#g!$5rPI29$V@ltuorpGT4ti6w#Am%K4?Ys?pJ z&tBkLPu}aJqeB5Ne<5V}(A&)!3q;184%1m@gFXbfnCvJ3 zz5nVJ#2D9;!V7j(GHSt*U0XlRX)#vuXw{wLc#+uOb`A}XLpwP2y!jt59N`R1@Ax=? z$knRfLvEutyt0cQNzNKsE-oc?|B_NDihtsZh`i)=VS!|#DC&Vuy{%rMPqpRme=0_9 zpZt1$Goc{-tfR5Nqiz1z+gKZ^Qe#TTr=r%2T5@;p+_i`7HJ;dIcEn4mt)mlY?*Y+2 zyQ-AHqODpN@gh)vZ)`w|KZ$k-e@P;;RCLVzZXUx_dK5kT>)zWS-gm^C(A59zU|O_v zN~<>2eg@x^Q*Wgpy1P43ly>J%WOtGnvE0f?xMC&O?2m(eZPM~Maz0No5+Q*&b1a8B ze|m>j2j2gBu1-*5ZH#Y72oxPRgfuE_=V4 z1tE{F6GZzeLDTEjGFrb*`yva=%aFj{?d*oq<9dt9JVyuUM}4?%<(?jr>cswd&z-w2 z?vI)%7t6Z&Z|ry7+xd;DbvfojKKQ*AgJj=M=fvxWgEm@}0Q(!Dy|w@-Rx5ukx}jqE zyFE!#+QoC`zEE6#T>XqhA>RN`nmGrUWOzc(D(?!jZ)D!&uWfHqkqlJv(P3S~Ie$1K zNY@N)3o1ZCo8iOQ{-Dyu$%M>FNluq;?Z9V0&g%H(i|#TN&V-B3X|3bAM_xzmJdwGh zznp7&Cn~>7i~IN1Qnp<5_FPXkVj`><^X#y%u}VnqR)a}S>I0EVKhC30)e(EMQey{G zozcfX-td+>ODE6>CQeofMWe;Xc7Kc1bAJv2DRZK`J>TUVPfD^Am+c;SN`fAe*7&b8 zw}s-$-$XSrPt_)}8aFKHgW!rWf!*rH3qM2o|YC z1}HZlCbb$(uLM;gY#}-P`c|I({uUosZp%QE;~en9ygwva@)U{HaC}F*R#2JVl&yI> z@xMGLd7kvqnGyh9-(72V6?nYIv5+&?41zYfjl^~1y5zrH_ZrmOb&Er}@XWi@y{IiI z`jcG8%_iy#(BC82y)MXg$SZw7xc{}YANx(4#lMfhw3AFw!$z(0B>3(l?1BPxZqNN! z02-s#^IjOwpLCp^f7R*Fjf`FHRr38sO2+5Odr2-7_5J(P4o2So?~$Sa!S_pDs;8Kl zY3A%Da%QC-419|ze6b^~fVD{)aEo^fiLQHl;2uup~8;spba@#s|*Xw=Wo>hj2wLceAPTwhO zULr`OZd)ZHk$xEWY@&SR(oKu1!>o{ z8IZ7>A7f=1njn(w4LX;4-WU*=%`N%Zt)(Gu9BmiQE_IhZ4ACBmdRUxoRPjI=MzoMO z9n4L?I~_>;1fU*`0XwzY%=i14&nljGCmoBs6r*3-c45IAxY zBLgGWH@dFWATZl`P{s8o&%NT`bG?qSUkddx>{S*rF0?|s;)svib@F{3F`ti8PJWl; z)W{HbFS7b{QYiaYK!dw^x3rV2z+(KN4pr@^C={#VSk(X$=3i=F7wylrIG5Y;O>w+7 zD%Hh%ggw{I?vCSb*4B}cCvTE`hfGu|G6p=yxtcQw=##`bx$@D4Emau+ccb4+6%}p| z|0sWLK9z5!c#A?xP*?YpSM{=Y-jMalWuig+_{R8Hk? z)S-D(U0zYfpb&l%H!*Rco}w)uC4-FMq*8N*17U%l;;jMuLbC4i>m93Zo(jXc-d2=d zAv$&0lfp5b9cOywRb&9!9uh>i#3r()OF7+LJTz@2J|Ce_F^eLDpprNyiHHl?k$s@; z%S=lXw8dYfY`=%gC2#W7H2cXuZ&wfP8jGO#0n>-yq=QiNC_G-RDKz^j7P5=drw1@O^RiyiLz7%ksHzB@_BOl^s{G;SWFQnPd(c zOEcFm(Gr3YLgj_KO!{^C8~{v2*P0o)6*c)?zN2B@k-j^Ku31ih^}DN$bdc5p0F24GC_I`=!?1H>j7%zdK}=Z zydaN(7F(?`WS`%SYj%7ht97!312U?}$%KKR-IJnL2T4YMAgH6m_pWE#>&wut1OGPP zL{GJ}_mFNx+TgCuc%Q-XJehXc()*HV){I_8)(=&@wg_(u_O~By4EClvDYNodP)#n4 zx+R9-DmEHj<#fbKpaAgrTA3i~NF;Mz7~2g)H-P`B4fK#-!$L0tHI^Yz$UIPNoY%CK zH0+5{I?DHGFjiT#HU=q0_6~R9!}Go7+J+c-IZO?wn@)U~S2wv`g9qYQ6RmNq(IFpqj zwtG=zbhdMB7-@A1CP(WGa%OrMgO1->bdZT$~XuyRyRW)gN59MbsB2X zKEB|;MiOyx16=j?(5YR#9~P?4K_pX+y^K2$@4J8q^N_!l7;wgzI+zy}24|v~>m(Se z=%7dbShru!h~j5HcSQJKgLm&(;XPAXBq?y4HCC~FWVny2x5Nl@cvRpf3SZ?SjuTfLt)_;rg;mljgr3~ zfUubKj;1r#(u|q)Gq;NXb&O;gdqL zBw#w{)(kB}i!t9pO2-zWUH2oJ={>@6^jB<++v5yp>xDDd(AfCKaezr?M+VBgn`I*N zM%$}(H>X)*nUWa-hU@^EcXe)6fN)LxqQfE}49|ax5-Y@Fah4fB75BQF%!Ht76U~~& zU#G3Tj+ke&4Z{M*J(Po%j9+z|{LZ$|s3~oqV!Tz%46_Gi0U{9|a#CEGdycVcK8a|D zXv)6C%a)*%Hg8N_Gk8kEkCc{zi=@!3VIfD+NX1g(-M#Ex?!toplAO~W?#;cs9~^sE z-=DGFk;J?gFnDL{V2;j$kue!?U!7|`aUA%T(_^j?%b_5x$sT&xlOgK~r8SN_lmm)n z5Dn>$B|CfEvzw{T>Ay)e>MI>=VcwjEoA;v(nKyBWwu*~Ow%1_rO@3gKZbQ~y#bV0$ zPOjF$R3ZiMJ2QF6e(+aOMlhgNdzoy56A55(Z?a;wc|sYRw}Q+>UM_?jdzxQ48yeS z3^i*;FJUVS$}JXpyCkG6^BR?OfD&=LGqD&d|u#DKGNo znUwno=h(h{0o1q<%8Y7Npt~b-FHZ{JRoU)!K83IaiWHBtXjD!(l^4%UNe|E@Jg3$T zE^ECt6ZgyBK)g+lUg7cT6xsJtrC&q%mMsJ?)`~QTNHV`J4Wv_(P!7h3`*+NI7uDpc zn3Dd8*y%B00(xRnC2UE?nZ01s2;lRu{CXTdQ>IKXNS{Gprm6Lb!!$YTaT5*~@!ef0 zD)yClrAzlx1Lr3o>?U-0GY0jQ6O+>Y6>YBY@jX87?D*y0)IccH_o?&;nS-*<#e_V+ z_Nde-Bg2O(PSfkaU4FLRRq6X-Ow1}+K?Nq|$2Sna@a??opM8)R8C}R}Uz`#5D+EmQ z#wjW}u0PEbJT(d=y5kJe$K$bzUrG!G{foXg1Z6lZyvHCntay?+=3;qvzvi&32Vx?% zCh|Pf+a!^IFtTl9O57PPz$?m4gd+E1oDPe2tvJ~q{|s?%sh)cCejQLiKy~SMuyrl9 z0&nqoIjo2RVyOY`s(17~qR3qBZDO3my$lD-l|4>Ve&8A1EgsN#m%Morls(vp>a;I0lFTbFQ zvv<}a#1(4&ZV+XkJqCOL30cI0b!VV0E>mA8AQpSzyoi^H%VwLF_M1A3 ze-j&jyNzfs^|mg3SZZK%N9RnZeMMiY6X%713s&2Z^~{UOCCPop&f?A@+2@Uc357Av z8O+lyA&UxXTJ@Oz#S5oRj;ZoFS<$R7q{4y4wt>=x%_>u(okNpff9`@vv?jB*W?d=u z1#%|r_J!aUPR6#xhylpXQo;GGt=Z4`sgmniV`r@y9=pjQu5&X&{kz;Qr^=F&hP_{l zJ$MXwY1-8~-w!hZLxA%$*?=VbZ0;9^>F5u!^tSNZ4D|c~AlS!qTs<&UM$WhqeJKr(9Oe*zi3$IG7GQhy%Tl4702PUoFkF{WF^E4$d1~&U$N#zDGqZ z7chP&rL|XG*!>wee=|1!jUGo-A!99}4+teY`$9Rq6{4c}=DLX*7bWT=2ICro(_yru z+aY>|JgeQ2duEDkeRM|sAnVn-_>E)Cs@X*wwU;cOT@lSHsen0sKZWsgK%msfq|mVi zW|Xi{7$`*vIGO5RSymWh;QT5#!eRkeD6S@sz=YN0A}a{?BwH~kh40B6Ab5CIeEb0V zV`+$xBJMkpeIB>v4+kkR5%-{5L zs?3)H7Z!+GfDkiKBH-}f%0z`r016f1G1!{ZCzsBwgZ*^fj28+85aCG6|0LD3fqY{4 z*~kklS&e$)kdV2P&jfRo=lq5hap$?I4|Zl3QQKEMYJ0BMl4X4a>>svFqBR^do7--i zwjmlYyzZTwKTXH0ck4)ipVk8jjK^cJsi4O7r92z(jUWU6`U2FJT%U?U56)#-`4n%I z1UG7hn4qoxw5t8LdEM#H=G8|ZqMFz9WEViSWc%$bzwP=q6|_$2e@K;2;gY~z+aDXy zl5si{(>qwzU&rRwd%E~=LgXSnHm=bxDa+5B1g{@+8{iqGqowXBASiqC}Qs{PE*%(@iz^8+FUT1}z2gcv(^u*ra}x%Twb zkCP|c_9@WG;*Dk7QSdr?vG1;&PMfs}&V%xGG zMc4tAIH+KNE=DDtU!>7xuUOtbWLe0OlrG7ow|(_lBkmJEe?{>(Q5DQsw|xEchkjie z<&GmQAen+ejwpry$y75w9&eVYC@3f-OiR(N2LtAK*qZ`X6>(g(n_|G|@aTBq*K?1< z%pS_|{96Rt{jrR^5%#vqbWybbQ@sMu?$C_x()=9x_;s(oSi8=1TS>^0mw%)%h!sDC8@HOfWe&sVb3~VLCu{? z`wEkaI8XiG?ekhY%{UcB-#QedXvB1gu|t?Z_WXC<>{Ix)Y%Yrh5HiS~m|ho6XE89) zLx7>XFYCnOY;1^5Xnud;8?filURZ?cw0l*`fzgE@tNio&<;tk zTuJF5O|wJxfzf5^lT(AS7vmEFNqK)e+pyCN-NN#+3~aV|EB zay(_%u{m>!U%WwrQZ|6c52=j5gF>qEcNU4D&Tp|%vE=bR6|91z{j;AU9W&(z^hOno zI1NYGS-lK-K+p>X)yMEdm?9b?+2eZ$Kv@p?cMJq&9&In&q^Z!iycd7}CSwAaj*6%>k(q;R`_zR_>a|zWiOwovziIMip`6P?Uw7@40E)Q5(0r z9U#;pp_~85@`vvbM?Lm9Xx&qaqyyBV?P^UGBteaVG#$K6+tax$^S8^w}Z_P`Dl=KyLEtRCrab1+TZ&2Ub)KTI;!a#P~B zIx$=PE0^lN=dFK5E*Zvd01`!NDy~?FV;*^PAL1eb{z`iPTCQYRxH`0H5J|f;ZLyHso&k~+KykAy9#|Kj+Bm4X;kMiUj*j8nK`(UIFic&?l13mKJG( ze{&;hILRzqLfyn)C=9-9noVYr&dNp2a$QaKa&V4hr)%2Y)!{dDY4I{+IxC;jq4MP)HpAglz>eC=IUnjwUOK?52i@+A=|`WQ9npG5v}Q$-K{ zbLwz)FvqeFoSZa;E(ceNT|B{^Uwrg+M@vqEcNgFOXurpM_z(zDBHk77G5mx z;U-PKp)A@ZxeJfBX8&-Tvh;lHAENRp9H}*>JXH(Y+)_(r8?RceiFE=)LyU8$ekLa( zTvpg276xQ?T22o9pu@vHYIOKV=6h?Qz3ZPza^|GbY%OOrqrp7 zglw4y>6a?HF$s6fGSV{I^Tjr@M=wA#(kZAQ0I)R&B64(%Ar*o5;{Z?sUQA4EpFiph z0@67E9R?S2L(9LllhH7Y#rGTQ!oUw_ey@jph+=zF`^uTsN z*>2oM+)$;mUsfdhf23~UOfEC%il}<*hDPAIMV81i`gE6XpbU_J9@W<7K(pyk%^hss ztwc0k(-|3*znp`4L3LF6Ke92<`q!wWa2w=E3{WFPh_I$)5aV#%WCkbiurKz+W#Fbq znxL>?u{{9w>`+U{pOcDNhM?jBs>TqClL4{V-_Hv*OVg45?SY+DUgVfd>$7N9`7ozg zTF^jpbqqq8`i81C=r4(g8_Xf&9nEQjE2{w7;_ja_5?@`%R{)jtJiYBxDqF{E6{tP! z!T-W{VSsu69~xGnhC6}VB5LF!U)0PrLkR1e;K+P9G8B%iiT?igN!|{hlo{7MJg$|N zS54FIFzyW9tByS-JMr+spA@??QWyC7 znR*ha7#Rc-{33O4B6a5m?c%j}phjfL-UQH~M|l^$DK(J>Tc+z33-}E506OOWggoyB z<{mb=AK?Nc*uKpIg;S1tr;ls04 z-K~wv=v)Z}^gnNdX^mqsw-VUBIp#=mhxn(uiKo}JyyOWwbkH7zQj=frFLTOmm(#jy z1fQ5)Yw$OzV3)i;dq3ss>f*`j<)HvKiB&Z*YsDjC2Z>%Qn`=-DYwFHy>?HCnfnTh( zoUCeSsy2YcK;oHa&7FR_=eX%IzVwOh4xC}Pe_g$HM&a0QP`x{wWXy@eVj^zY>;WC} z>TF`_4&Ak*{XD$`3zwy28C6;a_@9%n5yJHG*UnGU0Moi?Qb8_x{g31_&#t3c)l%JM z^Q%3h>l=`e0*xV{jdn`{N6!>TZ^mh~7QE+#{Hi(IBz*kvKY6Oo7+9PM+5R{REuWzYf279lqD%@C@A7 z%X&J`rg!dkG``8M{UOz^9hktMCT(G~gzIo56&0xnDfl51`C}^TQ0H%vfp$e5CP`i5 z<;@!;SF;XB6Q6%f;{s2=i7n;h$ItipzYY$Vhk_?5M1xJjy`gAsC((-!j2NE{tqBcD z$cLuvGatij2AogxxBBH6lS^9o1L3ul^r>Q<8H$zc8^ z7Hcp9B{RqX8DEL+8G1p%RLSVo3Lag(1mGjWDsNDO9QR&#^|SV6mX7iq)xM6TS8?VBa$-|5jsW z;geha+1T9U;mcAFB0zT{7(Fa3%}TrM!p&u!laz}YY&#?UA1$HlI;Ar+$3afP(0 z_3@wM`7MsyjotYME5VF(bkNpf{jnpd+&Ic3u$lGOTuzoDT?M^gU~&)WMqL-59d6j{ zcDz*k0#w`R{U6mfY-@c3Ou@L_2OQ}IrojHUDeT01@liUdnN>(VdzPLZ8jc2c~%_;(QxPBl4ssm2M zEb}qao(kEoownz1au{wT@S6niK=2YA@DiY${+bhT$N`RAUKUh9v_MpvSGK#On2}kc4&U9B=$#M1Nj;FUHj-D9w z>Ll`wRII$i=vDW;L$amQR*!1`_CxPXgX)FN@fvT?Vb6(tjDUOuyfl!Uah_AR@*Zlb zp-IRUhW0JmE8&I*I%R^FC%uiq$#GEKrjv~qeUib6tNp86FS*Z8$fj187Y{L1!NN}J zOu!1$5{E_yc0ZprJ4|LA;=$ywb;hkuQ|fr5H&Q;196lvZGCOgVeZ|%7;e4?Xb^`8- zGFuF(6ZRF38d*5JXgfSlemc76T&_p9xw$VS>X|6ix$0?La~N^prb~TNtHiIfduTP8 z7-J<2yBz6pj*{}|INWX|5Vv`q_<>=ykIlX>ge9OR4ox7^>w?r~0lzcxu0dRaR}G;W z?h{4K^gxf0lc)Nu0rsfS@QF8O$fp&7-1z< z`(4T{HDU7fe7BkazK0$IvtFNWk_`78I9whw&<`xEO}dtM$Pm2*B+GDGy~(t@Pt87g zImIb_ZfAXXzPfxs`zul}?LMNXN`JpXiX>=;_>o&L-P~`y(#bR~`M)L;{_LlyXWQ?8-FN26O{(zc zSorE)%{moe2(}AEwF(@Y{OjL;y}$kJ`@jF*@!pvu^1$5#{--joz5n~}``>eYpR49i zd${kvQr-LSiTA^wy|zu+_8*u4ZtwH=_uVN_Vf^=2_P(-C#`bS3LFXWCWMBDZYd*)q z*YCCoI%TlgFxFTfi*U+1aqIa#t-p23$vxBaEw}bOK4r6C>14tE_h`OJ5}B_8jQNG@N%Tu{id@Z`C3>phI_e80~c*Kc_4_Q8*J@5>MJ{i;iU|NN_+ z?%~?~#vp-tUuskL-E%(n`+oMneQ$s7XL^5JqJ7!@^H67XOFYhcVEf?7mu0FiyKhbF zzI{n{uDH_*-aTx8l#cx){qHW-4F&AW&$CBOt=ju^N389BrxOA9->;eH z`f_6X?1p-VT2O8|2~3;ylfP?Tcz=4%{1nMozm*$+Ic;;}?uKqBj`Ah1KUSZg{_1z^ z)35V-zWzP;3dsHU5}a>(zV5$X^UW6+;(3ausZZNe_pH5M16oh}+lOOeAjiVIUzMc~ zDiXY^zH1*i`trFrv;O-Bf3yyCA9!qdEPZ=UzoA=#LBY9m=h**o&yjFiAs(b{F`wg4 zx%oN&HANS`Td&SN{r?No%F2ntKv#a!yId>plrgg|{?h&5iyKw~W3Kl8aS8nn!)<+r z+gR)7G{eVH(&W+URGA;S~+F%K6x%3X0u6NxBR{G>&0hGSohlV z(&~cnDelXD%ULM?z4!Q1J>Qq={r~rUUwUg-OK$j;@74dG{{A=Xi|LY%EBTMM)m-0u zZ~FXw->c>~?prPt|NgY||NQIMR4dNjkFJde9@W&RdprML;Qe6F^*`v#S3e6^-eBB~L\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf_sampled\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"gp_trainset.pkl\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/lib/python3.9/site-packages/pandas/io/pickle.py\u001b[0m in \u001b[0;36mread_pickle\u001b[0;34m(filepath_or_buffer, compression, storage_options)\u001b[0m\n\u001b[1;32m 183\u001b[0m \"\"\"\n\u001b[1;32m 184\u001b[0m \u001b[0mexcs_to_catch\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mAttributeError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mModuleNotFoundError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 185\u001b[0;31m with get_handle(\n\u001b[0m\u001b[1;32m 186\u001b[0m \u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python3.9/site-packages/pandas/io/common.py\u001b[0m in \u001b[0;36mget_handle\u001b[0;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[1;32m 649\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 650\u001b[0m \u001b[0;31m# Binary mode\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 651\u001b[0;31m \u001b[0mhandle\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mioargs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 652\u001b[0m \u001b[0mhandles\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhandle\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 653\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'gp_trainset.pkl'" + ] + } + ], "source": [ "df_sampled = pd.read_pickle(\"gp_trainset.pkl\")" ] @@ -1865,7 +1879,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.2" + "version": "3.9.3" } }, "nbformat": 4, diff --git a/Notebooks/41_casadi_gp_test.ipynb b/Notebooks/41_casadi_gp_test.ipynb index 78952f6..b4e2a3c 100644 --- a/Notebooks/41_casadi_gp_test.ipynb +++ b/Notebooks/41_casadi_gp_test.ipynb @@ -90,9 +90,9 @@ "metadata": {}, "outputs": [], "source": [ - "X = np.linspace(-25, 25, num = size)\n", + "X = np.linspace(-2, 2, num = size)\n", "# x^4 + 3*sin(x)\n", - "Y =3 * np.sin(X)" + "Y =3 * X ** 2" ] }, { @@ -113,7 +113,7 @@ "metadata": {}, "outputs": [], "source": [ - "n_sampl = 50" + "n_sampl = 15" ] }, { @@ -135,7 +135,7 @@ "Y_sampled = df_sampled['Y'].to_numpy().reshape(-1, 1)\n", "\n", "# Add noise to the output\n", - "mean, var = 0, 0.25\n", + "mean, var = 0, 0.5\n", "noise = np.random.normal(mean, var, size = Y_sampled.shape)\n", "\n", "Y_sampled = Y_sampled + noise" @@ -148,7 +148,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIAAAAFlCAYAAACTGZPMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC2sklEQVR4nOzdd5xk2Vkf/N+pnKtDVedQ1d2T087s7GyclbQIkBAsAiSSLATC5nXAxraMwZLDa4PAAYF5bWQQ2GgBYYwkZK1AQmlX2tk4Ozu7k0OHqs7dFbq7Yle89/3j1q3ume2e6e66+T7fz0efkVazXWe35txz7nOe5zyM53kQQgghhBBCCCGEEOOyqD0AQgghhBBCCCGEECIvCgARQgghhBBCCCGEGBwFgAghhBBCCCGEEEIMjgJAhBBCCCGEEEIIIQZHASBCCCGEEEIIIYQQg6MAECGEEEIIIYQQQojB2dT40FAoxEciETU+mhBCCCGEEEIIIcSQ3njjjRTP8+Gt/j9VAkCRSAQXLlxQ46MJIYQQQgghhBBCDIkxNr3d/0clYIQQQgghhBBCCCEGRwEgQgghhBBCCCGEEIOjABAhhBBCCCGEEEKIwVEAiBBCCCGEEEIIIcTgKABECCGEEEIIIYQQYnAUACKEEEIIIYQQQggxOAoAEUIIIYQQQgghhBgcBYAIIYQQQgghhBBCDI4CQIQQQgghhBBCCCEGRwEgQgghhBBCCCGEEIOjABAhhBCiZ7PngXOfEn4lhBBCCCFkGza1B0AIIYSQPZo9DzzzNFCvAFYH8JFngcEzao+KEEIIIYRoEGUAEUIIIXoVPycEf/i68Gv8nNojIoQQQgghGkUBIEIIIUSvImeFzB9mFX6NnFV7RIQQQgghRKOoBIwQQgjRq8EzQtlX/JwQ/KHyL0IIIYQQsg0KABFCCCF6NniGAj+EEEIIIeS+qASMEEIIIYQQQgghxOAoAEQIIYQQQgghhBBicBQAIoQQQgghhBBCCDE4CgARQgghhBBCCCGEGBwFgAghhBBCCCGEEEIMruUAEGPMxRg7zxi7xBi7xhj791IMjBBCCCGEEEIIIYRIQ4o28GUAT/E8n2eM2QG8yBj7Gs/zr0rwswkhhBBCCCGEEEJIi1oOAPE8zwPIN/6nvfEfvtWfS97uzZlVXJxZQ9jvxJG+AEbDPrWHRBRSrtXxresJxFJ5nN0XxrH+ICwWpvawiAI4jsfVhQyuL2SRL9fwY6cG0O51qD0sopDVQgXfvL4MHjzaPA68+1A3rDT3TePmUhbfvLaMkbAPpyPt6A641B4SUUi2VMVrUyu4vpDF2f0hnBxsA2M0982A53m8PJnGwto6StU6vu9ID819E8mXa/jSxTnYrBYMd3pwergDDhvd2kKkw4T4TYs/hDErgDcAjAH4PZ7nf2WL3/MLAH4BAIaGhh6cnp5u+XPNIpkr4ze/egN/9eZ886/ZLAyfeN8h/OxjEdoQGNwX35jDr//NdawWq82/Fg158dmfewjDnV4VR0bkVijX8I//95t47mai+dd8Thv+7tko/vFT+ygQYHBfv7aET3zpKlL5cvOvnYl24Hd+4gH0t7lVHBmR21KmhI9/6codc58x4F+/7zB+/omoiiMjSvjyW/P45S9cRqXGNf/aiYEgPvXjJzDW5VdxZERumfUqfuULl/G315aaf83vtOFfvucAPvTwMB3+GRjP8/g/r8/it75x+451/+RQG/7gww+iy09BQLJzjLE3eJ4/veX/J0UAaNMHtQH4EoB/zPP81e1+3+nTp/kLFy5I9rlGVijX8P7fewnT6SL+3pNR/MyjEawWK/itr9/Gt24s44MPDuA/f+A4BYEM6iuXFvBP/uJNPDTcgV98agxH+gL4zq0kfv1vrsNlt+J//71HEAlREMiIErkSfu6PX8eNxSx+9b0H8f1HerBereN3vzWOr11dwv/zjhH8q/ceUnuYRCb/88UYfu2vr+NwbwC//iNH0R1w4aWJFP7DV66DMeCL/+Ax7O+mF0EjypWq+ODvv4LZlSL+/jtG8ZNnhrCwto5Pf2cCX7+2jL//jlH8ynsO0LpvUH9xfgb/6ktX8NBwB/7Z9+7HwR4//vryAn732+NwWC344j98DL1BCgAb0XK2hA/8/stYXCvhX77nAN57tBfFSh2/9tfX8eJECj//RBT/5gcPqz1MIpM/fSWOf/Pla3go0o5ffe8hdAeceHkijX/77FW0exx45qNnaN0nO6ZYAKjxYf8OQIHn+d/a7vdQAGhneJ7HL/75m/ja1UX8yUcfxhP7Qs3/j+N4/NY3buHT35nEb/7oMfzUmSEVR0rkcG48iZ/749dxaqgdz3z0DNwOa/P/u7GYxYf+6DU4bRb87S89iaDHruJIidR4nseH/+d5vDG9ik9/6BTedbDrjv/v33z5Kv7s1Rn8lw8cxwdPD6o4UiKHt2bX8IH/8TLedbALn/7QKditG6nf0+kCfux/vIyQz4n/+48eh8tuvcdPInpTrXP4+Wcu4KWJFP74Zx/Ck/vDzf+vzvH4t1++is+9NoNfe/9RfPiRYRVHSuTw/M0Efu6zr+OdB8L4Hx968I51/9pCBj/xB6+ir82Fz//9xxB007pvJBzH4yN/fB4X4qv4s7/7MB4cbm/+fzzP4989ew1/8so0/seHTuG9x3pVHCmRwyuTaXz4f76Gdx4I4zMfPn1HptfV+Qx+9o9fR4fXjq/84yfgtNG6T+7vXgEgKbqAhRuZP2CMuQG8G8DNVn8uAf74pTj+5soifuU9B+8I/gCAxcLwL77vAB4b7cSv//V1zK4UVRolkUOpWsevfvEKoiEv/uhnT9+xCQSAQ70BfPbnHsJytoRPffOWSqMkcvnCG3N4cSKFj7/v0B3BHwBgjOHf/dARPDEWwse/dAUTiZxKoyRyyKxX8Yt/fhHdARd+6wMn7gj+AMBwpxe/9cETuLmUw3/8Gi21RvNH52J44XYSn3z/0TuCPwBgtTD8+vuP4vGxTvznr93Ecrak0iiJHNYrdfybL1/Fvi4f/uDDD75t3T/SF8RnfuZBTCYL+K2v07pvNH/yShznxlP4xPsO3RH8AYR1/1+/7zBODLbhl79wGfFUQaVREjmk82X8oz+/iEjIi9/5iQfeVuZ3tD+I//yBY7i9nMd/f25CpVESI5HiRqleAM8zxi4DeB3AN3me/2sJfq6prRUr+J1v3sa7DoTxC0+ObPl7LBaG//LBE2CM4Ze/cAlSZ3MR9fzRuSnMr63jP/zwUQRcW5/yHR9ow4cfGcafvTqNq/MZhUdI5JLIlfBrf30dZyId+NA2mX12qwW/+5MPwGmz4r/Qi4Ch/O63xrGYKeG//fTJbTP73nmgCx99PIrPvhzHhfiKwiMkclkpVPDp5yfwPQe78JPbzH3GGH79/cdQrnP491+5pvAIiZz+23PjmFtdx6+//+i2J/yPjYbwoYeH8OfnZyj4byCzK0X85tdu4qmDXfjQw1vPfYfNgt/76ZNgAH7zazeUHSCR1ae/M4m1YgWf/tAp+LfZ8z91sBs/dmoAn/7OJO35SctaDgDxPH+Z5/mTPM8f53n+KM/z/0GKgZndH56bQr5Sw6+89+A96/z729z4lfccwKtTK3hxIqXgCIlclrMlfPo7k3jPkR48Otp5z9/7z7/vANo9DvzbL1+lAKBB/M43b6NU4/Aff+zYPS977PQ58QtPjuDr15ZxcWZVwRESuSRyJXzutWn8yMl+nBpqv+fv/eXvP4CQz4Hf/fa4QqMjcvtvz42jUKnhV9978J6/Lxry4p88NYavXlnCi+O07hvBVDKPz7wwhR87NYCHR+697v/S9+yDx27Fb36VMgCN4tPfmQTPA7/xI8fuuecfaPfgo09E8fVryxQEMIiFtXX86avT+LFTA/e93+ff/uBhtHvs+M908EdaRD3lNCiVL+OPX4rjB4/34WBPYPvfOHseOPcp/ETvIrr8Tvz+dyeVGySRze9+exy1Oo+P/8D9L/gNuu345e8/gIszaxQANIBkrowvXpzHBx8cwEjYd9/f//NPRBHyOfEfv3aTAoAG8JnvTqHG8fjFd43d9/e6HVb83bMjODeewluza/IPjshqJl3En706jZ94aBD7dnDJ5997cgRdfif+4AVa943gD8/FYLWw+wb/ACH4/4tPjeHbNxN4eZLWfb1bypTwxTfm8MHTA+gJ3r/L00efiCLgsuG/fouC/0bw/317HOCBX3r3vvv+3qDHjo8+EcULt5O4vpBVYHTEqCgApEF/8N1JlKp1/NN7PQxmzwPPPA0890k4/uxH8PHjWbw0kcYlehHQtUyxir+6OIcfPdWPoU7Pjv6eHznVj5DPgc++FJd3cER2f/pKXLgE9oloM8CL2fPb/n6v04Z/8j1jOB9bwfkYlQLpWTJXxp+9No0ffqBvx539/s4jwwi67fjvz9GLgN79r5diYGD4p+/ev6Pf77RZ8ZHHIjg3nsKtJSoF0rPVQqW57of9zh39PR95LIKQz4H/9WJc3sER2f3RuSnUeR7/z5OjO/r9Qbcdf/fsCL51YxlX5igLSM9mV4r4/Btz+OmHhzDQvrM9/4ceHobXYcVnKPhPWkABII0pVev4ywtz+IFjvRi9VwZA/BxQrwB8HahX8F7fJAIuG2UB6dwXLs6hVOXw4Ud33t3FabPipx8exnO3EnQxoI6tV+r4k1en8e5D3RgpXW8GePHM0/cMAn3wwUH4XTb87/Mzwl/YQeCIaM+fvhJHucbtKPtH5HPa8NHHo/jWjQRuLtFpoF6tV+r44sU5vOdoD7oD988AEP30mSG47Bb8rxdjMo6OyO3Pz8+gXOPws49Fd/z3uOxW/PjpQTx3cxnza+syjo7IabVQwedem8HTJ/p2fOgHAD/3eAR+pw1//BLNfT37ywuz4Hh+27tetxJ02/HTDw/hK5cXMbdKDYDI3lAASGO+fm0JmfXq/du6R84CVgfArIDVAefYO/DhR4fxt9eWsECbAV3iOB5/9uo0Tg214UhfcFd/7995eAhWxvAnr0zLNDoity9cnMNasSpsBO4K8CJ+btu/z+2w4kdO9uOrV5eQG39px4Ejoh0cx+MLb8zhyX3hHZX+bfYzjw7DbmX4/IU5mUZH5PaVywvIlWrbXv66nXavAx94cABfemseyVxZptEROVVqHP7klTieGAvhQM/9S/82+6kzQ+AB/IUY/Ce686U357Fere8qAAAAfpcdP/RAH756dRG5UlWm0RE51eoc/vLCLN6xP4y+Nveu/t6PPhEFA/DMy3FZxkaMjwJAGvOXF2Yx2OHGo/e5BBCDZ4CPPAs89Qnh18Ez+PHTg+B54NlLC8oMlkjqxYkUYqkCfubRyK7/3q6AC+873ovPX5hFoVyTfnBEdl94Yw6HegM4Pdz+tgAvImfv+ff+5ENDqNQ43Hr1azsOHBHteGUqjYVMCR94cGDXf2+714GnDnbhy2/No1rnZBgdkdufvzaDsS4fzkQ7dv33/tzjUVRqHP7qIgUA9eib15exnC3j5x6P7PrvHezw4F0HuvAXr8/S3NepL705jyN9ARzqvcd9n9v48dODKFU5/PXlRRlGRuT23dtJLGfL+MmHdhf4B4DeoLux7i+gztH9j2T3KACkIbMrRbw0kcYHHxy8Z/efpsEzwNmPCb8CGO704tRQG/7vm/Myj5TI4S9en0Gn14H3HuvZ09//U2eGkCvX8O2bCYlHRuQWTxVwaXYNP3KyT+gAskWA914O9wVwYrANf7I4CH4XgSOiDV94Yw5+lw3fe7h7T3//j50aQCpfwQu3kxKPjMjt+kIWb82u4afPDN2z+892RsM+nBgI4iuX6eBHj569NI+w34l3Huja09//dx4ZQjJXxjevL0s8MiK38eUcrsxn8KOndh/4B4ATA0Hs6/Lh8xdmJR4ZUcJfvD6LkM+B7zm0t7n//pP9SOTKeGUyLfHIiBlQAEhDPn9hFowBP7aHU2DRj5zsx82lHG4s0n0QelKs1PDczQTed7wXTpt1Tz/joUgHuvxO/A29COjOs5cWwBjwQyf6Nv7iXQHe+/mphwbx7MoAxt/zuR0Hjoj6cqUqvnZ1EU+f6IPLvre5/84DXejwOvBFygLRnS+9OQe7leFHT/Xv+Wf80Ik+XJ3PYiqZl3BkRG65UhXP30rifcd6Yd3Jod8W3rG/C2G/E39N677u/NWb87BaGJ7evO7vAmMMP356EBdn1jCRoIvg9SSRK+G5mwn82IMDsFv39ir+1MEu+J02/N+36NCf7B4FgDSC53k8e2kBj4+G0L/LWtDN3ne8DzYLw5coC0hXnr+ZRKnK4b1He/f8M6wWhh841ovnbyWpJlxHeJ7H/31rHmciHegN7n3uv/doL2wWhr9K9u8qcETU9dUriyhVuT2Vf4kcNguePtGHb11PIFOkua8XPM/jb68t4fGxENo8jj3/nB883gfGgK9colIQPfnWjWVUahx+6ERr6/73H+nG8zeTWK/UJRwdkRPH8fi/b87jyX2hHXd+28r7T/bDamH4q4u059eTr19bRp3j8aMn977uu+xWvOdoD/726hJKVZr7ZHcoAKQR44k84uki3nN0b+U/og6vA+88EMaX35qnulAd+erVRYR8jj3dAbHZDx7vRaXG4ds3qAxML64tZDGVLOCHH9h7BgAABD12PDraia9fWwLP09zXi7+9uoShDg8eGGxr6ef86Kl+VOocvn59SZqBEdldX8xidmUd721x3e8JunAm0oFnL83T3NeRr1xaRH+bGycH21v6Oe892ov1ah3fvU3rvl6cj69gMVPCj+yx/EsU9jvxcLQD36ASQF35xrUlRDo92N+9u6YPd3v/yX7kyzXa85NdowCQRnzjmrBp3+sdEJv90Ik+LGfLuDS31vLPIvJbr9Tx/M0Evv9Iz97SwDe1/T411I7eoIvSwXXkK5cXYLOwll8CAeD7j/QglipgPEGlIHpQKNfw0mQa33u4e0/3v2x2rD+InoAL375BLwJ68bdXl2BhwLsPtb7uP/1AHyaTBVyn8m9dyBSrODeexPuO9+7szsd7eDjagXaPHV+9QsFfvfjW9WU4rBZ8z8G93f+y2fce7sZEIo9YqiDByIjcMutVvDKZxvcf6Wl53X9kpBNhvxN/c4X2/GR3KACkEd+8vowHBtvQHXC1/LPesT8MCwOep8uAdeG7txMoVup437E9pIHPnr+j7bdl/nX8wLFevHA7hSyVgenCt28k8MhIJ9q9ey8BEX3f4W4wBnz9Kr0I6MG58RQqNU6SAABjDN9zqAvnxlOUDq4Tf3t1CQ9HO9Hp23sJiOi9R3thYcA3rlEAUA++eWMZ1TqPHzy+x3W/cegDADarBd93uAfP3UygXKO5rwffvpnAI6Od8DptLf8s8eD4W5QFpAvfuZVAjePxfUdaX/etFobvOdiFc7dT1AmQ7AoFgDRgMbOOS3MZSR4GANDmceD0cAelBOrE315dQod3j+Vf8XNva/v9nqM9qNQ5vDSekn6wRFKzK0VMJPJ4lwSngADQFXDh1FA7/vYaBYD04Fs3lhF023E60loJiOjdh7pRrNTx6hR1BdG6iUQe44l8y2Xfog6vAycG2/Ad6gSnC8/fSqDL78Sx/uDu/sa7Dn3EINB7j/UgX67h3G1a97VuKilk67x7j92f7jbQ7sGh3gB1gtOJb1xbRtjvbLn0U/Sug13IlWt4Pb4iyc8j5kABIA0Qo/bfJ0H5l+hdB7twfTGLpUxJsp9JpMdxPF4YT+GdB8Kw7aUTQOSs0O57U9vvk4Nt8Lts+C69CGie+LL2rgNhyX7m9x/pxrWFLGZXipL9TCK9OsfjuZsJvOtAeM9dQO726Ggn3HYrBf91QHxZk+rgBwDeub8Ll+fWkM6XJfuZRHq1OocXx1N4x/7w7ktAtjj0AYDHRkPwOW147hbNfa17rpGd/64D0gSAAOB7D3XhwvQKVgoVyX4mkV6pWsd3biXwvYe7Wy79FD0+FoLdyvCdW7TnJztHASAN+OaNBKIhL0bDrV0Gttn3NE4WnqfNgKZdW8hipVDBk/v2GAAYPCO0+97U9ttmteCJsRC+eztJF4Jq3HduJjDc6UE05JXsZ35Po5zohXHaDGjZmzOrWClU8G4JA/8uuxVP7Avh2zeWae5r3LnxJA72+Fvq/He3dx0Mg+dp7mvdpbk1ZNareOdeAgBbHPoAQifAR0Y68SJl/mret28kcKDbj8EOj2Q/83sP94DjN4JLRJtei62gUKnjeyUo+xb5nDY8HO2k757sCgWAVFaq1vHaVBrvPLCHk6B72NflQ3+bm06CNU7cqD+xL7T3HzJ4Rmj7DTTvBXjH/jAWMyW6DFjDStU6XppM4V0HuiSd+yMhL/qCLrw0QS8CWvbtmwnYLAxP7pcu+wsA3n2oCwuZEm4s5iT9uUQ665U6LsRXcbaV5/4WjvYFEfI56CRY4757KwkLA54Y28P3v8Whj+jJ/SHMrBQxnabLgLUqs17F6/GV5iGtVI72B9AdcOI7dOiraS9NpOCwWvDwSGsdf+/2roNdmEjkKfOb7BgFgFR2cWYV5RqHx0el3QiKF4K+NEEXgmrZC7eTONIXQKjVS0Dvuhfge3zTAISNJtGm12IrKFU5vFPC8i9AmPuPj4Xw0kQadY6yQLTq5YkUTg21I+CyS/pzxbKCc5QFok2z57H4N5/EUe4mnthr5uc2LBaGJ/eF8cLtJM19DfvO7SRODbUj6Nnj3BcPfTYFf4CNgNILlAWkWS9NpFDjeDwl0b1/IsYYHh8N4ZXJNDia+5r14ngKp4bb4HG0fvn3ZuKfJ6r6IDtFASCVvTyRhtXCJI8GA8CT+8JYr9bx1uya5D+btC5fruGN6VWcleIl4K57AcLp89jX5aNSAA17/mYCzkbavtSe2BdCZr2Kq/MZyX82aV1mvYor8xk8Oir9d98VcGE07MUrdBG09jQC9ZFLv4PPOX4Dj9gmJP+IdxwIY7VYxeW5Ncl/NmldKl/G5bkM3iFx5h8ARENe9Le5cY7u/9OslydT8DqsODHYJvnPfnS0E+lCBbcTlP2pRel8GdcXs3vL/LuPaMiL4U4PHfqSHaMAkMpenEjhxEAQfolPgQHgzEgHLAx4ZZJeBLTo1ck0ahyPJ/dLsBhscS/AO/aH8drUCoqVWus/n0ju1ak0zkQ74LJbJf/Zjzc2GC9SGZgmnY+tgOOBx2QIAAHChbDnYyvUFlZrGoF6Czg4WA3O+Zcl/4gn94XBGOguGI0Sv5d3SJz5CQhZIE/uF7JAaO5r0yuTaTwU7ZDs4v/NxHX/pQna82vRy413scdlCAABwn7ifHyFsj/JjlAASEXZknBKJ9fDIOCy42h/kFoCa9QL40m47VY8OCxBK8gt7gU4uz+MSp3Dhfhq6z+fSGqlUMHNpZws2T8AEPI5cag3QC+BGvXyZAouuwUPDLXJ8vMfG+1EsVLH5TnKANOUyFnwVjtqvAWcxd68wFdK7V4HDnT78VqMWgJr0WuxNAIuG4707bL9+w6d3RdGrlzDJcr81pxEtoTJZAGPyrTu97W5EQ158TId/GjSy5Mp+F02HOuXZ+4/MtKJXKmGG4tZWX4+MRYKAKnotSnxFFieABAgPBDenFmje4A0SDwJctokygC5616AB4fbYbUwvB6nFwGtOd94OXs4Kn3pp+iJsU68Mb2K9QrNfa15eSKNhyISzv27PNx4wXhlkl4ENGXwDF549H/ht2sfxMz7/uJtd7hI5ZERYe5TFoj2vDa1gjPRDlglagF9t8dGO4UMMAoCaI5YlitH6a/o0dFOvBZbQY3mvua8OJHCoyOdsMmQ/QUAD0eFP1d06E92ggJAKnppQjgFPjXcJttnPDLSgUqdw8UZygLRktVCBeOJvKwBAJ/ThiN9AToJ1qDXYmm47BYcH2iT7TMeHwsJGWDT9P1rSTJXxq3lnKwvAR1eBw71BugeIA362togPuf4AKIn3yXbZzwc7cB6lTLAtCaRK2EqVcAZGdf9No8DB3sCdPCjQa9OpeF3ypf9BQCPj4aQL9dwme7/05SZdBGzK+utdfy9j57sZXwi8DUkrp+T7TOIcVAASEWvTsl7CgwAD0WEe4BepXuANEXcnD0UkW8jCABnIh14a5YywLTm1akVPDjcDodNvkfw6cbcf51KADVFPJ2TM/MTAB4d6cSF+CrKNZr7WvJ6fAWnh9thkSkDBEAzwPBajNZ9LREzP89E5Qv+AsCZSDvenFmjDDCNeWUyLWv2F7CRXURlYNryauNZLFfZv9hg4KOVz+GfLf4L1Kdfk+dziGFQAEglmfUqbi3nZA8A+F12HOsP4tUpOg3SktfjK3BYLTg+IN9JECC8CFRqHJ0Ea8hasYKbS9lmuq5cfE4bDvUGcIFOgjXllak0fE4bjvYFZP2cx0Y7Ua5xeHNmTdbPITuXzpcxmSzgtMzrfqfPiX1dPrxG676mnI+twOOwyj73T0c6UKzUcX2B7gLRisXMOuLpoqyZn4CQ/Xmwx4/zdPCjKW/EVxF02zEW9snzAY0GA1ZwsPM1JK9+S57PIYZBASCVXJxZBc8Dp6W4APg+HhntxJuzdBeIlpyPr+LEYFCWDlCbiQHG83QSrBnnYyvgeXnv/xE91MgAo5Ng7bg4vYqTQ22y3QMgeqjx54sCgNrxxrTwUvZQRP51/0y0AxfidBeIlpyPCZmfcs99MQOMysC0QwzGypYBssmp4Xa8Ob0KjrpBacaFaWHuy5b52egEzDMrqrDhPH9Yns8hhkEBIJVcnF6F1cJwYrBN9s86E+lAtc7j8tya7J9F7q9YqeHafEb27C9goyMMnQZpx2uxFThtFkXm/oPD7ShW6tQVQiNyJSHzU5LOf/cRdNuxr8vXDDoQ9V2YXoXDasFRmbrAbPbwSCcKlTqu09zXhNVG50clAv/dAReGOjwUANKQizOr8DqsONQrb/YXIBws58o13E7kZP8scn+rhQomkwV51/1GJ2D21CfwMfd/wLPpQfk+ixgCBYBUciG+ikO9fnidNtk/6+SQ8NC5SKUAmvDmzBpqHN88oZfbmWgH3qCTYM14Y3oVJwbaZM/+AoDTjUwDugdIG96aXQPPQ5EAECB8zsWZNToJ1ojX4ys4PiB/5icAPBIVsz8pCKAFYjDmYQUyQADh2X8hvgqep7mvBRdnVnFisE3W+39E4vpCwX9tEL8H2Ss+Gp2AXSOP4q1Zmvvk3igApIJqncNbs2s4PaxMAKDD60A05MWb1AlME87HVsCYci+BD0U76CRYI8o14V6GkzJ2/tusN+hGf5sbb1AnME14Y3oVjAEPKJD9BQCnhtqRWa9iKlVQ5PPI9tYrdVydz8h+/4+oK+DCQLub7oDSiDca2V9y3/snOhPpQLpQQYzmvuqKlRpuLOZwakiZPd9Qhwchn4MCQBpxYXoVdqsyFR+AsO6n8hXMra4r8nlEnygApIIbi1msV+uKBQAA4ORQGy7OrFFEWAMuTK/gYE8AAZddkc87NdQGQMg+IOq6tpBFpc7h5KByc/+hSDtep5NgTXhjehUHuv3wKzX3G4HGi/QioLpLc2uo1nlF7v8RPTDYRgc/GvHm7BoO9QVk7fq6mRhopDIw9V2azaDO8c3nsdwYYzg11E7PfY14Y3oFR/qUyfwEhPc9QMg6I2Q7FABSQTMdUMGN4MmhdgwVriDzjf8ktAskquA4HpdnM82gjBL629wI+Zx4i06CVSeexp9U8Ps/HelAMlfGzEpRsc8kb1fneLw1s6Zo4H8k5EPQbaeNoAaIl3Ere/DTjoVMCcvZkmKfSd6uVudwZS6DkwplAADAaNiLdo+dskA0QHz+KnnwczrSjni6iGSurNhnkrcr1+q4NJdRpOGP6EC3Hx6HlbI/yT1RAEgFF6ZX0d/mRm/QrdhnPu6cxOccv4HAK/8JeOZpCgKpZCqVR65cU6wEBBBOgx4YbKMMIA14c0aY+90Bl2KfKb5wUhBAXeOJHHLlmqIBAIuF4eRQG70EasBbsxmMhL1o8zgU+0wx0EwvAuq6vZzHerWuaOCfMaHk5PJcRrHPJFt7c2YVI2Ev2r3KzX1a97Xh6nwWlRqnWOkvANgapaaU/UnuhQJAKniz0QZYScPZi7CjBgs4oF4B4ucU/XwieGtW2IwpGQAChBeBqVQBmWJV0c8ld3pzZg0PKDz393X54LZbcWmWXgTUdHF6DYCyGSAA8OBQO8YTeWTWae6rhed5XJpbwwMDbYp+7uHeAOxWhjdn6UVATeLhi9Lr/omBNtxezqFQrin6uWQDz/O4OLOm2P0/oiN9QTisFgr+q0yc+0pm/QNC9ue1hSxK1bqin0v0gwJACkvmyljIlBTfCFhHnkSdCSEgWB1A5Kyin08El2bX4HPaMBL2Kfq54p+3S3Nrin4u2ZDIljC/tq5oGQAgnAYd7Q/gMn33qro4s4pOrwNDHR5FP/dUI+BEp4HqWcqWkMyVFbsEVOSyW3G4L0jlvyp7c2YVHSrM/RODQXA8cHWegv9qmU4XsVKoKB4AEuZ+AJco81tVl+fW0BNwoUvBrG9AuAi6xvE098m2KACksCvzawCA4wqfBGLwDD5/5PfwX2sfRPlDXxLaBRLFXZpbw7H+oCKtQDc7NhAEY3QRtJrebPy7P6nwRhAQnjfXFrKo1jnFP5sIrsxlcGKwDYwpO/eFzwRlgKlIfAlTqgPUZicbZUA1mvuqeWt2DScGgorPfXGfSQc/6hGz72S5AHr2PHDuU9te6XB8IIir8xlwHDWAUMuVuQyOqfHcp/Jfch8UAFLYpdkMLAw40hdQ/LO7Dp/Ff6/9MK5aDij+2QQoVeu4sZhVvAQIAAIuO0bDPgoAqejNmTXYrUyVuX98IIhyjcOtpZzin02ENsDjiRyO9Su/EfQ5bRgJeXGFTgJVc2kuA7uV4VCv8nP/5FAb1qt13F7OK/7ZBMiVqphI5vGAghcAi0I+Jwba3RT8VdHluQzcdiv2dfml/cGz54X7PJ/75Lb3eh4faEOhUsdUiua+GjLrVUylCjihQgAo5HNiqMND5b9kWxQAUtiV+QzGunzwOm2Kf7Z4GnSFLgVUxY3FLKp1HieUzv5qEC+Cpnbg6rg0u4ZDvQHFWoFuJpYA0oWg6ri+kAXHq5MBAgjPfjH7lCjv0uwaDvaoM/fFzkP0IqCOy3MZ8DxUOfgBhAxAygBSz9X5DI70BaTP+o6fE+7z5Ovb3usprje07qtDLL9SvOKj4dhAkL57si0KACmI53lcnlvDsf42VT6/O+BEyOfElfmsKp9vdpdUughS9MBgG1YKFcyurKvy+WbG8zyuLmRUyQABgKEOD9o8droHSCXiJkyt7/9ofxDL2TIS1A5ccRzHN8r/1PnuBzvcaPfY6eBHJc0LoNU6+Blow9zqOlJ5ageutDrH4+p8FkfleO5Hzgr3eTLrtvd6joZ98DisFARQiRh4Vevg51h/EHOr61gtVFT5fKJtFABS0GKmhFS+otpGkDGGY/0BuhRMJW/NrqE74ERPUNnL4ERi4IlKQZQ3s1JErlSTZyO4A8LcD+ISbQRVcWU+g+6AU/GLIEXiBpTmvvKmUgXkyjXVToEZYzjaH8TVBfru1XBtIYPhTg+CHrsqn7+RBbKmyueb2VQyj/VqXZ7A/+AZ4CPPAk99Qvh1i3s9rRaGo31B+u5VcnlWmPttHocqny/+uaNnP9lKywEgxtggY+x5xtgNxtg1xtgvSTEwIxIfwmqdAoufPZ7IoVihtqBKuzyfUe0lAAD2dftgtzJaDFQgvnirOffFlsDrFWoLqjQ1Mz8BoR24hVEpgBrEdV+tzE9AaAl9aymHSo0uglba1fksjvap99w/2h+EhYE6walAfN7KlgEyeAY4+7F7NnU5NhDEtYUsXQKvgstza6ru+cXnDh38kK1IkQFUA/AxnucPAXgEwD9ijB2W4OcazqW5DGwWdS6CFB3tF9qC3likMjAlFco1xFIFVTeCTpsV+7v9lAGmgqvzWditDPu6faqN4fhAEHWOxzUKACoqVxIuglQrDRwAvE4bRsM+2giq4PJcBh6HFaNh9eb+0f4AqnUet5fpEnglZYpVzKwUcaRfvT2fOPevLtCeT2lX5oW5P6Li3BcbQIwn6CJoJSVzZSxkSqpcAC0KeuwY7HDTnp9sqeUAEM/zizzPX2z89xyAGwD6W/25RnRlLoMDPX5VLoIUie0I6T4AZd1YzILn1en+ttmRvgCuLWTpImiFXZ0X5r7Tpt7cF0+iaDOgLGG+QZVWsJsdGwjiynyG5r7Cri1kcLhXhktgd0E8eKC5r4BNrbmvLQr/vtU8+AHEdZ++e6VdkesC6F0Qs46pDExZYtMFNTOAAOH7p4MfshVJ7wBijEUAnATwmpQ/1wh4nseV+Yyqp8AA0BNwIeRz0EXQCrvWOH072h+8Y4OotKP9QawUKliiy2AVI14ArfZLQHfAiU6vA9cp+09RV1S+AFp0vD+IZK6M5SxdBqsUjuNxYzGHwyoH/oc6PPA7bVT+K7e7WnMnrr8AQAsHP8Il8HQRtHLqHI/rCzJdAL0LkU4v/C4b3f+nsGuNdyy1n/1H+4OYXVlHplhVdRxEeyQLADHGfAC+COCf8jz/tjcMxtgvMMYuMMYuJJNJqT5WNxYyJWTWqzis8ktg80JIiggr6tpCBp1eB7ozl+7YICodBDrSPAmmIIBS5lbXsVasqr4RZIzhcCMDjCjnynwGfUEXQj6nquM4RhdBK25mpYh8uaZ6AMBiEeY+Pfdldldrbuv0y+gLutCp9Ny/65BJ/PNHz37lTMp5AfQuWCwMR/oCuE7fvaKuL2YR6fTA57SpOg66CJpsR5IAEGPMDiH48zme5/9qq9/D8/xneJ4/zfP86XA4LMXH6or48D2s4v0/ouONi6DpMljlXFvI4nBfAGz6xTs2iIifU3Qch3r9sDAqBVCSmHqv9kYQEE6jxpfzdBmsgq4vZlUP/APA4d4gzX2FiS/cRzTw/R/rD+LGIl0GK6u7WnN/vTiGI0o/9+/KQsLs+WYWApWBKeeyRjI/AeHZf3MpizpH5b9KubaQ1cRzny6CJtuRogsYA/A/Adzgef63Wx+SMV1fyIIx4GCPX+2hbFwEvUQnAkqo1DjcXs4Ji8FdG0REzio6Fo/DhpGwj04CFXRlXrj8/YAG5v7h3gAqdQ4TdCGkIkrVOqaSeRzuVf+7dzusiIS81ABAQdcWhLmv5uXvoqP9wmWwE0ma+7LZ1Jq7+FNfwt+sDipf+ntXFhLi59DmcaC/zU3rvoKuL2ThsltUvQBadLgvgFKVQzxdUHsoppAtCZe/q13+BQDtXmHuUwCI3E2KDKDHAXwYwFOMsbca//kBCX6uoVxfzCDa6YVX5XRAAM0uZPQioIzbyzlU6zyO9gfu2CDiI8/es32nXI7ShZCKujqfxViXT9XL30XiiRTdA6SMW0s5cLz69wCIDvcG6LtX0PVFYe6refm76GijExWVgcms0Zr7mvUAeH7j37titjlkojIgZd1YzOJAj7oXQIsONQ4g6PtXxs1FoduiFio+AGHu36DvntxFii5gL/I8z3ieP87z/AON/3xVisEZyfXFLA5p5CVgoN0Nv8tGASCFXL+7DKCxQVQj+AMIJ8GLmRJdCKmQG4tZzQQAoiEv3HYrBQAVIgZbDveqnwoOCMH/udV1ZNbpQkglaKUMAACiIR/cdiuVACpE/Pes+N1v2xwyHekLIpYqIF+uKTseE+J5HjeWsprI/ASAfV1+2K2Mgv8Kud7YX2ll33eoN4BYuoBiheY+2SBpFzCytcx6FbMr65qJBjPGcKgngBuNKDWR17WFDHxOG4Y7PGoPBQA23QdAmwG5pfNlJHJlzcx96/zr+Hjgq6jGX1V7KKZwYzELn9OGgXa32kMBsHEieZNeBGSXyJWQzJVVvwBaZLUw7O/x49YSrftKuLGYRYfXgS6/Cpe/b3HIJP45pIM/+S1lS1grVpvZ9mpz2CwY6/JTBpBCri1kEfKpNPe3cKg3AJ4HPfvJHSgApABxs62VaDAAHOz14+ZiFhxdCie7awtZ4fJlDaQCAxsvgbfoDijZ3WwsuAd7NDD3G5eD/nThT/GJ9K+Cn3lN7REZ3nWtzX16CVTMRuanBuZ+w6EeP24uZcHztO7L7eZSDod6/RCuyVTfkUYp2jXKAJOd+HzVSgAIoPJfJV1fzOJQb0Azc7958EMBILIJBYAUID50j2hoMTjUG0ChUsfsalHtoRgaz/O4uZTTTAYIALR5HOgJuJp1ykQ+GxtBDaSCNy4HtYKDna8hc+N5tUdkaBzHN14CtTP3u/xOdHgdlP2pADHDUiul34Cw7q8Wq1jOUvmvnOocj1tLOW0E/ht6Ai50eB0UBFCA+HzVQtMX0eG+AJK5MpI5mvtyqtQ4jC/nNXXgP9DuhtdhpYMfcgcKACngeiMdMKyRdEBg80XQ9CIgp7nVdeTLNRzQ0EYQEDLAbtBpgOxuLOYQ9jvR6dPA3G9cDsozK6qw4abruNojMrTZ1SLy5Zqmgr+MMRzq9dNLoAJuLGYx2OFGwGVXeyhN4gspdQCVVzxdQLnGaSoAwBjDQSoBVMT1xtz3a2jui4dQFASQ12Qyj0qd09S6b7EwHOwN0HdP7kABIAVoLR0QAA50+2FhtBjIrVkCpIUMkE0O9gQwkcihWufUHoqh3VzKaicDpHE5aO0dH8eHqh/HK5UxtUdkaFosAwCEdPBbyznUaO7L6tZSDge6tfXdixkplP0pL/Hfr9bm/oEeP24v51Gn0n9Z3VjI4pDGDv3EgAQF/+W1dPUF/EPrl/GgZVztodzhUK8fNxdzVP5LmigAJLNavZEOqLGNgNthRSTkpQCQzMR7dvZ3aysAdKjXj2qdx1SyoPZQDKvamPuHNHQKjMEzsL/zX2Cl/QHcXqaXQDldX8jCwoSXLi051BtApcYhlqK5L5dyrY6pVEFTGSAAEPTY0d/mpnVfZjcWs7BaGMa6fGoP5Q6HegJYr9Yxs0Kl/3IpVmqIpQuaC/61eRzob3PTRdBymj2PJ175KP657fPof/YnhXsXNeJgTwC5cg1zq+tqD4VoBAWAZBZPF1Cpc5p7CQCEFwFKBZfXjaUchjo88Dltag/lDs2TYPr+ZRNLCXNfaxtBQAhKUCmAvK4v5jAS9sFlt6o9lDuIdxPQSbB8JhJCloXWMj8BoQyMnvvyurmUxUjIq7m5L+5DqQGEfG4t5cDz2mr6IqISQJnFz8HCVWFjHFi9Ity7qBEb137Q3CcCCgDJTCwB0loGCCCkhM6urCNXqqo9FMO6tZTTZPBvJOyF3croDigZiQutFl8CD/QEEE8XUKrW1R6KYd1e1ubcHw37aO7L7NaS9i6BFR3s9WMyWUC5RnNfLjcWcziowcD//m4/GKNuQHISn6tay/oHgP09fuGOmhqV/8oichZV2FCHBbA6hHsXNaJ5/xut+6SBAkAyu72Ug4VBc6nAwMalcLQZkEepWkcsVdBWCVCD3WrBWJefTgJldGMxB7uVYTSsvbl/sMcPjgfGl/NqD8WQipUaZlaKOKDBwL/dasFo2IdxKgGUza2lHBw2CyKdXrWH8jYHewKoczwmEjT35ZAtVTG/tq7J4J/bYUWk00t3QMno9nIOXocVA+1utYfyNge6/ahxPJX/ymSt8wH8dPnjuDDyD4GPPCvcu6gRXqcNw50eyv4kTRQAktnNpRwiGkwFBjaykuguEHmIZQBa6wAmOtTjp+CfjG4sZjHW5Yfdqr3HrJiZQpsBedxuBNa0mAEECM/+W/Tcl83NpRzGwj7YNDj3qQOovMTsr0MazPwEhCAAzX353FrKYV+3X1NNX0TNEkD6/mVxaymHi/x+rD/8S5oK/ogO9QRoz0+atLc7MZjbyzlNngQBQH+bG16HFbfpgSALrXYAEx3o8WMxU8JasaL2UAxJy3M/0umF02ah+wBkIj5TtZgBBAhzf251HflyTe2hGNKtJS3PfQ+cNgtu0l0QshD/vR7U6MHPgR4/4ukC1itUAiiH28s5zT73R8JeWC2MMr9lIgbWtHvw48M0lf6TBgoAyahYqWF6pai5VrAixhj299BpkFxuLWXh1GgZAIDmHQV0Eiy9bKmKxUxJk3d/AYDVwrCv20dzXya3lnNw2S0Y7PCoPZQtUfanfDLFKpayJc2+BNjEEkAqAZPFzaUc/C4beoMutYeypUO9fvA8zX05pPJlpAsV7Nfo3HfarBgJeXFriea+HG4u5RBw2dAT0Obc398o/Z9M0vdPKAAkq/HlPHgeONCjvTtARAe6/XQPiExuLuWwv9sPq0V7qcDARnbCRII2glIT71fZ363luU/pwHK5vZzDvi7tz33K/pSeWFap1QAQAOzr9tEdQDIZX843LlvW6NxvZCZR9qf0tJ75CaBx6EsZQHIQMj8Dmp37dPBDNqMAkIw20gG1mQEEAPu6/UgXKkjly2oPxXBuNQJAWtUdcMLvtNFJsAzEO2C0/P0f7PEjmStjpUAlgFK7qdHuf6KBdjfcditlgMmgWfqr5XW/y4f5NSoBlBrP87id0Pa6P9ThgctuwQ0qA5Kc+Dzdr+FD34PdfsyurKNAc19SPM/jtsbX/Uin0P33Nh36E1AASFa3loQygCGNlgEAdBIsl0yxikSurOnsL8YYxrp9lAEmg1tLOXgcVvS3aa8TiIgugpbHSqGCZK6s6VNgi4Vhf7ePTgJlcGs5h6Dbju6AU+2hbGusS/izOUnBf0klc2WsFauazvy0Whj2dfkpA0wGt5dzaPfYEfZpd+6L5Wl08CethUwJuXJNs+V/AOCwWTAS8tH7HgFAASBZ3VrSdhkAsHFSQSfB0rrdKKva16XdxQAQToJpIyC98UQO+7p8sGh47ouX1NJmQFq3m6fA2p77+7v9G3dBzJ4Hzn1K+JW0ZGI5j/3dPs2WAQAbpan07JeWHjI/gca6Twc/khOzvrU898V1ny6Clpb471Orl/+L6O5HIqIAkIxuLWs7FRgAwj4n2j12SgmUmPgSuE/DJ4GAEKBK5ctYpTIgSd1aymt/7vud8LtsmKALASV1Swf3QABCBlgqX0bm9ovAM08Dz31S+JWCQC0ZT+SaGTZaNdThgcNqwTjd/yYpvaz7o10+LGVLyJWqag/FMHiex+3lvKZLgDB7HoPXfh+P2CfoImiJNYO/Gn/2H+gWOoBSCSChAJBMMsUqkrmyplOBAaEMaF+3n0oBJDa+nIdX4yVAADDW+PNJQQDprDTu1NJ6AIgxRifBMtBDCRCwkaWwdv15oF4B+Lrwa/ycyiPTr3S+jNViFWNd2l73bVYLRsJemvsSG0/k0KbxEiBAyAACQGVgElrIlJAv17S77s+eB555GpbnP4lnrL+O+syrao/IUCYSeYT9TgQ9drWHck/7uqkEkAgoACSTiaQQUNH6RhAQIsK3l3LgeV7toRiGcAqs7TIAYGMjSC8C0tFLCRAgPJ+oJai0xpdzmi8BAjbugLpqPwZYHQCzCr9Gzqo8Mv0SN9V6WPfHunyUASSx28t57O/SdgkQsPESSAEg6SxdfQH/0PplnLKMqz2UrcXPNQP9NtTQvXJB7REZykQij7Gw9p/74rpPh/6EAkAymdDRRnB/jx+5cg2LmZLaQzGM28v55iZLy/qCbngcVnoRkJAeWsCLxrp8SOUrWCtSCaBUJhJ5XTz3u/xOBFw2vFIdBT7yLPDUJ4RfB8+oPTTdEtf9fTr4/vd1CaUAxQqVAkhBKAHKaboDlGiw3Q2H1UIBIKnMnsfx5z6Mf277PA5940PaLKONnG0G+jmLHd8q7qMSQInwPI9Jnaz7Qx0eOG0WuvuRUABILhOJPBw2CwbatdsBTLS/8dCiiLA01ooVXZT/AUI3oNGwjzaCErq1nIPfZUNPwKX2UO5LvKScvn9piCVAozo4CWSMYbSrMfcHzwBnP0bBnxZNJITS396gDuZ+tw88D0wlC2oPxRCWs2XkShouAdpELAGk575E4udg4aqwMQ6sXtVmGe3gmWag/413PoOL/H5M0tyXxHK2jFy5pvm7vwChC+BYF10ETSgAJJuJRB4jIa+mO4CJxKg1LQbSGG+eAmt/IwgIp9W0EZTO7eW85juBiMS5T/Xg0tBT5icAjIV9mEjQc18qYvaXHub+RicwehGQQvMCaJ2s+6PUAVQ6kbOowYY6LNouo20E+sOHhPHRvk8azXVfBwc/gHD/3yR996ZHASCZTCT1kQ4IAJ2NTmC0GEhDL51ARGPdPixmqCOIVCYTeV2UgABAf5sbLjuVAkhFvExdL89+oQSwjEyR5r4UJhJ5jOrkux/u9MJmYXT/m0Ru66j0FxAOfmZXiyhV62oPRff4gYfw8/i3+Hbv39NFGe1whwd2K6N1XyITCf3c+QoAo2EvFjIl6gRmchQAkkGpWsfc6rpuHgYAMBqmy2ClopcOYCIqA5LOaqGCdKGiixIgQCgBHAlRBphUJhMFuO1W9AX1MffFNYq6ALYuW6piKVvSzbpvt1oQDXkpC0QiE4k8OrwOdGq8A5horEsoAaR9X+uS+TJeLI1g4eg/0HzwBxBKACOdVAIolYlkHn6XDWG/fuY+QOW/ZkcBIBlMJvPgef2kAgONbkC0GEhiPJHDmE5KgIBNncDo+2/ZpM4yQAAhU402gtKYSOYxEvbCooPSXwDNQCU9+1s3qbPSX4DmvpQmk/roAiSigx/piP8O9ZL9B1AHUCnpqfQX2Fj3xW7VxJwoACQDvd0DAQgPhHShgtUCdQNq1fiyfkqAAGCwwwOHjcqApCBuqPSSAQQIdevza+uUDiwBvXQCETXnPr0ItExPLeBFY11+TKcLVAYkgclkAaNdXrWHsWORkAcWRgEgKUzqcu77MJ0uoFyjud+qiURBV3v+4U7hftpJuv/P1CgAJIPJRB4WJiywerFxETRtBlqRLVWRyJV1tRGwNjqBjVNXgJZNJgtw2Czob9dHCRBA6cBSKZRrmF9b11UWgNXCMBLyUgaQBCYbnT8HdTT393X5wFEnsJatFCpY0VHpLwA4bVYqA5LIZLIAr8Oqi86forHG3I+nimoPRdfWihWk8vra8ztsFgx3eOh9z+QoACSD8UQew51eOG1WtYeyY82UQNoMtETcSOtpIwgILwJUAtY6PXX/E4mXlVM6cGvEua+njSAglC1QBlDrxhtz32bVz7ZKbFlOncBa08z81OHcp3W/deLl73opAQJozy8VPVZ8AI11n757U9PPTkVHJhJ53QUA+tvdcNosFBFukXiSPhLWTyo4ICxec6vrKFaoDKgVk0n9dAESUTcgaYgBNN1tBMM+zK5QN6BW6akDmCgS8sBqoW5ArWqWAOls37evy4d4qoBqnVN7KLqmt/ufAOG5z6gEsGUbLeD1c/cbIHz/8XQBNZr7pkUBIInV6hzi6YLuXgKsFoZoiNKBWzWZzMNmYRjq0E/5H7BxETTVBO9dqVrH7EpRd8Ffu9WC4U4Pzf0WTSTysFoYhjv1F/zleCCWorm/V6VqHbOrRV3dAwEIZUDDnR4K/rZoMpmH02ZBn046f4rGunyocTym0zT39ypfrmExU9Jd8Nfd6FRL2Z+tmUgIc19PZf+A0Aq+Wucxs0IlgGZFASCJTa8UUa3zugsAAWJXANoItGIymcdwpwd2HZUBABtlQFQKsHfT6SI4Xn8ZIIDQEYY2gq2ZTBQw3LhUWU/Ek2vK/tw7sfOnPue+j577LZpMFhDVWekvQJ3ApCBmf+nt4AcQnlf03bdmIilUfOht7m/c+0rvfGalr52qDui1HhQQxjy7SqUArZhMFnS5EWiWAdFmYM+arWB1Vv4HiB1BiqjUKB14ryZ0WP4HCOWqVArQGvHfnZ5awIv2dfkRp7m/e7PngXOfAmbP67L0F0CzaxllgO2dGDjX5Z4/7MNUMo86x6s9FN0SW8Drjfi8onXfvCgAJDE9vwSOhn3gqRRgz2p1DtPpgi43gnarBdGQlzaCLZhM5sEYMBLS3/c/1uVDneMRp1KAPanWOcRT+iv9BQCX3YqBdjdtBFswocPOn6J93cLcp3V/F2bPA888DTz3SfDPPI3Q6lu6uwMGADwOG5UBtWgiIZT9D3fqb+6PdflQrnGYX11Xeyi6VKzUMLe6rst1P+Cyo8vvpMxfE6MAkMQmE3n0BFzwu+xqD2XXxigi3JLZ1XVU67wuM4AA4UVggkoB9mwymUd/mxtuh366/4lo7rdmOl1EjeN1+RIICCfB9N3v3YQOO3+KxKwlKgPbhfg5oF4B+DpQr+BhdkOXBz+AsO7Twc/eCXNff2X/wKYsEOoAuid67fwpGqV139T098TSuImkPtMBASAaEkoBKCK8N5M6zv4CgLEuP2aoG9Ce6bH7n4g6grRGz6W/gDDuWKpApQB7NK7TMgBAKAG0MCoD2pXIWcDqAJgVnMWOV7lD+lz3Z8/jZ2pfhD95keb+Hk0m9bvuj1Er+JYYYd0X7q+juW9GFACSEM/zmNTxRtBlt2KwnboB7ZUYOBvR6WZgH3UD2jOO4zGl0/ufgI2OIHQH1N6Ic1+vWQBUCrB3ei7/AxrrfoeHyoB2Y/AM8JFngac+gS8e/TQu8vv1V/rbKGN75/xn8FnrryN5/ZzaI9Kdap3DdLqo27nf7nWg0+ugPf8eiZ0/Izrr/CkaDXuRK9WQzJXVHgpRAQWAJLSYKaFQqet2MQCEBwLdCr83k8k8Qj4ngm79lf8BG6cYt5cpHXi3FrMlrFf1PfepI8jeTSTy6A264HPa1B7KnoiBSyoF2D29l/8BwEjI2yxnIDs0eAY4+zG8VB7RZ+lvo4zNAg521FC4/bzaI9Kd5tzX8bo/Suv+7my6/F0s/9Nb50/RmNgFkIL/pqTPP7Uapfd0QEAYO3UF2BuhA5g+TwKAjRJAehHYPT1f/i7aR3N/z/Rc/gdsagmboLm/W+K9afu69fv9j4R9iKXy4Gju75peO4CJZWw8s6IKG67Yjqk9It3ZWPd1+P03CGVABSoD2olNl7/jmadhX7yg68C/2AWQDv3NSZIAEGPsfzHGEoyxq1L8PL0yQgBoNCyUAiysUSnAbul2I9jgsgtlQFNUArZrzfufdPz9UxnQ3vA8j0kd3/0GAG0eB0I+KgXYCyO8BI6EvShVOSxmS2oPRVc4jsdkQqcHP40yNvbUJ/CPbP8vXiyPqj0i3dF76S8g3AOUWa8ila+oPRTt23T5O1+vYDj7hq7X/Z6AC16Htbl/JeYiVQbQZwG8R6KfpVsTyTzaPHZ0eh1qD2XPqBvQ3qwUKlgrVnX9EgAIWUCxFH33uzWZzONJ9xQ6L/534ZRIh8S5T92AdmcxU0KxUtf1SwDQ6AhCqeC7Np7Ioy/oglen5X8AmvfXxOgkeFd0X/rbKGNb734QUzT3d03s+qvX0l+A9vy7sunyd95qx8v1Q/qd+wAYYxhtXARNzEeSABDP8y8AWJHiZ+nZRCKPsbAPjDG1h7JnYgCDHgi70zwJ0uNJ4CajYR9ilA68a2zuPP6Q/zWw54XUYD0GgcbCjXpw2gjuSjPzU+fBX/EuCJr7uxNLFXQf/BtprFtTFPzflUkDZH8BQDTspczfPdBz119RMwBEe/7723T5+/mzf4yL/H7sa9yjo1fUCt68FLsDiDH2C4yxC4yxC8lkUqmPVZSeO4CJqCvA3hhlIzgS9qJQqWM5S10BdqNn9Q3YUAX4upAiHNdfR5Wgx46Qz0Fd4HbJCKW/wEYpQLpApQA7xfM8YskCoiF9B/67/E54HVa6/22XNg5+9D33R0JerBWrWKW5v2N67/or6g1SGdCuNLLm3uD2A9gInuvVWJcPi5kS8uWa2kMhClMsAMTz/Gd4nj/N8/zpcDis1McqZq1YQbpQ0f1GABA2M5QBtDuTyTycNgv629xqD6UlYikAnQTvXKZYxXPr+8Bb7ACzCinCkbNqD2tPotQNaNcmknkE3ULwTM+oFGD3UvkKcuWa7gNAjDGM0Lq/a5PJPAIum+7nPmWA7d5SVuj6q/esb7EMiJ77uzOVLAh36Oi4/A/YqFqgElDzoS5gEhHTZ/UeDQaoLeReTCYLGAn7YLHot/wPEFLBAeoEthsTyTwu8vvx5rv+BHjqE0KK8OAZtYe1JyMhH5UC7NJkIo/RsFfXpb8ABYD2Ip4W5oreA0CAsHeh5/7uTCaE8j+9z/3mwQ99/zs2YYDGD6LRsI8CALsUT+s/8xPY1AGUvn/ToQCQRMTLE43yQFgtVrFC6cA7NpnMGyL41xtwwWW30EZwF8SFM3zoLHD2Y7oN/gBCADCVLyNbqqo9FN2YShUMkfnZG3TB47DSRnAXjLTuj4R8WMiso1Stqz0U3ZhM5g0x9wfa3bBbGQX/d2HSIKW/gPD8WsiUsF6hub9TsVQBEQM894c6vLBaGB38mJBUbeD/N4BXABxgjM0xxn5eip+rJ1OpPGwWhsEOj9pDaZmYEkgPhJ0p1+qYXSkaYiNosTBEQz7qBLYLk8k8HFaLIeb+SGNDQ92AdiZfriGZKxtiI8gYa3QBpO9+p6ZSBditTPelv4CQAcTzG1lN5N6ypSoSubIh1n2b1YKhDg8993dhMlmA32lD2OdUeygtEwPYNPd3Zq1YwUqh0twv6ZnDZsFwpweTCfruzUaqLmA/xfN8L8/zdp7nB3ie/59S/Fw9iaUKGOrwwG7Vf1KVuKGhlNCdmU4XwfH67wAmGqGOILsymcgjGhJOUfROzGKjIMDOxMXSXwNsBAFQAGiXYqk8hjo8sBlg3R+h8t9dMVIGCABEQz66A2gXYqkCRgxQ+gvQ3N8tcY00QuYn0OgERu97pqP/XYtGTBmgE4ior80Nh82CGJ0G7IhROoCJRkJezK4UUa5ROvBOTCYLGO0yxtwf7PDAwij4u1NioDRqlOBvY+5XapzaQ9GFWKqAaMgYz31x/0Jzf2cmGy/LRjn4GQ17EU8XUed4tYeiC0YpAQKASKd48ENzfyead78ZZO6PhL2YThdo7psMBYAkwHG8YS4EAwCrhWGY0oF3TLwzwwh3AAHCPwfHAzPpotpD0bxqncPMSrF5iabeOW1WDHZ4KANsh8QMoOEOY8z9qDj3V2ju34+w7hcN89z3OGzoDbooC2CHJpN52K3GKPsHhABgpcZhYW1d7aFoXqlax0Jm3TB7fq/Thp6Ai9b9HYolC7AwYLDdGHN/JORFtc5jfpXmvplQAEgCi9kSSlUOIwbJAAGoFGA3JpMF9Le54XHoux2kaKMVPH3/9zO3uo46xxtmIwhQK/jdiKUK6Au64HZY1R6KJDa6AdFJ8P0sZNZRqXHN03MjGAl7MUnP/R2ZSuYNU/YPoLl/pUvg7286XQTPG6cECKA9/25MpQoY7PDAYTPG3BezWKnqw1yM8adXZUbqBCKKhr2YpnTgHTFKBzARtYLfOTFl2iip4IAQBIilCuB5mvv3M5UqGCYNHNj4c0wvAvdntHsgAGHuTyXzNPd3wEjlf8DGn2Oa+/dnyLkfFg5+aO7fnzD3jfPdR0JCJlOMgr+mQgEgCYgX5xkpCDAS8qJSp3Tg++F5HlNJY7SBFgVcdoR8TsoC2AExSGaUS4ABIQC4Xq1jOVtWeyiaxvM8Ysm8oTJAgm47Qj4HvQTugPjvyFDrftiLXKmGdKGi9lA0zWjlfwAQ8jngd9no4GcHxLlvpIOfaMiLzHoVq8Wq2kPRNJ7nEU8VDLXuh31O+Jw2WvdNhgJAEphKFuB1WNHl1387SFEzJZAeCPeUzJeRL9cMdRoACC8C9N3fXyxVQJvHjnavQ+2hSGaELoPdkdViFdmS8eZ+NERdAHcilirAY7B1f6TZAZS+/3sxYvkfYwwjVAa0I/FUASGfEwGXXe2hSGajAyit+/eSzJVRqNQNFfxljNG6b0IUAJJArFEGYIR2kKJmSiA9EO7JiOV/gNARhBaD+4unjXUSBGxqCUvf/z3FDJj5CdBdEDsllgEYad2n4O/OGLEECBACgPTd358w941xAbAoGqLg705MGXTuR0PeZnczYg4UAJLAVCpvqFpwgFICd6rZDtKAi8FKoYK1IpUC3EssWTBU+RcAdPtdcNuttBG8j1hK6JRltGd/NORDMldGrkSlAPdipDbQor42Nxw2CwV/7yNu4JfAhUwJ65W62kPRtCmD3QEDAIPtbtgsjOb+fRg1+BsJeTG3uo5yjea+WVAAqEXlWh1zq8ZpBymilMCdmUoV4LBa0NfmVnsokhK7AU1SEGBb65U6FjIlw819i4U1skDoJPheYqk8rBaGgXZjzX3xz3M8Ra3gt1OpcZhdKRou+Gu1MEQ7vZQFch9TqQLcdiu6A8Yp/wM2lwHRur+dXKmKVL5suMC/zWrBUKenmdVOthZPFeCwWdAXNNa6PxLygueBmTSt+2ZBAaAWzTTaQY4arAwAAL0E7kA8VcBQpwdWi3HKAADaCO5EM/vLiHOf7oC6r1iqYKg20KKNEkB69m9nZqUIzmBtoEViNyCyvbgBy/8A6gS2E/Fm5qexSsAA0B1QOzCVKiDS6YHFYHt+ce7Tob95GGvnqoJJg94BAwj/TPOUEnhPRmsHKRrs8AjpwHQSvC2xDMBodwABwGjIi9lV4aJTsrVYqmjIuT/c6QFjdBfEvRi1BAgQAkAzK0VU6zT3t2PUdb/5Ekjr/rbEwLjRMoCAxqFvugCOo1bw2zHq3I80M39p3TcLCgC1yKj1oIDwz8TxwOwKpQRuRWwFa8Tv3m61YKjDQy+B92DUywABIQOozvGYobm/JY4zXitYkdNmxUC7m06C78HI6/5IyIcax9O6v41qncOsAcv+AcDjsKE36KK5fw/xVBGMCYFyoxkJ+1CpcZhfW1d7KJpU53jMpIuGDP4F3XZ0eh00902EAkAtiqXyCPud8BuoHaRo4zSIHghbEVvBGnEjCFAr+PuJpQroDjjhddrUHorkNjqC0EnwVpZzJaxX64Ys/wOE75/m/vamUgW0e+xo8zjUHorkmiWAtO5vaXaliDrHG+4CcNFI2ItJmvvbiqXy6Au64bJb1R6K5KgE8N4W1tZRqXOGLP8DQPe+mgwFgFo0lTRmOiCwkRJIi8HWYgYuAQKE06BYuoA6pQNvyagZIABtBO9HvCjTaJcAi8S7IHie5v5WYqm8Ydd9sQEA3QG1NSNnfwGNMqBknub+NoxaAgRsrGe07m9tI+vbeBlAQKMVPH33pkEBoBbFUsZrAy0Kuu0I+SglcDvig3LEsFkAXlRqHBYoHXhLsVTBsN89zf17izUuADdqFkA05EW+XEMyX1Z7KJokvAQa8yUg6BFKASgDaGtGDwCNhHzIlmpIFypqD0VzeJ43dAAo7HfC67DSur+NWFK8/8mY33807EUiV0a+XFN7KEQBFABqQaZYRbpQMexLICBkt9BisLWpVAEehxVdfmO1ghWJgU1KCX07ce4bdSMACC8C9BK4tViyAKfNgt6AS+2hyKKZAUbf/9sUyjUsZ8uGXvdHwlQKsJ1YqoCg2452j/HK/oGNrpa073u7lUIF2VLNsIF/xhhGwj5MUun3lmKpAvxOG0I+45X+AkC0ky6CNhMKALXAyN0ARFFqC7ktsQTIaK1gRSNhugdmO2IGiNHnPr0Ebk08BTZaK1gRtYTdXjxt7AwQgEoB7iWeNmYLeNEo3f+2LXEvbNSsf4D2/PcSSxcRMfDcF4O/tO6bAwWAWmD0VGCAUgLvxcipwAAQ8jngd9poM7CFjTbQxrwMEBCyAFL5MrKlqtpD0ZxY2rj3PwFAX5sbDpuF5v4WjH73GyAEtmnd31rMwPc+AkB/uxsOq4VeArdgij1/yIv5tXWUqnW1h6I5Rr77DdhY0yj4bw4UAGpBLFWA1cIw1GHgl8AQPRC2YuRWsCLGGKLUCWxLU6kCLAwYNPDcpzKgrdXqnNAK1sAlQFYLQ7TTSyWAWxDnQ8TAwV8xsE3r/p3WK3UsZEqGXvetFobhTg/N/S3EUgXYLAwD7W61hyKbkbAXPA/MrBTVHoqmlGt1zBl8z++yW9Hf5qY9v0lQAKgFU6kCBtuFk1KjaraDpgfCHYzeClZEd0BtLZYqYKDdA6fNeK1gRSN0F8SW5lbXUeN4Q28EAbEUgMpA7hZLF9AbdMHjsKk9FNmI6z7N/TtNrxj78ncRlQFtLZYqYKjDA5vVuHv+ESoB3NJMugieN27TF1Ek5KH3PZMw7lNMAUZuAS8a7qSTwK2Y4R4IgNKBtxNL5Q3/EjDU4YXVwmgjeBfx/icj3wMBCOW/MytF1Oqc2kPRFKOX/gLCus8YBYDuJmZ/mWHuT6cLqHPUCn4zM8x9MbORggB3MkPpL9AI/ibz4Hma+0ZHAaA94jgecQO3ghVRSuDWpkyyEaR04LfjeR7xVNHw373DZsFAuxuxNH33m22UABn7+4+GvKjWecyvras9FE0xw0ugy25FX5DW/buJwV+jz/0Rce6v0twXcRzfvADcyPwuO8J+J5V+36UZADL49x8N+ZAt1bBapLsfjY4CQHuUyJWxXq0bPh0QoG5AW4mnG61gvcZsBylq3gND339TMi9cjmr0jSAglgBSBtBmsVQBfpcNnQaf+2KAk579G1YLFawVq6aY+7Tuv10sWUDY74TPadzyP2BTCWCavn/RUraEUpUzfAAAEJ79tOe7UyxVQMjnQNBtV3soshpp7vlp32d0FADao56gC1f+3+/D+0/2qz0U2VFK4NuZ4RQY2DjtoM3ABvFkzAzfv9AOukhzf5N4uoARA7eCFTVbwdNJcJMYEDHL3Kd1/05myAABNsqAYlT+2yReg2D0zF9AyPym4O+dpky256d13/goANQCv8tu+JMgQHggZEs1rBQqag9FM+KpoikWg4DLjpDPQenAm5ihFawoGvIiX64hmS+rPRTNmEoWTHEK3OF1IOCy0R1Qm8RNNPfFdZ9KATbEUgVEDX4HCACEfUKWEx38bGgGf02Q9R/p9GKlUEFmnea+KJ4qGP7+HwAYaHfDZmE0902AAkDkvpqt4CkdGABQqtYxv2bsdpCbRUNeSgXfJJYuwGG1oK/NuK1gRdQK/k6lah0LGXPMfcYYomEfPfc3iaUKsFoYBjuM2wJeRKUAd8qWqkjlK6YIADDGqATwLrFUAS67Bd1+l9pDkZ24vlHzF0G+XEMiVzbF3LdbLRjq8NC6bwIUACL3RaUAd5puXIprhiwAgFrB3y2WLGC40wOrxdglQMCmjSBtBgAIl6HzvDkyQAAhCBBP0SXgIrENtN3AbaBFG/e/0fcPbLwMmyELAGiU/9Jzv0nMALGYaN2nfZ/ATOV/QOP+N3rfMzzj72JIyygl8E7iiahpFoOwF8lcGbkSpQMDwqbILMG/vjY3HFYLnQQ3TJno/idAeNmdX1tHqVpXeyiaMJUqINJp/OwfYPO6TxlAwMbLsBkafwDCM25udR3lGs19QPj+zfLdD3V6wBg1ABBt3P1m7K7Pokgj+MtxdP+bkVEAiNyXzWrBUKeHAkAN4omoWYIAYqBrmtqBo87xmF4xfgt4kdXCMNTpoVTwBrO0ghWJKe809wGe5xFPFUzzEmBrlALQui+IpQpgDBgyQfkfIASAeB6YobmPWp3DzErRNNlfTpsV/W1uWvcbxH8PwyYJ/kdDXpSqHJayJbWHQmREASCyI1EqA2qKpfKmaAUranYFoO8fC2vrqNQ402SAAI07oOi7ByBsBEM+JwIuY7eCFYkX3lIWCLCcLWO9WjfFPRAiYe5TAAAQAkB9QTdcdqvaQ1FElNb9prnVddQ4ntZ9k4qlCuhvM8/cH6E7oEyBAkBkR6KUEthklk4gIvHUiy4CNlcHMJEw94s099GY+yFznAICG+2g6SUQmDJZ6S/QKAVI0boPCC9DZikBAjYOfigIYL7yP6Cx7qcK4Hma+1OpAr7XPw2c+xQwe17t4chOPOSgdd/YKABEdiQappRAUcwkLeBFLruQDkxZAOYNAFVqHBYy62oPRXVTqYKpvnu/y46Qz0kngTDv3F+v1rGcM/e6z/N84/4n83z3QbcdIZ+D5j42XoTN9P1HQ17kyjWk8hW1h6IqnufhT17Ex1O/Ajz3SeCZpw0fBOr2u+CyWyj4a3AUACI7Ql0BBLlSFal82TR3gIiEVvBUChBLFeB1WBH2O9UeimLETa/Zu0GJc98sd8CIRqgUAICQAem0WdATMH4baNEIrfsAgHShglypZqrgHyA8+ykLQMj+Crhs6PA61B6KYqgDqGC1WMXx6hXY+CrA14F6BYifU3tYsrJYGHX/NQEKAJEdoXpwgfgSbLqNYMiDWDJv+nTgWKqAaNgLxozfClYkpr2bPQNsY+6bpwQMoHtgRPG0kP1lhjbQIioDEsRNmP0F0D0wImHd95lq3W8e+pq89D+WyuNV7hB4qwNgVsDqACJn1R6W7EbC3o3sv9nzpil/MxMKAJEd6fa74LZbTb8YiPdAmG8j6EO2VMNKwdzpwDGTlQEAQJffCY/DavogwMbcN1cGUCTkRSpfRrZUVXsoqjJb+R8A9AQapQCmX/dNGgAKe5HMlZEz+dwX7n00V+C/v80Nu5UhZvIMoKlkARf5/Ui8/y+Bpz4BfORZYPCM2sOSXTTkxcxKEbXpV4WyN5OUv5kJBYDIjlgsTLgQ0uSLQTxVBGPmaQcpGqF0YFRqHOZWzdMCXsSYmA5s7gwgsQ202eZ+sxTAxJkAtTqHmbS57n4DqBRAFE8VYLMwDLS71R6KosS1btrE5d+lah0LmXXTBf5tVgsGOzymD/7GGnM/fPgscPZjpgj+AEL5Z43jkb3xHaHszSTlb2ZCASCyY3QXhJAOaqZWsKJmK3gTbwZmVorgeJiqDbRI7ARmZnGTtYEW0f1v5mwDLRLufzPvdw8If/aHOjywWc21ZY5Q6T+m00XwJl33ac8vHHqace6Lpf9TvgeEsjcTlb+ZhSR/ohlj72GM3WKMTTDGflWKn0m0R0wJrNY5tYeimpgJT4EBYKDdDZuFmXozsNEFyFwngQDNfUBsAW++uT/c6QFj5g4AiQEQM37/0ZAXM+kiajT31R6G4sRyZzNngTTXfZOVfgPC9x9PF8Bx5r37cSppzrkv7nMv4YBQ9mai8jezaDkAxBizAvg9AO8FcBjATzHGDrf6c4n2REJe1DkesyvmzATgeR6xZB4Rk10CCwB2qwVDHR5zvwSKd8CYcSPYmPtzq+ZsBS+2gTbjRtBlt6Iv6DZ1CZj4AmzG7z8aEkoBzDr3OY5HPF3A464p012E6rJb0d/mNnX5r7jnMeO+Lxr2olzjsJgtqT0UVYhz34zP/XaPHQGXTZj7g2dMVf5mFlJkAJ0BMMHz/BTP8xUAfwHghyX4uURjzF4KsFqsIluqmTIDBBCCAGb97gHhz32H14Ggx672UBS3MffN+SKwYtI20CKzdwOKmbANtKg5901aBraULeFw7SZ+5vY/MeVFqEIJoDkP/QBhzQv7nfC7TLjud5r7/relbAmlKtcshTQTxhiiYZ+p132jkyIA1A9gdtP/nmv8NWIwIyYPADUzQEx4EgSI98CYNx3YrGUAwOYAkDlfBGIm7QIkioa8mEoVwPMmnvsmawMtMns76HiqgEcsN2DlzHkRajTkRSyZN+3cj6eKpsz6BTbuPTLrHVBi4MtsjT9EIyGvaZ/7ZiBFAGirHdHbVgrG2C8wxi4wxi4kk0kJPpYord3rQJvHbuIAkPDya9YMoGjIi1KVw5JJ04HN2AJe1O6xI+i2mzYDyKxtoEWRkBe5Ug0rhYraQ1FFLFUw7UtAh9fRKAUw57o/lSrgVe4QeJs5L0KNhLzImnjum7X0FwC6/S647VbTZgA1130TXgAOCPudhUwJ65W62kMhMpAiADQHYHDT/x4AsHD3b+J5/jM8z5/mef50OByW4GOJGszcEjaWysNqwlawomYreBN+/4VyDcvZsmmzvxhjiIS8iJs0A8isbaBFZs7+FNtAmzX4yxhrZn+aUTxVwHXbQeDD5rwI1cxzP1eqYqhwBT9a/D+mKvsTWSwMw53mvfsxlirAbbei2+9SeyiqEAOf0yvm/P6NTooA0OsA9jHGoowxB4CfBPCsBD+XaJCZ20LGU0UMdXhgN1k7SJGZW8KKf+ZHwubM/gLMPffN2gZaZOb738zcBloUDXkxZdJSADHz0zL8sCkvQo2aeN1PXDuHzzl+Aw9Nfdp0dz+JRsLmXveHOz2wWMxX+gtQ+a/Rtbyb5Xm+BuAXAXwdwA0Af8nz/LVWfy7RpmjIi0WTpgROpQqIdJozAwQAegIuuOwWU24G4iZuAy2KdHqxkFlHqWq+uW/m+58AYKDdDZuFmXLui2WPZi0BA4SyZ5r75iTOfTNm/pYnvws7arCAM93dT6JIpxezK0VU65zaQ1FcLFXAiIkD/2Y+9DUDSY4zeZ7/Ks/z+3meH+V5/pNS/EyiTeIpqNnSwXmeRzxVMO39P4CQDhzp9JpyIyiegJi1DAQQ5j7PCxkRZmLmVrAim9WCoQ5zlgKIm18zdoIRRUIe8Dwws2KuuV+rc5hZKZr6uzfz3L9iO4YqbOBNePeTKBryosbxmFtdV3soiqrWOcyuFE297vucNnT5nabc85uBOfPZyZ6ZtRRgOVvGerVu2jtgRGZtBx1LFdAXdMHtsKo9FNWY9S4IM7eC3Sxi1rmfLKDL74TPaVN7KKoZaRx8mK0MbG51HTWON/VLIGDedf+Vyih+yfnvwUx495MoatK7HzfmvnkPfQHzzn0zoAAQ2RUxA8JsD4SpZgt4WgxmTJgOPJUqUADApAGg5v1PJv/+xYuAOc5c7aDjaZr7kcbBh+nmfprmPrDxEmi2uR9LFbDe/aAp734SmfUOqFhzz2/uQ18z3wFldBQAIrviddrQHXCa7oEgdj+KmHwxMGs6sNnvgQCEdOCwCdOBzd4KVhQNeVGqcljOldQeiqLM3AJe5HfZEfKZb+43S39N/v1Hw16UaxyWsuaZ+zzPm7oFvKjD64DfZTPd3BezHc1+6Bvp9CJdqCBTrKo9FCIxCgCRXTNjSmAslYfDZkFf0JxtoEVmTAdeLVSQWa+afiMIANFO8839eKoAl91i2lawIjN2BMmsV5HKV2juw5xdAOPpAvwuGzq9DrWHoqqoCTO/VwoV5Eo1U9/7BwCMMdPO/aDbjnaPXe2hqKq57pvs3lczoAAQ2bVoyGe6xSCWKiJi4naQIjOmA4v/rGbuBiGKhrym2wg020DT3Adgro2gGOimAFCjFbyJnvvARuYnYyaf+2HzrfsxyvxsMuehL819YGPfK5bEEeOgABDZtWjIgxWTpQTGUnl6CYCQDhxw2Uy1GDQ3giZPBQaEUohkroxcyUxz39ytYEU9ARecNoupMoDEbpf0/QtzP5U319yfSlIJEAB0+11w262mmvvNgx/6/hEJebGQWUepWld7KIqJ0dwHAAx2eGBhwiE4MRYKAJFdE1+EzXISXOd407eCFTHGEA37mncimUEslYfNwjDQbu7yP2AjE8IsreCpFewGi4WZ7iR4KlmAhQmbYLPbKP81x9wvVetYyKybvgQIEOa+0AXQPAc/8VQBNgtDfxut+6cs4/gHli9j+do5tYeiiPVKHQuZEq37AJw2KwbaPaZa982CAkBk1zZawZtjMzC/uo5qnaeToIZop7kWg1iqgMEOD+xWelyarQRQbAVLL4ECs5UAxlIF9Le74bRZ1R6K6kaaZUDmWPdnVorgecr+Eo2EvIibJPAPCHN/qNMDm9nX/dnzeOKlj+Kf2z6Pga/8BDB7Xu0RyW56hUp/NzNb8NcsTP5kI3sxJKYEmiQdWHzhoZdAQTTkw/yaedKBqQxgw3CnB4yZ5BLw2fPgXvgtnGK36SWwIRLyYiZdRK3OqT0URQj3QFDpJyCs+4yZ5yLgGN3/dIdIyIOZlSKqJpr7dOgHIH4OjKvCxjiwehWIGz8LKJakub/ZSMiLWLIAnufVHgqREAWAyK45bBYMtHtMkwUQSwqRb7oMUCD+ezBDGRDH8ZhOUwmQyGW3oi/oNv5L4Ox54JmnEb38X/E5x29gX/mG2iPShGjIixrHY35tXe2hyI7neXoJ3ESc+6YI/mIjAESl34JoyIc6x2N2xRzrfjxdoEM/AIicBbM6UIMFNWYDImfVHpHspmju3yEa8qJQqSOZK6s9FCIhCgCRPYmGvM0LMo0uni7C57Qh7HOqPRRN2GgJa/yU0OVcCevVOgWANjFFN6D4OaBegQUc7KwG/9Krao9IE8xUApjKV5Av12jubzISNs8dUPFUASGfAwGXudtAizZK/43//S9lSyhVOTr0A4DBM8BHnsX/8f0M/n37bwr/2+BiqQK6/E74nDa1h6IJZpr7ZkIBILInUROlBE6lCoiEPKZvBymKhIQLUc3wEiimAlMWwIZIyINYMm/suR85C1gdqMOCOmxgUeOfeu5EcyNogvJfygB5u0inEPw19NxvmEpRBshmIyZ6CaTyv7sMnsGlyEfxjdyw2iNRRDxFZf+bUQDImCgARPZkJGyelMA43QNxB7/LjrDfaYqXQDHIRSeBG6IhH7KlGlaLBm4H3Tj1/EPbT+N/DP+OKU49d6LT64DfaTNF9qeY4UjB3w3RkBe5Ug0rhYraQ5FdjF4C79DudSDotpviJZACQG8XCXmRzJWRKxl43W+IpQp0798mfW1uOKwWU8z9VybT+KNzU6a464wCQGRPzFIKUKlxmFstItpJbYA3M0sJYCxVgMtuQbffpfZQNCPayAAz+mag1PMg/mP+B8AGH1Z7KJrBGEPUJGVAU6kCHFYL+qgNdJMYCDf6958rVZHMlTESpoOfzaIhc8z9WKoAt91K6/4mYiA8njL2HVCZYhXpQoWy/zaxWhiGO81x7+vXry3hv35rHDaL8Ss+KABE9kR8OBr9QsiZlQI4nsoA7hbtNMdGMN4oA7CYYDHYKTEbzujfvxjgpOyvO5nlJTCeKmC40wMrzf0m8f43o78IiC+5lAFypxGTzP1YqoBIiNb9zcQ9cMzgB3/iPx/N/TuZZd2famR+muHKDwoAkT3pa3PDYTN+SuCUeAcMnQTeIRr2IpWvIGvwdGBKBX67gXY3rBZm+OCv+M9HJUB3inR6Mb+2jlK1rvZQZCW+BJINA+1u2Eww96fE8j969t8hGvJiMVPCesXYc18o+6es783EQ1+jl/43132a+3eIhr2YSRdR54x9/9tUMm+a754CQGRPrBaGiAlSAqeoFnxL0ZDxM8CqdQ4zK9QC/m52qwVDHR7jB3/pEuAtjYS94HlgxsDtoOscj3i6aJqN4E7ZrBYMdZpg7icLYAwY6qAgwGZiNqSRy79p3d+ay25FX9Bl6O8eENZ9CwMGae7fYSTkRaXOYWFtXe2hyKZUrWN+bd00c58CQGTPzJASGEsKrWCDbmoFu5kZugLMra6jxvF0AfgWIiZ4CYwlCwhTK9i3aZ4EG/j7X1hbR6XGUfbXFsxQ/htLFdDf5obLblV7KJpihrlP6/72omGv4Q99Y6kC+tvdcNpo7m8WMUH578xKETxvngN/CgCRPYuEjJ8SSJ1AtjbU4QFjGyVyRiR2AaLv/+2iIR/iaWO3g6a5v7WICYK/k0mxBIheAu8mNgDgDL7u03f/dmY4+Ik3s74pA+RukU4vYsm8odf9qWQeIxT8e5tmA4DG2mhEU41/tlGTPPspAET2zAwpgVMpWgy24rJb0d/mNvRGsHn/EwUB3iYa8qBYqSORK6s9FNnE04XmpbdkQ9BtR8jnMHT5J7WB3l407EWpymEpW1J7KLLgeb7xEkjf/d28Thu6A05DH/xslP3Tvu9u0ZAX2VINq0Vj3v3I8zwd/Gwj7BOyoQ295zdZ2T8FgMieiQukUVMCM+tVpPIV6gK0DaO3go+nCwi67Wj3OtQeiuY0575BXwTEuU93wGwt0mnsUoCpZAEBlw2dNPffJmrwMqBkroxCpU4vgdsw+rofS+WFdd9DZf93E9dDo8795WwZxUodo7Tuvw1jTLj2I23cu/9iyQK6TFT2TwEgsmfNdGCDpgRSF6B7i4a8iCWNWwZEJ0HbizTS4436IiCmAtP3vzWj3/8WSxUQDftM0Qp2t8QDEaMGAKnxw72ZYe5HTNIGereMfgfURvc/yv7aijD3jfm+B2y0gDcLCgCRPQv5HPA5bYgbNCJMrWDvLRryIleuIZWvqD0UWcSSBQr+baMv6IbDZjHuRlAs/6ON4JYiIS+SuTLy5ZraQ5HFVDKPUZr7W+r2u+C2Ww1bAkjlf/cWDXmxUqhgrWjMdX8qWaC5v43BDg+sFmbYIIC47tPc31ok5MXc6jrKtbraQ5GF2e5+owAQ2TMxJdCoJ4GxJLWDvJdmK3gDZoGsV+pYyJRoI7ANi4UZuhNYLFWA1cKoDfQ2xMCoEYMANPfvzWJhGDb43HfYLOhvc6s9FE0Sy3+N+P0XKzUsZkp06LcNu9WCwXY34imDHvomC3DbregJuNQeiiaNhLzgeWDGgIf+a8UKVgoVUx36UgCItMTIKYFTqQIGOzzUDnIbGyWAxtsIikEtuv9pe0YuBZhK5THU4YHDRkvkVqIGvguimQFCc39bI2EDz/1kHtFOLywWKgHaipE7gVHm5/0Z+tA3lUckRHN/O+LcN+L3b8bSX9rdkpZEQ17MGzQlcCpprnrQ3epvc8NuZYZcDOImXAx2KxLyYiZdRN2A7aCnqPzvnoY7jPsSKP4zUffH7UVDXsyuFFGtc2oPRXJmuwdit4Y6PLAwY2b/Nec+BX+3FQl5EU8Z8+7HqVSBvvt7iBg4+BtLmm/uUwCItCQa8oLjgdkVY6UEiu0g6SVgezarBUMdHkNuBJvtIKkN+LZGQl5U6hwW1tbVHoqkOK4x9020Edgtt8OKvqDLkBtB8QJw8aJz8naRTi9qHI+5VWPN/Vqdw0y6SNlf9+CwWTDQ7jHkwc9UsgDGaN2/l5GQF+vVOpazZbWHIqlKjcPsSpEOfu4h6LYj5HMYcs8vlv2b6coPCgCRljRTAg1WBrSULWG9WqeN4H0YtQwoliqgO+CE1yTtIPfCqB1B5tfWUa5xzbsuyNYiBp77fUEXPA6a+9vZaAdtrPLvudV11DieMoDuw6jr/lQqj/42N1x2KvvfjlGzQGZWCuB4c2WA7EWk05glgGLZv91qnrCIef5JiSyMuhg00wFpI3hP0ZAXsXQBnMHKgKgF/P0Z9R4YKgPYGeO+BBYo8H8fGxcBGyvzV/zzPErf/z2Jc99oZUBTSXN1AdoLo94B1bz/iQ5+7smw674Jr/ygABBpiZgSaLQHwhS9BO5INORDpcZhIWOsUgAhAEQbgXsJ+5zwOqzGm/uNEiCa+/cWDXmRWa9itWCcdtA8z2MqmaeXgPto99gRcNkMlwE02Zj79Oy/t5GwF8VKHcmcccqANuY+PffvpS/ohsNmMdzcb14CTOv+PUXDXiRzZeRKVbWHIhmO4xFPm+/eRwoAkZYZMSIstoPs9lM7yHsR78kwUlvQTLFqunaQe8EYw0jYZ7h04KlUAX6nDWGfU+2haJoRO4KsFCrIlmqmOwncLcYYomGf4db9WKqAoNuOdo9d7aFomlj+a6S5n8iVUajUKfB/HxYLQ6TTY7zsv2QBIZ8TARfN/XsR98VG2vMvZksoVTnTBf8oAERaFuncFACaPQ+c+5Twq45RO8idGWmWAhjnNCgmtoCnl8D7Ggl7mxkzRiGUAXjBGM39ezFiKQBlfu7cSMhrqJcAYKP0l+b+vRlx7ovZX5T9d3/Coa/B1v0UZX/tRLP8N22cuS9e+WG2PT8FgEjLomEvErkyipOvAM88DTz3SeFXHQeBqAvQznQHnHDbrYY6CRQ3NhGTLQZ7MRr2YX5tHeuVutpDkcxUMm+6jcBeDHZ4YLUwQ3UEidE9EDsW6fRifm0dpapx5r7Q+ZPm/v30tYllQMaZ+1MmbAO9V5GQFzMrRdTqnNpDkYx48EPubbhTyPqPGajxj7jnHzXZ/V8UACItEzdM2ZvPAfUKwNeFX+PnVB7Z3lRqHGZX12kjuAOMMURDXsO9BFoYMGSidpB7NRr2geeNcxK8XqljIVOii0B3wG61YLDdbZjvHgAmU3k4rBb0t7vVHormienycYOcBBcrNSxmSvQSuAPWRhmQkbq/imX/PQEq+7+f0bAP1TqPuVVj3P2YKVaRLlRo7u+Ay25Ff5vbUBlgk8kCPA4ruvzmKvunABBpmZgSOOF+ALA6AGYVfo2cVXdgezSzUkSd42kx2CGj3QE1lSpgsMMDh40ej/cz2iXMkUmDlIFRB7Ddebd/Gqdn/1jX2Z6bxZIFDHcKmU3k3jbugjDGs1+c+3QB9M5EOr2GCf4BQglQlMr+d0TMlDDKuj+Vosvfd8Noe36zlv7SGw5p2XCnB4wBb3D7gY88Czz1CeHXwTNqD21PaCO4O9GQF7Or66gaJB2YWsDvXKTTC8aMtxGkEqAdmD2PX1n+l/jw+p+B13nJr2iKSn93LGKwS8A31n36/nciGvZiOl1AnTNGK3gqAdq50TAd/JhZNOTFVKoAnjfG3Dfrnp8CQKRlYkrgVCovBH3Ofky3wR9gow20GR8IexENeVHneMyu6P9CUJ7nETfpYrAXLrsVA+1uw5QCTJn0MsA9iZ+Dla/Cxjhdl/yK6hyP6XSBAv875HPaEPY7DXMXhPjPIXa2JPc2EvKiWucxb4AyoHKtjrnVIpX+7lCbx4GQz4HJhDHm/lSyAKuFYbCd5v5ORENe5Eo1pPIVtYfSMjPPfQoAEUmMhn2YSBjnNCDkcyDopnaQOxExUEcQsRUsBQB2bjTsM9RJYF/QBbfDqvZQtC9yFrzVgRpvAWex67bkVzS3WkS1TqW/u2GkUoBYqoDeoAseh03toeiCGCidMsBdINPpIjh+I7OF3N+Iwdb9ISr737HRrsbcN8D3P9OY+2a887WlP+2MsQ8yxq4xxjjG2GmpBkX0Z6zLh6lkAZwB0oGnKANkV0YMFAASg5hjJjwN2KvRsIHmfjJvypOgPRk8g8JP/BV+u/ZB/M3J39d11iewqQU8Pft3bKRRCmAEk7Tu74qYKWWEO6CmqPvfrhnp4GeSOn/uihgonTDA9z9l4tLfVsOdVwH8KIAXJBgL0bHRsA/r1ToWMvpPB55KFmgjsAvtXgfaPHZMGqAUoBkA6qLvf6dGwl6sV+tYzJbUHkpLeJ6neyB2KbD/cfxv5wfwSmVU7aG0jMr/dm+sy4eVQgUrBX2XAvA8j6lE3nRtgFsR9jnhc9oMcfAjZjFR+d/OjYa9WC1WdT/3OY5HPF2gwP8u9AXdcNuthigBbK77Jtz3tRQA4nn+Bs/zt6QaDNGvjUvh9P1AyJaqSOXLpnwYtGIk5DXEadBkMg9/424LsjPiS5Pe04GT+TJy5RptBHdprMtniI1gLJVH0G1Hh9eh9lB0QywF0PuzP5ET5j6VAO0cY6x5GazeTSUL6PI74XdR2f9OjRlk7i9mSyhVOcr83QWLhWEk7DVGBlAyj5DPgYAJ575iBY+MsV9gjF1gjF1IJpNKfSxRiLgY6P0eoI1UYNoI7obwEqjv7x4Q/vyOdvlM1w6yFc2WsDr//ptznzaCu2KUUoCppDlbwbZCLJXV+7q/kfnpV3kk+hINeQ3RAEAo/aU9326MGmTuU9OXvTHMnj9p3szP+waAGGPfYoxd3eI/P7ybD+J5/jM8z5/mef50OBze+4iJJnU0y4D0/UCgEqC9GevyIV2oYFXn6cATiTx997sknJ7YdJ/9R61g92Y0bIy5H0tRGcBu9be54bJbdP8SKO5b6Nm/OyNhLxYy6yhV62oPpSVTqQIF/nepv80Np82i+yCAuO5T9t/ujIZ9mF9bR7FSU3soe8bzvKn3/PcNAPE8/26e549u8Z8vKzFAog+MMYyF9R8Rnkjk4bBaMNRBteC70cwA03EAMFuqIpErm/Y0YK8YY4boCDKVzMNps6Av6FZ7KLpihFKAXKmKxUypWdJEdsZiYRgJ6b8D6EQiD5/Thu4Alf7uxliXDzyv77m/UqhgrVil4O8uCWVARlj3C/A6rFT2v0tjzU5g+j34S+bKyJVq2GfSdZ963hHJGKEUYCKRQyTkgc1KU2M3xsJC6ryeXwQmKftrz4ww98USIIuFSoB2o1kCqOPvX8xeo7m/e2Nd+p/7VPq7N0Yo/RdLgOjgZ/dGw17dZ/5ONjp/0tzfHSOs+2Yv/W21DfyPMMbmADwK4G8YY1+XZlhEj8a6fEjlK1gr6rcUwMzpgK3obxfSgfW8ERTHTqnAuzfa5cVytox8Wb/pwEIZAH33u9Xf7obDZtH1i4A49816EtgKsRRgvaLfMqCJRL55nxHZuWjICwvTewCISn/3ajTsw+xqUdclgBOJPD339yAS8sDC9H3344TJS39b7QL2JZ7nB3ied/I8383z/PdLNTCiP6NdYicwfT4QStU6ZlaKtBHcA2sjHVjPG8HJZIHK//ZI753AKjUOMytFjIRo7u+W1cKELoA6nvtU+rt3ei8Dapb+dlEAYLecNiuGO736XvdTwtwfaKe5v1ujjbkfT+sz+C+W/o5107q/W06bFUMdHl1f+2D20l+qcyGS2egGpM/FIJ4ugOOBsW5zpgO2aqxL3wGgiUSeyv/2SO/pwNPpAuocb9qToFaNdvl0vhHMIRry0tzfA73fAdUs/aWDnz0Z1fnBz1SygOFOD6xU+rtrYra0Xvf8zdJfmvt7InQC0+d3D1DpL+12iGQG2j1w2Cy6fRGYoI1gS8Z03hVg0sTtIFs11CFsoPW6GRin+59aMhr2YXZFv6UAVPq7d3ovBaDOn60Z6/IhliqgWufUHsqeTFIL+D0TM2b1GvwdX84BAPbRoe+ejIaFuV/T6dw3e+kvBYCIZPReCjCRyIMxqgXfKz13BSjXGuV/9BKwJw6bBcMdHh1vBIW5TwHAvRkNe8HxwHS6qPZQdk0s/aUOYHuj91KAiSSV/7ViX5cPNY7X5dwv1+qYThexnwIAe+J2WNHf5tbtui+W/g62U+fPvRjt8qFS5zC3uq72UHZNLP01856fAkBEUnouBRhP5DHY7oHLblV7KLqk51KA6XSRSoBaNBL26TL4BwDjiRyGOjxwO2ju74WeSwBjKaH0ly4C3Ts9l/9OUulvS/TcCSyWotLfVo3quAvgRELI/qK5vzfiuq/HuU+ZnxQAIhLTcynAJJUBtEQsBdDjYiBmrVEGyN6NdnmbG2q9oU4grdHzRpDK/1o32uVDPFXUZSkAlf+1ZlTHBz/jy8KYKQNo70bDXkwmCuB0uO6P09xvyZiOD34oAEQBICIxvZYC1DkeU6mCqR8GrdJzRxBxzFT+t3ejITEdWF9zv1bnMJUsYKyLXgL2Ss+lABOJPCxMaGlN9mYsLMz9WZ2VAoilvxT43zuf04a+oKt5n4qejNPcb9lo2If1ah1L2ZLaQ9mVUrWO2VUq+29F0GNHyOfU5Z5/ksr/KABEpKXXdODZlSIqNY4WgxbptSPIRDKP/jY3PA6b2kPRLbGNst6CADMrRVTqHGUAtUivpQCTiTyGOqj0txV6XffjqaLQ+ZPmfkv0Wvo/vpzDcKeX5n4L9Fr+O5nMg+eBfXTw05KxLq/uvntAWKvM3vnTvP/kRBYjIR8Y099iQOmA0hjr8iGe1l9XgMlkni6BbVGzI4jOOoGJJUD7uun7b4VeSwHGEzl67rdIr2VAE1T6KwmxHbT+5j6VALWqefejzoK/E7TuS0I89OV5fc39iWQeYyb/7ikARCQllgLo7SSQ7oGQxliXD9U6j+kV/ZQBcRyPyUTB1O0gpdDudaDT68BUSl9zn14CpTHWJZQCLOqoFKBW5xBLUflfqwIuO7r8+isFEDt/0txvjTj359f0UwJYqXGIpwrYb/KXwFaFfA4EXDZM6qwBxPhyHlYLQ6STyv9aMdblQ7ZUQypfUXsoO1aq1jG7UjT9np8CQERyo2H9lQJMJPLo8jsRcNnVHoqu6bEUYCGzjvVqvVnCRPZuNOxrXqypF+PLOfS3ueF1UvlfK5qlADqa+9MrRVTr1AVICnrsBCaW/lL3v9aIZTR6KgObThdQ43gqAWoRY0yX5b8TiTyGOz1w2Og1uBV6bAAhdv40+7pPf/KJ5MYai4Ge0oEnkpQKLIXRxiXKeloMxJMrs58GSOFdvjjOLv8p+JnX1B7KjlnnX8c/dX0FmD2v9lB0TY93QVDpr3SEMiB9lQJQBzBp6LEM6PYyzX2p6PHQdzyRoz2fBMZ0WP5L676AAkBEcqNhH0pVDgsZfaQD8zxPLeAl4nfZ0RNw6WojSIuBRGbP4+9N/RL+Ef8XwJ88rYuASn36Nfx69hP4sbXPAs/oY8xatVEKQHPfjEbDPuTKNSRzZbWHsiMcx2MqmafyLwl0eB3o8Dp0dfAznsiBMZr7UhgN+7CcLSNbqqo9lB2p1DjE00W6/0cCvUEXPA6rruY+df4UUACISE5vWSDL2TLy5Rp1AZLImM46gkwk8mjz2NHhdag9FH2Ln4OVq8LGOPD1KhA/p/aI7it383nYUYMFHFCv6GLMWsUY010Z0EQij96gCz4q/2uZ3sp/59fWUabOn5IZC/uadynqwTh1/5OMuHfWS/n3dLqAOpX/SYIxprsMsIlEHoM09ykARKS3kRKoj0vhxhM5AKAuUBLRWynAZDKPsbAPjDG1h6JvkbOAzYEabwHHbML/1rhxzwOowgaeWQGrQxdj1jI9BoAoACCNZgBIJy8ClP0lrbFufXUDGl/O0aGfRPZ3C4GU8eWcyiPZGWr6Ii2hA6g+nvtAY92nzE8KABHpdXgdaPPYdfMiQBtBaY12+VCo1LGY0Uc3oMkElQFIYvAM8DPP4vfYT+IPR35X+N8a9wa3Dx+qfBzlJ/8V8JFndTFmLdvf7UcqX8FKQfsdQTiOpwCQhLr8TvidNt28CDTXfXr2S2Is7ENmvaqLbkBV6v4nqYF2N9x2a/NeJa0bX6buf1Ia6/JhIVNCoVxTeyj3tdH5k757CgARyTHGsL/Lr5vTgIlEHgGXDWGfU+2hGMKYjroCrBYqSBcqtBhIhA09jBd7Pozn8xG1h7Ij48t5LPiPw/WuX6bgjwT2NU6Cb+vg2S92/6O5Lw3GGEZ0VP47kcij0+tAO5X+SkJPJYDTaaH7H7WAl4bFIpT/itn0WjeRzAtBK+r+Jwk9zf3Z1XVU6hxVfIACQEQm+3t8uLWc00U6sHgKTCVA0tDTYkCpwNIb6/LjdkIvcz9HF0FK6ICOAkDi3Kd7IKQzFvbp5h6QyWSeXgIkJD5HJ3QQBBAPJ2nuS2dfl08Xz31A+P4p8086+3W07lPFxwYKABFZHOj2I1eqYSmr/TKgSWoBL6mQz4Gg266Lk+BbjQXrQA9tBKWyv9uHtaL2SwF4nsc4lQBJqjvghN9l08VGcJI2gpI70ONDIlfGWlEfc59KQKTTExAuU9fTwc9ol7m7AElpX7cfy9kyMuva7gRW53hMpQrNbFXSuuFOLxw2iy7WfQoAbaAAEJHFRimAtjcDq4UKUvkKnQRJiDGGfV0+XZQA3l7Kwe+0oTfoUnsohiHOJa1//wuZEoqVOs19CTHGsL/br/nnPrBRAkTd/6SzXyfrfiInvKgepMC/ZIRuQF5dHPyMJ4QSII+Duv9JRSyn0/q6P7tSRIW6/0nKamGNDDDtz/2JRB5dficCLrvaQ1EdBYCILJobwSVtLwbiZoUWA2kd6PHj1pL2y4BuLeewv8dP5X8Sam4ENX4S3CwDoBIwSQkBIO3P/fEElQBJTcykvKXxl8BbjX3JfsoCkNSoTroAji/n6LuXmF6Cv1T2Lw9x3de628s5yvhvoAAQkUWH14Gw36n5B8JNcSNIDwRJHejxI1uqYTlbVnso2+J5HrdpIyi5sN+JoNuu+blPXYDkIZYAJvPanvvUAUx6PZnL+Keur2B98hW1h3JPYgCIXgSktV8sAypqtwyoVucwlSxQC3iJ9beJncC0ve6LF1XTs19a+7v9WMyUNF0CWOd4jCdozy+iABCRzf5u7V8Kd2spC7/Lhj4qAZKUeBnszaWsyiPZXjJXxlqxigOUASKpjRJAjZ8ELucR8jmpC5DExM2Vlr9/8a6K/fQSIJ3Z82B/8sP4x/g/+Mj4PwFmz6s9om3dWs4h7HdS+Z/ExHVfyxlgMytFVOpUAiQ1i4VhX7f2O4FNJPLoDlAJkNQO9Gi/BHBmpYhSlaPAfwMFgIhsxLsgOE67pQC3lnI40E0lQFLTQ1cAcZNK2V/SO9Djx82lrKbLgMYTOToFloE4929puPxXDEwf7A2oPBIDiZ8D6hVYwcGKKvjYObVHtK3by7lmsIJIp1kCqOGDH7EEiLIApLevS/v3v40v5+nePxnooQSwmflJcx8ABYCIjA50+7FerWN+bV3toWyJ53ncWspRAEAG7V4HuvzOZomdFtFiIJ+DjRJATXYBnD0P/oVPwZO4SPf/yCDkc6DdY9f0SbA49+kSYAlFzgJWhxD+4W1Y7Tqj9oi2xHFU+iuX3qALfpdN0+u+mKFA939Jb3+3D8lcGasFbXYBrDfmPj33pdff5obXoe0SwFtLOTBG9z6KKABEZLNP4yfBS9kSsqUaLQYyOdCj7Uvhbi/nEPI50Olzqj0UwxEzK24uauz7nz0PPPM08Pwn8Yf8f8Cjjkm1R2Q4jDHs03gnsFtLOXQHnGjzUAmQZAbPAB95FrMP/DN8qPJxXLUcVHtEWxLLAGjdlx5jDAcbDSC0ajyRR3+bGz4ndQCTmtYvgY+nCyjXqARIDuK6r+W5f2s5i6EOD3X/a6AAEJGN2A3otkZPgm9SBoisDnT7Mb6cR12jJYC3lvN0CiyT/c07oDQ29xtlKoyvw44ajlWvqD0iQzqo8S6AN5dyONBD5V+SGzwD37v/JS7y+zUb/KfSX3kd6PHjloa7AN5epsvf5XKoefCjzRJA8UDqEJX+yuKAxjuBiVd+EAEFgIhs/C47+tvcmo0Ib5QB0GIghwM9fpRrHKbTBbWH8jYcx2OCygBkE3Tb0Rd0ae8uiM1lKrCh/chTao/IkA72BJAv1zC3qr3y31qdw0QyTxkgMun0ORHyOTW77t9ujIvu/5LHgZ4AcqUaFjLaK/+t1jlMJmjuy6XL70S7x669g5+GW0tZWBh1AJPL/h4/0oUKUhrsAFqq1hFPF2nub0IBICKrgz1+3NDoacDtpRx6Ai4EPdQNQA5imq0WTwTm19ZRqNQpACSjg70B7W0EG2UqfxP6KH7J+e/hHX1M7REZ0sFejWaAQSgDqNQ4OgmU0YEe7XYAvbWcw1CHB14qAZLFQQ1fBD2VLKBS5ygDRCZCCWAANzT43AeAG0s5RENeuOxWtYdiSAc0fO3HZFKoRqDMzw0UACKyOtjrx2SygHKtrvZQ3uYmXQAtq31dfjCmzZdAMSgpvqgS6R3o8WMymUe1zqk9lDsNnsF/q/4QuP6H1B6JYQmdFaHJ4P+NRhkA3QMhn/3dQhmQFst/by1R5qecNFv+i83d/+j7l8vBXj9uL2l37lPGv3wONeaVFtd9avzwdhQAIrI61BtAneMxrrELQakMQH5uhxXDHR5NngZcX8yCMVoM5HSwx49qncdUUlslgOVaHZPJAm0EZeR12jDc4Wm+cGnJraUcrBZGZQAyOtQbQKnKIa6x8t9StY6pVAEHeui7l8tG+a821327lWE0TN+/XA71BLBerWNmpaj2UO6QL9cws0IlQHLq9DnR5XfiukYDQA6rBcOdXrWHohkUACKyElNttRYRpjIAZRzs0WAZEIQ/j5FOL3UDkJEYYNFaEGAiIaQC0ymwvA72BLTXBQ5CZgKVAcjrsEbXfXHuH+4Nqj0UQzug0U5gNxZzGOvyw26lVx+5NMt/NTb3xZJUyvyU16HeQDPLVktuLuUw2uWjub8J/Zsgsop0euGyWzQXBKAyAGUc7gsgni4gX66pPZQ73FjMNV9SiDxGwl7YrUxzc18MSlAGkLwO9voRSxdQrGhr7t9aztJzX2ZjXT5YLUxzAaDrC8J4DvfR3JfTgZ4AJpN5VGraKv+9uZhtlqkQeezr8sPCoLl7gKgDmDIO9QYwkchpbu7fWMzSnv8uFAAisrJaGA50a+8iaDEVmO4CkNfh3gB4XlsXQuZKVcysFGkjKDO71YLRsE9zJ4E3l7Jw2iyIdHrUHoqhHWrM/dsaKv/NlaqYXVnHQXruy8plt2Is7GsGXLTi+mIWnkZpMpHPoV6h/HcioZ25n86XkciVcYgC/7JyO6yIhLya2vMBwh7U67Civ82t9lAMTZz7k0ntzP1kTpj7FPi/EwWAiOyElMAseF47l8JdW8hirMsPh42mgJzEB66WXgTE1HQ6CZKfFtOBbzYugbVRKrCsxBctLQUAxWy0I/009+V2qNevubl/fTGLgz1+WCxM7aEY2pE+ocROS3eB3KR1XzEHe/yay/y90Wj6QnNfXlos/xXHQhlAd6IdMJHdod4AVotVJHJltYfSdH0hiyMUDZZdb9CFNo9dUxtBcTGgjaD8DvcGsJQtIZ3Xzty/sZij7C8FDLS74XVYNfUicG0+AwB0B4wCDjXm/kqhovZQAAA8zwtlALTuy064Y8uCawsZtYfSRJ0/lXOwJ4DpdFEzpf8cx+PGApUAKSEa8sJhs2gqAHSdAkBbogAQkZ14675WggCJXAmpfJkeBgpgjOFQTwDXNXQSfH0xh6Dbjt6gS+2hGJ4YZL2mkQywZK6MVL6MA1QGIDuLheFgb0Azz31A+HPY6XWgO+BUeyiGJwZatPIiMLe6jlypRoF/BVgtDAd7AprK/L2xmEPY70TIR3NfbuIc00r25+xqEblyDUf7KfAvN5vVgv3dPm0d/Cxk0d/mRtBjV3somkIBICK7gxpLCaSLIJV1uC+Am4tZ1OrauBTuRuMiSMYoFVhuhzUWABJPpCn7TxkHe/yaKv+9tiBkgNDcl9+h3gBOsdtwvPI7wOx5tYdDp8AKO9InBH+1MvdvNMr/iPyO9mtt3RfGQeu+Mg71BDTzvgcA1xcy9L63hZYCQIyx/8IYu8kYu8wY+xJjrE2icREDCbrt6G9za+Y0SFwM6CRQGYd7AyjXOMTTBbWHgjrH4+ZSlr57hbR5HOhvc2umFOAaBX8VdbQ/iFyphpmVotpDQaXGYTyRo+9eIaHVS/hz52/g1OSngWeeVj0IdGMxC8ao86dSDvcFkCvVMLe6rvZQUK7Vae4rqCfgQqfXgavzWln3M7BaqOmLUg71BpDKV5DIldQeCoqVGqZSBQr8b6HVDKBvAjjK8/xxALcB/KvWh0SM6Gh/QDOnAdcXsxjscCPopnRAJWgpCySeLqBU5SgApKAjfdopBbg6n0Gk04OAi+a+Eo41Uu6vzqv//Y8ncqjW+eYFtURm8XOwowYrOKBeAeLnVB3O9YUsoiEvPA6bquMwC3GeaSH4P76cR7XON59HRF6MMRzpD+KqZtb9LPZ1+eCyW9Ueiiloac9/aykHnqdDv620FADief4bPM+Lt3y9CmCg9SERIzraF0QsVUC2VFV7KHQZnMJGwz44rBZN3AUinkgdpZdAxRzpCyKWLqCggQshry5kcIReAhSzr9sHu5XhqgZeAqkMQGGRs+AsdtR4C3irA4icVXU4NyjzU1EHuv2wMG10AL1C677ijvQFML6cQ7lWV3souLaQpcC/gsQ19uqc+us+lf5uT8o7gD4K4GsS/jxiIEcHGm1BVd4MFMo1xNIF6gKjIIfNgrEun+rfPQBcmcvAYbNgX7dP7aGYxpG+AHhe/TvAMsUqZlfW6SVAQU6bFfu7/ZooBbi+kIXHYUWk06v2UMxh8AzOn/0sfrv2QUy+93PA4BnVhiLOfQr+KcftsGI07NNEFsDV+Qz8LhuGOz1qD8U0jvYFUeN43F7KqzqORFZo+kJzXzl+lx0jIW8z8Kqm6wtZBFw2DLS71R6K5tw3AMQY+xZj7OoW//nhTb/nEwBqAD53j5/zC4yxC4yxC8lkUprRE93YKAVQ94FwcylL6YAqONYfxNX5jOoXQl6Zz+BwbwB2K91/r5QjGrkQUixFEC+oJMo42qeNuX99QbgE1mqhC6CVMnTinfh0/YfxanVM1XGILyLH+9tUHYfZHO7TRhfAq/MZHKHL3xUlrrNqZ39S5qc6jjb2/Gqjxg/bu+9bEM/z7+Z5/ugW//kyADDGPgLgBwF8iL/HDo/n+c/wPH+a5/nT4XBYun8CogshnxO9QZfqEeHLc/QSqIZjA0GsFquqXgjJcTyuLWTpHgCF9QRc6PA6VL8L4mqzAxh9/0o62pj7Cxn1LoTkOB7XF6kMQGkD7W60eey4onIpwOX5NQCgZ7/CjvQFsJgpIZ0vqzaGap3DjaUcffcKG+rwwO+yqR4EED+fDn2Vdaw/iIWMkH2llkqNw/XFLI4PtKk2Bi1rtQvYewD8CoCneZ5Xv80H0bSj/UHVA0BX5jII+53oCbhUHYfZnGg8gC+r+CIQSxeQL9doI6gwxhiO9Kl/CfzV+Sz629zo8DpUHYfZHBXvA1Dx2R9vzH0K/CuLMYZjGln3hzs9CHro8nclHWtkXKm57k8k8qjUOByldV9RjDEc7lV/3b+2kMVwpwd+avygKHG+qfnsv72cQ6XG4fgAzf2ttFoH8d8B+AF8kzH2FmPs9yUYEzEo8SLovIqXwV6aW8OJgSClAypsf49wEbR4EqsG8QX0GC0GijvWH8StpRxKVfUuhLy6kKE0cBUc6g3AamGqBoAuza0BAJ0EquD4QBC3l9Wd+5fnMhT4V8GxgSAY25h/amheAE3fv+KO9gdxYzGLWp1TbQxXFzJ0758KxNJ/NS+CFgPPVPq7tVa7gI3xPD/I8/wDjf/8fakGRozn2IBwGew1lV4EcqUqplIFeglQgdNmxcFev6qlAFfmMnDaLNjXRRdAK+3EYBtqjRI8NeTLNcRSBXoJUIHLbsVY2KdcAGj2PHDuU8KvDZdmM3DbrTT3VXCsX7gM9uZSTpXPT+fLmF9bp1NgFficNoyFfapmAF2bz8DrsCJKl78r7mh/AOUah/GEOhdBp/JlzK2u48QgzX2lBVx2RNW8CHr2PDou/jc86Z7CYAddAL0VugmVKEZ8+bqq0kvglfkMeB60EVSJWArAcepcBnt5PoNDvQHY6AJoxT0w2AYAuKzSSfCVOWHuUxaAOoTy36z8F0HPngeeeRp47pPCr40g0KW5NRztp7mvhmONA5cras19MfOTToFVcXygDZfn1lS7BP7KfAZH+oKw0OXvihNL/y/Nrqny+eLnPjDYrsrnm51qF0E39gHfu/xH+EP8Gtjc68qPQQdoN0QU0+V3oTvgVG0j2EwHpAwgVZwYaEOuVMP0ivLXhXEcj2vzGQr+qaQ74EJPwKXaRvCt5kawTZXPN7sTg0GkGpkYsoqfA+oVgK8Lv8bPoVrncG0h23wZIcrqC7rQ6XWolgVyhRo/qEqY+xX55/4WqnXhEljK/FRHNORF0G1vrr9KuzS7Bgujua+WY/0BLKhxCXz8HPh6BVZwsPE1YV9A3oYCQERRJwbacEnFjeBAO10Cqxbx7h01skCmUgUUKnXaCKroxGBQtbn/1uwqIp0etNPcV8XJxgms7C8CkbOA1QEwq/Br5CxuLTUugqTgnyoYYzg2oN5F0JfnMxgJe+kSWJWo2QBCuHeOw8mhNsU/mwhz/8RgmzoBoNnzGLj2+/jhznl4HDblP5+odwl85Cx4ix013gJY7cK+gLwNBYCIok4OtSOWKmClUFH8s4ULoNsU/1wi2Nflg9NmUWUjKG5A6PtXz4nBNsRSBawVlZ37PM/jzZk1yv5R0cFeP5w2C96cWZP3gwbPAB95FnjqE8Kvg2eaF9A+QHNfNcf7gxhP5FGsKN8A4spcBscp8K+ag71+2K1MlYug35xZBQAKAKnogcYl8AUlm7/Mngf/zNP40cxn8Z8K//qO++CIco4PBGFhG/NQMYNn8LVTf4Dfrn0Qax/4grAvIG9DASCiKHEhfmtW2QdCunEZHJUAqcdmteBIX0CVDKCLM6vwu2x0CayK1DoJXsyUkMiVKQCkIrvVgmP9QWVOggfPAGc/1tz0XZ7NoN1jp4sgVXRyqB11jldh7q9jKVuism8VOW1WHOoN4PKs8gc/b86sIex3or+N5r5aHhhqA8cr3A68UQpsoxIgVXmdNhzsCeCi3Ac/W/h2PoIveH4cnYco+2c7FAAiijo+EITVwuQ/Cb7L5Xm6/0cLTg214/JcBpWasm1BL06v4oHBNroIUkViCaDS9wCJQYeTQ3QRpJpODrXhyrzyc//S3BqOD7SBMZr7ahEPft6YVvbg5+L0GgDgwWGa+2o6PqBOA4g3Z9dwcpDmvprEgx9Fy8AiZ1FnVAKkBaeGhRLAusJz/63ZNXrfuw8KABFFeRw2HOzxKx4Auji9CquFUTtIlT043I5yjcO1BeVOg/LlGm4v53CKAgCqCrjsGA17FS8FeGt2DQ6bBYd66SJINT0w2I5KjcPNJeW6QBYrwtw/QZmfqmrzODAS9ipeCvDG9CpcdgsO99HcV9MDg+3Il2uYSCrXDny1UEEsVaDAv8o6fU4MdXjwlpJ7/sEzeGbf7+L/438c3M98mUqAlDJ7Hjj3qTtK7k425v54IqfYMNL5MqZSBZyO0Ny/FwoAEcWdHFI+Ivx6fAWHewN0GZzKxJNYJU+CL82ugeOBU3QKrLoTg214c0bZlsBvzqziSF8ADhstd2oSs0CUDP6/NSPMfXoJVN+DQ+24qPDcf2NmFccH2mC30txX0+nG2nshrty6v5H52abYZ5KtPTDYpvjBz1+vDuLVvp+FbfgRRT/XtBqt1/HcJ4VfG0Egcd+t5Lovvl9Q5ue90apIFCdGhCcSypwGVesc3ppdo4eBBnQFXBjscCsaALrY+Cy6A0Z9D0U6kG6czCqhWudwZT7T7EJF1NMbdKHL71S0FOD1+CoYo+CvFpwabsdKoYJ4uqjI55WqdVybz9C6rwHDnR6EfA5ciK8o9plvzqzCwkD3PmrAA4NtWMyUsJQpKfJ5pWodV+czODncpsjnETTvXQJfF35t3LsU6fSgw+to7sOV8MbMKhyNewfJ9igARBS3ERFW5oFwfSGLUpWjdECNeHCoHRemVxU7Cb44s4p9XT4E3dQGWG0PRZQ9Cb65KLQBfoBOgVXHGMPJoTZFy4AuTK/gQLef5r4GKJ39eXkugxrH40HK/lIdYwynhztwQcGXwDdn13Cwh7K+tUCc+xemlQkAvjW7hmqdx5lIhyKfRyDcs2R1AMwq/Nq4d4kxhpODbbio4Lr/RnwVR/sDcNmtin2mHlEAiCgu0ulBm8eu2ANB3HScHqbFQAseHG5HMid0ZZMbz/N4k7K/NGM07EO7x47zCp0Ei5/zEAV/NeHB4XbE00UkcvKfBNfqHC5Or+IhegnQhLGwD36XTbF1Xww0UfaXNpyOtGNmpYhEVv65X+d4vDWzRuVfGnGkLwCPw4rXY8qs+6/HVsAY7fkVNXgG+MizwFOfEH7ddO/SyaE2TCYLWCtWZB9GuVbHZcr83BEKABHFMcaELBCFsgDemF5Bf5sbPUGXIp9H7u3BxqKsxEnwVKqAtWKVLoDWCMYYTkc6FCsFeG0qjaEOD3qD1AZYC85EOwEA5xV4Ebi5lEOhUsdDUXoJ0AKLheGBwTbFSgEuzqxiJORFh9ehyOeRe9vIApH/+7++kEWuXMMZmvuaYLNa8OBwO15TKAB0Pt7I/PRQ5qeiBs8AZz/2tku3xf23EvcAXZ3PolLjmu8ZZHsUACKqeGSkE1OpApZlPg3ieR6vx1cpA0BDDvT44XPaFAkAiS+aD9L3rxlnIh2KZIFwHI/X4yt4mF4CNONoXwBehxWvTcn/IiDOfXr2a8eDw+24tZxDZr0q6+fwPI+L06uU/aMhR/qCcNkteF2B4P9rsTQAYZ9JtOHhaAduLedkzwKhzE/tOTnUDruV4dXGvJTTG40yQ8oAuj8KABFViAvzq1PyPhBmV9aRzJXxIC0GmmG1CHeBKLERfGUyjS6/EyMhr+yfRXZg9jzel/lznGK3Zc8AHE/ksVqs0imwhtisFjwY6Wi+oMnpQiPzk7K/tOPhaCd4Xv4MsMlkHulCpdl9iqjPYbPgxECbIpnfr06lEQ150R2grG+teCjSAZ6X//6/G4uU+ak1bocVDwy24dVJBdb9+CqGOz0I+52yf5beUQCIqOJwXwB+pw2vynwSLN4BQhtBbXlkpBM3l3JI58uyfQbP83hlKo1HRzvBGJPtc8gONdqE9l78bXzO8RtYuPJdWT/ufCPI8HCUToG15OFoB24v57FSkO8kmDI/tenkUBucNgtekflF4OXGz398LCTr55DdeSjSgeuLWRTKNdk+o87xOB+jzE+tOTHYBofVIvv9f+LPpwugteXRkU5cmc8gV5Iv+5PjeJyPr1D21w5RAIiowmphOBPtwGsyZwC9PJFCh9eBA91+WT+H7M5jo8JL+Ssyfv+TyQKSuTIepTRwbWi0CWV8HQ5Wg232JVk/7rXYCnoCLgx2UAaIljwyImzOzsuYBRRPF5HMlXGaNoKa4rJb8eBwO16eTMn6OS9PpDHQ7sZgh0fWzyG7cybaIQRoZAwC3FzKIluq4eERmvta4rILWSBy3wP0emwFgx1056fWPDLSCY6HrJn/1xezWCtW8fgY7fl3ggJARDVy3wPE8zxemkzhsdFOWCyUAaIlx/qD8DttzZNaOYjBpUdHaTHQhE1tQjmLHc9mRrAqUxYIz/N4LbaCh0c6wOZeB859SshAIqo71t8Gl90i64vAi+NJAJQBokWPjQrZn3JlgHGckPn5GD33NedMtAMOmwUvjcsXABSzyinzU3vORDtwdT4jWwYYZYBo16nhdjisFlmrPl6aEJ4rj4/Sur8TFAAiqpH7HqDJZB7L2TKeoJcAzbFZLXh4pAMvT8i4EZxMozfowhCdAmvDpjahUz/w57jI7cdLMmUCxFJC9tcPtM0CzzwNPPdJ4VcKAqnOYbPg1FC7rBdBnxtPob/NjUgnzX2tEQPycmX/Xl/MIrNexWP0EqA5LrsVp4fb8aKM677Y+bGvjTI/tebhESEDTK4skOuLWawUKji7j+a+1rjsVjww1CZr+e+LEyns6/Khi+7+2hEKABHVyH0P0IuNUyY6BdamR0dDiKeLmF9bl/xn8zyPV6fSeHSE7v/RlEab0NGTT8HvsjXnqNTONX7uQ7gO1CsAXxd+jZ+T5fPI7jw60okbS1lZ7gCr1Tm8MpnG2X0hmvsadHygDR6HVbbsT7G8jDI/temJfSHcXMrJ0gVSLC+j+3+06aFIB5w2C164Lc+6/93bQubnE2NhWX4+ac0jI524tpCRpQtkuVbH6/EVet/bBQoAEdVYLQwPj3TixYkkeJ6X/Oe/OCGcBNE9ANok1unKkQV0e1noAvMIvQRoks1qweOjIZwbT0k/92fPw3v+d/EDbTPoOPJUs+wMVodQhkZU9+T+MHh+I1AnpUtzGeTKNTxBp8CaZLda8FCkQ7b7316eTGM0TB2gtErMyH55Qvrv/9LcGtaKVZzdTwEALXLZrXh4pBPfvZ2Q5eefG0/icG+AOkBp1KONe4DkyP58c2YNpSpHAaBdoAAQUdW7DoYxu7KOyWRe0p9bq3N4bSpNDwMNO9DtR6fXIctJsLjBoO9fu87uD2F+bR1TqYJ0P3T2PPhnnsb7Vz+L3y3/O+GvNcrO8JFnhQwkorpj/UF0eh14/pb0LwIvjqfAGN0DoGWPjXZiIpHHYkba7M9qncP52AqVf2nYkb4g2jx2WcrAvnMzAQsDnqTgr2a9Y38Yk8kCZleKkv7cQrmGN6ZXcXY/ffda9eBwO7wOK56/lZT8Z780kYKFgS5/3wUKABFVvetAFwDguZvSvghcnm+cAlMAQLMYY3hsTMgC4Thps0C+fSOBgz1+9NM9AJp1tpGmfe62hJuB+DmgVoaNcbCiJvzvRtkZBX+0w2JheMf+MF64nURd4rn/4kQSx/qDaPc6JP25RDrvbZvFP7R+GZdf+aakP/d8bAXFSp3uANEwq4XhsdFOvChD9ud3bidxaqgdbR6a+1r1jkZ21gvj0gYBXp1Ko1rn8eQ+yv7SKofNgrP7wvjOrYTkc//FiRSOD7Qh4LJL+nONjAJARFV9bW4c7PHj+ZvSLgbPN06CqBOItr37UBdS+TLemluT7GdmilVcmF7Fuw91S/YzifSGOj0Y7vRIexIcOYsas6PGW8Co5EvT3nEgjNViFZclnPv5cg1vzqxR4F/LZs9j8Cs/iX9u/zze+f+3d5/hUVznHsD/Z3e1agj13kFCQgKBsBDYGNObwRi3uF8S95LEuXac2OE+qde+uelx4hvbiZ2ADTa4BbAB04sxIESRBIgigaQVqIJ623buh12MwAIk7a52Z/T/fZF2Z+bofWDfnZl3Ttn3mFMnZt90rAbeOg2H/3m4m1PCUd3ciVO1zuv5XdfShcLKJkxLj3Bam+R8w8P9ERvki53OfPAD23BiHy8NcpKCndouOdf09AhUNXWiuKrFaW3WtXThsKERU9NY/OsLFoDI7aalR2B/2QU0dzpvYrCNR2swPimET4E93NQREdBqBDYdq3Fam9tP1sJilZg+kheCnm5yahi+Kj2PTpPFOQ3G5+J531/hk6DFEBzy5dFuSQ2HRgDbndgdfPuJWpit8uunzOSBynZBWIzQwQqt1QRT6U6nNCulxObiGtycEgY/vc4pbZJrTLcXaTYerXZamxcnAOZNoGcTQuCWEeHYXXIeJovVKW1KKbHjZB0mDguFt07rlDbJNaam2/Jz63HnXfNvKa6BlMDsjCintTkYsABEbjc9PQJmq3TaikBl9W04UdOCOZn8MvB0gX5emJAc4tQC0NbjtQj112NMXJDT2iTXmJMZhXajxWlPAysb2rH2Qhyac77P4o+HC/bXY2x8ELY78UnwhiPVCBuiR04S5wHwWEmTAa0eVqGFCToc0oxySrMnalpQ2dCBmRns+enpogJ9MDY+CF8cdd55f9uJWkQEeCMjeqjT2iTXmDIiHK1dZqctB3+qthVn6tswg72/PF5EgA+y4gKdOu3HpmM1iAv2xcjoAKe1ORiwAERulx0fhEBfL6d9IWw8ZnuqNIsXgoowKyMSJfYTuKPMFiu2n6jD1DRbzyLybBOHhSLQ1wvrjzjnSfAGezszOPxPEaalRaCwshE1zY4vCd1psmDb8VrMyohi7nuy+Fxg8RpYp/4Ej+On+Lg2xinNbrY/ROBNoDLMHRWForNNqGxwfDJgo9mKnSfrMDUtHEIw9z3dLSPC4OOlwbqiKqe093lhFYQA5oziQ18lmJYWgUOGRlxoMzrcVluXGbtK6jErI5K530csAJHb6bQaTEsLx+biGhjNjncJ/eJoDTJjhnL5d4W4OFfPpmOOFwEOlDegqcOEmRz+pQheWg1mZ0Q6LffXFlYhM2YoksP8nRAdudqtWdGQEvis0PEbgS9P1aPNaME83gR4vvhc6Kb8EIFpk7DleK1TFgHYVFyLMfFBiODy74pwsYf2Rif0Atp1qg4tnWb2+lYIP70OM9IjseFINcxOGAa2/kgVxieFICKAua8EM0ZGQEpgc7Hjub/zZB2MZiuHf/UDC0DkERaOjUFju+nrcdz9VdvSiYMVDfwyUJD4ED+kRwU45UJwdcE5+HppMZlzgCjGvNFRaOk0Y3epY0NAK863o8DQiNvGOKdHAbne8PAhyIwZirUF5xxua/2Ragz10WHiME78rxSzMyJR39rl8FCQqqYOFBgaMYuFf8VIDvNHWmQANjhhHqDVh88h2M8Lt/C8rxgLsqJR32rEvjOO5X5JbQtO1rRi/uhoJ0VGrjY6NhCJoX5Yffisw21tOlaDID8vjOfk333GAhB5hMmp4Qjx1+PfDn4hfHHUNhnYnFEcAqIk80dHI7+8AYYL/e8O3mmy4LOCc5iTGYkh3pwEVCkmpYQhwFuH9Q52B/+syFZE4IWgsiwcE4PDhkZUnO9/7pssVmwursHMkZHQ63hZoxSzMiLhr9fi44OVDrXzyUHbdQOLv8oyJzMS+WUXUN/a1e822rrM2HSsBreOjoaXlrmvFFPTIuCn1zrc+3NdUTWEsA0pJGUQQmDR2Fh8VXoe1U39H/7dYbRg07EazEiPhI6532f8FyOP4KXVYP7oaGw+VoMWB1YDW7XfgPSoAKRFcjIwJbnzhjgIAXx4oP83AtuO16K504w7x8U5MTJyNW+dFjNGRmDjsRp0mfu/GtjagipkJwRx6KfCLLDftK8t7H8voB0n6tDUYcI8Fv8UxU+vw7zR0VhXVI0OY/9yX0qJjw9UIjcpBImhHPqpJAvGxMAqgX8f6v+Dv83FNegwWbCQxT9F8dVrMXNkJDYcqer3amBSSqwrqkJOYjAiOfRTURZlx0JKONQLaP2RKrR0mXH3Dbzm7w8WgMhjLMqOQZfZ2u+VIY6cbULR2SbcNz6ek4EpTGyQL25OCcPHByr7PR/EJ4fOIiLAG5NSwpwcHbnaXTfEobHdhPVF/RsOUFLbiuKqZtyWxZsApYkN8kVOYrBDw8BW5FUgIsCbS0ArjSEP3/NagxHGY18v3tBXBysacbq+jTcBCjQiMgDjEoKwIq8CUl5x3jfkAbt+b/t5DasPn0N0oA/Gc+U/xZmfFY2GdhN2nerf1A+HDY04Xt2ChWNjnRwZuVpymD+yE4LwqQPF35X7DUgM9cPEYcz9/mABiDzGuIRgxIf44tND/esFsirfAL1OgzuyeSGoRPfkxONsYwe+Kj3f52MvtBmx7XgtFmXHcgUgBZo0PAxJoX54b295v45/b285vLQCC8awB4gS3Z4di+PVLThY0dDnYysb2rHtRC3uHR/PISBKYsgDli5EQsEfscL7VRz+amO/mvnoQCV8vbS4NYu5r0T35ybgdF0b8rrPBWP/bGDrK7afVykC1TZ3YufJOtw2JgYanvcVZ1paBCICvLH0q/6d99/dWw5/vRZ3ZLMApER32M/7xVXNfT62rL4N+85cwLdy+MC/v3i1RB5DCIH7xidgd8n5Pn8hdBgt+PTQWdw6KgqBfl4uipBcaXZGJIb66PDhAUOfj/0w3wCzVfJCQKE0GoEHJyQiv7wBx6v7lvtNHSasyjfgtjExXAVEoe7MjkWAjw5vf3mmz8eu3G/7vrh3fLyzwyJXKtsFWIwQ0gIvWOB3bk+flwTvMNrmfZs3KorzvinUgqwYBPjo8H5exaU37Z8NSIvtZ9muHo/911dlsEiJByckDFC05Ex6nQYPTUzEjpN1KK1r7dOxF9qM+KywCneOi2PuK9SCrBjodRos21PW52NX5RugEcBdnPKh31gAIo/y4IQE+Om1+PvO0306bm3hObR0mnHveF4IKJWPl+1JzrqiKpxr7Oj1cZ0mC/7x5RncnBKGkdFDXRghudLdN8RBr9NcuxdQD8MCPsw3oN1owSOTkgcgSnIFf28dHpiQgPVFVX2aCN5ksWLlfgOmpUUgLphzPylK0mRAqweEFkLnhTxk4M0dfTvvr8irQEuXGfezAKBYvvYeHOuOVKOhzWh7s9tnA1q97fUV2rrMeG9vOeZmRnHuJwW7PzcBeq0Gy74q69NxK/cbYDRb8fCNia4JjFwuxF+Pb+XE4eMDZ1HT3PvJoDuMFqzKr8TUtAhEBfKhX3+xAEQeJchPj/vGJ2BNwTmc7WURwGi24q9bS5ARPZRjQRXu8VuGAQBe31bS62M+PFCJupYuPDNtuKvCogEQ7K/HgqxofHrwLM73tCpMD8MCzBYr/rm7DLnJIRgVGzjwQZPTfPumJGiEwNI+3Ah8evAsalu62ANAieJzgcVrgOlLoFm8FinjpmNlvqHXNwKdJgve2FGKG4eFcv4XhXtoYiJMFivevPjgr9tnA4vX2F5fYVW+Ac2d5q+vGUiZwgO8sWBMND46UInmXi4AYzRb8d7eckxIDsEILviiaE9MHg6z1Yp3+tD797295ahv7cKTzH2HsABEHufRycmQAN7e1bsvhFX5BlRcaMeLc9I4FlTh4oL98K2ceKzKN/RqOIDJYsWbO0qRnRCEG4eFDkCE5ErPTE1Bp9mKP20+9c2NPQwLWH3YVih+ZFLSgMdKzhUd6Iv5WdH4YL8BFy72BLiGDqMFv990AmPjgzA9PWIAIiSni88FJr8AxOfi6SkpsFgl3upl79/38ypQ19KF52amujhIcrURkQFYNDYW/9x95tKy0N0+G1cymq14Z/cZ5CQGY1xC8ABHS872yKRktBkteKuXPQCX7SnD2cYOPDWVD/2ULiHUDwuyYvDe3nI0tV+/ANjaZcbfdpRicmoYJvCa3yEsAJHHiQ3yxe1jbV8Ip2parrlvh9GC17acwvikYK4AoxLPTkuBgOhVL6AP9htQ2dCBZ6emsPinAikRQ/DghASsyKv4Zu5fMSygNepGvLquGGPjgzA7I8o9AZNTfXdaCjpNFvz358euu+/bX55GTXMXlswfydxXgYRQP9w+NgbL95WjqunavX87jLbePxOSQzCRNwGq8PysEbBKiT9vOXndfd/cUQrDhQ48Oz1lACIjVxsVG4g7smPx1s7TOFPfds19z7d24c9bTmHKiHBMS2PhXw2emjIcbUYLXtvaw4O/K/xr9xlcaDPihdlpAxCZurEARB7p5Xkj4eetxYsfFcJyjWXBX9t6CrUtXXhxTjpvAlQiJsgXD0xIwMr9Buwuqb/qfmfq2/Dq58WYlBKKGSN5IaAWz81IhZ+XFq+sK758aeArhgW8eiQADe1GvHLHKK4AoxKpkQF4csowfHLw7DVzv6a5E2/sOI3ZGZEc/qMiz81IhYDA8ysLrnne/+VnR1HT3MWbABWJD/HDQxMTsSq/EkfONl11v5LaFvxlawkWZEWzAKAiL9+aDm+dBj9bc/Ty8/4V/rj5JNqNFvzX/JEDGB25UkbMUDw8MRHv7D6DfaevvgpwaV0r/ra9FDNHRmBsfNDABahSDhWAhBC/EkIUCiEOCyE2CiFinBUYDW7hAd74xcJMHDY04u+7eu4W+nlhFf62vRT35sQjN5k3AWry4pw0DAsfguc+ONTjnBBmixX/ufIw9DoNfnfPGBb/VCR0iDeem5mK7Sfq8NqWK3qB2YcFbG9Pwvt5Ffj2TcnIjOHcP2ryvempSAr1w5JPi9DY/s2hYG1dZjy6dD+sUuLH89LdECG5SmKoP36xMBN7Tp/HmztLe9xnTcE5vJ9nwDNTh/O8rzLfm56KyABvPL4sH7U9nPe7zBb86KNC+Hlr8fOFmW6IkFwlIsAHP5g1AjtP1uHdqywEsfrwWSzfV4GHJyYilXP/qMpL89KREOKHH35UgNYu8ze2t3aZ8eS7B+DtpcUvbx/lhgjVx9EeQL+VUmZJKccC+AzATx0Pichm4ZgYzM2Mwv9uOI7Xt5Vc9lRgT+l5/PDDAoxLCMIvF/FCQG38vXV446FxaDda8MS7By6bD6ipw4Rnlh/EYUMjXrljFKIDfd0YKbnCozcn465xcfjj5pPfWBXsi6PVeGLZAaRFBuD52SPcFCG5io+XFr++Kwvnmjpx9xt7LlsRsNNkwfffP4Rj55rx+gPjMDx8iBsjJVe4JycO87Oi8YeNJ/HunrLLzvubjtXgJ58UIScxGM/PYu6rTYi/Hv9YPB5NHSY8viz/0qpgAJraTVj8Th4OVjTiFwszETbE242RkissvjER09Mj8NPVR79RBNpSXIPnVxUgNykEL7Hwrzr+3jr87p4xqGzowIP/2HfZeb+x3Yjn3j+E03Wt+OsD2YgJ4jW/M4hrdbXrU0NCvAwgQUr59PX2zcnJkfn5+U75u6RunSYLXvyoEGsLzmFSSiiy44NRUtuKDUerERfsi0+evgkRQ7kMoFptOFKN51cdhpTAgxMSoNEIrCuqQnVTJ16al47HJnMVALUyWax4fFk+tp+ow9j4IMwcGYGCyiZsPV6LUbGBWPqd8Qjy07s7THKRPaXn8cSyfHh7aTErIxKh/np8sL8C9a1G/GrRKDw8kcv/qlVzpwnfXXEIO0/WYXJqGEbHBqLsfBvWFVUjPSoA//zO+EuFf0OebYL4pMk9ThhMyrPxaDWeXn4QPjoNHpiQAJNFYuvxWlQ3deI3d2dhUXasu0MkF+kyW/Ds8oPYXFyLm4aHYlJKGPaePo8vS+oxOjYQyx+bgAAfL3eHSS7yxdFqvLCqAN46DW4bEwN/by1W7KtAU4cJP7stE4tvSnJ3iIoihDggpczpcZujBSAhxCsA/gNAE4BpUsq6q+z3BIAnACAhIeGG8vKeu/gRXUlKiTd3nsaKfRWobGiHr5cWT04ZjscmJ8NPr3N3eORilQ3t+Pmao9hcXAtvnQZJof74n7tGc/WPQaDTZMEHeRVYtqccp+vbEB/ii2lpEfjR3HQM8Wbuq93Rc034zYYTOFjRgJZOM6aMCMfTU4dz4t9BwGqVWLanDH/acgqtnWZoNQJPTRmOZ6elQK+zd1435AFLF9pWBdTqr7pkOCnPyZoW/HnLKXxeWAVfLy1GRgfgR3PTmfuDgNFsxevbSrCuqAqnalsRE+iDu2+Iw6M3D0OgH4s/aldS24qXPi7E8eoWtHaZkZscgp/flomMmKHuDk1xHCoACSE2A+hpiZUlUsrV3fZ7GYCPlPJn1wuIPYCov4xmK6xSwsdL6+5QaICZLVbotJy3fjCyWiUa2o0IZbf/QclqlWjqMCHYnz2+qJtdvwe2vgJIi211wOlLbEuHk2o0d5owRK/jRP9qd5WefPWtXQj200PL//9BqdNk4f2eA65VALruI1Qp5cxe/p0VAD4HcN0CEFF/ff3kjwYdFn8GL41GsPgziGk0gsUf+qakybaePxd7ACVNdndE5GRDOdxH/a7Rk49zPQ1uLP64jkN96IUQqVLKU/aXCwEcdzwkIiIiIqJriM+13SxyDiAi5SrbZSv+SIvtZ9ku5jKRizk6icKvhRBpAKwAygE85XhIRERERERX0X3ICId9ESkXe/IRDTiHCkBSyrucFQgRERER0TVx8mci9WBPPqIBx2VUiIiIiEgZOGSESF3ic5nDRAOIs6oSERERkTJcHDIitBwyQkRE1EfsAUREREREysAhI0RERP3GAhARERERKQeHjBAREfULh4AREREREREREakcC0BERERERERERCrHAhARERERERERkcqxAEREREREREREpHIsABERERERERERqRwLQEREREREREREKscCEBERERERERGRyrEARERERERERESkciwAERERERERERGpHAtAREREREREREQqxwIQEREREREREZHKCSnlwP9RIeoAlA/4H6bBIgxAvbuDIFIA5gpR7zBXiHqHuULUO8wVcqVEKWV4TxvcUgAiciUhRL6UMsfdcRB5OuYKUe8wV4h6h7lC1DvMFXIXDgEjIiIiIiIiIlI5FoCIiIiIiIiIiFSOBSBSo7fcHQCRQjBXiHqHuULUO8wVot5hrpBbcA4gIiIiIiIiIiKVYw8gIiIiIiIiIiKVYwGIVEMI8VshxHEhRKEQ4lMhRFC3bS8LIUqEECeEEHPcGCaR2wkh7hFCHBVCWIUQOVdsY64Q2Qkh5tpzoUQI8ZK74yHyJEKId4QQtUKII93eCxFCbBJCnLL/DHZnjETuJoSIF0JsE0IU26+9nrO/z1wht2ABiNRkE4BRUsosACcBvAwAQogMAPcByAQwF8D/CSG0bouSyP2OALgTwM7ubzJXiC6xf/ZfBzAPQAaA++05QkQ2/4LtXNHdSwC2SClTAWyxvyYazMwAXpBSjgQwEcCz9nMJc4XcggUgUg0p5UYppdn+ci+AOPvvtwP4QErZJaU8A6AEQK47YiTyBFLKYinliR42MVeILskFUCKlPC2lNAL4ALYcISIAUsqdAC5c8fbtAJbaf18KYNFAxkTkaaSUVVLKg/bfWwAUA4gFc4XchAUgUqtHAKy3/x4LwNBtW6X9PSK6HHOF6BLmA1HfRUopqwDbjS+ACDfHQ+QxhBBJALIB7ANzhdxE5+4AiPpCCLEZQFQPm5ZIKVfb91kCW3fL5RcP62F/Ln9HqtabXOnpsB7eY67QYMV8ICIipxBCDAHwMYAfSCmbhejpFEPkeiwAkaJIKWdea7sQYjGABQBmSCkvXqhXAojvtlscgHOuiZDIM1wvV66CuUJ0CfOBqO9qhBDRUsoqIUQ0gFp3B0TkbkIIL9iKP8ullJ/Y32aukFtwCBiphhBiLoAfA1gopWzvtmkNgPuEEN5CiGQAqQDy3BEjkYdjrhBdsh9AqhAiWQihh22C9DVujonI060BsNj++2IAV+txSjQoCFtXn7cBFEsp/9BtE3OF3EJc6iRBpGxCiBIA3gDO29/aK6V8yr5tCWzzAplh63q5vudWiNRPCHEHgL8ACAfQCOCwlHKOfRtzhchOCHErgD8B0AJ4R0r5insjIvIcQoj3AUwFEAagBsDPAPwbwCoACQAqANwjpbxyomiiQUMIcTOAXQCKAFjtb/8EtnmAmCs04FgAIiIiIiIiIiJSOQ4BIyIiIiIiIiJSORaAiIiIiIiIiIhUjgUgIiIiIiIiIiKVYwGIiIiIiIiIiEjlWAAiIiIiIiIiIlI5FoCIiIiIiIiIiFSOBSAiIiIiIiIiIpVjAYiIiIiIiIiISOX+H37T0P0G1cdpAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAFlCAYAAACdnC/mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABW0UlEQVR4nO3dd3hUZeL28fvJpHdSgZCQ0HsNoYm9N7ArijRBsW9zi667+3PddXV3XbuiNFFs2FCxYKUIhNB7LwmEEAjpfeZ5/wj6ui4IQpKTzHw/15VrJjOTnBsOJyR3nmKstQIAAAAAAID38XM6AAAAAAAAABoGxQ8AAAAAAICXovgBAAAAAADwUhQ/AAAAAAAAXoriBwAAAAAAwEtR/AAAAAAAAHgp/8Y8WFxcnE1NTW3MQwIAAAAAAHi15cuXH7TWxh/tuUYtflJTU5WVldWYhwQAAAAAAPBqxpjdx3qOqV4AAAAAAABeiuIHAAAAAADAS1H8AAAAAAAAeCmKHwAAAAAAAC9F8QMAAAAAAOClKH4AAAAAAAC8FMUPAAAAAACAl6L4AQAAAAAA8FIUPwAAAAAAAF6K4gcAAAAAAMBLUfwAAAAAAADfkp0pLfhX3a2X83c6AAAAAAAAQKPJzpRmXC65qyVXoDR6jpSc4XSqBsOIHwAAAAAA4Dt2Lagrfay77nbXAqcTNSiKHwAAAAAA4DtSh9WN9DGuutvUYU4nalBM9QIAAAAAAL4jOaNueteuBXWljxdP85JOoPgxxkyVdKmkA9baHkcee0zSZZKqJW2XNNZaW9iAOQEAAAAAAOpHcobXFz7fOZGpXtMlXfijx+ZJ6mGt7SVpi6Tf13MuAAAAAAAAnKLjFj/W2vmSCn702GfW2toj7y6R1KYBsjVJ1lq9nrlHReU1TkcBAAAAAAAnIbeoQnNW73M6RqOoj8Wdx0n6+FhPGmMmGmOyjDFZ+fn59XA4Z+08WKY/vr9OE2dmqarW7XQcAAAAAADwMxRX1mjstGW6/521OlRa5XScBndKxY8x5n5JtZJePdZrrLWTrbXp1tr0+Pj4Uzlck9AuPlz/vKa3lu4s0K/fWiOPxzodCQAAAAAAnIDqWo9uf2WFth0o1bM39VNseJDTkRrcSe/qZYwZrbpFn8+x1vpU+zG8T5L2FVbqH59sUuuoYP3+4q5ORwIAAAAAAD/BWqvfv7NWC7cd1GNX99Kwjs1/cMqJOKnixxhzoaTfSjrDWltev5Gah9vOaKfcogq9MH+HWkUFa8zQNKcjAQAAAACAY/jP51v19ooc/eLcTromPdnpOI3mRLZzf03SmZLijDE5kv6kul28giTNM8ZI0hJr7W0NmLPJMcboT5d1V25Rpf7y4Qa1jArRhT1aOh0LAAAAAAD8yJvLsvXEF1t1Tf82uvucDk7HaVSmMWdppaen26ysrEY7XmOoqHZr5EtLtGFfsWZNGKj+bWOcjgQAAAAAAI74avMB3TIjS0Pax2rqmAEKcNXHPldNizFmubU2/WjPed+ftpGFBLo0ZfQAtY4O0fgZWdqeX+p0JAAAAAAAIGl1dqFuf2WFurSM0HM39ffK0ud4fO9P3ABiwgI1fewAuYzR6KmZOlBS6XQkAAAAAAB82u5DZRo3fZliwwM1bewAhQed9P5WzRrFTz1pGxumqWMG6FBptcZPz1JZVa3TkQAAAAAA8EkHS6t089RMeazVjHEZSogIdjqSYyh+6lHv5Gg9c2Nfrd9XpDtmrVCt2+N0JAAAAAAAfEp5da3GT1+mvOJKTRkzQO3jw52O5CiKn3p2dpdE/XVET329OV8PvLdOjbl4NgAAAAAAvqzW7dEdr67Q2r1FeuqGfuqX0sLpSI7zzQluDWzkwBTlFlXoqS+3qXV0iO4+p6PTkQAAAAAA8GrWWt3/7jp9tTlfD1/RQ+d1S3Q6UpNA8dNAfnleJ+0trNC/521Rq6hgXZOe7HQkAAAAAAC81n8+36o3srJ199kddOPAtk7HaTIofhqIMUaPXNlL+SVV+v07a5UQGawzOsU7HQsAAAAAAK/zWuYePfHFVl3Tv41+cV4np+M0Kazx04AC/f307I391CkxQpNeWa7V2YVORwIAAAAAwKt8sTFP97+7Vmd2jtffruwpY4zTkZoUip8GFhEcoOljByg2PFBjpy/TjvxSpyMBAAAAAOAVVu45rDtmrVCPpCg9M7KfAlzUHD/G30gjSIgM1svjBspIGjUlU3nFlU5HAgAAAACgWduRX6rxM7KUGBmsqWMGKCyI1WyOhuKnkaTFhWn62AwVlldr9NRMFVXUOB0JAAAAAIBmKb+kSqOnZcpImjE2Q3HhQU5HarIofhpRzzZRen5Uf23PL9WEl7NUWeN2OhIAAAAAAM1KSWWNxk7P1MGSak0ZM0CpcWFOR2rSKH4a2bCO8frnNb2VubNA976+Sm6PdToSAAAAAADNQlWtW7fOXK6NuSV69sZ+6pMc7XSkJo/ixwHD+yTpwUu76ZP1+/XH99fJWsofAAAAAAB+ittj9Ys3Vunb7Yf02NW9dFaXBKcjNQusfOSQcaelKb+0Ss99vV0JEUG699xOTkcCAAAAAKBJstbqj++v09y1+/XAJV11Zb82TkdqNih+HHTfBZ11sKRK//l8q+LCg3TToLZORwIAAAAAoMl5/POtmrV0jyad2V63DGvndJxmheLHQcYY/f3Kniooq9Yf31+n2LBAXdSzldOxAAAAAABoMmZ8u0tPfrFV16a30X0XdHY6TrPDGj8O83f56emR/dQ3OVr3vL5Ki7cfcjoSAAAAAABNwger9+nPH6zXed0S9bcresoY43SkZofipwkICXRpyugBSokN1cSXs7RhX7HTkQAAAAAAcNSCrfn65ZurNKBtjJ66oa/8XVQYJ4O/tSaiRVigXh6XofBgf42elqnsgnKnIwEAAAAA4IjV2YW6deZytY8P14uj0xUc4HI6UrNF8dOEtI4O0YxxGaqu9WjUlKXKL6lyOhIAAAAAAI1q24FSjZmWqdjwugESUSEBTkdq1ih+mphOiRGaOmaA8oqrNHpqpooqapyOBAAAAABAo8gtqtDoqZly+RnNHDdQCZHBTkdq9ih+mqD+bVvo+VH9tfVAiW6ZsUwV1W6nIwEAAAAA0KAKy6t185S6ARDTx2YoNS7M6UhegeKniTqjU7wev66PsnYf1u2vLleN2+N0JAAAAAAAGkRFtVvjpi/T7kPlmnxzf/VIinI6kteg+GnCLu3VWg+P6KmvNufrV2+ulsdjnY4EAAAAAEC9qnF7dPury7Uqu1BP3tBHQ9rHOR3Jq/g7HQA/beTAFBVWVOvRTzYrKiRA/ze8u4wxTscCAAAAAOCUuT1Wv3xztb7anK+/XdFTF/Zo5XQkr0Px0wxMOqO9ispr9ML8HYoODdCvzu/sdCQAAAAAAE6JtVZ/fH+dPli9T7+7qItGDkxxOpJXovhpBowx+t1FXVRYXqOnvtymqJAA3TKsndOxAAAAAAA4af/4ZLNmLd2jSWe2121ntHc6jtei+GkmjDH625U9VVJVo79+tFFRIQG6Jj3Z6VgAAAAAAPxsz369Tc9/s103DkzRfRcwq6UhUfw0Iy4/o8ev66OSyiz99u01igwJ0AXdWzodCwAAAACAEzZzyW49+slmDe/TWg8N78E6tg2MXb2amSB/l56/qb96tYnWXbNW6tttB52OBAAAAADACXl/1V49+P46ndMlQf+8prf8/Ch9GhrFTzMUFuSv6WMHKC0uTBNeztLq7EKnIwEAAAAA8JM+35CnX765WhmpMXrmxn4KcFFJNAb+lpup6NBAvTw+QzHhgRozLVNb80qcjgQAAAAAwFEt3n5It89aoe6tI/XS6HQFB7icjuQzKH6ascTIYL0yfqD8XX4aNSVT2QXlTkcCAAAAAOC/rM4u1C0zlqltTKimj81QRHCA05F8CsVPM9c2Nkwzx2eoosatkS8t0f6iSqcjAQAAAAAgSdqSV6LR0zIVEx6omeMHKiYs0OlIPofixwt0aRmpl8dl6HBZjW58aYkOllY5HQkAAAAA4OP2HCrXTS8tVYDLT6+MH6iWUcFOR/JJFD9eondytKaMTtfewgqNmpKpovIapyMBAAAAAHxUXnGlbpqyVFW1Hr0yfqDaxoY5HclnUfx4kYHtYvXCqHRtP1Cq0dMyVVpV63QkAAAAAICPOVxWrVFTlupQaZVmjMtQ55YRTkfyacctfowxU40xB4wx637wWIwxZp4xZuuR2xYNGxMn6oxO8XpqZF+t3Vuk8dOXqaLa7XQkAAAAAICPKKqo0aipS7XrULlevDldfZKjnY7k805kxM90SRf+6LHfSfrCWttR0hdH3kcTcUH3lvr3tb2VuatAt72yXFW1lD8AAAAAgIZVWlWrMdMytXl/iV64qb+GdIhzOhJ0AsWPtXa+pIIfPTxc0owj92dIGlG/sXCqhvdJ0t+v6KlvtuTrntdWqdbtcToSAAAAAMBLVVS7dcuMZVqTU6Qnr++rs7okOB0JR5zsGj+J1tpcSTpyyxltgq7PSNEfL+2mT9bv129mr5HHY52OBAAAAADwMlW1bt36ynIt3Vmgf1/bWxf1bOV0JPyAf0MfwBgzUdJESUpJSWnow+FHxp+WporqWv3zsy0KCXTp4RE9ZIxxOhYAAAAAwAvUuD26c9ZKzd+Sr0ev6qXhfZKcjoQfOdniJ88Y08pam2uMaSXpwLFeaK2dLGmyJKWnpzPkxAF3nNVBZdVuPff1doUGuHT/JV0pfwAAAAAAp8TtsfrFG6s0b0Oe/nJ5d107INnpSDiKky1+5kgaLemRI7fv11si1DtjjO67oLPKq2r10sKdCgvy1y/O6+R0LAAAAABAM+XxWP327TX6cE2ufn9RF40ekup0JBzDcYsfY8xrks6UFGeMyZH0J9UVPm8aY8ZL2iPpmoYMiVNnjNGfLuuu8mq3nvhiq0IDXbr1jPZOxwIAAAAANDPWWj04Z51mL8/Rved25GfLJu64xY+19oZjPHVOPWdBA/PzM3rkql6qqHHr7x9vUnCAi1YWAAAAAHDCrLX660cb9cqSPbr1jHa655yOTkfCcTT44s5oWlx+Ro9f10dVtR79ac56+buMbhzY1ulYAAAAAIBm4N/ztmjKwp0aMyRVv7uwC+vHNgMnu507mrEAl5+eHtlXZ3dJ0P3vrtOby7L//5PZmdKCf9XdAgAAAABwxDNfbdNTX27T9QOS9eCl3Sh9mglG/PioIH+Xnr2xnya8nKXfvrNG/i6jK+P3STMul9zVkitQGj1HSs5wOioAAAAAwGFTFu7UY59u1og+rfXwFT3l50fp01ww4seHBQe49OLN6RrSPla/fmu1Niz+qK70se66210LnI4IAAAAAHDYK0t266EPN+iiHi31z2t6y0Xp06xQ/Pi44ACXXrp5gAakxujB1S3k9guQjKtuxE/qMKfjAQAAAAAcNGvpHj3w3jqd0yVBT1zfV/4uaoTmhjMGhQS6NHXMAKlNhq6v/L22dr+HaV4AAAAA4O2Os8brG8v26A/vrtVZneP17E39FOhPhdAccdYgSQoL8te0sQNUmzRAF68coC/L2OkLAAAAALxWdmbdGq9fPlx3+6Py562sbP3unbU6o1O8nrupv4L8XQ4Fxami+MH3IoIDNH1shrq2itRtM1fomy35TkcCAAAAADSEXQuOucbrOytydN/ba3Rahzi9MKq/ggMofZozih/8l6iQAL08LkMdEsI18eUsLdp20OlIAAAAAID6ljqsbm3XH63x+v6qvfr1W6s1pH2sXrw5ndLHC1D84H9EhwbqlVsGKi0uTONnLNOSHYecjgQAAAAAqE/JGXVru559//drvM5ZvU+/eGOVBqbF6qWbB1D6eAmKH19wnAW7jiYmrK78SW4RqnHTlylrV0EDBgQAAAAANLrkDGnYr6TkDH20Jle/eGOV0lNjNGVMukICKX28BcWPtzvOgl0/JS48SK9OGKiWUcEaM22ZVuw53IBBAQAAAABO+GRdru5+faX6pURr2pgBCg30dzoS6hHFj7f7iQW7TkRCRLBemzBIceGBunlKppbvpvwBAAAAAG/x6fr9unPWSvVJjta0sRkKC6L08TYUP97uGAt2/RyJkcF6feJgxUcE6eYpS7V8N9O+AAAAAKC5+3xDnu6ctUI920Rp+tgBCqf08UoUP97uKAt2nYyWUcF6feIgJUYG6+Ypmaz5AwAAAADN2Jeb8jTp1eXq1jpKM8ZlKCI4wOlIaCAUP77gBwt2nYrEyGC9NnGQEqOCdfPUTC2j/AEAAACAZufrzQd028wV6toqUi+Py1AkpY9Xo/jBz5IYGazXJwxSq6hgjZ6aqcydlD8AAAAA0Fx8uSlPE19erk4twzVz3EBFhVD6eDuKH/xsCUdG/rSKCtaYaZlauuOQ05EAAAAAAMcxb0Oebp25XF1aRejV8YMUFUrp4wsofnBSEiLqFnxuHR2iMdOWaQnlDwAAAAA0WZ+s269JryxX99ZRmjl+IKWPD6H4wUmLjwjSaxMGqU2LEI2dtkyLt1P+AAAAAEBT89GaXN0xa4V6tYnSzPEZTO/yMRQ/OCXxEUGaNWGQkmNCNHZ6pr7ddtDpSAAAAACAI+as3qe7X1+pfinRenn8QHbv8kEUPzhl35U/bWPCNG7GMi2i/AEAAAAAx723cq/ufX2l+rdtoeljMxQe5O90JDiA4gf1Ii48SLMmDFRqbJjGTV+mhVspfwAAAADAKW8vz9Ev31ylgWmxmj52gMIofXwWxQ/qTWx4kF69ZaDS4sI0fsYyLdia73QkAAAAAPA5b2Zl69ezV2tI+zhNHTNAoYGUPr6M4gf1Kja8btpXu/hwjZ+RpS835TkdCQAAAAB8xmuZe3Tf7DUa1jFeL41OV0igy+lIcBjFD+pdTFigXpswUF1aRujWmcv1ybr9TkcCAAAAAK/3ypLd+v07a3VW53hNHtVfwQE/Kn2yM6UF/6q7hc+g+EGDiA4N1Cu3DFTPpCjdMWuF3l+11+lIAAAAAOC1Zny7Sw+8t07ndk3Q88cqfWZcLn35cN0t5Y/PoPhBg4kMDtDL4wcqvW0L3fvGKr2Vle10JAAAAADwOlMW7tSf5qzX+d0S9eyN/RXkf5TpXbsWSO5qybrrbnctaPygcATFDxpUeJC/po/N0Gkd4vSb2Wv0ypLdTkcCAAAAAK/xzFfb9NCHG3RRj5Z65sZ+CvQ/xo/5qcMkV6BkXHW3qcMaNygcw9LeaHAhgS69eHO67py1Qg+8t05VtR6NPy3N6VgAAAAA0GxZa/XPzzbrma+264q+SXrs6l7yd/3E2I7kDGn0nLqRPqnD6t6HT6D4QaMIDnDp2Rv7657XV+qhDzeossatO87q4HQsAAAAAGh2rLX6vw83aNqiXbohI0UPj+ghPz9z/A9MzqDw8UFM9UKjCfT301M39NWIPq312Keb9e95W2StdToWAAAAADQbHo/VH95dp2mLdmnc0DT97YoTLH3gsxjxg0bl7/LTv67to0B/Pz35xVZV1bj1u4u6yBi+UAEAAADAT6l1e/Sb2Wv07sq9uvOsDvrV+Z34WQrHRfGDRufyM3rkyl4K9PfTC/N3qKrWowcv7UZLDQAAAADHUF3r0T2vr9TH6/brNxd0ZukMnDCKHzjCz8/ooeE9FOzv0ksLd6qq1q2HR/Sk/AEAAACAH6mscWvSK8v11eZ8PXhpN41jsxz8DBQ/cIwxRvdf0lXBAS49/dU2VdZ4jr8SPQAAAAD4kLKqWk14OUuLdxzS36/sqRsyUpyOhGaG4geOMsbo1xd0VnCAn/752RaVVdXqqZF9FeTvcjoaAAAAADiquLJGY6ct06rsQj1+bR+N6JvkdCQ0QwytQJNw59kd9efLuumzDXkaPz1LZVW1TkcCAAAAAMcUlFVr5ItLtCanUM+M7Evpg5NG8YMmY8zQNP3zmt76dvtBjZqyVEXlNU5HAgAAAIBGd6CkUtdPXqyteaWaPCpdF/Zo5XQkNGMUP2hSru7fRs/e2E/r9hbrusmLlV9S5XQkAAAAAGg0OYfLdd0LS5RzuELTxg7QWV0SnI6EZu6Uih9jzC+MMeuNMeuMMa8ZY4LrKxh814U9WmnKmHTtPlSua19YrJzD5U5HAgAAAIAGt+1Aqa55frEOlVZp5vgMDWkf53QkeIGTLn6MMUmS7paUbq3tIckl6fr6CgbfNqxjvF65JUMHS6t07fOLtT2/1OlIAAAAANBg1uQU6toXFqvGbfXGrYPVv22M05HgJU51qpe/pBBjjL+kUEn7Tj0SUKd/2xi9PnGQqt0eXfv8Yq3fV+R0JAAAAACod4u3H9INk5coNNCl2bcNVtdWkU5Hghc56eLHWrtX0j8l7ZGUK6nIWvvZj19njJlojMkyxmTl5+effFL4pO6to/TmrYMV5O+n6ycv0fLdBU5HAgAAAIB6M29DnkZPy1Tr6BDNvm2IUuPCnI4EL3MqU71aSBouKU1Sa0lhxpibfvw6a+1ka226tTY9Pj7+5JPCZ7WLD9dbk4YoLjxIN72UqQVbKRABAAAANH/vrMjRba8sV9dWkXrz1sFqGcWyuah/pzLV61xJO621+dbaGknvSBpSP7GA/5YUHaI3bx2strGhGj89S5+sy3U6EgAAAACctGmLduqXb67WoHYxevWWgWoRFuh0JHipUyl+9kgaZIwJNcYYSedI2lg/sYD/FR8RpDcmDlaPpEjd/uoKvZWV7XQkAAAAAPhZrLX6z+db9JcPNuiC7omaOmaAwoP8nY4FL3Yqa/wslTRb0gpJa498rsn1lAs4qqjQAM0cP1BD2sfpN7PX6MX5O5yOBAAAAAAnxOOx+ssHG/Sfz7fq6v5t9MzIfgrydzkdC17ulHb1stb+yVrbxVrbw1o7ylpbVV/BgGMJC/LXlDHpurhnSz08d6P+PnejrLVOxwIAAACAY6pxe/Trt1Zr+re7dMtpaXr0ql7yd53qRtvA8TGeDM1SkL9LT93QTzFh6/TC/B06VFatR67syRdOAAAAAE1OZY1bd85aqc835unX53fSHWd1UN2KKUDDo/hBs+XyM3poeA/FhQfpP59v1eGyaj09sp9CAhkqCQAAAKBpKKms0YSXs7R0Z4EeGt5dowanOh0JPobhEWjWjDG699xOemhED325+YBGTVmqovIap2MBAAAAgA6UVOq6F5Yoa9dh/ee6PpQ+cATFD7zCqEFt9fQN/bQmp0jXvPCt9hdVOh0JAAAAgA/bebBMVz33rXYdKtOUMQM0vE+S05Hgoyh+4DUu6dVK08cO0N7DFbrquW+1Pb/U6UgAAAAAfNDq7EJd9dy3Kqty67UJg3RGp3inI8GHUfzAqwzpEKfXJw5WZY1b1zy/WKuzC52OBAAAAMCHfLMlXze8uERhQS69PWmIeidHOx0JPo7iB16nZ5sozZ40RKGBLt3w4hLN35LvdCQAAAAAPuDdlTkaP32Z2saG6e1JQ5QWF+Z0JIDiB94pLS5M70waopSYUI2fsUxzVu9zOhIAAAAALzZ5/nb94o3VGpAaozduHaSEiGCnIwGSKH7gxRIig/XGrYPVN6WF7nl9paYv2ul0JAAAAABexuOx+uuHG/S3uZvq1h0dN0CRwQFOxwK+R/EDrxYVEqCXx2Xo3K6J+vMHG/SPTzbJ47FOxwIAAADgBaprPfrlm6v00sKdGj24rZ66vq+C/F1OxwL+C8UPvF5wgEvP3dhPIwem6Lmvt+uXb65Sda3H6VgAAAAAmrHSqlqNn7FM763ap99c0Fl/vry7/PyM07GA/+HvdACgMfi7/PTwiB5Kig7RY59u1oGSKj0/qj9DMAEAAAD8bAdLqzR22jJtyC3Wo1f30rXpyU5HAo6JET/wGcYY3XFWB/3rmt7K3Fmga59frNyiCqdjAQAAAGhGdh8q09XPfautB0o0eVR/Sh80eRQ/8DlX9W+jaWMHKOdwha589ltt3l/idCQAAAAAzcDKPYd15bPfqrCiRq/eMkjndE10OhJwXBQ/8EnDOsbrjVsHye2xuvr5b7V4+yGnIwEAAABowj5dv183vLhEoUEuvT1piPq3beF0JOCEUPzAZ3VvHaV37xiqxMhgjZ6aqTmr9zkdCQAAAEATNH3RTt32ynJ1bhmpd28fqvbx4U5HAk4YxQ98WlJ0iN6+bYj6pETr7tdWavL87bKW7d4BAAAASB6P1V8/3KA/f7BB53ZN1OsTBikuPMjpWMDPQvEDnxcVGqCXx2Xokl6t9Le5m/SXDzbI7aH8AQAAAHxZZY1bd8xaoZcW7tTowW31/E39FRLocjoW8LOxnTsgKTjApaeu76tWkcF6aeFO5RZV6Inr+yo4gC/sAAAAgK8pKKvWhJeztHz3YT1wSVeNPy1NxhinYwEnhRE/aF6yM6UF/6q7rWd+fkYPXNpNf7y0mz7bkKcbX1qqgrLqej8OAAAAgKZr96EyXfXct1q7t0jP3thPtwxrR+mDZo0RP2g+sjOlGZdL7mrJFSiNniMlZ9T7YcaflqZWUcG6941VuvLZRZo6ZoDasXgbAAAA4PVW7jms8TOy5LFWs24ZqPTUGKcjAaeMET9oPnYtqCt9rLvudteCBjvUxT1b6bUJA1VcWasrn/tWS3ew3TsAAADgzb7brj08yF/vTBpC6QOvQfGD5iN1WN1IH+Oqu00d1qCH6982Ru/ePkQxYYG6acpSvbMip0GPBwAAAMAZ045s196lZaTeuX0II/7hVUxjbl2dnp5us7KyGu148ELZmXUjfVKHNcg0r6MpKq/Rba8s1+Idh3T3OR31i3M7MscXAAAA8AJuj9XDH23U1EU7dX63RD1xfV927kKzZIxZbq1NP9pzrPGD5iU5o9EKn+9EhQZoxrgM3f/uWj35xVbtPlSmf1zVix2/AAAAgGastKpW97y2Ul9sOqCxQ1P1wCXd5PLjF7zwPhQ/wAkI9PfTo1f3UmpcmB77dLP2FVbohVHpigkLdDoaAAAAgJ9pX2GFxk1fpq0HSvXQiB4aNait05GABsMaP8AJMsbojrM66Kkb+mp1TpGueHaRduSXOh0LAAAAwM+wOrtQw59ZpL2HKzR1zABKH3g9ih/gZ7qsd2u9NmGQSitrdcWz32oJO34BAAAAzcLctbm6bvJiBfn76e3bh+iMTvFORwIaHMUPcBL6t22hd28fqrjwQI2aslRvL2fHLwAAAKCpstbqma+26fZXV6hbq0i9d8dQdUqMcDoW0CgofoCTlBIbqnduH6oBqTH61Vur9e/PNqsxd8kDAAAAcHzVtR79+q01euzTzbq8d2vNmjBIceFBTscCGg3FD3AKokICNH1shq5Nb6Mnv9ymu15bqcoat9OxAAAAAEgqKKvWTVOW6u0VObr33I564vo+7M4Ln8OuXsApCvT30z+u6qW0uHA9+ukm7Sko1+RR6WoZFex0NAAAAMBnbc8v1bjpy5RbVKknru+j4X2SnI4EOIIRP0A9MMZo0pntNXlUurYfKNXlTy/U6uxCp2MBAAAAPunbbQd1xTOLVFpZq9cmDKT0gU+j+AHq0XndEvX27UMU6O+na19YrDmr9zkdCQAAAPApr2fu0c1TM9UyKljv3TFU/dvGOB0JcBTFD1DPurSM1Pt3DFXvNtG6+7WV+tdnm+XxsOgzAAAA0JBq3R79ec56/e6dtRrSIU6zJw1Rckyo07EAx1H8AA0gNjxIr9wyUNelJ+upL+u2jSyvrnU6FgAAAOCVCsurNXpapqZ/u0u3nJamqaPTFRkc4HQsoElgcWeggQT6++mRq3qqU8sIPfzRBl31XLleGp2upOgQp6MBAAAAXmNLXokmvJyl3MJKPXZ1L12Tnux0JKBJYcQP0ICMMRp/WpqmjhmgnIJyDX96oZbvLnA6FgAAAOAVPt+Qpyuf/VZlVW69NnEQpQ9wFBQ/QCM4s3OC3r1jiMKD/HXD5KWavTzH6UgAAABAs2Wt1bNfb9OEmVlKiwvTB3cNVf+2LZyOBTRJp1T8GGOijTGzjTGbjDEbjTGD6ysY4G06JETovTuGKj21hX791mr9fe5GuVn0GQAAAPhZKqrduuf1VXr0k826tFdrvXnrYLWKYjkF4FhOdY2fJyR9Yq292hgTKIkl04GfEB0aqBnjMvR/H2zQC/N3aOuBUv3n+j4sPAcAAACcgNyiCk18ebnW7SvSfRd21qQz2ssY43QsoEk76RE/xphISadLmiJJ1tpqa21hPeUCvFaAy08Pjeihh0b00Pwt+Rrx9CJtO1DidCwAAACgSVu++7Aue2qRdh4s04uj0nX7mR0ofYATcCpTvdpJypc0zRiz0hjzkjEmrJ5yAV5v1KC2mjVhkIorazTimW/12fr9TkcCAAAAmqS3srJ1w+QlCgty6d3bh+jcbolORwKajVMpfvwl9ZP0nLW2r6QySb/78YuMMRONMVnGmKz8/PxTOBzgfTLSYvTBXaepfXyYJs5crn/P2yIP6/4AAAAAkqRat0cPfbhBv5m9RgPSWuj9O4aqY2KE07GAZuVUip8cSTnW2qVH3p+tuiLov1hrJ1tr06216fHx8adwOMA7tYoK0Ru3DtbV/dvoyS+2auLMLBVX1jgdCwAAAHDUodIqjZqSqSkLd2rMkFRNH5uh6NBAp2MBzc5JFz/W2v2Sso0xnY88dI6kDfWSCvAxwQEuPXZ1L/3f8O76enO+RjyzSNsOlDodCwAAAHDEmpxCXfbUQq3Yc1j/vKa3/nx5dwW4TmlTasBnneqVc5ekV40xayT1kfS3U04E+ChjjG4enKpXbxmoovIajXhmkeZtyHM6FgAAANCo3lyWraufXyxjjN6eNERX92/jdCSgWTPWNt56Iunp6TYrK6vRjgc0V/sKK3TbK8u1JqdI957bUXef3VF+fuxYAAAAAO9VXevRXz5Yr1eX7tHQDrF66oZ+igljahdwIowxy6216Ud7jrFyQBPUOjpEb946WFf1a6P/fL5VE2cuVwnr/gAAAMCbZGdKC/4lZWcqr7hS109erFeX7tGtZ7TTjLEZlD5APfF3OgCAowsOcOmf1/RSj6RI/fWjjRrxzCJNvjld7ePDnY4GAAAAnJrsTGnG5ZK7Wm6/AP1eD2pTTXs9M7KfLunVyul0gFdhxA/QhBljNHZoml4ZP1CHy2s0/OlF+mTdfqdjAQAAwFv8YNRNo9q1QNZdLVm3bG21Bvlt0Lu3D6X0ARoAxQ/QDAxuH6sP7jpN7ePDdNsry/X3uRtV6/Y4HQsAAADN2Xejbr58uO62EcufqjZDVCN/1Vo/uf0CNPK6G9W5ZUSjHR/wJRQ/QDORFB2iN28brJsGpeiF+Ts08qWlOlBS6XQsAAAANFe7FkhHRt3IXV33fiPIOVyuqz6s1fWVv9fS1NsUMOYDhXcY0ijHBnwRa/wAzUiQv0t/HdFT/VJa6A/vrtUlTy7UMyP7KSMtxuloAAAAaG5Sh0muwLrSxxVY934D+2ZLvu59faVqPVb/uXmkhnZNbPBjAr6O7dyBZmrT/mJNemWF9hSU6/cXddH409JkDFu+AwAA4GfIzqwb6ZM6TErOaLDDuD1WT36xVU9+uVWdEiL0/Kj+SosLa7DjAb7mp7Zzp/gBmrHiyhr95q3V+nR9ni7q0VKPXt1LEcEBTscCAACArzpKkXSotEr3vrFKC7Ye1JX9kvTwiJ4KCXQ5HBTwLj9V/DDVC2jGIoMD9PxN/fXigh36xyebtfnpRXrupv4sjAcAAIDG94Mt2uUKlEbP0XJPR905a4UOlVXrkSt76roByYxSBxoZizsDzZwxRhNPb69Xbxmo4spajXhmkd5budfpWAAAAPA1P1gs2rqrlfX1HF33wmL5u4zemTRE12ekUPoADqD4AbzEoHaxmnv3aeqRFKl731ilB99fp6pat9OxAAAA4CuOLBZtjUs18tffNsTqzM4J+vDOYeqRFOV0OsBnMdUL8CIJkcGaNWGQHv1kk15csFNrcor09Mi+atMi1OloAAAA8HbJGdp16WuaN/dtfVrWQedfeJluPb0do3wAhzHiB/AyAS4/3X9JNz17Yz9tO1CqS55cqM835DkdCwAAAF7unRU5uvDtSk22I/Tr8aN02xntKX2AJoDiB/BSF/dspQ/vOk1tWoTolpez9PBHG1Tj9jgdCwAAAF6motqt3729Rr98c7V6t4nWR3efpkHtYp2OBeAIih/Ai6XGhentSUM0alBbvbhgp659YbFyDpc7HQsAAABeYmteiYY/s1BvZGXr9jPrNhxJiAh2OhaAH6D4AbxccIBLD43ooWdG9tPWvLqpX/OY+gUAAIBT9FZWti5/epEOlVZrxtgM3XdhF/m7+BETaGq4KgEfcUmvuqlfyTEhmvBylv764QZV1zL1CwAAAD9PWVWtfvnmKv1m9hr1SY7Wx/cM0+md4p2OBeAY2NUL8CHfTf3620cb9dLCnVq2+7CevqGvkmPY9QsAAADHtzG3WHfOWqEdB8t077kdddfZHeXyYwFnoCljxA/gY4L8XfrL8B569sZ+2nGgVJc8uUCfrd/vdCwAAAA0YdZazVq6RyOeWaSSylq9estA3XtuJ0ofoBmg+AF81MU9W+nDu09T29gwTZy5XH+es16VNW6nYwEAAKCJKams0d2vr9If3l2rjLQYzb1nmIa0j3M6FoATxFQvwIe1jQ3T7EmD9cjHmzRt0S4t3Vmgp27oow4JEU5HAwAAQBOwbm+R7py1QtmHK3TfhZ112+nt5ccoH6BZYcQP4OOC/F3602XdNXVMuvKKK3XpUwv1euYeWWudjgYAAACHeDxWk+dv1xXPLlJVrUevTxyk28/sQOkDNEMUPwAkSWd3SdQn9wxT/7Yt9Lt31urOWStVVFHjdCwAAAA0sgPFlRo9LVN/m7tJ53RJ1Mf3DNOA1BinYwE4SUz1AvC9hMhgzRw3UC/M36F/fbZZq7IL9cT1fZTOf/QAAAA+4ctNefr1W2tUXl2rv1/ZU9cPSJYxjPIBmjNG/AD4L35+RpPObK/Zk4bI5Wd07QuL9eQXW+X2MPULAADAW1XWuPXnOes1bnqWEiOD9eFdp+mGjBRKH8ALUPwAOKo+ydH66O7TdHnv1vr3vC264cUl2ldY4XQsAAAA1LOteSUa8cwiTf92l8YNTdO7tw9hsw/Ai1D8ADimiOAA/ef6vvr3tb21fm+RLnpigT5Zl+t0LAAAANQDa61eWbJblz61UPklVZo2ZoAevKybggNcTkcDUI8ofgAc15X92uiju4epbWyobntlhX7z1mqVVtU6HQsAAAAn6XBZtW6duVwPvLdOA9vF6uN7h+msLglOxwLQAFjcGcAJSY0L09uThujJL7bqma+2aenOAj1+XW/1b8vCzwAAAE1Odqa0a4GUOkxKzvivp+Zvydev31qtw+XVeuCSrho3NI1t2gEvZqxtvAVb09PTbVZWVqMdD0DDyNpVoF+8uUp7D1fozrM66K5zOirAxQBCAACAJiE7U5pxueSullyB0ug5UnKGKqrdeuTjjZqxeLc6JoTr8ev6qEdSlNNpAdQDY8xya2360Z7jJzUAP1t6aozm3j1MV/Zroye/3Karn/tWO/JLnY4FAAAAqW6kj7tasu66210LtDanSJc+tUAzFu/WuKFp+uCu0yh9AB9B8QPgpEQEB+if1/TWszf20+6Ccl3y5ELNWrpHjTmKEAAAAEeROqxupI9xyboCNftQqq54dpHKqtx6ZfxAFnAGfAxTvQCcsv1FlfrN7NVasPWgzu2aoEeu6qW48CCnYwEAAPiu7EwVbvhS/9gUr9dyW+rSXq301xE9FB0a6HQyAA2AqV4AGlTLqGDNGJuhBy/tpvlbD+rC/8zX5xvynI4FAADgk6y1enN/Kw1d1EcfHm6jJ67vo6dH9qP0AXwUxQ+AeuHnZzTutDR9cOdpio8I1i0vZ+m+2atVXFnjdDQAAACfcai0SrfOXK773l6jXm2i9em9p2t4nySnYwFwENu5A6hXnVtG6L076rZ9f+7r7Vq49aAeu6a3hnaIczoaAACAV/t0/X7d/+5aFVfUsk07gO8x4gdAvQvyd+k3F3TR25OGKDjQpRtfWqoH31+n8upap6MBAAB4naLyGv3ijVW6deZyJUYGa85dQ3XLsHaUPgAkMeIHQAPqm9JCc+8epkc/2aypi3Zq/pZ8/eva3urfNsbpaAAAAF7hq00H9Nu316igrFr3nttRd5zVQQEufr8P4P/jKwKABhUc4NKDl3XTaxMGqdZjdfXzi/X3uRtVWeN2OhoAAECzVVxZo/tmr9bY6cvUIjRQ790xVPee24nSB8D/YMQPgEYxuH2sPrn3dP1t7ka9MH+Hvtx0QP++to96tolyOhoAAECzsnDrQd03e7X2F1fq9jPb655zOyrI3+V0LABN1CnXwcYYlzFmpTHmw/oIBMB7hQf5629X9NT0sQNUUlmrEc8u0r/nbVF1rcfpaAAAAE1eWVWtHnhvrW6aslTBgS69PWmI7ruwC6UPgJ9UH+MA75G0sR4+DwAfcWbnBH167+m6vHdrPfnFVl3+9EKtzSlyOhYAAECTtWTHIV34xHy9unSPJgxL09y7h6lvSgunYwFoBk6p+DHGtJF0iaSX6icOAF8RFRqgx6/ro5duTtfh8mqNeHaR/vHJJtb+AQAA+IHSqlr98b11un7yEvkZozdvHaz7L+mm4ABG+QA4Mae6xs9/JN0nKeJYLzDGTJQ0UZJSUlJO8XAAvM253RI1IC1Gf/too577ers+Xb9fj13di52/AACAz/tmS77+8M5a7Suq0Lihafr1BZ0UGsgyrQB+npMe8WOMuVTSAWvt8p96nbV2srU23VqbHh8ff7KHA+DFokIC9I+re2nm+AxV1Xh09fOL9X8fbFB5da3T0QAAABpdYXm1fvXmao2emqmQQJdm3zZED17WjdIHwEkx1tqT+0Bj/i5plKRaScGSIiW9Y6296Vgfk56ebrOysk7qeAB8Q2lVrR79ZJNeXrxbKTGheuSqnhrSPs7pWAAAAI3i47W5+uP761VYXq1JZ7bXnWd3YPFmAMdljFlurU0/6nMnW/z86ABnSvq1tfbSn3odxQ+AE7V0xyH99u012nWoXDcOTNHvLuqiiOAAp2MBAAA0iAMllfrT++v18br96t46Uo9e3UvdW0c5HQtAM/FTxQ9jBQE0SQPbxerje07Xv+dt1pSFO/XVpgN6aEQPndM10eloAAAA9cZaq3dW7NX/fbhBFTVu3XdhZ00Y1k4BrvrYgBkA6mnEz4lixA+Ak7Fiz2H97u012pJXqkt6tdKfLuumhIhgp2MBAACckpzD5XrgvXX6enO+0tu20CNX9VKHhHCnYwFohhp8qteJovgBcLKqaz2aPH+7nvxym4L9/fT7i7vquvRk+fkZp6MBAAD8LLVuj6Yt2qV/z9siY6T7Luismwen8n0NgJNG8QPAa+zIL9Uf3l2rJTsKlJEWo79d0ZPfjAEAgGZjTU6hfv/OWq3fV6xzuyboL8N7KCk6xOlYAJo5ih8AXsVaq7eW5+jhjzaqotqtO87qoNvObMeOFwAAoMkqrarVvz7brBnf7lJceJD+cnl3XdijpYxhlA+AU8fizgC8ijFG16Yn6+wuCfq/Dzbo8c+36IM1+/T3K3tqQGqM0/EAAAD+y7wNeXrw/XXaX1ypmwa21W8u7KxIdisF0EgY8QOg2ftq8wE98O467S2s0MiBKfrthV0UFcI3UwAAwFn7iyr15znr9cn6/eqcGKG/XdlT/du2cDoWAC/EVC8AXq+sqlaPz9uiqYt2KiYsUH+4uKuu6JvE8GkAANDo3B6rV5fu1qOfbFaN26O7z+moiaezRTuAhkPxA8BnrN9XpAfeW6eVewo1MC1Gfx3RQx0TI5yOBQAAfMSanEI98N46rckp0mkd4vTwFT3UNjbM6VgAvBzFDwCf4vFYvZGVrUc+3qSyqlrdMqyd7j6ng0IDWdYMAAA0jKLyGj366SbNytyjuPAgPXBJV13eu3XDjz7OzpR2LZBSh0nJGQ17LABNFos7A/Apfn5GN2Sk6PxuiXrk4016/pvt+mD1Pv3psm46v3tLp+MBAAAv4vFYzV6Ro0c+3qTC8mqNGZKqX5zXqXEWb87OlGZcLrmrJVegNHoO5Q+A/8EkUwBeKzY8SI9d01tv3TZY4UH+mjhzuW6ZsUzZBeVORwMAAF5gY26xrn1hse6bvUapsaH64K7T9KfLujfejl27FtSVPtZdd7trQeMcF0CzwogfAF5vQGqMPrz7NE1ftEuPf75F5z3+je46u6NuGZamIH+X0/EAAEAzU1JZo8fnbdWMxbsUFRKgR6/qpav7t5GfXyNvKpE6rG6kz3cjflKHNe7xATQLrPEDwKfkFlXooQ83aO7a/UqLC9ODl3bTWV0SnI4FAACaAWut5qzep4c/2qj80irdkJGi+y7orOjQwFP/5Ce7Vg9r/AAQizsDwP/4Zku+/vLBeu3IL9PZXRL04KXdlBrHjhsAAODoNuYW6y8frNeSHQXqmRSlh0b0UJ/k6Pr55KzVA+AU/VTxwxo/AHzSGZ3i9ck9p+v+i7sqc2eBzn98vv7xSd0uYAAAAN85XFatP763Tpc8uUCb9pfooRE99N4dQ+uv9JFYqwdAg2KNHwA+K9DfTxNOb6fhfVrrH59s1nNfb9c7K3L0h4sbaftVAADQZNW6PXotc4/+NW+LiitqNGpQW/3ivE71M63rx1irB0ADYqoXAByxfPdh/XnOeq3dW6QBqS3058u7q3vrKKdjAQCARrZ4+yH95YP12rS/RIPbxepPl3dTl5aRDXtQ1uoBcApY4wcATpDHY/XW8mw9+slmHS6v1siBKfrVeZ3VIqwBfrsHAACalJzD5fr73E36aG2ukqJD9MAlXXVhj5aMAgbQ5FH8AMDPVFRRo8fnbdHMJbsVFujS3ed01M2DUxXoz9JoAAB4m4pqt16Yv13Pfb1dxkiTzuigW89op+AAl9PRAOCEUPwAwEnakleihz/aqG+25Cs1NlS/v7irzu+WyG/+AADwAh6P1fur9+rRTzYrt6hSl/RqpT9c3FVJ0SFORwOAn4XiBwBO0debD+jhjzZq64FSDWoXowcu6aYeSaz/AwBAc7V0xyE9PHej1uQUqUdSpB64pJsGtYt1OhYAnBSKHwCoB7Vuj15blq3H523R4fJqXdWvjX5zQWclRgY7HQ0AAJygnQfL9MjHG/Xp+jy1igrWby7orBF9kuTnx2heAM0XxQ8A1KOiiho9+9U2TVu0S/4uo9vOaK8Jw9opJPAk1gFgBw8AABpFYXm1nvxim2Yu2aUAl58mndFet5zs/98A0MRQ/ABAAxQsuw+V6ZGPN+njdftP7jeG2ZnSjMsld7XkCpRGz6H8AQCgnlXXejRzyW49+cVWlVTW6LoByfrFeZ2UEMGIXQDe46eKH//GDgMAja6BCpa2sWF67qb+ytxZoIc+3KBfvrlaLy7Yqd9e2FlndIo//gLQuxbUZbLuuttdCyh+AACoJ9Zafbp+vx75eJN2HSrXsI5xuv+SrurSMtLpaADQqCh+AHi/Bi5YMtJi9P4dQ/Xh2lw99ukmjZm2TEPax+p3F3VRrzbRx/7A1GF1RdR3hVTqsHrLBACAL1uy45Ae+XiTVmUXqmNCuKaNHaAzT+SXMgDghSh+AHi/RihY/PyMLu/dWhd2b6lXl+7WU19u0+VPL9KlvVrpNxd0VtvYsP/9oOSMutFHrPEDAEC92JhbrEc/2aSvNuerZWSw/nFVT13Vr438XX5ORwMAx7DGDwDf0MiLKJdU1mjy/B16acFO1bg9unFgiu46p6PiwoMa/NgAAPia7IJyPT5vi95dtVcRQf66/awOGjMkVcEBLNwMwDewuDMAOORAcaX+88VWvbEsW8H+frr1jPYaf1qawoIYcAkAwKkqKKvW019u0ytLdssYaczQVN1+RgdFhQY4HQ0AGhXFDwA4bNuBUj326SZ9uj5PceFBuuOs9ho5MEVB/vwmEgCAn6u8ulZTFuzU5Pk7VFZdq2v6J+ve8zqqVVSI09EAwBEUPwDQRCzfXaDHPt2sJTsK1DoqWHef01FX9W+jANYeAADguCpr3Hotc4+e+Wq7DpZW6fxuibrvws7qkBDhdDQAcBTFDwA0IdZaLdp2SI99tlmrswuVGhuqe8/tpMt6t5bLj91GAAD4sRq3R29l5eipL7cqt6hSA9NidN+FndW/bYzT0QCgSaD4AYAmyFqrzzce0L8+26xN+0vUKTFcvzyvsy7onsh2swAASKp1e/Teqn164ostyi6oUL+UaP3q/M4a0j6W/ysB4AcofgCgCfN4rD5cm6v/zNuiHQfL1KtNlH51fmed3jGOb2oBAD7p+/8bP9+iHfll6pEUqV+d11lndo7n/0YAOAqKHwBoBmrdHr2zcq+e+Hyr9hZWKCM1Rvee21GD+a0mAMBHWGv12YY8PT5vizbtL1HnxAj94rxOjIYFgOOg+AGAZqSq1q03lmXrma+2Ka+4SgNSW+juczrqtA6MAAIAeCdrrb7YeEBPfLFVa/cWqV1cmO49r5Mu7dlKfqx/BwDHRfEDAM1QZU1dAfTc19u1v7hS/VKidc+5nZgCBgDwGh6P1Wcb9uvJL7ZpQ26xkmNCdPfZHXVF3yT5s+MlAJwwih8AaMaqat16MytHz321TfuKKtUnOVr3nNtRZ3ZinQMAQPPk9ljNXZurp7/cps15JUqLC9MdZ3XQ8D6tFUDhAwA/G8UPAHiBqlq3Zi/P0bNfbdfewgr1To7WPed00FmdEyiAAADNQq3bow/X5OqpL7dqe36ZOiSE666zO+jSXq3lYkoXAJw0ih8A8CLVtR69vSJHz3y1TTmHK9SrTZRuP7ODzu+WyDoIAIAmqcbt0fur9umZr7Zp58EydU6M0F3ndNBFPVpR+ABAPWiQ4scYkyzpZUktJXkkTbbWPvFTH0PxAwD1p8bt0TsrcvTMV9u1p6BcHRLCddsZ7RkmDwBoMipr3Hp7RY5e+GaH9hSUq1urSN19Tkd+WQEA9ayhip9WklpZa1cYYyIkLZc0wlq74VgfQ/EDAPWv1u3RR2tz9dzX27Vpf4mSokM0YViarhuQopBAl9PxAAA+qLiyRq8u2aMpC3fqYGmVereJ0l1nd9Q5XZmeDAANoVGmehlj3pf0tLV23rFeQ/EDAA3HWquvNh/Qs19tV9buw4oNC9TYoakaNThVUSEBTscDAPiAAyWVmrpwl15dslslVbUa1jFOk85sr8HtYil8AKABNXjxY4xJlTRfUg9rbfGxXkfxAwCNI3NngZ79epu+3pyv8CB/3TSorcadlqqEiGCnowEAvNCug2WavGCHZi/PUa3bo4t6ttKkM9qrR1KU09EAwCc0aPFjjAmX9I2kh6217xzl+YmSJkpSSkpK/927d5/S8QAAJ279viI99/V2zV2bK3+Xn67ql6Txp7VTh4Rwp6MBALzAur1Fev6bI//P+Pnpqv5tNPH0dkqLC3M6GgD4lAYrfowxAZI+lPSptfbfx3s9I34AwBm7Dpbphfk79M6KHFXVenROlwTdMqydBrWLYeg9AOBn8XisvtmarykLdmrhtoMKD/LXjYNSNH5omhIiGVkKAE5oqMWdjaQZkgqstfeeyMdQ/ACAsw6VVmnmkt2auXi3DpVVq0dSpCYMa6eLe7ZiJzAAwE+qrHHr3ZV7NWXhTm07UKrEyCDdPDhVNw1qy1pyAOCwhip+TpO0QNJa1W3nLkl/sNbOPdbHUPwAQNNQWePWOyv26qWFO7Qjv0yto4I1Zmiqrs9IUWQw37wDAP6//JK6Xxq8smS3Csqq1a1VpCacnqZLerZWoD+/NACApqBRdvU6ERQ/ANC0eDx1O4FNnr9DS3cWKDzIX9cPSNaYoalq0yLU6XgAAAdtySvRlAU79e6qvaqu9ejcrgkafxrThAGgKaL4AQAc19qcIr24YIc+Wpsra63O7ZqoMUNSNbg9W/ACgK/weKzmb83X1EW7NH9LvoID/HR1/zYaOzRN7ePZGAAAmiqKHwDACdtXWKFXluzWa5l7dLi8Rp0SwzV6SKqu6Juk0EB/p+MBABpAUUWNZi/P0czFu7TrULniI4I0ZkiqRmakqEVYoNPxAADHQfEDAPjZKmvcmrN6n6Yv2qUNucWKDPbXdQOSNWpQqlJimQYGAN5g8/4Svbx4l95duVfl1W71b9tCNw9uq4t6tGL9HgBoRih+AAAnzVqrrN2HNf3bXfpk3X55rNU5XRI0ZkiahnZgGhgANDe1bo/mbcjTjMW7tGRHgYL8/TS8T2vdPDhVPZKinI4HADgJP1X8MGYfAPCTjDEakBqjAakxyi2q0KtL9ui1zD36fONStYsP08iMFF3dv42iQ5kKAABN2cHSKr2euUevLt2j3KJKtWkRot9f1EXXpicznQsAvBgjfgAAP1tljVsfrsnVq0t3a+WeQgX6++nSnq00cmCK+rdtwSggAGgiPB6rxTsOaVbmHn22fr9q3FbDOsbp5sGpOrtLglx+fL0GAG/AVC8AQIPZsK9YszJ3672V+1RaVavOiREaOTBFV/RLUmRwgNPxAMAnHSyt0uzlOXo9c492HSpXdGiArurXRjdkpKhDArtzAYC3ofgBADS4sqpazVm9T7OW7tHavUUKCXDpst6tNHJgW/VuE8UoIABoYB6P1bfbD+m1zD36bEPd6J6MtBiNzEjRhT1aKjjA5XREAEADofgBADSqNTmFmrV0j95ftU8VNW51axWpa9PbaHifJNaRAIB6ll9yZHTPsj3a/V+je5LVISHC6XgAgEZA8QMAcERxZY3eX7lXb2Rla93eYgW6/HRet0Rdk95GwzrGs7YEAJykGrdHX246oNnLc/TVpgOq9dSN7rlxYIou6M7oHgDwNRQ/AADHrd9XpLeycvT+qr06XF6jlpHBuqp/kq7pn6zUuDCn4wFAs7BhX7FmL6/7WnqorFrxEUG6sm+SrklPZu0eAPBhFD8AgCajqtatLzYe0FtZ2fpmS748VspIjdE16W10cc9WCgvydzoiADQpBWXVen/VXs1enqP1++pGT57bLUFX92+j0zvGy9/l53REAIDDKH4AAE3S/qJKvbMyR29l5WjnwTKFBrp0YfeWGt43SUPbx/LDDACfVeP26JvN+Zq9PEdfbMpTjduqZ1KUru7fRpf3bs16aQCA/0LxAwBo0qy1Wr77sGYvz9HctbkqrqxVXHiQLu/dWiP6tlbPJHYFA+D9PB6r5XsO6/1Ve/XRmlwdLq9RXHigRvRJ0tXpbdSlZaTTEQEATRTFDwCg2aiqdeurTfl6b+VefbnpgKrdHrWLD9MVfZI0vE+SUmJDnY4IAPVq8/4Svbdqr+as2qe9hRUKDvDT+d1aanif1jq9U7wCGP0IADgOih8AQLNUVF6jj9fl6t2Ve7V0Z4EkqX/bFhrRp7Uu6tlKceFBDicEgJOzt7BCc1bt0/ur9mrT/hK5/IyGdYzT8D6tdX63lqx3BgD4WSh+AADN3nc/JL27Mkdb8krlZ6TB7WN1Sc/WuqB7omIpgQA0cQeKK/Xxuv36aE2uMnfVldn9UqI1om+SLqbMBgCcAoofAIDXsNZqc16J5q7J1YdrcrXjYJlcfkaD28Xqkl6tdEH3loph0VMATcT+okp9vC5Xc9fmKmv3YVkrdUwI1/A+rXV5b6avAgDqB8UPAMArWWu1aX+JPlqTq4/W5mrnkRJoSPtYXdKzrgRi5xsAjW1fYYU+Xrdfc9fmavnuw5KkzokRurhnK13cs6U6JkY4nBAA4G0ofgAAXs9aqw25xZq7NlcfrcnVrkPlcvkZDWoXo/O7tdR53RLVOjrE6ZgAvFR2Qbk+Xb9fH63N1co9hZKkLi0jdEnPVrqoZyt1SAh3NiAAwKtR/AAAfIq1Vuv31ZVAn23I07YDpZKknklROr9bos7rnqjOiRFsEQ/gpHk8Vuv2FWnehjzN25CnTftLJEndWkXqkl6tdFGPlmoXT9kDAGgcFD8AAJ+2Pb9U8zbk6bP1+7XiyG/iU2JCdX63RJ3fvaX6t20hlx8lEICfVlXr1uLthzRvQ54+35invOIq+RkpPTVG53dL1LldE5UaF+Z0TACAD6L4AQDgiAPFlfp84wF9tmG/vt12SNVuj2LDAnVm5wSd1SVewzrGKyokwOmYAJqIw2XV+nrLAc3bkKdvNuerrNqt0ECXTu8Yr/O6JeqsLgksKA8AcBzFDwAAR1FSWaNvtuTrs/V5+mZLvooqauTyM+qf0kJndonXWZ0T1KUlU8IAX+LxWK3dW6SvN+fr6y0HtDq7UB4rJUQE6ZyuiTq/W6IGt49VcIDL6agAAHyP4gcAgOOodXu0OqdQX23K11ebD2j9vmJJUquo4LrRQJ3jNbRDnMKC/B1OCqC+FZRVa8HWfH29OV/zt+TrUFm1jJF6tYnWmZ3idVaXBPVKipIfU0IBAE0UxQ8AAD9TXnGlvtmcry83HdDCbQdVWlWrQJef0lNbaGiHOJ3WIU49kqJYGwhohmrdHq3ZW6T5W+rKntU5hbJWigkL1Okd43Rm5wQN6xin2PAgp6MCAHBCKH4AADgF1bUeZe0u0Neb87Vg60FtzK0bDRQVEqAh7WO/L4LaxoYyLQxogqy12pJXqkXbDurb7Qe1dEeBSqpqZYzUJzlaZ3ZK0Jmd49WTUT0AgGbqp4ofxqsDAHAcgf5+GtI+TkPax0mS8kuq9O32g1q07aAWbj2oj9ftlyQlRYfotA5xGtoxTkPaxyqO0QKAY7ILyo9cp4f07fZDOlhaJUlqGxuqS3u31tAOsRrSPo6FmQEAXo8RPwAAnAJrrXYdKtfCbQe1aGvdaILiylpJUvv4MA1sF6uBaTHKSItRq6gQh9MC3slaq5zDFVq2q0CZOwv07fZD2lNQLkmKCw/S0A6xGto+TkM6xKpNi1CH0wIAUP+Y6gUAQCNxH9kRaMmOQ1q645Cydh1WSVVdEZQcE6KBabHKSIvRwLQYpcQwNQw4GR6P1dYDpcrcVaBlOwu0bFeBcosqJUkRwf4amBZbV/Z0iFPHhHCuMwCA16P4AQDAIW6P1cbcYi3dWaDMnYeUubNAh8trJEktI4M1IC1G/VKi1Telhbq1ilSgv5/DiYGmp6rWrfX7ir8vebJ2H1bhkesoISJIA9JilJEaowGpMercMoJF1wEAPofiBwCAJsLjsdqeX6olO+umpGT9YKRCoL+feiZFfV8E9UtpoZZRwQ4nBhqXtVZ7Csq1KrtQK/cUamV2oTbuK1a12yNJSosL04DUFhqQWjeFkpFzAABQ/AAA0KTlFlVo5Z5Crdh9WCuzC7V2b5Gqa+t+yG0VFax+KS3UJzlaPdtEqXvrSEUEBzicGKg/RRU1Wp1dqFU/eCsoq5YkhQS41LNNlPomR6tPcrT6p7ZQQgRlKAAAP8auXgAANGGtokLUqmeILu7ZSlLd9vEbcou1cs9hrdhTqJV7Duujtbnfvz4tLkw9kqLUo3WkeiZFqXvrKEWFUgah6TtYWqV1e4u0fl+xNuwr1rp9Rdp9qG4RZmOkDvHhOqdLgvqk1BU9nRMj5O9i+iMAAKeCET8AADQD+SVVWrevSOv3Fmnt3iKt21usvYUV3z+fEhOqHkmR6pEUpa4tI9W5ZYRaRQUzBQaOsNZqb2GF1u0t1oZ9dUXPun1Fyiuu+v41KTGh6t667t9s7zbR6pUcpUhGswEAcFIY8QMAQDMXHxGkszon6KzOCd8/VlBWrfX76oqg9XuLtXZvkeau3f/98xHB/uqcGKHOLY+8HbkfHRroxB8BXshaq/zSKm3NK9Xm/SXaeqCk7jav9Pvd7PyM1CEhXEPax6l760h1bx2lbq0jFRVCyQMAQGNgxA8AAF6kqKJGW/JKtGl/ibbsr/shfNP+YhVX1n7/msTIIHVuGakO8eFKiw9T+7gwtYsPV2JkECOEcFTWWuUVV2nHwVJtP1CqLXml2pxXoq15Jd/vUidJLUID1Ckxou6tZYR6tI5Ul5aRCgl0OZgeAADvx4gfAAB8RFRIgAYc2db6O9/90L5pf7E27y/R5ry6QmjZzgJV1Li/f11YoEtp8WFqFxeutLgwtYsPU/v4cLWNDWVBaR9grdXh8hrtPFh25K1Uuw6Wa8fBMu06WPZf/1YigvzVqWWELuzR8v8XPYkRigsPpDwEAKCJofgBAMDLGWPUMipYLaOCdeYPpop5PFb7iyu182CZduSXant+mXYcLNOKPYf1wZp9+uGg4OjQACW3CFVyTIiSW4SqTUyokluEqE2LULVpEaLgAEZ0NAdlVbXKOVyhvYXlyjlcceStXHsPV2jXoXIVVfz/0Tv+fkbJMaFKiwvT4HaxR0rBukKwZSTrRwEA0FxQ/AAA4KP8/IxaR4eodXSIhnaI+6/nKmvc2n2oXDvyS7W7oFzZBeXKPlyhTbkl+nzDAVW7Pf/1+oSIICW1CFHLyGAlRtaVTD++z3SfhlVaVau84krlFVcqv6TqyP0q7T1cob2FdQXPD6dlSVKgv5/aHCnwLk2KUrv4cKXFhSotLlxtWoQogB21AABo9k6p+DHGXCjpCUkuSS9Zax+pl1QAAMBRwQGu7xeF/jGPp25B37oyqFzZBRXKLijXvqIKbckr0YKtB1VaVfs/HxcZ7K+WUXVlUGxYoGLCghQbHqiYsLq3uPC6x2LCAhUZ7O/zI0rcHquiihoVlFXrcHl13W1ZtQrKq1VQWq0DJVU6UFKpA8V1JU9Ztft/PkdooEuto0PUpkWIeidHKSk69EjRE6KkFiGKCwuSn59v/z0DAODtTrr4Mca4JD0j6TxJOZKWGWPmWGs31Fc4AADQ9Pj5GSUeGc2T/oO1hH6otKpW+4sq696OjEL57v6BkirtOlSmQ6XVKj9KWSFJAS6jFqGBigwJUESwvyKC624jgwMUGexfd/+754ICFBLoUnCAS8EBfgoJqLv/3W2Qv1/jlBvZmfLsXKDqNkNUnthfVbVuVdV4VFnrVkW1W2VVbpVU1qikqlallbUqrap7K/nufmWNiitrdbi8ruAprKjRsfbgCA7wU0JEsBIjg9S1daTO7JygxMggJUYGK+HIbWJksMKDGNwNAICvO5XvBjIkbbPW7pAkY8zrkoZLovgBAMDHhQf5q0NCuDokhP/k6ypr3DpUVjeC5VBZlQrK6ka2fPdYSVWNSiprVVRerZyCchVX1qq4skbVtZ6f/Lw/FuTvp+AAlwJcfnL5Sf5+fvLzk1zGyOX33Vvdcy6/uulN1lp5rJXb88P7VtZKHmvlsVKt26OqWo8612zUFPOQAlQrK3/dUv0HrbCdjpsrOMBP4UHflVv+Cg/yV9dWkYoJDVSLsEDFhAaoRVigWoTWjYqqeyyQaXMAAOCEnUrxkyQp+wfv50ga+OMXGWMmSpooSSkpKadwOAAA4G2CA1xKig5RUnTIz/q4qlq3SiprVVxRVwxV1LhVWeNWZY3nyK37yGMeVdS4VXXksRqPldtt5T5S4vzX25HHaj1WRpKfkfyMkTFGLr+6+3XvSy6/uvsuP6PgAD+dnf+5gvbWyk8e+cmt+7sf0pZOPRUc4Kcgf9d/FTzhQXUlT1iQP2voAACABncqxc/Rxkz/z4Bka+1kSZMlKT09/RgDlgEAAE5ckL9LQeEuxYUHOR2lTvZV0owZkrtafq5A9T/jcvVP5hdeAADAeadS/ORISv7B+20k7Tu1OAAAAM1QcoY0eo60a4GUOqzufQAAgCbgVIqfZZI6GmPSJO2VdL2kkfWSCgAAoLlJzqDwAQAATc5JFz/W2lpjzJ2SPlXddu5TrbXr6y0ZAAAAAAAATskp7fFprZ0raW49ZQEAAAAAAEA9YisJAAAAAAAAL0XxAwAAAAAA4KUofgAAAAAAALwUxQ8AAAAAAICXovgBAAAAAADwUhQ/AAAAAAAAXoriBwAAAAAAwEtR/AAAAAAAAHgpih8AAAAAAAAvZay1jXcwY/Il7W60AzasOEkHnQ6BRsd5912ce9/FufddnHvfxbn3XZx738R5913edO7bWmvjj/ZEoxY/3sQYk2WtTXc6BxoX5913ce59F+fed3HufRfn3ndx7n0T5913+cq5Z6oXAAAAAACAl6L4AQAAAAAA8FIUPydvstMB4AjOu+/i3Psuzr3v4tz7Ls697+Lc+ybOu+/yiXPPGj8AAAAAAABeihE/AAAAAAAAXori5wQZYx4zxmwyxqwxxrxrjIk+xusuNMZsNsZsM8b8rpFjop4ZY64xxqw3xniMMcdc7d0Ys8sYs9YYs8oYk9WYGdEwfsa555r3MsaYGGPMPGPM1iO3LY7xOq57L3G869jUefLI82uMMf2cyIn6dQLn/UxjTNGRa3yVMeZBJ3Ki/hljphpjDhhj1h3jea55L3UC557r3gsZY5KNMV8ZYzYe+f7+nqO8xquve4qfEzdPUg9rbS9JWyT9/scvMMa4JD0j6SJJ3STdYIzp1qgpUd/WSbpS0vwTeO1Z1to+vrAdoI847rnnmvdav5P0hbW2o6Qvjrx/LFz3zdwJXscXSep45G2ipOcaNSTq3c/4+r3gyDXex1r7f40aEg1puqQLf+J5rnnvNV0/fe4lrntvVCvpV9barpIGSbrD1/6vp/g5Qdbaz6y1tUfeXSKpzVFeliFpm7V2h7W2WtLrkoY3VkbUP2vtRmvtZqdzoPGd4LnnmvdOwyXNOHJ/hqQRzkVBIziR63i4pJdtnSWSoo0xrRo7KOoVX799mLV2vqSCn3gJ17yXOoFzDy9krc211q44cr9E0kZJST96mVdf9xQ/J2ecpI+P8niSpOwfvJ+j//0HBe9kJX1mjFlujJnodBg0Gq5575Rorc2V6r5RkJRwjNdx3XuHE7mOuda9z4me08HGmNXGmI+NMd0bJxqaAK5538Z178WMMamS+kpa+qOnvPq693c6QFNijPlcUsujPHW/tfb9I6+5X3VDxV492qc4ymNsm9bEnch5PwFDrbX7jDEJkuYZYzYd+Y0CmrB6OPdc883UT537n/FpuO69w4lcx1zr3udEzukKSW2ttaXGmIslvae6KQDwflzzvovr3osZY8IlvS3pXmtt8Y+fPsqHeM11T/HzA9bac3/qeWPMaEmXSjrHWnu0fwQ5kpJ/8H4bSfvqLyEawvHO+wl+jn1Hbg8YY95V3RByfgBs4urh3HPNN1M/de6NMXnGmFbW2twjQ3wPHONzcN17hxO5jrnWvc9xz+kPfyiw1s41xjxrjImz1h5spIxwDte8j+K6917GmADVlT6vWmvfOcpLvPq6Z6rXCTLGXCjpt5Iut9aWH+NlyyR1NMakGWMCJV0vaU5jZYQzjDFhxpiI7+5LOl91CwPD+3HNe6c5kkYfuT9a0v+M/uK69yonch3PkXTzkR0/Bkkq+m46IJqt4553Y0xLY4w5cj9Ddd83H2r0pHAC17yP4rr3TkfO6RRJG621/z7Gy7z6umfEz4l7WlKQ6obzS9ISa+1txpjWkl6y1l5sra01xtwp6VNJLklTrbXrnYuMU2WMuULSU5LiJX1kjFllrb3gh+ddUqKkd4/8u/CXNMta+4ljoVEvTuTcc817rUckvWmMGS9pj6RrJInr3jsd6zo2xtx25PnnJc2VdLGkbZLKJY11Ki/qxwme96slTTLG1EqqkHT9MUZ8o5kxxrwm6UxJccaYHEl/khQgcc17uxM491z33mmopFGS1hpjVh157A+SUiTfuO4N/44BAAAAAAC8E1O9AAAAAAAAvBTFDwAAAAAAgJei+AEAAAAAAPBSFD8AAAAAAABeiuIHAAAAAADAS1H8AAAAAAAAeCmKHwAAAAAAAC9F8QMAAAAAAOCl/h89WaGAy9VmBAAAAABJRU5ErkJggg==\n", "text/plain": [ "

" ] @@ -247,19 +247,44 @@ "cell_type": "code", "execution_count": 18, "metadata": {}, + "outputs": [], + "source": [ + "from datetime import datetime" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "opt = gpflow.optimizers.Scipy()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Finished fitting in 0:00:00.980794\n" + ] + }, { "data": { "text/html": [ "\n", "\n", - "\n", + "\n", "\n", "\n", - "\n", - "\n", - "\n", - "\n", + "\n", + "\n", + "\n", + "\n", "\n", "
name class transform prior trainable shape dtype value
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].variance ParameterSoftplus True () float646.18044
GPR.kernel.kernels[0].lengthscalesParameterSoftplus True () float641.50932
GPR.kernel.kernels[1].variance ParameterSoftplus True () float641.33892e-08
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.0456394
GPR.kernel.kernels[0].variance ParameterSoftplus True () float641031.13
GPR.kernel.kernels[0].lengthscalesParameterSoftplus True () float64 3.57915
GPR.kernel.kernels[1].variance ParameterSoftplus True () float64 5.2804e-48
GPR.likelihood.variance ParameterSoftplus + Shift True () float64 0.336471
" ], @@ -272,19 +297,20 @@ } ], "source": [ - "opt = gpflow.optimizers.Scipy()\n", - "opt_logs = opt.minimize(model.training_loss, model.trainable_variables, options=dict(maxiter=1000))\n", + "start_time = datetime.now()\n", + "opt.minimize(model.training_loss, model.trainable_variables)\n", + "print(f\"Finished fitting in {datetime.now() - start_time}\")\n", "print_summary(model)" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIAAAAFlCAYAAACTGZPMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdZ3hc53ng/f850ysw6L2x915F9d67JctqtmQnWXuTTd9kN3md3STrtHWcxOsktlxkybJsSVaxqtXFLvZOEL1jeq+nvB8GHBIE2CECpJ7fdfGyNZhyQM7MOc/93EXSdR1BEARBEARBEARBEATh0iVP9gEIgiAIgiAIgiAIgiAIny0RABIEQRAEQRAEQRAEQbjEiQCQIAiCIAiCIAiCIAjCJU4EgARBEARBEARBEARBEC5xIgAkCIIgCIIgCIIgCIJwiRMBIEEQBEEQBEEQBEEQhEuccTJetKysTG9qapqMlxYEQRAEQRAEQRAEQbgkbd++3a/revl4P5uUAFBTUxPbtm2bjJcWBEEQBEEQBEEQBEG4JEmS1H2yn4kSMEEQBEEQBEEQBEEQhEucCAAJgiAIgiAIgiAIgiBc4kQASBAEQRAEQRAEQRAE4RInAkCCIAiCIAiCIAiCIAiXOBEAEgRBEARBEARBEARBuMSJAJAgCIIgCIIgCIIgCMIlTgSABEEQBEEQBEEQBEEQLnEiACQIgiAIgiAIgiAIgnCJEwEgQRAEQRAEQRAEQRCES5wIAAmCIAiCIAiCIAiCIFziRABIEARBEARBEARBEAThEicCQIIgCIIgCIIgCIIgCJe4SQkAeWMZIqncZLy0IAiCIAiCIAiCIAjC586kBIBKHGae+qSDp9Z3ks6pk3EIgiAIgiAIgiAIgiAInxvGSXlRWeIPbphFdyDBt99tZVqZk3uW1mI0iIo0QRAEQRAEQRAEQRCEiTapEZfGUgd/dvMc5ta4+ds3DvHWvkF0XZ/MQxIEQRAEQRAEQRAEQbjkTImUm/m1Rfzl7XNx20z81WsH2Njun+xDEgRBEARBEARBEARBuGRMiQDQUWunlfH/3T6XaCrH/3rtAPv6I5N9SIIgCIIgCIIgCIIgCBe9KRUAApAkiZvmV/Pnt8zmwECU737QNtmHJAiCIAiCIAiCIAiCcFGbcgGgo4wGmS+sqKep1CFKwgRBEARBEARBEARBEM7DlA0AHXXLgire2T9MTtUm+1AEQRAEQRAEQRAEQRAuSpMSAEplVdq9ccLJLKp26qlfkiTxpVUN/GxLzwU6OkEQBEEQBEEQBEEQhEuLcTJeVNF0BiNpekNJZEmixGGmwmXBbTNhNRnG3H9GpYs39g7hjaWpcFkn4YgFQRAEQRAEQRAEQRAuXpMSAAIospkA0HSdeFrBH88A4DAbqHRbKXaYcZqNyLIEwFfWNfHdD9r57zfPnqxDFgRBEARBEARBEARBuChNWgDoKFmScFiMOCz5Q8koKt2BJB3+BEZZotxloabYhstqYnaVi0+7gqxoKpnkoxYEQRAEQRAEQRAEQbh4TLkm0BajgWK7mVKHBafFRCCeZVtXiJ5AgtsWVvP6nkEU0RBaEARBEARBEARBEAThjE25ANDxDLKEy2rCYzfT4U+wqy/MbYuq+fmnvZN9aIIgCIIgCIIgCIIgCBeNKR0AOsogS5Q6LCiKTiyl0OaN44umJ/uwBEEQBEEQBEEQBEEQLgoXRQDoKIfFiMduZkWjh2+9dYhkVpnsQxIEQRAEQRAEQRAEQZjyLqoAEOSzgRpKHZQ7Lfx8aw8DoRS6rk/2YQmCIAiCIAiCIAiCIExZF10A6KibF1SzvTvMgcEIe/oipLLqZB+SIAiCIAiCIAiCIAjClHTRBoBkSeLa2RXs7ouQyChs7QwwFBbZQIIgCIIgCIIgCIIgCCe6aANAADMqXQxHMwC4rSYODMU4MBAVY+IFQRAEQRAEQRAEQRCOc1EHgADuXFTDK7sGMBpkyp0W/PEMB4eiqJrIBBIEQRAEQRAEQRAEQYBLIADktpkod1lo88YBKHFYCMazHBwUQSBBEARBEARBEARBEAS4BAJAANfNqeS9Q8NoI/1/Shz5TKBDIggkCIIgCIIgCIIgCIJwaQSADLLElTPL+fCwt3BbqcOCL57h8FAUTQSBBEEQBEEQBEEQBEH4HLskAkAAs6vc9AZTJDJK4bZSh4XhaIZDIggkCIIgCIIgCIIgCMLn2CUTAAIod5n56ebuUbeVOfNBoMPDMREEEoRT0HXx+RAEQRAEQRAEQbhUGSf7ACZKmzdOVtHp8MU54o0xo8JV+Fmpw8xQJI0kwcwKF7IsTeKRCsLUomk6BwejBBIZzEYDVpOM1WjAZjZgMxkwGmSMBgmTPPK/hksqbiwIgiAIgiAIgvC5cEkEgGLpHB8c9vLEumZWNpfwr+8f4Y9umEWp0wKAJEmUOswMhtNIwMxKF5IkgkCCANDhi+OLZyixm1E0nZyik8rm8MezqJoGEug6SIAOyFK+vHJOtVsEUwVBEARBEARBEC4SF30ASNN1ntvaw0OrGpEliZpiGzMqnTz3aS+Pr23Cacn/ikeDQAORFJIEMypEEEgQ+kMpeoJJypwWJEnCZJAwGU79GF3X8cbTFEVM1HnsF+ZABUEQBEEQBEEQhPNy0ddyvLyzn+vnVhYCPQA3zq2mpsjKTzd3k1W0wu2SJFFqt9AXStHujYueJ8LnWnBkSl6Jw3JWwVBJkvDYLLR546OarguCIAiCIAiCIAhT10UdANreHcLjMNNc5hx1e63HRjSd465FNfxkUxfqcc2fJUmizGGhJ5Si3ZcQQSDhcymeUdjbH6HIZsZwDmVcBlnCYjSI5uqCIAiCIAiCIAgXiYs2ADQcTXNgMMrVsyrG/fnVsyrYOxDhxnlVPLe1Z1SgJx8EMtMTSNIbTF6oQxaEKSGjqOzrC2M1GTAbz/0rwGkxEknmGIikJvDoBEEQBEEQBEEQhM/CRRkAyioaL+3s58EV9Se9T2Opg75QitpiG0sbPbyya2DUzyVJosRh5og3jj+W/qwPWRCmBEXV2N8fQdXBbj7/FmAeu5kjw6IUTBAEQRAEQRAEYaqbsACQJEkGSZJ2SpL064l6zpP5+ac93Lu09rTjqK+YUc5HrT7mVrupLrby3sHhUT83yBIeu5kDgzHiYgErXOJ0XeeIN04sreC2mibkOQ2yhNVk4NBQVJSCCYIgCIIgCIIgTGETmQH0e8DBCXy+cb13cJj5tUVUuKynve/0Cied/jiqprOquRRdh62dgVH3MRlkLEaZff2RUQ2jBeFS0x1IMBhJ4bGbJ/R5nRYj0ZRCf1iUggmCIAiCIAiCIExVExIAkiSpDrgV+MFEPN/JtPviRNM5ljZ4zvgxl00rY1NHPuhz3dxK+kIpDg5GR93HbjaiqBoHB0UWg3BpGo6kafclKD3LiV9nymM3i6lggiAIgiAIgiAIU9hEZQD9M/AnwElTaCRJ+pokSdskSdoWCQVOdreTiqcV3j/k5c7FtWf1uNnVbg4NRtFGmkDfvaSWbd2hMc2fi2xmgoksHf7EWR+bIExlkVSOA4NRPHYz8mcQ/AFRCiYIgiAIgiAIgjDVnXcASJKk2wCvruvbT3U/Xdf/U9f15bquLy/ylJ7Va2i6zs+2dvPFFQ3ntIBd2VzCp13Bo8fLQysbeGv/EP54ZtT9Sh1meoIJhkQpi3CJSGVV9vSFcVqMp+2Zdb5EKZggTJxkVmF3b5hQIjtqiqUgCIIgCIIgnKuJWBFeBtwhSVIX8HPgGkmSnpmA5y14ZVc/182pxGk9t6lFC2qL2NsXKVxEG2SJx9Y08eKOvjHj4T02M4eGY0RSuQk5dkGYLFlFY29/GKMsYzUZLshrilIwQZgYA+EU/niGXb0hdvWGxTlJEARBEARBOG/nHQDSdf3PdF2v03W9CXgQeF/X9YfP+8hG7OgJUWQz0VLuPOfnkCSJJQ0edvaGC7eZjTKrW0oL/YGOMhpkHGYje/vDpHPqOb+mIEwmTdM5NBQlk9NwWs5/3PuZEqVggnD+MopKfyhFmdNCmdNKJqexozvIvv6wmFgpCIIgCIIgnLPPtibkPOm6zo7uENfMrjzv51raUMz27tCojJ9FdcUcGIiSU0e3LrKaDMhI7B+IoKhiMphw8fHHM/jjWYoneOLXmRClYIJwfnyxfHny0ZJnh8VImdNKNKXwaWeAQ0NRklkRCBIEQRAEQRDOzoQGgHRd/1DX9dsm6vmGomkaS+0T8lySJDG/toh9A6MngN04r4p39g+Nub/LaiKeVjjijYv+C8JFRdV02n1x3OdYMjkRjpaCiWwFQTg7qqbTHUjisprG/MxlNVHqsOCPZdnSEaTNGxOZqoIgCIIgCMIZm9IZQHv7IyyoK56w51vVXMLWztElX/UldkLJHPH02IWqx25mMJymLyQyGYSLhzeaJqNoWIwXpu/PeAyyhM1k4LAoBROEsxKIZ8ip2kmbtkuSRJHNRIkjf37a0hGg258gq4hsVUEQBEEQBOHUpnQAaDiaodJlmbDnkyWJmZUuDg2NzgK6bWE1v947MOb+kiRR4jBzxBsncMLEMEGYinKqRrs/jnuc7IELzWExEkuLUjBBOFO6rtMTSOIwnz57T5Ykiu1mimxmOgMJtnYFRPN14ZRSWZUOn8hqFgRBEITPsykbADp6gSKdw9j3U1k7rYwNbaOzgIrtZqxGA0PR9Jj7G2SJIquJ/QMRcXEtTHmD4RSKqn/mI9/PVLEtXwom+pUIwulFUwqxjHJWU/tCySwb2gJsbAswFBl7DhMEgHhGYUdPiHZvnFBSTJQTBEEQhM+rSVklZpTT9ywYjKSpKbJO+GsbZInmMjvtvvio229eUMWbewfHfYzZKGM2GERTaGFKyygqXYEExbYL3/j5ZAyyhFGWGAyLhakgnE5PMHFGwZ9gIsvrewb4ycYutnQEWDe9jOFImv5wUpyjhDEiqRw7u0MY5XzWWLs3JrKABEEQBOFzalK6xCazpw8A7emLsLSh+DN5/StmlPPTzd1MO260vMVooKnMwaGhKLOr3GMe47AYCSYzdPjjzKwc+3NBmGx9wRQgYZDPLmsumVU4MhxnUX3xZ3JcLquJwUiKpjLHWR+bIHxeJLMKgXiWEsf4AdxIKsfGdj/eaAaPw8SaljLKjyuRbil30hVIMqc6S7lr4jdPhItTMJ5hT38Eh9lYCC76ExmCiSylzokrsRcEQRAE4eIwKQEgWYJ4WsF5iilFvniGCvdncxFrNMjUFNvoDiRoLHUUbr9yZjk/+KSDWZWucUvPPDYzvcEUHrtZXGALU0oqq9IbSuI5y7Hv27qD7O6NUFNsJZTMctWsigk/NoMskdM0QsksZWLBIQjjGginMRqkUeeeWDrHxvYAg5E0RTYja6aVUXWS8+KKphJe2NHL/NoicX4SgPxAgP0DUdxWE2bjsYRvp9lIuy+Ox25GFkF5QRAEQfhcmZQSMIfFyEet3pP+/EKkJl8zu4K39g+Nei1ZkljTUsrG9sC4j5EkCY/dzKFBMXpXmFp6ggmMsoR8hj2zIqkcP9rQSU7VeWJdMzfPryaramztDH4mx2c3GekLJj+T5xaEi11W0egPJXFajjVv/82BId7eP8yC2iIeX9vE3UvqThr8AbCZDWgaRJJZ0a9OYCCUYt9AlCLb6OAPgNVkIJFVCSTEcAtBEARB+LyZlAwgoyzji2fQdX3cTJu+cIraYttnegwmg8w1syp4dfcAdy6uLdy+oK6Yp9Z3sLK5ZNxGuiaDjCxJHB6KsaC2SOyeCZMunlEYCKcpPUnpyPF0XeejVh+9oRT3L6/HaTn2FXDD3Cpe3tXPvv4I82uLJvQY7WYj/niGVFbFZp688fSCMBV5Y/keWceXSH7U6mNutZsPDh/bLDEbZDx2M8UOEx67GY/dTJHNVHhcS7mDvlCKprI0zRYnwuePruv0BpMc8cYpdVhOWnbrNBvp8CUodVjEdYwgCIIgfI5MSgAIYFali8PDsXH77ezti7CiqeQzP4YZlS66g0l294ZH9T+5YV4Vb+8f4raFNeM+zm0z4Y9n6AslaTiuhEwQJkOXP47FKJ92Yp43muaV3QOsbik9aanXnYtq+PmnvdjMhlE9siaCQZbwxdLiMyMIx1E1ne5AEpf1WPZPKJFF1+GhVY2j7ptRVMLJHKFkFm8sQ+twjEgqh6rpOCxGbppXxUs7+mguc9BQInpufd7ouk6HP0F3IHHK4A/ks4D88Qz+z7DcXhAEQRCEqWfSZkWvaCo5abmJP54Z1dzys3TdnEp294ULO7AA9R474VSOePrkafQeu5k2X5xISoxTFSZPJJXDG8uMyuQ5karpvLF3kA9bfTy6ppEFp8jukSSJB1bU88kRPwPh1IQeq9NipCeYQtPE9BlBOCqYyJBV1VEZpy/v7ufKWeVj7msxGqh0W5ld5WZNSyk3z6/mwRUNfGlVI9FUDqMskVN1cqpGOJm9kL+GMMk0TefwcOyMgj9HuaxGOvwJ8Z0sCIIgCJ8jkxYAMhpkLEZ5TK+Ck5WFfZYeXNHAizv6yR03Pvf2hTW8tmfgpI8xyBJOs4mDA5FRjxOEC0XXdTp8cewm40k/M92BRL6xeZWLLyyvx2I8ffmVLEk8srqR1/cO4o9PXI8Ik0FG0TQRNBWEEbqu0+1P4jSbRt2+vz9KsdXIs1u6eXX3AJs6ArR54yPZPhreWJrdvWHe3DfIM1u6eWZLN+mcyq6+MNMrnAxF0vRNcABXmLoUVePgYJTBcJoyh+WMe8FZjAbSOXVCv+cFQRAEQZjaJqUELJbOLwCvnFnBR60+bllQXfhZTzBJveez7f9zIrNR5t4ltTy3tYdH1zQBUGQzYTMbGIqkqSoaPz3aZjYQSqq0eePMqRaj4YULK5zMEU5mKXOOfX/mVI1Xdw9gMsg8eXnLWZeCGGSJx9Y08cMNnTy0sgG37dgCdf9AhN29YWRZwiBJyLKELOUDR4aRRtSyJCHL+duaSh1Mr8iXk1mMBgYiKTxn0K9IEC510ZRCNKNQftx0vEgyi9kgsasvwpqWUjoCCbZ3BUlkVZJZhXROzX/2ZAl0yCdv6AxH0hhkiS+tauRXO/uoLraJnlufAzlV48BAdORccOrM6Q8Pe5le4aTOYy/c5rTkewGVOUUvIEEQBEH4PJicJtAGmZ9t6eaBFQ0MRdOjsn729UdY3VJ6wY+pwm1lQW0R7x0c5to5lQDcPL+KZ7f08JXLmk/6uGKbicFwilKHWdTRCxeMpum0e+M4TsgcOOq5rT1cN6eSmvNopm42yjy6ppGfbOrmsTWN2M1GOv0J9vVHeHBlA5qmo+mg6TqarqMe/W9t9H+/uW+QqiIrTosRh9mAL5YhnVOxmsTCVPh86wsnsZ2Qlffijn5mVLjoCibY0B5AlqDIbioETc0GmXKXhXKXhQqXFdB5ZksPfaEUHb4Eug5ZRUcC0XPrc6DNGyeczFLiOHnwR1E1nt/Wy/QKJ2/vH+aJdceuaSxGA7FMWvQCEgRBEITPiUkJANlMBi6fUc5T6zuYUeHiiDfOzEoXAMFkjtLT7GJ9VpY0eHh5Zz9t3jjTK5xYjAZayhwcGowy+yQZPpIkUWw3c3AwistqErutwgXhj2fGZA4ctaMnREu587yCP0fZzUYeWtnATzd1c/fSWt49mF88yJKEbDiz3eJ7ltbx6q5+HlrVWAj0BuIZao/bhRaEz5tkVsEbzYyZ3ndoOEpzqZNUTuXBFfUU2Uzjlnjquk40leM/Pu5kWaOHcCJLVyDBpg4/MyqdDEXTGA0ydR67yOy4REVSOQYjKcpOEfwJJ7P8/NNe7lhUQ02xjWRWpXU4VrjmAnBbzLT74pQ6z6x3kCAIgiAIF69JmwJWX2LnC8vreXZLD4eHo8ysdKHp+V3LyXTH4hqeWt9JhcuC22biipnlhR4qJ+uzYjLImA0GDgxGWFLvERfbwmdK1XTafXHc1rEf32RWYWdPiCfWtUzY6xXZTNyysIr//esD/N09C8+4v8Txj/c4zHT6EzSXOXBZTPSGUtQU2y54vy9BmCoGwmmMBmnUZ6A/lMIkywxFUyysLcZslOkKJPHG0gxH0wxHMyP/m///qZwKwCdtfgDsJpkNbQH+5KZZPLO+Fb31Q+b+6R+IkstLkKbpHPHGcJhP3gOuzRvnw8NeHh3J4AS4YkY5P9zQOSoAZDbKxDI5/LE0lUUXtgRfEARBEIQLa9ICQADFdjNfvbyF//nyXvYNRHCajTSUTG5WgCxJPLSygWe2dPPkunzvlDXTytjQHmDd9LKTPs5pNeKPZ+gOJmgum9jx2YJwPG80TUbRcFrGln+9sL2Pe5fWTejrabrO2/uG+drlLbywo49HVjeedeDmhrlVPLW+g69e3oLZKBON54imFYps45ewCcKlLKto9IeTFFlHB2be2j+I1SQRTOb4+IiP57f1nvJ5zAaZmmIrsVCAgGYjmUhwZFiif8jLKy/+gq6Xv43TYuRv/scffZa/jjAJ/PEMsZRy0r4/Hx72Ek7meGJd86jva4MssaC2iN29YRbVFxdud1lMtPsTlLmsIgtIEARBEC5hkxoAgvzO0+9eO4OnN3Xhspp4eFXjZB8SDouRG+dW8aud/dy3rI4FtUX84JMOVjaVYDaefHBaicNMpy+Bx26m2C52XIWJl1M12v1x3NaxgZNdvWGayxwT/t57YXsf186poLnMidVk4Jfb+/jC8vqzeg6DLLFuRjkftfq4alYFZoPMUCQlAkDC55I3lgadUQttVdPp9Cewmw1kchqDkTSyBJVuK9VFNirdFqrcVirdVnKqRn84xUMrG5Akif7BYX77uT1gtuH3+fjtv36TSOtWmlfewLKrbhY9ty4xOVWj1Rsb9/tTUTV+sa2XmZUurppVMe7jVzWX8IP1nSysKyoEh45mAfmiaaomoHxYEARBEISpadLGwB+vzmOnqshGJJVjY7sfXdcn+5BoKnNQ6bawtTMI5EvDfnGa3VhZknBZTRwYjJJVxGh4YeINRdIoqo7JMPqjm8wqbOsKnjJL7Vy8f8hLU6mjkNU2o9JFhcvC4aHYWT/X3Go3XYEkyayC02pkMJIWnxPhc0fVdHqCSVwnBHH39kfIKRrJrEoomQXgd65q4fLpZUwrd3DX4lpuml/F9AoHBwej3L2klqyqkVU0KirKuWH+yDRN2YhcvxhrpJvbv/FXlJSVizHfl5i+UBJVG3seiKRy/GB9J1fNqmB5U8lJHy9JEquaS9jcERh1u9tqoiOQQNUm/xpMmFiprDolrq0FQRCEyTclAkAA08sduK1GGksdPLOlB0Wd/IXh5TPKafPGGAinqHBZmVXl4pMjvlM+xmoyoGo6bd6YONkKEyqjqHT5ExTbxmb4vLijn3uX1U1oT529fWHSOZWVzaMXEmunlbGtO3hOz3nnohpe3T1Q6CMUSoiFqfD5EkxkyCramMX79u4gqqYTTGSJZ1SsRolQQsFtM2E2ynz/kw7+zxsH+dZbhyi2m3l9zyA/2dTFP7x9iL98dR9dwTS6piFbnaCpGBuWoGg6TouR3mBSnI8uEcmsQpd/bPlgmzfOL7b18uiaxjMaALCwrph9A9FRwR6TQSaraHij6Qk/bmHyJLMKWzr99ASSk30ogiAIwhQwZQJAVUU24hmV+bVFXDu7gqfWd5LIKJN9WHxheT2v7B4gnVNZ0VTCQDjFQDh1yscU28wMRzP4YmJxK0yMnKrRNhxHhzH9GXb3hmksseOZwNKv/lCK3X0Rbp5fNeZnZqOMqunntEvscZhxWYz0BJM4zEZ6g6f+LAnCpUTXdboD+ff+8ZJZhf5QCrNRLpz3XFYzDouBSCqH1WTgkTWNuKwmTLLMrt4w4VSO2ZVuvnpFC3+4roojB/aQ6tiBJMvIRgvGhbfy5o/+iV1t/WQUlWhq8s+nwvnr8icwGeRR54EPD3vZ2x/miXXNhWbPZ+KqmeV81OoddZvbaqLDn5gSm3DC+dN1nac+6eSZzT20+WL0h8Q5VxAE4fNuygSADg1FqS6ykswq1BTbeGhVAz/d3M3wJO9EGQ0yDyyv52dbe9B1nXuX1vHq7oHTlq64rUYOD8VIj0xpEYRzdXSyVyCRHRPkSWYVtnYFuXzGxJV+RVM5fr1ngC+O9BcZz6L6Ynb3hc/p+W+aX81b+waxGGXiWYVYOnceR3vp0XWdZFbBF8vQOhxjU7uf1uHoZB+WMAGiaYVYWhnTj2dDm59gMkNaUQkm85+HdTPKcFryE558sQz/9n4boWSWRfXFPLK6kRK7iZ5gfkf/3ddfYeCdH2B3FwFgcpVgttoZ6GrnlY+2YzYYGIiIhd/FLpzMMhRNj5oA+dKOPhwWI3cvqTvrCY0zKl10BZLkjgv2HMsCEhtYl4IOb5wDg1FuXVDD+iMBDg1FRYaXIAjC59ykN4E+KpJSuGFuFZ8c8XPjvCpcVhNPrGvmqfWdPLGueUy6/IVU4jBzxYxyvv9JB3csruXepXU8v62XR1bnG1brus5QNM3+gSiDkTQSEM8ofHFlPR2+OHOq3WLctXBOAvEM+wcimA2GcTN8XtrRz31LJ670K6dqPLu1h0dXN55yEsz8miKe3dLN0gbPWb/G0cl669v8LKgtYjiaGdMP5fNE1XQSWYVEWiGQyBJKZtE0HR2wGAxYTAb6Q2lqi+04LFPmK1s4B0ORFJZxBgl0BxIoqk50JBjqGvl3nlXp5upZFbT7EpQ5zdy9pI5kVmFHT5hEVkXTdV7c3od91vX8zteM7LbOR0emK5iivKqami/9KTPnz8ZmNjAcTdNS7sBiFM2gL0aapnNkOIbTbCp834eTWSQJVpyi38/pXD+nkt8cGOaWBdWF24psJjoCcSrcFoyTeO0lnJ90TuW7H7Vz79I6Kt1WBsIp2objSBIskiVKTzJBThAE4WSGImn6QvnNJ4nR6wRJghNuwmkxMqPCKdbBU8yUWE2omo4E1HpsvHNgqHC7ySBz68Jq3t4/xG0Lay74cSUyCnv6wrT58k0R7WYjHx72YjcbKbIZ+ed3Wwsn0Cq3hXk1+fI1SZJY3+anL5Qip2qUuyyUu6wX/PiFi5eu6/QGk7T5EhRZTeNOn9vTF6bOY8PjmJjSL13XeXZLN/csqT1toMEgS5gMMhlFPacF5YLaIn60oZMlDR4GIymaSu2fq4VGLJ0jlMjiT2SJpvKLfol8DzGXxTQm+GYyyHQHksytcU/C0QoTJZjIYjsh+2cwkqI/nMYgS4VsuJYyByV2M7We/HCEDw57eWJdMwB2s5F108tYN72MnKqxty/C7r4wPWUrWF3poi+UpCuYIpJWqS6uxGKSaR2OU+m2EIxnqRYTni5Kw9E08axCmePYtcQnR/xcPqP8vJ63vsTOB4e9pLIqNnP+vWkyyChpneFohlqPeL9cjHRd58NDXhxmI5Xu/HvmipnlPL+tl8oiK3v6Iixt9IhJnIIgnLGsonFkOIbVZBiVcZrfsgRdB47rDqHr+ZYSHrtJrIOnmCmx4ur0J2gucwDQUu6kzRsv/KzeYyeWVgiPTEX5LKmaTutwjBe29/H0pi7e3DdEqdPCQysbuGVBFZqus7UzyN6+MNu7QwBcPaucR1Y3cv3cKmqKbYUI59pppWxsD+C2mjk8HBPTjoQzllM1Dg5GafMlKLGbxw3+pLIqWzqDXDnz/C7+j/fK7gFWt5QWLhZPZ0VTSWFK3rm4Y1ENr+8dRNV0wqnPTxmYomrs7g3TFUiiqjoldjOlDgslDgt2s3HczCu31chwNC3K5S5iGUUlo2hjAp3rj/iJpHL441kUDcwGiTnVLq6eXYGiajy3tYcvrWoYt7zHZJBZ2ujhy5c1I0sSyxqKGYpmKLaZyKo6iqIRTGTZ3h3EOdJ7SzSDvvhkFY12X3xM4+dAIkPZBGRx3DS/irf2D466zW010RmIi15AFylfLM0LO/q4e0ntqNvvW1rHeweH0XWd3b0h4lOg16YgCBeH/nASTdexmgyYjXLhj8VoGPXHbJCJpxVah2NYjPlNKHEumVqmRABo30CE+bX53gVrWkrHjCa9fWENr+0ZHO+h5y0Qz/DuwWGe3tTFc5/2EEhkuXl+FY+uaeK+ZXXMrHQhS/DKrgHuWVrHP96/iGWNJcytdtNc5uDb77YSTY8NTsmSxNxqN63DMXQNOvzxcV5dEEZLZhV294TxxTKUOy0nLcN6cWcf905g6deGNj9lTguzq848w2RauYN2X+KcX7PUacFmkgklsvQGPz/TSYKJLIqm47GbsZoMZ/RvKEkSFqNMd+Dc/76FyZXMjO0Hp+k6vaEkqZxa6MNS7rKgaPkynF9s6+WORTVn1Nj3gRX1/HJHP6UOMyub8qWZ0UyOeFqhL5jCZJBJZlWiabHgu9j0BseOfe8OJKj32HlpRx8Z5fx6DVa4rKRz2qgAs8kgk1N0QkkRdL7YZJV8KffalrIx7RMMssSXVjXy0o5+TLKBXb0hklnxnSAIwqmlcyrdgSRFx00izioa3YEEG9r8/GJbL89s6ebZLd38bGsPmzoCdAUSfHDYh6JqogH9FDMlAkDRVK6Qhmo25qdbpLLHLmicViMVLgsdvokLonhjaf7j43Y2dwSYW+3mkdWNPLyqkTUtpWPKXz7tCrGs0YPTYkSWJG6aX8XlM8oZiqS5dUE133z1wLgNcddMK2VTR4Aim4n+UIpg4rPPYhIuXqFElu1dIXKaTonj5Lu6e/sj1BbbKJmg0q9Dg1F8sQzrpp9dI2lJknBajOeVlXLz/Go+OOwjlMh8bi5Cj05AO1suqwlvLEPkc5QtdSmJpXNjsnj29UdIZBSCiQypnIYs5cs0VjWXsLHdz8xK1xmN9AaYXeUmmla4a3Etw7EMBgliaZX+cApV10d6ickMiWbQF5VERqE3lKT4hB5wmzoC5FSdCreVH27oKpSSnqtbFlTzxt7RG20Wo0zoAmRfCxPr4GCE1qE4K5rzvaHiGYUNbf7COdZhMXLrwmpe2zOAUZLZ0xcRA0sEQTil3mASWYJXd/fz7JZuntncxXNbe9jcEWAgnCKn5r9DjlaBJbMqBklie3cQu9lIZyAxam0vTK5JDwCpmj4my2HdjDI+afONuu26OZW8O5K2Op6cqvGTjV38dHM3P9vSzaZ2/0kvXCKpHC/t6OcrlzVz68KaUaVb4x3f7r7wmGa3NcU2nry8hURGpbnUzsa2AD/Z2EUsnUPTdd49OIwsScyvcbOvP0KRzcShoeioaRuCAMf6/ezsCWE3G3Geov9OOqeyqd3PVRNU+jUQTrG5M8jCuqJzevzRUsdzZTLIrGgqYVdvBN/nYOpMLJ0jls6NmQJ1Ksd/59lNRjp9cVHGcxEKJsf2/9nSGRw5T+XPP26riUxOY1aVizZvnOVn2dz3yhllbOrMBwbWTssHdKOpHIvrivn17kGcViND0bQ4D11EOvxxzAZ5VPBQ1XTiGYXhaJp108t4dHUjz23tYegk050UVWP/QISfbelm8CQBwCKbCYMsE4gf+x62mgwE4yIAdDEJJ7M8vbmbe48r/Xpt9wBuq5HX9wzyk41dvLF3EKvJwIxKJ1s6g6iqzr6+iGhVIAjCuJJZhf5winZvIl/ZAiBJlDnNTKtwsnZaGV9Y3sDDqxoLf76wvJ5bF9ZQbDPzcasPoyzTKaphpoxJDwC1++K0lDtH3VbvsY9JFTPIEqtbxl9sRlM5frC+k5sXVPHI6kYeWNFAucvK+iN+frq5m59u7ubNfYN0BxLEMzl+trWHR9c0ntFksQ8OeblmdsW4PzPIErcvquHOJXW0++IM7t/MsxuO8ML2Pg4ORnn10za6Pv4VmzuDmA0yOUWjyy9KOIRjFFXj0FCMI944JQ7LuP1+jvfijokr/Yqkcvx0czepnMLBwSjPf9pz1jW6NcU2BiPnN1J2cX0x3YEkbb44mnZpBzaGImlMBgM///H3CfiPBbkDfh8///H3R903nlH45fZe/vxXewtZPw6LkWAyJ7KALjKaphNNKaMmgKWyKv2hJIPhNLmREp6VTR5qPTbSOQ3LWQQJj7pxXhWHBqOsnVaKwZD/jggmc2zrDuKPZ1BUHV2HYPzSD7ZeCkKJLL5YdsyUxL39EWIphTsX54djOCxGvrKumTf3DhZ6KPpiGd7eP8TTm7p4flsv6ZzGHYtq+c2B4ZO+3i0Lqnhz3+hBHGlFPe8SM+HCUFSNjw57sZuMVBblMwcHwikMcj6T/v7l9Ty2tonlTR62dATY3x9lfZufbV1BUjmF/QMR0adDEIQxugNJDJLE63sHuXVBdSHIc+vCGpY3llDrsZ10TX3XkhrWt/lxWgwMRdMXpKevcHqTPgVs/0CE6+ZUjrm9ucxBxwnBoYV1xTy1vpPlTZ7C5KGBcIrXdg/w2JrGQp8EgywxvcLJ9Ipjj/XFMuwbiPCd944wt8bN63sGmVXlYlaV66RTjNI5lb5wiuvmjj2+4zWU2Fkc28pP2nVsW3/EursewW018tS//weDh3dx/+NO9jaXsKC2iJ5gkgqXlSK7mLzweaNpOhlFI6OopHMq8YyCP54lnVMpc5hPG9TZ1x+hym2dkNGt4WSWv/r1Aa6bXcHNC6qRJYmBcIofrO/knqW1VJxFt/4ypznfs8h17sd15+Ja3tg3wJIGz4SVtk01WUVjIJLirV/8hG/9xZ/w/E+f4gfPvwbAkw/cTnvrIQBu/+KXeXPfEH2hJJ92BYmmFb756l6+/cBSAN58/scot93J9UtnIkkSXq+XX/7yl3z961+ftN9NOLVkTkXT9FGf8fVtPnKqhqLp5DSwmmSK7WaumFHOjp4QS+uLz/j5s4pGKJnFaTHSXObEYpQZjqSZW+3iwGCMvlCKm+dX8fNPe/jC8np6g6nCAlGYmo4OpXCNkxH6cauPGZXOMWVhi+uL+dGGTtw2Iwtqi1na4KGqaPR3eZHNxHA0PW6zf7vZiNtmYiCcKpQeSuT7V53LtEfhwuoJJnlz3xBfvXxa4ba39g+Ryiq8vX+YWVVJrp5VQYXLyq0jk3Xj6Rz/991WjnjjGGSJ5U0e7l9ef1ZZqoIgXLpi6RxDkTSHh6KYjTL+eJZt3UEaSuyUOy2nXbs0lzlxWIxs7giytMHDkeEYyxpLkE/S41S4MCY9ABTPqGN2twDWTivjF9t6x2QH3bqwmtf3DHLP0jr2D0TY3h3iiXXNpx0hXeIw0+aN899vnk2Fy0oqq9I6HOPlXQNkFQ2LUWZOtZtZla5CFsab+wa5eX7VGf0eN99xFy889iXCtav5cOtuMgc/IO7ro3rRFdxw1Tq2dAZZUFuE22ri4FCU5Y2ez9XY68+To9N+sopGMqMQSyvEMwrpnMbx8xGNsozFJFN6in4/R8XTCps6Ajw5Mgr6XOm6zvo2Py/t7OO/XjODlrJjn6+aYhtfuayZX2zrZVaVixVnWH5y2fQyPmr1cdfi2tPf+STKXRZsRiOfdga4cX71OT/PVBaIZ9B1uPG2u/nlT39Ie+sh7rluDQChgJ+WuYtINV/OP7x9GG8sTV8oVXi3tPmSDEaSfPSrZ/nHb/4pv/zpU7z9m/fwOMxcffXVHDhwAEAEgaaoZFY5WuVVsK07xHAkzdFrp+nlTgyyhNVkoM0bZ3VL6Rk9dzyjoKgas6qcHPHG+eKKev7+ncPUeGzYTQYODMYIJbNkVY09fREeWtlAZKQUcbxzrzA1DEfSpHLqmPNDMqPQE0zw9aunA/DhYS89wSQmg8zcGjffvGMeHxz2IkvSmOAPwPVzK3lpZz8Pr2oc93VvnFfJc1t7eHxt/lwjSxKRVA7PJRqYv1RE0zle2z3AssaSwjXsgcEoiqrxwWEfWUXj0FCUnkCCh1c3FVovOK0m/vSm2fxwQxcPr6xnR0+Yb/xsB9/70jJMp8lIFi4t8YxCfyhJY6lDBACFgk5/ArMs8+5BL8saPaiajsNsZGdPGN9x2cROs5GGEjsNpXZKT9jUvmdJLc9s6WbttFKCySzD0TTVZ9jfUPhsTGoASFHzTS/HYzbKSFI+C+f4L6IqtxVF03lz7yA5TeeR1Y2njT7qus6zW7q5aV5VIbPBZjawqL6YRSO7rOmcysHBKC/t7COn5ltYBRNZblt4Zhc9JaVl/MW3n+LP/+NFcJVjXfswxo6tfPuPH+O9rhTTyhzs6YuwqL6YYCJDTzA5JrglXPw6/XG6/MnCos4gSZiNMiaDfEaTfMaj6TrPbu3moZUN51X65Y2meWX3ANFUjv927UwaSx1j7mM2yjy8upFPjvh4/tMe7l1ad9pApcduJjwBk2LuWlLDf3zcwRUzy7Gd49/VVKXrOj3BJE6LEYujnB88/xr3XLeGUMCPZLZRdfPXabzqbnYPpegOJDjaiqHcYSKr5cv1/uzFvfzTHXfx/E+for31EGtWLMEoS/h8PubOncv9998/ub+kcFLhZA6L4dh5bCiapjeUJK1opHIaBgkW1hVx+Yxy1JFMofHGvh9P13VCqSwOs5FF9R7sZiOBeJZ0TsNqMrCs3sO7h4Ypc5jwJ3JsbA8ws9LFuwe9rJlWynA0LQJAU1RGUUfGvo/99/nxpi5unl+NQZboDSZJZFUeXdM06j43zK1ia2eQF3f0cc+S2lHnDbvZiNVoIJTIjhvUsRgN1BTb6PTHaS5zYjUZCCSyNJWNPV8IU4Oq6ezvi3B4KMZvX5nP/tF1nQ8ODbOrN0Rm5ITS7ksQTeU4OBjjz2+Zg3tk+IrFaOD+ZXX8Ylsfj69tQtV1fr1ngLuX1k3a7yRcWIqqcWggSmykt9iMChdVRdYJmzQrXJwiyRz+eIa9fRHsZgODkTRPrmtGkiTmVI+eGhxL5+gJ5jPXA4ksqqbTH0rxpZUNzKh0YTLI7O4LM6+miDZfnFLn6dteCJ+dSf2bb/clRpVpnWjd9DLWt/lH3abrOhKwoyfEHYtqzujL6Zfb+1jdUkp9if2k97GaDCxp8PDgigYeWd2Ipuksa/TwwvY+frq5m19u72Vju5/W4RjBRBZN11E1nX39Eb7/SQdPPr2Nb77Tjbl5OQarE9loxlg7j18fDPDwqgYOD8fY2O5H13WK7Wa6Awmi5zE9SZh6oukcnb4EJQ4zpQ4LpQ4LxXYzdrPxjPpNncxLO/q5YW7VOS/WVE3ntd0DfNTqo8Jl4bq5leMGf453+YxyLp9Rzg/Wd+KLnb5fSEOJjZ7zHOVuNhqYXuHko1bf6e98kYmmFZLZE8oorG7K7vgTKh/8W+SyJnpCadp9+eCPxSjxjaunsWpaGWta8plYgWSO3qSRHzz/Gp7SMkIBPz6fj/Lycj744AMqKsbvVSZMvmAii8V07Dvg9T0DmGSZ7Ei/jUq3lVROo85j59BQlDlVrlM+n6rp+BMZKlxWFtcXF4LLTWUOkjmV+5bW8UmbH4MksXZkul8gnqW22Mbe/jAmWTqjz7UwOXoCSXQYE3xPZhXafXGuHSmbf+/QMAtrx2/gv3Kk7Pwnm7rH9HW5cV4lbx8YGvdxANfOruT9Q14gPwksnsmJ3jBT2EA4xat7Brhz8bFg3/o2P73BFEPRLAZgWWN+kIkvniWYyPLfnt/Ju8e9B8qcFla3lPLrPYOsaS7lg8M+1Eu8J59wTFcgSTyrUOa04LKYODgUY09f5HMznVUYS9d12nwxLEaZT474aSy1s7q55KTrbpfVxLyaIubXFmGQJAySxPVzK/m3D9vIqRr3Lavj5Z0DmAwyus55rxmE8zOpAaD9AxHm1Zx8+lBjqYNOf6IwsSSnajy9qZsFdUWsnV7GocHoaV/j9T0DzKx0MbPy1BfUxxsIp/A4zKybXs4XV+YDQrcuqKbKbcUfz/D8pz38/vO7eOA/N/Fnv9rLq7sH8MYykMugJMLkenah5dLIDg+/ee9D3t/bzYMrGggksuzoCSFLEnazkcODUXGCvUSoms6hwSgOi/G0O/dHRVM5vLFTN1De3BGgqshK8znuvrYOx/jBJx0srCui1mOjyGZiUV3xGT32aEnY2/uH+LQreMr7rm4pZVPHuU8DO+qqmeW8uXfokptyNRhJFRoAd/UN8vh3XsV89X/BZLVjLm/CVDMHRQebUaKp1MaaljI2tAWwmgyYDTKekZ5h33rr4CXfKPtSk1U00jm1EATWdJ1N7QFcZsNIWWh+cXY06LOnL8LCU3xG0zmVUDLLrEo3s6tco4IERTYTxXYTzWV2Iqkc82uLiGdUTDLEMgoHBiM4LUY+aPWRyWli9PMUFE5m6Q0mKbKNDfj/fGsPK0dKc/tCSQbCaZ7e1MWL23vHfa6ZlS5unFfJUxs6Ry3kjm4mxE6yCWWQJWZWujgwGEWSJHQ938dKmHqSWYWtnUFkSSr0bcqpGu8fGubwcP4aeU6Nm9XNpdyzpBajLDEYTVNsN/H8tj7+4pV9hclwc6rd2M0G9g1EkSVOOlVOuLSEEll6ggnMBhlV0zEaZMqdFpIZla2dQfpCSXHd8TkUSuaIpnJsbAvgtBiJphQWnOTaJKOovH9omB9t6OTwYIy7Ftfy8OpGVjSV0Fzm4Gdbe5hd5QZ0Dg/FKLKZ6A0miWdEgHGyTGoAKJ5RTjnyGuDWBdW8tnuAeEbhh+s7uXFeFbOr3Fw5s5yPjvjQTrFQ/OCwl2K7mcVn0UwT4O39Q9w0b3Qfkv0DUX66uZt/eqeVN/YN0eFPkFE0nBYDs6tczDIG8L75LxhD3Vx22eU47DbQdfTahfzm0wNous4jqxp5bmsvuq5jNxuJZ1T6RAT0ktAXTJLMqmdc5qWoGr//o/f5wYeH+eH6DjZ1BBj2ekdNguoNJukKJFg3soN/NpJZhWe3dNMVSPDVK1pIZlW80QxXzTq7LJGjJWHpnHrKKWF2s5FUVj3vwI1tJFuq9xL6XGQUlaFIuvBd961Xd5KRLFirZ2BuXo5kNEEuRdbfg1lJUuKwsHZaKf/z1rk8tqaJG+dXF77DElmNr/yv7xEK+PGUllFcUorP5+Pqq6/G6/VO4m8pnMyJO6gb2vyYDDKdwXyWR5Et/55f2Zzv+ZNTtZOmRUfTOTKqytLG/LSwE3fiJEmiudRBWlFZO60UfzxDKJHl8hnlALR5ExhlGW80jarrJMTF15SSzqns64/gtpnGbCT0BJMMRtPcOK8KXdf57gdtLGkopqHEzkAkzZ//ai/bu4Jjromqi2w8uKKBn2zqHjXi/Ya5Vbxziolgl00v49POfOBfAuIp8V6ZanRdp3U4zgeHvKN68L26u582bxxFg7piK0+ua+am+VUU2008cVkzTouRI94ETosBi0Hij57ZwPffP0Ayq3DtnEo2tQ4QP/AJv9rZN4m/nXAhZBSV/SMbAz/Z1M0P1newrz8C5CfHFdvMHBmOs6M3JBbrnyOaptPmjWE2GNjaFaTcZeHaOWPXD53+BM9s6eaF7X20lDn58mXNXDe3EqNBojuQYGO7nyX1xeh6fk1+/7J6frGtB1mSsBoNtHvjl9yG78Vi0hptKKqG8Qw6gNcU20hkFf79w3Z++8ppOK35Q5YliatmVvDhYS/XzB47pWtLZwBF1bj6LBe8rcMxGksdoy7At3UF+V+/PlD47waPjcuml7F2WhmNpfaRi/BF/KWsIFdM479cOxuAJ5/+FEWTSDiq+eX2Pn7rihZWNnv4z487+K0rp+Gxm+kMJCh1WU4bCBOmrlg6R4c/gcd+Zv2i4hmF333qPQ68/F38Hhc3fvXPySZlvvrtnxAaHiCmmfjSww/z+t5Bvnp5y1kdSzqn8tb+IeIZhVsXVOOxmxkIp/i0K8gjq8dv+nkmLp9RXpgSdu/SunEnfs2ucnFoKDamLvjsX6uM57b28qc3zz6v55kqjpbaSJJEuy/OMEVYKvJ/RxUuC2taSkimUuw8onHd8pl8YXk9ppGduC2dAfb0RSiymSl3mPElsqgNy2lZfhVPff/75BSNr33xDg4cOCAmgU1RsbSCfFwH6Gc2d7OssbgwbntOlZsimwmDLNEXSlI7TmNETc/3pPM4zMyucp2yQWex3YTTauKqmRX89RsHmF7uKAQTgokskVSW6mIbw5E0odLshEwVFM6fqukcHIwiIY2ZuKXrOm/uHaC6KJ/F+Z+fdDCt3MmBgShWk4ESh5m100r55IifPf1hPHYLV80qL0wJK7KZ+PLaJp7e1MV9y+opcZgpcZhJZVVSWRWbeez7SZYkDAYJTdfzfYCSWWo8omnnVDIUSbOpzc/cGnfhOyGayvHm3iHCKQWLUWLNtDJayp3kVI27Ftfys609/N61M/jB+g7afAmG/CG63/4R0eBtdIbSrG5w884P/46hni66FBdPXNYy7vtDuPjpuk7bcBx02NAW4Ia5lcyocLK+zc9T6zu5dWG+8qHMaSGRUfi0M0hLmYO6EnuhibhwafLHMyQyKhva/DgsRjQ9P80LYCCU5NPuEP54hoYSBysaSxiOplnf7udnW3voDSUZCKc4mjTmshq5fEY5kWSOeo+djKLRF0pS57Hjj6cJxDOUncXkYWFiTFrU4Yg3zowzKMtqHY6RUzQcZgN2y+iT0KwqF5s6AiSzyqjMi339EQbDae5acnZTiXRd56NWH1+57NikpWRW4Z/fOwLAbQuquXNJLVUnjE+NpHL8amcfzoZ5/LfrZhaCR4+uaeRHG7oZiqRJZBTePTjM/cvq+ctX97O1M8DK5lKsRgOHh6IsqfeIkXgXIVXTOTwYw242nNEJsc0b55fbe7lxcTOhF720b/yYX3QfwLz4dgKfvkZ9eRFFc/6QP//VXm5ZUI2m6xhOHB80joyi8s7+YULJLDfOqyqM+I2kcry2Z4An17WcdzO/oyVhP9nUxT1LascsHJc1enh+W+95B4AaSuy8c2AYRdEwXuQN4jRNpzeYxG01oes6z2zuRtF0HGYDy5tKmF7hJJLMcsSf5Ru3rWBZYwneaJoPW32ksirLmzzcsaiG1/cOsqSxmHcOeDHY3Sx97Ju4PaWYDDL/9OMXObTxHRH8maKCiWxhcXZoKIo2smuvaGA2StR6bIWNik+7gmM2NHJqfsR7Y6mD5jLHab9nJEmipczJ7t4wjaV2nFYT3YEk86pd7B+M0R1M4LQa6Q4maalwMl20jpoSugMJwskcZeME5Na3+WksdWI3G3hmSw/JjMotC6r4fx+2UVtsY3mTh23dIZY2eApZo+8f8hJN51jW4GF+bRFWk4H7l9fz0WFf4drourmV/ObgMHcsqhn3mOo9dnqD+Qv1cDKb78EomsJOCemcysGhCPsGovzWFcc2ir7z/hGGRzYdFtUV88WVDfxqZz/94RRPrGvmiysb+NGGLv7kxtn8+0ftHPHGKb3qMXxv/As7wtexY5NMpmQ2laUtzJszm9ahKIsaPJP1awqfoaFIGm8sg9VkoC+UZFtXkBVNJVw7p5KVzSW8vmcQRdO5bWE1DosRq8lAZyDBUDTN7Gr3uGWqwsVP1XTafXFMssze/giVbmthIvYbewf4wfpOLEaZrKKRVU+eveO0GND1/CZYdyDBNbPL+eCwl1sWVPP0pm7+/JY5uKwmjnjjFNvNYjL2BTZpf9v7B6LMPc1CMZ1T+bjVx5cva+bauZX8Zpx05dsXVvPrPYOF/+7wxdnbH+HOxeNf0JzKtu4Qyxo8oy6wn97URSSVY1q5gycvbxkV/DkaMHplVz/3LaunqsiK2ZgvX3l2SzeXz6hgZVP+xPlhq48j3jjDsQx3L65lQ3uANm8cx0hd5cBIDbZwcekPJYlllNOWfum6zlv7htjRE6LcaeELa2bw199/kYrVd5J21xM58illa+7l2j/4N/rCacojrZhkmf/8uIP//Lidl3f289zW7jHlJDlV4429gzy3tZdljR4eXdNUCP6kcyo/29rDI6sbJ2y3xmyUuW9ZHZ8c8Y/52dHGbufbLNQ4Ms74rf0nb1J6sYikcqRzGiaDzIetPtp9cQDqS2xUuCz0h5IcHo7zB9fPIqvq/HBDJ1u7gtw8v4rH1jYxu8pNLK1QYjdjkGWqiiyARKs/zcu7+gFoqqvhirsfLvRKE6YOTdOJpnKFBtA/XN/Joroi+kL57/umUjsgFaYxxdLKqIvqZFYhms6xoLaI6RXOM/4ce+wmXBYjdy6q4cBABJvJwKyq/Pm2P5QimMgRSmZJ51QyiujtMtn8sTSdgfwAgROlsipt3jj+eIYj3hizq5xMq3Dw7XeP0BNI8klbgL9/6zCzKl2EklkMksTLu/q5fVENj6xuIq1o/HhjF6/tHsAoS4RTx/r+VLmthBJZssr43x3zatwcGIxikCU0TSeZFe+VqSKczPL+IR83z68qBOVah6Ps6gkDMLPcwf3L6tnTF6HEYebRNU38ZFM36ZzKo2sa+eCwlz+9aTarmkvAbKfs9j8kfOATUr4eLEVlrLj+Lm5a1MRLO/tFr8pLUCKjcHg4RrHNxCs7+/DFMhTbzaxv8/P/PmhDQuKepXVcO7uCX2zr472Dw0gSlDosSEhs7wrS5o2L98YlyBtNk1E03j04jM1kwGE2UOm2kshk+Y+PO8ipOvGMSlbVkSWoKbKypKGYq2eVc8v8Km5dUM39y+q4dUE1K5pKkMiv+V/bPciXVjWwty9CJJXDF0tjMRrIKBoDYbEGvtAmKQNIJ5VTcZym7OmTIz5unJc/uc2sdLG9O0QgnhmVeVDqtGAySAxF8s3qPmr18djaprPepVI1nV29YZ5cdyz759BQlNf3DiEBv3ftjFEX30dHaq9uLuHKmU14o2nKXRY+bvUxHE1z+8Ia3tw3iNtmYl6Ni/0DMbZ05pvk/tYVLWzrDvJRq5cimwmP3USXP0lNkU1kAV1E4hmFdt/pS7+SWYXntvawurmUjR1JHlxRz0s7+/no4AB6SSNK9yF0JUv24IfEr7uRjXta8X78HBmM2OrmklZUeoJJcqrGp10hmsrs3LmolkNDMQbCKa6bW0m9Z/SEO1XT+enmbr6wrO6cx8+fjMduJpzKjvuzxfXF7OoLs7yx5LxeY1FtES/v7ue2k+xMXyz6QkmsJgOJjMKBgQihZH7x5TCb8o3jdZ2GEjuftPlY0VTCl0e+u0LJLC/t6COazmE0yCyuK6Y7mGBxXTFvRYaJpBWCiSyHh2LMqnKhpHWGIulTTjoULrxUTkXTdWRJIpLKEUhkqSmykhhZSM+ocLNiZJMgksrhPm7SXzqnomg6y5tKzrpEWJIkmssdxLIKJqMBj91INJ3DbTUSTSsMhpMUjwSaEhl1TMmRcOEkswoHBqN4bOZRfX9+/uPvc/1td/FuV5ob5lXy928cYG56PwcNVzIcTTMQTqGTDyJ2BZL8029aeWhlAyuaPLyxb5DvfdjO165oYUVTCSuaSvDG0rywvQ+LUaY7kChMgrxmdgXvH/Jy08gO7/HKnBYC8fx3vQ4ks6e/bhMujFZvnHROGzXR869fP0hW1bAaZRY3evA4zGzrHuZLqxpQNJ2HVuZ7QT2+polHVzfx401d/N61M3jqo8O8dyRM+a2/T+jDH6GnYgQTCr54Bl8sQzgpSkUvJUfLTa1GA73B/CaUw2JkXo2bplI7Hb4E33mvlatmVbCiqYTH1zbROhzj+590sG56GfNqirCY8t8jDrOB6nHKloWLU07VaPfHkYDDw1FcVhO3Lsxfh//X53ah6fmS4q9e3kJDiZ3aYtspR7mncypHvHH6wyl29oZIZBRuWVDNL7b38uONXfzxjbMptpnp8CeocFtPWd4uTKxJyQCKpJTT9v/RdZ3eUGrUguauxbW8vGtgzH1vXVDDa3sGeGVXP4+sbjzjKUzH++CQl6tnVRQCRzlV45/fzZd+3besrlD7qGo6r+8d5MNWH4+uaSx0RN/cGaA7kMRuNnDDvCr6wikeWNHAAyvqSec0zDIEEzl6Q0ne2jfEiqYS5la7eWFHH1lVQ9E0MRb+IqJpOoeHothMo0u/klkFbzRNbzDJkeEYvzkwxD+9c5jaYhsv7uzj8FCUx3+0lR9v7KIzlMW+4AYqH/hr7LPWEI2EePuVFwgf2EDFlQ/RMmsuf3DDTP7qjvn89V0LWDutjP9+02xA4n//+gD7+iNYTQbiaQVV09F1nS5/ghe29/H0pi5umFv5mV20NY1M6DvRvBo3+/tPP53vdJxWEzaTkS5//Lyfa7KkcyqBRBaH2cAru/oLk1bcViOKquGPZSh2mHl4VSOPrmlidlV+6s6PN3by/sj30WNrmrh5fhUfHPZy9cxyoimF2uJ8htfHh7182Oolo6gUWU10+RMn3ckXJkcyq3J0f3RbZxCnxcj+kemVNW4rRlkqZMJ+OpJ+f1Q8ozCjwnnO/eE8djN2k4Gb5lXSH06TU3WuGmkG7YtnCaeypHMa4eT4wVzhs6eoGgcGopgMhsKUuN29Yb79g5/xt3/xxzzxxFdQ0kn+/f3DdL31ff7j//4tG3Ye5OMjfnTgjkU1/MuDS3hiXTMS8LOtPbyye5DHL2vGapL5u7cOFRq3Vris+Yb+isbmzmNTHetL7AxEUifdydfJX4+ZDTIh8V6ZEjRN51c7+rnnuDYH//FRW2GDYXmThzsX1fKrnf08sKKev3vrML///C4+afVy39JafrypC0mCh1Y28NRHh/ngH3+L4Ps/QNc1PFd9mVwuS3tnBx/s76POYzvtFFDh4tIdSBDPKNjNBr73UTtFNhP3L6uj3Rdnfm0RFW4L3liGDW1+/v3DNoYiaWZWuvja5S3441l+uKETfyxT6GMqsoAuHYPhFIqq887+YcxGmdrifN+5X27rwT+yGfDkumaunFlOc5njpMGfnKpxYDDKG3sHuWZ2OTaTgWhK4V8/aKO+xM7allLavHFiqRwGWcIoS+OuKYTPzqQEgPJ15Ke+z6GhWGEs7lE2s4HF9cVjxk2bjTKprEJTmeOcagjTOZW+cJLpFc7CbS/u6KM/nKLKbeGBFfVA/kvzB590MLfaxReW1xd2TYciad4/5OX6uZW0++K8vX+I7kCCDw57qXTb+L1rZ7BuZv7Ce19/lM2dAcqcZvYNRHloRT0/3dSNQZIYFiM3Lxr94RTRlDJqN7TdF+eZzd3s7A2ztTPATzZ18eu9g1iMBt7cN8iBgSht3nihZjYXGoBsCtlio/iyh6h+7NuYqmegdH3K9792LS6Xi5e299Hhi7N/IIIO/N/ftHLL/Gr++YEllDktVLos7OkL8ee/2sufvLiH9w8Nc83scr58WfOoncGJtrqllM3jjH2XJQmzUT7v8dIGWWJ1SwnPfzr+eOOLgTeaRpYkugNJHBYD+wdiQD6IXOa2cP/yOp5c14Isw5v7BvnRxi5iaYVHVjdx79I6XFYj/kSGCpeF5U0ewikFj93M/NoiAKIZleoiKy/t6MdokFF1nUGRRjulhJNZzCPnpI/bfJTYTfhHJjE1ldtHTfIaCKeoHWmyq+k6skyhNOxcyLJES7mDaeVOomklX48v5U/6iayKL5ahN5gcNRlKuLA6/HESx01DTWYVtveEKJq+hOZlVxAqnc/Tz/6cLe++SucHz1N71x8zoOWvi+5fVseT65qRJIm7FtfyF7fNxWYy8PERH3/964Pcv6yedTPK+IuX9zE0Enw2GWTMRpl4Ojdq8soVM8r5+Ihv3GOsdFsYHukTIt4rU0Miq6CoGq6RjEFvJMUbI03lW8oc3DSvmpd39XPv0jp+trUHbyzNZdPL+M1BL9957wjlTjM/3JDv4+Hq/5RwzRrKI4f5xro6jLKEY/bl5DCyt2OQdTPKee+gd0z5uXBxCiezdAWSeOxm/uX9I5S7LFw9u4J3Dw4TSuZ4c98Qty2s4Vv3LBj5jpD41/eP8M/vtpLMKlw5s5yHVjawvs3P5o4AWUXDJ9Yul4SMotIdSKLr0BVMYJBkbllQTSSZ4Wef9qKTz/K/cmQ9e7xERmF7d4iff9rDTzd38+KOPuKZHA6LkeFohjnV+fPW7t4wvcEka6aVMa3cwXfezydauK0mBiMpIimRCHGhTEoASJIk0jm1sCM+ni2dwcJY3OMta/RweCg6anztQDhFbbGN7nOMRL+1b4ib5x8b+94bTPLc1h4AfvfamViMBt49OMyevghPXt5SyAYC2NwR4LU9A9jMBrZ1h7hpfjVfWF7PzfOrMRlk3t4/RHOZkxK7hRWNxQDs6Yvwj++0sqzBw+Hh/NSkYCKLN5Y57/4pwmcvkVFo88ZHlX4NRdN8csSH2SAzHEmxdyBCdZGVJXXFKKpGdyBJIqui6vn+HF+7vJnF5SbqK4owSKCrOSRJxlozm9Iv/gN//kYn+/oj+JNZnt7URTiZb+Y5u9pFTZGV3X1hJAl29IZp9yX4w+tn8q17FrJmWhnvHBjmJxu72D8Q+cz+DqwmA1lFG/fztqq5hC2d579jWOqwEEhkL8oeJaqm0xNM4TQbePvAEH2hVL75s0nGIEvMqnRR5rTwzJZuXtk1wKK6Yr5yWTOrW0oxyBLJrEI4lWNOlZs51W5uX1jDnv4w9y6rZSCcomYkC+jZLd1Uui3s7QtTbDPTFUhclH9fl6rQcQ2gByNpwqkcipZvjljmsBQupDKKWsgAAYinFarc1lG3nYtShwW7xcjShmKiaYWsorGsqRiA4WiK7mCSeFYVmWOTYDiSpi+YGnUeeWlHftH+2BWzmfPwN7GV1+Hb9EuS3l4qr30cqvKTEW9dUMWja0aXuq9oKuHv711IhcvC4eEYf/DL3bSUOfmjG2byN28cZHt3/jt5dXPpSHp/rPDY6RVOOnzxMSPkAeZVF3FgIILJIJNRtPMO7gvnrz+YKmw+abrOH724B00Hq1FmaaMHXzzDorpi9vSFOTQY5apZ5XxxZQNfv3o6DR473liGw0Mx/ufLe/niw4/w0JULuOV/PMWNi5v5i9vmAmAtKsVdUsa+/gipnIo3Ihb5F7usorF/IIrLYuSd/cMMR9I0lzmxmWS6AkkeXtnAHYuq+dHGLkLJHL977UwMBolvXDOd5Y0e/vLV/XzrrYMc8ca4a0ltvo+p2UiHyAK6JOQnd+X7lcqSxOxqFxajzB/8cg+Kms8C/S9XTUOSJIKJLJ8c8fHM5m5+urmbt/YPYTXJ3LOkji+uqKfcaWFvX5SaYhuhZJaWMgcuKYOmw9+/fQhd13l8SQm7O73442kkScJhNnJkOIYm3ksXxKQEgDRd5+FVjbyya2Dci4lQIkuRzXjShpd3La7lVyMNUDVd57XdA9yxuJbbFtbwww2dZ7UAiqRypHJqoXGupuv8y/tH0HS4fk4FC2qL2NkTQtd1bl9UUzgmRdX4ycYuPjniI5rOcdfiWh5YXj+qgee66WV47CZ+vWeA2xZWM6PShd0ko+n57IDvfdTGxvYA82rcHByMomq6iH5OcZqm0zocw2o8VvoVSeV4ZVc/a6eVEUnl2NoVREYillb5oNXLps5gPvBjM/G710znOw8uYUdPmOa5C/lfNzahdm8n3XeQbOt6tHgAyWDEl1A4PBRBVXVqPXZe2tnH63sHGYpkeGpDJ5VuK4+sbuSPbpjF7183i98cHObDw15mV7l4cEUDj65pxB/P8qMNnZ/Zru2CuiL29Y8NMjWXjV8edrbsZgPzaop4bZyyz6kunMySUzU2tAdY01LK1pGAmCRLNHhsdPoTHBmOc9/SOr64soGakRp6XdcLZRbLmzxUF+czRCrcVq6bW8nG9gArm0qZPpLdlcxqhBNZtnQGySgqkiTRFxRZQFNBVtFI5vKBnUgqR07VGBxZRDWVOrBZjIX+XHv6IiyqLy48NqdpVLnPv6+CLEu0lDm4bEYpvlgGo0Giyp0vq05kNdJZBRnE7v4FFs+M9P2xmwtBnN19+altbquRcDJDOKWgJyNY6xcgmW1Yl98HwPwaN7995fTCcx2/8Goqc/CP9y9iVqULfzzDn7y4m/5win+4bxEv7Ojjp5u7aC6zoyOxrTs06phWNZeyZZyszppiK/3h/PtWIt+UWphcG9r9hdLRH2/IL9YNksSSBg9L6z0kMgpGg8TrewdoLnNw8/xqdF1nZqWLK2aVU+Iw8w/3LWRuTRFfe3o72rTLWDmjipd29rOkvpjp5U5UDMQzCm/vH2JutZuPjvjEIv8ipus6bd4Ymq6zszfMp91Byt1WbltQxfc+7OB3rmzhL1/bzz++04qiavzre0fY0xfm8bVNvLp7gDnVbv7p/sVcO6uSV3YN8L0P27GZDOzqDZPJafhjIkB4MUvnVLoCSbKKzmAkhUGC6+dU8szmLoKJ/DXpgyvqMcoS33huB//yXit7+sLo5BtBZ3Iq27tDfOvNg/zPV/bRG0rSUGIjnMxy/7J6Pt7VysCeT0DN0RVI8uvtHfzWQ3fS/873+W8/WY+m69jN+R6FYbEOviAmKQMoP+nngeX1PLule1QqMsD7h71jRuEer9hupqbIxoHBKG/tG+K6uZWYDDI1xTbuWVLLDzd0ETvDfjqvjwRnjnpr3xCHhmK4rUa+clkL/aEU+wejXD/3WIPErkCc//7SHjKqylcvb6HSbT1p09uVzaXUFtv4qNWHySDzwIoGAOLZ/GLtiDfGU+s78CeyWI2GwgJBmJryu/hZnNb8wu34SVtPfdLBrt4wV82swGKS2dDuJ5jIYTZIPLSygf98dDnlLgt//9Yh1k0v47eumMbTr7yLf89H2LUkt992G997ZAVS5yaUeJBYRuO9Q142tvu5ZlY5Ojq/fWULRTYT0yuchYWDzWzgS6saqS628f1POhiO5qPpV84s54EV9bx7yMuru/snfErUorpidveFx9wuSRJuq/G8g5mSJNFYamdX79jXmOp6g0lApyuQoHU4RjCZQwIUTUeW8999182tHNXwTlE1/IkM5S4LSxs9hfR+yJfEXTG9jOFYmqtnV+BNZKkeCVo/92kPdy+p5YXtfbitJvpCSZHRMQUcv1De0xdC03QSWRUJqC62cvn0ssLPDw/FmFWZT5HOqRoWo4zbNjHNdkudFoptZmqKbcTSChI6Bgk0ncLCPpIUF1wXSk7V2NcfwW42FErW0zmVTzuDXDatlKfWd/L7z+9k8KW/wffBT/Bc9iDFax8AQOrYyG2zi0jnVN4/NMyPN3byf39zeNR3u8du5m/vXsAVM8pJ5zT++vWDvLVviP99x3wGwmne2DtEqdNMMqOMWtDPry1i30B0zPXY8VlGBlkWm1STTNV09g9EmVPtpt0bL2yGVrjNrJ1WyubOAKuaS/jeh+3cvaSOpY35JvPeWIZAIsPMSheL6or51a4Bvry2iX9+YBG9gRRPb+phR0+IZ7Z0c+uC/DVxPKsQSyssqitmR09Y9Au7iA1H0gxF03T5k7R7Y6SyKo+ubuTb7x3hrsU1/L8P23lsdSP/85a51Hvy5ckv7+rnH94+RKnDzA835icir2gu4U9vmk2tx0arN8bevghuq4kOv8gCupj1BpMYZYm39w+haDorm0vxxdO8snsQRcsPK7l9UQ1//9Zh/viGWXzzjvl8/eoZhZYFbpsJXYfH1zbxzdvncfmMcsLJ/Ib4r/cOcNncBlwlFSTatgHw7x+20tndS0WiHbvLxYvb8u0eLAa5UCYvfLYmJQB0tHeOx2HmsullvL732Bh3RdWInzAKdzxXzyrn7X2DxNI5ppUfK8kqdVp4ZHUjz2zpwRc79ZtoMJJPoz260PLHM/xoQycA/+Wq6SDBr/cM8MWjQZu0wnfea+V7H3bwxzfO5muXT6PIZkLT9DHZSv5EuhCEWtLgYVaVi1ROJZrOMX3keJMZhZyq0+FPMBhOYjPl3/hi8TY1JbMKbb44Hlu+sbKiajy9qYsHltfx4o4++sIpLptexs+39bK+Lb+TOqPCyfcfXcF9y+p4aUcfr+4e4LE1TVw7p5JOf5yKBZfxew/ezF/+1gO4nA4OhmV+9GeP86UKL7cuqMZtNeKPZ/n3jzv5tDPIs1t6sBjlcXfs51a7eXxtMx+3+nhz32Ahov7A8nqWNnj48cYudvSExjzuXB1t3DZeFt/a6WVsbB87Kv5s2U1GSp2Wz7ScbaIlswqhZJbfHPBy28IaPhnpreFxmKhxWzAapDHNuY8v+Zpd5Rq39KfMZeXW+dW8tmeAx9Y0Uuo0IwFpReeV3QPMqHCyoyeEDoXGr8LkiWdyhYEEG9oChczU2mIbdpOx0KNL03U0/dg5JJbOUeexn/Uky5MxjGQBXT+3gkAii8kgF95/Q5EUgUS20NxR+Gzpus6R4RhZRRs1nfGlHX3cvaSWV3YPEE3nKM768eVs1F7/FWTnSCn8zpeIpxVe/WQnv9rZz7RyJ4+vbebBlQ385sDwqNcxG2X+6IaZfGlVAzrw1IZOvvdRO79z5TQ+PuLj8ullqLo+JoC/pKGYneME3IttJkKJLBajXJgKJkyORFYhp2nIksQ3X9sPgNNsYFlDCYeHY9y1qIa/eeMgf3rTLA4NxVja4CGcyrKwrojGUjvBRIbGUjvza9y8sL2PUqeFP7hhJjMrnVw9q4KtnUHe3D+Iw2wgmdXIqRq/2tmHLEl0+i7eoQyfZ8mswqHhGL5ohtbhGIdHso8/avVhlCX6wincNhN/+9YhHv3RFn5zcAhvLENypFfc9u4Q8XSW//rcDv70xd38vw/biKcVhqNpklmFoZGx4aJH2MUpo6j0hVPE0gr+eAaTLLO6pZS/eGU/mZH16Deuns7Tm7qYV+suXLskswov7+znl9v7WFRXzKL6Yta3+fnFtl5ah2NcPrOcP7x+FuhQXuxm1uJVmGQdJepDtrqovPG3eer517h9UR0HhmJ82hXEbjbgi2XGbEQIE29SAkA207GXnV3lxmKUCxcimzuDrJk2tvfPifSRP+NN/HJajDxxWTOv7OqnO3DyUpS39g0VRp/qus73PmwnrWisaPKwqrmEZ7d089CqfPDn1d39/N1bh5hW5uTv7l1YKBnrC6WoO2EEdyqr4jSbUDStsDM3r6aIVc2ldAeS3Lu0Jp8hkVaoLrKSzqn0h9MMjGT/iF2WqSd/4R7HJEsYZAld13lmSw+3Lqjm9b2D7OgO4bQaeWX3ABlFY1FtEVfMKOMf7ltEIqvwvQ/bGYqm+a0rplHmsvD0pi4ODcX44ooGHnz8qyyfWY8kSURSWSK6jYe/8iS/feU0fvzlldy5qAanxYAvnmVzR4DqIhufHBk/uGI2yty/vJ7mUgev7T5WOlXnsfPkumayisZT6zsmrOH4quPKm45X5bYyHD3/iwGb2cC8ajevXkRlYMPRNIORNG6rke3dIXqCSQCSGZX6EjtXzaoo3FfXdYKJ/N/T8SVf4zHIEksbPei6Trkr3x+m0p1fyP96zwBLGjzsH4iQzqriQmwKCCZzWEYmZPSEkmRy+XNBrcfGrOMGHLR548wYyf7RdR0dKHdN7PS+MpeVhlIHFqNMMJGh3JXvO+OPZ+jwJYhlchOeISiM1R9OMRTJjOr7c2AwSqXbyu6+CFVFNvzxDH/9+I3Mv/UxmHYZAKUOM7NvfJgVi+byN0/ewRdXNhQuwus9dnyxzJhAvCRJPLiigT+5cRZmg8w7B4b51luHKLKZ6AulsBrlMSW8yxo87Ogeu0kwr8bNgcEoFqNMPJsTvQonUSiewSBJfPfDNsKpHHaTTJ3HjtNq5LrZlfzd24f42hUtbO8Jc+uCaoLJDC1lDircVprLnCxrKkGWoKrIyuxqFy/u6KfMaeHepfW0++L8w32LSOdUWsrz769wIsvuvggrm0rY0B4Q5aIXmaMj372RDDt6wliNEuUuM7GMQm8oyarmEnb3htnbF0HX85mhPcEUWzqDdPoSKJpOMJElllb5wrI6zAYZt9XEQCRFudNCdzDJR4e9uCwm2n1xkQV0EYqlFdDhN/uHSGYUrp9XyY83dBYyg2+aV4U3lsEby/ClVY3E0jle2N7HTzd3k8mp6LrO+jY/sgT3L6/n0TVN3Dy/mqqRdfIf3TCLD1p93DTbg6G0gcSBj9A1DfOcqzniS3LbwhpCySyHBiOFXrhJUWr8mZuUAFC+kvyY6+dWsbs3jDeW5shwjJmVrpM87pi39w9x+8IaLCZ5pNxiNLNR5ivrmlnf5mfvOH1KOv0Jaj22QjbShvYAW7uCmI0yX79qOr/c3sct86tJZVW+9eZBDg/FeGJdM7ctqhn1PNt7QiwbSbE9KpFVmFbhZHaVm3DqWDBnZqWLL61q5IUd/Sxvyj9mR0+IEpuBcDK/uE9HQvzf7/zraX9/4cIaiqQJJrKFbLEXdvSxpqWEdw4Mo6g6iYzCQDiNBPzFrXOZXe3my2ubeO/QMO8eGMZklHl4dSMftvr4qNXHfcvquHl+9ajMsTsW1ZBTdd49OFy4yDIZZJ68vIUfPb6CcqeZcCrHs1u76Q+Nfc8fb3a1G4Ms0eY9tmMnSRKrW0p5eHUjG9r8vLij77wbBreUOeg4Sb+fcpcF7wQEmsym/ISr6BmWdU4mRdXoCybZ0Bbg+rlVbGzzo2hQZDVgNckMRbNcMTKKW1E1AokMFW7rmJKvkylzWrhtYTWv7R7g966dgckoI0mQU3X+3wdt3L2kjk0dAbxiB2VS6bpOOJnFYjQQSeVIZlSUkX+OYruJNS3HNjl29oRYMtL/J5VT8TjMo0oDJ4JBlmgudbBuRhm+eJbqkf5CiYyKd6R3QzIjLrg+S5FUjiPDcUqOm+yWVTQ2tPkpspnIqRotI5NMf7Kpm0E1fx1U6jDxrXsXIMkGfufe60dNOk1kFH69Z4Br5lTwzglZQEddPqOc/3PPAjx2E3v7IwyEUry0s49p5S6i6dyoc4AkScypzgd7jtdY6qArkECSJHQ9P0VOmByfdoewm4y8f8gLgN1sZE6Ni7piG89s6eaGuVXUFNnIKBp2i4Eyp4WGkmMTQd1WE0sbS2gstVNVZKWx1MZLO/ood1m4e0ktT2/q4revnFZoRxDPqoXJvUe8cbwTsLEjXDj9oSRt3jgbOwLcuqCadw/6uGJGBd5oGo/dxAvb+5EkiGUUKlxm/vORZTyyqoF6j42MqtEVSDIQSdMXTvLs1l5mVbnwxjLcPK+KTE4lmMgyFE2TUzWRBXSR8kbTeKNpIikFm8WIw2zg3UNe0opGsd3EFTPK2dUT4qb5VUSSWb752n6CiXxg+bq5lTy6pokvrmxgYV3xuNnrkiTx9TUVfOfVLUQPfIxj2lKUgQMA/M1LW/H6fKydVorRIPPOgSF0OOM2LsK5m6QA0FhfXNnAjzd2UVNkPe19h6JpYmmFGZUubl1Qwxsj5S4nkqV875VOf3xMOcqHh71cPbITH0vn+PcP2wB44rImdvdFmFHhZEObn79/+zBXzqzgj26YRVPZ2LHa0VRuVLlaOqfishjx2E2UuyxUuqxEjgsCTa9wctO8KiJJhVI5CUgc6c+XB2xu8/KNR+7i7/7yT/jnfxFBoKkilVVpHY5RPPLv/Pb+IRpL7Hx8xJ/PBNN1Iul8wObORTXkVI36Ehu/2pXPBpIlidpiK+/sH+aGOZXcu7RuVPr/UcV2M8V2M2unlfHzT3tHLeCtJiP/3+3zMBkkBsJp9vSHT5ndBnDLgmreOzg8ZmfYYjRwz9I61k0v45nNPWzuCJxzsOBov5/xstbWTS9jwwSUgTktRhbVFfGrHX3n/VyftWAiy4b2QOF37zkaqJMkFtS6cY80tz9a8jX7FCVf45FliXk1RZS5LAQTWWZWuigdWVB+csSHpuV3TsQOyuRK5dRCafCBgUghu8Zhlql0WUct4jOKVgj4JHMKdcXn3/x5POUuCyuaSlB1HUXXkAANiKYUZEm6KAKsF6uMorKvP4LTMnq4xcu7+llUV0ynP8GN86r45IiPwXCadw4MIwOzKp3UFNsYjKS5alYFbx8YIjrSg6fNG+eZLd3MrHTxxt5B/PHMSbMzZla6+Kf7F1NiN9MbThFK5mgqtaHrsK1rdMbP6pZSNp3wvZ3Pes3/f1mSSKRFFshkUFSNXb1hAol8cKbcaaah1I7ZILN3IEJDiZ0b5lXx2p5Brp9TgckgM6vSjXxCiwKDLNFc5mR5UwkLaosod1l4aUcfFS4rdy2uZWtnkGKbiXqPDR0IJjK8smsAtzU/pUdkeVwcdF1n30CEj1p9PLq6gb9/+xD3Lqtl/0CEVFbh8HCM6iILh0ey2//3nfOpLrLxhRUNfPehpfzLg0u4d2kdZU4LqaxGPKPw/LY+dvaE+PHGLq6fW4nVKNEVSPDBcVlAYorTxUNRNfzxLBva/YSSGW5bWM3fv32YnJq/fnx4VQMb2v3YLUaWNXj41luH+J0rpvO1K6Zx/dyqMe0MTubT917H++FP8UxfwrQZc7jhyrWg5qComn97eT33La1jS0cQkyxhkqUJqSAQTm3KBIBMBjmfmhxOn3Ixqus6r+zq5+4ltUD+RHbt7MoxNfBHSZLEHYtqySoab+0bAqA7kKCm2FZYdP1oQxeRtML0CgeNpQ46fXGe3dJDRtH4u3sXsm5G2bhlGcmsgs08eqc2nlVoLncgSRKSJDGtwokOo9Lrb5xXhcdhwuMpgUQALA6SyTQHWttpP9JK4/RZXHPTHWf19yecmYyiEkpkGY6m86U64RSD4RT9oST9oSS9wSQ9gQQ9gQTdgQRd/gQHByMYZRmjQWZTez7NcWdPmMX1xSSzKuvbAySzKm6rkevmVrK1M0i7L0Gdx0a7N46iaSxt8PDw6kY8x+3+jufGuZVsbPezotHDuwdHv6cbSx187fJpAHT4kvzr+0dOeSEmSxL3LqvjhZMETirdVp5Y14zFKPOjjV3nXAKybkYZ69vGBnqKbCYiqfNfKFiMBpwWE12B5JTPajk8HGMwnGZOtZsd3SH88SwGOT89TtHgvqX1qJpOKqeyornklCVfJ1PiMHPDnErePTjM71zRgixJGCRQdPjn945QZDMRTuXEDsokSmZVjn40t3YFC58tt83ENbOPlQAORdKFcmJV0zHJ8mn7350ro0FmWpmTOVUufNFMoRS7O5BA03TRePEzNBxJo6jaqMyuIyNj2PcPRLhvWR0Ae/siDEXTGEdKdObXFPEnN87m6Y1drGz28PCqRp7d2s3rewY5MBjlq5e3MLMyP/kxnMzx0imC5OUuC7ctyjf31XV4edcgRTYTrceNg4f8NVVTqYP2E/q92M0GEhkl3wdIlKlPikRWJZLMsacvn9WuaDoeuxmjLJPMqDy+tokDg1HqPDaQJObXFmE2nvwy/2g20K0Lqil1mnlhey8VbiszK13MrnKSHilbjaVVIqks82uL2doVFG0KLhLxtMIL2/v48tpmXt0zQKnTTOtwnFVNJXQHUxhlmY0d+RL+e5bW0hdK8/LOfrZ3h/DFMzSV2nl8bRNPPbacb92zgJvmVeE0G0hkVVq9cb7zfhv1HgfBRI69fWGMBom0oopzyUUknlFo88ZIZFVKHRbe2T9EIp0jp8KS+mI6/Ak8dhO3L8w3Cl/ZXML0Sufpn/gEDz7+VX7/kbu5/vI1NJS52DWY4tpZ+UEYB7QqvPEsSxqKiaQUugJJwqmsKDX+jE2ZAFA8o1BsM7GyuYS3948fzAF458AwV8+qGLVjPr3CSTCRPWXq4VWzKqhwWfjFtl7ePzRcuAjf3RvmNweHkSW4a1EN//ZBGx3+OH952xweW9t00lH0kA8CLKk/Vv6Vzqk4zYZRKd5Wk4HZVS7CqWxh8ZoPStWwZnollZUjPYhkI5psoHz1Xfznc6+QMZ39B0wYTdd1Utn8yejIcIzNHQE2tQfY0xfm4ECUQ4MxWofjHBmO0+5N0O5L0OlP0B1I0h1I0htM0RdKkcnpuG0m9vVH6AunaPMluH5eJXv6wjSV2vCNvO9+95rpfO/DdhbUuklkFLZ1hbhpXhVPrGsZ0ycK8gu+Ey+kjIZ887VoWiGRUceMU79xXiWXTS9DBzoDCb73YRuDkZOP/S5zWmgqdbB9nL4ORy1p8HDLgmqe3tR9Tjt7FS7rSZvINpXa6ZqAkfBGg8TsShebxhlTPFXE0jle3N7HPUvr+PiIj+GR0poSuxmb2UAgnmVujZt4RqG22IbTcm5TniRJYkaVi7k1Lnb1Rbh2TkUhaLC7L0y9x8bBgajYQZlE4WQW88g5qsufKDT2ry6yjdox29oVZEVTfoJkPKNQXWQblR000SrcFm6cV0Uso1LiyB+HN5amJ5gkkhK9XT4rvlh2VNZnTtV4a/8QwXiGR1Y3IkkSw9E0faH8d3ldiZ25NW5cI5NVVjaX8svt/WQVjZyicXg4xu0Lqws9EItsJr5+9TR29oY5eEL51vFunFuF2SjTFUjQ4Y+zoLaIUDI7pmn8lTPL+ajVN+q2OdVuDg5GsRgNhBPZKR+MvxRFUzkyisbgyHd7ncfGtHIH+wcj/P71M9F0+LjVx4JaN3OqXGd0jjHIEo1lDh5b20RdsY2ff9rDquZSVF2iutiKw2wgp+lEkjn29UfwRjPjtl0Qpp5NHX7m1xTRH06xpSOE1WjgkVUN/HJ7H5FUthD8bSlzcPWsCrqDCa6bU4ndbGBnT5ifbe3hmS3d/GxrDwcHYyxv8vB39y3kCksv1S4zmg6+eJpyh8yOjmF29IRwWfITwUQW0MXBH8+wqzfCUCTNvBo3W7tCRDMqZqNMrcfGumllGGSZg4NR/PEMX1jecEbPq2o6sXSOQCLDcDSNquk8+PhXeeKq2djMBsqdFrrC+QqarKLxvQ/beWhVAx3+OPsHoui6GGbyWZsyAaCjJVkLaovQdH3cqT/eaJpwMjtuj6C7l9Ty8sg4zJNZ2uihushKpz+JRD4b5LsjpV8zy538eFM3dyys5q/vWoDHcfq0tg5/otAoD/LZPy3lzjE7+uUuK9VFtlHjU5vLnKRyKldNc6Nn08gGA7LFiallJWajgURGJSHe/GdF03TiGYXhSIoDgxE2tAXY2hlgX38EXyyD2SBT6rBQ4rBQ6rRQ4jBT4jDjOfrHnv9ztBSryGaiyGbCaTXSHUiwpTOAL5bhC8vqeHv/MF9a1cC33z2CrsPsKheJTD4L6Nd7B6kvsfE/b53D7Gr3uMeqajqBRAazSSZ+Qjr9wrpiDg/HuHFeJe8cGBqV1i9JEt+4ejoVLgtZRacvnOKTI37ePTh80gvyddPL2NsfPuX43iq3lRvmVvLM5u5xyylPp6bYSn9obCBqVXMpWzrPP2jjMBup8dj48LDv9HeeJFs6Arit+ffM4aFY4eLKZJBY3lhCzUhpT07VqDqDUtdT8dhNrJlWxo7uEPcsrsVokDHLoGrw4o4+/PGs2EGZROFkDqvJQDSVI5zKoY58pNZOKzvhftnChkFOValwT2zz5xMZDTLzaosoc5oLmxvhRK7QKyw5zkQ/4fzkVI1YJjcq++elHX1kFI1H1zYVAn4b2/0EkvmFfa3HhixJ3DivincODnPrgmpWNHr45mv7eXRNE9fPqeCt/UOjXsdiNPBnN83hmS3d7D1hutdRbpupUPquA63DMUwGmc3to7+jjQaZKreVvuN6zU2vcHLEG8cgS2i6LkpMJ8HBwWghmCxLsLzRw4b2AH98w2xMBpn3Dw2zoslDS7mTCvfZnWNcVhNfubyFhbVFvLyrn3qPnQqnpdDIPpDM0umP43GY6PTHRTPoi8AHh/3Mq3Hz86092M35PpSftAUYjKTI5FTiI9esv3/9TF7bM8hdi2txWo3MqXZz47wqvrSqkYdH/ty6oJoSu5lnXvw1r773MUM73kEC2v1JOvfvJB6L8R+vb8FiNJDKKSIL6CKg6zoD4TR9oSQVLgsv7uhH0/LfL6uaSljW6GFrV4iZlU4+OOzlG1dPP+XzHR/0iWVylDrNLKorZtZIEgSAw2LkihnlrG4pZTiWYUl9EQYp3w93c0cQgyyTySkYJImQyDT8TE2JAJCm6/himcIJ6+b5VWztDI7K6NF1nZd39XP3krpxn8NqMrB2WhnPbO7mmc3dvLZ7gEND0TFNbtt9cZ68vJmnNnTyw/VdDEbSWAwSiZzKn988h5sX1JxRScbRRfLRHbh0TsVuMoya7nG8aeVOJJlRx3NZnZlf/Oyn5OL58hnZaEI3O3ji8UeJhvyimdoZ0jSdQ0NR1rf52dYZ5OBQjGhSwWkx5oM9Dgsuq+mM+6ycyBfL8OruAbKKxmNrmvjVzn4eXF7PO/uHiKYVDBKsaCzmRxs7iWYU/uzmOdy1uO6k7yNF1QgkM8yqcjGvpoi0oowJ3ty2sJrX9w7xwPJ6nj+hH5DTYuSPb5gFwP6BKM1ldqrcVp5a33nSIM/9y+r5xbbeU+7a1pfYWTejbMzrnYm108bv92MzGwpjJM+HySCjajpuq2nCJphNpKyi8vy2Xu5YlB/7ns6pqBrYTAZSOQ1vLM19S+tIZVVcNuMZNXw+FUmSmFbuZPW0Uj5s9XPn4hocI8+5rz+KySCRzWliB2US5NT837vZKLP/uP4/Jlli+XEDA+JpBcfIDn1GUXFajOecFXY2Kt1WLpteWjguFQgms8iSROwUQWLh3JwY4G/3xdnVG+aJy5pHZQXtG4igauAwG3BZTFS5rcgS5BSVTR0B+sMpvnHNdN45MMyCumJMsjxmYleZy8L8GjeHh2N8cmT8YPkdI4Ms+oJJtnWHqCqy0uEfO9772jkVowLuJoOMMrKrr4MIAF1gR/v/xEYWUmaDxLbuMF+/ahpum4l4RqErkGBJg4em0rH9Ks+EQZZ4YGUD1UVWGkrsxDIKSxs8SEA6p5HI5PuFbe8OT8nzsHBMRlGJpXO8vmcQbyxTKPd/YUcvTouRrmAKi0Hm+rmV7OoNc8uC6lNeI9vMBmZUuvitu6+hzLeTrpf+kdxwfgM9a3JhTAcIy256AgmRBXSRiGcUWodi+SzQVI60ohLLqFS7LcyocGKQ8lmA7x4c5rLpZeP2+zlZ0GfttDJmVbnxOMzUFttwWY2F69FF9cVkVI37l9WxtTNI80h/3e9/0kFNsZVEViWd00TD+c/YlAgA7eoJs6Th2IWxJEl8cWU+TfHoRep7B71cMaP8lPXMc6rdPLy6kYdXN7JuRhmxtMLLuwYKQaHntvYgIVFTZGNVcwlv7BsEYFqFk/923czCKN4z0eFL0HJcU+h4RqGl3DGm2d5RZqPM3OoioulcYXG97f3XCfqGMQfa87+30YzZ7sRvq2Pju6/TH06JNOszMBBJMRhJUWQzUerMB3wcJzTbPFfxjMLTm7owGWSeWNfCG3sHuXZOBUaDxI82dgMwo9JFOKXgspr4qzvmFXp6jCenaoRSOeZVufOjWy1GaoptYxqwVrjyF/9pRWN5o4f3RiZ+HDW72s2jqxsB+Pu3D1NTbOOLKxv41c6+ccf4OixG1k4r5b2D3jE/O960cieL6ot5aeeps+lO5LQYSY5MCzlRsd00IZF8oyyzuqWEl3ac3bFdCL/c1sfSeg9Gg0ybN86nXfm6+pkVDlxWI8msRmOZg2ROoWGccsBzUWQzsbC2iL5wkqtnVWA1GTBK+ca+JQ4zh4ZiBBNiB+VCO35hvLc/XBj/7rQaR11AbesOFgJC8YxCncd+1v2gzoXJIHPHoloyiorFkH+9wUh+MXCyUk7h3IWSWYxy/rpFUTX+7f02fufKaaP6wQ1H03R486WytcU2hqNpbp5fzRt7hwglc9R5bNy5uJYZFS6mlTt558AQ182t5NBQdEw5zi0LalA1HVmSeHV3/5jv5IYSO4vri8mqOllFw24yEExkx3xXWIyGMdmgZqM88r4xiN3ZCyyRUekLJTkwdDSzVObepbXUj0z4enF7H7csqGZ2teuk16Fn6suXNbOjN0RLmQOb2YDLmg9UdgWSeGMZEhmF/lBKNIOewjp9CSRg/2CUOxfn3yf/582DOM0G9g5EkcivfVa1lGKUJRpKzuy6pLSsnB88/xqe0jIGf/lX6JqCuayBGXMWUOex83/ePJjPAsqKXkBTXSiRZd9AhKyi0RFIEBg5/8+odHPrwmo2tgfo9MexmQ1cP7ey8DhNP33Q5/j1lyxLzK5yj2yM5r8z7ltaRyCRo7rYSjCRxWM3EUrmSGRVgokc+wYipHLqmCE2wsSZEgGg3X1hFtUVjbrNajJw95Jafryxi/5QCn8ic9JymvF47GZWNJXwwPJ6Hl7dyJdWNRBKZmkuc/DL7b18570jAEwvd3LHotozGj1/vJ29IRaPjO5N51TsZgOlpykbK3GYqfPYChdODz7+VX7r1jXccOudGEc+LJaiCpZdcwcPPPokGUUjKqZtnFIio9DmjeOxWQrZWBPp+U97sJkNfPXyFja0+7GaDGzuCPInL+5G0XTcFplVzSXs6g3zP26Zg8V48vHNOVUjnMwyv8ZN1XGTfhpLHSiaPuZi6taF1by+Z4AFdcVEU7kxU7/uXVbH3GoX6ZzGP75zCJvZwONrm0lkFZ7d0l1IFT9qXk0RwWSWgfDJewYBzK12M63cya/3DJzpXxMAc6pdHBqKjbl9Sb2HXb3hs3qu8TgtRtI5lWgqd84Nqz8LyazCls4gyxpL2NDmp9hmKmSGBUf+vadXOFE1HaMsjeoRdj4kSaK53MmVM8t4a98QN82rKjSl3zcQoXvkYl24sBJphaPfRB3+JNmR92rzCVMke4JJGkrshQV6iXNi3hdnor7EjtVkxD3SO2ognCaYzBJJ5cSiboL5YhnsI5/Lb711iLsW19BwQobGx60+/CMBmHKXhaYyOwORFOvbfDy6pol5Nceuj5Y1epCR2NYV5IEVDbyxd3BUkKfIZkKWpML3+LNbesb8m945kgUUiGfY1hWiyGZiwziN/Cvd1lGZHrMqXbQOxbCYZJGhfIFFUlmiKYXUSEC51GlhWWO+f1iHL47VJLN2etkpr0HOlM1sYEaFk5mVTjp8Cda25EtX42kFbSS42BVMiCDgFPbmvsFC0/ZrZlfwzv4hhmMZ+sP5z3Odx8bdS2r4+LCPWxZUn9NraIkQ6b6DAAxHM8iSRDiVY0d3EJfVSKfIAprShiIpvLEMkVQOWZLQgcYSO//1mum8vneQVE6l3Gnl9oU1hfWVrusEEllKThP0OZHDYmR6hbPwnWE1GVg3vYzr51SRVTVKRqpnNrcH8MfShXVKTKyBPzPnHQCSJKlekqQPJEk6KEnSfkmSfu9sHj8UTVPhto6781nptnLnohr+7u1DLKgtGufRZ24gnKaxxM4VM8uZXeXGH89ilCVWNHm4bHrZ6Z/gBKmsWkjfj2cUmstOnv1zvOYyJ2ajXIhqPvLlJ2msLDmuD4SOq7qJT7uCGGUZX0yk2Z7M0dIvi9EwIdk+JxoMp9g/EMXW8THffXc/7x0cxmU10ujUCs06p1W4sZuN1Hns1J4isyOraERSORbWFY2pzbeaDDSXOgo1skdZjAbm1hSxsyfEnYtrx2QByZLEn940B5NBYm9/lBe35yfAXD6jnOvnVvLDDZ1jgj13L6nl1d0Dp13kLa4vptxl4TcHhk55v+MtbfCM22y6zmObkKaRBlkip+qsnlbKuyeZ+jcZfvBJJ1fOKMNikmkdjvHRSOlFrcdGPKPij+e4bk4FsXSOWs/ENvktspmYXuEiq2pcPuPYxf/2riCSBMmMInZQLrBQMovVZCCWzuGLZQrTwK6bc2wHLadqGOT8pMhERqXCZZmQhduZspoMzKx0Io0EDvyxNK3DsZHeLuKCa6KkcyqpnIrJIPPC9j5cFiNXzqoYc799/WEgH/yJpnJ47GZe3TXA16+ePu5UuOvmVtLpzw8tWNVSOuZ79+YF1by5b5B5NUVcObOcH27oHPU9sLTRQ22xjUhaIZTKUmQz0RUY26x/fk0R+/qP9WOcVZkP8psMMhlFE98tn7Hvfve7eL35835fMIUvki/Vk4AlDcUAaJrGa3sG+O0rWnCfZ2nx8R5b08TO3jBVRRZmVzuxmWQ0YE9fiKyqsbc3Sp9oBj0lqZpOhy9BVyDBnYtr6Q0mC9d9iaxKTZGV2VUuugJJ7l5Se1abpwG/jycfuJ1QwI+ntIzc+/+GripEszqJdJaZFU7+5f02ZEkimVUJJESgeCpKZVUODOTLv3KKhi+exWqU+YPrZxJP59jcEeT6uZWYDNKoITbBZJYGj43ZZxD0OVFtsQ237Vgp2JxqN/GsyjWzKxiMpmnwWNGBSDrfFsMkyyKL7DM0ESsRBfhDXdfnAKuBr0uSNPdMH5xv/lx+0p/vG4jw1cub6Q4keWlH3zk3NX334DDXza1E13We2Zwv3ZlW4eDBlWfW0fx4kVSusHOaUVRsZgNl49RGjsdkyJeCxTJKIb36/2fvv8Prus87X/Sz2u59Y2/0yt5JSaRE9WLLsuWS2FbiVCdxPMmMfM6dM3fulHPOnTPl3HsyN2daYmVmUiZOd0kcxyW2ZVldskRVUuwNIHrfva16/1gLCwABkCAJEAC5P8+j5xGJvTc2gbV/6/d73+/7/d63KemODVnYcvAzYwVCXpnRXLXekV2CoWyFfEVfFd+MsqrzOy+cx5e5wB8/f4znvv9d/vF9jeyMw//1d+8BAh50/tlHtvFuf4Yn9zQt+Vo13SBftYs/DeHFx8Na4n5kUVigbLmnO8HblzKYlkXQIy3YcCeCHj57ZzsAf/bGJU47CTDpsI9fv7+bl85OzOvsKpLIk3ub+burGKaDbeDskaUFaTBLMTM/fvm/QRDsg+5KjDP6ZImGoLIiiqKVYDBTpqzqpCI+Xjs/6W6qALY1hkgGPViWRVcyiGFaVxwPvF66GoI8uDXF9z4Y4Z6eJABF1aS7IcjFqSL5uq/LTcOyLDJlFa8scXw4j2bYn1dZsJUbMxwfyrlNjZph0Bz1L/p6q8ln72xDdz6SmmmPNQtQDx9YQWZ+lm/1TfNuf4anFzHRHMtXuegUX9rjfqbLKp3JIPGgwpb00srkz9xppw02R7y8P5Bd4BPnUyQmCjXaEwE+e0cbf/x6n5s6KQoCn9hrd/3LqsFIrkquoi1oGLTEfAznZptQfo9E1VGWCtR9gFaTZ555hi996Us88sgjDI2M8tqpS5w4c975qsmTe2wV13Onx/nwjkbartP3ZykCXpmtjWEOdtkj6Hc4Ng1jBZV02EuubI+A1AvG64/pokpVNyipBnvbYvzpG32UVZ2xfI14wENDyMsdnXHSYd81m4X/6Lvf4sLZ02zaup1vPvcTvvmDFxGmegEYzZfJVjU8ssjvv3yBkFfm4kRdBbQeyVdUjjkBOaqTUvGp/a30pEL8h+fO8vOHOnjj4hQf39viPqdQ1Qj7ZLpT15dSvdgo2KcPtGKYEPZK7sRLzTDwyiJD2QqThVr9+lklbrgAZFnWiGVZ7zr/XwBOAa3LeW5VM9ANa54R4lyGsxUmCjX2tMb42J5mDnYn+MNXe+clUyyHkVyFRNCDV5b42lsDnB0vokgC/+en9lzX2NA7lzLc6dwMCzWNnmWqf2aIBhQ6EgF3M5YMeelI+BEFuwCUrWhIosBEoYZmWvUD3CK4o19LmG7fCLph8qc/6cMni+zfs4dYqom+b/42n/nwvfzCP/k3EE6BofPPP9TNBefQtLcttuhrVTX7JnygI7aogdoMiiSyKRVa4AUkCAJP7GriB8dH2dUS5eTwwojfn72rnc2pIBbw28+ecavrsiTyc4c6kCWBv3zzkluYaY8HCHhkTo8uHRc8w0NbU6i6wRvLjF+/q3NxFVBXMrBoh/laCXglJooqnckA58cXjpvdbP7k9T4O9yQJeCTOjBZ44YzdrY37FY4PFehqCNLdEKSsGsRDniXXuhsh4lPoSPhJBDzcv6WBmaVIRODsSLHeQbmJVDUTw7TVamdGcu4B2e+V5/3uT4zk2dkcQTdMZFFcVOWx2hzqTmACirMLGC/U8ClS3QdoBZkqqXgkkW+/P8Sv39+9qPrv2ZOjZMs6ogAxv4Jfsb13ZsZ7lkIUBH7pnk6+dXSYXS0Rjl92b3hid5ObFBYPeviVw1187e0BMs6o2aPbGwl6JEZyVYayFaK+hWNgixXuJcFWGEiiWN+brCJPPfUUO3fu5OTJk+zfu5f/+798GTNkqwiDXpnGiI/JYo3+qTKfvat9Vd7D5w938cGQHckcHjpim5IbFhcnS2SKJb7yl1+vm0GvQ146N+4qS7925BIXxotMFFUkUaC7IcC+9iinRwpXbL4vxed+5Yv8r//ut/nDr32HZEOKZEOK//abTyBgYiBTrBqkQh7OjhU5O1aoq4DWKSO5CvmqRq6iYQHpsJdfuLuDP3/jElvSISYKNR7emnYbu6puYlgWu1qiNzRxEfTKbGkMuRMPimNEvr897nrlFasGFydLHB/KYVgWpXqReVVYUQ8gQRC6gAPAm8t5/KvnJnlw6+ILUE03+PbRYT5zx2zqV3s8wK/f382R3mm+f3xk2XHVPzo5RndDkD945QLPnbZHR57c0zwvlvVaGMyUaYv7qemGrUhYpvpnLl3JAD7FNkoDaIr43RlIVTcpVDReOjuOT5IYrd9g5zEz+uVTVn70y7Is/uLNfgIemURQwVR8/Jf/5+eJx+MUTB/egz8D2JG4B7d18NypMQ51JxYdYayoBhVNZ397jNgyClXpiA+fIi1IrmtPBCjWdNIR76JFG0kUONidoDHsZbxQ48svnJ+3ab+7O8mjOxr5o1d73c3aR3Y18vLZCff6uxIf3tnEZLG2LNXNtqbFfYD2tcVWRLUzU7C9f3MD3z46csOvdyO8cXGKLY1hLODtvgwHuxJ8MGiPS+xsDqMadpLBwa4EFd2gfYXMnxejqyHE3T22B1HAOdH/6NQopgWTRbXeQblJlFUdC/tn3TddQXM6a51zDDYty8I0LWRJpFjTaY/7b9i09XoI+xTCXtn1jRpx1B+ZUv16WQksJ920UNGQRJGeJbqmM2tGZzJI71SZJ/e08H7/Ql/ExVAkkX1tMQJemSO984v0AY9M1G+riMFW7/zcQfueNfPnD++0lauqblIz7E335QWfVNjL+JxR9E3pEBcminhl0TUNrbPypNNpXnjhBVKpFJOTExiBJKJsF5E3p8LUdINnT47yPz22eVVG4AHCfoUtjWGksRP89Tv9mBMXAThycYIjP/xrvvvqUX73d79cV6mvIyzL4vULU4zlqxxoi3N6tEDWKdQ+sjWFJAqUawZP3dV+3aEDn/uVL5JsmD27tbY0s7slBsBUoUa+quFTRL7xzgAC1FVA6wxVN/lgKE++omE4e5RP7m3h2GCOk8M5PrWvlfFClW1NtgLVtCyyFZXdLdHrPjfPpSXqJ+pX3ITMTakQLTE/kigw8/L9U2UqmmH7SpXrjYbVYMUKQIIghIC/Af6xZVkLTqmCIPwDQRDeFgTh7VxmCsuy6M+Ul3Se/+qRAZ66s21Bx0yWRD59RxubUiH+4JWLTFzF5PT9gSxnRguMF2rsaI4wlq/hk0V+0UlQulYM00J0vBuKNZ1NqdB1bd5lSWRHS4SSqmFaFnf3JGiM2IUkATg2lKOqGSiywHihuq5Mb9ea1Rz9+tv3htjZHObd/gxP3dmORxKJ+GTEWDPpn/nXCJKEWc7x63c3cWzIjnh+aOtCT4eyqlMzDA50xJfd3ZdEgU2p4KKmZ5/a38KzJ8bcGN7LeXhrmg/tSCOJAq+dn+TZyzxymiI+vnB/N8+dGuNI7zSCIPDUne18452BZb23j+9t4cJEkVMjV1YNCYJA0CMtiB+P+JUVM3PzK3YCjT2CsDadAcO0+MHxUQ60R5FFO/nr3f4MFd3Er4ggCCSCXvyKSHcqiFcWia2iyiPklWmNB9jaGHaLjceHczRFfYzmKxTrHZSbQq6iIYsiharGaK7i+v/MbWT0TZVcQ2jdNElFrr2BsBJ4ZZE7u+KuYfVYvsKFiZLtA1T3drlhKpqBbpi82TfNlsbFiz+juYqrjGyN+siVNTqSATanQ8s+nB3qTvB23zSbUiHOjs0vvj++s4ln5/i4RfwKFc1w9xMf39uMKNhNrYmCSk23i0Bz2d0a5fjQ7Lq/oynCyZE8XlmkUNOueyy/zrUgIMfskT0R+PQdbfRPlYgHbA+41eTzh7tIdO0i1NzDyPe+jGWZFGsmo8deJ9q1k8Mf+njdDHodUVYN8k6a0sznWTMsDnbGmS6r7GiOsKMlsuKq03/50R3IooABZMt2mEBDyMtfvzNIWaurgNYTharG0cEsFyeKzKzeWxpD/O17Q/yDB3v41vvD/NSB2UGe6ZLK5lRoXnLljSCKAtuawtSM2VGwT+1vZXM6hNM/o6jqhLwSumHWw0xWiRUpAAmCoGAXf/7CsqxvLvYYy7J+37KsuyzLuisaT3JmtMD2psVvXD8+Ncb+9iuPzGxtDPP5w108e3KUF8+ML+haTRZr/OlP+vjmu4P8i49u56GtKf7qiH3YfXRH43Ubbp4ezbO9KYyqm3hl8Yrv8WpEfApdDUEyZZXmqJ/2RBABMCy7C5sK+3irL4Nl2QeLOqs7+vX86THSYS8/OjXOp/a38sMTY9zTovBr/+R/h+2Po8SasLQa6tQg//sXP8tzxwboSdmm3pe/R800OdARJ3yNpowNIS9hv7ygsBHwyCBA2Ccvutlqifmp6ia/dLftafX7L19ckBqmSCK/cHcnqmHytbf6CftktjWF+ckyx7s+faCV9weynB8vXvFx921uWDRRxjvH/PxG8CsS0yWNJ3Y38bfXGFe/Unzj7QE+fUcrY3l7Pjnsk3n9gv1z7GkIcn68SGciQCLodVQegVVXeXQkApx74W+IeOzvU9Mtmn06f/63PyRbj4O/KWRKdufzxHDeVddJAm5iJMDblzLc0RGnohpEA6szFrgcBEHgc3e14TQAqegWx4dyWECpWr/f3CjFqo4FnB4tcKhr8XGub70/TEUzCSoiiiSSCns5OpDlUPeVx7/mIgp2hHNHIsCrl627PkUiGfLOG5u/f3OD+7jGiI97epIYlj2ubJrWgrW7LeZnaI430Ewxf6ZAVar7AK0K4+PjPPLII0xMTJDo3oUnYXtxmIZGm1/jhbMTfOH+nlV/H/Ggh12dae49sJvY1rvQMyMIokjysV/l8KGDjKge+utm0OuG44M5JosqqZCHF85OoBoW6bCX9kSAeEChohrc3Z1c9Lm6YTJVqjFdUsmWVfIVjWJNp6zaYRKaYWKY1qJ+jmG/wuaU3djIVuznaLpJoapztD9L7yLqwjprw0ShRrlmkK04CpyGID8+Pc7mdJCxQo19bVF3X5KvaiSCHtqXEGtcLwGPkwpWsYs7kijwC3d3uir/cs0g5FU4NZKnUNUWpBrXWSaCsGSdZyVSwATgj4BTlmX9x+U+743e6UUXoYsTRQpVnX1zNsxL4VMkfuHuTmIBD//jtV7yFY1CVeOrb/Xz0tkJHtqa4s5O+xD+6vlJ+qfL+BWJL9zXtfx/4GV84Jh35qsam1KhG5bediSChDz2gT8d8RIP2gUDzTDpmypybqyAX5GuGt19O7Cao1/vXsqg6ianRgvEgwod8QCNES+/9+3XGB0eJLTpAABtDWEC555lsKJwqf8SH56T7AN28cfE4o6O+HUplARBYEsqvOjM64H2GIokcnSJUar2eIC7uhL0NARRDZP/8KOzi0qz79/cwP2bU/zhq71sSoU4N1ZgehkFAkEQ+NzBdl49PzFvJOByWmJ+RnILv767NcqJRTyMrhVBEFy/jJFs9aoqwJUmV9YYyJRpiwfQTYu3Lk0jinaioYh9qDIti6BXZndLBLDHKFabr/zhf+d3/z//kpNv/JiZ8vb/9u9+i1defZUvP/PMqn//2x3dMCmqGh5J5NxYwT0Y+xRpnpJ1JkGyrOm0xW6++fNcNqUjSKKA7Cyn/dNlfLLEVL2jf8NMFmsookiuormKr8v5wEn/6k6HODWa5zce7KGiGddcFHx4W5pXzk3SGvMvOIw/vrPRHfsC6EmF6J2j8vmkEwk/mq/a/i4TxXnj9Yv5AAnYYwGiIFCsFwtXhW984xucPHmSbdt38Ev/5r8j+iNgWWjFDD/8zreQxRtrQF4Lv3xPJ6IASved5F7/GgBSvI0HuyO8fmGaXFmtm0GvE549NUa+qrK9OcKE4//3+cOdnB8vokgSn72zbdHnmZZFpqKxKRVka2OIzmSAxqiXeEAh4JWRJAHdMClrOtmKylSpxmSxNs9G4H/58DYUyb6ZZMoa/dNltjeHOTWSp3+6vKx9Zp3VxTQtjg1mKauz6ptkyItPlvjIriZODue5y2lYzDRstzeHV6WB2RL1E/N73FGw9kTAbZprpsVbfVNuqMrlUwV1lomw9C9uJRRA9wG/BDwqCML7zn8fu9ITDNMi4pMXHOKLNZ3nTo3xyf0tSzxzcfa3x/jZgx186/0hvn10mCd2NfGZO9p4+dwkj+9swjAt/upIPwCHN9nJRteLqpsICHiVlbn5SqLA1uYwZdXgUFeCtJMSZVnwwWCehpCHTEllqqQu8Ia53Vit0a8LE0XOTRTJlDUOdMToTAR54cwYY/kav/ypD/PAU78B/hitMR+RgJf/8fv/jYd++Z9yx95d8ySRpmVR0ezUhRvp6kcDCumwl8JlG+sdzRGmS+qS3bb7Njfw+oUp/tXHd+L3SPROlnjp7Piij22N+/nV+7r4+w9G2JIO8c13B5f13gRB4OcOdfB37w9fsZuTCnkYv8y7altjmDPLMJ5eDgGPzFC2wm8+vIn/9tKFm9pZ+uPXe/m1+7oZzlbwyRKjuSqvnrPVP5vTIcYLNWIBOx6zqyFIOuxbkbnpq/HUU0+xY8dOJo69hFqyjbirzfuIhwPsfeCJ2379WG3KmoFl2Z+R4VzFHbNpnVPkmSzWSAY99iixIKyYpPp6CXolkkEvsnMvHstV8Moi00W13q29AUzTYqqoMpStEA8oi5o/D0yXGMzYjZ2mkBfNsGiLB65prTAti6rjkxD1K+xti/LC6flrviKJNEf99M0p+mxJz46L7WyOsCllG9WXNZ2KZi4o1DeEvPPM5NsTAQamy/a1UvdnWBWefvppvvzlL/Onf/M9+vNO8pogsD8JOx/7rBsDfzOwKjle+5s/QCsX8csWllpGkGT+/X/7U6bzZWqayUS+Pqax1qi63Tiuaia5soZlQXPEyxsXp0mFvTy0NbXk3jRTVulIBGhPBGmO+elIBtmcDrO9OcKe1ih3dMQ51JPk3k0NPLg1zYNbUhzoiFFUdfde0RLzu7YexZpBRbMTcEVR4EcnxlYkCKTO9fHMM88wPj5Ooarz9qUMxwansbAQgJBPpicV5Icnx/hpZ/TLMC0KNY3drdHrnpi5GouNgt3dncCpIXJx0j7ryILAdH2E8PpYTQWQZVmvWpYlWJa117Ks/c5/f3+l5xRrOo9un++bYll2kebnDnVcVzJXyCvzy4e7XEXQeKFKyCvh90i8cGacoWyFoFfiNx+8fsnsRKFGQ8hrJ38lgyumQgl7ZXyKSHPU5xrF6haUVJ2AR+KV85MIcFuPcazW6Nd4vsqLZyaI+mR2NEc4PVogEVQYyVV5xLlGz2h2Nbwl5ufje1sYrnnYtnM392+eb2CerdjpVCtRoOpuCFHTzXmdWFEQEAUBcwkJrk+R0E2LiF/hoS0NAPz5m/1LSie9ssQvH+6ippvUdIM3e5c3CuaVJQ73JK8YD3//ltSCcQRZEpf0MLpWfIpkjyEAj25P851jN8cQ+vx4gXjAQ8gnM1mcjafsnbTH4pqiPiYKVTan7fVBN615BYDVJJ1O8+KLL+DNXcKo2hstT7qHf/tPv8RAZdZwr87qUHY6VMWqzmBm1v/nqTkd17f6pjnYlaBY02mK+tyEjbXCr0g8vC3lNonGijWmSiq6YRez61wfZSfm9uhglpYlPv9ff3sQ04JkUGGipNLVEODEcI5djmrwcnTDpKzqZEoq086YRr6iIYj24e1DOxt58cwEiaDHNX6e4bHtaZ4/M1sYOtyT5CfOyKogCK4KaLqoYpjGgjGwPa1Rjg/l3D/vaolwYthW42brpuGrxtNPPw2+CENZ+/cpCPB/fOGTfDCc40PbG6/y7JXjr//6r+l7/q/wexUe+eK/5sm9ziGx514CuUu8cm6SgUylfh2sMaO5CsOZKg0hL8eH7c9rt5Mu2xT1sbt1cWP5XEUlHvDQs4RScTFEUSAW8NAS85Gb06z8wv09tg8ikK9ovHZ+koe3pvDIIu/1Z1fEBqDOtfHMM8/wpS99iUceeYSzlwaZyhaYLtQAgZBQJeCRSIe9tER9rofkdElla2N41RNKAx6ZLemwOwr2s4faXV/CYk2nKxlgvFBjPF+rN6WuA0GQlqzercnu07SsBalI3z02wkNbU9fsmbIUz54Y4yO7mtAMk6++Zat/7miP478BZcbbl6bZ1x7FI4ukIr4VeZ9gb8DSYR8VzSQd8RLz2+9R002O9GXQDAuPJDKYvT3TwFZr9KtY1fnme0PsagkjSyLdDbYH01++OcAXH+ihPe7nv754AYAHNjdQ0Qzu39zATy5MIoqCbVjmoOp2nPNKzckGvTJtcf+CWPi9bVFMcDvHl3OoK8FbfdP8xoObCHtlJgo1/v74lYsjD29Lc++mBr79/vCyb867W6MMZitLmj9G/Qr5qrZgwU5e1km+ESRRYKpY477NDZwbK1xxLG0lmEmI+7lDHW4x9kjfNMPZCqph0Rr12QUuQWBTKsymVJCARyLiv7keL6JewyhlsEwTUfHikWAkV63Hwa8y02UVnyxxYiTnqvckgXl+LhOFGumID900aVzBe8j1IggCP3WgFcHZcuUrOscGcyDUJdc3Qr6sIQgwnK2ws3nxQ9eJmQNaQ5DRXJWn7mzn7FiBbY1hNMOkWNUdP44aU6UaZc0g5JXpSQfZ2xbj7p4E929pYF9bDFGEgJPmdnhTct7IF9jF965kwPVvkyVxnp/cA1tSxAIK02UN0xI4N16YFzzRFvczMOee0xDyMlVSEQUBw6oXC1eLmm4wmq8y6XS/FVHAK0vUNJPG6M1bP55++mn+y3/+z/z8xx+hbAoc2mIbUkseHx9+5H6ODmbRTLPuVbnGPHtyjFJNZ1M66BaBJwpVon6FTx9YfPSrrOpIonDdYz7dDUGwcM3g97RGaYr4EIGyZnsAZcsaoiDwXn+GXH28+Kbz1FNPsXPnTk6ePMlHPvok3//edxztD3Q1JfEpEj+5OMUj2+ymd6as0hT13rTmZXPURzxgTz3EA168TgGxrBooksgHQzlU3azfZ64HUVxfBaCZjcoMJ4ZzeGSRrY0rk2YwWawR8EgEPDLPnbJHeSI+mS8+cGOGeROFGj5FonsF1T8zJEMeDNPkjo64OwamGQa9kyX2tkZ5rz9LoaItK7b7VmM1Rr80w+TP37zEA1uSXJqu8KEdjXzv2DDHh3L8/N3tNEX9fDCU4/xEEZ8sEvHL7G+PcXI4TyygsLN5fpc2X9XYkg6taEe/PRHANK15Pj67WqLohrVkpPrWRlvaL0siv3zYTrr7+tsDlK5ymDvQEee+zQ38lx+fW/b7+/SB1iuaMG9KhRYkytzREeO9/syyv8eVCHntMTDLsviNhzbx31+6uKodgudPj/OQ08kayFQIOmNoM34a3akQ44UqUZ/CZKFKTypERyJw3VGr18qMaejU5ARiYRSzZh/Y/tlv/x5oVUay1XoHZRWxDaAl2/+nZq/TXkVCFO01oaYbeGURVTfxKRIR39qYP19OU8SHLAuu7ProYBavJDFdj/i+biaKNTe8YdsiYRenR/JMOD9fjyQiSQI7miPopoUgCOQqKsmwhx1NYfZ3xLl3UwP3bW5gV2uUtniAeNCDT5EQBAFFEmmK+ChWdT68s5FXz00S8EhMXVbwfWhret5I8KPb0zzvjIspksjHdtuH+lJNp1wzePfS7Dq9mA8Q4P7dYp51dW6cUs3grb4MM7W49kSA0VyV5qhv1aLfl+J//p++xK89souKavBef5Y72mOAwB+91othWnglkeFc3atyrTBNi7d6p7CwKFUNTAsSQQXTslMoLw8rAXsfXNGMGxrz8coSm9OheSqgj+5pJuIoR8o1nb84comDXQkKVX3BnrDO6pNOp3nhhRdoSKXQ09sgtRlBkhAE2NuewLIsntzTgiAIlFUdryyypTF80/auoiiwtTGEapjohklzzO8WJ354YsxuRglQqBeYrwnTtBCEdVYAmrvQZEoqb/ZO8/jOlZOz/uDEKE/sbkLVTb7+tp38taslekN+C6puIon2Ziu9Cp3bkNdOedqcCrqS8ZphJyf1TZW4MFFEELjtohSLqzD6ZVoWf/qTSzy6LcVPLkzz1J1tjGQrvNk7TWcyyD099vjU339gK2cOb0owVVR5fEcTb1ycolgzODTHwLxY04kFlBU3+vUpEt0NQXKV2YOYJAr4FHHJ60AQBBJBD1PFGh/Z1URjxEuhqi8rLetje5oBi+9fRTE0Q8Ajs7c1yhtLpIgd6k5wpHd63t81Rxc3iL4eFEmkqplucfCx7Wm+fXR4RV77clTd5LXzUzy8LU2pplOs6RimRVnVGXO8jmRRoFDVuaMzhmZaK+YTtlxmTEN37tzJv3r68yTjdpFSTe+idPE9To7k6ok9q0TVifyWRIHJouqOXTbOWRNODufZ2RKlUNNoj/tv2ubqagS9Mi1Rn7sZGM9XnTWm7gN0PRimRbascc65by3WuPj6O/a+pDnqYzhboTsZJFfRiAXsmPamqJ+tjWEao36ifmXRw9tcmqJ+NNOkIeQlX9V4eFuaZ0/OVwFJomAX5SdsFVAsYJtvznTun9jdhCwKDOeqKJIwb2QMIOncV2ZojHgZK9TwShLZug/QqjBdqnHEub8KwBce6OHtS9N8eGfTmryf1liAfW1RRvMVPuTs2adLGpIIo/kK44VafcRnjchXNS5OlkiEvJwesz28PJLIlnSYnlRoweNNyyJTVtnZHLnhyYvGiM8NswF4YlcT8YCCIgrUDIupYo2wT8avSPz41Hj9GlkjLMtCCiaQI/YZJxVUqGgmpmX7gs4UBHe1Rm/6eHrAI7M1HSZTUfnMgTZmtke9k0X8igQWjNXj4K8J1bhyctqaGhAYpsXX3x7g5w52rNhmeKpYw6/Y6p8fnhhlsqiSDCr8kqOGuF6OD+foTAboaVh59Q/Ykux4wENVN2mK+gj77CKZiMBr5ydpifnJVXSGMpXbZlNumhZnVmH065vvDnHvpiQ/PjPBLx3uZDRX5csvnOfOzphTBLGvo5lYb58s0RT1MZyr0BLz0xDyuu9nxoRztarlzTE/kiTMk+Pvbo0yXVLdjfvlPLglxUtnJxAEgX/82BYA/va9wWUlMPyTD2/jpbMTfDCYXdb7u6srwenR/KLjIl5ZcmND5yIKwqLpZNdDwCNxfqKAZVncu7mB8+PFVRkF+/M3LvGL93QA9rUhCQJv9U0znq9iWNAe97sjVntbYzRH/TRH/Vc9uK0kM6ahL7zwAvft7ibst4umnoZ2/tGvfI4zo0Xy9YPaqlBWDSzsYvBApsTMJ/MT+2YDDU6PFtjWGMKyuKmFwasR8Eg8ubsZZnyA8lVMC3TDoqrVo1evlWJNx8Li3HiBxCJNJ8uyXJPlxrAXE4HDm5IcG8yxry2Gqhskr7FZFfHJ+Jz19qGtKd6+NI0o2B4cc7mnJ8lbfbNF+cObkvzEKTDEAx4e2mr72pkWnB8rzFMc726N8sEcH6DdLVFODufwKuICtVGdlWGyqLqqGlGwf+YjuSq7Wxf3iVpt/B6Jz9/bxXhB5eJEiUTALhxMlzR+dHIcEerKwTXiSO80xZpBdyLoWgRohrVk6lemrNLdEFyRhrYoCmxpClNSDSzLVjHubovSHLXvczXd5HeeP0fErzCUKS9Yl+qsLjPq8GzNwp9sYUYUMv7us0zlCuxri2FZFrmKyo6myIoH7SyX5piPeMDDvvaYe8aaSQU/O1YgU9JW7OxwO3C1QuuaFoC++e4gH9vTjN+zcg7jPzwxykd2NVHVDLfLtjkdds2Vr5czowW2N4dXNc65Meylqhnsa4u5Y2ATxSrZssbWdIg3Lk5RVvXbxpthNUa/+iZL+BWRV89P8rmD7Qxnq/zg+AjtCT8guAkGPzwxigV0JwPIkshdnQlevzBFtqLy2BwD82xZpT2xMsbPi6FIIpsaQvNm6/e2RtFNi7OOn8PlxAIe139nd2uMXS1hVMNyvbCu9v0+d1c7f3981O0UX42fPtC2ZIrYvvYYRy8rJm1Kh7iwzNe+GgGPTL6iuweQ31yFUbDxQpViTacnFcKyLAazFYJemb6psuvL1Rz1UaxpJINeTo4W2NkSpvkmejTM8PTTT5NOp2kIeueM2or0TZURBIGxQl2ivxrkKxqyKHJyOEemNOv/c9/mBvcxmmGiGRYNIc9NSYVbLoIg8Mj2tLsZmC5rnB7NY1pWfbTnOshXNEQE8hWNtkX2HUd6pymrBh5JoKIZBD0Sd3UmuDRVoiMRwMJWZV0LgiDQlrA94zqTQQamy3x4Z+MCFZBPkahqprs+bm0Mc27OfWTGDHokV0UUBV6cMzLWkQjM8wGy1UtVFEmkppv1rv4KU9UMMmWVgjNO6lMkdzzjRrwsb5SuZIimiJdspcbH99rXy0ShyuB0mZBXYSBTvm2alOuJHxwfQZEE8lUd04KoTybqlxf1mpsxfe5KLt/0+WpE/co8Q+hfvqcLryLhlUV0E4YyFbqSAbyKxLuXpq/yanVWkhl1eNvhn6LzwAN2AcjQmb50hqH+SxzoiJEpq7TG/TfVW+xyBEGgPRFANUwic+Lgp4s1LkyUsLDqYSbXwLotAB3pnaYp6lsx01ywXcs9skTIK/P3H4yQLWs0RXx86hpj5Rejohm0xgKLxrmuFBG/Bws77rs5Yo+BFWoGTVEvPzwximFaGCa3hZnraqR+WZbFsydHKao6H9nVxEiuyk8uTLKjJYJuwpOO+kc3TH54wt44d6eCCIKAJNnyecua3ZxrzshHxwpew4vRGPHh90juh1mWRJJBL8euoNKZu7F/+mFbBfTDE6MMZ69eANjfEach5OHHp8aW9fioX6G7IcjRRXyJdrdEF0QK722N2kazK0TIK3N+ooRhWgS9Mo/tWNlRsK+81sev3NcF2Ca5qm6iGSZTxZr7WbQsWy3xxK4milWNdNi3Yob210PYL7OlMUzEURI+e2KULekgHwzl56nJ6qwM02UVryxybqzgblC8jhIVbC+YiF+hqhtLpkKtJQ1hL15FctM3Xr8wZUd838bJk9fLeKFGoaZR060FXnEAf+MUy9vifiqaQSoyW6w1LXtU63KfxOXQEPJiWfZadHd3kjNjRWq64Y5lzNCRDNA/XXb/3N0QdIv9PakQu1siqIaJRxb5wfFR93GX+wAJgsDcY365Pl66opRqOi+cni3A3d2d4IPBHHfPMZVfCyJ+mV+6p5PB6So13UAUQDNtH6hcRaOsGhRukybleqGs6nwwlCcV9nJxogDY+8QHt6YWfax8A6bPV2KuIbRPkUgEvWxrtMfPqrrJieEciiTy7Klxanp9vbhZPP300/xf//d/4r6f/mWmyvZnc3M6xN0f/RkeOXwnumHhVSR6GhaOCt5sQl4Zy7IDb2bugt8+OoxpWYjYTfc6y6NQ1bFYuhq/JgUg3TQ5N17ggS0LF6frpVjV+drbAzyxu4myqrubrO6GALtbFk/huBYM01rxCPLL8XskfIqEaVm0xHwEHCf0WMDD8ZE8h3sSHB/KMZSp3vJxmyO5Cookrujo12sXptjTFkMUBMYLVc6M5vm5Qx28dylLKuRxxzLe6J1muqy6svpU2MsbF6aoaLrrkg+QrWhsbQyv+piPKApsSYco1uaogNqiDC2RBAYz8ny78NKeCPDw1hSmBX/2xqVlfc+f2t9KyCfz3WPDy5L337+5gbf6phdUnCXRPjTMPTgEvfKCQ8mN4FMkKqrBuOPFc+8mZxQsf+OjYMcGs3Q1BN1uxFihiiKKvHMpQ66qoRkWTREfE0UVQRDYnA6SDHlWvSh4NYIemfs3Jwl67Pf9bn+GOzvtA0S9g7KyGKZFoWJ35nNVnarj/5OeoxY9NphlrxPBG1nlWNXrIeRT7AK3M7zWN1WyDa0vDfLMM8+s8bvbOGiGSaGqcXI4T8Aj0RjxLvj6uXH7gGZZEA962NQQYiRXpSXmp6oZJAKe6xon9ikSyZCHsmrYMe1DOT68o5EfXaYCOtiV4K2+WYPn+zc38Oqc2PdP7rcjvjMljemSOk9ynwh65hUFY36FTElFFsV5XnV1bpzpksprzu9FAH713k5OjOR5eI4CeS0QBIG7uhL4PRKZssZ2x+R8uqTyxsUpFElkbIV8/uosj0tTJTJllbaIj0GnaWdaFh91jN1nmOvxcr2mz1fickPoL95vB+8EHMXri2cmsSyoaUZ9VPAmc98nfoGSIaIa9nr++J5WEu2beXRbmkJNoyO+ugKH5eJTJEJeiSd2NSE457++qRJtcdsGZbXTfm8l8hUdLGvJju+a/LZzFY2fuat9xV4vU1L50zf6+KV7Ogl5Zb5zbIR8VacrGeC+zQ037M1iWXZgXtC7+rL9xojX2cBF3dncM6N5LMuipBr0T5fRTZPiLSzNN0yL0Vx1RceqqprB2bECo7kKEZ/CZEHlpw+0cXasSLaiuVJmmDV/vneTbfScDHrY2hhiLF9zu/elmk7UL6/qSOBcEkEP0YDHLZzsb48xXVaXTPeK+JV5XbhfPtyFLAq8en7SjQK+EsmQl5BX4dHtab7+zqAba70UgiDw00ukgnU3BOmbKs/7O79HWtEiUNSvcGGy6KpbfvOhTfzXly7ckBTdsiy++e4Qn73DnqHXDZPRXJWgV+bMWIFxZ5N7oD1GvqLREvNzpDfDnZ3xRb0/biaiKLCzJYrfYy/xE0UVjyxS1c26qmOFKau250tJNRjKlF1VxANzxr8uTZVpjPhsY8x1sMm6nIAiERp+C9Ppyo5my+QzUzz9Cz/Nl770pXoRaJnMrMcTRZWQV16w93ju1Bi6CamgB82w8MkSB7sSHB3Msq8tRlU3SIauf+1ojfmp6gaCILCzJcJkSSVX0VxTcrA7rHPXXkUS8SuS68txqCthhwfUbIPot/pmTf53t0Q5PscHaFdLhJMjeXyKyHSx7uuxkkwWa0w6h2RJFAj7vRimSUNw7f3DEkEPd/ckyFc0166gUNUZzJQJeWVGctUlPQrrrDx/994QfkUiW9XRTQh4RJoiXleBCitr+nwl5hpCN0Z9GBbc1RkDoKwZNEV9dCUDfP31M/X7yk1CN0x+dGqUXHkmeVIg50zIBJxzbTK8tnvWuaTDPtJRH16nuV6sGexti/HBkB1kUh83vjqWZYfUXOkQtCY70ah/5TbBY/kqX397gF+7r5uQV6ZY0/nb92z1T3siwP2bb1xlNFlUiQUV24l8lUkEvOimyZ62KE3OLOZovsbWdJi/fW+I9kSAkWz1lo7Dy5ZVdNNaUfXP9z4Y4aO7m5goqEwVazyx207RePbkKLtbI+5Y16WpEh8M5ZBECPsU/B6J0yN5vLLEXZ1xwL6RllX9psYkCoJAezxAxVn4FEmkIejlg6Hs0s9x3itAKuzlE3vtbtAfv967rO/50d1N/Pj0OL94dwd/9salqy66yZCXhpCH06PzR772tcV4f2B+9Pve1tg8Q9EbRZFEDMNixOl+Bb0yj+9s4u/ev/5RsG8fHebje5tdmXSuomFaFpphMpqtMuXcTH2KiGaY/Oyd7UyWauxojqyLTko67CUe9LiL/Nt90zSGvQt+P3VujLJz6D85nGfcUcspIhycM6phAVXdWNSPYT0gigK/9tSTiE75arJQ5TOf+gSXzp9h2/YdPPXUU2v8DjcGmbKKiICqG4R9CxsY33FGU2NBD36PRNAj0Rb3M1lU7WaCZauxrpdYwIMs2ib7d3cneePiFI9uT/Pj0/NVQI0RHyNzIrvnRsJLouA2RCwBvjVnDb18fKwzGaR3qoRHEinUtPqhf4WoagYj2Qo1p3DXEPIwOF2mPR5Y8bGd60GWRD59oBWL2T2GYcFwrkKppmNaVr3RsMo888wzjI+Po+omPz49Tiog8v552/dUFkV++sB88+fp0sqZPl+Jyw2hP3dXO30XL2Lp9pmld3iKiUye//QHf1ZvLtwkClWd82NFN4H3vs0NnB0r8Oh2O9W2KepbFUXY9RJzpm06EgEE7P3TscEsGWfPfbv44N4INd1Od7sSa3JKkcWV+bb902W+e2yYX7u/2zXV/Lv3hyjVDLY1htneFF6RIsKlqRJb0jfnsB/yyYiCgCQKtMX8eCXbFyAZ8jCWr3JPd5z3BrK3tA/QcLaCbwUXo7F8FQG4OFFCN01XFjuSqzCWr86TyX7f8TywXfEhW9bY1hTh+HCePc4IR76i0Z4IuGNBN4uAZ9ajA+yY9Td6lzbTa4v7GZizWX/qrnb8HpFjgzne688s+bwZZEnkvk0NvNuf5ecOdvAnr/dd1T/mQzsaeensxLzHRfwKhcvGjjanQ/PMR1eCqN9D31TJLVQd3pTk4kTRjWlfLpZlcaR3mpMjee7qmj3ED2Ur+BWJdy5lqBoGVc0kHlD4YChH2KeQDHuIB5R1c8gP+RTaYn5iQfsg+typMQ73JDnSOz0v3afOjZEpa3hliQsTRXJOyposiXQkbIPNkVyFpoh9uF9LX6irsa2zjUjQh2UaCJKM3rKHWKKBP/nr75JOr+3YyUZhIl9jOGuPL++4zP8nV9EYyFQQsP1yUiEPqbAX05ot1kui4I5LXA+SKNAS81OoakiiQGvMj2XB6GWKjHt6krx5cfbekQx5yVZmx70+vKMRvyJRqhnzCj6iILgH/pnvZ1m4e6NSfV1ZEYo1ne8cs5XIAvDk3ibe7p/mI7vWJv59MTqSQRrCHkQBoo7X3NB0hbf6pgkosjuKVGfleeaZZ/jSl77EI488wtm+QcbzVd59/rtkVPtsJYoCd/ck3cfnKirJ0MqaPl+JqF+h1TGE3t8RR4qlEUoTAHznvV7+7E++Qma4j61776o3F24CFyaKZMoaVd1eu7c32f5PPakQqmG6nrPrhZBPRkDgjs74TDgp3zs2gkcWESyByXoc/FWpaSZw5QrQ2repr5OzYwVePDPOr9zb7aqJ8hXN7fi3J/w8tr1xRb7XpekSuxcxc1wNJFEgEfRQ1Qy2NkVojNofzJPDeSI+hR+fnsCyLLJl/ZaMw6tqBpNF9bpMMJfiu8dGeHJvM8cGc8T8CnFnPOfrbw/w4JaUe/2UVd3tgj60NUVb3MdwtkJ7wk9nIoAgOHHsgt0Jvdn4FQlhzgb8rq44I9mlixu7WqKcHJlVe4R9Cj9zpx1l/gevXJy3kV+K3a1ReieLeGSRTx1o5U9/cumKzxMEgU/ua1mgvJlJMJlBEoUV97GSRAEBwY1ABfiNhzbx35Y5CnZpqsQzL5zn3//gDIWqxj99fJv7tapmMFVU8SsS7w9kmSrYnYh7epJMFOzRwFfOTfLw1tQ82fVaElAktjVFaAjOjJIWSEd8TJVU8nW/jhUjU1bxySLFmu7cdKE56nebD+8PZNndEsWriCu6rq00Yb/MlgYfM56Bvo69CAL1Tv4yqWoGZc3g5GgeC+hpmH/Y+u4xe03c1hjCNC18HokdzVEuThTZlApS1QxiQc8NKzzSER+6s7Y+si3NC2fGeXBripfPTbiPifqVecmSAIe6kxzptce9gl6ZRxyvGXvtm91wxwIeMnOuiaBHoljTEQWB4lVGhessj+mS6ipkBQEe297ERFFlW3N4jd/ZLD5F4sEtKeIBD0GvXdjOVFS7UeKRyJXVFR3zrjPLU089xc6dOzl58iSPfuZXmB65RMlSEBUvHgk2p4KITlHWNX1uitxU9ViXYwitGSaP7mjmwE47jETwhSlNDqNkLvGZ/+2ZenNhlTFNi+8eHXb3wBGvzLnxIvdtakDVTXyyRMS/PvasM0iiQDyosKc16p7PLk2X2NUS5eJkkcli7Zb3wb1Rqpp+lfLPBi0AHRvM8t5All+6p3Oewueb7w1R0Qz2tUVJh33XHKW6FJmyRlfq5lTOwR7dqGgGd3TMxsGfGSuwrSnEK+cmCXplSqp2S0b0ThdVBIEVU1sdHcyyvSnMUKZCvqrxUSfpK1dRGcxU+NDO2SLhi2cmqGgG6bCXsXyNwWyF+zY38Mq5STdNIVdV2ZwKrYlcUhQFIn7Z9XPwynbE5lJmx6mw1/UQmOHje5uJBxQGMhVeOTux6PMu51P7W/n20WGaIj4e257mL4/0X7Gg0hz141NEeidL7t/tbYsuGPlqjPgYXWGzyIhfYWC67G48g16Zj+xq4lvvL/QmArsr/5dv9vNb3z/Na+en+MW7O/kXH93OYzsa542pZkoqogCqYTKcLZN1Dk87m8OohsljOxoZL1Q50Lm2CS1zEUWBOzvj7ox3rqpTrGkEPTL90/Xu7EpQ0w1quklNt/2hZjQWu1tmGwaTRZWA1/YLu1kjo9dDMTvNO1/5t+6fPYlmMlOT/MOf/ykGhkfW8J1tDGb8fyqqgSQIC8ZAf3hiJlFLIB5Q8MgSe1rtdXFPa4yqZpBcgaCJkFcm7JOpagYeWSTklYn5FXony/OK98mQZ56SeEdTmJMjBffP9zseeKZp8U1nrB5gT2uE48Oza/mO5ogzJi0yVS8W3jCWZTGaq7hFthkfjJBHXldjGgAf2dVETTfdsSLdtD8HVc1AFkUm8vVO/WqQTqd54YUXSKVSCDs/THngNL5UJ2CrTz9/uNt9bEk12NkaXfWwksuZNYRW+cS+VrIV3VaXihKGVkNKdTGar1Gr+7msKkVV572BLANOY/TBbSkGMxXu39JAsabZY1brcF/SGPaSDntdP82abtEW83F2rIBuWLfk+XclyVd1PFexolizFLDr5c3eKfqmSvzsXe3zLtqpYs3tsHU3BHlsx8pUlWcOuitpSHw1In4FLHsB7UgEEAHVsEiFvaiGQVvMx7mxIsXKrfUBsCyLAcdEcCUwTHuU595NSZ4/PU5b3O8muX3ltT7b38W5hizLcs2ff3p/C1XV4MRQnsM9SfweCY8sUlZ1wp61HfFJBDyuDxDYiS6Xp7zM5fIELp8i8Qt32xuFP3j14rIiweMBD7GAQu9kia6GIHtaorxybvKKz/no7maePTHqqtS2pMOcG5s/8nWgI8Z7A1cfRbsWREFAkUT65hSf7ulJ0jtZdkfBNMPk+dNj/PsfnOYv3rzEvZuS/IuPbufn7+4gGlh8RGcwUybolXn3UgbDtCX6Qa/E+wM5PJLIplSAmN9DbJ0lPHUmAyQCHmRnqfzxqTEOdsd5+ezELakgvNlUVRMBODmSZyRnj8ooEux0kicN00IQ7Htech2Yt16Jb/7NX3Pp3ZeYCff2xJvo3rabSxfO8NWvfn2N3936Z6qkousWHllEluZvqO2UHg2fLFDWdMI+mZBHxuMox0I+GQtbhbUStMf97gb58Z1N/OjUGIc3JfnJhVlD58M9Sd68OPtnQRDoTAS4NGWvnTtbooS9MoYFb16YHRfrTAa5NMfUf2ac1ytL5CraDRnv14GqZvLGxSmcsB42p0O8P5Dlvs3JKz9xDYgFPEQDCnd1xpnJSLkwXuS9/gwhr8xAplLv1K8iFqDEWzDLGcSo3cz0ypKtvsFW70X88k23K5ihMeIj7FEYGR2l7/2foJdsRXrins+gykGe//Pf5fvvnl+T93a7MODYIsyM50a8Cl3JALIoYLK+zJ/nEvYriILAjuaIOwb20rkJdGdPlb+FfXBXgkJNv6rX8poUgCqqwZ+83sffvT/ExDXM8r14Zpx8ReOT+1oXfO1/vNZLTTe5uzuBJIqucuZGqekmiiTeVFNXnyLh90iouklPKuSaQR8fytEaC/DahSkGpstM3GI+QMWaTlnVV6zL9cMTozy+s5F8Vad/uszHHPVPRTW4NF3moa2zRcKTI3kuTZfxyiJdDSFKmk5nMsi7/Vke2JJyU9i2OLOza0XYp8zr4j62Pc0Hw7klH98Y8TF+2WfsQzsa3UjFpZQxl/P4ziaePTmKaVnsa49xcbK0ZAIZ2BLOJ3Y38T2nqCaJ9uja3MNBOuy7ps//con4ZEbzNfJzxhF+86EefufH5/hPPzrLf3nuHCGvwj/7yDb+0cOb3c3SUhRrOsWagVeWeO3CpHuwOtSV4NRInmTIyxsXp3lyT9O6MOicS8inEPLJbtHytfNTbEmH6Z0q1Y30VoBSTUcQBM6NFVz1g0+W2OZEI/dOluhpCCIILGoKvJ54+umn+T//f/+BcMAuVBkm/PpvfYX/5V/9Fp/95S+s8btb31iWxVSxxsXJInG/h82p0LyvzzSntjaGERFojPhJR7zUdFulY1oWoiCs2PhoPOh1fYVCPhnLgs5EgFMjeXcNToYWKkQf2NrgFvclUXCNzDOV2XEeURDmScsVScRwQhsMw3KNi+tcH8WazstnZ+PfP7KzkTOjBR7YcuOBJqvBZ+5ow8TCI9vXbt9UiXPjRWRJRDfNBaOGdW6c8fFxHnnkETJmAMHU8Td2I8geMDT2NM3aExRrOh3xm29XMMOMIfT3v/Mthp//ExTDVqEo8RZikRD9R37AH37vjTV7f7cDX31rgICTBpsOezg+nONn7mqnVDNoDK8v8+e5+BUJRRbpSASY6af88MQYqbCXUs1YcK6pM4tlWZRq+lVVf2tSAAr7FD5/bxcPbklxpG+ar7zex3ePDV/Ra+D7x0eQJZEP71xogndsMMvL5ybxSCJ726Lct2nlOiXFmkZkDTbujREfZVXnYFfcPbwdG8zRHvcznK0iCAK5inZLdfHH87UVMwjPVTSyZZXOZJC//2CYroagq/75769c4NOXJSTMFCru7k7wdt80AUUiGlAYL1Rpithmdi0xH9E1Vnj4L/MQCXhlDNPCWEJVt6slwonh+alPkijwS/fYKqCvvTWwLENgSRR4aEuKF8/YHkk/tb/lqsWjzmQQzTAZdswgW2J+N4Vg7uuu9DUsCLaR6sXxonvYCXhk/h8f2sI/fHgT//Qj2zjUnVi27HWyUEOWbP+nsXzV7TxsaQxTrOkc6k4wlq+yuy22ov+OlSCgSKQjPtoT9iawb6qEKAiIgsBU/QZ6w2SrKh5JpKqbVFX7M9gU8dEQsosoxwazbE6HiPmVdZEMdzW+9KUvcaAj5v75g3GVn//VLzJVrI/2XImqZo8BXpgsUVR1tjfNjgAapsWLzritLIlIooDfK3FnZ5zTIwV2NkeoaSZRv7JiyZceWaQx6nOL9I/tSPPcqTEOXhYcEPUrZMuzv1uvLKFIglscvscxkjVMi9fOT855njzveYosUtMNEKgbzN8gU8Uag47xtiQK7G2LYQKxJdSpa82BjjiThRo7HH+immFR0wx0w8QrSfPS5uqsDN/4xjc4efIkbU9+iQf2baZr32EADF0jPXoEsIu/goDreblWRP0KTz/9j/iH/+DX6enpsd8b8MUv/Co/9//6bTbt3FtXc6wSZVXnSN80Z5zR3sM9SXTTIhX2UTN0WmLrI7BkMQRBoDHiZVMqRMRvX8PD2QoH2mMcH86Rq2jLmmC4HanpJqZpuRMuS7GmO9J40MOTe5r5lXu7uLs7ySvnJvjK6318//iI2zWwLItvvjtIKuzl/s0NC15DN0z++8sXAfjsna1MFGpsaVw5o7zxfI2ehtDVH7jCxIMeDMsi4JHpTNpReIWaQWciQKmmE/RI5KvaLWOyZ5gWI7nKiqXkfPvoMJ/c14phWhwdzPHpA7ZqTDdMBqbK3L9l9lrKlFRed6Txv3hPJ6fHChzsSjjVcRHdMLEs66YlKFwJnyKhSOK8RJfNqRA/mSPln0trzM/QImkch3uSbGsMU9NNfu+l5UlwtzdHGMxUKFZ1YgEPDSEv58YKV3zOJ/e18L0PRrAsizs64rx7WfrYtsYwZ6/yGtdD0CuTKatkyrMbi3TY56YFLhfTtBjMVAh5ZI44B6fpsoZXFm3PF8vi4a0NeBXppo6JLhdRFLirI06zoyKsaCaDmTK7W6K8en55HlB1liZX1jBMk4nCrP/P9jmBAcWajiQK6yYZ7moEPRKPzAlP6J+u4JVtk1+1ruxYkkLNXmdM06KiGoTmNI2ODmSpaiaJoILoKMFM0yId9nFqNM/2pghV3aAhtLIHteaIH9WwizHpsI9sWWNnc4STwzn3d3l3T4I3L0uSfGRbmhecMIQD7TE8sohh4QYkAOxuic5rLGxrDHN2tICIUFcW3gCWZfHBYI6ck5oZ8ytMFFW2pEPr0qcD7CJV1K/wib0tbqd+oqhyfDhP0CsxVqjZxcE6K8bTTz/Nf/zPv0O0ezfNiQjjBXv9CXllPv9rtlqzWNVpjvquOgZyM+hqCPKZX/wCzfEgfkeV8NqlMs277uGuzviyleh1ro3B6TKmCWUn/Stb1nl8VyOaYeKVpTUbDVwuiaCX1piPLid0x7RsO5SZyYFitX6vWYzlqnDXfmVwSIW9fGp/K79ybxcH2uP8+NQYX3m9j//+8kW2NYW5awlz1e9+MEL/dJnmqI/tTRF2O1HdK8VwrromyQshr+xGrnYkAsSD9gf1/cEsPkcFcma0QOEW8QGyq7nWinRAL0wUSYe9hHwyz58eozXmJ+aof7753tC8eEyAH560vWo6EwEuThRpivgYzlUxTZMDHXGyFY3NqfA1Fw9Wi0TQQ3XOB/yT+1t47uT4oo9datMoCAKfv7cLgFfPTS47Kv1T+1v51lH7Zv3hnY08f3r8igoeRRK5qzPOG73TJIKeBSq/3a0LzaFXipBX4cJ44YY8CPJVu8sgSyLPnx5jRmh1oD3GwHQJRRK5MFHmcE9yxbr3K82+9ii6aeFxduc/OD7KnZ1x3u3PUq0bMF43qmP+fHas6KrcPBKu+qemG7aBq+X4um0AZElkT2vMPciNF6quiq6u7FiayWKNfEUjFVro8/TaBVs50xTxUazpbG0Ku9JszbDcEbDwCl8jEb9tGjzTJX1oa4qXzk7wsT3Nrt9dc9S/wIg/HfHZKSuWhU+RONAeA+xxxpmDfGcyOM/kf1tjmNOjBbyKWO/mXyPPPPMM4+P2/buiGXz73V53xG53a4R3+zN8ZNfKJNquFg9sSZEpq65h65nRHMeHcwiCgAhuamadleNDn/kFFFliKFtBt+xxwacOb3G/rpkGTesk3nvGEPr+zUnXZ/HMWBFZEuhMBjk2mF3bN3iL8vuvXCTste81rVEfw7kKj25Lk69qtCcC686y4HJCXhlBtK+RmT3Jj06MuHvtqVJdxb4YNd24agIYrKMC0Fyaoj4+fUcbv3JvF796Xxe7WhYv6kyXVP7yzX4Afv3+bt6+lOFg18ql8GiGyWSx5vo53EwkUaAh5KGiGhzqTtIWsxfyI30ZupNB99AxeYt8AIazlRUpsFiWxY9PjfGhHfaG6blT4/zi3Xb0uWlZvNU3zSf3tbiPN0yLHxy301l+9mA733p/mC/c3814ocZ4oUZ3QxBZElwfpvVAPKDM66g1R/1XdMS/XK4/w57WKHd2xtFNi9/6/ullxcJH/QrpsK38EQWBD+9s5NmTo1d8zoGOOCeHc9R0A0US5ykJfIq0akUInyJRVPV5STfXyli+ilcW0QyT6ZJKweludyQC5Ks6TVG7i7+YOnG9MCOfnemivD+QwSOLaIZV79bfAFXnM3huvMi4k3YT8spsSduK0VMjBbY2hvEqIv51UjxeDo2R2QRNzbA4MZx3lB31g/1i2P4/KqdHCzTH/Qtk9W/32arHtniAfEWnKeJjT2uUQlUj5JXcAltwhfx/ZhAEgbZ4gILjhdbVYJs3N0Z8qIbpRrsHvfKCdeDOzjjvXLLf9z3ddsOkqhm8P5AFZj3dZvB7JKq63VXO1gtAy+aZZ57hS1/6Eo888gjj4+P0DgzzylvHnK+aHO5pIFfR6EndfBX6tXDvpiTnJorsb48DMF3WqWkGpmUR9MoMZMp1c/AV5re+f5ZdzWEGM3YBVxIF19rAVXiso3jvVNjL9uaI64WnmxYtUR8XxosEvTIXJopXeYU614Kqm7zbn+X4kK3U3NESoclRIlvWbKNqPeORRcI+hbBPdu0vXjgzwY6miO2DW7cxWJR8RUNZhp3KuiwAzeVKBlV//HovFc3gUFcCRRLZ1xa76szbtVDVDARYM5lcKuyjqhtE/YprVDtdUmmMeJko1hAFgWxZ2/ApCzXdYKJYI+i58UPSS2cnuH9LCkkUODaYJRZQiDvpO29enKIpMn8M6EjvFFMllZAT02xH6NpGyxb2jTQW8KyrSnlwkVGjWEDh4hI30J3N0QU+QDN8/nAnAtA7WeT3Xji/rJnaD+2YVf70pEJky5obWbsUT+5t4XvHRtjdEuHEZabVIa+8alLOiNfD+YnivJG55aIZJqP5KkGvzCvnJpBEgdFcFVkUqOkm2bLKh7bbRuJrPWd/JQIeCa8icajLPsgNZytYlkV7PMB7l43k1Vk+FefQXNNNyk4RszHiZ3PabhicGsnTngiQDvvW7fjGYkR8CrvnNF1eOjuBVxGZLtcP9otRUg1M05alT+Zr8/x/Jos1pssqomAn8gU8MmPOY44N5tjbFqOmr6z/z1xSYS8Ws2mmh7rivNU3zSf2tvAdx5j6UHfCHW+dYc8cZebB7gSigJ0G1js7ahzxK/MMfiXB/j6aYdZHfpbJU089xc6dOzl58iS7d+/mwQceQPfFANtMviMRIOqX18UYz5UI+RRkQaAl6sPjXMeZUo3zTjpcRTXc5kmdG0czTE6O5GmO+BjN2+rTZMjjriGFqkZbfH3Fe8uSSCrsoyHoQ3HkHO/0Zzg1WuBQV4JvvjO4xu/w1uLCRMFOkHa2vsPZKr98uJOSapCOeNfNRMPVSIe9bE6F6HbOwLmqzpbGEGdGC9R0s65MXoTiMgygYQMUgJbixHCOF89MoEjCHPVPfEW/h2qYeNfwQzI3NaYlFsCn2L+uyUKNimYQ8trKjiupPzYC00UVkaXHlZZLRTXomyqx0/Hg+Ksj/XzxAdt0zrIsnj89zod3zpdSz5g/P7Alyd++O8TH9jRTqGpUVYPtTWFqmkl8nZkv+hUJQWBeR+2xbY3uv+VyuhuC9E2VlvhaiIe2pTAs+yDzR6/2XrUYIwoCj+9q4gcnbOXPp/a38HdHrzzD3RTxYVgWDSEvp0bmF6P2tcc4ukoSYI9sK45GlzniNpdMScWy7H/vcyfH8MgiFrC7JUJZ1dEMi6aon63p0Lq+mQqCwL72KC1xW0WomfDeQJbDm5K8cHp8wxeQ14pcVccwLDKlGjM/wp5UyO1UzcSVJlfY22W1CXglHto2q2g7NZK3lR1ltd7FX4SCE8YgCgIj+arrtwW2/w/Ym9g3L05zoD2Kadmjzr2TJbobglRUY9W6sT5FIh5QqDgFyt2tUT4YzOFTRLqSQU6O5GmP+xmYLs97niAINEd9DGbKRP0KO5x76geDObeYvrslyvE547tdDUH6psoI4Bqi17ky6XSaF154gVQqxcTEBGpqO1LQLr62JQKcGS/MSytdz+xrj+H32I1YgNPDOdfzr5Cd4j/+599Zw3d3a9E/VUIUoD9TQTft8a8v3N8N2PtCC7v4u95ojPg42B0n5Nwj37w4jWVZxAIexgu1WyrUZq353efPuz/PlqgXy7L3q1XNoCW6PkYDl0M0oNAa99sFTefvTo/kUQ3735av1MdL52JZFoXq1SPgYYMWgAzT4r+9dAGAz97RRt90mbuvIdVnuQjgVqrXAp8iEXTi4O/pTtDibCzfG8jgV2zp+OnRwoY3whrMlBdVtVwr3z02zCf22uNdA9NlZEl0N9bHh/OIgjDPI2ogU+boYA5JsDezsiRwoD3GmdECmmE66RvWujP3lSWRkEdBnaNquaMzzmBm8bQNW66/9Ov93MEORAFevzDJ4zsb+Ys3L13VE6i7IUixqjFZrBHwyGxJh93xgKX4xN4WfnBiFP2yN9PdEOTi5OIFqpUg6lPonSgty8RWM0wyJZWLE0XOjhUIKDK6YZKv6pSdTkMqbKfrhH0y7w9keXTH+t+g39OVoH+67MaB/ujkGImgh3xV3/AF5LUiW1LpnSy5KTceaVadl6/Y4z2CwLpbP66GraaNMyNIGctXEQXb4Liq1Q/2lzNRrDGSq7I5HUJgfiPj/QH7ANzTEGIsX2V/R9xN5JuJfrewVlVl3BYPUNbsz7ggCOxpsws3D21N8eq5CUwLfIq4oJP6yLY0LzvpZTNpYNMllWNO0ae7IUjvnMbC5lTIHeMo1dUe14W/5y4EwV6jt6TDXBgvcngFU21Xk8d3NjFeVMkO23vzsUKVTLbA1OQE//iXP82/+Zf/lN/53S+v8bu8NfjtH55ha2OYvim7cCsKcLjHLtpXNIN4QFmXTamIX2Z3W9T1iqrqJk0Ru9Dckwry0tnFvSzrXJ25XmKWZXFiIEPflB2wkgp5ObypwR4NVMQ1TzO+FkIeWwEZ9Mjuefy7x0aI+hWqqsFEPaF0HqphYpjL89PdkAWg730wQt9UmXTYy08daOX4kC2lXklMy3LUH2vbvW2M+CipOsmQ15WWjxVUWmN+zo4XGc1VmbzK+M16pljTKanGFUf9lsNIroIiiSSdgs8fvnqRX3c6IgCvnZ+gOxWcNyL4fUcxsykV4tRogcaID1kSOT9hzyTP3EAvj15fD8SDyrzDmEcWCXgk14z2cvyKtGRiXEvMz8Pb0piWvbD+2v3d/P0HI5wfv/JM9qf2t/J379tjBPduSvJW3/QVR8h8im0EqBom44XZApMoCHbXapXUBbJkm6wOZsoLvmaaFvmqxsB0mXf7M7x6fpJjg1mGs1UCHnvu+PvHR/B7JPomSwjYP+uxfI2WqJ+KZtAeX/t0uKvRErfTA/c5BdCzY7YKyyOLTBSuXR11u6MbJhXdVhwOZe2fXzzgIe10XT8YyrGtMUw84NkQ8e+X0xz1uYWrqm4ymKlgQb1YeBmGaZEpaZweLdDTEJxX7LMsi3f7swDsaYsiigIXJ0rc0RFnPF8lHfa53fqgd/XuMbGAB0UU3W7wwa4ER/qmEQSBR7c38vzpMe7sTPDOZeOgPkVCNy1My3J9gFTD4tgcH6C5S3Yq7GWiUMMjS2SrG3dPcjMZHx/nkUceYWJigoZ0E96E40+oa3SH7RTHjVJATke8qLrJti2bQa2CKPOtb/8dn/3Mp7l47jSdm7fxoSc/tdZvc8NjmhZvX8qwORVy91FNkVm1T0UzaI0H1urtXRGvLJEKeWmM+Ji5LQ5lKxwdyLGtKczLZyfX9g1uUC73EvvgwgCXBgYxLfuHXFQNPrq7iUJVoz2+/s2f5yKKAsmQB58iuf56HwznuKMjxqnRQl2ZfBnLTQCDDVgAypRV/uLNSwB88YEe3urL8OCW1Ip/n6pmUFT1NTffiwU9rtlic9TvOqFblsVksYYkCmRL6oYd4xjPV5FWQLn1vWMjfGxPM2B3KWuaSacT235hooiqW/OMequawY+dWNudLRE64gH2OIfjbEmjJeZHN0y8snjDxanVIOpX0M35H/StjSFeOrt4tPeO5jCnRpaOW//cwXZEAX58eozJYo1fubeL9weyvN03veRzfIrEntYobzmHiY/vbeY7R4ev+L7v39xAsaq5BqMztMUXj6tfKaJ+D/3TZSqqQVnVGctVOD6U49Xzk7x7KUPfZAnDsEgGPCSCXqJ+BUUS+epX/oAfnxwm6lMwLOiO+xg8/T65qsaWxhDxgGde5PN6JeCREAWBJ/e2AjBRUKlpBlvTId7qq/sAXStV3cSy7Jtt0TUGD7K10fb/6Z0skYp4aVyHMvzlEA0odCdnDxGvnJtAFkVydR+geZRUHQuLqmbQN1Vm+5zE0KFshXxVRxbh+FCOA+0x8lWNqF/h6GCW/e22/0/Yp6xqkVASBZqjftcMWhQEelIhzo8X2ZwOMZKr0hjxLuoht63Jjndvis5G8Z4bL7rFpLBXdlO/ZpRPXlkkX64XCpfDN77xDU6ePMnOnTv5D1/9EcEmu2mllTKceOs1djVH1pWPy5WQJZGWmA9R8XKPs9eyYm1oDVuIJxv4r3/xLWry+jaz3ghcmi5hWfa+duas98+e2A7gdv5j61jh0Rz1sbstis/xKHnu1BiqbuKTbMXs1fwk6yzkci+xx7/wL9B0A0EQSPhlGiM+vLKIaa3P0cCr0RD2sjkdZL8j9NAMC48oMJKrYpjWNRU9bnVq16DS3nAFoK+83kdZNbizM86dHTHOjxdXJaWrppvkyho9qbXt7oc8MpIgYJgW9/QkXV+gyWKNmm4S8spMFmuuCelGwjAthrMVwjcofz89kmd7c8Q1vfrDVy/y1F1t7tdfOTdByCfTNqcr8tLZCcqqLZWVRJHJksrethiGaTGSr3CoK2Gbc64z/58ZAh6Zy7eFd3cnlzSC3toY5tz40gWg5qifR7fbKqCvvTWAIAh89s42shXtiilfh7oTHBu048SbnbnipVRIYB8SPrW/jTcuTs37+/3t8auOkN0IkiigSCJHeqc4cnGa06MFSjWdqF8hGfQSC9gdhrmb7a9+5Q/4//6b/50Lvf0Uq3anrffEW7z442dRS3lqmsmDW1PrNv59LoIg0NkQcOPILexi3+7WKO/3ZzdsAXmtmBmXmSrO+v80Rn10OOM9FvZBe6WjvW8WAY/Mw9tnRxvf6c/gU0Qyi6QJ3s7kyhqqbuL3SFyYKLJpTsPo6KA9KtUU8XFuvMgn97UQcJK+RvM1mqI+KppB6iZ4RKUjXow5XdIHt6R45ZzdLPjkvha+e2wEWRQWjMnub4/xnrMu3+2MgfVNljg9aisId11m6j+zFlZ1Y1mBArc7Tz/9NF/+8pd54YUXeGdUo+r4WnTG/TQdeJjH13n8++U8sauZsmawJWWvg56GDkSfvT/3e2RyZW1JJXKd5fHMCxfoSPjpnZwd/+pJ2T/jYk2nOepf16rTqN/D/rYYCSecJV/VSYY8TJdV9rRG+dv3ruwnWWchl3uJWa17XC+xaMDDR3Y1UVINGhwlzUYj4lPoiAeQJckdTf/+iTEEZkbTN975d7Uo1XRkJwFssfTnuazfVWIRTo3kef70OLIo8A8e6OGFsxM8un3l1T9gj4BNFGu0r7GUUhQFGsJeKppBU9TnJsz0TpbwyiKGaTo+QBuvM5uvaOjLnFW8Ekf6pjnsbE6zZZWposodHbYh+HC2gleR3PhDsNVTM4bJbfEATzibLEkUuDRVwitLxIMearpBYo1HAJfCp4iIojDPNK+rIYhqWIv69yiSHft9JX7mLlsF9MKZcbeI86EdjSSDXr7+9sCSMfH2KJh90/7Evha+98HIFSWZ3Q1BarrJdGk2wjER9DC9yp2fiE8h6veQDHlJBL0EPPIVUwM//PGfoutj/4DK9AjH++2CVX5skPiOe2lKxqhoOntbI0s+f71xuDvJqZGca2r+6rlJon4PRVV3TWLrLI9cRaVY0RmYtj1QPM6M+kxSXEPIg0+W3AP/RsMjixzqSrhF5sHpMh5JpFjTrytR71ZloljjwniRPa1RDNOaZ7w4YwC9ozmCYVlcnCxxoCM2bx21LMstyq4mYZ9C0CO5G2VJFGiK+hjIlIkFPIR9Ms0x/4IivFeW0AwTa84YWKGm854z2taTCs3zb+tIBOh3DKXra8ryePrpp0kkG1z/JAE4tHcb5Zo+r2m1EdjaFEavVfnzP/ljTF1DkGT8sQbyNYtf/9lPkMtMMlmPbr4hfnJhih3NEcaL9s+xNT5r6KsZBo2R9a3w8HskUmEvHYmAO9FQUXXeuZQhEfTQN1Wqj/TcIHIkhaDYZx6/R2JfW4yqbmy49WQGnyIRcMQPM/5Fr5+foCMRYCRXrXvOzaFU012vpGODuSs+dsMUgOYaP3/6jjYaQl6GMhW6G1ZeUjqz+IgCy4pSW21SYa+7cZtJ4yhrJqmQlwsTJcYLNSY3oBHWcK5yw+NVZdWOu5spIv3VkX4e3JJylRw/Pj2OCPPGv06PFuidLOGRBHa3RBjOVdnbZlfL3x/I0u7cUC3srtV6RBAEYgHPvLhdURBojfn4yWXqmhkUaWGHdy7NUT+PbW+0VUBvD7h/f2dnnLs64/zxa32LdnUbQl5CXpm+yRKKJHKoO8HrFxZ/DzM8uaeZP3n90ry/k0Vh1bvG11JsTDak6Lz3k0jVHILHjzrZj5Tpo6lnO20NYbyKTMS/PguEi7G7LcpwtspHdjYBcGlO8k/9Bnpt5Mo6g9kyYwV73U2HZ2O8jw5m2ZoOb0ip9Vxa4n6Cjml4WTOZcA4cG1Ftuhpohkm+otE3VaIrGZy3thim5RpAJwIeGsM+eidL9DQEuTRVdsepbP+fm3OPaY8H5nk4Pbo9zQvOGPQTu5o4O1bg1MjCDWNn0k732pQK0hCyY+VHchUsJ81sbhNic3rWCLpSX1OWTbGmu0mVfkWkMxEgEfKuayXHYgQ9EuOXzpItVhALYwA0HniMjvs+xYWzp/nJc99jIFOpK06vk2JNo6Lq9E3OjmH+y4/Y41813U4G3gieUU1RP5vSIff6/tHJcQpVHY8k0hrzc3wof5VXqDOXeV5i7VuQfCH7DFQr0hWVMS0LRdxY5s+Xkw578cgidznN/ZF8ja6GAEPZCtn6aLpLoTabAHZpeqHv6Vw2zN3lB8dHuDhZIhX28tSdbfzo5CiPOweZlUY1TMJe5YrqgJvJ3AX97u6EWzXXTZOpYg1ZFMhsMB+gmm4wUagRvEGD5dfOT3KfU9zJllX6p8uubHqqWCOgiFQ0c16XdUb9Ewt4+NR+20R8d4tdADo1kueBOZ5SgXVoAD1DIqAsmPfsbggytEQa2Nb0lcfAwFYBSaLAi3NUQGB3ej+xr5k/erXX9ZKYyxO7m/nhiVFMy2JfW4xz44UrSr0PdiUoqfq8kbUdzRFOj6yfG/9UsWZ3sWW7yGOWMli1IpIoUNUM9rfH1qVB+FLMrCNP7LbXzXxVZzxfpTnq59Q6+rmvd0zToqTqDGYqrv/PlnSYTudQP16oEQsqGy7+/XJifg/NsdmO4YmhHAJQrh/sgdmiqWlB31Rp3vhX72SJimbikQTeHcjyib3NCIKAIAgcHcyyty3mHtiWE9e6EiScgIQZBZJXloj4FcYLVWRJ5GBngtFcbYHC62BXnLcdn7d7ehLuv++cExIQ9snuPSEd9jJeqOGVJHIbPJ30ZnJsIOvK9VNhL0VV50Pb13+65OUIgsBvPPUEO+/9MJ97ZD8AmarJE5/7Av/rv/ttfuFX/wGqbpKr1A9s18NLZyYIeCQuTtp7M1GAdsfrsugoxjaCZ1Q86OFAR4yIo+oYyVcJ+WTKqsGWxhA/PLG07UCdhcz1Evv8b/0p3oA9KaIWM3DpHYo1nY6Ef0OZP19OIuhhS2OIbseWxQLOjxWZLNbq64mD4YzDKZK4rGCdDVEAylU0/swxfp5JdpoqqfOkjytJVTOJB2VYJwupT5EI+2RqukFHIuCazk4VVTTTIuiVmChUN1RndtpRLN3ozWooW3HH9L71/hA7WyLuhvpHp8boSYXY1ji7Mc+WVV47bycNPLS1AY8sIgqC273NVjQ6kwE0w8SvSDdtc349hLwKJvM/4Pvb45RqOpPFhTLr7VcxggZoivrmeQHNJR328Yv3dPKXb/ZzdDA7b3GRRIFHtqd57pTd9ZubELYYPkWiLR7guVNj7uvsaolyYh0VIv781bOMnfsAqWUnAGIlA113M3TybYqlqjt2uFEQBIGIX0FAcEd7/v6DEfa0RHmzd2mz7zrzqeoGlmWRLWtz/H/8bGsMO4dra0PGv19OwCtxd3fC/fM7/Rm8ssR03QcIsAMpMiWVdNjH6ZECO+YYQB8dzAL2eMZ0SaUh5GFz2r4PFaq291hFNWgI3TyVmEcWaYz4KNdm9wmP72zkRyftNfuOzjgmluv5M0PAYx/MAHcMbCRX4V0nNWxXS5QTw/a6PXM/98gi2bqZ67L5wckx19C3IxFkPF/jzs742r6p6+SeniSNbZ3cuanZ/buhgsnHP/erAPhkyVU71bk2/va9IRJBj6vGnBnpmUkTTGyQpkPQY9sybEqF3Ia2IsLblzKIgq1Ur/u6LJ+5XmJvD1WY6Qt3p6L85q/9EqZlkQr7rvwi65yQV6YzGSBX0fA657IXzk6AIKAa5hWnG24XVN109/aj+SrN0Sv/ztfv6XYOf/J6H6WawYH2GId7kvzg+ChP7Fod9Q/YyhpVt+b5xqw1jREfFdV2dd/dYo+B9U+XUUQR3bA4NVqgtIF8gIYyFYI3OF41kCnTGrOLgJmyyqWpMh/bbW86ilUdy4ITw3nu6po9xDx/ehzdtAh4JH7+UKebxgIwUawS8NhGwFXNIB5c3zdTv0fi8vpuKmwnWF1usgz2Rn45vgyuCujs+AI1Ucgr88UHe9AMkz9+vY8fnRx1F96tjWEmCjWyZZV4wEM84HHHARYjHlDY2xbllXN2Qc4ji+tmEbcsi7cujJG58C5SIErcL/H//oe/SLB5E/nRS+TGBkiv81n7xbizM87Z8TydCftz83Z/hs6k7dsxd5ywztJUVAML6J20i6ke2Y7DToa8XJwo0Rbzb9j497l4ZYnHdqTdDcWZ0SI+RSJT2jj3mdVkslDj7FiR/R0xijV9XpjBjP/PgbYYogjHhvLsb4uhGSay02wwLeumS/Kboz5qxuznPOCxFUgzHdRfvLvT9XOb97yYj+FshV0tEQIeEd2EiXwVy7LYlArNW+clQUAU7FHBul/U8jg7aq8lAtAQ8iCLAoENWkC2gxU8nJ8ouWOwZ8fyHHESRQNeifFCtW4Sfo1YlsXZMXv0a2b86zcf6gGgpBo0hr3rMrF2MQTB9iDrTAbc5uvLZ21/KI8ksq89yrNOYbrO8nj66aeJJpKul6YIfOTwXjvsJujZUGr1xZAlkWTQg2ZYdDfYhc/eiYK9P7GsuucczNvDHx3Isc9JTVuKdb9DPTNa4EenxpBFgd94cBMl1aCk6qRXuTgzmq/S3bC2CWBziQYUN8XjU/vtKGfVsAj7JPqmSkwW1A3jA1Ss6RRq+g270c8d//r+ByM0R/0knY7qsydHeWSbPco1V8Xzwhnb8+BQVxxZEjk5nHd9lZ47Oc4hp1ikGiaxdZoANoNHFvEr0oKNVNArL2m0KArM82xYjKaIj8dmVEBv9y/yGgJ3dSb4tfu62doY5mtvD/CNtweYLqn81P5WvuUcID68s5HnTo4taR59R0ecsmpyYaLodnviAQ9Ti6iXbjbvXMoQicW5++GPApCOBNjZ1Uy6rYu9hx7g4w8d3JAKj0PdcS5OlvjcwQ4AxnJVezSF2WSrOlemUNUpVHWGc3YXOzVHxXFsMMvmdGjDxr9fTnsigE+2N+jjBfvArxv17qxmmBRVg8libcHvWjNMPhjKAvZ4WFcySFUz8Hskzo4V2NZoK4VMbp7/zwwRn4JHFufdMx7f2cizzshFeyKAYVqMX6bQuLs7yZHeaWRJ5JCjAhor1OifLiOJAnNvKR2JAAMZ23uguk4K+uuZijqr2PV7RPweif0dG1P9A7a6947OOGfGCmxxxjVqhsV7jmJMFOyCeX1s49oYyFSoagZTMwd8AXY229YFVX02hXWjkAh62dcew++cA86OF/EqIqZpj5WuJzuAjcKxgRy6sxj7PSIPbElR0Yw1DzNaKVIhHx5Z5LEdts1HrmogiQKTRZVKPV0QVZ+dCRkvVK9aJ1nXBaC5xs8/tb+V1rif738w4qo8VgPdMPHKIgOZCpvWOAJ+LiGPjOwYLm5rijBT09AMi6miiiTCVKm2IdzzJwpVZOnGRr90R/IX8MhkyypD2QoPbrWLQVXNoKQaXJwscXCO+ufSVIm+qTKiAF96ZDOaYSKKs+NfxwazPDpn7t6/AeISE0HPgsPY5nQI3bTILCLB724I0jsntWUpZlRAL52dYDCztJFYZzLIL93TyeO7mnjxzDh//c4gIa/C0YEskijw2I7ZEYPLaYv7GcyU+cS+Fr5z1B4Xu3dTckkT65uFbpg8d2qM9kSAKa+tNOxJBfnusRHaEyEC6Q7u35LakAqP5qifimpwR6f9uajqJhcni/g9EiPZxb2j6swnW1EZylQoVh1j/qaw6xVWUg0C3o1lDn4l4gEPMUcJaVrMJjzd5sXCimZgmRaiIDCSq9I0R2p9erSAboJPFnlvIMuj29LEnDTJE8N5drZEUHWTkEe66SEToijQFvO73lVge+HVDNP1bHtybzN/+kbfvOdF/Yp7YJ8ZA7swUXRVHUGPRNHx/NmUDnHe8Qe63a+T5XBmrOj+bJNBL6Wazod2bqz498t5ZFua0WyVezbZezLTghPDOXev4lekeR6Dda7OD4+P4JFExp3mXkfCVs/ohrkhDX7DXpmORICORBBZdEJXFIn3BjKYlnOY3QDnmfXE/3j1ousF2xz1E/MrKNLGuzaWIhJQ2NYYmtc4GclVGczUjaAB8lUNRRQxLWtZHsbr+gTznWPDnJ8o0hDy8DN3tZMtq5iwqqM5Vc20Z2zz1XWV4iKKAg0hLxXVQBQEwl77Az1dVrGwpdyj+ao7q79eMU2LoUyF0A2Of73Tn3FHu964OI1PkdzO6o9Pj/PY9jRnxwpsneP/8+KZCcDucnoVmff6M25cvGXZslq/R3ZvOhshwjkWUFAvUwDtaY0iCPC+40Mxl10tUU4ukvRyOY0RHx9awgtoMaJ+hU/f0cbP391BMqjwP17r5eWz43Q3BJko1NzDwVxm/CLscRmBkVyFZMjL1Bor2X5wYpRcReNwT4KpkkrIK/HJfS0cG8yyvSmEbprrSh14LQiCQMAjYZgWkvPz/9HJMXY2R3izr+4DdDUsy6JQ1emfLqE5G63OZIgtjWFU3UQUbI+LjS63niHolefJiE+O5BEFgfxt3r2vqgZ9UyU2p0OcGsmz01GRwqz/T0ciQKmmU1IN7nL8XGq6iU+RqGgGieDa7C9SYd+CwIjH5xTq7+5OouomJy/rwCeCtjrzjo44kgDFmuF6+c29rzSGvYwVaiiiSK6yMVTJa8lr5ybdAlB7PIBpsa7sB66HpqgPRRZoifpoCNp71Yqqux6BfkViqqTWx46vgVfOTWJhumq7J50wh2JNpz2+8Qx+RVEgHfGxOR1wD6vv92e4NGVbW0QDCpemrpxiVGcWy7L922ZUlwfao+61cS3pt+uZoEeiJxXm0lSZpFMH6JssMpqv1hWFQKlm4JFFeidLyzqjrNsC0BsXp/jj13oB+OIDPfg9Et8/PsrHdq+e9w9AzZj1fllvbvoNYa87v//YDlupMpSpIAr2yNKpkQLFde4DlKtoaKZ1w+qJUyN5djTZBZ9z4wV2NkcQBLsbMp6vEvTKhH2K+zs0LYvnnfGvz97R5rxGge3Oa1ycLLld2pkUuI2waAY8MpcbAQW9tlpsYJEIQLuTuzyp5M/c1Y4sCrx8bsKV9F8NRRJ5ZHsj/+KJ7ZwYzvNnb/ThV6RFfSUAtjixwU/uaeHvnXS2VNi7YAThZpEtq2TLGpphcWnK7lA2Rnw0RnwUazpRv4fGiG9eqtxGoyMRZCRfYV+7fWh9rz/DruYIxwfzVx0PvN2p6SamCcNZ+/qcWXs3p0KcGs3T3RCkMbp+Ggc3ik+R+MSeFvfP7/dn8SkSU7e5EXS2onF2rMjetigjuflmi8cG7ULIgY4YHllkLF+lJeanrOquqlQ3zTXzmPN7JGIBZV5KYzriI1vWUHUTRRJpifp55ezEvPXgnp4kb/ZO4/dIHOiIAbbqeDhrq6VnUsFm7rleRSRXrsvyr8aM4gEg7JdojPg2xN7jSgS9MlvSYU4M52lP2AcRw7T4gTNqKAgCIkLdKHyZ1DSDwUwFTbcvFEkUOOgo8QzLomEdNauvhXTYy67WmGvT8J6jHJclgfaYn9cuTK7xO9w4lFXdTaYUgIe2NWKY1qrbpdxMbO8oLzXd4FCX3VQZzlSwsFW5t7vnXNGJgD82mGVPa/Sqj1+XBaDTI3l++4dnMC34+UMd3LupgcliDa8szjNaXC1u1Jx4tQj7Zt/XzzkeHoZle8GM5qpkS5o7H7xeGclV8Ek31h3PlFRifo9r1jyWr3J4k30zfPncJA9uTfHq+UkecPyBAE4O55guqfgUkQe3ppyNruB2Hp47Nca9zmtUtfXv/zNDQLFNqy+Xyvo9MrqxdAzgcqS16YiPD+1oXLYKaC7NMT/NUT8f2tHIwe4EJ0by/PD4wmjPvW0xjg5m8cgiu1ujvHspw72bkrx+YW3GwL5zbASwONAR43Vn87G7Jcpr5ycJKDLHh7M8ui21IcYDl+LungTnx4t89s52wDaz9XlkaoZRN9K7CvZIi8XFSfuwG/Up1HQTv0fi1IhdAEoENuZmfCm2NoeZudrPjRfxyiKFir5ARXI7kSur7giyxWzRo6IarnfFZLHGpnTINX0+PpRzN2WWBUHv2q0hbYnAgs/6o9vTPH/abpJsaQyzJR3i+dOz47upsNf1qrmnx7639k2WeLN3ClkS5xWLJEFAEgSKtdv7OrkahmkxXrCLyQJgmLZ33kZHkUQ+vreZdy5l6HJiyiu6RbGqMep4pwU8EoPZehrYcnh/IIs5x+i2MeIl6UwEhH3KTfcSWynCPoXN6RCpsBdJsM8zAa/E8aE8saCHvmXYFdSxefnshFtIDnolGkIe4kHlllEjz5AMefEqEg85Hq9Vw0JzlIS38/5VM0w0w0QSBQpVfVlN6nVXABrKVPi33zuJapg8vrORzx20DynfPz7KE6us/jEty02wWI/x315ZIuxVqGoGXkVyN5Y13WSyVEMS7U3nep2bVXWT8ULthje+L52b4MGt9of/vf4MyaCXgEfGtCx6J4tsSoWYKNTmVb7/yilgbEmHEAWBd/oz3DEnZnUwU3HTwHTTJLpBCkCiKBDxy9QuM9vc2hhGEgVXqTCXtrifwWXO3z91V5utAjq7fBXQDE/ubeZ7H4zQHvfzrz+xk7cuTfMHr1ycN/sf9MquT8ShrgTv9GcIeOQ1kXNenCiSDHo4NVJgd0uU4VwVjyzy2TvbeOXcBD2pICO5GvdvaVh36sBrYU+rrVrY1GCPR9YMi+mSao/23ObKjqtRrOnkqzoTefsg3NMwa66o6iZeWVrTg/1qEA96CDrNh+myavvfWBbl23SzZZgWkyWVkFemUNUIzfl9nxjOYQE+ReTcWJGt6TC7Wuyiz7nxIpvTITTDLhiuZWJPzG8rXOcWbdoTAYZzFQzT4s7OOBPFGsPZ6jylUMgrk69oHOq2x69H8jV3ZDfolV1vofZEgIFMBYt6OsuV6J8uk3O8KwIe2whlb9vVO7cbgW1NYWfU0eMapfs9Mn/yuq3s9ykS+YpW94laBj86OYZumBRq9s/qoLN3LWv2iM9GRRIF0hEv25vCruqtd6LI6dE8IgK1ug/QsvmjV/vszgLQHvdT0UxaYreG+fNcwj6ZrY0hClXdTSidLtnK/dv5XjMTAa8Z5rLrF+uqypEpqfwf3zlOoapzV2ecf/TwZgTB9gaJ+pVV92SpagbRgMJQtkJHcn1+cNIRr3uRN4RsCXnGObx5ZJGR7Pr1AcqU7EPTjRyeLcsiW1ZJOPL5ty9l2N9ub5iO9E5zqDvJQKZMW2z2pjhZrLld2U8fsMe/zo7OprFkyioCuCNgArimrhuBRGChEXR3QxBFFlw/irnsao5wcnh5CQvpsI8P72zEAr565NpUQIokcv/mBl48O4FHlnhiVxN7WqO81TfNV9/qdw8WQa9MsaojCAKf2t/CV9/qd2OHbxaWZfHcqTEUSSQd8XJ61P75tETtca/xQo197VFEQaAhtLEltbJkJ80YlsWMF/uLZ8bpTAR5f+Dq/lC3M9mKxlCmTNWRGu9qiZIOeylUNbyKSCK08ePfLyfkmHXOcH68CALzCgO3ExXN4Px4kZ0tEU6PFtjetND/Z0s6REUzKdQ0drbYX7cs+8BTUQ333r1WyJJIc9Q3zwwa4P7NDbxybgKfIlHVTJ7c28R3j424Xz/UneBI3zTxgIfNTkhGvqIxUaixrTHM2TE7znxzKsSF8SKWxW2fGHclXj8/4ZqXNoS8BL0y/nWqQL9WIn5bfdAQ8rA5bTcbSjWdcxNFd+0QBHuMsM7SWJbFqZG86zknAIe6k5iWhSCsrifqzaAx7GNXaxTFMcSfUX97ZJG438OFieJavr0NgWlaXJwoUtLsfclDW9MIzJ8auVXwyhK7miOcHSu6/mLTJZXhbMUtpt+O1JwEsNMjedfa5Gqsm51qRTX4t989yVi+xpZ0iH/+xHa3IvzDE2N8ZNfqy2Jrukky6OHCRIlNqdDVn7AGxAKKG6v9yb22N8NovoZpWmiGfaMo1dbnxnwgU7nh8bozowW2ORtuw7QYzlW4uyeJZVkcH8qxuyXC6xemuHdz0n3O7798EdWwiPhk7upKUNVso6yZQtTbfdOuh4N9UxXwrWF39lqJ+JUFUetRv4Jp4kr255KO+NwkieXw2TttFdAr5ybcFKDlsqslysB0mVxF466uBB8M5XhyTzMf2dnEN94e5LmTY+xri7oHp3TYx762GKpm3tQ0sFfPT3JPT5Lz40VaY35eOWePfx3qSnJ6pIBpgWFYNEW9hG6Bm2rEZ3fre5xD3BsXp9jTGuGtS3Uj6CuRr2icnyjNNNqIhzxsawxzbDDHlnSI9Bof7FcDryzy6I6U++dTIwW8knTbpm5UVINLU2V6Gmz/spnDLcBRx/9na2OYsE/GsuxC+HRJJe6oSjXTJB5Y++skHfEt8EzY2hjm/HgR07LoSAYo1ezQiRlPtrZ4gKGMXZh/YIt9TQxlK7xxcYrNc9K/GiNeRgtVFEmksEgAQB2bo4M5cs7PJxrwsKs1cpVnbByCHpl7e5KcHMmTdhRAmbKGTxJ50Rk1DHsVhjKVusrjCkwVVTJlFd2wf0Y+RWRHc4RiVacp4luX0wrXQtinsKMpTNAjIQmgGhYBRaJvqkRXKsDLZ+s+QFcjW1HRnLVcEuxCviKL+DawVcGVaIn5qekme52pjemSnQR9OxtBV1UDEYGTowV2NC/vPrIuVg7dMPmtH5zm/ESR5qiPf/Xxne6Fe2mqRFPEd1Pk0pZlEfIpy3bQXgtC3tk4+I/MGYmzLFvJkq3oTK7DjkqpplOo6je8IL11KePKX8+M5on4bGXY8aEce9qiWNgfhBm12Lv9GbLOWMs2pyr6zqUMd84Z/7owUaLL+X2ruknEL2+oRIUrzfiKgnDDxr5zVUBfe6v/mp//6QNt/O17tgn0E7ua+MGJUeJBD5+/t4uOZIDnTo25ccIA+9pjmED/TUqAqDod/VxFI+qXaQh5uTRdxiuLfObOVl44M05z1Mc7/VkOb0pu+A0X2N5Lg5kKH3eKyEPZCk1RP5OFWr1jvwQ13UAzTHqdQ65fERnN12hPBOidLNEeD9wy8e9zEQSBx3fM3muODWbxKnZR43YkV1HRnTEu3bDc9SBX0eh1PCsGMxVaYj63sXB0MMs+Z7MqwLrw7Ah7ZfweaUES08HuBG/3TXOwK8GR3mk+7ozyzuDzSFRUg3t67CbLxYkiE8UaPkVCdUaRXSNoWSRbTwJbkrE5YQeWZbk/01sBURR4Ylcj58aLeGTJLYBG/AqvXZjCsiw8skhZNSitU9X6euDlsxNYzPqcdCWDKJKIapg0RTfu+NcMHlkkFfbR3RByVUBjhSrHBnPEA56bqgTfqPzN24O2nA4IeSUkUVxzlelqEg148Csihxwj9IlCFd0wKdWM2zbIpKjaBtCakzS6HNb8JGNZFs+8eJ53+zNEfDL/+hO73FEcy7J49uSYm3i16u8Fe/SnrBrrYoO2GIIgkAp7Kas6HlnCr9i/wppuMFVUkQSYKqjrrqMyWai5nkXXS0U1kEXBHbF46ewkB50o+CPOhnWu0WZVMzjSO8V5R0L6M47p7fnxIlucrm1NN8hVNFcyV9UM4hvsEOdTpAUmnACyJNCZDLiHkrk0hDyu+eRyeOrOdkcFNMmlqWsz5gv5ZDanQ7w/kKU9ESBf0dxK/dbGML/x4CZKNZ3/8epFV7H0ib3N5CoqHwxlr+l7XQ9//8EIH93dxOnRArppcXTA/p7dDUECHpm+qRJbG0NMFmvc29Nw5RfbINzdnaBvqsRe57OSr+quGmC9jpCuNVXVnrHuda7/xojXHesxTIuAc6C+FWkIe/E5m/MLE0UUSaSqGe6B/3YiV9aRJTtxcm5a0zFHxehXREayFSI+hbs67fvTYKZCa8yPZph41klnVhAE2uOBBYrhva1Rjg3mCHokSqqBT5HoTAbc8a47O+K805+hJeYn5lfQLSjXdLfRMrP3kATBNqSs6OtuP7IeGC9UmXT8k0TsaPT2+Pq0HrheWuIBTNPCsCzXY3G8UCVbUd3UOFkUmLoGRfLtxk8uTlKsGuQd/5+tjWHbR0yRiNwCamSA5qiPA+0xZKeI8eq5STTDRBbt+0zdSP7KfO3tASxHIdYWD1IzDBLBWyuMYi4hr8y2poh7X6kZdngPWLdtA7NQ0blWncyaF4D+8kg/z50axyOL/KuP76LF8W6xLIu/PNLPI9vSN6XjXtMNQl55Q3T3G0JeVOew1hi2O4zTJdWNT+yfLq8rMyzTtBjKVW64qPbahUnum5Ps1T9d4t5NSS5MFOluCCIKAu8PzHZa/+79IZqjfjTDIhn0sL05Yt9UJMHtUB4dyOGTRTpmokoti/AGjPiOB5UFC197PEA8oLgHk7nsboku2wcI7ASYx3c12Sqgt6/NCwjgvk1J3uqbpqoZfHJfK985Oux+TRAE7t/cwH2bU/z41Bgvn51AEAT+50e38pXX+1a1oj9eqGJa0DdV5q7OOJZl8fK5CQB+/b4eBjJlappBWyyAT5HYlF6fo6HXSjLkRTctvHMOom/1ZYgFPPRO1mfuF2NGxZh3RjZ2NkcJeSXG8lUifpnGyK274Qp4ZdcYv6QaTBVrCHDbGbgapsVQtkIi4OHiZMkdoYTZ8a8t6ZD72YoHPe4mdSa1MhlaP9dJMuzBZH4qpCAI7GqNcnw4T3vcz8B0mYe3pXnhzDiWZbEpFeSCc3h/eKt9Px4v1Hiz1x6lHsnNjIv5GcpUMCzL2ZzXmctPzk+Rr8waQEf9nluugBz2KaTCXkzT4p4euxg6XlBJBDw8d8pOmAt6ZYZy9TGwxdAMk6Fs1d3bSSJsTofIVzXaEv4NHUYxl4hfYV97DI8iIgBF1aBQ1ZEEu/lwerSw1m9x3aIZJpMllaJzjXxsj63WDa1TEcNKIIkCd3bGOT9eRHY+AmP5KsWavq7OvjcLO5RDJ1fRSYWXv79Y02rHD0+M8tW3BhAF+Ocf2e6O6FiWxVffGuBgV2LefP1qUtVM11h4vRNyvAUAHtluq6OmyxqqbqKbFqdG8wvMHdeSQlVH1Y0bLq4NZsquGelgpoxPkQh4ZF45N8kDW1JUNft7SKLAhYkiEb/Cu/0ZANeI8+hgln1tMfc1z4wViAc9bidXQNhQBtAzJAKeBVL+nlSQsXxt0WuhLe5nMHNt0tqnHC+gV69DBTRj8Pzto8OEfDLJkGeeMulAR5xTI3l+9mAHHlnkG28PEAsqdCdD1zV2tly+d2yEJ/c08cFQDtOyfbRUw2JLOsS25jCvnZ/Ep0j0T5dojHg35LWxFH5FQjVM4n57o/DyuQl2t0Z482LdB2gxslWVgekyulOQbIn62dUS5f2BLDuaI7dc/PtcAorE7pbZdKKzYwUEBPLV22vmvqoZ9E0W2ZIOc2okP88AeqbQ3hL1E/Ep7gZ8JFelxRkFq+nra5/hlSXSYe+CEZy7uxMc6Z3i7p4kb/ROIQoCh3uSvH5hCkEQUCQBzTB5YKu9/zg9WmAkV2FbU5gzM0bQ6ZCrvr0dN+VX4/2BLBlHNZUMeulJBfHK678BeS34PRJ3dycYyVUp1gzCXgkLO6a6f7pMsWqPLdQ00y2s15nl/JhtmD3TBIv5FbakQ1iW3Qi+VfApEumIz0n0tfdYxZpmF9kbgrziNOXqLGQkW3bV25IIhzc1IIsiPuXWWksupynipaabtDopeNmKxlC26hbVbydUw8QwLS5OXpt/8ZpdIW/1TfN7L54H4B8+tNmNFbUsi6+9PcAdHXG2Ni7PyXol0E2TWMBDrqyte1mlV5YI+2RqusGHdjS6v8SKZlCs6RSrhhvNuh4YzVdQxBs7OA9lKjTPmXd+9uQYB7sSTJdUIj5bufXGxSkO9yQxTDvR6VBXgvcHsggC/Oxd9vjX6ZFZgyzTstAN0910GaaFKLIhN2EBr8zl/bPGiI+RvG3EefmohiAICx5/NRpCXp5wVEB/deTaizLpsI+gV6Z3ssjjO5t47tSY2/WL+hX3MHlPT5KDXQn+6NVedraECXglXj678huAE8M5NqVCnBotcKAjxqmRAq9dsA0HP7W/FYAL40Xa4gEyZY3GiO+W6bgBtMb8ZEoqD2+zD3FnxvJsSYU4O15YYA5bB/Jl3TUrFwUoqTo9DUHG8lXSYd8tYQ6+FLIk8sTO2VHsU6MFvIroHmBvFyqawaXpMl0NQQpVnaijFh3PV13ly0SpRsAruSMvRwez7HGivUVBuOEghJWmJeqnelnzQBQEuhuCjOaqlJzRk71tMTuNyDDZ1x7j6ECWzekQHkmgohlUNYOI305RBWiK+BjNVxEFgeJtVihcDpmyStH52Xo9End2xm+p+8sM929pIFdRGctV2eI0eUdzVbyyyHOnbRWQIolMXMNI+u3Cc6dGEQHN2b+1xPzEAx5iAWVdjJGuJM0RH/vaoshONOnJkTynRvJE/Mo8r6w68/n9l3uRRfvMEvHKdphRyHNLriVzCfsVAh6JA859Nl9RGcqUb0sj6JnzXf9Uic5rSDBfk5NuTTf49z84jWnZB/MnHDNjy7L4+juD7G+LuWqgm8VM9PfFyeI8Wfd6pTHio6LaG66wz74R1HTTSWaxmCjU1oWkVjdMxvK1Gz4cvXp+gge2zI5/nRsr8PC2FM+dGuNDO+yEuL4pe2P+/eMjPLGridcuTGFa9ka0MxnEtCxMy3LVPufHi4S8sjvWU9MNYoGNuXAGFtkMiIIAFuxojrix5nOJ+ORrXiw/e2cbHknktQtTnB5Z/gjZDE/sauLZE/am71BXgjfmJH15FckdKelqCPIzd7VzcjjPRF5lvFBb1MvoejFMi9fOT/LAlgbeuZThjvYY58YKTBZVwj6Zwz1JpksqUyWVXS326OAdc4zDbwUOdSfony7z4FY7zWe6qKLIEoZpUa537OehGSZV3eDCmK1oSAQUDMs2OtVNi2TIM88P5lZkb0fc3TAcH8rhUyRyZW1d3GduFvmKZo93XdYkmCkMBj0SU0UVvyK56uWpoko6bCduyZKw7jqzUb+CIooLir4Pbknx8rkJOhJ+N/3xo7ub+f7xUbY3RTg5kkcUBHY5yrBcRePoQNZVJ881gs7V1R3zKFV1N1kN7Hv1cqN7NxrdDSF8ikS2ovHRXc0AXJq2xyjfH8ja4StemdFc9bY1cF0My7I4O1ZkqqRRcPZF3Q0haoZ5S6l/ZogFFe7fnHKLGdMljfFCDa8kUdPMelNqCZ4/PY5h2tdHezJITTdI3sIG0DP4FYkdzREaQra6dqJQs0UQ1dvPc67mFIA007qmSZs12YmM5WvUdJPHtqf5hbs7AHux++t3BtnTGmX7MiPMVgp7Y2YbM16cKNHTsP59PqIBBcO5yGduBtMl22hZEgUuTZXWhew6W9EwLcsuRlwnhmlR00032StXUREcg8mabhLxK0wVaySCHsbyVSqaQWcy6KpGZkYX5po/A7w3kMXCYnujfb3VNJPYBvT/AbtDH/LKC01ZBdjeFOLUIsWanc32Jv5aSIa8/NQBWx3zh6/2XvNCK4kCjztJYPvaY5x0Ospgm49+MJRzHxv1K/zGQ5s4O15gczrIj06OUlyhg8Tzp8d4dHsjJ4bz7G6J8EbvtNu5fnRbGo8s8mavXZyqqDpeRXINx28VtjeFmSzW3PXDsKBvqogiikwXbi9lx9WYWUsHc/Y10tUQwqeI9E2WaIn53JjjW5l40EPQaxeaeydLWJa9Nq+H+8zNIlvRkEWBsXxtnufTMcf/pzPhR8AiGfIiCsK89bGqmTSsw86sKAq0xf0LRoVlSaQ15qcp4nPXwta4n0JVo1jTEZyEyU/us5MEjw/l6Z0s4ZFFdxxZEgRkUSRXXn/BFGvJm31TFJyftyTYoz0h38bce1yNoFcmHfYyWayxqyWCR7KL5pIkoIgCx4fzSKKAZlq35fjGUhRrOtMllbJqXydeSSDiVzAti/AtqDYNeGSaYz68suiG20wVVWTJDr45PmdvWMemqhmUNYNCzd5D/9S+FgRubf+fGQRB4FB3goyTMqmZUK4ZmLeh51y5piM5Df9rYU0KQKZlcUdHjC89stkeRbEs/ubdIXa2RNh5k4s/YG/Mks5c/mCmQlt8/UcrhjwykiBgWhYHnSi8Ys2gVLPnhU+N5F3p9loylCnjv0Gp6rv9Ge7omFVf/OD4GHd1xnnxzAQPb7PVC6+cn+T+TUm+fXSYT+1rZThb4cxYAVkU+NmD9vjXe/0ZDsx5nZpmoOqWq04y2dg31lhAWXAYawx7yVV0t0I8l55UiN6Jazf8/cwdrcQCCmfGCrx6fvKan9/dEKRU0xkvVPno7tmI4a2NYTdpZgZFEvnsHa2815+lOernL49cwrzBg0SppjOSq7I5HeKNi1Psaony1+8Muik2H9llKxIvjJeIBRTGCyo+RaIx4ruh77vekCURjyxhWBYeR3b9wukJtjSGePtS3QdoLpWaTrGquxuLjmSAHU0Rjg3m2NEYIbJBC8fXQsAjuyENumkxmCljcfukxpmmxcB0mVTYy7nxgjuiblmWqwCKB734nM4kQP902ZVkVw193SazpMJet6E0l0e3p3mjd5rynL3EJ/a28N1jw+xqjnByOMe+9hgCdnGsWNPZ1BDkwoSt1myL+xnJVdwmTh2bt/sybgKYTxFoTwRuKX+5uXhkka2OV9b58SJtjo9joaLRmQzwvDMG5pVERuujPi5vXpxCN013v5OO+NjkTCcE1tkY6UrRHPU56av2Z6Hg+ABtaQxd117zVufYYNZNSJNE2N8RRxSFGz5zbRSanJAfr1PJGMpWqOrGbdWUAjsCvlTTiQWubR+6JgUgjyTyz5/Y7sZ5/+17Q2xrCrtS4puNHZlnF4AMy3Lf13pGFAWSIQ8V1fYB8jhvOVvRUA2LsmoyXVrbaM2qZpApaze8GJ0YzrOrZbYw+N5Ahsd3phnMVGiPB7Asi2xZ5fhwnnu6E3hkkZcc9U9LzOce3Gu66c5Nj+erNCwik9zIKRyxgMdV08zQ3RDi4mSJgEdeEPcriQLGddRSAh6ZXzjUCcBXXu+7rijoT+1v4e/eH6Y56qOqGW6K3WLFnTs6EyiySEcigGpY/PXbg9f+pufwnWPDfGJfC2dGC2xKBfmrI/0EPBI1w2Jnc8SNqh8rVNicDiEI9mjHrYhfsUe+Zg6s7/Vn2NUS5d3+TL1jP4dcVef8WNFtsHgkka2NYbIVlVTEe8v5MSyGX5G4s3NWBXd2rIBHEt3C6a1OVTe4OG4bQA9Ml2lzIrsHMhUyZc1JRdOxLMH1JTg2mGN3q+P/g+AqqNYbQa9M2KcsSHVTHBVQwCO5xv8Rv0LEpxAPKhwbyqFIops8UqxpKJLIWSe1Z1MqxHknMex2jeddjExZdT83Ub+Xfe2xDek9uFzu35xEFgWODWZ5wElyPT1aQBJFJgo1MmWVoFdmvFBdsIe5XXnp7CS6abnF1+aoLTvU3AABAABJREFUj56GID5FwnOLXivxoIcndjUhYDekeieLnBjOEfTKTBbX9jyzHvm9Fy64zbuoX0HVbTHDelOZrhYhr4wgwGanGZOraAxnqred51yxojOYqVyTAfT/n73/DJDsPM8z4evEyrlzT6fJeZAjQQDMFKMpwaIky5IlOXwG5XVa+/Ou7c9eS/a33rW8tgknSVSkRAmkJIqimAGCyMAMBhhMnu6ezrFyrjppf5xTp7ume/IMpru6rj/kDLqqz3Sfes/7Ps/93DfcoQJQd9jrVrD/9PgMO7uCHOq/M8UfcPx/NqFkrjPkpaobdIe9bnR5XTcp1XRMy2Qpf2d9gFLOgn0zi1G2bJs8N96jrhuYpsW5xRL3DEYBGFsu0RvxMZEqcWhbFMuy3ALQXdtsxc9cttKk4HhzIs1IR5AuR8avGyaqJOKRN+YG/VrwqxKX/qQH436m0mUO9Uc4ObdWQutVxBuKcv7w/m6G4n6WCjX+4sTc1V9wCR5Z4oHhOC+NJvn0kT73PYYTAffA0ECRREzT4mB/hM/d3c/JuRw/PLd43d8T7PQ4vyoT86u8NLrMVKbCIzsSzDkGrg31z7dOLWBa0BHwMJLw09GiIz4H+8PM56p87KDtzTCfqxDzqxRWqV3aQK5c540JewzGr0qYzviTKAjXFbu5mZFEgfftTLh/PrtQsL09yltjs1WpG0xnKox0BDAtXM+nd6azgH1fVHWLqF8h4GmMK2vE/CqGaSGJ4obuzA7EfJS1tSO2H9jbRbpc542LK6rAjx3scbwnLCzL4kNOGunYUonzSwV3vKknYgcRCAhrGhBbFc0wyVU0Ks766pFF9veGW/rQtqcnRMgrczFVdj0/02WNUk1ne0eQ755ecEYm2ZImrpeiG3YDN12sU3EabP0xH4okbqgUwVtN0COzvSsIgn0u0wyYz1bxKRI13byhZmOrYlkWp+ZylJwRwZGOIFXdcKdZtgKqLLK9I+D67eUrdWazFbJbaA0xTYuKbodTjHRcn3/xHSkANTZOf/b2LNs7ghxeFcv9XmNaFoIg4FckTNNac4DeyIS8sjvzF3MiiJPFKiIWYEeh36lDnGVZzGQqhDw3NxrxowvLPO6Y1AJ8/8wSR7ZFeXs666asvHYxxVy2wl9xvGlGl4rMZit4ZZGfuG8bAG9MpN2kOYBUqc5ivurG+NZ0k2hgc49x+BRpjYpGlUU03WRnV5ALS2vHvfb2rG8QfTUkUeAXHh0B4I+OTt/Qpu3IQJTx5RKmaSfRjC4VeXhHglfG1kp9D/ZHODWXoy/q459+bC/fODHPmxevf0zpWycX+PjBHi4mi+QqGvcMxnhrKsNyoUbAI/HozgTZch3TtDAMi4V8FVkSua/FDKAb3D0YYy5bYV+v3UGp6pbbPSnWts5D9ErohkmpbriR1l1hD6ok8O5sjj09oZbekF/Knp6Q23E8OZtDlUWKNX1LGHQWq/Z4tSw6pxOHxvhXT9iDYZoMO5sww7RonOkrmrHhk1liARVBYI0KU5FEhhMB5nNVt6GkSCL7esPIksCFpSKfvsv2AZrLVcmvKgg2gghUWdwyhcKr8fZ0luKq56VPlddVI7cSQY9CwKNQqukEVJlO59+bq2o8vCPBqdk8pmXhlSXmHC++rcx8rkK5vjLK4lclVEmiZhjE/K17rwiCQE/YSzygumr85YKdZNsb9nF8OnOHr3DjkKto5ItFKpq9Jn/sQDfZ1DJf/u1fv8NX9t5y/3AMQbBLGZmSRq5SJ1/ZOuEUdcMES6C+asLlWrljOsI/f2eWobifI84h/k5R00wiPgVRFJjPV+mLbh6fD68i4VMlNMNkv3OAqxuQdeToZxcKa4wd3yuKNZ1yXb8pqaplWaRLdRKrEg9eHE1yz2CMwbgPQRDQDJOlfJUdnUFCjoliQ/3TH/O5D8tcWXP/f7mu41MkZrIrfk813SC+yR+sgmCbBK4ntZdEwZ0VXs3u7uAa351r5Z6hGPcMxijXjRuKhQf4K3f38yfHZ3hybxfPnV1EFgW8irTGDPLItijvOEarAY/Mv/3sIb5ydIpvnphv6iwbpkW5rpMp11nIV5lKlxldsmXE3zwxx10DURRJ5CtvTnOwL8Kh/gjHnQ7+k3u68MgS3zq5wFDCR0fIQ103SZXq7hhHq9FIE4SVh8FLo0l6It4bKgy2IlWn65hyPDuG437HryrP9o6Aq/bYCkT9KjGn4DWXq7przVZIjcuU7THV5ULNNf02TMs1J+0IetENi/fvshsW48tFtneuJEzGr3M+/71GkUR6wt51jfY/sLeLTLnupoEBPLw9QbascXQyTcCj4HeMW7MVDb8qrVIAgywKbWWHw2tjKZadtUQEukJqyxpAN5BEgd6IF58icjFZchM159JlpjNlAh6ZtyYz9n1Tqrsm4luV584uU9NN1zdrIOYj7FMQEVrWK6pBR9DDk3s6UWW7WJ4u17mYLLGrJ8jLo6mrvHrr8I9/7bcp5uyCmCRAv0fnH/zcj/OP/v7/wjPPPHOHr+69Y0dnEMO0PycGkHcaNVvFc87+d65f7Cpc5Zl7RwpA+apGf9TfZMh7p1gdmTe+XGRkEySAraYr7KFcN/jAvi78ir1gLpfqmJZFpW7cMR+gpXzNjXO8Uc4vFl2jTQDTtKMg35xM8/huW3L+2ngKzTDdiHjDtHjxgq0guc/xq8hVNMK+lUPaW1NZewNi4aaTWdiduM1OPKBSu0T1FfTKFKoa8YBKutTs1+GRJbQbMQJy+IVHhxEF+NbJeaYz5au/4BLCPoWhRIDT83ke3dnBS6NJPrC3i+fOLTV9nSTaU+ENpYFHkfjnn9jP6HKRf/utM/yTr73Dv/7GKX731Qm+c2qBV8ZSnJzNMZkqkS7V0AyLXd0h7h+O8/rFFLph8pEDPaSKNfdQ89H9PaRLdWRR4IfnktwzGKU/5sMCt7jYiqiyCBZuV/aVsSQH+yK8Md7utoE9+pOvaK5fVsSnsrcnTN2wiAbU64rd3Oz4VIkRx9QYYGy5iICdQtHKWJbFRKpET8TL2HLRnbUfWy5SqhuI2J24RqIWwLuzOQ41fA0t3DHtjUxPxGd3FC9BkUTuHojxndMro7eCIPDhfd1cWCxiWRZDjvIpW9HQDZNzTmNhW8zPQr5K3WiPcAAsF2ukSg0DaJF7h+MbejTwVvHojgQ9ES/fO7PIJw/ZirGxZIm5bJXHdiZ44fwygmA/57OlreErdjnens5SqmluAthQIsCuriCi0PoGv0GvzCM7Eu6ZdjZT4d3ZHAFF3jJ+c9fCjG8nimSfWeq5Zf7aj72PidFz7N+/n6eeeuoOX917h98jgwCNAY6JpTy6aVLVDJaWllq+GFbTDQo1fd3kt2+8e2V7jjuyc1VEgXs3yEiFaVnumNLFZIntndc3Q3enifs96KbJ9o4VBUxVM9BNC90wWchX33MpnGFazOcqN31ofmMi3RS9/dJYkqG4H5+6YoL3gzNLfO7uba60/t3ZHOlynZBX5jOOLP3NS95nfLlIX8S7xnSxFTorIa+MeUk1eHtHgIvJkqOiya55jSQKN2y8OJQI8OH9PZgW/NbLF2/oPd6/q4PXxlPs6goxulRElUQypTrGJYqlIwMrKiCAmF/lf/ngLn71s4f49z9+hL/9+A4SQZV8RUfTTfb3hnlsVycPjCS4ayBqm/aW63zljWn+8Uf2AvCVN6fRDIs93SGGOwJ8++Q8Hz3QQ6pkb9IP9Uda1nCxQUfQQ6mu85gzajmeLDHcEWAyXW4bcgK5Sp23p7KAnbThUSQy5TodAZXO4Nbw/2ngU6SmRMYLi0U8srSmsNxq1HSTseUSu7pCTKbLDDpJRg3/H58qIYsCMf/KmFepbhD0yhimhSJvbP+fBmGvjE+R1i3UfPxQD+fm8037iV3dIQQBLiwV+Yl77BHscwt5KprBRNI2jd7ZGXQLhVstneVSTNOiXNPdg6xfldnfE8artPYzBuCuwSiyKDC2VGS4I4BXsUMoMuUa9wzFyZTrJIs1/IrMTHbrpoGVazo1zaBYM6jp9mct7JPpi3qJ+O1phVZGEgV6Ij5kSUQEDMtOU/Sp9rrUNpO3z1jLZQMlZHvyVefOk0knSXR08vzzz9PV1XWHr/C9w6dIRH0KYd1WrJ8bu8j5yQUmZ+Z48skn+cIXvtDSRaBitWEAvbZ2cWzyyk3cO/LU2UhKCxPwO8kcyWJ90xloBTyS6zMQ9tnXni7VMS0TBBhdLL3nPkD5ioZuWq7X041Q1QxkUWjqrn/v9BIRn8KH9nUDMJsto5smu1aphH7oKEe2xXxuAWouW3ETW2q6/b6jS0X3dZph4lOklujkr5diNtIRYDxZYlvMx0xm7Xz9ru71/YGulZ95cBCfIvHmRMY9EF0PgiDwqSN9/Pk7c/zk/QP8wRtT7OwK8tZU8+K1vzfMqXWMrBv0hL18+kg/P/fIME/s6eTkXI7ffXWCPzo6zehSkbpu8psvX+R9uzrcn9ObE7aP0EcPdJMs1vAqEifncgzE/BSqOh5ZavlD/j1DURbzNZ7cY3+uchUdy7JVD6vjn7cquYrOGxO2qjDqU5AEOy1tf3+YyAYf67nVCILAAyNx1wLn1FwOryKRLrX2zH2lbjCTsSPddcNynxWNgnoioJKvajy03W40aIZpewU5r+3Y4P4/DQRBYFvcR2Ed/y9FEhlM+HntEu+1n3tomC+/PsX9wwkkASqaSbGqozsF/N6o1zXZr9RbWyl2Nc4vFtAMi7rRONgrJEKb4964WUJeBVEUsRwD/X2O/2K2pHF2ocDenhDfOrmAT7VHwG8knKIVOOWMlDbUP0GPhOT83Dbb+eRG6Qx56Qx6CDrK/aV8FVUWGYj7bsj7sdWYWC5iYaE19mkXXgFgCywja5AlkUPbouwesf1edVHlX/2rf8UHHrmf06dPt7wiqlQ3mM1UGLkkAWwqXbqqCGPzn3hvgrpuEvLIKwd/xxB6MyFLIjG/SkUzGE74EQUwLVjK11EkkXOLedcl/r1iPle56TStV8aStgzUwbJsbxcLXC+f//niRdeIGOzizitj9ozwQyMJ9+9WF3aOTmS4bzjO+aUiu7sdfwbNdH0tNjseWcIrS03KjZBXoVjTEQQBy7LWHNT29YQ5O3/jfi8xv8pP3Gsvvr/58sU1yp1roSdsK7KWCzV+4dERzszn15hBS6KAJArXNEYQ9at8ZH8Pf/3hYT51uJf5XIXffXWCgCrziUN24tXYUoFUqY5PkXhsVyffPrnAxw728OKFJHu6g8T9CqlSjSMDren/0+BAX4T5XKVpTPLkXA6fIrGQ39qGnKZpUarpXEzaP4e+iI+dXUGSpTqJgIfABmpmvFds7wy6ceYn5/JIooBumC09c1+s6Rim7WXTWN3qusmZeXvMqSPkoawZrv/P+cWCO75c1Y0mH7uNTkfQ4xaAL+VvPDLC14/PNv3dUEeAum6QLtUJN9JIDZNsue4m5dlG0FsnMe5yvDKWIrVqLD/olYn6WmPvcTUEQSARUIkFFN6dybnJk6PLRU7P5fj4wV7OLeTRDRNB4I7ZF9xpvn92iVyl7jZfRhKOqbxlEbzJUJXNQtgr86H9nXicwIFUscZkqszOriCvjbd9gL7y5hQ4vjeWXsdbmCMa7yC5vMyTTz7J0tLSVd6htTiyLYKs2v69ki9MTQmSTiXp7Gx9RVSxqlHVjDUjYH92fI4nVgUorceWLgBVtNZw1O8KeahoBu/f3UnYa98EC/kKgiBQ0wzXjPG9oK6bLBVqBG5ynGoqXWEosSJpOz6dQRZF1+tnLltG003XZBPs4k5FM4gHVDdq9J1VaWFgS9V3dQWp1A38zuGtZhhEW6iTHwsoa3yAGqeW/qiPuUvk1QGPTOkmu22fuauPjqCHi8kSz5+9sYfPjx3q5dsnF5BEgV9833ZSxTqvjjU/7O8dinFs6sqyxkvxqzKP7erks3f30x32uE75X3lzGoAn9nSSr2gEPbKjkLKYSJV5eGeCqXSZ/b2tXQCyfx52epzP8RF78fwye3tDvDa+tbttVd3Asiz389ER8rCryz7YxwPqTakcNyshr0Jv2N5sFRvjLAKUW7hjnynb3mDp0opK+MxC3vb9EcDrjHh5nLXl9Hye/b22wkGAdefzNypeRSIRVNf9fYZ9CqoiMpUqNf39w9sT/NFR21gfYCJZoqabTDhfJzpG0Fspnnc9ZjJlTo3agQkSsK8nRLWQbukRhdU8MBKnL+LlhfNL3D9sKwnzVZ18VSMR9BDzK7w+kXafxa2sKlwPw7SYy1bIlnVXAbS/L0x/1PYVa0wrtDqyJPKBvT00egrz+RrvzGQIqMqWX0MAnju3TLFi7+PFWp7f/+qf8yc/eIX9+/dz+vRpnn322Tt8he8tiaDHVfULkowU6rjDV/Te0Gi8iZcIV7LlOqlSjftWWZ+sxy0pAAmC8DFBEM4JgjAqCML/91a853uBbpruwb+qGe7mbbMR9ilgwaH+qOtjU6jqSIJATTeZSZffM/PFTKmR/HHjB6N0qU7skoLMX5yYpzfidU26v/z6NB870NP0NT88vzL+1SjunFtlJF2u6ysjUpdc3mbwZ7hWYn6VmtG8eVckWzlj++hk17xGFLgh5U4Djyzxcw8PAfB7r03ekHxbEgU+fqiXP3lrBkkU+Kcf28NfnJjjxKrr3dMd4vzC9aeWLearfOXNaT6y375narrhFpI+eqCHb59a4KMHenhlLIlhWjy4PYEiSpjW+mN1rYYqCxiWxX7nAPfubI4DfRFOzubWTY/bKlTqRpMKKhFQmcqU2d4RcE2ztxo+VWJwlRH0+cUikiCsSe5rFSzLYnSpSF/Ux9hyiZ1d9jPohONH5lMkN764QU0z3YROryJddzzrnaY/6qN6mSSmJ3Z38ieXqIAe29VJoarxwb12p3UyXcanyJxz1uq+qI/lQo2qZmxZXzHLsnjz6FGWc/a4tSQJ7IvD5z7xsZb3qWjw4PY4mgmLhRqKJNIdtpVx6VKduWyFJ/d08eL5ZTyyRLlu3HRjarORKdURBHuv2ujhxQMqI4kA/haxKbhWukNeBMAJA2N0qYRfldANyy2ObUXslFsNU7DPSA/tH8EfibNnaBvPP/88X/ziF3n66afv8FW+t/hVCbNegZK9p/f17CAa72C5xRVRdcP2xLp0f/G9M4v0R31XbTzd9GoiCIIEPAN8HNgP/JQgCPtv9n3fCwRwCwWTqTLDic1lAN3Ap0gosohlWW6caLFmUNV1DAsmUmWWCu+Nqd5MtnrTYxH2+NdKBdeyLBZyVffvTsxk0Q2Th1eNiBWrOkcnMgjA+3asJIJZ1ooX0WvjaR4aiTOfq9IX8brvDSv3QSvgX+dDPxj3M5Uu0xH0kFxHETacCDB5SVf3enn/7k52dQVJl+v86fGZG3qPwbifbTEfL48mCXgU9vWFGV0q8qoj+xUEAY8iXrMRYF03+ZO3ZnhpNMnffGzEjex+eTSJZljs7AriVyWifpVcVSPkUciUNQ70hQmo0qV1wpZlV1eIQkXno/ttH6ClfBW/KlPVjC1t3Fqo6rxx0dlUKAKSJHJ6Ls/u7mDLRzdfDo8scvdg1P2z6wPUogktNd1kbMluJEykSgwlmg2go36F+VyVDzredDXdQHGM4yt1g47Q5isURv0qsiis2xR4aHuCQlVvSn2MBVQSAQ+jyRJeRcR+mcVs1i6e7uwKMrpsFz62qonrTKbC7l27kYN2V7aaS/EPnvoQZ860vk9Fg5jfgyIJKJLAfK7Ch53PzFS6zLHJDHcNxijVDeZzFWRRIFXYWmNg/+I/fYl6tULZ+Yz4FYEXX3mdmF8hvsUaDiGfTGfIQ4czPruUryKLAts7Aq7Vw1bk1bEUkgCOPziHhrqwgKBPpqura8sVfwC8skRm9Dil2bMAdA3t4t//4ffYvXdfSyuiaprJdNpuSDaoanZqbcc1jJ3finLyA8CoZVnjlmXVga8An7kF73tbMS17Nr2RvmBHwG/OApAgCHQ7cfBdIS+qU/CYTlcIqDKTqTJT6fJt7+SX6zr5Sv2mu53JYp3O0MrNe2Yhj2lZ3DccwzAtXhlLMRj3N3VDXh5LopsW3WEvTzpdyPOLtrFgg+l0maFEgDPzefY6BoR1wyTokVtqlMOnSAgITfLpkc4gF5P2BlwU1m7s9/eFOTV34z5Ajff9xffZnkxfOz57w6OHD+/oYD5X5WKyxOO7Ogl6Zco1nefO2hHE9w/HXfPmK3F0Is3vvjrBIzs6+PF7tjX5Un39HTse8aP7e/je6UU+sr+b584sMpsp87GDPVQ1E8Oy6Il4L/f2LcXdg1HmchX2dNufC92yVVOCIFBs8YjvK5Gr1HndKT7GAx5GEgFH1SG3RGrgjSAIAvcNJWgEF709lcEjixQq+k2pCDcqVc1gNlthMO6nbpiOOkHnwpKtbukM2kmcjVHjs/MF9jnPHc00iQc2j/9PA0kU6Iv6KFTXqrr8qkx/zMf3Ty80/X1nyEOmVCfq+AAVajoLjvlzX9THnFMM2qoF5VfHUuiSByQFyzLR8stk01vDp2I1Ia9MPKDyxsU0H3IUuXO5KsvFGqIgcLg/wrdOLhDwyMzmts4Y2DPPPMMffutHfPu5H1F1nrnl2fO89MPv8+zv/SbRFrCruB4CqswH9nbR8C9YyleZyVbY3hXgjS1sBP21Y9Puc1aRBPb3hhAQtqQfYQNRFHj6536SvXv3AVDRLYr4+dIff6OlFVE13WAiVW5KL//huWUSQU9Tk+5y3IoCUD8wverPM87fNSEIwt8SBOGoIAhHc5k7X72taSZhn+KOKl1MlTZtAQjsw4lmmjyyI0E8YG/AptNlVFmgVDeoaSaZ29yhTRZqSOLN3VJL+WpT8Qfg2aMz3D8cRxQEfnB2kXhAbVL/QHP6V6MA9fZ0liPOpjxX0Qg5/kjzuSq9zsG+qpkt5f8D9uY95JObTFm7Qx4WnW7a9k47Fn41Mb9K7haMcBzoi/Dw9gR13eT3Xpu84ff53D39fP/MIlG/wnS6wgf2duFTZb7xzhzbOwKMLV9erbSYr/IbL45jWvBLj21fU8SZzpQZXy7hkQV2dgVIBD1oziztUqnOozs60E2TmUyZw9ta2/+nwWDcT6pYxxJWJNcvnF9mKO7n7RtIdmsFLMsiX9VZyNuH2O6wl96ol6BHpnOLJPdcjoG4j4hzIJnKlLEAC6slD/elmo5p0dQkODmbw7RsX5uIXyXokd05/DMLKw0Gy8I1zN5sdIW9bpLXpezqCiKJYpMK6MHtCbBgn+N9dGouR1UzKFQ1RME2z1YlkdwWNYK+sFhgupHCaZjUly/e2Qu6Q9w9EMOnSMxmK8QDKl7ZTrhaLlSp1A0+cqCHUae4WtNM8tWt0YD41Gc/R7Sjhyoq2aL9uUq+/X3i0ShPfvxTW+6AL4oCH9rfTd1Zg1JljeNTGYKq0rLjxlfDsixOzubdvX1nwENP2EfU31pN7BthMO5n565dgJ1EOZsrIweiLVv8AVuhXqrpTcXhpUKVfEW7pommW1EAWu+uW7NrsCzrf1qWdZ9lWfdFYol1XvLeUtONJp+ZqjOzv1lpFDceGI67XkbFmk7Up7BcqOKTJS7e5IjPlbAsW+59s2aXr4yl1qR/XUyW+OkHBik5HcVyXW8yf14u1Dg1l0cS4f27VkbHNKdba79vkkd2rvy3xuHN9oFqvc5K3K82FYBWH1YP90ebfHVWcyu6bT//yDCyKPDc2SXGlm8sXl4UBH76gUH+4I0p9nQHObtQ4OHtCYYSfv746DR+RaR0iTKlMe718miSn314iAdG1jdA++4pW0n0+O4uXhpN8eF93Xz/zCJVzWR7wm8XEJ3RyT2rFGStjCAIrqKuy/FlePNiikPbIls2drWmm2i65RpR9oS9jC+V2Ncb2lSpTreDoEehP2YXVnUT5h1j+XILqsUypTqKJJCraISdsb93HP8fjyxSqRtNzSPNsFBlkbpuEvRIN52IeacIemRCXnndka37huLIosAPzqx4K/SEvXhVkYhPQQRyFR2/KnPGSZgUsKPkb0WjYTNSN0yWc/bB3sJEmDtJR0dny/tUXMqjOxPopkWxqlOs6q5Z+mK+xtszWSI+ha6QlxfPL6NIIsvvkX3BnaYsBvjk534CJRgFWcWyLHx6gb/3d36RRGeXO62wlegN+wABj9OVOrtQcM9puUprjhxfiZlMmXJdd9fkfb0hNNO8pnGfVifkVZrOn/PZGhXNQG9hz7lCTW8q/JmWReOoJwgCE8krn/lvxYoyAwys+vM2YO4WvO9txVjll9MKKJJI2KdgAT6nU1A3LNKlOrppMZ+vUqho5NeRdN8K8lWdmm7etEldtqI1JbO9O5vFr0q2+uPEHA/vSKxZ7F68sIyFHdHcKPJMZ8pucgLYm4uesBfNMJGllQ+MQGsZQDcI+xR0c+3CZ1oWQe/6qV996ySE3Qh9UR+fONSLBXzppYs3XFQKeGR+7FAv05mKK/k9vC3KPYMxFgs1Xl0VE390Is3vvWaPe33uknGv1WiGyffO2KMLR7ZF6Ql7EQQ7tWZ7Z4CAR8Z0fKMsi017eLsRgl4Zy7J4nxNlPZUu0RvxsZCvUruMIWwrU6kbjC7Zh1dJsDcYc7kKXWHvpkp1uh34VImB2ErR493ZHB5JasmElnOLRfoiPsaWiuxwpNYN/5+IT2GxUOX9Ttxqua67z5OKZtAR2twb88G4n9I6hqu2wbVFR1BlZpUKKOhREAXBVT0FvRKvO2t3f9THcqFKsdaao4JXIlmsIYkCSccAWgT+2zP/hTfeenvLJfd0hLz4VQmPInJsKsNfudseGJhOlxldtJU/Hz3QwyvjKYIemYVcdUsEEfzgzCKGCZgGgiBgVgpIsW30h1Vi/q2pOA35ZOIBxd3Lz+cqiILtKfbiheRVXt16fPfUAghgOB+HnqjP2dO3zln2RvGpEl1hDx1B+2dxMVnEslpTldwgW6rjXXVGmclUUCWRHY5A4gdXSWS+FQWgN4FdgiCMCIKgAp8H/vwWvO9tRUBoOQ+HbicOPuSV8TvdghOzOTqCHt6dzaJKkjuHf6tZzFdRbnL8azZToS/aPK7zO69O8pkjfcxlK/gUiRMzOR5zDqgNfnh+GYCBuN89sB+dSLsReMlizY3unUqXGYrbJp52tVRoyQKQX5XW6PB6wl4WnXEWWRTWJMMd6Atzci53S77/5+8fJOSROTGbuya/nssxEPOzvTPAcrHmjjDu6g7xV+7u55snF5jOlN1xr19839pxr0t5dSxFqWYwEPMxulzkg/u6eP7cErpl0R32sLc3TE0zCXllttp+6/C2CKlSnSd22V4UZc2iUtcR4IZS3TY7xZrOy06RMexV3LXJtwlTnW41qixyz2DUlf++OZHGo4g37Pu1UanpBhcWC+zpCTGetMfEM+U6k2m76NEbtpNqdnXZSsFTc3kO9jk+WqbZ1MzYjCSCHlRZXDe5a3tngJ1dQb6/SgV0/3AMVRbdA8lstuIaQe/oCtqju9bW8wF642IKsKhg3w+RoI+uzm6G+nu3ZHJP0CPjlUUmUyUOD0QRBajqJulyHcuy2NsTQjPsMWzdtCi0oLJwNYZp8fbFRb71wusYgt1cMDPTVE2Bf/ILP45Zyt7ZC7xD+FWZR3Yk3FHUxVyVxXyN4Q4/x50U163Ec2eXqTvuz6oksKsriCCw5RtSYKtx93SH3WJhoaqRLWst+6yp6yYTqVKT/8/ZhTzlusFdA1EM03KTsS/HTReALMvSgS8A3wHOAH9sWdapm33f24lhWoiifcOALfG+NHZ8MxL2KZimxf1DcbpC9mFlNlPhUH+EiVSZkNfuptzqFA7dMFnIVd2EpRvl1fEUD29fGf/SdINUsc4H9nXzrZPzfPxgD4WqRsS38ru6mCxxMVnCp0i8f1VhqFDV3a97eTTJo44yaGy56I6P1XWTsE9GbMHZWY8sIkvNZs/bOwKMO945+3rDnF1oNn3uCnlYvkWpG0GvzOcfsIWBX3p54qZkmA+OJOiNePnqsRWrsW0xP/cMRHnlKuNel/Idx7j0we0JBmI+JFHg5dEknznSz7kF2zS8qhvUdbNJQbYVODIQZTJVxu+VVh3sM0R8CpNXkZK2IrmKxvEpuyAaC6r4VZnBuH+NR9lW5Z7BGD6n0XBhqYAiiVQ1s6XUYtW6yXy+yraYn6pm4FdlTs7a94QsCnbXMeRxla8XFgvs7Aq6qsebfSbeaSRRYCQRWHds6/7hOG9PZ+kMeZh1vG0G43403XRTNs8vFtENC9Oy6I/67GKQsPWSwN6dzTOVXmm+9cX8tm+UKGzJ5J6D/RHKdRMLC9O03DV1MV/jYrKEIAjcOxTjWycXkASBdKm1CsuXkq9qTIxdoC77UIMxAP7WZz9ALNHBxOg5vvvNr9/hK7wzSKLAxw/2UqrZ60WhZnBsMk3Io1DYIt5QDTTd5GKy5O6lu0IehhMBwl5ly/v/gD3ytL83hCLZzbm6YTKTqbSs51zdMJlIlV21D9jrpyjY+47jUxmyV/m335KhUsuy/tKyrN2WZe2wLOtXb8V73k5qukF0laRyPLl5E8BWE1BlZEngkR0JJGfMqaobxPwqS/kqFra3ymLu1s5UZyuaOzZzM5RqOqFVUsY/e3uW3oiX03N59veGOb9YZH9vsylvIxmqP+p1iwCZcr2pSJQpa8QdBdBSoUaXs9moagYx3+bu0F4OQbDNSVcfxgbifte0c19vyPVmWP2aW8nHD/bSF/Eym63w269M3NR7/dQDg5yeL5Aprcx9f2h/Nz5VvuYxrblshRMzOSRRoFI3eHJPF6+OJQl4ZHZ3h6gbFh5ZwrIsZrIV9jud/K1C2KtQ100EVjzFXh5LcqAvwqtb0AcoV9FcA9LesJfpdJnd3cFNr+q4VfREvCScaOJMWUMzTAShtdRiFU3HajzbnOXxhOP/45NFshWN4VV7B8MCWRKp6SYhr3LTI9Ebgc6QHd19qQrIq0jUNJMP7u3ke2fs57AgCHhViR2dQTyy3YDwKiInZ3OuEbQsilvOxLWmGa76VgAO9kaI+Dd3cfBmeN/ODiwsoj6VU/N57h20ix6z2TLHnfHKD+3rZjJVQhIFFnO1lk4DOz6Z4ZEH7yfW0QOyvaY+vKefn/qpn+Hv/Yt/x9//e1+4w1d45xiKByiXCjS29Cdmc5RzaU4ff5NkiylOr8SbE2l003S9PXd1hxAFoe3/s4p4wEPYuVFqusV4stiynnM1zSBTrrtnWwDDNF0P4KuNf8EtKgBtNmq66UaVAowtl5qqaJsVUbQXA0kUUSURATBMeOnCEgGPzFSqRMgjM50p31JjrFlnPOtmmEyVGEr43T9blsVLYynev6uTNybSPLQ9wVtTGe4dirlfY0vc7PGvwXjA3Wy/cTHtFoPmshU38atBo9BhWBYh3+ZXfl2OqE+hpq38nhVJdKW0HllqMolukAiqt0wFpEgif++Du5BEga+/M8f3nUPCjSAKAj/30BD/6bnzrqqpN+LDr0r8xYm5a9ocfve0/f33dgfZ3R1ClkS+/vYcv/joCFXNQJVXlsOpVJnd3VvDAHo1siQ4Iy32enh6LmebcM8XtoxvxzPPPMP03HzTOFNm8hwVzUBVJILerXtwW43fI9MXXVmzz8znERFaqjObLtWRRZFiVSfgjIw3DPQjAZVy3eDwtigA+VVJkxXNcBsNmx1ZEhnuCKzrH7ijK8hMpkpnUHXHy+8ZjBEPqO7z2KeK7mbUNoIWWtIr6nIUqhoCtik2gCDAkYEIkRZtPl0LvVEfQcdg/ORsjo8dsOPg0yWNjLPu+lWZ/qiP18fTVDWDcgsVli/luXNLpEt1EjG7wRlQJaYzVQ4Od/Gzv/C3kFugkHyj/OHv/DqZ2YtU5kYBmE4W+Juf/zTf+83/P//iv/z+Hb66944Xzi9T003X/6cr5MHCcoMJ2tjKl8SqgsjoUolSzWjJvWtFMxAQ3PNsqWYngu3tCVOs6rx+8epp61tyVTEtq2lmci5boa9Fxj06Qh5qhoFXkQg5Rowvj6U4vC3CS6MpZKcIkC7dGgf9qmaQLtZvugD02qqiDdiHCcOwqBkmH9rXRVWzDaZXq4waEreOoMqjO1dGxxbzVXoj9u/z1fEUj+6wx78M02q64VvRB2o1Ia+MtTaQz8WvymuStA70RTh1i3yAGu/3d96/A4Bnnh/l7CWqo+vhyECUmF/lj4+ujIJ9aF83OzqD/PYrE1ccPdEMkx84Bah40MPjuzt5ZTRJd9hLIujh7EKB/T0hDNNCEkUMy9qSPi/9UT+aZfGR/d0AZCs6kiRimCbldcxgW41nnnmGL3zhC3zkQx/kzfMz9l/WK7z07a9x/p2jhFtE1XEr8CsSwx0rBaCXR5N4FemWPVs2AmfmCwzE/Ywni+zoDJIs1phzFLTdIdsfZ49TKD45l+Ngn32AMy3L7US2At1hL5IorNlI3zcU4+hkmg/t7+Z7ToF9Z1eQVKlOyGP/+8eWSsw7xaG+qI9UsUaxqm8JY1+AY5MZ/B6ZolNAkwSBvohvU6fO3gpifpVcRUM3LIYSfsLOfnUmW3G79h872MOrF1MIAi07ylGu62TLGqfm8tSdxuxIR4CLySI9YV9Th38r8tOf/0m86TFqTgFwcinLxPwyvSGF4PDBO3x17x1vTWVo5Lp4FZG+qA8LXMP9NrYR9I6uIN2OMtkeTbZacuQ4W6o37UXPLRYwLNjbE+LF0WU0w0K5ylTOltzJCtD08DUtWmaGMuSVsSw42B+mP+aYYdV07hmMccbxfAmoMpOp0i2R1KaLdQTh5saHLMuiWrf9FRp89/QiHSGVQlVnpCPIy2MrPj4NGl3FvqiPuwZsZVClbrjeTpZlUajqbsd+NluhP2YfWC71gWpFvIq0pvwT9sru5upQf2SN6fNAzMfMLTYK/9jBHj5xqBfdtPjVb525YdmuPeMbJuJT+OG5FXnjvt4wnz7Sx5denriseun3X5skW9HwqxIPDMeRRIFnj83wd5+wi1NnF/Ls6QlT042W8AO7Ue4ejDKfqboKIICxpSKyJJArt87B/nI89dRT7N+/n7NnzvAbX38eAK2cI9HZzccfu7dlVB23AlkSOdIfpRGqeHo+j0exx3taYVxDM0zOLebZ2xNifLnE9s6gO/6liAKaaTIQ87uF4oZJtOv/00IHfEUSGYr7yV4SvdwYA1MlkXhAZSFfRRQERFHgyIBdDFsu2kmkmmGys9M2grYsi2oLeUVdieNTWVLFGmmngBHyykiS2JLhE9fD7u4QxZrOUMLPdKbCYMIepVzIV3nLMfjd0RmkWNUQBIH5fGvGwc+mK3hkkXxVI12y75EP7O1Cc/aokRYqJN8IvT3d/Nr/9jRyMIZlmogeP4kjH+B//MGfYUpXDv1oFTTdZDJZxnSeLZ1BlR2dQUJeZUurwy5FlUX29YaIBRs2HzqFmt6SRtBnFwqMrJqaGV0qEvTYASXPOWfj2FWKx1vuzml0+Fv14O+RJUJemUd2dLhFmbpu8vJokrpuYjnKhmLNIF+5uY6+ZVnMZss37UA/ulRk56oD53yuQqpURzcsPnW4F4CZTJnB+MrNXqytSNy2RX3u+M7x6Qx3O/PkE6lSk7fT2PJKjO+lPlCtiFeRUCSxqWs70hHkomPou7MryIWlYtNrBEFYkx52K/il941wuD9Ctqzxq988c8MV+cd2dZIu18lWNEZXXXsi6OEXHx3hm+/OrVEwfefUAn9yfBZRgJFEgMd2dfL9M4vs6Azgc4qOmmGhyrZ3hyqJWzZVYXd3iOlsGVFaWSNfOL/Ezs4Qb062fupGV1cXzz//PPFEB3L3LgCEcoZP/NQvsGeol8gWLg6ux5GBqPtZWS7Yh3+zRaJXK5rBYr5GX9RHsaYT9Mju+JdPlahqJonAyv1gOY2kqmYS87fexrw74kUUWKMC2tkVZHSpyJN7u3jBGck+0h9hX2/YXUNkUeCtyQx9UR9z2QoWreUVdSXKdZ2JVNn98/bOAAGP1DJNxxvlsZ0dVDWDoYSfY5MZ9vXannuL+SqTzs9LEAR2dgV542KafEVrKYP5Bt86NU93yIsiia4C6OEdtqJdQNj0RvK3AnvfbqGX7D2I3HcAjyLhVcTblmy8kXhnJkvdMNw1czgRJOSV6QxubXXYevRGfO6eRDdNplKllvOcsyyLswv5JpuKcl0n4FGYzVQ4u1BAAB7efuVwnNbaoVwDNd0g4ldWfGBMi1Z7DneFPAQ8MhYgCbbC6eRcjq6Qh9NztgrIq0hMpW8u2Sdf0SnW9Gs24b0cRycz3De84u3zgzNL1DWDPT1hon6V+VyF7nBzpf+lC0k0w2JPd9DdOEBzMen1i2keXDVWNr9q1K+mNftAtSpRn9K0aRrpCDC+bBdOJFFgvUZ9aJVK6FYhSyL/9GN76Ql7GV0u8l+eu3BDKgGvIiEJAh/e18UL55fIOrGxDU+rn7xvgAuLRf78nVlyFY2XLiR55nl7dnxHZ4CPH+rBtCy+dXKev/HoMGAfRLzOQcV0DKD39m4tA+gGkiggCQKCAF0he3NxbDLNof4IxyZavwDUwEJCdMw4jdQUAJIoElDbm/HVdIY9dIXtblupbrJcsMMGWsGvo1LTMS0L0dkrWJbFCScBLO4UfnZ12+tEelWSaFU3WtKY0yNLDMT9a7yA7h2KcXQyQ9AjU9MMdMNkf1+E2WzVLQBphskr4ykkUcDEHoMqtpBX1OWoagZYuM9TEdsjKdouJDPUESDgkZlMlSnWdB7aHscri+im3QRsFBo/c6Sfl0aTADfdtNxo1HSDswsF3pnOuJYNflUkW9boccYuW7VZfa0sLS3x+c/+GHopB3k7xdUKd/NLP/kp+nw6L5xbvsNXePt54dwSmmFhYk+wNHxNW2nM+FYR8cqEffY+rW7YCsxWM4Ku6SZLhRo9zn1gWhapYp19PSGed6Yjwj6Zw9tiV3qbLVgA0kziqx6+c9lKy8U9R/wqpmUhiwKDcfvftlyo0R3y8u1T9gIaUCWSxfoN+3qUajrvzmYJqDe3AJmWLQ1vFJHyFY1MqUauqvP5++0Y8RcvJHlsVcQ7rKR/dYY83DdkF3nsYp5gp41YFlXNbPJxMWFlM4/lGna2MlG/0mT2HPTITYezmF9Z49mxvzfM6Zvw6rkcYZ/CP//EPnyKxI8uJHn22MwNvc8Tezp54XySn35giO+cWuArb07ztbdm+Prbs/zlSfv+ns1U+JVvnubXvncOC7hnMEo84OGxXZ18/fgsu7tCBByPijML+aYi4sVkif1btAAEtozWq0g8vN3uQs7nasQCtl9DK85Sr2ZpaYknnnySkhJCEEUsXaNSyPLN3/p/MCu5Ld+1vxS/KtOzqjj//NllFFFsSuvbrKTLGoooUq7reBWJxXzNHTH1yjKJgMddJ07MZF0z6Fbz/1lNb8SHaVnuKALYRXnNsNXFDwzHeXMi7TQXLIYdifpkqszSqhQsRRK3hBH0iZkcUb9KueG1J8D2zuCWNoBeTXfYy9hSgYhPIRZQ3QbdQq7CWceyoCvspa4bSILg3kOtwnKhhiqJjCVLFGsNdUeA84sFhuJ+4gGlpVXq18Kzzz7L2TNn8BTnOHjXvQCokW4uzswz+sp319gYtCKvX1xpvvlVibBPcfx/Wv8Mc734nVTfxqfm/FKRYlVvibH0Bg2lYGNtmMlUqBsmu7qDPOcUgA73R656jtlyBSALq+lDM7ZcZHvn5o+AX03QIyMKAru6ghwZiAKwmK+hGSYLjU2YICBLAvPZ63+gVjWDd2ayKJJ400aGZ+abD9/fP7NIrqozFPejSCKmZVGuG2tMu88sFPAqIh1Br+vxc3rVe51dKLC3Z0UeZ17y4bdgS5gwBj3K2oVv1X7iyLYo7zhjDQ22dwa5uNw8GnarGEoE+Mcf2Y0A/N5rk7w2fnWn+kvpjfhYyFfxKiI/ef8gP/XAID95/yBP3TfAj9+zjc/e3c/nHxhkuVBDMy3uH4rxV+8b4CP7e8hXNE7M5viJe7e573duocDu7hCaYRcMs+U6nVvY62V/b5hsqc4jDfN0CzLlOhasMQ1vNZ599lnOnD5N790fBCDoU4l1dDP12l/y6ve+cYevbuPhUyR2dK2ss2/PZPGrdrFks2+4Ts/mGE4EuJgssb0jwInZLGCnWNUNgz4nyQhgOlNhIOZzFUOtqhTzKhLbYr41KqDGOPGenhBnFwqA7c1231AcSQDNtNAMy0nl9JEu18lXW8Mr6kocm0xTrGmkHf80SRToCnu2xN7jWtjZFaRQ17l/OM7bU1m2NRqWxTrvzq4c7A/0RXhpbNmxBrh1CbZ3mu+fXmRnZxDTglTRvkc+sr+HuVyVeEDZ8gbQAE8//TRf/OIX+ddf+FkKjb6CrPK5f/R/87O/+Lco11q7KVXXDSZSRXfbngio7OgMEPTI7UCKdfCrdgGoMZ6dKdUxHUFAq1CuGU2F4bMLeaI+hdGlEsuFGrIo0BPxXTWxdsvdPZce/O3N3eaPgF+NJAokAioPjiRYzNcQBdBNy04I0033EBfyKMxmK2jX8UCtagbvTGcRLKHJtPlGOT6d5S6nSFXXTTLlOjOZCp++qw+wO2iHt0WaXtOocN47GKM7vHJQf3cm637tsUsi4xfzVbdTrRt2otjNjq5tBryqyKVhK6okumNh22I+ZjLNM9SSKLhRk7eDB0YS/OxDQwD82vfOM5m6/lHEw/2Rpg3iamq6wa9+8wypUp2dXQG6I16eO7vE3YNR/vT4LANxP4lVIxqaYdr+P453x1bnrsEo48kSsYBKY3/x0gU7Me2cc7hrVZ5++mn+7f/1a8Qe+CwA8YCXH/vM5/jC//q/8/d++Zfv7MVtQCRR4PC2CB7Z3owkizUnadKksImLhbphcmahwJ6eEGPLJXZ0rRhA+xQRVRaRpebOvCAIVDWDeEBFbGGlWH/Uj25YTcWbe4diHJvMIAgCXSEPi/kqR7ZFKdUN159PN0yOTWbY2RVkfLmEadKkTm1FsmWNiVTZjYCP+hVEQdjyBtANHtvVQbZkJ7nO56r0R32IQKGqN4VF/JW7+3llNIVpWRQ38bqymsbnYSJVIuJTqF3i/4Mg4G8rPAD7ufzBu3diWhZxv10Us3r3o0giIa/MRPLm7Cw2MucXC1TqJiVHud8f89ET8bbkmPGtQBIFhuIBYgH756MbJlXNaAlfwgbnFvJNk0uzmQrxgMpbjk/nvYPRa9qDbKkCkGFaaw7+mbJ2VafszUhnyPZmyFV01zx5Ol1ClUSedxzCGx4wy/lrS2Wq6yYnZ3PopnXVyuK1YJgWloVbxf7R+WWyFY3eiJe9PbaS553pLEccaT3YSp7G9SeCHjc63rIsdOf3a5gWpvP/G4wvl9jRaRf6arpJLLA1DvoeWcIji01ds6GEv8lk0bKsNZ1YryLe1tjvn7h3G+/f1UFFM/g33zx93SZt9wzF3KSQ1ZiWxf/z/QucWyzQGfLwLz9xgF963wiL+SrPHp0mW9H48L5u9+vLdd3djNcMg6BHaunD27XQFfKSq2iYFoS89ufk5dFlDvWHeW08fYev7vbzub/2i2Sq9mZhMOEjFg7x1M/+Ev52135dDvVHXMXLcr5KuaYjCQLp4uYdA6toBouFKr0RL/mqRti7YgAdVGWGE0GGV6UWNdLhKppBR4sbc/pUib6ol/wqDx+PvDIG9vjuLn54fhlVtp/FjZ9NulRnNlumP+pjNlMGrJbwirochmlhmFbTiPWuriBBj9weJXXY0RnEo0icXyyiSCI7OoMMJeyDzWSyxFLBVqiHvIq7r7vRFNGNRrasYQHHJrNuAd2niMii6MY3t6qS8EYIeRV8qkxfxF5PJlO2Sn1fX8g1n29FXji3hGGZWIAoQH/MjygIWz4d7kpE/Yo7hl03TM7M5SlWW2fk+N3ZnHueBbvxdqAv4k5z3DUYYyRx9cmmLVUAqunGWuPfFpUgh7wKAgKiCJ911DQvj6W4ZzDKK6vGboIemcl0CfNSmcgl6IbJqbkcFc0g7L01C8+7szkO99uKHdOymEiVmE6XGekIIIkCxZqOV21Oyzg1l2epUKMj6EGVRbpCtqpnKr2SEvbubM71Y2gwlS4zELM3FnXDJLaFZvCjgWYfoJGOgJsEBtAf9TF3ySjgvp6wK+W/HQiCwC9/YBc7O4Ms5mv8n98+e13SblEQiPnVNZvBL78+xUujSfyqxP/vk/uJBVTOLRb59JE+7h60E4uGVyXDnZkvsL9vZQQxWaw3JcdtVRrjnTudn8V4ssRIIsDFVPG6FIObDcuymtLlfKrMnu4gnaHWTgy8GeKrvDt0C169mCLgkZnPVTbtiE9FMxBYNWOfrZBxYrx1C6IB2VWuvjvT3KQI3aLn40ZmW8yP7hR8GuztCXFqLk/Qu2IGvb0z4CaVZCoayUIdzTBtI2hRJFfZvEXCq3F2IU9nSHXNrgXgroFY++C2CkEQ6I/6OD2f5/C2CHXdpCdiryWpUp1jq5In7x+J88K5ZRZym3+8FOyGZ3/ER0Uz3PGvwbgd0rEt5ifkVdqFwlUEPTJ9ES8ep2GXKmrkK3WGYgHO3AbPyo3CixeSCDQKgnZD16Tt/3MlIn6FPscgWTfh5fFUS3nOXUyW3PNusaaTr+r0x3xuqrNmmE3nmsuxxQpAJjH/1jj4+1QJryqxryfsmssVawb3D8eZz62MfamySFU3r/jhMEyLMwt58hWN6C0snLw7m+OgUwB6azJD3TAZiPnZ5WwYX7qQ5LGdHU2vaZg/v29noqkjf3Qy45pBn5jJcqi/eWzMsCw3lteyrFsyvrZZiHrVpiSwzqDHNTMFO8r5Uh+g3d0hLize3nEfryLxv39iHzG/wonZHL/x0sXrev0H9nbxx0en+YPXJ/ny65P8m2+e5o+PTiMAT+zu5MJSkZdGk3zzxBweWWIqXeH+4eZYxPOLtv+PZVkIgq0U28oG0A2ifhVZFHhit22+XtFMeyzQam0foKpmuptJVRIRBYG+qK9pZLBNMz5VakppfPNiGkUSqWqGK1vfbKQKNRRnVFaVRHf8SxFt3yPDwPWlW8jX6A57MEw7eGErKMUCHpmusKdpHOfeobh7YL9/OM6bk/YYtiAIeBX72Vuoabw7m0MAPLLoHnxbkTcvpqnpJnXD/gyIgh0BH2mPGTexqzvIQr7C3p4wE6myO9qSLNaZWzWe/qnDfbwxkUY3zE0/BmaaFi+OJlnIV+kMqW5x+aMHujm/VGAw7ifRgpMJN4MkCnxgb6erqDOxm9p+j0ylbrREUfBSarrB2HLJ9f+J+lWG4n6CquSO1rZZi1+VuHsw6v7cptJl8pXW8JwzTYu6sRJwdH6xQNSnuPYMQ3E/pZpxTbWOLXUHWVazAXS5ruNr4UJAV8jDRw/08PJYkkFH/XJsKkPQo/D6xRUVkF+RmLqMD4tpWpxbyJMq1okHbt0hSDNMBAG3w3F8OstUqkRnyMPdTmd1Ib8S2w62/9DLo/Z1xwOqW/AB+1Aa9MpohmlHWa/qnFiWZZs/rcKjbJ1bP3DJuN6lSoaOoGeNkkaVReq30who1ff+335sH7Io8M135/nWyflrfm3Iq/B3n9jJTz84xOH+iDv/+jcfG+GnHxziUH+E/qgX2bkXEkGVI5f4SWmOH5RmWARUmYlUua0AAu4aiDKTqbCrJ+w+JN6ZzhLyyu74YCtSrOm8PGZHDgdUiYhPQZaEJhP6Ns34FInd3UH3PmkUl2VRJL1JxzVOzeUZTgSYSJYZTgTc8S+PLDHSEXA3V40NpSAIVDSDRNCzZZRiA3E/1VXKUkkUCHllMuU6e3tCnJ3P41dlgh7ZVQ3nKxrnFgr0RrykS3WKNb1lFYUL+SpTqTLzWbuIoUgiiYDa9v+5hPft7CBd1BAF+/PkUyW6QioWMJ4qUXfuMa8iIQgCmmFs+pTBQk2jrhucWygQ9Mju5+jRnR3kqzp+j9SySYI3wwf39VA3THfM9uXRJJIoEPMrTcrdVmEyVaZcNyg6jZTeiJfBRKDdkLoKXvc5bX+GyjUdw7RawnOu6qiTG5yZz9MX9bp7lIe3x9d93XpsnVMwYFq2KW6DiWSZkQ7/Hbyi20s8oCJLdiz6Rw7YvicvnFvikR1x/uKdlYO2X5XJlLU1XRXLsriwVGCpUCNxC4s/AMenstwzaJs0jzoxff0x+3fhVSSm0+UmkyuA18ZTVDSDPd0hClXdjZhNFmtuWsKxyQz3DsaaXpcu1Uk4DwzDtJBEAc8Wqp77FIlLlz1BaE5GEwVhTVKaIgnvyeZ8b0+YLzy5E4D/8aNxvnd6geXCtcu8ZzJl/u23zqKbFp+9q49PHekn4lPoDnupaiaP7uzgyECU+4biTYezcl13lWBVzSDqVzBXKcW2Mgf6wowvl/Aqolss/dH5JQ71R3l5tHXn7VPFGqdmG/HDHrrDtuTc2z60XRZBcIygnZ9RtlynVLM/W/O5zRfbbJgWp+bz7O0JMbZcZKTT7xrOS5I9snK/4z03m624z6mabrjPma1AyKvQEVSb9g1P7uni+bNLrhn0Ur7KQNzv/owW8jXqhsmOjqB7YGtFRaFl2aln2YpGsW4/Q6N+O9K7XQBqZm9PGMOyWMzX2NEZRJFE7h6w93CpYt092ICt/P7+mWUWN3kc/JsX00T9KlXdIOeo772y6O5HBNgSSsLrJRZQ8SoSPY71Q8PKYFdPiJdHk3fy0m4LL5xbdPflkmAn4PoUkegWmWS5UURRIB5Q3UKZblrkKxrVFjCCHk8Wm1KKZ7MVDm+LctRpgPfH/PTHfJd7eRNb5qSjG6Z9mFllAD2eLDLSYglgqwl6ZATBHodZdvITZ7JV9nSHyJTr1FeNBSmS6Bgz2liWxdhyidlsxXXdv5WcXci7Me3Pn1vCwmJHZ8AdJXhpNMmjl4x//cAxf358dyeyKLiH+ZcuJHnUiaw+5yS3rGZsuegaZtV10/ZH2iJdWrDVPD7HpLNBb8THwqrD2VDCz9Qlyo5dXSHO3+YxsAYf3NfNZ+/qxzAt/vNzo/zC77zJz//Wm/zKN0/z7NFp3pnOrmtKnato/B9/cZpiTefBkTg//8hI038/PpXh7ksKgg1Oz+XdOVnNNNsP1VV4FQnTspBEka6g/Zk8Pp1lb0+IcwvFppHCVsGyLBZyVVf5FvTI7OkJ0dnutl2V/b1hQl772bpcrPPWZAZVFqnUjU13wK9qBslCje6wrVIpVDQKjo+LPRZmuomSl6ZUhjxbq2s/lAhQ0VZ+v7GASr6qYZi2GfQL55d5YDiOKNrjc7ppUarpWIJduBcF4boDADYD0+kKEa/s3jcCMJII4FekdoPhEkRRoC/i5fR8jrsHo5TrBiFHtZwqVjk9t5L2+fGDvbwzk6VUM6hs0vFSgO+dWXIbl40xyIG4n1xFI6Da90i76bCWhiq3MUZZqOqUahrbOwKcbkEfoB+cXXbPKn5VcvZlEPC0742rEfOrruevbpi8MprcdHuR9Xh3JseQY/BsWhaZUp2ukIf5XBVZhHLd4MA1+P/AFioA1XRzzez1ZKrMUKJ1FUCyJBL1qTy0PcH5xQJxv/1QnUqX6Qx5+NpbM+7Xhrx2t7ZxsJt0DJk7Arde0l7VDBTHX2MpX2U+WyHkUajrFg8MxynVdMxLfHqSxRrvTGeRRYF4QOGQY7ppWRbZSp1YQKVSN/Ao4prrvZgqu4ktNd3YklHfUX+zEfT2jgBjyyuS2YN9a2PV9/WGbqsR9KX8/CPD/OKjI9w9ECXgkUiX67x+Mc3vvjbJP//6ST7/P1/j7375GP/x++f5y3fnOb9Y4N/+5Rnmc1V2dAb4xx/Z0zT6Z65KhluPC0tFdnWtFIBLNb0drbkKUYCoX+a+YbuAlq3oSKKtFCvVNu/m+3JUNIOxZft+FwUI+1RCXtlVF7a5PGGfyjZHwWlhFwvBVhpmyptrXKOiGSA4o7ICvOsowmQRekJevKs686lSnY6gB90ZJfVuodFigIhPIe5Xm4rzDS+goFemXDcIOCNgjQL7Yq7KO9NZTMtWpyY3+TjPerwxkcbEQnT2IgJweFuUaHstWZc9PSHOLRbwqzKS89nzyiJV3WImW8VwQkpkyU7IKlZtA+DNSLmuU6xqTKfLBD2yq6D76P5uzi8WGEoE2s+cyyBLIg/vSJAt15EE+1nzo/PLBFSZqmM83ypUNYOxpaI77hMPqHSGPPhVqUnI0GZ9Ql7FLYRoJrw1nXPVdpuZMwsFhhwD6JlMhYBH5vS8vW891B8hVaq74UhXY8vsVmq6sUbJUtPNlq+yd4U8GJZFPKByr+OZ89Jokh2dQY5PZd0xm8ZGZSlfYzpdZjxZIh64Pck3xyYzrhnvX5yYZygRwO+RyFc1YgGV75xa4KMHeppe88Nzy1jAgyNxLibLrlGvfYi3FT+vX0zx4Mja+UdNN13DNOMSH6itgl0AWjm0b4v5mFllsBgLqGuMwP2q/J7G9EqiwGfv7uf/+MxB/vCXHuK//8y9/MMP7+aTh3vZ3R1EEgWmMxWeO7vEf3thjH/07Ducns+TCKj8i0/sX/NZXk8NtppGcci07I36RLLEvrYBtMuOriCFqu4WgMB+4HgVibls6/kAFWs6xybsmHtVEugK2c+LoHfrrRfXi0+V6I2sbDrSpZrrudfwQNkspIo1VElEM0xkUXANoCVR5EB/xPWoMy3L3ZxXNIPO0Nbx/1nNcEegqQB0sC/MKUe1cf9InDcn0uzqCrrpaFOZMrmK5oyn275ArXRwAxhbKjKTqZB1ip+iKLC3N0ikvZasy/t3d7pj350hLxXN4H7nubOYb1YBPbGni++cXmRhk46BnZrNozpNqVJdd43yH9/TxXiyRG/ES3wLNimvlU8d7qVUN9wi2Q/O2SOnflVmdpM9a67EQq5KqbZyf3QEPQx3BLbUmPHN4FMl7hmKukWOVKlGtrz5C0BVzXDFEe9MZ9kW8/G6k+x9afr11dgyBSCgpQ2fL0fDSM6YfpdyxV4czy0WMbUqueW5Jtlk2KtwMVnk/FKBuN/jFoVuNaNLRXZ0BijWdC4sFeiP+TjYFybgsav4xUuUGJZluelfT+7pdEZT7Gt742KaB5yiz8Qqpc/lEKDli37r4b+k6CVLottVayDAGh8gUWDN170XCIJAf8zHk3u6+Nvv38F/eOou/vhvP8x/eOoIf/v923lyTyf9UR8dQZV/+cn965riHZ/KuF4Cl2J7lNj3QV03Cftkzi4U2Nt7+YLRVuPugRgXFov0RLwozufthfNL7O8L89p46iqv3nyki3VeGbcLQCGvwt6eMCGvclkFWZsVPLLIzq4gjaW1qptMpEp4ZGnTjWucmM0x0hFgKl1mIObnpHP4VGURw7LY6agGJ1Mlhh3D+LphbtmufcSnEPIp7u9YEAS6wl4W8lX29YQ4M5/nkR0drjoqU9YQBBiI+Rhbtj08Nmta3OXQDNPu4DsqW1USiAU8+LZg8+laONQfoVw3KDtJtZmy5h5mcpU6b6/yAXpybxejS0UyZc01iN5M/OW782QqdTqCXorOiGBjvEcz7Gblpfu1Niv0Rv3IouDaRUwl7WbU3p4QL11oHR+gF88vudk1sgjxgIdEQNkySdY3i1eRSAS9RJ1iat05W27GNaOBZVnUddPdk56ez/HgcJyjk/a+tSvkdb1xr4Uts7O1oMl8rxXi4K4Fvyrx9T/4Es/+X/+IV159DY/zG//6V7/C2Tde4H/++Y/cr1UkEUWUiPvUplGaW4mdvGanOfzJWzMc6o8wk6mQKWvcNxTju6cX+cj+ZvXPhaUi05kKEZ9C2Ke4Yzt13QTBvu5CVXM8j5qvO1fR3CKY/TsXtmQByKdIlwahrWGkI8BEsrTm7y4m10+Ie69RJJHd3SE+ebiPf/jhPfz3v3Yvv/XzD7C9c62PV2P863JRmafm8hxw1D5VzSDms81MG2k1bWAg7mOxUEMURPcz9NKFZQ70Rji7UNxUh/qrYVkWS/ka2Yq9IY/4FIYTfrpC7ZHAa0EQBO4ejOF1pOlzmZKbyoeAq4TY6JimxenZPPt6wowtF5FEwVVBhr0yoiC4jZETMzkO9a/4/2zVpDhBENjeEaS0SgX0xO5Ofuh05jsdFbIkisScMXTLtKgZFmcX8kiCQKG6+TuzDZKOgqyqma6fWNinrNmDtllBlkQ6giqjjsGpTxFRnbUkVdKYSpXd5pTi+OMsF6qb7r6p6QaLhSqLuRpeRSRdsq9/e2fASau1EBCa7A/aNBNwimVdYfvZXNFNynWdfb1hd/R4s2NZFt85teieZwKq7JrIb8UJhhsl6lOajKAvJjf3vnUmUybiU9zzebqkEfIrVDQTvyqSKtWaVEBXC/HZEgUgzbBHvVYfBhfyVdfIsZURBIHP/fhPMLStj9zMKOW0nf5V9nQQDgWIdg80mQEHvfJtNSl8/WKaB0fiaIbJOzNZPrivm6hPYSpdpscx3eyJNP9enl9l/nxiNu+a+r4xkeZBZ5TslbEUj+xIrPl+tgG03aXVDIuAR7ptxa2NjCKJ+JVmI+iIT2ny5zjYv9YH6EBfhNPzzX+3GTi/UGB39+XVPKNLBbeTb1gWoXbk6hoEQUAAIn6ZEUdZt5Cv4VMlak43pVWoaAYXHMNzAeiP+RBEoR3Fex289PUvE3RSNjMVg6mlLF/57V8noMrMbZI0sKpukCrV6Ax53HFosBNYdnQG2bdqpDRX0Yj4FHd/sRUbCw1ifoWgR3JTVgIeGc2w0AyTx3d38sK5ZYYSfsJeu3t9Zj7HbKZCqWbgkSVSxdqdvPxbytEJu/DZuB8kAfqjPnyK1FYTXoGdXSF31Ks77GU6XWJfj/2MThZrXFhc8Sx8Yk8X3zu1xHJhc903F5dLmKYddZ8q1twC1meP9DOXrdIZ8hL2yVtyj3qtyJLIkYEIpZpB40j3/dOL+FWZmra51KaXo6qZnF0sIDpt22hAJR5Q8chtc/DrIeZX3QTKumHyxniG/CYrGq/m7emc61tcrOnIosBRx7bgyLYYhapOZNWe9dWxKyv1t8TTqKabrht4g/OLRXZ3t24C2Gp2D/XzH37na6h6kVpyCssy8Q4d5uOf+hyDnWF+4IxXvRdMpcoMJQJ89dgM9w3Gef1iioe3x5FFgefOLfHBfV1NX68ZJi9csGOnP7C3i5pmuAvg6kP8Qq5KX3Rt9N3FZImRjhUD6MgWPtDFAio1bZURdGezuifiU8hXmw/1EZ9CrrL5DvrHp7Pcc5n0LwDDwi10CghIgj3G0qYZv0fCp0g8utMurhqW7ZGiyOKmj+JdTbGm88NzdqFZlQR2dgYRELasquN6eeaZZ/gX//QfMn/qddcX5/kf/Yh/9yv/ij/78pcoVDdHBGulbmCB23ltjH9JokA8qLrdNcO0EJ1DWrlubPmkOEEQGO4INBWFH92R4OXRJCGvQrlu8NH9PTTOtWeXipiWhYWFRxbIlvU7Mmp8Ozg5m2OxUKXgeOqJomAbQG/hvce18OF9XYwvlzAti/uG4szlqjy+294PVjSjaez4fTs7mMqUWcpXMTfRffMXJ+bJlXW2dwSwLHtUVsD2yjq3WGAw7iOxRUdJr4dPH+knV64TD9jr7ndO2WcYRRJZLmz+fUmyZPv/FOv2fj3skdnZFWyHlFwnAa/MvUNRAHTT9p9b3sTNhjPzeTds4+3pDP0xH985ad/7B/rCaxoMo6uCftZjS5x4arrhzgE2uLBYcM2DW52gM9aiTb2Nlp7D0moIokSmYo+81HTzPYnHK1Q1gl4Zy7J47WKKv3r/AOmSxlyuyt7eEAu5KgOx5vnFoxNpClWd4YQfryy6RqPpUp2o3zapThZrxALrb64q9RXDrLphEt7CJowRr0zNWDmErTfyJazj+SOwuUYmTctyZ+nXo1jTCTj+P4ZpIYkwmS5fUTG0VTmyLcp0usLu7pDrA/SX786zuyvEW5PpTXVfXIlUsc5bjnzcr8ocGYgSCyjtTuw18tRTT7Fv/34yk6cx6rbXXLmmM/zwJ/jwJz8LQG4TjIElizU8koRh2sWJU3O2R17Iq6CIorumnF8ssNtpPuimSax9aCMRsBNqGoW+7Z1Bxp3ny33DMRYLVVRZxCML6IY9nq5KIvO5GhZWk5H0ZqamGdR001XTigIc3hZZswdt08zdQzEKNZ2qZrCjM0C+orlNnPlclbHlovu8UWWRiE9hPFmksEmUqLphcjFZJFOpo5sWOUeJEPUriILAXK5CR8jjmqW3uTx7e8LopkWPMwY2n7efOXt6QrxyFdXDZuCV0ZRr2aBIthI5EVDbz5nrxKdI7O8Lu02pTLlOulTbtKEDZUcxC/D6eJr37+pgPmff+wGPzN5VCmXbw3CtKGI1W6IABGtNcPMVbU0sfKtSzKb4hz/346QnzuBVZdDsCuhrb72DZFQJeWV+4IxZ3U5eGUvx8PYEXzs+wwNDMSZTtjrn9Hye5UKNJ/Z0rXnNc05X/gN7u3hzMsMDI7YS4UcXlnn/rk4AvvHOHB/a173+N73k/LaVTRgv/Qysl/K1Yx3Pn/6Yj5lNlK5wfvHK41+n5nIc6LO9O2q6QcSvcmY+304AW4fD2yKcWywQ8Mr4nKLZC+eXONgf4exC4T1NibtdWJbFfLbqGtF2hjyEfUrb/+c66Orq4ofPP49aXMR0CkCevj382N/4+yQ6OvEp0qZI7XlnJsuOzgAzmTKSKFBzDCM7gkqTwvStqQx3OQbzFlvX/2c1oiiwvTNAcVUhZzhhP0/294Y5PZcn6JHpdCJqS1WNimZwZj6PABQ2odL0Uko1HRO7sZB2EmdUSSQWULdkCMn14JFttWmqWEMQBOIBD8vFGts7/JgWFKo6E6mV9MlHd3bww/NJ0qXN0dGfz1WpaHYzejFfJe8oxO4dWlEqi4KA39Me8bkaAY+EIovumqwZdgH58LYIxyYzm1pNaFkW3zwxh+gcXkIemUTQgySKBNpryHWhyiIBj+Km6pmWxdhSkVJtc+5b66bpJgguOamJhgVxv8pyocb+vpUzzIsXlnnMOSNfji1TANrK5ntf/epXmRg9x8jOPfzUz/4N9gzZJstmdBtvvH2Scs0gVazd9kVzIVelN+LlxfNJfuqBQV4bT/HgSAzNMJnJVN1RrQa5isbRiQyiAI/v7rKLdj4Fy7LIluvEAyrvTGfZ3R1a1zSvVNPxX/J7b5iUbkWu5TNwoC/CyTU+QGFOzeYv84qNx1uTmSuOf40uFd3RwZpmEvcrzGYqbLtKtXwrEvLa6T4BVXI3W0uFOmGvTKGqbzoTzvWoaAbHpzLun3c6o8HtTuz1Y6UmMLUqlmkgeoMUqjqWZeFTJNJljZq+cTdelmVxajbPnt4QY8tFVxUrCtAR9HK/4zdnmBaGYzBf0w1CHvmyasOtRkfQQ0iVXR+O9+3s4OXRJIIg0BH0cM9QzB0De3k0iYDtx+hVJFKbQCF2NY5PZQHLfdYqokDQ2zaAvlaGEn7OOl5sj+yI8+KFJO9zDjGmZfL8KruCh7cnWMpXmctUNoUS9S9PzpMta9w/FKdSN0iX7Pv9M0f6qOsmkiDgkUW3w9/m8siSyI7OIJZlj2wDfO3YDEGP4iYJb1bKdYPT8wUaeTZhn0JP2IssCW6SYptrJx5Q6XL8fis1nbPzhU3pA5Qs1vDKEoosuOPTX31rFrAbtZphumtHQ4V7Nb+olr+bNMNcY75nWRbcpojzjcjTTz/Nv/u//yO/9jtf49G9/Qx0hJAEEGWV6NBevKrEPYPR2xrtvFywx7T+7O1Z7hmMYVq2n8hctkpNM3lsV8ea1/zo/DK6aXH3oL1pbBiyji2X2NEZRDNM3phIr2v+DDCeLLkJUbphV0638kZddoygV8cgqrLY5M0R9ilrJNVdIe+mmZu1x78un/4FjbEv+/NvYrmpCpcmyLVZIeZXuXsgCtiKhwuLBWRJZGmTmXCuR7Gq8yPHZ8wrizw0kkAWRfxqeyN+rSwtLfHkk0+Smr2IUEpjGfYG64Xnf8Dx0Rn7s2VBfgOrPKqaSaZcpzPoZT5XZdyJKPfIIp0hj+sfd3qVgrDS9v9pQhAEtncFKWuO+kUWnSQ1nSf2dFKu626K2kKhjiKJ1B0T7Wypvqn8XNbj+HSGdKlOoWIf7hVZoCOg4pW39t7jWvmxg728PZ3FtCzuH04wnSnz8HZ7fzedLnNhacXTwqtIdAQ9HJvMbHglqmlavDuTpVTV3SAOw7LHe4Y7gowni/RHfW5iUZur84lDPSwXa0SdWPSGl6kkCqQ3yX51PbLlGsWq7iqSgx6ZnZ1BEgG1vUe9AaJ+xZ0IqJsWc7nqpjnPrObkbI6+qBdFEjk7n6c75HWN8fd0h5pUyC9dSF5V/QNboABU09bO52+VBLDV/PIXvkAs0ekqH2LOojmVLHGwL0yxZnB2oXDbvv83353nA3u7efFCkp9+cJC3pjLcMxjl6GQaC2vdkZ3G+NcH93bx5kSaB5wO7GsXUzw4kuAvTszxiUO9l10Ux5aLbHdURXXD3NIG0A1iAbWpCz+cCDC5SlYNdsd7s0pozy8W2N1z+fGvQlVrWigti3ZX5Sr0x3xUNYM9PSF8zs/qm+/OMxj3c2Y+v2nvlQapUp2zC7bCLepXGOkI0BFsb7auh2effZbTp0+zd98+PvL4IwR9tlqsIvr50+ffAGzPl8a8+kakohmu74Jumu7zsCPoIRFYOZi9M5PjyDa7AGRYlnsAaWMT8yuEfarr6fPEnk5eOL9MyKtQ0yz8qkzU6yhkJJFcRaNYtU2gy5vAKPxK5CsammHx7ry9nkiCyMH+SPseuUYe3pkgXapT1QxUWcS0LPqiPvoiHjTTDnSZSa/sV+4dinN0MkN2g6vH0uU6ubJGIuTh7ELBVag0PC3PLxYYSPjaPlHXwQMjCYpVnb6o/TPMOiOXO7uCvDmZudJLNzRvXFy5dlUSUCSRjrBKPNheQ24EnyJx30gUAMOEpXyV5Xx10/kAvTuboz/mQxQEXji/zN2DUUrOM7YRNNBgKlNmMO6/zDut0PInn5phELnE+PfCYpFdWyQBrIFflRBFAcuCuN/Dvl77kDyXq1KtG4wt26lo525DEei8k27wnZMLrlP56fk8+3vDjC6V1q1UTqXLjC4VCagSD4zEmXdSvjTDBMs2gbYs1k3+alCs6a5qqKaZ7UhnIOJXqK9a+HZ0BhhPNjvF7+wKMnaJe3xn0MPSJvDwOD6V5Z7B6GX/+8m5PAf77cObbph4FZHlQt111m+zlrsHo5xfKjIY97tqqaMTGdcHqLSJzVsty2IiWaKm20f/w/1RdNNqd2Kvk6effpovfvGL/OAHz9HXESXm/Px8A/vYcfAe+/8rEulS3e2AbzSm0yV8ioRpWaSKtlEr2OaK9w3bI6WNTaMsie7YSaDt2dGEIAjs6Ai6qozeiI/5XBXLsrhvOEZAlQg6cfDvzmYRwC7ACrYv0GZFM0zqTqrTQq7RYba4e7CdAHat+FUZURDc4uFQPMDRiQyP7rT3iF5Z5Jsn59yvf2h7nEy5zkSyvO77bRS+f3qRTFnjg/u6SBZrpJ2C1ft22sr3fEUn4lXaHi/XQdinIIgCg87ezbBgMV/m8LYo70xnN/S48eUwTYs/fWvGHVCJ+BUSQRVJaCeS3ih+VWZb1O8WO6qawflN6ANUqOruGPFEqsz5xQKmZReRU6U62zttscPoUpEdnddW32j5AhCsNb+1Ezy2VuKPIAgkgioVzeBAv12EEQV70XxxNIkoCDwwHOe5c0u3NK7Xsix+eG6Jh7YneGMixU/eP0ihqhHwyCSLNYo13ZXTr+Y5R875vp0dWBZ4nBv/jYtp7h+O8Y0Tc3zycN+1XwdWewGFNV5J8YBKqtjcPTvQu44PUH+YU/Mb2wfIsizqunnFGfqx5ZXFsaqbRP0qp9sG0FdkV1eIiWQJjyKx11Hq5Ws6MZ9Cqmh3NjcrFc3g5VF7/EsA7hmKIQgQ2sJpgTfK008/TV9vD/cNxVZ9BkUqdduToaGoapifbiQM0+LYZIbd3SHmshW3eCEKEPUpboH4nZkcR5xRyJpuq0plaUtso66LiF8hHlBdpcOBvrDb9Al6JWTHt+Pd2TwRr8LYchGvvLl9gE7N5TEsy/UdVEQBVRbpCnvX9Shssz6dIQ/TGbug84lDvXzvzII7Bja6XGR0aSWkwq/KdId9vHBh+ZbuW28llmXx6liKum4Q9NhhCumSvQZ+/GCv/TVYCILQ9om6DhRJpC/iw6dIbqrr//jRRWJ+lXxFo1DdfI2pUl3n1Cr/n6Aqsy3mRxLb98aNIokCYa/qquvKdYPx5RK5yuZ61qxW2luWvV8BONwfwbIsd7T6tYupy9qiXMqW2Llc+sHZSglgq+kIeKjrBke2RVks1Oh1xuDOLeTdbv7n7x/g91+bvGWmei+NJnlkR4LfeWWC3c6c4ovOfOJXj83w4f1rk78M0+L5c/ah7Mm9XRyfyrj+IxeWCqRKde4dil1xpr6qGXhW+z5xdUOsrUDjs9D4/a435hL0yu78cYNtUR+zmY07vgFwfrF4xfEvsEe+Gv4/Nd0g5le4sFjYcorA60ESBUwLEgGVwwNRnLMbxyYzyKJAchPOUzcoVnVeGbW9zwIeiYP9EQKq1F4rboIDfWE6gioe50Yp1XXens4CdtLP4gZUEuYqGmPLJXZ3hxhbLrFcsK8x7JGbVKan5nLsd4rFVc2go60UuywjnQGqmmErf4biHJ3I2OqgzhCSIOBVBHTTwqOKpIp1vIpEuljfFIa+6/HGxRT5iuYWvbyKSMhj7zN9bT+xa+aDe7s4OpHBtCyGOwJkyxo7u4LE/TIVzcSyYDa7ovg50Bfm7Hx+QxaWwe7cLxWqdId9vDqWsjchQECViPpVlvJVoj6ViE9GFNtjx9fDh/Z1Mpuvuof7RuNSEkWShY33nLka+bJGqaZTrttK06BXYU93iHh7JP2miAUUN2SoXNcp1XSWi5unAJQra6iSgCQIzGbK+FXZ9WodSvjpds7ypmVhmlaT5/GVaOkCkGaY+BWp3aFzCDpdbUUS8coiT93XD9jxlDs7A7w7lyPmV3l8dydff3vuSm91TdR1k/OLRcaTJcqawVP3DgDYD8OQhwtLRZ7YvbYA1DBS7I142d8b5oKT2pQp1wmoMmcXCldMeQKYSJUYdj7wpmU5G872fSCJtpR09RiYsI7njywKTTOygiCw0bflDV+py5GvaIQuUYH5PTI13Wwf+K+CIokEPTJ7e0J4ncPMt0/N0RnyMJEqbdixnquRLNXcbvPurhCmZdEV2lr+cLeaaEClI+Qh7Dxvzs7nuZi0u/Z+VSJZrG+4+fvFfJVSzSDmV5lIFt246XhQ5YER23uurpvIouAWkA3L2pKNpGsl7FXoDNkqIEkUCHllsuU6T+7pwrQs11dpIVdlqVDDtCx0w6KyQZUcV2O5UMO0bFUTgCJJ7OwK4GkbQF8Xnzjcy2Sq7Cp6Ij6FyVSJR3bYY2Axv8LXjs26X//gSJxiVefc4u3zsLwZXrqQJFWq87GDPUykSqQc9U9DiXx8OsuenhDxQLuYfL08vruLVKHGcMLe61c0+7kyEPNxai6/6YrJb02l3X221/HA6g57SLQ9xG6KsE9xlbu6aa/VC7nKptm3nprPMRD3o0giPzi7RMAjuUmbumlxl/NvG10qsqvr2pvZLf1UqmrGGgPozbYg3Ep8ioQkihimxd6eMMWaPa9uWPCjC0lM08KyLHZ1h4j6Fd64mL6p7/eXJ22j2JlMhQ/t7SbsU5jOlOmP+nhzIs22mG9NVduyLL7yxjQAH97fjWnZBleiIPDihWWKNZ3PHLn66FcjKQzsjXvAK7cr6A5Rv0JNW1n4+qM+5i4xZ93ZFWR0qdkHKOKTN6zZomVZTTGI63FqLuf6/zTwtws/18T+vjDTmTIRn0K3UyA5PVfgQF+YC4srkdmbiUbsd+Oj8PCOBKZlEQ20N1s3g1+VGYr7CXjt4shiwS74mI5M2bQs8htInq8bJsuFmjuWtOQc5AFkUWRvj634OTaZ5t6hlSh4SRTanh1XYbgjSE23VUBP7uni+XNLhH0KIa/sFkWOTWYIeCTGloq2D9Am82YAey2paAaiYBtwgh1b/r5dne0i4XUS8alY1kqU8f3DMb57ZomHnLGGU3M5plYZQYe8Cj0RL985tbDhCstgh5k01EymaTdAwTZHB7v43BFU22PHN0B3xIthWQwnAjR29y+eX+Zgf4TTc4U1SvaNjGFafO2tWUTBfvjE/CoRr4IoCO6ztM2N4VclN7jBwvaQPbdQoLxJnjWn5/L0hLyossjZhQKz2QqmBcMJP4Wq7iqAjk9nuWvgyuKI1bR0AUgzzDUP34V8le7I1uzwCoJAPKhQ0Qw+erCbY5MZ98b51sk5tncGGXOib5/Y08V4ssh0+sbM9TKlOslCjfFkkURAdauvr4wmeXRnB98+ucCn1vHweXMiw7nFAhGfwicO9XLakdxblsX4comukOeaDFoz5Tpx5yBX0822CeMqIj6Vurmy8I10BLi4XGr6mv29az1/9vdGOL1BfYDOL1698j2WLLky0LpuqwNLdaO98boG7hqIcma+gCgIbrehZliEvQpz2YqbwLGZKNcN12tMEuCBkThi22zxpvEr9iidV5HcTXndMF0VkCqJ7ojVRiBf1Vl0kkEty2KpYI80KqLtkdZQ/JxbtIMSwA4Y6Al73f/WZn2CHpmeiI98VScWUMlVNAzT4ok9XYiCgIj98w97Fd6ZyeGRJNKlzTdSOrZcQtNNws5BTRLs/dZg3E+83b2/bnyq5I7S3TMYZyZd5kBvmIAiUqgZKLLAVHplz7K9M8hMprzhfF8qdZ3JVIltUT9vTqQJ+2SKNQMBeHx3J4Zp2eEsrPVnbHN1FEmkM+gh7JOJOWe9L78xSW/Ey1KhSm6DNizXo1jTOTGzoloK+xQG4j4kUWg3Km8SnyIRD3jwyPbzOluuM5kubxofoGxZQ5IFZFGgrhnknHHXQ/0R1/sHoKYZ1zVu3NIFoPUW1QuLxXUjx7cKHQGP433ioaoZ/JW77CLMdLrC3QMRXji/5C5AT907wF+enHcfxNfDnx6foVTXMU2Lz92zDbAr3FXNZCJVRpIEN5K+gWlZ/N5rEwD8xL3b8KsyJ2ZzHOqPMLpUJFOu8zHHNO960E2TULuC7uJXJURWFo1tMT8zmeZCX8Aju0aoDUY6Au4hbqPx1lSGe4auXPle4/8TUDnbNoC+JjpDHtKlOomgyoH+CKqjlnhpNIkkbqwD/bVSrGq85Rjp9Ua8eGSp6cDf5sYQRYH+mI+ukIewx95iTCTLrg+QX5VZKtTWjJ3eKRZyFS4sFl1vvHTJ3hRGfCr3O+lflbqBVxFdFalumlu2kXS9DCX86KatALt3KM6xyQwf2NuFZphE/fb+zMJiLFnEq4gkN6EP0BsXUxRruquEDHgkgh7b0yXQLihfNw9tj7s+QJ0hDz5VYjxZ4sEddmpWd8jDHx+dWfX1Cap1k2NTGyv++9hkhmSxxscP9vD6eNodOUkEVVRZYny5yFDcT9Ajt8cEb5CHtseZSJbodJTJi/kagmDHpzeK+ZuBfEWjrOk0jlse2Y72jgbUtjfUTSIIAmGfwnbXB8gAy2K5sDkKQIZpgSWQLtWpaIa7d+oOe9z0r4V89brtC1p2xbEsC0FYawB9frFwXTNyrUbQK9MYMvUqEvcOxdwxsNlMhQdHEnz3tNMVFwV+5oEh/uD1yevarI8uFRh3FuRPHu5zDalOzGQ5vC3Cy6NJBuL+NSNZL48mmUiVSQRUfuxgL5ZlYTiGVn90dJqfuGfgmg5nmmF7NaymbcK4gu13I7ibbEkUMNb59cqi0DQj2zAD3mhcS/pXplQnskoFVjfsBLAz7QLQddEZ8jIU97mHmu+fXiDktQ/0my12dblUY8nZANwzFKeqG3SF2j4Mt4K4XyUeUN3C+3Sm5BaUJVHAMC0KGyDyWzNMlp1Y5u6wh1OzOffQEPTKPLbL9qh7YyLNg44XkGbYnmGX+om1WR+/KtMX9VKoahzsC3NqLockioQ8sruOnJjJkS3VkUQB3bCo6RtvlOdKTKTKCIKdEgegShJDcb89vtFWdlw3P37vACfncu4YWF/Ex5sXU24a2PHpLAurxtYjPoWusIfvnFzA3ECblO+cWkQUBPb2hMiU68xl7UZJw0j+3dkcOzqDrlq9zfXz5N4u5nJVdjgHYd20KFTrJAIqU+nypvF5OTGTxbIsLMCniBim3Zhq+//cGuIBlXsGnRFuy6KsGUxnNv79UarpKJIAWLxwfhnDssiWNUTB9rw63B8F4E0nIft6aNkCkGZYBFR5TcEgX9GIbuEPlM8xxTZMi7sGo/zwfJJ4wN6k/95rkxzsj1DTTc47hnpBr8xHD/Tw1bdmrvS2LpZl8esvjvP+XZ0kAioDcb/7307M5PCrMh5Z5GBvsxeLYVp8+fUpAD5//yCqLDKRskd20qUa+YrGoW1r4+LXYypdZnDV9wXbUK2NTcMIevUmWxBsBdZqdneH3PuggV+VKNc3lsz6wlLxqileJ2Zz7gwwAJZdFEyV6u0kn2skHlCp6wayJOKr2slZU+kKe7tDvDM2y3/6z1+8w1d47Xzxi1/ke2+NuYaLD/er/NmXv9RWCt4iQl6F3d0h/E4KUq6ioxsmRWdEQxE3Rnc2X9EwTQsBu0u4WkHgVSS3cXAxWXKNRgtVbV3/ujaXZzAeQDftw01XyMNCvsr9IwmCzv0xm63ikUVmsxUsrBtSHd9JKnUdWRSZcBSyFvDY7s52stMNMhj3U9NN1xB8W8xHtqJxeFsERYR0SSPoUZr2J31RP6lijfwGKCyDXSg+PZ9jKGH7YIY8klu0+vD+bgBKdQOPIm7pM8nNsrs7REUzONQfQXWazb/9ygT7+yJcWCy4z5yNjGaYfO3YjDvO0xH0oMgioigQ8rULyLeCoEd2zwmmBTPpCmcX8hvev/Kd6Sy7e0JYwNvTWSzLfr7s6gpR10033ClTrl+TPcpqWvZUXNUMNxqwiS2+aRMEgURQpaIZ3DsY48JSgYe227Lak3O2v8unDvfywvllN1ZzKBFgKO7nxQvLV33/33ttkt3dISbTZT7iPOTAjlv2KqIzMiKsKeY8d3aR2WyF3oiXD+2zu65HJzPcOxTjf/xonJ+8f+Ca/43jy0XXALrRrW0nwTUTCyhNBaC+iJf5bPMYz77e0BrPn709Ic7Mb6y0jWPOfXIlVhcFbXWggG+VR0mbq3PfcIwTMzn+8iu/zbvf+j0wDUygXMzyP7/0u/zTf/T3eeaZZ+70ZV6VZ555hl/+5V/mP/3+NwDwyvDPf+nH+U//5p/xpV//73f46loDnyqxqzuIqog0whcX8hWOT9sFloBHZilfvePd+vlclUzJLuiAnUgFtvy+Ef9erOoEVMlOQnQ6tO2i8fXhVSS2xfzkKxpP7OnihXNLfGR/N4Zp4XNukLBX5kcXllFEkUxpc0jzwb5n8lWdmF/FZGVTvb0j0E52uglkUcB0uvMH+yMoksjoUpH7hm0VUG/Yw5+sakw+NBLHBH54bulOXO4azsznWS7U+OShPr51aoGusBfNBEUUOLItSlUz8DiNSX9boX7DqLJEV8iDLAkknGb2q+NpRjoCzGarpDaBp1ippvP2dA7TXBkR7It4ERDa3lC3CJ8qMRD3uX+ey1aYy1bJbXD/yuPTWYYTfmRRZDFfcdRAcKAv7K4fxZp+Q6PGLXsq1kyTiG+dBLBNNlt+O0gEVGq6wbaYn3Ld4JOHexGwpZOTqRKCIPBTDwzyh29OuaqQh7YnWC7UGFsuXvZ9J5JF3p215d1P3bvN7ZBalsUfHZ3iQF+EbTGvO9bVQDNM/vBNO/nrpx8YdIs1lbrBVLpMXTeuGvu+msVCzR3laBtAr0/YpzRJH3d1hbiwdKnaR6aqNcsjd3ev/bo7ybWkfzW+rnE/1nSTkE/Gsqx2d/Y6ONQf4cRsjs//5FMkzCyGZm+s/vf/8D/J5bKM7NzDU089dYev8uo89dRT7N67Dy0+BEBh8jTjF86xa8/eTXH9mwGvYnugdAQ8TXHfjXh1SRTQTZPCHey+aYZJsljj/FKBQ/1RLMtiMW8XgCI+lY8f6AHgtfEUDzsJRBXNIOZXnDHaNtfDtpgP07LwKhJ1w/5fjyy6o7lLhSqn5vKuMnOz8OZEikrdcJWxAY+E6kS/h9t7jxtmT0+IMwsFJwrb9mh7ZybnfhZfv5gmVaq7e9RE0EPEq/D82eU7XlgG+MY7c8iC7XV5MVli3iku90W9CILAybkce3tCeGWpvZ7cJIf6IxyfyjLoqDRLNR1RAEkQWC7UNrynWLasUdF0GqFUIgL3D8eJ+tdOsbS5MbyKhFeRGXCaPRXNQBYFlosbu0BYqRuYlq08LtcN6k7jPuxT3FHSY5MZ7r2OM3KDli0AwVrfl8V8rW3cyIoPkCQK9IQ9TKbKblrab7900f4aj8yH93XzZ8dn3dd99u5+nju7tG4UeKmm899fGOfRnR0c6o80SVp/cHaJB4bjHJ1Ms7Mr1DQWBvCdUwssF2oMxv08tsuOxlzKV0kEVL57epGDfZHrk9tbuF+vGWaT90sbG78qsfq50h/zMZOtrPk6RWr2AVIkEW09w6A7xIWl4hoz8UtZyFfdtDuwC0Axv8J4ssT2zq3rB3a9CIKARxbp7+vlP/63X4dyGgBx8B48HpV//6WvEYom7vBVXp2uri7+65f/FDloX2v6lT8iGk/wzW9/j66urjt8da1DzK/SH/PhdZ7DS/kKdd1wD2yyKJG8g2NgjSSNVLFOZ8jDxWTJjacPe2X29NhhEbPZCtti9jOrohn0x/zrv2GbK+JVJIYSAXKVOo/uSPDyaJLdPSF3bT6/VKKmmSiSSFUzXP+Xjc7puTyKJPDOtO3/41cl+iNeJ4SkfbC/UT59pI/j01n3PhBFASyLu7dFEYDlUp2OgIfjq8Y2+2M+ynXdjVq/U5imxbHJDDu7Q+imPbMxk7H3V0e22Qe18wsFBuI+EsH2+NfN8vieLhbyVfb22Adi04JjUxn8quQUVzb2WnJmLuv6a/oUkapuMJzwt5Wmt5iYX+GwM33SECJcTJY2rA+QaVpYjufPsck0giAwn6+hSALlus5epwA0mSoxlLj+fUlLFoAsy0JAWNcAeisngDVY7QOUCHgYXSqwyzkIn5jL8V9/OEqyWGN7Z5CIT3EfsKIg8DMPDvKVN6fRV31gTMvit165yEDcR7mmN43jTKfLZMsaxbqtOHpnOst9q/57VTP4o6O2+uevPTjoVrvfmEhTrNnxsI/vufZDmWFaTYUNy7LaEsp18Mr2SEPjMCYKwrriuD3dIc4uNCt+VEnYMIa/1zL+9a5jPt5AN+243jPzebeC3ubaeHx3J29NZRAFAX32DAByuBMzNc1ktropvDssy+KHY1kEUcIyDarjbwG003puMTG/wr7eEEHn51qsW+QrOuPLtk9KQJVYyFfvWHd2PltBlVaSvX543h5xFrHVj4IgkC2vmMcbpoUkCm1F6U3QF/UhCgJDiQCjS0U+uLcLATs23bTsvcSCM4p8aQrlRqVU11FlkfGkrY42LXh0Vwchj9KkdG5zfTw4YqvOG4f33rCXoYSfC8tFjgxEAegMqXzn1KL7mkd2dCCJIl9/e+5OXLLL2HKRhXyVTx3u40fnlxlK+Fh2it0fP2QrCw3LvldibQPom+augSiaYbK7O+ia8//B65Ps7QkxtlykUNm4Yz413eDZY7OuHYFdEBcQRIFg25PwlhL1qa49iGHBeLLImfmN6wM0tlykL2orZ1+6kCTmCDX29YaxrEZD3kQShXVFEpOpK6c2t+TTqW6YBD1rpXNbPQGswWofoG1xP6WawccO2g+lumFxfrHAv/nmaX7lm6cZjPt5ZyZL0pHJ+VWZz9zVx1ecog3Anx6fxbIsTAt+4t4Vr566bvKNE3N219e0+NC+boo1vclo9S9OzJMta+zsCvLQ9hX1wHS67Bi0WtdVBZ/LVtZ0aD1KS97mN4UoCgS9sisnBHvmXr+kEr6vN8yZS3yA7h+O88pY6j25zithXkP6F8BCvkbPKgWQgH0fjy/bJuNtrp27BqK8dm6Of/TzP072zEtYhoYgihRLJb7433+DcxPXZhZ/J5mYmef3vvkSAGY5RyyeIJtO8eEPfZClpY3hH9EK+D0y/VEfogA+2X4WZyp1Nw5edjYvd2IMrK6bpEp1ksUaQ44i9cSMfV2qIrC/zy4MvzK2Mv5VrOn0hL1tP7mbQJVFhjsCZCt17hmKsZivYVi4o1KSCN86NY8siusqjTcauYpGslCnM+ClbljuIW5XV6it7LhJRFGwG1OONOLgtggVzeT0XN7dK742niJX0VyVUMSn4FNF3p7O3NGu/h++PoXHudd/dGEZVZZsRZhHZFvMNquO+xUE2ilxtwKvItEf9TOZKtEdsc8L0+kKu3tCTKcrLG6AwIHLUaoZvD2ddf1/esJeOoIqgmA3SdrcOgIe2Y1NBzuxOlmokd2gPkDHJjP0x3x4JIn5fNV9Tu7uDrn//9RcnoP9zZ66DWHFCSeV8nK05E6mqpnrGkBv9QSw1SSCtg/Qrq4gHkVCkUW3s+lXRD5xsBevIvEbL42TLNT4lW+e4ZWxJFXNoDfi42BfhO+fXuTV8RSSKFCsGXzqcB/qqrSt337lIlXN4Ik9XTy6s4NMud70eynVdL7mmPj97ENDrsnm908vMJ2pcKQ/wkjH9RXsxpaLbhxko2PraSeArUvcrzYZQQ/G/Uyly01f41WkNZG82zvtmfY7zdGJNHcNRq/4NZZlNfn/mI7vj1cRsSyrPV99nQiCwIVzZxgfH6dbqRHw2Otp130fI1so8idffXbDz9t/5Y/+CD3cD8DH79nOb37jh+zeu4/Tp0/z7LPP3tmLayH8qowoiHQEPXQ4h+Fsqd6U0iMKAunie3/Qz5brWBa8O5t3AwlmnRGNuN/D+3fZwQhLhZo7oqSbJl3h9gj5zdIT8SKLAgf7wrw9nWUg5mXEka9PJEucXSjgUyRSG9ybAeCtyQwVzaCi2/e0XxXd5kp79PzmaSTGGaZFd8jDcqGGKovcPWB/ZufzNfqjXl4ZS7qv2d4RxLRgfOnyfpW3k+VClaOTafb12NdYqRuuinooZu9N35nJcmhbFFmy9yJtbp5d3UEmUmW2O2eGqm5S1wx3hObS5uZGIV2yVW515/JkUeDeoRghr9JuNtxivKqduBdQ7Z9ruWYgiQLLd3hk9HJMpcuIAqRLdQzTYtENqRA5si0KwKm5HAecSQbLsvg/v32WX/nmaR7f1cmnjvRd8f1b8u7STdP1tGmzPkGP7QPUG/GiSAJn5vLcMxhFFgXenSugmRa//IGdPLqjg4pmMBjz8epYkq+/M8fvvjrBTKbMQr7Cnx2f5ZXRJPt6QgyvUlP8wRuTpEp1nn5yp5um8uZEmvuH4+7X/OnbsxRrOgf6whzuj/DihWW+9PIEb05m+Jef3M9b01ke2h5fc+1XYjZbcb9fXTcJeZV2XO9lCHlldHO1EXSQC+tsmlRZXDPytaMzyOgd2mCBvdCdmMlx+JLK96XMZCpNnlM1zR7/at8TN87/+tc+wd/9lf/Kf/zSV9jhKCo9w/fw6OMf5JOf/xuUNvjoxuOf/WvIfvu6//pju4nFO/nO977PF7/4RZ5++uk7fHWtg+QchPf1hgl67QLQQq5Mulij4BSBgh6Z+VzlPS8azuer+FWJXEUj5leZy5SpOoXuiE9hW8xPslgj4YxnaIaJV5YIe9vd+ptFkUS2dwTJV3UOb4vQE/GxPDsFQFW3KNd1cpkkv/9bv96kUN2IvDWVwa/KHHf8f0Ieie6QF8sCv6fdvb9ZPnmkj5fHUpRqut0gBO4bijGeLLPHsXOI+GTeuJh2X/PgSAJFFPnqW3dGjfqllyaoaCafPtLLTLpM2Kcw7/grPjBiK5dms1VifoVEQG3vRW4Rj+5IkCnXeWAkTqNu8pWjM8iSSF03KNU25r7k9FzOtWLwKSKZcp39vWE62qOBtxyPLKFIInscryjdtAh5ZS4sFTfks6aum5gWfOvkLAGPzHy+hk+RqOsmwwk/lmVhmJZbKPzu6QUkUeAX3zfC19+Z5dzClQN7WrIAJMAa/5+N3pV+r2n4AJmW3YXVTYudXUE+sNc2Yf7SS+OkS3U+fVc///DDe+gMexhLlljKV/nZh4Z4eHuCoUSATx7qRRAE8lWdP3h9kovLRX7nlQnGl0v8s4/vaxrPWchV6Y3YxZlcRePPnTnt7R0Bfv/1SbpCXj5//wDbOwJIooBhWlcd77kUy/n3gD1b2/ZruDx+VW6KQe8MeVhaRyq7t2etD9AjOxJNXbf3mpNzeQ70X90c/MRMtqlIVNUN4gGVpUKVzlDbYO9GuGsgysCRR9nW28NdA7b/Us2A9z/6EDPZCsXqxpTTgm2q96fHZwHBHQX0KCJD/b3t4s9tIBFQ2d8Xcb1QKjpohsXxqSyAa/j7Xqo9arpBulR3/H/sv/ujY/ZIs4jtwSAIAi+PJnl0p60EKlQ1tsV97cPaLaIr7EGVRe4aiPLy68c4PzYONVt9Wq1r/NL/52n+87/5Z/yn//Jf7vCVXplcuY5HFl1fKwSRuwYj+FTpuvcubdbykQPdTKfL1A378N4d9hD0yowuFd0xsFfH05Tq9mca7PAXryIxky5TeY+bEalijZNzOcI+hf6Ynz8/MceBvjA5x1z+owe63bNI3TCJt8cEbxn3DMZQJBFREIg5kx6vjCbZ0RlgOl0hXd54isKqZvCnx+cQLPu50h32YiGgyuKaFOs2t4aIT+FA34pZ+GS6siF9gNKlOpIooEoib03l6HasUA702YVvQRCYSK3YWJRqOt89vcjfeXwHIx1B/uZj25nJlC/7/tCCBaDGuMelBaB2AlgzgiDQ4fgASaJAf9RHV9jLnp4wPWEPdcPiP37/PKZlEfDI/OxDw/zqZw8xulTkH/zxcTJljYe3J/jTt2f5Jx/dw19/eJgn93bx6y9d5PXxFPcMRt1YVLAXutWjWL/76gQVzaA34uUzd/Xz84+MsKcnxA/PL/PEni6OTmaa1ELXgmVZrK5oGJZlJ561WRevYj8sG90HQRBY73iztyfE2Ut8gBRJxKdI5O+Qud4bF1M8OHL1+yNd1kis8pCyLIugR+b0XJ59bQPoG6KRBhbxKuzrC7vdtnJdZyJZYvkOjPRcjWeeeYalpSUqmsFLo3bhMkSFct2gM+RpH+xvE2GfQsBRQkSc/61pOmPLK+rBsFfl7GLhPevA5coaAjjjAvbmqaEg8Kmi6xOYKWvEA6o9RgrtRJZbiCyJjCQCFGo6H3zgED5Vpjx3DoDZxSTZ8A6Gd+7hAx/79B2+0stT1QzbXy7iXWVYLXCkP+Yqx9rcHB5Zoj/m4/xiAcO0ONgX4dRcHr8qcZczAjGfq7It5uNHjok7wP6+MIIocGwyfZl3vj38xovjpEs1nrp3GwAXkyWmnbH6eEAh5FWYSJUZdkYe2/4/tw5VkeiP+jg9n2fQUX1nKxp7ekJMpsss5TdeAahY0zkxk3OV+EMJP15FxKStILxdRHwKIwn7GW8B5xby5Co62crG2rcenUg749IihaqOx/GDGu4IulMuxyaz3OPEv//3H43xkf09buiGKAh8cF/3Fb9HyxWAarpJ0CvbkZGraCeArSUR9FDTDQbjfnrCXmYyFeayFf7uEzvxyiJn5gs8e2zF7DnmV/m1v3oX22IBfvOlcf7uH7zFk3u6SAQ9vDub49snF7hrIMI//fheDm2L8vW37XGxM/N5vnpsmg/s7eb8YoH/9sNRvn/GTm74Jx/d63osWJbFUr5KV8jDuzNZ9vZc3+9r8RKzX7A9bNqsjyAIhHwyNW3l4KXK4pr4XY8sUV8n+v0De7t4/tx7b5o7tlxkpCPgKr0uh2FaawpaFnaH8OxCwY1QbHP9PL67k1MLBXojXtfr4vWxNIWqTsaZV94oPPPMM3zhC1/gySef5OL0LAs5eyM4+rV/z1d/7zdIBNoH+9uFX5XAsjubPTF705Kp1FnMV93CsyqLWCZNRaHbyXyugk+RODmb42BfhMlUkaIzHrAt5uPQtijzuYr7LKloBjG/0n6W3GI6Qh4EAT50ZJhD9z6IXMthWSaSP4K/bzf/4w+/Dr7onb7My/LubK4prt6viFhYxINKO9npFvJTDwzyyliKcl2nN+JlPlfl4e0JJtIlBuJ+TAu8ssiFpRWV8t0DURRR5BvvzL9n6v/lQtUu9lgCB/oiaIaJKAjuWH3Dm+ad6SwH+yJIomCvj21uGb1RH/mKxqH+KGCP+FxYLFKuG02f1Y3CXLZCpa6juxHwEke2RQh55HaC4G0i6JEZSPjcP2fLdWRRcFP6NgpvTWXYFvPx3LlFVFlkzFlHBGwVPthN14BH5vRcjkypzkf2Nxd8rmaE33J3WE031x37ubBUbCeAXULAIyFge7/MZCuUajp/9b4Bjk1muMsx2fuD16d4ezrjvkYSBX7x0RF2dYf41c8c4BOHe/mzt2eZz1V4YCROxKcylAgwEPPzUw8M8tMPDHJ0MsNEqsw3TsyxmK9iOIlhj+5IsHPV7+TkbI5D/RFevJDk4e2J6+7KrzaAtiwLAaG9ab8KthH0ykNxe0dgXYNnzzqFoUTQ45qTvZf86Pwy79/VedWvu5hsTvkyTAtFEvEqEuWa7lbK21w/dw1EObeQRxJFDvXZa8U5ZwNumCal+saR0z711FPs37+f06dP88RHP42FvT70iCUe/9in2irB24hHFlFkkYe2x11V7mSygmnibmjA7srNZSu3fRSsqhmkSxo+RaJQ0wn7FP7bC+OAvbGK+T0MJfy8uir9q6IZa5Il29w8qizSF/FRrhsc6QsiRLqxNPv3L3hD1HSLQm3jmre+Pp7Cr0q85Ywzhn0ycb/t6dJWdtw6HtnRQbGqkynX3T3hQNzPTKbCw84Y2OsXU9QNk4tJe02Rned8vlIn9x6plH/zpYss5Kp8+i7bePUHZ5fY3xtizvH/aexZCjUdjyIS87f9f241D29PoBkmB/vCeJ3kyUYT27AsCtWNsy+p6QbvzmQxVvn/zOWqPDCSaKtNbyM+VUKVJHojjXAHC58icmouv6F8gHIVDb8i88Nzy3QEVNJljYhPcdXIDY9Cw7T4rVcmePrJnU3riWVZfPn1ySt+j5YrAOmmuW76Qq5cbyeAXYJPkZBEkXhAZblYI+ZXqdQNHt6RIOr3cP9wDNOC//i9C5yeWxkBigVUHhiO8+Joit94cZxD/REe2d7Ba+OpNRXIYk3HME3++Sf28wuPjrCrK8T3zywhCvAzDw41fe2xqQy7u0OMJ4sccuS918NUusyAs1HXDIuAR2qnPF2FoFdxH0AAu7pDTZ20Bvt6Qmvi4ME2ZHxrKrPm728Xc9kKXdcYxdwoKDaoagaxgL02bBx9yuZEEOziasgrcbeTxGZadoE4XayT20Cxml1dXTz//PN0dnYiHP4EAJah8V9/708YGehrd9puI4IgEAso7OoKoem2Is8AfKrAW6saC4IgEPEpnF24vaNguXIdQXASIgW7QzbuKI/CXpneqA/R8bSL+BQM00IUhLaX3G2iJ+JlaWmRP/yXP48lqhiZeQAs2cvf+9/+NZnU8oY1b10u1PB7ZPf+USWJXV0Bp8nQXlNuFZIocLA/wmvjKQzToivkYSlfJeKT3ebDXLZKT8TLq2Mp93X3DMXwKrKrNr+dzGYrFKo6uaruFqVeHk3S6dgpSAK8b1cHdd1EkQQqmuEmI7a5ddw3HMMji4wli/SEbZWHfS7wkSrWN1TaU7pY53unF2lsv7vDXjTdxKdK7QTB24hHFhFF+0wDoJt22ufZhcKG8QGq1A1qmoll2V5AIed+ONgXds+0jVClP3xjiv29Yddft8HX357j4e0dV/w+LfeUErArfG2uTsMHqKqZYMGDI3FeHktxoC9CPKAS9al0BFXS5TrPHpvm5dEV09+D/RGGEwF+5sEhtncE+MqbU/zkfYNrKpDPHpvhr9434P7dH7wxiWFaPLGnqymdKV2qE/Wp/Pn/y957h9dxnmf698ycOb0fHPTO3jup3qziomJbli2X2I5bnMhJNmWz2WST3cTZzcZJfim2E69jxzW2ZNmyHElW750iRYq9gETvOABOb1N+f8zBIUECrGikv/u6cF0ScMqAmDPzfe/7vM/zTh8f2FB/Qb/PyW7oeU0XF9FzwG1XONn5J+BSiWdPvwguq/ZzePD0wtDqugB7e+Ozeown88zBQd61vPKcHpvIFfGfdA7kNJ2I206uqAtl2Axw/dIobUNpllT5UBXrHEpkCrTHMgwvwAhnE3DWrwJA695HTtOo9ApfuNkm7LZjYqLIEpU+a9OT10w6RyYbFDpsCoZhcnxk9kbB+uI53KplIru40sfDu3rJlkZgW6Mewm47nbE0jWFrMZXKW2MnIo53dvA5Vd587pccP3wAh5biio1rALC5AyQclbz0xCMkFqCpvG6Y9I5laQi6SZRUBbphsrEpQlgkO804H9xYT9tQikxBY3VtgH19ca5aVEFvPEPU50A3wSZJJHLFsuJmebUPJEsxPNsq5e+/1kHvWIabV1SW//a5os6ODqvIXeV3oSoyB/tPeA96hAJ5xlEVmYjXQe94jtbSdEEmr1MXdHF8OE0sVcBYIOPpveNZDvYnyyOKi0rhNyDOjdlEkiT8TrXcHJawJoSyBX3B+ADt6BylIezipaND2GSpPKVR7XeVJ5mGk3kkCXZ3j/FrV0wWU7x8dJioz8Gys9ioXFarGqNkAO20iQSwcyXidZDTNVRFIui2k8wViaXyfGhTPR2xNJ+7pgWA3d3jDCZy/Oc7veV/z41NITwOG08dGOSqxRWnjVI8dWCQaxZX4C7JobtGM7xweBibLPHRrY2THvv84SEaSl5EF1K4OfVvXNANEdl7DkxUw09eIE21dLXbZLQpfIAkSaIm4CwvumaTWCqP12E7p+JNUTewnar+MsHjVDk8IPzAZoL1DUGODCbxOGxUlRLV3uoYZSiRI5EtnnX+eK4YGhrixhtvZGQkhuyy/u4jz36L//Kpu8mn5k699quK22HDBJorPGVzzqNDSeK54mkm8gGXSu9YtpzoM5PkijrxbBGXXWF/f4JVtT5eabOMYxUJNjWFWVnr58320XLCkGYYVPpFkXA2+a+/9zv8zp/9NX/+63cwnDWwyYAs07j+Wu799OeJpRdeMfnwQJJMQS8vzB2KhAHUh52E3aLxNNOsrbeSBI8MJqkNOukdz1HldzKcLHBFKQxie8coPofKI+/0lZV7HruCZpgMJmZP+XF8OIVdkegczXDbqhrAGm8Nu+10xawi99Iqa9N2oD/B8mofsiSV18WCmcUaizG4tpTgaAAvHhkmli6gmyapBTCens5rxFIFUgWNCQvOiNfOkiovblXBbrustuYLjpBbpblkD2ECQ4kcMjAwB/uYc+HVthGWV/l5q3OUgEulvZQyaZgma+oCZAoaTlXhq8+18ckrmyc1qA72JxjLFMoJpmfisjrL8kWDgOt0A2iRADY9XocNGYmWCg8dsTQf3FDPQ7t6rSLNlkZeORrj3auq0QyTF48O01rh4QdvdJbn8jtjaTIFjZWnGOp2j2VI5rRJSUv/8WYnJnDrqupJZs26YZLMFtnRMcpNK85N3XEqo+kCkVMktS5RRT8rE9Xwk32A3HaF1BRSSIcqTxmrev3SKC+elMAxWzx1YJBbV1af02OPDqUmFXkM00SWJdyqwoH+BCtrhQH0xSJJEh6HDZsksanJWoQPp4toJfPthSKnffDBBzlw4ADN7/0ikmwVD+vDbjrbDvPYLx6a56O7/HGXCrY3LI0yUUMeShao8jnZecr46MQo2MH+mZ/HH0sXysXtTEHn8ECS/pIheMTrIJ3XaK3wkCnouO02irqB06aIRsIsE3LbuefXPsu61jp8DrU8bie5/PSMZhjPFBeUqTzAG8djeJwKOzut8zfgUvE6bKiyjNcpCkAzjSRJbGgMsr1jdNL4dtRrL4eF9Mctf8kbl0d5bG8fAFe0RvDabfx8V++sHduPt3fTO55jc1O4rOB4+J1erl4UKSthb1tlrVs0w8QwIOCyCXuCWeLKRRHcqoIkQdBlXbu3d1hpcIokLYjx9Fgqz87O0bIayaUqdI1m2NIcnpRaK5gdvE6VoFst+xIWdAPVJrOvLzFpLzQfGIZJ/3gORZEYThSo8NpJldJqbYpVON7VNY5pWj6+a0+ySxnPFHj9eIw71tae03tdVgWgnKZPaZ51ZDDJkkrR8Z8KpypbkawVXo4OpXDZFTY3hXj1WIwtLWHSBY1rlkSo9Dk4PpxmT0+cW1ZW8e1X2hlLF3hi3wB3rqub9JpF3eCxPf18YMOJ77cNpXjtWAy7IvPhTZNHvLa3x9AMk3evrj5rstN0WAbQk02+T1WCCaYm7LGTP2mztaTSS9vQ6WMYK2v8HJjCB8htt6Gb5qwmLCRzRSSJczbs3d8Xn1TkyRV1gm4VWZboH89SKwrCM8L1S6N0xNJsaAyWN9fpgkYqpzG+ABZaAPfddx9f/epXiW69AwCnTeKrP3iIP/8/f8eXvvSleT66yx+bIuN12KgPu8gWDUrenPhP2kCfjMOmoM/CKFhfPFcu7NhkiWcODZEtXbM+vq2Bgm7QEcuUgwmSuSL1YZcY55llFFmiIeQmVdBZXuPDUVqUj2WK7OoeB1hQpvIAXbE0fqdKW8n/x+dSqQ04kSWpvKkQzCx3rKtjNF1gPF2kwmtnOJnnqsUVxNJFfE4bRd0k6nNwfDiDaVrNyaaIB80w2d8Xn5WN3YG+BFV+B7u6x8qq9kxBo288S38ih2Fa5r6rav3Es0X8Tht5TReb/FlkY1MISZI40JegIWypPMbSBUJulXRem1U12LlgmiY941meO3QiQbc64CSetcaNRYLg7ONSFWRJoqE06q0bkMxpHB5Mkplnz7lEtohhmrx2LIbDJpMuNd1X1vjK0w+HBxO8cTzGl25cUn6eYZo8sKObe7c0nPOa5bIqABmmWTZLOhlLDSASwKZCkiQiHjsuVWEsY8nuNzSGODaUIpEtct2SCp45MMRvXt8KwE929pDO63xsWyM/2t7FhzbVn9bJeGhXL3etr0WRJYq6wYtHhvn7pw8D8L61Nafd/N7uGsPrtNEU8XChtMcyNEWs8QJNN7ArspBRniNeh23SCN2iaQpAS6t8HJnCBwjg+iVRXjo6eyqg81H/gGWidrLEOq8ZRE66sYpN3cywviHI8ZEMjRF32fh0OJmnczSzoAwXP/7rXyBesIqcVy+K4AlG+N3f+e15PqpfHcIeOwXNRJWlsvfb0cEUw8l8OQ7+ZIKlVLCZGgXLFXWSuSJOVeHQQJKgWy0njjltMi7VxuamMG91jLK5KYRpmuW0DcHsUxVwohsmq2r8BFx2QMcE2oZTyJJER1cfX//61+f7MAFrA9c9lqUp4mGsVOQ2DJMNTSGCHvtpCnTBzLC40kulz8mrx4dZXWf5AIXcduLZIlubLQXqE/sG6I9nec/qGp7YN4CmGwTdKqoi0zY4895iD73dw1i6wKKotxwm8IPXO7l5RVW5uF0TsIrIu7vHWd8QRDdNfEIlNms4bAouu0K2qLOhFJed1wx0w6BtOE0qr82ryiOR00hmiwwl8+VJikVRD7IsIUkSbuFhO+s4VRlZkib5ALWPpMgXjfI+eL7Y3x8n6nVwZDBJyGsve8yF3HZW1wXQDZPdXXFuWVk5ySvq0T193Lyi6rxGSy+bHfJE7PdU8ZsiAezMRLwO8vrkC+LdG+t5aFcP1yyJEnCrHOhPcsfaGnTD5B+eOYJTVbjvxsWnFXP29oxT4bHjVBXuf6uLz31vB3/31GF6xrJEfQ7u3jhZ/dM7lqU/nuP96yeriM6Xom7gsJ2Q8wkD6HPHZVc4eQ/mttumVPOoijytFH8ilnU2/LZyRZ1MQSd8jp2RXFHHcUrxb6I4bBgmiOLPjCFJEj6nDcOg7O9yoC9O12iGVF6fdzntBI/v6yOvWefmx0rpg14xIjpnBFwqmmGwqtZPY6lQ3xFLE3SpHJ2iqDwxmjpTo2CjqROLuoP9CXrGMuUi97qGIAcHkqyo8VHQDJyqtXkIuVVhFj9HOFWFSr+DRZU+tOF29LxVPO4YSjA4OMQH7ng3X/rSlxZEEahnzEp8KpbWTKpsjfYsr/IREevMWWV1nZ+2oTS1ASe9Y5ZfR23QWW7w9o5nuaI1whvHY7xvbQ3/+U4fVy+uwKUq/Oztnhk9lp2doyyt9vHE/oGyV2ZRNzg8mOTWlVX0lPxE1tZbm8yJNCoAj9jkzyoBl4rPaWNDQwCbbPm8vHE8Rveo5cmUmsc4+MFEjrc6RpGg7P/TFHZR5XPgtCninjMHSJKEz2Vj7UQBSLL2oqZp0jc2fz5AhmHyaluMCp+DwYSVbNgZs/x/TGBppZdnDgxgYvKe1TXl5x0aSKAq8mlTMGfjsikA5YoGQbeYq70QJjZCDptc3vh7nTaWVfnY1xvHaVNorfCyosZPbcBJ12iGH73ZddrrpHIaTx4YZHf3GJ/57lv8x5tdjGYKNIbd3HfDYv7lYxtPK8z8aHsn711dc/EXvZPqDnnNmJT+JDgzDpuMTZHOyWfBZVfITCPHX1Ht4+DA1Aqhi+HZg4PcfB7eUIcGkpO8p0zTRJIsL5KesWx5ESaYGW5YZo2BXbnIMp3LaSapvIYkze9C62R+uvOEB4TfZcfnVIVCcA6Z6ErdsrKqPBqYyOusqLE2UFMxMQrWEbv4zn1fPFtuDo1lCqRyGgXd8qq6elGE2oCLw4MpVtRYo+LZok5dyH2GVxTMNHVBFyYGS5cuQdEsdVbfWIr7/vCPOX7kECtXruSee+6Z56Ms+f84FHZ2jAPgd1rBBE67gtclisqzye1ra9ENg+Mj6fKS76rWChI5Dacqk9cMXmkb5uhQkrqgC4eqkMhqFHWTgXhuxnzpTNPk0T39mKZB2GPH47DWm//xZifXLY1yfCRNsnTve8/q6nJjrKBb6h+RKji7XNkawedUOTyUKvuN9o3nMAG7IhObhZCBc0HTDQYTOV44PMzEKeC2K3TGsmxqCp3mYyqYPYIuO/WlpqVuWhYykiTxTs/sjIueC8m8RvdYhu7RDIps+VUVdZNFUQ92RUaWJe5/q5v/etuy8hRDKqfx8tER3r3q3CckJrioq5AkSX8rSdIhSZL2SJL0c0mSghfzehfDdP4/IgHs7DhVGVWRaYl4OD6SLn//ykUVvNMTZ2NjEM0waB9J89lrWpAleGhXD4cGLD8YTTd48fAQ9/1oJy8eGeaFIyPohsm2ljB/9f7VfO2jG3j36urTijzjmQKDCWuO+2KIZ4v4T1p4maYpuvvngSRJBNz2SRe9kFudcvxiZY2f/X2n+wABbG2JsL19dEaPragbDKfy1ATOvWhzaCDB8uoTBaC8ZpQXXQf645OKQ4KLZ31DkO6xDOsbgpTS4BlJ5pGwup7zTSav0Vm6rvkcMtmiTpVfjPbMJU5VxiZLhD0OS2VTMgLqHsvSPZohPo3sOuhS6RnLMnYRC/ZsQSeVs1IzckWdnrEssZSlMIl67fTFc1y/NMqOjlE2NIbKCUJB0USYUwIuFadqo74ixPVrmjF0DVl1oodbCYYjPPrE01RWXlhIxEyyvy9B2GPn8KB1H4z6nARK64+pFOiCmaM26KI26OKVoyOEPXYrGdRpI1c0yuM+rxyNsbYuwNtd47xndTXPHhykwmvH77SxY4bWJ6+0jXBFS4R/f7WT37huEWCFmbzTE+fOdbU8vrcfsIqDtUE3PeNZ6oIuckWdqNjkzzobm0JkChr98Ryt0QlPNw2jZMI9lMjPy94wni2SymkMJvIUS8rWKr+TwWSORVGv8P+ZQ3xOSzASLqk2TRN006RtOEV6nnyARpJ5JBNGUnlCbjv9cWudsqo2QMht58Ed3YQ8Ko0lbyvTNPnxW13n5ftzMhdbhn4aWG2a5lrgCPDfL/L1Lpjp/H8GE3kR43oWJEmiwmunLug6zePlgxvreLtrnPaRNPdsamB39zjvX1+LYcI/PnOU+9/q4rPf38HfPX2E0UwRj13h/evr+OYnN/M/3reSdfXBaU/Mr7/QxievbLro4z88kDgt1lvIKM+PsFudbARd5ePo0OlqnukMosEy8/Q7bRe1WTuVl44Mc92S6Hk9p6AZk9Qd2aJORenGenQwxRLhBzajSJKEz6HisStlk+7e8Qxdo1nGMsV5T9346ds95ejX65ZVYZimGBGdYyRJIlgqMjtUuZzcc2w4xd0b6/nGS8enfZ7PoXJwIEFRv7BRsNF0vjz1+U73OF6Hwju91rVtohjcF88S8dhRFZlU3jLjFF36uUWSJBpDbpZVe63rtW59ZtVQHSCRzi8MU/mesQytUQ+xtHU8kiyxosaP36UKBfocsKLGz1imwIpqH/tKzajWCg+ra61xjrym80rbCLu7x5Alibs21FkJgJLEI3v7y8lLF4ppmjx3aAifwypqV5X2Fz/d2c22ljCyJHGopIRuKKkId3ed8P8R6vTZx6kq2GQZCbhpmVU0Lhom/fEsR4aSaIZOPDv315P+eI4dHaNIEuRKkZgra3zoBrjsNlFAnkNcdgUJaI1axRRZguNDKYq6MaN7mHPFMEzaR9KkCzrDyQJbmkMMlQzL3XaF1goPLx8d4T2rTyR8Pbl/kGsWV1ywp9hFrXBM03zKNM0JTeUbQP2ZHj9bmKbVsZvqw3N0KHlacUBwOmGPA7sql2WrE4TcdupKIzOj6QLXLY0S9TlpCLvpHc9aY17pAn6Xym/dsIjv/vpWPntNy6SY96loH0mRKxiTIuwulLahFItLVX6jdC5MGNIKzg2/S51kxtpS4aH9JDXYBLYz+AAB3LS8kucOD0378/PBME06YulyB+dcSOe1ScZoYF0fJhZdJ3tFCWaOd62o5PBgkuaSkXvPWI5DAwncqkL7DKc5nQ/5os4Lh4bK/j/3bKjHJk99rxDMLmG3lTa4pTlM2GPdH/rHsqysDRBLF+iPTz1771QVippxwedR33i2fE148sBA+d7kUiUq/U6uXlTBMwcGec8aa6ZeMwzRNJonKnwOpHychx68Hy05AoAaqSPjCPP+972boaGZubdcKBPG5BP3QEWy7Ac2NIbKTQbB7HL72lpcdoWu0XTZ02VrS5hUQaMx7CZd0Nnfn6Ax7OZQf4Jqv5NKv5P+RI5MvnjRG/8n9w9y68oqvvLUET5zteX9Y5ombxyPcc+mBrrHMgwnrRHGba2WOfV4tkjYY8eE8zJpFVw4PqdKa9SDJEt4S55LHbE0bUMpXKqNjinWt7NJXtMZTuV54ciw5f+jmzhsMkurfQTdKjZF7FvmEqdNQZIkNjYGAauB3Tueo6DpdI3O7bkB1vjXkcEkRcMgW9SIpYskchp+pw1NN3lwZzfLa7xsa7GuKceHU+Q1/bSJhqJukDrHUdeZPNs+Azw+g693zuSKBn7X1P4/RwZTLKkUHf+zMTEyJUuctsG/YWmUbEHj+SNDLK/2k9cMPrGtkZqAky1NIba1hPnOpzbznnP08jFMk5+81c0tK6tm5Nh1k3K3tqAZeJw2kfJ0nnjsNmRJKheBVEVG06cu9LjtyrTeLkG3nVROK6cbXAxvHI9xRWvkvJ6zvy9e7gROIBZds8/6hiD94zluWGqNc5rAQDyHx2FjNFOYl24bwHdebadonDgXHapC1OcQST3zgMdpwzBNbl5exWApIS6jGTy+r5/fvL6Vrz3XNu1zQ2473RcwCpYpaKQLetlPKJ4t8mwpfjfstqPpBm91jnLHulpkyUqtdNoU/E5xvZgP7DaZXS88wehgL/aUNUajeILUbrudY0cO8aP7H5jX4/v5rl4iXjtvtVsJTz6nDVWWCHvsQtkxR4Q9diq8dg70J8s+QFaR2OTujVaYiKabvHZshNeOxwC4dWUViVIR5qkDU3uOnQu6YbK9fZQqv4N0Xis3lx/Z08e6hiCKLPGLXb3kNANFgltWVKHp1n8XNAOvXRHec3PElpYQDpvM/r542eslni1S0AzcdhtjmQKJ3NytS8bTBTJ5a/xrYo/VHHHTMZJmeZWPCq9d7FvmEFmW8DptrKkLApDXTHJFDXmefIBiqTxtQ8myp9yBvjgAGxuD9I1nUW0Kfqd1n8kWdJ4+OMgd62onvUZBM4hni9htErF0/qy+rme9EkmS9IwkSfum+LrrpMf8KaAB/3GG1/mCJEk7JEnaER+Lne1tz4v8NP4/YCWAibnKszPhA9QccXN8eHKnVZIkPrSpgf29cYq6wV3ranmnJ87XP7aR1XUBPnllM/bzUFU8fWAQp6pw1aLz29xPRSqnTUpUyGsGARGxed7IskTIYz8t/WuqOekNjUF2dY9N+1rbWsO8eZGz9qZpcqAvwapTijln4+hQisUnFXwLmoGntOiKZ4pikT5LSJKE36WyrNqPvWQENJou0DeexT0P3TawFnuHBpK0D1vvHXKr5HX9tORCwdzgtitWMdZhwzBMgqUiy2AiR14z8DptvNY2MuVzJUnCfwGjYLFUgYkl9d9++yf4VMrR3dVelY4Du/A6bNQGLZVrMlekPuwSC/F55A9/73e466ar+cQH3otLtf4Oq66/nf/y53/NHff++rwe29HBJGG3gyOl8eiaoAu7qogmwxyzti4ImKiKVPYqXF7jo9LnoNLnIJa2/CU9doWu0QySJPGFa1vZ3R3nlaMjFzxO+p/v9HLX+lr+1yMH+NDGhvL3nz80xCe2NZWVQGD5FXmdKocHkyyv9pMt6oQ94t4zV2xqCjGYyJMrGmxqCgGWH1zfeLbkQ2crK8jmgu6xLNvbR5EwyZTW2c0RDz1jWZbX+MQ+dR4IulSCbhW7IlnFZEnCNLFGsebQB8g0TfrjOd7cc4hYPM2NyyrpK/n/jBw/wPGRFJ+6spGAS8U0TR7Y0cWHNzcgn7ROyWs6iVyR9Q1BNjSEWBT1WpH2kjxtneesBSDTNG82TXP1FF+/AJAk6VPA7cDHzTO4apmm+U3TNDebprk5ELr4jf/J6KZ5wTNwAosJH6BFUR/7SpXHk6n0O1lW7ePhXb3YFJm71tXytefbcNmVcvzzuTCWKdA7nqE26JoRj4X9/XFW150oEmiGSAC7UKJeO9mTCkDVficDpRnUk2mOeOiITX/jXFbl4/AU0c7nw56e+AWNB+qGOUkJmC2e2PAfHEgIA+hZ5OaVVRweTBFwW5+/zlial44OWyqgdH7OVUDffOkYiyu9DJXk+NcuiWKaVtdeMPeoiozXrlidcIeNlXXWZzFf1Hi1bYTb19Tw+P6BaVMGnaqCppu8fmyEV44O88rREV5tm/z12rERXj/pq20ohdehcv93/42n93Syc7+lMvLaZXa+9jwvvr6d8bceBaxFmAnTNpMEc4PPqfLbn/810oadgMvaFA0kC9xx72foGcvMW0LLvt5xhpJ5blweZThhXVPcdoWmsEsoO+aY96ypwWW3MZ4psL/cKQ+xuzvOBzdYKiAkeLt7jBdKI+l1ITcuVWE0nad//PyjnguawcH+JE1hF92xDFeWGpjPHBxgWbUPmyLz9IFB4iV19NbSqMa+vgQra/1ohiE2+XOI225NAoQ9djY3WgUg3YT+eJajQ0k8DoWhxMwlw52JTEHjB//+TZ4/NIBhgmFC2GWjeHw76bxO1OsQwTXzgN+lopsmlT5r5FuRoG04Rb5oMJrOz9lxJPMaD3zvWxzr7OH1nXsIKXlGknkwdHZ0xohmuznYn2RLc5jnDw+zoSFEyH3iWpLXdFJ5jQ2NQUIeO7Is0RB2s6k5dMb3vdgUsHcD/w240zTNeYl7mYh4PlkFcvLPBOdO2ONAtUnTVj5/7YomXmkbQdMNaoMu7lxXe97Rcw/v6iXgUrlx+cykebQNpVh0ikeMmKO9MLxOFU76yCyp8nJ08HTfDUmSkGCSZ9CpP28MuemMXbjqY0fnKFvOcvE6lfFM4TRzX80wCJYulAf6RAFoNtnYGKR3PMuS0udxNFMkk9essRrVRsdFnA/ny0A8x1Aiz46OMQqlUcYPrK/B57QJD6h5ZEJleM2SCmylxtRbneN8fFsTrx6LUeV38NOdPdM/323H77Tjdah4HZZp5slfbtWGq/TltCmE3HbsNplFV96G2x/EcAcBiPd3kdEkQiN7ufWO9wNWsTjkVkWAwAKgOeKmaBjl9MeRtMaLR4YwgcH46U2JueDnu3rxOBQGE3kMrMVzrqCXPK1E0XAu8ThseB02dMMs31dURcahyqxvCBJwqXSPZtF1a/M9Yab6njXVxLMaP9nRfd7v+dOdPXxoUz1ffuwgN62oLKsEH9s7UPYC+uGbnQCsqPaxpdkqABU0o3xNcU+xTxHMHh67wooaH4eHUlT6rHVgMqexpyeOJEmoikLP2OxvXf/+H/+Zr/3dX9M1MIquW/ur0c4D/Mc3/oHEUDeqTcYl7jtzjku1jKCXlkIpbLJELJknX9Q5Pjx369VYKk/L1ltwUiCXSfHHf/9NTCDXdxhnuJbf/+A19Mdz6IZJLJ1nXSnxECBXLBV/GkLlvc4EfqeKWchMa554sTvlrwE+4GlJknZLkvSNi3y98yavGQRc6pRqEpEAdn5MVKAVWZrSw0WRZba2hPnRdusmtyjqPS+p/K6uMZZUeklktRnrshomp3k/iQvpheFWFRRFKs+N1ofcdE9zc5yuODTBtUsrePno1OMcZ+PIYPK8zy2Avb1Tq4YmFl2xdJ6w6MDNGpIkEXKrXLU4Ur6xqIrC9vZRvA4bsVR+zmbu/9+Lx9jcFOLtLmsUUZXBZlOo9ImN2nwSdNspGgbXLokykrJGN3JFg51dY9y5rhbDMEkXtHJXfyoUWTqnL5sil+8N+2M61UvWIqtOTF1DK2SRho/w7e98j0iFlTKYLerUhc5dzSqYPcIeB4uiHtbWB3DarL/hvt44QZedztHMBY/wXCiaZnCoP8mWpjAvHB4GwONQ0AxojLgJuoXqeK65sjVCwKUylDjRqb99TS1PHxzizpI3hiLDoYEkzxwcBGBDQ4iWCg+P7xs4bdz9VHJFnZ2do3zr5eP8/VOHKWg6LRE3OzvHuH2N9fqvtA3THPFgtym0DSbL46U1AScravxliwIrfEIWxeU5ZmNTiIJmMhjPsbjS2uSnCxqxdIGibuBz2ugbz531XLgYTNNk4w3voeHGj6EbBtmigWnojLftonbzLaxZ3ERY+P/MC9bnUWJrqdlc0E2yRR1FkdjdPT6r58UEE+Nfbw9p3HTDDZiDh5AqlwJgcwe5ZW0T3mAEWYbH9vbzwQ0nsrZyRZ1MQWNDY6isvD8fLjYFbLFpmg2maa4vfX3xYl7vQsgVdSLTdF9EAtj5MeED1Frh4eg0Ud93raujfSRD13nMzuqGScdImh2dY7jtCutPql5eDKf6/1hKA0XE914gsiwROckHSJGtedipWFcf5J2e8Wlfy2FTUGRp2nGOM/FK2wjXnmf0O0BHLENT5MQGbsLQ1akqllIQcYOdbW5eUUW+aJaLbs8dHuRIaRzQZZsbL6C2oSSGafLMgUESOetcbop40A2ToCgAzituuwKm1a03TJPm0vjwvz7fRsClcuWiCgbjeV4+OkxBm5lN/lAiR1E3ieet19OzSSRFpbjvqfJjJkZHg2J8eEGgyBLvXlVNMqfhKzWm2oZSdI9m0A2zPII1V7x0dJi8ZrC1JcKRASt6vDbosoqNknRa8qRg9nnXiioMTEbSecYzVjHZZVdoirhZUunFpSoc6E8S8VhFw3i2iE2RcTtsRH0OflxqZIK1Cesdz/LIO338f08f4e+fOsy/vXScRFbj7o31/MGty/j01S3883NHWd8QLK8xf76rly9ca6l//u7pIwAsqfTw3jW1JTPZcdbWB619ihgtnXM2N4fpHksjSfCu0tRBrmgQS+V4q2MUWZKwyRK9Y+c/EniuJHIabn+E+ms+iCQrSLJMYaQbW8/bbH3PvaxtqSLiFuuSuebrX/86sZFhPA6l7DVa0A0URSKV1+gaTc/JeGAqr5EvGgwn8/TF8xQPvoAtZCWSyk4P96yPsqdnnJFkgQ9tqi83tbIFnVxRZ0NT6LTJh3Plkt8p6ydFPJ+KSAA7PyRJIupz0FrhZX9fYsrHeJ02msJuHtvTN6XDuGGa9I1neeHwEP/xZic/fKOTB97qonssw0e3NLKnNz5JvnYxnOr/k9cMsYC/SCq8DnIneSxMlQoHVuU8f5YN2o3LKnm+1C09V7rHMtQEnFMm+p0N0zQnmaLlijphr3VjPTqUYkmVuBbMNltbwnSNZYiWlJcjqQLZgs5AIofXaSOWmv3kje+80sEVrWHebLfMOFVZ4prFFSiShFcYtc4rLtUqDBumSdTr4JaVVUhAPKfxj88cYXNTiIjXGvP6xe7eGXnPZw8NcaRvlGzWGgORFBvF3b9gLDbC5z5yB7GRYVJ5jZrAzPjSCWaG5govBd2gqjQGFs9pPLKnD79TpT2WPmvCyUzy8O5eFld6kSXKCXaVXicht4pdKDvmBbtNxmNXqfQ52dFxIpTi+qVR3uoY5d2rrJRZ04Te8SxP7rfSvzY3htjYEOKnO3v55kvH+PunDvP/PX2El44Ms7TKx+++awl/cOsyfvtdS7hxeeUk357H9gzwkc2W+fPOjjGq/U5cdhtdsTS9JV+hlgovy0ojJe0jaVqjHgq6IdTH84DXYcM0YWm1F0WWcCilhNJEngOlPY7Pqc6qt9hQIkemoDOaKYJk3V/08X5MLU9WM2it8OARHrZzyte//nW+9KUvceONN6Knx4mPjkAuCUgUCwUGxnNkC4ZlojzLxFIFYqk8ChqHDu4nY/Mj210YhRzZngP81sfu4pfvdHPVokh5ciZT0MjrOusbg/gv4ty5pFc7Z/L/AZEAdiGE3HZkhUlmwKeypSVMbdDFE/sHGErmeLVthB9v7+KHb3Tyo+1dHBpIsCjq5d4tjXziiiY+tq2Ja5dEyykI8gxJHU/1/ynqxkV9GARWge9kH6CGsHvapISQWy0ncExFdcDJYCI3rRdXPFvkne5xHt7dyw/fsIqFrxwd4aYL8IcaSuaInjLec/Ki67W2kbJpo2D2sMbA7LRE3Pgc1nV5R9coLx6xCoFOm0LXLHoB7ewcI+BReXhXP8mSl1mFz86NyyqJeO0i/n2ekSSJgFslV9S5YVmUrtEMS0uF2X294/xyXz+/dcMi3uyIIUnWBupiSOc1hpI5uoYTYLODVqC6IsxPvv11Fi1dzrEjh3j60Ycp6jpVftGhX0i47AoNIRctFZ5yGtjrx2NIWL4qsdTcqIDi2QJtQyluW1XFjo4xJvoeummwsSEklB3zyI3Lo7RUuHml7USjSZYkrlsSpdLvxCZL7OgcY0W1j11dY2QLOsuqfQwl89QHXbx3TQ1/cOsy/uDWZXx0ayPLqn1TNp9M0+T+7V00ht2WVyJw/44uvnj9IgD++bmjANSHXHziiqYTzysdD4BHNB/mBZeq0Br1cLA/SX3IA4DDJtM5mrY23rI0a95iumEykMjx5O4OMpkMst2JWcghDR9Fq13Hnpd+ST45hlsUkOeUe+65h5UrV3LgwAHed8MV/Nr7riU/ajWcPE4HyZyGZliJfrOpArLGv7K82T5KYniARMd+aq652zoOjwtfxwt0Do7T1TfI1hZr/5IpWL6aGxpDFx1+dUkXgPKateEXXbuZY8IHSFWkaefsV9b4GU0X8Dps7Ooapzrg5J5N9XziiiY+sa2Jm5ZX0RB2n3Yjff7wEDcuO//Rnuk41f/HNE0hxb5IXKURuonu6pIqH0eHpk702tQUYkfnmePe19YH2Nk5xvHhFM8dGuRHb3byw9LXi0eGkSW4aVmlde5c0cRHtzZekEnv3p4466bw/5lYdI2kCmWnf8Hs8q7llVT6HOWC3HCywPHhFJpuRX0PJQskZ0EFZJomP3mrizV1ft5sH8HE8v5pqfBiShAVf/8FQdhjJ1802NQUpnssw+1ra3GpMqmCwdudY7QNpblzbS1HBlM8ua//opQezxwcRNdNZLv1t7epdm5fV0dFtJJvPfAIf/Llv+X9H/8M3pKprGBhcfvaWhQZaksqoGRO4/4dXficNo6PpDHmQAX0yDt9BFx2KrxOfrmvH7Duk+OZImsa/JPSWARzyzWLo8QzRRI5bVKjaXmNn+FknuuXRTGxmkHJnMbj+/qRJAmnXaEh7GZX5xjpvEY8WySWyjOUyNEVS3N0MMne3jg7O8Z4tW2EF48M8f9eOsanrmwGYH9fnJDbjs+p0jee5UjJD3FbS7h8PvTHs1T5HeiGiU2WRTjJPLGuIUg8o5HXdDaVjLlHkjmSOY3nSglxAac6K95i8WwR3TB58eCJiYmWqgD/9rd/QbiulbH+Tt587peiMTXHVFZW8vzzzxONRomNDDM+GoPh44DlA1Q0DBw2iZ2d4xzsT8ya2jSV18gVdHrGsvgq6/notSsJLLsCsHzwvvFv/86W+/6B+27fAlgNraJhFX9mYr1ySV+RsgV9WjNhkQB2YUz4AC2Oejk0MPXGX5IkIl47q2r93LaqmkVR7xmLcJpu0DuWJVfUL7piOUEyV8TrOL1Q4BA32YtCkiQqvHayBUs9UeVzMDiN30JNwMXAWbomGxtDdI9lGEjkWF7t5yNbGvnENqtQeOe6WtbUB6cd4Twfesez1ARObPBPXnTphom4v84dVy6KkMxrqIpMpKTAOtyf5K1OS6bvtMkXlRA3Hc8cHKQl6uEXu/pIlqJ4qwNOPlyS7Iv494WBz6FiYpaK9xJXL65gebWVzrezc4znDw+ysSmE264gSRKPlzbd54umG+zpiaMqEumCtbD3umy8b601Xx+piHLvpz9PuqBRH3ILE84FyMpaP6YpEfY6sCvW3+ep/YNISGSL+qxL9DXd4JF3+rllZZWlJivdC+uCLpAk7IqCZ4p1iGBuUGSJoNtOhdfBOz2TjeNvX1uL36kiS/DiEctX8MUjwxR1gytbI7jsCj/f3cfrx0bY3TXG3t44B/sTdMYyjCQLZEqdf5eq8J1XO9nWEqGi1NT4/uudfPH6VgC++txRTKDSa+cT206of3Z3j7O+IUi2qBMRJr/zxubmMJ2xNCGPvZwsG8/pNEc8vN05hmGa5abnTHuL9Y1nSed1NNWD4rDWp81RP/15lQ988G4+cNOVfOm++2b0PQUXRrH9LcASliiyRO94DlWWGErmZmW9CjCWLtA1lkGSLEHDh++9l/GshoTlt/tsR441yxezsSFEKq9hYLKxMTRjQodLerdsMr3/z1BSJIBdCBMFgJYKDwf7p/YBArh+aWV5rAMgr+l0jWZ4sz3Gw7t6yyqPH77Zyc/e7uHwYJI7SskMM8H+vkTZuAtOmHg6bJf0Kb0giHgd5EtRlWdbtNjk6ZViYMmfP7ChnqsWVZRNM2eaiWLvycd68qLrYH+ClbUi/n2usCkyAZedwnAntb5SAlumwOPvdHH/d/8Nr8PG8AyrgHTD5JkDQ0S9Dvb0xNFNkIDaoJu6oAuv3SZ8OhYILrvCxBWjLuhiT884t6ysIuq1o5vQGcvw4I5uVtX4qfQ7ODyQPGuh+VTGMgW+8dIxfE4bR4fTmIBNhuaId5LC0ChdOya8wgQLiwlfwrDHTmPJMDyRLfLQrh48qo32kfSsNvu6RzOMpQtsagrx+L4BesetcejWCheqIqEokkgdnWduW11NTcDJE6cUiqM+B36nyqamELphEs8WMEyTx/b00Rh20zee46NbG3nhyAhhj4OIx0HY4yDotuN12nDbbdgUiW+93I7dJvPxUnHn6FASt10h7HEwkMiV/TLfv6F+UiN0QnWc13TCIiVu3gi4VIq6ydraAG1DKaIe62/RF88ylimyt1Q49DtVOkZnzlssr+mMpPI8c2CglKosE3CqXL80yqGBJJLNwSc//lFhUzIPDA0NceONNzI8PEw0GiUUriB2eAfoRXQTFMlaG+Q1g93dcTpimbLR/ExhmiZ94zn29ybAtJID3zxuTVQ4bTJeh42wx86SSh/pgo6EyYaGEO4ZHCW9ZHfLpmmt8Kfz/zkymBQG0BdI2OMAiTOa/AZcKgXNKBd5frG7j85YmrDbzs0rqsoqj09sa+IjWxq5aXnljEqljw1P9v8paAY+pyq6LDOA12GblJilKtK0iTyr6gLTGobPFX3jOasjexInL7reOB5jW4vw/5lLskde4e3nHmHvy4/jtVu3mV3HBvibr3yFB773LRw2eVpvqQvhpzt7WFMf4Ml9A4yUTFqbwk7WNwRJFzQaIyLee6Fgt8m4VCsa+ablUR7fN8DViytYUkrs3NeXYEmVl2ReI57VqA26+OGbHee00S/qBg+81c1fPXqAgEtlTZ2fkaTV1bXJMr92kj8HWJLqSp/zgsZOBXPDTcsrcakKi0omzLoJrx4bIZErkswViWdnx1TeNE2+/3ony2us5sH2jhi6CXZFwq4qrKjxE3YLZcd8s7kphGGajKYLp8U23762puwL+dSBQe5aX8fj+wYwTJOg21IHBV0qhwZOX8MYpsl3Xu0gkSvymyWvH4DvvNrBb1xnqX/++dkjmFh+iCc3OHXD8icFqxHhFd6U84rDJhPxORhJ5rl6ieUxeajf2iM+tKsHsJIpZ9JbbLzkj7m9YxS9dO+qCzmp9DktvzkJKnwO0ZiaBx588EEOHDjAypUr2bdvH4+9+CYti5dSTIwAIMsyyayG226jbTCF166wvy8xY8mkAOmCTrpgeQ31xrNcvzTKL96xfIiqA076EjlG0wWuXxolV9RZ2xDENU2940K5ZAtA+dKGf7rRoyODKREBf4FMzBbabfJpN9ST+ejWE+M8H97cwLVLoiyp8llGwrPMqf4/eU0XCWAzhMuuYLedUPa0VHinNWNdWePnQF98yp/NFRNRqydz8qJrPFMUXZY55nc/fheh2mbiozHGju/FNE1Mu4eGO77ELbe/H6/DxkA8R2oGDPayBZ29PeOk8kW6xrKUpn1orfRx1aIIybERHvj+ty76fQQzR9hjJ1fUWVUboKDpHOxPcO2SKE0llce3X2nH41AoaDrXLYlS1M1pR8EM02Rfb5zvv97B/3pkPzlN5ysfWsuvXdHMwYEkyYlRDrty2pqgoBvUBoVSeCGztSWM266g6SbR0nW8fyzLo3v6cak2Oi7SKHw6EjmN146N8OHNDbx5PMaxIcvnpdrvpG88x9YWK7FOML9IkkRNwEnYY+e1YyOTfuZUFdY3BFla5SOvGQzGs7jsCg/v6uXdq6p56O1etjSFeOnI8KS1rmGafP/1DsYzBb5wXStqaZ/RNZrGJktUB1yMpPIc6LdsEj57dcuk9z06lGRppRejlEwqVGLzy6q6APFsEUmWePfqKiq8KiaWUrR7NFNWI3sdlqpwJrzFusezpHMao+li2Th+caWXV4+NEPHYWRT1nta4FMwN9913H1/72td4/vnnqayspLWhhr//3s9orLDWB7mijmGajGfzJPNFDg0kMQyTtqHkjClOR1N5DvUniPocGIZJY8hNf0npXBt08Z5V1dhkCUkCr0OZUeXPBJdsAShb1ImeIX1BJIBdOBM+QMurfGccA5svpvL/0U1zTgpPvypUeB1lH6AlVV6ODE7tB6UqMtocxvFOxUgqPykB7ORFV1E3ZmXsTHBmmhtq+e1f/yiuSC3DT38To5BFkmXci7YQDFcgSRIOm0JX7OJVQD94o4MNjUF2d41zdKAUBxzvw4nGWGyYP/j0h/id3/5tvv71r1/0ewlmhpDbTkE3kCSJj29r4v7tXWxrCZdVnfGsVvage3xfP/fdsJhnDw2Vu7OmaXJ8OFVOnxxJ5UnnNb5wbSufurIZ04SHd/XSU1KZOW0yW0sGoBMUdQO7TRbJkQscmyLjttvY0BikoaTky+sm6XyRwwNJRjMFErNgKr+vdxxFlgm4VB7b20dBN7HbZDY2hcgVDcIehwidWCDcsa6WomFweDDJ/lMaUtctjVJRKtQ9uneAT17RzGN7+7ErEp++qpmf7OzhpuWVPPS2pQTRDUv5pRsmd62vm6Rc/9bL7Xz2GqvY8/dPHkY3THwOG9ctPRFuki3oPHdoiLX1QXJFnaBHpE/ON1ubwxwfTrGk0kt/PMeauiBghYc0RTz8+6vtADhsCpkZ8BbLFDSS2SKP7e1HN6zqT43fwfVLK9ENkyODKVbW+gmIpvW8cd9991FZaanBXA4boUiU92xbDVgFIFmSWBz1UeF18PNdvQTddgYSuRlJizNNk754jmPDabpiaepCLn74ZieGCbIEn7+2lRePDHPTskqyBX3WAkwu2QKQaZpi4TZLSJJEpDRzf3iajf98sq8vweqT/H/AUnwIKeXMEfbYKZZuXCG3/Ywy+9qAi77x7Fwd2iQM0zxNgn/yomtvb5y19YFpni2YTa5bHELrO0hg6wdI73sW0zRJFwy+95q12PI5bQwmshelAhpLF3ji+Vd543Avec1AxwaGzuiup/jpP/4Zv37H9Rw9fJCVK1dyzz33zNSvJrhI3HalPGS6rNpPhdfBL/f2s7k5xOqSX9cbx2NcuSjC4cEkRc3g169u4a8eO8DfPnmI//3LgzxzcJAqvwNZgpePjrC0ykf3WJaf7uzhy48dQJLgSEm1YZgmnywl+EyQymvUB11ic3YJcM2SCpx2haDLTsBlFV3eOB5jZ9cYNkkqF/pmilxR599ePs7ta2voHs2UU55WVPlKwSMmEtKsdGUF58/K2gAuu42VNX5iqQLfebW9XCyWJYn3r6+jJuAkldfoGssQdqs8sKMbp6rw6auaeebgEF6nyjvd4/zgjQ4qvJb3xuKTbCQG4lk0w6Qp4mE0XeBgaW38uWtaymuQom7w/dc7+NjWRpyqQq6oExEpcfNOyGMnW9RZVAq3+ezVLQSdNgwsv5fdXeNlZYdHtdEeuzhvsZFkHkWWebtrrOwpVB1w0RXLcPXiCDnNoC7oEgnWC4QJhd61S6xCbkE38TltbG8fZWWNn1Re4+hgkqDLzuHBJJnCxSnXR1J5RtN5nKrC0aEUrREvIymr6Li00kfQbWckZfkYT4yrzgaX5NlnmiYmTJu+IBLALp6I14GBSVFfeP+Wx4dTtJ7k/zNRBBAy25njfDqbVhz82CwezfR0xtK0VHgmfe/kRdf29lG2toSneqpgFhkaGuJTd9/O8OsP4QhUoAwcwChanZOnDgxglj6zdkW5KC+g3/rHn/Cf//jH/PQn97OzvST/T4+hONwM73mB8dEY0Wi0LPUVLAxcqpXwNWHC/Mkrm3mzPcaq2gD1ITc2WSKV1/nmS8f56JZG/um5o6yuDfCZa1q5Y10tn7qymdtWVtM+ksZhU/jklU00ht3s74uTK+p86spmoj4HRd1EwTL4PDUwQjfMWeusCWaW65dGOTaUYtuiEzHbybxOQ8jJS0dHGEpYCrCZYjiZpyuW5ZrFFfzwzU6yRQO7IhH1O4j67NSH3ATcNqEuXUCsqfGztzfOdUuj3LulkWcODfGL3b0UdYMVNX6aI9Y64eFdvXz+ulaeOjBIrKQcvHNdDW1DSb7x0jGiHgeDiRzLq30MJnIMJnIMJHL864snYuD/+pcH0Q0Tt13hxuXWfcVSDnXwgQ11BEvnqAn4XKJIuBCwKzI+p42iZhBw27likeUL+VbHGAG3ymN7rRFjl10hmdVIZC/semKaJr3jWeLZghUDb1ob7XX1QbrGMhR1k6awW4QULSBURcapKgTcKv7SJEm2qCPLliJnUYWHb7x0DFWRsSsKB/sTFzQmqBuWcnlPb5zD/Sm2NIdI5jRimTw9Y9Yo869d2cTOzlE2N4fLtY6ZiHyfikuyAJTXDPyu6f1/RALYxeNxWB1al6pcdLVzpjnV/ydX1C1DP7EYmzGcqoKzNEIF1k1xuvMg5LHPuEP+ubKnJ86auskKHxMr7hkgldPwCaXgnPPggw9y8OABFi1dzn/72C1c/xtfRml/vaQC0vnFbsvszue0MRjPXdDmrXs0w4oVK6i/9h5iPR0kCiamoTP0zDdBL4A5c4Z9gplFliUCLhv5Ykll6LGzoTHIj7d3saYuwObSuNZ4psgrbcM4bDKvHRthTV2A5dV+PA4bj+8f4OYVVdyzuYFETuP5w0N8YH0dn7iiiZYKDy8etlIqbTaZO9fVTHr/TEEj7FFn3FRRMDtIksTta2rJ5nUY72WiIfrw7n7G4kke+NEP6BmbGRWQYZg8uX+AuqCLbEFnT7fV3GiKeFhdG+DN9lG2NIWJeKa3IBDMPXdvrqdnLEte03HZFT6yuYHNTWG++1oHb3eO8blrWwi4VGLpAp2xDA0hN1958hA/2t7Fgzt7ODKYJJPX+N4bHfSOZfl/Lx3jmy8d499ePs63Xj5O1OdgWbWPWCpP27ClCLttVTWSJGGaJv/xZie3rKwu7z1MU6jEFhLLa/wkc0XCHjt941k+f20rHruMAdT4HDxcWpOAte/puMDo70ROI68ZPPR2b3n93BB20xr1sDjqZUfnKJubg+VCg2BhEHSp5DWDcMk6pqAZtFR4eHh3H5++uplkTuP1YyN4nTaSOe28G5fZgs7u7jE6YxkqPA56xjMMJnJIErREPIxmrPj3lTV+9vYmWF3rJ68ZBM5Q67hYLskCULaoU3EGfx+RAHbxuFQFRZZZUe2b95Snk0nmivhOqYbmijoVYjE240S9DjIlH6DFlV7aSuMUUzFfhcJ4tjhpjnpi0eWx28hretm8UTC3TJjsPf3Ms6xqqaU+4uPWO+7GJhmAxM/e7imrgGyKTPcFbN5+8EYnTTVhPv7xjxPYcicAenoMm8tL6sBLhCIVRKNRhoeHufHGGxkaGprh31JwMYQ9DnLaCePV96+vZzCRI+pzUOG141RlxrNFOkczLKv28+iefmKpPLu7x/nPd/r49FXNVHgd/OCNTmKpPJ+/tpVKv5O9veP86cN7eaMjVnplk3evrp303tmiTl1IJMNdSly9pIKnXtnOa9/6czJxqyjTO57loX/5S+5/eT//8i//csbQinNlPFvk4V29fPLKJn7wZiepgoFdtpJPb1hWyUA8z6JKt7AgWGC0VHhpCrv4p2eOlsdu6kIuPndNC0XD4JF3+lhaZe0LfvZ2L793y1JuX2NdF44Np/nolkY2NoZYHPVy/bIof3b7Kv7s9lX8j/et5H+8byVfunEJAH/52AG0kvrnY1sbAfjp2z1sa4nQGD5xTckVDaESW0BsbQlzZDDF2voAL7eNYLcp3LKyGoDX2keRJYldXVYMt8dhYzRdKJtDnw/DyRw2WWZPT5xS/YfaoIu9vXGuXBQhmdNYFPWJ9MAFRtCtUtB0Gkrrgni2SFE3WdcQ5Be7+/jIlgZ++GanJThw2Tk2nDrnBMrhZI63OmIUiiYVXkd53/LMwUGcqlI2r9/cFKQvnqMx7EKSJKvWcQav44vlktwdGaZJwDV9AeioSAC7aCRJosJrpy7sOuPGf67Z15dgVckjYgIhs50dQh572cBucfTMBaB1DUHe6R6foyOzKOoGtlMWV3ntxKJrV9c4G5uCc3pMghPcd999tDTUUh1wE/E6uXNTM0uqLbXWeFbjif0DAPidNvrHc+dVQNzfFyfiVnnlaIwqnx0lUIVpGsSe/FeUYA3VARevv7WLffv2sXLlSg4cOMCDDz44K7+n4MLwOW2TxrVVReZ9a2r46c4ellb5uG5xBQAD8Rw9YxkqvA6+93oHo+kCn76qmXd6xnlgRzd3rK3hhmWVdMTS/NOzR/nGi8fZ25vAMKA+6CTicUxS+uiGiSJLIjXyEuS377yC2lXbSPcewchbHfps03WEpAyNW26ZES+6tsEEec2gyu/kpSNW0bg66OZ9a2rKm3lZlnFPY0EgmD/+7PZVAHzr5eO8cHioFMcusa0lwq9d0czSSi+qLNE7nuVAX4KrFlfgtiv8zo1LeP7IMJIk8etXt/Czt3vpmqLD3zeeLXf+19QFcKoKj+3tZ1HUy7LqyXuOXFEXKrEFRIXXQSqvEXDZsSsSfeNZPn1VM06bjGFCQ9DJ917vKj/eYZPpHj2360lRNxhK5NjdNUZXLEMslSeVL2ICLlVmS3MIh6owkMhR5XPO6qZecGG4Skq9LSX1cV7TCbhUgi6V7e2jXNESwWVX+N5rHSiyhM+pcqAvXlZ5TYVumLQNJtnTE8frUMtBRS8eHuaqRRGODqVZUeMnmbPWvlctivLSkeGyqbxhmgRmyf8HLsECUNmo6ww333GRADYjhL12dMOc95Snk5nK/0eRLMWHYGbxOiyTPLA6IhNqoKlYXOmlbXh24nin4+2uMTY0hiZ9L1s4seja2TnG5ibh/zPfNEbcbGoO8dqxEf7s9lVMiLJ+uqO77N+lKjIdI2ni2SLJXJF0XiNX1MlrOppuTJq3Hkrk+OHrnaQKOmsqbPx//7kdADOXwmOk0Mb6kCWrY19ZWcnzzz/P1772Ne677775+PUF0+CyK5x6a9naEsapymQLGm6HjYDLRiKn0TuexTAsSfaGxiDffqUdCYnPXN1CtqjznVfbeWhXLy8fHaJrNINdkflvty0jU9S545Txr2SuSG1AGHBeity2cTG3f+p3MHY9jFG0uq/2miX8xZ//Ke0JiY5YioJ24aOf6bzGT3b0cEVrmEf39JHI6dgk8NgVNjeHee3YCNV+B16HTahLFyBVfif3bmsg7LFTG3TxnVfbebVtBMO0Etzu3drE1hZrzfDd1zr4zqvtvGd1Df2JLO9eVc1v3rCIzliGJZVe/vdjBxhJTU78+T+/PEhRN/E7bdy5rpYXDg8RcKlsPGUdAmAigmoWGoosEXDbuGl5JY/t7UeWJD6woQ6AnV3jJHNFjgxYEw9eh43BxPSNKcMwGc8UODyQ4LVjIxzotwrHUZ+T+9/qQiv5p9YF3aTzOjcujfJaW4xrl1aI0eMFiEtVMIFtrWFssoRmwMH+BGOZIndvquOrzx3lvatrODiQ4MhgomSRYU7bGM8UNHZ1jtEzniXqdZTvF3t748iyRN94jqJmpZl3lNJwl1f7UG0yDptSTjOezb3tJXcHy2sGPufszcQJTuB12MAEr0O5ICnkbDCV/09IxGzOCnabjM9hjVKdDbk0Bz+XBuyH+pMsP6XrZpy06MoWdHGjXQB4HTaaIm4yBR2nTeGutdaGfChV4PGS8aLfaWM4WWB31xg7O8fY0THKm8djvHEsxittI7x0dJgn9vXzRz/dw98/fYQbl0U5MpjkyFsvYQZqwDT44g1L+eSXv02kMEhX+zF+9rOfAlBZWSmKPwsQh03BqcqTOmiSJHHv1kbebB+lNuDixmWWwWrHSBq/S+X5w8P8zeOHUGTY0zvOH/9sD//07FFeaRvhhcPD5DUTr0PhPauraY+l0XSzLPOfQDdNKv2iA3upctfaKErVIrTEEEY+i6w6ePCdEd69uprnD40wEL9wFdBAPMc7PePcua6W+7d3AhD1O/nUVU2YpsmDO7v56LZG0cFfoMiyxPVLKxnLFqgNOPncta0E3SrffqWd7e0xTNPkd9+1FLsiM5DI0Rr1ki3qDCfzXNEaQVVkbl5ZxX03LuaK1gh//NBentjXj26YHB5I0F86txZVeskWNAq6wTUlpeLJnC2oRjA/LKnykcppaIbJhsYg2ztG+ciWRhw2Gd2EkEvlx29ZKqCJxlTv2OTrSSqv0T6S4rVjMXZ1jRNLFQi67EQ8Dtx2S9V6sD/BRH5Oc4Wb0UyBSr+T0UyelTX+Uw9LsACw22QcNhm7Ipd9gEYzBbwOmUROJ1PQCXvsLKvy8o0Xj1vpXC6VgXiWocTkQvFQIsf29lGKhknE4yiP+3XG0uzpGeeOtTX8x5ud2G0y9SEXJtAQcvF29xg3ldY8E3vb2RwhveSqKNmiTtQ7vbpHJIDNHC5VwabIrKzxs28B+AAlsqf7/1gzkkLtNVtUeB1kS8qfgEtl7Axmz4uiXo7NkQooU9BwqvKUc9Ruh1L+uWBh0Bh2s64hyGvHRvj01a3YFevv9tDbPWWZfthjJ+xxEPE4CJ/05XeqvHl8lGcPDnHbyiru3dzAy20x7t5QT2d4A5Jk3bTfu2kRks3BP/37j/mnf/6qKPpcAoQ99rIR9AQNITctFZ6SL5REld9BTjNoG07xX961hP9x+0pcdhs+h42rFkU4PpxmKJnH61DY0BDk3z+1lc9e04IsQYXXjsN2YhOWK+p47Iowhr9EGRoa4r984i6KzhDpF78NpnVv2tM+RF93O7t2vsXe3jjaGWT501HUDba3x/A57ezoHCORN5AAj93Gqtogj+8bYFmlD7siT/KdEywsvA4bn7yiiZ+XTH1X1Qb43DUtOGwK33qlnYMDSW5abo1Y/OD1Dv752aMEXDY6Y+myd5BcGgW7sjXC9o5RvvHiMb7y5CEKuknQZSPsttMfz3PrKcXlCdIFa/MmGtULiytawhzot/Yym5vC7O2JoxkG92yqB6BtOEXveI7OkgG0z2krJXoV6R/P8lZ7jLfaR+kZy+KxK1R4HficKvJJ69CjQ8myWj7kVlkc9bK2PsBwKkfYbS8nxAkWHgG3ZQQdKRX43XYbe3uTDCZyfGhjHQ/v6sXvtrO1Ocz/e+kYkiQRcNk5NJAgW7DU6ocGEuzrjeN3qpPSu4aTeZ4+MMi9WxrpGLHOs5tXVPGzXdZ1altrmNF0gajPeu+z1Tpmgkvu6mSexf9nKJknKhLAZgRJkoh47dQEXBwbnn8foP19cVafkvgkAV6xmJ81gm4VvVRUXVLl5ejg9OfB+oYgu+fIB+jN9lGuaI1M+l5e08vS/B0dY+UkIcH843OqbG4KcXggiSRJ3LnOkl0PpQr8YlfPlM8xTZNX2kb4/usdrKj2sbk5zLOHhvjR9i6aIx5cdoW9vdZi7jNXt7Kre4yl1T7WLmnkd377S3P2uwkunJDbTl4/XWH4oU0N9MdzeB0KNy+vRMJS/P34rW4e3t3L5sYQB/oT/Nsr7WSLOlubw1zRGuEPb12GZhj8yc/38vrxUX79qtZJr5sqFKkX5s+XLA8++CAHDhzA2bcLwo3IhTToRXB6+cvvP8Uvv3If/3j/kwwn8+f92qOpPI/s6ec9q6v4xgvHAKj0O/jkVU0UNIPnDg3y8W1NyLJU9nIQLEw2NlkRykNJqzMvSRLrGoJ87poWjFLDQUFnJF3g+Eiaf3y2jS/9eBcf+JdX+PR3tvN7P9nNlx/dTyJXZDxT5Nhwikzeuk61Rr04VYW71tdO+d6maZIrarRWeObs9xWcG5V+J/FsEZsso+kGd6yr5dE9/dy9sR5VkdBNUBUrpAKsQqAiS7zdOcaRwWTJG9VB0DV9ce8Hb3SWC4m1ARdDyRwbG0O8cjTGzSursNsuuW33rwxBp52CbtASsT67x4ZSREoqnP5EnojXTq6g43bY6IxlODaURFVkFEnm0ECCt7vGGIjnqDhp5Ass1djP3u7h3i2N/HxXD//4bBtuu8yd62o5Xhoh8znUsv/QBLO9t72kzsQJWeWZzPeODCZZKhLAZoyI107RMFgIwqpjI2laTrqp6oaJLEt4xJjPrOFx2DCxPnutFV7aR6YvAFk+QXOTBNYZy9AUmbzAyhWNsjR/V9c4GxqDc3IsgnOjqcJD1O+gazTDJ69sKquA7n+r6zQjvX29cf71xWP0jWVRFZmX20ZI5TQ+uLGOT17ZzNaWMN96pR0AmwzvW1fLvt44S6q8VPtdc/67CS4Mt2PqjbTXYWNba5iOWIZUXqcp4sYENN2g2u/kTx7ey9td43gdNn7v5qVU+R18cEMdT+4f4L89tAevw8aX71zN+pOuAYZpIiOVu3uCS49yuuDPfkCkeQXDL3wfQ7PG081QIy0r1nHd5jU8sX/gnEaXJzBNk6NDKUbTBdI5jXjJlNPrsLGhIcTP3u5mdV2AQsmHSvj/LGwUWeI3b1jML/f2Y5y0eJUkic3NYULtzzP42D/DgSe5dWmIdbUeSI9iIhFLF2gbSrG9Y4znDg1zbDjFaDpPqmCpBxNZjS9c1zptilM8V6Qu5BIqwwWKhERj2EU8V6TK70QCRtIFPrTBUgH1jGbpjGXKhvJBl50Kr6VGPllNOhWmaXnCTIx/tVZ6CLkdyJLEYCLLuvrgLP5mgovF47BG+K5bWlFOIW2tcLO3N07PWIZ3La8mXdBpG0ryR7cu45+fa8MwTfwulWROwzSZNPIFVpz8915tRwL+5yP7iGeLrKr1E3TZeadnnKJh4rDJjGUK5fHAiaCK2d7bXlJ3sbxm4HOoZ7z5igSwmWXCByjgsjF+hvGfucCcwv8n4rGLOMVZRFVk/E5LFmm3yRT1M1cC/S71nKMRL5R4toh/ig6sZhhlaX5RN856sxbMLX6nyrtXV/PcoUEkSeLmFdasc1Yz+fKjBwCr8PNnv9jLL3b3EnLbGdrzAu9Z7C4XfVLjo9z/3X8jU9B48cgwAB/e3EAyV0RVZKr8TuH7dAnhUhUkpClHt29ZUQ2YZIs6Ny2vxK7I7Ogc45+ePUqmoLOtJcxXP7qBtqEkqk3m6YNDvHZ8hBuWVvLf37vitCCIdF6j0u8UHdhLnPvuu4/Vq1fzrT//TbzRWvRMHNMwUEPVXPWbX+GuLYs51J/kvz+0lxcODXJ0MMlIKk+moE1rEZDIaTx7cIiGkIsfvGl5/1R4Ve5aV8d4psDe3gTvX1+HqshUC4X5JUFr1IvfqdI1evpY+q13vJ/qQi+dj3yVn/7RXbz8l/fQ+bVPojz6Z/zRDfX8+lXNXLekgrqgC8OEWNpa09QEnFy3tGLSyM/J6Iblg9gYFuqfhcqiSg/pgo4iS2i6we1ra3n0nT7u2dKAKksYWGryn0+jTJ4O0zR5eFdv2YS+JuDEaVO4cXkl8UwBj8MmRkcXOE67jAksrfKxtNKqI/x8dx+bG0Ok8zp941ncqky6oHN0OMVNyyv51xfaAEvN7D7FsDmeLfC79+/i0GCS6qCTr9y9jnUNQar9TnxOlQd3WuNfLREPTRFPeS87Ef8+23vbedGxXsh8Nlgb/qbImeXbIgFsZjnhAxRgb2+ca5dE5+U4EtkivlM2/XlNp8IrbrSzTdRrpyOWwalaG2uzlNw0FZuaQuzsHOWm5VWzdjyvHRvhqimNFy11YCJXxDONskAwvyyv9lPQDfKazhevX8xTBwbLaQu/98AuKv1OPn9tK41hD/d/99/45v/6rzz7o+V864FHAPjcR+7g2JFDvJ2LAhXIEnx0axOP7e1nY2NIjPdcYiiyRNijksrrk+blJ352+9pafr6rF1WRWVTp4WB/Eo9D4TeuW8SmxiBfefIwNQEXGxr8fO+NTn7r+sWsrJ3aZLOg69QExOb9cmFVjQ/J6SN96BX8m25HsrtoH80ymi7wiSuaGE0XeOSdPrwOG9csiWCTZRRFIui2E3areJ0qbrtSNnrd0zNO2GMvb/YjHifXLY3ynVfbWVXrRzdNllR4ha/LJcQXb2jl7586QrXfVV6/AEQqonzrgUf44M1XMhYbASAUqeDbP/wJkYrJa9xMQeNgX4JfvNPH2voA151hDTyeLbCoNCImWJhctaiCR/f0c+vKKo4Np4h4HKytD/BO9zjvXVPDL97poz+eI+hWGU7my54sZ2JPzzhffa4NWaacmlzjd2KYlnfmL/f2c9uqKhFWs8Bx2Kz7gSxJtEY9HB1KMZTM0xRx80Z7DKcqc92SKAf64/x8Vy//94Nr+dOH97Kvd7I9ydGhJA+81c2x4RQf3FDHHSXLg4F4jkMDSUwTVtX6+OlOy8LA77JNuq7kNI0K7+xPMs3LnSyVv7AxkQmplWDumPABqvQ76BzNzNtx7OuLs7p2sv+PaSJm8eeAgNte7pxW+h0MncFfoT7oomfswlNYzoXBRP60LmxRN3DbFRw2hbfaR9nWKvx/FiIBl8otK6p49uAQkiRx9SKrkJfTDDY1hWkKu3nl6Ag/erOTVNM1NN/5O4xEN3Lv7/45H/7C79KTVWnZfCNHdOt5715pFRr7x7O0VnimVIYJFjaNYQ/Z4tTjOqtqA1R47Awlc9y4rJIPb6rnb+9ex0gqz1eePMzta2upC7l4YEcPf/2BNdMWf4q6gd2miFjmy4ShoSFuftdNjLz+MxwOO2YuiWka9Izn+Y9XjwKWwfinrrKUg4/u6edAfwKv3UYmr3FsOM3urjFeaRvhrfYYO9pHyWkGx0cstUjQpXLlogg9Yxn64lluXVmFU1WoFOqfS4oqv4tqv5OeseykUbDzwW23sak5zF/etZpUXp92hDSv6ThsMrVBMYK8kKnyOxlK5qjw2q24b91ga0uEXd3jfGRLAzbZShtO53Ue3j29CiieLfLAW138xg928LXn2tjWEmZzUxjDBJsE1QEn21qsdWjXaJqtLZFpX0uwcAi6VPKajt2mcGtpffn9Nzr58OYGesdzDCRyjGU0Ak6VHZ2j/O5NS/je6x2MZwo8vX+Av3rsAP/xZhdRr4Pfv2VZufiTK+r8fHcvNy2Lcmw4xUAiT6a07mmp8E5SJktIpzXEZoN5a2VMJAudD1as4vT/KCIBbHaIeOwU9fn1ATo+hf+PTZFxiU7LrOOxKyBZn68llT6ODCanfaxUMs27UJXf2RhK5KbsyGQLOpGSY/6enjhrTjELFywcrl9aSUcpZeO/3LyUifvem+0xRlIFkjmNbFFHl+1c/d4P4aldAg3rsW38IJUf/FOUW/4A3bQM4L9w/SLaR9JUBRw0RtxiHPQSxO+yEXSr0/qH3b2pAUWSONiXIFPQeaVtBEx475oaXm0b4ehgkr+5e+0ZPTeSuSINIbfowF4mTJhBL62v4v0f/RTXr12EZOggybzd1sdY+sS4ekPYzWevaSXssfPvr7ZzbDhNyG0lDlZ4HMiSzFudo+Q1g/ZSimVTxM3NK6p4ZE8fSyq9SLLEoqhHnD+XIJ+9ppW3u0YnJZjGRob53EfuYCw2QihSQShSwVhshM995A5iI8NTvk73WIb60PTFnWSuyOJK76zGNgtmhvesruGZg0M0V3iI5yzF3+1ra3jm4CDXL7WUGF2xDF2xzKTzJpkr8tSBAf7xmSP81WP72d4+yvvW1LCpOcQ1iys40B8HoDbkxqbILK/2kcwVcYvkyUuGgFslXzRYXu1jebUPmyzRM5Yl4FLJFjT29I5z3ZIK1jb4+fH2LiJeB1ubw/zDM0fZ0xvnrnW13LSsktV1gfI+xDRN7n+ri/evq+Xnu/uo9DrY32edKx67wntWn0gT1HQDh02eEyuDeSkAeRw2Xjo69UV2OvKaflb/H5EANjt4HDYkrI5aLHX+6Rozwan+P9mCFf8uNnyzj60Ue5srGjSG3XSfRQm2otrPwYHpi0QXw6vHRrh60emdlKJhECrFa+qGKUw6FzABt8rSKi8H++PYFJkNjSEAOmIZnj44yKN7+3l4dx+P7u3nlfYEausWnPWrsAerkZ1eJlLDr14URpFlXmkbZltLRJj7XqJIkkRLxDNtASjqc7Cs2sdgMsfNKyqpDjgxTJPnDg1RE3Dyh7cuO+OmayI8okKcH5cNE2bQL7zwPJ+5fhmGYifstTbnccnNd15rP61Rsao2wOevbSWRLfKtl4/TGUtz/3f/jeHhYfb1JajwqBiAHY0llV7ahlIUNIMbl1Xhs9vE+XOJEnCrVAdcJHNFcqWO+9OPPsyxI4dYtHQ5Dz3zOg898zqLli7n2JFDPP3ow1O+zuvHYlw1xdoDLH+xoNsuzpFLhPUNQd7pHqfS5yirgGoCLnQD3r++HpsEBpDTdH62s4dnDw7y3Vfb+fdX2znQl8ChKiyv9rOqzs9AIkfHSJovP3aA40NWAbnS56AhZDWkdnTMriWCYGbxOmwYmGxsDHF0yPL5AfjmS8f5jetbaR/JMJDIMZgo0Bzx8IvdvXxwYz0f3dLA79+yFN20ppyuPsmm4qkDg2xqDPHUgUHCbjsNYRdayU814nVMWrtmCvqcXUfmZZekKjJ949nzUuxMbPjPxNHBlEgAmwXcdgVZllhV42dvb3zO3z8+hf9PTtfEhm8OiXod5DTLOM84y8d2dV2AfbN0nsSz1kLrNEyrUDmWLhB0i07LQuejWxt5uS0GwH+9dRkOm4zXoRBw2gi5VGoCTur9KiQGKY71o8cH0RNDFEa6YbyPGp/KH9y6nKJukC3oLK3yic7rJUzQreJzqOUN2qncvraWiNfBV59v483jMQYSebY0h/jYtqazNgGyRZ2QWxXm4JcZ9913H5WVlaysDVDpc7C2IYQMaAbU+p0MJnL8+6vtvHRkuKxIlSSJqxdX8OmrmvneQ7/kX19s44t//x9oxSI7OsYAGDv4GskDL/Nme4wqvxObAosqvaLZdAnzySubeKc7TjJfxDRN7v305/mTL/8t33rgESIV0bIn0J98+W+599OfP+357SNpNN04zeQVrAJzpqCxWJwjlxRbWsLs7o6fpgJ69tAgG5usptTRgRTpgs5YpoABbGwM4bbL5Io6+3ribG8f4+WjVgE5kdMwgJYKDwGXyvVLo5imyZGhFNctnR/vVMH541QVKAkOQh47Ny6rRAI6YmlkSSLsVnn56AjXL60g6nNwdCjFQDzH8ho/7SNpDg8keO+amvLrHRpIUNQN+uI5miNuErkiu7vHSeatc+59a6onvX/RMAjPkY/xvLXJV9UG2N+XOOfH66ZJ4CwbuzeOx1hTL0Y/ZpoJH6CI1073LPu7TMX+Kfx/5mpGUmDhc6nlGXpJslQ202Glhc38CFhnLE1j+HSTX003UG0yTlXhjeMxrmgVs9YLnSq/E7ddYTSdx2W3cc3iChZFvdSF3NQEXVR47SiZEcb3Poe94xXue/d6/uB9G3AdeIT+h/+GK/X92BSZ7e2jrGsIUukXxeBLGUmSaIl6pvUHdKoKVy2yzpHaoJOtLWFuW1Uz5WNPJVPUhDn4ZYzPqfKhjfUMJ3N4So2ih9/ppSbg4tNXNVMTcPIfb3bx0Ns9jKYLHBpI8LNdvVS1riKgmiRiQxzb/SqaCXo+g9dmULPmSuyKZfgZcttFU+ESx+dUqQ44kSWJ8VJK6b2f/vwkw+dIRXTK4s9LR4Z5u2uMe7c2TvnaIvb90uTmFVU8e3CQar8TmyxR1A2cqsLooe1sqHagSKADqUyaod3PU+G18/NdvWxvH2NPzzg941l6x7OMZzVsssRNyyr5yt1rWVvnJ+K147IrpPMaLlURoSSXEA6bFRagGyY3LavkYH+CqxZXYJjwry8e5/PXttIXzzIwniNbsJpLj+zpYyCR44Ujw9yzuaH8WmOZAq+2xWit8FDUdJ4+OEjHSJpqv5NMwcAmS7x71eQC0Fx6287bWbmpKcQP3uiY5Jx9Ns70IeoezRDynB7DJpgZIm47w4n5Gf9qH0mz7SQDNU03UBUZpyrGfOYKj92GLEkYpsmyKh8H+uKsqQ9O+/ioz8FgIkfVDI5kvtE+yh1rT9/05YoGkVLF/GB/gltPuaAKFh6SJHHvlgb+c3cvH9zYwBevX0QiWyTqOzn6ci33O/u45fb3lxfq6//ln3j60Ye599OfAazY+N9+12IcNqHuuNQJua1Fs2Wmevrf8+pFEXZ3j7OxMXzO6wbdMFFleWrVoOCyYWVdgMaIm6qAk+cPDZMuGPzeT3bjsStsaAwScttJjhf5u6cO43Pa8Pbu4OZ33UTDF3+Df/rugyi1KwHQ2l7nC7/+MWIFBacq47TLtESFsuNy4GPbGvmnZ45y7dIKCpoxyXR1KjTd4MGdPSyKerh7Y/2Uj9ENE8MwaYqINNpLDUWWqA+76R7L0lzhoW0oxdMPfp8f/MV/pfnuP2LJFbdxZCTLG8fHyA9qBLOHkR0u0vkTKlWvw8bdG+u4bVU1PqdK+0iakVSBj5aKhfv64pNGgQQLH0mS8DstHyC/SyVb1Hn/utqy3yDA8iofj+zp5zeua+WX+wdYXuXjR2928ts3LUEu3St0w+Qnb3Vzx7pafrqzhyODSUJulT+/fRUP7bLMxcMeO7J84jpU0Aw8pTCbuWDedtCKbMVxnounTF6zImLP5Otx/1tdfHRrw7Q/F1wcXqeKiTXbOpjIzel7G6f6/xT1UzaKgtnG+rxaIxobGkPs7Bo/4+M3N4XZ0Tk2Y+9vmibZgj5lgTev64RL46GnniuChcv6hiCjmSKZglZO2Dn1M32mLu1YuoDXaaNOqDsuC2RZorViehWQJEl86cbF59U0SuaK1ARc4ppwmRN0qdyzqYGe0Swuu0KVz44iQbqg80pbjEf29PPkgUH6x7O0He/iF4eT/NG3H2cgFqfYvQfF4cEo5tFzKWIZDbfdxtWLK6j0OQiI5NnLArfdRk3AiUdViOcKZ7SgGMsU+NYr7Vy/NHrG9KbxbIFWEft+yXL3xjp+/nZPWQV043vuZNHS5fQ890P2PPtTTF0DRcVR1UoWO+m8jiLB4qiX96+v5Yef2cL6hhC/3DfA917roH0kRdhjpyniQTdMDvQnuWVF5Xz/moLzJOS2ksAArmyNMJTMs6EhiGaY/MuLx7h3ayM5Tac9lsZpk+kazfD7tyybVKP46c5u1jcE+L9PHGQgkaUh7OLL71+Dy66U90ZbWyanFWeLOtE5VLPPq4TipmWVPHdo6KyPy57FFKl7NEPE4xDqn1nEbVdQZIlVtX729sydD1A8Wzwt2jmvzd2MpOAEUa+DXNHyAQp7VEbOULyN+hwzahh+eDDJsmrflD+TsDoxE9GegksDSZK4oiVSTs44X545OMitK6vEKOhlRMTrmLERUtM00QyTqoAIhrjckWWJFTXW6MW6ugCyJHPbyioaw24WV3qp8TuQgJF0gSHTg6tpLbq3ih89/hLOqz4JQGr3LykW8vzi/h+QSKbwOW00VwhPycuJe7c28uSBIar9zrLvy6kcHkjy0Ns9fOrK5jNGultR0TI14vpyyeK223CoCsmcRkuFF5s3yLceeASfXCA7PkJhuNN6oGLD57CxptZPU8RN2KPSNpTiTx7ex093dpMraKiKRO94rhxqkcwVsdtkPGI08JLD61TRSwXiJVU+2oZT3LPJUgHu741jkyXW1Qd4eHcfN6+ooj+eI549cT15eHcvbUMpHts7QEvES9Tr5LdvWgJALJWnbSiFBKeNf2knhdnMBfO6cp6QVxVLIz3TYZjmGWew73+ri/tuXDwbhygoIUkSEY8dmyTRP4cKoH298dM6vhMbfsHc4nOpTDTNblxWyeP7Bvjw5ulVd3abZZY3E92xHZ1jfGSK99INE1mWcKkKTx8Y5Coht72k+MDGWv70oX2sqgmel0mvaZoMp/LlxZbg8kCRrUSwQwPJi07CGM0UqAk6xb3iV4QKn4NPXNHEPz97lCq/k/5EnitbwxwfSeNSZa5bGiWeLXJsOE3HSAq8IVzezQAYusaH7/0YTzz9DLGOgxSOvUHNbavEuXOZ4VQV6kMuJrQ/p+49njkwSKao85mrW86qME/mNFbX+bGJxNFLmns21fPgzm4+c3UL7bEUuVLzIbnzP1EjjUjpYf70Mx9i3FB58fAwa+uDrKkLsL4hdMYxwo5YmvUNwTn6LQQziUtVOPnT3xxx43HYWFbl4/Bgkn954RhfvH4RRwZT7OgcI+RR+e5r7dhkicODSQqaUZqWyeNQJFRV4eFdvWiGyfOHLdFLpc8xydN0QpE4l35R837lumpRBa+2jZzxMSZMq+7pign1z1wR8djJly6O55PgdjG0x9I0nzRfXdQNHKosJLfzgFu1VGC6YeJzWuNgZ+rUr60PsmcG1GITc/ZTFYnzmk7YbUeSJI4OplgiUgAvKZyqjUq/84xqsqnY35dgebVPjGdchkR9DlRFuigVUKag4bYrLI6K68GvCqois7LWj0NV+LUrm7h+WZS2oTRNYQ9NEQ87OscoaAbXLI5w99oo+f3PkOvah56Jk3vjRyR0lc/eezdX3/Z+Pvqxj9MUFr4ulyP3bK7nF7v7WFblYzxToKgbFHWD77/eQdTn4M51tWct/qTzGgG3KmLfLwMq/U7GM0V008RvZPjcvXcyFhsh6PchDx6gmM/ztz95hvaBMf7vB9fw2Wta2doSOWPxp6gbHOhL8N7Vwo/yUsSpymXPU4BrFkd59ViMD5VUQLu7x3HYZFbX+nn+0BC3raxCM0xaIl5W1vj55BXN5DWT//2B1VQH3fzRbcv5yJZGuscyjKQKRDx2tjSHJ11n8pqBz6meUQwz08x7AWhxpZfjI+lpfz7h/zPdh+3+t7q4V3j/zAnekpSxNuCkPz43KiDzVP+fs4wDCmYPWZYIe+zlqOarF5+5eLusyseRkmnaxfBOzzjrpumkZIs6kZPGvoQv1KXHhzfXs7t7bMoIcN0wyRV1krkio+kCsXSegXiWl44Oc/fGemTh7XLZYVNkmis8JKYZ0Tgbmm6QKeisrA2I7vyvGNV+F3etq+WBt7pQJIl7NtWTLmjcvqaWf/jwelbWBogn0zz4F59l4NF/pPDU35H+0e+SHunntZdfpKAbfOqOG2kIu89LkSi4dHDYrMLwcCrPiho/PeMZvvZ8Gzctr5x2nXEypmmSKeoi9v0y4o51tTzyTj8vPPkInW2HaV2yjIeeeZ0HvvlPeG0G/U9+k6r+11HP0Zw3ldeQZYmACB+4JJEkCZ/LRkGzmlB2m4xdkVhZ66ch7CZb1Pnmy8d539paKv0Onto/yO/fvJS+eJaVNX4efLuHL9+1iqf2D/LBDXWYpsk3XjzGG8dH8TgU/uCWpdScMl6aK+pU+uZ2b7sgZDOLol7ahlIsnqJ7nysa1IemnsPtjKWp9An1z1xxwgcowO7u8TPOR88EU/n/FA3h/zOfVHjtDKfyeBw2FkW9vHhkmBuWTf1YRbYq6KZpXtRCaV9vnI9va5r2516nSs9YhpqgmMW/FGmJeslpBvFsgUxBoWjojKYKjKSsgk86r2OTJVRFxqZIuO02Pr6tkfqwMH++XKnyO2kfSaMb5nkZOJumyVi2wMpqvxjf+RXEZVe4YlGEdF6nP56jZyyL12HjO6+1s7LGz+1ra/n+m48zVncVrYFavv2NrwPw6X/4OQPPf4+3Whu4eW0TDeHZXdsI5pcPbKzjbx4/xM0rq9jfm+B/3r6CvniOWDqPx247o8I8kStSG3TiF94ulw0ravw89HYPf/Kl+0jliiy/6tZy+MR3/vyLPP1odTl84lwYTuRYFBUKwkuZoMtOz1i2fC24YVklLx4e5kMb6/iHZ46yvX2U+25YxNJKL9s7xvjBG50E3SqP7ennr+5axfGRNJU+JyGPnR9v7+KJ/QPYFZk/e99K4tkiK2v8k95PN038c6xoXxArpKsWRfjx9q4pC0BnMkV64K3usrGSYPaZ8AFKyBrDM2jwOx37euOsmSLxZS5nJAWT8TrVSbOxi6Nejg4mWVI1tUFzY9hNZyxDc8WF3QzzmrX5n2oTmCta6kCPXeHxvTGuWiT8fy5VblxWyTMHB3HYZBw2hfqwi7UNAVoqvFT7nSLF6VcMVZFpCrs5PpIm4jn3rth41kr9EsbPv7rUh9ysqQ9wo9dK3zFNk5FUgUf39PGXj+5n2cobubIYwlvzcX60Z5wrWyOs3biZbc1B7nj39bRUeOYshlcwP6iKzObmEB0jaf74PcuRJImGsIeRVN6K8k7n8ai201RgumEZyzeL2PfLjmuWRHn56Ah/9Pu/y5vto2V/qJOTR8+FbEHnwECSz1/bOotHK5htfE4bmnFiDL3K72Q4lee2VY388M0uhpN5vvtaB/duaeTYcJrOWBpVkfnSu5Zgtym8eGSYL1zbypP7B/jR9i5kCf7wtmWsqg3wby8fZ9vVJ9IFDdNEQprzptWC2EmrioxLVUhki5MqYEXdwGGT8TlPP8yOEUv9I2S6c0vEY2coaRV/LlbZcTbaY2muXHTiQ1LUDZyqIvx/5hFLBSaXO/NXloq30xWANjWFeOrA4AUXgHZ0jLG5OTzlz9IFjZU1fiRJojOWKc/nCi49blxeyY3LRVyq4ARVAScdsXNXAWUKGnabLEYzfsXxO234XDZi6Txehw2HTSHqc/DrV7fQPZbhl3v6+eNfey8m8HbnGD9+q4vfuWkZTx8I0lzhOU2aL7g8effqmkn/L8sSlX4nUZ+DsUyR48MpRlI53HZbecpgPFugtcIj1qCXIdctqeD//PIg1y2N0lpx4UEE6YKGbhhUiybEJc1Uk0XrG4Ls60vwgfV1fPPl47zcNsJnr2lhcaWXXFFnabWfhpCbh97u4Y61tWzvGOVfXmgD4IvXL+LK1ggvHhlmc1No0pomV9QJutU5b3QumAH5m5ZX8tzhyZHwyVyR+pB7Sp+HB3Z0c+/Wxrk6PEEJT0kB0hBy0TWamdX3Mk2QT1rIZwo6UeH/M69IkkSF10625NeiKjIuuzIpAvFkfE6VdF4jU9Au6P2ODk1t7KwbJraSJ5FpmpjMbjFSIBDMLQ6bQkPYfU5eQLphkinorKr1z6mJomDhIUkSq2sDLKn0YpomsVSesZLZb0PIzSevbOZnb/cymMjxrhVV/P096zk2bCX2tFR4xfnzK44kWeuKTU0hNjRaSU/DKSvmWVXkWbc+EMwPkiSxpMrH4YEkUZ8Du00+ryCCom4QS+cpaDpVflH8udRx2RW8Dtskb8r1DUHe6R7nlpVV+J02xjNF7n+rm/etqaXC6+DK1gjdYxlkWSKeLfKVJw5jmHDvlgbes7qGgXiO/nj2tPTaXHF+9rYL5k4X8ToYzxTQDct12zRNDNNKBDmVjpE01X6nqMLPA25VQS75AO3rvfiEp+kYzxQIuCZXYDXDICT8f+adiNdBXjtxUbxpWSXPHxqa9vHvW1PDY3v7z/t9UnkNj12ZsrCTzBWpC7mwKTIdsYyQZAsElyE1ARe6aZbTOKZjNF1gaZUPn/DlEGDFfdeF3GxpibClJUxzxE1BM4il8uQ0nU9eYcn2n9g3gG6YtA0lWVbjo8ovGkwCC0mSCLrtbGgMsakpTMBlY1mVVxjLX8bctb6WX+zuxabItJ5jEEGmoDGSzpPXdJZW+hjPFrllpUj/uhyoC7omNa9lSaLC6yCRLXLnuloAnj04hMeh8L61tRimyS/39rO+PshfPnqAgm5w28oqPra1Ed0weXh3L3dvPH1SwTTB7577tcuCupJtbgqzs3MUsNQeFV77lEWeB3Z085EtIvlrPpBlibDbjtuuMJq5sJSWc2F/X4LVtVP5/4ii33zjddjAtIq0UCreZk8Ub08l4nUgITGcPD/fqDeOxbjipBHACUzTmsOv9luduNePxSaNCgoEgssDp6pQH3SRPMNCfDxToDrgoFaYwAumwOOw0RjxsK01zKbmEA1hF1nN4IrWMCGPyv95/CDrGgIsjorNvWBqAi6VNfVBKnziGnM547ApBFwqQ8kclX4nqjK1Csg0TRLZIsOpHKpNZm1dgG0tEWpDLjpjmSn9bAWXHiGPHeOkvQ5YdgXPHx7ifWtqcakKw6k8j+yxGtxPHxhkY2OQv3j0AKm8xraWML95w2IkSeLh3b28b23NaQpT3TBRFAn3PAhaFtTdblWtn319CQCymk5d6PSUl/aRNDUBof6ZTyJeOzlNx65I047+XCxtQ6lJvjEFzcBjV4Q54wLAZVeo8NlJ50+ogLY0h3mrY3Ta59y+tobH9vad1/v0jGdpmOIakC4Vhyf8v/rGs9RP8TiBQHDpUx9yU9TNSYuwCbIFHUWRWFzpEyOggjMiSRI+p0pLhZcrWyNsaAxxw7IoX7yulXUNoQvy+xAIBJcXH97cwIM7elBk6TQVkG6YjGUKjGYKRHx2tjSH2dgYIuJ1IMsS2YIu9qaXEU5VIeRWy5YXYDXAC7qJ3Sbz7tWW0uvRPX3EUnn64zm+91onI6k8K6p9/OGty1Bkif19cfxO25T7mVxRJ+KxT2l1M9ssqAKQJEnUBV10jqRRZZngFJFoP9nRzYc3C/XPfDKRBHX72lp+urNnxl+/bShF1OeY5P+TLepUTDEOKJgfGiMestoJaeTKGj8H+hPTPt6pKjSE3BwZTJ7T64+lC4SmkUTminq54DPVplAgEFw+uOwKNUEnidxkHzHdMEkXNFbVBrDbFtRSRrDAkWWJgEtlcaWPG5ZVsq4+OC8LcIFAsLAIeezkijqZgkal34ndJpPOa8TSeVL5Ik1hN1e0Rlhe7Z80cryzc4y/eeIQH9xYN49HL5hpaoMuMgV90veuWRzhlbYR7lpXi02W6I/n+LunDnOgL07naIaGkIs/u30lTlUhldd4/ViMm1dUTfn6OU2ft+bDgls1Xb80yjOHBmkIuU67IR8bTlEr1D/zjltVkCUJp6qwoSHIq20jM/baBc3g2YOD5crqBLphEHQJ/5+Fgt+pEvE4SOetTZkkSdSHXHSfwRj8xuWVvHhk+JyKNq8eG+HqxafHuhc0A6cqEygVh48OpVhSJeS2AsHlTEPITVHXJ107xjIFFld6y9cCgeBCkGVJFBAFAkGZD2yo4+e7ei0VUMSDJMGKah9XtEZoOiUFbjiZ52+eOETXaJr/ecdKoUa/zAi67cjS5GZzS4WXjliaiNfBu0rptUeHUhwcSBL22Plfd67C51QxTZMH3rJEK9MplCXAO0XS+Vyw4O56Ex8sj+P0f5AHd/Rwj1D/zDuyLBHy2MlrOhubQhwbTs3YKNjPd/Xw/g11k9Q/ACZTnxOC+aM54iFzkjTyuiVRXjw6PO3jZUliW0uY14/HzvraI6nClFXxZL5IU9hTLg6/fizGla3C/0cguJzxOGxU+Z2kSgXneLZAhc9OfUgk8ggEAoFg5miNeumMZTAMk+qgi22tEaoCrkkeYZpu8IPXO/jRm1381g2L+MCGejGGfBlit8lU+BykT1EBLYp6aRtK8cGN9cgS5Es2JX9xxyoqS15hzx8eZnNzCP80TSpNN7ApMq55ErUsuAJQpqBx68oqnjwwMOn7x4ZT1IVcQv2zQDg5CvzujfX87O2LHwU72J8g7LGfFqGY13S8Dpvo0i0w/C4bQbdadsl3qgqKJJ0x8n1tfZCD/Ykzxmv2x7NUTxGjaZgmEkwaBRxO5qkUkZsCwWVPfdhNXjPIFXUkSWJplfD9EQgEAsHM867llTxzcHDKn71xPMZfPXaQba0RfvfmJSJ98jKn2u+clHwMcNWiCK8dG6E26OLWldW47Qr/430ry961feNZhlN51tUHp33dbFEn6nPM2zpmwe2oM0WNba0ROmOZSZKrB3f0cM+m0+PTBPOD16lashys7uy6+osbBcsVdV4+OjzlnGS2oBMVBo0LDkmSaIl4yBZPFHxuWBblhcPTq4AAbltVzRP7Bqb9+WvHYlw1RapXMqdRE3SVC4HxbFH4NggEvyL4nSphr53xbIHVtQERCCAQCASCWWFry+nBJoOJHH/9y4MMJ/P8zztWsrTKN09HJ5hLAi4VWZImJR2rioxTVUhki9x342J+9LkrWF1nJVdrusF/vtPHBzec2Q+qoBuEPfNnbbKgCkC6YVrmz247V7SGeeO49eFrG0pRL9Q/Cwq3qqDIEkapSLfpIkfBfvZ2D3dvnFpCaZgmgWkMgQXzS9Ct4rWrZEvyyJqAi4FE7ow+P/UhN8lckcQU54ppmiRzxSklk0XdoCZgqX0SuSJ/++QhPnt1ywz9JgKBYKGzKOplTW1A3A8EAoFAMGtIksSa+iDvdI9T0Ay+82o7D+7o5nfetYQ71tUK9emvEDZFpsp/wvN0gptKkfAAyknN6J/v6uXOdbWnRb5PhXcerU0WVAEomS9SF3KhyBLXL63khSPWP+yDO7u5Z7NQ/ywkJnyAcid5wFzoKNg73ePUh9xEplD5mKYp/H8WMJIk0RL1kD5JBbSuPsienvgZn3f72loe3XN6LHz7SJrWitNNnbMFHZ/Lhs+pWsWfJw7zh7cuExtBgeBXCK/DRnVQ+P4IBAKBYHZ57+pqvvtaB3/9+EGuXRLlSzctEXuRX1Gq/E4Kp1hXVHgdjGUKZSEEwN7eOGGPndqzrFOKuoFLVeZV2LKgCkCabpbNkxRZosrn5OWjwzSG3ULuvQA52QcIrCLN2voArx0791GwTEFjR+co1y05PfEJLGMtn1M9p0qqYH4Ie+y4VaVcDNzQGOTtrrEzPsfvUvE5VXrGTqSGHR9O8cT+Aba2hE97fKao0RS2lEN/+8Rh/uDWpQTdIhVOIBAIBAKBQDCz2BSZ//6e5fz57StZXCnSZn+V8TtVVEVCO6UItLExxNud1n4nldPY3j7KTaVksDORKcxf/PsEC2ZXnS3o+F3qpOrqBzfW8ZUnDvMh4f2zIAm47Jgmk6qfm5vCHB0891Gwn+7s4UObpo/IyxZ0Kn3C/2chI0kSrVFPOaFHliQiXgdDidwZn/fu1dU8uX+ATEHjR292cngwyW9ct+i0irimG9hkCbtN4StPHOb3bxHFH4FAIBAIBALB7FHpd4pxLwGyLFETcJX3OROsqQuwtzduRb7v6OIjZ4h8PxnNmF//H1hABaBMUaPhlEjXoNvO/V+4Qqh/Figuu0JD2H2al8vdm85tFOytjlGWVPkITBORB2BgThuhJ1g4RDwOXKpSdsq/admJ2djpsMkSEhJffa6Nd6+u4T2raybN0U6QzGtEPHb+7snD/N4tSwnN80VTIBAIBAKBQCAQ/GoQ9TvQjMn+ppIkUeV38qPtXWxtieB1nvuI4HyPEy6IApBumMiSNGU1bL7/gQRnpj7kwjDNSe7o3tIo2OtnGAVLZIvs74tzZevpaU8TmKaJJIHHLgqACx1ZnqwC8jpt5DWDgjZ13Ht/PMu3XmlnfUOAsMc+bRHQNE1SeY0fvNHF792ydN4r5gKBQCAQCAQCgeBXB5/DhlOVKZ4yBnbDsight501pRSws5Er6vgcajnReL5YEAWgVF6jNujEJnxeLjmcqkJLhYd4tjDp+5ubwhw5wyjYT9/u4UMbG8742rmiQcClivPiEiHidWC3nbg4XrskyittkyPhi7rBQ2/38PqxGJ+6spmNTWGuXxrlhWnUQrFUgcf29PMHt4rij0AgEAgEAoFAIJhbJEmiLnj6GJjbbuO9a2rO6TWspnaRxsj8h1ksiJ11Udep8jvn+zAEF0hN0EpuO7UqOt0o2KttI6yrD55VKpfT5t8kS3DuKLJES8RTLvq1VHjoiJ0weX6nZ5zvvNrOFa0RPrixvlz9Xlrlo3ssMylRDqwq+Q/e7OAPbl06ZUKcQCAQCAQCgUAgEMw2Ea9j0sTL+RLPFanyO4n65r/mMe8FoFxRx+uw4RWjXpcsqiLTWuElkZus9vE6bKytmzwKNpYpcGw4xaam0Flf1zCF/8+lRtTnQFVOFAOXVvnY3h7ju6+1k8xpfP7a1injEd+3ppZH9/SX/z9X1Pn2K+18eHMDLRWeOTt+gUAgEAgEAoFAIDgZj8OG13HC7/R8KGgGErBogSTKzXsBKDv7WwYAAAsESURBVF3QaAy7hcv6JU5VwInDJp/2odjcHObwYIpEtohpmqXUr7OnuhmmiYSExy4Kg5cSNkWmucJTLgZe0RKmfSTNhzc3cM3iimk/51GfA9M0iaXy5Io6332tg3evrmZdfVBcGwQCgUAgEAgEAsG8Uhd0nzYGdjZM0ySeK7C82rdggq1mpAAkSdIfSpJkSpJUcT7Pszb5EPKI8Y5LHUWWWBT1ksyd/qH4UGkU7PnDw1zRGsF9DkWdXFEn6FanTIUSLGyq/E4UWbLi2xWZj2xpPKe/+fvW1vDzXb1897UO7t5YT8ijUuET1waBQCAQCAQCgUAwv4S95+9HGs8WqQm4qFgAo18TXHQBSJKkBuAWoOt8n5vKaVQHnPPuhC2YGSq8DnwOG9nCZBWQ12FjTV2AwUTunFzSdcMkVdCoCy6cD4rg3FEVmaawm3huagPw6XDbbWxqCvHhzQ3YbTJ1QReqMAAXCAQCgUAgEAgE84xTVQi41NP2utOR13QkGRZFF8bo1wQzsbv6B+CPgPN2RSroBtWB+XfCFswMsiyxqNJLunD6xn9zc5iPbm0862uYpslopsDiCu+CqpQKzo/qgAtZ4rzN0jY0hgh77BTFtUEgEAgEAoFAIBAsIOqCLjLFs4+BmaZJPFtkRbV/wYldLupoJEm6E+g1TfOd831uQTNw2RX8Z0mCElxaBN0qYY/jvOcjJxjNFKgNOmmMuGf4yARzid0m0xj2EM8Wzvu5mYJGwK0KY3iBQCAQCAQCgUCwYAi6rTEw0zxzk3s8W6Qu5FqQScZnLQBJkvSMJEn7pvi6C/hT4M/P5Y0kSfqCJEk7JEnaER+LkcoXaQwJ8+fLDUmSaIl6yBb1s34wTmU8WyDktrOk0ifOi8uAmqATk/NXAWWLOk1hUQAUCAQCgUAgEAgECwe7TabC6yBzhjGwXFFHkSVaKxbW6NcEZy0AmaZ5s2maq0/9Ao4DLcA7kiR1APXA25IkVU/zOt80TXOzaZqbA6EIBhDxnb+RkmDh43eqVPsdUxpCT0cqr+Gwyayo8Qvj58sEh02hIeQmeQYvINM0KeoGmYJGIltkNJ1HVeRydV0gEAgEAoFAIBAIFgo1ASe5aeLgTdMkkS+ysmbhjX5NcMEzFqZp7gUqJ/6/VATabJrmyDk8myqfY8FEoQlmnuYKD0PJUQzTRD6LmidX1NENg/UN4QX7QRFcGHUhF91jGXJFHU23ij1GyS5MwjIOc6oKHocNlyrjddjwOkX6m0AgEAgEAoFAIFh4BFwqsiRNuc8dyxRoCLkIeRZuM3teTDYkSaI2KAxeL2fcdht1QRcDiRxB1/QfgKJukMprbGwK4bKLguDlhlNVaK3wMJopEHSruO0KTlVBtcnYFetLFsUegUAgEAgEAoFAcAlgU2Sq/A5iqQI+p1r+fq6oo9pkWhbo6NcEM1YAMk2z+Vwfq8oy/pP+sQSXJw1hN73jWXTDnFLRoRsm49kCa+oCBFzifLhcaYx4aIx45vswBAKBQCAQCAQCgeCiqfI76Y/nyv9vmiaJXJFNTSFUZWFPtMzL0TlU0fX/VcCpKrREPIxPkQRlmiZjmQJLKn1ERdy7QCAQCAQCgUAgEAguAfxOFZsslcNuxrIFmsLuS8LHdGGXpwSXPDVBF4osoenGpO/H0gXqQk7qQ2IUUCAQCAQCgUAgEAgElwayLFETcJHKa+SKOg6bQnPFpTHxIApAglnFbpNprfAynj2RBDWeKVDhs7M4KuLeBQKBQCAQCAQCgUBwaRH1OyjqBsm8xopqP7YFPvo1waVxlIJLmuqAE4cqU9AMUjkNl6qwvNovxgAFAoFAIBAIBAKBQHDJ4XPYcNsVGsNuAu5Lx89WFIAEs44iSyyOehnNFNAxWF0fWPDmWAKBQCAQCAQCgUAgEEyFJEmsrgvQcomMfk0wLzHwgl89KrwOagNOGiJunKqIexcIBAKBQCAQCAQCwaWLx3HplVMuvSMWXJLIssSqusB8H4ZAIBAIBAKBQCAQCAS/kog5HIFAIBAIBAKBQCAQCASCyxxRABIIBAKBQCAQCAQCgUAguMwRBSCBQCAQCAQCgUAgEAgEgsscUQASCAQCgUAgEAgEAoFAILjMEQUggUAgEAgEAoFAIBAIBILLHFEAEggEAoFAIBAIBAKBQCC4zBEFIIFAIBAIBAKBQCAQCASCyxxRABIIBAKBQCAQCAQCgUAguMwRBSCBQCAQCAQCgUAgEAgEgsscUQASCAQCgUAgEAgEAoFAILjMEQUggUAgEAgEAoFAIBAIBILLHFEAEggEAoFAIBAIBAKBQCC4zBEFIIFAIBAIBAKBQCAQCASCyxzJNM25f1NJGgY65/yNBQuRCmBkvg9CILjMEZ8zgWBuEJ81gWD2EZ8zgWBuEJ+1S5cm0zSjU/1gXgpAAsEEkiTtME1z83wfh0BwOSM+ZwLB3CA+awLB7CM+ZwLB3CA+a5cnYgRMIBAIBAKBQCAQCAQCgeAyRxSABAKBQCAQCAQCgUAgEAguc0QBSDDffHO+D0Ag+BVAfM4EgrlBfNYEgtlHfM4EgrlBfNYuQ4QHkEAgEAgEAoFAIBAIBALBZY5QAAkEAoFAIBAIBAKBQCAQXOaIApBgXpAk6W8lSTokSdIeSZJ+LklS8KSf/XdJktokSTosSdL/3979g9ZVhnEc//6o2sVF8V9pK3bIYBVBkOLgICg0ilgVCnUKOAkOFRysZnByLYLoZrFDsQiKZilYi1CXqiCClaAGBS0NLSiiICihj8M5xUu4qaG9zfG+fD9L3vu854Zn+XFuHt57snvANqWplmRvkm+SXEhy36o9cyZNSJLZPktLSQ4M3Y/UiiSHkpxPcnqkdmOS40m+73/eMGSP0rRLsj3JJ0kW+8+N+/u6WWuQAyAN5Thwd1XdA3wHvASQZCewD7gLmAXeTLJpsC6l6XYaeAo4OVo0Z9Lk9Nl5A3gE2Ak83WdM0pV7m+4+NeoAcKKqZoAT/WtJl28FeKGq7gTuB57r72NmrUEOgDSIqvqoqlb6l6eAbf16D3C0qv6qqh+BJWDXED1K066qFqvq2zFb5kyanF3AUlX9UFV/A0fpMibpClXVSeDXVeU9wOF+fRh4YiN7klpTVctV9WW//gNYBLZi1prkAEj/B88Ax/r1VuDnkb0zfU3S5JgzaXLMk7Sxbq2qZej+cAVuGbgfqRlJ7gDuBT7DrDXpmqEbULuSfAzcNmZrvqo+7K+Zpzt2eOTi28Zc77+qk9awnpyNe9uYmjmTLo95kiRNvSTXA+8Bz1fV78m425umnQMgXTVV9fCl9pPMAY8BD1XVxQ/LZ4DtI5dtA85enQ6l6fdfOVuDOZMmxzxJG+tcki1VtZxkC3B+6IakaZfkWrrhz5Gqer8vm7UG+RUwDSLJLPAi8HhV/TmytQDsS7I5yQ5gBvh8iB6lhpkzaXK+AGaS7EhyHd0D1hcG7klq2QIw16/ngLVOu0pah3RHfd4CFqvq4MiWWWtQ/j14IW2cJEvAZuCXvnSqqp7t9+bpngu0QncE8dj43yLpUpI8CbwO3Az8BnxVVbv7PXMmTUiSR4HXgE3Aoap6ddiOpDYkeQd4ELgJOAe8AnwAvAvcDvwE7K2q1Q+KlrROSR4APgW+Bi705ZfpngNk1hrjAEiSJEmSJKlxfgVMkiRJkiSpcQ6AJEmSJEmSGucASJIkSZIkqXEOgCRJkiRJkhrnAEiSJEmSJKlxDoAkSZIkSZIa5wBIkiRJkiSpcQ6AJEmSJEmSGvcPOxaCB/1pAroAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAFlCAYAAACdnC/mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xdhX3//9e5+15JV3tvyZZkee+FF2bvDQmQBEIgCW1G27RJ27RN+02a/NKMZjRNQxJICHtPgwEDxnjvpb2u5tWV7t73nPP7Q7awsM2UjYHP8y+499xzzr2W9Xjctz9D0XUdIYQQQgghhBBCCPHJY/iob0AIIYQQQgghhBBCnBoS/AghhBBCCCGEEEJ8QknwI4QQQgghhBBCCPEJJcGPEEIIIYQQQgghxCeUBD9CCCGEEEIIIYQQn1AS/AghhBBCCCGEEEJ8QplO58Xy8vL0qqqq03lJIYQQQgghhBBCiE+0nTt3enRdzz/Rc6c1+KmqqmLHjh2n85JCCCGEEEIIIYQQn2iKonSf7Dlp9RJCCCGEEEIIIYT4hJLgRwghhBBCCCGEEOITSoIfIYQQQgghhBBCiE8oCX6EEEIIIYQQQgghPqEk+BFCCCGEEEIIIYT4hJLgRwghhBBCCCGEEOITSoIfIYQQQgghhBBCiE8oCX6EEEIIIYQQQgghPqEk+BFCCCGEEEIIIYT4hJLgRwghhBBCCCGEEOIT6l2DH0VR/qAoiltRlAMneO7vFEXRFUXJOzW3J4QQQgghhBBCCCE+qPdS8XM3cMHbH1QUpRw4F+iZ5HsSQgghhBBCCCGEEJPgXYMfXddfB0ZP8NTPgL8H9Mm+KSGEEEIIIYQQQgjx7jRNB4PReLLnP9CMH0VRLgP6dF3f+4HvTAghhBBCCCGEEEJ8YKqmc3gggGK2Ok52jOn9nlRRFAfwT8B57/H424HbASoqKt7v5YQQQgghhBBCCCHE26RUjcODAYaDcUA56XEfpOKnFqgG9iqK0gWUAbsURSk60cG6rv+frusLdF1fkJ+f/wEuJ4QQQgghhBBCCCGOSqkaB/sDjIYS5Dis73js+6740XV9P1Bw9P+PhD8LdF33vN9zCSGEEEIIIYQQQoj3Lnkk9PFHEuSkWVG1dx69/F7Wud8PbAbqFUXpVRTli5N0r0IIIYQQQgghhBDiPUqkNPb3+ghEk+SkvXOlz1HvWvGj6/pn3uX5qvd2e0IIIYQQQgghhBDig4inVPb3+YkmVLIdlvHH363i5323egkhhBBCCCGEEEKI0yeeUtnv8hNXNbLsb4U+saTK3W92veNrP9A6dyGEEEIIIYQQQghx6sWSKntdPuKqhtNmHn88FEvxxze7uHpe2Tu+Xip+hBBCCCGEEEIIIc5AsaTKHpcPTdMnhD4joTgP7ezl5iWV2M3GdzyHBD9CCCGEEEIIIYQQZ5hoQmWvy4uuK2QcE/r0+6I8s6+fW5dXYTUZZcaPEEIIIYQQQgghxMdJOJ5ij8uHQVFIt70V3bS5Q7zRNswXz6rBaFDe07kk+BFCCCGEEEIIIYQ4Q4TiKfb0eDEbDTgsb8U2+3p9HOwP8LmlVRiUt0KfaCL1jueT4EcIIYQQQgghhBDiDBCIJdnT48VmMmG3vDW7Z3O7h+FQgs8sqphwvC+S4C9be97xnLLVSwghhBBCCCGEEOIj5o8k2d3jw26eGPq8dGiIaFLlstklE44fCsR4cLuLzy+resfzSsWPEEIIIYQQQgghxEdoJBRnX6+fDJsJq2ks9NF1nSf39lPktLGkJnfC8V2eMC83DXHrWdUT2r5O5LQGP5r+zpOmhRBCCCGEEEIIIT5NhoMxDvQFcNrMWExjjVmarvPgdhczSjOZWZo54fhDAwF29Xi5ZflY6BOKn0Ezfgb8MYaDcfIzrKfzskIIIYQQQgghhBBnnCF/jIP9frIcFszGsdAnpWr8aUs3q+vyqclPn3D89q5RXKMRblxUgaIo+CIJ7trY+Y7XOK0zfgoyrPzqlVY6hkOn87JCCCGEEEIIIYQQZ5Q+b5SDA36yjwl9YkmV37/RyYUzio4LfTY0u/FGElw1rwxFURjwR7nrjQ7SrMYTnX7caQ1+4imN6xeW8/DOXnZ0jZ7OSwshhBBCCCGEEEKcEVyjEZoGA+Q4rJiOhD6BaJI/bOrkuoXlFGfaJxz/zL5+LEYD5zUWAdDmDnHfth7y023Uvi0gervT2uql6zAUiHN+YyHbukbxhOJcMKP4dN6CEEIIIYQQQgghxEdC13W6R8J0DIfJTbNiNIwNZnYHYzy2q48vLKvCYTFNOP6hHS4aipzMLs8CYFePl9dbhinPthOKpfjlhrZ3vOZpX+eel24lGEsxrzybUDzFnzd3ne5bEEIIIYQQQgghhDitdF2nfThMpydCbvpboU/3SJin9vTzxbOqJ4Q+qqZzz+Zu5lfmjIc+r7UM80abh+q8NA4PBHl8T//4eU7mtAc/AFkOCwlVozjTTmm2nZ+tb0HVZOOXEEIIIYQQQgghPnk0TafVHaRnNExummV8BfvhgQAbWz3csrx6fM4PQDyl8vs3OjivsZApBenous7Te/s50OenMsfBC4eG2NHtJcNq4t8ubXzHa38kwQ9Ahs2MyaBgVBTOmpLH9589TCypflS3I4QQQgghhBBCCDHpVE2naTBAvy9GXpoV5Ujos71rlMMDAW5cXDGhaicUS/GHTV1cPa+Mkiw7mq5z/7YeekbDFDqtPLjdhWs0Qnm2nZ9cN5uZpVnveP3TGvxo+sSqHofFRLrVTDCe5Io5JXz/2cOMhhOn85aEEEIIIYQQQgghTomUqnFowI87GCf3mNDn7Ru6jhoOxvnz1m5uXlJJbrqVpKrxhzc6GQ0nsFtM3Lu1h2A8xYLKbP7r2tkUZ9rZ2+t7x3s4rcGPN5JgJBSf8JjFZCDbbmE4FOczC8v5+UstdI+ET+dtCSGEEEIIIYQQQkyqREpjf5+f0VCC3DQrMDbn56m9/dhMb23oOqp7JMyTe/r44vJq0q0mIokUv3u9g0giRTSp8vjuPlRN58q5pfzzxY3YzUae2z+AOxA/0eXHndbgx6goPLLTRa83MuFxk9FAXrqVwWCc6xeUcf+2Hnb3eE/nrQkhhBBCCCGEEEJMilhSZZ/LRzieIudI6KPpOg9sd1Gd62Bpbd6E4w/2+9nYNjbrx2IyMBpO8Ps3OokmVXq9UV5v9WAyKHxj7VRuXV6Npuv8aXM3lbkOzm0sfMd7Oa3r3B1WEwaDgRcPDrJ8Sj71RRnjzxkUhbw0C+5gggtnFLG5YxR3MM7504ve4YxCCCGEEEIIIYQQZ45oQmVfrw9V08m0W4Cxlq8/b+lmVV0+NfnpE47f3O7BHYxz46IKFEXBNRrhiT19hOMpWt0h3ME4WXYz/3jRNKYVOxkNJ3hwh4ur55ZS4LS967Ks01rxYzEauGZeGXFVY2vnCDu7J1b1KIpCXrqVQDTFgopsAtGkrHsXQgghhBBCCCHEx0I4nmJXjxdNH1tqBWNB0O83dXLhjOLjQp8XDg4STWpcPqcURVE40OfnuQMDjIYT7O7x4g7Gqc5L4yfXzWZasZOWoSCP7+7llmVVFDhtaLrOg9t73vGeTvtWr+w0C7curyap6hwa8PNqs/u4Y46uey/JslOSZeensu5dCCGEEEIIIYQQZ7BALMmuHi8mg0K6dazByh9NcvfmLq5fUE5Rpm38WF3XeXini9x0C2c3FACwsXWYXd2jdA6H2dntJZLUWFqTy/939SwKMmy81jLMoYEAty6vxmY2Eo6n+OUrrXS9y5zkj2Srl9Vk5JblVTgsJjo9YZ7e23/csRk2M2aDAZPRwIopuXz/2cNEEqnTebtCCCGEEEIIIYQQ78oXSbCr24vNZMRhGQt9hgIxHtjWw+eXVpLlsIwfq2pj83lml2WxoDLnyMDnPnq9EbZ3ezk4EEAHrl9YzrcvbMBsNPDA9h7sZgNXHKkMcnkj/PKVVlRNG68sOpnTGvyMhhP0+6JjF1YUrp5XRm1+On2+CPdt7T5u3bvdYiTDaiIYS3HFnBL+87kmhoPvPK1aCCGEEEIIIYQQ4nTxBGPs7vGRbjVhMxsB6PSEeXb/ALeeVT0eBMHY0Oe73ujg3MZC6gozUDWdv2ztwR9Jsf6Qm66RCBaTgX+4oIGbFlcSSYwdv6w2j0XVuQBs6xzh3i3dpNtM5GfY+NKKmne8v9O71cug8IdNnexxvTXbZ2VdPqvqChgOxfnDG50kVW3Ca8xGAzlpVjyhONctLOfXG9pocwdP520LIYQQQgghhBBCHGfIH2Nfr59MuxmrycgDd/+OTYe62dIxwheWVRHwjvDA3b8Dxtq+/rCpk+vml1OSZSeWVPn9Gx2E4yme3d/PcChOXrqV/+/qWZw1JQ+XN8JftnZz46JKKnIcaLrOozt7eaVpCLvZyIySTG5eUoXZ+M7Rzmnd6pXtsHD5nFIe2N5Dx3CYq+aVATCt2El2moX7tnbzv6+2c9uKGuwW4/jrjIaxoc+eYJyr5pbyxO5+lk3JZdnb1p8JIYQQQgghhBBCnA693gjNQ0FyHBZMRgMP3P07fvanxyja1MTvf/APeEc83Hb9pbS3NBHSzKRqV/CFZWNjb7yRBA9sdxGIJtnSMUJK05lW7OQ7FzaQ7bCwo2uUVneI286qwWhQiCRS3PNmF6PhBFazkSvmlFKVl/ae7vO0D3eeWZrJdy9upNMT5vvPHiJ1pMKnyGnjjpW16Ar8ckMrvkhiwuuObvzyRhKsqs+jaSDIk3v6TvftCyGEEEIIIYQQ4lNM13U6PSFaBoPkOqyYjlTcWKatpqi8is51v+fqc5dx1TlLaW9pombRWhIVC/nikbYvlzfCg9t76BwO8Uabh5Smc25jId+/YgZZdjNP7OkjGE/xmUUVGA0K/b4ov3m1HU8oTpbDwldW1b7n0AdA0fXTty2roKZRf/qljeP9bRuah3h8Vx9/d349FTljN61qOvdu6abXG+HWs6opzrQfd55ANAkKDIfiuAMxvrSiBkVRTtv7EEIIIYQQQgghxKePpum0DQfp9cbITbNgUBR0Xeex3X1U5jioTle56pyleEc8AOTNXsPn//4/+dyKehRF4WC/ny0dI2zpGGEwEMegwG1n1XDJrGLiKY2/bO1mxdR86gozANjRPcprzW6CMZW5FVlcNrvkuPxD1XTm1ZW1aLFQ/Ynu+bRW/BgUuHdLN4cHAgCsqS/ku5c08t8vtfLIThe6rmM0KHx+WRVzK7L57evttA4dP8/HaTdjMihk2c3UFWbwo3XNJFLacccJIYQQQgghhBBCTIaUqtE0GKDfFyPvSOijajp/3tLN9BInC6pyJhyfNuNsDGnZXNKYi6IobGrzsL1zlJcODTEYiJNhNfHvl83g0tklDAfj/PHNLq6cW0ZdYQa6rvPEnj5ebx4mEEtx9fwyLj+y0evt3q2g512DH0VR/qAoiltRlAPHPPZjRVGaFEXZpyjK44qiZL2XDymp6qiaTvNQkId3uEipGvkZNn509Sx6RiP85/OHx7d2XTSzmEtnlXDP5i62d40edy6HxUSG1Yym6axtKOD/PXsIfzT5Xm5DCCGEEEIIIYQQ4j1LqhoH+wMMB+PkpllRFIV4SuUPmzpZ01BAQ5GTEc8wt11/Kd4RD4Wrb8ZhNuB+8zG+eP2l3L+phcODAZ7a208ooVKe4+An181mdnkW+/v8PH9gkNvOqiYnzUI0ofK7Nzo41O8nklT5+to6ZpZmnvC+IokUf3yz6x3v/b1U/NwNXPC2x9YDM3RdnwW0AN95D+chy2Emqen0eSPkpFm4641OXN4IJqOBb55Tx4zSTH63sZ0XDw2i6zrzK3O4fWUtT+zpY92BwePOZzGNbfwKxpJcMaeUH69rwjUaeS+3IoQQQgghhBBCCPGuYkmVvS4fgWiSnDQrAMFYkj9s6uKquaWUZzsAWP/ME7S3tVJ1xTf5/j9/i4f+8Btq6hsZLVrEln3NPLmnn6Sms6gqh/+6ZhZFThvrDgzS643wuaWVmI0G+n1R/m9jO92eCPkZNr59QQM5aZYT3leXJ8yft3RzzZHFWSfznmb8KIpSBTyj6/qMEzx3JXCNrus3vtt56mfM0e9/dgMPbh+r9rFajJgUhXSbiQumF6EoCju7vbzZ7sFsVLhqXhkFGTb80SQ/W9/ClIJ0blxccVxpk6brjIYTZDvMPLt/gEtmlTC7POtd35cQQgghhBBCCCHEyUQTKnt7faiajtNmBsAdiPHY7j5uXlJJmtU04djv/vFZbjlvPtOrSwnHU/x2w2EOd/QxqKUDcO38Mm5aUomq6dy/rYc55VnMKssCxub5vNnuoXskwiWzSlhTX3DS+3qlyY0vkuDyOaUkUhpLGitO6YyfW4Hn3+vBZqOBm5ZUUpWXRiyhMhyKk2kz87uNHYyGE8yvzObyOaXoOqw7MMj6Q4M4bSb+6eJpDAZi/PfLrajaxLDKcGTjVyCW4rxphWxs9fDiweMrhIQQQgghhBBCCCHei2Asyc6eUXSd8dCnYzjE0/sG+OJZ1RNCH28kwd2bu/jnmy9genUp7mCM323soGU4waCWjtmo8Pfn1/O5pVX4I0nueqOT86cXMassa2yez+4+3mjz4BqN8s1z6k4a+iRSGn/a3EW2w8xV88rY3ePl3q3d7/g+PlTFj6Io/wQsAK7ST3IiRVFuB24HyC8um//ytvFRQXR6QrxwYBC7xUhZtoN+f4za/DSW1ebhjya5f1sPM0qcHBoIcOXcMvLSLdyzuYvukQj/cEEDNrPxuOuFYilUXaNnNIqqady0pFI2fgkhhBBCCCGEEOI980eS7O31YjOZsFvGsoe9Lh+HBwNct6AcwzE5Q683wnP7B/jc0ipsZiNt7hBP7OllR5eXcEIlP93CP1/cSE1+Oq1DQV5rGeamJZXYzEYiiRR/2drDkD+KwaDwt+fVYzUdn3UADPijPLmnn6vnlaHpOk/v7aexxMnUwnTOmVl5UEvGjuvSgg8R/CiK8nngy8BaXdff02Ade0md/t/3P8/S2rzxx0LxFPdv66HIaWM0nGBKQTqt7hDXLSjDbDRw/7Yeppc4aRkKkZ9uZe20Al48NMRLh4f454umkek4vtctllQJxVPEkiqHBwJ8be1UTMbTusBMCCGEEEIIIYQQH0OeYIz9fQEybKbxEOa1lmHC8RQXzSyecOzhgQDbu0a5cXElRoPCts4RXmly82b7CDowo8TJty+cRqbdzKvNbnyRJJfPGVvJ3u+L8uhOF12jERZV5XD9woqT3tOWjhE6PWEun1PCCwcH0XRYOTUPi8lAQ1EG+U77Tl3XF5zotR8o+FEU5QLgp8AqXdeH39MnB1iLp+rFn/85504r5EsrasZTs6NJFcCgP8bimhy2d3lZVptLY7GTFw4OYTRASZadTW0erppXxoA/yl0bO/nW+fWUHRmkdKykquGNJjArCq80D/Ot8+snlGEJIYQQQgghhBBCHGvAF+XwQIAshwWz0YCu6zy9r5/cNCvLp+RNOHZzu4ehQHw8yHlmXz9bOjzs7Q0AcPHMYm47qxpFUXhoh4va/HQWVY+tfN/eNcrWjhGah4LcvqKGmUfm/LxdStV4dFcvZdkO7GYjO3u8XDC9CLvFSEGGldqCdGxmI4qifPDgR1GU+4HVQB4wBPwrY1u8rMDIkcO26Lr+5Xf7ALMrG/Tsz/4ETYfiTBt/c24dDUXO8ef3uHzsdXnJsJmxmAxYjAZ80SRXzi3lYH+Ag/1+rphTylN7+ynIsNJYnMEP1zVzy/Iq5pRnH3e9o0OfbWYDz+wb4Gtrp1LotL3bbQohhBBCCCGEEOJTRNd1ekYitA2HyHFYMBkNqJrOA9t7mFWWNWGduq7rPLd/gHSbmVV1+aiazj2bu9jT46VzJIJRga+snsL504vGx9hcMquYsmwHmq7z5J4+OjxhBnwx/uWSRpx28wnvaSQU5+GdvSyvzWNb1wjTSzJpLM4gpenUF2ZQmGkbH23zoYKfyVQ/Y47+zV89wq83tBOMpzAocP2Ccq5fWIHRMHazw8E4j+zqZW55Fnt7faycms9rLcNcPKsYA2MJ2o2LK+keDfNm+wgXTC/kF6+0saa+4LiSKxj7A/FGElhMCusODnH9ggoaS5zHHSeEEEIIIYQQQohPH03TaRsO0jsaIzfdgkFRiKdU/rS5m/MaC6nMTRs/VtV07t/ew+wjYVA0ofLrV9vY5/LijabIsJn47sWNTCt20uYOsaHZzY2LK3BYTEQSKe7d0oXLGyXbYeWb50w96Uzifb0+tnd5cdpNoI9VD0VSKXIcVuoKM8Y7qI46o4KfR9a9Riie5HtPH6JpMDj2eGEGf3NuHSVZdmCsTeuhHS4qcx20ucM0FjtxeSOkWUwsn5LLfdt6uGhmMfnpVh7b1Uuh08aWjhEKnDa+tKLmhNcOxJLo6GztGGVeRTZrGk6+Fk0IIYQQQgghhBCffClVo3kwyHAoTo7DgqIoBGNJ7t3aw7Xzy8hLt44fG02o/HlLFxfNHKveGQnF+cUrrezv9ZHUoCrXwb9eOp28dCuvNrsZDSe4Ym4pBkXBNRrh8d29tA2HuHBGMRfOOL5wBRivCBoNJ1A1nUtmlZBpNxNNqkwtTKck047BcHxYdMYFP0c9ssvFQ9tdRJMaNrOBL62o4dxpheOJ18bWYQb8MQoyrAz4Y8wszeTNdg9XzS1j/eEh6gszmFeZzYE+P5s7RkikVLyRBP944TQMhuOHOUcSKWIpjS5PCIOiyMYvIYQQQgghhBDiUyqR0jjY7ycQS5LjGAt43MEYj+3q46YllaQfMyd4JBTnoZ29fGZhOVkOC23uIL95rZ2WoRAAK6bk8vVz6jAZDDy0w8WUgnQWVo3N83mz3cO2zlFa3SH+7tw6qvPTT3g//miSP27qRNdhcU0Oi6py8EWTZNhNTCtyvuPc4jM2+IGxwUnfe+Ygfb4YAEtrcrlzzRQyj/S4uUbH1qKtqS/glWY3a6cVsLl9hLrCDELxFPGUxkUzioglNR7d3Ys3HKfLE+E/Lp+B4wQfSlLV8EWThOMpDg8E+Oa5dZhl45cQQgghhBBCCPGpEU2o7O/zkUhpZNrHtoV3DI+1Zn1uadWEnKDLE+alw0PcvLQSq8nIqy1uHtjmos8XBeALy6q4am4pgdjY1vJLZ5VQmm1H1XQe3umiwx0ilFD5l0sasZlPvKp9b6+XB7f30ljs5Jr5Zeg6hBNJavLSKctxjI/HOZkzOvgB0DSN/3mtnVea3CRVnWyHmW+srWNe5djA5lhS5f5tPcyryKbVHSLTbiLdaqLVHWJGSSYH+v18ZlEFZqOBvS4fzx8YoGc0wncvbqT4SPvYsVRtbOgzis6GpmH+9rw6sk6wFl4IIYQQQgghhBCfLKF4ir0uHwYU0m1jBSO7ery0DgW5dkE5hmM6g3b3eGkeCnLdgnIU4M9bull/aAhfNInFaOAfL2pgfmXOcfN8/NEkf97SRfdIhIaiDG5dXn3CjiNN1/m/19txjUb58qoaSrMd+CIJbGYj00qcOG0nHvz8dmd88HPU/j4f//VCM6ORJACXzCrmC8uqsJqM6LrO+sNDxJIq1XlpbO0Y5fzphTx/YJAZpZns6/Vz/cJysh0WIokU97zZyfZuH3+9egpzK4/f+HV06LNBgXUHh/jiWdXUnKTcSgghhBBCCCGEEB9/vkiCvS4fNrMRh2Us9NnQ7CaWVI+bu/PS4SFUTef86UWkVI0fv9jMji4vCVUjJ83Mj66eTZHTxqvNbnyRJJfNKcGgKLQMBXlqbx89IxE+u7iCJTV5J7oVekbD/HR9C8un5HHNvDLiKY1gPElFThpVuQ5M76M76WMT/MBYj90PnjvELpcPXYfybDt/c249UwrGQpmjKdqls0p4dn8/C6ty6PfF8EUTBGMp1tQXjB+7ud3D/77ezsWzSrhufvkJrxeMJUlpOpvaPKyqy2fZlBP/gQghhBBCCCGEEOLjyx2IcbA/QIbNNF5g8sSePooy7SytyR0/TtN1Ht3ZS1VeGgurcghEk/zb0wdpdY/N85lWlMG/Xz4Dk0HhoR0u6gozWHBkns9Lh4bY2jWKNxzn789voMBpO+4+VE3n7je7aBoM8PfnN5CXbsEfTWI0KjQWOz9QR9LHKvg56uXDQ9z1RgehuIrRoHDjogqumleG0aAQiqW4f3sPq+vy6R6J4I0mWFiZzfMHBnFYTNTkp7Fiaj4wNhzpHx7dS6HTxr9dOv2EpVXRhEo4kaJlKEi2w8J1C08cEgkhhBBCCCGEEOLjp9cboXlw7Du/2WhA1XT+srWbRVU5NBQ7x49LpDT+vKWbVXX5TClIp304xA+eO4w7GAfgwhlFfGVVLf5okge2u7hsdgklWXYSKY17t3bR5g6TZTfzjXPqsJiOr9g52OfnL9t6mFacwU2LK0lpOr5oguJMO7X56Sd8zXvxsQx+APzRBN97+tB4qtZY7OSb59ZR5LSh6TrP7Osf63sryuDZ/YNcMrOYzR0jjITjZDssXDO/HKNBQdd1fvDcYbpGIvzwqpnkHrOO7aikquGNJhgNxen1Rvna2rp3HZ4khBBCCCGEEEKIM5em6XSOhOn2hMlJs2I0KONr2S+eOTaE+Sh/NMl923q4el4pBRk2Xmka4ncbOwnFU5iNCrevrOGC6cW0DgV5rWWYzx6Z5+MOxrhnUxdDwRhLa/K4al7pcUUn3kiCR3b20uuNcMPCcqYVZxKIJdF0nYaiDPIzjq8Mej8+tsHPUQ9u6+GRXb3EUhp2s5E7VtZwdkMBiqKwv8/Pzu5Rrp5XxrP7Byhy2sjPsLLuwCAWk4Fbl1ePrzx7dFcvz+zr56bFlaydVnjcdTRdZyQcJ5HSeLN9hG+dX0/GexykJIQQQgghhBBCiDNHStVoGQoyFIyR47BiUBS8kQQPbHeNr2U/qtcb4dn9A9y8pBKHxcRdGzt4bv8ASU0nw2riu5dMY1pxJq80uQnEklw+uwRFUdjr8vHEnj4iCZUbF1cwqyxrwj2oms4LBwfpGA5hMCjctLgSh8WIL5okP8PClIKMk276ej8+9sEPQJ83wveeOcSAf2zt+7LaXO5cPQWn3Yw3nOChnS4umF7EaDjBHpePS2cX8+iuXoYCcb64vGY8xdvZPcpdGzuYUpDBHatqST/ByvfRcBxV03npsJuvrK6lPMfxwd+0EEIIIYQQQgghTqt4SuXwQBB/JEFO2ljXT583yrP7+/nc0qoJYcv+Xh97e8e2hevo/NtTB9nb6wegONPGD6+aidNm5oEdLqYVOZlfmY2u6zy+u5ed3T6sZiNfXV1L3tu6iw4PBHi9ZRiH1Uim3cIls4oJx1MkVY36wgwKM20nHEfzQXwigh84svb91XZebnKT0nRyHBa+vnYq8yqzUTWdJ/f0keWwML8ym4d2uFgxNY/hQJxnDwxw+ewSltaODW7uHgnzqw1tOCxGLp1dwoLKnOOuFYqliKdSvNbq4eKZxeODmoQQQgghhBBCCHHmiiZU9vX6SKoamfaxqp7DAwF2dHv57KKKCWNdNjS7iSZULpxRhDeS4B8e3cdgYGyez/QSJ/9+2XTCCZUHt7u4fE4JxZl2wvEUv329neFgnIqcNL54VvWE2Ty+SIIn9/RT4LTS542wfEo+dYUZeKNxsuwWGoqc2C0fvsrnWJ+Y4Oeo/X1+fvxCE96ja99nFvP5ZWOJ3R6Xjz0uH9cvKOPVlmFiSZXltXn84pVWavLTuWVZFYqi4A0n+MUrrRgNCmVZdq5dUD7eEnZULKkSjCXZ3+enMjeNK+aWfuh7F0IIIYQQQgghxKkRiCXZ5/JhNBjGO3w2d4zgDsS47Eh7FhzZ3LWrl8ocB4uqc9nX6+MHzx0mnFCxmg2cVZvH19dOpWUoxBttHm5cXIHNbKTTE+YPb3RgNCgsrs7lghlF4+dUNZ0XDw0yGk4wqzSTLZ2jXL9gbPZwNKkypSCd0iw7hlMwT/gTF/zA2KTtH647zI5uL7oOZdl2/vbI2vfRcIKHd7i4aGYxqqaz7uAgV84t5Zl9A7QPh/jni6fhsJiIJVX+59U2EimNLIeFRVU5zKvMnnCdlKrhjSTo80bxx5J8dfWUU/KHJIQQQgghhBBCiA/OE4xxoD9AmsU03sr1/IEB7GYjq+sLxo+Lp1Tu3dLN6voCavPTeXini/u29pDSdPLSLVw4vZjrFpbz0uEhIgmVS2cVoygKLx4c5OWmITLtFq6aWzphG1jTYIDXmoc5Z1oBre4wCVXjoplF+KNJ0i0mGkqcJxw1M1nOmOCnbvps/dEXXp/Uc77W7OZ/X28fX/v+mYXlXDN/bB37Y7t7yU+3srQ2l4d39lKdm0aa1chdGzv56uopNJY4UTWdezZ3MuCLMassC28kwdXzyiZU/+i6zmgkgTeSZE+Pl3+4sAGH5dT9gQkhhBBCCCGEEOK96/NGaR4MkHVkXbum6zy43UVjiZPZxwxc9kUS3L/dxbXzy8h2WPjP5w+ztXMUgOpcB9cvrGBRdQ4PbHcxo8TJ3IpskqrGb19rZ8AfIz/DyueXVpGdNtZC5o8meXJPH6VZdhZV5/DQjl6W1eZSlZtGKJ6kOj+Nipy0U741/IwJfvKrp+l3PfYSNfnpk3reYCzJ954+RPNQEICGogy+eU4dJVl2dnV7OdDv5/qF5ex1+WgaDHLxzGJ+/EIz04qdfG5pJYqi8PS+fvb3+lgxNZ+WoSBzK7KZVzGx+icQS+KPJnitxcM3z6mjKPPDrVsTQgghhBBCCCHEB6frOp2eMN0jYbIdY+va4ymVP2/u5tzGQipz08aPdY1GWHdwkJsWVxJPqfz9o/sY8MdQgBmlmXxhWSV56TYe2uHiirmlFDltuAMxfv5yK067ibIsOzcsrMBkNKBqOusPDeEJx7lidimDgRgbmt1ct6CMlKZjMxuZVuwk0356NoWfMcFP/YzZ+s0/vB+LycAF04smbXr1UY/t6uX+bT3EUho2s4HbzqrhvMbCsdavnb1cMqsYh8XEwztdnF1fwGstw3SNhPnb8+rJdljY3DHC6y3DTC8Z+8Pp9IS5Zn7ZhOqeaELFG0nwWsswNywqP25VmxBCCCGEEEIIIU49VdNpGQoyGIiOr2v3R5Pct62H6+aXkXvMlq29Lh+HBgJct6CclsEA//r0IaJJlQyrkcaSTL60ogZPKM7WzlE+u2hsns+WjhEe3uGiKs/BrLJsVtXlA8e0dTUWUpOXxgsHh0ioGuc2FhCMp6jIdlCVl4bZaDjZrU+6Myj4GZvx0zQQYGObhxsWlpNhm9z0a8gf49+eOUivNwrAwqps/vrsqThtZh7d1Uuh08aKqXk8v3+AlKZTmGHl0d19XDm3lGW1eTQPBnl6Xz85aRYunVXMk3v6WViVw+zyrPFrJI/M/dnaOcrsskwunlUyqe9BCCGEEEIIIYQQJ5dIaRwaCExY197vi/L0vn5uXlI5oYDjpcNDqJrO+dOLeGpPH7/f1ImmQ2Wug9q8NG5bUcPGVg+KAhdML0IH/rCpk/bhMCWZVi6ZVUJ1Xvr4tq7yHDur6wuIJlQe2O5iaU0OJVl2FANML84cbwM7nc644AfG1qXfv72Hs6bkMe2YgUiT5f9e72DdwQGSqo7TZuKvzp7K0ppcdnSPcqh/LOUb8Ed58eAQK+vyeXC7i5IsGzctqSQQTfHAth6MRoUbF1VwoD9A92iEa+aVja9c03QdbyTBof4ABoPCHStrJr2CSQghhBBCCCGEEBNFEin29/onrGtvGgiwtXOUGxePtWLBWEXQQztc1BVmMLssk5+sb+GNNg8Ai6pyKM60cf3Cch7e2cuSmlwai50EY0l+uK6JvDQrdouBGxePhUhHt3VdPqeUdKuJlqEgr7UMc9XcUjRdpzjLTm1++oS17qfTGRn8wFgv3gsHh4ilVC6bXYJhkoOTVneQHzx3GE8oAcC50wq5bUU10YTKwzt7uWhmMYVOK4/s7KUk087hgQChRIqLZxZTkePgns1d6DqcP72IvHQrj+4a+2GYWZo5fg1/NEGXJ0zbcJhvX9gwPjlcCCGEEEIIIYQQk8sfSbKvz4fZYBhfyrS53cNQIM7lc95a1x5JpLh3SzcXzigm3WbiO4/tp88XxaiMfcfPz7CytCaXp/cNcP2CcrLTLBzo8/G7jZ3MLc8i3WbmyrmltAwFeb11mPMaC6nOS0fTdZ7bP4CiKCyvzQWgviiDAudHOwP4jA1+juoYDrH+0BDXHfmwJ5OqafzkxRbebB9B1XUKnVa+eU4dDUVOHt/dR06amTX1Bezo9nKwz0+6zcSgP0aB08Yls4p5cHsPKQ2mFqSzqi6fDc3DDPijXD2vbDzkiSRS9PmivNnu4e/Pb/jI/8CFEEIIIYQQQohPGncgxqGBievan9s/gMMycV37oD/GE3v6+OyiCnp9Ef7tqbF5PjkOC2vq86nIdZBuNdE+HOba+WWYjAbu3dLF/r4ADUXpNJZkUl+YcaSty8Ga+nyUI/ODHtzew6q6fHLSreSlW6grzDgjCkDO+OAHxoYmP7ijh9llWcx92zatybC9a5Sfv9RCIJZCAa6aV8qNiys51B9gV4+XGxZWEEupPLzDRaHTxlAgjqppXDijiN0uH4FYCovRwHULyvFFEjy6q5flU/KYXjJW/ZNUNQYDUTY0DXPj4grmnIL3IIQQQgghhBBCfNrouk7PSIR2T4gs+9vWtRc7J8zkPdjvZ2e3lxsWlvPs/gH+uKkLnbHt39OKncwpz6J9OESR08aKqflEkym+/+xhCpw2zAaFS2aVsL/Pjz+a5LLZJeNVRft7fWzv9nLJzGJMJgN1BekUZdrOmJEvZ0zw0zBzjn7XYy/htJlO+uFsaHYzHIxz1dzS8b68yRJNpPh/zx1mf68fHajKdfA359aT5TDz0HYX500vpCo3jXUHB3EH4oQTKXLSLKRbTThtJjpHwkQTGjctriTNauTlpiP3Oq8Uq8mIpuuMhOJsbPUwqzyTK+eWTer9CyGEEEIIIYQQnyZHN3cN+GPkplkwKCdf1/7y4SFiKY2z6/P56foWtnSOAnDRjCKMBoXltXm80e7h/MYiqvLSaB4M8KsNbaypK8AfSzKnPIttXaOc11hEdV7a+PWf2NNHhs3E3PIsMh1mphU7JwyPPhOcMcHPvPnz9XuffoXBQBy72Ui69cQfVK83wtP7BrhybilFp6Btav2hQe56o5NIQsVkULhxcSWXzynh2X0D2C1GzmsspGc0wtN7+9F0mFWWSfNgkBllmRzqC6DqGhfOKKYyNw13MMbju/tYVZdPQ9HYkGp/NMHOHi+qpvONtXUYDGdGAiiEEEIIIYQQQnxcxFMqhweC+CIJchwWFEXBG0nwwHbXhHXtqqbz8E4XUwrSKcty8M9P7mcoEMdiVPjiWdV0j0ZZVJXNrh4fn11UQZrVxAPbe9jZ7WVRVQ4GRSEQS1Kdl8aquvzxQhVPKM6jO3tZ05BPTpqV2vw0yrIdZ+R3/DMm+FmwYIG+Y8cOArEkncNhRsIJ0izGEyZlSVXj4R0uKnLTOGtK3qTfiz+a4N+ePkSbOwTAtGInf3NOHSPhOFs6RrhhYQVmo4FHdroYDMSYWZqFJxTHbjbQ74uSYbdQV5jO4upcdF1n/eEhvOEEV84tw2IyEE2oNA0GONjv57uXTj9pyCWEEEIIIYQQQoiJIokU+3r9pI7Z3NUzGmHdgQFuXlI1vnH76BDn86cX4Q7E+OG6JhKqTnGmjVuXVbO3z0dVThrRI0ulUqrOfzx7kMIjrV0m49iQ6Mtml0zIJrZ1jtI0GODcxkKyHWYaip1k2MwfyWfxXpxxwc9RvkiCtuEQwWiKdKvphAORtneNrV+/fmH5KRmY9PBOFw9udxFPadjMBm47q4Yl1Tk8uMPF6voC6goz2NXj5YWDgxRl2phVmsn2Li+JlEZVbhopTeOKuaUYFIWhQIwndvexpmHsdSlVo8cb5uXDbv7m3Hqq8tLe/YaEEEIIIYQQQohPMX8kyb5eH2bjW5u79vb6ONDn54aFFRiPVNwMHvkOfsPCcp7a28fDO/sAWFydwznTCmkeCoIOM8symVeRTdtQkJ+/3MpFM4rZ7fKSYTdzxZxSKnIc49dOqhqP7OylKNPGjNJMqnIdVOamjV/zTHXGBj8wNqRpJBSnbThMLKnitJkxv222z2g4wcM7XJzbWEhNfvqk39egP8r3nj5Ery86dp+V2fz1mim82TGCAlw0s5hALMXdmzoJJVJ8bkkVLx4axBNKMK8ii+6RCDcursRuGZvz8+LBIfyx5NicIoOCOxjj+QODXDanhFV1Be98M0IIIYQQQgghxKfUkH9sc1eGzYTVNFb88UrTEPHU2MiVo44Ocb50VjE/frGF/X1+AG5eUklOmoXRcJyRcJKr55ZS4LTx8E4XWztGWVaby9bOUS6aWczKqXkT5g/3+6I8ubePNfX5lGU7aCzOJNNx5lb5HOuMDn6O0jQddyBGuydMUtXItJknDHfWdJ1n9vVjMhi4cEbRKZmcfdcbHTy3f4CkqpNhM3Hn6ikUZFjZ0OzmugXlZNrNvHBwkA3NY5u7fJEELx12s7Aqmz5fjCvmlFKUOTaTaDAQ48ljqn/8kQQvN7upyHZwy1nVk37vQgghhBBCCCHEx5Wu63SPhGkfDpPjsGAyGtB1nUd29VKZ42BRde74sS8fHiKWVKkvyuDfnzmEN5Ik3Wrkb8+rp3M4TErTSKo6NyysAHS+/9zhsTAolCDDbubO1VPGW8WOerXZTb8vxuqGPCpz06jNTz+uKOVM9rEIfo5KqRqDgRidnjCappNpt0woqWoZCvJay/B4EDPZ2odDfP/ZwwyH4gCsqc/n5iVVPLOvn7kV2cwpz6LPG+FXG9qYVZ7FOQ0F/HpDO0WZVtKsJqYXZzKvcmyVu6brvHBwkFAsxRVzS1E1nW2dI7iDcf7p4mlYTJPfuiaEEEIIIYQQQnycpFSNlqEgg4EYuWlWDIpCIqXx5y3drKrLZ0rBWOePquk8sL2HaUVOvJEEv3ylDVXXqc1P41vn1fP8gUF0oDY/jbMbCmkZDPLLDa3MLc9it8vHLcuqx7+vHxVJpHhox9hg6JmlmTQUZZCXMflLpk61j1Xwc1QipdHni9A9EsFkUHDazONVPpFEige3u5hXkc3s8qxJv09V0/jvl1p5vc2DqunkpVv42tlT8UeTDAXjXD23FIDfvt6BOxjjHy6o58HtvbQMBVldl080pXH57JLx+x30x3hyTx9rpxVSfWRl3BttHr57SSMFp2BrmRBCCCGEEEII8XEQS6oc7PcTjKXITRvb0uWPJrlvWw/XzCsjP2PssUA0yf3bejh/ehFP7+vnxUNDAJzfWMj1Cyu4f3sPuq5zyawSavLSuH9bD9u7RslNs4Ci8Lfn1mF/22KpNneI9YcHOa+xkKkFGUwpTB9vL/u4+VgGP0fFkirdI2H6fVGsJuP4FG1d13m1ZZjhYHxsls4pKMHa6/LxXy8244smAbh4ZjHnTy/khYND421dm9s93Leth6+vnUooluKuTZ1cMaeUTk+YGxdXjE8F13SddQcGCcdTXD6nhOFgnKf39nPrimrmV+ZM+r0LIYQQQgghhBBnskBsbIizois4j3T09PuiPL23n5uXVo5/n+4eCbPu4FhA87P1rXSOhDEZ4Curp9BY7OT+bT2kWU18bkkVOvrYZq+URprFyOLqXC5427gYTdd5bv8AsaTKmoZ8Goszyc+wnpKRMqfLxzr4OSoUT9HlCeEOxkmzmMZ/APp9UZ7a289ls0soybJP5u0CYxO9f/h8Ezu6R9F0KM608bWzp3CgP0BJpp2Vdfn4own+37OHWVCZzYUzi/iPZw7TWOwknlS5eFYJ5cdMCB/wR3lyTz/nTCuk0Gnlid19zKvM5oZFFZN+70IIIYQQQgghxJnIHYhxsD9AmsU0Pm/n6MDmGxdXjo982dY5QqcnTHVeGv/1YgvRpEpeuoV/uqiRaFLlyT19TCtycuW8Uvb3+vn1q60UOe1kOsxcOaf0uAVRvkiCB7e7mFuZxYLKHOoKM46b9/Nx9KGCH0VR/gBcArh1XZ9x5LEc4EGgCugCrtN13ftuN/Jhgp+j/JEkbcNBAsesgE+qGk/s7iMnzcLZDQWnJKV7s83Drza0EYynMChw9bwy6osyaBoIct2CcuwWI//7Wjt9vij/cH49f9jUiT+aoizHTkNhBktr88bPpek6zx8YJJpQuWhmEa+1DBNPaXz7ggbMpo/P8CghhBBCCCGEEOL90HWdnpEIbZ4Q2XbL+ADl11qGCUSTXDKrGEVR0HWdJ/f2k2k30+eL8uB2FwALKrP423Mb2NLpYWOrh0tnlTC3IpvfvNbGzm4va+rySagan138VsXQUXtcPrZ2jnDxzGJmlWVRkmX7WFf5HOvDBj8rgRDwp2OCn/8PGNV1/YeKonwbyNZ1/R/e7UYmI/iBsR+U0XCCNneI6DEr4A/0+dnaOcK188vHy8QmUzSR4t+fOczBfj86UJXr4LazatjaOcLaaYXU5qezs3uUezZ3cdvyGnq8EXZ1eynJspNhN3PNvLIJg6qPViud21hIMJZkS8cI37tsBnlHehiFEEIIIYQQQohPihMNcdZ1nUd39VGabWdpzdjmrlhS5S9be5hbkcVju3rZ2+tHAW5aUslV80q5d0sPXZ4wX1ldi67r/OvTB3HazCypzsFhNXHB9ImtXSlV45GdvTisRs6fUcS0IidpVtNJ7vLj6UO3eimKUgU8c0zw0wys1nV9QFGUYuBVXdfr3+08kxX8HHV0BXybJ0RK1cmyW4gmVR7e4RrfwHUqvHBwkD9s6iSSUDEZFD6zsByr2YjJaOCiGUUEYkl+uK6ZqfnpzCrP5LVmN0aDAaNB4fNLqyaEUqqmH1khr7GgKosn9vRz5+opzKnIfoc7EEIIIYQQQgghPj6ODnEOxVPkOMaKHeIplXu3dLOqrmB8c9dwMM7DO13Mr8zmfza0MRpJkm418e0LGmgozuAnLzaTbjPz5ZW1PLi9h5cOD3HF3FI8oQSr6vKpK8yYcN1Bf4yHd7pYXZ/P8to8ynIcEwoyPilORfDj03U965jnvbqunzCpUBTlduB2gIqKivnd3d3v+w28m5Sq0e+L0jUSRmFsKNTGVg/9vihXzyvDcgrap3yRBN97+iBtw2EAGooyuHJOKQcHAlw7vwyn3cwfN3XSNRLhyrmlbGrzoChj08mvX1Ax/kN9lMsb4dl9A6yuz2djq4ezpuRyzfxyDJ/AH0ghhBBCCCGEEJ8egViS/b1+0BkvhPBGEty/rYfrFpSTlz4WBB0aCLClY4Rsh5l73uxC1WFqQTr/eNE0FB3+84UmVk3NZ25FFj9+oRmAzywqZ39fgM8srCDdNrGK59VmN52eMFfNK2VWeRZO2+R3Bp0pPtLg51iTXfHzdvGUims0Qq83itlgIJJI8eSefi6YUURlbtopuebDO108tN1FLKVhMRm4cVEFgViSWaVZzKvMZkvHCE/t7WNJdS69vihl2XZ2dHk5a2oe5zUWTTiXquk8s68fVdNRDGBUFP72vDps5k9WCZoQQgghhBBCiE+HEw1x7h4J8+KhIW5aXDn+2EuHhwhGk7S6g2xsGwHg0lnF3LK8msMDAe7a2Mkdq2rY0jHCtq5R5pVnUZrtQNcZnwt0VCSR4r6tPdTkp3HxrBKqch2nZBP4meQT2+p1MpFEii5PmMFADLvJyEuH3ZhNBi6cUYThFAxuGvLH+N6zB3GNRgGYVZbJ0upcgvEU18wvYySc4PcbO0i3mbCaDMwtz+bFw0M4bSa+unrK+DCro3pGIzy3f4DKXAfdoxG+e0kjRU7bpN+3EEIIIYQQQghxKpxsiPPObi+t7iDXzi/HaFBIqhoPbneRn2Hlid299PpiWIwGvnHOVFZMzefRnb1s6fRw8cwS1h8eIqlqXDSjiPbhMEtr82gsdk64bstQgHUHh7hqbilLa3PJclg+ird/2r1T8PNBI6+ngM8f+e/PA09+wPOcEg6LicaSTOZX5mC1GDlrah5VuQ7u2tjBaDgx6dcrzLTxP5+dz1VzS7GaDOzr9fOnLd1YjAq/f6OTlKrxd+fX47CY8EdT7Oj2sroun2Knne88vp+hQHTC+SpyHHxpRQ3xpEaaxch3Ht3Hzm4vuq7z61//GrfbPX6s2+3m17/+9aS/JyGEEEIIIYQQ4oNIqhqH+gN0jITIS7OOhz7rDgziDSe4YWEFRoOCL5Lg9290km418ruN7fT6YhRl2vj5DXNYXpvLj9YdpmkoQGVuGi8fHiLdauKa+WU0D4W4Zn75hNBH03Ue393Hrh4f3zx3KmunFX5qQp938162et0PrAbygCHgX4EngIeACqAHuFbX9dF3u9jpqvg5lq7rjITitA2H8UcSrD/kpq4wfcJ69cnUMxLm/z13mAF/DID5FVnU5KdTkmnn7IZ8Xm5yc6AvQDylUpOXxvzKbH7xShuXzynh7IbC487X5QnzzP4BookUlr6d/P5f76SxsZENGzYAsGbNGg4dOsSvfvUr7rzzzlPynoQQQgghhBBCiPcikkhxsM9PNKmRfSR4UTWdB7b3MKMkk9lHljC1uUO8fHiIeEpl/eGx4oZltbl8Y20dSVXlX546SE6ahZw0C6PhBFW5DvLSbSRUjctml0zo5hkNJ7h3axcrp+Zz4Ywi8jI+fR0zH7rVa7J8FMHPUeqRDWDtwyF2dnvpGYlw3cJyHJbJn5+jaRr/t7GDFw8NkVR10q0mLp5ZRCypccPCCvr9UdYdGCQUT2IxGvnyqhp+uaFtfKaP0TCxECulajy5p499PR52PfNnul/8A/n5+QAMDw+PB0EFBQWT/l6EEEIIIYQQQoj3whtOcKDPj8loIP3IuvRIIsWft3Rz0YxiynMcALzWMkz3SJgdXSN0jkQxKHDHyhounFHMof4AP1nfzLRiJ1kOM+5gnBVT8mh1h1hSk8v0kswJ19zSMcJul5dbl1UzoywTm9l42t/3mUCCn2MkVY1+b5S9vT6e2z/A6roCppdmvvsLP4B2d5AfPN+EOxgHYFFVNrnpVlbV5VOe7eC+bT0oQLsnxN+dW88el4/nDgzwt+fWUZ5z/DDqTk+YP77ewtZXnmPw2V+gp+Lk5+dz4MABCX2EEEIIIYQQQnwkdF3n+//1c6YtPZfKshKsJiMjnmGeeOoZErUr+eyiCjLtZlRN56EdLpKqxrP7+okkNbIdZv7lkulMKUjn92908FrLMNfOL6PFHUIBVk7NZ2ePlxsWjp3jqKSqce+Wboozbdy8pJLCTNuEAc+fNhL8nEAsqdLpCfHQ9l4iCZXrF5YfN2R5Mmiaxi83tPFq8zApTcdpM7GyLp/cNCuXzS7mmX0DxFMaWzpGuH5BOTX5afz4xWaW1eZx1dzS435wh9xubvr2jyGvlpHn/5tsc0qCHyGEEEIIIYQQH4mUqvG9/+9n/L9//Dtqpjbw+4eeBuCLX76TUXspd5w9nRtvuY1ANMlftnYTT6m83DQMwLyKLL51fgOJlMq/PnUQo6JwbmMhTYNBijJtZDssJFIal82Z2NrV5Qnz+J5eblhYwYqp+eObwT7NJPh5B8FYkk1tHh7a4eKSWSVMLcg4Jdc5PBDgR+uaGDkyXHpRdTZZdgtXzytjMBBjj8tLtydCvtPK7Stq+PWGdiLJFF9dNYXstLG+yBHPMLddfyntLU3k1i3Edtbn8G17gnK1n9defVXCHyGEEEIIIYQQp00sqXKw34+rb4C//cI1dLQ2kZ2bh6l6ITEs5Aea+f2DTxPEwZN7++geidDqDqEo8IUlVVw+t4Qndvfz7P4BltbkoOo60YTGgqpsWoZCLK7OYcYxHTq6rvPU3n4CsSRfXVNLRXYaBsOnt8rnWBL8vAtd1xkOxfnly20oClw2e6w0bbKpmsZP17ewqX0EVdPJdpiZW5HNzNJMZpVm8ujuPqwmhcMDQb5zYQPbOkfZ1O7hgulFLJ+SzwN3/44ffPdb1NY1cNeDT5NSdW776UOEwyH+ekkB3/2Hb3yqS9uEEEIIIYQQQpwe/miS/X0+FF3BaTcz4hnmqnOWotauJOkbwDbSymMvbabZr7Ctc5QtHR7CCY10q4l/uaQRo0HhL1u78UcTLKvJYzAQBwWW1+ayo8vL9QvLJ2zlGgnFuXdrN2c3FHD5nFLSrJM/r/fjTIKf90jTdF5rdnP/dhcXziiiOi8d4ylID/e6fPxkfTPeSBKAEmOQhuoyPn9WHesODqImory038Vt586hONPOA9t7KMiw8tlFlTzzwB8595IryM0bG+484hnmN4+9Qn/aFL51fh3nzyg+JaGVEEIIIYQQQggBMOiL0jQUJM1iGh+mPDA4xOf/5ReM7n6BxGAb2Xn53PLzpxmI6LzZPgJAY3EGd66ZysuHh+gaDaNrOqXZDjRNJ8thJtthIZY8vrVrU5uHvb0+vnb2FOqKnKfke/rHnQQ/71MgmuS/Xmgm3WZiWW0uTpt50itpkqrGf73QxOYODzoGiPhZWFfKqilZ/PRHP2BUs9Kw/CLmTZ/KlXNLeXhHL6qms3JqPvMqs48733Awxg+eO8yssiy+e0njeHuYEEIIIYQQQggxGVRNp3M4RI83QrbdgunInNx21wDf/Nmfca37LU6LgmJNg1mXkVHWALmVAFw7v5TsNCsDviij4QQpVcdhNWIzGZlVnknzYIhFVdnMLMsav140meIvW3qoyU/jlrOqcdrMJ7otgQQ/H9j6Q4O8cHCIVXX55KVbx9fRTaZX93fykxeawDY2WyjVd5BQzwFyIr2suv3fMZitxFIqF88spnUoxHAoTprFxNXzyo4bYJVSNX61oQ1PKM63L2hgcU2u9DsKIYQQQgghhPjQYkmVwwMB/NEkOQ7LeHFEpyfMrx99mfU/up2a6ir++TcP8/ShEXa29YPNiQmVm5fV4gnFKcmy0TwYIhBLUpZtJ6nqLKzKYXePl+vftrXr8ECAdQcH+dKKGhZWZY+HTOLEJPj5EHyRBP/9citlWXZq8tNIt5rHS9kmy+DQEF/48QOYyuegGI1ooVHm15Vz49JaNrV7SGk6sZRGYYaVqrw09rh86DqsmJrH9JLjV9GvPzTIhuZhltXm8PW1dTik91EIIYQQQgghxAc0Ps8HZULVzfauUTo8Ya6dX8ZD99yFvXENOwZi7HH5AMhUYiybXsX0EicDvij9vhgj4QT1RRmkW00YDApmg8JFM4vHgyRV03hkVy8GReEb50wlJ836Ubzljx0JfibBc/v72d7pZWVdPooCmTbzpCWOR4dgRZ2V5F38TYxpWQBMK85gSXUuDouR9uEwRgVQYEFlDtu6Ril02kiqGlfNLcNimngvHcMhHtjuwmoa+8sypyJnUu5VCCGEEEIIIcSng67rDPhiNA8FSbe+Nc9H13We2z+A3WLi7IYCkqrG3W92sb/XR+dIBIAZJU7mVmSzfEouT+7pZzgYx2w0kJNmYU55Jvt6/ZzdUMiUgvTx6w34ojy408WVc0s5r7HouO+54uQk+Jkkw8E4//NqGwsqsnE6zOg6ZNrNE4ZOvV/HrmjPzs0DgwnTii/hqF0ABiM5aWbqC52cP72Q11s8GBQozXag6zrxlEZBhpVOT5i10yb+hQEIxVLcs7mLlKrRWOLkr9ZMwTLJ1UpCCCGEEEIIIT55UqpG23CIfl+UHId1fKByStW4b1sP8yqymVGayUgozm9ea+dQf4BgPIXZqLCgModbllcx4IuxvXuEwwNBZpZmoukwvdhJ81CQ6xeW47C81Z2y/tAg3aMRvnVeHWU5aR/V2/7YkuBnEum6zhN7+ugYDnPh9CLcoThmgwGn/YMNmXr7inaA266/lD41g4pr/ok4Y38Rphakc15jIV0jEXyRBKvq8tnX66fAaSWR0nBYTSRTGpfNLplQiaTpOo/v6iUUTxGKp/jaOXU0Fjs//AchhBBCCCGEEOITKZpQOdjvJxxPkX3MPJ9gLMlftvZw2ewSSrLs7HX5uHdrN02DQQCcNhO3nVXDyrp8HtvViz+aYG+vnwWVOWSnmYklVPKdNtbUF4xfyxdJcN+2HhZX53DDoopJH63yaSHBzynQ74vyf693cMGMQtKtJtzBsaHLxyaW79UDd//uuBXt6595gitvvJX/XNfErh4vug7ZDjPTi500FDvZ2+tj9dR8RiIJInGVYDzFiql5bGz1cPHMYspzHBOusb1rdKwnU1eoLUjny6tqMMpwLCGEEEIIIYQQx/CGExzo92NSDKTb3vp+6/JGeG7fADcuqSTNYuShHS5eaXLT748BY61d/3LJdMKJFA/vcBGIJQnGUpRl2ZhXkcMul49LZhVTlv3Wd9WtHSNs7x7lm+fUUV+UMenbtD9NJPg5RTRN54HtLnzRBNfNL6fLEyYYT5FpN2OexFDlzXYPv97QRiCWAqA6N41zpxWyy+WlJi+NJbW5vHhwEE2HVXX5dAyHMRgULp5ZPF6OBzDgj/LYrj4aSzJoHQrxtbVTmVqYMWn3KYQQQgghhBDi40nXdXq9UVqHgjjtZqymtypvdnV7aRoMcP3CChIpjZ+91MJel5dIUsNogK+vrWNNfQE7ukbZ0TVKuydMebadNKuZ6jwHg/4Y1y4oH/+eHEuq3Letm4qcNO5YWSMLiSaBBD+nWJcnzB83dXL9wnLy0q20uIOoqk6m3TIhePkwYkmVHx5T/eO0mZhbnoWiKCRUjS+vrOWFgwMMBuLU5qcxvSSTFw8NjZfgHXue+7b10FCUTocnwpT8NL54Vo2sfRdCCCGEEEKIT6mkqtE6FGQwECfH8db3WF3Xee7AIFajgXMaC+kZCfOzl1ppGw4BUOi08uOrZ5NhM/HIrl5GQnG6RiJU5jiYWpiBOxCjviiDRdW549c6PBDghYOD3LGqloVV2VLlM0kk+DkNVE3nT5u7SKk6Ny2pYCgQp2skjMlgwGkzTdoP85YOD7985a3qn4psO3PKs2h1h/jrs6cSiCV5dv8AdrORmxdX8lKTmzSrkfOnF40PodZ1nXUHB0mqGsVOK/v7g/zV2VOozU9/p0sLIYQQQgghhPiECcVTHOr3E0tqZDss448nVY37t/UwtyKbmaWZrDs4wIPbXXhCCQAumVXEbWfVMhKK88B2F9FkilAsRW66lSU1uex1+bhmfhm56dbx8z22uxeTQeFvzq3/wHNyxYlJ8HMatbmD/HlzNzcuqaQ820GnJ8RgIPaB5/+cSDypTpj9k241MbPMyUgwwWVzSlhUlcv923voGY3w2UUVKMArzW6umFNKodM2fp5DAwE2t3s4p6GALZ2jVOWlcevyaqn+EUIIIYQQQohPAXcgxqGBAHazccL3VX80yX3berhyTil56RZ+9lIzm9tHSWo6VqPCdy6axvzKHLZ2jvB6iwdd14kkU1TnpZHrsJLSdS6dVTJeOeQaDfPY7j6uX1jO2oZC+c55Ckjwc5qlVI0/be5G03W+sKyKcEKl1R0kEE2RaTNjMU3O/J+tHR5+cUz1T1m2HafNRE1eGrevrGVXj5fHdvexoDKbi2YU8+TefrIcZs6dVjhegeQNJ3hwh4s1DQWE4yn29/r5yuoaagtk9o8QQgghhBBCfBKpmk7HcAiXN0KW3TJhRm33SJh1Bwe5eUklwViK7z6xn4FAHICq3DT+4/LppFlNfPeuJ7EXVZPnTGPQH2NhqY2Nuw7xxcvX0FA0tkla03WePzCAJxTn7y9ooCDDdsL7ER+eBD8fkdahIPdu6eamJZVMKUhnOBin1R0ipWqTNv8nfszsH00Hh9lAeU4aJqPCdy9uRAf+97V24kmVb55bR89IhNdbh7lqXhl5R0ruVE3nkV29FDutTC3MYHOHh5IsB7cur560GUVCCCGEEEIIIT560YTKoQE/wViKnGNWtcPYNuj24RDXzi9n3YEB/vhmF/GUBsBVc0v5/LIq3ME4//GXVzi4ezvOTCezlq5meZWT39x9H93P/obvfPd73PCFL+EJxXlwu4s19flcPb8Mk2yVPqUk+PkIpVSNezZ3A/D5pZXoQL83SudIGLPRQIZ1cub/bO0c4Rcvt45X/xRkWDEZFL55Th0NxU5eaRriqb393L6ihpr8dB7f3Ueh08aa+vzx62/pGKHTE+b8GYW4RqPs6/Vxx6pamf0jhBBCCCGEEJ8AI6E4h/oDmAwTV7Xrus7T+wZIt5o4a0ou335sH+3D4bHiAouR717cyIzSTDa2DrP+0BA1WUYefXkLvs592AwaetiLe+tT1NY18LsHnuKwDw72B/iHC6ZRkes4+Q2JSSPBzxmgZSjIX7Z0c/PSKqYUpBNLqnR6wgz4o5M2/yeeVPnRC83s7B5F08FqhHSbhUtmFXPN/HK8kQQ/WtdEXUEGtyyv4mB/gM0dI1w9r4yctLEhXgP+KE/u6efy2SXois7Obi8FGTZukeofIYQQQgghhPhY0jSd7tEwnZ4wmTbLhPEjSVXjL1u7WVSdizsQ4/9e7yAYHysoaCjK4F8vnY7ZqHDXxk48oTir6/N5dGcfa2rT+d8//oXhTQ+R8vaTnZvHn559nRc7okwvdXLLsmosx6yEF6eWBD9niJSqcfebXRgNCp9bWoXRoOCPJml1BwlGU2TazRN6Kz+oHV2j/PfLrfiiSQDSrEZq8tL43qXTMRkN3Lulm319fv7pomlYTUYe291LaZadVXVj1T/xlMoD21zMLsukItfBUDDOzm4vX1pRzRSZ/SOEEEIIIYQQHxuxpErzYJDRcIKcNMv4tmeA0XCCB7b3sHJqHo/t6mN/n59YSsOgwI2LKrl2QRndIxF++3o704qdWE0GdnR7WVtfwMCon7u/eTne4SEAcqbO55K/+xl/f/EsppdmflRv91NLgp8zTNNggAe2ucZn/2iajicUp8UdJKXqZE3C/J+kqvFfLzSztXMUVdcxGSDNauY/r5xJeY6DdneIn7/cwlXzylhTX8D+Xh9bO0e56pjqn5cODxGKpzh3WiGheJLdPT6y0yx8YVmV9GcKIYQQQgghxBnOH0myv9+HgoLTNnF9estQkFeahsiwmdnZ7aXdHUIDnDYT37t0OrUFYyNCNneM8LmlFTy6s4+cNAsZNjM1ToWff+MG2luayM4rwDz9XCIBL2Xxbl7b8AoFBQUfzRv+FJPg5wx0dPaPfmTzl8loIKlq9HojdHkiWIwGnHbzu5/oXex1+fjp+hZGIwkAzEaFGxaWc92CClKqxo9fbEbX4W/Pq0PTOK76p304xCtNbq6bX05K1/BFEmzr9PK5ZZXjk9qFEEIIIYQQQpw5dF2n1xulzR0k3WrGZp7YcrWhaYgd3V7SrSZ29/gYCMQAmFOexT9dNI2UqvFf61vIsps5f3oRv3m1nZVT8/BGk1w7v4x1D93DD777LSpnL2PFV/6Tz8wr4ltfuJJDhw7xq1/9ijvvvPOjeNufahL8nMHa3EHu3dLD9QvLmVY8FqREEik6hkMMBeJkWM3YLR+uL1LVNH62vpU32j2omo4CVOY6+Mm1s7GYjLza7OaJPX18YVkVc8qz2dfrY1vnKFfPKyM7zUIoluL+7T2c3VBAodNGJJ5if78fm8nIrWdVT9p6eiGEEEIIIYQQH048pdI6FMQdTJDjmNhNomo6v3m1DW8kyZSCNB7b3UcsqWE0KHxxeTWXzi5hV4+Xe97s4roFZfT7YmzpHGFOWRYFThvnNRaiKArJlMq//+5hpkyfw79cOQ+n3Yzb7ebhhx+W0OcjIsHPGU7VdP6ytZtIQuXW5W8FKb5IgtahIOGEitP24ef/HOoP8OMXm/CExqp/LEYD/3LJNGaXZzMaivPTl1oozbZz6/JqNA0e3dVLWfZY9Y8OPLOvH5vZyNn1BfhiCSIJjTfbPHxmUQUzpIdTCCGEEEIIIT5S/kiSA/1+dF0n026Z8FzPSISfrm9m+ZQ82odDbGofASAv3cJ/XD6Dkiw7/7OhjaFgnL9aXctdb3RiUBQyHWYunV1CefbYdi7XaJjH9/RzzbxSzpteNClbqsWHJ8HPx0T3SJg/buriyrmlzC7PAsamrw8FYrQNh9B1yLSbJwzjer80TeOXr7Tzaoub1JHqnwVV2Xz34kY0He7b1k3TQJCbFlcwrSSTvUeqf645Uv1zoM/P9q5RblhYQUrTiKVUDvcHQIHbVtRglantQgghhBBCCHFaaZpOrzdCmztEhm1ia1c8pfKXrT0c7g/wuWUV/HR963gxwMqpeXzznDo8oTg/WtfMiql51Oancf82F8VZNooy7Vw1txSz0YCq6aw/PMigP8Z3LpxGXob1o3q74gQk+PkY0TSdB3e48ATjfGllzfhf2ERKo2c0gms0gs1kJN324da/tw4F+eG6JtzBOAB2s4HvXzGTqYUZHOjz8dCOXqYUpHP9wnJUTeexXX2U5zhYOTUPfzTJgztcnN9YRFm2HW80SUrVeL11mKvnlTG3IvtDfw5CCCGEEEIIId5dPDW2tWskHCfbbh1v7dJ1nTfbR3i1xU1hho1Cp5U/bOoipelYTQb+5pw6lk3J4/HdvbzeMsw3z6njtVYPhwcC5DjMnDe9iFllWQAM+qM8uquPtdMKuHpeGYYPuYxITD4Jfj6G+nxR7trYwUUzi1lYlTP+eCieot0dYjQcJ8Nm/lAVNpqm8duNnaw/OEhSG/s5WD01n2+eV0cwluKPb3YST6pcPqeUhiIne10+tneNzf5x2s08tbcPp83M2Q0FBGIpVE2lZShMJJHijlW1xw0QE0IIIYQQQggxeXyRBAf6/cdt7er0hFh/aIiUpjO1IJ3XW4bZ0+sHoDLHwf+7YgYmg8IPnm+iLMvOZbOLuX9HL/5IgpIsO59bUkW6zYSq6WxodtM9Gubvz2+gJMv+Ub1V8S4k+PmY0nWdx3f30TUS4Y6VNaRZTeOPj4TitLhDJFLah17/3jMa5gfPNdHniwKQZjHy/StnUJ2XzrP7BmgeClKWZeOqeUeqf47Z/LWvz8/uHi83LKzAaFDwR8dKBl9pHuay2SUTQishhBBCCCGEEB+epum4RiO0D09s7fJHkzy1t59sh5kBf5TqvDT+uKmLQCyFQYEr55by+aVVbGrz8OAOF3esrGHQH2dPr5fRUIKzGwpZO60ARVEYDsZ4eGcvZ03J44ZFFR/qO6c49ST4+ZhzB2L83+sdrKjLZ1Vd/vjjKVWj3xelwxPGZDDgtJk+1GCtP2/u4vE9fSTVsZ+JsxsK+Os1U2gfDvPCwQEUReHcxkIaipzs7/WxpXOUq+aWYlAUHtzh4qKZxVTkOPBHE2i6TqcnzEg4OSG0EkIIIYQQQgjxwcWSY61do+EE2Ue2dqVUjXUHBwlEkyyuyeXFg4OYjQae2tuPDmTYTPzLxY3U5Kfz05daUFWNO1bW8NjuPryRJKF4iq+urqU4046m67zeOkzzYJBvnV9PZW7aR/2WxXtwyoIfRVG+CdwG6MB+4BZd12MnO16Cnw9n3YEBdrt83LGylpy0tya0x5IqHcMhBgIxMiwfbv27OxDj3589RPdIBIB0q5F/vWQ6ZTkOHtjWg9mkYDUZuXJuKboOj+/uoyDDyqq6fB7f00d+upXV9QUkUhqBWAKz0cDLTW7ObihgxdT8d7m6EEIIIYQQQoiT8YYTHOz3oyhvtXbt7Payq8fL+dOL8ITi7Or2cqDPR7tn7Dvd7LJM/vniRtrcIe7a2MFlc0pw2s3s7PLSPhyiriiDW5ZVYzQoeMMJHtzpYn5FNp9bWonpQ26WFqfPKQl+FEUpBd4AGnVdjyqK8hDwnK7rd5/sNRL8fHj+aJL/e72d+iInl84qnlDh448kaR0KEkwkybRZPtT698d29/KnN7s4UvzDmvp8vrq6llebPXhCMcLxFCvrCphW7ORgv58320e4Yk4prtEI+/v83LCoHIvRQCCWRNN1er1Rer1R7lhVS6bd/M4XF0IIIYQQQggxTtV0ukfCdHrCZNrHZr32eaM8d2CA2WVZLKjM4ul9AwwFYqw/NEQspWE2KHzxrGrOn17E79/opHs0wtfWTuHlw25SqsaObi9fWlHDrLKsI4OgPezt9fOt8+qpKUj/qN+yeJ9OZfCzBZgNBIAngF/ouv7iyV4jwc/kebPdw/pDQ9y2oobSYwZsTeb6d380wbcf20+vd2z2T7rFyLcvasBpM/PCwSGKM21EEipXzi0F4Ik9feSmWZhTnsUju/q4dFYxZdkOkqqGP5rAajLySpObxTW5nNtY+OE/BCGEEEIIIYT4hIskUhwaCBCKpch2WIgmVJ7a20+a1cSFM4pIqTp/2tLFgC/Kzh4fAIVOK/9x2QxiKZX/fa2D2WVZLKrO5uXDbkLxJP5oiu9c1IDdbCIQTfDgDhfTip188axqLB9igZD46JzKVq+vA98HosCLuq7f+E7HS/AzuWJJld+93kF2moXPLqqYsFIvnlLpGRlb/+6wmD7UjJ1Hdrr4y9ZuUtrY/y+rzeX2FTU8s2+AylwHLUNBlk/JY3pJJk0DAV5vHebS2SW80eohP2Os9QsYq/7RdNyBOM3uIHesrCE33fqhPgMhhBBCCCGE+CTSdZ0hf4ymoSBWkxG72cgrTUMM+GNcOruEbIeFfl+Ue7d2c6DPjzeSRAHOn17El1bU8OguF3t7/dyyrJqmwQCxpMq2zlGW1OZy7fxydF1nW+co27tH+Ztz6qgvdn7Ub1l8CKeq4icbeBS4HvABDwOP6Lp+79uOux24HaCiomJ+d3f3B7qeOLkDfX4e3uHi5qWVTCnImPBcMJak1R3CF0mSZTd/4PYvbyTO3z28D3cwDoDNZOBra6eiHqkwykmzMByMc9W8MgyKwuN7+siym8lLt7C/L8D1C8qxW4xHqn+S2MwGXm0eZkZpJpe8rWVNCCGEEEIIIT7NEimNNneQoUCMTLuF5sEgb7Z7OLuhkClH2rC2dY7w1N5+9h5Z055uNfGPFzaQ6bBw96ZOstMsXDG7hOcODJKVZubNthG+vnYqNfnpBKNJHtzpojY/nTtW1mA1S5XPx92pCn6uBS7Qdf2LR/7/c8ASXde/erLXSMXPqZNUNf60uZuUqnHL8mosprcCHl3XGQ7GaXEHSak62Q7LB2r/0nWd377ezsuH3cSOlP/MLHFy05JKXm/1sLoun41tHpbU5DKzNJOWoSAbmt2srsvn1eZhzpteRHXe2ER4fzSJqo2FQHtcPu5YVUuh0zY5H4YQQgghhBBCfEz5o0kO9vtRVZ1oQuW5A4PUF2WwvDYXRVHQdJ37tvbwesswA4Gx3UqzyjL5xwun8fyBAfb2+rlgehEpTadnJMxgIEYipfF359djNRnZ3jXClo5R/nrtFGaWZn20b1ZMmlMV/CwG/gAsZKzV625gh67rvzzZayT4OfU6PWHuebOLi2cVs7AqZ8JzSVXDNRqhZzSCxWggw/bBhiwfHgjws/XNDAbi6IDJALcsryYYS1GVm0ZS1ej1Rbl6bhkmo8ITe/qwmY2kUhoOq4nzGgtRlLGVg95okjSLkY2tHipyHVw7v0yqf4QQQgghhBCfOpqm4xqN0D4cwmhQWH9oCKvJyIUzi7AembsTjqf4yYvN7O31kVB1zAaF21fW0FDk5KEdLowGhWvnl/Ny0xA5DjNbOkdZVJ3LFXNKCCdSPLTDRWVOGl9eXYPN/MHHgYgzz6mc8fM9xlq9UsBu4DZd1+MnO16Cn9ND13We2NNHmzvE7StqyXRMDHjC8RTtwyE8wTjOIxPh369QLMWvX21lf68ffywFQE1eGudPL2I0nOCcaYU8u7+feRXZzK3Ipn04xEuHhqgvyqB9OMT1CytIPzJ3KBhLklA1YkmVze0j3HpWNZW5aR/+gxBCCCGEEEKIj4FoQqVpMIA3nGBXj4/BI3N8ctIs48e0uYP85MUWen1jy3dKs2z826XT2dTmoXkoxIzSTEqzbOxx+TAo0OGJcNPiCuqLnOzsHmVTu4e/XjOVmWWZ8o/tn0CnLPh5vyT4Ob1Gwwnu2thBQ/Hxq991XWckFKfVHSKe0siyWzAa3t9ffk3XeWpPH9s6Rzk4EEDTQQEunVVCUtO4ZGYxLm+U9uEQV80rw2Yy8NTeflKajjccZ01DIXWFYzOJUqqGL5rEZjGwtWOULLuZm5dWve97EkIIIYQQQoiPE3cgRtNggJbBEHt7fRPm+Bz1yE4XD+/sJZJQUYDLZpewuj6fZ/YOoKFz8cxidnZ7sZgMdI2EMSoGbllehcVo4IEdLkqz7dy5uha7Rap8Pqkk+PmU29IxwgsHB/nCsqrjKmlSqka/L0qHJ4zJYCDT/v7bvw70+Xmlyc3eXi/uYAKAwgwLi6rzqMx1sKQ6h8f39NFQ5GRJTS5dnjDPHxwg3Wom22HmopnF4zOHwvEU0aSKqmu81uzhpiWV1BdlvNPlhRBCCCGEEOJjJ6lqtA+H2NPjZVP7CNOLM1l2ZI7PUYmUxveePsC+vgAATpuJ71zUQNNAiH5fhJw0K/Mqsnm91U2axcRIOEFZtp0r55axr9fH663DfHVVLXMrs6XK5xNOgh9BPKVyz5tdGBSFzy2tmjD8GcZKC9uHg7iDCTKsJmzvc6q7N5zgwR0uNF1n/aEhUtrYz9Xi6mxy06x8dnElLUNB9vf5uWpuKRk2M0/v62c4GEfVND6zqHI8dNJ0HW8kgdloYF+vD0VRuGV51QdqSRNCCCGEEEKIM40/kmRH9wjP7hs88o/hJcd9R2sZCvDvTx8aH62xqCqHq+eXsuGwG12BRVW59PkihOIpApEkKApLanKZVpzBgzt6KMywceeaKaR/wNmu4uNFgh8xrmM4xJ82d3PJrGIWvG34M4y1h7UMBYkl1ffd/qVqOo/t6iXDZuLx3X30+8cmzKdbjcwszeTCGcXUF2Xw6K4+KnIcrJyaR683ypN7+kiqOmunFTCrLGv8fLGkSiCeRAFeaXJz1bwy5lVkf9iPQAghhBBCCCE+Eqqm0+kZ+04WjKW4ck4p2cfM8YGxsRx/3tLNo7t60XSwmgz89ZopDAXjhOMpkprGyqn5bGhy47AYMRgUQrEUV88vo2c0wqY2D19eVcu8imwMMjrjU0OCHzHB0eHP7e4wX1pRc9zwZ1XT6fNGxtu/nDbT+yoL3NE1StNgEIfZyF+2dZNQx37GavLSmFOexU1LKjk8EGBr5yhXzS0ly2Hh+QMDHOgPUJXj4Jr5ZZiMhvF79UeTgE7TYIhQPMkdq2pxSG+qEEIIIYQQ4mMkFE/xwLYetnaOcvHMYmrz0487xhdJ8N0nD9A1EgGgriCdzy6qYFv3KHazkeJMGwrg8kZJJDXKchwEY0kumlnMI7t6qchxcMfKGqny+RSS4EeckDec4K43OphakMHlc0qOC3eiCZVOT4gBfwynzfy+2r/cgRiP7e7j/OmF/HR9C90jEXTAbISGIie3r6ylyGnjiT195KZZOGdaIUOBOPdt6yaW1Lj1rGqKnLbx8yVVDX80gaLAK03DnNtYyIqp+ZP1UQghhBBCCCHEKaHrOm+0efjz5m5ml2WxYmreCf9hfVPbMD9Z30JS1TEa4KbFlSRVHZNBwROOs3JqPpvaPBgNCk67mZSqU57jwGSAHd1e7lhZw5xyqfL5tJLgR7yj7V2jPLtvgJuWVB43PR7GAqKWoSCRhEq24723fyVVjUd29lKZ6yAST/HbjR3EkhoAuWkWzp9exA0Ly2kZCvFqi5tLZ5VQnGlj/aEhNjS7WTutkHOmFU44ZyCaJKGq9Hqj9HqjfGV1LVkOy4kuL4QQQgghhBAfqX5flJ+/1ILVZODy2aVYT/CP6dGEyi9eaeGNthEAijOt3LiokuahIPkZVlKaTmGGjYMDfjRVZ0lNLju6vaysy+f11mHqCjL4wvJKnHb5XvRpJsGPeFdJVePPm7uJJlW+eFb1cdU9qqaPbf8aDmEyGsiwvvf2ry0dI3QMh7hsdjH/+vQhOtwhUkdWv08pSOcfL5pGpt3M03v7MRoULp5ZTCCW4n9fa8eoKHxt7VTslrfuR9V0fNEEuqazsW2EeZVZXDyzWKbUCyGEEEIIIc4I8ZTKb19tp2skwvnTiyjJsp/wuKaBAN9/7jC+aBKAi2YWkWYxkZ9hpdcbYU55Nvt6faiaTqbdzNSCDPb1+SjLttMyFOKOlTXMLMt6X7NZxSeTBD/iPev1Rrh7UxfLp+axpr7guOdjSZWO4RCDgRgZ1vfe/jUYiPHE7j6umFtK82CA377eQfDIdHqHxcj1C8q5al4ZLm+E5/YPcHZ9AVMLM3jx4CDPHRjglmXVzC7PmnDOSCJFOKHiDkRpGgxxx6oaijNP/AtVCCGEEEIIIU41Xdd5Zt8AG5rcLKzKpr7IidloOO64pKpx/7YeHt7ZC0Cm3cz1C8pwBxPU5qfRPRKhKtfBgf4AOjprGwppHgoCHAmEsrhxSSVOmeUjjpDgR7xv6w8NsbVjhC+uqD5hmOKLJGgefH/tX0dbv6ry0phTlsV/PHuQlqEQ8dRY+1dVroN/vWQ6OekW1h8aYjSc4Mq5pSRSGj9+sZm8dAt/tWYKRsNbvzh1XccXTZJIqWzrHKUqL40bFlZIX6sQQgghhBDitNrX6+P+bT1U56UxrchJpt18wq6ETk+Y/3qhiR5vFIDF1dkUZ9qZWpBOz2iUkkw73aNhYkmNnHQLa+sLeHRXL067iUAsxe0ra2gsdo4vxBECJPgRH1AkkeL3Gztx2s3cuLjiuF8sR9u/2odDmN9H+9fmdg9dIxGumV/GpnYP97zZhSeUAMBogM8srOC6BeWMhhM8saePueXZzKvM5tl9/bxwaIhvrJ1Kzdsm4I8Nf04yEoqz2+Xj1rOqTzglXwghhBBCCCEm04A/yh83deG0mWgoyiDLYcFqOr4zQtV0Htvdy72bu9EAm0nh8jmlpDSYW57Jls5R6grTOdAXAB3On1FEUtXY0OQmqWksn5LHNfPKj9vKLARI8CM+pObBIPdt7ebyuaXMq8g+7vmj7V/vZ/vXoD/GE3v6uHJuKTazkf9+uYXmwSCBI+1fhRlW/uXSRipy0niz3UPLUJAr55ahaho/WtdMTX4aX1pRg+FtQVMoliKUSLKr20uWw8KtZ1WfsLRSCCGEEEIIIT6McDzFnzZ3E0ummF2ehVFRyHZYTviP4f2+KD9d30zzUAiA6cUZVOelM7cimz5fBEUBXzhJKJGiIMPGZbNLeOHgIC1DQbLTzHzprBrqi0/cNiYESPAjJoGm6Ty6q5dOT5gvnlVNbrr1uGO84QTNQ0Gi77H9K6lqPLzDRW1BOouqctjQ5ObxPX30eSMcWf7FpbOK+MKyGhKqxuO7+yjPtrOqLp9HdvWyuX2EO9fUUpufMeG8R4c/e0Jxtnd5uXFxBbPKsibroxBCCCGEEEJ8immazmO7+2gZCrK6Lo9YSjvp/FNN13l+/wC/f6ODpAZGBc5rLCI7zcKS6hxeODRETV4ahweDKOhcMKOYQqeN37/RQSSe4uLZJVw2u0Q2GYt3JcGPmDT+SJLfv9FBYaaNGxZWHBfuHNv+9dR9f+SyK68mNy8fgBHPMOufeYIbvvClCa95s91D95HWr0A0yd1vdnF4IMBQMA6A02bi7y9oYHZZFgf6/GzuGOHS2SXous7PX2plakE6n19WdVz6HUuq+GNJ9rl86MBXVtfisJhO3YcjhBBCCCGE+ETb3D7Ci4cGOXdaIQYFYimNnJNU+QwH4/zilVb2uHwAVGTbmVacybmNBXSNRBgNJ4inVALRJIVOG1fNK6N5MMi9W7uZWpDOl1ZWU1coVT7ivZHgR0y6g/1+Htru4rI5pcyvPL7962f//Uv+5htfo7K2nt/e/yRWs5Hbrr+U9pYm/vE/fnxc+HN069dls0sozrTx8mE3r7W6aR0KEk6Mlf8sq8nhq2umYjcbeXpfP2ajwoUzinlgu4tD/X5uXlpJY3HmhPPquk4glmI4GGNzxwgXzihmTcPx28qEEEIIIYQQ4mQ6PWHu29rN7LIs6osycHmjZFhNJ6zy0XWdDc1ufvtaO5Hk0e8yuUwrcbKkOoen9vZTkmWnzR1CAS6aWUxtQTr3vNnFoYEAn19ayQUzislOkyof8d5J8CNOCV3XeXx3H63uEF88q5q8Y9q/3G43a9as4dChQ2Tn5KGj4xsdobaugbsefHq8CuhYKVXj0d19FDttrKzLxx2I8dAOF50jYdqGQmiAxahw+8pazm0spNcb5fkDA6ypL0AB7tncRWVuGjcurjiusudo+9e+Xj8joQRfWzvlhO1qQgghhBBCCHGUN5zgns1dZNrNXDKrhI7hELGkSpbDcty8URjbfvzrV9vY0jEKQJbdxMLqXK6eW0qrO0T3SBhV1/FHklTkOLhsTinBWJIfPHeYqtw0vnbOVKYWZGAxSZWPeH8k+BGnVCCW5A9vdJKbbuUzC8vHt3+53W5mzJjB8PAwAFk5ufz52Y1UlpW84/l2dns50Ofn+oXlWEyG8aFmu7u9jESSAEzJT+Pra+uoyHXw0uEhPME4F84s4tGdfQwGYpzXWMii6tzjzh1LqgwFYmxs9TCvMpvrFpS9p01kQgghhBBCiE+PWFLlvq09+KNJblpSQTCWossTJt1qxm458TKbN9o8/M+GVoJxFYBpxRmcN62QBVU5PLqrl2yHhU5PGJNB4Yq5pVTmprHuwABP7xvg9pXVXDC9iLwM2+l8m+ITRIIfcVo0DQZ4YJuLi2YWs6g657jgJy8/n4fXb0KzOHHazSdccXjUaDjBwztcnDe9iOq8NPp9UZ7a24cvkmRb1yhJdezn9vLZJdy4uJJoUuWJPX3MKHECCq80DZGdZuG6+eUnLJH0R5Mc7PfTMhTkr9ZMoVpWvwshhBBCCPGpp2k6T+/r51B/gM8sqiDbYaFpMEA0ObbA5kRVPv5okt+81s6mNg8AVpOBs6bm8fklVbS4g+zv86PrOt5IkunFTi6YUUw0meJHzzdhtxj554unMaUw4x2/HwnxbiT4EaeNrus8tbefHW2DPPKDO2navZX8/LG2ruHhYRobG3nk6efx6g6SKY1M+8m3f6lHfunazUbOayxE0+G5/QOMRhLs6hqlYyQCQKbNyFdWT2VZbS7bu7zs7/NxdkMh6w4MkNR0phVlsHZa4XG/pFVNxx2M8UqTm4ocB7evrBmvVhJCCCGEEEJ8umzpGOGFg4NcMquYWWVZdI9E6BmNkG4xnbTKZ1Obh/95tY1ALAVAcaaNW5ZXMas0i0d29mI2KbhGozgsBq5fUEGB08b6Q4M8ubefzyws5+r5ZeRLlY+YBBL8iNPup7/8H/79gY0UZGfw6u/+HZPRMD7z51e/+hV3fPkruLwRujwRbCYj6baTb9s6NBDgzTYPNyysIN1mwjUa4dn9A2RYTTyzv5/QkVLKOeVZ3Ll6Cpl2M0/s6SPbYUYHekYi6IwNTavIcRx3/lhS5fCgn22dXr6wvIoFlTmn6FMRQgghhBBCnGna3EEe2OZifmU2F8wowhdJ0jQYIJ7S3rHK57evt7OxdazKx2JUWFKTx1+tmUKLO8jm9hFUXcMfSbGsNpdVdfmMhBP89rV2UprOty+sZ2ZZllT5iEkjwY/4SPz6179mwdmX8HxriLXTCqjP1Hn44Ye58847x48Jx1O0uUOMhhM4beaTDjELxpI8uN3FWVPyaCh2omo6z+4fIJ5SaR4IsL3bi6aDUYEbFlVw9bwyujxhXmlyM6cii13dXjJsZqxmA5fNLjnhL1hfOMHLzUMAfOOcOrIcMkVfCCGEEEKIT6rhYJw/be6iIMPK9QsrAOgaCeHyRnFazSfc2AWwud3Drze04T9S5ZPtMPN359VTV5jBo7t6SaQ0+n0RctOs3LCoggybmWf3D/Bmu4clNTl8eVWtVPmISSfBj/hI6brOCweH2NE1yheWV1GW7TjueU8oTstQiKR68lT96HliKZXLZpdgUJTx6p/6onTu3dKNO5gAoMhp46/WTGFGaSbrDgwQiCYxGBQMioIvmmBhVS5zyrOOu4aq6XSNhFh/yM2a+nyuni/Dn4UQQgghhPgkiSRS3Lulm3hS43PLqsi0m/EEYzQPhVA1nSy7+YTfAQLRJL99vYPXW8dmmFqMCnPKs/jOhdNoHgryavMwKU0jEEtxfmMRi6pz6PSEeHRXL5GEypdW1LCqPl+qfMQpIcGPOCNEEyp3v9mFQYHPL6s6LkFPqho9IxG6R8M4zCbSrCdu/+r0hHnx4CDXzC8jN906Xv2TUjV80QTP7hsgcWT484opedy2ogZN13lyTz85DjPuYIzK3DQGAzGunFtGpt183DUSKY2NbcO0uUN8be1U6gozJv8DEUIIIYQQQpw2SVXjkZ299IxGuHFxBWXZDuIplY7hMAP+GJnv0IGwpWOEX21oxR8dq/LJspv567OnMKssi8d39xGMJen3RSnPdfCZhRUYFIUn9/TR54vitJv51nn1lGbb5R+VxSkjwY84o7hGI9zzZheLqnM4t7HwuF9+oXiK1qEg3kiSLLsZ8wkGLseSKg/v7KWuMJ3FR9a2u7wRnt03wLLaXH7/RicdnjAAVqOBm5dWcsmsEnb1eNnVPQqKwpT8dAYCMYqcNtY2FJzwl/BoOM4Te/opybLx1dVTThpGCSGEEEIIIc5MY50Dg2zv8nLN/DKmFTvRdZ3hYJzmoSAAmbaTV/n8bmMHr7YcqfIxKTQUZvCPF03DNRrlxcNDxBIq8ZTKtfPLaSh2srPby7auERIpjaU1udy4pPKkbWNCTBYJfsQZ6bWWYV5tdnPTkkpq37ZOXdd13IE4Le4g6JB5knLLze0e2ofDXLugDKvJiKrpPLd/gJSmkWEz87uNHUQSY8Ofy7Pt3LlmCrX56Ty5tx9PMI7NbGReRRbbu0a5cGYx5dnHD3/WdZ0D/X42NLm5fmEFaxoKTrqJTAghhBBCCHHm2NY5ynP7BzhveiHLavOAsU6E9uEgw8E4mXbLCf+hGcY2dv3m1bdm+RRkWLlsdjEXTC/msd19eIIxhoJxZpRkcvX8MkKxFE/s6SPdaqTfH+Pra6cyozRTqnzEaSHBjzhjJVIa927pJhRPccvyKjJs5uOe7x4J0+uN4rAYcViOr7jxhOI8urOX86cXUZWXBkDvkeqftdMK+MvWHva4fKS0sZ/11XV53Lq8hkAsyVN7+omlVNZOK6TXGyGR0rlsdskJSzyTqsZTe/sJxVN8fe1UyqRUUwghhBBCiDNSy1CQh7a7mFuRzUUzi1AUBU3TGfDHaHMHMRoMJxz5AOANJ/jNa+1s7hgBwGoyML3YyeeWVaFqOs8fnSGqKHxuWRWlWXbWHxrCHYhhMRswGRT+7rx60m0nPr8Qp4IEP+KM5w7EuPvNLqpy07h6ftlxFTWBWJKWwSCheIpMmxnT21J5VdN5em8/VrOBC6aP/WI/+ks5ntKYWZrBD55rYjScRAdsJgM3L63iwhlFvNbsZkvnKGVZdtZOK2DdwSEWVf3/7P13nF33fd/5v87tvd87vc+gDHoHAbD3XkSKsixZliUriWVvdhNnk3hXu/n9vCmb/JJNbMv22pIty7ZEiZLYm9grCtHrANPbnZnbezvt98cdDAkCIGZIgvX7/EsC7j2YuY8H55x5fz8lwLoLDH8GmMmWeeTQFOvb/Pzm9g5cov1LEARBEARBED4VZrJl/n73OC1+O1/e3LZQzZOvyJyey1OoKPjslgtW8Ou6zsunY/zVayMU57sG+sJOVjZ7+PLmNp47Mcd4skSqWGFXX5hbVzcxkSzx3MlZ1rR4ODSR4d4NLdw0//uIIHycRPAjfGYcm8ryy4NT3Lq6kW3dwXP+TtN05nIVhmIFJAk8F+jDHZjN8fpggi9vbltI8KOZMk8cjXLt8ghvDMZ59sQcZfmd9q/fv66PFp+dn+4bZzpT4Wtb20gUZQZjee5Z33LRte5vDiU4OJHmGzs62NwZENP5BUEQBEEQBOETki3L/P3uMYyG+nzPs4eziqoxkSoxlizitJgu2EEA9dXu339liAPjaQDsZgNXLw+zvMFDZ9DB40dmSBaq+BxmvrWrG4fFyGNHotjN9cqh4XiRf3vrCiIesaZd+GSI4Ef4TNH1+pauI5MZfuuKTtoC587dqcgqo4kiM9kyLosZu+XcwKVYVfjZ/kk2tvsXVrZrus6Lp+ZIFGpcsyzEf3hmgGimQk3VALh2eZhv7uxiOlPmJ3vH6Qo5+fLmNp48OkPYbeWGlQ0XXDFfrin8fP8UDquR39nZRavffl41kiAIgiAIgiAIl0dFVvnpvglSxRpfv6KDiPud4CVdrDEwm6OmaPgclgs+z2vzg5//5o1RKkr9d4NtnX5Cbhs39jewfyzN4FyeXEXmrnXN7OoLs388xZHJDFctC7N7OEl/s4dvXNGBwSB+DxA+OSL4ET6TKrLK3+8ep6Zq/PaOzvM2amVLMqfncpRq6nnlmrqu88qZOLFchfs2ti6UeCYLVX51aJqtXQGmUiV+tn+STOmd9q9v7Ojkpv5GHj4wycGJNN+5shtJknj5dIxbVjXSEXRe8GsdjhV44liU61dEuLG/gZDLKso7BUEQBEEQBOEy0TSdx45Mc2omz1e2tNH9rmUxZw+Ko5kyHpv5ohu1ZrJl/vSlIY5NZwHw2Ez85rZ2kkWZ9W1enjk+SyxXpSvk4Js7u6jIGo8cmmZFoxuv3cQbQ0n+4PpeVjR6PpbvWRDejwh+hM+02Wx9/k9vxMV9G1owvCvgUTWdaKbMcLyA6QID2mayZR47HOW2NU20z1cO6brOG0MJRhNFblzZwF+8OsxIokC2XJ/W3+a383vX9NLgtvLfXxwk5LLye9f08MKpOQo1lbvXNV/w5qFqOk8fnyGWq3D/5lbWtPguOjBOEARBEARBEISl03Wd1wYTvHI6xl3rmtnQ7j/n7+ayFQbfZzQE1J/bnzwa5e92jyGrOhJw+5om3DYTzT47U5kyJ6NZNE3nd3Z209vg4tcn5kgVq1y7PMzBiQwGg8Q/v74Pq1jTLnxKXLbgR5IkH/ADYDWgA7+j6/rui71eBD/Ch3F4MsOjh6a5Y20TmzsD5/xdRVYZiReYzVVxW03nBDOqpvPY4WlsZiO3rG5cKPHMlmV+dXCKlU0eqorKz/dPEc9XKMv1Es8re0N8a1cXB8bTPHE0yjd3dNEWcPD4kWnWtfnY3HHu13BWslDlFwen6A27uHl1I51B53ntaIIgCIIgCIIgLM2xqSy/OjTFrt4Q162InBPqFKoKQ7ECqWINn9180RXtY4kif/LSGQZjRQACTjN/eONy3hxOsqrZw8unYyQLVXb1hrlvYyujiSIvDsxxdV8Yh8XAiwNx7lrfzDXLIx/L9ywIi3U5g5+/A17Xdf0HkiRZAIeu65mLvV4EP8KHpes6jx+Jcnw6y29u61hY335Wqljj9GyOmqLjtZvPaf86M5fn5dMx7t/YStBlXfjzt8dSHJvOcsPKBn51cJKB2QIz2TKaDhajxFe2tnPzqgb++/ODGAwS//KmZRydynJ8Osfd65sJveta77Z3JMnBiTQ3rmpgfZuPVr/jojcgQRAEQRAEQRAubCJZ4h/3jdMbdnHfxnM3ACuqxmS6xHiyhNVkvOjG3Zqi8bP9kzy8fxIdMEjw4OZWWv1OJlNFyrLKsekcIZeF717Ti9lk4LHDUcJuK1u6/AzNFRiKF/hfb16B33nh5S+C8Em6LMGPJEke4AjQrS/yIiL4ET4qZ4e4ZUoyv72j85wfvoqqMZ0uM5IoYjUZcNvM57zvFwem6Ao52dkbWvjzUk3hVwenafbZcVgMPH18lul0mVi+CkCD28o/vaYHTdP5hz0T3LGuiav6wvOT/I3ctrrxgkOdyzWVXx2awmY2cN3yCH0NbiIe2wXXRwqCIAiCIAiC8I5kocqPd4/jtpn42vaOc6r6dV0nWahyJlZAfp/hzQDHp7P8yUuDzGQrALT5bfwfd6ziuRNzOCxGDoynKdUUvrqtg61dAV4aiBHNlLl1dSOKrrN7OElP2MVvbmsXczyFT63LFfysB/4KOAmsAw4A/1zX9eLF3iOCH+Gjli7W+LvdY3hsZr66rf2cm0GpVi/3TBaqeGwWLKZ3gpn94ymOTWX58ua2c4ZGn4hmeWMowfUrGnh9MM5QrMBoskC+Ul//vrnDzzd3dvLw/ikypRrfvbYXWdV55vgMV/SEWNPiveDXORQr8PypWbZ2BljR5KE37CQoBkALgiAIgiAIwnnyFZl/2DOBrGp8fXvHeRU25ZrKcDxPPF/FbTNjNV14rEKhqvCjt8Z47sQsAGajxO9e2c3yBjdPH5uhpmqcnsuztsXLd67qYTJV4vlT9bauBq+N2VyZt0fT/LNres4ZHi0In0aXK/jZDOwBduq6vleSpP8B5HRd/957Xvcd4DsA7e3tm8bHxz/QvycI72csUeQn+yZY1ezhzrXNCwOgdV0nUahyZq6Aomn47JZzZvw8vH+S7d1BVr8rsJFVjSeORDFIEu0BB68NxphKlxmOF1E0HaMB7t/YxsomNw+9PcnqZg9f2dLO3tEUI4kCd69ruWD5p6brvHBqjmimzHXLIzT6bPSG3XgdYgC0IAiCIAiCIFRklZ+9PUksX+Fr2zto8trP+ft3L3YxGwx43meRylvDCf78pSGy1foCl/4mN9+7o59XT8cZiRcZjOUxGST+lxuX43daeOzwNEGnlSv7QhRrMocns9jMRr5zVbcY1yB8Jlyu4KcR2KPreuf8/78S+De6rt9+sfeIih/hcjswnuKJIzPcsrqR7d3BhT+XVY3JVImJVAmr0YjLVq/y0XWdlwZiJArVc9a+A0ylSzx1bIYruoOciOZIFqqciGaZytRLRP0OC9/c0cFwoshIvMi9G5pZ1ezlscNRvHYzN69qvGBLV7Ys89jhaRo8Vja0+2jw2OgKuc5bVy8IgiAIgiAIXwSKqvGrQ9MMxwo8+J7V7GdlSjVOz+Yp1VT8DstFRyckC1X+8tVh9oymAHBajPzBdb30N3v5hz1jzGQrxHJV7ljbzF3rmnh1MMFEssRd65rQqVcJvTGU4Mub287ZGCYIn3aXc7jz68C3dV0/LUnSvwOcuq7/q4u9XgQ/wsdB13WeOT7LwfE0X9naTm/knRvH2Wn/6WIN77um/c9mKzx6eJpbVzfSEXxnYLSm67x0KsZsvsKqJg97RpKUZZUjkxlSJRmAFY1ubl/TxGtn4njsZn5jazulmsqvT85y9bIwKxo9F/w6T87keH0wzpW9ISIeG61+O20BxwVXxQuCIAiCIAjC583Z5/YD42nu3dByThX+WRVZZTRRJJot47GasZmNPPSjv+bGO+4hGAoDkEzE+fUTj+Lfcic/eH2Y6vyK9q3dAf71zSs4MpnhscPTRLMVOoIO/vCm5cRyVZ47OcuVfWG6Q05yFZnxZJF4ocYfXNeLwyIOZYXPlssZ/Kynvs7dAowA39R1PX2x14vgR/g41RSNh96eIJar8ls7Ooi4bUD9BhPPVzkTy6Oq+sIgOFXTefJoFEmC29c0n3OKkC7VePTQNL0RF7PZCqqmcSKaY2AuT2V+/fsNKyMEHBbGUiVWNrq5Y20zbw0nmEqXuXt9C94LlKKqWn0+UKGqcM2yMBaTga6QkyafXZSUCoIgCIIgCJ9K3//+93nggQeIROorzWOxGA8//DDf/e53F/V+Xdd5YyjBSwMxblnVyLZ3VeqfpWk6M9kKw/E8BknCYzMjSRIP/eiv+Q/f+1f0LFvBD372BADf+va3Ka64A1vrSgACDjP/8qblrGzy8LdvjPL2RBqjJPE/XddLR9DJY4en8Tos3NTfQL4io+o6r51JcPWyMNeuEGvahc+myxb8LJUIfoRPQrYs8/e7xzAZDXx9e8dCS1VN0ZhIlZhMFbGbTQt/Ppoo8tyJWe5e33xeX/GB8TSHJtJsaPexfzxNi8/O8yfnGE0U0QGbycBta5pIFmsYJLhqWZgVDR4ePTxN2G3lhpUNFyxLTRaqPH4kSl/EzcomFyaTgZ6QS2wAEwRBEARBED5Vvv/97/P7v//79Pf38/LLLwNw7bXXcvLkSf7sz/7skuHPoYk0jx+Jsqs3xHUrIhdcdpIp1TgzV2/r8trM52zPTSbifPvBOxk+M4A/0oR1w11Y1t6KZDBhMsC1Kxr4vat7mEqX+W/PnyZdqnH9ygZ+a3sHr5xJMJkqcdf6ZmwmI4WqTKYkcyya5fev7SXosn60H5YgfIxE8CMIQDRT5u/3jNMecPDAptaFG0i+InNmLk+urCy0f8mqxqOHpvHYzdzU33DODakiqzx6eBq31YSsaciqTlVWeeVMnLnc/Pp3j4UNbQEUTcdhMXDXuhbyFYUXB+bet/3r0ESa/eNpblnViMNqxGoy0BtxEXRaFwZWC4IgCIIgCMInJRaLLQQ94XC91Soejy8EQWergN5rYDbHL/ZPsbrFy53rmi94uFmRVUbiBWZzFVwWM3bLhUcgJBNxHvjGt7Hs+CZmbwiAZo+Z//WWVXSHnfx49xjPnZijyWfje7f3ky7V+PXJOa7qC7OswU2mXMNslHhrOEV3yMl9G1vEtl3hM08EP4LwLqdmcvziwBTbugLcOB/qaJpOLFdhMF4AHbz2einpwGyO187E+dLG1vNOAEbiBZ4/OcfaNi/HprJs6vDz8kCMQ5MZcpX69oCVjW7CLis+pxm/w8ptaxrZM5JkMlXm7vXN+Bznb/+SVY2njs6g6jo39keoKjoeq4meiAufwyxuSoIgCIIgCMInKhaLsXr1auLxOADhcJjjx49fMPQZT9a373YGndy/qfWC4wzO2dZlNOC2mi76zJsu1fgfvz7Bgali/b3FLMqZV/nJf/pDJLuXf/2ro5RrKr9/XS9rWnwL27pu7G+gIqtUFBVV1XnlTJzvXNVNW8DxEX4ygvDJEcGPIFzAG4MJXjg1x13rm9k4P7G/qqiMJ4tMpys4LEYcFhMVWeWXB6do8dm5eln4nJvQ2RXtsVyFgNNCqiSzoc3Lj3ePMzhXQNbqg+XWtnppDziQJImVTR7WtXp58ugMPoeZm/ovvP1rLlfhyaNR1rT4WNPipViT8TksdIddF5wXJAiCIAiCIAgfh8UEP7PZCv+wZ5ygy8JvbG2/6AKTVLHe1vXTH/01d9/zJcLz10gm4jz/5KN85bd/F6g/dz93fJa/en0YRQNNkdHiI5Rf/ktSk4N03PMvsPRfz5bOAH940zJePZNgOlOftemymkiXajitRvaNpnHbTHxte4cYqSB8rojgRxAuQtN0Hj8S5UQ0y1e3ddAVqm/0ys23f+UrMl6bBbPRwJHJDPvHU9y/qe284CVblnnk0DRht4W5bIX+Zg+Fqsojh6aZSJUAsJsN9EXcbOkMEMtXuKm/ER349clZdvWGWNV8/hYDgP1jKY5MZbh9bTNuq4mSrBBxW8UKeEEQBEEQBOFjd6lWL5PTx9/vHsdqNvCb29px2y58YFmqKYzEC8TyVZ792d/xX/7dvz5nYPPZOT5/9Mf/hSvu/Cr/+dkBJtJlAOTMLNaR1/mb//y/M5er8q9/dQy5VuXeSIbr77qfFwfmuGZZhOWNbvIVGVnTMUrw3Ik5vrGjg96I++P5sAThYySCH0G4hIqs8tN9E6SLNb62vYOIx4am6czlKgzFCkC9/atUU/nFgSlWNLnZ1nX+9oHj01neGk7QFnAQzZS5Y00zTxyN8uZwgkShBoDfYWZ1i5dlDS4KVZW71jZxcCLDWLLIXetaCDjPb/+qKRpPHo0CcPuaJmqqRkVRafHZ6Qg6xQp4QRAEQRAE4WNxseHOp4ZG+dq/+3/ZvHU7X9veccFnWgBF1ZhOlxlJFLEYDXjs5nMHNgfrM3vSyQTdK9dw7b/8c14YzAJgM0lsaPfTMrub2++8kz/fG+PIZJa7+gMwshtj//WEXfWFKpqukynL+OxmDk6k0XX45s7OcwZFC8LniQh+BGGRsmWZf9gzjq7rfH17J16HeaH9aypdwTnf/rV3NMmpmTz3b2rF9Z6qG1nVePrYDMWagqxqNHvtrG/z8VevjXAimiVfVQGIuC3cuqaJSk0j5LKyszfIk0dncFlN3Lq68YI3pdlsvf1rQ7ufje0+chUZRdNp8zto8dtFACQIgiAIgiBcdu9e516uqfzgpZO8dfAo/893v0Sj13bB9+i6TjxfZTBWQFE1vHbLOa1WyUSc+264gnQyAUB4/fUEb/+XlBUNgM6gg69f0cnWzgBvDcX57y8OEXZb+S9fWsurg3FSxRp3rm3GYzeTq8homo7dbODxozM8uKXtotX1gvB5IYIfQViieL7KP+wZx2U18Zvb23FYTGTLMoOzeQo1Ba+tXv3zy4P1zQRbOgPnXSOWq/D4kSghl4W5fJXb1jSRK8n8aPcYI/ECNbX+3153yMlXtrRybDrHjp4QHruZ507MsqUzwPo23wW/vn2jSY5NZ7lzbTMht5VcWUbTddqDDlp8DiwmcZIhCIIgCIIgXD4VWeXn+yeZzVZ4cEsbHUHnRV+bLcsMxua36NrMF3xWPRv85GSJ8N3/BmvzcgD8DhPbukJ8+8ouyjWFP/rVMZIlmf/lhmXYLUb2jiS5qb+RzpCTmqKRq9SIuK0cmMiQryh8+8ourCZxOCp8/ongRxA+oKl0iZ/snaDJZ+fBzW2YDNI77V8SeG1m9o6mGJjNc//GVly282fu7B1Ncmwqi91ixGI0cOe6Jl4ciPHs8VnGkvX5PyYJdvSG2NLhZzRZ4rY1jYwkSpyMZrl9bTONnvNPTqqKyhNHZjAZJG5f24RBksiWaxgkiY6ggyaf/YJbEwRBEARBEAThg6oq9dEHk6kyX97cSnfYddHXVmSV0USRmew7lfMXkkzE+dZX7iHZuBXv1nuQDEa0WhlDbob/8zeuYeOyNv78lSFeO5NgZZObb+3q4vmTc6xo9LCjpz5+IVOWMRjq4xl+eWCau9c3s2F+gYsgfBGI4EcQPqTBuTwPH5hiRaObu9e3oGgao4ki0Uz9JqZqOr88OE1/k5utF5j9U5FVnjgapSKrFKsqWzsD9Dd7+PGeMd4eTTObqwBgNxv5xhUdVGQVHYkbV0Z4cSCGquvcubb5gq1cM9kyTx2dYX27j80dAVRNJ1uuYTRIdIacNHpsopdZEARBEARB+FBkVeNXB6cYSRS5f2MrfQ0XH5CsqBrRTH2Oz6XWswP817/6R17KhzBY61VDLV4L0Td/xdjTf8Vvfe/POGrswWw08M0dncxkKxjnDz6tJiMVWSVflWnx2TgymSOaLfNPr+4RIxCELxwR/AjCR+TIZIbHj0TZ2hXgpv4GchWFwdk8+Vp9+9ehiTQnojm+tLEVzwVWrkczZZ4+NoPNbKSmatyzvgVZUfnhm6OcmsmRKSsANHis/JOrujkRzdMesLOq2ctTx2boi7jY1Ru64I1z32iKY9OZhQohRdXIVmTMRgPdIScRj02srBQEQRAEQRCWRFE1Hj0c5cxcnvs2trCi0XPR156d4zMUL1BTNHzvmePzXslClf/vkycYSdSr4H02E6tbfXx7VxfJZIJ//+QJdLuXNS1eVrd4mctVuGNtMyGXFVXTyZRr2M1G/A4LP317gptXNbK9+/xDWEH4IhDBjyB8xN4aTvDCyRjXLA+zsydIbP4Ghw5GSeJXh6ZZ1ujmiovcePaNpjg4kcZokGj127mpv5Hj01l+sm+C4XieqlL/73Jjm4871jZxaDLDzt4Qmg67hxPc2N9AV+j8stqz27904I75UxBZ1chVZCwmA71hFyGXFYMIgARBEARBEIT3oWo6TxyJciKa5e71Laxuef/hyLmKzFCsQLYk47nIHJ93X/uHbwzz5NFZdMAoQV+Dm/s3tbKu1cdfvjrEgfEMHUEHq1u8ZEsyVy4L099UD50KVYWqotIZcLB3LM1stsJ3rurGbhFVPsIXlwh+BOEy0HWdV07HeX0wwU2rGtjQ7mM8WWQ6XcFhMXIymuPYdJb7NrbivUD1z9mQJlmsIqs6N/U30hVy8vSxGV4aiDEcL6ADEnDXuia6Qi7GUyVuXtXI0akMyUKNu9Y1X7CyaC5X4cmjM6xu8bC1M4AkSfVhd9UadrOJ7pBTBECCIAiCIAjCeTRN56ljMxyZzHDHuuaLLhs5qyKrjCXrIxAcZiNO64Xn+Jy1fyzFf35ugLJc39bVEXCwscPPV7e08eLpGL88MEXAaaHZZ8NhMdMTdnLdigaMBglF1chUanhsZtw2Mz/ZO8Gd65rY1HH+ohVB+KIRwY8gXEa6rvPciTneHktx+9omeiMuzszlyZcVTAaJx49E6Qm72NkbuuD7Y7kKTxyNUlM0PDYT92xoRZLgp/smODSRYTxVL321mAz89vZ2ahooms41y0I8fypG0Gnhpv7GC5bRHhxPc2Aize1rmmj22YH6QL58RcFuMdITdhJ0igBIEARBEAThi07TdJ4+PsPhiQy3rmliU8f7D0aWVY2pdInxZGlRc3wS+Qr/22PHiWbqsy39DjO9ERffuKKTUk3lL14dQlZ0Vrd4yFdUOkMO7lzbvBAk5SoyqqbRE3bx6pk4yUKN372qW8zyEYR5IvgRhI+Bpuk8eWyGo5MZ7lrXTMRtZSheQNNhOF7gyGSGeze0EnBaLvj+gxNp3hpOoOuwvs3Hrt4Q8UKVH+8e5/RsfmEAdMhp4bd2dDCeLNHis9MddvHSQIxN7X42XuAGLasaTx2bQVY07lz3zoDoiqxSqCo4LEa6RQAkCIIgCILwhaRpOs+emOXAeJpbVzeyufP9q2dUTSeWqzAcL6Bo+iXn+Ciqxn9+boA9I6mFtq7ljR6uWRZmY4efH74xwlCsyI6eAFPpMn6nhQc2tS0cWr6zot2GxWTgH/dOcO+GFtZdohJJEL5oRPAjCB8jRdV47HCU03N57lrXjNVkYCpdQkLiuROzRNw2rl8ZueCJiKxqPHN8htFECbNR4s51zbT5HQzM5Hjo7QmG4nmyZRWA5Q0u7lzXzOnZPFs6A8iqxpGpLLesaqQt4Djv2vF8lSePRulrcLOzJ7jw79c3ISg4z1YAuazve1ojCIIgCIIgfPZpms5zJ2Z5eyzNrWsa2XKJwEfXdVLFGoOxAhVZxWMzY77E5thfHZziH/aOI6v13zm7Q076Glw8sKmNZ4/P8uZwgja/gwaPlZFEkS9vbmPj/Ap2TdfJlGoYjRJ9ERfPHZ+jUFP41q4urCZR5SMI7yWCH0H4BNQUjV8enGIsWeSONU0omk6mLDOTrvDWSIK71jXT5LVf8L2pYo3HD0+TKNZo9du5Z30LVpOBV8/Eee7ELGfmctTq+Q87e4JsaPczkSpx3fIwA7N5MmWZO9deeP7Psekse0aS3Liygc6Qc+HPK7JKoabgshjpDrsIOC0iABIEQRAEQficefeYgpv6G9i2iC1YuYrMcKxAplTDZTVfsr3q5EyWf//UKXKV+sbakMtCd8jFPRuamctWeepYFFXXuWNNE08fn2VrZ4AHt7QvVA6VagrFqkJ7wIGqw0/2jvPA5rZLDpgWhC8yEfwIwieoIqs8vH+SaKbMjf0NlGWNsqzw2pkEVpOR29c0XbQ89sxcnmeOz1BVNK7sDbG9O4is6jxyaIq3x1KcnisAYABuW9tIxG2jUFW5elmI1wYT+Oxmbl7VeN5pjKrp/PrkLKlifUC02/ZOQHS2BcxtNdEVdooASBAEQRAE4XNA13WePznHnpEUN/Y3cEXPpQOfcq0+uHkmu7jBzbmyzP/2yDHGzs6oNEr0N3vZ2O6nI+Dg8SNR5nIVrlkeZjRRoFjT+MMbl+F11EchnF3R7rKY6Io4efxwFFnV+ObOrktWFwnCF50IfgThU6Aiqzy0b4LZXIWr+kJUlXp/9NmtYBdazw71m/SrZ+LsGU3iMJt4YHMrTV476VKNn+6b4FQ0t3BzNRskvrSxBUmSsJmNrGn18srpOOtafWzp9J8X4GTLMo8fiRJxW7lhZcM5AdTZAMhlrVcA+R0WMQNIEARBEAThM0bXdX59co69IyluWBnhine1/F9MTdGYzix+cLOmafz/fn2G3SNJFK3+++XKJjcdASc7e4O8PBBjOF6kLWCnv9HD8wMxHtzcys7e8MI1smUZRdPojbhIFWr86tA0v7mtnb4G90fzQQjC55wIfgThU6RUU3ho3ySz2Qpbu/xIwFvDKWRN4+51LVhMFz7NKNdUHj8yzem5PMsb3NyzoQWrych4ssjP909yejbPXL4KgMtq4v6NrWQrMp1BJx6biUOTmfPau84ajhd44dQcV/aF6W/ynPN3Z1vAHGYxBFoQBEEQBOGz4t0zfBZb4aOoGjPZCmOJIpqu473E4GaARw5N8dN9k5Tl+hyCZq+NzpCTHT1BhmIFBmbzSBLc3N/Ay6fjhFwWfu+avoVn3pqikS3XiHisNHsd/OPecYIuK1/Z0iaeOQVhCUTwIwifQsWqwk/2jjOXq7Kh3UeppvLq6Ti7+kKsar54//JsrsIv9k+SKtW4dVUjW7rqN/HDE2meOBplYCZHrlq/8YbdVu5a20QsX2VLZ4DZXIVEocYda5vwO87dLna2smg0UeSudc0EXdZz/v5sBZDdYqQ75CTkEgGQIAiCIAjCp42m6TxzfJaDE+lFz/DRNJ14vsL//f/8CVfedAedLc2YjAaSiTjPP/koX/nt3z3vPfvHU/yPFwbJlGUAHGYDa1p99IRdSOicniuQKdfY1hUgka8yl6/yG1va6Z9/zj07vNlkNLCswcXp2TwvDcT59pVdCxu9BEFYPBH8CMKnWL4i8w97JpjNllnf5uX0XIFUoca9G1txvU8f9bGpDI8ejuKwGPnqtnaavHY0XeflgRgvDsQ4M5enqmgAdAbsXLM8Qroks7M3yNGpLBaTgdvWNJ23FaFUU3ji6AxWk4Hb1zSd109dVeoBkM00XwHksl7yJEgQBEEQBEG4vFRN5+ljMxyZzHDLItaywzubuoZiBX7yo7/mT/7439KzbAU/+NkTAHz7wTsZPjPAH/3xf1kIfyZTJf6vp04yl6+iajoSsKHdR9BppdFrYyJVnwnU6ncQcJiJ5as0+Ww8sKlt4blzYXhz0InXbuJv3hxjdbOX29Y0itmSgvABieBHED4DsmWZv989xky2wrJGFwfHMyxvcLOrN3TRG6A6X8L71nCC3oiLBze3Y7cYqSoqTxyJ8uZQgtFEkfkNmqxt8bCm1UdN0djaGeCtkSTdISdXLQtjeM+/Ec2Ueeb4DCsaPey4QC/42QDIajLUK4DcNhEACYIgCIIgfMxUTefJo1GOTmW5bU0Tmzr8i3pftiQzGM+TLyu4rCaK2dRC0OMPhgBIJxMLQZDF5eOPnzzJSKK4cLjYF3HR4rMTdltJF2skizV0Xacn4kJRdSqKyvUrGlg5P0pAUTWyFRmXxURfo4vXziQ4OZPjn1zVje891eiCICyNCH4E4TMkW5L52zdHmUqXCLosTKUr3LOhhUaP7aLvKdWU+pyfuTzXLY9ww8oGJEkiW5b5xYFJ9o6mmM1W0AEJ2NLlpyPgxGY20ht2sX88xa4LzPcBODqVYc9IkutWNNAbOX8AdU3RyFdlLCYDXUEnYbcVk9i6IAiCIAiCcFkpqsYTR6OcmM5x+9omNrQvLvDJV2RGE0UShSpOiwmH5Z0K82Qizn03XEE6mQDAHwzxs+fe5O8OpTg8maVQra9nD7ssrGr24rAYUXWdUk0lWajSEXRiNRnw2s3Iqs59G+szKXVdJ1eR0XSd3rAbTdf5mzfHuH5lhJ29oY/+wxGELyAR/AjCZ1CuLPPD10cYihfQNGjx27l9TdP7hiqxfIUf7x4nW67x9e2dLJvfgjCdLvOTfeOciOZIFmsAGCTY1RMi4LIScVtwWk2MJUvctrqJRu+5IZOq6bw0MEc0U+HOdc0EnOefyMiqRrYsYzZKdASdNHptYu2mIAiCIAjCR6yqqDxycJqRRJE71jaxttW3qPeVagoTqRLRdBm72YTLdv5IgfcGPw03fYfw9nspVlU0wGqS2NYVxCBJmI0gYWAmV8ZrN+O2mdjUHuDodJYdPcGFmZUVWSVflWny2mkPOHjk0DTpYo1vX9mN3WI872sQBOGDEcGPIHyGZUsyP3xjhMOTGVRN594NrSxvfP+1lqdmcvzj3nF8DjO/e2UPXrsZgJMzOX6yd5yJVIl0qT6Iz2yUuKovjMNSX9uer8hUFY071jafN2Po7Pwfs0Hi9rXnzweC+ulTriIjSRIdAQeNPtsFXycIgiAIgiAsXqmm8PD+KWayFe7b2LJwwHcpFVllMlViKl3GbDTgsV14NXsyEV9o9YpsuwfrpnvQLQ6MVgcAWzv9WE1GJAk8NhPRbAVJkvDZzWzrClCsKsQLNe7d0ILNbETVdNKlGg6LkeWNbqbSZR7eP8mXt7S97yITQRA+GBH8CMLnQLpY4wdvjPDqmTgNbiu/e2UPzvcZ/qzrOi+djvHs8VnWt3p5cEs7JqMBXdfZPZzk5wcmSRdrpOYDIJvJwFXLwpiNBtY0exlNFvE7zNy0qvG8yp3ZXIWnj83QG3ZxZd+FZxCpmk62XK8uavU7aPHbsZlFACQIgiAIgrAUuYrMQ/smyJUVHtjcSkfQuaj3VWSV6XSZyXQJo0HCYzOfN9Px3R760V/z3/72ZzTc8s9wBZso1OpzfKrRMyxvjxBq6aLFZyNZkMlVZbx2M+tafaxr9fHE0eg5VT65soyi63SHnHjsZv7mjVEaPDYe3NImZkIKwmUigh9B+ByJ5Sr8xSvDvHI6xo6eIA9uaX/f7QeyqvGTfRMcncpw34YWdvaGgXcGAT57fJayrC60gDktBnb1RrCYJVY3ezk1k6cv4mJXX+i8h4UT0SxvDCW4ZlnkolVIqqaTr8iouk6Lz06L335OL7kgCIIgCIJwvmShykNvT1JTNL6ytY0m7+JWnNcUjelMiYlkCYMk4bG/f+ADMDCb489fGWY2kaFMvVI84DDT32BncDzKpv5eNE0nmqtgNRnob/Jw25omXj0TJ1dRuGd9M1ZTfcFIviITdlvpDrl49Uycw5MZvnVlFxH3xedVCoLw4YngRxA+Z1RNJ5ou85+fG+DodJZ717dw3YrI+wZA2VKNv3xthEyp3lPdE64Paq4qKj9+a5y3x1LUFI1kqR4Aee0mtncFcVhN9IZdDMzm2NYdZN17+sg1XeeV0zHGkyVuX9t00Zu6ptcDIEXTafTaaPU73nddvSAIgiAIwhfRbLbCT/dNYDZKfGVrOyGXdVHvk1WNmUyZ8WQJTdfx2i2XrK6ZSpf405eGiBeqxPNVAGxmA1f2hpjJVgi5rASdFkaTRRRNpy/s4t6NrWTLMs8cm+H6lfXlH2crvc0mA8siLsqyxt++OcY1y8NctSz8oT8TQRAuTQQ/gvA5VVVUBmfz/N/PDhAv1LhrXTM7e8+vzHm3yVSJ//e1YWxmI79/TS+++UHNubLMn740yGS6TKkmky7VtzYEHGY2dfjxOSw0emyMp0rcsLKBrtC5ZcYVWeWpYzOoms4da5suWtWj6zr5ikJN1Qi6LHQEnHjsF+41FwRBEARB+KIYiRf45cEpvHYzD25pX5jReCmKqjGbqzCWKKJqiwt8UoUaf/LSGaYzZTKlGhVFry/+6A2RLcsYDRIrG92MJIpkywotPhsPbG4j5LLyxJEoJqPE7WuaMRqkhfmQnSEHjR4bP903SUVR+Z2dXaLNXxA+RiL4EYTPuUJV4Y3BOD98YwSjwcD2ruDCvJ6LOTSR5h/2jtMTdvHtXV1Y5gcwjyeLfP/lIaqKRjxfIV9VgfrazrWtPhrcVhxWE5mSzG1rmgi7zz2FShaqPHVshgaPjRtWNrzvg0ehqlCWVTx2E11BJ36HBYPo+xYEQRAE4Qvk6FSGp47O0BZwcP+m1kWHJYqqEc9XGUkUkVUNr838vttfAYpVhe+/MsRwrEC5ppIu12c9rmvxYjEZKFRltnUFGUsWiRdquKwmHtzcRl+Dm4HZHK+eiXPn2maafXaqikquLBNyW+mZrw5/4sgMX9veQW/E9aE/F0EQlkYEP4LwBaDrOqlijZ/snWD3SBKPzURn0Mn1Kxsu+gCh6zrPnpjl2eOzXLM8zD3rWxYqb3YPJ/jp2xPYzUbGkkVK8wP+GjxW+ps8tPrtnP3xcfua5vNWgo7EC7w4EGNTu5+NHf73/drLNZWirGA3G+kOOQm6rGLwnyAIgiAIn1u6rvPmUJKXT8dY2+rl9jVNlwxtznp34FNTNLx28/se9gFUZZUfvDHK8eksGjrRTAWAdr+NtoCT2VyFnb0h5nIVZrMVNE3nng2tbOn0U5E1Hjk0RcRt4/qVETQdMuUalvm2LoMk8cM3R+kJu7h3Q4uo4haET8hlDX4kSTIC+4FpXdfveL/XiuBHEC4/VdMZixf5i9eGkRUVs8mI22ripv7G88KZd7/n794a5eh0lt/c2s6WriBQfyh57PA0Lw7E8DstnIrmqCj1AKjJY2V5o4fOkINiVcXnMHPLqiYspncePHRd5+2xNEemMtzU33DJLRRVRaVQVTAbDXQEHTR4bJd8kBEEQRAEQfisUDWd507McmA8za7eENcsDy86KPkggU9NUfnRW2McmcpiNkgMJ4oA+B1m1rZ6GU+W2NIRoKqoTGfKFKoqN69q5PqVEQySxIHxNIcn09y7oZWA00KuLCNrGl1BJ01eG48ejjKZLvGtXV34HJYP/fkIgvDBXe7g518AmwGPCH4E4dOjpmi8PhjnoX0TrG7xEs9X0XS4sb/hokMCS1WFP3lpkHRJ5rvX9NA+H9TIqsbfvjnKyZkcIZeVgxNpZLX+s6PZa2dZg4uusJNMSabd7+DaFZFzKnYUVeP5U3MkCjXuWNuE/xIPBrKqkavIGCSJ9oCDRq9N9IgLgiAIgvCZVVVUHj00zXC8yM2rGtjUEVj0e9/b0uWxXTrwkVWNf9wzzoGJDHaLgYGZPDpgMRnY1ulnOlOhN+LEZzczmS4Ty1fZ2RPivo2tGA0S2bLMI4emWN7g5oqeEBVZJV+Vibit9ITdDMcL/OLAFPduaGFdm+/DfTiCIHwkLlvwI0lSK/B3wL8H/oUIfgTh06dYlfmbN0c5Fc1zy6pGjk5nyZRkrloWPm9A81mzuTJ/+tIQFqOB/+m6PvzzA6AzpRp/9foIiUIVn8PM26NpFE1HApq9Nnob3HQEHaRLNdY0e9neHTznFKtQVXjqaBSLycCtq5suGeaomk5ufhV8s9dGi9gEJgiCIAjCZ0iuIvPw/ikShSr3bmhhWYN70e/9oIHPz/dPsm80hctmYmAmR02tD27e3OEnW5YJOK10hZxEMyUmUmVWNXn47Z1dWEwGNF3npVMxZnMV7tnQgt1sJFOuYTMbWdbgxihJ/PCNEZp9dh7Y3CZa8wXhU+RyBj+/AP4j4Ab+8ELBjyRJ3wG+A9De3r5pfHz8A/97giB8cBOpIn/6whA2q4FbVzWxbzTFWLLEpg4/61q9FywzHpjJ8cM3R2n02Pi9a3qxW+pBzWiiwI/eGgPAZjKwZzSFpoMENHlt9IRdtAcd5MoyV/SEWNPiPee6c7kKzxyfoc3v4JrlkUs+NGjzm8BkVSPgstARcOC1m0UPuSAIgiAIn0pzuQo/e3sSVdP58pY2Wnz2Rb9X1XRiucqSAh9F1fjVoSl2Dyfx2M0MzuUXFnSsbnaj6RI2k0R/s5fZbIWxZIlGr5XvXtOLy1bfHjaeLM7PfYywrMFFrqKgaBrdISfNPjuPH4kyFCvwrV1dBBe5Yl4QhI/PZQl+JEm6A7hN1/XfkyTpGi4S/LybqPgRhE+WpunsGUny493jrGvzsr0ryOGpDEcmM/SEXezqDV1wsODu4SQ/3z/ByiYv39zRgdlkRNd19o2meOJoFJfNhKbp7D0bAEnQ4LbRHXLQ5ndSVhSuX9FAd/jcDQ+Dc3leORNf1ADos4pVhYqi4LSY6AiKQdCCIAiCIHx6DM7leeTQNH6HhS9vbsPrWNxKdqiHN7FcldHk0gKfJ45EeWM4gdduZjxZJJavAdAVcuK2GpGAVS1eksUqE8kyVrOBP7i2j4jHBkBFVnn8SBS72chta5rqMxdrCk0eG91hF6OJIj97e5I71zWzaZHPa4IgfPwuV/DzH4GvAwpgAzzAr3Rd/9rF3iOCH0H4dJAVlZ/sm2DPSIqbVjXQHXIxEi/yxlCcgNPKDSsjOCzntlTpus5Tx2Z44dQcO3pCfGm+B1xRNZ4+NsOBiTQ+u4WyorJ3JIk2/6OlwW2lK+Sg2WtHMkjcsqqJRq/tnOueHQB9w8oIXaHFrf+syCqFmozFaKQz6CDstp0zWFoQBEEQBOHj8vZYil+fmKUn7OKeDS1Lmk1YUzTmchXGk0UUTV90S9eTR6O8OZTE7zQzm6kwlioB9WevRo8NJOiLuMlXakSzVRRV49u7uljW6Fm4zoHxNIcm0ty1vhm/w0K2UsNtMdPX4MZggB++MUrIZeUrW9oWvXVMEIRPxmVf5y4qfgThsyldrPFnLw+Rr8jctrqJoMvKXK7CC6fmMBokblh5/iBoVdP5x73jHJrMcOuqRm7sb0CSJApVhUcPTzMSLxBwWihUFHa/KwAKuy10BOobIBwWE7eubjynTFjVdF44NcdstsLta5suOoD6vc4OgpYkaPM7aPLaF1rSBEEQBEEQLhdN03n+1Bz7RlNs6fRzY3/jkqqQq4rKbKbCeKqErtcDn0uFKzVF44mj0+wdTRFyWUmXahyfzgHgtZloCziwmY00+2xUZJVYvkaxqvDVbe1sftdA6VSxxiOHpulv9rCtK0CmVMNokOgNuwi5rDx+NMqZuXpbV9gt2roE4bNABD+CILyvgdkcf/nKMC1+B1f1hnBYTeQrMi+eipEp19jZE6LvPcMIyzWVH745wniyxJc2trCtqz7IOZav8PjhKPFCFZ/dQrZcWwiAJCDostDut9Pos+OzW7htTRNeu/mc6z59fAZF07ljTRPORQ5zVjWdfEVG0XQaPDZa/HY8NpOYAyQIgiAIwkeqIp/d0FXghpUNbO0KLOl5oyKrRDNlJucrdLx2yyUDo4qs8vjhKAcm0jR4rOQrCvvH00B93mJnyEnAYcFrN6HpEslClUxF5o61TVy/omHhOqqm8+uTs2RKMnevb0bVdGqqRpvfQVvAwYlolscOR7lrfTMb20VblyB8llz24GexRPAjCJ9uzxyb4ckjUXb0hljR6MFiMqCoGm8OJxmK5VnZ5GFbV/Cch5NkocoP3hglW5Z5YFMrG+YfEkbiBZ49PktZVvHYTSSLNXYPvxMABZwWmn02mr12Gjw2bl3TdM7GrlSxxpNHo4RcVm7sb7hkyfNZuq5TqCpUFQ23zURH0EHAKeYACYIgCILw4SQKVX6+f5JiVeGe9S3nHYpdSrmmMp0pMZkuY5Ik3DbzJZ9PSjWFx45EOTKZoclroyyrvDWURAdMRonOgINWvx2z0YCORLZUI1OW2dUb4u71LedcfyRe4PmTc9zQ30CLz06hKhN0WekJuyhUFf7mzVGWRdzcu6EFg3huEoTPHBH8CIKwaFVZ5QevjzCcKHL9ijAtPidGg4Su65yazbN3JEnIZeX698wBmkgV+fvd41QVjfs3tbK21QfAwYk0bw4lAHBYjMTz1XNawAJOM2GXlVa/g86gk1tWN57TFz+RKvH8yVl6I26u7AthWOKJ2tk5QO0BBxGPFatJtIEJgiAIgrB4Zwc2u21mHtjcuuh29LOKVYWpdIlopoLJKOGxmS/5PFOoKjx2eJoT0SytPjs1VeeVM3FUTccoQXvQycpGNzVFQ5s/9MqWZda0+vjKlrZznneK8+34IZeVa5aFKdSUhfXsDrOBf9g7QUVW+e2dXeccwgmC8Nkigh9BEJZsLlvm+68MY5QkrloWJuC0LDykzOYqvDwQA+C6FREaPO8Maz4zl+ehfRNIEty3oZVVLV5UTefVM3EGZnIYDRI2s5F4ocLrg4l3AiCHGb/TQnvAwbIGNzf1N54zrPnUTI43hhJsavezod23pJLqhTlAQLPPTpPPLh5sBEEQBEG4KF3XeXMoySunY/RGlj6wGSBblplMFYnnq5iNRtw20yUDn2xZ5vHD05yey9Pqd6DrOi+cilFTNSSg1W9na1eQfKVGWVapyBqFqkJXyMVvbm3H8672eV2vP3+NJ0vcua4JgySho9MddtHosfHCqRj7x1J8/YoOOoLOD/IxCYLwKSKCH0EQPrAjUxl+9OYYPWEnG9r9uK3vzM0p1RReGogRz1fZ2hWgv8mz8HeHJ9M8djiKxWTgnvUtrGzyUFVUnjk+SzxXQZLqAVCiWOXV03GU+QTIZzfjsZnpCDlY1+rj+hWRhUGHuq6zfzzN4ckMVy8Ls2yJJdaarpOvKMiqRsBlod3vwGs3i3JmQRAEQRCA+vDkx49EGZjJsbM3xNXLwkt6TtB1nXRJZixZJFOqYTeZcFqNlzywiuUrPHUkykiyREfAgUGCZ0/MUZZVAJq8Nq5bESFdqpEs1NB0nYqs0eC28uDW9voWr3eZSJV45vgMu3pDdAScVBSVVr+dtoCD//RnP6TcvIE7N3axqy9ELBbj4Ycf5rvf/e7SPzBBED41RPAjCMKHous6Tx2d4cWBOTZ3BOgOuXDZ3qmYUTWdt8dSnJzJ0R5wcFVfGIvJgK7r7BlJ8tzJOZwWI3eua2ZFo4dcWebp4zNUZBVV07FbTGSKNV4YmENW3wmAHBYjnSEnWzoCXLM8vBAAna0gGk0UuWVVIy1++5K/p1JNoVRTsZvrbWAht1WsgxcEQRCEL6h0scbDByZJFWXuXNfEqmbvkt6vajrJQpXRRJFSTcVhMZ7TEn8xk+kSzxybYTpTpivkxGw08NSxGfIVBYCI28rta5rIlGqMp0oYJFC0eqX0PRta6QqdW6lTrqk8fmQap9XENcvClBWNkMtCd9iFrGj83v94mCcf/kfa5EleeelFAK699lpOnjzJn/3Zn4nwRxA+w0TwIwjCR6KqqPztG6OMJUvs7A0RcVvPe6gZTxZ5bTCBxWTg+hURQi4rqqbz8ukYbw0n8NjM3Lq6ieWNbhKFKk8fm8FkNFCVVRwWE9myzK9PzlJVNAC8djNWk4H2gIMdPUGuXf5OBVBN0fj1yVnSJZnb1zQRcFqW/D3VFI18VcYg1dvAGr2iDUwQBEEQvigG5/I8engah8XE/Ztaz2lfXwxZ1YjnqoylitQUDafFtKiWsKFYgV+fnCWer9ITdmGU4Knjs2TLMgBBp4X7NrRQqCqcmMlhksBgkHBZzdy2pomVTZ5zrqfrOrtHkgzM5rltdSNmkwGHxUhfxI3TauIne8frz0vLXNx7242cPHmScDgMQDwep7+/n5dffplIJLKk718QhE8PEfwIgvCRShaq/OWrwyDBtq4gPrv5vKHJ+YrMSwMx0qUaW7uCrGx0o8yvED00kcFjM3Ptigirmz1MZcr8+sQcfoeZXFnGZTOTr8g8M78VDMBjM2E2SjT77FyzLMx1KxoWAqBiVeHpYzPowG3v2Q62WKpWH4woqxp+h5m2gAO/wyLawARBEAThc0bTdF4djPPmYIK+Bhd3r1/6/J6KrDKXrTCRLqFqOh6b+ZIbSHVd59h0llfPxMmVZXoiLiQJnjwyQ2Y+8Ak4LNy/qRVFU9k7msJsMGCzGLGZjFy7PLIw5/ChH/01N95xD8FQmGimzC/3jSBPHOYbv3E/JoNEb9hF2G3l+VMx3h5L8dVt7fSEXQDEYjFWr15NPB4HIBwOc/z4cRH6CMJnnAh+BEG4LE7NZPm7t8bpCjpZ3uS+4EOPqunsG0txaiZHR8DBlX1hNF3n2eMznJ4t4LAa2dETYmO7j8FYgVfPxGnx2YnlK3jtZopVlaePv1Py7LGZMBmkhTXv1698Z9V7qljjmeMzOCxGblnVhN3ywTZ4nW0Ds5rrlUZht9gGJgiCIAifdaWawiOHphlPlriqL8zO3uCSlkVAfdvWdLrETLaCBHjtlkuuZNf0ekv8nuEkZUWlJ+xCAh4/EiVdOhv4mPnN7e2oqs7LZ+IYJWm+6tnI1q4AO3re+Vof+tFf8x++96/oXrmG+7731xgliYf+z28yfuYk/+4//Vf+6A//ZwZm8vzy4BQ39jewszd0ztcjgh9B+HwSwY8gCJeNrus8f3KOF0/FWNfmpdlnx2szL1TjvNtYoshrg3GsZiPXLg/jspp4+tgME6kSVpOBjR0Btnb6OTKVZf9Yir4GN+PJIn6HBUXVeOLoDMliDQCX1YjZYMBtN3PLqgZuWd20EADN5So8e3yWkMvCje/ZDrYUZ7eBQX2oYpPPfs5wa0EQBEEQPv2imTK/ODCFomrcvaFlofJlsXRdJ1uWGU+VSBVqmI2GRW3oqikaL5+OMTCbQ1Y1ukP1Cp9HD0VJlerPMwGnhd++ogNNh2dPzAASkfm5g6uavFy7InJesJSIx/jWv/wead2BYfhNtGKSTCrJypX9/PyJ53hqsEBXyMmXNrae995YLLYw00e0egnC54sIfgRBuOwUVeOhtyc5NZNja1cAr92M7yKnYIWKwsunY8QLVda3+uiJOHnuxByzuQpmg0R/s5cdPUH2jCQ5M5dnVbOHM3MFXFYTVpOBJ47WhyAC2M0GrCYDDouJ61dGuHdD60IANJUu8fzJOVr8dq5712ygpdJ0ncL8NjCX1UR70IHfablkSbcgCIIgCJ8MXdc5OJHm1yfniLht3L+xFa/DfOk3vouiaqSKNUYTRcqygs1kwrmIdvJsWeb5k3NEM+X6+vSQC1XXefTQ9MIBVtBp4Zs7O5B0iceORNF06AjaMRuNdAQd3HSRg6uhWIGXBuZY7jfwva/dQCaVBCDc1MK/+quncDidfGNH50Xb3r///e/z+7//+wtBD4jhzoLweSGCH0EQPjaFqsLfvTVGulhjU4cPl9WMx26+4KmYpuscncpyaCJNwGlhY7ufN4YS5MoykgTdIRe7+kK8MZhgIl1iQ5uPE9EcVrMBv8PCE0ejjMSLAFiNEg6LEZPRwK7eMF/b3rHwwDSaKPDSQIyesIurloUveUL3fiqySrGmYJCk+WHQNjEMWhAEQRA+JSqyyuOHowzFC2xs93PDyqUf/FQVlViuyniyiKLp8wdPl275nkqXeGkgRrYsY5AkljW4KFVVHj0yTaJQD3xCLgu/s7MLowQPH5xC1XT6Im4sRgONXhs3r2q84LyhTKnG40eihN1WNnf4qebT/NbtV5FIJHCuuhZv+wqe/dN/w5qetkt+nd///vd54IEHFqp7xDp3Qfh8EMGPIAgfu1iuwt+8OYrFZGRNsweH1fS+bVKJQpWXT8co11RWNnk4PZunpmpomk6T18ZVy8K8OZRkNldmS0eAo9PZhU1cTx+b4Xg0B4BRAo/djASsa/PxT6/qwTEfzAzM5nh9MMGaFi/bugIfqmVL1XTyFRlF0/E6zLTPD4O+VJ+/IAiCIAgfvclUiV8dnEbVNO5c10xfg3vJ1yhUFWYyZaYzZSTAc5HW9XfTdZ3j0Rz7RpNUFQ2DJLGqyUMsX+GRw9Nky/UZhWGXhd/Z1YXVZOQf944jqzprWjxYTEZ8djO3rG684Pp3WdV49vgs+YrMrr4QXocZn17iwXtuY6RkIbD6KtThPcyd2ifatQThC04EP4IgfGIG5/L8494JWv02ukMurCYjbtvFAyBF1dgzmuLMXB6PzUSuomAxSiiajtNq4tplEfaOJkkUauzoDXJoIoOiavSEXTx/ao69o6mFawUcZlQd+iIu/uC6XgJOKwBHpjLsG02xqcPPhjbfh57ZU6oplGQFs8FAm99BxGP7wIOlBUEQBEFYHE3TeWMowRtDCVr9du7Z0ILHtrR2Lk3TyZRlJpJF0iV50fN7VE3nzaEEp+dygIRBgrWtPobjBR47PE2hWt9K2uKz840dndhMEj96a5yaqrGlw4/JaMBuMXLr6otvI90/nuLgRJpdPSGafDY6g06afXb+P3/yQ77/1NuE1RSvPfR9JEkS7VqCIIjgRxCET96ekSRPHo2yrtVL0GXDbjLisr1/i9REqsQbg3FyVQVZ0Qg5rWjUf2Zd2Rfi0ESGXEXhqr4QB8bTFGsqq5s9vD6U4OWBGIpWf63XZkZHp9Vv559d3UtnyImu6xwYT3NoMsPWrgBrW7wfOgBSVI1CVUHVdfxOC21+B167WVQBCYIgCMJHKFeReeTgNNFMmV19IXb2hDAs8V5bUzQS+SrjqSIVRcNhNl6w4ua9smWZlwbmSBZrmAwSug4b2/0ci2Z5/PA0ZVkDoDvk5OtXdGAA/vatMWqKxpV9IQyShNEgcevqJjz2C4dU0+kyTx+P0hdxs7rFQ1vASVvAzkymwk/2TbCswc3M7sd48MuiXUsQhHeI4EcQhE8FXdd58ugMb4+l2NoZwGk1YjObLjkjp6qo7B5OciKaJVmo0Rly4rAYKVRVtnb5GZjJU5ZVrl0e4cB4mmSxyoY2P0emMjx9fIbi/Kmby2pEkiTCLivfuKKTDe0+APaNpTg6lWV7d5A1Ld6P5Pss1VTKsorZKNHmdxD2WBf1QCkIgiAIwoWdiGZ59vgsZqOBeze00BZwLPkaZ9u5ovNLItw286KWNYwmirw+GEcCdECSJDZ3+OsHW8ei1JT671T9TR6+uq2dSlXhR3vG0DS4sb8BXQdF07lldSN+h+WC/0a+IvPk0RnMRomdvUFa/Q46Q06KVZW/3z2Gz2Hhq9vaLzgDSBAEQQQ/giB8qtQUjV8cmGIoVmB7dwCz0YDDcumTtod+9Nesueo29s1UGZjNE7ZLFKdO09q/iTXNXsZSRVQNrlsR4ehUholUmY3tPsZTJR47HCVRqAJgM0lYTEa8C6vgmzEZJfaOJDkezbGzN0R/k2fJ39dDP/prbrzjHoKh+nrUZCLOs088wu0P/jaqpuNzmGkVs4AEQRAEYdHKNZUnj0YZihXob/ZcdPjx+/kw7Vz7RpOcnMnjd5jIV1UcFiMb2ny8eGqOZ0/MLVQXr2/z8Rtb20kWqvx49zhGg8S9G5rJVepVyzevaiTosl7w35FVjV+fmCVRqHHVsiDtASddYRdGg8Tf7x5HUTV+64rOJW8lEwThi0UEP4IgfCqVago/2TtBIl9lW3cAkC4aAD30o7/mP3zvX9GzbAU/+NkTKJrO7/6bP6YcWU1Xezt371rHTLZCZ9BJqlSjpmrctLKBM7ECAzM51rZ6KVYVHjkcZTRR3wRmMoDDYsJuNrK9O8Bd61oIua28NZxkYCbHrr4QKxoXFwC99+sD+PaDdzJ8ZoA/+uP/wld++3fPmQXU4rcTcdsWtRZWEARBEL5oBufyPHF0BoA71jax7AMMa64qKvF8lYlUiZqiYV9kO1e+IvPiQIxMSabRYyWardDosdEbcfLY4SivDyU4+yvU1k4/X97cxniyyM/2T2EzG/jq1naimUq9wmdVI37nhSt8dF1n72iKw5MZdvQEWd7opifswmEx8vMDU8xkynz9ig6avPYlf++CIHzxiOBHEIRPtWxJ5sd7xpAVjc2dflRNx2kxnzMgOZmILwQp/mAIgHQyQc+yFXzvLx7mkVNZaorGxnYfxZqK125GVTWqqs5NKyNMZyscmkizLOLGYTXy6OEohyczC9d3W41YTUZWNXu4ob+R1c0e3hpOMhjLc1Vf+JLbQd7v6/vBz55YqAKC+Y1gVRlF1fHYzbT57fidlkWVmguCIAjC51VVUXn2+Cwnozl6Ii7uXNu85GUJuq6TqyjMZMvMZitAfTvXYu6x48kirw8mMBsl/E4Lk6kSyxs9BBxmfrJvgiNTWQAk4Mq+MPdtbOboZJbHjkbx2sx8Y0cHZ+YKSMDNqxrxXaSlC2AoVuD5k3P0N7vY0hmkJ+zE57DwxNEoJ6M5vry57QNtJhME4YtLBD+CIHwmxHIVfrx7HLvFyPp2LzVZx2U1LZR0JxNx7rvhCtLJBAD+YIhfvbB7IVTJlGr83e5xptIlOoIOrCYjNrMBgyShajo39TeSKdd4azhJq99OZ9DJM8dneOV0fKFU224xYjcZ6Gtws6Hdz9V9IfaPpxmOF7myL/S+J46X+voupFxTKckKBkmi0WujwWPD8z5bzwRBEATh82Y8WeSxw1FqisYtqxtZ/QHm7clqfVjzRKpEqaZiNRlwWi/dzqWoGnvnt4k2eW1oOszmKmzp9FOuKvx4zwTjqRIAZoPEjasauXNtEy8PxHhhIFZf076zkyNTOUwGiZtXNV50aDNAslDl8SNRvA4z16+IsKzBTcBh4flTc+wfT3PnumbWt/mW/P0LgiC8X/AjegwEQfjUiHhs/OHNyxlLFHno7QkiHhurGj0kCtVLDoAG8Dks/PPr+6jI9XkAhyczC6d8LpuRZ47PYJAkblnViKxqvHomTkfAyZ/+RiuvnYnz9PFZsmWZck3l0ESa07N59o4k6Wtwcf2KCGPJ+mDHnT0hVnyAGUAXYrcYsVuMqJpOLFclmiljMxtp9dsJuaxigKMgCILwuVRVVJ47MceJ6SztQQff3NmJe4mr2KHeljWbrRDNltF1cFlNhC4yS+fdUsUaLw3EKNUUVjV7cNlMxPJVruoLYzZK/NdfnyZZlAFwmA3cvraZG1Y28PP9k/zRI8dp89v4329byb6xFCdnCty5tvl9t5VWZJUnjkYp1RRuXd3IqmYvEY+V1wbjvD6Y4JZVjXzvjv4lf/+CIAiLISp+BEH41DoZzfGrQ1N0Bp2EDGX+6VfvYXz49CVbqc6SVY1XT8c4PF+aXZVVbGYjDku9Euj6lY04LUZeODWHqulctSzMyZkcjx2OMjF/umcAnFYTnUEnPWEHXWEXkiQxHCuwvTu4cCq5lFavS6kpGvmqjK5D0GWhxWfHJwZCC4IgCJ8DQ7E8Tx6dQdN0blr1wap7FFUjVawxkS6RLyv1Ax6r6ZL3SV3XORHNsX88hc9uoTfi4uBEGofFxJV9IV4amOOxw1GKtfo20IDDwt3rm9nc4eNv3hpnJF5gVbOHBza38eZQEqfFyM2rGt93Xp+q6bx4ao6RRJHrV4bZ3BGgyWfn7dEUz5+a49rlEa7sC4lKX0EQPjTR6iUIwmfaoYk0/9ePn+HZf/hzIlqS//q3D+Mwm/n9r99zzvDki9F0nT0jSY5OZTFKkCzWKFQVPHYzXruZ65ZHaPHbeeFUjFSxyq7eEPmKwmNHohwYTy9cx2E20uyzs6rZjd1sxGO3MJersKUrwMnnH+Y//h/vP9x5qc6uha8oKiaDRJPXTsRjxWUVrWCCIAjCZ0e5pvL0sRnOxPL0hF3csbZpUUOW36tQVZibr+6pzwM0LaoytlxTefVMnGi2TH+TG4Nk4Nh0lo6gg1VNHv5+zzh7RpPIav33ohafnXs3tNDqt/Ojt0aJ52vs6Alw7fIIbw6nCLks3LCy4X3/bX3+2ePgRJoruoNctTxMs8/O8ekcTx2dYXt3gBv7G8T9XBCEj4wIfgRB+Fz4t//tB9C6ns09jbQH7UxFZ3jr+af5rW/9k0W9X9d1jkxlOTCeIui0MpuvMBwrIEnQ7LVz/YoIKxrdvDmcZDheYF2rj4jbyhNHZ3jpdIyaogH1Hv+Qy8qO3iCapqMDiqpTHNzLb919A6FwBKhXAT3/5KMfKPR5L1XTyVdkVF3HbjbS5ncQcFlEK5ggCILwqXUymuPZ4zNIksRta5pY3rj0YcWyqpEu1phIlchXFEwGCbfNvKgq2PFkkTeGEkjAFd0hzsTyRDNlNrb7MUg6f/vWOEOxAmd/G1rW4OLe9S1ous7P909RllVuXd3IikYPe0dTdAQdXL0sfMlB0SeiWV4eiLG2zcstq5po8dsZihV49NA0a9t83LGmCYOo4hUE4SMmgh9BED5Xdg8n+fWJWda3+Wj22yhUFBwW05JOD8/M5XlrOEHIZcVvN/PsyVkShRpBp4U71zazpdPPsekc+8fTdAQcbOzw8crpOE8dmyGWrwIgSeC1mblmeQiL0UgsX8FgMLCzJ8SWTv9lO8WrKiqFqoKuQ8BppsXvwGtf3MYSQRAEQbic8hWZJ4/OMJYssrLRwy2rG5d8SHF2M9dstsxsroKmcc6yh/dTrqm8MRRnKl2mPeBgZZOHN4YS1BSNq/qCHJzI8uSxKHO5+Xs5sL07yO1rGxmay/P8qRgGSeKe9c34nVaOTmVY0ehhe3fwkmHTWLLI08dm6Ag6uG9jK+0BByPxIo8enqYv4uLeDS2YxL1aEITLRAQ/giB87ui6zptDSV48NceWTj8NXhu5soLDYlxSADSTLfPiQAyL0cCu3iDPHJ9l/1gaDZ3bVzdx+9pmJlIlXjsTx20zce2KCKdn8zx5NLqw1hXAbjawqcPPmmYvx6JZSjWNq5eFuHpZ5LLN5tF1nbKsUpZVJAkaPWe3gpnFSaIgCILwsdF1nbfH0rx6JobdbOSOtc10hpxLvk5VUUnma0ymS5RlFbPBgMt26c1cuq4zGCuwdzSFySCxszdIqaaydySFx25ia2eAn++fYv94ilxFAcBqMnDDygauWRbi1yfnOB7N4bKauH9TK4qqMRgrsLHdz/o23yUPcmL5Co8ensZnt/AbW9voDrsYjtcrfPoa3Ny7oUUczgiCcNmJ4EcQhM8tXdd55Uyc107H2d4dIOy2kinL2M2mRW0COytblnnh1Bylmso1y8NkSzJ/+9YoiUKN1c0evnttLxVZ44VTc1QVjWuXh9F0ePJolJdPx6jI9TYwk0GiM+Tgy5vb2DeaYjJdZlO7nwc2tV7WUz5N1ylWFaqKhtlooMVvI+y2LekzEARBEISliOUrPH44SrxQZUtHgGuWh5d8r9M0nWxZZiZbYS5fwQC4rGYspktfp1BReHUwTjxfoS/iZn2bjz0jScZTJZY3uHFYjDx8YIqhWIGyXB/Y7HeYuWNtM30RF48cnmYuW6HJa+fuDc3EclWmM2V29oQW1ZaWr8g8cmgagN/c3sbyBi8jiQKPHY7SF3Fxjwh8BEH4GIngRxCEzz1d13nxVIzdI0k2dfhp8dlIFmWsRgNu2+KHIVcVlZcH6gMgt3UF6Aw6+MEboxycSOOxmfnqlnbWtfl4dTBONFNha6efzpCTFwdiPH1shplsZeFafoeZ+ze2UlU19gwnafTa+NaubgJOy+X6GID6tpNCTUFRdZwWIy1+OwGnFbtFzAMSBEEQPhxF1Xj5dJz94ynCLit3rW8m4rYt+TqFqkI8X2E6XUHRNKxGI06r8ZL3a13XOR7NcWgijd1i5Kq+MAZJWpjFt7nDx8HxDHtGk0ymyqjzv+t0Bh3cta4ZVdN54dQcFVmjN+LihpUNnJnLU6gqXLM8QnvAccmvvVKrL4DIVRS+urWNtW0+RhNFEfgIgvCJEsGPIAhfGLqu8+qZOK+dSbC+zUtP2EU8X8U0HwBdqlz8LE3X2Tua4mQ0y4pGD9u6AuweSfLQ2xNUZJV1bX5uWdVIuljjeDRLd9jFjp4gR6eyPHl0hkMT6YVhkVaTgU0dPq7qC/Pk0RmMBol71rewqePyzQE66+w8IHRw2820+mx4HWIotCAIgrA0Q7E8zxybpaKoXLM8wuYPcA+rKiqpQo2pdIlCVcVklHBZTIuqEorlKrw+lCBfUVjV7GFDm49Ts3kOjKfwOyw0e+28MDDHcKzA3PwsPoCN7T5uXtXAyWiOY9M5LCYDyxvcbO0KcHQ6i8VYb/lazKFMVVF54ki9wunLm1vZ2hUUgY8gCJ8aIvgRBOELR9d1do8kefFUjFXNHlY0upnLVTEZpfoMnCU8rJ6aybFnJEnIZeW6FRHyVZkfvD7CeKpMxG1lXauXdr+Tgbk8XruJG1Y2UKyqPHtiludPzi7ME5CAZp+d+zc0c2gqS6pYY32rjxv6Gwi6rJfpk3hHRVYp1t4ZCt3kteNzWBZVTi8IgiB88cRyFZ48Wl9q0BtxcfOqBtw285Kuoc63ckUzZeKFKhIsaQ37W8MJJtP1++2VfSHMRkN9NXumTFfISSxX4dBkhslUiez8/dZuNnL9iggbO3w8f3KOeL6K32Ght8FFX8TN8eksEbeV61Y0LKoatqaoPH18hmimwgObWrmiJ8RwvMDjR0TgIwjCp4cIfgRB+EI7MJ7i2eOz9M73/89kyxikegC0lMHLc7kKLw3E0HSda5dHCLutPLRvgv3jaSwmA90hJz6HmYqsYTIauHpZmCavjTeHEjxzfJaTM7mFazktRq7sC2EzG5lMl2hw21jV7GVbdwCr6fJW47x7KDRAxG2lwWPDazeLbSOCIAhfcMWqwnMnZjk9lyfitnH7miYavUtr5dJ1nXxVIZ6rMpMtI6s6NrMRp+XSrVyarnN8OsvhyQwWk4EdPSHaA46F1ewAEbeNkzNZJpIlxpJFamr995kmr43b1zRiMEi8fiaBJEk0em20++2EXDaG4nmWNbjZ0RNa1P2/pmj8+uQs48ki921s5aplYY5NZ3nu+Cwrmzzctb5ZBD6CIHxqiOBHEAQBODaV5YmjUToCDrZ0+ZnNVtF1HbdtaavQyzWVV87EiGYqbOrws7bFw97RFI8diSIBLX4bdpOJTFnGZjayudPP5o4Ak6kSz5yY5eWB2ELoYpSgJ+xieYObsqJiMRpw2cxs7vCzotF92VvBdF2nWFOpKioGSSI8HwJ5bIsrvRcEQRA++xRV442hBHtHU9jNRm5a1cCKRs+Sr1OsKiQL9QHJ1flDEJfVtKiQJZop88ZQgnJNZXWLl/VtPlRN563hBKOJIh67mXJNYSJVZjZXZjRRWnjvhjYf164Ic2wqx1iySMhlIeC00OZ3gARzuSpbOvysbvEu6r4qqxovDcQYjOW5a10z162IsHc0xeuDCbZ0+rmpv1FszxQE4VPnsgQ/kiS1AT8GGgEN+Ctd1//H+71HBD+CIHwaDMzmeOTQNE0eG7v6QsxmKyiajstqWlK1jabrHJrIcGQqQ4vPztXLwszlKvxs/ySpQo2OoAOXzcRstkquIrO62cPta5oxGODVM3GeOT7LaKK4cD23zciyiJtGr42Qy0qhquK2mbiyL/SBBmculabrlKoqVVWEQIIgCJ93uq5zdCrLiwMxVE1jV2+YbV2BJQcaFbk+t2c6U5/bYzRIuKymRR2o5Moybw4nmMtVaPTY2dUXwmU1Ec2UefVMnIqsYjEZyJUVEsUqQ7E8qaIMgM1s4LoVDXQHHbw2mEDRNDqDTsxGA91hJ7F8FVnVuaovREdwcavlFVXj1TNxTs3muH1NEzesbOCVM3EOjKe5elmYK/tCl/1ARhAE4YO6XMFPE9Ck6/pBSZLcwAHgHl3XT17sPSL4EQTh02Q0UeSXB6ZwWI3csKKBVKlGWVZxmI04LEtbgz6ZLvHq6Thmo8R1KxqwmQ08dWyGY9NZfHYzKxrdJIs1Bmby2C1G7t/USn+Th9NzeX59Yo5Xz8QWStUNEjR6bXSHXGzrClCoyCSKMu0BO1d0hz6W7VwiBBIEQfh8GokXeOb4LPmKwtpWL9etiCx54H9N0ciUakxnymTL9SBmsYcnNUXj7bEUg7E8LquZXb0hGr02FFVj72iKgdkcug469YrUVKHG0eksqvZOO9eNKyNkKwonoznCbivNXjuSBG1+B+OpIj67hetXRhY9j6imqLw5nOD4dI6bVzVw06oGnjsR48xcnpv6G9jcGVjS5yMIgvBJ+FhavSRJegz4M13Xn7/Ya0TwIwjCp1EsX+Hnb09SUzRuXt1IVdHIlmRspsWtln23QkXhxYE5UsUaG9r9rG72sG80ye6RFOWaSlvQQU/IyRtDCWL5KssaXDy4uR2r2cBrZxI8d3KWoVhh4XoOs4Fmv4ObVjawrMHF2+NpqrJG//xGk48jhBEhkCAIwmfbXK7CU/NDmrtCDm5Z3YTXvrQhzbKqkSvLzGQrJAr1rVkOs2lRhxGarnNifgW70SCxpTNAX8SFJEnMZMu8NpggWaiiA2aDhKxqHJ3KEs1WgPqByLauIOtaPewfz5CvKKxu9iAZJGwmIy6bkblcleUNbrZ3Bxc9v68qq7w1kuBENMdN/Q3c2N/AY0dmmEqXuGtdM6uavUv6jARBED5Jlz34kSSpE3gNWK3reu49f/cd4DsA7e3tm8bHxz/0vycIgnA55CsyP98/RTxf5YaVEWxmA/F8FbPRuKRV8FB/yD083wYWclm5dnmEeKHKK6djxPJVPDYTbQEHJoPEa4NxJEmqzyhYHiFblnnu5ByvDMxRkjUADIDXbmZbT5Cvb2tnMl3m0EQGgA3tPlY2eZb09X1Q7w6BJAmCzncGQ4vtYIIgCJ8e2bLMc8dnGUkUibit3L62iQbP0tqGz4Y9c7kK8UIVXQebyYhjEUOaAcaTRXaPJKnKGqtaPKxvrR9Y1BSN3SNJBmZy5KsyXrsFq8lAPF/hrZEUNaV+7ws4LVy/PIyqw/FoFp/dwsZ2H7O5KiGXmapcX1awszdEb8S16O+rXFPYPZLk1GyeW1c1sKM3xK8OTpOryHxpYyvd4cVfSxAE4dPisgY/kiS5gFeBf6/r+q/e77Wi4kcQhM+CqqLy2OEog3N5dvWGaPBYmc1VP9AmMKhXFL1yuj6r4IruIA0eGy8NxJjOlDBIEnaLkTa/g8l0ieF4Ab/DQlfQyfp2H6OJIs8en+XUbH7hemajRJvfwT+9qofeBheHJjKcmslhNRvY3hWkM7S4WQYflqbrlGsqFaU+qNrvMNPoseF1WJbcNiAIgiB8eOWaysunYxydyuKxm7h5VSM9SwwxLhT2WOfDnsUcMMxky+weTpKrKLQH7GzvDi60T48lirw+GGcqU8ZuNtLgsSFJsHckxVD8nWrX9W0+NrR5OTadJV9R2NThx2ExkSrWaPTYiOWrOK0mrl8Zwe+wLPp7K1Zl9o2lOD1b4OZVDaxp8fLIoWmsZiMPbG79WObpCYIgXC6XLfiRJMkMPAk8p+v6f7vU60XwIwjCZ4mm6Tx/ao59oynWt/lY1eQhOr+W1m1b2iBoqD9M7x5OMhQv0B5wsKMnyKGJDAOzOYwGCV0Hk1HCaTEym6tSVVS8NjNum5m2gIPj0xleOh0nX1EWrum0GLmpv5GvbW9H1WDvaJKxZAmPzcTO3tCST3c/qPeuiHdZTTR5bfidliXPSxIEQRAWr1xTeeV0jKPTWWwmI9euCLNmkdurzvqowp58RaHRa2N7d3ChlaxUU3jtTJxj01kqika7z06jz87JaJY3h5NU56t7XFYT1y4PIUkGBmZz+B0WblrZwFC8gKaDw2IkU5bpCbvY0RNc9DZOXdcpVBT2j6cYjBW4ZXUjzV4bz56Yo8Vv50sbW3FaxX1KEITPvss13FkC/g5I6br+Py/mPSL4EQThs0jXdd4eS/PiqTkavTauWRZiLl+jXFNxWJY+CBrq5e+vDyUwShJX9oXQdHh9MI6m6XjtFlKlKppe3zBiMRnw2M0UKgpGg4TVZGBgJsfb42nmZ10iAR3BehVQf7OHXEXhreEEsVwVn8PMFT3Bj/UksyKrlGoKug52i5FGjw2/y4LLYhIrcAVBED6kilwPe45M1cOea5aHWdu6tLCnpmjkKjKxDxj2zGYr7B5JkCufH/bous7p2TwvDMwxk63Q5LGxusVLslDlhYEYU+nywnVWN3tY3+7jVDRHoaqwrStIZ9DBsWgOp8W4sPhgV2+QrtDiq5c0XSdXljk0kWY4UeDG/kasJgN7R1Ksa/Nx6+pGMadOEITPlcsV/OwCXgeOUV/nDvBHuq4/fbH3iOBHEITPuvFkkV8enMYowU39jVQVlUxJxmQ0LHkOENRPQt8YSjCdLtMRdLKxw8fekRRT6TIdATvFmko8X6VYU7CZjCxvdGM1GRmKF6jIKhVZ5UQ0y3SmsnBNq0nihhWNPLi1Db/DQrpYY/dIkni+it9p5oruEGG39aP+aC5KVjUKVQVN1zEZ6sOhw24bbtvi1v0KgiAIZ8OeOEemMthMRq5eHmbdEsOeiqySLdWYzVVIl+rbuJYU9uQq7BlOkqvINHjODXsAkoUqTx2bYWA2j9NqYmObD6/dzGuDcfaOplDmTyt8DjNX9YaoyBpjqSJ+h4UHNrUykigSzZRxWkyUZJUGj41rloWXVJGjqPWNY/sn0sxmK1y7IkKhojAcL3Ddiga2dwfESnZBED6XPpatXoshgh9BED4vsmWZXxyYIpavcM3yCAGHmWi2ggHw2Mwf6BRxNFHkreEEOrCjO0hVqa+2ddtM9EVcnIjmmM1WqCoqbQEHV/WFKVQVDk9miOUrJPJVBmbzVBRt4ZpNXiv3bmjl2uX1db2p+RAoka/id1rY0RMk5Pr4QiBV0ynVFGpq/Wv0O8zzw6EtH8uaekEQhM+SYlXh1fk2KavJwNXLwqxv8y06uNB1nVJNJV2qMZutUKjWW4XtZiN28+IGNE+mSuwbS1GsKkTcNrZ3B/C9a65OTdF44dQsbw4nkYB1bT7Wtfo4MJ7m+VNzxPP1DWAGCTa2+2j1OxicK6AD160Is6rZy+uDCco1BaPBgI7Oxnb/ktvV6gcxNfaOpsiVZa5eEWYsUaJYVbh7fQvLGtyLvpYgCMJnkQh+BEEQLhNZ1Xj2+CxHpzKsafGypsXLdKaMouk4LaYPNOS4qqi8OZRkPFmkxW9nbYuP3SMJsmWZ9W0+zEYDb4+lGE2UsJsNbOsKsrM3yFyuyp6RJIOxPOPJ0sIaXKi3gvU3ublvYyubOgIYDVI9BBpOkCjUCDgtbO8OfqyVQGfnAlVkFZ36LyKNHhs+pwW3VbSECYLwxZQsVHnxVIzRZBGnxcjVyyKsbvEsOgTRNJ1CTSFVqIc9FVnFYJBwWIyLmk2n6zrD8SIHxlNUFY1Wv4OtnQFcNtM5rzkwnuaJI1HKssrKJg83rIxweq7ASwMxjk1nF17b4LGypStALFshU5bpDbt4cEs7Z+bynIjWX6dT31x53fIIwSUeRpRqCqlSjb0jKTRNY12bn8FYgaDTwn0bW5Z8PUEQhM8qEfwIgiBcZrquc3Aiza9PztHgtnHN8jDJQpVCVcVqMuCymj5QaflkusQbgwkUTWdLp598WebETA6PzcyVfWGimTKvnIkTzZRp9tm4Z30LHUEnyUKV1wYTHByvb0opVNWFa1qNElu6Aty3sZXesAtJkkgWquwdTZEoVHHbTGzrCtLss3+UH9El1RSNYq3eEmaQJEIuy0JLmNgSJgjC59lUusTzJ+eI5asEHBauXxlZ0krxmqKRr8gkClXi+SqKpmOUJJzWxbXUqprOwGyOw5MZFFWnN+JiU4f/vJ+9Y8kiD+2bIFGo0RaoD0ZOFmq8ODDHW+8a1GwxGtjc4cdqNhDNVHBZjXxpYyutAQcvD8SIF+pVQGajgVXNHjbPH0gslq7r5CsKqWKVvWMpzAYDTT4biUKN9W0+bupvEPN7BEH4whHBjyAIwsdoMlXikUPTyKrG9SsbsBgNzOUqGA0SbqvpAz2Mymq97WsolifgtLKu1cuhyQyZUo3+Ji9rW70cGE/zwqk5ilWF9W0+7tvYgs1sQlY1XjsT59njMwwnisjqOz/3vXYz1ywLc9e6ZiLzG8CyZZl9o0lmshXsZiNbOgN0BB0f60yE966KP7v21++w4LKZlvQLgiAIwqeNruucnsvz0kCMfEWhxWfnxv6GRW9iPNvClS3JzOUrZMv1eT0WowGHZXE/I2uKxtHpDCejOQD6mzysm68qfbeJVIlfHJgkmqngtZt4YHMbLquJlwZivHw6TmI+xAFY2eimPeBgOlNG1XWu6A5y+5omBmMF9o0mKdZUTAYDIZeVa5aHl9xqrGo6+YpMLF/l4ES6/v1a6+HUbWuaWNXsXdL1BEEQPk9E8CMIgvAJKNdUHjs8zUiiyIZ2Hysa3B+6DQzqbQCvDybIlGssi7hwWs0cnsxgsxi5ui+M32nmmWOzvDWcwCBJXLsizA0rG+qzE3Sd3cNJfrpvgvFUiXffARo8Vm5c2cBN/Y34nfX5DaWawttjacYSRSwmA5s6/PRFXB/7YMyaolGqKai6joRE0GUh4rbitpnFbCBBED4TZFXj7bEUe0ZSyKrG8gY3166InDMc+f0o84Pyk4UasXyF2nx1jcNiwmoyLOrncrpY4+3xFDOZChaTgTUtXlY2ec4LisaSRR47NM1UpozbZubudc10h528PpjgpYEYp+fyC6+NuK2sb/USL9YoVVW6w04e3NyG3WLk1TNxRhNFZFXDYzOzttXH+jbfksP7iqxSrCnMZMocj+ZAB4vZQLPXzpc2tRJwWi59EUEQhM85EfwIgiB8gnRdZ+9oipdPx4i46+vg02WZfFnGYjTi+gDbwM5e98xcgbfHUiDBuhYvE+kSc7kqvWEX27uD1FSVXxyY4vh0DrvZwC2rG9neHcJokFBUjTcG4/xo9zjJYu2ca7f47dzS33jOLyUVWeXQZIbBuTwGg0R/o4c1rd6PfTOXputUZJWyXK8Gsprqp8dBlxWndXEzLARBED4O+YrMq2finIzmMBkkNncG2NYdWPSsnbKski/LxAo10sUauq5jNBhwWIyL+tmr6zqjiSIHJtKUayo+h5nNHYHzWnnPViA9f3KWyVQ97LllVSOrWjzsH0vz6pk4ByfSC1u57GYjmzt8yJpOqlgj4LBw/6ZWljW4GYwVFpYIWEwGWv12rlkWWThQWCxd1ylWVcqywlCswHC8gKrreOz170G0cwmCIJxLBD+CIAifEtOZMo8cnKKqaFy7IoLDYmR2fgizx2b+wCFKVVHZN5piOF4g4LTQ5ndwYr58f2tXgL6Ii0Shys/3TzKaKBJwWrhhZSMb232YjAZKNYVfHZzi6eMz5CvqOdduDzi4Y20TV/aFcc2v1FU1nZMzOY5PZ5FVjWafnS2dgUWfXH+UZFWjXFORNQ1dB7fNRNhlxeew4LQaxS8GgiB8rKbSJV48FWM2V8FtM3H1sjD9TYsbzlxVVAoVhWSxRjxfRVY0kOpBi828uJXrNUXj6FSGgdk8mq7TFXKysd1/3kp0RdU4Ec3xxlCCyXQJt7X+tW7q8HMimuPVM3H2jCapyPXKIoMEq1u8+B1m5nJVLEYDN/Y3cGVfmFJN4bUzcYbjBSqKRthlZWNHfTPXUg82zrZzlWWVE9Es44kSkgHa/A7uXNdMn9jOJQiCcEEi+BEEQfiUqcgqTxyJMhgrsKrZw7pWLzPZChVZw2Y24rQsbs3uhdQHO8fJlmXaA/XZPOPJIl67mav6wgScFs7MFXjqWJS5XJUmr40ruoOsb/dhNRlJl6r8xSvDHJnKUKpp51y7PWDnnvUt7OoNn9NiNZ0us388RbYs47Ka2NThX/i3P25VRaVcU+ttYVJ9jlHYZcVjN+O0iG1hgiB8tBRV48hUht3DSUo1lSafnRtWRmjyXnpAvqrpFKoK2VKNWL5KvqogAeb5qp7FBNe6rjOVKXNooj737WwL14rG81u4ChWF/eMpTkZzRLNlPHYz69t87OgJMp4s8eqZOG8MJchXlIX3LIu4aPE5iOUrqHp91fo965uxmY0cn86yeyRFPF/B57CwrMHFzt4QDovpvV/mJVUVlXxFoVhTODSRZiJZxusws6nDz13rms8LrgRBEIRzieBHEAThU0rXdQ5PZnjh1Bw2k5HrVkRAgliuikEC94eoAtJ1nZFEkX2jKWqKRkfIQbYkky7V6Aw62d4dxGiQ2DuSZO9okmxZoclnoyfsYktnAL/Dwololh+8PkI0W6FUO7cSqMFt5aZVjdy6qhH3uyp98hWZA+NpJlIljAaJlU0eVjd7sZg+/sobXdepyBoVRV3YFuZzmAk5rbjtpkUPQRUEQXi3WK7CK2fijCWKmAwS69t9bO8OXjLw0DSdkqxSqMgkCjVSxdrCz6bFrlsHKFYVjk5lGIoX0XWdVr+dDW3+C7ZTRTNl3h5LMZutEMtX8dhNLIu42dETJFms8dpgnFfPJM4Z0tzqs9EdcZEsVFE16A27uH9TK0GXlXSxxsunYwzGCujodAVdXNkX+kCbIHW9HnxVFY1Uscbe0QSz2SpdYRd3rWtmY7vvEzlAEARB+CwSwY8gCMJnQLYs8/jhaSbTZVY3e1jd7CGaraJoGjaT8UOddqqazslolsNTWSQJmjw2ZnMVVE1nU4ef/iYP2bLMG0MJxhJFyrJKwGnB57Cwqd1Ps8/GE0eiPH9qjkxZplg9NwTyOeqnxneva6E38s4KYkXVODWb50Q0S03RCDotbOzwL+ok/HI4Ox+oIqvogEGS8NrNhFwW3PMVQSIIEgThvWRV4+B4mj0jKaqKSsRt5erlETovsfHw7Patdwc9qqYvuX1L03WGYwWOTGUp1RQcFhPrWr30RFznvf/savajU1kKFZlcRcFpNdHis3NFT4BMSeHNoQRvDieYmW81Bgg6LaxodJEpKyiqTmfQwZc2tdLktaNqOgfGU+wdTZIo1Gj22tneHWRN69Jbuc5+nrmKjKrrTCRLvDWUoKpqXNEd5Mub2wgucduXIAiCIIIfQRCEzxRd1zk4keHFU3PYLUauXR5B1XVShRomg4TrA66EP0tWNQ6Mpzk9m8diMuCxmYgXajgsRnb0BGn1O5hMl3hrOEm2JGMyShgAk8nA6mYvHpuJJ45EOTmTo1RTycyvET7LazPTFXKwtSvIjp7gOQ/wyUJ9Be9MtoLBILGiwc3qFu8H3nD2YZ0NgqqKhja/McznMBFyWXHZzDgX2WohCMLnz2SqVJ9/kyphMkhs7PCzvTv4vj+v3h30JEs1koX5oAewmepBz2LD5dlchSOTGeZyFSRJoifsZF2r74KHAOlijUOTaabSZRRVR9V1DBIEnBa2dwcpVBTeHE7w5lCS2dw7YY/HZmJFo4dSTaGmarT6HNy7oYXOkBOor3J/4eQco/PtwmtavFzZ98Fauc5+NmVFRVE19gynODqdodFj476NLVy1LCKCd0EQhA9BBD+CIAifUdmSzKOHp5nOlOfX7rqZfVcVkONDzAKC+rr23cNJJtNlrCYJk8FAsabgd1jY1RvC77RwMprj0GQGdJ2Qy1o/sZ7/36qqcWouz1S6RLGqkshXefdUIK/dRJvfQVvAQX+ThzUt3oUg6Oyp9PHpLFVFw+cws7HdT4vP/omV9r+3NQzAZTURdFnw2i04LMZPLKQSBOHyypZkdo8kOBHNoek6LT4HV/aFaAs4LvoeTdMp1hSKVYVUqUaqIKOo9YHMVpMR+xKCnmxZ5uhUhrFkCV3XafDYWNfmo9FjO++1iqpxei6/8PPTYjKg6/U5OU6rie1dAcqyxhtDCd4cShDLv9PG5bWbWNbgplRVUDSdiMfG3euaWdbgRpIkilWFF07NcWgyDUisbvZyzfIwoQ9YhXN2Db2i6WRLNZ44OkO2LLOjN8g3rugU1T2CIAgfERH8CIIgfMbpus6B8TQvDsSwGg1cuSyMxSiRKNSQpA+3EeysXFlmz2iSmUwFgwF0vV4R0+yzs6MnhMVoYN9YiqFYAbfNxLKIi6lMmXi+SllWKc7PaTg7R2guV0F91y3GazfRHnAQctkIOi20BeysbvYSmf+lJl2scXAizXSmDEBH0Mn6Nt8nsinsLF3XqakaFVlD0TQkwGIy4HdYCLgsOC0m7GajGBgtCJ9BVUXl4HiG/WMpqoqGx27iiu4Qq5o9F/1vWlY1SlWVXEUmVaySLSsLIfFSK3oqssqJaI7TszlUvV59s7bVR0fQccH2qUShyoHxNLF8fQZco8dGtiKTLyt4HWa2dATIlGvsGUny5nCS+LvCHp/dRE/ERammomnQ5LVxx9pmljW4kCQJbf4e8/zJOXIVmd6Ii5v7G9839LqUUk2hJCsYkNg/nub1wQQBp4XvXNXNtq6AmN0jCILwERPBjyAIwudIoarw1NEoI/EibQEHWzv9pIoyFUXFYjTgtJo+0MyFd8tXZPaMJIlmKiiajqbrmI0SfRE3WzoDVBWVt4aTzGYr+J0WtnX6iRVqHJvOMp4sUqjIuGxmqrJKolBjNlemqrxzv7GaJFY1eYl4rNjNJkxGiWavnVUtnoXT7fFkiSNTGbJlGbPRwPJGN6uaPYsefnq5KPNBUE2tzzmS5ucEBZwWXFYTdlEVJAifSqqmc2omx97RFOliDbPRwMYOH1s6Axf8b1bXdaqKVm9pLdXn8xSq9W1XBiRsZiNWs2HRP29LNYVTM3kGY3kUVcdiMrCq2cOyBvcFg/tSTeH4dI7BWB5Vq1dZNnltjCSKFCoKEY+VDW0+xlMl9owkeXssTfZdrbd+h5nOoIPy/Dr2Vr+DO9Y00h12LYQuU6kSvzw0xWSqTKPXxu1rmljR6P7Aocw71T0aNUXj4QNTxPNVdvaG+L1renDZPrkgXxAE4fNOBD+CIAifU0OxAk8fm6Eiq2zu8NPksxHLVdEBp8X0kQQQhYrCntEkU6kSZbkedjit9VaBDe2++dkRSVLFGo0eGzt6gqi6zhuDcfaMpKgoKkGnBV2HVLFGvFAlXXrnlxODBCsa3axv9WGzGBcGRzssRpY1uOmNuDAaJAZmcpycyVFVNFzW+sl4V8j5ic+E0HSd6rvawyTAZDTgd5jxOyw4rCYcFuOHrsgSBGFpzgY9e0aSZEoyBoNEf5ObrV1BAhfYflVTNMq1evViulQjXaqhqPVBzCaDAbvZuKTthLmyzImZHCPxAppe/5m2sslDX8R1wZ8HsqoxMJvn5EyOmqJhNxvpb3aDLnFsOkNV0Wj1O1jR6K5/X6NJDk5kqCnvNNhG3FaavTbKsopBkugIOrl9TdPCzB6AZL7KLw5OMRQv4LSauHFlw8KWxw/i7OyeiqIiAfvH0rw2FMdlNfEH1/WxvTv4ga4rCIIgLI0IfgRBED7nFFXj1TNx9o2l8NrM7OoNUlN08lUF0/+/vTsPkjTP7/r+/j1H3mfd1dV3T/dcOzuzswc6FrSyrpUACxNgJEdg2QYU2MZhwg6HOcJHmLAhDOHbhgAsC0fIyIRBIA7JCAmQwNrd2Z1jp2d6jr67uu68r+f++Y/fk1ln93T3VFf3VH9fETVZR1ZWVuVTz1R++nvYilLm0w2EHuv7Ed+60eB2Y0gv/Zfvcs7hwmyJL6VtBr99rUHXizg9VeB7zk+RdSx+44NNfvOjDYI4oZhxiLTGD2O6o4jltLVrbLGa4/svzPC5k1V0YlbS+5FpszpZz/PCQoVixua7dzvcaAzQGspZh5dOVLgwW3riQRCYJ5xmaLQJsTRQcG1qxQy1gkveNbM/ZHC0EIcnihPeX+3yrRvNHUFPha+cm9oX9MSJZhTGDIOI9jCkOQhMWIKp4ss6Flnnwdu2wAyvf3+1y63mEDSUcg4vL1Y4f4/zUqI11zcHvHu3Tc+LJpWN52eKfLDW46P1HkopLs6VWKzkeGu5zTevN3h/tUuy48/3M9MFKnmHIDSVmednSvzEKwss1bfbtHqjkL/95jLvrXbJOhY/9MI8X70486kC6fFmrnGo//fevkvXi/iBS7P8e1+7QFYqH4UQ4khJ8COEEM+Qrb7P339nhbWux9npIp8/WaE1MKX3WdumkH2w9cGfxAtj3rzd4uP1Hh0vIkk01bzL2ZkiXzk7xVbf5xs3moyCmPMzRb58dgqN5rc+2uLySgcvjLEsRWMQoLVGa7ix1WfHP16TdSxeO1Xj+y5M8+qpGkM/5oO1LutdM7sin7G5OFdivpzjemOw61/WX1qs8Nw9/mX9SQjjBC+MCeOE8f95865NreBSzbvk03lBD1NRIMSzzAtj3r3b4c1bLbpeiG2Z1qmvnJ2iviPoGYc8oyCmMwrojCL6XoTGVOhlbNOy9TDniihOuNkYcmW1O9lsOF3M8PKJCqemDp7REyeaG1sD3lvp0PVMcH5+psgrS1XCOOFbN5ts9nyyjsUrS1WCOOHN222+favFneZwcju2gnMzRbKuTZxoihmHl09U+FdemNs1KHkUxPzSW8u8daeNayl+1/Oz/NAL85/qnJhozcCPCOIYL4z55x9t8f5Kl8Vqjj/5w5d4YbHyyLcthBDi05HgRwghnlEfrvX4x++tMQgiXlyocG62SHMQoLVpBctnDudfZKM44fJKl3fvtmkPQ8I4oZbPcHIqz1fOTtEcBLxxq8UoiDk7XeAr56ZoD0P+xdUtel5IOedytz1kpT1iFCTkXIv2wGe9v3tV/Ml6nu+7MM2Xz05xca6MH8V8vNHn6kbftKFpmC1nOVXP0/Mjrm8OiBJNzrF4YaHMxfnyUzV/J4wT/DDBj02LhMaEXdWCSzXnUsyadr2sY8kgVPHMaw4CvnOrxeW7HeJEk3UsPneyyuun65Mh8GGcmJDHj+h4EZ1hwDCMGf+561oWGcd66N+p7ijkg7Ue1zb7RInGsRRnZ4q8sFCmXtjfNja+L1c3+ry/2mUYxFhpYPPSYoVq3uXa5oC3brcYhaYd9rm5MrebA759q8Vbt9uT1lqAvGtxZqqAZSkSbUKmL5+d4nvOT+9a7x5ECX//uyt883oDpeD7n5vhx19ewP2Us9FGQcwgiIiThI/We/zWxw1irfm9n1/kD335tATWQgjxFJDgRwghnnFJovnO7Ra/+dEmUax57VSV6XKW/ijCshSlrHNolTGJ1ny83uetOy22ej7DIKZWcJmv5Pjy2TpBpPnWzSbDIOb0VJ4vnpni+maf7y53yGdsXj1V5aO1Pt+80aDnRcTp3Jzl5pAd86HJuRZfOFXjS2eneO1UjblyDq01m32fj9b73GkOibXGVoqFag5LwWrHI4z15AnYi4uVez5pe1KiOMGPEoI4SWcGKSwFxZxDJedQybvkXJucI9VB4vjSWnOzMeSNm01uN0y1S72Y4Ytn6rx8ooKtFH5kquiGQUTHC+kOI7xoOyzJ2uZ35GF/T8I44cbWgI83+jQHAWBaWl9YKHNh9t5VhF4Y8+F6jw/XevhRgmOZNq0XFiuUsg49L+TtO21ubA0AODtdpJJzuLzS5Y1bTa5vDnbd3kIlR73gYlkKBSxW83zv+SlePVXf9T31/Yhffvsub91pYynFl8/V+b2vnPjUrVbheFBzlHC7NeQ7t1qsdjwuzpf4Y7/zPOdnS5/q9oUQQhwuCX6EEEJMBFHCv7i6yRs3WziW4otn6mQdCy9McG2LUtY51Dk5y60hb95us9YZsdH3Kbo2C9U8Xzxjnry8cbPJ0I9ZquV5ZanKuysdllsj6gWXrz43Q9cL+dXLa9xqmOHSida0BgGdtFVibKaY4Uvnpnj9dJ1XlqqU0n8Fj+KEW80hVzf6bPZNi5gFuI6FH6bhilLMlbO8uFjhZD1/KK1whynRmiAyW3LCxPTCaQ2ubVHOOVTzLqWcM5lLIoGQ+KzpDEPeXm5z+a5pAwU4M13kS2dqzFdyBJFmFEZ0vYjuKEyHwJu/YRVqEvA8bIAdJ5rbzSFXN3qTFlLXNtU8z82WdrVO7bXV97my2uV2c4jWkEkrCy+llYWJ1lzd6PPOcptREFPKOpyZLtLoe7yz3OGt2+3JrLTx112q5ShkHMBsCzw9ZSokn5sr7TovNfo+f/ftu3y41sO2FF99bpYfe3n+U88NixNN348Iopjl1pDLd7vcaQ2ZKmb5+ucW+NGX55/4ZkUhhBAHk+BHCCHEgQZ+xK+9v84Ha13yGZvXT9VRCqJEH9pq+J28MOa7yx3eW+mw2vGItWaxmuP1U3WmihnevN2i70fUCxkuzZf5aL1HYxBMBj77Ucw3bjS4ut5nvecTRgldP2Sj6xPtmHaqMBU9Xz43xWsnazy/sHtdcpxolltDrm32We14k600UaLRQCnrUHBtLsyWuDhfovyUriCOkzQQihOiZHs4kmMpSjmHUtahnHXIuc6kvcV6CoZfi2dbECVcWe3y9p02W33fDGjPOby4WOG52RKWBT0voudHDLyIRLNrHo8JeNRDtz/GiWalPeLaZp+77RFam62Cp6YKXJwvM1/O3vM2x/N5xjN9FDBdyvDigpnpMw7LO6OQN2+bmTyWUpyayoOGK2s93r7T5u6eYfb1gst0KUPWtnFsU5344kKFL56pU9tTjXi7OeQffneFG1sDMo7FD1ya5Qefn/vUYY/W24Ou77Y9PljrstL2cCzF66dr/P7XTzJXyX2qryGEEOLxk+BHCCHEJ2oNAn71vTVuNQaUsg6vnqqhtak2yTo2xYx9qHNmtNYst0a8cavJjc0BzUHATCnL55aqXJgr8uFaj82eT861OVXPc6c1ZBgkPDdX4stn60Sx5u07ba5vDRgFEUM/Yr3ns9b12OoHu76WaytePlHltVM1XlmqHrj9K9Ga1bbH9a0+y60RfhTTGob0vYi8a1PNu8xVMjw/b2YlPc3/6h0nmjA2FUI7AyFQ5F2LUt6hnDUtY+NAKGNLKCQOXxQnXN8a8O5yhxtbA6IkQSnFhZki52aKZFybvhdONveB2arlWArXNlU8jxI+e2HMzcaAG1sDGv0AFNhKcaKW5/xMkaVPqOxrDgI+3uiZ+5y2h56dKfLiQmXX4Gg/irmy2uPKapcwTihnHWrFDCutIe8sd/hwvbdrA1fWsVio5CimQ/brhQwn6nm+cKrGCwuVXeelONG8t9LhNz7YYKU9oph1+MHn5/i+C9OHshFw3Ca30vZ4f7VDaxgSRAnnZor8+CuLvHqyKrPFhBDiM0SCHyGEEA9lo+vxK5fXuNs2LVefP1klik01zHgV+WE/IRgGEe/cafPWnTarHQ/bUpyu53n9dJ2eH3Fja4BSUC9kaA9DEq15abHCq6dq2JbixtaAt++0GfgRGUeBhg/Weny80Z9s0BlzLcVLu4Kg4j2fSPW9iFvNATcbQ9Y6Ho2BT2sYknMsqnmXS3NlXjxR4VQ9/9SvZ9daE6VVQmGcTOYnkf4365oqr2LGBH1Z1548+X5atqOJp1cUJ1xZ6/LOnQ63GgPixBxv85UcS9Uc1aKLlR5rGnAsU7mTsa1H/t3RWtMcBNxqDLnRGEyGvGddi3PTJlyaKmbue77qexEfb/S4tjmYtJnVCy4X58ucmynuqxa8vtnn3bsdBkGMYynqBZeBH/P+apd373Z2DWVWwEI1RyXn4NgWpYzDfCXH2ZkCr52qM1vO7rsv37zR4I2bTZqDgNlylh+4NMvrp+uHcn4JooSeF3C35fH+WpcgShgGEbPlLK+fmeJHX5p/qgbgCyGEeHAS/AghhHhky60hv3p5jY2ez0wpw0uLZcIYlHp8IRDAWtfjjRtN3lsx/xJdK7i8ulSlXspyfbNPGCVYliKMzWyiFxcrvHaqhmtbdEchb91pc6sxwFKK+UqWODEVQu+tbK9fHnMtxUuLZV5N5wM9N1u675MsrTWbPZ+bjQHvrXRZ63p0RyEas0r+dL3AF8/UeWGx8pkKTMLYBEJRrHdVCmlMS0whXTmfz9gUMjYZx8a1TWWGa1uHOhtKPH2SRBMmCWGs6XkhH671eH/FzIAJIz1p3Tw7XWCunAWlJuGOa1s41sO3Z41prWkNQ243h9xuDnaFuVOFDGemC5ybKabzce5tGJgQ+epGn156G8WszXNzZS7M7v98rTWrHY93lttpJaGmkHEIopiP1rc3du00VcxQz7vkM6aibr6cY6Ga49VTNc7NFHdVGmmtWW6P+O1rDT5a7zEMYk7V8/zApVleWKwcSqttGCf0vZBrmwOurHUnlVWFrMNSLc/v/vwii9X8p/46QgghniwJfoQQQhyKG1sDfvXyGs2Bz3QxwwsLZZMA8XhDoDjRfLze47eubnGrMSDRmqVqnhcWK7SHAT3ftCxorSllHV5crPKF0yYEihMzYPW7d9t4oVkVf7peYBjEXF7p8PbtFht7WsNsZTbuvHa6xitLNV5YKO9amXwvidZsdD3eWzH/8r/R84g1oM3w6ZeXzOrp+cq9Z4k8rRKtJ4FQGGviRKN3DNfVaFzbIp+xybkWOcccD65j4VoWjq3MiyUB0dNmXAk2fnyj2LQKemFM34+42TDDj281hpPKv4yjOFHNc3a6yEI1N6kK+7RBhdaaxiBguTXidnNId0dIWy9mOD1V4PRUYbK+/X63s9UPuLHV52ZjSBCZIDPn2pydKXBxrnzgbYyDnssrHda7Pkmi0xXqZsbP+yvdXRU9ALW8S63gpIPxLWZKWWbLWV5arPDSicq+tlAvjHlvpcs7y+10FpA533z14gxnp4uHcm6I4sSsoF/v8eF6j6xjUcg4KGXu74++vMCl+fKn/jpCCCGeHhL8CCGEOHS3G0N+7co6690RhYxZdZx1bRSPNwQC86/237nV4hvXG2z1AxzbPAmdK2cYBjHNQUCUaGZKWV4+sR0CjT/38t0uH2/0iBPNdDHDuZkimz2fyytd3r7TYi3d7rNTJedwfrbEa6dqfO+5aRZruQf+/rTWXNsc8O1bTa5u9OmnlQaWZVrXnpsr8fKJKifr+U+sWHiajWcLjVt8xuGQwlQNjS8dS5FzTSvZeL5Q1jHtPo6lsG2FrRS2ZWa9PO0tdE+bJP35J3r7cYgTTRQnkxXoQZTghQlBHBPECUmi6Y5CVjoed1sjul6EpRSWZdaKX5gtcWa6cGizrYIoYaU9Yrk94m57RBibYEZhKmZO1vKcni5+YsADpqLlTnPIja0Bq11vvOyLmVKW87NFTk8V7tm+pLXmTmvE5bsdGoMgDYg0YaK50xjw8cZgf9BTcKnlXSo5F8dS1IoZpooZzs8UeWWpum8oc6I11zcHfHe5zUpnxGbPp5JzOTdd5HsuTHOidjjVNlGc0B6FXF7pcHWjTzFjM1fJ4oUJGdviB543LWOftdBZCCHEg5HgRwghxGO12fP5J1fWubHVx1YWzy+U0idsikLm8YZAYOZivHGzwTeuN2mNQmwF06UslZxD34/peSHzlSyvLNV4/XSdfGb7SWCj7+/atnN2usiZ6QIrHY8rq13eT59ExXv+d5mxFbPlLEu1Ai+fMFt4TtYLD1XNEsYJN7bME8IbWwM6o3CyUa1acJkv5zgzXWC+kmO+YuaEHIcnbfE4lEgrh2KtSdKQaBwQjY3bzMbtZI6tcC0L17GwLczrtrUrLLIsZUILBZZSqPElpGHG0/cz1FqTpMPUE61JEvN6rDV6x+uJ1sRxOqspjgkjTRAnhJEmHIc46bFqoUgwg4knA4Y1NAY+ax2P1Y5HECeTY2qqkOFkPc/pqcK+8OJRjIKYjZ7HetdjvevT8bardzK2xYlanpO1PIu13AMFSmFswqLbzSF326PJJj/XUpysm1avhWruvlVHcaK51RhweaVLZxjQ9yMSrRmFCTe3BmY1+57PqY+DnrxL1rGoFjLU8i6npgp8fql64Mr3rb7P27fbLLeHbPV9otgE0RfmSnzxdJ3KAwRaDyKME+62hrx1p81mP6CWdzg3W6TdD4m05svnpvjqczOfqZZTIYQQj0aCHyGEEEem54X80w83uXy3Q5Jozs8WmatkcSyLrG3mwzzuVp9hEPEvr27xjetNep4ZBF3KuWRtRc+PqeYdPr9U4/uem9lVUaC15lZjyDvLbbpeNFkLf2m+xEbP54M1s73n8kqHgb+7CkAB1bxZzTxdzDBdyvLcXInT9QJL9fxDrYTveSG3Gmbd/HJryCAwLTdxrCnnHCp5l1LWXM5XcixUssyVcw/UjvZZNA5FxoFRMg5Jku3Xx5VFk8+BHYOr9a4n8wom4dC4qkihUJb5mFKmfc2yTFikAGWZIEWlQZLW5n6R3rre8YXHf1qlXX4kyXaAozGhjdaaOIFEJ+a2xvdtfOPseN/k+zEtdeZ+MLn/25fm+9JpuLPe8VjtejT6AXF6m7YyK8NP1vIsfcoKMz+K2eoFJtjpebQGwa6fc861mStnHzq4DOOE1Y7HneaQ5faIKK0Gciyzlev0VIETtfwDhRnDIJoMeR/6Ee1RaKqb0pk3nT3zvmwFU6UstbxLOeuQz9iUcy6VvMNiNc/nl6oHrjbv+xHvr3TM1wlM2JxzbKp5h1dO1nhpsXJolWtBtN0qFiaaU/U8z82VuN0Y4kcJLyxW+OEX5z7T1YNCCCEengQ/QgghnggvjPnGdbOhZuDHph1itkgp6+BYFsWMfSRtPAM/4l9c3eJbN0wQNG7dsC1FwbW5OF/m659b2DfgdLs6oEN3FEE6i+PlxTKDIObKapcraz0+XOtypznaVyng2rBQyVMrZCjnHKaLGQoZsylrtpxjvpJloZKjXsw80GwUP4pZaXsst4asdDwGfkTfN6vszdwVi3LWmczycCzFdDHLTDnLTCnDTCkrG3tSidbotMIG0iAHzc4/i8bv2/32bjsftXs9hOPHdhzW3Ot9D2MUxKx3TbCz3vHoB9vDjm2lmCpmWKjmWKzkmC5lHzpsjROzLWur77PV99ns+ftanjK2xcw42ClnH/g4Ht/+Vt/nbnvESntEexROfpaubVaen5oqcLL+YAEPmCBuvetzZa3L7cYwnf8VEUQJGz2Plba37/HLuzZTRZepYoZS1qWcM78/GcfiRDXHSycqLFT2t3X2vJD3Vrpc2+wTJxo/TIiShHzGplbI8KW0AvCw9L2Qb91s8vFGH8dSvHaqxsl6nvdWuvhRwueWqnzt+VkJe4QQ4hkmwY8QQognbjzn5p9+sMFqxwM0Z2eKnEz/5X78ZOsoRHHCW7fb/NbVTVbaHp1RiB/F5F2bM9MFfvcri3z+ZG3fk71EmyDo3bvdydDZM9MFXlqsUMw6XNvs89F6j4/W+1xZ7dIYBPu+djFjc362yEIlTyXvkLEt04aTfqnxjKT5So65sgltqnn3vk+oxyutVzseq50RW2mFR5xoRmGMwrREaUyL2rjVaXyLxaxDrZAxLS3pZSl7PNrKPquGQcR612ezZ9qkul64qwIo59ospJU0C9UcpQes9tJa0/MimoOA5jCgOQhoDQKCONl1PSsNj2ZL28Hhw4YK48Blo+vvqwiylGK2lOVEPc9SLf9IbYzDIOLaRp+P1vusdEa0hgGjIKYzCllpj/a1Z1rKVOXVC2Ymz0wpQ84xm7dsS3FupsiLi5UD29w6o5D3Vjpc3xqgtakMUkrhRzG2ZXFhtsirJ2uHVnWXJAlXNwZ8+3aTnhdRyNj8wKVZSlmHN2+3CGPN50/W+NrzsxLmCiGEACT4EUII8RTqeSH/8uoW37nVYhTEzJSyXJwrUsy5j3049EGubfT5jQ/WeXelQ3MQEsYJxYzNa6dq/NSXTzFX2T+ANUlbw66sdmmmIU+9aFben54q0vcjPl7v8VG6WeeDtd6+1c8Arq04N13kwlyJ8zMlTtRy5Fyb1jBgqx/QGW4/YR5nRLW8mz4hNy/3euKstabrRax2Rqx1zLyVMNlui1JAKeuQdWwc27x3EMT0vXDfbQFkHJtK3qGad6nmzNyTat6lkDnax+tp84s//9f4kd/z+5iemQWgsbXJr/2Dv8tP/Vt/bNf1Eq3pjEJaafDSGgS0huZ42/kXWSEN/2bTipr7Pb7DIKbrhXRHEV0vpJe+PthRBbRTOWcqXMYv9YL7SEObgyhhq++z3vXY6Pk0B8GkggpMRdBs2VS1zVVy1Ar3DzDvZzwP6/LdDrcaA1rDkL4fMfAjNnoeUbL/cyp5l6mCS73gMlfJM1VwiRKNUoqsY3Fpvszz8+VdM7/A/EzHrZ13mkPTKpp1KGYdmgOfMNZU8y5fOF3nVD1/aMd9ZxTwrRstbmz10cDFuRI/+PwsW4OAt2+3iRLN66frfPXijIQ9Qggh9nlswY9S6uvAYeshGwAAJZNJREFU/wjYwF/XWv+F+11fgh8hhBAH0Vrz3kqX3/hgg0bfJ040Z6YLXJgtkXHsI2sJ26kzDPjnH2/y61c2WO95JIkm69h84XSNP/SlkyzViwd+XqPvc2Wtx62GqQwYP8G8NF8m51ps9n2ubw64sTXg6oaZPdIa7g9ZFLBUz0+GTZ+ZKnBmush8JYdSpgJhq5e24fQDevcIaooZh1rBhDNmG1GGSt6dtP7EiaY1DNjsmXaezb6PH8b7ZrVMFTNMFTKmTc9WBFFC14vojEK6o5DhPUIGMGFV3rUpZByKWZtixjyJLmTtydr3rGt9ZgfQ/sL/8df4S//tn+fMC6/yH/25/56eH/NX/8pfptkb8tUf/BFefu31SdBmKUUl51BPf561gks556I1DMMobd+LJ6FG348YBTH3+ntNKUU+Y1PJuVTS+U+V3Lhl6dHDuDBOaPQDNtNWr62+P1mJPpaxLaZLWeYrJpyqFzKHMr8rTjR3mgO+c7vNxxt92sOAzsgEWp3RwcdZKetQL7pMFTIs1fLMV7L4kal6A5ivZLk0Xz5wAHsYJ1zb6PPBWo9+2jY5V84yW8qy3vXY7PtYluKFhTKfO1E9tNAlTjRXVju8ebvNKIwpZR2++tw0L5+o8vZym4/XTVvXV85N85VzU0dWESmEEOKz6bEEP0opG/gI+BFgGXgD+Gmt9fv3+hwJfoQQQjyIvm+GM3/7ZpO+H5FzbF5cLDNfyVHIOGQd68irSxKt+faNJn/rO3e42x4RJ5qca3Nhxvyr/Csna9SL+1tEvDCeVPx4YYICFqs5Ls2XWarnsZSiOwq5sTXg+lbftK5s9Fnr7J9HAukGo6lxIGRWVZ+ZKjBbzu77mYyrQTqjkPYonDyB7qQDbu8l59qUcg7lrJMGPRZ+FDMKYgZ+TM8PTRiRXn88fDjv2tSLGao5l2oaNlXzZuW1HyXbM4mCmIEfMQhivDB9iRLieH/Zxt6hzDu/5phtW7iW2rX5y0mHHo9n6IwHH5uhzWZQs2WZjyutCRKNF8SMwhgvTNJL8zJegb49FyjdspUOlw6CgPfe/Bb9ThPXUhD7jLodqtUyP/kHfppCobDre9n7fTjpOvt8xp5Uluy8LGTsR66U2SlOhxq3h+ZYGB8TwyCe/DzH98u1LaaLGVNVVswyXco8liqTnhfy9p02373bYa09ouNFdNOQJ9jbq8V2u9a4JfHMdIHFah4/SuilA9lLWYeL8yUuzJYOvM/NQcAHa11ubA1ItKm4uzBbYr6S5cbWkNvNIWDColdP1pg/YJjzo0i05nZjyFt3Wmz1TYXgxfkSX7s0i20pvnWjyUbPp5Rz+NqlOV5cLD/TVXRCCCEezuMKfr4X+C+11j+Wvv2nAbTWf/5enyPBjxBCiEdxtzXk1z/Y4Gq6MWehkuXFxQr1gpk78ri3hB0kjBN++9oWv3J5bbJa2rEUtYLLyVqBL5yumXCnlt9VraS1ZrXj8dF6j7vtkZkXYinOzhS5NFearIb2wpg7TfMk9FZzyPXNATcb+7cQjeUci6V6nqVagaVajqV6gaVanhO13EPNZtFaT55E9/2QnmeCmlFogp9RGOOH+9vVzM/EzBTyoxg/TPDSy0Rvr2nfGcLkXJusY5FNL3PO+G2LrGNjm/Vak01bcWI2Yo0vo1gTJQlhnKSbs/Zv+tJ6x5BmDQmYzVvjj5lvGte2yLlm61wubTUspK8X00vTCqfMSvk9YVO31eBf/7Hvo9XYAqA+PcPf+Se/PWn9OmxhnND3TGtX34/oehE9L6TvRZO5TnsppajkzWryWsHMuqkV3CNpqwzjhCurXd6+0+bqRp/WpIonmqxl3yvnWFTT+zlfzvL8QoWZUobNfjCZsZVxLM7NFHlutnRg8Nr3I65u9Lm60cdLj9t6weWFxQpz5SxXVnt8vNEjTjS1gsvnl2qcmS4cys9Da81ye8Q7d9qsdz1irVmq5fnyuSmenytxt+Pxxo0mwyDmRC3PD704t2/AvBBCCPGgHlfw8weAr2ut/2j69h8GfofW+k/c63Mk+BFCCPFpJYnm7Ttt/tmHG2z0fII44exUgYvzZaaKpirhMKojHtZW3+fNWy3evtNmuT3EC031iqWgWnCZL+c4M13gudkyp6cK1Aru5MllGCfcagz5aL1nZgUpM+PlwmyJszPFXSvnB37EnTQMurnV5/rWgFvN4b718jvV8y4n0xXYJ2t5TtTyLFZzzFWyjzTb5VGNq2TC2IQ13VHIwI8ZhjHDtAJoFJigaRjExNrMIhoHNOOButaOKh7HNpUyhYyTBjYmwMk4Fo5l4VgmqHHs9HVr9+u2pQ7lSX5ja5Pf/8PfS6vZBGVRn5nlF/7BP6NSmyKME/zIfM9BlBCkl7vfr/HSqiqt9YHVXjs5ttngVs45VHKuqdDKOZSzLjn36CviwARz690RH6/3ubLW5WZjSHNg2hAHfnzP7ynnWGZWVM6lXszw3FyJC7NFXNviVmM42ViWc2zOz5hZWDt/J8a8MOb61oCP13v0PPM5hYzNxbkSF+ZKAHy41uOjjT5BlJB3bT53osJzc6VDaSUdh7rfXW6z2vEI44TFWo6XT1R5cbGCbSneud3m2lYfheKlExV+VzqwWQghhPi0Hlfw8weBH9sT/HxFa/0f7LnezwI/C3D69Okv3rp165G+nhBCCHEQP4x542aT377eYLPnE0Sa87MFnl+oMF3MHGmwMZZozfXNAe/cabGezs6JYo0fxUSJxlbgOJapuMi7nKjmTNvW9HbIMwwirqWzgLrp/B5bKU5NFTg/U2ShmtsVcHXTTUbL7RF3WyNuNQfcbg7Z6vn7thvtVM+7LFRzzFfTDVHppqj5Spbp4sOvAT9qcaInLVnjNq1xe1acJITxuEpo+/UoTkwAlWjidKjyp/kuh8Mhv/z//E1ajS1y+RxozajfZXp6hp/+mT9CvVrBTdu5XNsi46QvtoVrK7KObS7TSqOn9WeutabvR2z0zEDn280hN7YGLLdGNAf+fcMdgLxrTYaBz5dzXJov8bkTFew04FnteJOwr5hxODdb5MJMiVJufzAy8KO0PXJAd2Q2nmUdi/OzRS7OlanmXbb6PldWu9xqDtHatCI+v1Dm4tzBLWAPK0oHTl9Z69EaBoRxwkwpwwsLJkyaKrrcbpqKn1EYUy9k+J0XZ7k0X5IWLiGEEIdOWr2EEEI8M0ZBzDdvNPjtaw22+j6J1pybKfHSQoWpUuaJDBAeBhGX73b5aKPHKJ1rA5o4YdK6ZduKIIhxHYtawQxgnilmWKzmWazlmCvnTOtIa8T1rQGrndHkSfZ0McO5GTPvZ29bV5xoNvs+d1sj7rZHLLeG3GwMWOt4tEch9/szwFYwN14rn24Pmy5l0tczTBezlB9hDfdx84s//9f4b/6z/4QLl17gr//ffx+AP/qHfi/XPvqAP/Pn/uK+zV5PqzjRtNNNchs9s6lrpTNiuTlkvevTGYX3bMsay7sW5ZxLKeswVcxwZqrApYUyLy6UCROzBe9WY4gXmQo111Is1QucmS5woprfF3ppbY7fG1sDbjaGhOmA6ULG5txMkXMzRWqFDHGiud00G/Ya6Ya9mVKGFxcqnJ4uHEoVYN+P+GCty7WNPn6UkGg4UctxcbbEXCXHTDlDFGvevN3ibnuErRSvnqrxPeenD23NuxBCCHEvjyv4cTDDnX8IuIsZ7vxvaK3fu9fnSPAjhBDiqPW8kG/eaPKNaw0ag4Ak0SzWcry4UOHUVOGJBEHtYcC7dzvcagwnFQ6urQhjnbY5RdhKkXEt/NAMRVbKDK0t51wyjkUp67BYNRU6rm2x3B5xpzlkmM4xUcB8Ocfp6QKn6oV9K6vBPNFv9H3WumbN+3rX505ryEp7xGbPZ3DA6vm9XEtN1spPp2GQ2R62PUOmmjebq57WSpbD8KDr3J+EODEr5JuDYMeLWb/eTDe6NQYBfS/65BYzS1HI2BSzDsWMGeZ9drrI8wtlXlqskHdtVrsey80hy+0RfhrUKGCmlOVsOpD8oBXqnVHIcmvEndbQhDfpnZktZzk3Y7bbjSv4+n7ER2s9Pt7smzBIwZmpAi8tViZzsj6NRGtW2iM+Wu+x0vbQaDK2xenpAmenixQyDjMls8Xs/VUTBsVaM1/J8bsuznJ25uCtf0IIIcTj8jjXuf8E8D9g1rn/nNb6v77f9SX4EUII8aQN/YjLKx3+v6sNbjUHxImmknN5abHCxfnyY9lc9Emag4DLdzvcbg7RmICnlHXojAK8KDEzX9JWlUSbdiU/MsN9oySZrPQuptufLKWYLrq4to0fxXS9iCDefgI+X8mlg5/zVO5TseOFMRs936yNH5jL1a7HWsej0Q/ojIIDNy8dRGFmHdXSjUzjcKiUcyezaorZdJNYOqumkH0y85qeZnGiGQZmHlJ3FNL1QnM5MoOeO5P3bb89nnfzIDK2SkMdh2LOYa6U5WQ9z7nZIpfmzBwtgK4Xsd71WGmPJi1aYNoRF6s5TtYLnKzn9/0+JVqz0fNZbg650xoySDeKaaCaczk1VeBUPc9UMTM5LpO00u2DtS7rXR+AYsbm0nyZ5w6pbas1DPh4vcf1rQFRrNFoZktZTk8XmCtnsS2LqWIG11Z8sNbj6kYfraFezPA7zk1NZvgIIYQQT8pjC34elgQ/QgghnjZeGHOrMeBfXt3ivZUuYZzg2Bbnpou8dKLCXPlwVjk/jEbf5927HZZbIwCKWZvTU2Yl+K3GdlVPwbVZqObIOhbNgWnRidNJyMMgItbgWGYgdi5j41gWidaMgngyZFmjyGcs8o6N61jMV3KcqJptYOXc/gG6ew2DiMYgoNEP2Or7bPV9Gn2fzX5Aa2A2N/X9aFL58TAUTFaal7IOhayZgZNz7ckg5/Hb421c441c43k6brqBy9mz7t21rcfyRF2nG8XGg6yDyAxwNkOdzZYzP07ww/GQZzOPaLwyfuDHk2BnFES73h4G0WRo+MNyLEXOtShkHEpZm6liltlSlvlqjpP1PKfrBWbL2cmQ4yBKWO95rHc81rrepCVx/FdjNWdmQy1UcyxWcruGIyda0xoErHQ8Vjsjtnr+rvX1c+UcJ6fynKwXDhxs3BmFXNvoc3XTDGFGwclanhcWKsxXsp+6tdALY65t9vl4vU/fN6FYOedwZrrAQtVU0FnKbOjL2hYfrJugJ9GaWj7D7zg/xUuLlUMZCC2EEEIcFgl+hBBCiAfkhTGNgc9bt1q8dbvNZj8ANFnHVBi8uFCmWti/Nvpx6ntmtsjVzT5RrLEtxflZ0zKz1fO5tjWYPIF1LMVSLc/Z6SKVnMtGzzxxX+t4+GnVj06rhrJpIKIV6cBjGAQRfS+il1YJZR1rEqjMlbOcnipwdrrAQjX/UG1yUZzQGYW0RyHtYUg7XefdHoa0hgHtUWjWkftmq5cXxoQPWE30qMZbwdx0s9d4bbxSCjVeI0/6+vj9bIc6caKJtSZJmLwef8IMnEO534CVbiVzbUU+YzZ7TRdNGDNXzjFXyTFfzlIvZva12WmtGQQxm+ng8c2+T3sY7Poarm1NhnwvVHJU8+6uwCWMEzZ7Phs9n9XOyGyjSylgqphlsZZjsZq775Dwzijk6kaf61t9/NCEPJWcw4XZEhdmP301T2sQcGNrwI3GgFHauphxLM7PFDlZL+A65jG1LMVUIUMYJ3y43uNO04Su5ZzDV85N8bml6hNpCxVCCCEelAQ/QgghxCMKooRhELHR9fnO7SaXl7v00pCllHV4fqHMc7MlKgesl35cojjh+taAK6tdeulclvlKlotzZRarOda7Hje2BrtacIoZmzNTZk7KVNEMw20MTJXOOAAYt4ON5VybUtbBtRVoTd+P2ez7rHd9+n5EsuNvCAXkMzZThQxTpQwzxSxTxUxaqeNQyNgUMqYa50ErNuJEM/Aj+unLKDCbu0bpFi8TUIXpx01FzPg6QZSYDV7jgCYxw3iTcVhzBH/+KMC2TKgwXj9voiSzjn78MbNW3oRwWceimHWoFzPMFk1FzkI6YLtacMm5929/01rT9aLJLJ9WOsdnZ6sfmEqq2VKW2bJ5qebdXbc7PuY3ej6bPTMIfCfHtpgtZZgrm3BnZ2vWvbSHAVc3+9zYHEwqwCp5E/KcnykdOIfqQcWJ5m57xPXNPivt0eTxrRdczk4XOVHPYSnLtEaicGxFLe/SHgVcWTVbuRSKE7U8Xz5b58JsCUtat4QQQnyGSPAjhBBCHJLxjJWhH3GnNeTN2x1ubQ3o+RGWgqxjc2a6wPmZEou13JHMqNFas97z+Xi9x53mkESbCpWlWp5L8yYMGgSmpe1WY2iqM9K7Vco6nKqbuSoz5ey+J/+bPTMEuJVW6YzC/QOfbUtRzjrYlmIUxgyDeBLURGlLWRgnhJFZnT5u0zKXDhlH3fPnZFsqXX9upwGJeTHBicJWJjyxlTKXO0KWRANak16kl2Ze0rhqx6x314SJqTAyLwlRbFqxonQFPJgbSGBy+0opLLargawdVUGWpcg5NoWsnc4tctPh3KZtLetYDxWA9X0TcvXSsKs7imimK8QnxwHmYa3kXKaKGaaKGerFDFOFDBnHIhxXXaWPZXsY0hoFk01Z49sAszVrrpybBEO1PRU/9xPGCcutETcbA1bao8nmuEre5bm5Eudnio9cyRMnmrWOx+3WkOXmcFLFZisT2pyfKTJfyRHGCX5k1ssrBaWMi23B3faIaxsD/DjGVornFyp86Wyd+crRt3QKIYQQh0mCHyGEEOIx0doMWh4GMX0vZKPn8eFan1uNAes9H4Wp7JgrZzk/U+L09P6V64/DuALi6kaPlY4H2oQoZ6YLXJwrM1MyFRo9L+ROy2wE2+pvz2LJ2hZL9Tyn6ttzT+5lbxvXOKDYWxUEECUJXpCk67DT9qhYm8oXW+FaCmfHTJ5KOvQ5nxnP7jHzezKOuT8mwNnffqXT8Mu0b+1p42LH+9Pr7J3/49oKxzKXdtoK9igSrfHCeFKJ5IUJoyBKK5cSRmlb2yiMSdINb3v/MrOUGbhcyZmtbuWcCZAKGYdRuH/I8zCIds3UGbNtKx2u7VLLpwO2C+5kU9bD0lrTGobc2BpwqzGYzJ5yLMWputl+tVDNPdIspTBOWGmPuNMacbc9IopNaGgrxUI1x6l0eHTGsSZzlKIkAQ2uYx7Hja7Htc0BYZRgWYpq3uXzJ2u8fKIi69WFEEIcOxL8CCGEEEcoSTReZCpf2sOA9iDkTnvI7cYwfRKr02oVswr99FSBU1MHD7o9TGGccKsx5OONHo1+OpNFwWIlx7mZ4q719l4YT554r3VGadWLYVbJmwHQ85X7h0L3Mq5iGYciXhgzTFu4xu8bBDEDL2QUJfjpzJ8grRwK0yDgXjRmho9tjQOc3aHOOOjJ2ArbtkxBz7gaCFMlNH6ftSM4Qil2/e2UVgFpNEpvhzbjH5eGNETaHig9rlxSyhwDKm0BC+OEURjjh/EnrlUHs+Wtknep5FyqeZdK3sz6KWQevJ3uQcSJZr3rsdwastwaTQIegKlChrMzRc5MFR46TAmihLWuGQC92vYYBNvbxxzLVPCcqhc4UTMBT6LNsGwvjInTkMxKf36bPZ9bzSF+mGBbZjDzyyeqvLxUofIAQ8qFEEKIzzoJfoQQQognbNwiNgpjOkNTmdHzQhoDn5WOGb7shfEkEJguZjhZy7NQzTNdyjy2lrFEm9aZG1sDlltDwmR7JtDZ6SLnZorU9gyz7nkhqx2zynu95xPtaDcqZGxmyzlmShlmS1lqhcwTW3MdJxovNJuwvNBszxqFMX4U73pfEO0IkbQJcRi3hmGCvCSdCzT+u2lSLZS2e6HYFRCNK4ucHUFTZlxJNAmddodQWccin7Efqg3ssGit6XkRa/dY0T5fMdu/TtbzD1yxlmhNe2iq4MaDoL0doVHGtsxWsGqehWpuV/C5vRFtO+RJ0vs4vi1LmSqxat7lxcUKn1uqUj3CWVtCCCHE00SCHyGEEOIplCR6Mqi450V00padKEroeCFrHTNfpzMKGecAGrNKezFdpf2oFTefpO9H3NwacGNrQMcLJ1+8XnA5lVYoHTT3ZTwXaLPvs9ULaA2Dfe1etUKG2VKGmZIZAF3ZM1hYPB7jTVxr6Yr25p5NXpWcw3wlx4laft+K9nvdXnMQTAZAb/aDSQg4fjRrhQxz6ZyguXJu3wBnrc1cpfG6ezABT983A6rXuz5BlODYFjnH4vxciRcXypydKcqWLSGEEGIHCX6EEEKIz4jxzCAvjBn4EV0vojcKGYbxpOph6Mc0hwGNfkBjEEzmn4yHCs8Us8xWssyVs8yUsof2BFlrTXsUcqc55E5zSGvHpqdKzgyJXqrnmSll7xnkJFrTGYZsptvEWsOA7iicVNfAeBuWopbPMFV0mSpmqRdMO9MnhRHPslEQb29p65vQMEmHWwO4lmK2bALDhUqOeuHggc2jIKY1TLeCpZd9P9o1L0hj2rGmipldQ6A/aRZUEO+Y7xQnbPQCmkN/0nroWKYlb76S5YWFCi8sVKgWpIpHCCGE+CQS/AghhBCfcXGiJy1KoyCi44X0R9EkENKAhWk/6nkhrWFoQoB+QLxnTXutkG58KmSoF13qhcynDoc6o3AyA6aRDoke/4VRSSuUFh+iQimKE9qjcHsteRoQRffYw+6kg6Ar6fDjUtYMP86na+Q/y9UhWmsGQWxWs6fr2VuDYFfbFEDWtXetaK/kXII4YRhE9D0TInZHZvh214u419+AOdeebAMbXxazDzY3KNHpFrfIzGNKkoTWMGC9508Gf2cc83jkXYvzsyWz6Wu2eCRDz4UQQojjSoIfIYQQ4pjaGwgNgpjeKGIYRsQ7QhJLKTLpcOGhH9EchrSGQfoS7prTM1bMOkwVMlQLZoBwJedQybsPFaJorel6EaudEWsdb9dMIDP42GI2nQc0W84xXXq0ECqME3o7go1euk5+vF4+jJNdG7P2bs8aRxpKpevjbbM5bLxBLONYZG2zVt7MYdpe6z4eMGylK+UtTOXV+DY1JhDRmu1V8mnlVs8L6fsRAz9Kt6IF+FEy2VA23lZm2+Ovb+5bzrVxbLXve9rJshR51yafsSnvePwq6Wr5R529pLVZcR/GZj5SZ2RCxo2eT6Pvk2jMz822yLgWS7U852ZKnJkusFTLYz2hmU9CCCHEcSbBjxBCCPGM0dpUXIxXXY+CmJ4fMvRjsz1J7wwM1GR9uZNuoAIYpC1lnVGYBioRXS+chCh72ZailK5ez7nmJb/r0gQWO4cXh3Gy3Z7U89kaBPtCqErOZbZs5gGZdeSZyTr3wxangcZ46PN49szOt8dhTBAljEKzcWwUxZNh0X6YEERxumJc71srDyYkyroW+YxD0bUpZG1KOZd6waWYccg4OwZAO2oSRLnpqvvHPfx5HCi2BmY4czNt+Rq35bmWmtyf6VKWM9MFzs0UOT9TpCRbtIQQQogjd7/gR2pqhRBCiGNIKUXWsck6NuU9HxvPEQrjhDDW+KEJgwa+qZDpetvtY8WsTSnrcGaqgGOryXr0g6pFojgxK9qjBC+tthmFZl6MF8aMxpu0dqwrPyi+2Fkpo7Vmq+dxszGYBCteGKM1uwOVtOJm3NqVd+10hbvZnGUBGpVu59IkO6qhNAffj4PsvG7WNV+rWnBZzOTIZxwKO76+2dBl3+/mjtS4ZawzDGiPTMVXZxjS2TFDavxTsZQi61jMlLIs1XK8frrGUi3PYi1P3j3cdfFCCCGEeLwk+BFCCCGeMUqpSUXOQZLEVAuNW3mCdA36KDAtZYMg2tU6NZkxpBSuZVHJWUyla9ytdLX5YdHpWvXtAGe7jSqIEzqjYDJLxgsThmkAFUTx9gp21CQ0Ir3/djpzJufa5JxxlZJFdk/VUtY9moob2F5pvvOxmIR1kXk8hpOXiGEQT34+Ov357B2anc/YVHIO00WzZevlExUWK3nqRZeMa+Na2yvnhRBCCHE8SPAjhBBCiF0sS5Gz7h0MwXZLVJTo7W1NaUWPFyUEYcIojAjixFTnoNDo7aoSbVrDTDhkXsZBkZW+7yBKKWwF9j1qdKaKmUf6nsPx/Y9MUOQFpnWrPQxZjzzzvrRqKd6xRe0w7QzRtAbLSrdcWab9zvy8TDtexjHze6aKLifqOfKuTSGtOMqm7XQ5xwRZtmWCnIwtoY4QQgjxLJLgRwghhBAPzYQQn9zGNB4EHCfpZawJEzO82E9bt8LEbIGKYo0fJ4RBMhlMPQlXJonR7rHMk+odtV1dZO2o6gF2VfnsvLlx1Y5S5vspZM2snd33/97f1zig0WwPbh4vT9/59rhCaefHx2OZ9wZIOr0/jrV7vo+7Y7Czkw7pti0zm8m2TKWVDE0WQgghxEEk+BFCCCHEY6OUCSfuUzx0IK23w6LxMOVxW1eyo51pEiglmihJSLSZNRRr07I2Dl70+HMTTQL7WqJ23t971BrtCo7sHdu7LKWwbBPmTKqWxhu+0hDHsRWubZmQKa1wsnZcd7wpzJ68LiGOEEIIIQ6HBD9CCCGEeOoopcyGsadnNrIQQgghxGeSNHkLIYQQQgghhBBCHFMS/AghhBBCCCGEEEIcUxL8CCGEEEIIIYQQQhxTEvwIIYQQQgghhBBCHFMS/AghhBBCCCGEEEIcUxL8CCGEEEIIIYQQQhxTEvwIIYQQQgghhBBCHFMS/AghhBBCCCGEEEIcUxL8CCGEEEIIIYQQQhxTEvwIIYQQQgghhBBCHFMS/AghhBBCCCGEEEIcUxL8CCGEEEIIIYQQQhxTEvwIIYQQQgghhBBCHFNKa310X0ypTeDWEX25GWDriL6WePrJ8SD2kmNC7CXHhNhLjgmxlxwTYi85JsReckyInY7yeDijtZ496ANHGvwcJaXUt7XWX3rS90M8HeR4EHvJMSH2kmNC7CXHhNhLjgmxlxwTYi85JsROT8vxIK1eQgghhBBCCCGEEMeUBD9CCCGEEEIIIYQQx9RxDn7+6pO+A+KpIseD2EuOCbGXHBNiLzkmxF5yTIi95JgQe8kxIXZ6Ko6HYzvjRwghhBBCCCGEEOJZd5wrfoQQQgghhBBCCCGeacci+FFK/UWl1AdKqe8qpX5JKVW7x/W+rpT6UCl1VSn1p474boojpJT6g0qp95RSiVLqnlPUlVI3lVLvKqXeVkp9+yjvozhaD3FMyHniGaGUmlJK/ZpS6uP0sn6P68l54pj7pN97ZfxP6ce/q5R6/UncT3E0HuB4+JpSqpOeE95WSv3nT+J+iqOjlPo5pdSGUuryPT4u54hnzAMcE3KeeIYopU4ppf6pUupK+nzjPzzgOk/0PHEsgh/g14DPaa0/D3wE/Om9V1BK2cD/Cvw48BLw00qpl470XoqjdBn4/cBvPsB1f1Br/drTsGZPPFafeEzIeeKZ86eAX9daXwR+PX37XuQ8cUw94O/9jwMX05efBf7ykd5JcWQe4v8Dv5WeE17TWv9XR3onxZPw88DX7/NxOUc8e36e+x8TIOeJZ0kE/Mda6xeB7wH+/aftb4ljEfxorf+x1jpK3/wGcPKAq30FuKq1vq61DoBfBH7yqO6jOFpa6yta6w+f9P0QT48HPCbkPPFs+Ungb6Sv/w3g9z25uyKeoAf5vf9J4P/UxjeAmlJq8ajvqDgS8v8BsY/W+jeB5n2uIueIZ8wDHBPiGaK1XtVav5m+3gOuAEt7rvZEzxPHIvjZ498BfuWA9y8Bd3a8vcz+B0M8ezTwj5VS31FK/eyTvjPiiZPzxLNlXmu9CuZ/2MDcPa4n54nj7UF+7+Xc8Ox40Mf6e5VS7yilfkUp9fLR3DXxFJNzhDiInCeeQUqps8AXgG/u+dATPU84R/WFPi2l1D8BFg740J/VWv+99Dp/FlNm9QsH3cQB75OVZp9hD3JMPIDv11qvKKXmgF9TSn2QJvjiM+gQjgk5Txwz9zsmHuJm5DxxvD3I772cG54dD/JYvwmc0Vr3lVI/AfxdTOm+eHbJOULsJeeJZ5BSqgT8beBPaq27ez98wKcc2XniMxP8aK1/+H4fV0r9DPB7gB/SB++oXwZO7Xj7JLByePdQHLVPOiYe8DZW0ssNpdQvYUq85QndZ9QhHBNynjhm7ndMKKXWlVKLWuvVtNR24x63IeeJ4+1Bfu/l3PDs+MTHeucf81rrf6SU+t+UUjNa660juo/i6SPnCLGLnCeePUopFxP6/ILW+u8ccJUnep44Fq1eSqmvA/8p8K9qrYf3uNobwEWl1DmlVAb4KeCXj+o+iqePUqqolCqPXwd+FDMAWDy75DzxbPll4GfS138G2FcVJueJZ8KD/N7/MvBvphs5vgfojNsExbHziceDUmpBKaXS17+C+Xu6ceT3VDxN5BwhdpHzxLMlfaz/d+CK1vq/u8fVnuh54jNT8fMJ/hcgiynBB/iG1vqPK6VOAH9da/0TWutIKfUngP8XsIGf01q/9+TusniclFL/GvA/A7PAP1RKva21/rGdxwQwD/xSesw4wP+ltf7VJ3anxWP1IMeEnCeeOX8B+FtKqT8C3Ab+IICcJ54t9/q9V0r98fTjfwX4R8BPAFeBIfBvP6n7Kx6vBzwe/gDw7yqlImAE/NQ9qs3FMaGU+pvA14AZpdQy8F8ALsg54ln1AMeEnCeeLd8P/GHgXaXU2+n7/gxwGp6O84SS408IIYQQQgghhBDieDoWrV5CCCGEEEIIIYQQYj8JfoQQQgghhBBCCCGOKQl+hBBCCCGEEEIIIY4pCX6EEEIIIYQQQgghjikJfoQQQgghhBBCCCGOKQl+hBBCCCGEEEIIIY4pCX6EEEIIIYQQQgghjikJfoQQQgghhBBCCCGOqf8f6VJoyy0IJKsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -297,7 +323,7 @@ ], "source": [ "## generate test points for prediction\n", - "xx = np.linspace(-26, 26, 100).reshape(100, 1) # test points must be of shape (N, D)\n", + "xx = np.linspace(-2.1, 2.1, 100).reshape(100, 1) # test points must be of shape (N, D)\n", "\n", "## predict mean and variance of latent GP at test points\n", "mean, var = model.predict_f(xx)\n", @@ -319,7 +345,7 @@ ")\n", "plt.plot(xx, samples[:, :, 0].numpy().T, \"C0\", linewidth=0.5)\n", "#plt.plot(X, Y, color = 'darkorange', lw = 2)\n", - "_ = plt.xlim(-26, 25.1)" + "_ = plt.xlim(-2.1, 2.1)" ] }, { @@ -331,7 +357,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ @@ -348,7 +374,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 23, "metadata": {}, "outputs": [ { @@ -367,53 +393,35 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ + "# Find the minimum of the regression model\n", "x = cs.MX.sym(\"x\")\n", - "y = cs.MX.sym(\"y\")" + "y = 2 * gpr(x) + 5\n", + "f = cs.Function('f', [x], [y])" ] }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 43, "metadata": {}, "outputs": [], "source": [ - "y = 2 * gpr(x) + 5" + "prob = {\"x\":x,\"f\":f(x)}\n", + "options = {\"ipopt\": {\"hessian_approximation\": \"limited-memory\", \"max_iter\": 500,\n", + " \"acceptable_tol\": 1e-5,\n", + " #\"linear_solver\": \"SPRAL\",\n", + " \"acceptable_obj_change_tol\": 1e-3, \n", + " #\"mu_strategy\": \"adaptive\",\n", + " #\"expect_infeasible_problem\": \"yes\"\n", + " }}" ] }, { "cell_type": "code", - "execution_count": 35, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "MX((5+(2.*GPR(x){0})))" - ] - }, - "execution_count": 35, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "y" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 27, + "execution_count": 44, "metadata": {}, "outputs": [ { @@ -425,11 +433,11 @@ "\n", "Number of nonzeros in equality constraint Jacobian...: 0\n", "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 1\n", + "Number of nonzeros in Lagrangian Hessian.............: 0\n", "\n", "Total number of variables............................: 1\n", " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", + " variables with lower and upper bounds: 1\n", " variables with only upper bounds: 0\n", "Total number of equality constraints.................: 0\n", "Total number of inequality constraints...............: 0\n", @@ -438,77 +446,651 @@ " inequality constraints with only upper bounds: 0\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 -3.0922590e+00 0.00e+00 6.66e-01 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -3.1593436e+00 0.00e+00 8.96e-03 -1.7 2.01e-01 - 1.00e+00 1.00e+00f 1\n", - " 2 -3.1593563e+00 0.00e+00 8.16e-06 -3.8 2.83e-03 - 1.00e+00 1.00e+00f 1\n", - " 3 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.55e-06 - 1.00e+00 1.00e+00f 1\n", - " 4 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 5 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 6 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 7 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 8 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 9 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", + " 0 4.3566376e+00 0.00e+00 1.51e-01 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 4.3561821e+00 0.00e+00 1.75e-01 -5.7 7.55e-02 - 9.54e-01 2.50e-01f 3\n", + " 2 4.3557888e+00 0.00e+00 1.19e-04 -2.7 7.62e-03 - 9.98e-01 1.00e+00f 1\n", + " 3 4.3557888e+00 0.00e+00 2.47e-05 -8.7 2.29e-05 - 9.98e-01 1.00e+00f 1\n", + " 4 4.3557888e+00 0.00e+00 6.55e-06 -11.0 1.68e-06 - 1.00e+00 1.00e+00f 1\n", + " 5 4.3557888e+00 0.00e+00 4.68e-06 -10.1 6.18e-07 - 1.00e+00 5.00e-01f 2\n", + " 6 4.3557888e+00 0.00e+00 4.68e-06 -10.1 1.29e-07 - 1.00e+00 3.64e-12f 39\n", + " 7 4.3557888e+00 0.00e+00 4.68e-06 -10.1 1.29e-07 - 1.00e+00 3.64e-12f 39\n", + " 8 4.3557888e+00 0.00e+00 4.68e-06 -10.1 1.29e-07 - 1.00e+00 3.64e-12f 39\n", + " 9 4.3557888e+00 0.00e+00 1.54e-05 -10.1 4.68e-06 - 1.00e+00 1.25e-01f 4\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 11 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 12 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 13 -3.1593563e+00 0.00e+00 9.29e-08 -8.6 2.93e-08 - 1.00e+00 1.49e-08f 27\n", - " 14 -3.1593563e+00 0.00e+00 3.42e-07 -8.6 2.93e-08 - 1.00e+00 1.00e+00w 1\n", - " 15 -3.1593563e+00 0.00e+00 2.63e-07 -8.6 1.07e-07 - 1.00e+00 1.00e+00f 1\n", - " 16 -3.1593563e+00 0.00e+00 2.63e-07 -8.6 8.33e-08 - 1.00e+00 3.73e-09f 29\n", - " 17 -3.1593563e+00 0.00e+00 2.63e-07 -8.6 8.33e-08 - 1.00e+00 3.73e-09f 29\n", - "\n", - "Number of Iterations....: 17\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: -3.1593562585952397e+00 -3.1593562585952397e+00\n", - "Dual infeasibility......: 2.6281251540962405e-07 2.6281251540962405e-07\n", - "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.6281251540962405e-07 2.6281251540962405e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 382\n", - "Number of objective gradient evaluations = 18\n", - "Number of equality constraint evaluations = 0\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 0\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 17\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.154\n", - "Total CPU secs in NLP function evaluations = 12.702\n", - "\n", - "EXIT: Solved To Acceptable Level.\n", + " 10 4.3557888e+00 0.00e+00 1.44e-05 -10.1 1.54e-05 - 1.00e+00 2.44e-04f 13\n", + " 11 4.3557888e+00 0.00e+00 1.11e-05 -10.1 5.23e-08 - 1.00e+00 5.00e-01f 2\n", + " 12 4.3557888e+00 0.00e+00 2.19e-06 -10.1 1.14e-08 - 1.00e+00 1.22e-04f 14\n", + " 13 4.3557888e+00 0.00e+00 1.60e-05 -10.1 3.42e-13 - 1.00e+00 2.50e-01f 3\n", + " 14 4.3557888e+00 0.00e+00 6.64e-06 -10.1 7.51e-14 - 1.00e+00 7.81e-03f 8\n", + " 15 4.3557888e+00 0.00e+00 9.34e-06 -10.1 3.11e-14 - 1.00e+00 1.00e+00w 1\n", + " 16 4.3557888e+00 0.00e+00 4.30e-07 -10.1 1.82e-14 - 1.00e+00 1.00e+00w 1\n", + " 17 4.3557888e+00 0.00e+00 1.05e-06 -11.0 8.38e-16 - 1.00e+00 1.00e+00 0\n", + " 18 4.3557888e+00 0.00e+00 3.52e-06 -11.0 2.04e-15 - 1.00e+00 1.00e+00T 0\n", + " 19 4.3557888e+00 0.00e+00 1.54e-05 -9.0 3.52e-06 - 1.00e+00 7.81e-03f 8\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 20 4.3557888e+00 0.00e+00 8.17e-06 -9.0 1.54e-05 - 1.00e+00 9.77e-04f 11\n", + " 21 4.3557888e+00 0.00e+00 1.26e-05 -9.0 5.22e-09 - 1.00e+00 9.54e-07f 21\n", + " 22 4.3557888e+00 0.00e+00 7.43e-06 -9.0 8.06e-09 - 1.00e+00 1.95e-03f 10\n", + " 23 4.3557888e+00 0.00e+00 8.75e-06 -9.0 5.83e-12 - 1.00e+00 6.10e-05f 15\n", + " 24 4.3557888e+00 0.00e+00 4.37e-06 -9.0 6.87e-12 - 1.00e+00 1.22e-04f 14\n", + " 25 4.3557888e+00 0.00e+00 2.59e-05 -9.0 3.43e-12 - 1.00e+00 4.88e-04f 12\n", + " 26 4.3557888e+00 0.00e+00 1.05e-05 -9.0 2.59e-05 - 1.00e+00 5.82e-11f 35\n", + " 27 4.3557888e+00 0.00e+00 1.39e-05 -9.0 1.05e-05 - 1.00e+00 1.82e-12f 40\n", + " 28 4.3557888e+00 0.00e+00 1.05e-05 -9.0 1.39e-05 - 1.00e+00 3.64e-12f 39\n", + " 29 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.05e-05 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 30 4.3557888e+00 0.00e+00 3.05e-06 -9.0 9.75e-06 - 1.00e+00 1.00e+00w 1\n", + " 31 4.3557888e+00 0.00e+00 2.19e-05 -9.0 2.24e-07 - 1.00e+00 1.00e+00w 1\n", + " 32 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.60e-06 - 1.00e+00 1.00e+00S 21\n", + " 33 4.3557888e+00 0.00e+00 5.27e-06 -9.0 1.19e-05 - 1.00e+00 1.00e+00f 1\n", + " 34 4.3557888e+00 0.00e+00 1.81e-05 -9.0 4.79e-07 - 1.00e+00 1.56e-02f 7\n", + " 35 4.3557888e+00 0.00e+00 1.13e-05 -9.0 5.79e-09 - 1.00e+00 1.00e+00f 1\n", + " 36 4.3557888e+00 0.00e+00 5.75e-06 -9.0 9.70e-09 - 1.00e+00 1.22e-04f 14\n", + " 37 4.3557888e+00 0.00e+00 1.67e-05 -9.0 3.99e-13 - 1.00e+00 1.00e+00f 1\n", + " 38 4.3557888e+00 0.00e+00 4.57e-06 -9.0 2.97e-13 - 1.00e+00 4.88e-04f 12\n", + " 39 4.3557888e+00 0.00e+00 3.80e-05 -9.0 8.13e-14 - 1.00e+00 4.88e-04f 12\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 40 4.3557888e+00 0.00e+00 5.16e-06 -9.0 6.76e-13 - 1.00e+00 6.25e-02f 5\n", + " 41 4.3557888e+00 0.00e+00 2.95e-05 -9.0 5.16e-06 - 1.00e+00 2.50e-01f 3\n", + " 42 4.3557888e+00 0.00e+00 4.46e-06 -9.0 1.10e-06 - 1.00e+00 6.25e-02f 5\n", + " 43 4.3557888e+00 0.00e+00 3.53e-06 -9.0 1.22e-08 - 1.00e+00 3.12e-02f 6\n", + " 44 4.3557888e+00 0.00e+00 1.70e-06 -9.0 1.68e-10 - 1.00e+00 2.38e-07f 23\n", + " 45 4.3557888e+00 0.00e+00 5.92e-06 -9.0 8.10e-11 - 1.00e+00 2.50e-01f 3\n", + " 46 4.3557888e+00 0.00e+00 1.12e-05 -9.0 1.57e-11 - 1.00e+00 4.88e-04f 12\n", + " 47 4.3557888e+00 0.00e+00 1.12e-05 -9.0 2.97e-11 - 1.00e+00 1.49e-08f 27\n", + " 48 4.3557888e+00 0.00e+00 8.63e-06 -9.0 2.97e-11 - 1.00e+00 1.00e+00w 1\n", + " 49 4.3557888e+00 0.00e+00 1.37e-04 -9.0 8.63e-06 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 50 4.3557888e+00 0.00e+00 2.66e-05 -9.0 8.12e-06 - 1.00e+00 1.00e+00w 1\n", + " 51 4.3557888e+00 0.00e+00 1.12e-05 -9.0 1.96e-06 - 1.00e+00 1.49e-08f 26\n", + " 52 4.3557888e+00 0.00e+00 1.12e-05 -9.0 3.70e-07 - 1.00e+00 1.82e-12f 40\n", + " 53 4.3557888e+00 0.00e+00 1.12e-05 -9.0 3.70e-07 - 1.00e+00 1.82e-12f 40\n", + " 54 4.3557888e+00 0.00e+00 1.12e-05 -9.0 3.70e-07 - 1.00e+00 1.82e-12f 40\n", + " 55 4.3557888e+00 0.00e+00 2.03e-05 -9.0 1.12e-05 - 1.00e+00 3.05e-05f 16\n", + " 56 4.3557888e+00 0.00e+00 4.20e-06 -9.0 2.03e-05 - 1.00e+00 5.82e-11f 35\n", + " 57 4.3557888e+00 0.00e+00 4.20e-06 -9.0 4.20e-06 - 1.00e+00 3.64e-12f 39\n", + " 58 4.3557888e+00 0.00e+00 4.20e-06 -9.0 4.20e-06 - 1.00e+00 1.14e-13f 44\n", + " 59 4.3557888e+00 0.00e+00 4.20e-06 -9.0 4.20e-06 - 1.00e+00 1.14e-13f 44\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 60 4.3557888e+00 0.00e+00 4.20e-06 -9.0 4.20e-06 - 1.00e+00 1.14e-13f 44\n", + " 61 4.3557888e+00 0.00e+00 6.64e-05 -9.0 4.20e-06 - 1.00e+00 1.00e+00w 1\n", + " 62 4.3557888e+00 0.00e+00 2.68e-06 -9.0 3.95e-06 - 1.00e+00 1.00e+00w 1\n", + " 63 4.3557888e+00 0.00e+00 1.22e-05 -9.0 1.53e-07 - 1.00e+00 1.00e+00w 1\n", + " 64 4.3557888e+00 0.00e+00 6.64e-05 -9.0 1.26e-07 - 1.00e+00 1.00e+00S 21\n", + " 65 4.3557888e+00 0.00e+00 1.83e-05 -9.0 4.65e-06 - 1.00e+00 1.00e+00f 1\n", + " 66 4.3557888e+00 0.00e+00 1.82e-05 -9.0 1.00e-06 - 1.00e+00 1.00e+00f 1\n", + " 67 4.3557888e+00 0.00e+00 1.38e-05 -9.0 5.00e-07 - 1.00e+00 4.66e-10f 32\n", + " 68 4.3557888e+00 0.00e+00 3.48e-06 -9.0 3.80e-07 - 1.00e+00 4.88e-04f 12\n", + " 69 4.3557888e+00 0.00e+00 5.28e-06 -9.0 3.74e-11 - 1.00e+00 1.53e-05f 17\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 70 4.3557888e+00 0.00e+00 1.92e-05 -9.0 5.67e-11 - 1.00e+00 9.54e-07f 21\n", + " 71 4.3557888e+00 0.00e+00 1.92e-05 -9.0 2.06e-10 - 1.00e+00 1.49e-08f 27\n", + " 72 4.3557888e+00 0.00e+00 1.92e-05 -9.0 1.92e-05 - 1.00e+00 2.84e-14f 46\n", + " 73 4.3557888e+00 0.00e+00 1.92e-05 -9.0 1.92e-05 - 1.00e+00 2.84e-14f 46\n", + " 74 4.3557888e+00 0.00e+00 1.92e-05 -9.0 1.92e-05 - 1.00e+00 2.84e-14f 46\n", + " 75 4.3557888e+00 0.00e+00 1.92e-05 -9.0 1.92e-05 - 1.00e+00 2.84e-14f 46\n", + " 76 4.3557888e+00 0.00e+00 1.92e-05 -9.0 1.92e-05 - 1.00e+00 2.84e-14f 46\n", + " 77 4.3557888e+00 0.00e+00 2.35e-04 -9.0 1.92e-05 - 1.00e+00 1.00e+00w 1\n", + " 78 4.3557891e+00 0.00e+00 2.92e-03 -9.0 2.35e-04 - 1.00e+00 1.00e+00w 1\n", + " 79 4.3557888e+00 0.00e+00 5.45e-06 -9.0 2.17e-04 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 80 4.3557888e+00 0.00e+00 2.35e-04 -9.0 4.05e-07 - 1.00e+00 1.00e+00S 21\n", + " 81 4.3557888e+00 0.00e+00 5.30e-06 -9.0 1.79e-05 - 1.00e+00 1.00e+00f 1\n", + " 82 4.3557888e+00 0.00e+00 3.86e-06 -9.0 4.14e-07 - 1.00e+00 1.00e+00f 1\n", + " 83 4.3557888e+00 0.00e+00 9.12e-06 -9.0 1.10e-06 - 1.00e+00 5.00e-01f 2\n", + " 84 4.3557888e+00 0.00e+00 1.81e-05 -9.0 2.61e-06 - 1.00e+00 3.12e-02f 6\n", + " 85 4.3557888e+00 0.00e+00 9.04e-06 -9.0 5.43e-08 - 1.00e+00 1.00e+00f 1\n", + " 86 4.3557888e+00 0.00e+00 6.84e-06 -9.0 5.40e-08 - 1.00e+00 5.00e-01f 2\n", + " 87 4.3557888e+00 0.00e+00 9.35e-06 -9.0 1.16e-08 - 1.00e+00 5.00e-01f 2\n", + " 88 4.3557888e+00 0.00e+00 1.01e-05 -9.0 1.59e-08 - 1.00e+00 2.44e-04f 13\n", + " 89 4.3557888e+00 0.00e+00 1.26e-05 -9.0 2.02e-12 - 1.00e+00 3.05e-05f 16\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 90 4.3557888e+00 0.00e+00 1.24e-05 -9.0 2.50e-12 - 1.00e+00 7.63e-06f 18\n", + " 91 4.3557888e+00 0.00e+00 6.62e-06 -9.0 2.46e-12 - 1.00e+00 1.53e-05f 17\n", + " 92 4.3557888e+00 0.00e+00 1.10e-05 -9.0 6.62e-06 - 1.00e+00 3.64e-12f 39\n", + " 93 4.3557888e+00 0.00e+00 8.95e-06 -9.0 1.10e-05 - 1.00e+00 2.27e-13f 43\n", + " 94 4.3557888e+00 0.00e+00 8.95e-06 -9.0 8.95e-06 - 1.00e+00 2.27e-13f 43\n", + " 95 4.3557888e+00 0.00e+00 8.95e-06 -9.0 8.95e-06 - 1.00e+00 5.68e-14f 45\n", + " 96 4.3557888e+00 0.00e+00 1.32e-04 -9.0 8.95e-06 - 1.00e+00 1.00e+00w 1\n", + " 97 4.3557888e+00 0.00e+00 2.44e-05 -9.0 8.38e-06 - 1.00e+00 1.00e+00w 1\n", + " 98 4.3557888e+00 0.00e+00 1.66e-05 -9.0 1.31e-06 - 1.00e+00 1.00e+00w 1\n", + " 99 4.3557888e+00 0.00e+00 1.32e-04 -9.0 5.30e-07 - 1.00e+00 1.00e+00S 21\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 100 4.3557888e+00 0.00e+00 3.32e-06 -9.0 8.09e-06 - 1.00e+00 1.00e+00f 1\n", + " 101 4.3557888e+00 0.00e+00 1.89e-05 -9.0 1.99e-07 - 1.00e+00 2.50e-01f 3\n", + " 102 4.3557888e+00 0.00e+00 2.90e-05 -9.0 4.23e-08 - 1.00e+00 1.00e+00f 1\n", + " 103 4.3557888e+00 0.00e+00 9.38e-06 -9.0 6.48e-08 - 1.00e+00 1.00e+00f 1\n", + " 104 4.3557888e+00 0.00e+00 3.74e-05 -9.0 3.10e-08 - 1.00e+00 1.25e-01f 4\n", + " 105 4.3557888e+00 0.00e+00 2.03e-05 -9.0 1.24e-07 - 1.00e+00 2.98e-08f 26\n", + " 106 4.3557888e+00 0.00e+00 4.42e-06 -9.0 6.70e-08 - 1.00e+00 1.00e+00f 1\n", + " 107 4.3557888e+00 0.00e+00 8.32e-07 -9.0 4.42e-06 - 1.00e+00 4.77e-07f 22\n", + " 108 4.3557888e+00 0.00e+00 1.13e-05 -9.0 3.34e-13 - 1.00e+00 1.22e-04f 14\n", + " 109 4.3557888e+00 0.00e+00 1.58e-05 -9.0 4.54e-12 - 1.00e+00 3.91e-03f 9\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 110 4.3557888e+00 0.00e+00 2.52e-05 -9.0 6.32e-12 - 1.00e+00 1.53e-05f 17\n", + " 111 4.3557888e+00 0.00e+00 1.13e-05 -9.0 2.52e-05 - 1.00e+00 3.12e-02f 6\n", + " 112 4.3557888e+00 0.00e+00 7.51e-06 -9.0 2.44e-07 - 1.00e+00 5.00e-01f 2\n", + " 113 4.3557888e+00 0.00e+00 3.87e-08 -9.0 4.87e-08 - 1.00e+00 1.00e+00f 1\n", + " 114 4.3557888e+00 0.00e+00 6.03e-06 -9.0 2.52e-10 - 1.00e+00 1.00e+00f 1\n", + " 115 4.3557888e+00 0.00e+00 1.86e-05 -9.0 3.93e-08 - 1.00e+00 1.95e-03f 10\n", + " 116 4.3557888e+00 0.00e+00 1.72e-05 -9.0 5.79e-11 - 1.00e+00 9.54e-07f 21\n", + " 117 4.3557888e+00 0.00e+00 1.89e-06 -9.0 5.38e-11 - 1.00e+00 4.88e-04f 12\n", + " 118 4.3557888e+00 0.00e+00 2.14e-05 -9.0 2.60e-15 - 1.00e+00 7.81e-03f 8\n", + " 119 4.3557888e+00 0.00e+00 1.35e-06 -9.0 2.94e-14 - 1.00e+00 5.00e-01f 2\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 120 4.3557888e+00 0.00e+00 9.35e-06 -9.0 1.86e-15 - 1.00e+00 1.00e+00 0\n", + " 121 4.3557888e+00 0.00e+00 1.13e-05 -9.0 9.35e-06 - 1.00e+00 1.46e-11f 37\n", + " 122 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 3.64e-12f 39\n", + " 123 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 5.68e-14f 45\n", + " 124 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 5.68e-14f 45\n", + " 125 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 5.68e-14f 45\n", + " 126 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 5.68e-14f 45\n", + " 127 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 5.68e-14f 45\n", + " 128 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 5.68e-14f 45\n", + " 129 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 130 4.3557888e+00 0.00e+00 1.13e-05 -9.0 1.13e-05 - 1.00e+00 5.68e-14f 45\n", + " 131 4.3557888e+00 0.00e+00 1.31e-04 -9.0 1.13e-05 - 1.00e+00 1.00e+00w 1\n", + " 132 4.3557888e+00 0.00e+00 6.04e-06 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 133 4.3557888e+00 0.00e+00 2.20e-05 -9.0 4.61e-07 - 1.00e+00 1.00e+00w 1\n", + " 134 4.3557888e+00 0.00e+00 1.31e-04 -9.0 3.62e-07 - 1.00e+00 1.00e+00S 21\n", + " 135 4.3557888e+00 0.00e+00 1.21e-05 -9.0 1.20e-05 - 1.00e+00 1.00e+00f 1\n", + " 136 4.3557888e+00 0.00e+00 1.55e-05 -9.0 1.02e-06 - 1.00e+00 1.00e+00f 1\n", + " 137 4.3557888e+00 0.00e+00 1.04e-05 -9.0 5.71e-07 - 1.00e+00 3.81e-06f 19\n", + " 138 4.3557888e+00 0.00e+00 2.13e-05 -9.0 4.54e-12 - 1.00e+00 5.00e-01f 2\n", + " 139 4.3557888e+00 0.00e+00 1.38e-05 -9.0 9.27e-12 - 1.00e+00 1.56e-02f 7\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 140 4.3557888e+00 0.00e+00 7.70e-07 -9.0 2.64e-13 - 1.00e+00 4.88e-04f 12\n", + " 141 4.3557888e+00 0.00e+00 7.70e-07 -9.0 1.47e-14 - 1.00e+00 1.95e-03f 10\n", + " 142 4.3557888e+00 0.00e+00 7.70e-07 -9.0 1.47e-14 - 1.00e+00 9.77e-04f 11\n", + " 143 4.3557888e+00 0.00e+00 7.70e-07 -9.0 7.70e-07 - 1.00e+00 3.64e-12f 39\n", + " 144 4.3557888e+00 0.00e+00 7.70e-07 -9.0 7.70e-07 - 1.00e+00 9.09e-13f 41\n", + " 145 4.3557888e+00 0.00e+00 7.70e-07 -9.0 7.70e-07 - 1.00e+00 9.09e-13f 41\n", + " 146 4.3557888e+00 0.00e+00 7.70e-07 -9.0 7.70e-07 - 1.00e+00 9.09e-13f 41\n", + " 147 4.3557888e+00 0.00e+00 7.78e-06 -9.0 7.70e-07 - 1.00e+00 1.00e+00w 1\n", + " 148 4.3557888e+00 0.00e+00 5.43e-06 -9.0 7.01e-07 - 1.00e+00 1.00e+00w 1\n", + " 149 4.3557888e+00 0.00e+00 2.41e-05 -9.0 2.88e-07 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 150 4.3557888e+00 0.00e+00 7.78e-06 -9.0 2.35e-07 - 1.00e+00 1.00e+00S 21\n", + " 151 4.3557888e+00 0.00e+00 5.15e-06 -9.0 7.58e-08 - 1.00e+00 1.00e+00f 1\n", + " 152 4.3557888e+00 0.00e+00 1.34e-05 -9.0 1.48e-07 - 1.00e+00 1.00e+00f 1\n", + " 153 4.3557888e+00 0.00e+00 1.08e-06 -9.0 3.86e-07 - 1.00e+00 1.25e-01f 4\n", + " 154 4.3557888e+00 0.00e+00 1.12e-05 -9.0 3.60e-09 - 1.00e+00 5.00e-01f 2\n", + " 155 4.3557888e+00 0.00e+00 1.67e-05 -9.0 1.64e-09 - 1.00e+00 9.77e-04f 11\n", + " 156 4.3557888e+00 0.00e+00 1.22e-05 -9.0 9.62e-13 - 1.00e+00 3.05e-05f 16\n", + " 157 4.3557888e+00 0.00e+00 2.06e-05 -9.0 6.99e-13 - 1.00e+00 9.77e-04f 11\n", + " 158 4.3557888e+00 0.00e+00 2.61e-05 -9.0 1.18e-12 - 1.00e+00 4.88e-04f 12\n", + " 159 4.3557888e+00 0.00e+00 1.64e-05 -9.0 2.61e-05 - 1.00e+00 1.46e-11f 37\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 160 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.64e-05 - 1.00e+00 3.64e-12f 39\n", + " 161 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 4.55e-13f 42\n", + " 162 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 163 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 164 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 165 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 166 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 167 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 168 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 169 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 170 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 171 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 172 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 173 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 174 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 175 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 176 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 177 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 178 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 179 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 180 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 181 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 182 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 183 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 184 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 185 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 186 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 187 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 188 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 189 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 190 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 191 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 192 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 193 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 194 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 195 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 196 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 197 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 198 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 199 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 200 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 201 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 202 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 203 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 204 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 205 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 206 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 207 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 208 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 209 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 210 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 211 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 212 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 213 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 214 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 215 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 216 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 217 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 218 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 219 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 220 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 221 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 222 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 223 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 224 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 225 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 226 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 227 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 228 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 229 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 230 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 231 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 232 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 233 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 234 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 235 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 236 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 237 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 238 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 239 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 240 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 241 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 242 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 243 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 244 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 245 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 246 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 247 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 248 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 249 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 250 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 251 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 252 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 253 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 254 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 255 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 256 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 257 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 258 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 259 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 260 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 261 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 262 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 263 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 264 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 265 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 266 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 267 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 268 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 269 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 270 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 271 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 272 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 273 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 274 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 275 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 276 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 277 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 278 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 279 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 280 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 281 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 282 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 283 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 284 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 285 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 286 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 287 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 288 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 289 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 290 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 291 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 292 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 293 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 294 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 295 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 296 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 297 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 298 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 299 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 300 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 301 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 302 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 303 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 304 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 305 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 306 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 307 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 308 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 309 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 310 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 311 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 312 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 313 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 314 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 315 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 316 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 317 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 318 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 319 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 320 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Exception ignored in: ))>\n", + "Traceback (most recent call last):\n", + " File \"/usr/lib/python3.9/site-packages/tensorflow_probability/python/internal/cache_util.py\", line 153, in _cleanup\n", + " if self._alive:\n", + "AttributeError: _alive\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 321 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + "Warning: Cutting back alpha due to evaluation error\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "CasADi - 2021-04-15 15:16:54 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 322 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 323 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 324 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 325 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 326 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 327 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 328 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 329 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 330 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 331 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 332 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 333 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 334 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 335 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 336 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 337 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 338 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 339 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 340 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 341 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 342 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 343 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 344 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 345 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 346 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 347 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 348 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 349 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 350 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 351 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 352 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 353 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 354 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 355 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 356 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 357 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 358 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 359 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 360 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 361 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 362 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 363 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 364 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 365 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 366 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 367 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 368 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 369 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 370 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 371 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 372 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 373 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 374 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 375 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 376 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 377 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 378 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 379 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 380 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 381 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 382 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 383 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 384 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 385 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 386 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 387 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 388 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 389 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 390 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 391 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 392 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 393 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 394 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 395 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 396 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 397 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 398 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 399 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 400 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + "Warning: Cutting back alpha due to evaluation error\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "CasADi - 2021-04-15 15:17:28 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n", + "Exception ignored in: ))>\n", + "Traceback (most recent call last):\n", + " File \"/usr/lib/python3.9/site-packages/tensorflow_probability/python/internal/cache_util.py\", line 153, in _cleanup\n", + " if self._alive:\n", + "AttributeError: _alive\n", + "CasADi - 2021-04-15 15:17:28 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n", + "CasADi - 2021-04-15 15:17:28 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: Cutting back alpha due to evaluation error\n", + "Warning: Cutting back alpha due to evaluation error\n", + " 401 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 402 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 403 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 404 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 405 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 406 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "Warning: Cutting back alpha due to evaluation error\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "CasADi - 2021-04-15 15:17:31 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n", + "Exception ignored in: ))>\n", + "Traceback (most recent call last):\n", + " File \"/usr/lib/python3.9/site-packages/tensorflow_probability/python/internal/cache_util.py\", line 153, in _cleanup\n", + " if self._alive:\n", + "AttributeError: _alive\n", + "CasADi - 2021-04-15 15:17:31 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: Cutting back alpha due to evaluation error\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Exception ignored in: ))>\n", + "Traceback (most recent call last):\n", + " File \"/usr/lib/python3.9/site-packages/tensorflow_probability/python/internal/cache_util.py\", line 153, in _cleanup\n", + " if self._alive:\n", + "AttributeError: _alive\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 407 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "Warning: SOC step rejected due to evaluation error\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "CasADi - 2021-04-15 15:17:31 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n", + "CasADi - 2021-04-15 15:17:32 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Warning: Cutting back alpha due to evaluation error\n", + " 408 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "Warning: Cutting back alpha due to evaluation error\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "CasADi - 2021-04-15 15:17:32 WARNING(\"solver:nlp_f failed:Error in Function::operator() for 'nlp_f' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 409 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", + " 410 4.3557888e+00 0.00e+00 1.36e-04 -9.0 1.04e-05 - 1.00e+00 1.00e+00w 1\n", + " 411 4.3557888e+00 0.00e+00 5.77e-06 -9.0 9.62e-06 - 1.00e+00 1.00e+00w 1\n", + " 412 4.3557888e+00 0.00e+00 2.37e-05 -9.0 4.25e-07 - 1.00e+00 1.00e+00w 1\n", + " 413 4.3557888e+00 0.00e+00 1.04e-05 -9.0 3.41e-07 - 1.00e+00 5.68e-14f 44\n", + " 414 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 415 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.49e-07 - 1.00e+00 3.64e-12f 39\n", + " 416 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + " 417 4.3557888e+00 0.00e+00 1.04e-05 -9.0 1.04e-05 - 1.00e+00 5.68e-14f 45\n", + "Exception of type: IpoptException in file \"Unknown File\" at line -1:\n", + " Exception message: Unknown Exception caught in Ipopt\n", " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 5.63 s ( 14.75ms) 4.65 s ( 12.17ms) 382\n", - " nlp_grad_f | 1.70 s ( 89.52ms) 1.41 s ( 74.02ms) 19\n", - " nlp_hess_l | 6.28 s (369.37ms) 5.17 s (304.13ms) 17\n", - " total | 13.67 s ( 13.67 s) 11.25 s ( 11.25 s) 1\n" + " nlp_f | 123.95 s ( 9.99ms) 124.14 s ( 10.00ms) 12411\n", + " nlp_grad_f | 25.20 s ( 60.15ms) 25.25 s ( 60.25ms) 419\n", + " total | 150.03 s (150.03 s) 150.29 s (150.29 s) 1\n" ] } ], "source": [ - "# Find the minimum of the regression model\n", - "x = cs.MX.sym(\"x\")\n", - "y = cs.MX.sym(\"y\")\n", "\n", "\n", - "solver = cs.nlpsol(\"solver\",\"ipopt\",{\"x\":x,\"f\":gpr(x)})\n", - "res = solver(x0=5)" + "solver = cs.nlpsol(\"solver\",\"ipopt\",prob, options)\n", + "res = solver(lbx = -2, ubx = 2)" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "DM(4.79658)" + "DM(0.0112358)" ] }, - "execution_count": 23, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -519,140 +1101,22 @@ }, { "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 0\n", - "Number of nonzeros in inequality constraint Jacobian.: 0\n", - "Number of nonzeros in Lagrangian Hessian.............: 1\n", - "\n", - "Total number of variables............................: 1\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 0\n", - "Total number of inequality constraints...............: 0\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 0\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 6.3760954e-01 0.00e+00 2.71e+00 -1.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 -5.8354097e-02 0.00e+00 1.59e+00 -1.0 2.54e+01 0.0 1.00e+00 5.00e-01f 2\n", - " 2 -7.1463206e-01 0.00e+00 1.95e-01 -1.0 9.53e-01 - 1.00e+00 1.00e+00f 1\n", - " 3 -7.2594987e-01 0.00e+00 8.28e-03 -2.5 1.20e-01 - 1.00e+00 1.00e+00f 1\n", - " 4 -7.2596945e-01 0.00e+00 1.31e-04 -3.8 4.81e-03 - 1.00e+00 1.00e+00f 1\n", - " 5 -7.2596945e-01 0.00e+00 3.16e-06 -5.7 7.64e-05 - 1.00e+00 1.00e+00f 1\n", - " 6 -7.2596945e-01 0.00e+00 3.90e-07 -8.6 1.80e-06 - 1.00e+00 1.00e+00f 1\n", - " 7 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 2.29e-07 - 1.00e+00 5.00e-01f 2\n", - " 8 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - " 9 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - " 11 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - " 12 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - " 13 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - " 14 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - " 15 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - " 16 -7.2596945e-01 0.00e+00 2.62e-07 -8.6 1.47e-07 - 1.00e+00 3.73e-09f 29\n", - " 17 -7.2596945e-01 0.00e+00 2.59e-07 -8.6 1.47e-07 - 1.00e+00 1.00e+00w 1\n", - " 18 -7.2596945e-01 0.00e+00 8.23e-08 -8.6 1.47e-07 - 1.00e+00 1.00e+00w 1\n", - " 19 -7.2596945e-01 0.00e+00 6.60e-08 -8.6 4.64e-08 - 1.00e+00 1.00e+00w 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 -7.2596945e-01 0.00e+00 2.59e-07 -8.6 3.81e-08 - 1.00e+00 1.00e+00S 21\n", - "\n", - "Number of Iterations....: 20\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: -7.2596945434578142e-01 -7.2596945434578142e-01\n", - "Dual infeasibility......: 2.5857828373980074e-07 2.5857828373980074e-07\n", - "Constraint violation....: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Complementarity.........: 0.0000000000000000e+00 0.0000000000000000e+00\n", - "Overall NLP error.......: 2.5857828373980074e-07 2.5857828373980074e-07\n", - "\n", - "\n", - "Number of objective function evaluations = 340\n", - "Number of objective gradient evaluations = 21\n", - "Number of equality constraint evaluations = 0\n", - "Number of inequality constraint evaluations = 0\n", - "Number of equality constraint Jacobian evaluations = 0\n", - "Number of inequality constraint Jacobian evaluations = 0\n", - "Number of Lagrangian Hessian evaluations = 20\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 0.152\n", - "Total CPU secs in NLP function evaluations = 13.521\n", - "\n", - "EXIT: Solved To Acceptable Level.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 5.01 s ( 14.73ms) 4.16 s ( 12.23ms) 340\n", - " nlp_grad_f | 2.01 s ( 91.28ms) 1.67 s ( 76.05ms) 22\n", - " nlp_hess_l | 7.51 s (375.54ms) 6.22 s (310.88ms) 20\n", - " total | 14.58 s ( 14.58 s) 12.08 s ( 12.08 s) 1\n", - "-13.561827666614862\n" - ] - } - ], - "source": [ - "opti = cs.Opti()\n", - "\n", - "x = opti.variable()\n", - "\n", - "f = gpr(x)\n", - "#f = (2.6-x)**2+(y-x**2)**2\n", - "\n", - "opti.minimize(f)\n", - "\n", - "opti.solver('ipopt')\n", - "\n", - "sol = opti.solve()\n", - "\n", - "print(sol.value(x))" - ] - }, - { - "cell_type": "code", - "execution_count": 25, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "-0.7259694543457814" + "DM(4.35579)" ] }, - "execution_count": 25, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sol.value(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "-13.561827666614862" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sol.value(x)" + "res['f']" ] }, { @@ -679,7 +1143,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.2" + "version": "3.9.3" } }, "nbformat": 4, diff --git a/Notebooks/50_mpc_formulation.ipynb b/Notebooks/50_mpc_formulation.ipynb index 7be82ca..b72ec35 100644 --- a/Notebooks/50_mpc_formulation.ipynb +++ b/Notebooks/50_mpc_formulation.ipynb @@ -60,7 +60,7 @@ "metadata": {}, "outputs": [], "source": [ - "tf.config.set_visible_devices([], 'GPU')" + "gpflow.config.set_default_summary_fmt(\"notebook\")" ] }, { @@ -68,6 +68,15 @@ "execution_count": 6, "metadata": {}, "outputs": [], + "source": [ + "tf.config.set_visible_devices([], 'GPU')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] @@ -81,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -97,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -106,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -115,16 +124,16 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 10, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -142,16 +151,16 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ - "exp_id = 'Exp6'" + "exp_id = 'Exp5'" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -160,7 +169,7 @@ "'../Data/input_WDB.mat'" ] }, - "execution_count": 12, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -176,22 +185,13 @@ "## Load the existing GP model" ] }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "df_trainset = pd.read_pickle(\"gp_trainset.pkl\")" - ] - }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "x_scaler = pickle.load(open('x_scaler.pkl', 'rb'))" + "model_path = Path(Path.cwd(), 'model')" ] }, { @@ -200,146 +200,129 @@ "metadata": {}, "outputs": [], "source": [ - "df_input = df_trainset.drop(columns = ['y'])\n", - "df_output = df_trainset['y']" + "def load_gpr(model_path):\n", + " x_scaler = pickle.load(open(Path(model_path, 'x_scaler.pkl'), 'rb'))\n", + " m_params = pickle.load(open(Path(model_path, 'gp_params.gpf'), 'rb'))\n", + " m_data = pickle.load(open(Path(model_path, 'gp_data.gpf'), 'rb'))\n", + "\n", + " k = gpflow.kernels.SquaredExponential(lengthscales=([1] * m_data[0].shape[1])) + gpflow.kernels.Constant()\n", + "\n", + " m = gpflow.models.GPR(\n", + " data = m_data, \n", + " kernel = k, \n", + " mean_function = None\n", + " )\n", + " \n", + " gpflow.utilities.multiple_assign(m, m_params)\n", + " \n", + " return x_scaler, m" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, - "outputs": [], - "source": [ - "np_input = df_input.to_numpy()\n", - "np_output = df_output.to_numpy().reshape(-1, 1)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "np_input_sc = x_scaler.transform(np_input)" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "n_states = np_input_sc.shape[1]" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "╒═════════════════════════════╤═══════════╤═════════════╤═════════╤═════════════╤═════════╤═════════╤════════════════╕\n", - "│ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │\n", - "╞═════════════════════════════╪═══════════╪═════════════╪═════════╪═════════════╪═════════╪═════════╪════════════════╡\n", - "│ Sum.kernels[0].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │\n", - "├─────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ Sum.kernels[0].lengthscales │ Parameter │ Softplus │ │ True │ (7,) │ float64 │ [1., 1., 1.... │\n", - "├─────────────────────────────┼───────────┼─────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ Sum.kernels[1].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │\n", - "╘═════════════════════════════╧═══════════╧═════════════╧═════════╧═════════════╧═════════╧═════════╧════════════════╛\n" - ] + "data": { + "text/html": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
name class transform prior trainable shape dtype value
GPR.kernel.kernels[0].variance ParameterSoftplus True () float64284790.175758825
GPR.kernel.kernels[0].lengthscalesParameterSoftplus True (7,) float64[8.23155895e+04, 1.32876975e+05, 2.21167354e+02...
GPR.kernel.kernels[1].variance ParameterSoftplus True () float64220815.62255492577
GPR.likelihood.variance ParameterSoftplus + Shift True () float640.1263230455247145
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "k = gpflow.kernels.SquaredExponential(lengthscales=([1] * np_input.shape[1])) + gpflow.kernels.Constant()\n", - "print_summary(k)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "╒════════════════════════════════════╤═══════════╤══════════════════╤═════════╤═════════════╤═════════╤═════════╤════════════════╕\n", - "│ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │\n", - "╞════════════════════════════════════╪═══════════╪══════════════════╪═════════╪═════════════╪═════════╪═════════╪════════════════╡\n", - "│ GPR.kernel.kernels[0].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ GPR.kernel.kernels[0].lengthscales │ Parameter │ Softplus │ │ True │ (7,) │ float64 │ [1., 1., 1.... │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ GPR.kernel.kernels[1].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 1.0 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼────────────────┤\n", - "│ GPR.likelihood.variance │ Parameter │ Softplus + Shift │ │ True │ () │ float64 │ 1.0 │\n", - "╘════════════════════════════════════╧═══════════╧══════════════════╧═════════╧═════════════╧═════════╧═════════╧════════════════╛\n" - ] - } - ], - "source": [ - "model = gpflow.models.GPR(\n", - " data = (np_input_sc, np_output), \n", - " kernel = k, \n", - " mean_function = None\n", - " )\n", + "x_scaler, model = load_gpr(model_path)\n", "print_summary(model)" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Load exported params over the model \"skeleton\":" - ] - }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 85, "metadata": {}, "outputs": [], "source": [ - "model_params_loaded = pickle.load(open(Path(Path.cwd(), 'gp_params.gpf'), 'rb'))" + "def get_gpr_horizon_array(W, x0, u):\n", + " \n", + " \n", + " n_rows = W.shape[0]\n", + " \n", + " n_w = W.shape[1]\n", + " n_inputs = u.shape[1]\n", + " n_cols = n_w + n_inputs + x0.shape[1]\n", + " \n", + " X = np.zeros([n_rows, n_cols])\n", + " X[:, :2] = W\n", + " X[0, (n_w + n_inputs):] = x0\n", + " X[:, 2] = u.reshape((-1,))\n", + " \n", + " # autoregressive inputs\n", + " X[1: , 3] = X[:-1, 2]\n", + " \n", + " for idx in range(1, n_rows):\n", + " x_sc = x_scaler.transform(X[idx-1, :].reshape((1, -1)))\n", + " X[idx, 4], _ = model.predict_y(x_sc)\n", + " X[idx, 5:] = X[idx -1, 4:-1]\n", + " \n", + " return X" ] }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "gpflow.utilities.multiple_assign(model, model_params_loaded)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, + "execution_count": 86, "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "╒════════════════════════════════════╤═══════════╤══════════════════╤═════════╤═════════════╤═════════╤═════════╤══════════════════════════════════════════════╕\n", - "│ name │ class │ transform │ prior │ trainable │ shape │ dtype │ value │\n", - "╞════════════════════════════════════╪═══════════╪══════════════════╪═════════╪═════════════╪═════════╪═════════╪══════════════════════════════════════════════╡\n", - "│ GPR.kernel.kernels[0].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 522.3146176324312 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼──────────────────────────────────────────────┤\n", - "│ GPR.kernel.kernels[0].lengthscales │ Parameter │ Softplus │ │ True │ (7,) │ float64 │ [398.28296795, 262.16471714, 1574.2697205... │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼──────────────────────────────────────────────┤\n", - "│ GPR.kernel.kernels[1].variance │ Parameter │ Softplus │ │ True │ () │ float64 │ 600.9888765600585 │\n", - "├────────────────────────────────────┼───────────┼──────────────────┼─────────┼─────────────┼─────────┼─────────┼──────────────────────────────────────────────┤\n", - "│ GPR.likelihood.variance │ Parameter │ Softplus + Shift │ │ True │ () │ float64 │ 0.005945197285215412 │\n", - "╘════════════════════════════════════╧═══════════╧══════════════════╧═════════╧═════════════╧═════════╧═════════╧══════════════════════════════════════════════╛\n" - ] + "data": { + "text/plain": [ + "array([[ 1. , 1. , 3. , 2. , 2. ,\n", + " 2. , 2. ],\n", + " [ 1. , 1. , 3. , 3. , 3.16887448,\n", + " 2. , 2. ],\n", + " [ 1. , 1. , 3. , 3. , 6.02687796,\n", + " 3.16887448, 2. ],\n", + " [ 1. , 1. , 3. , 3. , 11.22601695,\n", + " 6.02687796, 3.16887448],\n", + " [ 1. , 1. , 3. , 3. , 19.6304083 ,\n", + " 11.22601695, 6.02687796]])" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "print_summary(model)" + "test_W = np.ones([5, 2])\n", + "test_x0 = 2 * np.ones([1, 4])\n", + "test_u0 = 3 * np.ones([5, 1])\n", + "\n", + "test_X = get_gpr_horizon_array(test_W, test_x0, test_u0)\n", + "test_X" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [], + "source": [ + "n_states = model.data[0].shape[1]" ] }, { @@ -351,7 +334,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 88, "metadata": {}, "outputs": [], "source": [ @@ -369,14 +352,15 @@ " return casadi.Sparsity.dense(n_states,1)\n", "\n", " def eval(self, arg):\n", - " x_scaled = x_scaler.transform(np.array(arg[0]).reshape(1, -1))\n", - " [mean, _] = model.predict_y(x_scaled)\n", + " x_input = x_scaler.transform(np.array(arg[0]).reshape(1, -1))\n", + " #x_input = np.array(arg[0]).reshape(1, -1)\n", + " [mean, _] = model.predict_y(x_input)\n", " return [mean.numpy()]" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 89, "metadata": {}, "outputs": [ { @@ -395,7 +379,7 @@ }, { "cell_type": "code", - "execution_count": 219, + "execution_count": 90, "metadata": {}, "outputs": [], "source": [ @@ -410,9 +394,16 @@ "### Define optimization variables" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Gaussian" + ] + }, { "cell_type": "code", - "execution_count": 220, + "execution_count": 91, "metadata": {}, "outputs": [], "source": [ @@ -430,7 +421,7 @@ }, { "cell_type": "code", - "execution_count": 221, + "execution_count": 92, "metadata": {}, "outputs": [], "source": [ @@ -446,7 +437,7 @@ }, { "cell_type": "code", - "execution_count": 222, + "execution_count": 93, "metadata": {}, "outputs": [], "source": [ @@ -465,11 +456,12 @@ }, { "cell_type": "code", - "execution_count": 223, + "execution_count": 94, "metadata": {}, "outputs": [], "source": [ - "J = casadi.norm_2(X.reshape((N_horizon, -1))[:,4] - T_set)" + "Y = gpr(X.T)\n", + "J = casadi.dot(Y - T_set, Y - T_set)" ] }, { @@ -481,7 +473,7 @@ }, { "cell_type": "code", - "execution_count": 224, + "execution_count": 95, "metadata": {}, "outputs": [], "source": [ @@ -504,7 +496,7 @@ }, { "cell_type": "code", - "execution_count": 225, + "execution_count": 96, "metadata": {}, "outputs": [], "source": [ @@ -530,7 +522,7 @@ }, { "cell_type": "code", - "execution_count": 226, + "execution_count": 97, "metadata": {}, "outputs": [], "source": [ @@ -542,13 +534,18 @@ }, { "cell_type": "code", - "execution_count": 227, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ "prob = {\"x\": casadi.vec(X), \"f\": J, \"p\": p, \"g\": g}\n", - "options = {\"ipopt\": {\"hessian_approximation\": \"limited-memory\", \"max_iter\": 100, \n", - " \"acceptable_tol\": 1e-8, \"acceptable_obj_change_tol\": 1e-6}}" + "options = {\"ipopt\": {\"hessian_approximation\": \"limited-memory\", \"max_iter\": 10,\n", + " #\"acceptable_tol\": 1e-6, \"tol\": 1e-6,\n", + " #\"linear_solver\": \"SPRAL\",\n", + " #\"acceptable_obj_change_tol\": 1e-5, \n", + " #\"mu_strategy\": \"adaptive\",\n", + " \"expect_infeasible_problem\": \"yes\"\n", + " }}" ] }, { @@ -560,7 +557,7 @@ }, { "cell_type": "code", - "execution_count": 228, + "execution_count": 99, "metadata": {}, "outputs": [], "source": [ @@ -576,7 +573,7 @@ }, { "cell_type": "code", - "execution_count": 250, + "execution_count": 100, "metadata": {}, "outputs": [], "source": [ @@ -589,7 +586,19 @@ }, { "cell_type": "code", - "execution_count": 251, + "execution_count": 101, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "#u_min_sc = x_scaler.transform(np.array([1, 1, u_min, u_min, 1, 1, 1]).reshape((1, -1)))[0, 2]\n", + "#u_max_sc = x_scaler.transform(np.array([1, 1, u_max, u_max, 1, 1, 1]).reshape((1, -1)))[0, 2]" + ] + }, + { + "cell_type": "code", + "execution_count": 102, "metadata": {}, "outputs": [], "source": [ @@ -606,7 +615,7 @@ }, { "cell_type": "code", - "execution_count": 149, + "execution_count": 103, "metadata": {}, "outputs": [ { @@ -653,83 +662,83 @@ " \n", " \n", " \n", - " 2017-07-07 20:00:00+02:00\n", - " 4651.034483\n", + " 2017-06-30 20:00:00+02:00\n", + " 8.620690\n", " 22.5\n", - " 30.0\n", - " 14.9\n", - " 23.100000\n", - " 143.479467\n", - " -23255.172414\n", - " 22.258988\n", + " 19.0\n", + " 22.1\n", + " 22.283333\n", + " 178.618267\n", + " 8.620690\n", + " 22.283285\n", " \n", " \n", - " 2017-07-07 20:05:00+02:00\n", - " 4634.896552\n", + " 2017-06-30 20:05:00+02:00\n", + " 8.620690\n", " 22.5\n", - " 30.0\n", - " 14.6\n", - " 23.016667\n", - " 133.344633\n", - " -23174.482759\n", - " 21.514439\n", + " 19.0\n", + " 22.1\n", + " 22.233333\n", + " 135.122100\n", + " 8.620690\n", + " 22.266734\n", " \n", " \n", - " 2017-07-07 20:10:00+02:00\n", - " 4620.620690\n", + " 2017-06-30 20:10:00+02:00\n", + " 7.566667\n", " 22.5\n", - " 30.0\n", - " 14.6\n", - " 22.900000\n", - " 122.100633\n", - " -23103.103448\n", - " 21.488865\n", + " 19.0\n", + " 22.1\n", + " 22.366667\n", + " 126.219967\n", + " 7.566667\n", + " 22.258667\n", " \n", " \n", - " 2017-07-07 20:15:00+02:00\n", - " 4449.233333\n", + " 2017-06-30 20:15:00+02:00\n", + " 8.172414\n", " 22.5\n", - " 29.5\n", - " 14.3\n", - " 22.733333\n", - " 111.456233\n", - " -22246.166667\n", - " 21.907265\n", + " 19.0\n", + " 22.1\n", + " 22.366667\n", + " 123.772467\n", + " 8.172414\n", + " 22.255146\n", " \n", " \n", - " 2017-07-07 20:20:00+02:00\n", - " 27.068966\n", + " 2017-06-30 20:20:00+02:00\n", + " 8.379310\n", " 22.5\n", - " 29.5\n", - " 18.5\n", - " 22.700000\n", - " 100.605500\n", - " -135.344828\n", - " 23.201910\n", + " 17.5\n", + " 22.4\n", + " 22.566667\n", + " 106.163600\n", + " -25.137931\n", + " 22.255204\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Power Setpoint OutsideTemp SupplyTemp \\\n", - "timestamp \n", - "2017-07-07 20:00:00+02:00 4651.034483 22.5 30.0 14.9 \n", - "2017-07-07 20:05:00+02:00 4634.896552 22.5 30.0 14.6 \n", - "2017-07-07 20:10:00+02:00 4620.620690 22.5 30.0 14.6 \n", - "2017-07-07 20:15:00+02:00 4449.233333 22.5 29.5 14.3 \n", - "2017-07-07 20:20:00+02:00 27.068966 22.5 29.5 18.5 \n", + " Power Setpoint OutsideTemp SupplyTemp \\\n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 8.620690 22.5 19.0 22.1 \n", + "2017-06-30 20:05:00+02:00 8.620690 22.5 19.0 22.1 \n", + "2017-06-30 20:10:00+02:00 7.566667 22.5 19.0 22.1 \n", + "2017-06-30 20:15:00+02:00 8.172414 22.5 19.0 22.1 \n", + "2017-06-30 20:20:00+02:00 8.379310 22.5 17.5 22.4 \n", "\n", - " InsideTemp SolRad Heat SimulatedTemp \n", - "timestamp \n", - "2017-07-07 20:00:00+02:00 23.100000 143.479467 -23255.172414 22.258988 \n", - "2017-07-07 20:05:00+02:00 23.016667 133.344633 -23174.482759 21.514439 \n", - "2017-07-07 20:10:00+02:00 22.900000 122.100633 -23103.103448 21.488865 \n", - "2017-07-07 20:15:00+02:00 22.733333 111.456233 -22246.166667 21.907265 \n", - "2017-07-07 20:20:00+02:00 22.700000 100.605500 -135.344828 23.201910 " + " InsideTemp SolRad Heat SimulatedTemp \n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 22.283333 178.618267 8.620690 22.283285 \n", + "2017-06-30 20:05:00+02:00 22.233333 135.122100 8.620690 22.266734 \n", + "2017-06-30 20:10:00+02:00 22.366667 126.219967 7.566667 22.258667 \n", + "2017-06-30 20:15:00+02:00 22.366667 123.772467 8.172414 22.255146 \n", + "2017-06-30 20:20:00+02:00 22.566667 106.163600 -25.137931 22.255204 " ] }, - "execution_count": 149, + "execution_count": 103, "metadata": {}, "output_type": "execute_result" } @@ -741,7 +750,7 @@ }, { "cell_type": "code", - "execution_count": 150, + "execution_count": 104, "metadata": {}, "outputs": [ { @@ -790,112 +799,112 @@ " \n", " 0\n", " 0\n", - " 201707072000\n", - " 77.301874\n", - " 289.483783\n", - " 219.244645\n", - " 95.527995\n", - " 30.0\n", - " 24.0\n", + " 201706302000\n", + " 77.058396\n", + " 290.138593\n", + " 461.587394\n", + " 75.759999\n", + " 19.0\n", + " 13.0\n", " 50\n", " -9999\n", " 0.5\n", " 96300\n", " 0\n", " -9999\n", - " 77.301874\n", + " 77.058396\n", " -9999\n", " -9999\n", - " 48.193107\n", - " 95.527995\n", + " 103.376122\n", + " 75.759999\n", " \n", " \n", " 1\n", " 300\n", - " 201707072005\n", - " 78.106572\n", - " 290.326990\n", - " 212.109089\n", - " 89.880399\n", - " 30.0\n", - " 24.0\n", + " 201706302005\n", + " 77.859576\n", + " 290.978550\n", + " 206.014761\n", + " 92.042087\n", + " 19.0\n", + " 13.0\n", " 50\n", " -9999\n", " 0.5\n", " 96300\n", " 0\n", " -9999\n", - " 78.106572\n", + " 77.859576\n", " -9999\n", " -9999\n", - " 43.713976\n", - " 89.880399\n", + " 43.326628\n", + " 92.042087\n", " \n", " \n", " 2\n", " 600\n", - " 201707072010\n", - " 78.906360\n", - " 291.172101\n", - " 196.448414\n", - " 84.549236\n", - " 30.0\n", - " 24.0\n", + " 201706302010\n", + " 78.655742\n", + " 291.820500\n", + " 205.632053\n", + " 86.034806\n", + " 19.0\n", + " 13.0\n", " 50\n", " -9999\n", " 0.5\n", " 96300\n", " 0\n", " -9999\n", - " 78.906360\n", + " 78.655742\n", " -9999\n", " -9999\n", - " 37.799238\n", - " 84.549236\n", + " 40.448556\n", + " 86.034806\n", " \n", " \n", " 3\n", " 900\n", - " 201707072015\n", - " 79.700825\n", - " 292.019421\n", - " 183.166538\n", - " 78.957097\n", - " 29.5\n", - " 23.5\n", + " 201706302015\n", + " 79.446620\n", + " 292.664742\n", + " 254.541692\n", + " 77.502756\n", + " 19.0\n", + " 13.0\n", " 50\n", " -9999\n", " 0.5\n", " 96300\n", " 0\n", " -9999\n", - " 79.700825\n", + " 79.446620\n", " -9999\n", " -9999\n", - " 32.747988\n", - " 78.957097\n", + " 46.619695\n", + " 77.502756\n", " \n", " \n", " 4\n", " 1200\n", - " 201707072020\n", - " 80.489912\n", - " 292.869248\n", - " 166.672243\n", - " 73.312077\n", - " 29.5\n", - " 23.5\n", + " 201706302020\n", + " 80.231464\n", + " 293.511567\n", + " 186.928631\n", + " 74.726041\n", + " 17.5\n", + " 11.5\n", " 50\n", " -9999\n", " 0.5\n", " 96300\n", " 0\n", " -9999\n", - " 80.489912\n", + " 80.231464\n", " -9999\n", " -9999\n", - " 27.537799\n", - " 73.312077\n", + " 31.715871\n", + " 74.726041\n", " \n", " \n", "\n", @@ -903,35 +912,35 @@ ], "text/plain": [ " time timestamp zenith azimuth dni dhi \\\n", - "0 0 201707072000 77.301874 289.483783 219.244645 95.527995 \n", - "1 300 201707072005 78.106572 290.326990 212.109089 89.880399 \n", - "2 600 201707072010 78.906360 291.172101 196.448414 84.549236 \n", - "3 900 201707072015 79.700825 292.019421 183.166538 78.957097 \n", - "4 1200 201707072020 80.489912 292.869248 166.672243 73.312077 \n", + "0 0 201706302000 77.058396 290.138593 461.587394 75.759999 \n", + "1 300 201706302005 77.859576 290.978550 206.014761 92.042087 \n", + "2 600 201706302010 78.655742 291.820500 205.632053 86.034806 \n", + "3 900 201706302015 79.446620 292.664742 254.541692 77.502756 \n", + "4 1200 201706302020 80.231464 293.511567 186.928631 74.726041 \n", "\n", " OutsideTemp Tsky_rad relative_humidity precipitation cloud_index \\\n", - "0 30.0 24.0 50 -9999 0.5 \n", - "1 30.0 24.0 50 -9999 0.5 \n", - "2 30.0 24.0 50 -9999 0.5 \n", - "3 29.5 23.5 50 -9999 0.5 \n", - "4 29.5 23.5 50 -9999 0.5 \n", + "0 19.0 13.0 50 -9999 0.5 \n", + "1 19.0 13.0 50 -9999 0.5 \n", + "2 19.0 13.0 50 -9999 0.5 \n", + "3 19.0 13.0 50 -9999 0.5 \n", + "4 17.5 11.5 50 -9999 0.5 \n", "\n", " pressure wind_speed wind_direction aoi incidence_main \\\n", - "0 96300 0 -9999 77.301874 -9999 \n", - "1 96300 0 -9999 78.106572 -9999 \n", - "2 96300 0 -9999 78.906360 -9999 \n", - "3 96300 0 -9999 79.700825 -9999 \n", - "4 96300 0 -9999 80.489912 -9999 \n", + "0 96300 0 -9999 77.058396 -9999 \n", + "1 96300 0 -9999 77.859576 -9999 \n", + "2 96300 0 -9999 78.655742 -9999 \n", + "3 96300 0 -9999 79.446620 -9999 \n", + "4 96300 0 -9999 80.231464 -9999 \n", "\n", " incidence_second poa_direct poa_diffuse \n", - "0 -9999 48.193107 95.527995 \n", - "1 -9999 43.713976 89.880399 \n", - "2 -9999 37.799238 84.549236 \n", - "3 -9999 32.747988 78.957097 \n", - "4 -9999 27.537799 73.312077 " + "0 -9999 103.376122 75.759999 \n", + "1 -9999 43.326628 92.042087 \n", + "2 -9999 40.448556 86.034806 \n", + "3 -9999 46.619695 77.502756 \n", + "4 -9999 31.715871 74.726041 " ] }, - "execution_count": 150, + "execution_count": 104, "metadata": {}, "output_type": "execute_result" } @@ -943,7 +952,7 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": 105, "metadata": {}, "outputs": [ { @@ -961,7 +970,7 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": 106, "metadata": {}, "outputs": [], "source": [ @@ -970,17 +979,17 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": 107, "metadata": {}, "outputs": [], "source": [ - "day_air_exchange_rate = 2.0\n", - "night_air_exchange_rate = 0.5" + "day_air_exchange_rate = 2.75\n", + "night_air_exchange_rate = 2.75" ] }, { "cell_type": "code", - "execution_count": 154, + "execution_count": 108, "metadata": {}, "outputs": [], "source": [ @@ -992,7 +1001,7 @@ }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 109, "metadata": {}, "outputs": [], "source": [ @@ -1002,7 +1011,7 @@ }, { "cell_type": "code", - "execution_count": 156, + "execution_count": 110, "metadata": {}, "outputs": [ { @@ -1051,63 +1060,63 @@ " \n", " \n", " \n", - " 2017-07-07 20:00:00+02:00\n", - " 4651.034483\n", + " 2017-06-30 20:00:00+02:00\n", + " 8.620690\n", " 22.5\n", - " 30.0\n", - " 14.9\n", - " 23.100000\n", - " 143.479467\n", - " -23255.172414\n", - " 22.258988\n", + " 19.0\n", + " 22.1\n", + " 22.283333\n", + " 178.618267\n", + " 8.620690\n", + " 22.283285\n", " 0\n", " \n", " \n", - " 2017-07-07 20:05:00+02:00\n", - " 4634.896552\n", + " 2017-06-30 20:05:00+02:00\n", + " 8.620690\n", " 22.5\n", - " 30.0\n", - " 14.6\n", - " 23.016667\n", - " 133.344633\n", - " -23174.482759\n", - " 21.514439\n", + " 19.0\n", + " 22.1\n", + " 22.233333\n", + " 135.122100\n", + " 8.620690\n", + " 22.266734\n", " 300\n", " \n", " \n", - " 2017-07-07 20:10:00+02:00\n", - " 4620.620690\n", + " 2017-06-30 20:10:00+02:00\n", + " 7.566667\n", " 22.5\n", - " 30.0\n", - " 14.6\n", - " 22.900000\n", - " 122.100633\n", - " -23103.103448\n", - " 21.488865\n", + " 19.0\n", + " 22.1\n", + " 22.366667\n", + " 126.219967\n", + " 7.566667\n", + " 22.258667\n", " 600\n", " \n", " \n", - " 2017-07-07 20:15:00+02:00\n", - " 4449.233333\n", + " 2017-06-30 20:15:00+02:00\n", + " 8.172414\n", " 22.5\n", - " 29.5\n", - " 14.3\n", - " 22.733333\n", - " 111.456233\n", - " -22246.166667\n", - " 21.907265\n", + " 19.0\n", + " 22.1\n", + " 22.366667\n", + " 123.772467\n", + " 8.172414\n", + " 22.255146\n", " 900\n", " \n", " \n", - " 2017-07-07 20:20:00+02:00\n", - " 27.068966\n", + " 2017-06-30 20:20:00+02:00\n", + " 8.379310\n", " 22.5\n", - " 29.5\n", - " 18.5\n", - " 22.700000\n", - " 100.605500\n", - " -135.344828\n", - " 23.201910\n", + " 17.5\n", + " 22.4\n", + " 22.566667\n", + " 106.163600\n", + " -25.137931\n", + " 22.255204\n", " 1200\n", " \n", " \n", @@ -1115,32 +1124,32 @@ "" ], "text/plain": [ - " Power Setpoint OutsideTemp SupplyTemp \\\n", - "timestamp \n", - "2017-07-07 20:00:00+02:00 4651.034483 22.5 30.0 14.9 \n", - "2017-07-07 20:05:00+02:00 4634.896552 22.5 30.0 14.6 \n", - "2017-07-07 20:10:00+02:00 4620.620690 22.5 30.0 14.6 \n", - "2017-07-07 20:15:00+02:00 4449.233333 22.5 29.5 14.3 \n", - "2017-07-07 20:20:00+02:00 27.068966 22.5 29.5 18.5 \n", + " Power Setpoint OutsideTemp SupplyTemp \\\n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 8.620690 22.5 19.0 22.1 \n", + "2017-06-30 20:05:00+02:00 8.620690 22.5 19.0 22.1 \n", + "2017-06-30 20:10:00+02:00 7.566667 22.5 19.0 22.1 \n", + "2017-06-30 20:15:00+02:00 8.172414 22.5 19.0 22.1 \n", + "2017-06-30 20:20:00+02:00 8.379310 22.5 17.5 22.4 \n", "\n", - " InsideTemp SolRad Heat \\\n", - "timestamp \n", - "2017-07-07 20:00:00+02:00 23.100000 143.479467 -23255.172414 \n", - "2017-07-07 20:05:00+02:00 23.016667 133.344633 -23174.482759 \n", - "2017-07-07 20:10:00+02:00 22.900000 122.100633 -23103.103448 \n", - "2017-07-07 20:15:00+02:00 22.733333 111.456233 -22246.166667 \n", - "2017-07-07 20:20:00+02:00 22.700000 100.605500 -135.344828 \n", + " InsideTemp SolRad Heat SimulatedTemp \\\n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 22.283333 178.618267 8.620690 22.283285 \n", + "2017-06-30 20:05:00+02:00 22.233333 135.122100 8.620690 22.266734 \n", + "2017-06-30 20:10:00+02:00 22.366667 126.219967 7.566667 22.258667 \n", + "2017-06-30 20:15:00+02:00 22.366667 123.772467 8.172414 22.255146 \n", + "2017-06-30 20:20:00+02:00 22.566667 106.163600 -25.137931 22.255204 \n", "\n", - " SimulatedTemp time \n", - "timestamp \n", - "2017-07-07 20:00:00+02:00 22.258988 0 \n", - "2017-07-07 20:05:00+02:00 21.514439 300 \n", - "2017-07-07 20:10:00+02:00 21.488865 600 \n", - "2017-07-07 20:15:00+02:00 21.907265 900 \n", - "2017-07-07 20:20:00+02:00 23.201910 1200 " + " time \n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 0 \n", + "2017-06-30 20:05:00+02:00 300 \n", + "2017-06-30 20:10:00+02:00 600 \n", + "2017-06-30 20:15:00+02:00 900 \n", + "2017-06-30 20:20:00+02:00 1200 " ] }, - "execution_count": 156, + "execution_count": 110, "metadata": {}, "output_type": "execute_result" } @@ -1166,7 +1175,7 @@ }, { "cell_type": "code", - "execution_count": 277, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ @@ -1175,7 +1184,7 @@ }, { "cell_type": "code", - "execution_count": 278, + "execution_count": 112, "metadata": {}, "outputs": [], "source": [ @@ -1184,6 +1193,129 @@ "df_power.loc[df_power['time'] >= current_timestamp, 'Heat'] = np.NaN" ] }, + { + "cell_type": "code", + "execution_count": 113, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Heattime
timestamp
2017-06-30 20:00:00+02:008.6206900
2017-06-30 20:05:00+02:008.620690300
2017-06-30 20:10:00+02:007.566667600
2017-06-30 20:15:00+02:008.172414900
2017-06-30 20:20:00+02:00-25.1379311200
.........
2017-07-03 05:35:00+02:00NaN207300
2017-07-03 05:40:00+02:00NaN207600
2017-07-03 05:45:00+02:00NaN207900
2017-07-03 05:50:00+02:00NaN208200
2017-07-03 05:55:00+02:00NaN208500
\n", + "

696 rows × 2 columns

\n", + "
" + ], + "text/plain": [ + " Heat time\n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 8.620690 0\n", + "2017-06-30 20:05:00+02:00 8.620690 300\n", + "2017-06-30 20:10:00+02:00 7.566667 600\n", + "2017-06-30 20:15:00+02:00 8.172414 900\n", + "2017-06-30 20:20:00+02:00 -25.137931 1200\n", + "... ... ...\n", + "2017-07-03 05:35:00+02:00 NaN 207300\n", + "2017-07-03 05:40:00+02:00 NaN 207600\n", + "2017-07-03 05:45:00+02:00 NaN 207900\n", + "2017-07-03 05:50:00+02:00 NaN 208200\n", + "2017-07-03 05:55:00+02:00 NaN 208500\n", + "\n", + "[696 rows x 2 columns]" + ] + }, + "execution_count": 113, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_power" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1193,29 +1325,78 @@ }, { "cell_type": "code", - "execution_count": 281, + "execution_count": 114, "metadata": {}, "outputs": [], "source": [ "u_1 = float(df_power.loc[df['time'] == (current_timestamp - 300 * 1), 'Heat'])\n", "\n", + "y_0 = float(df.loc[df['time'] == (current_timestamp - 300 * 0), 'SimulatedTemp'])\n", "y_1 = float(df.loc[df['time'] == (current_timestamp - 300 * 1), 'SimulatedTemp'])\n", - "y_2 = float(df.loc[df['time'] == (current_timestamp - 300 * 2), 'SimulatedTemp'])\n", - "y_3 = float(df.loc[df['time'] == (current_timestamp - 300 * 3), 'SimulatedTemp'])" + "y_2 = float(df.loc[df['time'] == (current_timestamp - 300 * 2), 'SimulatedTemp'])" ] }, { "cell_type": "code", - "execution_count": 282, + "execution_count": 115, "metadata": {}, "outputs": [], "source": [ - "real_x0 = np.array([u_1, y_1, y_2, y_3])" + "real_x0 = np.array([u_1, y_0, y_1, y_2])" ] }, { "cell_type": "code", - "execution_count": 283, + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-25.13793103, 22.25542067, 22.25520408, 22.25514583])" + ] + }, + "execution_count": 116, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "real_x0" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [], + "source": [ + "#real_x0 = x_scaler.transform(np.hstack([np.zeros((3)), real_x0]).reshape((1, -1)))[0, 3:]" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-25.13793103, 22.25542067, 22.25520408, 22.25514583])" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "real_x0" + ] + }, + { + "cell_type": "code", + "execution_count": 119, "metadata": {}, "outputs": [], "source": [ @@ -1225,7 +1406,31 @@ }, { "cell_type": "code", - "execution_count": 284, + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[92.377 , 17.5 ],\n", + " [54.69793333, 16. ],\n", + " [51.83236667, 16. ],\n", + " [40.2653 , 16. ],\n", + " [29.8469 , 16. ]])" + ] + }, + "execution_count": 120, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "real_W = casadi.DM(real_W)" + ] + }, + { + "cell_type": "code", + "execution_count": 123, "metadata": {}, "outputs": [], "source": [ @@ -1237,8 +1442,48 @@ }, { "cell_type": "code", - "execution_count": 285, + "execution_count": 124, "metadata": {}, + "outputs": [], + "source": [ + "real_X0 = get_gpr_horizon_array(real_W, real_x0.reshape((1, -1)), np.zeros((N_horizon, 1)))" + ] + }, + { + "cell_type": "code", + "execution_count": 125, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 92.377 , 17.5 , 0. , -25.13793103,\n", + " 22.25542067, 22.25520408, 22.25514583],\n", + " [ 54.69793333, 16. , 0. , 0. ,\n", + " 22.27224362, 22.25542067, 22.25520408],\n", + " [ 51.83236667, 16. , 0. , 0. ,\n", + " 22.31347714, 22.27224362, 22.25542067],\n", + " [ 40.2653 , 16. , 0. , 0. ,\n", + " 22.39125122, 22.31347714, 22.27224362],\n", + " [ 29.8469 , 16. , 0. , 0. ,\n", + " 22.52311219, 22.39125122, 22.31347714]])" + ] + }, + "execution_count": 125, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "real_X0 = casadi.DM(real_X0)" + ] + }, + { + "cell_type": "code", + "execution_count": 126, + "metadata": { + "tags": [] + }, "outputs": [ { "name": "stdout", @@ -1262,151 +1507,114 @@ " inequality constraints with only upper bounds: 0\n", "\n", "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.35e+02 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9271395e+01 1.22e+01 1.35e+02 -1.5 1.35e+02 - 9.90e-01 1.00e+00f 1\n", - " 2 7.1279166e+00 3.92e+00 9.23e+00 0.4 1.22e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 5.9675618e+00 8.77e-01 7.27e-01 -1.6 6.78e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 6.6214434e+00 1.45e-03 7.84e-02 -3.4 1.22e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 6.6221581e+00 1.97e-07 1.10e-04 -5.3 1.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 6.6221582e+00 1.76e-07 2.36e-05 -11.0 5.79e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 6.6221584e+00 9.69e-09 1.58e-04 -11.0 9.49e-05 - 1.00e+00 1.00e+00h 1\n", - " 8 6.6221583e+00 5.30e-08 1.08e-04 -11.0 4.31e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 6.6221583e+00 9.40e-08 1.75e-04 -11.0 3.65e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 6.6221582e+00 5.21e-08 4.63e-05 -11.0 5.31e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 6.6221584e+00 8.26e-11 2.02e-05 -11.0 3.31e-04 - 1.00e+00 1.00e+00H 1\n", - " 12 6.6221584e+00 1.56e-08 1.49e-05 -11.0 1.54e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 6.6221584e+00 1.09e-08 1.88e-04 -11.0 1.02e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 6.6221578e+00 3.34e-07 1.06e-04 -11.0 9.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 6.6221575e+00 6.06e-07 1.49e-04 -11.0 2.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 6.6221578e+00 4.65e-07 4.50e-05 -11.0 1.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 6.6221584e+00 4.82e-08 3.51e-05 -11.0 3.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 6.6221584e+00 9.61e-09 6.94e-05 -11.0 1.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 19 6.6221584e+00 1.81e-08 2.21e-05 -11.0 6.77e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 6.6221584e+00 2.32e-09 1.10e-04 -11.0 6.40e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 6.6221584e+00 7.28e-09 5.11e-05 -11.0 3.87e-05 - 1.00e+00 1.00e+00h 1\n", - " 22 6.6221584e+00 1.58e-08 5.64e-05 -11.0 1.04e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 6.6221584e+00 1.50e-08 4.24e-05 -11.0 8.53e-05 - 1.00e+00 6.25e-02h 5\n", - " 24 6.6221584e+00 1.64e-08 3.85e-05 -11.0 1.49e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 6.6221584e+00 1.53e-08 7.41e-05 -11.0 6.91e-05 - 1.00e+00 6.25e-02h 5\n", - " 26 6.6221584e+00 2.08e-08 8.48e-05 -11.0 8.84e-05 - 1.00e+00 1.00e+00h 1\n", - " 27 6.6221584e+00 1.85e-08 8.93e-05 -11.0 9.58e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 6.6221584e+00 2.56e-08 3.13e-04 -11.0 9.32e-05 - 1.00e+00 1.00e+00h 1\n", - " 29 6.6221576e+00 5.41e-07 5.71e-05 -11.0 3.02e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 6.6221584e+00 1.10e-07 1.07e-04 -11.0 7.82e-04 - 1.00e+00 1.00e+00h 1\n", - " 31 6.6221585e+00 1.81e-08 2.70e-05 -11.0 3.37e-04 - 1.00e+00 1.00e+00h 1\n", - " 32 6.6221585e+00 3.51e-09 7.75e-05 -11.0 1.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 6.6221584e+00 1.17e-07 6.02e-05 -11.0 5.59e-04 - 1.00e+00 1.00e+00h 1\n", - " 34 6.6221584e+00 4.22e-08 3.49e-05 -11.0 2.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 35 6.6221585e+00 1.65e-10 1.45e-04 -11.0 4.20e-04 - 1.00e+00 1.00e+00H 1\n", - " 36 6.6221581e+00 1.97e-07 5.01e-05 -11.0 1.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 37 6.6221579e+00 5.73e-07 1.70e-03 -11.0 4.56e-03 - 1.00e+00 1.00e+00h 1\n", - " 38 6.6221486e+00 4.56e-06 7.36e-03 -11.0 7.98e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 6.6220426e+00 1.38e-04 7.62e-03 -11.0 1.02e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 6.6218031e+00 1.59e-04 1.85e-03 -11.0 8.14e-01 - 1.00e+00 1.00e+00h 1\n", - " 41 6.6221225e+00 5.53e-05 2.31e-03 -11.0 2.21e-01 - 1.00e+00 1.00e+00h 1\n", - " 42 6.6221175e+00 3.18e-05 2.99e-03 -11.0 2.38e-01 - 1.00e+00 1.00e+00h 1\n", - " 43 6.6221162e+00 5.22e-05 1.32e-03 -11.0 1.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 44 6.6221488e+00 2.12e-05 1.38e-03 -11.0 6.41e-02 - 1.00e+00 1.00e+00h 1\n", - " 45 6.6221332e+00 1.94e-05 1.99e-03 -11.0 8.63e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 6.6219925e+00 9.12e-05 2.58e-03 -11.0 4.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 47 6.6221160e+00 1.65e-05 1.61e-03 -11.0 1.60e-01 - 1.00e+00 1.00e+00h 1\n", - " 48 6.6221330e+00 1.06e-05 1.17e-03 -11.0 6.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 49 6.6221326e+00 1.16e-05 1.04e-03 -11.0 3.97e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 6.6221530e+00 5.24e-09 1.70e-04 -11.0 9.62e-02 - 1.00e+00 1.00e+00H 1\n", - " 51 6.6221343e+00 8.37e-06 1.18e-03 -11.0 4.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 6.6221372e+00 7.64e-06 1.53e-03 -11.0 4.36e-02 - 1.00e+00 1.00e+00h 1\n", - " 53 6.6221499e+00 7.38e-07 1.31e-03 -11.0 1.86e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 6.6221313e+00 3.46e-05 1.47e-03 -11.0 1.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 55 6.6221445e+00 6.48e-06 1.25e-03 -11.0 2.68e-02 - 1.00e+00 1.00e+00h 1\n", - " 56 6.6221440e+00 4.92e-06 1.54e-03 -11.0 3.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 57 6.6221489e+00 1.44e-06 1.88e-03 -11.0 1.74e-02 - 1.00e+00 1.00e+00h 1\n", - " 58 6.6221448e+00 3.58e-06 1.52e-03 -11.0 1.43e-02 - 1.00e+00 1.00e+00h 1\n", - " 59 6.6221508e+00 3.68e-10 1.84e-04 -11.0 3.36e-02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 6.6221422e+00 1.02e-05 1.44e-03 -11.0 1.65e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 6.6221472e+00 1.82e-06 2.59e-03 -11.0 1.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 6.6221114e+00 9.18e-05 2.50e-03 -11.0 2.52e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 6.6221427e+00 4.59e-06 1.65e-03 -11.0 7.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 6.6221281e+00 2.37e-05 9.19e-04 -11.0 6.06e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 6.6221433e+00 2.67e-06 9.30e-04 -11.0 1.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 6.6221449e+00 1.21e-06 1.25e-03 -11.0 8.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 6.6221458e+00 4.06e-07 1.21e-03 -11.0 3.96e-03 - 1.00e+00 1.00e+00h 1\n", - " 68 6.6221371e+00 4.43e-06 3.11e-03 -11.0 2.43e-02 - 1.00e+00 1.00e+00h 1\n", - " 69 6.6221425e+00 4.65e-06 1.83e-03 -11.0 3.26e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 6.6219486e+00 9.33e-05 5.94e-03 -11.0 2.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 6.6221220e+00 1.19e-05 1.25e-03 -11.0 8.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 72 6.6220685e+00 4.93e-05 1.57e-03 -11.0 2.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 73 6.6218628e+00 2.83e-04 3.02e-03 -11.0 5.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 74 6.6221145e+00 1.78e-06 1.00e-03 -11.0 4.36e-02 - 1.00e+00 1.00e+00h 1\n", - " 75 6.6221086e+00 1.04e-05 7.87e-04 -11.0 3.92e-02 - 1.00e+00 1.00e+00h 1\n", - " 76 6.6221179e+00 8.17e-10 1.21e-04 -11.0 6.69e-02 - 1.00e+00 1.00e+00H 1\n", - " 77 6.6219927e+00 6.91e-05 1.42e-03 -11.0 1.15e+00 - 1.00e+00 1.00e+00f 1\n", - " 78 6.6220997e+00 2.14e-08 1.03e-04 -11.0 9.62e-01 - 1.00e+00 1.00e+00H 1\n", - " 79 6.6218281e+00 1.11e-04 3.35e-03 -11.0 2.17e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 6.6218183e+00 2.30e-04 9.74e-04 -11.0 9.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 81 6.6220460e+00 9.60e-05 8.43e-04 -11.0 5.69e-01 - 1.00e+00 1.00e+00h 1\n", - " 82 6.6218423e+00 3.69e-04 1.57e-03 -11.0 2.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 83 6.6217385e+00 1.17e-04 6.44e-04 -11.0 7.27e+00 - 1.00e+00 1.00e+00h 1\n", - " 84 6.6199458e+00 1.71e-03 3.34e-03 -11.0 1.60e+01 - 1.00e+00 1.00e+00h 1\n", - " 85 6.6132002e+00 3.65e-03 2.18e-03 -11.0 2.88e+01 - 1.00e+00 1.00e+00h 1\n", - " 86 6.6193511e+00 1.24e-03 1.85e-03 -11.0 1.52e+01 - 1.00e+00 1.00e+00h 1\n", - " 87 6.6166566e+00 2.96e-03 3.14e-03 -11.0 3.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 88 6.6086150e+00 8.69e-03 1.60e-03 -11.0 1.71e+01 - 1.00e+00 1.00e+00h 1\n", - " 89 6.6204717e+00 1.16e-03 2.15e-03 -11.0 1.40e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 6.6091813e+00 1.62e-02 1.89e-03 -11.0 3.88e+02 - 1.00e+00 1.00e+00h 1\n", - " 91 6.5946950e+00 4.15e-02 2.13e-03 -11.0 4.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 92 6.2909497e+00 8.25e-01 1.03e-01 -11.0 1.72e+04 - 1.00e+00 1.00e+00f 1\n", - " 93 6.1837306e+00 8.35e-01 6.68e-02 -9.0 2.09e+04 - 1.00e+00 4.79e-01h 1\n", - " 94 6.5760130e+00 1.56e-05 7.52e-01 -10.8 8.60e-01 - 1.00e+00 1.00e+00h 1\n", - " 95 6.5760251e+00 6.42e-07 6.82e-05 -11.0 9.04e-04 - 1.00e+00 1.00e+00h 1\n", - " 96 6.5760234e+00 2.02e-06 2.40e-03 -11.0 5.68e-03 - 1.00e+00 1.00e+00h 1\n", - " 97 6.5760247e+00 5.15e-07 4.86e-05 -11.0 2.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 98 6.5760214e+00 3.00e-06 2.36e-03 -11.0 1.87e-02 - 1.00e+00 1.00e+00h 1\n", - " 99 6.5760200e+00 2.75e-06 1.19e-03 -11.0 3.33e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 6.5760200e+00 6.66e-06 2.24e-03 -11.0 6.90e-02 - 1.00e+00 1.00e+00h 1\n", + " 0 8.5409843e+03 6.54e+01 2.57e+01 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", + " 1 5.4574789e+02 7.59e+00 1.87e+02 -1.5 6.54e+01 - 9.89e-01 1.00e+00f 1\n", + " 2 3.4479029e+01 4.23e-01 6.34e+01 -3.5 7.50e+00 - 9.90e-01 1.00e+00f 1\n", + " 3 1.7089734e+01 2.18e-01 7.77e+00 -1.4 1.43e+00 - 1.00e+00 1.00e+00f 1\n", + " 4 1.3407625e+01 1.02e-01 5.52e+00 -3.2 1.47e+00 - 1.00e+00 1.00e+00f 1\n", + " 5 2.9545703e+01 1.38e-01 1.14e+01 -5.1 1.45e+00 - 1.00e+00 1.00e+00h 1\n", + " 6 2.6625453e+01 2.30e-02 1.46e+01 -7.0 3.08e-01 - 1.00e+00 1.00e+00f 1\n", + " 7 1.1836963e+01 4.04e-01 1.68e+01 -8.9 2.76e+00 - 1.00e+00 1.00e+00f 1\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "CasADi - 2021-04-15 12:50:16 WARNING(\"solver:nlp_jac_g failed:Error in Function::operator() for 'nlp_jac_g' [MXFunction] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'fwd7_GPR' [CentralDiff] at .../casadi/core/function.cpp:1368:\n", + "Error in Function::operator() for 'GPR' [CallbackInternal] at .../casadi/core/function.cpp:1368:\n", + ".../casadi/core/function_internal.cpp:3366: Failed to evaluate 'eval_dm' for GPR:\n", + ".../casadi/core/callback_internal.cpp:122: Error calling \"eval\" for object GPR:\n", + "KeyboardInterrupt\") [.../casadi/core/oracle_function.cpp:223]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", - "Number of Iterations....: 100\n", + "Number of Iterations....: 8\n", "\n", - " (scaled) (unscaled)\n", - "Objective...............: 6.5760200008798533e+00 6.5760200008798533e+00\n", - "Dual infeasibility......: 2.2442159118026481e-03 2.2442159118026481e-03\n", - "Constraint violation....: 6.6578930102423328e-06 6.6578930102423328e-06\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 2.2442159118026481e-03 2.2442159118026481e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 115\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 115\n", - "Number of inequality constraint evaluations = 115\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", + "Number of objective function evaluations = 9\n", + "Number of objective gradient evaluations = 9\n", + "Number of equality constraint evaluations = 9\n", + "Number of inequality constraint evaluations = 9\n", + "Number of equality constraint Jacobian evaluations = 8\n", + "Number of inequality constraint Jacobian evaluations = 9\n", "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.441\n", - "Total CPU secs in NLP function evaluations = 138.114\n", + "Total CPU secs in IPOPT (w/o function evaluations) = 8.005\n", + "Total CPU secs in NLP function evaluations = 71.463\n", "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", + "EXIT: Invalid number in NLP function or derivative detected.\n", " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 552.00us ( 4.80us) 542.47us ( 4.72us) 115\n", - " nlp_g | 5.33 s ( 46.31ms) 5.09 s ( 44.29ms) 115\n", - " nlp_grad | 1.60 s ( 1.60 s) 1.55 s ( 1.55 s) 1\n", - " nlp_grad_f | 384.00us ( 3.76us) 379.34us ( 3.72us) 102\n", - " nlp_jac_g | 135.80 s ( 1.33 s) 129.99 s ( 1.27 s) 102\n", - " total | 142.87 s (142.87 s) 136.77 s (136.77 s) 1\n" + " nlp_f | 1.36 s (150.85ms) 778.94ms ( 86.55ms) 9\n", + " nlp_g | 1.07 s (118.45ms) 616.40ms ( 68.49ms) 9\n", + " nlp_grad | 8.54 s ( 8.54 s) 5.05 s ( 5.05 s) 1\n", + " nlp_grad_f | 45.21 s ( 4.52 s) 26.23 s ( 2.62 s) 10\n", + " nlp_jac_g | 33.52 s ( 3.35 s) 19.31 s ( 1.93 s) 10\n", + " total | 89.70 s ( 89.70 s) 52.01 s ( 52.01 s) 1\n" ] } ], "source": [ - "res = solver(p = real_p, lbg = real_lbg, ubg = real_ubg)" + "res = solver(x0 = real_X0.reshape((-1, )), p = real_p, lbg = real_lbg, ubg = real_ubg)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "x_res = np.array(res['x'].reshape((N_horizon, -1)))\n", + "#x_res_sc = x_scaler.inverse_transform(x_res)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "DM(\n", + "[[92.377, 17.5, 0.415039, -25.1379, 22.2554, 22.2552, 22.2551], \n", + " [54.6979, 16, 144.993, 0.415039, 22.2437, 22.2554, 22.2552], \n", + " [51.8324, 16, -103.495, 144.993, 22.272, 22.2437, 22.2554], \n", + " [40.2653, 16, -48.8636, -103.495, 23.3874, 22.272, 22.2437], \n", + " [29.8469, 16, 6.33578, -48.8636, 24.9003, 23.3874, 22.272]])" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "casadi.DM(x_res)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.41503917, 144.99327115, -103.49457825, -48.8635556 ,\n", + " 6.33578304])" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_res[:, 2]" ] }, { @@ -1418,7 +1626,7 @@ }, { "cell_type": "code", - "execution_count": 295, + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -1434,7 +1642,97 @@ }, { "cell_type": "code", - "execution_count": 299, + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Heattime
timestamp
2017-06-30 20:00:00+02:008.6206900
2017-06-30 20:05:00+02:008.620690300
2017-06-30 20:10:00+02:007.566667600
2017-06-30 20:15:00+02:008.172414900
2017-06-30 20:20:00+02:00-25.1379311200
2017-06-30 20:25:00+02:000.4150391500
\n", + "
" + ], + "text/plain": [ + " Heat time\n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 8.620690 0\n", + "2017-06-30 20:05:00+02:00 8.620690 300\n", + "2017-06-30 20:10:00+02:00 7.566667 600\n", + "2017-06-30 20:15:00+02:00 8.172414 900\n", + "2017-06-30 20:20:00+02:00 -25.137931 1200\n", + "2017-06-30 20:25:00+02:00 0.415039 1500" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_power.dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ @@ -1443,7 +1741,7 @@ }, { "cell_type": "code", - "execution_count": 303, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -1452,7 +1750,7 @@ }, { "cell_type": "code", - "execution_count": 304, + "execution_count": 66, "metadata": {}, "outputs": [], "source": [ @@ -1461,7 +1759,7 @@ }, { "cell_type": "code", - "execution_count": 305, + "execution_count": 67, "metadata": {}, "outputs": [], "source": [ @@ -1477,7 +1775,7 @@ }, { "cell_type": "code", - "execution_count": 306, + "execution_count": 68, "metadata": {}, "outputs": [], "source": [ @@ -1488,7 +1786,7 @@ }, { "cell_type": "code", - "execution_count": 307, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ @@ -1499,7 +1797,7 @@ }, { "cell_type": "code", - "execution_count": 308, + "execution_count": 70, "metadata": {}, "outputs": [], "source": [ @@ -1508,7 +1806,7 @@ }, { "cell_type": "code", - "execution_count": 309, + "execution_count": 71, "metadata": {}, "outputs": [], "source": [ @@ -1517,7 +1815,7 @@ }, { "cell_type": "code", - "execution_count": 313, + "execution_count": 72, "metadata": {}, "outputs": [], "source": [ @@ -1526,7 +1824,7 @@ }, { "cell_type": "code", - "execution_count": 327, + "execution_count": 73, "metadata": {}, "outputs": [], "source": [ @@ -1542,7 +1840,7 @@ }, { "cell_type": "code", - "execution_count": 331, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ @@ -1551,7 +1849,7 @@ }, { "cell_type": "code", - "execution_count": 332, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -1600,63 +1898,63 @@ " \n", " \n", " \n", - " 2017-07-07 20:00:00+02:00\n", - " 4651.034483\n", + " 2017-06-30 20:00:00+02:00\n", + " 8.620690\n", " 22.5\n", - " 30.0\n", - " 14.9\n", - " 23.100000\n", - " 143.479467\n", - " -23255.172414\n", - " 22.186572\n", + " 19.0\n", + " 22.1\n", + " 22.283333\n", + " 178.618267\n", + " 8.620690\n", + " 22.258776\n", " 0\n", " \n", " \n", - " 2017-07-07 20:05:00+02:00\n", - " 4634.896552\n", + " 2017-06-30 20:05:00+02:00\n", + " 8.620690\n", " 22.5\n", - " 30.0\n", - " 14.6\n", - " 23.016667\n", - " 133.344633\n", - " -23174.482759\n", - " 21.512325\n", + " 19.0\n", + " 22.1\n", + " 22.233333\n", + " 135.122100\n", + " 8.620690\n", + " 21.924169\n", " 300\n", " \n", " \n", - " 2017-07-07 20:10:00+02:00\n", - " 4620.620690\n", + " 2017-06-30 20:10:00+02:00\n", + " 7.566667\n", " 22.5\n", - " 30.0\n", - " 14.6\n", - " 22.900000\n", - " 122.100633\n", - " -23103.103448\n", - " 21.489900\n", + " 19.0\n", + " 22.1\n", + " 22.366667\n", + " 126.219967\n", + " 7.566667\n", + " 21.781290\n", " 600\n", " \n", " \n", - " 2017-07-07 20:15:00+02:00\n", - " 4449.233333\n", + " 2017-06-30 20:15:00+02:00\n", + " 8.172414\n", " 22.5\n", - " 29.5\n", - " 14.3\n", - " 22.733333\n", - " 111.456233\n", - " -22246.166667\n", - " 22.073906\n", + " 19.0\n", + " 22.1\n", + " 22.366667\n", + " 123.772467\n", + " 8.172414\n", + " 21.651448\n", " 900\n", " \n", " \n", - " 2017-07-07 20:20:00+02:00\n", - " 27.068966\n", + " 2017-06-30 20:20:00+02:00\n", + " 8.379310\n", " 22.5\n", - " 29.5\n", - " 18.5\n", - " 22.700000\n", - " 100.605500\n", - " -135.344828\n", - " 23.232675\n", + " 17.5\n", + " 22.4\n", + " 22.566667\n", + " 106.163600\n", + " -25.137931\n", + " 21.471403\n", " 1200\n", " \n", " \n", @@ -1672,62 +1970,62 @@ " ...\n", " \n", " \n", - " 2017-07-10 05:35:00+02:00\n", - " 28.206897\n", + " 2017-07-03 05:35:00+02:00\n", + " -22.266667\n", " 22.5\n", - " 18.0\n", - " 23.0\n", - " 22.333333\n", - " 0.000000\n", - " 141.034483\n", + " 16.0\n", + " 21.5\n", + " 21.016667\n", + " 3.911200\n", + " -22.266667\n", " NaN\n", " 207300\n", " \n", " \n", - " 2017-07-10 05:40:00+02:00\n", - " 27.965517\n", + " 2017-07-03 05:40:00+02:00\n", + " -21.310345\n", " 22.5\n", - " 18.0\n", - " 23.0\n", - " 22.383333\n", - " 0.000000\n", - " 139.827586\n", + " 16.0\n", + " 21.5\n", + " 20.850000\n", + " 4.535500\n", + " -21.310345\n", " NaN\n", " 207600\n", " \n", " \n", - " 2017-07-10 05:45:00+02:00\n", - " 30.413793\n", + " 2017-07-03 05:45:00+02:00\n", + " -22.000000\n", " 22.5\n", - " 18.0\n", - " 23.0\n", - " 22.366667\n", - " 0.000000\n", - " 152.068966\n", + " 16.0\n", + " 21.5\n", + " 20.850000\n", + " 5.259500\n", + " -22.000000\n", " NaN\n", " 207900\n", " \n", " \n", - " 2017-07-10 05:50:00+02:00\n", - " 29.800000\n", + " 2017-07-03 05:50:00+02:00\n", + " -23.034483\n", " 22.5\n", - " 18.0\n", - " 23.0\n", - " 22.333333\n", - " 0.000000\n", - " 149.000000\n", + " 16.0\n", + " 21.5\n", + " 20.866667\n", + " 6.644067\n", + " -23.034483\n", " NaN\n", " 208200\n", " \n", " \n", - " 2017-07-10 05:55:00+02:00\n", - " 31.931034\n", + " 2017-07-03 05:55:00+02:00\n", + " -20.666667\n", " 22.5\n", - " 18.0\n", - " 23.0\n", - " 22.350000\n", - " 0.000000\n", - " 159.655172\n", + " 16.0\n", + " 21.5\n", + " 20.850000\n", + " 9.509900\n", + " -20.666667\n", " NaN\n", " 208500\n", " \n", @@ -1737,52 +2035,52 @@ "" ], "text/plain": [ - " Power Setpoint OutsideTemp SupplyTemp \\\n", - "timestamp \n", - "2017-07-07 20:00:00+02:00 4651.034483 22.5 30.0 14.9 \n", - "2017-07-07 20:05:00+02:00 4634.896552 22.5 30.0 14.6 \n", - "2017-07-07 20:10:00+02:00 4620.620690 22.5 30.0 14.6 \n", - "2017-07-07 20:15:00+02:00 4449.233333 22.5 29.5 14.3 \n", - "2017-07-07 20:20:00+02:00 27.068966 22.5 29.5 18.5 \n", - "... ... ... ... ... \n", - "2017-07-10 05:35:00+02:00 28.206897 22.5 18.0 23.0 \n", - "2017-07-10 05:40:00+02:00 27.965517 22.5 18.0 23.0 \n", - "2017-07-10 05:45:00+02:00 30.413793 22.5 18.0 23.0 \n", - "2017-07-10 05:50:00+02:00 29.800000 22.5 18.0 23.0 \n", - "2017-07-10 05:55:00+02:00 31.931034 22.5 18.0 23.0 \n", + " Power Setpoint OutsideTemp SupplyTemp \\\n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 8.620690 22.5 19.0 22.1 \n", + "2017-06-30 20:05:00+02:00 8.620690 22.5 19.0 22.1 \n", + "2017-06-30 20:10:00+02:00 7.566667 22.5 19.0 22.1 \n", + "2017-06-30 20:15:00+02:00 8.172414 22.5 19.0 22.1 \n", + "2017-06-30 20:20:00+02:00 8.379310 22.5 17.5 22.4 \n", + "... ... ... ... ... \n", + "2017-07-03 05:35:00+02:00 -22.266667 22.5 16.0 21.5 \n", + "2017-07-03 05:40:00+02:00 -21.310345 22.5 16.0 21.5 \n", + "2017-07-03 05:45:00+02:00 -22.000000 22.5 16.0 21.5 \n", + "2017-07-03 05:50:00+02:00 -23.034483 22.5 16.0 21.5 \n", + "2017-07-03 05:55:00+02:00 -20.666667 22.5 16.0 21.5 \n", "\n", - " InsideTemp SolRad Heat \\\n", - "timestamp \n", - "2017-07-07 20:00:00+02:00 23.100000 143.479467 -23255.172414 \n", - "2017-07-07 20:05:00+02:00 23.016667 133.344633 -23174.482759 \n", - "2017-07-07 20:10:00+02:00 22.900000 122.100633 -23103.103448 \n", - "2017-07-07 20:15:00+02:00 22.733333 111.456233 -22246.166667 \n", - "2017-07-07 20:20:00+02:00 22.700000 100.605500 -135.344828 \n", - "... ... ... ... \n", - "2017-07-10 05:35:00+02:00 22.333333 0.000000 141.034483 \n", - "2017-07-10 05:40:00+02:00 22.383333 0.000000 139.827586 \n", - "2017-07-10 05:45:00+02:00 22.366667 0.000000 152.068966 \n", - "2017-07-10 05:50:00+02:00 22.333333 0.000000 149.000000 \n", - "2017-07-10 05:55:00+02:00 22.350000 0.000000 159.655172 \n", + " InsideTemp SolRad Heat SimulatedTemp \\\n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 22.283333 178.618267 8.620690 22.258776 \n", + "2017-06-30 20:05:00+02:00 22.233333 135.122100 8.620690 21.924169 \n", + "2017-06-30 20:10:00+02:00 22.366667 126.219967 7.566667 21.781290 \n", + "2017-06-30 20:15:00+02:00 22.366667 123.772467 8.172414 21.651448 \n", + "2017-06-30 20:20:00+02:00 22.566667 106.163600 -25.137931 21.471403 \n", + "... ... ... ... ... \n", + "2017-07-03 05:35:00+02:00 21.016667 3.911200 -22.266667 NaN \n", + "2017-07-03 05:40:00+02:00 20.850000 4.535500 -21.310345 NaN \n", + "2017-07-03 05:45:00+02:00 20.850000 5.259500 -22.000000 NaN \n", + "2017-07-03 05:50:00+02:00 20.866667 6.644067 -23.034483 NaN \n", + "2017-07-03 05:55:00+02:00 20.850000 9.509900 -20.666667 NaN \n", "\n", - " SimulatedTemp time \n", - "timestamp \n", - "2017-07-07 20:00:00+02:00 22.186572 0 \n", - "2017-07-07 20:05:00+02:00 21.512325 300 \n", - "2017-07-07 20:10:00+02:00 21.489900 600 \n", - "2017-07-07 20:15:00+02:00 22.073906 900 \n", - "2017-07-07 20:20:00+02:00 23.232675 1200 \n", - "... ... ... \n", - "2017-07-10 05:35:00+02:00 NaN 207300 \n", - "2017-07-10 05:40:00+02:00 NaN 207600 \n", - "2017-07-10 05:45:00+02:00 NaN 207900 \n", - "2017-07-10 05:50:00+02:00 NaN 208200 \n", - "2017-07-10 05:55:00+02:00 NaN 208500 \n", + " time \n", + "timestamp \n", + "2017-06-30 20:00:00+02:00 0 \n", + "2017-06-30 20:05:00+02:00 300 \n", + "2017-06-30 20:10:00+02:00 600 \n", + "2017-06-30 20:15:00+02:00 900 \n", + "2017-06-30 20:20:00+02:00 1200 \n", + "... ... \n", + "2017-07-03 05:35:00+02:00 207300 \n", + "2017-07-03 05:40:00+02:00 207600 \n", + "2017-07-03 05:45:00+02:00 207900 \n", + "2017-07-03 05:50:00+02:00 208200 \n", + "2017-07-03 05:55:00+02:00 208500 \n", "\n", "[696 rows x 9 columns]" ] }, - "execution_count": 332, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -1800,37 +2098,47 @@ }, { "cell_type": "code", - "execution_count": 340, + "execution_count": 76, + "metadata": {}, + "outputs": [], + "source": [ + "gpr_horizon = np.array(gpr(res['x'].reshape((N_horizon, -1)).T)).flatten()" + ] + }, + { + "cell_type": "code", + "execution_count": 77, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[22.79605454, 22.91609847, 23.08086156, 23.18446746, 23.81619112]])" + "array([22.25542067, 22.2722139 , 22.23139534, 22.34675811, 25.0869712 ,\n", + " 27.19437496])" ] }, - "execution_count": 340, + "execution_count": 77, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "T_sim_horizon = np.array(gpr(res['x'].reshape((N_horizon, -1)).T))\n", + "T_sim_horizon = np.hstack([np.array(y_0), gpr_horizon])\n", "T_sim_horizon" ] }, { "cell_type": "code", - "execution_count": 352, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ - "simul_idx = (df_simulation['time'] >= current_timestamp) & (df_simulation['time'] < (current_timestamp + N_horizon * 300))" + "simul_idx = (df_simulation['time'] >= current_timestamp) & (df_simulation['time'] <= (current_timestamp + N_horizon * 300))" ] }, { "cell_type": "code", - "execution_count": 367, + "execution_count": 79, "metadata": {}, "outputs": [ { @@ -1865,29 +2173,34 @@ " \n", " \n", " \n", - " 2017-07-07 20:25:00+02:00\n", + " 2017-06-30 20:25:00+02:00\n", " 1500\n", - " 22.796055\n", + " 22.255421\n", " \n", " \n", - " 2017-07-07 20:30:00+02:00\n", + " 2017-06-30 20:30:00+02:00\n", " 1800\n", - " 22.916098\n", + " 22.272214\n", " \n", " \n", - " 2017-07-07 20:35:00+02:00\n", + " 2017-06-30 20:35:00+02:00\n", " 2100\n", - " 23.080862\n", + " 22.231395\n", " \n", " \n", - " 2017-07-07 20:40:00+02:00\n", + " 2017-06-30 20:40:00+02:00\n", " 2400\n", - " 23.184467\n", + " 22.346758\n", " \n", " \n", - " 2017-07-07 20:45:00+02:00\n", + " 2017-06-30 20:45:00+02:00\n", " 2700\n", - " 23.816191\n", + " 25.086971\n", + " \n", + " \n", + " 2017-06-30 20:50:00+02:00\n", + " 3000\n", + " 27.194375\n", " \n", " \n", "\n", @@ -1896,14 +2209,15 @@ "text/plain": [ " time values\n", "timestamp \n", - "2017-07-07 20:25:00+02:00 1500 22.796055\n", - "2017-07-07 20:30:00+02:00 1800 22.916098\n", - "2017-07-07 20:35:00+02:00 2100 23.080862\n", - "2017-07-07 20:40:00+02:00 2400 23.184467\n", - "2017-07-07 20:45:00+02:00 2700 23.816191" + "2017-06-30 20:25:00+02:00 1500 22.255421\n", + "2017-06-30 20:30:00+02:00 1800 22.272214\n", + "2017-06-30 20:35:00+02:00 2100 22.231395\n", + "2017-06-30 20:40:00+02:00 2400 22.346758\n", + "2017-06-30 20:45:00+02:00 2700 25.086971\n", + "2017-06-30 20:50:00+02:00 3000 27.194375" ] }, - "execution_count": 367, + "execution_count": 79, "metadata": {}, "output_type": "execute_result" } @@ -1916,12 +2230,12 @@ }, { "cell_type": "code", - "execution_count": 384, + "execution_count": 80, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAE/CAYAAAAHeyFHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABOPklEQVR4nO3dd3gU1f7H8fc3BQiE3ntAQekBAlJUwC6ooAKiKGABwV6u7Xq5cvXqtfeC2H/KVUHEigWvQWnSNID0Frr0HlqS8/tjNiGBAAlsMrvJ5/U8+2R3dmb2OydDyCfnzBlzziEiIiIiIiKhL8LvAkRERERERCR3FOBERERERETChAKciIiIiIhImFCAExERERERCRMKcCIiIiIiImFCAU5ERERERCRMKMCJiIiIiIiECQU4EZEixMx2Z3mkm9neLK/7+l3fiTCzZDM7z+86jsXMJpjZTfm4/xFmtijwPR1w2HsDzCztsO995yzvVzCzsWa2x8xWmtk1h21/rpktNLMUM0s0s7r5dRwiInJ8CnAiIkWIcy424wGsAi7Nsmyk3/UdzsyiCsNnFIDZwC3A70d5f2rW771zbkKW914DDgBVgb7AG2bWBMDMKgGfA0OBCsBM4NP8OQQREckNBTgREcHMIszsQTNbZmZbzGyUmVUIvBdnZs7Mrjez1Wa2zcwGm1kbM5tjZtvN7NUs+xpgZpPN7BUz2xHovTk3y/tlzewdM1tvZmvN7N9mFnnYti+Y2VZgmJmdYmY/B+rabGYjzaxcYP0PgTrA14GepfvNrLOZrTns+DJ76cxsmJl9ZmYfmdlOYMBxajrVzH4JHMtmM8sxwJhZicA+twTaZIaZVTWzx4GzgFcDNb4aWP90MxtvZlsDvWe9s+zrfTMbHnh/V+Dzj9rz5Zx7zTn3P2Bf7r/rYGalgCuBoc653c65ScBXwHWBVa4A5jnnRjvn9gHDgBZmdnpePkdERIJHAU5ERADuAHoAnYAawDa8npmszgAaAFcBLwIPA+cBTYDeZtbpsHWXA5WAR4DPMwIh8AGQCpwKtAQuAG7KYdsqwOOAAf8J1NUIqI0XJHDOXUf2nsSnc3m83YHPgHLAyOPU9BjwI1AeqAW8cpR99gfKBuqrCAwG9jrnHgYmArcFarwtEJzGA/8NHOfVwOsZPV8BfQOfXQlICtR5oloGwudiMxuapdexIZDmnFucZd3ZeN9TAl9nZ7zhnNsDLMvyvoiIFDAFOBERAbgZeNg5t8Y5tx8vIPU8bHjhY865fc65H4E9wMfOuY3OubV4AaVllnU3Ai865w465z4FFgHdzKwqcDFwl3Nuj3NuI/AC0CfLtuucc68451Kdc3udc0udc+Odc/udc5uA5/GC5smY6pz7wjmXDpQ5Tk0HgbpAjcDxTzrKPg/iBbdTnXNpzrlZzrmdR1n3EiDZOfde4Dh/B8YAPbOs861z7tfA9+NhoL2Z1T6BY/0VaIoXFK/EC4v3Bd6LBXYctv4OoHQu3xcRkQJWGMb9i4jIyasLjDWz9CzL0vCui8qwIcvzvTm8js3yeq1zzmV5vRKvB60uEA2sN7OM9yKA1VnWzfocM6sCvIw3DLF0YP1tuTqqo8v6Gcer6X68nrDpZrYNeM45924O+/wQr/ftk8AQz4/wQvHBHNatC5xhZtuzLIsK7OOIGp1zuwNDSmscVvtxOeeWZ3k518wexQtw/wF24wXYrMoAuwLPj/e+iIgUMPXAiYgIeKHgYudcuSyPEoHetRNR07KkIbzr1NYFPmc/UCnL55RxzmUdkpc1+IEXNBzQ3DlXBrgWb1jl0dbfA5TMeBG4lq3yYetk3eaYNTnn/nLODXTO1cDrqXzdzE49/IADvY3/cs41Bjrg9bL1O0qNq4FfDmvvWOfckCzrZPa2mVks3iQi6w7/3BPgONR+i4EoM2uQ5f0WwLzA83mB1xl1lAJOyfK+iIgUMAU4EREBGA48njFRhplVNrPuJ7G/KsAdZhZtZr3wrl0b55xbj3c92XNmViYwecoph10/d7jSeD1B282sJoeG/2XYANTP8noxUMLMuplZNPAPoPjRdn68msysl5nVCqy+DS8ApR2+HzPrYmbNAoFxJ96Qyoz1Dq/xG6ChmV0XaKPowKQwjbKs09XMzjSzYng9gNOcczn2vplZMTMrgRfMogMTqkQE3rs4MHSVwOQjQ4EvA8e+B2+WyUfNrJSZdcS7PjCjJ3As0NTMrgzs/5/AHOfcwqO1p4iI5C8FOBERAXgJb/bBH81sF/Ab3mQiJ2oa3oQnm/EmIunpnNsSeK8fUAyYjxeIPgOqH2Nf/wJa4V179S1e4MjqP8A/AjM//s05twNvSv23gbV4PXJrOLZj1dQGmGZmu/Ha6E7n3Ioc9lEtsN1OYAHwC94wSvDat6d5M3i+7JzbhTdRSh+8XrW/gKfIHjT/izcBzFagNd6kJkfzI94w1g7AiMDzswPvnQvMMbM9wDi89nsiy7a3ADF41y1+DAxxzs0DCFxzeCXe93Ab3jmR9XpFEREpYJb9EgUREZGTY96NpG9yzp3pdy3hyszeB9Y45/7hdy0iIhJa1AMnIiIiIiISJhTgREREREREwoSGUIqIiIiIiIQJ9cCJiIiIiIiECQU4ERERERGRMBHldwE5qVSpkouLi/O7DBEREREREV/MmjVrs3Ou8uHLQzLAxcXFMXPmTL/LEBERERER8YWZrcxpuYZQioiIiIiIhAkFOBERERERkTChACciIiIiIhImQvIauJwcPHiQNWvWsG/fPr9LkUKmRIkS1KpVi+joaL9LERERERE5prAJcGvWrKF06dLExcVhZn6XI4WEc44tW7awZs0a6tWr53c5IiIiIiLHFDZDKPft20fFihUV3iSozIyKFSuqZ1dEREREwkLYBDhA4U3yhc4rEREREQkXYRXg/Pb444/TpEkTmjdvTnx8PNOmTQPgpptuYv78+UH5jLi4ODZv3nzMdZ544ok87/f999/ntttuy7bsvffeIz4+nvj4eIoVK0azZs2Ij4/nwQcfzPP+C8KLL75ISkqK32WIiIiISLh7+mlITMy+LDHRWx7iFOByaerUqXzzzTf8/vvvzJkzh59++onatWsD8Pbbb9O4ceMCq+VEAlxOrr/+epKSkkhKSqJGjRokJiaSlJTEk08+GZT955VzjvT09KO+fyIBLjU19WTLEhEREZHCpk0b6N37UIhLTPRet2njb125oACXS+vXr6dSpUoUL14cgEqVKlGjRg0AOnfuzMyZMwGIjY3lgQceoHXr1px33nlMnz6dzp07U79+fb766ivgyN6wSy65hAkTJhzxmT169KB169Y0adKEESNGAPDggw+yd+9e4uPj6du3LwAfffQRbdu2JT4+nptvvpm0tDTA62Fr2LAhnTp1YvLkybk+1meeeYY2bdrQvHlzHnnkEQCSk5M5/fTTuemmm2jatCl9+/blp59+omPHjjRo0IDp06cDMGzYMK677jrOOeccGjRowFtvvXXc/TZq1IhbbrmFVq1asXr1aoYMGUJCQgJNmjTJXO/ll19m3bp1dOnShS5dumS2dYbPPvuMAQMGADBgwADuueceunTpwgMPPMCyZcu46KKLaN26NWeddRYLFy7MdVuIiIiISCHUpQuMHAmXXgp//7sX3kaN8paHOudcyD1at27tDjd//vwjlhWkXbt2uRYtWrgGDRq4IUOGuAkTJmS+16lTJzdjxgznnHOAGzdunHPOuR49erjzzz/fHThwwCUlJbkWLVo455x777333K233pq5fbdu3VxiYqJzzrm6deu6TZs2Oeec27Jli3POuZSUFNekSRO3efNm55xzpUqVytx2/vz57pJLLnEHDhxwzjk3ZMgQ98EHH7h169a52rVru40bN7r9+/e7Dh06ZPvMw2V87g8//OAGDhzo0tPTXVpamuvWrZv75Zdf3IoVK1xkZKSbM2eOS0tLc61atXLXX3+9S09Pd1988YXr3r27c865Rx55xDVv3tylpKS4TZs2uVq1arm1a9cec79m5qZOnZpZS8Zxp6amuk6dOrnZs2cf0TaHt8Po0aNd//79nXPO9e/f33Xr1s2lpqY655w755xz3OLFi51zzv3222+uS5cuRxy/3+eXiIiIiBSgdeuc69jROfAeQ4f6XdERgJkuh6wUNrcRyOpfX89j/rqdQd1n4xpleOTSJkd9PzY2llmzZjFx4kQSExO56qqrePLJJzN7fTIUK1aMiy66CIBmzZpRvHhxoqOjadasGcnJyXmq6eWXX2bs2LEArF69miVLllCxYsVs6/zvf/9j1qxZtAl09+7du5cqVaowbdo0OnfuTOXKlQG46qqrWLx48XE/88cff+THH3+kZcuWAOzevZslS5ZQp04d6tWrR7NmzQBo0qQJ5557LmZ2xLF1796dmJgYYmJi6NKlC9OnT2fSpElH3W/dunVp165d5vajRo1ixIgRpKamsn79eubPn0/z5s3z1Ha9evUiMjKS3bt3M2XKFHr16pX53v79+/O0LxEREREpRKZMgZ49YetWKF0a7roL3njD630Lgx64sAxwfomMjKRz58507tyZZs2a8cEHHxwR4KKjozNnNYyIiMgcchkREZF5PVZUVFS2a71ymsJ+woQJ/PTTT0ydOpWSJUvSuXPnHNdzztG/f3/+85//ZFv+xRdfnNDsis45HnroIW6++eZsy5OTkzOP5VjHBkfO6mhmx9xvqVKlMl+vWLGCZ599lhkzZlC+fHkGDBhw1Cn+s37O4etk7DM9PZ1y5cqRlJR0vEMXERERkcLMORg+HO68EypXhpIlYcyYQ8EtTIZRhmWAO1ZPWX5ZtGgRERERNGjQAICkpCTq1q17QvuKi4vj9ddfJz09nbVr12ZeP5bVjh07KF++PCVLlmThwoX89ttvme9FR0dz8OBBoqOjOffcc+nevTt33303VapUYevWrezatYszzjiDO++8ky1btlCmTBlGjx5NixYtjlvbhRdeyNChQ+nbty+xsbGsXbuW6OjoPB3fl19+yUMPPcSePXuYMGECTz75JDExMbna786dOylVqhRly5Zlw4YNfPfdd3Tu3BmA0qVLs2vXLipVqgRA1apVWbBgAaeddhpjx46ldOnSR+yvTJky1KtXj9GjR9OrVy+cc8yZMydXbSEiIiIihcS+fXDrrfDuu9C1K7RtC2effSisdenihbcZMxTgCovdu3dz++23s337dqKiojj11FMzJxbJq44dO2YOR2zatCmtWrU6Yp2LLrqI4cOH07x5c0477bRsQwwHDRpE8+bNadWqFSNHjuTf//43F1xwAenp6URHR/Paa6/Rrl07hg0bRvv27alevTqtWrXKnNzkWC644AIWLFhA+/btAW/o6EcffURkZGSuj69t27Z069aNVatWMXToUGrUqEGNGjVytd8WLVrQsmVLmjRpQv369enYsWO247744oupXr06iYmJPPnkk1xyySXUrl2bpk2bsnv37hzrGTlyJEOGDOHf//43Bw8epE+fPgpwIiIiIkXF6tVw5ZVeOBs6FIYNg4gc5nIMkyGU5l0fF1oSEhJcxqyOGRYsWECjRo18qkhya9iwYcTGxvK3v/3N71LyROeXiIiISCE0YYI3NHLfPvjwQ+je3e+Kcs3MZjnnEg5frtsIiIiIiIhI4eIcvPACnHceVKwI06eHVXg7Fg2hlKAaNmyY3yWIiIiISFGWkgIDB8J//wuXXw7vvw9lyvhdVdCoB05ERERERAqH5cuhfXv4+GN4/HH47LNCFd5APXAiIiIiIlIY/PADXH21N3xy3DgI3Ju5sFEPnIiIiIiIhC/n4D//gYsvhlq1YObMQhveQD1wIiIiIiISrnbtggED4PPPoU8fePttKFXK76rylXrg8iAyMpL4+HiaNm1Kr169SElJOeF9DRgwgM8++wyAm266ifnz5x913QkTJjBlypTM18OHD+f//u//TvizMyQnJ9O0adNsy4YNG8azzz6bp/0Eqx4RERERkVxbtAjOOAO+/BKee86btKSQhzdQD1yexMTEkJSUBEDfvn0ZPnw499xzT+b7aWlpebrhdYa33377mO9PmDCB2NhYOnToAMDgwYPz/Bn5JTU1NaTqEREREZEi4Kuv4LrroFgxGD8+LG7AHSyFswfu6achMTH7ssREb3mQnHXWWSxdupQJEybQpUsXrrnmGpo1a0ZaWhr33Xcfbdq0oXnz5rz55psAOOe47bbbaNy4Md26dWPjxo2Z++rcuTMZNy7//vvvadWqFS1atODcc88lOTmZ4cOH88ILLxAfH8/EiROz9ZIlJSXRrl07mjdvzuWXX862bdsy9/nAAw/Qtm1bGjZsyMSJE/N8jMfa99///nc6derESy+9lFnPunXriI+Pz3xERkaycuVKVq5cybnnnkvz5s0599xzWbVqFeD1Qt5xxx106NCB+vXrZ/ZIioiIiIjkKD0dHnnEu6dbgwYwa1aRCm9QWANcmzbeHdczQlxiove6TZug7D41NZXvvvuOZs2aATB9+nQef/xx5s+fzzvvvEPZsmWZMWMGM2bM4K233mLFihWMHTuWRYsWMXfuXN56661sQyIzbNq0iYEDBzJmzBhmz57N6NGjiYuLY/Dgwdx9990kJSVx1llnZdumX79+PPXUU8yZM4dmzZrxr3/9K1ud06dP58UXX8y2PKtly5ZlC13Dhw/P1b63b9/OL7/8wr333pu5rEaNGiQlJZGUlMTAgQO58sorqVu3Lrfddhv9+vVjzpw59O3blzvuuCNzm/Xr1zNp0iS++eYbHnzwwTx+J0RERESkyNi+HS67DB591LvubeJEqFPH76oKXHgOobzrLggMZTyqGjXgwguhenVYvx4aNYJ//ct75CQ+Hl588Zi73Lt3L/Hx8YDXA3fjjTcyZcoU2rZtS7169QD48ccfmTNnTmZv0o4dO1iyZAm//vorV199NZGRkdSoUYNzzjnniP3/9ttvnH322Zn7qlChwjHr2bFjB9u3b6dTp04A9O/fn169emW+f8UVVwDQunVrkpOTc9zHKaeckjksFA7diPt4+77qqquOWtfkyZN5++23M3v9pk6dyueffw7Addddx/3335+5bo8ePYiIiKBx48Zs2LDhmMcrIiIiIkXUn396N+VOTobXX4fBg8HM76p8EZ4BLjfKl/fC26pVXjIvX/6kd5n1GrisSmW5WNI5xyuvvMKFF16YbZ1x48ZhxznJnHPHXScvihcvDniTr6SmpgZtv5D9mLNav349N954I1999RWxsbE5rpP1GDNqBO/4RURERESyGT0arr8eSpeGCROgY0e/K/JVeA6hfPFF75t3rMcjj0BKCgwd6n195JFjr3+c3rfcuvDCC3njjTc4ePAgAIsXL2bPnj2cffbZfPLJJ6SlpbF+/XoSD79GD2jfvj2//PILK1asAGDr1q0AlC5dml27dh2xftmyZSlfvnxmT9eHH36Y2WN2sk5k3wcPHqR379489dRTNGzYMHN5hw4d+OSTTwAYOXIkZ555ZlBqFBEREZFCLDUVHnjAuxSqeXPverciHt6gsPbAZVzzNmqUd1Fjly7ZX+ejm266ieTkZFq1aoVzjsqVK/PFF19w+eWX8/PPP9OsWTMaNmyYYxiqXLkyI0aM4IorriA9PZ0qVaowfvx4Lr30Unr27MmXX37JK6+8km2bDz74gMGDB5OSkkL9+vV57733gnYsed33lClTmDFjBo888giPPPII4PU8vvzyy9xwww0888wzVK5cOag1ioiIiEghtGWLd1+3n37yhku+9JI346RgoThsLSEhwWXMyphhwYIFNGrUKHc7ePppb8KSrGEtMRFmzIAs11+JZMjT+SUiIiIi+eePP7zr3davhzfegBtu8LsiX5jZLOdcwuHLC2cPXE4hLaMnTkREREREQtOHH8KgQVCpEkyaFLRZ5AuT8LwGTkRERERECo+DB+HOO6FfP2jXzrveTeEtRwpwIiIiIiLinw0b4Lzz4OWX4e67Yfx4qFLF76pCVlgNoQz2NPsioNsXiIiIiPhm2jS48krYuhVGjoRrrvG7opAXNj1wJUqUYMuWLfplW4LKOceWLVsoUaKE36WIiIiIFC1vvQVnn+3NLjl1qsJbLoVND1ytWrVYs2YNmzZt8rsUKWRKlChBrVq1/C5DREREpGjYvx/uuANGjIALLoCPP4YKFfyuKmyETYCLjo6mXr16fpchIiIiIiInau1a6NkTfvsNHnoIHnsMIiP9riqshE2AExERERGRMDZxIvTqBXv2wGefede+SZ6FzTVwIiIiIiIShpyDV16Bc86BMmUOTVwiJ+S4Ac7MaptZopktMLN5ZnZnYPljZjbHzJLM7Eczq3GU7ZPNbG5gvZnBPgAREREREQlRe/dC//7eNW8XXwwzZkDjxn5XFdZy0wOXCtzrnGsEtANuNbPGwDPOuebOuXjgG+Cfx9hHF+dcvHMu4aQrFhERERGR0JecDB07wkcfwb/+BV98AWXL+l1V2DvuNXDOufXA+sDzXWa2AKjpnJufZbVSgOb3FxERERER+Okn6NMHUlPh66+hWze/Kyo08nQNnJnFAS2BaYHXj5vZaqAvR++Bc8CPZjbLzAadRK0iIiIiIhLKnINnnoELL4Rq1bwhkwpvQZXrAGdmscAY4C7n3E4A59zDzrnawEjgtqNs2tE51wq4GG/45dlH2f8gM5tpZjN1rzcRERERkTCze7fX63b//XDFFd6tAho08LuqQidXAc7MovHC20jn3Oc5rPJfIMepZJxz6wJfNwJjgbZHWW+Ecy7BOZdQuXLl3JQlIiIiIiKhYOlSaN/euz3AU0/BqFEQG+t3VYVSbmahNOAdYIFz7vksy7PG6cuAhTlsW8rMSmc8By4A/jzZokVEREREJESMGwdt2sC6dfD9914PnJnfVRVauemB6whcB5wTuBVAkpl1BZ40sz/NbA5eMMu4vUANMxsX2LYqMMnMZgPTgW+dc98H/zBERERERKRApafDY4/BJZdAXBzMnAnnn+93VYVebmahnATkFKHH5bAsY8hk18Dz5UCLkylQRERERERCzI4d0K8ffPUVXHstvPkmlCzpd1VFwnEDnIiIiIiISKYFC6BHD1i2DF56CW6/XUMmC5ACnIiIiIiI5M7nn0P//l5v288/w9k5TjAv+ShP94ETEREREZEiKC0NHn4YrrwSGjeGWbMU3nyiHjgRERERETm6rVvhmmvghx/gppvg1VeheHG/qyqyFOBERERERCRns2d7N+VevdqbqGTQIL8rKvI0hFJERERERI708cfezbn37YNff1V4CxEKcCIiIiIickhqKtx7rzdssnVr73q3du38rkoCNIRSREREREQ8mzbBVVdBYiLcdhs89xwUK+Z3VZKFApyIiIiIiMDMmd71bps2wQcfeDfqlpCjIZQiIiIiIkXde+/BmWd6N+SePFnhLYSpB05ERCSMbNtzgOQte7zH5hRuP+dUoiL191gROUEHDsDdd8Prr8O558Inn0ClSn5XJcegACciIhJCnHNsTznIii17WLllDys2p7Byyx6SN+8heUsKO/YezFzXDHol1KJW+ZI+ViwiYWv9eujVy+txu+8+eOIJiFI8CHX6DomIiBQw5xzbUg4GetG8YJa8OSOw7WHnvtTMdc2gZrkY4iqW4tIW1YmrWMp7VCpJ7QolKR4V6eORiEjYmjIFevaEHTu8XrerrvK7IsklBTgREZF8kBHSVgSCWWZQCzzPGtIiDGqUi6FepVJcFl8jS0grRe0KMQppIhI8zsHw4XDnnVCnDvzwAzRr5ndVkgcKcCIiIifIOcfWPQey96BtScnsSdt1WEirWd7rSeseX5O6FUtSr1Ip6lZUSBORArJvH9xyizdhSdeu8NFHUL6831VJHinAiYiIHINzji17DmS7Hs3rVfN6044W0nrE1ySuUiniKpYkrlIpapVXSBMRH61e7d0iYOZMGDoUhg2DCE2AFI4U4EREpMjLCGlZr0fLmOlx5eYUdu3PHtJqlfdCWcs65TKvR6tbsRS1y5ekWJR+IRKREDNhAvTu7fXAjR0LPXr4XZGcBAU4EREpEpxzbN59IFsPWsZMj8cKaa3qlCeuYqnAcMeS1FJIE5Fw4Ry8+KI3w2SDBl54O/10v6uSk6QAJyIihUZGSDs0u2PWGR5T2J0lpEVGGLUCwx1b1ykfGO6okCYihURKCgwcCP/9L1x+Obz/PpQp43dVEgQKcCIiElacc2zavd/rQcuc4dG7Hu1YIS2hbiCkBYJarfIxROsG2CJSGC1f7oW2uXPh8cfhwQd1vVshogAnIiIhxznHpl37j7geLTkwicieA2mZ60ZGGLXLxxBXqRRt4ipQNzBpiEKaiBRJP/wAV1/tDZ8cNw4uusjviiTIFOBERMQXGSHt8OvRMmZ6TDlKSGtbr0LmzI5xFUtRUyFNRMQLbE8+CQ8/DE2bete7nXKK31VJPlCAExGRAjFpyWYmL9ucOdPj4SEtKsKoXaEkcRVLcoZCmohI7u3aBQMGwOefQ58+8PbbUKqU31VJPlGAExGRfDcjeSvXvTuNSMse0uplXpNWkprlYohSSBMRyZtFi7zr3RYvhueeg7vvBjO/q5J8pAAnIiL5avf+VO4ZlUSt8jF8d+fZxBbXfz0iIkHx1Vdw3XVQrBiMHw9duvhdkRQA/alTRETy1ePfLmDNtr083zte4U1E5EQ8/TQkJh56nZ4O/fpB9+7e/d1mzVJ4K0IU4EREJN8kLtzIx9NXMejs+rSJq+B3OSIi4alNG+jd2wtx27dDhw7w4Ydw4YUwcSLUqeN3hVKA9KdQERHJF9v2HOD+MXM4rWpp7jm/od/liIiEr06d4NVXvWvdIiJg2za480544QVd71YEKcCJiEi++MeXf7I95QDvX9+G4lGRfpcjIhK6nPNC2YoV3k24V6zI/nzlSjhw4ND6AwbAiy/6Va34TAFORESC7qvZ6/h2znruu/A0mtQo63c5IiL+27sXkpOPDGcZz3fuzL5+hQpQvz7Ex3s9bwcOwHvvwaBB3tfERF33VkQpwImISFD9tWMfQ7/4k5Z1ynHz2fX9LkdEpGCkpcHatTn3oK1YAevXZ1+/RAmoV897nHnmoef163tfy5Q5tG5ioncN3NixXmi7+GLv9ahRCnFFkAKciIgEjXOO+8fM4UBqOs/3jtd93USk8HAOtmw5eg/aqlVw8OCh9SMioHZtL4xddFH2cFavHlSrlvvr12bMyB7WunTxXs+YoQBXBCnAiYhI0IyctopfF2/ise5NqFeplN/liIjkTUqKN8zxaL1ou3ZlX79SJS+MJSRAr17ZQ1rt2t792YLh/vuPXNali8JbEaUAJyIiQZG8eQ+Pf7uAsxpU4tp2df0uR0TkSKmpsGbN0ScL2bAh+/oxMYcCWadO2XvQ6tWD0qX9OQ4p0hTgRETkpKWlO+4dPZuoSOPpns0xTWstIn5wDjZvPnoP2qpVXojLEBnp9ZTVrw+XXHLkdWhVqmiafgk5CnAiInLSRvy6nFkrt/HiVfFULxvjdzkiUpjt2XP069BWrPDez6pKFS+MtW0LffpkD2m1akF0tD/HIXKCFOBEROSkLFi/k+fHL6Jrs2p0j6/hdzki4renn4Y2bbJfn5WY6E24kdO1XIc7eBBWrz56SNu0Kfv6pUodCmTnnpu9By0uDmJjg3p4In5TgBMRkRO2PzWNuz9NomxMMf7do5mGToqIF96yTnGfMQX+qFHe+87Bxo1H70Fbvdqbkj9DVBTUqeMFsh49sl+DVr++N5GIfvZIEaIAJyIiJ+zFn5aw8K9dvNM/gQqlgjTbmoiEty5d4NNPoWdPOO88+PZbuOACeP55uP12L6SlpGTfpmpVL4x16HDkdPu1ankhTkQABTgRETlBM5O38uYvy+jTpjbnNqrqdzki4qdNm7whklkfW7ce6nX76ScvjJ16qhfmsvagxcVByZK+li8SThTgREQkz/bsT+Xe0bOpUS6Gf1zS2O9yRKQg7dwJs2ZlD2srV3rvmUGjRhAfD1OmePdG++orL8idc46vZYsUFgpwIiKSZ0+MW8CqrSl8PLAdscX1X4lIobVvHyQlZQ9rixZ517GB14t2xhlw223etW+tWsHMmd41b199deQ1cLrxtMhJ0/+6IiKSJ78s3sTIaasYeFY92tWv6Hc5IhIsqakwb172sDZ37qH7plWr5oW0a67xviYkeBOIHG7GjOxhrUsX7/WMGQpwIkFgLuMvKCEkISHBzZw50+8yRETkMNtTDnDhi79SpkQ0X99+JiWiI/0uSURORHo6LF2aPaz98Qfs3eu9X66cF9DatDn0qFlTsz2KFCAzm+WcSzh8+XF74MysNvB/QDUgHRjhnHvJzB4DugeWbQQGOOfW5bD9RcBLQCTwtnPuyZM6EhER8c0/v5zHlt0HeKd/G4U3kXDhHKxZkz2szZwJO3Z478fEeEMfb775UFg79VSFNZEQlZshlKnAvc65382sNDDLzMYDzzjnhgKY2R3AP4HBWTc0s0jgNeB8YA0ww8y+cs7ND+ZBiIhI/vt69jq+mr2Oe89vSNOaZf0uR0SOZvPmI2eE3LDBey8qCpo3hz59DoW1xo01Tb9IGDnuv1bn3HpgfeD5LjNbANQ8LISVAnIai9kWWOqcWw5gZp/g9dopwImIhJENO/cx9Ms/aVG7HEM6n+J3OSKSYdeuI2eETE723jOD00+HCy88FNZatIASJXwtWUROTp7+3GJmcUBLYFrg9eNAP2AHkNNVqTWB1VlerwHOOJFCRUTEH845Hhgzh30H03i+dwuiIiP8LkmkaNq3D2bPzh7WFi48NCNkXJwX0m655dCMkGXK+FqyiARfrgOcmcUCY4C7nHM7AZxzDwMPm9lDwG3AI4dvlsOucpw1xcwGAYMA6tSpk9uyREQkn30yYzUTFm1i2KWNOaVyrN/liBQNqakwf372sDZnzqEZIatW9UJaxlDIhASoXNnfmkWkQOQqwJlZNF54G+mc+zyHVf4LfMuRAW4NUDvL61rAEROdADjnRgAjwJuFMjd1iYhI/lq1JYXHvplPx1Mr0q99nN/liBROzuU8I2RKivd+2bJeQPvb3w4NhaxVS5OMiBRRuZmF0oB3gAXOueezLG/gnFsSeHkZsDCHzWcADcysHrAW6ANcc9JVi4hIvktLd9w7OonICOOZni2IiNAviyInzTlYu/bIGSG3b/fej4mBli1h4MDsM0JGaOiyiHhy0wPXEbgOmGtmSYFlfwduNLPT8G4jsJLADJRmVgPvdgFdnXOpZnYb8APebQTedc7NC/IxiIhIPnh74nJmJG/j+d4tqFEuxu9yRMLTli1Hzgj511/ee1FR0KwZ9O59KKw1aaIZIUXkmHIzC+Ukcr6WbdxR1l8HdM3yetzR1hURkdC08K+dPPfjYi5qUo3LW9b0uxyR8LBrF/z+e/awtmKF954ZnHYanH9+9hkhY/THERHJG/2JR0REsjmQms7dn86mTEwUj1/eFNN1NiJH2r//yBkhFyw4NCNk3bpeSBs82PvaurVmhBSRoFCAExGRbF7632IWrN/JW/0SqBhb3O9yRPLf0097IatLljsiJSZ6oez++72ZHxcsOHJGyIMHvXWrVPG2zzoUUjNCikg+UYATEZFMv6/axhsTltGrdS3Ob1zV73JECkZG+Bo1Cjp3hpEjvXupXXghnHWWNywyY0bIMmW8GSHvuedQWKtdWzNCikiBUYATEREAUg6kcu+o2VQvG8M/L23sdzki+Ss1FVauhEWLvEf79l5gi4z0bpgN8M033oyQN910KKw1aKAZIUXEVwpwIiICwJPfLWTF5j18PLAdpUtE+12OyMlzDjZv9gLa4sXZvy5demgIJED58t5QyLVroVs3+Pe/vRkho/VvQURCiwKciIjw6+JN/N/Uldx4Zj3an1LR73JE8mbvXi+QZfSmZQ1r27YdWq9YMe+eaqedBpdd5n1t2ND7OmcOXHUVDB0Kb7zhbafwJiIhSAFORKSI25FykPs/m8OpVWK578LT/C5HJGfp6bB6dfaAlvF81apDsz8C1KrlBbM+fQ4FtNNO82aGjIw8ct+JiV54GzXKm8ikS5dD18RlndhERCQEKMCJiBRxj3z1J5t272dEv9aUiM7hl1uRgrRtW85DHpcsOXRtGkDp0l4oO/PMQyGtYUPvGrXY2Lx95owZ2cNaly7e6xkzFOBEJOQowImIFGHj5q7ni6R13HVeA5rXKud3OVJU7N8Py5fn3Ju2adOh9aKioH59L5hdcEH2IY9VqwZv5sf77z9yWUZPnIhIiFGAExEpojbu2sfDY+fSvFZZbu1yqt/lSGHjHKxbl3Nv2ooV3pDIDNWqecGsR4/sQx7r1dN1aCIih1GAExEpgpxzPDRmLikH0ni+dwuiIzUtupygXbuO7EXL+Lpnz6H1Spb0wllCAlxzzaHetIYNoWxZ/+oXEQkzCnAiIkXQqJmr+d/CjfzzksacWqW03+VIqEtN9XrNchryuH79ofUiIiAuzgtlZ5+dfchjjRq6f5qISBAowImIFDGrt6bw6NfzaV+/IgM6xPldjoQK52Djxpx705Yt80JchkqVvGB20UXZhzyecgoUL+7fMYiIFAEKcCIiRUhauuPeUbOJMOPZ3i2IiAjSJBASPlJSvBkdc+pN27Hj0HrFi3szOjZpAldckb03rUIF/+oXESniFOBERIqQdyetYHryVp7p2Zya5WL8LkdOxNNPQ5s22WdITEz0przPmE0xLc27N1pOE4isXp19f3XqeMHs2muz96bVrp3zPdNERMRXCnAiIkXE4g27eObHRZzfuCo9W9fyuxw5UW3aHLrJdPPm8PHH8NBDcNllcOWVXkhbutSbqj9D2bJeKOvc+ch7ppUs6duhiIhI3inAiYgUAQdS07n70yRKF4/iP1c0w4J1/ywpeBk3mb7sMti9+9Dy0aO9a9BOOw26ds0+5LFy5eDdM01ERHylACciUgS8+vMS5q3byfBrW1MpVpNMhL0uXbyp+EeMgD594LHHvNkfo/TfuohIYaf5fEVECrk/Vm3jtQnLuLJVLS5qWs3vciQYEhPh889h6FD46SfvujaFNxGRIkEBTkSkENt7II17R82mauniPHJZY7/LkWBITDx0Ddyjj3pfe/f2louISKGnACciUog99f1Clm/ew7O9WlCmRLTf5UgwzJjhhbaMWSgzrombMcPfukREpEBovIWISCE1eelm3p+SzIAOcXQ4tZLf5UiwZNwqIKsuXbLfVkBERAot9cCJiBRCO/Ye5G+jZ1O/cikeuOh0v8sRERGRIFEPnIhIIfSvr+excdd+xgzpQEwx3YxZRESksFAPnIhIIfP9n+v5/Pe13NrlVOJrl/O7HBEREQkiBTgRkUJk0679/H3snzStWYbbzznV73JEREQkyBTgREQKCeccD30+h937U3mhdzzRkfoRLyIiUtjof3cRkUJi9Kw1/LRgI/dfeBoNqpb2uxwRERHJBwpwIiKFwJptKTz69XzOqFeBGzrW87scERERyScKcCIiYS493fG30bNxzvFsrxZERJjfJYmIiEg+UYATEQlz701J5rflW3nk0ibUrlDS73JEREQkHynAiYiEsSUbdvHU9ws5r1EVeiXU8rscERERyWcKcCIiYepgWjr3jJpNbPEo/nNFc8w0dFJERKSwi/K7ABEROTGv/ryUuWt38EbfVlQuXdzvckRERKQAqAdORCQMzVmznVcTl3J5y5pc3Ky63+WIiIhIAVGAExEJM/sOpnH3p0lUji3OsMua+F2OiIiIFCANoRQRCTNPf7+IZZv28OGNbSkbE+13OSIiIlKA1AMnIhJGpizbzLuTV9C/fV3OalDZ73JERESkgCnAiYiEiZ37DnLf6DnUr1SKBy9u5Hc5IiIi4gMNoRQRCROPfj2f9Tv2MmZIB2KKRfpdjoiIiPhAPXAiImHgx3l/8dmsNdza5VRa1invdzkiIiLiEwU4EZEQt3n3fh76fC5NapTh9nMa+F2OiIiI+EhDKEVEQphzjofHzmXXvlT+OzCeYlH6u5uIiEhRpt8ERERC2Oe/r+WHeRv424UNOa1aab/LEREREZ8dN8CZWW0zSzSzBWY2z8zuDCx/xswWmtkcMxtrZuWOsn2ymc01syQzmxnk+kVECq212/cy7Kt5tI2rwI1n1ve7HBEREQkBuemBSwXudc41AtoBt5pZY2A80NQ51xxYDDx0jH10cc7FO+cSTrpiEZEiID3dcd/o2aQ7x7O9WhAZYX6XJCIiIiHguAHOObfeOfd74PkuYAFQ0zn3o3MuNbDab0Ct/CtTRKRo+WBqMlOWbWHoJY2pU7Gk3+WIiIhIiMjTNXBmFge0BKYd9tYNwHdH2cwBP5rZLDMblOcKRUSKmKUbd/Pkdws55/QqXNWmtt/liIiISAjJ9SyUZhYLjAHucs7tzLL8YbxhliOPsmlH59w6M6sCjDezhc65X3PY/yBgEECdOnXycAgiIoVHalo6945KIqZYJE9e0QwzDZ0UERGRQ3LVA2dm0XjhbaRz7vMsy/sDlwB9nXMup22dc+sCXzcCY4G2R1lvhHMuwTmXULly5bwdhYhIIfH6hGXMXrODx3s0o0qZEn6XIyIiIiEmN7NQGvAOsMA593yW5RcBDwCXOedSjrJtKTMrnfEcuAD4MxiFi4gUNnPX7ODl/y2he3wNujWv7nc5IiIiEoJy0wPXEbgOOCdwK4AkM+sKvAqUxhsWmWRmwwHMrIaZjQtsWxWYZGazgenAt86574N/GCIi4W3fwTTuHpVExdhiPHpZU7/LERERkRB13GvgnHOTgJwuwhiXw7KMIZNdA8+XAy1OpkARkaLg2R8WsXTjbv7vhraULRntdzkiIiISovI0C6WIiATfb8u38M7kFVzXri5nN9Q1wCIiInJ0CnAiIj7ate8gfxs9m7oVSvJQ19P9LkdERERCXK5vIyAiIsH3728WsG77XkYPbk/JYvqRLCIiIsemHjgREZ/8NH8Dn85czeBOp9C6bgW/yxEREZEwoAAnIuKDLbv38+Dnc2hUvQx3ndfQ73JEREQkTGi8johIAXPO8fDYP9m5N5UPb2xBsSj9LU1ERERyR781iIgUsC+S1vL9vL+454KGNKpexu9yREREJIwowImIFKD1O/byzy/nkVC3PAPPqu93OSIiIhJmFOBERApIerrjvtFzSEt3PNe7BZER5ndJIiIiEmYU4ERECshH01YyaelmHu7WiLoVS/ldjoiIiIQhBTgRkQKwfNNunhi3gE4NK3NN2zp+lyMiIiJhSgFORCSfpaalc8+o2RSPiuTpns0x09BJEREROTG6jYCISD4b/ssyklZv55WrW1K1TAm/yxEREZEwph44EZF89OfaHbz40xIubVGDS1vU8LscERERCXMKcCIi+WTfwTTuHTWbCqWK8Vj3Jn6XIyIiIoWAhlCKiOSTF8YvZtGGXbx3fRvKlSzmdzkiIiJSCKgHTkQkH0xfsZURE5dzzRl16HJaFb/LERERkUJCAU5EJMh270/l3tFJ1C5fkoe7NvK7HBERESlENIRSRCTIHv92Pmu27WX0ze0pVVw/ZkVERCR41AMnIhJEPy/cwMfTV3Pz2aeQEFfB73JERESkkFGAExEJkm17DvDAmLmcXq00d5/fwO9yREREpBDS2B4RkSBwzvGPL/5ke8oBPri+LcWjIv0uSURERAoh9cCJiATBV7PX8e3c9dx1XkMa1yjjdzkiIiJSSCnAiYicpL927GPoF3/Sqk45bj67vt/liIiISCGmACcichKcc9z32WwOpjme6x1PVKR+rIqIiEj+0W8aIiIn4aNpq5i4ZDN/79aIepVK+V2OiIiIFHIKcCIiJyh58x6e+HYBZzeszLVn1PG7HBERESkCFOBy6cuktexPTfO7DBEJEWnpjntGJREdaTx9ZXPMzO+SREREpAhQgMuFuWt2cOcnSfR9axpbdu/3uxwRCQFv/rqM31dt57EeTalWtoTf5YiIiEgRoQCXC81qleXVa1oyd+0OLn99Cks37vK7JBHx0fx1O3lh/GK6NavOZS1q+F2OiIiIFCEKcLl0SfMafDKoHSkHUrn89SlMWrLZ75JExAf7U9O4Z1QS5UoW47EeTTV0UkRERAqUAlwetKxTni9u7UjNcjH0f286I6et9LskESlgL4xfwsK/dvHUlc2oUKqY3+WIiIhIEaMAl0e1ypdk9OD2nN2gEg+P/ZNHv55PWrrzuywRKQAzk7fy5q/LuLptbc45varf5YiIiEgRpAB3AkqXiOatfgkM6BDHu5NXMOj/ZrJ7f6rfZYlIPtqzP5V7R8+mVvkYHu7W2O9yREREpIhSgDtBUZERDLusCY91b8KExZvoNXwq67bv9bssEcknT4xbwKqtKTzXK57Y4lF+lyMiIiJFlALcSbqufRzvDmjDmq0pdH9tMrNXb/e7JBEJssRFGxk5bRUDz6pP23oV/C5HREREijAFuCDo1LAyY27pQPGoCK4aMZVxc9f7XZKIBMn2lAM88NkcGlaN5Z7zG/pdjoiIiBRxCnBB0rBqab64tSONq5fhlpG/81riUpzT5CYi4W7ol/PYuucAz/eOp0R0pN/liIiISBGnABdElWKL89+B7bisRQ2e+WERfxs9hwOp6X6XJSIn6KvZ6/h69jruOq8BTWuW9bscEREREXQlfpCViI7kpT7x1K9cihd/WsLqbSm8eW1ryut+USJh5a8d+xj6xZ/E1y7H4E6n+F2OiIiICKAeuHxhZtx1XkNe6hNP0urt9Hh9Mss27fa7LBHJpWnLt9DjtckcSE3n+d4tiIrUj0oREREJDfqtJB91j6/JxwPbsXtfKpe/NpkpSzf7XZKIHENauuPFnxZz9Vu/EVMsktGD21O/cqzfZYmIiIhkUoDLZ63rlueLWztSrWwJ+r07nU+mr/K7JBHJwfode7nmrd948acl9Iivyde3n6nr3kRERCTkKMAVgNoVSvLZkA50OLUSD34+lyfGLSAtXTNUioSK/y3YQNeXJjJ37Q6e69WC56/SzbpFREQkNB03wJlZbTNLNLMFZjbPzO4MLH/GzBaa2RwzG2tm5Y6y/UVmtsjMlprZg0GuP2yUKRHNu/0T6Ne+LiN+Xc7gj2axZ3+q32WJFGn7U9P419fzuPGDmVQvG8M3t5/Jla1r+V2WiIiIyFHlpgcuFbjXOdcIaAfcamaNgfFAU+dcc2Ax8NDhG5pZJPAacDHQGLg6sG2RFBUZwaPdmzLs0sb8b8EGeg2fyvode/0uS6RIWrF5D1e8PoX3JiczoEMcY2/toOvdREREJOQdN8A559Y7534PPN8FLABqOud+dM5ldCH9BuT0Z+u2wFLn3HLn3AHgE6B7cEoPXwM61uOd/m1YtTWFHq9NZu6aHX6XJFKkjP1jDZe8PJG12/fyVr8Ehl3WhOJRukm3iIiIhL48XQNnZnFAS2DaYW/dAHyXwyY1gdVZXq8JLCvyupxehc+GtCcqIoLeb07l+z//8rskkUJvz/5U7h01m7s/nU2TGmX57s6zOL9xVb/LEhEREcm1XAc4M4sFxgB3Oed2Zln+MN4wy5E5bZbDshxn7zCzQWY208xmbtq0KbdlhbXTq5Vh7K0dOK1aaYaMnMXwX5bhnCY3EckP89bt4NJXJjH2jzXceW4D/jvwDKqXjfG7LBEREZE8yVWAM7NovPA20jn3eZbl/YFLgL4u5+SxBqid5XUtYF1On+GcG+GcS3DOJVSuXDm39Ye9KqVL8MmgdnRtVp0nv1vIA2PmcCA13e+yRAoN5xwfTEnm8temsOdAKiNvasfd5zfUzblFREQkLB13nmwzM+AdYIFz7vksyy8CHgA6OedSjrL5DKCBmdUD1gJ9gGtOuupCpkR0JK/0ackplUrx8s9LWbU1heHXtqZcyWJ+lyYS1rbtOcD9Y+Ywfv4Gzj29Cs/0akGFUvp3JSIiIuErN3+C7ghcB5xjZkmBR1fgVaA0MD6wbDiAmdUws3EAgUlObgN+wJv8ZJRzbl5+HEi4i4gw7rngNF64qgW/r9zO5a9PYcXmPX6XJRK2pq/YSteXJzJh0Ub+eUlj3u6foPAmIiIiYc9C8ZqrhIQEN3PmTL/L8M2M5K3c/OEs0tIdw69tTftTKvpdkkjYSEt3vJa4lBd/WkydCiV55epWNKtV1u+yRERERPLEzGY55xIOX66LQEJQm7gKfHFLRyrFFqPfu9MYNXP18TcSEf7asY++b//G8+MXc1mLGnxzx1kKbyIiIlKoKMCFqDoVS/L5LR1pV78i9382h/98t4D09NDrLRUJFT8v3MDFL/3K7NU7eLZXC164Kp7Y4se9zFdEREQkrCjAhbCyMdG8O6ANfc+ow5u/LGfIyFmkHEg9/oYiRcj+1DQe+2Y+N7w/k2plY/jmjjPp2boW3vxLIiIiIoWLAlyIi46M4N89mjL0ksb8OH8DV735Gxt27vO7LJGQkLx5Dz3fmMo7k1YwoEMcY2/pwCmVY/0uS0RERCTfKMCFATPjxjPr8Xa/BJZt2k33Vyfz59odfpcl4qsv/lhLt5cnsmprCiOua82wy5pQIjrS77JERERE8pUCXBg5t1FVPhvcATPo/eZUxs/f4HdJIgVuz/5U/jZ6Nnd9mkTjGmX47s6zuKBJNb/LEhERESkQCnBhpnGNMnx5a0caVIll0IczeevX5YTirSBE8sO8dTu49NVJjPl9DXec24CPB7ajRrkYv8sSERERKTAKcGGoSpkSfDKoPRc3rcbj4xbw97FzOZiW7ndZIvnGOccHU5K5/PUp7NmfysibzuCe8xsSFakfYSIiIlK0aI7tMBVTLJJXr27Fc5UW8VriMlZtTeH1a1pTtmS036WJBNX2lAPc/9kcfpy/gS6nVebZXi2oGFvc77JEREREfKE/X4exiAjjvgtP59leLZi+YiuXvzGZ5M17/C5LJGhmJG+l60sTSVy0kX90a8S7A9oovImIiEiRpgBXCPRsXYuPbjyDrXsO0OP1yUxbvsXvkkROSlq645X/LeGqN6cSHRXBmCEduOms+rq3m4iIiBR5CnCFxBn1K/LFLR2pUKoY174zjTGz1vhdksgJ2bBzH9e+PY3nxi/m0hY1+Ob2M2leq5zfZYmIiIiEBAW4QiSuUinGDulIm7gK3Dt6Ns/8sJD0dM1QKeEjceFGLn5pIkmrt/NMz+a8eFU8pUvouk4RERGRDApwhUzZktF8cENbrm5bm9cSl3Hbx7+z90Ca32WJHNOB1HT+/c18rn9/BlVKF+fr28+kV0JtDZkUEREROYxmoSyEoiMjeOLyZtSvFMsT3y1g7bapvNUvgSplSvhdmsgRkjfv4Y5P/mDOmh30a1+Xv3dtRInoSL/LEhEREQlJ6oErpMyMgWfX581rW7N4w256vDaZ+et2+l2WSDZfJq3lklcmsXJLCsOvbc2j3ZsqvImIiIgcgwJcIXdBk2qMHtyedAe9hk/hfws2+F2SCCkHUrlv9Gzu/CSJ06uVZtydZ3FR02p+lyUiIiIS8hTgioCmNcvy5W0dqV85loH/N5N3Jq3AOU1uIv6Yv24nl74yic9+X8Pt55zKJ4PaUbNcjN9liYiIiIQFBbgiomqZEnx6czvOb1yVx76Zzz+++JODael+lyVFiHOOD6cm0+P1yezal8rIG8/g3gtOIypSP4ZEREREckuTmBQhJYtF8Ubf1jz9wyKG/7KMVVtTePWaVpSN0TTtkr+2pxzggTFz+GHeBjqfVpnnerWgYmxxv8sSERERCTv603cRExFhPHjx6Tx9ZXOmLtvClW9MYdWWFL/LkkJsZvJWur40kZ8XbuQf3Rrxbv82Cm8iIiIiJ0gBrojq3aY2H954Bpt27afH65OZmbzV75KkkElLd7z68xKuGvEbUZERfDa4AzedVZ+ICN3bTUREROREKcAVYe1PqcjYWzpQNiaaa96axtg/1vhdkhQSG3fu47p3pvHsj4vp2qw6395xJi1ql/O7LBEREZGwpwBXxNWvHMvYWzrQsk457v50Ns/9uIj0dM1QKScucdFGLn5pIr+v2sbTVzbn5T7xlC6h6yxFREREgkEBTihXshgf3ngGvVrX4pWfl3L7J3+w72Ca32VJmDmQms4T4xZw/XszqFy6ON/cfia929TGTEMmRURERIJFs1AKAMWiIni6Z3NOqRLLU98vZO22vbzVL4HKpTXZhBzfqi0p3P7x78xes4Pr2tXl4W6NKBEd6XdZIiIiIoWOeuAkk5kxuNMpvNG3NQv/2kmP1yaz8K+dfpclIe6r2evo+vJEVmzew/BrW/FYj6YKbyIiIiL5RAFOjnBR02qMvrkDB9PS6fnGVBIXbvS7JAlBKQdSeeCzOdzx8R+cVq004+48i4uaVve7LBEREZFCTQFOctSsVlm+vK0jdSqU5MYPZvD+5BV+lyQhZOFfO7ns1cmMmrWa27qcyqeD2lGrfEm/yxIREREp9BTg5Kiql41h9OD2nHN6VYZ9PZ9/fvknqWnpfpclPnLO8eFvK7ns1cns2HuQj248g79deBpRkfpRIiIiIlIQNImJHFOp4lG8eV1rnvp+ISN+Xc7KLSm8ck1Lymha+CJnR8pBHhgzh+/n/UWnhpV5rncLKsVqkhsRERGRgqQ/m8txRUYYf+/aiCevaMbkpZvp+cYUVm9N8bssKUCzVm6l68sT+WnBBv7e9XTeG9BG4U1ERETEBwpwkmt92tbhgxva8teOffR4bTKzVm7zuyTJZ2npjtcSl9L7zd+IiIDPhnRg0NmnEBGhe7uJiIiI+EEBTvKk46mV+PyWjsSWiOLqt37jy6S1fpck+WTjzn30e3caz/ywiIubVuPbO84ivnY5v8sSERERKdIU4CTPTq0Sy9hbOhJfqxx3fpLEiz8txjnnd1kSRBMWbeTilyYya+U2nrqyGa9creseRUREREKBApyckAqlivHhTW25slUtXvxpCXd9msS+g2l+lyUn6UBqOv8Zt4AB782gUmxxvr7tTK5qUwczDZkUERERCQWahVJOWPGoSJ7t1Zz6lUvxzA+LWL01hRH9EjS5RZhatSWF2z/5g9mrt9P3jDoMvaQxJaIj/S5LRERERLJQD5ycFDPj1i6n8nrfVsxbt5Mer01m8YZdfpclefT17HV0e3kiyzft5o2+rXj88mYKbyIiIiIhSAFOgqJrs+qMurk9+1PTufL1KfyyeJPfJUku7D2QxoNj5nD7x3/QoGos4+44i4ubVfe7LBERERE5CgU4CZoWtcvxxa0dqVk+hhven8GHU5P9LkmOYeFfO7ns1Ul8OnM1t3Q+hU9vbk/tCiX9LktEREREjkEBToKqZrkYPhvSgc4NKzP0y3kM+2oeqWnpfpclWTjnGDltJd1fncy2lIN8eMMZ3H/R6URH6seBiIiISKjTJCYSdLHFoxjRL4Enxi3gnUkrSN6yh1eubklpTUPvux17D/LgmDl89+dfnN2wMs/1akHl0pp0RkRERCRc6E/uki8iI4yhlzTm3z2aMnHJZnq+MZU121L8LqtIm7VyG11fmsj4+Rt46OLTeX9AG4U3ERERkTCjACf56tp2dXn/+jas27GXHq9N4Y9V2/wuqchJT3e8PmEpvd+cihmMHtyemzudQkSE7u0mIiIiEm4U4CTfndWgMp8P6UBMsQj6jPiNb+as87ukImPjrn30e3c6T3+/iIuaVOPbO86iZZ3yfpclIiIiIifouAHOzGqbWaKZLTCzeWZ2Z2B5r8DrdDNLOMb2yWY218ySzGxmMIuX8NGgamm+uKUjzWqW5bb//sEr/1uCc87vsgq1XxZvoutLE5mRvJX/XNGMV69pSdkYXYcoIiIiEs5yM4lJKnCvc+53MysNzDKz8cCfwBXAm7nYRxfn3OaTqFMKgYqxxRk58AweHDOX58Yv5tclm6hWNoZikREUi4qgeOBRLCoic5m3PDLzebHIw9Y7fJ0s+yoWGVEkhwkeTEvn2R8X8eYvy2lYNZb/DmxHw6ql/S5LRERERILguAHOObceWB94vsvMFgA1nXPjAcyK3i/IcuKKR0XyfO8WNKxami+T1rJ59w4OpKazPzWdA6lp3te0dILVORcdaTmHwWzLsgfHbIExY1n0ofCYbV+H7edQeIzMtqxYVARREZbv/15Wb03h9o//IGn1dq45ow5DuzUmplhkvn6miIiIiBScPN1GwMzigJbAtDxs5oAfzcwBbzrnRhxl34OAQQB16tTJS1kSZsyMIZ1PYUjnU3J83zlHarrjQGp6lnCXzoG0tMznmcsCgW9/alr29dPS2X/Q+3ogy7r7U9Myl+0PPHbtS2VLanqW5WnZ9n0wLThp0owsITAye2iMPjJUFssSEHPTO7k95QDPfL8IDF67phXdmlcPSt0iIiIiEjpyHeDMLBYYA9zlnNuZh8/o6JxbZ2ZVgPFmttA59+vhKwWC3QiAhIQEXRxVhJkZ0ZFGdGQEpUJglvv0dBcIiVkC48G0HMLhofB4RBDMDJqHh9Ij97VrX2rme4f2m5a57Fi9k/G1y/HK1S2pXaFkwTWQiIiIiBSYXAU4M4vGC28jnXOf5+UDnHPrAl83mtlYoC1wRIATCVUREUaJiEhKRPs/FDFr72T2Xsg0UtMdp1aOJSpSk8uKiIiIFFbHDXDmXbTzDrDAOfd8XnZuZqWAiMC1c6WAC4BHT6hSEQm53kkRERERKVi5+VN9R+A64JzArQCSzKyrmV1uZmuA9sC3ZvYDgJnVMLNxgW2rApPMbDYwHfjWOfd9PhyHiIiIiIhIoZebWSgnAUebOm9sDuuvA7oGni8HWpxMgSIiIiIiIuLRxTIiIiIiIiJhQgFOREREREQkTCjAiYiIiIiIhAkFOBERERERkTChACciIiIiIhImFOBERERERETChAKciIiIiIhImFCAExERERERCRPmnPO7hiOY2SZgpd915KASsNnvIgoRtWfwqU2DS+0ZfGrT4FJ7Bp/aNLjUnsGnNg2+UG3Tus65yocvDMkAF6rMbKZzLsHvOgoLtWfwqU2DS+0ZfGrT4FJ7Bp/aNLjUnsGnNg2+cGtTDaEUEREREREJEwpwIiIiIiIiYUIBLm9G+F1AIaP2DD61aXCpPYNPbRpcas/gU5sGl9oz+NSmwRdWbapr4ERERERERMKEeuBERERERETCRKEMcGZ2kZktMrOlZvZgluWfmllS4JFsZkk5bBtvZlPNbJ6ZzTGzq7K8V8/MppnZksC+ih3l8/sH1lliZv3zun0oCuE2fd/MVmSpIT64R54/QqA9vzez7Wb2zWHLdY4Gv011juaxPYPx/QhFIdymYXmOgu9tWtfMZgU+Y56ZDc7L9qEohNtT5+hJ/Cw0szJmttbMXj2R7UNJCLdnwZ6jzrlC9QAigWVAfaAYMBtonMN6zwH/zGF5Q6BB4HkNYD1QLvB6FNAn8Hw4MCSH7SsAywNfyweel8/t9qH4CPE2fR/o6XcbhVN7Bt47F7gU+Oaw5TpHg9+mOkfz/m/+pL8fofYI8TYNu3M0RNq0GFA88DwWSAZqhOt5GuLtqXP0JH4WAi8B/wVezbJM52hw27NAz1Hfvxn58M1tD/yQ5fVDwEOHrWPA6oxv4nH2NxtoENhmMxCV0+dkWf9q4M0sr98MLMvV9qH4CNU2DTwPux/qfrdnlu06kyVs6BwNfpsGlukcPcH2DNb2ofAI1TYNPA+7czTU2hSoCKzC+6UwLM/TUG1PnaMn16ZAa+ATYACBwKFzNLjt6cc5WhiHUNbE+8ZlWBNYltVZwAbn3JJj7cjM2uIl/GV4P0y2O+dSD9+vmSWY2dvH+fyjbh8GQrVNMzwe6Ap/wcyK5/6wfON3ex6NzlGC3qYZdI6eYHvmdvswEKptmiHczlEIgTY1s9pmNidQx1POuXXH2j7EhWp7ZtA5msc2NbMIvN6o+w7bnc7R4LZnhgI7RwtjgLMclrnDXl8NfHzMnZhVBz4ErnfOpR9rv865mc65m47z+bmpK1SFapuC99eX04E2eEMsHzhWDSHC7/Y8mbpCVai2KegcPeH2zMv2YSBU2xTC8xyFEGhT59xq51xz4FSgv5lVzWVdoShU2xN0jp5om94CjHPOrT5sXZ2jwW1PKOBztDAGuDVA7SyvawGZf8ExsyjgCuDTo+3AzMoA3wL/cM79Fli8GSgX2P6I/ebi83O7fSgK1TbFObfeefYD7wFt83BcfvG7PY9G52jw21Tn6Am2Z359P3wUqm0arucohECbZgj0FM3D++t/uJ6nodqeOkdPvE3bA7eZWTLwLNDPzJ7Mw/ahJlTbs8DP0cIY4GYADQKzyRQD+gBfZXn/PGChc25NThsHthkL/J9zbnTGcuecAxKBnoFF/YEvc9jFD8AFZlbezMoDF+CNo83t9qEoJNs0sO/qga8G9AD+PNGDLEB+t2eOdI4Gv00D+9Y5GpDb9szP74ePQrJNA++F4zkK/rdpLTOLCTwvD3QEFoXxeRqS7Rl4rXP0BNrUOdfXOVfHORcH/C2wnwd1jga3PQP7Lthz1IXARYnBfgBdgcV441ofPuy994HBx9j2WuAgkJTlER94rz4wHVgKjObQbEkJwNtZ9nFDYJ2leN2zHGv7cHiEcJv+DMzF+4fyERDrd1uFSXtOBDYBe/H+onWhztF8a1Odo3lszxPZPhweIdymYXmOhkCbng/MwZsIYQ4wKMu+w/I8DeH21Dl6gv83ZdnXALJPuqFzNLjtWaDnqAU+VEREREREREJcYRxCKSIiIiIiUigpwImIiIiIiIQJBTgREREREZEwoQAnIiIiIiISJhTgREREREREwoQCnIiIiIiISJhQgBMREREREQkTCnAiIiIiIiJh4v8BrqNX3GsrXAwAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5CUlEQVR4nO3dd5wdVf3/8ddnWzqQQIKEjoBCCiEFKQIJUQGRL1gAFSF0aVJsoH75EvwK0pSmEkJRVL4qSBULNaEIpEEAIRSRAIH8IIQaUrad3x9zd3N3s5st2d17d/N6Ph7z2Jkzc2bOvXsM+/bMnImUEpIkSZKkwiopdAMkSZIkSYYzSZIkSSoKhjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSeohImJJ3lIbEcvytg8tdPvaIyLmR8RnCt2O1YmI6RFxTCeef2pEPJ/7nR7RaN8REVHT6Hc/Pm//oIi4NSI+iohXIuLrjepPjIjnImJpREyLiM0763NIklpmOJOkHiKl1L9uAV4F9s8ru6HQ7WssIsp6wjW6wJPAicDjzex/NP93n1Kanrfvl0AlsCFwKHBlRAwDiIgNgFuAs4BBwGzgT53zESRJrWE4k6QeLiJKIuLMiHgpIhZHxI0RMSi3b4uISBFxZES8FhHvRsTxETEuIp6KiPci4hd55zoiIv4ZEVdExPu5UZeJefvXjYhrI2JhRLweET+JiNJGdS+JiHeAyRHx8Yi4P9eutyPihohYL3f874DNgL/kRoS+HxHjI2JBo89XP7oWEZMj4s8R8fuI+AA4ooU2bR0RD+Q+y9sR0WQ4iYjeuXMuzn0nsyJiw4g4F9gd+EWujb/IHf/JiLgnIt7JjXodnHeu30TElNz+D3PXb3bEKqX0y5TSfcDy1v/WISL6AV8GzkopLUkpPQzcARyWO+RLwDMppZtSSsuBycAOEfHJtlxHktRxDGeS1POdAhwI7AkMBd4lG1HJ9ylgG+AQ4FLgR8BngGHAwRGxZ6Nj/wNsAJwN3FIX9oDrgWpga2BH4HPAMU3UHQKcCwTw01y7tgM2JQsJpJQOo+EI4IWt/LwHAH8G1gNuaKFN/wvcDQwENgGuaOack4B1c+1bHzgeWJZS+hHwEHByro0n50LRPcD/5T7n14Bf1Y1Y5Ryau/YGwNxcO9trx1ywfCEizsobLdwWqEkpvZB37JNkv1NyP5+s25FS+gh4KW+/JKmLGc4kqef7JvCjlNKClNIKsvDzlUa3/P1vSml5Sulu4CPgDymlt1JKr5OFjx3zjn0LuDSlVJVS+hPwPLBfRGwI7AucllL6KKX0FnAJ8NW8um+klK5IKVWnlJallP6dUronpbQipbQI+DlZiFwTj6aUbksp1QLrtNCmKmBzYGju8z/czDmryELZ1imlmpTSnJTSB80c+wVgfkrp17nP+ThwM/CVvGP+mlJ6MPf7+BGwS0Rs2o7P+iAwnCwEfpksCH4vt68/8H6j498HBrRyvySpi/WEe/ElSau3OXBrRNTmldWQPYdU58289WVNbPfP2349pZTytl8hG/naHCgHFkZE3b4S4LW8Y/PXiYghwOVktwYOyB3/bqs+VfPyr9FSm75PNoI1MyLeBX6WUrquiXP+jmzU7I+52y5/TxZ4q5o4dnPgUxHxXl5ZWe4cq7QxpbQkd5vn0EZtb1FK6T95m09HxI/JwtlPgSVk4TTfOsCHufWW9kuSupgjZ5LU870G7JtSWi9v6Z0bFWuPjSMv6ZA9F/ZG7jorgA3yrrNOSin/Nrn8UAdZiEjAyJTSOsA3yG51bO74j4C+dRu5Z8cGNzomv85q25RS+n8ppWNTSkPJRhh/FRFbN/7AuVHCc1JK2wO7ko2OHd5MG18DHmj0ffdPKZ2Qd0z9KFlE9CebkOONxtdth8TK7+8FoCwitsnbvwPwTG79mdx2XTv6AR/P2y9J6mKGM0nq+aYA59ZNOhERgyPigDU43xDglIgoj4iDyJ4V+1tKaSHZ81s/i4h1chORfLzR82qNDSAbwXkvIjZm5S15dd4EtsrbfgHoHRH7RUQ58N9Ar+ZO3lKbIuKgiNgkd/i7ZOGmpvF5ImJCRIzIhcEPyG5zrDuucRvvBLaNiMNy31F5boKV7fKO+XxEfDoiKshG7maklJocNYuIiojoTRa6ynOTk5Tk9u2bu52U3EQeZwG35z77R2SzMf44IvpFxG5kz+PVjeDdCgyPiC/nzv8/wFMppeea+z4lSZ3LcCZJPd9lZLP03R0RHwKPkU3M0V4zyCYPeZtsUo+vpJQW5/YdDlQAz5KFnT8DG63mXOcAo8medforWZjI91Pgv3MzJH43pfQ+2bTy1wCvk42kLWD1VtemccCMiFhC9h2dmlJ6uYlzfCxX7wNgHvAA2a2NkH2/X4lspsvLU0ofkk068lWy0bD/B1xAwxD5f2STqbwDjCGbIKQ5d5PdWrorMDW3vkdu30TgqYj4CPgb2fd3Xl7dE4E+ZM8J/gE4IaX0DEDuGb8vk/0O3yXrE/nPB0qSulg0fGxAkqTmRfYS5GNSSp8udFu6q4j4DbAgpfTfhW6LJKm4OHImSZIkSUWgxXCWu7d9ZkQ8GRHPRMQ5ufJBuRdovpj7ObDzmytJkiRJPVOLtzXmZuTql5vqtxx4GDgV+BLwTkrp/Ig4ExiYUjqj01ssSZIkST1QiyNnKbMkt1meWxLZjE/X58qvBw7sjAZKkiRJ0tqgVc+cRURpRMwlm+3pnpTSDGDD3BTFdVMVD+m0VkqSJElSD1fWmoNSSjXAqIhYD7g1Ioa39gIRcRxwHEC/fv3GfPKTn2xPOyVJkiSp25szZ87bKaXBTe1rVTirk1J6LyKmA/sAb0bERimlhRGxEdmoWlN1ppK9l4WxY8em2bNnt6nxkiRJktRTRMQrze1rzWyNg3MjZkREH+AzwHNkL+uclDtsEnD7GrdUkiRJktZSrRk52wi4PiJKycLcjSmlOyPiUeDGiDgaeBU4qBPbKUmSJEk9WovhLKX0FLBjE+WLgYmd0ShJkiRJWtu06ZkzSZIkqaeoqqpiwYIFLF++vNBNUQ/Uu3dvNtlkE8rLy1tdx3AmSZKktdKCBQsYMGAAW2yxBRFR6OaoB0kpsXjxYhYsWMCWW27Z6nqtes+ZJEmS1NMsX76c9ddf32CmDhcRrL/++m0elTWcSZIkaa1lMFNnaU/fMpxJkiRJBXLuuecybNgwRo4cyahRo5gxYwYAxxxzDM8++2yHXGOLLbbg7bffXu0x5513XpvP+5vf/IaTTz65Qdmvf/1rRo0axahRo6ioqGDEiBGMGjWKM888s83n7wqXXnopS5cuLXQz6vnMmSRJklQAjz76KHfeeSePP/44vXr14u2336ayshKAa665pkvbct555/HDH/5wjc9z5JFHcuSRRwJZKJw2bRobbLDBGp+3vVJKpJQoKWl6TOrSSy/lG9/4Bn379m31Oaurqykr65wY5ciZJEmSVAALFy5kgw02oFevXgBssMEGDB06FIDx48cze/ZsAPr3788ZZ5zBmDFj+MxnPsPMmTMZP348W221FXfccQew6ijWF77wBaZPn77KNQ888EDGjBnDsGHDmDp1KgBnnnkmy5YtY9SoURx66KEA/P73v2ennXZi1KhRfPOb36SmpgbIRsa23XZb9txzT/75z3+2+rNedNFFjBs3jpEjR3L22WcDMH/+fD75yU9yzDHHMHz4cA499FDuvfdedtttN7bZZhtmzpwJwOTJkznssMPYa6+92Gabbbj66qtbPO92223HiSeeyOjRo3nttdc44YQTGDt2LMOGDas/7vLLL+eNN95gwoQJTJgwof67rvPnP/+ZI444AoAjjjiCb3/720yYMIEzzjiDl156iX322YcxY8aw++6789xzz7X6u1itujTZFcuYMWOSJEmSVAyeffbZgl7/ww8/TDvssEPaZptt0gknnJCmT59ev2/PPfdMs2bNSimlBKS//e1vKaWUDjzwwPTZz342VVZWprlz56YddtghpZTSr3/963TSSSfV199vv/3StGnTUkopbb755mnRokUppZQWL16cUkpp6dKladiwYentt99OKaXUr1+/+rrPPvts+sIXvpAqKytTSimdcMIJ6frrr09vvPFG2nTTTdNbb72VVqxYkXbdddcG12ys7rp33XVXOvbYY1NtbW2qqalJ++23X3rggQfSyy+/nEpLS9NTTz2Vampq0ujRo9ORRx6Zamtr02233ZYOOOCAlFJKZ599dho5cmRaunRpWrRoUdpkk03S66+/vtrzRkR69NFH69tS97mrq6vTnnvumZ588slVvpvG38NNN92UJk2alFJKadKkSWm//fZL1dXVKaWU9tprr/TCCy+klFJ67LHH0oQJE5r8DprqY8Ds1Exe8rZGSZIkrfXO+cszPPvGBx16zu2HrsPZ+w9rdn///v2ZM2cODz30ENOmTeOQQw7h/PPPrx+tqVNRUcE+++wDwIgRI+jVqxfl5eWMGDGC+fPnt6lNl19+ObfeeisAr732Gi+++CLrr79+g2Puu+8+5syZw7hx4wBYtmwZQ4YMYcaMGYwfP57BgwcDcMghh/DCCy+0eM27776bu+++mx133BGAJUuW8OKLL7LZZpux5ZZbMmLECACGDRvGxIkTiYhVPtsBBxxAnz596NOnDxMmTGDmzJk8/PDDzZ538803Z+edd66vf+ONNzJ16lSqq6tZuHAhzz77LCNHjmzTd3fQQQdRWlrKkiVLeOSRRzjooIPq961YsaJN52qO4UySJEkqkNLSUsaPH8/48eMZMWIE119//SrhrLy8vH7mv5KSkvrbIEtKSqiurgagrKyM2tra+jpNTeE+ffp07r33Xh599FH69u3L+PHjmzwupcSkSZP46U9/2qD8tttua9cMhCklfvCDH/DNb36zQfn8+fPrP8vqPhusOvNhRKz2vP369avffvnll7n44ouZNWsWAwcO5Igjjmh2ivv86zQ+pu6ctbW1rLfeesydO7elj95mhjNJkiSt9VY3wtVZnn/+eUpKSthmm20AmDt3Lptvvnm7zrXFFlvwq1/9itraWl5//fX657Xyvf/++wwcOJC+ffvy3HPP8dhjj9XvKy8vp6qqivLyciZOnMgBBxzA6aefzpAhQ3jnnXf48MMP+dSnPsWpp57K4sWLWWeddbjpppvYYYcdWmzb3nvvzVlnncWhhx5K//79ef311ykvL2/T57v99tv5wQ9+wEcffcT06dM5//zz6dOnT6vO+8EHH9CvXz/WXXdd3nzzTf7+978zfvx4AAYMGMCHH35YP2nJhhtuyLx58/jEJz7BrbfeyoABA1Y53zrrrMOWW27JTTfdxEEHHURKiaeeeqpV30VLDGeSJElSASxZsoRvfetbvPfee5SVlbH11lvXT9LRVrvttlv9LYLDhw9n9OjRqxyzzz77MGXKFEaOHMknPvGJBrf9HXfccYwcOZLRo0dzww038JOf/ITPfe5z1NbWUl5ezi9/+Ut23nlnJk+ezC677MJGG23E6NGj6ycKWZ3Pfe5zzJs3j1122QXIbuf8/e9/T2lpaas/30477cR+++3Hq6++yllnncXQoUMZOnRoq867ww47sOOOOzJs2DC22mordttttwafe99992WjjTZi2rRpnH/++XzhC19g0003Zfjw4SxZsqTJ9txwww2ccMIJ/OQnP6GqqoqvfvWrHRLOInsmrWuMHTs21c06I0mSJBXSvHnz2G677QrdDLVg8uTJ9O/fn+9+97uFbkqbNdXHImJOSmlsU8c7lb4kSZIkFQFva5QkSZJUtCZPnlzoJnQZR84kSZIkqQgYziRJkiSpCBjOJEmSJKkIGM4kSZIkqQgYziRJkqQCKS0tZdSoUQwfPpyDDjqIpUuXtvtcRxxxBH/+858BOOaYY3j22WebPXb69Ok88sgj9dtTpkzht7/9bbuvXWf+/PkMHz68QdnkyZO5+OKL23SejmpPd+NsjZIkSVKB9OnTh7lz5wJw6KGHMmXKFL797W/X76+pqWnTy5rrXHPNNavdP336dPr378+uu+4KwPHHH9/ma3SW6urqompPV3LkTJIkSWrJhRfCtGkNy6ZNy8o7yO67786///1vpk+fzoQJE/j617/OiBEjqKmp4Xvf+x7jxo1j5MiRXHXVVQCklDj55JPZfvvt2W+//XjrrbfqzzV+/Hhmz54NwD/+8Q9Gjx7NDjvswMSJE5k/fz5TpkzhkksuYdSoUTz00EMNRrfmzp3LzjvvzMiRI/niF7/Iu+++W3/OM844g5122oltt92Whx56qM2fcXXn/uEPf8iee+7JZZddVt+eN954g1GjRtUvpaWlvPLKK7zyyitMnDiRkSNHMnHiRF599VUgGz085ZRT2HXXXdlqq63qRxK7C8OZJEmS1JJx4+Dgg1cGtGnTsu1x4zrk9NXV1fz9739nxIgRAMycOZNzzz2XZ599lmuvvZZ1112XWbNmMWvWLK6++mpefvllbr31Vp5//nmefvpprr766ga3KdZZtGgRxx57LDfffDNPPvkkN910E1tssQXHH388p59+OnPnzmX33XdvUOfwww/nggsu4KmnnmLEiBGcc845Ddo5c+ZMLr300gbl+V566aUGgWrKlCmtOvd7773HAw88wHe+8536sqFDhzJ37lzmzp3Lsccey5e//GU233xzTj75ZA4//HCeeuopDj30UE455ZT6OgsXLuThhx/mzjvv5Mwzz2zjb6KwvK1RkiRJOu00yN1e2KyhQ2HvvWGjjWDhQthuOzjnnGxpyqhRcOmlqz3lsmXLGDVqFJCNnB199NE88sgj7LTTTmy55ZYA3H333Tz11FP1o0Dvv/8+L774Ig8++CBf+9rXKC0tZejQoey1116rnP+xxx5jjz32qD/XoEGDVtue999/n/fee48999wTgEmTJnHQQQfV7//Sl74EwJgxY5g/f36T5/j4xz9ef6smrHyJdEvnPuSQQ5pt1z//+U+uueaa+tG6Rx99lFtuuQWAww47jO9///v1xx544IGUlJSw/fbb8+abb6728xYbw5kkSZLUGgMHZsHs1Vdhs82y7TWU/8xZvn79+tWvp5S44oor2HvvvRsc87e//Y2IWO35U0otHtMWvXr1ArKJTKqrqzvsvNDwM+dbuHAhRx99NHfccQf9+/dv8pj8z1jXRsg+f3diOJMkSZJaGOECVt7KeNZZcOWVcPbZMGFCpzdt77335sorr2SvvfaivLycF154gY033pg99tiDq666isMPP5y33nqLadOm8fWvf71B3V122YWTTjqJl19+mS233JJ33nmHQYMGMWDAAD744INVrrXuuusycOBAHnroIXbffXd+97vf1Y90ran2nLuqqoqDDz6YCy64gG233ba+fNddd+WPf/wjhx12GDfccAOf/vSnO6SNhWY4kyRJklpSF8xuvDELZBMmNNzuRMcccwzz589n9OjRpJQYPHgwt912G1/84he5//77GTFiBNtuu22TQWfw4MFMnTqVL33pS9TW1jJkyBDuuece9t9/f77yla9w++23c8UVVzSoc/3113P88cezdOlSttpqK37961932Gdp67kfeeQRZs2axdlnn83ZZ58NZCOGl19+OUcddRQXXXQRgwcP7tA2FlK0NNQXEZsCvwU+BtQCU1NKl0XEKGAK0BuoBk5MKc1c3bnGjh2b6maNkSRJkgpp3rx5bLfddq07+MILs8k/8oPYtGkwaxbkPe8k5Wuqj0XEnJTS2KaOb83IWTXwnZTS4xExAJgTEfcAFwLnpJT+HhGfz22PX6PWS5IkScWoqQBWN4ImdZAWw1lKaSGwMLf+YUTMAzYGErBO7rB1gTc6q5GSJEmS1NO16ZmziNgC2BGYAZwG3BURF5O9L23Xjm6cJEmSJK0tWv0S6ojoD9wMnJZS+gA4ATg9pbQpcDpwbTP1jouI2RExe9GiRR3RZkmSJKlDdLep1tV9tKdvtSqcRUQ5WTC7IaV0S654ElC3fhOwUzONmppSGptSGjt48OA2N1CSJEnqDL1792bx4sUGNHW4lBKLFy+md+/ebarX4m2Nkb3R7VpgXkrp53m73gD2BKYDewEvtunKkiRJUgFtsskmLFiwAO/uUmfo3bs3m2yySZvqtOaZs92Aw4CnI2JuruyHwLHAZRFRBiwHjmvTlSVJkqQCKi8vZ8sttyx0M6R6rZmt8WEgmtk9pmObI0mSJElrp1ZPCCJJkiRJ6jyGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEk9w4UXwrRpDcumTcvKuwHDmSRJkqSeYdw4OPhguP9+WLYsC2YHH5yVdwNlhW6AJEmSJHWI8ePhtNNg771hxx3h5ZfhxhthwoRCt6xVHDmTJEmS1L2lBHfemY2Q/fd/Q//+MGsWnHBCtwlmYDiTJEmS1F2lBH/9K+y0E+y/P7zzDnzve1BWBmedBVdeueozaEXM2xolSZIkdS8pwd//DpMnZyNkW24J114Lm24KX//6ylsZJ0zInjnrJrc2OnImSZIkqXuoC2U77wz77QeLFsE118Dzz8NRR8ETTzQMYhMmZNuzZhW23a0UKaUuu9jYsWPT7Nmzu+x6kiRJknqAlOCuu7KRshkzYPPNs2fLDj8cKioK3bo2iYg5KaWxTe1z5EySJElScaoLZbvuCvvuCwsXwtSp8MILcMwx3S6YtcRwJkmSJKm4pAR33w277Qb77ANvvAFXXQUvvgjHHtvjQlkdw5kkSZKk4pAS3HMPfPrT2bvKFiyAKVOyUHbccT02lNUxnEmSJEkqrJTg3nth993hc5+D117LpsF/8UX45jd7fCirYziTJEmSVBgpwX33wR57wGc/C6+8Ar/6VRbKjj8eevUqdAu7lOFMkiRJUtdKCe6/H/bcEz7zGXj5ZfjlL+Hf/4YTTljrQlkdw5kkSZKkrpESTJsG48fDxInwn//AL34BL70EJ5641oayOoYzSZIkSZ1v+vQslO21VzZCdsUV2c+TTlrrQ1kdw5kkSZKkzvPAA1komzAhe5bs8suzkbKTT4bevQvduqJiOJMkSZLU8R58MAtk48dnL42+7LLsNsZvfctQ1gzDmSRJkqSO89BD2a2Le+4Jzz0Hl16ajZSdcoqhrAWGM0mSJElr7uGHs0k+9tgD5s3LQtl//gOnngp9+hS6dd2C4UySJElS+/3zn9l0+LvvDs88A5dcYihrpxbDWURsGhHTImJeRDwTEafm7ftWRDyfK7+wc5sqSZIkqWg88kj24uhPfxr+9S/4+c+zUHbaaYaydiprxTHVwHdSSo9HxABgTkTcA2wIHACMTCmtiIghndlQSZIkSUXg0Ufh7LPhnntgyBD42c/g+OOhb99Ct6zbazGcpZQWAgtz6x9GxDxgY+BY4PyU0orcvrc6s6GSJEmSCujRR2HyZLj7bhg8GC6+OAtl/foVumU9RpueOYuILYAdgRnAtsDuETEjIh6IiHHN1DkuImZHxOxFixatcYMlSZIkdaHHHoN99oFdd4UnnoCLLoKXX4bvfMdg1sFaHc4ioj9wM3BaSukDslG3gcDOwPeAGyMiGtdLKU1NKY1NKY0dPHhwBzVbkiRJUqeaMQP23Rd22QXmzIELL8xC2Xe/ayjrJK0KZxFRThbMbkgp3ZIrXgDckjIzgVpgg85ppiRJkqQuMXMmfP7zsPPOMHs2XHBBFsq+9z1DWSdrzWyNAVwLzEsp/Txv123AXrljtgUqgLc7oY2SJEmSOtvMmbDffvCpT2Xr55+fhbLvfx/69y9069YKrZmtcTfgMODpiJibK/shcB1wXUT8C6gEJqWUUqe0UpIkSVLnmDULzjkH/vpXWH99+OlP4aSTYMCAQrdsrdOa2RofBlZ5liznGx3bHEmSJEldYvbsLJTdeScMGgTnnQcnn2woK6DWjJxJkiRJ6inmzMlC2V/+koWyc8+Fb33LUFYEDGeSJEnS2uDxx7NQdscdMHAg/OQnWShbZ51Ct0w5hjNJkiSpJ3viiSyU3X47rLce/O//wimnGMqKkOFMkiRJ6onmzs1C2W23ZaHsxz/OQtm66xa4YWqO4UySJEnqSfJD2brrZuunnmoo6wYMZ5IkSVJP8OSTWRC79dYsiE2enIWy9dYrdMvUSoYzSZIkqTt76qkslN1yS/Yc2dlnw2mnGcq6IcOZJEmS1B09/XQWym6+OQtl//M/WSgbOLDQLVM7lRS6AZIkSZKaceGFMG1aw7LrroORI7PlnnuyUDZ/fhbUDGbdmiNnkiRJUrEaNw4OPhhuvBGGDIGTToIHHoA+feCss7KRskGDCt1KdRDDmSRJklSsJkyAKVNg331hxQqIgG98Ay67zFDWA3lboyRJklSMUoLf/haOPRaqq7Oyb38bfvc7g1kPZTiTJEmSis2rr8LnPw+TJsHQodmEH2edBddfv+ozaOoxDGeSJElSsaithSuvhGHD4MEH4eST4c03sxkZf/zj7Nmzgw82oPVQhjNJkiSpGLz4YvaM2Yknws47w7/+BZtumgWyCROyYyZMyLZnzSpsW9UpIqXUZRcbO3Zsmj17dpddT5IkSSp6NTVwySXZbYu9esHPfgZHHZVN/qEeJyLmpJTGNrXP2RolSZKkQvnXv7IgNmsW/Nd/Zbc0Dh1a6FapQLytUZIkSepqlZXZS6NHj4aXX4Y//AFuu81gtpZz5EySJEnqSrNnZ6NlTz8NX/ta9s6ywYML3SoVAUfOJEmSpK6wbBmccQZ86lOweDHccQf83/8ZzFTPkTNJkiSpsz30EBx9dDYj4zHHwEUXwXrrFbpVKjKOnEmSJEmd5cMPs3eV7bEHVFfDvffC1VcbzNQkw5kkSZLUGe6+G4YPh1/9Ck49NXvGbOLEQrdKRcxwJkmSJHWkd9+FI4+EvfeGPn3g4Yfh0kuhX79Ct0xFznAmSZIkdZRbb4Xtt4ff/Q5++EOYOxd23bXQrVI34YQgkiRJ0pp680341rfgpptg1Cj4299gxx0L3Sp1M46cSZIkSe2VEvz+99lo2e23w09+AjNnGszULi2Gs4jYNCKmRcS8iHgmIk5ttP+7EZEiYoPOa6YkSZJUZF57DfbfHw47DLbdFp54An70IygvL3TL1E21ZuSsGvhOSmk7YGfgpIjYHrLgBnwWeLXzmihJkiQVkdpauOoqGDYMpk2DSy7JJv3YfvtCt0zdXIvhLKW0MKX0eG79Q2AesHFu9yXA94HUaS2UJEmSisVLL2XT4R9/PIwbl02Pf9ppUFpa6JapB2jTM2cRsQWwIzAjIv4LeD2l9GRnNEySJEkqGjU18POfw4gR8PjjMHVq9kLprbYqdMvUg7R6tsaI6A/cDJxGdqvjj4DPtaLeccBxAJtttlm7GilJkiQVzDPPwNFHw4wZ8IUvwJVXwiabFLpV6oFaNXIWEeVkweyGlNItwMeBLYEnI2I+sAnweER8rHHdlNLUlNLYlNLYwYMHd1zLJUmSpM5UVZXNvjh6NPz733DDDXDHHQYzdZoWR84iIoBrgXkppZ8DpJSeBobkHTMfGJtSeruT2ilJkiR1nccfh6OOgiefhEMOgcsvhyFDWq4nrYHWjJztBhwG7BURc3PL5zu5XZIkSVLXW74cfvAD2GkneOstuO02+OMfDWbqEi2OnKWUHgaihWO26KgGSZIkSQXxz39mz5Y9/3w2anbxxTBwYKFbpbVIm2ZrlCRJknqcJUvglFNg992zkbO77oJrrzWYqcu1erZGSZIkqce591449lh45RU4+WQ47zzo37/QrdJaypEzSZIkrX3eey+7hfGzn4WKCnjwwWzSD4OZCshwJkmSpLXL7bfD9tvD9dfDGWfA3Lnw6U8XulWStzVKkiRpLbFoUfZs2R//CCNHwl/+AmPGFLpVUj1HziRJktSzpQR/+EM2WnbzzfDjH8OsWQYzFR1HziRJktRzvf46HH883Hln9u6y666DYcMK3SqpSY6cSZIkqedJCa65Jhstu+8++NnP4JFHDGYqao6cSZIkqWd5+eVsevz77oPx4+Hqq2HrrQvdKqlFjpxJkiSpZ6ipgcsug+HDYeZMmDIlC2gGM3UTjpxJkiSp+5s3L3tv2aOPwuc/nwWzTTctdKukNnHkTJIkSd1XVRWcdx6MGgXPPw+/+102+YfBTN2QI2eSJEnqnp54Ihste+IJOOgguOIK2HDDQrdKajdHziRJktS9LF8OP/oRjBsHCxdm7y678UaDmbo9R84kSZLUfTz6KBx1FDz3HBxxBPz85zBwYKFbJXUIR84kSZJU/D76CE4/HXbbDZYuhX/8A379a4OZehRHziRJklTc7r8/e2/Zf/4DJ54I558PAwYUulVSh3PkTJIkScXp/ffhuONg4kQoLYUHHoBf/tJgph7LcCZJkqTic+edMGwYXHstfO978OSTsMcehW6V1KkMZ5IkSSoeb78Nhx4K+++fPU/22GNw4YXQp0+hWyZ1OsOZJEmSCi8l+NOfYPvt4aabYPJkmDMnmy5fWks4IYgkSZIK6403sok+br89C2PXXQfDhxe6VVKXc+RMkiRJXefCC2HatGw9pSyIbbst/PWvcNFF8MgjBjOttQxnkqSeLf8PwTrTpmXlaprfmTrT6NFw0EHw29/C3nvD0UdDZWUW0r77XSjzxi6tvez9kqSebdw4OPhguPFGmDAhCxl122qa31nbXHhh9p1NmLCybNo0mDULvv/9wrULspGpykpYsWLNluXL1/wcdUttbda2SZOgvBz694fbbsumy5fWcpFS6rKLjR07Ns2ePbvLrtcaN89ZwLtLKxnUr4KB/SpYv18FA/tWsH7/CvqUlxIRhW6iJGlNTZsGX/kK7LQTPPQQHHkkbL119odrRy+1tZ1z3q5uz+LF2dTlm20Gr70GY8bAkCHZu6ZKSlb92VRZV/0s5LXr3r311a9m4XWPPeDuu+Gww+Cqq2Ds2K4PP/lLZWXH/e+orAx69eq45f774a674Kyz4Mc/7rh2SkUuIuaklMY2uW9tD2dfvvIR5rzybpP7epWVMKhfRYNlYN+KVcrqygf2Laes1DtFJakoHXJI5478RGR/rEcUz7Km7VmwAF5/HTbaCD72MaipycJe459NlbX0s270RM3ryCDU2qV376bLKyqyINpR6kZjTzgBrrxy5SittBZYXThr8bbGiNgU+C3wMaAWmJpSuiwiLgL2ByqBl4AjU0rvdViru8ifj9+FD5ZV887SSt75KFve/aiywXbd8uo7S3lnSSUfrqhu9nzr9inPRt/qRuDyR+T6VTCoXzmD+vViUN8KBvWvoF+Fo3OS1OmmTcv+X/pvfxuuvx6uuSYb4eioENQT1f3xfNZZ2R/PP/tZx/7xXDdC19ZQ1xHBsKN+Ni67/354+GHYa6/sHV1rEozKy3t+36oLZBMmNNyW1mItjpxFxEbARimlxyNiADAHOBDYBLg/pVQdERcApJTOWN25inHkrD0qq2t5d+nKILf4o8r67cZLXXlVTdPfc0VpCQPrAlt9cCtvFOhyS99su9zROUlqvcZ/CDbe1qr8ztrOkaDWK+Zn9KQu0KG3NUbE7cAvUkr35JV9EfhKSunQ1dXtKeGsrVJKLFlR3SCwLV6S+1k3UvdRFe98tIJ3l1bxzkeVvL+sqtnzDehdtjK4NbrNsr6s/8qfA3qVOTonae3lH4Jt53fWNoZZSW3QYeEsIrYAHgSGp5Q+yCv/C/CnlNLvV1d/bQ1n7VFVU8t7uaBWH+jqg1zTIa+yuun798tKosFkJ3XBLX90bv285+kG9iunV1kH3lcuSVJPZpiV1AYdEs4ioj/wAHBuSumWvPIfAWOBL6UmThYRxwHHAWy22WZjXnnllbZ/ArUopcTSypqVt1QubRjkmgp57y2rorlff/9eZXkjcStvuxzYr4J1epfTu7yU3uUl9CrLfvYuL6V3WSm9ykvoXbZyX6/yEnqVlThyJ0mSJNEB4SwiyoE7gbtSSj/PK58EHA9MTCktbek8jpwVl5raxHtLV3+b5TtLqxqEvGVVNW2+TkQ282V+kOtV1jDQNbmvmfJeZc3vy18vLTEQSpIkqbis6WyNAVwLzGsUzPYBzgD2bE0wU/EpLQnW79+L9fv3YushrauzrLKGD5dXsbyqlhXVNSyvqmV5dQ0rqmpZXlXD8lxZ/b6qGlZU17Kiqibb30S9JSuqeXtJJSvyz5OrV13b/lc9lJfGKuGvuUCXP9LXcARwdfXy6uSCZnlpOEooSZKkdmkxnAG7AYcBT0fE3FzZD4HLgV7APbk/Rh9LKR3fGY1U8ehTUUqfiq57Hq26ppbldeGuumFwW16Vhbn8ILhyX15orK5p8tgPl1c3DJS5azT37F5rRNDgts78QJd/m2dF3XZZtt2rPG8977j6Y8pLqChtujz/PL5nT5IkqftqMZyllB4GmhoK+FvHN0dqqKy0hP6lJfTv1Zr/H6Fj1NYmKmtq60f68sNgg/W80Lii8b5GQbCyppYVVbV8tKKadz6qzUYTq+sCY269urbZZwBbq7QkGoS8ivrw1ygMNhMA69YrVhMAGwTJvPWKshIqSn2+UJIkqb267i9eqZsoKQl6l2S3NHallBLVtan+NtAstDUR4qpqs7DXRHl+0KsbKawLhnX7lqyort9Xf40OuI20TutHA0upKC1Zpbx3eSl9ykvoW1FGn4pS+uZGa/tWlGXr5VlZ34oyepcbBiVJUs9hOJOKRERQXhqUd/FIYb6a2kRlEwGv2QDYKNytLihmIbGG95dVNXtcW28pjaA+rPWpKKVv+cpAl5WV0be8dNWyuvXy0lwILKFPeV55Lvw5qYwkSepKhjNJ9UpLosufK8xXd0vp0soallZWs6yyJrdew7Kq6pXr9T9zZVV1ZdX1+99bWsWyqoZlbR0ZrCgryQJb+crA1iDorRLoVgbCVUb86urlAmRFmc8HSpKkhgxnkopG/i2lg/pVdPj5K6trsxBXVd0w5FXlBb288qVV1XlBcGXQe+ejSha827BsRRtH/cpyQbjuFs0GI4C5Ub0Go3y5kLi62z1750JkbyeHkSSpWzKcSVprVOQmLlmX8g4/d01tqh+pazDiVzcKWJVf1igI5oXDD5dX89YHKxoGw6qaNk8WU1FaQu/ykmwkNC+49SmvC34Nfzbe37vBsXXPAq68fbR3hRPASJLU0QxnktQBSkuC/r3KOuV5wZQSy6tqV96iWR/0sgC3vKo2G/3Lhbxlldn28tztnnX76rbfX5bd8rm8wb62v0KiJPfMX5+K0gbhrX59lX0luYlcVm7XB8NmgqIvlJckrU0MZ5JU5CJWPgu4fiddo7Y2sbx6ZZjLglx+6MuVVTU+pmFZ3fp7SytZWL+dvVJiaWU17ZkQtKKsZOVtn02Et2y9pIkRv2x/37yyullE6179UFFWQnlpSf1rJypKSygxDEqSCsRwJkmipCRyz6913n8WUkpU1aRVgt3SyuZH+eq369drGwTFxR9VrnLsmrxIHrLnAfNDW0Vp3rv86spLV25XlJXQqzTv+Ebhr8GxbVnPKysrCW8hlaS1gOFMktQlIoKKsiz4rNun45/7q1NTmxqM8jUe8auszl7tUJl7fUP9en5Zbruqprb+NQ/5x1TV1LJ0aXW2L69eVU1+3TV/b2CdCCgvzUJg4wCYHwp75YW68kaBr1dZySqhM79eU6GzorSEzdfvy4Denff7kiStZDiTJPUopSVBv15l9CvQ+wLr1L0aorKmlqpGIa4u1DUur8yFwaomgmKzoTJvfcmK6obhMu+cdWVtnVzmuiPGstcnN+ycL0mS1IDhTJKkTpD/aohikVKiujY1CH/1QbFRIFyR2x6x8XqFbrYkrTUMZ5IkrSUigvLSoLy0hL4d/ypBSdIa8i2lkiRJklQEDGeSJEmSVAQMZ5IkSZJUBAxnkiRJklQEDGeSJEmSVAQMZ5IkSZJUBAxnkiRJklQEDGeSJEmSVAQMZ5IkSZJUBAxnkiRJklQEDGeSJEmSVAQMZ5IkSZJUBAxnkiRJklQEDGeSJEmSVAQMZ5IkSZJUBFoMZxGxaURMi4h5EfFMRJyaKx8UEfdExIu5nwM7v7mSJEmS1DO1ZuSsGvhOSmk7YGfgpIjYHjgTuC+ltA1wX25bkiRJktQOLYazlNLClNLjufUPgXnAxsABwPW5w64HDuykNkqSJElSj9emZ84iYgtgR2AGsGFKaSFkAQ4Y0uGtkyRJkqS1RKvDWUT0B24GTkspfdCGesdFxOyImL1o0aL2tFGSJEmSerxWhbOIKCcLZjeklG7JFb8ZERvl9m8EvNVU3ZTS1JTS2JTS2MGDB3dEmyVJkiSpx2nNbI0BXAvMSyn9PG/XHcCk3Pok4PaOb54kSZIkrR3KWnHMbsBhwNMRMTdX9kPgfODGiDgaeBU4qFNaKEmSJElrgRbDWUrpYSCa2T2xY5sjSZIkSWunNs3WKEmSJEnqHIYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAoYzSZIkSSoChjNJkiRJKgKGM0mSJEkqAi2Gs4i4LiLeioh/5ZWNiojHImJuRMyOiJ06t5mSJEmS1LO1ZuTsN8A+jcouBM5JKY0C/ie3LUmSJElqpxbDWUrpQeCdxsXAOrn1dYE3OrhdkiRJkrRWKWtnvdOAuyLiYrKAt2tzB0bEccBxAJtttlk7LydJkiRJPVt7JwQ5ATg9pbQpcDpwbXMHppSmppTGppTGDh48uJ2XkyRJkqSerb3hbBJwS279JsAJQSRJkiRpDbQ3nL0B7Jlb3wt4sWOaI0mSJElrpxafOYuIPwDjgQ0iYgFwNnAscFlElAHLyT1TJkmSJElqnxbDWUrpa83sGtPBbZEkSZKktVZ7b2uUJEmSJHUgw5kkSZIkFQHDmSRJkiQVAcOZJEmSJBUBw5kkSZIkFQHDmSRJkiQVAcOZJEmSJBUBw5kkSZIkFQHDmSRJkiQVAcOZJEmSJBUBw5kkSZIkFQHDmSRJkiQVAcOZJEmSJBUBw5kkSZIkFQHDmSRJkiQVAcOZJEmSJBUBw5kkSZIkFQHDmSRJkiQVAcOZJEmSJBUBw5kkSZIkFQHDmSRJkiQVAcOZJEmSJBUBw5kkSZIkFQHDmSRJkiQVAcOZJEmSJBUBw5kkSZIkFQHDmSRJkiQVgRbDWURcFxFvRcS/GpV/KyKej4hnIuLCzmuiJEmSJPV8rRk5+w2wT35BREwADgBGppSGARd3fNMkSZIkae3RYjhLKT0IvNOo+ATg/JTSitwxb3VC2yRJkiRprdHeZ862BXaPiBkR8UBEjOvIRkmSJEnS2qZsDeoNBHYGxgE3RsRWKaXU+MCIOA44DmCzzTZrbzslSZIkqUdr78jZAuCWlJkJ1AIbNHVgSmlqSmlsSmns4MGD29tOSZIkSerR2hvObgP2AoiIbYEK4O0OapMkSZIkrXVavK0xIv4AjAc2iIgFwNnAdcB1uen1K4FJTd3SKEmSJElqnRbDWUrpa83s+kYHt0WSJEmS1lrtva1RkiRJktSBDGeSJEmSVAQMZ5IkSZJUBAxnkiRJklQEDGeSJEmSVAQMZ5IkSZJUBAxnkiRJklQEDGeSJEmSVAQMZ5IkSZJUBAxnkiRJklQEDGeSJEmSVAQMZ5IkSZJUBAxnkiRJklQEIqXUdReLWAS80mUXbL0NgLcL3Qj1WPYvdSb7lzqbfUydyf6lzlSs/WvzlNLgpnZ0aTgrVhExO6U0ttDtUM9k/1Jnsn+ps9nH1JnsX+pM3bF/eVujJEmSJBUBw5kkSZIkFQHDWWZqoRugHs3+pc5k/1Jns4+pM9m/1Jm6Xf/ymTNJkiRJKgKOnEmSJElSEehW4SwiekfEzIh4MiKeiYhz8vYNioh7IuLF3M+BTdQfFRGP5uo+FRGH5O3bMiJm5Or/KSIqmmnDpNwxL0bEpLbWV/Eqkv71j4h4LyLubFRu/+rmCt2/OqJ/qngVQf/aPCLmRMTc3DmOb0t9FbdC96+8Y9eJiNcj4hftqa/iVQx9LCJqcv+GzY2IO9pav8OklLrNAgTQP7deDswAds5tXwicmVs/E7igifrbAtvk1ocCC4H1cts3Al/NrU8BTmii/iDgP7mfA3PrA1tb36W4l0L3r9y+icD+wJ2Nyu1f3XwpdP/qiP7pUrxLEfSvCqBXbr0/MB8Yav/qGUuh+1feeS4D/g/4RV6Z/asHLMXQx4AlzZR3aR8r+C9jDX6JfYHHgU/ltp8HNsqtbwQ834pzPAlsk+sQbwNlufJdgLuaOP5rwFV521flylpV36X7LIXoX3n1xpMXzuxfPW8pZP/qqPouxbsUun8B6wOv5v5Asn/1sKVQ/QsYA/wROIJcOLN/9cylgH1slXBWiD7WrW5rBIiI0oiYC7wF3JNSmpHbtWFKaSFA7ueQFs6zE9n/0/cS2X9I3kspVed2LwA2zh03NiKuyZVvDLyWd5q645qtr+6lwP2rOfavHqJY+ldr66t7KXT/iohNI+Ipsv9OXpBSemN19dW9FLJ/RUQJ8DPge41OZ//qQQr9bxjQOyJmR8RjEXFgrqzL+1i3C2cppZqU0ihgE2CniBje1nNExEbA74AjU0q1ZKl4lUvlrjc7pXRMXdVmjmu2vrqXAvevZk/ZXH11L8XQv9pSX91LoftXSum1lNJIYGtgUkRsuLr66l4K3L9OBP6WUnqt0bH2rx6k0P+GAZullMYCXwcujYiPr65+Z+l24axOSuk9YDqwT67ozdwvpO4X81ZT9SJiHeCvwH+nlB7LFb8NrBcRZbntTYA3mqi+ANg0b7vuuNbWVzdRoP7VHPtXD1Oo/tVJ/VNFptD/fuVGzJ4Bdm9PfRW3AvWvXYCTI2I+cDFweESc34b66kYK9W9Y7t8uUkr/yV1/x7bU7yjdKpxFxOCIWC+33gf4DPBcbvcdwKTc+iTg9ibqVwC3Ar9NKd1UV56ym0inAV9ZXX3gLuBzETEwN1PM58juO21tfRWxIuhfTbJ/9QyF7l+d1T9VHIqgf22Suy65/z7uRvZciP2rByh0/0opHZpS2iyltAXw3dx5zrR/9RyF7mO5v+175dY3IPs37NmC9LG2PKBW6AUYCTwBPAX8C/ifvH3rA/cBL+Z+Dmqi/jeAKmBu3jIqt28rYCbwb+AmVs46NRa4Ju8cR+WO+TfZkCmrq+/SfZYi6V8PAYuAZWQjtXvbv3rGUuj+1Z76Lt1nKYL+9dnctZ/M/Twu79z2r26+FLp/NTrXETScrdH+1QOWQvcxYFfg6dy/YU8DRxeqj0XuopIkSZKkAupWtzVKkiRJUk9lOJMkSZKkImA4kyRJkqQiYDiTJEmSpCJgOJMkSZKkImA4kyRJkqQiYDiTJEmSpCJgOJMkSZKkIvD/ATvMEK6NgptEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1940,13 +2254,14 @@ "#plt.plot(df.index, df['OutsideTemp'], label = 'Outside Temperature')\n", "plt.title(f'Temperatures step {current_timestamp}')\n", "plt.legend()\n", + "plt.ylim((15, 30))\n", "plt.savefig(f\"sim_{current_timestamp}.png\")\n", "plt.show()\n" ] }, { "cell_type": "code", - "execution_count": 386, + "execution_count": 81, "metadata": { "scrolled": true, "tags": [] @@ -1956,17143 +2271,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "Timestamp 1500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.35e+02 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9008580e+01 1.15e+01 1.35e+02 -1.5 1.35e+02 - 9.90e-01 1.00e+00f 1\n", - " 2 6.5354360e+00 3.49e+00 9.25e+00 0.4 1.15e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 4.8629661e+00 7.32e-01 8.05e-01 -1.6 6.32e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 5.4187951e+00 8.35e-04 7.94e-02 -3.4 1.00e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 5.4192199e+00 1.17e-07 2.90e-04 -5.3 8.34e-04 - 1.00e+00 1.00e+00h 1\n", - " 6 5.4192196e+00 2.90e-07 4.90e-05 -11.0 5.34e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 5.4192201e+00 9.87e-09 2.15e-04 -11.0 1.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 5.4192198e+00 3.11e-07 1.16e-04 -11.0 5.22e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 5.4192200e+00 7.42e-08 1.06e-04 -11.0 2.87e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 5.4192199e+00 1.00e-07 1.97e-04 -11.0 4.26e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 5.4192135e+00 4.70e-06 5.87e-03 -11.0 1.24e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 5.4192202e+00 9.70e-08 1.06e-04 -11.0 1.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 5.4192201e+00 4.80e-07 1.58e-03 -11.0 2.72e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 5.4192196e+00 5.19e-07 5.13e-05 -11.0 1.73e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 5.4192200e+00 5.08e-07 1.10e-04 -11.0 2.73e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 5.4192170e+00 2.09e-06 3.73e-04 -11.0 3.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 5.4191939e+00 2.12e-05 7.08e-04 -11.0 3.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 5.4187453e+00 2.70e-04 1.94e-03 -11.0 1.30e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 5.4187779e+00 1.29e-04 2.25e-03 -11.0 1.93e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 5.4184988e+00 1.47e-03 1.26e-03 -11.0 6.59e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 5.4189082e+00 1.19e-04 1.17e-03 -11.0 2.87e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 5.4178790e+00 2.02e-03 1.93e-03 -11.0 6.99e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 5.4190012e+00 5.30e-04 1.15e-03 -11.0 2.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 24 5.4182808e+00 6.65e-04 1.19e-03 -11.0 9.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 5.4136499e+00 3.95e-03 3.33e-03 -11.0 2.17e+01 - 1.00e+00 1.00e+00h 1\n", - " 26 5.4189092e+00 2.34e-04 3.33e-03 -11.0 1.19e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 4.9937366e+00 6.64e-01 1.16e-01 -11.0 4.80e+04 - 6.57e-01 6.56e-01f 1\n", - " 28 4.7340545e+00 4.29e-01 7.57e-02 -11.0 1.78e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 4.9807860e+00 1.90e-01 1.87e-02 -1.4 2.65e+03 - 1.00e+00 6.63e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 3.9169304e+00 6.26e-01 1.20e-01 -3.5 2.88e+03 - 9.16e-01 1.00e+00f 1\n", - " 31 4.9903652e+00 9.40e-02 2.37e-01 -8.5 1.69e+03 - 7.67e-01 1.00e+00h 1\n", - " 32 3.9317172e+00 1.89e+00 1.39e-01 -1.9 2.54e+04 - 1.00e+00 1.00e+00f 1\n", - " 33 4.7641980e+00 1.00e+00 3.21e-01 -2.0 1.90e+04 - 7.05e-01 6.64e-01H 1\n", - " 34 3.0833272e+00 2.01e+00 6.23e-01 -2.0 6.35e+04 - 3.97e-01 5.45e-01f 1\n", - " 35 3.1243745e+00 1.57e+00 3.31e-01 -1.9 2.70e+04 - 1.00e+00 2.24e-01h 1\n", - " 36 3.3276507e+00 1.12e+00 1.38e-01 -1.6 9.58e+03 - 1.42e-01 3.03e-01H 1\n", - " 37 4.0012733e+00 1.00e+00 1.58e-01 -1.4 3.38e+03 - 1.00e+00 8.95e-01h 1\n", - " 38 3.6278263e+00 6.02e-01 2.36e-01 -1.5 2.76e+03 - 4.52e-01 1.00e+00f 1\n", - " 39 3.5004064e+00 1.22e+00 1.79e-01 -2.1 1.91e+04 - 6.25e-01 1.88e-01f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.4372226e+00 1.22e+00 5.19e-01 -1.9 4.86e+04 - 3.89e-01 7.47e-02f 3\n", - " 41 3.4445574e+00 1.18e+00 5.19e-01 -1.9 1.58e+05 - 3.02e-01 4.44e-02h 4\n", - " 42 3.4937683e+00 7.10e-01 1.74e-01 -1.9 6.48e+04 - 2.31e-01 7.60e-01h 1\n", - " 43 3.5152800e+00 6.65e-01 1.77e-01 -1.7 1.34e+04 - 1.00e+00 2.87e-01H 1\n", - " 44 3.0822994e+00 1.55e+00 5.12e-01 -2.8 4.19e+03 - 7.84e-01 1.00e+00h 1\n", - " 45 3.1965413e+00 1.11e+00 9.39e-01 -3.1 8.59e+04 - 4.72e-02 2.83e-01H 1\n", - " 46 3.4475635e+00 7.87e-01 1.11e+00 -1.5 6.59e+04 - 1.00e+00 2.91e-01h 1\n", - " 47 3.8996410e+00 9.61e-01 1.81e-01 -2.4 1.09e+03 - 9.47e-01 1.00e+00h 1\n", - " 48 4.3440658e+00 5.43e-01 2.57e-01 -2.1 6.19e+03 - 1.00e+00 1.00e+00h 1\n", - " 49 4.6734167e+00 7.57e-01 2.08e-01 -2.1 1.12e+04 - 7.98e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.8432031e+00 2.18e+00 5.99e-01 -1.9 1.60e+04 - 1.00e+00 1.00e+00f 1\n", - " 51 4.0669190e+00 9.93e-01 2.86e-01 -2.0 2.60e+04 - 3.98e-01 6.22e-01h 1\n", - " 52 4.0379080e+00 1.33e+00 2.04e-01 -2.0 9.50e+03 - 6.80e-02 5.00e-01h 2\n", - " 53 3.9875410e+00 1.96e+00 4.72e-02 -2.0 2.01e+04 - 1.00e+00 5.00e-01h 2\n", - " 54 3.7105292e+00 3.30e+00 3.27e-01 -2.0 1.42e+05 - 1.15e-01 1.56e-01h 1\n", - " 55 3.6923658e+00 2.55e+00 3.18e-01 -2.0 1.29e+04 - 2.25e-01 1.00e+00h 1\n", - " 56 3.5262167e+00 1.20e+00 9.34e-02 -2.0 1.40e+04 - 1.00e+00 1.00e+00h 1\n", - " 57 3.5749207e+00 1.78e+00 1.75e-01 -2.0 2.57e+04 - 4.73e-01 5.00e-01h 2\n", - " 58 3.5861385e+00 3.66e-01 6.06e-01 -2.0 1.04e+05 - 1.00e+00 3.71e-01h 1\n", - " 59 3.5271298e+00 1.13e+00 2.56e-01 -2.2 7.90e+03 - 9.91e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.3689735e+00 8.60e-01 1.50e-01 -2.3 2.90e+04 - 1.00e+00 2.42e-01h 1\n", - " 61r 3.3689735e+00 8.60e-01 9.99e+02 -0.1 0.00e+00 - 0.00e+00 3.14e-07R 22\n", - " 62r 3.9296482e+00 6.29e-01 9.80e+02 -2.2 2.94e+02 - 9.99e-01 4.05e-03f 1\n", - " 63 4.5508462e+00 2.79e-01 2.53e-01 -3.0 4.61e+03 - 7.89e-01 1.00e+00H 1\n", - " 64 4.5431038e+00 5.03e-01 3.37e-02 -3.3 4.95e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 4.2589358e+00 2.86e+00 2.69e-01 -3.5 2.40e+04 - 1.00e+00 1.00e+00h 1\n", - " 66 4.1963461e+00 3.69e+00 5.25e-01 -3.5 1.38e+04 - 4.52e-01 1.00e+00h 1\n", - " 67 4.1659930e+00 3.57e+00 4.07e-01 -3.5 1.66e+04 - 1.00e+00 2.50e-01h 3\n", - " 68 4.1268015e+00 2.54e+00 8.91e-02 -3.5 7.10e+03 - 6.86e-01 1.00e+00h 1\n", - " 69 4.0145483e+00 1.23e+00 3.18e-01 -3.5 7.11e+04 - 7.78e-01 1.22e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 3.8677643e+00 1.08e+00 2.97e-01 -3.5 4.00e+04 - 5.40e-02 6.48e-02h 1\n", - " 71r 3.8677643e+00 1.08e+00 9.99e+02 0.0 0.00e+00 - 0.00e+00 3.73e-07R 20\n", - " 72r 4.3819102e+00 4.42e-01 8.85e+02 -2.1 5.61e+02 - 1.00e+00 2.26e-03f 1\n", - " 73 4.6386635e+00 1.03e+00 1.28e-01 -2.5 4.79e+03 - 8.35e-01 8.35e-01s 22\n", - " 74 5.0977558e+00 5.94e-02 5.51e-02 -2.8 3.49e+02 - 1.00e+00 1.00e+00h 1\n", - " 75 5.0092578e+00 5.46e-02 4.00e-02 -2.9 7.37e+02 - 1.00e+00 5.23e-01h 1\n", - " 76 5.0258966e+00 1.70e-02 1.48e-02 -4.3 1.52e+02 - 1.00e+00 1.00e+00h 1\n", - " 77 5.0523498e+00 9.13e-04 4.98e-03 -10.1 5.05e+00 - 2.55e-01 1.00e+00h 1\n", - " 78 5.0047783e+00 8.20e-02 3.75e-02 -10.3 5.60e+02 - 8.61e-03 1.00e+00f 1\n", - " 79 5.0413335e+00 4.37e-03 1.70e-02 -3.2 9.97e+01 - 1.00e+00 9.86e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 5.0236246e+00 1.98e-01 1.97e-02 -3.2 8.01e+02 - 7.53e-01 1.00e+00h 1\n", - " 81 4.3642185e+00 1.04e+00 1.02e-01 -3.3 4.54e+03 - 4.07e-01 1.00e+00f 1\n", - " 82 4.5043111e+00 3.28e-01 1.36e-01 -3.3 1.94e+04 - 1.00e+00 3.21e-01h 1\n", - " 83 4.8534076e+00 1.35e-01 1.10e-01 -3.3 2.53e+03 - 7.36e-01 6.26e-01h 1\n", - " 84 5.0556366e+00 1.48e-02 5.97e-02 -2.8 3.27e+02 - 8.98e-01 1.00e+00h 1\n", - " 85 4.9242600e+00 4.01e-01 3.13e-02 -2.9 8.38e+03 - 2.73e-01 1.00e+00h 1\n", - " 86 4.9723731e+00 2.19e-01 1.77e-02 -2.9 4.84e+03 - 1.00e+00 1.00e+00h 1\n", - " 87 4.7410340e+00 4.69e-01 6.79e-02 -2.9 8.99e+03 - 1.41e-01 5.93e-01h 1\n", - " 88 4.4911675e+00 6.38e-01 8.99e-02 -2.9 6.67e+03 - 1.00e+00 3.73e-01f 1\n", - " 89 4.9885566e+00 1.69e-02 1.43e-01 -2.9 6.81e+02 - 1.19e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 4.5114481e+00 1.35e+00 1.50e-01 -3.9 4.94e+03 - 3.81e-01 1.00e+00f 1\n", - " 91 4.8914833e+00 2.11e-01 2.25e-01 -3.1 1.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 92 4.1318919e+00 7.95e-01 2.11e-01 -3.1 8.84e+03 - 1.00e+00 7.09e-01f 1\n", - " 93 3.6743764e+00 1.83e+00 3.46e-01 -3.1 1.16e+04 - 1.00e+00 3.45e-01f 1\n", - " 94 5.0376577e+00 1.16e-01 1.06e-01 -3.1 3.04e+03 - 1.00e+00 1.00e+00h 1\n", - " 95 4.7674122e+00 1.15e+00 1.81e-01 -3.1 3.69e+03 - 9.38e-01 1.00e+00h 1\n", - " 96 4.5860113e+00 5.39e-01 1.55e-01 -3.1 4.33e+03 - 8.75e-01 5.99e-01h 1\n", - " 97 4.8916918e+00 1.10e-01 1.18e-01 -3.1 3.24e+03 - 1.00e+00 5.00e-01h 2\n", - " 98 5.0366477e+00 4.66e-02 1.88e-02 -3.1 3.65e+02 - 1.00e+00 1.00e+00h 1\n", - " 99 5.0591970e+00 1.66e-05 3.32e-02 -3.1 3.84e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 5.0592047e+00 3.54e-07 1.26e-04 -5.0 1.39e-03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 5.0592047179397319e+00 5.0592047179397319e+00\n", - "Dual infeasibility......: 1.2617056781843167e-04 1.2617056781843167e-04\n", - "Constraint violation....: 3.5413911447790269e-07 3.5413911447790269e-07\n", - "Complementarity.........: 9.3193329713301685e-06 9.3193329713301685e-06\n", - "Overall NLP error.......: 1.2617056781843167e-04 1.2617056781843167e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 202\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 202\n", - "Number of inequality constraint evaluations = 202\n", - "Number of equality constraint Jacobian evaluations = 103\n", - "Number of inequality constraint Jacobian evaluations = 103\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.486\n", - "Total CPU secs in NLP function evaluations = 141.341\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 882.00us ( 4.37us) 878.77us ( 4.35us) 202\n", - " nlp_g | 9.13 s ( 45.18ms) 8.71 s ( 43.11ms) 202\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 354.00us ( 3.47us) 343.48us ( 3.37us) 102\n", - " nlp_jac_g | 135.06 s ( 1.30 s) 128.94 s ( 1.24 s) 104\n", - " total | 145.68 s (145.68 s) 139.07 s (139.07 s) 1\n", - "Timestamp 1800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.13e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0569164e+01 1.41e+01 3.13e+04 -1.5 3.13e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.9378752e+00 5.97e+00 6.30e+00 1.3 1.47e+03 - 1.00e+00 1.00e+00f 1\n", - " 3 3.5992903e+00 9.32e-01 7.02e-01 -0.8 5.74e+02 - 9.96e-01 1.00e+00f 1\n", - " 4 4.5004465e+00 1.33e-02 2.96e-01 -2.6 3.50e+01 - 9.94e-01 1.00e+00h 1\n", - " 5 4.5071826e+00 1.17e-04 9.85e-03 -4.1 2.25e+00 - 1.00e+00 1.00e+00h 1\n", - " 6 4.5070096e+00 2.42e-04 1.66e-03 -5.9 5.47e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 4.4961479e+00 1.20e-02 1.75e-02 -8.0 3.34e+01 - 1.00e+00 1.00e+00h 1\n", - " 8 4.5034861e+00 1.41e-03 7.19e-03 -9.9 9.87e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 4.5057624e+00 1.54e-03 2.48e-03 -11.0 4.89e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.5039943e+00 1.03e-03 2.55e-03 -11.0 1.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 4.4181740e+00 6.32e-02 6.81e-03 -11.0 4.04e+02 - 1.00e+00 1.00e+00f 1\n", - " 12 4.4816467e+00 1.56e-02 2.43e-02 -11.0 2.02e+02 - 1.00e+00 1.00e+00h 1\n", - " 13 4.4662710e+00 2.66e-02 7.25e-03 -11.0 2.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 14 4.4993936e+00 2.38e-04 3.12e-03 -11.0 1.75e+02 - 1.00e+00 1.00e+00H 1\n", - " 15 3.8904852e+00 2.49e+00 1.01e+00 -9.4 1.23e+06 - 1.00e+00 1.30e-02f 2\n", - " 16 3.8788894e+00 7.74e-01 3.78e-01 -9.5 2.05e+04 - 1.00e+00 7.90e-01h 1\n", - " 17 4.8138115e+00 1.62e-01 1.78e-01 -8.8 2.97e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 4.6525308e+00 2.59e-02 2.52e-02 -2.1 7.29e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 4.4179787e+00 2.56e-01 1.13e-01 -3.1 7.80e+02 - 2.70e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 4.6672185e+00 5.50e-03 4.23e-02 -4.1 1.37e+02 - 9.98e-01 1.00e+00h 1\n", - " 21 4.6184995e+00 5.36e-02 3.75e-02 -4.2 8.74e+02 - 1.00e+00 1.00e+00h 1\n", - " 22 4.5918880e+00 6.01e-02 1.61e-02 -4.2 1.50e+03 - 1.00e+00 2.42e-01h 1\n", - " 23 4.5687926e+00 2.51e-01 4.14e-02 -4.2 2.65e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 4.3745911e+00 1.77e-01 9.14e-02 -4.2 9.99e+03 - 5.14e-01 1.00e+00h 1\n", - " 25 4.5554191e+00 1.60e-01 3.31e-02 -4.9 2.86e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 4.1773084e+00 5.91e-01 7.15e-02 -5.1 1.54e+04 - 1.00e+00 8.21e-01h 1\n", - " 27 4.5955911e+00 2.47e-01 1.28e-02 -5.4 2.45e+03 - 9.01e-01 1.00e+00h 1\n", - " 28 4.3476155e+00 2.35e-01 5.71e-02 -4.2 2.04e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 4.7655994e+00 7.01e-02 5.50e-02 -3.3 3.51e+02 - 3.44e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.7609167e+00 7.68e-02 5.32e-02 -3.8 2.08e+04 - 1.00e+00 6.99e-03h 1\n", - " 31 4.7792599e+00 9.47e-03 2.05e-02 -3.8 1.25e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 4.7969075e+00 7.62e-04 6.73e-03 -3.8 9.93e+02 - 2.39e-02 1.00e+00H 1\n", - " 33 4.7361564e+00 7.87e-02 1.22e-02 -3.8 6.95e+03 - 1.00e+00 2.00e-01f 1\n", - " 34 4.6624452e+00 1.13e-01 2.98e-02 -3.8 1.07e+03 - 8.11e-02 1.00e+00f 1\n", - " 35 4.5940645e+00 2.08e-01 3.63e-02 -3.8 2.19e+04 - 1.00e+00 4.59e-02h 1\n", - " 36 4.1357296e+00 8.09e-01 1.13e-01 -3.8 1.24e+03 - 1.00e+00 1.00e+00f 1\n", - " 37 4.7816004e+00 1.05e-02 7.85e-01 -7.7 7.96e-01 - 9.90e-01 1.00e+00h 1\n", - " 38 4.7863769e+00 2.77e-07 1.52e-05 -3.8 1.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 4.7863772e+00 1.06e-08 1.62e-04 -9.8 1.39e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 4.7863760e+00 7.91e-07 1.41e-03 -11.0 1.48e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 4.7863764e+00 5.02e-07 3.39e-05 -11.0 8.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 42 4.7863772e+00 2.35e-08 6.46e-05 -11.0 1.19e-04 - 1.00e+00 1.00e+00h 1\n", - " 43 4.7863772e+00 2.71e-08 4.27e-05 -11.0 2.78e-04 - 1.00e+00 1.00e+00h 1\n", - " 44 4.7863772e+00 2.12e-08 5.02e-05 -11.0 1.33e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 4.7863772e+00 1.18e-08 1.54e-04 -11.0 7.23e-05 - 1.00e+00 1.00e+00h 1\n", - " 46 4.7863771e+00 4.33e-08 1.69e-04 -11.0 2.33e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 4.7863769e+00 1.18e-07 1.54e-04 -11.0 3.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 4.7863771e+00 6.26e-08 4.05e-05 -11.0 2.31e-04 - 1.00e+00 1.00e+00h 1\n", - " 49 4.7863772e+00 6.82e-09 4.57e-05 -11.0 3.92e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 4.7863772e+00 1.19e-09 8.93e-05 -11.0 2.32e-05 - 1.00e+00 1.00e+00h 1\n", - " 51 4.7863769e+00 1.27e-07 6.73e-05 -11.0 1.64e-03 - 1.00e+00 1.00e+00h 1\n", - " 52 4.7863759e+00 5.37e-07 4.14e-03 -11.0 3.58e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 4.7863751e+00 9.25e-07 5.65e-03 -11.0 4.39e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 4.7863767e+00 1.06e-07 9.99e-05 -11.0 2.62e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 4.7863764e+00 3.45e-07 1.63e-04 -11.0 9.34e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 4.7863764e+00 3.01e-07 5.16e-05 -11.0 1.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 57 4.7863767e+00 7.33e-08 5.44e-05 -11.0 4.65e-04 - 1.00e+00 1.00e+00h 1\n", - " 58 4.7863767e+00 1.42e-07 1.09e-04 -11.0 4.20e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 4.7863767e+00 6.16e-08 3.75e-05 -11.0 2.83e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 4.7863768e+00 1.72e-08 2.23e-04 -11.0 8.51e-05 - 1.00e+00 1.00e+00h 1\n", - " 61 4.7863762e+00 3.09e-07 7.53e-05 -11.0 6.77e-04 - 1.00e+00 1.00e+00h 1\n", - " 62 4.7863768e+00 2.85e-08 7.54e-05 -11.0 1.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 4.7863768e+00 4.40e-08 2.57e-04 -11.0 2.32e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 4.7863762e+00 4.72e-07 5.01e-05 -11.0 9.07e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 4.7863768e+00 3.51e-08 5.07e-05 -11.0 2.00e-04 - 1.00e+00 1.00e+00h 1\n", - " 66 4.7863765e+00 1.35e-07 1.20e-04 -11.0 2.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 4.7863766e+00 1.25e-07 6.28e-05 -11.0 6.76e-04 - 1.00e+00 1.00e+00h 1\n", - " 68 4.7863767e+00 4.53e-08 5.47e-05 -11.0 5.03e-04 - 1.00e+00 1.00e+00h 1\n", - " 69 4.7863768e+00 1.11e-08 1.15e-04 -11.0 9.42e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 4.7863767e+00 5.82e-08 2.25e-04 -11.0 3.52e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 4.7863764e+00 1.95e-07 9.20e-05 -11.0 9.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 4.7863767e+00 2.85e-08 1.83e-04 -11.0 1.38e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 4.7858288e+00 2.04e-04 2.54e-02 -11.0 1.14e+00 - 1.00e+00 1.00e+00f 1\n", - " 74 4.7863246e+00 2.44e-05 2.35e-03 -11.0 3.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 75 4.7855610e+00 5.18e-04 1.98e-03 -11.0 1.60e+00 - 1.00e+00 1.00e+00h 1\n", - " 76 4.7863533e+00 6.29e-08 1.05e-04 -11.0 8.15e-01 - 1.00e+00 1.00e+00H 1\n", - " 77 4.7861438e+00 1.66e-04 1.57e-03 -11.0 3.48e-01 - 1.00e+00 1.00e+00h 1\n", - " 78 4.7858591e+00 1.37e-04 2.33e-03 -11.0 6.52e-01 - 1.00e+00 1.00e+00h 1\n", - " 79 4.7863077e+00 3.44e-05 1.50e-03 -11.0 1.29e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 4.7863230e+00 2.01e-05 9.22e-04 -11.0 8.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 81 4.7863250e+00 1.01e-05 1.78e-03 -11.0 8.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 4.7863256e+00 7.38e-06 1.37e-03 -11.0 5.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 4.7860632e+00 1.29e-04 5.15e-03 -11.0 8.08e-01 - 1.00e+00 1.00e+00h 1\n", - " 84 4.7862507e+00 1.64e-04 9.65e-04 -11.0 7.59e-01 - 1.00e+00 1.00e+00h 1\n", - " 85 4.7837325e+00 3.13e-03 3.86e-03 -11.0 2.96e+01 - 1.00e+00 1.00e+00h 1\n", - " 86 4.7863866e+00 1.22e-06 1.05e-03 -11.0 1.37e+01 - 1.00e+00 1.00e+00H 1\n", - " 87 4.7859813e+00 3.32e-04 9.15e-04 -11.0 5.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 88 4.7858610e+00 3.91e-04 2.95e-03 -11.0 1.03e+01 - 1.00e+00 1.00e+00h 1\n", - " 89 4.6470493e+00 1.86e+00 2.51e-01 -11.0 1.71e+05 - 3.25e-02 3.97e-02f 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 4.5855605e+00 3.14e+00 5.94e-01 -11.0 7.87e+04 - 1.33e-01 3.79e-01F 1\n", - " 91 4.5737780e+00 4.51e+00 1.05e+00 -11.0 9.51e+03 - 2.02e-10 1.00e+00f 1\n", - " 92 4.3161969e+00 2.59e+00 3.09e-01 -11.0 1.39e+04 - 9.05e-01 5.00e-01h 2\n", - " 93 3.9204073e+00 1.91e+00 1.41e-01 -11.0 4.00e+04 - 1.00e+00 2.79e-01h 1\n", - " 94 4.1982948e+00 8.73e-01 3.55e-01 -11.0 9.61e+03 - 3.54e-10 5.00e-01h 2\n", - " 95 3.0716460e+00 1.42e+00 3.10e-01 -11.0 3.70e+04 - 8.81e-01 8.42e-01f 1\n", - " 96 3.2152538e+00 1.10e+00 4.42e-01 -11.0 5.73e+05 - 2.49e-11 1.77e-02h 3\n", - " 97 3.0825076e+00 1.44e+00 4.28e-01 -8.3 1.76e+06 - 2.25e-02 1.74e-02f 1\n", - " 98 4.0465174e+00 1.92e+00 5.82e-01 -7.8 4.02e+04 - 1.00e+00 1.00e+00H 1\n", - " 99 3.6698179e+00 2.09e+00 4.33e-01 -6.9 4.01e+04 - 6.44e-01 6.43e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 3.8791461e+00 8.63e-01 2.37e-01 -6.9 3.24e+04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 3.8791460524994053e+00 3.8791460524994053e+00\n", - "Dual infeasibility......: 2.3721171664478957e-01 2.3721171664478957e-01\n", - "Constraint violation....: 8.6330986912132346e-01 8.6330986912132346e-01\n", - "Complementarity.........: 8.6916062763976953e-02 8.6916062763976953e-02\n", - "Overall NLP error.......: 8.6330986912132346e-01 8.6330986912132346e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 123\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 123\n", - "Number of inequality constraint evaluations = 123\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.404\n", - "Total CPU secs in NLP function evaluations = 135.637\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 577.00us ( 4.69us) 547.87us ( 4.45us) 123\n", - " nlp_g | 5.54 s ( 45.06ms) 5.29 s ( 42.99ms) 123\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 378.00us ( 3.71us) 371.27us ( 3.64us) 102\n", - " nlp_jac_g | 132.75 s ( 1.30 s) 126.76 s ( 1.24 s) 102\n", - " total | 139.77 s (139.77 s) 133.46 s (133.46 s) 1\n", - "Timestamp 2100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.61e+02 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9201712e+01 1.23e+01 4.61e+02 -1.5 4.61e+02 - 9.90e-01 1.00e+00f 1\n", - " 2 7.0287083e+00 3.93e+00 9.41e+00 0.4 1.23e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 6.2837776e+00 8.88e-01 7.69e-01 -1.6 6.94e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 6.9576193e+00 1.36e-03 7.73e-02 -3.4 1.23e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 6.9583011e+00 7.93e-08 3.64e-05 -5.3 1.36e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 6.9583013e+00 4.53e-08 1.23e-04 -11.0 8.26e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 6.9583002e+00 4.57e-07 1.01e-04 -11.0 2.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 6.9583010e+00 2.61e-07 8.60e-05 -11.0 8.85e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 6.9583012e+00 1.71e-07 2.17e-04 -11.0 5.35e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 6.9582968e+00 3.53e-06 3.24e-03 -11.0 1.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 6.9583002e+00 9.95e-07 1.92e-03 -11.0 6.39e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 6.9582701e+00 5.24e-05 4.08e-03 -11.0 1.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 6.9583009e+00 6.41e-06 1.48e-03 -11.0 4.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 6.9582984e+00 6.80e-06 1.17e-03 -11.0 3.41e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 6.9583031e+00 3.14e-07 1.21e-04 -11.0 4.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 6.9582959e+00 4.74e-06 2.69e-03 -11.0 4.50e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 6.9583015e+00 3.61e-06 1.82e-03 -11.0 1.31e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 6.9583025e+00 4.44e-07 6.41e-05 -11.0 1.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 19 6.9583017e+00 5.60e-07 1.63e-03 -11.0 1.20e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 6.9582743e+00 1.52e-05 4.64e-03 -11.0 1.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 6.9583033e+00 4.38e-09 5.26e-05 -11.0 5.39e-05 - 1.00e+00 1.00e+00h 1\n", - " 22 6.9583033e+00 2.37e-08 1.11e-04 -11.0 1.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 6.9583033e+00 6.97e-09 2.47e-05 -11.0 6.09e-05 - 1.00e+00 1.00e+00h 1\n", - " 24 6.9583033e+00 3.60e-09 4.67e-04 -11.0 5.77e-05 - 1.00e+00 1.00e+00h 1\n", - " 25 6.9583033e+00 2.66e-08 1.40e-04 -11.0 4.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 6.9583032e+00 7.60e-08 1.89e-04 -11.0 3.90e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 6.9583033e+00 5.28e-09 6.63e-05 -11.0 6.25e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 6.9583032e+00 3.72e-08 6.18e-05 -11.0 3.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 6.9583032e+00 9.49e-08 1.03e-04 -11.0 7.30e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 6.9583028e+00 3.70e-07 1.79e-04 -11.0 1.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 6.9583031e+00 1.61e-07 8.26e-05 -11.0 6.73e-04 - 1.00e+00 1.00e+00h 1\n", - " 32 6.9583033e+00 1.57e-09 7.82e-05 -11.0 6.52e-05 - 1.00e+00 1.00e+00h 1\n", - " 33 6.9583016e+00 5.20e-06 1.44e-03 -11.0 4.14e-02 - 1.00e+00 1.00e+00h 1\n", - " 34 6.9582992e+00 5.04e-06 9.76e-04 -11.0 3.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 35 6.9582975e+00 3.45e-06 1.30e-03 -11.0 2.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 6.9583005e+00 5.53e-06 2.73e-03 -11.0 2.42e-02 - 1.00e+00 1.00e+00h 1\n", - " 37 6.9582956e+00 4.20e-06 2.76e-03 -11.0 9.23e-02 - 1.00e+00 1.00e+00h 1\n", - " 38 6.9583030e+00 8.31e-10 2.66e-05 -11.0 5.62e-02 - 1.00e+00 1.00e+00H 1\n", - " 39 6.9582990e+00 3.19e-06 1.54e-03 -11.0 8.19e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 6.9582970e+00 7.62e-06 8.44e-04 -11.0 7.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 41 6.9583023e+00 2.99e-08 1.89e-05 -11.0 2.01e-01 - 1.00e+00 1.00e+00H 1\n", - " 42 6.9582972e+00 5.32e-06 1.00e-03 -11.0 1.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 43 6.9582866e+00 1.63e-05 1.76e-03 -11.0 2.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 44 6.9582848e+00 9.30e-06 2.75e-03 -11.0 4.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 45 6.8806436e+00 3.07e-01 3.00e-02 -11.0 2.18e+03 - 1.00e+00 1.00e+00f 1\n", - " 46 6.6741019e+00 1.93e-01 4.56e-02 -11.0 4.01e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 6.5061054e+00 9.75e-01 8.52e-02 -11.0 2.12e+03 - 1.00e+00 1.00e+00h 1\n", - " 48 6.7378212e+00 1.01e-01 9.15e-02 -11.0 2.69e+03 - 1.00e+00 1.00e+00h 1\n", - " 49 5.3909528e+00 3.08e+00 4.27e-01 -10.3 1.33e+05 - 1.00e+00 2.53e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 5.3600259e+00 3.11e+00 4.40e-01 -8.4 1.59e+05 - 1.00e+00 2.11e-03h 1\n", - " 51 7.0065566e+00 6.92e-02 5.59e-01 -7.7 1.44e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 5.8984371e+00 4.46e+00 1.88e-01 -7.7 6.26e+04 - 6.47e-02 4.52e-01f 1\n", - " 53r 5.8984371e+00 4.46e+00 9.99e+02 0.6 0.00e+00 - 0.00e+00 3.63e-09R 4\n", - " 54r 5.3090032e+00 1.25e+00 9.94e+02 -0.9 8.20e+02 - 1.60e-01 5.51e-03f 1\n", - " 55 7.4649978e+00 8.33e-02 2.66e-01 -3.6 5.62e+02 - 1.64e-01 1.00e+00h 1\n", - " 56 7.4653498e+00 7.91e-02 2.58e-01 -4.6 3.60e+02 - 1.00e+00 2.97e-02h 1\n", - " 57 7.5171788e+00 1.34e-02 4.84e-02 -4.6 6.96e+02 - 7.95e-02 1.00e+00H 1\n", - " 58 6.8018037e+00 9.78e-01 1.36e-01 -4.6 4.94e+03 - 1.00e+00 1.00e+00f 1\n", - " 59 7.1593235e+00 5.07e-01 2.75e-02 -4.6 1.95e+03 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.5238877e+00 3.07e-02 7.83e-02 -4.6 4.87e+02 - 8.98e-01 1.00e+00h 1\n", - " 61 7.6072445e+00 2.79e-02 1.53e-02 -4.6 1.60e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 7.6041550e+00 2.88e-02 1.52e-02 -4.6 8.18e+05 - 5.98e-02 3.38e-04f 5\n", - " 63 7.5867285e+00 1.95e-02 8.73e-03 -4.6 1.18e+03 - 8.42e-01 1.00e+00h 1\n", - " 64 7.4220525e+00 1.33e-01 1.33e-02 -4.6 1.28e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 7.3139898e+00 3.39e-01 3.35e-02 -4.6 2.11e+04 - 1.00e+00 1.91e-01h 1\n", - " 66 7.6389208e+00 1.48e-02 2.53e-02 -4.6 1.49e+03 - 1.00e+00 1.00e+00H 1\n", - " 67 7.6310401e+00 2.35e-03 2.37e-03 -4.6 1.27e+03 - 3.63e-01 1.00e+00H 1\n", - " 68 5.1280805e+00 2.42e+00 7.20e-01 -4.6 1.39e+05 - 1.85e-02 4.38e-01f 1\n", - " 69 7.8331844e+00 6.97e-01 3.88e-01 -4.2 4.72e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 7.3770420e+00 1.28e+00 7.07e-02 -1.9 2.27e+03 - 1.00e+00 1.00e+00h 1\n", - " 71 7.2111747e+00 3.37e+00 3.11e-01 -1.9 2.86e+04 - 1.46e-01 1.00e+00h 1\n", - " 72 6.5501483e+00 4.95e+00 6.24e-01 -1.9 3.13e+05 - 2.38e-01 9.46e-02f 1\n", - " 73 7.8838767e+00 1.22e-01 5.69e-01 -1.9 4.00e+03 - 1.00e+00 7.94e-01h 1\n", - " 74 6.8164648e+00 3.49e-01 5.09e-02 -1.9 5.55e+03 - 1.00e+00 1.00e+00f 1\n", - " 75 5.4943056e+00 3.83e+00 5.32e-01 -1.9 2.99e+05 - 5.41e-02 7.79e-02f 2\n", - " 76 7.8389750e+00 5.20e-01 3.42e-01 -1.9 8.22e+03 - 5.25e-01 1.00e+00h 1\n", - " 77 5.2715226e+00 4.78e+00 6.78e-01 -1.9 6.04e+04 - 3.80e-02 1.00e+00f 1\n", - " 78 4.7318257e+00 4.02e+00 4.77e-01 -1.9 5.98e+04 - 5.80e-01 2.52e-01h 1\n", - " 79 5.4814161e+00 4.08e+00 4.05e-01 -0.7 6.13e+05 - 1.57e-01 3.82e-02h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 5.1744749e+00 3.00e+00 2.82e-01 -1.3 1.56e+05 - 7.32e-01 1.51e-01h 1\n", - " 81 7.6260001e+00 1.74e-01 3.20e+00 -1.3 3.20e+00 - 1.00e+00 1.00e+00h 1\n", - " 82 7.8808175e+00 3.10e-04 1.49e-02 -1.3 3.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 83 7.8809828e+00 2.20e-06 1.21e-03 -2.0 4.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 84 7.8809833e+00 8.73e-07 1.36e-03 -3.0 2.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 7.8809854e+00 9.73e-08 7.66e-05 -4.5 4.58e-04 - 1.00e+00 1.00e+00h 1\n", - " 86 7.8809833e+00 1.27e-06 7.06e-03 -6.7 9.51e-03 - 1.00e+00 1.00e+00h 1\n", - " 87 7.8809778e+00 3.21e-06 1.21e-02 -6.7 1.78e-02 - 1.00e+00 1.00e+00h 1\n", - " 88 7.8809817e+00 1.61e-06 4.66e-03 -6.7 3.05e-03 - 1.00e+00 5.00e-01h 2\n", - " 89 7.8809733e+00 1.21e-05 5.51e-03 -6.7 1.16e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 7.8807552e+00 4.88e-04 1.92e-02 -6.7 2.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 7.8794270e+00 1.36e-03 7.95e-03 -6.7 1.89e+01 - 1.00e+00 1.00e+00h 1\n", - " 92 7.8807693e+00 1.52e-04 8.37e-03 -6.7 2.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 93 7.8809069e+00 6.31e-05 4.55e-03 -6.7 5.13e-01 - 1.00e+00 5.00e-01h 2\n", - " 94 7.8809438e+00 3.33e-05 2.63e-03 -6.7 3.57e-01 - 1.00e+00 5.00e-01h 2\n", - " 95 7.8764953e+00 1.71e-03 5.24e-03 -6.7 1.55e+01 - 1.00e+00 1.00e+00h 1\n", - " 96 7.8786631e+00 1.76e-03 1.06e-03 -6.7 1.76e+01 - 1.00e+00 1.00e+00h 1\n", - " 97 7.8545564e+00 3.68e-02 3.69e-03 -6.7 1.08e+06 - 5.81e-02 1.97e-04f 1\n", - " 98 7.8729393e+00 8.11e-03 1.11e-03 -6.7 4.20e+01 - 1.00e+00 1.00e+00h 1\n", - " 99 7.8302315e+00 3.13e-02 1.19e-02 -6.7 2.71e+02 - 6.51e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.8111503e+00 3.63e-02 8.36e-03 -6.7 1.00e+03 - 3.46e-03 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.8111502570168803e+00 7.8111502570168803e+00\n", - "Dual infeasibility......: 8.3612296815835374e-03 8.3612296815835374e-03\n", - "Constraint violation....: 3.6338305992032360e-02 3.6338305992032360e-02\n", - "Complementarity.........: 2.3446929797151881e-07 2.3446929797151881e-07\n", - "Overall NLP error.......: 3.6338305992032360e-02 3.6338305992032360e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 125\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 125\n", - "Number of inequality constraint evaluations = 125\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.467\n", - "Total CPU secs in NLP function evaluations = 137.634\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 560.00us ( 4.48us) 552.39us ( 4.42us) 125\n", - " nlp_g | 5.64 s ( 45.11ms) 5.38 s ( 43.05ms) 125\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 358.00us ( 3.51us) 357.25us ( 3.50us) 102\n", - " nlp_jac_g | 134.86 s ( 1.31 s) 128.82 s ( 1.25 s) 103\n", - " total | 141.98 s (141.98 s) 135.63 s (135.63 s) 1\n", - "Timestamp 2400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.88e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9632897e+01 1.46e+01 2.88e+04 -1.5 2.88e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.2603338e+01 5.73e+00 1.67e+01 0.8 2.78e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.9320844e+01 2.04e+00 8.37e-01 -1.3 5.49e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 2.0528006e+01 1.44e-04 8.23e-02 -3.0 2.25e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.0528189e+01 1.37e-05 7.14e-03 -4.9 1.12e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.0528225e+01 8.30e-10 1.63e-04 -7.0 1.15e-01 - 1.00e+00 1.00e+00H 1\n", - " 7 2.0528191e+01 1.38e-05 2.98e-03 -9.1 5.84e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 2.0528216e+01 5.76e-06 2.47e-03 -11.0 3.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 2.0528210e+01 6.94e-06 1.95e-03 -11.0 2.29e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.0528175e+01 2.30e-05 2.82e-03 -11.0 6.38e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 2.0528212e+01 6.31e-06 1.55e-03 -11.0 4.56e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 2.0528177e+01 7.82e-05 1.94e-03 -11.0 2.51e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.0527969e+01 1.37e-04 4.64e-03 -11.0 1.54e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 2.0527880e+01 1.89e-04 1.96e-03 -11.0 1.06e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 2.0527215e+01 4.85e-04 6.86e-03 -11.0 3.03e+00 - 1.00e+00 1.00e+00h 1\n", - " 16 2.0526425e+01 3.08e-03 8.78e-03 -11.0 4.40e+00 - 1.00e+00 1.00e+00h 1\n", - " 17 1.8457286e+01 1.38e+00 8.17e-02 -11.0 5.59e+03 - 1.00e+00 1.00e+00f 1\n", - " 18 1.5421877e+01 2.68e+00 1.10e-01 -11.0 8.48e+03 - 1.00e+00 1.00e+00f 1\n", - " 19 1.9558377e+01 4.47e-01 1.21e-01 -11.0 4.49e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.9456652e+01 6.07e-01 5.89e-02 -11.0 3.85e+03 - 1.00e+00 1.00e+00h 1\n", - " 21 1.2669321e+01 4.24e+00 4.33e-01 -10.6 3.40e+04 - 1.00e+00 1.00e+00f 1\n", - " 22 1.3016702e+01 3.84e+00 3.17e-01 -8.8 3.25e+04 - 1.00e+00 1.21e-01h 1\n", - " 23 1.3012714e+01 3.84e+00 3.17e-01 -6.9 3.14e+04 - 1.00e+00 1.25e-03h 1\n", - " 24 2.0834551e+01 8.26e-01 4.77e-01 -4.9 6.95e+03 - 1.00e+00 1.00e+00h 1\n", - " 25 1.9375384e+01 6.94e-01 4.92e-01 -4.3 7.32e+03 - 4.72e-01 4.54e-01f 1\n", - " 26 2.0912422e+01 4.80e-02 2.75e-02 -5.6 1.83e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 2.0603588e+01 2.75e-01 3.26e-02 -5.1 6.92e+03 - 5.21e-01 3.14e-01f 1\n", - " 28 2.0132177e+01 1.45e+00 4.33e-02 -5.1 1.33e+04 - 1.00e+00 1.00e+00h 1\n", - " 29 2.0166760e+01 5.36e-01 1.44e-02 -5.1 6.46e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.0169615e+01 5.34e-01 1.43e-02 -5.1 3.92e+03 - 1.00e+00 5.19e-03h 8\n", - " 31 2.1016600e+01 5.66e-02 1.79e-02 -5.1 4.46e+03 - 1.00e+00 1.00e+00H 1\n", - " 32 1.8080223e+01 6.66e-01 8.76e-02 -5.1 1.12e+04 - 9.34e-02 1.00e+00f 1\n", - " 33 2.1054691e+01 4.84e-03 2.20e+00 -6.8 2.23e+00 - 1.00e+00 1.00e+00h 1\n", - " 34 2.1064064e+01 4.26e-06 2.29e-03 -6.9 1.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 35 2.1064068e+01 1.73e-06 1.99e-03 -6.9 8.92e-03 - 1.00e+00 1.00e+00h 1\n", - " 36 2.1064055e+01 5.09e-06 2.74e-03 -6.9 1.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 37 2.1064071e+01 7.58e-07 9.82e-04 -6.9 3.70e-03 - 1.00e+00 1.00e+00h 1\n", - " 38 2.1064071e+01 6.27e-07 1.33e-03 -6.9 4.64e-03 - 1.00e+00 1.00e+00h 1\n", - " 39 2.1064072e+01 4.34e-10 1.70e-04 -6.9 3.44e-03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.1064071e+01 1.41e-06 1.48e-03 -6.9 3.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 2.1064071e+01 5.10e-07 2.19e-04 -6.9 2.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 2.1064064e+01 2.40e-06 3.83e-03 -6.9 1.33e-02 - 1.00e+00 1.00e+00h 1\n", - " 43 2.1064071e+01 5.11e-07 2.79e-05 -6.9 2.50e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 2.1064072e+01 3.85e-08 7.23e-05 -6.9 9.49e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 2.1064070e+01 1.71e-09 6.82e-05 -6.9 3.41e-02 - 1.00e+00 1.00e+00H 1\n", - " 46 2.1064041e+01 1.04e-05 5.68e-03 -6.9 1.38e-01 - 1.00e+00 1.00e+00h 1\n", - " 47 2.1064009e+01 1.71e-05 5.00e-03 -6.9 3.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 48 2.1063674e+01 1.65e-04 8.30e-03 -6.9 9.48e-01 - 1.00e+00 1.00e+00h 1\n", - " 49 2.1062566e+01 5.24e-04 1.64e-02 -6.9 1.90e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.1063943e+01 1.70e-07 1.04e-04 -6.9 1.21e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 2.1063943e+01 4.47e-08 1.79e-04 -6.9 1.56e-04 - 1.00e+00 1.00e+00h 1\n", - " 52 2.1063943e+01 3.58e-08 2.02e-04 -6.9 8.13e-05 - 1.00e+00 1.00e+00h 1\n", - " 53 2.1063942e+01 1.74e-07 1.29e-04 -6.9 1.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 2.1063941e+01 7.72e-07 3.53e-03 -6.9 2.47e-03 - 1.00e+00 1.00e+00h 1\n", - " 55 2.1063942e+01 8.16e-08 1.26e-04 -6.9 1.07e-03 - 1.00e+00 1.00e+00h 1\n", - " 56 2.1063942e+01 7.38e-08 3.98e-04 -6.9 5.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 2.1063940e+01 9.96e-07 8.21e-03 -6.9 2.12e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 2.1063942e+01 8.45e-09 1.01e-04 -6.9 1.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 2.1063942e+01 3.54e-08 9.98e-05 -6.9 4.05e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.1063942e+01 2.87e-10 3.42e-05 -6.9 4.34e-03 - 1.00e+00 1.00e+00H 1\n", - " 61 2.1063942e+01 7.55e-07 1.10e-03 -11.0 4.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 62 2.1063942e+01 7.56e-08 1.58e-04 -11.0 8.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 2.1063930e+01 9.89e-06 9.43e-03 -11.0 2.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 2.1063936e+01 3.68e-06 2.15e-03 -11.0 2.31e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 2.1063886e+01 1.38e-05 8.54e-03 -11.0 7.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 2.1063914e+01 1.51e-05 4.28e-03 -11.0 6.91e-02 - 1.00e+00 1.00e+00h 1\n", - " 67 2.1063902e+01 1.95e-05 6.57e-03 -11.0 8.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 2.1063931e+01 6.45e-07 8.20e-05 -11.0 6.46e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 2.1063931e+01 1.20e-06 1.93e-03 -11.0 3.18e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.1063652e+01 6.11e-04 1.02e-03 -11.0 1.36e+02 - 1.00e+00 6.62e-02h 1\n", - " 71 2.1062868e+01 3.57e-04 1.30e-03 -11.0 9.32e+00 - 1.43e-06 1.00e+00f 1\n", - "In iteration 71, 1 Slack too small, adjusting variable bound\n", - " 72 2.1062782e+01 3.93e-04 2.96e-03 -11.0 3.21e+01 - 1.00e+00 8.09e-03h 1\n", - " 73 2.1063899e+01 4.22e-06 3.21e-03 -11.0 3.19e-01 - 2.16e-06 1.00e+00h 1\n", - " 74 2.1063856e+01 2.82e-05 1.75e-03 -11.0 2.15e-01 - 1.00e+00 1.00e+00h 1\n", - " 75 2.1063887e+01 1.70e-05 1.31e-03 -11.0 1.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 2.1063499e+01 1.79e-04 3.95e-03 -11.0 7.78e+00 - 1.65e-01 1.00e+00h 1\n", - " 77 2.1063303e+01 4.21e-04 2.79e-03 -11.0 1.03e+01 - 1.00e+00 1.00e+00h 1\n", - " 78 2.0429863e+01 2.59e-01 1.54e-02 -11.0 1.81e+04 - 1.10e-03 1.00e+00f 1\n", - " 79 2.0127855e+01 1.86e+00 5.70e-02 -9.1 2.45e+04 - 1.00e+00 6.35e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.0625843e+01 8.68e-01 1.03e-02 -9.2 7.70e+03 - 1.00e+00 1.00e+00h 1\n", - " 81 2.0503401e+01 1.07e+00 3.55e-03 -9.2 3.75e+04 - 1.20e-01 1.11e-01h 1\n", - " 82 2.1177696e+01 3.10e-01 2.81e-02 -9.2 1.48e+03 - 7.59e-01 1.00e+00h 1\n", - " 83 2.0621074e+01 2.28e-01 8.77e-03 -9.2 2.57e+03 - 3.05e-01 1.00e+00h 1\n", - " 84 2.1067670e+01 1.47e-04 3.10e-01 -9.2 3.10e-01 - 1.00e+00 1.00e+00h 1\n", - " 85 2.1067906e+01 2.39e-07 1.13e-04 -9.2 1.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 86 2.1067843e+01 6.53e-05 2.57e-03 -9.2 6.06e-01 - 1.00e+00 1.00e+00h 1\n", - " 87 2.1067672e+01 7.19e-05 1.49e-03 -9.2 4.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 2.1067865e+01 4.46e-05 1.89e-03 -9.2 1.66e-01 - 1.00e+00 1.00e+00h 1\n", - " 89 2.1067874e+01 1.89e-05 3.24e-03 -9.2 2.38e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.0885871e+01 6.96e-02 2.91e-03 -9.2 4.28e+08 - 1.44e-05 3.36e-06f 1\n", - " 91 2.1029903e+01 2.24e-02 1.91e-03 -9.2 3.23e+02 - 1.86e-08 1.00e+00h 1\n", - " 92 2.0577810e+01 1.49e-01 1.04e-02 -9.2 1.51e+03 - 1.00e+00 1.00e+00f 1\n", - " 93 2.1088637e+01 1.09e-08 6.63e-05 -9.2 2.19e+03 - 1.00e+00 1.00e+00H 1\n", - " 94 2.1004773e+01 8.73e-02 2.39e-03 -9.2 1.83e+03 - 1.00e+00 1.00e+00f 1\n", - " 95 2.0409655e+01 4.49e-01 1.96e-02 -9.2 1.04e+04 - 4.18e-01 3.28e-01f 1\n", - " 96 2.0517516e+01 4.22e-01 1.48e-02 -9.2 1.76e+03 - 1.00e+00 2.50e-01h 3\n", - " 97 2.0998518e+01 4.02e-02 1.86e-02 -9.2 2.59e+02 - 3.02e-01 1.00e+00h 1\n", - " 98 1.5248038e+01 6.27e+00 5.79e-01 -9.2 3.54e+04 - 1.90e-01 1.00e+00f 1\n", - " 99 1.8944805e+01 5.25e-01 3.31e-01 -9.2 3.83e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.4917558e+01 4.11e+00 1.39e-01 -7.2 7.34e+05 - 1.00e+00 4.11e-02f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.4917557680695772e+01 1.4917557680695772e+01\n", - "Dual infeasibility......: 1.3936109495518667e-01 1.3936109495518667e-01\n", - "Constraint violation....: 4.1094163919324949e+00 4.1094163919324949e+00\n", - "Complementarity.........: 1.0451939489127514e-07 1.0451939489127514e-07\n", - "Overall NLP error.......: 4.1094163919324949e+00 4.1094163919324949e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 121\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 121\n", - "Number of inequality constraint evaluations = 121\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.421\n", - "Total CPU secs in NLP function evaluations = 135.470\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 531.00us ( 4.39us) 516.21us ( 4.27us) 121\n", - " nlp_g | 5.44 s ( 44.95ms) 5.18 s ( 42.81ms) 121\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 350.00us ( 3.43us) 350.39us ( 3.44us) 102\n", - " nlp_jac_g | 132.82 s ( 1.30 s) 126.78 s ( 1.24 s) 102\n", - " total | 139.73 s (139.73 s) 133.37 s (133.37 s) 1\n", - "Timestamp 2700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.13e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9613368e+01 1.39e+01 3.13e+04 -1.5 3.13e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.1570073e+01 5.22e+00 1.26e+01 0.8 3.57e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.6464638e+01 1.93e+00 8.67e-01 -1.3 7.08e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.7589424e+01 1.24e-04 8.67e-02 -3.0 2.17e+00 - 9.99e-01 1.00e+00h 1\n", - " 5 1.7589521e+01 4.83e-06 3.29e-03 -4.9 4.28e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.7589506e+01 1.20e-05 2.72e-03 -7.0 7.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 1.7589411e+01 4.24e-05 5.99e-03 -9.1 1.95e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 1.7589237e+01 1.48e-04 2.12e-03 -11.0 9.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.7589188e+01 1.60e-04 3.53e-03 -11.0 2.12e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.7589096e+01 1.96e-04 1.21e-03 -11.0 1.28e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 1.7589486e+01 5.10e-08 9.82e-05 -11.0 5.76e-01 - 1.00e+00 1.00e+00H 1\n", - " 12 1.7589447e+01 1.97e-05 2.10e-03 -11.0 1.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.7587608e+01 1.35e-03 5.05e-03 -11.0 2.79e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 1.7588442e+01 8.75e-04 1.38e-03 -11.0 1.66e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 1.7587425e+01 6.71e-04 4.90e-03 -11.0 4.31e+00 - 1.00e+00 1.00e+00h 1\n", - " 16 1.7589450e+01 1.21e-04 3.25e-03 -11.0 8.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.7588309e+01 7.59e-04 2.96e-03 -11.0 2.48e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 1.7589397e+01 1.80e-04 1.85e-03 -11.0 7.97e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.7589450e+01 3.91e-05 9.91e-04 -11.0 5.93e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.7586111e+01 2.17e-03 3.22e-03 -11.0 5.46e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 1.7588446e+01 7.48e-04 3.22e-03 -11.0 6.03e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 1.7589334e+01 6.93e-05 2.27e-03 -11.0 1.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 1.7589259e+01 1.30e-04 2.19e-03 -11.0 9.65e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.7582092e+01 5.63e-03 8.75e-03 -11.0 4.98e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 1.7589277e+01 1.39e-06 1.56e-03 -11.0 1.34e+02 - 1.00e+00 1.00e+00H 1\n", - " 26 1.7502440e+01 7.14e-02 6.83e-03 -11.0 3.02e+02 - 1.00e+00 1.00e+00f 1\n", - " 27 1.4419080e+01 9.90e+00 8.25e-01 -9.0 9.23e+05 - 1.00e+00 3.33e-02f 1\n", - " 28 1.4389171e+01 9.91e+00 8.23e-01 -9.2 5.54e+04 - 7.24e-01 5.60e-03h 1\n", - " 29 1.7373832e+01 9.94e-02 2.19e-01 -9.2 7.28e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.7531793e+01 8.63e-03 1.20e-02 -8.2 8.77e+01 - 1.00e+00 1.00e+00h 1\n", - " 31 1.7517659e+01 2.68e-02 1.01e-02 -4.0 1.57e+02 - 1.00e+00 4.02e-01h 1\n", - " 32 1.7532198e+01 6.04e-03 1.66e-03 -5.7 4.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 1.7546289e+01 3.61e-05 1.90e-03 -7.5 2.37e+01 - 1.00e+00 9.96e-01H 1\n", - " 34 1.7542030e+01 2.67e-03 1.67e-03 -9.5 1.61e+01 - 1.00e+00 1.00e+00h 1\n", - " 35 1.7530667e+01 1.19e-02 1.71e-03 -6.6 4.04e+01 - 1.47e-01 1.00e+00h 1\n", - " 36 1.7539256e+01 5.60e-03 4.63e-03 -5.5 9.20e+01 - 2.20e-03 1.00e+00h 1\n", - " 37 1.7525739e+01 6.49e-03 5.19e-03 -7.4 1.72e+02 - 1.00e+00 5.35e-01h 1\n", - " 38 1.7522046e+01 1.94e-02 1.51e-03 -6.9 1.79e+02 - 1.00e+00 1.00e+00f 1\n", - " 39 1.7545755e+01 7.09e-03 2.13e-03 -4.1 5.46e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.7541318e+01 1.70e-02 1.79e-03 -4.1 2.04e+02 - 1.00e+00 2.98e-01h 1\n", - " 41 1.7543624e+01 1.37e-02 1.37e-03 -4.1 6.46e+01 - 1.00e+00 1.00e+00h 1\n", - " 42 1.7537148e+01 1.03e-02 1.94e-03 -4.1 4.25e+01 - 1.00e+00 1.00e+00h 1\n", - " 43 1.7513035e+01 1.43e-02 1.13e-03 -3.8 6.64e+02 - 1.00e+00 8.59e-02h 1\n", - " 44 1.7544452e+01 4.47e-03 1.83e-03 -9.9 2.29e+01 - 9.36e-01 1.00e+00h 1\n", - " 45 1.7520261e+01 2.47e-02 1.52e-03 -5.2 5.03e+04 - 8.64e-01 3.23e-03f 1\n", - " 46 1.7546436e+01 3.32e-03 1.57e-03 -5.2 1.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 47 1.7538696e+01 1.52e-02 2.08e-03 -5.2 5.51e+01 - 3.23e-02 1.00e+00h 1\n", - " 48 1.7538330e+01 1.44e-02 2.19e-03 -5.2 1.82e+03 - 1.00e+00 2.90e-03h 1\n", - " 49 1.7430228e+01 1.01e-01 6.85e-03 -5.2 2.88e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.5416364e+01 8.09e-01 5.86e-02 -9.7 1.59e+04 - 2.50e-01 3.30e-01f 1\n", - " 51 1.5439755e+01 8.02e-01 5.56e-02 -3.1 3.52e+03 - 1.80e-01 1.49e-02h 1\n", - " 52 1.7586558e+01 3.52e-02 8.90e-02 -3.5 1.25e+02 - 1.00e+00 1.00e+00h 1\n", - " 53 1.7604047e+01 9.82e-03 4.39e-03 -3.1 1.04e+02 - 1.00e+00 1.00e+00h 1\n", - " 54 1.7605736e+01 5.26e-03 1.82e-03 -3.1 1.81e+01 - 1.00e+00 1.00e+00h 1\n", - " 55 1.7599706e+01 1.02e-02 4.90e-03 -4.7 7.57e+01 - 1.19e-01 1.00e+00h 1\n", - " 56 1.7208246e+01 2.10e-01 1.50e-02 -4.7 2.44e+03 - 9.04e-02 1.00e+00f 1\n", - " 57 1.5677429e+01 1.10e+00 4.15e-02 -3.9 9.37e+03 - 6.41e-01 1.00e+00f 1\n", - " 58 1.5564252e+01 1.33e+00 3.64e-02 -3.3 2.00e+04 - 1.00e+00 8.14e-02h 1\n", - " 59 1.7472525e+01 1.66e-02 6.51e-02 -3.3 1.47e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.7409488e+01 4.69e-02 2.52e-02 -3.7 3.86e+02 - 8.48e-01 1.00e+00h 1\n", - " 61 1.7495210e+01 8.87e-04 2.54e-02 -3.0 7.01e+02 - 1.00e+00 1.00e+00H 1\n", - " 62 1.6765249e+01 1.03e+00 9.97e-02 -2.5 2.34e+03 - 7.72e-01 1.00e+00f 1\n", - " 63 1.6152537e+01 7.47e-01 6.38e-02 -2.6 1.13e+04 - 9.53e-01 1.00e+00h 1\n", - " 64 1.4264082e+01 3.04e+00 1.13e-01 -2.3 2.16e+04 - 7.47e-01 1.00e+00f 1\n", - " 65 1.3684462e+01 2.75e+00 1.29e-01 -2.6 1.97e+04 - 9.99e-01 1.00e+00h 1\n", - " 66 1.5179176e+01 2.24e+00 7.23e-02 -3.1 7.33e+03 - 9.96e-01 1.00e+00h 1\n", - " 67 1.7696900e+01 2.02e-01 1.42e-01 -3.9 7.90e+03 - 1.00e+00 1.00e+00H 1\n", - " 68 1.4406328e+01 1.73e+00 7.82e-02 -4.0 5.79e+06 - 4.91e-03 3.98e-03f 1\n", - " 69 1.3471250e+01 1.44e+00 9.46e-02 -3.3 1.99e+05 - 1.00e+00 4.15e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.5661977e+01 8.07e-01 2.77e-02 -2.7 4.02e+03 - 9.54e-01 1.00e+00h 1\n", - " 71 1.7572234e+01 4.89e-01 9.26e-02 -8.7 5.28e+03 - 6.73e-02 1.00e+00H 1\n", - " 72 1.7560534e+01 5.93e-01 8.79e-02 -2.9 8.88e+04 - 5.56e-01 4.54e-02h 1\n", - " 73 1.7708659e+01 1.09e-01 1.81e-02 -2.9 2.91e+03 - 1.00e+00 1.00e+00h 1\n", - " 74 1.7463178e+01 8.79e-02 2.38e-02 -2.9 7.93e+02 - 1.00e+00 1.00e+00h 1\n", - " 75 1.7753626e+01 9.61e-05 2.17e-01 -2.9 2.21e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 1.7753712e+01 7.68e-07 1.93e-03 -2.9 4.99e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 1.7753710e+01 1.18e-06 9.88e-04 -4.3 4.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.7753713e+01 1.89e-07 3.16e-05 -4.3 1.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 1.7753713e+01 1.71e-07 9.78e-05 -6.5 1.16e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.7753712e+01 1.70e-07 3.79e-04 -6.5 1.95e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 1.7753694e+01 9.03e-06 7.29e-03 -6.5 1.42e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 1.7753689e+01 1.35e-05 3.03e-03 -6.5 3.66e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.7753701e+01 6.85e-06 1.74e-03 -6.5 7.34e-03 - 1.00e+00 5.00e-01h 2\n", - " 84 1.7753708e+01 3.54e-06 1.65e-03 -6.5 2.03e-03 - 1.00e+00 5.00e-01h 2\n", - " 85 1.7753711e+01 1.71e-06 2.10e-03 -6.5 4.18e-03 - 1.00e+00 5.00e-01h 2\n", - " 86 1.7753706e+01 3.47e-06 5.72e-03 -6.5 1.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.7753712e+01 6.96e-07 1.63e-03 -6.5 7.96e-03 - 1.00e+00 1.00e+00h 1\n", - " 88 1.7753712e+01 7.31e-07 8.82e-04 -6.5 5.88e-03 - 1.00e+00 2.50e-01h 3\n", - " 89 1.7753714e+01 8.19e-11 1.54e-04 -6.5 1.15e-02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.7753714e+01 2.74e-07 3.29e-04 -8.6 3.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 91 1.7753713e+01 6.23e-07 8.96e-05 -8.7 1.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 1.7753714e+01 9.96e-08 3.97e-05 -8.7 2.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 93 1.7753714e+01 1.68e-10 4.16e-05 -8.7 4.67e-03 - 1.00e+00 1.00e+00H 1\n", - " 94 1.7753711e+01 6.97e-06 1.65e-03 -11.0 7.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.7750798e+01 2.97e-03 6.92e-03 -11.0 4.85e+01 - 1.00e+00 1.00e+00h 1\n", - " 96 1.7749637e+01 3.25e-03 8.86e-04 -11.0 3.34e+01 - 1.00e+00 1.00e+00h 1\n", - " 97 1.7751593e+01 1.16e-03 1.45e-03 -11.0 1.49e+01 - 1.00e+00 1.00e+00h 1\n", - " 98 1.7753243e+01 1.14e-04 2.18e-03 -11.0 2.63e+00 - 1.00e+00 1.00e+00h 1\n", - " 99 1.7752944e+01 2.81e-04 1.64e-03 -11.0 3.84e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.7373246e+01 5.55e-01 1.83e-02 -11.0 2.62e+04 - 4.78e-01 8.67e-02f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.7373245746090067e+01 1.7373245746090067e+01\n", - "Dual infeasibility......: 1.8331011377166306e-02 1.8331011377166306e-02\n", - "Constraint violation....: 5.5456471468778901e-01 5.5456471468778901e-01\n", - "Complementarity.........: 1.6246817796750790e-11 1.6246817796750790e-11\n", - "Overall NLP error.......: 5.5456471468778901e-01 5.5456471468778901e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 114\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 114\n", - "Number of inequality constraint evaluations = 114\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.418\n", - "Total CPU secs in NLP function evaluations = 134.477\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 512.00us ( 4.49us) 509.17us ( 4.47us) 114\n", - " nlp_g | 5.08 s ( 44.58ms) 4.84 s ( 42.48ms) 114\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 345.00us ( 3.38us) 335.85us ( 3.29us) 102\n", - " nlp_jac_g | 132.07 s ( 1.29 s) 126.02 s ( 1.24 s) 102\n", - " total | 138.63 s (138.63 s) 132.28 s (132.28 s) 1\n", - "Timestamp 3000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.88e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9720453e+01 1.39e+01 2.88e+04 -1.5 2.88e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.1168744e+01 4.85e+00 1.44e+01 1.1 9.85e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.5265701e+01 1.92e+00 8.71e-01 -1.0 2.09e+02 - 9.98e-01 1.00e+00h 1\n", - " 4 1.6474839e+01 1.40e-03 1.02e-01 -2.9 3.59e+00 - 9.94e-01 1.00e+00h 1\n", - " 5 1.6477356e+01 9.47e-04 4.88e-02 -4.6 3.39e+00 - 9.99e-01 1.00e+00h 1\n", - " 6 1.6479122e+01 7.90e-06 2.12e-03 -6.4 1.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 1.6479115e+01 5.17e-06 1.52e-03 -8.5 9.23e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.6478978e+01 5.96e-05 4.85e-03 -11.0 4.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.6479034e+01 3.28e-05 1.33e-03 -11.0 2.09e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.6479077e+01 2.97e-05 2.46e-03 -11.0 2.22e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.6479106e+01 1.73e-05 1.49e-03 -11.0 7.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.6478680e+01 4.41e-04 7.09e-03 -11.0 1.87e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 1.6393132e+01 7.93e-02 2.45e-02 -11.0 4.28e+02 - 1.00e+00 1.00e+00f 1\n", - " 14 1.6324167e+01 3.98e-02 8.07e-03 -11.0 1.20e+03 - 1.00e+00 1.00e+00h 1\n", - " 15 1.6430748e+01 7.55e-05 3.45e-03 -11.0 1.01e+03 - 1.00e+00 1.00e+00H 1\n", - " 16 1.5725189e+01 3.86e-01 3.07e-02 -11.0 3.74e+03 - 1.00e+00 1.00e+00f 1\n", - " 17 1.5875292e+01 2.66e-01 5.81e-03 -11.0 1.83e+03 - 1.00e+00 1.00e+00h 1\n", - " 18 1.6302418e+01 1.25e-01 1.24e-02 -11.0 8.48e+02 - 1.00e+00 1.00e+00h 1\n", - " 19 1.6167995e+01 2.68e-01 1.06e-02 -11.0 1.12e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.6133506e+01 1.94e-01 8.16e-03 -11.0 6.22e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.3370812e+01 1.31e+00 8.20e-02 -11.0 1.19e+04 - 1.00e+00 1.00e+00f 1\n", - " 22 1.1250249e+01 3.51e+00 3.75e-01 -9.0 1.12e+05 - 1.00e+00 1.37e-01f 1\n", - " 23 1.1430548e+01 2.12e+00 6.38e-02 -9.2 9.27e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 1.5316347e+01 3.66e-01 2.78e-01 -10.2 3.99e+03 - 1.00e+00 1.00e+00h 1\n", - " 25 1.4881407e+01 7.43e-01 5.90e-02 -8.2 1.35e+04 - 1.00e+00 6.25e-01h 1\n", - " 26 1.4880264e+01 7.34e-01 5.90e-02 -6.3 7.09e+03 - 1.00e+00 8.02e-03h 1\n", - " 27 1.5376345e+01 5.39e-01 4.92e-02 -4.5 4.76e+03 - 1.00e+00 1.00e+00h 1\n", - " 28 1.4213256e+01 1.11e+00 1.04e-01 -4.1 1.04e+04 - 2.86e-01 1.00e+00f 1\n", - " 29 1.2595245e+01 2.79e+00 1.64e-01 -4.5 1.20e+04 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.4885362e+01 1.65e+00 1.55e-01 -4.7 1.73e+04 - 8.42e-01 1.00e+00h 1\n", - " 31 1.4359481e+01 3.10e+00 1.93e-01 -4.7 6.55e+05 - 4.66e-02 1.75e-02f 2\n", - " 32 1.3708301e+01 2.88e+00 2.64e-01 -4.7 4.78e+04 - 1.00e+00 2.40e-01f 1\n", - " 33 1.6444640e+01 1.07e-01 1.80e-01 -4.7 6.69e+02 - 1.00e+00 1.00e+00h 1\n", - " 34 1.6217345e+01 1.25e-02 2.04e-02 -4.7 2.15e+02 - 1.00e+00 1.00e+00h 1\n", - " 35 1.6193690e+01 5.68e-02 1.35e-02 -4.3 5.85e+02 - 1.00e+00 2.49e-01h 1\n", - " 36 1.6186369e+01 3.05e-02 1.11e-02 -6.0 1.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 37 1.6060555e+01 1.21e-01 3.63e-02 -4.0 3.92e+03 - 1.00e+00 3.90e-01h 1\n", - " 38 1.6125600e+01 4.21e-02 2.62e-02 -3.3 5.25e+02 - 1.82e-01 1.00e+00h 1\n", - " 39 1.6122232e+01 5.83e-02 1.39e-02 -3.4 1.92e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.5826038e+01 1.20e-01 2.40e-02 -2.1 8.71e+02 - 3.24e-01 1.00e+00h 1\n", - " 41 1.6017578e+01 1.79e-01 1.64e-02 -8.6 9.55e+02 - 1.99e-01 1.00e+00h 1\n", - " 42 1.6196422e+01 3.53e-02 1.17e-02 -3.8 1.95e+02 - 1.00e+00 1.00e+00h 1\n", - " 43 1.6102494e+01 5.07e-02 5.93e-03 -3.9 6.54e+02 - 4.89e-01 1.00e+00h 1\n", - " 44 1.6082931e+01 1.37e-01 7.70e-03 -2.8 6.14e+02 - 1.00e+00 1.00e+00h 1\n", - " 45 1.5797858e+01 2.03e-01 1.11e-02 -2.5 1.05e+03 - 1.00e+00 7.16e-01h 1\n", - " 46 1.6199971e+01 2.80e-02 1.30e-02 -8.6 2.16e+02 - 3.84e-01 1.00e+00h 1\n", - " 47 1.5924563e+01 3.11e-01 1.08e-02 -2.9 2.40e+05 - 9.35e-04 8.42e-03f 1\n", - " 48 1.5677495e+01 2.14e-01 1.62e-02 -2.9 1.59e+03 - 5.77e-02 1.00e+00f 1\n", - " 49 1.5648503e+01 4.66e-01 1.43e-02 -3.9 1.48e+03 - 9.83e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.6164127e+01 1.06e-01 2.61e-02 -3.8 9.64e+02 - 9.46e-01 1.00e+00h 1\n", - " 51 1.6239623e+01 2.81e-02 9.76e-03 -4.0 5.37e+02 - 1.00e+00 1.00e+00h 1\n", - " 52 1.5952788e+01 5.28e-01 2.99e-02 -4.0 2.56e+03 - 7.88e-01 1.00e+00f 1\n", - " 53 1.4969418e+01 7.49e-01 6.39e-02 -4.0 3.92e+04 - 7.27e-01 1.00e+00f 1\n", - " 54 1.4449424e+01 5.66e-01 5.01e-02 -4.0 7.00e+06 - 5.83e-03 3.14e-03f 1\n", - " 55 1.5865871e+01 5.96e-01 8.92e-02 -3.9 8.09e+03 - 1.00e+00 1.00e+00h 1\n", - " 56 1.5954131e+01 1.80e-01 3.60e-02 -1.7 1.85e+03 - 8.62e-01 1.00e+00h 1\n", - " 57 1.5475486e+01 1.02e+00 4.31e-02 -2.5 1.15e+06 - 4.39e-02 8.54e-03f 1\n", - " 58 1.5452670e+01 9.92e-01 3.86e-02 -2.5 5.53e+03 - 1.00e+00 3.95e-02h 1\n", - " 59 1.5825674e+01 1.47e-01 5.26e-02 -2.5 1.28e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.6071666e+01 5.58e-02 1.09e-02 -2.3 3.16e+02 - 1.00e+00 1.00e+00h 1\n", - " 61 1.6015025e+01 8.58e-02 1.39e-02 -3.7 6.36e+02 - 9.98e-01 1.00e+00h 1\n", - " 62 1.6038296e+01 7.19e-02 4.88e-03 -2.5 1.74e+03 - 2.57e-01 1.00e+00h 1\n", - " 63 1.5919213e+01 9.85e-02 6.66e-03 -4.5 1.66e+03 - 9.94e-01 1.00e+00h 1\n", - " 64 1.6117922e+01 8.04e-03 3.92e-03 -2.8 3.92e+02 - 1.00e+00 9.07e-01H 1\n", - " 65 1.5869021e+01 1.13e-01 9.64e-03 -3.9 8.33e+02 - 1.00e+00 1.00e+00f 1\n", - " 66 1.6133556e+01 1.82e-02 5.88e-03 -9.9 2.02e+02 - 6.18e-01 1.00e+00h 1\n", - " 67 1.5970229e+01 1.16e-01 6.40e-03 -4.0 6.40e+02 - 1.00e+00 1.00e+00f 1\n", - " 68 1.3627617e+01 9.79e-01 5.74e-02 -9.9 8.94e+03 - 2.62e-01 1.00e+00f 1\n", - " 69 1.2791111e+01 2.48e+00 1.14e-01 -10.2 1.23e+04 - 8.04e-03 6.23e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.3636536e+01 1.76e+00 2.17e-02 -4.3 6.89e+03 - 1.00e+00 4.31e-01h 1\n", - " 71 1.0147717e+01 4.68e+00 3.40e-01 -4.3 1.06e+04 - 1.09e-01 1.00e+00f 1\n", - " 72 1.3561156e+01 3.67e+00 3.03e-01 -1.1 8.85e+03 - 3.97e-01 1.00e+00h 1\n", - " 73 1.3300419e+01 1.67e+00 1.79e-01 -1.7 1.82e+04 - 1.00e+00 5.51e-01h 1\n", - " 74 1.5313932e+01 4.40e-01 4.99e-02 -2.7 4.73e+03 - 9.96e-01 1.00e+00h 1\n", - " 75 1.4460963e+01 6.27e-01 2.58e-02 -8.5 3.77e+03 - 6.86e-01 1.00e+00h 1\n", - " 76 1.4470489e+01 6.20e-01 2.50e-02 -3.3 6.99e+03 - 1.00e+00 9.48e-03h 1\n", - " 77 1.5871491e+01 1.25e-01 1.04e-01 -3.3 1.08e+03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.6067202e+01 6.08e-03 3.93e-02 -3.3 1.28e+03 - 1.00e+00 1.00e+00H 1\n", - " 79 1.6060548e+01 3.22e-02 5.44e-03 -9.3 3.46e+02 - 2.20e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.5830937e+01 2.71e-01 2.36e-02 -3.5 1.93e+03 - 3.86e-01 1.00e+00f 1\n", - " 81 1.5281295e+01 8.38e-01 6.06e-02 -3.6 3.74e+03 - 1.00e+00 1.00e+00h 1\n", - " 82 1.5287439e+01 2.07e-01 2.47e-02 -3.2 3.95e+03 - 1.00e+00 1.00e+00h 1\n", - " 83 1.4581178e+01 1.38e+01 1.12e+00 -9.2 1.20e+06 - 5.96e-03 4.61e-02f 1\n", - " 84 1.4511758e+01 1.37e+01 1.10e+00 -3.4 2.50e+04 - 9.92e-01 2.23e-02h 1\n", - " 85 1.5143230e+01 5.40e-02 1.05e+00 -3.4 5.16e+02 - 5.18e-01 1.00e+00h 1\n", - " 86 1.5131878e+01 8.07e-02 7.23e-03 -1.9 5.52e+02 - 9.17e-01 1.00e+00h 1\n", - " 87 1.5074598e+01 9.44e-02 5.32e-03 -8.0 2.31e+04 - 1.21e-01 2.79e-02f 1\n", - " 88 1.5093092e+01 7.73e-02 1.40e-02 -2.5 1.65e+03 - 1.00e+00 2.91e-01h 1\n", - " 89 1.5187112e+01 5.72e-03 7.15e-03 -3.9 2.30e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.5200309e+01 5.04e-04 8.00e-03 -3.7 5.36e+02 - 1.00e+00 1.00e+00H 1\n", - " 91 1.4362805e+01 1.33e+00 1.58e-01 -2.6 1.10e+05 - 1.16e-01 5.60e-01f 1\n", - " 92 1.3421493e+01 7.23e+00 4.61e-01 -3.5 4.90e+04 - 6.05e-02 1.00e+00f 1\n", - " 93 1.3672039e+01 4.58e+00 1.12e-01 -3.5 3.96e+04 - 1.00e+00 3.42e-01h 1\n", - " 94 1.4913884e+01 1.21e-01 2.46e-01 -3.5 1.06e+04 - 6.70e-01 1.00e+00h 1\n", - " 95 1.4807035e+01 4.55e-01 1.07e-01 -3.0 1.95e+04 - 1.00e+00 5.37e-01h 1\n", - " 96 1.5224605e+01 6.38e-02 5.42e-02 -2.1 1.71e+02 - 5.37e-01 1.00e+00h 1\n", - " 97 1.5223282e+01 2.47e-02 1.78e-02 -2.5 7.27e+01 - 1.00e+00 1.00e+00h 1\n", - " 98 1.5222198e+01 2.69e-02 3.10e-02 -3.7 9.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 99 1.5229813e+01 1.43e-02 1.48e-02 -3.7 8.05e+01 - 1.00e+00 5.80e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.5245820e+01 8.57e-04 1.41e-02 -3.7 1.12e+02 - 1.00e+00 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.5245820205239601e+01 1.5245820205239601e+01\n", - "Dual infeasibility......: 1.4149784608908200e-02 1.4149784608908200e-02\n", - "Constraint violation....: 8.5662517117768289e-04 8.5662517117768289e-04\n", - "Complementarity.........: 1.8983430936528984e-04 1.8983430936528984e-04\n", - "Overall NLP error.......: 1.4149784608908200e-02 1.4149784608908200e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 109\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 109\n", - "Number of inequality constraint evaluations = 109\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.408\n", - "Total CPU secs in NLP function evaluations = 134.594\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 475.00us ( 4.36us) 470.36us ( 4.32us) 109\n", - " nlp_g | 4.88 s ( 44.76ms) 4.65 s ( 42.62ms) 109\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 323.00us ( 3.17us) 316.59us ( 3.10us) 102\n", - " nlp_jac_g | 132.41 s ( 1.30 s) 126.37 s ( 1.24 s) 102\n", - " total | 138.78 s (138.78 s) 132.43 s (132.43 s) 1\n", - "Timestamp 3300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.67e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0676248e+01 1.16e+01 2.67e+04 -1.5 2.67e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 9.0950847e+00 3.81e+00 4.33e+00 0.8 2.88e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.6163456e+00 3.91e-01 1.36e-01 -1.3 1.01e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 2.1666784e+00 1.98e-03 2.05e-01 -7.2 2.68e+00 - 9.90e-01 1.00e+00h 1\n", - " 5 2.1672257e+00 1.92e-04 7.19e-03 -4.8 1.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 6 2.1668474e+00 4.25e-04 1.12e-03 -6.9 8.66e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.1674901e+00 4.11e-07 2.18e-04 -9.0 4.63e-01 - 1.00e+00 1.00e+00H 1\n", - " 8 2.1647000e+00 1.64e-03 4.67e-03 -11.0 3.87e+00 - 1.00e+00 1.00e+00f 1\n", - " 9 2.1672282e+00 3.36e-04 1.35e-03 -11.0 1.60e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.1666546e+00 7.77e-04 6.50e-03 -11.0 5.84e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 2.1657130e+00 7.25e-04 1.71e-03 -11.0 4.35e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 2.1657921e+00 8.99e-04 3.73e-03 -11.0 7.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 2.1669727e+00 4.43e-04 1.80e-03 -11.0 2.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 2.1673062e+00 1.62e-04 1.11e-03 -11.0 1.82e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 2.1542900e+00 2.15e-02 6.87e-03 -11.0 1.16e+02 - 1.00e+00 1.00e+00h 1\n", - " 16 2.1543687e+00 6.27e-03 3.60e-03 -11.0 1.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 17 2.1031850e+00 8.46e-01 1.20e+00 -9.0 7.96e+04 - 1.00e+00 3.89e-01F 1\n", - " 18 2.0649424e+00 8.46e-01 1.18e+00 -7.0 8.17e+03 - 1.00e+00 2.38e-02h 1\n", - " 19 2.0626663e+00 8.46e-01 1.18e+00 -5.0 4.36e+03 - 1.00e+00 1.32e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.5460125e+00 3.93e-01 2.29e-01 -4.8 2.70e+03 - 1.00e+00 5.00e-01h 2\n", - " 21 2.0196007e+00 9.46e-03 3.07e-01 -6.1 1.21e+03 - 9.92e-01 1.00e+00h 1\n", - " 22 2.0141163e+00 3.20e-03 2.02e-03 -4.6 6.76e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 2.0086892e+00 4.77e-03 2.54e-03 -6.7 7.30e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 2.0114420e+00 3.27e-03 5.19e-03 -8.6 1.27e+02 - 1.00e+00 1.00e+00h 1\n", - " 25 1.9640036e+00 1.18e-01 2.62e-02 -5.4 9.75e+03 - 2.95e-01 1.00e+00h 1\n", - " 26 2.0046322e+00 1.71e-01 2.92e-02 -4.6 6.75e+03 - 1.00e+00 1.00e+00H 1\n", - " 27 1.9939051e+00 4.74e-02 8.56e-02 -2.5 3.68e+03 - 1.00e+00 1.00e+00h 1\n", - " 28 1.8307067e+00 3.28e-01 2.13e-01 -2.6 1.09e+04 - 9.59e-02 1.00e+00h 1\n", - " 29 1.7787246e+00 2.04e-01 7.11e-02 -3.8 1.57e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.8202045e+00 1.48e-01 7.20e-02 -3.4 9.68e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.7367399e+00 3.98e-01 2.46e-01 -9.4 1.44e+04 - 7.25e-02 1.00e+00h 1\n", - " 32 1.6324950e+00 5.78e-01 5.28e-01 -3.5 6.48e+06 - 2.05e-04 6.17e-04f 4\n", - " 33 1.5835173e+00 1.01e+00 6.88e-01 -3.5 4.97e+05 - 6.68e-02 3.02e-02f 2\n", - " 34 1.5687120e+00 1.12e+00 6.81e-01 -3.5 2.13e+05 - 2.04e-02 7.04e-02h 1\n", - " 35 2.0076898e+00 3.79e-01 6.96e-01 -3.5 1.13e+04 - 1.99e-03 1.00e+00h 1\n", - " 36 1.6889786e+00 9.49e-02 2.48e-01 -3.5 5.91e+02 - 1.00e+00 1.00e+00h 1\n", - " 37 1.6341766e+00 5.17e-01 4.12e-01 -3.7 2.19e+04 - 1.00e+00 2.68e-01f 1\n", - " 38 1.5873959e+00 1.77e-01 9.13e-02 -3.0 1.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 1.5822841e+00 5.45e-01 2.75e-01 -1.4 6.96e+05 - 1.06e-01 3.35e-03f 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.4362278e+00 3.64e-01 2.99e-01 -2.2 1.76e+03 - 6.27e-01 1.00e+00h 1\n", - " 41 1.6669434e+00 4.42e-01 5.15e-01 -2.8 4.11e+03 - 1.00e+00 1.00e+00H 1\n", - " 42 1.6303145e+00 4.37e-01 4.87e-01 -3.0 1.40e+04 - 1.00e+00 2.24e-02h 1\n", - " 43 1.4148316e+00 4.07e-01 1.02e-01 -3.0 1.88e+03 - 1.00e+00 1.00e+00h 1\n", - " 44 1.6082144e+00 2.52e-01 1.67e-01 -9.0 1.41e+03 - 7.26e-01 1.00e+00h 1\n", - " 45 1.4503421e+00 2.36e-01 3.90e-01 -3.7 1.05e+03 - 5.39e-02 1.00e+00h 1\n", - " 46 1.6153974e+00 1.13e-01 1.34e-01 -4.6 1.30e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 1.5600754e+00 3.33e-01 4.05e-02 -2.6 3.63e+03 - 1.00e+00 5.41e-01h 1\n", - " 48 1.3837576e+00 5.14e-01 4.53e-01 -2.7 2.73e+03 - 5.58e-02 5.00e-01h 2\n", - " 49 1.3731585e+00 7.04e-01 2.42e-01 -1.6 6.51e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.8240220e+00 2.85e-01 6.77e-01 -2.6 5.51e+03 - 9.96e-01 1.00e+00h 1\n", - " 51 1.7712265e+00 5.36e-01 2.34e-01 -2.7 2.06e+03 - 9.46e-01 1.00e+00h 1\n", - " 52 1.5925524e+00 2.52e-01 1.19e-01 -2.7 1.31e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 1.8072683e+00 1.61e-01 2.01e-01 -2.7 1.78e+03 - 8.14e-01 1.00e+00h 1\n", - " 54 1.7243908e+00 4.03e-02 2.20e-01 -2.7 1.63e+03 - 1.00e+00 2.45e-01h 1\n", - " 55 1.6399857e+00 8.81e-02 5.56e-02 -4.2 6.07e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 1.5852383e+00 7.77e-02 3.58e-02 -4.2 1.12e+03 - 7.85e-01 1.00e+00h 1\n", - " 57 1.6892275e+00 8.87e-02 6.21e-02 -4.7 3.67e+03 - 7.12e-03 1.00e+00H 1\n", - " 58 1.6371880e+00 1.28e+00 5.28e-01 -3.1 8.03e+05 - 1.00e+00 8.63e-03f 1\n", - " 59 1.8115614e+00 3.49e-01 2.92e-01 -3.2 8.79e+03 - 6.99e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.7693910e+00 4.40e-01 3.54e-01 -3.2 9.95e+03 - 1.05e-01 1.00e+00H 1\n", - " 61 1.5672271e+00 2.24e-01 1.53e-01 -3.2 2.77e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 1.5261324e+00 1.84e-01 9.45e-02 -2.4 1.42e+04 - 1.00e+00 2.39e-01h 2\n", - " 63 1.5217613e+00 4.22e-01 1.84e-01 -2.5 5.36e+04 - 1.35e-01 5.08e-02h 5\n", - " 64 1.4740122e+00 3.38e-01 2.00e-01 -2.5 1.80e+04 - 1.00e+00 1.72e-01h 1\n", - " 65 1.5074254e+00 1.85e-01 6.63e-02 -2.5 1.44e+04 - 1.00e+00 2.50e-01h 3\n", - " 66 1.6630717e+00 2.84e-02 9.71e-02 -2.5 3.39e+03 - 9.00e-01 1.00e+00h 1\n", - " 67 1.4642405e+00 5.47e-01 2.10e-01 -2.8 2.44e+04 - 6.73e-01 1.00e+00f 1\n", - " 68 1.6049212e+00 1.77e-01 1.48e-01 -2.7 3.11e+03 - 1.00e+00 1.00e+00h 1\n", - " 69 1.4706845e+00 2.56e-01 1.65e-01 -2.7 1.31e+05 - 1.67e-01 8.94e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.5380061e+00 2.06e-01 1.36e-01 -2.7 4.32e+03 - 9.01e-01 1.00e+00h 1\n", - " 71 1.5165426e+00 3.93e-01 2.15e-01 -2.0 4.67e+04 - 8.28e-01 4.61e-02h 2\n", - " 72 1.6636298e+00 9.24e-02 4.71e-02 -2.2 3.30e+03 - 8.85e-01 1.00e+00h 1\n", - " 73 1.6130165e+00 1.16e-01 1.04e-01 -2.2 1.21e+04 - 1.00e+00 4.52e-01h 1\n", - " 74 1.6100613e+00 4.07e-01 4.82e-01 -2.2 1.51e+04 - 1.76e-01 2.30e-01f 2\n", - " 75 1.5762160e+00 3.02e-01 4.04e-01 -2.2 2.37e+04 - 1.00e+00 1.35e-01H 1\n", - " 76 1.4719898e+00 2.89e-01 1.87e-01 -2.2 2.74e+03 - 4.40e-01 5.00e-01f 2\n", - " 77 1.4039705e+00 2.79e-01 1.39e-01 -2.2 5.54e+03 - 5.41e-01 1.23e-01h 1\n", - " 78r 1.4039705e+00 2.79e-01 9.99e+02 -0.6 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - " 79r 1.5354957e+00 6.46e-02 4.47e+02 -2.7 2.27e+02 - 1.00e+00 1.21e-03f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.6293380e+00 3.36e-02 1.30e-02 -5.5 6.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 81 1.4885314e+00 1.29e+00 3.31e-01 -4.0 2.50e+03 - 8.65e-01 1.00e+00f 1\n", - " 82 1.4864980e+00 1.26e+00 3.18e-01 -4.3 6.76e+02 - 1.00e+00 2.49e-02h 1\n", - " 83 1.6015344e+00 6.65e-02 3.78e-01 -4.3 7.30e+02 - 1.15e-01 1.00e+00h 1\n", - " 84 1.6370419e+00 9.49e-02 2.17e-01 -4.3 1.87e+03 - 1.00e+00 8.21e-01H 1\n", - " 85 1.6570821e+00 5.64e-03 1.82e-02 -4.3 1.12e+03 - 1.00e+00 1.00e+00H 1\n", - " 86 1.6508276e+00 4.05e-02 1.59e-02 -8.3 2.01e+02 - 6.80e-01 1.00e+00h 1\n", - " 87 1.6554956e+00 2.52e-02 3.01e-02 -2.5 3.66e+03 - 3.73e-01 4.59e-01H 1\n", - " 88 1.6476651e+00 2.65e-02 1.72e-02 -9.1 1.10e+02 - 6.77e-01 1.00e+00h 1\n", - " 89 1.6368781e+00 1.55e-01 4.24e-01 -2.3 1.87e+04 - 1.00e+00 1.00e+00F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.6006297e+00 1.56e-01 3.67e-01 -1.7 1.34e+04 - 1.00e+00 5.21e-02h 2\n", - " 91 1.6308278e+00 2.58e-02 9.48e-02 -1.7 3.89e+03 - 1.00e+00 1.00e+00H 1\n", - " 92 1.5895579e+00 1.52e-01 1.76e-01 -2.3 1.39e+04 - 9.67e-01 2.49e-01h 1\n", - " 93 1.5195401e+00 1.44e+00 8.08e-01 -2.2 8.09e+04 - 1.17e-01 1.61e-01f 3\n", - " 94 2.4268404e+00 8.62e-01 5.89e-01 -2.2 8.95e+04 - 7.25e-01 4.38e-01h 1\n", - " 95 2.1238042e+00 7.93e-01 7.84e-01 -2.2 1.99e+04 - 1.00e+00 1.00e+00f 1\n", - " 96 1.3558183e+00 5.21e-01 6.20e-01 -2.2 9.50e+03 - 6.23e-01 1.00e+00h 1\n", - " 97 1.2155221e+00 3.70e-01 2.24e-01 -2.7 6.05e+03 - 1.00e+00 2.50e-01h 3\n", - " 98 1.4475522e+00 1.53e-01 3.85e-02 -2.0 8.19e+03 - 9.09e-01 1.00e+00h 1\n", - " 99 1.4294520e+00 2.51e-01 2.88e-01 -8.1 1.31e+06 - 3.24e-02 3.49e-03f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.3597379e+00 8.48e-01 5.37e-01 -1.6 4.01e+05 - 1.00e+00 3.03e-02f 3\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.3597378639772628e+00 1.3597378639772628e+00\n", - "Dual infeasibility......: 5.3724964431282352e-01 5.3724964431282352e-01\n", - "Constraint violation....: 8.4846519975510759e-01 8.4846519975510759e-01\n", - "Complementarity.........: 1.0194093499663394e-01 1.0194093499663394e-01\n", - "Overall NLP error.......: 8.4846519975510759e-01 8.4846519975510759e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 201\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 201\n", - "Number of inequality constraint evaluations = 201\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.425\n", - "Total CPU secs in NLP function evaluations = 139.801\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 901.00us ( 4.48us) 894.95us ( 4.45us) 201\n", - " nlp_g | 9.00 s ( 44.80ms) 8.58 s ( 42.69ms) 201\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 328.00us ( 3.22us) 323.91us ( 3.18us) 102\n", - " nlp_jac_g | 133.83 s ( 1.30 s) 127.73 s ( 1.24 s) 103\n", - " total | 144.32 s (144.32 s) 137.72 s (137.72 s) 1\n", - "Timestamp 3600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.99e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9988853e+01 1.54e+01 1.99e+04 -1.5 1.99e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.2149208e+01 5.50e+00 1.38e+01 0.6 1.15e+02 - 9.99e-01 1.00e+00f 1\n", - " 3 1.8296460e+01 2.17e+00 8.42e-01 -1.5 2.62e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.9676030e+01 9.63e-05 8.83e-02 -3.2 2.54e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.9676006e+01 1.12e-05 6.27e-03 -5.1 5.57e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.9676042e+01 2.23e-09 1.37e-04 -7.2 7.41e-02 - 1.00e+00 1.00e+00H 1\n", - " 7 1.9675997e+01 1.69e-05 2.08e-03 -11.0 1.10e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 1.9676020e+01 7.11e-06 1.11e-03 -11.0 5.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 1.9676022e+01 7.44e-06 1.45e-03 -11.0 9.12e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.9676041e+01 3.18e-06 1.05e-03 -11.0 3.43e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 1.9676019e+01 3.65e-05 1.14e-03 -11.0 4.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 1.9675959e+01 7.73e-05 2.03e-03 -11.0 1.22e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 1.9676014e+01 3.32e-05 1.57e-03 -11.0 8.53e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.9675979e+01 4.83e-05 7.83e-04 -11.0 6.25e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.9676046e+01 2.07e-06 1.45e-03 -11.0 1.78e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 1.9675553e+01 1.86e-04 2.28e-03 -11.0 2.63e+00 - 1.00e+00 1.00e+00h 1\n", - " 17 1.9674855e+01 4.38e-04 6.43e-04 -11.0 2.10e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 1.9674781e+01 6.19e-04 2.17e-03 -11.0 2.23e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 1.9675276e+01 3.69e-04 1.44e-03 -11.0 1.12e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.9675821e+01 1.00e-04 2.91e-03 -11.0 9.33e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 1.9675792e+01 1.59e-04 1.80e-03 -11.0 8.89e-01 - 1.00e+00 1.00e+00h 1\n", - " 22 1.9675984e+01 2.67e-05 2.79e-03 -11.0 1.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.9675932e+01 7.34e-05 1.26e-03 -11.0 5.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.9675808e+01 9.35e-04 2.41e-03 -11.0 3.73e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 1.9674356e+01 1.08e-03 1.99e-03 -11.0 3.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 1.9673347e+01 1.66e-03 3.09e-03 -11.0 3.10e+00 - 1.00e+00 1.00e+00h 1\n", - " 27 1.9675696e+01 2.28e-04 2.10e-03 -11.0 6.65e-01 - 1.00e+00 1.00e+00h 1\n", - " 28 1.9674442e+01 5.62e-04 5.56e-03 -11.0 4.00e+00 - 1.00e+00 1.00e+00h 1\n", - " 29 1.9675856e+01 2.80e-05 3.65e-03 -11.0 8.27e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.9675778e+01 1.08e-04 2.82e-03 -11.0 6.06e-01 - 1.00e+00 1.00e+00h 1\n", - " 31 1.9363126e+01 1.30e-01 1.53e-02 -11.0 1.14e+03 - 1.00e+00 1.00e+00f 1\n", - " 32 1.9472958e+01 1.17e-01 1.12e-02 -11.0 1.32e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 1.6316536e+01 1.70e+00 1.15e-01 -11.0 2.64e+04 - 1.00e+00 1.00e+00f 1\n", - " 34 1.7231086e+01 1.27e+00 6.09e-02 -9.1 2.35e+04 - 1.00e+00 4.03e-01h 1\n", - " 35 1.7225189e+01 1.27e+00 6.08e-02 -7.1 8.60e+04 - 1.00e+00 4.55e-04h 1\n", - " 36 1.7225529e+01 1.27e+00 6.08e-02 -5.2 4.96e+03 - 1.00e+00 1.79e-04h 1\n", - " 37 1.9457138e+01 1.45e-02 5.88e-02 -6.5 4.86e+01 - 1.00e+00 1.00e+00h 1\n", - " 38 1.9460900e+01 4.53e-03 2.67e-03 -8.3 9.81e+01 - 1.00e+00 1.00e+00h 1\n", - " 39 1.9453318e+01 9.87e-03 5.43e-03 -6.2 1.77e+02 - 2.38e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.9432474e+01 3.85e-02 1.99e-02 -4.9 8.20e+02 - 3.45e-03 1.00e+00h 1\n", - " 41 1.9430871e+01 3.98e-02 1.96e-02 -5.2 9.71e+04 - 1.00e+00 2.19e-04h 1\n", - " 42 1.9341116e+01 2.62e-01 3.98e-02 -4.5 1.91e+03 - 1.00e+00 1.00e+00h 1\n", - " 43 1.9475612e+01 2.64e-07 3.05e-05 -6.4 2.61e-01 - 1.00e+00 1.00e+00h 1\n", - " 44 1.9475612e+01 9.49e-08 8.62e-05 -8.3 1.21e-03 - 1.00e+00 1.00e+00h 1\n", - " 45 1.9475611e+01 5.25e-07 1.57e-04 -11.0 3.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 46 1.9475612e+01 5.01e-07 5.21e-05 -11.0 2.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 47 1.9475612e+01 8.56e-08 7.80e-05 -11.0 4.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 1.9475612e+01 4.08e-07 4.56e-05 -11.0 3.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 1.9475612e+01 2.79e-07 8.89e-05 -11.0 9.56e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.9475612e+01 3.19e-07 2.06e-04 -11.0 1.93e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 1.9475603e+01 5.35e-06 3.69e-03 -11.0 1.14e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 1.9475612e+01 8.65e-08 1.80e-04 -11.0 2.78e-04 - 1.00e+00 1.00e+00h 1\n", - " 53 1.9475611e+01 4.26e-07 6.79e-05 -11.0 1.72e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 1.9475612e+01 8.69e-11 1.58e-04 -11.0 2.52e-03 - 1.00e+00 1.00e+00H 1\n", - " 55 1.9475611e+01 3.74e-07 5.45e-05 -11.0 1.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 56 1.9475612e+01 8.22e-08 1.23e-04 -11.0 7.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 1.9475611e+01 2.14e-07 1.75e-04 -11.0 1.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.9475611e+01 5.23e-07 5.24e-03 -11.0 2.46e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.9475612e+01 6.94e-08 1.59e-04 -11.0 1.90e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.9475612e+01 2.48e-08 9.51e-05 -11.0 8.09e-05 - 1.00e+00 1.00e+00h 1\n", - " 61 1.9475612e+01 1.70e-08 7.72e-05 -11.0 1.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 62 1.9475612e+01 8.71e-09 1.82e-04 -11.0 3.20e-05 - 1.00e+00 1.00e+00h 1\n", - " 63 1.9475612e+01 3.24e-08 1.58e-04 -11.0 1.20e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 1.9475612e+01 5.67e-08 2.44e-05 -11.0 3.96e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 1.9475612e+01 1.28e-08 2.86e-04 -11.0 1.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 66 1.9475611e+01 3.99e-07 1.65e-04 -11.0 8.96e-04 - 1.00e+00 1.00e+00h 1\n", - " 67 1.9475592e+01 8.34e-06 1.30e-02 -10.2 1.20e-01 - 1.00e+00 2.53e-01h 1\n", - " 68 1.9475609e+01 1.34e-06 3.51e-03 -10.5 9.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 1.9475268e+01 2.33e-04 1.88e-02 -8.2 1.27e+00 - 9.18e-03 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.9475540e+01 2.56e-05 3.37e-03 -10.3 5.83e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 1.9475480e+01 2.53e-04 2.51e-03 -11.0 2.06e+00 - 1.00e+00 1.00e+00h 1\n", - " 72 1.9475370e+01 9.17e-05 5.42e-03 -11.0 3.23e-01 - 1.00e+00 1.00e+00h 1\n", - " 73 1.9475594e+01 3.92e-08 5.27e-05 -11.0 9.28e-01 - 1.00e+00 1.00e+00H 1\n", - " 74 1.9475574e+01 1.57e-05 1.47e-03 -11.0 4.10e-01 - 1.00e+00 1.00e+00h 1\n", - " 75 1.9475367e+01 2.02e-04 1.65e-03 -9.0 1.45e+01 - 1.00e+00 2.98e-01h 1\n", - " 76 1.9475364e+01 2.02e-04 2.24e-03 -7.7 1.65e+02 - 1.00e+00 4.24e-05h 1\n", - " 77 1.9475528e+01 1.36e-05 1.27e-03 -9.2 4.61e-01 - 1.00e+00 1.00e+00h 1\n", - " 78 1.9475530e+01 1.21e-05 7.87e-04 -11.0 1.70e-01 - 1.00e+00 1.00e+00h 1\n", - " 79 1.9475528e+01 6.35e-06 2.36e-03 -8.7 1.37e-01 - 1.99e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.9475354e+01 3.53e-05 1.79e-03 -7.5 4.94e+00 - 3.58e-04 1.00e+00h 1\n", - " 81 1.9475352e+01 1.55e-04 4.00e-03 -11.0 3.19e+00 - 1.00e+00 1.00e+00h 1\n", - " 82 1.9475218e+01 5.84e-04 1.40e-03 -8.9 6.06e+00 - 1.00e+00 9.03e-01h 1\n", - " 83 1.9144265e+01 3.25e-01 2.20e-02 -7.0 6.89e+03 - 9.30e-06 1.00e+00f 1\n", - " 84 1.8710226e+01 1.11e+00 2.93e-02 -8.7 1.15e+04 - 1.00e+00 1.00e+00h 1\n", - " 85 1.9040727e+01 7.75e-01 4.14e-02 -9.2 1.07e+04 - 1.00e+00 1.00e+00h 1\n", - " 86 1.9048282e+01 7.44e-01 3.82e-02 -7.2 1.98e+04 - 1.00e+00 1.38e-01h 1\n", - " 87 1.9048063e+01 7.47e-01 3.81e-02 -5.3 5.25e+04 - 1.00e+00 5.95e-04h 1\n", - " 88 1.9058670e+01 7.27e-01 3.77e-02 -3.3 1.15e+03 - 3.18e-02 3.12e-02h 6\n", - " 89 1.9449440e+01 5.67e-03 2.89e-02 -6.4 1.41e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.9438721e+01 1.10e-02 2.93e-02 -5.7 1.05e+04 - 1.00e+00 1.57e-02f 1\n", - " 91 1.9441126e+01 1.19e-02 5.82e-03 -5.3 7.63e+01 - 1.00e+00 1.00e+00h 1\n", - " 92 1.9337362e+01 1.98e-01 3.18e-02 -6.9 2.86e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.9450918e+01 3.07e-03 5.23e-03 -5.5 6.84e+01 - 1.00e+00 1.00e+00h 1\n", - " 94 1.9061756e+01 7.57e-01 6.80e-02 -3.6 3.13e+03 - 2.62e-01 1.00e+00f 1\n", - " 95 1.9429435e+01 2.15e-02 3.05e-02 -3.6 5.86e+02 - 1.00e+00 1.00e+00h 1\n", - " 96 1.9445313e+01 5.04e-03 1.27e-02 -5.2 3.04e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 1.9440326e+01 2.57e-02 1.95e-03 -5.5 4.26e+02 - 1.00e+00 1.00e+00h 1\n", - " 98 1.9429474e+01 4.82e-02 3.86e-03 -5.6 3.04e+02 - 1.00e+00 1.00e+00h 1\n", - " 99 1.9384491e+01 5.18e-02 8.92e-03 -5.6 1.84e+03 - 1.00e+00 2.25e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.8930375e+01 6.29e-01 4.78e-02 -6.5 2.50e+03 - 1.00e+00 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.8930374897410008e+01 1.8930374897410008e+01\n", - "Dual infeasibility......: 4.7760135255395464e-02 4.7760135255395464e-02\n", - "Constraint violation....: 6.2919560116365503e-01 6.2919560116365503e-01\n", - "Complementarity.........: 4.2318741304821873e-07 4.2318741304821873e-07\n", - "Overall NLP error.......: 6.2919560116365503e-01 6.2919560116365503e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 109\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 109\n", - "Number of inequality constraint evaluations = 109\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.430\n", - "Total CPU secs in NLP function evaluations = 134.537\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 478.00us ( 4.39us) 471.65us ( 4.33us) 109\n", - " nlp_g | 4.87 s ( 44.69ms) 4.64 s ( 42.59ms) 109\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 358.00us ( 3.51us) 351.69us ( 3.45us) 102\n", - " nlp_jac_g | 132.51 s ( 1.30 s) 126.47 s ( 1.24 s) 102\n", - " total | 138.89 s (138.89 s) 132.55 s (132.55 s) 1\n", - "Timestamp 3900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.25e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9684668e+01 1.39e+01 1.25e+04 -1.5 1.25e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 9.6836600e+00 4.78e+00 1.10e+01 0.6 1.54e+02 - 9.98e-01 1.00e+00f 1\n", - " 3 1.2046106e+01 1.62e+00 9.12e-01 -1.4 3.55e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.3113384e+01 9.92e-04 9.33e-02 -3.2 2.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.3113758e+01 4.19e-06 2.18e-03 -5.1 3.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.3113762e+01 3.45e-06 1.30e-03 -7.2 2.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 1.3113758e+01 7.88e-06 2.81e-03 -9.2 7.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.3113766e+01 9.13e-10 6.75e-05 -11.0 4.82e-02 - 1.00e+00 1.00e+00H 1\n", - " 9 1.3113744e+01 1.05e-05 2.46e-03 -11.0 8.21e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.3113747e+01 5.78e-06 2.97e-03 -11.0 6.87e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 1.3113760e+01 2.13e-06 1.12e-03 -11.0 2.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.3113763e+01 3.25e-10 5.68e-05 -11.0 1.56e-02 - 1.00e+00 1.00e+00H 1\n", - " 13 1.3113762e+01 1.43e-06 1.71e-03 -11.0 8.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 1.3113685e+01 9.36e-05 4.67e-03 -11.0 9.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.3112324e+01 6.08e-04 1.96e-02 -11.0 4.16e+00 - 1.00e+00 1.00e+00h 1\n", - " 16 1.3113361e+01 1.50e-04 2.20e-03 -11.0 1.60e+00 - 1.00e+00 1.00e+00h 1\n", - " 17 1.3113257e+01 2.19e-04 2.48e-03 -11.0 9.33e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 1.3113195e+01 3.17e-04 2.44e-03 -11.0 5.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.3113545e+01 4.22e-05 3.19e-03 -11.0 7.12e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.3111968e+01 1.38e-03 3.54e-03 -11.0 3.06e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 1.3110590e+01 2.51e-03 3.78e-03 -11.0 2.19e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 1.3113068e+01 2.74e-04 1.45e-03 -11.0 1.26e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.3110525e+01 2.38e-03 2.17e-03 -11.0 1.19e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.3112798e+01 4.37e-04 1.76e-03 -11.0 4.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 1.3113722e+01 4.86e-08 7.88e-05 -11.0 2.85e+00 - 1.00e+00 1.00e+00H 1\n", - " 26 1.3113102e+01 7.27e-04 2.56e-03 -11.0 4.31e+00 - 1.00e+00 1.00e+00f 1\n", - " 27 1.3102255e+01 2.23e-02 2.17e-03 -11.0 1.09e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 1.3112697e+01 1.38e-04 2.35e-03 -11.0 1.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 1.3111730e+01 1.34e-03 1.47e-03 -11.0 1.39e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.3099325e+01 1.48e-02 1.44e-03 -11.0 6.65e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.3109665e+01 4.28e-03 2.07e-03 -11.0 3.40e+01 - 1.00e+00 1.00e+00h 1\n", - " 32 1.3108389e+01 9.29e-03 1.03e-03 -11.0 2.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.3096019e+01 1.39e-02 2.22e-03 -11.0 2.44e+03 - 1.00e+00 1.00e+00h 1\n", - " 34 1.2888511e+01 9.41e-01 4.47e-02 -9.0 6.28e+05 - 1.00e+00 4.76e-02f 1\n", - " 35 1.1394920e+01 1.80e+00 1.73e-01 -8.8 2.81e+04 - 1.00e+00 1.00e+00f 1\n", - " 36 1.2858594e+01 1.66e-01 1.48e-01 -7.3 2.28e+04 - 1.00e+00 1.00e+00h 1\n", - " 37 1.2642818e+01 5.43e-01 1.36e-01 -5.4 1.36e+06 - 1.00e+00 8.61e-03f 1\n", - " 38 1.3150468e+01 9.53e-02 2.87e-02 -5.2 1.07e+04 - 1.00e+00 1.00e+00H 1\n", - " 39 1.2478946e+01 3.16e+00 9.26e-02 -4.7 1.13e+04 - 1.00e+00 6.74e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.0789224e+01 1.90e+00 1.37e-01 -4.7 9.46e+03 - 1.00e+00 1.00e+00f 1\n", - " 41 8.1386304e+00 4.43e+00 8.73e-01 -2.3 7.16e+04 - 1.00e+00 3.10e-01f 1\n", - " 42 1.1750283e+01 1.66e+00 7.16e-01 -1.7 4.67e+03 - 9.07e-01 1.00e+00h 1\n", - " 43 1.2045469e+01 5.04e-01 8.01e-02 -2.4 3.14e+03 - 1.00e+00 1.00e+00h 1\n", - " 44 1.1736976e+01 5.23e-01 8.52e-02 -2.7 3.83e+04 - 9.48e-01 4.58e-02f 1\n", - " 45 1.2382921e+01 1.66e-01 4.34e-02 -2.6 2.46e+03 - 9.14e-01 1.00e+00h 1\n", - " 46 1.1855385e+01 8.22e-01 1.39e-01 -2.7 4.01e+03 - 1.00e+00 1.00e+00f 1\n", - " 47 1.2609073e+01 5.34e-03 8.77e-01 -2.8 9.22e-01 - 1.00e+00 1.00e+00h 1\n", - " 48 1.2611810e+01 1.20e-07 2.12e-05 -4.7 5.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 1.2611810e+01 3.43e-08 1.32e-04 -10.7 6.01e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.2611809e+01 1.34e-06 1.03e-03 -11.0 3.80e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 1.2611810e+01 2.64e-10 1.18e-04 -11.0 3.17e-03 - 1.00e+00 1.00e+00H 1\n", - " 52 1.2611810e+01 2.08e-07 2.44e-04 -11.0 1.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 1.2611809e+01 4.42e-07 1.66e-03 -11.0 5.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 1.2611790e+01 2.04e-05 5.06e-03 -11.0 9.67e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.2611790e+01 1.26e-05 3.45e-03 -11.0 9.56e-02 - 1.00e+00 1.00e+00h 1\n", - " 56 1.2611803e+01 9.54e-06 1.75e-03 -11.0 3.21e-02 - 1.00e+00 1.00e+00h 1\n", - " 57 1.2611803e+01 5.34e-06 1.50e-03 -11.0 6.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 58 1.2611795e+01 3.52e-05 1.31e-03 -11.0 9.14e-02 - 1.00e+00 1.00e+00h 1\n", - " 59 1.2611807e+01 4.06e-06 1.15e-03 -11.0 3.99e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.2611800e+01 6.72e-06 1.19e-03 -11.0 2.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 1.2611734e+01 5.99e-05 2.22e-03 -11.0 1.12e+00 - 1.00e+00 1.00e+00h 1\n", - " 62 1.2609952e+01 1.39e-03 1.52e-03 -10.6 4.72e+01 - 1.00e+00 1.00e+00h 1\n", - " 63 1.2560933e+01 8.96e-02 1.34e-02 -9.4 1.64e+03 - 1.00e+00 1.00e+00h 1\n", - " 64 1.2436565e+01 4.67e-01 1.77e-02 -7.6 8.43e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 1.2436285e+01 3.05e-01 3.03e-02 -7.6 1.29e+04 - 4.74e-01 1.00e+00h 1\n", - " 66 1.2647454e+01 7.12e-03 1.74e-02 -7.6 7.37e+03 - 1.00e+00 1.00e+00H 1\n", - " 67 1.2278121e+01 4.46e-01 3.98e-02 -7.6 1.35e+04 - 1.00e+00 1.00e+00f 1\n", - " 68 1.2217117e+01 7.10e-01 4.85e-02 -5.7 2.28e+04 - 1.00e+00 9.07e-02h 1\n", - " 69 1.2609447e+01 1.32e-05 6.83e-01 -5.9 7.26e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.2609484e+01 9.55e-07 7.91e-04 -7.7 2.12e-03 - 1.00e+00 1.00e+00h 1\n", - " 71 1.2609477e+01 7.42e-06 1.74e-03 -9.8 3.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 72 1.2609485e+01 2.04e-09 7.15e-05 -11.0 3.97e-02 - 1.00e+00 1.00e+00H 1\n", - " 73 1.2609480e+01 3.69e-06 1.24e-03 -11.0 2.56e-02 - 1.00e+00 1.00e+00h 1\n", - " 74 1.2609467e+01 6.47e-06 2.97e-03 -11.0 2.50e-02 - 1.00e+00 1.00e+00h 1\n", - " 75 1.2609479e+01 3.20e-06 1.92e-03 -11.0 1.92e-02 - 1.00e+00 1.00e+00h 1\n", - " 76 1.2608713e+01 1.02e-03 2.25e-02 -11.0 3.09e+00 - 1.00e+00 1.00e+00h 1\n", - " 77 1.2609270e+01 4.98e-04 2.38e-03 -11.0 2.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 78 1.2609346e+01 5.02e-04 1.68e-03 -11.0 3.68e+00 - 1.00e+00 1.00e+00h 1\n", - " 79 1.2609361e+01 5.52e-04 1.88e-03 -11.0 4.37e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.2594642e+01 9.70e-03 1.13e-02 -10.7 7.76e+01 - 1.00e+00 1.00e+00h 1\n", - " 81 1.2611476e+01 3.13e-05 1.32e-02 -11.0 7.90e+01 - 1.00e+00 1.00e+00H 1\n", - " 82 1.2610186e+01 4.94e-03 1.02e-03 -11.0 3.00e+01 - 1.00e+00 1.00e+00h 1\n", - " 83 1.2609932e+01 4.83e-03 8.67e-04 -11.0 2.45e+01 - 1.00e+00 1.00e+00h 1\n", - " 84 1.2145960e+01 2.75e-01 2.59e-02 -11.0 1.16e+03 - 5.61e-02 1.00e+00f 1\n", - " 85 1.2615047e+01 1.79e-02 2.76e-02 -11.0 8.38e+01 - 1.00e+00 1.00e+00h 1\n", - " 86 1.2602722e+01 2.03e-02 1.36e-02 -11.0 1.43e+02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.2560756e+01 5.35e-02 8.15e-03 -11.0 7.92e+02 - 1.00e+00 8.04e-01h 1\n", - " 88 1.2446108e+01 1.20e-01 7.96e-03 -10.1 4.30e+02 - 1.00e+00 1.00e+00f 1\n", - " 89 9.9989838e+00 2.03e+00 1.37e-01 -3.7 4.37e+03 - 2.04e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.2518079e+01 2.81e-01 1.69e-01 -4.2 1.71e+03 - 1.00e+00 1.00e+00h 1\n", - " 91 1.2165703e+01 6.23e+00 3.45e-01 -4.4 4.81e+05 - 7.77e-03 6.16e-02f 2\n", - " 92 1.1678484e+01 5.84e+00 1.79e-01 -4.4 1.12e+05 - 3.68e-01 2.64e-01h 1\n", - " 93 1.2158725e+01 7.20e-01 2.67e-01 -4.4 5.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.1819287e+01 4.32e-01 2.26e-01 -4.4 5.67e+03 - 4.98e-01 1.00e+00h 1\n", - " 95 1.0973965e+01 1.47e+00 1.24e-01 -4.4 1.05e+05 - 1.63e-01 4.91e-01f 1\n", - " 96 1.1889014e+01 1.32e+00 1.31e-01 -4.4 2.17e+04 - 1.00e+00 1.00e+00h 1\n", - " 97 1.1420978e+01 1.79e+00 4.05e-02 -4.4 2.76e+04 - 4.40e-01 1.00e+00h 1\n", - " 98 1.0387262e+01 3.46e+00 1.61e-01 -2.7 9.77e+05 - 1.00e+00 2.09e-02f 1\n", - " 99 1.0407729e+01 3.37e+00 1.53e-01 -2.9 3.12e+04 - 9.47e-01 2.05e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.2027175e+01 4.85e-01 1.95e-01 -2.9 2.90e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.2027175358925469e+01 1.2027175358925469e+01\n", - "Dual infeasibility......: 1.9537004685706635e-01 1.9537004685706635e-01\n", - "Constraint violation....: 4.8531992247455236e-01 4.8531992247455236e-01\n", - "Complementarity.........: 5.3217701342184098e-03 5.3217701342184098e-03\n", - "Overall NLP error.......: 4.8531992247455236e-01 4.8531992247455236e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 112\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 112\n", - "Number of inequality constraint evaluations = 112\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.421\n", - "Total CPU secs in NLP function evaluations = 133.966\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 499.00us ( 4.46us) 507.58us ( 4.53us) 112\n", - " nlp_g | 5.00 s ( 44.67ms) 4.77 s ( 42.56ms) 112\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 336.00us ( 3.29us) 337.05us ( 3.30us) 102\n", - " nlp_jac_g | 131.85 s ( 1.29 s) 125.83 s ( 1.23 s) 102\n", - " total | 138.32 s (138.32 s) 132.00 s (132.00 s) 1\n", - "Timestamp 4200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0881280e+01 1.26e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 9.1003819e+00 4.45e+00 4.08e+00 0.8 1.28e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.8275265e+00 5.01e-01 3.52e-01 -1.3 4.60e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 1.1375967e+00 4.96e-03 4.68e-01 -3.3 1.62e+00 - 9.97e-01 1.00e+00h 1\n", - " 5 1.1366029e+00 1.27e-05 2.59e-03 -5.0 6.87e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1366203e+00 4.20e-06 8.56e-04 -7.1 2.98e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1366201e+00 2.52e-06 5.92e-04 -9.2 2.10e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 9.3708906e-01 1.20e-01 1.93e-01 -10.4 1.85e+03 - 1.00e+00 1.00e+00f 1\n", - " 9 1.0365258e+00 6.14e-02 1.36e-01 -11.0 1.57e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 9.5519766e-01 5.55e-02 8.96e-02 -11.0 1.75e+03 - 1.00e+00 1.00e+00h 1\n", - " 11 9.1798358e-01 2.06e-01 2.28e-01 -11.0 1.48e+03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1274542e+00 3.06e-02 3.04e-01 -11.0 3.61e+02 - 1.00e+00 1.00e+00h 1\n", - " 13 1.0088323e+00 1.35e-01 1.35e-01 -11.0 1.48e+03 - 1.00e+00 1.00e+00h 1\n", - " 14 9.0393444e-01 2.37e-01 1.13e-01 -11.0 1.85e+03 - 1.00e+00 1.00e+00h 1\n", - " 15 8.7214639e-01 3.79e-01 2.02e-01 -11.0 1.52e+04 - 1.00e+00 1.25e-01h 4\n", - " 16 8.7875685e-01 1.85e-01 1.50e-01 -11.0 6.75e+03 - 1.00e+00 1.00e+00H 1\n", - " 17 8.7883329e-01 1.85e-01 1.49e-01 -11.0 2.71e+03 - 1.00e+00 1.95e-03h 10\n", - " 18 8.7591171e-01 3.01e-01 4.01e-02 -11.0 3.02e+03 - 1.00e+00 2.50e-01h 3\n", - " 19 9.1410628e-01 2.18e-01 2.06e-01 -11.0 1.50e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.8223704e-01 5.10e-01 6.74e-01 -11.0 6.23e+03 - 1.00e+00 1.00e+00H 1\n", - " 21 9.5165240e-01 3.36e-01 3.69e-01 -11.0 1.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 22 8.4574592e-01 6.89e-01 3.93e-01 -11.0 3.02e+04 - 8.43e-01 1.00e+00h 1\n", - " 23 9.3935602e-01 4.41e-01 2.51e-01 -10.7 3.76e+04 - 1.00e+00 5.00e-01h 2\n", - " 24 9.0634444e-01 2.93e-01 1.93e-01 -10.9 1.94e+04 - 1.00e+00 1.25e-01h 4\n", - " 25 8.7443586e-01 3.04e-01 1.67e-01 -10.9 7.63e+03 - 1.00e+00 1.25e-01h 4\n", - " 26 9.9817177e-01 3.80e-01 4.21e-01 -10.9 1.81e+03 - 1.00e+00 1.00e+00H 1\n", - " 27 9.6580588e-01 2.21e-02 4.18e-01 -10.9 4.76e+06 - 6.52e-03 6.70e-03f 1\n", - " 28 9.1010163e-01 3.72e-01 4.37e-01 -11.0 2.93e+03 - 1.00e+00 1.00e+00f 1\n", - " 29 8.9288524e-01 2.07e-01 2.24e-01 -3.3 6.11e+03 - 1.00e+00 4.80e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 9.8391350e-01 5.45e-02 3.98e-01 -3.3 1.22e+03 - 4.32e-01 1.00e+00h 1\n", - " 31 9.7187352e-01 1.67e-01 4.22e-01 -3.3 2.07e+04 - 1.00e+00 6.25e-02h 5\n", - " 32 8.8191338e-01 4.62e-01 4.30e-01 -3.3 1.04e+04 - 1.06e-01 1.00e+00H 1\n", - " 33 8.5361521e-01 1.84e-01 1.42e-01 -3.3 4.10e+03 - 1.00e+00 1.00e+00h 1\n", - " 34 8.3098116e-01 2.70e-01 2.72e-01 -4.4 3.39e+03 - 1.00e+00 1.00e+00H 1\n", - " 35 8.2905360e-01 1.85e-01 4.74e-02 -5.5 2.36e+03 - 1.00e+00 5.00e-01h 2\n", - " 36 8.8644470e-01 1.76e-01 3.40e-01 -5.8 3.68e+03 - 7.36e-01 1.00e+00H 1\n", - " 37 8.6732017e-01 2.34e-01 3.16e-01 -6.3 1.06e+04 - 1.00e+00 2.50e-01h 3\n", - " 38 1.2086609e+00 2.17e-01 5.82e-01 -6.4 1.60e+04 - 1.00e+00 1.00e+00H 1\n", - " 39 1.0856486e+00 1.21e-01 3.87e-01 -6.4 2.73e+04 - 4.35e-01 1.25e-01h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.0378554e+00 2.21e-01 4.24e-01 -6.4 1.87e+06 - 1.51e-02 3.81e-04f 7\n", - " 41 1.0156739e+00 2.54e-01 3.68e-01 -6.4 2.22e+03 - 1.00e+00 1.00e+00h 1\n", - " 42 9.7379330e-01 2.15e-01 3.00e-01 -6.4 1.44e+05 - 1.12e-01 4.06e-02h 4\n", - " 43 9.5603005e-01 2.01e-01 2.42e-01 -6.4 2.55e+04 - 1.00e+00 1.25e-01h 4\n", - " 44 9.6711822e-01 1.82e-01 2.10e-01 -6.4 1.46e+04 - 1.00e+00 1.25e-01h 4\n", - " 45 9.6696640e-01 1.82e-01 2.10e-01 -6.4 7.64e+05 - 3.03e-02 5.06e-05h 11\n", - " 46 9.6354107e-01 1.45e-01 1.87e-01 -6.4 1.87e+06 - 2.14e-02 1.26e-02h 1\n", - " 47 9.4911459e-01 1.93e-01 1.89e-01 -6.4 9.70e+05 - 2.46e-01 8.12e-03f 4\n", - " 48 1.0968090e+00 1.71e-01 2.02e-01 -6.4 7.19e+03 - 5.23e-01 1.00e+00h 1\n", - " 49 1.1365555e+00 3.75e-06 2.55e-02 -6.4 1.77e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.1365569e+00 4.76e-08 6.85e-05 -8.2 1.98e-04 - 1.00e+00 1.00e+00h 1\n", - " 51 1.1365570e+00 1.23e-08 3.82e-05 -11.0 5.10e-05 - 1.00e+00 1.00e+00h 1\n", - " 52 1.1365570e+00 1.95e-11 2.19e-05 -11.0 9.44e-05 - 1.00e+00 1.00e+00H 1\n", - " 53 1.1365570e+00 3.54e-09 4.86e-05 -11.0 4.09e-05 - 1.00e+00 1.00e+00h 1\n", - " 54 1.1365570e+00 2.40e-08 1.33e-04 -11.0 1.80e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 1.1365569e+00 4.60e-08 1.20e-04 -11.0 4.78e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 1.1365569e+00 5.57e-08 4.37e-05 -11.0 5.99e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 1.1365563e+00 8.78e-07 7.46e-06 -11.0 5.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.1365568e+00 2.95e-08 1.96e-04 -11.0 1.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.1365567e+00 1.78e-07 6.46e-05 -11.0 1.17e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.1365569e+00 8.70e-11 1.05e-04 -11.0 6.32e-04 - 1.00e+00 1.00e+00H 1\n", - " 61 1.1365565e+00 1.88e-07 1.56e-05 -11.0 2.82e-03 - 1.00e+00 1.00e+00h 1\n", - " 62 1.1365568e+00 1.55e-10 3.18e-05 -11.0 5.55e-03 - 1.00e+00 1.00e+00H 1\n", - " 63 1.1365559e+00 1.27e-06 2.05e-03 -11.0 2.55e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 1.1365549e+00 2.72e-06 4.97e-04 -11.0 1.54e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 1.1365526e+00 4.34e-06 2.28e-03 -11.0 1.92e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 1.1365573e+00 1.49e-09 6.93e-05 -11.0 2.96e-02 - 1.00e+00 1.00e+00H 1\n", - " 67 1.1365535e+00 4.81e-06 9.67e-04 -11.0 1.87e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 1.1365571e+00 5.16e-10 2.60e-05 -11.0 2.81e-02 - 1.00e+00 1.00e+00H 1\n", - " 69 1.1365559e+00 4.56e-06 1.19e-03 -11.0 3.93e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1365373e+00 4.84e-05 1.10e-03 -11.0 1.24e+00 - 1.00e+00 1.00e+00h 1\n", - " 71 1.1365454e+00 1.04e-05 8.60e-04 -11.0 3.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 72 1.1364976e+00 2.25e-04 1.46e-03 -11.0 1.50e+00 - 1.00e+00 1.00e+00h 1\n", - " 73 1.1364941e+00 4.48e-05 1.07e-03 -11.0 4.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 74 1.1355876e+00 8.59e-04 2.59e-03 -11.0 1.71e+00 - 1.00e+00 1.00e+00h 1\n", - " 75 1.1365170e+00 3.20e-05 1.06e-03 -11.0 3.14e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 1.1363756e+00 7.47e-04 1.91e-03 -11.0 4.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 77 1.1328307e+00 3.98e-03 1.18e-02 -11.0 2.57e+01 - 1.00e+00 1.00e+00h 1\n", - " 78 1.1363753e+00 8.36e-07 2.77e-03 -11.0 3.51e+01 - 1.00e+00 1.00e+00H 1\n", - " 79 1.1242849e+00 3.34e-02 2.86e-02 -11.0 7.30e+01 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.1254641e+00 1.11e-02 4.50e-02 -11.0 9.08e+01 - 1.00e+00 1.00e+00h 1\n", - " 81 1.1272791e+00 7.64e-03 7.27e-03 -11.0 6.62e+01 - 1.00e+00 1.00e+00h 1\n", - " 82 1.1125850e+00 9.30e-03 9.71e-03 -11.0 1.72e+02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.1330339e+00 8.08e-03 1.29e-02 -11.0 5.54e+01 - 1.00e+00 1.00e+00h 1\n", - " 84 1.1253048e+00 4.14e-03 4.69e-02 -11.0 2.70e+03 - 1.00e+00 1.00e+00F 1\n", - " 85 9.9998452e-01 2.61e-01 2.51e-01 -11.0 2.28e+03 - 1.00e+00 1.00e+00f 1\n", - " 86 9.2332780e-01 4.52e-01 2.40e-01 -11.0 2.48e+03 - 1.00e+00 1.00e+00h 1\n", - " 87 9.6723185e-01 1.68e-01 4.78e-01 -11.0 3.73e+03 - 1.00e+00 1.00e+00h 1\n", - " 88 1.1479911e+00 1.25e-01 2.20e-01 -11.0 2.73e+03 - 1.00e+00 1.00e+00H 1\n", - " 89 1.1116994e+00 1.34e-01 1.88e-01 -11.0 1.41e+05 - 1.33e-01 3.75e-03f 7\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.1401269e+00 3.56e-02 4.34e-02 -11.0 1.77e+03 - 1.00e+00 1.00e+00h 1\n", - " 91 1.1240341e+00 1.71e-01 1.48e-01 -11.0 3.18e+03 - 1.00e+00 1.25e-01h 4\n", - " 92 1.1400937e+00 9.15e-02 6.66e-02 -11.0 4.66e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.0804233e+00 1.24e-01 1.15e-01 -11.0 7.28e+03 - 1.00e+00 1.00e+00H 1\n", - " 94 1.0565139e+00 1.58e-01 1.17e-01 -11.0 1.28e+04 - 1.00e+00 1.56e-02h 7\n", - " 95r 1.0565139e+00 1.58e-01 9.99e+02 -0.8 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - " 96r 1.1479124e+00 2.60e-02 3.43e+02 -6.9 1.40e+02 - 1.00e+00 1.51e-03f 1\n", - " 97 1.1176914e+00 5.15e-02 2.25e-02 -11.0 3.21e+02 - 1.00e+00 1.00e+00h 1\n", - " 98 1.1172478e+00 6.80e-02 3.49e-02 -11.0 2.27e+03 - 1.00e+00 1.25e-01h 4\n", - " 99 8.5678668e-01 4.72e-01 8.82e-01 -11.0 1.24e+04 - 7.60e-01 8.80e-01F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.6947708e-01 4.02e-01 5.80e-01 -11.0 2.11e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.6947708063539586e-01 8.6947708063539586e-01\n", - "Dual infeasibility......: 5.7972904729471830e-01 5.7972904729471830e-01\n", - "Constraint violation....: 4.0172082469793224e-01 4.0172082469793224e-01\n", - "Complementarity.........: 2.3816012892970206e-02 2.3816012892970206e-02\n", - "Overall NLP error.......: 5.7972904729471830e-01 5.7972904729471830e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 256\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 256\n", - "Number of inequality constraint evaluations = 256\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.426\n", - "Total CPU secs in NLP function evaluations = 142.732\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 1.12ms ( 4.39us) 1.12ms ( 4.36us) 256\n", - " nlp_g | 11.56 s ( 45.17ms) 11.03 s ( 43.07ms) 256\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 353.00us ( 3.46us) 341.83us ( 3.35us) 102\n", - " nlp_jac_g | 134.04 s ( 1.30 s) 127.95 s ( 1.24 s) 103\n", - " total | 147.11 s (147.11 s) 140.41 s (140.41 s) 1\n", - "Timestamp 4500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.93e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0340847e+01 1.64e+01 1.93e+04 -1.5 1.93e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.3636234e+01 6.09e+00 1.51e+01 0.8 3.24e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.1240697e+01 2.54e+00 8.29e-01 -1.3 7.59e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 2.2802727e+01 2.52e-04 9.23e-02 -3.0 2.88e+00 - 9.99e-01 1.00e+00h 1\n", - " 5 2.2802522e+01 6.88e-05 1.23e-02 -4.9 2.53e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.2802620e+01 1.96e-05 1.59e-03 -6.8 1.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.2802549e+01 4.94e-05 1.13e-03 -8.9 5.60e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.2802606e+01 2.10e-05 1.35e-03 -9.0 2.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 2.2802574e+01 3.51e-05 1.51e-03 -11.0 1.22e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.2802641e+01 7.89e-09 1.17e-04 -11.0 1.55e-01 - 1.00e+00 1.00e+00H 1\n", - " 11 2.2802513e+01 3.90e-04 3.52e-03 -11.0 5.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 2.2802603e+01 1.96e-05 1.18e-03 -11.0 1.22e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.2802623e+01 1.67e-05 1.17e-03 -11.0 1.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.2802593e+01 2.31e-05 2.07e-03 -11.0 3.37e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.2802528e+01 2.49e-04 8.18e-03 -11.0 1.32e+00 - 1.00e+00 1.00e+00h 1\n", - " 16 2.2802339e+01 9.80e-04 4.96e-03 -11.0 4.72e+00 - 1.00e+00 1.00e+00h 1\n", - " 17 2.2802193e+01 2.49e-04 1.20e-03 -11.0 3.40e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 2.2800481e+01 3.29e-03 3.36e-03 -11.0 1.36e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 2.2799225e+01 3.06e-03 1.97e-03 -11.0 2.47e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.2801666e+01 2.02e-03 1.25e-03 -11.0 3.91e+01 - 1.00e+00 1.00e+00h 1\n", - " 21 2.2602991e+01 1.54e-01 3.01e-03 -11.0 5.23e+03 - 1.00e+00 1.00e+00f 1\n", - " 22 2.2180686e+01 1.14e+00 3.62e-02 -11.0 8.96e+03 - 1.00e+00 1.00e+00h 1\n", - " 23 2.1460792e+01 1.52e+00 4.06e-02 -9.0 8.02e+04 - 1.00e+00 2.13e-01f 1\n", - " 24 2.2582110e+01 1.26e-01 4.79e-02 -9.7 3.28e+03 - 1.00e+00 1.00e+00h 1\n", - " 25 1.8960833e+01 1.16e+01 5.91e-01 -8.7 8.60e+04 - 1.00e+00 6.85e-01f 1\n", - " 26 1.8956317e+01 1.15e+01 5.79e-01 -8.9 7.67e+04 - 1.00e+00 7.76e-03h 1\n", - " 27 2.0179617e+01 2.63e+00 5.15e-01 -8.9 6.88e+03 - 1.00e+00 1.00e+00h 1\n", - " 28 2.2768753e+01 8.79e-02 7.36e-02 -3.6 1.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 2.2727565e+01 6.99e-02 2.65e-02 -3.7 1.25e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.2665912e+01 1.01e-01 8.88e-03 -3.3 8.35e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 2.2835594e+01 3.01e-02 2.99e-03 -3.4 3.31e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 2.2906577e+01 2.11e-02 5.87e-02 -3.4 1.37e+03 - 2.25e-01 1.00e+00H 1\n", - " 33 2.1636091e+01 6.28e-01 2.26e-02 -3.4 1.39e+03 - 1.00e+00 1.00e+00f 1\n", - " 34 2.1667853e+01 4.72e-01 4.30e-02 -1.8 2.10e+03 - 1.00e+00 9.91e-01h 1\n", - " 35 2.2408755e+01 2.36e-01 2.33e-02 -7.9 1.03e+03 - 8.64e-01 1.00e+00h 1\n", - " 36 1.8680279e+01 3.54e+00 2.08e-01 -2.8 1.16e+04 - 3.64e-02 1.00e+00f 1\n", - " 37 2.1611022e+01 5.58e-01 8.18e-02 -4.0 1.46e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 2.1268605e+01 8.56e-01 6.95e-02 -3.4 4.89e+05 - 1.00e+00 2.01e-03f 1\n", - " 39 2.2504559e+01 1.69e-01 6.32e-02 -2.1 8.24e+02 - 7.08e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.5820563e+01 6.47e+00 2.28e-01 -1.8 2.46e+05 - 9.54e-02 1.61e-01f 1\n", - " 41 1.4196649e+01 3.04e+00 1.42e-01 -2.1 2.86e+04 - 1.00e+00 1.00e+00h 1\n", - " 42 2.0653231e+01 2.19e+00 1.63e-01 -1.4 2.15e+04 - 1.00e+00 1.00e+00h 1\n", - " 43 2.0326336e+01 2.13e+00 1.26e-01 -1.6 1.06e+05 - 4.19e-01 9.06e-02h 1\n", - " 44 2.0916869e+01 5.09e-01 8.70e-02 -1.6 1.24e+04 - 1.00e+00 1.00e+00h 1\n", - " 45 2.1395917e+01 5.68e-01 4.00e-02 -1.8 8.63e+03 - 1.00e+00 8.65e-01h 1\n", - " 46 1.8716765e+01 1.25e+00 7.41e-02 -7.8 1.15e+05 - 1.80e-01 3.24e-01f 1\n", - " 47 2.1579098e+01 6.27e-01 4.04e-02 -0.0 1.11e+06 - 1.04e-01 2.80e-02f 2\n", - " 48 1.8048732e+01 1.62e+00 8.69e-02 -0.6 1.86e+04 - 1.00e+00 1.00e+00f 1\n", - " 49 2.1129088e+01 4.31e-01 1.58e-01 -6.3 5.08e+03 - 7.59e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.0145264e+01 3.52e+00 6.58e-02 -1.9 1.50e+04 - 3.42e-01 1.00e+00f 1\n", - " 51 2.0802788e+01 2.54e+00 1.95e-02 -1.5 1.14e+04 - 1.00e+00 1.00e+00h 1\n", - " 52 1.9590043e+01 2.84e+00 8.64e-02 -1.5 1.30e+05 - 1.72e-01 7.96e-02f 1\n", - " 53 1.9997017e+01 7.75e-01 1.07e-01 -1.5 7.62e+03 - 1.00e+00 9.25e-01h 1\n", - " 54 2.1971995e+01 1.26e-01 3.20e-02 -2.0 5.84e+02 - 9.08e-01 1.00e+00h 1\n", - " 55 2.1748647e+01 5.87e-01 4.66e-02 -2.4 6.72e+03 - 1.00e+00 5.61e-01h 1\n", - " 56 1.9262020e+01 9.67e-01 5.06e-02 -2.5 1.22e+04 - 1.75e-01 1.00e+00f 1\n", - " 57 2.2134569e+01 1.63e-03 2.47e+00 -4.3 2.53e+00 - 9.95e-01 1.00e+00h 1\n", - " 58 2.2136371e+01 1.03e-05 1.51e-03 -5.9 2.81e-02 - 1.00e+00 1.00e+00h 1\n", - " 59 2.2136361e+01 1.85e-05 3.41e-03 -7.9 7.94e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.2136336e+01 1.23e-05 2.13e-03 -10.0 1.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 61 2.2136380e+01 4.90e-06 1.17e-03 -11.0 3.20e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 2.2136351e+01 1.52e-05 1.85e-03 -11.0 1.62e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 2.2136385e+01 1.92e-05 1.13e-03 -11.0 6.29e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 2.2136381e+01 3.83e-06 1.42e-03 -11.0 2.52e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 2.2136390e+01 9.86e-07 1.11e-03 -11.0 1.83e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 2.2136210e+01 1.10e-04 3.84e-03 -11.0 1.35e+00 - 1.00e+00 1.00e+00h 1\n", - " 67 2.2136422e+01 5.86e-06 1.84e-03 -11.0 2.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 68 2.2135967e+01 4.36e-04 2.56e-03 -11.0 2.47e+00 - 1.00e+00 1.00e+00h 1\n", - " 69 2.2135697e+01 3.86e-04 2.66e-03 -11.0 3.32e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.2136577e+01 3.09e-07 1.50e-04 -11.0 7.28e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 2.2136577e+01 1.14e-07 9.43e-05 -11.0 7.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 2.2136574e+01 1.70e-06 6.58e-03 -11.0 9.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 2.2136576e+01 7.99e-07 1.09e-03 -11.0 4.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 2.2136577e+01 3.81e-07 1.68e-04 -11.0 1.59e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 2.2136576e+01 3.16e-07 1.59e-04 -11.0 1.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 2.2136577e+01 1.81e-10 1.99e-04 -11.0 1.44e-03 - 1.00e+00 1.00e+00H 1\n", - " 77 2.2136577e+01 2.81e-07 1.55e-04 -11.0 9.34e-04 - 1.00e+00 1.00e+00h 1\n", - " 78 2.2136577e+01 8.21e-08 2.15e-04 -11.0 2.78e-04 - 1.00e+00 1.00e+00h 1\n", - " 79 2.2136576e+01 1.75e-07 1.78e-04 -11.0 1.08e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.2136577e+01 1.37e-07 8.53e-05 -11.0 5.60e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 2.2136574e+01 7.01e-06 2.65e-03 -11.0 1.39e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 2.2136575e+01 2.56e-06 2.26e-03 -11.0 6.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 83 2.2136574e+01 1.78e-06 3.24e-03 -11.0 1.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 84 2.2136577e+01 7.54e-07 1.13e-04 -11.0 3.85e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 2.2136576e+01 1.04e-06 1.95e-03 -11.0 6.29e-03 - 1.00e+00 1.00e+00h 1\n", - " 86 2.2136576e+01 7.76e-07 1.79e-03 -11.0 7.33e-03 - 1.00e+00 1.00e+00h 1\n", - " 87 2.2136577e+01 2.14e-08 1.17e-04 -11.0 3.05e-04 - 1.00e+00 1.00e+00h 1\n", - " 88 2.2136577e+01 5.28e-08 3.94e-05 -11.0 3.67e-04 - 1.00e+00 1.00e+00h 1\n", - " 89 2.2136576e+01 7.12e-07 3.18e-03 -11.0 9.81e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.2136570e+01 5.73e-06 6.24e-03 -11.0 2.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 91 2.2136573e+01 2.00e-06 2.90e-03 -11.0 9.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 2.2136560e+01 1.68e-05 4.32e-03 -11.0 1.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 93 2.2136559e+01 2.04e-05 1.12e-03 -11.0 6.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 94 2.2136575e+01 1.84e-06 1.94e-03 -11.0 2.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 95 2.2136577e+01 7.20e-11 3.10e-04 -11.0 2.74e-02 - 1.00e+00 1.00e+00H 1\n", - " 96 2.2136546e+01 2.60e-05 2.87e-03 -11.0 7.75e-02 - 1.00e+00 1.00e+00f 1\n", - " 97 2.2136576e+01 5.27e-09 8.59e-05 -11.0 4.91e-05 - 1.00e+00 1.00e+00h 1\n", - " 98 2.2136576e+01 2.32e-08 2.19e-04 -11.0 1.29e-04 - 1.00e+00 1.00e+00h 1\n", - " 99 2.2136567e+01 5.18e-06 6.94e-03 -11.0 3.41e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.2136563e+01 7.78e-06 1.56e-03 -11.0 2.31e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.2136562600842783e+01 2.2136562600842783e+01\n", - "Dual infeasibility......: 1.5616490927137794e-03 1.5616490927137794e-03\n", - "Constraint violation....: 7.7807066318769103e-06 7.7807066318769103e-06\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 1.5616490927137794e-03 1.5616490927137794e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 108\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 108\n", - "Number of inequality constraint evaluations = 108\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.414\n", - "Total CPU secs in NLP function evaluations = 134.073\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 474.00us ( 4.39us) 475.85us ( 4.41us) 108\n", - " nlp_g | 4.82 s ( 44.66ms) 4.60 s ( 42.58ms) 108\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 355.00us ( 3.48us) 342.28us ( 3.36us) 102\n", - " nlp_jac_g | 132.09 s ( 1.29 s) 126.06 s ( 1.24 s) 102\n", - " total | 138.40 s (138.40 s) 132.09 s (132.09 s) 1\n", - "Timestamp 4800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.44e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0513347e+01 1.31e+01 2.44e+04 -1.5 2.44e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.5898524e+00 4.70e+00 6.46e+00 0.8 2.11e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.3189588e+00 7.13e-01 5.81e-01 -1.3 6.81e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 2.5992337e+00 5.38e-03 4.46e-01 -3.1 2.88e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.6011454e+00 3.01e-06 1.58e-03 -4.9 4.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 2.6011443e+00 4.19e-06 8.77e-04 -7.0 3.85e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 2.6011184e+00 3.50e-05 6.72e-04 -9.1 2.97e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.6011381e+00 2.83e-05 1.46e-03 -11.0 9.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 2.6011345e+00 9.29e-06 1.88e-03 -11.0 3.07e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.6011515e+00 1.08e-07 3.93e-05 -11.0 1.64e-01 - 1.00e+00 1.00e+00H 1\n", - " 11 2.6011486e+00 3.37e-06 7.54e-04 -11.0 5.06e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 2.6011415e+00 7.93e-06 8.17e-04 -11.0 6.66e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 2.6010870e+00 3.17e-05 2.05e-03 -11.0 1.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.6011449e+00 1.84e-06 1.38e-03 -11.0 1.77e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 2.6010632e+00 1.18e-04 1.47e-03 -11.0 3.23e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.6011400e+00 8.30e-06 1.40e-03 -11.0 5.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 2.6009949e+00 1.43e-04 1.31e-03 -11.0 5.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 2.6010660e+00 4.28e-05 8.68e-04 -11.0 2.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 2.6011093e+00 3.12e-05 6.87e-04 -11.0 1.08e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.6011312e+00 7.33e-06 6.58e-04 -11.0 5.51e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 2.6011287e+00 8.00e-06 6.70e-04 -11.0 2.58e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 2.6011174e+00 1.92e-05 1.55e-03 -11.0 1.08e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 2.6011042e+00 1.74e-05 1.40e-03 -11.0 7.47e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 2.6011272e+00 1.41e-05 1.36e-03 -11.0 4.77e-02 - 1.00e+00 1.00e+00h 1\n", - " 25 2.6010778e+00 4.11e-05 3.29e-03 -11.0 3.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 2.6010466e+00 5.23e-05 2.16e-03 -11.0 3.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 2.6011018e+00 2.90e-05 1.03e-03 -11.0 1.94e-01 - 1.00e+00 1.00e+00h 1\n", - " 28 2.6011133e+00 1.90e-05 1.21e-03 -11.0 1.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 29 2.6011340e+00 6.53e-09 4.64e-05 -11.0 1.90e-01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.6010953e+00 2.75e-05 1.27e-03 -11.0 2.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 31 2.6011271e+00 3.94e-06 1.65e-03 -11.0 4.00e-02 - 1.00e+00 1.00e+00h 1\n", - " 32 2.6010744e+00 4.06e-05 9.22e-04 -11.0 3.03e-01 - 1.00e+00 1.00e+00h 1\n", - " 33 2.6011072e+00 1.30e-05 1.12e-03 -11.0 2.09e-01 - 1.00e+00 1.00e+00h 1\n", - " 34 2.6010574e+00 7.75e-05 1.13e-03 -11.0 2.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 35 2.6009688e+00 8.99e-05 1.27e-03 -11.0 5.37e-01 - 1.00e+00 1.00e+00h 1\n", - " 36 2.6010590e+00 1.10e-04 2.38e-03 -11.0 7.74e-01 - 1.00e+00 1.00e+00h 1\n", - " 37 2.6010073e+00 1.37e-04 1.19e-03 -11.0 3.96e-01 - 1.00e+00 1.00e+00h 1\n", - " 38 2.6011130e+00 1.40e-05 1.53e-03 -11.0 1.65e-01 - 1.00e+00 1.00e+00h 1\n", - " 39 2.6010173e+00 2.27e-04 9.39e-04 -11.0 8.39e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.6009966e+00 1.62e-04 6.47e-04 -11.0 7.77e-01 - 1.00e+00 1.00e+00h 1\n", - " 41 2.6010817e+00 8.76e-05 1.19e-03 -11.0 4.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 42 2.6009612e+00 2.02e-04 1.80e-03 -11.0 1.16e+00 - 1.00e+00 1.00e+00h 1\n", - " 43 2.6010515e+00 4.94e-05 1.17e-03 -11.0 9.35e-01 - 1.00e+00 1.00e+00h 1\n", - " 44 2.6011124e+00 5.09e-06 1.36e-03 -11.0 2.21e-01 - 1.00e+00 1.00e+00h 1\n", - " 45 2.6007990e+00 1.08e-03 1.78e-03 -11.0 1.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 46 2.5996382e+00 1.08e-03 3.82e-03 -11.0 2.72e+01 - 1.00e+00 1.00e+00h 1\n", - " 47 2.5953857e+00 1.52e-02 4.94e-03 -11.0 5.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 48 2.6014336e+00 2.63e-07 1.04e-04 -11.0 1.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 49 2.6014335e+00 1.07e-07 8.36e-05 -11.0 4.72e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.6014333e+00 1.76e-07 9.01e-05 -11.0 1.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 2.6014277e+00 2.91e-06 3.50e-03 -11.0 2.59e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 2.6014309e+00 1.70e-06 6.06e-04 -11.0 8.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 2.6013987e+00 3.52e-05 3.53e-03 -11.0 1.77e-01 - 1.00e+00 1.00e+00h 1\n", - " 54 2.6014210e+00 9.65e-06 1.19e-03 -11.0 8.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 2.6014300e+00 4.72e-06 2.13e-03 -11.0 3.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 56 2.5864148e+00 1.07e-02 3.36e-02 -11.0 1.14e+02 - 1.00e+00 1.00e+00f 1\n", - " 57 2.4698194e+00 1.40e-01 3.68e-02 -11.0 1.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 2.4477423e+00 1.14e-01 2.91e-02 -11.0 7.77e+02 - 1.00e+00 1.00e+00h 1\n", - " 59 2.3996292e+00 1.84e-01 3.63e-02 -11.0 1.54e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.5513651e+00 5.41e-02 6.24e-02 -11.0 1.96e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 2.5233664e+00 8.43e-02 3.40e-02 -11.0 1.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 2.1115927e+00 7.64e-01 2.60e-01 -11.0 2.26e+03 - 1.00e+00 1.00e+00f 1\n", - " 63 2.8105553e+00 1.69e-01 3.51e-01 -11.0 6.59e+03 - 1.00e+00 1.00e+00h 1\n", - " 64 2.3423399e+00 2.63e-01 1.58e-01 -11.0 2.76e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 2.3865376e+00 2.50e-01 1.13e-01 -11.0 1.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 66 2.5697527e+00 8.73e-02 1.50e-01 -11.0 2.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 67 2.4325163e+00 2.08e-01 4.71e-02 -11.0 3.64e+07 - 9.84e-04 7.45e-04f 1\n", - " 68 2.3708745e+00 1.02e+00 4.00e-01 -11.0 4.96e+03 - 1.00e+00 1.00e+00F 1\n", - " 69 2.8612139e+00 3.75e-01 3.61e-01 -11.0 9.19e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.5634832e+00 3.46e-02 9.89e-02 -11.0 5.76e+02 - 4.72e-01 1.00e+00h 1\n", - " 71 2.4088435e+00 7.30e-01 1.70e-01 -11.0 2.32e+06 - 4.95e-04 3.34e-03f 4\n", - " 72 2.3167761e+00 1.17e+00 3.86e-01 -11.0 2.34e+04 - 1.00e+00 2.50e-01h 3\n", - " 73 2.3625371e+00 1.03e+00 2.98e-01 -11.0 2.03e+04 - 1.00e+00 3.61e-01h 2\n", - " 74 2.3615730e+00 6.10e-01 4.13e-02 -11.0 1.52e+04 - 1.00e+00 4.84e-01h 1\n", - " 75 2.4990674e+00 5.06e-01 3.79e-01 -11.0 1.97e+03 - 1.00e+00 1.00e+00H 1\n", - " 76 2.5662210e+00 4.40e-01 2.23e-01 -11.0 2.83e+03 - 7.45e-01 1.00e+00H 1\n", - " 77 2.5534649e+00 4.33e-01 2.24e-01 -11.0 2.58e+04 - 1.00e+00 1.58e-02h 1\n", - " 78 2.6352400e+00 3.77e-02 1.19e-01 -11.0 4.00e+02 - 5.97e-08 1.00e+00h 1\n", - " 79 2.7112642e+00 2.13e-02 1.49e-01 -11.0 3.89e+03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.5021026e+00 3.05e-01 7.93e-02 -11.0 2.54e+04 - 1.26e-01 1.25e-01f 4\n", - " 81 2.3429378e+00 3.43e-01 3.43e-01 -11.0 3.63e+03 - 1.00e+00 1.00e+00h 1\n", - " 82 2.4743630e+00 1.69e-01 6.10e-02 -11.0 1.00e+03 - 1.00e+00 5.00e-01h 2\n", - " 83 2.7668398e+00 2.87e-02 1.53e-01 -11.0 3.95e+03 - 1.00e+00 1.00e+00H 1\n", - " 84 2.7353736e+00 2.74e-02 1.52e-01 -11.0 1.03e+05 - 3.08e-01 6.87e-03f 5\n", - " 85 2.6159424e+00 1.50e-01 3.11e-02 -11.0 1.24e+03 - 8.94e-01 1.00e+00h 1\n", - " 86 2.7575314e+00 2.41e-02 9.77e-03 -11.0 1.07e+03 - 1.00e+00 1.00e+00H 1\n", - " 87 2.7548756e+00 2.34e-02 1.02e-02 -11.0 5.95e+03 - 1.00e+00 5.01e-03h 7\n", - " 88 2.7723582e+00 2.25e-03 2.14e-02 -11.0 1.16e+03 - 1.00e+00 1.00e+00H 1\n", - " 89 2.7329033e+00 4.62e-02 1.93e-02 -11.0 1.02e+03 - 1.00e+00 2.50e-01f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.7716387e+00 1.50e-02 1.33e-02 -11.0 1.22e+03 - 1.00e+00 1.00e+00H 1\n", - " 91 2.7583817e+00 1.63e-02 8.46e-03 -11.0 3.16e+03 - 1.00e+00 3.12e-02h 6\n", - " 92 2.7712752e+00 3.53e-04 9.01e-03 -11.0 1.53e+02 - 1.00e+00 1.00e+00H 1\n", - " 93 2.7674211e+00 5.94e-03 3.21e-03 -11.0 1.11e+02 - 1.00e+00 1.00e+00h 1\n", - " 94 2.7636336e+00 1.18e-02 3.51e-03 -11.0 8.36e+01 - 1.00e+00 1.00e+00h 1\n", - " 95 2.6540374e+00 1.52e-01 7.78e-02 -11.0 1.54e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 2.7313188e+00 1.51e-02 4.78e-02 -11.0 6.53e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 2.6564771e+00 9.49e-02 4.87e-02 -11.0 1.55e+03 - 1.00e+00 1.00e+00h 1\n", - " 98 2.6834281e+00 6.33e-02 3.01e-02 -11.0 4.53e+03 - 1.00e+00 1.00e+00h 1\n", - " 99 2.5721049e+00 1.89e+00 6.07e-01 -11.0 4.75e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.5080526e+00 9.09e-01 8.50e-02 -11.0 7.43e+03 - 1.00e+00 5.37e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.5080526003773507e+00 2.5080526003773507e+00\n", - "Dual infeasibility......: 8.5027674793480806e-02 8.5027674793480806e-02\n", - "Constraint violation....: 9.0934890974098082e-01 9.0934890974098082e-01\n", - "Complementarity.........: 1.0124877436431087e-11 1.0124877436431087e-11\n", - "Overall NLP error.......: 9.0934890974098082e-01 9.0934890974098082e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 161\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 161\n", - "Number of inequality constraint evaluations = 161\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.394\n", - "Total CPU secs in NLP function evaluations = 136.668\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 742.00us ( 4.61us) 734.55us ( 4.56us) 161\n", - " nlp_g | 7.28 s ( 45.20ms) 6.94 s ( 43.12ms) 161\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 337.00us ( 3.30us) 327.26us ( 3.21us) 102\n", - " nlp_jac_g | 132.29 s ( 1.30 s) 126.22 s ( 1.24 s) 102\n", - " total | 141.05 s (141.05 s) 134.57 s (134.57 s) 1\n", - "Timestamp 5100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 5.78e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0076041e+01 1.52e+01 5.78e+03 -1.5 5.78e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 1.0412985e+01 5.67e+00 1.05e+01 0.6 2.22e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 1.3757260e+01 1.89e+00 7.45e-01 -1.5 1.05e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 1.5099582e+01 1.26e-03 8.99e-02 -3.3 2.48e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.5100396e+01 6.95e-08 8.29e-05 -5.1 1.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.5100395e+01 6.34e-07 1.83e-04 -11.0 3.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.5100388e+01 3.75e-06 1.61e-03 -11.0 2.68e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.5088065e+01 1.67e-02 5.14e-02 -11.0 4.16e+01 - 1.00e+00 1.00e+00f 1\n", - " 9 1.5096278e+01 1.56e-03 2.86e-03 -11.0 2.52e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.5083986e+01 1.61e-02 2.64e-03 -11.0 4.96e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.5090482e+01 6.35e-03 2.12e-03 -11.0 2.48e+01 - 1.00e+00 1.00e+00h 1\n", - " 12 1.5089393e+01 4.50e-03 3.17e-03 -11.0 2.84e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.5095901e+01 1.08e-03 1.27e-03 -11.0 1.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.5093928e+01 3.72e-03 3.02e-03 -11.0 1.51e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.5092193e+01 3.05e-03 1.50e-03 -11.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.5084260e+01 1.50e-02 2.16e-03 -11.0 9.47e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.5053368e+01 2.14e-02 1.77e-03 -11.0 3.94e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 1.5043988e+01 2.03e-02 2.15e-03 -11.0 6.86e+02 - 1.00e+00 1.00e+00h 1\n", - " 19 1.5023012e+01 2.25e-02 4.31e-03 -11.0 1.10e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.5058408e+01 1.61e-02 1.36e-03 -11.0 1.48e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.5087744e+01 1.83e-03 1.85e-03 -11.0 2.21e+02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.4252841e+01 3.78e-01 2.78e-02 -9.4 1.14e+06 - 1.00e+00 2.73e-02f 1\n", - " 23 1.4250914e+01 3.78e-01 2.79e-02 -7.5 1.44e+06 - 1.00e+00 3.98e-05h 1\n", - " 24 1.4250901e+01 3.78e-01 2.77e-02 -5.6 2.07e+04 - 1.00e+00 2.78e-05h 1\n", - " 25 1.4964819e+01 3.13e-03 6.90e-01 -7.5 6.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 1.4967039e+01 6.28e-06 2.31e-03 -8.5 1.28e-02 - 1.00e+00 1.00e+00h 1\n", - " 27 1.4967044e+01 4.49e-07 1.03e-04 -11.0 6.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 28 1.4967044e+01 4.19e-07 8.94e-05 -11.0 3.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 29 1.4967041e+01 2.20e-06 2.30e-03 -11.0 1.44e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.4967045e+01 5.09e-07 7.28e-05 -11.0 5.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 1.4967040e+01 3.05e-06 6.44e-03 -11.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n", - " 32 1.4967040e+01 3.72e-06 2.25e-03 -11.0 1.48e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.4967044e+01 1.08e-06 2.41e-03 -11.0 6.19e-03 - 1.00e+00 1.00e+00h 1\n", - " 34 1.4967033e+01 6.87e-06 6.74e-03 -10.7 3.28e-02 - 1.00e+00 1.00e+00h 1\n", - " 35 1.4967042e+01 3.13e-06 7.17e-04 -11.0 1.69e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 1.4967045e+01 1.53e-06 2.27e-03 -11.0 1.15e-02 - 1.00e+00 1.00e+00h 1\n", - " 37 1.4967044e+01 1.54e-06 1.08e-03 -11.0 7.06e-03 - 1.00e+00 1.00e+00h 1\n", - " 38 1.4967046e+01 5.50e-10 1.61e-04 -11.0 1.03e-02 - 1.00e+00 1.00e+00H 1\n", - " 39 1.4967043e+01 3.41e-06 1.30e-03 -11.0 8.20e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.4967044e+01 8.61e-07 1.92e-03 -11.0 9.92e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 1.4967041e+01 3.72e-06 1.10e-03 -11.0 1.18e-02 - 1.00e+00 1.00e+00h 1\n", - " 42 1.4967004e+01 4.38e-05 4.38e-03 -11.0 1.20e-01 - 1.25e-01 1.00e+00h 1\n", - " 43 1.4967036e+01 2.15e-05 9.32e-04 -11.0 9.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 44 1.4967045e+01 3.93e-06 1.66e-03 -11.0 2.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 45 1.4967038e+01 6.86e-06 1.72e-03 -11.0 1.68e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.4967021e+01 2.81e-05 2.10e-03 -11.0 1.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 47 1.4967014e+01 1.60e-05 1.60e-03 -10.8 8.42e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 1.4967049e+01 2.01e-09 9.85e-05 -11.0 1.00e-01 - 1.00e+00 1.00e+00H 1\n", - " 49 1.2066149e+01 6.04e+00 5.64e-01 -11.0 1.59e+05 - 8.52e-06 1.50e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.3998483e+01 6.43e-01 3.44e-01 -10.7 3.68e+03 - 1.00e+00 1.00e+00h 1\n", - " 51 1.4323272e+01 1.83e-01 7.20e-02 -3.0 1.59e+03 - 3.99e-01 1.00e+00h 1\n", - " 52 1.3879700e+01 4.09e-01 4.39e-02 -1.6 4.34e+05 - 1.97e-01 7.59e-03f 1\n", - " 53 1.3573847e+01 5.52e-01 5.77e-02 -2.0 5.97e+03 - 1.00e+00 1.00e+00h 1\n", - " 54 1.4666216e+01 5.81e-02 3.99e-02 -3.4 1.02e+03 - 9.52e-01 1.00e+00h 1\n", - " 55 1.4634853e+01 5.85e-02 2.25e-02 -2.6 9.02e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 1.4463192e+01 1.37e-01 4.11e-02 -8.6 1.60e+03 - 4.55e-01 1.00e+00h 1\n", - " 57 1.4401399e+01 4.62e-01 1.93e-02 -2.3 4.42e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.4468805e+01 1.01e-01 1.94e-02 -2.3 3.37e+03 - 4.14e-01 1.00e+00h 1\n", - " 59 1.2251332e+01 2.09e+00 1.52e-01 -2.3 1.63e+06 - 8.84e-04 3.71e-03f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.3928902e+01 1.42e+00 1.36e-01 -2.9 3.17e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 1.3674213e+01 1.19e+00 1.27e-01 -3.1 1.41e+05 - 1.78e-02 1.26e-02f 1\n", - " 62 1.4227631e+01 2.25e-01 8.14e-02 -3.1 1.50e+03 - 1.27e-02 1.00e+00h 1\n", - " 63 1.3755057e+01 5.05e-01 3.83e-02 -3.6 2.48e+04 - 9.92e-01 1.49e-01f 1\n", - " 64 1.4134948e+01 4.06e-01 3.56e-02 -4.3 2.30e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 1.4172363e+01 2.13e-01 7.43e-02 -5.6 2.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 66 1.4539284e+01 9.15e-03 2.30e-02 -3.9 2.86e+03 - 1.00e+00 1.00e+00H 1\n", - " 67 1.4256746e+01 2.55e-01 1.92e-02 -5.2 2.32e+03 - 1.00e+00 1.00e+00f 1\n", - " 68 1.4080470e+01 3.87e-01 1.79e-02 -4.0 1.64e+03 - 1.00e+00 1.00e+00h 1\n", - " 69 1.4407540e+01 2.11e-01 1.97e-02 -5.0 1.46e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.4181522e+01 2.07e-01 1.90e-02 -4.5 9.72e+02 - 1.00e+00 1.00e+00h 1\n", - " 71 1.3855081e+01 3.00e-01 3.17e-02 -5.8 2.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 72 1.3401534e+01 4.62e-01 4.51e-02 -3.7 6.94e+03 - 1.00e+00 1.33e-01f 1\n", - " 73 1.4202681e+01 1.88e-01 2.04e-02 -3.4 6.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 74 1.4437634e+01 4.56e-02 2.06e-02 -3.5 2.11e+02 - 4.20e-01 1.00e+00h 1\n", - " 75 1.4419629e+01 1.93e-02 1.46e-02 -2.4 6.39e+01 - 1.00e+00 8.79e-01h 1\n", - " 76 1.4456994e+01 8.07e-03 2.08e-03 -3.8 1.04e+02 - 1.00e+00 1.00e+00h 1\n", - " 77 1.4427673e+01 2.67e-02 2.83e-03 -5.6 3.52e+02 - 1.00e+00 1.00e+00h 1\n", - " 78 1.4440038e+01 1.30e-02 2.11e-03 -5.0 1.91e+02 - 9.83e-01 6.25e-01h 1\n", - " 79 1.4293427e+01 1.10e-01 7.83e-03 -6.8 7.80e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.4429320e+01 9.20e-02 3.28e-03 -8.3 2.90e+02 - 1.00e+00 1.00e+00h 1\n", - " 81 1.4421253e+01 3.65e-02 9.59e-03 -8.1 5.14e+02 - 1.38e-01 1.00e+00h 1\n", - " 82r 1.4421253e+01 3.65e-02 9.99e+02 -1.4 0.00e+00 - 0.00e+00 3.63e-07R 5\n", - " 83r 1.4461385e+01 6.47e-03 1.86e+02 -7.5 6.12e+01 - 1.00e+00 1.05e-03f 1\n", - " 84 1.4425577e+01 5.85e-02 3.16e-03 -8.1 3.75e+02 - 2.31e-01 1.00e+00h 1\n", - " 85 1.4389573e+01 7.77e-02 2.17e-03 -8.1 5.24e+02 - 1.00e+00 1.00e+00h 1\n", - " 86 1.4340647e+01 1.40e-01 2.33e-03 -6.1 4.60e+05 - 8.10e-03 2.68e-03f 1\n", - " 87 1.4340663e+01 1.40e-01 2.59e-03 -5.9 5.87e+03 - 1.00e+00 3.04e-04h 1\n", - " 88 1.4450520e+01 9.71e-05 1.51e-03 -6.0 1.78e+01 - 1.00e+00 1.00e+00h 1\n", - " 89 1.4448998e+01 3.57e-03 8.95e-03 -7.5 6.52e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.4450619e+01 1.00e-03 1.66e-03 -8.5 4.18e+01 - 1.00e+00 1.00e+00h 1\n", - " 91 1.4448692e+01 2.82e-03 3.56e-03 -8.4 2.95e+03 - 1.01e-01 1.37e-02h 1\n", - " 92 1.4429788e+01 5.34e-02 8.79e-03 -11.0 1.04e+03 - 5.34e-02 1.00e+00h 1\n", - " 93 1.4450012e+01 7.95e-04 1.89e-03 -8.7 2.59e+02 - 1.00e+00 1.00e+00h 1\n", - " 94 1.4451634e+01 1.74e-05 1.70e-03 -5.9 1.33e+02 - 1.00e+00 1.00e+00H 1\n", - " 95 1.4281454e+01 7.22e-02 4.14e-03 -3.9 1.61e+06 - 8.87e-04 2.10e-02f 1\n", - " 96 1.2501393e+01 1.94e+00 1.55e-01 -5.8 3.17e+04 - 1.00e+00 1.00e+00f 1\n", - " 97 1.2520198e+01 1.92e+00 1.51e-01 -6.0 7.61e+03 - 1.00e+00 1.10e-02h 1\n", - " 98 1.4448129e+01 1.64e-02 1.52e-01 -6.0 6.17e+02 - 5.65e-01 1.00e+00h 1\n", - " 99 1.4448127e+01 1.64e-02 1.52e-01 -6.0 1.52e+04 - 2.68e-01 1.14e-05h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.4454531e+01 9.12e-04 3.09e-03 -6.0 3.96e+01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.4454531004998962e+01 1.4454531004998962e+01\n", - "Dual infeasibility......: 3.0943419918352810e-03 3.0943419918352810e-03\n", - "Constraint violation....: 9.1180575875426939e-04 9.1180575875426939e-04\n", - "Complementarity.........: 1.5442067510572753e-06 1.5442067510572753e-06\n", - "Overall NLP error.......: 3.0943419918352810e-03 3.0943419918352810e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 112\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 112\n", - "Number of inequality constraint evaluations = 112\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.449\n", - "Total CPU secs in NLP function evaluations = 135.184\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 503.00us ( 4.49us) 494.25us ( 4.41us) 112\n", - " nlp_g | 4.99 s ( 44.55ms) 4.75 s ( 42.42ms) 112\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 350.00us ( 3.43us) 340.07us ( 3.33us) 102\n", - " nlp_jac_g | 133.13 s ( 1.29 s) 127.07 s ( 1.23 s) 103\n", - " total | 139.59 s (139.59 s) 133.23 s (133.23 s) 1\n", - "Timestamp 5400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.65e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9886614e+01 1.41e+01 2.65e+03 -1.5 2.65e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.2135917e+00 5.05e+00 9.88e+00 0.4 1.41e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.0225312e+01 1.49e+00 6.51e-01 -1.6 8.72e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.1266168e+01 1.95e-03 8.32e-02 -3.4 2.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.1267143e+01 9.16e-08 2.39e-05 -5.3 1.98e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1267143e+01 3.75e-08 1.62e-04 -11.0 3.73e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1267142e+01 8.02e-07 8.56e-05 -11.0 2.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1267143e+01 1.93e-07 2.20e-05 -11.0 7.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 1.1267143e+01 4.93e-08 2.49e-05 -11.0 2.04e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1267143e+01 4.89e-08 1.30e-04 -11.0 3.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.1267142e+01 1.01e-06 1.60e-03 -11.0 2.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1267143e+01 5.06e-07 7.32e-05 -11.0 1.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1267143e+01 2.05e-07 3.09e-05 -11.0 1.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 1.1267143e+01 2.66e-08 2.56e-05 -11.0 2.31e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 1.1267143e+01 2.33e-11 6.03e-05 -11.0 3.03e-04 - 1.00e+00 1.00e+00H 1\n", - " 16 1.1267143e+01 6.27e-08 1.39e-04 -11.0 1.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1267142e+01 7.90e-07 5.23e-03 -11.0 3.55e-03 - 1.00e+00 1.00e+00h 1\n", - " 18 1.1267143e+01 4.39e-09 8.63e-05 -11.0 1.65e-05 - 1.00e+00 1.00e+00h 1\n", - " 19 1.1267143e+01 6.60e-08 9.24e-05 -11.0 1.29e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.1267144e+01 3.82e-11 3.73e-05 -11.0 7.17e-04 - 1.00e+00 1.00e+00H 1\n", - " 21 1.1267143e+01 2.38e-08 2.10e-04 -11.0 2.37e-04 - 1.00e+00 1.00e+00h 1\n", - " 22 1.1267143e+01 5.79e-08 1.25e-04 -11.0 1.46e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 1.1267143e+01 5.42e-08 1.32e-04 -11.0 2.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 1.1267143e+01 2.23e-08 4.81e-05 -11.0 1.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 1.1267143e+01 2.38e-09 1.32e-04 -11.0 2.31e-05 - 1.00e+00 1.00e+00h 1\n", - " 26 1.1267144e+01 4.54e-11 8.31e-05 -11.0 2.44e-04 - 1.00e+00 1.00e+00H 1\n", - " 27 1.1267144e+01 2.14e-11 2.99e-04 -11.0 3.54e-04 - 1.00e+00 4.88e-04h 12\n", - " 28 1.1267144e+01 3.60e-11 6.40e-05 -11.0 5.37e-05 - 1.00e+00 1.22e-04h 14\n", - " 29 1.1267144e+01 3.68e-11 9.98e-05 -11.0 2.40e-05 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1267144e+01 1.17e-11 8.03e-05 -11.0 2.92e-05 - 1.00e+00 1.00e+00H 1\n", - " 31 1.1267143e+01 1.33e-08 3.52e-05 -11.0 1.71e-04 - 1.00e+00 1.00e+00h 1\n", - " 32 1.1267143e+01 1.03e-07 3.29e-05 -11.0 4.07e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 1.1267143e+01 1.78e-09 2.08e-05 -11.0 2.93e-05 - 1.00e+00 1.00e+00h 1\n", - " 34 1.1267143e+01 2.76e-09 1.90e-04 -11.0 5.88e-05 - 1.00e+00 1.00e+00h 1\n", - " 35 1.1267143e+01 1.61e-07 1.69e-04 -11.0 4.96e-04 - 1.00e+00 1.00e+00h 1\n", - " 36 1.1267143e+01 8.43e-08 1.06e-05 -11.0 5.44e-03 - 1.00e+00 1.00e+00h 1\n", - " 37 1.1267142e+01 6.53e-06 2.09e-03 -11.0 1.63e+00 - 1.00e+00 1.00e+00h 1\n", - " 38 1.1267121e+01 2.54e-05 2.06e-03 -11.0 1.85e+00 - 1.00e+00 1.00e+00h 1\n", - " 39 1.1266567e+01 3.92e-04 5.39e-03 -11.0 1.82e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.1266788e+01 3.47e-04 8.62e-03 -11.0 1.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 41 1.1190801e+01 5.67e-02 4.41e-03 -11.0 1.19e+03 - 1.00e+00 1.00e+00f 1\n", - " 42 1.1266130e+01 2.23e-04 4.12e-03 -11.0 3.15e+03 - 1.00e+00 1.00e+00H 1\n", - " 43 1.0562117e+01 2.01e+00 1.53e-01 -10.2 1.24e+05 - 1.00e+00 2.37e-01f 1\n", - " 44 1.0562454e+01 2.00e+00 1.51e-01 -10.4 3.27e+04 - 1.00e+00 3.73e-03h 1\n", - " 45 1.1003534e+01 6.87e-02 1.12e-01 -10.4 8.46e+02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.0600986e+01 1.92e+00 1.12e-02 -9.6 2.83e+03 - 1.00e+00 1.00e+00f 1\n", - " 47 9.2723741e+00 1.98e+00 1.28e-01 -4.6 1.92e+04 - 3.98e-01 8.06e-01f 1\n", - " 48 8.8785568e+00 1.73e+00 1.78e-01 -4.5 2.41e+04 - 3.76e-03 1.00e+00h 1\n", - " 49 8.8739733e+00 1.77e+00 1.82e-01 -2.5 2.60e+04 - 1.00e+00 1.42e-02h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.0631141e+01 2.93e-01 1.78e-01 -1.5 1.49e+04 - 1.00e+00 1.00e+00h 1\n", - " 51 1.0381542e+01 3.95e-01 1.87e-01 -1.9 1.80e+04 - 9.12e-01 5.15e-01h 1\n", - " 52 1.0714368e+01 3.24e-02 3.93e-03 -2.6 5.80e+02 - 5.12e-01 1.00e+00h 1\n", - " 53 1.0569803e+01 5.73e-01 2.93e-02 -2.2 6.60e+03 - 8.76e-01 1.67e-01f 1\n", - " 54 9.4451633e+00 1.18e+00 1.33e-01 -2.4 1.08e+04 - 1.00e+00 1.00e+00f 1\n", - " 55 1.0215378e+01 1.02e+00 1.97e-01 -2.3 1.15e+04 - 5.54e-01 1.00e+00h 1\n", - " 56 1.0738189e+01 6.29e-01 4.64e-02 -8.3 6.61e+03 - 4.98e-01 1.00e+00h 1\n", - " 57 9.9982986e+00 6.65e+00 4.97e-01 -2.8 1.31e+05 - 3.52e-03 2.09e-01f 1\n", - " 58 8.6581240e+00 3.05e+00 3.27e-01 -2.8 1.91e+04 - 1.00e+00 1.00e+00f 1\n", - " 59 9.0431142e+00 1.97e+00 1.62e-01 -2.3 1.09e+05 - 6.93e-01 3.72e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.7390204e+00 5.66e+00 8.32e-01 -2.2 3.95e+04 - 1.28e-01 1.00e+00f 1\n", - " 61 9.1686870e+00 2.72e+00 3.47e-01 -0.4 4.06e+04 - 1.00e+00 7.09e-01h 1\n", - " 62 9.3453471e+00 7.58e-01 1.40e-01 -0.5 1.19e+04 - 8.04e-01 1.00e+00f 1\n", - " 63 8.5795875e+00 4.20e+00 7.21e-01 -1.7 5.02e+04 - 4.43e-01 4.75e-01f 1\n", - " 64 8.6721681e+00 5.15e+00 9.95e-01 -1.3 3.05e+04 - 9.85e-01 1.00e+00h 1\n", - " 65 8.8110772e+00 5.33e+00 9.31e-01 -1.3 3.12e+04 - 1.00e+00 9.65e-02h 4\n", - " 66 9.3165129e+00 1.53e+00 6.52e-01 -1.3 1.53e+04 - 1.00e+00 1.00e+00h 1\n", - " 67 1.0894009e+01 1.13e+00 1.96e-01 -1.5 1.60e+04 - 4.96e-01 1.00e+00h 1\n", - " 68 1.0805951e+01 9.14e-01 1.18e-01 -1.7 1.24e+04 - 1.00e+00 1.00e+00h 1\n", - " 69 1.1037500e+01 2.25e-01 9.63e-02 -1.7 1.53e+04 - 6.26e-01 7.52e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 9.9497693e+00 9.20e-01 7.64e-02 -1.7 8.94e+03 - 1.00e+00 1.00e+00f 1\n", - " 71 9.8666284e+00 7.79e-01 5.84e-02 -1.9 2.85e+04 - 1.00e+00 3.15e-01h 1\n", - " 72 1.1455619e+01 5.55e-02 9.15e-02 -2.8 1.50e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 1.1231114e+01 1.78e-01 3.68e-02 -2.9 1.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 74 1.0679860e+01 1.20e+00 1.18e-01 -2.9 2.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.0777239e+01 9.54e-01 8.98e-02 -2.9 2.44e+03 - 1.00e+00 1.69e-01h 1\n", - " 76 1.0777972e+01 9.55e-01 8.97e-02 -2.9 5.42e+03 - 1.00e+00 1.90e-03h 9\n", - " 77 1.0780459e+01 1.05e+00 8.97e-02 -2.9 7.22e+03 - 1.00e+00 4.54e-02h 4\n", - " 78 1.0522202e+01 1.09e+00 6.80e-02 -2.9 1.36e+04 - 1.00e+00 1.69e-01h 1\n", - " 79 1.1576661e+01 1.42e-03 1.45e+00 -2.9 1.54e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.1578492e+01 1.37e-06 1.17e-03 -2.9 5.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 1.1578492e+01 6.89e-07 1.01e-03 -4.4 8.55e-03 - 1.00e+00 1.00e+00h 1\n", - " 82 1.1578464e+01 2.05e-05 2.56e-03 -4.4 2.59e-01 - 1.00e+00 1.00e+00h 1\n", - " 83 1.1578475e+01 2.61e-05 1.60e-03 -4.4 1.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 84 1.1578363e+01 1.34e-04 3.03e-03 -4.4 3.75e-01 - 1.00e+00 1.00e+00h 1\n", - " 85 1.1578482e+01 6.68e-06 1.90e-03 -4.4 8.93e-02 - 1.00e+00 1.00e+00h 1\n", - " 86 1.1578483e+01 4.70e-06 1.31e-03 -4.4 6.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.1578424e+01 4.46e-05 3.24e-03 -4.4 1.93e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 1.1578478e+01 1.13e-05 1.91e-03 -4.4 1.28e-01 - 1.00e+00 1.00e+00h 1\n", - " 89 1.1578490e+01 1.62e-09 4.60e-05 -4.4 9.05e-02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.1578478e+01 8.27e-06 2.42e-03 -6.5 3.09e-01 - 1.00e+00 1.00e+00h 1\n", - " 91 1.1578455e+01 6.11e-05 2.38e-03 -6.5 4.32e-01 - 1.00e+00 1.00e+00h 1\n", - " 92 1.1577404e+01 5.64e-04 2.58e-03 -6.5 4.08e+00 - 1.00e+00 1.00e+00h 1\n", - " 93 1.1578435e+01 3.22e-07 1.32e-04 -6.5 1.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.1578435e+01 1.71e-07 8.50e-05 -6.5 6.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 95 1.1578434e+01 1.58e-07 1.64e-04 -6.5 1.56e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 1.1578434e+01 3.12e-07 1.36e-04 -6.5 9.52e-04 - 1.00e+00 1.00e+00h 1\n", - " 97 1.1578434e+01 2.23e-07 2.00e-04 -6.5 3.42e-04 - 1.00e+00 2.50e-01h 3\n", - " 98 1.1577335e+01 3.95e-04 2.90e-02 -6.5 3.52e+00 - 1.00e+00 5.24e-01f 1\n", - " 99 1.1577697e+01 2.58e-04 1.34e-02 -6.5 2.67e+00 - 1.00e+00 5.06e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.1578068e+01 1.30e-04 6.68e-03 -6.5 4.81e-01 - 1.00e+00 5.00e-01h 2\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.1578068382443226e+01 1.1578068382443226e+01\n", - "Dual infeasibility......: 6.6789526214592262e-03 6.6789526214592262e-03\n", - "Constraint violation....: 1.3033917486282576e-04 1.3033917486282576e-04\n", - "Complementarity.........: 3.5916163049427814e-05 3.5916163049427814e-05\n", - "Overall NLP error.......: 6.6789526214592262e-03 6.6789526214592262e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 169\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 169\n", - "Number of inequality constraint evaluations = 169\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.392\n", - "Total CPU secs in NLP function evaluations = 137.601\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 749.00us ( 4.43us) 740.76us ( 4.38us) 169\n", - " nlp_g | 7.60 s ( 44.96ms) 7.24 s ( 42.85ms) 169\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 382.00us ( 3.75us) 372.78us ( 3.65us) 102\n", - " nlp_jac_g | 132.72 s ( 1.30 s) 126.67 s ( 1.24 s) 102\n", - " total | 141.80 s (141.80 s) 135.33 s (135.33 s) 1\n", - "Timestamp 5700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.55e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9985907e+01 1.42e+01 2.55e+03 -1.5 2.55e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.2516496e+00 5.15e+00 9.73e+00 0.4 1.42e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.0011496e+01 1.48e+00 6.02e-01 -1.6 8.58e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.1058352e+01 2.33e-03 8.28e-02 -3.4 2.04e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.1059465e+01 1.03e-06 2.18e-03 -5.3 2.56e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1059466e+01 6.74e-07 2.86e-03 -7.4 1.75e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1059467e+01 2.98e-08 4.53e-05 -9.4 3.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1059467e+01 3.83e-08 5.80e-05 -11.0 2.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 1.1059467e+01 5.25e-08 4.31e-05 -11.0 5.72e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1059467e+01 2.34e-08 9.29e-05 -11.0 1.87e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 1.1059467e+01 2.11e-07 1.48e-04 -11.0 8.35e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1059466e+01 4.38e-07 8.23e-05 -11.0 2.06e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1059467e+01 6.12e-07 1.06e-04 -11.0 1.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 1.1059466e+01 2.94e-07 3.26e-05 -11.0 1.46e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 1.1059467e+01 4.50e-08 4.29e-05 -11.0 5.66e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 1.1059467e+01 1.05e-07 4.08e-05 -11.0 3.71e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1059467e+01 2.56e-07 2.14e-04 -11.0 9.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 1.1059466e+01 4.00e-07 2.45e-04 -11.0 1.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 1.1059466e+01 7.91e-07 5.50e-05 -11.0 1.56e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.1059467e+01 1.51e-08 2.58e-05 -11.0 8.25e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 1.1059467e+01 8.42e-11 5.18e-05 -11.0 1.08e-04 - 1.00e+00 1.00e+00H 1\n", - " 22 1.1059434e+01 5.20e-05 2.09e-02 -11.0 2.69e-01 - 1.00e+00 1.00e+00f 1\n", - " 23 1.1059394e+01 5.44e-05 1.20e-03 -11.0 9.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 1.1059472e+01 1.54e-06 1.03e-03 -11.0 6.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 25 1.1059409e+01 3.95e-05 2.32e-03 -11.0 2.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 1.1059433e+01 2.74e-05 1.14e-03 -11.0 1.32e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 1.1059460e+01 4.67e-06 2.47e-03 -11.0 3.38e-02 - 1.00e+00 1.00e+00h 1\n", - " 28 1.1059419e+01 4.45e-05 3.14e-03 -11.0 2.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 29 1.1059429e+01 2.08e-05 8.92e-04 -11.0 1.41e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1056206e+01 2.94e-03 1.34e-02 -11.0 1.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 31 1.1044335e+01 3.08e-03 9.14e-03 -11.0 9.89e+01 - 1.00e+00 1.00e+00h 1\n", - " 32 1.1001351e+01 3.62e-02 1.48e-02 -11.0 1.82e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.1061098e+01 7.00e-05 2.04e-03 -11.0 1.22e+02 - 1.00e+00 1.00e+00H 1\n", - " 34 1.1059142e+01 1.14e-03 1.80e-03 -11.0 1.82e+01 - 1.00e+00 1.00e+00h 1\n", - " 35 1.1056899e+01 2.20e-03 1.70e-03 -11.0 4.10e+01 - 1.00e+00 1.00e+00h 1\n", - " 36 1.1001695e+01 6.65e-02 6.69e-03 -11.0 1.82e+02 - 1.00e+00 1.00e+00h 1\n", - " 37 1.1032590e+01 1.57e-02 2.24e-03 -11.0 9.31e+01 - 1.00e+00 1.00e+00h 1\n", - " 38 1.1055605e+01 1.54e-03 3.18e-03 -11.0 4.47e+01 - 1.00e+00 1.00e+00h 1\n", - " 39 1.1045283e+01 5.40e-03 2.36e-03 -11.0 8.44e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.1051037e+01 4.23e-03 1.38e-03 -11.0 2.07e+01 - 1.00e+00 1.00e+00h 1\n", - " 41 1.1054573e+01 5.24e-03 2.15e-03 -11.0 1.98e+01 - 1.00e+00 1.00e+00h 1\n", - " 42 1.1045087e+01 9.50e-03 1.75e-03 -11.0 3.43e+01 - 1.00e+00 1.00e+00h 1\n", - " 43 1.1062181e+01 8.92e-06 1.24e-03 -11.0 8.43e+01 - 1.00e+00 1.00e+00H 1\n", - " 44 1.0974736e+01 1.18e-01 6.98e-03 -11.0 4.93e+02 - 1.00e+00 1.00e+00f 1\n", - " 45 1.1045246e+01 4.28e-02 6.09e-03 -11.0 1.61e+02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.0415395e+01 1.32e+00 9.75e-02 -11.0 9.55e+03 - 1.00e+00 1.00e+00f 1\n", - " 47 6.8867899e+00 3.65e+00 6.98e-01 -11.0 4.05e+04 - 1.00e+00 5.45e-01f 1\n", - " 48 7.2753872e+00 3.60e+00 9.10e-01 -10.3 1.27e+04 - 1.00e+00 1.25e-01h 4\n", - " 49 1.0936788e+01 2.32e-01 9.36e-01 -2.0 2.48e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.1477924e+01 3.07e-02 4.15e-02 -3.2 3.55e+02 - 1.00e+00 1.00e+00h 1\n", - " 51 1.1013716e+01 1.52e-01 2.38e-02 -3.3 1.91e+03 - 1.00e+00 1.00e+00f 1\n", - " 52 1.1445770e+01 4.65e-02 2.22e-02 -3.3 5.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 1.1413096e+01 1.36e-01 2.03e-02 -3.3 2.41e+04 - 4.73e-01 1.25e-01h 4\n", - " 54 9.8436612e+00 3.30e+00 2.78e-01 -3.3 2.67e+05 - 1.49e-01 9.50e-02f 1\n", - " 55 9.5052187e+00 1.10e+01 9.48e-01 -9.5 5.66e+04 - 6.89e-04 1.00e+00f 1\n", - " 56 9.3483382e+00 1.08e+01 9.21e-01 -3.3 2.60e+05 - 3.72e-01 1.66e-02h 1\n", - " 57 8.1309472e+00 9.09e+00 7.51e-01 -3.3 1.41e+05 - 6.69e-01 1.58e-01f 1\n", - " 58 6.0998937e+00 3.80e+00 2.93e-01 -3.3 2.76e+04 - 6.10e-04 3.65e-01f 1\n", - " 59 7.3475152e+00 1.83e+00 9.61e-02 -1.5 2.06e+04 - 3.30e-01 4.85e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.7320278e+00 1.68e+00 1.02e-01 -1.5 2.35e+04 - 1.00e+00 1.37e-01h 1\n", - " 61 5.6222471e+00 2.02e+00 2.80e-01 -1.7 7.88e+03 - 8.78e-01 4.70e-01f 1\n", - " 62 1.0048809e+01 1.97e-01 6.66e-02 -2.0 3.62e+03 - 1.00e+00 9.94e-01h 1\n", - " 63 1.0226751e+01 1.55e-01 3.82e-02 -8.0 9.93e+02 - 4.12e-02 1.00e+00h 1\n", - " 64 9.0183177e+00 1.46e+00 9.38e-02 -2.9 3.58e+04 - 3.65e-01 1.00e+00f 1\n", - " 65 8.0351068e+00 5.22e+00 3.90e-01 -2.0 1.85e+04 - 1.00e+00 1.00e+00F 1\n", - " 66 7.9473408e+00 4.14e+00 2.47e-01 -2.2 7.29e+03 - 1.00e+00 2.08e-01h 1\n", - " 67 9.3775247e+00 5.15e-01 3.43e-01 -2.2 5.14e+03 - 1.00e+00 1.00e+00h 1\n", - " 68 1.0263110e+01 7.33e-02 7.26e-02 -8.2 1.15e+03 - 4.51e-01 1.00e+00h 1\n", - " 69 1.0279131e+01 9.05e-02 2.96e-02 -2.2 6.11e+02 - 1.00e+00 6.50e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.0243724e+01 5.47e-02 4.38e-02 -3.9 8.83e+02 - 9.92e-01 1.00e+00h 1\n", - " 71 1.0118282e+01 5.06e-01 7.57e-02 -3.7 1.06e+03 - 1.00e+00 1.00e+00h 1\n", - " 72 1.0339393e+01 3.21e-02 4.20e-02 -3.8 8.60e+02 - 9.35e-01 1.00e+00h 1\n", - " 73 1.0016263e+01 5.64e-01 3.05e-02 -5.9 3.93e+04 - 1.68e-01 4.14e-01f 1\n", - " 74 1.0673839e+01 5.34e-02 7.08e-02 -2.5 3.85e+04 - 2.28e-02 1.00e+00H 1\n", - " 75 1.0595655e+01 4.67e-01 3.99e-02 -2.7 2.10e+05 - 1.97e-01 2.27e-02f 1\n", - " 76 1.0032100e+01 1.65e+00 1.02e-01 -2.7 1.19e+04 - 1.00e+00 6.54e-01f 1\n", - " 77 1.0443357e+01 9.43e-01 1.41e-02 -2.7 4.31e+03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.0496763e+01 1.61e-01 3.84e-02 -2.7 4.09e+03 - 5.81e-01 1.00e+00h 1\n", - " 79 1.0386110e+01 3.84e-01 2.62e-02 -2.7 5.37e+04 - 8.33e-01 6.82e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.0452885e+01 3.15e-01 2.17e-02 -2.7 1.41e+04 - 1.00e+00 7.77e-01H 1\n", - " 81 1.0437934e+01 3.33e-01 2.56e-02 -2.7 6.48e+03 - 1.00e+00 4.84e-02h 1\n", - " 82 1.0556845e+01 7.27e-02 3.28e-02 -2.7 2.95e+02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.0520650e+01 1.03e-01 1.31e-02 -2.7 2.38e+02 - 1.00e+00 8.58e-01h 1\n", - " 84 1.0378165e+01 2.92e-01 1.28e-02 -2.7 1.16e+04 - 4.48e-02 4.35e-02f 1\n", - " 85 1.0556055e+01 7.16e-02 3.52e-02 -2.7 4.51e+02 - 1.00e+00 1.00e+00h 1\n", - " 86 1.0560005e+01 1.50e-02 1.05e-02 -2.7 9.14e+01 - 1.00e+00 1.00e+00h 1\n", - " 87 1.0499774e+01 1.05e-01 7.59e-03 -8.5 5.54e+02 - 3.28e-01 1.00e+00h 1\n", - " 88 1.0407884e+01 2.36e-01 2.74e-02 -3.0 3.83e+03 - 1.51e-01 2.59e-01h 1\n", - " 89 1.0616946e+01 1.00e-01 6.30e-03 -3.0 1.20e+03 - 1.00e+00 8.81e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.0487844e+01 9.45e-02 1.48e-02 -3.0 1.02e+03 - 1.00e+00 7.83e-01f 1\n", - " 91 1.0456551e+01 1.23e-01 2.89e-02 -3.0 1.47e+03 - 3.59e-01 1.00e+00h 1\n", - " 92 1.0621334e+01 2.25e-02 1.93e-02 -3.0 9.89e+02 - 3.78e-01 1.00e+00H 1\n", - " 93 1.0603258e+01 3.73e-03 5.88e-03 -4.0 7.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 94 1.0550988e+01 1.83e-02 5.31e-03 -3.2 1.54e+04 - 5.82e-01 7.58e-03f 1\n", - " 95 1.0602903e+01 1.66e-03 1.01e-02 -9.3 7.63e+01 - 7.70e-01 1.00e+00h 1\n", - " 96 1.0468003e+01 5.50e-02 5.78e-03 -3.3 8.53e+02 - 4.60e-03 1.00e+00f 1\n", - " 97 1.0462805e+01 5.59e-02 6.45e-03 -4.2 1.60e+03 - 1.00e+00 1.45e-02h 1\n", - " 98 1.0587019e+01 4.82e-03 6.95e-03 -4.2 2.34e+01 - 7.17e-01 1.00e+00h 1\n", - " 99 1.0592624e+01 4.10e-03 1.63e-03 -4.4 8.72e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.0593988e+01 6.32e-04 1.60e-03 -6.1 2.66e+01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.0593987655890079e+01 1.0593987655890079e+01\n", - "Dual infeasibility......: 1.5991722917135243e-03 1.5991722917135243e-03\n", - "Constraint violation....: 6.3232085636855118e-04 6.3232085636855118e-04\n", - "Complementarity.........: 6.2726797014683059e-06 6.2726797014683059e-06\n", - "Overall NLP error.......: 1.5991722917135243e-03 1.5991722917135243e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 122\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 122\n", - "Number of inequality constraint evaluations = 122\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.421\n", - "Total CPU secs in NLP function evaluations = 135.766\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 546.00us ( 4.48us) 539.83us ( 4.42us) 122\n", - " nlp_g | 5.46 s ( 44.78ms) 5.21 s ( 42.72ms) 122\n", - " nlp_grad | 1.38 s ( 1.38 s) 1.32 s ( 1.32 s) 1\n", - " nlp_grad_f | 357.00us ( 3.50us) 347.76us ( 3.41us) 102\n", - " nlp_jac_g | 133.13 s ( 1.31 s) 127.11 s ( 1.25 s) 102\n", - " total | 140.12 s (140.12 s) 133.78 s (133.78 s) 1\n", - "Timestamp 6000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0784481e+01 1.25e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 9.3289344e+00 4.63e+00 5.07e+00 1.2 1.26e+03 - 1.00e+00 1.00e+00f 1\n", - " 3 1.8676672e+00 5.49e-01 2.62e-01 -0.9 4.48e+02 - 9.96e-01 1.00e+00f 1\n", - " 4 1.0171605e+00 7.89e-03 5.11e-01 -6.6 1.56e+01 - 9.90e-01 1.00e+00f 1\n", - " 5 1.0055854e+00 8.42e-03 5.22e-02 -4.1 2.11e+01 - 1.00e+00 1.00e+00h 1\n", - " 6 1.0143528e+00 6.91e-04 6.98e-03 -6.0 5.95e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 9.9576039e-01 1.68e-02 6.86e-02 -7.9 1.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.0151399e+00 2.72e-03 2.01e-02 -9.7 2.36e+01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.0088525e+00 4.50e-02 2.44e-02 -9.8 2.15e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 9.2924490e-01 3.57e-01 4.50e-01 -9.8 1.97e+03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.0058303e+00 4.73e-02 3.02e-01 -11.0 9.24e+02 - 1.00e+00 1.00e+00h 1\n", - " 12 9.9812525e-01 5.08e-01 1.53e-01 -11.0 2.11e+03 - 1.00e+00 1.00e+00h 1\n", - " 13 9.5498040e-01 2.86e-02 1.37e-01 -11.0 3.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 14 9.1366572e-01 9.82e-02 1.11e-01 -11.0 7.84e+02 - 1.00e+00 1.00e+00h 1\n", - " 15 8.5353956e-01 3.16e-01 3.09e-01 -11.0 2.82e+03 - 1.00e+00 5.00e-01h 2\n", - " 16 9.9413628e-01 1.29e-01 2.12e-01 -11.0 7.09e+03 - 1.00e+00 1.00e+00H 1\n", - " 17 9.9391625e-01 5.65e-01 3.13e-01 -11.0 2.64e+06 - 1.46e-02 4.63e-03f 2\n", - " 18 8.6098827e-01 4.68e-01 3.62e-01 -11.0 2.45e+04 - 1.00e+00 1.42e-01h 3\n", - " 19 8.8813924e-01 2.37e-01 4.35e-01 -11.0 2.07e+05 - 2.57e-01 2.22e-02h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.6170569e-01 2.39e-01 1.44e-01 -11.0 2.08e+05 - 2.16e-02 7.01e-02h 3\n", - " 21 8.2743632e-01 5.79e-01 3.79e-01 -9.1 1.80e+06 - 2.51e-02 5.28e-03f 2\n", - " 22 9.8495907e-01 4.26e-01 3.67e-01 -10.8 1.51e+04 - 1.00e+00 1.00e+00h 1\n", - " 23 8.2353351e-01 4.23e-01 1.51e-01 -11.0 4.88e+04 - 6.18e-01 5.07e-01h 1\n", - " 24 7.5332129e-01 6.04e-01 5.94e-01 -11.0 8.38e+03 - 1.00e+00 2.50e-01h 3\n", - " 25 9.4634651e-01 4.13e-01 5.71e-01 -1.8 1.67e+03 - 6.85e-01 1.00e+00h 1\n", - " 26 9.2798870e-01 8.46e-01 2.68e-01 -2.1 3.77e+04 - 1.00e+00 5.00e-01f 2\n", - " 27 1.0141913e+00 2.08e-01 3.06e-01 -2.1 7.59e+03 - 8.57e-01 1.00e+00h 1\n", - " 28 8.5324594e-01 2.70e-01 3.60e-01 -2.1 2.29e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 8.6147929e-01 2.44e-01 2.89e-01 -2.2 2.32e+04 - 9.94e-01 1.25e-01h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1219260e+00 1.85e-01 3.65e-01 -2.8 5.73e+03 - 7.05e-01 1.00e+00H 1\n", - " 31 9.1905623e-01 3.98e-01 3.63e-01 -2.7 7.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 32 9.1647545e-01 2.62e-01 3.49e-01 -2.7 4.67e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 1.0510218e+00 2.08e-02 1.67e-01 -2.7 1.48e+04 - 1.85e-01 1.00e+00H 1\n", - " 34 8.9155810e-01 7.21e-01 5.75e-01 -2.7 4.29e+04 - 1.00e+00 5.00e-01f 2\n", - " 35 9.1583172e-01 5.53e-01 6.32e-01 -2.7 6.88e+04 - 3.96e-01 1.99e-01h 2\n", - " 36 9.1290169e-01 2.69e-01 6.43e-01 -2.7 1.15e+04 - 1.00e+00 1.00e+00h 1\n", - " 37 8.8632978e-01 3.04e-01 3.96e-01 -2.7 4.92e+04 - 5.23e-02 6.25e-02h 5\n", - " 38 1.0062699e+00 1.48e-01 5.50e-01 -2.7 1.87e+04 - 1.00e+00 1.00e+00H 1\n", - " 39 9.8419688e-01 1.03e-01 5.24e-01 -2.7 3.54e+04 - 9.15e-01 6.25e-02h 5\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.5846743e-01 1.15e-01 1.62e-01 -2.7 1.02e+04 - 1.00e+00 1.00e+00h 1\n", - " 41 8.2021573e-01 2.04e-01 3.25e-01 -1.4 5.76e+05 - 3.90e-01 1.19e-02f 3\n", - " 42 1.0458642e+00 6.13e-01 3.66e-01 -2.1 5.84e+03 - 9.27e-01 9.27e-01s 22\n", - " 43 9.8794327e-01 3.92e-01 6.81e-01 -2.2 5.97e+04 - 9.12e-01 1.53e-01h 3\n", - " 44 9.7379313e-01 3.32e-01 7.51e-01 -2.2 2.12e+05 - 1.65e-01 3.23e-02h 3\n", - " 45 8.8864864e-01 7.24e-01 7.13e-01 -2.2 1.92e+05 - 1.00e-01 1.08e-01f 2\n", - " 46 1.6958696e+00 2.16e-01 1.19e+00 -2.2 4.17e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 1.6194287e+00 2.49e-01 1.14e+00 -2.2 6.80e+04 - 3.56e-01 6.80e-02h 4\n", - " 48 1.6113701e+00 2.73e-01 1.13e+00 -2.2 5.35e+04 - 2.67e-01 4.95e-03h 8\n", - " 49 7.2147086e-01 2.58e-01 3.15e-01 -2.2 2.61e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 7.0395503e-01 3.65e-01 3.67e-01 -2.7 1.18e+04 - 9.99e-01 6.25e-02h 5\n", - " 51 7.6626674e-01 3.14e-01 4.09e-01 -3.5 6.80e+03 - 1.00e+00 2.50e-01h 3\n", - " 52 7.1970495e-01 3.15e-01 1.17e-01 -3.4 1.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 7.1596436e-01 2.68e-01 1.39e-01 -3.1 2.68e+04 - 1.00e+00 3.12e-02h 6\n", - " 54 7.2278248e-01 2.25e-01 1.74e-01 -3.4 2.31e+04 - 9.99e-01 2.50e-01h 3\n", - " 55 7.7389419e-01 3.36e-01 1.79e-01 -3.5 9.11e+03 - 8.33e-01 1.00e+00h 1\n", - " 56 7.6791180e-01 3.11e-01 1.65e-01 -3.5 8.24e+05 - 3.39e-02 1.06e-02h 3\n", - " 57 7.1963360e-01 2.60e-01 3.30e-01 -3.5 5.23e+03 - 1.00e+00 5.00e-01h 2\n", - " 58 7.1500675e-01 2.93e-01 2.57e-01 -3.5 2.19e+04 - 1.00e+00 1.25e-01h 4\n", - " 59 7.2667981e-01 2.43e-01 4.89e-01 -3.2 1.66e+04 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 6.9678318e-01 3.55e-01 4.30e-01 -3.3 5.37e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 7.9679364e-01 1.89e-01 6.86e-01 -3.7 1.62e+04 - 4.26e-01 1.00e+00H 1\n", - " 62 7.2980858e-01 2.71e-01 1.49e-01 -3.6 1.95e+04 - 1.00e+00 1.00e+00h 1\n", - " 63 7.2356622e-01 2.62e-01 1.57e-01 -3.6 1.51e+04 - 1.00e+00 2.79e-02h 1\n", - " 64 7.0713211e-01 2.50e-01 4.24e-01 -3.6 3.80e+04 - 1.00e+00 1.37e-01h 3\n", - " 65 9.2167073e-01 1.32e-01 6.95e-01 -5.3 3.48e+02 - 1.00e+00 1.00e+00h 1\n", - " 66 7.2584644e-01 1.32e-01 1.91e-01 -4.9 1.37e+03 - 1.00e+00 1.00e+00h 1\n", - " 67 7.4515906e-01 1.93e-01 1.06e-01 -5.9 1.95e+03 - 8.41e-01 7.86e-01H 1\n", - " 68 7.6547411e-01 1.30e-01 7.63e-02 -6.4 4.21e+03 - 1.00e+00 3.32e-01H 1\n", - " 69 7.5228659e-01 2.15e-01 4.31e-02 -6.7 1.30e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.5705691e-01 1.64e-02 1.80e-01 -6.9 2.95e+02 - 1.00e+00 1.00e+00h 1\n", - " 71 7.7072692e-01 2.25e-01 3.05e-01 -7.0 1.30e+03 - 1.00e+00 1.00e+00h 1\n", - " 72 7.3093140e-01 2.90e-01 1.63e-01 -7.1 4.64e+03 - 1.00e+00 2.50e-01h 3\n", - " 73 8.8639878e-01 2.03e-01 3.64e-01 -7.1 2.70e+03 - 1.00e+00 1.00e+00H 1\n", - " 74 8.8396183e-01 2.01e-01 3.60e-01 -7.1 6.75e+04 - 4.41e-01 4.14e-03h 5\n", - " 75 8.8327546e-01 2.05e-01 3.61e-01 -7.1 1.31e+04 - 1.00e+00 1.40e-03h 10\n", - " 76 9.3235413e-01 1.27e-01 4.74e-02 -7.1 4.47e+03 - 3.72e-01 1.00e+00H 1\n", - " 77 7.6725310e-01 2.74e-01 1.86e-01 -7.1 1.84e+03 - 1.00e+00 1.00e+00h 1\n", - " 78 7.6997684e-01 1.58e-01 1.42e-01 -7.1 1.34e+04 - 6.37e-01 6.25e-02h 5\n", - " 79 7.4265982e-01 1.82e-01 7.62e-02 -7.1 1.16e+04 - 1.00e+00 3.36e-02h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 7.3045799e-01 3.62e-01 1.83e-01 -7.1 2.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 81 7.4006028e-01 2.21e-01 7.26e-02 -7.1 3.00e+03 - 6.26e-01 5.00e-01h 2\n", - " 82 7.4142764e-01 2.09e-01 9.77e-02 -7.1 3.87e+03 - 1.00e+00 2.01e-01h 3\n", - " 83 7.6556558e-01 2.89e-01 3.30e-01 -7.1 4.16e+03 - 1.00e+00 2.50e-01h 3\n", - " 84 7.6530756e-01 2.90e-01 3.30e-01 -7.1 1.17e+06 - 4.82e-02 3.26e-05h 8\n", - " 85 7.6509062e-01 2.91e-01 3.30e-01 -7.1 1.09e+07 - 4.24e-03 3.02e-06h 10\n", - " 86 7.6507633e-01 2.91e-01 3.30e-01 -7.1 7.96e+04 - 1.30e-01 1.06e-05h 14\n", - " 87 7.3667327e-01 3.40e-01 2.44e-01 -7.1 1.77e+05 - 8.65e-02 9.20e-02H 1\n", - " 88 1.0455109e+00 1.61e-01 1.77e-01 -7.1 1.47e+04 - 1.00e+00 1.00e+00H 1\n", - " 89 8.8139171e-01 1.61e-01 1.83e-01 -7.1 6.53e+03 - 8.64e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.8326385e-01 9.90e-02 1.16e-01 -7.1 3.36e+03 - 9.21e-01 1.00e+00h 1\n", - " 91 8.7695541e-01 1.52e-01 1.71e-01 -7.1 1.02e+04 - 9.78e-01 4.48e-01H 1\n", - " 92 8.8248655e-01 1.32e-01 1.35e-01 -7.1 1.50e+03 - 6.38e-06 1.25e-01h 4\n", - " 93 7.3091405e-01 2.69e-01 3.82e-01 -7.1 7.19e+03 - 1.14e-01 2.50e-01f 3\n", - " 94 7.1138867e-01 2.22e-01 4.46e-01 -7.1 3.55e+04 - 2.55e-01 8.47e-03h 1\n", - " 95 1.2746100e+00 1.02e-01 5.68e-01 -7.8 1.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 9.6442444e-01 4.79e-02 1.46e-01 -3.9 1.11e+03 - 4.54e-01 1.00e+00h 1\n", - " 97 9.5527791e-01 4.65e-02 1.47e-01 -3.9 2.09e+03 - 1.00e+00 2.86e-02h 1\n", - " 98 8.2946012e-01 1.06e-01 2.39e-01 -3.9 6.50e+03 - 1.00e+00 1.00e+00f 1\n", - " 99 1.0089684e+00 2.07e-02 1.16e-01 -3.9 1.51e+04 - 7.19e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.7177765e-01 6.65e-01 7.30e-01 -3.9 9.21e+04 - 2.50e-03 1.18e-01f 3\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.7177765049788349e-01 7.7177765049788349e-01\n", - "Dual infeasibility......: 7.3030714622163018e-01 7.3030714622163018e-01\n", - "Constraint violation....: 6.6518778871342121e-01 6.6518778871342121e-01\n", - "Complementarity.........: 1.6947305014870475e-04 1.6947305014870475e-04\n", - "Overall NLP error.......: 7.3030714622163018e-01 7.3030714622163018e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 341\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 341\n", - "Number of inequality constraint evaluations = 341\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.406\n", - "Total CPU secs in NLP function evaluations = 144.699\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 1.55ms ( 4.54us) 1.54ms ( 4.52us) 341\n", - " nlp_g | 15.38 s ( 45.10ms) 14.67 s ( 43.03ms) 341\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 348.00us ( 3.41us) 339.23us ( 3.33us) 102\n", - " nlp_jac_g | 132.08 s ( 1.29 s) 126.04 s ( 1.24 s) 102\n", - " total | 148.96 s (148.96 s) 142.14 s (142.14 s) 1\n", - "Timestamp 6300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.02e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0433308e+01 1.67e+01 3.02e+04 -1.5 3.02e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.5576249e+01 6.67e+00 1.83e+01 1.2 1.19e+03 - 9.99e-01 1.00e+00f 1\n", - " 3 2.5311211e+01 2.52e+00 7.87e-01 -0.9 2.53e+02 - 9.98e-01 1.00e+00h 1\n", - " 4 2.6784822e+01 1.64e-04 8.10e-02 -6.8 2.70e+00 - 9.90e-01 1.00e+00h 1\n", - " 5 2.6784941e+01 1.06e-05 4.44e-03 -4.4 2.79e-01 - 9.99e-01 1.00e+00h 1\n", - " 6 2.6784858e+01 6.84e-05 1.48e-03 -6.5 4.50e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 2.6782932e+01 1.25e-03 9.82e-04 -8.6 4.40e+00 - 1.00e+00 1.00e+00h 1\n", - " 8 2.6772619e+01 7.97e-03 2.22e-03 -11.0 2.74e+01 - 1.00e+00 1.00e+00h 1\n", - " 9 2.6781372e+01 1.24e-03 3.50e-03 -11.0 1.72e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.6774742e+01 6.36e-03 1.69e-03 -11.0 3.07e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 2.6782045e+01 1.41e-05 3.07e-03 -11.0 2.92e+01 - 1.00e+00 1.00e+00H 1\n", - " 12 2.6772314e+01 1.29e-02 3.13e-03 -11.0 4.20e+01 - 1.00e+00 1.00e+00f 1\n", - " 13 2.6750459e+01 1.32e-02 4.74e-03 -11.0 8.06e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.6778592e+01 1.49e-05 2.29e-02 -11.0 2.31e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 2.6778584e+01 8.03e-09 1.12e-04 -11.0 8.91e-05 - 1.00e+00 1.00e+00h 1\n", - " 16 2.6778584e+01 1.50e-08 9.24e-05 -11.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 2.6778584e+01 1.26e-08 2.54e-05 -11.0 1.39e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 2.6778584e+01 5.49e-09 3.77e-04 -11.0 4.52e-05 - 1.00e+00 1.00e+00h 1\n", - " 19 2.6778584e+01 2.07e-07 1.72e-04 -11.0 5.80e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.6778578e+01 9.59e-06 1.11e-02 -11.0 3.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 2.6778577e+01 4.03e-06 1.80e-03 -11.0 2.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 2.6778582e+01 3.12e-06 2.51e-03 -11.0 1.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 23 2.6778571e+01 8.23e-06 3.59e-03 -11.0 3.95e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 2.6778545e+01 6.88e-05 3.19e-03 -11.0 2.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 2.6778540e+01 2.65e-05 3.59e-03 -11.0 3.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 2.6778528e+01 1.92e-05 2.26e-03 -11.0 3.15e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 2.6778145e+01 1.67e-04 1.39e-03 -11.0 2.22e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 2.6768442e+01 5.61e-02 1.02e-03 -11.0 1.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 2.6654970e+01 3.62e-02 3.16e-03 -11.0 5.77e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.6751877e+01 1.13e-02 2.88e-03 -11.0 1.70e+03 - 1.00e+00 1.00e+00h 1\n", - " 31 2.6761777e+01 5.10e-03 2.32e-03 -11.0 5.22e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 2.6645218e+01 7.41e-02 4.48e-03 -11.0 6.50e+03 - 1.00e+00 1.00e+00f 1\n", - " 33 2.6750576e+01 1.58e-03 3.73e-03 -11.0 2.69e+02 - 1.00e+00 1.00e+00h 1\n", - " 34 2.6746632e+01 1.26e-03 2.38e-03 -11.0 4.62e+02 - 1.00e+00 1.00e+00h 1\n", - " 35 2.6632454e+01 1.20e-01 3.61e-03 -11.0 2.17e+04 - 1.00e+00 1.00e+00f 1\n", - " 36 2.6490784e+01 4.13e-01 1.07e-02 -9.0 5.67e+04 - 1.00e+00 1.44e-01h 1\n", - " 37 2.6489464e+01 4.14e-01 1.07e-02 -7.1 7.36e+04 - 1.00e+00 1.11e-03h 1\n", - " 38 2.6752744e+01 9.76e-06 4.57e-01 -9.0 4.70e-01 - 1.00e+00 1.00e+00h 1\n", - " 39 2.6752728e+01 1.96e-06 1.43e-03 -11.0 6.55e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.6752729e+01 1.08e-06 1.28e-03 -11.0 9.78e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 2.6752729e+01 1.40e-06 2.24e-03 -11.0 1.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 42 2.6752721e+01 3.03e-06 2.06e-03 -11.0 2.15e-02 - 1.00e+00 1.00e+00h 1\n", - " 43 2.6752732e+01 2.47e-09 2.36e-04 -11.0 4.41e-05 - 1.00e+00 1.00e+00h 1\n", - " 44 2.6752732e+01 7.23e-09 2.53e-05 -11.0 5.71e-05 - 1.00e+00 1.00e+00h 1\n", - " 45 2.6752732e+01 1.13e-08 1.01e-04 -11.0 1.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 46 2.6752732e+01 3.77e-08 1.02e-04 -11.0 1.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 2.6752732e+01 2.75e-08 6.05e-05 -11.0 6.82e-05 - 1.00e+00 1.00e+00h 1\n", - " 48 2.6752732e+01 9.24e-09 1.21e-04 -11.0 5.23e-05 - 1.00e+00 1.00e+00h 1\n", - " 49 2.6752732e+01 7.57e-09 7.06e-05 -11.0 2.38e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.6752732e+01 2.21e-09 1.02e-04 -11.0 1.38e-05 - 1.00e+00 1.00e+00h 1\n", - " 51 2.6752732e+01 1.89e-07 1.11e-04 -11.0 5.05e-04 - 1.00e+00 1.00e+00h 1\n", - " 52 2.6752732e+01 1.76e-07 1.59e-04 -11.0 9.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 53 2.6752732e+01 1.95e-07 1.85e-04 -11.0 6.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 54 2.6751059e+01 7.59e-04 6.28e-02 -11.0 2.44e+00 - 1.00e+00 1.00e+00f 1\n", - " 55 2.6752628e+01 2.57e-05 2.06e-03 -11.0 4.37e-01 - 1.00e+00 1.00e+00h 1\n", - " 56 2.6752390e+01 1.25e-04 3.23e-03 -11.0 3.69e-01 - 1.00e+00 1.00e+00h 1\n", - " 57 2.6752666e+01 4.85e-06 4.29e-03 -11.0 1.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 58 2.6752665e+01 1.29e-05 1.66e-03 -11.0 8.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 59 2.6752689e+01 1.25e-06 2.32e-03 -11.0 2.66e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.6752690e+01 1.68e-06 1.28e-03 -11.0 1.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 2.6752667e+01 2.32e-05 4.33e-03 -11.0 1.41e-01 - 1.00e+00 1.00e+00h 1\n", - " 62 2.6752671e+01 1.09e-05 1.18e-03 -11.0 7.99e-02 - 1.00e+00 1.00e+00h 1\n", - " 63 2.6752685e+01 3.82e-06 2.47e-03 -11.0 7.48e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 2.6752663e+01 1.68e-05 4.73e-03 -11.0 1.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 65 2.6752684e+01 8.77e-06 2.19e-03 -11.0 3.32e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 2.6752686e+01 4.58e-06 1.70e-03 -11.0 2.21e-02 - 1.00e+00 1.00e+00h 1\n", - " 67 2.6752584e+01 8.26e-05 7.33e-03 -11.0 5.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 68 2.6752688e+01 1.40e-08 9.95e-05 -11.0 5.60e-01 - 1.00e+00 1.00e+00H 1\n", - " 69 2.6752626e+01 5.72e-05 1.13e-03 -11.0 2.11e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.6752683e+01 8.94e-06 1.52e-03 -11.0 1.10e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 2.6752658e+01 1.66e-05 1.33e-03 -11.0 8.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 72 2.6752622e+01 1.09e-04 1.78e-03 -11.0 3.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 73 2.6752639e+01 4.42e-05 1.02e-03 -11.0 4.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 74 2.6752623e+01 7.12e-05 7.22e-04 -11.0 7.57e-01 - 1.00e+00 4.96e-01h 1\n", - " 75 2.6752623e+01 7.09e-05 7.31e-04 -11.0 5.21e-02 - 1.00e+00 3.91e-03h 9\n", - " 76 2.6752687e+01 6.29e-06 1.27e-03 -8.0 2.53e-01 - 3.99e-02 1.00e+00h 1\n", - " 77 2.6752684e+01 5.65e-05 1.44e-03 -9.5 3.87e-01 - 3.01e-01 1.00e+00h 1\n", - " 78 2.6733342e+01 1.44e-02 2.19e-02 -9.5 2.39e+01 - 1.00e+00 1.00e+00f 1\n", - " 79 2.6728841e+01 1.28e-02 2.87e-02 -7.4 3.94e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.6744271e+01 3.17e-03 6.36e-03 -5.4 3.36e+01 - 1.00e+00 8.29e-01h 1\n", - " 81 2.6753423e+01 6.13e-04 1.64e-03 -6.2 4.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 82 2.6721136e+01 1.67e-02 1.87e-03 -6.3 9.05e+02 - 6.52e-03 1.00e+00f 1\n", - " 83 2.6140163e+01 5.89e-01 2.21e-02 -7.0 4.56e+03 - 1.00e+00 1.00e+00f 1\n", - " 84 2.5811164e+01 4.08e-01 1.26e-02 -4.8 1.69e+04 - 1.00e+00 3.82e-01h 1\n", - " 85 2.6879578e+01 1.46e-03 2.79e-02 -4.3 9.03e+03 - 1.00e+00 1.00e+00H 1\n", - " 86 2.4949127e+01 1.86e+00 5.26e-02 -3.7 7.97e+03 - 1.00e+00 1.00e+00f 1\n", - " 87 2.5952103e+01 5.97e-01 7.73e-02 -1.6 5.46e+03 - 1.00e+00 9.07e-01h 1\n", - " 88 2.6419232e+01 2.03e-01 3.24e-02 -1.8 2.68e+03 - 1.00e+00 1.00e+00h 1\n", - " 89 2.0882236e+01 5.12e+00 1.61e-01 -7.7 8.98e+03 - 1.53e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.6397709e+01 2.50e-01 1.57e-01 -3.1 1.37e+03 - 1.00e+00 1.00e+00h 1\n", - " 91 1.9443082e+01 3.79e+00 2.66e-01 -3.8 1.33e+04 - 1.00e+00 1.00e+00f 1\n", - " 92 2.5161140e+01 7.68e-01 1.50e-01 -4.5 8.72e+03 - 1.00e+00 1.00e+00h 1\n", - " 93 2.5020601e+01 9.07e-01 1.22e-01 -2.4 4.35e+04 - 1.00e+00 5.91e-02h 1\n", - " 94 2.6128185e+01 5.14e-02 2.73e-02 -2.7 1.55e+03 - 5.79e-01 1.00e+00h 1\n", - " 95 2.5232752e+01 2.24e+00 6.20e-02 -3.7 1.25e+04 - 3.23e-01 1.00e+00f 1\n", - " 96 2.1451386e+01 1.21e+01 3.99e-01 -2.9 1.47e+05 - 4.47e-03 4.22e-01f 1\n", - " 97 2.1440120e+01 1.20e+01 3.98e-01 -2.9 4.77e+04 - 1.00e+00 1.75e-03h 1\n", - " 98 2.6025253e+01 1.46e+00 2.62e-01 -2.9 3.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 99 2.5330446e+01 6.39e-01 1.59e-01 -2.9 6.25e+03 - 9.96e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.6481655e+01 2.11e-01 1.21e-02 -8.9 2.62e+03 - 3.04e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.6481654805528912e+01 2.6481654805528912e+01\n", - "Dual infeasibility......: 1.2080934020166301e-02 1.2080934020166301e-02\n", - "Constraint violation....: 2.1057416442343424e-01 2.1057416442343424e-01\n", - "Complementarity.........: 9.4951226303991647e-04 9.4951226303991647e-04\n", - "Overall NLP error.......: 2.1057416442343424e-01 2.1057416442343424e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 112\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 112\n", - "Number of inequality constraint evaluations = 112\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.407\n", - "Total CPU secs in NLP function evaluations = 134.778\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 510.00us ( 4.55us) 499.41us ( 4.46us) 112\n", - " nlp_g | 5.04 s ( 45.00ms) 4.81 s ( 42.94ms) 112\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 360.00us ( 3.53us) 351.63us ( 3.45us) 102\n", - " nlp_jac_g | 132.49 s ( 1.30 s) 126.49 s ( 1.24 s) 102\n", - " total | 139.00 s (139.00 s) 132.71 s (132.71 s) 1\n", - "Timestamp 6600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.24e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9990787e+01 1.21e+01 1.24e+04 -1.5 1.24e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.1067712e+00 4.18e+00 6.76e+00 0.8 3.89e+02 - 9.99e-01 1.00e+00f 1\n", - " 3 2.4629140e+00 6.85e-01 6.42e-01 -1.2 1.08e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 2.7821829e+00 3.20e-03 3.43e-01 -3.0 3.52e+00 - 9.98e-01 1.00e+00h 1\n", - " 5 2.7829292e+00 2.77e-05 6.33e-03 -4.9 3.43e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.7829252e+00 4.61e-05 6.51e-04 -6.9 2.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.7829610e+00 1.49e-05 5.87e-04 -9.0 1.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.7829554e+00 1.40e-05 2.11e-03 -11.0 1.83e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 2.7824430e+00 4.56e-04 7.88e-03 -11.0 4.59e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.7822209e+00 4.34e-04 6.38e-03 -11.0 5.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 2.7708883e+00 7.25e-03 3.06e-02 -11.0 2.19e+01 - 1.00e+00 1.00e+00h 1\n", - " 12 2.7822342e+00 1.13e-06 9.96e-03 -11.0 9.96e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 2.7822341e+00 6.40e-07 1.39e-04 -11.0 1.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 2.7822346e+00 2.74e-07 3.85e-05 -11.0 7.57e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 2.7822349e+00 5.77e-08 1.55e-04 -11.0 1.60e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 2.7822343e+00 7.53e-07 8.81e-05 -11.0 1.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 2.7822345e+00 3.50e-07 8.06e-05 -11.0 1.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 18 2.7822343e+00 8.76e-07 9.20e-05 -11.0 2.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 2.7822346e+00 2.75e-07 1.41e-04 -11.0 1.30e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.7822346e+00 2.72e-07 1.19e-04 -11.0 8.20e-04 - 1.00e+00 1.00e+00h 1\n", - " 21 2.7822347e+00 1.76e-07 5.49e-05 -11.0 5.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 22 2.7822350e+00 8.48e-11 2.27e-05 -11.0 7.43e-04 - 1.00e+00 1.00e+00H 1\n", - " 23 2.7822350e+00 1.66e-08 1.24e-04 -11.0 3.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 2.7822348e+00 1.76e-07 1.04e-04 -11.0 3.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 25 2.7822349e+00 3.77e-08 1.21e-05 -11.0 6.21e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 2.7822349e+00 3.31e-08 5.43e-05 -11.0 7.32e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 2.7822348e+00 2.18e-07 4.40e-05 -11.0 4.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 28 2.7822328e+00 2.74e-06 3.99e-03 -11.0 1.67e-02 - 1.00e+00 1.00e+00h 1\n", - " 29 2.7822339e+00 9.69e-07 9.59e-04 -11.0 7.36e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.7822337e+00 9.91e-07 1.22e-03 -11.0 4.94e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 2.7822332e+00 4.53e-06 1.97e-03 -11.0 2.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 32 2.7822299e+00 4.51e-06 3.38e-03 -11.0 4.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 2.7822343e+00 1.39e-10 5.38e-05 -11.0 3.13e-02 - 1.00e+00 1.00e+00H 1\n", - " 34 2.7822215e+00 2.76e-05 2.03e-03 -11.0 1.57e-01 - 1.00e+00 1.00e+00h 1\n", - " 35 2.7822288e+00 1.81e-05 4.84e-04 -11.0 9.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 2.7821886e+00 2.81e-05 1.00e-03 -11.0 2.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 37 2.7822145e+00 1.75e-05 1.09e-03 -11.0 1.38e-01 - 1.00e+00 1.00e+00h 1\n", - " 38 2.7822305e+00 5.68e-07 8.45e-04 -11.0 1.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 2.7822286e+00 7.86e-06 1.19e-03 -11.0 3.08e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.7818861e+00 1.65e-03 9.12e-03 -11.0 4.10e+00 - 1.00e+00 1.00e+00h 1\n", - " 41 2.7820625e+00 1.56e-04 9.96e-04 -11.0 1.86e+00 - 1.00e+00 1.00e+00h 1\n", - " 42 2.7821615e+00 6.23e-05 2.09e-03 -11.0 9.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 43 2.7820637e+00 3.27e-04 7.62e-04 -11.0 5.58e-01 - 1.00e+00 1.00e+00h 1\n", - " 44 2.7795459e+00 2.11e-03 5.73e-03 -11.0 1.50e+01 - 1.00e+00 1.00e+00h 1\n", - " 45 2.7808343e+00 8.20e-04 1.07e-03 -11.0 1.33e+01 - 1.00e+00 1.00e+00h 1\n", - " 46 2.7816469e+00 1.82e-03 1.49e-03 -11.0 5.29e+01 - 1.00e+00 1.00e+00h 1\n", - " 47 2.7775577e+00 1.17e-02 3.76e-03 -11.0 2.01e+02 - 1.00e+00 1.00e+00h 1\n", - " 48 2.7707062e+00 2.13e-02 4.40e-03 -11.0 4.71e+02 - 1.00e+00 1.00e+00h 1\n", - " 49 2.7691390e+00 1.06e-02 3.38e-03 -11.0 4.31e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.7789207e+00 1.36e-03 4.45e-03 -11.0 1.81e+01 - 1.00e+00 1.00e+00h 1\n", - " 51 2.7767698e+00 1.26e-03 2.26e-03 -11.0 2.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 52 2.7634701e+00 2.01e-02 8.28e-03 -11.0 1.22e+02 - 1.00e+00 1.00e+00h 1\n", - " 53 2.7775312e+00 1.28e-05 2.08e-02 -11.0 2.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 2.7775444e+00 1.93e-08 7.27e-05 -11.0 1.80e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 2.7775444e+00 1.91e-08 8.33e-05 -11.0 7.90e-05 - 1.00e+00 1.00e+00h 1\n", - " 56 2.7775444e+00 2.57e-08 4.15e-05 -11.0 1.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 2.7775442e+00 5.28e-07 6.88e-05 -11.0 2.34e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 2.7775441e+00 1.89e-07 3.96e-05 -11.0 2.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 2.7775436e+00 1.16e-06 1.17e-03 -11.0 7.45e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.7775443e+00 4.93e-08 1.65e-04 -11.0 1.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 2.7775404e+00 3.76e-06 8.90e-04 -11.0 1.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 2.7775443e+00 1.15e-07 1.47e-05 -11.0 1.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 63 2.7775444e+00 9.14e-09 3.85e-05 -11.0 5.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 2.7775372e+00 1.06e-05 3.48e-03 -11.0 1.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 65 2.7774915e+00 2.80e-05 1.38e-02 -11.0 4.07e-01 - 1.00e+00 1.00e+00h 1\n", - " 66 2.7774574e+00 1.38e-04 1.04e-03 -11.0 3.48e+00 - 1.00e+00 1.00e+00h 1\n", - " 67 2.7766397e+00 1.28e-03 2.11e-03 -11.0 1.14e+01 - 1.00e+00 1.00e+00h 1\n", - " 68 2.7766154e+00 2.20e-03 8.77e-04 -11.0 7.36e+01 - 1.00e+00 1.00e+00h 1\n", - " 69 2.7732758e+00 8.45e-03 2.59e-03 -11.0 6.02e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.7771863e+00 3.57e-04 2.46e-03 -11.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 71 2.7755472e+00 2.09e-03 2.87e-03 -11.0 3.85e+01 - 1.00e+00 1.00e+00h 1\n", - " 72 2.7765028e+00 8.15e-04 1.10e-03 -11.0 5.76e+00 - 1.00e+00 1.00e+00h 1\n", - " 73 2.7764023e+00 3.42e-03 1.38e-03 -11.0 3.66e+01 - 1.00e+00 1.00e+00h 1\n", - " 74 2.7753085e+00 4.03e-03 1.73e-03 -11.0 5.78e+01 - 1.00e+00 1.00e+00h 1\n", - " 75 2.7634719e+00 4.40e-02 1.30e-02 -11.0 8.21e+02 - 1.00e+00 1.00e+00h 1\n", - " 76 2.7282340e+00 9.69e-03 4.66e-02 -11.0 2.39e+04 - 1.00e+00 1.00e+00F 1\n", - " 77 2.5020390e+00 6.11e-01 4.16e-01 -10.8 1.69e+04 - 1.00e+00 5.00e-01f 2\n", - " 78 3.0878584e+00 3.33e-01 5.05e-01 -10.9 3.67e+03 - 1.00e+00 1.00e+00h 1\n", - " 79 2.6391891e+00 2.68e-01 1.03e-01 -10.9 4.46e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.4531903e+00 6.16e-01 8.04e-01 -8.9 5.12e+04 - 1.00e+00 7.91e-01F 1\n", - " 81 2.4430115e+00 6.19e-01 7.90e-01 -7.0 2.22e+04 - 1.00e+00 1.16e-02h 1\n", - " 82 2.4430041e+00 6.18e-01 7.89e-01 -5.0 2.79e+03 - 1.00e+00 9.24e-04h 1\n", - " 83 2.7382103e+00 8.82e-02 3.19e-01 -5.3 5.04e+03 - 1.00e+00 1.00e+00h 1\n", - " 84 2.4446048e+00 4.50e-01 2.87e-01 -5.3 9.67e+03 - 7.23e-01 1.00e+00f 1\n", - " 85 2.4443587e+00 4.49e-01 2.87e-01 -5.3 5.62e+04 - 9.82e-01 1.02e-04h 1\n", - " 86 2.4940295e+00 2.59e-01 1.15e-01 -5.3 2.04e+04 - 4.62e-02 2.93e-01h 1\n", - " 87 2.6632689e+00 1.43e-01 1.04e-01 -6.4 1.58e+03 - 9.92e-01 1.00e+00H 1\n", - " 88 2.6119523e+00 4.70e-01 8.61e-02 -1.8 2.17e+03 - 4.81e-01 1.00e+00f 1\n", - " 89 2.5814525e+00 6.24e-01 1.68e-01 -2.3 4.23e+04 - 1.00e+00 5.05e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.6874933e+00 4.56e-02 2.04e-01 -2.3 2.56e+03 - 1.00e+00 1.00e+00h 1\n", - " 91 2.6842898e+00 1.02e-01 3.65e-01 -2.9 1.25e+03 - 9.99e-01 1.00e+00h 1\n", - " 92 2.4713808e+00 9.01e-01 4.68e-01 -3.0 9.92e+04 - 4.09e-02 2.81e-01f 2\n", - " 93 2.4467284e+00 8.24e-01 4.39e-01 -3.0 1.06e+06 - 3.56e-02 1.30e-02h 1\n", - " 94 2.4494753e+00 8.37e-01 4.28e-01 -3.0 5.10e+04 - 2.92e-01 1.50e-02f 7\n", - " 95 2.3534597e+00 3.33e-01 1.19e-01 -3.0 9.33e+03 - 1.88e-01 1.00e+00h 1\n", - " 96 2.7470217e+00 8.42e-03 6.69e-01 -4.8 8.65e-01 - 1.00e+00 1.00e+00h 1\n", - " 97 2.7505244e+00 4.99e-07 2.59e-04 -6.7 1.04e-02 - 1.00e+00 1.00e+00h 1\n", - " 98 2.7505237e+00 4.15e-07 9.55e-05 -8.8 1.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 99 2.7505244e+00 1.10e-07 6.90e-05 -11.0 7.72e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.7505191e+00 3.34e-06 4.26e-03 -11.0 1.57e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.7505190794731500e+00 2.7505190794731500e+00\n", - "Dual infeasibility......: 4.2632499478917063e-03 4.2632499478917063e-03\n", - "Constraint violation....: 3.3377553734226240e-06 3.3377553734226240e-06\n", - "Complementarity.........: 1.0000000001032024e-11 1.0000000001032024e-11\n", - "Overall NLP error.......: 4.2632499478917063e-03 4.2632499478917063e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 125\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 125\n", - "Number of inequality constraint evaluations = 125\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.435\n", - "Total CPU secs in NLP function evaluations = 135.123\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 586.00us ( 4.69us) 570.16us ( 4.56us) 125\n", - " nlp_g | 5.63 s ( 45.06ms) 5.38 s ( 43.02ms) 125\n", - " nlp_grad | 1.40 s ( 1.40 s) 1.34 s ( 1.34 s) 1\n", - " nlp_grad_f | 404.00us ( 3.96us) 362.31us ( 3.55us) 102\n", - " nlp_jac_g | 132.28 s ( 1.30 s) 126.25 s ( 1.24 s) 102\n", - " total | 139.46 s (139.46 s) 133.11 s (133.11 s) 1\n", - "Timestamp 6900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.24e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0013212e+01 1.45e+01 2.24e+03 -1.5 2.24e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.4013325e+00 5.33e+00 9.76e+00 0.4 1.45e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.0759054e+01 1.56e+00 6.06e-01 -1.6 8.95e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.1886859e+01 2.59e-03 8.55e-02 -3.4 2.15e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.1888132e+01 7.69e-08 1.09e-04 -5.3 2.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1888132e+01 1.77e-07 5.83e-05 -11.0 1.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1888132e+01 7.12e-08 8.10e-05 -11.0 1.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1888132e+01 7.15e-11 2.57e-05 -11.0 4.85e-04 - 1.00e+00 1.00e+00H 1\n", - " 9 1.1888132e+01 7.10e-09 2.38e-05 -11.0 2.95e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1888132e+01 1.62e-08 8.95e-05 -11.0 1.62e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 1.1888132e+01 1.37e-07 1.08e-04 -11.0 1.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1888131e+01 1.02e-06 3.46e-03 -11.0 1.68e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1888132e+01 4.98e-08 2.85e-05 -11.0 1.67e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 1.1888132e+01 3.24e-09 3.33e-05 -11.0 4.93e-05 - 1.00e+00 1.00e+00h 1\n", - " 15 1.1888132e+01 4.42e-09 2.42e-04 -11.0 6.61e-05 - 1.00e+00 1.00e+00h 1\n", - " 16 1.1888132e+01 2.48e-08 6.77e-05 -11.0 6.14e-05 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1888132e+01 1.01e-08 3.87e-04 -11.0 8.60e-05 - 1.00e+00 1.00e+00h 1\n", - " 18 1.1888132e+01 1.68e-07 5.36e-05 -11.0 3.36e-04 - 1.00e+00 1.00e+00h 1\n", - " 19 1.1888132e+01 3.08e-08 3.23e-05 -11.0 1.22e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.1888132e+01 4.79e-09 7.92e-05 -11.0 7.79e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 1.1888132e+01 2.84e-08 1.19e-04 -11.0 1.95e-04 - 1.00e+00 1.00e+00h 1\n", - " 22 1.1888132e+01 2.44e-07 1.41e-04 -11.0 8.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 1.1888132e+01 3.01e-08 8.89e-05 -11.0 1.80e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 1.1888132e+01 2.13e-08 5.97e-05 -11.0 1.71e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 1.1888132e+01 1.75e-09 1.45e-05 -11.0 1.87e-05 - 1.00e+00 1.00e+00h 1\n", - " 26 1.1888132e+01 1.02e-10 1.88e-04 -11.0 7.91e-05 - 1.00e+00 1.00e+00H 1\n", - " 27 1.1888132e+01 5.39e-08 5.45e-05 -11.0 5.09e-04 - 1.00e+00 1.00e+00h 1\n", - " 28 1.1888132e+01 1.67e-10 3.32e-05 -11.0 2.90e-04 - 1.00e+00 1.00e+00H 1\n", - " 29 1.1888132e+01 2.68e-08 3.18e-05 -11.0 3.04e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1888132e+01 9.64e-08 1.24e-04 -11.0 6.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 31 1.1888131e+01 1.82e-06 6.17e-03 -11.0 6.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 32 1.1888130e+01 1.05e-06 8.49e-03 -11.0 7.37e-03 - 1.00e+00 1.00e+00h 1\n", - " 33 1.1888131e+01 9.88e-08 2.94e-05 -11.0 6.51e-04 - 1.00e+00 1.00e+00h 1\n", - " 34 1.1888131e+01 1.59e-07 1.01e-04 -11.0 3.54e-03 - 1.00e+00 1.00e+00h 1\n", - " 35 1.1888131e+01 9.11e-07 5.32e-03 -11.0 5.72e-03 - 1.00e+00 1.00e+00h 1\n", - " 36 1.1888132e+01 6.37e-09 5.59e-05 -11.0 4.43e-05 - 1.00e+00 1.00e+00h 1\n", - " 37 1.1888132e+01 2.03e-09 1.88e-04 -11.0 2.66e-05 - 1.00e+00 1.00e+00h 1\n", - " 38 1.1888132e+01 1.80e-08 2.08e-05 -11.0 3.42e-05 - 1.00e+00 1.00e+00h 1\n", - " 39 1.1888132e+01 4.16e-09 7.62e-05 -11.0 3.73e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.1888132e+01 8.28e-09 1.26e-04 -11.0 2.77e-05 - 1.00e+00 1.00e+00h 1\n", - " 41 1.1888132e+01 3.62e-08 1.26e-04 -11.0 1.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 42 1.1888132e+01 9.69e-09 5.78e-05 -11.0 4.41e-05 - 1.00e+00 1.00e+00h 1\n", - " 43 1.1888132e+01 7.78e-09 8.13e-05 -11.0 5.03e-05 - 1.00e+00 1.00e+00h 1\n", - " 44 1.1888132e+01 2.39e-08 3.05e-05 -11.0 2.85e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 1.1888132e+01 9.04e-09 4.55e-05 -11.0 1.78e-04 - 1.00e+00 1.00e+00h 1\n", - " 46 1.1858333e+01 1.15e-02 1.47e-01 -11.0 4.05e+02 - 1.00e+00 1.00e+00f 1\n", - " 47 1.1774558e+01 6.29e-02 4.02e-03 -11.0 3.33e+02 - 1.00e+00 1.00e+00h 1\n", - " 48 1.1683777e+01 7.17e-02 6.78e-03 -11.0 2.46e+02 - 1.00e+00 1.00e+00h 1\n", - " 49 1.1863730e+01 1.29e-02 6.19e-03 -11.0 5.32e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.1880485e+01 1.23e-04 3.58e-03 -11.0 7.11e+01 - 1.00e+00 1.00e+00H 1\n", - " 51 1.1871427e+01 1.29e-02 5.34e-03 -11.0 1.11e+02 - 1.00e+00 1.00e+00h 1\n", - " 52 1.1832378e+01 8.31e-02 5.26e-03 -11.0 1.24e+02 - 1.00e+00 1.00e+00h 1\n", - " 53 1.1871824e+01 4.78e-03 3.98e-03 -11.0 5.91e+01 - 1.00e+00 1.00e+00h 1\n", - " 54 1.1858695e+01 2.08e-02 3.04e-03 -11.0 5.45e+01 - 1.00e+00 1.00e+00h 1\n", - " 55 1.1835667e+01 2.84e-02 2.93e-03 -11.0 1.25e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 1.1876094e+01 9.64e-05 3.53e-03 -11.0 5.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 57 1.1856504e+01 1.57e-02 1.99e-03 -11.0 9.44e+01 - 1.00e+00 1.00e+00f 1\n", - " 58 1.1844730e+01 1.19e-02 1.58e-03 -11.0 5.64e+01 - 1.00e+00 1.00e+00h 1\n", - " 59 1.0849160e+01 6.02e-01 5.19e-02 -11.0 2.25e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.1864259e+01 7.52e-02 7.48e-02 -11.0 4.49e+02 - 1.00e+00 1.00e+00h 1\n", - " 61 1.1577586e+01 2.10e-01 1.07e-02 -11.0 1.30e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 1.1442634e+01 3.56e-01 2.71e-03 -11.0 1.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 63 1.1526817e+01 3.47e-01 3.01e-02 -11.0 1.33e+03 - 1.00e+00 1.00e+00h 1\n", - " 64 1.1724329e+01 1.38e-01 2.21e-02 -11.0 1.59e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 1.1675253e+01 1.29e-01 3.49e-02 -11.0 5.28e+03 - 1.00e+00 1.00e+00h 1\n", - " 66 1.1894244e+01 4.76e-02 1.12e-02 -11.0 2.16e+03 - 1.00e+00 1.00e+00h 1\n", - " 67 9.5084894e+00 2.65e+00 2.39e-01 -11.0 1.52e+04 - 1.00e+00 1.00e+00f 1\n", - " 68 8.9860162e+00 2.55e+00 3.72e-01 -9.0 6.69e+04 - 1.00e+00 3.01e-01h 1\n", - " 69 1.2060597e+01 1.41e-01 3.57e-01 -9.9 2.74e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.6013401e+00 6.59e+00 2.09e-01 -10.0 1.25e+05 - 2.37e-02 4.80e-01f 1\n", - " 71 1.1060363e+01 1.05e+00 3.78e-01 -10.2 7.29e+03 - 1.00e+00 1.00e+00h 1\n", - " 72 1.0243768e+01 2.14e+00 6.37e-02 -4.4 1.10e+04 - 4.39e-01 1.00e+00h 1\n", - " 73 1.0239262e+01 2.13e+00 6.29e-02 -2.7 4.03e+04 - 1.00e+00 3.27e-03h 1\n", - " 74 1.1406034e+01 6.88e-01 1.37e-01 -3.5 7.49e+03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.1288865e+01 6.05e-01 4.75e-02 -3.6 4.47e+03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.1654081e+01 4.16e-01 8.59e-02 -2.9 2.87e+03 - 1.00e+00 1.00e+00h 1\n", - " 77 1.1089712e+01 3.52e+00 2.12e-01 -3.0 1.13e+04 - 3.50e-01 1.00e+00f 1\n", - " 78 1.1083294e+01 3.49e+00 2.10e-01 -3.0 1.01e+05 - 5.52e-01 1.79e-03h 1\n", - " 79 1.1411013e+01 5.41e-01 1.45e-01 -3.0 4.08e+03 - 5.60e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 9.7037411e+00 3.82e+00 2.49e-01 -9.0 7.17e+04 - 8.08e-02 4.18e-01f 1\n", - " 81 9.6579740e+00 3.91e+00 2.63e-01 -3.3 1.29e+06 - 1.77e-03 2.35e-04f 1\n", - " 82 1.0791154e+01 2.16e+00 5.33e-02 -3.3 2.70e+03 - 1.00e+00 4.52e-01h 1\n", - " 83 1.2084684e+01 2.28e-01 1.66e-01 -3.3 1.20e+03 - 4.90e-01 1.00e+00h 1\n", - " 84 1.2173239e+01 1.48e-01 8.86e-02 -3.3 1.82e+03 - 4.06e-01 1.00e+00h 1\n", - " 85 1.2074309e+01 3.08e-01 4.57e-02 -3.3 4.94e+04 - 7.27e-01 6.11e-02h 1\n", - " 86 1.2282264e+01 9.22e-02 1.14e-01 -3.3 2.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 87 1.2426169e+01 4.75e-02 4.15e-02 -3.3 8.68e+02 - 1.00e+00 1.00e+00h 1\n", - " 88 1.2376259e+01 5.60e-02 4.46e-02 -3.3 3.74e+02 - 8.25e-01 1.00e+00h 1\n", - " 89 1.2162577e+01 1.28e-01 1.25e-02 -3.3 1.99e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90r 1.2162577e+01 1.28e-01 9.99e+02 -0.9 0.00e+00 - 0.00e+00 3.95e-07R 20\n", - " 91r 1.2444383e+01 4.97e-02 8.37e+02 -3.0 1.68e+02 - 1.00e+00 1.77e-03f 1\n", - " 92r 1.2533480e+01 1.08e-02 9.66e-01 -1.1 4.91e-01 - 1.00e+00 3.48e-01f 1\n", - " 93 1.2510390e+01 1.64e-02 4.18e-01 -3.3 3.85e+02 - 1.00e+00 1.95e-01h 1\n", - " 94 1.2475607e+01 3.81e-03 1.43e-02 -3.3 6.32e+03 - 5.92e-01 1.00e+00F 1\n", - " 95 1.2475032e+01 3.82e-03 1.42e-02 -3.3 1.45e+04 - 1.00e+00 4.25e-04h 2\n", - " 96 1.2463835e+01 1.81e-02 1.52e-03 -3.3 1.03e+03 - 1.00e+00 1.00e+00h 1\n", - " 97 1.2476678e+01 1.17e-03 2.62e-03 -3.3 8.98e+02 - 1.00e+00 1.00e+00H 1\n", - " 98 1.2470893e+01 1.00e-02 2.11e-03 -4.9 5.22e+02 - 3.45e-01 1.22e-01h 1\n", - " 99 1.2262542e+01 4.01e-01 2.09e-02 -4.9 3.28e+03 - 1.15e-02 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.2371348e+01 1.86e-01 6.55e-03 -4.9 5.28e+02 - 1.00e+00 5.00e-01h 2\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.2371347882143215e+01 1.2371347882143215e+01\n", - "Dual infeasibility......: 6.5508768732365219e-03 6.5508768732365219e-03\n", - "Constraint violation....: 1.8649714782083393e-01 1.8649714782083393e-01\n", - "Complementarity.........: 1.8325498153168711e-05 1.8325498153168711e-05\n", - "Overall NLP error.......: 1.8649714782083393e-01 1.8649714782083393e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 132\n", - "Number of objective gradient evaluations = 100\n", - "Number of equality constraint evaluations = 132\n", - "Number of inequality constraint evaluations = 132\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.395\n", - "Total CPU secs in NLP function evaluations = 136.654\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 581.00us ( 4.40us) 576.99us ( 4.37us) 132\n", - " nlp_g | 5.86 s ( 44.40ms) 5.59 s ( 42.32ms) 132\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 387.00us ( 3.83us) 378.69us ( 3.75us) 101\n", - " nlp_jac_g | 133.51 s ( 1.30 s) 127.46 s ( 1.24 s) 103\n", - " total | 140.84 s (140.84 s) 134.45 s (134.45 s) 1\n", - "Timestamp 7200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.97e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9875913e+01 1.43e+01 4.97e+03 -1.5 4.97e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.5211848e+00 5.14e+00 1.02e+01 0.6 5.12e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 1.1293767e+01 1.60e+00 8.63e-01 -1.5 1.30e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 1.2414975e+01 1.68e-03 9.00e-02 -3.3 2.13e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.2415820e+01 7.42e-06 3.31e-03 -5.1 1.83e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.2415606e+01 9.51e-05 5.30e-03 -7.2 3.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 1.2415803e+01 7.68e-06 1.93e-03 -9.3 6.88e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.2415614e+01 8.23e-05 1.67e-03 -11.0 2.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.2403316e+01 5.05e-03 1.23e-02 -11.0 1.79e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.2416371e+01 2.43e-04 1.61e-03 -11.0 1.49e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 1.2413453e+01 6.61e-04 7.23e-03 -11.0 3.87e+01 - 1.00e+00 1.00e+00h 1\n", - " 12 1.2410960e+01 1.91e-03 1.02e-02 -11.0 4.45e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.2401945e+01 1.48e-02 1.70e-02 -11.0 7.58e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.2410645e+01 2.37e-06 1.21e-02 -11.0 1.28e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 1.2410645e+01 6.67e-07 1.35e-04 -11.0 2.87e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 1.2410644e+01 1.63e-06 1.01e-03 -11.0 4.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 1.2410645e+01 2.29e-07 5.53e-05 -11.0 2.07e-03 - 1.00e+00 1.00e+00h 1\n", - " 18 1.2410645e+01 2.85e-07 1.07e-04 -11.0 1.51e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 1.2410645e+01 2.80e-07 1.81e-04 -11.0 8.93e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.2410644e+01 1.63e-06 3.17e-03 -11.0 3.98e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 1.2410645e+01 1.14e-07 1.67e-04 -11.0 2.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 1.2410640e+01 4.63e-06 3.48e-03 -11.0 1.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 23 1.2410645e+01 6.27e-07 8.86e-05 -11.0 4.83e-03 - 1.00e+00 1.00e+00h 1\n", - " 24 1.2410644e+01 1.15e-06 1.35e-03 -11.0 6.72e-03 - 1.00e+00 1.00e+00h 1\n", - " 25 1.2410644e+01 6.93e-07 2.64e-03 -11.0 5.55e-03 - 1.00e+00 1.00e+00h 1\n", - " 26 1.2410644e+01 7.52e-07 1.62e-03 -11.0 9.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 27 1.2410645e+01 1.86e-10 2.54e-04 -11.0 1.05e-02 - 1.00e+00 1.00e+00H 1\n", - " 28 1.2410637e+01 6.81e-06 5.63e-04 -11.0 9.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 29 1.2410645e+01 6.16e-10 8.12e-05 -11.0 1.21e-02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.2410644e+01 8.69e-07 1.14e-03 -11.0 3.37e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 1.2410644e+01 5.13e-07 8.30e-05 -11.0 2.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 32 1.2410645e+01 3.67e-07 2.13e-04 -11.0 1.82e-03 - 1.00e+00 1.00e+00h 1\n", - " 33 1.2410644e+01 4.55e-07 1.69e-04 -11.0 1.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 34 1.2410644e+01 1.41e-06 2.95e-03 -11.0 3.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 35 1.2410641e+01 3.28e-06 8.44e-03 -11.0 1.27e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 1.2410645e+01 1.86e-07 3.97e-05 -11.0 2.54e-03 - 1.00e+00 1.00e+00h 1\n", - " 37 1.2410644e+01 8.51e-07 2.86e-03 -11.0 8.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 38 1.2410629e+01 1.26e-05 4.92e-03 -11.0 2.59e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 1.2410645e+01 1.60e-08 9.62e-05 -11.0 9.82e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.2410645e+01 6.33e-09 3.71e-05 -11.0 5.52e-05 - 1.00e+00 1.00e+00h 1\n", - " 41 1.2410645e+01 9.76e-10 6.05e-05 -11.0 1.40e-05 - 1.00e+00 1.00e+00h 1\n", - " 42 1.2410645e+01 8.93e-09 1.62e-04 -11.0 2.35e-05 - 1.00e+00 1.00e+00h 1\n", - " 43 1.2410645e+01 6.05e-09 3.95e-05 -11.0 2.57e-05 - 1.00e+00 1.00e+00h 1\n", - " 44 1.2410645e+01 2.34e-09 1.49e-04 -11.0 3.06e-05 - 1.00e+00 1.00e+00h 1\n", - " 45 1.2410645e+01 5.40e-08 4.42e-05 -11.0 1.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 46 1.2410645e+01 1.29e-08 3.91e-05 -11.0 1.75e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 1.2410645e+01 1.52e-09 6.00e-05 -11.0 2.02e-05 - 1.00e+00 1.00e+00h 1\n", - " 48 1.2410645e+01 2.86e-09 1.00e-04 -11.0 4.64e-05 - 1.00e+00 1.00e+00h 1\n", - " 49 1.2410645e+01 7.65e-09 1.30e-04 -11.0 5.00e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.2410645e+01 8.58e-11 1.02e-04 -11.0 4.40e-05 - 1.00e+00 1.00e+00H 1\n", - " 51 1.2410645e+01 4.08e-09 1.50e-04 -11.0 2.34e-05 - 1.00e+00 1.00e+00h 1\n", - " 52 1.2410645e+01 3.49e-09 5.25e-05 -11.0 1.46e-05 - 1.00e+00 1.00e+00h 1\n", - " 53 1.2410645e+01 1.22e-10 1.53e-04 -11.0 1.21e-05 - 1.00e+00 1.00e+00H 1\n", - " 54 1.2410645e+01 9.59e-09 1.89e-04 -11.0 3.68e-05 - 1.00e+00 1.00e+00h 1\n", - " 55 1.2410645e+01 1.83e-08 3.92e-05 -11.0 5.43e-05 - 1.00e+00 1.00e+00h 1\n", - " 56 1.2410645e+01 3.20e-09 6.41e-05 -11.0 5.87e-05 - 1.00e+00 1.00e+00h 1\n", - " 57 1.2410644e+01 2.94e-07 9.93e-06 -11.0 5.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.2410645e+01 1.57e-07 2.30e-04 -11.0 6.41e-04 - 1.00e+00 5.00e-01h 2\n", - " 59 1.2410636e+01 3.21e-06 2.75e-03 -11.0 1.33e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.2410313e+01 3.71e-04 1.71e-02 -11.0 5.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 61 1.2410572e+01 4.20e-05 3.37e-03 -11.0 2.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 62 1.2410532e+01 3.68e-05 1.22e-03 -11.0 1.88e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 1.2410622e+01 3.13e-06 3.49e-03 -11.0 1.98e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 1.2410613e+01 7.71e-06 1.36e-03 -11.0 1.44e-01 - 1.00e+00 1.00e+00h 1\n", - " 65 1.2410612e+01 2.51e-05 1.24e-03 -11.0 1.70e-01 - 1.00e+00 1.00e+00h 1\n", - " 66 1.2410628e+01 4.23e-09 3.86e-05 -11.0 9.38e-02 - 1.00e+00 1.00e+00H 1\n", - " 67 1.2410628e+01 6.87e-07 1.76e-03 -11.0 1.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 1.2410627e+01 8.89e-07 1.06e-03 -11.0 1.66e-02 - 1.00e+00 1.00e+00h 1\n", - " 69 1.2410599e+01 3.59e-05 3.47e-03 -11.0 1.55e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.2410423e+01 1.19e-04 2.37e-03 -11.0 5.77e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 1.2410434e+01 4.67e-05 1.08e-03 -11.0 3.28e-01 - 1.00e+00 1.00e+00h 1\n", - " 72 1.2410629e+01 3.11e-06 2.14e-03 -11.0 1.49e-01 - 1.00e+00 1.00e+00h 1\n", - " 73 1.2410106e+01 1.15e-04 4.42e-03 -11.0 4.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 74 1.2410391e+01 1.41e-04 2.60e-03 -11.0 4.81e-01 - 1.00e+00 1.00e+00h 1\n", - " 75 1.2410617e+01 4.26e-05 2.47e-03 -11.0 2.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 1.2410607e+01 5.35e-05 2.40e-03 -11.0 5.79e-01 - 1.00e+00 1.00e+00h 1\n", - " 77 1.2410523e+01 1.22e-04 3.18e-03 -11.0 1.31e+00 - 1.00e+00 1.00e+00h 1\n", - " 78 1.2408883e+01 1.16e-03 5.28e-03 -11.0 4.82e+00 - 1.00e+00 1.00e+00h 1\n", - " 79 1.2410668e+01 7.45e-08 4.98e-05 -11.0 1.78e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.2410667e+01 1.78e-07 1.16e-04 -11.0 1.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 1.2410654e+01 2.53e-05 6.60e-03 -11.0 6.59e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 1.2410666e+01 1.50e-06 1.19e-03 -11.0 2.03e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.2410602e+01 4.32e-05 3.02e-03 -11.0 1.68e-01 - 1.00e+00 1.00e+00h 1\n", - " 84 1.2410660e+01 7.41e-06 1.75e-03 -11.0 6.28e-02 - 1.00e+00 1.00e+00h 1\n", - " 85 1.2410660e+01 3.30e-06 6.58e-04 -11.0 3.82e-02 - 1.00e+00 1.00e+00h 1\n", - " 86 1.2410591e+01 1.15e-04 9.23e-03 -11.0 5.03e-01 - 1.00e+00 1.00e+00h 1\n", - " 87 1.2410637e+01 3.08e-05 1.03e-03 -11.0 1.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 1.2410199e+01 2.34e-04 1.04e-03 -11.0 3.47e+00 - 1.00e+00 1.00e+00h 1\n", - " 89 1.2349500e+01 3.49e-02 6.78e-03 -11.0 5.38e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.2407594e+01 2.26e-03 3.17e-03 -11.0 3.80e+01 - 1.00e+00 1.00e+00h 1\n", - " 91 1.2396465e+01 6.63e-03 2.41e-03 -11.0 3.33e+01 - 1.00e+00 1.00e+00h 1\n", - " 92 1.2318672e+01 2.21e-01 1.73e-02 -11.0 7.15e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.2424178e+01 7.75e-03 2.75e-02 -11.0 1.17e+03 - 1.00e+00 1.00e+00H 1\n", - " 94 1.2397033e+01 6.58e-02 4.52e-03 -11.0 7.48e+02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.1888714e+01 5.28e-01 2.88e-02 -11.0 2.54e+03 - 1.00e+00 1.00e+00f 1\n", - " 96 1.2377841e+01 3.66e-02 5.57e-02 -11.0 6.83e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 1.2332462e+01 5.67e-02 2.85e-02 -11.0 3.32e+02 - 1.00e+00 1.00e+00h 1\n", - " 98 1.2392804e+01 1.03e-02 4.01e-03 -11.0 2.67e+02 - 1.00e+00 1.00e+00h 1\n", - " 99 1.2338321e+01 8.56e-02 1.53e-02 -11.0 9.36e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.1863362e+01 3.01e+00 1.64e-01 -11.0 1.43e+04 - 1.00e+00 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.1863362310740611e+01 1.1863362310740611e+01\n", - "Dual infeasibility......: 1.6408154030262617e-01 1.6408154030262617e-01\n", - "Constraint violation....: 3.0095294544231344e+00 3.0095294544231344e+00\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 3.0095294544231344e+00 3.0095294544231344e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 108\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 108\n", - "Number of inequality constraint evaluations = 108\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.426\n", - "Total CPU secs in NLP function evaluations = 134.461\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 507.00us ( 4.69us) 495.64us ( 4.59us) 108\n", - " nlp_g | 4.87 s ( 45.11ms) 4.64 s ( 43.00ms) 108\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 396.00us ( 3.88us) 386.72us ( 3.79us) 102\n", - " nlp_jac_g | 132.33 s ( 1.30 s) 126.34 s ( 1.24 s) 102\n", - " total | 138.68 s (138.68 s) 132.40 s (132.40 s) 1\n", - "Timestamp 7500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 8.73e+02 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9980014e+01 1.41e+01 8.73e+02 -1.5 8.73e+02 - 9.90e-01 1.00e+00f 1\n", - " 2 9.0993293e+00 5.11e+00 9.49e+00 0.4 1.41e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 9.5275454e+00 1.43e+00 6.06e-01 -1.6 8.33e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.0543945e+01 2.49e-03 8.25e-02 -3.4 2.00e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.0545136e+01 2.49e-07 1.21e-04 -5.3 2.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.0545136e+01 1.39e-07 8.48e-05 -11.0 8.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 1.0545136e+01 8.04e-08 5.73e-05 -11.0 3.46e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 1.0545136e+01 2.81e-08 1.11e-04 -11.0 1.33e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 1.0545136e+01 2.92e-08 1.24e-04 -11.0 1.58e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.0545136e+01 1.78e-08 4.60e-05 -11.0 7.56e-05 - 1.00e+00 1.00e+00h 1\n", - " 11 1.0545136e+01 8.54e-09 1.18e-04 -11.0 3.18e-05 - 1.00e+00 1.00e+00h 1\n", - " 12 1.0545136e+01 2.12e-07 3.72e-05 -11.0 7.21e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 1.0545136e+01 4.55e-08 6.16e-05 -11.0 8.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 1.0545136e+01 6.34e-07 4.25e-03 -11.0 6.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 1.0545133e+01 1.73e-06 1.03e-03 -11.0 5.34e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 1.0545136e+01 1.96e-07 1.86e-05 -11.0 2.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 1.0545136e+01 1.51e-07 6.92e-05 -11.0 1.48e-03 - 1.00e+00 1.00e+00h 1\n", - " 18 1.0545136e+01 4.33e-07 1.31e-04 -11.0 3.96e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 1.0545135e+01 5.69e-07 2.16e-03 -11.0 2.24e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.0544969e+01 8.38e-05 9.02e-03 -11.0 3.97e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 1.0544623e+01 2.05e-04 7.75e-03 -11.0 1.62e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 1.0544919e+01 1.31e-04 2.42e-03 -11.0 6.60e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.0545108e+01 3.80e-09 1.28e-04 -11.0 2.08e+00 - 1.00e+00 1.00e+00H 1\n", - " 24 1.0544436e+01 6.54e-04 4.41e-03 -11.0 1.93e+00 - 1.00e+00 1.00e+00f 1\n", - " 25 1.0544724e+01 6.58e-04 2.44e-03 -11.0 2.76e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 1.0545052e+01 3.67e-05 1.92e-03 -11.0 7.23e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 1.0544965e+01 1.17e-04 2.34e-03 -11.0 9.18e-01 - 1.00e+00 1.00e+00h 1\n", - " 28 1.0544727e+01 2.45e-04 1.49e-03 -11.0 3.12e+00 - 1.00e+00 1.00e+00h 1\n", - " 29 1.0545104e+01 3.19e-08 7.43e-05 -11.0 3.26e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.0545104e+01 5.39e-08 9.32e-05 -11.0 1.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 31 1.0545103e+01 5.41e-07 6.28e-05 -11.0 2.20e-03 - 1.00e+00 1.00e+00h 1\n", - " 32 1.0545104e+01 2.43e-08 2.80e-04 -11.0 2.08e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 1.0545103e+01 8.98e-08 4.62e-05 -11.0 2.07e-04 - 1.00e+00 1.00e+00h 1\n", - " 34 1.0545103e+01 1.49e-07 3.54e-05 -11.0 9.61e-04 - 1.00e+00 1.00e+00h 1\n", - " 35 1.0545103e+01 4.40e-08 1.36e-04 -11.0 6.20e-04 - 1.00e+00 1.00e+00h 1\n", - " 36 1.0545103e+01 4.68e-08 3.65e-04 -11.0 2.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 1.0545103e+01 1.81e-07 1.32e-04 -11.0 6.24e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 1.0545103e+01 7.73e-08 1.77e-04 -11.0 5.25e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 1.0545103e+01 9.30e-08 7.90e-05 -11.0 8.69e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.0545103e+01 6.13e-08 4.77e-05 -11.0 3.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 41 1.0545103e+01 8.35e-08 9.79e-05 -11.0 1.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 1.0545103e+01 4.22e-07 1.61e-04 -11.0 2.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 43 1.0545100e+01 1.92e-06 4.20e-03 -11.0 2.88e-02 - 1.00e+00 1.00e+00h 1\n", - " 44 1.0545104e+01 1.40e-08 3.96e-05 -11.0 4.61e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 1.0545102e+01 3.28e-06 1.92e-03 -11.0 1.50e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.0545044e+01 1.16e-04 4.68e-03 -11.0 5.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 47 1.0545070e+01 4.74e-05 1.97e-03 -11.0 6.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 48 1.0545045e+01 7.66e-05 2.36e-03 -11.0 4.60e-01 - 1.00e+00 1.00e+00h 1\n", - " 49 1.0545087e+01 3.74e-05 2.61e-03 -11.0 3.91e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.0545063e+01 4.92e-05 1.14e-03 -11.0 1.71e+00 - 1.00e+00 1.00e+00h 1\n", - " 51 1.0545006e+01 7.90e-05 1.93e-03 -11.0 1.22e+00 - 1.00e+00 1.00e+00h 1\n", - " 52 1.0544537e+01 3.82e-04 2.76e-03 -11.0 8.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 53 1.0544734e+01 1.78e-04 1.46e-03 -11.0 7.60e+00 - 1.00e+00 1.00e+00h 1\n", - " 54 1.0535718e+01 1.57e-02 2.50e-03 -11.0 3.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.0521191e+01 9.53e-02 6.43e-03 -11.0 1.04e+03 - 1.00e+00 1.00e+00h 1\n", - " 56 1.0194385e+01 3.46e-01 3.00e-02 -11.0 1.73e+03 - 1.00e+00 1.00e+00h 1\n", - " 57 1.0389120e+01 4.11e-02 3.58e-02 -11.0 2.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.0217586e+01 3.13e-01 2.01e-02 -11.0 4.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.0395677e+01 1.44e-01 1.16e-02 -11.0 1.08e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 9.2552474e+00 8.40e-01 1.06e-01 -11.0 5.54e+03 - 1.00e+00 1.00e+00f 1\n", - " 61 9.7926806e+00 9.49e-01 9.39e-02 -11.0 3.12e+04 - 1.00e+00 1.00e+00h 1\n", - " 62 9.2242004e+00 1.91e+00 1.22e-01 -10.7 2.51e+04 - 1.00e+00 1.00e+00h 1\n", - " 63 9.8582800e+00 1.57e+00 9.15e-02 -10.9 1.35e+04 - 1.00e+00 1.00e+00h 1\n", - " 64 9.4925377e+00 4.59e+00 1.93e-01 -11.0 3.24e+04 - 1.00e+00 9.79e-01h 1\n", - " 65 9.4655701e+00 4.53e+00 1.88e-01 -11.0 6.46e+04 - 5.13e-11 2.81e-02h 1\n", - " 66 9.0441714e+00 2.25e+00 3.38e-01 -11.0 7.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 67 8.5857953e+00 2.99e+00 2.32e-01 -9.4 7.64e+03 - 8.15e-01 1.00e+00h 1\n", - " 68 8.4874827e+00 2.95e+00 2.37e-01 -3.3 1.00e+04 - 2.58e-02 1.31e-01h 1\n", - " 69 1.0069077e+01 8.40e-01 2.31e-01 -4.4 1.58e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 9.7563282e+00 3.36e-01 1.95e-01 -4.0 3.11e+04 - 1.00e+00 4.27e-01h 1\n", - " 71 9.7158084e+00 4.06e-01 1.82e-01 -3.3 2.00e+04 - 1.00e+00 2.01e-01h 1\n", - " 72 1.0493179e+01 1.25e-01 3.77e-02 -3.6 1.44e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 1.0623650e+01 1.13e-02 8.08e-03 -3.4 6.92e+02 - 7.02e-01 1.00e+00h 1\n", - " 74 1.0361468e+01 9.32e+00 7.90e-01 -3.4 1.29e+05 - 1.43e-03 4.71e-01f 1\n", - " 75 1.0357184e+01 9.31e+00 7.89e-01 -3.4 2.31e+04 - 7.52e-01 1.11e-03h 1\n", - " 76 1.0464820e+01 9.68e-02 9.03e-01 -3.4 3.28e+03 - 1.00e+00 1.00e+00h 1\n", - " 77 1.0414059e+01 5.41e-02 7.23e-02 -3.4 5.10e+02 - 1.00e+00 1.00e+00h 1\n", - " 78 1.0465822e+01 3.96e-02 6.42e-03 -3.4 9.76e+02 - 5.79e-01 1.00e+00h 1\n", - " 79 1.0461185e+01 4.40e-02 5.71e-03 -3.5 3.26e+04 - 9.76e-01 1.46e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.0424793e+01 6.63e-02 8.85e-03 -4.5 5.66e+02 - 1.00e+00 1.00e+00h 1\n", - " 81 9.8571040e+00 3.27e-01 2.76e-02 -4.6 1.58e+03 - 1.00e+00 1.00e+00f 1\n", - " 82 1.0095598e+01 1.00e-01 5.51e-03 -4.6 8.73e+02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.0377548e+01 4.11e-02 1.29e-02 -5.6 1.11e+03 - 1.00e+00 7.21e-01H 1\n", - " 84 8.1927119e+00 1.08e+00 2.68e-01 -4.7 8.46e+03 - 3.53e-01 1.00e+00f 1\n", - " 85 8.1008165e+00 8.71e-01 1.88e-01 -3.1 1.28e+04 - 1.00e+00 1.42e-01h 1\n", - " 86 8.5915439e+00 1.07e+00 5.84e-02 -3.0 2.32e+03 - 1.00e+00 1.00e+00h 1\n", - " 87 9.9733091e+00 3.64e-01 1.27e-01 -2.9 9.80e+02 - 1.00e+00 1.00e+00h 1\n", - " 88 9.6686039e+00 4.47e-01 4.42e-02 -1.9 3.20e+03 - 7.82e-01 7.45e-01h 1\n", - " 89 9.9492522e+00 2.05e-01 4.30e-02 -2.1 1.30e+03 - 5.58e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.0264746e+01 8.06e-02 1.79e-02 -3.0 5.30e+02 - 9.97e-01 1.00e+00h 1\n", - " 91 1.0389823e+01 1.87e-02 8.57e-03 -4.6 2.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 92 1.0369784e+01 3.48e-02 2.51e-02 -5.0 3.59e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 9.7104870e+00 4.06e-01 8.51e-02 -4.8 1.97e+03 - 1.00e+00 1.00e+00f 1\n", - " 94 8.5700757e+00 1.17e+00 1.01e-01 -4.5 4.93e+03 - 1.00e+00 1.00e+00f 1\n", - " 95 6.3173445e+00 4.43e+00 4.74e-01 -4.6 8.97e+03 - 1.00e+00 1.00e+00f 1\n", - " 96 8.3751879e+00 1.57e+00 5.00e-01 -4.4 1.02e+04 - 1.00e+00 1.00e+00H 1\n", - " 97 7.1122092e+00 3.60e+00 2.21e-01 -4.5 2.18e+04 - 7.02e-01 1.00e+00f 1\n", - " 98 6.6140711e+00 4.41e+00 3.11e-01 -4.5 5.59e+04 - 1.00e+00 3.82e-01f 1\n", - " 99 5.3457038e+00 2.35e+00 4.89e-01 -4.5 3.21e+04 - 1.52e-01 3.99e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.1992689e+00 1.70e+00 5.28e-01 -4.7 1.50e+04 - 1.30e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.1992689086962915e+00 8.1992689086962915e+00\n", - "Dual infeasibility......: 5.2811854542878767e-01 5.2811854542878767e-01\n", - "Constraint violation....: 1.7030895856018091e+00 1.7030895856018091e+00\n", - "Complementarity.........: 9.1430750521755610e-04 9.1430750521755610e-04\n", - "Overall NLP error.......: 1.7030895856018091e+00 1.7030895856018091e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 106\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 106\n", - "Number of inequality constraint evaluations = 106\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.445\n", - "Total CPU secs in NLP function evaluations = 134.741\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 472.00us ( 4.45us) 471.13us ( 4.44us) 106\n", - " nlp_g | 4.81 s ( 45.37ms) 4.59 s ( 43.31ms) 106\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 362.00us ( 3.55us) 361.74us ( 3.55us) 102\n", - " nlp_jac_g | 132.72 s ( 1.30 s) 126.71 s ( 1.24 s) 102\n", - " total | 139.01 s (139.01 s) 132.72 s (132.72 s) 1\n" + "Timestamp 1500\n" ] }, { - "name": "stderr", - "output_type": "stream", - "text": [ - ":51: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).\n", - " plt.figure(figsize = (15, 5))\n" + "ename": "RuntimeError", + "evalue": ".../casadi/core/function_internal.hpp:1257: Input 1 (p) has mismatching shape. Got 15-by-1. Allowed dimensions, in general, are:\n - The input dimension N-by-M (here 14-by-1)\n - A scalar, i.e. 1-by-1\n - M-by-N if N=1 or M=1 (i.e. a transposed vector)\n - N-by-M1 if K*M1=M for some K (argument repeated horizontally)\n - N-by-P*M, indicating evaluation with multiple arguments (P must be a multiple of 1 for consistency with previous inputs)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 19\u001b[0m )\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 21\u001b[0;31m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msolver\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mreal_p\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlbg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mreal_lbg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mubg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mreal_ubg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 22\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0mdf_power\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdf_power\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'time'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mcurrent_timestamp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Heat'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'x'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mN_horizon\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python3.9/site-packages/casadi/casadi.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 8504\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8505\u001b[0m \u001b[0;31m# Named inputs -> return dictionary\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8506\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcall\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8507\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8508\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mbuffer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python3.9/site-packages/casadi/casadi.py\u001b[0m in \u001b[0;36mcall\u001b[0;34m(self, *args)\u001b[0m\n\u001b[1;32m 7677\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7678\u001b[0m \"\"\"\n\u001b[0;32m-> 7679\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_casadi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mFunction_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7680\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7681\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmapsum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;34m\"std::vector< casadi::MX,std::allocator< casadi::MX > >\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mRuntimeError\u001b[0m: .../casadi/core/function_internal.hpp:1257: Input 1 (p) has mismatching shape. Got 15-by-1. Allowed dimensions, in general, are:\n - The input dimension N-by-M (here 14-by-1)\n - A scalar, i.e. 1-by-1\n - M-by-N if N=1 or M=1 (i.e. a transposed vector)\n - N-by-M1 if K*M1=M for some K (argument repeated horizontally)\n - N-by-P*M, indicating evaluation with multiple arguments (P must be a multiple of 1 for consistency with previous inputs)" ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Timestamp 7800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.10e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9981840e+01 1.47e+01 1.10e+04 -1.5 1.10e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.0445731e+01 5.35e+00 1.02e+01 0.6 1.14e+02 - 9.99e-01 1.00e+00f 1\n", - " 3 1.3473671e+01 1.85e+00 8.79e-01 -1.5 2.80e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.4738282e+01 1.10e-03 9.57e-02 -3.2 2.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.4738752e+01 9.55e-06 4.45e-03 -5.1 4.35e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.4738767e+01 1.34e-06 1.29e-03 -7.2 1.84e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 1.4738761e+01 5.50e-06 2.05e-03 -9.3 5.83e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.4738756e+01 7.55e-06 1.39e-03 -11.0 3.55e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 1.4738741e+01 2.68e-05 2.37e-03 -11.0 1.23e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.4738447e+01 1.68e-04 7.91e-03 -11.0 3.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.4738783e+01 1.86e-05 2.52e-03 -11.0 5.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.4738790e+01 9.75e-07 1.11e-03 -11.0 3.06e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 1.4738752e+01 3.46e-05 2.59e-03 -11.0 1.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.4738672e+01 6.69e-05 3.14e-03 -11.0 4.70e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.4738676e+01 5.07e-05 1.75e-03 -11.0 2.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.4738769e+01 7.22e-06 4.21e-03 -11.0 5.20e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 1.4738718e+01 2.25e-05 2.27e-03 -11.0 4.97e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 1.4738766e+01 3.55e-06 1.68e-03 -11.0 1.73e-02 - 1.00e+00 1.00e+00h 1\n", - " 19 1.4738774e+01 3.04e-06 2.14e-03 -11.0 1.54e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.4738773e+01 1.95e-06 3.07e-03 -11.0 1.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.4738762e+01 1.21e-05 1.91e-03 -11.0 4.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.4738772e+01 6.75e-06 1.58e-03 -11.0 2.48e-02 - 1.00e+00 1.00e+00h 1\n", - " 23 1.4738768e+01 8.08e-06 2.03e-03 -11.0 2.82e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 1.4738688e+01 4.77e-05 9.54e-03 -11.0 2.22e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 1.4738772e+01 5.43e-06 1.87e-03 -11.0 5.29e-02 - 1.00e+00 1.00e+00h 1\n", - " 26 1.4738765e+01 3.96e-06 1.63e-03 -11.0 3.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 27 1.4738773e+01 1.78e-06 1.99e-03 -11.0 2.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 28 1.4738775e+01 1.34e-06 1.44e-03 -11.0 1.56e-02 - 1.00e+00 1.00e+00h 1\n", - " 29 1.4738773e+01 7.34e-06 1.20e-03 -11.0 1.43e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.4738630e+01 7.78e-05 2.90e-03 -11.0 5.07e-01 - 1.00e+00 1.00e+00h 1\n", - " 31 1.4737856e+01 5.59e-04 6.47e-03 -11.0 3.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 32 1.4738582e+01 1.22e-07 1.35e-04 -11.0 1.59e+00 - 1.00e+00 1.00e+00H 1\n", - " 33 1.4738071e+01 5.77e-04 1.27e-03 -11.0 1.97e+00 - 1.00e+00 1.00e+00h 1\n", - " 34 1.4738243e+01 1.32e-04 9.94e-04 -11.0 1.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 35 1.4738539e+01 4.24e-05 1.47e-03 -11.0 5.53e-01 - 1.00e+00 1.00e+00h 1\n", - " 36 1.4737006e+01 5.94e-04 1.64e-03 -11.0 1.75e+01 - 1.00e+00 1.00e+00h 1\n", - " 37 1.4738619e+01 6.71e-04 1.35e-03 -11.0 3.15e+00 - 1.00e+00 1.00e+00h 1\n", - " 38 1.4738742e+01 1.48e-04 1.90e-03 -11.0 2.54e+00 - 1.00e+00 1.00e+00h 1\n", - " 39 1.4735725e+01 2.27e-03 3.42e-03 -11.0 1.68e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.4738806e+01 3.59e-04 2.55e-03 -11.0 5.56e+00 - 1.00e+00 1.00e+00h 1\n", - " 41 1.4330278e+01 9.32e+00 5.10e-01 -11.0 3.25e+04 - 9.67e-01 9.69e-01f 1\n", - " 42r 1.4330278e+01 9.32e+00 9.99e+02 1.0 0.00e+00 - 0.00e+00 3.43e-11R 2\n", - " 43r 1.3833960e+01 1.22e+00 8.64e+02 -5.1 1.22e+03 - 1.00e+00 6.66e-03f 1\n", - " 44 1.4297337e+01 4.00e-04 1.73e-02 -4.6 9.57e+00 - 1.25e-01 1.00e+00h 1\n", - " 45 1.4297111e+01 4.57e-04 1.64e-02 -6.2 6.18e+01 - 1.00e+00 2.48e-02h 1\n", - " 46 1.4297534e+01 1.09e-04 4.80e-03 -5.8 7.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 47 1.4297792e+01 2.17e-05 1.15e-03 -6.8 5.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 48 1.4295667e+01 2.99e-03 7.39e-03 -8.7 8.95e+01 - 1.00e+00 1.00e+00h 1\n", - " 49 1.4291128e+01 5.51e-03 4.52e-03 -9.4 1.53e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.4275668e+01 4.44e-02 8.67e-03 -7.4 9.54e+02 - 5.71e-01 1.00e+00h 1\n", - " 51 1.4259352e+01 6.00e-02 8.49e-03 -5.7 2.28e+03 - 8.07e-03 1.00e+00h 1\n", - " 52 1.4046444e+01 2.40e-01 1.02e-02 -11.0 5.24e+06 - 1.43e-05 2.28e-03f 1\n", - " 53 1.4065059e+01 2.22e-01 9.02e-03 -5.5 1.66e+03 - 1.00e+00 7.21e-02h 1\n", - " 54 1.4314497e+01 2.48e-03 1.34e-02 -4.3 6.98e+01 - 1.00e+00 1.00e+00h 1\n", - " 55 1.4272490e+01 1.86e-02 2.78e-03 -3.8 1.40e+02 - 4.58e-01 1.00e+00h 1\n", - " 56 1.4322456e+01 9.32e-06 5.38e-02 -5.9 5.61e-02 - 1.00e+00 1.00e+00h 1\n", - " 57 1.4322464e+01 1.03e-06 1.27e-03 -7.8 4.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.4322450e+01 6.70e-06 1.88e-03 -9.9 5.48e-02 - 1.00e+00 1.00e+00h 1\n", - " 59 1.4322441e+01 7.73e-06 1.61e-03 -11.0 6.43e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.4322439e+01 1.41e-05 2.52e-03 -11.0 2.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 61 1.4322344e+01 8.82e-05 3.18e-03 -11.0 9.07e-01 - 1.00e+00 1.00e+00h 1\n", - " 62 1.4322442e+01 5.92e-05 2.53e-03 -11.0 1.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 1.4322437e+01 5.06e-05 1.62e-03 -11.0 2.73e-01 - 1.00e+00 1.00e+00h 1\n", - " 64 1.4322417e+01 6.61e-05 2.67e-03 -11.0 1.84e-01 - 1.00e+00 1.00e+00h 1\n", - " 65 1.4322358e+01 9.65e-05 2.42e-03 -11.0 4.84e-01 - 1.00e+00 1.00e+00h 1\n", - " 66 1.4322452e+01 9.89e-09 2.86e-05 -11.0 2.28e-01 - 1.00e+00 1.00e+00H 1\n", - " 67 1.4322413e+01 2.36e-05 4.36e-03 -11.0 3.84e-01 - 1.00e+00 1.00e+00h 1\n", - " 68 1.4322235e+01 2.24e-04 1.48e-03 -11.0 2.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 69 1.4321959e+01 1.10e-03 1.52e-03 -11.0 1.42e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.4322158e+01 8.54e-04 2.58e-03 -11.0 5.80e+00 - 1.00e+00 1.00e+00h 1\n", - " 71 1.4318932e+01 2.02e-03 1.78e-03 -11.0 7.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 72 1.4313065e+01 7.81e-03 2.38e-03 -11.0 1.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 73 1.4296633e+01 1.15e-02 2.69e-03 -11.0 1.90e+02 - 9.90e-01 1.00e+00h 1\n", - " 74 1.4322396e+01 2.08e-06 2.94e-02 -11.0 3.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 75 1.4322393e+01 2.50e-06 1.04e-03 -11.0 7.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.4322397e+01 1.45e-07 2.11e-04 -11.0 1.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 1.4322397e+01 4.65e-07 2.60e-04 -11.0 1.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.4322397e+01 5.70e-07 1.78e-03 -11.0 2.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 1.4322396e+01 1.24e-06 2.87e-03 -11.0 4.94e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.4322397e+01 2.36e-07 5.32e-05 -11.0 2.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 1.4322398e+01 2.89e-11 6.91e-05 -11.0 1.98e-03 - 1.00e+00 1.00e+00H 1\n", - " 82 1.4322397e+01 6.97e-08 7.04e-05 -11.0 6.53e-04 - 1.00e+00 1.00e+00h 1\n", - " 83 1.4322397e+01 1.27e-07 5.03e-05 -11.0 2.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 84 1.4322397e+01 1.61e-07 1.44e-04 -11.0 1.80e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 1.4322397e+01 5.02e-07 9.91e-05 -11.0 1.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 86 1.4322397e+01 2.06e-07 1.79e-04 -11.0 8.42e-04 - 1.00e+00 1.00e+00h 1\n", - " 87 1.4322397e+01 2.10e-07 6.13e-05 -11.0 6.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 88 1.4322397e+01 9.52e-08 4.60e-05 -11.0 5.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 89 1.4322398e+01 1.15e-07 8.91e-05 -11.0 4.14e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.4322397e+01 3.78e-07 8.94e-05 -11.0 1.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 91 1.4322396e+01 8.30e-07 2.34e-03 -11.0 5.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 1.4322397e+01 9.07e-08 2.98e-04 -11.0 1.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 93 1.4322397e+01 4.84e-07 2.66e-05 -11.0 6.22e-04 - 1.00e+00 1.00e+00h 1\n", - " 94 1.4322398e+01 6.96e-08 1.80e-04 -11.0 4.76e-04 - 1.00e+00 1.00e+00h 1\n", - " 95 1.4322392e+01 1.16e-06 6.21e-03 -11.0 7.92e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 1.4322396e+01 7.23e-07 2.08e-03 -11.0 3.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 97 1.4322395e+01 1.93e-06 2.34e-03 -11.0 1.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 98 1.4322398e+01 2.84e-10 1.60e-04 -11.0 5.52e-03 - 1.00e+00 1.00e+00H 1\n", - " 99 1.4322397e+01 9.27e-07 1.23e-03 -11.0 2.89e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.4322397e+01 3.65e-07 7.46e-05 -11.0 2.54e-03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.4322397342410332e+01 1.4322397342410332e+01\n", - "Dual infeasibility......: 7.4635599901387334e-05 7.4635599901387334e-05\n", - "Constraint violation....: 3.6482396836845510e-07 3.6482396836845510e-07\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 7.4635599901387334e-05 7.4635599901387334e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 107\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 107\n", - "Number of inequality constraint evaluations = 107\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.444\n", - "Total CPU secs in NLP function evaluations = 136.157\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 486.00us ( 4.54us) 478.50us ( 4.47us) 107\n", - " nlp_g | 4.82 s ( 45.00ms) 4.59 s ( 42.90ms) 107\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 367.00us ( 3.60us) 360.60us ( 3.54us) 102\n", - " nlp_jac_g | 134.15 s ( 1.30 s) 128.06 s ( 1.24 s) 103\n", - " total | 140.43 s (140.43 s) 134.06 s (134.06 s) 1\n", - "Timestamp 8100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.79e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0049803e+01 1.37e+01 3.79e+03 -1.5 3.79e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.6472942e+00 4.92e+00 8.72e+00 0.4 2.28e+01 - 9.97e-01 1.00e+00f 1\n", - " 3 7.2013449e+00 1.19e+00 7.75e-01 -1.6 7.21e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 8.0317799e+00 3.47e-03 9.06e-02 -3.3 1.74e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 8.0333998e+00 1.04e-06 8.04e-04 -5.2 3.52e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 8.0334012e+00 3.38e-07 1.02e-04 -7.3 2.39e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 8.0333975e+00 4.79e-06 1.30e-03 -11.0 2.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 8.0333857e+00 1.18e-05 4.56e-03 -11.0 4.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 8.0330471e+00 2.03e-04 9.45e-03 -11.0 1.06e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 8.0322494e+00 7.15e-04 2.06e-02 -11.0 1.93e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 8.0334673e+00 7.22e-06 2.48e-03 -11.0 2.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 8.0334633e+00 9.87e-06 1.59e-03 -11.0 1.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 8.0334303e+00 3.80e-05 3.79e-03 -11.0 2.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 8.0334630e+00 2.08e-05 5.33e-03 -11.0 2.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 8.0334564e+00 2.12e-05 2.39e-03 -11.0 1.44e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 8.0334626e+00 1.59e-05 1.85e-03 -11.0 6.01e-02 - 1.00e+00 2.50e-01h 3\n", - " 17 8.0333904e+00 6.22e-05 2.59e-03 -11.0 1.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 7.4242443e+00 3.26e-01 3.37e-02 -11.0 1.22e+03 - 1.00e+00 1.00e+00f 1\n", - " 19 7.9756273e+00 3.83e-02 2.28e-02 -11.0 3.53e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.0018609e+00 2.50e-02 1.97e-02 -11.0 2.15e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 8.0420120e+00 2.57e-02 3.65e-03 -11.0 1.46e+02 - 1.00e+00 1.00e+00h 1\n", - " 22 8.0602291e+00 8.64e-03 2.31e-03 -11.0 1.31e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 8.0701609e+00 4.69e-05 2.98e-03 -11.0 3.86e+01 - 1.00e+00 1.00e+00H 1\n", - " 24 7.7492419e+00 1.16e-01 1.74e-02 -11.0 8.72e+02 - 1.00e+00 1.00e+00f 1\n", - " 25 7.5690204e+00 2.47e-01 5.62e-03 -11.0 9.63e+02 - 1.00e+00 1.00e+00h 1\n", - " 26 8.0127056e+00 1.71e-03 4.04e-01 -11.0 4.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 8.0142527e+00 1.07e-06 1.54e-03 -11.0 5.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 28 8.0142553e+00 2.48e-07 1.00e-04 -11.0 1.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 29 8.0142556e+00 1.82e-07 1.35e-04 -11.0 9.28e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.0091332e+00 2.94e-03 7.00e-02 -11.0 1.24e+01 - 1.00e+00 1.00e+00f 1\n", - " 31 8.0130135e+00 5.18e-04 1.03e-03 -11.0 3.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 32 8.0127635e+00 1.40e-03 1.01e-03 -11.0 3.80e+00 - 1.00e+00 1.00e+00h 1\n", - " 33 8.0114430e+00 1.76e-03 2.45e-03 -11.0 3.95e+00 - 1.00e+00 1.00e+00h 1\n", - " 34 8.0113187e+00 3.02e-03 1.94e-03 -11.0 3.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 35 8.0131181e+00 8.70e-04 2.16e-03 -11.0 3.15e+00 - 1.00e+00 1.00e+00h 1\n", - " 36 8.0096328e+00 1.72e-03 1.76e-03 -11.0 6.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 37 8.0135493e+00 1.33e-04 1.18e-03 -11.0 2.67e+00 - 1.00e+00 1.00e+00h 1\n", - " 38 8.0123861e+00 2.22e-03 3.55e-03 -11.0 1.54e+01 - 1.00e+00 1.00e+00h 1\n", - " 39 8.0062604e+00 5.16e-03 2.18e-03 -11.0 4.03e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.0036283e+00 1.86e-02 1.85e-03 -11.0 3.84e+01 - 1.00e+00 1.00e+00h 1\n", - " 41 8.0116810e+00 1.35e-03 2.46e-03 -11.0 1.11e+01 - 1.00e+00 1.00e+00h 1\n", - " 42 8.0100024e+00 1.67e-03 1.19e-03 -11.0 8.66e+00 - 1.00e+00 1.00e+00h 1\n", - " 43 8.0133888e+00 3.43e-04 2.23e-03 -11.0 2.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 44 8.0129362e+00 9.65e-04 8.86e-04 -11.0 7.56e+00 - 1.00e+00 1.00e+00h 1\n", - " 45 8.0127509e+00 1.97e-03 7.84e-04 -11.0 8.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 46 8.0132821e+00 4.79e-04 1.27e-03 -11.0 3.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 47 8.0136307e+00 3.87e-04 1.04e-03 -11.0 1.78e+00 - 1.00e+00 1.00e+00h 1\n", - " 48 8.0103542e+00 3.26e-03 2.44e-03 -11.0 2.58e+01 - 1.00e+00 1.00e+00h 1\n", - " 49 8.0141440e+00 6.77e-07 5.26e-05 -11.0 1.51e+01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.0048324e+00 6.62e-03 2.73e-03 -11.0 3.94e+01 - 1.00e+00 1.00e+00f 1\n", - " 51 8.0128136e+00 3.21e-03 1.30e-03 -11.0 1.52e+01 - 1.00e+00 1.00e+00h 1\n", - " 52 8.0106574e+00 2.40e-03 1.48e-03 -11.0 1.03e+01 - 1.00e+00 1.00e+00h 1\n", - " 53 7.9803136e+00 4.30e-02 5.17e-03 -11.0 1.10e+02 - 1.00e+00 1.00e+00h 1\n", - " 54 7.9931536e+00 6.68e-03 1.53e-03 -11.0 6.64e+01 - 1.00e+00 1.00e+00h 1\n", - " 55 7.9646853e+00 2.37e-02 5.60e-03 -11.0 1.13e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 8.0099339e+00 9.07e-03 2.68e-03 -11.0 4.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 57 8.0137507e+00 1.91e-03 1.21e-03 -11.0 8.94e+00 - 1.00e+00 1.00e+00h 1\n", - " 58 8.0127103e+00 7.96e-04 1.53e-03 -11.0 9.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 59 8.0122447e+00 1.06e-03 1.95e-03 -11.0 7.99e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.0148040e+00 5.66e-06 1.21e-03 -11.0 2.14e+01 - 1.00e+00 1.00e+00H 1\n", - " 61 8.0144905e+00 1.94e-04 1.29e-03 -11.0 1.07e+01 - 1.00e+00 1.00e+00h 1\n", - " 62 8.0138619e+00 5.88e-04 8.12e-04 -11.0 8.20e+00 - 1.00e+00 1.00e+00h 1\n", - " 63 8.0147899e+00 4.17e-08 6.91e-05 -11.0 1.10e+01 - 1.00e+00 1.00e+00H 1\n", - " 64 8.0122768e+00 5.91e-03 1.14e-03 -11.0 1.25e+01 - 1.00e+00 1.00e+00f 1\n", - " 65 7.3531385e+00 5.59e+00 7.27e-01 -11.0 1.37e+04 - 1.00e+00 1.00e+00f 1\n", - " 66 8.2016676e+00 1.02e+00 2.78e-01 -11.0 1.89e+05 - 2.49e-01 9.92e-02h 1\n", - " 67 7.2159071e+00 6.57e-01 2.10e-01 -11.0 4.37e+03 - 1.34e-10 1.00e+00f 1\n", - " 68 6.4063354e+00 2.36e+00 8.95e-02 -11.0 3.33e+04 - 1.00e+00 2.50e-01f 3\n", - " 69 5.9141041e+00 2.78e+00 3.56e-01 -9.7 6.91e+04 - 1.00e+00 4.74e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 5.9111026e+00 2.72e+00 3.41e-01 -7.8 3.02e+04 - 1.00e+00 2.02e-02h 1\n", - " 71 5.9108043e+00 2.72e+00 3.41e-01 -5.8 5.34e+06 - 3.19e-02 2.35e-06h 1\n", - " 72 7.7552774e+00 1.48e-01 1.43e-01 -5.1 4.73e+02 - 4.97e-03 1.00e+00h 1\n", - " 73 7.5601263e+00 1.04e+00 7.58e-02 -7.1 1.28e+04 - 8.37e-04 1.00e+00h 1\n", - " 74 6.7493823e+00 2.21e+00 3.40e-01 -7.1 1.91e+06 - 1.59e-01 2.63e-02f 1\n", - " 75 6.6675290e+00 8.60e-01 1.93e-01 -7.1 3.06e+03 - 8.74e-01 1.00e+00h 1\n", - " 76 7.1612702e+00 4.43e-01 1.30e-01 -4.4 3.16e+03 - 8.79e-01 1.00e+00h 1\n", - " 77 6.9723479e+00 8.92e-01 9.25e-02 -3.4 5.57e+05 - 1.00e+00 5.28e-03f 1\n", - " 78 7.5461774e+00 4.65e-01 8.81e-02 -3.5 9.26e+02 - 1.00e+00 6.23e-01h 1\n", - " 79 6.8948534e+00 4.33e+00 8.28e-01 -3.5 1.24e+04 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 6.3247146e+00 3.80e+00 5.63e-01 -3.5 3.08e+04 - 1.00e+00 1.74e-01f 1\n", - " 81 5.8841560e+00 2.07e+00 1.28e-01 -1.5 1.24e+04 - 1.00e+00 5.10e-01f 1\n", - " 82 6.3151338e+00 1.25e+00 5.58e-01 -2.3 1.31e+04 - 1.32e-02 1.00e+00h 1\n", - " 83 7.5108872e+00 4.58e-01 2.94e-01 -2.5 1.76e+04 - 5.59e-01 1.00e+00H 1\n", - " 84 6.7351386e+00 3.10e+00 3.58e-01 -2.0 9.02e+03 - 1.00e+00 1.00e+00f 1\n", - " 85 6.9080293e+00 1.12e+00 2.04e-01 -2.0 1.20e+04 - 1.00e+00 1.00e+00h 1\n", - " 86 6.1660334e+00 2.21e+00 2.98e-01 -2.0 1.79e+04 - 5.98e-01 5.86e-01F 1\n", - " 87 6.9742931e+00 1.74e+00 6.11e-01 -1.0 7.23e+04 - 4.15e-01 8.64e-01H 1\n", - " 88 6.8148296e+00 1.55e+00 5.48e-01 -1.1 8.82e+03 - 8.46e-01 8.94e-02h 1\n", - " 89 5.9472570e+00 3.53e+00 5.16e-01 -1.1 1.04e+04 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 7.6181302e+00 3.80e-01 4.41e+00 -1.1 4.74e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 7.7988827e+00 1.96e-06 2.94e-02 -1.1 3.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 92 7.7988839e+00 5.28e-07 1.40e-04 -3.2 9.99e-04 - 9.98e-01 1.00e+00h 1\n", - " 93 7.7988840e+00 1.63e-07 8.49e-05 -9.1 5.06e-04 - 9.99e-01 1.00e+00h 1\n", - " 94 7.7988841e+00 7.43e-08 1.33e-04 -11.0 8.76e-04 - 1.00e+00 1.00e+00h 1\n", - " 95 7.7988837e+00 4.69e-07 2.68e-05 -11.0 1.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 7.7988842e+00 9.07e-08 9.19e-05 -11.0 3.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 97 7.7988839e+00 9.34e-08 5.46e-05 -11.0 1.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 98 7.7988838e+00 1.80e-07 3.54e-05 -11.0 1.58e-03 - 1.00e+00 1.00e+00h 1\n", - " 99 7.7988841e+00 2.45e-08 2.12e-04 -11.0 6.98e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.7988799e+00 2.59e-06 3.63e-03 -11.0 7.65e-03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.7988799294079856e+00 7.7988799294079856e+00\n", - "Dual infeasibility......: 3.6340867604441884e-03 3.6340867604441884e-03\n", - "Constraint violation....: 2.5873325846248463e-06 2.5873325846248463e-06\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 3.6340867604441884e-03 3.6340867604441884e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 113\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 113\n", - "Number of inequality constraint evaluations = 113\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.384\n", - "Total CPU secs in NLP function evaluations = 134.482\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 510.00us ( 4.51us) 502.04us ( 4.44us) 113\n", - " nlp_g | 5.08 s ( 45.00ms) 4.85 s ( 42.92ms) 113\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 352.00us ( 3.45us) 343.03us ( 3.36us) 102\n", - " nlp_jac_g | 132.15 s ( 1.30 s) 126.11 s ( 1.24 s) 102\n", - " total | 138.71 s (138.71 s) 132.36 s (132.36 s) 1\n", - "Timestamp 8400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.26e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0547327e+01 1.36e+01 2.26e+04 -1.5 2.26e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.7876208e+00 5.30e+00 5.50e+00 1.0 6.87e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 3.4929470e+00 8.57e-01 6.64e-01 -1.1 2.39e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 4.0702445e+00 7.50e-03 2.93e-01 -3.0 9.41e+00 - 9.94e-01 1.00e+00h 1\n", - " 5 4.0717492e+00 4.13e-05 5.75e-03 -4.4 6.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 4.0711262e+00 1.01e-03 9.90e-03 -6.5 6.94e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 4.0616537e+00 9.23e-03 3.56e-02 -8.4 3.04e+01 - 1.00e+00 1.00e+00h 1\n", - " 8 4.0687429e+00 3.08e-03 7.24e-04 -10.2 1.43e+01 - 1.00e+00 1.00e+00h 1\n", - " 9 4.0705857e+00 1.63e-03 1.31e-03 -11.0 1.36e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.0592500e+00 9.36e-03 3.68e-03 -11.0 3.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 4.0644215e+00 7.83e-03 2.70e-03 -11.0 3.80e+01 - 1.00e+00 1.00e+00h 1\n", - " 12 4.0696068e+00 1.82e-03 1.84e-03 -11.0 1.88e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 4.0470621e+00 1.49e-02 4.94e-03 -11.0 8.91e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 4.0609276e+00 8.88e-03 4.20e-03 -11.0 5.62e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 3.9941926e+00 9.38e-02 1.41e-02 -11.0 1.82e+02 - 1.00e+00 1.00e+00h 1\n", - " 16 4.0617663e+00 5.82e-03 2.08e-02 -11.0 2.46e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 4.0617010e+00 1.66e-03 1.04e-02 -11.0 3.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 4.0488696e+00 2.27e-02 2.76e-02 -11.0 2.83e+02 - 1.00e+00 1.00e+00h 1\n", - " 19 3.7891694e+00 8.01e-01 2.00e-01 -11.0 9.92e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.0824947e+00 1.40e+00 5.05e-01 -9.0 3.79e+04 - 1.00e+00 5.24e-01F 1\n", - " 21 3.0763492e+00 1.37e+00 4.82e-01 -7.0 9.86e+03 - 1.00e+00 2.10e-02h 1\n", - " 22 3.9369481e+00 2.08e-01 5.22e-01 -6.1 8.75e+03 - 1.00e+00 1.00e+00h 1\n", - " 23 3.8330099e+00 3.92e-01 4.49e-01 -3.3 2.32e+04 - 1.00e+00 6.37e-02h 1\n", - " 24 3.1887463e+00 1.14e+00 3.75e-01 -2.4 1.30e+04 - 1.00e+00 1.00e+00f 1\n", - " 25 3.3511881e+00 1.35e+00 3.27e-01 -2.4 9.18e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 3.2684042e+00 3.76e-01 2.47e-01 -2.6 1.34e+04 - 9.96e-01 1.00e+00h 1\n", - " 27 3.4267729e+00 2.30e-01 1.46e-01 -1.6 7.19e+03 - 1.00e+00 8.13e-01h 1\n", - " 28 3.3414287e+00 5.88e-01 1.02e-01 -2.3 2.34e+04 - 6.73e-01 1.00e+00h 1\n", - " 29 3.1199416e+00 8.57e-01 1.11e-01 -1.7 2.54e+04 - 1.00e+00 2.58e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 3.2279570e+00 6.81e-01 1.95e-01 -2.8 2.86e+03 - 9.70e-01 1.00e+00h 1\n", - " 31 3.2099080e+00 6.38e-01 1.49e-01 -1.7 6.19e+03 - 3.98e-01 5.00e-01h 2\n", - " 32 4.5076513e+00 3.21e-01 4.62e-01 -2.1 2.07e+04 - 1.00e+00 1.00e+00H 1\n", - " 33 3.2714326e+00 1.96e+00 4.52e-01 -1.8 3.49e+04 - 8.54e-01 6.92e-01f 1\n", - " 34 3.7148145e+00 2.25e+00 1.05e+00 -1.8 9.86e+03 - 1.08e-01 1.00e+00h 1\n", - " 35 3.6584623e+00 8.45e-01 8.06e-02 -1.8 1.39e+04 - 5.99e-01 5.29e-01h 1\n", - " 36 4.2903524e+00 1.29e+00 3.10e-01 -1.8 4.21e+03 - 9.94e-01 1.00e+00H 1\n", - " 37 4.0756793e+00 9.20e-01 1.64e-01 -1.8 6.37e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 3.6364952e+00 9.84e-01 2.62e-01 -1.8 1.21e+05 - 5.72e-02 1.31e-01f 1\n", - " 39 3.6925109e+00 1.06e+00 2.15e-01 -1.8 1.00e+04 - 1.00e+00 2.50e-01h 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.5502808e+00 1.41e+00 3.20e-01 -1.8 9.64e+03 - 1.00e+00 1.00e+00h 1\n", - " 41 3.4821612e+00 1.24e+00 1.32e-01 -1.8 2.68e+04 - 1.00e+00 1.17e-01h 1\n", - " 42 3.8482381e+00 4.87e-01 2.96e-01 -1.8 8.73e+03 - 6.55e-01 1.00e+00h 1\n", - " 43 3.3364286e+00 6.89e-01 3.32e-01 -1.8 7.15e+05 - 7.24e-02 1.40e-02f 1\n", - " 44 5.4388333e+00 3.26e-01 2.60e-01 -1.8 1.67e+04 - 1.00e+00 1.00e+00H 1\n", - " 45 3.7378699e+00 5.04e-01 2.17e-01 -1.8 9.75e+03 - 9.02e-01 1.00e+00f 1\n", - " 46 3.0412206e+00 1.32e+00 2.57e-01 -1.8 9.73e+04 - 5.94e-01 5.11e-02f 1\n", - " 47 3.1293689e+00 1.13e+00 1.62e-01 -1.2 2.65e+03 - 5.21e-01 1.21e-01h 4\n", - " 48 4.2144332e+00 2.93e-01 3.39e-01 -1.5 6.80e+03 - 7.87e-01 1.00e+00h 1\n", - " 49 4.0601921e+00 5.70e-01 2.64e-01 -1.5 1.77e+04 - 8.23e-01 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.9533459e+00 9.00e-01 2.00e-01 -1.5 2.16e+04 - 3.31e-01 2.50e-01h 3\n", - " 51 3.6429149e+00 1.40e+00 1.79e-01 -1.5 6.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 3.8844768e+00 4.81e-01 1.84e-01 -1.5 2.20e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 4.6591126e+00 8.37e-02 1.18e-01 -1.5 3.59e+03 - 7.58e-01 1.00e+00h 1\n", - " 54 4.7129596e+00 4.83e-02 3.98e-02 -2.3 4.42e+03 - 1.00e+00 1.00e+00h 1\n", - " 55 4.5980927e+00 5.50e-01 1.01e-01 -3.4 1.17e+04 - 8.52e-01 8.53e-01h 1\n", - " 56 4.3118932e+00 1.16e+00 1.54e-01 -3.4 3.49e+03 - 5.20e-01 1.00e+00h 1\n", - " 57 4.0678539e+00 3.22e-01 8.27e-02 -3.4 1.32e+03 - 1.30e-01 1.00e+00h 1\n", - " 58 4.0895531e+00 3.07e-01 6.77e-02 -3.4 7.60e+03 - 6.59e-02 6.59e-02s 19\n", - " 59 4.7690201e+00 6.46e-02 1.30e-01 -3.4 3.40e+03 - 1.00e+00 0.00e+00S 19\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 4.8269794e+00 1.73e-02 6.48e-02 -3.4 1.49e+03 - 6.95e-01 1.00e+00H 1\n", - " 61 4.0130680e+00 1.18e+00 2.29e-01 -3.4 7.48e+05 - 6.48e-03 2.54e-02f 1\n", - " 62 4.0311792e+00 1.14e+00 2.08e-01 -3.4 5.75e+03 - 1.00e+00 3.68e-02h 1\n", - " 63 4.6112342e+00 4.11e-01 3.26e-01 -3.4 5.30e+03 - 7.74e-02 1.00e+00h 1\n", - " 64 4.5224843e+00 4.12e-01 2.97e-01 -3.4 1.36e+05 - 2.63e-03 2.69e-02f 4\n", - " 65 4.4847042e+00 4.49e-01 2.85e-01 -3.4 2.41e+06 - 1.53e-02 1.33e-03f 4\n", - " 66 4.6514487e+00 2.33e-01 1.92e-01 -3.4 5.77e+02 - 1.00e+00 5.00e-01h 2\n", - " 67 4.5695024e+00 4.00e-01 1.41e-01 -3.4 2.62e+05 - 2.80e-02 2.12e-02f 3\n", - " 68 4.7213497e+00 6.61e-02 5.94e-02 -3.4 2.95e+03 - 1.00e+00 1.00e+00h 1\n", - " 69 4.6711959e+00 1.34e-01 3.93e-02 -3.4 8.20e+04 - 1.68e-01 8.13e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 4.6708070e+00 1.34e-01 3.95e-02 -3.4 4.58e+03 - 1.00e+00 1.52e-03h 2\n", - " 71 4.8507387e+00 5.99e-02 5.73e-02 -3.4 5.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 72 4.8765552e+00 4.88e-03 4.32e-02 -3.4 4.54e+03 - 1.00e+00 1.00e+00H 1\n", - " 73 4.8595322e+00 4.12e-02 3.78e-02 -3.4 1.02e+04 - 1.00e+00 5.94e-02h 3\n", - " 74 4.8824025e+00 3.79e-03 1.58e-02 -3.4 7.76e+02 - 1.00e+00 1.00e+00H 1\n", - " 75 4.6365442e+00 1.65e-01 3.24e-02 -3.4 2.36e+05 - 1.82e-01 2.94e-02f 1\n", - " 76 4.6989780e+00 9.63e-02 2.04e-02 -3.4 3.46e+03 - 1.00e+00 5.00e-01h 2\n", - " 77 4.8509900e+00 3.57e-02 2.06e-02 -3.4 1.84e+03 - 3.32e-01 1.00e+00h 1\n", - " 78 4.8513933e+00 8.12e-03 1.11e-01 -3.4 3.76e+04 - 1.80e-03 1.00e+00F 1\n", - " 79 4.8279683e+00 5.48e-02 1.09e-01 -3.4 4.48e+05 - 1.11e-01 6.57e-04f 6\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 4.6836251e+00 1.17e-01 7.12e-03 -3.4 1.73e+03 - 1.00e+00 1.00e+00h 1\n", - " 81 4.5917780e+00 4.01e-01 5.94e-02 -3.4 1.01e+04 - 1.00e+00 3.66e-01h 2\n", - " 82 4.6200325e+00 3.57e-01 4.43e-02 -3.4 7.21e+02 - 1.00e+00 1.25e-01h 4\n", - " 83 4.9160653e+00 1.28e-03 3.28e-02 -3.4 1.49e+04 - 1.00e+00 1.00e+00H 1\n", - " 84 3.3366485e+00 1.27e+00 8.40e-01 -3.4 1.83e+04 - 2.83e-01 1.00e+00f 1\n", - " 85 3.3148799e+00 1.63e+00 4.80e-01 -3.4 4.85e+05 - 8.32e-02 2.22e-02f 2\n", - " 86 2.9144222e+00 1.46e+00 3.49e-01 -3.4 1.19e+05 - 1.38e-01 2.54e-01h 1\n", - " 87 4.7073888e+00 7.75e-02 3.82e-01 -3.4 8.01e+03 - 1.00e+00 1.00e+00h 1\n", - " 88 4.5356438e+00 5.44e-01 4.02e-01 -3.5 2.50e+04 - 1.00e+00 1.15e-01f 1\n", - " 89 4.8289605e+00 4.59e-02 3.63e-02 -3.5 2.29e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 4.5653982e+00 1.29e-01 2.02e-01 -3.5 3.95e+03 - 1.00e+00 1.00e+00h 1\n", - " 91 4.3534275e+00 7.61e-01 3.64e-01 -3.5 2.63e+05 - 1.04e-01 1.94e-02f 1\n", - " 92 4.0233684e+00 2.19e+00 7.54e-01 -3.5 2.40e+05 - 3.51e-01 1.47e-02f 1\n", - " 93 4.2926494e+00 8.37e-01 3.31e-01 -3.5 4.26e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 4.7057040e+00 9.02e-02 1.11e-01 -3.5 1.75e+03 - 5.31e-01 1.00e+00h 1\n", - " 95 4.4361199e+00 4.53e-01 9.45e-02 -3.5 1.31e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 4.5645128e+00 7.75e-02 4.96e-02 -3.5 5.12e+02 - 1.35e-01 1.00e+00h 1\n", - " 97 4.6206200e+00 4.74e-02 4.57e-02 -3.5 6.17e+02 - 5.20e-01 1.00e+00h 1\n", - " 98 4.4014570e+00 1.69e-01 6.31e-02 -3.5 9.28e+02 - 1.00e+00 1.00e+00h 1\n", - " 99 4.5196199e+00 8.35e-02 4.84e-02 -3.5 5.29e+02 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 4.6372258e+00 1.80e-02 4.31e-02 -3.5 3.20e+03 - 1.00e+00 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.6372258065881411e+00 4.6372258065881411e+00\n", - "Dual infeasibility......: 4.3081426200565986e-02 4.3081426200565986e-02\n", - "Constraint violation....: 1.7973750612213735e-02 1.7973750612213735e-02\n", - "Complementarity.........: 3.6626713511885500e-04 3.6626713511885500e-04\n", - "Overall NLP error.......: 4.3081426200565986e-02 4.3081426200565986e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 193\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 193\n", - "Number of inequality constraint evaluations = 193\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.416\n", - "Total CPU secs in NLP function evaluations = 137.727\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 857.00us ( 4.44us) 853.32us ( 4.42us) 193\n", - " nlp_g | 8.63 s ( 44.72ms) 8.23 s ( 42.63ms) 193\n", - " nlp_grad | 1.38 s ( 1.38 s) 1.32 s ( 1.32 s) 1\n", - " nlp_grad_f | 322.00us ( 3.16us) 324.39us ( 3.18us) 102\n", - " nlp_jac_g | 131.90 s ( 1.29 s) 125.88 s ( 1.23 s) 102\n", - " total | 142.06 s (142.06 s) 135.57 s (135.57 s) 1\n", - "Timestamp 8700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.93e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0472107e+01 1.66e+01 2.93e+04 -1.5 2.93e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.5353043e+01 6.63e+00 1.26e+01 0.8 1.67e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.4568271e+01 2.53e+00 7.81e-01 -1.3 3.56e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 2.6003283e+01 2.08e-04 7.67e-02 -3.0 2.69e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.6003184e+01 2.19e-05 5.26e-03 -4.9 7.38e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 2.6002857e+01 1.73e-04 2.49e-03 -7.0 8.53e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.6002712e+01 2.51e-04 8.99e-04 -9.1 5.80e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.3279795e+01 1.70e+00 8.95e-02 -10.1 3.01e+03 - 1.00e+00 1.00e+00f 1\n", - " 9 1.9256315e+01 1.51e+01 1.15e+00 -8.1 1.24e+06 - 1.00e+00 2.28e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.9150171e+01 1.50e+01 1.14e+00 -8.2 3.52e+04 - 8.84e-01 8.14e-03h 1\n", - " 11 1.8983085e+01 6.07e+00 6.25e-01 -8.2 8.92e+02 - 1.00e+00 1.00e+00f 1\n", - " 12 2.4556196e+01 2.93e-02 3.18e-01 -1.7 3.37e+03 - 9.61e-01 1.00e+00h 1\n", - " 13 2.4437277e+01 1.21e-01 2.11e-01 -3.3 1.33e+03 - 9.98e-01 3.54e-01h 1\n", - " 14 2.4534823e+01 3.90e-02 7.85e-03 -2.7 5.66e+02 - 1.00e+00 1.00e+00h 1\n", - " 15 2.3871194e+01 9.43e-01 2.16e-02 -8.7 5.11e+03 - 1.25e-01 1.00e+00f 1\n", - " 16 1.4126006e+01 3.85e+00 2.14e-01 -2.9 2.34e+04 - 5.03e-01 1.00e+00f 1\n", - " 17 2.4534801e+01 4.16e-01 1.02e+01 -4.5 1.05e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 2.4920438e+01 1.61e-04 1.93e-02 -4.6 6.03e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 2.4920351e+01 2.35e-06 3.56e-03 -6.5 7.54e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.4920346e+01 4.56e-06 3.91e-03 -8.6 2.57e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 2.4920354e+01 2.30e-06 2.33e-03 -11.0 7.01e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 2.4920346e+01 6.29e-06 2.42e-03 -11.0 7.20e-02 - 1.00e+00 1.00e+00h 1\n", - " 23 2.4920354e+01 1.59e-06 1.69e-03 -11.0 1.79e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 2.4920339e+01 1.02e-05 6.06e-03 -11.0 1.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 2.4919999e+01 1.60e-04 3.60e-02 -11.0 8.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 2.4914049e+01 3.42e-03 4.37e-02 -11.0 1.90e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 2.4917755e+01 2.85e-03 1.55e-03 -11.0 1.79e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 2.4919610e+01 2.11e-04 1.93e-03 -11.0 6.26e+00 - 1.00e+00 1.00e+00h 1\n", - " 29 2.4919219e+01 1.66e-03 1.08e-03 -11.0 1.48e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.3578736e+01 8.99e-01 2.30e-02 -9.0 1.26e+08 - 6.12e-05 2.10e-04f 1\n", - " 31 2.0288795e+01 2.27e+00 1.46e-01 -10.9 2.18e+04 - 1.00e+00 1.00e+00f 1\n", - " 32 2.4582451e+01 1.24e-01 1.18e-01 -11.0 8.79e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 2.3825309e+01 2.06e+00 5.66e-02 -10.6 1.96e+06 - 1.10e-02 1.16e-02f 1\n", - " 34 2.4415676e+01 7.65e-01 6.42e-02 -10.6 3.65e+03 - 1.00e+00 1.00e+00h 1\n", - " 35 2.4394560e+01 6.84e-01 5.75e-02 -10.6 4.31e+03 - 1.00e+00 2.24e-01h 1\n", - " 36 2.4774554e+01 1.03e-01 1.04e-02 -10.6 3.00e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 2.4427077e+01 7.07e-01 2.07e-02 -10.6 7.82e+05 - 5.66e-02 2.40e-02f 1\n", - " 38 2.5019372e+01 3.55e-01 3.00e-02 -10.1 1.16e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 2.4845884e+01 1.04e-02 7.37e-03 -1.9 2.33e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.4836918e+01 2.83e-07 6.52e-05 -7.9 1.16e-02 - 9.90e-01 1.00e+00h 1\n", - " 41 2.4836917e+01 1.23e-06 1.12e-03 -9.9 3.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 2.4836918e+01 1.54e-07 7.59e-05 -9.8 1.36e-03 - 1.00e+00 1.00e+00h 1\n", - " 43 2.4836918e+01 2.65e-07 6.02e-05 -11.0 1.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 2.4836917e+01 7.84e-07 2.70e-04 -11.0 5.56e-03 - 1.00e+00 1.00e+00h 1\n", - " 45 2.4836895e+01 8.32e-06 1.01e-02 -11.0 2.63e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 2.4836917e+01 2.75e-06 2.74e-03 -11.0 6.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 47 2.4836902e+01 1.25e-05 6.99e-03 -11.0 4.99e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 2.4836917e+01 7.00e-07 1.97e-03 -11.0 8.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 2.4836909e+01 4.79e-06 2.80e-03 -11.0 3.57e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.4836878e+01 3.52e-05 2.49e-03 -11.0 1.29e-01 - 1.00e+00 1.00e+00h 1\n", - " 51 2.4836910e+01 5.11e-06 4.31e-03 -11.0 5.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 2.4836913e+01 4.76e-06 1.06e-03 -11.0 2.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 53 2.4836914e+01 1.14e-06 1.15e-03 -11.0 1.46e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 2.4836894e+01 1.74e-05 3.99e-03 -11.0 7.69e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 2.4836866e+01 9.35e-05 1.84e-03 -11.0 4.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 56 2.4836880e+01 2.62e-05 2.69e-03 -11.0 2.18e-01 - 1.00e+00 1.00e+00h 1\n", - " 57 2.4836770e+01 5.93e-05 2.73e-03 -11.0 1.03e+00 - 1.00e+00 1.00e+00h 1\n", - " 58 2.4774429e+01 9.78e-02 8.50e-03 -11.0 4.97e+02 - 1.00e+00 1.00e+00f 1\n", - " 59 2.4816420e+01 1.01e-02 2.22e-03 -11.0 2.08e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.4810295e+01 1.87e-02 5.87e-03 -11.0 4.41e+02 - 1.00e+00 1.00e+00h 1\n", - " 61 2.4791122e+01 2.74e-02 5.47e-03 -9.0 1.57e+03 - 1.00e+00 1.57e-01h 1\n", - " 62 2.4838062e+01 1.19e-05 2.58e-03 -9.1 3.15e+02 - 1.00e+00 1.00e+00H 1\n", - " 63 2.4798821e+01 2.76e-02 1.13e-03 -9.3 2.50e+04 - 4.95e-02 3.75e-02f 1\n", - " 64 2.4779426e+01 1.22e-01 3.20e-03 -9.3 3.87e+03 - 1.24e-08 1.00e+00f 1\n", - " 65 1.8039764e+01 9.55e+00 5.98e-01 -9.3 1.72e+05 - 1.27e-01 3.31e-01f 1\n", - " 66r 1.8039764e+01 9.55e+00 9.99e+02 1.0 0.00e+00 - 0.00e+00 4.21e-10R 2\n", - " 67r 1.8868398e+01 2.76e+00 9.89e+02 -5.1 9.83e+02 - 4.33e-02 9.62e-03f 1\n", - " 68 2.4855759e+01 1.90e-01 2.51e-01 -6.5 7.90e+02 - 7.40e-02 1.00e+00h 1\n", - " 69 2.4855826e+01 1.88e-01 2.49e-01 -7.7 2.93e+02 - 1.00e+00 7.09e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.4956600e+01 4.05e-03 3.43e-03 -7.7 1.90e+01 - 1.00e+00 1.00e+00h 1\n", - " 71 2.4954463e+01 1.76e-02 6.67e-03 -7.7 5.41e+01 - 2.29e-01 1.00e+00h 1\n", - " 72 2.4783817e+01 4.47e-01 9.62e-03 -7.7 1.85e+04 - 1.00e+00 1.00e+00f 1\n", - " 73 2.4146800e+01 9.35e-01 3.47e-02 -7.7 1.66e+04 - 1.00e+00 1.00e+00h 1\n", - " 74 2.4422003e+01 6.46e-01 8.87e-03 -7.7 5.19e+03 - 1.00e+00 3.77e-01h 1\n", - " 75 2.4928878e+01 2.89e-02 2.63e-02 -9.1 2.21e+02 - 1.00e+00 1.00e+00h 1\n", - "In iteration 75, 1 Slack too small, adjusting variable bound\n", - " 76 2.4853176e+01 4.52e-02 2.44e-02 -9.2 5.17e+02 - 1.00e+00 5.67e-01h 1\n", - " 77 2.4878056e+01 3.95e-02 1.83e-02 -9.2 2.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 78 2.2772945e+01 1.04e+00 3.74e-02 -9.2 7.23e+07 - 1.23e-04 1.04e-04f 1\n", - " 79 2.1421013e+01 1.42e+00 8.27e-02 -7.7 3.55e+04 - 1.00e+00 1.66e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.3626064e+01 4.87e-01 3.48e-02 -5.9 1.61e+03 - 7.79e-01 1.00e+00h 1\n", - " 81 2.4907192e+01 2.04e-02 2.59e-02 -7.8 3.43e+02 - 7.73e-01 1.00e+00h 1\n", - " 82 2.4810397e+01 1.11e-01 8.99e-03 -2.5 3.06e+03 - 1.00e+00 1.00e+00f 1\n", - " 83 2.4917842e+01 9.48e-02 5.63e-03 -2.5 4.87e+02 - 9.87e-01 1.00e+00h 1\n", - " 84 2.4498184e+01 9.67e-02 5.46e-03 -2.5 4.21e+03 - 1.00e+00 7.32e-01f 1\n", - " 85 2.4662605e+01 1.02e-01 4.18e-03 -2.5 7.83e+02 - 2.75e-01 1.00e+00h 1\n", - " 86 2.3525422e+01 1.77e+00 9.46e-02 -2.5 1.24e+04 - 1.00e+00 1.00e+00f 1\n", - " 87 2.1349906e+01 1.19e+01 4.33e-01 -2.5 6.91e+04 - 1.55e-01 6.59e-01f 1\n", - " 88 2.2378563e+01 5.94e+00 4.81e-02 -2.5 1.75e+03 - 1.00e+00 5.00e-01h 2\n", - " 89 2.4192784e+01 1.24e+00 4.11e-02 -2.5 1.13e+03 - 1.00e+00 7.87e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.4223228e+01 2.91e-01 1.38e-01 -2.5 2.77e+03 - 9.05e-01 1.00e+00h 1\n", - " 91r 2.4223228e+01 2.91e-01 9.99e+02 -0.5 0.00e+00 - 0.00e+00 3.48e-07R 19\n", - " 92r 2.4686749e+01 7.80e-02 9.87e+02 1.2 1.60e+02 - 9.94e-01 2.90e-03f 1\n", - " 93 2.4988382e+01 2.69e-03 3.68e-03 -2.3 2.56e+02 - 8.36e-01 1.00e+00h 1\n", - " 94 2.4885270e+01 1.90e-01 1.00e-02 -3.4 4.01e+03 - 3.22e-02 1.00e+00f 1\n", - " 95 2.4719669e+01 4.27e-01 2.96e-02 -3.4 3.59e+03 - 7.83e-01 1.00e+00h 1\n", - " 96 2.4473195e+01 7.42e-01 2.16e-02 -3.4 5.85e+05 - 2.95e-02 4.35e-02f 1\n", - " 97 2.4344184e+01 8.14e-01 1.97e-02 -3.4 7.36e+04 - 2.59e-01 5.45e-01h 1\n", - " 98 2.4337442e+01 8.25e-01 2.00e-02 -3.4 7.19e+05 - 1.43e-02 3.10e-04h 1\n", - " 99 2.4689024e+01 2.45e-01 8.61e-03 -3.4 2.12e+03 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.5006783e+01 1.22e-04 4.09e-01 -3.4 4.19e-01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.5006783200726296e+01 2.5006783200726296e+01\n", - "Dual infeasibility......: 4.0907098215054072e-01 4.0907098215054072e-01\n", - "Constraint violation....: 1.2180986058041299e-04 1.2180986058041299e-04\n", - "Complementarity.........: 4.3736045897552564e-04 4.3736045897552564e-04\n", - "Overall NLP error.......: 4.0907098215054072e-01 4.0907098215054072e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 127\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 127\n", - "Number of inequality constraint evaluations = 127\n", - "Number of equality constraint Jacobian evaluations = 103\n", - "Number of inequality constraint Jacobian evaluations = 103\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.422\n", - "Total CPU secs in NLP function evaluations = 137.238\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 566.00us ( 4.46us) 566.25us ( 4.46us) 127\n", - " nlp_g | 5.74 s ( 45.19ms) 5.47 s ( 43.09ms) 127\n", - " nlp_grad | 1.38 s ( 1.38 s) 1.32 s ( 1.32 s) 1\n", - " nlp_grad_f | 342.00us ( 3.35us) 337.66us ( 3.31us) 102\n", - " nlp_jac_g | 134.28 s ( 1.29 s) 128.14 s ( 1.23 s) 104\n", - " total | 141.54 s (141.54 s) 135.06 s (135.06 s) 1\n", - "Timestamp 9000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.26e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0397852e+01 1.17e+01 2.26e+04 -1.5 2.26e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.7551138e+00 3.89e+00 5.52e+00 0.8 3.66e+02 - 9.99e-01 1.00e+00f 1\n", - " 3 1.8351690e+00 4.62e-01 2.24e-01 -1.3 1.00e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 1.1544151e+00 2.93e-03 3.59e-01 -7.1 3.13e+00 - 9.90e-01 1.00e+00h 1\n", - " 5 1.1536184e+00 2.45e-04 4.85e-03 -4.8 1.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1535094e+00 2.84e-04 1.25e-03 -6.9 9.95e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1537121e+00 1.48e-04 1.96e-03 -9.0 5.60e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1538204e+00 1.69e-05 1.19e-03 -11.0 1.81e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.1536554e+00 1.35e-04 2.92e-03 -11.0 4.47e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1538226e+00 3.05e-05 8.21e-04 -11.0 1.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.1538169e+00 5.08e-05 8.51e-04 -11.0 1.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1538433e+00 1.44e-05 1.24e-03 -11.0 1.23e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1536593e+00 7.32e-05 2.29e-03 -11.0 3.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.1536127e+00 1.70e-04 1.46e-03 -11.0 4.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.1538782e+00 2.38e-08 1.06e-04 -11.0 2.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 1.1538782e+00 5.56e-08 1.07e-04 -11.0 2.38e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1538782e+00 3.50e-08 7.13e-05 -11.0 1.47e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 1.1538782e+00 4.86e-08 4.76e-05 -11.0 2.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 19 1.1538782e+00 1.22e-08 9.71e-05 -11.0 8.60e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.1538782e+00 1.70e-08 4.73e-05 -11.0 6.22e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 1.1538782e+00 4.69e-09 5.20e-05 -11.0 5.77e-05 - 1.00e+00 1.00e+00h 1\n", - " 22 1.1538782e+00 3.25e-09 4.75e-05 -11.0 2.14e-05 - 1.00e+00 1.00e+00h 1\n", - " 23 1.1538782e+00 3.04e-09 4.76e-05 -11.0 3.03e-05 - 1.00e+00 1.00e+00h 1\n", - " 24 1.1538782e+00 1.53e-09 2.37e-04 -11.0 2.25e-05 - 1.00e+00 1.00e+00h 1\n", - " 25 1.1538782e+00 9.34e-09 6.27e-05 -11.0 1.84e-05 - 1.00e+00 1.00e+00h 1\n", - " 26 1.1538782e+00 1.09e-10 5.18e-05 -11.0 4.42e-05 - 1.00e+00 1.00e+00H 1\n", - " 27 1.1538782e+00 8.46e-09 7.21e-05 -11.0 3.62e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 1.1538782e+00 1.07e-08 4.80e-05 -11.0 4.18e-05 - 1.00e+00 1.00e+00h 1\n", - " 29 1.1538782e+00 1.14e-08 7.49e-05 -11.0 1.00e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1538782e+00 6.95e-09 1.31e-04 -11.0 6.58e-05 - 1.00e+00 1.00e+00h 1\n", - " 31 1.1538782e+00 1.66e-08 6.57e-05 -11.0 9.72e-05 - 1.00e+00 1.00e+00h 1\n", - " 32 1.1538782e+00 9.72e-09 4.75e-05 -11.0 4.57e-05 - 1.00e+00 1.00e+00h 1\n", - " 33 1.1538782e+00 1.92e-09 8.31e-05 -11.0 1.97e-05 - 1.00e+00 1.00e+00h 1\n", - " 34 1.1538782e+00 1.94e-08 5.74e-05 -11.0 1.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 35 1.1538782e+00 8.24e-09 9.48e-05 -11.0 9.39e-05 - 1.00e+00 1.00e+00h 1\n", - " 36 1.1538781e+00 9.01e-08 3.20e-05 -11.0 2.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 1.1538782e+00 1.05e-08 3.52e-05 -11.0 6.66e-05 - 1.00e+00 1.00e+00h 1\n", - " 38 1.1538782e+00 2.68e-08 8.25e-05 -11.0 1.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 1.1538781e+00 8.06e-08 1.46e-04 -11.0 5.88e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.1538780e+00 2.09e-07 5.10e-05 -11.0 3.29e-04 - 1.00e+00 1.00e+00h 1\n", - " 41 1.1538782e+00 7.23e-09 4.48e-05 -11.0 7.40e-05 - 1.00e+00 1.00e+00h 1\n", - " 42 1.1538782e+00 8.50e-09 1.03e-04 -11.0 1.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 43 1.1538781e+00 9.49e-08 6.53e-05 -11.0 3.63e-04 - 1.00e+00 1.00e+00h 1\n", - " 44 1.1538782e+00 1.79e-08 9.48e-05 -11.0 9.80e-05 - 1.00e+00 1.00e+00h 1\n", - " 45 1.1538782e+00 1.31e-08 5.96e-05 -11.0 5.67e-05 - 1.00e+00 1.00e+00h 1\n", - " 46 1.1538782e+00 1.74e-08 1.18e-04 -11.0 1.35e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 1.1538781e+00 4.91e-08 3.96e-05 -11.0 2.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 1.1538782e+00 1.71e-08 8.30e-05 -11.0 5.51e-05 - 1.00e+00 1.00e+00h 1\n", - " 49 1.1538782e+00 5.70e-09 2.27e-05 -11.0 4.67e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.1538782e+00 4.79e-11 8.45e-05 -11.0 8.76e-05 - 1.00e+00 1.00e+00H 1\n", - " 51 1.1538782e+00 3.04e-08 7.29e-05 -11.0 1.88e-04 - 1.00e+00 1.00e+00h 1\n", - " 52 1.1538780e+00 1.20e-07 1.33e-04 -11.0 8.34e-04 - 1.00e+00 1.00e+00h 1\n", - " 53 1.1538774e+00 4.23e-07 4.28e-05 -11.0 1.78e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 1.1538781e+00 3.93e-08 5.17e-05 -11.0 2.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 1.1538781e+00 1.45e-08 1.09e-04 -11.0 1.47e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 1.1538780e+00 6.23e-08 5.85e-05 -11.0 3.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 1.1538778e+00 1.27e-07 1.17e-04 -11.0 1.20e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.1538779e+00 1.56e-07 8.79e-05 -11.0 6.08e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 1.1538331e+00 5.06e-05 8.89e-03 -11.0 1.64e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.1538783e+00 4.12e-06 9.05e-04 -11.0 3.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 1.1538137e+00 3.37e-05 2.00e-03 -11.0 1.77e-01 - 1.00e+00 1.00e+00h 1\n", - " 62 1.1538712e+00 4.88e-06 9.00e-04 -11.0 4.33e-02 - 1.00e+00 1.00e+00h 1\n", - " 63 1.1538622e+00 9.51e-06 7.69e-04 -11.0 3.37e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 1.1538753e+00 8.44e-07 9.46e-04 -11.0 1.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 1.1538740e+00 3.25e-06 1.07e-03 -11.0 1.51e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 1.1538754e+00 8.91e-07 5.78e-04 -11.0 7.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 1.1538765e+00 3.52e-07 6.46e-04 -11.0 3.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 68 1.1538693e+00 5.10e-06 9.22e-04 -11.0 1.20e-02 - 1.00e+00 1.00e+00h 1\n", - " 69 1.1538745e+00 2.26e-06 7.83e-04 -11.0 5.52e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1538775e+00 3.34e-08 1.37e-04 -11.0 4.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 1.1538749e+00 1.20e-06 1.96e-03 -11.0 6.11e-03 - 1.00e+00 1.00e+00h 1\n", - " 72 1.1538777e+00 3.57e-10 3.99e-05 -11.0 4.80e-03 - 1.00e+00 1.00e+00H 1\n", - " 73 1.1538775e+00 1.72e-07 1.78e-04 -11.0 1.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 1.1538771e+00 9.09e-07 1.72e-03 -11.0 3.78e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.1538770e+00 4.62e-07 1.45e-03 -11.0 2.33e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.1538777e+00 8.24e-11 2.33e-05 -11.0 3.43e-03 - 1.00e+00 1.00e+00H 1\n", - " 77 1.1538754e+00 7.23e-06 5.86e-03 -11.0 3.14e-02 - 1.00e+00 1.00e+00h 1\n", - " 78 1.1538764e+00 8.29e-07 1.83e-03 -11.0 1.39e-02 - 1.00e+00 1.00e+00h 1\n", - " 79 1.1538520e+00 1.05e-04 9.60e-03 -11.0 4.14e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.1538804e+00 5.00e-06 1.86e-03 -11.0 4.97e-02 - 1.00e+00 1.00e+00h 1\n", - " 81 1.1538743e+00 1.95e-05 1.58e-03 -11.0 4.83e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 1.1538773e+00 4.34e-06 6.67e-04 -11.0 2.41e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.1538771e+00 2.58e-06 7.20e-04 -11.0 1.43e-02 - 1.00e+00 1.00e+00h 1\n", - " 84 1.1538800e+00 3.26e-07 1.05e-04 -11.0 1.74e-02 - 1.00e+00 1.00e+00h 1\n", - " 85 1.1538807e+00 9.23e-10 1.86e-04 -11.0 1.43e-02 - 1.00e+00 1.00e+00H 1\n", - " 86 1.1538520e+00 1.70e-05 1.71e-03 -11.0 2.25e-01 - 1.00e+00 1.00e+00h 1\n", - " 87 1.1538799e+00 3.27e-09 6.20e-05 -11.0 1.36e-01 - 1.00e+00 1.00e+00H 1\n", - " 88 1.1538790e+00 1.88e-06 7.15e-04 -11.0 1.51e-02 - 1.00e+00 1.00e+00h 1\n", - " 89 1.1538090e+00 1.53e-04 1.56e-03 -11.0 9.67e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.1536853e+00 1.48e-04 1.02e-03 -11.0 1.30e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 1.1538635e+00 4.04e-08 6.82e-05 -11.0 1.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 92 1.1538635e+00 2.72e-08 7.18e-05 -11.0 1.02e-04 - 1.00e+00 1.00e+00h 1\n", - " 93 1.1538624e+00 1.09e-06 9.12e-03 -11.0 4.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.1538634e+00 3.44e-07 8.91e-05 -11.0 1.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 95 1.1538632e+00 3.38e-07 7.35e-05 -11.0 4.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 1.1538630e+00 4.37e-07 4.97e-05 -11.0 2.65e-03 - 1.00e+00 1.00e+00h 1\n", - " 97 1.1538634e+00 3.87e-08 6.86e-05 -11.0 5.88e-04 - 1.00e+00 1.00e+00h 1\n", - " 98 1.1538621e+00 9.83e-07 3.39e-03 -11.0 5.07e-03 - 1.00e+00 1.00e+00h 1\n", - " 99 1.1538631e+00 3.89e-07 6.32e-05 -11.0 2.18e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.1535952e+00 2.05e-04 3.98e-02 -11.0 1.65e+00 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.1535951630310792e+00 1.1535951630310792e+00\n", - "Dual infeasibility......: 3.9801067062598658e-02 3.9801067062598658e-02\n", - "Constraint violation....: 2.0493802367838043e-04 2.0493802367838043e-04\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 3.9801067062598658e-02 3.9801067062598658e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 107\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 107\n", - "Number of inequality constraint evaluations = 107\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.429\n", - "Total CPU secs in NLP function evaluations = 134.094\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 487.00us ( 4.55us) 480.19us ( 4.49us) 107\n", - " nlp_g | 4.79 s ( 44.74ms) 4.56 s ( 42.63ms) 107\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 418.00us ( 4.10us) 408.18us ( 4.00us) 102\n", - " nlp_jac_g | 132.24 s ( 1.30 s) 126.18 s ( 1.24 s) 102\n", - " total | 138.50 s (138.50 s) 132.15 s (132.15 s) 1\n", - "Timestamp 9300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.65e+02 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0225306e+01 1.51e+01 4.65e+02 -1.5 4.65e+02 - 9.90e-01 1.00e+00f 1\n", - " 2 9.8882713e+00 5.79e+00 9.83e+00 0.4 1.51e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.1739508e+01 1.73e+00 5.21e-01 -1.6 9.43e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.3026722e+01 2.64e-03 9.16e-02 -3.4 2.41e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.3028029e+01 2.80e-07 1.02e-04 -5.3 2.64e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.3028029e+01 2.74e-07 1.02e-04 -11.0 1.07e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.3028028e+01 9.76e-07 1.80e-03 -11.0 4.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.3028018e+01 6.68e-06 2.89e-03 -11.0 1.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 1.3028028e+01 7.36e-07 2.05e-03 -11.0 3.91e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.3028029e+01 4.08e-07 3.13e-05 -11.0 1.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.3028030e+01 9.86e-08 1.36e-05 -11.0 4.93e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 1.3028030e+01 1.47e-08 5.92e-05 -11.0 2.05e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 1.3028030e+01 1.40e-07 4.36e-05 -11.0 1.52e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 1.3028029e+01 3.22e-07 8.82e-05 -11.0 2.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 1.3028030e+01 2.18e-08 2.70e-04 -11.0 1.32e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 1.3028030e+01 8.43e-08 1.26e-04 -11.0 1.42e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 1.3028030e+01 7.00e-08 8.56e-05 -11.0 4.26e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 1.3028029e+01 7.71e-07 4.95e-03 -11.0 2.88e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 1.3028027e+01 1.33e-06 8.93e-03 -11.0 5.45e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.3028030e+01 3.25e-07 2.61e-04 -11.0 2.85e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 1.3028023e+01 4.30e-06 4.02e-03 -11.0 1.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.3027618e+01 2.29e-04 1.47e-02 -11.0 6.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.3027974e+01 3.53e-05 9.92e-04 -11.0 1.87e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.3027985e+01 1.83e-05 3.82e-03 -11.0 2.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 1.3027941e+01 3.64e-05 9.37e-04 -11.0 1.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 1.3028029e+01 3.38e-06 1.58e-03 -11.0 4.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 27 1.3028028e+01 2.90e-06 1.34e-03 -11.0 1.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 28 1.3027988e+01 2.35e-05 1.02e-03 -11.0 5.83e-02 - 1.00e+00 1.00e+00h 1\n", - " 29 1.3028008e+01 1.20e-05 1.92e-03 -11.0 8.32e-02 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.3028026e+01 8.75e-06 2.68e-03 -11.0 7.91e-02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.3028001e+01 4.36e-05 2.97e-03 -11.0 2.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 1.3018822e+01 1.05e-02 3.54e-02 -11.0 1.35e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.3028710e+01 5.95e-06 6.68e-03 -11.0 4.21e+02 - 1.00e+00 1.00e+00H 1\n", - " 34 1.2960381e+01 1.68e-01 8.48e-03 -11.0 7.35e+03 - 1.00e+00 1.00e+00f 1\n", - " 35 1.2598448e+01 3.30e-01 2.65e-02 -11.0 6.44e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 1.3011336e+01 9.29e-03 3.05e-02 -11.0 1.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 1.2801803e+01 1.35e-01 7.62e-03 -11.0 4.68e+03 - 1.00e+00 1.00e+00f 1\n", - " 38 1.1870747e+01 1.18e+00 1.01e-01 -11.0 1.65e+04 - 1.00e+00 1.00e+00f 1\n", - " 39 1.2398368e+01 4.52e-01 1.76e-02 -10.7 4.43e+04 - 1.00e+00 9.72e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.2384523e+01 4.88e-01 1.53e-02 -8.7 1.60e+05 - 1.00e+00 2.68e-03h 1\n", - " 41 1.2384310e+01 4.88e-01 1.53e-02 -6.8 2.38e+05 - 1.00e+00 1.81e-05h 1\n", - " 42 1.3043903e+01 1.37e-03 9.30e-01 -8.7 9.83e-01 - 1.00e+00 1.00e+00h 1\n", - " 43 1.3044585e+01 9.21e-07 1.46e-03 -8.8 2.75e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 1.3044561e+01 1.81e-05 1.59e-03 -8.8 5.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 45 1.3044584e+01 4.38e-06 2.01e-03 -8.8 1.43e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.3044295e+01 1.38e-04 1.67e-02 -8.8 1.63e+00 - 1.00e+00 1.00e+00h 1\n", - " 47 1.3044303e+01 1.13e-04 2.40e-03 -8.8 9.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 48 1.3044552e+01 1.45e-05 3.72e-03 -8.8 1.13e-01 - 1.00e+00 8.95e-01h 1\n", - " 49 1.3044385e+01 8.94e-05 3.69e-03 -8.8 7.81e-01 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.3044596e+01 2.44e-08 4.59e-05 -8.8 8.47e-01 - 3.91e-01 1.00e+00H 1\n", - " 51 1.3044596e+01 6.22e-09 4.91e-05 -8.8 6.89e-05 - 1.00e+00 1.00e+00h 1\n", - " 52 1.3044596e+01 6.02e-09 8.58e-05 -11.0 2.15e-05 - 1.00e+00 1.00e+00h 1\n", - " 53 1.3044596e+01 5.04e-09 1.75e-04 -11.0 1.91e-05 - 1.00e+00 1.00e+00h 1\n", - " 54 1.3044596e+01 2.29e-08 1.21e-04 -11.0 4.50e-05 - 1.00e+00 1.00e+00h 1\n", - " 55 1.3044596e+01 6.13e-09 1.45e-04 -11.0 1.86e-05 - 1.00e+00 1.00e+00h 1\n", - " 56 1.3044596e+01 1.21e-08 7.12e-05 -11.0 7.19e-05 - 1.00e+00 1.00e+00h 1\n", - " 57 1.3044596e+01 7.48e-09 7.35e-05 -11.0 2.88e-05 - 1.00e+00 1.00e+00h 1\n", - " 58 1.3044596e+01 2.94e-09 1.73e-05 -11.0 1.57e-05 - 1.00e+00 1.00e+00h 1\n", - " 59 1.3044596e+01 1.15e-09 2.91e-04 -11.0 5.83e-06 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.3044596e+01 1.03e-09 1.72e-04 -11.0 2.21e-06 - 1.00e+00 1.00e+00h 1\n", - " 61 1.3044596e+01 5.24e-09 4.48e-05 -11.0 2.97e-05 - 1.00e+00 1.00e+00h 1\n", - " 62 1.3044596e+01 1.31e-09 2.05e-04 -11.0 9.11e-06 - 1.00e+00 1.00e+00h 1\n", - " 63 1.3044596e+01 8.26e-09 1.86e-04 -11.0 4.24e-05 - 1.00e+00 1.00e+00h 1\n", - " 64 1.3044596e+01 1.81e-09 1.74e-04 -11.0 7.14e-06 - 1.00e+00 1.00e+00h 1\n", - " 65 1.3044596e+01 8.28e-08 2.72e-05 -11.0 1.56e-04 - 1.00e+00 1.00e+00h 1\n", - " 66 1.3044596e+01 1.95e-08 1.75e-05 -11.0 1.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 67 1.3044596e+01 3.57e-09 1.27e-04 -11.0 3.32e-05 - 1.00e+00 1.00e+00h 1\n", - " 68 1.3044596e+01 9.74e-09 5.41e-05 -11.0 4.31e-05 - 1.00e+00 1.00e+00h 1\n", - " 69 1.3044596e+01 2.54e-08 4.26e-05 -11.0 1.35e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.3044596e+01 1.33e-09 1.12e-04 -11.0 5.66e-05 - 1.00e+00 1.00e+00h 1\n", - " 71 1.3044596e+01 4.75e-09 3.19e-04 -11.0 1.20e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 1.3044596e+01 3.07e-08 3.07e-04 -11.0 9.00e-04 - 1.00e+00 1.00e+00h 1\n", - "In iteration 72, 1 Slack too small, adjusting variable bound\n", - " 73 1.3044593e+01 9.20e-06 2.09e-03 -11.0 2.17e-01 - 1.00e+00 2.55e-01h 1\n", - " 74 1.3044595e+01 4.41e-06 1.22e-03 -11.0 6.27e-03 - 1.00e+00 5.00e-01h 2\n", - " 75 1.3044596e+01 1.01e-07 1.43e-04 -11.0 2.31e-03 - 5.75e-01 1.00e+00h 1\n", - " 76 1.3044596e+01 6.66e-08 9.55e-05 -11.0 2.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 1.3044596e+01 4.16e-08 6.79e-05 -11.0 9.52e-05 - 1.00e+00 5.00e-01h 2\n", - " 78 1.3044596e+01 4.05e-08 5.07e-05 -11.0 1.22e-04 - 1.00e+00 1.25e-01h 4\n", - " 79 1.3044596e+01 3.92e-08 1.15e-04 -11.0 1.21e-05 - 1.00e+00 3.12e-02h 6\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.3044596e+01 6.87e-10 5.16e-05 -11.0 9.91e-06 - 1.00e+00 1.00e+00h 1\n", - " 81 1.3044596e+01 5.79e-11 9.35e-05 -11.0 6.91e-04 - 1.00e+00 1.00e+00H 1\n", - " 82 1.3044596e+01 2.95e-07 8.46e-05 -11.0 1.20e-03 - 1.00e+00 1.00e+00h 1\n", - " 83 1.3044596e+01 1.09e-07 6.99e-05 -11.0 9.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 84 1.3044596e+01 1.09e-08 3.89e-05 -11.0 1.75e-04 - 1.00e+00 1.00e+00h 1\n", - " 85 1.3044596e+01 1.21e-07 1.60e-04 -11.0 6.49e-04 - 1.00e+00 1.00e+00h 1\n", - " 86 1.3044594e+01 8.92e-07 7.18e-03 -11.0 4.19e-03 - 1.00e+00 1.00e+00h 1\n", - " 87 1.3044596e+01 2.51e-09 8.65e-05 -11.0 2.26e-05 - 1.00e+00 1.00e+00h 1\n", - " 88 1.3044596e+01 2.23e-10 3.72e-05 -11.0 2.17e-03 - 1.00e+00 1.00e+00H 1\n", - " 89 1.3044595e+01 3.11e-07 5.02e-05 -11.0 6.28e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.3044596e+01 5.59e-11 1.59e-04 -11.0 2.01e-03 - 1.00e+00 1.00e+00H 1\n", - " 91 1.3044595e+01 4.46e-06 1.83e-03 -11.0 5.48e-01 - 1.00e+00 2.05e-02h 1\n", - " 92 1.3044595e+01 4.32e-07 4.42e-05 -11.0 3.66e-03 - 5.23e-04 1.00e+00h 1\n", - " 93 1.3044595e+01 1.54e-07 5.52e-05 -11.0 1.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.3044595e+01 1.87e-07 5.82e-05 -11.0 1.49e-03 - 1.00e+00 1.00e+00h 1\n", - "In iteration 94, 1 Slack too small, adjusting variable bound\n", - " 95 1.3044595e+01 1.96e-06 1.67e-03 -11.0 2.06e-01 - 1.00e+00 2.50e-02h 1\n", - "In iteration 95, 1 Slack too small, adjusting variable bound\n", - " 96 1.3044595e+01 1.96e-06 1.61e-03 -11.0 1.43e-02 - 1.00e+00 7.55e-04h 1\n", - " 97 1.3044595e+01 8.94e-08 3.55e-04 -11.0 6.33e-04 - 8.32e-01 1.00e+00h 1\n", - " 98 1.3044580e+01 8.50e-06 9.70e-03 -11.0 3.00e-02 - 1.00e+00 1.00e+00h 1\n", - " 99 1.3044588e+01 4.53e-06 5.22e-03 -11.0 6.43e-03 - 8.24e-01 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.3044594e+01 5.88e-06 1.33e-03 -11.0 3.69e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.3044594072804648e+01 1.3044594072804648e+01\n", - "Dual infeasibility......: 1.3317205945152083e-03 1.3317205945152083e-03\n", - "Constraint violation....: 5.8845067165691489e-06 5.8845067165691489e-06\n", - "Complementarity.........: 2.1102920220507009e-11 2.1102920220507009e-11\n", - "Overall NLP error.......: 1.3317205945152083e-03 1.3317205945152083e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 118\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 118\n", - "Number of inequality constraint evaluations = 118\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.418\n", - "Total CPU secs in NLP function evaluations = 134.159\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 524.00us ( 4.44us) 519.13us ( 4.40us) 118\n", - " nlp_g | 5.28 s ( 44.76ms) 5.03 s ( 42.65ms) 118\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 529.00us ( 5.19us) 408.35us ( 4.00us) 102\n", - " nlp_jac_g | 131.78 s ( 1.29 s) 125.74 s ( 1.23 s) 102\n", - " total | 138.55 s (138.55 s) 132.20 s (132.20 s) 1\n", - "Timestamp 9600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.69e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9837809e+01 1.41e+01 2.69e+03 -1.5 2.69e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.2090624e+00 5.04e+00 1.00e+01 0.4 1.41e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.0473676e+01 1.50e+00 6.51e-01 -1.6 8.86e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.1525845e+01 1.83e-03 8.35e-02 -3.4 2.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.1526772e+01 2.97e-07 6.19e-05 -5.3 1.85e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1526772e+01 1.32e-07 1.60e-04 -11.0 7.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1526772e+01 1.00e-07 3.06e-05 -11.0 3.88e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1526772e+01 8.53e-09 1.99e-05 -11.0 2.87e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 1.1526772e+01 3.85e-11 2.54e-04 -11.0 1.85e-04 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1526772e+01 4.73e-08 2.03e-04 -11.0 1.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 1.1526601e+01 1.42e-04 7.19e-02 -11.0 2.78e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1526758e+01 1.33e-05 1.17e-03 -11.0 9.98e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1526773e+01 7.80e-06 1.46e-03 -11.0 3.23e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 1.1254951e+01 2.24e-01 6.18e-02 -11.0 3.30e+03 - 1.00e+00 1.00e+00f 1\n", - " 15 1.1500613e+01 3.42e-04 9.10e-03 -11.0 3.36e-01 -4.0 1.00e+00 1.00e+00h 1\n", - " 16 1.1494536e+01 4.81e-03 1.58e-02 -11.0 1.04e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1500282e+01 3.45e-04 1.59e-03 -11.0 3.66e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 1.0671933e+01 5.61e-01 5.63e-02 -11.0 6.15e+03 - 1.00e+00 1.00e+00f 1\n", - " 19 1.1561083e+01 8.93e-02 5.11e-02 -11.0 6.63e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.0348400e+01 4.80e-01 6.00e-02 -11.0 3.16e+07 - 8.97e-04 1.09e-03f 1\n", - " 21 9.7508206e+00 1.33e+00 7.76e-02 -10.4 1.25e+04 - 1.00e+00 1.00e+00f 1\n", - " 22 8.7682092e+00 5.06e+00 7.70e-01 -2.3 5.53e+04 - 1.00e+00 3.03e-01f 1\n", - " 23 1.1225113e+01 5.49e-01 7.01e-02 -1.3 1.97e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 1.1119917e+01 4.86e-01 1.29e-01 -1.3 4.04e+03 - 6.33e-01 1.00e+00h 1\n", - " 25 9.6325297e+00 1.49e+00 1.62e-01 -7.4 1.42e+04 - 1.12e-01 6.03e-01f 1\n", - " 26 9.1573625e+00 3.47e+00 2.56e-01 -2.0 5.09e+04 - 1.00e+00 7.45e-01F 1\n", - " 27 1.4348350e+01 1.25e+00 2.08e-01 0.1 2.21e+05 - 1.03e-01 5.61e-02f 3\n", - " 28 1.1626411e+01 7.45e-01 2.66e-01 -0.5 5.98e+04 - 8.07e-01 1.00e+00f 1\n", - " 29 1.1116914e+01 1.02e-04 7.82e-01 -0.5 8.34e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1117063e+01 1.25e-06 1.29e-03 -2.6 4.44e-03 - 9.98e-01 1.00e+00h 1\n", - " 31 1.1117065e+01 1.11e-07 2.99e-04 -8.5 1.15e-03 - 9.97e-01 1.00e+00h 1\n", - " 32 1.1117054e+01 5.60e-06 2.18e-03 -11.0 1.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.1117062e+01 1.49e-06 1.40e-03 -11.0 7.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 34 1.1117064e+01 3.94e-07 3.82e-05 -11.0 3.50e-03 - 1.00e+00 1.00e+00h 1\n", - " 35 1.1117065e+01 1.46e-07 6.01e-05 -11.0 1.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 36 1.1117065e+01 1.20e-10 1.34e-04 -11.0 1.61e-03 - 1.00e+00 1.00e+00H 1\n", - " 37 1.1117064e+01 1.87e-06 1.59e-03 -11.0 6.83e-03 - 1.00e+00 1.00e+00h 1\n", - " 38 1.1117062e+01 1.89e-06 2.31e-03 -11.0 1.50e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 1.1117055e+01 4.04e-06 4.35e-03 -11.0 7.66e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.1117047e+01 1.28e-05 7.88e-04 -11.0 5.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 41 1.1117050e+01 1.30e-05 2.39e-03 -11.0 6.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 42 1.1117062e+01 2.22e-06 2.15e-03 -11.0 1.55e-02 - 1.00e+00 1.00e+00h 1\n", - " 43 1.1117056e+01 3.42e-06 1.61e-03 -11.0 1.21e-02 - 1.00e+00 1.00e+00h 1\n", - " 44 1.1116969e+01 4.62e-05 5.79e-03 -11.0 2.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 45 1.1117050e+01 4.41e-05 1.51e-03 -11.0 9.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.1117066e+01 2.62e-06 7.30e-04 -11.0 3.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 47 1.1117067e+01 2.70e-06 1.19e-03 -11.0 9.35e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 1.1116941e+01 6.58e-05 3.38e-03 -11.0 5.14e-01 - 1.00e+00 1.00e+00h 1\n", - " 49 1.1117062e+01 6.44e-09 5.85e-05 -11.0 5.45e-01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.1117021e+01 2.58e-05 1.52e-03 -11.0 1.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 51 1.1117054e+01 1.03e-05 1.28e-03 -11.0 1.69e-01 - 1.00e+00 1.00e+00h 1\n", - " 52 1.1117012e+01 3.07e-05 1.36e-03 -11.0 4.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 53 1.1099362e+01 1.05e-02 6.27e-03 -11.0 1.46e+02 - 1.00e+00 1.00e+00f 1\n", - " 54 1.1084670e+01 2.15e-02 5.87e-03 -11.0 2.02e+02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.1080546e+01 1.98e-02 8.90e-03 -11.0 2.19e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 1.1122139e+01 1.91e-05 4.28e-02 -11.0 4.51e-02 - 1.00e+00 1.00e+00h 1\n", - " 57 1.1122143e+01 4.84e-06 1.31e-03 -11.0 1.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 58 1.1122151e+01 1.45e-06 1.53e-03 -11.0 3.87e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.1122152e+01 6.97e-07 2.17e-04 -11.0 1.21e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.0898404e+01 9.73e-02 1.17e-01 -11.0 3.82e+02 - 1.00e+00 1.00e+00f 1\n", - " 61 1.0840573e+01 1.46e-01 1.30e-02 -11.0 7.53e+02 - 1.00e+00 1.00e+00h 1\n", - " 62 1.0285876e+01 4.65e-01 3.05e-02 -11.0 6.03e+02 - 1.00e+00 1.00e+00f 1\n", - " 63 1.1001201e+01 7.49e-02 2.89e-02 -11.0 1.75e+02 - 1.00e+00 1.00e+00h 1\n", - " 64 1.1080145e+01 1.66e-02 1.54e-02 -11.0 8.31e+01 - 1.00e+00 1.00e+00h 1\n", - " 65 1.0847840e+01 1.12e-01 1.28e-02 -11.0 2.99e+02 - 1.00e+00 1.00e+00f 1\n", - " 66 1.1052079e+01 3.66e-02 2.08e-02 -11.0 1.75e+02 - 1.00e+00 1.00e+00h 1\n", - " 67 1.1023559e+01 4.66e-02 9.20e-03 -11.0 3.83e+02 - 1.00e+00 1.00e+00h 1\n", - " 68 1.1079937e+01 3.86e-02 6.01e-03 -11.0 1.82e+02 - 1.00e+00 1.00e+00h 1\n", - " 69 1.1115972e+01 7.83e-03 4.55e-03 -11.0 1.27e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1090472e+01 1.79e-02 2.56e-03 -11.0 8.80e+01 - 1.00e+00 1.00e+00h 1\n", - " 71 9.9545508e+00 3.99e-01 5.66e-02 -11.0 3.38e+03 - 1.00e+00 1.00e+00f 1\n", - " 72 9.7227293e+00 9.80e-01 9.38e-02 -11.0 3.63e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 1.0074086e+01 6.69e-01 4.51e-02 -11.0 6.36e+02 - 1.00e+00 3.13e-01h 1\n", - " 74 1.1022594e+01 2.83e-02 4.72e-02 -11.0 1.98e+02 - 6.32e-08 1.00e+00h 1\n", - " 75 1.1011387e+01 2.49e-02 4.91e-02 -9.0 7.70e+02 - 1.00e+00 4.76e-02h 1\n", - " 76 1.1011751e+01 2.43e-02 4.81e-02 -7.1 3.67e+01 - 1.00e+00 2.12e-02h 1\n", - " 77 1.0910763e+01 2.86e-01 2.15e-02 -6.3 6.53e+02 - 1.00e+00 1.00e+00h 1\n", - " 78 1.1015882e+01 1.59e-02 1.10e-02 -6.3 1.98e+02 - 9.92e-01 1.00e+00h 1\n", - " 79 1.0977076e+01 1.63e-01 2.28e-02 -6.7 1.49e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.0955615e+01 9.74e-02 8.25e-03 -5.6 9.57e+02 - 1.00e+00 1.00e+00h 1\n", - " 81 1.0908498e+01 1.07e-01 5.14e-03 -5.6 1.15e+04 - 1.00e+00 4.60e-02h 1\n", - " 82 1.0997102e+01 3.98e-02 6.63e-03 -5.6 1.49e+02 - 1.25e-01 1.00e+00h 1\n", - " 83 1.0952091e+01 9.34e-02 9.76e-03 -7.0 7.46e+02 - 1.00e+00 1.00e+00h 1\n", - " 84 1.0136127e+01 5.42e-01 9.10e-02 -4.2 5.30e+03 - 1.00e+00 1.00e+00f 1\n", - " 85 9.8577602e+00 1.70e+00 6.77e-02 -4.4 6.23e+03 - 1.00e+00 1.00e+00h 1\n", - " 86 1.1242559e+01 4.43e-03 2.25e+00 -4.4 2.43e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 1.1245300e+01 3.79e-07 1.35e-04 -4.4 5.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 88 1.1245298e+01 1.28e-06 1.20e-03 -6.5 5.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 1.1245298e+01 1.05e-06 8.67e-04 -6.5 6.41e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.1245299e+01 1.06e-06 9.94e-04 -6.5 4.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 91 1.1245299e+01 1.07e-06 1.38e-03 -6.5 2.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 1.1245300e+01 9.14e-08 1.17e-04 -6.5 3.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 93 1.1245300e+01 5.05e-10 8.18e-05 -6.5 5.40e-03 - 1.00e+00 1.00e+00H 1\n", - " 94 1.1245280e+01 1.12e-05 5.89e-03 -6.5 8.29e-02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.1245250e+01 2.02e-05 1.73e-03 -6.5 3.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 96 1.1245291e+01 5.84e-06 2.17e-03 -6.5 3.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 97 1.1245099e+01 1.10e-04 3.73e-03 -6.5 6.62e-01 - 1.00e+00 1.00e+00h 1\n", - " 98 1.1244924e+01 5.29e-04 6.55e-03 -6.5 1.64e+00 - 1.00e+00 1.00e+00h 1\n", - " 99 1.1245214e+01 5.38e-05 3.36e-03 -6.5 3.24e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.1186022e+01 6.23e-02 8.27e-03 -6.5 4.84e+02 - 1.00e+00 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.1186022104613029e+01 1.1186022104613029e+01\n", - "Dual infeasibility......: 8.2675092816427154e-03 8.2675092816427154e-03\n", - "Constraint violation....: 6.2305635224102929e-02 6.2305635224102929e-02\n", - "Complementarity.........: 2.9818758062648628e-07 2.9818758062648628e-07\n", - "Overall NLP error.......: 6.2305635224102929e-02 6.2305635224102929e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 111\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 111\n", - "Number of inequality constraint evaluations = 111\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.402\n", - "Total CPU secs in NLP function evaluations = 134.351\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 499.00us ( 4.50us) 494.96us ( 4.46us) 111\n", - " nlp_g | 4.95 s ( 44.63ms) 4.72 s ( 42.52ms) 111\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 358.00us ( 3.51us) 354.42us ( 3.47us) 102\n", - " nlp_jac_g | 132.23 s ( 1.30 s) 126.21 s ( 1.24 s) 102\n", - " total | 138.67 s (138.67 s) 132.36 s (132.36 s) 1\n", - "Timestamp 9900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.26e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0154345e+01 1.34e+01 1.26e+04 -1.5 1.26e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.3053027e+00 4.85e+00 7.44e+00 0.6 7.12e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 5.0500816e+00 9.65e-01 8.14e-01 -1.5 2.06e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 5.7347489e+00 4.20e-03 1.26e-01 -3.2 1.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 5.7364488e+00 7.07e-07 1.52e-03 -5.1 8.90e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 5.7364501e+00 2.41e-07 9.80e-05 -7.2 3.19e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 5.7364458e+00 4.16e-06 1.78e-03 -11.0 5.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 5.7364510e+00 1.78e-08 1.25e-04 -11.0 2.97e-02 - 1.00e+00 1.00e+00H 1\n", - " 9 5.7364422e+00 6.28e-06 9.08e-04 -11.0 2.30e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 5.7364298e+00 9.35e-06 3.12e-03 -11.0 3.63e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 5.7364503e+00 2.09e-06 1.30e-03 -11.0 1.21e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 5.7364503e+00 1.51e-06 1.73e-03 -11.0 7.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 5.7012885e+00 1.36e-02 5.74e-02 -11.0 1.21e+02 - 1.00e+00 1.00e+00f 1\n", - " 14 5.7316982e+00 1.18e-02 2.42e-03 -11.0 2.83e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 5.6544844e+00 4.40e-03 3.47e-02 -11.0 1.57e+04 - 1.00e+00 1.00e+00F 1\n", - " 16 5.1096338e+00 4.62e+00 9.87e-01 -9.1 5.54e+04 - 1.00e+00 2.83e-01f 1\n", - " 17 5.0884499e+00 4.58e+00 9.73e-01 -9.3 1.73e+04 - 1.00e+00 9.17e-03h 1\n", - " 18 5.2770274e+00 3.28e-01 1.79e-01 -9.3 1.54e+03 - 7.47e-01 1.00e+00h 1\n", - " 19 5.4874353e+00 8.06e-02 6.98e-02 -3.6 5.17e+02 - 7.42e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 5.5517632e+00 4.28e-02 2.01e-02 -2.7 2.40e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 5.5498173e+00 1.69e-02 1.33e-02 -3.4 1.57e+02 - 1.00e+00 1.00e+00h 1\n", - " 22 5.2247195e+00 2.61e-01 2.55e-02 -4.0 1.32e+04 - 9.96e-01 2.21e-01f 1\n", - " 23 5.5204401e+00 3.21e-02 2.95e-02 -3.3 2.44e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 5.2403221e+00 1.65e-01 6.42e-02 -3.4 7.52e+02 - 3.99e-01 1.00e+00f 1\n", - " 25 5.5509527e+00 2.24e-02 2.53e-02 -4.0 3.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 26 5.5611688e+00 1.01e-02 9.51e-03 -9.8 1.17e+02 - 1.79e-01 1.00e+00h 1\n", - " 27 5.5717550e+00 2.19e-02 3.45e-02 -2.8 1.08e+03 - 3.30e-02 2.50e-01f 3\n", - " 28 5.5848632e+00 5.70e-03 2.64e-03 -2.9 7.29e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 5.5192518e+00 3.27e-02 6.47e-03 -8.9 3.05e+03 - 9.15e-01 6.11e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 5.5757723e+00 6.60e-03 1.21e-02 -9.4 3.46e+01 - 7.88e-01 1.00e+00h 1\n", - " 31 5.5822960e+00 1.18e-03 7.93e-03 -3.7 2.04e+01 - 1.00e+00 8.77e-01H 1\n", - " 32 5.5799848e+00 2.59e-03 1.81e-03 -3.4 2.23e+01 - 8.10e-01 1.00e+00f 1\n", - " 33 5.2034021e+00 5.23e-01 9.96e-02 -3.6 1.26e+03 - 2.56e-01 1.00e+00f 1\n", - " 34 4.4626987e+00 1.59e+00 3.47e-01 -3.1 7.98e+03 - 1.00e+00 1.00e+00f 1\n", - " 35 5.7836650e+00 1.97e-01 4.75e-01 -2.3 9.97e+03 - 1.00e+00 1.00e+00H 1\n", - " 36 3.9620904e+00 1.48e+00 2.58e-01 -2.4 5.73e+03 - 1.00e+00 1.00e+00f 1\n", - " 37 5.9747354e+00 6.78e-01 4.13e-01 -3.1 5.58e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 3.6919122e+00 1.33e+00 8.45e-02 -3.2 1.62e+04 - 4.21e-01 1.00e+00f 1\n", - " 39 3.7328869e+00 1.35e+00 7.35e-02 -3.0 5.73e+04 - 7.43e-01 8.22e-02h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.7283761e+00 1.55e+00 1.14e-01 -2.9 3.00e+04 - 1.00e+00 1.25e-01h 4\n", - " 41 5.1168101e+00 2.99e-01 3.59e-01 -2.9 5.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 42 5.0720073e+00 2.73e-01 3.71e-01 -3.0 2.73e+04 - 1.36e-01 9.27e-02F 1\n", - " 43 4.8523395e+00 5.77e-01 1.94e-01 -2.0 1.55e+04 - 1.00e+00 1.00e+00h 1\n", - " 44 4.5761260e+00 5.32e-01 2.63e-01 -2.0 1.59e+04 - 9.11e-01 3.68e-01h 1\n", - " 45 5.4492374e+00 1.82e-02 1.12e+00 -4.0 1.34e+00 - 9.99e-01 1.00e+00h 1\n", - " 46 5.4585589e+00 1.16e-07 6.27e-05 -5.9 2.18e-02 - 1.00e+00 1.00e+00h 1\n", - " 47 5.4585588e+00 9.20e-08 1.71e-04 -11.0 6.36e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 5.4534489e+00 4.07e-03 1.78e-02 -11.0 2.18e+01 - 1.00e+00 1.00e+00f 1\n", - " 49 5.4492459e+00 7.71e-03 4.20e-03 -11.0 5.83e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 5.4352381e+00 1.75e-02 1.94e-03 -11.0 4.49e+01 - 1.00e+00 1.00e+00h 1\n", - " 51 5.4573539e+00 1.39e-03 1.74e-03 -11.0 1.06e+01 - 1.00e+00 1.00e+00h 1\n", - " 52 5.4594208e+00 5.66e-04 1.06e-03 -11.0 2.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 53 5.4591712e+00 6.26e-04 9.15e-04 -11.0 2.21e+00 - 1.00e+00 1.00e+00h 1\n", - " 54 5.4571605e+00 1.73e-03 2.41e-03 -11.0 8.26e+00 - 1.00e+00 1.00e+00h 1\n", - " 55 5.4599441e+00 3.66e-06 2.12e-03 -11.0 1.72e+01 - 1.00e+00 1.00e+00H 1\n", - " 56 5.4576903e+00 1.13e-03 1.09e-03 -11.0 1.05e+01 - 1.00e+00 1.00e+00h 1\n", - " 57 5.4470345e+00 1.67e-02 3.18e-03 -10.7 7.34e+01 - 1.00e+00 1.00e+00h 1\n", - " 58 5.2627462e+00 1.16e-01 2.04e-02 -9.9 1.32e+03 - 1.00e+00 1.00e+00f 1\n", - " 59 4.8307260e+00 5.98e-01 1.09e-01 -11.0 1.11e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 5.3577134e+00 8.34e-02 7.40e-02 -11.0 2.60e+02 - 1.00e+00 1.00e+00h 1\n", - " 61 4.4264406e+00 1.69e+00 4.47e-01 -10.0 8.40e+03 - 1.00e+00 7.50e-01f 1\n", - " 62 4.4284718e+00 1.68e+00 4.39e-01 -10.2 5.87e+03 - 1.00e+00 8.61e-03h 1\n", - " 63 4.6410069e+00 7.94e-01 5.97e-01 -10.2 9.57e+03 - 1.00e+00 1.00e+00H 1\n", - " 64 4.5320158e+00 2.21e+00 3.42e-01 -10.3 1.78e+04 - 1.00e+00 2.50e-01f 3\n", - " 65 4.9397882e+00 3.04e-01 3.67e-01 -5.3 8.66e+03 - 9.86e-02 1.00e+00h 1\n", - " 66 4.9260284e+00 3.46e-01 3.59e-01 -4.4 6.67e+03 - 1.00e+00 2.59e-02h 1\n", - " 67 4.7344223e+00 5.80e-01 3.31e-01 -3.9 1.87e+03 - 1.00e+00 1.00e+00h 1\n", - " 68 4.7262495e+00 2.06e+00 4.29e-01 -3.9 8.59e+03 - 6.12e-01 1.00e+00H 1\n", - " 69 4.4633179e+00 1.45e+00 3.47e-01 -4.1 5.22e+03 - 1.00e+00 1.61e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 4.2868742e+00 1.36e+00 1.45e-01 -4.1 4.66e+03 - 8.81e-01 1.00e+00h 1\n", - " 71 4.7915630e+00 3.88e-01 3.37e-01 -4.9 3.68e+03 - 9.75e-01 1.00e+00h 1\n", - " 72 4.3283531e+00 5.63e-01 2.10e-01 -2.2 3.85e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 4.3002373e+00 1.84e+00 4.74e-02 -1.6 1.61e+05 - 8.27e-01 3.02e-02f 2\n", - " 74 4.4868666e+00 1.71e+00 5.42e-02 -1.8 5.30e+03 - 1.00e+00 1.00e+00h 1\n", - " 75 4.1003873e+00 2.49e+00 5.40e-01 -1.8 2.49e+05 - 1.77e-01 4.49e-02f 1\n", - " 76 4.0109790e+00 1.27e+00 1.36e-01 -1.8 1.15e+04 - 1.00e+00 5.46e-01h 1\n", - " 77 4.2826977e+00 6.25e-01 1.89e-01 -2.7 2.63e+03 - 9.68e-01 1.00e+00h 1\n", - " 78 4.8974442e+00 1.89e-01 8.76e-02 -4.7 1.92e+03 - 9.87e-01 1.00e+00h 1\n", - " 79 5.0236803e+00 5.53e-02 1.31e-01 -3.3 8.25e+02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 4.9282800e+00 3.46e-01 3.53e-02 -2.4 1.72e+03 - 9.50e-01 1.00e+00h 1\n", - " 81 4.7994860e+00 1.53e+00 2.23e-01 -2.5 2.90e+04 - 3.46e-01 2.50e-01f 3\n", - " 82 4.4330426e+00 1.21e+00 3.34e-01 -2.5 3.03e+04 - 1.00e+00 3.17e-01h 1\n", - " 83 5.0658545e+00 8.64e-02 3.56e-01 -2.5 1.70e+03 - 1.00e+00 1.00e+00h 1\n", - " 84 4.9834711e+00 5.69e-01 1.11e-01 -2.5 2.14e+03 - 5.57e-01 1.00e+00h 1\n", - " 85 4.9401842e+00 3.41e-01 7.68e-02 -2.5 4.87e+03 - 5.61e-01 1.00e+00h 1\n", - " 86 4.9038773e+00 4.73e-01 2.65e-02 -2.5 6.80e+03 - 1.00e+00 1.00e+00h 1\n", - " 87 4.5231638e+00 9.16e-01 1.90e-01 -2.5 1.35e+05 - 8.59e-02 9.74e-02f 1\n", - " 88 4.6202523e+00 4.98e-01 1.28e-01 -2.5 5.22e+03 - 1.00e+00 1.00e+00h 1\n", - " 89 5.0076035e+00 1.94e-01 4.86e-02 -2.5 2.90e+04 - 5.66e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 4.8078375e+00 5.23e-01 2.67e-02 -2.1 1.73e+05 - 6.04e-01 5.31e-02f 1\n", - " 91 4.7087057e+00 2.13e-01 1.23e-01 -2.4 1.63e+03 - 1.00e+00 1.00e+00h 1\n", - " 92 5.0641092e+00 1.06e-01 4.19e-02 -3.2 8.85e+03 - 1.97e-01 1.00e+00H 1\n", - " 93 4.9972245e+00 3.90e-01 6.37e-02 -2.7 3.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 4.8625440e+00 1.43e+00 2.83e-01 -2.7 6.82e+03 - 1.00e+00 1.00e+00h 1\n", - " 95 4.9633873e+00 4.91e-01 3.22e-01 -2.7 5.52e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 4.9369554e+00 8.49e-02 1.03e-01 -2.7 1.92e+03 - 1.00e+00 1.00e+00h 1\n", - " 97 4.7098624e+00 1.12e+00 4.13e-01 -2.7 1.04e+04 - 9.83e-01 1.00e+00f 1\n", - " 98 4.6523065e+00 9.70e-01 3.23e-01 -2.9 3.18e+03 - 1.00e+00 1.50e-01h 1\n", - " 99 5.0923104e+00 8.07e-02 2.70e-01 -2.9 3.25e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 5.0186051e+00 6.05e-02 2.11e-01 -2.9 3.61e+03 - 1.00e+00 2.69e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 5.0186050633553547e+00 5.0186050633553547e+00\n", - "Dual infeasibility......: 2.1131757318960864e-01 2.1131757318960864e-01\n", - "Constraint violation....: 6.0513063218142094e-02 6.0513063218142094e-02\n", - "Complementarity.........: 1.5367972504610637e-03 1.5367972504610637e-03\n", - "Overall NLP error.......: 2.1131757318960864e-01 2.1131757318960864e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 142\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 142\n", - "Number of inequality constraint evaluations = 142\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.422\n", - "Total CPU secs in NLP function evaluations = 135.850\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 646.00us ( 4.55us) 629.43us ( 4.43us) 142\n", - " nlp_g | 6.40 s ( 45.04ms) 6.10 s ( 42.97ms) 142\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 336.00us ( 3.29us) 331.64us ( 3.25us) 102\n", - " nlp_jac_g | 132.25 s ( 1.30 s) 126.23 s ( 1.24 s) 102\n", - " total | 140.13 s (140.13 s) 133.76 s (133.76 s) 1\n", - "Timestamp 10200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 8.69e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0064039e+01 1.40e+01 8.69e+03 -1.5 8.69e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.5440964e+00 5.13e+00 9.50e+00 0.6 4.03e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 7.4272016e+00 1.20e+00 8.52e-01 -1.5 1.14e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 8.3407567e+00 3.71e-03 1.02e-01 -3.3 1.81e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 8.3425331e+00 1.63e-07 5.26e-05 -5.1 3.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 8.3425325e+00 3.81e-07 1.21e-04 -11.0 3.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 8.3425308e+00 1.10e-06 2.12e-03 -11.0 5.78e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 8.3425314e+00 6.92e-07 9.66e-04 -11.0 7.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 8.3425297e+00 1.48e-06 1.21e-03 -11.0 1.16e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 8.3425309e+00 1.07e-06 1.69e-03 -11.0 1.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 8.3425252e+00 3.57e-06 8.11e-04 -11.0 8.64e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 8.3425286e+00 2.25e-06 2.84e-03 -11.0 1.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 8.3425320e+00 5.46e-07 3.41e-05 -11.0 3.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 8.3425310e+00 6.00e-07 2.34e-05 -11.0 1.61e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 8.3425316e+00 5.52e-07 6.13e-05 -11.0 4.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 8.3363361e+00 4.89e-03 3.22e-02 -11.0 5.00e+01 - 1.00e+00 1.00e+00f 1\n", - " 17 8.3044212e+00 3.09e-02 4.06e-03 -11.0 4.90e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 7.0093200e+00 7.99e-01 1.21e-01 -11.0 1.87e+04 - 1.00e+00 1.00e+00f 1\n", - " 19 6.0609379e+00 1.50e+00 2.66e-01 -9.0 3.33e+04 - 1.00e+00 3.64e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 6.0209718e+00 1.53e+00 2.71e-01 -7.1 7.91e+04 - 1.00e+00 1.53e-03h 1\n", - " 21 8.8694817e+00 1.40e-01 2.99e+00 -9.0 3.32e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 8.9684800e+00 1.58e-05 1.14e-02 -9.1 1.76e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 8.9684881e+00 1.91e-07 6.13e-05 -9.1 1.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 24 8.9684882e+00 8.05e-08 8.12e-05 -9.1 4.42e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 8.9684881e+00 1.31e-07 4.49e-05 -11.0 1.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 26 8.9684883e+00 5.00e-08 1.40e-04 -11.0 2.99e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 8.9684882e+00 1.51e-07 7.96e-05 -11.0 4.80e-04 - 1.00e+00 1.00e+00h 1\n", - " 28 8.9684883e+00 3.39e-08 4.91e-05 -11.0 2.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 8.9684884e+00 2.12e-08 8.51e-05 -11.0 2.74e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.9684881e+00 3.19e-07 1.80e-04 -11.0 8.04e-04 - 1.00e+00 1.00e+00h 1\n", - " 31 8.9684881e+00 1.96e-07 2.18e-04 -11.0 5.47e-04 - 1.00e+00 1.00e+00h 1\n", - " 32 8.9684881e+00 1.69e-07 1.91e-04 -11.0 4.46e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 8.9683918e+00 5.88e-05 2.62e-02 -11.0 2.29e-01 - 1.00e+00 1.00e+00h 1\n", - " 34 8.9684849e+00 8.68e-07 1.40e-03 -11.0 2.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 35 8.9684648e+00 8.11e-06 2.67e-03 -11.0 9.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 8.9684259e+00 4.53e-05 1.72e-03 -11.0 8.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 37 8.9682727e+00 1.17e-04 3.59e-03 -11.0 1.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 38 8.9683878e+00 1.18e-04 2.05e-03 -11.0 5.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 39 8.9684484e+00 9.51e-06 2.07e-03 -11.0 1.92e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.9684923e+00 3.52e-09 3.54e-05 -11.0 5.95e-01 - 1.00e+00 1.00e+00H 1\n", - " 41 8.9684840e+00 3.25e-05 8.56e-04 -11.0 2.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 42 8.9684548e+00 3.83e-05 1.41e-03 -11.0 2.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 43 8.9682767e+00 1.44e-04 1.43e-03 -11.0 9.37e-01 - 1.00e+00 1.00e+00h 1\n", - " 44 8.9681632e+00 3.54e-04 7.42e-04 -11.0 6.67e-01 - 1.00e+00 1.00e+00h 1\n", - " 45 8.9683215e+00 1.35e-04 1.54e-03 -11.0 6.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 46 8.9681624e+00 3.62e-04 1.55e-03 -11.0 1.33e+00 - 1.00e+00 1.00e+00h 1\n", - " 47 8.9504155e+00 1.08e-02 3.26e-03 -11.0 7.73e+01 - 7.67e-02 1.00e+00h 1\n", - " 48 8.9661205e+00 1.15e-03 1.60e-03 -11.0 1.72e+01 - 1.00e+00 1.00e+00h 1\n", - " 49 8.9675483e+00 5.28e-04 1.68e-03 -11.0 8.48e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.9673005e+00 7.92e-04 2.30e-03 -11.0 9.37e+00 - 1.00e+00 1.00e+00h 1\n", - " 51 8.9673390e+00 3.87e-04 7.28e-04 -11.0 8.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 52 8.9670441e+00 1.10e-03 7.57e-04 -11.0 2.11e+01 - 1.00e+00 1.00e+00h 1\n", - " 53 8.9644363e+00 5.39e-03 1.66e-03 -11.0 2.34e+02 - 1.00e+00 1.00e+00h 1\n", - " 54 8.9603769e+00 8.22e-03 2.78e-03 -11.0 7.80e+02 - 1.00e+00 1.66e-01h 1\n", - " 55 8.9535697e+00 2.28e-02 1.71e-03 -11.0 2.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 8.9036481e+00 9.75e-02 9.04e-03 -11.0 5.23e+02 - 1.00e+00 7.61e-01h 1\n", - " 57 8.5373024e+00 8.15e-01 4.18e-02 -11.0 4.90e+03 - 1.00e+00 1.00e+00f 1\n", - " 58 8.3682363e+00 7.30e-01 9.54e-02 -11.0 9.75e+03 - 9.31e-01 1.00e+00h 1\n", - " 59 8.4434194e+00 8.51e-01 4.61e-03 -11.0 6.30e+03 - 4.04e-10 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.2855814e+00 5.79e-01 9.51e-02 -11.0 7.38e+03 - 1.00e+00 1.00e+00f 1\n", - " 61 6.1291661e+00 1.51e+00 2.13e-01 -9.6 9.86e+03 - 1.00e+00 1.00e+00f 1\n", - " 62 5.9059823e+00 1.61e+00 4.21e-01 -7.7 4.29e+04 - 1.00e+00 1.27e-01h 1\n", - " 63 5.9184883e+00 1.58e+00 4.07e-01 -5.7 4.77e+03 - 1.00e+00 1.26e-02h 1\n", - " 64 7.3745218e+00 2.14e+00 3.19e-01 -4.2 3.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 7.6869390e+00 3.15e-01 2.56e-01 -3.9 3.80e+03 - 3.58e-01 1.00e+00h 1\n", - " 66 6.8167469e+00 2.11e+00 3.57e-01 -10.1 4.56e+04 - 8.01e-04 3.73e-01f 1\n", - " 67 6.8013858e+00 2.11e+00 3.54e-01 -4.2 1.58e+04 - 1.00e+00 1.09e-02h 1\n", - " 68 5.8631719e+00 1.08e+00 1.45e-01 -4.2 1.52e+04 - 1.00e+00 7.64e-01h 1\n", - " 69 8.6208279e+00 7.49e-02 2.21e+00 -4.2 2.21e+00 - 9.99e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.7412386e+00 1.12e-04 1.06e-02 -4.3 1.52e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 8.7412918e+00 1.51e-07 7.58e-05 -4.3 1.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 72 8.7412914e+00 1.09e-07 1.83e-04 -6.4 1.01e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 8.7412915e+00 1.86e-07 1.30e-04 -6.4 5.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 74 8.7412917e+00 7.20e-08 1.27e-04 -8.5 2.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 75 8.7412918e+00 3.22e-08 5.12e-05 -11.0 1.94e-04 - 1.00e+00 1.00e+00h 1\n", - " 76 8.7412907e+00 7.60e-07 4.10e-05 -11.0 5.21e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 8.7412915e+00 2.66e-07 9.46e-05 -11.0 2.70e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 8.7412916e+00 1.20e-10 7.27e-05 -11.0 8.37e-03 - 1.00e+00 1.00e+00H 1\n", - " 79 8.7412914e+00 5.40e-07 7.90e-05 -11.0 4.24e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.7412913e+00 8.18e-07 1.10e-03 -11.0 3.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 8.7412903e+00 1.90e-06 2.60e-03 -11.0 3.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 82 8.7412862e+00 3.21e-06 3.93e-03 -11.0 2.35e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 8.7369626e+00 4.31e-03 2.51e-02 -11.0 2.64e+01 - 1.00e+00 1.00e+00f 1\n", - " 84 8.7367596e+00 1.74e-03 2.57e-03 -11.0 4.49e+01 - 4.37e-02 1.00e+00h 1\n", - " 85 8.7354788e+00 4.94e-03 2.39e-03 -11.0 1.37e+02 - 1.00e+00 2.64e-01h 1\n", - " 86 8.7393686e+00 6.56e-04 1.32e-03 -11.0 4.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 8.7391739e+00 4.93e-04 1.45e-03 -11.0 5.61e+00 - 6.97e-01 1.00e+00h 1\n", - " 88 8.7366709e+00 3.26e-03 1.82e-03 -11.0 7.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 89 8.7300638e+00 1.65e-02 2.46e-03 -11.0 1.96e+02 - 2.90e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.7292532e+00 2.85e-02 2.09e-03 -11.0 7.02e+01 - 1.00e+00 1.00e+00h 1\n", - " 91 8.7191679e+00 1.11e-02 1.40e-03 -11.0 7.90e+01 - 1.00e+00 1.00e+00h 1\n", - " 92 8.7379284e+00 1.98e-03 3.58e-03 -11.0 2.57e+01 - 1.00e+00 1.00e+00h 1\n", - " 93 8.6968918e+00 1.49e-01 1.08e-02 -11.0 1.22e+03 - 1.91e-01 1.00e+00h 1\n", - " 94 8.6433030e+00 1.62e-01 1.13e-02 -11.0 4.93e+03 - 1.00e+00 8.77e-02h 1\n", - " 95 8.6918952e+00 8.70e-02 3.06e-03 -11.0 4.05e+02 - 2.64e-08 5.00e-01h 2\n", - " 96 8.6766182e+00 1.04e-01 3.53e-03 -11.0 4.02e+06 - 5.01e-04 8.85e-05f 1\n", - " 97 7.2847101e+00 7.50e-01 1.02e-01 -11.0 1.68e+07 - 1.63e-03 4.90e-04f 1\n", - " 98 8.0139778e+00 3.72e-01 5.54e-03 -11.0 6.93e+02 - 9.21e-01 5.00e-01h 2\n", - " 99r 8.0139778e+00 3.72e-01 9.99e+02 -0.4 0.00e+00 - 0.00e+00 2.85e-07R 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100r 8.2664577e+00 2.70e-01 9.88e+02 -2.6 2.06e+02 - 9.65e-01 1.53e-03f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.2664577352619819e+00 8.2664577352619819e+00\n", - "Dual infeasibility......: 1.3930056670231855e+02 1.3930056670231855e+02\n", - "Constraint violation....: 2.7045916952828719e-01 2.7045916952828719e-01\n", - "Complementarity.........: 1.5374873119264549e+01 1.5374873119264549e+01\n", - "Overall NLP error.......: 1.3930056670231855e+02 1.3930056670231855e+02\n", - "\n", - "\n", - "Number of objective function evaluations = 108\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 108\n", - "Number of inequality constraint evaluations = 108\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.407\n", - "Total CPU secs in NLP function evaluations = 136.093\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 478.00us ( 4.43us) 475.13us ( 4.40us) 108\n", - " nlp_g | 4.85 s ( 44.93ms) 4.63 s ( 42.88ms) 108\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 373.00us ( 3.66us) 367.25us ( 3.60us) 102\n", - " nlp_jac_g | 134.01 s ( 1.30 s) 127.92 s ( 1.24 s) 103\n", - " total | 140.32 s (140.32 s) 133.95 s (133.95 s) 1\n", - "Timestamp 10500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0309249e+01 1.60e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.4772044e+01 6.49e+00 1.28e+01 1.0 6.69e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.3120946e+01 2.52e+00 7.98e-01 -1.1 1.40e+02 - 9.98e-01 1.00e+00h 1\n", - " 4 2.4626763e+01 2.58e-04 8.55e-02 -3.0 2.76e+00 - 9.95e-01 1.00e+00h 1\n", - " 5 2.4626534e+01 1.17e-06 1.64e-03 -4.7 1.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.4625904e+01 2.90e-04 2.44e-02 -6.8 1.32e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 2.4626189e+01 2.14e-04 2.45e-03 -8.7 7.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.4626429e+01 2.80e-05 2.03e-03 -11.0 2.25e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 2.4622870e+01 7.65e-04 8.60e-03 -11.0 1.08e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.4625164e+01 6.02e-04 1.44e-03 -11.0 3.29e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 2.4620910e+01 2.94e-03 2.61e-03 -11.0 7.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 2.4626198e+01 6.15e-04 1.87e-03 -11.0 3.50e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 2.4626090e+01 1.72e-04 1.10e-03 -11.0 2.58e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 2.4625801e+01 7.06e-04 2.13e-03 -11.0 3.30e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 2.4607811e+01 7.23e-03 9.50e-03 -11.0 8.52e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.4603846e+01 9.20e-03 1.02e-03 -11.0 5.45e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 2.4616146e+01 3.52e-03 1.89e-03 -11.0 2.94e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 2.4605698e+01 6.60e-03 2.44e-03 -11.0 5.51e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 2.4369742e+01 1.02e-01 8.34e-03 -11.0 8.54e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.4455097e+01 8.06e-02 6.77e-03 -11.0 9.55e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 2.1503306e+01 8.31e+00 3.17e-01 -9.0 1.20e+05 - 1.00e+00 2.52e-01f 1\n", - " 22 2.1529888e+01 8.14e+00 3.04e-01 -7.0 1.36e+04 - 1.00e+00 2.21e-02h 1\n", - " 23 2.3583034e+01 3.68e-01 3.18e-01 -6.3 4.39e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 2.2943842e+01 7.48e-01 2.88e-01 -3.7 2.34e+05 - 1.40e-02 3.97e-02f 1\n", - " 25 2.2752898e+01 2.05e+00 1.68e-02 -5.3 1.15e+04 - 1.00e+00 1.00e+00h 1\n", - " 26 2.2587689e+01 1.14e+00 1.29e-02 -2.8 2.59e+04 - 1.00e+00 1.97e-01h 1\n", - " 27 2.2625099e+01 5.63e-01 2.12e-02 -1.8 6.70e+03 - 1.00e+00 4.50e-01h 1\n", - " 28 2.3378524e+01 8.67e-01 7.55e-03 -3.4 1.83e+03 - 9.36e-01 1.00e+00h 1\n", - " 29 2.1449001e+01 3.31e+00 8.67e-02 -8.9 2.65e+04 - 2.86e-01 5.68e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.2897698e+01 6.65e-01 3.87e-02 -2.7 7.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 31 2.3896829e+01 4.88e-02 5.20e-02 -2.0 4.61e+03 - 1.00e+00 1.00e+00H 1\n", - " 32 2.1868465e+01 1.90e+01 4.93e-01 -8.0 1.32e+05 - 6.54e-02 3.62e-01f 1\n", - " 33 2.1809707e+01 1.87e+01 4.81e-01 -2.3 6.04e+04 - 1.00e+00 1.66e-02h 1\n", - " 34 2.1166337e+01 1.21e+01 8.49e-02 -2.3 1.17e+04 - 4.06e-01 3.94e-01h 1\n", - " 35 2.3189925e+01 6.06e-01 1.31e-01 -2.2 5.36e+03 - 4.90e-02 1.00e+00h 1\n", - " 36 2.3189440e+01 6.56e-01 1.19e-01 -1.7 7.29e+03 - 1.00e+00 1.13e-01f 2\n", - " 37 2.3621818e+01 1.07e-01 1.05e-02 -2.3 4.24e+02 - 9.02e-01 1.00e+00h 1\n", - " 38 2.3418145e+01 3.59e-01 1.23e-02 -8.3 6.09e+03 - 4.92e-01 2.05e-01f 1\n", - " 39 2.3595405e+01 3.91e-02 1.20e-02 -2.7 7.15e+02 - 1.00e+00 9.06e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.3585161e+01 7.93e-02 6.07e-03 -3.9 3.29e+02 - 1.00e+00 1.00e+00h 1\n", - " 41 2.3616609e+01 5.44e-02 3.32e-03 -9.1 6.60e+02 - 6.86e-01 1.00e+00h 1\n", - " 42 2.3465383e+01 1.48e-01 4.53e-03 -10.3 1.43e+05 - 6.08e-03 2.70e-02f 1\n", - " 43 2.3623037e+01 1.66e-01 1.88e-03 -2.8 8.10e+03 - 1.29e-01 4.31e-01h 1\n", - " 44 2.3619487e+01 1.69e-01 1.85e-03 -2.9 4.21e+04 - 7.79e-02 4.02e-04h 2\n", - " 45 2.3500851e+01 5.12e-02 6.14e-03 -2.9 2.05e+03 - 1.98e-01 1.00e+00h 1\n", - " 46 2.3336327e+01 3.40e-01 8.73e-03 -3.4 9.82e+03 - 2.22e-01 1.00e+00h 1\n", - " 47 2.3183553e+01 9.94e-01 1.68e-02 -1.9 5.01e+03 - 1.00e+00 1.00e+00h 1\n", - " 48 2.3694412e+01 1.43e-02 3.20e-02 -7.8 5.03e+02 - 7.01e-01 1.00e+00h 1\n", - " 49 2.3543964e+01 3.48e-01 6.56e-03 -2.5 2.00e+03 - 9.92e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.3454522e+01 1.89e-01 1.02e-02 -2.6 4.90e+03 - 1.00e+00 1.00e+00h 1\n", - " 51 2.2628762e+01 9.19e-01 3.14e-02 -3.0 1.00e+05 - 1.74e-01 1.50e-01f 1\n", - " 52 2.3343613e+01 8.96e-01 1.14e-02 -2.9 6.54e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 2.2545357e+01 1.82e+00 4.83e-02 -2.9 1.22e+04 - 1.00e+00 1.00e+00h 1\n", - " 54 2.3573661e+01 1.62e-01 5.25e-02 -3.0 2.59e+03 - 1.00e+00 1.00e+00h 1\n", - " 55 2.3583181e+01 5.97e-02 1.23e-02 -3.2 4.71e+03 - 3.63e-01 1.00e+00h 1\n", - " 56 2.2741200e+01 1.13e+00 7.17e-02 -3.2 9.14e+04 - 1.97e-01 4.35e-01f 1\n", - " 57r 2.2741200e+01 1.13e+00 9.99e+02 0.1 0.00e+00 - 0.00e+00 2.89e-07R 13\n", - " 58r 2.3056987e+01 4.31e-01 6.98e+02 -2.1 4.40e+02 - 1.00e+00 2.05e-03f 1\n", - " 59 2.3631758e+01 2.68e-02 8.48e-03 -2.7 2.42e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.3517680e+01 7.95e-02 3.20e-02 -3.5 7.16e+02 - 9.24e-01 1.00e+00h 1\n", - " 61 2.3080632e+01 8.56e-01 1.82e-02 -3.5 1.84e+03 - 1.00e+00 1.00e+00f 1\n", - " 62 2.3579426e+01 4.94e-02 1.05e-02 -3.5 4.75e+02 - 1.00e+00 1.00e+00h 1\n", - " 63 2.3640958e+01 1.48e-02 5.02e-03 -5.2 1.83e+02 - 1.00e+00 1.00e+00h 1\n", - " 64 2.3279494e+01 1.23e-01 3.78e-02 -6.4 2.17e+03 - 1.00e+00 1.00e+00f 1\n", - " 65 2.3468864e+01 1.49e-01 4.91e-03 -4.1 9.25e+02 - 1.38e-01 1.00e+00h 1\n", - " 66 2.3188874e+01 3.07e-01 1.14e-02 -5.1 9.29e+03 - 2.64e-03 1.22e-01f 1\n", - " 67 2.3609605e+01 5.36e-03 1.14e-02 -6.0 8.22e+01 - 1.00e+00 1.00e+00h 1\n", - " 68 2.3619315e+01 2.71e-03 3.44e-03 -5.6 2.49e+01 - 1.00e+00 1.00e+00h 1\n", - " 69 2.3621928e+01 2.60e-05 1.59e-03 -4.8 2.89e+01 - 6.59e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.3531913e+01 1.03e-01 3.03e-03 -3.6 8.01e+02 - 1.00e+00 1.00e+00f 1\n", - " 71 2.3498811e+01 9.59e-02 2.95e-03 -3.7 1.73e+04 - 3.79e-02 1.41e-02h 1\n", - " 72 2.3356143e+01 2.33e-01 2.07e-02 -3.7 2.03e+03 - 1.71e-01 1.00e+00f 1\n", - " 73 2.3346767e+01 2.33e-01 2.23e-02 -3.7 3.17e+05 - 6.29e-02 2.70e-04f 1\n", - " 74 2.0596452e+01 2.16e+00 6.80e-02 -3.7 6.38e+03 - 1.00e+00 1.00e+00f 1\n", - " 75 2.4034877e+01 1.22e-02 2.60e+00 -7.8 2.64e+00 - 9.90e-01 1.00e+00h 1\n", - " 76 2.4028418e+01 1.12e-05 1.65e-03 -3.9 4.63e-02 - 1.00e+00 1.00e+00h 1\n", - " 77 2.4028410e+01 1.21e-05 1.05e-03 -9.9 8.06e-02 - 9.98e-01 1.00e+00h 1\n", - " 78 2.4028328e+01 6.34e-05 3.88e-03 -8.8 4.87e-01 - 1.00e+00 1.00e+00h 1\n", - " 79 2.4028440e+01 4.56e-08 6.54e-05 -8.9 3.05e-01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.4028363e+01 4.48e-05 2.01e-03 -11.0 3.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 81 2.4028401e+01 1.82e-05 2.15e-03 -11.0 1.20e-01 - 1.00e+00 1.00e+00h 1\n", - " 82 2.4028319e+01 3.40e-05 2.64e-03 -11.0 3.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 83 2.4027182e+01 1.14e-03 3.34e-03 -11.0 5.67e+00 - 1.00e+00 1.00e+00h 1\n", - " 84 2.4027738e+01 3.91e-04 1.49e-03 -11.0 2.78e+00 - 1.00e+00 1.00e+00h 1\n", - " 85 2.4027707e+01 4.48e-04 1.56e-03 -11.0 1.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 86 2.4024088e+01 3.54e-03 2.33e-03 -11.0 6.27e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 2.4027855e+01 5.22e-04 2.43e-03 -11.0 4.19e+00 - 1.00e+00 1.00e+00h 1\n", - " 88 2.4028049e+01 2.18e-04 2.70e-03 -11.0 1.11e+00 - 1.00e+00 1.00e+00h 1\n", - " 89 2.4028221e+01 7.71e-08 1.27e-04 -11.0 2.79e+00 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.3942444e+01 1.29e-01 4.03e-03 -11.0 2.95e+03 - 1.00e+00 1.92e-01f 1\n", - "In iteration 90, 1 Slack too small, adjusting variable bound\n", - " 91 2.3942440e+01 1.29e-01 4.03e-03 -11.0 1.91e+03 - 1.00e+00 3.75e-05h 1\n", - " 92 2.4027985e+01 6.78e-05 3.77e-03 -11.0 1.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 93 2.4027497e+01 6.28e-04 2.87e-03 -11.0 7.41e+00 - 3.88e-01 1.00e+00h 1\n", - " 94 2.4027138e+01 5.31e-04 2.61e-03 -11.0 5.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 95 2.4027235e+01 1.74e-04 3.92e-03 -11.0 2.86e+00 - 7.03e-01 1.00e+00h 1\n", - " 96 2.4027105e+01 6.22e-04 3.10e-03 -11.0 1.33e+01 - 1.00e+00 1.00e+00h 1\n", - " 97 2.4000128e+01 2.83e-02 3.69e-03 -11.0 5.31e+02 - 3.57e-02 1.00e+00h 1\n", - " 98 2.0995864e+01 3.03e+00 1.10e-01 -11.0 5.14e+04 - 6.34e-01 1.00e+00f 1\n", - " 99 2.2434998e+01 1.32e+00 1.82e-02 -11.0 9.72e+03 - 8.54e-01 6.00e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.3354599e+01 6.92e-02 4.84e-02 -11.0 3.46e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.3354599261349446e+01 2.3354599261349446e+01\n", - "Dual infeasibility......: 4.8366118277069492e-02 4.8366118277069492e-02\n", - "Constraint violation....: 6.9166731715164076e-02 6.9166731715164076e-02\n", - "Complementarity.........: 5.1803463578119751e-03 5.1803463578119751e-03\n", - "Overall NLP error.......: 6.9166731715164076e-02 6.9166731715164076e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 124\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 124\n", - "Number of inequality constraint evaluations = 124\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.425\n", - "Total CPU secs in NLP function evaluations = 136.145\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 560.00us ( 4.52us) 552.72us ( 4.46us) 124\n", - " nlp_g | 5.52 s ( 44.49ms) 5.26 s ( 42.39ms) 124\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 339.00us ( 3.32us) 335.81us ( 3.29us) 102\n", - " nlp_jac_g | 133.29 s ( 1.29 s) 127.21 s ( 1.24 s) 103\n", - " total | 140.28 s (140.28 s) 133.88 s (133.88 s) 1\n", - "Timestamp 10800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.16e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0546741e+01 1.26e+01 2.16e+04 -1.5 2.16e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.7944382e+00 4.43e+00 6.29e+00 0.6 6.00e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 1.9354537e+00 6.19e-01 6.04e-01 -1.5 1.86e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 1.7986608e+00 4.66e-03 5.65e-01 -3.3 1.11e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.7995711e+00 1.04e-07 2.64e-05 -5.1 4.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.7995711e+00 1.44e-07 3.30e-05 -11.0 7.46e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 1.7995710e+00 1.46e-07 3.26e-05 -11.0 7.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 1.7995708e+00 1.01e-06 2.92e-04 -11.0 4.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 1.7995710e+00 1.03e-07 2.42e-05 -11.0 2.51e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.7995692e+00 2.11e-05 1.40e-03 -11.0 4.99e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 1.7995665e+00 8.33e-06 3.40e-03 -11.0 7.39e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.7995537e+00 2.45e-05 6.07e-03 -11.0 1.51e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.7995704e+00 2.99e-08 2.28e-05 -11.0 8.86e-05 - 1.00e+00 1.00e+00h 1\n", - " 14 1.7995704e+00 7.91e-09 2.52e-05 -11.0 5.35e-05 - 1.00e+00 1.00e+00h 1\n", - " 15 1.7995704e+00 7.51e-11 3.43e-05 -11.0 2.25e-05 - 1.00e+00 1.00e+00H 1\n", - " 16 1.7995704e+00 1.56e-08 1.78e-05 -11.0 6.10e-05 - 1.00e+00 1.00e+00h 1\n", - " 17 1.7995704e+00 2.30e-09 2.61e-05 -11.0 2.48e-05 - 1.00e+00 1.00e+00h 1\n", - " 18 1.7995704e+00 2.68e-09 1.64e-05 -11.0 9.39e-06 - 1.00e+00 1.00e+00h 1\n", - " 19 1.7995704e+00 7.05e-10 3.07e-05 -11.0 9.98e-06 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.7995704e+00 4.63e-11 4.91e-05 -11.0 6.67e-06 - 1.00e+00 1.00e+00H 1\n", - " 21 1.7995704e+00 3.84e-09 5.10e-05 -11.0 1.12e-05 - 1.00e+00 1.00e+00h 1\n", - " 22 1.7995703e+00 3.03e-08 2.36e-05 -11.0 1.39e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 1.7995704e+00 7.59e-09 9.11e-06 -11.0 1.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 1.7995704e+00 7.31e-09 3.59e-05 -11.0 1.87e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 1.7995704e+00 1.73e-08 1.90e-05 -11.0 3.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 1.7995704e+00 2.63e-08 2.70e-05 -11.0 1.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 1.7995704e+00 1.11e-08 4.28e-05 -11.0 9.64e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 1.7995703e+00 1.45e-07 1.04e-05 -11.0 4.93e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 1.7995704e+00 3.64e-09 3.36e-05 -11.0 1.26e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.7995703e+00 9.92e-08 1.00e-05 -11.0 4.28e-04 - 1.00e+00 1.00e+00h 1\n", - " 31 1.7988171e+00 3.70e-03 1.56e-02 -11.0 2.03e+01 - 1.00e+00 1.00e+00f 1\n", - " 32 1.7973247e+00 1.61e-03 2.02e-03 -11.0 1.54e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 1.7883628e+00 2.97e-02 2.26e-02 -11.0 1.43e+02 - 1.00e+00 1.00e+00h 1\n", - " 34 1.7999026e+00 1.97e-03 1.83e-02 -11.0 1.82e+01 - 1.00e+00 1.00e+00h 1\n", - " 35 1.7994102e+00 4.04e-03 9.87e-03 -11.0 2.59e+01 - 1.00e+00 1.00e+00h 1\n", - " 36 1.7976938e+00 9.03e-03 1.42e-02 -11.0 3.84e+01 - 1.00e+00 1.00e+00h 1\n", - " 37 1.7986122e+00 5.46e-03 1.36e-02 -11.0 1.93e+01 - 1.00e+00 5.00e-01h 2\n", - " 38 1.8009319e+00 1.62e-03 2.86e-03 -11.0 1.11e+01 - 1.00e+00 1.00e+00h 1\n", - " 39 1.8012563e+00 1.70e-04 1.37e-03 -11.0 1.85e+01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.8011958e+00 1.76e-04 9.56e-04 -11.0 4.85e+00 - 1.00e+00 1.00e+00h 1\n", - " 41 1.7917065e+00 1.90e-02 7.85e-03 -11.0 7.30e+01 - 1.00e+00 1.00e+00h 1\n", - " 42 1.7902837e+00 2.28e-02 1.84e-02 -11.0 6.46e+01 - 1.00e+00 1.00e+00h 1\n", - " 43 1.7986458e+00 1.67e-02 1.57e-02 -11.0 4.92e+01 - 1.00e+00 1.00e+00h 1\n", - " 44 1.8011578e+00 7.01e-04 9.35e-03 -11.0 5.85e+00 - 1.00e+00 1.00e+00h 1\n", - " 45 1.8008549e+00 2.18e-03 6.29e-03 -11.0 9.71e+00 - 1.00e+00 1.00e+00h 1\n", - " 46 1.7876703e+00 4.94e-02 3.73e-02 -11.0 3.38e+02 - 1.00e+00 1.00e+00h 1\n", - " 47 1.8063097e+00 7.77e-03 3.71e-02 -11.0 3.65e+02 - 1.00e+00 1.00e+00H 1\n", - " 48 1.7809617e+00 1.64e-01 6.00e-02 -11.0 2.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 49 1.7917620e+00 4.74e-02 1.31e-01 -11.0 1.01e+03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.7478497e+00 1.94e-01 1.01e-01 -11.0 4.17e+03 - 1.00e+00 1.00e+00h 1\n", - " 51 1.8107620e+00 3.07e-02 1.12e-01 -11.0 1.59e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 1.7629855e+00 1.40e-01 8.59e-02 -11.0 9.24e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 1.7790148e+00 7.01e-02 5.58e-02 -11.0 3.80e+03 - 1.00e+00 1.00e+00h 1\n", - " 54 1.7710584e+00 5.24e-01 2.85e-01 -11.0 1.72e+04 - 1.00e+00 1.00e+00h 1\n", - " 55 1.8523034e+00 1.35e-01 3.50e-01 -11.0 2.00e+04 - 9.97e-01 1.00e+00h 1\n", - " 56 1.8540236e+00 1.33e-01 3.86e-01 -11.0 9.78e+04 - 3.61e-01 1.77e-02h 5\n", - " 57 1.7453874e+00 2.79e-01 1.62e-01 -11.0 1.94e+04 - 1.00e+00 1.00e+00h 1\n", - " 58 1.7435446e+00 3.15e-01 1.25e-01 -10.8 3.55e+04 - 1.00e+00 1.25e-01h 4\n", - " 59 1.7579878e+00 3.79e-01 1.11e-01 -11.0 3.13e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.7509629e+00 4.81e-01 1.13e-01 -11.0 4.13e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 1.7767507e+00 2.28e-01 3.04e-01 -11.0 2.03e+04 - 1.00e+00 1.00e+00h 1\n", - " 62 1.7718083e+00 2.54e-01 1.75e-01 -11.0 1.09e+04 - 1.00e+00 1.25e-01h 4\n", - " 63 1.7659384e+00 3.45e-01 1.02e-01 -11.0 1.11e+03 - 1.00e+00 1.00e+00h 1\n", - " 64 1.7585354e+00 3.67e-01 1.85e-01 -11.0 1.45e+05 - 1.58e-01 4.32e-03h 7\n", - " 65 1.7580063e+00 3.05e-01 8.72e-02 -11.0 5.16e+03 - 1.00e+00 5.00e-01h 2\n", - " 66 1.8231348e+00 1.06e-01 2.54e-01 -11.0 5.00e+03 - 1.00e+00 1.00e+00H 1\n", - " 67 1.7667427e+00 1.67e-01 1.29e-01 -11.0 8.31e+03 - 1.00e+00 1.00e+00H 1\n", - " 68 1.7566766e+00 4.03e-02 3.16e-02 -11.0 7.67e+02 - 1.00e+00 1.00e+00h 1\n", - " 69 1.7566060e+00 6.81e-02 2.03e-02 -11.0 1.78e+04 - 1.00e+00 3.12e-02h 6\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.7569809e+00 8.85e-02 1.18e-02 -11.0 2.00e+04 - 1.00e+00 1.25e-01h 4\n", - " 71 1.7664940e+00 2.98e-02 3.94e-02 -11.0 5.19e+03 - 1.00e+00 1.00e+00H 1\n", - " 72 1.7656594e+00 3.78e-02 3.66e-02 -11.0 6.37e+04 - 1.66e-01 2.63e-02h 6\n", - " 73 1.7649395e+00 5.59e-02 5.85e-02 -11.0 8.48e+04 - 1.00e+00 9.57e-03h 7\n", - " 74 1.7601462e+00 1.50e-05 3.26e-02 -11.0 3.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 75 1.7601478e+00 1.38e-09 1.67e-05 -11.0 4.72e-05 - 1.00e+00 1.00e+00h 1\n", - " 76 1.7601478e+00 6.90e-09 4.63e-06 -11.0 2.96e-05 - 1.00e+00 1.00e+00h 1\n", - " 77 1.7601478e+00 6.02e-10 1.63e-05 -11.0 5.38e-06 - 1.00e+00 1.00e+00h 1\n", - " 78 1.7601478e+00 1.17e-09 3.35e-05 -11.0 4.35e-06 - 1.00e+00 1.00e+00h 1\n", - " 79 1.7601478e+00 1.36e-09 3.23e-05 -11.0 2.13e-06 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.7601478e+00 9.24e-10 1.83e-05 -11.0 2.56e-06 - 1.00e+00 1.00e+00h 1\n", - " 81 1.7601478e+00 2.01e-10 7.38e-06 -11.0 1.68e-06 - 1.00e+00 1.00e+00h 1\n", - " 82 1.7601478e+00 2.88e-10 2.86e-05 -11.0 1.27e-06 - 1.00e+00 1.00e+00h 1\n", - " 83 1.7601478e+00 2.71e-11 1.30e-05 -11.0 1.48e-06 - 1.00e+00 1.00e+00H 1\n", - " 84 1.7601478e+00 1.84e-10 2.51e-05 -11.0 1.69e-06 - 1.00e+00 1.00e+00h 1\n", - " 85 1.7601478e+00 5.40e-10 3.75e-05 -11.0 2.81e-06 - 1.00e+00 1.00e+00h 1\n", - " 86 1.7601478e+00 1.77e-09 8.17e-06 -11.0 7.11e-06 - 1.00e+00 1.00e+00h 1\n", - " 87 1.7601478e+00 1.21e-09 1.48e-05 -11.0 1.45e-05 - 1.00e+00 5.00e-01h 2\n", - " 88 1.7601478e+00 7.91e-11 1.26e-05 -11.0 4.17e-05 - 1.00e+00 1.00e+00H 1\n", - " 89 1.7601478e+00 5.37e-08 1.12e-05 -11.0 1.88e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.7601478e+00 2.80e-09 2.41e-05 -11.0 3.80e-05 - 1.00e+00 1.00e+00h 1\n", - " 91 1.7601478e+00 1.23e-08 6.41e-06 -11.0 4.34e-05 - 1.00e+00 1.00e+00h 1\n", - " 92 1.7601476e+00 2.24e-06 1.89e-03 -11.0 1.87e-02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.7601478e+00 5.56e-07 1.32e-05 -11.0 7.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.7601476e+00 2.25e-06 6.19e-04 -11.0 1.86e-02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.7601478e+00 4.53e-08 2.21e-05 -11.0 7.99e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 1.7601476e+00 2.39e-06 6.49e-04 -11.0 5.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 97 1.7601476e+00 4.04e-06 1.50e-04 -11.0 4.25e-02 - 1.00e+00 1.00e+00h 1\n", - " 98 1.7601476e+00 5.36e-06 4.19e-04 -11.0 4.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 99 1.7601292e+00 2.57e-04 3.78e-04 -11.0 1.55e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.7601077e+00 1.11e-03 5.78e-04 -11.0 1.06e+01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.7601077114945023e+00 1.7601077114945023e+00\n", - "Dual infeasibility......: 5.7771432419334579e-04 5.7771432419334579e-04\n", - "Constraint violation....: 1.1137916193710851e-03 1.1137916193710851e-03\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 1.1137916193710851e-03 1.1137916193710851e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 165\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 165\n", - "Number of inequality constraint evaluations = 165\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.429\n", - "Total CPU secs in NLP function evaluations = 136.665\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 736.00us ( 4.46us) 723.67us ( 4.39us) 165\n", - " nlp_g | 7.38 s ( 44.71ms) 7.03 s ( 42.63ms) 165\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 393.00us ( 3.85us) 381.87us ( 3.74us) 102\n", - " nlp_jac_g | 132.06 s ( 1.29 s) 126.05 s ( 1.24 s) 102\n", - " total | 140.90 s (140.90 s) 134.49 s (134.49 s) 1\n", - "Timestamp 11100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.15e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9952190e+01 1.43e+01 2.15e+03 -1.5 2.15e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.2721912e+00 5.24e+00 1.00e+01 0.4 1.43e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.0530740e+01 1.52e+00 6.22e-01 -1.6 8.85e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.1622151e+01 2.34e-03 8.48e-02 -3.4 2.08e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.1623275e+01 4.73e-08 1.43e-04 -5.3 2.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1623275e+01 1.07e-07 5.11e-05 -11.0 8.08e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1623275e+01 2.86e-07 9.00e-05 -11.0 2.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1623275e+01 1.89e-07 8.88e-05 -11.0 7.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 1.1623275e+01 9.22e-08 2.52e-05 -11.0 9.36e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1623275e+01 6.13e-08 7.50e-05 -11.0 1.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.1623275e+01 4.61e-07 1.58e-04 -11.0 2.92e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1623275e+01 3.31e-07 4.42e-05 -11.0 7.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1623275e+01 6.36e-08 2.69e-04 -11.0 4.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 1.1623275e+01 9.95e-08 7.68e-05 -11.0 7.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 1.1623275e+01 1.01e-07 7.24e-05 -11.0 4.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 1.1623267e+01 6.99e-06 5.54e-03 -11.0 3.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1623274e+01 1.12e-06 1.96e-03 -11.0 1.98e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 1.1623276e+01 1.10e-07 1.29e-04 -11.0 3.58e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 1.1623276e+01 2.82e-07 1.77e-04 -11.0 1.12e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.1623275e+01 1.89e-07 7.46e-05 -11.0 2.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.1623275e+01 2.75e-06 1.18e-03 -11.0 7.55e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.1623252e+01 9.10e-06 2.44e-03 -11.0 4.93e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.1623274e+01 1.10e-09 5.60e-05 -11.0 1.20e+00 - 1.00e+00 1.00e+00H 1\n", - " 24 1.1623260e+01 1.41e-05 1.27e-03 -11.0 1.84e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 1.1623233e+01 2.60e-05 1.17e-03 -11.0 2.11e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 1.1608115e+01 6.76e-03 9.68e-03 -11.0 1.70e+02 - 1.00e+00 1.00e+00f 1\n", - " 27 1.1497469e+01 7.74e-02 1.43e-02 -11.0 5.20e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 1.1607860e+01 5.35e-03 8.36e-03 -11.0 3.77e+02 - 1.00e+00 1.00e+00h 1\n", - " 29 1.1601403e+01 5.08e-03 7.78e-03 -11.0 4.77e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1566647e+01 1.85e-01 1.27e-02 -11.0 4.29e+03 - 1.00e+00 1.00e+00h 1\n", - " 31 1.0335094e+01 2.91e+00 2.62e-01 -11.0 3.07e+04 - 1.00e+00 9.13e-01f 1\n", - " 32 1.0763364e+01 2.59e-01 1.76e-01 -10.5 8.53e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 1.1106269e+01 1.71e-01 9.51e-02 -3.0 8.67e+03 - 1.00e+00 9.73e-01h 1\n", - " 34 1.1027236e+01 2.64e-01 4.00e-02 -2.7 1.45e+04 - 4.18e-01 1.00e+00h 1\n", - " 35 9.8788143e+00 1.48e+00 1.61e-01 -2.1 9.71e+06 - 3.83e-03 4.93e-03f 1\n", - " 36 1.0639932e+01 7.04e-01 5.82e-02 -3.3 1.25e+04 - 9.94e-01 1.00e+00h 1\n", - " 37 9.9399530e+00 1.61e+00 1.25e-01 -2.9 1.67e+04 - 1.00e+00 1.00e+00h 1\n", - " 38 9.5139240e+00 4.75e+00 5.25e-01 -3.0 2.47e+06 - 5.96e-03 9.29e-03f 1\n", - " 39 1.2336782e+01 1.44e+00 3.81e-01 -3.0 3.28e+04 - 9.55e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.0251810e+01 6.76e-01 1.48e-01 -3.1 2.49e+04 - 1.67e-01 1.00e+00f 1\n", - " 41 8.8724616e+00 1.33e+00 4.40e-01 -1.7 6.94e+05 - 9.23e-01 4.76e-02f 1\n", - " 42 1.3163710e+01 5.54e+00 4.74e-01 0.1 8.02e+05 - 2.66e-02 3.87e-02f 2\n", - " 43 9.4862119e+00 2.01e+00 9.48e-02 -0.7 4.17e+04 - 1.00e+00 6.58e-01f 1\n", - " 44 1.1310636e+01 5.73e-02 2.06e+00 -0.7 2.06e+00 - 1.00e+00 1.00e+00h 1\n", - " 45 1.1366331e+01 4.84e-06 2.99e-03 -2.8 9.15e-02 - 9.98e-01 1.00e+00h 1\n", - " 46 1.1366328e+01 2.54e-06 1.66e-03 -8.7 6.66e-03 - 9.97e-01 1.00e+00h 1\n", - " 47 1.1366332e+01 7.84e-07 7.66e-04 -7.3 3.82e-03 - 1.00e+00 1.00e+00h 1\n", - " 48 1.1366333e+01 2.76e-07 3.05e-05 -9.4 1.96e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 1.1366333e+01 5.74e-08 1.24e-04 -11.0 6.04e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.1366332e+01 1.84e-06 1.99e-03 -11.0 2.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 1.1366333e+01 2.13e-07 3.43e-04 -11.0 1.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 52 1.1366332e+01 3.98e-07 3.20e-05 -11.0 1.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 1.1366333e+01 1.02e-07 1.83e-05 -11.0 5.41e-04 - 1.00e+00 1.00e+00h 1\n", - " 54 1.1366333e+01 1.21e-07 8.35e-05 -11.0 5.99e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 1.1366333e+01 2.10e-07 4.31e-05 -11.0 4.54e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 1.1366333e+01 8.42e-08 1.82e-04 -11.0 7.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 1.1366331e+01 1.84e-06 3.33e-03 -11.0 3.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.1366333e+01 3.02e-07 6.48e-05 -11.0 2.55e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.1366332e+01 1.17e-06 3.03e-03 -11.0 5.43e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.1366331e+01 1.29e-06 9.77e-04 -11.0 3.77e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 1.1366333e+01 4.31e-07 4.37e-04 -11.0 2.50e-03 - 1.00e+00 1.00e+00h 1\n", - " 62 1.1366324e+01 3.53e-06 2.91e-03 -11.0 7.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 63 1.1366333e+01 1.51e-07 8.17e-05 -11.0 6.51e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 1.1366333e+01 1.81e-07 1.14e-04 -11.0 1.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 65 1.1366332e+01 6.04e-07 3.07e-04 -11.0 2.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 66 1.1366331e+01 1.24e-06 3.90e-03 -11.0 6.36e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 1.1366333e+01 1.75e-07 1.15e-04 -11.0 1.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 68 1.1366333e+01 3.89e-07 4.06e-05 -11.0 1.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 1.1366333e+01 7.49e-08 1.70e-04 -11.0 5.19e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1366333e+01 1.78e-07 1.02e-04 -11.0 4.36e-03 - 1.00e+00 1.00e+00h 1\n", - " 71 1.1366329e+01 6.58e-06 3.74e-03 -11.0 1.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 72 1.1363100e+01 2.49e-03 2.49e-02 -11.0 1.10e+01 - 1.00e+00 1.00e+00h 1\n", - " 73 1.1353557e+01 1.71e-02 8.18e-03 -11.0 7.35e+01 - 1.00e+00 1.00e+00h 1\n", - " 74 1.1366547e+01 2.84e-04 1.78e-03 -11.0 1.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 75 1.1366052e+01 1.86e-03 2.21e-03 -11.0 3.95e+01 - 1.00e+00 1.00e+00h 1\n", - " 76 1.1283797e+01 4.82e-02 1.93e-02 -11.0 5.98e+02 - 1.00e+00 1.00e+00f 1\n", - " 77 1.1224502e+01 1.03e-01 8.59e-03 -9.0 2.75e+03 - 1.00e+00 7.26e-01h 1\n", - " 78 1.1224045e+01 1.05e-01 8.69e-03 -7.1 1.93e+03 - 1.00e+00 5.53e-03h 1\n", - " 79 1.1148421e+01 1.41e-01 1.50e-02 -5.7 1.63e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.1361057e+01 2.69e-02 1.51e-02 -4.9 3.42e+02 - 1.00e+00 1.00e+00h 1\n", - " 81 1.1367322e+01 9.78e-04 6.33e-03 -5.0 1.38e+02 - 9.26e-01 1.00e+00h 1\n", - " 82 1.1265496e+01 1.35e-01 6.63e-03 -5.0 1.94e+03 - 1.00e+00 1.00e+00f 1\n", - " 83 1.1247483e+01 9.91e-02 4.37e-03 -5.0 4.15e+03 - 8.72e-01 2.60e-01h 1\n", - " 84 1.1205636e+01 2.31e-01 2.59e-02 -5.0 9.40e+02 - 1.00e+00 1.00e+00h 1\n", - " 85 1.1314884e+01 3.90e-02 1.11e-02 -5.0 3.36e+02 - 1.00e+00 1.00e+00h 1\n", - " 86 1.1324877e+01 2.07e-02 1.09e-02 -5.4 1.96e+02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.1304510e+01 2.79e-02 2.64e-03 -6.3 2.63e+02 - 1.00e+00 1.00e+00h 1\n", - " 88 1.0866834e+01 2.53e-01 3.11e-02 -3.7 1.27e+03 - 8.13e-02 1.00e+00f 1\n", - " 89 1.0611018e+01 1.89e+00 1.20e-01 -3.2 1.70e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 9.2868759e+00 3.47e+00 2.52e-01 -3.3 6.93e+04 - 2.76e-01 6.58e-01f 1\n", - " 91 9.2863518e+00 3.47e+00 2.52e-01 -3.3 6.18e+04 - 1.00e+00 1.89e-04h 2\n", - " 92 8.6228653e+00 3.90e+00 4.64e-01 -3.3 3.66e+04 - 1.00e+00 1.73e-01f 1\n", - " 93 1.0184441e+01 6.51e-01 5.22e-01 -2.8 2.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.0483675e+01 2.96e-01 1.08e-01 -4.0 1.52e+03 - 1.00e+00 1.00e+00h 1\n", - " 95 1.0140029e+01 3.35e-01 1.56e-01 -5.6 1.78e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 1.0869089e+01 5.78e-02 4.07e-02 -2.5 4.94e+02 - 5.73e-01 1.00e+00h 1\n", - " 97 1.0880581e+01 2.38e-02 6.05e-02 -2.8 2.05e+02 - 1.00e+00 9.86e-01h 1\n", - " 98 1.0627082e+01 1.27e-01 1.58e-01 -8.9 2.17e+03 - 7.89e-02 1.00e+00f 1\n", - " 99 9.0789837e+00 7.59e+00 8.96e-01 -2.6 1.93e+05 - 6.94e-03 6.57e-02f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.0607636e+00 2.37e+00 1.98e-01 -3.0 2.12e+04 - 6.82e-03 5.65e-01f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.0607636235363049e+00 8.0607636235363049e+00\n", - "Dual infeasibility......: 1.9833761698523900e-01 1.9833761698523900e-01\n", - "Constraint violation....: 2.3733666903513608e+00 2.3733666903513608e+00\n", - "Complementarity.........: 4.3086498841157072e-03 4.3086498841157072e-03\n", - "Overall NLP error.......: 2.3733666903513608e+00 2.3733666903513608e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 111\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 111\n", - "Number of inequality constraint evaluations = 111\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.432\n", - "Total CPU secs in NLP function evaluations = 134.005\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 489.00us ( 4.41us) 491.09us ( 4.42us) 111\n", - " nlp_g | 4.93 s ( 44.43ms) 4.70 s ( 42.31ms) 111\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 379.00us ( 3.72us) 376.78us ( 3.69us) 102\n", - " nlp_jac_g | 131.80 s ( 1.29 s) 125.79 s ( 1.23 s) 102\n", - " total | 138.23 s (138.23 s) 131.92 s (131.92 s) 1\n", - "Timestamp 11400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.01e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9833247e+01 1.39e+01 2.01e+03 -1.5 2.01e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.0075872e+00 4.95e+00 9.75e+00 0.4 1.39e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 9.7466487e+00 1.42e+00 6.24e-01 -1.6 8.48e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.0737729e+01 2.18e-03 8.15e-02 -3.4 1.93e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.0738770e+01 1.41e-07 6.14e-05 -5.3 2.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.0738770e+01 2.13e-07 1.26e-04 -11.0 8.77e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 1.0738770e+01 1.43e-07 8.75e-05 -11.0 6.67e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 1.0738770e+01 1.09e-10 1.07e-04 -11.0 2.98e-04 - 1.00e+00 1.00e+00H 1\n", - " 9 1.0738770e+01 6.41e-08 1.05e-04 -11.0 2.44e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.0738740e+01 6.51e-05 1.16e-02 -11.0 9.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 1.0738736e+01 5.26e-05 4.10e-03 -11.0 1.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 1.0738744e+01 1.32e-05 2.11e-03 -11.0 1.17e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.0738742e+01 9.00e-06 2.78e-03 -11.0 1.63e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.0738737e+01 5.02e-05 5.75e-04 -11.0 1.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.0738682e+01 1.02e-04 3.19e-03 -11.0 4.28e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.0738689e+01 7.97e-05 1.17e-03 -11.0 8.66e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.0738736e+01 1.92e-05 9.27e-04 -11.0 1.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 1.0683226e+01 4.25e-02 2.00e-02 -11.0 2.09e+02 - 1.00e+00 1.00e+00f 1\n", - " 19 1.0638148e+01 4.31e-02 6.51e-03 -11.0 6.25e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.0552017e+01 8.97e-02 1.07e-02 -11.0 2.77e+03 - 1.00e+00 1.00e+00h 1\n", - " 21 1.0797377e+01 8.43e-04 9.63e-03 -11.0 3.16e+03 - 1.00e+00 1.00e+00H 1\n", - " 22 1.0507422e+01 1.83e-01 1.77e-02 -11.0 2.22e+03 - 1.00e+00 1.00e+00f 1\n", - " 23 1.0647461e+01 3.93e-02 2.12e-02 -11.0 1.69e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 9.0037438e+00 2.75e+00 2.98e-01 -11.0 2.53e+04 - 1.00e+00 1.00e+00f 1\n", - " 25 9.2390294e+00 1.17e+00 4.73e-02 -11.0 5.05e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 9.7742496e+00 5.03e-01 1.32e-01 -10.7 1.25e+04 - 1.00e+00 1.00e+00h 1\n", - " 27 7.4567612e+00 1.79e+00 1.93e-01 -10.9 2.48e+04 - 1.00e+00 1.00e+00f 1\n", - " 28 7.3528837e+00 2.18e+00 4.07e-01 -9.0 3.96e+06 - 1.00e+00 2.95e-03f 1\n", - " 29 7.3497042e+00 2.18e+00 4.08e-01 -7.0 9.80e+05 - 1.00e+00 1.19e-04h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 9.3614797e+00 1.69e+00 4.16e-01 -5.0 1.34e+04 - 5.81e-04 5.00e-01h 2\n", - " 31 9.2548012e+00 1.75e+00 4.13e-01 -6.9 2.91e+04 - 8.44e-01 8.25e-02h 1\n", - " 32 9.2691088e+00 1.07e+00 2.05e-01 -6.9 3.92e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 7.5737335e+00 2.19e+00 6.48e-01 -4.8 1.79e+04 - 1.00e+00 1.00e+00f 1\n", - " 34 9.7777353e+00 2.77e-01 2.74e-01 -3.6 1.81e+03 - 4.12e-01 1.00e+00h 1\n", - " 35 8.7474242e+00 2.04e+00 1.09e-01 -3.6 3.15e+04 - 9.54e-01 1.00e+00f 1\n", - " 36 8.2809134e+00 2.10e+00 1.13e-01 -3.1 4.72e+04 - 1.00e+00 6.78e-01h 1\n", - " 37 9.2660709e+00 5.29e-01 2.20e-01 -2.9 7.72e+03 - 1.00e+00 9.74e-01h 1\n", - " 38 9.7572442e+00 1.63e-01 2.84e-02 -2.4 4.71e+03 - 9.57e-01 1.00e+00h 1\n", - " 39 1.0058632e+01 4.28e-01 8.98e-02 -0.5 2.97e+05 - 8.17e-02 2.03e-01F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 9.7975869e+00 1.72e+00 1.43e-01 -1.3 5.94e+04 - 1.00e+00 1.59e-01f 1\n", - " 41 1.0081696e+01 3.01e-01 1.21e-01 -1.3 3.65e+03 - 1.00e+00 1.00e+00h 1\n", - " 42 9.4591694e+00 5.71e-01 8.93e-02 -2.0 2.83e+03 - 1.00e+00 1.00e+00h 1\n", - " 43 8.5056138e+00 1.82e+00 1.73e-01 -1.8 4.26e+03 - 3.59e-01 9.64e-01f 1\n", - " 44 9.5544232e+00 9.27e-01 1.72e-01 -8.0 3.11e+03 - 2.27e-01 1.00e+00h 1\n", - " 45 9.1543813e+00 5.47e-01 4.27e-02 -2.3 7.21e+03 - 1.00e+00 1.00e+00h 1\n", - " 46 8.2488617e+00 9.34e-01 1.31e-01 -2.8 1.87e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 8.3216633e+00 9.27e-01 7.67e-02 -1.8 3.61e+03 - 1.00e+00 4.05e-01h 1\n", - " 48 9.9652113e+00 5.04e-02 7.67e-02 -7.8 1.51e+03 - 6.67e-01 1.00e+00h 1\n", - " 49 9.8172839e+00 4.65e-01 2.58e-02 -8.3 9.12e+03 - 8.86e-02 4.83e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 9.7363357e+00 3.56e-01 3.07e-02 -2.5 5.03e+03 - 1.00e+00 1.00e+00h 1\n", - " 51 9.8208338e+00 6.30e-02 2.81e-02 -3.9 5.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 52 9.9243172e+00 4.28e-02 1.62e-02 -2.7 3.41e+03 - 7.45e-01 1.00e+00h 1\n", - " 53 9.8016196e+00 2.82e-01 4.66e-03 -3.4 2.71e+04 - 5.32e-01 4.88e-02f 1\n", - " 54 9.8355371e+00 3.71e-02 1.71e-02 -3.0 2.10e+02 - 8.35e-01 1.00e+00h 1\n", - " 55 8.8481934e+00 6.85e-01 1.12e-01 -9.1 3.09e+03 - 1.51e-01 1.00e+00f 1\n", - " 56 8.5541680e+00 2.46e+00 1.51e-01 -9.2 7.02e+04 - 7.90e-03 3.51e-01h 1\n", - " 57 8.5592017e+00 2.45e+00 1.48e-01 -3.3 3.68e+04 - 1.00e+00 8.40e-03h 1\n", - " 58 9.9370221e+00 2.47e-01 2.68e-01 -3.3 8.82e+03 - 3.77e-01 1.00e+00h 1\n", - " 59 9.9332081e+00 2.46e-01 2.67e-01 -3.3 1.83e+04 - 1.00e+00 4.87e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 9.9327517e+00 7.45e-02 1.54e-02 -3.3 1.39e+03 - 1.00e+00 1.00e+00f 1\n", - " 61 9.9662402e+00 4.61e-02 2.65e-02 -3.3 1.08e+03 - 9.00e-01 1.00e+00h 1\n", - " 62 9.8431453e+00 1.65e+00 1.65e-01 -3.6 6.13e+03 - 1.00e+00 1.00e+00f 1\n", - " 63 9.8647053e+00 9.03e-01 6.63e-02 -3.7 6.74e+03 - 1.00e+00 3.89e-01h 1\n", - " 64 9.9724115e+00 3.08e-02 2.35e-02 -3.7 7.51e+02 - 1.00e+00 1.00e+00h 1\n", - " 65 9.5611082e+00 2.01e-01 6.05e-02 -3.7 2.67e+03 - 2.00e-01 1.00e+00f 1\n", - " 66 9.9801447e+00 1.80e-03 4.16e-01 -5.7 4.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 67 9.9813143e+00 6.01e-07 9.13e-05 -7.6 2.77e-03 - 1.00e+00 1.00e+00h 1\n", - " 68 9.9813149e+00 4.24e-07 7.33e-05 -11.0 1.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 9.9813154e+00 3.82e-08 5.39e-05 -11.0 6.86e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 9.9807850e+00 1.89e-04 5.24e-02 -11.0 1.89e+00 - 1.00e+00 1.00e+00f 1\n", - " 71 9.9812586e+00 1.75e-07 7.66e-05 -11.0 1.31e+00 - 1.00e+00 1.00e+00H 1\n", - " 72 9.9805513e+00 5.06e-04 2.34e-03 -11.0 1.68e+00 - 1.00e+00 1.00e+00h 1\n", - " 73 9.9809098e+00 1.61e-04 1.99e-03 -11.0 8.72e-01 - 1.00e+00 1.00e+00h 1\n", - " 74 9.9812423e+00 8.17e-08 3.06e-05 -11.0 9.67e-01 - 1.00e+00 1.00e+00H 1\n", - " 75 9.9812120e+00 3.24e-05 1.44e-03 -11.0 2.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 9.9811105e+00 5.54e-05 2.33e-03 -11.0 3.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 77 9.9812236e+00 1.40e-05 1.40e-03 -11.0 2.96e-01 - 1.00e+00 1.00e+00h 1\n", - " 78 9.9811698e+00 1.57e-04 2.03e-03 -11.0 1.04e+00 - 1.00e+00 1.00e+00h 1\n", - " 79 9.9798794e+00 4.03e-03 3.20e-03 -11.0 2.37e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 9.9736221e+00 5.51e-03 8.07e-03 -11.0 5.48e+01 - 1.00e+00 1.00e+00h 1\n", - " 81 9.9717024e+00 6.11e-03 2.45e-03 -11.0 4.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 82 9.9772850e+00 5.39e-03 3.03e-03 -11.0 1.74e+01 - 1.00e+00 1.00e+00h 1\n", - " 83 9.9813966e+00 6.07e-04 1.66e-03 -11.0 4.22e+00 - 1.00e+00 1.00e+00h 1\n", - " 84 9.9819446e+00 1.89e-04 1.30e-03 -11.0 2.48e+00 - 1.00e+00 1.00e+00h 1\n", - " 85 9.9820824e+00 5.73e-07 3.95e-05 -11.0 2.23e+00 - 1.00e+00 1.00e+00H 1\n", - " 86 9.9818200e+00 3.52e-04 1.39e-03 -11.0 3.41e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 9.9775002e+00 5.01e-03 3.36e-03 -11.0 1.95e+01 - 1.00e+00 1.00e+00h 1\n", - " 88 9.9811044e+00 1.49e-03 8.83e-04 -11.0 1.18e+01 - 1.00e+00 1.00e+00h 1\n", - " 89 9.9781793e+00 5.83e-03 1.30e-03 -11.0 3.09e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 9.9773258e+00 3.93e-03 1.31e-03 -11.0 1.79e+01 - 1.00e+00 1.00e+00h 1\n", - " 91 9.9716094e+00 1.27e-02 2.62e-03 -11.0 3.69e+01 - 1.00e+00 1.00e+00h 1\n", - " 92 9.9172204e+00 1.24e-01 1.06e-02 -11.0 3.53e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 9.8792485e+00 1.23e-01 6.63e-03 -11.0 5.55e+02 - 1.00e+00 4.04e-01h 1\n", - " 94 9.7995077e+00 3.41e-01 1.70e-02 -11.0 1.10e+03 - 1.00e+00 1.00e+00h 1\n", - " 95 9.9819002e+00 1.73e-02 3.60e-02 -11.0 4.31e+02 - 1.00e+00 1.00e+00h 1\n", - " 96 1.0009838e+01 1.51e-03 6.34e-03 -11.0 2.93e+01 - 1.00e+00 1.00e+00h 1\n", - " 97 1.0008551e+01 5.31e-03 5.16e-03 -11.0 8.69e+01 - 1.00e+00 2.32e-01h 1\n", - " 98 9.9748444e+00 3.85e-02 2.91e-03 -11.0 7.07e+02 - 1.00e+00 1.00e+00h 1\n", - "In iteration 98, 1 Slack too small, adjusting variable bound\n", - " 99 9.9833099e+00 3.02e-02 1.43e-03 -11.0 6.27e+02 - 1.00e+00 4.25e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 9.9892022e+00 4.23e-04 2.51e-03 -11.0 5.99e+03 - 1.00e+00 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 9.9892021707594072e+00 9.9892021707594072e+00\n", - "Dual infeasibility......: 2.5132200475362354e-03 2.5132200475362354e-03\n", - "Constraint violation....: 4.2310921883625952e-04 4.2310921883625952e-04\n", - "Complementarity.........: 1.1365473061775987e-11 1.1365473061775987e-11\n", - "Overall NLP error.......: 2.5132200475362354e-03 2.5132200475362354e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 111\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 111\n", - "Number of inequality constraint evaluations = 111\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.399\n", - "Total CPU secs in NLP function evaluations = 134.320\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 493.00us ( 4.44us) 482.50us ( 4.35us) 111\n", - " nlp_g | 4.95 s ( 44.64ms) 4.72 s ( 42.54ms) 111\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 344.00us ( 3.37us) 341.77us ( 3.35us) 102\n", - " nlp_jac_g | 132.01 s ( 1.29 s) 126.01 s ( 1.24 s) 102\n", - " total | 138.44 s (138.44 s) 132.14 s (132.14 s) 1\n", - "Timestamp 11700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.12e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0355454e+01 1.27e+01 2.12e+04 -1.5 2.12e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.3542590e+00 4.45e+00 6.60e+00 0.8 2.91e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.0795879e+00 6.62e-01 5.82e-01 -1.3 8.68e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 2.3172825e+00 4.87e-03 4.69e-01 -3.0 3.43e+00 - 9.99e-01 1.00e+00h 1\n", - " 5 2.3195709e+00 2.23e-05 2.97e-03 -4.9 1.12e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.3194814e+00 9.84e-05 7.60e-03 -7.0 3.51e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.3195669e+00 1.30e-08 4.16e-05 -9.1 2.42e-01 - 1.00e+00 1.00e+00H 1\n", - " 8 2.3194897e+00 6.46e-05 4.57e-04 -11.0 6.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 2.3195104e+00 4.19e-05 6.30e-04 -11.0 3.72e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.3194818e+00 1.41e-04 4.01e-04 -11.0 2.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 2.3194954e+00 6.45e-05 7.54e-04 -11.0 1.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 2.3193905e+00 4.05e-04 9.69e-04 -11.0 7.96e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.3195420e+00 8.54e-06 1.02e-03 -11.0 4.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 2.3195327e+00 1.66e-05 7.11e-04 -11.0 2.26e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.3195257e+00 8.36e-05 9.48e-04 -11.0 6.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.3195089e+00 3.43e-05 1.06e-03 -11.0 4.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 2.3194562e+00 9.43e-05 1.28e-03 -11.0 2.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 2.3195506e+00 2.28e-06 1.54e-03 -11.0 5.38e-02 - 1.00e+00 1.00e+00h 1\n", - " 19 2.3195374e+00 8.42e-06 1.69e-03 -11.0 3.73e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.3194540e+00 2.06e-04 1.11e-03 -11.0 5.32e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 2.3194887e+00 7.51e-05 6.30e-04 -11.0 3.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 22 2.3194970e+00 6.40e-05 6.76e-04 -11.0 1.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 2.3193883e+00 1.43e-04 1.63e-03 -11.0 6.09e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 2.3195318e+00 7.07e-06 1.85e-03 -11.0 2.08e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 2.3195285e+00 1.87e-05 1.19e-03 -11.0 9.50e-02 - 1.00e+00 1.00e+00h 1\n", - " 26 2.3188897e+00 7.19e-04 1.15e-02 -11.0 4.56e+00 - 1.00e+00 1.00e+00h 1\n", - " 27 2.3196097e+00 3.02e-07 4.98e-05 -11.0 7.58e+00 - 1.00e+00 1.00e+00H 1\n", - " 28 2.2881114e+00 4.54e-02 2.01e-02 -11.0 4.53e+02 - 1.00e+00 1.00e+00f 1\n", - " 29 2.3117444e+00 1.04e-02 7.39e-03 -11.0 1.18e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.2191065e+00 4.81e-01 1.92e-01 -11.0 1.05e+03 - 1.00e+00 1.00e+00h 1\n", - " 31 2.1792229e+00 5.95e-01 8.46e-02 -11.0 9.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 2.3142974e+00 1.25e-05 3.34e-01 -11.0 5.77e-01 - 1.00e+00 1.00e+00h 1\n", - " 33 2.3143054e+00 4.11e-09 5.15e-05 -11.0 8.10e-05 - 1.00e+00 1.00e+00h 1\n", - " 34 2.3143054e+00 7.35e-09 2.11e-05 -11.0 3.64e-05 - 1.00e+00 1.00e+00h 1\n", - " 35 2.3143054e+00 2.20e-09 1.46e-04 -11.0 3.00e-05 - 1.00e+00 1.00e+00h 1\n", - " 36 2.3143053e+00 9.27e-08 6.38e-05 -11.0 2.44e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 2.3143054e+00 6.57e-08 1.96e-05 -11.0 1.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 2.3143054e+00 3.85e-09 3.57e-05 -11.0 3.35e-05 - 1.00e+00 1.00e+00h 1\n", - " 39 2.3143054e+00 8.33e-09 5.44e-05 -11.0 4.10e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.3143040e+00 3.37e-06 1.66e-02 -11.0 1.18e-02 - 1.00e+00 1.00e+00h 1\n", - " 41 2.3143047e+00 5.06e-07 4.72e-05 -11.0 1.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 2.3143052e+00 3.18e-07 6.31e-05 -11.0 2.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 43 2.3143049e+00 1.02e-06 9.89e-04 -11.0 5.37e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 2.3143053e+00 6.40e-07 3.44e-05 -11.0 5.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 45 2.3143051e+00 3.30e-07 5.03e-05 -11.0 1.85e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 2.2926404e+00 5.03e-01 1.21e-01 -11.0 3.16e+03 - 1.00e+00 1.00e+00f 1\n", - " 47 2.1160385e+00 5.06e-01 1.96e-01 -11.0 3.86e+03 - 1.00e+00 1.00e+00h 1\n", - " 48 1.9742117e+00 8.54e-01 3.83e-01 -11.0 3.40e+03 - 1.00e+00 1.00e+00h 1\n", - " 49 2.8662470e+00 6.26e-01 7.11e-01 -11.0 4.86e+03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.2623231e+00 9.46e-01 2.79e-01 -11.0 1.80e+05 - 1.98e-01 7.61e-02f 2\n", - " 51 2.0993681e+00 2.95e-01 3.08e-01 -11.0 2.72e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 1.9752614e+00 3.94e-01 1.83e-01 -11.0 5.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 2.0009827e+00 5.80e-01 2.44e-01 -9.0 8.90e+04 - 1.00e+00 7.56e-02h 1\n", - " 54 1.9967850e+00 5.07e-01 2.18e-01 -7.1 7.85e+03 - 1.00e+00 5.07e-02h 1\n", - " 55 1.9967474e+00 5.08e-01 2.18e-01 -5.1 3.79e+04 - 1.00e+00 2.80e-04h 1\n", - " 56 2.0056621e+00 3.29e-01 1.97e-01 -11.0 7.71e+03 - 2.44e-01 1.00e+00h 1\n", - " 57 2.2282994e+00 2.02e-01 2.70e-01 -5.4 1.01e+04 - 9.67e-01 1.00e+00H 1\n", - " 58 2.1982488e+00 1.63e-01 2.56e-01 -4.4 4.82e+03 - 9.45e-01 5.94e-02h 1\n", - " 59 1.9722527e+00 2.67e-01 2.73e-01 -10.5 6.62e+03 - 2.13e-03 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.9550218e+00 2.78e-01 7.43e-02 -4.2 1.69e+04 - 1.00e+00 2.50e-01h 3\n", - " 61 2.0371552e+00 3.35e-02 1.38e-01 -2.3 1.26e+04 - 4.15e-01 1.00e+00H 1\n", - " 62 2.0023867e+00 9.08e-02 9.82e-02 -3.0 1.29e+04 - 9.97e-01 1.00e+00h 1\n", - " 63 1.9602595e+00 3.60e-01 1.55e-01 -2.8 4.19e+04 - 1.00e+00 2.77e-01h 1\n", - " 64r 1.9602595e+00 3.60e-01 9.99e+02 -0.4 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - " 65r 1.9703937e+00 1.53e-01 6.12e+02 -2.6 3.03e+02 - 1.00e+00 1.18e-03f 1\n", - " 66 1.9685081e+00 1.88e-01 6.39e-01 -2.8 1.25e+04 - 1.00e+00 2.50e-01h 3\n", - " 67 2.0054317e+00 1.20e-01 8.19e-02 -1.9 3.16e+03 - 7.80e-01 1.00e+00h 1\n", - " 68 2.0084023e+00 1.99e-01 8.71e-02 -2.1 6.37e+03 - 1.00e+00 1.00e+00H 1\n", - " 69 1.9631386e+00 1.43e-01 7.07e-02 -2.1 1.45e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.9559302e+00 3.72e-01 1.09e-01 -2.1 5.67e+04 - 8.04e-01 9.10e-02h 3\n", - " 71r 1.9559302e+00 3.72e-01 9.99e+02 -0.4 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - " 72r 1.9823694e+00 1.25e-01 4.87e+02 -2.6 3.04e+02 - 1.00e+00 1.21e-03f 1\n", - " 73 2.0044298e+00 1.02e-01 8.12e-02 -3.3 8.66e+02 - 1.00e+00 1.00e+00h 1\n", - " 74 2.0022402e+00 2.47e-02 3.42e-02 -3.4 1.04e+03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.9981432e+00 2.14e-01 7.50e-02 -3.6 1.04e+04 - 9.99e-01 1.25e-01h 4\n", - " 76 1.9895801e+00 4.73e-01 1.37e-01 -3.7 1.98e+04 - 1.00e+00 2.26e-01h 3\n", - " 77 2.0302834e+00 2.24e-01 1.40e-01 -3.7 1.34e+03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.9970443e+00 8.59e-02 4.27e-02 -3.7 4.38e+02 - 1.00e+00 1.00e+00h 1\n", - " 79 1.9830516e+00 3.94e-01 1.87e-01 -4.3 5.25e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.0104958e+00 1.13e-01 1.45e-01 -4.4 4.26e+03 - 1.00e+00 1.00e+00h 1\n", - " 81 2.0010796e+00 6.68e-02 2.35e-02 -4.4 6.21e+02 - 1.00e+00 1.00e+00h 1\n", - " 82 2.0004332e+00 2.48e-02 2.95e-02 -4.4 9.29e+02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.9613250e+00 4.94e-01 1.87e-01 -3.8 1.38e+05 - 1.00e+00 2.75e-02f 3\n", - " 84 1.9764031e+00 2.04e-01 2.52e-01 -3.9 7.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 85 2.0141284e+00 9.35e-02 1.42e-01 -3.9 1.41e+03 - 1.00e+00 1.00e+00h 1\n", - " 86 2.0234689e+00 1.16e-01 1.87e-01 -3.9 2.39e+03 - 1.00e+00 1.00e+00H 1\n", - " 87 2.0091029e+00 1.08e-01 1.83e-01 -3.9 2.44e+04 - 6.06e-01 6.25e-02h 5\n", - " 88 2.0033854e+00 1.29e-01 1.82e-01 -3.9 9.02e+05 - 4.17e-02 1.82e-03h 5\n", - " 89 1.9686068e+00 2.80e-01 1.47e-01 -3.9 1.85e+04 - 6.93e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.9631283e+00 3.42e-01 8.16e-02 -3.9 3.92e+04 - 1.00e+00 5.05e-01h 1\n", - " 91 2.0114247e+00 7.45e-02 1.06e-01 -3.9 1.06e+04 - 1.00e+00 5.00e-01h 2\n", - " 92 2.0136320e+00 5.29e-02 7.98e-02 -3.9 3.61e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.9979749e+00 2.44e-01 3.30e-02 -3.9 5.30e+04 - 1.00e+00 9.37e-02h 1\n", - " 94 1.9937879e+00 1.45e-01 1.88e-01 -3.9 1.04e+03 - 1.00e+00 1.00e+00H 1\n", - " 95 2.0195550e+00 6.01e-04 1.66e-01 -3.9 1.66e-01 - 1.00e+00 1.00e+00h 1\n", - " 96 2.0194751e+00 2.33e-08 4.70e-06 -5.7 8.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 97 2.0194751e+00 3.53e-09 9.77e-06 -11.0 1.50e-05 - 1.00e+00 1.00e+00h 1\n", - " 98 2.0194751e+00 3.82e-09 9.49e-06 -11.0 3.16e-05 - 1.00e+00 1.00e+00h 1\n", - " 99 2.0194750e+00 6.70e-08 1.32e-05 -11.0 2.64e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.0194732e+00 7.91e-06 4.68e-03 -11.0 4.36e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.0194731798308969e+00 2.0194731798308969e+00\n", - "Dual infeasibility......: 4.6795012396601025e-03 4.6795012396601025e-03\n", - "Constraint violation....: 7.9068530425274730e-06 7.9068530425274730e-06\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 4.6795012396601025e-03 4.6795012396601025e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 203\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 203\n", - "Number of inequality constraint evaluations = 203\n", - "Number of equality constraint Jacobian evaluations = 103\n", - "Number of inequality constraint Jacobian evaluations = 103\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.418\n", - "Total CPU secs in NLP function evaluations = 141.490\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 934.00us ( 4.60us) 918.41us ( 4.52us) 203\n", - " nlp_g | 9.22 s ( 45.42ms) 8.80 s ( 43.37ms) 203\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 399.00us ( 3.91us) 369.60us ( 3.62us) 102\n", - " nlp_jac_g | 135.18 s ( 1.30 s) 129.00 s ( 1.24 s) 104\n", - " total | 145.89 s (145.89 s) 139.23 s (139.23 s) 1\n", - "Timestamp 12000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 9.22e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0046409e+01 1.40e+01 9.22e+03 -1.5 9.22e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.5942910e+00 5.21e+00 8.81e+00 0.6 1.55e+02 - 9.98e-01 1.00e+00f 1\n", - " 3 7.5678879e+00 1.25e+00 9.03e-01 -1.4 4.45e+01 - 9.97e-01 1.00e+00f 1\n", - " 4 8.5139695e+00 3.64e-03 1.12e-01 -3.2 1.86e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 8.5161048e+00 8.45e-06 1.85e-03 -5.1 3.61e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 8.5160935e+00 1.63e-05 1.27e-03 -7.2 1.06e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 8.5160549e+00 5.32e-05 3.29e-03 -9.3 2.20e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 8.5159388e+00 6.61e-05 5.87e-03 -11.0 3.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 8.5161078e+00 5.27e-08 8.68e-05 -11.0 1.65e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 8.5161078e+00 2.18e-08 2.84e-05 -11.0 1.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 8.5161078e+00 9.44e-09 3.84e-05 -11.0 7.71e-05 - 1.00e+00 1.00e+00h 1\n", - " 12 8.5161078e+00 5.44e-09 2.01e-04 -11.0 3.05e-05 - 1.00e+00 1.00e+00h 1\n", - " 13 8.5161077e+00 9.64e-08 9.40e-05 -11.0 5.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 8.5161074e+00 3.89e-07 1.47e-04 -11.0 1.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 8.5161077e+00 1.93e-07 7.30e-05 -11.0 4.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 8.5161074e+00 4.01e-07 9.07e-05 -11.0 1.95e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 8.5161077e+00 1.06e-07 4.75e-05 -11.0 5.75e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 8.5161077e+00 2.37e-07 4.55e-05 -11.0 9.33e-04 - 1.00e+00 1.00e+00h 1\n", - " 19 8.5161078e+00 4.51e-08 9.10e-05 -11.0 3.07e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.5161073e+00 4.62e-07 1.03e-04 -11.0 1.59e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 8.5161076e+00 1.37e-07 5.01e-05 -11.0 8.80e-04 - 1.00e+00 1.00e+00h 1\n", - " 22 8.5161078e+00 6.22e-08 3.15e-05 -11.0 6.46e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 8.5161078e+00 7.94e-08 5.41e-05 -11.0 5.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 8.5161075e+00 3.65e-07 2.19e-04 -11.0 1.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 25 8.5159365e+00 1.53e-04 1.72e-02 -11.0 6.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 8.5131929e+00 3.42e-03 3.28e-03 -11.0 1.78e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 8.5152455e+00 4.63e-04 2.10e-03 -11.0 7.60e+00 - 1.00e+00 1.00e+00h 1\n", - " 28 8.5162324e+00 7.85e-07 2.05e-03 -11.0 9.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 29 8.5161219e+00 2.22e-04 1.44e-03 -11.0 2.39e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.5145790e+00 1.41e-03 3.04e-03 -11.0 9.40e+00 - 1.00e+00 1.00e+00h 1\n", - " 31 8.5160863e+00 1.54e-07 1.06e-04 -11.0 1.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 32 8.5160861e+00 1.28e-07 4.21e-05 -11.0 7.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 8.5160863e+00 2.36e-08 6.71e-05 -11.0 1.71e-04 - 1.00e+00 1.00e+00h 1\n", - " 34 8.5160863e+00 5.52e-08 3.13e-05 -11.0 3.09e-04 - 1.00e+00 1.00e+00h 1\n", - " 35 8.5160863e+00 3.73e-08 9.16e-05 -11.0 1.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 36 8.5160863e+00 1.20e-07 1.05e-04 -11.0 4.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 8.5160863e+00 5.31e-08 6.99e-05 -11.0 2.74e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 8.5160862e+00 9.52e-08 5.98e-05 -11.0 5.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 8.5160862e+00 7.11e-08 9.59e-05 -11.0 7.47e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.5160862e+00 5.14e-08 9.88e-05 -11.0 2.93e-04 - 1.00e+00 1.00e+00h 1\n", - " 41 8.5160854e+00 7.89e-07 1.10e-04 -11.0 3.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 8.5160859e+00 3.33e-07 1.01e-04 -11.0 2.64e-03 - 1.00e+00 1.00e+00h 1\n", - " 43 8.5160857e+00 3.10e-07 2.19e-04 -11.0 1.90e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 8.5160856e+00 2.75e-07 2.42e-04 -11.0 1.37e-03 - 1.00e+00 1.00e+00h 1\n", - " 45 8.5160846e+00 9.68e-07 4.72e-03 -11.0 5.78e-03 - 1.00e+00 1.00e+00h 1\n", - " 46 8.5160860e+00 3.28e-07 8.73e-05 -11.0 2.44e-03 - 1.00e+00 1.00e+00h 1\n", - " 47 8.5160844e+00 2.03e-06 1.73e-03 -11.0 7.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 48 8.5160830e+00 1.76e-06 1.79e-03 -11.0 7.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 8.5160859e+00 1.73e-07 7.09e-05 -11.0 1.28e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.5160859e+00 4.20e-08 8.10e-05 -11.0 6.67e-04 - 1.00e+00 1.00e+00h 1\n", - " 51 8.5160857e+00 3.84e-07 3.28e-05 -11.0 1.59e-03 - 1.00e+00 1.00e+00h 1\n", - " 52 8.5160858e+00 2.42e-07 7.42e-05 -11.0 1.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 8.5160856e+00 2.33e-07 1.64e-04 -11.0 1.59e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 8.5160854e+00 4.68e-07 5.89e-05 -11.0 9.62e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 8.5160858e+00 5.86e-08 8.47e-05 -11.0 4.33e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 8.5160859e+00 3.49e-11 1.06e-04 -11.0 3.24e-04 - 1.00e+00 1.00e+00H 1\n", - " 57 8.5160855e+00 3.19e-07 5.91e-05 -11.0 1.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 8.5160855e+00 6.52e-07 2.58e-03 -11.0 1.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 8.5160857e+00 1.82e-07 1.37e-04 -11.0 7.56e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.5160820e+00 5.55e-06 7.30e-03 -11.0 6.91e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 8.5160850e+00 4.77e-07 1.00e-04 -11.0 2.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 62 8.5160857e+00 2.67e-10 7.23e-05 -11.0 1.16e-03 - 1.00e+00 1.00e+00H 1\n", - " 63 8.5160854e+00 1.70e-07 4.29e-05 -11.0 1.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 64 8.5160856e+00 1.61e-08 5.70e-05 -11.0 3.09e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 8.5160855e+00 1.75e-07 9.64e-05 -11.0 1.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 66 8.5160853e+00 4.54e-07 8.70e-05 -11.0 9.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 67 8.5160855e+00 9.17e-08 6.10e-05 -11.0 5.90e-04 - 1.00e+00 1.00e+00h 1\n", - " 68 8.5160855e+00 1.06e-07 4.37e-05 -11.0 6.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 69 8.5160855e+00 4.74e-08 7.96e-05 -11.0 3.67e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.5160855e+00 1.29e-07 3.47e-05 -11.0 8.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 8.5160855e+00 3.36e-07 1.26e-04 -11.0 1.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 72 8.5160818e+00 3.07e-06 4.22e-03 -11.0 3.80e-02 - 1.00e+00 1.00e+00h 1\n", - " 73 8.5160817e+00 4.79e-06 3.30e-03 -11.0 4.36e-02 - 1.00e+00 1.00e+00h 1\n", - " 74 8.5160699e+00 1.21e-05 5.83e-03 -11.0 8.10e-02 - 1.00e+00 1.00e+00h 1\n", - " 75 8.5160906e+00 1.30e-08 1.58e-04 -11.0 8.63e-05 - 1.00e+00 1.00e+00h 1\n", - " 76 8.5160905e+00 9.09e-08 9.91e-05 -11.0 7.00e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 8.5160906e+00 3.52e-08 5.18e-05 -11.0 2.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 78 8.5160906e+00 2.49e-08 4.90e-05 -11.0 5.65e-04 - 1.00e+00 1.00e+00h 1\n", - " 79 8.5160906e+00 2.09e-08 3.84e-05 -11.0 3.54e-04 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.5160906e+00 8.30e-08 3.83e-05 -11.0 4.19e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 8.5160905e+00 5.37e-08 1.11e-04 -11.0 1.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 82 8.5160906e+00 2.74e-08 2.18e-04 -11.0 1.66e-04 - 1.00e+00 1.00e+00h 1\n", - " 83 8.5160906e+00 4.33e-08 4.38e-05 -11.0 1.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 84 8.5160906e+00 1.98e-09 6.64e-05 -11.0 3.41e-05 - 1.00e+00 1.00e+00h 1\n", - " 85 8.5160882e+00 1.09e-06 3.94e-03 -11.0 1.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 86 8.5160376e+00 3.16e-05 1.73e-02 -11.0 5.47e-02 - 1.00e+00 1.00e+00h 1\n", - " 87 8.5160757e+00 7.90e-06 2.29e-03 -11.0 2.92e-02 - 1.00e+00 1.00e+00h 1\n", - " 88 8.5160841e+00 2.11e-06 9.38e-04 -11.0 1.36e-02 - 1.00e+00 1.00e+00h 1\n", - " 89 8.5160859e+00 1.29e-06 1.36e-03 -11.0 7.35e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.5160883e+00 1.22e-07 1.07e-04 -11.0 1.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 91 8.5160877e+00 8.97e-07 2.18e-03 -11.0 5.86e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 8.5160798e+00 4.16e-06 3.29e-03 -11.0 7.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 93 8.4315117e+00 1.63e-01 5.22e-02 -11.0 9.17e+02 - 1.00e+00 1.00e+00f 1\n", - " 94 8.4596614e+00 1.50e-01 9.48e-03 -11.0 2.59e+03 - 1.00e+00 1.00e+00h 1\n", - " 95 8.3870963e+00 2.33e-01 1.24e-02 -11.0 1.98e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 6.4727787e+00 2.86e+00 4.09e-01 -10.4 1.06e+05 - 1.00e+00 3.08e-01f 1\n", - " 97 6.4539602e+00 2.84e+00 4.07e-01 -8.5 4.73e+05 - 1.00e+00 6.90e-04h 1\n", - " 98 6.4543145e+00 2.84e+00 4.07e-01 -6.5 9.83e+03 - 1.00e+00 5.13e-04h 1\n", - " 99 8.2267880e+00 1.94e-01 4.15e-01 -6.1 4.64e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.2203406e+00 4.52e-02 2.27e-02 -3.9 9.99e+02 - 8.61e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.2203405984400515e+00 8.2203405984400515e+00\n", - "Dual infeasibility......: 2.2674045123126874e-02 2.2674045123126874e-02\n", - "Constraint violation....: 4.5226433210459049e-02 4.5226433210459049e-02\n", - "Complementarity.........: 1.2631439551897807e-04 1.2631439551897807e-04\n", - "Overall NLP error.......: 4.5226433210459049e-02 4.5226433210459049e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 104\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 104\n", - "Number of inequality constraint evaluations = 104\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.425\n", - "Total CPU secs in NLP function evaluations = 134.003\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 463.00us ( 4.45us) 456.31us ( 4.39us) 104\n", - " nlp_g | 4.64 s ( 44.59ms) 4.42 s ( 42.52ms) 104\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 414.00us ( 4.06us) 411.77us ( 4.04us) 102\n", - " nlp_jac_g | 132.12 s ( 1.30 s) 126.10 s ( 1.24 s) 102\n", - " total | 138.23 s (138.23 s) 131.93 s (131.93 s) 1\n", - "Timestamp 12300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.36e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9821991e+01 1.43e+01 4.36e+03 -1.5 4.36e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.5000972e+00 5.10e+00 1.05e+01 0.4 1.43e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.1451976e+01 1.60e+00 5.90e-01 -1.6 9.36e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.2559785e+01 1.45e-03 8.44e-02 -3.4 2.11e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.2560504e+01 2.61e-06 3.34e-03 -5.3 6.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.2560509e+01 4.74e-08 1.12e-04 -7.4 6.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 1.2560509e+01 7.85e-08 5.44e-05 -11.0 4.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 1.2560509e+01 1.98e-07 2.15e-04 -11.0 1.11e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 1.2560508e+01 9.62e-07 2.57e-05 -11.0 5.97e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.2560509e+01 1.61e-07 5.71e-05 -11.0 2.94e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.2560509e+01 1.24e-07 6.87e-05 -11.0 1.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.2560509e+01 2.93e-07 6.65e-05 -11.0 1.55e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 1.2560489e+01 4.65e-05 2.47e-02 -11.0 1.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.2560499e+01 3.97e-06 1.68e-03 -11.0 7.82e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 1.2560460e+01 4.45e-05 3.06e-03 -11.0 2.13e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.2560508e+01 1.90e-06 1.80e-03 -11.0 1.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 1.2560421e+01 1.71e-04 4.19e-03 -11.0 8.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 1.2560067e+01 1.80e-04 2.80e-03 -11.0 7.11e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.2559922e+01 4.77e-04 5.95e-03 -11.0 2.48e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.2560360e+01 1.12e-04 1.63e-03 -11.0 7.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 1.2560506e+01 1.73e-08 1.74e-04 -11.0 7.74e-01 - 1.00e+00 1.00e+00H 1\n", - " 22 1.2559726e+01 5.56e-04 1.34e-03 -11.0 1.65e+00 - 1.00e+00 1.00e+00f 1\n", - " 23 1.2560464e+01 2.86e-05 1.41e-03 -11.0 2.61e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.2560322e+01 3.52e-04 2.49e-03 -11.0 2.80e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 1.2560427e+01 5.84e-05 1.71e-03 -11.0 9.18e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 1.2560360e+01 1.28e-04 1.49e-03 -11.0 5.15e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 1.2553483e+01 3.77e-03 6.79e-03 -11.0 2.71e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 1.2558262e+01 3.54e-03 1.76e-03 -11.0 2.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 1.2556209e+01 2.70e-03 2.30e-03 -11.0 1.81e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.2552643e+01 2.59e-03 5.03e-03 -11.0 1.58e+01 - 1.00e+00 1.00e+00h 1\n", - " 31 1.2535947e+01 1.51e-02 2.91e-03 -11.0 1.42e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 1.2558159e+01 9.12e-06 1.95e-03 -11.0 2.04e+02 - 1.00e+00 1.00e+00H 1\n", - " 33 1.2551840e+01 2.94e-03 3.16e-03 -11.0 2.25e+02 - 1.00e+00 1.00e+00f 1\n", - " 34 1.2516385e+01 1.63e-02 3.54e-03 -11.0 4.66e+02 - 1.00e+00 1.00e+00h 1\n", - " 35 1.2549106e+01 3.46e-03 2.04e-03 -11.0 5.75e+01 - 1.00e+00 1.00e+00h 1\n", - " 36 9.7490399e+00 2.18e+00 1.98e-01 -9.0 1.21e+08 - 2.58e-04 2.68e-04f 1\n", - " 37 1.0524336e+01 1.69e+00 1.35e-01 -10.8 1.86e+04 - 1.00e+00 1.00e+00h 1\n", - " 38 8.7340287e+00 2.21e+00 1.38e-01 -11.0 1.55e+04 - 1.00e+00 1.00e+00f 1\n", - " 39 9.7260983e+00 2.28e+00 1.78e-01 -8.7 1.75e+04 - 1.00e+00 7.64e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 9.7026616e+00 2.28e+00 1.78e-01 -6.7 2.23e+04 - 1.00e+00 5.47e-03h 1\n", - " 41 9.7046962e+00 2.28e+00 1.78e-01 -4.8 1.06e+03 - 1.00e+00 8.51e-04h 1\n", - " 42 1.2929753e+01 6.14e-02 3.03e-01 -6.5 1.65e+02 - 1.00e+00 1.00e+00h 1\n", - " 43 1.2891123e+01 4.89e-02 1.92e-02 -6.5 3.40e+02 - 1.00e+00 1.00e+00h 1\n", - " 44 1.2915241e+01 3.46e-02 9.37e-03 -6.5 3.04e+02 - 1.00e+00 3.80e-01h 1\n", - " 45 1.2914610e+01 5.56e-02 9.18e-03 -6.5 1.05e+03 - 5.74e-01 1.25e-01h 4\n", - " 46 1.2914971e+01 5.49e-02 9.26e-03 -6.5 8.23e+03 - 1.00e+00 5.40e-04h 11\n", - " 47 1.2966589e+01 6.23e-03 4.43e-03 -6.5 2.20e+01 - 1.00e+00 1.00e+00h 1\n", - " 48 1.2936069e+01 1.59e-02 6.98e-03 -6.5 7.01e+02 - 1.00e+00 2.92e-01h 1\n", - " 49 1.2960715e+01 2.19e-02 1.53e-03 -6.5 9.69e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.2753892e+01 6.00e-01 3.90e-02 -6.5 2.18e+04 - 4.50e-03 7.20e-02f 1\n", - " 51 1.2753905e+01 6.00e-01 3.90e-02 -6.5 1.22e+03 - 1.00e+00 4.96e-05h 1\n", - " 52 1.2966565e+01 1.27e-04 2.87e-02 -6.5 3.01e+00 - 4.13e-01 1.00e+00h 1\n", - " 53 1.2966416e+01 2.48e-04 2.11e-02 -6.5 2.23e+00 - 1.00e+00 2.78e-01h 1\n", - " 54 1.2964292e+01 2.23e-03 2.42e-03 -6.5 1.35e+01 - 7.04e-02 1.00e+00h 1\n", - " 55 1.2958089e+01 5.06e-03 4.19e-03 -6.5 2.72e+01 - 5.75e-01 1.00e+00h 1\n", - " 56 1.2961452e+01 2.60e-03 8.04e-03 -6.5 2.93e+01 - 1.00e+00 5.00e-01h 2\n", - " 57 1.2965234e+01 1.12e-03 1.21e-03 -6.5 6.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 58 1.2963839e+01 1.07e-03 1.29e-03 -6.5 4.67e+01 - 3.61e-01 2.14e-01h 1\n", - " 59 1.2965630e+01 7.42e-04 4.89e-03 -6.5 2.40e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.2944759e+01 2.06e-02 7.28e-03 -6.5 3.00e+02 - 4.30e-02 4.59e-01h 1\n", - " 61 1.2947112e+01 1.82e-02 7.03e-03 -6.5 2.56e+01 - 1.00e+00 1.25e-01h 4\n", - " 62 1.2964432e+01 1.22e-05 1.16e-03 -6.5 2.65e+00 - 3.99e-01 1.00e+00h 1\n", - " 63 1.2964431e+01 1.24e-05 9.31e-04 -6.5 9.54e+02 - 1.00e+00 9.04e-05h 1\n", - " 64 1.2962642e+01 1.57e-03 5.12e-03 -6.5 2.71e+01 - 1.00e+00 1.00e+00f 1\n", - " 65 1.2963773e+01 4.90e-04 2.34e-03 -6.5 1.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 66 1.2963474e+01 9.77e-04 1.57e-03 -6.5 7.45e+00 - 7.07e-02 1.00e+00h 1\n", - " 67 1.2963305e+01 7.62e-04 1.57e-03 -6.5 2.63e+02 - 5.09e-01 2.82e-02h 1\n", - " 68 1.2723094e+01 2.33e-01 9.90e-03 -6.5 1.87e+03 - 1.09e-03 1.00e+00f 1\n", - " 69 8.4973116e+00 1.39e+00 2.01e-01 -6.5 2.31e+04 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.2822981e+01 1.37e-01 1.67e-01 -5.3 6.13e+02 - 1.00e+00 1.00e+00h 1\n", - " 71 1.2729675e+01 5.45e-01 8.25e-02 -4.7 5.55e+03 - 8.39e-01 1.00e+00h 1\n", - " 72 1.0671101e+01 8.18e-01 1.84e-01 -4.7 1.34e+04 - 1.00e+00 1.00e+00f 1\n", - " 73 9.4196486e+00 1.74e+00 1.55e-01 -4.0 1.22e+05 - 1.00e+00 3.51e-01f 1\n", - " 74 9.4244532e+00 1.66e+00 1.52e-01 -4.2 9.95e+04 - 1.00e+00 4.36e-03h 1\n", - " 75 1.2555808e+01 7.67e-01 2.09e-01 -4.2 4.14e+03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.3004942e+01 1.31e-01 7.53e-02 -4.2 5.55e+03 - 6.87e-01 1.00e+00H 1\n", - " 77 1.2996865e+01 1.27e-01 7.55e-02 -4.2 1.61e+04 - 1.00e+00 5.96e-03h 1\n", - " 78 9.3883604e+00 2.93e+00 1.44e-01 -4.2 8.56e+03 - 1.00e+00 1.00e+00f 1\n", - " 79 8.5982711e+00 2.25e+00 2.35e-01 -1.3 2.67e+04 - 6.82e-01 3.40e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.2292954e+01 3.66e+00 1.72e-01 -1.7 1.16e+04 - 1.00e+00 1.00e+00h 1\n", - " 81 1.2188284e+01 1.38e+00 2.19e-01 -1.7 4.38e+03 - 6.34e-01 1.00e+00h 1\n", - " 82 1.2649100e+01 7.03e-01 1.74e-01 -1.7 4.79e+03 - 8.26e-01 1.00e+00h 1\n", - " 83 1.1523712e+01 2.94e+00 1.31e-01 -1.7 1.85e+05 - 4.58e-02 1.14e-01f 2\n", - " 84 8.1239878e+00 6.00e+00 5.09e-01 -1.7 5.13e+05 - 9.35e-02 2.67e-02f 1\n", - " 85 9.9926814e+00 4.81e+00 8.09e-01 0.1 8.53e+05 - 6.64e-02 3.06e-02f 2\n", - " 86 1.3488184e+01 9.76e-01 8.27e-01 -0.9 4.62e+04 - 5.73e-01 7.78e-01h 1\n", - " 87 8.9190409e+00 4.79e+00 3.52e-01 -1.6 1.55e+04 - 1.11e-01 8.00e-01f 1\n", - " 88 9.0449722e+00 3.28e+00 2.91e-01 -1.6 6.94e+04 - 6.23e-01 2.47e-01h 1\n", - " 89 1.0123541e+01 1.97e+00 2.63e-01 -1.6 3.04e+04 - 5.19e-01 6.74e-01H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.2456279e+01 3.27e-01 3.03e-01 -1.6 5.89e+03 - 1.00e+00 1.00e+00h 1\n", - " 91 1.2398029e+01 3.04e-01 1.83e-01 -2.3 1.55e+03 - 1.00e+00 9.64e-01h 1\n", - " 92 1.1887272e+01 1.55e+00 4.29e-02 -3.1 2.75e+03 - 8.03e-01 1.00e+00h 1\n", - " 93 9.1037814e+00 2.89e+00 2.94e-01 -2.4 1.43e+04 - 1.31e-01 1.00e+00f 1\n", - " 94 9.3847555e+00 1.78e+00 8.88e-02 -2.6 5.35e+03 - 1.00e+00 4.74e-01h 1\n", - " 95 1.3014273e+01 4.09e-01 1.67e-01 -1.9 6.02e+03 - 3.09e-01 1.00e+00h 1\n", - " 96 1.2311703e+01 5.11e-01 1.74e-01 -2.4 1.13e+04 - 3.85e-01 1.00e+00f 1\n", - " 97 1.2835179e+01 1.59e-01 2.57e-02 -2.1 4.14e+03 - 1.00e+00 1.00e+00h 1\n", - " 98 1.2606085e+01 4.67e-01 2.97e-02 -2.1 2.76e+04 - 1.66e-01 1.90e-01f 1\n", - " 99 1.2773711e+01 3.35e-01 3.96e-02 -2.1 4.70e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.2579137e+01 1.37e-01 2.22e-02 -2.1 1.36e+04 - 5.16e-01 2.03e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.2579137084519342e+01 1.2579137084519342e+01\n", - "Dual infeasibility......: 2.2246331797988017e-02 2.2246331797988017e-02\n", - "Constraint violation....: 1.3748209569977732e-01 1.3748209569977732e-01\n", - "Complementarity.........: 8.1369827976847230e-03 8.1369827976847230e-03\n", - "Overall NLP error.......: 1.3748209569977732e-01 1.3748209569977732e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 134\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 134\n", - "Number of inequality constraint evaluations = 134\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.404\n", - "Total CPU secs in NLP function evaluations = 135.894\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 605.00us ( 4.51us) 595.38us ( 4.44us) 134\n", - " nlp_g | 6.03 s ( 45.02ms) 5.75 s ( 42.90ms) 134\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 336.00us ( 3.29us) 330.61us ( 3.24us) 102\n", - " nlp_jac_g | 132.55 s ( 1.30 s) 126.49 s ( 1.24 s) 102\n", - " total | 140.06 s (140.06 s) 133.66 s (133.66 s) 1\n", - "Timestamp 12600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 6.80e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9983879e+01 1.35e+01 6.80e+03 -1.5 6.80e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.3800900e+00 4.84e+00 8.73e+00 0.6 7.95e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 6.5561096e+00 1.10e+00 8.75e-01 -1.5 2.17e+01 - 9.97e-01 1.00e+00f 1\n", - " 4 7.3473480e+00 3.34e-03 1.06e-01 -3.2 1.65e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 7.3488003e+00 1.20e-07 6.95e-05 -5.1 3.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 7.3487993e+00 6.91e-07 7.08e-05 -11.0 3.88e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 7.3488003e+00 1.49e-10 4.56e-05 -11.0 1.86e-03 - 1.00e+00 1.00e+00H 1\n", - " 8 7.3487997e+00 2.86e-07 5.53e-05 -11.0 3.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 7.3487994e+00 5.51e-07 7.94e-05 -11.0 4.52e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 7.3488002e+00 4.04e-07 8.75e-05 -11.0 1.67e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 7.3488003e+00 2.27e-07 6.73e-05 -11.0 8.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 7.3488000e+00 2.76e-07 1.85e-04 -11.0 2.94e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 7.3486935e+00 1.17e-04 2.81e-02 -11.0 5.38e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 7.3487369e+00 6.75e-05 2.01e-03 -11.0 6.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 7.3488044e+00 1.45e-05 1.20e-03 -11.0 2.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 7.3486025e+00 1.43e-04 3.01e-03 -11.0 7.10e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 7.3487776e+00 4.53e-05 1.53e-03 -11.0 2.32e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 7.3487526e+00 4.52e-05 1.33e-03 -11.0 2.78e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 7.3487839e+00 1.19e-05 2.58e-03 -11.0 2.83e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 7.3485523e+00 1.53e-04 1.16e-03 -11.0 1.10e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 7.3487717e+00 2.55e-05 1.35e-03 -11.0 3.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 22 7.3487453e+00 3.73e-05 9.66e-04 -11.0 1.12e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 7.3484721e+00 7.80e-04 3.57e-03 -11.0 2.35e+00 - 1.00e+00 1.00e+00h 1\n", - " 24 7.3485027e+00 1.96e-04 7.62e-04 -11.0 1.66e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 7.3483349e+00 8.43e-04 1.33e-03 -11.0 5.90e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 7.3474522e+00 2.41e-03 1.96e-03 -11.0 1.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 7.3486296e+00 2.98e-04 1.36e-03 -11.0 7.44e+00 - 1.00e+00 1.00e+00h 1\n", - " 28 7.3483720e+00 1.47e-04 2.77e-03 -11.0 4.90e+00 - 1.00e+00 1.00e+00h 1\n", - " 29 7.3489614e+00 1.52e-04 2.42e-03 -11.0 1.94e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 7.3480851e+00 2.59e-03 3.46e-03 -11.0 2.64e+01 - 1.00e+00 1.00e+00h 1\n", - " 31 7.3371406e+00 1.87e-02 6.44e-03 -11.0 1.00e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 7.3250592e+00 1.26e-02 2.15e-03 -11.0 1.24e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 7.3431929e+00 1.10e-02 3.46e-03 -11.0 1.71e+02 - 1.00e+00 1.00e+00h 1\n", - " 34 7.3383066e+00 8.08e-03 4.07e-03 -11.0 1.93e+02 - 1.00e+00 1.00e+00h 1\n", - " 35 7.3477275e+00 1.78e-05 2.33e-03 -11.0 2.91e+02 - 1.00e+00 1.00e+00H 1\n", - " 36 7.3465174e+00 1.55e-03 1.36e-03 -11.0 1.59e+01 - 1.00e+00 1.00e+00h 1\n", - " 37 7.2007003e+00 1.29e-01 1.53e-02 -11.0 2.47e+03 - 1.00e+00 1.00e+00f 1\n", - " 38 6.6391700e+00 1.23e+00 1.77e-01 -9.0 1.43e+06 - 1.00e+00 2.07e-02f 1\n", - " 39 6.6608265e+00 1.21e+00 1.66e-01 -7.0 8.40e+03 - 1.00e+00 3.53e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 6.6609343e+00 1.21e+00 1.65e-01 -5.1 1.33e+04 - 1.00e+00 2.23e-04h 1\n", - " 41 7.3720947e+00 1.24e-02 1.20e-01 -6.1 8.84e+01 - 1.00e+00 1.00e+00h 1\n", - " 42 7.3846609e+00 4.12e-06 1.66e-02 -6.3 1.84e-02 - 1.00e+00 1.00e+00h 1\n", - " 43 7.3846645e+00 9.28e-07 1.99e-03 -6.3 1.69e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 7.3846650e+00 7.24e-08 1.14e-04 -6.3 5.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 7.3846651e+00 1.17e-10 1.68e-04 -6.3 2.45e-04 - 1.00e+00 1.00e+00H 1\n", - " 46 7.3845473e+00 1.06e-04 1.14e-02 -6.3 2.52e-01 - 1.39e-01 1.00e+00f 1\n", - " 47 7.3846546e+00 7.25e-06 1.44e-03 -6.3 3.74e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 7.3846588e+00 3.65e-06 7.74e-04 -6.3 1.70e-02 - 1.00e+00 1.00e+00h 1\n", - " 49 7.3846609e+00 1.35e-06 7.04e-04 -6.3 8.98e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 7.3846588e+00 1.86e-06 1.09e-03 -6.3 6.94e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 7.3846604e+00 1.26e-06 1.27e-03 -6.3 9.29e-03 - 1.00e+00 1.00e+00h 1\n", - " 52 7.3846602e+00 7.45e-07 1.61e-03 -6.3 1.97e-02 - 1.00e+00 1.00e+00h 1\n", - " 53 7.3846560e+00 4.53e-06 1.09e-03 -6.3 1.31e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 7.3846524e+00 6.88e-06 2.72e-03 -6.3 3.35e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 7.3846601e+00 2.57e-07 1.03e-04 -6.3 3.50e-03 - 1.00e+00 1.00e+00h 1\n", - " 56 7.3846166e+00 1.74e-05 5.60e-03 -6.3 9.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 57 7.3846530e+00 7.61e-06 2.10e-03 -6.3 5.33e-02 - 1.00e+00 1.00e+00h 1\n", - " 58 7.3846547e+00 7.29e-06 1.97e-03 -6.3 4.29e-02 - 1.00e+00 5.00e-01h 2\n", - " 59 7.3831339e+00 2.21e-03 1.59e-03 -6.3 6.94e+00 - 1.99e-02 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.2673612e+00 1.14e-01 1.53e-02 -6.3 1.74e+03 - 1.00e+00 1.00e+00f 1\n", - " 61 7.0376552e+00 2.79e-01 4.38e-02 -6.3 5.66e+03 - 2.36e-01 1.00e+00h 1\n", - " 62 6.6156169e+00 4.38e-01 5.45e-02 -7.3 4.71e+03 - 1.00e+00 1.00e+00h 1\n", - " 63 7.3625326e+00 1.41e-02 6.19e-02 -9.1 7.75e+02 - 1.00e+00 1.00e+00h 1\n", - " 64 7.3130955e+00 7.64e-02 6.51e-02 -9.0 7.58e+03 - 1.00e+00 2.52e-01h 1\n", - " 65 7.0477894e+00 1.57e-01 6.24e-02 -10.5 7.74e+02 - 1.00e+00 1.00e+00h 1\n", - " 66 7.3875597e+00 9.17e-03 6.50e-03 -3.9 7.87e+02 - 6.19e-01 1.00e+00H 1\n", - " 67 6.7301529e+00 5.42e-01 6.09e-02 -4.3 2.05e+03 - 4.47e-02 1.00e+00f 1\n", - " 68 6.7827657e+00 4.78e-01 4.71e-02 -4.3 5.33e+03 - 1.00e+00 1.13e-01h 1\n", - " 69 6.7073755e+00 4.58e+00 5.62e-01 -4.6 2.04e+04 - 8.68e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 7.7950737e+00 1.41e-01 3.41e-01 -3.1 4.43e+03 - 1.00e+00 1.00e+00h 1\n", - " 71 6.6353688e+00 1.25e+00 1.07e-01 -3.1 1.91e+04 - 3.09e-01 1.00e+00f 1\n", - " 72 6.3167030e+00 1.85e+00 1.19e-01 -3.1 1.75e+04 - 9.95e-01 1.00e+00h 1\n", - " 73 5.6620616e+00 1.26e+00 1.04e-01 -9.2 4.36e+05 - 9.12e-04 4.97e-02f 1\n", - " 74 7.0221678e+00 2.43e-01 3.49e-01 -2.7 3.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 75 6.4371100e+00 4.40e-01 1.39e-01 -2.3 2.43e+04 - 1.00e+00 1.00e+00h 1\n", - " 76 5.9743462e+00 9.58e-01 6.49e-02 -8.3 5.07e+04 - 1.30e-01 4.80e-01h 1\n", - " 77 5.9888909e+00 1.02e+00 6.57e-02 -2.1 3.30e+04 - 1.00e+00 3.81e-02h 5\n", - " 78 5.8843859e+00 8.20e-01 3.61e-02 -2.1 4.17e+04 - 7.20e-01 6.45e-02h 1\n", - " 79 7.4997498e+00 4.38e-01 9.32e-02 -2.2 6.12e+04 - 2.04e-01 9.97e-01H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 7.4684217e+00 4.21e-01 9.10e-02 -2.4 3.46e+04 - 1.00e+00 1.77e-02h 1\n", - " 81 7.3820247e+00 3.90e-01 8.35e-02 -2.4 3.92e+03 - 5.67e-01 1.03e-01h 1\n", - " 82 5.6131135e+00 2.74e+00 1.98e-01 -2.4 3.44e+04 - 1.00e+00 7.59e-01f 1\n", - " 83 6.8844950e+00 1.83e-01 2.89e-01 -1.7 5.92e+02 - 9.05e-01 1.00e+00h 1\n", - " 84 6.5625171e+00 1.63e-01 6.44e-02 -2.4 1.20e+03 - 9.56e-01 5.84e-01h 1\n", - " 85 6.7161730e+00 1.38e-01 3.44e-02 -3.1 1.84e+03 - 1.00e+00 1.00e+00h 1\n", - " 86 6.8796253e+00 9.63e-03 2.95e-02 -4.8 1.52e+02 - 1.00e+00 1.00e+00h 1\n", - " 87 6.7520013e+00 9.96e-02 1.07e-02 -5.2 1.47e+03 - 1.00e+00 1.00e+00h 1\n", - " 88 6.7492401e+00 6.86e-02 6.39e-03 -3.3 4.46e+03 - 7.50e-01 1.08e-01h 1\n", - " 89 6.8498915e+00 2.01e-02 3.17e-03 -3.8 1.61e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 6.3253600e+00 8.57e-01 1.29e-01 -9.6 3.01e+03 - 4.06e-02 1.00e+00f 1\n", - " 91 5.5144368e+00 1.07e+00 1.48e-01 -3.2 1.53e+04 - 1.00e+00 1.00e+00h 1\n", - " 92 7.6546212e+00 1.51e+00 3.10e-01 -4.1 5.76e+03 - 8.56e-01 1.00e+00H 1\n", - " 93 6.8938470e+00 9.37e-01 1.28e-01 -3.9 1.61e+04 - 1.00e+00 2.69e-01f 1\n", - " 94 6.8922045e+00 9.36e-01 1.28e-01 -3.9 7.26e+04 - 6.33e-01 4.78e-05h 1\n", - " 95 6.8451004e+00 5.50e-03 7.35e-02 -3.9 1.78e+02 - 1.00e+00 1.00e+00h 1\n", - " 96 6.8387930e+00 4.69e-02 3.26e-02 -5.5 6.74e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 6.6066886e+00 3.80e-01 5.54e-02 -3.9 1.40e+05 - 5.55e-01 1.17e-01f 1\n", - " 98 6.3847326e+00 1.41e+00 1.53e-01 -4.3 1.17e+04 - 3.75e-02 1.00e+00h 1\n", - " 99 6.8015156e+00 3.02e-01 1.85e-01 -4.3 8.81e+03 - 3.15e-02 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 6.5527825e+00 2.94e-01 2.16e-01 -4.3 1.41e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 6.5527824892550157e+00 6.5527824892550157e+00\n", - "Dual infeasibility......: 2.1611365774953822e-01 2.1611365774953822e-01\n", - "Constraint violation....: 2.9449580823694532e-01 2.9449580823694532e-01\n", - "Complementarity.........: 1.0972631140301599e-04 1.0972631140301599e-04\n", - "Overall NLP error.......: 2.9449580823694532e-01 2.9449580823694532e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 114\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 114\n", - "Number of inequality constraint evaluations = 114\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.448\n", - "Total CPU secs in NLP function evaluations = 134.121\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 531.00us ( 4.66us) 521.76us ( 4.58us) 114\n", - " nlp_g | 5.07 s ( 44.49ms) 4.83 s ( 42.39ms) 114\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 340.00us ( 3.33us) 336.78us ( 3.30us) 102\n", - " nlp_jac_g | 131.86 s ( 1.29 s) 125.82 s ( 1.23 s) 102\n", - " total | 138.39 s (138.39 s) 132.05 s (132.05 s) 1\n", - "Timestamp 12900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.58e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9802645e+01 1.40e+01 4.58e+03 -1.5 4.58e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.1881449e+00 4.97e+00 1.00e+01 0.4 1.40e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.0564491e+01 1.48e+00 6.82e-01 -1.6 8.90e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.1596488e+01 1.86e-03 8.18e-02 -3.4 1.98e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.1597355e+01 4.11e-07 1.12e-04 -5.3 1.82e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1597354e+01 1.26e-06 2.02e-03 -11.0 4.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1597354e+01 7.13e-07 6.97e-05 -11.0 2.93e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1597355e+01 1.34e-10 3.85e-05 -11.0 3.02e-03 - 1.00e+00 1.00e+00H 1\n", - " 9 1.1597355e+01 7.95e-08 2.99e-05 -11.0 9.17e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1597355e+01 2.41e-07 9.51e-05 -11.0 1.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.1597355e+01 1.19e-07 1.05e-04 -11.0 6.71e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1597355e+01 1.01e-07 8.03e-05 -11.0 5.48e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1597355e+01 8.93e-11 9.13e-05 -11.0 4.65e-04 - 1.00e+00 1.00e+00H 1\n", - " 14 1.1597346e+01 4.43e-06 1.36e-02 -11.0 3.30e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 1.1597354e+01 1.97e-06 2.96e-03 -11.0 1.84e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 1.1597352e+01 1.43e-06 1.56e-03 -11.0 8.81e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1597353e+01 5.95e-07 1.29e-03 -11.0 7.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 18 1.1597309e+01 1.27e-05 3.40e-03 -11.0 1.97e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.1597353e+01 4.12e-06 9.05e-04 -11.0 2.23e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.1597247e+01 4.90e-05 1.81e-03 -11.0 2.62e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 1.1597353e+01 3.64e-06 1.71e-03 -11.0 6.32e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.1597336e+01 2.28e-05 1.47e-03 -11.0 1.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.1597332e+01 1.16e-05 8.05e-04 -11.0 1.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.1597351e+01 3.82e-06 1.12e-03 -11.0 3.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 25 1.1597355e+01 1.37e-06 1.41e-03 -11.0 1.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 26 1.1597351e+01 3.13e-06 1.46e-03 -11.0 6.28e-02 - 1.00e+00 1.00e+00h 1\n", - " 27 1.1597353e+01 2.10e-06 9.97e-04 -11.0 1.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 28 1.1597209e+01 5.85e-05 7.32e-03 -11.0 2.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 29 1.1597349e+01 2.11e-05 2.06e-03 -11.0 1.20e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1597045e+01 2.89e-04 2.17e-03 -11.0 4.44e-01 - 1.00e+00 1.00e+00h 1\n", - " 31 1.1597326e+01 6.04e-05 9.85e-04 -11.0 2.65e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 1.1597312e+01 5.39e-05 2.90e-03 -11.0 5.57e-01 - 1.00e+00 1.00e+00h 1\n", - " 33 1.1597361e+01 2.54e-06 9.39e-04 -11.0 8.58e-02 - 1.00e+00 1.00e+00h 1\n", - " 34 1.0224158e+01 1.66e+00 1.47e-01 -11.0 1.76e+06 - 1.79e-02 1.79e-02f 1\n", - " 35 1.1424867e+01 2.81e-01 1.00e-01 -11.0 1.25e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 1.1272570e+01 2.09e-01 1.39e-01 -2.3 2.44e+03 - 5.34e-01 1.00e+00h 1\n", - " 37 9.1382233e+00 1.66e+00 1.31e-01 -3.6 2.33e+03 - 9.99e-01 1.00e+00f 1\n", - " 38 1.1075741e+01 5.09e-01 9.43e-02 -2.8 8.04e+03 - 9.74e-01 1.00e+00h 1\n", - " 39 1.1131238e+01 2.65e-01 6.00e-02 -3.8 5.42e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.0119216e+01 1.06e+00 8.34e-02 -4.8 6.61e+03 - 1.00e+00 1.00e+00f 1\n", - " 41 1.0697134e+01 8.61e-01 7.39e-02 -4.7 4.08e+03 - 1.00e+00 1.00e+00h 1\n", - " 42 1.1354081e+01 2.72e-01 5.02e-02 -6.0 9.36e+02 - 1.00e+00 1.00e+00h 1\n", - " 43 1.1544436e+01 1.87e-02 2.01e-02 -6.1 3.89e+02 - 1.00e+00 1.00e+00h 1\n", - " 44 1.1492846e+01 4.04e-02 8.06e-03 -7.8 4.39e+02 - 1.00e+00 1.00e+00h 1\n", - " 45 9.2246765e+00 1.30e+00 3.00e-01 -8.4 4.66e+03 - 1.00e+00 1.00e+00f 1\n", - " 46 1.1280007e+01 1.99e-01 1.67e-01 -8.4 1.63e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 1.0997065e+01 8.28e-01 1.43e-01 -6.4 1.18e+07 - 3.37e-03 3.31e-04f 1\n", - " 48 1.0995233e+01 8.27e-01 1.43e-01 -6.4 3.21e+04 - 1.00e+00 1.21e-03h 1\n", - " 49 1.0994838e+01 2.42e-01 1.37e-02 -5.2 1.29e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.1368352e+01 7.51e-02 1.07e-02 -5.5 9.80e+02 - 3.23e-01 1.00e+00h 1\n", - " 51 1.0583499e+01 1.15e+00 4.21e-02 -4.0 4.81e+03 - 1.00e+00 1.00e+00f 1\n", - " 52 1.0985698e+01 8.90e-01 1.10e-02 -4.9 2.38e+03 - 8.88e-01 1.00e+00h 1\n", - " 53 1.1057640e+01 2.61e-01 8.33e-02 -3.1 2.34e+03 - 1.00e+00 1.00e+00h 1\n", - " 54 9.6015794e+00 1.63e+00 1.72e-01 -3.2 1.23e+04 - 1.00e+00 5.18e-01f 1\n", - " 55 1.1159372e+01 4.37e-01 2.50e-01 -3.2 2.09e+03 - 9.65e-01 1.00e+00h 1\n", - " 56 1.0583620e+01 1.14e+00 6.92e-02 -3.2 1.44e+04 - 1.59e-03 5.91e-01f 1\n", - " 57 9.2619816e+00 2.12e+00 1.30e-01 -3.3 7.55e+03 - 7.75e-03 1.00e+00f 1\n", - " 58 8.6946991e+00 2.73e+00 5.02e-01 -3.4 1.80e+06 - 2.34e-02 4.26e-03f 1\n", - " 59 1.1076218e+01 2.04e+00 5.05e-01 -4.0 9.82e+03 - 8.89e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.0111613e+01 6.13e-01 2.72e-01 -3.6 1.63e+04 - 1.00e+00 6.68e-01h 1\n", - " 61 1.0979608e+01 7.60e-01 9.35e-02 -9.6 1.19e+04 - 5.81e-01 1.00e+00H 1\n", - " 62 1.0806495e+01 1.35e+00 7.43e-02 -4.4 1.04e+04 - 1.00e+00 1.00e+00h 1\n", - " 63 1.0176663e+01 8.07e-01 2.00e-01 -4.5 1.22e+04 - 1.87e-01 1.00e+00h 1\n", - " 64 1.0174511e+01 8.09e-01 1.99e-01 -4.5 7.87e+05 - 7.89e-02 9.22e-05h 1\n", - " 65 9.4557990e+00 1.19e+00 1.70e-01 -4.5 3.88e+03 - 1.00e+00 1.00e+00f 1\n", - " 66 7.2727139e+00 3.18e+00 5.45e-01 -3.5 3.87e+05 - 9.92e-01 3.62e-02f 1\n", - " 67 1.0051768e+01 1.22e+00 9.28e-02 -1.4 1.56e+04 - 1.00e+00 9.45e-01h 1\n", - " 68 1.0066929e+01 1.09e+00 1.03e-01 -1.6 5.19e+03 - 1.00e+00 1.35e-01h 1\n", - " 69 1.1683562e+01 2.67e-02 1.05e-01 -1.6 4.33e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1516734e+01 1.24e-01 6.57e-02 -2.5 3.73e+02 - 7.74e-01 1.00e+00h 1\n", - " 71 1.1566967e+01 9.11e-02 2.18e-02 -2.5 5.94e+02 - 1.00e+00 9.99e-01h 1\n", - " 72 1.1635125e+01 9.50e-03 1.83e-02 -2.5 1.11e+02 - 6.77e-01 1.00e+00h 1\n", - " 73 5.8133198e+00 2.27e+00 6.53e-01 -3.7 1.92e+04 - 2.96e-03 1.00e+00f 1\n", - " 74 9.5250848e+00 1.51e+00 5.59e-01 -1.3 1.85e+04 - 7.25e-01 1.00e+00H 1\n", - " 75 9.1728819e+00 1.70e+00 3.24e-01 -1.5 9.08e+04 - 2.36e-01 4.23e-01h 1\n", - " 76 1.0339221e+01 2.08e+00 1.94e-01 -1.5 4.69e+04 - 1.20e-02 8.16e-01H 1\n", - " 77 8.5707351e+00 1.12e+00 2.36e-01 -1.5 1.38e+04 - 1.00e+00 1.00e+00f 1\n", - " 78 8.1422170e+00 1.44e+00 2.34e-01 -1.6 1.60e+04 - 9.64e-01 1.64e-01h 1\n", - " 79 1.0895138e+01 7.36e-01 2.45e-01 -1.7 5.11e+03 - 4.79e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.1278140e+01 2.70e-01 1.07e-01 -1.8 4.64e+03 - 1.00e+00 7.05e-01h 1\n", - " 81 1.1192884e+01 1.34e-01 7.93e-02 -1.8 3.41e+03 - 1.00e+00 1.00e+00f 1\n", - " 82 8.2862098e+00 9.40e-01 1.17e-01 -7.6 7.32e+03 - 3.46e-01 1.00e+00f 1\n", - " 83 1.1230963e+01 4.59e-02 2.74e+00 -4.0 2.92e+00 - 1.00e+00 1.00e+00h 1\n", - " 84 1.1291440e+01 1.16e-05 5.36e-03 -5.8 8.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 85 1.1291448e+01 2.43e-07 7.92e-05 -7.9 1.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 86 1.1291446e+01 5.40e-06 1.52e-03 -11.0 2.04e-02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.1291444e+01 5.21e-06 1.40e-03 -11.0 4.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 88 1.1291442e+01 1.43e-05 1.17e-03 -11.0 2.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 89 1.1291445e+01 1.61e-06 2.18e-03 -11.0 2.85e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.1291442e+01 4.55e-06 1.93e-03 -11.0 5.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 91 1.1291446e+01 2.53e-06 1.35e-03 -11.0 3.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 92 1.1291442e+01 2.58e-06 1.58e-03 -11.0 1.98e-02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.1291445e+01 2.59e-06 3.47e-03 -11.0 3.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 94 1.1290860e+01 2.06e-04 1.39e-02 -11.0 3.23e+00 - 1.00e+00 1.00e+00h 1\n", - " 95 1.1289650e+01 7.53e-04 2.49e-02 -11.0 5.74e+00 - 1.00e+00 1.00e+00h 1\n", - " 96 1.1291227e+01 2.05e-04 3.42e-03 -11.0 4.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 97 1.1284104e+01 8.81e-03 3.90e-03 -11.0 6.61e+01 - 1.00e+00 1.00e+00h 1\n", - " 98 1.1281599e+01 1.31e-02 1.91e-03 -11.0 5.13e+01 - 1.00e+00 1.00e+00h 1\n", - " 99 1.1063761e+01 2.75e-01 1.53e-02 -11.0 1.63e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.1281384e+01 1.13e-02 1.20e-02 -11.0 3.52e+02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.1281384277578443e+01 1.1281384277578443e+01\n", - "Dual infeasibility......: 1.2021316222307454e-02 1.2021316222307454e-02\n", - "Constraint violation....: 1.1252990312421218e-02 1.1252990312421218e-02\n", - "Complementarity.........: 1.2386632124267694e-11 1.2386632124267694e-11\n", - "Overall NLP error.......: 1.2021316222307454e-02 1.2021316222307454e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 108\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 108\n", - "Number of inequality constraint evaluations = 108\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.422\n", - "Total CPU secs in NLP function evaluations = 135.095\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 507.00us ( 4.69us) 498.55us ( 4.62us) 108\n", - " nlp_g | 4.89 s ( 45.24ms) 4.66 s ( 43.18ms) 108\n", - " nlp_grad | 1.37 s ( 1.37 s) 1.31 s ( 1.31 s) 1\n", - " nlp_grad_f | 354.00us ( 3.47us) 349.90us ( 3.43us) 102\n", - " nlp_jac_g | 133.17 s ( 1.31 s) 127.23 s ( 1.25 s) 102\n", - " total | 139.56 s (139.56 s) 133.34 s (133.34 s) 1\n", - "Timestamp 13200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 8.32e+02 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9798549e+01 1.34e+01 8.32e+02 -1.5 8.32e+02 - 9.90e-01 1.00e+00f 1\n", - " 2 8.4410014e+00 4.71e+00 9.27e+00 0.4 1.34e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 7.8435306e+00 1.20e+00 6.49e-01 -1.6 7.55e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 8.6855317e+00 2.35e-03 8.21e-02 -3.4 1.69e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 8.6866216e+00 2.02e-07 1.33e-04 -5.3 2.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 8.6866209e+00 7.90e-07 3.59e-03 -11.0 3.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 8.6865008e+00 8.86e-05 2.20e-02 -11.0 3.96e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 8.6865857e+00 1.50e-05 9.26e-04 -11.0 1.63e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 8.6866105e+00 1.86e-05 9.58e-04 -11.0 7.00e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 8.6865391e+00 7.68e-05 1.63e-03 -11.0 4.84e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 8.6862533e+00 1.70e-04 3.97e-03 -11.0 1.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 8.6844412e+00 1.91e-03 1.33e-02 -11.0 6.98e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 8.6857193e+00 5.01e-04 1.01e-03 -11.0 3.56e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 8.6843172e+00 1.19e-03 8.82e-04 -11.0 2.60e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 8.6865909e+00 1.12e-04 1.06e-03 -11.0 7.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 8.6868543e+00 4.83e-06 1.66e-03 -11.0 1.01e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 8.6868367e+00 1.23e-05 2.75e-03 -11.0 5.09e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 8.6868339e+00 2.08e-05 9.44e-04 -11.0 2.13e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 8.6867896e+00 6.47e-05 3.07e-03 -11.0 8.05e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.6839199e+00 5.25e-03 9.94e-03 -11.0 5.31e+01 - 1.00e+00 1.00e+00h 1\n", - " 21 8.6805851e+00 3.07e-03 6.41e-03 -11.0 7.15e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 8.6746046e+00 1.08e-02 1.49e-03 -11.0 7.47e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 8.6872029e+00 1.24e-04 1.00e-03 -11.0 1.03e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 8.6869423e+00 4.13e-04 1.94e-03 -11.0 1.68e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 8.6700969e+00 8.85e-03 3.30e-03 -11.0 6.16e+01 - 1.00e+00 1.00e+00h 1\n", - " 26 8.6869613e+00 2.16e-06 1.38e-02 -11.0 1.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 27 8.6869630e+00 4.35e-07 3.72e-05 -11.0 2.46e-03 - 1.00e+00 1.00e+00h 1\n", - " 28 8.6869624e+00 6.52e-07 3.10e-03 -11.0 6.44e-03 - 1.00e+00 1.00e+00h 1\n", - " 29 8.6869629e+00 2.32e-07 6.01e-05 -11.0 2.70e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.6869630e+00 1.21e-07 1.61e-04 -11.0 2.19e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 8.6869596e+00 4.58e-06 3.63e-03 -11.0 1.23e-02 - 1.00e+00 1.00e+00h 1\n", - " 32 8.6869608e+00 1.39e-06 3.10e-03 -11.0 1.25e-02 - 1.00e+00 5.00e-01h 2\n", - " 33 8.6869640e+00 5.28e-10 9.41e-05 -11.0 1.26e-02 - 1.00e+00 1.00e+00H 1\n", - " 34 8.6869529e+00 7.35e-06 1.64e-02 -11.0 3.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 35 8.6869596e+00 3.77e-06 3.83e-03 -11.0 4.57e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 8.6869161e+00 3.11e-05 3.70e-03 -11.0 4.57e-01 - 1.00e+00 1.00e+00h 1\n", - " 37 8.6869386e+00 2.75e-05 1.91e-03 -11.0 2.06e-01 - 1.00e+00 5.00e-01h 2\n", - " 38 8.6869714e+00 2.44e-06 1.20e-03 -11.0 1.54e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 8.6867793e+00 2.02e-04 2.67e-03 -11.0 9.36e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.6868814e+00 9.86e-05 2.52e-03 -11.0 5.22e-02 - 1.00e+00 5.00e-01h 2\n", - " 41 8.6868518e+00 4.07e-05 2.05e-03 -11.0 1.23e+00 - 1.00e+00 1.00e+00h 1\n", - " 42 8.6865276e+00 3.08e-04 2.49e-03 -11.0 1.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 43 8.6867365e+00 1.53e-04 2.60e-03 -11.0 4.49e-01 - 1.00e+00 5.00e-01h 2\n", - " 44 8.6869094e+00 5.22e-05 9.83e-04 -11.0 1.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 45 8.6869809e+00 4.30e-09 1.06e-04 -11.0 5.82e-01 - 1.00e+00 1.00e+00H 1\n", - " 46 8.6869797e+00 5.42e-09 1.46e-04 -11.0 3.03e-01 - 1.00e+00 1.00e+00H 1\n", - " 47 8.6869233e+00 2.67e-05 1.25e-03 -11.0 1.58e-01 - 1.00e+00 1.00e+00h 1\n", - " 48 8.6869595e+00 8.69e-06 6.49e-04 -11.0 4.57e-02 - 1.00e+00 1.00e+00h 1\n", - " 49 8.6869856e+00 1.61e-11 2.59e-05 -11.0 4.53e-01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.6869617e+00 3.26e-05 1.09e-03 -11.0 3.51e-01 - 1.00e+00 1.00e+00f 1\n", - " 51 8.6869510e+00 7.71e-05 9.61e-04 -11.0 9.58e-01 - 1.00e+00 1.00e+00h 1\n", - " 52 8.6869900e+00 7.13e-06 8.00e-04 -11.0 3.25e-01 - 1.00e+00 1.00e+00h 1\n", - " 53 8.6869897e+00 9.26e-06 1.20e-03 -11.0 1.88e-01 - 1.00e+00 1.00e+00h 1\n", - " 54 8.6869420e+00 6.26e-05 2.21e-03 -11.0 2.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 55 8.6868565e+00 1.56e-04 2.45e-03 -11.0 4.62e-01 - 1.00e+00 1.00e+00h 1\n", - " 56 8.6870141e+00 2.85e-08 1.95e-04 -11.0 1.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 8.6870139e+00 9.82e-08 3.44e-05 -11.0 2.93e-04 - 1.00e+00 1.00e+00h 1\n", - " 58 8.6870140e+00 1.73e-09 2.53e-04 -11.0 6.45e-05 - 1.00e+00 1.00e+00h 1\n", - " 59 8.6870140e+00 2.64e-08 2.37e-04 -11.0 5.57e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.6870140e+00 8.52e-09 1.01e-04 -11.0 2.71e-05 - 1.00e+00 1.00e+00h 1\n", - " 61 8.6870140e+00 1.43e-09 6.49e-05 -11.0 8.84e-06 - 1.00e+00 1.00e+00h 1\n", - " 62 8.6870140e+00 5.18e-10 9.77e-05 -11.0 6.64e-06 - 1.00e+00 1.00e+00h 1\n", - " 63 8.6870140e+00 5.95e-11 8.32e-05 -11.0 1.20e-05 - 1.00e+00 1.00e+00H 1\n", - " 64 8.6870098e+00 1.53e-06 2.01e-02 -11.0 2.28e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 8.6870045e+00 5.31e-06 2.74e-02 -11.0 3.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 8.6870137e+00 4.52e-07 1.96e-03 -11.0 6.74e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 8.6870138e+00 2.84e-07 8.83e-05 -11.0 4.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 68 8.6870133e+00 7.45e-07 1.39e-03 -11.0 2.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 8.6870137e+00 3.66e-07 1.53e-05 -11.0 4.84e-04 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.6870139e+00 2.74e-07 5.38e-05 -11.0 1.46e-04 - 1.00e+00 2.50e-01h 3\n", - " 71 8.6870139e+00 2.70e-07 9.12e-05 -11.0 7.97e-05 - 1.00e+00 1.56e-02h 7\n", - " 72 8.6870139e+00 2.70e-07 1.08e-04 -11.0 2.48e-05 - 1.00e+00 2.44e-04h 13\n", - " 73 8.6870139e+00 2.70e-07 5.39e-05 -11.0 3.16e-06 - 1.00e+00 6.10e-05h 15\n", - " 74 8.6870143e+00 5.96e-10 1.06e-04 -11.0 9.40e-06 - 1.00e+00 1.00e+00h 1\n", - " 75 8.6870142e+00 7.62e-09 1.41e-04 -11.0 3.34e-05 - 1.00e+00 1.00e+00h 1\n", - " 76 8.6870142e+00 6.61e-08 1.45e-04 -11.0 2.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 8.6870105e+00 1.63e-06 3.23e-03 -11.0 8.54e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 8.6870136e+00 2.37e-07 1.28e-04 -11.0 2.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 8.6870135e+00 3.65e-07 7.24e-05 -11.0 1.62e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.6870139e+00 8.89e-08 7.31e-05 -11.0 5.95e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 8.6870141e+00 9.92e-09 1.28e-04 -11.0 3.87e-05 - 1.00e+00 1.00e+00h 1\n", - " 82 8.6869300e+00 1.45e-04 5.65e-02 -11.0 4.21e-01 - 1.00e+00 1.00e+00h 1\n", - " 83 8.6850789e+00 2.09e-03 4.76e-03 -11.0 1.29e+01 - 1.00e+00 1.00e+00h 1\n", - " 84 8.6840653e+00 2.90e-03 2.33e-03 -11.0 1.02e+01 - 1.00e+00 1.00e+00h 1\n", - " 85 8.6852605e+00 1.19e-03 3.46e-03 -11.0 1.12e+01 - 1.00e+00 1.00e+00h 1\n", - " 86 8.6831167e+00 3.62e-03 5.10e-03 -11.0 3.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 87 8.6540679e+00 1.69e-02 7.66e-03 -11.0 9.42e+01 - 1.00e+00 1.00e+00h 1\n", - " 88 8.6841563e+00 3.68e-04 3.99e-03 -11.0 3.27e+00 - 1.00e+00 1.00e+00h 1\n", - " 89 8.6763516e+00 7.57e-03 1.94e-03 -11.0 4.96e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.6735638e+00 2.56e-02 4.85e-03 -11.0 6.11e+01 - 1.00e+00 1.00e+00h 1\n", - " 91 8.6861931e+00 1.51e-06 2.55e-02 -11.0 2.80e-02 - 1.00e+00 1.00e+00h 1\n", - " 92 8.6861946e+00 8.78e-08 6.94e-05 -11.0 5.66e-04 - 1.00e+00 1.00e+00h 1\n", - " 93 8.6861916e+00 1.46e-06 2.14e-03 -11.0 1.52e-02 - 1.00e+00 1.00e+00h 1\n", - " 94 8.6861917e+00 1.83e-06 1.56e-03 -11.0 7.29e-03 - 1.00e+00 1.00e+00h 1\n", - " 95 8.6861941e+00 3.16e-07 7.15e-05 -11.0 2.52e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 8.6861938e+00 5.54e-07 1.32e-03 -11.0 4.70e-03 - 1.00e+00 1.00e+00h 1\n", - " 97 8.6861935e+00 2.32e-06 8.76e-04 -11.0 7.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 98 8.6861831e+00 8.58e-06 5.19e-03 -11.0 2.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 99 8.6861922e+00 8.60e-07 2.48e-03 -11.0 5.28e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.6861930e+00 3.21e-07 8.06e-05 -11.0 4.04e-03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.6861930389438573e+00 8.6861930389438573e+00\n", - "Dual infeasibility......: 8.0559161867340846e-05 8.0559161867340846e-05\n", - "Constraint violation....: 3.2081532097549825e-07 3.2081532097549825e-07\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 8.0559161867340846e-05 8.0559161867340846e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 146\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 146\n", - "Number of inequality constraint evaluations = 146\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.433\n", - "Total CPU secs in NLP function evaluations = 137.955\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 658.00us ( 4.51us) 659.62us ( 4.52us) 146\n", - " nlp_g | 6.62 s ( 45.36ms) 6.32 s ( 43.30ms) 146\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 372.00us ( 3.65us) 375.90us ( 3.69us) 102\n", - " nlp_jac_g | 134.13 s ( 1.31 s) 128.24 s ( 1.26 s) 102\n", - " total | 142.21 s (142.21 s) 135.96 s (135.96 s) 1\n", - "Timestamp 13500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.80e+01 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9865765e+01 1.37e+01 3.80e+01 -1.5 3.80e+01 - 9.90e-01 1.00e+00f 1\n", - " 2 8.6947803e+00 4.87e+00 9.11e+00 0.4 1.37e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 8.5668399e+00 1.29e+00 5.00e-01 -1.6 7.89e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 9.4782162e+00 2.40e-03 8.53e-02 -3.4 1.81e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 9.4793433e+00 2.40e-07 3.40e-05 -5.3 2.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 9.4793436e+00 6.07e-08 1.75e-04 -11.0 7.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 9.4793434e+00 2.35e-07 8.55e-05 -11.0 1.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 9.4793436e+00 1.76e-08 2.98e-05 -11.0 9.66e-05 - 1.00e+00 1.00e+00h 1\n", - " 9 9.4793436e+00 6.10e-11 3.90e-05 -11.0 2.24e-04 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 9.4793434e+00 2.75e-07 8.87e-05 -11.0 2.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 9.4793435e+00 8.93e-08 1.02e-04 -11.0 1.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 9.4793401e+00 2.55e-06 8.17e-03 -11.0 9.52e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 9.4793437e+00 1.90e-08 1.09e-04 -11.0 1.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 9.4793433e+00 1.18e-06 3.03e-03 -11.0 1.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 9.4793371e+00 9.97e-06 6.14e-03 -11.0 3.30e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 9.4793117e+00 3.55e-05 1.92e-03 -11.0 2.57e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 9.4792634e+00 5.53e-05 5.16e-03 -11.0 1.51e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 9.4793053e+00 3.46e-05 3.45e-03 -11.0 1.74e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 9.4792562e+00 8.30e-05 3.68e-03 -11.0 2.80e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 9.4793336e+00 1.06e-05 2.91e-03 -11.0 1.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 9.4793315e+00 3.37e-05 1.18e-03 -11.0 1.24e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 9.4771536e+00 7.15e-03 1.72e-03 -11.0 8.97e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 9.4318082e+00 6.48e-02 7.11e-03 -11.0 4.25e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 9.4749911e+00 1.49e-02 2.09e-03 -11.0 1.67e+02 - 1.00e+00 1.00e+00h 1\n", - " 25 9.4802574e+00 3.15e-03 2.10e-03 -11.0 6.88e+01 - 1.00e+00 1.00e+00h 1\n", - " 26 9.3713708e+00 1.62e-01 5.17e-03 -11.0 8.08e+02 - 1.00e+00 1.00e+00f 1\n", - " 27 9.4853663e+00 4.55e-03 7.96e-03 -11.0 1.71e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 9.4463952e+00 2.92e-02 8.16e-03 -11.0 3.20e+02 - 1.00e+00 1.00e+00h 1\n", - " 29 8.3494296e+00 1.14e+00 1.32e-01 -11.0 6.14e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.6950179e+00 7.45e-01 1.71e-01 -11.0 1.61e+04 - 1.00e+00 1.00e+00h 1\n", - " 31 8.4450436e+00 1.87e+00 1.35e-01 -9.0 7.51e+05 - 1.00e+00 1.23e-02f 1\n", - " 32 8.4426543e+00 1.87e+00 1.35e-01 -9.2 1.86e+06 - 3.36e-02 5.02e-05h 1\n", - " 33 9.5915567e+00 1.64e-01 1.48e-01 -9.2 3.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 34 9.5548998e+00 1.29e-01 1.81e-01 -9.2 1.24e+03 - 1.00e+00 1.00e+00h 1\n", - " 35 9.5370671e+00 2.12e-01 1.88e-01 -9.2 1.07e+03 - 1.00e+00 3.75e-01h 1\n", - " 36 9.4479889e+00 3.66e-01 3.57e-02 -9.2 1.28e+03 - 5.51e-01 1.00e+00h 1\n", - " 37 9.2683843e+00 5.23e-01 6.47e-02 -9.2 4.06e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 9.5327467e+00 2.84e-01 6.02e-02 -9.2 3.23e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 8.4283786e+00 6.28e-01 1.39e-01 -9.2 1.04e+04 - 1.00e+00 5.11e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 9.1397981e+00 6.96e-01 1.05e-01 -7.2 4.60e+03 - 5.25e-01 1.00e+00h 1\n", - " 41 8.0021918e+00 4.24e+00 7.27e-01 -5.5 1.29e+04 - 4.75e-03 1.00e+00f 1\n", - " 42 8.0002695e+00 4.24e+00 7.27e-01 -5.4 9.55e+04 - 1.00e+00 8.49e-05h 1\n", - " 43 7.3155736e+00 3.39e+00 5.87e-01 -3.4 3.62e+04 - 7.84e-01 9.87e-02f 1\n", - " 44 8.0869536e+00 7.54e-01 8.68e-01 -2.4 3.87e+04 - 8.25e-03 1.00e+00H 1\n", - " 45 7.6750995e+00 5.16e+00 1.05e+00 -2.3 1.72e+04 - 1.00e+00 7.67e-01f 1\n", - " 46 7.4765465e+00 5.11e+00 1.04e+00 -2.3 6.26e+04 - 1.62e-01 1.21e-02h 1\n", - " 47 7.1877628e+00 5.60e+00 1.77e-01 -2.3 1.17e+04 - 6.99e-01 1.00e+00f 1\n", - " 48 7.2251846e+00 3.63e+00 2.65e-01 -2.8 1.22e+04 - 7.32e-01 1.00e+00h 1\n", - " 49 6.8658458e+00 3.70e+00 2.08e-01 -2.6 2.06e+04 - 9.91e-01 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.7391602e+00 6.28e-01 3.67e-01 -3.2 8.64e+03 - 1.00e+00 1.00e+00H 1\n", - " 51 6.0522305e+00 2.74e+00 3.76e-01 -2.0 1.30e+05 - 1.00e+00 1.92e-01f 1\n", - " 52r 6.0522305e+00 2.74e+00 9.99e+02 0.4 0.00e+00 - 0.00e+00 4.67e-07R 22\n", - " 53r 6.4980025e+00 2.47e+00 9.89e+02 2.3 2.50e+02 - 7.91e-01 9.25e-03f 1\n", - " 54r 6.6043849e+00 2.42e+00 3.75e+02 -4.5 5.63e+01 - 9.88e-01 2.01e-03f 1\n", - " 55 5.2419656e+00 2.68e+00 1.31e-01 -1.0 9.86e+03 - 6.69e-01 1.00e+00f 1\n", - " 56 5.7660157e+00 3.78e+00 7.94e-02 -2.8 4.38e+03 - 8.88e-01 8.88e-01s 22\n", - " 57 5.7592509e+00 3.80e+00 7.48e-02 -2.2 3.42e+04 - 1.00e+00 4.48e-02h 2\n", - " 58 5.7597347e+00 3.79e+00 7.47e-02 -2.2 2.62e+04 - 7.16e-01 2.47e-03h 8\n", - " 59 7.4332473e+00 1.95e+00 1.44e-01 -2.2 1.94e+04 - 1.64e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.6056431e+00 2.04e+00 2.91e-01 -2.2 2.94e+04 - 1.00e+00 1.00e+00H 1\n", - " 61 6.5935986e+00 2.66e+00 1.43e-01 -2.2 1.59e+04 - 1.00e+00 5.00e-01f 2\n", - " 62 6.5043079e+00 3.82e+00 5.00e-01 -1.9 3.53e+05 - 9.35e-01 8.05e-02F 1\n", - " 63 8.3349442e+00 1.25e+00 3.02e-01 -2.1 4.94e+03 - 7.31e-02 1.00e+00h 1\n", - " 64 9.4176159e+00 2.68e-01 2.35e-01 -2.1 4.99e+04 - 2.46e-01 6.52e-01H 1\n", - " 65 9.3738098e+00 2.91e-01 2.34e-01 -2.1 5.36e+05 - 1.41e-02 2.31e-03f 1\n", - " 66 9.1397271e+00 7.88e-01 2.15e-01 -2.1 3.75e+05 - 7.99e-03 1.45e-01f 1\n", - " 67 9.1063209e+00 8.63e-01 2.13e-01 -2.1 3.34e+04 - 1.00e+00 1.33e-02h 5\n", - " 68 9.1226708e+00 8.36e-01 2.16e-01 -2.1 4.03e+03 - 1.86e-01 1.00e+00h 1\n", - " 69 7.9079331e+00 1.28e+00 1.87e-01 -2.1 6.55e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.0051664e+01 1.08e-01 1.38e-01 -1.4 2.44e+03 - 1.00e+00 1.00e+00h 1\n", - " 71 9.4758436e+00 5.21e-01 1.54e-01 -1.6 1.66e+03 - 1.00e+00 1.00e+00f 1\n", - " 72 9.9056171e+00 1.97e-01 8.87e-02 -1.6 1.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 9.6285892e+00 2.72e-01 1.87e-02 -2.3 1.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 74 9.4112238e+00 3.80e-01 1.43e-02 -2.3 3.47e+04 - 2.93e-02 4.79e-02f 1\n", - " 75 1.0274121e+01 1.91e-01 7.73e-02 -2.3 4.10e+04 - 1.00e+00 1.00e+00H 1\n", - " 76 7.7127941e+00 1.43e+00 1.58e-01 -2.3 1.21e+05 - 2.26e-01 2.29e-01f 1\n", - " 77 1.0426778e+01 6.33e-02 9.39e-02 -3.2 4.27e+03 - 1.00e+00 1.00e+00H 1\n", - " 78 1.0311304e+01 6.67e-02 8.64e-02 -2.9 7.07e+03 - 1.00e+00 1.64e-01f 1\n", - " 79 1.0303017e+01 3.70e-02 2.55e-03 -2.9 1.41e+02 - 3.20e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.0360648e+01 2.63e-04 8.22e-03 -2.9 5.20e+02 - 4.80e-01 1.00e+00H 1\n", - " 81 1.0349654e+01 1.14e-02 6.01e-03 -4.4 2.20e+03 - 6.96e-01 1.69e-01f 1\n", - " 82 9.7972241e+00 4.46e-01 3.72e-02 -4.4 9.65e+02 - 1.00e+00 1.00e+00f 1\n", - " 83 9.5716957e+00 5.31e-01 5.64e-02 -4.4 3.75e+03 - 5.03e-01 1.00e+00h 1\n", - " 84 5.6672590e+00 2.51e+00 7.45e-01 -4.4 4.02e+05 - 7.77e-02 7.93e-02f 1\n", - " 85 5.6654014e+00 2.51e+00 7.43e-01 -4.4 7.80e+04 - 1.00e+00 4.86e-04h 1\n", - " 86 9.1835777e+00 5.48e-01 3.46e-01 -4.4 2.61e+02 - 1.00e+00 9.28e-01h 1\n", - " 87 9.8102877e+00 9.18e-02 2.33e-02 -4.4 5.56e+02 - 1.00e+00 8.83e-01h 1\n", - " 88 1.0018084e+01 4.84e-02 3.92e-02 -4.4 2.36e+02 - 7.00e-01 1.00e+00h 1\n", - " 89 1.0134232e+01 2.60e-04 8.91e-03 -4.4 1.65e+02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.0102526e+01 1.32e-02 2.44e-03 -4.4 1.89e+02 - 4.73e-02 2.19e-01f 1\n", - " 91 9.7765845e+00 1.59e-01 7.02e-02 -4.4 7.51e+02 - 1.00e+00 1.00e+00f 1\n", - " 92 1.0120819e+01 2.72e-02 5.54e-03 -4.4 2.67e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 9.3996223e+00 2.77e-01 2.82e-02 -4.4 7.40e+02 - 5.80e-01 1.00e+00f 1\n", - " 94 9.6192918e+00 1.84e-01 1.15e-02 -4.4 4.59e+02 - 1.00e+00 3.42e-01h 1\n", - " 95 1.0117713e+01 1.61e-02 2.39e-02 -4.4 4.62e+01 - 9.08e-01 1.00e+00h 1\n", - " 96 1.0084144e+01 4.09e-03 6.38e-03 -4.4 1.85e+03 - 1.00e+00 1.00e+00F 1\n", - " 97 1.0048851e+01 5.00e-02 1.33e-02 -4.4 5.53e+02 - 1.00e+00 1.00e+00h 1\n", - " 98 9.7961069e+00 1.41e-01 1.67e-02 -4.4 5.12e+02 - 1.00e+00 1.00e+00h 1\n", - " 99 9.9931759e+00 5.50e-02 6.68e-03 -4.4 5.92e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.0101919e+01 3.16e-03 1.12e-02 -4.4 1.20e+03 - 5.69e-01 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.0101919143268807e+01 1.0101919143268807e+01\n", - "Dual infeasibility......: 1.1198145880060184e-02 1.1198145880060184e-02\n", - "Constraint violation....: 3.1561011719993814e-03 3.1561011719993814e-03\n", - "Complementarity.........: 4.1095663680282286e-05 4.1095663680282286e-05\n", - "Overall NLP error.......: 1.1198145880060184e-02 1.1198145880060184e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 183\n", - "Number of objective gradient evaluations = 100\n", - "Number of equality constraint evaluations = 183\n", - "Number of inequality constraint evaluations = 183\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.410\n", - "Total CPU secs in NLP function evaluations = 139.208\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 824.00us ( 4.50us) 825.75us ( 4.51us) 183\n", - " nlp_g | 8.19 s ( 44.76ms) 7.82 s ( 42.71ms) 183\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 350.00us ( 3.47us) 340.32us ( 3.37us) 101\n", - " nlp_jac_g | 133.93 s ( 1.30 s) 127.89 s ( 1.24 s) 103\n", - " total | 143.61 s (143.61 s) 137.13 s (137.13 s) 1\n", - "Timestamp 13800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.67e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9860171e+01 1.48e+01 2.67e+04 -1.5 2.67e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.2284239e+01 5.22e+00 1.52e+01 1.1 1.01e+03 - 1.00e+00 1.00e+00f 1\n", - " 3 1.7845305e+01 2.17e+00 8.50e-01 -1.0 2.15e+02 - 9.98e-01 1.00e+00h 1\n", - " 4 1.9330109e+01 2.91e-04 9.93e-02 -2.9 2.64e+00 - 9.94e-01 1.00e+00h 1\n", - " 5 1.9328561e+01 4.65e-04 3.49e-02 -4.6 2.30e+00 - 9.99e-01 1.00e+00h 1\n", - " 6 1.9327060e+01 6.60e-04 2.43e-03 -6.4 5.94e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 1.9328625e+01 3.66e-04 1.58e-03 -8.5 1.45e+00 - 1.00e+00 1.00e+00h 1\n", - " 8 1.9325366e+01 3.99e-03 3.01e-03 -11.0 1.19e+01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.9326370e+01 9.15e-04 1.40e-03 -11.0 5.46e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.9301383e+01 1.36e-02 5.83e-03 -11.0 6.64e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.9328532e+01 9.62e-06 1.19e-03 -11.0 3.60e+01 - 1.00e+00 1.00e+00H 1\n", - " 12 1.9314818e+01 8.91e-03 1.02e-03 -11.0 2.29e+01 - 1.00e+00 1.00e+00f 1\n", - " 13 1.9286952e+01 1.54e-02 3.60e-03 -11.0 4.48e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.9316793e+01 5.33e-03 1.91e-03 -11.0 2.04e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.9322147e+01 2.15e-03 1.69e-03 -11.0 1.93e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.9321140e+01 4.89e-03 2.37e-03 -11.0 2.74e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.9323427e+01 1.65e-03 1.31e-03 -11.0 7.76e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 1.9325010e+01 1.15e-03 1.92e-03 -11.0 1.43e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.9318890e+01 2.37e-02 2.97e-03 -11.0 5.57e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.9324618e+01 9.59e-03 1.16e-03 -11.0 2.88e+01 - 1.00e+00 1.00e+00h 1\n", - " 21 1.9323531e+01 4.74e-03 2.71e-03 -11.0 8.42e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 1.9325921e+01 1.51e-03 1.53e-03 -11.0 9.63e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.9303382e+01 2.10e-02 2.73e-03 -11.0 3.29e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 1.9324632e+01 2.02e-03 1.89e-03 -11.0 1.98e+02 - 1.00e+00 1.00e+00h 1\n", - " 25 1.9232073e+01 1.21e-01 4.12e-03 -11.0 4.32e+02 - 1.00e+00 1.00e+00f 1\n", - " 26 1.9324898e+01 1.35e-03 3.01e-03 -11.0 6.82e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 1.9171624e+01 1.12e-01 8.23e-03 -11.0 5.81e+02 - 1.00e+00 1.00e+00f 1\n", - " 28 1.9295805e+01 4.45e-02 2.17e-03 -11.0 1.81e+02 - 1.00e+00 1.00e+00h 1\n", - " 29 1.9299949e+01 3.15e-02 2.91e-03 -11.0 4.36e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.9196271e+01 5.46e-02 2.74e-03 -11.0 3.00e+03 - 1.00e+00 1.00e+00h 1\n", - " 31 1.7544525e+01 1.30e+00 4.41e-02 -11.0 9.93e+03 - 1.00e+00 1.00e+00f 1\n", - " 32 1.4317669e+01 2.75e+00 3.06e-01 -11.0 1.81e+04 - 1.00e+00 1.00e+00f 1\n", - " 33 1.3992027e+01 2.94e+00 3.13e-01 -9.1 6.42e+04 - 1.00e+00 5.41e-02h 1\n", - " 34 1.8153363e+01 4.83e-01 2.89e-01 -9.2 1.29e+04 - 1.00e+00 1.00e+00h 1\n", - " 35 1.7971621e+01 1.88e-01 1.70e-02 -8.1 1.03e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 1.8129362e+01 7.06e-02 4.34e-02 -9.1 1.69e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 1.7785257e+01 4.00e-01 1.98e-02 -9.2 6.53e+04 - 1.00e+00 3.83e-01f 1\n", - " 38 1.7802676e+01 3.87e-01 1.78e-02 -7.2 4.49e+03 - 1.00e+00 5.57e-02h 1\n", - " 39 1.7709164e+01 2.86e+00 7.46e-02 -5.3 1.92e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.1363196e+01 4.87e+00 7.43e-01 -4.8 8.93e+04 - 1.66e-01 4.90e-01f 1\n", - " 41 1.7874601e+01 3.12e+00 3.85e-01 -4.3 1.41e+04 - 1.00e+00 1.00e+00h 1\n", - " 42 1.2325519e+01 4.46e+00 2.35e-01 -1.2 1.05e+04 - 6.64e-01 1.00e+00f 1\n", - " 43 1.2245523e+01 4.15e+00 1.81e-01 -0.8 1.86e+05 - 6.07e-01 1.18e-01h 1\n", - " 44 1.6548809e+01 5.91e-01 1.71e-01 -1.7 8.80e+03 - 7.19e-01 9.96e-01h 1\n", - " 45 1.8098607e+01 3.73e-01 7.95e-02 -3.0 2.72e+03 - 1.00e+00 1.00e+00h 1\n", - " 46 1.8041240e+01 3.09e-01 6.41e-02 -3.1 7.09e+02 - 1.00e+00 1.58e-01h 1\n", - " 47 1.8255165e+01 8.90e-03 1.11e-02 -3.1 1.20e+02 - 7.06e-01 1.00e+00h 1\n", - " 48 1.8125872e+01 4.46e-01 4.26e-02 -4.0 9.33e+03 - 9.44e-01 1.00e+00h 1\n", - " 49 1.8136353e+01 4.09e-01 3.30e-02 -3.8 4.93e+03 - 1.00e+00 1.73e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.8219249e+01 9.18e-02 7.04e-03 -3.8 2.56e+03 - 9.65e-01 1.00e+00h 1\n", - " 51 1.7505714e+01 3.59e-01 2.01e-02 -9.8 1.04e+04 - 3.81e-04 7.35e-01f 1\n", - " 52 1.8184801e+01 9.28e-02 1.44e-02 -3.4 4.71e+03 - 1.00e+00 9.39e-01H 1\n", - " 53 1.8026030e+01 2.27e-01 8.59e-03 -3.0 2.49e+03 - 1.00e+00 3.27e-01h 1\n", - " 54 1.8250108e+01 2.08e-02 7.98e-03 -2.9 2.68e+02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.6541313e+01 3.82e+00 1.78e-01 -2.6 5.92e+03 - 1.18e-01 1.00e+00f 1\n", - " 56 1.8347846e+01 1.34e-01 1.66e-01 -3.6 8.54e+02 - 1.00e+00 1.00e+00h 1\n", - " 57 1.6819215e+01 2.82e+00 3.62e-02 -3.8 1.16e+04 - 3.15e-01 1.00e+00f 1\n", - " 58 1.6682772e+01 2.74e+00 2.85e-02 -3.8 1.23e+05 - 7.95e-04 2.85e-02h 1\n", - " 59 1.6849027e+01 2.68e+00 4.23e-02 -3.8 1.61e+04 - 1.00e+00 2.20e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.8275287e+01 6.12e-02 8.20e-02 -3.8 3.26e+03 - 6.39e-01 1.00e+00h 1\n", - " 61 1.7986331e+01 3.62e-01 8.83e-02 -3.8 6.73e+03 - 1.00e+00 4.84e-01f 1\n", - " 62 1.5623120e+01 4.46e+00 2.44e-01 -3.8 4.71e+04 - 4.06e-02 1.00e+00f 1\n", - " 63 1.4975887e+01 4.98e+00 2.21e-01 -3.8 3.14e+04 - 1.00e+00 1.00e+00h 1\n", - " 64 1.4775758e+01 4.25e+00 2.09e-01 -3.8 6.44e+04 - 2.39e-01 1.94e-01h 1\n", - " 65 1.5660739e+01 1.85e+00 1.10e-01 -3.8 2.88e+04 - 5.87e-04 5.00e-01h 2\n", - " 66 1.4732621e+01 5.29e+00 1.98e-01 -3.5 1.42e+05 - 1.00e+00 3.30e-01f 1\n", - " 67 1.9228649e+01 1.10e+00 2.55e-01 -3.6 7.60e+04 - 6.50e-01 2.48e-01H 1\n", - " 68 1.9094826e+01 1.08e+00 2.38e-01 -3.6 5.97e+03 - 4.29e-03 1.46e-01h 1\n", - " 69 1.8685883e+01 1.37e-01 6.06e-02 -3.6 1.10e+04 - 2.63e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.8319664e+01 1.10e+00 1.05e-01 -3.6 1.71e+05 - 7.98e-02 4.23e-02f 1\n", - " 71 1.6391168e+01 9.48e-01 3.32e-01 -3.6 4.17e+04 - 1.00e+00 1.00e+00f 1\n", - " 72 1.9148381e+01 1.85e-02 2.57e+00 -4.3 2.64e+00 - 1.00e+00 1.00e+00h 1\n", - " 73 1.9161600e+01 3.09e-06 2.19e-03 -4.4 2.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 74 1.9161602e+01 4.35e-07 1.35e-04 -6.5 4.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.9161600e+01 2.24e-06 2.16e-03 -8.6 6.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.9161391e+01 1.06e-04 9.95e-03 -11.0 3.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 77 1.9161523e+01 2.70e-05 9.88e-04 -11.0 1.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 78 1.9161564e+01 2.15e-05 1.75e-03 -11.0 5.24e-02 - 1.00e+00 1.00e+00h 1\n", - " 79 1.9161596e+01 5.58e-06 1.51e-03 -11.0 2.75e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.9161572e+01 2.13e-05 2.10e-03 -11.0 6.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 81 1.9161560e+01 2.04e-05 1.69e-03 -11.0 6.40e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 1.9161587e+01 8.37e-06 1.70e-03 -11.0 3.23e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.9161550e+01 2.28e-05 2.74e-03 -11.0 1.33e-01 - 1.00e+00 1.00e+00h 1\n", - " 84 1.9161385e+01 1.23e-04 3.94e-03 -11.0 2.95e-01 - 1.00e+00 1.00e+00h 1\n", - " 85 1.9113393e+01 2.12e-02 5.66e-03 -9.3 1.13e+03 - 1.00e+00 5.74e-02f 1\n", - " 86 1.9152757e+01 4.53e-03 1.88e-03 -9.4 2.40e+01 - 1.00e+00 1.00e+00h 1\n", - " 87 1.9156508e+01 2.32e-03 2.20e-03 -11.0 1.27e+01 - 1.00e+00 1.00e+00h 1\n", - " 88 1.9162689e+01 5.53e-04 1.44e-03 -9.0 3.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 89 1.9160143e+01 1.34e-03 3.64e-03 -9.1 7.41e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.9161487e+01 5.77e-04 3.62e-03 -9.5 7.64e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 1.9156796e+01 4.66e-03 4.78e-03 -9.6 3.75e+01 - 1.00e+00 1.00e+00h 1\n", - " 92 1.9148081e+01 4.04e-03 4.95e-03 -9.6 5.81e+01 - 5.42e-01 1.00e+00h 1\n", - " 93 1.9140296e+01 5.30e-03 2.38e-03 -11.0 5.30e+01 - 1.00e+00 1.00e+00h 1\n", - " 94 1.9134293e+01 9.04e-03 1.19e-03 -9.0 1.03e+03 - 1.00e+00 3.03e-02h 1\n", - " 95 1.9134946e+01 8.84e-03 1.42e-03 -9.1 2.75e+01 - 1.00e+00 2.62e-02h 1\n", - " 96 1.9135267e+01 8.66e-03 1.35e-03 -9.1 6.18e+01 - 1.00e+00 1.56e-02h 7\n", - "In iteration 96, 1 Slack too small, adjusting variable bound\n", - " 97 1.9146184e+01 4.93e-03 1.74e-03 -9.1 1.84e+00 - 1.00e+00 4.34e-01h 1\n", - " 98 1.9159236e+01 6.87e-04 3.98e-03 -10.6 7.76e+00 - 1.00e+00 1.00e+00h 1\n", - " 99 1.9160101e+01 2.72e-04 3.56e-03 -8.6 1.42e+00 - 9.68e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.9159683e+01 3.23e-04 1.10e-03 -9.7 1.15e+00 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.9159683274561100e+01 1.9159683274561100e+01\n", - "Dual infeasibility......: 1.0968449616542714e-03 1.0968449616542714e-03\n", - "Constraint violation....: 3.2264542241833283e-04 3.2264542241833283e-04\n", - "Complementarity.........: 2.4609543018873994e-10 2.4609543018873994e-10\n", - "Overall NLP error.......: 1.0968449616542714e-03 1.0968449616542714e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 111\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 111\n", - "Number of inequality constraint evaluations = 111\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.402\n", - "Total CPU secs in NLP function evaluations = 134.591\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 510.00us ( 4.59us) 509.84us ( 4.59us) 111\n", - " nlp_g | 4.97 s ( 44.75ms) 4.74 s ( 42.68ms) 111\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 338.00us ( 3.31us) 331.64us ( 3.25us) 102\n", - " nlp_jac_g | 132.39 s ( 1.30 s) 126.41 s ( 1.24 s) 102\n", - " total | 138.83 s (138.83 s) 132.56 s (132.56 s) 1\n", - "Timestamp 14100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.44e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9829806e+01 1.30e+01 1.44e+03 -1.5 1.44e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.3862247e+00 4.44e+00 9.03e+00 0.4 1.30e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 6.6482827e+00 1.08e+00 6.51e-01 -1.6 6.94e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 7.3462851e+00 2.27e-03 8.03e-02 -3.4 1.54e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 7.3472814e+00 3.62e-07 6.51e-05 -5.3 2.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 7.3472819e+00 1.93e-07 2.81e-05 -11.0 4.92e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 7.3472821e+00 1.92e-08 1.57e-04 -11.0 1.65e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 7.3472820e+00 3.91e-08 8.04e-05 -11.0 7.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 7.3472814e+00 1.05e-06 3.47e-03 -11.0 4.50e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 7.3472812e+00 3.51e-07 7.55e-05 -11.0 4.72e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 7.3472808e+00 1.15e-06 1.70e-03 -11.0 5.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 7.3472816e+00 1.16e-09 5.12e-05 -11.0 2.48e-05 - 1.00e+00 1.00e+00h 1\n", - " 13 7.3472816e+00 9.03e-09 5.72e-05 -11.0 7.68e-05 - 1.00e+00 1.00e+00h 1\n", - " 14 7.3472816e+00 3.97e-09 1.13e-04 -11.0 3.36e-05 - 1.00e+00 1.00e+00h 1\n", - " 15 7.3472816e+00 5.21e-09 1.06e-04 -11.0 2.12e-05 - 1.00e+00 1.00e+00h 1\n", - " 16 7.3472816e+00 2.04e-09 1.75e-04 -11.0 1.03e-05 - 1.00e+00 1.00e+00h 1\n", - " 17 7.3472816e+00 5.60e-09 2.64e-05 -11.0 1.52e-05 - 1.00e+00 1.00e+00h 1\n", - " 18 7.3472817e+00 1.48e-09 1.25e-04 -11.0 5.48e-06 - 1.00e+00 1.00e+00h 1\n", - " 19 7.3472816e+00 5.45e-09 8.24e-05 -11.0 3.11e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 7.3472816e+00 6.54e-08 2.15e-04 -11.0 8.58e-04 - 1.00e+00 1.00e+00h 1\n", - " 21 7.3472803e+00 8.79e-07 8.10e-05 -11.0 3.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 7.3472811e+00 3.26e-07 4.22e-05 -11.0 1.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 23 7.3472814e+00 2.01e-07 7.89e-05 -11.0 1.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 24 7.3472816e+00 8.15e-08 4.99e-05 -11.0 6.66e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 7.3472815e+00 6.75e-08 1.62e-04 -11.0 8.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 7.3472799e+00 7.82e-07 3.30e-03 -11.0 3.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 27 7.3472816e+00 3.97e-09 4.62e-05 -11.0 4.02e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 7.3472816e+00 6.07e-09 3.76e-05 -11.0 4.31e-05 - 1.00e+00 1.00e+00h 1\n", - " 29 7.3472817e+00 4.31e-11 1.82e-05 -11.0 3.04e-05 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 7.3472816e+00 1.98e-09 7.28e-05 -11.0 5.12e-05 - 1.00e+00 1.00e+00h 1\n", - " 31 7.3472816e+00 3.49e-08 3.37e-05 -11.0 1.90e-04 - 1.00e+00 1.00e+00h 1\n", - " 32 7.3472816e+00 3.69e-09 3.32e-05 -11.0 1.76e-05 - 1.00e+00 1.00e+00h 1\n", - " 33 7.3472816e+00 1.05e-09 1.62e-04 -11.0 1.89e-05 - 1.00e+00 1.00e+00h 1\n", - " 34 7.3472814e+00 1.18e-07 1.43e-04 -11.0 3.92e-04 - 1.00e+00 1.00e+00h 1\n", - " 35 7.3472815e+00 5.23e-08 7.47e-05 -11.0 1.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 36 7.3472816e+00 2.56e-10 5.34e-05 -11.0 2.97e-04 - 1.00e+00 1.00e+00H 1\n", - " 37 7.3472816e+00 1.37e-08 6.87e-05 -11.0 1.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 7.3472813e+00 1.85e-07 2.18e-04 -11.0 2.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 39 7.3472809e+00 8.76e-07 4.81e-03 -11.0 2.42e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 7.3472802e+00 1.11e-06 3.21e-03 -11.0 9.07e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 7.3472785e+00 2.08e-06 1.31e-03 -11.0 6.80e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 7.3472811e+00 4.57e-07 5.29e-05 -11.0 1.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 43 7.3472814e+00 4.84e-08 8.99e-05 -11.0 4.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 44 7.3472764e+00 2.99e-06 3.32e-03 -11.0 4.88e-02 - 1.00e+00 1.00e+00h 1\n", - " 45 7.3472791e+00 1.22e-06 2.31e-03 -11.0 1.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 7.3472789e+00 8.81e-07 3.79e-03 -11.0 1.81e-02 - 1.00e+00 1.00e+00h 1\n", - " 47 7.3472776e+00 2.71e-06 1.20e-03 -11.0 2.23e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 7.3472681e+00 1.34e-05 1.34e-03 -11.0 4.74e-02 - 1.00e+00 1.00e+00h 1\n", - " 49 7.3472113e+00 4.38e-05 8.39e-03 -11.0 1.08e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 7.3472802e+00 3.89e-07 6.81e-05 -11.0 4.97e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 7.3472790e+00 2.13e-06 1.33e-03 -11.0 1.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 7.3472749e+00 5.90e-06 1.30e-03 -11.0 3.58e-02 - 1.00e+00 1.00e+00h 1\n", - " 53 7.3472580e+00 3.38e-05 1.90e-03 -11.0 2.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 54 7.3472654e+00 3.16e-05 3.00e-03 -11.0 2.22e-01 - 1.00e+00 1.00e+00h 1\n", - " 55 7.3472682e+00 8.37e-06 1.01e-03 -11.0 1.01e-01 - 1.00e+00 1.00e+00h 1\n", - " 56 7.3472410e+00 3.41e-05 1.79e-03 -11.0 1.78e-01 - 1.00e+00 1.00e+00h 1\n", - " 57 7.3472667e+00 1.04e-05 2.40e-03 -11.0 1.38e-01 - 1.00e+00 1.00e+00h 1\n", - " 58 7.3472722e+00 5.27e-06 1.28e-03 -11.0 7.56e-02 - 1.00e+00 1.00e+00h 1\n", - " 59 7.3470809e+00 4.93e-04 2.41e-03 -11.0 2.84e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.3453269e+00 1.51e-03 4.15e-03 -11.0 4.87e+01 - 1.00e+00 1.00e+00h 1\n", - " 61 7.3382971e+00 8.55e-03 2.21e-03 -11.0 4.23e+01 - 1.00e+00 1.00e+00h 1\n", - " 62 7.3287604e+00 3.14e-02 4.88e-03 -11.0 3.09e+02 - 1.00e+00 1.00e+00h 1\n", - " 63 7.3373537e+00 1.27e-02 1.67e-03 -11.0 4.92e+01 - 1.00e+00 1.00e+00h 1\n", - " 64 7.3350004e+00 1.33e-02 6.12e-03 -11.0 9.60e+01 - 1.00e+00 1.00e+00h 1\n", - " 65 7.3205624e+00 1.32e-02 1.04e-02 -11.0 1.88e+02 - 1.00e+00 1.00e+00h 1\n", - " 66 7.3438410e+00 2.63e-04 5.58e-03 -11.0 3.31e+02 - 1.00e+00 1.00e+00H 1\n", - " 67 7.3089140e+00 8.86e-02 6.07e-03 -11.0 2.04e+03 - 1.00e+00 1.00e+00f 1\n", - " 68 6.5815951e+00 1.39e+00 2.80e-01 -11.0 1.64e+04 - 1.00e+00 1.00e+00f 1\n", - " 69 6.6372394e+00 1.81e-01 7.93e-02 -11.0 4.27e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 6.3525522e+00 4.01e+00 4.32e-01 -9.1 1.44e+06 - 1.00e+00 9.66e-03f 2\n", - " 71 6.2643390e+00 4.38e+00 6.64e-01 -7.2 6.29e+05 - 1.00e+00 9.88e-03f 3\n", - " 72 6.6610996e+00 4.66e+00 4.00e-01 -5.2 1.77e+04 - 1.00e+00 4.78e-01h 1\n", - " 73 6.6577923e+00 4.64e+00 3.98e-01 -5.4 8.50e+05 - 7.21e-02 1.01e-04h 1\n", - " 74 6.1557161e+00 4.74e-01 4.99e-01 -5.4 4.79e+03 - 5.41e-03 1.00e+00h 1\n", - " 75 6.1324767e+00 1.14e+00 3.65e-01 -6.1 5.89e+03 - 1.00e+00 2.50e-01h 3\n", - " 76 6.3333145e+00 1.02e+00 2.96e-01 -2.9 3.08e+03 - 1.00e+00 5.19e-01h 1\n", - " 77 6.3248687e+00 1.04e+00 2.92e-01 -3.0 1.58e+04 - 8.42e-01 4.58e-03F 1\n", - " 78 7.1886668e+00 5.53e-02 6.54e-02 -3.0 7.04e+02 - 1.00e+00 1.00e+00h 1\n", - " 79 7.2289612e+00 2.43e-03 4.94e-02 -4.6 1.08e+03 - 9.76e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 7.0586956e+00 2.95e-01 4.22e-02 -2.4 3.22e+03 - 8.25e-02 1.00e+00f 1\n", - " 81 6.4787828e+00 3.24e+00 3.96e-01 -9.4 1.55e+06 - 2.05e-03 1.90e-02f 2\n", - " 82 6.1167503e+00 2.14e+00 2.54e-01 -3.6 2.88e+04 - 1.00e+00 1.00e+00h 1\n", - " 83 6.0863800e+00 2.19e+00 2.94e-01 -1.6 8.22e+03 - 1.00e+00 8.95e-02H 1\n", - " 84 7.2681258e+00 5.96e-02 2.57e-01 -7.6 4.83e+02 - 6.43e-01 1.00e+00h 1\n", - " 85 6.5868400e+00 1.06e+00 1.17e-01 -2.2 3.71e+04 - 1.56e-02 1.00e+00f 1\n", - " 86 6.2726038e+00 2.37e+00 3.35e-01 -2.2 1.74e+06 - 3.98e-01 1.47e-02f 1\n", - " 87 5.8408205e+00 1.62e+00 2.53e-01 -2.2 1.28e+04 - 1.00e+00 3.28e-01h 1\n", - " 88 7.3232057e+00 2.71e-01 1.44e-01 -2.8 2.35e+03 - 9.94e-01 1.00e+00h 1\n", - " 89 6.3871355e+00 4.55e-01 7.61e-02 -3.0 2.34e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 7.4282255e+00 1.07e-02 5.02e-02 -3.9 3.22e+02 - 1.00e+00 1.00e+00h 1\n", - " 91 7.4160489e+00 1.40e-02 5.05e-02 -4.0 4.70e+02 - 1.00e+00 1.93e-01h 1\n", - " 92 7.3964683e+00 6.57e-02 6.43e-03 -4.0 2.22e+02 - 1.00e+00 1.00e+00f 1\n", - " 93 6.8527392e+00 2.80e-01 6.62e-02 -4.0 2.12e+03 - 1.00e+00 1.00e+00f 1\n", - " 94 6.5356183e+00 4.68e-01 6.69e-02 -4.0 1.18e+03 - 1.00e+00 1.00e+00h 1\n", - " 95 7.3853916e+00 4.79e-02 8.18e-02 -4.0 1.67e+02 - 1.68e-01 1.00e+00h 1\n", - " 96 7.2487257e+00 1.24e-01 6.92e-02 -4.0 6.12e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 7.3106690e+00 9.47e-02 4.57e-02 -4.0 5.75e+02 - 7.77e-01 1.00e+00h 1\n", - " 98 7.1346376e+00 1.77e-01 2.67e-02 -4.0 1.61e+03 - 1.00e+00 8.17e-01h 1\n", - " 99 6.9739572e+00 3.16e-01 3.79e-02 -4.0 1.12e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.4003731e+00 1.94e-03 3.61e-02 -4.0 1.56e+03 - 8.16e-01 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.4003731061942934e+00 7.4003731061942934e+00\n", - "Dual infeasibility......: 3.6060091895407598e-02 3.6060091895407598e-02\n", - "Constraint violation....: 1.9410214391335501e-03 1.9410214391335501e-03\n", - "Complementarity.........: 9.1412842429938618e-05 9.1412842429938618e-05\n", - "Overall NLP error.......: 3.6060091895407598e-02 3.6060091895407598e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 121\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 121\n", - "Number of inequality constraint evaluations = 121\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.428\n", - "Total CPU secs in NLP function evaluations = 135.079\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 547.00us ( 4.52us) 550.40us ( 4.55us) 121\n", - " nlp_g | 5.42 s ( 44.83ms) 5.17 s ( 42.74ms) 121\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 376.00us ( 3.69us) 372.74us ( 3.65us) 102\n", - " nlp_jac_g | 132.40 s ( 1.30 s) 126.41 s ( 1.24 s) 102\n", - " total | 139.32 s (139.32 s) 133.01 s (133.01 s) 1\n", - "Timestamp 14400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.61e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0067096e+01 1.37e+01 4.61e+03 -1.5 4.61e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.6042937e+00 4.96e+00 8.74e+00 0.6 4.67e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 7.0611663e+00 1.17e+00 8.38e-01 -1.5 1.29e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 7.8849166e+00 3.49e-03 9.84e-02 -3.3 1.73e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 7.8864318e+00 1.31e-07 9.30e-05 -5.1 3.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 7.8864313e+00 4.85e-07 9.38e-05 -11.0 2.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 6.8874348e+00 7.45e-01 1.81e-01 -10.1 3.80e+03 - 1.00e+00 1.00e+00f 1\n", - " 8 7.9222007e+00 2.08e-02 7.02e-02 -11.0 7.61e+02 - 1.00e+00 1.00e+00h 1\n", - " 9 7.1814355e+00 2.48e+00 1.99e-01 -11.0 3.23e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 7.2385066e+00 4.04e-01 6.60e-02 -11.0 1.72e+03 - 1.00e+00 1.00e+00h 1\n", - " 11 7.9334583e+00 6.61e-02 7.20e-02 -11.0 8.24e+02 - 1.00e+00 1.00e+00h 1\n", - " 12 8.0546659e+00 4.46e-03 1.34e-02 -11.0 9.87e+02 - 1.00e+00 1.00e+00H 1\n", - " 13 7.8881631e+00 9.75e-02 2.75e-02 -11.0 9.42e+02 - 1.00e+00 1.00e+00f 1\n", - " 14 7.9130930e+00 5.47e-02 3.63e-03 -11.0 8.24e+02 - 1.00e+00 5.00e-01h 2\n", - " 15 6.6822900e+00 6.52e-01 1.43e-01 -11.0 3.27e+03 - 1.00e+00 1.00e+00f 1\n", - " 16 7.1277380e+00 3.71e-01 3.79e-02 -11.0 1.35e+03 - 1.00e+00 1.00e+00h 1\n", - " 17 7.7256529e+00 1.86e-01 4.23e-02 -11.0 9.43e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 7.7193874e+00 2.04e-01 5.14e-02 -11.0 6.75e+02 - 1.00e+00 1.00e+00h 1\n", - " 19 7.9084123e+00 1.30e-01 2.35e-02 -11.0 5.54e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 7.3166354e+00 7.44e-01 9.29e-02 -11.0 1.37e+03 - 1.00e+00 1.00e+00f 1\n", - " 21 7.6076707e+00 2.95e-01 4.05e-02 -11.0 1.16e+03 - 1.00e+00 1.00e+00h 1\n", - " 22 7.5256110e+00 1.74e-01 1.34e-02 -11.0 2.27e+03 - 1.00e+00 1.00e+00h 1\n", - " 23 7.8249465e+00 2.03e-01 3.35e-02 -11.0 6.61e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 7.0605023e+00 9.63e-01 1.08e-01 -11.0 6.00e+03 - 1.00e+00 1.00e+00f 1\n", - " 25 7.4810610e+00 4.10e-01 1.55e-01 -11.0 4.86e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 7.4452466e+00 8.01e-01 9.86e-02 -11.0 8.55e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 7.1504501e+00 2.03e+00 2.50e-01 -11.0 7.79e+05 - 6.80e-02 1.31e-02f 1\n", - " 28r 7.1504501e+00 2.03e+00 9.99e+02 0.3 0.00e+00 - 0.00e+00 3.39e-10R 2\n", - " 29r 7.4590366e+00 1.87e-01 6.31e+02 -5.8 7.65e+02 - 1.00e+00 2.63e-03f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 7.6520356e+00 2.60e-02 3.15e-02 -6.4 1.55e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 7.6835072e+00 1.06e-02 1.95e-02 -7.6 2.76e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 7.6373389e+00 6.50e-02 2.14e-02 -8.8 2.90e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 7.7048500e+00 1.11e-03 1.01e-02 -6.8 6.19e+01 - 6.80e-01 1.00e+00h 1\n", - " 34 7.6986337e+00 3.66e-03 2.49e-03 -5.0 5.46e+01 - 2.83e-02 1.00e+00f 1\n", - " 35 7.6606883e+00 7.19e-02 6.34e-02 -5.2 5.73e+02 - 1.00e+00 1.00e+00h 1\n", - " 36 7.6879734e+00 9.71e-03 5.09e-03 -5.3 2.56e+02 - 1.00e+00 1.00e+00h 1\n", - " 37 7.6679075e+00 2.21e-02 2.62e-03 -5.5 7.15e+02 - 1.00e+00 1.00e+00h 1\n", - " 38 7.6636985e+00 2.05e-02 6.46e-03 -7.0 4.27e+02 - 1.00e+00 1.00e+00h 1\n", - " 39 7.6922004e+00 8.57e-03 3.64e-03 -8.9 3.58e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 7.6733782e+00 4.62e-02 2.91e-03 -7.1 3.15e+06 - 1.00e+00 3.68e-04f 1\n", - " 41 7.6726567e+00 4.62e-02 1.90e-03 -7.0 1.44e+04 - 1.00e+00 7.53e-04h 1\n", - " 42 7.6966493e+00 1.21e-04 3.48e-03 -7.0 6.36e+01 - 1.00e+00 1.00e+00h 1\n", - " 43 7.6903938e+00 1.39e-02 2.02e-03 -6.7 4.81e+02 - 6.04e-01 1.00e+00h 1\n", - " 44 7.6965860e+00 3.96e-04 2.41e-03 -6.9 6.71e+00 - 3.09e-03 1.00e+00h 1\n", - " 45 7.6947748e+00 2.93e-03 4.24e-03 -8.4 6.31e+02 - 1.00e+00 1.00e+00h 1\n", - " 46 7.6117630e+00 8.75e-02 9.32e-03 -6.2 5.45e+05 - 1.35e-03 5.60e-02f 1\n", - " 47 7.6115747e+00 8.84e-02 9.37e-03 -6.4 1.22e+05 - 1.00e+00 1.05e-03h 1\n", - " 48 7.7000838e+00 9.43e-04 1.39e-02 -4.8 4.20e+03 - 1.00e+00 1.00e+00H 1\n", - " 49 7.5424109e+00 4.48e-01 2.88e-02 -4.8 1.65e+04 - 5.88e-02 2.55e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 6.1399641e+00 1.47e+00 2.72e-01 -4.8 8.28e+03 - 1.00e+00 1.00e+00f 1\n", - " 51 4.9793349e+00 3.93e+00 8.64e-01 -4.0 2.98e+04 - 3.86e-01 9.58e-01f 1\n", - " 52 4.9560074e+00 3.84e+00 8.32e-01 -2.1 1.20e+04 - 1.00e+00 2.37e-02h 1\n", - " 53 6.5185855e+00 4.84e-01 3.68e-01 -1.9 2.49e+03 - 9.24e-01 1.00e+00h 1\n", - " 54 6.7376141e+00 5.19e-01 2.96e-02 -3.3 7.86e+03 - 1.00e+00 1.00e+00h 1\n", - " 55 6.4576553e+00 5.97e-01 6.85e-02 -2.1 1.11e+05 - 1.00e+00 1.59e-01f 1\n", - " 56 6.7265383e+00 4.19e-01 4.03e-02 -2.9 8.29e+03 - 9.17e-01 1.00e+00h 1\n", - " 57 6.8292853e+00 1.34e-01 4.84e-02 -3.4 3.23e+03 - 9.42e-01 1.00e+00h 1\n", - " 58 6.3942342e+00 2.56e+00 2.34e-01 -2.0 2.43e+04 - 4.83e-01 1.00e+00f 1\n", - " 59 5.9291749e+00 2.32e+00 2.84e-01 -2.4 2.11e+05 - 1.86e-01 8.65e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 6.7014793e+00 1.07e+00 1.10e-01 -2.2 1.35e+04 - 1.00e+00 1.00e+00H 1\n", - " 61 6.2233731e+00 6.84e-01 8.53e-02 -1.6 1.37e+05 - 1.00e+00 1.71e-01h 1\n", - " 62 6.0017863e+00 5.25e-01 2.44e-01 -1.7 2.50e+03 - 8.05e-01 8.70e-01h 1\n", - " 63 6.8203851e+00 4.58e-01 9.70e-02 -2.2 1.19e+03 - 2.96e-01 1.00e+00h 1\n", - " 64 6.5528314e+00 9.91e-01 1.71e-01 -2.0 2.64e+04 - 1.00e+00 1.25e-01f 1\n", - " 65 6.8326723e+00 6.74e-01 1.52e-02 -2.1 1.62e+03 - 9.47e-01 1.00e+00h 1\n", - " 66 6.9975530e+00 2.43e-02 6.95e-02 -2.1 4.54e+03 - 1.00e+00 1.00e+00H 1\n", - " 67 6.2517914e+00 4.54e-01 9.17e-02 -7.5 6.61e+03 - 3.45e-01 1.00e+00f 1\n", - " 68 6.0644137e+00 1.87e+00 8.53e-01 -8.3 1.25e+05 - 2.97e-02 1.35e-01f 1\n", - " 69 6.0009226e+00 1.84e+00 8.03e-01 -2.5 3.86e+04 - 5.39e-01 3.35e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 6.7067912e+00 2.93e-01 1.74e-01 -2.5 2.10e+03 - 6.69e-02 1.00e+00h 1\n", - " 71 6.8278856e+00 4.92e-02 2.00e-02 -1.7 3.36e+03 - 1.00e+00 1.00e+00H 1\n", - " 72 6.7421194e+00 3.96e-01 3.54e-02 -2.7 5.41e+03 - 9.72e-01 1.00e+00h 1\n", - " 73 6.5804946e+00 8.55e-01 8.51e-02 -2.7 3.31e+05 - 2.03e-01 1.50e-02f 1\n", - " 74 6.8549614e+00 4.75e-02 6.59e-02 -2.7 1.83e+03 - 1.00e+00 1.00e+00h 1\n", - " 75 6.8021206e+00 2.38e-01 6.28e-02 -3.4 2.22e+03 - 1.00e+00 9.77e-01h 1\n", - " 76 6.5643527e+00 9.29e-01 1.82e-01 -2.7 3.87e+03 - 4.62e-01 1.00e+00h 1\n", - " 77 6.3849350e+00 1.07e+00 1.52e-01 -3.1 1.17e+04 - 7.59e-03 4.78e-01h 1\n", - " 78 6.5865926e+00 4.13e-01 1.96e-01 -3.1 7.74e+03 - 1.00e+00 1.00e+00h 1\n", - " 79 6.6606237e+00 3.60e-01 7.60e-02 -2.9 2.41e+03 - 7.58e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 6.5815377e+00 1.15e+00 4.10e-02 -8.9 6.27e+04 - 6.02e-02 1.60e-01h 1\n", - " 81 6.7491961e+00 2.49e-01 1.39e-01 -3.2 1.82e+03 - 1.75e-01 1.00e+00h 1\n", - " 82 6.7194666e+00 1.06e+00 3.57e-02 -3.9 4.00e+04 - 8.31e-01 2.36e-01h 1\n", - " 83 6.5010472e+00 1.34e+00 1.60e-01 -3.6 4.21e+03 - 7.75e-03 1.00e+00h 1\n", - " 84 6.4369010e+00 4.44e+00 6.01e-01 -3.6 1.27e+06 - 5.94e-03 4.37e-02f 1\n", - " 85 7.8582720e+00 3.75e-01 5.06e-01 -3.6 3.27e+04 - 8.01e-04 1.00e+00h 1\n", - " 86 7.4985907e+00 4.72e-01 4.31e-01 -3.6 1.29e+04 - 6.54e-01 7.60e-01F 1\n", - " 87 7.2143747e+00 4.34e-01 3.11e-01 -3.6 7.48e+04 - 6.54e-01 2.16e-01h 1\n", - " 88 7.5632081e+00 1.33e-01 4.45e-02 -3.6 7.91e+03 - 4.93e-01 1.00e+00H 1\n", - " 89 7.3970002e+00 5.11e-01 2.23e-02 -3.6 4.69e+04 - 1.00e+00 1.67e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 7.1469406e+00 4.38e-01 3.86e-02 -3.6 5.53e+03 - 1.00e+00 4.03e-01h 1\n", - " 91 7.5384477e+00 1.08e-01 8.31e-02 -3.6 9.55e+02 - 1.00e+00 1.00e+00h 1\n", - " 92 7.5355232e+00 9.85e-02 6.40e-02 -3.6 5.98e+02 - 8.43e-01 2.90e-01h 1\n", - " 93 7.6046278e+00 8.80e-03 3.01e-02 -3.6 1.60e+03 - 1.00e+00 1.00e+00H 1\n", - " 94 7.5316004e+00 5.92e-01 8.92e-02 -2.7 3.04e+03 - 6.66e-01 1.00e+00h 1\n", - " 95 7.3546661e+00 2.09e-01 4.86e-02 -3.1 2.59e+03 - 2.36e-02 1.00e+00h 1\n", - " 96 7.2278370e+00 2.29e-01 5.75e-02 -3.1 2.79e+05 - 2.75e-02 1.23e-03f 1\n", - " 97 7.2766655e+00 2.79e-01 6.85e-02 -3.1 1.01e+03 - 1.00e+00 1.00e+00h 1\n", - " 98 7.1921623e+00 1.39e-01 2.01e-02 -3.1 8.65e+02 - 4.03e-01 1.00e+00h 1\n", - " 99 7.2594225e+00 1.32e-01 8.13e-03 -3.1 4.35e+03 - 1.00e+00 4.45e-01H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.4800092e+00 5.71e-02 2.39e-02 -3.1 7.25e+02 - 5.24e-02 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.4800091967699966e+00 7.4800091967699966e+00\n", - "Dual infeasibility......: 2.3891667462602850e-02 2.3891667462602850e-02\n", - "Constraint violation....: 5.7109055717383228e-02 5.7109055717383228e-02\n", - "Complementarity.........: 1.3809685993276771e-03 1.3809685993276771e-03\n", - "Overall NLP error.......: 5.7109055717383228e-02 5.7109055717383228e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 115\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 115\n", - "Number of inequality constraint evaluations = 115\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.424\n", - "Total CPU secs in NLP function evaluations = 136.423\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 513.00us ( 4.46us) 501.94us ( 4.36us) 115\n", - " nlp_g | 5.14 s ( 44.72ms) 4.90 s ( 42.63ms) 115\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 336.00us ( 3.29us) 333.49us ( 3.27us) 102\n", - " nlp_jac_g | 133.99 s ( 1.30 s) 127.92 s ( 1.24 s) 103\n", - " total | 140.64 s (140.64 s) 134.26 s (134.26 s) 1\n", - "Timestamp 14700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.10e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0773332e+01 1.30e+01 3.10e+04 -1.5 3.10e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.9744147e+00 4.84e+00 7.30e+00 1.2 1.20e+03 - 9.99e-01 1.00e+00f 1\n", - " 3 1.6157748e+00 6.16e-01 6.37e-01 -0.9 4.45e+02 - 9.96e-01 1.00e+00f 1\n", - " 4 1.3976208e+00 7.45e-03 7.81e-01 -6.7 2.87e+01 - 9.89e-01 1.00e+00h 1\n", - " 5 1.3969460e+00 1.21e-03 2.23e-02 -4.1 5.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 6 1.3968022e+00 5.54e-01 4.58e-01 -5.4 1.28e+03 - 1.00e+00 1.00e+00f 1\n", - " 7 1.3122557e+00 1.31e-01 1.21e-01 -7.1 1.00e+03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.3080797e+00 2.42e-01 1.81e-01 -7.9 1.09e+03 - 1.00e+00 1.00e+00h 1\n", - " 9 1.3454949e+00 9.44e-02 1.27e-01 -9.0 1.52e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.3377974e+00 2.21e-01 1.20e-01 -10.5 2.70e+03 - 1.00e+00 1.25e-01h 4\n", - " 11 1.3311940e+00 2.76e-01 1.94e-01 -10.4 5.27e+03 - 1.00e+00 1.25e-01h 4\n", - " 12 1.3250791e+00 2.79e-01 1.14e-01 -10.4 5.84e+03 - 1.00e+00 1.25e-01h 4\n", - " 13 1.3231772e+00 3.16e-01 1.45e-01 -10.4 6.57e+03 - 1.00e+00 6.25e-02h 5\n", - " 14 1.3861137e+00 9.56e-02 2.42e-01 -10.4 1.91e+04 - 1.00e+00 2.50e-01h 3\n", - " 15 1.3770096e+00 9.77e-02 2.22e-01 -10.4 2.76e+06 - 1.07e-02 1.52e-03h 4\n", - " 16 1.3430029e+00 5.14e-02 1.61e-01 -10.4 1.34e+03 - 1.00e+00 1.00e+00h 1\n", - " 17 1.3156031e+00 2.17e-01 7.62e-02 -8.4 4.41e+06 - 2.96e-02 4.20e-04f 5\n", - " 18 1.3150507e+00 2.04e-01 9.10e-02 -9.9 3.70e+03 - 1.00e+00 6.25e-02h 5\n", - " 19 1.4455749e+00 1.38e-01 4.44e-01 -9.9 1.79e+05 - 9.11e-01 7.40e-01H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.3759667e+00 2.47e-01 2.41e-01 -9.9 3.78e+04 - 9.02e-10 9.30e-02f 4\n", - " 21 1.3327133e+00 1.01e-01 1.78e-01 -9.9 3.62e+05 - 3.90e-01 1.06e-02f 5\n", - " 22 1.3292788e+00 1.69e-01 5.43e-02 -11.0 3.67e+03 - 1.00e+00 1.00e+00h 1\n", - " 23 1.3291113e+00 1.55e-01 4.20e-02 -8.9 2.22e+03 - 1.00e+00 2.19e-01h 3\n", - " 24 1.3277217e+00 1.62e-01 3.63e-02 -6.9 8.51e+03 - 1.00e+00 1.72e-01h 1\n", - " 25 1.3276542e+00 1.59e-01 3.44e-02 -5.0 1.34e+04 - 1.00e+00 1.09e-03h 1\n", - " 26 1.3421634e+00 7.35e-02 1.30e-01 -6.4 7.64e+02 - 1.00e+00 1.00e+00h 1\n", - " 27 1.3402477e+00 1.49e-01 1.47e-01 -4.4 1.08e+03 - 1.44e-01 1.00e+00h 1\n", - " 28 1.3399080e+00 1.48e-01 1.44e-01 -5.4 3.78e+04 - 5.20e-01 3.01e-03h 1\n", - " 29 1.3385193e+00 2.23e-01 9.15e-02 -5.4 1.18e+03 - 1.71e-01 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.3382091e+00 2.20e-01 8.83e-02 -5.4 1.51e+03 - 1.00e+00 1.79e-02h 1\n", - " 31 1.3292151e+00 1.42e-01 8.64e-02 -5.4 1.59e+03 - 1.00e+00 1.00e+00f 1\n", - " 32 1.3300837e+00 9.41e-02 6.23e-02 -6.6 1.77e+03 - 1.00e+00 2.50e-01h 3\n", - " 33 1.3447678e+00 6.63e-02 5.35e-02 -5.6 3.79e+03 - 1.00e+00 1.00e+00H 1\n", - " 34 1.3338529e+00 1.30e-01 4.76e-01 -5.8 5.60e+03 - 1.60e-01 1.00e+00H 1\n", - " 35 1.3202162e+00 1.64e-01 1.35e-01 -6.9 1.53e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 1.3237239e+00 1.92e-02 9.15e-02 -5.4 1.86e+03 - 3.06e-01 1.00e+00H 1\n", - " 37 1.3211178e+00 6.10e-02 5.95e-02 -6.9 6.37e+03 - 1.00e+00 1.25e-01h 4\n", - " 38 1.3212538e+00 4.40e-02 8.70e-02 -7.8 7.35e+02 - 1.00e+00 2.50e-01h 3\n", - " 39 1.3188298e+00 1.81e-01 8.99e-02 -7.6 3.41e+04 - 1.00e+00 3.93e-02h 5\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.3336124e+00 1.79e-01 1.70e-01 -7.7 5.30e+03 - 9.56e-01 1.00e+00H 1\n", - " 41 1.3269584e+00 7.16e-02 6.56e-02 -7.7 4.90e+06 - 1.02e-02 3.43e-04f 6\n", - " 42 1.3269063e+00 9.30e-02 5.00e-02 -7.7 9.50e+03 - 1.00e+00 6.25e-02h 5\n", - " 43 1.3273112e+00 7.37e-02 6.62e-02 -7.7 1.74e+03 - 1.00e+00 5.00e-01h 2\n", - " 44 1.3198270e+00 9.06e-02 6.31e-02 -7.7 8.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 45 1.2994148e+00 1.80e-01 1.46e-01 -7.4 1.27e+04 - 1.00e+00 2.50e-01h 3\n", - " 46 1.3104054e+00 1.24e-01 6.20e-02 -7.9 5.45e+03 - 9.30e-01 1.00e+00H 1\n", - " 47 1.3272958e+00 7.79e-02 9.02e-02 -9.0 1.86e+03 - 1.00e+00 1.00e+00h 1\n", - " 48 1.3120862e+00 2.22e-01 1.00e-01 -9.1 9.09e+05 - 3.48e-02 3.61e-03f 3\n", - " 49 1.4047405e+00 3.18e-01 2.61e-01 -9.1 4.84e+03 - 6.23e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.3936400e+00 2.99e-01 4.57e-01 -9.1 2.27e+05 - 3.70e-01 2.01e-01h 1\n", - " 51 1.3825488e+00 2.49e-01 3.89e-01 -9.1 2.39e+04 - 2.10e-08 1.21e-01h 3\n", - " 52 1.3696993e+00 1.89e-01 3.12e-01 -9.1 1.98e+04 - 1.00e+00 7.28e-02h 2\n", - " 53 1.3689951e+00 1.89e-01 2.62e-01 -9.1 3.84e+04 - 3.91e-02 1.79e-01h 1\n", - " 54 1.3094998e+00 5.15e-01 3.81e-01 -9.1 4.83e+03 - 1.00e+00 1.00e+00f 1\n", - " 55 1.3078176e+00 3.92e-01 2.72e-01 -9.1 3.60e+03 - 4.54e-01 1.25e-01h 4\n", - " 56 1.2928191e+00 3.91e-01 2.78e-01 -9.1 4.93e+04 - 4.55e-01 3.59e-02h 5\n", - " 57 1.2960102e+00 3.54e-01 1.88e-01 -7.9 4.92e+05 - 1.00e+00 2.57e-02h 1\n", - " 58 1.2954226e+00 3.53e-01 1.91e-01 -7.4 3.73e+04 - 1.00e+00 3.61e-03H 1\n", - " 59 1.3982954e+00 1.80e-01 3.81e-01 -5.5 1.07e+04 - 2.84e-04 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.4521887e+00 1.95e-01 3.67e-01 -7.5 1.06e+04 - 5.11e-01 1.00e+00h 1\n", - " 61 1.3834835e+00 2.19e-01 3.00e-01 -7.5 1.40e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 1.3834036e+00 3.28e-01 2.18e-01 -7.5 6.12e+04 - 6.41e-01 3.33e-01H 1\n", - " 63 1.3664919e+00 2.76e-01 1.80e-01 -7.5 9.58e+03 - 3.39e-07 1.39e-01h 3\n", - " 64 1.3510687e+00 4.86e-01 1.86e-01 -7.5 1.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 1.3424245e+00 1.34e-01 1.47e-01 -7.5 3.47e+03 - 2.91e-01 8.26e-01h 1\n", - " 66 1.3368815e+00 1.47e-01 9.54e-02 -7.5 8.80e+04 - 1.00e+00 8.42e-02h 4\n", - " 67 1.3554873e+00 7.31e-02 4.22e-02 -7.5 9.37e+03 - 1.00e+00 1.00e+00h 1\n", - " 68 1.3636743e+00 8.90e-02 6.27e-02 -7.5 9.08e+02 - 1.00e+00 9.92e-01h 1\n", - " 69 1.3531441e+00 4.77e-02 5.63e-02 -7.5 4.24e+03 - 2.33e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.3528180e+00 4.32e-02 2.92e-02 -7.5 7.16e+03 - 1.00e+00 9.72e-02h 1\n", - " 71 1.3411798e+00 1.10e-01 5.97e-02 -7.5 3.43e+03 - 1.00e+00 5.00e-01h 2\n", - " 72 1.3709889e+00 1.64e-02 2.00e-01 -7.5 3.89e+04 - 2.91e-01 1.00e+00H 1\n", - " 73 1.3709879e+00 1.64e-02 2.00e-01 -6.6 7.66e+02 - 1.00e+00 3.40e-05h 1\n", - " 74 1.3622802e+00 3.32e-02 8.56e-02 -4.6 9.11e+03 - 1.00e+00 1.00e+00F 1\n", - " 75 1.3706089e+00 2.59e-01 2.75e-01 -2.7 3.05e+04 - 2.94e-02 1.00e+00F 1\n", - " 76 1.3658060e+00 2.22e-01 1.94e-01 -4.2 7.11e+05 - 2.70e-03 7.88e-04f 7\n", - " 77 1.3427520e+00 2.17e-01 1.65e-01 -4.2 6.77e+03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.3422240e+00 2.20e-01 1.42e-01 -4.2 4.32e+04 - 1.36e-01 5.55e-03h 8\n", - " 79 1.3500418e+00 1.32e-01 3.87e-02 -4.2 7.51e+03 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.3664648e+00 1.08e-01 9.93e-02 -4.2 8.04e+02 - 1.00e+00 1.00e+00H 1\n", - " 81 1.3221977e+00 3.75e-01 1.53e-01 -4.2 1.47e+04 - 1.00e+00 9.86e-01h 1\n", - " 82 1.3101827e+00 4.92e-01 3.26e-01 -4.2 6.03e+04 - 3.93e-01 5.77e-02h 4\n", - " 83 1.3066172e+00 4.58e-01 3.03e-01 -4.2 1.77e+03 - 1.00e+00 3.83e-02h 1\n", - " 84 1.3196688e+00 1.85e-01 1.76e-01 -4.2 7.02e+03 - 4.27e-01 5.00e-01h 2\n", - " 85 1.3191965e+00 2.49e-01 2.43e-01 -4.2 8.86e+04 - 4.63e-01 6.23e-02h 3\n", - " 86 1.3367906e+00 1.99e-01 2.53e-01 -4.2 2.09e+03 - 1.00e+00 2.46e-01h 3\n", - " 87 1.3436131e+00 1.24e-01 9.02e-02 -4.2 2.40e+04 - 5.21e-01 4.07e-01H 1\n", - " 88 1.3554779e+00 4.63e-02 8.89e-02 -4.2 2.78e+03 - 1.00e+00 1.00e+00h 1\n", - " 89 1.3672872e+00 4.71e-02 9.08e-02 -4.2 1.60e+03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.3654507e+00 7.55e-02 8.58e-02 -4.2 2.27e+05 - 1.32e-01 1.13e-03h 7\n", - " 91 1.3654746e+00 1.06e-02 6.95e-02 -4.2 9.10e+02 - 1.00e+00 1.00e+00h 1\n", - " 92 1.3635536e+00 8.72e-03 5.36e-02 -4.4 3.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.3610516e+00 2.50e-01 5.52e-02 -3.9 8.40e+02 - 1.00e+00 1.00e+00h 1\n", - " 94 1.3824664e+00 2.12e-01 1.29e-01 -3.8 1.69e+04 - 1.00e+00 7.01e-01H 1\n", - " 95 1.3694852e+00 7.82e-02 3.89e-02 -3.8 2.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 1.3659925e+00 2.01e-02 6.85e-02 -3.8 4.39e+04 - 4.77e-01 1.16e-01h 4\n", - " 97 1.3612659e+00 6.53e-02 1.02e-01 -3.8 4.74e+04 - 6.35e-01 1.57e-02h 1\n", - " 98 1.3619325e+00 1.97e-02 1.13e-02 -3.8 9.92e+02 - 1.01e-01 5.00e-01f 2\n", - " 99 1.3599516e+00 3.45e-02 4.73e-02 -2.7 4.05e+03 - 1.00e+00 4.25e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.3793485e+00 2.87e-02 2.32e-01 -2.8 2.11e+04 - 1.00e+00 7.33e-01H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.3793484693440758e+00 1.3793484693440758e+00\n", - "Dual infeasibility......: 2.3232451155602829e-01 2.3232451155602829e-01\n", - "Constraint violation....: 2.8673533474254498e-02 2.8673533474254498e-02\n", - "Complementarity.........: 1.6306587398998303e-03 1.6306587398998303e-03\n", - "Overall NLP error.......: 2.3232451155602829e-01 2.3232451155602829e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 305\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 305\n", - "Number of inequality constraint evaluations = 305\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.416\n", - "Total CPU secs in NLP function evaluations = 144.486\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 1.43ms ( 4.69us) 1.43ms ( 4.68us) 305\n", - " nlp_g | 13.87 s ( 45.47ms) 13.25 s ( 43.44ms) 305\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 341.00us ( 3.34us) 335.92us ( 3.29us) 102\n", - " nlp_jac_g | 133.31 s ( 1.31 s) 127.29 s ( 1.25 s) 102\n", - " total | 148.69 s (148.69 s) 141.98 s (141.98 s) 1\n", - "Timestamp 15000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.47e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9621771e+01 1.44e+01 1.47e+04 -1.5 1.47e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.0470688e+01 5.00e+00 1.20e+01 0.8 2.24e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.4728633e+01 1.80e+00 9.00e-01 -1.3 5.03e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 1.5910544e+01 2.45e-04 9.06e-02 -3.0 2.19e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.5910715e+01 4.19e-05 7.84e-03 -4.9 1.73e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 1.5910690e+01 3.96e-05 1.70e-03 -7.0 1.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 1.5910793e+01 9.68e-06 1.82e-03 -9.1 3.92e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.5909722e+01 7.59e-04 1.20e-02 -11.0 3.70e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 1.5908392e+01 1.60e-03 2.30e-02 -11.0 5.12e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.5907723e+01 1.33e-03 2.56e-02 -11.0 6.25e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 1.5910766e+01 2.35e-07 1.25e-04 -11.0 2.64e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.5910766e+01 2.10e-07 1.87e-04 -11.0 1.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 1.5910023e+01 3.58e-04 1.88e-02 -11.0 1.39e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 1.5910629e+01 5.28e-05 2.07e-03 -11.0 5.25e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.5910425e+01 1.86e-04 1.68e-03 -11.0 3.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.5910714e+01 2.15e-05 1.87e-03 -11.0 9.83e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 1.5910711e+01 2.49e-05 1.02e-03 -11.0 6.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 1.5910676e+01 2.83e-05 4.32e-03 -11.0 2.73e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.5910657e+01 7.60e-05 1.82e-03 -11.0 1.89e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.5910735e+01 1.42e-05 9.03e-04 -11.0 9.30e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.5910539e+01 9.82e-05 3.29e-03 -11.0 9.53e-01 - 1.00e+00 1.00e+00h 1\n", - " 22 1.5910724e+01 2.84e-05 2.12e-03 -11.0 3.27e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.5910586e+01 6.07e-05 1.49e-03 -11.0 2.82e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.5910689e+01 2.99e-05 2.02e-03 -11.0 1.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 1.5910741e+01 5.96e-06 1.78e-03 -11.0 7.61e-02 - 1.00e+00 1.00e+00h 1\n", - " 26 1.5910753e+01 1.41e-09 8.12e-05 -11.0 7.41e-02 - 1.00e+00 1.00e+00H 1\n", - " 27 1.5910730e+01 1.10e-05 1.89e-03 -11.0 1.03e-01 - 1.00e+00 1.00e+00h 1\n", - " 28 1.5910750e+01 2.07e-09 6.10e-05 -11.0 2.46e-01 - 1.00e+00 1.00e+00H 1\n", - " 29 1.5910734e+01 4.72e-05 1.75e-03 -11.0 1.60e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.5910743e+01 1.38e-05 1.14e-03 -11.0 8.59e-02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.5910741e+01 8.48e-06 1.27e-03 -11.0 1.29e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 1.5910730e+01 3.66e-05 1.69e-03 -11.0 8.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.5910653e+01 4.72e-05 2.83e-03 -11.0 4.11e-01 - 1.00e+00 1.00e+00h 1\n", - " 34 1.5910639e+01 9.96e-05 1.09e-03 -11.0 8.20e-01 - 1.00e+00 1.00e+00h 1\n", - " 35 1.5910753e+01 1.73e-08 1.06e-04 -11.0 3.05e-01 - 1.00e+00 1.00e+00H 1\n", - " 36 1.5910673e+01 5.75e-05 1.73e-03 -11.0 3.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 37 1.5910646e+01 6.24e-05 2.59e-03 -11.0 3.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 38 1.5910749e+01 8.36e-09 2.17e-04 -11.0 2.37e-01 - 1.00e+00 1.00e+00H 1\n", - " 39 1.5908035e+01 1.83e-03 6.53e-03 -11.0 1.22e+01 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.5904002e+01 5.98e-03 7.01e-03 -11.0 1.96e+01 - 1.00e+00 1.00e+00h 1\n", - " 41 1.5909119e+01 1.70e-03 2.09e-03 -11.0 7.21e+00 - 1.00e+00 1.00e+00h 1\n", - " 42 1.5910632e+01 3.19e-04 3.26e-03 -11.0 5.21e+00 - 1.00e+00 1.00e+00h 1\n", - " 43 1.5910339e+01 2.85e-04 1.21e-03 -11.0 3.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 44 1.5910859e+01 2.97e-04 1.10e-03 -11.0 4.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 45 1.5907947e+01 1.54e-02 2.07e-03 -11.0 8.05e+01 - 1.00e+00 1.00e+00h 1\n", - " 46 1.5771742e+01 1.76e-01 8.63e-03 -11.0 3.00e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 1.5884487e+01 3.60e-02 4.18e-03 -11.0 2.50e+02 - 1.00e+00 1.00e+00h 1\n", - " 48 1.5864286e+01 3.52e-02 3.07e-03 -11.0 9.87e+02 - 1.00e+00 1.00e+00h 1\n", - " 49 1.5816033e+01 6.46e-02 2.62e-03 -11.0 4.74e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.5553549e+01 2.40e-01 1.74e-02 -11.0 2.00e+03 - 1.00e+00 1.00e+00h 1\n", - " 51 1.5888638e+01 1.47e-03 6.95e-03 -11.0 1.16e+03 - 1.00e+00 1.00e+00H 1\n", - " 52 1.5654896e+01 1.18e-01 5.49e-03 -11.0 3.86e+03 - 1.00e+00 1.00e+00f 1\n", - " 53 1.5089320e+01 1.51e+00 6.65e-02 -11.0 1.30e+04 - 1.00e+00 1.00e+00f 1\n", - " 54 1.4291260e+01 1.35e+00 6.63e-02 -11.0 4.90e+04 - 1.00e+00 3.67e-01h 1\n", - " 55 1.4306850e+01 1.31e+00 6.64e-02 -10.2 1.13e+04 - 1.00e+00 3.12e-02h 6\n", - " 56 1.5594245e+01 4.65e-01 6.19e-02 -2.2 4.28e+03 - 3.11e-01 1.00e+00h 1\n", - " 57 1.3473793e+01 6.27e+00 2.87e-01 -2.9 1.52e+06 - 3.20e-03 3.84e-02f 1\n", - " 58 1.6111458e+01 7.52e-02 2.80e-01 -3.3 1.75e+03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.5934486e+01 1.97e-02 2.63e-01 -3.4 6.71e+02 - 1.00e+00 2.31e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.5901400e+01 2.76e-02 7.32e-03 -3.4 1.11e+02 - 1.00e+00 1.00e+00f 1\n", - " 61 1.5879499e+01 3.67e-02 2.50e-02 -3.4 3.72e+02 - 1.00e+00 1.00e+00h 1\n", - " 62 1.5746263e+01 1.78e-01 3.80e-02 -3.4 6.07e+02 - 1.00e+00 1.00e+00h 1\n", - " 63 1.5954366e+01 2.04e-02 5.50e-03 -3.4 2.01e+02 - 1.00e+00 1.00e+00h 1\n", - " 64 1.5949672e+01 2.11e-02 5.82e-03 -3.4 1.28e+03 - 1.00e+00 1.31e-02h 1\n", - " 65 1.5962977e+01 1.47e-02 2.51e-03 -3.4 6.14e+01 - 1.00e+00 5.00e-01h 2\n", - " 66 1.5941041e+01 2.98e-02 3.36e-02 -3.4 1.95e+02 - 1.82e-01 1.00e+00h 1\n", - " 67 1.5949476e+01 2.43e-02 2.69e-02 -3.4 1.28e+02 - 1.00e+00 1.96e-01h 1\n", - " 68 1.5950653e+01 2.26e-02 2.53e-02 -3.4 1.55e+02 - 1.00e+00 6.25e-02f 5\n", - " 69 1.5988017e+01 2.23e-03 1.68e-03 -3.4 1.04e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.5981454e+01 2.76e-03 2.69e-03 -5.1 1.79e+01 - 9.86e-01 1.00e+00h 1\n", - " 71 1.5920543e+01 4.68e-02 6.14e-03 -5.1 1.87e+02 - 1.00e+00 1.00e+00h 1\n", - " 72 1.5972561e+01 1.14e-02 1.61e-03 -5.1 1.10e+02 - 1.00e+00 9.12e-01h 1\n", - " 73 1.5972003e+01 7.23e-03 1.41e-03 -5.1 2.62e+01 - 1.00e+00 1.00e+00h 1\n", - " 74 1.5978713e+01 3.32e-03 2.80e-03 -5.1 2.43e+01 - 4.89e-01 1.00e+00h 1\n", - " 75 1.5972243e+01 9.90e-05 8.42e-03 -5.1 3.92e+02 - 1.00e+00 1.00e+00H 1\n", - " 76 1.5969434e+01 4.37e-03 8.32e-03 -5.1 3.54e+02 - 1.00e+00 1.40e-01h 1\n", - " 77 1.5965793e+01 4.71e-03 1.80e-03 -5.1 4.56e+01 - 1.76e-01 1.00e+00h 1\n", - " 78 1.5950761e+01 1.65e-02 2.36e-03 -5.1 6.17e+01 - 1.00e+00 1.00e+00h 1\n", - " 79 1.5752664e+01 1.06e-01 1.09e-02 -5.1 3.89e+02 - 7.18e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.5949972e+01 8.19e-03 6.00e-03 -6.7 6.74e+01 - 1.00e+00 1.00e+00h 1\n", - " 81 1.5936166e+01 1.49e-02 1.73e-03 -6.8 1.76e+02 - 1.00e+00 1.00e+00h 1\n", - " 82 1.5862191e+01 7.67e-02 9.84e-03 -6.8 4.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.5913494e+01 3.85e-02 5.09e-03 -6.8 2.08e+02 - 6.88e-01 5.00e-01h 2\n", - " 84 1.5973090e+01 3.41e-03 2.73e-03 -6.8 1.92e+01 - 1.00e+00 1.00e+00h 1\n", - " 85 1.5972856e+01 4.89e-05 1.82e-03 -6.8 7.70e+01 - 1.00e+00 1.00e+00H 1\n", - " 86 1.5963742e+01 6.53e-06 2.19e-03 -6.8 4.51e+02 - 5.33e-01 1.00e+00F 1\n", - " 87 1.5642809e+01 2.44e-01 1.09e-02 -6.8 2.99e+02 - 1.00e+00 1.00e+00f 1\n", - " 88 1.5765754e+01 1.21e-01 4.72e-03 -6.8 7.16e+02 - 9.65e-01 5.00e-01h 2\n", - " 89 1.5515664e+01 2.32e-01 6.83e-03 -6.8 5.35e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.4486150e+01 7.12e+00 3.22e-01 -4.8 1.11e+05 - 7.34e-01 4.90e-01F 1\n", - " 91 1.4498960e+01 6.85e+00 2.95e-01 -5.1 1.42e+04 - 1.00e+00 3.99e-02h 1\n", - " 92 1.5656825e+01 2.13e-01 3.07e-01 -5.1 1.13e+03 - 1.09e-03 1.00e+00h 1\n", - " 93 1.4065543e+01 2.59e+00 4.12e-01 -5.1 4.41e+05 - 1.92e-01 1.42e-01f 1\n", - " 94 1.4065661e+01 2.59e+00 4.12e-01 -4.6 4.18e+03 - 1.00e+00 1.11e-04h 1\n", - " 95 1.5729365e+01 7.08e-02 8.87e-02 -2.6 1.14e+02 - 4.71e-01 1.00e+00h 1\n", - " 96 1.4410259e+01 2.19e+00 2.95e-01 -1.8 2.97e+04 - 2.41e-01 1.00e+00f 1\n", - " 97 1.3569704e+01 2.38e+00 1.72e-01 -2.5 1.03e+05 - 1.00e+00 3.22e-01f 1\n", - " 98 1.4631083e+01 1.34e+00 3.21e-02 -1.9 3.27e+04 - 6.13e-01 1.00e+00h 1\n", - " 99 1.3401231e+01 1.54e+00 1.35e-01 -2.2 2.77e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.4854124e+01 1.45e+00 9.56e-02 -1.2 3.75e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.4854123820233017e+01 1.4854123820233017e+01\n", - "Dual infeasibility......: 9.5613291895863595e-02 9.5613291895863595e-02\n", - "Constraint violation....: 1.4505788213850224e+00 1.4505788213850224e+00\n", - "Complementarity.........: 6.8348976849602880e-02 6.8348976849602880e-02\n", - "Overall NLP error.......: 1.4505788213850224e+00 1.4505788213850224e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 126\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 126\n", - "Number of inequality constraint evaluations = 126\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.407\n", - "Total CPU secs in NLP function evaluations = 135.573\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 587.00us ( 4.66us) 571.33us ( 4.53us) 126\n", - " nlp_g | 5.68 s ( 45.08ms) 5.42 s ( 43.02ms) 126\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 349.00us ( 3.42us) 341.14us ( 3.34us) 102\n", - " nlp_jac_g | 132.57 s ( 1.30 s) 126.57 s ( 1.24 s) 102\n", - " total | 139.72 s (139.72 s) 133.40 s (133.40 s) 1\n", - "Timestamp 15300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.36e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0048413e+01 1.44e+01 1.36e+03 -1.5 1.36e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 9.3897416e+00 5.31e+00 9.70e+00 0.4 1.44e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.0168420e+01 1.54e+00 5.88e-01 -1.6 8.67e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.1261283e+01 2.82e-03 8.52e-02 -3.4 2.14e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.1262627e+01 1.26e-06 1.57e-03 -5.3 4.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1262629e+01 9.98e-07 1.77e-03 -7.4 3.62e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1262629e+01 6.67e-07 1.24e-04 -9.4 5.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1262628e+01 1.29e-06 2.13e-03 -11.0 8.47e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 1.1262628e+01 1.30e-06 1.49e-03 -11.0 7.78e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1262578e+01 1.46e-05 9.69e-03 -11.0 1.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.1262608e+01 1.68e-05 8.34e-04 -11.0 4.83e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1262625e+01 1.16e-06 1.94e-03 -11.0 1.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1262555e+01 9.55e-05 7.86e-03 -11.0 1.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.1262631e+01 1.01e-06 1.84e-03 -11.0 1.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 1.1262263e+01 3.49e-04 3.27e-03 -11.0 5.25e+00 - 1.00e+00 1.00e+00h 1\n", - " 16 1.1237444e+01 1.67e-02 1.87e-02 -11.0 4.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1249856e+01 4.31e-03 2.37e-03 -11.0 3.95e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 1.1242138e+01 1.41e-02 1.47e-03 -11.0 5.04e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.1094366e+01 7.51e-02 5.29e-03 -11.0 4.77e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.1087790e+01 8.89e-02 4.05e-03 -11.0 2.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.1250660e+01 2.02e-03 7.18e-03 -11.0 8.51e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 1.0599052e+01 3.59e-01 7.48e-02 -9.1 1.17e+05 - 1.00e+00 2.67e-01f 1\n", - " 23 1.0561008e+01 3.69e-01 7.78e-02 -7.1 1.93e+06 - 1.00e+00 1.15e-04f 1\n", - " 24 1.0561302e+01 3.69e-01 7.77e-02 -5.2 2.55e+03 - 1.00e+00 8.76e-04h 1\n", - " 25 1.1009949e+01 1.25e-03 1.80e-02 -7.1 1.09e+01 - 1.00e+00 1.00e+00h 1\n", - " 26 1.1011319e+01 1.11e-04 1.48e-03 -5.2 1.18e+00 - 1.14e-01 1.00e+00h 1\n", - " 27 1.1010953e+01 3.51e-04 2.52e-03 -6.3 7.12e+01 - 1.00e+00 1.61e-02h 1\n", - " 28 1.1011385e+01 8.37e-05 1.29e-03 -7.5 1.29e+00 - 1.00e+00 1.00e+00h 1\n", - " 29 1.1010575e+01 6.15e-04 1.41e-03 -5.5 4.55e+00 - 3.09e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1007376e+01 3.07e-03 1.34e-02 -5.4 1.41e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.0990050e+01 8.11e-03 3.17e-02 -4.0 3.33e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 1.1009288e+01 1.15e-03 2.71e-03 -4.9 4.90e+02 - 1.00e+00 9.54e-01H 1\n", - " 33 1.1009148e+01 1.49e-03 2.66e-03 -5.5 9.22e+02 - 1.00e+00 5.12e-03h 1\n", - " 34 1.1009579e+01 1.49e-03 1.83e-03 -7.7 6.44e+00 - 1.00e+00 1.00e+00h 1\n", - " 35 1.1003219e+01 8.27e-03 4.04e-03 -5.6 4.96e+01 - 3.02e-02 1.00e+00h 1\n", - " 36 1.1003309e+01 8.18e-03 3.95e-03 -5.1 4.26e+01 - 1.00e+00 1.33e-02h 1\n", - " 37 1.0982173e+01 3.74e-02 4.08e-03 -6.1 1.04e+02 - 1.00e+00 1.00e+00h 1\n", - " 38 1.0990365e+01 2.36e-02 5.91e-03 -6.5 1.45e+02 - 6.85e-01 1.00e+00h 1\n", - " 39 1.0619838e+01 3.82e-01 1.79e-02 -6.5 5.98e+02 - 5.44e-03 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.1011223e+01 1.35e-02 3.18e-02 -6.0 1.58e+02 - 1.00e+00 1.00e+00h 1\n", - " 41 1.1004202e+01 1.92e-02 3.02e-02 -5.6 8.35e+03 - 1.00e+00 8.87e-03h 1\n", - " 42 9.6000051e+00 5.62e+00 1.30e+00 -5.6 2.80e+04 - 8.81e-01 1.00e+00f 1\n", - " 43 8.5839996e+00 2.79e+00 3.00e-01 -5.6 2.81e+04 - 1.00e+00 4.69e-01f 1\n", - " 44 1.1508205e+01 1.36e+00 3.60e-01 -5.3 6.26e+03 - 9.12e-01 1.00e+00h 1\n", - " 45 9.1726333e+00 1.35e+00 2.94e-01 -2.0 2.83e+03 - 9.78e-02 1.00e+00f 1\n", - " 46 7.5313836e+00 2.69e+00 2.14e-01 -2.2 1.06e+05 - 1.00e+00 1.18e-01f 1\n", - " 47 1.0317069e+01 6.19e-01 3.38e-01 -1.8 3.32e+04 - 7.02e-01 1.00e+00h 1\n", - " 48 1.0278741e+01 5.91e-01 3.05e-01 -1.6 2.71e+04 - 1.00e+00 1.34e-01H 1\n", - " 49 1.1072848e+01 1.58e-01 5.44e-02 -1.9 1.13e+04 - 3.48e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 9.7677329e+00 3.08e+00 2.52e-01 -1.9 5.01e+04 - 7.89e-01 1.00e+00f 1\n", - " 51 9.8908780e+00 3.80e+00 1.78e-01 -1.9 3.64e+04 - 2.49e-01 2.49e-01s 20\n", - " 52r 9.8908780e+00 3.80e+00 9.99e+02 0.6 0.00e+00 - 0.00e+00 0.00e+00R 1\n", - " 53r 1.1066620e+01 3.16e-01 9.95e+02 1.3 8.24e+02 - 9.28e-01 4.57e-03f 1\n", - " 54 1.0587599e+01 1.22e+00 9.96e-02 -1.9 1.28e+04 - 2.25e-01 1.00e+00h 1\n", - " 55 9.9937653e+00 2.88e+00 1.63e-01 -1.9 2.48e+04 - 8.45e-01 1.00e+00H 1\n", - " 56 9.7370952e+00 3.09e+00 1.44e-01 -1.9 2.25e+04 - 6.91e-02 2.13e-01h 1\n", - " 57 1.1156432e+01 3.36e-03 3.46e+00 -1.9 3.78e+00 - 1.00e+00 1.00e+00h 1\n", - " 58 1.1158094e+01 2.03e-06 2.08e-03 -1.9 8.48e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.1158096e+01 3.56e-07 2.23e-04 -4.0 1.55e-03 - 9.98e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.1158085e+01 5.30e-06 1.92e-03 -9.9 1.26e-02 - 9.99e-01 1.00e+00h 1\n", - " 61 1.1158083e+01 5.13e-06 1.67e-03 -9.0 1.40e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 1.1158095e+01 7.19e-08 2.16e-04 -11.0 1.95e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 1.1158096e+01 4.20e-08 8.33e-05 -11.0 1.09e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 1.1158096e+01 1.54e-08 1.83e-04 -11.0 1.00e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 1.1158096e+01 2.93e-08 9.86e-05 -11.0 7.08e-05 - 1.00e+00 1.00e+00h 1\n", - " 66 1.1158096e+01 6.32e-09 6.05e-05 -11.0 6.13e-05 - 1.00e+00 1.00e+00h 1\n", - " 67 1.1158096e+01 4.75e-08 5.52e-05 -11.0 1.37e-04 - 1.00e+00 1.00e+00h 1\n", - " 68 1.1158096e+01 3.72e-09 1.18e-04 -11.0 2.73e-05 - 1.00e+00 1.00e+00h 1\n", - " 69 1.1158096e+01 7.68e-09 5.43e-05 -11.0 2.86e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1158096e+01 4.82e-11 8.60e-05 -11.0 5.39e-05 - 1.00e+00 1.00e+00H 1\n", - " 71 1.1158096e+01 1.41e-09 1.75e-04 -11.0 3.28e-05 - 1.00e+00 1.00e+00h 1\n", - " 72 1.1158095e+01 1.29e-07 5.35e-05 -11.0 4.45e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 1.1158096e+01 1.66e-08 1.05e-04 -11.0 1.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 74 1.1158095e+01 3.38e-08 6.31e-05 -11.0 3.35e-04 - 1.00e+00 1.00e+00h 1\n", - " 75 1.1158096e+01 1.84e-08 1.68e-04 -11.0 1.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 76 1.1158096e+01 2.43e-08 1.71e-05 -11.0 1.31e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 1.1158096e+01 5.18e-10 1.21e-04 -11.0 1.67e-05 - 1.00e+00 1.00e+00h 1\n", - " 78 1.1158096e+01 1.89e-08 6.58e-05 -11.0 1.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 79 1.1158096e+01 8.27e-09 7.41e-05 -11.0 8.11e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.1157948e+01 4.50e-05 3.22e-02 -11.0 7.58e-01 - 1.00e+00 1.00e+00f 1\n", - " 81 1.1158070e+01 2.57e-08 3.61e-05 -11.0 2.47e-01 - 1.00e+00 1.00e+00H 1\n", - " 82 1.1157841e+01 1.03e-03 2.21e-03 -11.0 4.47e+00 - 1.00e+00 1.00e+00h 1\n", - " 83 1.1156548e+01 5.93e-04 1.40e-02 -11.0 1.13e+01 - 1.00e+00 1.00e+00h 1\n", - " 84 1.1151802e+01 5.96e-03 1.26e-02 -11.0 7.16e+01 - 9.10e-01 1.00e+00h 1\n", - " 85 1.1090139e+01 3.89e-02 4.04e-02 -11.0 2.42e+02 - 1.00e+00 1.00e+00h 1\n", - " 86 1.1051987e+01 4.55e-02 4.31e-02 -11.0 3.15e+02 - 6.87e-01 7.30e-01h 1\n", - " 87 1.1142157e+01 3.61e-05 8.22e-02 -11.0 8.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 88 1.1142195e+01 1.62e-07 3.64e-04 -4.0 2.32e-03 - 9.91e-01 1.00e+00h 1\n", - " 89 1.1142187e+01 1.31e-05 2.78e-03 -5.2 1.31e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.1142193e+01 1.54e-06 9.06e-04 -7.3 5.51e-03 - 1.00e+00 1.00e+00h 1\n", - " 91 1.1142195e+01 1.02e-07 1.08e-04 -9.2 2.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 1.1141458e+01 2.68e-03 1.27e-02 -8.6 5.77e+00 - 1.00e+00 1.00e+00f 1\n", - " 93 1.1140556e+01 5.77e-04 1.54e-03 -8.6 4.16e+00 - 1.00e+00 1.00e+00h 1\n", - " 94 1.1142096e+01 3.69e-05 2.84e-03 -8.6 6.75e-01 - 1.00e+00 1.00e+00h 1\n", - " 95 1.1142141e+01 2.71e-05 2.28e-03 -11.0 7.15e-01 - 1.00e+00 1.00e+00h 1\n", - " 96 1.1141993e+01 4.52e-05 2.31e-03 -9.4 4.17e-01 - 1.00e+00 1.00e+00h 1\n", - " 97 1.1140182e+01 7.42e-04 1.18e-02 -9.6 5.31e+00 - 1.00e+00 1.00e+00h 1\n", - " 98 1.1137546e+01 5.03e-03 5.42e-03 -9.7 2.10e+01 - 1.00e+00 1.00e+00h 1\n", - " 99 1.1137404e+01 5.29e-03 1.93e-03 -9.7 2.99e+01 - 9.53e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.1138955e+01 1.60e-03 2.22e-03 -9.7 1.03e+01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.1138954682752315e+01 1.1138954682752315e+01\n", - "Dual infeasibility......: 2.2185695594880706e-03 2.2185695594880706e-03\n", - "Constraint violation....: 1.6009907982663663e-03 1.6009907982663663e-03\n", - "Complementarity.........: 1.9632553669924947e-10 1.9632553669924947e-10\n", - "Overall NLP error.......: 2.2185695594880706e-03 2.2185695594880706e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 127\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 127\n", - "Number of inequality constraint evaluations = 127\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.419\n", - "Total CPU secs in NLP function evaluations = 136.870\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 575.00us ( 4.53us) 562.99us ( 4.43us) 127\n", - " nlp_g | 5.69 s ( 44.80ms) 5.43 s ( 42.74ms) 127\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 372.00us ( 3.65us) 368.99us ( 3.62us) 102\n", - " nlp_jac_g | 134.02 s ( 1.30 s) 127.99 s ( 1.24 s) 103\n", - " total | 141.20 s (141.20 s) 134.84 s (134.84 s) 1\n", - "Timestamp 15600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.53e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0175495e+01 1.30e+01 1.53e+04 -1.5 1.53e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.1267675e+00 4.56e+00 6.75e+00 0.6 8.25e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 3.5213838e+00 7.89e-01 7.25e-01 -1.5 2.39e+01 - 9.97e-01 1.00e+00f 1\n", - " 4 4.0215671e+00 3.79e-03 2.17e-01 -3.2 1.30e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 4.0231285e+00 4.29e-06 8.76e-04 -5.1 9.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 4.0231298e+00 2.85e-06 6.71e-04 -7.2 1.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 4.0231322e+00 9.33e-07 1.21e-03 -9.3 3.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 4.0231248e+00 2.46e-05 1.68e-03 -11.0 4.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 4.0231318e+00 1.53e-06 1.25e-03 -11.0 1.94e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.0231323e+00 9.62e-07 8.12e-04 -11.0 7.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 4.0231331e+00 1.91e-07 9.81e-05 -11.0 5.12e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 4.0231217e+00 1.49e-05 3.31e-03 -11.0 5.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 4.0231304e+00 6.58e-06 1.38e-03 -11.0 2.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 4.0231252e+00 1.05e-05 1.73e-03 -11.0 5.88e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 4.0230693e+00 1.67e-04 3.06e-03 -11.0 6.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 4.0228549e+00 3.56e-04 9.12e-04 -11.0 3.08e+00 - 1.00e+00 1.00e+00h 1\n", - " 17 4.0230166e+00 1.04e-04 9.30e-04 -11.0 8.12e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 4.0215296e+00 3.78e-03 4.97e-03 -11.0 1.87e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 4.0222711e+00 5.15e-04 1.95e-03 -11.0 8.91e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.6842002e+00 1.82e+00 4.90e-01 -10.6 7.08e+04 - 1.00e+00 1.11e-01f 3\n", - " 21 4.7850818e+00 1.58e+00 4.27e-01 -10.8 6.92e+04 - 3.61e-01 4.60e-01H 1\n", - " 22 3.9910298e+00 4.14e-01 3.16e-01 -10.8 1.11e+04 - 1.09e-10 1.00e+00h 1\n", - " 23 3.8537757e+00 6.20e-01 7.65e-02 -8.8 3.06e+04 - 1.00e+00 3.60e-01h 1\n", - " 24 3.8537628e+00 6.23e-01 7.65e-02 -6.8 3.07e+05 - 1.00e+00 3.59e-04h 1\n", - " 25 3.9994330e+00 6.29e-02 1.49e-01 -5.7 1.16e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 3.9105456e+00 1.52e-01 1.02e-01 -4.3 1.29e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 3.5954803e+00 1.76e+00 5.88e-01 -3.1 1.73e+06 - 1.00e+00 1.73e-02f 2\n", - " 28 5.1994113e+00 8.98e-01 2.91e-01 -3.2 1.72e+05 - 2.36e-01 6.39e-02h 2\n", - " 29 4.2351362e+00 1.71e+00 1.90e-01 -3.2 1.65e+04 - 8.13e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.1016269e+00 1.45e+00 1.39e-01 -3.2 6.66e+04 - 7.33e-01 1.26e-01h 1\n", - " 31 3.3163200e+00 3.79e-01 2.30e-01 -3.2 3.40e+03 - 1.00e+00 1.00e+00h 1\n", - " 32 4.3434040e+00 7.40e-02 2.24e-01 -1.8 1.82e+04 - 1.21e-01 1.00e+00H 1\n", - " 33 3.9113992e+00 1.40e+00 2.29e-01 -2.8 1.62e+06 - 1.26e-02 2.67e-02f 1\n", - " 34 3.7243806e+00 1.20e+00 1.46e-01 -2.8 2.43e+04 - 1.00e+00 1.00e+00h 1\n", - " 35 3.5937762e+00 1.72e+00 3.42e-01 -2.8 1.16e+04 - 1.00e+00 1.00e+00f 1\n", - " 36 3.1025059e+00 1.11e+00 3.59e-01 -2.8 7.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 3.2667889e+00 6.50e-01 3.22e-01 -1.4 1.31e+04 - 1.00e+00 9.73e-01h 1\n", - " 38 3.2856769e+00 1.69e+00 3.31e-01 -1.5 9.31e+03 - 7.06e-01 1.00e+00f 1\n", - " 39 2.9037679e+00 1.58e+00 3.67e-01 -1.6 2.29e+04 - 1.00e+00 4.38e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.1058034e+00 7.45e-01 1.69e-01 -3.6 1.22e+04 - 3.70e-01 1.00e+00h 1\n", - " 41 3.1153224e+00 7.25e-01 1.55e-01 -2.1 4.32e+04 - 1.42e-01 9.98e-01f 1\n", - " 42 3.2768932e+00 1.30e+00 1.31e-01 -2.2 1.54e+04 - 1.75e-01 1.00e+00H 1\n", - " 43 3.2679878e+00 1.33e+00 1.42e-01 -2.2 2.28e+05 - 2.94e-01 1.96e-02h 4\n", - " 44 3.9657735e+00 5.74e-01 5.37e-01 -2.2 8.83e+04 - 1.00e+00 3.54e-01h 1\n", - " 45 3.6694929e+00 9.06e-01 5.39e-01 -2.2 3.05e+04 - 4.72e-01 2.50e-01f 3\n", - " 46 3.0533996e+00 1.68e+00 7.28e-01 -2.2 1.78e+04 - 4.17e-01 1.00e+00F 1\n", - " 47 3.3600990e+00 2.09e+00 8.48e-01 -2.0 1.37e+05 - 1.00e+00 3.59e-01H 1\n", - " 48 3.1241378e+00 1.40e+00 6.22e-01 -2.1 1.94e+04 - 8.74e-01 3.22e-01h 1\n", - " 49 3.5472184e+00 5.50e-02 4.74e-01 -2.1 3.61e+03 - 2.69e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.4923488e+00 1.70e+00 3.10e-01 -3.3 2.96e+04 - 7.97e-01 5.00e-01f 2\n", - " 51 3.4259027e+00 1.67e+00 1.78e-01 -2.9 4.42e+04 - 1.04e-01 7.29e-01H 1\n", - " 52 3.1621371e+00 9.18e-01 3.88e-01 -2.9 4.73e+04 - 7.26e-03 6.31e-01h 1\n", - " 53 3.1458551e+00 2.19e+00 7.48e-01 -2.9 2.05e+05 - 3.16e-01 7.30e-02f 2\n", - " 54 3.5595080e+00 2.11e-01 7.25e-01 -2.9 1.57e+04 - 7.64e-01 1.00e+00h 1\n", - " 55 2.6181109e+00 1.45e+00 5.48e-01 -2.9 9.98e+03 - 5.78e-01 1.00e+00f 1\n", - " 56 2.6753344e+00 9.86e-01 1.49e-01 -1.4 3.16e+04 - 1.00e+00 6.47e-01h 1\n", - " 57 2.4716120e+00 9.89e-01 2.43e-01 -2.2 1.06e+04 - 3.52e-01 1.00e+00h 1\n", - " 58 2.8075941e+00 1.04e+00 1.36e-01 -1.6 1.29e+04 - 4.05e-01 5.91e-01H 1\n", - " 59 2.8998844e+00 7.29e-01 8.22e-02 -2.5 5.40e+03 - 9.07e-01 5.91e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.9904653e+00 1.21e+00 4.70e-01 -8.5 7.78e+03 - 3.19e-01 1.00e+00h 1\n", - " 61 3.7117769e+00 3.36e-01 3.75e-01 -2.8 9.69e+04 - 2.10e-02 1.27e-01f 1\n", - " 62 3.3412706e+00 1.22e+00 1.75e-01 -2.8 4.32e+04 - 8.44e-01 3.91e-01f 1\n", - " 63 3.2974263e+00 9.55e-01 1.64e-01 -2.8 2.45e+03 - 6.93e-01 1.00e+00h 1\n", - " 64 3.2123879e+00 1.20e+00 5.21e-01 -2.8 1.08e+04 - 1.00e+00 8.06e-01h 1\n", - " 65 2.9753680e+00 7.78e-01 1.70e-01 -2.8 1.04e+04 - 5.50e-01 1.00e+00h 1\n", - " 66 2.9769618e+00 7.49e-01 1.64e-01 -3.0 3.79e+03 - 3.62e-01 3.12e-02h 6\n", - " 67 2.9619500e+00 7.17e-01 1.58e-01 -2.0 9.23e+03 - 1.00e+00 5.25e-02h 1\n", - " 68 3.3184187e+00 1.37e-02 8.27e-01 -3.9 8.45e-01 - 1.00e+00 1.00e+00h 1\n", - " 69 3.3252956e+00 3.19e-06 3.37e-03 -5.8 2.49e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 3.3252961e+00 1.18e-07 1.17e-05 -7.9 3.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 3.3252961e+00 1.72e-08 8.02e-05 -11.0 1.03e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 3.3252961e+00 2.19e-08 5.26e-05 -11.0 1.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 3.3252961e+00 6.01e-08 1.33e-04 -11.0 1.91e-04 - 1.00e+00 1.00e+00h 1\n", - " 74 3.3252961e+00 1.08e-10 1.30e-04 -11.0 1.53e-04 - 1.00e+00 1.00e+00H 1\n", - " 75 3.3252961e+00 1.33e-08 9.24e-05 -11.0 7.12e-05 - 1.00e+00 1.00e+00h 1\n", - " 76 3.3252961e+00 9.87e-08 5.15e-05 -11.0 4.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 3.3252960e+00 1.64e-07 2.99e-05 -11.0 8.45e-04 - 1.00e+00 1.00e+00h 1\n", - " 78 3.3252961e+00 6.42e-09 1.07e-05 -11.0 9.06e-05 - 1.00e+00 1.00e+00h 1\n", - " 79 3.3252961e+00 8.46e-08 1.27e-04 -11.0 1.23e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 3.3252951e+00 7.70e-07 1.28e-02 -11.0 5.46e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 3.3252960e+00 6.57e-08 6.89e-05 -11.0 1.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 82 3.3252959e+00 1.87e-07 4.83e-05 -11.0 8.44e-04 - 1.00e+00 1.00e+00h 1\n", - " 83 3.3252956e+00 6.23e-07 2.30e-03 -11.0 2.33e-03 - 1.00e+00 1.00e+00h 1\n", - " 84 3.3252959e+00 1.04e-07 6.95e-05 -11.0 2.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 3.3252957e+00 2.88e-07 5.53e-05 -11.0 1.34e-03 - 1.00e+00 1.00e+00h 1\n", - " 86 3.3252958e+00 8.04e-08 6.82e-05 -11.0 1.86e-03 - 1.00e+00 1.00e+00h 1\n", - " 87 3.3252956e+00 2.46e-07 1.03e-04 -11.0 3.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 88 3.3252957e+00 1.42e-07 1.91e-05 -11.0 9.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 89 3.3252960e+00 3.92e-11 4.74e-05 -11.0 2.52e-03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 3.3252958e+00 5.08e-07 3.04e-05 -11.0 5.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 91 3.3252960e+00 1.34e-10 4.42e-05 -11.0 3.19e-03 - 1.00e+00 1.00e+00H 1\n", - " 92 3.3252956e+00 1.21e-06 1.68e-03 -11.0 1.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 93 3.3252959e+00 1.19e-07 1.41e-04 -11.0 1.42e-02 - 1.00e+00 1.00e+00h 1\n", - " 94 3.3252954e+00 2.94e-07 1.70e-05 -11.0 4.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 95 3.3252958e+00 3.95e-07 7.73e-05 -11.0 1.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 96 3.3252949e+00 3.19e-06 1.37e-03 -11.0 2.86e-02 - 1.00e+00 1.00e+00h 1\n", - " 97 3.3252953e+00 1.87e-06 8.69e-04 -11.0 1.40e-02 - 1.00e+00 1.00e+00h 1\n", - " 98 3.3252900e+00 2.36e-05 2.44e-03 -11.0 2.12e-01 - 1.00e+00 1.00e+00h 1\n", - " 99 3.3252782e+00 1.27e-04 3.93e-03 -11.0 3.57e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 3.3252204e+00 2.52e-04 8.78e-03 -11.0 7.39e-01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 3.3252204146192668e+00 3.3252204146192668e+00\n", - "Dual infeasibility......: 8.7787792406257836e-03 8.7787792406257836e-03\n", - "Constraint violation....: 2.5158088865850914e-04 2.5158088865850914e-04\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 8.7787792406257836e-03 8.7787792406257836e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 146\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 146\n", - "Number of inequality constraint evaluations = 146\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.428\n", - "Total CPU secs in NLP function evaluations = 136.312\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 665.00us ( 4.55us) 664.30us ( 4.55us) 146\n", - " nlp_g | 6.55 s ( 44.86ms) 6.25 s ( 42.79ms) 146\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 370.00us ( 3.63us) 370.99us ( 3.64us) 102\n", - " nlp_jac_g | 132.44 s ( 1.30 s) 126.45 s ( 1.24 s) 102\n", - " total | 140.48 s (140.48 s) 134.12 s (134.12 s) 1\n", - "Timestamp 15900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0580653e+01 1.26e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.6566941e+00 4.50e+00 4.97e+00 1.0 5.78e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.2908760e+00 5.35e-01 5.05e-01 -1.1 1.91e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 8.2939578e-01 3.11e-03 9.26e-01 -3.1 1.52e+01 - 9.95e-01 1.00e+00h 1\n", - " 5 8.2965571e-01 6.07e-05 2.88e-03 -4.5 4.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 8.2962246e-01 1.22e-04 1.74e-03 -6.6 1.04e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 8.2964594e-01 9.15e-05 1.12e-03 -8.7 9.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 8.2906567e-01 1.75e-03 8.95e-03 -11.0 4.46e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 8.1668856e-01 7.71e-02 1.46e-01 -11.0 1.18e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 8.2986215e-01 8.71e-03 7.74e-02 -11.0 1.64e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 8.2522632e-01 5.72e-03 1.96e-02 -11.0 6.36e+01 - 1.00e+00 1.00e+00h 1\n", - " 12 8.2922548e-01 4.37e-03 3.91e-02 -11.0 1.22e+02 - 1.00e+00 1.00e+00H 1\n", - " 13 8.4378130e-01 5.14e-03 5.32e-02 -11.0 8.50e+02 - 1.00e+00 1.00e+00H 1\n", - " 14 8.1344476e-01 6.17e-02 1.29e-01 -11.0 7.96e+02 - 1.00e+00 1.00e+00h 1\n", - " 15 8.0595971e-01 1.09e-01 1.19e-01 -11.0 5.67e+02 - 1.00e+00 1.00e+00h 1\n", - " 16 8.4210514e-01 1.54e-02 2.25e-01 -11.0 2.25e+02 - 1.00e+00 1.00e+00h 1\n", - " 17 8.4168033e-01 1.03e-01 1.34e-01 -11.0 2.37e+03 - 1.00e+00 5.00e-01h 2\n", - " 18 8.2713908e-01 1.22e-01 1.55e-01 -11.0 7.05e+05 - 4.32e-02 2.88e-03f 5\n", - " 19 7.9875414e-01 1.33e-01 1.12e-01 -11.0 3.10e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.3419714e-01 5.10e-02 1.73e-01 -11.0 2.19e+03 - 1.00e+00 1.00e+00h 1\n", - " 21 8.2399230e-01 6.85e-02 1.55e-01 -11.0 5.29e+03 - 1.00e+00 5.00e-01h 2\n", - " 22 8.5341327e-01 3.88e-02 3.62e-01 -11.0 9.47e+03 - 1.00e+00 1.00e+00H 1\n", - " 23 8.5188285e-01 5.04e-02 3.60e-01 -11.0 6.75e+04 - 5.53e-01 3.11e-03h 8\n", - " 24 8.4374101e-01 5.59e-02 3.14e-01 -11.0 2.43e+03 - 1.00e+00 6.25e-02h 5\n", - " 25 8.1286559e-01 2.31e-01 2.53e-01 -11.0 6.84e+04 - 4.29e-01 1.32e-01h 3\n", - " 26 8.2733666e-01 8.41e-04 2.02e-01 -11.0 2.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 8.2732501e-01 3.87e-08 3.33e-06 -11.0 8.47e-04 - 1.00e+00 1.00e+00h 1\n", - " 28 8.2732502e-01 4.16e-10 4.66e-05 -11.0 4.24e-06 - 1.00e+00 1.00e+00h 1\n", - " 29 8.2732502e-01 4.17e-10 4.37e-05 -11.0 1.74e-06 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.2732502e-01 2.37e-09 1.40e-05 -11.0 5.19e-06 - 1.00e+00 1.00e+00h 1\n", - " 31 8.2732502e-01 7.98e-10 1.20e-05 -11.0 3.24e-06 - 1.00e+00 1.00e+00h 1\n", - " 32 8.2732502e-01 1.65e-10 4.37e-06 -11.0 1.07e-06 - 1.00e+00 1.00e+00h 1\n", - " 33 8.2732502e-01 1.17e-10 1.71e-05 -11.0 6.16e-07 - 1.00e+00 1.00e+00h 1\n", - " 34 8.2732203e-01 1.82e-05 2.28e-02 -11.0 2.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 35 8.2725697e-01 1.74e-04 1.09e-01 -11.0 1.19e+00 - 1.00e+00 1.00e+00h 1\n", - " 36 8.2731253e-01 1.89e-05 3.89e-04 -11.0 3.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 37 8.2731939e-01 1.77e-05 4.27e-04 -11.0 9.65e-02 - 1.00e+00 1.00e+00h 1\n", - " 38 8.2731415e-01 3.15e-05 3.67e-04 -11.0 2.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 39 8.2730243e-01 6.36e-05 2.02e-04 -11.0 1.84e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.2731935e-01 8.01e-07 3.06e-04 -11.0 3.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 41 8.2731849e-01 3.20e-06 2.27e-04 -11.0 2.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 42 8.2731695e-01 7.05e-06 1.89e-04 -11.0 4.39e-02 - 1.00e+00 1.00e+00h 1\n", - " 43 8.2731790e-01 4.09e-06 2.77e-04 -11.0 3.50e-02 - 1.00e+00 1.00e+00h 1\n", - " 44 8.2731989e-01 2.23e-09 4.08e-05 -11.0 2.18e-02 - 1.00e+00 1.00e+00H 1\n", - " 45 8.2731892e-01 1.31e-06 1.55e-04 -11.0 1.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 8.2731975e-01 3.32e-07 3.06e-05 -11.0 2.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 47 8.2731838e-01 5.63e-06 6.53e-04 -11.0 1.46e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 8.2731969e-01 4.04e-07 6.80e-06 -11.0 3.77e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 8.2731979e-01 6.74e-08 4.92e-06 -11.0 1.20e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.2731983e-01 4.88e-11 1.38e-05 -11.0 1.95e-03 - 1.00e+00 1.00e+00H 1\n", - " 51 8.2731973e-01 2.73e-07 8.86e-06 -11.0 1.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 52 8.2731982e-01 4.08e-08 2.46e-05 -11.0 5.94e-04 - 1.00e+00 1.00e+00h 1\n", - " 53 8.2731973e-01 2.48e-07 1.01e-05 -11.0 1.97e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 8.2731970e-01 6.76e-07 2.22e-04 -11.0 4.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 55 8.2731977e-01 7.57e-08 4.78e-05 -11.0 2.59e-03 - 1.00e+00 1.00e+00h 1\n", - " 56 8.2731965e-01 3.39e-07 4.15e-05 -11.0 2.34e-03 - 1.00e+00 1.00e+00h 1\n", - " 57 8.2731976e-01 6.99e-08 2.50e-05 -11.0 6.25e-04 - 1.00e+00 1.00e+00h 1\n", - " 58 8.2731978e-01 1.21e-07 3.74e-05 -11.0 3.74e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 8.2731977e-01 4.69e-08 2.96e-05 -11.0 4.43e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.2731974e-01 1.03e-07 1.61e-05 -11.0 1.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 8.2731980e-01 1.02e-10 2.13e-05 -11.0 1.79e-03 - 1.00e+00 1.00e+00H 1\n", - " 62 8.2731829e-01 4.49e-06 2.34e-03 -11.0 6.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 63 8.2731944e-01 1.64e-06 4.82e-04 -11.0 4.81e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 8.2732005e-01 2.91e-10 1.36e-05 -11.0 7.23e-02 - 1.00e+00 1.00e+00H 1\n", - " 65 8.2732014e-01 6.75e-11 9.10e-06 -11.0 1.37e-01 - 1.00e+00 1.00e+00H 1\n", - " 66 8.2732010e-01 8.72e-11 2.21e-05 -11.0 8.94e-02 - 1.00e+00 1.00e+00H 1\n", - " 67 8.2731935e-01 2.19e-06 1.62e-04 -11.0 3.33e-01 - 1.00e+00 1.00e+00h 1\n", - " 68 8.2721485e-01 2.08e-04 4.47e-04 -11.0 1.70e+01 - 1.00e+00 1.00e+00h 1\n", - " 69 8.2717656e-01 8.94e-04 1.58e-03 -11.0 1.23e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.2731490e-01 2.14e-04 1.52e-03 -11.0 3.56e+00 - 1.00e+00 1.00e+00h 1\n", - " 71 8.2654138e-01 1.63e-02 1.07e-02 -11.0 4.51e+02 - 1.00e+00 1.00e+00h 1\n", - " 72 8.2467715e-01 2.24e-02 4.11e-02 -11.0 3.01e+02 - 1.00e+00 1.00e+00h 1\n", - " 73 8.2619675e-01 1.03e-02 3.92e-02 -11.0 3.26e+03 - 1.00e+00 1.00e+00h 1\n", - " 74 8.2604271e-01 1.19e-02 1.48e-02 -9.0 5.81e+05 - 1.00e+00 3.16e-04h 8\n", - " 75 8.2595989e-01 2.52e-02 6.91e-03 -7.0 1.31e+06 - 1.00e+00 2.22e-03h 4\n", - " 76 8.2258645e-01 2.17e-02 2.68e-02 -7.1 8.62e+03 - 1.00e+00 1.00e+00h 1\n", - " 77 8.1895952e-01 9.26e-02 5.29e-02 -8.4 1.28e+03 - 1.00e+00 1.00e+00h 1\n", - " 78 8.1005909e-01 2.47e-01 2.10e-01 -8.5 1.98e+06 - 1.81e-02 3.54e-03f 3\n", - " 79 8.8010998e-01 2.97e-01 3.08e-01 -8.5 1.07e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.5375236e-01 3.26e-01 3.51e-01 -8.5 3.79e+03 - 1.00e+00 1.00e+00H 1\n", - " 81 8.4832291e-01 3.53e-01 3.50e-01 -8.5 1.35e+06 - 8.28e-03 1.20e-03h 6\n", - " 82 8.4325456e-01 3.66e-01 3.40e-01 -8.5 1.29e+05 - 3.68e-01 1.56e-03h 7\n", - " 83 8.0552970e-01 2.68e-01 1.88e-01 -8.5 3.52e+05 - 5.01e-01 3.59e-02h 1\n", - " 84 8.2535107e-01 1.23e-01 6.37e-02 -8.5 5.78e+02 - 1.00e+00 1.00e+00h 1\n", - " 85 8.0969100e-01 1.87e-02 5.33e-02 -8.5 1.37e+02 - 1.00e+00 1.00e+00h 1\n", - " 86 8.0430991e-01 6.29e-02 8.27e-02 -4.1 2.20e+02 - 8.13e-01 1.00e+00h 1\n", - " 87 8.0610812e-01 3.42e-02 4.90e-02 -2.7 5.59e+02 - 1.00e+00 1.00e+00h 1\n", - " 88 8.0870932e-01 2.98e-02 3.98e-02 -8.7 1.32e+02 - 8.89e-01 1.00e+00H 1\n", - " 89 8.0452653e-01 2.01e-01 1.48e-01 -4.1 1.09e+03 - 1.00e+00 4.80e-01H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.1172198e-01 5.40e-02 2.05e-01 -4.3 1.76e+03 - 1.00e+00 1.00e+00H 1\n", - " 91 8.1175331e-01 4.73e-02 1.77e-01 -4.3 9.14e+03 - 1.00e+00 1.56e-02h 7\n", - " 92 8.1140903e-01 3.40e-02 1.09e-01 -4.3 4.67e+02 - 1.00e+00 2.50e-01h 3\n", - " 93 8.0337501e-01 5.08e-02 5.32e-02 -4.3 1.12e+02 - 6.81e-01 1.00e+00h 1\n", - " 94 8.0330314e-01 5.10e-02 5.35e-02 -3.7 9.36e+03 - 1.00e+00 3.37e-04h 3\n", - " 95 8.0553410e-01 1.80e-02 8.81e-02 -5.4 3.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 96 8.0662339e-01 2.82e-02 6.05e-02 -5.4 9.23e+01 - 1.00e+00 1.00e+00h 1\n", - " 97 8.0678959e-01 2.06e-02 3.54e-02 -5.9 2.70e+02 - 1.00e+00 4.94e-01H 1\n", - " 98 8.0678059e-01 8.18e-03 1.80e-02 -4.5 1.98e+01 - 9.27e-01 1.00e+00h 1\n", - " 99 8.0786588e-01 5.45e-03 1.13e-02 -4.4 4.21e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.0656827e-01 9.40e-03 1.08e-02 -5.9 2.97e+01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.0656826907719037e-01 8.0656826907719037e-01\n", - "Dual infeasibility......: 1.0848653708706288e-02 1.0848653708706288e-02\n", - "Constraint violation....: 9.4046919403574236e-03 9.4046919403574236e-03\n", - "Complementarity.........: 3.0623399824778537e-04 3.0623399824778537e-04\n", - "Overall NLP error.......: 1.0848653708706288e-02 1.0848653708706288e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 195\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 195\n", - "Number of inequality constraint evaluations = 195\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.484\n", - "Total CPU secs in NLP function evaluations = 138.523\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 902.00us ( 4.63us) 902.05us ( 4.63us) 195\n", - " nlp_g | 8.85 s ( 45.36ms) 8.45 s ( 43.32ms) 195\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 372.00us ( 3.65us) 363.69us ( 3.57us) 102\n", - " nlp_jac_g | 132.63 s ( 1.30 s) 126.65 s ( 1.24 s) 102\n", - " total | 142.98 s (142.98 s) 136.52 s (136.52 s) 1\n", - "Timestamp 16200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.29e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9584473e+01 1.37e+01 1.29e+03 -1.5 1.29e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.4197694e+00 4.79e+00 9.94e+00 0.4 1.37e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 9.5157749e+00 1.30e+00 6.42e-01 -1.6 8.45e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.0470792e+01 1.78e-03 8.11e-02 -3.4 1.78e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.0471676e+01 1.09e-07 1.54e-04 -5.3 1.78e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.0471674e+01 1.34e-06 1.78e-03 -11.0 8.82e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.0471674e+01 7.79e-07 2.01e-03 -11.0 4.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.0471676e+01 1.03e-07 5.70e-05 -11.0 1.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 1.0471638e+01 1.22e-05 5.20e-03 -11.0 1.93e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.0471624e+01 2.71e-05 2.26e-03 -11.0 1.26e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.0471673e+01 9.10e-07 1.70e-03 -11.0 1.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.0471486e+01 6.80e-05 9.48e-03 -11.0 2.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.0471390e+01 1.06e-04 1.80e-02 -11.0 5.60e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.0471624e+01 1.58e-05 2.41e-03 -11.0 1.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.0471578e+01 7.12e-05 2.58e-03 -11.0 4.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.0471572e+01 6.37e-05 4.62e-03 -11.0 4.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.0471603e+01 4.23e-05 3.62e-03 -11.0 7.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 1.0471570e+01 1.42e-04 1.04e-03 -11.0 1.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 1.0459620e+01 1.84e-02 8.80e-03 -11.0 1.15e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.0445673e+01 2.28e-02 1.36e-02 -11.0 1.69e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.0463883e+01 1.85e-02 1.77e-03 -11.0 1.24e+02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.0452594e+01 1.31e-02 1.63e-03 -11.0 9.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 8.5434682e+00 2.97e+00 2.71e-01 -11.0 1.09e+04 - 1.00e+00 1.00e+00f 1\n", - " 24 7.6382495e+00 6.96e+00 8.24e-01 -11.0 1.70e+04 - 1.00e+00 1.00e+00f 1\n", - " 25 8.0634593e+00 7.10e+00 5.87e-01 -9.1 8.38e+03 - 1.00e+00 4.68e-01h 1\n", - " 26 9.7806392e+00 1.42e+00 7.27e-01 -9.3 5.33e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 8.5479553e+00 5.34e+00 2.20e-01 -9.4 2.89e+04 - 1.09e-03 1.00e+00f 1\n", - " 28 7.8995150e+00 5.10e+00 4.78e-01 -9.4 5.49e+05 - 2.68e-02 5.00e-02f 2\n", - " 29 7.7372207e+00 4.05e+00 4.66e-01 -7.4 1.11e+05 - 1.00e+00 2.86e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 7.7349832e+00 4.06e+00 4.66e-01 -5.4 5.03e+06 - 2.41e-02 4.94e-05h 1\n", - " 31 7.7348510e+00 4.06e+00 4.66e-01 -4.9 3.86e+05 - 1.00e+00 2.38e-05h 1\n", - " 32 6.8101865e+00 3.90e+00 2.08e-01 -10.9 1.41e+06 - 2.46e-03 4.17e-02f 1\n", - " 33 7.8342419e+00 3.63e+00 4.75e-01 -11.0 8.59e+04 - 6.81e-03 7.19e-01h 1\n", - " 34 1.0173265e+01 8.25e-02 4.72e-01 -6.3 3.81e+03 - 1.00e+00 1.00e+00h 1\n", - " 35 9.8495745e+00 7.94e-01 1.52e-01 -5.7 6.21e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 8.3017278e+00 1.84e+00 3.16e-01 -3.7 3.08e+04 - 3.04e-01 1.00e+00f 1\n", - " 37 1.0325037e+01 8.39e-01 1.13e-01 -10.1 5.65e+04 - 4.72e-03 1.00e+00H 1\n", - " 38 6.3577747e+00 2.26e+00 3.82e-01 -4.3 1.34e+04 - 6.98e-01 1.00e+00f 1\n", - " 39 1.1015821e+01 2.32e-01 3.84e-01 -4.4 5.50e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.2984262e+00 8.15e-01 3.82e-01 -4.6 4.37e+05 - 7.57e-02 5.35e-02f 1\n", - " 41 1.1299014e+01 2.38e-01 1.12e-01 -5.5 6.22e+04 - 8.60e-06 1.00e+00H 1\n", - " 42 8.5389147e+00 1.14e+00 1.30e-01 -4.5 1.17e+04 - 1.00e+00 1.00e+00f 1\n", - " 43 8.1598701e+00 1.07e+00 1.18e-01 -4.5 6.31e+05 - 3.54e-02 4.45e-03f 1\n", - " 44 8.3787133e+00 1.20e+00 1.43e-01 -3.7 1.52e+05 - 1.00e+00 1.63e-01H 1\n", - " 45 7.6683331e+00 1.63e+00 1.94e-01 -2.3 8.11e+04 - 2.56e-01 7.69e-01f 1\n", - " 46 7.6462587e+00 4.41e+00 3.80e-01 -7.5 1.19e+05 - 2.24e-03 4.29e-01F 1\n", - " 47 8.0805883e+00 3.31e+00 1.48e-01 -2.9 2.54e+03 - 1.00e+00 2.46e-01h 1\n", - " 48 8.7490897e+00 8.87e-01 3.96e-01 -2.9 6.56e+03 - 6.74e-01 1.00e+00h 1\n", - " 49 7.7218669e+00 1.24e+00 2.59e-01 -2.9 6.05e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.0671442e+01 2.75e-01 7.32e-02 -1.5 5.19e+03 - 1.00e+00 1.00e+00H 1\n", - " 51 1.0358231e+01 5.07e-01 1.66e-01 -1.6 3.32e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 8.9092172e+00 1.07e+00 8.26e-02 -1.6 2.06e+04 - 1.95e-01 1.00e+00f 1\n", - " 53 1.0923152e+01 2.87e-01 1.65e-01 -1.6 7.97e+03 - 1.00e+00 1.00e+00H 1\n", - " 54 1.0275279e+01 1.39e+00 1.39e-01 -1.6 1.02e+04 - 1.00e+00 1.00e+00F 1\n", - " 55 1.0196178e+01 1.40e+00 1.37e-01 -1.6 1.34e+05 - 2.34e-01 4.15e-03f 5\n", - " 56 7.4468874e+00 1.62e+00 1.83e-01 -1.6 1.31e+05 - 1.00e+00 8.02e-02f 1\n", - " 57 1.0332740e+01 2.31e-01 1.09e-01 -2.3 2.78e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.0047719e+01 3.83e-01 1.03e-01 -2.4 1.95e+03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.0643524e+01 1.70e-01 2.62e-02 -2.7 9.82e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 5.5616956e+00 3.80e+00 5.40e-01 -2.9 1.09e+04 - 1.44e-01 1.00e+00f 1\n", - " 61 5.4511060e+00 3.54e+00 1.31e-01 -3.3 1.27e+04 - 6.68e-01 1.00e+00h 1\n", - " 62 8.6875897e+00 2.29e+00 4.54e-01 -1.1 1.00e+04 - 6.06e-02 1.00e+00h 1\n", - " 63 9.6485144e+00 1.34e+00 1.17e-01 -2.4 5.43e+04 - 2.13e-01 5.84e-01H 1\n", - " 64 1.2496500e+01 2.64e+00 3.75e-01 -2.4 1.49e+04 - 5.32e-01 1.00e+00H 1\n", - " 65 9.9176398e+00 8.65e-01 1.50e-01 -2.4 1.10e+05 - 1.11e-01 6.01e-02f 3\n", - " 66 8.7424206e+00 2.07e+00 4.44e-01 -2.4 1.15e+04 - 1.00e+00 1.00e+00h 1\n", - " 67 6.7382124e+00 1.95e+00 3.13e-01 -2.4 1.40e+05 - 4.12e-01 6.04e-02f 1\n", - " 68 1.1019524e+01 1.16e+00 1.59e-01 -2.5 8.61e+03 - 2.37e-01 1.00e+00h 1\n", - " 69 1.1725015e+01 3.19e-01 1.44e-01 -2.5 6.25e+03 - 2.96e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1252839e+01 3.19e-01 7.59e-02 -2.5 5.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 71 9.4205089e+00 1.67e+00 1.93e-01 -2.5 1.91e+05 - 3.74e-02 7.23e-02f 1\n", - " 72 9.5328881e+00 1.57e+00 1.68e-01 -2.5 4.68e+03 - 1.00e+00 6.70e-02h 1\n", - " 73 1.1646913e+01 9.85e-02 1.33e-01 -2.5 2.51e+02 - 5.88e-01 1.00e+00h 1\n", - " 74 1.1382089e+01 1.69e-02 2.50e-02 -2.5 1.05e+04 - 2.38e-02 1.00e+00F 1\n", - " 75 8.6974241e+00 2.52e+00 1.95e-01 -3.7 9.81e+03 - 2.95e-01 1.00e+00f 1\n", - " 76 8.4980056e+00 2.42e+00 2.07e-01 -3.7 9.54e+04 - 4.08e-01 7.86e-03f 1\n", - " 77 9.7494007e+00 1.53e+00 4.82e-02 -3.7 1.76e+04 - 5.09e-03 3.78e-01h 1\n", - " 78 9.8973073e+00 1.39e+00 3.39e-02 -3.7 5.87e+02 - 9.52e-01 1.06e-01h 1\n", - " 79 1.0343755e+01 9.99e-01 4.95e-02 -3.7 1.03e+03 - 2.75e-01 3.15e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.0346189e+01 9.97e-01 4.91e-02 -3.7 5.37e+02 - 1.00e+00 2.10e-03h 1\n", - " 81 1.1750388e+01 2.98e-02 4.34e-02 -3.7 1.21e+02 - 1.00e+00 1.00e+00h 1\n", - " 82 1.1759045e+01 1.39e-03 2.91e-02 -3.7 1.35e+01 - 5.04e-01 1.00e+00h 1\n", - " 83 1.1752704e+01 3.41e-03 2.77e-02 -3.7 1.37e+03 - 2.61e-01 1.48e-02f 1\n", - " 84 1.1751102e+01 2.71e-03 2.71e-02 -3.7 3.04e+02 - 1.00e+00 1.40e-02h 1\n", - " 85 1.1763684e+01 3.64e-04 1.92e-03 -3.7 1.69e+00 - 1.00e+00 1.00e+00h 1\n", - " 86 1.1752321e+01 4.76e-03 6.33e-03 -5.5 1.10e+01 - 2.74e-01 1.00e+00h 1\n", - " 87 1.1753391e+01 4.11e-03 4.78e-03 -5.5 5.32e+01 - 1.83e-01 1.69e-01h 1\n", - " 88 1.1762804e+01 4.06e-06 3.38e-03 -5.5 4.44e+01 - 1.00e+00 1.00e+00H 1\n", - " 89 1.1758741e+01 1.91e-03 1.25e-03 -5.5 2.93e+01 - 7.61e-01 8.10e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.1763274e+01 3.02e-07 1.70e-04 -5.5 1.18e+01 - 1.00e+00 1.00e+00H 1\n", - " 91 1.1756676e+01 2.47e-03 2.11e-03 -5.5 1.49e+02 - 2.54e-01 2.95e-01f 1\n", - " 92 1.1761846e+01 1.25e-03 2.89e-03 -5.5 1.59e+01 - 1.00e+00 1.00e+00h 1\n", - " 93 1.1761735e+01 8.94e-04 2.98e-03 -5.5 1.89e+01 - 8.04e-01 8.40e-01H 1\n", - " 94 1.1762890e+01 7.62e-07 1.55e-03 -5.5 7.18e+00 - 1.00e+00 1.00e+00H 1\n", - " 95 1.1761225e+01 2.49e-03 7.63e-04 -5.5 4.44e+00 - 4.09e-01 1.00e+00f 1\n", - " 96 1.1706875e+01 6.18e-02 8.28e-03 -5.5 1.89e+02 - 4.40e-02 1.00e+00h 1\n", - " 97 1.1455391e+01 3.99e-01 2.19e-02 -5.5 2.20e+03 - 6.93e-02 1.00e+00h 1\n", - " 98 1.1523611e+01 1.17e-01 1.07e-02 -5.5 8.84e+02 - 1.00e+00 1.00e+00h 1\n", - " 99 1.1618815e+01 8.26e-02 9.87e-03 -5.5 1.50e+03 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.1695540e+01 2.36e-02 1.02e-02 -5.5 1.51e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.1695539767043419e+01 1.1695539767043419e+01\n", - "Dual infeasibility......: 1.0177556334262539e-02 1.0177556334262539e-02\n", - "Constraint violation....: 2.3573674224600438e-02 2.3573674224600438e-02\n", - "Complementarity.........: 3.2160414767889149e-06 3.2160414767889149e-06\n", - "Overall NLP error.......: 2.3573674224600438e-02 2.3573674224600438e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 131\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 131\n", - "Number of inequality constraint evaluations = 131\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.400\n", - "Total CPU secs in NLP function evaluations = 135.990\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 613.00us ( 4.68us) 601.56us ( 4.59us) 131\n", - " nlp_g | 5.93 s ( 45.23ms) 5.65 s ( 43.14ms) 131\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 343.00us ( 3.36us) 337.86us ( 3.31us) 102\n", - " nlp_jac_g | 132.86 s ( 1.30 s) 126.87 s ( 1.24 s) 102\n", - " total | 140.27 s (140.27 s) 133.94 s (133.94 s) 1\n", - "Timestamp 16500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.53e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9918637e+01 1.51e+01 2.53e+04 -1.5 2.53e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.2850940e+01 5.67e+00 1.33e+01 0.8 3.23e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.9292330e+01 2.27e+00 8.38e-01 -1.3 6.81e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 2.0581512e+01 2.58e-04 8.55e-02 -3.0 2.49e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.0581739e+01 2.29e-04 2.28e-02 -4.9 5.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.0581890e+01 1.57e-04 2.12e-03 -6.8 7.58e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.0582120e+01 5.91e-05 1.58e-03 -8.9 2.78e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.0581903e+01 1.16e-04 2.56e-03 -11.0 4.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 2.0582195e+01 1.45e-05 2.51e-03 -11.0 1.47e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.0582226e+01 1.14e-09 5.50e-05 -11.0 1.79e-01 - 1.00e+00 1.00e+00H 1\n", - " 11 2.0578000e+01 1.32e-02 4.55e-03 -11.0 4.49e+01 - 1.00e+00 1.00e+00f 1\n", - " 12 2.0567072e+01 2.29e-02 9.54e-03 -11.0 8.70e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.0581355e+01 4.11e-03 1.47e-03 -11.0 3.12e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.0565343e+01 1.44e-02 3.56e-03 -11.0 7.94e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.0574686e+01 5.97e-03 6.18e-03 -11.0 5.75e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.0568529e+01 2.21e-02 5.16e-03 -11.0 1.08e+02 - 1.00e+00 1.00e+00h 1\n", - " 17 2.0556628e+01 1.95e-02 1.88e-03 -11.0 8.52e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 2.0577612e+01 2.12e-03 2.06e-03 -11.0 6.73e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 2.0547268e+01 1.63e-02 2.50e-03 -11.0 3.32e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.0565453e+01 1.41e-02 2.38e-03 -11.0 6.76e+01 - 1.00e+00 1.00e+00h 1\n", - " 21 2.0575616e+01 2.82e-03 1.89e-03 -11.0 5.04e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 2.0539922e+01 1.34e-02 3.02e-03 -11.0 1.87e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 2.0553749e+01 1.37e-02 2.56e-03 -11.0 1.24e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 2.0559415e+01 7.40e-03 2.69e-03 -11.0 4.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 2.0552342e+01 1.20e-02 2.09e-03 -11.0 1.38e+02 - 1.00e+00 1.00e+00h 1\n", - " 26 2.0559358e+01 6.46e-03 1.66e-03 -11.0 4.25e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 2.0569762e+01 2.65e-03 2.30e-03 -11.0 3.86e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 2.0571121e+01 1.75e-03 1.80e-03 -11.0 7.26e+00 - 1.00e+00 1.00e+00h 1\n", - " 29 2.0491528e+01 4.67e-02 3.86e-03 -11.0 1.46e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.0542659e+01 1.99e-02 1.21e-03 -11.0 6.30e+01 - 1.00e+00 1.00e+00h 1\n", - " 31 2.0572135e+01 8.15e-04 3.18e-03 -11.0 1.43e+01 - 1.00e+00 1.00e+00h 1\n", - " 32 2.0570564e+01 1.39e-03 1.34e-03 -11.0 3.50e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 2.0567438e+01 2.61e-03 1.06e-03 -11.0 2.09e+01 - 1.00e+00 1.00e+00h 1\n", - " 34 2.0569044e+01 4.26e-03 3.13e-03 -11.0 1.58e+01 - 1.00e+00 1.00e+00h 1\n", - " 35 2.0561313e+01 5.61e-03 3.35e-03 -11.0 1.66e+01 - 1.00e+00 1.00e+00h 1\n", - " 36 2.0571581e+01 9.09e-04 2.77e-03 -11.0 2.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 37 2.0570707e+01 2.10e-03 1.38e-03 -11.0 2.67e+01 - 1.00e+00 1.00e+00h 1\n", - " 38 2.0570117e+01 1.33e-03 1.78e-03 -11.0 2.29e+01 - 1.00e+00 1.00e+00h 1\n", - " 39 2.0571174e+01 1.64e-03 1.36e-03 -11.0 1.10e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.0561056e+01 4.91e-02 3.53e-03 -11.0 1.47e+02 - 1.00e+00 1.00e+00h 1\n", - " 41 2.0566131e+01 1.17e-02 2.03e-03 -11.0 8.25e+01 - 1.00e+00 1.00e+00h 1\n", - " 42 2.0434475e+01 4.15e-02 4.07e-03 -11.0 1.18e+03 - 1.00e+00 1.00e+00f 1\n", - " 43 2.0552249e+01 1.45e-02 1.87e-03 -11.0 3.08e+02 - 1.00e+00 1.00e+00h 1\n", - " 44 2.0547038e+01 3.89e-02 1.23e-03 -11.0 3.47e+02 - 1.00e+00 1.00e+00h 1\n", - " 45 2.0481632e+01 5.03e-02 1.75e-03 -11.0 9.29e+02 - 1.00e+00 1.00e+00h 1\n", - " 46 2.0507031e+01 3.76e-02 1.17e-03 -11.0 3.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 47 2.0554219e+01 1.05e-02 2.48e-03 -11.0 2.41e+03 - 1.00e+00 1.00e+00h 1\n", - " 48 2.0533948e+01 3.94e-02 2.36e-03 -11.0 5.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 49 2.0088048e+01 8.29e-01 3.11e-02 -11.0 4.89e+04 - 8.46e-01 4.60e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.0567310e+01 1.36e-02 2.66e-02 -11.0 1.89e+03 - 1.00e+00 1.00e+00h 1\n", - " 51 2.0436390e+01 1.96e-01 2.25e-02 -3.0 1.74e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 2.0429706e+01 1.59e-01 1.75e-02 -3.0 7.23e+02 - 1.00e+00 2.05e-01h 1\n", - " 53 2.0546304e+01 3.33e-03 5.04e-03 -4.9 4.19e+01 - 1.00e+00 1.00e+00h 1\n", - " 54 2.0540737e+01 4.15e-02 2.40e-03 -7.0 1.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.8741763e+01 1.48e+00 1.16e-01 -6.6 1.65e+04 - 3.17e-01 1.00e+00f 1\n", - " 56 1.9816806e+01 1.04e+00 1.22e-02 -6.6 2.94e+04 - 1.00e+00 1.00e+00h 1\n", - " 57 1.8057865e+01 1.33e+00 5.11e-02 -1.7 3.57e+05 - 1.03e-01 9.30e-02f 1\n", - " 58 1.9548549e+01 5.00e-01 3.54e-02 -3.4 6.78e+03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.6415450e+01 7.93e+00 4.14e-01 -3.0 9.32e+04 - 1.00e+00 5.93e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.6424064e+01 7.92e+00 4.20e-01 -1.1 3.02e+04 - 1.00e+00 1.83e-02h 1\n", - " 61 2.0280983e+01 4.68e-01 4.76e-01 -7.1 6.29e+03 - 3.51e-01 1.00e+00h 1\n", - " 62 1.9315129e+01 1.64e+00 4.42e-02 -1.4 2.62e+04 - 5.85e-02 1.00e+00f 1\n", - " 63 1.7114098e+01 6.06e+00 4.30e-01 -1.7 4.49e+04 - 6.07e-01 5.78e-01f 1\n", - " 64 1.9087962e+01 1.51e+00 1.63e-01 -2.2 8.87e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 1.4934125e+01 1.60e+00 1.82e-01 -2.3 3.61e+04 - 1.00e+00 1.14e-01f 1\n", - " 66 1.7461873e+01 5.79e-01 8.55e-02 -1.1 3.73e+03 - 1.00e+00 6.55e-01h 1\n", - " 67 1.9255328e+01 5.66e-02 1.47e-02 -7.2 7.65e+02 - 2.31e-01 1.00e+00h 1\n", - " 68 1.9001105e+01 1.18e+00 5.05e-02 -3.0 2.06e+03 - 9.29e-01 1.00e+00h 1\n", - " 69 1.8955831e+01 1.01e+00 3.96e-02 -2.4 5.43e+03 - 1.00e+00 1.59e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.9080383e+01 1.37e-01 2.59e-02 -3.0 1.17e+03 - 1.00e+00 1.00e+00h 1\n", - " 71 1.7956306e+01 1.54e+00 6.50e-02 -3.7 4.10e+03 - 9.94e-01 1.00e+00f 1\n", - " 72 1.9149850e+01 8.48e-01 3.34e-02 -3.9 2.39e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 1.9303914e+01 1.49e-01 2.55e-02 -3.9 1.42e+03 - 2.08e-01 1.00e+00h 1\n", - " 74 1.9314186e+01 1.52e-01 2.60e-02 -3.9 7.63e+02 - 1.00e+00 9.61e-02h 1\n", - " 75 1.8976585e+01 3.60e-01 3.53e-02 -3.9 1.34e+03 - 3.53e-02 1.00e+00f 1\n", - " 76 1.9268797e+01 2.81e-01 3.93e-02 -4.9 2.06e+03 - 1.00e+00 1.00e+00h 1\n", - " 77 1.9255537e+01 2.90e-01 9.96e-03 -4.8 1.33e+03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.8874234e+01 4.38e-01 1.27e-02 -4.8 3.16e+03 - 1.00e+00 2.28e-01f 1\n", - " 79 1.9274399e+01 1.01e-01 7.75e-03 -5.9 5.03e+02 - 9.95e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.9406194e+01 6.78e-02 1.21e-02 -5.0 4.02e+02 - 9.94e-01 1.00e+00h 1\n", - " 81 1.9272884e+01 2.80e-01 2.49e-02 -5.0 1.99e+03 - 1.00e+00 1.00e+00h 1\n", - " 82 1.9439566e+01 8.36e-02 2.90e-03 -5.0 6.65e+02 - 5.25e-01 1.00e+00h 1\n", - " 83 1.8522053e+01 1.20e+00 6.78e-02 -5.0 6.30e+03 - 1.00e+00 7.97e-01f 1\n", - " 84 1.8522198e+01 1.20e+00 6.78e-02 -5.0 7.66e+02 - 1.00e+00 1.85e-04h 1\n", - " 85 1.9584789e+01 4.25e-04 5.95e-02 -5.0 1.38e+01 - 1.00e+00 1.00e+00h 1\n", - " 86 1.9577337e+01 3.07e-03 7.52e-03 -6.1 2.43e+01 - 1.00e+00 1.00e+00h 1\n", - " 87 1.9582772e+01 1.54e-03 5.24e-03 -4.1 2.12e+01 - 1.99e-01 1.00e+00h 1\n", - " 88 1.9575967e+01 1.31e-02 1.38e-02 -4.1 3.49e+02 - 1.00e+00 1.00e+00h 1\n", - " 89 1.9564996e+01 6.48e-02 2.42e-03 -3.0 1.26e+03 - 6.10e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.9121125e+01 1.02e+00 6.82e-03 -3.2 6.10e+03 - 2.51e-01 1.00e+00f 1\n", - " 91 1.9449263e+01 1.04e-01 2.16e-02 -3.2 1.23e+03 - 1.00e+00 1.00e+00h 1\n", - " 92 1.9366031e+01 4.23e-01 5.90e-03 -3.2 3.04e+04 - 1.00e+00 5.94e-02h 2\n", - " 93 1.9633745e+01 1.10e-01 1.81e-02 -3.2 9.61e+02 - 7.79e-01 1.00e+00h 1\n", - " 94 1.9480568e+01 7.08e-02 1.15e-02 -3.2 9.01e+02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.9647819e+01 8.63e-04 2.09e-03 -3.9 6.20e+02 - 1.00e+00 1.00e+00H 1\n", - " 96 1.5853397e+01 1.49e+01 8.36e-01 -1.9 9.75e+06 - 4.36e-04 4.59e-03f 1\n", - " 97 1.5846985e+01 1.49e+01 8.34e-01 -4.1 9.97e+04 - 3.83e-01 8.95e-04h 1\n", - " 98 2.0089064e+01 2.01e-01 4.23e-01 -4.1 1.85e+04 - 8.22e-01 1.00e+00h 1\n", - " 99 1.8641067e+01 1.99e+00 2.18e-01 -4.1 2.77e+04 - 8.00e-01 7.84e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100r 1.8641067e+01 1.99e+00 9.99e+02 0.3 0.00e+00 - 0.00e+00 2.53e-07R 10\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.8641067153859375e+01 1.8641067153859375e+01\n", - "Dual infeasibility......: 4.9733349346245698e-01 4.9733349346245698e-01\n", - "Constraint violation....: 1.9859844470923917e+00 1.9859844470923917e+00\n", - "Complementarity.........: 2.8276229711386307e-04 2.8276229711386307e-04\n", - "Overall NLP error.......: 1.9859844470923917e+00 1.9859844470923917e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 116\n", - "Number of objective gradient evaluations = 102\n", - "Number of equality constraint evaluations = 116\n", - "Number of inequality constraint evaluations = 116\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.416\n", - "Total CPU secs in NLP function evaluations = 136.638\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 522.00us ( 4.50us) 517.67us ( 4.46us) 116\n", - " nlp_g | 5.23 s ( 45.05ms) 4.98 s ( 42.97ms) 116\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 338.00us ( 3.28us) 335.75us ( 3.26us) 103\n", - " nlp_jac_g | 134.33 s ( 1.30 s) 128.34 s ( 1.25 s) 103\n", - " total | 141.06 s (141.06 s) 134.76 s (134.76 s) 1\n", - "Timestamp 16800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0883206e+01 1.21e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 9.7734249e+00 4.16e+00 6.03e+00 1.2 1.41e+03 - 1.00e+00 1.00e+00f 1\n", - " 3 2.6439467e+00 5.09e-01 1.32e-01 -0.6 4.80e+02 - 1.00e+00 1.00e+00f 1\n", - " 4 1.8496138e+00 5.48e-03 2.57e-01 -6.6 4.67e+00 - 9.90e-01 1.00e+00h 1\n", - " 5 1.8463820e+00 9.19e-04 1.49e-02 -4.1 1.23e+01 - 1.00e+00 1.00e+00h 1\n", - " 6 1.8473602e+00 2.44e-06 1.39e-03 -6.0 7.79e+00 - 1.00e+00 1.00e+00H 1\n", - " 7 1.8307773e+00 1.52e-02 1.29e-02 -8.1 8.41e+01 - 1.00e+00 1.00e+00f 1\n", - " 8 1.8431162e+00 3.33e-03 2.48e-03 -10.0 1.72e+01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.8148884e+00 2.92e-02 1.18e-02 -11.0 1.04e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.7645030e+00 6.86e-02 2.94e-02 -11.0 4.44e+02 - 1.00e+00 1.00e+00h 1\n", - " 11 1.7609877e+00 8.94e-02 5.44e-02 -11.0 1.20e+03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.8684822e+00 5.33e-03 4.09e-02 -11.0 7.52e+02 - 1.00e+00 1.00e+00H 1\n", - " 13 1.8549237e+00 2.55e-02 1.59e-02 -11.0 2.20e+02 - 1.00e+00 1.00e+00h 1\n", - " 14 1.8612583e+00 1.17e-02 3.33e-03 -11.0 7.79e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 8.6390899e-01 1.07e+00 9.06e-01 -11.0 3.04e+07 - 1.06e-03 2.50e-04f 3\n", - " 16 2.5043401e+00 9.81e-01 1.27e+00 -11.0 1.90e+04 - 1.00e+00 5.00e-01h 2\n", - " 17 2.1912522e+00 9.88e-01 1.20e+00 -11.0 4.09e+05 - 8.82e-02 6.63e-02f 1\n", - " 18 1.7200460e+00 7.21e-01 1.12e+00 -11.0 1.40e+04 - 5.74e-01 1.00e+00F 1\n", - " 19 1.1093572e+00 1.10e+00 7.31e-01 -1.8 1.26e+04 - 1.00e+00 5.61e-01F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.0719775e-01 1.06e+00 2.32e-01 -2.2 8.33e+03 - 1.00e+00 6.09e-01h 1\n", - " 21 1.4285980e+00 1.99e-01 7.06e-01 -2.7 1.64e+04 - 7.54e-01 1.00e+00h 1\n", - " 22 1.4001778e+00 1.10e+00 9.66e-01 -2.7 5.35e+03 - 1.00e+00 1.00e+00h 1\n", - " 23 1.3276537e+00 3.98e-01 4.62e-01 -2.5 3.98e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 1.2814821e+00 6.92e-01 4.03e-01 -3.2 5.24e+03 - 1.00e+00 5.00e-01h 2\n", - " 25 1.2851772e+00 7.16e-01 3.32e-01 -4.0 4.46e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 1.0782575e+00 5.75e-01 1.35e+00 -2.0 1.24e+04 - 8.99e-02 1.00e+00f 1\n", - " 27 8.1359450e-01 7.68e-01 1.39e+00 -2.2 1.81e+05 - 1.00e+00 1.14e-01f 1\n", - " 28 8.0086542e-01 7.23e-01 1.32e+00 -2.3 2.01e+04 - 4.78e-01 1.03e-02h 1\n", - " 29 1.5965281e+00 1.42e-01 8.43e-01 -0.8 4.07e+03 - 4.92e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.4166774e+00 1.85e+00 9.79e-01 -1.7 8.37e+03 - 9.78e-01 6.84e-01f 1\n", - " 31 1.5923051e+00 1.73e+00 9.43e-01 -1.8 1.28e+04 - 6.34e-02 2.50e-01h 3\n", - " 32 8.5882202e-01 8.28e-01 6.50e-01 -1.8 7.92e+04 - 2.33e-01 3.04e-01f 1\n", - " 33 2.0026311e+00 1.08e-01 8.66e-01 -2.0 5.33e+03 - 1.00e+00 1.00e+00H 1\n", - " 34 1.4853093e+00 2.05e-01 7.67e-01 -2.2 1.94e+03 - 1.00e+00 1.00e+00f 1\n", - " 35 1.3778727e+00 3.31e-01 3.91e-01 -2.2 4.57e+03 - 1.00e+00 3.33e-01h 1\n", - " 36 1.1647880e+00 1.10e+00 3.16e-01 -2.2 5.08e+03 - 2.18e-01 5.00e-01f 2\n", - " 37 1.1685583e+00 1.16e+00 4.48e-01 -2.2 2.94e+04 - 1.00e+00 6.92e-02h 4\n", - " 38 1.0636074e+00 1.41e+00 1.08e+00 -2.2 8.64e+04 - 2.76e-02 2.85e-01f 1\n", - " 39 1.4155158e+00 8.31e-01 7.37e-01 -2.2 3.47e+04 - 5.60e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.3557943e+00 7.83e-01 7.10e-01 -2.2 4.92e+04 - 4.77e-01 6.41e-02h 1\n", - " 41 1.0059548e+00 8.19e-01 7.28e-01 -2.2 1.95e+04 - 5.93e-02 1.00e-01f 1\n", - " 42 2.0194041e+00 1.44e-01 3.73e-01 -8.3 6.10e+03 - 1.49e-02 1.00e+00H 1\n", - " 43 1.3176645e+00 4.88e-01 1.46e-01 -2.4 5.19e+03 - 1.00e+00 1.00e+00f 1\n", - " 44 1.1735305e+00 6.56e-01 6.80e-01 -2.8 2.56e+05 - 7.63e-02 1.16e-02f 2\n", - " 45 1.2077709e+00 8.19e-01 6.02e-01 -2.6 3.83e+04 - 1.00e+00 1.64e-01h 1\n", - " 46 2.0073370e+00 7.85e-02 2.33e-01 -2.6 2.46e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 1.7894174e+00 1.58e-01 2.26e-01 -2.6 1.60e+03 - 6.40e-01 1.00e+00h 1\n", - " 48 1.5978286e+00 5.31e-01 3.02e-01 -2.6 4.40e+03 - 1.00e+00 4.28e-01h 1\n", - " 49 1.6311005e+00 4.78e-01 2.39e-01 -2.6 5.64e+03 - 1.00e+00 8.77e-02H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 5.5232402e-01 4.87e-01 3.85e-01 -2.6 1.67e+04 - 2.44e-01 2.15e-01f 1\n", - " 51 4.4517496e-01 8.49e-01 9.33e-01 -8.7 2.01e+05 - 7.07e-04 7.61e-03f 6\n", - " 52 4.3203671e-01 8.32e-01 8.64e-01 -2.1 4.14e+04 - 1.00e+00 2.36e-02h 1\n", - " 53 2.7000827e+00 5.41e-01 3.27e-01 -3.4 1.69e+03 - 9.96e-01 1.00e+00h 1\n", - " 54 2.2764696e+00 4.45e-02 3.00e-01 -3.1 3.59e+02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.8786895e+00 2.43e-01 5.61e-01 -3.1 4.87e+02 - 1.00e+00 1.00e+00f 1\n", - " 56 1.9390527e+00 2.11e-01 4.66e-01 -3.1 1.49e+03 - 1.00e+00 1.56e-01h 1\n", - " 57 2.2031762e+00 8.40e-02 1.23e-01 -3.1 4.10e+02 - 1.00e+00 1.00e+00h 1\n", - " 58 2.1561621e+00 9.42e-02 1.47e-01 -3.1 6.92e+02 - 1.00e+00 4.55e-01h 1\n", - " 59 2.3589426e+00 3.10e-04 1.30e-01 -3.1 1.20e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.3582153e+00 6.31e-07 4.28e-03 -3.1 6.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 2.3582149e+00 2.88e-08 5.52e-05 -9.1 1.06e-04 - 9.96e-01 1.00e+00h 1\n", - " 62 2.3582150e+00 1.27e-08 1.31e-04 -11.0 8.28e-05 - 1.00e+00 1.00e+00h 1\n", - " 63 2.3582150e+00 3.31e-08 4.84e-05 -11.0 1.18e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 2.3582150e+00 2.36e-09 4.36e-05 -11.0 3.78e-05 - 1.00e+00 1.00e+00h 1\n", - " 65 2.3582150e+00 8.03e-11 1.49e-04 -11.0 3.34e-05 - 1.00e+00 1.00e+00H 1\n", - " 66 2.3582150e+00 2.00e-08 1.84e-04 -11.0 6.71e-05 - 1.00e+00 1.00e+00h 1\n", - " 67 2.3582149e+00 5.72e-08 1.60e-04 -11.0 1.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 68 2.3582148e+00 5.40e-08 2.25e-04 -11.0 6.32e-04 - 1.00e+00 1.00e+00h 1\n", - " 69 2.3582149e+00 7.19e-08 1.04e-04 -11.0 3.04e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.3582150e+00 2.66e-08 2.58e-05 -11.0 2.28e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 2.3582150e+00 1.77e-08 1.63e-04 -11.0 3.77e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 2.3582148e+00 1.69e-07 5.84e-05 -11.0 7.91e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 2.3582147e+00 1.83e-07 1.38e-05 -11.0 1.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 2.3582149e+00 7.51e-08 8.69e-05 -11.0 1.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 2.3582134e+00 6.38e-06 2.19e-03 -10.7 3.48e-01 - 1.00e+00 1.86e-01h 1\n", - "In iteration 75, 1 Slack too small, adjusting variable bound\n", - " 76 2.3582134e+00 6.38e-06 2.66e-03 -10.9 2.08e-01 - 1.00e+00 2.71e-05h 1\n", - " 77 2.3582149e+00 6.49e-08 1.02e-04 -10.9 3.06e-04 - 5.23e-01 1.00e+00h 1\n", - " 78 2.3582148e+00 2.30e-07 1.23e-04 -11.0 2.53e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 2.3582143e+00 4.35e-07 1.45e-04 -8.3 1.68e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.3582147e+00 1.50e-07 2.88e-04 -7.7 8.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 2.3582147e+00 9.66e-08 4.44e-05 -11.0 4.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 82 2.3582144e+00 2.56e-07 4.40e-05 -9.5 6.82e-03 - 1.00e+00 1.82e-01h 1\n", - " 83 2.3582146e+00 1.67e-07 1.64e-04 -7.6 4.81e-03 - 1.74e-01 1.00e+00f 1\n", - " 84 2.3582118e+00 7.50e-06 8.85e-04 -10.3 7.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 85 2.3582136e+00 9.47e-06 2.22e-03 -10.2 7.62e-02 - 5.62e-01 1.00e+00h 1\n", - " 86 2.3578961e+00 3.52e-04 9.89e-03 -10.2 1.37e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 2.3581552e+00 2.81e-05 1.18e-03 -10.2 4.68e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 2.3582132e+00 9.01e-06 6.14e-04 -10.2 5.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 89 2.3582072e+00 2.21e-05 1.25e-03 -10.2 1.52e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.3577827e+00 1.18e-04 4.40e-03 -10.2 1.31e+00 - 1.00e+00 7.38e-01h 1\n", - " 91 2.3577831e+00 1.18e-04 3.77e-03 -10.2 4.17e-01 - 1.00e+00 9.77e-04h 11\n", - " 92 2.3581146e+00 3.51e-05 1.94e-03 -10.2 3.83e-01 - 1.00e+00 1.00e+00h 1\n", - " 93 2.3581714e+00 1.47e-05 1.49e-03 -10.2 1.05e-01 - 7.56e-01 1.00e+00h 1\n", - " 94 2.3582135e+00 2.71e-07 6.41e-05 -10.2 8.01e-01 - 1.00e+00 1.00e+00H 1\n", - " 95 2.3579312e+00 2.40e-04 1.42e-03 -6.1 3.03e+00 - 1.00e+00 8.00e-01h 1\n", - " 96 2.3581513e+00 5.44e-05 1.43e-03 -6.2 1.53e+00 - 1.00e+00 1.00e+00h 1\n", - " 97 2.3581201e+00 5.04e-05 1.52e-03 -6.2 7.21e-01 - 6.81e-01 1.00e+00h 1\n", - " 98 2.3578543e+00 3.64e-04 5.78e-04 -6.2 1.23e+01 - 1.00e+00 1.49e-01h 1\n", - " 99 2.3466603e+00 4.28e-03 1.64e-02 -6.2 3.15e+01 - 2.46e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.3521826e+00 2.15e-03 7.52e-03 -6.2 8.46e+00 - 1.00e+00 5.48e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.3521825653631345e+00 2.3521825653631345e+00\n", - "Dual infeasibility......: 7.5204318181116610e-03 7.5204318181116610e-03\n", - "Constraint violation....: 2.1541139769922779e-03 2.1541139769922779e-03\n", - "Complementarity.........: 5.7228315360935602e-07 5.7228315360935602e-07\n", - "Overall NLP error.......: 7.5204318181116610e-03 7.5204318181116610e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 155\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 155\n", - "Number of inequality constraint evaluations = 155\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.441\n", - "Total CPU secs in NLP function evaluations = 137.210\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 708.00us ( 4.57us) 702.00us ( 4.53us) 155\n", - " nlp_g | 6.97 s ( 44.96ms) 6.65 s ( 42.88ms) 155\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 367.00us ( 3.60us) 359.21us ( 3.52us) 102\n", - " nlp_jac_g | 133.08 s ( 1.30 s) 127.10 s ( 1.25 s) 102\n", - " total | 141.53 s (141.53 s) 135.17 s (135.17 s) 1\n", - "Timestamp 17100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.48e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9686172e+01 1.32e+01 4.48e+03 -1.5 4.48e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.8369810e+00 4.58e+00 8.98e+00 0.4 2.01e+01 - 9.97e-01 1.00e+00f 1\n", - " 3 6.8404465e+00 1.03e+00 8.53e-01 -1.6 7.13e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 7.6207240e+00 2.12e-03 8.92e-02 -3.3 1.51e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 7.6216789e+00 1.68e-07 9.53e-05 -5.2 2.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 7.6216788e+00 3.31e-07 4.47e-05 -11.0 1.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 7.6216791e+00 8.72e-08 8.18e-05 -11.0 1.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 7.6216787e+00 4.77e-07 8.50e-05 -11.0 1.74e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 7.6216790e+00 1.87e-07 9.09e-05 -11.0 1.02e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 7.6216793e+00 1.21e-10 2.11e-04 -11.0 1.15e-03 - 1.00e+00 1.00e+00H 1\n", - " 11 7.6216786e+00 3.65e-07 7.33e-05 -11.0 1.39e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 7.6216778e+00 1.11e-06 3.11e-03 -11.0 6.70e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 7.6216702e+00 7.42e-06 2.34e-03 -11.0 4.59e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 7.6216758e+00 1.85e-06 1.91e-03 -11.0 2.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 7.6216758e+00 8.65e-07 9.22e-04 -11.0 1.37e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 7.6216487e+00 1.84e-05 2.79e-03 -11.0 6.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 7.6216758e+00 1.15e-06 8.49e-04 -11.0 1.74e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 7.6216783e+00 4.40e-07 1.04e-04 -11.0 8.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 7.6216532e+00 1.56e-05 3.31e-03 -11.0 6.22e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 7.6216767e+00 1.04e-07 3.66e-05 -11.0 6.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 7.6216766e+00 1.23e-07 9.78e-05 -11.0 5.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 7.6178408e+00 1.87e-02 8.95e-03 -11.0 9.08e+01 - 1.00e+00 1.00e+00f 1\n", - " 23 7.6084944e+00 4.38e-02 2.46e-03 -11.0 5.26e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 7.5292800e+00 8.55e-02 1.47e-02 -11.0 1.41e+03 - 1.00e+00 1.00e+00h 1\n", - " 25 7.2071135e+00 4.75e-01 7.27e-02 -11.0 1.12e+04 - 1.00e+00 1.00e+00h 1\n", - " 26 6.4236753e+00 5.56e-01 9.96e-02 -11.0 7.60e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 8.4753352e+00 1.00e+00 9.99e-02 -11.0 1.85e+04 - 1.00e+00 1.00e+00H 1\n", - " 28 7.5120258e+00 1.27e-01 1.05e-01 -11.0 3.47e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 7.3091060e+00 2.46e+00 2.94e-01 -11.0 9.60e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 6.7530896e+00 5.53e+00 8.07e-01 -11.0 8.42e+04 - 5.18e-01 2.37e-01f 1\n", - " 31 6.7530896e+00 5.53e+00 8.07e-01 -11.0 2.08e+04 - 2.30e-10 2.30e-10s 2\n", - " 32r 6.7530896e+00 5.53e+00 9.99e+02 0.7 0.00e+00 - 0.00e+00 0.00e+00R 1\n", - " 33r 7.2453875e+00 3.31e-01 9.92e+02 -5.3 8.51e+02 - 4.28e-01 6.44e-03f 1\n", - " 34 7.5049387e+00 7.02e-02 4.32e-02 -11.0 2.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 35 7.4210446e+00 8.94e-02 5.92e-02 -3.9 1.03e+04 - 3.58e-01 1.00e+00h 1\n", - " 36 5.2007223e+00 1.06e+00 1.72e-01 -2.5 3.20e+04 - 1.00e+00 1.00e+00f 1\n", - " 37 4.8636443e+00 1.60e+00 1.01e-01 -0.9 2.29e+04 - 1.00e+00 3.16e-01h 2\n", - " 38 6.8783686e+00 3.80e-01 3.92e-01 -6.9 4.91e+03 - 6.17e-01 1.00e+00h 1\n", - " 39 6.1753773e+00 5.17e+00 3.57e-01 -1.9 1.73e+04 - 9.33e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 5.9325052e+00 3.87e+00 2.93e-01 -1.9 2.57e+04 - 6.95e-01 2.58e-01h 1\n", - " 41 6.1194691e+00 2.15e+00 1.48e-01 -1.9 8.35e+04 - 6.73e-02 4.24e-01h 1\n", - " 42 6.1337937e+00 2.18e+00 1.50e-01 -1.9 1.74e+05 - 1.00e+00 1.75e-02h 3\n", - " 43 7.1064182e+00 4.47e-01 9.50e-02 -1.9 2.50e+03 - 2.59e-01 1.00e+00h 1\n", - " 44 7.1925425e+00 4.80e-01 1.26e-01 -1.9 8.02e+03 - 9.60e-01 4.71e-01H 1\n", - " 45 6.8577621e+00 4.55e-01 1.32e-01 -1.9 4.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 46 7.2741388e+00 1.52e-01 5.09e-02 -8.0 2.36e+03 - 7.56e-01 1.00e+00h 1\n", - " 47 5.8125143e+00 5.76e-01 1.38e-01 -8.6 1.23e+05 - 4.44e-03 1.19e-01f 1\n", - " 48 6.7136809e+00 4.11e-01 1.04e-01 -1.8 2.39e+04 - 1.00e+00 6.28e-01h 1\n", - " 49 6.6521631e+00 1.70e+00 1.61e-01 -1.7 1.77e+04 - 9.92e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 7.3772926e+00 5.54e-02 2.18e-01 -1.8 2.57e+03 - 3.91e-01 1.00e+00h 1\n", - " 51 7.3821773e+00 1.02e-01 2.19e-02 -2.8 3.59e+03 - 9.99e-01 1.00e+00h 1\n", - " 52 7.0572246e+00 2.62e-01 2.02e-02 -3.0 1.02e+05 - 8.69e-01 1.63e-01f 1\n", - " 53 7.3805471e+00 3.77e-02 4.98e-02 -3.5 9.57e+02 - 1.00e+00 1.00e+00h 1\n", - " 54 7.2746409e+00 6.64e-01 6.89e-02 -3.8 5.93e+03 - 9.98e-01 1.00e+00h 1\n", - " 55 7.1189083e+00 8.69e-01 4.91e-02 -3.9 5.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 56 7.0807985e+00 8.48e-01 2.62e-02 -3.9 3.59e+03 - 5.34e-02 1.00e+00h 1\n", - " 57 6.6541525e+00 1.70e+00 1.64e-01 -3.9 2.17e+05 - 9.98e-02 2.96e-02f 1\n", - " 58 6.6179620e+00 1.25e+00 3.78e-02 -3.9 4.57e+03 - 1.00e+00 3.36e-01f 1\n", - " 59 7.1792674e+00 1.12e-01 1.15e-01 -3.9 1.03e+03 - 7.51e-03 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.0364294e+00 9.25e-02 1.44e-01 -3.2 8.37e+02 - 9.94e-01 1.00e+00h 1\n", - " 61 7.3428630e+00 5.62e-03 2.16e-02 -2.1 2.23e+03 - 7.48e-01 1.00e+00H 1\n", - " 62 7.1062268e+00 2.97e-01 3.79e-02 -8.2 3.25e+03 - 7.82e-01 1.00e+00f 1\n", - " 63 7.1610423e+00 1.23e-01 2.00e-02 -3.1 1.28e+03 - 1.00e+00 1.00e+00h 1\n", - " 64 7.3130052e+00 4.95e-02 5.08e-02 -3.9 1.35e+03 - 9.71e-01 1.00e+00H 1\n", - " 65 7.1923972e+00 4.46e-01 2.10e-02 -4.8 4.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 66 7.1952149e+00 2.89e-01 4.15e-02 -4.8 8.06e+03 - 1.00e+00 3.93e-01h 1\n", - " 67 7.1592579e+00 3.97e-01 3.66e-02 -4.8 3.14e+03 - 1.00e+00 1.00e+00h 1\n", - " 68 6.9732106e+00 1.81e-01 2.55e-02 -4.8 2.37e+04 - 9.47e-01 4.98e-02f 1\n", - " 69 5.8820702e+00 1.78e+00 3.12e-01 -3.4 2.00e+04 - 1.00e+00 4.02e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 7.2914557e+00 7.08e-03 2.16e+00 -3.5 2.47e+00 - 1.00e+00 1.00e+00h 1\n", - " 71 7.2999807e+00 1.40e-06 1.25e-03 -5.4 1.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 72 7.2999824e+00 1.78e-07 1.28e-04 -7.5 1.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 7.2999812e+00 7.28e-07 1.33e-04 -11.0 2.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 7.2998906e+00 5.37e-05 1.94e-02 -11.0 2.11e-01 - 1.00e+00 1.00e+00h 1\n", - " 75 7.2999634e+00 1.33e-05 2.33e-03 -11.0 8.30e-02 - 1.00e+00 1.00e+00h 1\n", - " 76 7.2999451e+00 1.28e-05 5.48e-03 -11.0 1.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 77 7.2998924e+00 3.58e-05 8.63e-03 -11.0 1.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 78 7.2999718e+00 9.46e-06 1.64e-03 -11.0 6.33e-02 - 1.00e+00 1.00e+00h 1\n", - " 79 7.2998747e+00 1.59e-04 5.15e-03 -11.0 1.25e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 7.2997444e+00 3.29e-04 4.39e-03 -11.0 3.24e+00 - 1.00e+00 1.00e+00h 1\n", - " 81 7.2999444e+00 9.80e-05 2.03e-03 -11.0 2.24e+00 - 1.00e+00 1.00e+00h 1\n", - " 82 7.2984215e+00 9.02e-04 1.04e-03 -11.0 2.46e+01 - 1.00e+00 2.21e-01h 1\n", - " 83 7.2984216e+00 9.02e-04 1.06e-03 -10.3 2.84e+00 - 1.00e+00 6.10e-05h 15\n", - " 84 7.2986223e+00 7.89e-04 5.56e-04 -8.0 2.54e-02 - 1.00e+00 1.25e-01h 1\n", - " 85 7.2989113e+00 6.06e-04 1.01e-03 -6.0 1.64e+00 - 5.30e-01 2.50e-01h 3\n", - " 86 7.2997359e+00 5.46e-04 1.06e-02 -6.0 2.45e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 7.2999015e+00 1.40e-04 1.36e-03 -7.0 1.08e+00 - 1.00e+00 1.00e+00h 1\n", - " 88 7.2996980e+00 7.94e-04 1.79e-03 -6.0 1.93e+00 - 4.60e-01 1.00e+00h 1\n", - " 89 7.2997930e+00 9.68e-05 9.78e-04 -6.0 1.33e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 7.2994521e+00 3.03e-04 1.55e-03 -5.1 3.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 7.2977061e+00 2.03e-03 2.93e-03 -5.9 4.89e+00 - 1.00e+00 1.00e+00h 1\n", - " 92 7.3000082e+00 7.59e-07 9.74e-05 -8.0 2.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 93 7.3000084e+00 2.29e-07 1.54e-04 -8.1 9.45e-04 - 1.00e+00 1.00e+00h 1\n", - " 94 7.3000080e+00 5.71e-07 5.23e-05 -8.1 1.34e-03 - 1.00e+00 1.00e+00h 1\n", - " 95 7.3000086e+00 1.88e-08 2.59e-04 -8.1 3.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 96 7.3000084e+00 1.23e-07 6.72e-05 -11.0 2.84e-04 - 1.00e+00 1.00e+00h 1\n", - " 97 7.3000085e+00 9.57e-08 1.12e-04 -11.0 9.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 98 7.3000076e+00 1.67e-06 1.92e-03 -11.0 5.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 99 7.3000049e+00 3.45e-06 2.97e-03 -11.0 1.06e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.3000068e+00 1.17e-06 2.68e-03 -11.0 6.25e-03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.3000067688917492e+00 7.3000067688917492e+00\n", - "Dual infeasibility......: 2.6820718825956713e-03 2.6820718825956713e-03\n", - "Constraint violation....: 1.1714730625556058e-06 1.1714730625556058e-06\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 2.6820718825956713e-03 2.6820718825956713e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 131\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 131\n", - "Number of inequality constraint evaluations = 131\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.420\n", - "Total CPU secs in NLP function evaluations = 136.958\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 602.00us ( 4.60us) 585.89us ( 4.47us) 131\n", - " nlp_g | 5.90 s ( 45.07ms) 5.63 s ( 42.96ms) 131\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 362.00us ( 3.55us) 352.45us ( 3.46us) 102\n", - " nlp_jac_g | 133.82 s ( 1.30 s) 127.77 s ( 1.24 s) 103\n", - " total | 141.21 s (141.21 s) 134.83 s (134.83 s) 1\n", - "Timestamp 17400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0444238e+01 1.19e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.5361050e+00 3.98e+00 5.58e+00 1.0 5.78e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.6141783e+00 4.62e-01 1.54e-01 -1.1 1.82e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 9.9495169e-01 2.09e-03 4.40e-01 -7.0 2.71e+00 - 9.90e-01 1.00e+00h 1\n", - " 5 9.9521232e-01 1.23e-04 6.96e-03 -4.7 1.58e+00 - 1.00e+00 1.00e+00h 1\n", - " 6 9.9546027e-01 8.00e-08 2.89e-05 -6.8 1.18e+00 - 1.00e+00 1.00e+00H 1\n", - " 7 9.9490989e-01 3.32e-04 1.84e-03 -11.0 5.86e+00 - 1.00e+00 1.00e+00h 1\n", - " 8 5.4838155e-01 7.68e-01 7.13e-01 -10.2 1.41e+05 - 1.00e+00 5.72e-02f 3\n", - " 9 5.0427429e-01 9.21e-01 1.37e+00 -8.0 2.35e+07 - 2.29e-03 2.55e-04f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.3483111e+00 3.08e-01 3.74e-01 -11.0 1.42e+03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.2683463e+00 7.63e-01 5.85e-01 -10.9 3.54e+03 - 8.86e-01 1.00e+00H 1\n", - " 12 9.0492259e-01 1.17e+00 5.81e-01 -10.9 1.82e+04 - 1.00e+00 5.00e-01f 2\n", - " 13 1.0220436e+00 4.51e-01 4.67e-01 -10.9 1.50e+03 - 1.00e+00 1.00e+00h 1\n", - " 14 8.0670009e-01 1.35e-01 3.77e-01 -10.9 4.76e+03 - 1.00e+00 1.00e+00h 1\n", - " 15 6.4080039e-01 8.84e-01 1.02e+00 -11.0 4.74e+03 - 1.00e+00 1.00e+00f 1\n", - " 16 4.2976772e-01 4.98e-01 9.45e-01 -11.0 9.06e+03 - 1.00e+00 1.00e+00h 1\n", - " 17 3.6255653e-01 4.54e-01 1.34e+00 -9.0 6.33e+04 - 1.00e+00 6.30e-02f 4\n", - " 18 2.5339155e-01 4.15e-01 4.52e-01 -9.3 1.72e+04 - 1.00e+00 1.25e-01f 4\n", - " 19 1.6839772e-01 3.76e-01 4.09e-01 -9.0 1.43e+04 - 1.00e+00 2.50e-01h 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.6797585e-01 3.73e-01 4.61e-01 -9.9 6.57e+03 - 1.00e+00 1.56e-02h 7\n", - " 21 1.6784600e-01 3.66e-01 3.78e-01 -9.5 3.16e+04 - 1.00e+00 3.64e-03h 9\n", - " 22 1.6514948e-01 3.65e-01 3.16e-01 -7.6 1.19e+06 - 1.00e+00 3.86e-04h 7\n", - " 23 8.2421231e-01 7.24e-03 5.99e-01 -9.2 5.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 8.1525325e-01 9.18e-07 1.22e-02 -11.0 1.48e-02 - 1.00e+00 1.00e+00h 1\n", - " 25 8.1525341e-01 9.38e-08 4.92e-05 -11.0 2.02e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 8.1525346e-01 9.14e-09 5.01e-05 -11.0 5.01e-05 - 1.00e+00 1.00e+00h 1\n", - " 27 8.1525341e-01 2.94e-08 1.39e-04 -11.0 4.25e-04 - 1.00e+00 1.00e+00h 1\n", - " 28 8.1525335e-01 9.26e-08 7.66e-05 -11.0 3.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 8.1525345e-01 2.06e-08 8.58e-05 -11.0 1.12e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.1525346e-01 7.97e-09 2.94e-05 -11.0 5.88e-05 - 1.00e+00 1.00e+00h 1\n", - " 31 8.1525347e-01 2.83e-09 6.89e-05 -11.0 4.43e-05 - 1.00e+00 1.00e+00h 1\n", - " 32 8.1525346e-01 1.33e-08 2.93e-05 -11.0 5.78e-05 - 1.00e+00 1.00e+00h 1\n", - " 33 8.1525347e-01 3.46e-09 1.11e-04 -11.0 2.63e-05 - 1.00e+00 1.00e+00h 1\n", - " 34 8.1525347e-01 5.62e-09 1.36e-04 -11.0 4.64e-05 - 1.00e+00 1.00e+00h 1\n", - " 35 8.1525346e-01 5.28e-09 5.85e-05 -11.0 2.92e-05 - 1.00e+00 1.00e+00h 1\n", - " 36 8.1525347e-01 4.22e-09 4.30e-05 -11.0 5.79e-05 - 1.00e+00 1.00e+00h 1\n", - " 37 8.1525346e-01 1.26e-08 2.65e-05 -11.0 1.21e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 8.1525346e-01 8.62e-09 2.89e-05 -11.0 1.56e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 8.1525346e-01 1.39e-08 9.34e-05 -11.0 9.80e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.1525337e-01 1.43e-07 1.08e-04 -11.0 3.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 41 8.1525345e-01 2.15e-08 5.14e-05 -11.0 8.92e-05 - 1.00e+00 1.00e+00h 1\n", - " 42 8.1525347e-01 9.58e-09 6.76e-05 -11.0 4.54e-05 - 1.00e+00 1.00e+00h 1\n", - " 43 8.1525347e-01 2.67e-09 1.49e-04 -11.0 2.63e-05 - 1.00e+00 1.00e+00h 1\n", - " 44 8.1525342e-01 4.15e-08 5.71e-05 -11.0 1.19e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 8.1525347e-01 4.04e-09 2.12e-05 -11.0 3.62e-05 - 1.00e+00 1.00e+00h 1\n", - " 46 8.1525347e-01 1.87e-09 8.72e-05 -11.0 2.11e-05 - 1.00e+00 1.00e+00h 1\n", - " 47 8.1525347e-01 2.93e-09 1.46e-05 -11.0 1.63e-05 - 1.00e+00 1.00e+00h 1\n", - " 48 8.1525347e-01 8.24e-11 7.72e-06 -11.0 2.16e-05 - 1.00e+00 1.00e+00H 1\n", - " 49 8.1525347e-01 2.13e-10 4.44e-05 -11.0 3.48e-06 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.1525347e-01 5.37e-09 6.36e-05 -11.0 1.95e-05 - 1.00e+00 1.00e+00h 1\n", - " 51 8.1525346e-01 2.19e-08 1.68e-04 -11.0 1.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 52 8.1525342e-01 4.43e-08 8.09e-05 -11.0 9.05e-05 - 1.00e+00 1.00e+00h 1\n", - " 53 8.1525345e-01 2.23e-08 6.47e-05 -11.0 9.73e-05 - 1.00e+00 1.00e+00h 1\n", - " 54 8.1525334e-01 1.01e-07 1.87e-04 -11.0 5.96e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 8.1525314e-01 4.31e-07 1.74e-04 -11.0 8.79e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 8.1525318e-01 1.15e-07 1.66e-04 -11.0 5.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 8.1525143e-01 1.84e-06 1.29e-02 -11.0 4.20e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 8.1525021e-01 2.28e-06 3.33e-03 -11.0 9.48e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 8.1525294e-01 9.32e-07 2.09e-03 -11.0 3.62e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.1524641e-01 3.15e-06 2.75e-03 -11.0 1.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 8.1525322e-01 1.20e-07 4.65e-05 -11.0 2.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 62 8.1525330e-01 7.97e-08 2.17e-04 -11.0 1.06e-03 - 1.00e+00 1.00e+00h 1\n", - " 63 8.1525289e-01 3.20e-07 2.20e-05 -11.0 8.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 8.1525344e-01 1.59e-07 1.25e-05 -11.0 3.95e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 8.1525343e-01 8.75e-08 7.97e-05 -11.0 1.34e-03 - 1.00e+00 1.00e+00h 1\n", - " 66 8.1525340e-01 7.39e-08 2.27e-05 -11.0 4.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 67 8.1525289e-01 2.33e-06 3.53e-03 -11.0 6.87e-03 - 1.00e+00 1.00e+00h 1\n", - " 68 8.1525332e-01 5.35e-07 1.06e-04 -11.0 2.80e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 8.1525284e-01 7.96e-07 1.94e-03 -11.0 4.03e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.1525347e-01 1.86e-07 4.26e-05 -11.0 8.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 8.1525341e-01 1.52e-07 4.19e-05 -11.0 1.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 72 8.1525326e-01 1.21e-07 1.29e-04 -11.0 4.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 8.1525304e-01 4.27e-07 1.18e-04 -11.0 3.29e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 8.1525227e-01 1.09e-06 1.91e-03 -11.0 8.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 8.1525266e-01 6.79e-07 8.55e-05 -11.0 3.71e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 8.1525348e-01 1.40e-10 1.39e-04 -11.0 6.80e-03 - 1.00e+00 1.00e+00H 1\n", - " 77 8.1525305e-01 4.99e-07 4.14e-05 -11.0 3.44e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 8.1525341e-01 3.76e-08 3.88e-05 -11.0 9.99e-04 - 1.00e+00 1.00e+00h 1\n", - " 79 8.1525164e-01 1.78e-05 2.02e-03 -11.0 7.02e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.1521070e-01 5.03e-05 1.32e-02 -11.0 3.33e-01 - 1.00e+00 1.00e+00h 1\n", - " 81 8.1516313e-01 1.44e-04 4.85e-03 -11.0 4.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 82 8.1524864e-01 3.03e-08 9.53e-05 -11.0 1.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 83 8.1524861e-01 1.59e-08 4.28e-04 -11.0 7.68e-05 - 1.00e+00 1.00e+00h 1\n", - " 84 8.1524819e-01 2.09e-07 1.32e-05 -11.0 3.49e-04 - 1.00e+00 1.00e+00h 1\n", - " 85 8.1524864e-01 1.10e-09 3.77e-06 -11.0 1.19e-05 - 1.00e+00 1.00e+00h 1\n", - " 86 8.1524864e-01 2.48e-10 5.69e-05 -11.0 5.27e-06 - 1.00e+00 1.00e+00h 1\n", - " 87 8.1524864e-01 9.77e-10 1.94e-05 -11.0 3.21e-06 - 1.00e+00 1.00e+00h 1\n", - " 88 8.1524864e-01 1.26e-09 4.55e-04 -11.0 1.60e-05 - 1.00e+00 1.00e+00h 1\n", - " 89 8.1524828e-01 2.81e-07 9.93e-06 -11.0 2.61e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.1524865e-01 3.69e-11 1.71e-04 -11.0 1.83e-06 - 1.00e+00 1.00e+00h 1\n", - " 91 8.1524865e-01 7.22e-10 6.50e-05 -11.0 1.94e-06 - 1.00e+00 1.00e+00h 1\n", - " 92 8.1524865e-01 1.90e-11 3.55e-05 -11.0 6.27e-06 - 1.00e+00 1.00e+00H 1\n", - " 93 8.1524865e-01 2.21e-09 6.49e-05 -11.0 1.32e-05 - 1.00e+00 1.00e+00h 1\n", - " 94 8.1524864e-01 7.52e-09 3.93e-05 -11.0 2.01e-05 - 1.00e+00 1.00e+00h 1\n", - " 95 8.1524864e-01 1.34e-08 1.48e-04 -11.0 7.71e-05 - 1.00e+00 1.00e+00h 1\n", - " 96 8.1524861e-01 6.21e-08 3.54e-05 -11.0 1.52e-04 - 1.00e+00 1.00e+00h 1\n", - " 97 8.1524864e-01 3.04e-09 8.45e-05 -11.0 3.83e-05 - 1.00e+00 1.00e+00h 1\n", - " 98 8.1524865e-01 2.97e-10 1.52e-04 -11.0 6.11e-06 - 1.00e+00 1.00e+00h 1\n", - " 99 8.1524864e-01 7.21e-09 7.26e-05 -11.0 3.82e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.1524864e-01 1.09e-08 1.35e-04 -11.0 6.43e-05 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.1524864225738936e-01 8.1524864225738936e-01\n", - "Dual infeasibility......: 1.3534010113984548e-04 1.3534010113984548e-04\n", - "Constraint violation....: 1.0933330685247711e-08 1.0933330685247711e-08\n", - "Complementarity.........: 1.0000000000000001e-11 1.0000000000000001e-11\n", - "Overall NLP error.......: 1.3534010113984548e-04 1.3534010113984548e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 153\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 153\n", - "Number of inequality constraint evaluations = 153\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.417\n", - "Total CPU secs in NLP function evaluations = 136.604\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 687.00us ( 4.49us) 687.14us ( 4.49us) 153\n", - " nlp_g | 6.88 s ( 44.98ms) 6.57 s ( 42.91ms) 153\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 436.00us ( 4.27us) 428.15us ( 4.20us) 102\n", - " nlp_jac_g | 132.50 s ( 1.30 s) 126.54 s ( 1.24 s) 102\n", - " total | 140.88 s (140.88 s) 134.53 s (134.53 s) 1\n", - "Timestamp 17700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.17e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9635133e+01 1.46e+01 1.17e+04 -1.5 1.17e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.0440468e+01 5.09e+00 1.15e+01 0.6 1.46e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 1.4844494e+01 1.80e+00 6.29e-01 -1.5 1.12e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 1.6048917e+01 4.18e-04 7.83e-02 -3.5 2.21e+00 - 9.98e-01 1.00e+00h 1\n", - " 5 1.6049131e+01 2.68e-06 1.48e-03 -5.3 5.80e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.6049134e+01 7.18e-07 7.16e-05 -7.4 2.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.6049130e+01 1.73e-06 4.21e-03 -11.0 1.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.6049133e+01 7.72e-07 8.75e-04 -11.0 5.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 1.6049134e+01 6.44e-07 1.80e-03 -11.0 6.16e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.6049134e+01 4.98e-07 3.65e-05 -11.0 4.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.6049135e+01 1.35e-07 3.86e-05 -11.0 1.47e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.6049106e+01 2.34e-05 1.67e-02 -11.0 2.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.6049086e+01 2.57e-05 1.25e-03 -11.0 1.52e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.6049128e+01 7.12e-06 2.77e-03 -11.0 5.97e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 1.6049115e+01 1.24e-05 2.03e-03 -11.0 6.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 1.6048771e+01 1.86e-04 1.47e-02 -11.0 3.23e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.6049093e+01 1.15e-05 7.71e-04 -11.0 9.40e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 1.6048900e+01 1.15e-04 2.34e-02 -11.0 1.12e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 1.6043659e+01 5.49e-03 1.60e-03 -11.0 1.24e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.6040205e+01 1.21e-02 4.96e-03 -11.0 2.81e+01 - 1.00e+00 1.00e+00h 1\n", - " 21 1.6044901e+01 8.54e-03 2.79e-03 -11.0 2.86e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 1.6022550e+01 4.48e-02 2.34e-03 -11.0 2.94e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 1.6012694e+01 3.15e-02 1.55e-03 -11.0 1.99e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 1.5744261e+01 1.13e-01 9.70e-03 -11.0 5.84e+02 - 1.00e+00 1.00e+00f 1\n", - " 25 1.6041420e+01 1.13e-02 8.45e-03 -11.0 2.12e+02 - 1.00e+00 1.00e+00h 1\n", - " 26 1.5930923e+01 7.66e-02 4.85e-03 -11.0 1.35e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 1.6061470e+01 4.70e-04 2.13e-03 -11.0 2.15e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 1.6058957e+01 1.61e-03 3.57e-03 -11.0 9.50e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 1.5736441e+01 2.06e+00 6.72e-02 -11.0 2.22e+04 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.5430956e+01 1.14e+00 2.19e-02 -11.0 4.81e+04 - 1.00e+00 2.15e-01h 1\n", - " 31 1.5865296e+01 1.15e-01 5.49e-02 -10.0 1.01e+04 - 1.00e+00 1.00e+00h 1\n", - " 32 1.4977799e+01 3.91e+00 2.53e-01 -4.7 7.07e+04 - 1.26e-01 7.48e-01f 1\n", - " 33 1.4977787e+01 3.91e+00 2.53e-01 -4.7 2.63e+04 - 1.00e+00 3.66e-05h 1\n", - " 34 1.5872718e+01 1.08e-02 1.61e-01 -4.7 8.29e+01 - 1.00e+00 1.00e+00h 1\n", - " 35 1.5863624e+01 1.08e-03 2.14e-03 -3.7 5.73e+01 - 9.60e-01 1.00e+00h 1\n", - " 36 1.5855249e+01 3.67e-02 5.11e-03 -9.7 4.83e+02 - 2.94e-02 1.00e+00h 1\n", - " 37 1.5115533e+01 1.95e+00 4.93e-02 -9.7 6.01e+06 - 5.15e-05 7.20e-03f 1\n", - " 38 1.3943351e+01 1.77e+00 8.70e-02 -3.8 4.29e+04 - 5.08e-02 1.00e+00h 1\n", - " 39 1.6276228e+01 2.38e-01 6.14e-02 -3.5 2.12e+04 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.5511951e+01 1.65e+00 3.97e-02 -3.6 9.95e+04 - 2.94e-01 2.35e-01f 1\n", - " 41 1.5509480e+01 1.65e+00 3.90e-02 -3.6 9.04e+03 - 1.00e+00 5.62e-03h 1\n", - " 42 1.5865054e+01 6.02e-02 6.54e-02 -3.6 4.24e+02 - 5.04e-01 1.00e+00h 1\n", - " 43 1.5555499e+01 5.05e-01 1.39e-01 -3.6 3.53e+03 - 1.00e+00 1.00e+00h 1\n", - " 44 1.4829842e+01 8.28e-01 1.97e-01 -2.5 2.16e+04 - 1.00e+00 7.79e-02f 1\n", - " 45 1.5562715e+01 1.28e-01 7.98e-02 -3.8 6.08e+02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.5196569e+01 2.41e-01 6.14e-02 -5.3 2.67e+03 - 9.22e-01 1.00e+00h 1\n", - " 47 1.2180874e+01 1.03e+01 1.18e+00 -10.8 4.20e+05 - 6.89e-04 1.08e-01f 1\n", - " 48 1.2134045e+01 1.03e+01 1.17e+00 -5.0 6.87e+04 - 8.87e-01 6.67e-03h 1\n", - " 49 1.1585127e+01 9.58e+00 1.05e+00 -5.0 4.07e+03 - 1.00e+00 7.40e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.3963991e+01 2.83e+00 4.84e-01 -5.0 1.26e+03 - 6.09e-01 1.00e+00h 1\n", - " 51 1.2945128e+01 4.82e+00 3.80e-01 -3.8 1.01e+04 - 1.00e+00 8.99e-01h 1\n", - " 52 1.4449990e+01 5.85e+00 6.82e-02 -1.9 1.82e+04 - 1.57e-01 1.00e+00H 1\n", - " 53 1.5136756e+01 2.15e+00 2.78e-01 -2.5 1.68e+04 - 1.00e+00 1.00e+00h 1\n", - " 54 1.1616211e+01 5.47e+00 5.13e-01 -2.5 1.24e+05 - 1.57e-01 3.30e-01f 1\n", - " 55 1.2257339e+01 6.20e+00 5.00e-01 -0.7 5.77e+05 - 1.97e-01 3.37e-03f 6\n", - " 56 1.2386067e+01 1.93e+00 6.33e-01 -1.2 1.09e+05 - 4.41e-01 4.19e-01h 1\n", - " 57 1.5206256e+01 1.06e+01 1.02e+00 0.1 6.96e+05 - 3.15e-02 4.25e-02f 2\n", - " 58 1.4613195e+01 1.04e+00 1.73e+01 -0.3 1.85e+01 - 1.00e+00 1.00e+00f 1\n", - " 59 1.5405044e+01 5.21e-04 1.61e-01 -2.2 1.40e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.5405302e+01 1.40e-06 2.84e-03 -4.1 5.44e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 1.5404871e+01 2.12e-04 4.06e-03 -6.2 8.72e-01 - 1.00e+00 1.00e+00h 1\n", - " 62 1.5405266e+01 7.73e-06 1.55e-03 -8.3 1.29e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 1.5405290e+01 7.19e-09 8.89e-05 -11.0 1.64e-01 - 1.00e+00 1.00e+00H 1\n", - " 64 1.5405037e+01 1.36e-04 3.38e-03 -11.0 9.19e-01 - 1.00e+00 1.00e+00f 1\n", - " 65 1.5403697e+01 9.12e-04 8.69e-03 -11.0 2.33e+00 - 1.00e+00 1.00e+00h 1\n", - " 66 1.5405377e+01 1.92e-07 1.09e-04 -11.0 1.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 1.5405377e+01 1.52e-07 8.86e-05 -11.0 7.66e-04 - 1.00e+00 1.00e+00h 1\n", - " 68 1.5405377e+01 1.22e-07 1.90e-04 -11.0 5.41e-04 - 1.00e+00 1.00e+00h 1\n", - " 69 1.5405377e+01 8.28e-08 9.78e-05 -11.0 2.43e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.5405377e+01 4.55e-08 3.15e-05 -11.0 2.31e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 1.5405377e+01 7.58e-09 8.15e-05 -11.0 5.00e-05 - 1.00e+00 1.00e+00h 1\n", - " 72 1.5405377e+01 3.08e-08 1.58e-04 -11.0 1.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 1.5405377e+01 3.54e-08 1.65e-04 -11.0 9.81e-05 - 1.00e+00 1.00e+00h 1\n", - " 74 1.5405376e+01 9.92e-07 7.40e-03 -11.0 2.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.5405299e+01 3.26e-05 1.75e-02 -11.0 1.45e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 1.5405375e+01 5.03e-06 2.83e-03 -11.0 2.33e-02 - 1.00e+00 1.00e+00h 1\n", - " 77 1.5405372e+01 8.47e-06 2.98e-03 -11.0 5.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 78 1.5405376e+01 3.81e-07 8.62e-05 -11.0 1.29e-02 - 1.00e+00 1.00e+00h 1\n", - " 79 1.5405376e+01 5.03e-08 2.87e-05 -11.0 2.28e-01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.5405369e+01 9.78e-06 1.82e-03 -11.0 7.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 81 1.5405333e+01 1.95e-05 1.36e-03 -11.0 6.54e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 1.5405373e+01 4.51e-06 1.23e-03 -11.0 1.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.5405368e+01 3.51e-06 1.49e-03 -11.0 1.00e-02 - 1.00e+00 1.00e+00h 1\n", - " 84 1.5405374e+01 1.26e-06 1.38e-03 -11.0 9.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 1.5405382e+01 1.01e-08 9.91e-05 -11.0 4.32e-01 - 1.00e+00 1.00e+00H 1\n", - " 86 1.5405313e+01 4.57e-05 1.65e-03 -11.0 3.20e-01 - 1.00e+00 1.00e+00h 1\n", - " 87 1.5405329e+01 3.44e-05 1.39e-03 -11.0 1.49e-01 - 1.00e+00 5.00e-01h 2\n", - " 88 1.5405258e+01 1.55e-04 1.19e-02 -11.0 4.06e-01 - 1.00e+00 1.00e+00h 1\n", - " 89 1.5405307e+01 3.21e-05 4.41e-03 -11.0 4.61e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.5405322e+01 2.35e-05 3.47e-03 -11.0 3.56e-01 - 1.00e+00 2.50e-01h 3\n", - " 91 1.5405328e+01 2.03e-05 3.10e-03 -11.0 7.68e-02 - 1.00e+00 1.25e-01h 4\n", - " 92 1.5405366e+01 1.13e-05 1.92e-03 -11.0 9.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.5405368e+01 9.98e-06 1.23e-03 -11.0 5.06e-02 - 1.00e+00 1.25e-01h 4\n", - " 94 1.5405368e+01 9.82e-06 1.85e-03 -11.0 3.33e-02 - 1.00e+00 1.56e-02h 7\n", - " 95 1.5405368e+01 9.78e-06 1.28e-03 -11.0 2.32e-02 - 1.00e+00 3.91e-03h 9\n", - " 96 1.5405368e+01 9.77e-06 3.80e-03 -11.0 2.44e-03 - 1.00e+00 9.77e-04h 11\n", - " 97 1.5405368e+01 9.77e-06 3.80e-03 -11.0 7.93e-04 - 1.00e+00 1.22e-04h 14\n", - " 98 1.5405387e+01 2.04e-07 1.48e-04 -11.0 2.44e-03 - 1.00e+00 1.00e+00h 1\n", - " 99 1.5405387e+01 6.99e-07 1.24e-02 -11.0 1.48e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.5405387e+01 2.98e-07 1.49e-04 -11.0 2.41e-03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.5405386838249614e+01 1.5405386838249614e+01\n", - "Dual infeasibility......: 1.4881836839076543e-04 1.4881836839076543e-04\n", - "Constraint violation....: 2.9829703152017828e-07 2.9829703152017828e-07\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 1.4881836839076543e-04 1.4881836839076543e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 164\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 164\n", - "Number of inequality constraint evaluations = 164\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.455\n", - "Total CPU secs in NLP function evaluations = 137.625\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 764.00us ( 4.66us) 756.12us ( 4.61us) 164\n", - " nlp_g | 7.38 s ( 44.99ms) 7.05 s ( 42.96ms) 164\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 382.00us ( 3.75us) 363.54us ( 3.56us) 102\n", - " nlp_jac_g | 132.90 s ( 1.30 s) 126.96 s ( 1.24 s) 102\n", - " total | 141.75 s (141.75 s) 135.41 s (135.41 s) 1\n", - "Timestamp 18000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 7.77e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9723516e+01 1.27e+01 7.77e+03 -1.5 7.77e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.7410467e+00 4.31e+00 8.01e+00 0.6 4.40e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 5.1068642e+00 8.97e-01 8.74e-01 -1.5 1.11e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 5.7438518e+00 2.53e-03 1.03e-01 -3.3 1.34e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 5.7448152e+00 1.03e-07 7.34e-05 -5.1 2.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 5.7448147e+00 2.80e-07 8.04e-05 -11.0 2.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 5.7448141e+00 1.35e-06 1.18e-03 -11.0 5.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 5.7448136e+00 7.96e-07 1.27e-03 -11.0 3.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 5.7448149e+00 3.48e-07 5.00e-05 -11.0 2.58e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 5.7448152e+00 2.56e-07 8.79e-05 -11.0 1.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 5.7448145e+00 8.10e-07 1.46e-03 -11.0 5.69e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 5.7448142e+00 1.14e-06 2.24e-03 -11.0 6.20e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 5.7448146e+00 5.09e-07 2.22e-03 -11.0 8.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 5.7448147e+00 2.77e-07 3.59e-05 -11.0 5.11e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 5.7448151e+00 4.60e-07 1.02e-04 -11.0 3.88e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 5.7448146e+00 2.89e-06 7.23e-04 -11.0 1.29e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 5.7448142e+00 5.93e-07 1.32e-03 -11.0 1.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 5.7448034e+00 2.17e-05 2.37e-03 -11.0 6.35e-02 - 1.00e+00 1.00e+00h 1\n", - " 19 5.7448083e+00 1.26e-05 1.84e-03 -11.0 3.14e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 5.7447984e+00 9.85e-06 2.08e-03 -11.0 7.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 5.7447745e+00 1.86e-05 3.63e-03 -11.0 2.58e-01 - 1.00e+00 1.00e+00h 1\n", - " 22 5.7447528e+00 3.09e-05 3.63e-03 -11.0 3.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 5.7442533e+00 3.35e-04 1.32e-02 -11.0 9.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 5.7448017e+00 1.36e-08 1.23e-04 -11.0 5.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 5.7448013e+00 2.12e-07 1.16e-04 -11.0 1.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 26 5.7448015e+00 1.30e-07 1.05e-04 -11.0 6.73e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 5.7448000e+00 7.11e-07 4.57e-05 -11.0 5.56e-03 - 1.00e+00 1.00e+00h 1\n", - " 28 5.7448015e+00 6.31e-08 3.26e-05 -11.0 6.65e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 5.7448015e+00 4.75e-08 3.81e-05 -11.0 8.41e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 5.7448015e+00 6.23e-08 9.78e-05 -11.0 6.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 31 5.7446596e+00 1.70e-04 5.52e-03 -11.0 1.00e+00 - 1.00e+00 1.00e+00h 1\n", - " 32 5.7448233e+00 3.06e-06 1.93e-03 -11.0 5.91e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 5.7448211e+00 5.38e-06 8.61e-04 -11.0 4.25e-02 - 1.00e+00 1.00e+00h 1\n", - " 34 5.6984514e+00 9.78e-02 3.87e-02 -11.0 1.35e+03 - 1.00e+00 1.00e+00f 1\n", - " 35 5.6535611e+00 8.33e-02 8.96e-03 -11.0 1.06e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 4.4117545e+00 1.12e+00 3.69e-01 -11.0 4.51e+03 - 1.00e+00 1.00e+00f 1\n", - " 37 4.9722678e+00 4.43e-01 4.48e-01 -11.0 5.95e+03 - 1.00e+00 1.00e+00H 1\n", - " 38 4.3971862e+00 9.19e-01 1.89e-01 -11.0 1.47e+04 - 1.00e+00 1.00e+00h 1\n", - " 39 5.3541225e+00 9.63e-02 1.68e-01 -11.0 1.87e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 4.7497663e+00 3.94e+00 4.76e-01 -10.7 2.79e+04 - 1.00e+00 1.00e+00f 1\n", - " 41 4.6519407e+00 3.41e+00 3.10e-01 -10.9 6.74e+04 - 6.99e-01 1.38e-01h 1\n", - " 42 5.7298675e+00 3.98e-01 6.12e-01 -10.9 5.39e+03 - 6.96e-10 1.00e+00h 1\n", - " 43 5.6527978e+00 3.70e-01 5.95e-01 -10.9 4.34e+04 - 1.00e+00 3.05e-02h 1\n", - " 44 4.1533704e+00 1.05e+00 3.84e-01 -10.9 5.89e+03 - 1.79e-09 1.00e+00f 1\n", - " 45 4.0427597e+00 1.22e+00 3.45e-01 -11.0 3.97e+04 - 1.00e+00 5.00e-01h 2\n", - " 46 3.7326277e+00 1.44e+00 2.61e-01 -8.1 1.30e+05 - 1.00e+00 3.27e-01h 1\n", - " 47 3.7335877e+00 1.43e+00 2.57e-01 -6.3 6.56e+04 - 1.00e+00 6.49e-03h 1\n", - " 48 3.7337014e+00 1.43e+00 2.55e-01 -4.3 1.47e+03 - 1.00e+00 2.89e-03h 1\n", - " 49 4.9471862e+00 1.89e-01 4.61e-01 -2.6 1.09e+03 - 7.25e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 4.8527037e+00 1.03e+00 5.13e-01 -1.3 4.28e+05 - 7.34e-01 1.45e-01f 1\n", - " 51 3.9339581e+00 1.11e+00 1.88e-01 -1.6 7.60e+03 - 7.41e-01 1.00e+00f 1\n", - " 52 6.1012435e+00 4.13e-01 2.06e-01 -1.6 1.33e+04 - 1.00e+00 7.15e-01H 1\n", - " 53 3.9480363e+00 1.17e+00 1.62e-01 -1.6 5.36e+03 - 1.00e+00 1.00e+00f 1\n", - " 54 5.0671344e+00 2.87e-01 1.61e-01 -2.2 2.69e+03 - 9.54e-01 1.00e+00h 1\n", - " 55 4.8752353e+00 2.18e-01 1.48e-01 -2.4 2.17e+04 - 4.17e-01 8.04e-02f 1\n", - " 56 3.8765854e+00 3.22e+00 5.52e-01 -8.4 8.00e+03 - 1.61e-01 1.00e+00f 1\n", - " 57 4.8370506e+00 2.78e+00 3.86e-01 -2.6 2.44e+04 - 1.00e+00 1.00e+00h 1\n", - " 58 4.3820276e+00 2.50e+00 3.23e-01 -2.6 4.36e+03 - 8.48e-01 1.00e+00h 1\n", - " 59 4.3425536e+00 2.56e+00 2.45e-01 -2.6 3.42e+05 - 1.00e-01 4.19e-02h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.9310960e+00 1.61e+00 1.50e-01 -2.6 1.12e+04 - 4.51e-01 1.00e+00h 1\n", - " 61 3.8387298e+00 1.44e+00 1.49e-01 -2.6 3.99e+05 - 1.01e-01 3.43e-02h 1\n", - " 62 3.2197733e+00 2.20e+00 8.44e-01 -2.6 2.26e+05 - 1.75e-02 1.31e-01f 1\n", - " 63 4.6589519e+00 2.70e+00 6.34e-01 -2.4 2.41e+04 - 6.11e-01 1.00e+00h 1\n", - " 64 4.0555759e+00 7.75e-01 2.62e-01 -2.1 1.53e+04 - 1.17e-01 6.85e-01h 1\n", - " 65 4.0351136e+00 1.44e+00 2.62e-01 -2.1 2.90e+04 - 1.00e+00 2.04e-01h 2\n", - " 66 5.2137432e+00 1.02e+00 2.47e-01 -2.1 1.12e+04 - 1.86e-01 1.00e+00H 1\n", - " 67 4.8635197e+00 2.77e-01 2.77e-01 -2.1 8.68e+03 - 1.00e+00 8.18e-01h 1\n", - " 68 4.5710069e+00 9.66e-01 9.23e-02 -1.9 1.02e+04 - 1.99e-01 1.00e+00h 1\n", - " 69 5.1718495e+00 1.06e+00 1.09e-01 -1.8 7.85e+03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 4.6728377e+00 1.40e+00 1.48e-01 -1.9 5.82e+03 - 8.38e-01 1.00e+00h 1\n", - " 71 4.5300111e+00 2.22e+00 2.37e-01 -1.9 1.41e+04 - 4.38e-02 5.00e-01h 2\n", - " 72 4.2824656e+00 2.25e+00 7.11e-01 -1.9 4.70e+05 - 4.06e-02 1.01e-01F 1\n", - " 73 4.2313324e+00 2.23e+00 6.89e-01 -1.9 7.73e+04 - 6.96e-01 5.77e-03h 1\n", - " 74 3.8560227e+00 1.64e+00 3.66e-01 -1.9 1.85e+03 - 1.00e+00 2.95e-01f 1\n", - " 75 4.2242355e+00 1.05e+00 1.71e-01 -1.9 1.40e+04 - 2.15e-01 5.00e-01h 2\n", - " 76 4.2582618e+00 1.00e+00 1.48e-01 -1.9 8.71e+03 - 8.32e-01 4.59e-02h 1\n", - " 77 5.6357470e+00 7.58e-02 2.87e-01 -1.9 2.53e+04 - 1.00e+00 1.00e+00H 1\n", - " 78 5.5020070e+00 3.09e-01 4.19e-02 -7.2 1.36e+04 - 6.88e-01 1.00e+00h 1\n", - " 79 5.3843263e+00 5.10e-01 3.26e-02 -2.5 9.68e+03 - 3.83e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 5.2246274e+00 4.71e-01 6.45e-02 -2.5 2.67e+04 - 5.83e-01 1.00e+00h 1\n", - " 81 5.1178036e+00 5.36e-01 3.40e-02 -2.5 1.00e+04 - 1.00e+00 5.21e-01h 1\n", - " 82 4.7389247e+00 1.51e+00 1.55e-01 -2.5 4.25e+03 - 6.75e-02 5.86e-01f 1\n", - " 83 4.7315814e+00 1.50e+00 1.50e-01 -2.5 2.13e+04 - 1.50e-02 1.44e-02h 1\n", - " 84 5.0651380e+00 1.09e+00 7.99e-02 -2.5 2.99e+04 - 8.65e-01 2.50e-01h 3\n", - " 85 5.1641818e+00 9.90e-01 1.12e-01 -2.5 4.02e+03 - 9.89e-01 5.00e-01h 2\n", - " 86 5.6650363e+00 1.24e-01 3.75e-02 -2.5 2.84e+03 - 9.02e-01 1.00e+00h 1\n", - " 87 5.6371154e+00 6.72e-02 8.38e-02 -2.5 8.55e+02 - 1.00e+00 1.00e+00H 1\n", - " 88 5.4266660e+00 3.81e-01 1.73e-02 -2.5 1.77e+05 - 1.67e-01 1.40e-02f 2\n", - " 89 5.4930430e+00 3.30e-01 5.57e-03 -2.5 2.85e+03 - 1.00e+00 4.98e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 5.5042844e+00 1.57e-01 3.39e-02 -2.5 6.19e+03 - 1.00e+00 3.53e-01h 1\n", - " 91 5.2206606e+00 5.72e-01 2.32e-02 -3.1 1.29e+04 - 9.30e-01 1.00e+00h 1\n", - " 92 5.0648895e+00 8.84e-01 5.07e-02 -3.1 3.58e+04 - 1.00e+00 2.47e-01h 1\n", - " 93 5.0653594e+00 8.86e-01 5.08e-02 -3.1 1.21e+04 - 1.00e+00 4.33e-03h 8\n", - " 94 5.6824018e+00 3.65e-02 1.25e-01 -3.1 1.24e+02 - 8.60e-01 1.00e+00h 1\n", - " 95 5.6881368e+00 1.34e-02 1.24e-02 -2.7 9.35e+01 - 1.00e+00 9.18e-01h 1\n", - " 96 5.6084783e+00 1.01e-01 4.66e-03 -8.6 5.41e+02 - 8.53e-01 1.00e+00h 1\n", - " 97 5.6579741e+00 2.12e-02 2.28e-02 -4.6 2.91e+02 - 1.68e-01 1.00e+00h 1\n", - " 98 5.6365453e+00 9.20e-02 4.38e-02 -9.7 2.67e+02 - 1.76e-01 1.00e+00h 1\n", - " 99 5.6624393e+00 4.75e-02 8.99e-03 -2.7 2.10e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 5.6692678e+00 4.30e-02 7.55e-03 -2.8 2.58e+02 - 8.88e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 5.6692678240369192e+00 5.6692678240369192e+00\n", - "Dual infeasibility......: 7.5517271448209966e-03 7.5517271448209966e-03\n", - "Constraint violation....: 4.2956885750708551e-02 4.2956885750708551e-02\n", - "Complementarity.........: 1.5955702499493912e-03 1.5955702499493912e-03\n", - "Overall NLP error.......: 4.2956885750708551e-02 4.2956885750708551e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 136\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 136\n", - "Number of inequality constraint evaluations = 136\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.400\n", - "Total CPU secs in NLP function evaluations = 136.085\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 629.00us ( 4.63us) 626.61us ( 4.61us) 136\n", - " nlp_g | 6.07 s ( 44.60ms) 5.78 s ( 42.50ms) 136\n", - " nlp_grad | 1.38 s ( 1.38 s) 1.32 s ( 1.32 s) 1\n", - " nlp_grad_f | 358.00us ( 3.51us) 353.36us ( 3.46us) 102\n", - " nlp_jac_g | 132.75 s ( 1.30 s) 126.83 s ( 1.24 s) 102\n", - " total | 140.34 s (140.34 s) 134.06 s (134.06 s) 1\n", - "Timestamp 18300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0549012e+01 1.21e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.6784013e+00 4.11e+00 4.21e+00 1.0 4.04e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.5543074e+00 4.62e-01 1.82e-01 -1.1 1.36e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 9.3326609e-01 6.13e-03 5.04e-01 -7.0 1.23e+01 - 9.90e-01 1.00e+00h 1\n", - " 5 9.3928946e-01 2.63e-04 1.12e-02 -4.7 1.04e+00 - 1.00e+00 1.00e+00h 1\n", - " 6 9.3806131e-01 1.78e-03 1.27e-02 -6.5 7.99e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 9.3432056e-01 4.90e-03 2.47e-02 -8.4 1.51e+01 - 1.00e+00 1.00e+00h 1\n", - " 8 8.9197161e-01 3.58e-02 4.86e-02 -10.2 1.72e+02 - 1.00e+00 1.00e+00h 1\n", - " 9 9.4097462e-01 2.22e-03 4.82e-02 -11.0 5.92e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 9.0799791e-01 1.01e-01 1.73e-01 -11.0 6.13e+02 - 1.00e+00 1.00e+00h 1\n", - " 11 8.1169545e-01 1.55e-01 1.54e-01 -11.0 9.97e+02 - 1.00e+00 1.00e+00h 1\n", - " 12 9.5749594e-01 1.72e-02 8.52e-02 -11.0 3.46e+02 - 1.00e+00 1.00e+00h 1\n", - " 13 9.5529814e-01 2.55e-02 3.99e-02 -11.0 2.27e+02 - 1.00e+00 1.00e+00h 1\n", - " 14 9.0022548e-01 5.68e-02 4.19e-02 -11.0 1.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 15 9.7384488e-01 2.82e-02 5.11e-02 -11.0 2.78e+02 - 1.00e+00 1.00e+00H 1\n", - " 16 9.8092214e-01 1.54e-02 7.91e-02 -11.0 3.28e+02 - 1.00e+00 1.00e+00H 1\n", - " 17 7.4718279e-01 2.71e-01 5.43e-01 -11.0 1.79e+03 - 1.00e+00 1.00e+00f 1\n", - " 18 6.2113558e-01 2.19e-01 3.08e-01 -11.0 3.77e+03 - 1.00e+00 1.00e+00h 1\n", - " 19 7.0536465e-01 4.26e-01 3.80e-01 -11.0 6.95e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 6.7212138e-01 4.04e-01 8.47e-02 -11.0 2.31e+03 - 1.00e+00 1.00e+00h 1\n", - " 21 7.2388259e-01 3.39e-01 1.64e-01 -11.0 6.12e+03 - 1.00e+00 1.00e+00h 1\n", - " 22 7.2341539e-01 2.62e-01 1.23e-01 -11.0 5.38e+03 - 1.00e+00 1.00e+00h 1\n", - " 23 8.9352402e-01 2.26e-01 4.62e-01 -11.0 7.45e+05 - 3.47e-02 2.49e-02h 2\n", - " 24 8.6892960e-01 1.94e-01 4.06e-01 -11.0 5.43e+04 - 3.69e-01 5.11e-02h 5\n", - " 25 6.7088316e-01 4.25e-01 3.29e-01 -11.0 1.46e+05 - 8.68e-01 7.14e-02f 3\n", - " 26 6.0236107e-01 3.81e-01 6.56e-01 -11.0 4.85e+05 - 6.96e-02 3.47e-02h 2\n", - " 27 6.0215295e-01 2.76e-01 4.49e-01 -9.2 8.34e+05 - 1.00e+00 7.20e-04f 7\n", - " 28 6.1769340e-01 1.54e-01 2.04e-01 -9.8 1.41e+04 - 1.00e+00 1.25e-01h 4\n", - " 29 6.1459131e-01 1.33e-01 1.75e-01 -8.8 4.04e+04 - 1.00e+00 1.25e-01h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 7.3922419e-01 3.59e-01 2.16e-01 -9.6 6.79e+03 - 7.82e-01 9.94e-01H 1\n", - " 31 8.9871968e-01 2.34e-01 2.83e-01 -9.5 1.07e+04 - 1.00e+00 1.00e+00h 1\n", - " 32 8.7522546e-01 1.54e-01 1.87e-01 -9.5 1.40e+04 - 1.00e+00 6.89e-01H 1\n", - " 33 8.6447815e-01 6.39e-01 3.83e-01 -7.6 1.98e+04 - 2.20e-07 1.00e+00f 1\n", - " 34 1.0639103e+00 3.02e-01 6.51e-01 -9.7 4.48e+04 - 4.12e-01 9.64e-01h 1\n", - " 35 7.7107984e-01 6.88e-01 8.61e-01 -9.7 2.62e+04 - 9.50e-01 1.00e+00F 1\n", - " 36 9.1177148e-01 2.22e-01 7.00e-01 -9.7 8.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 9.9671693e-01 2.01e-01 1.30e-01 -9.7 1.29e+03 - 8.80e-01 1.00e+00h 1\n", - " 38 8.8519445e-01 6.53e-01 1.86e-01 -9.7 4.34e+04 - 1.00e+00 2.48e-01h 1\n", - " 39 8.9544414e-01 5.46e-01 1.84e-01 -9.7 8.65e+03 - 1.00e+00 2.50e-01h 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 9.4027429e-01 1.39e-01 2.52e-01 -9.7 4.96e+03 - 1.00e+00 2.18e-01h 2\n", - " 41 9.1065876e-01 1.88e-01 2.79e-01 -9.7 5.46e+02 - 1.00e+00 1.00e+00h 1\n", - " 42 9.0864955e-01 1.86e-01 1.75e-01 -9.7 1.36e+04 - 6.39e-02 3.12e-02h 6\n", - " 43 9.0136574e-01 2.67e-01 1.71e-01 -9.7 2.69e+03 - 1.00e+00 2.90e-01h 1\n", - " 44 9.0463248e-01 2.62e-01 1.82e-01 -9.7 7.73e+02 - 1.00e+00 1.25e-01h 4\n", - " 45 9.4280961e-01 4.56e-02 1.78e-01 -9.7 9.40e+02 - 4.30e-01 1.00e+00h 1\n", - " 46 9.3282799e-01 1.14e-01 1.66e-01 -9.7 9.19e+04 - 7.73e-01 2.61e-02h 5\n", - " 47 9.2836468e-01 1.35e-01 1.21e-01 -9.7 1.27e+04 - 1.00e+00 1.92e-01H 1\n", - " 48 9.3058709e-01 4.71e-02 7.71e-02 -9.7 5.54e+02 - 1.00e+00 1.00e+00h 1\n", - " 49 9.6430995e-01 1.85e-02 7.88e-02 -9.7 2.17e+02 - 3.29e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 9.2953994e-01 3.20e-02 3.66e-01 -9.7 4.26e+03 - 1.00e+00 1.00e+00F 1\n", - " 51 9.7144772e-01 1.38e-02 1.15e-01 -10.7 3.44e+03 - 1.00e+00 1.00e+00H 1\n", - " 52 9.4653487e-01 2.64e-01 2.53e-01 -10.3 1.04e+05 - 5.01e-01 7.12e-03f 2\n", - " 53 8.9506159e-01 1.32e-01 7.28e-02 -10.3 3.06e+04 - 6.44e-01 8.56e-02h 1\n", - " 54 8.9314888e-01 1.12e-01 1.31e-01 -10.3 1.17e+03 - 1.00e+00 1.00e+00H 1\n", - " 55 9.4634345e-01 1.22e-01 1.97e-01 -10.3 8.31e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 9.1724686e-01 9.73e-02 7.96e-02 -10.3 5.44e+02 - 1.00e+00 3.37e-01h 1\n", - " 57 9.7792348e-01 2.00e-02 2.61e-02 -10.3 1.39e+03 - 1.00e+00 1.00e+00H 1\n", - " 58 8.9995344e-01 7.91e-02 1.67e-01 -10.3 1.26e+03 - 4.45e-01 1.00e+00h 1\n", - "In iteration 58, 1 Slack too small, adjusting variable bound\n", - " 59 8.9995343e-01 7.91e-02 1.67e-01 -10.3 5.52e+03 - 1.00e+00 3.11e-08h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.5723875e-01 4.42e-01 1.07e+00 -10.3 2.23e+04 - 2.04e-01 1.00e+00F 1\n", - " 61r 7.5723875e-01 4.42e-01 9.99e+02 -0.4 0.00e+00 - 0.00e+00 1.37e-09R 3\n", - " 62r 6.6746104e-01 2.43e-01 6.74e+02 -6.4 3.47e+02 - 1.00e+00 1.23e-03f 1\n", - " 63 6.6739203e-01 2.42e-01 7.65e-01 -8.3 4.46e+02 - 1.00e+00 8.21e-04h 1\n", - " 64 6.6398148e-01 2.61e-02 4.40e-01 -6.3 5.52e+02 - 9.92e-01 1.00e+00h 1\n", - " 65 6.3911667e-01 9.24e-02 2.22e-01 -4.4 1.84e+03 - 9.69e-01 5.00e-01f 2\n", - " 66 6.3214533e-01 1.91e-01 1.73e-01 -3.0 1.85e+04 - 1.00e+00 3.47e-02f 4\n", - " 67 6.2316713e-01 1.98e-01 2.56e-01 -3.1 1.86e+04 - 7.43e-02 3.05e-02h 4\n", - " 68 6.1505410e-01 1.75e-01 1.74e-01 -3.1 3.28e+03 - 8.55e-01 1.11e-01h 1\n", - " 69 6.6670944e-01 7.93e-02 4.17e-01 -4.5 3.22e+03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 6.5718830e-01 3.09e-02 1.05e-01 -4.5 4.30e+02 - 1.00e+00 1.00e+00h 1\n", - " 71 5.9481032e-01 6.93e-02 1.31e-01 -4.3 1.11e+03 - 1.00e+00 1.00e+00h 1\n", - " 72 6.2442552e-01 8.01e-02 4.71e-02 -5.1 8.32e+02 - 1.00e+00 1.00e+00h 1\n", - " 73 6.6054539e-01 2.50e-02 1.16e-01 -3.1 4.12e+02 - 2.69e-01 1.00e+00h 1\n", - " 74 6.5615784e-01 2.40e-02 8.49e-02 -3.8 3.80e+03 - 1.00e+00 4.83e-02h 1\n", - " 75 6.6318221e-01 4.19e-02 5.79e-02 -2.8 9.24e+02 - 9.87e-01 5.00e-01f 2\n", - " 76 6.6095021e-01 7.20e-02 7.14e-02 -3.0 7.43e+02 - 1.00e+00 5.00e-01h 2\n", - " 77 6.7318048e-01 3.77e-02 1.27e-01 -3.0 9.62e+02 - 6.88e-01 1.00e+00h 1\n", - " 78 6.5730402e-01 7.50e-02 7.42e-02 -3.0 1.18e+03 - 1.00e+00 5.00e-01h 2\n", - " 79 6.5394275e-01 1.07e-01 6.09e-02 -3.0 2.94e+04 - 1.15e-01 1.95e-02h 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 6.7283761e-01 7.76e-02 4.21e-02 -3.6 4.38e+02 - 9.95e-01 1.00e+00h 1\n", - " 81 6.5530883e-01 2.23e-01 1.98e-01 -3.8 1.64e+03 - 1.00e+00 1.00e+00h 1\n", - " 82 6.5874946e-01 2.35e-01 9.36e-02 -3.8 2.89e+03 - 6.60e-01 6.60e-01s 22\n", - " 83r 6.5874946e-01 2.35e-01 9.99e+02 -0.6 0.00e+00 - 0.00e+00 0.00e+00R 1\n", - " 84r 6.9483004e-01 1.03e-02 1.37e+02 -2.8 1.90e+02 - 1.00e+00 1.22e-03f 1\n", - " 85 6.8800908e-01 1.75e-02 1.07e-01 -3.5 3.52e+02 - 7.76e-01 1.00e+00h 1\n", - " 86 6.7373203e-01 6.70e-02 1.60e-01 -1.7 2.73e+04 - 1.00e+00 6.00e-02f 1\n", - " 87 7.0602208e-01 1.24e-01 5.73e-02 -1.7 1.45e+03 - 1.00e+00 1.00e+00f 1\n", - " 88 6.9161978e-01 3.07e-03 7.02e-02 -2.5 5.00e+01 - 1.00e+00 1.00e+00h 1\n", - " 89 6.8722469e-01 1.44e-02 7.07e-02 -2.5 2.43e+03 - 9.61e-01 3.10e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 6.7668310e-01 5.80e-02 9.31e-02 -2.6 6.34e+02 - 9.77e-01 1.00e+00h 1\n", - " 91 6.8828294e-01 1.16e-02 5.73e-02 -2.8 1.73e+02 - 1.00e+00 1.00e+00h 1\n", - " 92 6.9159336e-01 6.80e-03 6.03e-02 -4.1 1.54e+03 - 1.00e+00 1.00e+00H 1\n", - " 93 6.9093390e-01 6.44e-03 5.93e-02 -3.5 5.83e+02 - 1.00e+00 4.76e-02h 2\n", - " 94 6.9556732e-01 2.43e-04 2.35e-02 -3.6 3.21e+01 - 1.00e+00 1.00e+00H 1\n", - " 95 6.9139516e-01 4.58e-03 1.48e-02 -5.3 1.69e+02 - 1.00e+00 1.52e-01h 1\n", - " 96 6.9458408e-01 2.80e-03 2.00e-02 -4.9 4.60e+01 - 8.97e-01 1.00e+00h 1\n", - " 97 6.8953985e-01 1.38e-02 4.05e-02 -4.9 1.09e+02 - 2.02e-01 1.00e+00h 1\n", - " 98 6.5522077e-01 1.08e-01 9.58e-02 -4.9 2.00e+03 - 1.00e+00 2.17e-01h 1\n", - " 99 7.0023882e-01 5.07e-05 4.83e-02 -4.9 1.10e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.0022146e-01 1.35e-08 1.66e-04 -6.8 9.56e-05 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.0022145919768453e-01 7.0022145919768453e-01\n", - "Dual infeasibility......: 1.6569659886078562e-04 1.6569659886078562e-04\n", - "Constraint violation....: 1.3463743897546010e-08 1.3463743897546010e-08\n", - "Complementarity.........: 2.0810504229823627e-07 2.0810504229823627e-07\n", - "Overall NLP error.......: 1.6569659886078562e-04 1.6569659886078562e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 240\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 240\n", - "Number of inequality constraint evaluations = 240\n", - "Number of equality constraint Jacobian evaluations = 103\n", - "Number of inequality constraint Jacobian evaluations = 103\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.457\n", - "Total CPU secs in NLP function evaluations = 157.497\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 1.25ms ( 5.20us) 1.23ms ( 5.14us) 240\n", - " nlp_g | 11.90 s ( 49.60ms) 11.46 s ( 47.77ms) 240\n", - " nlp_grad | 1.92 s ( 1.92 s) 1.87 s ( 1.87 s) 1\n", - " nlp_grad_f | 476.00us ( 4.67us) 392.78us ( 3.85us) 102\n", - " nlp_jac_g | 148.72 s ( 1.43 s) 143.25 s ( 1.38 s) 104\n", - " total | 162.71 s (162.71 s) 156.74 s (156.74 s) 1\n", - "Timestamp 18600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.83e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9832027e+01 1.55e+01 1.83e+04 -1.5 1.83e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.2538103e+01 5.57e+00 1.42e+01 1.0 5.71e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.9552846e+01 2.18e+00 8.48e-01 -1.1 1.26e+02 - 9.98e-01 1.00e+00h 1\n", - " 4 2.0956482e+01 2.26e-04 8.61e-02 -2.9 2.53e+00 - 9.98e-01 1.00e+00h 1\n", - " 5 2.0956810e+01 7.03e-05 9.99e-03 -4.7 4.27e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.0956411e+01 2.35e-04 2.42e-02 -6.6 9.73e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.0956817e+01 5.41e-08 3.52e-04 -8.5 1.19e+00 - 1.00e+00 1.00e+00H 1\n", - " 8 2.0955153e+01 5.77e-04 1.87e-03 -11.0 9.88e-01 - 1.00e+00 1.00e+00f 1\n", - " 9 2.0956600e+01 1.18e-04 2.08e-03 -11.0 3.96e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.0956725e+01 4.28e-05 1.41e-03 -11.0 1.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 2.0956841e+01 3.56e-06 1.44e-03 -11.0 4.91e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 2.0955715e+01 8.41e-04 9.30e-03 -11.0 9.51e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 2.0954196e+01 1.46e-03 9.90e-04 -11.0 7.41e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 2.0955239e+01 7.85e-04 2.35e-03 -11.0 3.84e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 2.0956994e+01 8.98e-05 1.81e-03 -11.0 5.89e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.0956909e+01 2.92e-07 1.27e-05 -11.0 4.65e+00 - 1.00e+00 1.00e+00H 1\n", - " 17 2.0956721e+01 2.58e-04 1.44e-03 -11.0 3.99e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 2.0928469e+01 1.44e-02 8.05e-03 -11.0 4.36e+01 - 1.00e+00 1.00e+00f 1\n", - " 19 2.0951646e+01 1.85e-03 1.30e-03 -11.0 1.07e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.0857304e+01 8.58e-02 8.62e-03 -11.0 2.16e+02 - 1.00e+00 1.00e+00f 1\n", - " 21 2.0932594e+01 3.04e-02 3.52e-03 -11.0 1.39e+02 - 1.00e+00 1.00e+00h 1\n", - " 22 2.0375103e+01 3.16e-01 9.60e-03 -11.0 6.82e+02 - 1.00e+00 1.00e+00f 1\n", - " 23 2.0964591e+01 1.95e-02 1.30e-02 -11.0 3.49e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 2.0936249e+01 1.25e-02 1.06e-02 -11.0 8.17e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 2.0905486e+01 3.17e-02 6.36e-03 -11.0 2.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 26 2.0804739e+01 2.70e-01 7.57e-03 -11.0 1.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 2.0785116e+01 1.56e-01 3.63e-03 -11.0 5.57e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 2.0756834e+01 1.48e-01 7.31e-03 -11.0 1.68e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 2.0560721e+01 2.23e-01 1.31e-02 -11.0 2.62e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.0571464e+01 1.37e-01 4.71e-03 -11.0 1.78e+03 - 1.00e+00 1.00e+00h 1\n", - " 31 2.0655394e+01 2.85e-01 9.03e-03 -11.0 1.12e+03 - 1.00e+00 1.00e+00h 1\n", - " 32 1.9413144e+01 8.53e-01 3.19e-02 -11.0 4.94e+03 - 1.00e+00 1.00e+00f 1\n", - " 33 1.7010803e+01 1.23e+01 6.18e-01 -10.7 3.59e+04 - 1.00e+00 1.00e+00f 1\n", - " 34 1.7110466e+01 1.03e+01 3.89e-01 -11.0 3.55e+04 - 1.00e+00 1.71e-01h 1\n", - " 35 1.9388394e+01 5.57e+00 2.67e-01 -9.1 6.19e+04 - 5.54e-09 1.00e+00h 1\n", - " 36 1.9137430e+01 2.80e+00 3.75e-01 -10.1 2.62e+05 - 1.00e+00 2.13e-01h 1\n", - " 37 1.8942211e+01 2.78e+00 3.72e-01 -7.5 2.61e+05 - 1.00e+00 2.68e-03f 1\n", - " 38 2.0893131e+01 1.27e-01 1.60e-01 -7.3 3.43e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 1.9948602e+01 1.60e+00 4.44e-02 -7.0 1.08e+04 - 1.06e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.4595735e+01 2.60e+00 3.00e-01 -7.0 9.86e+04 - 1.96e-01 4.37e-01f 1\n", - " 41 1.3420489e+01 3.12e+00 3.60e-01 -11.0 3.08e+05 - 2.41e-08 5.43e-02f 1\n", - " 42 1.3403865e+01 3.12e+00 3.60e-01 -5.3 2.42e+06 - 1.00e+00 1.20e-04f 1\n", - " 43 1.8406082e+01 6.37e-01 1.31e-01 -11.0 1.18e+04 - 5.86e-04 7.53e-01h 1\n", - " 44 1.8406879e+01 6.37e-01 1.31e-01 -3.4 5.74e+04 - 1.00e+00 1.55e-03h 1\n", - " 45 1.8621317e+01 5.57e-01 1.22e-01 -1.5 7.44e+03 - 2.74e-01 1.25e-01f 4\n", - " 46 1.9802658e+01 8.78e-01 9.51e-02 -3.0 7.81e+03 - 8.96e-01 1.00e+00h 1\n", - " 47 1.6813189e+01 3.05e+00 2.85e-01 -2.3 1.20e+04 - 7.36e-01 1.00e+00f 1\n", - " 48 1.9405766e+01 2.18e+00 1.67e-01 -2.4 2.17e+04 - 6.62e-01 8.79e-01h 1\n", - " 49 1.8740085e+01 2.08e+00 1.08e-01 -2.4 2.50e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.8597848e+01 1.88e+00 5.84e-02 -2.4 4.22e+04 - 7.92e-01 5.93e-01h 1\n", - " 51 2.0002303e+01 4.23e-01 5.61e-02 -2.4 4.87e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 1.7868353e+01 2.38e+00 1.75e-01 -1.3 2.49e+04 - 1.00e+00 8.93e-01f 1\n", - " 53 1.7322640e+01 2.64e+00 1.48e-01 -1.4 3.55e+04 - 9.36e-01 1.06e-01f 1\n", - " 54 2.0147518e+01 2.83e-01 3.81e-02 -2.1 2.04e+03 - 7.67e-01 1.00e+00h 1\n", - " 55 2.0165881e+01 2.77e-01 2.50e-02 -1.9 1.13e+03 - 6.92e-01 1.72e-01h 1\n", - " 56 2.0538041e+01 5.17e-02 2.16e-02 -2.9 4.84e+02 - 4.68e-01 1.00e+00h 1\n", - " 57 2.0316728e+01 2.12e-01 8.15e-02 -3.2 6.34e+02 - 4.60e-01 1.00e+00h 1\n", - " 58 1.8912611e+01 6.50e-01 4.81e-02 -8.4 1.03e+04 - 6.01e-02 1.00e+00f 1\n", - " 59 1.8558931e+01 5.81e-01 6.61e-02 -2.3 5.40e+04 - 1.00e+00 6.41e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.0276566e+01 2.31e-02 2.56e-02 -2.6 2.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 61 2.0256712e+01 6.63e-02 2.83e-02 -3.6 5.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 62 2.0284140e+01 1.27e-02 6.02e-03 -5.4 9.84e+01 - 1.00e+00 1.00e+00h 1\n", - " 63 2.0180691e+01 9.09e-02 1.15e-02 -6.2 6.86e+02 - 8.21e-01 1.00e+00h 1\n", - " 64 2.0091383e+01 1.35e-01 1.57e-02 -3.9 1.16e+03 - 5.19e-03 1.00e+00h 1\n", - " 65 2.0301843e+01 1.37e-03 5.69e-03 -4.9 2.94e+03 - 1.00e+00 1.00e+00H 1\n", - " 66 2.0293628e+01 6.45e-02 4.99e-03 -4.2 3.68e+04 - 1.00e+00 8.77e-02h 1\n", - " 67 1.9686060e+01 6.83e-01 2.25e-02 -4.4 4.08e+03 - 3.97e-03 1.00e+00f 1\n", - " 68 1.9620632e+01 7.28e-01 2.49e-02 -2.7 6.58e+04 - 1.00e+00 7.69e-03f 1\n", - " 69 2.0256135e+01 6.57e-02 2.78e-02 -3.4 3.74e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.0293299e+01 2.67e-03 2.27e-03 -3.9 1.12e+02 - 1.00e+00 1.00e+00h 1\n", - " 71 2.0269293e+01 2.53e-02 3.13e-03 -6.0 1.28e+02 - 9.98e-01 1.00e+00h 1\n", - " 72 2.0290836e+01 3.58e-03 1.71e-03 -5.9 4.86e+01 - 9.11e-01 1.00e+00h 1\n", - " 73 2.0282844e+01 1.31e-02 1.19e-03 -3.9 1.41e+02 - 7.96e-02 1.00e+00f 1\n", - " 74 2.0257552e+01 2.50e-02 2.12e-03 -5.1 7.39e+05 - 1.90e-04 4.01e-04f 1\n", - " 75 2.0276768e+01 5.27e-03 8.05e-04 -5.4 8.68e+01 - 1.00e+00 1.00e+00h 1\n", - " 76 2.0267711e+01 1.37e-02 1.45e-03 -6.0 6.70e+01 - 1.00e+00 1.00e+00h 1\n", - " 77 2.0254809e+01 1.16e-02 2.08e-03 -4.6 6.40e+01 - 1.00e+00 1.00e+00h 1\n", - " 78 2.0271658e+01 5.97e-03 1.86e-03 -6.6 3.58e+01 - 1.00e+00 1.00e+00h 1\n", - " 79 2.0230748e+01 3.59e-02 5.98e-03 -8.4 2.22e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.0273310e+01 1.79e-02 1.82e-03 -6.3 1.54e+02 - 1.00e+00 1.00e+00h 1\n", - " 81 2.0272764e+01 1.69e-02 1.77e-03 -6.4 9.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 82 2.0278932e+01 5.14e-03 1.20e-03 -6.4 6.53e+01 - 7.56e-01 1.00e+00h 1\n", - " 83 2.0234234e+01 6.56e-02 1.64e-03 -6.1 2.72e+02 - 1.00e+00 1.00e+00h 1\n", - " 84 2.0095807e+01 2.10e-01 5.22e-03 -6.2 8.18e+02 - 3.93e-01 1.00e+00h 1\n", - " 85 2.0294402e+01 1.07e-02 5.88e-03 -6.2 5.73e+02 - 1.00e+00 1.00e+00h 1\n", - " 86 2.0223279e+01 1.13e-01 7.25e-03 -6.2 4.83e+02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.9423724e+01 7.58e-01 4.81e-02 -6.2 1.51e+04 - 1.52e-01 1.00e+00f 1\n", - " 88 1.9221043e+01 1.59e+00 6.41e-02 -4.2 1.32e+05 - 1.00e+00 3.43e-02f 1\n", - " 89 1.9218914e+01 1.59e+00 6.42e-02 -4.3 1.58e+05 - 1.37e-01 2.90e-04h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.0295368e+01 2.84e-03 3.67e-02 -4.3 1.60e+01 - 1.00e+00 1.00e+00h 1\n", - " 91 2.0251817e+01 3.30e-02 3.76e-02 -2.3 3.14e+02 - 4.68e-01 1.00e+00f 1\n", - " 92 2.0294284e+01 1.39e-03 2.49e-03 -4.2 4.99e+01 - 9.98e-01 1.00e+00h 1\n", - " 93 2.0177594e+01 8.78e-02 7.40e-03 -5.2 6.48e+02 - 1.00e+00 6.26e-01f 1\n", - " 94 2.0229075e+01 1.82e-02 9.02e-03 -4.4 3.20e+02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.9998597e+01 2.13e-01 1.99e-02 -4.5 1.99e+03 - 1.00e+00 1.00e+00f 1\n", - " 96 1.9137771e+01 1.12e+00 4.44e-02 -4.0 9.48e+03 - 1.00e+00 1.00e+00f 1\n", - " 97 1.7798583e+01 2.72e+00 4.47e-02 -4.1 2.95e+04 - 3.51e-01 1.00e+00f 1\n", - " 98 1.7201932e+01 2.44e+00 1.31e-01 -4.2 1.88e+04 - 1.00e+00 1.00e+00h 1\n", - " 99 1.9691784e+01 8.72e-01 6.52e-02 -4.8 9.07e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.8652658e+01 3.57e+00 5.99e-02 -4.9 2.15e+04 - 1.00e+00 3.68e-01f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.8652657682624014e+01 1.8652657682624014e+01\n", - "Dual infeasibility......: 5.9948947529471719e-02 5.9948947529471719e-02\n", - "Constraint violation....: 3.5685637181708714e+00 3.5685637181708714e+00\n", - "Complementarity.........: 1.3846085666771378e-05 1.3846085666771378e-05\n", - "Overall NLP error.......: 3.5685637181708714e+00 3.5685637181708714e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 107\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 107\n", - "Number of inequality constraint evaluations = 107\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.924\n", - "Total CPU secs in NLP function evaluations = 155.465\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 639.00us ( 5.97us) 632.20us ( 5.91us) 107\n", - " nlp_g | 5.59 s ( 52.28ms) 5.41 s ( 50.54ms) 107\n", - " nlp_grad | 1.50 s ( 1.50 s) 1.45 s ( 1.45 s) 1\n", - " nlp_grad_f | 432.00us ( 4.24us) 417.80us ( 4.10us) 102\n", - " nlp_jac_g | 153.48 s ( 1.50 s) 148.47 s ( 1.46 s) 102\n", - " total | 160.74 s (160.74 s) 155.49 s (155.49 s) 1\n", - "Timestamp 18900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.01e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0018910e+01 1.17e+01 2.01e+04 -1.5 2.01e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 7.9108666e+00 3.80e+00 7.50e+00 0.8 2.40e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.0625251e+00 5.18e-01 6.21e-01 -1.3 6.39e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 9.3588083e-01 2.51e-03 8.63e-01 -3.0 1.81e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 9.3678040e-01 4.66e-06 6.87e-04 -4.9 2.93e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 9.3676993e-01 1.91e-05 1.59e-03 -7.0 3.33e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 9.3677722e-01 6.06e-06 9.95e-04 -9.1 1.32e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 9.3676493e-01 2.46e-05 1.38e-03 -11.0 1.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 9.3677812e-01 8.33e-06 8.65e-04 -11.0 6.85e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 9.3677970e-01 5.35e-06 5.85e-04 -11.0 2.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 9.3678092e-01 1.74e-06 8.68e-04 -11.0 3.67e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 9.3677158e-01 1.88e-05 1.40e-03 -11.0 8.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 9.3678009e-01 5.07e-06 5.59e-04 -11.0 2.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 9.3677607e-01 5.71e-06 6.41e-04 -11.0 4.98e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 9.3678161e-01 7.87e-09 3.96e-05 -11.0 9.06e-02 - 1.00e+00 1.00e+00H 1\n", - " 16 9.2598330e-01 4.51e-04 4.44e-02 -11.0 4.02e+03 - 1.00e+00 1.00e+00F 1\n", - " 17 9.1726293e-01 5.74e-02 5.25e-02 -11.0 8.79e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 8.9057696e-01 3.84e-01 4.61e-01 -11.0 6.55e+03 - 1.00e+00 2.50e-01h 3\n", - " 19 9.4081528e-01 2.82e-02 5.69e-01 -11.0 3.45e+03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 9.3932176e-01 2.92e-01 1.48e-01 -11.0 3.16e+03 - 1.00e+00 1.00e+00h 1\n", - " 21 8.9687957e-01 3.67e-01 2.03e-01 -11.0 1.90e+03 - 1.00e+00 1.00e+00h 1\n", - " 22 9.2473646e-01 1.52e-01 3.60e-01 -11.0 1.80e+05 - 1.57e-01 1.25e-01H 1\n", - " 23 8.8323754e-01 6.59e-02 1.67e-01 -11.0 3.51e+04 - 1.75e-10 1.25e-01h 4\n", - " 24 8.6189945e-01 1.42e-01 1.71e-01 -9.1 1.20e+05 - 1.00e+00 8.53e-03f 1\n", - " 25 8.9419560e-01 1.48e-01 1.39e-01 -8.6 2.39e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 8.7864805e-01 2.08e-01 1.56e-01 -7.8 3.34e+04 - 1.00e+00 2.87e-01h 1\n", - " 27 9.3112043e-01 9.58e-02 1.68e-01 -7.8 1.50e+03 - 1.00e+00 1.00e+00h 1\n", - " 28 9.0936260e-01 6.71e-02 5.89e-02 -7.8 1.75e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 8.8163351e-01 2.99e-01 2.60e-01 -7.2 2.47e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.5026705e-01 1.63e-01 2.55e-01 -5.8 1.84e+03 - 3.22e-01 1.00e+00h 1\n", - " 31 8.5000357e-01 1.63e-01 2.55e-01 -4.3 3.34e+04 - 1.00e+00 5.32e-04h 1\n", - " 32 8.4682130e-01 1.53e-01 2.49e-01 -4.0 3.95e+04 - 1.00e+00 3.12e-02h 6\n", - " 33 9.5387896e-01 1.09e-01 2.75e-01 -4.7 5.13e+03 - 9.48e-01 1.00e+00H 1\n", - " 34 8.9827039e-01 3.78e-01 2.26e-01 -4.8 5.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 35 9.1317234e-01 1.38e-01 2.70e-01 -4.8 1.01e+03 - 6.30e-01 1.00e+00h 1\n", - " 36 9.1263103e-01 1.41e-01 2.45e-01 -4.8 1.07e+04 - 1.00e+00 2.64e-02h 1\n", - " 37 8.8657272e-01 5.26e-01 2.34e-01 -4.8 1.46e+04 - 1.00e+00 2.50e-01f 3\n", - " 38 9.0428869e-01 2.86e-01 2.53e-01 -4.8 5.64e+03 - 8.27e-01 5.00e-01h 2\n", - " 39 8.8424711e-01 1.82e-01 3.91e-01 -4.8 1.67e+05 - 1.28e-01 1.61e-01F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.9821017e-01 7.59e-02 1.42e-01 -4.8 1.78e+04 - 5.82e-04 1.00e+00H 1\n", - " 41 8.7764696e-01 1.91e-01 1.43e-01 -4.8 4.72e+05 - 2.58e-02 9.82e-03f 3\n", - " 42 8.5226732e-01 2.30e-01 2.26e-01 -4.8 1.02e+04 - 1.00e+00 1.00e+00h 1\n", - " 43 9.2894703e-01 1.19e-01 4.16e-01 -4.8 4.37e+03 - 1.00e+00 1.00e+00H 1\n", - " 44 9.2334058e-01 1.17e-01 4.09e-01 -4.8 2.33e+04 - 2.03e-01 1.56e-02h 7\n", - " 45 9.2287207e-01 1.39e-01 4.18e-01 -4.8 1.50e+05 - 2.20e-01 7.82e-04h 9\n", - " 46 9.1120735e-01 2.13e-01 4.14e-01 -4.8 4.99e+03 - 1.00e+00 1.25e-01h 4\n", - " 47 1.0347895e+00 5.03e-02 2.70e-01 -4.8 2.00e+03 - 1.00e+00 1.00e+00H 1\n", - " 48 9.9183678e-01 8.04e-02 2.16e-01 -4.8 1.12e+05 - 7.62e-02 1.53e-02f 4\n", - " 49 9.8905110e-01 1.27e-01 1.73e-01 -4.8 4.20e+03 - 1.00e+00 2.50e-01h 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 9.9136121e-01 1.18e-01 1.65e-01 -4.8 1.71e+03 - 1.00e+00 1.25e-01h 4\n", - " 51 9.8850361e-01 1.29e-01 3.12e-02 -4.8 6.32e+02 - 9.34e-01 1.00e+00h 1\n", - " 52 9.4734534e-01 1.84e-01 1.11e-01 -4.8 1.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 9.4838077e-01 1.81e-01 1.07e-01 -4.8 1.06e+04 - 1.00e+00 1.56e-02h 7\n", - " 54 9.4836808e-01 1.81e-01 1.06e-01 -4.8 7.98e+04 - 7.42e-01 6.73e-04h 9\n", - " 55 1.0520111e+00 1.66e-02 2.36e-01 -4.8 1.54e+03 - 1.00e+00 1.00e+00H 1\n", - " 56 9.7777260e-01 7.96e-02 8.99e-02 -4.8 9.02e+02 - 1.00e+00 1.00e+00h 1\n", - " 57 9.8559239e-01 7.68e-02 9.81e-02 -4.8 9.74e+02 - 1.00e+00 2.50e-01h 3\n", - " 58 9.8126739e-01 7.51e-02 9.16e-02 -4.8 1.33e+04 - 8.64e-01 1.28e-02h 6\n", - " 59 8.9990111e-01 5.72e-01 3.59e-01 -4.8 9.78e+04 - 8.89e-01 2.93e-02f 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 9.4363523e-01 2.78e-01 1.21e-01 -4.8 1.44e+03 - 1.00e+00 5.00e-01h 2\n", - " 61 9.3721027e-01 1.65e-01 1.97e-01 -4.8 2.33e+03 - 1.00e+00 2.50e-01h 3\n", - " 62 9.4639320e-01 1.45e-01 2.08e-01 -4.8 5.70e+02 - 9.43e-01 1.25e-01h 4\n", - " 63 9.4278141e-01 8.65e-02 2.62e-01 -4.8 5.39e+03 - 1.00e+00 1.25e-01h 4\n", - " 64 1.1145850e+00 9.60e-03 3.31e-01 -4.8 5.52e+03 - 1.00e+00 1.00e+00H 1\n", - " 65 1.0770797e+00 8.57e-02 5.26e-02 -4.8 3.72e+03 - 1.00e+00 1.00e+00h 1\n", - " 66 9.9287463e-01 9.58e-02 4.31e-02 -4.8 3.06e+03 - 1.00e+00 1.00e+00h 1\n", - " 67 9.3738548e-01 3.80e-01 2.38e-01 -4.8 1.86e+03 - 1.00e+00 1.00e+00H 1\n", - " 68 1.0402080e+00 4.43e-03 4.68e-01 -4.8 4.95e-01 - 1.00e+00 1.00e+00h 1\n", - " 69 1.0410878e+00 9.41e-08 5.00e-05 -4.8 4.62e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.0410878e+00 1.40e-08 1.38e-04 -7.2 8.08e-05 - 1.00e+00 1.00e+00h 1\n", - " 71 1.0410878e+00 1.79e-08 1.83e-04 -7.2 4.25e-05 - 1.00e+00 1.00e+00h 1\n", - " 72 1.0373827e+00 4.07e-03 7.49e-02 -7.2 6.62e+00 - 1.00e+00 1.00e+00f 1\n", - " 73 1.0408781e+00 2.07e-04 3.29e-03 -7.2 1.67e+00 - 1.00e+00 1.00e+00h 1\n", - " 74 1.0404388e+00 9.94e-04 8.40e-04 -7.2 3.58e+00 - 1.00e+00 1.00e+00h 1\n", - " 75 1.0412473e+00 5.82e-09 1.17e-04 -7.2 2.04e+01 - 1.00e+00 1.00e+00H 1\n", - " 76 1.0336516e+00 1.07e-02 1.17e-02 -7.2 6.61e+01 - 1.00e+00 1.00e+00f 1\n", - " 77 1.0366021e+00 6.11e-03 2.74e-03 -7.2 2.63e+01 - 1.00e+00 5.00e-01h 2\n", - " 78 1.0373299e+00 5.20e-03 4.08e-03 -7.2 3.52e+01 - 1.00e+00 5.00e-01h 2\n", - " 79 1.0412083e+00 4.65e-10 1.08e-04 -7.2 4.06e+01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.0412082e+00 4.59e-08 6.83e-05 -11.0 1.61e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 1.0412082e+00 3.62e-08 1.41e-05 -11.0 3.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 82 1.0412083e+00 2.68e-09 1.19e-04 -11.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", - " 83 1.0412082e+00 1.93e-07 4.65e-05 -11.0 3.19e-04 - 1.00e+00 1.00e+00h 1\n", - " 84 1.0412083e+00 3.78e-08 5.15e-05 -11.0 1.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 85 1.0412083e+00 1.49e-08 1.04e-04 -11.0 1.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 86 1.0412083e+00 3.06e-08 6.70e-05 -11.0 1.05e-04 - 1.00e+00 1.00e+00h 1\n", - " 87 1.0412082e+00 9.58e-08 2.44e-05 -11.0 3.76e-04 - 1.00e+00 1.00e+00h 1\n", - " 88 1.0412082e+00 1.17e-07 7.36e-05 -11.0 1.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 1.0412080e+00 3.10e-07 9.29e-05 -11.0 8.38e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.0412081e+00 2.33e-07 3.85e-05 -11.0 4.29e-04 - 1.00e+00 5.00e-01h 2\n", - " 91 1.0412083e+00 4.01e-09 8.06e-05 -11.0 5.68e-05 - 1.00e+00 1.00e+00h 1\n", - " 92 1.0412083e+00 1.71e-08 1.91e-05 -11.0 1.18e-04 - 1.00e+00 1.00e+00h 1\n", - " 93 1.0412083e+00 3.15e-09 5.53e-05 -11.0 2.19e-05 - 1.00e+00 1.00e+00h 1\n", - " 94 1.0412083e+00 4.19e-08 6.51e-05 -11.0 1.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 95 1.0412083e+00 7.61e-09 2.70e-05 -11.0 4.68e-05 - 1.00e+00 1.00e+00h 1\n", - " 96 1.0412083e+00 7.13e-09 9.66e-05 -11.0 2.57e-05 - 1.00e+00 1.00e+00h 1\n", - " 97 1.0412083e+00 4.64e-09 9.78e-05 -11.0 6.34e-05 - 1.00e+00 1.00e+00h 1\n", - " 98 1.0412083e+00 1.04e-08 5.29e-05 -11.0 5.65e-05 - 1.00e+00 1.00e+00h 1\n", - " 99 1.0412083e+00 6.35e-11 4.07e-05 -11.0 4.64e-05 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.0412083e+00 3.75e-08 6.33e-06 -11.0 1.09e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.0412082837404029e+00 1.0412082837404029e+00\n", - "Dual infeasibility......: 6.3279061331312928e-06 6.3279061331312928e-06\n", - "Constraint violation....: 3.7507525973978773e-08 3.7507525973978773e-08\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 6.3279061331312928e-06 6.3279061331312928e-06\n", - "\n", - "\n", - "Number of objective function evaluations = 231\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 231\n", - "Number of inequality constraint evaluations = 231\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.605\n", - "Total CPU secs in NLP function evaluations = 143.969\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 1.07ms ( 4.65us) 1.06ms ( 4.58us) 231\n", - " nlp_g | 10.51 s ( 45.51ms) 10.05 s ( 43.50ms) 231\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 394.00us ( 3.86us) 383.43us ( 3.76us) 102\n", - " nlp_jac_g | 136.69 s ( 1.34 s) 130.95 s ( 1.28 s) 102\n", - " total | 148.69 s (148.69 s) 142.41 s (142.41 s) 1\n", - "Timestamp 19200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.65e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9583104e+01 1.44e+01 1.65e+04 -1.5 1.65e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.0542207e+01 4.92e+00 1.15e+01 0.8 2.20e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.4990392e+01 1.76e+00 8.94e-01 -1.3 4.81e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 1.6157348e+01 3.82e-04 8.67e-02 -3.0 2.15e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.6157654e+01 1.13e-05 5.96e-03 -4.9 1.14e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 1.6123451e+01 1.67e-02 2.49e-02 -6.8 1.04e+02 - 1.00e+00 1.00e+00f 1\n", - " 7 1.6099846e+01 4.28e-02 3.10e-03 -8.5 1.36e+02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.6141435e+01 1.04e-02 1.55e-03 -10.3 3.73e+01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.6145609e+01 1.95e-03 1.50e-03 -11.0 2.77e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.6143214e+01 5.55e-03 2.34e-03 -11.0 5.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.6124017e+01 1.20e-02 2.32e-03 -11.0 1.02e+02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.5944771e+01 9.51e-02 9.49e-03 -11.0 3.65e+02 - 1.00e+00 1.00e+00f 1\n", - " 13 1.6129519e+01 4.24e-05 1.44e-01 -11.0 1.44e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.6129576e+01 1.31e-06 1.90e-03 -11.0 5.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 1.6129577e+01 5.78e-07 1.70e-04 -11.0 3.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 1.6129578e+01 6.90e-11 9.86e-05 -11.0 2.04e-03 - 1.00e+00 1.00e+00H 1\n", - " 17 1.6129577e+01 4.48e-07 6.77e-05 -11.0 2.86e-03 - 1.00e+00 1.00e+00h 1\n", - " 18 1.6129577e+01 1.39e-07 2.32e-04 -11.0 1.06e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 1.6129577e+01 4.55e-07 7.86e-05 -11.0 9.63e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.6129577e+01 4.67e-07 8.24e-05 -11.0 1.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 1.6129577e+01 4.10e-07 2.02e-04 -11.0 3.52e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 1.6129566e+01 2.24e-05 9.39e-03 -11.0 4.46e-02 - 1.00e+00 1.00e+00h 1\n", - " 23 1.6129575e+01 2.92e-06 2.14e-03 -11.0 2.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 1.6129576e+01 1.18e-06 2.02e-03 -11.0 1.38e-02 - 1.00e+00 1.00e+00h 1\n", - " 25 1.6129576e+01 6.44e-07 1.19e-03 -11.0 9.48e-03 - 1.00e+00 1.00e+00h 1\n", - " 26 1.6129574e+01 2.71e-06 2.67e-03 -11.0 1.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 27 1.6129575e+01 7.48e-07 1.36e-03 -11.0 1.88e-02 - 1.00e+00 1.00e+00h 1\n", - " 28 1.6129568e+01 1.09e-05 2.52e-03 -11.0 3.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 29 1.6129573e+01 2.08e-06 1.19e-03 -11.0 2.52e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.6129556e+01 9.00e-06 1.80e-03 -11.0 6.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.6129573e+01 3.58e-06 3.49e-03 -11.0 2.85e-02 - 1.00e+00 1.00e+00h 1\n", - " 32 1.6129574e+01 2.46e-06 1.13e-03 -11.0 1.57e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.6129574e+01 1.45e-06 2.00e-03 -11.0 1.08e-02 - 1.00e+00 1.00e+00h 1\n", - " 34 1.6129578e+01 3.30e-07 1.25e-04 -11.0 2.97e-03 - 1.00e+00 1.00e+00h 1\n", - " 35 1.6129579e+01 1.15e-09 1.06e-04 -11.0 1.06e-02 - 1.00e+00 1.00e+00H 1\n", - " 36 1.6129576e+01 1.63e-06 1.71e-03 -11.0 7.93e-03 - 1.00e+00 1.00e+00h 1\n", - " 37 1.6129571e+01 8.28e-06 2.57e-03 -11.0 2.37e-02 - 1.00e+00 1.00e+00h 1\n", - " 38 1.6129573e+01 3.15e-06 1.03e-03 -11.0 1.37e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 1.6129578e+01 9.40e-07 1.75e-03 -11.0 7.46e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.6129575e+01 2.12e-06 1.81e-03 -11.0 5.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 1.6129559e+01 1.76e-05 7.15e-03 -11.0 5.04e-02 - 1.00e+00 1.00e+00h 1\n", - " 42 1.6129567e+01 9.29e-06 2.23e-03 -11.0 1.43e-02 - 1.00e+00 5.00e-01h 2\n", - " 43 1.6129564e+01 6.40e-06 3.07e-03 -11.0 3.82e-02 - 1.00e+00 1.00e+00h 1\n", - " 44 1.6129577e+01 5.09e-06 2.07e-03 -11.0 1.14e-02 - 1.00e+00 1.00e+00h 1\n", - " 45 1.6129539e+01 1.97e-05 3.58e-03 -11.0 6.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.6129573e+01 4.84e-06 2.01e-03 -11.0 1.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 47 1.6129573e+01 3.82e-06 2.18e-03 -11.0 3.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 1.6129572e+01 3.81e-06 1.66e-03 -11.0 1.95e-02 - 1.00e+00 1.00e+00h 1\n", - " 49 1.6095741e+01 1.81e-02 3.22e-02 -11.0 1.11e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.6112808e+01 1.17e-02 4.54e-03 -11.0 1.54e+02 - 1.00e+00 1.00e+00h 1\n", - " 51 1.6123411e+01 3.39e-03 2.50e-03 -11.0 1.85e+01 - 1.00e+00 1.00e+00h 1\n", - " 52 1.6104251e+01 1.37e-02 8.98e-03 -11.0 1.86e+02 - 1.00e+00 1.00e+00h 1\n", - " 53 1.5487058e+01 2.24e+00 9.18e-02 -11.0 6.02e+03 - 1.00e+00 1.00e+00f 1\n", - " 54 1.4703020e+01 1.16e+00 4.70e-02 -11.0 8.43e+03 - 1.00e+00 1.00e+00h 1\n", - " 55 1.2517225e+01 2.38e+00 1.91e-01 -11.0 1.40e+04 - 1.00e+00 1.00e+00f 1\n", - " 56 1.6211295e+01 4.50e-02 5.08e+00 -11.0 5.35e+00 - 1.00e+00 1.00e+00h 1\n", - " 57 1.6239852e+01 1.38e-06 1.78e-03 -11.0 5.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 58 1.6239853e+01 4.60e-07 2.24e-04 -11.0 2.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.6239853e+01 2.75e-07 1.92e-04 -11.0 1.66e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.6239833e+01 6.26e-06 5.69e-03 -11.0 3.52e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 1.6239841e+01 5.65e-06 2.03e-03 -11.0 1.69e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 1.6239849e+01 1.36e-06 2.31e-03 -11.0 7.33e-03 - 1.00e+00 1.00e+00h 1\n", - " 63 1.6239849e+01 3.51e-06 4.38e-03 -11.0 1.13e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 1.6239464e+01 1.93e-04 1.18e-02 -11.0 1.28e+00 - 1.00e+00 1.00e+00h 1\n", - " 65 1.6232739e+01 4.62e-03 1.54e-02 -11.0 2.52e+01 - 1.00e+00 1.00e+00h 1\n", - " 66 1.6232064e+01 5.35e-03 2.53e-03 -11.0 1.53e+01 - 1.00e+00 1.00e+00h 1\n", - " 67 1.6239275e+01 2.85e-04 3.66e-03 -11.0 2.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 68 1.6239288e+01 2.24e-04 1.57e-03 -11.0 1.30e+00 - 1.00e+00 1.00e+00h 1\n", - " 69 1.6238766e+01 2.27e-04 1.33e-03 -11.0 1.98e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.6237100e+01 1.90e-03 1.75e-03 -11.0 1.52e+01 - 1.00e+00 1.00e+00h 1\n", - " 71 1.6238186e+01 9.66e-04 9.01e-04 -11.0 3.00e+00 - 1.00e+00 5.00e-01h 2\n", - " 72 1.6239409e+01 5.42e-07 2.31e-05 -11.0 1.50e+01 - 1.00e+00 1.00e+00H 1\n", - " 73 1.6239306e+01 1.80e-04 9.75e-04 -11.0 1.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 74 1.6239445e+01 1.14e-07 2.29e-05 -11.0 1.15e+01 - 1.00e+00 1.00e+00H 1\n", - " 75 1.5824723e+01 7.42e-01 3.39e-02 -11.0 3.54e+06 - 1.25e-02 2.53e-03f 1\n", - " 76 1.6262358e+01 4.68e-02 3.20e-02 -10.7 2.69e+02 - 1.00e+00 1.00e+00h 1\n", - " 77 1.6197136e+01 6.15e-02 1.17e-02 -2.4 2.98e+02 - 1.00e+00 8.99e-01h 1\n", - " 78 1.5736075e+01 5.65e-01 2.22e-02 -2.4 4.73e+03 - 2.58e-01 1.00e+00f 1\n", - " 79 1.5918239e+01 3.08e-01 4.57e-02 -2.6 3.25e+03 - 9.85e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.4941946e+01 1.60e+00 6.29e-02 -3.4 2.28e+04 - 9.98e-01 7.28e-01f 1\n", - " 81 1.4935546e+01 1.58e+00 6.05e-02 -3.5 2.24e+04 - 8.00e-01 7.48e-03h 1\n", - " 82 1.6612596e+01 8.34e-02 1.28e-01 -3.5 8.94e+02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.6691085e+01 1.68e-05 9.55e-02 -3.5 9.55e-02 - 1.00e+00 1.00e+00h 1\n", - " 84 1.6691091e+01 8.44e-07 1.08e-03 -3.5 1.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 85 1.6691091e+01 9.50e-07 1.98e-03 -5.2 4.96e-03 - 1.00e+00 1.00e+00h 1\n", - " 86 1.6691094e+01 9.50e-08 1.13e-04 -5.2 6.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 87 1.6691093e+01 1.11e-07 9.39e-05 -5.2 4.75e-04 - 1.00e+00 1.00e+00h 1\n", - " 88 1.6691092e+01 5.41e-07 6.16e-05 -5.2 4.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 1.6691093e+01 1.37e-07 7.56e-05 -7.8 8.13e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.6691093e+01 8.79e-08 4.47e-05 -7.8 9.26e-04 - 1.00e+00 1.00e+00h 1\n", - " 91 1.6691093e+01 1.06e-07 1.18e-04 -7.8 4.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 92 1.6691093e+01 1.24e-10 3.94e-04 -7.8 1.99e-03 - 1.00e+00 1.00e+00H 1\n", - " 93 1.6691091e+01 9.50e-07 2.25e-03 -7.8 1.71e-03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.6691093e+01 1.57e-07 1.29e-04 -7.8 1.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 95 1.6691093e+01 1.66e-07 9.43e-05 -7.8 6.55e-04 - 1.00e+00 5.00e-01h 2\n", - " 96 1.6691094e+01 6.48e-11 6.53e-05 -7.8 2.24e-03 - 1.00e+00 1.00e+00H 1\n", - " 97 1.6689385e+01 4.68e-03 1.34e-02 -7.8 3.78e+01 - 1.00e+00 3.11e-01f 1\n", - " 98 1.6689799e+01 1.26e-03 2.52e-03 -7.8 7.85e+00 - 1.00e+00 1.00e+00h 1\n", - " 99 1.6690641e+01 3.14e-04 3.49e-03 -7.8 1.85e+00 - 1.00e+00 8.01e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.6690879e+01 1.73e-04 1.86e-03 -7.8 4.63e-01 - 8.23e-01 5.00e-01h 2\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.6690879481873381e+01 1.6690879481873381e+01\n", - "Dual infeasibility......: 1.8636224404836588e-03 1.8636224404836588e-03\n", - "Constraint violation....: 1.7285710675096766e-04 1.7285710675096766e-04\n", - "Complementarity.........: 1.7178169560669866e-08 1.7178169560669866e-08\n", - "Overall NLP error.......: 1.8636224404836588e-03 1.8636224404836588e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 111\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 111\n", - "Number of inequality constraint evaluations = 111\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.418\n", - "Total CPU secs in NLP function evaluations = 134.308\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 491.00us ( 4.42us) 498.39us ( 4.49us) 111\n", - " nlp_g | 4.98 s ( 44.83ms) 4.75 s ( 42.77ms) 111\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 367.00us ( 3.60us) 362.03us ( 3.55us) 102\n", - " nlp_jac_g | 132.02 s ( 1.29 s) 126.05 s ( 1.24 s) 102\n", - " total | 138.49 s (138.49 s) 132.23 s (132.23 s) 1\n", - "Timestamp 19500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9434891e+01 1.37e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.1704001e+01 5.44e+00 1.25e+01 0.8 3.44e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.6981285e+01 1.86e+00 8.62e-01 -1.3 6.41e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.8067109e+01 6.87e-05 8.23e-02 -3.0 2.08e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.8067259e+01 1.80e-05 3.75e-03 -4.9 1.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 1.8067243e+01 3.39e-05 4.29e-03 -7.0 1.27e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 1.8067146e+01 9.63e-05 1.22e-03 -9.1 3.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 1.8067244e+01 1.02e-05 2.98e-03 -11.0 1.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 1.8067249e+01 1.91e-05 1.77e-03 -11.0 8.60e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.8067173e+01 4.97e-05 4.57e-03 -11.0 7.24e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 1.8067277e+01 5.18e-07 4.37e-05 -11.0 1.50e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.8067257e+01 1.17e-05 3.95e-03 -11.0 3.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.8067264e+01 1.63e-05 1.58e-03 -11.0 1.62e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.8067257e+01 1.69e-05 2.27e-03 -11.0 1.18e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.8067269e+01 3.05e-06 2.14e-03 -11.0 5.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 1.8067238e+01 2.76e-05 5.14e-03 -11.0 6.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 1.8066105e+01 1.10e-03 9.21e-03 -11.0 2.09e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 1.8063810e+01 1.78e-03 1.43e-02 -11.0 3.46e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.7986734e+01 4.14e-02 7.36e-03 -11.0 9.24e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.8051942e+01 2.51e-03 3.17e-03 -11.0 7.80e+01 - 1.00e+00 1.00e+00h 1\n", - " 21 1.7996258e+01 3.34e-02 3.58e-03 -11.0 8.60e+02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.8017086e+01 3.91e-02 1.51e-03 -11.0 4.03e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 1.8029603e+01 7.55e-03 2.55e-03 -11.0 7.91e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.8015086e+01 1.60e-02 3.58e-03 -11.0 9.33e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 1.7860494e+01 7.33e-01 2.33e-02 -11.0 2.05e+03 - 1.00e+00 1.00e+00f 1\n", - " 26 1.5893227e+01 2.72e+00 1.88e-01 -9.0 1.61e+06 - 1.00e+00 1.73e-02f 1\n", - " 27 1.7490143e+01 3.24e-01 1.04e-01 -9.6 4.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 28 1.7430270e+01 7.22e-01 7.83e-02 -7.7 5.83e+03 - 1.00e+00 7.76e-01h 1\n", - " 29 1.7431467e+01 7.12e-01 7.62e-02 -5.7 3.76e+03 - 1.00e+00 2.54e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.7438015e+01 6.79e-01 7.13e-02 -3.8 2.18e+03 - 1.00e+00 8.65e-02h 1\n", - " 31 1.7666625e+01 1.47e-03 2.20e-02 -5.9 1.75e+02 - 9.63e-01 1.00e+00h 1\n", - " 32 1.7642219e+01 3.28e-02 2.34e-02 -3.2 2.08e+03 - 1.19e-01 1.00e+00f 1\n", - " 33 1.7623603e+01 5.23e-02 2.15e-02 -2.6 2.66e+05 - 7.35e-01 6.76e-03f 1\n", - " 34 1.7684895e+01 6.69e-03 1.17e-02 -3.6 3.50e+03 - 1.00e+00 1.00e+00H 1\n", - " 35 1.6702717e+01 1.50e+00 1.33e-01 -3.7 1.75e+04 - 7.03e-01 1.00e+00f 1\n", - " 36 1.7719950e+01 2.01e-04 1.84e+00 -5.6 1.93e+00 - 1.00e+00 1.00e+00h 1\n", - " 37 1.7720082e+01 2.70e-07 1.02e-04 -7.5 2.64e-03 - 1.00e+00 1.00e+00h 1\n", - " 38 1.7720082e+01 3.13e-07 1.55e-04 -11.0 9.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 1.7720082e+01 7.61e-07 1.65e-03 -11.0 3.60e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.7720082e+01 3.12e-07 1.19e-04 -11.0 4.39e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 1.7720080e+01 1.63e-06 2.70e-03 -11.0 8.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 1.7720082e+01 1.13e-07 6.15e-05 -11.0 1.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 43 1.7720082e+01 4.82e-07 8.90e-05 -11.0 3.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 1.7720082e+01 7.16e-07 1.47e-04 -11.0 4.34e-03 - 1.00e+00 1.00e+00h 1\n", - " 45 1.7720082e+01 1.86e-07 7.95e-05 -11.0 2.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 46 1.7720075e+01 3.01e-06 7.25e-03 -11.0 2.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 47 1.7720070e+01 4.85e-06 1.21e-02 -11.0 3.65e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 1.7720077e+01 2.87e-06 1.59e-03 -11.0 1.37e-02 - 1.00e+00 1.00e+00h 1\n", - " 49 1.7720079e+01 5.33e-07 2.54e-04 -11.0 6.39e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.7720037e+01 1.30e-05 2.35e-03 -11.0 3.84e-02 - 1.00e+00 1.00e+00h 1\n", - " 51 1.7720021e+01 3.76e-05 3.21e-03 -11.0 9.03e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 1.7720060e+01 1.20e-05 2.05e-03 -11.0 3.54e-02 - 1.00e+00 1.00e+00h 1\n", - " 53 1.7720075e+01 1.46e-06 2.43e-03 -11.0 1.31e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 1.7720066e+01 6.64e-06 1.55e-03 -11.0 6.70e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.7719901e+01 7.54e-05 4.96e-03 -11.0 9.72e-01 - 1.00e+00 1.00e+00h 1\n", - " 56 1.7720017e+01 5.29e-09 6.28e-05 -11.0 8.63e-01 - 1.00e+00 1.00e+00H 1\n", - " 57 1.7719980e+01 7.97e-05 2.59e-03 -11.0 5.78e-01 - 1.00e+00 1.00e+00h 1\n", - " 58 1.7718311e+01 1.73e-03 1.12e-02 -11.0 2.62e+01 - 1.00e+00 1.00e+00h 1\n", - " 59 1.7719397e+01 8.09e-04 3.76e-03 -11.0 2.27e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.7708137e+01 6.88e-03 4.47e-03 -9.0 3.08e+03 - 1.00e+00 1.57e-01h 1\n", - " 61 1.7716013e+01 4.11e-03 2.21e-03 -9.1 1.70e+02 - 1.67e-04 1.00e+00h 1\n", - " 62 1.6703197e+01 9.27e-01 6.09e-02 -9.1 7.40e+06 - 3.88e-03 4.63e-03f 1\n", - " 63 1.7863325e+01 2.85e-01 6.58e-02 -8.9 4.92e+03 - 1.00e+00 1.00e+00h 1\n", - " 64 1.7298393e+01 2.33e-01 1.84e-02 -1.8 6.49e+03 - 4.42e-01 1.00e+00h 1\n", - " 65 1.7665682e+01 2.07e-04 4.13e-01 -4.2 4.27e-01 - 9.97e-01 1.00e+00h 1\n", - " 66 1.7665797e+01 3.33e-07 3.89e-05 -6.0 3.51e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 1.7665792e+01 1.68e-06 3.02e-03 -11.0 2.47e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 1.7665772e+01 1.89e-05 7.48e-03 -11.0 5.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 69 1.7665781e+01 5.55e-06 1.79e-03 -11.0 3.93e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.7665629e+01 2.82e-04 7.25e-03 -11.0 6.49e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 1.7665734e+01 2.63e-05 2.15e-03 -11.0 2.94e-01 - 1.00e+00 1.00e+00h 1\n", - " 72 1.7665588e+01 1.04e-04 1.01e-02 -11.0 1.22e+00 - 1.00e+00 1.00e+00h 1\n", - " 73 1.7665096e+01 2.46e-04 1.93e-02 -11.0 2.24e+00 - 1.00e+00 1.00e+00h 1\n", - " 74 1.7660254e+01 3.04e-03 4.65e-02 -11.0 6.08e+00 - 1.00e+00 1.00e+00h 1\n", - " 75 1.7665788e+01 6.87e-07 4.40e-03 -11.0 4.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.7665786e+01 1.12e-06 1.81e-03 -11.0 7.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 1.7665788e+01 1.45e-07 5.39e-05 -11.0 1.71e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.7665787e+01 4.52e-07 4.74e-05 -11.0 5.93e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 1.7665769e+01 8.90e-06 6.84e-03 -11.0 1.40e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.7665767e+01 1.44e-05 1.94e-03 -11.0 8.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 81 1.7665784e+01 9.80e-06 6.40e-03 -11.0 4.10e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 1.7665776e+01 5.98e-06 4.32e-03 -11.0 2.92e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 1.7665782e+01 2.25e-06 7.79e-03 -11.0 3.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 84 1.7665767e+01 9.06e-06 1.52e-02 -11.0 5.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 85 1.7665780e+01 4.59e-06 3.81e-03 -11.0 3.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 86 1.7665779e+01 5.65e-06 1.54e-03 -11.0 3.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.7665737e+01 4.63e-05 2.23e-03 -11.0 3.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 1.7665667e+01 1.87e-04 1.18e-03 -11.0 1.11e+00 - 1.00e+00 1.00e+00h 1\n", - " 89 1.7657143e+01 7.55e-03 5.58e-03 -11.0 1.12e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.7664072e+01 5.24e-04 2.29e-03 -11.0 4.92e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 1.7665538e+01 4.46e-05 9.35e-04 -11.0 3.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 92 1.7665491e+01 1.80e-04 2.33e-03 -11.0 1.57e+00 - 1.00e+00 1.00e+00h 1\n", - " 93 1.7665327e+01 1.23e-04 1.42e-03 -11.0 3.84e+00 - 1.00e+00 1.00e+00h 1\n", - " 94 1.7662853e+01 1.92e-03 1.77e-03 -11.0 9.08e+01 - 1.00e+00 1.00e+00h 1\n", - " 95 1.7661848e+01 4.00e-03 1.59e-03 -11.0 5.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 96 1.7651844e+01 4.62e-02 1.71e-03 -11.0 1.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 97 1.7626245e+01 1.07e-01 2.36e-03 -11.0 1.75e+03 - 1.00e+00 1.00e+00h 1\n", - " 98 1.7668569e+01 4.97e-07 8.96e-02 -11.0 9.37e-02 - 1.00e+00 1.00e+00h 1\n", - " 99 1.7668569e+01 5.43e-07 1.24e-04 -11.0 3.16e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.7668540e+01 1.65e-05 4.20e-03 -11.0 7.07e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.7668540433240064e+01 1.7668540433240064e+01\n", - "Dual infeasibility......: 4.1985732799884393e-03 4.1985732799884393e-03\n", - "Constraint violation....: 1.6523876915641722e-05 1.6523876915641722e-05\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 4.1985732799884393e-03 4.1985732799884393e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 103\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 103\n", - "Number of inequality constraint evaluations = 103\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.388\n", - "Total CPU secs in NLP function evaluations = 142.797\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 500.00us ( 4.85us) 492.83us ( 4.78us) 103\n", - " nlp_g | 4.94 s ( 47.97ms) 4.74 s ( 46.03ms) 103\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 393.00us ( 3.85us) 388.18us ( 3.81us) 102\n", - " nlp_jac_g | 140.76 s ( 1.38 s) 135.18 s ( 1.33 s) 102\n", - " total | 147.16 s (147.16 s) 141.32 s (141.32 s) 1\n", - "Timestamp 19800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.91e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9807678e+01 1.20e+01 4.91e+03 -1.5 4.91e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.8165761e+00 3.91e+00 8.20e+00 0.4 1.60e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 3.2351732e+00 7.11e-01 6.46e-01 -1.6 5.45e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 3.5970582e+00 2.14e-03 1.74e-01 -3.4 1.08e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 3.5978500e+00 1.03e-07 4.87e-05 -5.2 2.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 3.5978500e+00 1.25e-07 2.20e-05 -11.0 6.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 3.5978501e+00 1.25e-08 3.30e-05 -11.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 3.5978501e+00 5.94e-11 4.35e-05 -11.0 1.94e-04 - 1.00e+00 1.00e+00H 1\n", - " 9 3.5978501e+00 2.44e-08 5.11e-05 -11.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 3.5978501e+00 8.35e-09 9.56e-05 -11.0 1.38e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 3.5978501e+00 4.62e-11 4.07e-05 -11.0 6.57e-05 - 1.00e+00 1.00e+00H 1\n", - " 12 3.5978501e+00 2.98e-08 2.91e-04 -11.0 1.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 3.5978496e+00 4.14e-07 1.09e-04 -11.0 5.66e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 3.5978501e+00 4.01e-08 6.86e-05 -11.0 1.41e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 3.5978501e+00 3.05e-08 3.78e-05 -11.0 1.09e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 3.5978501e+00 1.28e-08 1.33e-05 -11.0 5.41e-05 - 1.00e+00 1.00e+00h 1\n", - " 17 3.5978501e+00 1.36e-09 7.43e-05 -11.0 1.82e-05 - 1.00e+00 1.00e+00h 1\n", - " 18 3.5978501e+00 1.08e-08 6.96e-05 -11.0 8.35e-05 - 1.00e+00 1.00e+00h 1\n", - " 19 3.5978501e+00 5.47e-09 3.03e-05 -11.0 5.06e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.5978501e+00 5.54e-11 3.83e-05 -11.0 4.73e-05 - 1.00e+00 1.00e+00H 1\n", - " 21 3.5978501e+00 3.23e-09 1.25e-04 -11.0 3.65e-05 - 1.00e+00 1.00e+00h 1\n", - " 22 3.5978501e+00 1.25e-08 1.29e-04 -11.0 4.74e-05 - 1.00e+00 1.00e+00h 1\n", - " 23 3.5978501e+00 3.05e-08 6.31e-05 -11.0 1.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 3.5978501e+00 2.05e-09 6.09e-05 -11.0 1.16e-05 - 1.00e+00 1.00e+00h 1\n", - " 25 3.5978501e+00 6.85e-09 6.86e-05 -11.0 4.12e-05 - 1.00e+00 1.00e+00h 1\n", - " 26 3.5978501e+00 4.04e-09 5.73e-05 -11.0 2.24e-05 - 1.00e+00 1.00e+00h 1\n", - " 27 3.5978501e+00 3.17e-09 3.50e-05 -11.0 1.45e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 3.5978501e+00 1.60e-09 1.90e-04 -11.0 1.32e-05 - 1.00e+00 1.00e+00h 1\n", - " 29 3.5978501e+00 6.12e-09 2.48e-05 -11.0 1.32e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 3.5978501e+00 2.14e-10 1.15e-04 -11.0 2.44e-06 - 1.00e+00 1.00e+00h 1\n", - " 31 3.5978501e+00 4.42e-10 2.12e-05 -11.0 1.46e-06 - 1.00e+00 1.00e+00h 1\n", - " 32 3.5978501e+00 1.51e-10 6.20e-05 -11.0 2.62e-06 - 1.00e+00 1.00e+00h 1\n", - " 33 3.5978501e+00 3.95e-10 5.60e-05 -11.0 2.28e-06 - 1.00e+00 1.00e+00h 1\n", - " 34 3.5978501e+00 3.36e-10 5.03e-05 -11.0 1.34e-06 - 1.00e+00 1.00e+00h 1\n", - " 35 3.5978501e+00 6.36e-10 7.42e-05 -11.0 1.55e-06 - 1.00e+00 1.00e+00h 1\n", - " 36 3.5978501e+00 1.40e-08 5.74e-05 -11.0 1.33e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 3.5978501e+00 6.41e-09 2.11e-05 -11.0 4.30e-05 - 1.00e+00 1.00e+00h 1\n", - " 38 3.5978501e+00 1.72e-09 9.91e-05 -11.0 3.02e-05 - 1.00e+00 1.00e+00h 1\n", - " 39 3.5978501e+00 7.13e-08 2.62e-05 -11.0 1.56e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.5978498e+00 7.00e-07 1.28e-04 -11.0 3.54e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 3.5978498e+00 1.81e-06 2.58e-03 -11.0 5.56e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 3.5978444e+00 4.76e-06 9.61e-03 -11.0 2.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 43 3.5978487e+00 1.40e-06 1.44e-03 -11.0 7.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 3.5978494e+00 1.08e-06 2.54e-03 -11.0 1.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 45 3.5976474e+00 5.22e-04 9.95e-03 -11.0 3.22e+00 - 1.00e+00 1.00e+00h 1\n", - " 46 3.5974951e+00 1.46e-03 6.15e-03 -11.0 8.15e+00 - 1.00e+00 1.00e+00h 1\n", - " 47 3.5847291e+00 2.33e-02 7.19e-03 -11.0 3.01e+02 - 1.00e+00 1.00e+00h 1\n", - " 48 3.5884178e+00 1.24e-02 1.12e-03 -11.0 9.40e+01 - 1.00e+00 1.00e+00h 1\n", - " 49 3.5951277e+00 2.68e-03 1.57e-03 -11.0 7.13e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.5877671e+00 1.18e-02 6.50e-03 -11.0 9.71e+01 - 1.00e+00 1.00e+00h 1\n", - " 51 3.5744393e+00 3.49e-02 1.17e-02 -11.0 2.62e+02 - 1.00e+00 1.00e+00h 1\n", - " 52 3.5678310e+00 4.55e-02 6.45e-03 -11.0 6.44e+02 - 1.00e+00 1.00e+00h 1\n", - " 53 3.2326528e+00 4.04e-01 2.12e-01 -11.0 1.29e+04 - 1.00e+00 1.00e+00f 1\n", - " 54 3.2030776e+00 1.22e+00 4.87e-01 -9.0 2.10e+04 - 1.00e+00 8.68e-01h 1\n", - " 55 3.1259057e+00 1.34e+00 3.06e-01 -9.2 1.55e+04 - 1.00e+00 7.00e-01h 1\n", - " 56 3.2905650e+00 5.50e-01 1.40e-01 -9.0 3.08e+04 - 1.00e+00 5.00e-01h 2\n", - " 57 3.2895474e+00 6.99e-01 1.38e-01 -9.1 4.54e+04 - 1.39e-01 3.20e-02h 5\n", - " 58 3.1007482e+00 1.40e+00 3.46e-01 -9.1 5.15e+04 - 3.26e-01 6.21e-01h 1\n", - " 59 3.0861916e+00 1.33e+00 2.67e-01 -10.2 1.26e+05 - 8.20e-01 3.62e-02h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.7507697e+00 8.49e-01 3.76e-01 -3.8 4.16e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 3.0591803e+00 4.75e-01 1.95e-01 -4.0 1.50e+04 - 1.01e-01 1.00e+00h 1\n", - " 62 3.2307480e+00 3.03e-01 2.77e-01 -5.3 8.94e+04 - 1.59e-01 5.10e-01h 1\n", - " 63 3.1931841e+00 5.10e-01 1.08e-01 -4.2 1.97e+04 - 1.00e+00 1.00e+00h 1\n", - " 64 3.1200875e+00 1.34e+00 3.79e-01 -4.4 1.94e+06 - 5.94e-03 2.82e-03f 3\n", - " 65 3.1064910e+00 1.22e+00 3.30e-01 -4.4 1.61e+06 - 3.00e-02 9.45e-03h 1\n", - " 66 3.0906397e+00 5.86e-01 1.09e-01 -4.4 7.70e+03 - 1.00e+00 1.00e+00h 1\n", - " 67 3.2016304e+00 1.23e+00 2.29e-01 -4.4 3.29e+03 - 9.89e-01 9.89e-01s 22\n", - " 68 3.4076452e+00 3.40e-03 2.84e-01 -4.4 1.69e+00 - 1.00e+00 0.00e+00S 22\n", - " 69 3.4093476e+00 4.63e-07 1.09e-03 -6.3 5.09e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 3.4093484e+00 2.92e-08 8.68e-05 -8.4 3.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 3.4093483e+00 1.35e-07 4.48e-05 -11.0 5.42e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 3.4093485e+00 1.77e-08 4.57e-05 -11.0 1.82e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 3.4093484e+00 2.65e-07 7.03e-05 -11.0 1.06e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 3.4093479e+00 3.50e-07 2.96e-05 -11.0 1.97e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 3.4093484e+00 1.08e-07 2.82e-05 -11.0 6.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 76 3.4093484e+00 3.89e-08 6.65e-05 -11.0 3.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 3.4093480e+00 1.10e-06 1.11e-03 -11.0 5.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 3.4093467e+00 2.35e-06 3.11e-03 -11.0 9.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 3.4093392e+00 5.74e-06 5.03e-03 -11.0 2.26e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 3.4093475e+00 1.54e-08 4.36e-05 -11.0 9.98e-05 - 1.00e+00 1.00e+00h 1\n", - " 81 3.4093475e+00 8.43e-09 4.77e-05 -11.0 3.59e-05 - 1.00e+00 1.00e+00h 1\n", - " 82 3.4093475e+00 4.28e-08 6.67e-05 -11.0 3.76e-04 - 1.00e+00 1.00e+00h 1\n", - " 83 3.4093475e+00 8.73e-09 4.56e-05 -11.0 8.19e-05 - 1.00e+00 1.00e+00h 1\n", - " 84 3.4093475e+00 2.08e-08 9.22e-05 -11.0 7.04e-05 - 1.00e+00 1.00e+00h 1\n", - " 85 3.4093473e+00 1.41e-07 3.48e-05 -11.0 6.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 86 3.4093475e+00 7.27e-08 4.83e-05 -11.0 4.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 87 3.4093475e+00 2.59e-08 4.68e-05 -11.0 2.59e-04 - 1.00e+00 1.00e+00h 1\n", - " 88 3.4093470e+00 6.82e-07 3.69e-03 -11.0 3.80e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 3.4093460e+00 1.60e-06 8.15e-03 -11.0 6.42e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 3.4092043e+00 9.36e-05 6.90e-03 -11.0 7.95e-01 - 1.00e+00 1.00e+00h 1\n", - " 91 3.4093315e+00 7.44e-06 1.24e-03 -11.0 1.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 92 3.4091780e+00 9.98e-05 2.87e-03 -11.0 8.97e-01 - 1.00e+00 1.00e+00h 1\n", - " 93 3.3753842e+00 5.21e-02 1.52e-02 -11.0 2.11e+02 - 1.00e+00 1.00e+00f 1\n", - " 94 3.4005532e+00 3.33e-03 2.09e-02 -11.0 1.21e+02 - 1.00e+00 1.00e+00h 1\n", - " 95 3.3952034e+00 1.90e-02 6.56e-03 -11.0 1.44e+02 - 1.00e+00 1.00e+00h 1\n", - " 96 3.3309511e+00 1.06e-01 2.67e-03 -11.0 3.64e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 3.4007074e+00 2.62e-04 1.19e-01 -11.0 1.28e-01 - 1.00e+00 1.00e+00h 1\n", - " 98 3.4007675e+00 1.04e-07 7.61e-05 -11.0 4.03e-04 - 1.00e+00 1.00e+00h 1\n", - " 99 3.4007676e+00 4.55e-11 1.01e-04 -11.0 3.20e-04 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 3.4007675e+00 1.13e-07 7.53e-05 -11.0 3.01e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 3.4007675233460768e+00 3.4007675233460768e+00\n", - "Dual infeasibility......: 7.5320058245210959e-05 7.5320058245210959e-05\n", - "Constraint violation....: 1.1321691317789373e-07 1.1321691317789373e-07\n", - "Complementarity.........: 1.0000000000000001e-11 1.0000000000000001e-11\n", - "Overall NLP error.......: 7.5320058245210959e-05 7.5320058245210959e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 143\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 143\n", - "Number of inequality constraint evaluations = 143\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.423\n", - "Total CPU secs in NLP function evaluations = 141.681\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 714.00us ( 4.99us) 710.14us ( 4.97us) 143\n", - " nlp_g | 6.80 s ( 47.57ms) 6.52 s ( 45.62ms) 143\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 419.00us ( 4.11us) 414.23us ( 4.06us) 102\n", - " nlp_jac_g | 137.75 s ( 1.35 s) 132.11 s ( 1.30 s) 102\n", - " total | 146.02 s (146.02 s) 140.04 s (140.04 s) 1\n", - "Timestamp 20100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 5.10e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9587713e+01 1.31e+01 5.10e+03 -1.5 5.10e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.3034835e+00 4.44e+00 9.19e+00 0.4 1.70e+01 - 9.97e-01 1.00e+00f 1\n", - " 3 8.2873452e+00 1.17e+00 8.04e-01 -1.6 7.78e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 9.0898942e+00 1.63e-03 7.45e-02 -3.4 1.60e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 9.0906705e+00 6.70e-07 1.79e-03 -5.2 1.87e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 9.0906709e+00 4.75e-08 1.07e-04 -7.3 4.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 9.0906709e+00 6.33e-08 5.80e-05 -11.0 3.42e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 9.0906710e+00 1.25e-08 1.28e-04 -11.0 1.20e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 9.0906709e+00 9.50e-08 2.85e-05 -11.0 4.26e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 9.0906711e+00 1.32e-10 2.21e-04 -11.0 5.84e-04 - 1.00e+00 1.00e+00H 1\n", - " 11 9.0906682e+00 1.73e-06 1.16e-02 -11.0 4.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 9.0906711e+00 4.63e-09 3.48e-05 -11.0 6.08e-05 - 1.00e+00 1.00e+00h 1\n", - " 13 9.0906711e+00 5.99e-09 8.92e-05 -11.0 4.77e-05 - 1.00e+00 1.00e+00h 1\n", - " 14 9.0906677e+00 4.07e-06 7.87e-03 -11.0 3.73e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 9.0906656e+00 1.28e-05 9.66e-03 -11.0 4.98e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 9.0906593e+00 1.39e-05 1.93e-03 -11.0 1.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 9.0906454e+00 1.29e-05 9.09e-04 -11.0 9.42e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 9.0906335e+00 3.89e-05 1.87e-03 -11.0 1.69e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 9.0906570e+00 1.45e-05 1.02e-03 -11.0 8.04e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 9.0906627e+00 5.58e-06 1.08e-03 -11.0 3.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 9.0906604e+00 1.64e-05 1.74e-03 -11.0 1.45e-01 - 1.00e+00 1.00e+00h 1\n", - " 22 9.0905605e+00 1.33e-04 8.87e-04 -11.0 1.79e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 9.0906144e+00 8.33e-05 1.66e-03 -11.0 9.30e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 9.0905723e+00 8.04e-05 1.07e-03 -11.0 1.99e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 9.0905233e+00 1.74e-04 2.77e-03 -11.0 2.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 9.0906644e+00 2.97e-08 1.78e-05 -11.0 2.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 9.0906644e+00 1.28e-08 1.15e-04 -11.0 6.73e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 9.0906565e+00 1.59e-05 5.02e-03 -11.0 6.95e-02 - 1.00e+00 1.00e+00h 1\n", - " 29 9.0906546e+00 7.67e-06 1.19e-03 -11.0 4.85e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 9.0906639e+00 7.09e-07 1.94e-03 -11.0 1.15e-02 - 1.00e+00 1.00e+00h 1\n", - " 31 9.0906622e+00 1.07e-06 1.73e-03 -11.0 1.36e-02 - 1.00e+00 1.00e+00h 1\n", - " 32 9.0906615e+00 1.09e-05 2.68e-03 -11.0 4.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 9.0906537e+00 2.97e-05 1.50e-03 -11.0 1.67e-01 - 1.00e+00 1.00e+00h 1\n", - " 34 9.0891055e+00 1.86e-03 4.56e-03 -11.0 3.80e+01 - 1.00e+00 1.00e+00h 1\n", - " 35 9.0885672e+00 1.25e-03 1.21e-03 -11.0 2.60e+01 - 1.00e+00 1.00e+00h 1\n", - " 36 9.0890410e+00 9.16e-04 1.44e-03 -11.0 1.46e+01 - 1.00e+00 1.00e+00h 1\n", - " 37 9.0826497e+00 4.33e-03 2.18e-03 -11.0 3.25e+01 - 1.00e+00 1.00e+00h 1\n", - " 38 9.0908260e+00 5.70e-05 1.59e-03 -11.0 3.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 39 9.0892949e+00 7.77e-04 2.36e-03 -11.0 1.47e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 9.0910040e+00 6.82e-07 1.20e-04 -11.0 2.13e+01 - 1.00e+00 1.00e+00H 1\n", - " 41 9.0909978e+00 3.15e-05 1.89e-03 -11.0 3.72e+01 - 1.00e+00 3.91e-03h 9\n", - " 42 9.0909972e+00 1.53e-09 2.39e-04 -11.0 2.16e+00 - 1.00e+00 1.00e+00H 1\n", - " 43 9.0906527e+00 2.70e-04 1.72e-03 -11.0 1.78e+00 - 1.00e+00 1.00e+00f 1\n", - " 44 9.0910934e+00 1.01e-07 7.37e-05 -11.0 1.22e+01 - 1.00e+00 1.00e+00H 1\n", - " 45 9.0910933e+00 5.70e-07 1.34e-04 -11.0 2.74e+01 - 1.00e+00 1.22e-04h 14\n", - " 46 9.0910917e+00 4.93e-10 6.32e-05 -11.0 2.35e-01 - 1.00e+00 1.00e+00H 1\n", - " 47 9.0841041e+00 6.18e-03 3.37e-03 -11.0 2.14e+01 - 1.00e+00 1.00e+00f 1\n", - " 48 9.0894782e+00 1.03e-03 2.48e-03 -11.0 8.04e+01 - 1.00e+00 1.00e+00h 1\n", - " 49 9.0815830e+00 5.21e-03 4.18e-03 -11.0 2.66e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.5226719e+00 4.81e-01 7.41e-02 -9.0 3.36e+05 - 1.00e+00 9.23e-02f 1\n", - " 51 8.5317333e+00 4.77e-01 7.15e-02 -7.0 8.07e+03 - 1.00e+00 1.99e-02h 1\n", - " 52 8.5318579e+00 4.77e-01 7.15e-02 -5.1 5.91e+03 - 1.00e+00 2.72e-04h 1\n", - " 53 9.0654052e+00 5.49e-03 6.97e-02 -7.0 4.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 54 9.0588858e+00 1.19e-02 3.53e-03 -5.0 5.08e+01 - 1.09e-01 1.00e+00h 1\n", - " 55 9.0498858e+00 1.17e-02 2.09e-02 -4.7 2.73e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 9.0185237e+00 5.90e-02 1.28e-02 -4.3 8.35e+02 - 1.00e+00 5.06e-01h 1\n", - " 57 9.0185215e+00 1.95e-02 7.74e-03 -3.3 7.57e+02 - 1.00e+00 1.00e+00h 1\n", - " 58 9.0704273e+00 3.22e-03 1.37e-03 -5.2 9.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 59 9.0592037e+00 1.23e-02 1.72e-03 -6.4 9.12e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 9.0574164e+00 2.28e-02 1.62e-03 -5.1 5.70e+01 - 5.00e-01 1.00e+00h 1\n", - " 61 6.9468419e+00 3.53e+00 1.04e+00 -5.1 3.38e+06 - 8.84e-06 9.92e-03f 1\n", - " 62 8.7966860e+00 2.29e+00 4.20e-01 -4.0 4.05e+03 - 1.00e+00 1.00e+00h 1\n", - " 63 9.2147465e+00 2.94e-02 1.64e-01 -2.1 5.73e+02 - 1.00e+00 1.00e+00h 1\n", - " 64 9.2845290e+00 1.24e-02 2.58e-02 -2.1 4.98e+02 - 6.86e-01 1.00e+00h 1\n", - " 65 9.0756073e+00 4.66e-01 1.12e-01 -3.2 4.77e+03 - 8.58e-01 1.00e+00f 1\n", - " 66 9.0450369e+00 4.69e-01 9.92e-02 -3.2 1.46e+03 - 1.00e+00 8.08e-02h 1\n", - " 67 9.3242846e+00 6.47e-03 4.46e-02 -3.2 3.10e+02 - 3.11e-01 1.00e+00h 1\n", - " 68 9.2547266e+00 2.55e-01 6.30e-02 -3.2 2.12e+03 - 1.00e+00 1.00e+00h 1\n", - " 69 9.3255617e+00 1.64e-02 1.29e-02 -3.2 3.38e+02 - 7.16e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 9.2243681e+00 2.12e-01 3.22e-03 -3.2 8.25e+02 - 1.00e+00 1.00e+00h 1\n", - " 71 9.0428203e+00 1.83e-01 9.93e-03 -3.2 6.41e+04 - 3.56e-01 1.06e-01f 1\n", - " 72 9.2491341e+00 6.02e-02 1.61e-02 -3.2 2.37e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 9.1710368e+00 9.92e-02 1.23e-02 -3.2 4.58e+03 - 5.80e-01 1.00e+00h 1\n", - " 74 9.3375202e+00 1.97e-04 6.79e-03 -3.2 1.04e+03 - 1.00e+00 1.00e+00H 1\n", - " 75 8.4984674e+00 7.40e+00 1.08e+00 -3.2 2.25e+05 - 5.10e-03 1.43e-01F 1\n", - " 76 8.4760310e+00 7.39e+00 1.08e+00 -3.2 5.25e+04 - 8.78e-01 4.12e-03h 1\n", - " 77 7.5112359e+00 3.73e+00 9.41e-02 -3.2 7.73e+02 - 3.78e-02 5.00e-01f 2\n", - " 78 7.7275779e+00 2.08e+00 9.79e-02 -2.8 4.89e+04 - 1.00e+00 6.51e-01h 1\n", - " 79 9.6877640e+00 1.46e+00 1.85e-01 -1.7 1.19e+04 - 7.13e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 9.9941067e+00 4.89e-01 1.20e-01 -1.9 2.05e+03 - 6.89e-01 1.00e+00h 1\n", - " 81 8.9932575e+00 8.59e-01 1.00e-01 -1.9 8.16e+03 - 1.48e-01 1.00e+00f 1\n", - " 82 6.8435542e+00 4.41e+00 7.93e-01 -1.9 1.22e+04 - 7.22e-01 1.00e+00f 1\n", - " 83 8.4445055e+00 2.77e+00 1.40e-01 -0.3 5.16e+03 - 1.00e+00 8.95e-01h 1\n", - " 84 9.1951635e+00 3.75e-01 2.05e-01 -0.4 1.20e+04 - 5.96e-01 1.00e+00f 1\n", - " 85 7.9877155e+00 1.61e+00 1.07e-01 -1.1 5.82e+03 - 8.85e-01 1.00e+00f 1\n", - " 86 9.4297912e+00 5.56e-01 5.25e-02 -7.0 7.67e+03 - 5.90e-01 1.00e+00h 1\n", - " 87 9.2272149e+00 1.40e+00 5.67e-02 -1.5 9.21e+04 - 5.00e-01 1.09e-01h 1\n", - " 88 6.9818059e+00 1.28e+00 3.28e-01 -1.5 2.13e+04 - 1.00e+00 1.00e+00f 1\n", - " 89 6.9866232e+00 1.25e+00 3.13e-01 -1.5 3.07e+04 - 1.00e+00 2.69e-02h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 9.1659414e+00 1.04e+00 1.68e-01 -7.4 5.40e+03 - 5.15e-01 1.00e+00h 1\n", - " 91 9.0401031e+00 5.73e-01 9.50e-02 -2.0 1.92e+03 - 1.00e+00 1.00e+00h 1\n", - " 92 9.8651208e+00 1.24e-01 1.06e-01 -2.0 1.13e+03 - 1.00e+00 1.00e+00h 1\n", - " 93 9.2244714e+00 3.13e-01 7.13e-02 -2.0 1.31e+04 - 7.91e-01 1.00e+00f 1\n", - " 94 9.7074107e+00 1.28e-02 2.60e-02 -2.0 4.04e+04 - 1.00e+00 9.74e-01H 1\n", - " 95 9.6923578e+00 1.60e-02 2.43e-02 -3.0 1.02e+04 - 8.82e-01 3.84e-02h 1\n", - " 96 9.5025095e+00 1.18e-01 3.07e-02 -3.0 1.72e+03 - 1.00e+00 1.00e+00f 1\n", - " 97 9.1713591e+00 2.51e-01 2.76e-02 -3.0 1.50e+03 - 1.00e+00 1.00e+00h 1\n", - " 98 8.0917367e+00 6.84e-01 1.09e-01 -3.0 1.15e+05 - 1.42e-01 3.27e-02f 1\n", - " 99 9.3536069e+00 2.17e-01 8.43e-02 -9.0 1.28e+03 - 7.23e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 9.5536014e+00 8.38e-02 2.64e-02 -3.7 1.09e+03 - 2.93e-02 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 9.5536013918613989e+00 9.5536013918613989e+00\n", - "Dual infeasibility......: 2.6371688707022556e-02 2.6371688707022556e-02\n", - "Constraint violation....: 8.3835035220502618e-02 8.3835035220502618e-02\n", - "Complementarity.........: 6.6368300191372242e-04 6.6368300191372242e-04\n", - "Overall NLP error.......: 8.3835035220502618e-02 8.3835035220502618e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 145\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 145\n", - "Number of inequality constraint evaluations = 145\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.418\n", - "Total CPU secs in NLP function evaluations = 140.247\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 665.00us ( 4.59us) 662.59us ( 4.57us) 145\n", - " nlp_g | 6.71 s ( 46.30ms) 6.42 s ( 44.26ms) 145\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 362.00us ( 3.55us) 350.92us ( 3.44us) 102\n", - " nlp_jac_g | 136.40 s ( 1.34 s) 130.63 s ( 1.28 s) 102\n", - " total | 144.60 s (144.60 s) 138.46 s (138.46 s) 1\n", - "Timestamp 20400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.02e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9802025e+01 1.46e+01 3.02e+04 -1.5 3.02e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.2609246e+01 5.64e+00 1.15e+01 0.8 3.54e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.8614184e+01 2.14e+00 8.37e-01 -1.3 7.07e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.9879456e+01 5.60e-05 8.62e-02 -3.0 2.40e+00 - 9.99e-01 1.00e+00h 1\n", - " 5 1.9879383e+01 7.65e-06 3.64e-03 -4.9 1.06e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 1.9879193e+01 6.19e-05 1.53e-03 -7.0 8.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 1.9878067e+01 3.94e-04 4.29e-03 -9.1 9.78e+00 - 1.00e+00 1.00e+00h 1\n", - " 8 1.9876832e+01 1.18e-03 2.80e-03 -11.0 6.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 1.9878347e+01 3.08e-04 1.08e-03 -11.0 3.25e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.9879051e+01 1.58e-04 1.83e-03 -11.0 4.93e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.9878240e+01 3.91e-04 2.69e-03 -11.0 3.21e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 1.9878225e+01 4.02e-04 1.46e-03 -11.0 2.00e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 1.9878860e+01 1.45e-04 2.15e-03 -11.0 1.29e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 1.9878672e+01 5.74e-04 2.32e-03 -11.0 3.16e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 1.9845190e+01 1.23e-02 5.18e-03 -11.0 2.02e+02 - 1.00e+00 1.00e+00h 1\n", - " 16 1.9835319e+01 3.34e-02 4.16e-03 -11.0 2.38e+02 - 1.00e+00 1.00e+00h 1\n", - " 17 1.9800142e+01 4.49e-02 2.32e-03 -11.0 1.71e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 1.9587294e+01 6.40e-02 5.70e-03 -11.0 3.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 19 1.9871908e+01 1.56e-02 3.57e-03 -11.0 4.25e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.9879128e+01 4.55e-05 1.84e-03 -11.0 2.82e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 1.9860826e+01 7.02e-03 6.07e-03 -11.0 7.53e+01 - 1.00e+00 1.00e+00f 1\n", - " 22 1.9876718e+01 4.29e-03 2.79e-03 -11.0 1.30e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.9875184e+01 1.60e-03 1.74e-03 -11.0 1.29e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.9874326e+01 1.69e-03 1.40e-03 -11.0 7.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 1.9875991e+01 8.84e-04 2.68e-03 -11.0 4.08e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 1.9877710e+01 1.59e-04 1.61e-03 -11.0 1.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 27 1.9874095e+01 9.70e-03 2.18e-03 -11.0 3.39e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 1.9811438e+01 3.67e-02 7.66e-03 -11.0 1.41e+02 - 1.00e+00 1.00e+00h 1\n", - " 29 1.9622709e+01 4.01e-01 8.93e-03 -11.0 1.06e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.9814959e+01 8.09e-02 8.46e-03 -11.0 3.51e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.9045024e+01 1.81e+00 8.84e-02 -11.0 6.87e+03 - 1.00e+00 1.00e+00f 1\n", - " 32 1.9142105e+01 4.85e-01 1.75e-02 -11.0 3.87e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 1.9462728e+01 3.55e-01 3.68e-02 -11.0 2.03e+03 - 1.00e+00 1.00e+00h 1\n", - " 34 1.6541809e+01 6.46e+00 3.21e-01 -9.0 2.79e+05 - 1.00e+00 9.73e-02f 1\n", - " 35 1.6509021e+01 6.49e+00 3.22e-01 -7.0 1.88e+05 - 1.00e+00 1.45e-03h 1\n", - " 36 1.6513011e+01 6.47e+00 3.20e-01 -5.1 1.06e+03 - 1.00e+00 2.56e-03h 1\n", - " 37 1.9701937e+01 7.62e-02 2.66e-01 -5.2 1.53e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 1.9413021e+01 3.24e-01 2.33e-02 -6.4 1.48e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 1.9353323e+01 1.84e-01 1.23e-02 -8.1 1.64e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.9805153e+01 2.45e-02 9.45e-03 -5.7 7.43e+02 - 3.87e-01 1.00e+00h 1\n", - " 41 1.8548458e+01 7.83e-01 1.01e-01 -4.2 3.95e+03 - 4.30e-03 1.00e+00f 1\n", - " 42 1.2678001e+01 3.69e+00 2.18e-01 -4.0 1.13e+05 - 1.08e-01 1.79e-01f 1\n", - " 43 1.2632734e+01 3.67e+00 2.22e-01 -3.0 2.25e+06 - 3.38e-02 2.87e-04f 1\n", - " 44 1.5959178e+01 2.42e+00 7.99e-02 -3.3 1.82e+04 - 1.00e+00 4.59e-01h 1\n", - " 45 1.9248939e+01 7.71e-01 1.85e-01 -2.9 1.10e+04 - 8.76e-01 1.00e+00h 1\n", - " 46 2.0142116e+01 1.17e-01 3.46e-02 -3.1 1.03e+03 - 7.86e-02 1.00e+00h 1\n", - " 47 1.3816809e+01 3.18e+00 1.99e-01 -3.1 3.29e+04 - 1.00e+00 6.41e-01f 1\n", - " 48 1.7176596e+01 1.35e+00 1.46e-01 -2.8 1.47e+04 - 3.71e-01 1.00e+00h 1\n", - " 49 1.9967128e+01 3.08e-01 2.49e-01 -1.9 1.28e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.8609162e+01 8.13e-01 2.01e-01 -1.6 1.75e+04 - 5.27e-01 1.03e-01f 1\n", - " 51 1.8835979e+01 6.79e-01 1.65e-01 -1.3 4.51e+03 - 1.00e+00 1.62e-01h 2\n", - " 52 1.8526235e+01 4.18e+00 4.83e-01 -1.8 1.78e+04 - 3.90e-01 9.82e-01h 1\n", - " 53 1.8294865e+01 3.24e+00 2.79e-01 -1.7 2.97e+04 - 3.19e-01 2.76e-01h 1\n", - " 54 1.9587512e+01 4.33e-01 8.19e-02 -1.7 5.85e+03 - 1.00e+00 1.00e+00h 1\n", - " 55 2.0079072e+01 4.78e-02 9.03e-02 -1.7 1.68e+03 - 9.69e-01 1.00e+00H 1\n", - " 56 1.9505920e+01 8.39e-01 3.15e-02 -2.5 6.41e+03 - 6.00e-01 5.39e-01f 1\n", - " 57 1.9603432e+01 2.22e-01 3.85e-02 -2.5 8.19e+02 - 3.21e-01 1.00e+00h 1\n", - " 58 1.9846994e+01 1.22e-01 2.42e-03 -2.5 3.91e+02 - 3.19e-01 1.00e+00h 1\n", - " 59 1.9781906e+01 1.07e-01 2.25e-03 -2.5 3.27e+04 - 8.95e-01 5.31e-03f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.9990740e+01 1.49e-01 7.87e-03 -2.5 7.39e+02 - 5.78e-01 1.00e+00h 1\n", - " 61 1.9913657e+01 1.18e-01 4.19e-03 -2.5 3.80e+03 - 2.89e-01 2.50e-01h 3\n", - " 62 2.0021919e+01 4.96e-02 4.64e-03 -2.5 4.66e+02 - 1.00e+00 1.00e+00h 1\n", - " 63 2.0074464e+01 9.93e-03 4.91e-03 -2.5 1.26e+02 - 1.00e+00 1.00e+00h 1\n", - " 64 2.0056955e+01 1.72e-02 1.45e-03 -3.8 2.01e+02 - 1.00e+00 8.68e-01h 1\n", - " 65 1.9960239e+01 5.44e-02 3.40e-03 -3.8 8.35e+02 - 1.17e-01 1.00e+00h 1\n", - " 66 1.9501999e+01 7.83e-01 2.91e-02 -3.8 2.04e+03 - 2.53e-02 1.00e+00f 1\n", - " 67 1.0903381e+01 1.14e+01 1.25e+00 -3.8 9.86e+05 - 4.61e-03 6.16e-02f 1\n", - " 68 1.0875772e+01 1.13e+01 1.24e+00 -1.8 5.03e+04 - 1.00e+00 3.68e-03h 1\n", - " 69 1.5746141e+01 2.98e+00 5.81e-01 -2.8 5.26e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.9632301e+01 9.43e-02 2.69e-01 -2.7 8.29e+02 - 1.00e+00 1.00e+00h 1\n", - " 71 1.9790457e+01 1.25e-02 1.34e-02 -2.7 2.28e+02 - 9.77e-01 1.00e+00h 1\n", - " 72 1.9614407e+01 2.44e-01 5.57e-02 -3.3 1.34e+03 - 1.00e+00 1.00e+00f 1\n", - " 73 1.9608637e+01 2.06e-01 4.71e-02 -3.4 3.40e+03 - 2.17e-01 4.02e-01h 1\n", - " 74 1.9844288e+01 3.06e-01 4.32e-02 -3.4 1.37e+03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.9762588e+01 5.56e-02 3.48e-03 -3.4 4.14e+02 - 7.70e-01 1.00e+00h 1\n", - " 76 1.9799374e+01 1.82e-05 5.24e-02 -3.4 5.24e-02 - 1.00e+00 1.00e+00h 1\n", - " 77 1.9799365e+01 1.72e-06 1.08e-03 -5.3 5.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 1.9799348e+01 1.81e-05 1.91e-03 -7.4 1.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 79 1.9799361e+01 1.22e-06 1.79e-03 -9.5 1.57e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.9799361e+01 2.11e-06 1.06e-03 -11.0 8.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 1.9799364e+01 1.03e-06 1.62e-03 -11.0 7.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 82 1.9799361e+01 1.67e-06 1.67e-03 -11.0 5.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 83 1.9799365e+01 6.38e-07 8.19e-05 -11.0 3.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 84 1.9799364e+01 5.11e-07 4.44e-05 -11.0 3.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 1.9799365e+01 3.98e-07 4.52e-05 -11.0 1.91e-03 - 1.00e+00 1.00e+00h 1\n", - " 86 1.9799363e+01 4.48e-06 5.78e-03 -11.0 1.81e-02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.9799363e+01 1.25e-06 1.17e-03 -11.0 1.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 88 1.9799365e+01 3.88e-07 2.26e-05 -11.0 1.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 1.9799365e+01 1.54e-06 3.39e-03 -11.0 6.20e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.9799364e+01 9.56e-07 3.52e-03 -11.0 1.57e-02 - 1.00e+00 1.00e+00h 1\n", - " 91 1.9799364e+01 8.63e-07 1.59e-03 -11.0 1.56e-02 - 1.00e+00 1.00e+00h 1\n", - " 92 1.9799364e+01 7.24e-07 2.32e-04 -11.0 2.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 93 1.9799364e+01 5.06e-07 1.35e-03 -11.0 8.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.9799354e+01 6.72e-06 2.72e-03 -11.0 9.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.9799365e+01 2.73e-10 2.17e-04 -11.0 8.46e-02 - 1.00e+00 1.00e+00H 1\n", - " 96 1.9799358e+01 4.96e-06 2.59e-03 -11.0 6.69e-02 - 1.00e+00 1.00e+00h 1\n", - " 97 1.9799335e+01 3.34e-05 3.85e-03 -11.0 4.48e-01 - 1.00e+00 1.00e+00h 1\n", - " 98 1.9799350e+01 1.48e-05 1.05e-03 -11.0 2.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 99 1.9799303e+01 6.25e-05 2.19e-03 -11.0 1.80e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.9799291e+01 6.52e-05 1.67e-03 -11.0 2.60e-01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.9799291454812550e+01 1.9799291454812550e+01\n", - "Dual infeasibility......: 1.6699819093981272e-03 1.6699819093981272e-03\n", - "Constraint violation....: 6.5221200024723203e-05 6.5221200024723203e-05\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 1.6699819093981272e-03 1.6699819093981272e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 110\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 110\n", - "Number of inequality constraint evaluations = 110\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.395\n", - "Total CPU secs in NLP function evaluations = 136.900\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 532.00us ( 4.84us) 528.91us ( 4.81us) 110\n", - " nlp_g | 5.07 s ( 46.06ms) 4.84 s ( 44.04ms) 110\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 350.00us ( 3.43us) 343.25us ( 3.37us) 102\n", - " nlp_jac_g | 134.85 s ( 1.32 s) 129.05 s ( 1.27 s) 102\n", - " total | 141.41 s (141.41 s) 135.34 s (135.34 s) 1\n", - "Timestamp 20700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.79e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0612945e+01 1.10e+01 2.79e+04 -1.5 2.79e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 9.2940360e+00 3.39e+00 5.43e+00 1.0 5.73e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 3.6589337e+00 3.16e-01 1.87e-01 -1.1 1.72e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 3.2580681e+00 1.30e-03 1.20e-01 -7.0 7.31e+00 - 9.90e-01 1.00e+00h 1\n", - " 5 3.2578319e+00 1.53e-03 1.46e-02 -4.7 6.70e+00 - 1.00e+00 1.00e+00h 1\n", - " 6 3.2593709e+00 1.08e-03 4.27e-03 -6.6 4.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 3.2590075e+00 5.92e-04 1.22e-03 -8.6 5.89e+00 - 1.00e+00 1.00e+00h 1\n", - " 8 3.2598184e+00 1.46e-04 9.16e-04 -11.0 1.91e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 3.2568805e+00 1.43e-03 9.11e-03 -11.0 5.32e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 3.2599529e+00 5.96e-05 1.41e-03 -11.0 1.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 3.2504026e+00 1.68e-02 3.80e-02 -11.0 9.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 12 3.1249311e+00 1.01e-01 1.33e-01 -11.0 3.36e+02 - 1.00e+00 1.00e+00h 1\n", - " 13 3.2577104e+00 9.38e-03 2.08e-02 -11.0 9.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 3.2470342e+00 1.89e-02 1.20e-02 -11.0 5.76e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.9259385e+00 2.04e-01 4.62e-02 -11.0 1.67e+03 - 1.00e+00 1.00e+00f 1\n", - " 16 2.5193632e+00 4.30e-01 7.97e-02 -11.0 2.43e+03 - 1.00e+00 1.00e+00h 1\n", - " 17 3.2227371e+00 5.80e-03 1.28e-01 -11.0 1.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 3.1272619e+00 9.47e-01 1.99e-01 -11.0 1.77e+04 - 1.00e+00 2.50e-01f 3\n", - " 19 3.0352872e+00 8.33e-01 3.60e-01 -11.0 3.45e+04 - 1.00e+00 1.12e-01h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.7372083e+00 1.16e+00 8.14e-01 -11.0 2.08e+04 - 7.64e-01 2.50e-01f 3\n", - " 21 3.6054651e+00 2.27e-01 9.89e-01 -11.0 3.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 22 2.6569558e+00 1.59e+00 2.36e-01 -11.0 8.70e+03 - 1.00e+00 1.00e+00F 1\n", - " 23 2.4498826e+00 1.50e+00 2.97e-01 -11.0 2.90e+06 - 1.12e-02 1.05e-02f 1\n", - " 24 3.5452781e+00 8.59e-01 2.65e-01 -10.5 1.15e+04 - 1.00e+00 1.00e+00H 1\n", - " 25 3.3871993e+00 9.07e-02 2.41e-01 -2.2 3.01e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 3.2083601e+00 6.24e-01 1.61e-01 -2.2 2.96e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 3.0797666e+00 2.01e+00 3.37e-01 -2.2 8.92e+04 - 4.74e-01 5.53e-02f 2\n", - " 28 3.0245300e+00 7.22e-01 1.71e-01 -2.2 2.32e+03 - 8.80e-01 1.00e+00h 1\n", - " 29 2.8687309e+00 6.43e-01 2.17e-01 -2.2 6.23e+05 - 2.87e-02 4.70e-03f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.4313736e+00 4.74e-01 1.99e-01 -2.2 1.58e+04 - 1.00e+00 1.00e+00f 1\n", - " 31 2.4189565e+00 2.09e+00 5.85e-01 -8.0 5.48e+04 - 1.76e-01 8.34e-02f 4\n", - " 32 4.0638848e+00 1.23e+00 5.29e-01 -0.9 2.64e+04 - 1.00e+00 9.65e-01h 1\n", - " 33 2.5114250e+00 2.20e+00 3.46e-01 -1.1 9.57e+03 - 7.89e-01 1.00e+00f 1\n", - " 34 2.4618266e+00 2.68e+00 4.50e-01 -1.1 8.12e+04 - 6.53e-01 9.00e-02f 4\n", - " 35 4.4383062e+00 2.36e+00 1.09e+00 -1.1 3.97e+04 - 1.33e-01 6.98e-01H 1\n", - " 36 3.7584140e+00 2.06e+00 9.83e-01 -1.1 8.26e+04 - 8.53e-01 1.28e-01f 1\n", - " 37 2.4698298e+00 1.36e+00 5.09e-01 -1.1 1.49e+04 - 1.00e+00 1.00e+00f 1\n", - " 38 2.5070475e+00 3.99e-01 2.91e-01 -1.1 3.40e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 2.2384502e+00 4.01e-01 1.74e-01 -2.4 3.82e+03 - 9.40e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.1321003e+00 2.66e-01 1.65e-01 -2.5 2.82e+04 - 9.85e-01 1.31e-01h 1\n", - " 41 2.1259532e+00 4.96e-01 2.37e-01 -1.8 1.23e+04 - 1.00e+00 9.82e-02h 3\n", - " 42 2.2564908e+00 4.99e-01 1.25e-01 -3.1 1.64e+03 - 1.00e+00 1.00e+00h 1\n", - " 43 2.4038596e+00 4.37e-01 4.17e-02 -3.1 2.44e+03 - 4.67e-01 1.00e+00h 1\n", - " 44 2.3536318e+00 9.83e-02 1.75e-01 -2.6 3.80e+02 - 1.00e+00 1.00e+00h 1\n", - " 45 2.3479126e+00 2.63e-01 9.27e-02 -2.5 2.58e+03 - 4.30e-01 2.50e-01h 3\n", - " 46 2.2780806e+00 4.47e-01 2.47e-01 -8.6 5.04e+04 - 2.98e-02 9.06e-02h 1\n", - " 47 2.4369805e+00 2.89e-01 7.33e-02 -2.7 7.70e+03 - 4.98e-02 1.00e+00h 1\n", - " 48 2.3747705e+00 1.09e-01 4.71e-01 -2.7 1.56e+04 - 8.41e-01 1.00e+00h 1\n", - " 49 2.3145155e+00 3.11e-01 3.33e-01 -2.7 7.34e+04 - 1.04e-01 4.67e-02h 5\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.0023749e+00 7.12e-01 2.17e-01 -3.5 6.55e+03 - 9.99e-01 5.00e-01f 2\n", - " 51 1.7469010e+00 6.35e-01 2.28e-01 -2.6 6.09e+06 - 6.84e-01 1.34e-03f 1\n", - " 52 2.4142392e+00 3.94e-01 5.39e-02 -1.5 1.23e+04 - 5.98e-01 1.00e+00h 1\n", - " 53 2.3877557e+00 3.63e-01 9.15e-02 -1.8 9.47e+04 - 5.77e-01 1.47e-02h 2\n", - " 54 2.2669006e+00 5.91e-01 2.56e-01 -1.8 1.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 55 2.4176412e+00 2.53e-01 7.43e-02 -1.8 2.74e+03 - 1.00e+00 1.00e+00h 1\n", - " 56 2.3877304e+00 3.36e-01 5.56e-02 -1.8 2.18e+03 - 1.00e+00 1.00e+00H 1\n", - " 57 2.2802785e+00 2.18e-01 1.84e-01 -1.8 3.11e+03 - 1.00e+00 5.40e-01h 1\n", - " 58 2.2914923e+00 7.71e-01 3.12e-01 -1.9 1.30e+04 - 9.04e-01 2.50e-01h 3\n", - " 59 2.5105935e+00 4.03e-01 2.88e-01 -2.1 1.00e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.4325870e+00 2.59e-01 6.29e-02 -2.1 3.31e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 2.0638427e+00 4.34e-01 2.02e-01 -2.1 8.95e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 2.1822031e+00 6.23e-01 2.85e-01 -2.0 9.72e+03 - 7.52e-01 1.00e+00h 1\n", - " 63 2.6358332e+00 6.27e-01 4.60e-01 -2.2 1.51e+04 - 8.33e-01 4.39e-01H 1\n", - " 64 2.2877025e+00 6.82e-01 2.17e-01 -2.2 3.40e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 2.3741626e+00 2.03e-01 2.53e-01 -2.2 6.77e+03 - 1.00e+00 1.00e+00h 1\n", - " 66 1.6585765e+00 1.54e+00 5.12e-01 -2.2 2.02e+04 - 3.11e-01 1.00e+00f 1\n", - " 67 1.6363084e+00 1.42e+00 3.90e-01 -1.2 3.00e+04 - 1.00e+00 6.16e-02h 3\n", - " 68 2.4724749e+00 6.42e-01 4.77e-01 -7.2 6.86e+03 - 6.28e-01 1.00e+00h 1\n", - " 69 2.2241962e+00 3.02e-01 3.76e-01 -1.8 1.64e+04 - 1.00e+00 8.44e-01H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.6849622e+00 1.18e+00 1.97e-01 -1.8 9.65e+03 - 8.96e-01 5.33e-01f 1\n", - " 71 1.4986490e+00 1.10e+00 5.85e-01 -1.9 2.62e+04 - 1.00e+00 2.88e-01F 1\n", - " 72 2.5840687e+00 4.36e-02 1.46e+00 -3.3 1.46e+00 - 9.96e-01 1.00e+00h 1\n", - " 73 2.5372593e+00 5.86e-05 1.81e-02 -4.9 8.70e-02 - 1.00e+00 1.00e+00h 1\n", - " 74 2.5372411e+00 2.02e-08 2.09e-05 -6.8 1.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 75 2.5372411e+00 6.34e-11 4.61e-05 -11.0 3.63e-04 - 1.00e+00 1.00e+00H 1\n", - " 76 2.5372411e+00 2.38e-08 7.05e-05 -11.0 1.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 2.5372409e+00 2.89e-07 1.10e-04 -11.0 8.95e-04 - 1.00e+00 1.00e+00h 1\n", - " 78 2.5372409e+00 9.19e-08 2.11e-05 -11.0 4.51e-04 - 1.00e+00 1.00e+00h 1\n", - " 79 2.5372411e+00 1.58e-08 1.86e-04 -11.0 1.73e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.5372410e+00 2.72e-07 8.55e-05 -11.0 8.84e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 2.5372409e+00 1.68e-07 5.49e-05 -11.0 7.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 82 2.5372411e+00 9.02e-09 8.76e-05 -11.0 1.16e-04 - 1.00e+00 1.00e+00h 1\n", - " 83 2.5372411e+00 3.98e-08 5.64e-05 -11.0 2.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 84 2.5372408e+00 3.50e-07 8.02e-05 -11.0 1.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 2.5372410e+00 1.61e-07 2.37e-04 -11.0 5.77e-04 - 1.00e+00 1.00e+00h 1\n", - " 86 2.5372410e+00 3.86e-08 7.71e-05 -11.0 1.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 87 2.5372411e+00 6.67e-09 6.47e-05 -11.0 1.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 88 2.5371812e+00 6.79e-05 8.44e-03 -11.0 3.87e-01 - 1.00e+00 1.00e+00h 1\n", - " 89 2.5371547e+00 9.47e-05 9.93e-03 -11.0 4.66e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.5372412e+00 3.72e-06 1.10e-03 -11.0 5.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 91 2.5372261e+00 4.82e-05 7.20e-04 -11.0 1.06e-01 - 1.00e+00 1.00e+00h 1\n", - " 92 2.5371028e+00 3.27e-04 2.96e-03 -11.0 3.01e-01 - 1.00e+00 1.00e+00h 1\n", - " 93 2.5371658e+00 6.22e-05 2.49e-03 -11.0 5.82e-01 - 1.00e+00 1.00e+00h 1\n", - " 94 2.5369860e+00 2.01e-04 1.00e-03 -11.0 5.07e-01 - 1.00e+00 1.00e+00h 1\n", - " 95 2.5371676e+00 5.87e-05 7.29e-04 -9.0 1.64e+00 - 1.00e+00 7.75e-01H 1\n", - " 96 2.5372307e+00 1.66e-05 4.07e-04 -8.7 9.55e-02 - 1.00e+00 1.00e+00h 1\n", - " 97 2.5371640e+00 2.71e-04 7.47e-04 -6.1 1.43e+00 - 4.26e-02 1.00e+00h 1\n", - " 98 2.5324685e+00 2.28e-02 7.43e-03 -7.6 7.19e+01 - 4.47e-02 1.00e+00h 1\n", - " 99 2.5291478e+00 2.26e-02 5.05e-03 -5.5 1.13e+03 - 1.00e+00 5.89e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.5366060e+00 6.56e-04 6.67e-03 -4.5 3.82e+01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.5366060154078975e+00 2.5366060154078975e+00\n", - "Dual infeasibility......: 6.6709162795278720e-03 6.6709162795278720e-03\n", - "Constraint violation....: 6.5591998216874003e-04 6.5591998216874003e-04\n", - "Complementarity.........: 6.2474158471770421e-04 6.2474158471770421e-04\n", - "Overall NLP error.......: 6.6709162795278720e-03 6.6709162795278720e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 168\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 168\n", - "Number of inequality constraint evaluations = 168\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.465\n", - "Total CPU secs in NLP function evaluations = 142.332\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 817.00us ( 4.86us) 814.98us ( 4.85us) 168\n", - " nlp_g | 7.86 s ( 46.76ms) 7.53 s ( 44.80ms) 168\n", - " nlp_grad | 1.52 s ( 1.52 s) 1.47 s ( 1.47 s) 1\n", - " nlp_grad_f | 374.00us ( 3.67us) 360.12us ( 3.53us) 102\n", - " nlp_jac_g | 137.44 s ( 1.35 s) 131.86 s ( 1.29 s) 102\n", - " total | 146.97 s (146.97 s) 141.00 s (141.00 s) 1\n", - "Timestamp 21000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.78e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9998521e+01 1.56e+01 2.78e+04 -1.5 2.78e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.3651457e+01 5.99e+00 1.30e+01 1.0 5.41e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.1199808e+01 2.34e+00 8.20e-01 -1.1 1.13e+02 - 9.98e-01 1.00e+00h 1\n", - " 4 2.2584427e+01 1.53e-04 8.58e-02 -2.9 2.58e+00 - 9.98e-01 1.00e+00h 1\n", - " 5 2.2584210e+01 2.95e-05 7.65e-03 -4.7 3.07e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.2584179e+01 6.75e-05 9.39e-03 -6.8 3.86e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.2580223e+01 3.65e-03 9.41e-03 -8.7 2.20e+01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.2584183e+01 1.11e-06 1.24e-03 -10.6 1.32e+01 - 1.00e+00 1.00e+00H 1\n", - " 9 2.2584166e+01 6.38e-05 1.43e-03 -11.0 9.82e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.2583894e+01 1.05e-04 1.29e-03 -11.0 5.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 2.2456861e+01 6.09e-02 7.41e-03 -11.0 2.88e+02 - 1.00e+00 1.00e+00f 1\n", - " 12 2.2566607e+01 4.45e-03 5.70e-03 -11.0 7.56e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.2556205e+01 1.24e-02 2.09e-03 -11.0 6.16e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.2569930e+01 1.11e-03 1.95e-03 -11.0 2.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.2552982e+01 1.27e-02 3.79e-03 -11.0 4.74e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.2548322e+01 8.09e-03 1.59e-03 -11.0 3.26e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 2.2570769e+01 3.69e-04 1.81e-03 -11.0 5.95e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 2.2570608e+01 1.08e-03 1.42e-03 -11.0 4.66e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 2.2527370e+01 1.66e-02 7.92e-03 -11.0 2.39e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.2414342e+01 1.18e-01 3.88e-03 -11.0 1.89e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 2.2560166e+01 1.64e-02 3.04e-03 -11.0 7.92e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 2.2551179e+01 3.53e-02 1.55e-03 -11.0 1.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 2.2565475e+01 7.52e-03 1.11e-03 -11.0 4.04e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.7521402e+01 2.90e+00 2.23e-01 -9.0 2.40e+07 - 1.54e-03 1.27e-03f 1\n", - " 25 1.7433589e+01 2.89e+00 2.27e-01 -9.1 3.10e+07 - 4.07e-03 7.40e-06f 1\n", - " 26 2.2074270e+01 3.28e-01 1.86e-01 -8.8 1.17e+02 - 1.00e+00 8.86e-01h 1\n", - " 27 2.2074525e+01 3.28e-01 1.86e-01 -6.8 6.36e+01 - 1.00e+00 3.89e-04h 1\n", - " 28 2.2728166e+01 2.47e-02 5.02e-03 -7.4 8.49e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 2.2734600e+01 2.02e-02 7.73e-03 -7.5 1.69e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.2738343e+01 6.05e-03 7.74e-03 -7.5 2.73e+02 - 9.07e-01 1.00e+00h 1\n", - " 31 2.2365881e+01 9.75e-01 3.20e-02 -7.5 2.74e+06 - 5.74e-09 5.57e-03f 1\n", - " 32 2.2611751e+01 5.43e-01 1.49e-02 -7.5 1.01e+04 - 1.00e+00 5.00e-01h 2\n", - " 33 2.2491119e+01 9.06e-02 1.18e-02 -7.5 8.23e+03 - 7.47e-01 6.13e-01h 1\n", - " 34 2.2718816e+01 3.07e-02 2.34e-03 -7.5 3.21e+02 - 7.71e-01 1.00e+00h 1\n", - " 35 2.2718816e+01 3.07e-02 2.36e-03 -7.5 6.62e+03 - 5.56e-01 8.40e-08h 2\n", - " 36 2.2741794e+01 3.71e-03 5.47e-03 -7.5 2.08e+01 - 1.00e+00 1.00e+00h 1\n", - " 37 2.2740993e+01 1.31e-03 1.75e-03 -7.5 1.38e+01 - 1.00e+00 1.00e+00h 1\n", - " 38 2.2743789e+01 4.84e-07 5.19e-03 -7.5 1.50e+01 - 6.53e-02 1.00e+00H 1\n", - " 39 1.7253139e+01 1.10e+01 6.34e-01 -7.7 5.10e+04 - 3.37e-01 8.47e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.7254165e+01 1.09e+01 6.27e-01 -3.0 4.45e+04 - 1.00e+00 5.01e-03h 1\n", - " 41 1.9116635e+01 2.94e+00 1.75e-01 -3.7 9.89e+03 - 8.58e-01 7.20e-01h 1\n", - " 42 2.2819032e+01 7.48e-03 1.27e-01 -2.4 5.37e+01 - 1.00e+00 1.00e+00h 1\n", - " 43 2.2784639e+01 2.56e-02 8.65e-03 -2.5 1.76e+02 - 2.95e-01 1.00e+00h 1\n", - " 44 2.2791981e+01 1.18e-02 2.52e-03 -3.8 1.07e+02 - 1.00e+00 5.90e-01h 1\n", - " 45 2.2616298e+01 1.07e-01 7.43e-03 -3.8 7.65e+02 - 1.00e+00 3.94e-01f 1\n", - " 46 2.2766396e+01 1.72e-02 2.40e-03 -3.8 8.93e+01 - 3.12e-02 1.00e+00h 1\n", - " 47 2.2760248e+01 1.61e-02 1.87e-03 -3.8 6.92e+02 - 1.00e+00 8.05e-02h 1\n", - " 48 2.2809045e+01 4.71e-04 4.89e-03 -3.8 2.22e+02 - 1.16e-01 1.00e+00H 1\n", - " 49 2.2804141e+01 5.88e-05 8.95e-03 -3.8 1.48e+02 - 1.00e+00 1.00e+00F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.2755331e+01 3.75e-02 1.79e-03 -3.8 6.87e+01 - 1.00e+00 1.00e+00f 1\n", - " 51 2.2797768e+01 2.90e-03 2.33e-03 -3.8 4.03e+01 - 1.00e+00 1.00e+00h 1\n", - " 52 2.2727369e+01 5.60e-02 4.38e-03 -3.8 7.78e+02 - 2.69e-01 3.00e-01f 1\n", - " 53 2.2791515e+01 6.09e-03 1.55e-03 -3.8 1.34e+02 - 1.00e+00 1.00e+00h 1\n", - " 54 2.2758905e+01 2.90e-02 3.22e-03 -3.8 3.26e+02 - 1.00e+00 8.90e-01h 1\n", - " 55 2.2761644e+01 2.20e-02 5.01e-03 -3.8 3.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 2.2792741e+01 8.50e-03 2.87e-03 -3.8 1.26e+02 - 7.31e-01 1.00e+00h 1\n", - " 57 2.2788284e+01 1.43e-02 1.54e-03 -3.8 3.89e+01 - 1.00e+00 1.00e+00h 1\n", - " 58 2.2781900e+01 1.62e-02 1.80e-03 -3.8 2.95e+02 - 1.00e+00 1.00e+00h 1\n", - " 59 2.2807156e+01 2.09e-05 2.07e-03 -3.8 1.14e+03 - 4.75e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.2805124e+01 4.79e-03 2.29e-03 -3.8 2.30e+04 - 1.66e-02 1.75e-03f 6\n", - " 61 2.2728699e+01 5.62e-02 2.38e-03 -3.8 2.73e+04 - 1.00e+00 4.47e-02f 1\n", - " 62 2.2745397e+01 1.88e-02 2.01e-03 -3.8 4.26e+02 - 1.24e-01 1.00e+00h 1\n", - " 63 2.2635933e+01 9.06e-02 2.16e-03 -3.8 2.63e+03 - 1.00e+00 5.99e-01h 1\n", - " 64 2.2632894e+01 9.21e-02 2.19e-03 -3.8 1.91e+03 - 4.98e-01 1.22e-02h 1\n", - " 65 2.2656609e+01 7.20e-02 1.46e-02 -3.8 4.20e+02 - 1.00e+00 1.00e+00h 1\n", - " 66 2.2714532e+01 5.10e-02 9.77e-03 -3.8 3.09e+02 - 5.50e-01 5.00e-01h 2\n", - " 67 2.2778371e+01 1.28e-02 7.64e-03 -3.8 3.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 68 2.2808587e+01 6.66e-05 1.63e-03 -3.8 7.69e+02 - 6.54e-01 1.00e+00H 1\n", - " 69 2.2615334e+01 7.26e-02 2.15e-03 -5.6 9.95e+02 - 2.28e-02 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.2237981e+01 4.86e-01 2.43e-02 -5.6 7.26e+03 - 2.94e-01 1.00e+00h 1\n", - " 71 2.1313441e+01 7.49e-01 2.25e-02 -5.6 5.38e+03 - 8.43e-01 1.00e+00h 1\n", - " 72 2.2300227e+01 4.40e-01 1.46e-02 -5.5 2.52e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 1.7750558e+01 6.63e+00 3.88e-01 -5.6 1.68e+06 - 2.44e-03 1.70e-02f 1\n", - " 74 1.7750589e+01 6.63e+00 3.88e-01 -5.6 8.04e+03 - 1.00e+00 1.16e-05h 1\n", - " 75 2.2758298e+01 2.61e-01 3.98e-01 -5.6 3.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 76 2.2756072e+01 2.63e-01 3.97e-01 -5.6 5.08e+03 - 1.00e+00 3.38e-03h 1\n", - " 77 2.2497766e+01 3.50e-02 2.32e-02 -5.6 1.63e+02 - 7.57e-01 1.00e+00h 1\n", - " 78 2.2413387e+01 1.05e-01 5.52e-02 -5.9 2.50e+03 - 1.00e+00 1.00e+00f 1\n", - " 79 2.2473798e+01 5.32e-02 1.81e-03 -6.4 1.11e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.2532604e+01 4.50e-04 2.77e-03 -5.0 6.90e+02 - 7.14e-01 1.00e+00H 1\n", - " 81 2.2377971e+01 2.46e-01 1.45e-02 -6.5 1.22e+03 - 1.00e+00 1.00e+00f 1\n", - " 82 2.2315547e+01 5.94e-01 3.20e-03 -5.9 6.71e+03 - 1.00e+00 1.00e+00h 1\n", - " 83 2.2466234e+01 4.16e-02 2.63e-02 -6.0 1.59e+03 - 1.00e+00 1.00e+00h 1\n", - " 84 1.7865293e+01 4.05e+00 2.00e-01 -6.0 2.91e+04 - 1.00e+00 1.00e+00f 1\n", - " 85 1.7583987e+01 4.07e+00 2.22e-01 -6.0 1.42e+05 - 1.00e+00 2.98e-02h 1\n", - " 86 2.3316509e+01 5.67e-02 2.12e-01 -6.0 2.96e+03 - 1.00e+00 1.00e+00h 1\n", - " 87 2.2804847e+01 2.14e-01 5.62e-02 -6.0 8.20e+03 - 1.00e+00 1.00e+00f 1\n", - " 88 2.2148524e+01 1.81e+00 2.65e-02 -6.0 9.92e+03 - 1.00e+00 1.00e+00f 1\n", - " 89 2.2280290e+01 1.14e+00 3.58e-02 -6.0 1.15e+04 - 5.36e-02 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.2174855e+01 1.38e+00 3.15e-02 -6.0 2.32e+04 - 2.00e-01 4.66e-02h 1\n", - " 91 2.2306179e+01 1.02e+00 2.90e-02 -6.0 2.23e+03 - 1.00e+00 2.50e-01h 3\n", - " 92 2.3168370e+01 3.87e-02 3.10e-02 -6.0 2.04e+03 - 9.31e-01 1.00e+00h 1\n", - " 93 2.3144217e+01 3.62e-02 2.17e-02 -6.0 1.39e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 2.3027493e+01 2.84e-01 3.01e-02 -6.0 2.24e+04 - 1.00e+00 1.86e-01f 3\n", - " 95 2.1423548e+01 9.20e-01 2.42e-02 -6.0 3.17e+05 - 1.59e-01 6.54e-02f 1\n", - " 96 2.3207782e+01 6.26e-03 1.85e+00 -6.0 1.89e+00 - 1.00e+00 1.00e+00h 1\n", - " 97 2.3204106e+01 2.46e-06 1.98e-03 -6.0 1.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 98 2.3204041e+01 2.75e-05 2.06e-03 -6.0 2.06e-01 - 1.00e+00 1.00e+00h 1\n", - " 99 2.3204033e+01 2.80e-05 3.17e-03 -6.0 3.01e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.3204094e+01 2.99e-06 3.29e-03 -6.0 1.76e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.3204093765773191e+01 2.3204093765773191e+01\n", - "Dual infeasibility......: 3.2903258338223135e-03 3.2903258338223135e-03\n", - "Constraint violation....: 2.9850335039327547e-06 2.9850335039327547e-06\n", - "Complementarity.........: 8.9462849766876619e-07 8.9462849766876619e-07\n", - "Overall NLP error.......: 3.2903258338223135e-03 3.2903258338223135e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 126\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 126\n", - "Number of inequality constraint evaluations = 126\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.405\n", - "Total CPU secs in NLP function evaluations = 137.213\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 596.00us ( 4.73us) 584.47us ( 4.64us) 126\n", - " nlp_g | 5.74 s ( 45.54ms) 5.48 s ( 43.47ms) 126\n", - " nlp_grad | 1.37 s ( 1.37 s) 1.31 s ( 1.31 s) 1\n", - " nlp_grad_f | 344.00us ( 3.37us) 337.20us ( 3.31us) 102\n", - " nlp_jac_g | 134.19 s ( 1.32 s) 128.26 s ( 1.26 s) 102\n", - " total | 141.44 s (141.44 s) 135.19 s (135.19 s) 1\n", - "Timestamp 21300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 7.25e+02 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9602585e+01 1.26e+01 7.25e+02 -1.5 7.25e+02 - 9.90e-01 1.00e+00f 1\n", - " 2 7.9233730e+00 4.14e+00 9.03e+00 0.4 1.26e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 6.1218417e+00 9.81e-01 6.87e-01 -1.6 6.76e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 6.7587263e+00 1.74e-03 7.90e-02 -3.4 1.37e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 6.7594949e+00 2.99e-07 2.04e-05 -5.3 1.74e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 6.7594953e+00 3.20e-08 8.43e-05 -11.0 3.16e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 6.7594950e+00 1.89e-07 4.52e-05 -11.0 1.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 6.7594952e+00 6.12e-08 8.45e-05 -11.0 4.36e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 6.7594952e+00 4.11e-08 1.34e-04 -11.0 2.71e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 6.7594951e+00 1.07e-07 1.07e-04 -11.0 4.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 6.7594950e+00 1.59e-07 1.72e-04 -11.0 7.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 6.7594950e+00 1.53e-07 7.88e-05 -11.0 4.38e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 6.7594947e+00 2.99e-07 9.94e-05 -11.0 1.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 6.7594947e+00 2.57e-07 1.57e-05 -11.0 1.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 6.7594954e+00 2.56e-08 1.34e-04 -11.0 2.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 6.7594949e+00 2.73e-07 2.03e-05 -11.0 1.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 6.7594954e+00 3.21e-08 1.16e-04 -11.0 2.80e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 6.7594953e+00 4.36e-08 9.92e-05 -11.0 2.33e-04 - 1.00e+00 1.00e+00h 1\n", - " 19 6.7594942e+00 5.39e-07 6.41e-05 -11.0 4.59e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 6.7594950e+00 1.52e-07 1.34e-04 -11.0 1.73e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 6.7594953e+00 1.36e-10 6.72e-05 -11.0 6.62e-04 - 1.00e+00 1.00e+00H 1\n", - " 22 6.7594952e+00 7.81e-08 1.16e-04 -11.0 9.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 6.7594951e+00 2.28e-07 9.31e-05 -11.0 7.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 6.7594952e+00 1.34e-07 5.27e-05 -11.0 3.61e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 6.7594953e+00 2.07e-08 4.35e-05 -11.0 2.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 6.7594953e+00 5.62e-09 1.23e-04 -11.0 1.22e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 6.7594952e+00 2.94e-08 1.46e-04 -11.0 8.07e-04 - 1.00e+00 1.00e+00h 1\n", - " 28 6.7594951e+00 8.85e-08 7.88e-05 -11.0 4.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 6.7594953e+00 2.10e-08 6.74e-05 -11.0 3.87e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 6.7594951e+00 1.80e-07 1.43e-04 -11.0 1.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 6.7594949e+00 3.50e-07 2.50e-05 -11.0 3.33e-03 - 1.00e+00 1.00e+00h 1\n", - " 32 6.7594953e+00 4.47e-08 3.60e-05 -11.0 5.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 6.7594953e+00 1.20e-07 1.18e-04 -11.0 4.73e-04 - 1.00e+00 1.00e+00h 1\n", - " 34 6.7594952e+00 1.22e-07 6.29e-05 -11.0 5.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 35 6.7594952e+00 1.02e-07 7.91e-05 -11.0 5.87e-04 - 1.00e+00 1.00e+00h 1\n", - " 36 6.7594953e+00 6.32e-08 2.45e-05 -11.0 2.36e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 6.7594953e+00 1.09e-08 2.28e-05 -11.0 1.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 6.7594953e+00 5.14e-09 9.77e-05 -11.0 1.49e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 6.7594953e+00 5.05e-08 1.96e-05 -11.0 1.70e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 6.7594953e+00 2.29e-09 4.90e-05 -11.0 3.35e-05 - 1.00e+00 1.00e+00h 1\n", - " 41 6.7594953e+00 1.75e-08 1.39e-04 -11.0 9.74e-05 - 1.00e+00 1.00e+00h 1\n", - " 42 6.7594950e+00 2.81e-07 2.00e-05 -11.0 8.60e-04 - 1.00e+00 1.00e+00h 1\n", - " 43 6.7594953e+00 2.63e-09 4.77e-05 -11.0 5.86e-05 - 1.00e+00 1.00e+00h 1\n", - " 44 6.7594953e+00 2.37e-08 9.47e-05 -11.0 7.47e-05 - 1.00e+00 1.00e+00h 1\n", - " 45 6.7594952e+00 7.57e-08 3.34e-05 -11.0 2.49e-04 - 1.00e+00 1.00e+00h 1\n", - " 46 6.7594951e+00 2.67e-07 9.13e-05 -11.0 1.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 47 6.7594952e+00 4.55e-08 1.18e-04 -11.0 2.52e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 6.7594952e+00 1.11e-07 1.24e-04 -11.0 5.26e-04 - 1.00e+00 1.00e+00h 1\n", - " 49 6.7594949e+00 2.04e-07 9.47e-05 -11.0 1.45e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 6.7594952e+00 2.97e-08 4.64e-05 -11.0 1.42e-04 - 1.00e+00 1.00e+00h 1\n", - " 51 6.7594953e+00 1.11e-08 2.84e-05 -11.0 1.45e-04 - 1.00e+00 1.00e+00h 1\n", - " 52 6.7594953e+00 4.65e-09 1.84e-05 -11.0 5.49e-05 - 1.00e+00 1.00e+00h 1\n", - " 53 6.7594953e+00 3.09e-09 1.01e-04 -11.0 2.81e-05 - 1.00e+00 1.00e+00h 1\n", - " 54 6.7594953e+00 5.17e-09 2.33e-05 -11.0 3.15e-05 - 1.00e+00 1.00e+00h 1\n", - " 55 6.7594953e+00 7.82e-10 3.34e-05 -11.0 2.45e-05 - 1.00e+00 1.00e+00h 1\n", - " 56 6.7594953e+00 3.38e-09 1.01e-04 -11.0 2.27e-05 - 1.00e+00 1.00e+00h 1\n", - " 57 6.7594952e+00 5.55e-08 4.48e-05 -11.0 7.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 58 6.7594864e+00 3.87e-06 5.88e-02 -11.0 1.17e-01 - 1.00e+00 1.00e+00h 1\n", - " 59 6.7594924e+00 1.89e-06 1.59e-03 -11.0 7.94e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 6.7594856e+00 1.31e-05 1.32e-03 -11.0 5.42e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 6.7594865e+00 6.35e-06 2.04e-03 -11.0 1.73e-01 - 1.00e+00 1.00e+00h 1\n", - " 62 6.7594922e+00 2.61e-06 3.35e-03 -11.0 1.27e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 6.6166159e+00 7.41e-02 4.61e-02 -11.0 2.69e+04 - 1.00e+00 1.00e+00F 1\n", - " 64 6.4116968e+00 2.69e-01 1.19e-01 -9.2 6.35e+04 - 1.00e+00 7.45e-02f 1\n", - " 65 6.4115885e+00 2.69e-01 1.18e-01 -7.2 1.23e+05 - 1.00e+00 3.85e-04h 1\n", - " 66 6.5395778e+00 1.20e-01 6.54e-02 -5.5 1.88e+03 - 1.00e+00 1.00e+00h 1\n", - " 67 6.4292366e+00 3.64e-01 1.80e-02 -5.1 1.92e+03 - 1.00e+00 9.67e-01h 1\n", - " 68 6.5147410e+00 1.17e-01 9.71e-03 -5.1 6.02e+02 - 1.00e+00 1.00e+00h 1\n", - " 69 6.3523666e+00 3.08e+00 3.54e-01 -11.0 1.70e+05 - 5.63e-03 8.93e-02f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 5.0208104e+00 1.41e+00 2.10e-01 -5.3 1.24e+05 - 5.81e-02 4.52e-01f 1\n", - " 71 6.3642716e+00 9.67e-01 1.84e-01 -5.7 1.76e+04 - 1.00e+00 1.00e+00H 1\n", - " 72 6.2416822e+00 5.09e-01 1.04e-01 -1.4 8.82e+03 - 1.00e+00 9.38e-01h 1\n", - " 73 6.1653745e+00 1.85e+00 7.36e-02 -3.1 8.98e+03 - 7.38e-01 1.00e+00h 1\n", - " 74 6.6998209e+00 3.97e-02 1.28e-01 -2.1 4.99e+02 - 1.00e+00 1.00e+00h 1\n", - " 75 6.3905522e+00 5.77e-01 1.07e-01 -3.3 1.84e+03 - 9.99e-01 1.00e+00f 1\n", - " 76 6.4269017e+00 2.14e-01 3.02e-02 -4.4 1.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 77 6.5795685e+00 8.72e-02 3.31e-02 -10.1 5.99e+02 - 7.75e-01 1.00e+00h 1\n", - " 78 6.3253279e+00 5.62e-01 9.72e-02 -5.2 5.76e+03 - 8.04e-03 1.00e+00h 1\n", - " 79 4.9171804e+00 1.49e+00 7.17e-01 -5.2 1.94e+06 - 1.82e-02 3.68e-03f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 7.0310383e+00 1.07e+00 6.74e-01 -6.2 1.74e+04 - 1.00e+00 1.00e+00h 1\n", - " 81 5.1739665e+00 2.07e+00 1.17e-01 -6.1 1.55e+04 - 7.22e-01 1.00e+00f 1\n", - " 82 6.5200708e+00 3.37e-01 2.70e-01 -6.1 3.24e+04 - 1.00e+00 1.00e+00H 1\n", - " 83 6.2147943e+00 2.87e-01 2.53e-01 -6.1 1.29e+05 - 4.46e-01 4.08e-02f 1\n", - " 84 3.9248622e+00 2.91e+00 5.90e-01 -5.9 3.44e+04 - 1.00e+00 5.40e-01F 1\n", - " 85 3.9432140e+00 2.89e+00 5.81e-01 -1.2 5.58e+03 - 1.00e+00 5.77e-02h 1\n", - " 86 6.7795510e+00 2.62e-01 3.73e+00 -3.2 3.73e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 7.0807286e+00 1.09e-03 6.68e-02 -3.3 4.43e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 7.0811902e+00 2.50e-07 1.60e-04 -3.3 1.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 7.0811896e+00 5.59e-07 4.57e-05 -5.0 3.72e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 7.0811904e+00 2.11e-10 1.04e-04 -7.4 3.70e-03 - 1.00e+00 1.00e+00H 1\n", - " 91 7.0811882e+00 1.68e-06 2.23e-03 -7.4 8.44e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 7.0811890e+00 9.71e-07 1.31e-03 -7.4 2.11e-03 - 1.00e+00 5.00e-01h 2\n", - " 93 7.0811900e+00 2.37e-07 8.59e-05 -7.4 7.53e-04 - 1.00e+00 1.00e+00h 1\n", - " 94 7.0811896e+00 3.69e-07 3.49e-05 -7.4 3.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 95 7.0811900e+00 1.87e-07 3.55e-05 -7.4 1.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 7.0811900e+00 2.35e-07 8.53e-05 -7.4 1.75e-03 - 1.00e+00 1.00e+00h 1\n", - " 97 7.0811896e+00 6.64e-07 1.59e-04 -7.4 3.62e-03 - 1.00e+00 1.00e+00h 1\n", - " 98 7.0811888e+00 1.24e-06 3.49e-03 -7.4 6.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 99 7.0811899e+00 2.01e-09 8.22e-05 -7.4 3.00e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.0811899e+00 2.43e-08 2.51e-05 -7.4 1.23e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.0811898890737996e+00 7.0811898890737996e+00\n", - "Dual infeasibility......: 2.5064025448113929e-05 2.5064025448113929e-05\n", - "Constraint violation....: 2.4312747370913712e-08 2.4312747370913712e-08\n", - "Complementarity.........: 3.7176552526513131e-08 3.7176552526513131e-08\n", - "Overall NLP error.......: 2.5064025448113929e-05 2.5064025448113929e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 117\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 117\n", - "Number of inequality constraint evaluations = 117\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.431\n", - "Total CPU secs in NLP function evaluations = 139.264\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 603.00us ( 5.15us) 597.44us ( 5.11us) 117\n", - " nlp_g | 5.45 s ( 46.62ms) 5.22 s ( 44.60ms) 117\n", - " nlp_grad | 1.38 s ( 1.38 s) 1.32 s ( 1.32 s) 1\n", - " nlp_grad_f | 461.00us ( 4.52us) 453.35us ( 4.44us) 102\n", - " nlp_jac_g | 136.74 s ( 1.34 s) 130.97 s ( 1.28 s) 102\n", - " total | 143.72 s (143.72 s) 137.66 s (137.66 s) 1\n", - "Timestamp 21600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9843163e+01 1.47e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.2654946e+01 5.49e+00 1.39e+01 1.0 6.53e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.8853771e+01 2.11e+00 8.37e-01 -1.1 1.33e+02 - 9.98e-01 1.00e+00h 1\n", - " 4 2.0100405e+01 4.71e-05 8.54e-02 -2.8 2.36e+00 - 9.98e-01 1.00e+00h 1\n", - " 5 2.0100255e+01 3.29e-05 7.04e-03 -4.6 3.15e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.0098807e+01 9.04e-04 2.18e-03 -6.7 9.19e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 2.0096947e+01 1.15e-03 6.15e-03 -8.8 1.45e+01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.0100783e+01 1.65e-04 1.41e-03 -11.0 1.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 2.0096845e+01 2.33e-03 2.98e-03 -11.0 8.16e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.0101051e+01 9.03e-07 3.44e-03 -11.0 1.05e+01 - 1.00e+00 1.00e+00H 1\n", - " 11 2.0099236e+01 8.82e-04 1.59e-03 -11.0 5.08e+00 - 1.00e+00 1.00e+00f 1\n", - " 12 2.0100779e+01 2.32e-04 1.51e-03 -11.0 1.34e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 2.0100748e+01 8.02e-05 1.86e-03 -11.0 8.94e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.0094072e+01 2.45e-03 4.47e-03 -11.0 1.42e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.0100259e+01 2.83e-04 2.04e-03 -11.0 2.19e+00 - 1.00e+00 1.00e+00h 1\n", - " 16 2.0099767e+01 3.14e-04 1.54e-03 -11.0 2.23e+00 - 1.00e+00 1.00e+00h 1\n", - " 17 2.0100471e+01 5.09e-08 1.92e-04 -11.0 1.57e+00 - 1.00e+00 1.00e+00H 1\n", - " 18 2.0099971e+01 2.98e-04 2.46e-03 -11.0 2.02e+00 - 1.00e+00 1.00e+00f 1\n", - " 19 2.0100312e+01 1.54e-04 2.39e-03 -11.0 1.75e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.0100116e+01 3.13e-04 2.75e-03 -11.0 1.99e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 2.0099830e+01 6.08e-04 1.81e-03 -11.0 2.94e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 2.0100261e+01 1.02e-04 1.89e-03 -11.0 1.25e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 2.0100220e+01 1.15e-04 1.26e-03 -11.0 1.09e+00 - 1.00e+00 1.00e+00h 1\n", - " 24 2.0094388e+01 4.31e-03 5.36e-03 -11.0 3.13e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 2.0073665e+01 1.86e-02 1.14e-02 -11.0 6.59e+01 - 1.00e+00 1.00e+00h 1\n", - " 26 1.9958526e+01 1.16e-01 6.70e-03 -11.0 4.27e+02 - 1.00e+00 1.00e+00h 1\n", - " 27 2.0085337e+01 4.96e-03 2.91e-03 -11.0 7.92e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 2.0080537e+01 8.01e-03 2.46e-03 -11.0 5.49e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 2.0086082e+01 1.45e-03 1.72e-03 -11.0 1.12e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.0077547e+01 6.56e-03 1.35e-03 -11.0 1.42e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.9979481e+01 1.69e-01 7.23e-03 -11.0 4.32e+03 - 1.00e+00 1.00e+00h 1\n", - " 32 1.9943669e+01 3.43e-01 8.68e-03 -11.0 1.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 2.0063316e+01 9.24e-03 1.06e-02 -11.0 6.13e+02 - 1.00e+00 1.00e+00h 1\n", - " 34 2.0051355e+01 7.54e-02 3.09e-03 -11.0 4.76e+02 - 1.00e+00 1.00e+00h 1\n", - " 35 2.0070484e+01 4.49e-02 2.52e-03 -11.0 2.65e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 1.9921187e+01 1.26e-01 4.18e-03 -11.0 6.22e+05 - 6.12e-02 4.02e-02f 1\n", - " 37 1.9681224e+01 4.73e-01 1.15e-02 -10.5 1.53e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 2.0037054e+01 2.19e-02 1.22e-02 -8.2 1.87e+02 - 1.00e+00 1.00e+00h 1\n", - " 39 1.9055536e+01 1.02e+00 4.25e-02 -9.4 7.28e+03 - 7.08e-02 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.7606438e+01 5.56e+00 2.22e-01 -10.3 5.32e+05 - 1.44e-02 1.03e-01f 1\n", - " 41 1.7584925e+01 5.61e+00 2.24e-01 -3.4 6.50e+05 - 7.08e-01 8.40e-04h 1\n", - " 42 1.9980828e+01 3.53e-02 2.01e-01 -3.3 4.29e+02 - 1.00e+00 1.00e+00h 1\n", - " 43 1.8871129e+01 6.92e-01 1.21e-01 -2.4 4.51e+03 - 3.10e-01 1.00e+00f 1\n", - " 44 1.6478538e+01 5.04e+00 4.40e-01 -2.1 1.66e+04 - 1.00e+00 1.00e+00f 1\n", - " 45 1.3760983e+01 3.08e+00 1.23e-01 -1.3 6.35e+04 - 1.00e+00 3.13e-01f 1\n", - " 46 1.6316961e+01 1.50e+00 2.03e-01 -1.5 8.31e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 1.3936395e+01 2.75e+00 1.99e-01 -2.0 2.90e+05 - 3.08e-02 3.46e-02f 1\n", - " 48 1.9013388e+01 2.65e-01 2.25e-01 -7.6 3.36e+03 - 2.13e-01 1.00e+00h 1\n", - " 49 1.7678814e+01 2.03e+00 1.76e-01 -2.9 2.64e+04 - 6.93e-01 4.50e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.7531877e+01 1.73e+00 1.40e-01 -2.4 4.54e+04 - 6.57e-01 2.71e-01h 1\n", - " 51 1.8311844e+01 1.38e+00 8.05e-02 -2.4 8.09e+03 - 3.37e-01 1.00e+00h 1\n", - " 52 1.4985670e+01 1.02e+01 1.01e+00 -2.6 4.89e+04 - 4.45e-01 1.00e+00F 1\n", - " 53 1.9200844e+01 1.45e+00 1.32e+01 -2.5 1.40e+01 - 1.00e+00 1.00e+00h 1\n", - " 54 1.9916425e+01 7.53e-07 8.05e-05 -2.5 1.45e+00 - 1.00e+00 1.00e+00h 1\n", - " 55 1.9916426e+01 3.04e-10 2.72e-04 -8.5 3.12e-03 - 9.97e-01 1.00e+00H 1\n", - " 56 1.9916424e+01 5.22e-07 6.88e-05 -10.9 2.33e-03 - 1.00e+00 1.00e+00h 1\n", - " 57 1.9916426e+01 5.94e-08 3.17e-04 -11.0 4.65e-04 - 1.00e+00 1.00e+00h 1\n", - " 58 1.9916426e+01 1.86e-07 1.42e-04 -11.0 3.77e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 1.9916426e+01 9.67e-11 1.15e-04 -11.0 5.27e-04 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.9916426e+01 4.37e-07 5.53e-05 -11.0 1.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 1.9916426e+01 1.39e-07 1.29e-04 -11.0 7.98e-04 - 1.00e+00 1.00e+00h 1\n", - " 62 1.9916426e+01 7.95e-08 7.99e-05 -11.0 2.41e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 1.9916426e+01 5.89e-08 1.68e-04 -11.0 7.07e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 1.9916426e+01 1.28e-07 1.14e-04 -11.0 4.88e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 1.9916426e+01 3.81e-08 5.78e-05 -11.0 3.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 66 1.9916424e+01 9.30e-07 4.27e-03 -11.0 7.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 1.9916425e+01 2.62e-07 5.39e-05 -11.0 2.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 68 1.9916426e+01 1.42e-07 1.01e-04 -11.0 1.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 1.9916425e+01 1.62e-07 1.03e-04 -11.0 1.10e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.9916426e+01 8.98e-08 8.03e-05 -11.0 3.60e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 1.9916425e+01 7.20e-07 2.86e-03 -11.0 3.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 72 1.9916425e+01 2.16e-07 3.54e-05 -11.0 5.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 1.9916425e+01 9.16e-07 7.91e-04 -11.0 8.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 1.9916425e+01 4.83e-07 5.55e-05 -11.0 3.86e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.9916425e+01 5.78e-07 9.54e-05 -11.0 4.46e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.9916408e+01 4.41e-05 9.62e-03 -11.0 1.01e-01 - 1.00e+00 1.00e+00h 1\n", - " 77 1.9916420e+01 8.06e-06 2.39e-03 -11.0 5.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 78 1.9916412e+01 7.92e-06 8.63e-04 -11.0 3.93e-02 - 1.00e+00 1.00e+00h 1\n", - " 79 1.9915966e+01 3.86e-04 2.87e-03 -11.0 1.67e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.9916379e+01 9.33e-05 1.48e-03 -11.0 4.12e-01 - 1.00e+00 1.00e+00h 1\n", - " 81 1.9915604e+01 5.88e-04 1.84e-03 -11.0 1.93e+00 - 1.00e+00 1.00e+00h 1\n", - " 82 1.9915087e+01 8.81e-04 2.44e-03 -11.0 2.48e+00 - 1.00e+00 1.00e+00h 1\n", - " 83 1.9916404e+01 7.15e-07 1.32e-04 -11.0 1.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 84 1.9916404e+01 1.26e-07 9.19e-05 -11.0 1.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 1.9916404e+01 1.06e-07 9.11e-05 -11.0 6.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 86 1.9916392e+01 6.77e-06 8.44e-03 -11.0 6.03e-02 - 1.00e+00 1.00e+00h 1\n", - " 87 1.9916388e+01 3.81e-05 1.81e-03 -11.0 1.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 1.9916401e+01 2.70e-08 1.56e-04 -11.0 7.55e-02 - 1.00e+00 1.00e+00H 1\n", - " 89 1.9916377e+01 1.54e-05 1.43e-03 -11.0 4.93e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.9916350e+01 2.13e-05 3.42e-03 -11.0 1.62e-01 - 1.00e+00 1.00e+00h 1\n", - " 91 1.9916168e+01 3.38e-04 2.10e-03 -11.0 1.81e+00 - 1.00e+00 1.00e+00h 1\n", - " 92 1.9916320e+01 3.10e-05 2.91e-03 -11.0 1.23e-01 - 1.00e+00 1.00e+00h 1\n", - " 93 1.9916248e+01 2.85e-04 9.05e-04 -11.0 1.30e+00 - 1.00e+00 1.00e+00h 1\n", - " 94 1.9916315e+01 1.04e-04 1.19e-03 -11.0 1.23e+00 - 1.00e+00 1.00e+00h 1\n", - " 95 1.9911642e+01 5.91e-03 2.88e-03 -11.0 1.22e+01 - 1.00e+00 1.00e+00h 1\n", - " 96 1.9915310e+01 3.50e-04 1.68e-03 -11.0 3.34e+00 - 1.00e+00 1.00e+00h 1\n", - " 97 1.9916288e+01 5.90e-05 2.44e-03 -11.0 8.20e-01 - 1.00e+00 1.00e+00h 1\n", - " 98 1.9913696e+01 9.31e-03 4.28e-03 -11.0 4.10e+01 - 1.00e+00 1.00e+00h 1\n", - " 99 1.9906639e+01 7.92e-03 7.74e-03 -11.0 8.07e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.9914621e+01 3.14e-03 6.42e-03 -11.0 2.17e+01 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.9914620852367108e+01 1.9914620852367108e+01\n", - "Dual infeasibility......: 6.4169231242100500e-03 6.4169231242100500e-03\n", - "Constraint violation....: 3.1401816560894247e-03 3.1401816560894247e-03\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 6.4169231242100500e-03 6.4169231242100500e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 108\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 108\n", - "Number of inequality constraint evaluations = 108\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.446\n", - "Total CPU secs in NLP function evaluations = 145.378\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 555.00us ( 5.14us) 542.13us ( 5.02us) 108\n", - " nlp_g | 5.20 s ( 48.19ms) 4.99 s ( 46.22ms) 108\n", - " nlp_grad | 1.50 s ( 1.50 s) 1.44 s ( 1.44 s) 1\n", - " nlp_grad_f | 396.00us ( 3.88us) 393.53us ( 3.86us) 102\n", - " nlp_jac_g | 143.23 s ( 1.40 s) 137.95 s ( 1.35 s) 102\n", - " total | 150.08 s (150.08 s) 144.53 s (144.53 s) 1\n", - "Timestamp 21900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 7.34e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9932191e+01 1.21e+01 7.34e+03 -1.5 7.34e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.9852754e+00 4.02e+00 7.95e+00 0.6 4.84e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 3.0564104e+00 7.09e-01 6.62e-01 -1.5 1.23e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 3.3858622e+00 2.46e-03 2.35e-01 -3.3 1.10e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 3.3868277e+00 5.63e-07 9.15e-04 -5.1 4.15e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 3.3868289e+00 3.06e-07 1.86e-04 -7.2 1.47e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 3.3868220e+00 5.13e-06 1.57e-03 -9.3 1.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 3.3868287e+00 1.08e-07 1.08e-04 -11.0 1.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 3.3868284e+00 3.44e-07 5.75e-05 -11.0 1.10e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 3.3868288e+00 1.21e-07 2.98e-05 -11.0 6.38e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 3.3868288e+00 3.19e-08 1.82e-04 -11.0 4.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 3.3868287e+00 1.19e-07 5.83e-05 -11.0 8.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 3.3868287e+00 2.58e-07 2.13e-05 -11.0 9.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 3.3868288e+00 2.72e-08 5.74e-05 -11.0 7.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 3.3868285e+00 4.52e-07 7.33e-05 -11.0 1.88e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 3.3868281e+00 8.53e-07 2.24e-05 -11.0 2.88e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 3.3868288e+00 3.06e-09 2.52e-05 -11.0 3.35e-05 - 1.00e+00 1.00e+00h 1\n", - " 18 3.3868288e+00 3.71e-09 5.18e-05 -11.0 1.58e-05 - 1.00e+00 1.00e+00h 1\n", - " 19 3.3868288e+00 2.01e-08 8.93e-05 -11.0 4.33e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.3868288e+00 9.98e-09 2.35e-05 -11.0 4.81e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 3.3868288e+00 2.03e-09 2.84e-05 -11.0 2.61e-05 - 1.00e+00 1.00e+00h 1\n", - " 22 3.3868288e+00 3.44e-11 8.53e-05 -11.0 1.53e-05 - 1.00e+00 1.00e+00H 1\n", - " 23 3.3868288e+00 2.59e-09 2.25e-05 -11.0 1.08e-05 - 1.00e+00 1.00e+00h 1\n", - " 24 3.3868288e+00 6.60e-10 5.15e-05 -11.0 3.95e-06 - 1.00e+00 1.00e+00h 1\n", - " 25 3.3868288e+00 8.04e-10 8.47e-05 -11.0 4.34e-06 - 1.00e+00 1.00e+00h 1\n", - " 26 3.3868288e+00 5.42e-10 9.59e-05 -11.0 3.29e-06 - 1.00e+00 1.00e+00h 1\n", - " 27 3.3868288e+00 2.63e-09 3.02e-04 -11.0 1.01e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 3.3868288e+00 3.14e-08 3.89e-05 -11.0 4.02e-05 - 1.00e+00 1.00e+00h 1\n", - " 29 3.3868288e+00 3.77e-10 5.47e-05 -11.0 4.69e-06 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 3.3868288e+00 4.22e-11 1.83e-04 -11.0 3.50e-06 - 1.00e+00 1.00e+00H 1\n", - " 31 3.3868288e+00 1.42e-08 1.50e-04 -11.0 3.11e-05 - 1.00e+00 1.00e+00h 1\n", - " 32 3.3868288e+00 5.56e-09 3.55e-05 -11.0 1.39e-05 - 1.00e+00 1.00e+00h 1\n", - " 33 3.3868288e+00 3.08e-10 3.98e-05 -11.0 2.32e-06 - 1.00e+00 1.00e+00h 1\n", - " 34 3.3868288e+00 1.74e-10 2.72e-05 -11.0 3.36e-06 - 1.00e+00 1.00e+00h 1\n", - " 35 3.3868288e+00 1.89e-11 2.43e-05 -11.0 1.67e-06 - 1.00e+00 1.00e+00H 1\n", - " 36 3.3868288e+00 7.03e-11 8.72e-05 -11.0 6.33e-07 - 1.00e+00 1.00e+00h 1\n", - " 37 3.3868288e+00 7.93e-10 7.37e-05 -11.0 4.12e-06 - 1.00e+00 1.00e+00h 1\n", - " 38 3.3868288e+00 6.48e-09 4.81e-05 -11.0 2.93e-05 - 1.00e+00 1.00e+00h 1\n", - " 39 3.3868288e+00 2.57e-09 5.16e-05 -11.0 3.67e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.3868285e+00 2.98e-07 5.53e-05 -11.0 2.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 3.3868288e+00 6.23e-08 1.39e-05 -11.0 4.74e-04 - 1.00e+00 1.00e+00h 1\n", - " 42 3.3868288e+00 1.80e-08 5.44e-05 -11.0 2.41e-04 - 1.00e+00 1.00e+00h 1\n", - " 43 3.3868288e+00 4.12e-09 2.55e-05 -11.0 6.02e-05 - 1.00e+00 1.00e+00h 1\n", - " 44 3.3868288e+00 1.05e-07 4.35e-05 -11.0 4.85e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 3.3868288e+00 6.77e-08 1.28e-05 -11.0 8.82e-05 - 1.00e+00 5.00e-01h 2\n", - " 46 3.3868289e+00 7.08e-09 2.73e-05 -11.0 1.36e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 3.3868289e+00 9.47e-11 2.91e-05 -11.0 1.12e-04 - 1.00e+00 1.00e+00H 1\n", - " 48 3.3868284e+00 2.09e-07 1.49e-05 -11.0 4.97e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 3.3868286e+00 7.07e-08 2.92e-05 -11.0 3.24e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.3868275e+00 1.39e-06 2.35e-03 -11.0 1.08e-02 - 1.00e+00 1.00e+00h 1\n", - " 51 3.3868229e+00 4.81e-06 9.03e-04 -11.0 9.12e-03 - 1.00e+00 1.00e+00h 1\n", - " 52 3.3868285e+00 1.59e-07 6.76e-05 -11.0 8.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 53 3.3868282e+00 4.04e-07 1.12e-04 -11.0 4.75e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 3.3868203e+00 7.01e-06 8.86e-03 -11.0 2.51e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 3.3868267e+00 9.45e-07 1.67e-03 -11.0 1.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 56 3.3868276e+00 2.01e-10 2.23e-05 -11.0 1.09e-02 - 1.00e+00 1.00e+00H 1\n", - " 57 3.3868271e+00 1.32e-06 8.10e-04 -11.0 6.51e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 3.3868168e+00 1.39e-05 2.82e-03 -11.0 4.27e-02 - 1.00e+00 1.00e+00h 1\n", - " 59 3.3868279e+00 8.89e-07 1.10e-03 -11.0 7.44e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.3868278e+00 3.87e-07 1.18e-03 -11.0 4.59e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 3.3868230e+00 1.20e-05 1.22e-03 -11.0 5.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 3.3867660e+00 4.32e-05 2.32e-03 -11.0 2.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 3.3867516e+00 6.02e-05 2.42e-03 -11.0 1.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 64 3.3868063e+00 1.53e-05 1.84e-03 -11.0 5.73e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 3.3868249e+00 2.20e-06 1.00e-03 -11.0 2.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 3.3867534e+00 7.69e-05 2.16e-03 -11.0 3.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 67 2.9543028e+00 8.84e-01 2.75e-01 -11.0 4.52e+04 - 6.96e-01 6.96e-01f 1\n", - " 68 3.0499895e+00 2.23e-01 9.15e-02 -10.6 7.72e+03 - 1.00e+00 1.00e+00h 1\n", - " 69 2.9786130e+00 3.86e-01 1.34e-01 -3.3 5.02e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.7835125e+00 1.16e+00 2.86e-01 -3.1 3.30e+04 - 1.00e+00 1.92e-01f 3\n", - " 71 2.7625409e+00 1.28e+00 2.98e-01 -4.1 9.26e+03 - 1.00e+00 2.50e-01h 3\n", - " 72 2.7497763e+00 8.75e-01 1.25e-01 -1.9 8.99e+04 - 1.00e+00 8.60e-02h 1\n", - " 73 2.7886309e+00 8.39e-01 2.68e-01 -2.1 4.99e+03 - 8.85e-01 1.00e+00h 1\n", - " 74 2.6803726e+00 3.65e-01 1.74e-01 -2.3 8.35e+03 - 9.80e-01 1.00e+00h 1\n", - " 75 2.8781848e+00 7.27e-01 1.87e-01 -2.0 7.51e+03 - 4.30e-01 1.00e+00H 1\n", - " 76 2.7370077e+00 5.21e-01 9.07e-02 -1.5 4.00e+04 - 1.00e+00 6.12e-01h 1\n", - " 77 2.2984730e+00 8.85e-01 2.35e-01 -1.6 1.80e+04 - 1.00e+00 1.00e+00f 1\n", - " 78 2.7664691e+00 7.03e-01 7.17e-02 -2.2 1.10e+04 - 9.86e-01 1.00e+00h 1\n", - " 79 2.5085699e+00 8.03e-01 6.49e-02 -2.2 1.16e+04 - 4.27e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 4.5113175e+00 5.72e-01 5.79e-01 -2.2 3.87e+04 - 6.53e-01 1.00e+00H 1\n", - " 81 3.4527898e+00 6.50e-01 5.04e-01 -2.2 4.49e+04 - 5.10e-01 6.30e-01F 1\n", - " 82 3.2034388e+00 6.41e-01 4.70e-01 -2.2 1.56e+05 - 1.00e-01 5.19e-03f 1\n", - " 83 3.6025637e+00 5.21e-01 6.69e-01 -2.2 3.62e+03 - 5.22e-01 1.00e+00H 1\n", - " 84 3.1785467e+00 6.14e-01 4.53e-01 -2.2 5.72e+05 - 1.81e-03 2.70e-02f 3\n", - " 85 3.0841417e+00 7.08e-01 1.53e-01 -2.2 7.26e+04 - 7.76e-01 3.20e-01h 2\n", - " 86 3.1170517e+00 5.62e-01 9.50e-02 -2.2 1.88e+04 - 1.00e+00 1.00e+00h 1\n", - " 87 3.0695391e+00 4.18e-01 1.29e-01 -2.2 1.77e+04 - 1.00e+00 2.50e-01h 3\n", - " 88 3.0572565e+00 4.42e-01 1.15e-01 -2.2 2.73e+05 - 5.80e-02 2.66e-03h 7\n", - " 89 3.0509142e+00 4.48e-01 1.09e-01 -2.2 2.33e+05 - 3.53e-01 1.53e-03h 8\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 3.7231995e+00 4.93e-01 2.21e-01 -2.2 5.21e+03 - 9.41e-01 8.99e-01H 1\n", - " 91 3.5892478e+00 9.20e-01 1.65e-01 -2.2 1.61e+04 - 3.79e-02 5.00e-01f 2\n", - " 92 3.8073679e+00 3.38e-01 2.30e-01 -2.2 2.73e+04 - 1.00e+00 1.00e+00H 1\n", - " 93 3.7555360e+00 5.83e-01 1.16e-01 -2.2 2.35e+04 - 1.00e+00 1.00e+00H 1\n", - " 94 3.6830049e+00 4.30e-01 5.25e-02 -2.2 4.20e+04 - 1.00e+00 6.04e-01H 1\n", - " 95 4.0074000e+00 1.51e-01 1.16e-01 -2.2 2.26e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 3.6993383e+00 4.23e-01 3.84e-02 -2.2 2.30e+03 - 9.96e-01 1.00e+00h 1\n", - " 97 3.9373765e+00 1.20e-04 3.86e-01 -2.2 4.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 98 3.9375297e+00 2.76e-07 2.75e-05 -2.2 5.58e-04 - 1.00e+00 1.00e+00h 1\n", - " 99 3.9375298e+00 7.34e-08 2.36e-04 -3.3 3.83e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 3.9375270e+00 2.89e-06 3.99e-03 -5.0 1.67e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 3.9375270332174521e+00 3.9375270332174521e+00\n", - "Dual infeasibility......: 3.9921153700333556e-03 3.9921153700333556e-03\n", - "Constraint violation....: 2.8926434367804177e-06 2.8926434367804177e-06\n", - "Complementarity.........: 1.1108970771658056e-05 1.1108970771658056e-05\n", - "Overall NLP error.......: 3.9921153700333556e-03 3.9921153700333556e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 157\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 157\n", - "Number of inequality constraint evaluations = 157\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.554\n", - "Total CPU secs in NLP function evaluations = 149.552\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 879.00us ( 5.60us) 963.85us ( 6.14us) 157\n", - " nlp_g | 7.80 s ( 49.69ms) 7.54 s ( 48.04ms) 157\n", - " nlp_grad | 1.49 s ( 1.49 s) 1.46 s ( 1.46 s) 1\n", - " nlp_grad_f | 473.00us ( 4.64us) 467.64us ( 4.58us) 102\n", - " nlp_jac_g | 145.72 s ( 1.43 s) 141.01 s ( 1.38 s) 102\n", - " total | 155.17 s (155.17 s) 150.16 s (150.16 s) 1\n", - "Timestamp 22200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.68e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0104650e+01 1.53e+01 1.68e+04 -1.5 1.68e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.1589583e+01 5.54e+00 1.15e+01 0.8 2.71e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.6206746e+01 2.14e+00 8.67e-01 -1.3 6.47e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 1.7592373e+01 2.63e-04 9.71e-02 -3.0 2.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.7592749e+01 5.71e-06 2.61e-03 -4.9 3.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.7592625e+01 4.61e-05 1.18e-02 -7.0 2.59e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 1.7592607e+01 8.06e-05 1.27e-02 -8.9 2.87e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 1.7592773e+01 2.13e-08 1.50e-04 -10.7 1.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 1.7592773e+01 1.90e-08 3.04e-05 -11.0 1.46e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.7592773e+01 1.16e-08 1.19e-04 -11.0 6.10e-05 - 1.00e+00 1.00e+00h 1\n", - " 11 1.7592773e+01 1.01e-08 7.41e-05 -11.0 1.31e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 1.7592773e+01 2.59e-08 7.38e-05 -11.0 2.61e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 1.7592773e+01 1.75e-08 1.11e-05 -11.0 1.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 1.7592773e+01 1.67e-09 1.22e-04 -11.0 6.20e-05 - 1.00e+00 1.00e+00h 1\n", - " 15 1.7592773e+01 3.88e-08 8.08e-05 -11.0 1.91e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 1.7592773e+01 1.19e-08 6.58e-05 -11.0 8.04e-05 - 1.00e+00 1.00e+00h 1\n", - " 17 1.7592773e+01 3.09e-09 3.11e-05 -11.0 2.00e-05 - 1.00e+00 1.00e+00h 1\n", - " 18 1.7592773e+01 1.44e-09 5.52e-05 -11.0 2.64e-05 - 1.00e+00 1.00e+00h 1\n", - " 19 1.7592773e+01 6.08e-09 2.19e-04 -11.0 8.52e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.7592773e+01 1.33e-08 7.43e-05 -11.0 5.45e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 1.7592773e+01 6.56e-09 1.31e-04 -11.0 4.48e-05 - 1.00e+00 1.00e+00h 1\n", - " 22 1.7592773e+01 1.76e-08 4.04e-05 -11.0 5.84e-05 - 1.00e+00 1.00e+00h 1\n", - " 23 1.7592773e+01 7.41e-10 1.36e-04 -11.0 9.00e-06 - 1.00e+00 1.00e+00h 1\n", - " 24 1.7592773e+01 1.03e-08 1.92e-05 -11.0 4.26e-05 - 1.00e+00 1.00e+00h 1\n", - " 25 1.7592773e+01 9.99e-10 2.67e-05 -11.0 1.22e-05 - 1.00e+00 1.00e+00h 1\n", - " 26 1.7592773e+01 6.87e-10 1.26e-04 -11.0 8.76e-06 - 1.00e+00 1.00e+00h 1\n", - " 27 1.7592773e+01 1.65e-08 1.09e-04 -11.0 2.45e-04 - 1.00e+00 1.00e+00h 1\n", - " 28 1.7592773e+01 7.91e-09 1.81e-05 -11.0 1.00e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 1.7592773e+01 3.57e-09 8.29e-05 -11.0 3.78e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.7592773e+01 1.61e-07 4.74e-05 -11.0 2.29e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 1.7592773e+01 1.32e-07 9.59e-05 -11.0 3.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 32 1.7592773e+01 3.72e-07 1.77e-04 -11.0 1.24e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.7592771e+01 3.97e-06 1.59e-02 -11.0 2.39e-02 - 1.00e+00 1.00e+00h 1\n", - " 34 1.7592610e+01 6.12e-05 6.47e-03 -11.0 2.28e+00 - 1.00e+00 1.00e+00h 1\n", - " 35 1.7592765e+01 4.01e-06 3.02e-03 -11.0 9.36e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 1.7592651e+01 2.79e-04 4.60e-03 -11.0 5.81e+00 - 1.00e+00 1.00e+00h 1\n", - " 37 1.7582884e+01 3.24e-03 4.10e-03 -11.0 6.42e+02 - 1.00e+00 1.00e+00h 1\n", - " 38 1.7591001e+01 4.34e-03 1.93e-03 -11.0 2.66e+02 - 1.00e+00 1.00e+00h 1\n", - " 39 1.7540194e+01 3.16e-02 1.84e-03 -11.0 6.39e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.7446442e+01 3.32e-01 1.33e-02 -11.0 5.09e+03 - 1.00e+00 1.00e+00h 1\n", - " 41 1.7561753e+01 1.87e-02 8.35e-03 -11.0 1.41e+03 - 1.00e+00 1.00e+00h 1\n", - " 42 1.7484611e+01 1.03e-01 1.34e-02 -11.0 3.05e+03 - 1.00e+00 1.00e+00h 1\n", - " 43 1.6942330e+01 1.13e+00 5.89e-02 -9.0 1.62e+06 - 1.00e+00 1.60e-02f 1\n", - " 44 1.4972805e+01 8.44e+00 4.99e-01 -7.8 2.33e+05 - 1.00e+00 2.66e-01f 1\n", - " 45 1.4973410e+01 8.20e+00 4.77e-01 -5.8 6.67e+04 - 1.00e+00 9.31e-03h 1\n", - " 46 1.4974572e+01 8.19e+00 4.75e-01 -3.9 3.73e+03 - 1.00e+00 1.66e-03h 1\n", - " 47 1.8115509e+01 4.77e-01 5.16e-01 -2.5 1.90e+03 - 9.98e-01 1.00e+00h 1\n", - " 48 1.7771903e+01 2.05e-01 5.08e-01 -2.6 7.17e+04 - 5.72e-01 3.95e-02f 1\n", - " 49 1.7496159e+01 2.43e-01 2.17e-02 -2.6 3.09e+03 - 1.85e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.5328866e+01 1.68e+00 1.03e-01 -2.6 3.03e+04 - 1.00e+00 1.00e+00f 1\n", - " 51 1.0484892e+01 4.62e+00 6.87e-01 -1.6 5.16e+04 - 2.13e-01 6.28e-01f 1\n", - " 52 1.6887243e+01 9.52e-01 2.32e-01 -1.3 1.08e+04 - 1.00e+00 1.00e+00h 1\n", - " 53 1.5855929e+01 1.31e+00 7.94e-02 -6.9 9.68e+03 - 5.40e-01 1.00e+00h 1\n", - " 54 1.6871995e+01 1.07e+00 3.40e-02 -1.6 1.84e+04 - 1.00e+00 7.05e-01H 1\n", - " 55 1.7924893e+01 4.50e-02 5.57e-02 -7.6 1.87e+03 - 4.64e-01 1.00e+00h 1\n", - " 56 1.6904993e+01 6.43e-01 6.72e-02 -2.0 6.45e+03 - 1.00e+00 1.00e+00f 1\n", - " 57 1.7029612e+01 3.47e-01 3.10e-02 -2.6 4.99e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.7463058e+01 2.62e-01 3.74e-02 -7.9 8.96e+02 - 7.53e-01 1.00e+00h 1\n", - " 59 1.5352107e+01 5.09e+00 3.99e-01 -3.3 7.60e+04 - 1.23e-01 3.37e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.6879913e+01 1.24e+00 8.30e-02 -3.3 1.34e+04 - 1.00e+00 6.64e-01h 1\n", - " 61 1.5107107e+01 1.16e+01 5.13e-01 -3.3 5.51e+04 - 1.39e-01 9.82e-01f 1\n", - " 62 1.5102915e+01 1.15e+01 5.10e-01 -3.3 1.91e+04 - 1.00e+00 3.63e-03h 1\n", - " 63 1.4697479e+01 8.83e+00 3.03e-01 -3.3 1.44e+04 - 1.00e+00 2.48e-01h 1\n", - " 64 1.6795942e+01 1.22e+00 4.57e-01 -3.3 4.55e+03 - 2.27e-01 1.00e+00h 1\n", - " 65 1.7606081e+01 1.81e-01 1.01e-01 -3.0 1.27e+03 - 5.17e-01 1.00e+00h 1\n", - " 66 1.7466434e+01 1.40e-01 1.57e-01 -3.2 1.04e+03 - 6.98e-01 1.00e+00h 1\n", - " 67 1.7645581e+01 1.22e-01 1.60e-01 -1.2 2.30e+06 - 1.75e-02 3.39e-03f 4\n", - " 68 1.7624696e+01 1.20e-01 1.58e-01 -2.2 3.85e+04 - 9.09e-01 2.78e-03h 1\n", - " 69 1.6423248e+01 2.89e+00 8.11e-02 -2.2 3.06e+04 - 1.00e+00 4.30e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.6457544e+01 2.76e+00 8.05e-02 -2.2 3.13e+03 - 7.19e-01 4.34e-02h 1\n", - " 71 1.6482471e+01 2.71e+00 8.06e-02 -2.2 9.56e+02 - 1.00e+00 2.38e-02h 1\n", - " 72 1.7951726e+01 9.79e-03 5.09e-02 -2.2 8.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 73 1.7968252e+01 5.19e-03 1.71e-03 -3.3 1.27e+01 - 6.73e-01 1.00e+00h 1\n", - " 74 1.7964027e+01 5.43e-03 1.52e-03 -3.3 3.24e+01 - 3.61e-01 1.00e+00h 1\n", - " 75 1.7497932e+01 1.70e-01 8.23e-02 -3.3 2.50e+03 - 2.46e-02 1.00e+00f 1\n", - " 76 1.7941552e+01 6.11e-03 3.29e-03 -3.3 1.37e+03 - 1.00e+00 1.00e+00H 1\n", - " 77 1.7770838e+01 1.22e-01 3.41e-02 -3.3 2.37e+03 - 1.00e+00 3.86e-01f 1\n", - " 78 1.7768467e+01 1.21e-01 3.33e-02 -3.3 2.24e+03 - 1.00e+00 1.79e-02h 1\n", - " 79 1.7893289e+01 3.45e-02 3.15e-02 -3.3 4.97e+02 - 1.00e+00 9.74e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80r 1.7893289e+01 3.45e-02 9.99e+02 -1.5 0.00e+00 - 0.00e+00 3.03e-07R 20\n", - " 81r 1.7964917e+01 5.83e-03 3.38e+02 -3.6 5.15e+01 - 1.00e+00 1.30e-03f 1\n", - " 82 1.7959037e+01 7.45e-03 2.20e-03 -3.3 1.53e+02 - 3.22e-01 1.00e+00h 1\n", - " 83 1.7876213e+01 6.78e-02 1.66e-03 -3.3 2.04e+03 - 3.92e-03 5.75e-02f 1\n", - " 84 1.7954534e+01 8.24e-03 1.44e-03 -3.3 4.29e+01 - 1.00e+00 1.00e+00h 1\n", - " 85 1.7964001e+01 4.24e-03 1.12e-03 -3.3 2.64e+01 - 9.36e-01 1.00e+00h 1\n", - " 86 1.7954720e+01 9.21e-03 1.36e-03 -5.0 3.93e+03 - 1.49e-01 5.94e-02h 1\n", - " 87 1.7843342e+01 4.79e-02 7.29e-03 -5.0 1.19e+03 - 9.98e-01 1.00e+00h 1\n", - " 88 1.7718311e+01 1.46e-01 1.00e-02 -5.0 1.81e+03 - 6.33e-01 6.46e-01h 1\n", - " 89 1.7954231e+01 4.42e-05 2.19e-01 -5.0 2.24e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.7954262e+01 2.54e-06 1.47e-03 -5.0 1.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 91 1.7954261e+01 2.04e-05 1.26e-03 -5.0 3.90e-02 - 1.00e+00 1.00e+00h 1\n", - " 92 1.7954266e+01 3.52e-06 1.77e-03 -5.0 1.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 93 1.7954246e+01 4.36e-05 1.75e-03 -5.0 1.62e-01 - 4.99e-01 1.00e+00h 1\n", - " 94 1.7954182e+01 1.86e-04 2.16e-03 -5.0 6.30e-01 - 1.00e+00 1.00e+00h 1\n", - " 95 1.7953901e+01 2.02e-04 9.47e-04 -5.0 5.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 96 1.7954215e+01 2.64e-05 2.03e-03 -5.0 3.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 97 1.7954073e+01 1.28e-04 1.51e-03 -5.0 3.55e+00 - 1.00e+00 1.50e-01h 1\n", - " 98 1.7952591e+01 7.94e-04 7.73e-03 -5.0 2.34e+00 - 1.00e+00 1.00e+00h 1\n", - " 99 1.7952630e+01 8.17e-04 2.08e-03 -5.0 1.42e+00 - 9.99e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.7952427e+01 1.52e-03 1.01e-02 -5.0 7.75e+00 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.7952427363540043e+01 1.7952427363540043e+01\n", - "Dual infeasibility......: 1.0055397771444846e-02 1.0055397771444846e-02\n", - "Constraint violation....: 1.5209840532151020e-03 1.5209840532151020e-03\n", - "Complementarity.........: 1.2959753589077388e-03 1.2959753589077388e-03\n", - "Overall NLP error.......: 1.0055397771444846e-02 1.0055397771444846e-02\n", - "\n", - "\n", - "Number of objective function evaluations = 130\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 130\n", - "Number of inequality constraint evaluations = 130\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.546\n", - "Total CPU secs in NLP function evaluations = 150.285\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 746.00us ( 5.74us) 740.12us ( 5.69us) 130\n", - " nlp_g | 6.53 s ( 50.19ms) 6.35 s ( 48.83ms) 130\n", - " nlp_grad | 1.51 s ( 1.51 s) 1.46 s ( 1.46 s) 1\n", - " nlp_grad_f | 444.00us ( 4.35us) 445.43us ( 4.37us) 102\n", - " nlp_jac_g | 148.43 s ( 1.44 s) 144.76 s ( 1.41 s) 103\n", - " total | 156.61 s (156.61 s) 152.72 s (152.72 s) 1\n", - "Timestamp 22500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.37e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0091757e+01 1.25e+01 1.37e+04 -1.5 1.37e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.1776525e+00 4.30e+00 7.87e+00 0.8 2.15e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.9846542e+00 7.56e-01 6.94e-01 -1.3 6.20e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 3.3490522e+00 2.70e-03 2.75e-01 -3.0 2.13e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 3.3508752e+00 2.91e-06 1.59e-03 -4.9 3.51e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 3.3508434e+00 1.77e-05 5.40e-03 -7.0 1.37e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 3.3508562e+00 1.40e-05 6.73e-04 -9.1 2.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 3.3507340e+00 9.48e-05 1.06e-03 -11.0 4.82e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 3.3508273e+00 4.15e-05 8.11e-04 -11.0 2.86e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 3.3508581e+00 6.20e-07 6.38e-05 -11.0 2.42e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 3.3507943e+00 4.32e-05 9.10e-04 -11.0 2.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 3.3505868e+00 2.95e-04 2.20e-03 -11.0 8.83e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 3.3508609e+00 3.18e-08 1.28e-04 -11.0 3.84e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 3.3508609e+00 3.33e-08 1.46e-05 -11.0 9.95e-05 - 1.00e+00 1.00e+00h 1\n", - " 15 3.3508609e+00 3.68e-09 4.36e-05 -11.0 2.08e-05 - 1.00e+00 1.00e+00h 1\n", - " 16 3.3508609e+00 3.44e-09 8.87e-05 -11.0 1.06e-05 - 1.00e+00 1.00e+00h 1\n", - " 17 3.3508608e+00 6.46e-08 5.72e-05 -11.0 3.20e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 3.3508604e+00 4.52e-07 6.04e-05 -11.0 2.68e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 3.3508603e+00 3.58e-07 1.40e-04 -11.0 4.55e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.3508555e+00 3.12e-06 8.45e-03 -11.0 1.47e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 3.3508601e+00 2.22e-07 4.44e-05 -11.0 3.71e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 3.3508602e+00 3.41e-07 5.87e-05 -11.0 2.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 23 3.3508605e+00 3.24e-07 3.56e-05 -11.0 1.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 24 3.3508605e+00 3.28e-07 9.83e-05 -11.0 4.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 25 3.3508585e+00 3.42e-06 3.59e-03 -11.0 2.03e-02 - 1.00e+00 1.00e+00h 1\n", - " 26 3.3506874e+00 1.86e-04 9.04e-03 -11.0 1.67e+00 - 1.00e+00 1.00e+00h 1\n", - " 27 3.3508510e+00 2.03e-05 1.07e-03 -11.0 5.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 28 3.3507367e+00 1.31e-04 2.28e-03 -11.0 5.93e-01 - 1.00e+00 1.00e+00h 1\n", - " 29 3.3508131e+00 2.88e-05 1.27e-03 -11.0 2.08e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 3.3506772e+00 1.52e-04 2.16e-03 -11.0 6.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 31 3.3508735e+00 1.81e-08 3.76e-05 -11.0 1.36e+00 - 1.00e+00 1.00e+00H 1\n", - " 32 3.3507928e+00 1.54e-04 9.71e-04 -11.0 6.45e-01 - 1.00e+00 1.00e+00h 1\n", - " 33 3.3508634e+00 2.78e-06 1.58e-03 -11.0 6.82e-01 - 1.00e+00 1.00e+00h 1\n", - " 34 3.3505183e+00 2.95e-04 1.60e-03 -11.0 4.80e+00 - 1.00e+00 1.00e+00h 1\n", - " 35 3.3508079e+00 5.46e-05 6.53e-04 -11.0 2.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 36 3.3508094e+00 4.96e-05 5.68e-04 -11.0 3.15e+00 - 1.00e+00 1.00e+00h 1\n", - " 37 3.3506703e+00 3.77e-04 8.46e-04 -11.0 2.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 38 3.3505824e+00 5.31e-04 1.51e-03 -11.0 3.74e+00 - 1.00e+00 1.00e+00h 1\n", - " 39 3.0878347e+00 1.75e-01 7.85e-02 -11.0 5.87e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.2148100e+00 2.32e-01 4.52e-02 -11.0 6.44e+03 - 1.00e+00 1.00e+00h 1\n", - " 41 2.9996980e+00 1.46e+00 4.41e-01 -11.0 1.87e+04 - 1.00e+00 1.00e+00h 1\n", - " 42 3.3516706e+00 2.96e-01 2.66e-01 -11.0 5.40e+03 - 1.00e+00 1.00e+00h 1\n", - " 43 2.8399736e+00 8.23e-01 9.14e-02 -11.0 9.87e+03 - 1.00e+00 1.00e+00h 1\n", - " 44 3.1932854e+00 8.50e-01 1.37e-01 -11.0 9.41e+03 - 1.00e+00 1.00e+00h 1\n", - " 45 2.8022414e+00 7.62e-01 3.82e-01 -11.0 3.06e+04 - 7.06e-01 1.00e+00h 1\n", - " 46 2.6872957e+00 1.27e+00 2.35e-01 -10.4 9.65e+04 - 1.00e+00 7.41e-02h 4\n", - " 47 3.0959152e+00 6.81e-01 2.15e-01 -11.0 1.17e+04 - 1.00e+00 1.00e+00h 1\n", - " 48 3.0745315e+00 1.49e+00 1.04e-01 -11.0 1.78e+04 - 8.97e-02 5.00e-01h 2\n", - " 49 3.0310646e+00 1.14e+00 1.14e-01 -11.0 1.13e+07 - 4.83e-03 8.45e-04f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.0207241e+00 1.56e+00 8.65e-02 -11.0 2.61e+04 - 6.58e-10 2.34e-01h 3\n", - " 51 3.1221165e+00 5.75e-01 1.60e-01 -11.0 3.45e+04 - 5.80e-01 5.00e-01h 2\n", - " 52 2.9968093e+00 1.37e+00 1.55e-01 -11.0 2.05e+05 - 7.87e-02 2.22e-01h 1\n", - " 53 3.2878851e+00 3.28e-01 1.87e-01 -11.0 1.40e+04 - 1.00e+00 1.00e+00h 1\n", - " 54 3.1350299e+00 2.07e-01 1.99e-01 -11.0 3.94e+04 - 1.00e+00 1.10e-01h 1\n", - " 55 3.1270960e+00 1.06e-01 1.08e-01 -11.0 4.77e+03 - 1.00e+00 1.00e+00H 1\n", - " 56 3.0766389e+00 4.32e-01 8.01e-02 -9.1 4.55e+03 - 1.00e+00 7.25e-01h 1\n", - " 57 3.0739373e+00 4.08e-01 7.59e-02 -6.5 1.22e+03 - 5.46e-01 2.70e-02h 1\n", - " 58 3.1050180e+00 2.15e-02 6.93e-02 -4.9 1.30e+02 - 1.00e+00 1.00e+00h 1\n", - " 59 3.0977504e+00 1.01e-02 1.16e-02 -4.2 6.26e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.0927002e+00 1.40e-02 8.42e-03 -3.9 2.31e+02 - 1.00e+00 4.25e-01h 1\n", - " 61 3.0848404e+00 2.74e-02 1.38e-02 -2.9 6.20e+01 - 3.66e-01 1.00e+00h 1\n", - " 62 3.1010856e+00 8.38e-04 1.01e-02 -3.5 8.16e+00 - 8.25e-01 1.00e+00h 1\n", - " 63 3.0922302e+00 1.09e-02 1.13e-02 -3.9 1.62e+02 - 1.00e+00 3.65e-01h 1\n", - " 64 3.0996958e+00 3.62e-03 1.43e-03 -3.5 2.62e+01 - 9.69e-01 1.00e+00h 1\n", - " 65 3.0955956e+00 6.05e-03 5.73e-03 -5.1 1.37e+02 - 1.00e+00 3.84e-01h 1\n", - " 66 3.1002645e+00 2.07e-03 8.47e-04 -3.5 2.61e+01 - 1.00e+00 7.25e-01h 1\n", - " 67 3.0951318e+00 1.68e-02 4.33e-03 -9.4 3.85e+01 - 3.65e-01 1.00e+00h 1\n", - " 68 3.0516996e+00 1.05e-01 3.02e-02 -3.9 9.20e+02 - 1.00e+00 5.70e-01f 1\n", - " 69 3.0534185e+00 9.24e-02 2.40e-02 -3.8 3.23e+02 - 7.90e-01 1.25e-01h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 3.1028089e+00 2.37e-02 1.33e-02 -4.7 1.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 71 3.1079274e+00 6.31e-03 1.35e-02 -4.8 4.97e+01 - 2.31e-01 1.00e+00h 1\n", - " 72 3.1088196e+00 3.55e-03 2.02e-03 -4.8 3.71e+01 - 1.00e+00 1.00e+00h 1\n", - " 73 3.1027370e+00 9.85e-03 8.46e-03 -4.8 4.92e+01 - 1.00e+00 1.00e+00h 1\n", - " 74 3.1057210e+00 4.72e-03 2.05e-03 -4.8 4.29e+01 - 1.00e+00 6.82e-01h 1\n", - " 75 3.1059680e+00 4.43e-03 2.03e-03 -4.8 7.28e+00 - 6.21e-01 6.25e-02h 5\n", - " 76 3.1097620e+00 1.35e-04 4.97e-03 -4.8 1.46e+02 - 1.00e+00 1.00e+00H 1\n", - " 77 3.0969889e+00 1.60e-02 5.65e-03 -9.4 7.23e+01 - 9.22e-01 1.00e+00h 1\n", - " 78 3.0846564e+00 2.65e-02 7.95e-03 -5.6 2.34e+02 - 2.68e-01 1.00e+00h 1\n", - " 79 3.0381572e+00 1.05e+00 6.00e-01 -4.1 1.45e+04 - 4.26e-01 5.00e-01f 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 3.0081749e+00 5.42e-01 1.66e-01 -3.9 4.81e+03 - 6.73e-01 1.00e+00h 1\n", - " 81 2.8740025e+00 9.21e-01 8.88e-02 -3.9 5.88e+03 - 1.00e+00 1.00e+00h 1\n", - " 82 2.8669382e+00 6.76e-01 1.13e-01 -2.0 1.47e+04 - 1.00e+00 4.48e-01h 1\n", - " 83 2.8790417e+00 3.51e-01 1.84e-01 -2.0 6.59e+03 - 6.71e-01 1.00e+00f 1\n", - " 84 2.8620758e+00 6.33e-01 1.55e-01 -2.0 3.91e+05 - 6.14e-01 1.14e-02h 4\n", - " 85 3.0383527e+00 3.42e-01 1.78e-01 -1.5 1.78e+04 - 1.00e+00 6.18e-01h 1\n", - " 86 3.0546099e+00 1.41e-01 2.48e-01 -1.7 5.14e+03 - 9.82e-01 1.00e+00f 1\n", - " 87 2.6096363e+00 9.26e-01 2.07e-01 -1.9 1.49e+05 - 8.89e-01 3.84e-01f 1\n", - " 88 2.5975631e+00 9.04e-01 2.04e-01 -2.1 1.45e+04 - 9.69e-01 8.41e-02H 1\n", - " 89r 2.5975631e+00 9.04e-01 9.99e+02 -0.0 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90r 2.8611803e+00 2.63e-01 9.64e+02 -0.5 1.46e+02 - 1.00e+00 4.66e-03f 1\n", - " 91 3.0676259e+00 9.16e-02 2.61e-01 -4.1 1.48e+03 - 8.92e-01 1.00e+00H 1\n", - " 92 3.0101712e+00 8.16e-01 8.15e-02 -3.5 1.24e+04 - 1.00e+00 1.95e-01h 3\n", - " 93 3.0552445e+00 4.84e-01 4.30e-02 -3.6 1.03e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 3.0178541e+00 8.04e-02 2.10e-01 -3.6 2.53e+03 - 1.53e-01 1.00e+00h 1\n", - " 95 2.9407521e+00 2.13e-01 1.43e-01 -4.3 2.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 3.0619828e+00 4.82e-02 6.32e-02 -4.2 6.72e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 3.0533778e+00 8.22e-02 2.40e-02 -5.7 8.10e+02 - 1.00e+00 1.00e+00h 1\n", - " 98 2.8357663e+00 1.04e+00 3.11e-01 -5.4 9.46e+07 - 6.17e-04 4.94e-05f 1\n", - " 99 2.9545410e+00 3.33e-01 1.36e-01 -5.4 3.14e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.9341100e+00 3.31e-01 1.58e-01 -5.4 4.43e+03 - 8.64e-01 1.47e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.9341099578021805e+00 2.9341099578021805e+00\n", - "Dual infeasibility......: 1.5768052059500889e-01 1.5768052059500889e-01\n", - "Constraint violation....: 3.3080252248404562e-01 3.3080252248404562e-01\n", - "Complementarity.........: 4.4341279656479820e-06 4.4341279656479820e-06\n", - "Overall NLP error.......: 3.3080252248404562e-01 3.3080252248404562e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 164\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 164\n", - "Number of inequality constraint evaluations = 164\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.576\n", - "Total CPU secs in NLP function evaluations = 156.452\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 951.00us ( 5.80us) 942.94us ( 5.75us) 164\n", - " nlp_g | 8.46 s ( 51.58ms) 8.26 s ( 50.36ms) 164\n", - " nlp_grad | 1.49 s ( 1.49 s) 1.45 s ( 1.45 s) 1\n", - " nlp_grad_f | 407.00us ( 3.99us) 406.06us ( 3.98us) 102\n", - " nlp_jac_g | 152.86 s ( 1.48 s) 149.24 s ( 1.45 s) 103\n", - " total | 162.96 s (162.96 s) 159.11 s (159.11 s) 1\n", - "Timestamp 22800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 6.06e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9930645e+01 1.38e+01 6.06e+03 -1.5 6.06e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.4777971e+00 5.00e+00 9.06e+00 0.6 7.95e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 7.6962710e+00 1.21e+00 9.00e-01 -1.5 2.15e+01 - 9.97e-01 1.00e+00f 1\n", - " 4 8.5976801e+00 3.15e-03 1.01e-01 -3.2 1.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 8.5991087e+00 1.25e-06 2.06e-03 -5.1 1.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 8.5991113e+00 5.03e-10 4.89e-05 -7.2 5.83e-03 - 1.00e+00 1.00e+00H 1\n", - " 7 8.5991108e+00 2.98e-07 5.63e-05 -11.0 1.90e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 8.5991027e+00 5.76e-06 1.25e-02 -11.0 3.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 8.5990842e+00 3.34e-05 4.82e-03 -11.0 1.92e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 8.5990814e+00 1.33e-05 1.59e-03 -11.0 7.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 8.5991055e+00 7.84e-06 1.67e-03 -11.0 5.35e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 8.5991135e+00 7.29e-07 1.88e-03 -11.0 8.95e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 8.5991165e+00 1.90e-08 8.91e-05 -11.0 4.49e-02 - 1.00e+00 1.00e+00H 1\n", - " 14 8.5990880e+00 1.80e-05 3.24e-03 -11.0 1.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 8.5991200e+00 1.02e-08 1.40e-04 -11.0 7.10e-05 - 1.00e+00 1.00e+00h 1\n", - " 16 8.5991200e+00 1.18e-08 1.00e-04 -11.0 1.02e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 8.5991200e+00 2.07e-08 4.62e-05 -11.0 1.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 8.5991200e+00 2.11e-09 7.22e-05 -11.0 3.82e-05 - 1.00e+00 1.00e+00h 1\n", - " 19 8.5991200e+00 9.66e-09 1.47e-04 -11.0 5.35e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.5991200e+00 5.53e-09 1.09e-04 -11.0 5.42e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 8.5991200e+00 8.61e-11 1.50e-04 -11.0 1.76e-04 - 1.00e+00 1.00e+00H 1\n", - " 22 8.5991200e+00 5.51e-11 1.24e-04 -11.0 7.33e-05 - 1.00e+00 1.00e+00H 1\n", - " 23 8.5991200e+00 1.79e-08 3.25e-05 -11.0 1.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 8.5991200e+00 7.76e-08 3.15e-05 -11.0 3.87e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 8.5991200e+00 7.16e-08 6.75e-05 -11.0 1.51e-04 - 1.00e+00 1.25e-01h 4\n", - " 26 8.5991200e+00 5.35e-09 9.52e-05 -11.0 2.84e-05 - 1.00e+00 1.00e+00h 1\n", - " 27 8.5991200e+00 4.51e-09 1.63e-04 -11.0 4.41e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 8.5991199e+00 1.62e-07 4.28e-05 -11.0 5.25e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 8.5991199e+00 4.84e-08 6.12e-05 -11.0 2.82e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.5991199e+00 1.56e-07 1.35e-04 -11.0 7.24e-04 - 1.00e+00 1.00e+00h 1\n", - " 31 8.5991198e+00 8.37e-08 7.20e-05 -11.0 8.28e-04 - 1.00e+00 1.00e+00h 1\n", - " 32 8.5991199e+00 2.42e-08 2.86e-05 -11.0 1.08e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 8.5991200e+00 3.86e-09 6.38e-05 -11.0 4.71e-05 - 1.00e+00 1.00e+00h 1\n", - " 34 8.5991200e+00 2.52e-09 2.65e-05 -11.0 2.46e-05 - 1.00e+00 1.00e+00h 1\n", - " 35 8.5991200e+00 1.19e-10 1.80e-04 -11.0 4.01e-05 - 1.00e+00 1.00e+00H 1\n", - " 36 8.5991196e+00 3.56e-07 2.41e-05 -11.0 6.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 8.5991199e+00 1.41e-08 4.54e-05 -11.0 1.60e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 8.5991199e+00 1.96e-08 1.39e-04 -11.0 9.98e-05 - 1.00e+00 1.00e+00h 1\n", - " 39 8.5991199e+00 1.08e-08 6.86e-05 -11.0 5.02e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.5991199e+00 6.72e-09 1.38e-04 -11.0 3.20e-05 - 1.00e+00 5.00e-01h 2\n", - " 41 8.5991199e+00 1.86e-08 1.85e-04 -11.0 8.52e-05 - 1.00e+00 1.00e+00h 1\n", - " 42 8.5991199e+00 1.16e-08 2.54e-05 -11.0 4.14e-05 - 1.00e+00 1.00e+00h 1\n", - " 43 8.5991200e+00 5.63e-09 2.61e-05 -11.0 3.07e-05 - 1.00e+00 5.00e-01h 2\n", - " 44 8.5991200e+00 2.91e-09 1.35e-04 -11.0 6.36e-06 - 1.00e+00 5.00e-01h 2\n", - " 45 8.5991200e+00 1.92e-09 2.88e-05 -11.0 1.53e-05 - 1.00e+00 2.50e-01h 3\n", - " 46 8.5991200e+00 1.14e-09 1.47e-04 -11.0 2.94e-06 - 1.00e+00 5.00e-01h 2\n", - " 47 8.5991199e+00 8.25e-09 1.49e-04 -11.0 3.08e-05 - 1.00e+00 1.00e+00h 1\n", - " 48 8.5991200e+00 4.52e-09 5.39e-05 -11.0 1.57e-05 - 1.00e+00 1.00e+00h 1\n", - " 49 8.5991200e+00 3.91e-09 1.02e-04 -11.0 5.67e-06 - 1.00e+00 1.25e-01h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.5991200e+00 3.47e-09 7.96e-05 -11.0 9.96e-06 - 1.00e+00 2.50e-01h 3\n", - " 51 8.5991200e+00 3.36e-09 2.13e-05 -11.0 5.28e-06 - 1.00e+00 3.12e-02h 6\n", - " 52 8.5991200e+00 3.66e-11 8.95e-05 -11.0 7.11e-07 - 1.00e+00 1.00e+00h 1\n", - " 53 8.5991200e+00 4.57e-11 7.69e-05 -11.0 3.81e-06 - 1.00e+00 1.00e+00H 1\n", - " 54 8.5991200e+00 2.74e-09 8.14e-05 -11.0 2.04e-05 - 1.00e+00 1.00e+00h 1\n", - " 55 8.5991200e+00 6.53e-10 1.69e-04 -11.0 4.56e-06 - 1.00e+00 1.00e+00h 1\n", - " 56 8.5991200e+00 1.23e-09 9.96e-05 -11.0 4.28e-06 - 1.00e+00 1.00e+00h 1\n", - " 57 8.5991200e+00 4.56e-10 1.78e-04 -11.0 6.23e-06 - 1.00e+00 1.00e+00h 1\n", - " 58 8.5991200e+00 5.95e-10 9.93e-05 -11.0 3.47e-06 - 1.00e+00 1.00e+00h 1\n", - " 59 8.5991200e+00 6.60e-10 8.47e-05 -11.0 3.25e-06 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.5991200e+00 4.89e-11 2.29e-04 -11.0 5.42e-06 - 1.00e+00 1.00e+00H 1\n", - " 61 8.5991200e+00 7.80e-10 3.66e-04 -11.0 2.37e-06 - 1.00e+00 1.00e+00h 1\n", - " 62 8.5991200e+00 5.08e-09 8.36e-05 -11.0 1.49e-05 - 1.00e+00 1.00e+00h 1\n", - " 63 8.5991200e+00 2.61e-09 5.55e-05 -11.0 3.71e-06 - 1.00e+00 5.00e-01h 2\n", - " 64 8.5991200e+00 1.31e-09 2.82e-05 -11.0 6.98e-06 - 1.00e+00 5.00e-01h 2\n", - " 65 8.5991200e+00 9.84e-10 1.51e-04 -11.0 1.56e-05 - 1.00e+00 5.00e-01h 2\n", - " 66 8.5991200e+00 5.75e-11 9.36e-05 -11.0 3.34e-05 - 1.00e+00 1.00e+00H 1\n", - " 67 8.5991200e+00 2.13e-11 6.78e-05 -11.0 2.09e-05 - 1.00e+00 1.00e+00H 1\n", - " 68 8.5991200e+00 4.59e-11 6.62e-05 -11.0 3.15e-05 - 1.00e+00 1.00e+00H 1\n", - " 69 8.5991199e+00 5.91e-08 5.61e-05 -11.0 3.51e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.5991200e+00 3.52e-09 1.55e-05 -11.0 9.70e-05 - 1.00e+00 1.00e+00h 1\n", - " 71 8.5991199e+00 7.53e-08 4.26e-05 -11.0 8.80e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 8.5991199e+00 1.60e-07 3.14e-05 -11.0 6.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 8.5991199e+00 1.48e-08 9.10e-05 -11.0 5.53e-04 - 1.00e+00 1.00e+00h 1\n", - " 74 8.5991198e+00 2.07e-07 2.81e-05 -11.0 1.19e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 8.5991199e+00 1.67e-08 1.71e-04 -11.0 5.84e-04 - 1.00e+00 1.00e+00h 1\n", - " 76 8.5991197e+00 5.98e-08 7.80e-05 -11.0 5.71e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 8.5991196e+00 4.76e-07 5.16e-05 -11.0 1.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 8.5991188e+00 8.38e-07 4.71e-03 -11.0 5.50e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 8.5991195e+00 7.65e-07 9.08e-05 -11.0 2.88e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.5991172e+00 1.32e-06 1.46e-03 -11.0 3.33e-02 - 1.00e+00 1.00e+00h 1\n", - " 81 8.5991153e+00 8.67e-06 1.35e-03 -11.0 4.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 8.5991168e+00 4.79e-06 8.37e-04 -11.0 1.66e-02 - 1.00e+00 5.00e-01h 2\n", - " 83 8.5990709e+00 4.14e-05 9.48e-03 -11.0 7.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 84 8.5990808e+00 7.08e-05 1.17e-03 -11.0 9.10e-01 - 1.00e+00 1.00e+00h 1\n", - " 85 8.5990422e+00 8.52e-05 2.27e-03 -11.0 9.95e-01 - 1.00e+00 1.00e+00h 1\n", - " 86 8.5991045e+00 2.50e-05 1.78e-03 -11.0 2.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 87 8.5990624e+00 5.17e-05 1.12e-03 -11.0 8.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 8.5712734e+00 1.47e-02 8.35e-03 -11.0 2.54e+02 - 1.00e+00 1.00e+00f 1\n", - " 89 8.5946265e+00 5.67e-03 2.20e-03 -11.0 7.73e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.5701755e+00 9.69e-02 6.98e-03 -11.0 2.10e+03 - 1.00e+00 1.00e+00h 1\n", - " 91 8.5988076e+00 1.20e-02 5.58e-03 -11.0 2.29e+03 - 1.00e+00 1.00e+00H 1\n", - " 92 6.4073249e+00 1.52e+00 3.01e-01 -11.0 3.44e+04 - 1.00e+00 7.97e-01f 1\n", - " 93 8.5441655e+00 3.45e-01 1.82e-01 -10.8 1.27e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 8.5035861e+00 2.97e-01 5.79e-02 -2.4 1.32e+03 - 1.00e+00 9.51e-01h 1\n", - " 95 8.5971998e+00 2.28e-02 1.15e-02 -8.5 7.14e+02 - 8.81e-01 1.00e+00h 1\n", - " 96 8.5922384e+00 2.72e-02 1.17e-02 -3.5 1.02e+04 - 1.00e+00 5.71e-03h 1\n", - " 97 5.9483518e+00 1.14e+00 2.32e-01 -3.5 1.24e+04 - 4.21e-01 1.00e+00f 1\n", - " 98 8.6722114e+00 7.10e-02 2.44e+00 -5.4 2.69e+00 - 1.00e+00 1.00e+00h 1\n", - " 99 8.7492457e+00 3.24e-05 1.03e-02 -5.5 1.24e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.7492616e+00 1.47e-07 3.03e-04 -5.5 9.90e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.7492615794286461e+00 8.7492615794286461e+00\n", - "Dual infeasibility......: 3.0250032656493637e-04 3.0250032656493637e-04\n", - "Constraint violation....: 1.4725348052024856e-07 1.4725348052024856e-07\n", - "Complementarity.........: 2.9800400226805676e-06 2.9800400226805676e-06\n", - "Overall NLP error.......: 3.0250032656493637e-04 3.0250032656493637e-04\n", - "\n", - "\n", - "Number of objective function evaluations = 138\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 138\n", - "Number of inequality constraint evaluations = 138\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.597\n", - "Total CPU secs in NLP function evaluations = 153.809\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 806.00us ( 5.84us) 816.84us ( 5.92us) 138\n", - " nlp_g | 6.93 s ( 50.22ms) 6.73 s ( 48.74ms) 138\n", - " nlp_grad | 1.61 s ( 1.61 s) 1.60 s ( 1.60 s) 1\n", - " nlp_grad_f | 566.00us ( 5.55us) 568.66us ( 5.58us) 102\n", - " nlp_jac_g | 150.67 s ( 1.48 s) 146.80 s ( 1.44 s) 102\n", - " total | 159.38 s (159.38 s) 155.40 s (155.40 s) 1\n", - "Timestamp 23100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.34e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9671095e+01 1.41e+01 1.34e+04 -1.5 1.34e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.0051612e+01 4.85e+00 9.84e+00 0.6 1.43e+02 - 9.98e-01 1.00e+00f 1\n", - " 3 1.3149461e+01 1.70e+00 9.03e-01 -1.4 3.25e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.4244008e+01 7.89e-04 9.03e-02 -3.2 2.10e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.4244328e+01 7.58e-07 1.39e-04 -5.1 1.21e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.4244304e+01 1.53e-05 3.78e-03 -11.0 6.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 1.4244319e+01 5.74e-06 2.74e-03 -11.0 2.85e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.4244318e+01 6.40e-06 1.61e-03 -11.0 1.80e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 1.4244330e+01 5.50e-07 8.24e-05 -11.0 3.99e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.4244328e+01 1.81e-06 1.35e-03 -11.0 8.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.4240317e+01 3.08e-03 6.08e-02 -11.0 1.54e+01 - 1.00e+00 1.00e+00f 1\n", - " 12 1.4244140e+01 8.48e-05 1.77e-03 -11.0 1.58e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 1.4243716e+01 5.85e-04 1.26e-03 -11.0 1.67e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 1.4243859e+01 2.24e-04 3.00e-03 -11.0 3.93e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 1.4243920e+01 1.12e-04 1.97e-03 -11.0 6.77e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.4244198e+01 4.22e-09 2.13e-04 -11.0 2.31e+00 - 1.00e+00 1.00e+00H 1\n", - " 17 1.4243843e+01 1.73e-04 1.74e-03 -11.0 1.04e+00 - 1.00e+00 1.00e+00f 1\n", - " 18 1.4243351e+01 4.27e-04 1.81e-03 -11.0 3.23e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 1.4244107e+01 4.13e-05 2.75e-03 -11.0 2.83e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.4244181e+01 1.57e-05 1.20e-03 -11.0 1.58e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 1.4244129e+01 9.36e-05 7.73e-04 -11.0 5.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 1.4242841e+01 2.26e-03 4.51e-03 -11.0 2.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.4243015e+01 7.55e-04 2.88e-03 -11.0 1.36e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 1.4241976e+01 1.41e-03 2.51e-03 -11.0 4.05e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 1.4139487e+01 1.51e-01 7.93e-03 -11.0 2.05e+03 - 1.00e+00 1.00e+00f 1\n", - " 26 1.4214540e+01 6.86e-02 2.07e-03 -11.0 8.03e+02 - 1.00e+00 1.00e+00h 1\n", - " 27 1.4193617e+01 4.32e-02 4.80e-03 -11.0 1.38e+03 - 1.00e+00 1.00e+00h 1\n", - " 28 1.4235558e+01 1.26e-02 3.17e-03 -11.0 5.40e+02 - 1.00e+00 1.00e+00h 1\n", - " 29 1.4236893e+01 4.58e-06 1.55e-03 -11.0 5.86e+02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.4169403e+01 4.62e-02 3.47e-03 -11.0 5.49e+02 - 1.00e+00 1.00e+00f 1\n", - " 31 1.1616151e+01 7.48e+00 5.87e-01 -9.0 2.00e+05 - 1.00e+00 1.54e-01f 1\n", - " 32 1.1603215e+01 7.40e+00 5.79e-01 -7.0 7.58e+04 - 1.00e+00 4.06e-03h 1\n", - " 33 1.1603086e+01 7.40e+00 5.79e-01 -5.1 2.87e+04 - 1.00e+00 1.07e-04h 1\n", - " 34 1.4461470e+01 6.23e-01 5.02e-01 -5.4 9.75e+03 - 1.00e+00 1.00e+00h 1\n", - " 35 1.4674841e+01 2.21e-03 1.46e-02 -5.5 8.63e+01 - 8.36e-01 1.00e+00h 1\n", - " 36 1.4462530e+01 5.87e-02 8.76e-02 -5.5 6.77e+03 - 1.00e+00 1.00e+00f 1\n", - " 37 1.3641956e+01 1.58e+00 9.20e-02 -5.5 2.51e+04 - 2.12e-01 1.00e+00f 1\n", - " 38 1.3519076e+01 9.66e-01 3.98e-02 -5.5 8.82e+04 - 6.34e-01 3.52e-01h 1\n", - " 39 1.4569972e+01 3.62e-02 8.44e-02 -5.5 1.31e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.2257210e+01 2.78e+00 2.40e-01 -5.5 4.78e+04 - 2.15e-01 1.00e+00f 1\n", - " 41 1.1879491e+01 5.68e+00 4.53e-01 -11.0 4.08e+06 - 5.11e-04 1.48e-02f 1\n", - " 42 1.1930194e+01 5.37e+00 4.05e-01 -3.7 1.78e+04 - 1.00e+00 4.80e-02h 1\n", - " 43 1.2072766e+01 4.83e+00 2.19e-01 -4.2 1.07e+04 - 1.00e+00 2.92e-01h 1\n", - " 44 1.4602270e+01 5.45e-01 1.93e-01 -3.2 2.76e+03 - 1.00e+00 1.00e+00h 1\n", - " 45 1.3102027e+01 9.72e-01 1.80e-01 -3.2 3.07e+03 - 1.00e+00 1.00e+00f 1\n", - " 46 1.4486490e+01 3.45e-01 1.04e-01 -2.7 2.10e+03 - 8.61e-01 1.00e+00h 1\n", - " 47 1.4476452e+01 3.15e-01 1.02e-01 -2.9 2.68e+03 - 1.00e+00 4.28e-02h 1\n", - " 48 1.2055902e+01 2.49e+00 1.09e-01 -2.9 9.72e+03 - 1.00e+00 1.00e+00f 1\n", - " 49 1.4422658e+01 9.95e-02 1.03e-01 -4.3 1.65e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.3134978e+01 3.27e+00 1.40e-01 -4.0 3.28e+04 - 8.11e-02 1.00e+00f 1\n", - " 51 1.3059502e+01 3.33e+00 1.45e-01 -4.0 6.63e+06 - 5.76e-04 9.20e-05f 1\n", - " 52 1.5970277e+01 2.02e+00 9.42e-02 -4.0 5.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 1.3529436e+01 7.47e-01 1.44e-01 -4.0 5.82e+03 - 8.39e-01 1.00e+00f 1\n", - " 54 1.4330362e+01 3.92e-01 4.39e-02 -4.0 1.75e+03 - 1.00e+00 6.18e-01h 1\n", - " 55 1.5255839e+01 9.14e-02 2.74e-02 -4.0 9.86e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 1.5139269e+01 1.67e-01 4.67e-02 -4.0 2.01e+03 - 5.20e-01 1.00e+00h 1\n", - " 57 1.4837299e+01 4.52e-01 5.90e-02 -4.0 7.42e+03 - 7.74e-02 2.50e-01f 3\n", - " 58 1.0824421e+01 4.11e+00 4.33e-01 -4.0 3.27e+04 - 1.00e+00 1.00e+00f 1\n", - " 59 1.3769284e+01 8.38e-01 4.02e-01 -1.7 2.68e+04 - 6.78e-01 9.32e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.1986426e+01 3.20e+00 2.03e-01 -1.9 2.61e+04 - 5.85e-02 1.00e+00f 1\n", - " 61 8.4221335e+00 2.94e+00 4.26e-01 -2.0 6.35e+04 - 1.12e-01 3.80e-01f 1\n", - " 62 1.4411697e+01 3.41e+00 4.33e-01 -2.5 8.24e+03 - 1.00e+00 1.00e+00h 1\n", - " 63 1.3510748e+01 2.97e+00 4.36e-01 -2.6 2.80e+05 - 7.94e-02 4.63e-02f 1\n", - " 64 1.0130828e+01 2.78e+00 2.36e-01 -2.6 1.32e+04 - 1.00e+00 1.00e+00f 1\n", - " 65 9.0028028e+00 5.48e+00 5.52e-01 -8.0 3.77e+06 - 7.87e-03 8.60e-03f 1\n", - " 66 8.8811926e+00 5.43e+00 5.59e-01 -2.2 4.34e+04 - 5.67e-01 2.46e-02h 1\n", - " 67 8.7677296e+00 3.71e+00 2.24e-01 -2.2 1.13e+04 - 1.00e+00 6.15e-01f 1\n", - " 68 1.3700675e+01 6.73e-01 7.63e-01 -4.1 3.15e+03 - 2.89e-01 1.00e+00h 1\n", - " 69 1.3419916e+01 3.14e+00 2.24e-01 -1.6 2.30e+04 - 1.66e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1041114e+01 2.16e+00 7.65e-02 -1.8 1.08e+06 - 7.15e-02 3.60e-02f 1\n", - " 71 1.3368419e+01 2.45e+00 1.14e-01 -1.8 2.12e+04 - 1.00e+00 1.00e+00h 1\n", - " 72 1.3351610e+01 1.71e+00 6.50e-02 -1.8 1.42e+04 - 4.78e-01 1.00e+00h 1\n", - " 73 1.2663032e+01 1.93e+00 9.54e-02 -1.8 4.10e+04 - 8.43e-01 1.06e-01f 1\n", - " 74 1.3651082e+01 4.18e-01 9.32e-02 -1.6 5.49e+03 - 6.03e-01 1.00e+00h 1\n", - " 75 1.3157659e+01 4.06e-01 5.06e-02 -1.9 1.30e+04 - 1.00e+00 2.33e-01f 1\n", - " 76 1.3839786e+01 7.74e-02 8.56e-02 -7.9 3.54e+03 - 6.84e-01 1.00e+00H 1\n", - " 77 1.3561598e+01 1.63e-01 3.03e-02 -8.5 1.13e+03 - 4.46e-01 1.00e+00h 1\n", - " 78 1.1582546e+01 1.72e+00 1.40e-01 -3.0 2.06e+04 - 7.64e-01 5.56e-01f 1\n", - " 79 1.3371471e+01 2.25e-01 1.59e-01 -2.1 3.88e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.3215911e+01 3.31e-01 4.58e-02 -2.5 2.14e+03 - 1.00e+00 1.00e+00h 1\n", - " 81 1.3552057e+01 5.80e-02 9.36e-03 -4.1 5.49e+02 - 9.99e-01 1.00e+00h 1\n", - " 82 1.3027712e+01 5.22e-01 1.07e-01 -3.1 5.17e+03 - 1.00e+00 9.94e-01f 1\n", - " 83 9.6634661e+00 3.94e+00 1.11e-01 -2.7 7.07e+03 - 1.00e+00 1.00e+00f 1\n", - " 84 1.1161415e+01 1.56e+00 2.91e-01 -1.1 1.59e+04 - 1.00e+00 6.58e-01h 1\n", - " 85 1.1756667e+01 8.40e-01 1.13e-01 -1.3 7.27e+03 - 1.82e-01 1.00e+00h 1\n", - " 86 1.2192260e+01 2.21e+00 1.85e-01 0.7 5.71e+06 - 3.90e-02 4.93e-03f 2\n", - " 87 1.1402000e+01 8.34e-01 5.83e-02 -0.6 4.48e+04 - 5.89e-01 7.57e-01f 1\n", - " 88 1.1399186e+01 1.17e+00 9.70e-02 -1.3 4.61e+03 - 8.65e-01 1.00e+00h 1\n", - " 89 1.3292981e+01 1.26e-01 8.51e-02 -7.3 1.37e+03 - 8.33e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.3086048e+01 2.39e-01 1.13e-01 -2.1 1.71e+03 - 1.00e+00 9.64e-01h 1\n", - " 91 1.0750160e+01 3.03e+00 2.41e-01 -8.2 5.96e+04 - 1.16e-01 2.29e-01f 1\n", - " 92 1.5588416e+01 1.05e+00 3.70e-01 -2.4 1.94e+04 - 1.00e+00 1.00e+00h 1\n", - " 93 1.2833458e+01 8.93e-01 2.80e-01 -2.4 9.98e+03 - 1.00e+00 5.34e-01f 1\n", - " 94 1.2589982e+01 2.31e-01 8.57e-02 -2.3 8.60e+03 - 6.39e-01 7.50e-01h 1\n", - " 95 1.2439730e+01 2.34e-01 2.70e-02 -2.7 1.90e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 1.2978654e+01 1.89e-02 1.56e-02 -2.4 5.58e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 1.3021121e+01 7.09e-03 1.91e-02 -8.4 1.82e+03 - 3.74e-01 1.00e+00H 1\n", - " 98 1.2306492e+01 6.80e-01 8.84e-02 -2.6 1.73e+04 - 6.23e-02 1.00e+00f 1\n", - " 99 1.2597026e+01 7.07e-01 5.22e-02 -2.1 9.26e+03 - 1.00e+00 9.84e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.2233468e+01 5.64e-01 5.64e-02 -2.2 7.53e+04 - 1.27e-01 2.08e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.2233467737806393e+01 1.2233467737806393e+01\n", - "Dual infeasibility......: 5.6369956286998812e-02 5.6369956286998812e-02\n", - "Constraint violation....: 5.6403398976443953e-01 5.6403398976443953e-01\n", - "Complementarity.........: 1.0841644476417524e-02 1.0841644476417524e-02\n", - "Overall NLP error.......: 5.6403398976443953e-01 5.6403398976443953e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 113\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 113\n", - "Number of inequality constraint evaluations = 113\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.617\n", - "Total CPU secs in NLP function evaluations = 140.807\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 580.00us ( 5.13us) 572.33us ( 5.06us) 113\n", - " nlp_g | 5.42 s ( 47.95ms) 5.20 s ( 46.05ms) 113\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 376.00us ( 3.69us) 373.93us ( 3.67us) 102\n", - " nlp_jac_g | 138.63 s ( 1.36 s) 133.21 s ( 1.31 s) 102\n", - " total | 145.56 s (145.56 s) 140.01 s (140.01 s) 1\n", - "Timestamp 23400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.94e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0208026e+01 1.22e+01 1.94e+04 -1.5 1.94e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.1953208e+00 4.13e+00 6.48e+00 0.8 2.23e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.5910889e+00 5.80e-01 6.52e-01 -1.3 6.37e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 1.6266972e+00 3.33e-03 5.94e-01 -3.1 2.37e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.6270488e+00 2.91e-04 1.14e-02 -4.9 3.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 1.6272711e+00 4.26e-05 4.94e-04 -6.8 1.10e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 1.6272598e+00 6.72e-05 1.57e-03 -8.9 1.93e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 1.5272985e+00 2.13e-01 1.90e-01 -9.6 6.32e+03 - 9.84e-01 1.00e+00F 1\n", - " 9 1.4954789e+00 4.77e-01 2.96e-01 -11.0 2.36e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.4766271e+00 4.56e-01 3.91e-01 -11.0 1.74e+04 - 1.00e+00 6.25e-02h 5\n", - " 11 1.5157551e+00 5.61e-02 4.23e-01 -11.0 1.44e+03 - 1.00e+00 1.00e+00h 1\n", - " 12 1.4717083e+00 2.30e-01 2.85e-01 -11.0 4.03e+03 - 1.00e+00 5.00e-01h 2\n", - " 13 1.4805996e+00 2.28e-01 5.85e-02 -11.0 2.99e+03 - 1.00e+00 1.00e+00h 1\n", - " 14 1.4755301e+00 1.02e-01 9.23e-02 -11.0 7.16e+02 - 1.00e+00 1.00e+00h 1\n", - " 15 1.4728986e+00 2.08e-01 1.04e-01 -11.0 5.71e+02 - 1.00e+00 5.00e-01h 2\n", - " 16 1.4691146e+00 1.65e-01 6.06e-02 -11.0 1.06e+04 - 1.00e+00 1.25e-01h 4\n", - " 17 1.4696610e+00 2.15e-01 6.78e-02 -11.0 1.44e+04 - 1.00e+00 1.25e-01h 4\n", - " 18 1.4696870e+00 1.46e-01 3.67e-02 -9.0 2.06e+05 - 1.00e+00 8.88e-03h 5\n", - " 19r 1.4696870e+00 1.46e-01 9.99e+02 -0.8 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20r 1.4891337e+00 2.64e-02 3.76e+02 -6.9 1.35e+02 - 1.00e+00 1.50e-03f 1\n", - " 21 1.4982055e+00 4.97e-02 1.59e-01 -11.0 2.66e+02 - 1.00e+00 1.00e+00H 1\n", - " 22 1.4778222e+00 1.19e-01 3.24e-02 -11.0 3.58e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 1.4775511e+00 1.76e-01 4.87e-02 -10.2 1.55e+05 - 1.00e+00 3.42e-03h 7\n", - " 24 1.4774479e+00 1.85e-01 5.09e-02 -10.4 2.75e+03 - 1.00e+00 3.12e-02h 6\n", - " 25 1.5872463e+00 1.29e-01 3.00e-01 -10.4 9.51e+04 - 2.87e-01 1.08e-02h 6\n", - " 26 1.4765614e+00 2.30e-01 2.45e-01 -10.4 3.64e+03 - 1.00e+00 1.00e+00H 1\n", - " 27 1.4754451e+00 1.33e-01 1.92e-01 -10.4 7.19e+02 - 1.00e+00 5.00e-01h 2\n", - " 28 1.4819730e+00 1.24e-01 5.17e-02 -10.4 4.09e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 1.4807379e+00 8.10e-02 8.65e-02 -10.4 2.11e+06 - 1.00e-02 9.96e-03h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.4756249e+00 2.65e-01 7.95e-02 -11.0 5.41e+03 - 1.00e+00 2.50e-01h 3\n", - " 31 1.4689177e+00 1.96e-01 1.13e-01 -11.0 3.86e+06 - 9.82e-03 1.71e-04f 6\n", - " 32 1.5100393e+00 2.22e-01 2.09e-01 -8.9 9.18e+05 - 1.00e+00 1.15e-02h 3\n", - " 33 1.4863615e+00 2.81e-01 1.40e-01 -9.1 1.90e+04 - 1.00e+00 1.00e+00H 1\n", - " 34 1.4445097e+00 4.91e-01 1.36e-01 -9.1 4.38e+03 - 1.00e+00 1.00e+00h 1\n", - " 35 1.5542334e+00 7.81e-01 2.69e-01 -9.7 3.39e+03 - 8.47e-01 1.00e+00H 1\n", - " 36 1.5486406e+00 4.62e-01 2.79e-01 -9.7 1.90e+04 - 1.00e+00 1.00e+00h 1\n", - " 37 1.5282929e+00 4.81e-01 1.96e-01 -9.7 2.94e+04 - 7.06e-01 1.00e+00h 1\n", - " 38 1.4514496e+00 2.87e-01 1.02e-01 -9.7 4.43e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 1.4653898e+00 2.04e-01 5.20e-02 -9.9 8.15e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.4747610e+00 2.60e-01 6.98e-02 -11.0 3.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 41 1.4607220e+00 3.47e-01 1.49e-01 -11.0 6.41e+06 - 5.58e-03 1.06e-03f 3\n", - " 42 1.4347488e+00 8.39e-01 4.48e-01 -11.0 6.40e+04 - 3.36e-01 3.03e-01h 2\n", - " 43 1.5342613e+00 5.49e-01 2.38e-01 -10.9 2.84e+04 - 1.00e+00 1.00e+00h 1\n", - " 44 1.5065271e+00 4.26e-01 2.07e-01 -11.0 1.13e+08 - 4.24e-04 1.35e-04f 1\n", - " 45 1.5174341e+00 2.77e-01 1.92e-01 -11.0 1.47e+03 - 1.00e+00 1.00e+00h 1\n", - " 46 1.4654539e+00 2.78e-01 1.15e-01 -11.0 2.08e+03 - 8.94e-01 1.00e+00h 1\n", - " 47 1.4560910e+00 3.66e-01 6.23e-02 -11.0 7.16e+03 - 1.00e+00 2.50e-01h 3\n", - " 48 1.4623140e+00 3.78e-01 5.60e-02 -11.0 1.41e+04 - 1.18e-01 1.25e-01h 4\n", - " 49 1.4511614e+00 5.69e-01 1.21e-01 -11.0 1.64e+04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.4544927e+00 5.39e-01 1.16e-01 -11.0 1.27e+04 - 6.79e-01 1.25e-01h 4\n", - " 51 1.5564406e+00 1.80e-01 2.66e-01 -11.0 1.45e+04 - 1.00e+00 1.00e+00h 1\n", - " 52 1.5480071e+00 2.13e-01 2.43e-01 -11.0 5.47e+04 - 5.18e-01 6.20e-02h 4\n", - " 53 1.5431354e+00 2.31e-01 2.30e-01 -11.0 3.50e+04 - 1.00e+00 1.06e-02h 7\n", - " 54 1.5438701e+00 2.61e-01 1.70e-01 -11.0 5.32e+04 - 3.35e-01 7.45e-01h 1\n", - " 55 1.5079567e+00 2.68e-01 1.14e-01 -11.0 4.20e+03 - 1.69e-09 2.50e-01h 3\n", - " 56 1.5038952e+00 2.62e-01 9.26e-02 -11.0 2.58e+04 - 1.00e+00 4.06e-02h 1\n", - " 57 1.6781106e+00 7.99e-02 2.43e-01 -11.0 3.04e+03 - 1.00e+00 1.00e+00H 1\n", - " 58 1.5614090e+00 3.00e-01 9.18e-02 -11.0 2.03e+03 - 3.94e-01 1.00e+00F 1\n", - " 59 1.5610025e+00 3.03e-01 8.77e-02 -11.0 4.53e+03 - 1.00e+00 5.85e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.6211858e+00 6.79e-02 7.18e-02 -11.0 1.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 1.6184483e+00 1.21e-01 5.93e-02 -11.0 1.10e+03 - 1.00e+00 5.08e-01h 1\n", - " 62 1.5943728e+00 1.65e-01 2.53e-01 -11.0 1.31e+04 - 1.00e+00 1.00e+00H 1\n", - " 63 1.5968052e+00 2.89e-02 7.38e-02 -11.0 1.64e+03 - 1.00e+00 1.00e+00h 1\n", - "In iteration 63, 1 Slack too small, adjusting variable bound\n", - " 64 1.5696596e+00 9.72e-02 4.08e-02 -11.0 9.85e+03 - 1.00e+00 1.21e-01h 1\n", - " 65 1.6410722e+00 2.63e-03 1.41e-01 -11.0 1.49e+03 - 9.33e-01 1.00e+00H 1\n", - " 66 1.6399730e+00 6.21e-03 1.05e-02 -11.0 1.71e+03 - 1.00e+00 1.00e+00H 1\n", - " 67 1.6512398e+00 2.73e-03 5.20e-02 -11.0 2.67e+03 - 4.45e-01 1.00e+00H 1\n", - " 68 1.6429954e+00 7.94e-04 3.83e-02 -11.0 3.88e+03 - 1.00e+00 1.00e+00H 1\n", - " 69 1.6428591e+00 3.29e-03 4.03e-02 -11.0 9.34e+04 - 4.33e-01 2.35e-04h 8\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.6448319e+00 1.81e-04 2.18e-02 -11.0 7.39e+02 - 9.75e-01 1.00e+00H 1\n", - " 71 1.5949589e+00 4.62e-02 5.51e-02 -11.0 8.17e+02 - 1.00e+00 1.00e+00f 1\n", - " 72 1.5929967e+00 7.20e-02 6.81e-02 -11.0 1.38e+04 - 1.00e+00 3.16e-03h 6\n", - " 73 1.6422555e+00 2.48e-03 5.44e-02 -11.0 6.42e+02 - 7.57e-01 1.00e+00H 1\n", - " 74 1.5545007e+00 3.00e-01 1.38e-01 -11.0 3.73e+08 - 1.73e-04 5.13e-06f 6\n", - " 75 1.5413609e+00 2.84e-01 1.44e-01 -11.0 9.74e+03 - 1.00e+00 6.25e-02h 5\n", - " 76 1.5409782e+00 2.84e-01 1.46e-01 -11.0 3.73e+04 - 1.15e-01 4.88e-04h 12\n", - " 77 1.5121845e+00 3.57e-01 3.39e-01 -11.0 7.74e+03 - 1.00e+00 1.25e-01h 4\n", - " 78 1.6248689e+00 4.69e-03 4.86e-01 -11.0 7.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 79 1.6262989e+00 6.99e-08 5.77e-05 -11.0 5.00e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.6262989e+00 2.54e-08 1.61e-05 -11.0 1.53e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 1.6262989e+00 3.46e-09 4.82e-05 -11.0 3.28e-05 - 1.00e+00 1.00e+00h 1\n", - " 82 1.6262989e+00 3.77e-09 3.56e-05 -11.0 4.24e-05 - 1.00e+00 1.00e+00h 1\n", - " 83 1.6262989e+00 7.48e-09 4.67e-05 -11.0 3.88e-05 - 1.00e+00 1.00e+00h 1\n", - " 84 1.6262989e+00 4.97e-09 4.54e-05 -11.0 9.35e-05 - 1.00e+00 1.00e+00h 1\n", - " 85 1.6262989e+00 1.23e-08 3.68e-05 -11.0 6.40e-05 - 1.00e+00 1.00e+00h 1\n", - " 86 1.6262989e+00 7.25e-08 3.07e-05 -11.0 4.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 87 1.6262989e+00 3.35e-08 6.51e-05 -11.0 1.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 88 1.6262989e+00 1.63e-07 6.96e-05 -11.0 8.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 89 1.5354076e+00 2.56e-02 4.54e-01 -11.0 1.36e+04 - 4.51e-01 1.00e+00F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.5541206e+00 9.73e-05 2.92e-02 -11.0 4.52e-01 -4.0 1.00e+00 1.00e+00h 1\n", - " 91 1.5527356e+00 5.03e-03 1.93e-02 -11.0 1.87e+01 - 1.00e+00 1.00e+00h 1\n", - " 92 1.5538452e+00 2.99e-04 2.21e-03 -11.0 1.57e+01 - 1.00e+00 1.00e+00h 1\n", - " 93 1.5531948e+00 3.86e-03 1.15e-03 -11.0 3.56e+01 - 1.00e+00 1.00e+00h 1\n", - " 94 1.5512112e+00 1.81e-02 9.84e-03 -11.0 2.63e+02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.5468995e+00 1.72e-02 9.14e-03 -11.0 2.17e+02 - 1.00e+00 1.00e+00h 1\n", - " 96 1.5537483e+00 1.16e-03 1.27e-02 -11.0 4.69e+01 - 1.00e+00 1.00e+00h 1\n", - " 97 1.5534890e+00 5.07e-03 5.16e-03 -11.0 3.67e+01 - 1.00e+00 1.00e+00h 1\n", - " 98 1.5438776e+00 1.75e-01 6.36e-02 -11.0 8.15e+02 - 1.00e+00 1.00e+00h 1\n", - " 99 1.5348564e+00 5.07e-01 3.00e-01 -11.0 4.72e+04 - 9.95e-01 1.69e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.3926150e+00 1.87e-01 1.79e-01 -11.0 1.44e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.3926150226958480e+00 1.3926150226958480e+00\n", - "Dual infeasibility......: 1.7863531850547662e-01 1.7863531850547662e-01\n", - "Constraint violation....: 1.8699545397062423e-01 1.8699545397062423e-01\n", - "Complementarity.........: 1.1098949964310718e-11 1.1098949964310718e-11\n", - "Overall NLP error.......: 1.8699545397062423e-01 1.8699545397062423e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 299\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 299\n", - "Number of inequality constraint evaluations = 299\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.436\n", - "Total CPU secs in NLP function evaluations = 151.063\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 1.50ms ( 5.02us) 1.51ms ( 5.06us) 299\n", - " nlp_g | 14.27 s ( 47.74ms) 14.56 s ( 48.70ms) 299\n", - " nlp_grad | 1.48 s ( 1.48 s) 1.46 s ( 1.46 s) 1\n", - " nlp_grad_f | 453.00us ( 4.44us) 404.01us ( 3.96us) 102\n", - " nlp_jac_g | 140.23 s ( 1.36 s) 140.45 s ( 1.36 s) 103\n", - " total | 156.17 s (156.17 s) 156.67 s (156.67 s) 1\n", - "Timestamp 23700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.44e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9837970e+01 1.38e+01 3.44e+03 -1.5 3.44e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.5171973e+00 4.95e+00 9.20e+00 0.4 1.38e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 8.4907839e+00 1.26e+00 6.46e-01 -1.6 7.88e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 9.4246435e+00 2.61e-03 8.28e-02 -3.4 1.80e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 9.4258942e+00 2.37e-07 8.66e-05 -5.3 2.62e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 9.4258944e+00 1.25e-07 1.64e-05 -11.0 8.35e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 9.4258946e+00 1.18e-08 8.97e-05 -11.0 2.19e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 9.4258946e+00 5.65e-08 5.62e-05 -11.0 2.48e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 9.4258939e+00 3.03e-07 2.06e-05 -11.0 2.14e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 9.4258945e+00 4.82e-08 5.12e-05 -11.0 7.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 9.4258944e+00 1.05e-07 8.53e-05 -11.0 5.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 9.4258945e+00 4.01e-08 8.52e-05 -11.0 1.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 9.4258945e+00 5.28e-08 8.89e-05 -11.0 3.84e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 9.4258945e+00 2.45e-08 3.88e-05 -11.0 1.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 9.4258944e+00 9.56e-08 1.33e-04 -11.0 1.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 9.4258942e+00 1.20e-07 3.04e-05 -11.0 3.60e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 9.4258945e+00 9.48e-08 1.10e-04 -11.0 5.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 9.4258945e+00 3.15e-08 3.79e-05 -11.0 2.66e-04 - 1.00e+00 1.00e+00h 1\n", - " 19 9.4258945e+00 2.23e-08 1.03e-04 -11.0 3.99e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 9.4258945e+00 6.84e-09 8.24e-05 -11.0 9.32e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 9.4258945e+00 5.79e-08 2.19e-05 -11.0 4.99e-04 - 1.00e+00 1.00e+00h 1\n", - " 22 9.4258945e+00 2.67e-08 8.47e-05 -11.0 5.94e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 9.4258944e+00 2.88e-07 2.76e-05 -11.0 6.32e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 9.4258944e+00 5.37e-08 5.75e-05 -11.0 8.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 9.4258945e+00 3.48e-08 5.02e-05 -11.0 2.93e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 9.4258629e+00 4.17e-05 2.40e-02 -11.0 1.93e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 9.4258720e+00 1.14e-05 1.50e-03 -11.0 2.12e-01 - 1.00e+00 1.00e+00h 1\n", - " 28 9.4256935e+00 1.17e-04 3.02e-03 -11.0 7.68e-01 - 1.00e+00 1.00e+00h 1\n", - " 29 9.4258595e+00 1.30e-04 1.10e-03 -11.0 2.68e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 9.4258135e+00 1.00e-04 1.16e-03 -11.0 2.58e+00 - 1.00e+00 1.00e+00h 1\n", - " 31 9.4240542e+00 1.43e-03 6.46e-03 -11.0 2.78e+01 - 1.00e+00 1.00e+00h 1\n", - " 32 9.4073536e+00 2.58e-02 2.04e-03 -11.0 3.79e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 9.4036567e+00 7.88e-03 1.60e-03 -11.0 4.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 34 9.4238552e+00 5.49e-03 1.58e-03 -11.0 8.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 35 9.4040107e+00 1.19e-02 1.23e-03 -11.0 1.87e+02 - 1.00e+00 1.00e+00h 1\n", - " 36 8.6556411e+00 9.42e-01 9.33e-02 -11.0 3.31e+03 - 1.00e+00 1.00e+00f 1\n", - " 37 8.9242093e+00 9.94e-01 4.96e-02 -11.0 1.78e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 7.5606480e+00 4.62e+00 8.35e-01 -10.2 1.68e+05 - 1.00e+00 9.70e-02f 2\n", - " 39 6.9783568e+00 2.89e+00 6.84e-01 -8.3 4.57e+04 - 1.00e+00 3.59e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.5478323e+01 3.63e+00 1.12e+00 -8.0 2.67e+04 - 1.00e+00 1.00e+00h 1\n", - " 41 1.0421374e+01 1.03e+00 1.00e+00 -7.5 7.12e+05 - 2.98e-02 5.08e-02f 1\n", - " 42 8.5636611e+00 4.10e+00 3.67e-01 -7.5 2.40e+04 - 1.00e+00 1.00e+00f 1\n", - " 43 7.4426435e+00 4.64e+00 7.97e-01 -7.5 8.73e+04 - 2.28e-01 4.07e-01F 1\n", - " 44 7.4426433e+00 4.64e+00 7.97e-01 -7.5 2.97e+05 - 1.87e-01 3.42e-09h 2\n", - " 45 7.5992901e+00 1.16e+00 5.49e-01 -7.5 6.75e+03 - 1.00e+00 8.69e-01h 1\n", - " 46 5.5782805e+00 2.19e+00 4.61e-01 -6.9 6.76e+03 - 2.32e-01 1.00e+00f 1\n", - " 47 8.2350091e+00 8.60e-01 3.81e-01 -2.3 1.45e+04 - 1.00e+00 1.00e+00H 1\n", - " 48 6.7906621e+00 1.07e+00 3.35e-01 -2.2 5.92e+03 - 7.47e-01 1.00e+00f 1\n", - " 49 6.0327136e+00 2.84e+00 2.05e-01 -2.3 2.51e+04 - 1.00e+00 2.29e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 6.0455831e+00 2.79e+00 1.95e-01 -2.5 1.75e+04 - 6.46e-01 2.45e-02h 1\n", - " 51 7.9991903e+00 1.18e+00 4.33e-01 -2.5 1.49e+04 - 1.00e+00 1.00e+00h 1\n", - " 52 7.5597941e+00 2.00e+00 1.62e-01 -1.9 1.48e+04 - 4.38e-02 9.88e-01f 1\n", - " 53 7.5575942e+00 1.99e+00 1.62e-01 -2.6 1.42e+04 - 1.00e+00 8.77e-03h 1\n", - " 54 8.6642218e+00 1.52e-01 5.93e-02 -2.6 7.47e+03 - 1.00e+00 1.00e+00h 1\n", - " 55 8.6984012e+00 1.55e-01 7.91e-02 -8.6 1.33e+03 - 2.66e-01 1.00e+00h 1\n", - " 56 7.9200424e+00 4.21e-01 8.17e-02 -2.2 2.68e+04 - 1.00e+00 9.87e-02f 1\n", - " 57 8.7303802e+00 2.42e-02 4.59e-02 -2.4 1.13e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 8.6350719e+00 1.79e-01 4.39e-02 -8.5 2.49e+03 - 6.95e-01 1.00e+00h 1\n", - " 59 8.4827813e+00 1.00e-01 1.86e-02 -9.0 1.51e+04 - 5.10e-03 4.42e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.5159480e+00 1.01e-01 1.69e-02 -1.9 7.03e+04 - 1.00e+00 3.64e-02f 3\n", - " 61 7.5295769e+00 5.14e-01 2.70e-02 -1.9 2.86e+03 - 1.51e-01 1.00e+00f 1\n", - " 62 8.6509663e+00 8.10e-02 3.53e-02 -7.9 8.51e+02 - 7.78e-01 1.00e+00h 1\n", - " 63 8.5355651e+00 1.37e-01 2.49e-02 -2.6 2.03e+04 - 7.09e-01 1.99e-02f 1\n", - " 64 8.7378302e+00 3.49e-02 1.21e-02 -8.7 1.86e+02 - 3.15e-01 1.00e+00h 1\n", - " 65 8.4345975e+00 8.65e-01 1.14e-01 -3.1 6.69e+03 - 1.00e+00 1.00e+00f 1\n", - " 66 8.2792433e+00 7.75e-01 1.10e-01 -3.2 8.92e+03 - 5.64e-01 1.00e+00h 1\n", - " 67 8.3363188e+00 3.38e-01 3.49e-02 -3.2 6.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 68 8.5553237e+00 1.22e-01 4.60e-02 -4.0 1.62e+03 - 1.00e+00 1.00e+00h 1\n", - " 69 8.5048577e+00 1.10e-01 3.77e-02 -4.1 8.62e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.1449210e+00 6.37e-01 1.08e-01 -4.2 2.86e+04 - 1.00e+00 4.00e-01f 1\n", - " 71 8.6433309e+00 1.46e-01 9.83e-02 -4.2 8.03e+02 - 1.00e+00 1.00e+00h 1\n", - " 72 8.8010819e+00 2.76e-04 1.87e-01 -4.2 2.01e-01 - 9.91e-01 1.00e+00h 1\n", - " 73 8.8012139e+00 6.17e-07 7.95e-05 -5.3 2.95e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 8.8012055e+00 3.12e-06 7.64e-03 -11.0 2.88e-02 - 1.00e+00 1.00e+00h 1\n", - " 75 8.8012141e+00 1.21e-09 8.17e-05 -11.0 1.07e-02 - 1.00e+00 1.00e+00H 1\n", - " 76 8.8012115e+00 2.09e-06 7.64e-04 -11.0 6.75e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 8.8012139e+00 3.48e-10 1.61e-04 -11.0 7.15e-03 - 1.00e+00 1.00e+00H 1\n", - " 78 8.8012046e+00 7.14e-06 7.60e-03 -11.0 3.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 79 8.8012111e+00 1.09e-06 1.73e-03 -11.0 1.26e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.8009363e+00 2.80e-04 5.32e-03 -11.0 2.35e+00 - 1.00e+00 1.00e+00h 1\n", - " 81 8.8007518e+00 3.25e-04 1.79e-03 -11.0 3.92e+00 - 1.00e+00 1.00e+00h 1\n", - " 82 8.7999043e+00 9.36e-04 9.14e-04 -11.0 3.28e+00 - 1.00e+00 1.00e+00h 1\n", - " 83 8.8002980e+00 7.18e-04 1.54e-03 -11.0 2.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 84 8.8000422e+00 6.90e-04 3.01e-03 -11.0 2.55e+00 - 1.00e+00 1.00e+00h 1\n", - " 85 8.8002711e+00 7.23e-04 1.89e-03 -11.0 4.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 86 8.8008595e+00 2.34e-04 2.42e-03 -11.0 7.95e+00 - 1.00e+00 1.00e+00h 1\n", - " 87 8.8004835e+00 6.48e-04 1.20e-03 -11.0 5.86e+00 - 1.00e+00 1.00e+00h 1\n", - " 88 8.6925850e+00 6.75e-02 1.30e-02 -11.0 1.13e+03 - 1.00e+00 1.00e+00f 1\n", - " 89 8.5831219e+00 4.31e-01 3.92e-02 -11.0 8.84e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.7864051e+00 2.68e-02 3.59e-02 -11.0 1.27e+02 - 1.00e+00 1.00e+00h 1\n", - " 91 8.7445591e+00 5.47e-02 2.26e-02 -11.0 4.06e+02 - 1.00e+00 1.00e+00h 1\n", - " 92 7.7527381e+00 1.75e+00 1.53e-01 -11.0 1.53e+05 - 1.79e-02 7.76e-02f 1\n", - " 93 8.6299101e+00 7.04e-02 1.02e-01 -11.0 1.71e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 8.2780756e+00 2.41e-01 1.48e-01 -1.9 3.34e+03 - 7.07e-01 1.00e+00f 1\n", - " 95 8.7667294e+00 2.11e-02 3.20e-02 -2.5 2.45e+03 - 1.00e+00 1.00e+00H 1\n", - " 96 8.5407110e+00 1.87e-01 9.53e-03 -3.9 1.62e+03 - 9.97e-01 1.00e+00f 1\n", - " 97 7.3318572e+00 1.78e+00 2.93e-01 -3.0 2.51e+04 - 7.58e-01 1.00e+00f 1\n", - " 98 7.1457586e+00 2.73e+00 2.97e-01 -3.3 7.14e+05 - 1.20e-01 3.78e-02f 1\n", - " 99 7.6527739e+00 1.80e+00 2.78e-01 -3.3 3.46e+04 - 6.17e-03 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 7.5916654e+00 1.70e+00 2.10e-01 -3.3 3.19e+04 - 6.51e-01 3.19e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 7.5916654389371487e+00 7.5916654389371487e+00\n", - "Dual infeasibility......: 2.1029543365471748e-01 2.1029543365471748e-01\n", - "Constraint violation....: 1.6970756385990349e+00 1.6970756385990349e+00\n", - "Complementarity.........: 9.0269724144513433e-04 9.0269724144513433e-04\n", - "Overall NLP error.......: 1.6970756385990349e+00 1.6970756385990349e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 115\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 115\n", - "Number of inequality constraint evaluations = 115\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.437\n", - "Total CPU secs in NLP function evaluations = 139.743\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 570.00us ( 4.96us) 558.10us ( 4.85us) 115\n", - " nlp_g | 5.37 s ( 46.66ms) 5.15 s ( 44.82ms) 115\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 410.00us ( 4.02us) 402.64us ( 3.95us) 102\n", - " nlp_jac_g | 137.34 s ( 1.35 s) 132.13 s ( 1.30 s) 102\n", - " total | 144.19 s (144.19 s) 138.71 s (138.71 s) 1\n", - "Timestamp 24000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.15e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0518905e+01 1.13e+01 3.15e+04 -1.5 3.15e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 9.3539179e+00 4.11e+00 4.42e+00 1.3 1.50e+03 - 1.00e+00 1.00e+00f 1\n", - " 3 2.9190119e+00 4.38e-01 2.08e-01 -0.8 5.26e+02 - 9.96e-01 1.00e+00f 1\n", - " 4 2.3405569e+00 6.76e-03 2.17e-01 -6.5 3.68e+01 - 9.89e-01 1.00e+00h 1\n", - " 5 2.3378370e+00 5.60e-03 4.70e-02 -4.0 2.41e+01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.3436282e+00 2.68e-04 1.14e-03 -5.9 6.19e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 2.3437253e+00 1.76e-04 6.05e-03 -8.0 5.68e+00 - 1.00e+00 1.00e+00h 1\n", - " 8 2.3426666e+00 1.91e-03 3.17e-03 -10.0 4.86e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 2.3425208e+00 2.65e-03 1.47e-02 -11.0 2.03e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.3351259e+00 6.49e-03 3.24e-02 -11.0 4.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 2.3438107e+00 5.70e-04 5.58e-03 -11.0 3.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 2.3414538e+00 3.04e-03 1.63e-02 -11.0 2.74e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.3451207e+00 1.04e-05 2.08e-03 -11.0 3.62e+01 - 1.00e+00 1.00e+00H 1\n", - " 14 2.3366032e+00 4.75e-03 1.42e-03 -11.0 2.26e+01 - 1.00e+00 1.00e+00f 1\n", - " 15 2.3449449e+00 4.63e-05 2.16e-03 -11.0 4.44e+01 - 1.00e+00 1.00e+00H 1\n", - " 16 2.3431067e+00 7.27e-04 2.08e-03 -11.0 1.07e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 2.3349046e+00 6.88e-03 1.53e-03 -11.0 2.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 2.3443246e+00 4.62e-04 2.09e-03 -11.0 7.01e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 2.3428880e+00 2.74e-03 1.17e-03 -11.0 2.01e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.2849422e+00 4.01e-02 1.70e-02 -11.0 1.16e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 2.2781858e+00 4.88e-02 8.47e-03 -11.0 7.61e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 2.3387984e+00 5.12e-03 1.16e-02 -11.0 3.76e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 1.4178423e+00 1.64e+00 7.65e-01 -11.0 1.41e+05 - 2.23e-01 5.64e-02f 3\n", - " 24 2.4107234e+00 7.30e-01 7.10e-01 -11.0 7.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 25 1.8916926e+00 1.56e+00 5.20e-01 -11.0 1.06e+04 - 1.00e+00 1.00e+00f 1\n", - " 26 1.8405201e+00 1.83e+00 8.76e-01 -10.8 1.32e+04 - 1.00e+00 5.00e-01f 2\n", - " 27 2.2219880e+00 9.82e-01 3.32e-01 -10.9 8.42e+03 - 1.00e+00 1.00e+00h 1\n", - " 28 1.8444467e+00 1.12e+00 5.00e-01 -11.0 1.27e+04 - 1.00e+00 1.00e+00f 1\n", - " 29 1.8345181e+00 1.35e+00 2.79e-01 -9.1 9.35e+05 - 1.00e+00 1.76e-03f 6\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.9001357e+00 1.18e+00 5.30e-01 -9.3 2.07e+04 - 6.33e-01 1.00e+00h 1\n", - " 31 2.2648052e+00 1.80e+00 3.25e-01 -9.3 2.76e+04 - 1.00e+00 5.00e-01h 2\n", - " 32 2.2318527e+00 1.93e+00 2.83e-01 -9.3 1.61e+05 - 1.00e+00 7.24e-02h 2\n", - " 33 2.9739855e+00 4.54e-01 4.67e-01 -9.3 8.32e+04 - 1.29e-01 6.18e-01h 1\n", - " 34 1.7974366e+00 8.90e-01 5.22e-01 -9.3 1.56e+04 - 1.00e+00 1.00e+00f 1\n", - " 35 1.5545404e+00 5.39e-01 6.47e-01 -2.7 1.79e+04 - 9.08e-01 1.00e+00h 1\n", - " 36 1.6206676e+00 5.14e-01 3.88e-01 -3.2 4.92e+03 - 1.00e+00 5.00e-01h 2\n", - " 37 1.6508422e+00 5.07e-01 1.91e-01 -4.3 2.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 2.1479784e+00 2.80e-01 5.89e-01 -2.3 2.26e+04 - 1.00e+00 5.60e-01H 1\n", - " 39 1.6895561e+00 2.22e-01 4.73e-01 -2.5 9.14e+03 - 9.55e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.6784868e+00 3.92e-01 1.20e-01 -2.1 2.68e+03 - 8.39e-01 1.00e+00h 1\n", - " 41 1.5514113e+00 7.76e-01 3.12e-01 -1.1 1.65e+06 - 2.99e-02 1.79e-03f 4\n", - " 42 1.6799830e+00 7.67e-01 1.51e-01 -2.9 4.17e+03 - 9.97e-01 1.00e+00h 1\n", - " 43 1.6446073e+00 4.13e-01 1.88e-01 -2.9 1.02e+05 - 3.66e-01 3.84e-02h 2\n", - " 44 1.5810223e+00 5.35e-01 3.23e-01 -2.9 4.06e+04 - 1.08e-01 3.14e-01h 2\n", - " 45 1.6081326e+00 3.01e-01 7.97e-02 -2.9 5.08e+03 - 1.00e+00 5.00e-01h 2\n", - " 46 1.6326123e+00 2.10e-01 1.64e-01 -2.6 1.24e+04 - 1.00e+00 9.76e-01h 1\n", - " 47 1.5289034e+00 2.12e-01 2.07e-01 -3.6 4.64e+03 - 1.00e+00 1.00e+00h 1\n", - " 48 1.4706005e+00 5.03e-01 9.51e-02 -1.9 1.57e+04 - 8.64e-01 1.00e+00h 1\n", - " 49 1.6514670e+00 4.63e-01 1.58e-01 -2.9 6.44e+03 - 9.91e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.6348999e+00 2.80e-01 1.66e-01 -3.0 1.46e+05 - 2.40e-01 1.56e-01h 1\n", - " 51 1.8296992e+00 1.51e-01 2.10e-01 -3.0 5.32e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 1.6304149e+00 5.91e-01 3.11e-01 -1.6 1.52e+04 - 4.30e-01 5.51e-01h 1\n", - " 53 1.5363797e+00 3.87e-01 1.26e-01 -2.2 7.10e+04 - 2.26e-02 1.67e-01h 1\n", - " 54 1.5515123e+00 3.62e-01 1.38e-01 -2.2 8.46e+04 - 8.77e-01 1.71e-02f 4\n", - " 55 1.5455867e+00 4.25e-01 1.08e-01 -2.2 4.48e+03 - 8.17e-01 1.47e-01h 2\n", - " 56 1.5177568e+00 3.84e-01 8.11e-02 -2.2 2.07e+04 - 2.48e-01 1.66e-01h 1\n", - " 57 1.7110979e+00 2.63e-03 3.54e-01 -4.1 3.54e-01 - 9.98e-01 1.00e+00h 1\n", - " 58 1.7102230e+00 1.48e-06 1.22e-03 -6.0 3.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.7102228e+00 2.13e-07 1.79e-05 -8.1 5.69e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.7102231e+00 4.55e-09 8.72e-05 -11.0 7.99e-05 - 1.00e+00 1.00e+00h 1\n", - " 61 1.7102229e+00 7.00e-08 1.78e-05 -11.0 3.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 62 1.7102231e+00 1.86e-08 5.97e-05 -11.0 1.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 1.7102230e+00 1.42e-07 1.17e-04 -11.0 2.52e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 1.7102230e+00 1.26e-07 4.07e-05 -11.0 4.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 1.7102230e+00 7.23e-08 5.75e-05 -11.0 1.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 66 1.7102230e+00 4.38e-08 4.05e-05 -11.0 2.94e-04 - 1.00e+00 1.00e+00h 1\n", - " 67 1.7102215e+00 6.22e-06 6.11e-03 -11.0 1.97e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 1.7102229e+00 2.95e-07 7.19e-05 -11.0 3.65e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 1.7102120e+00 8.45e-06 3.51e-03 -11.0 5.12e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.7102226e+00 1.58e-07 4.69e-05 -11.0 5.00e-03 - 1.00e+00 1.00e+00h 1\n", - " 71 1.7102228e+00 9.48e-11 3.02e-05 -11.0 3.74e-03 - 1.00e+00 1.00e+00H 1\n", - " 72 1.7102228e+00 1.02e-07 2.84e-05 -11.0 3.54e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 1.7102224e+00 2.86e-06 1.41e-03 -11.0 3.70e-02 - 1.00e+00 1.00e+00h 1\n", - " 74 1.7101961e+00 2.50e-05 6.98e-03 -11.0 2.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 75 1.7102248e+00 4.26e-08 3.53e-05 -11.0 1.31e+00 - 1.00e+00 1.00e+00H 1\n", - " 76 1.7099504e+00 1.29e-03 1.19e-03 -11.0 5.64e+00 - 1.00e+00 1.00e+00h 1\n", - " 77 1.7101507e+00 2.98e-04 1.40e-03 -11.0 2.30e+00 - 1.00e+00 1.00e+00h 1\n", - " 78 1.7101756e+00 2.28e-04 2.05e-03 -11.0 8.83e-01 - 1.00e+00 1.00e+00h 1\n", - " 79 1.7102041e+00 7.48e-05 1.33e-03 -11.0 1.23e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.7094210e+00 5.22e-03 6.27e-03 -11.0 1.22e+01 - 1.00e+00 1.00e+00h 1\n", - " 81 1.7087800e+00 1.46e-02 5.28e-03 -9.0 6.60e+01 - 1.00e+00 5.14e-01h 1\n", - " 82 1.7087728e+00 1.46e-02 5.26e-03 -7.1 8.30e+01 - 1.00e+00 3.40e-03h 1\n", - " 83 1.6987601e+00 3.10e-01 1.97e-01 -6.7 1.42e+03 - 1.00e+00 1.00e+00h 1\n", - " 84 1.6926585e+00 1.05e-01 6.05e-02 -5.9 1.21e+03 - 9.71e-01 1.00e+00h 1\n", - " 85 1.6519824e+00 2.54e-01 5.81e-02 -4.0 1.98e+03 - 5.38e-01 1.00e+00h 1\n", - " 86 1.6552332e+00 2.87e-01 2.91e-02 -2.8 8.21e+04 - 1.00e+00 9.45e-03h 7\n", - " 87 1.7040471e+00 3.01e-02 1.26e-01 -2.9 2.22e+02 - 9.42e-01 1.00e+00h 1\n", - " 88 1.6935263e+00 1.71e-01 2.78e-02 -4.2 1.76e+03 - 1.00e+00 1.00e+00h 1\n", - " 89 1.6882314e+00 2.17e-01 2.23e-02 -4.1 2.60e+04 - 2.56e-01 3.07e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.5745908e+00 3.69e-01 2.69e-01 -2.7 1.31e+04 - 1.00e+00 3.96e-01f 1\n", - " 91 1.6355017e+00 3.37e-01 1.46e-01 -2.6 1.68e+03 - 1.00e+00 6.84e-01H 1\n", - " 92 1.5653537e+00 1.54e-01 8.62e-02 -2.3 1.99e+03 - 6.57e-01 1.00e+00h 1\n", - " 93 1.6054045e+00 9.77e-02 5.43e-02 -3.5 1.56e+03 - 4.30e-01 4.35e-01H 1\n", - " 94 1.6124975e+00 1.44e-01 5.94e-02 -3.3 1.79e+03 - 1.00e+00 1.25e-01h 4\n", - " 95r 1.6124975e+00 1.44e-01 9.99e+02 -0.8 0.00e+00 - 0.00e+00 3.89e-07R 20\n", - " 96r 1.6653905e+00 4.05e-02 4.27e+02 -3.0 1.25e+02 - 1.00e+00 1.55e-03f 1\n", - " 97 1.6866339e+00 1.93e-02 2.95e-01 -2.8 1.73e+03 - 1.00e+00 5.64e-01H 1\n", - " 98 1.6797925e+00 1.03e-01 2.06e-01 -2.9 3.61e+03 - 1.00e+00 4.17e-01h 1\n", - " 99 1.7050945e+00 1.22e-02 4.69e-02 -3.2 1.18e+02 - 6.21e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.7036867e+00 1.99e-01 6.88e-02 -2.9 1.24e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.7036866659822316e+00 1.7036866659822316e+00\n", - "Dual infeasibility......: 6.8836724868660354e-02 6.8836724868660354e-02\n", - "Constraint violation....: 1.9858184959344172e-01 1.9858184959344172e-01\n", - "Complementarity.........: 5.8650487999462085e-03 5.8650487999462085e-03\n", - "Overall NLP error.......: 1.9858184959344172e-01 1.9858184959344172e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 182\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 182\n", - "Number of inequality constraint evaluations = 182\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.428\n", - "Total CPU secs in NLP function evaluations = 139.145\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 830.00us ( 4.56us) 824.94us ( 4.53us) 182\n", - " nlp_g | 8.26 s ( 45.38ms) 7.89 s ( 43.33ms) 182\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 367.00us ( 3.60us) 364.38us ( 3.57us) 102\n", - " nlp_jac_g | 133.79 s ( 1.30 s) 127.81 s ( 1.24 s) 103\n", - " total | 143.56 s (143.56 s) 137.15 s (137.15 s) 1\n", - "Timestamp 24300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.78e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0428656e+01 1.67e+01 2.78e+04 -1.5 2.78e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.5467021e+01 6.70e+00 1.13e+01 0.8 1.70e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.4910146e+01 2.50e+00 7.82e-01 -1.3 3.60e+01 - 9.98e-01 1.00e+00h 1\n", - " 4 2.6312521e+01 1.30e-04 7.48e-02 -3.0 2.63e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.6312437e+01 4.48e-07 1.46e-03 -4.9 6.52e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 2.6312434e+01 1.39e-06 1.34e-03 -7.0 7.87e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 2.6312435e+01 7.21e-07 2.04e-03 -9.1 3.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 2.6312434e+01 1.34e-06 2.78e-03 -11.0 1.31e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 2.6312433e+01 1.90e-06 1.14e-03 -11.0 8.04e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.6312436e+01 2.44e-07 1.17e-04 -11.0 3.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 2.6312390e+01 1.05e-04 6.45e-03 -11.0 2.32e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 2.6312380e+01 3.79e-05 1.96e-03 -11.0 1.49e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.6312257e+01 6.06e-05 6.28e-03 -11.0 6.52e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.6312219e+01 7.79e-05 1.18e-03 -11.0 4.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.6312174e+01 5.48e-05 1.58e-03 -11.0 4.51e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.6312420e+01 6.62e-06 1.45e-03 -11.0 1.33e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 2.6312378e+01 2.58e-05 1.57e-03 -11.0 2.26e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 2.6310826e+01 1.22e-03 8.50e-03 -11.0 1.31e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 2.6312450e+01 4.93e-07 6.39e-05 -11.0 1.66e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.6312449e+01 2.56e-08 8.25e-05 -11.0 9.59e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 2.6312449e+01 8.36e-08 4.82e-05 -11.0 5.59e-04 - 1.00e+00 1.00e+00h 1\n", - " 22 2.6312449e+01 2.72e-08 7.04e-05 -11.0 3.16e-04 - 1.00e+00 1.00e+00h 1\n", - " 23 2.6312449e+01 1.42e-07 6.65e-05 -11.0 9.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 2.6312449e+01 2.52e-08 7.30e-05 -11.0 2.54e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 2.6312449e+01 2.63e-08 1.36e-04 -11.0 4.90e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 2.6312449e+01 2.42e-07 1.84e-04 -11.0 1.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 27 2.6312450e+01 1.85e-10 3.39e-05 -11.0 7.23e-04 - 1.00e+00 1.00e+00H 1\n", - " 28 2.6312449e+01 3.64e-08 2.47e-04 -11.0 4.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 29 2.6312447e+01 1.32e-06 1.37e-02 -11.0 3.19e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.6312449e+01 2.45e-07 4.88e-05 -11.0 1.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 2.6312450e+01 6.81e-08 2.52e-04 -11.0 3.73e-04 - 1.00e+00 1.00e+00h 1\n", - " 32 2.6312444e+01 3.40e-06 9.97e-03 -11.0 3.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 2.6312450e+01 1.85e-10 3.16e-04 -11.0 3.05e-02 - 1.00e+00 1.00e+00H 1\n", - " 34 2.6312405e+01 1.78e-05 6.88e-03 -11.0 9.69e-02 - 1.00e+00 1.00e+00f 1\n", - " 35 2.6312404e+01 2.27e-05 4.47e-03 -11.0 1.56e-01 - 1.00e+00 1.00e+00h 1\n", - " 36 2.6312448e+01 8.90e-06 1.90e-03 -11.0 6.06e-02 - 1.00e+00 1.00e+00h 1\n", - " 37 2.6312447e+01 4.59e-06 1.89e-03 -11.0 3.49e-02 - 1.00e+00 1.00e+00h 1\n", - " 38 2.6311308e+01 3.14e-03 8.91e-03 -11.0 7.46e+00 - 1.00e+00 1.00e+00h 1\n", - " 39 2.6308206e+01 2.24e-03 1.28e-03 -11.0 1.22e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.6306161e+01 2.92e-03 8.69e-04 -11.0 1.45e+01 - 1.00e+00 1.00e+00h 1\n", - " 41 2.6311311e+01 1.66e-04 9.98e-04 -11.0 2.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 42 2.6306973e+01 1.55e-03 1.14e-03 -11.0 1.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 43 2.6311107e+01 6.34e-04 1.19e-03 -11.0 8.31e+00 - 1.00e+00 1.00e+00h 1\n", - " 44 2.6311746e+01 5.92e-04 1.42e-03 -11.0 6.13e+00 - 1.00e+00 1.00e+00h 1\n", - " 45 2.6309927e+01 3.12e-03 1.38e-03 -11.0 2.63e+01 - 1.00e+00 1.00e+00h 1\n", - " 46 2.6307276e+01 1.52e-03 2.39e-03 -11.0 4.06e+01 - 1.00e+00 1.00e+00h 1\n", - " 47 2.6294700e+01 1.21e-02 1.87e-03 -11.0 1.94e+02 - 1.00e+00 1.00e+00h 1\n", - " 48 2.6262208e+01 3.75e-02 6.08e-03 -11.0 7.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 49 2.6302527e+01 5.57e-03 1.81e-03 -11.0 2.52e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.6271500e+01 1.35e-02 1.82e-03 -11.0 4.28e+02 - 1.00e+00 1.00e+00h 1\n", - " 51 2.5823126e+01 3.47e-01 1.42e-02 -11.0 6.88e+03 - 1.00e+00 1.00e+00f 1\n", - " 52 2.3282654e+01 7.67e-01 4.58e-02 -9.0 1.06e+05 - 1.00e+00 2.36e-01f 1\n", - " 53 2.3256064e+01 7.71e-01 4.61e-02 -7.0 3.41e+08 - 1.84e-04 7.35e-07f 1\n", - " 54 2.3255779e+01 7.71e-01 4.61e-02 -7.1 5.63e+05 - 1.00e+00 4.45e-06h 1\n", - " 55 2.5833415e+01 1.22e-01 6.21e-02 -7.0 6.35e+02 - 1.00e+00 1.00e+00h 1\n", - " 56 2.5869428e+01 1.84e-03 7.17e-03 -7.5 1.65e+01 - 1.00e+00 1.00e+00h 1\n", - " 57 2.5840688e+01 3.36e-02 3.99e-02 -9.0 2.40e+02 - 1.00e+00 1.00e+00h 1\n", - " 58 2.5813570e+01 4.03e-02 1.33e-02 -6.9 3.79e+02 - 3.17e-01 1.00e+00h 1\n", - " 59 2.5874081e+01 9.46e-06 4.61e-02 -9.3 4.61e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.5874074e+01 7.33e-07 1.28e-03 -11.0 8.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 2.5874074e+01 8.28e-07 2.18e-03 -8.7 6.55e-02 - 1.00e+00 1.92e-01h 1\n", - " 62 2.5874072e+01 1.40e-06 2.11e-03 -8.9 6.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 63 2.5874003e+01 2.91e-05 5.75e-03 -8.4 9.14e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 2.5874074e+01 1.18e-06 3.33e-03 -8.9 7.87e-03 - 1.00e+00 1.00e+00h 1\n", - " 65 2.5874075e+01 4.69e-07 1.72e-03 -9.1 7.99e-03 - 1.00e+00 1.00e+00h 1\n", - " 66 2.5873948e+01 1.20e-04 3.90e-03 -8.7 1.59e-01 - 1.00e+00 1.00e+00h 1\n", - " 67 2.5874062e+01 1.50e-05 2.21e-03 -11.0 4.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 2.5874053e+01 4.60e-05 3.61e-03 -11.0 7.66e-02 - 1.00e+00 1.00e+00h 1\n", - " 69 2.5874072e+01 1.92e-06 1.61e-03 -10.6 4.10e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.5874038e+01 3.93e-05 1.96e-03 -11.0 3.07e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 2.5873837e+01 1.02e-04 3.08e-03 -11.0 6.69e-01 - 3.40e-01 1.00e+00h 1\n", - " 72 2.5872394e+01 5.70e-04 6.30e-03 -11.0 8.68e+00 - 1.00e+00 1.00e+00h 1\n", - " 73 2.5873717e+01 6.60e-04 8.51e-04 -11.0 3.53e+00 - 1.00e+00 1.00e+00h 1\n", - " 74 2.5872432e+01 2.15e-03 5.07e-03 -11.0 5.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 75 2.5870548e+01 3.00e-03 5.67e-03 -11.0 1.48e+01 - 8.11e-01 1.00e+00h 1\n", - " 76 2.5873936e+01 1.28e-03 2.23e-03 -11.0 3.94e+00 - 1.00e+00 1.00e+00h 1\n", - " 77 2.5873608e+01 4.83e-04 2.88e-03 -11.0 2.66e+00 - 1.00e+00 1.00e+00h 1\n", - " 78 2.5869721e+01 4.24e-03 5.09e-03 -9.0 3.01e+01 - 1.00e+00 3.99e-01h 1\n", - " 79 2.5869732e+01 4.22e-03 4.49e-03 -9.1 9.99e+00 - 1.00e+00 3.48e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.5869803e+01 4.15e-03 5.91e-03 -9.1 3.20e-01 - 1.00e+00 1.56e-02h 7\n", - " 81 2.5874314e+01 6.33e-07 1.15e-03 -9.1 1.17e-02 - 1.00e+00 1.00e+00h 1\n", - "In iteration 81, 1 Slack too small, adjusting variable bound\n", - " 82 2.5874308e+01 5.73e-06 1.72e-03 -9.1 3.05e-02 - 1.00e+00 5.09e-01h 1\n", - " 83 2.5873741e+01 2.14e-04 2.44e-02 -9.1 1.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 84 2.5874154e+01 1.51e-04 1.93e-03 -11.0 5.99e-01 - 1.00e+00 1.00e+00h 1\n", - "In iteration 84, 1 Slack too small, adjusting variable bound\n", - " 85 2.5874295e+01 1.39e-05 3.04e-03 -10.9 1.69e-01 - 1.00e+00 9.59e-01h 1\n", - " 86 2.5874279e+01 4.03e-05 1.59e-03 -10.9 1.68e-01 - 7.94e-02 1.00e+00h 1\n", - "In iteration 86, 1 Slack too small, adjusting variable bound\n", - " 87 2.5874279e+01 4.04e-05 1.42e-03 -10.9 4.40e+00 - 1.00e+00 1.58e-04h 1\n", - " 88 2.5874322e+01 1.93e-06 6.89e-04 -10.9 2.00e-02 - 1.00e+00 1.00e+00h 1\n", - " 89 2.5874349e+01 6.93e-08 5.24e-05 -10.9 3.12e+00 - 7.52e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.5874245e+01 2.88e-04 2.26e-03 -10.2 3.43e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 2.5872868e+01 5.89e-04 2.05e-03 -8.6 3.53e+01 - 1.00e+00 1.26e-01h 1\n", - " 92 2.5874415e+01 4.44e-07 1.20e-04 -8.9 1.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 93 2.5874415e+01 1.24e-07 4.22e-05 -9.1 8.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 94 2.5874416e+01 5.63e-08 7.33e-05 -9.1 2.81e-04 - 1.00e+00 1.00e+00h 1\n", - " 95 2.5874416e+01 1.19e-07 1.93e-05 -9.2 4.07e-04 - 1.00e+00 6.02e-01h 1\n", - " 96 2.5874416e+01 9.12e-09 3.49e-04 -9.4 9.07e-05 - 1.00e+00 1.00e+00h 1\n", - " 97 2.5874416e+01 6.62e-08 5.87e-05 -11.0 2.52e-04 - 1.00e+00 1.00e+00h 1\n", - "In iteration 97, 1 Slack too small, adjusting variable bound\n", - " 98 2.5874416e+01 3.48e-08 1.06e-04 -10.9 2.44e-04 - 1.00e+00 4.37e-01h 1\n", - " 99 2.5874416e+01 1.56e-07 2.95e-05 -10.9 5.11e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.5874416e+01 1.96e-09 6.38e-05 -10.9 9.61e-05 - 7.64e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.5874415758061470e+01 2.5874415758061470e+01\n", - "Dual infeasibility......: 6.3815434825973471e-05 6.3815434825973471e-05\n", - "Constraint violation....: 1.9562449438126350e-09 1.9562449438126350e-09\n", - "Complementarity.........: 1.1577740221464178e-11 1.1577740221464178e-11\n", - "Overall NLP error.......: 6.3815434825973471e-05 6.3815434825973471e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 110\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 110\n", - "Number of inequality constraint evaluations = 110\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.476\n", - "Total CPU secs in NLP function evaluations = 139.753\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 522.00us ( 4.75us) 512.68us ( 4.66us) 110\n", - " nlp_g | 5.17 s ( 46.99ms) 4.95 s ( 44.97ms) 110\n", - " nlp_grad | 1.37 s ( 1.37 s) 1.31 s ( 1.31 s) 1\n", - " nlp_grad_f | 455.00us ( 4.46us) 372.67us ( 3.65us) 102\n", - " nlp_jac_g | 137.53 s ( 1.35 s) 131.85 s ( 1.29 s) 102\n", - " total | 144.21 s (144.21 s) 138.25 s (138.25 s) 1\n", - "Timestamp 24600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.14e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9630622e+01 1.29e+01 4.14e+03 -1.5 4.14e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.3678609e+00 4.33e+00 9.76e+00 0.4 1.29e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 7.7230399e+00 1.16e+00 7.22e-01 -1.6 7.50e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 8.4748433e+00 1.65e-03 7.20e-02 -3.4 1.57e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 8.4756262e+00 1.72e-07 8.05e-05 -5.3 1.68e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 8.4756261e+00 1.07e-07 5.94e-05 -11.0 4.34e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 8.4756260e+00 2.32e-07 1.41e-05 -11.0 1.21e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 8.4756263e+00 4.27e-09 3.19e-05 -11.0 1.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 8.4756241e+00 1.11e-06 6.54e-03 -11.0 5.25e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 8.4756185e+00 3.89e-06 1.13e-03 -11.0 3.65e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 8.4756131e+00 1.29e-05 1.60e-03 -11.0 6.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 8.4756146e+00 5.00e-06 1.25e-03 -11.0 3.87e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 8.4755799e+00 2.80e-05 4.11e-03 -11.0 1.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 8.4755881e+00 2.30e-05 1.99e-03 -11.0 1.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 8.4756098e+00 6.23e-06 1.93e-03 -11.0 3.97e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 8.4756150e+00 6.77e-06 1.40e-03 -11.0 4.29e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 8.4755357e+00 6.17e-05 4.08e-03 -11.0 1.40e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 8.4755879e+00 1.10e-05 1.44e-03 -11.0 6.18e-02 - 1.00e+00 1.00e+00h 1\n", - " 19 8.4755926e+00 1.76e-05 3.69e-03 -11.0 8.45e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.4755130e+00 8.20e-05 3.20e-03 -11.0 4.29e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 8.4755722e+00 5.00e-05 9.72e-04 -11.0 1.84e-01 - 1.00e+00 1.00e+00h 1\n", - " 22 8.4755212e+00 4.85e-05 2.14e-03 -11.0 5.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 8.4755597e+00 3.21e-05 1.19e-03 -11.0 2.72e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 8.4756122e+00 1.41e-05 8.70e-04 -11.0 1.15e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 8.4749777e+00 3.96e-04 3.38e-03 -11.0 8.80e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 8.4726318e+00 1.61e-03 7.42e-03 -11.0 1.91e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 8.4760537e+00 2.62e-04 1.44e-03 -11.0 6.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 28 8.4584843e+00 1.44e-02 3.12e-03 -11.0 8.72e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 8.4317796e+00 2.07e-02 3.48e-03 -11.0 1.32e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.4715655e+00 1.97e-05 3.49e-02 -11.0 3.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 31 8.4715821e+00 3.59e-07 6.53e-05 -11.0 1.51e-03 - 1.00e+00 1.00e+00h 1\n", - " 32 8.4715816e+00 4.08e-07 3.89e-05 -11.0 2.55e-03 - 1.00e+00 1.00e+00h 1\n", - " 33 8.4715821e+00 3.64e-07 3.33e-05 -11.0 1.40e-03 - 1.00e+00 1.00e+00h 1\n", - " 34 8.4715823e+00 9.41e-08 9.54e-05 -11.0 9.02e-04 - 1.00e+00 1.00e+00h 1\n", - " 35 8.4715822e+00 2.73e-07 1.12e-04 -11.0 1.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 36 8.4715820e+00 3.37e-07 3.89e-05 -11.0 8.37e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 8.4715823e+00 3.81e-08 2.10e-05 -11.0 7.88e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 8.4715824e+00 1.63e-08 1.79e-05 -11.0 2.07e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 8.4715824e+00 3.71e-09 6.48e-05 -11.0 1.65e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 8.4715824e+00 5.08e-08 1.07e-04 -11.0 1.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 8.4715798e+00 1.25e-06 4.50e-03 -11.0 8.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 8.4715823e+00 8.97e-10 2.27e-04 -11.0 1.06e-04 - 1.00e+00 1.00e+00h 1\n", - " 43 8.4715822e+00 4.11e-08 2.50e-05 -11.0 1.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 44 8.4715822e+00 6.70e-09 1.21e-04 -11.0 9.93e-05 - 1.00e+00 1.00e+00h 1\n", - " 45 8.4715820e+00 1.49e-07 7.56e-05 -11.0 6.00e-04 - 1.00e+00 1.00e+00h 1\n", - " 46 8.4715822e+00 5.92e-09 1.66e-04 -11.0 1.26e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 8.4715821e+00 1.63e-07 2.68e-05 -11.0 5.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 8.4715822e+00 7.60e-08 5.40e-05 -11.0 4.21e-04 - 1.00e+00 1.00e+00h 1\n", - " 49 8.4715822e+00 1.05e-08 5.95e-05 -11.0 1.76e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.4715717e+00 1.29e-05 1.03e-02 -11.0 1.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 51 8.4715727e+00 8.21e-06 1.10e-03 -11.0 8.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 8.4715499e+00 3.23e-05 2.29e-03 -11.0 1.78e-01 - 1.00e+00 1.00e+00h 1\n", - " 53 8.4715205e+00 6.06e-05 2.99e-03 -11.0 3.17e-01 - 1.00e+00 1.00e+00h 1\n", - " 54 8.4714447e+00 1.50e-04 2.34e-03 -11.0 6.02e-01 - 1.00e+00 1.00e+00h 1\n", - " 55 8.4715146e+00 3.31e-05 1.31e-03 -11.0 2.97e-01 - 1.00e+00 1.00e+00h 1\n", - " 56 8.4715828e+00 2.13e-06 1.06e-03 -11.0 1.20e-01 - 1.00e+00 1.00e+00h 1\n", - " 57 8.4715521e+00 2.63e-05 2.07e-03 -11.0 2.62e-01 - 1.00e+00 1.00e+00h 1\n", - " 58 8.4715199e+00 6.43e-05 2.06e-03 -11.0 1.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 59 8.4715824e+00 6.89e-06 2.79e-03 -11.0 4.86e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.4715752e+00 1.33e-05 1.26e-03 -11.0 1.59e-01 - 1.00e+00 1.00e+00h 1\n", - " 61 8.4715608e+00 1.92e-05 1.07e-03 -11.0 8.31e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 8.4715403e+00 2.18e-05 1.08e-03 -11.0 2.32e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 8.4715761e+00 1.30e-05 1.27e-03 -11.0 1.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 64 8.4715537e+00 2.55e-05 1.10e-03 -11.0 7.92e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 8.4715469e+00 4.08e-05 4.80e-03 -11.0 1.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 66 8.4715601e+00 3.03e-05 1.44e-03 -11.0 1.59e-01 - 1.00e+00 1.00e+00h 1\n", - " 67 8.4713674e+00 3.92e-04 2.35e-03 -11.0 3.14e+00 - 1.00e+00 1.00e+00h 1\n", - " 68 8.4710493e+00 1.34e-03 2.07e-03 -11.0 1.01e+01 - 1.00e+00 1.00e+00h 1\n", - " 69 8.4714053e+00 4.94e-05 1.25e-03 -11.0 2.66e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.4709697e+00 1.61e-03 1.55e-03 -11.0 7.73e+00 - 1.00e+00 1.00e+00h 1\n", - " 71 8.4704989e+00 9.41e-04 4.17e-03 -11.0 2.06e+01 - 1.00e+00 1.00e+00h 1\n", - " 72 8.3790859e+00 8.20e-02 3.23e-02 -11.0 2.25e+02 - 1.00e+00 1.00e+00f 1\n", - " 73 8.4629996e+00 3.62e-03 6.83e-03 -11.0 1.03e+02 - 1.00e+00 1.00e+00h 1\n", - " 74 8.4505288e+00 3.93e-02 4.87e-03 -11.0 1.87e+02 - 1.00e+00 1.00e+00h 1\n", - " 75 8.4307798e+00 1.92e-02 3.57e-03 -11.0 8.61e+02 - 1.00e+00 1.00e+00h 1\n", - " 76 7.7572200e+00 3.98e-01 7.72e-02 -11.0 3.95e+03 - 1.00e+00 1.00e+00f 1\n", - " 77 8.6304009e+00 1.42e-01 1.39e-01 -11.0 1.45e+04 - 1.00e+00 1.00e+00H 1\n", - " 78 8.2218271e+00 5.57e-01 8.24e-02 -11.0 3.51e+03 - 1.00e+00 1.00e+00f 1\n", - " 79 6.9104055e+00 2.36e+00 4.05e-01 -10.2 4.45e+04 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 6.9668134e+00 2.72e+00 3.50e-01 -8.2 2.08e+04 - 1.00e+00 2.21e-01h 2\n", - " 81 9.9383389e+00 6.50e-01 4.48e-01 -7.4 5.41e+04 - 1.00e+00 1.00e+00h 1\n", - " 82 8.2402264e+00 4.14e-01 1.05e-01 -7.5 1.03e+04 - 1.00e+00 1.00e+00f 1\n", - " 83 6.9021249e+00 3.15e+00 1.18e-01 -6.4 8.57e+04 - 1.00e+00 5.69e-01f 1\n", - " 84 7.9025403e+00 2.97e+00 1.50e-01 -6.5 2.84e+04 - 1.00e+00 1.00e+00h 1\n", - " 85 7.6187675e+00 1.33e+00 2.58e-01 -6.7 6.75e+04 - 7.19e-01 5.05e-01h 1\n", - " 86 7.0379381e+00 2.58e+00 1.93e-01 -6.3 1.06e+04 - 1.00e+00 1.00e+00h 1\n", - " 87 6.7654926e+00 2.24e+00 2.07e-01 -4.4 1.63e+04 - 9.71e-01 1.00e+00h 1\n", - " 88 6.8448141e+00 2.01e+00 5.42e-02 -10.0 2.85e+04 - 5.30e-02 1.74e-01h 1\n", - " 89 6.7829441e+00 1.94e+00 5.96e-02 -2.6 1.00e+05 - 1.00e+00 2.92e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 7.0441988e+00 1.42e+00 7.71e-01 -0.4 3.48e+05 - 1.51e-01 1.79e-01f 1\n", - " 91 7.5441737e+00 5.08e-01 4.14e-01 -1.9 3.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 92 8.5124887e+00 2.01e-01 3.45e-02 -3.4 2.81e+03 - 4.16e-01 1.00e+00h 1\n", - " 93 8.4595483e+00 4.20e-01 7.76e-02 -2.0 9.84e+03 - 8.23e-01 1.00e+00h 1\n", - " 94 8.0262235e+00 4.75e-01 6.25e-02 -2.0 5.30e+04 - 2.39e-01 1.88e-01f 1\n", - " 95 8.9033753e+00 2.27e-02 1.81e-01 -2.0 3.05e+03 - 1.00e+00 1.00e+00H 1\n", - " 96 8.3729615e+00 7.69e-01 8.48e-02 -2.0 7.15e+04 - 3.06e-01 1.45e-01f 1\n", - " 97 6.5739089e+00 9.50e-01 1.29e-01 -2.0 3.34e+03 - 1.00e+00 1.00e+00f 1\n", - " 98 8.5514431e+00 1.89e-01 9.05e-02 -8.0 4.65e+03 - 4.11e-01 1.00e+00h 1\n", - " 99 8.3206077e+00 2.62e-01 6.84e-02 -2.4 5.56e+03 - 1.00e+00 2.03e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.2004289e+00 5.98e-01 7.34e-02 -2.2 3.93e+03 - 1.00e+00 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.2004289262760715e+00 8.2004289262760715e+00\n", - "Dual infeasibility......: 7.3404030947156362e-02 7.3404030947156362e-02\n", - "Constraint violation....: 5.9821003068528000e-01 5.9821003068528000e-01\n", - "Complementarity.........: 6.8067724042866215e-03 6.8067724042866215e-03\n", - "Overall NLP error.......: 5.9821003068528000e-01 5.9821003068528000e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 106\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 106\n", - "Number of inequality constraint evaluations = 106\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.458\n", - "Total CPU secs in NLP function evaluations = 136.438\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 509.00us ( 4.80us) 499.34us ( 4.71us) 106\n", - " nlp_g | 4.80 s ( 45.31ms) 4.60 s ( 43.39ms) 106\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.31 s ( 1.31 s) 1\n", - " nlp_grad_f | 378.00us ( 3.71us) 372.10us ( 3.65us) 102\n", - " nlp_jac_g | 134.84 s ( 1.32 s) 129.39 s ( 1.27 s) 102\n", - " total | 141.14 s (141.14 s) 135.44 s (135.44 s) 1\n", - "Timestamp 24900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 7.67e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9901425e+01 1.26e+01 7.67e+03 -1.5 7.67e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.8879432e+00 4.29e+00 8.56e+00 0.6 1.57e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 4.1903345e+00 8.17e-01 7.11e-01 -1.5 5.88e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 4.7171718e+00 2.74e-03 1.09e-01 -3.3 1.26e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 4.7183269e+00 2.64e-07 2.74e-05 -5.2 2.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 4.7183269e+00 3.35e-08 8.17e-05 -11.0 2.11e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 4.7182903e+00 1.56e-05 7.08e-03 -11.0 2.70e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 4.7088586e+00 7.31e-03 4.74e-03 -11.0 6.62e+01 - 1.00e+00 1.00e+00f 1\n", - " 9 4.7200928e+00 2.56e-06 6.87e-03 -11.0 6.66e+01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.7175136e+00 2.86e-03 1.81e-03 -11.0 2.44e+01 - 1.00e+00 1.00e+00f 1\n", - " 11 4.7195378e+00 1.12e-03 2.55e-03 -11.0 9.85e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 4.5544337e+00 1.14e-01 2.09e-02 -11.0 2.70e+02 - 1.00e+00 1.00e+00f 1\n", - " 13 4.7052978e+00 2.11e-02 2.55e-02 -11.0 8.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 4.6731131e+00 2.96e-02 1.09e-02 -11.0 7.38e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 4.6082257e+00 7.72e-02 1.26e-02 -11.0 8.04e+02 - 1.00e+00 1.00e+00h 1\n", - " 16 4.1998443e+00 1.95e+00 4.80e-01 -11.0 2.56e+06 - 1.25e-02 3.01e-03f 3\n", - " 17 4.8423794e+00 1.06e-01 3.55e-01 -11.0 1.91e+03 - 1.00e+00 1.00e+00h 1\n", - " 18 3.9273063e+00 1.01e+00 1.47e-01 -11.0 5.05e+03 - 1.00e+00 1.00e+00f 1\n", - " 19 4.8844776e+00 4.34e-01 6.80e-01 -9.9 3.24e+05 - 1.00e+00 1.12e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.9619628e+00 2.11e+00 2.96e-01 -10.1 1.47e+04 - 2.32e-01 1.00e+00f 1\n", - " 21 3.9377015e+00 1.44e+00 4.77e-01 -10.1 1.13e+06 - 6.75e-02 2.11e-02f 2\n", - " 22 3.8149901e+00 1.70e+00 3.22e-01 -10.1 5.53e+04 - 1.00e+00 4.33e-01h 1\n", - " 23 5.1490704e+00 9.93e-01 9.04e-01 -9.9 4.75e+04 - 2.63e-10 1.00e+00h 1\n", - " 24 4.9119336e+00 5.07e+00 4.13e-01 -10.0 6.93e+04 - 9.18e-01 2.43e-01F 1\n", - " 25 4.4997797e+00 4.25e+00 3.67e-01 -10.0 1.08e+04 - 1.00e+00 3.14e-01h 1\n", - " 26 3.9997337e+00 2.61e+00 5.41e-01 -10.0 7.25e+03 - 1.00e+00 1.00e+00h 1\n", - " 27 3.8586269e+00 1.50e+00 1.68e-01 -10.0 1.15e+04 - 2.28e-01 4.68e-01h 1\n", - " 28 3.7507630e+00 1.37e+00 6.02e-01 -8.1 1.83e+04 - 1.00e+00 8.87e-01h 1\n", - " 29 3.7499593e+00 1.30e+00 5.84e-01 -6.2 6.27e+03 - 1.00e+00 2.59e-02h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 3.6825272e+00 1.14e+00 5.63e-01 -11.0 2.11e+04 - 3.15e-04 4.96e-02h 1\n", - " 31 3.6840087e+00 1.14e+00 5.61e-01 -5.6 1.71e+04 - 1.00e+00 3.76e-03H 1\n", - " 32 3.8797682e+00 9.27e-01 4.10e-01 -3.7 2.30e+04 - 1.00e+00 1.00e+00h 1\n", - " 33r 3.8797682e+00 9.27e-01 9.99e+02 -0.0 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - " 34r 4.4482330e+00 1.90e-01 9.07e+02 -2.2 2.57e+02 - 1.00e+00 3.95e-03f 1\n", - " 35 3.8017723e+00 1.89e+00 9.06e-02 -2.4 5.86e+03 - 1.00e+00 9.47e-01f 1\n", - " 36 3.7027548e+00 1.99e+00 2.94e-01 -3.3 1.60e+04 - 4.10e-01 1.37e-01F 1\n", - " 37 3.4398609e+00 1.03e+00 1.22e-01 -2.8 3.72e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 4.5814755e+00 1.45e-01 3.53e-01 -3.1 3.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 4.4788264e+00 2.08e-01 1.76e-01 -3.3 8.38e+02 - 7.06e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 4.5213670e+00 1.11e-01 2.61e-02 -3.6 5.54e+02 - 1.00e+00 1.00e+00h 1\n", - " 41 4.1868534e+00 3.36e-01 2.57e-01 -4.4 4.25e+03 - 1.00e+00 1.00e+00h 1\n", - " 42 4.1801499e+00 7.61e-01 2.84e-01 -2.4 4.31e+03 - 1.57e-01 1.00e+00h 1\n", - " 43 4.4018834e+00 4.53e-01 6.04e-02 -2.7 1.41e+03 - 1.00e+00 1.00e+00h 1\n", - " 44 4.5763355e+00 2.01e-01 1.60e-02 -2.0 1.27e+03 - 3.23e-01 1.00e+00h 1\n", - " 45 3.9043481e+00 1.37e+00 3.79e-01 -2.5 5.84e+03 - 1.00e+00 8.44e-01f 1\n", - " 46 4.1592234e+00 5.36e-01 2.44e-01 -2.5 4.57e+03 - 7.00e-01 1.00e+00h 1\n", - " 47 4.0059594e+00 1.35e+00 1.94e-01 -4.5 4.63e+03 - 6.71e-01 1.00e+00H 1\n", - " 48 3.9646278e+00 1.33e+00 1.64e-01 -3.1 2.05e+04 - 1.00e+00 2.30e-02h 1\n", - " 49 3.9108116e+00 2.03e+00 6.22e-01 -3.1 3.02e+05 - 5.42e-02 3.86e-02f 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 4.4485963e+00 3.60e-01 2.88e-01 -3.1 5.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 51 4.2153445e+00 5.02e-01 2.53e-01 -3.1 7.45e+03 - 1.00e+00 1.53e-01h 1\n", - " 52 4.1743753e+00 5.00e-01 6.76e-02 -3.1 1.68e+03 - 2.24e-02 1.00e+00h 1\n", - " 53 4.0435006e+00 1.63e+00 1.74e-01 -4.1 4.82e+03 - 2.60e-01 1.00e+00h 1\n", - " 54 5.5007266e+00 1.79e+00 6.71e-01 -3.4 2.28e+04 - 3.91e-02 1.00e+00h 1\n", - " 55 3.8700252e+00 1.53e+00 2.01e-01 -3.4 1.37e+04 - 1.00e+00 1.00e+00f 1\n", - " 56 3.6983678e+00 1.37e+00 3.48e-01 -3.4 1.88e+05 - 1.15e-01 2.21e-01h 1\n", - " 57 3.6976836e+00 1.37e+00 3.47e-01 -3.4 1.15e+04 - 1.00e+00 1.41e-03h 1\n", - " 58 4.6968397e+00 2.83e-01 4.01e-01 -3.4 7.45e+03 - 7.11e-01 1.00e+00h 1\n", - " 59 3.8991023e+00 1.70e+00 3.60e-01 -3.4 9.08e+03 - 1.00e+00 7.61e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.4863507e+00 1.00e+00 6.23e-01 -3.4 6.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 4.1771409e+00 3.34e-01 8.00e-02 -0.8 4.05e+03 - 7.19e-01 8.48e-01h 1\n", - " 62 4.5987010e+00 5.81e-01 1.16e-01 -1.2 1.56e+03 - 1.00e+00 1.00e+00h 1\n", - " 63 4.6848828e+00 3.94e-01 6.12e-02 -1.9 2.45e+03 - 4.60e-01 1.00e+00h 1\n", - " 64 3.9418808e+00 1.08e+00 1.93e-01 -1.9 1.45e+04 - 2.19e-01 1.00e+00f 1\n", - " 65 3.4211003e+00 1.15e+00 2.69e-01 -1.9 1.33e+06 - 3.33e-03 4.15e-03f 4\n", - " 66 4.7796687e+00 2.27e-01 4.07e-01 -1.7 3.61e+04 - 9.89e-01 1.00e+00H 1\n", - " 67 4.6694284e+00 5.95e-01 4.26e-01 -1.9 1.77e+04 - 1.00e+00 2.13e-01h 1\n", - " 68 4.0483438e+00 1.88e+00 6.44e-01 -1.9 2.89e+04 - 1.63e-01 1.00e+00f 1\n", - " 69 3.4781248e+00 2.09e+00 3.94e-01 -1.9 1.01e+06 - 3.83e-02 2.35e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 3.8329984e+00 1.76e+00 2.30e-01 -1.9 1.75e+04 - 5.45e-01 3.80e-01h 1\n", - " 71 4.3030348e+00 1.19e+00 2.52e-01 -1.9 1.29e+04 - 1.00e+00 5.00e-01h 2\n", - " 72 3.4393242e+00 2.42e+00 4.08e-01 -1.9 3.04e+04 - 8.85e-02 5.36e-01F 1\n", - " 73 3.4262938e+00 2.27e+00 5.94e-01 -1.9 1.64e+04 - 1.00e+00 1.00e+00h 1\n", - " 74 3.4466677e+00 1.26e+00 3.20e-01 -1.9 5.49e+03 - 1.00e+00 1.00e+00h 1\n", - " 75 3.4221955e+00 9.92e-01 2.17e-01 -1.9 1.73e+04 - 1.00e+00 2.50e-01h 3\n", - " 76r 3.4221955e+00 9.92e-01 9.99e+02 -0.0 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - " 77r 3.6441686e+00 7.92e-01 9.88e+02 0.5 3.83e+02 - 9.84e-01 2.42e-03f 1\n", - " 78 3.9328255e+00 1.03e+00 1.36e-01 -2.9 3.31e+03 - 1.00e+00 1.00e+00s 22\n", - " 79 3.2684814e+00 1.53e+00 5.82e-01 -3.0 4.14e+04 - 1.00e+00 4.54e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 3.3924515e+00 1.45e+00 1.43e-01 -2.6 7.34e+03 - 1.00e+00 1.00e+00h 1\n", - " 81 3.7665190e+00 2.01e+00 3.63e-01 -1.9 7.05e+03 - 1.00e+00 1.00e+00h 1\n", - " 82 3.6827728e+00 1.65e+00 3.74e-01 -2.1 8.92e+04 - 3.65e-01 2.90e-01h 1\n", - " 83 3.6877763e+00 1.04e+00 9.59e-02 -2.1 1.12e+04 - 8.48e-02 1.00e+00h 1\n", - " 84 3.6582733e+00 4.39e-01 2.28e-01 -2.1 2.14e+04 - 1.00e+00 1.00e+00h 1\n", - " 85 3.6358511e+00 1.04e+00 5.65e-02 -1.8 1.91e+04 - 7.70e-01 1.00e+00h 1\n", - " 86 3.5569614e+00 1.06e+00 1.17e-01 -2.0 2.41e+04 - 6.62e-01 1.00e+00h 1\n", - " 87 3.7093331e+00 8.79e-01 1.01e-01 -2.1 2.26e+04 - 1.00e+00 1.00e+00h 1\n", - " 88 3.8239267e+00 1.81e-01 3.78e-01 -2.1 2.74e+03 - 1.00e+00 1.00e+00h 1\n", - " 89 3.7316701e+00 6.00e-01 1.81e-01 -1.8 2.41e+04 - 8.32e-01 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 3.7232540e+00 1.17e+00 1.28e-01 -7.9 5.00e+03 - 4.01e-01 5.00e-01h 2\n", - " 91 3.6910319e+00 1.60e+00 1.01e-01 -2.3 3.51e+05 - 2.37e-02 8.20e-02h 2\n", - " 92 3.5877227e+00 1.59e+00 2.75e-01 -2.3 4.07e+04 - 1.00e+00 7.11e-01h 1\n", - " 93 3.5528260e+00 2.24e+00 5.73e-01 -2.3 7.35e+04 - 2.46e-01 8.00e-02h 4\n", - " 94 3.7386039e+00 5.28e-01 2.42e-01 -2.3 1.62e+04 - 7.34e-02 5.00e-01h 2\n", - " 95 3.1332392e+00 5.86e-01 1.45e-01 -2.3 1.93e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 3.8817758e+00 1.21e+00 1.08e-01 -2.3 4.99e+04 - 1.56e-01 9.70e-01H 1\n", - " 97 3.2746641e+00 4.68e-01 1.57e-01 -2.5 6.07e+03 - 1.00e+00 1.00e+00h 1\n", - " 98 3.7777037e+00 1.94e-01 2.75e-01 -2.9 8.23e+03 - 1.00e+00 1.00e+00H 1\n", - " 99 3.7641209e+00 5.09e-01 1.18e-01 -2.5 4.01e+03 - 8.87e-01 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 3.9756982e+00 3.44e-01 1.75e-01 -2.7 2.55e+04 - 1.63e-01 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 3.9756981696393172e+00 3.9756981696393172e+00\n", - "Dual infeasibility......: 1.7519306104507060e-01 1.7519306104507060e-01\n", - "Constraint violation....: 3.4420719857108750e-01 3.4420719857108750e-01\n", - "Complementarity.........: 4.6912769134192095e-03 4.6912769134192095e-03\n", - "Overall NLP error.......: 3.4420719857108750e-01 3.4420719857108750e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 223\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 223\n", - "Number of inequality constraint evaluations = 223\n", - "Number of equality constraint Jacobian evaluations = 103\n", - "Number of inequality constraint Jacobian evaluations = 103\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.426\n", - "Total CPU secs in NLP function evaluations = 141.807\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 997.00us ( 4.47us) 994.13us ( 4.46us) 223\n", - " nlp_g | 9.97 s ( 44.71ms) 9.51 s ( 42.66ms) 223\n", - " nlp_grad | 1.38 s ( 1.38 s) 1.31 s ( 1.31 s) 1\n", - " nlp_grad_f | 351.00us ( 3.44us) 346.21us ( 3.39us) 102\n", - " nlp_jac_g | 134.75 s ( 1.30 s) 128.83 s ( 1.24 s) 104\n", - " total | 146.25 s (146.25 s) 139.80 s (139.80 s) 1\n", - "Timestamp 25200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.23e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0276220e+01 1.27e+01 2.23e+04 -1.5 2.23e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.1210113e+00 4.41e+00 8.00e+00 0.8 1.49e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.0534719e+00 6.53e-01 6.23e-01 -1.3 4.48e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 2.3672198e+00 3.61e-03 4.35e-01 -3.1 1.71e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.3686762e+00 1.07e-06 9.95e-04 -4.9 1.36e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 2.3686772e+00 3.11e-10 1.22e-04 -7.0 1.62e-02 - 1.00e+00 1.00e+00H 1\n", - " 7 2.3686717e+00 3.73e-06 1.08e-03 -11.0 1.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 2.3686753e+00 3.06e-06 6.42e-04 -11.0 8.06e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 2.3685987e+00 6.50e-05 2.35e-03 -11.0 2.80e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.3686843e+00 1.17e-08 1.54e-04 -11.0 3.53e-01 - 1.00e+00 1.00e+00H 1\n", - " 11 2.3686250e+00 6.65e-05 1.37e-03 -11.0 2.20e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 2.3686162e+00 9.64e-05 2.65e-03 -11.0 1.29e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.3686260e+00 7.01e-05 1.33e-03 -11.0 3.83e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.3683122e+00 4.15e-04 2.56e-03 -11.0 9.58e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.3686664e+00 1.41e-05 1.93e-03 -11.0 2.57e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.3686681e+00 3.04e-05 8.20e-04 -11.0 1.55e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 2.3684082e+00 1.72e-04 2.56e-03 -11.0 2.07e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 2.3663000e+00 3.61e-03 4.66e-03 -11.0 2.08e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 2.3680732e+00 1.98e-03 1.53e-03 -11.0 1.10e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.3670071e+00 1.12e-03 1.17e-03 -11.0 8.72e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 2.3686733e+00 3.40e-06 2.37e-03 -11.0 1.24e+01 - 1.00e+00 1.00e+00H 1\n", - " 22 2.3674650e+00 8.80e-04 9.87e-04 -11.0 7.20e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 2.3430830e+00 7.69e-02 2.55e-02 -11.0 1.75e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 2.1810932e+00 2.60e-01 9.52e-02 -11.0 5.00e+02 - 1.00e+00 1.00e+00h 1\n", - " 25 2.3440905e+00 1.63e-02 1.11e-01 -11.0 3.94e+02 - 1.00e+00 1.00e+00h 1\n", - " 26 2.1714271e+00 3.41e-01 3.67e-01 -11.0 2.93e+03 - 1.00e+00 1.00e+00f 1\n", - " 27 2.2287244e+00 7.61e-02 9.50e-02 -11.0 1.10e+03 - 1.00e+00 1.00e+00h 1\n", - " 28 2.2898766e+00 2.28e-02 4.47e-02 -11.0 4.64e+02 - 1.00e+00 1.00e+00h 1\n", - " 29 2.1229547e+00 2.71e-01 1.34e-01 -11.0 4.15e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.3072747e+00 1.13e-01 1.05e-01 -11.0 6.83e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 2.1123081e+00 4.29e-01 5.31e-02 -11.0 5.46e+03 - 1.00e+00 1.00e+00h 1\n", - " 32 1.8500793e+00 4.45e-01 1.64e-01 -11.0 1.18e+04 - 1.00e+00 1.00e+00h 1\n", - " 33 1.9671570e+00 6.03e-01 2.10e-01 -11.0 3.15e+03 - 1.00e+00 1.00e+00H 1\n", - " 34 2.0125252e+00 3.49e-01 1.84e-01 -11.0 6.98e+03 - 1.00e+00 1.00e+00h 1\n", - " 35 1.9001103e+00 8.42e-01 3.65e-01 -11.0 4.63e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 2.1034611e+00 4.71e-01 5.09e-01 -11.0 2.63e+04 - 1.10e-01 1.00e+00H 1\n", - " 37 2.2292126e+00 2.33e-01 1.83e-01 -11.0 7.56e+03 - 1.00e+00 1.00e+00h 1\n", - " 38 2.0398083e+00 7.12e-01 2.03e-01 -11.0 1.01e+04 - 1.00e+00 1.00e+00F 1\n", - " 39 1.8705072e+00 8.06e-01 2.94e-01 -11.0 9.50e+04 - 2.57e-01 4.04e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.9547611e+00 1.51e-01 1.51e-01 -11.0 1.45e+04 - 4.39e-10 9.48e-01h 1\n", - " 41 1.9375364e+00 1.65e-01 8.90e-02 -9.2 5.83e+07 - 1.36e-04 8.57e-05f 1\n", - " 42 1.9280500e+00 1.63e-01 8.33e-02 -9.2 3.16e+05 - 1.00e+00 2.97e-02h 1\n", - " 43 1.9280060e+00 1.63e-01 8.33e-02 -6.8 2.69e+06 - 5.91e-04 3.49e-05h 1\n", - " 44 1.9280035e+00 1.63e-01 8.33e-02 -7.2 5.41e+04 - 1.00e+00 1.73e-05h 1\n", - " 45 1.9003060e+00 2.57e-01 1.49e-01 -5.8 1.50e+03 - 1.00e+00 1.00e+00h 1\n", - " 46 2.0716314e+00 5.68e-02 1.54e-01 -4.0 4.77e+02 - 1.00e+00 1.00e+00h 1\n", - " 47 2.0221611e+00 1.14e-01 6.09e-02 -2.0 8.26e+02 - 6.23e-01 1.00e+00f 1\n", - " 48 1.9376662e+00 3.43e-01 2.34e-01 -2.9 8.04e+03 - 5.22e-01 1.00e+00h 1\n", - " 49 1.9242923e+00 2.31e-01 8.91e-02 -2.6 5.07e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.9821798e+00 2.21e-01 6.86e-02 -2.6 1.30e+04 - 3.78e-01 1.00e+00h 1\n", - " 51 1.9122566e+00 1.81e-01 1.55e-01 -2.6 2.11e+03 - 1.00e+00 1.00e+00h 1\n", - " 52r 1.9122566e+00 1.81e-01 9.99e+02 -0.7 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - " 53r 1.9784621e+00 7.02e-02 6.18e+02 -2.9 1.79e+02 - 1.00e+00 1.48e-03f 1\n", - " 54 1.9163189e+00 8.19e-02 2.64e-02 -3.9 7.56e+02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.8624471e+00 3.42e-01 2.16e-01 -3.4 6.55e+04 - 1.00e+00 7.23e-01h 1\n", - " 56 1.8633961e+00 3.14e-01 6.23e-02 -3.9 9.79e+03 - 1.00e+00 5.00e-01h 2\n", - " 57 1.9776970e+00 7.55e-02 2.37e-01 -4.7 3.48e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 1.9752327e+00 4.79e-01 1.55e-01 -4.5 5.65e+03 - 1.45e-01 3.87e-01H 1\n", - " 59 1.9741969e+00 4.76e-01 1.53e-01 -4.9 9.65e+03 - 1.00e+00 3.18e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.9530036e+00 4.59e-01 1.48e-01 -4.9 1.22e+04 - 1.00e+00 7.05e-01h 1\n", - " 61 1.9529882e+00 6.69e-01 2.31e-01 -4.9 9.86e+03 - 2.27e-01 5.00e-01h 2\n", - " 62 1.8663882e+00 4.68e-01 2.93e-01 -4.9 2.58e+03 - 5.67e-01 1.00e+00h 1\n", - " 63 1.8681768e+00 4.50e-01 2.60e-01 -4.9 7.04e+04 - 1.61e-01 4.11e-02h 5\n", - " 64 1.8952216e+00 2.88e-01 2.60e-01 -4.9 1.07e+04 - 1.00e+00 3.22e-01h 1\n", - " 65 1.9191114e+00 2.66e-01 1.19e-01 -4.9 7.68e+03 - 1.00e+00 6.88e-01H 1\n", - " 66 1.8998582e+00 1.30e-01 7.60e-02 -4.9 4.70e+03 - 8.88e-01 1.00e+00h 1\n", - " 67 1.8954737e+00 1.92e-01 2.86e-02 -3.4 6.41e+03 - 9.36e-01 1.00e+00h 1\n", - " 68 1.8953888e+00 1.76e-01 3.42e-02 -2.8 3.66e+04 - 2.00e-01 3.91e-03h 9\n", - " 69 1.8571191e+00 4.06e-01 1.79e-01 -3.0 2.34e+05 - 1.00e+00 5.83e-02h 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.9920830e+00 1.28e-01 4.20e-01 -3.0 2.50e+04 - 9.54e-01 1.00e+00h 1\n", - " 71 1.9240766e+00 1.31e-01 3.58e-01 -3.0 1.53e+04 - 1.00e+00 3.20e-01H 1\n", - " 72 1.8835291e+00 1.91e-01 9.85e-02 -3.0 3.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 1.9285025e+00 2.38e-01 1.64e-01 -2.0 2.91e+03 - 1.00e+00 1.00e+00h 1\n", - " 74 1.9155697e+00 3.73e-01 6.09e-02 -2.2 1.37e+03 - 1.00e+00 1.00e+00H 1\n", - " 75 1.9200010e+00 1.08e-01 7.61e-02 -2.2 1.30e+03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.9201350e+00 3.81e-01 9.26e-02 -2.4 1.95e+03 - 6.25e-01 1.00e+00H 1\n", - " 77 1.9092461e+00 7.60e-02 3.47e-02 -2.4 1.36e+04 - 1.00e+00 1.00e+00h 1\n", - " 78 1.8912510e+00 1.38e-01 4.18e-02 -2.1 1.99e+04 - 8.08e-01 3.83e-01h 2\n", - " 79 1.8687098e+00 3.38e-01 1.33e-01 -1.6 2.86e+04 - 1.00e+00 3.35e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.9256627e+00 1.30e-01 1.61e-01 -1.7 4.41e+03 - 1.00e+00 1.00e+00h 1\n", - " 81 1.9140507e+00 1.09e-01 6.80e-02 -2.6 1.07e+04 - 8.27e-01 1.00e+00h 1\n", - " 82 1.9078712e+00 2.72e-01 5.35e-02 -2.6 1.06e+04 - 8.42e-01 1.00e+00h 1\n", - " 83 1.9437905e+00 1.11e-01 1.99e-01 -2.6 7.29e+04 - 1.00e+00 5.14e-01H 1\n", - " 84 1.9232031e+00 1.01e-01 8.62e-02 -2.6 1.38e+04 - 1.00e+00 4.55e-01h 2\n", - " 85 1.9011270e+00 1.15e-01 1.65e-01 -2.6 2.54e+03 - 2.94e-01 1.00e+00h 1\n", - " 86 1.8943544e+00 1.63e-01 1.89e-01 -2.6 4.90e+03 - 1.00e+00 6.25e-02h 5\n", - " 87 1.9208647e+00 1.52e-01 3.37e-02 -2.3 4.67e+03 - 1.00e+00 1.00e+00H 1\n", - " 88 1.9092443e+00 1.89e-01 9.23e-02 -2.5 3.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 89 1.9056542e+00 1.37e-01 6.88e-02 -2.5 2.04e+04 - 1.67e-01 6.25e-02h 5\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.9029848e+00 3.60e-01 8.82e-02 -2.5 1.62e+05 - 7.72e-01 1.80e-01h 2\n", - " 91 1.9047505e+00 2.88e-01 5.11e-02 -2.5 1.54e+04 - 1.00e+00 2.50e-01h 3\n", - " 92 1.9047679e+00 2.91e-01 9.57e-02 -2.5 6.82e+03 - 1.00e+00 2.50e-01h 3\n", - " 93 1.9091872e+00 9.44e-02 7.55e-02 -2.5 5.91e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 1.9075436e+00 7.30e-01 1.97e-01 -2.2 4.07e+04 - 2.67e-01 2.45e-01h 3\n", - " 95 2.0498886e+00 3.19e-01 2.14e-01 -2.5 1.26e+04 - 1.00e+00 1.00e+00h 1\n", - " 96 1.9884844e+00 2.86e-01 1.37e-01 -2.5 5.62e+04 - 5.69e-01 3.55e-01h 1\n", - " 97 1.8942668e+00 9.98e-01 3.31e-01 -2.5 9.29e+03 - 5.26e-02 1.00e+00f 1\n", - " 98 1.9032528e+00 8.07e-01 3.19e-01 -2.5 2.15e+05 - 9.88e-01 1.25e-01h 2\n", - " 99 1.8507659e+00 4.97e-01 1.41e-01 -2.5 1.33e+06 - 1.99e-02 6.78e-03f 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.8341280e+00 2.57e-01 1.41e-01 -1.7 9.78e+04 - 6.43e-01 2.68e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.8341280168442564e+00 1.8341280168442564e+00\n", - "Dual infeasibility......: 1.4109949563609012e-01 1.4109949563609012e-01\n", - "Constraint violation....: 2.5683362841593294e-01 2.5683362841593294e-01\n", - "Complementarity.........: 1.5975449732170934e-02 1.5975449732170934e-02\n", - "Overall NLP error.......: 2.5683362841593294e-01 2.5683362841593294e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 210\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 210\n", - "Number of inequality constraint evaluations = 210\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.419\n", - "Total CPU secs in NLP function evaluations = 139.772\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 950.00us ( 4.52us) 939.71us ( 4.47us) 210\n", - " nlp_g | 9.38 s ( 44.67ms) 8.95 s ( 42.60ms) 210\n", - " nlp_grad | 1.41 s ( 1.41 s) 1.35 s ( 1.35 s) 1\n", - " nlp_grad_f | 354.00us ( 3.47us) 338.16us ( 3.32us) 102\n", - " nlp_jac_g | 133.19 s ( 1.29 s) 127.14 s ( 1.23 s) 103\n", - " total | 144.14 s (144.14 s) 137.58 s (137.58 s) 1\n", - "Timestamp 25500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 7.85e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9791056e+01 1.32e+01 7.85e+03 -1.5 7.85e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.8984351e+00 4.61e+00 8.40e+00 0.6 2.79e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 6.1285034e+00 9.98e-01 8.74e-01 -1.5 7.37e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 6.8745122e+00 2.51e-03 9.96e-02 -3.3 1.49e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 6.8757007e+00 2.12e-07 5.80e-05 -5.1 2.55e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 6.8757006e+00 2.81e-07 2.60e-05 -11.0 1.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 6.8757007e+00 2.99e-07 8.35e-05 -11.0 2.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 6.8756997e+00 5.23e-07 3.02e-03 -11.0 5.14e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 6.8756960e+00 6.43e-06 2.41e-03 -11.0 3.36e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 6.8756988e+00 1.72e-06 2.72e-03 -11.0 1.31e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 6.8756953e+00 2.07e-06 1.35e-03 -11.0 1.09e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 6.8756996e+00 1.04e-06 1.49e-03 -11.0 5.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 6.8756973e+00 1.67e-06 9.88e-04 -11.0 8.70e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 6.8756776e+00 1.71e-05 2.22e-03 -11.0 1.01e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 6.8756962e+00 2.84e-06 2.29e-03 -11.0 4.58e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 6.8756838e+00 7.28e-05 1.58e-03 -11.0 3.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 6.8752375e+00 5.92e-04 1.33e-02 -11.0 1.69e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 6.8754635e+00 3.22e-04 5.35e-03 -11.0 2.85e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 6.8701157e+00 7.10e-03 2.36e-02 -11.0 1.40e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 6.8739170e+00 1.69e-03 2.35e-03 -11.0 5.67e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 6.8754697e+00 2.00e-04 1.58e-03 -11.0 1.85e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 6.8754194e+00 2.05e-04 7.79e-04 -11.0 3.67e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 6.8705320e+00 3.44e-03 2.41e-03 -11.0 1.73e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 6.8745258e+00 5.51e-04 2.67e-03 -11.0 2.86e+00 - 1.00e+00 1.00e+00h 1\n", - " 25 6.8744184e+00 4.67e-04 2.27e-03 -11.0 7.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 6.8723660e+00 4.35e-03 2.16e-03 -11.0 4.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 6.8721617e+00 4.97e-03 1.52e-03 -11.0 2.25e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 6.8706702e+00 2.86e-03 2.74e-03 -11.0 2.60e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 6.8733586e+00 1.31e-03 1.71e-03 -11.0 2.06e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 6.8722463e+00 2.13e-03 1.71e-03 -11.0 1.30e+01 - 1.00e+00 1.00e+00h 1\n", - " 31 6.8722268e+00 2.65e-03 1.48e-03 -11.0 1.05e+01 - 1.00e+00 1.00e+00h 1\n", - " 32 6.8737593e+00 1.27e-03 1.56e-03 -11.0 1.16e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 5.9701520e+00 6.98e-01 8.73e-02 -11.0 1.45e+04 - 1.00e+00 1.00e+00f 1\n", - " 34 5.5389572e+00 1.93e+00 2.21e-01 -9.0 4.46e+04 - 1.00e+00 3.85e-01f 1\n", - " 35 5.4929858e+00 1.94e+00 2.54e-01 -7.1 7.68e+04 - 1.00e+00 2.24e-03h 1\n", - " 36 5.5123528e+00 1.88e+00 2.39e-01 -5.1 2.88e+02 - 1.00e+00 3.16e-02h 1\n", - " 37 6.4786267e+00 7.48e-02 2.57e-01 -5.6 4.34e+02 - 1.00e+00 1.00e+00h 1\n", - " 38 6.5019295e+00 5.62e-03 3.13e-02 -5.4 8.53e+01 - 1.00e+00 1.00e+00h 1\n", - " 39 6.5058016e+00 2.20e-03 5.25e-03 -4.5 4.94e+01 - 8.62e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 6.5048639e+00 5.88e-03 9.40e-03 -5.3 7.61e+02 - 1.00e+00 1.00e+00h 1\n", - " 41 6.5043502e+00 1.82e-02 4.14e-03 -5.4 9.68e+02 - 1.53e-01 1.00e+00h 1\n", - " 42 6.4773635e+00 1.16e-01 8.98e-03 -5.4 2.13e+06 - 8.32e-05 1.31e-03f 1\n", - " 43 6.4882361e+00 1.40e-02 2.07e-02 -6.2 5.85e+01 - 1.00e+00 1.00e+00h 1\n", - " 44 6.4987746e+00 3.92e-06 1.26e-02 -5.3 1.40e-02 - 1.00e+00 1.00e+00h 1\n", - " 45 6.4987741e+00 2.96e-06 9.89e-04 -7.2 2.77e-03 - 1.00e+00 1.00e+00h 1\n", - " 46 6.4987758e+00 1.26e-07 4.21e-05 -9.3 6.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 6.4987759e+00 2.33e-08 1.49e-04 -11.0 2.95e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 6.4987751e+00 3.40e-07 6.24e-05 -11.0 1.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 6.4987758e+00 3.10e-07 5.17e-05 -11.0 5.79e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 6.4987758e+00 5.99e-08 4.42e-05 -11.0 4.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 51 6.4987758e+00 1.12e-07 4.49e-05 -11.0 5.65e-04 - 1.00e+00 1.00e+00h 1\n", - " 52 6.4987758e+00 3.58e-08 5.33e-05 -11.0 2.71e-04 - 1.00e+00 1.00e+00h 1\n", - " 53 6.4987757e+00 7.27e-08 1.04e-04 -11.0 9.67e-04 - 1.00e+00 1.00e+00h 1\n", - " 54 6.4987758e+00 8.57e-08 1.08e-04 -11.0 3.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 6.4987757e+00 1.60e-07 1.03e-04 -11.0 8.82e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 6.4987754e+00 6.20e-07 4.95e-05 -11.0 1.74e-03 - 1.00e+00 1.00e+00h 1\n", - " 57 6.4987746e+00 2.29e-06 4.57e-03 -11.0 5.97e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 6.4987757e+00 3.72e-07 1.53e-04 -11.0 1.81e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 6.4987757e+00 1.86e-07 8.23e-05 -11.0 1.37e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 6.4987756e+00 1.65e-07 8.75e-05 -11.0 9.37e-04 - 1.00e+00 1.00e+00h 1\n", - " 61 6.4972313e+00 1.15e-03 2.01e-02 -11.0 4.49e+00 - 1.00e+00 1.00e+00f 1\n", - " 62 6.4975022e+00 1.29e-03 2.28e-03 -11.0 1.23e+01 - 1.00e+00 1.00e+00h 1\n", - " 63 6.4908258e+00 3.88e-03 3.51e-03 -11.0 2.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 64 6.4980745e+00 3.03e-04 1.68e-03 -11.0 1.30e+01 - 1.00e+00 1.00e+00h 1\n", - " 65 6.4986094e+00 2.90e-07 3.15e-05 -11.0 2.01e+01 - 1.00e+00 1.00e+00H 1\n", - " 66 6.4972337e+00 3.48e-03 2.01e-03 -11.0 2.45e+02 - 1.00e+00 5.69e-02f 1\n", - "In iteration 66, 1 Slack too small, adjusting variable bound\n", - " 67 6.4972337e+00 3.48e-03 1.34e-03 -11.0 5.44e+02 - 1.00e+00 8.04e-07h 1\n", - " 68 6.4981007e+00 6.98e-04 1.49e-03 -11.0 2.46e+00 - 1.00e+00 1.00e+00h 1\n", - " 69 6.4979761e+00 8.18e-04 2.30e-03 -11.0 2.66e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 6.4978075e+00 5.77e-04 2.33e-03 -9.0 2.93e+00 - 7.13e-01 1.00e+00h 1\n", - " 71 6.4985358e+00 2.88e-07 1.32e-04 -11.0 1.20e-03 - 1.00e+00 1.00e+00h 1\n", - " 72 6.4985356e+00 1.85e-07 1.48e-04 -10.1 8.51e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 6.4985351e+00 4.69e-07 2.98e-04 -9.9 3.53e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 6.4985337e+00 1.46e-06 1.62e-03 -11.0 2.96e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 6.4985355e+00 2.49e-07 1.65e-04 -11.0 9.73e-04 - 1.00e+00 1.00e+00h 1\n", - " 76 6.4985354e+00 1.06e-07 6.01e-05 -11.0 3.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 6.4985356e+00 6.03e-08 6.07e-05 -11.0 1.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 78 6.4985355e+00 1.10e-07 7.66e-05 -10.4 7.53e-04 - 1.00e+00 1.00e+00h 1\n", - " 79 6.4985355e+00 3.88e-08 1.08e-04 -10.5 2.47e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 6.4985356e+00 2.57e-08 6.93e-05 -11.0 1.59e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 6.4985356e+00 1.27e-10 1.21e-04 -11.0 1.02e-04 - 1.00e+00 1.00e+00H 1\n", - " 82 6.4985355e+00 8.03e-08 2.37e-05 -11.0 3.26e-04 - 1.00e+00 1.00e+00h 1\n", - " 83 6.4985356e+00 9.11e-09 2.03e-04 -11.0 1.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 84 6.4985356e+00 3.63e-08 1.15e-04 -11.0 2.84e-04 - 1.00e+00 1.00e+00h 1\n", - " 85 6.4985355e+00 9.53e-08 1.18e-04 -11.0 3.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 86 6.4985356e+00 2.81e-08 1.28e-04 -11.0 1.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 87 6.4985353e+00 1.05e-06 2.39e-03 -11.0 1.88e-03 - 3.36e-01 1.00e+00h 1\n", - " 88 6.4984404e+00 1.57e-04 5.34e-03 -11.0 5.45e-01 - 1.00e+00 1.00e+00h 1\n", - " 89 6.4984512e+00 2.18e-04 2.55e-03 -8.4 1.05e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 6.4970229e+00 1.80e-03 1.80e-03 -8.5 1.93e+01 - 1.00e+00 1.00e+00h 1\n", - " 91 6.4945493e+00 6.15e-03 3.05e-03 -9.6 3.16e+01 - 1.00e+00 9.75e-01h 1\n", - " 92 6.4945491e+00 6.14e-03 3.03e-03 -9.8 4.54e+01 - 1.00e+00 1.06e-03h 1\n", - " 93 6.4981777e+00 8.73e-07 4.27e-05 -9.8 1.04e-02 - 5.15e-03 1.00e+00h 1\n", - " 94 6.4981734e+00 1.17e-05 9.32e-04 -11.0 3.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 95 6.4981634e+00 9.66e-05 1.29e-03 -8.2 2.17e+00 - 1.00e+00 1.00e+00h 1\n", - " 96 6.4968945e+00 1.17e-03 2.28e-03 -8.5 2.19e+01 - 1.00e+00 1.00e+00h 1\n", - " 97 6.4955995e+00 2.15e-03 2.56e-03 -7.9 3.84e+03 - 1.00e+00 7.09e-03h 1\n", - " 98 6.4977008e+00 3.61e-04 1.53e-03 -6.1 1.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 99 6.4978256e+00 9.70e-05 1.59e-03 -4.1 5.97e+00 - 2.64e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 6.4982108e+00 1.04e-07 7.11e-05 -6.2 4.31e+00 - 1.00e+00 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 6.4982108333860689e+00 6.4982108333860689e+00\n", - "Dual infeasibility......: 7.1092061593135841e-05 7.1092061593135841e-05\n", - "Constraint violation....: 1.0393690530463573e-07 1.0393690530463573e-07\n", - "Complementarity.........: 8.3963265128649189e-07 8.3963265128649189e-07\n", - "Overall NLP error.......: 7.1092061593135841e-05 7.1092061593135841e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 104\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 104\n", - "Number of inequality constraint evaluations = 104\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.428\n", - "Total CPU secs in NLP function evaluations = 134.122\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 461.00us ( 4.43us) 458.38us ( 4.41us) 104\n", - " nlp_g | 4.66 s ( 44.84ms) 4.44 s ( 42.74ms) 104\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 382.00us ( 3.75us) 374.81us ( 3.67us) 102\n", - " nlp_jac_g | 132.10 s ( 1.30 s) 126.06 s ( 1.24 s) 102\n", - " total | 138.25 s (138.25 s) 131.93 s (131.93 s) 1\n", - "Timestamp 25800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.60e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9611285e+01 1.31e+01 3.60e+03 -1.5 3.60e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.9311303e+00 4.47e+00 9.17e+00 0.4 1.31e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 7.0831195e+00 1.07e+00 7.41e-01 -1.6 7.26e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 7.8539821e+00 2.22e-03 8.23e-02 -3.4 1.52e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 7.8550188e+00 7.99e-08 1.97e-04 -5.3 2.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 7.8550184e+00 3.38e-07 7.34e-05 -11.0 8.18e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 7.8550189e+00 4.73e-08 4.60e-05 -11.0 2.21e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 7.8550189e+00 5.26e-09 4.48e-05 -11.0 7.96e-05 - 1.00e+00 1.00e+00h 1\n", - " 9 7.8550189e+00 1.26e-10 3.97e-05 -11.0 8.33e-05 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 7.8550189e+00 5.85e-09 5.13e-05 -11.0 6.16e-05 - 1.00e+00 1.00e+00h 1\n", - " 11 7.8550187e+00 1.89e-07 9.60e-05 -11.0 1.95e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 7.8550186e+00 2.21e-07 1.50e-04 -11.0 1.92e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 7.8550185e+00 1.44e-07 1.47e-04 -11.0 4.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 7.8550122e+00 6.49e-06 1.61e-02 -11.0 1.66e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 7.8550187e+00 3.33e-07 4.94e-05 -11.0 4.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 7.8550189e+00 3.25e-07 4.68e-05 -11.0 2.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 7.8550192e+00 1.31e-07 3.65e-05 -11.0 9.28e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 7.8549362e+00 4.81e-05 4.47e-03 -11.0 1.95e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 7.8546499e+00 4.06e-04 1.01e-03 -11.0 1.67e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 7.8549246e+00 3.94e-05 1.56e-03 -11.0 5.68e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 7.8549241e+00 1.03e-04 2.09e-03 -11.0 4.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 22 7.8550180e+00 2.85e-05 2.13e-03 -11.0 1.21e-01 - 1.00e+00 1.00e+00h 1\n", - " 23 7.8549839e+00 3.41e-05 2.70e-03 -11.0 1.88e-01 - 1.00e+00 1.00e+00h 1\n", - " 24 7.8516144e+00 5.47e-03 5.61e-03 -11.0 1.46e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 7.8541523e+00 5.74e-04 8.89e-04 -11.0 4.91e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 7.8539611e+00 5.62e-04 1.38e-03 -11.0 6.01e+00 - 1.00e+00 1.00e+00h 1\n", - " 27 7.8548687e+00 2.22e-07 8.78e-05 -11.0 3.65e+00 - 1.00e+00 1.00e+00H 1\n", - " 28 7.8542148e+00 6.62e-04 1.74e-03 -11.0 2.83e+00 - 1.00e+00 1.00e+00h 1\n", - " 29 7.8541069e+00 5.96e-04 1.14e-03 -11.0 2.40e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 7.8548138e+00 9.99e-05 2.25e-03 -11.0 1.04e+00 - 1.00e+00 1.00e+00h 1\n", - " 31 7.8542805e+00 2.91e-04 2.25e-03 -11.0 2.19e+00 - 1.00e+00 1.00e+00h 1\n", - " 32 7.8540144e+00 6.46e-04 2.77e-03 -11.0 1.63e+00 - 1.00e+00 1.00e+00h 1\n", - " 33 7.8544601e+00 3.29e-04 1.06e-03 -11.0 1.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 34 7.8522537e+00 2.34e-03 2.73e-03 -11.0 1.31e+01 - 1.00e+00 1.00e+00h 1\n", - " 35 7.8543889e+00 1.18e-03 1.94e-03 -11.0 7.83e+00 - 1.00e+00 1.00e+00h 1\n", - " 36 7.8530928e+00 6.15e-03 2.17e-03 -11.0 2.40e+01 - 1.00e+00 1.00e+00h 1\n", - " 37 7.8535518e+00 1.51e-03 1.46e-03 -11.0 8.72e+00 - 1.00e+00 1.00e+00h 1\n", - " 38 7.5284473e+00 5.30e-01 6.93e-02 -11.0 3.60e+03 - 1.00e+00 1.00e+00f 1\n", - " 39 7.0272888e+00 8.53e-01 7.64e-02 -11.0 5.54e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 6.5689923e+00 5.54e-01 8.79e-02 -11.0 3.83e+03 - 1.00e+00 1.00e+00h 1\n", - " 41 7.6353964e+00 1.50e-01 1.29e-01 -11.0 8.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 42 7.7774293e+00 1.44e-02 2.30e-02 -11.0 3.73e+02 - 1.00e+00 1.00e+00h 1\n", - " 43 7.0245760e+00 4.44e-01 4.90e-02 -9.0 5.33e+06 - 1.41e-02 5.85e-03f 1\n", - " 44 7.0166048e+00 4.45e-01 5.05e-02 -8.7 6.61e+05 - 1.00e+00 4.72e-04h 1\n", - " 45 7.0165909e+00 4.45e-01 5.05e-02 -6.8 1.04e+05 - 1.00e+00 3.00e-05h 1\n", - " 46 7.7372648e+00 6.98e-03 4.60e-02 -4.8 4.65e+01 - 1.04e-02 1.00e+00h 1\n", - " 47 7.7289307e+00 8.80e-03 5.99e-03 -8.4 3.87e+01 - 1.00e+00 1.00e+00h 1\n", - " 48 7.7315628e+00 6.83e-03 5.11e-03 -6.2 4.66e+01 - 1.00e+00 2.25e-01h 1\n", - " 49 7.7404490e+00 2.51e-04 1.66e-02 -5.5 2.09e+02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 7.7387627e+00 3.86e-03 4.38e-03 -5.2 7.52e+01 - 1.00e+00 7.00e-01h 1\n", - " 51 7.7386936e+00 2.07e-03 1.42e-03 -7.3 4.40e+01 - 1.00e+00 1.00e+00h 1\n", - " 52 7.7401648e+00 1.21e-03 1.53e-03 -5.2 2.98e+01 - 4.00e-01 1.00e+00h 1\n", - " 53 7.7304269e+00 3.29e-02 5.99e-03 -7.1 1.83e+02 - 1.00e+00 1.00e+00h 1\n", - " 54 7.7296064e+00 3.23e-02 5.74e-03 -7.2 1.40e+02 - 1.00e+00 4.45e-02h 1\n", - " 55 7.7374459e+00 2.28e-04 2.70e-03 -7.2 1.75e+00 - 1.30e-01 1.00e+00h 1\n", - " 56 6.1205967e+00 6.12e-01 2.37e-01 -7.7 8.32e+03 - 9.48e-01 1.00e+00f 1\n", - " 57 8.0569858e+00 6.15e-02 9.43e-02 -3.1 5.91e+03 - 9.62e-01 1.00e+00H 1\n", - " 58 7.4345945e+00 1.97e-01 2.70e-02 -3.2 2.94e+03 - 1.00e+00 1.00e+00f 1\n", - " 59 7.8879675e+00 5.19e-02 3.87e-02 -3.5 6.16e+03 - 8.65e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 7.7171513e+00 2.16e-01 2.20e-02 -3.6 1.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 7.8361326e+00 6.35e-02 1.02e-02 -3.6 5.76e+02 - 1.00e+00 1.00e+00h 1\n", - " 62 7.5056038e+00 9.97e-01 4.11e-02 -3.6 3.53e+04 - 3.94e-01 1.00e+00F 1\n", - " 63 6.7530074e+00 1.33e+00 1.82e-01 -3.6 1.48e+06 - 9.93e-02 2.83e-03f 1\n", - " 64 7.5329493e+00 2.59e-01 2.56e-01 -3.6 2.17e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 7.5260225e+00 2.53e-01 2.39e-01 -3.6 2.20e+03 - 1.00e+00 8.74e-02h 1\n", - " 66 7.8786440e+00 2.66e-02 1.40e-01 -3.6 1.46e+03 - 1.00e+00 1.00e+00H 1\n", - " 67 7.8172583e+00 2.23e-01 1.25e-01 -3.6 6.21e+03 - 1.00e+00 9.95e-02f 3\n", - " 68 6.1148030e+00 5.00e+00 1.04e+00 -3.6 2.73e+05 - 2.66e-02 2.06e-01f 1\n", - " 69 1.0971447e+01 4.81e+00 6.17e-01 -2.7 1.84e+04 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 7.2598203e+00 9.78e-01 3.88e-01 -0.9 1.68e+04 - 1.00e+00 1.00e+00f 1\n", - " 71 6.5668941e+00 2.00e+00 3.45e-01 -1.6 4.23e+04 - 3.88e-01 2.11e-01f 1\n", - " 72 7.8134257e+00 4.12e-02 1.63e-01 -1.6 1.54e+03 - 1.00e+00 1.00e+00h 1\n", - " 73 7.3429396e+00 2.84e-01 1.74e-01 -2.5 4.03e+03 - 5.48e-01 1.00e+00f 1\n", - " 74 7.5626385e+00 1.77e-01 3.63e-02 -2.9 4.16e+03 - 9.95e-01 1.00e+00h 1\n", - " 75 5.3456484e+00 1.70e+00 5.51e-01 -2.9 4.58e+04 - 1.41e-01 3.45e-01f 1\n", - " 76 5.0253912e+00 1.66e+00 2.41e-01 -3.2 8.39e+03 - 1.00e+00 1.00e+00h 1\n", - " 77 4.8259420e+00 1.26e+00 1.94e-01 -1.7 5.24e+04 - 1.00e+00 8.06e-02h 1\n", - " 78 7.9751640e+00 1.01e-01 3.33e-01 -2.0 2.82e+03 - 1.60e-01 1.00e+00h 1\n", - " 79 7.2535734e+00 5.50e-01 2.68e-01 -1.9 4.90e+03 - 1.00e+00 3.97e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 4.5930121e+00 1.62e+00 7.91e-01 -1.9 1.61e+04 - 3.94e-01 1.00e+00f 1\n", - " 81 7.4384944e+00 3.03e-01 2.10e-01 -1.5 7.71e+03 - 3.03e-01 1.00e+00h 1\n", - " 82 8.2114445e+00 2.87e-01 1.30e-01 -1.9 6.68e+03 - 8.41e-01 1.00e+00H 1\n", - " 83 7.0664655e+00 5.09e+00 5.32e-01 -1.9 1.21e+06 - 3.89e-02 1.76e-02f 1\n", - " 84 6.9968044e+00 5.00e+00 5.25e-01 -1.9 1.65e+04 - 1.00e+00 1.14e-02h 1\n", - " 85 8.2381933e+00 1.79e-01 4.90e-01 -1.9 4.28e+03 - 4.92e-01 1.00e+00h 1\n", - " 86 6.7885816e+00 1.12e+00 3.37e-01 -1.9 2.07e+04 - 2.17e-01 1.00e+00f 1\n", - " 87 5.8935260e+00 1.72e+00 3.26e-01 -1.9 1.11e+05 - 2.67e-01 2.04e-01f 1\n", - " 88 6.4130564e+00 1.13e+00 1.43e-01 -1.9 3.47e+04 - 4.07e-01 4.97e-01h 1\n", - " 89 6.9369481e+00 8.94e-01 1.25e-01 -1.9 5.91e+03 - 3.15e-01 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 7.1570790e+00 1.18e+00 2.48e-01 -1.9 7.16e+03 - 1.00e+00 9.07e-01h 1\n", - " 91 8.1448563e+00 2.47e-01 9.54e-02 -1.9 5.16e+03 - 3.58e-01 1.00e+00h 1\n", - " 92 8.1502758e+00 3.78e-01 7.90e-02 -1.9 9.03e+03 - 2.22e-01 1.80e-01h 3\n", - " 93 8.1014689e+00 5.41e-01 8.89e-02 -1.9 4.07e+04 - 1.06e-01 2.99e-02h 3\n", - " 94 7.8628949e+00 5.72e-01 1.05e-01 -1.9 1.07e+05 - 1.06e-01 1.72e-02f 2\n", - " 95 8.3573851e+00 4.15e-04 7.21e-01 -1.9 7.89e-01 - 1.00e+00 1.00e+00h 1\n", - " 96 8.3576585e+00 3.24e-07 1.40e-04 -1.9 1.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 97 8.3576584e+00 1.98e-07 9.76e-05 -2.9 1.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 98 8.3576575e+00 1.25e-06 2.10e-03 -4.3 4.62e-03 - 1.00e+00 1.00e+00h 1\n", - " 99 8.3576583e+00 4.83e-07 8.27e-05 -4.3 3.44e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.3576575e+00 7.95e-07 1.80e-03 -6.5 5.00e-03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.3576575357757434e+00 8.3576575357757434e+00\n", - "Dual infeasibility......: 1.7968993891387224e-03 1.7968993891387224e-03\n", - "Constraint violation....: 7.9480811976395671e-07 7.9480811976395671e-07\n", - "Complementarity.........: 3.0755576845560402e-07 3.0755576845560402e-07\n", - "Overall NLP error.......: 1.7968993891387224e-03 1.7968993891387224e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 130\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 130\n", - "Number of inequality constraint evaluations = 130\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.409\n", - "Total CPU secs in NLP function evaluations = 135.559\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 591.00us ( 4.55us) 573.58us ( 4.41us) 130\n", - " nlp_g | 5.88 s ( 45.20ms) 5.61 s ( 43.12ms) 130\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 354.00us ( 3.47us) 348.92us ( 3.42us) 102\n", - " nlp_jac_g | 132.39 s ( 1.30 s) 126.37 s ( 1.24 s) 102\n", - " total | 139.75 s (139.75 s) 133.40 s (133.40 s) 1\n", - "Timestamp 26100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.05e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9891693e+01 1.50e+01 3.05e+04 -1.5 3.05e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.3228424e+01 5.90e+00 1.43e+01 0.8 2.15e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.0076971e+01 2.21e+00 8.24e-01 -1.3 4.30e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 2.1315008e+01 8.07e-05 8.34e-02 -3.0 2.39e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.1315143e+01 3.95e-05 1.16e-02 -4.9 1.66e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.1315092e+01 7.86e-05 1.35e-02 -6.8 2.04e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.1315261e+01 1.79e-05 2.34e-03 -8.7 9.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 2.1315171e+01 2.94e-05 3.58e-03 -11.0 8.37e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 2.1315044e+01 4.67e-04 4.07e-03 -11.0 1.33e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.1314844e+01 3.32e-04 6.94e-03 -11.0 1.74e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 2.1314464e+01 6.71e-04 7.68e-03 -11.0 1.37e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 2.1314979e+01 3.02e-04 5.50e-03 -11.0 1.31e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 2.1315050e+01 2.74e-04 1.97e-03 -11.0 1.81e+00 - 1.00e+00 1.00e+00h 1\n", - " 14 2.1315147e+01 9.40e-05 3.06e-03 -11.0 2.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 2.1314960e+01 4.72e-04 3.66e-03 -11.0 3.10e+00 - 1.00e+00 1.00e+00h 1\n", - " 16 2.1314296e+01 2.55e-04 1.53e-03 -11.0 4.79e+00 - 1.00e+00 1.00e+00h 1\n", - " 17 2.1313902e+01 1.47e-03 3.16e-03 -11.0 4.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 1.8762636e+01 1.08e+00 1.00e-01 -11.0 8.92e+03 - 1.00e+00 1.00e+00f 1\n", - " 19 2.0166252e+01 1.35e+00 3.27e-02 -11.0 4.29e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.5984560e+01 4.53e+00 2.34e-01 -10.7 2.67e+04 - 1.00e+00 1.00e+00f 1\n", - " 21 1.5635566e+01 5.52e+00 2.38e-01 -8.8 4.53e+04 - 1.00e+00 1.81e-01h 1\n", - " 22 1.5654111e+01 5.47e+00 2.33e-01 -6.9 2.09e+04 - 1.00e+00 6.26e-03h 1\n", - " 23 1.5655223e+01 5.47e+00 2.32e-01 -4.9 2.30e+03 - 1.00e+00 3.48e-04h 1\n", - " 24 2.1120651e+01 3.57e-02 4.04e-01 -6.2 1.22e+03 - 1.00e+00 1.00e+00h 1\n", - " 25 2.0814529e+01 1.16e-01 3.90e-01 -11.0 1.65e+04 - 7.49e-01 6.50e-02f 1\n", - " 26 2.0811799e+01 1.16e-01 3.89e-01 -4.8 8.91e+03 - 1.00e+00 1.20e-03h 1\n", - " 27 2.0819972e+01 1.13e-01 3.77e-01 -3.0 9.66e+01 - 1.00e+00 3.12e-02h 6\n", - " 28 2.1045019e+01 1.03e-02 2.26e-03 -4.4 2.72e+02 - 3.63e-01 1.00e+00h 1\n", - " 29 2.0936188e+01 2.49e-01 1.11e-02 -9.3 1.93e+03 - 2.98e-03 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.7071259e+01 4.77e+00 1.76e-01 -3.4 1.69e+06 - 1.31e-03 3.62e-02f 1\n", - " 31 1.6652406e+01 3.77e+00 3.21e-01 -3.4 4.14e+04 - 5.26e-02 3.77e-01h 1\n", - " 32 2.0817032e+01 5.32e-01 2.52e-01 -3.4 2.76e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 1.8914124e+01 2.71e+00 1.28e-01 -3.4 1.31e+04 - 2.48e-01 1.00e+00f 1\n", - " 34 1.5012050e+01 6.91e+00 3.64e-01 -3.4 4.93e+07 - 3.13e-04 6.38e-04f 1\n", - " 35 2.1428190e+01 7.33e-01 4.48e-01 -4.3 4.61e+04 - 1.34e-03 1.00e+00H 1\n", - " 36 2.0981715e+01 1.33e+00 4.53e-01 -3.6 2.56e+04 - 1.00e+00 9.51e-02f 1\n", - " 37 2.1051207e+01 5.38e-01 1.30e-01 -3.6 1.74e+04 - 1.00e+00 7.20e-01h 1\n", - " 38 2.1050543e+01 5.37e-01 1.30e-01 -3.6 2.17e+03 - 1.00e+00 1.32e-03h 1\n", - " 39 2.0139501e+01 9.30e-01 1.54e-01 -3.6 1.33e+04 - 1.00e+00 4.94e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.0863142e+01 7.42e-01 5.88e-03 -8.2 1.70e+03 - 8.87e-04 1.00e+00h 1\n", - " 41 1.9960800e+01 9.67e-01 8.99e-02 -2.3 7.07e+03 - 3.74e-01 1.00e+00f 1\n", - " 42 2.0843102e+01 2.66e-01 2.83e-02 -8.6 7.16e+02 - 3.53e-02 7.26e-01h 1\n", - " 43 2.0965552e+01 1.59e-01 4.83e-03 -2.8 1.42e+03 - 1.00e+00 3.83e-01h 1\n", - " 44 2.0969146e+01 1.93e-01 7.10e-03 -2.8 3.06e+03 - 1.00e+00 2.00e-01h 2\n", - " 45 2.0860273e+01 1.94e-01 8.20e-03 -2.9 4.26e+03 - 1.00e+00 1.77e-01h 1\n", - " 46 2.1233439e+01 1.47e-04 4.23e-01 -2.8 4.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 47 2.1233355e+01 2.59e-07 2.52e-04 -4.6 1.93e-03 - 1.00e+00 1.00e+00h 1\n", - " 48 2.1233349e+01 1.57e-05 1.55e-03 -5.9 8.73e-02 - 9.97e-01 1.00e+00h 1\n", - " 49 2.1233340e+01 5.03e-06 1.79e-03 -8.0 4.27e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.1233352e+01 2.32e-06 1.11e-03 -10.1 1.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 51 2.1233346e+01 1.44e-05 1.65e-03 -11.0 6.32e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 2.1233346e+01 1.06e-05 3.23e-03 -11.0 5.61e-02 - 1.00e+00 1.00e+00h 1\n", - " 53 2.1233352e+01 1.72e-06 1.52e-03 -11.0 2.72e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 2.1233344e+01 5.20e-06 2.10e-03 -11.0 7.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 2.1233353e+01 1.79e-06 1.82e-03 -11.0 6.99e-02 - 1.00e+00 1.00e+00h 1\n", - " 56 2.1233201e+01 3.68e-04 3.92e-03 -11.0 5.26e+00 - 1.00e+00 1.00e+00h 1\n", - " 57 2.1232469e+01 6.81e-04 7.05e-03 -11.0 1.17e+01 - 1.00e+00 1.00e+00h 1\n", - " 58 2.1230250e+01 1.52e-03 1.02e-02 -9.0 2.77e+01 - 1.00e+00 5.91e-01h 1\n", - " 59 2.1232550e+01 8.59e-07 2.38e-03 -11.0 2.43e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.1232549e+01 1.12e-06 1.72e-03 -9.0 6.82e-03 - 1.00e+00 2.81e-01h 1\n", - " 61 2.1232549e+01 6.15e-07 7.62e-04 -8.8 2.85e-03 - 1.00e+00 1.00e+00h 1\n", - " 62 2.1232550e+01 1.83e-07 9.80e-05 -11.0 9.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 2.1232543e+01 6.07e-06 3.77e-03 -6.5 3.09e-02 - 7.45e-01 1.00e+00h 1\n", - " 64 2.1232513e+01 3.81e-05 7.73e-03 -8.8 2.14e-01 - 1.00e+00 1.00e+00h 1\n", - " 65 2.1232485e+01 3.61e-05 8.89e-03 -7.9 2.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 66 2.1232431e+01 6.28e-05 1.04e-02 -8.3 5.15e-01 - 1.00e+00 1.00e+00h 1\n", - " 67 2.1232567e+01 5.10e-08 4.07e-05 -10.1 1.58e-04 - 1.00e+00 1.00e+00h 1\n", - " 68 2.1232567e+01 2.34e-08 1.47e-04 -11.0 1.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 69 2.1232567e+01 1.65e-08 9.52e-05 -11.0 2.93e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.1232567e+01 4.43e-08 1.07e-04 -11.0 1.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 2.1232567e+01 1.09e-08 1.08e-04 -11.0 1.01e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 2.1232566e+01 1.41e-07 1.38e-04 -11.0 1.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 2.1232566e+01 1.55e-07 1.34e-04 -11.0 8.95e-04 - 1.00e+00 1.00e+00h 1\n", - " 74 2.1232567e+01 7.22e-08 3.13e-04 -11.0 4.41e-04 - 1.00e+00 1.00e+00h 1\n", - " 75 2.1232566e+01 4.32e-07 5.45e-05 -11.0 9.77e-04 - 1.00e+00 1.00e+00h 1\n", - " 76 2.1232567e+01 6.64e-08 2.44e-04 -11.0 2.52e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 2.1232567e+01 7.15e-08 6.50e-05 -11.0 1.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 78 2.1232567e+01 2.54e-09 1.17e-04 -11.0 2.71e-05 - 1.00e+00 1.00e+00h 1\n", - " 79 2.1232567e+01 5.71e-09 2.97e-04 -11.0 3.21e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.1232566e+01 1.24e-07 1.30e-04 -11.0 7.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 81 2.1232567e+01 3.31e-08 1.98e-04 -11.0 1.96e-04 - 1.00e+00 1.00e+00h 1\n", - " 82 2.1232536e+01 1.89e-05 8.07e-03 -11.0 6.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 2.1232523e+01 1.71e-05 3.27e-03 -11.0 1.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 84 2.1232327e+01 1.53e-04 4.67e-03 -11.0 2.90e-01 - 1.00e+00 1.00e+00h 1\n", - " 85 2.1179950e+01 1.92e-02 1.97e-02 -9.0 6.38e+01 - 2.10e-02 1.00e+00f 1\n", - " 86 2.1205405e+01 1.31e-02 1.87e-03 -10.6 3.32e+01 - 1.00e+00 1.00e+00h 1\n", - " 87 2.1184077e+01 1.02e-02 1.30e-03 -8.6 2.74e+02 - 1.00e+00 1.14e-01h 1\n", - " 88 2.1184875e+01 1.00e-02 1.32e-03 -8.8 1.70e+01 - 1.00e+00 1.83e-02h 1\n", - " 89 2.1187847e+01 9.39e-03 1.78e-03 -8.8 3.84e+00 - 1.00e+00 6.25e-02h 5\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.1207042e+01 5.15e-03 1.44e-03 -8.8 1.02e+02 - 6.28e-01 4.72e-01h 1\n", - " 91 2.1232296e+01 3.40e-04 1.76e-03 -11.0 1.63e+00 - 1.00e+00 1.00e+00h 1\n", - " 92 2.1229844e+01 1.86e-03 3.65e-03 -6.7 1.68e+01 - 1.00e+00 9.98e-01h 1\n", - " 93 2.1232739e+01 4.40e-07 7.14e-05 -8.5 1.00e+01 - 1.00e+00 1.00e+00H 1\n", - " 94 2.1232115e+01 2.68e-04 5.02e-03 -7.3 6.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 95 2.1230848e+01 1.10e-03 1.50e-03 -6.5 4.97e+00 - 1.00e+00 1.00e+00h 1\n", - " 96 2.1152181e+01 4.60e-02 4.26e-03 -5.4 2.85e+02 - 1.00e+00 1.00e+00f 1\n", - " 97 2.1160742e+01 3.59e-02 2.46e-03 -5.5 1.73e+02 - 9.37e-01 1.00e+00h 1\n", - " 98 2.1221814e+01 6.89e-03 2.70e-03 -5.5 5.14e+01 - 1.00e+00 1.00e+00h 1\n", - " 99 2.1169958e+01 3.92e-02 3.55e-03 -6.1 3.66e+02 - 1.00e+00 1.99e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.1231300e+01 2.46e-03 3.45e-03 -5.0 9.95e+00 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.1231300017510573e+01 2.1231300017510573e+01\n", - "Dual infeasibility......: 3.4543849300957760e-03 3.4543849300957760e-03\n", - "Constraint violation....: 2.4555530190433217e-03 2.4555530190433217e-03\n", - "Complementarity.........: 1.5147019937326045e-04 1.5147019937326045e-04\n", - "Overall NLP error.......: 3.4543849300957760e-03 3.4543849300957760e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 115\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 115\n", - "Number of inequality constraint evaluations = 115\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.402\n", - "Total CPU secs in NLP function evaluations = 133.952\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 519.00us ( 4.51us) 513.45us ( 4.46us) 115\n", - " nlp_g | 5.18 s ( 45.04ms) 4.94 s ( 42.97ms) 115\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 370.00us ( 3.63us) 357.71us ( 3.51us) 102\n", - " nlp_jac_g | 131.63 s ( 1.29 s) 125.60 s ( 1.23 s) 102\n", - " total | 138.29 s (138.29 s) 131.97 s (131.97 s) 1\n", - "Timestamp 26400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.08e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9442644e+01 1.25e+01 1.08e+04 -1.5 1.08e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.2845304e+00 4.06e+00 1.00e+01 0.8 1.80e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 7.7712092e+00 1.11e+00 9.37e-01 -1.3 3.94e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 8.4612117e+00 1.06e-03 8.13e-02 -3.0 1.46e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 8.4614489e+00 9.50e-06 1.79e-03 -4.9 4.47e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 8.4613785e+00 6.10e-05 2.45e-03 -7.0 6.73e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 8.4613466e+00 9.12e-05 1.05e-03 -9.1 4.17e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 8.4612052e+00 1.65e-04 1.14e-03 -11.0 3.01e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 8.4614559e+00 9.27e-06 9.41e-04 -11.0 9.93e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 8.4614479e+00 1.87e-05 2.25e-03 -11.0 1.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 8.4453315e+00 1.73e-02 2.84e-02 -11.0 8.56e+01 - 1.00e+00 1.00e+00f 1\n", - " 12 8.4500631e+00 9.58e-03 6.55e-04 -11.0 4.88e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 8.4373194e+00 2.56e-02 3.00e-03 -11.0 6.93e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 8.4601597e+00 3.45e-05 3.84e-03 -11.0 6.12e+01 - 1.00e+00 1.00e+00H 1\n", - " 15 8.4168795e+00 8.09e-02 8.42e-03 -11.0 1.65e+02 - 1.00e+00 1.00e+00f 1\n", - " 16 8.4576347e+00 3.22e-03 6.41e-03 -11.0 1.93e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 8.3925420e+00 7.16e-02 8.37e-03 -11.0 1.53e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 8.4464978e+00 1.38e-02 9.19e-03 -11.0 8.68e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 8.4396213e+00 2.28e-02 6.69e-03 -11.0 1.14e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 8.4438432e+00 1.23e-02 3.09e-03 -11.0 6.70e+01 - 1.00e+00 1.00e+00h 1\n", - " 21 8.4101392e+00 2.60e-02 6.15e-03 -11.0 3.15e+02 - 1.00e+00 1.00e+00h 1\n", - " 22 8.4026272e+00 3.57e-02 3.61e-03 -11.0 2.09e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 8.4572204e+00 3.44e-03 5.10e-03 -11.0 5.74e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 8.4511301e+00 7.85e-03 7.24e-04 -11.0 1.12e+02 - 1.00e+00 1.00e+00h 1\n", - " 25 8.4481326e+00 8.78e-03 1.42e-03 -11.0 7.16e+01 - 1.00e+00 1.00e+00h 1\n", - " 26 8.3890348e+00 9.59e-02 4.63e-03 -11.0 2.70e+02 - 1.00e+00 1.00e+00h 1\n", - " 27 8.4456789e+00 8.44e-03 7.16e-03 -11.0 1.03e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 8.4606306e+00 2.44e-03 3.38e-03 -11.0 3.52e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 8.4500013e+00 2.21e-02 5.26e-03 -11.0 2.17e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 8.3377018e+00 7.20e-02 7.62e-03 -11.0 5.40e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 8.4750303e+00 8.47e-03 1.44e-02 -11.0 1.25e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 6.8168501e+00 7.15e-01 1.51e-01 -11.0 1.23e+03 - 1.00e+00 1.00e+00f 1\n", - " 33 7.8484287e+00 2.09e-01 8.46e-02 -11.0 2.60e+03 - 1.00e+00 1.00e+00h 1\n", - " 34 8.4334089e+00 6.12e-02 3.24e-02 -11.0 3.76e+03 - 1.00e+00 1.00e+00H 1\n", - " 35 6.6752863e+00 4.03e+00 4.88e-01 -11.0 3.22e+04 - 1.00e+00 8.35e-01f 1\n", - " 36 8.4711779e+00 4.55e-01 8.38e-02 -10.6 2.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 6.9700921e+00 1.35e+00 2.79e-01 -2.4 2.99e+03 - 7.16e-01 1.00e+00f 1\n", - " 38 7.3606802e+00 6.68e-01 2.33e-01 -2.4 5.37e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 6.4755212e+00 1.06e+00 1.12e-01 -2.3 5.68e+03 - 1.00e+00 9.06e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 7.3540906e+00 1.33e+00 1.90e-01 -2.1 1.12e+04 - 4.16e-01 9.29e-01H 1\n", - " 41 7.2433921e+00 3.97e-01 1.23e-01 -2.4 1.01e+04 - 4.72e-01 6.22e-01h 1\n", - " 42 7.2766329e+00 3.99e-01 1.16e-01 -1.9 1.22e+04 - 1.00e+00 6.25e-02f 5\n", - " 43 8.0670923e+00 2.46e-01 1.41e-01 -2.8 1.46e+04 - 1.86e-01 1.00e+00H 1\n", - " 44 7.0780215e+00 4.59e-01 7.75e-02 -2.0 3.84e+04 - 7.66e-01 5.33e-01f 1\n", - " 45 7.1750296e+00 3.24e-01 6.79e-02 -1.3 3.95e+03 - 1.00e+00 3.13e-01h 1\n", - " 46 6.3761792e+00 2.87e+00 9.88e-01 -7.4 1.51e+05 - 1.83e-01 9.45e-02f 2\n", - " 47 7.9024918e+00 2.24e-01 5.48e+00 -3.4 6.40e+00 - 9.99e-01 1.00e+00h 1\n", - " 48 8.0937052e+00 2.29e-04 4.57e-02 -5.3 3.69e-01 - 1.00e+00 1.00e+00h 1\n", - " 49 8.0937885e+00 4.68e-06 2.56e-03 -7.1 6.34e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 8.0937951e+00 2.19e-07 6.18e-05 -9.2 1.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 8.0937953e+00 9.07e-08 1.88e-04 -11.0 4.61e-04 - 1.00e+00 1.00e+00h 1\n", - " 52 8.0937949e+00 4.01e-07 2.17e-04 -11.0 2.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 8.0936108e+00 1.83e-04 2.41e-02 -11.0 8.66e-01 - 1.00e+00 1.00e+00h 1\n", - " 54 8.0931560e+00 3.30e-04 3.63e-03 -11.0 2.89e+00 - 1.00e+00 1.00e+00h 1\n", - " 55 8.0938619e+00 9.76e-05 9.69e-04 -11.0 6.53e-01 - 1.00e+00 1.00e+00h 1\n", - " 56 8.0919724e+00 9.14e-04 3.09e-03 -11.0 4.87e+00 - 1.00e+00 9.73e-01h 1\n", - " 57 8.0919730e+00 9.14e-04 2.80e-03 -10.5 1.78e+00 - 1.00e+00 4.88e-04h 12\n", - " 58 8.0932619e+00 2.54e-04 1.18e-03 -6.9 1.84e-02 - 1.00e+00 7.27e-01h 1\n", - " 59 8.0933225e+00 2.23e-04 1.85e-03 -5.3 3.08e-02 - 9.99e-01 1.25e-01h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.0937483e+00 9.13e-07 1.10e-03 -7.2 8.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 61 8.0937414e+00 1.10e-05 3.04e-03 -6.2 1.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 62 8.0936996e+00 5.84e-05 6.33e-03 -6.4 3.54e-01 - 1.00e+00 1.00e+00h 1\n", - " 63 8.0937477e+00 9.35e-07 2.96e-03 -8.5 1.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 8.0936307e+00 1.49e-04 2.83e-03 -11.0 5.53e-01 - 1.00e+00 9.77e-01h 1\n", - " 65 8.0936313e+00 1.48e-04 2.90e-03 -9.0 2.01e-01 - 1.00e+00 6.46e-03h 1\n", - " 66 8.0937451e+00 1.06e-05 2.50e-03 -8.8 3.59e-02 - 1.00e+00 1.00e+00h 1\n", - " 67 8.0937415e+00 1.55e-05 2.41e-03 -8.6 9.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 8.0937369e+00 1.22e-05 2.12e-03 -11.0 1.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 69 8.0937184e+00 7.04e-05 5.83e-03 -10.6 4.22e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.0935863e+00 8.72e-04 1.33e-02 -8.6 2.55e+00 - 1.38e-01 1.00e+00h 1\n", - " 71 8.0937635e+00 1.15e-05 3.58e-03 -9.6 9.76e-01 - 1.15e-02 1.00e+00h 1\n", - "In iteration 71, 1 Slack too small, adjusting variable bound\n", - " 72 8.0937633e+00 1.15e-05 1.87e-03 -9.6 4.59e+02 - 1.00e+00 2.82e-05h 1\n", - " 73 8.0937778e+00 4.37e-06 1.47e-03 -9.6 5.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 74 8.0937772e+00 1.90e-06 1.13e-03 -9.6 3.79e-02 - 1.00e+00 1.00e+00h 1\n", - "In iteration 74, 1 Slack too small, adjusting variable bound\n", - " 75 8.0937762e+00 1.24e-06 1.18e-03 -9.6 4.13e-01 - 1.00e+00 4.38e-01h 1\n", - " 76 8.0937792e+00 1.05e-10 2.33e-04 -9.6 9.06e-02 - 1.00e+00 1.00e+00H 1\n", - " 77 8.0937738e+00 6.73e-06 1.79e-03 -7.6 2.18e-01 - 9.38e-01 1.00e+00h 1\n", - " 78 8.0935658e+00 5.38e-04 1.95e-03 -7.8 1.52e+01 - 3.46e-04 1.00e+00h 1\n", - " 79 8.0352726e+00 1.99e-01 1.29e-02 -7.8 2.87e+04 - 1.00e+00 5.08e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.0178545e+00 6.85e-01 3.83e-02 -7.3 1.15e+04 - 1.00e+00 1.00e+00f 1\n", - " 81 7.9741907e+00 5.31e-01 2.97e-02 -3.1 1.70e+04 - 4.18e-01 1.76e-01h 1\n", - " 82 7.8600621e+00 1.58e-01 9.49e-02 -3.1 2.33e+04 - 1.00e+00 1.00e+00f 1\n", - " 83 7.5595379e+00 3.82e-01 9.73e-02 -7.6 9.42e+04 - 2.84e-01 2.64e-01h 1\n", - " 84 7.5790981e+00 4.46e-01 8.93e-02 -1.8 1.98e+05 - 4.08e-01 4.90e-03h 7\n", - " 85 8.0325481e+00 5.32e-03 6.01e-01 -1.8 6.01e-01 - 1.00e+00 1.00e+00h 1\n", - " 86 8.0353914e+00 4.45e-07 1.64e-04 -3.7 6.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 87 8.0353909e+00 7.15e-07 1.96e-04 -9.7 2.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 88 8.0353903e+00 1.17e-06 3.12e-03 -11.0 2.90e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 8.0353878e+00 2.46e-06 8.98e-03 -11.0 8.87e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.0353903e+00 5.91e-07 8.96e-05 -11.0 4.09e-03 - 1.00e+00 1.00e+00h 1\n", - " 91 8.0353915e+00 1.99e-07 1.83e-04 -11.0 1.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 8.0353897e+00 1.42e-06 2.98e-03 -11.0 3.70e-03 - 1.00e+00 1.00e+00h 1\n", - " 93 8.0353874e+00 1.98e-06 2.10e-03 -11.0 8.67e-03 - 1.00e+00 1.00e+00h 1\n", - " 94 8.0353832e+00 4.91e-06 3.84e-03 -11.0 1.41e-02 - 1.00e+00 1.00e+00h 1\n", - " 95 8.0353899e+00 1.34e-06 1.56e-03 -11.0 6.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 8.0353912e+00 2.89e-07 8.45e-05 -11.0 2.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 97 8.0353911e+00 3.62e-07 1.37e-04 -11.0 1.68e-03 - 1.00e+00 1.00e+00h 1\n", - " 98 8.0353910e+00 2.96e-07 7.30e-05 -11.0 1.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 99 8.0353914e+00 6.41e-11 3.90e-04 -11.0 1.81e-03 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.0353874e+00 3.02e-06 1.86e-03 -11.0 3.64e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.0353873892137084e+00 8.0353873892137084e+00\n", - "Dual infeasibility......: 1.8637684955299105e-03 1.8637684955299105e-03\n", - "Constraint violation....: 3.0178612959730344e-06 3.0178612959730344e-06\n", - "Complementarity.........: 1.0000000000000001e-11 1.0000000000000001e-11\n", - "Overall NLP error.......: 1.8637684955299105e-03 1.8637684955299105e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 138\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 138\n", - "Number of inequality constraint evaluations = 138\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.393\n", - "Total CPU secs in NLP function evaluations = 135.404\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 619.00us ( 4.49us) 618.71us ( 4.48us) 138\n", - " nlp_g | 6.19 s ( 44.86ms) 5.91 s ( 42.81ms) 138\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 386.00us ( 3.78us) 344.87us ( 3.38us) 102\n", - " nlp_jac_g | 132.02 s ( 1.29 s) 125.99 s ( 1.24 s) 102\n", - " total | 139.68 s (139.68 s) 133.30 s (133.30 s) 1\n", - "Timestamp 26700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 6.92e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9687565e+01 1.31e+01 6.92e+03 -1.5 6.92e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.5589854e+00 4.45e+00 9.63e+00 0.6 2.68e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 8.2826841e+00 1.20e+00 8.34e-01 -1.5 7.74e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 9.0725641e+00 1.72e-03 7.41e-02 -3.3 1.63e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 9.0734286e+00 5.36e-07 7.31e-05 -5.1 2.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 9.0734288e+00 3.21e-07 4.68e-05 -11.0 1.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 9.0734291e+00 1.39e-07 6.14e-05 -11.0 6.48e-04 - 1.00e+00 1.00e+00h 1\n", - " 8 9.0734289e+00 3.18e-07 8.88e-05 -11.0 1.83e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 9.0734290e+00 3.07e-07 6.31e-05 -11.0 1.08e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 9.0734293e+00 7.24e-11 8.56e-05 -11.0 7.90e-04 - 1.00e+00 1.00e+00H 1\n", - " 11 9.0734291e+00 5.49e-08 1.34e-04 -11.0 4.49e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 9.0734289e+00 2.56e-07 2.71e-05 -11.0 6.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 9.0734293e+00 2.83e-08 2.26e-05 -11.0 3.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 9.0734292e+00 5.98e-08 4.14e-05 -11.0 9.44e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 9.0734230e+00 3.95e-06 4.78e-03 -11.0 5.96e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 9.0734220e+00 5.38e-06 4.39e-03 -11.0 1.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 9.0734139e+00 9.01e-06 1.69e-03 -11.0 9.99e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 9.0732728e+00 5.93e-05 4.24e-03 -11.0 2.87e-01 - 1.00e+00 1.00e+00h 1\n", - " 19 9.0734056e+00 1.28e-05 2.39e-03 -11.0 1.01e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 9.0728239e+00 9.95e-04 5.25e-03 -11.0 4.04e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 9.0725756e+00 8.48e-04 8.26e-04 -11.0 2.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 9.0724691e+00 1.35e-03 2.42e-03 -11.0 3.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 9.0693163e+00 4.73e-03 4.59e-03 -11.0 2.13e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 9.0676950e+00 1.64e-02 4.18e-03 -11.0 4.69e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 9.0731536e+00 4.21e-04 1.28e-03 -11.0 5.17e+00 - 1.00e+00 1.00e+00h 1\n", - " 26 9.0715219e+00 1.21e-03 9.36e-04 -11.0 4.98e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 9.0248157e+00 6.36e-02 4.63e-03 -11.0 2.44e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 9.0188431e+00 3.91e-02 3.98e-03 -11.0 2.68e+02 - 1.00e+00 1.00e+00h 1\n", - " 29 9.0681483e+00 1.38e-05 6.82e-02 -11.0 7.39e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 9.0681526e+00 1.48e-06 1.13e-03 -11.0 4.20e-03 - 1.00e+00 1.00e+00h 1\n", - " 31 9.0681539e+00 5.47e-07 1.89e-03 -11.0 3.86e-03 - 1.00e+00 1.00e+00h 1\n", - " 32 9.0681534e+00 1.86e-06 2.52e-03 -11.0 1.06e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 9.0681504e+00 2.00e-06 1.52e-03 -11.0 8.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 34 9.0681551e+00 1.06e-09 9.88e-05 -11.0 7.12e-03 - 1.00e+00 1.00e+00H 1\n", - " 35 9.0650661e+00 1.25e-03 2.49e-02 -11.0 8.05e+00 - 1.00e+00 1.00e+00f 1\n", - " 36 9.0674583e+00 4.01e-04 1.26e-03 -11.0 2.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 37 9.0673818e+00 3.76e-04 2.79e-03 -11.0 1.62e+00 - 1.00e+00 1.00e+00h 1\n", - " 38 9.0674442e+00 2.14e-04 1.50e-03 -11.0 9.30e-01 - 1.00e+00 1.00e+00h 1\n", - " 39 9.0677024e+00 2.03e-04 2.04e-03 -11.0 5.55e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 9.0676836e+00 7.22e-05 1.40e-03 -11.0 3.94e-01 - 1.00e+00 1.00e+00h 1\n", - " 41 9.0628231e+00 2.68e-03 4.58e-03 -11.0 9.64e+00 - 1.00e+00 1.00e+00h 1\n", - " 42 9.0676223e+00 3.07e-04 3.58e-03 -11.0 2.81e+00 - 1.00e+00 1.00e+00h 1\n", - " 43 9.0671710e+00 5.19e-04 9.43e-03 -11.0 8.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 44 9.0580297e+00 7.48e-03 2.20e-02 -11.0 3.12e+01 - 1.00e+00 1.00e+00h 1\n", - " 45 9.0619373e+00 6.44e-03 8.77e-03 -11.0 3.33e+01 - 1.00e+00 1.00e+00h 1\n", - " 46 9.0522743e+00 8.22e-03 2.15e-03 -11.0 2.60e+01 - 1.00e+00 1.00e+00h 1\n", - " 47 8.9001992e+00 9.70e-02 1.44e-02 -11.0 4.94e+02 - 1.00e+00 1.00e+00f 1\n", - " 48 9.0567104e+00 4.99e-03 1.24e-02 -11.0 1.29e+02 - 1.00e+00 1.00e+00h 1\n", - " 49 9.0633735e+00 3.55e-05 7.08e-03 -11.0 7.23e+01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 7.4942045e+00 2.96e+00 3.97e-01 -11.0 2.04e+04 - 1.00e+00 1.00e+00f 1\n", - " 51 7.6629719e+00 1.75e+00 8.60e-02 -9.1 2.95e+04 - 1.00e+00 3.76e-01h 1\n", - " 52 7.6528552e+00 1.73e+00 8.92e-02 -7.1 6.55e+04 - 1.00e+00 1.69e-03h 1\n", - " 53 7.6527181e+00 1.73e+00 8.92e-02 -5.2 2.60e+04 - 1.00e+00 4.27e-05h 1\n", - " 54 8.4157678e+00 2.45e-02 1.28e+00 -7.1 1.28e+00 - 1.00e+00 1.00e+00h 1\n", - " 55 8.4378029e+00 1.95e-06 1.43e-03 -9.0 2.93e-02 - 1.00e+00 1.00e+00h 1\n", - " 56 8.4378008e+00 1.91e-06 1.15e-03 -9.8 4.89e-03 - 1.00e+00 1.00e+00h 1\n", - " 57 8.4378031e+00 4.99e-07 3.04e-05 -11.0 1.58e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 8.4378037e+00 2.32e-08 8.73e-05 -11.0 3.04e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 8.4377989e+00 3.95e-06 3.72e-03 -11.0 3.36e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 8.4377752e+00 2.40e-05 1.66e-02 -11.0 8.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 8.4377986e+00 2.20e-06 1.02e-03 -11.0 3.35e-02 - 1.00e+00 1.00e+00h 1\n", - " 62 8.4377498e+00 1.32e-05 1.67e-03 -11.0 8.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 63 8.4377985e+00 9.25e-06 1.10e-03 -11.0 2.55e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 8.4377968e+00 4.31e-06 1.11e-03 -11.0 3.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 8.4377984e+00 3.31e-06 1.03e-03 -9.0 1.78e-02 - 1.00e+00 3.31e-01h 1\n", - " 66 8.4378027e+00 8.23e-07 1.26e-03 -10.3 8.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 67 8.4378019e+00 1.19e-06 9.49e-04 -10.5 1.72e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 8.4378016e+00 7.12e-07 2.14e-03 -11.0 1.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 69 8.4377337e+00 3.08e-05 9.83e-03 -11.0 1.81e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 8.4377882e+00 1.18e-05 1.46e-03 -9.0 5.11e-02 - 8.37e-01 1.00e+00h 1\n", - " 71 8.4377968e+00 3.27e-06 1.79e-03 -10.1 2.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 72 8.4377065e+00 6.34e-05 9.65e-03 -8.1 2.22e-01 - 2.16e-01 1.00e+00h 1\n", - " 73 8.4377987e+00 8.11e-06 1.12e-03 -8.0 4.25e-02 - 1.00e+00 1.00e+00h 1\n", - " 74 8.4377892e+00 8.68e-06 1.41e-03 -8.1 6.34e-02 - 1.00e+00 9.25e-01h 1\n", - " 75 8.4377900e+00 8.22e-06 4.45e-04 -7.2 1.68e-02 - 1.00e+00 6.25e-02f 5\n", - " 76 8.4378021e+00 1.03e-06 1.71e-03 -9.3 8.85e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 8.4377986e+00 4.13e-06 2.79e-03 -9.3 2.66e-02 - 8.59e-01 1.00e+00h 1\n", - " 78 8.4378013e+00 1.22e-06 1.42e-03 -9.3 6.01e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 8.4378021e+00 7.98e-07 1.71e-03 -9.3 1.30e-02 - 8.67e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 8.4378039e+00 6.00e-10 9.08e-05 -9.3 6.99e-03 - 1.00e+00 1.00e+00H 1\n", - " 81 8.4378000e+00 1.76e-06 1.07e-03 -11.0 1.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 82 8.4378019e+00 1.07e-06 3.40e-03 -11.0 1.06e-02 - 1.00e+00 1.00e+00h 1\n", - " 83 8.4378028e+00 1.75e-06 1.61e-03 -11.0 7.08e-03 - 1.00e+00 1.00e+00h 1\n", - " 84 8.4378038e+00 2.06e-07 1.29e-04 -11.0 2.82e-03 - 1.00e+00 1.00e+00h 1\n", - " 85 8.4377962e+00 8.89e-06 4.56e-03 -11.0 5.65e-02 - 8.97e-01 1.00e+00h 1\n", - " 86 8.4377961e+00 3.64e-06 6.87e-04 -11.0 3.60e-02 - 1.00e+00 1.00e+00h 1\n", - " 87 8.4377947e+00 5.86e-06 1.99e-03 -11.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n", - " 88 8.4378044e+00 5.39e-07 2.21e-03 -11.0 5.67e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 8.4378056e+00 5.51e-10 1.35e-04 -11.0 1.14e-02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 8.4377704e+00 2.40e-05 5.93e-03 -11.0 7.95e-02 - 6.24e-01 1.00e+00h 1\n", - " 91 8.4378028e+00 1.68e-06 1.02e-03 -11.0 2.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 92 8.4378047e+00 1.07e-06 1.31e-03 -11.0 1.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 93 8.4377962e+00 5.64e-06 9.71e-04 -11.0 1.47e-02 - 1.00e+00 1.00e+00h 1\n", - " 94 8.4378041e+00 1.59e-06 2.19e-03 -11.0 1.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 95 8.4378082e+00 3.15e-09 2.48e-04 -11.0 5.64e-02 - 1.00e+00 1.00e+00H 1\n", - "In iteration 95, 1 Slack too small, adjusting variable bound\n", - " 96 8.4377604e+00 3.05e-05 2.03e-03 -11.0 2.91e-01 - 1.00e+00 1.93e-01f 1\n", - " 97 8.4378078e+00 9.22e-07 1.02e-03 -11.0 9.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 98 8.4378098e+00 3.37e-10 9.22e-05 -7.8 1.34e-02 - 3.95e-01 1.00e+00H 1\n", - " 99 8.4378060e+00 3.21e-06 7.49e-04 -7.8 1.06e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 8.4377975e+00 3.46e-05 4.96e-03 -7.8 4.53e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 8.4377975380270147e+00 8.4377975380270147e+00\n", - "Dual infeasibility......: 4.9554420814188760e-03 4.9554420814188760e-03\n", - "Constraint violation....: 3.4572013213107766e-05 3.4572013213107766e-05\n", - "Complementarity.........: 1.5015713141616446e-08 1.5015713141616446e-08\n", - "Overall NLP error.......: 4.9554420814188760e-03 4.9554420814188760e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 112\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 112\n", - "Number of inequality constraint evaluations = 112\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.446\n", - "Total CPU secs in NLP function evaluations = 134.275\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 507.00us ( 4.53us) 499.34us ( 4.46us) 112\n", - " nlp_g | 5.00 s ( 44.66ms) 4.77 s ( 42.55ms) 112\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 351.00us ( 3.44us) 348.38us ( 3.42us) 102\n", - " nlp_jac_g | 132.04 s ( 1.29 s) 126.04 s ( 1.24 s) 102\n", - " total | 138.50 s (138.50 s) 132.20 s (132.20 s) 1\n", - "Timestamp 27000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.18e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9930434e+01 1.22e+01 1.18e+04 -1.5 1.18e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 7.8268345e+00 4.03e+00 7.28e+00 0.6 6.60e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 2.5682548e+00 6.67e-01 6.82e-01 -1.5 1.74e+01 - 9.97e-01 1.00e+00f 1\n", - " 4 2.8961749e+00 2.44e-03 2.88e-01 -3.2 1.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.8972424e+00 1.35e-06 1.01e-03 -5.1 4.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 2.8972420e+00 2.15e-06 1.18e-03 -7.2 6.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 2.8972379e+00 4.66e-06 1.64e-03 -9.3 1.85e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 2.8972443e+00 3.90e-09 9.65e-05 -11.0 2.46e-02 - 1.00e+00 1.00e+00H 1\n", - " 9 2.8972399e+00 4.36e-06 8.39e-04 -11.0 1.73e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.8972439e+00 1.87e-07 6.20e-05 -11.0 1.70e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 2.8972422e+00 3.77e-06 6.19e-04 -11.0 7.37e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 2.8972407e+00 2.42e-06 1.58e-03 -11.0 2.30e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 2.8972429e+00 4.02e-07 7.80e-05 -11.0 4.35e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 2.8972414e+00 1.47e-06 1.01e-03 -11.0 9.16e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 2.8972435e+00 3.18e-10 3.81e-05 -11.0 9.70e-03 - 1.00e+00 1.00e+00H 1\n", - " 16 2.8972431e+00 4.70e-07 5.67e-05 -11.0 1.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 2.8972418e+00 1.28e-06 1.35e-03 -11.0 1.43e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 2.8972413e+00 1.68e-06 2.65e-03 -11.0 1.85e-02 - 1.00e+00 1.00e+00h 1\n", - " 19 2.8972430e+00 1.24e-06 7.49e-04 -11.0 4.17e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.8972433e+00 9.76e-07 8.41e-04 -11.0 7.90e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 2.8972436e+00 1.96e-07 8.68e-05 -11.0 1.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 2.8972415e+00 3.25e-06 1.41e-03 -11.0 9.12e-03 - 1.00e+00 1.00e+00h 1\n", - " 23 2.8972429e+00 9.64e-07 2.88e-03 -11.0 8.11e-03 - 1.00e+00 1.00e+00h 1\n", - " 24 2.8972411e+00 1.63e-06 3.09e-03 -11.0 1.40e-02 - 1.00e+00 1.00e+00h 1\n", - " 25 2.8972441e+00 2.45e-07 1.16e-04 -11.0 3.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 26 2.8972403e+00 7.20e-06 9.97e-04 -11.0 9.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 27 2.8972436e+00 3.36e-07 8.90e-05 -11.0 2.72e-03 - 1.00e+00 1.00e+00h 1\n", - " 28 2.8972416e+00 1.85e-06 1.39e-03 -11.0 8.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 29 2.8972384e+00 5.49e-06 1.78e-03 -11.0 1.73e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.8972436e+00 1.25e-08 1.31e-04 -11.0 6.11e-05 - 1.00e+00 1.00e+00h 1\n", - " 31 2.8972435e+00 6.98e-08 4.86e-05 -11.0 1.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 32 2.8972436e+00 1.97e-08 4.56e-05 -11.0 1.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 2.8972422e+00 7.64e-07 7.91e-03 -11.0 7.86e-03 - 1.00e+00 1.00e+00h 1\n", - " 34 2.8972429e+00 5.60e-07 1.06e-03 -11.0 3.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 35 2.8972433e+00 9.19e-08 1.92e-05 -11.0 1.58e-03 - 1.00e+00 1.00e+00h 1\n", - " 36 2.8972434e+00 6.18e-08 4.66e-05 -11.0 6.04e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 2.8972427e+00 7.27e-07 2.62e-05 -11.0 5.29e-03 - 1.00e+00 1.00e+00h 1\n", - " 38 2.8972435e+00 2.15e-08 1.41e-04 -11.0 5.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 2.8972434e+00 1.00e-07 7.53e-05 -11.0 6.95e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.8972428e+00 9.49e-07 1.60e-03 -11.0 3.48e-03 - 1.00e+00 1.00e+00h 1\n", - " 41 2.8972434e+00 1.57e-07 1.08e-04 -11.0 1.94e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 2.8972420e+00 8.37e-07 2.46e-03 -11.0 4.71e-03 - 1.00e+00 1.00e+00h 1\n", - " 43 2.8972432e+00 3.14e-07 6.92e-05 -11.0 1.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 2.8972041e+00 2.86e-05 7.99e-03 -11.0 1.84e-01 - 1.00e+00 1.00e+00h 1\n", - " 45 2.8972129e+00 3.16e-05 2.24e-03 -11.0 3.39e-01 - 1.00e+00 1.00e+00h 1\n", - " 46 2.8972349e+00 4.52e-05 6.85e-04 -11.0 1.63e-01 - 1.00e+00 1.00e+00h 1\n", - " 47 2.8972325e+00 5.51e-05 1.06e-03 -11.0 1.21e-01 - 1.00e+00 1.00e+00h 1\n", - " 48 2.8972055e+00 7.23e-05 1.16e-03 -11.0 1.94e-01 - 1.00e+00 1.00e+00h 1\n", - " 49 2.8971703e+00 1.85e-04 3.90e-03 -11.0 7.21e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.8972458e+00 1.57e-05 1.66e-03 -11.0 1.89e-01 - 1.00e+00 1.00e+00h 1\n", - " 51 2.8959987e+00 1.08e-03 3.37e-03 -11.0 3.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 52 2.3305834e+00 5.03e-01 2.50e-01 -11.0 2.85e+03 - 1.00e+00 1.00e+00f 1\n", - " 53 2.2602676e+00 9.65e-01 1.44e-01 -11.0 4.55e+03 - 1.00e+00 1.00e+00h 1\n", - " 54 2.1358813e+00 8.48e-01 3.29e-01 -9.0 2.81e+06 - 1.00e+00 2.12e-03f 3\n", - " 55 2.4701296e+00 3.90e-01 5.25e-01 -7.0 4.60e+04 - 1.00e+00 7.43e-01H 1\n", - " 56 2.3426546e+00 7.23e-01 2.13e-01 -7.1 6.12e+03 - 1.00e+00 1.00e+00h 1\n", - " 57 2.1855729e+00 3.73e-01 2.06e-01 -7.1 2.46e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 2.3524649e+00 1.49e-01 2.73e-01 -8.3 3.54e+03 - 1.00e+00 1.00e+00h 1\n", - " 59 2.3100770e+00 2.52e-01 1.15e-01 -7.6 2.95e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.2916022e+00 4.66e-01 6.04e-02 -8.1 4.18e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 2.2893636e+00 4.41e-01 6.25e-02 -8.2 2.11e+04 - 1.00e+00 3.12e-02h 6\n", - " 62 2.5289712e+00 4.48e-01 2.87e-01 -8.2 1.72e+04 - 1.00e+00 5.87e-01h 1\n", - " 63 2.4717425e+00 3.38e-01 2.03e-01 -8.2 4.33e+03 - 1.91e-07 1.00e+00h 1\n", - " 64 2.3916907e+00 3.15e-01 7.03e-01 -8.2 9.45e+04 - 1.00e+00 1.00e+00F 1\n", - " 65 2.4321951e+00 3.39e-01 1.58e-01 -8.2 1.99e+04 - 1.00e+00 1.00e+00h 1\n", - " 66 2.4289764e+00 4.36e-01 1.41e-01 -8.2 8.08e+04 - 1.96e-01 1.74e-02h 6\n", - " 67 2.4650119e+00 1.74e-01 1.43e-01 -8.2 8.97e+03 - 1.00e+00 1.00e+00h 1\n", - " 68 2.5633372e+00 6.35e-04 1.78e-01 -8.2 1.89e-01 - 1.00e+00 1.00e+00h 1\n", - " 69 2.5634898e+00 2.20e-08 5.05e-05 -10.0 6.44e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.5634898e+00 3.99e-08 4.58e-06 -11.0 2.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 2.5634898e+00 2.10e-10 3.04e-05 -11.0 3.36e-05 - 1.00e+00 1.00e+00h 1\n", - " 72 2.5634898e+00 2.58e-09 2.27e-05 -11.0 2.66e-05 - 1.00e+00 1.00e+00h 1\n", - " 73 2.5634898e+00 1.52e-08 4.69e-05 -11.0 5.04e-05 - 1.00e+00 1.00e+00h 1\n", - " 74 2.5634898e+00 9.18e-09 6.45e-05 -11.0 8.09e-05 - 1.00e+00 1.00e+00h 1\n", - " 75 2.5634898e+00 2.44e-08 4.58e-05 -11.0 7.22e-05 - 1.00e+00 1.00e+00h 1\n", - " 76 2.5634898e+00 8.97e-09 5.04e-05 -11.0 5.75e-05 - 1.00e+00 1.00e+00h 1\n", - " 77 2.5634860e+00 4.19e-06 1.65e-02 -11.0 1.63e-02 - 1.00e+00 1.00e+00h 1\n", - " 78 2.5634887e+00 1.02e-06 9.84e-04 -11.0 1.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 79 2.5634808e+00 3.36e-05 3.91e-03 -11.0 9.09e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.5634709e+00 6.90e-05 3.03e-03 -11.0 1.44e-01 - 1.00e+00 1.00e+00h 1\n", - " 81 2.5634315e+00 1.56e-04 3.58e-03 -11.0 6.79e-01 - 1.00e+00 1.00e+00h 1\n", - " 82 2.5632084e+00 3.54e-04 3.86e-03 -11.0 1.51e+00 - 1.00e+00 1.00e+00h 1\n", - " 83 2.5634090e+00 4.79e-05 1.13e-03 -11.0 5.84e-01 - 1.00e+00 1.00e+00h 1\n", - " 84 2.5634764e+00 3.90e-08 2.61e-05 -11.0 3.43e-01 - 1.00e+00 1.00e+00H 1\n", - " 85 2.5634574e+00 6.03e-05 1.04e-03 -11.0 2.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 86 2.5633932e+00 4.33e-05 1.33e-03 -11.0 6.23e-01 - 1.00e+00 1.00e+00h 1\n", - " 87 2.5633453e+00 2.15e-04 1.40e-03 -11.0 6.61e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 2.5634702e+00 9.28e-06 1.20e-03 -11.0 2.14e-01 - 1.00e+00 1.00e+00h 1\n", - " 89 2.5633710e+00 1.65e-04 5.16e-04 -11.0 1.19e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.5634226e+00 7.29e-05 7.87e-04 -11.0 1.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 2.5634203e+00 7.42e-05 9.01e-04 -11.0 1.12e+00 - 1.00e+00 1.00e+00h 1\n", - " 92 2.5634699e+00 6.91e-05 8.56e-04 -11.0 1.38e+00 - 1.00e+00 1.00e+00h 1\n", - " 93 2.5614896e+00 6.64e-03 3.78e-03 -11.0 1.82e+02 - 1.00e+00 1.00e+00h 1\n", - " 94 2.5564284e+00 5.82e-03 4.63e-03 -11.0 1.32e+02 - 1.00e+00 1.00e+00h 1\n", - " 95 2.5631440e+00 5.95e-05 5.48e-03 -11.0 3.60e+02 - 1.00e+00 1.00e+00H 1\n", - " 96 2.5598883e+00 3.77e-03 1.85e-03 -11.0 3.44e+02 - 1.00e+00 1.00e+00h 1\n", - " 97 2.5588026e+00 7.19e-03 2.07e-03 -11.0 4.65e+02 - 1.00e+00 1.00e+00h 1\n", - " 98 2.4586786e+00 1.60e-01 6.86e-02 -11.0 2.34e+03 - 1.00e+00 1.00e+00h 1\n", - " 99 2.4322626e+00 3.22e-01 2.28e-01 -11.0 4.08e+04 - 9.35e-01 7.66e-02h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.4186873e+00 4.66e-01 2.45e-01 -11.0 4.09e+04 - 1.00e+00 4.83e-01H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.4186872642860693e+00 2.4186872642860693e+00\n", - "Dual infeasibility......: 2.4513835381934262e-01 2.4513835381934262e-01\n", - "Constraint violation....: 4.6604725656796830e-01 4.6604725656796830e-01\n", - "Complementarity.........: 1.5318204563050927e-11 1.5318204563050927e-11\n", - "Overall NLP error.......: 4.6604725656796830e-01 4.6604725656796830e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 132\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 132\n", - "Number of inequality constraint evaluations = 132\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.427\n", - "Total CPU secs in NLP function evaluations = 134.944\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 598.00us ( 4.53us) 600.23us ( 4.55us) 132\n", - " nlp_g | 5.89 s ( 44.64ms) 5.62 s ( 42.58ms) 132\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 378.00us ( 3.71us) 365.67us ( 3.58us) 102\n", - " nlp_jac_g | 132.00 s ( 1.29 s) 126.02 s ( 1.24 s) 102\n", - " total | 139.39 s (139.39 s) 133.07 s (133.07 s) 1\n", - "Timestamp 27300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.14e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0234725e+01 1.26e+01 2.14e+04 -1.5 2.14e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.1212933e+00 4.41e+00 7.51e+00 0.8 3.17e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.0992787e+00 6.48e-01 6.23e-01 -1.3 9.34e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 2.4278758e+00 4.79e-03 4.26e-01 -3.0 3.51e+00 - 9.99e-01 1.00e+00h 1\n", - " 5 2.4291580e+00 3.54e-05 5.56e-03 -4.9 1.82e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.4291487e+00 3.01e-05 1.47e-03 -7.0 2.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 2.4291598e+00 3.38e-05 8.89e-04 -9.1 1.94e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 2.4291445e+00 3.09e-05 1.71e-03 -9.2 1.17e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 2.4291152e+00 9.12e-05 2.96e-03 -11.0 2.41e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.4291571e+00 5.40e-05 1.61e-03 -11.0 1.85e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 2.4291714e+00 1.24e-05 1.10e-03 -11.0 1.08e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 2.4291696e+00 2.97e-05 5.39e-04 -11.0 6.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 2.4291667e+00 1.22e-05 1.60e-03 -11.0 1.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 14 2.4291761e+00 1.01e-05 1.84e-03 -11.0 4.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 2.4288791e+00 1.29e-04 3.80e-03 -11.0 4.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 2.4291738e+00 5.45e-06 1.23e-03 -11.0 8.63e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 2.4291751e+00 5.06e-06 1.50e-03 -11.0 5.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 2.4291728e+00 1.07e-05 1.40e-03 -11.0 7.97e-02 - 1.00e+00 1.00e+00h 1\n", - " 19 2.4290929e+00 2.04e-04 5.46e-03 -11.0 6.41e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.4278788e+00 2.69e-03 6.84e-03 -11.0 1.15e+01 - 1.00e+00 1.00e+00h 1\n", - " 21 2.4282675e+00 1.80e-03 2.64e-03 -11.0 1.14e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 2.4281298e+00 1.01e-03 1.30e-03 -11.0 7.65e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 2.4183319e+00 1.52e-02 5.36e-03 -11.0 1.09e+02 - 1.00e+00 1.00e+00h 1\n", - " 24 2.3701710e+00 7.02e-02 2.63e-02 -11.0 2.59e+02 - 1.00e+00 1.00e+00h 1\n", - " 25 2.4112309e+00 1.60e-02 1.57e-02 -11.0 1.12e+02 - 1.00e+00 1.00e+00h 1\n", - " 26 2.4178039e+00 1.58e-02 1.48e-02 -11.0 1.27e+02 - 1.00e+00 1.00e+00h 1\n", - " 27 2.4299638e+00 2.26e-03 9.73e-03 -11.0 8.88e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 2.3211202e+00 2.50e-01 9.37e-02 -11.0 8.40e+02 - 1.00e+00 1.00e+00f 1\n", - " 29 2.4318651e+00 2.36e-03 8.24e-02 -11.0 2.21e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.4185450e+00 9.62e-03 5.83e-02 -11.0 9.83e+01 - 1.00e+00 1.00e+00h 1\n", - " 31 2.3089327e+00 1.80e-01 4.30e-02 -11.0 3.56e+03 - 1.00e+00 1.00e+00h 1\n", - " 32 2.2472503e+00 6.56e-01 2.05e-01 -11.0 2.69e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 2.0939336e+00 5.42e-01 2.82e-01 -11.0 8.25e+03 - 1.00e+00 1.00e+00h 1\n", - " 34 2.3014259e+00 7.77e-02 3.90e-01 -11.0 1.08e+04 - 1.00e+00 1.00e+00h 1\n", - " 35 2.1066577e+00 1.42e+00 5.86e-01 -10.8 2.77e+04 - 1.00e+00 1.00e+00H 1\n", - " 36 1.8858248e+00 1.03e+00 1.72e-01 -10.9 5.17e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 1.8829871e+00 9.08e-01 1.23e-01 -11.0 5.49e+03 - 1.00e+00 1.25e-01h 4\n", - " 38 1.9713202e+00 4.29e-01 3.22e-01 -11.0 9.03e+03 - 1.00e+00 1.00e+00H 1\n", - " 39 1.9238208e+00 5.76e-01 4.97e-02 -11.0 4.27e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.8733884e+00 8.44e-01 1.83e-01 -10.4 1.29e+05 - 1.00e+00 2.31e-01h 1\n", - " 41 1.8727071e+00 8.39e-01 1.77e-01 -8.5 1.20e+04 - 1.00e+00 3.83e-02h 1\n", - " 42 1.8501705e+00 9.39e-01 1.63e-01 -11.0 1.28e+05 - 2.33e-05 1.52e-02h 6\n", - " 43 2.2311127e+00 1.98e-02 9.98e-01 -10.3 9.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 44 2.2423682e+00 5.83e-06 7.65e-03 -11.0 2.58e-02 - 1.00e+00 1.00e+00h 1\n", - " 45 2.2423699e+00 4.69e-08 6.56e-05 -11.0 2.46e-04 - 1.00e+00 1.00e+00h 1\n", - " 46 2.2423698e+00 1.49e-07 3.55e-05 -11.0 3.39e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 2.2423699e+00 2.17e-08 1.48e-05 -11.0 1.74e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 2.2423699e+00 1.07e-08 4.24e-05 -11.0 6.22e-05 - 1.00e+00 1.00e+00h 1\n", - " 49 2.2423698e+00 1.60e-07 1.03e-04 -11.0 1.81e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.2423689e+00 1.00e-06 7.63e-03 -11.0 5.47e-03 - 1.00e+00 1.00e+00h 1\n", - " 51 2.2423697e+00 2.46e-07 4.28e-05 -11.0 1.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 52 2.2423696e+00 2.16e-07 2.19e-05 -11.0 1.95e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 2.2423699e+00 1.01e-07 7.13e-05 -11.0 1.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 2.2423693e+00 5.33e-07 1.44e-03 -11.0 2.06e-03 - 1.00e+00 1.00e+00h 1\n", - " 55 2.2423651e+00 2.56e-06 4.82e-03 -11.0 2.27e-02 - 1.00e+00 1.00e+00h 1\n", - " 56 2.2423695e+00 9.34e-07 1.40e-03 -11.0 3.95e-03 - 1.00e+00 1.00e+00h 1\n", - " 57 2.2423691e+00 3.76e-07 4.10e-05 -11.0 4.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 58 2.2423693e+00 4.11e-07 9.40e-05 -11.0 2.71e-03 - 1.00e+00 1.00e+00h 1\n", - " 59 2.2423678e+00 2.01e-06 1.31e-03 -11.0 6.49e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.2423645e+00 3.99e-06 2.51e-03 -11.0 1.08e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 2.2423699e+00 1.40e-08 1.24e-04 -11.0 7.04e-05 - 1.00e+00 1.00e+00h 1\n", - " 62 2.2423698e+00 7.53e-08 5.27e-05 -11.0 1.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 2.2423699e+00 6.12e-09 6.81e-05 -11.0 5.06e-05 - 1.00e+00 1.00e+00h 1\n", - " 64 2.2423699e+00 1.35e-08 1.94e-04 -11.0 6.91e-05 - 1.00e+00 1.00e+00h 1\n", - " 65 2.2423697e+00 1.67e-07 1.79e-05 -11.0 2.85e-04 - 1.00e+00 1.00e+00h 1\n", - " 66 2.2423699e+00 1.12e-08 7.55e-05 -11.0 6.40e-05 - 1.00e+00 1.00e+00h 1\n", - " 67 2.2423699e+00 8.95e-09 7.35e-05 -11.0 7.60e-05 - 1.00e+00 1.00e+00h 1\n", - " 68 2.2423699e+00 9.86e-11 3.85e-05 -11.0 1.72e-04 - 1.00e+00 1.00e+00H 1\n", - " 69 2.2423698e+00 2.31e-07 5.08e-05 -11.0 6.03e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.2423699e+00 2.73e-08 2.65e-05 -11.0 2.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 2.2423698e+00 1.17e-07 6.53e-05 -11.0 9.19e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 2.2423696e+00 3.62e-07 1.82e-05 -11.0 7.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 2.2423697e+00 2.79e-07 2.77e-05 -11.0 3.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 2.2423699e+00 7.71e-10 4.90e-05 -11.0 5.93e-03 - 1.00e+00 1.00e+00H 1\n", - " 75 2.2423674e+00 1.08e-05 3.32e-03 -11.0 2.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 76 2.2423668e+00 3.73e-06 9.17e-04 -11.0 1.21e-01 - 1.00e+00 1.00e+00h 1\n", - " 77 2.2423051e+00 4.67e-05 1.85e-03 -11.0 4.41e+00 - 1.00e+00 1.00e+00h 1\n", - " 78 2.2179635e+00 4.59e-02 1.57e-02 -11.0 1.77e+03 - 1.00e+00 1.00e+00f 1\n", - " 79 2.2064636e+00 6.10e-02 7.67e-03 -11.0 9.62e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.1556348e+00 7.20e-01 4.13e-01 -11.0 8.58e+03 - 1.00e+00 1.00e+00h 1\n", - " 81 2.0359939e+00 3.02e-01 1.10e-01 -11.0 7.20e+03 - 1.00e+00 1.00e+00h 1\n", - " 82 2.0407221e+00 2.65e-01 1.99e-01 -11.0 7.33e+02 - 1.00e+00 1.00e+00h 1\n", - " 83 2.2181010e+00 8.04e-02 1.27e-01 -11.0 2.26e+03 - 1.00e+00 1.00e+00h 1\n", - " 84 2.0365698e+00 4.37e-01 1.06e-01 -9.0 1.56e+04 - 1.00e+00 9.34e-01h 1\n", - " 85 2.0345983e+00 4.37e-01 1.03e-01 -9.2 3.10e+05 - 1.86e-01 4.73e-04h 1\n", - " 86 2.2053380e+00 2.28e-01 2.05e-01 -10.2 3.03e+03 - 1.00e+00 1.00e+00h 1\n", - " 87 2.1714194e+00 9.64e-02 6.72e-02 -5.3 7.23e+02 - 1.00e+00 1.00e+00h 1\n", - " 88 2.1896372e+00 1.24e-01 7.42e-02 -3.3 1.54e+03 - 6.07e-01 1.00e+00h 1\n", - " 89 2.0469924e+00 7.67e-01 3.04e-01 -9.5 1.00e+05 - 1.14e-03 5.18e-02f 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.3128948e+00 2.23e-01 6.06e-01 -3.6 5.55e+04 - 1.84e-01 6.55e-01H 1\n", - " 91 2.3124083e+00 2.20e-01 5.99e-01 -3.6 7.13e+03 - 1.00e+00 8.37e-03h 1\n", - " 92 2.3164723e+00 1.66e-01 4.18e-01 -3.6 6.71e+02 - 5.52e-01 2.50e-01h 3\n", - " 93 1.9544720e+00 1.08e+00 5.23e-01 -3.6 1.82e+04 - 1.00e+00 1.00e+00f 1\n", - " 94 2.2750082e+00 8.27e-03 8.70e-01 -3.6 1.67e+00 - 1.00e+00 1.00e+00h 1\n", - " 95 2.2853512e+00 1.64e-06 2.88e-03 -3.6 1.91e-02 - 1.00e+00 1.00e+00h 1\n", - " 96 2.2853503e+00 1.24e-07 4.37e-05 -3.6 5.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 97 2.2853505e+00 1.01e-10 7.53e-05 -5.5 6.31e-04 - 1.00e+00 1.00e+00H 1\n", - " 98 2.2853505e+00 3.29e-11 5.62e-05 -5.5 3.12e-04 - 1.00e+00 1.00e+00H 1\n", - " 99 2.2853505e+00 2.36e-08 3.67e-05 -5.5 1.21e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.2853504e+00 4.29e-08 2.45e-05 -5.5 6.40e-04 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.2853503958837309e+00 2.2853503958837309e+00\n", - "Dual infeasibility......: 2.4544855078754572e-05 2.4544855078754572e-05\n", - "Constraint violation....: 4.2898101071386918e-08 4.2898101071386918e-08\n", - "Complementarity.........: 3.3764972900734635e-06 3.3764972900734635e-06\n", - "Overall NLP error.......: 2.4544855078754572e-05 2.4544855078754572e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 125\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 125\n", - "Number of inequality constraint evaluations = 125\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.407\n", - "Total CPU secs in NLP function evaluations = 134.678\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 563.00us ( 4.50us) 548.21us ( 4.39us) 125\n", - " nlp_g | 5.56 s ( 44.48ms) 5.30 s ( 42.38ms) 125\n", - " nlp_grad | 1.37 s ( 1.37 s) 1.31 s ( 1.31 s) 1\n", - " nlp_grad_f | 381.00us ( 3.74us) 370.34us ( 3.63us) 102\n", - " nlp_jac_g | 131.85 s ( 1.29 s) 125.81 s ( 1.23 s) 102\n", - " total | 138.92 s (138.92 s) 132.55 s (132.55 s) 1\n", - "Timestamp 27600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 4.57e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9518165e+01 1.37e+01 4.57e+03 -1.5 4.57e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 8.7733855e+00 4.69e+00 1.04e+01 0.4 1.37e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 1.0494305e+01 1.38e+00 6.83e-01 -1.6 8.91e+00 - 9.98e-01 1.00e+00h 1\n", - " 4 1.1459235e+01 1.39e-03 7.91e-02 -3.4 1.82e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.1459926e+01 8.47e-07 1.56e-03 -5.3 3.49e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.1459925e+01 2.50e-06 1.82e-03 -7.3 6.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.1459927e+01 8.72e-07 1.17e-03 -9.4 2.72e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 1.1459927e+01 7.90e-07 1.22e-03 -11.0 4.28e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 1.1459923e+01 3.87e-06 2.69e-03 -11.0 2.29e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.1459930e+01 2.46e-10 9.32e-05 -11.0 2.46e-02 - 1.00e+00 1.00e+00H 1\n", - " 11 1.1459917e+01 9.74e-06 3.17e-03 -11.0 3.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 12 1.1459931e+01 2.80e-08 5.46e-05 -11.0 1.36e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 1.1459931e+01 1.48e-08 9.98e-05 -11.0 2.09e-04 - 1.00e+00 1.00e+00h 1\n", - " 14 1.1459931e+01 9.95e-08 1.88e-04 -11.0 3.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 1.1459931e+01 6.98e-08 1.21e-04 -11.0 2.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 1.1459931e+01 1.86e-08 2.36e-05 -11.0 1.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 1.1459931e+01 5.64e-09 1.99e-04 -11.0 4.17e-05 - 1.00e+00 1.00e+00h 1\n", - " 18 1.1459931e+01 1.33e-08 1.58e-04 -11.0 5.77e-05 - 1.00e+00 1.00e+00h 1\n", - " 19 1.1459931e+01 3.23e-07 1.98e-04 -11.0 8.28e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.1459931e+01 1.16e-08 8.67e-05 -11.0 9.33e-05 - 1.00e+00 1.00e+00h 1\n", - " 21 1.1459931e+01 5.33e-08 4.94e-05 -11.0 3.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 22 1.1459931e+01 3.91e-11 7.28e-05 -11.0 2.43e-04 - 1.00e+00 1.00e+00H 1\n", - " 23 1.1459931e+01 3.10e-07 6.29e-05 -11.0 4.36e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 1.1459931e+01 2.43e-07 1.84e-04 -11.0 1.21e-04 - 1.00e+00 2.50e-01h 3\n", - " 25 1.1459931e+01 3.75e-08 1.13e-04 -11.0 3.35e-04 - 1.00e+00 1.00e+00h 1\n", - " 26 1.1459931e+01 8.25e-11 1.06e-04 -11.0 2.76e-04 - 1.00e+00 1.00e+00H 1\n", - " 27 1.1459931e+01 4.35e-09 5.28e-05 -11.0 7.58e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 1.1459931e+01 3.10e-11 5.30e-05 -11.0 3.05e-04 - 1.00e+00 1.00e+00H 1\n", - " 29 1.1459931e+01 1.33e-08 3.48e-05 -11.0 2.18e-03 - 1.00e+00 3.12e-02h 6\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.1459931e+01 4.79e-11 1.11e-04 -11.0 1.76e-04 - 1.00e+00 1.00e+00H 1\n", - " 31 1.1459931e+01 2.96e-09 1.31e-04 -11.0 4.27e-05 - 1.00e+00 5.00e-01h 2\n", - " 32 1.1459931e+01 9.33e-09 7.38e-05 -11.0 5.91e-04 - 1.00e+00 1.00e+00h 1\n", - " 33 1.1459931e+01 4.46e-11 9.53e-05 -11.0 2.26e-04 - 1.00e+00 1.00e+00H 1\n", - " 34 1.1459931e+01 4.95e-11 1.59e-04 -11.0 1.90e-04 - 1.00e+00 1.00e+00H 1\n", - " 35 1.1459928e+01 3.19e-06 2.08e-02 -11.0 4.08e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 1.1459892e+01 3.97e-05 5.75e-02 -11.0 1.34e-01 - 1.00e+00 1.00e+00h 1\n", - " 37 1.1459929e+01 2.39e-06 1.82e-03 -11.0 2.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 38 1.1459930e+01 1.03e-06 3.55e-03 -11.0 4.05e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 1.1458008e+01 6.06e-04 3.72e-03 -11.0 9.64e+01 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.1457393e+01 2.54e-03 2.33e-03 -11.0 1.54e+02 - 1.00e+00 1.00e+00h 1\n", - " 41 1.1412041e+01 1.40e-01 2.01e-02 -11.0 8.00e+02 - 1.00e+00 1.00e+00h 1\n", - " 42 1.1446404e+01 2.11e-02 4.36e-03 -11.0 2.98e+02 - 1.00e+00 1.00e+00h 1\n", - " 43 9.7088786e+00 1.75e+00 1.48e-01 -11.0 1.98e+04 - 1.00e+00 1.00e+00f 1\n", - " 44 8.9697493e+00 2.09e+00 2.11e-01 -9.0 2.58e+04 - 1.00e+00 4.56e-01h 1\n", - " 45 8.9853688e+00 2.07e+00 2.05e-01 -7.1 1.03e+04 - 1.00e+00 1.14e-02h 1\n", - " 46 8.9854586e+00 2.07e+00 2.05e-01 -5.1 1.15e+04 - 1.00e+00 1.02e-04h 1\n", - " 47 1.1594867e+01 6.44e-02 2.94e-01 -3.2 3.26e+02 - 1.79e-01 1.00e+00h 1\n", - " 48 1.1578155e+01 8.22e-02 2.52e-01 -4.0 2.31e+03 - 1.00e+00 1.47e-01h 1\n", - " 49 1.1583640e+01 7.19e-02 2.20e-01 -4.0 1.48e+03 - 1.00e+00 1.25e-01h 4\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.1631250e+01 3.25e-03 4.45e-03 -4.0 1.69e+02 - 1.00e+00 1.00e+00h 1\n", - " 51 1.1628890e+01 2.99e-03 3.90e-03 -4.0 1.77e+03 - 1.00e+00 1.21e-01h 1\n", - " 52 1.1617378e+01 6.63e-04 1.80e-02 -4.0 3.48e+03 - 2.50e-01 1.00e+00F 1\n", - " 53 1.1150138e+01 3.07e-01 3.10e-02 -4.0 6.30e+04 - 5.50e-01 4.37e-01f 1\n", - " 54 1.1595289e+01 5.45e-02 2.22e-02 -3.7 1.79e+03 - 1.00e+00 1.00e+00h 1\n", - " 55 1.1504684e+01 2.04e-05 1.12e-01 -2.0 1.18e-01 - 1.00e+00 1.00e+00h 1\n", - " 56 1.1504694e+01 8.36e-07 2.07e-03 -2.0 3.59e-03 - 1.00e+00 1.00e+00h 1\n", - " 57 1.1504695e+01 3.61e-08 1.13e-04 -3.0 4.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 58 1.1504695e+01 5.39e-08 4.42e-05 -4.5 3.15e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 1.1504695e+01 9.40e-09 9.33e-05 -6.7 1.23e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.1504695e+01 6.98e-08 8.05e-05 -6.7 2.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 61 1.1504695e+01 7.80e-11 1.85e-04 -6.7 3.01e-04 - 1.00e+00 1.00e+00H 1\n", - " 62 1.1504694e+01 5.74e-07 1.11e-04 -6.7 1.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 63 1.1504692e+01 1.74e-06 4.23e-03 -6.7 1.65e-02 - 1.00e+00 1.00e+00h 1\n", - " 64 1.1504693e+01 1.14e-06 1.57e-03 -6.7 8.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 65 1.1504690e+01 2.32e-06 2.89e-03 -6.7 1.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 1.1504685e+01 4.94e-06 2.19e-03 -6.7 1.58e-02 - 1.00e+00 1.00e+00h 1\n", - " 67 1.1504695e+01 4.15e-08 8.67e-05 -6.7 9.55e-05 - 1.00e+00 1.00e+00h 1\n", - " 68 1.1504695e+01 9.24e-09 1.34e-04 -6.7 6.89e-05 - 1.00e+00 1.00e+00h 1\n", - " 69 1.1504695e+01 3.79e-08 9.51e-05 -6.7 1.94e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.1504694e+01 5.76e-08 1.52e-04 -6.7 2.90e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 1.1504694e+01 9.04e-08 4.37e-05 -6.7 3.87e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 1.1504695e+01 1.66e-08 7.35e-05 -6.7 6.56e-05 - 1.00e+00 1.00e+00h 1\n", - " 73 1.1504694e+01 4.97e-07 1.30e-04 -6.7 1.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 1.1504157e+01 2.09e-04 2.93e-02 -6.7 1.87e+00 - 1.00e+00 1.00e+00h 1\n", - " 75 1.1504513e+01 9.85e-05 1.41e-03 -6.7 8.19e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 1.1504639e+01 5.79e-05 1.45e-03 -6.7 3.25e-01 - 1.00e+00 1.00e+00h 1\n", - " 77 1.1504654e+01 2.36e-05 1.76e-03 -6.7 3.87e-01 - 1.00e+00 1.00e+00h 1\n", - " 78 1.1504493e+01 1.32e-04 1.21e-02 -6.7 9.09e-01 - 1.00e+00 1.00e+00h 1\n", - " 79 1.1504317e+01 1.62e-04 1.28e-02 -6.7 1.30e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.1504418e+01 1.22e-04 9.07e-03 -6.7 3.12e-04 - 1.00e+00 2.50e-01h 3\n", - " 81 1.1504570e+01 6.08e-05 4.97e-03 -6.7 2.34e-04 - 1.00e+00 5.00e-01h 2\n", - " 82 1.1504646e+01 3.04e-05 2.11e-03 -6.7 1.17e-04 - 1.00e+00 5.00e-01h 2\n", - " 83 1.1504684e+01 1.52e-05 2.17e-03 -6.7 5.87e-05 - 1.00e+00 5.00e-01h 2\n", - " 84 1.1504685e+01 1.47e-05 8.59e-04 -6.7 2.93e-05 - 1.00e+00 3.12e-02h 6\n", - " 85 1.1504722e+01 1.06e-08 1.31e-04 -6.7 2.84e-05 - 1.00e+00 1.00e+00h 1\n", - " 86 1.1504722e+01 1.79e-09 3.84e-04 -6.7 1.04e-05 - 1.00e+00 1.00e+00h 1\n", - " 87 1.1504722e+01 3.31e-08 1.38e-04 -6.7 1.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 88 1.1504722e+01 3.11e-08 9.84e-05 -6.7 2.18e-04 - 1.00e+00 1.00e+00h 1\n", - " 89 1.1504722e+01 1.77e-08 2.10e-04 -6.7 1.56e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.1504722e+01 7.77e-08 9.98e-05 -6.7 4.28e-04 - 1.00e+00 1.00e+00h 1\n", - " 91 1.1504722e+01 4.49e-08 1.37e-05 -6.7 5.00e-05 - 1.00e+00 5.00e-01h 2\n", - " 92 1.1504722e+01 9.57e-10 6.90e-05 -6.7 4.75e-06 - 1.00e+00 1.00e+00h 1\n", - " 93 1.1504722e+01 6.11e-11 1.06e-04 -6.7 1.01e-04 - 1.00e+00 1.00e+00H 1\n", - " 94 1.1504722e+01 7.96e-11 7.31e-05 -6.7 6.55e-05 - 1.00e+00 1.00e+00H 1\n", - " 95 1.1504722e+01 3.51e-11 7.88e-05 -6.7 2.06e-05 - 1.00e+00 2.44e-04h 13\n", - " 96 1.1504722e+01 4.60e-11 1.23e-04 -6.7 5.13e-05 - 1.00e+00 1.00e+00H 1\n", - " 97 1.1504722e+01 3.26e-11 4.55e-05 -6.7 5.40e-05 - 1.00e+00 1.00e+00H 1\n", - " 98 1.1504722e+01 1.46e-11 8.00e-05 -6.7 1.53e-04 - 1.00e+00 1.00e+00H 1\n", - " 99 1.1504722e+01 2.89e-11 6.38e-05 -6.7 1.47e-04 - 1.00e+00 2.38e-07h 23\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.1504722e+01 4.68e-11 4.73e-05 -6.7 5.39e-04 - 1.00e+00 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.1504722054077973e+01 1.1504722054077973e+01\n", - "Dual infeasibility......: 4.7295367860465546e-05 4.7295367860465546e-05\n", - "Constraint violation....: 4.6807002718196600e-11 4.6807002718196600e-11\n", - "Complementarity.........: 1.8906669708292574e-07 1.8906669708292574e-07\n", - "Overall NLP error.......: 4.7295367860465546e-05 4.7295367860465546e-05\n", - "\n", - "\n", - "Number of objective function evaluations = 195\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 195\n", - "Number of inequality constraint evaluations = 195\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.412\n", - "Total CPU secs in NLP function evaluations = 137.507\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 881.00us ( 4.52us) 873.29us ( 4.48us) 195\n", - " nlp_g | 8.68 s ( 44.50ms) 8.27 s ( 42.41ms) 195\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 407.00us ( 3.99us) 397.68us ( 3.90us) 102\n", - " nlp_jac_g | 131.67 s ( 1.29 s) 125.65 s ( 1.23 s) 102\n", - " total | 141.81 s (141.81 s) 135.31 s (135.31 s) 1\n", - "Timestamp 27900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.50e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9621580e+01 1.26e+01 3.50e+03 -1.5 3.50e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.7013213e+00 4.18e+00 8.57e+00 0.4 1.26e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 5.4647597e+00 9.05e-01 7.16e-01 -1.6 6.49e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 6.0822471e+00 1.97e-03 8.59e-02 -3.4 1.31e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 6.0831075e+00 1.13e-06 8.98e-04 -5.3 2.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 6.0831089e+00 2.23e-07 2.76e-04 -7.4 1.50e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 6.0831083e+00 6.36e-07 1.65e-04 -9.4 1.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 6.0831090e+00 1.14e-07 2.04e-04 -11.0 4.42e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 6.0831091e+00 7.53e-08 1.39e-04 -11.0 2.21e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 6.0831092e+00 2.63e-08 9.99e-05 -11.0 2.12e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 6.0831092e+00 1.03e-07 5.27e-05 -11.0 8.26e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 6.0831074e+00 3.04e-06 1.53e-03 -11.0 1.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 6.0831089e+00 1.23e-07 4.14e-05 -11.0 1.63e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 6.0831087e+00 1.01e-07 1.39e-05 -11.0 1.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 6.0831089e+00 1.39e-08 1.37e-04 -11.0 4.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 6.0831072e+00 1.61e-06 3.55e-03 -11.0 4.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 6.0831089e+00 9.62e-09 8.03e-05 -11.0 3.99e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 6.0831083e+00 3.83e-07 4.43e-05 -11.0 2.36e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 6.0831087e+00 2.19e-07 5.42e-05 -11.0 1.65e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 6.0831072e+00 9.45e-07 1.11e-03 -11.0 8.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 6.0831077e+00 1.41e-06 1.94e-03 -11.0 3.87e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 6.0831084e+00 3.35e-07 8.33e-05 -11.0 1.54e-03 - 1.00e+00 1.00e+00h 1\n", - " 23 6.0830993e+00 4.11e-06 4.62e-03 -11.0 4.66e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 6.0831094e+00 2.28e-10 2.08e-04 -11.0 3.80e-02 - 1.00e+00 1.00e+00H 1\n", - " 25 6.0830993e+00 9.64e-06 1.90e-03 -11.0 2.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 26 6.0831049e+00 5.52e-06 1.32e-03 -11.0 3.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 27 6.0831072e+00 1.17e-06 2.15e-03 -11.0 8.44e-03 - 1.00e+00 1.00e+00h 1\n", - " 28 6.0831091e+00 8.29e-10 3.84e-05 -11.0 6.42e-03 - 1.00e+00 1.00e+00H 1\n", - " 29 6.0831085e+00 8.93e-07 1.04e-03 -11.0 7.90e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 6.0831073e+00 1.65e-06 1.50e-03 -11.0 1.72e-02 - 1.00e+00 1.00e+00h 1\n", - " 31 6.0831029e+00 1.85e-05 1.98e-03 -11.0 2.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 32 6.0831074e+00 1.03e-06 1.12e-03 -11.0 1.29e-02 - 1.00e+00 1.00e+00h 1\n", - " 33 6.0831085e+00 3.40e-07 1.43e-04 -11.0 5.80e-03 - 1.00e+00 1.00e+00h 1\n", - " 34 6.0831080e+00 6.45e-07 1.15e-03 -11.0 3.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 35 6.0831031e+00 4.99e-06 2.14e-03 -11.0 4.17e-02 - 1.00e+00 1.00e+00h 1\n", - " 36 6.0830986e+00 3.14e-06 5.14e-03 -11.0 5.59e-02 - 1.00e+00 1.00e+00h 1\n", - " 37 6.0831055e+00 4.35e-06 1.80e-03 -11.0 1.86e-02 - 1.00e+00 1.00e+00h 1\n", - " 38 6.0831033e+00 1.55e-05 2.12e-03 -11.0 6.23e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 6.0830965e+00 1.20e-05 1.04e-03 -11.0 3.76e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 6.0829821e+00 1.51e-04 4.98e-03 -11.0 6.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 41 6.0831037e+00 8.85e-06 1.60e-03 -11.0 1.49e-01 - 1.00e+00 1.00e+00h 1\n", - " 42 6.0830911e+00 2.12e-05 1.98e-03 -11.0 1.22e-01 - 1.00e+00 1.00e+00h 1\n", - " 43 6.0830973e+00 2.14e-05 2.37e-03 -11.0 1.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 44 6.0830862e+00 1.80e-05 8.82e-04 -11.0 5.32e-01 - 1.00e+00 1.00e+00h 1\n", - " 45 6.0830392e+00 9.10e-05 9.17e-04 -11.0 8.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 46 6.0829719e+00 1.39e-04 1.49e-03 -11.0 5.92e+00 - 1.00e+00 1.00e+00h 1\n", - " 47 6.0828776e+00 1.23e-04 1.29e-03 -11.0 4.84e+00 - 1.00e+00 1.00e+00h 1\n", - " 48 6.0830806e+00 7.56e-05 1.48e-03 -11.0 1.17e+00 - 1.00e+00 1.00e+00h 1\n", - " 49 6.0829568e+00 8.52e-05 9.70e-04 -11.0 1.37e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 6.0788886e+00 3.86e-03 1.43e-03 -11.0 6.98e+01 - 1.00e+00 1.00e+00h 1\n", - " 51 4.9512815e+00 4.43e-01 1.02e-01 -9.9 3.38e+04 - 1.00e+00 9.25e-01f 1\n", - " 52 4.9493558e+00 4.43e-01 1.02e-01 -7.9 1.63e+06 - 1.00e+00 7.39e-05h 1\n", - " 53 5.9700207e+00 1.28e-01 7.53e-02 -6.6 1.65e+03 - 1.00e+00 1.00e+00h 1\n", - " 54 5.6159503e+00 2.47e-01 1.45e-01 -4.5 1.28e+04 - 1.00e+00 1.00e+00h 1\n", - " 55 5.5792505e+00 1.85e+00 2.63e-01 -5.3 9.75e+03 - 1.00e+00 1.00e+00h 1\n", - " 56 6.0868035e+00 5.54e-02 2.17e-01 -5.5 5.66e+02 - 1.00e+00 1.00e+00h 1\n", - " 57 6.0123547e+00 1.65e-01 4.22e-02 -5.5 4.71e+03 - 1.00e+00 1.00e+00h 1\n", - " 58 5.9289523e+00 4.39e-01 5.86e-02 -5.5 3.44e+03 - 1.00e+00 1.00e+00h 1\n", - " 59 5.6184622e+00 1.10e+00 1.62e-01 -3.5 8.08e+04 - 1.00e+00 8.07e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 5.5864989e+00 4.78e-01 5.02e-02 -3.6 3.15e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 5.5203002e+00 1.35e+00 8.25e-02 -4.5 3.89e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 5.5417517e+00 1.15e+00 1.11e-01 -4.1 1.02e+04 - 1.00e+00 1.25e-01h 1\n", - " 63 5.0741619e+00 1.67e+00 3.41e-01 -4.1 2.75e+04 - 1.12e-01 9.51e-01h 1\n", - " 64 5.7076388e+00 1.30e-01 1.18e-01 -4.1 6.43e+03 - 1.00e+00 1.00e+00h 1\n", - " 65 6.6125267e+00 2.07e+00 2.11e-01 -0.1 4.35e+05 - 6.19e-02 7.03e-02f 2\n", - " 66 5.7523395e+00 1.33e-01 2.13e-01 -0.9 5.98e+03 - 9.12e-01 1.00e+00h 1\n", - " 67 5.1848586e+00 7.06e-01 1.10e-01 -1.6 7.39e+03 - 9.55e-01 1.00e+00f 1\n", - " 68 5.5625388e+00 5.59e-01 8.68e-02 -1.6 6.83e+03 - 1.00e+00 1.00e+00h 1\n", - " 69 5.2252008e+00 2.92e-01 1.08e-01 -7.6 1.62e+05 - 1.94e-01 1.44e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 5.5845951e+00 1.24e-01 1.32e-01 -2.4 2.14e+03 - 1.00e+00 1.00e+00h 1\n", - " 71 5.5075795e+00 1.15e-01 8.23e-02 -2.7 1.63e+03 - 5.79e-01 1.00e+00h 1\n", - " 72 4.9703853e+00 3.88e-01 4.29e-02 -3.1 1.29e+04 - 8.71e-01 9.61e-01f 1\n", - " 73 4.9153404e+00 6.32e-01 1.23e-01 -2.4 1.13e+04 - 1.00e+00 2.87e-01h 1\n", - " 74 5.3786406e+00 4.77e-01 1.52e-01 -1.9 4.21e+03 - 5.03e-01 1.00e+00h 1\n", - " 75 5.1944916e+00 1.95e+00 1.57e-01 -2.6 1.32e+06 - 3.12e-02 7.67e-03f 2\n", - " 76 5.8782457e+00 3.10e-01 3.90e-01 -2.2 4.62e+03 - 6.67e-01 1.00e+00h 1\n", - " 77 5.5458968e+00 8.69e-01 1.72e-01 -2.2 7.24e+03 - 7.99e-01 1.00e+00h 1\n", - " 78 5.1218448e+00 2.08e+00 9.39e-02 -2.2 5.05e+05 - 9.00e-01 9.43e-02f 1\n", - " 79 4.8736209e+00 2.50e+00 2.78e-01 -2.2 1.74e+04 - 1.00e+00 1.24e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 5.0792530e+00 3.38e-01 3.65e-01 -2.2 2.36e+03 - 2.73e-01 1.00e+00h 1\n", - " 81 5.0164007e+00 4.09e-01 2.53e-01 -3.0 1.63e+03 - 9.59e-01 1.00e+00h 1\n", - " 82 5.3137771e+00 1.36e-01 6.06e-02 -2.8 5.94e+03 - 1.00e+00 1.00e+00h 1\n", - " 83 5.1174417e+00 5.62e-01 7.50e-02 -2.0 1.77e+04 - 3.60e-01 2.45e-01h 1\n", - " 84 5.2322404e+00 1.54e-01 1.92e-01 -2.5 4.66e+03 - 7.08e-01 1.00e+00h 1\n", - " 85 5.0054594e+00 2.51e-01 2.20e-01 -2.1 6.34e+04 - 9.26e-01 9.17e-02f 1\n", - " 86 4.9669666e+00 3.58e-01 2.40e-02 -1.9 3.85e+03 - 1.00e+00 1.00e+00f 1\n", - " 87 4.8310659e+00 8.36e-01 1.90e-01 -7.8 2.83e+04 - 1.20e-01 1.74e-01h 1\n", - " 88 5.3219305e+00 3.01e-01 9.50e-02 -3.2 6.52e+03 - 9.93e-01 1.00e+00h 1\n", - " 89 4.2526850e+00 1.62e+00 3.76e-01 -3.1 2.63e+04 - 8.99e-01 6.20e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 4.2738219e+00 1.28e+00 2.56e-01 -2.5 3.62e+03 - 1.00e+00 3.72e-01h 1\n", - " 91 5.5256793e+00 4.64e-02 3.43e-01 -7.5 3.35e+03 - 5.31e-01 1.00e+00h 1\n", - " 92 5.3521779e+00 3.24e-01 1.41e-01 -3.8 1.88e+03 - 9.79e-01 6.07e-01h 1\n", - " 93 5.5433687e+00 7.62e-02 4.99e-02 -3.9 1.14e+03 - 1.03e-01 1.00e+00h 1\n", - " 94 5.4854641e+00 5.94e-01 6.80e-02 -2.4 4.69e+03 - 5.41e-01 1.00e+00h 1\n", - " 95 5.3770193e+00 5.16e-01 8.35e-02 -2.6 4.25e+03 - 8.78e-01 1.00e+00h 1\n", - " 96 5.3714896e+00 1.39e-01 7.34e-02 -2.6 6.66e+03 - 1.00e+00 1.00e+00h 1\n", - " 97 4.3751969e+00 8.41e-01 2.77e-01 -2.3 1.17e+04 - 4.47e-01 1.00e+00f 1\n", - " 98 4.2307603e+00 1.72e+00 4.90e-01 -1.9 8.28e+04 - 1.00e+00 2.07e-01h 1\n", - " 99 8.3876673e+00 1.12e+00 3.51e-01 -1.4 3.28e+04 - 4.66e-01 9.80e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 6.6311414e+00 1.33e+00 2.51e-01 -1.8 2.15e+04 - 1.00e+00 7.66e-01f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 6.6311414009250349e+00 6.6311414009250349e+00\n", - "Dual infeasibility......: 2.5057553487554884e-01 2.5057553487554884e-01\n", - "Constraint violation....: 1.3314494211316337e+00 1.3314494211316337e+00\n", - "Complementarity.........: 2.1803551270338303e-01 2.1803551270338303e-01\n", - "Overall NLP error.......: 1.3314494211316337e+00 1.3314494211316337e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 108\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 108\n", - "Number of inequality constraint evaluations = 108\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.429\n", - "Total CPU secs in NLP function evaluations = 133.957\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 481.00us ( 4.45us) 477.94us ( 4.43us) 108\n", - " nlp_g | 4.85 s ( 44.91ms) 4.62 s ( 42.80ms) 108\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 401.00us ( 3.93us) 350.82us ( 3.44us) 102\n", - " nlp_jac_g | 131.93 s ( 1.29 s) 125.94 s ( 1.23 s) 102\n", - " total | 138.26 s (138.26 s) 131.97 s (131.97 s) 1\n", - "Timestamp 28200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 5.03e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9714196e+01 1.29e+01 5.03e+03 -1.5 5.03e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.8271230e+00 4.37e+00 9.24e+00 0.6 3.11e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 5.8060359e+00 9.51e-01 8.54e-01 -1.5 7.91e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 6.4785739e+00 2.40e-03 9.27e-02 -3.3 1.39e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 6.4796812e+00 6.74e-07 2.23e-03 -5.1 2.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 6.4796817e+00 3.28e-07 1.43e-04 -7.2 2.81e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 6.4796810e+00 8.38e-07 1.09e-03 -11.0 2.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 6.4796808e+00 9.91e-07 9.66e-04 -11.0 5.31e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 6.4796823e+00 8.42e-08 3.71e-05 -11.0 8.33e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 6.4796823e+00 6.49e-08 6.47e-05 -11.0 9.57e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 6.4796821e+00 1.26e-07 2.75e-05 -11.0 9.87e-04 - 1.00e+00 1.00e+00h 1\n", - " 12 6.4796823e+00 6.54e-08 1.73e-04 -11.0 4.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 13 6.4796820e+00 4.57e-07 5.40e-05 -11.0 2.33e-03 - 1.00e+00 1.00e+00h 1\n", - " 14 6.4796817e+00 1.40e-06 2.30e-03 -11.0 4.07e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 6.4796820e+00 2.33e-07 7.77e-05 -11.0 1.71e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 6.4796821e+00 1.85e-07 3.89e-05 -11.0 1.11e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 6.4796817e+00 3.97e-07 1.44e-04 -11.0 3.11e-03 - 1.00e+00 1.00e+00h 1\n", - " 18 6.4796775e+00 2.79e-06 7.06e-03 -11.0 9.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 6.4796824e+00 2.65e-07 6.38e-05 -11.0 2.46e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 6.4796821e+00 5.10e-07 3.11e-05 -11.0 3.71e-03 - 1.00e+00 1.00e+00h 1\n", - " 21 6.4796826e+00 2.31e-07 4.04e-05 -11.0 3.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 6.4796819e+00 8.73e-07 1.38e-03 -11.0 5.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 23 6.4796753e+00 1.06e-05 4.39e-03 -11.0 1.48e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 6.4796622e+00 8.76e-06 1.18e-02 -11.0 3.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 25 6.4796774e+00 8.56e-06 2.16e-03 -11.0 3.38e-02 - 1.00e+00 1.00e+00h 1\n", - " 26 6.4796779e+00 3.43e-06 1.72e-03 -11.0 1.99e-02 - 1.00e+00 1.00e+00h 1\n", - " 27 6.4796816e+00 7.91e-07 2.43e-03 -11.0 8.52e-03 - 1.00e+00 1.00e+00h 1\n", - " 28 6.4796498e+00 2.30e-05 2.30e-03 -11.0 6.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 29 6.4791601e+00 5.44e-04 8.94e-03 -11.0 1.24e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 6.4796088e+00 1.00e-04 2.93e-03 -11.0 6.49e-01 - 1.00e+00 1.00e+00h 1\n", - " 31 6.4795777e+00 1.38e-04 1.02e-03 -11.0 4.37e-01 - 1.00e+00 1.00e+00h 1\n", - " 32 6.4796333e+00 5.95e-05 2.23e-03 -11.0 4.64e-01 - 1.00e+00 1.00e+00h 1\n", - " 33 6.4793306e+00 1.95e-04 2.55e-03 -11.0 9.83e-01 - 1.00e+00 1.00e+00h 1\n", - " 34 6.4794670e+00 1.46e-04 1.36e-03 -11.0 1.09e+00 - 1.00e+00 1.00e+00h 1\n", - " 35 6.4796708e+00 1.82e-05 1.14e-03 -11.0 2.98e-01 - 1.00e+00 1.00e+00h 1\n", - " 36 6.4792874e+00 2.97e-04 1.84e-03 -11.0 1.36e+00 - 1.00e+00 1.00e+00h 1\n", - " 37 6.4796701e+00 1.79e-05 1.76e-03 -11.0 5.78e-01 - 1.00e+00 1.00e+00h 1\n", - " 38 6.4793011e+00 2.24e-04 2.01e-03 -11.0 1.46e+00 - 1.00e+00 1.00e+00h 1\n", - " 39 6.4472207e+00 3.43e-02 1.00e-02 -11.0 1.85e+02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 6.4651327e+00 1.74e-02 2.13e-03 -11.0 1.20e+02 - 1.00e+00 1.00e+00h 1\n", - " 41 6.4738329e+00 4.50e-03 1.20e-03 -11.0 4.08e+01 - 1.00e+00 1.00e+00h 1\n", - " 42 6.4649360e+00 7.51e-03 2.54e-03 -11.0 9.12e+01 - 1.00e+00 1.00e+00h 1\n", - " 43 6.4802985e+00 6.32e-06 1.64e-03 -11.0 5.74e+01 - 1.00e+00 1.00e+00H 1\n", - " 44 6.4753490e+00 2.95e-03 1.53e-03 -11.0 5.24e+01 - 1.00e+00 1.00e+00f 1\n", - " 45 5.9768068e+00 1.42e+00 2.04e-01 -11.0 6.04e+03 - 1.00e+00 1.00e+00f 1\n", - " 46 4.6979744e+00 2.25e+00 6.36e-01 -11.0 1.55e+04 - 1.00e+00 1.00e+00f 1\n", - " 47 5.1921614e+00 1.61e+00 1.42e-01 -11.0 7.27e+03 - 1.00e+00 1.00e+00h 1\n", - " 48 4.8573303e+00 1.85e+00 1.54e-01 -11.0 8.30e+03 - 1.00e+00 1.00e+00h 1\n", - " 49 4.8011706e+00 2.27e+00 1.00e-01 -10.0 1.78e+05 - 1.00e+00 1.58e-02f 5\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 4.8003591e+00 2.46e+00 1.55e-01 -8.0 1.22e+07 - 4.70e-03 1.76e-04h 4\n", - " 51 4.5655773e+00 2.05e+00 9.93e-02 -11.0 5.18e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 4.5602199e+00 2.17e+00 1.12e-01 -9.6 9.28e+04 - 1.00e+00 3.04e-02h 5\n", - " 53 4.9457269e+00 1.45e+00 2.03e-01 -10.3 7.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 54 4.9195135e+00 2.23e+00 1.83e-01 -10.4 5.07e+04 - 1.00e+00 2.51e-01h 1\n", - " 55 5.1337777e+00 9.70e-01 4.57e-01 -10.4 1.96e+04 - 6.92e-10 1.00e+00H 1\n", - " 56 4.3987306e+00 2.06e+00 4.41e-01 -9.1 2.07e+05 - 1.00e+00 2.91e-01f 1\n", - " 57 4.3876191e+00 2.07e+00 4.42e-01 -6.6 8.84e+05 - 3.02e-01 6.83e-04h 1\n", - " 58 4.3874188e+00 2.07e+00 4.42e-01 -5.2 5.12e+04 - 1.00e+00 1.18e-04h 1\n", - " 59 5.6103382e+00 7.87e-02 2.07e+00 -6.9 2.07e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 5.6771585e+00 9.60e-05 1.25e-02 -8.8 1.08e-01 - 1.00e+00 1.00e+00h 1\n", - " 61 5.6771942e+00 8.58e-08 1.05e-04 -10.6 6.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 62 5.6771942e+00 7.98e-08 7.45e-05 -11.0 3.07e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 5.6771943e+00 2.01e-08 9.50e-05 -11.0 1.99e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 5.6771943e+00 3.40e-08 2.97e-05 -11.0 1.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 5.6771943e+00 1.10e-08 4.84e-05 -11.0 1.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 66 5.6771943e+00 1.63e-08 5.23e-05 -11.0 1.24e-04 - 1.00e+00 1.00e+00h 1\n", - " 67 5.6771935e+00 5.47e-07 3.60e-05 -11.0 6.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 68 5.6771941e+00 1.78e-07 9.20e-05 -11.0 2.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 5.6771879e+00 2.66e-06 3.94e-03 -11.0 2.12e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 5.6771929e+00 4.30e-07 1.78e-03 -11.0 5.67e-03 - 1.00e+00 1.00e+00h 1\n", - " 71 5.6771911e+00 1.11e-06 8.67e-04 -11.0 4.85e-03 - 1.00e+00 1.00e+00h 1\n", - " 72 5.6771937e+00 1.16e-10 2.11e-05 -11.0 3.46e-03 - 1.00e+00 1.00e+00H 1\n", - " 73 5.6771935e+00 5.60e-07 1.80e-03 -11.0 2.42e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 5.6771932e+00 1.80e-06 1.89e-03 -11.0 6.84e-03 - 1.00e+00 1.00e+00h 1\n", - "In iteration 74, 1 Slack too small, adjusting variable bound\n", - " 75 5.6771564e+00 2.31e-05 1.03e-02 -11.0 1.04e-01 - 1.00e+00 4.59e-01h 1\n", - " 76 5.6771903e+00 9.61e-07 1.93e-03 -11.0 8.36e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 5.6771923e+00 2.52e-10 1.94e-05 -6.4 5.30e-03 - 1.00e+00 1.00e+00H 1\n", - " 78 5.6771921e+00 3.67e-07 5.82e-05 -11.0 5.12e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 5.6771913e+00 1.82e-06 1.70e-03 -8.3 1.11e-02 - 1.00e+00 7.11e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 5.6771919e+00 2.71e-07 8.08e-05 -8.4 3.24e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 5.6771918e+00 1.53e-07 6.34e-05 -9.1 1.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 82 5.6771915e+00 2.70e-07 4.25e-05 -9.4 2.37e-02 - 1.00e+00 1.46e-01h 1\n", - " 83 5.6771873e+00 9.21e-06 1.97e-03 -10.7 4.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 84 5.6771843e+00 7.47e-06 1.87e-03 -11.0 2.97e-02 - 1.00e+00 1.00e+00h 1\n", - " 85 5.6771785e+00 1.44e-05 2.23e-03 -9.0 2.16e-02 - 2.18e-01 1.00e+00h 1\n", - " 86 5.6771893e+00 1.15e-06 3.04e-03 -7.8 6.37e-03 - 1.00e+00 1.00e+00h 1\n", - " 87 5.6771888e+00 6.31e-06 3.22e-03 -5.9 7.40e-02 - 8.35e-01 1.00e+00h 1\n", - " 88 5.6771765e+00 7.89e-06 3.54e-03 -6.1 1.24e-01 - 1.00e+00 1.00e+00h 1\n", - " 89 5.6771839e+00 8.03e-06 2.17e-03 -6.8 2.67e-01 - 1.00e+00 7.40e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 5.6771891e+00 1.31e-06 2.43e-03 -7.5 7.72e-03 - 1.00e+00 9.99e-01h 1\n", - " 91 5.6771384e+00 1.53e-05 4.02e-03 -5.6 3.50e-01 - 4.03e-01 1.00e+00f 1\n", - " 92 5.6771269e+00 6.20e-05 1.07e-03 -6.2 2.20e-01 - 1.00e+00 1.00e+00h 1\n", - " 93 5.6767237e+00 3.34e-04 2.03e-03 -7.2 6.33e-01 - 1.00e+00 1.00e+00h 1\n", - " 94 5.6771784e+00 1.96e-05 5.96e-03 -5.2 1.19e-01 - 5.35e-01 1.00e+00h 1\n", - " 95 5.6369948e+00 3.76e-02 8.12e-03 -5.7 2.17e+02 - 6.11e-04 1.00e+00f 1\n", - " 96 5.5553525e+00 3.69e-01 4.66e-02 -5.9 5.03e+03 - 1.00e+00 1.00e+00h 1\n", - " 97 5.2801145e+00 1.28e+00 1.67e-01 -4.3 9.50e+03 - 1.00e+00 1.00e+00h 1\n", - " 98 5.7158845e+00 5.32e-02 2.15e-01 -5.1 1.94e+03 - 1.00e+00 1.00e+00h 1\n", - " 99 5.2605428e+00 8.42e-01 1.12e-01 -5.3 1.96e+04 - 1.00e+00 8.49e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 5.0329525e+00 8.51e-01 6.00e-02 -4.4 5.13e+04 - 1.00e+00 3.49e-01f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 5.0329525007188671e+00 5.0329525007188671e+00\n", - "Dual infeasibility......: 6.0034601840248558e-02 6.0034601840248558e-02\n", - "Constraint violation....: 8.5061315355147116e-01 8.5061315355147116e-01\n", - "Complementarity.........: 1.1475602430191406e-01 1.1475602430191406e-01\n", - "Overall NLP error.......: 8.5061315355147116e-01 8.5061315355147116e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 123\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 123\n", - "Number of inequality constraint evaluations = 123\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.411\n", - "Total CPU secs in NLP function evaluations = 134.270\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 553.00us ( 4.50us) 545.71us ( 4.44us) 123\n", - " nlp_g | 5.47 s ( 44.49ms) 5.22 s ( 42.40ms) 123\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 365.00us ( 3.58us) 359.44us ( 3.52us) 102\n", - " nlp_jac_g | 131.61 s ( 1.29 s) 125.60 s ( 1.23 s) 102\n", - " total | 138.56 s (138.56 s) 132.23 s (132.23 s) 1\n", - "Timestamp 28500\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.83e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 2.0020854e+01 1.24e+01 1.83e+04 -1.5 1.83e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 7.8011680e+00 4.24e+00 6.48e+00 0.8 2.02e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.3989323e+00 6.63e-01 7.08e-01 -1.3 5.66e+01 - 9.98e-01 1.00e+00f 1\n", - " 4 2.8104900e+00 2.95e-03 3.16e-01 -3.1 2.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 2.8117707e+00 2.93e-05 5.57e-03 -4.9 1.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 2.8118290e+00 9.39e-06 7.87e-04 -7.0 4.86e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 2.8118208e+00 1.40e-05 8.87e-04 -9.1 4.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 2.8118436e+00 3.79e-07 2.96e-05 -11.0 1.56e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 2.8118389e+00 5.62e-06 8.66e-04 -11.0 4.80e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.8118436e+00 4.49e-10 4.49e-05 -11.0 3.97e-02 - 1.00e+00 1.00e+00H 1\n", - " 11 2.8117987e+00 7.18e-05 1.45e-03 -11.0 1.93e-01 - 1.00e+00 1.00e+00f 1\n", - " 12 2.8117818e+00 6.91e-05 2.42e-03 -11.0 1.97e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 2.8118407e+00 1.20e-08 1.14e-04 -11.0 7.45e-05 - 1.00e+00 1.00e+00h 1\n", - " 14 2.8118407e+00 1.99e-08 4.63e-05 -11.0 1.51e-04 - 1.00e+00 1.00e+00h 1\n", - " 15 2.8118406e+00 1.71e-07 8.03e-05 -11.0 6.87e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 2.8118406e+00 1.23e-07 6.23e-05 -11.0 4.24e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 2.8118407e+00 4.70e-08 7.80e-05 -11.0 1.93e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 2.8118407e+00 8.94e-08 4.06e-05 -11.0 2.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 19 2.8118407e+00 5.27e-09 4.65e-05 -11.0 7.96e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.8118408e+00 2.65e-11 1.45e-04 -11.0 7.10e-05 - 1.00e+00 1.00e+00H 1\n", - " 21 2.8118407e+00 2.30e-08 4.93e-05 -11.0 1.58e-04 - 1.00e+00 1.00e+00h 1\n", - " 22 2.8118407e+00 5.39e-11 9.81e-05 -11.0 1.33e-04 - 1.00e+00 1.00e+00H 1\n", - " 23 2.8118407e+00 1.81e-08 2.12e-05 -11.0 1.04e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 2.8118407e+00 5.36e-09 1.74e-04 -11.0 3.89e-05 - 1.00e+00 1.00e+00h 1\n", - " 25 2.8118407e+00 8.35e-09 6.25e-05 -11.0 4.63e-05 - 1.00e+00 1.00e+00h 1\n", - " 26 2.8118407e+00 3.78e-08 1.94e-04 -11.0 1.46e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 2.8118407e+00 1.01e-08 1.03e-04 -11.0 3.09e-05 - 1.00e+00 1.00e+00h 1\n", - " 28 2.8118407e+00 5.80e-09 8.44e-05 -11.0 2.92e-05 - 1.00e+00 1.00e+00h 1\n", - " 29 2.8118407e+00 6.55e-09 1.45e-04 -11.0 2.78e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.8118407e+00 3.94e-08 2.89e-05 -11.0 2.37e-04 - 1.00e+00 1.00e+00h 1\n", - " 31 2.8118407e+00 6.54e-09 5.53e-05 -11.0 2.92e-05 - 1.00e+00 1.00e+00h 1\n", - " 32 2.8118407e+00 1.04e-09 6.09e-05 -11.0 2.58e-05 - 1.00e+00 1.00e+00h 1\n", - " 33 2.8118407e+00 1.62e-08 1.48e-04 -11.0 8.85e-05 - 1.00e+00 1.00e+00h 1\n", - " 34 2.8118406e+00 1.91e-07 5.09e-05 -11.0 4.08e-04 - 1.00e+00 1.00e+00h 1\n", - " 35 2.8118407e+00 1.19e-08 1.39e-04 -11.0 1.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 36 2.8118407e+00 6.01e-08 5.91e-05 -11.0 2.80e-04 - 1.00e+00 1.00e+00h 1\n", - " 37 2.8118407e+00 2.49e-08 7.33e-05 -11.0 1.34e-04 - 1.00e+00 1.00e+00h 1\n", - " 38 2.8118407e+00 3.68e-08 9.50e-05 -11.0 1.95e-04 - 1.00e+00 1.00e+00h 1\n", - " 39 2.8118407e+00 6.31e-08 4.13e-05 -11.0 1.21e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.8118407e+00 7.15e-09 3.29e-05 -11.0 1.08e-04 - 1.00e+00 1.00e+00h 1\n", - " 41 2.8118407e+00 1.07e-08 9.49e-05 -11.0 1.18e-04 - 1.00e+00 1.00e+00h 1\n", - " 42 2.8118406e+00 5.49e-08 5.17e-05 -11.0 3.38e-04 - 1.00e+00 1.00e+00h 1\n", - " 43 2.8118407e+00 6.65e-09 7.56e-05 -11.0 7.75e-05 - 1.00e+00 1.00e+00h 1\n", - " 44 2.8118407e+00 2.85e-08 1.42e-04 -11.0 1.13e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 2.8118407e+00 2.49e-08 1.71e-04 -11.0 7.30e-05 - 1.00e+00 1.00e+00h 1\n", - " 46 2.8118407e+00 3.95e-08 1.25e-04 -11.0 1.04e-04 - 1.00e+00 1.00e+00h 1\n", - " 47 2.8118389e+00 1.31e-06 7.77e-03 -11.0 4.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 48 2.8118394e+00 4.78e-07 8.54e-04 -11.0 2.60e-03 - 1.00e+00 1.00e+00h 1\n", - " 49 2.8118407e+00 7.93e-08 7.58e-05 -11.0 4.20e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.8118407e+00 3.73e-08 1.02e-04 -11.0 3.22e-04 - 1.00e+00 1.00e+00h 1\n", - " 51 2.8118407e+00 2.57e-08 6.02e-05 -11.0 7.85e-05 - 1.00e+00 1.00e+00h 1\n", - " 52 2.8118406e+00 7.27e-07 5.89e-05 -11.0 1.79e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 2.8118401e+00 3.01e-07 2.59e-04 -11.0 3.96e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 2.8118269e+00 9.61e-06 1.41e-03 -11.0 1.79e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 2.8118403e+00 3.34e-08 7.51e-05 -11.0 4.91e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 2.8118358e+00 5.71e-06 2.47e-03 -11.0 7.22e-02 - 1.00e+00 1.00e+00h 1\n", - " 57 2.8118253e+00 1.08e-05 1.10e-03 -11.0 5.87e-02 - 1.00e+00 1.00e+00h 1\n", - " 58 2.8118395e+00 6.31e-07 1.46e-03 -11.0 1.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 59 2.8118390e+00 2.36e-06 1.91e-03 -11.0 1.91e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.8118373e+00 2.46e-06 9.00e-04 -11.0 1.40e-02 - 1.00e+00 1.00e+00h 1\n", - " 61 2.8118352e+00 2.61e-06 2.44e-03 -11.0 9.74e-03 - 1.00e+00 1.00e+00h 1\n", - " 62 2.8118391e+00 2.98e-06 1.14e-03 -11.0 1.62e-02 - 1.00e+00 1.00e+00h 1\n", - " 63 2.8118397e+00 4.68e-07 3.04e-04 -11.0 3.93e-03 - 1.00e+00 1.00e+00h 1\n", - " 64 2.8118239e+00 1.17e-05 4.77e-03 -11.0 2.16e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 2.8118356e+00 4.45e-06 9.57e-04 -11.0 3.30e-02 - 1.00e+00 1.00e+00h 1\n", - " 66 2.8118343e+00 3.21e-06 7.49e-04 -11.0 1.21e-02 - 1.00e+00 1.00e+00h 1\n", - " 67 2.8098748e+00 1.09e-03 2.54e-02 -11.0 4.96e+00 - 1.00e+00 1.00e+00h 1\n", - " 68 2.8118571e+00 6.44e-05 1.10e-03 -11.0 1.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 69 2.8119181e+00 4.35e-05 9.69e-04 -11.0 2.34e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.8118409e+00 1.49e-04 1.92e-03 -11.0 8.91e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 2.8117955e+00 2.50e-04 2.00e-03 -11.0 6.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 72 2.8117599e+00 1.27e-04 1.43e-03 -11.0 1.79e+00 - 1.00e+00 1.00e+00h 1\n", - " 73 2.8107999e+00 6.55e-04 1.58e-03 -11.0 1.57e+00 - 1.00e+00 1.00e+00h 1\n", - " 74 2.8116407e+00 1.30e-04 1.46e-03 -11.0 9.22e-01 - 1.00e+00 1.00e+00h 1\n", - " 75 2.8110510e+00 4.08e-04 1.26e-03 -11.0 2.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 76 2.8090823e+00 1.78e-03 5.56e-03 -11.0 1.05e+01 - 1.00e+00 1.00e+00h 1\n", - " 77 2.8073860e+00 7.19e-03 6.67e-03 -11.0 2.20e+01 - 1.00e+00 1.00e+00h 1\n", - " 78 2.7931426e+00 1.01e-02 9.13e-03 -11.0 4.67e+01 - 1.00e+00 1.00e+00h 1\n", - " 79 2.7105791e+00 7.89e-02 2.70e-02 -11.0 5.01e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.7077543e+00 4.69e-02 1.16e-02 -11.0 3.03e+02 - 1.00e+00 1.00e+00h 1\n", - " 81 2.7008660e+00 8.71e-02 7.19e-03 -11.0 2.01e+02 - 1.00e+00 1.00e+00h 1\n", - " 82 2.7898254e+00 9.47e-03 2.40e-02 -11.0 5.36e+01 - 1.00e+00 1.00e+00h 1\n", - " 83 2.7252344e+00 9.09e-02 2.59e-02 -11.0 1.51e+02 - 1.00e+00 1.00e+00h 1\n", - " 84 2.7790084e+00 3.95e-02 2.83e-02 -11.0 1.41e+02 - 1.00e+00 1.00e+00h 1\n", - " 85 2.7739637e+00 2.87e-02 6.89e-03 -11.0 2.07e+02 - 1.00e+00 1.00e+00h 1\n", - " 86 2.7877508e+00 2.38e-02 6.14e-03 -11.0 1.19e+02 - 1.00e+00 1.00e+00h 1\n", - " 87 2.4925977e+00 1.18e+00 3.44e-01 -9.0 3.39e+05 - 1.00e+00 1.15e-02f 4\n", - " 88 2.6634668e+00 2.15e-01 3.91e-01 -9.1 5.28e+03 - 1.00e+00 1.00e+00h 1\n", - " 89 2.5095763e+00 8.54e-01 2.63e-01 -9.7 5.82e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.4798137e+00 9.04e-01 7.21e-01 -9.8 2.03e+05 - 1.59e-01 1.38e-01f 1\n", - " 91 2.4733651e+00 1.16e+00 7.17e-01 -9.8 2.73e+04 - 6.23e-01 1.25e-01h 4\n", - " 92 2.3014822e+00 1.87e-01 4.07e-01 -9.8 2.03e+03 - 6.24e-01 1.00e+00h 1\n", - " 93 2.1856195e+00 5.49e-01 1.08e-01 -10.6 4.11e+03 - 1.00e+00 1.00e+00h 1\n", - " 94 2.1538788e+00 2.51e-01 2.14e-01 -10.9 1.59e+04 - 1.00e+00 1.00e+00h 1\n", - " 95 2.1399770e+00 6.40e-01 1.75e-01 -9.9 5.53e+04 - 1.00e+00 2.46e-01h 3\n", - " 96 2.1345097e+00 7.90e-01 2.26e-01 -9.6 3.49e+04 - 1.00e+00 1.25e-01h 4\n", - " 97 2.2755340e+00 2.75e-01 3.53e-01 -10.2 8.13e+03 - 9.46e-01 8.57e-01H 1\n", - " 98 2.2565040e+00 6.54e-01 2.50e-01 -9.3 1.56e+04 - 1.00e+00 2.50e-01h 3\n", - " 99 2.4181195e+00 3.13e-01 2.46e-01 -9.4 3.89e+04 - 1.00e+00 7.47e-01H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.2991494e+00 2.80e-01 6.10e-02 -9.4 3.97e+03 - 6.44e-09 1.00e+00f 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.2991493577551703e+00 2.2991493577551703e+00\n", - "Dual infeasibility......: 6.1007977777345457e-02 6.1007977777345457e-02\n", - "Constraint violation....: 2.7984439096985270e-01 2.7984439096985270e-01\n", - "Complementarity.........: 4.7231307413761669e-10 4.7231307413761669e-10\n", - "Overall NLP error.......: 2.7984439096985270e-01 2.7984439096985270e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 128\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 128\n", - "Number of inequality constraint evaluations = 128\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.405\n", - "Total CPU secs in NLP function evaluations = 134.942\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 573.00us ( 4.48us) 567.71us ( 4.44us) 128\n", - " nlp_g | 5.73 s ( 44.78ms) 5.46 s ( 42.69ms) 128\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 394.00us ( 3.86us) 390.50us ( 3.83us) 102\n", - " nlp_jac_g | 132.02 s ( 1.29 s) 125.99 s ( 1.24 s) 102\n", - " total | 139.25 s (139.25 s) 132.90 s (132.90 s) 1\n", - "Timestamp 28800\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.25e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9772512e+01 1.28e+01 1.25e+04 -1.5 1.25e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 7.5916245e+00 4.41e+00 8.17e+00 0.6 6.47e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 4.6639390e+00 8.50e-01 8.96e-01 -1.5 1.72e+01 - 9.97e-01 1.00e+00f 1\n", - " 4 5.3125486e+00 2.85e-03 1.19e-01 -3.2 1.31e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 5.3139726e+00 2.24e-06 1.88e-03 -5.1 9.41e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 5.3139413e+00 1.27e-05 2.39e-03 -7.2 9.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 5.3138887e+00 5.76e-05 3.29e-03 -9.3 2.93e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 5.3090866e+00 3.42e-03 1.66e-02 -11.0 1.85e+01 - 1.00e+00 1.00e+00h 1\n", - " 9 5.3039355e+00 5.56e-03 1.72e-02 -11.0 2.67e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 5.3085047e+00 3.59e-03 4.26e-03 -11.0 1.44e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 5.3136840e+00 6.76e-04 1.23e-03 -11.0 4.59e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 5.3144151e+00 3.05e-04 4.37e-03 -11.0 1.41e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 5.3118717e+00 4.75e-03 3.40e-03 -11.0 1.42e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 5.3146276e+00 2.21e-04 1.73e-03 -11.0 2.86e+00 - 1.00e+00 1.00e+00h 1\n", - " 15 5.3122469e+00 3.53e-03 2.09e-03 -11.0 1.24e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 5.3092702e+00 2.95e-03 1.46e-03 -11.0 3.16e+01 - 1.00e+00 1.00e+00h 1\n", - " 17 5.3047524e+00 1.25e-02 2.72e-03 -11.0 4.63e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 5.3073044e+00 1.03e-02 2.42e-03 -11.0 1.44e+01 - 1.00e+00 2.50e-01h 3\n", - " 19 5.3143018e+00 6.00e-04 1.93e-03 -11.0 4.03e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 5.3143677e+00 5.66e-04 1.84e-03 -11.0 4.05e+00 - 1.00e+00 6.25e-02h 5\n", - " 21 5.3157266e+00 2.45e-07 1.77e-04 -11.0 1.27e+01 - 1.00e+00 1.00e+00H 1\n", - " 22 5.3077248e+00 2.77e-02 3.21e-03 -11.0 6.89e+01 - 1.00e+00 1.00e+00f 1\n", - " 23 5.2903645e+00 2.47e-02 4.78e-03 -11.0 5.94e+01 - 1.00e+00 1.00e+00h 1\n", - " 24 5.2283839e+00 6.91e-02 1.30e-02 -11.0 2.71e+02 - 1.00e+00 1.00e+00h 1\n", - " 25 5.2877806e+00 1.96e-02 1.36e-02 -11.0 1.98e+02 - 1.00e+00 1.00e+00h 1\n", - " 26 5.3031192e+00 6.67e-03 7.09e-03 -11.0 9.37e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 5.2914900e+00 1.54e-02 4.79e-03 -11.0 1.45e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 5.2518330e+00 7.14e-02 6.88e-03 -11.0 3.67e+02 - 1.00e+00 1.00e+00h 1\n", - " 29 5.0903098e+00 9.17e-02 3.43e-02 -11.0 4.80e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 5.1471295e+00 1.15e-01 8.93e-03 -11.0 4.37e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 4.7551970e+00 4.74e-01 6.95e-02 -11.0 1.45e+03 - 1.00e+00 1.00e+00h 1\n", - " 32 5.2838708e+00 3.40e-02 4.61e-02 -11.0 2.72e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 3.8354107e+00 1.83e+00 3.99e-01 -10.7 3.46e+04 - 1.00e+00 6.53e-01F 1\n", - " 34 3.9894564e+00 1.79e+00 3.19e-01 -9.9 1.30e+05 - 1.00e+00 7.23e-03H 1\n", - " 35 3.8315036e+00 4.21e-01 4.23e-01 -9.0 1.61e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 2.9732074e+00 2.05e+00 1.31e+00 -7.0 2.62e+04 - 1.00e+00 1.00e+00f 1\n", - " 37 6.1008927e+00 1.81e+00 5.55e-01 -4.9 3.56e+04 - 1.00e+00 5.17e-01h 1\n", - " 38 5.8546435e+00 1.45e+00 5.65e-01 -5.0 7.47e+03 - 1.00e+00 1.28e-01h 1\n", - " 39 2.9304225e+00 1.94e+00 1.58e+00 -5.0 2.43e+04 - 1.00e+00 5.90e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.7567980e+00 1.74e+00 1.32e+00 -4.3 6.06e+04 - 1.00e+00 1.02e-01h 1\n", - " 41 5.4464155e+00 1.81e-01 3.05e-01 -2.0 1.64e+03 - 5.68e-01 1.00e+00h 1\n", - " 42 4.9727437e+00 2.63e-01 1.62e-01 -2.1 9.39e+02 - 1.00e+00 1.00e+00h 1\n", - " 43 4.9858992e+00 1.77e-01 8.04e-02 -1.9 6.68e+02 - 9.92e-01 1.00e+00h 1\n", - " 44 5.0186377e+00 2.23e-01 8.36e-02 -2.4 2.83e+03 - 2.71e-01 2.71e-01s 21\n", - " 45 5.0406135e+00 3.38e-01 6.14e-02 -2.1 3.23e+03 - 4.81e-01 2.50e-01h 3\n", - " 46 5.1489881e+00 9.71e-02 1.86e-02 -2.1 9.36e+02 - 1.00e+00 1.00e+00h 1\n", - " 47 3.7540822e+00 5.54e-01 1.70e-01 -2.6 3.71e+03 - 1.00e+00 1.00e+00f 1\n", - " 48 4.5075979e+00 2.75e-01 1.61e-01 -1.7 3.48e+03 - 1.00e+00 9.44e-01h 1\n", - " 49 4.0732456e+00 3.01e+00 5.17e-01 -7.7 9.15e+04 - 7.16e-02 1.42e-01f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 4.0126515e+00 2.82e+00 5.08e-01 -2.0 2.54e+03 - 1.00e+00 6.17e-02h 1\n", - " 51 4.7248877e+00 5.65e-02 4.94e-01 -2.0 2.85e+02 - 1.48e-01 1.00e+00h 1\n", - " 52 3.8084287e+00 1.85e+00 2.83e-01 -2.2 7.71e+03 - 6.42e-01 1.00e+00f 1\n", - " 53 3.3002814e+00 1.57e+00 4.84e-01 -2.0 4.78e+04 - 7.93e-02 2.50e-01f 3\n", - " 54 5.7712885e+00 2.76e+00 4.18e-01 -3.2 2.71e+04 - 1.00e+00 1.00e+00h 1\n", - " 55 4.2607325e+00 1.16e+00 1.70e-01 -2.8 3.90e+04 - 6.03e-01 7.85e-01f 1\n", - " 56 4.2177174e+00 9.83e-01 2.16e-01 -2.8 4.79e+04 - 1.00e+00 1.12e-01h 1\n", - " 57 5.1624152e+00 5.66e-01 1.81e-01 -2.8 8.34e+03 - 1.05e-01 1.00e+00h 1\n", - " 58 5.1081710e+00 6.28e-01 2.41e-01 -2.8 2.85e+04 - 1.00e+00 6.94e-01F 1\n", - " 59 5.1033301e+00 6.32e-01 2.42e-01 -2.8 1.13e+04 - 8.45e-01 2.31e-03h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 5.5439416e+00 5.69e-02 8.78e-02 -2.8 1.97e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 5.6279428e+00 4.49e-03 1.09e-02 -2.8 1.96e+02 - 3.53e-01 1.00e+00h 1\n", - " 62 5.5134071e+00 9.36e-02 5.11e-02 -4.2 6.94e+03 - 8.81e-01 1.00e+00f 1\n", - " 63 5.2550646e+00 1.85e-01 6.37e-02 -4.2 2.85e+05 - 1.89e-02 5.54e-02f 1\n", - " 64 4.3547956e+00 2.41e+00 5.74e-01 -4.2 1.60e+04 - 1.71e-03 1.00e+00f 1\n", - " 65 4.8199369e+00 1.33e+00 4.01e-02 -4.2 1.14e+04 - 8.04e-01 5.21e-01h 1\n", - " 66 5.0491330e+00 3.65e-01 4.12e-01 -4.2 1.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 67 4.9743166e+00 8.61e-01 2.57e-01 -4.2 5.16e+03 - 1.00e+00 7.61e-01h 1\n", - " 68 5.0101533e+00 5.85e-01 2.08e-01 -4.2 1.09e+04 - 1.00e+00 2.72e-01h 1\n", - " 69 4.1046667e+00 2.04e+00 3.57e-01 -4.2 1.37e+06 - 2.07e-02 1.53e-02f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 4.1025835e+00 2.04e+00 3.58e-01 -4.2 2.04e+05 - 8.85e-01 2.12e-04h 1\n", - " 71 4.5441352e+00 1.02e+00 1.10e-01 -4.2 5.44e+03 - 2.61e-03 5.00e-01h 2\n", - " 72 4.7068942e+00 8.30e-01 8.31e-02 -4.2 2.82e+03 - 3.35e-01 1.87e-01h 1\n", - " 73 5.4460186e+00 9.50e-02 2.12e-01 -4.2 1.35e+03 - 1.00e+00 1.00e+00h 1\n", - " 74 5.5457387e+00 2.10e-02 1.55e-02 -4.2 1.07e+03 - 5.68e-01 1.00e+00h 1\n", - " 75 4.6547794e+00 8.97e-01 3.88e-01 -4.2 1.61e+04 - 8.85e-02 1.00e+00f 1\n", - " 76 5.3258432e+00 1.97e-01 1.45e-01 -4.2 9.55e+03 - 9.44e-01 1.00e+00h 1\n", - " 77 4.3933952e+00 5.76e-01 1.04e-01 -4.2 1.69e+04 - 9.94e-01 1.00e+00f 1\n", - " 78 4.0812607e+00 1.29e+00 2.76e-01 -4.2 1.55e+06 - 3.23e-02 7.90e-03f 1\n", - " 79 4.6166310e+00 7.20e-01 9.28e-02 -4.2 2.51e+03 - 1.00e+00 5.00e-01h 2\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 4.5733924e+00 6.29e-01 6.98e-02 -4.2 3.45e+03 - 1.00e+00 1.26e-01h 1\n", - " 81 4.6686304e+00 5.39e-01 6.45e-02 -4.2 2.50e+03 - 4.32e-01 1.81e-01h 1\n", - " 82 5.3686072e+00 4.47e-02 1.32e-01 -4.2 2.26e+02 - 2.32e-03 1.00e+00h 1\n", - " 83 5.3546636e+00 3.43e-02 3.71e-02 -4.2 7.80e+02 - 1.00e+00 1.00e+00h 1\n", - " 84 5.3983570e+00 2.14e-02 3.88e-02 -4.2 1.59e+03 - 5.01e-01 1.00e+00H 1\n", - " 85 4.9979980e+00 4.28e-01 1.45e-01 -4.2 1.79e+04 - 7.54e-02 6.25e-02f 5\n", - " 86 5.3824549e+00 5.84e-04 5.56e-01 -4.2 6.45e-01 - 1.00e+00 1.00e+00h 1\n", - " 87 5.3827749e+00 5.00e-07 7.77e-05 -4.2 1.84e-03 - 1.00e+00 1.00e+00h 1\n", - " 88 5.3827750e+00 2.46e-07 9.87e-05 -10.2 2.66e-03 - 1.00e+00 1.00e+00h 1\n", - " 89 5.3827671e+00 4.64e-06 2.87e-03 -11.0 2.93e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 5.3827696e+00 1.72e-06 2.12e-03 -11.0 1.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 91 5.3827741e+00 5.94e-07 2.44e-03 -11.0 5.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 92 5.3827619e+00 6.43e-06 4.00e-03 -11.0 2.70e-02 - 1.00e+00 1.00e+00h 1\n", - " 93 5.3827610e+00 4.63e-06 1.08e-03 -11.0 1.79e-02 - 1.00e+00 1.00e+00h 1\n", - " 94 5.3827733e+00 6.02e-07 1.03e-03 -11.0 5.76e-03 - 1.00e+00 1.00e+00h 1\n", - " 95 5.3827741e+00 8.33e-07 8.67e-04 -11.0 2.57e-03 - 1.00e+00 1.00e+00h 1\n", - " 96 5.3827371e+00 1.48e-05 3.79e-03 -11.0 8.07e-02 - 1.00e+00 1.00e+00h 1\n", - " 97 5.3827028e+00 4.93e-05 2.39e-03 -11.0 2.60e-01 - 1.00e+00 1.00e+00h 1\n", - " 98 5.3826319e+00 9.21e-05 2.94e-03 -11.0 6.44e-01 - 1.00e+00 1.00e+00h 1\n", - " 99 5.3827341e+00 8.38e-06 1.52e-03 -11.0 1.91e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 5.3825065e+00 3.15e-04 3.42e-03 -11.0 3.34e+00 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 5.3825064535268847e+00 5.3825064535268847e+00\n", - "Dual infeasibility......: 3.4243677886945378e-03 3.4243677886945378e-03\n", - "Constraint violation....: 3.1491322686250101e-04 3.1491322686250101e-04\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 3.4243677886945378e-03 3.4243677886945378e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 158\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 158\n", - "Number of inequality constraint evaluations = 158\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.411\n", - "Total CPU secs in NLP function evaluations = 135.754\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 705.00us ( 4.46us) 705.40us ( 4.46us) 158\n", - " nlp_g | 7.08 s ( 44.83ms) 6.76 s ( 42.78ms) 158\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 348.00us ( 3.41us) 338.11us ( 3.31us) 102\n", - " nlp_jac_g | 131.56 s ( 1.29 s) 125.58 s ( 1.23 s) 102\n", - " total | 140.10 s (140.10 s) 133.73 s (133.73 s) 1\n", - "Timestamp 29100\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.69e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9819378e+01 1.23e+01 1.69e+04 -1.5 1.69e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 7.6352685e+00 4.10e+00 7.29e+00 1.0 4.39e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 2.6611725e+00 7.13e-01 7.85e-01 -1.1 1.18e+02 - 9.98e-01 1.00e+00f 1\n", - " 4 3.1521902e+00 2.73e-03 2.58e-01 -2.9 3.36e+00 - 9.98e-01 1.00e+00h 1\n", - " 5 3.1534189e+00 5.10e-05 5.60e-03 -4.7 3.52e-01 - 1.00e+00 1.00e+00h 1\n", - " 6 3.1533988e+00 4.44e-05 1.78e-03 -6.8 3.66e-01 - 1.00e+00 1.00e+00h 1\n", - " 7 3.1534600e+00 2.33e-05 2.59e-03 -8.9 2.05e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 3.1529248e+00 5.19e-04 5.41e-03 -11.0 8.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 9 3.1517880e+00 1.45e-03 5.41e-03 -11.0 2.77e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 3.1531717e+00 3.61e-04 1.02e-03 -11.0 9.08e-01 - 1.00e+00 1.00e+00h 1\n", - " 11 3.1387786e+00 6.55e-03 7.60e-03 -11.0 5.12e+01 - 1.00e+00 1.00e+00h 1\n", - " 12 3.1526566e+00 9.77e-04 2.60e-03 -11.0 9.37e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 3.1492290e+00 2.31e-03 1.94e-03 -11.0 2.37e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 3.1496601e+00 2.81e-03 1.10e-03 -11.0 1.45e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 3.1527143e+00 3.49e-04 1.06e-03 -11.0 4.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 16 3.1525824e+00 3.82e-04 1.27e-03 -11.0 3.41e+00 - 1.00e+00 1.00e+00h 1\n", - " 17 3.1504252e+00 3.47e-03 2.49e-03 -11.0 2.93e+01 - 1.00e+00 1.00e+00h 1\n", - " 18 3.1439713e+00 1.80e-02 3.24e-03 -11.0 5.16e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 3.1459909e+00 1.37e-02 2.11e-03 -11.0 2.34e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 3.1367451e+00 1.17e-02 4.85e-03 -11.0 1.12e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 2.7873549e+00 2.58e-01 8.55e-02 -11.0 5.63e+02 - 1.00e+00 1.00e+00f 1\n", - " 22 2.9478565e+00 2.81e-01 9.00e-02 -11.0 5.88e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 2.9030969e+00 1.39e-01 7.10e-02 -11.0 1.31e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 2.7446703e+00 4.38e-01 1.48e-01 -11.0 1.85e+03 - 1.00e+00 1.00e+00h 1\n", - " 25 3.0158441e+00 4.04e-02 1.47e-01 -11.0 1.19e+03 - 1.00e+00 1.00e+00h 1\n", - " 26 2.9192657e+00 8.93e-01 2.54e-01 -11.0 1.14e+04 - 1.00e+00 1.00e+00h 1\n", - " 27 2.8577726e+00 1.63e+00 6.88e-01 -11.0 4.78e+04 - 9.90e-01 3.73e-01F 1\n", - " 28 2.6276111e+00 1.39e+00 5.45e-01 -11.0 2.44e+03 - 1.00e+00 1.76e-01h 1\n", - " 29 3.2623500e+00 1.62e-01 1.13e+00 -9.4 3.03e+03 - 5.79e-02 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.6101997e+00 1.83e-01 1.46e-01 -2.3 1.04e+03 - 1.00e+00 1.00e+00f 1\n", - " 31 2.8715125e+00 4.23e-02 4.57e-02 -4.1 2.15e+02 - 9.98e-01 1.00e+00h 1\n", - " 32 2.8246901e+00 9.72e-03 4.47e-02 -4.7 1.29e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 2.6468144e+00 1.11e-01 7.90e-02 -6.2 6.61e+02 - 1.00e+00 1.00e+00f 1\n", - " 34 2.4368236e+00 3.84e-01 2.25e-01 -4.3 7.38e+04 - 1.00e+00 2.08e-02f 1\n", - " 35 2.3470880e+00 4.35e-01 4.99e-02 -3.9 2.95e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 2.7334433e+00 1.48e-01 1.87e-01 -2.5 1.87e+03 - 1.00e+00 9.93e-01h 1\n", - " 37 2.4796114e+00 6.69e-01 1.18e-01 -2.7 1.34e+03 - 5.51e-02 1.00e+00f 1\n", - " 38 2.8314921e+00 2.60e-01 1.85e-01 -2.7 3.90e+03 - 9.12e-02 1.00e+00h 1\n", - " 39 2.6446106e+00 2.44e-01 1.26e-01 -2.7 6.71e+03 - 1.00e+00 6.28e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.6266159e+00 1.29e-01 2.88e-01 -2.7 1.23e+04 - 7.74e-01 1.00e+00F 1\n", - " 41 2.4394465e+00 1.21e+00 4.70e-01 -2.5 1.59e+04 - 6.45e-01 1.00e+00f 1\n", - " 42 2.6138537e+00 1.18e+00 3.69e-01 -2.7 6.21e+03 - 1.00e+00 1.00e+00h 1\n", - " 43 2.5374647e+00 1.52e-01 3.54e-01 -2.7 2.04e+03 - 1.00e+00 1.00e+00h 1\n", - " 44r 2.5374647e+00 1.52e-01 9.99e+02 -0.8 0.00e+00 - 0.00e+00 3.03e-07R 22\n", - " 45r 2.6094827e+00 5.01e-02 3.78e+02 -3.0 1.65e+02 - 1.00e+00 1.18e-03f 1\n", - " 46 2.2922434e+00 7.60e-01 5.46e-01 -1.9 6.95e+03 - 9.36e-01 1.00e+00f 1\n", - " 47 2.3600662e+00 7.66e-01 1.27e-01 -2.4 6.22e+03 - 9.98e-01 1.00e+00h 1\n", - " 48 2.4825920e+00 5.96e-01 2.81e-01 -2.5 6.71e+04 - 1.46e-01 2.53e-01H 1\n", - " 49 2.1124748e+00 6.15e-01 2.52e-01 -2.5 2.92e+04 - 9.28e-01 8.71e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.1374912e+00 5.51e-01 2.37e-01 -2.2 1.06e+04 - 1.00e+00 2.32e-01h 1\n", - " 51 2.2276023e+00 4.86e-01 1.20e-01 -1.5 2.26e+03 - 9.56e-01 5.00e-01f 2\n", - " 52 2.4500592e+00 4.31e-01 2.83e-01 -1.7 1.19e+04 - 1.00e+00 9.64e-01h 1\n", - " 53 2.3015585e+00 3.17e-01 1.82e-01 -2.6 5.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 54 2.3624953e+00 4.52e-01 3.30e-01 -1.8 5.51e+03 - 1.01e-01 1.00e+00H 1\n", - " 55 2.3446649e+00 3.65e-01 2.63e-01 -2.4 1.12e+04 - 1.00e+00 2.72e-01H 1\n", - " 56 2.4485759e+00 1.27e-01 1.18e-01 -3.0 7.39e+02 - 9.43e-01 1.00e+00h 1\n", - " 57 2.4153221e+00 6.93e-02 9.64e-02 -3.9 4.87e+03 - 7.91e-01 4.17e-01H 1\n", - " 58 2.5392618e+00 2.98e-01 2.06e-02 -1.5 2.83e+05 - 6.50e-02 5.51e-02f 3\n", - " 59 2.5822816e+00 2.12e-01 4.37e-01 -2.0 1.50e+03 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.4818561e+00 7.98e-04 2.07e-01 -2.0 2.07e-01 - 1.00e+00 1.00e+00h 1\n", - " 61 2.4819905e+00 2.47e-08 7.77e-05 -3.9 7.98e-04 - 1.00e+00 1.00e+00h 1\n", - " 62 2.4819904e+00 7.95e-08 3.87e-05 -9.9 4.86e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 2.4819905e+00 4.40e-08 8.72e-05 -11.0 3.50e-04 - 1.00e+00 1.00e+00h 1\n", - " 64 2.4819905e+00 6.52e-08 2.57e-05 -11.0 2.37e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 2.4819906e+00 5.66e-09 2.53e-05 -11.0 5.25e-05 - 1.00e+00 1.00e+00h 1\n", - " 66 2.4819906e+00 4.59e-09 7.41e-06 -11.0 3.68e-05 - 1.00e+00 1.00e+00h 1\n", - " 67 2.4819906e+00 2.90e-09 3.58e-05 -11.0 2.13e-05 - 1.00e+00 1.00e+00h 1\n", - " 68 2.4819906e+00 1.28e-09 8.83e-05 -11.0 2.02e-05 - 1.00e+00 1.00e+00h 1\n", - " 69 2.4819905e+00 6.23e-09 5.17e-05 -11.0 4.22e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.4819906e+00 3.77e-09 8.82e-05 -11.0 1.94e-05 - 1.00e+00 1.00e+00h 1\n", - " 71 2.4819905e+00 2.32e-08 5.27e-05 -11.0 4.29e-05 - 1.00e+00 1.00e+00h 1\n", - " 72 2.4819905e+00 5.92e-08 3.40e-05 -11.0 1.54e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 2.4819906e+00 7.16e-09 3.61e-05 -11.0 4.70e-05 - 1.00e+00 1.00e+00h 1\n", - " 74 2.4819906e+00 2.33e-09 4.31e-05 -11.0 2.32e-05 - 1.00e+00 1.00e+00h 1\n", - " 75 2.4819906e+00 3.55e-09 2.51e-05 -11.0 2.03e-05 - 1.00e+00 1.00e+00h 1\n", - " 76 2.4819906e+00 2.80e-08 3.79e-05 -11.0 7.41e-05 - 1.00e+00 1.00e+00h 1\n", - " 77 2.4819904e+00 1.47e-07 5.67e-05 -11.0 2.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 78 2.4819906e+00 9.77e-09 1.22e-05 -11.0 4.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 79 2.4819906e+00 7.81e-08 6.09e-05 -11.0 3.69e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.4819904e+00 3.58e-07 5.89e-05 -11.0 3.12e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 2.4819903e+00 1.29e-06 2.48e-03 -11.0 4.97e-03 - 1.00e+00 1.00e+00h 1\n", - " 82 2.4819426e+00 1.90e-04 5.56e-03 -11.0 7.09e-01 - 1.00e+00 1.00e+00h 1\n", - " 83 2.4819706e+00 3.95e-05 1.50e-03 -11.0 4.68e-01 - 1.00e+00 1.00e+00h 1\n", - " 84 2.4819468e+00 6.87e-05 1.40e-03 -11.0 7.08e-01 - 1.00e+00 1.00e+00h 1\n", - " 85 2.4819620e+00 2.76e-05 7.02e-04 -11.0 2.94e-01 - 1.00e+00 1.00e+00h 1\n", - " 86 2.4819710e+00 1.65e-05 7.09e-04 -11.0 2.31e-01 - 1.00e+00 1.00e+00h 1\n", - " 87 2.4819746e+00 1.53e-05 8.51e-04 -11.0 1.42e-01 - 1.00e+00 1.00e+00h 1\n", - " 88 2.4819853e+00 1.91e-07 3.76e-05 -11.0 3.85e-02 - 1.00e+00 1.00e+00h 1\n", - " 89 2.4819542e+00 3.56e-05 1.10e-03 -11.0 6.30e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.4818779e+00 2.79e-04 5.96e-04 -11.0 3.94e+00 - 1.00e+00 1.00e+00h 1\n", - " 91 2.4788168e+00 1.46e-02 6.47e-03 -11.0 7.13e+01 - 1.00e+00 1.00e+00h 1\n", - " 92 2.4796821e+00 4.96e-03 4.72e-03 -11.0 1.03e+02 - 1.00e+00 1.00e+00h 1\n", - " 93 2.4804844e+00 1.05e-03 1.40e-03 -11.0 6.25e+01 - 1.00e+00 1.00e+00h 1\n", - " 94 2.4746357e+00 5.53e-02 1.43e-02 -11.0 1.92e+02 - 1.00e+00 1.00e+00h 1\n", - " 95 2.4466776e+00 6.31e-02 2.19e-02 -11.0 2.02e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 2.4357873e+00 3.10e-01 1.04e-01 -11.0 1.56e+03 - 1.00e+00 1.00e+00h 1\n", - " 97 2.4058887e+00 1.04e+00 5.68e-01 -11.0 4.95e+05 - 2.04e-02 4.36e-02f 1\n", - " 98r 2.4058887e+00 1.04e+00 9.99e+02 0.0 0.00e+00 - 0.00e+00 1.13e-10R 3\n", - " 99r 2.2128246e+00 5.61e-01 9.58e+02 -6.0 1.80e+02 - 1.00e+00 3.79e-03f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.4651686e+00 1.03e-02 1.41e-01 -11.0 2.32e+02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.4651686422500263e+00 2.4651686422500263e+00\n", - "Dual infeasibility......: 1.4111377446610385e-01 1.4111377446610385e-01\n", - "Constraint violation....: 1.0299406322253901e-02 1.0299406322253901e-02\n", - "Complementarity.........: 1.2124890396726157e-07 1.2124890396726157e-07\n", - "Overall NLP error.......: 1.4111377446610385e-01 1.4111377446610385e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 146\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 146\n", - "Number of inequality constraint evaluations = 146\n", - "Number of equality constraint Jacobian evaluations = 103\n", - "Number of inequality constraint Jacobian evaluations = 103\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.423\n", - "Total CPU secs in NLP function evaluations = 138.398\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 652.00us ( 4.47us) 636.65us ( 4.36us) 146\n", - " nlp_g | 6.50 s ( 44.50ms) 6.19 s ( 42.38ms) 146\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 371.00us ( 3.64us) 362.72us ( 3.56us) 102\n", - " nlp_jac_g | 134.69 s ( 1.30 s) 128.58 s ( 1.24 s) 104\n", - " total | 142.66 s (142.66 s) 136.17 s (136.17 s) 1\n", - "Timestamp 29400\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.49e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9740053e+01 1.24e+01 1.49e+04 -1.5 1.49e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 7.3799720e+00 4.11e+00 7.91e+00 0.6 8.31e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 3.2208080e+00 7.11e-01 8.47e-01 -1.5 2.15e+01 - 9.97e-01 1.00e+00f 1\n", - " 4 3.7541890e+00 2.56e-03 1.73e-01 -3.2 1.12e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 3.7551579e+00 2.29e-06 1.72e-03 -5.1 1.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 3.7551571e+00 2.12e-06 7.48e-04 -7.2 7.93e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 3.7551524e+00 4.81e-06 1.30e-03 -9.3 2.00e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 3.7551593e+00 1.13e-06 2.21e-03 -11.0 4.68e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 3.7551601e+00 5.85e-07 8.04e-05 -11.0 4.89e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 3.7551562e+00 2.28e-06 1.63e-03 -11.0 1.47e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 3.6679148e+00 3.76e-02 9.16e-02 -11.0 2.96e+02 - 1.00e+00 1.00e+00f 1\n", - " 12 3.7400610e+00 2.06e-02 6.63e-03 -11.0 8.93e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 3.6704466e+00 5.24e-02 1.77e-02 -11.0 2.41e+02 - 1.00e+00 1.00e+00h 1\n", - " 14 3.6926612e+00 2.50e-02 3.85e-03 -11.0 1.36e+02 - 1.00e+00 1.00e+00h 1\n", - " 15 3.7449120e+00 5.31e-03 7.99e-03 -11.0 4.34e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 3.7237154e+00 3.14e-02 1.91e-02 -11.0 1.88e+02 - 1.00e+00 1.00e+00h 1\n", - " 17 3.6724245e+00 7.51e-02 2.56e-02 -11.0 7.32e+02 - 1.00e+00 1.00e+00h 1\n", - " 18 3.7067420e+00 6.48e-02 4.79e-03 -11.0 1.10e+03 - 1.00e+00 1.00e+00h 1\n", - " 19 3.7239023e+00 4.07e-02 1.56e-02 -11.0 7.42e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.9355930e+00 6.34e-01 3.92e-01 -11.0 6.35e+03 - 1.00e+00 1.00e+00f 1\n", - " 21 3.3975097e+00 3.69e-01 2.30e-01 -11.0 4.06e+03 - 1.00e+00 1.00e+00h 1\n", - " 22 2.8321276e+00 1.11e+00 8.89e-01 -9.0 3.05e+04 - 1.00e+00 2.37e-01f 3\n", - " 23 3.1556214e+00 8.04e-01 5.18e-01 -7.0 1.92e+04 - 1.00e+00 8.86e-01h 1\n", - " 24 2.4421685e+00 9.50e-01 1.35e-01 -7.7 5.19e+03 - 1.00e+00 1.00e+00f 1\n", - " 25 2.7045565e+00 9.07e-01 1.64e-01 -5.8 5.42e+03 - 1.00e+00 6.62e-01h 1\n", - " 26 2.7045571e+00 9.06e-01 1.64e-01 -3.8 4.00e+04 - 1.00e+00 8.98e-04h 1\n", - " 27 2.6760577e+00 1.21e+00 1.15e-01 -9.9 1.70e+05 - 2.83e-02 1.25e-02h 5\n", - " 28 2.5784339e+00 1.48e+00 5.23e-01 -4.0 1.07e+04 - 1.02e-03 1.00e+00h 1\n", - " 29 2.4753914e+00 1.58e+00 4.01e-01 -4.0 5.54e+03 - 1.00e+00 3.96e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.4454896e+00 1.25e+00 5.51e-01 -4.0 1.93e+04 - 1.00e+00 3.00e-01h 1\n", - " 31 2.4951641e+00 1.10e+00 5.81e-01 -3.7 1.87e+03 - 1.00e+00 1.32e-01h 1\n", - " 32 3.8833617e+00 2.16e-01 3.20e-01 -4.2 1.59e+03 - 1.00e+00 1.00e+00h 1\n", - " 33 3.9981865e+00 5.37e-02 7.15e-02 -4.0 2.66e+02 - 7.29e-01 1.00e+00h 1\n", - " 34 3.6482242e+00 3.95e-01 1.81e-01 -4.0 1.17e+03 - 1.00e+00 1.00e+00f 1\n", - " 35 4.1263054e+00 1.88e-02 5.17e-02 -4.0 3.71e+02 - 1.00e+00 1.00e+00h 1\n", - " 36 3.4781440e+00 3.67e-01 8.79e-02 -4.0 1.76e+03 - 1.22e-01 1.00e+00f 1\n", - " 37 2.8249354e+00 1.21e+00 7.16e-01 -4.0 1.96e+04 - 3.89e-02 2.50e-01f 3\n", - " 38 2.6401370e+00 1.03e+00 7.59e-01 -4.0 1.54e+04 - 2.59e-01 1.25e-01h 4\n", - " 39 2.8570931e+00 5.73e-01 3.59e-01 -4.0 1.21e+04 - 1.00e+00 5.21e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.8464301e+00 1.33e+00 1.41e-01 -4.5 6.20e+03 - 1.00e+00 5.00e-01h 2\n", - " 41 2.8175617e+00 1.08e+00 1.04e-01 -3.6 1.42e+04 - 1.00e+00 1.24e-01h 1\n", - " 42 3.4959774e+00 6.57e-01 9.93e-02 -3.4 1.88e+04 - 1.00e+00 1.00e+00h 1\n", - " 43 3.2341616e+00 5.07e-01 2.96e-01 -3.5 4.96e+04 - 6.36e-01 8.92e-01F 1\n", - " 44 3.2165013e+00 4.01e-01 2.00e-01 -3.3 2.97e+04 - 1.00e+00 1.25e-01h 4\n", - " 45 3.0772007e+00 6.24e-01 1.54e-01 -2.1 1.97e+04 - 1.00e+00 1.87e-01f 1\n", - " 46 3.5969467e+00 9.20e-02 1.07e-01 -3.0 3.07e+03 - 5.94e-01 1.00e+00H 1\n", - " 47 3.4363709e+00 1.10e-01 8.38e-02 -2.4 3.43e+03 - 1.00e+00 8.28e-02f 1\n", - " 48 3.5989878e+00 1.05e-02 4.30e-02 -3.3 1.67e+02 - 1.00e+00 1.00e+00h 1\n", - " 49 3.5397781e+00 6.52e-02 1.62e-02 -5.1 1.59e+02 - 9.99e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 3.5984196e+00 1.20e-02 2.05e-02 -3.5 8.71e+01 - 4.90e-01 1.00e+00h 1\n", - " 51 3.5900059e+00 2.41e-02 1.40e-02 -3.6 1.41e+02 - 1.00e+00 7.80e-01h 1\n", - " 52 3.4654575e+00 1.00e-01 4.02e-02 -2.9 4.82e+02 - 1.00e+00 6.33e-01f 1\n", - " 53 3.5739587e+00 1.45e-02 6.66e-03 -3.0 3.00e+01 - 4.99e-01 1.00e+00h 1\n", - " 54 3.5959716e+00 2.83e-03 6.68e-03 -4.4 1.59e+01 - 1.00e+00 1.00e+00h 1\n", - " 55 3.5685007e+00 3.93e-02 1.05e-02 -4.4 2.54e+02 - 1.00e+00 6.58e-01h 1\n", - " 56 3.5915013e+00 6.02e-03 8.69e-03 -4.2 1.34e+02 - 9.41e-01 1.00e+00h 1\n", - " 57 3.5089533e+00 5.78e-02 7.72e-03 -3.8 5.63e+02 - 1.00e+00 4.89e-01f 1\n", - " 58 3.6074493e+00 1.76e-03 1.08e-02 -5.7 4.94e+01 - 1.00e+00 1.00e+00h 1\n", - " 59 3.5562335e+00 5.78e-02 4.32e-02 -5.5 1.14e+03 - 8.87e-02 4.52e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.5536472e+00 4.94e-02 8.26e-03 -4.8 2.93e+02 - 1.00e+00 1.00e+00f 1\n", - " 61 3.5828304e+00 2.31e-02 1.97e-02 -3.1 2.47e+02 - 6.46e-01 1.00e+00h 1\n", - " 62 3.0922061e+00 3.73e-01 1.33e-01 -3.4 3.93e+03 - 2.40e-01 1.00e+00f 1\n", - " 63 2.0025530e+00 8.84e-01 3.25e-01 -2.7 7.50e+03 - 1.00e+00 1.00e+00f 1\n", - " 64 4.0126366e+00 2.22e-01 4.94e-01 -2.7 6.99e+03 - 7.54e-01 1.00e+00H 1\n", - " 65 3.9815972e+00 4.23e-05 1.31e-01 -2.9 1.70e-01 - 1.00e+00 1.00e+00h 1\n", - " 66 3.9816306e+00 2.44e-08 1.04e-04 -2.9 3.29e-04 - 1.00e+00 1.00e+00h 1\n", - " 67 3.9816304e+00 6.21e-08 2.95e-05 -8.9 7.18e-04 - 9.99e-01 1.00e+00h 1\n", - " 68 3.9816306e+00 1.08e-08 3.25e-05 -11.0 1.73e-04 - 1.00e+00 1.00e+00h 1\n", - " 69 3.9816306e+00 7.19e-08 8.45e-05 -11.0 1.02e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 3.9816305e+00 2.55e-07 2.43e-05 -11.0 6.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 3.9816306e+00 3.61e-08 4.89e-05 -11.0 6.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 3.9816302e+00 3.08e-07 4.74e-05 -11.0 2.53e-03 - 1.00e+00 1.00e+00h 1\n", - " 73 3.9816278e+00 1.15e-06 9.20e-03 -11.0 1.64e-02 - 1.00e+00 1.00e+00h 1\n", - " 74 3.9816306e+00 5.39e-10 5.81e-05 -11.0 9.37e-03 - 1.00e+00 1.00e+00H 1\n", - " 75 3.9816162e+00 1.42e-05 3.44e-03 -11.0 1.01e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 3.9816106e+00 8.22e-06 1.44e-03 -11.0 5.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 77 3.9816308e+00 1.90e-09 1.14e-04 -11.0 1.02e-01 - 1.00e+00 1.00e+00H 1\n", - " 78 3.9813500e+00 3.05e-04 3.53e-03 -11.0 1.70e+00 - 1.00e+00 1.00e+00f 1\n", - " 79 3.9815796e+00 4.45e-05 1.36e-03 -11.0 4.34e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 3.9797637e+00 1.96e-03 5.06e-03 -11.0 4.70e+00 - 1.00e+00 1.00e+00h 1\n", - " 81 3.9812698e+00 2.94e-04 2.18e-03 -11.0 2.13e+00 - 1.00e+00 1.00e+00h 1\n", - " 82 3.9570268e+00 2.35e-02 4.54e-03 -11.0 3.31e+02 - 1.00e+00 1.00e+00f 1\n", - " 83 3.9738535e+00 6.03e-03 3.35e-03 -11.0 7.35e+01 - 1.00e+00 1.00e+00h 1\n", - " 84 3.6386634e+00 2.36e-01 6.21e-02 -11.0 1.20e+03 - 1.00e+00 1.00e+00f 1\n", - " 85 3.5652519e+00 7.06e-01 1.75e-01 -11.0 6.18e+03 - 5.43e-01 1.00e+00h 1\n", - " 86 3.9807550e+00 4.25e-04 2.40e-01 -11.0 4.25e+04 - 1.00e+00 1.00e+00H 1\n", - " 87 3.6304724e+00 4.31e-01 4.80e-02 -11.0 2.04e+04 - 8.09e-01 8.01e-01f 1\n", - " 88 3.7731428e+00 1.88e-01 3.84e-02 -11.0 1.51e+03 - 1.00e+00 5.00e-01h 2\n", - " 89 3.7649788e+00 1.86e-01 3.39e-02 -11.0 8.59e+03 - 1.00e+00 8.43e-03h 7\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 3.7594270e+00 1.85e-01 3.08e-02 -11.0 1.90e+04 - 1.00e+00 4.97e-03h 4\n", - " 91 3.8359712e+00 1.83e-01 2.17e-02 -11.0 1.16e+03 - 1.00e+00 5.70e-01h 1\n", - " 92 3.9623032e+00 1.66e-02 5.78e-02 -11.0 2.51e+02 - 6.78e-01 1.00e+00h 1\n", - " 93 3.9467785e+00 1.54e-01 2.44e-02 -11.0 1.87e+03 - 1.00e+00 2.50e-01h 3\n", - " 94 3.9544774e+00 1.27e-01 2.02e-02 -11.0 3.44e+02 - 5.77e-01 2.50e-01h 3\n", - " 95 3.9569965e+00 1.17e-01 2.02e-02 -11.0 1.56e+02 - 1.00e+00 1.25e-01h 4\n", - " 96 3.9672421e+00 1.74e-02 1.03e-02 -11.0 5.08e+01 - 1.00e+00 1.00e+00h 1\n", - " 97 3.9015390e+00 4.05e-02 1.92e-02 -11.0 6.67e+02 - 1.00e+00 7.34e-01h 1\n", - " 98 3.9772828e+00 4.20e-03 1.19e-02 -11.0 4.88e+01 - 1.00e+00 1.00e+00h 1\n", - " 99 3.9649450e+00 1.10e-02 9.39e-03 -11.0 2.55e+02 - 1.00e+00 2.31e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 3.9790252e+00 6.72e-05 1.22e-03 -11.0 3.26e+01 - 1.00e+00 1.00e+00H 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 3.9790252198756066e+00 3.9790252198756066e+00\n", - "Dual infeasibility......: 1.2165440358422597e-03 1.2165440358422597e-03\n", - "Constraint violation....: 6.7238951245940370e-05 6.7238951245940370e-05\n", - "Complementarity.........: 9.9999999999999994e-12 9.9999999999999994e-12\n", - "Overall NLP error.......: 1.2165440358422597e-03 1.2165440358422597e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 169\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 169\n", - "Number of inequality constraint evaluations = 169\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.483\n", - "Total CPU secs in NLP function evaluations = 136.675\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 780.00us ( 4.62us) 760.43us ( 4.50us) 169\n", - " nlp_g | 7.57 s ( 44.77ms) 7.22 s ( 42.71ms) 169\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 343.00us ( 3.36us) 342.32us ( 3.36us) 102\n", - " nlp_jac_g | 131.96 s ( 1.29 s) 125.97 s ( 1.24 s) 102\n", - " total | 141.00 s (141.00 s) 134.60 s (134.60 s) 1\n", - "Timestamp 29700\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 2.11e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9278327e+01 1.35e+01 2.11e+04 -1.5 2.11e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.0187547e+01 4.38e+00 1.19e+01 0.8 2.17e+02 - 1.00e+00 1.00e+00f 1\n", - " 3 1.4259752e+01 1.61e+00 9.04e-01 -1.3 4.31e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.5273928e+01 2.36e-04 8.46e-02 -3.0 1.91e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.5274086e+01 2.80e-06 2.47e-03 -4.9 2.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 6 1.5274081e+01 7.53e-06 2.37e-03 -7.0 4.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 7 1.5273264e+01 6.64e-04 2.32e-03 -9.1 5.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 8 1.5273057e+01 9.47e-04 3.84e-03 -11.0 7.06e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 1.5274087e+01 1.76e-04 1.38e-03 -11.0 3.41e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.5272730e+01 6.76e-04 1.78e-03 -11.0 7.06e+00 - 1.00e+00 1.00e+00h 1\n", - " 11 1.5271165e+01 2.40e-03 4.08e-03 -11.0 9.37e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 1.5273859e+01 1.08e-07 7.82e-05 -11.0 3.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 13 1.5273855e+01 2.71e-06 1.60e-03 -11.0 1.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 1.5273839e+01 8.50e-06 1.87e-03 -11.0 2.55e-02 - 1.00e+00 1.00e+00h 1\n", - " 15 1.5273859e+01 6.57e-07 1.52e-03 -11.0 4.52e-03 - 1.00e+00 1.00e+00h 1\n", - " 16 1.5273856e+01 2.47e-06 5.81e-03 -11.0 9.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 17 1.5273859e+01 1.37e-06 3.27e-03 -11.0 6.75e-03 - 1.00e+00 1.00e+00h 1\n", - " 18 1.5273858e+01 9.11e-07 1.14e-03 -11.0 4.82e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 1.5273853e+01 1.34e-05 3.82e-03 -11.0 3.06e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.5273846e+01 4.25e-06 1.10e-03 -11.0 2.08e-02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.5273845e+01 7.09e-06 2.26e-03 -11.0 2.12e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.5273857e+01 1.76e-06 1.66e-03 -11.0 6.84e-03 - 1.00e+00 1.00e+00h 1\n", - " 23 1.5273857e+01 1.26e-06 2.45e-03 -11.0 3.48e-03 - 1.00e+00 1.00e+00h 1\n", - " 24 1.5273859e+01 3.13e-07 4.00e-05 -11.0 2.27e-03 - 1.00e+00 1.00e+00h 1\n", - " 25 1.5273859e+01 1.01e-07 1.80e-04 -11.0 1.03e-03 - 1.00e+00 1.00e+00h 1\n", - " 26 1.5257086e+01 2.86e-02 7.23e-02 -11.0 8.70e+01 - 1.00e+00 1.00e+00f 1\n", - " 27 1.5264558e+01 7.73e-03 1.14e-03 -11.0 4.83e+01 - 1.00e+00 1.00e+00h 1\n", - " 28 1.5272839e+01 1.06e-03 1.27e-03 -11.0 1.08e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 1.5275631e+01 2.38e-06 2.02e-03 -11.0 2.75e+01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.5248074e+01 1.42e-02 8.85e-04 -11.0 2.57e+01 - 1.00e+00 1.00e+00f 1\n", - " 31 1.5274516e+01 2.35e-04 2.05e-03 -11.0 5.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 32 1.5227410e+01 1.16e-01 4.19e-03 -11.0 5.44e+02 - 1.00e+00 1.00e+00f 1\n", - " 33 1.5178813e+01 3.69e-01 1.14e-02 -11.0 8.19e+02 - 1.00e+00 1.00e+00h 1\n", - " 34 1.5282406e+01 3.75e-02 1.74e-02 -11.0 4.98e+02 - 1.00e+00 1.00e+00h 1\n", - " 35 1.5272780e+01 6.91e-02 7.77e-03 -11.0 3.87e+02 - 1.00e+00 1.00e+00h 1\n", - " 36 1.5161636e+01 3.43e-01 5.06e-03 -11.0 7.26e+02 - 1.00e+00 1.00e+00h 1\n", - " 37 1.5245170e+01 8.09e-02 6.00e-03 -11.0 3.00e+02 - 1.00e+00 1.00e+00h 1\n", - " 38 1.5277732e+01 7.45e-03 1.02e-02 -11.0 6.83e+01 - 1.00e+00 1.00e+00h 1\n", - " 39 1.5287343e+01 8.66e-06 1.33e-03 -11.0 1.68e+02 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.5192234e+01 1.02e-01 5.05e-03 -11.0 5.96e+02 - 1.00e+00 1.00e+00f 1\n", - " 41 1.5181712e+01 9.26e-02 6.03e-03 -11.0 5.01e+02 - 1.00e+00 1.00e+00h 1\n", - " 42 1.5170886e+01 9.38e-02 1.09e-02 -11.0 5.83e+02 - 1.00e+00 1.00e+00h 1\n", - " 43 1.5248324e+01 7.37e-02 2.88e-03 -11.0 3.41e+02 - 1.00e+00 1.00e+00h 1\n", - " 44 1.5239320e+01 2.03e-01 1.30e-02 -11.0 4.45e+02 - 1.00e+00 1.00e+00h 1\n", - " 45 1.5055057e+01 5.93e-02 4.18e-03 -11.0 4.18e+02 - 1.00e+00 1.00e+00h 1\n", - " 46 1.5023071e+01 2.71e-01 1.21e-02 -11.0 7.07e+02 - 1.00e+00 1.00e+00h 1\n", - " 47 1.5115762e+01 7.51e-02 1.25e-02 -11.0 3.78e+02 - 1.00e+00 1.00e+00h 1\n", - " 48 1.2125399e+01 1.57e+00 9.45e-02 -11.0 6.31e+03 - 1.00e+00 1.00e+00f 1\n", - " 49 1.4689349e+01 3.15e-01 6.47e-02 -11.0 1.44e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.4680030e+01 1.76e-01 4.56e-02 -11.0 6.30e+02 - 1.00e+00 1.00e+00h 1\n", - " 51 1.4410005e+01 6.40e-01 1.08e-01 -11.0 2.99e+03 - 1.00e+00 1.00e+00h 1\n", - " 52 1.3427090e+01 9.65e-01 1.07e-01 -11.0 1.15e+04 - 1.00e+00 1.00e+00h 1\n", - " 53 1.4632042e+01 6.33e-01 3.30e-02 -11.0 5.91e+03 - 1.00e+00 1.00e+00h 1\n", - " 54 1.1202727e+01 3.50e+00 2.76e-01 -11.0 1.10e+06 - 2.42e-02 3.30e-02f 1\n", - " 55 1.4541127e+01 1.99e-01 2.84e-01 -10.1 1.79e+03 - 1.00e+00 1.00e+00h 1\n", - " 56 1.4364191e+01 4.04e-01 7.39e-02 -8.3 2.55e+03 - 1.00e+00 1.00e+00h 1\n", - " 57 1.4059705e+01 3.14e-01 9.93e-02 -3.3 3.21e+03 - 1.00e+00 9.98e-01h 1\n", - " 58 1.4550423e+01 2.54e-01 1.42e-02 -4.2 1.68e+03 - 1.00e+00 1.00e+00h 1\n", - " 59 1.4509890e+01 2.12e-01 5.67e-03 -5.7 8.14e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.4480684e+01 1.22e-01 8.01e-03 -6.8 6.69e+02 - 1.00e+00 1.00e+00h 1\n", - " 61 1.4393716e+01 2.16e-01 1.49e-02 -6.2 7.48e+02 - 6.10e-01 1.00e+00h 1\n", - " 62 1.3500757e+01 7.68e-01 2.05e-02 -4.4 1.42e+03 - 6.32e-03 1.00e+00f 1\n", - " 63 1.4834733e+01 1.72e-01 6.55e-02 -4.9 1.56e+03 - 1.00e+00 1.00e+00h 1\n", - " 64 1.4916787e+01 1.18e-01 1.92e-02 -6.5 9.95e+02 - 1.00e+00 1.00e+00h 1\n", - " 65 1.4842800e+01 2.09e-01 2.17e-02 -4.2 2.61e+03 - 1.00e+00 2.38e-01h 1\n", - " 66 1.3851213e+01 7.20e-01 3.04e-02 -2.6 1.15e+03 - 1.00e+00 1.00e+00f 1\n", - " 67 1.4945232e+01 5.65e-03 1.10e+00 -2.4 1.15e+00 - 1.00e+00 1.00e+00h 1\n", - " 68 1.4948243e+01 2.51e-06 1.74e-03 -4.3 7.02e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 1.4948246e+01 8.15e-08 1.19e-04 -6.4 1.05e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.4948201e+01 5.82e-05 3.21e-03 -8.4 3.47e-01 - 1.00e+00 1.00e+00h 1\n", - " 71 1.4947351e+01 3.14e-04 1.25e-02 -10.4 1.54e+00 - 1.00e+00 1.00e+00h 1\n", - " 72 1.4948051e+01 7.88e-05 1.28e-03 -11.0 5.18e-01 - 1.00e+00 1.00e+00h 1\n", - " 73 1.4948104e+01 6.95e-05 1.28e-03 -11.0 2.92e-01 - 1.00e+00 1.00e+00h 1\n", - " 74 1.4946607e+01 7.03e-04 6.08e-03 -11.0 1.91e+00 - 1.00e+00 1.00e+00h 1\n", - " 75 1.4947615e+01 1.92e-04 9.81e-04 -11.0 8.81e-01 - 1.00e+00 1.00e+00h 1\n", - " 76 1.4948179e+01 2.06e-05 2.93e-03 -11.0 1.99e-01 - 1.00e+00 1.00e+00h 1\n", - " 77 1.4943611e+01 4.65e-03 1.40e-02 -11.0 1.94e+01 - 1.00e+00 1.00e+00h 1\n", - " 78 1.1357202e+01 1.17e+01 1.14e+00 -9.0 8.19e+05 - 1.82e-04 5.59e-02f 1\n", - " 79 1.1313401e+01 1.16e+01 1.12e+00 -10.9 1.74e+05 - 2.16e-01 2.66e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.3337524e+01 2.48e+00 9.88e-01 -10.9 1.07e+04 - 9.83e-09 1.00e+00h 1\n", - " 81 1.3307113e+01 2.47e+00 9.88e-01 -10.9 2.46e+04 - 1.00e+00 2.32e-03h 1\n", - " 82 1.3840526e+01 1.93e+00 7.74e-01 -10.9 1.62e+03 - 6.95e-09 2.35e-01h 1\n", - " 83 1.3544808e+01 9.03e-01 3.58e-01 -10.9 2.10e+03 - 1.00e+00 1.00e+00h 1\n", - " 84 1.5736909e+01 3.75e-01 6.07e-02 -10.9 1.33e+03 - 1.00e+00 1.00e+00h 1\n", - " 85 1.4931222e+01 5.81e-01 3.20e-02 -10.9 1.16e+04 - 1.00e+00 4.94e-01f 1\n", - " 86 1.4767785e+01 1.09e+00 4.55e-02 -10.9 1.48e+04 - 9.42e-01 2.61e-01h 1\n", - " 87 1.0716451e+01 6.36e+00 4.99e-01 -10.9 1.26e+05 - 4.73e-09 9.20e-02f 1\n", - " 88 1.0715492e+01 6.36e+00 4.99e-01 -11.0 2.34e+05 - 4.35e-11 7.20e-05h 1\n", - " 89 1.0715485e+01 6.36e+00 4.99e-01 -9.1 9.23e+04 - 1.00e+00 1.83e-06h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.0715700e+01 6.36e+00 4.99e-01 -9.2 1.72e+03 - 2.02e-03 2.30e-04h 1\n", - " 91 1.5759192e+01 6.58e-01 3.61e-01 -11.0 7.42e+00 - 3.32e-03 9.71e-01h 1\n", - "In iteration 91, 1 Slack too small, adjusting variable bound\n", - " 92 1.5769642e+01 6.46e-01 3.54e-01 -9.2 1.46e+03 - 3.13e-04 1.96e-02h 1\n", - " 93 1.5991742e+01 4.00e-01 2.04e-02 -9.2 8.40e+03 - 4.06e-03 1.00e+00h 1\n", - "In iteration 93, 1 Slack too small, adjusting variable bound\n", - " 94 1.5983961e+01 3.96e-01 2.11e-02 -9.2 1.98e+04 - 4.00e-01 4.52e-03h 1\n", - " 95 1.6331948e+01 5.40e-04 3.66e-01 -9.2 3.66e-01 - 1.00e+00 1.00e+00h 1\n", - " 96 1.6332615e+01 1.08e-05 1.70e-03 -9.2 2.58e-02 - 1.00e+00 1.00e+00h 1\n", - " 97 1.6332618e+01 8.38e-06 4.16e-03 -9.2 3.73e-02 - 1.00e+00 1.00e+00h 1\n", - " 98 1.6332635e+01 7.51e-07 1.49e-04 -9.2 7.37e-03 - 8.14e-01 1.00e+00h 1\n", - " 99 1.6332623e+01 6.47e-06 3.19e-03 -9.2 2.68e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.6332631e+01 2.18e-06 1.58e-03 -9.2 1.16e-02 - 9.91e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.6332631428324397e+01 1.6332631428324397e+01\n", - "Dual infeasibility......: 1.5824434980724884e-03 1.5824434980724884e-03\n", - "Constraint violation....: 2.1846382338708281e-06 2.1846382338708281e-06\n", - "Complementarity.........: 6.7167837085255704e-10 6.7167837085255704e-10\n", - "Overall NLP error.......: 1.5824434980724884e-03 1.5824434980724884e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 103\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 103\n", - "Number of inequality constraint evaluations = 103\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.375\n", - "Total CPU secs in NLP function evaluations = 133.551\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 465.00us ( 4.51us) 456.96us ( 4.44us) 103\n", - " nlp_g | 4.62 s ( 44.84ms) 4.40 s ( 42.72ms) 103\n", - " nlp_grad | 1.34 s ( 1.34 s) 1.28 s ( 1.28 s) 1\n", - " nlp_grad_f | 412.00us ( 4.04us) 333.77us ( 3.27us) 102\n", - " nlp_jac_g | 131.67 s ( 1.29 s) 125.61 s ( 1.23 s) 102\n", - " total | 137.76 s (137.76 s) 131.42 s (131.42 s) 1\n", - "Timestamp 30000\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 3.07e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9185332e+01 1.27e+01 3.07e+04 -1.5 3.07e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 1.0179939e+01 4.40e+00 1.49e+01 1.3 1.60e+03 - 1.00e+00 1.00e+00f 1\n", - " 3 1.3807014e+01 1.64e+00 9.05e-01 -0.8 3.10e+02 - 9.98e-01 1.00e+00h 1\n", - " 4 1.4758722e+01 3.58e-04 8.41e-02 -6.6 3.99e+00 - 9.90e-01 1.00e+00h 1\n", - " 5 1.4758876e+01 2.60e-04 2.44e-02 -4.3 2.37e+00 - 9.98e-01 1.00e+00h 1\n", - " 6 1.4758876e+01 9.55e-05 8.12e-04 -6.1 1.33e+00 - 1.00e+00 1.00e+00h 1\n", - " 7 1.4757252e+01 6.93e-04 1.49e-03 -8.2 4.15e+00 - 1.00e+00 1.00e+00h 1\n", - " 8 1.4756329e+01 9.03e-04 1.08e-03 -11.0 2.72e+00 - 1.00e+00 1.00e+00h 1\n", - " 9 1.4758796e+01 2.16e-04 1.03e-03 -11.0 7.82e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.4751612e+01 3.98e-03 5.08e-03 -11.0 1.90e+01 - 1.00e+00 1.00e+00h 1\n", - " 11 1.4759288e+01 3.44e-04 7.94e-04 -11.0 2.50e+00 - 1.00e+00 1.00e+00h 1\n", - " 12 1.4759490e+01 7.44e-05 9.46e-04 -11.0 1.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 13 1.4755697e+01 8.74e-03 1.37e-03 -11.0 5.03e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.4746710e+01 5.74e-03 1.61e-03 -11.0 4.08e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.4738540e+01 8.01e-03 1.37e-03 -11.0 5.14e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.4645452e+01 4.51e-02 3.84e-03 -11.0 1.19e+02 - 1.00e+00 1.00e+00h 1\n", - " 17 1.4757953e+01 4.15e-05 9.96e-02 -11.0 1.03e-01 - 1.00e+00 1.00e+00h 1\n", - " 18 1.4757992e+01 7.63e-07 1.86e-04 -11.0 6.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 19 1.4757983e+01 4.19e-06 1.73e-03 -11.0 1.50e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.4757943e+01 2.42e-05 5.11e-03 -11.0 1.00e-01 - 1.00e+00 1.00e+00h 1\n", - " 21 1.4757979e+01 4.44e-06 2.28e-03 -11.0 6.06e-02 - 1.00e+00 1.00e+00h 1\n", - " 22 1.4757965e+01 1.39e-05 1.55e-03 -11.0 4.38e-02 - 1.00e+00 1.00e+00h 1\n", - " 23 1.4757982e+01 5.42e-06 1.63e-03 -11.0 3.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 24 1.4757935e+01 3.37e-05 2.21e-03 -11.0 2.36e-01 - 1.00e+00 1.00e+00h 1\n", - " 25 1.4757855e+01 3.04e-05 5.35e-03 -11.0 3.96e-01 - 1.00e+00 1.00e+00h 1\n", - " 26 1.4757930e+01 6.17e-05 1.88e-03 -11.0 3.75e-01 - 1.00e+00 1.00e+00h 1\n", - " 27 1.4757949e+01 3.47e-05 8.47e-04 -11.0 1.87e-01 - 1.00e+00 1.00e+00h 1\n", - " 28 1.4757872e+01 1.95e-04 2.42e-03 -11.0 6.26e-01 - 1.00e+00 1.00e+00h 1\n", - " 29 1.4755928e+01 7.96e-04 1.25e-02 -11.0 1.41e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.4757920e+01 3.65e-04 1.15e-03 -11.0 3.43e+00 - 1.00e+00 1.00e+00h 1\n", - " 31 1.4757688e+01 3.46e-04 1.07e-03 -11.0 5.41e+00 - 1.00e+00 1.00e+00h 1\n", - " 32 1.4744510e+01 1.54e-02 3.13e-03 -11.0 2.30e+02 - 1.00e+00 1.00e+00h 1\n", - " 33 1.4480171e+01 2.90e-01 2.01e-02 -11.0 1.06e+03 - 1.00e+00 1.00e+00f 1\n", - " 34 1.4633192e+01 6.90e-02 5.83e-03 -11.0 3.91e+02 - 1.00e+00 1.00e+00h 1\n", - " 35 1.4465188e+01 2.94e-01 5.33e-03 -11.0 3.12e+03 - 1.00e+00 1.00e+00h 1\n", - " 36 1.4708638e+01 9.43e-03 1.89e-02 -11.0 5.87e+03 - 1.00e+00 1.00e+00h 1\n", - " 37 1.4731078e+01 1.03e-03 2.29e-03 -11.0 6.59e+03 - 1.00e+00 1.00e+00H 1\n", - " 38 1.4315734e+01 7.87e-01 5.36e-02 -9.0 1.43e+05 - 1.00e+00 1.06e-01f 1\n", - " 39 1.4312907e+01 7.93e-01 5.39e-02 -7.0 2.12e+06 - 1.00e+00 1.63e-05f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.4718332e+01 1.16e-05 7.54e-01 -9.0 7.95e-01 - 1.00e+00 1.00e+00h 1\n", - " 41 1.4718348e+01 3.61e-07 1.88e-04 -10.7 1.38e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 1.4718347e+01 2.46e-07 1.64e-04 -11.0 8.62e-04 - 1.00e+00 1.00e+00h 1\n", - " 43 1.4718348e+01 1.57e-07 9.83e-05 -11.0 3.44e-04 - 1.00e+00 1.00e+00h 1\n", - " 44 1.4718348e+01 8.28e-08 1.46e-04 -11.0 5.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 1.4718347e+01 1.37e-07 3.32e-05 -11.0 8.97e-04 - 1.00e+00 1.00e+00h 1\n", - " 46 1.4718348e+01 3.38e-09 2.49e-05 -11.0 4.42e-05 - 1.00e+00 1.00e+00h 1\n", - " 47 1.4718348e+01 7.28e-09 5.94e-05 -11.0 1.67e-04 - 1.00e+00 1.00e+00h 1\n", - " 48 1.4718348e+01 3.33e-08 1.04e-04 -11.0 8.27e-05 - 1.00e+00 1.00e+00h 1\n", - " 49 1.4718345e+01 6.97e-07 8.69e-03 -11.0 1.04e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.4718348e+01 5.08e-10 1.51e-04 -11.0 4.34e-03 - 1.00e+00 1.00e+00H 1\n", - " 51 1.4718343e+01 7.01e-06 1.05e-02 -11.0 2.66e-02 - 1.00e+00 1.00e+00h 1\n", - " 52 1.4718342e+01 6.19e-06 2.00e-03 -11.0 2.94e-02 - 1.00e+00 1.00e+00h 1\n", - " 53 1.4718345e+01 3.07e-06 3.55e-03 -11.0 2.92e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 1.4718188e+01 3.92e-04 3.73e-03 -11.0 5.74e+02 - 1.00e+00 2.70e-03f 1\n", - " 55 1.4718188e+01 3.92e-04 3.40e-03 -9.0 5.18e+00 - 1.00e+00 5.99e-04h 1\n", - " 56 1.4718337e+01 1.31e-06 1.27e-03 -9.5 3.86e-03 - 1.00e+00 1.00e+00h 1\n", - " 57 1.4718338e+01 2.06e-08 2.65e-04 -7.6 7.30e-04 - 9.87e-01 1.00e+00h 1\n", - " 58 1.4718338e+01 6.61e-08 7.43e-05 -8.7 5.79e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 1.4718337e+01 1.12e-06 2.32e-03 -6.9 1.89e-02 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.4718301e+01 4.36e-05 1.03e-03 -6.4 1.46e+00 - 1.00e+00 1.00e+00h 1\n", - " 61 1.4718248e+01 9.90e-05 2.31e-03 -7.9 2.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 62 1.4717237e+01 1.22e-03 5.81e-03 -8.2 7.92e+00 - 1.00e+00 1.00e+00h 1\n", - " 63 1.4718268e+01 7.24e-09 1.52e-04 -10.2 1.69e-03 - 1.00e+00 1.00e+00h 1\n", - " 64 1.4718268e+01 1.18e-07 1.70e-04 -11.0 5.67e-04 - 1.00e+00 1.00e+00h 1\n", - " 65 1.4718268e+01 1.05e-07 5.45e-05 -11.0 4.58e-04 - 1.00e+00 1.00e+00h 1\n", - " 66 1.4718268e+01 1.28e-07 9.20e-05 -11.0 3.88e-04 - 1.00e+00 1.00e+00h 1\n", - " 67 1.4718268e+01 7.48e-08 1.41e-04 -11.0 2.44e-04 - 1.00e+00 1.00e+00h 1\n", - " 68 1.4718266e+01 9.28e-07 7.82e-03 -11.0 6.23e-03 - 1.00e+00 1.00e+00h 1\n", - " 69 1.4718268e+01 4.65e-07 4.02e-05 -11.0 2.29e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.4718268e+01 1.62e-07 1.32e-05 -11.0 6.59e-04 - 1.00e+00 1.00e+00h 1\n", - " 71 1.4718268e+01 3.53e-08 7.15e-05 -11.0 5.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 72 1.4718268e+01 4.02e-08 9.70e-05 -11.0 3.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 1.4718268e+01 8.56e-07 3.20e-03 -11.0 1.30e-03 - 1.00e+00 1.00e+00h 1\n", - " 74 1.4718267e+01 6.08e-07 2.24e-04 -11.0 1.13e-03 - 1.00e+00 1.00e+00h 1\n", - " 75 1.4718266e+01 5.68e-07 3.50e-03 -11.0 2.61e-03 - 1.00e+00 1.00e+00h 1\n", - " 76 1.4718268e+01 1.49e-07 1.02e-04 -11.0 1.18e-03 - 1.00e+00 1.00e+00h 1\n", - " 77 1.4718268e+01 1.20e-07 1.33e-04 -11.0 6.55e-04 - 1.00e+00 1.00e+00h 1\n", - " 78 1.4718150e+01 7.09e-05 2.88e-02 -11.0 3.07e-01 - 1.00e+00 1.00e+00h 1\n", - " 79 1.4718282e+01 3.71e-08 1.81e-04 -11.0 4.53e-01 - 1.00e+00 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.4718078e+01 1.21e-04 2.13e-03 -11.0 2.54e-01 - 1.00e+00 1.00e+00h 1\n", - " 81 1.4713674e+01 1.33e-03 1.26e-02 -11.0 8.04e+00 - 1.00e+00 1.00e+00h 1\n", - " 82 1.4718153e+01 8.93e-07 4.12e-03 -10.7 1.97e+01 - 1.00e+00 1.00e+00H 1\n", - " 83 1.4707432e+01 1.31e-02 6.17e-03 -11.0 1.09e+02 - 1.00e+00 1.00e+00f 1\n", - " 84 1.4673939e+01 1.76e-02 2.81e-03 -9.0 1.84e+02 - 1.00e+00 9.13e-01h 1\n", - " 85 1.4718137e+01 1.34e-04 1.94e-03 -9.9 8.16e+01 - 1.00e+00 1.00e+00H 1\n", - " 86 1.4681537e+01 3.44e-02 2.66e-03 -8.0 1.22e+02 - 1.00e+00 8.03e-01f 1\n", - " 87 1.4707978e+01 4.11e-03 3.18e-03 -8.1 2.59e+01 - 2.09e-03 1.00e+00h 1\n", - " 88 1.4681869e+01 3.20e-02 1.87e-03 -6.0 9.79e+01 - 1.00e+00 6.13e-01h 1\n", - " 89 1.4703464e+01 1.56e-02 1.44e-03 -6.1 4.19e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.4700734e+01 2.04e-02 1.45e-03 -4.2 4.01e+01 - 9.85e-01 1.00e+00h 1\n", - " 91 1.4693937e+01 1.11e-02 1.91e-03 -5.7 1.09e+02 - 1.00e+00 1.00e+00h 1\n", - " 92 1.4718381e+01 7.76e-06 1.56e-03 -7.1 2.91e+02 - 1.00e+00 1.00e+00H 1\n", - " 93 1.4128331e+01 4.69e-01 2.69e-02 -7.2 1.85e+03 - 1.00e+00 1.00e+00f 1\n", - " 94 1.4650968e+01 8.86e-02 1.44e-02 -8.9 5.68e+02 - 1.00e+00 1.00e+00h 1\n", - " 95 1.4694464e+01 3.68e-02 1.19e-02 -8.9 2.96e+02 - 1.00e+00 1.00e+00h 1\n", - " 96 1.4444415e+01 3.89e-01 2.57e-02 -8.9 4.55e+03 - 1.00e+00 1.00e+00f 1\n", - " 97 1.1997915e+01 3.56e+00 3.04e-01 -7.4 3.89e+05 - 1.00e+00 1.43e-01f 1\n", - " 98 1.2012599e+01 3.53e+00 2.96e-01 -5.5 5.12e+04 - 1.00e+00 1.09e-02h 1\n", - " 99 1.4892755e+01 1.24e-01 3.35e-01 -4.4 7.02e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.4904648e+01 4.69e-02 1.11e-01 -3.7 5.57e+02 - 1.00e+00 6.51e-01h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.4904648203551995e+01 1.4904648203551995e+01\n", - "Dual infeasibility......: 1.1105110857683237e-01 1.1105110857683237e-01\n", - "Constraint violation....: 4.6913698273513660e-02 4.6913698273513660e-02\n", - "Complementarity.........: 2.2201347773967000e-04 2.2201347773967000e-04\n", - "Overall NLP error.......: 1.1105110857683237e-01 1.1105110857683237e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 107\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 107\n", - "Number of inequality constraint evaluations = 107\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.420\n", - "Total CPU secs in NLP function evaluations = 134.318\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 481.00us ( 4.50us) 475.82us ( 4.45us) 107\n", - " nlp_g | 4.78 s ( 44.68ms) 4.56 s ( 42.58ms) 107\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 363.00us ( 3.56us) 366.32us ( 3.59us) 102\n", - " nlp_jac_g | 132.20 s ( 1.30 s) 126.16 s ( 1.24 s) 102\n", - " total | 138.44 s (138.44 s) 132.12 s (132.12 s) 1\n", - "Timestamp 30300\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 5.57e+02 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9527380e+01 1.12e+01 5.57e+02 -1.5 5.57e+02 - 9.90e-01 1.00e+00f 1\n", - " 2 7.4311910e+00 3.41e+00 8.11e+00 0.4 1.12e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 2.4416747e+00 5.95e-01 5.96e-01 -1.6 5.07e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 2.6816675e+00 1.26e-03 2.18e-01 -3.4 8.71e-01 - 1.00e+00 1.00e+00h 1\n", - " 5 2.6821001e+00 3.15e-09 2.93e-05 -5.3 1.26e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 2.6821001e+00 3.25e-08 7.84e-05 -11.0 1.34e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 2.6820989e+00 7.09e-07 2.54e-03 -11.0 7.19e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 2.6820877e+00 8.73e-06 9.76e-03 -11.0 2.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 2.6820997e+00 9.61e-08 2.65e-05 -11.0 4.98e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 2.6820999e+00 5.48e-11 7.16e-05 -11.0 2.45e-03 - 1.00e+00 1.00e+00H 1\n", - " 11 2.6820995e+00 4.21e-07 7.00e-04 -11.0 2.05e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 2.6820985e+00 1.37e-06 1.97e-03 -11.0 1.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 13 2.6820953e+00 2.92e-06 3.81e-03 -11.0 2.03e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 2.6820996e+00 1.95e-08 7.97e-05 -11.0 8.24e-05 - 1.00e+00 1.00e+00h 1\n", - " 15 2.6820995e+00 1.49e-07 3.53e-05 -11.0 3.96e-04 - 1.00e+00 1.00e+00h 1\n", - " 16 2.6820996e+00 8.60e-08 2.31e-05 -11.0 3.32e-04 - 1.00e+00 1.00e+00h 1\n", - " 17 2.6820996e+00 1.42e-07 3.36e-05 -11.0 9.29e-04 - 1.00e+00 1.00e+00h 1\n", - " 18 2.6820996e+00 4.17e-08 1.17e-05 -11.0 3.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 19 2.6820996e+00 9.02e-10 5.25e-05 -11.0 3.15e-05 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 2.6820996e+00 1.45e-08 4.37e-05 -11.0 1.68e-04 - 1.00e+00 1.00e+00h 1\n", - " 21 2.6820996e+00 1.71e-07 1.23e-04 -11.0 2.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 22 2.6820993e+00 4.15e-07 6.29e-05 -11.0 2.11e-03 - 1.00e+00 1.00e+00h 1\n", - " 23 2.6820996e+00 2.17e-08 6.81e-05 -11.0 5.72e-04 - 1.00e+00 1.00e+00h 1\n", - " 24 2.6820996e+00 1.12e-08 1.13e-05 -11.0 2.76e-04 - 1.00e+00 1.00e+00h 1\n", - " 25 2.6820996e+00 6.56e-09 2.59e-05 -11.0 5.63e-05 - 1.00e+00 1.00e+00h 1\n", - " 26 2.6820996e+00 6.43e-08 1.87e-05 -11.0 3.23e-04 - 1.00e+00 1.00e+00h 1\n", - " 27 2.6820996e+00 9.10e-08 6.31e-05 -11.0 5.35e-04 - 1.00e+00 1.00e+00h 1\n", - " 28 2.6820994e+00 1.26e-07 4.95e-05 -11.0 2.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 29 2.6820990e+00 4.42e-07 5.62e-05 -11.0 1.19e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 2.6820982e+00 1.66e-06 1.38e-03 -11.0 2.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 31 2.6820950e+00 4.34e-06 2.88e-03 -11.0 3.43e-02 - 1.00e+00 1.00e+00h 1\n", - " 32 2.6820997e+00 6.68e-09 9.79e-05 -11.0 3.65e-05 - 1.00e+00 1.00e+00h 1\n", - " 33 2.6820996e+00 7.00e-08 1.05e-04 -11.0 1.47e-04 - 1.00e+00 1.00e+00h 1\n", - " 34 2.6820996e+00 2.92e-08 2.62e-05 -11.0 6.93e-05 - 1.00e+00 1.00e+00h 1\n", - " 35 2.6820997e+00 9.04e-09 3.63e-05 -11.0 1.79e-05 - 1.00e+00 1.00e+00h 1\n", - " 36 2.6820997e+00 6.83e-09 5.94e-05 -11.0 3.80e-05 - 1.00e+00 1.00e+00h 1\n", - " 37 2.6820997e+00 3.42e-09 6.75e-05 -11.0 2.69e-05 - 1.00e+00 1.00e+00h 1\n", - " 38 2.6820876e+00 4.47e-06 2.09e-02 -11.0 6.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 39 2.6820953e+00 2.06e-06 1.61e-03 -11.0 4.29e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 2.6820957e+00 2.64e-06 7.70e-04 -11.0 2.27e-02 - 1.00e+00 1.00e+00h 1\n", - " 41 2.6820920e+00 4.77e-06 1.38e-03 -11.0 1.79e-02 - 1.00e+00 1.00e+00h 1\n", - " 42 2.6820895e+00 7.70e-06 1.41e-03 -11.0 2.10e-02 - 1.00e+00 1.00e+00h 1\n", - " 43 2.6820971e+00 3.68e-07 3.83e-05 -11.0 3.93e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 2.6820968e+00 1.37e-06 8.63e-04 -11.0 8.74e-03 - 1.00e+00 1.00e+00h 1\n", - " 45 2.6813875e+00 1.11e-03 2.90e-03 -11.0 9.02e+00 - 1.00e+00 1.00e+00h 1\n", - " 46 2.6822534e+00 2.56e-05 9.51e-04 -11.0 1.27e+00 - 1.00e+00 1.00e+00h 1\n", - " 47 2.6816473e+00 1.00e-03 1.25e-03 -11.0 7.69e+00 - 1.00e+00 1.00e+00h 1\n", - " 48 2.6806236e+00 1.40e-03 1.13e-03 -11.0 1.21e+01 - 1.00e+00 1.00e+00h 1\n", - " 49 2.6818681e+00 7.44e-07 8.65e-05 -11.0 1.98e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 2.6818685e+00 1.18e-07 8.74e-05 -11.0 5.40e-04 - 1.00e+00 1.00e+00h 1\n", - " 51 2.6818686e+00 7.92e-08 4.42e-05 -11.0 2.69e-04 - 1.00e+00 1.00e+00h 1\n", - " 52 2.6818685e+00 8.27e-08 1.32e-04 -11.0 6.27e-04 - 1.00e+00 1.00e+00h 1\n", - " 53 2.6818681e+00 5.31e-07 3.39e-05 -11.0 1.32e-03 - 1.00e+00 1.00e+00h 1\n", - " 54 2.6818686e+00 2.09e-08 4.44e-05 -11.0 2.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 55 2.6818686e+00 1.10e-07 2.36e-05 -11.0 4.14e-04 - 1.00e+00 1.00e+00h 1\n", - " 56 2.6818686e+00 1.61e-08 8.23e-06 -11.0 2.98e-04 - 1.00e+00 1.00e+00h 1\n", - " 57 2.6818687e+00 3.06e-09 1.70e-05 -11.0 1.05e-04 - 1.00e+00 1.00e+00h 1\n", - " 58 2.6818686e+00 3.98e-08 1.40e-05 -11.0 2.43e-04 - 1.00e+00 1.00e+00h 1\n", - " 59 2.6818686e+00 8.80e-09 8.97e-05 -11.0 1.32e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 2.6818684e+00 1.36e-07 1.08e-04 -11.0 4.70e-04 - 1.00e+00 1.00e+00h 1\n", - " 61 2.6818685e+00 9.44e-08 1.12e-04 -11.0 3.76e-04 - 1.00e+00 1.00e+00h 1\n", - " 62 2.6818686e+00 3.12e-08 5.99e-05 -11.0 1.45e-04 - 1.00e+00 1.00e+00h 1\n", - " 63 2.6818687e+00 5.13e-11 2.04e-05 -11.0 3.40e-04 - 1.00e+00 1.00e+00H 1\n", - " 64 2.6818616e+00 9.93e-06 8.13e-03 -11.0 6.77e-02 - 1.00e+00 1.00e+00h 1\n", - " 65 2.6818690e+00 5.89e-09 6.90e-05 -11.0 1.01e-01 - 1.00e+00 1.00e+00H 1\n", - " 66 2.6818658e+00 6.48e-06 7.36e-04 -11.0 5.54e-02 - 1.00e+00 1.00e+00h 1\n", - " 67 2.6818663e+00 6.31e-06 1.41e-03 -11.0 3.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 68 2.6818654e+00 3.56e-06 2.56e-03 -11.0 9.02e-02 - 1.00e+00 1.00e+00h 1\n", - " 69 2.6818524e+00 1.15e-05 8.25e-04 -11.0 3.53e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 2.6343317e+00 4.65e-02 2.79e-02 -11.0 1.38e+03 - 1.00e+00 1.00e+00f 1\n", - " 71 2.4554536e+00 5.11e-01 2.17e-01 -11.0 1.94e+04 - 1.00e+00 1.00e+00h 1\n", - " 72 2.5406071e+00 3.22e-01 8.93e-02 -11.0 1.21e+04 - 1.00e+00 8.01e-01H 1\n", - " 73 2.6173928e+00 7.58e-02 1.02e-01 -11.0 1.01e+03 - 1.00e+00 1.00e+00h 1\n", - " 74 2.5999300e+00 7.39e-02 7.59e-02 -2.7 4.24e+03 - 1.00e+00 2.36e-01h 1\n", - " 75 2.6799300e+00 2.66e-03 2.43e-02 -3.8 9.99e+00 - 1.00e+00 1.00e+00h 1\n", - " 76 2.6768485e+00 9.14e-03 1.83e-02 -5.7 4.25e+01 - 1.00e+00 1.00e+00h 1\n", - " 77 2.6800040e+00 4.67e-04 5.74e-03 -7.6 1.23e+01 - 1.00e+00 1.00e+00h 1\n", - " 78 2.6143352e+00 6.85e-02 3.17e-02 -9.0 1.13e+03 - 1.00e+00 1.00e+00f 1\n", - " 79 2.1853602e+00 9.16e-01 3.61e-01 -6.4 4.66e+03 - 3.30e-01 1.00e+00F 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 2.8717997e+00 3.34e-01 4.58e-01 -4.9 2.33e+03 - 7.18e-02 1.00e+00h 1\n", - " 81 2.5888297e+00 1.45e+00 3.43e-01 -6.1 7.23e+04 - 3.77e-04 4.64e-01F 1\n", - " 82 2.5888270e+00 1.45e+00 3.43e-01 -6.1 4.28e+04 - 5.75e-01 5.42e-07h 2\n", - " 83 2.1994926e+00 8.01e-01 3.97e-01 -6.1 1.71e+03 - 3.73e-01 1.00e+00h 1\n", - " 84 2.1841106e+00 8.28e-01 3.43e-02 -6.3 3.36e+03 - 1.00e+00 1.00e+00h 1\n", - " 85 2.2041299e+00 6.53e-01 4.60e-02 -3.4 2.71e+03 - 5.96e-01 1.00e+00H 1\n", - " 86 2.2077150e+00 4.33e-01 1.02e-01 -2.9 3.48e+04 - 2.11e-02 1.25e-01h 4\n", - " 87 2.2019027e+00 5.45e-01 6.56e-02 -4.0 4.39e+04 - 1.00e+00 2.50e-01h 3\n", - " 88 2.1808790e+00 9.71e-01 1.13e-01 -9.9 8.03e+05 - 1.43e-02 1.58e-02h 3\n", - " 89 2.1764955e+00 1.22e+00 1.57e-01 -4.8 9.63e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 2.2917494e+00 8.19e-01 2.90e-01 -3.7 4.88e+04 - 1.00e+00 5.00e-01h 2\n", - " 91r 2.2917494e+00 8.19e-01 9.99e+02 -0.1 0.00e+00 - 0.00e+00 4.77e-07R 22\n", - " 92r 2.3546198e+00 4.89e-01 8.96e+02 -2.2 2.30e+02 - 1.00e+00 1.92e-03f 1\n", - " 93 2.3578786e+00 4.25e-01 6.51e-01 -3.8 2.55e+04 - 1.00e+00 1.25e-01h 4\n", - " 94 2.2842427e+00 1.21e+00 1.69e-01 -4.4 1.88e+04 - 1.00e+00 1.00e+00h 1\n", - " 95 2.2019955e+00 1.03e+00 1.49e-01 -4.4 7.80e+03 - 1.00e+00 1.00e+00h 1\n", - " 96 2.1989287e+00 8.97e-01 2.72e-01 -4.4 3.19e+04 - 2.06e-01 1.06e-01h 4\n", - " 97 2.1908968e+00 6.89e-01 2.24e-01 -4.4 3.81e+05 - 8.12e-02 5.29e-03h 5\n", - " 98 2.8425445e+00 1.69e-01 4.86e-01 -4.4 1.65e+04 - 1.00e+00 1.00e+00H 1\n", - " 99 2.2760311e+00 3.26e-01 1.39e-01 -4.4 3.19e+04 - 3.06e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 2.2261172e+00 1.11e+00 3.99e-01 -10.5 1.81e+06 - 1.78e-03 5.67e-03f 2\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 2.2261171520212768e+00 2.2261171520212768e+00\n", - "Dual infeasibility......: 3.9942701271284364e-01 3.9942701271284364e-01\n", - "Constraint violation....: 1.1148591687454079e+00 1.1148591687454079e+00\n", - "Complementarity.........: 4.6263146912458321e-05 4.6263146912458321e-05\n", - "Overall NLP error.......: 1.1148591687454079e+00 1.1148591687454079e+00\n", - "\n", - "\n", - "Number of objective function evaluations = 167\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 167\n", - "Number of inequality constraint evaluations = 167\n", - "Number of equality constraint Jacobian evaluations = 102\n", - "Number of inequality constraint Jacobian evaluations = 102\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.405\n", - "Total CPU secs in NLP function evaluations = 138.084\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 755.00us ( 4.52us) 744.51us ( 4.46us) 167\n", - " nlp_g | 7.44 s ( 44.55ms) 7.09 s ( 42.44ms) 167\n", - " nlp_grad | 1.36 s ( 1.36 s) 1.30 s ( 1.30 s) 1\n", - " nlp_grad_f | 396.00us ( 3.88us) 394.29us ( 3.87us) 102\n", - " nlp_jac_g | 133.38 s ( 1.29 s) 127.30 s ( 1.24 s) 103\n", - " total | 142.33 s (142.33 s) 135.83 s (135.83 s) 1\n", - "Timestamp 30600\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 5.76e+03 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9718911e+01 1.24e+01 5.76e+03 -1.5 5.76e+03 - 9.90e-01 1.00e+00h 1\n", - " 2 7.6307185e+00 4.09e+00 8.60e+00 0.6 2.51e+01 - 1.00e+00 1.00e+00f 1\n", - " 3 4.1600980e+00 7.82e-01 7.98e-01 -1.5 6.26e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 4.6705233e+00 2.22e-03 1.05e-01 -3.3 1.18e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 4.6714611e+00 1.55e-08 7.31e-05 -5.1 2.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 4.6714610e+00 2.84e-07 6.08e-05 -11.0 5.30e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 4.6714609e+00 1.33e-07 1.39e-04 -11.0 1.25e-03 - 1.00e+00 1.00e+00h 1\n", - " 8 4.6714607e+00 3.13e-07 8.70e-05 -11.0 9.22e-04 - 1.00e+00 1.00e+00h 1\n", - " 9 4.6714610e+00 3.76e-08 1.09e-04 -11.0 2.87e-04 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.6714610e+00 1.07e-07 8.88e-05 -11.0 2.83e-04 - 1.00e+00 1.00e+00h 1\n", - " 11 4.6714606e+00 4.51e-07 1.64e-04 -11.0 1.43e-03 - 1.00e+00 1.00e+00h 1\n", - " 12 4.6713687e+00 5.40e-05 2.53e-02 -11.0 2.80e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 4.6714458e+00 9.00e-06 2.71e-03 -11.0 7.75e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 4.6714644e+00 7.44e-08 2.22e-05 -11.0 3.22e-03 - 1.00e+00 1.00e+00h 1\n", - " 15 4.6714584e+00 5.80e-06 2.34e-03 -11.0 4.76e-02 - 1.00e+00 1.00e+00h 1\n", - " 16 4.6714589e+00 3.04e-06 8.39e-04 -11.0 2.80e-02 - 1.00e+00 1.00e+00h 1\n", - " 17 4.6714513e+00 1.31e-05 2.10e-03 -11.0 4.80e-02 - 1.00e+00 1.00e+00h 1\n", - " 18 4.6695182e+00 2.64e-03 9.58e-03 -11.0 7.42e+00 - 1.00e+00 1.00e+00h 1\n", - " 19 4.6713324e+00 1.48e-04 2.42e-03 -11.0 7.59e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 4.6703325e+00 9.46e-04 2.03e-03 -11.0 5.03e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 4.6710969e+00 5.21e-04 2.29e-03 -11.0 9.16e+00 - 1.00e+00 1.00e+00h 1\n", - " 22 4.6681742e+00 2.14e-03 2.01e-03 -11.0 8.09e+00 - 1.00e+00 1.00e+00h 1\n", - " 23 4.6712444e+00 3.47e-04 9.78e-04 -11.0 1.75e+00 - 1.00e+00 1.00e+00h 1\n", - " 24 4.6701346e+00 2.00e-03 4.42e-03 -11.0 1.38e+01 - 1.00e+00 1.00e+00h 1\n", - " 25 4.6708660e+00 1.20e-03 1.17e-03 -11.0 2.81e+01 - 1.00e+00 1.00e+00h 1\n", - " 26 4.6681163e+00 2.34e-03 1.21e-03 -11.0 1.62e+01 - 1.00e+00 1.00e+00h 1\n", - " 27 4.6187044e+00 2.42e-02 7.42e-03 -11.0 1.67e+02 - 1.00e+00 1.00e+00h 1\n", - " 28 4.1449420e+00 2.47e-01 5.75e-02 -11.0 1.94e+03 - 1.00e+00 1.00e+00f 1\n", - " 29 4.5777985e+00 3.82e-02 4.99e-02 -11.0 4.70e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 4.6265310e+00 9.09e-03 2.61e-02 -11.0 2.71e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 4.5340576e+00 4.64e-02 5.41e-02 -11.0 6.74e+02 - 1.00e+00 1.00e+00h 1\n", - " 32 4.0661944e+00 9.86e-01 1.70e-01 -11.0 1.01e+04 - 1.00e+00 1.00e+00f 1\n", - " 33 3.1496302e+00 1.64e+00 4.39e-01 -9.0 7.35e+04 - 1.00e+00 2.76e-01f 1\n", - " 34 3.1495654e+00 1.62e+00 4.34e-01 -7.0 6.59e+04 - 1.00e+00 3.08e-03h 1\n", - " 35 3.1496588e+00 1.62e+00 4.34e-01 -5.1 7.44e+03 - 1.00e+00 2.73e-04h 1\n", - " 36 4.4821316e+00 1.42e-01 3.56e-01 -3.1 4.86e+03 - 1.47e-02 1.00e+00h 1\n", - " 37 3.6945226e+00 5.53e-01 4.31e-01 -4.0 7.95e+03 - 1.00e+00 1.00e+00f 1\n", - " 38 3.9470284e+00 2.84e-01 2.59e-01 -4.6 6.34e+03 - 1.00e+00 1.00e+00h 1\n", - " 39 4.1507880e+00 2.01e-01 1.96e-01 -3.5 2.91e+04 - 4.00e-01 5.31e-01H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 3.8852563e+00 1.31e+00 1.48e-01 -3.7 3.19e+04 - 1.00e+00 1.00e+00h 1\n", - " 41 4.1055284e+00 6.46e-01 8.74e-02 -3.3 4.81e+04 - 1.00e+00 6.69e-01h 1\n", - " 42 4.1106133e+00 6.34e-01 8.18e-02 -3.3 9.43e+03 - 4.37e-01 1.51e-02H 1\n", - " 43 4.0969558e+00 4.24e-01 9.52e-02 -3.3 1.88e+03 - 8.62e-01 1.00e+00f 1\n", - " 44 3.9105652e+00 4.72e-01 1.24e-01 -3.3 7.00e+04 - 1.17e-03 2.88e-01f 1\n", - " 45 4.6026701e+00 5.24e-02 1.32e-01 -3.7 9.57e+02 - 1.00e+00 1.00e+00h 1\n", - " 46 4.4395905e+00 1.19e-01 5.26e-02 -3.5 1.58e+03 - 1.00e+00 8.45e-01h 1\n", - " 47 3.7691962e+00 6.07e-01 1.05e-01 -2.3 5.75e+05 - 1.00e+00 3.41e-02f 1\n", - " 48 4.3234719e+00 1.66e-01 2.07e-01 -1.4 1.22e+03 - 1.00e+00 1.00e+00h 1\n", - " 49 4.2433337e+00 1.92e-01 1.84e-01 -2.3 1.23e+03 - 1.00e+00 6.55e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 4.3105702e+00 1.14e-01 2.59e-02 -8.3 6.11e+02 - 8.43e-01 1.00e+00h 1\n", - " 51 4.3251327e+00 1.04e-01 2.74e-02 -2.4 9.96e+02 - 3.59e-01 2.50e-01f 3\n", - " 52 4.2569227e+00 8.37e-01 1.59e-01 -3.5 3.51e+03 - 1.00e+00 1.00e+00h 1\n", - " 53 4.2213555e+00 2.33e+00 8.56e-01 -3.1 1.93e+06 - 1.66e-03 1.14e-02f 1\n", - " 54 4.2155974e+00 2.33e+00 8.54e-01 -3.1 7.47e+03 - 1.00e+00 2.29e-03h 1\n", - " 55 4.2196994e+00 2.20e-01 1.73e-01 -3.1 9.93e+02 - 1.00e+00 1.00e+00f 1\n", - " 56 4.3387461e+00 2.45e-02 3.00e-02 -9.0 1.15e+02 - 4.76e-01 1.00e+00h 1\n", - " 57 4.3407992e+00 4.26e-03 3.91e-02 -3.6 5.38e+01 - 4.92e-01 9.62e-01h 1\n", - " 58 4.3319503e+00 3.34e-02 2.37e-02 -4.2 3.31e+02 - 1.00e+00 1.00e+00h 1\n", - " 59 4.3093436e+00 2.66e-02 2.91e-02 -10.0 8.87e+02 - 1.19e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 3.8720370e+00 1.44e+00 3.82e-01 -10.3 1.24e+05 - 5.46e-03 1.31e-01f 1\n", - " 61 4.1981481e+00 3.45e-01 2.16e-01 -4.4 2.24e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 3.7332037e+00 4.77e-01 1.93e-01 -4.4 3.68e+04 - 5.48e-02 1.00e+00h 1\n", - " 63 3.9069347e+00 6.49e-01 4.34e-02 -2.9 3.16e+04 - 1.00e+00 7.70e-01H 1\n", - " 64 3.8033755e+00 1.55e+00 7.17e-01 -8.8 2.20e+04 - 4.56e-03 3.70e-01f 1\n", - " 65 3.7348647e+00 1.47e+00 6.43e-01 -3.0 5.23e+04 - 6.63e-01 5.44e-02h 1\n", - " 66 4.5851143e+00 1.25e+00 7.65e-01 -3.0 3.27e+04 - 8.20e-01 1.00e+00h 1\n", - " 67 4.4415907e+00 9.31e-01 6.78e-01 -3.0 2.31e+04 - 1.33e-01 1.21e-01h 1\n", - " 68 3.6935569e+00 6.08e-01 9.17e-02 -3.0 5.54e+03 - 1.00e+00 1.00e+00f 1\n", - " 69 3.6910383e+00 8.42e-01 7.22e-02 -8.0 4.45e+03 - 6.61e-01 2.50e-01h 3\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 3.9556131e+00 1.14e+00 1.90e-01 -2.5 1.93e+04 - 1.00e+00 1.00e+00h 1\n", - " 71 3.8994383e+00 1.33e+00 1.30e-01 -2.6 5.17e+04 - 5.10e-01 2.93e-01h 1\n", - " 72 3.9366603e+00 1.33e+00 7.33e-02 -2.6 1.27e+04 - 1.00e+00 5.00e-01h 2\n", - " 73 3.9299066e+00 1.47e+00 6.49e-02 -2.6 1.62e+04 - 1.00e+00 4.12e-01h 2\n", - " 74 3.9224376e+00 1.36e+00 4.38e-02 -2.6 3.47e+04 - 9.20e-01 1.93e-01h 1\n", - " 75 3.9650006e+00 8.01e-01 1.45e-01 -2.6 9.28e+02 - 1.00e+00 4.55e-01h 1\n", - " 76 4.1155030e+00 7.95e-02 2.37e-01 -2.6 1.88e+03 - 3.48e-01 1.00e+00h 1\n", - " 77 4.0648666e+00 2.50e-01 2.00e-01 -3.6 1.99e+04 - 1.00e+00 3.26e-01h 1\n", - " 78 3.7919737e+00 1.70e+00 1.88e-01 -2.2 1.23e+05 - 1.00e+00 4.37e-01f 1\n", - " 79 3.7421980e+00 2.00e+00 1.76e-01 -2.3 3.80e+04 - 6.07e-02 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 3.6579754e+00 1.23e+00 3.71e-02 -2.3 6.73e+05 - 2.70e-01 3.62e-02h 1\n", - " 81 3.9074812e+00 1.36e+00 8.20e-02 -3.2 3.70e+03 - 1.00e+00 1.00e+00h 1\n", - " 82 3.9092036e+00 1.33e+00 6.91e-02 -3.2 4.55e+04 - 4.12e-01 8.39e-02h 1\n", - " 83 4.1902861e+00 7.32e-02 3.32e-01 -3.2 5.67e+02 - 3.12e-01 1.00e+00h 1\n", - " 84 4.1840434e+00 4.34e-02 3.27e-01 -3.2 1.93e+05 - 5.14e-02 2.95e-03h 1\n", - " 85 4.1691431e+00 2.69e+00 1.67e+00 -1.9 3.35e+05 - 1.00e+00 3.28e-01F 1\n", - " 86 4.1440924e+00 1.35e+00 4.35e-01 -0.9 2.94e+05 - 1.00e+00 2.03e-01F 1\n", - " 87 4.1139613e+00 6.21e-01 1.64e-01 -0.9 3.85e+03 - 9.09e-01 1.00e+00h 1\n", - " 88 4.1043409e+00 7.06e-01 1.21e-01 -1.6 6.57e+03 - 2.77e-01 2.77e-01s 21\n", - " 89 4.3629424e+00 8.78e-01 2.19e-01 -1.6 4.55e+03 - 1.00e+00 1.00e+00s 21\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 3.8524889e+00 7.47e-01 2.14e-01 -1.6 9.00e+03 - 9.81e-01 0.00e+00S 21\n", - " 91 3.8327841e+00 1.36e+00 3.77e-01 -1.6 2.69e+04 - 4.44e-01 2.29e-01h 2\n", - " 92 3.6860592e+00 1.65e+00 5.77e-01 -1.6 7.96e+04 - 6.80e-01 3.96e-02f 2\n", - " 93 3.4268577e+00 1.44e+00 3.17e-01 -1.6 6.70e+03 - 1.00e+00 2.57e-01h 2\n", - " 94 4.2256135e+00 1.65e-01 3.13e-01 -1.5 1.75e+03 - 1.00e+00 9.04e-01h 1\n", - " 95 4.4833515e+00 8.92e-02 3.04e-02 -1.6 6.75e+02 - 5.65e-01 1.00e+00h 1\n", - " 96 4.3530694e+00 1.47e+00 2.85e-01 -2.4 9.51e+03 - 4.10e-02 5.00e-01f 2\n", - " 97 4.3131225e+00 1.92e+00 4.40e-01 -2.4 3.38e+05 - 1.06e-01 5.31e-03f 6\n", - " 98 4.1757444e+00 1.08e+00 1.80e-01 -2.4 1.47e+04 - 9.11e-01 9.07e-01h 1\n", - " 99 4.4727688e+00 1.19e+00 9.97e-02 -2.4 5.19e+03 - 1.84e-01 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 4.4264714e+00 5.35e-01 1.22e-01 -2.4 7.91e+03 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.4264714232526430e+00 4.4264714232526430e+00\n", - "Dual infeasibility......: 1.2232772597669378e-01 1.2232772597669378e-01\n", - "Constraint violation....: 5.3499198339064691e-01 5.3499198339064691e-01\n", - "Complementarity.........: 1.7591180153408374e-02 1.7591180153408374e-02\n", - "Overall NLP error.......: 5.3499198339064691e-01 5.3499198339064691e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 162\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 162\n", - "Number of inequality constraint evaluations = 162\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.416\n", - "Total CPU secs in NLP function evaluations = 136.037\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 723.00us ( 4.46us) 718.94us ( 4.44us) 162\n", - " nlp_g | 7.21 s ( 44.49ms) 6.87 s ( 42.43ms) 162\n", - " nlp_grad | 1.33 s ( 1.33 s) 1.27 s ( 1.27 s) 1\n", - " nlp_grad_f | 353.00us ( 3.46us) 346.04us ( 3.39us) 102\n", - " nlp_jac_g | 131.65 s ( 1.29 s) 125.63 s ( 1.23 s) 102\n", - " total | 140.34 s (140.34 s) 133.92 s (133.92 s) 1\n", - "Timestamp 30900\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 1.25e+04 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9245219e+01 1.27e+01 1.25e+04 -1.5 1.25e+04 - 9.90e-01 1.00e+00h 1\n", - " 2 8.3930375e+00 4.06e+00 1.03e+01 0.6 1.24e+02 - 9.99e-01 1.00e+00f 1\n", - " 3 9.5887960e+00 1.22e+00 9.61e-01 -1.5 2.63e+01 - 9.97e-01 1.00e+00h 1\n", - " 4 1.0369217e+01 8.37e-04 8.36e-02 -3.2 1.54e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 1.0369547e+01 7.70e-07 1.99e-03 -5.1 6.45e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 1.0369547e+01 9.17e-07 1.46e-03 -7.2 7.17e-03 - 1.00e+00 1.00e+00h 1\n", - " 7 1.0369547e+01 1.14e-06 1.75e-03 -9.3 1.01e-02 - 1.00e+00 1.00e+00h 1\n", - " 8 1.0369544e+01 3.33e-06 9.43e-04 -11.0 8.81e-03 - 1.00e+00 1.00e+00h 1\n", - " 9 1.0369547e+01 1.07e-06 1.71e-03 -11.0 6.23e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 1.0369548e+01 2.27e-07 1.42e-04 -11.0 1.70e-03 - 1.00e+00 1.00e+00h 1\n", - " 11 1.0363747e+01 2.24e-03 4.27e-02 -11.0 2.55e+01 - 1.00e+00 1.00e+00f 1\n", - " 12 1.0368000e+01 1.57e-03 1.30e-03 -11.0 1.16e+01 - 1.00e+00 1.00e+00h 1\n", - " 13 1.0354235e+01 7.70e-03 1.76e-03 -11.0 3.09e+01 - 1.00e+00 1.00e+00h 1\n", - " 14 1.0361043e+01 4.59e-03 1.25e-03 -11.0 1.57e+01 - 1.00e+00 1.00e+00h 1\n", - " 15 1.0357109e+01 7.33e-03 2.89e-03 -11.0 1.80e+01 - 1.00e+00 1.00e+00h 1\n", - " 16 1.0200734e+01 3.62e-01 2.54e-02 -11.0 4.29e+02 - 1.00e+00 1.00e+00f 1\n", - " 17 1.0371410e+01 4.17e-05 2.58e-02 -11.0 7.77e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 1.0366878e+01 8.61e-03 1.86e-02 -11.0 7.28e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 1.0325323e+01 5.07e-02 5.94e-03 -11.0 2.62e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 1.0287461e+01 3.43e-02 3.72e-03 -11.0 2.05e+02 - 1.00e+00 1.00e+00h 1\n", - " 21 1.0369451e+01 2.40e-03 4.51e-03 -11.0 7.16e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 1.0337278e+01 3.63e-02 3.17e-03 -11.0 4.35e+02 - 1.00e+00 1.00e+00h 1\n", - " 23 1.0262804e+01 9.94e-02 8.87e-03 -11.0 1.28e+03 - 1.00e+00 1.00e+00h 1\n", - " 24 1.0347183e+01 5.21e-02 5.63e-03 -11.0 1.03e+03 - 1.00e+00 1.00e+00h 1\n", - " 25 9.8630032e+00 7.04e-01 6.96e-02 -9.0 9.04e+05 - 1.00e+00 3.19e-02f 1\n", - " 26 9.8538791e+00 7.12e-01 7.08e-02 -7.0 1.65e+06 - 1.00e+00 1.75e-04f 1\n", - " 27 9.8538649e+00 7.12e-01 7.08e-02 -5.1 5.02e+04 - 1.00e+00 2.87e-05h 2\n", - " 28 1.0363599e+01 1.87e-03 6.92e-02 -3.6 2.45e+01 - 1.00e+00 1.00e+00h 1\n", - " 29 1.0340255e+01 1.08e-02 1.63e-02 -2.6 2.14e+02 - 6.23e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 1.0358236e+01 1.92e-02 1.70e-02 -4.1 1.85e+02 - 1.00e+00 1.00e+00h 1\n", - " 31 1.0342895e+01 1.43e-02 1.78e-02 -4.2 1.20e+03 - 1.00e+00 3.53e-02h 1\n", - " 32 1.0365499e+01 1.66e-03 2.91e-03 -4.2 1.50e+01 - 1.00e+00 1.00e+00h 1\n", - " 33 1.0367963e+01 6.99e-05 2.28e-03 -6.3 1.87e+01 - 1.00e+00 1.00e+00H 1\n", - " 34 1.0358225e+01 1.30e-02 7.63e-03 -6.0 1.51e+02 - 1.00e+00 2.55e-01f 1\n", - " 35 1.0366307e+01 1.36e-03 3.20e-03 -6.1 1.37e+01 - 6.33e-01 1.00e+00h 1\n", - " 36 1.0366105e+01 2.01e-03 3.17e-03 -5.8 1.46e+03 - 1.00e+00 1.68e-03h 1\n", - " 37 1.0367866e+01 2.20e-04 2.18e-03 -6.0 1.66e+00 - 1.00e+00 1.00e+00h 1\n", - " 38 1.0367331e+01 2.03e-04 1.98e-03 -7.9 4.93e+00 - 1.00e+00 1.00e+00h 1\n", - " 39 1.0330613e+01 5.51e-02 1.45e-02 -5.9 7.20e+01 - 6.82e-01 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 1.0366831e+01 7.85e-07 6.06e-02 -8.0 6.52e-02 - 1.00e+00 1.00e+00h 1\n", - " 41 1.0366831e+01 2.03e-07 8.16e-05 -9.9 1.21e-03 - 1.00e+00 1.00e+00h 1\n", - " 42 1.0366831e+01 6.54e-08 1.55e-04 -11.0 5.64e-04 - 1.00e+00 1.00e+00h 1\n", - " 43 1.0366830e+01 5.89e-07 3.70e-03 -11.0 2.37e-03 - 1.00e+00 1.00e+00h 1\n", - " 44 1.0366831e+01 2.73e-07 3.66e-05 -11.0 9.89e-04 - 1.00e+00 1.00e+00h 1\n", - " 45 1.0366831e+01 4.44e-08 6.96e-05 -11.0 1.90e-04 - 1.00e+00 1.00e+00h 1\n", - " 46 1.0366828e+01 6.28e-06 4.56e-03 -11.0 2.57e-02 - 1.00e+00 1.00e+00h 1\n", - " 47 1.0366828e+01 1.32e-06 1.58e-03 -11.0 3.11e-02 - 1.00e+00 1.00e+00h 1\n", - " 48 1.0366775e+01 9.75e-05 4.14e-03 -11.0 1.69e-01 - 1.00e+00 1.00e+00h 1\n", - " 49 1.0366829e+01 7.38e-07 1.18e-03 -11.0 1.21e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 1.0366824e+01 6.43e-06 1.67e-03 -11.0 3.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 51 1.0366829e+01 7.12e-07 1.72e-03 -11.0 7.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 52 1.0366830e+01 1.72e-07 7.74e-05 -11.0 7.64e-03 - 1.00e+00 1.00e+00h 1\n", - " 53 1.0366827e+01 1.81e-06 2.11e-03 -11.0 2.25e-02 - 1.00e+00 1.00e+00h 1\n", - " 54 1.0366827e+01 1.95e-06 1.89e-03 -11.0 1.26e-02 - 1.00e+00 1.00e+00h 1\n", - " 55 1.0366820e+01 8.27e-06 3.81e-03 -11.0 2.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 56 1.0366822e+01 7.51e-06 2.56e-03 -11.0 4.47e-02 - 1.00e+00 1.00e+00h 1\n", - " 57 1.0366829e+01 3.80e-06 1.37e-03 -11.0 4.89e-02 - 1.00e+00 1.00e+00h 1\n", - " 58 1.0366824e+01 5.97e-06 1.23e-03 -11.0 1.08e-01 - 1.00e+00 1.00e+00h 1\n", - " 59 1.0366695e+01 2.29e-04 3.79e-03 -11.0 2.34e+00 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 1.0366702e+01 2.44e-04 2.24e-03 -9.0 1.45e+00 - 1.00e+00 5.07e-01h 1\n", - " 61 1.0366377e+01 8.65e-04 3.10e-03 -7.4 5.39e+00 - 1.00e+00 1.00e+00h 1\n", - " 62 1.0366485e+01 3.02e-04 7.67e-04 -8.4 2.91e+00 - 1.00e+00 1.00e+00h 1\n", - " 63 1.0366447e+01 3.09e-04 1.25e-03 -5.8 1.34e+01 - 1.00e+00 7.69e-02h 1\n", - " 64 1.0366660e+01 1.29e-04 1.28e-03 -7.9 8.16e-01 - 1.00e+00 1.00e+00h 1\n", - " 65 1.0366753e+01 6.39e-05 1.19e-03 -5.9 3.87e-01 - 2.19e-01 1.00e+00h 1\n", - " 66 1.0366342e+01 2.32e-04 2.50e-03 -8.0 1.40e+00 - 1.00e+00 1.00e+00h 1\n", - " 67 1.0366509e+01 1.85e-04 1.11e-03 -10.1 7.27e-01 - 1.00e+00 1.00e+00h 1\n", - " 68 1.0366680e+01 1.15e-04 1.07e-03 -9.6 3.50e-01 - 1.00e+00 1.00e+00h 1\n", - " 69 1.0365924e+01 4.52e-04 1.34e-03 -10.2 9.44e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 1.0365516e+01 6.30e-04 3.41e-03 -11.0 1.12e+00 - 1.00e+00 1.00e+00h 1\n", - " 71 1.0366720e+01 3.09e-07 7.36e-05 -11.0 1.10e-03 - 1.00e+00 1.00e+00h 1\n", - " 72 1.0366720e+01 2.13e-08 7.58e-05 -11.0 1.10e-04 - 1.00e+00 1.00e+00h 1\n", - " 73 1.0366720e+01 2.99e-08 1.70e-04 -11.0 1.52e-04 - 1.00e+00 1.00e+00h 1\n", - " 74 1.0366720e+01 5.36e-08 4.15e-05 -11.0 1.03e-04 - 1.00e+00 1.00e+00h 1\n", - " 75 1.0366720e+01 2.89e-09 2.15e-04 -11.0 4.54e-05 - 1.00e+00 1.00e+00h 1\n", - " 76 1.0366720e+01 6.48e-08 1.84e-04 -11.0 2.17e-04 - 1.00e+00 1.00e+00h 1\n", - " 77 1.0366695e+01 1.11e-05 1.65e-02 -11.0 3.19e-02 - 1.00e+00 1.00e+00h 1\n", - " 78 1.0366717e+01 1.74e-06 1.23e-03 -11.0 5.78e-03 - 1.00e+00 1.00e+00h 1\n", - " 79 1.0366716e+01 3.22e-06 1.64e-03 -11.0 9.81e-03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 1.0366718e+01 3.82e-07 4.79e-05 -11.0 3.90e-03 - 1.00e+00 1.00e+00h 1\n", - " 81 1.0366718e+01 2.34e-06 2.38e-03 -11.0 9.04e-03 - 1.00e+00 1.00e+00h 1\n", - " 82 1.0366718e+01 9.00e-07 2.94e-05 -11.0 2.91e-03 - 1.00e+00 1.00e+00h 1\n", - " 83 1.0366719e+01 4.11e-07 1.63e-04 -11.0 1.92e-03 - 1.00e+00 1.00e+00h 1\n", - " 84 1.0366717e+01 1.43e-06 2.81e-03 -11.0 1.03e-02 - 1.00e+00 1.00e+00h 1\n", - " 85 1.0366697e+01 9.14e-06 8.13e-03 -11.0 1.93e-01 - 1.00e+00 1.00e+00h 1\n", - " 86 1.0366539e+01 5.24e-05 6.75e-03 -11.0 2.75e+01 - 1.00e+00 4.91e-02h 1\n", - " 87 1.0366549e+01 4.90e-05 5.89e-03 -11.0 6.43e-02 - 1.00e+00 6.25e-02h 5\n", - " 88 1.0366687e+01 7.80e-06 1.29e-03 -5.8 4.32e-02 - 5.68e-01 1.00e+00h 1\n", - " 89 1.0366684e+01 1.01e-05 1.07e-03 -7.2 4.07e-01 - 1.00e+00 1.16e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 1.0366689e+01 2.31e-06 7.66e-04 -7.0 3.00e-02 - 1.00e+00 1.00e+00h 1\n", - " 91 1.0366692e+01 3.26e-06 1.37e-03 -8.9 2.43e-02 - 1.00e+00 1.00e+00h 1\n", - " 92 1.0366685e+01 4.75e-06 1.15e-03 -6.4 3.19e-02 - 1.00e+00 7.69e-01h 1\n", - " 93 1.0366685e+01 6.18e-06 7.77e-04 -8.6 1.44e-02 - 1.00e+00 1.00e+00h 1\n", - " 94 1.0366692e+01 6.75e-07 1.22e-03 -11.0 6.47e-03 - 1.00e+00 1.00e+00h 1\n", - " 95 1.0366685e+01 4.87e-06 2.13e-03 -8.4 2.24e-02 - 2.48e-01 1.00e+00h 1\n", - " 96 1.0366680e+01 6.44e-06 2.86e-03 -7.4 7.45e-02 - 1.00e+00 1.00e+00h 1\n", - " 97 1.0366685e+01 1.09e-05 2.24e-03 -4.9 6.04e-02 - 6.94e-01 1.00e+00h 1\n", - " 98 1.0366667e+01 1.76e-05 1.64e-03 -5.2 9.53e-02 - 1.00e+00 1.00e+00h 1\n", - " 99 1.0366687e+01 4.20e-06 1.92e-03 -6.0 3.19e-02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 1.0366687e+01 6.46e-06 1.88e-03 -6.1 4.16e-02 - 1.00e+00 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 1.0366686506612778e+01 1.0366686506612778e+01\n", - "Dual infeasibility......: 1.8777253844102226e-03 1.8777253844102226e-03\n", - "Constraint violation....: 6.4582653607203611e-06 6.4582653607203611e-06\n", - "Complementarity.........: 9.1837204213732223e-07 9.1837204213732223e-07\n", - "Overall NLP error.......: 1.8777253844102226e-03 1.8777253844102226e-03\n", - "\n", - "\n", - "Number of objective function evaluations = 108\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 108\n", - "Number of inequality constraint evaluations = 108\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.421\n", - "Total CPU secs in NLP function evaluations = 134.741\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 501.00us ( 4.64us) 489.28us ( 4.53us) 108\n", - " nlp_g | 4.85 s ( 44.91ms) 4.62 s ( 42.77ms) 108\n", - " nlp_grad | 1.35 s ( 1.35 s) 1.29 s ( 1.29 s) 1\n", - " nlp_grad_f | 358.00us ( 3.51us) 349.58us ( 3.43us) 102\n", - " nlp_jac_g | 132.57 s ( 1.30 s) 126.54 s ( 1.24 s) 102\n", - " total | 138.92 s (138.92 s) 132.59 s (132.59 s) 1\n", - "Timestamp 31200\n", - "This is Ipopt version 3.13.4, running with linear solver mumps.\n", - "NOTE: Other linear solvers might be more efficient (see Ipopt documentation).\n", - "\n", - "Number of nonzeros in equality constraint Jacobian...: 70\n", - "Number of nonzeros in inequality constraint Jacobian.: 5\n", - "Number of nonzeros in Lagrangian Hessian.............: 0\n", - "\n", - "Total number of variables............................: 35\n", - " variables with only lower bounds: 0\n", - " variables with lower and upper bounds: 0\n", - " variables with only upper bounds: 0\n", - "Total number of equality constraints.................: 30\n", - "Total number of inequality constraints...............: 5\n", - " inequality constraints with only lower bounds: 0\n", - " inequality constraints with lower and upper bounds: 5\n", - " inequality constraints with only upper bounds: 0\n", - "\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 0 4.4721360e+01 5.59e+01 1.85e-05 0.0 0.00e+00 - 0.00e+00 0.00e+00 0\n", - " 1 1.9403926e+01 1.17e+01 5.59e+01 -1.5 5.59e+01 - 9.90e-01 1.00e+00f 1\n", - " 2 7.3008909e+00 3.65e+00 8.57e+00 0.4 1.17e+01 - 9.98e-01 1.00e+00f 1\n", - " 3 4.1852306e+00 7.45e-01 5.77e-01 -1.6 5.92e+00 - 9.98e-01 1.00e+00f 1\n", - " 4 4.6467365e+00 1.21e-03 8.02e-02 -3.4 1.05e+00 - 1.00e+00 1.00e+00h 1\n", - " 5 4.6472508e+00 2.51e-07 3.12e-05 -5.3 1.21e-03 - 1.00e+00 1.00e+00h 1\n", - " 6 4.6472510e+00 5.72e-08 1.31e-04 -11.0 3.98e-04 - 1.00e+00 1.00e+00h 1\n", - " 7 4.6472057e+00 3.60e-05 5.06e-03 -11.0 2.23e-01 - 1.00e+00 1.00e+00h 1\n", - " 8 4.6472383e+00 1.59e-05 1.59e-03 -11.0 8.71e-02 - 1.00e+00 1.00e+00h 1\n", - " 9 4.6471988e+00 6.10e-05 2.60e-03 -11.0 2.15e-01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 10 4.6472291e+00 2.95e-05 1.73e-03 -11.0 7.39e-02 - 1.00e+00 1.00e+00h 1\n", - " 11 4.6471878e+00 4.43e-05 3.11e-03 -11.0 3.27e-01 - 1.00e+00 1.00e+00h 1\n", - " 12 4.6470099e+00 1.29e-04 3.28e-03 -11.0 6.38e-01 - 1.00e+00 1.00e+00h 1\n", - " 13 4.6472368e+00 3.07e-05 1.39e-03 -11.0 7.34e-02 - 1.00e+00 1.00e+00h 1\n", - " 14 4.6472240e+00 1.73e-05 1.52e-03 -11.0 2.67e-01 - 1.00e+00 1.00e+00h 1\n", - " 15 4.6472058e+00 7.37e-05 2.18e-03 -11.0 3.45e-01 - 1.00e+00 1.00e+00h 1\n", - " 16 4.6471668e+00 3.98e-05 1.29e-03 -11.0 4.06e-01 - 1.00e+00 1.00e+00h 1\n", - " 17 4.6470773e+00 4.02e-04 2.36e-03 -11.0 1.61e+00 - 1.00e+00 1.00e+00h 1\n", - " 18 4.6430522e+00 2.93e-03 1.18e-02 -11.0 4.06e+01 - 1.00e+00 1.00e+00h 1\n", - " 19 4.6457123e+00 8.68e-04 1.30e-03 -11.0 1.10e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 20 4.6456909e+00 1.39e-03 9.45e-04 -11.0 8.71e+00 - 1.00e+00 1.00e+00h 1\n", - " 21 4.6457698e+00 5.52e-04 1.40e-03 -11.0 2.60e+01 - 1.00e+00 1.00e+00h 1\n", - " 22 4.6383390e+00 6.27e-03 5.28e-03 -11.0 4.99e+01 - 1.00e+00 1.00e+00h 1\n", - " 23 4.3492799e+00 2.25e+00 8.69e-01 -9.7 2.48e+05 - 1.00e+00 6.28e-02f 2\n", - " 24 5.5841381e+00 2.02e+00 2.33e-01 -9.8 1.59e+05 - 2.80e-01 4.98e-02h 2\n", - " 25 3.9174599e+00 1.82e+00 3.80e-01 -9.8 4.81e+04 - 1.54e-01 2.50e-01f 3\n", - " 26 3.5476742e+00 3.51e+00 6.41e-01 -9.4 3.32e+04 - 1.00e+00 1.00e+00f 1\n", - " 27 3.4747137e+00 3.33e+00 6.52e-01 -7.5 2.54e+05 - 1.00e+00 9.39e-03h 1\n", - " 28 5.0247923e+00 7.92e-01 7.61e-01 -7.3 9.92e+03 - 1.00e+00 1.00e+00h 1\n", - " 29 5.0177162e+00 7.71e-01 7.60e-01 -7.0 3.87e+04 - 1.00e+00 4.39e-03h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 30 5.1567135e+00 1.71e-01 1.19e-01 -7.0 2.00e+03 - 1.00e+00 1.00e+00h 1\n", - " 31 4.2939901e+00 1.22e+00 4.24e-01 -7.0 4.28e+03 - 3.23e-01 1.00e+00f 1\n", - " 32 3.6301922e+00 2.00e+00 4.10e-01 -7.0 2.10e+04 - 1.00e+00 3.61e-01f 1\n", - " 33 6.2657583e+00 1.13e+00 4.31e-01 -6.5 5.74e+03 - 3.21e-01 1.00e+00h 1\n", - " 34 5.8657659e+00 1.25e+00 3.57e-01 -1.9 1.96e+04 - 7.68e-01 3.74e-01f 1\n", - " 35 4.9981730e+00 2.77e-01 4.97e-02 -1.9 3.18e+03 - 1.00e+00 1.00e+00f 1\n", - " 36 5.1027780e+00 1.70e-01 8.37e-02 -1.9 2.67e+03 - 6.25e-01 1.00e+00h 1\n", - " 37 5.5768322e+00 2.48e-02 4.75e-02 -1.9 2.46e+03 - 1.00e+00 1.00e+00H 1\n", - " 38 5.0515206e+00 3.33e-01 9.20e-02 -2.8 1.24e+03 - 6.31e-01 1.00e+00f 1\n", - " 39 4.6806010e+00 5.08e-01 8.11e-02 -2.8 3.03e+03 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 40 4.1457718e+00 6.78e-01 1.90e-01 -2.8 8.16e+04 - 4.13e-01 2.74e-02f 1\n", - " 41 5.4937581e+00 1.83e-02 1.66e-01 -2.5 2.60e+02 - 1.00e+00 1.00e+00h 1\n", - " 42 5.3253421e+00 1.85e-01 4.89e-02 -2.6 1.55e+03 - 6.74e-01 1.00e+00f 1\n", - " 43 4.6985728e+00 5.81e-01 2.53e-02 -2.6 6.61e+03 - 6.67e-01 1.00e+00f 1\n", - " 44 4.2581931e+00 9.03e-01 2.19e-01 -2.6 8.18e+03 - 1.00e+00 6.16e-01h 1\n", - " 45 5.3054446e+00 5.20e-01 3.34e-01 -2.6 8.24e+03 - 1.00e+00 1.00e+00h 1\n", - " 46 5.3256999e+00 4.41e-01 4.48e-01 -2.6 2.52e+03 - 1.00e+00 1.00e+00h 1\n", - " 47 5.1434019e+00 5.78e-01 4.69e-02 -2.6 5.16e+03 - 1.00e+00 8.09e-01h 1\n", - " 48 5.3681720e+00 1.42e-01 2.47e-02 -2.6 5.31e+02 - 3.51e-01 1.00e+00h 1\n", - " 49 5.4595716e+00 1.28e-02 3.32e-02 -2.6 1.83e+04 - 2.17e-01 1.00e+00H 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 50 5.4142071e+00 8.56e-02 1.87e-02 -2.6 4.34e+04 - 3.43e-01 5.36e-02f 2\n", - " 51 5.2301958e+00 4.31e-01 5.77e-02 -2.6 1.77e+04 - 3.97e-02 2.10e-01F 1\n", - " 52 5.1559883e+00 6.88e-01 9.99e-02 -2.6 6.92e+04 - 1.00e+00 1.72e-02f 6\n", - " 53 5.4325768e+00 9.61e-03 1.16e-01 -2.6 1.46e+02 - 1.00e+00 1.00e+00h 1\n", - " 54 5.4087991e+00 2.45e-02 4.24e-02 -2.6 8.13e+02 - 4.92e-01 1.00e+00h 1\n", - " 55 5.3157234e+00 2.66e-01 1.96e-02 -2.6 1.07e+05 - 6.05e-02 2.59e-02f 1\n", - " 56 5.4107732e+00 1.21e-02 2.34e-01 -2.6 9.58e+03 - 1.00e+00 9.48e-01H 1\n", - " 57 5.3262351e+00 2.59e-01 3.65e-02 -2.6 5.03e+03 - 1.00e+00 1.00e+00f 1\n", - " 58 5.2536455e+00 1.02e-01 4.93e-02 -2.6 9.45e+02 - 6.71e-01 1.00e+00h 1\n", - " 59 5.0311793e+00 2.48e-01 5.12e-02 -2.6 2.08e+04 - 4.49e-01 2.88e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 60 4.9835051e+00 1.91e-01 1.93e-01 -2.6 3.04e+03 - 1.00e+00 1.00e+00h 1\n", - " 61 5.2024953e+00 1.38e-01 2.19e-02 -2.6 1.05e+03 - 1.00e+00 1.00e+00h 1\n", - " 62 5.2397975e+00 1.21e-01 1.96e-02 -2.6 4.75e+02 - 5.04e-01 5.00e-01h 2\n", - " 63 5.2286105e+00 1.22e-01 2.48e-02 -2.6 2.79e+04 - 1.00e+00 7.99e-03h 7\n", - " 64 4.8325418e+00 7.07e-01 1.42e-01 -2.6 1.07e+04 - 3.76e-02 2.03e-01f 3\n", - " 65 4.7995979e+00 8.84e-01 1.66e-01 -2.6 1.24e+05 - 1.00e+00 9.88e-03h 5\n", - " 66 4.7773270e+00 9.12e-01 1.75e-01 -2.6 6.98e+04 - 5.57e-02 1.46e-02h 5\n", - " 67 5.3290868e+00 2.61e-01 1.58e-01 -2.6 6.52e+02 - 1.00e+00 1.00e+00h 1\n", - " 68 5.2724603e+00 3.57e-01 1.08e-01 -2.6 9.31e+02 - 1.00e+00 1.00e+00h 1\n", - " 69 5.4249206e+00 3.68e-02 8.54e-02 -2.6 6.57e+02 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 70 4.6537873e+00 1.36e+00 2.27e-01 -2.6 2.01e+04 - 2.33e-01 1.00e+00f 1\n", - " 71 4.7503974e+00 8.54e-01 1.13e-01 -2.6 2.31e+04 - 1.00e+00 1.72e-01h 3\n", - " 72 4.6968573e+00 8.16e-01 1.23e-01 -2.6 4.39e+05 - 7.67e-02 6.52e-02h 1\n", - " 73 5.0814574e+00 7.26e-01 2.13e-02 -2.6 1.04e+04 - 1.00e+00 5.00e-01h 2\n", - " 74 4.6519415e+00 4.46e-01 6.29e-02 -2.6 9.23e+03 - 3.80e-01 1.00e+00h 1\n", - " 75 4.5070295e+00 5.60e-01 5.10e-02 -2.6 4.40e+05 - 7.67e-02 7.57e-02h 1\n", - " 76 5.0482118e+00 3.00e-01 1.01e-01 -2.6 3.11e+04 - 1.00e+00 5.00e-01h 2\n", - " 77 5.5400908e+00 1.02e-01 1.63e-01 -2.6 6.59e+03 - 7.57e-01 1.00e+00H 1\n", - " 78 5.4887663e+00 1.48e-01 1.49e-01 -2.6 2.27e+05 - 1.80e-01 2.57e-02h 2\n", - " 79 5.4723781e+00 1.01e-01 1.47e-01 -2.6 3.99e+04 - 1.00e+00 1.03e-01h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 80 5.6174030e+00 1.22e-01 1.13e-02 -2.6 2.60e+03 - 3.56e-01 1.00e+00h 1\n", - " 81 5.6156882e+00 1.26e-01 1.14e-02 -2.6 1.35e+06 - 3.58e-02 1.57e-05f 7\n", - " 82 5.6153099e+00 1.27e-01 1.13e-02 -2.6 2.18e+05 - 1.00e+00 2.74e-05h 9\n", - " 83 5.6149398e+00 1.27e-01 1.13e-02 -2.6 2.55e+04 - 1.00e+00 1.41e-04h 13\n", - " 84 5.6504675e+00 4.65e-02 5.96e-03 -2.6 2.87e+02 - 7.29e-01 1.00e+00h 1\n", - " 85 2.8041611e+00 1.14e+00 9.48e-01 -2.6 6.61e+04 - 4.07e-03 2.17e-01f 1\n", - " 86 5.2836306e+00 1.62e-01 3.42e-01 -2.1 1.46e+02 - 1.00e+00 1.00e+00h 1\n", - " 87 5.4830999e+00 2.92e-03 3.80e-02 -2.2 3.42e+01 - 1.00e+00 1.00e+00h 1\n", - " 88 5.4737635e+00 6.43e-03 1.79e-02 -3.3 6.70e+01 - 1.00e+00 7.83e-01h 1\n", - " 89 5.4742346e+00 6.96e-03 3.50e-03 -3.3 3.33e+01 - 1.00e+00 1.00e+00h 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 90 5.4854428e+00 2.98e-04 1.80e-03 -3.3 8.64e+00 - 8.32e-01 1.00e+00h 1\n", - " 91 5.4851485e+00 6.40e-04 1.63e-03 -5.0 2.95e+00 - 1.00e+00 1.00e+00h 1\n", - " 92 5.4840183e+00 1.74e-03 2.26e-03 -5.0 3.47e+02 - 1.00e+00 1.93e-02h 1\n", - " 93 5.4837934e+00 6.22e-04 4.48e-03 -5.0 8.91e+00 - 2.88e-01 1.00e+00h 1\n", - " 94 4.9234758e+00 4.99e+00 6.81e-01 -5.0 4.32e+04 - 4.02e-05 3.55e-01F 1\n", - " 95 4.9227306e+00 4.99e+00 6.80e-01 -5.0 1.37e+04 - 6.71e-01 5.16e-04h 1\n", - " 96 5.1455026e+00 2.32e-01 4.95e-01 -5.0 1.62e+03 - 1.47e-03 1.00e+00h 1\n", - " 97 4.9910127e+00 1.21e+00 1.87e-01 -5.0 1.20e+04 - 1.95e-01 1.00e+00h 1\n", - " 98 5.0457091e+00 3.69e-01 5.26e-02 -5.0 8.41e+03 - 4.69e-01 5.00e-01h 2\n", - " 99 4.3236618e+00 1.46e+00 4.94e-01 -5.0 1.84e+04 - 1.00e+00 1.00e+00f 1\n", - "iter objective inf_pr inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls\n", - " 100 4.9907946e+00 4.73e-01 2.02e-01 -5.0 9.12e+03 - 9.24e-01 1.00e+00h 1\n", - "\n", - "Number of Iterations....: 100\n", - "\n", - " (scaled) (unscaled)\n", - "Objective...............: 4.9907945997356000e+00 4.9907945997356000e+00\n", - "Dual infeasibility......: 2.0186139466316316e-01 2.0186139466316316e-01\n", - "Constraint violation....: 4.7274730179493574e-01 4.7274730179493574e-01\n", - "Complementarity.........: 9.8433840305800756e-06 9.8433840305800756e-06\n", - "Overall NLP error.......: 4.7274730179493574e-01 4.7274730179493574e-01\n", - "\n", - "\n", - "Number of objective function evaluations = 194\n", - "Number of objective gradient evaluations = 101\n", - "Number of equality constraint evaluations = 194\n", - "Number of inequality constraint evaluations = 194\n", - "Number of equality constraint Jacobian evaluations = 101\n", - "Number of inequality constraint Jacobian evaluations = 101\n", - "Number of Lagrangian Hessian evaluations = 0\n", - "Total CPU secs in IPOPT (w/o function evaluations) = 1.406\n", - "Total CPU secs in NLP function evaluations = 138.142\n", - "\n", - "EXIT: Maximum Number of Iterations Exceeded.\n", - " solver : t_proc (avg) t_wall (avg) n_eval\n", - " nlp_f | 888.00us ( 4.58us) 880.10us ( 4.54us) 194\n", - " nlp_g | 8.77 s ( 45.21ms) 8.37 s ( 43.16ms) 194\n", - " nlp_grad | 1.32 s ( 1.32 s) 1.26 s ( 1.26 s) 1\n", - " nlp_grad_f | 339.00us ( 3.32us) 334.79us ( 3.28us) 102\n", - " nlp_jac_g | 132.09 s ( 1.30 s) 126.05 s ( 1.24 s) 102\n", - " total | 142.33 s (142.33 s) 135.82 s (135.82 s) 1\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAE/CAYAAAAHeyFHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABRAElEQVR4nO3dd3wU1frH8c9JJZBQA0jo1UKHgDSViNdeQbCggIg0vXq99q73qtd2vQoqiKioYAEB9WelBaUJocQgNaE3gYTeU87vj9mEJSSQwCazm3zfr9e+sjM7M/vMyRD22efMOcZai4iIiIiIiPi/ILcDEBERERERkYJRAiciIiIiIhIglMCJiIiIiIgECCVwIiIiIiIiAUIJnIiIiIiISIBQAiciIiIiIhIglMCJiIiIiIgECCVwIiKliDHmgNcjyxhz2Gu5t9vxnQljzHpjzGVux3EqxpiZxpgBRXj8UcaYVZ7fab9cr/UzxmTm+t139Xq9sjFmsjHmoDFmgzHm9lz7dzPGrDTGHDLGxBtj6hbVeYiIyOkpgRMRKUWstZHZD2AjcJ3XunFux5ebMSakJLxHMfgDGAoszuf1ed6/e2vtTK/X3gWOAdWB3sAIY0xTAGNMNDAJeAaoDCwEviqaUxARkYJQAiciIhhjgowxjxtj1hhj0owx440xlT2v1TPGWGPMXcaYTcaY3caYwcaYdsaYJGPMHmPMO17H6meMmWOMGW6M2eup3nTzer2CMeZDY8w2Y8wWY8yLxpjgXPv+zxizC3jeGNPQGDPDE1eqMWacMaaiZ/vPgDrA/3kqS48aY7oaYzbnOr+cKp0x5nljzNfGmLHGmH1Av9PE1MgY86vnXFKNMXkmMMaYMp5jpnnaJMEYU90Y8xJwEfCOJ8Z3PNufZ4yZaozZ5ame9fI61hhjzEjP6/s9759v5cta+661djpwpOC/dTDGlAN6AM9Yaw9Ya2cD3wF3ejbpDiyz1k6w1h4BngdaGmPOK8z7iIiI7yiBExERgPuBG4FLgBhgN05lxtuFQGPgFuAt4CngMqAp0MsYc0mubdcC0cBzwKTshBD4BMgAGgGtgcuBAXnsWw14CTDAfzxxnQ/UxkkksNbeyYmVxNcKeL43AF8DFYFxp4np38AUoBJQCxiezzH7AhU88VUBBgOHrbVPAbOA+zwx3udJnKYCn3vO8zbgvezKl0dvz3tHA4meOM9Ua0/yudoY84xX1bEJkGmtXe217R84v1M8P//IfsFaexBY4/W6iIgUMyVwIiICMAh4ylq72Vp7FCdBujlX98J/W2uPWGunAAeBL6y1O6y1W3ASlNZe2+4A3rLWpltrvwJWAdcYY6oDVwH/sNYetNbuAP4H3Oq171Zr7XBrbYa19rC1NsVaO9Vae9RauxN4EyfRPBvzrLXfWGuzgPKniSkdqAvEeM5/dj7HTMdJ3BpZazOttYustfvy2fZaYL219mPPeS4GJgI3e23zg7X2N8/v4ymgozGm9hmc629AM5xEsQdOsviI57VIYG+u7fcCUQV8XUREillJ6PcvIiJnry4w2RiT5bUuE+e+qGzbvZ4fzmM50mt5i7XWei1vwKmg1QVCgW3GmOzXgoBNXtt6P8cYUw0YhtMNMcqz/e4CnVX+vN/jdDE9ilMJW2CM2Q3811r7UR7H/Ayn+valp4vnWJykOD2PbesCFxpj9nitC/Ec46QYrbUHPF1KY3LFflrW2rVei0uNMf/CSeD+AxzASWC9lQf2e56f7nURESlmqsCJiAg4ScFV1tqKXo8ynuramahpvLIhnPvUtnre5ygQ7fU+5a213l3yvBM/cBINC7Sw1pYH7sDpVpnf9geBstkLnnvZqubaxnufU8Zkrf3LWnuPtTYGp1L5njGmUe4T9lQbX7DWXgB0wqmy9cknxk3Ar7naO9JaO8Rrm5xqmzEmEmcQka253/cMWI6332ogxBjT2Ov1lsAyz/NlnuXsOMoBDb1eFxGRYqYETkREAEYCL2UPlGGMqWqMueEsjlcNuN8YE2qM6Ylz79qP1tptOPeT/dcYU94zeErDXPfP5RaFUwnaY4ypyfHuf9m2Aw28llcDZYwx1xhjQoGngfD8Dn66mIwxPY0xtTyb78ZJgDJzH8cYE2eMae5JGPfhdKnM3i53jN8DTYwxd3raKNQzKMz5XttcbYzpYowJw6kAzrfW5ll9M8aEGWPK4CRmoZ4BVYI8r13l6bqKZ/CRZ4BvPed+EGeUyX8ZY8oZYzrj3B+YXQmcDDQzxvTwHP9ZIMlauzK/9hQRkaKlBE5ERADexhl9cIoxZj/wO85gImdqPs6AJ6k4A5HcbK1N87zWBwgDluMkRF8DNU5xrBeANjj3Xv2Ak3B4+w/wtGfkx4ettXtxhtQfDWzBqcht5tROFVM7YL4x5gBOGz1grV2XxzHO8ey3D1gB/IrTjRKc9r3ZOCN4DrPW7scZKOVWnKraX8CrnJhofo4zAMwuoC3OoCb5mYLTjbUTMMrz/GLPa92AJGPMQeBHnPZ72WvfoUAEzn2LXwBDrLXLADz3HPbA+R3uxrkmvO9XFBGRYmZOvEVBRETk7BhnIukB1toubscSqIwxY4DN1tqn3Y5FRET8iypwIiIiIiIiAUIJnIiIiIiISIBQF0oREREREZEAoQqciIiIiIhIgFACJyIiIiIiEiBC3A4gL9HR0bZevXpuhyEiIiIiIuKKRYsWpVprq+Ze75cJXL169Vi4cKHbYYiIiIiIiLjCGLMhr/XqQikiIiIiIhIglMCJiIiIiIgECCVwIiIiIiIiAcIv74ETEREREfEX6enpbN68mSNHjrgdipRAZcqUoVatWoSGhhZoeyVwIiIiIiKnsHnzZqKioqhXrx7GGLfDkRLEWktaWhqbN2+mfv36BdpHXShFRERERE7hyJEjVKlSRcmb+JwxhipVqhSquqsETkRERETkNJS8SVEp7LWlBE5ERERExM+99NJLNG3alBYtWtCqVSvmz58PwIABA1i+fLlP3qNevXqkpqaecpuXX3650McdM2YM99133wnrPv74Y1q1akWrVq0ICwujefPmtGrViscff7zQxy8Ob731FocOHXI7DED3wImIiIiI+LV58+bx/fffs3jxYsLDw0lNTeXYsWMAjB49ulhjefnll3nyySfP+jh33XUXd911F+AkjvHx8URHR5/1cc+UtRZrLUFBede33nrrLe644w7Kli1b4GNmZGQQEuL7dEsVOBERERHg28QtLNu61+0wRE6ybds2oqOjCQ8PByA6OpqYmBgAunbtysKFCwGIjIzkscceo23btlx22WUsWLCArl270qBBA7777jvg5GrYtddey8yZM096zxtvvJG2bdvStGlTRo0aBcDjjz/O4cOHadWqFb179wZg7NixtG/fnlatWjFo0CAyMzMBp8LWpEkTLrnkEubMmVPgc3399ddp164dLVq04LnnngNg/fr1nHfeeQwYMIBmzZrRu3dvpk2bRufOnWncuDELFiwA4Pnnn+fOO+/k0ksvpXHjxnzwwQenPe7555/P0KFDadOmDZs2bWLIkCHExsbStGnTnO2GDRvG1q1biYuLIy4uLqets3399df069cPgH79+vHPf/6TuLg4HnvsMdasWcOVV15J27Ztueiii1i5cmWB2yI/SuBERESk1Nt18BhPTlrKezPXuB2KyEkuv/xyNm3aRJMmTRg6dCi//vprntsdPHiQrl27smjRIqKionj66aeZOnUqkydP5tlnny3Ue3700UcsWrSIhQsXMmzYMNLS0njllVeIiIggMTGRcePGsWLFCr766ivmzJlDYmIiwcHBjBs3jm3btvHcc88xZ84cpk6dWuAunlOmTCE5OZkFCxaQmJjIokWL+O233wBISUnhgQceICkpiZUrV/L5558ze/Zs3njjjRO6dSYlJfHDDz8wb948/vWvf7F169ZTHnfVqlX06dOHJUuWULduXV566SUWLlxIUlISv/76K0lJSdx///3ExMQQHx9PfHz8ac9j9erVTJs2jf/+978MHDiQ4cOHs2jRIt544w2GDh1aqN9DXtSFUkREREq90bPWcig9k390a+x2KOLnXvi/ZSzfus+nx7wgpjzPXdc039cjIyNZtGgRs2bNIj4+nltuuYVXXnklp+qTLSwsjCuvvBKA5s2bEx4eTmhoKM2bN2f9+vWFimnYsGFMnjwZgE2bNpGcnEyVKlVO2Gb69OksWrSIdu3aAXD48GGqVavG/Pnz6dq1K1WrVgXglltuYfXq1ad9zylTpjBlyhRat24NwIEDB0hOTqZOnTrUr1+f5s2bA9C0aVO6deuGMeakc7vhhhuIiIggIiKCuLg4FixYwOzZs/M9bt26denQoUPO/uPHj2fUqFFkZGSwbds2li9fTosWLQrVdj179iQ4OJgDBw4wd+5cevbsmfPa0aNHC3WsvCiBExERkVJt18FjfDJ3Pde2iKFx9Si3wxHJU3BwMF27dqVr1640b96cTz755KQELjQ0NGdEw6CgoJwul0FBQWRkZAAQEhJCVlZWzj55DV8/c+ZMpk2bxrx58yhbtixdu3bNcztrLX379uU///nPCeu/+eabMxq101rLE088waBBg05Yv379+pxzOdW5wckjOhpjTnnccuXK5SyvW7eON954g4SEBCpVqkS/fv3yHd7f+31yb5N9zKysLCpWrEhiYuLpTr1QlMCJiIhIqfaBp/p2/6WN3A5FAsCpKmVFZdWqVQQFBdG4sVMhTkxMpG7dumd0rHr16vHee++RlZXFli1bcu4f87Z3714qVapE2bJlWblyJb///nvOa6GhoaSnpxMaGkq3bt244YYbePDBB6lWrRq7du1i//79XHjhhTzwwAOkpaVRvnx5JkyYQMuWLU8b2xVXXMEzzzxD7969iYyMZMuWLYSGhhbq/L799lueeOIJDh48yMyZM3O6fRbkuPv27aNcuXJUqFCB7du389NPP9G1a1cAoqKi2L9/f85AK9WrV2fFihWce+65TJ48maiok7/8KV++PPXr12fChAn07NkTay1JSUkFaotTUQInIiIipVbagaN8Mnc916n6Jn7swIED/P3vf2fPnj2EhITQqFGjnIFFCqtz58453RGbNWtGmzZtTtrmyiuvZOTIkbRo0YJzzz33hC6GAwcOpEWLFrRp04Zx48bx4osvcvnll5OVlUVoaCjvvvsuHTp04Pnnn6djx47UqFGDNm3a5AxuciqXX345K1asoGPHjoDTdXTs2LEEBwcX+Pzat2/PNddcw8aNG3nmmWeIiYkhJiamQMdt2bIlrVu3pmnTpjRo0IDOnTufcN5XXXUVNWrUID4+nldeeYVrr72W2rVr06xZMw4cOJBnPOPGjWPIkCG8+OKLpKenc+utt551AmestWd1gKIQGxtrs0fTERERESkqr/y0kvd/W8PUBy+mUTUlcJK3FStWcP7557sdhpzG888/T2RkJA8//LDboRRaXteYMWaRtTY297YahVJERERKpbQDR/l03nqubxmj5E1EAoa6UIqIiEipNGrWWo6kZ/L3SzXypEhJ8Pzzz7sdQrFQBU5ERERKnbQDR/l07gZP9S3y9DuIiPgJJXAiIiJS6oz6bS1HMzK5T9U3EQkwSuBERESkVEk9cJRP56n6JiKBSQmciIiIlCrZ1be/d1P1TUQCjxI4ERERKTVSPSNP3tCqJg2rqvomgSM4OJhWrVrRrFkzevbsyaFDh874WP369ePrr78GYMCAASxfvjzfbWfOnMncuXNzlkeOHMmnn356xu+dbf369TRr1uyEdc8//zxvvPFGoY7jq3gCiUahFBERkVLj/V/XcCwji79f2sjtUEQKJSIigsTERAB69+7NyJEj+ec//5nzemZmZqEmvM42evToU74+c+ZMIiMj6dSpEwCDBw8u9HsUlYyMDL+Kp7ioAiciIiKlws79R/ns9w3c2KomDVR9k6Ly2msQH3/iuvh4Z72PXHTRRaSkpDBz5kzi4uK4/fbbad68OZmZmTzyyCO0a9eOFi1a8P777wNgreW+++7jggsu4JprrmHHjh05x+ratSsLFy4E4Oeff6ZNmza0bNmSbt26sX79ekaOHMn//vc/WrVqxaxZs06okiUmJtKhQwdatGjBTTfdxO7du3OO+dhjj9G+fXuaNGnCrFmzCn2Opzr2k08+ySWXXMLbb7+dE8/WrVtp1apVziM4OJgNGzawYcMGunXrRosWLejWrRsbN24EnCrk/fffT6dOnWjQoEFORTIQKIETERGRUiGn+qZ736QotWsHvXodT+Li453ldu18cviMjAx++uknmjdvDsCCBQt46aWXWL58OR9++CEVKlQgISGBhIQEPvjgA9atW8fkyZNZtWoVS5cu5YMPPjihS2S2nTt3cs899zBx4kT++OMPJkyYQL169Rg8eDAPPvggiYmJXHTRRSfs06dPH1599VWSkpJo3rw5L7zwwglxLliwgLfeeuuE9d7WrFlzQtI1cuTIAh17z549/Prrrzz00EM562JiYkhMTCQxMZF77rmHHj16ULduXe677z769OlDUlISvXv35v7778/ZZ9u2bcyePZvvv/+exx9/vJC/CfeoC6WIiIiUeDv2H2Hs/A3c2Lom9aPLuR2OBLJ//AM8XRnzFRMDV1wBNWrAtm1w/vnwwgvOIy+tWsFbb53ykIcPH6ZVq1aAU4G7++67mTt3Lu3bt6d+/foATJkyhaSkpJxq0t69e0lOTua3337jtttuIzg4mJiYGC699NKTjv/7779z8cUX5xyrcuXKp4xn79697Nmzh0suuQSAvn370rNnz5zXu3fvDkDbtm1Zv359nsdo2LBhTrdQOD4R9+mOfcstt+Qb15w5cxg9enRO1W/evHlMmjQJgDvvvJNHH300Z9sbb7yRoKAgLrjgArZv337K8/UnSuBERESkxBv161rSMy33a943KQ6VKjnJ28aNUKeOs3yWvO+B81au3PEvJKy1DB8+nCuuuOKEbX788UeMMac8vrX2tNsURnh4OOAMvpKRkeGz48KJ5+xt27Zt3H333Xz33XdERubdTdr7HLNjBOf8A4USOBERESnRcqpvrWpST9U3OVunqZQBx7tNPvMMjBgBzz0HcXFFHtoVV1zBiBEjuPTSSwkNDWX16tXUrFmTiy++mPfff58+ffqwY8cO4uPjuf3220/Yt2PHjtx7772sW7eO+vXrs2vXLipXrkxUVBT79u076b0qVKhApUqVmDVrFhdddBGfffZZTsXsbJ3JsdPT0+nVqxevvvoqTZo0yVnfqVMnvvzyS+68807GjRtHly5dfBKjm5TAiYiISIn2vqf6ppEnpVhkJ2/jxztJW1zcictFaMCAAaxfv542bdpgraVq1ap888033HTTTcyYMYPmzZvTpEmTPJOhqlWrMmrUKLp3705WVhbVqlVj6tSpXHfdddx88818++23DB8+/IR9PvnkEwYPHsyhQ4do0KABH3/8sc/OpbDHnjt3LgkJCTz33HM899xzgFN5HDZsGP379+f111+natWqPo3RLcYfy4WxsbE2ezQcERERkTO1Y98RLnotnutaxvBGz5ZuhyMBasWKFZx//vkF2/i115wBS7yTtfh4SEgAr/uvRLzldY0ZYxZZa2Nzb6sKnIiIiJRYI39dS0aWqm9SjPJK0rIrcSI+oGkEREREpETase8I4+ZvoHvrmtStonvfRKRkOG0CZ4ypbYyJN8asMMYsM8Y84Fn/b2NMkjEm0RgzxRgTk8/+640xSz3bqV+kiIiIFIsRv64hI8tyn6pvIlKCFKQClwE8ZK09H+gA3GuMuQB43VrbwlrbCvgeePYUx4iz1rbKqw+niIiIiK9t33eEcfM30qONqm/iG/44boSUDIW9tk6bwFlrt1lrF3ue7wdWADWttd7jiZYDdFWLiIiIXxgxcw1ZWZb74jTvm5y9MmXKkJaWpiROfM5aS1paGmXKlCnwPoUaxMQYUw9oDcz3LL8E9AH2AvndmWmBKcYYC7xvrR1VmPcUERERKYzt+47w+YKN9GhTizpVyrodjpQAtWrVYvPmzezcudPtUKQEKlOmDLVq1Srw9gVO4IwxkcBE4B/Z1Tdr7VPAU8aYJ4D7gOfy2LWztXarMaYaMNUYs9Ja+1sexx8IDASoU6dOgU9ARERExFt29e3eON37Jr4RGhpK/fr13Q5DBCjgKJTGmFCc5G2ctXZSHpt8DvTIa19r7VbPzx3AZKB9PtuNstbGWmtjq1atWpCwRERERE7w115V30SkZCvIKJQG+BBYYa1902u9d6fy64GVeexbzhgTlf0cuBz482yDFhEREcnLiJkpzr1vGnlSREqognSh7AzcCSw1xiR61j0J3G2MORfIAjYAgwE80wmMttZeDVQHJjs5ICHA59ban316BiIiIiI41bcvFmzi5ra1qF1Z1TcRKZlOm8BZa2cDJo+Xfsxn+63A1Z7na4GWZxOgiIiISEG8NzOFLKt730SkZCvQPXAiIiIi/mzb3sN8uWATPWNVfRORkk0JnIiIiAS89+LXqPomIqWCEjgREREJaFv3HOarhE30jK1NrUqqvolIyaYETkRERALaezNTsFjujWvodigiIkVOCZyIiIgELFXfRKS0UQInIiIiAeu9mSkAuvdNREoNJXAiIiISkLZ4qm+9YmtTs2KE2+GIiBQLJXAiIiISkN6Ld6pvQ1V9E5FSRAmciIiIBJzNuw8xfuEmbmmn6puIlC5K4ERERCTgvDdzDQbD0K6qvolI6aIETkRERALK5t2HmOCpvsWo+iYipYwSOBEREQko78Y71bchXTXvm4iUPkrgREREJGBs2qXqm4iUbkrgREREJGC8NzOFIGMYGqfqm4iUTkrgREREJCA41bfN3Nq+NjUqqPomIqWTEjgREREJCO/Ge6pvGnlSREoxJXAiIiLi9zbtOsTXizZzW/vanFOhjNvhiIi4RgmciIiI+L13ZqQQFGQYouqbiJRySuBERETEr21MO8TExZu5vX0dVd9EpNRTAiciIiJ+7Z34ZE/1TSNPiogogRMRERG/5VTftnB7+zpUL6/qm4iIEjgRERHxW8NnJBOi6puISA4lcCIiIuKXNqQdZNKSLdx+oapvIiLZlMCJiIiIXxo+I8Wpvl2i6puISDYlcCIiIuJ31qceZPKSLfS+sC7VVH0TEcmhBE5ERET8zjvxTvVt8CUN3A5FRMSvKIETERERv5Jdfbujg6pvIiK5KYETERERvzJ8RgqhwYZBqr6JiJxECZyIiIj4jXWpB5m8ZDN3XFiXalGqvomI5KYETkRERPzG8BnJhIUEMVDVNxGRPCmBExEREb+wducBvlmyRdU3EZFTUAInIiIifuGdGSmEhQQxSPO+iYjkSwmciIiIuG7NzgN8k7iFOzvUpWpUuNvhiIj4LSVwIiIi4jpV30RECkYJnIiIiLhqzc4DfJu4hT4d6xEdqeqbiMipKIETERERVw2fnkx4SDADL9bIkyIip6METkRERFyTsuMA3/2xlT4d66r6JiJSAErgRERExDXDZ6j6JiJSGErgRERExBU51bdOdami6puISIEogRMRERFXDJueTERoMAMvUvVNRKSglMCJiIhIsUvZsZ//S9pKn471VH0TESkEJXAiIiJS7N6enuJU33Tvm4hIoSiBExERkWKVvH0/3ydtpW+nelQuF+Z2OCIiAUUJnIiIiBSrt6cnUzY0mHt075uISKEpgRMREZFis3r7fn5Yuk3VNxGRM6QETkRERIrNMFXfRETOymkTOGNMbWNMvDFmhTFmmTHmAc/6fxtjkowxicaYKcaYmHz2v9IYs8oYk2KMedzXJyAiIiKBIbv61q9zPSqp+iYickYKUoHLAB6y1p4PdADuNcZcALxurW1hrW0FfA88m3tHY0ww8C5wFXABcJtnXxERESllsu99G9BF1TcRkTN12gTOWrvNWrvY83w/sAKoaa3d57VZOcDmsXt7IMVau9Zaewz4Erjh7MMWERGRQLLqr/38qOqbiMhZCynMxsaYekBrYL5n+SWgD7AXiMtjl5rAJq/lzcCFZxKoiIiIBK5h05MpFxai6puIyFkq8CAmxphIYCLwj+zqm7X2KWttbWAccF9eu+WxLq9KHcaYgcaYhcaYhTt37ixoWCIiIuLnVv61z7n3rZOqbyIiZ6tACZwxJhQneRtnrZ2UxyafAz3yWL8ZqO21XAvYmtd7WGtHWWtjrbWxVatWLUhYIiIiEgCGTU8mMjyEARfVdzsUEZGAV5BRKA3wIbDCWvum1/rGXptdD6zMY/cEoLExpr4xJgy4Ffju7EIWERGRQLFi2z5+XPoXd3WuR8Wyqr6JiJytgtwD1xm4E1hqjEn0rHsSuNsYcy6QBWwABgN4phMYba292lqbYYy5D/gFCAY+stYu8/E5iIiIiJ8aNj2ZqPAQ7u6i6puIiC+cNoGz1s4m73vZfsxn+63A1V7LP+a3rYiIiJRcy7fu46c//+L+Sxup+iYi4iMFHsREREREpDCOV9808qSIiK8ogRMRERGfW751Hz8v+4u7utSnQtlQt8MRESkxlMCJiIiIz709fTVRZUK4u7PufRMR8SUlcCIiIuJTy7bu5Zdl2+nfWdU3ERFfUwInIiIiPvX2tGSiyoTQXyNPioj4nBI4ERER8Zk/t+xlyvLt3N2lPhUiVH0TEfE1JXAiIiLiM29Pd6pvd+neNxGRIqEETkRERHzizy17mbp8OwO6NFD1TUSkiCiBExEREZ94a1oy5cuEcFeXem6HIiJSYimBExERkbP255a9TFuxnQEXNaB8GVXfRESKihI4EREROWvZ1bd+neu5HYqISImmBE5ERETOytLNqr6JiBQXJXAiIiJyVt6evpoKEaGqvomIFAMlcCIiInLGkjbvYdqKHQzoUl/VNxGRYqAETkRERM7Y29OSVX0TESlGSuBERETkjPyxaQ/TV+7gnovqE6Xqm4hIsVACJyIiImfk7enJVCwbSt9O9dwORaRke+01iI8/cV18vLNeSh0lcCIiIlJoiZv2MGPlDu65qIGqbyJFrV076NXreBIXH+8st2vnblziihC3AxAREZHA8/a01aq+iRSXuDgYOxauuQZq1YLNm6F/fzhwAJYtg/r1oWxZt6OUYqIETkRERAplycbdxK/aySNXnEtkuD5KiBS5devgqafg8GFITobQUHj3XeeR7ZxzoEGDEx/16zs/Y2IgSB3vSgr91RUREZFCeXt6MpVUfRMpHt99B337Qno6lC8PDzwAI0bAqFFOYrZ2rfNYt875OWsWfP45ZGUdP0Z4ONSrd3KCl53kRUW5dnpSeErgREREpMCWbNzNzFU7efRKVd9EilR6Ojz5JLzxBjRpAqmp8PXXTnfKuDjnHrjx4+G2207e99gx2LjxeHLnneTNnQt79564fXR03sldgwZOl83g4OI5ZykQ/eUVERGRAntrmlN969OxntuhiJRcmzfDLbc4yda99zqVto4dncQNnJ/jx0NCwvF13sLCoFEj55GX3btPTu7WrnWO9/XXkJFxfNuQEKhbN/8Er2JFn5++nJoSOBERESmQxRt38+vqnTx25XmqvokUlSlToHdvOHIEvvzSSeTykl2JOxOVKkHbts4jt4wMJ4HMK8H7+mtISzv5WNn32uV+1Knj3K8nPqW/viIiIlIgb01LpnK5MPp0rOt2KCIlT2YmvPACvPgiNGsGEybAuecWfxwhIc79cvXqwaWXnvz6vn3H77fzfiQlOffrHTt2fNugICeJ8x5QxftRpQoYU1xnVmIogRMREZHTWrRhN7+t3snjV51HOVXfRHxr+3a4/XaYMQPuugveecd/pwUoXx5atnQeuWVmwtatJw6qkv34/nvnPL1FRZ08Ymb2o149Z/AVOYn+AouIiMhpvTVtNZXLhXFnB1XfRHzqt9/g1lthzx746CMngQtUwcFQu7bzuOSSk18/ePDExC77+apV8NNPTrfRbMZAzZr5J3jVq5fa6p0SOBERETmlRRt2MSs5lSdUfRPxnawseO01Z363Ro3gl1+geXO3oypa5co53UObNTv5NWvhr7/yHjlz6lTYsuXE7SMi8p/3riATm7/2GrRrd+J9hPHxzkAujz569udahPRXWERERE4p+963O3Xvm4hvpKU5c7v98IMzSMkHH2guNmOgRg3n0bnzya8fOQLr1+ed4M2Y4VT3vOU1sXl2chcT4yRv2VMxxMU5yVv2sp9TAiciIiL5Wrj+ePWtbJg+NoictfnznUThr7/g3XdhyJBS2xWwUMqUgfPOcx65WevMk5fXyJm//Xbqic2vvhr69XNG2MxO5vyc/hKLiIhIvt6enkwVVd9Ezp61MHw4PPywc2/XnDkQG+t2VCWDMVC1qvO48MKTX89vYvO1a53EbuRIeOaZgEjeQAmciIiI5CO7+vbk1aq+iZyVvXthwACnynP99TBmjDN/mhSP/CY2z+42OXgwjBhxdnPrFaMgtwMQERER//TWtGSiI8O4QyNPipy5xESn0jZ5Mrz+OnzzjZI3f+B9z9u//+387NXLWe/nlMCJiIjISRLW72J2SiqDLm6o6pvImbAWRo+GDh3g8GH49Ven+6Tud/MPCQkn3vMWF+csJyS4G1cB6C+yiIiInOStaatVfRM5UwcPOoOTfPYZ/O1vMG6cc3+W+I+8pgpQF0oREREJRAvW7WJOShqDL2lIRFiw2+GIBJbly6F9exg7Fl54wZmgWsmb+JAqcCIiInICp/oWTu8LVX0TKZRx42DgQIiMdCaf7tbN7YikBFIFTkRERHLMX5vG3DVpDL6kgapvIgV15AgMGgR33OEMWLJkiZI3KTJK4ERERCSHM/Kkqm8iBbZmDXTsCKNGweOPw/TpEBPjdlRSgqkLpYiIiADw+9o05q1N45lrL1D1TaQgJk2Cu+6C4GD4/nu45hq3I5JSQBU4ERERAZx736pGhdP7wjpuhyLi344dgwcfhB494LzznC6TSt6kmCiBExEREeatSeP3tbsYcklDyoSq+iaSr40b4ZJL4K234P77YdYsqKsux1J81IVSREREeGvaaqpFhXO7qm8i+fvpJ2egkvR0mDABbr7Z7YikFFIFTkREpJSbtyaN+et2MaSrqm8iecrIgKeegquvhtq1YdEiJW/iGlXgRERESjFrLf/zVN9ua6/qm8hJtm2D22+HmTNhwAAYNgwiItyOSkoxVeBERERKsXlr01iwbhdDVX0TOVl8PLRuDQsWwCefwAcfKHkT1502gTPG1DbGxBtjVhhjlhljHvCsf90Ys9IYk2SMmWyMqZjP/uuNMUuNMYnGmIU+jl9ERETOkLWWt6YmUy0qnFtVfRM5LisLXnoJLrsMKlVyErg+fdyOSgQoWAUuA3jIWns+0AG41xhzATAVaGatbQGsBp44xTHirLWtrLWxZx2xiIiI+MS8NWksWK/qm8gJUlOdKQGefhpuvRUSEqBpU7ejEslx2gTOWrvNWrvY83w/sAKoaa2dYq3N8Gz2O1Cr6MIUERERX8q+9616eVXfRHLMnet0mZwxA0aOhLFjITLS7ahETlCoe+CMMfWA1sD8XC/1B37KZzcLTDHGLDLGDCx0hCIiIuJzc9ekkbB+N0O7NlL1TcRaePNNZ363sDCYNw8GDQJj3I5M5CQFHoXSGBMJTAT+Ya3d57X+KZxuluPy2bWztXarMaYaMNUYs9Ja+1sexx8IDASoU0ffBIqIiBQVay1vTVvNOeXLcEu72m6HI+KuPXvgrrvgm2/gppvgo4+gYkWXgxLJX4EqcMaYUJzkbZy1dpLX+r7AtUBva63Na19r7VbPzx3AZKB9PtuNstbGWmtjq1atWrizEBERkQKbk+KpvsXp3jcp5RYtgjZt4PvvnQrcxIlK3sTvFWQUSgN8CKyw1r7ptf5K4DHgemvtoXz2LWeMicp+DlwO/OmLwEVERKTwVH0TwekyOXIkdOoE6enw22/w4IPqMikBoSAVuM7AncClnqkAEo0xVwPvAFE43SITjTEjAYwxMcaYHz37VgdmG2P+ABYAP1hrf/b9aYiIiEhBzE5JZeGG3dwb15DwEFXfpBQ6cADuuAOGDIFLL4UlS6BjR7ejEimw094DZ62dDeT1dcSPeazL7jJ5tef5WqDl2QQoIiIivuFU35KpUaEMvVR9k9Lozz+hZ09YvdqZ5+3xxyGoUGP6ibhOV6yIiEgpMSs5lUUbdjM0rpGqb1L6fPoptG8Pu3fDtGnw5JNK3iQg6aoVEREpBbLvfYupUIZesZq6VUqRw4dhwADo2xcuvBASEyEuzu2oRM6YEjgREZFS4LfkVBZv3KPqm5QuycnQoQN8+CE89RRMnQrnnON2VCJnpcDzwImIiJypYxlZ7D2cTqWyoYQE67vD4uZdfeup6puUFhMmwN13OxNz//gjXHWV2xGJ+IQSOBERKZT0zCx2HzrGnkPp7Dp4jN0Hj7HrkPNz96H0PJf3H80AIDI8hA4NKtOpYTSdG0XTpHokRsN2F7lfV+9kycY9vHRTM1XfpOQ7dgwefhiGD3eqb+PHQ20N2iMlhxI4EZFSLCMzi92H0tlz6JiTjB06xq6D6ew+dGJitstrm/1HMvI9XrmwYCqVC6NyuTAqlQ2jfnQ5Z7lsGOUjQlm9fT9zUlKZtmIHAFWjwunUsAqdG0bTqVEValUqW1ynXmpkjzxZs2IEPdvqQ6yUcBs2QK9esGCBM6/bK684FTiREkQJnIhICZGRmcWew9mJVnpOQpaTjHkSs10Hj+UkY/tOkYyVDQumUlknGatYNpR6VcrmLFcqF0alsqFULhuWk7BVLBta4OrOlj2HmZOS6nmk8W3iVgDqVSlLp0bRdG4YTceGVahcTh+8ztavq3eSuGkPL9/UnLAQdV+VEuz776FPH8jMhEmT4Kab3I5IpEgYa63bMZwkNjbWLly40O0wRERck5ll2Xs43asq5tUl8YRlZ92ug8fYezg93+NFhAZ7Eq9QKpUNO56IlT2+Lns5OxkrE1o8Xe2stSTvOMDs5FTmrknl97W7OHA0A2Pgghrl6dwomk4Nq9C+fmXKhul7x8Kw1nLje3NJ3X+U+Ie7KoGTkikjwxmg5LXXoHVr5963hg3djkrkrBljFllrY3Ov1/+EIiJFLDPLsu9w+vHuiAc99495LWcnYtndFvceTie/79fCQ4KoUi6Mip5kq2alslQuG+qpioXldFn0TtYiwvz3vidjDE2qR9GkehT9u9QnIzOLpC17mZOcypw1qYyZs55Rv60lNNjQuk4lOjeMpnOjKrSsXZFQDYhySjNX7+QPVd+kJNuyBW67DWbNgkGD4K23oEwZt6MSKVKqwImIFEJWlmXfkfRT3i+WeyCPPadIxsJOSMZCvSpgYTlJWeVciZk/J2NF4fCxTBLW72LOmlTmpqTx59a9WOvcb3dhgyrOPXSNojnvnCgNiOLFWsuN784h9cAxVd+kZJo2DW6/HQ4dgvffh9693Y5IxKdUgRMRKYSVf+3jk7kbSDtw9HiXRc9AHln5JWPBQSd0Rzy/RvmT7hPLrohVKhdK5XJhRIQGK+k4jYiwYC5uUpWLm1QFYM+hY8xbk5aT0M1Y6QyIEh0ZRseG0XT2JHS1K5fuAVFmrtrJH5v38p/uqr5JCZOZCS++CC+8AOefD19/7fwUKSWUwImI5LI+9SC9P5jPkfRMald2Bu4475zyVCwbetJ9Yt7LZcOUjBWHimXDuKp5Da5qXgOArZ4BUeauSWNOSir/94czIEqdymXp3KgKnRo699BViQx3M+xiZa3lf9NWU6tSBD3aaN43KUF27IA77nAm5L7zThgxAsqVczsqkWKlBE5ExMvO/Ufp89ECLPB/f+9Cg6qRbockpxFTMYKesbXpGVsbay0pOw44o1uuSeP7pG18sWATAOfXKJ9TnWtfvzLlwkvuf4Hxq3aQtHkvr6j6JiXJ7Nlwyy2QlgYffOBM0q0vzaQUKrn/e4mIFNKBoxncNWYBO/cf5fN7LlTyFoCMMTSuHkXj6lH06+wMiLJ0y96c6tynv29g9Ox1hAQZWtepmDOheKvaFUtMopM971utShH0aKvqm5QA1sIbb8ATT0D9+vDDD9CqldtRibhGCZyICHAsI4shYxexYtt+RveJpXWdSm6HJD4QEhxE6zqVaF2nEvfGNeJIeiYL1+/23D+XyrAZybw9PZmyYcG0r1/ZM8KlMyBKUFBgfrM/Y6VTfXu1R3ON0imBb/du6NsX/u//4OabYfRoqFDB7ahEXKUETkRKvawsy2MTk5iVnMprN7cg7rxqbockRaRMaDBdGkfTpXE0AHsPpTNvbRpz1ziTir+0agUAlcuF0bFhFTo3jKZLo2jqVAmMAVGyq2+1K0fQXfe+SaBLSIBevZypAoYNg/vuU5dJEZTAiYjw6i8rmbxkCw9f3oResbXdDkeKUYWyoVzZ7ByubHYOAH/tPeK5f85J6H5I2gZArUoRTnWusTMgSrSfDogyfcUOlm7Zy2s9Wqj6JoHLWnjvPfjnP+Gcc5w53i680O2oRPyG5oETkVLtw9nr+Pf3y7mzQ13+dUNTjSIpOay1rNl5MKc6N29NGvuOZABw3jlRdGoYTZfGVWhfvwqRxTkgymuvQbt2EBd3fF18PHbBAq4r24l9hzOY/tAlSuAkMO3fD/fcA199BddcA59+CpUrux2ViCs0D5yISC7/98dW/v39cq5seg7PX6/kTU5kjKFRtUgaVYukT8d6ZGZZ/tyyN6c6N27+Bj6a4wyI0rJ2xZwRLlvXqVS0A6K0a+d0Kxs/3kni4uOhVy8WvTaSP1ft47WbVX2TAJWUBD17wpo18Mor8MgjEKRrWSQ3VeBEpFSam5JKv48TaFW7Ip/e3Z4yocFuhyQB5kh6Jos3OAOizE5JY+nmPWRZiAgNpl39yjkJ3QU1yvt+QJT4eOjRA9q0gcRE7PjxXPtnKPuPqPomAerjj2HoUKhUCb78Ei6+2O2IRFyXXwVOCZyIlDrLt+6j1/vziKlYhgmDOlGhbKjbIUkJsPdwOvPXpuXMQZey4wAAlcqGOgOiNIqmc8No6lYp65tq75VXwi+/QEgIm2+8hbvLd2TAkOvpqfs4JZAcOgT33gtjxkC3bjBuHFSv7nZUIn5BCZyICLBp1yF6jJhLcJBh0tBO1KgQ4XZIUkJt33eEuWtSmZ3sjHK5be8RAGpWjKBTwyp0aRxNx4ZVqBZVpvAH93SbpHt37Kefkp6eSVhmOlmXdCXogfvh+ushWFVl8XMrVzpdJpctg2eegWef1XUr4kUJnIiUersPHqPHyLmk7j/K10M60aR6lNshSSlhrWVd6kGnOpeSxry1aew9nA5Ak+qRzoAojaK5sEFlosqcpiKcnbx57oFL+HgiDYfexe6rrqPhotmwcSPUretUNe6+WwNAiH/68ktnsJIyZZyq2+WXux2RiN9RAicipdrhY5ncPvp3lm3dx7gBF9Kunj7UinsysyzLt+5jdkoqc9eksmDdLo5mZBEcZGhRqwJdGkXTqWE0bepWJDwkV0XCaxRKay3XDJtNk+UJ/Ld+OsEPP+RMeDxsGMycCRERcMcd8Pe/Q/PmrpyryAmOHoUHH4QRI6BzZyeRq6U5C0XyogROREqtjMwsBn22iPhVO3ivd9ucOb9E/MWR9EwWb9zN3JQ05qxJJWnzXjKzLGVCg2hXr3LO/XMXxJQn2GtAlJ///IvBYxfx354t6dE214fgpCR45x0YOxYOH4auXeF+da8UF61d61SPFy2Chx+Gl1+GUN2DLJIfJXAiUipZa3li0lK+TNjEizc2444Odd0OSeS09h1JZ/7aXczxVOhWb3cGRKkQEUrHBlVyJhS/7/MlHD6WwbR/XkJIfiNPpqXBhx/Cu++qe6UUj7zmKnzxRXjpJafL5JgxcMMNroUnEiiUwJ2lvYfSNVKdSAB6c+pqhk1P5u+XNuKhy891OxyRM7Jj3xHmrvGMcJmSylbPgChA3tW3vGRkqHulFA/v+zS7dIHevWHCBGjSBH7+GerXdztCkYCgBO4spOzYT48R83jo8ib06VjP7XBEpIDGzd/AU5P/pFdsLV7t0UITdUuJYK1lfdoh5qSkknrgKPfFNcq/+pYfda+UojZ1qjPCZFQUbN7sVNy++grCw92OTCRgKIE7C4ePZfL3L5YwbcV2hnRtyKNXnKsPgiJ+7pdlfzFk7CK6nluNUXe2LfwHXJHSQN0rxZcyMpzq24QJMGmSc30BdO8OEye6G5tIAMovgdMnmgKICAtm5B1t6H1hHUbMXMND4//gWEaW22GJSD4Wrt/F/V8soUWtirxze2slbyL5qVIFHn0U1qxxPnDXr+8s16oFAwfC0qVuRyj+LiMDpk+HQYOgRg1nOoAvvoBWraB8eXjiCfjtNyexExGf0KeaAgoJDuLFG5vx8OVNmLRkC/3HJLD/SLrbYYlILsnb93P3JwupWTGCj/q1o2xYiNshifi/kBC46SbnQ/Yffzj3xo0dCy1aOANRTJ4MmZluRyn+IiMDZsyAwYMhJgYuu8yZy+1vf3O+CJgwwbmOvvnGGWly/HjnnjglcSI+oS6UZ2DCwk08Pmkp51aPYsxd7ahWvozbIYkIsG3vYXq8N5f0LMukIZ2oXbms2yGJBC51rxRvmZlOJW38eCdJ27EDypWD665z7nW76ipnYBzIexTK+HhISHAqvCJSILoHzsdmrtrB0HGLqVQ2jE/6t6dRtUi3QxIp1fYeTqfXyHls2XOYrwZ1oGlMBbdDEikZNHpl6ZWZCbNmORW1iRNh+3YoWxauvdapqF11lbMsIkVCCVwRWLp5L3eNWUBGlmV0n1hi6+kbSRE3HEnPpM9HC1iycTef3NWeTo2i3Q5JpGRauhSGD9folSVZZibMmeNU2r7+2knaIiJOTNrKlXM7SpFSQQlcEdmYdoi+Hy9g657DvH1ra65sdo7bIYmUKplZlr9/sZgfl/7FsNtac33LGLdDEin51L2yZMnKOp60TZwI27Y5Sds11zjdI6+5RkmbiAuUwBWhXQeP0X9MAn9s3sML1zfVXHEixcRay3PfLePTeRt4+przGXBRA7dDEild1L0ycGVlwdy5TvfIr7+GrVuhTBm4+mqn0nbNNRCp20NE3KQEroh5zxU3tGtDHtFccSJF7t34FF7/ZRUDL27Ak1ef73Y4IqWbulf6v6wsmDfveNK2ZYszsXZ20nbttUraRPyIErhikJGZxbPfLePz+Rvp3qYmr3RvQViIZmoQKQoTFm7ika+TuLFVDG/2akVQkL4wEfEL6l7pX7KyYP58p3vkhAnHk7arrjqetEVFuR2liORBCVwxsdbyzowU/jt1NRc1jmbEHW2JDNc8VCK+FL9qBwM+WUjHBlX4qF87fVEi4o/UvdI91h5P2r7+GjZtgrAwuPJKJ2m77jpnkm0R8WtK4IrZ+IWbeGLSUs47J4qP+2muOBFfSdy0h9tG/U7DauX4cmBHfUEiEghyd6+Mi3MSOXWv9B1rYcECp8o2YYJT/QwLgyuuOJ60VdD0KiKBRAmcC+JX7eBezRUn4jPrUg/SY8RcyoUHM3FIJ6pF6YsRkYCi7pW+ZS0sXHi8e+SGDRAaejxpu/56JW0iAUwJnEuSNu+h/5gEMrIsH/aNpW1d/QclciZ27D9CjxFzOXg0k4lDOlE/WkNaiwQsda88c9bCokXHk7b1652k7fLLjydtFSu6HaWI+IASOBd5zxU37LbWXNFUc8WJFMaBoxnc8v481u48yBcDO9CqdkW3QxIRX1H3ytOzFhYvPp60rVsHISHwt785SdsNN0ClSm5HKSI+pgTOZWkHjnL3JwtJ8swVd6fmihMpkGMZWfQfk8C8tWmM7htL3LnV3A5JRIqCuleeyFpYssRJ2MaPh7VrnaTtssuOJ22lsV1EShElcH7AmStuMdNW7NBccSIFkJVl+ef4RL5J3MrrN7egZ2xtt0MSkaJWmrtXWgt//OEkbOPHw5o1ThUyO2m78UYlbSKliBI4P5GRmcUz3y7jiwXOXHGv9mhBaLCGQBfJy8s/rmDUb2t55IpzuTeukdvhiEhxKw3dK62FpKTj3SOTk51z69bteNJWpYrbUYqIC/JL4E6bORhjahtj4o0xK4wxy4wxD3jWv26MWWmMSTLGTDbGVMxn/yuNMauMMSnGmMfP+kwCXEhwEC/f1IyH/taESYu30H9MAgeOZrgdlojfGT1rLaN+W0vfjnUZ2rWh2+GIiBuaN4dRo2DzZnjtNaci1b07NGwIr78Ou3a5HeGZyU7ann4azjsPWrWCV191uo2OGgV//QW//OJ0H1XyJiK5nLYCZ4ypAdSw1i42xkQBi4AbgVrADGtthjHmVQBr7WO59g0GVgN/AzYDCcBt1trlp3rPklyB83bCXHF3tdOQ6CIe3/2xlfu/WMLVzc9h+G1tCA5SV2MR4Xj3yuHDIT4+sLpXWgt//nn8nrZVqyAoyKkq9uoFN90EVau6HaWI+JEzrsBZa7dZaxd7nu8HVgA1rbVTrLXZpaPfcRK63NoDKdbatdbaY8CXwA1nehIlTa/Y2ozuG8vanQfp/t5c1uw84HZIIq6bm5LKQ+MTaV+/Mm/2aqXkTUSOCwlxEp0ZM5wK1h13ON0rW7SASy+FyZMhM9PtKE+0bBk89xxccIET50svQc2aMHIkbNsG06bBwIFK3kSkwAp185Uxph7QGpif66X+wE957FIT2OS1vNmzLq9jDzTGLDTGLNy5c2dhwgpocedW46tBHTiSnkmPEXNZtGG32yGJuGbZ1r0M/GwRDaIj+aBPLGVCS8g9LiLie/7cvXL5cnj+eWjaFJo1gxdfhBo1YMQI2LoVpk+HQYOgmkbVFZHCK3ACZ4yJBCYC/7DW7vNa/xSQAYzLa7c81uXZZ9NaO8paG2utja1ayr6FalGrIhOHdKJiRCi3f/A7vyz7y+2QRIrdpl2H6PdxAuXLhDCmfzsqRIS6HZKIBILKleGRR5wEbtIkaNAAHn0UatVyKltLlxZPHCtWwL/+5SRsTZs6z6tWdaZF2LLFqRoOHgzVqxdPPCJSYhUogTPGhOIkb+OstZO81vcFrgV627xvptsMeI/7XQvYeubhllx1q5Rj4pBOnFejPEPGLuKz3ze4HZJIsdl18Bh9P1rAsYwsPunfnhoVItwOSUQCjRvdK1euhH//26kGXnCBU3WrUgXeecdJ2mbOhKFD4ZxzfPu+IlKqFWQQEwN8Auyy1v7Da/2VwJvAJdbaPPs8GmNCcAYx6QZswRnE5HZr7bJTvWdpGcQkL4eOZfD3z5cwfeUO7o1ryMOXa644KdkOHcvg9g/ms2LbPsYNuJDYeprjSER8ZNcuZ3Lwd97x3eTgq1cfn6dt6VIwBrp0cQYi6d4dYmJ8ew4iUmqd8TxwxpguwCxgKZDlWf0kMAwIB9I863631g42xsQAo621V3v2vxp4CwgGPrLWvnS6YEtzAgfZc8X9yRcLNtGjTS1e6dFcc8VJiZSRmcXAzxYxc9UORtzRliua6ltqESkCZzt6ZXLy8Xna/vjDWdelC/TsCT16OIOSiIj4mCbyDjDWWobPSOHNqau5uElV3uvdhsjwELfDEvEZay2PTUxi/MLNvHhjM+7oUNftkESkNMhrcvBataBPH7jssuPbjR0L48Y5c7IlJjrrOnVyKm09ejj7iIgUISVwAWp8wiaemLyU82tE8VE/zRUnJcebU1YxbEYK93drzD//1sTtcESktMndvTIoCAYMgPr1nfUpKc52HTseT9pq1z71MUVEfEgJXACLX7mDoeMWUyUyjE/6t6dh1Ui3QxI5K2N/38DT3/zJre1q85/uzXWfp4i4J7t75b/+dbzSFhIC99wDjz8Odeq4Gp6IlF5nPJG3uC/uvGp8ObADh49lcrPmipMA9/Off/Hst3/S7bxqvHhjMyVvIuKu7NErlyxxBjgBeOIJeO89JW8i4peUwAWIlrUrMmloJyp45oqborniJAAlrN/F/V8uoWXtirxzextCNDiPiPiL+Hj46it45hlnwu34eLcjEhHJkz49BRDvueIGj13EWM0VJwFk9fb93D0mgVqVIviwbzsiwoLdDklExBEf79znNn6805Vy/HhnWUmciPghJXABpkpkOF/ccyFdz63G09/8yRu/rMIf72MU8bZt72H6frSA8NBgPrmrPZXLhbkdkojIcQkJTtIWF+csx8U5ywkJ7sYlIpIHDWISoDRXnASKvYfS6fn+XLbtOcJXgzpyQUx5t0MSERER8Xv5DWKiicUCVEhwEC/f1Jxzykfwv2mr2XngKCN6t6Gc5ooTP3IkPZN7Pl3I+tRDjOnfTsmbiIiIyFlSySaAGWN44LLGvNqjOXNSUrll1Dx27D/idlgiAGRmWf7xZSIL1u/iv71a0qlhtNshiYiIiAQ8JXAlwC3t6jC6Tyxrdhykx4i5rN15wO2QpJSz1vLC/y3j52V/8ey1F3Bdyxi3QxIREREpEZTAlRDZc8UdOppJjxFzWbxRc8WJe96buYZP521g0MUN6N+lvtvhiIiIiJQYSuBKkJa1KzJxSCfKe+aKm7p8u9shSSk0YeEmXv9lFTe1rsljV57ndjgiIiIiJYoSuBKmXrQzV9y51aMY9NlCxs3XXHFSfOJX7uDxSUu5qHE0r/ZoQVCQcTskERERkRJFCVwJFB0ZzhcDO3BJk6o8NflP/jtFc8VJ0UvctIeh4xZzfo0oRtzRlrAQ/XkRERER8TV9wiqhyoaF8EGfWG5tV5vhM1J45Osk0jOz3A5LSqi1Ow/Qf0wCVaPC+bhfeyI1nYWIiIhIkdCnrBIsJDiI/3RvzjkVyvDWtGR27j/Ke5orTnxsx/4j9PloAQb4tH97qkaFux2SiIiISImlClwJZ4zhH5c14dUezZmdksqto35n5/6jboclJcT+I+nc9XECuw4e46N+7agXXc7tkERERERKNCVwpcQt7erwQZ+2pOw4QPcRczRXnJy1YxlZDB67iFV/7ee93m1oWbui2yGJiIiIlHhK4EqRS8+rzhcDO3BQc8XJWcrKsjzy9R/MSUnj1R4t6HpuNbdDEhERESkVlMCVMq1qV2SS11xx0zRXnJyB//y0gm8Tt/LolefSo20tt8MRERERKTWUwJVC2XPFNakexUDNFSeFNHrWWj6YtY5+neox5JKGbocjIiIiUqoogSuloiPD+eKe43PFvam54qQAvk3cwos/rOCa5jV45toLMEYTdYuIiIgUJyVwpVi5cGeuuFtiazNsRgqPaq44OYU5Kak8POEPLqxfmf/2aklwkJI3ERERkeKmCcFKuZDgIF7p4cwV9/b0ZHZorjjJw59b9jLos0U0rBrJqD6xlAkNdjskERERkVJJFTjBGMODf2vCK901V5ycbNOuQ/T7OIEKEaGMuas9FSJC3Q5JREREpNRSAic5bm1/fK64HiPmsi71oNshicvSDhylz0cLSM/M4pP+7TinQhm3QxIREREp1ZTAyQmy54o7cDSDHiPmskRzxZVah45l0P+ThWzdc5iP+sXSqFqU2yGJiIiIlHpK4OQkrWpXZOKQTkSGh3DbB78zfYXmiitt0jOzuHfcYpZu3sPw21rTtm5lt0MSEREREZTAST7qe80Vd8+nC/l8/ka3Q5JiYq3lqclLiV+1kxdvbM7lTc9xOyQRERER8VACJ/mqGuXMFXdxk6o8OXmp5oorJd6cuprxCzfzQLfG3H5hHbfDEREREREvSuDklLLniusVW0tzxZUCn81bz/AZKdzWvjb/uKyx2+GIiIiISC6a7EtOKzQ4iFd7tOCcChEMm57MzgNHefd2zRVX0vz85zae/W4Zl51fnX/f0AxjNFG3iIiIiL9RBU4KxBjDP//WhP90b85vq3dy2we/k3pAc8WVFAvW7eL+LxNpXbsiw29rTUiw/jSIiIiI+CN9SpNCua19HT7oE8vq7fvpMWIu6zVXXMBbvX0/Az5JoHalCD7s246IsGC3QxIRERGRfCiBk0Lrdn51vrinA/uPZNB9xFwSN+1xOyQ5Q1v3HKbvRwsoExrMJ/3bU6lcmNshiYiIiMgpKIGTM9K6TqXjc8WN0lxxgWjvoXT6frSAA0cy+KR/e2pVKut2SCIiIiJyGkrg5IxlzxXXqFok93y6kC8WaK64QHEkPZN7Pl3IhrRDjOoTy/k1yrsdkoiIiIgUgBI4OStVo8L5cqAzV9wTk5by5tTVmivOz2VmWR74cgkJG3bx5i0t6diwitshiYiIiEgBKYGTs5Y9V1zPtrUYNj2ZxyZqrjh/Za3lue/+5Jdl23n22gu4tkWM2yGJiIiISCFoIi/xidDgIF67uQU1KpRh2IwUdu4/yru921A2TJeYP3k3PoWxv29k8CUNuatzfbfDEREREZFCUgVOfMYYwz8vP5eXb2rOr6t3ctsozRXnT8YnbOKNKavp3romj115rtvhiIiIiMgZUAInPnf7hXUYdWcsqzRXnN+YsXI7T0xeysVNqvLqzS0wxrgdkoiIiIicASVwUiQuu+D4XHE9NFecq5Zs3M3QcYtpGlOeEb3bEBqsf/YiIiIigUqf5KTIZM8VV84zV9yMlZorrrit3XmA/mMSqF6+DB/1a0e5cN2TKCIiIhLIlMBJkTpxrrhFfKm54orNjn1H6PPRAoKDDJ/2b090ZLjbIYmIiIjIWVICJ0Uue664Lo2ieXzSUv6nueKK3P4j6fT7OIFdB4/xUb921K1Szu2QRERERMQHTpvAGWNqG2PijTErjDHLjDEPeNb39CxnGWNiT7H/emPMUmNMojFmoS+Dl8BRLjyE0X1jubltLd6enszjE5eSobniisTRjEwGj13E6u37GXFHW1rUquh2SCIiIiLiIwW5ISYDeMhau9gYEwUsMsZMBf4EugPvF+AYcdba1LOIU0qA0OAgXr+5BTGeueIWb9zNORXKEBYcRHhokPMzJJiwkCDCQ4I8P53lE9dlP07cNiyPdeEhznFLy6iLWVmWhyckMScljTd7teSSJlXdDklEREREfOi0CZy1dhuwzfN8vzFmBVDTWjsVKDUfjMU3sueKq125LBMXb+bA0QyOZWRxNCPL8zPzhOWMLN90tQwLCSI8OHcimEeyl2/SGJyTOJ6QNAYH57t/eB7rgoOK9t/Lyz+u4P/+2MrjV51H9za1ivS9RERERKT4FWpIOmNMPaA1ML8Qu1lgijHGAu9ba0flc+yBwECAOnXqFCYsCUA9Y2vTM7b2abfLzLIc80rujnold8cyszianun56VnOlQAePUVymL2cvf+BoxnHj5N9XK/tfSEkyOSdLHpXIUODc5bDvdbnnXQeX16+bR+jZ6+jX6d6DLq4gU/iFRERERH/UuAEzhgTCUwE/mGt3VeI9+hsrd1qjKkGTDXGrLTW/pZ7I09iNwogNjZWI1wIAMFBhoiwYCLCgoFQ1+Kw1nIsM+uk5PBYHsnh0TySw+M/M3Mtn5yc7juc7jl2Zq5k1dnuVEXJa1rU4NlrL1BlXERERKSEKlACZ4wJxUnexllrJxXmDay1Wz0/dxhjJgPtgZMSOBF/ZozxdKMMJsrlWDIy804Asyw0qhpJUBF30xQRERER95w2gTPOV/kfAiustW8W5uDGmHJAkOfeuXLA5cC/zihSEQEgJDiIkOAgyoa5HYmIiIiIFLeCzAPXGbgTuNQzFUCiMeZqY8xNxpjNQEfgB2PMLwDGmBhjzI+efasDs40xfwALgB+stT8XwXmIiIiIiIiUeAUZhXI2kF+frMl5bL8VuNrzfC3Q8mwCFBEREREREUdBKnAiIiIiIiLiB5TAiYiIiIiIBAglcCIiIiIiIgFCCZyIiIiIiEiAUAInIiIiIiISIJTAiYiIiIiIBAglcCIiIiIiIgFCCZyIiIiIiEiAMNZat2M4iTFmJ7DB7TjyEA2kuh1ECaL29D21qW+pPX1Pbepbak/fU5v6ltrT99SmvuevbVrXWls190q/TOD8lTFmobU21u04Sgq1p++pTX1L7el7alPfUnv6ntrUt9Sevqc29b1Aa1N1oRQREREREQkQSuBEREREREQChBK4whnldgAljNrT99SmvqX29D21qW+pPX1Pbepbak/fU5v6XkC1qe6BExERERERCRCqwImIiIiIiASIEpnAGWOuNMasMsakGGMe91r/lTEm0fNYb4xJzGPfVsaYecaYZcaYJGPMLV6v1TfGzDfGJHuOFZbP+/f1bJNsjOlb2P39kR+36RhjzDqvGFr59syLhh+058/GmD3GmO9zrdc16vs21TVayPb0xe/DH/lxmwbkNQqut2ldY8wiz3ssM8YMLsz+/siP21PX6Fn8LTTGlDfGbDHGvHMm+/sTP27P4r1GrbUl6gEEA2uABkAY8AdwQR7b/Rd4No/1TYDGnucxwDagomd5PHCr5/lIYEge+1cG1np+VvI8r1TQ/f3x4edtOga42e02CqT29LzWDbgO+D7Xel2jvm9TXaOF/zd/1r8Pf3v4eZsG3DXqJ20aBoR7nkcC64GYQL1O/bw9dY2exd9C4G3gc+Adr3W6Rn3bnsV6jbr+yyiCX25H4Bev5SeAJ3JtY4BN2b/E0xzvD6CxZ59UICSv9/Ha/jbgfa/l9z3rCrS/Pz78tU09zwPuj7rb7em1X1e8kg1do75vU886XaNn2J6+2t8fHv7app7nAXeN+lubAlWAjTgfCgPyOvXX9tQ1enZtCrQFvgT64Uk4dI36tj3duEZLYhfKmji/uGybPeu8XQRst9Ymn+pAxpj2OBn+Gpw/JnustRm5j2uMiTXGjD7N++e7fwDw1zbN9pKnFP4/Y0x4wU/LNW63Z350jeLzNs2ma/QM27Og+wcAf23TbIF2jYIftKkxprYxJskTx6vW2q2n2t/P+Wt7ZtM1Wsg2NcYE4VSjHsl1OF2jvm3PbMV2jZbEBM7ksc7mWr4N+OKUBzGmBvAZcJe1NutUx7XWLrTWDjjN+xckLn/lr20Kzrcv5wHtcLpYPnaqGPyE2+15NnH5K39tU9A1esbtWZj9A4C/tikE5jUKftCm1tpN1toWQCOgrzGmegHj8kf+2p6ga/RM23Qo8KO1dlOubXWN+rY9oZiv0ZKYwG0Ganst1wJyvsExxoQA3YGv8juAMaY88APwtLX2d8/qVKCiZ/+TjluA9y/o/v7IX9sUa+026zgKfAy0L8R5ucXt9syPrlHft6mu0TNsz6L6fbjIX9s0UK9R8IM2zeapFC3D+fY/UK9Tf21PXaNn3qYdgfuMMeuBN4A+xphXCrG/v/HX9iz2a7QkJnAJQGPPaDJhwK3Ad16vXwastNZuzmtnzz6TgU+ttROy11trLRAP3OxZ1Rf4No9D/AJcboypZIypBFyO04+2oPv7I79sU8+xa3h+GuBG4M8zPcli5HZ75knXqO/b1HNsXaMeBW3Povx9uMgv29TzWiBeo+B+m9YyxkR4nlcCOgOrAvg69cv29CzrGj2DNrXW9rbW1rHW1gMe9hzncV2jvm1Pz7GL9xq1fnBToq8fwNXAapx+rU/lem0MMPgU+94BpAOJXo9WntcaAAuAFGACx0dLigVGex2jv2ebFJzyLKfaPxAeftymM4ClOP9QxgKRbrdVgLTnLGAncBjnG60rdI0WWZvqGi1ke57J/oHw8OM2Dchr1A/a9G9AEs5ACEnAQK9jB+R16sftqWv0DP9v8jpWP04cdEPXqG/bs1ivUeN5UxEREREREfFzJbELpYiIiIiISImkBE5ERERERCRAKIETEREREREJEErgREREREREAoQSOBERERERkQChBE5ERERERCRAKIETEREREREJEErgREREREREAsT/A4++s5WoFu4BAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAE/CAYAAADlpzo+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABn70lEQVR4nO3dd3gU1f7H8fc3HQi9B0IH6QQIAUQF7PUqKF3Eggpi7171ij+7XntDwIKKNBEr9osNaQFCDR2khd5CTTu/P3bBgIEkkGSSzef1PPtkd2bOzGfDkOS758wZc84hIiIiIiIiRVuQ1wFERERERETk1Km4ExERERERCQAq7kRERERERAKAijsREREREZEAoOJOREREREQkAKi4ExERERERCQAq7kRERERERAKAijsREQHAzPZmemSY2YFMr/t5ne9kmNkaMzvX6xwnYma/mNnAfNz/cDNb6v83vfaYdWZmT5rZBjPb7c/SLNP6CmY2ycz2mdlfZtb3mPbnmNkSM9tvZlPMrHZ+vQ8REcmeijsREQHAORd5+AGsBS7LtGy01/mOZWYhgXCMAjAPuAWYk8W6HsD1wJlABWAa8FGm9W8CKUBVoB/w9uHiz8wqAZ8Bj/rbxgPj8uctiIhITqi4ExGREzKzIDN70MxWmtl2MxtvZhX86+qYmTOz68xsnZntNLNBZtbOzOab2S4zeyPTvq41s6lm9rq/p2iJmZ2TaX1ZM3vXzJL8vUlPmlnwMW1fNrMdwFAzq29m//Pn2mZmo82snH/7j4BawFf+3sf7zayLma0/5v0d6d0zs6Fm9qmZfWxme4Brs8nUwMx+9b+XbWaWZXFjZhH+fW73f09mmVlVM3sKX2H1hj/jG/7tG5vZj2a2w9/r1jPTvj4ws2H+9cn+4x+3x8w596Zz7mfgYBar6wJ/OOdWOefSgY+Bpv7jlAKuBB51zu11zv0BfAn097ftDixyzk1wzh0EhgKtzKzx8bKIiEj+UnEnIiLZuR24AugMRAE78fXoZNYeaAj0Al4BHgbOBZoBPc2s8zHbrgIqAY8Bnx0uFoFRQBrQAGgNnA8MzKJtFeApwIBn/LmaANH4igycc/05ugfy+Ry+38uBT4FywOhsMj0B/ACUB2oCrx9nnwOAsv58FYFBwAHn3MPA78Ct/oy3+ouqH4FP/O+zD/BW5uGS+HrRnsD3PUzw5zwZY4EGZtbIzEL9Ob/zr2sEpDvnlmXafh6+f1P8X+cdXuGc2weszLReREQKmIo7ERHJzs3Aw8659c65Q/iKp6uOGbL4hHPuoHPuB2AfMMY5t8U5twFf8dI607ZbgFecc6nOuXHAUuASM6sKXATc6Zzb55zbArwM9M7UdqNz7nXnXJpz7oBzboVz7kfn3CHn3FbgJXxF6KmY5pz73DmXAZTJJlMqUBuI8r//P46zz1R8RV0D51y6c262c27Pcba9FFjjnHvf/z7nABOBqzJt841z7jf/v8fDQEcziz6J95qE799nKXAA3zDNu/zrIoHdx2y/Gyidw/UiIlLAAuFaAhERyV+1gUlmlpFpWTq+67AO25zp+YEsXkdmer3BOecyvf4LX89bbSAUSDKzw+uCgHWZts38HDOrAryGb2hjaf/2O3P0ro4v8zGyy3Q/vh60mWa2E3jROfdeFvv8CF+v3Vj/sNGP8RXMqVlsWxtob2a7Mi0L4ehr4Y5kdM7t9Q9TjTome048BrTzZ9sEXA38z99LuBdfcZtZGSDZ/zy79SIiUsDUcyciItlZB1zknCuX6RHh75U7GTUsU6WE77q4jf7jHAIqZTpOGedc5mF+mYtC8A3JdEBL51wZfMWJnWD7fUDJwy/8185VPmabzG1OmMk5t8k5d6NzLgpfD+dbZtbg2Dfs76V83DnXFDgdX+/cNcfJuA749Zjvd6RzbnCmbY700plZJL4JTTYee9wcaAWM8/fKpjnnPsA3xLQpsAwIMbOGx2y/yP98kf/14RylgPqZ1ouISAFTcSciItkZBjx1eNIOM6tsZpefwv6qALebWaiZ9cB3rdxk51wSvuvXXjSzMv6JXOofc73esUrj60HaZWY1gPuOWb8ZqJfp9TIgwswu8V9j9ggQfrydZ5fJzHqYWU3/5jvxFWrpx+7HzLqaWQt/MbkH3zDNw9sdm/FroJGZ9fd/j0L9E9Q0ybTNxWZ2hpmF4es5nOGcy7LXzszCzCwCX9Eb6p/c5fDv/1lAD//kLkFm1h9fT+UK/zV0nwH/Z2alzKwTvusRD/cgTgKam9mV/v3/B5jvnFtyvO+niIjkLxV3IiKSnVfxzZL4g5klA9PxTWxysmbgm3xlG75JUa5yzm33r7sGCAMW4yuWPgWqn2BfjwNt8F3r9Q2+YiSzZ4BH/DNU3uuc243vtgAjgQ34evLWc2InytQOmGFme/F9j+5wzq3OYh/V/O32AInAr/iGZoLv+3uV+WYafc05l4xv0pbe+HrjNgHPcXQR+gm+IZU7gLb4Jlg5nh/wDY09HRjuf36Wf91z+CZFSQB24bve7krn3C7/+luAEviukxwDDHbOLQLwX+N4Jb5/w534zonM10eKiEgBs6MvexAREck/5ruJ9kDn3BleZymqzOwDYL1z7hGvs4iISOGinjsREREREZEAoOJOREREREQkAGhYpoiIiIiISABQz52IiIiIiEgAUHEnIiIiIiISAEK8DpAblSpVcnXq1PE6hoiIiIiIiCdmz569zTlXOat1Raq4q1OnDvHx8V7HEBERERER8YSZ/XW8dRqWKSIiIiIiEgBU3ImIiIiIiASAbIs7M4s2sylmlmhmi8zsDv/yF8xsiZnNN7NJZlYui7anmVlCpsceM7vTv26omW3ItO7ivH5zIiIiIiIixUVOrrlLA+5xzs0xs9LAbDP7EfgReMg5l2ZmzwEPAQ9kbuicWwrEAJhZMLABmJRpk5edc/899bchIiIiIlKwUlNTWb9+PQcPHvQ6igSgiIgIatasSWhoaI7bZFvcOeeSgCT/82QzSwRqOOd+yLTZdOCqbHZ1DrDSOXfcCwBFRERERIqK9evXU7p0aerUqYOZeR1HAohzju3bt7N+/Xrq1q2b43a5uubOzOoArYEZx6y6Hvg2m+a9gTHHLLvVP6zzPTMrn5ssIiIiIiJeOnjwIBUrVlRhJ3nOzKhYsWKue4VzXNyZWSQwEbjTObcn0/KH8Q3dHH2CtmHAv4AJmRa/DdTHN2wzCXjxOG1vMrN4M4vfunVrTuOKiIiIiOQ7FXaSX07m3MpRcWdmofgKu9HOuc8yLR8AXAr0c865E+ziImCOc27z4QXOuc3OuXTnXAYwAojLqqFzbrhzLtY5F1u5cpb36hMRERERKZaeeuopmjVrRsuWLYmJiWHGDN8Au4EDB7J48eI8OUadOnXYtm3bCbd5+umnc73fDz74gFtvvfWoZe+//z4xMTHExMQQFhZGixYtiImJ4cEHH8z1/gvCK6+8wv79+72OcUS219yZr2R8F0h0zr2UafmF+CZQ6eycy+4d9eGYIZlmVt1/PR9AN2BhboKLiIiIiBRn06ZN4+uvv2bOnDmEh4ezbds2UlJSABg5cmSBZnn66af597//fcr7ue6667juuusAX1E5ZcoUKlWqdMr7PVnOOZxzBAVl3Sf2yiuvcPXVV1OyZMkc7zMtLY2QkJzMa5l7Oem56wT0B84+5rYFbwClgR/9y4YBmFmUmU0+3NjMSgLnAZ8ds9/nzWyBmc0HugJ35cH7ERERkUIgPcPx58ptZGScaGCPiJyKpKQkKlWqRHh4OACVKlUiKioKgC5duhAfHw9AZGQkDzzwAG3btuXcc89l5syZdOnShXr16vHll18C/+xFu/TSS/nll1/+ccwrrriCtm3b0qxZM4YPHw7Agw8+yIEDB4iJiaFfv34AfPzxx8TFxRETE8PNN99Meno64OuZa9SoEZ07d2bq1Kk5fq8vvPAC7dq1o2XLljz22GMArFmzhsaNGzNw4ECaN29Ov379+Omnn+jUqRMNGzZk5syZAAwdOpT+/ftz9tln07BhQ0aMGJHtfps0acItt9xCmzZtWLduHYMHDyY2NpZmzZod2e61115j48aNdO3ala5dux75Xh/26aefcu211wJw7bXXcvfdd9O1a1ceeOABVq5cyYUXXkjbtm0588wzWbJkSY6/Fyd0uBotCo+2bds6ERERKfxe/H6Jq/3A1+7j6Wu8jiKSbxYvXuzp8ZOTk12rVq1cw4YN3eDBg90vv/xyZF3nzp3drFmznHPOAW7y5MnOOeeuuOIKd95557mUlBSXkJDgWrVq5Zxz7v3333dDhgw50v6SSy5xU6ZMcc45V7t2bbd161bnnHPbt293zjm3f/9+16xZM7dt2zbnnHOlSpU60nbx4sXu0ksvdSkpKc455wYPHuxGjRrlNm7c6KKjo92WLVvcoUOH3Omnn37UMY91+Ljff/+9u/HGG11GRoZLT093l1xyifv111/d6tWrXXBwsJs/f75LT093bdq0cdddd53LyMhwn3/+ubv88sudc8499thjrmXLlm7//v1u69atrmbNmm7Dhg0n3K+ZuWnTph3Jcvh9p6Wluc6dO7t58+b943tz7PdhwoQJbsCAAc455wYMGOAuueQSl5aW5pxz7uyzz3bLli1zzjk3ffp017Vr1yy/B1mdY0C8O069lD/9gSIiIlJsTV2xjdenrABg7Mx19Gtf2+NEIvnv8a8WsXjjnuw3zIWmUWV47LJmx10fGRnJ7Nmz+f3335kyZQq9evXi2WefPdJbdFhYWBgXXnghAC1atCA8PJzQ0FBatGjBmjVrcpXptddeY9Ik322r161bx/Lly6lYseJR2/z888/Mnj2bdu3aAXDgwAGqVKnCjBkz6NKlC4fn0ejVqxfLli3L9pg//PADP/zwA61btwZg7969LF++nFq1alG3bl1atGgBQLNmzTjnnHMws3+8t8svv5wSJUpQokQJunbtysyZM/njjz+Ou9/atWvToUOHI+3Hjx/P8OHDSUtLIykpicWLF9OyZctcfe969OhBcHAwe/fu5c8//6RHjx5H1h06dChX+zoeFXciIiKSZ7YmH+KOsQnUq1SKK9vW5PnvlrJww26a1yjrdTSRgBQcHEyXLl3o0qULLVq0YNSoUf8o7kJDQ4/MvBgUFHRkGGdQUBBpaWkAhISEkJGRcaRNVlPw//LLL/z0009MmzaNkiVL0qVLlyy3c84xYMAAnnnmmaOWf/755yc1A6Rzjoceeoibb775qOVr1qw58l5O9N7gnzNPmtkJ91uqVKkjr1evXs1///tfZs2aRfny5bn22muPe4uCzMc5dpvD+8zIyKBcuXIkJCRk99ZzTcWdiIiI5ImMDMdd4xJIPpjKxwPjqF6mBK/8tJxxs9apuJOAd6IetvyydOlSgoKCaNiwIQAJCQnUrn1yPeV16tThrbfeIiMjgw0bNhy5Xi2z3bt3U758eUqWLMmSJUuYPn36kXWhoaGkpqYSGhrKOeecw+WXX85dd91FlSpV2LFjB8nJybRv35477riD7du3U6ZMGSZMmECrVq2yzXbBBRfw6KOP0q9fPyIjI9mwYQOhoaG5en9ffPEFDz30EPv27eOXX37h2WefpUSJEjna7549eyhVqhRly5Zl8+bNfPvtt3Tp0gWA0qVLk5ycfGTSl6pVq5KYmMhpp53GpEmTKF269D/2V6ZMGerWrcuECRPo0aMHzjnmz5+fo+9FdlTciYiISJ5465cV/LFiG892b0HjamUAuLh5NT5P2MC/L25CibBgjxOKBJa9e/dy2223sWvXLkJCQmjQoMGRSU5yq1OnTkeGODZv3pw2bdr8Y5sLL7yQYcOG0bJlS0477bSjhi3edNNNtGzZkjZt2jB69GiefPJJzj//fDIyMggNDeXNN9+kQ4cODB06lI4dO1K9enXatGlzZKKVEzn//PNJTEykY8eOgG846scff0xwcM5/psTFxXHJJZewdu1aHn30UaKiooiKisrRflu1akXr1q1p1qwZ9erVo1OnTke974suuojq1aszZcoUnn32WS699FKio6Np3rw5e/fuzTLP6NGjGTx4ME8++SSpqan07t07T4o7cye8PV3hEhsb6w7P+iMiIiKFx8zVO+g9fBqXtozi1d4xR4YmTV+1nd7Dp/PfHq24qm1Nj1OK5K3ExESaNGnidQzJxtChQ4mMjOTee+/1OkquZXWOmdls51xsVtvn6CbmIiIiIsezY18Kt4+ZS60KJXmqW/OjrjlpX7cCdSuVYuzMtR4mFBEpHjQsU0RERE5aRobj3gnz2LEvhc9uOZ3SEUdfr2Jm9GoXzbPfLmHFlmQaVPnn9SciIvlp6NChXkcoMOq5ExERkZM28o9V/G/JFh65tMlxJ025sk1NQoKMsTPXFXA6EZHiRcWdiIiInJQ5a3fy/HdLubBZNfp3OP4MfZVLh3Ne06pMnLOeQ2nZT54gIiInR8WdiIiI5Nru/anc9slcqpWN4LmrWmZ776recbXYuT+VHxZtLqCEIiLFj4o7ERERyRXnHPd9Oo/New7yRt82lC2R/f2mzmhQiRrlSjBuloZmiojkFxV3IiIikiuj/lzDD4s38+BFjYmJLpejNsFBRs/YaP5YsY212/fnb0CRYiQ4OJiYmBiaN29Ojx492L//5P9/XXvttXz66acADBw4kMWLFx93219++YU///zzyOthw4bx4YcfnvSxD1uzZg3Nmzc/atnQoUP573//m6v95FWeokbFnYiIiOTYgvW7eXryEs5pXIUbzqibq7Y9YmsSZDAuXrdFEMkrJUqUICEhgYULFxIWFsawYcOOWp+Tm4RnZeTIkTRt2vS4648t7gYNGsQ111xzUsfKa2lpaYUqT0FScSciIiI5knwwlVvHzKFiZBj/7dEq2+vsjhVVrgSdG1VmQvx60tIz8imlSCH1/PMwZcrRy6ZM8S3PI2eeeSYrVqzgl19+oWvXrvTt25cWLVqQnp7OfffdR7t27WjZsiXvvPMO4Btifeutt9K0aVMuueQStmzZcmRfXbp0IT4+HoDvvvuONm3a0KpVK8455xzWrFnDsGHDePnll4mJieH3338/qnctISGBDh060LJlS7p168bOnTuP7POBBx4gLi6ORo0a8fvvv+f6PZ5o3//+97/p3Lkzr7766pE8GzduJCYm5sgjODiYv/76i7/++otzzjmHli1bcs4557B2re9Dp2uvvZbbb7+d008/nXr16h3pySwqVNyJiIhItpxzPPTZAtbvPMBrfVpTvlTYSe2nd1wttiQfYsrSrXmcUKSQa9cOevb8u8CbMsX3ul27PNl9Wloa3377LS1atABg5syZPPXUUyxevJh3332XsmXLMmvWLGbNmsWIESNYvXo1kyZNYunSpSxYsIARI0Yc1RN32NatW7nxxhuZOHEi8+bNY8KECdSpU4dBgwZx1113kZCQwJlnnnlUm2uuuYbnnnuO+fPn06JFCx5//PGjcs6cOZNXXnnlqOWZrVy58qiCLHNv5In2vWvXLn799VfuueeeI8uioqJISEggISGBG2+8kSuvvJLatWtz6623cs011zB//nz69evH7bfffqRNUlISf/zxB19//TUPPvhgLv8lvKWbmIuIiEi2xsxcx9fzk7jvgtNoV6fCSe/n7MZVqFw6nLEz13Je06p5mFDEY3feCQkJJ94mKgouuACqV4ekJGjSBB5/3PfISkwMvPLKCXd54MABYmJiAF/P3Q033MCff/5JXFwcdev6hk7/8MMPzJ8//0gv1O7du1m+fDm//fYbffr0ITg4mKioKM4+++x/7H/69OmcddZZR/ZVocKJ///v3r2bXbt20blzZwAGDBhAjx49jqzv3r07AG3btmXNmjVZ7qN+/fokZPpeHr4JeXb77tWr13FzTZ06lZEjRx7pLZw2bRqfffYZAP379+f+++8/su0VV1xBUFAQTZs2ZfPmojXDr4o7EREROaHEpD08/tUizmxYicGd65/SvkKDg+jRtibDfl1J0u4DVC9bIo9SihQB5cv7Cru1a6FWLd/rU3T4mrtjlSpV6shz5xyvv/46F1xwwVHbTJ48Odvh1c65XA/BPpHw8HDANxFMWlpanu0Xjn7PmSUlJXHDDTfw5ZdfEhkZmeU2md/j4Yzge/9FiYZlioiIyHHtO5TGrZ/MoUyJUF7qGUNQ0Kn/kderXTQZDj6NX58HCUUKiVdegV9+OfHjscdg/3549FHf18ceO/H22fTa5dQFF1zA22+/TWpqKgDLli1j3759nHXWWYwdO5b09HSSkpKYcuw1gUDHjh359ddfWb16NQA7duwAoHTp0iQnJ/9j+7Jly1K+fPkjPWQfffTRkZ62U3Uy+05NTaVnz54899xzNGrU6Mjy008/nbFjxwIwevRozjjjjDzJ6DX13ImIiMhxPfrFQlZt28foge2pXDo8+wY5ULtiKU6vX5Fx8esY0rVBnhSMIoXe4Wvsxo+Hrl19j8yv89HAgQNZs2YNbdq0wTlH5cqV+fzzz+nWrRv/+9//aNGiBY0aNcqyUKpcuTLDhw+ne/fuZGRkUKVKFX788Ucuu+wyrrrqKr744gtef/31o9qMGjWKQYMGsX//furVq8f777+fZ+8lt/v+888/mTVrFo899hiPPfYY4OuxfO2117j++ut54YUXqFy5cp5m9JIVpa7G2NhYd3jWHhEREclfn85ez70T5nHHOQ2567xG2TfIhS/nbeT2MXP58Po4zmpUOU/3LVJQEhMTadKkSc42fv553+QpmQu5KVNg1izIdL2XSGZZnWNmNts5F5vV9uq5ExERkX9YsSWZRz9fSId6Fbj9nIZ5vv/zm1alXMlQxs1ap+JOioesCrjDPXgieUTX3ImIiMhRDqamM2T0XEqGBfNq79YE58OwyYjQYLq3rskPizexfe+hPN+/iEhxpOJOREREjvL4V4tYujmZl3rFULVMRL4dp09cNKnpjolzNLGKiEheUHEnIiIiR3yRsIExM9cxuEt9OufzcMmGVUvTtnZ5xs5aV+SmGxc5TOeu5JeTObdU3ImIiAgAq7ft49+fLaBt7fLcnccTqBxPr3bRrNq6j1lrdhbI8UTyUkREBNu3b1eBJ3nOOcf27duJiMjd6AlNqCIiIiIcTE3n1k/mEBoSxOt9WhMaXDCf/17asjpPfLWYsTPXEle3QoEcUySv1KxZk/Xr17N161avo0gAioiIoGbNmrlqo+JOREREeGZyIos27mHkNbFElStRYMctGRbCv2Ki+HT2eh67rBllS4YW2LFFTlVoaCh169b1OobIEdl+LGdm0WY2xcwSzWyRmd3hX/6CmS0xs/lmNsnMyh2n/RozW2BmCWYWn2l5BTP70cyW+7+Wz7N3JSIiIjn23cIkRk37ixvOqMu5TasW+PF7t6vFobQMvpi3ocCPLSISSHIy5iINuMc51wToAAwxs6bAj0Bz51xLYBnw0An20dU5F3PMzfYeBH52zjUEfva/FhGRAuKcY9f+FK9jiMfW7djPfZ/Op1XNsjxwYWNPMrSoWZZmUWUYM1MTq4iInIpsizvnXJJzbo7/eTKQCNRwzv3gnEvzbzYdyN2AULgcGOV/Pgq4IpftRUTkJB1MTefWMXNp88SPfDpb09AXVylpGdw6Zi4Ab/RtQ1iId/Os9Y6rRWLSHuav3+1ZBhGRoi5XP8XNrA7QGphxzKrrgW+P08wBP5jZbDO7KdPyqs65JPAVkECV4xzzJjOLN7N4XawqInLqtu89RN8R0/lmfhINqkRy74R5fDhtjdexxAMvfL+Eeet28dyVLYmuUNLTLJfHRBERGsTYWWs9zSEiUpTluLgzs0hgInCnc25PpuUP4xu6Ofo4TTs559oAF+Eb0nlWbgI654Y752Kdc7GVK+fv/XZERALdyq176fbWnyzauIe3+rXhy1vP4LymVfnPF4t465cVXseTAvRz4mZG/L6a/h1qc3GL6l7HoUxEKJe0iOLLhI3sO5SWfQMREfmHHBV3ZhaKr7Ab7Zz7LNPyAcClQD93nEHyzrmN/q9bgElAnH/VZjOr7t9PdWDLyb4JERHJ3oxV2+n+1p/sO5TGmJs6cHGL6kSEBvNWvzZcHhPF898t5fnvluiap2IgafcB7pkwj6bVy/DwJU28jnNEn7ho9qWk8/X8jV5HEREpknIyW6YB7wKJzrmXMi2/EHgA+Jdzbv9x2pYys9KHnwPnAwv9q78EBvifDwC+ONk3ISIiJ/b53A30f3cmlSLDmHRLJ9rU+nuC4tDgIF7qGUOfuFq89ctKHv9qMRkZKvACVVp6BrePmUtqWgZv9G1NRGiw15GOaFu7PA2qRDJm5jqvo4iIFEk56bnrBPQHzvbfziDBzC4G3gBKAz/6lw0DMLMoM5vsb1sV+MPM5gEzgW+cc9/51z0LnGdmy4Hz/K9FRCQPOed47efl3DkugTa1y/HZ4E7UqvjPa6uCg4ynuzXnxjPr8sGfa7h/4nzSVeAFpJd/WsasNTt5unsL6lWO9DrOUcyM3u2iSVi3iyWb9mTfQEREjpLtTcydc38AlsWqyVksOzwM82L/81VAq+Nstx04J8dJRUQkV1LSMnjoswVMnLOe7q1r8OyVLU84G6KZ8e+Lm1AqPIRXflrOgZR0Xu4V4+kMipK3flu2lbd+WUmv2Gguj6nhdZwsdW9Tk+e/W8rYmesY+q9mXscRESlS9BtbRCQA7T6QyoD3ZjJxznruPLchL/ZslaMizcy489xGPHJJE75ZkMTNH8VzMDW9ABJLftuy5yB3j0+gYZXIQl00VSgVxvnNqjJp7gadeyIiuaTiTkQkwKzbsZ8r3/6T+L928FLPVtx5biN8l0/n3MAz6/F0txb8smwr174/k72avbBIS89w3DE2gb2H0nizbxtKhBWe6+yy0ieuFrsPpPLdwk1eRxERKVJU3ImIBJCEdbvo9tZUtuw5yIfXt6d7m5onva++7WvxSq8YZq3ZSb+RM9i1PyUPk0pBeuN/K5i2ajv/d3lzGlYt7XWcbHWsV5HoCiV0zzsRkVxScSciEiC+W7iJ3sOnUSIsmM9u6UTH+hVPeZ+Xx9Tg7X5tSNy4h97Dp7M1+VAeJJWCNG3ldl79eRndW9egR9uTL/YLUlCQ0btdLaav2sHqbfu8jiMiUmSouBMRKeKcc4z8fRWDR8+mSfUyTLqlEw2q5N0siOc3q8a718by1/b99HpnGht3HcizfUv+2rb3EHeMnUudiqV44ormuR6e66Wr2tYkOMjUeycikgsq7kREirC09Az+88UinvwmkQubVWPMjR2oFBme58c5s2FlProhjq3Jh+gxbBpr1JtS6GVkOO4eP49dB1J5o28bSoVnO0F2oVK1TARdT6vCxNnrSU3P8DqOiEiRoOJORKSI2nsojRs/jOej6X9x81n1eLNvm3y9IXVsnQqMuakD+1PS6PHONJZuSs63Y8mpe+e3Vfy2bCv/ubQpTaPKeB3npPSJi2bb3hR+TtzsdRQRkSJBxZ2ISBG0afdBeg6bxm/Lt/FUt+Y8dHETgoLyf8hd8xplGX9zRwzoNXwa89fvyvdjSu7N/msH//1hKZe0rE6/9rW8jnPSOjeqTLUyEYyZuc7rKCIiRYKKOxGRImbxxj1c8eZU/tq+j3cHxNKvfe0CPX7DqqX5dNDpRIaH0HfEDGau3lGgx5cT27kvhds+mUuNciV4pnuLInWd3bFCgoPoGVuT35ZvZf3O/V7HEREp9FTciYgUIVOWbqHHsD8BmDDodLqcVsWTHLUqlmTCoI5UKRPONe/N4LdlWz3JIUdzznHfp/PYuvcQb/RtTZmIUK8jnbIesdEATIhf73ESEZHCT8WdiEgRMXrGXwwcFU/tiqX4fEgnz6+jql62BONv7kjdSpEMHBWvG04XAu9NXcNPiVv498VNaFmznNdx8kR0hZKc0aASE+LXkZ7hvI4jIlKoqbgTESnkMjIcz0xO5OFJCzmrYSXGD+pItbIRXscCoFJkOGNv7ECzGmUY8skcJs1V74pX5q3bxbPfJnJe06pce3odr+PkqT5xtdi4+6B6iEVEsqHiTkSkEDuYms6QT+bwzm+r6N+hNiOuiSWykE1pX7ZkKB/f0J72dStw9/h5fDz9L68jFTu7D6Ry65g5VCkdwQtXtSzS19ll5dwmValYKkz3vBMRyYaKOxGRQmrb3kP0GTGd7xZt4pFLmvB/lzcjJLhw/tguFR7Ce9e24+zTqvDI5wt559eVXkcqNpxzPPTZfJJ2HeS1Pq0pVzLM60h5LiwkiCvb1uTnxC1sST7odRwRkUKrcP6VICJSzK3Yspdub00lMWkPb/dry8Az6xX63piI0GCG9W/LpS2r88y3S3jph6U4p2uk8tvHM9YyecEm7rvgNNrWLu91nHzTq100aRmOT2dr6K+IyPGouBMRKWSmrdxO97emciAlnbE3deTC5tW8jpRjocFBvNq7NT1ja/La/1bwxNeJKvDy0aKNu3ni68V0Oa0yN55Zz+s4+ap+5Uji6lZg3Kx1ZGhiFRGRLKm4ExEpRD6bs55r3ptBlTIRTLqlEzHR5byOlGvBQcaz3VtyXac6vDd1NQ99tkCzHOaDvYfSuPWTuZQvGcqLPVoVyE3svda7XTR/bd/P9NXbvY4iIlIoqbgTESkEnHO8/OMy7h4/j9jaFZg46HSiK5T0OtZJCwoy/nNpU247uwFjZ63jznEJpKZneB0rYDjneHjSAv7avo/XeremYmS415EKxMUtqlMmIoSxM9d5HUVEpFAqXFOuiYgUQylpGTw4cT6fzd3AVW1r8nS3FoSFFP3P3syMe84/jVLhITz77RIOpKTxRt82RIQGex2tyJsQv54vEjZyz3mNaF+votdxCkxEaDDdWtdgzMx17NyXQvlSgTd5jIjIqSj6fz2IiBRhu/encs17M/hs7gbuOa8RL1zVMiAKu8wGda7PE1c056fELdwwahb7DqV5HalIW7Y5mf98uZBODSpyS9cGXscpcL3japGSnsGkuRu8jiIiUugE1l8QIiJFyNrt++n29lTm/LWLV3rFcNs5DQv9jJgnq3+H2rzUsxXTVm6n/7sz2H0g1etIRdL+lDSGjJ5DZHgoL/eKIbgYXGd3rCbVy9CqZlnGzlqryXpERI6h4k5ExANz1u6k21tT2b43hY9uiOOK1jW8jpTvurepyVv92rBgw276DJ/O9r2HvI5U5Az9chErtu7llV4xVCkd4XUcz/SOq8WyzXuZs3aX11FERAoVFXciIgXs2wVJ9Bk+nVLhIXx2y+nF6pqpC5tXZ+SAdqzatpee70xj027dkDqnJs1dz/j49dzatQFnNKzkdRxPXdYqipJhwYydudbrKCIihYqKOxGRAuKcY/hvK7nlkzk0iyrDpFtOp37lSK9jFbjOjSoz6ro4Nu85RI93/mTt9v1eRyr0Vm7dy8OTFhJXpwJ3nNPQ6zieiwwP4bKWUXw9P4nkgxriKyJymIo7EZECkJaewcOfL+TpyUu4uHl1PrmxQ7GZvj4r7etVZPTA9iQfTKPHO3+yYkuy15EKrYOp6QwZPYfwkCBe7RNDSLB+dQP0jovmQGo6X87b6HUUEZFCQ78hRETy2d5DadwwKp5PZqxlcJf6vN6ntW4HALSKLse4mzqSngE935nOwg27vY5UKD35zWKWbErmpZ4xVC9bwus4hUZMdDkaVyute96JiGSSbXFnZtFmNsXMEs1skZnd4V/+gpktMbP5ZjbJzMrltK1/3VAz22BmCf7HxXn6zkRECoGk3Qe46u0/+WPFNp7p3oIHLmxMUDGc4fB4TqtWmgmDOlIiNJg+I6Yz+68dXkcqVL6Zn8TH09dy81n16Nq4itdxChUzo3e7aBZs2K0PBkRE/HLSc5cG3OOcawJ0AIaYWVPgR6C5c64lsAx4KBdtD3vZORfjf0w+pXciIlLILNq4myvenMr6nQd4/9p29Imr5XWkQqlupVKMH9SRSpHhXD1yJn8s3+Z1pELhr+37eHDifFrXKse9F5zmdZxC6YrWNQgLCWLcLPXeiYhADoo751ySc26O/3kykAjUcM794Jw7fCfa6UDNnLbNq/AiIoXVlCVb6DFsGsFmfDq4I2c1qux1pEKtRrkSjLu5A7UrluT6D2bx4+LNXkfy1KG0dG79ZC5m8Hqf1oTqOrsslSsZxsXNq/F5wgYOpKR7HUdExHO5+m1hZnWA1sCMY1ZdD3x7Em1v9Q/rfM/Myucmi4hIYfXRtDXcMGoWdSuVYtKQTjSuVsbrSEVCldIRjL2pA02iyjDo49l8kbDB60ieee7bpSzYsJsXerSiZvmSXscp1HrH1SL5YBrfLEjyOoqIiOdyXNyZWSQwEbjTObcn0/KH8Q2/HJ3Ltm8D9YEYIAl48ThtbzKzeDOL37p1a07jiogUuIwMx1PfLObRLxbR9bQqjL+5I1XLFN8bTZ+MciXDGD2wPbG1y3PnuIRieR+zHxdv5r2pq7n29Dpc0Kya13EKvfZ1K1C3UinGzSp+54qIyLFyVNyZWSi+4my0c+6zTMsHAJcC/ZxzLjdtnXObnXPpzrkMYAQQl1V759xw51yscy62cmUNaxKRwulASjq3jJ7DiN9XM6BjbYZfE0up8BCvYxVJkeEhfHBdHJ0bVebBzxYw8vdVXkcqMOt37ufeCfNoUaMsD13c2Os4RYKZ0atdNLPW7NQtNUSk2MvJbJkGvAskOudeyrT8QuAB4F/OuSzvQHu8tv511TO97AYszH18ERHvbU0+RO8R0/l+8Sb+c2lTHr+8OcGaEfOUlAgLZnj/WC5qXo0nv0nk1Z+Wc5zPEANGanoGt4+ZS3qG442+rQkP0e0ycurKNjUJCTLdFkFEir2c9Nx1AvoDZx9z24I3gNLAj/5lwwDMLMrMJmfTFuB5M1tgZvOBrsBdefnGREQKwvLNyXR7aypLN+3hnavbcv0Zdb2OFDDCQoJ4vU9rrmxTk5d/WsYz3y4J6ALvxR+WMWftLp69sgW1K5byOk6RUrl0OOc1rcpnczdwKE0Tq4hI8ZXtmCHn3B9AVh9BZ3nrAufcRuDibNrinOuf85giIoXPnyu2cfPHswkPCWb8zR1pWbOc15ECTkhwEC9c1ZJS4cEM/20Vew+l8eTlzQPuXoFTlm5h2K8r6du+Fpe2jPI6TpHUq1003y7cxI+LN+t7KCLFluZWPgXOOUb9uYYPpq72OoqIFLBPZ6/nmvdmUr1sBJ8POV2FXT4KCjIe/1czBnepzycz1nL3+ATS0jO8jpVnNu0+yD3j59G4Wmn+c2nT7BtIls5sWJka5UpoaKaIFGu62v8U/blyGz8nbqFFzbK0rV3B6zgiks+cc7z84zJe+98KzmhQiTf7taFsiVCvYwU8M+OBCxsTGR7CC98vZX9KOq8HwHVpaekZ3D52LgdT03mjbxsiQov2+/FScJDRMzaal39axtrt+6lVUbeQEJHiRz13p8DMeP6qVkSVK8Gtn8xlx74UryOJSD46lJbOXeMSeO1/K+gZW5P3r2unwq6ADenagKGXNeWHxZsZOCqe/SlpXkc6Ja/9bwUzV+/gySua06BKpNdxirwesTUJMhgfr947ESmeVNydorIlQnmrXxu270vhznEJZGQE7sX+IsXZrv0p9H93Jp8nbOS+C07juStbEhqsH6FeuLZTXZ6/qiVTV2xjwHsz2XMw1etIJ2Xqim28/r/lXNW2Jt3b1PQ6TkCIKleCzo0qM2H2uoAauisiklP6yyQPNK9RlqGXNeO3ZVt5Y8oKr+OISB77a/s+ur/1Jwlrd/Fq7xiGdG2A704v4pWesdG83qcNc9fuot+IGUVu5MTW5EPcMTaB+pUj+b/Lm3kdJ6D0jqvF5j2HmLJ0q9dRREQKnIq7PNInLporYqJ4+adlTF2xzes4IpJHZv+1k25v/cmO/SmMvrE9l8fU8DqS+F3Ssjojroll2eZker0zjS17DnodKUcyMhx3jUsg+WAqb/ZtQ8kwXf6el85uXIXKpcMZO3Ot11FERAqcirs8YmY81a0F9StHcsfYuWwuIn9kiMjxfTM/iT4jplMmIoRJt3SiXR1NmlTYdG1chQ+ui2PjrgP0eGca63bs9zpStt7+dSV/rNjG4/9qxmnVSnsdJ+CEBgdxVduaTFm6hU279btYRIoXFXd5qFR4CG/3a8O+Q+nc9slcjfcXKaKcc7z9y0qGfDKHljXK8tktnahbSTeVLqw61q/IxwPbs3NfCj3fmcbKrXu9jnRcM1fv4MUflvKvVlH0ahftdZyA1btdNBkOJmhiFREpZlTc5bGGVUvzTPcWzFyzg//+sMzrOCKSS6npGfx70gKe+24Jl7WK4uOB7alQKszrWJKN1rXKM+7mjqSmZ9DrnWks3rjH60j/sGNfCrePmUutCiV5unsLXbeZj2pXLMXp9SsyLn6dJjoTkWJFxV0+uKJ1Dfq2r8WwX1fyc+Jmr+OISA4lH0zl+g9mMWbmOoZ0rc+rvWJ037EipEn1Moy/uSNhwUH0Hj6NOWt3eh3piIwMx70T5rFjXwpv9G1DZLius8tvvdpFs37nAaau1HXwIlJ8qLjLJ/+5tCnNa5Th7vHzisQ1ICLF3cZdB+gxbBrTVm7n+Stbct8FjQkKUs9KUVOvciTjB3WkfKkwrh45gz8LyR/27/6xmv8t2cIjlzaheY2yXscpFi5oVo1yJUMZO1NDM0Wk+FBxl08iQoN5q29bMpxjyCdzOJSW7nUkETmOhRt2c8WbU9mw8wAfXBdHT10LVaTVLF+SCTd3pGb5Elz3/iz+t8TbERRz1u7kue+WcFHzavTvUNvTLMVJRGgw3VvX5IfFm9i+95DXcURECoSKu3xUq2JJXriqFfPX7+apbxK9jiMiWfg5cTM935lGaHAQnw4+nTMaVvI6kuSBKmUiGHdTR06rVpqbPpzNN/OTPMmxe38qt30yl2plI3j2ypa6zq6A9Y6LJjXdMXHOeq+jiIgUCBV3+ezC5tUYeEZdPpz2F1/N2+h1HBHJZNSfa7jxw3jqV45k0i2na1r6AFO+VBijB7anTa3y3DZmDuMLeOZE5xz3T5zH5j0HeaNvG8qWCC3Q4ws0qlqaNrXKMXbWOpzTxCoiEvhU3BWABy5qTNva5Xlw4vxCPUW3SHGRnuH4v68W89iXizi7cVXG3dyBKmUivI4l+aB0RCijro+jU4NK3P/pfD6YurrAjj3qzzV8v2gzD17UmJjocgV2XDla77harNq6j1lrCs8EOyIi+UXFXQEIDQ7ijb6tCQ8N5paP53AgRdffiXhlf0oagz6ezXtTV3Ndpzq8078tJcM0c2EgKxEWzMgBsVzQrCpDv1rMm1NW5PsxF6zfzdOTl3BO4yrccEbdfD+eHN+lLasTGR7C2JlrvY4iIpLvVNwVkOplS/BKrxiWbUnm0S8Weh1HpFjaknyQ3sOn83PiZoZe1pTHLmtGsGbELBbCQ4J5s28bureuwQvfL+W575bk2zC95IOp3DpmDhUjw/hvj1a6zs5jJcNC+FdMFN8sSGL3gVSv44iI5CsVdwXorEaVue3shnw6ez3jZ2lqZpGCtGxzMt3e/JPlm/cyvH8s13ZSb0pxExIcxH97tKJf+1q8/ctKHvtyUZ7f4No5x0OfLWD9zgO81qc15UuF5en+5eT0aVeLQ2kZfJGwwesoIiL5SsVdAbvjnIZ0alCRR79YyOKNe7yOI1IsTF2xjSvf/pOU9AzG39yRc5tW9TqSeCQoyHjyiubcfFY9Ppz2F/d9Op+09Iw82/+Ymev4en4Sd5/XiHZ1KuTZfuXUtKhZlmZRZRgzUxOriEhgU3FXwIKDjFd6taZsiVCGfDKH5IMaIiKSn8bHr2PAezOJKluCz4d0okVN3UC6uDMzHryoMfec14iJc9Zz25i5pKSdeoGXmLSHx79axJkNKzG4c/08SCp5qXdcLRKT9jB//W6vo4iI5BsVdx6oXDqcN/q2Ye2O/Twwcb4+RRTJB845/vv9Uu7/dD4d61dkwuCO1ChXwutYUkiYGbed05BHL23Ktws3ceOH8ac02dW+Q2nc+skcypQI5eVeMQTpWs5C5/KYKCJCgxiryyJEJICpuPNIXN0K3HfBaUxesIlRf67xOo5IQDmUls4dYxN4Y8oKereL5r1r21EmQvcYk3+64Yy6PHdlC35bvpUB78886dEU//liEau37ePV3jFUigzP45SSF8pEhHJJiyi+TNjAvkNpXscREckXKu48dNOZ9Ti3SRWempzI3LW6/45IXti5L4WrR87gy3kbuf/C03imewtCg/WjTo6vV7tavNa7NXP+2snVI2ewa39Krtp/Ons9E+es5/ZzGnJ6/Ur5lFLyQp+4aPalpPP1/I1eRxERyRf6i8dDQUHGiz1iqFomgls/mcvOfbn7g0JEjrZ2+366v/0n89bv5o2+rbmlSwNNQy85clmrKIZd3ZbETcn0emc6W5IP5qjdii3JPPr5QjrUq8BtZzfM55RyqtrWLk+DKpEamikiAUvFncfKlgzlrX5t2Jp8iLvHJ+T5tNwixcXGXQfoM2I6O/enMObG9lzaMsrrSFLEnNu0Ku9f2451O/fT653pbNh14ITbH0xNZ8jouZQMC+bV3q11z8QiwMzo3S6auWt3sXRTstdxRETynIq7QqBlzXI8cmkTpizdytu/rvQ6jkiRszX5EFePnMGeg6l8fEN72tbWFPRycjo1qMRHN7Rn295D9Bw2jdXb9h1328e/WszSzcm81Ms3AkOKhu5tahIWHMSYmWu9jiIikudU3BUS/TvU5rJWUbz4w1KmrdzudRyRImPX/hT6vzuDTXsO8sF17WheQ7c6kFPTtnZ5xt7UgYOp6fQYNo0lm/55T9Iv521kzMy13NKlPp0bVfYgpZysCqXCOL9ZVSbN3cDB1JOfIVVEpDDKtrgzs2gzm2JmiWa2yMzu8C9/wcyWmNl8M5tkZuWO0/5CM1tqZivM7MFMyyuY2Y9mttz/tXyevasiyMx4pnsL6lQqxW1j5ub4eg+R4iz5YCoD3pvJqm37GHFNrHrsJM80iyrLuJs7EhJk9B4+nXnrdh1Zt3rbPh6aOJ/Y2uW5+7xG3oWUk9a7XS12H0jl+0WbvI4iIpKnctJzlwbc45xrAnQAhphZU+BHoLlzriWwDHjo2IZmFgy8CVwENAX6+NsCPAj87JxrCPzsf12sRYaH8Ha/tuw9lMrtY+aSruvvRI7rQEo6N4yKZ9HGPbzdrw2dGmiWQslbDapEMmFQR0pHhNBv5AxmrNrOobR0bv1kDqEhQbzWpzUhmom1SDq9fkWiK5TQ0EwRCTjZ/lZyziU55+b4nycDiUAN59wPzrnDN4qZDtTMonkcsMI5t8o5lwKMBS73r7scGOV/Pgq44qTfRQA5rVppnryiBdNX7eDlH5d5HUekUDqUls7NH88mfs0OXu4VwzlNqnodSQJUdIWSTLj5dKqVjeCa92Zy80ezWbRxD/+9qhVR5Up4HU9OUlCQ0btdLaav2nHC6ypFRIqaXH3kaGZ1gNbAjGNWXQ98m0WTGkDm+YbX+5cBVHXOJYGvgASq5CZLILuqbU16xUbzxpQVTFm6xes4IoVKWnoGt4+Zy2/LtvLslS25rJVmxZT8Va1sBONu6kCDKpH8snQrA8+oy7lN9YFCUXdV25oEBxnjdFsEEQkgOS7uzCwSmAjc6Zzbk2n5w/iGbo7OqlkWy3I11tDMbjKzeDOL37p1a26aFmmPX96MxtVKc9e4hGyn4xYpLjIyHPd9Op/vF21m6GVN6Rkb7XUkKSYqRoYz5qYOvNSzFfdf2NjrOJIHqpaJoOtpVfh09npS0zO8jiMikidyVNyZWSi+wm60c+6zTMsHAJcC/ZxzWRVt64HMf33VBDb6n282s+r+/VQHsuyics4Nd87FOudiK1cuPjOSRYQG8/bVbUlLdwwZPYeUNP3ikeLNOccjXyxk0twN3HfBaVzbqa7XkaSYKRMR6ptGP0TX2QWKPnHRbNt7iJ8TN3sdRUQkT+RktkwD3gUSnXMvZVp+IfAA8C/n3P7jNJ8FNDSzumYWBvQGvvSv+xIY4H8+APji5N5C4KpbqRTPX9WShHW7eObbRK/jiHjGOcfTkxP5ZIZv6vkhXRt4HUlEAkDnRpWpViaCMTM1NFNEAkNOPn7sBPQHzjazBP/jYuANoDTwo3/ZMAAzizKzyQD+CVduBb7HNxHLeOfcIv9+nwXOM7PlwHn+13KMi1tU59rT6/D+1DVMXpDkdRwRT7z683JG/L6aa0+vw30XnOZ1HBEJECHBQfSIrclvy7fqEggRCQiW9WjKwik2NtbFx8d7HaPApaRl0POdaazYspevbjuDupVKeR1JpMCM+G0VT01OpEfbmjx3ZUuCgrK6lFdE5OSs27Gfs16Ywu1nN+Qu3bdQRIoAM5vtnIvNap0uHCgCwkKCeLNfG0KCjVtGz+FgarrXkUQKxMfT/+KpyYlc2rI6z6qwE5F8EF2hJGc0qMSE+HW6v6yIFHkq7oqIGuVK8HKvGBKT9jD0y0XZNxAp4ibNXc+jXyzknMZVeLlXDMEq7EQkn/RuV4uNuw/y2/LiMyu3iAQmFXdFSNfTqjCka33GzlrHxNnrvY4jkm++W5jEvRPm07FeRd7s14bQYP2oEpH8c17TqlQsFcbYmWu9jiIickr0F1MRc9e5jWhftwIPf76ApZuSvY4jkud+WbqF28bMJSa6HCOuiSUiNNjrSCIS4MJCgriybU1+TtzCluSDXscRETlpKu6KmJDgIF7v05rI8FAGj57N3kNpXkcSyTPTV23n5o9m06hqad67th2lwkO8jiQixUSvdtGkZTg+1cgYESnCVNwVQVXKRPB6n9as2baPhz5bQFGa8VTkeBLW7eKGD2YRXaEkH14fR9kSoV5HEpFipH7lSOLqVGDcrHUF/3v1+edhypSjl02Z4lsuIpILKu6KqI71K3LP+afx1byNfDz9L6/jiJySxKQ9DHhvJhUjwxk9sD0VI8O9jiQixVDvuGj+2r6faau2F+yB27WDnj3/LvCmTPG9bteuYHOISJGnMU9F2ODO9Ylfs4Mnvk6kVXQ5WtYs53UkkVxbuXUv/d+dQcmwYEYPbE/VMhFeRxKRYuriFtV57MtFjJ25jtPrV8q/AyUnw9q1Rz9iYuCCC6BVK1i6FN5/H7p2zb8MIhKQVNwVYUFBxks9Y7j09T+4ZfQcvrntTMqW1FA2KTrW7djP1SNnAPDxwPZEVyjpcSIRKc4iQoPp1roGY2euY+e+FMqXCsv9TtLTISnpn8Vb5sfOnUe3CQ6GmjWhUiWIj/ctu+oqaNwYzjoLOnf2fa1Z89TfpIgENCtK12vFxsa6+MM/9OSIuWt30vOdaXRuVIUR17TFTPcDk8Jv856D9Bg2jd0HUhl7UweaVC/jdSQRERZv3MPFr/3Ofy5tyvVn1P3nBsnJsG4d/PVX1oXb+vWQdsxkZ+XKQa1aWT9q14bq1eG333xDMW+6Cd56y/d8/Xr44w/Ys8e3n3r1/i70OneGOnVAv/NFih0zm+2ci81qnXruAkDrWuV56KIm/N/Xixn+2ypu7lzf60giJ7R97yGuHjmD7XsPMfpGFXYiUkikp9PUJdMzdR2bhs/ATS2FrVuXs163WrWgU6d/Fm7R0VAmm59xh6+xGz/eNxTz3HP/fv3llzBvHvz6q+/xxRe+IZvg23fmnr1GjVTsiRRz6rkLEM45bhk9hx8Wb2bMjR2Iq1vB60giWdp9IJW+I6azYsteRl0fR4d6Fb2OJCLFxd69fxdpWfW8nWyvW/Ap3o/z+ed9k6dkvsZuyhSYNQvuv//obTMyYNEiX0/f4YJvyxbfumrVfEXe4YKvaVMI0tx5IoHmRD13Ku4CyJ6Dqfzr9T84kJrON7efSSXNOCiFzL5DaVzz3kzmr9/FiGti6XJaFa8jiUigSE+HTZtOXLydqNct0+NA9Rr0+nYjrU5vzhPXdPLm/eSUc7Bsma/IO1zwrfffq69iRTjzzL979lq1OvVCVEQ8p+KuGFm8cQ/d3ppKbJ3yfHh9e4KDNDxDCoeDqelc/8EsZqzewZt9W3Nh8+peRxKRoiRzr1tWxVse97o98Ol8vpy3kZkPn0PpiCI0WZlzsHr10T17q1f71pUtC2ec8XfPXps2EFqE3puIACruip1xs9bywMQF3HFOQ+46r5HXcURITc9g0Eez+XnJFl7q2YrubTTjm0hAy80wQ/hnr1tWBVwOe91yda3bCcxdu5Nub/3JU92a06997ZPeT6Gwbp2v2Dtc8C1d6lteqhScfvrfPXtxcRCuUT8ihZ2Ku2LGOce9E+bz2dz1jLoujrMaVfY6khRj6RmOO8bO5ev5STx5RXOu7lDE/0gSkewdO0HI5Mlw9dXwwANQvvw/izevrnU7AeccF77yO+GhQXx56xn5dhxPbNoEv//+91DOBQt8y8PDoUMHX7HXubPveUndokaksFFxVwwdSEnnijensnXvIb65/Qyqly3hdSQphjIyHA9MnM+E2ev598WNuekszeQqUmyMGAGDB/uG/R08ePS6fO51yyvvT13N418t5pvbz6BZVFmv4+Sf7dt9xd7hnr2EBN/ELaGhvh7Ywz17nTpB6dJepxUp9lTcFVMrtuzl8jf+oHH1Moy9qQOhwZoxSwqOc47Hv1rMB3+u0RBhkeJo9Wq44AJYvhzOPhsGDiywXre8smt/CnFP/0yv2GieuKK513EKzu7dMHXq3z178fG+ntXgYGjd+u+evTPO8PXEikiBOlFxp7/2A1iDKpE8c2VLZv+1k+e/W+J1HClm/vvDUj74cw0Dz6jLnec29DqOiBS0NWt818k9+ijMn++bpr9TJ1+PXREo7ADKlQzj4ubV+DxhAwdS0r2OU3DKloWLL4bnnoNp03z/jj/8AA89BCVKwOuvw7/+5ZuNMyYG7rgDJk6ErVu9Ti5S7Km4C3D/ahVF/w61GfH7ar5ftMnrOFJMvDllBW9OWUnf9rV4+JImmG6qK1K8ZL7m7v/+z/e1Z0/f8iKmV7taJB9MY/KCJK+jeCcyEs47D554wteTt3s3/PILDB0KlSr5huBedRVUqeK7t97gwTB2LGzc6HVyAd8ER8f+35syxbdcAo6Ku2LgkUub0LJmWe6dMI+12/d7HUcC3AdTV/PC90u5IiaKJy9vrsJOpDiaNevvyVTA93X8eN/yIqZDvQrUrVSKsbPWeh2l8IiI8A3L/M9/4KefYNcu3zDOZ57xDbsdPRr69IEaNaBhQ9+Q3A8/9E2gIwWvXbujP1w5/OFLu3be5pJ8oWvuiol1O/ZzyWu/U6tiST4ddDoRoUVjSIwULeNnreP+ifO5oFlV3uzbhhBd5ykiAWDYryt59tsl/HT3WTSooglFspWW5puU5fAELb///vetLGrV+vuavbPOggYNQB8CnhznfPd/3LXL15u6e/ffz49dtmyZrwDv0QO+//7oD1+kyNGEKgLAT4s3M/DDePq1r8VT3Vp4HUcCzFfzNnLH2Lmc0bAyI65pS3iIPkAQkcCwNfkQHZ/5mes61eHhS5p6HafoyciAhQv/vqn6b7/9fX1e9ep/F3qdO0OTJsWn2Dt4MPui7ETL9uzxfW9PJCzMd1uRsmV9w2T37YO77oKXXsrnNyf5ScWdHPHMt4m88+sqXu0dw+UxNbyOIwHip8WbGfTxbNrUKs+o6+MoEabCTkQCy6CPZjNzzQ6mPXS2Prw6Vc7BkiV/9+z9+uvf1+dVqvR3oXfWWdCyJQQVwlEg6em+4io3xdixyw4dOvExzHxFWdmyfxdomZ/nZFlEhG9fU6bAlVf6jhsaCt9+q567IkzFnRyRmp5B3xHTWbRxD1/e2knDS+SUTV2xjes+mEWTaqX5eGB7SkeEeh1JRCTP/bJ0C9e+P4s3+rbm0pZRXscJLM7BqlV/9+r9+qtvtlXwFShnnPH3UM7WrX29Tu3aHV2cTJniu6bz/vtzdrz9+0+ut+zwsuTk7I9TsmTui7HMXyMj86awzTzB0bRp8PDDvvtIfv65CrwiSsWdHGXT7oNc8trvVCgVxhe3dqJkWIjXkaSImv3XDq4eOZPaFUsy9qYOlCsZ5nUkEZF8kZ7hOOv5KdStVIqPB7b3Ok7gW7v26J695ct9yyMjoXFjWLwYnn7ad3uNX3/1zcp6882+YZ45KdDSs7m1RUjIyfeWHX4eWkg+7Hz++b+L4dRU3/N16+D22+Gxx7xOJydBxZ38wx/Lt9H/vRlcEVODl3q20oyGkmsLN+ymz4jpVIoMZ/zNHalcOtzrSCIi+eqVn5bxyk/L+f3+rkRXKOl1nOIlKclX7B0u+BYtOvH2Zcqc2nDGEiUC99q/OXMgLg6uu853Gwspck6puDOzaOBDoBqQAQx3zr1qZj2AoUATIM4594+qy8xOA8ZlWlQP+I9z7hUzGwrcCBy+4+W/nXOTT5RFxV3eevWn5bz80zKe7taCvu1reR1HipDlm5Pp+c40SoaFMGFQR6LKlfA6kohIvtu46wBnPPc/bunSgHsvOM3rOMXb1q1w220wbhxccw3cffffBVrp0hCs6yJP6MEHfTep//lnOPtsr9NILp2ouMvJQN404B7nXBOgAzDEzJoCC4HuwG/Ha+icW+qci3HOxQBtgf3ApEybvHx4fXaFneS9285uwJkNKzH0q0Us3LDb6zhSRPy1fR/9Rs4gJDiI0QPbq7ATkWIjqlwJOjeqzITZ60hLz2aWQslfCxf6CpNHH4XJk2HHDt899sqVU2GXE4895rsH4Y03+q4/lICRbXHnnEtyzs3xP08GEoEazrlE59zSXBzrHGClc053sCwkgoKMV3rFUKFkGEM+mcOeg6leR5JCbuOuA/QdMYPU9AxGD2xPnUqlvI4kIlKgerWrxeY9h/hl6dbsN5b8kXmCkP/7P9/XzDfpluyVKAEjR/omsvnPf7xOI3koV1PwmFkdoDUw4ySO1RsYc8yyW81svpm9Z2blT2KfcooqRobzRt/WrN95gPsmzKMoXYMpBWtr8iGuHjmDPQdS+fD69jSqqplWRaT4OadJFSpFhjN21lqvoxRfs2YdfRPurl19r2fN8jZXUXPWWTBoELz8Msyc6XUaySM5Lu7MLBKYCNzpnNuTm4OYWRjwL2BCpsVvA/WBGCAJePE4bW8ys3gzi9+6VZ+S5YfYOhV48MLGfL9oM+/+sdrrOFII7dqfQv93Z5C0+yDvX9eOFjXLeh1JRMQTocFB9Iityf+WbGHT7oNexyme7r//n1P4d+2as9sgyNGeew6iouCGGyAlxes0kgdyVNyZWSi+wm60c+6zkzjORcAc59zmwwucc5udc+nOuQxgBBCXVUPn3HDnXKxzLrZy5concWjJiYFn1uX8plV59tslzP5rh9dxpBBJPpjKgPdnsWrrPkZcE0tsnQpeRxIR8VSv2GgyHEyIX+d1FJFTU6YMDBvmu4bx2We9TiN5INviznxz5L8LJDrnXjrJ4/ThmCGZZlY908tu+CZoEY+YGS/0aEVUuRLc+slcduzTpzcCB1LSuWFUPAs37ObNfm04o2ElryOJiHiuTqVSdKxXkXHx68jI0OUMUsRdcgn07QtPPpn9LSak0MtJz10noD9wtpkl+B8Xm1k3M1sPdAS+MbPvAcwsysyOzHxpZiWB84Bje/yeN7MFZjYf6ArclRdvSE5e2RKhvNWvDdv3pXDnuAT9wirmDqWlM+jj2cxas4OXe8VwXtOqXkcSESk0esdFs37nAaau3OZ1FJFT98orvttI3HBD9jd4l0ItJ7Nl/uGcM+dcy8y3LXDOTXLO1XTOhTvnqjrnLvBvv9E5d3Gm9vudcxWdc7uP2W9/51wL/37/5ZxLyvu3J7nVvEZZHrusKb8t28obU1Z4HUc8kpaewe1j5vLrsq08270F/2oV5XUkEZFC5YJm1ShXMpSxMzU0UwJA5crw2mswYwa8/rrXaeQU5Gq2TCke+sbV4oqYKF7+aRlTV+gTyeImI8Nx36fz+X7RZv5zaVN6tdMN7kVEjhURGky31jX4YfEmtu895HUckVPXuzdceik8/DCs1gR7RZWKO/kHM+Opbi2oXzmSO8bOZfMezQZWXDjnePSLhUyau4F7z2/E9WfU9TqSiEih1SeuFqnpjs/mbPA6isipM4O33/bdBP6mm0C3xyqSVNxJlkqFh/B2vzbsO5TObWPmkpae4XUkyWfOOZ6enMjoGWsZ3KU+Q7o28DqSiEih1qhqadrUKseYWWt1n1gJDDVrwvPPw08/wQcfeJ1GToKKOzmuhlVL83T35sxcvYP//rDM6ziSz179eTkjfl/NgI61uf+C0/BNlCsiIifSO64Wq7buY9aanV5HEckbN93ku8H53XdDkqbEKGpU3MkJdWtdkz5xtRj260p+TtycfQMpkkb8topXflrOVW1r8thlzVTYiYjk0KUtqxMZHsLYWWu9jiKSN4KCYMQIOHgQbr3V6zSSSyruJFuPXdaUZlFluHv8PNbt2O91HMljo2f8xVOTE7mkRXWeu7IlQUEq7EREcqpkWAj/ioli8oIkdh9I9TqOSN5o1Agefxw++wwmTvQ6jeSCijvJVkRoMG/1a0OGcwz5ZA6H0nT/k0Axae56Hvl8IWc3rsLLvWIIVmEnIpJrfdrV4mBqBl8kaGIVCSB33w1t2sCQIbBjh9dpJIdU3EmO1K5YiheuasX89bt5+ptEr+NIHvhu4SbunTCfDnUr8la/NoSF6MeBiMjJaF6jDE2rl2HMzHWaWEUCR0gIvPcebN8O99zjdRrJIf01Jzl2YfNq3HBGXUZN+4uv5m30Oo6cgl+WbuG2MXNoVbMsIwfEEhEa7HUkEZEiy8zoExdNYtIeFmzY7XUckbzTqhU88IBv5swffvA6jeSAijvJlQcvakybWuV4cOJ8Vm7d63UcOQkzVm3n5o9m07BKad6/Lo5S4SFeRxIRKfIub12DiNAgxsxc53UUkbz1yCPQuLFvFs29+tuvsFNxJ7kSGhzEG319Q/hu+XgOB1J0/V1RkrBuFzeMiqdm+RJ8dEMcZUuEeh1JRCQglIkI5ZIWUXyZsIF9h9K8jiOSdyIiYORIWLvWV+hJoabiTnItqlwJXundmmVbknn0i4Vex5EcSkzaw4D3ZlK+VCijB3agYmS415FERAJK77ho9qWk88183RtMAkynTr6JVV57DaZN8zqNnICKOzkpnRtV5rauDfh09nrGz9IQlMJu1da99H93BiVCg/lkYAeqlY3wOpKISMCJrV2eBlUiGaN73kkgevppiI6GG26AQ4e8TiPHoeJOTtod5zaiU4OKPPrFQhZv3ON1HDmOdTv202/kDJyDjwe2J7pCSa8jiYgEJDOjd7to5q7dxdJNyV7HEclbpUvDO+9AYiI89ZTXaeQ4VNzJSQsOMl7p1ZqyJUIZ8skckg/q5q2FzeY9B7n63RnsO5TGRze0p0GVSK8jiYgEtG6taxAabIyZqd47CUAXXgjXXAPPPAPz53udRrKg4k5OSeXS4bzepzVrd+znwYkLdH+fQmTHvhSuHjmDbcmH+OD6OJpGlfE6kohIwKsYGc75zaoxae4GDqZq0jEJQC+9BBUq+IZnpmnyoMJGxZ2csvb1KnLv+afxzYIkRv25xus4Auw+kEr/d2ewdsd+Rg5oR5ta5b2OJCJSbPRpV4vdB1L5ftEmr6OI5L2KFeGNNyA+Hl55xes0cgwVd5Inbj6rHuc0rsJTkxOZu3an13GKtf0paVz/wSyWbU5m2NVt6Vi/oteRRESKldPrVyS6QgkNzZTAddVVcMUV8OijsGKF12kkExV3kieCgowXe7aiSukIbv1kLjv3pXgdqVg6mJrOjR/GM3ftTl7r3Zqujat4HUlEpNgJCjJ6xUYzfdUOVm/b53UckbxnBm++CeHhMHAgZGR4nUj8VNxJnilXMoy3+rVha/Ih7h6fQEaGrr8rSKnpGdz6yRymrtjOC1e14qIW1b2OJCJSbPWIjSY4yBin2wVJoIqKghdfhF9/9d3kXAoFFXeSp1pFl+ORS5swZelW3v51pddxio30DMdd4xL4KXELT1zejCvb1vQ6kohIsVa1TARdT6vCp7PXk5quXg0JUNdfD2efDffdBxs2eJ1GUHEn+aB/h9pc2rI6L/6wlOmrtnsdJ+BlZDge+mw+X89P4qGLGtO/Yx2vI4mICNC7XTTb9h7i58TNXkcRyR9mMHw4pKbC4MGgWdM9p+JO8pyZ8eyVLalTsRS3jZnLluSDXkcKWM45/u/rxYyPX8/tZzfg5s71vY4kIiJ+XU6rTNUy4YzV0EwJZPXrw5NPwldfwfjxXqcp9lTcSb6IDA/hravbkHwwlTvGJJCu6+/yxX9/WMoHf67hhjPqctd5jbyOIyIimYQEB9EzNppfl21lw64DXscRyT933AFxcXDbbbBtm9dpijUVd5JvGlcrwxOXN2faqu28/OMyr+MEnDenrODNKSvpExfNI5c0wcy8jiQiIsfoGRsNwHj13kkgCw6Gd9+FXbvgrru8TlOsqbiTfNUjNpqesTV5Y8oKpizd4nWcgPHB1NW88P1SLo+J4skrWqiwExEppKIrlOSMBpWYEL9Oo1gksDVvDv/+N3z8MUye7HWaYkvFneS7/7u8OY2rleaucQkalpIHxsevY+hXizmvaVX+26MVwUEq7ERECrPe7WqxcfdBflu+1esoIvnroYegWTMYNAj27PE6TbGUbXFnZtFmNsXMEs1skZnd4V/ew/86w8xiT9B+jZktMLMEM4vPtLyCmf1oZsv9X8vnzVuSwiYiNJi3r25LWrpjyOg5pKRpSuiT9fX8jTw4cT5nNqzEG31bExqsz2dERAq785pWpUKpMMbOXOt1FJH8FR7uG565fr2v0JMCF5KDbdKAe5xzc8ysNDDbzH4EFgLdgXdysI+uzrljr658EPjZOfesmT3of/1ALrJLEVK3Uimeu7IlQz6Zw4D3ZtKgSiQlw4KJCA2mZFhwpuchRy0vERZMiUzPI0KCCSqmPVU/J27mzrEJtK1dnuH9YwkPCfY6koiI5EBYSBBXtqnB+1PXsCX5IFVKR3gdSST/tG8Pd94JL78MvXvDmWd6nahYyba4c84lAUn+58lmlgjUcM79CJzKtT6XA138z0cBv6DiLqBd0rI6q7Y2YszMtSzZtIf9KekcOolevBKhfxd9JfyF4dHPQygRFkTJsJAsisfM24YcVTiWCPU9CmPxOHXFNgaPnkOT6mV499p2lAhTYSciUpT0aleLEb+vZuLsDQzuotvWSIB74gn4/HMYOBDmzYMIfaBRUHLSc3eEmdUBWgMzctHMAT+YmQPecc4N9y+v6i8ccc4lmVmV3GSRoum2cxpy2zkNj7zOyHAcSE1nf0o6B/1f96ekcSA1nQMpvteHnx/e7oB/ve/538t37Eth/c7My9I4mJr74jE8JMhfEIYQEeorEo/qQfxHURly1PKjCsawYEqGhhx5XiI0ONfXyM3+awc3fhhP3Yql+PD6OMpEhOb6PYmIiLcaVIkkrk4Fxs1ay6DO9TQRlgS2UqV8Nzc/7zz4v/+Dp5/2OlGxkePizswigYnAnc653Fwh2ck5t9FfvP1oZkucc7/l4rg3ATcB1KpVKxeHlaIgKMgoFR5CqfBcfc6QYxkZjoNp/ywEfc/TjrM8c2GZduT5zv0pbNz1z4Izt8IOF4+hwUT4i8SSoSG+56GZi8JgwkOD+HDaX1QpHc5HA+MoXyosH75LIiJSEHrHRXP3+HlMW7Wd0+tX8jqOSP4691y4/np4/nno0QNat/Y6UbFgzmU/La+ZhQJfA9875146Zt0vwL3Oufis2h6z7VBgr3Puv2a2FOji77WrDvzinDvtRO1jY2NdfHy2hxEpMBkZjkNpGexPSTum9/HonsjDz7PqkczcU/mPIjM13ddjd0McNcuX9PrtiojIKTiQkk7c0z9xduMqvNpbf+hKMbBzJzRtCtWqwcyZEKrRR3nBzGY757Kc0DLb7hLzjRt4F0g8trDLQdtSQJD/Wr1SwPnA//lXfwkMAJ71f/0iN/sWKQyCguxIT1vFfNj/4Q9fNHxHRKToKxEWTLfWNRg7ax2P70+hXEmNxpAAV748vPUWdO8OL74IDz7odaKAl5N51DsB/YGz/bczSDCzi82sm5mtBzoC35jZ9wBmFmVmh+9cWBX4w8zmATOBb5xz3/nXPQucZ2bLgfP8r0UkEzNTYSciEkB6t6tFSloGn83Z4HUUkYLRrRtcdRUMHQpLl3qdJuDlaFhmYaFhmSIiIlLU/euNPziYms73d56lD/CkeNi0yTc8s1kz+PVXCNJ9ek/FiYZl6jsrIiIiUoB6t6vFss17mbtul9dRRApGtWq++9798QcMG+Z1moCm4k5ERESkAP0rJoqSYcGMnbnW6ygiBeeaa+D88+GBB2Ctzv38ouJOREREpABFhodwWcsovpqXRPLBVK/jiBQMM3jnHXAOBg3yfZU8p+JOREREpID1iovmQGo6X81L8jqKSMGpU8d3Q/Nvv4VPPvE6TUBScSciIiJSwFpHl+O0qqUZO0vD06SYGTIEOnaEO+6ALVu8ThNwVNyJiIiIFDAzo3dcNPPX72bRxt1exxEpOMHBMHIkJCf7CjzJUyruRERERDzQrXUNwkKCGDtznddRRApW06bw6KMwdix8+aXXaQKKijsRERERD5QrGcZFzavxecIGDqSkex1HpGDdfz+0bAmDB8Nu9V7nFRV3IiIiIh7p3a4WyQfTmLxAE6tIMRMWBu++67vB+f33e50mYKi4ExEREfFIh3oVqFOxpCZWkeIpNhbuuQeGD4cpU7xOExBU3ImIiIh4xMzo1a4Ws9bsZMWWvV7HESl4Q4dCgwZw442wf7/XaYo8FXciIiIiHrqqbU1Cgoxx6r2T4qhkSRgxAlauhMce8zpNkafiTkRERMRDlUuHc26Tqkycs4FDaZpYRYqhLl3gppvgpZcgPt7rNEWaijsRERERj/WKi2bHvhR+XLzZ6ygi3nj+eahWDa6/HlJSvE5TZKm4ExEREfHYWQ0rc12nOtSvHOl1FBFvlC0Lw4bBggW+Qk9OijnnvM6QY7GxsS5eXbUiIiIiIoGpTx/47DOYO9d3s3P5BzOb7ZyLzWqdeu5ERERERKRwePVVKF0aBg6EdF2Dmlsq7kREREREpHCoUsVX4E2bBm++6XWaIkfFnYiIiIiIFB59+8LFF8NDD8GaNV6nKVJU3ImIiIiISOFh5ptcJSjId4uEIjRHiNdU3ImIiIiISOESHQ3PPQc//gijRnmdpshQcSciIiIiIoXPoEFwxhlw112waZPXaYoEFXciIiIiIlL4BAXByJFw4ADcdpvXaYoEFXciIiIiIlI4nXYaDB0Kn37qu/+dnJCKOxERERERKbzuuQdat4YhQ2DnTq/TFGoq7kREREREpPAKDYV334WtW+Hee71OU6ipuBMRERERkcKtdWu4/3547z346Sev0xRa2RZ3ZhZtZlPMLNHMFpnZHf7lPfyvM8wsNjdt/euGmtkGM0vwPy7Ou7clIiIiIiIB5T//gUaN4MYbYd8+r9MUSjnpuUsD7nHONQE6AEPMrCmwEOgO/HYSbQ972TkX439MPrm3ICIiIiIiAS8iwjd75po18MgjXqcplLIt7pxzSc65Of7nyUAiUMM5l+icW3oybU89toiIiIiIFDtnngm33AKvvgrTp3udptDJ1TV3ZlYHaA3MyO2BjtP2VjObb2bvmVn53O5TRERERESKmWeegZo14YYb4NAhr9MUKjku7swsEpgI3Omc25Obgxyn7dtAfSAGSAJePE7bm8ws3szit27dmpvDioiIiIhIoClTBoYNg8WLfYWeHJGj4s7MQvEVZ6Odc7m6e+Dx2jrnNjvn0p1zGcAIIC6r9s654c65WOdcbOXKlXNzaBERERERCUQXXwxXXw1PPw0LFnidptDIyWyZBrwLJDrnXsrNzk/U1syqZ3rZDd8ELSIiIiIiItl7+WUoV843PDM93es0hUJOeu46Af2BszPftsDMupnZeqAj8I2ZfQ9gZlFmNvlEbf3rnjezBWY2H+gK3JWn70xERERERAJXpUrw+uswa5ZvghXBnHNeZ8ix2NhYFx8f73UMEREREREpDJyDK66AH3/0Dc+sX9/rRPnOzGY757K8z3iuZssUEREREREpNMzgrbcgNNR3c/Mi1HGVH1TciYiIiIhI0VWjBrzwAkyZAu++63UaT6m4ExERERGRom3gQOjSBe65BzZs8DqNZ1TciYiIiIhI0RYUBCNGQEoK3HJLsR2eqeJORERERESKvgYN4Ikn4MsvYcIEr9N4QsWdiIiIiIgEhjvvhNhYuO022L7d6zQFTsWdiIiIiIgEhpAQ36QqO3bA3Xd7nabAqbgTEREREZHA0bIlPPQQfPghfPed12kKlIo7EREREREJLA8/DE2awM03Q3Ky12kKjIo7EREREREJLOHhvuGZ69bBv//tdZoCo+JOREREREQCT8eOvolV3nwT/vjD6zQFQsWdiIiIiIgEpqeeglq1fDc5P3jQ6zT5TsWdiIiIiIgEpshIGD4cli713QMvwKm4ExERERGRwHX++XDttfDcc5CQ4HWafKXiTkREREREAtuLL0KlSnDDDZCW5nWafKPiTkREREREAluFCr6JVebMgZde8jpNvlFxJyIiIiIige/KK6F7d3jsMVi2zOs0+ULFnYiIiIiIFA9vvAEREXDjjZCR4XWaPKfiTkREREREiofq1X3DMn/7zTeLZoBRcSciIiIiIsXHtdfCuefC/ffDunVep8lTKu5ERERERKT4MIN33oH0dBg8GJzzOlGeUXEnIiIiIiLFS7168NRT8M03MGaM12nyjIo7EREREREpfm67Ddq3h9tvh61bvU6TJ1TciYiIiIhI8RMcDO++C3v2wB13eJ0mT6i4ExERERGR4qlZM3jkEd/QzK+/9jrNKVNxJyIiIiIixdeDD0Lz5jBokK8XrwhTcSciIiIiIsVXWJhveGZSEjzwgNdpTkm2xZ2ZRZvZFDNLNLNFZnaHf3kP/+sMM4s9QfsLzWypma0wswczLa9gZj+a2XL/1/J585ZERERERERyIS4O7roLhg2DX3/1Os1Jy0nPXRpwj3OuCdABGGJmTYGFQHfgt+M1NLNg4E3gIqAp0MffFuBB4GfnXEPgZ/9rERERERGRgvd//wcVKkDfvnDgwN/Lp0yB55/3LlcuZFvcOeeSnHNz/M+TgUSghnMu0Tm3NJvmccAK59wq51wKMBa43L/ucmCU//ko4IqTyC8iIiIiInLqSpaEf/8bNm6E667zLZsyBXr2hHbtvM2WQyG52djM6gCtgRk5bFIDWJfp9Xqgvf95VedcEvgKSDOrkpssIiIiIiIieeqee+B//4Nx4yAyEr74AsaPh65dvU6WIzmeUMXMIoGJwJ3OuZxOI2NZLHM5Pab/uDeZWbyZxW8NkJsLioiIiIhIITV6tK+we/ddGDy4yBR2kMPizsxC8RV2o51zn+Vi/+uB6EyvawIb/c83m1l1//6rA1uy2oFzbrhzLtY5F1u5cuVcHFpERERERCSX5s6FkBC47z54+23f0MwiIiezZRrwLpDonHspl/ufBTQ0s7pmFgb0Br70r/sSGOB/PgD4Ipf7FhERERERyTuHr7H77DPfJCrjx/teF5ECLyc9d52A/sDZZpbgf1xsZt3MbD3QEfjGzL4HMLMoM5sM4JxLA24Fvsc3Ect459wi/36fBc4zs+XAef7XIiIiIiIi3pg16+hr7Lp29b2eNcvbXDlkzuXqEjhPxcbGuvj4eK9jiIiIiIiIeMLMZjvnsrzPeI4nVBEREREREZHCS8WdiIiIiIhIAFBxJyIiIiIiEgBU3ImIiIiIiAQAFXciIiIiIiIBQMWdiIiIiIhIAFBxJyIiIiIiEgBU3ImIiIiIiASAInUTczPbCvzldY4sVAK2eR1CApbOL8lPOr8kv+kck/yk80vyU2E9v2o75ypntaJIFXeFlZnFH+8u8SKnSueX5CedX5LfdI5JftL5JfmpKJ5fGpYpIiIiIiISAFTciYiIiIiIBAAVd3ljuNcBJKDp/JL8pPNL8pvOMclPOr8kPxW580vX3ImIiIiIiAQA9dyJiIiIiIgEgGJX3JnZhWa21MxWmNmDmZaPM7ME/2ONmSVk0TbGzKaZ2SIzm29mvTKtq2tmM8xsuX9fYcc5/gD/NsvNbEBu20vhVgjOr+/MbJeZfX3Mcp1fAcDL8ysvzk8p3Dw+v2qb2Wz/MRaZ2aDctJfCz+vfj/5ty5jZBjN742TaS+Hm9TlmZumZjvNlbtvnGedcsXkAwcBKoB4QBswDmmax3YvAf7JY3gho6H8eBSQB5fyvxwO9/c+HAYOzaF8BWOX/Wt7/vHxO2+tRuB9en1/+decAlwFfH7Nc51cRf3h9fuXF+alH4X0UgvMrDAj3P48E1gBROr8C4+H1+ZVpP68CnwBvZFqm8ysAHoXhHAP2Hmd5gZ5jnv9jFPA/fEfg+0yvHwIeOmYbA9Yd/gfOZn/zgIb+NtuAkKyOk2n7PsA7mV6/41+Wo/Z6FO6H1+dXpnZdyFTc6fwKjEdhOb/yqr0ehetRmM4voCKw1v8Hls6vAHgUhvMLaAuMBa7FX9zp/AqcRyE5x/5R3HlxjhW3YZk18P2jHrbevyyzM4HNzrnlJ9qRmcXh+2RgJb5fRLucc2nH7tfMYs1sZDbHP257KVK8Pr+OR+dXYCg051dO20uR4vn5ZWbRZjbfn+M559zGE7WXIsXT88vMgvD12Nx3zO50fgUOz3+GARFmFm9m083sCv+yAj/HQvJz54WQZbHs2OlC+wBjTrgTs+rAR8AA51yGmR13v865eGBgNsfPSS4p/Lw+v04llxR+heL8yk17KVI8P7+cc+uAlmYWBXxuZp8CGTnIJYWf1+fXLcBk59y6Y5ro51fg8PocA6jlnNtoZvWA/5nZAmBPDnLlqeJW3K0HojO9rglsPPzCzEKA7vi67rNkZmWAb4BHnHPT/Yu3AeXMLMRfmR+132OO3+WY4/+Si/ZSuHl9fh2Pzq/A4Pn5lU/npxQOnp9fh/n/OFqE71P2ibltL4WS1+dXR+BMM7sF3zWdYWa2F9/QPZ1fgcHrcwz/aAOcc6vM7BegNR78DCtuwzJnAQ39s9aEAb2BLzOtPxdY4pxbn1Vjf5tJwIfOuQmHlzvfINopwFX+RQOAL7LYxffA+WZW3szKA+fjG3eb0/ZSuHl9fmVJ51fA8PT8yq/zUwoNr8+vmmZWwv+8PNAJWKrzK2B4en455/o552o55+oA9/r386DOr4Di9c+w8mYW7n9eCd/PsMWenGP5eUFfYXwAFwPL8I2jffiYdR8Ag07Q9mogFUjI9Ijxr6sHzARWABP4e9avWGBkpn1c799mBXBdpuVZttejaD0Kwfn1O7AVOIDvU6wLdH4FzsPL8+tk2utRtB4en1/nAfPxTWIwH7gp0751fgXAw+vfj5n2dS1Hz5ap8ytAHh7/DDsdWOD/GbYAuMGrc8z8BxUREREREZEirLgNyxQREREREQlIKu5EREREREQCgIo7ERERERGRAKDiTkREREREJACouBMREREREQkAKu5EREREREQCgIo7ERERERGRAKDiTkREREREJAD8P3jAtwBUGnzSAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABOzklEQVR4nO3dd1iUV97G8e+hCCrYxQqWWBIVRAVLXKOkmcQkpmhsb9puejFtNz0bs+m97W6yKZtNdu01xpgeTTRFQEWNXaOCiooFBZQ65/3jGRAVFRR4Brg/1zUXM0+b35AT8OaUx1hrEREREREREXf5uV2AiIiIiIiIKJyJiIiIiIj4BIUzERERERERH6BwJiIiIiIi4gMUzkRERERERHyAwpmIiIiIiIgPUDgTERERERHxAQpnIiLVhDEms9jDY4w5VOz1GLfrOxXGmM3GmPPdruNEjDHzjTE3VdC1OxljPjXGpBlj9hpjvjLGdC62v5t3225jzDE3LjXGNDLGzDTGZBljthhjRh+1/zxjzBpjzEFjzDxjTJuK+BwiIlI6CmciItWEtTak8AEkA5cV2zbe7fqOZowJqA7vUcEaALOBzkAzIB74tNj+PGAK8KfjnP8PINd77hjgHWNMVwBjTBNgBvAE0AhIBCaX+ycQEZFSUzgTEanmjDF+xpiHjTEbjTF7jDFTjDGNvPvaGmOsMeZGY0yKMWafMeY2Y0ysMWa5MSbdGPP3Yte6wRjzkzHmbWPMfm+vy3nF9tc3xnxojEk1xmwzxjxjjPE/6tzXjTF7gXHGmDOMMd9769ptjBlvjGngPf6/QATwmbf370FjzCBjzNajPl9R75oxZpwxZpox5n/GmAPADSepqYMx5gfvZ9ltjCkxnBhjgr3X3OP9niQYY5oZY54FBgB/99b4d+/xZxpjvvH2dq01xlxT7Fr/Mca8692f4X3/EnusrLXx1toPrbV7rbV5wOtAZ2NMY+/+tdbaD4GVJdRcF7gaeMJam2mtXYgT9K71HnIVsNJaO9Vamw2MA7obY84sqRYREal4CmciItXfWOAKYCDQEtiH06NSXB+gIzACeAN4DDgf6ApcY4wZeNSxvwNNgCeBGYVhD/gYyAc6AD2AC4GbSjg3DHgWMMDz3rrOAsJxQgLW2ms5sgfwpVJ+3qHANJxep/Enqelp4GugIdAaePs417weqO+trzFwG3DIWvsYsAC4y1vjXd5Q9A0wwfs5RwH/LOyx8hrjfe8mQJK3ztI4B9hhrd1TimM7AQXW2nXFti3D+W+K9+uywh3W2ixgY7H9IiJSyRTORESqv1uBx6y1W621OTjhZ9hRQ/6ettZmW2u/BrKAidbaXdbabTjho0exY3cBb1hr86y1k4G1wBBjTDPgYuBea22WtXYXTk/PyGLnbrfWvm2tzbfWHrLWbrDWfmOtzbHWpgGv4YTI0/GLtXaWtdYD1DtJTXlAG6Cl9/MvPM4183BCWQdrbYG1drG19sBxjr0U2Gyt/cj7OZcA04FhxY753Fr7o/e/x2NAP2NM+Ik+lDGmNU6ovv9k3wCvEGD/Udv2A6Gl3C8iIpWsqo/FFxGRk2sDzDTGeIptK8CZh1RoZ7Hnh0p4HVLs9TZrbfHFJ7bg9Hy1AQKBVGNM4T4/IKXYscWfY4wJA97CGRoY6j1+X6k+1fEVf4+T1fQgTg9WvDFmH/CqtfbfJVzzvzi9ZpO8wy7/hxN480o4tg3QxxiTXmxbgPcax9Rorc30DvNseVTtRYwxTXF6+P5prZ1Y0jElyMQJp8XVAzJKuV9ERCqZes5ERKq/FOBia22DYo9gb6/YqWhliiUdnHlh273vkwM0KfY+9ay1xYfJHb2i4PPebVHW2nrA/+EMdTze8VlAncIX3rljTY86pvg5J6zJWrvDWnuztbYlTg/jP40xHY7+wN5ewqestV2As3F6x647To0pwA9Hfb9DrLW3FzumqJfMGBOCsyDH9qPf17u/IU4wm22tfbakY45jHRBgjOlYbFt3Ds9PW+l9Xfg+dYEzKGH+moiIVA6FMxGR6u9d4NnCRSeMMU2NMUNP43phwFhjTKAxZjjOXLG51tpUnBDxqjGmnnchkjOOmq92tFCcHpx0Y0wr4C9H7d8JtC/2eh0QbIwZYowJBB4Hgo538ZPVZIwZ7h0uCE6PncXpVTyCMSbOGBPpDYMHcIY5Fh53dI1zgE7GmGu936NA7wIrZxU75hJjzB+MMbVweu4WWWuP6TUzxtQDvgJ+stY+XMJ+Y4wJBmp5XwcbY4K8nz0LZzXGvxlj6hpj+uPMxyvswZsJdDPGXO29xl+B5dbaNcf7foqISMVSOBMRqf7exFml72tjTAbwK87CHKdqEc7iIbtxFvUYVmyBiutwgsIqnLAzDWhxgms9BfTEmev0OU6YKO554HHvCol/ttbuB+4APgC24fSkbeXETlRTLLDIGJOJ8z26x1q7qYRrNPeedwBYDfyAM7QRnO/vMOOsdPmWtTYDZ9GRkTi9YTuAFzkyRE7AWUxlL9ALZ4GQklzprfFGc+R97CK8+9vgDDst7O06hDMHsNAdQG2ceYITgduttSsBvHP8rsb5b7gPp00Unx8oIiKVzBw5bUBEROT4jDE3ADdZa//gdi1VlTHmP8BWa+3jbtciIiK+RT1nIiIiIiIiPkDhTERERERExAdoWKOIiIiIiIgPUM+ZiIiIiIiID1A4ExERERER8QEBlflmTZo0sW3btq3MtxQREREREfEZixcv3m2tbVrSvkoNZ23btiUxMbEy31JERERERMRnGGO2HG+fhjWKiIiIiIj4AIUzERERERERH6BwJiIiIiIi4gMqdc6ZiIiIiIivyMvLY+vWrWRnZ7tdilRDwcHBtG7dmsDAwFKfc9JwZowJBz4BmgMe4D1r7ZvGmGjgXSAYyAfusNbGn0rhIiIiIiKVbevWrYSGhtK2bVuMMW6XI9WItZY9e/awdetW2rVrV+rzSjOsMR94wFp7FtAXuNMY0wV4CXjKWhsN/NX7WkRERESkSsjOzqZx48YKZlLujDE0bty4zL2yJ+05s9amAqne5xnGmNVAK8AC9byH1Qe2l+mdRURERERcpmAmFeVU2laZFgQxxrQFegCLgHuBl40xKcArwCNlfncRERERkRrs2WefpWvXrkRFRREdHc2iRYsAuOmmm1i1alW5vEfbtm3ZvXv3CY957rnnynzd//znP9x1111HbPvoo4+Ijo4mOjqaWrVqERkZSXR0NA8//HCZr18Z3njjDQ4ePOh2GUVKvSCIMSYEmA7ca609YIx5BrjPWjvdGHMN8CFwfgnn3QLcAhAREVE+VYuIiIiIVHG//PILc+bMYcmSJQQFBbF7925yc3MB+OCDDyq1lueee45HH330tK9z4403cuONNwJOKJw3bx5NmjQ57eueKmst1lr8/Eruk3rjjTf4v//7P+rUqVPqa+bn5xMQUDHrKpaq58wYE4gTzMZba2d4N18PFD6fCvQu6Vxr7XvW2hhrbUzTpk1Pt14RERGRGmH/wTw+WPA71lq3S5EKkpqaSpMmTQgKCgKgSZMmtGzZEoBBgwaRmJgIQEhICA899BC9evXi/PPPJz4+nkGDBtG+fXtmz54NHNuLdemllzJ//vxj3vOKK66gV69edO3alffeew+Ahx9+mEOHDhEdHc2YMWMA+N///kfv3r2Jjo7m1ltvpaCgAHB6xjp16sTAgQP56aefSv1ZX375ZWJjY4mKiuLJJ58EYPPmzZx55pncdNNNdOvWjTFjxvDtt9/Sv39/OnbsSHy8s9bguHHjuPbaazn33HPp2LEj77///kmve9ZZZ3HHHXfQs2dPUlJSuP3224mJiaFr165Fx7311lts376duLg44uLiir7XhaZNm8YNN9wAwA033MD9999PXFwcDz30EBs3buSiiy6iV69eDBgwgDVr1pT6e3FChWnyeA/A4KzW+MZR21cDg7zPzwMWn+xavXr1siIiIiJyYt+s3GFjn/nGtn/kc7tia7rb5VRbq1atcvX9MzIybPfu3W3Hjh3t7bffbufPn1+0b+DAgTYhIcFaay1g586da6219oorrrAXXHCBzc3NtUlJSbZ79+7WWms/+ugje+eddxadP2TIEDtv3jxrrbVt2rSxaWlp1lpr9+zZY6219uDBg7Zr16529+7d1lpr69atW3TuqlWr7KWXXmpzc3Ottdbefvvt9uOPP7bbt2+34eHhdteuXTYnJ8eeffbZR7zn0Qrf96uvvrI333yz9Xg8tqCgwA4ZMsT+8MMPdtOmTdbf398uX77cFhQU2J49e9obb7zRejweO2vWLDt06FBrrbVPPvmkjYqKsgcPHrRpaWm2devWdtu2bSe8rjHG/vLLL0W1FH7u/Px8O3DgQLts2bJjvjdHfx+mTp1qr7/+emuttddff70dMmSIzc/Pt9Zae+6559p169ZZa6399ddfbVxcXInfg5LaGJBoj5OXStMf1x+4FlhhjEnybnsUuBl40xgTAGTjHbooIiIiIqcm/WAuf/tsFTOWbuPM5qH8+4ZYurWq73ZZNcJTn61k1fYD5XrNLi3r8eRlXY+7PyQkhMWLF7NgwQLmzZvHiBEjeOGFF4p6awrVqlWLiy66CIDIyEiCgoIIDAwkMjKSzZs3l6mmt956i5kzZwKQkpLC+vXrady48RHHfPfddyxevJjY2FgADh06RFhYGIsWLWLQoEEUjoYbMWIE69atO+l7fv3113z99df06NEDgMzMTNavX09ERATt2rUjMjISgK5du3LeeedhjDnmsw0dOpTatWtTu3Zt4uLiiI+PZ+HChce9bps2bejbt2/R+VOmTOG9994jPz+f1NRUVq1aRVRUVJm+d8OHD8ff35/MzEx+/vlnhg8fXrQvJyenTNc6ntKs1rgQp/esJL3KpQoRERGRGu6bVTt5dOYK9mXlcs95HbkzrgO1Asq0dptUQf7+/gwaNIhBgwYRGRnJxx9/fEw4CwwMLFr5z8/Pr2gYpJ+fH/n5+QAEBATg8XiKzilpCff58+fz7bff8ssvv1CnTh0GDRpU4nHWWq6//nqef/75I7bPmjXrlFYgtNbyyCOPcOuttx6xffPmzUWf5USfDY5d+dAYc8Lr1q1bt+j1pk2beOWVV0hISKBhw4bccMMNx13ivvj7HH1M4TU9Hg8NGjQgKSnpZB+9zCpmJpuIiIiIlMq+rFye+mwls5K2c1aLevznxli6tlRvWWU7UQ9XRVm7di1+fn507NgRgKSkJNq0aXNK12rbti3//Oc/8Xg8bNu2rWi+VnH79++nYcOG1KlThzVr1vDrr78W7QsMDCQvL4/AwEDOO+88hg4dyn333UdYWBh79+4lIyODPn36cM8997Bnzx7q1avH1KlT6d69+0lrGzx4ME888QRjxowhJCSEbdu2ERgYWKbP9+mnn/LII4+QlZXF/PnzeeGFF6hdu3aprnvgwAHq1q1L/fr12blzJ1988QWDBg0CIDQ0lIyMjKJFS5o1a8bq1avp3LkzM2fOJDQ09Jjr1atXj3bt2jF16lSGDx+OtZbly5eX6ntxMgpnIiIiIi75auUOHpv5G+kHc7nv/E7cEXcGgf7qLaspMjMzufvuu0lPTycgIIAOHToULdJRVv379y8aItitWzd69ux5zDEXXXQR7777LlFRUXTu3PmIYX+33HILUVFR9OzZk/Hjx/PMM89w4YUX4vF4CAwM5B//+Ad9+/Zl3Lhx9OvXjxYtWtCzZ8+ihUJO5MILL2T16tX069cPcIZz/u9//8Pf37/Un693794MGTKE5ORknnjiCVq2bEnLli1Ldd3u3bvTo0cPunbtSvv27enfv/8Rn/viiy+mRYsWzJs3jxdeeIFLL72U8PBwunXrRmZmZon1jB8/nttvv51nnnmGvLw8Ro4cWS7hzNhKXAEoJibGFq46IyIiIlJT7c3KZdzslcxetp2uLevx8rDudGlZz+2yapzVq1dz1llnuV2GnMS4ceMICQnhz3/+s9ullFlJbcwYs9haG1PS8eo5ExEREalEX/6WyuOzfmP/oTweuKATtw1Sb5mIOBTORERERCrBnswcnpy9kjnLU+nWqh7/u6kPZzZXb5nIyYwbN87tEiqNwpmIiIhIBZu7IpUnZv3Ggew8/jK4M7ec0169ZSJyDIUzERERkQqyOzOHJz9dyecrUolqXZ8Jw/rSufmxq7+JiIDCmYiIiEiFmLN8O3/9dCWZ2fk8eFFnbhnQngD1lonICSiciYiIiJSjtIwc/vrpb3zx2w66hzfglWFRdGym3jIROTn9+UZERESkHFhrmb1sOxe+/gPfrdnFwxefyfTb+imYyQn5+/sTHR1Nt27dGD58OAcPHjzla91www1MmzYNgJtuuolVq1Yd99j58+fz888/F71+9913+eSTT075vQtt3ryZbt26HbFt3LhxvPLKK2W6TnnVU9Wo50xERETkNO3KyOaJWb/x1cqdRIc34JXhUXQIUyiTk6tduzZJSUkAjBkzhnfffZf777+/aH9BQUGZbtZc6IMPPjjh/vnz5xMSEsLZZ58NwG233Vbm96go+fn5PlVPZVLPmYiIiMgpstbyadI2Lnz9R+atTePRS85k+u1nK5hVRy+9BPPmHblt3jxnezkZMGAAGzZsYP78+cTFxTF69GgiIyMpKCjgL3/5C7GxsURFRfGvf/0LcNrfXXfdRZcuXRgyZAi7du0qutagQYNITEwE4Msvv6Rnz550796d8847j82bN/Puu+/y+uuvEx0dzYIFC47o3UpKSqJv375ERUVx5ZVXsm/fvqJrPvTQQ/Tu3ZtOnTqxYMGCMn/GE1370UcfZeDAgbz55ptF9Wzfvp3o6Oiih7+/P1u2bGHLli2cd955REVFcd5555GcnAw4vYdjx47l7LPPpn379kU9iVWFwpmIiIjIKdh1IJtb/ruYeyYl0b5JXeaOHcAt55yBv59xuzSpCLGxcM01hwPavHnO69jYcrl8fn4+X3zxBZGRkQDEx8fz7LPPsmrVKj788EPq169PQkICCQkJvP/++2zatImZM2eydu1aVqxYwfvvv3/EMMVCaWlp3HzzzUyfPp1ly5YxdepU2rZty2233cZ9991HUlISAwYMOOKc6667jhdffJHly5cTGRnJU089dUSd8fHxvPHGG0dsL27jxo1HBKp33323VNdOT0/nhx9+4IEHHija1rJlS5KSkkhKSuLmm2/m6quvpk2bNtx1111cd911LF++nDFjxjB27Niic1JTU1m4cCFz5szh4YcfLuN/CXdpWKOIiIhIGVhrmZW0jXGzV5GdV8DjQ87ixv7tFMqqunvvBe/wwuNq2RIGD4YWLSA1Fc46C556ynmUJDoa3njjhJc8dOgQ0dHRgNNz9qc//Ymff/6Z3r17065dOwC+/vprli9fXtQLtH//ftavX8+PP/7IqFGj8Pf3p2XLlpx77rnHXP/XX3/lnHPOKbpWo0aNTljP/v37SU9PZ+DAgQBcf/31DB8+vGj/VVddBUCvXr3YvHlzidc444wzioZqwuGbSJ/s2iNGjDhuXT/99BMffPBBUW/dL7/8wowZMwC49tprefDBB4uOveKKK/Dz86NLly7s3LnzhJ/X1yiciYiIiJTSzgPZPDZzBd+u3kWvNg15eVgU7ZuGuF2WVJaGDZ1glpwMERHO69NUfM5ZcXXr1i16bq3l7bffZvDgwUccM3fuXIw58R8FrLUnPaYsgoKCAGchk/z8/HK7Lhz5mYtLTU3lT3/6E7NnzyYkpOT/34p/xsIawfn8VYnCmYiIiMhJWGuZsWQbT322ktwCD09c2oUbzm6r3rLq5CQ9XMDhoYxPPAHvvANPPglxcRVe2uDBg3nnnXc499xzCQwMZN26dbRq1YpzzjmHf/3rX1x33XXs2rWLefPmMXr06CPO7devH3feeSebNm2iXbt27N27l0aNGhEaGsqBAweOea/69evTsGFDFixYwIABA/jvf/9b1NN1uk7l2nl5eVxzzTW8+OKLdOrUqWj72WefzaRJk7j22msZP348f/jDH8qlRrcpnImIiIicwI792Tw6cwXfr9lFbNuGvDSsO+2alPwXfqnGCoPZlClOIIuLO/J1BbrpppvYvHkzPXv2xFpL06ZNmTVrFldeeSXff/89kZGRdOrUqcSg07RpU9577z2uuuoqPB4PYWFhfPPNN1x22WUMGzaMTz/9lLfffvuIcz7++GNuu+02Dh48SPv27fnoo4/K7bOU9do///wzCQkJPPnkkzz55JOA02P41ltv8cc//pGXX36Zpk2blmuNbjKV2dUXExNjC1eNEREREfFl1lqmLd7K3+asIq/Aw0MXncn1/drip96yamP16tWcddZZpTv4pZecxT+KB7F58yAhAYrNdxIprqQ2ZoxZbK2NKel49ZyJiIiIHCV1/yEembGC+WvT6N2uES9dHUVb9ZbVbCUFsMIeNJFyonAmIiIi4mWtZWriVp6es4p8j+Wpy7tybd826i0TkUqhcCYiIiICbE8/xMMzVvDjujT6tGvEy8O6E9G4jttliUgNonAmIiIiNZq1lskJKTzz+Wo81vL00K6M6aPespqivJeaFyl0Kmt7KJyJiIhIjbUt/RAPT1/OgvW76de+MS8NiyK8kXrLaorg4GD27NlD48aNFdCkXFlr2bNnD8HBwWU6T+FMREREahxrLRPjU3hu7mqstTxzRTdG945Qb1kN07p1a7Zu3UpaWprbpUg1FBwcTOvWrct0jsKZiIiI1Chb9x3k4ekrWLhhN/07NOaFq9RbVlMFBgbSrl07t8sQKaJwJiIiIjWCtZbxi5J5fu5qAJ67MpJRvcM1nE1EfIbCmYiIiFR7KXsP8tD05fy8cQ8DOjbh+asiad1QvWUi4lsUzkRERKTa8ngs4xdt4fkv1uBnDC9cFcmIWPWWiYhvUjgTERGRail5z0EenL6MX3/fyzmdmvL8VZG0alDb7bJERI5L4UxERESqFY/H8t9ft/DCF2sI8DO8dHUUw2Naq7dMRHzeScOZMSYc+ARoDniA96y1bxpjJgOdvYc1ANKttdEVVKeIiIjISW3Zk8WD05azaNNeBnZqygtXR9KivnrLRKRqKE3PWT7wgLV2iTEmFFhsjPnGWjui8ABjzKvA/ooqUkREROREPB7Lx79s5qUv1xLgb3h5WBTDeqm3TESqlpOGM2ttKpDqfZ5hjFkNtAJWARjnp941wLkVWKeIiIhIiTbvdnrL4jfvJa5zU56/Korm9YPdLktEpMzKNOfMGNMW6AEsKrZ5ALDTWru+HOsSEREROSGPx/LRz5t5+as11PL349Xh3bmqZyv1lolIlVXqcGaMCQGmA/daaw8U2zUKmHiC824BbgGIiIg4xTJFREREDvs9LZMHpy0nccs+zjszjOeuiqRZPfWWiUjVVqpwZowJxAlm4621M4ptDwCuAnod71xr7XvAewAxMTH2tKoVERGRGq3AY/nop028/NVaggP9eX1Ed66IVm+ZiFQPpVmt0QAfAqutta8dtft8YI21dmtFFCciIiJSaGNaJn+Zuowlyemcf1YznruyG2HqLRORaqQ0PWf9gWuBFcaYJO+2R621c4GRnGBIo4iIiMjpKvBYPlz4O69+vY7atfx5c2Q0l3dvqd4yEal2SrNa40KgxJ9+1tobyrsgERERkUIbdmXyl2nLWJqczoVdmvHMld0IC1VvmYhUT2VarVFERESkMhR4LO8v+J3XvllH3Vr+vDWqB5dFtVBvmYhUawpnIiIi4lPW78zgz9OWsywlnYu6NufpK7rRNDTI7bJERCqcwpmIiIj4hPwCD+8t+J03vllPSHAAfx/dgyGR6i0TkZpD4UxERERct2VPFmMnLmXZ1v1cEtmcvw3tRpMQ9ZaJSM2icCYiIiKuyszJ58b/JLA3K5d/jO7JkKgWbpckIuIKhTMRERFxjbWWx2auYPPuLCbc3Je+7Ru7XZKIiGv83C5AREREaq4J8cl8mrSdBy7srGAmIjWewpmIiIi44rdt+3nqs1UM7NSU2wee4XY5IiKuUzgTERGRSncgO487Jyyhcd1avD4iGj8/rcgoIqI5ZyIiIlKprLU8NG052/YdYvKtfWlUt5bbJYmI+AT1nImIiEil+vjnzXzx2w4evKgzvdo0crscERGfoXAmIiIilSYpJZ1n567m/LPCuHlAe7fLERHxKQpnIiIiUinSD+Zy5/glNKsXzKvDozFG88xERIrTnDMRERGpcNZa/jx1Gbsyspl229nUrxPodkkiIj5HPWciIiJS4d5f8Dvfrt7FY5ecRffwBm6XIyLikxTOREREpEIlbt7Li1+u5ZLI5lx/dlu3yxER8VkKZyIiIlJh9mTmcNeEpbRuWJsXro7SPDMRkRPQnDMRERGpEB6P5b4py9h7MJcZt59NvWDNMxMRORH1nImIiEiFeOeHjfy4Lo0nL+tCt1b13S5HRMTnKZyJiIhIuftl4x5e/XotQ6NbMrp3hNvliIhUCQpnIiIiUq7SMnIYO2kpbZvU5bkrIzXPTESklDTnTERERMpNgcdyz6SlZGTn8d8/9aZukP6pISJSWvqJKSIiIuXmze/W8/PGPbw8LIozm9dzuxwRkSpFwxpFRESkXCxYn8bb369nWK/WDI8Jd7scEZEqR+FMRERETtuO/dncOymJTmGhPD20m9vliIhUSQpnIiIiclryCzyMnbiUQ3kF/GNMT2rX8ne7JBGRKklzzkREROS0vPrNOuI37+XNkdF0CAtxuxwRkSpLPWciIiJyyr5fs5N35m9kdJ8Ihka3crscEZEqTeFMRERETsm29EPcP2UZXVrU46+XdnG7HBGRKu+k4cwYE26MmWeMWW2MWWmMuafYvruNMWu921+q2FJFRETEV+Tme7hrwhLyCyz/HNOT4EDNMxMROV2lmXOWDzxgrV1ijAkFFhtjvgGaAUOBKGttjjEmrCILFREREd/x4pdrWJqczj/H9KRtk7pulyMiUi2cNJxZa1OBVO/zDGPMaqAVcDPwgrU2x7tvV0UWKiIiIr7hy9928OHCTdxwdlsuiWzhdjkiItVGmeacGWPaAj2ARUAnYIAxZpEx5gdjTGwF1CciIiI+JHnPQf4ybRndW9fnkUvOdLscEZFqpdRL6RtjQoDpwL3W2gPGmACgIdAXiAWmGGPaW2vtUefdAtwCEBERUW6Fi4iISOXKyS/gzglLMMDfR/ckKEDzzEREylOpes6MMYE4wWy8tXaGd/NWYIZ1xAMeoMnR51pr37PWxlhrY5o2bVpedYuIiEgle/bz1azYtp9Xr4kmvFEdt8sREal2SrNaowE+BFZba18rtmsWcK73mE5ALWB3BdQoIiIiLvts2XY++WULt5zTngu6NHO7HBGRaqk0wxr7A9cCK4wxSd5tjwL/Bv5tjPkNyAWuP3pIo4iIiFR9v6dl8vD05fRq05C/DO7sdjkiItVWaVZrXAiY4+z+v/ItR0RERHxJdl4Bd4xfQq0AP94e1YNA/zKtJSYiImVQ6gVBREREpOYZN3sla3Zk8NGNsbRsUNvtckREqjX9+UtERERKNGPJViYlpHBn3BnEdQ5zuxwRkWpP4UxERESOsX5nBo/N/I0+7Rpx3/md3C5HRKRGUDgTERGRIxzMzeeO8UuoG+TP26N6EKB5ZiIilUJzzkRERKSItZbHZ/7GhrRM/venPoTVC3a7JBGRGkN/ChMREZEiUxJTmLF0G/ec15H+HZq4XY6ISI2icCYiIiIArE49wF8/XckfOjTh7nM7ul2OiEiNo3AmIiIiZGTnccf4JdSvHcgbI6Px9zveLU5FRKSiaM6ZiIhIDWet5ZEZK9iyJ4uJN/elSUiQ2yWJiNRI6jkTERGp4f63KJk5y1P58+DO9Gnf2O1yRERqLIUzERGRGmzF1v08/dkq4jo35bZzznC7HBGRGk3hTEREpIbafyiPOyYspklILV67Jho/zTMTEXGV5pyJiIjUQNZaHpy2jNT0bCbf2o+GdWu5XZKISI2nnjMREZEa6N8/bearlTt5+OIz6dWmodvliIgICmciIiI1zpLkfTw/dzUXdGnGn/7Qzu1yRETES+FMRESkBtmXlcvdE5bSvH4wrwzrjjGaZyYi4is050xERKSG8HgsD0xdRlpGDtNu70f9OoFulyQiIsWo50xERKSGeG/B73y/ZhePX3oWUa0buF2OiIgcReFMRESkBojftJeXv1rLkMgWXNu3jdvliIhICRTOREREqrndmTncPXEJ4Q1r88LVkZpnJiLioxTOREREqrECj+W+yUnsO5jHP8b0JDRY88xERHyVwpmIiEg19o95G1iwfjdPXd6Vri3ru12OiIicgMKZiIhINfXzht28/u06ruzRipGx4W6XIyIiJ6FwJiIiUg3tOpDN2ElJtG9Sl2eu6KZ5ZiIiVYDucyYiIlLN5Bd4GDtpKZk5eUy4uQ91g/TrXkSkKtBPaxERkWrmze/W8+vve3lleHc6NQt1uxwRESklDWsUERGpRuav3cXb32/gmpjWDOvV2u1yRESkDBTOREREqonU/Ye4b3ISZzYP5anLu7ldjoiIlJHCmYiISDWQV+Dh7glLyc338I8xPaldy9/tkkREpIxOGs6MMeHGmHnGmNXGmJXGmHu828cZY7YZY5K8j0sqvlwREREpyStfrSVxyz6euyqSM5qGuF2OiIicgtIsCJIPPGCtXWKMCQUWG2O+8e573Vr7SsWVJyIiIifz7aqd/OvH3/m/vhEMjW7ldjkiInKKThrOrLWpQKr3eYYxZjWgn/wiIiI+IGXvQR6YuoyuLevx+JAubpcjIiKnoUxzzowxbYEewCLvpruMMcuNMf82xjQs7+JERETk+HLzPdw1cSkej+WfY3oSHKh5ZiIiVVmpw5kxJgSYDtxrrT0AvAOcAUTj9Ky9epzzbjHGJBpjEtPS0k6/YhEREQHg+S9WsywlnZeGRdGmcV23yxERkdNUqnBmjAnECWbjrbUzAKy1O621BdZaD/A+0Lukc62171lrY6y1MU2bNi2vukVERGq0L1ak8tFPm7mxf1sujmzhdjkiIlIOSrNaowE+BFZba18rtr34b4Irgd/KvzwRERE52pY9WTw4bTndwxvwyMVnuV2OiIiUk9Ks1tgfuBZYYYxJ8m57FBhljIkGLLAZuLUC6hMREZFisvMKuGP8Evz8DP8Y3YNaAbplqYhIdVGa1RoXAqaEXXPLvxwRERE5kafnrGLl9gN8eH0MrRvWcbscEREpR/pzm4iISBXxadI2xi9K5tZz2nPeWc3cLkdERMqZwpmIiEgVsGFXJo/MWEFMm4b8eXBnt8sREZEKoHAmIiLi4w7lFnDn+CUEB/rz9ugeBPrr17eISHWkn+4iIiI+7snZv7FuVwavj4imRf3abpcjIuK7XnoJ5s07ctu8ec72KkDhTERExIdNTUxhSuJW7orrwMBOul+oiMgJxcbCNdccDmjz5jmvY2PdrauUSrOUvoiIiLhg7Y4Mnvj0N/q2b8S953dyuxwREd83aBA8/zwMGeI8T0iAKVMgLs7tykpF4UxERMQHZeXkc8f4xYQEBfLWyB74+5V0VxsREQFg82aYMAHGj4dVq8AY+OILeOKJKhPMQMMaRUREfI61lkdnrmDT7izeGhVNWL1gt0sSEfE9aWnwz39C//7Qrh089hg0agT33ON8feIJeOedY+eg+TD1nImIiPiYifEpfJq0nfsv6MTZZzRxuxwREd+RlQWffur0kH39NeTnQ9eu8NxzMGoUbNrkzDGbOtXpMYuLc15XkaGNCmciIiI+ZOX2/Yz7bCUDOjbhrrgObpcjIuK+vDz45hsnkM2aBQcPQng4PPAAjB4NUVGHj50y5cggFhfnvE5IqBLhzFhrK+3NYmJibGJiYqW9n4iISFWSkZ3HZW8v5FBeAXPHDqBxSJDbJYmIuMNa+PlnZx7ZlCmwe7czVHH4cBgzxhnK6Fc1Z2gZYxZba2NK2qeeMxERER9greXh6StI2XeIiTf3VTATkZpp5Uqnh2ziRGeRj9q14fLLnUA2eDDUquV2hRVK4UxERMQHfPLLFj5fkcrDF59J73aN3C5HRKTypKQ4YWzCBFi2DPz94fzz4W9/gyuugNBQtyusNApnIiIiLluWks4zn6/i3DPDuGVAe7fLERGpeHv3wrRpTiD78UdnGGOfPvDWW84CHs2auV2hKxTOREREXLT/YB53TlhCWGgwrw7vjp/uZyYi1dXBgzBnjjNs8YsvnIU+OneGp55yFvY44wy3K3SdwpmIiIhLrLU8MHUZOw9kM+XWfjSsW73nUohIDZSfD99/7wSyGTMgMxNatoSxY51A1qOHc8NoARTOREREXPPBgk18u3onT1zahR4RDd0uR0SkfFgL8fHOkMXJk2HnTqhfH0aMcALZwIHOvDI5hsKZiIiICxZv2cuLX65hcNdm/LF/W7fLERE5fWvXOoFswgTYsAGCguDSS52VFi++GIKD3a7Q5ymciYiIVLK9WbncNWEpLRoE89Kw7hgN6RGRqmr7dqd3bPx4WLzYGaJ47rnw6KNw1VVOj5mUmsKZiIhIJfJ4LA9MSWJPZi7Tbz+b+rUD3S5JRKRs9u935o+NH+/MJ7MWYmLgtdecoYstW7pdYZWlcCYiIlKJ/v3TJuatTeOpy7sS2Vp/URaRKiI7G+bOdYYszpkDOTnO6opPPOHMI+vc2e0KqwWFMxERkUry27b9vPjlGs4/qxnX9WvjdjkiIidWUAA//OD0kE2f7vSYhYXBrbc688hiY7XSYjlTOBMREakEWTn53D1xKY3rBvHysCjNMxMR32QtLF3qBLJJk5w5ZaGhzvyx0aOd+WQBihAVRd9ZERGRSvDXT1eyeU8WE2/uq/uZiYjv2bjx8EqLa9ZAYCBccokTyC67DGrXdrvCGkHhTEREpILNWrqN6Uu2MvbcDvRt39jtckREHDt3wpQpTi/ZokXOtoED4f774eqroVEjd+urgRTOREREKtCWPVk8Pus3Yto0ZOx5Hd0uR0RquowMmDXLCWTffuvMK+veHV56CUaOhPBwtyus0RTOREREKkhuvoexE5fiZ+CNkdEE+Pu5XZKI1ES5ufDVV04gmz0bDh2Ctm3hoYecYYtdu7pdoXgpnImIiFSQV79ey7Kt+3lnTE9aN6zjdjkiVdtLLzmrA8bFHd42bx4kJMCDD7pXl6/yeGDhQmcO2dSpsHcvNGkCN97orLTYr59WWvRBCmciIiIV4Md1afzrx98Z3SeCiyNbuF2OSNUXGwvXXAOvv+7c8DgxEe65B/75T0hNdVYQ9Pd3vhZ/+FXjHuuSAusHHzg9ZL//DsnJUKcOXHml00N2wQXOQh/isxTOREREyllaRg73T1lGp2YhPDGki9vliFRt1jpB7MsvnWBx7bVH7h858uTXKB7Wjg5wJQW6kx3jK9do2NBZuOOllyAtDd57DzZvdgLpxRfD88/D0KFQt26F/KeR8nfScGaMCQc+AZoDHuA9a+2bxfb/GXgZaGqt3V1RhYqIiFQFHo/lganLyMjOY/xNfahdy9/tkkSqHo8H4uNh2jTnsWWLE0bOPx969IC5c+GKK5xHfv7hR0FB2V6X5ZyDB0/vGh5PxX2/br7Z+RoQ4PQmPv64M4RRqpzS9JzlAw9Ya5cYY0KBxcaYb6y1q7zB7QIguUKrFBERqSI+XLiJH9el8fQV3ejcPNTtckSqDo8HfvnlcCDbutXpKbvwQhg3zukBSkpyhjY+8QS88w6MHXvkkD5f5vEcDm2nExJLej1xIsyYAY88An/7m9ufVE7DScOZtTYVSPU+zzDGrAZaAauA14EHgU8rskgREZGqYPnWdF76ag2Duzbj//pEuF2OiO8rKICffnIWrJg+3Zk7FhQEgwc7Q/IuvRQaNHCOnTfPCWZTpjiBLC7uyNe+zs/PeZT3nK958+DHHw8H1sLvjVRJZZpzZoxpC/QAFhljLge2WWuXmROs9GKMuQW4BSAiQr+oRESkesrMyefuiUtpEhLEi1dHcaLfjSI1Wn6+EyamTXN6e3buhOBgZ47U8OEwZAjUq3fseQkJRwaxuDjndUJCzQ0jVT2wyjGMtbZ0BxoTAvwAPAt8CcwDLrTW7jfGbAZiTjbnLCYmxiYmJp5exSIiIj7ovslJfJq0jUm39KN3u0ZulyPiW/LyYP58J5DNnOksXlGnjhPEhg2DSy6BkBC3q6x6dHuBKskYs9haG1PSvlL1nBljAoHpwHhr7QxjTCTQDijsNWsNLDHG9LbW7iinukVERKqEGUu2MnPpNu49v6OCmUih3Fz4/nsnkM2aBXv2OKsGXnaZE8guukirCJ6ukgKYhjVWaaVZrdEAHwKrrbWvAVhrVwBhxY7ZTCl6zkRERKqbTbuzeHzWb/Ru24i74jq4XY6Iu3Jy4NtvDwey9HQIDYXLL3cC2eDBULu221WK+KzS9Jz1B64FVhhjkrzbHrXWzq2wqkRERKqA3HwPd09cQqC/H2+MjCbAvxrf7FbkeLKz4euvnUU9Zs+GAwegfn1ndcXhw50bHwcFuV2lSJVQmtUaFwInnNVsrW1bXgWJiIhUFS9/tYbfth3gX9f2omUD9QZIDXLoEHzxhdND9tlnkJl5+IbIw4fDeedBrVpuVylS5ZRptUYRERFxzFu7i/cXbOLavm0Y3LW52+WIVLysLOfmz9OmweefO6+bNIFRo5whi3Fx5b9MvEgNo3AmIiJSRrsysvnzlGWc2TyUx4ac5XY5IhUnI8MJYtOmOcHs0CEIC4Nrr3UC2cCBEKB/ToqUF/3fJCIiUgYej+X+ycvIys1n0qi+BAf6u12SSPnavx/mzHEC2ZdfOnPKmjeHP/7RCWQDBoC/2r1IRVA4ExERKYP3FvzOwg27ee7KSDo2C3W7HJHykZ7uLOYxdaqzuEduLrRqBbfc4swh69dPgUykEiiciYiIlNLS5H288tVaLu7WnFG9w90uR+T07N3rLHc/bZqz/H1eHkREwF13OT1kffqAn1YgFalMCmciIiKlcCA7j7GTltKsXjAvXBWFcxtQkSpm926YOdMJZN9/D/n50LYt3HuvE8hiY0FtW8Q1CmciIiInYa3l8Zm/sT09m8m39KV+Ha1IJ1XIzp2HA9n8+VBQAGecAX/+sxPIevZUIBPxEQpnIiIiJzFt8VZmL9vOAxd0IqZtI7fLETm51FSYMcMJZD/+CB4PdOoEDz/szCGLilIgE/FBCmciIiInsDEtkydnr6Rv+0bcEdfB7XJEjm/r1sOBbOFCsBa6dIHHH3cCWdeuCmQiPk7hTERE5Dhy8gsYO3EptQL8eGNED/z99A9b8THJyTB9urPK4i+/ONsiI+Gpp+Dqq51wJiJVhsKZiIjIcbz4xVpWbj/A+9fF0Lx+sNvlSE3x0kvOwhxxcYe3zZsHCQnw4IOwaZPTOzZtGsTHO/t79IBnn3UCWefO7tQtIqdN4UxERKQE36/Zyb9/2sQNZ7flgi7N3C5HapLYWLjmGpgyxQlo8+Y5oevqqyEmBhYvdo6LiYEXXnC2d9CQW5HqwFhrK+3NYmJibGJiYqW9n4iIyKnYeSCbi99cQFhoELPu7E9woG6+K5WsMJB17w4LFjgrLIJz77Fhw5x97dq5W6OInBJjzGJrbUxJ+9RzJiIiUkyBx3Lf5CQO5Rbw99E9FMykcu3YAZMnw4QJsG+fs/R969bwwANw1VXOTaJFpNrSbd9FRESKefeHjfy8cQ/jLu9Ch7BQt8uRmmD/fvjPf+DCC6FVK+eG0Hv3Qt26cM89kJ3t9KApmIlUewpnIiIiXkuS9/HaN+sYEtWCa2LC3S5HqrPsbOfG0MOGQbNmcOONsHEjPPoofPQRpKfDZ5/BG284c8+uucYZ6igi1ZrCmYiICLD/UB5jJy6lRf1gnrsyEqP7QUl5KyiA776DP/0Jmjd3hikuWAC33gq//gobNsDTT8OuXYcXAwHn65QpzmqNIlKtac6ZiIjUeNZaHpu5gtT92Uy5tR/1awe6XZJUF9Y6qytOmACTJkFqKoSGOsFs9Gg491wIOOqfYw8+eOx14uKOXFpfRKolhTMREanxpiSmMGd5Kn8Z3JlebRq6XY5UB+vWOYFswgRYvx5q1YJLLoExY2DIEKhd2+0KRcQHKZyJiEiNtmFXBuNmr+LsMxpz28Az3C5HqrLt2w+vtJiYCMY4vV0PPeT0lDVU8BeRE1M4ExGRGis7r4C7Jiyldi1/Xh8Rjb+f5plJGaWnw4wZMH68s2CHtdCrF7z6KowY4ay+KCJSSgpnIiJSY73wxRrW7Mjg3zfE0KxesNvlSFVx6BB8/rnTQ/b555CbCx06wF//CqNGQefOblcoIlWUwpmIiNRI367ayX9+3syN/dty7pnN3C5HfF1+vtMzNmGC01N24ICz4uIddzgLe8TEOMMYRUROg8KZiIjUODv2Z/OXacvo0qIeD198ptvliK+yFuLjnUA2eTLs3An16sHVVzuBLC4O/P3drlJEqhGFMxERqVEKPJZ7Jy8lJ9/D26N7EBSgf1zLUdasObzS4saNEBQEl17qBLJLLoFgDYEVkYqhcCYiIjXKP+dt4Nff9/LysCjOaBridjniK7Zude5DNmECLF0Kfn7OPcgeewyuvBIaNHC7QhGpARTORESkxkjcvJc3vlvP5d1bMqxXa7fLEbft3QvTpzuB7IcfnGGMsbHw+uvOSostWrhdoYjUMApnIiJSI+w/mMc9k5Jo2SCYZ6/shtHiDTXTwYMwZ46z9P0XX0BeHnTqBOPGOSstduzodoUiUoMpnImISLVnreXhGcvZeSCbqbf1IzQ40O2SpDLl58O33zo9ZDNnQmYmtGwJd9/tzCPr2VMrLYqITzhpODPGhAOfAM0BD/CetfZNY8zTwFDvtl3ADdba7RVZrIiIyKmYlJDCF7/t4KGLzqRHREO3y5HKYC38+uvhlRbT0px5YyNHOoHsnHO00qKI+JzS9JzlAw9Ya5cYY0KBxcaYb4CXrbVPABhjxgJ/BW6ruFJFRETKbv3ODJ76bCV/6NCEW89p73Y5UtFWrjy80uLmzc7Kipdd5gSyiy92Vl4UEfFRJw1n1tpUINX7PMMYsxpoZa1dVeywuoCtmBJFREROTXZeAXdPXErdWgG8dk13/Pw0dK1aSk4+vNLismXOSovnn+/MI7vySufeZCIiVUCZ5pwZY9oCPYBF3tfPAtcB+4G48i5ORETkdDz7+WrW7MjgoxtjCaune1NVK3v2wNSpTiBbsMDZ1qcPvPUWXHMNNGvmbn0iIqfAr7QHGmNCgOnAvdbaAwDW2sesteHAeOCu45x3izEm0RiTmJaWVh41i4iInNRXK3fw31+3cNMf2hHXOcztcqQ8ZGXBxInOMMXmzeH22525ZE8/DRs2OHPM7r5bwUxEqixj7clHIxpjAoE5wFfW2tdK2N8G+Nxa2+1E14mJibGJiYmnWquIiEipbE8/xMVvLiCiUR2m3342tQJK/bdI8TV5efDNN87S97NmOUvht2rlLHs/ejRER2ulRRGpUowxi621MSXtK81qjQb4EFhdPJgZYzpaa9d7X14OrCmPYkVERE5Hgcdy76Qk8go8vDWqh4KZr3vpJefGz3HFZkd89x1Mm+aErilTnCGMDRvC//2fE8gGDHDmlYmIVDOlmXPWH7gWWGGMSfJuexT4kzGmM85S+lvQSo0iIuID/v79BuI37+XV4d1p16Su2+XIycTGOnPEpkyBJk3g+eedpe89HqhdGy6/3AlkgwdrpUURqfZKs1rjQqCk8QJzy78cERGRUxe/aS9vfreOK3u04uperd0uR0ojLs4JZkOGwKFDzrbYWBg7FoYOhdBQd+sTEalEGhMgIiLVQvrBXO6dtJTwRnV4+ooTToEWXxMXB8OHO8/vvx/i450hjApmIlLDKJyJiEiVZ63loenL2ZWRw9ujehASVKY7xYjb5s2DuXPhiSfgk0+c1yIiNZDCmYiIVHnjFyXz1cqdPHhRZ6JaN3C7HCmLefMOzzn729+cr9dco4AmIjWSwpmIiFRpa3dk8PScVZzTqSk3/aG92+VIWSUkOIGscLXGwjloCQnu1iUi4oJS3eesvOg+ZyIiUp4O5RYw9B8L2ZuVxxf3DKBpqFbzExER33Za9zkTERHxVc98vop1OzP55I+9FcxERKTK07BGERGpkr5Ykcr4Rcncek57zunU1O1yRERETpvCmYiIVDnb0g/x0PTldG9dnwcu7Ox2OSIiIuVC4UxERKqU/AIP90xcisfCW6N6UCtAv8pERKR60JwzERGpUt76fgOJW/bxxoho2jSu63Y5IiIi5UZ/bhQRkSrj19/38Pfv13N1z9Zc0aOV2+WIiIiUK4UzERGpEvZl5XLvpCTaNK7L34Z2dbscERGRcqdhjSIi4vOstfxl2nL2ZOUw8/r+1A3Sry8REal+1HMmIiI+77+/buHb1Tt56KIz6daqvtvliIiIVAiFMxER8WmrUw/wzOerGdS5KX/s387tckRERCqMwpmIiPisg7n53D1xKfVrB/LK8O74+Rm3SxIREakwGrQvIiI+6+k5q9iYlsl//9iHJiFBbpcjIiJSodRzJiIiPunz5alMjE/htoFn8IeOTdwuR0REpMIpnImIiM9J2XuQh2csJzq8Afdf0MntckRERCqFwpmIiPiUvAIP90xaChbeHtWDQH/9qhIRkZpBc85ERMSnvPntepYkp/PWqB6EN6rjdjkiIiKVRn+OFBERn/Hzxt38Y/4GrolpzeXdW7pdjoiISKVSOBMREZ+wNyuX+yYn0a5JXcZd3tXtckRERCpdjR/WGL9pL43q1qJDWIjbpYhUKQdz81n0+17q1PKnaWgQTUODCAkKwBjdh0rKzlrLX6YuY19WHv++IZY6tWr8rycREamBavxvv3GzV7Iq9QCxbRsyMjaCSyJbULuWv9tlifisNTsOMGFRMjOXbCMjJ/+IfcGBfk5QC3HCWlhocFFwK9zWNDSIJiFB1ApQx70c9p+fN/Pdml08eVkXuras73Y5IiIirjDW2kp7s5iYGJuYmFhp71caaRk5TF+ylckJKWzanUVocABXRLdiZO9w/QNBxCs7r4C5K1IZvyiZxVv2Ucvfj0sim3N1r9YYDGmZ2aRl5Bx+ZOaw64DzNf1gXonXbFgnsMTgdnSga1AnUL1x1dzK7fu58h8/M6BjEz64Pkb/vUVEpFozxiy21saUuK+mh7NC1loWbdrL5IQU5q5IJSffQ2Sr+ozsHc7l3VsSGhzodokilW5jWiYTFyUzbclW0g/m0a5JXUb3juDqXq1pVLdWqa6Rk1/AnszcouC2qyjAZR8T5nLyPcecH+hvaBISRFhoUIlhrmlocNG+4ED1elc1B3PzufTthWRm5/PlveeUul2JiIhUVQpnZbT/YB6zkrYxMT6ZNTsyqB3oz6VRLRjZO5yeEQ31V12p1nLzPXy9agfjf03ml9/3EOBnGNy1OWP6RNC3fWP8/Cqm/VtrycjJP7IH7ogwd3jbnqwcSvrRFRoU4AybLOqFKynMBdG4bhD+FfQ5pGwenLaMqYu3Mv6mPpx9RhO3yxEREalwCmenyFrL8q37mZSQzOyk7WTlFtAxLIQRseFc3bM1DfUXXqlGUvYeZEJ8MlMTU9idmUurBrUZ3SeC4TGtCQsNdru8I+QXeNiblesEt8ycYwJd8TCXedS8OAA/A41Djg1tTUOCCKt35HYtclJxZi/bztiJS7krrgN/HtzZ7XJEREQqxWmFM2NMOPAJ0BzwAO9Za980xrwMXAbkAhuBG6216Se6VlULZ8Vl5eQzZ/l2JsankJSSTi1/PwZ3a87I2HD6VWBvgkhFyi/w8P2aXYxflMyP69MwwLlnNmNM3wjO6di0WvQuHczNZ3dGLrsyso/pgSveM7c7M4d8z7E/DwsXOQkLDT5+mPP2xmmRk9JL2XuQS95cQMdmIUy+tR+B/vreiYhIzXC64awF0MJau8QYEwosBq4AWgPfW2vzjTEvAlhrHzrRtapyOCtuzY4DTIpPYebSbew/lEdEozqMiA1neK/WhNXzrR4GkZKk7j/EpPgUJieksONANs3qBTEyNoIRseG0bFDb7fJc4fFY0g/lFQtt2cf0whU+P9kiJ2GF8+DqHX4eFhpEs3rBhNULqvHLxOcVeBj+7i9sTMtk7tgBhDeq43ZJIiIilaZchzUaYz4F/m6t/abYtiuBYdbaMSc6t7qEs0LZeQV8tXIHk+JT+OX3Pfj7GeI6hzGqdzgDOzUlQH8JFh9S4LH8uD6NCYuS+W71TixwTsemjOkTwblnhqm9lkFOfgG7iy1yUjzQ7TrqdV7BsT9jQ4ICiubDhdU7KryFFvbGBVMvuHoOqXzxyzW8M38j/xjdkyFRLdwuR0REpFKdKJyV6c+3xpi2QA9g0VG7/ghMPqXqqrDgQH+GRrdiaHQrNu3OYnJCCtMWb+Xb1TtpXi+Y4TGtuSYmXH8VFlelZeQwJTGFifHJbN13iMZ1a3HrwDMYFRtBRGO1zVMRFOBPqwa1aXWSXkZrLfsO5jmh7YAzhLLweWF4W5aSzq6MbLLzjl2pMijAjzBv71uzeodvMxB2VKhrWKdWlRlavXD9bt79YSMjY8MVzERERI5S6p4zY0wI8APwrLV2RrHtjwExwFW2hIsZY24BbgGIiIjotWXLlvKo22flFXj4bvUuJick88O6NCzwhw5NGBkbwQVdmmlOilQKay2/bNzD+EXJfLVyB/keS7/2jRnTN4ILuzRXO/QxhStVOgHOGU5Z+HzngWI9cgdyjrnxNzi3G2gaEkTTYoEtLDTYG+wO98g1DnF3lcrdmTlc/OYC6tcO5LO7/kDtWrr1gYiI1DynPazRGBMIzAG+sta+Vmz79cBtwHnW2oMnu051G9Z4MtvTDzE1cStTElPYln6IRnVrcXXPVoyIjaBDWIjb5Uk1tC8rl2mLtzIxPpnfd2dRv3Ygw3u1ZlSfCM5oqjZXHRzKLSgKa7sO5LDzQHZRj1zxULevhHlxhatUFg9wzeodFerqOQuflHeA93gsf/w4gZ837uHTO/tzVot65Xp9ERGRquJ0FwQxwMfAXmvtvcW2XwS8Bgy01qaVppCaFs4KFXgsCzfsZlJ8Mt+s2km+xxLbtiEjYiMYEtlCfz2W02KtZfGWfYxflMznK1LJzffQq01DxvSJ4JLIFroxcw1VOC9u54HCYZSHA11RuPOuUlnSr4GGdQKL9b4d7oU7+nlpf359sOB3nvl8NX8b2pXr+rUt3w8rIiJShZxuOPsDsABYgbOUPsCjwFtAELDHu+1Xa+1tJ7pWTQ1nxaVl5DBjyVYmJ6Tw++4sQoMCGNqjJSNjI+jWqr7b5UkVciA7j5lLtjF+0RbW7cwkNCiAK3u2YnSfCM5srl4JKZ38Ag97snKPDG1HPD+8yElJtxoIDQ4oMbQVD3V7s3IZ/f6vDOocxnvX9qqWi5yIiIiUlm5C7YOstcRv2sukhBTmrkglJ99Dt1b1GBkbwdDoloQGB7pdovigwhujj1+0hc+WpXIor4Co1vUZ0yeCy7q3rPFLtEvF8Xgs+w7mFvW4FYa2oq/FFjvJyT92cZPm9YL54p4BNKxby4XqRUREfIfCmY/bfzCPWUnbmBifzJodGdQO9GdIVAtG9Q6nZ0RD/ZVZyMrJ59Ok7UyI38Jv2w5QO9CfK3q0ZHTvNkS2Vo+r+A5rLQey851hlAdy2JmRzZ7MXM47qxntmtR1uzwRERHXKZxVEYW9IpMSkpmdtJ2s3AI6hoUwIjacq3q2ppH+4lzjrE49wPhFW5i1dDuZOfmc2TyUMX0iGNqjFfXUuyoiIiJS5SicVUFZOfnMWb6dSQkpLE1Op5a/Hxd2bcbI2AjOPqNxlbmnkZRddl4Bc5anMmHRFpYkp1MrwI9Lo1owpk+EelJFREREqjiFsypuzY4DTE5IYcaSbew/lEdEozqMiA1nWK/WNKsX7HZ5Uk427MpkwqJkpi/Zyv5DebRvWpfRvSMY1qs1Deqo11RERESkOlA4qyay8wr4auUOJsWn8Mvve/D3M8R1DmNkbDiDOjclwF83Fq5qcvIL+GrlTsb/uoVFm/YS6G8Y3LU5Y/q0oW/7RuolExEREalmFM6qoc27s5icmMLUxK3szsyhWb0ghvcKZ0RsOOGN6rhdnpzElj1ZTIhPZlriVvZk5RLeqDaje7dheExrmoQEuV2eiIiIiFQQhbNqLK/Aw/drdjEpPpkf1qXhsTCgYxNGxIZzQZdmBAXoBsS+Iq/Aw3erdzF+0RYWrN+Nv5/h/LPCGN2nDQM6NNE8QhEREZEaQOGshtiefoipiVuZkpjCtvRDNKpbi6t6tGJk73A6hIW6XV6NtS39EJPjk5mUkMKujBxa1A9mZGwEI2LDaV5fcwZFREREahKFsxqmwGNZuGE3kxOS+XrlTvI9lpg2DRnZO4IhkS2oXUu9aRWtwGP5Yd0uJixK5vs1u7DAoE5NGdOnjeYHioiIiNRgCmc12O7MHKYv3srkhBR+351FaFAAQ3u0ZGRsBN1a6ebF5W3XgWymJKYwMd7pvWwSEsSI2NaMjI3QXEARERERUTgT5wbX8Zv2Mjkhhc9XpJKT76Fbq3qMjI3g8uiWuqHxafB4LD9v3MP4RVv4ZpXTU9m/Q2PG9GnDBV2aEaheMhERERHxUjiTI+w/mMeny7YxMT6F1akHqB3oz5CoFoyMDadXG93kuLT2ZOYwbfFWJsYns3nPQRrWCWR4TDijekfQrkldt8sTERERER+kcCYlstayfOt+JiWkMDtpG1m5BXQIC2FkbDjnn9WMoEA//I3Bz88c/lr0HPyN87omhTlrLQmb9zF+0Ra+WLGD3AIPvds2YkzfCAZ3bU5woObziYiIiMjxKZzJSWXl5PP58lQmJiSzNDm9TOcawxEhzt/P4Gdwgpyfwc8c+bX4fj9jCPA3x4bAwnP8DP7Fjj28rfg1OcH7ePeXEDIDSrwmJZzvfN2WfoiJ8cls2JVJaHAAV/dszeg+EXRqppUwRURERKR0FM6kTNbuyGDZ1nQ8HkuBtc5Xj6XAUrStwGOP3G8tBR4o8Hgo8IDHFp5T/PzCYylhm/eaRdfmmG1H7LcUbSvxOkXbDl+nPHQPb8CYPhFcFtVSq16KiIiISJmdKJwFVHYx4vs6Nw+lc/Pq1xt0aiGwMHRa6tTyp63mkomIiIhIBVE4kxrDz8/gh0HTwkRERETEF2mNbxERERERER+gcCYiIiIiIuIDFM5ERERERER8gMKZiIiIiIiID1A4ExERERER8QEKZyIiIiIiIj5A4UxERERERMQHKJyJiIiIiIj4AIUzERERERERH6BwJiIiIiIi4gOMtbby3syYNGBLpb1h6TUBdrtdhPg8tRMpLbUVKQ21EykNtRMpLbWVqqONtbZpSTsqNZz5KmNMorU2xu06xLepnUhpqa1IaaidSGmonUhpqa1UDxrWKCIiIiIi4gMUzkRERERERHyAwpnjPbcLkCpB7URKS21FSkPtREpD7URKS22lGtCcMxERERERER+gnjMREREREREfUOXCmTHmImPMWmPMBmPMw8W2TzbGJHkfm40xSSWcG22M+cUYs9IYs9wYM6LYvnbGmEXGmPXea9U6zvtf7z1mvTHm+rKeL5XDB9rJl8aYdGPMnKO2q534EDfbSXm0M6k8LreVNsaYxd73WGmMua0s50vlcft3j/fYesaYbcaYv5/K+VLx3G4nxpiCYu8zu6znSwWz1laZB+APbATaA7WAZUCXEo57FfhrCds7AR29z1sCqUAD7+spwEjv83eB20s4vxHwu/drQ+/zhqU9X4+a0U68+84DLgPmHLVd7cRHHm63k/JoZ3rUmLZSCwjyPg8BNgMt1VZ86+F2Oyl2nTeBCcDfi21TO/GRhy+0EyDzONvVTnzg4XoBZSoW+gFfFXv9CPDIUccYIKWw4Z7kesuAjt5zdgMBJb1PseNHAf8q9vpf3m2lOl+PmtFOip03iGLhTO3Etx6+0k7K63w9akZbARoDyd5/lKmt+NDDF9oJ0AuYBNyAN5ypnfjWw0fayTHhTO3Edx5VbVhjK5zGWmird1txA4Cd1tr1J7qQMaY3zl8sNuL8sku31uYffV1jTIwx5oOTvP9xzxdXuN1OjkftxLf4TDsp7fniGtfbijEm3Biz3FvHi9ba7Sc6X1zhajsxxvjh9Lb85ajLqZ34Ftd/ngDBxphEY8yvxpgrvNvUTnxEgNsFlJEpYdvRy02OAiae8CLGtAD+C1xvrfUYY457XWttInDTSd6/NHVJ5XG7nZxOXVJ5fKKdlOV8cY3rbcVamwJEGWNaArOMMdMATynqksrjdju5A5hrrU056hT9TPEtbrcTgAhr7XZjTHvge2PMCuBAKeqSSlDVwtlWILzY69bA9sIXxpgA4Cqcbv0SGWPqAZ8Dj1trf/Vu3g00MMYEeP9icMR1j3r/QUe9//wynC+Vw+12cjxqJ77F9XZSQe1Myp/rbaWQ9x9UK3H+sj69rOdLhXK7nfQDBhhj7sCZm1jLGJOJM2xO7cR3uN1O8Pa8Y6393RgzH+iBfp74jKo2rDEB6OhdTaYWMBKYXWz/+cAaa+3Wkk72njMT+MRaO7Vwu7XWAvOAYd5N1wOflnCJr4ALjTENjTENgQtxxuOW9nypHG63kxKpnfgcV9tJRbUzqRBut5XWxpja3ucNgf7AWrUVn+NqO7HWjrHWRlhr2wJ/9l7nYbUTn+P2z5OGxpgg7/MmOD9PVqmd+JCKnNBWEQ/gEmAdzvjax47a9x/gthOc+39AHpBU7BHt3dceiAc2AFM5vDJWDPBBsWv80XvMBuDGYttLPF+PGttOFgBpwCGcv5INVjvxvYeb7eRUztejxraVC4DlOBP/lwO3FLu22ooPPdz+3VPsWjdw5GqNaic+9HD558nZwArvz5MVwJ/UTnzrYbz/MURERERERMRFVW1Yo4iIiIiISLWkcCYiIiIiIuIDFM5ERERERER8gMKZiIiIiIiID1A4ExERERER8QEKZyIiIiIiIj5A4UxERERERMQHKJyJiIiIiIj4gP8HM4AhDSmsi7AAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABQqElEQVR4nO3dd3hU1drG4d9KI6RBgIReJQm9FxGRZuF82BUbIqio2LtiO2AHURTQIyoeRcWGXdQjegyCSvcgKi0IQUqAhBoIIWXW98eexBCTkECSPZk893XNxcyeXd7JCpAna+93G2stIiIiIiIi4q4AtwsQERERERERhTMRERERERGfoHAmIiIiIiLiAxTOREREREREfIDCmYiIiIiIiA9QOBMREREREfEBCmciIiIiIiI+QOFMRMRPGGMOFHh4jDGHCrwe7nZ9x8IYk2yMOdXtOkpijJlnjBldQfuON8Z8aoxJNcbsNsZ8bYxJKGbd74wx1hgTVGBZHWPMx8aYg8aYTcaYywptM9gYs8YYk2GMSTTGNK+IzyEiIqWjcCYi4iestRF5D+BP4KwCy2a5XV9hBUNEVT5GBasNfAYkAPWBJcCnhVfyhu+iPusLQJZ32+HAi8aY9t5t6gEfAQ8BdYBlwHvl/glERKTUFM5ERPycMSbAGDPWGPOHMWaXMeZ9Y0wd73stvLMtVxpjNhtj9hhjxhhjehpjVhpj9hpjni+wr1HGmB+NMdOMMfu8sy6DC7xfyxjzqjEmxRiz1RjzmDEmsNC2zxpjdgPjjTEneGd8dhlj0owxs4wxtb3rvwk0Az73zv7dY4wZYIzZUujz5c+uGWPGG2M+MMa8ZYzZD4w6Sk2tjTHfez9LmjGmyHBijAn17nOX92uy1BhT3xjzONAPeN5b4/Pe9dsYY77xznatNcZcVGBfrxtjpnvfT/cev8gZK2vtEmvtq9ba3dbabOBZIMEYU7fg1xwYB9xTqOZw4ALgIWvtAWvtDzhBb4R3lfOB3621s621mcB4oLMxpk1RtYiISMVTOBMR8X+3AOcC/YFGwB6cGZWCegNxwMXAc8ADwKlAe+AiY0z/QutuAOrhhIKP8sIeMBPIAVoDXYHTgdFFbBsLPA4Y4ElvXW2BpjghAWvtCI6cAXyqlJ/3HOADnFmnWUep6VFgLhANNAGmFbPPkUAtb311gTHAIWvtA8AC4CZvjTd5Q9E3wNvez3kp8K+8GSuv4d5j1wNWeOssjVOA7dbaXQWWPQG8CGwvtG48kGutXVdg2S84Y4r3z1/y3rDWHgT+KPC+iIhUMoUzERH/dx3wgLV2i7X2ME74ubDQKX+PWmszrbVzgYPAO9bandbarTjho2uBdXcCz1lrs6217wFrgaHGmPrAP4DbrLUHrbU7cWZ6Limw7TZr7TRrbY619pC1dr219htr7WFrbSowGSdEHo+F1tpPrLUeIOooNWUDzYFG3s//QzH7zMYJZa2ttbnW2uXW2v3FrHsmkGytfc37OX8GPgQuLLDOF9ba+d7xeADoY4xpWtKHMsY0wQnVdxRY1gPoS9GhMgLYV2jZPiCylO+LiEglq+rn4ouIyNE1Bz42xngKLMvFuQ4pz44Czw8V8TqiwOut1lpb4PUmnJmv5kAwkGKMyXsvANhcYN2CzzHGxAJTcU4NjPSuv6dUn6p4BY9xtJruwZnBWmKM2QM8Y639dxH7fBNn1uxd72mXb+EE3uwi1m0O9DbG7C2wLMi7j7/VaK094D3Ns1Gh2vMZY2JwZvj+Za19x7ssAPgXcKu1NqfA58tzACecFhQFpJfyfRERqWQKZyIi/m8zcJW19sfCbxhjWhzD/hobY0yBgNYM51qmzcBhoJ61NqeYbW2h1096l3Wy1u4yxpwLPF/C+geBsAL1BwIxJRyjxJqstduBa7z7Ohn41hgz31q7vtB62cDDwMPer9mXODOGrxZR42bge2vtaYWPV0D+LJkxJgKnIce2olY0xkTjBLPPrLWPF3grCugBvOcNZoHe5VuMMcOAn4EgY0yctTbJ+15n4Hfv899xTtfMO044cEKB90VEpJLptEYREf83HXg8r+mEMSbGGHPOcewvFrjFGBPsDQFtgS+ttSk4IeIZY0yUcRqRnFDoerXCInFmcPYaYxoDdxd6fwfQqsDrdUCoMWaoMSYYeBCoUdzOj1aTMWaY93RBcGbsLM6s4hGMMQONMR29YXA/zmmOeesVrnEOEG+MGeH9GgUbp8FK2wLr/J8x5mRjTAjOzN1ia+3fZs2MMVHA18CP1tqxhd7ehzPb1sX7+D/v8u7e/R3E6cb4iDEm3BjTF+d6vLwZvI+BDsaYC4wxocA/gZXW2jVFfzVFRKSiKZyJiPi/KTgzW3ONMenAIpzGHMdqMU7zkDScph4XFmhQcQUQAqzCCTsfAA1L2NfDQDecoPEFTpgo6EngQW+HxLustfuAG4AZwFacmbQtlKykmnoCi40xB3C+RrdaazcWsY8G3u32A6uB73FObQTn63uhcTpdTrXWpuM0HbkEZzZsOzCRI0Pk2zjNVHbjhKni7kN3nrfGK82R97FrZh3b8x5AqnebHdbaLO/zG4CaONcJvgNcb639HcB7jd8FOGO4B+d7ouD1gSIiUsnMkZcNiIiIFM8YMwoYba092e1aqipjzOvAFmvtg27XIiIivkUzZyIiIiIiIj5A4UxERERERMQH6LRGERERERERH6CZMxERERERER+gcCYiIiIiIuIDKvUm1PXq1bMtWrSozEOKiIiIiIj4jOXLl6dZa2OKeq9Sw1mLFi1YtmxZZR5SRERERETEZxhjNhX3nk5rFBERERER8QEKZyIiIiIiIj5A4UxERERERMQHVOo1ZyIiIiIiviI7O5stW7aQmZnpdinih0JDQ2nSpAnBwcGl3kbhTERERESqpS1bthAZGUmLFi0wxrhdjvgRay27du1iy5YttGzZstTb6bRGEREREamWMjMzqVu3roKZlDtjDHXr1i3zrKzCmYiIiIhUWwpmUlGO5XtL4UxERETEHz31FCQmHrksMdFZLj7j8ccfp3379nTq1IkuXbqwePFiAEaPHs2qVavK5RgtWrQgLS2txHWeeOKJMu/39ddf56abbjpi2WuvvUaXLl3o0qULISEhdOzYkS5dujB27Ngy778yPPfcc2RkZLhdRj6FMxERERF/1LMnXHTRXwEtMdF53bOnu3VJvoULFzJnzhx+/vlnVq5cybfffkvTpk0BmDFjBu3atau0Wo4lnBXlyiuvZMWKFaxYsYJGjRqRmJjIihUrmDBhQrnsv6ystXg8nmLfP5ZwlpOTc7xlFUvhTERERMQfDRwI770H550HY8c6wez9953l4hNSUlKoV68eNWrUAKBevXo0atQIgAEDBrBs2TIAIiIiuPfee+nevTunnnoqS5YsYcCAAbRq1YrPPvsM+Pss1plnnsm8efP+dsxzzz2X7t270759e15++WUAxo4dy6FDh+jSpQvDhw8H4K233qJXr1506dKF6667jtzcXMCZGYuPj6d///78+OOPpf6skyZNomfPnnTq1Ilx48YBkJycTJs2bRg9ejQdOnRg+PDhfPvtt/Tt25e4uDiWLFkCwPjx4xkxYgSDBg0iLi6OV1555aj7bdu2LTfccAPdunVj8+bNXH/99fTo0YP27dvnrzd16lS2bdvGwIEDGej9exEREZG/7w8++IBRo0YBMGrUKO644w4GDhzIvffeyx9//MGQIUPo3r07/fr1Y82aNaX+WpTIWltpj+7du1sRERERqSRTp1oLzuOhh9yuxuesWrXK1eOnp6fbzp0727i4OHv99dfbefPm5b/Xv39/u3TpUmuttYD98ssvrbXWnnvuufa0006zWVlZdsWKFbZz587WWmtfe+01e+ONN+ZvP3ToUJuYmGittbZ58+Y2NTXVWmvtrl27rLXWZmRk2Pbt29u0tDRrrbXh4eH5265atcqeeeaZNisry1pr7fXXX29nzpxpt23bZps2bWp37txpDx8+bE866aQjjllY3nG//vpre80111iPx2Nzc3Pt0KFD7ffff283btxoAwMD7cqVK21ubq7t1q2bvfLKK63H47GffPKJPeecc6y11o4bN8526tTJZmRk2NTUVNukSRO7devWEvdrjLELFy7MryXvc+fk5Nj+/fvbX3755W9fm8Jfh9mzZ9uRI0daa60dOXKkHTp0qM3JybHWWjto0CC7bt06a621ixYtsgMHDizya1DU9xiwzBaTl9RKX0RERMQfffUV3HorGOPEs2nTnFkzzZwV6eHPf2fVtv3lus92jaIYd1b7Yt+PiIhg+fLlLFiwgMTERC6++GImTJiQP1uTJyQkhCFDhgDQsWNHatSoQXBwMB07diQ5OblMNU2dOpWPP/4YgM2bN5OUlETdunWPWOe///0vy5cvp6f3FNhDhw4RGxvL4sWLGTBgADExMQBcfPHFrFu37qjHnDt3LnPnzqVr164AHDhwgKSkJJo1a0bLli3p2LEjAO3bt2fw4MEYY/722c455xxq1qxJzZo1GThwIEuWLOGHH34odr/NmzfnxBNPzN/+/fff5+WXXyYnJ4eUlBRWrVpFp06dyvS1GzZsGIGBgRw4cICffvqJYcOG5b93+PDhMu2rOApnIiIiIv7mt9/gggsgMBDefdcJaTVr6tRGHxQYGMiAAQMYMGAAHTt2ZObMmX8LZ8HBwfmd/wICAvJPgwwICMi//ikoKOiIa6uKauE+b948vv32WxYuXEhYWBgDBgwocj1rLSNHjuTJJ588Yvknn3xyTB0IrbXcd999XHfddUcsT05Ozv8sJX02+HvnQ2NMifsNDw/Pf71x40aefvppli5dSnR0NKNGjSq2xX3B4xReJ2+fHo+H2rVrs2LFiqN99DJTOBMRERHxJzt3wllnQVAQvP66E9KysuCyy+COO2DpUoWzIpQ0w1VR1q5dS0BAAHFxcQCsWLGC5s2bH9O+WrRowb/+9S88Hg9bt27Nv16roH379hEdHU1YWBhr1qxh0aJF+e8FBweTnZ1NcHAwgwcP5pxzzuH2228nNjaW3bt3k56eTu/evbn11lvZtWsXUVFRzJ49m86dOx+1tjPOOIOHHnqI4cOHExERwdatWwkODi7T5/v000+57777OHjwIPPmzWPChAnUrFmzVPvdv38/4eHh1KpVix07dvDVV18xYMAAACIjI0lPT6devXoA1K9fn9WrV5OQkMDHH39MZGTk3/YXFRVFy5YtmT17NsOGDcNay8qVK0v1tTgahTMRERERf5GZ6TQA2bED5s+HHj2c5ZdcAtOnw8yZUIrT0KRyHDhwgJtvvpm9e/cSFBRE69at85t0lFXfvn3zTxHs0KED3bp1+9s6Q4YMYfr06XTq1ImEhIQjTvu79tpr6dSpE926dWPWrFk89thjnH766Xg8HoKDg3nhhRc48cQTGT9+PH369KFhw4Z069Ytv1FISU4//XRWr15Nnz59AOd0zrfeeovAwMBSf75evXoxdOhQ/vzzTx566CEaNWpEo0aNSrXfzp0707VrV9q3b0+rVq3o27fvEZ/7H//4Bw0bNiQxMZEJEyZw5pln0rRpUzp06MCBAweKrGfWrFlcf/31PPbYY2RnZ3PJJZeUSzgzzjVplaNHjx42r+uMiIiIiJQja2HECJg1C2bPhgsvPPL9X36Bbt3g+uvh+efdqdHHrF69mrZt27pdhhzF+PHjiYiI4K677nK7lDIr6nvMGLPcWtujqPXVSl9ERETEHzz+uBPMHn/878EMoHNnGDMGXnzRCWoi4nM0cyYiIiJS1c2e7TT7GDHCOXWxuKYNu3dDfDy0bw/z5hW/XjWhmTOpaJo5ExEREalOli6FK66Avn3hlVdKDlx16jgza/PnOzeoFhGfonAmIiIiUlVt3gxnnw0NG8LHH0OBtuTFGj0aunaFu+6CYpodiIg7FM5EREREqqIDB5yW+RkZ8Pnn4L0x8FEFBjo3pN66FZ54omJrFJEyUTgTERERqWpyc2H4cPj1V+f0xPZlvEdX375w+eXwzDOwfn3F1CgiZaZwJiIiIlLV3HcffPYZTJkCQ4Yc2z4mToSQELj99vKtTcokMDCQLl260KFDB4YNG0ZGRsYx72vUqFF88MEHAIwePZpVq1YVu+68efP46aef8l9Pnz6dN95445iPnSc5OZkOHTocsWz8+PE8/fTTZdpPedVT1SiciYiIiFQlr74KkybBjTfCTTcd+34aNYKHHoI5c+DLL8uvPimTmjVrsmLFCn777TdCQkKYPn36Ee+X5ibPRZkxYwbt2rUr9v3C4WzMmDFcccUVx3Ss8paTk+NT9VQmhTMRERGRqmLePOdeZaefDs89d/z7u+02p7X+bbfB4cPHvz9/9tRTkJh45LLERGd5OenXrx/r169n3rx5DBw4kMsuu4yOHTuSm5vL3XffTc+ePenUqRMvvfQSANZabrrpJtq1a8fQoUPZuXNn/r4GDBhA3i2s/vOf/9CtWzc6d+7M4MGDSU5OZvr06Tz77LN06dKFBQsWHDG7tWLFCk488UQ6derEeeedx549e/L3ee+999KrVy/i4+NZsGBBmT9jSfu+//776d+/P1OmTMmvZ9u2bXTp0iX/ERgYyKZNm9i0aRODBw+mU6dODB48mD///BNwZg9vueUWTjrpJFq1apU/k1hVKJyJiIiIVAVJSXDBBRAXB++/D0FBx7/PkBDn1MikpPIJe/6sZ0/nXnJ5AS0x0Xnds2e57D4nJ4evvvqKjh07ArBkyRIef/xxVq1axauvvkqtWrVYunQpS5cu5ZVXXmHjxo18/PHHrF27ll9//ZVXXnnliJmwPKmpqVxzzTV8+OGH/PLLL8yePZsWLVowZswYbr/9dlasWEG/fv2O2OaKK65g4sSJrFy5ko4dO/Lwww8fUeeSJUt47rnnjlhe0B9//HFEoCo4G1jSvvfu3cv333/PnXfemb+sUaNGrFixghUrVnDNNddwwQUX0Lx5c2666SauuOIKVq5cyfDhw7nlllvyt0lJSeGHH35gzpw5jB07towj4a5y+FstIiIiIhVqzx4480znHmZz5kCtWuW37yFDnHb8jz7qNAlp3Lj89l2V3HYbrFhR8jqNGsEZZzi3LkhJgbZt4eGHnUdRunQ5aug9dOgQXbp0AZyZs6uvvpqffvqJXr160bJlSwDmzp3LypUr82eB9u3bR1JSEvPnz+fSSy8lMDCQRo0aMWjQoL/tf9GiRZxyyin5+6pTp06J9ezbt4+9e/fSv39/AEaOHMmwYcPy3z///PMB6N69O8nJyUXu44QTTmBFga/l+PHjS7Xviy++uNi6fvzxR2bMmJE/W7dw4UI++ugjAEaMGME999yTv+65555LQEAA7dq1Y8eOHSV+Xl+jcCYiIiLiy7Kz4cILITkZ/vtfaNWq/I8xebLT8fGee2DWrPLfv7+IjnaC2Z9/QrNmzuvjlHfNWWHh4eH5z621TJs2jTPOOOOIdb788ktMSTcd9257tHXKoob3XnqBgYHk5OSU237hyM9cUEpKCldffTWfffYZERERRa5T8DPWKHC/P2ttudZY0XRao4iIiIivstZp+vHdd/DKK3DyyRVznBNOcG5K/fbb8MMPFXMMX/fcc841fSU9xo1z7iv30EPOn+PGlbx+OZ0qesYZZ/Diiy+SnZ0NwLp16zh48CCnnHIK7777Lrm5uaSkpJBY+Jo4oE+fPnz//fds3LgRgN27dwMQGRlJenr639avVasW0dHR+TNUb775Zv5M1/E6ln1nZ2dz0UUXMXHiROLj4/OXn3TSSbz77rsAzJo1i5Mr6u9GJdPMmYiIiIivmjIFXn7ZaZ1f0Z3r7rsP3ngDbr4Zli1zblYtf8m7xuz992HgQOdR8HUFGj16NMnJyXTr1g1rLTExMXzyySecd955fPfdd3Ts2JH4+Pgig05MTAwvv/wy559/Ph6Ph9jYWL755hvOOussLrzwQj799FOmTZt2xDYzZ85kzJgxZGRk0KpVK1577bVy+yxl3fdPP/3E0qVLGTduHOPGjQOcGcOpU6dy1VVXMWnSJGJiYsq1RjeZypzq69Gjh83rGiMiIiIiJfjiCzjrLDjvPJg9GwIq4YSn99+Hiy+Gf/0Lrr++4o/nstWrV9O2bdvSrfzUU07zj4JBLDERli51TgcVKUJR32PGmOXW2h5Fra9wJiIiIuJrfv0VTjoJEhLg+++hmGtxyp21MGgQrFwJ69ZB3bqVc1yXlCmciRyDsoYzXXMmIiIi4kt27HA6M0ZFwaefVl4wA6cb5NSpsG+fc12ViFQqhTMRERERX3HoEJx7LqSlweefu9PWvmNHuOEGeOmlo7eWF5FypXAmIiIi4gushauvhkWL4K23oFs392p5+GGoU8dpDlLFWpGXVVVrtS5Vx7F8bx01nBljQo0xS4wxvxhjfjfGPOxdXscY840xJsn75/Hf6EFERESkunr0UXjnHXjySacJiJuio+GJJ5y2+u+8424tFSg0NJRdu3YpoEm5s9aya9cuQkNDy7TdURuCGOeObuHW2gPGmGDgB+BW4Hxgt7V2gjFmLBBtrb23pH2pIYiIiIhIEd59Fy69FEaOhNdec679cltuLvTuDSkpsHYtFHPz36osOzubLVu2kJmZ6XYp4odCQ0Np0qQJwcHBRywvqSHIUe9zZp30dsD7Mtj7sMA5wADv8pnAPKDEcCYiIiIihSxaBKNGQb9+znVevhDMwLnP2bRpTtfIxx6DCRPcrqjcBQcH07JlS7fLEMlXqmvOjDGBxpgVwE7gG2vtYqC+tTYFwPtnbDHbXmuMWWaMWZaamlpOZYuIiIj4gT//dBqANG4MH30ENWq4XdGR+vRxbn49eTIkJbldjYjfK1U4s9bmWmu7AE2AXsaYDqU9gLX2ZWttD2ttj5iYmGMsU0RERMTPpKc7N5nOzIQ5c6BePbcrKtrEiRAaCrfd5nYlIn6vTN0arbV7cU5fHALsMMY0BPD+ubO8ixMRERHxS7m5cNll8Pvv8P774Ms3Qm7QAMaNgy+/dEKkiFSY0nRrjDHG1PY+rwmcCqwBPgNGelcbCXxaQTWKiIiI+Jd77nGCzrRpcPrpbldzdDffDG3aOLNnap4hUmFKM3PWEEg0xqwEluJcczYHmACcZoxJAk7zvhYRERGRkrzyinMN1803w/XXu11N6YSEwJQp8Mcf8Oyzblcj4reO2kq/PKmVvoiIiFRr330HZ5wBp54Kn38OQUdtnO1bzjsP5s51Wus3aeJ2NSJVUkmt9Mt0zZmIiIiIHKN16+CCCyAhwbmvWVULZuDM+OXmwt13u12JiF9SOBMRERGpaLt3w5lnQnCwM2NWq5bbFR2bli2d6+XefRfmz3e7GhG/o3AmIiIiUpGysuDCC2HTJvj4YyfgVGVjx0KzZs41czk5blcj4lcUzkREREQqirVwww2QmAivvgp9+7pd0fELC4NnnoGVK+Gll9yuRsSvKJyJiIiIVJTJk51Q9uCDcPnlbldTfi64AAYNgocegrQ0t6sR8RsKZyIiIiIV4fPPncYZF14IDz/sdjXlyxiYOhX273eCp4iUC4UzERERkfL2yy9w6aXQvTvMnAkBfvgjV/v2cNNN8PLL8PPPblcj4hf88F8KERERERelpMBZZ0F0NHz2mXONlr8aPx7q1XOag1TivXNF/JXCmYiIiEh5OXQIzj3XaZ3/+efQsKHbFVWs2rVhwgT46SeYNcvtakSqPIUzERERkfLg8cCoUbB0qRNUunRxu6LKMWoU9Ozp3P8sPd3takSqNIUzERERkfLw8MPw/vswcSKcc47b1VSegACYNs05nfPRR92uRqRKUzgTEREROV6zZsEjj8BVV8Fdd7ldTeXr3RuuvBKeew7WrnW7GpEqS+FMRERE5HgsXAhXXw39+8OLLzpt5qujJ5+EmjXh1lvVHETkGCmciYiIiByr5GSnAUiTJvDhhxAS4nZF7qlf3+ne+PXXTjMUESkzhTMRERGRY7F/v9MyPysL5syBunXdrsh9N90E7drB7bdDZqbb1YhUOQpnIiIiImWVm+vcZHr1avjgA2jTxu2KfENwMEyZAhs2wDPPuF2NSJWjcCYiIiJSVnfdBV9+CS+8AIMHu12Nbzn1VDj/fHjiCdi82e1qRKoUhTMRERGRspg+3elKeNttcN11blfjm555xrnvW3XsXClyHBTORERERErr22+d66qGDoWnn3a7Gt/VogWMHevc9y0x0e1qRKoMhTMRERGR0lizBi68ENq2hbffhsBAtyvybffcA82bwy23QE6O29WIVAkKZyIiIiJHs2sXnHkm1KjhtImPinK7It9XsyZMngy//ebc/01EjkrhTERERKQkWVlOg4stW+CTT5xT9qR0zjvPaRDyz39Caqrb1Yj4PIUzERERkeJYC2PGwPz58Npr0KeP2xVVLcbA1Klw4ADcf7/b1Yj4PIUzERERkeI8/bQTyv75T+e+ZlJ2bdvCzTfDq6/CsmVuVyPi0xTORERERIryySdw771w8cUwfrzb1VRt48ZBbKwT0jwet6sR8VkKZyIiIiKF/e9/MHw49OzpzJwZ43ZFVVutWjBhAixaBG++6XY1Ij5L4UxERESkoG3b4KyzoG5d+PRTp+ugHL8rroDevZ3ZyP373a5GxCcpnImIiIjkyciAc86BvXudlvkNGrhdkf8ICIBp02DnTnjkEberEfFJCmciIiIi4FwLNXIkLF8O77wDnTu7XZH/6dkTrroKpkyB1avdrkbE5yiciYiIiIDTkfGDD5wOjWed5XY1/uuJJyA8HG691blVgYjkUzgTERERefNNePxxGD0abr/d7Wr8W2ysc1rjN9841/SJSD5jK/E3Fj169LDLdH8LERER8SU//giDBkHfvvCf/0BIiNsV+b/sbOjaFQ4ehFWr1HRFqhVjzHJrbY+i3tPMmYiIiFRfGzbAuedC8+bOKY0KZpUjONhpDpKcDJMmuV2NiM9QOBMREZHqad8+59qy3FyYMwfq1HG7oupl4EAYNgyefBI2bXK7GhGfoHAmIiIi1U9ODlxyCaxb58yYxce7XVH19PTTzg2+77rL7UpEfILCmYiIiFQ/d9zhXF/24ovO9WbijmbN4L77nID83/+6XY2I6xTOREREpHp54QXneqc773S6M4q77r4bWraEW25xGoWIVGMKZyIiIlJ9zJ3r3F/rzDNh4kS3qxGA0FB49lmna+O//uV2NSKuUjgTERGR6mHVKqcBRfv28PbbEBjodkWS5+yz4fTTYdw42LnT7WpEXKNwJiIiIv7pqacgMdF5nprqzJYFBsLQoRAZ6W5tciRjYMoU575n993ndjUirlE4ExEREf/UsydcdBF8/TWcfz5s2QLWwmmnuV2ZFKVNG7jtNvj3v2HJErerEXGFsdZW2sF69Ohhly1bVmnHExERkWouMdGZKTt0yJkt+/RT5/5a4pv274eEBKeL48KFEKB5BPE/xpjl1toeRb131O94Y0xTY0yiMWa1MeZ3Y8yt3uVdjDGLjDErjDHLjDG9yrtwERERkeMycCDccIPz/LbbFMx8XVSU06hlyRKYOdPtakQqXWl+HZED3GmtbQucCNxojGkHPAU8bK3tAvzT+1pERETEdyQmOj/kP/SQc0+zvGvQxHddfjn06QNjx8K+fW5XI1KpjhrOrLUp1tqfvc/TgdVAY8ACUd7VagHbKqpIERERkTJLTHSuOXv/fXjkEefPiy5SQPN1AQHOfehSU+Hhh92uRqRSlelEXmNMC6ArsBi4DZhkjNkMPA2otY6IiIj4jqVLnUCWdyrjwIHO66VL3a1Ljq57d+cG4dOmObdAEKkmSt0QxBgTAXwPPG6t/cgYMxX43lr7oTHmIuBaa+2pRWx3LXAtQLNmzbpv2rSp/KoXEREREf+Umgrx8U5Q++Ybp92+iB84roYg3h0EAx8Cs6y1H3kXjwTyns8GimwIYq192Vrbw1rbIyYmpmyVi4iIiEj1FBMDjz4K//0vfPyx29WIVIrSdGs0wKvAamvt5AJvbQP6e58PApLKvzwRERERqbbGjIGOHeGOOyAjw+1qRCpcaWbO+gIjgEHetvkrjDH/B1wDPGOM+QV4Au+piyIiIiIi5SIoyLnubNMmeEqNwcX/6SbUIiIiIuLbLrnEuYH46tXQooXb1Ygcl+O+5kxERERExDVPP+202L/zTrcrEalQCmciIiIi4tuaNIEHHoCPPoJvv3W7GpEKo3AmIiIiIr7vjjugVSu45RbIzna7GpEKoXAmIiIiIr4vNBSee8657uz5592uRqRCKJyJiIiISNVw5pnwj3/A+PGwY4fb1YiUO4UzEREREakajHFmzw4dgrFj3a5GpNwpnImIiIhI1REfD7ffDq+/DosWuV2NSLlSOBMRERGRquXBB6FhQ7j5ZvB43K5GpNwonImIiIhI1RIZCZMmwbJl8NprblcjUm4UzkRERESk6rnsMujbF+67D/budbsakXKhcCYiIiIiVY8xMG0apKU53RtF/IDCmYiIiIhUTV27wnXXOfc9++03t6sROW4KZyIiIiJSdT32GERFwS23gLVuVyNyXBTORERERKTqqlvXCWiJifDBB25XI3JcFM5EREREpGq77jro3BnuvBMyMtyuRuSYKZyJiIiISNUWGOg0B9m8GSZMcLsakWOmcCYiIiIiVV+/fnDppfDUU7Bhg9vViBwThTMRERER8Q+TJkFQENxxh9uViBwThTMRERER8Q+NG8ODD8Knn8LXX7tdjUiZKZyJiIiIiP+4/XZo3RpuvRWystyuRqRMFM5ERERExH/UqAEnnwxr18LUqX8tT0x0rkcT8WEKZyIiIiLiX664AkJC4KGHICXFCWYXXQQ9e7pdmUiJFM5ERERExL8MHAivvgqZmXDSSXD++fDee85yER+mcCYiIiIi/ufyy+GMMyA5GfbuhTFj4LHHYNMmtysTKZbCmYiIiIj4n8REWL4c7rkHIiKgZk3nNMcWLWDQIJg5Ew4ccLtKkSMonImIiIiIf8m7xuz992HiRPjsM9i2Dd56Cx5+2Jk9GzUKGjSAkSPhu+/A43G7ahGFMxERERHxM0uXOsEs7xqzgQOd11u3wj//CevXw4IFcOml8MknMHiwM6P2wAOwbp2blUs1Z6y1lXawHj162GXLllXa8URERERESnTokHPT6pkzYe5cZwbtxBOdGbWLL4boaLcrFD9jjFlure1R1HuaORMRERGR6qtmTbjkEvjqK9i82bkXWno6XH+9c9rjsGEwZw5kZ7tdqVQDCmciIiIiIgCNGsHdd8Ovv8KyZU6Hx3nz4KyzoEkTuOMOWLHC7SrFjymciYiIiIgUZAx07w5TpjjXqX3yCfTtC88/D127QufOMHky7NjhdqXiZxTORERERESKExIC55wDH30EKSlOQKtRA+68Exo3hjPPhNmznRteixwnhTMRERERkdKoWxduvBGWLIHff4e77oL//c9p29+woXMa5MKFUIkN98S/KJyJiIiIiJRVu3YwYQL8+Sd8/TUMHQpvvAEnnQRt2sDjjzvviZSBWumLiIiIVEHWWvZn5rDnYBZ7MrLYm5HN7gLP92Q4z/cczGbkSS0Y0qGB2yX7v/374YMPnLb88+c7164NGOC05b/gAoiIcLtC8QEltdIPquxiRERERORIObke9h3KC1TZ+YFrjzdk7T2Yze6MLPYWeH/voWxyPUX/kj3AQHRYCLXDgokOC6EyfxlfrUVFwVVXOY+NG+HNN52gNmqUczrkBRc4QW3AAAjQCWzyd5o5ExERESlHh3Nyi57FOvhX2Mp7vjcji90Hs9ifmVPs/kICA6gdFkyd8L/CVnR4CNF5z8NCiA4PpnZYCHW8ryNDgwgIMJX4qaVY1sKPPzoh7f33ndm1pk1hxAgnqMXHu12hVLKSZs4UzkRERESKYK0lIyu3yFMGdx8sMItV4PTBPRlZZGTlFrvPsJDA/DDlzGwVDFnB3tAVkj/rVSc8hLCQQIxR0PILhw7Bp586QW3uXPB44MQTnZB28cUQHe12hVIJFM5ERESkWvN4LOmZOX8FqQJhKu/0wbxZrL9murLJyvUUu8+o0CCiw0O8M1Z/ha063lmsgiEsL2yFBgdW4qcWn7ZtG8ya5QS13393WvaffbYT1M44A4KD3a5QKojCmYiIiFQL1lq27ctkTcp+1mxPZ1XKftak7Cd5V0aJ12cVnMHKC1hFha2857VrBhMUqGuGpBxYCz//7HR6fPttSEuD2FgYPtwJap07u12hlDOFMxEREfE7h7JyWbcjndWFgljB67ea1qlJmwZRtI6NoG54EWFL12eJL8nKgq++cmbT5syB7GwnnF1xhRPW6td3u0IpBwpnIiIiUmXlzYat3rafNdv3szolndXb95OcdpC8ybCwkEDaNIikTcMo2jaMom2DSBIaRBIZqlPDpIratQvefdcJakuXQmAgDBnizKaddRaEhrpdoRwjhTMRERGpEjKycli344AzG5byVxBLLzAb1qxOGG0aRDohrKHzZ9PoMM1+if9atco57fHNN51r1WrXdhqIjBzpNBRRw5gq5bjCmTGmKfAG0ADwAC9ba6d437sZuAnIAb6w1t5T0r4UzkRERASc2bCtew+xOiXdCWHb97MmJZ2Nuw6S96NJeEggbRpGHRHE4utrNkyqsdxc+O47Zzbto4+c7o/x8c5pjyNGQLNmblcopXC84awh0NBa+7MxJhJYDpwL1AceAIZaaw8bY2KttTtL2pfCmYiISPWTkZXD2u3pThDzhrDCs2HN6/41G9amQRTtGkbRJLqmZsNEirN/P3zwgRPU5s93Zs8GDoR69ZwZtf/7v7/WTUx0To28p8R5FKkk5XpaozHmU+B54BqcWbRvS7utwpmIiIj/stayZc+h/AYdeX8mF5gNi6gR5L027K8gltAgkogaQe4WL1KVbdzonPI4cyZs2OAsO/10uP9+515qF13k3AB74EB36xSgHMOZMaYFMB/o4P3zU2AIkAncZa1dWsQ21wLXAjRr1qz7pk2bylq/iIiI+JiDh3NYm9cpscCMWPphZzbMGGheJyw/gLVpGEm7hlE0rq3ZMJEKYy38+CM8+aTT9dFaiIx0bnytYOYzyiWcGWMigO+Bx621HxljfgO+A24FegLvAa1sCTvUzJmIiEjVkjcbtsobwpzZsP1s2p2RPxsWWSOINg0jadPA6ZTYpmEkCfUjCddsmIh77rsPJkyAqCjYvh1q1nS7IvEqKZyV6l9NY0ww8CEwy1r7kXfxFuAjbxhbYozxAPWA1HKoWURERCrZgcPOtWFOu/q8GbF0DhSYDWtRN5x2jaI4v1sT76xYJE2ia2LULU7EdyQmwowZTpOQN9+EG2+Ef//b7aqkFI4azozzr+2rwGpr7eQCb30CDALmGWPigRAgrSKKFBERkfLj8RSYDcsLYtvT2bQrI3+dyNAg2jaI4vxujfNDWEKDSMJCNBsm4tMSE4+8xiw5GV57zblH2kUXuV2dHEVp/oXtC4wAfjXGrPAuux/4N/Bv7+mNWcDIkk5pFBEREXfkeixf/prCog27WLM9nbWFZsNa1g2nQ6NaXJg3G9Ywksa1NRsmUiUtXXpk84+ZMyEhASZOVDirAnQTahERET9lrWXeulQmfrWGNdvTndmwhlG0zWtZ3zCKhPqR1AwJdLtUEalI99/vNAlZuNC5abW4qlxb6R8PhTMREZHKsXLLXp78cg0LN+yiWZ0w7j4jgaEdG6pTokh1lJ7u3Ky6eXP46ScICHC7omrtuBuCiIiISNWwaddBnvp6LV+sTKFueAgPn92eS3s1IyRIP4yJVFuRkc7M2ZVXwttvw+WXu12RFEMzZyIiIn4g7cBhpv03iVmL/yQ4MIBr+rXkmlNaERka7HZpIuILPB7o3RtSUmDtWggPd7uiakszZyIiIn4qIyuHGQs28vL8DRzKzuXink25bXAcsVGhbpcmIr4kIACeew5OPtlpDvLII25XJEVQOBMREamCcnI9vLdsM899m0Rq+mHOaF+fu89oQ+vYCLdLExFf1bcvXHopTJoEV1/tXIMmPkXhTEREpAqx1vL17zt46us1bEg9SI/m0Uy/vBvdm9dxuzQRqQomToRPPoF77oH33nO7GilE4UxERKSKWJa8mye/WsPyTXs4ISacl0d057R29XU/MhEpvaZNnWD28MNw003Qr5/bFUkBaggiIiLi49bvTGfif9byzaodxEbW4PbT4hnWvQlBgerAKCLHICPDuTF1bKxz02q11q9UaggiIiJSBe3Yn8lz367jvaWbCQsJ4q7T47nq5JaEhei/bxE5DmFhzumNw4fD66/DVVe5XZF4aeZMRETEx6RnZvPS9xuY8cMGcj2W4b2bc/Og1tSNqOF2aSLiL6x1GoRs2ADr1kFUlNsVVRuaORMREakCsnI8zFq8iWnfrWf3wSzO7tyIu05PoFndMLdLExF/YwxMmQK9esETT8CECW5XJCiciYiIuM7jscz5NYWnv17Ln7sz6Nu6LmOHtKVjk1pulyYi/qxnTxg5Ep59Fq65Bk44we2Kqj2FMxERERf9tD6NJ79aw69b99G2YRQzr+rFKXH11IFRRCrHE0/ABx/AXXfBxx+7XU21p3AmIiLigtUp+5nw1Rq+X5dK49o1mXxRZ87t0piAAIUyEalEjRrB/ffDAw/Ad9/BoEFuV1StqSGIiIhIJdq69xDPzF3Lx//bSlRoMDcNbM2IPs0JDQ50uzQRqa4yM6FtW4iMhJ9/hiDN31QkNQQRERFx2d6MLP417w9e/ykZgGtPacUN/VtTKyzY3cJEREJDYdIkGDYMZsyAMWPcrqja0syZiIhIBcrMzuX1n5L5V+J60g/ncEG3JtxxWjyNatd0uzQRkb9YCwMGwKpVkJQEtWu7XZHf0syZiIhIJcv1WD76eQvPfrOObfsyGZgQw73/aEObBrqXkIj4oLzW+t26wSOPwOTJbldULSmciYiIlCNrLfPWpjLxP2tYsz2dzk1q8cxFXehzQl23SxMRKVmXLjB6NEybBtdeC23auF1RtaPTGkVERMrJL5v38uRXq1m0YTfN64Zx9xkJDO3YUG3xRaTq2LkT4uLg5JPhiy/crsYv6bRGERGRCrRp10Ge+notX6xMoW54CA+f3Z5LezUjJCjA7dJERMomNhYeegjuvhv+8x8YMsTtiqoVzZyJiIgco7QDh5n23yRmLf6T4MAArunXkmtOaUVkqDowikgVlpUF7ds7LfVXroRg/ZtWnjRzJiIiUo4ysnKYsWAjL33/B5k5Hi7p2ZRbT40jNjLU7dJERI5fSAg88wyccw68+CLccovbFVUbCmciIiKllJPr4b1lm3nu2yRS0w8zpH0D7h6SwAkxEW6XJiJSvs46C047DcaNg8sug3r13K6oWlA4ExEROQprLV//voOnvl7DhtSD9GwRzfTLu9O9ebTbpYmIVAxj4NlnoXNnJ6C98ILbFVULCmciIiIlWJa8mye/WsPyTXtoHRvBK1f04NS2serAKCL+r317GDPGObXx+uuhQwe3K/J7aggiIiJShPU705n4n7V8s2oH9aNqcPup8VzYvQlBgerAKCLVyK5dTmv97t1h7lxnRk2OixqCiIiIlNKO/Zk89+063lu6mfCQIO4+I4Gr+rakZkig26WJiFS+unVh/Hi49Vb4/HM4+2y3K/JrmjkTEREB0jOzeen7Dcz4YQO5HsvlJzbn5kFx1AkPcbs0ERF3ZWc7155lZ8Nvv0GNGm5XVKVp5kxERKQYWTkeZi3exLTv1rP7YBZnd27EXacn0KxumNuliYj4huBgpznIkCEwbRrcdZfbFfkthTMREamWPB7LnF9TmPT1GjbvPkTf1nUZO6QtHZvUcrs0ERHfc8YZMHQoPPIIjBgB9eu7XZFfUjgTEZFq58f1aUz4ag2/bt1H24ZRvHFVR/rF1VMHRhGRkjzzjNOx8cEH4ZVX3K7GLymciYhItbFq234m/GcN89el0rh2TZ69uDPndG5MQIBCmYjIUSUkwM03w3PPwQ03QNeublfkd9QQREREqoV3l/zJfR//SlRoMDcPas3lJzYnNFgdGEVEymTvXqe1frt2MG+eWusfg5IaguhmLSIi4vc++2Ub9338K6fExTD/7oGM7tdKwUxE5FjUrg2PPgrz58OHH7pdjd9ROBMREb/23Zod3PHeCno2r8P0y7tTKyzY7ZJERKq20aOhY0e4+27IzHS7Gr+icCYiIn5r4R+7uP6tn2nXKIpXR/XQjaRFRMpDUJBz3VlyMkye7HY1fkXhTERE/NKKzXsZPXMpzeqEMfPKXkSGasZMRKTcDBoE550HTzwB27a5XY3fUDgTERG/s3Z7OiP/vYS6ETV4a3RvosND3C5JRMT/PP00ZGfDffe5XYnfUDgTERG/kpx2kMtfXUxocACzRvemflSo2yWJiPinVq3g9tvhjTdgyRK3q/ELCmciIuI3UvYdYviMxeTkenjr6t40rRPmdkkiIv7tgQegfn247TaoxFt0+SuFMxER8QtpBw4zfMZi9h/K5o2rehNXP9LtkkRE/F9kpHPd2cKF8M47bldT5R01nBljmhpjEo0xq40xvxtjbi30/l3GGGuMqVdxZYqIiBRv36Fsrnh1Cdv2HuLVUT3p2KSW2yWJiFQfo0ZB9+5w771w8KDb1VRppZk5ywHutNa2BU4EbjTGtAMnuAGnAX9WXIkiIiLFy8jK4arXl5K0M53pl3enV8s6bpckIlK9BAQ4rfW3bIGnnnK7mirtqOHMWptirf3Z+zwdWA009r79LHAPoBNMRUSk0h3OyeW6N5fzvz/3MPWSrgxIiHW7JBGR6unkk+Hii51w9qfmbY5Vma45M8a0ALoCi40xZwNbrbW/VERhIiIiJcnJ9XDLO/9jQVIaEy/oxD86NnS7JBGR6i1v1uzee92towordTgzxkQAHwK34Zzq+ADwz1Jsd60xZpkxZllqauqx1ikiIpLP47Hc8+FKvv59B+POasewHk3dLklERJo1g7vvhnffhR9/dLuaKsnYUrS8NMYEA3OAr621k40xHYH/AhneVZoA24Be1trtxe2nR48edtmyZcdftYiIVFvWWsZ99jtvLNzEHafFc8vgOLdLEhGRPAcPQkICNGjg3PssQM3hCzPGLLfW9ijqvdJ0azTAq8Bqa+1kAGvtr9baWGttC2ttC2AL0K2kYCYiIlIenp67ljcWbuKafi25eVBrt8sREZGCwsNhwgRYvty5ObWUSWmibF9gBDDIGLPC+/i/Cq5LRETkb6Z//wcvJP7Bpb2acv//tcX5/aGIiPiUyy6DE0+E++6D9HS3q6lSStOt8QdrrbHWdrLWdvE+viy0TgtrbVrFlSkiItXdW4s2MeGrNZzVuRGPndtRwUxExFcFBMCUKbB9u3ODaik1nQQqIiI+79MVW3no098Y3CaWyRd1JjBAwUxExKf16gUjRsDkybBhg9vVVBkKZyIi4tO+WbWDO97/hRNb1uWF4d0IDtR/XSIiVcKTT0JQkNPBUUpF/8OJiIjP+nF9Gje+/TMdGtfilZE9CA0OdLskEREprcaNnevOPvoI5s1zu5oqQeFMRER80vJNe7jmjWW0rBvOzCt7ElEjyO2SRESkrO68E5o3h1tvhdxct6vxeQpnIiLic1Zt28+Vry0hJrIGb17di9phIW6XJCIix6JmTZg0CVauhBkz3K7G5ymciYiIT9mQeoAr/r2Y8BpBvHV1b2KjQt0uSUREjseFF0K/fvDgg7B3r9vV+DSFMxER8Rlb9x7i8hmLsRbeGt2bpnXC3C5JRESOlzFOa/1du+DRR92uxqcpnImIiE9ITT/M5TMWk344hzeu7sUJMRFulyQiIuWla1e46iqYOhXWrXO7Gp+lcCYiIq7bl5HNiFcXs31fJq9f2ZP2jWq5XZKIiJS3xx93rkG78063K/FZCmciIuKqg4dzGPX6EjakHuTlK7rTvXkdt0sSEZGKUL++c93ZnDkwd67b1fgkhTMREXFNZnYu17yxjJVb9jH10q70i4txuyQREalIt94KJ5wAt98O2dluV+NzFM5ERMQV2bkebnr7f/z0xy4mXdiJIR0auF2SiIhUtBo14JlnYNUqmD7d7Wp8jsKZiIhUOo/HcvfsX/h29Q4ePac953dr4nZJIiJSWc4+GwYPhnHjnA6Okk/hTEREKpW1loc+/Y1PVmzj7jMSGNGnhdsliYhIZTIGnn0W9u2D8ePdrsanKJyJiEilmviftcxa/Cdj+p/AjQNbu12OiIi4oWNHuO46ePFF+P13t6vxGQpnIiJSaV5IXM/07//g8hObce+QBLfLERERNz3yCERGwh13gLVuV+MTFM5ERKRSzPwpmUlfr+XcLo145OwOGGPcLklERNxUr55z3dncufDFF25X4xMUzkREpMJ9uHwL4z77ndPa1WfSsM4EBCiYiYgIcOON0KaNM3uWleV2Na5TOBMRkQr1n9+2c/cHv9C3dV2mXdqV4ED91yMiIl7BwTB5MiQlwbRpblfjOv0PKSIiFWZBUiq3vPM/ujStzcsjehAaHOh2SSIi4mv+8Q/n8cgjsHOn29W4SuFMREQqxLLk3Vz7xnJOiI3gtVG9CK8R5HZJIiLiqyZPhowMeOghtytxlcKZiIiUu9+27uPK15fSsFYob1zVi1phwW6XJCIivqxNG+f6sxkz4Jdf3K7GNQpnIiJSrtbvPMAV/15CZI0g3hzdm5jIGm6XJCIiVcG4cRAdDbfdVm1b6yuciYhIudm8O4PLZywmwMBbo3vTuHZNt0sSEZGqIjoaHn0U5s2Djz5yuxpXKJyJiEi52Lk/k8tfXUxGVg5vXt2bVjERbpckIiJVzTXXQIcOcNddkJnpdjWVTuFMRESO296MLEa8uoTU9MO8flUv2jaMcrskERGpioKC4LnnIDkZnn3W7WoqncKZiIgclwOHcxj52lI27jrIjCt60K1ZtNsliYhIVTZ4MJxzDjz+OKSkuF1NpVI4ExGRY5aZncvomUv5bes+XrisGye1rud2SSIi4g+efhqysuD++92upFIpnImIyDHJzvVww6yfWbxxN5Mv6sxp7eq7XZKIiPiL1q2dro2vvw5Ll7pdTaVROBMRkTLL9Vhuf28F363ZyWPnduCcLo3dLklERPzNgw9CbGy1aq2vcCYiImVireWBj39lzsoU7vtHG4b3bu52SSIi4o+iouCJJ+Cnn+Ddd92uplIonImISKlZa3niy9W8u3QzNw1szXX9T3C7JBER8WejRkHXrnDPPZCR4XY1FU7hTERESm3ad+t5ZcFGRp3UgjtPj3e7HBER8XeBgTBlCmzZApMmuV1NhVM4ExGRUvn3DxuZ/M06LujWhH+e2Q5jjNsliYhIddCvHwwbBhMnwubNbldToRTORETkqN5ftplH5qxiSPsGTLygIwEBCmYiIlKJnnoKPB4YO9btSiqUwpmIiJToi5UpjP1wJf3i6jHl0i4EBeq/DhERqWQtWsBdd8HbbzsNQvyU/ocVEZFizVu7k9ve+x/dmkXz0oju1AgKdLskERGprsaOhUaN4NZbnVk0P6RwJiIiRVqycTdj3lpOfP1IXh3Vk7CQILdLEhGR6iwiAiZMgGXL4M033a6mQhhbiTd069Gjh122bFmlHU9EqpfsXA8ZWbkcysrlYFYOh7JyySj0/FBWDpnZHhpH1yS+fiQt6obpNL0i/LplH5e+soj6UTV4/7o+1I2o4XZJIiIizoxZnz5OY5B165zAVsUYY5Zba3sU9V61/zXopl0HiYmsod8Ii1QSj8dyKPvIwJSRleP9s+RgVdJ6GVk5ZOeW/ZdNIYEBtIoJJ75+JPH1I4irH0lC/Uia1gkjsJo2vUjakc4V/15MrZrBvDW6t4KZiIj4joAAp7V+nz7w5JPw+ONuV1Suqv3M2UUvLWTFn3vp3aoOAxJiGZgQQ8t64WoRLdWatZbDOZ6/BaIMbxg66J2ByigUmgq/V9R6mdllO0c8JDCAmiGBhIcEUjMkkLCQIMJCAr2PoALvHbk8zLt+uHedsALPQwID2Lwng7Xb01m3M52kHQdYuz2drXsP5R+3RlAArWMjSKgfSZw3uMXXj6Rx7Zp+3alw8+4MLpz+Ex4Ls6/rQ4t64W6XJCIi8neXXw4ffACrV0PLlm5XUyYlzZxV+3C28I9dfLdmB4lrU1m/8wAAzeqEMTAhhgFtYunTqi6hwboAXvxDTq6HX7bsY0FSKqtT9hcITUcGrIysHDxl+KchwHBECCoYjsIKBaTC4SqsmNAVViOQsODASj3l8MDhHJJ2OGFt3Y501nqfb9+fmb9OWEggcbER3pm2SOLqR5DQIJIGUaFV/pc62/dlMuyln0jPzOG9a/uQ0CDS7ZJERESKtmULJCTA//0fzJ7tdjVlonBWSpt3ZzBvXSrz1uzkxz/SyMz2UCMogD4n1GVgQiwDEmJoXle/RZaqZfPuDOYnpbJgXRo//pFGemYOxkCreuFEhgYTXiOQmsHFzTr9NTv1t2BVI4iwYGe9GkEBVT6YlGTfoWySdqSzzhva1nmfpx04nL9OZI2g/KAWFxuZf5pkTGSNKvG12X0wi4teWkjK3kO8fc2JdG5a2+2SRERESvbIIzBuHMybB/37u11NqR1XODPGNAXeABoAHuBla+0UY8wk4CwgC/gDuNJau7ekffl6OCsoMzuXJRt3k7h2J/PWprIx7SDg/EA7wBvUerWso1k18Tnpmdks2rCbBUmpLEhKy//ebVQrlFPiY+gXF8NJJ9QlOjzE5Uqrvj0Hs44Ia85MWzp7MrLz16kdFkx8bCTxDZzZNie4RfjUdVz7M7MZ/spi1u1I5/Ure9HnhLpulyQiInJ0GRnQti1ER8Py5RBYNX4uP95w1hBoaK392RgTCSwHzgWaAN9Za3OMMRMBrLX3lrSvqhTOCktOO8i8tTtJXJvKog27OJzjoWZwIH1b16V/QiwD4mNoWifM7TKlGsr1WH7duo8F65ww9vOfe8jxWGoGB9LnhLr0i6tHv7gYTojRtZSVwVpL2oEjQ1uS9xTJ9Myc/PXqRYTkB7X4Bt6ZtthIaoUFV2q9h7JyGfnvJfz85x5euaIHA9vEVurxRUREjst778Ell8DLL8M117hdTamU62mNxphPgeettd8UWHYecKG1dnhJ21blcFbQoaxcFm3YReLanSSu3cnm3U4TgbjYCAYkxDAwIZYeLeoQEqT23FIxtu49lB/Gflifxr5DzkxNx8a18sNYt+a1dcNgH2KtZcf+wwVC21/B7WBWbv569aNq5M+wJTRwukfGxUYQGVr+oS0rx8M1byxjflIqUy/pylmdG5X7MURERCqUtXDKKbB2LSQlQa1abld0VOUWzowxLYD5QAdr7f4Cyz8H3rPWvlXENtcC1wI0a9as+6ZNm8pWvY+z1rIh7SCJa3by/bpUFm/YTVauh/CQQPq2rsfANs4pkA1r1XS7VKnCDh7OYfHGXcxfl8aCpFT+SHVOVawfVYNT4mLoFx9D3xPq+tSpclI6Ho9l275DTsdIb2hL2nGApJ3pR3S2bFy7JnH1/2pEEl8/gtaxEcd8G5Bcj+WWd/7HF7+mMOH8jlzSq1l5fSQREZHKtXw59OwJd94Jkya5Xc1RlUs4M8ZEAN8Dj1trPyqw/AGgB3C+PcrO/GXmrCQHD+fw0x+7mOe9Vi2vNXebBpH516p1bx5NsG56KyXweCy/b9vvNPJISmX5pj1k51pCgwPo3dI5VfGU+BjiYiN0qqKfyvVYtuzJ+FsTkj92HiAr1wltxkDT6LAj7s8WVz+CE2IiSrwe1uOx3PvhSmYv38KDQ9syul+ryvpYIiIiFeOqq+Ctt+D33yEuzu1qSnTc4cwYEwzMAb621k4usHwkMAYYbK3NONp+qkM4K8haS9LOA861amtSWZq8mxyPJbJGEP3i6zlhLT6G2KhQt0sVH5Cy7xALktJYkJTGj+vT2H0wC4B2DaPoF1+PU+KcYK8mNNVbTq6HTbsznOvYth/w3qctnQ2pB8nx3v8gwECLuuGFZtoiaVkvnOBAwyNzVvHaj8ncMjiOO06Ld/kTiYiIlIPt251QNnAgfPaZ29WU6HgbghhgJrDbWntbgeVDgMlAf2ttamkKqW7hrLD0zGx+XL/L21hkJzv2O2242zeKym/V36Vp7Uq9r5O451BWLos27mKB91TFJO999mIiazgzY3Ex9G1dj5hInaooR5eV4yF510Fnhm27t+3/znSS0w7m37MuKMDQsHYom3cf4sq+Lfjnme008yoiIv5j4kQYOxbmzoXTTnO7mmIdbzg7GVgA/IrTSh/gfmAqUAPY5V22yFo7pqR9VfdwVpC1ljXb051W/WtSWf7nHnI9llo1gzklPoYB8TH0T4ihnq4h8hsej2X19v3e2bFUlm7cQ1aucy+9Xi3reK8dq0dC/Uj9wCzlJjM7lw2pB0namc5ab2hr1yiK2wbHERCg7zMREfEjhw9Du3ZQsyasWAFBx3ZddkXTTairgH2HsvkhKS3/vmppBw5jDHRqXIv+CbEMTIihU5PaBOqHqSpl5/7M/DD2w/o00g44pyq2aRCZ31VR98sTERERKSdXXAFvvgnPPw833ugsS0yEpUvhnnvcrc1L4ayK8Xgsq1L2k7hmJ/PWpfK/P/fgsVAnPIRT4pwOkKfExegmwj4o7+bleTeAXrM9HYC64SH5YezkuHrU13WGIiIiIuXvu+9gyBAIDYXkZPjlF7joInj/fed6NB+gcFbF7TmYxfykVL5fm8q8dansPpiFMdClaW0GJsQyMCGW9o2idIqSC6y1rN2RzoJ1acxPSmXJxt0czvEQEhhAz5bR9IuLoV9cPdo20PiIiIiIVIoZM5wbUvfqBRs2+FQwA4Uzv+LxWFZu3edtKpLKyi17sRbqRYTQPz6WgW1i6Nc6hlph5X/DWnGkph/mx/Vp3jb3aaSmO41d4mIjnDAWX4/eLesc8/2nREREROQ49esHP/wADz0EjzzidjVHUDjzY7sOHGZ+UiqJa1KZn5TK3oxsAgMM3ZrVzr+vWruGUWowcRwO5+SyLHmPE8bWpbEqxbn/enRYMCd7Z8b6xdXTjcZFREREfEFionMq4/XXw4svauasOApnFSvXY1mxeW9+q/7ftjohon5UDQbEO0Gtb1w9okI1q1YSay3rdx5gvreRx6INu8jM9hAcaOje3DlV8ZS4GJ1KKiIiIuJr8oJZXiAr/NoHKJxVUzvTM53r1NY6s2rpmTkEBRh6tIhmgPdatfj6EZpVA3YfzOKH9WksWOecqrh9fyYArWLCOSUuhlPi69G7ZV3Ca+hURRERERGf9dRT0LPnkUFM3RqLpnDmnpxcDz//uTe/Vf9q76l5dcJDCAsJJMAYAgwEBJi/nhvv8wAINAbjXR4YcOTzAO97gd5t/v5eoecF9pt/jMLHLvD8r2MbAgM44vkRxw7Ie16g/oBinhsDWFZu2ceCpDR+27YPa6FWzWBObu2cpnhyXD2aRIe5O3AiIiIi4lcUzuRvtu/L5Pt1O/l5016yPR48HovHgsdarHVOkfTYv5blP89fbvF4/nov1zqnA3qsJddT8Lmzv7ztndfe57bAc+9+beHn9q/nFSEowNCtWbRz3Vh8DB0b19K95ERERESkwpQUznSOVjXVoFYoF/dsxsU9m7ldSqnYwkHRU1xoLH75EcHQu7x53TAidQ2eiIiIiPgAhTOpEvJOXQxEs1oiIiIi4p8C3C5AREREREREFM5ERERERER8gsKZiIiIiIiID1A4ExERERER8QEKZyIiIiIiIj5A4UxERERERMQHKJyJiIiIiIj4AIUzERERERERH6BwJiIiIiIi4gMUzkRERERERHyAsdZW3sGMSQU2VdoBS68ekOZ2EeIKjX31pbGvnjTu1ZfGvvrS2Fdfvjr2za21MUW9UanhzFcZY5ZZa3u4XYdUPo199aWxr5407tWXxr760thXX1Vx7HVao4iIiIiIiA9QOBMREREREfEBCmeOl90uQFyjsa++NPbVk8a9+tLYV18a++qryo29rjkTERERERHxAZo5ExERERER8QFVLpwZY4YYY9YaY9YbY8YWWP6eMWaF95FsjFlRxLZdjDELjTG/G2NWGmMuLvBeS2PMYmNMkndfIcUcf6R3nSRjzMiybi/HzgfG/j/GmL3GmDmFlmvsK5Cb414e3zdy7Fwe++bGmOXeY/xujBlTlu3l+Lj977133ShjzFZjzPPHsr0cG7fH3hiTW+A4n5V1ezl2FTj2N3n3aY0x9Uo4vm/8jG+trTIPIBD4A2gFhAC/AO2KWO8Z4J9FLI8H4rzPGwEpQG3v6/eBS7zPpwPXF7F9HWCD989o7/Po0m6vR9Ude+97g4GzgDmFlmvs/XTcy+P7Ro8qO/YhQA3v8wggGWiksff/sS+wnynA28DzBZZp7P187IEDxSzX2Ffdse8KtPD+O16vmOP7zM/4rg9GGQeuD/B1gdf3AfcVWscAm/MG6Cj7+wWI826TBgQVdZwC618KvFTg9UveZaXaXo+qO/YFthtAgXCmsa8e415e2+tRNcceqAv8ifMfvsa+Gow90B14FxiFN5xp7KvN2P8tnGnsq+7YF1qWTPHhzGd+xq9qpzU2xhmUPFu8ywrqB+yw1iaVtCNjTC+cZP4Hzn+8e621OYX3a4zpYYyZcZTjF7u9lBu3x744GvuK5TPjXtrtpdy4PvbGmKbGmJXeOiZaa7eVtL2UG1fH3hgTgPPb+bsL7U5jX/Fc/3sPhBpjlhljFhljzvUu09hXvIoa+5LW88mf8YMqcucVwBSxrHC7yUuBd0rciTENgTeBkdZajzGm2P1aa5cBo49y/NLUJcfH7bE/nrrk2PnEuJdleyk3ro+9tXYz0MkY0wj4xBjzAeApRV1yfNwe+xuAL621mwttor/3Fc/tsQdoZq3dZoxpBXxnjPkV2F+KuuT4VMjYl7Sur/6MX9XC2RagaYHXTYBteS+MMUHA+TinIxTJGBMFfAE8aK1d5F2cBtQ2xgR5k/ER+y10/AGFjj+vDNvLsXN77Iujsa9Yro97BX3fyNG5PvZ5vD+o/Y7zW9sPy7q9lJnbY98H6GeMuQHnesMQY8wBnNOsNPYVy+2xxztDjrV2gzFmHs71Svp7X/EqauzLcvwBhY4/Dxf+v69qpzUuBeK8XVNCgEuAzwq8fyqwxlq7paiNvdt8DLxhrZ2dt9w6J5EmAhd6F40EPi1iF18Dpxtjoo0x0cDpOOedlnZ7OXZuj32RNPYVztVxr6jvGykVt8e+iTGmpvd5NNAXWKuxrxSujr21dri1tpm1tgVwl3c/YzX2lcLtv/fRxpga3uf1cP7er9LYV4oKGfsy8J2f8ct6kZrbD+D/gHU455E+UOi914ExJWx7OZANrCjw6OJ9rxWwBFgPzOavLl09gBkF9nGVd531wJUFlhe5vR5+NfYLgFTgEM5vWM7Q2Pv3uB/L9nr4zdifBqzEuah8JXBtgX1r7P147AvtaxRHdmvU2Pvx2AMnAb96/97/ClytsfeLsb8F5+e2HJxZr7zx9smf8Y33oCIiIiIiIuKiqnZao4iIiIiIiF9SOBMREREREfEBCmciIiIiIiI+QOFMRERERETEByiciYiIiIiI+ACFMxERERERER+gcCYiIiIiIuIDFM5ERERERER8wP8DvDR/WQ8IdBAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABFe0lEQVR4nO3dd3ydZf3/8deVNN17QdNd6ICu0MEeHQooowgCKiKoTEFUHAx/fIGv8BVxsFSGILIcgEABUYak7NEW09ZORgcd0J3ukeT6/XGfhCRN27RNek6S1/PxOI+cc8/Pnatt8u513dcdYoxIkiRJktIrK90FSJIkSZIMZ5IkSZKUEQxnkiRJkpQBDGeSJEmSlAEMZ5IkSZKUAQxnkiRJkpQBDGeSJEmSlAEMZ5JUT4QQ1pV7lYQQNpb7fFa669sdIYR5IYTPpbuOHQkhTAghnFdLx+4XQhgfQlgWQlgZQng+hNC/3Pq7KrX75hDC2nLr24cQngwhrA8hzA8hfK3S8ceGEGaFEDaEEPJDCD1r4zokSdVjOJOkeiLG2LL0BSwATiq37JF011dZCKFRfThHLWsLPA30B/YB3gXGl66MMV5Uqd3/AjxWbv/fAVtS+54F3BlCGAgQQugIPAFcA7QHJgF/q+0LkiRtn+FMkuq5EEJWCOHKEMKHIYQVIYRHQwjtU+t6hRBiCOGbIYSPQwirQggXhRBGhhCmhhBWhxB+W+5Y54YQ3ggh3BFCKEz1uowtt75NCOG+EMKSEMKiEMINIYTsSvveEkJYCVwXQtgvhPByqq7lIYRHQghtU9s/BPQAnkn1Cv0khDAqhLCw0vWV9a6FEK4LITweQng4hLAGOHcnNe0fQngldS3LQwhVhpMQQtPUMVekvicTQwj7hBBuBI4Cfpuq8bep7QeEEF5M9XbNDiGcUe5Yf0r1eL0YQlibOn+VPVYxxndjjPfFGFfGGLcCtwD9QwgdqqixBXAa8EClz9fEGNfFGF8nCXpnp3Y5FZgeY3wsxrgJuA4YGkIYUFUtkqTaZziTpPrvMuAU4BggF1hF0qNS3iFAX+BM4Fbgp8DngIHAGSGEYypt+xHQEbgWeKI07JEEgyJgf+Ag4FjgvCr27QzcCATg56m6DgC6k4QEYoxnU7EH8OZqXu844HGSXqdHdlLTz4AXgHZAN+CO7RzzHKBNqr4OwEXAxhjjT4HXgEtTNV6aCkUvAn9OXedXgd+X9lilnJU6d0egIFVndRwNfBJjXFHFutOAZcCrqc/9gOIY45xy20whaVNSX6eUrogxrgc+LLdekrSXGc4kqf67EPhpjHFhjHEzSfj5cqUhfz+LMW6KMb4ArAf+EmNcGmNcRBI+Diq37VLg1hjj1hjj34DZwAkhhH2ALwDfjzGujzEuJenp+Uq5fRfHGO+IMRbFGDfGGD+IMb4YY9wcY1wG/IYkRO6Jt2KMT8UYS4DWO6lpK9ATyE1d/+vbOeZWklC2f4yxOMY4Oca4ZjvbngjMizHen7rO94C/A18ut80/Yoyvptrjp8BhIYTuO7qoEEI3klB9+XY2OQd4MMYYU59bAoWVtikEWlVzvSRpL6vrY/ElSTvXE3gyhFBSblkxyX1IpT4t935jFZ9blvu8qFwAAJhP0vPVE8gBloQQStdlAR+X27b8e0IInYHbSYYGtkptv6paV7V95c+xs5p+QtKD9W4IYRXw6xjjH6s45kMkvWZ/TQ27fJgk8G6tYtuewCEhhNXlljVKHWObGmOM61LDPHMr1V4mhNCJpIfv9zHGv1SxvjtJqD2/3OJ1JOG0vNbA2mqulyTtZfacSVL99zHwhRhj23Kvpqlesd3RNZRLOiT3hS1OnWcz0LHceVrHGMsPkysf6iAZ0hiBITHG1sDXSYY6bm/79UDz0g+pe8c6Vdqm/D47rCnG+EmM8fwYYy5JD+PvQwj7V77gVC/h9THGA4HDSXrHvrGdGj8GXqn0/W4ZY7y43DZlvWQhhJYkE3Isrnze1Pp2JMHs6RjjjVVtk6rlzRjjR+WWzQEahRD6lls2FJieej899bn0PC2A/cqtlyTtZYYzSar/7gJuLJ10IoTQKYQwbg+O1xm4LISQE0I4neResedijEtIQsSvQwitUxOR7FfpfrXKWpH04KwOIXQFflxp/adAn3Kf5wBNQwgnhBBygP8HNNnewXdWUwjh9NRwQUh67CJJr2IFIYTRIYTBqTC4hmSYY+l2lWt8FugXQjg79T3KSU2wckC5bb4YQjgyhNCYpOfunRjjNr1mIYTWwPPAGzHGK7d3nSTh7E+Vrn09yWyM/xtCaBFCOILkfrzSHrwngUEhhNNCCE2B/wGmxhhn7eA8kqRaZDiTpPrvNpJZ+l4IyTOw3iaZmGN3vUMyechykkk9vlxugopvAI2BGSRh53Ggyw6OdT0wjORep3+QhInyfg78v9QMiT+KMRYC3wHuBRaR9KQtZMd2VNNI4J0QwjqS79H3YoxzqzjGvqn91gAzgVdIhjZC8v39ckhmurw9xriWZNKRr5D0hn0C/IKKIfLPJJOprASGk0wQUpUvpWr8Zqj4PLMepRuEEA4jmczksSr2/w7QjOQ+wb8AF8cYpwOk7vE7jaQNV5H8mfhKFceQJO0loeJtA5IkbV8I4VzgvBjjkemupa4KIfwJWBhj/H/prkWSlFnsOZMkSZKkDGA4kyRJkqQM4LBGSZIkScoA9pxJkiRJUgYwnEmSJElSBmi0N0/WsWPH2KtXr715SkmSJEnKGJMnT14eY+xU1bq9Gs569erFpEmT9uYpJUmSJCljhBDmb2+dwxolSZIkKQMYziRJkiQpAxjOJEmSJCkD7NV7zqqydetWFi5cyKZNm9JdiuqZpk2b0q1bN3JyctJdiiRJkrRTaQ9nCxcupFWrVvTq1YsQQrrLUT0RY2TFihUsXLiQ3r17p7scSZIkaafSPqxx06ZNdOjQwWCmGhVCoEOHDvbISpIkqc5IezgDDGaqFf65kiRJUl2SEeEs3W688UYGDhzIkCFDyMvL45133gHgvPPOY8aMGTVyjl69erF8+fIdbvN///d/u3zcP/3pT1x66aUVlt1///3k5eWRl5dH48aNGTx4MHl5eVx55ZW7fPy94dZbb2XDhg3pLkOSJEl13c03Q35+xWX5+cnyOqDBh7O33nqLZ599lvfee4+pU6fy0ksv0b17dwDuvfdeDjzwwL1Wy+6Es6p885vfpKCggIKCAnJzc8nPz6egoICbbrqpRo6/q2KMlJSUbHf97oSzoqKiPS1LkiRJ9c3IkXDGGZ8FtPz85PPIkemtq5oafDhbsmQJHTt2pEmTJgB07NiR3NxcAEaNGsWkSZMAaNmyJVdccQXDhw/nc5/7HO+++y6jRo2iT58+PP3008C2vVgnnngiEyZM2Oacp5xyCsOHD2fgwIHcc889AFx55ZVs3LiRvLw8zjrrLAAefvhhDj74YPLy8rjwwgspLi4Gkp6xfv36ccwxx/DGG29U+1p/+ctfMnLkSIYMGcK1114LwLx58xgwYADnnXcegwYN4qyzzuKll17iiCOOoG/fvrz77rsAXHfddZx99tmMGTOGvn378oc//GGnxz3ggAP4zne+w7Bhw/j444+5+OKLGTFiBAMHDizb7vbbb2fx4sWMHj2a0aNHl32vSz3++OOce+65AJx77rlcfvnljB49miuuuIIPP/yQ448/nuHDh3PUUUcxa9asan8vJEmSVA+NHg2PPgqnnALnnZcEs0cfTZbXBTHGHb6ApsC7wBRgOnB9anl74EXg/dTXdjs71vDhw2NlM2bM2GbZ3rR27do4dOjQ2Ldv33jxxRfHCRMmlK075phj4sSJE2OMMQLxueeeizHGeMopp8TPf/7zccuWLbGgoCAOHTo0xhjj/fffHy+55JKy/U844YSYn58fY4yxZ8+ecdmyZTHGGFesWBFjjHHDhg1x4MCBcfny5THGGFu0aFG274wZM+KJJ54Yt2zZEmOM8eKLL44PPPBAXLx4cezevXtcunRp3Lx5czz88MMrnLOy0vM+//zz8fzzz48lJSWxuLg4nnDCCfGVV16Jc+fOjdnZ2XHq1KmxuLg4Dhs2LH7zm9+MJSUl8amnnorjxo2LMcZ47bXXxiFDhsQNGzbEZcuWxW7dusVFixbt8LghhPjWW2+V1VJ63UVFRfGYY46JU6ZM2eZ7U/n78Nhjj8VzzjknxhjjOeecE0844YRYVFQUY4xxzJgxcc6cOTHGGN9+++04evToba4/3X++JEmStBeVlMT4q1/FCMnrmmvSXdE2gElxO3mpOlPpbwbGxBjXhRBygNdDCP8ETgX+HWO8KYRwJXAlcMWeBMXrn5nOjMVr9uQQ2zgwtzXXnjRwu+tbtmzJ5MmTee2118jPz+fMM8/kpptuKuutKdW4cWOOP/54AAYPHkyTJk3Iyclh8ODBzJs3b5dquv3223nyyScB+Pjjj3n//ffp0KFDhW3+/e9/M3nyZEamumA3btxI586deeeddxg1ahSdOnUC4Mwzz2TOnDk7PecLL7zACy+8wEEHHQTAunXreP/99+nRowe9e/dm8ODBAAwcOJCxY8cSQtjm2saNG0ezZs1o1qwZo0eP5t133+X111/f7nF79uzJoYceWrb/o48+yj333ENRURFLlixhxowZDBkyZJe+d6effjrZ2dmsW7eON998k9NPP71s3ebNm3fpWJIkSapHtmyB73wH7rsPGjeGyy+HO+9Mes3qSM/ZTsNZKt2tS33MSb0iMA4YlVr+ADCBPQxn6ZKdnc2oUaMYNWoUgwcP5oEHHtgmnOXk5JTN/peVlVU2DDIrK6vs/qdGjRpVuLeqqmncJ0yYwEsvvcRbb71F8+bNGTVqVJXbxRg555xz+PnPf15h+VNPPbVbsxDGGLnqqqu48MILKyyfN29e2bXs6Npg29kPQwg7PG6LFi3KPs+dO5df/epXTJw4kXbt2nHuuedud5r78uepvE3pMUtKSmjbti0FBQU7u3RJkiTVdytWwGmnwSuvQPPm8PTTMHYsHHtsnRraWK2HUIcQsoHJwP7A72KM74QQ9okxLgGIMS4JIXTe02J21MNVW2bPnk1WVhZ9+/YFoKCggJ49e+7WsXr16sXvf/97SkpKWLRoUdn9WuUVFhbSrl07mjdvzqxZs3j77bfL1uXk5LB161ZycnIYO3Ys48aN4wc/+AGdO3dm5cqVrF27lkMOOYTvfe97rFixgtatW/PYY48xdOjQndZ23HHHcc0113DWWWfRsmVLFi1aRE5Ozi5d3/jx47nqqqtYv349EyZM4KabbqJZs2bVOu6aNWto0aIFbdq04dNPP+Wf//wno0aNAqBVq1asXbuWjh07ArDPPvswc+ZM+vfvz5NPPkmrVq22OV7r1q3p3bs3jz32GKeffjoxRqZOnVqt74UkSZLqkVmz4MQTYeFC+MpX4IILPgtipfegTZxYf8JZjLEYyAshtAWeDCEMqu4JQggXABcA9OjRY3dqrFXr1q3ju9/9LqtXr6ZRo0bsv//+ZZN07KojjjiibIjgoEGDGDZs2DbbHH/88dx1110MGTKE/v37Vxj2d8EFFzBkyBCGDRvGI488wg033MCxxx5LSUkJOTk5/O53v+PQQw/luuuu47DDDqNLly4MGzasbKKQHTn22GOZOXMmhx12GJAM53z44YfJzs6u9vUdfPDBnHDCCSxYsIBrrrmG3NxccnNzq3XcoUOHctBBBzFw4ED69OnDEUccUeG6v/CFL9ClSxfy8/O56aabOPHEE+nevTuDBg1i3bp1VOWRRx7h4osv5oYbbmDr1q185StfMZxJkiQ1JC+9BF/+MjRpkszMmPqdtII6NKwxJKMWd2GHEK4F1gPnA6NSvWZdgAkxxv472nfEiBGxdPbDUjNnzuSAAw7Ytaq111133XW0bNmSH/3oR+kuZZf450uSJKmeuvNO+O534YAD4NlnYTdHv+1tIYTJMcYRVa3b6VT6IYROqR4zQgjNgM8Bs4CngXNSm50DjK+RaiVJkiRpe4qK4LLLksk/jj8e3nyzzgSznanOsMYuwAOp+86ygEdjjM+GEN4CHg0hfBtYAJy+o4OobrvuuuvSXYIkSZIausJCOPNMeP75ZDbGm2+GXbhNJ9NVZ7bGqcBBVSxfAYytjaIkSZIkqYKPPoKTToI5c+Cee+D889NdUY2r1oQgkiRJkpQ2r70Gp54KxcXwwgt1ZoKPXbXTe84kSZIkKW0eeCB5Zln79vDOO/U2mIHhTJIkSVImKimBq66Cc8+Fo46Ct9+G1LOJ6yvDGZCdnU1eXh6DBg3i9NNPZ8OGDbt9rHPPPZfHH38cgPPOO48ZM2Zsd9sJEybw5ptvln2+6667ePDBB3f73KXmzZvHoEEVH0V33XXX8atf/WqXjlNT9UiSJEm7ZP365PllN90EF14I//oXtGuX7qpqnfecAc2aNaOgoACAs846i7vuuovLL7+8bH1xcfEuPay51L333rvD9RMmTKBly5YcfvjhAFx00UW7fI7aUlRUlFH1SJIkqYFYuBBOPhmmTIFbb02mzQ8h3VXtFXWr5+zmm5Mnf5eXn58sryFHHXUUH3zwARMmTGD06NF87WtfY/DgwRQXF/PjH/+YkSNHMmTIEO6++24AYoxceumlHHjggZxwwgksXbq07FijRo2i9KHb//rXvxg2bBhDhw5l7NixzJs3j7vuuotbbrmFvLw8XnvttQq9WwUFBRx66KEMGTKEL33pS6xatarsmFdccQUHH3ww/fr147XXXtvla9zRsa+++mqOOeYYbrvttrJ6Fi9eTF5eXtkrOzub+fPnM3/+fMaOHcuQIUMYO3YsCxYsAJLew8suu4zDDz+cPn36lPUkSpIkSTs0cSIcfDB88AE88wx873sNJphBXQtnI0fCGWd8FtDy85PPI0fWyOGLior45z//yeDBgwF49913ufHGG5kxYwb33Xcfbdq0YeLEiUycOJE//OEPzJ07lyeffJLZs2czbdo0/vCHP1QYplhq2bJlnH/++fz9739nypQpPPbYY/Tq1YuLLrqIH/zgBxQUFHDUUUdV2Ocb3/gGv/jFL5g6dSqDBw/m+uuvr1Dnu+++y6233lpheXkffvhhhUB11113VevYq1ev5pVXXuGHP/xh2bLc3FwKCgooKCjg/PPP57TTTqNnz55ceumlfOMb32Dq1KmcddZZXHbZZWX7LFmyhNdff51nn32WK6+8chdbQpIkSQ3OY4/B0UdDkybJg6W/+MV0V7TXZdawxu9/H1LDC7crNxeOOw66dIElS+CAA+D665NXVfLyku7QHdi4cSN5eXlA0nP27W9/mzfffJODDz6Y3r17A/DCCy8wderUsl6gwsJC3n//fV599VW++tWvkp2dTW5uLmPGjNnm+G+//TZHH3102bHat2+/w3oKCwtZvXo1xxxzDADnnHMOp5/+2TO+Tz31VACGDx/OvHnzqjzGfvvtVzZUEz57iPTOjn3mmWdut6433niDe++9t6y37q233uKJJ54A4Oyzz+YnP/lJ2bannHIKWVlZHHjggXz66ac7vF5JkiQ1YDHCjTfCNdfAEUfAE09A587priotMiucVUe7dkkwW7AAevSokRsDy99zVl6LFi3K3scYueOOOzjuuOMqbPPcc88RdtLVGmPc6Ta7okmTJkAykUlRUVGNHRcqXnN5S5Ys4dvf/jZPP/00LVu2rHKb8tdYWiMk1y9JkiRtY9Mm+Pa34c9/hrPPhj/8Iek5a6AyK5ztpIcL+Gwo4zXXwJ13wrXX7pVnHRx33HHceeedjBkzhpycHObMmUPXrl05+uijufvuu/nGN77B0qVLyc/P52tf+1qFfQ877DAuueQS5s6dS+/evVm5ciXt27enVatWrFmzZptztWnThnbt2vHaa69x1FFH8dBDD5X1dO2p3Tn21q1bOeOMM/jFL35Bv379ypYffvjh/PWvf+Xss8/mkUce4cgjj6yRGiVJktQAfPopnHJKMkX+jTcm0+Y3oPvLqpJZ4WxnSoPZo48mgWz06Iqfa9F5553HvHnzGDZsGDFGOnXqxFNPPcWXvvQlXn75ZQYPHky/fv2qDDqdOnXinnvu4dRTT6WkpITOnTvz4osvctJJJ/HlL3+Z8ePHc8cdd1TY54EHHuCiiy5iw4YN9OnTh/vvv7/GrmVXj/3mm28yceJErr32Wq699log6TG8/fbb+da3vsUvf/lLOnXqVKM1SpIkqR6bNg1OPBGWLYPHH4fTTkt3RRkh7M0hZyNGjIilsxeWmjlzJgcccED1DnDzzcnkH+WDWH5+MqtLufudpFK79OdLkiRJte/ZZ+GrX4XWreHpp2H48HRXtFeFECbHGEdUta5u9ZxVFcBKe9AkSZIkZa4Y4ZZb4Ec/gmHDYPx46No13VVllLo1lb4kSZKkumfLFrjgAvjhD+HUU+HVVw1mVTCcSZIkSao9K1cmj8K691746U+T+SKaN093VRkpI4Y11vRU8xI4hb8kSVLazZ6dTPyxYAE89BB8/evpriijpb3nrGnTpqxYscJfpFWjYoysWLGCpk2bprsUSZKkhunf/4ZDD4XCwmQSP4PZTqW956xbt24sXLiQZcuWpbsU1TNNmzalW7du6S5DkiSp4bn7brjkEhgwIJmdsVevdFdUJ6Q9nOXk5NC7d+90lyFJkiRpTxUVJbMx3nYbfPGL8Je/JFPmq1rSPqxRkiRJUj1QWAgnn5wEs+9/P3mGmcFsl6S950ySJElSHTd3Lpx0UjIByN13J9Pma5cZziRJkiTtvjfegFNOSYY0Pv88jBmT7orqLIc1SpIkSdo9Dz2UhLF27eCddwxme8hwJkmSJGnXlJTA1VfDN74BRx4Jb78N/fqlu6o6z2GNkiRJkqpv/foklD3xRHJv2W9/Czk56a6qXjCcSZIkSaqeRYuSGRkLCuCWW+B734MQ0l1VvWE4kyRJkrRzkyYlwWzdumSa/BNOSHdF9Y73nEmSJEnasccfh6OPhsaNk9kZDWa1wnAmSZIkqWoxwo03wumnQ14evPsuDB6c7qrqLYc1SpIkSdrWpk1w3nnwyCNw1llw773QtGm6q6rX7DmTJEmSVNHSpTB2bBLMbrgheZ6ZwazW2XMmSZIk6TPTpsFJJyUB7bHH4MtfTndFDYY9Z5IkSZIS//gHHH44bN0Kr75qMNvLDGeSJElSQxdj8tyyk0+Gfv2SiT9GjEh3VQ2O4UySJElqyLZuhQsvhMsvh1NOSXrMunZNd1UNkuFMkiRJaqhWroTjj4c//AGuvjq5x6xFi3RX1WA5IYgkSZLUEM2ZAyeeCPPnw4MPwtlnp7uiBs+eM0mSJDVMN98M+fkVl+XnJ8vru5dfhkMPhVWrkvcGs4xgOJMkSVLDNHIknHHGZwEtPz/5PHJkeuuqaZVD6D33wOc/D40bJxN/HHFE+mpTBQ5rlCRJUsOyaRN89BGsW5eEsS9+EQYMgFmz4HOfS+67evxxyMpKXiF89n5nnzNxXZMmcOqp8L//Cx9+CLfdBjk5cO+90Lt3ultD5YQY41472YgRI+KkSZP22vkkSZLUQK1cmQSRql6LFlXctnFj2LIFWrZMJsMoKUleMVb9vqp1e/F36j3WrBk8/XQSRLXXhRAmxxirfE6BPWeSJEmqe0pKkpC1vQC2enXF7ffdF/bbD8aOTb6WvpYsgQsugIsvhjvvhL/8BUaP3vV6SgPazkJcba7b2Xb33w9//jP86EcGswxlOJMkSVJm2rwZ5s6tOnzNnZusL9WoEfTsmQSugw+uGMD69Kl6evj8/CSYPfpoEshGj06GOZZ+3hUhJC+A7Ozdv+bakp8PL7wA11yThNDS61VGMZxJkiQpfQoLk7D1wQfbBrCFCysOF2zRIglbBxyQTAFfPoD16JEEtF0xcWLFIDZ6dPJ54sT6FVxKJzqpiRCqWuU9Z5IkSao9MSZDB7c3/HDFiorbd+5cMXSVf3Xu/FnvlKrv5puTGSjLB7H8/CSE/uQn6aurgdrRPWeGM0mSJH1md36R37IleZBxVeHro49g48bPts3K+mz4YeVXnz7QqlXtXp+UZk4IIkmSpOopffZX6ZC30iFxf/oTFBRUHcAWLEgmnSjVrFkStvbfH447rmIA69kzmcZd0jbsOZMkSVJFL70Ep52WBKmZM5N7vQoLK27TseP2hx/uu6/DD6Xt2KOesxBCd+BBYF+gBLgnxnhbCCEPuAtoChQB34kxvltjVUuSJGnvKiyEP/4Rbr8d1qyBadOSgHbssdsOP2zTJt3VSvVOdYY1FgE/jDG+F0JoBUwOIbwI3AxcH2P8Zwjhi6nPo2qvVEmSJNWKDz+EO+5IgtnatTBoELRuDd/9Ltx9N3z1q87qJ+0FWTvbIMa4JMb4Xur9WmAm0BWIQOvUZm2AxbVVpCRJkmpYjPDqq/ClL0HfvvC738HJJyfPwPrkE3jqKbjhhuTeszPOSO49k1SrdhrOygsh9AIOAt4Bvg/8MoTwMfAr4KqaLk6SJEk1bMsWeOghGD4cjjkmCWhXXZXMtvjww8lwxu09+0tSrar2hCAhhJbAK8CNMcYnQgi3A6/EGP8eQjgDuCDG+Lkq9rsAuACgR48ew+fPn19z1UuSJKl6li+Hu+5Kesg++QQGDIDvfx/OPhuaN093dVKDscfPOQsh5ADPAs/HGH+TWlYItI0xxhBCAApjjK13dBxna5QkSdrLpk+H225Less2bUom9/jBD5KvWbs0iEpSDdjT2RoDcB8wszSYpSwGjgEmAGOA9/e8VEmSJO2xkhJ44QW45Zbka9OmSQ/Z974HAwemuzpJ21Gd2RqPAM4GpoUQClLLrgbOB24LITQCNpEauihJkqQ02bAh6SG79VaYNQu6dEkm9bjwwuS5ZJIy2k7DWYzxdWB7TxEcXrPlSJIkaZctWpTcS3b33bByJQwbloS0M86Axo3TXZ2kaqpOz5kkSZIy0aRJSS/Z3/4GxcVwyinJJB9HHQVhe/+3LilTGc4kSZLqkuLi5Blkt94Kr78OLVvCJZfAZZdBnz7prk7SHjCcSZIk1QWFhfDHP8Ltt8O8edCrF/zmN/Ctb0GbNumuTlINMJxJkiRlso8+SgLZH/8Ia9fCkUfCr38N48ZBdna6q5NUgwxnkiRJmSZGeO21ZCr88eOTEHbmmcn9ZCOqfDySpHrAcCZJkpQptmxJJve49VZ47z1o3x6uvDK5p6xr13RXJ6mWGc4kSZLSbflyuOuuZDr8Tz6BAQOSz2efDc2bp7s6SXuJ4UySJCldZsxIeskeegg2bYJjj4X770++ZmWluzpJe5nhTJIkaW+KEZ5/Prmf7IUXoGnTpIfse9+DgQPTXZ2kNDKcSZIk7Q0bNiQ9ZLfdBjNnQpcucMMNcMEF0KlTuquTlAEMZ5IkSbVp0aLkXrK774aVK+Ggg+DBB5PZFxs3Tnd1kjKI4UySJKk2TJqU3E/2t79BcTGcckoyFf5RR0EIaS5OUiYynEmSJNWU4uLkuWS33AKvvw4tWybT4F92GfTpk+7qJGU4w5kkSdKeWrMG7rsPbr8d5s2DXr3gN7+Bb30L2rRJd3WS6gjDmSRJUnXcfDOMHAmjR3+27JFH4M47YepUWLsWjjwSfv1rOPlkaOSvWZJ2jf9qSJIkVcfIkXDGGck9ZI0awdVXwxtvJM8j++pXk/vJRoxId5WS6jDDmSRJUnWMHg1//CMcdxwUFSWTenzta0mPWteu6a5OUj3go+clSZKq66ST4IADkvdXXJEMazSYSaohhjNJkqTqys+HJUvgmmvg3nuTz5JUQwxnkiRJ1ZGfn9xz9uij8L//m3w94wwDmqQaYziTJEmqjokTk0BWOlvj6NHJ54kT01uXpHojxBj32slGjBgRJ02atNfOJ0mSJEmZJIQwOcZY5dSu9pxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgZolO4CJEmSGqKSkkhxjBSXREpKv5awzbIK62OkuISK62NMjlX2niqWVT5X1eevsD617MJj+tCkUXa6v11Sg2A4kyRJaRdTQaCo9FVcwtbiSFFJCUXFny1Lvka2li3/7OvW4uQYW4vLrSvdvrik7Pifrf/smKXrt1bYryR1rkhx6vhF5Y5TMTSxnSBVaX25ZXXFOYf3MpxJe8lOw1kIoTvwILAvUALcE2O8LbXuu8ClQBHwjxjjT2qxVkmSlAHWbtrKksJNLFq9kSWrN7F49UYWF25kxbot2wSj8oFma+WglQpZpaFob8oK0Cgri0bZgUZZgZzsLLJTX0uXla3PziInK5CdFWjeuBHZWcn6rKxAdkiWJ++pYlnqfQhkZ7HNsrLjpJaXHqf8/lUfk9QxqzpPpfVly8q9D4GsLCqdt3ItlB1X0t5RnZ6zIuCHMcb3QgitgMkhhBeBfYBxwJAY4+YQQufaLFSSJNW+LUUlfLrms8C1uDR8rd5YFsjWbiqqsE92VmDf1k3p2LJxWbhp3qhRKuRkkZMdPgs+WaFseaPscqEoKwlB5YNRTioYJfum9im3XU5WuXWVjl1hWWqfsjqyssgycEjKQDsNZzHGJcCS1Pu1IYSZQFfgfOCmGOPm1LqltVmoJEnaMzFGlq/bwpLCjanAtW0IW7ZuM7FSJ1a75jnktm1G9/bNOaR3e3LbNqNL22Z0bduU3LbN6NSyCY2ynWNMkvbULt1zFkLoBRwEvAP8EjgqhHAjsAn4UYxxYhX7XABcANCjR489rVeSJG3Hus1FLFm9MRluWLhpmwC2pHATW4pKKuzTNCeL3LbNyG3TjFH9O9GlTTO6tm2WCmBNyW3TjGaNvd9IkvaGaoezEEJL4O/A92OMa0IIjYB2wKHASODREEKfGCv+f1uM8R7gHoARI0bUnbtfJUnKIFuLS/ikcFNZ6EoCWMVhh2sqDTfMCrBP66R3a0i3thw/MHnfpU3ytWvbZrRtnkMIDvGTpExQrXAWQsghCWaPxBifSC1eCDyRCmPvhhBKgI7AslqpVJKkeirGyIr1W1iyelO50JUKXqn3S9duO9ywbfMccts0o1u7Zhzcuz1d2jQjt21TuqaGHe7TyuGGklSXVGe2xgDcB8yMMf6m3KqngDHAhBBCP6AxsLw2ipQkqS5bv7mIJYUbWbR6E0tSvVyLCytOtLG50nDDJo1Sww3bNuWovp1SPV1NUwEsWd68sU/EkaT6pDr/qh8BnA1MCyEUpJZdDfwR+GMI4b/AFuCcykMaJUlqyF6Y/gk/+8cMPl65scLyEGCfVk3JbduUgV3bcOzAfcuGGuamer/at2jscENJamCqM1vj68D2fjp8vWbLkSSp7lu6ZhPXPTOd56Z9woB9W/GT4/snQw1TwWuf1k3JcbihJKkSx0NIklRDYow8OuljbvzHTDYVlfDj4/pzwdF9DGKSpGoxnEmSVAPmLl/P1U9M462PVnBI7/b8/NTB9OnUMt1lSZLqEMOZJEl7YGtxCfe+NpdbX5pD40ZZ/PzUwZw5ojtZWd4vJknaNYYzSZJ207SFhVzx96nMWLKG4wfuy/XjBrJP66bpLkuSVEcZziRJ2kUbtxRzy0tzuPe1j+jYsgl3fX0Yxw/qku6yJEl1nOFMkqRd8Pr7y7n6yWksWLmBrx7cgyu/MIA2zXLSXZYkqR4wnEmSVA2rN2zhhn/M5PHJC+ndsQV/veBQDu3TId1lSZLqEcOZJEk7EGPk2alLuP6Z6azasJXvjNqPy8b2pWlOdrpLkyTVM4YzSZK2Y/HqjfzP+P/y0sylDOnWhge/dQgH5rZOd1mSpHrKcCZJUiUlJZFH3pnPL/41m6KSEv7fCQdw7uG9aOTDpCVJtchwJklSOe9/upYrn5jG5PmrOKpvR248ZTA9OjRPd1mSpAbAcCZJErClqIQ7J3zI7/I/oHmTbH59+lBOHdaVEHyYtCRp7zCcSZIavMnzV3HVE1OZ8+k6Th6ay/+cdCAdWzZJd1mSpAbGcCZJarDWbS7iV8/P5oG35tGldVP+eO4IxgzYJ91lSZIaKMOZJKlByp+1lJ8+OY0lazZxzmG9+NFx/WnZxB+LkqT08aeQJKlBWb5uM//7zAyenrKYvp1b8vhFhzO8Z7t0lyVJkuFMktQwxBh54r1F/OwfM1i/uYgffK4fF43qQ5NGPkxakpQZDGeSpHrv45UbuPrJabz2/nKG92zHTacOpu8+rdJdliRJFRjOJEn1VnFJ5P435vLrF+aQFeBn4wZy1iE9ycpyenxJUuYxnEmS6qUZi9dw1RNTmbKwkLEDOvOzUwaR27ZZusuSJGm7DGeSpHpl09Zi7nj5fe5+5SPaNMvhjq8exIlDuvgwaUlSxjOcSZLqjbc/WsHVT0zjo+Xr+fLwbvz0iwfQrkXjdJclSVK1GM4kSXVe4cat3PTPWfzl3QV0b9+Mh799CEf27ZjusiRJ2iWGM0lSnfav/37C/4z/L8vXbeaCo/vw/c/1pXljf7xJkuoef3pJkuqkT9ds4trx0/nX9E84oEtr7jtnJIO7tUl3WZIk7TbDmSSpTokx8teJH/N/z81kS1EJVxw/gPOO6k1Odla6S5MkaY8YziRJdcZHy9Zx1RPTeGfuSg7t056fnzqE3h1bpLssSZJqhOFMkpTxthaXcM+rH3Hbv9+nSaMsfnHaYM4Y0d3p8SVJ9YrhTJKU0aYuXM0Vf5/GzCVr+MKgfbn+5IF0bt003WVJklTjDGeSpIy0YUsRt7w4h/ten0unVk24++zhHDdw33SXJUlSrTGcSZIyzmvvL+PqJ6fx8cqNfO2QHlz5hQG0bpqT7rIkSapVhjNJUsZYtX4LN/xjJn9/byF9OrbgbxccyiF9OqS7LEmS9grDmSQp7WKMPDN1Cdc/PZ3CjVu5dPT+XDpmf5rmZKe7NEmS9hrDmSQprRat3sg1T/2Xl2ctZWi3Njx83iEc0KV1usuSJGmvM5xJktKipCTy0NvzuflfsyiJcM2JB3Lu4b3IznJ6fElSw2Q4kyTtdfOWr+fyRwt4b8Fqjurbkf/70mC6t2+e7rIkSUorw5kkaa8q3LCVc+5/l9UbtvKbM4bypYO6+jBpSZIwnEmS9qKSksj3//YfFq/eyF8vOJThPdunuyRJkjJGVroLkCQ1HLe+NIf82cv4n5MGGswkSarEcCZJ2itemP4Jt7/8AacP78bXD+mR7nIkSco4hjNJUq37cNk6Ln90CkO6teFnpwzyHjNJkqpgOJMk1ap1m4u48KHJNG6UxZ1fH+6DpSVJ2g4nBJEk1ZoYIz96dApzl6/noW8fTNe2zdJdkiRJGcueM0lSrfn9hA/51/RPuOoLAzh8v47pLkeSpIxmOJMk1YpX5izjVy/M5qShuXz7yN7pLkeSpIxnOJMk1bgFKzZw2V/+Q/99WvGL0wY7AYgkSdVgOJMk1aiNW4q58OHJxBi5++zhNG/s7c2SJFWHPzElSTUmxsiVT0xl1idr+OO5I+nZoUW6S5Ikqc7Yac9ZCKF7CCE/hDAzhDA9hPC9Sut/FEKIIQTv9JakBu7+N+YxvmAxl3+uH6P7d053OZIk1SnV6TkrAn4YY3wvhNAKmBxCeDHGOCOE0B34PLCgVquUJGW8tz9awY3PzeTzB+7DJaP3T3c5kiTVOTvtOYsxLokxvpd6vxaYCXRNrb4F+AkQa61CSVLGW1K4kUv//B49OzTnN2cMJSvLCUAkSdpVuzQhSAihF3AQ8E4I4WRgUYxxSm0UJkmqGzYXFXPRw++xcUsx95w9nFZNc9JdkiRJdVK1JwQJIbQE/g58n2So40+BY6ux3wXABQA9evTYrSIlSZnr2vHTmfLxau76+nD279wq3eVIklRnVavnLISQQxLMHokxPgHsB/QGpoQQ5gHdgPdCCPtW3jfGeE+McUSMcUSnTp1qrnJJUtr9+Z0F/HXix1wyej+OH7TNjwBJkrQLdtpzFpInh94HzIwx/gYgxjgN6Fxum3nAiBjj8lqqU5KUYd5bsIprn/4vR/frxOWf75/uciRJqvOq03N2BHA2MCaEUJB6fbGW65IkZbClazdx8cOT6dKmGbd/JY9sJwCRJGmP7bTnLMb4OrDDn7oxxl41VZAkKbNtLS7h0kf+Q+HGrTxx8cG0bd443SVJklQvVHtCEEmSAG78x0zenbeS276Sx4G5rdNdjiRJ9cYuTaUvSWrYnnhvIX96cx7fOqI34/K67nwHSZJUbYYzSVK1/HdRIVc9MY1Derfnqi8OSHc5kiTVO4YzSdJOrVy/hQsfmkz7Fo353VnDyMn2x4ckSTXNe84kSTtUVFzCZX/5D8vWbubRiw6jY8sm6S5JkqR6yXAmSdqhX70wh9c/WM4vThtMXve26S5HkqR6y3EpkqTtem7aEu565UO+dkgPzhzZI93lSJJUrxnOJElVmvPpWn702BQO6tGWa086MN3lSJJU7xnOJEnbKNy4lQsfmkzzxo246+vDadIoO90lSZJU7xnOJEkVlJRELv9bAR+v3MCdXx/GPq2bprskSZIaBMOZJKmC219+n3/PWso1Jx7IyF7t012OJEkNhuFMklTm3zM/5daX3ufUYV35xmE9012OJEkNiuFMkgTA3OXr+f7fChjUtTX/96XBhBDSXZIkSQ2K4UySxPrNRVzw4CQaZQXu+vpwmuY4AYgkSXubD6GWpAYuxsiPH5/Ch8vW8eC3DqFbu+bpLkmSpAbJnjNJauDufvUjnpv2CT85fgBH9u2Y7nIkSWqwDGeS1IC99v4ybv7XLE4Y3IULj+6T7nIkSWrQDGeS1EB9vHID3/3Lf9i/c0tu/vIQJwCRJCnNDGeS1ABt2lrMRQ9PprgkcvfZI2jRxFuQJUlKN38aS1IDE2Pk6ienMX3xGu47ZwS9O7ZId0mSJAl7ziSpwXnwrfk88d4ivv+5vow9YJ90lyNJklIMZ5LUgLw7dyU/e3YGnzugM5eN6ZvuciRJUjmGM0lqID4p3MR3HnmP7u2b85sz88jKcgIQSZIyifecSVIDsLmomIsfmcyGLUX8+fxDaN00J90lSZKkSgxnktQAXP/MDP6zYDW/P2sY/fZple5yJElSFRzWKEn13N8mLuDP7yzgomP244uDu6S7HEmStB2GM0mqxwo+Xs01T03nyP078uPj+qe7HEmStAOGM0mqp5av28zFD0+mU6sm3PHVg8h2AhBJkjKa95xJUj20tbiESx55j5Xrt/D3iw+nXYvG6S5JkiTthOFMkuqhnz83i3fmruQ3ZwxlUNc26S5HkiRVg8MaJameGV+wiD++MZdzD+/FqcO6pbscSZJUTYYzSapHpi8u5Iq/T+XgXu356QkHpLscSZK0CwxnklRPrN6whYsenkybZjn89qyDyMn2n3hJkuoS7zmTpHqguCRy2V8L+KRwE3+78DA6t2qa7pIkSdIuMpxJUj3wmxdn8+qcZfzflwYzrEe7dJcjSZJ2g+FMUsYqKi7hPx+vJn/WUtZtLuKovp04Yv8ONG/sP13l/eu/n/C7/A/5ysjufO2QHukuR5Ik7SZ/w5GUUVas28wrc5aRP3sZr85ZRuHGrWRnBZo0yuLBt+bTuFEWh/bpwJj+nRg9oDM9O7RId8lp9cHStfzw0QKGdm/L9eMGprscSZK0BwxnktKqpCQyffEaXp61lPzZS5mycDUxQseWTTj2wH0YPaAzR/btSNNG2Uyct7Jsu+uemcF1z8ygT6cWjOnfmdEDOjOyV3saN2o4k2Cs3bSVCx6aTLPG2dz19WE0aZSd7pIkSdIeCDHGvXayESNGxEmTJu2180nKTGs2beW1OcvJn72UCbOXsXzdZkKAod3aMmZAZ0b378zA3NZkZYXtHmPe8vXkz15K/uxlvP3hCrYUl9CySSOO3L8jowd0YnT/znRuXX8nxSgpiVz48GRenrWUR847hEP7dEh3SZIkqRpCCJNjjCOqWmfPmaRaF2Pk/aXrkl6vWUuZPH8VRSWRNs1yOLpfJ8YM6MTRfTvRoWWTah+zV8cWfLNjb755RG82bCnijQ9W8PKspUyYvZR/Tf8EgEFdWzM61as2tFtbsncQ9uqa3+V/wIszPuV/TjzQYCZJUj1hz5mkWrFhSxFvfbgi6d2atYxFqzcCcECX1ozu34kxAzqT170tjWr4WVwxRmZ9srYsqE2ev4qSCO1bNOaYfsl9asf07USb5jk1et69KX/2Ur71p4mcPDSXW8/MI4T6EzolSarvdtRzZjiTVGPmr1hP/qylvDx7GW9/tIItRSU0b5ydGmrYmVH9O9GlTbO9WtPqDVt4Zc4yJsxexoTZS1m1IZlgZHiPdowakITE/vu0qjMBZ97y9Zz829fp2q45T1x8OM0ae5+ZJEl1ieFMUq3YXFTMxLmrUr1jS/lo+XoA+nRqkQwn7N+Zkb3bZcxEFcUlkYLU1Pz5s5cyffEaAHLbNGXUgM6M6d+ZwzN4qv4NW4o49fdvsqRwE89ceiQ9OjRPd0mSJGkXGc4k1ZhPCjeVhbE3PljO+i3FNG6UxWF9OjC6fydG9e9Mr451Y3r7T9dsKgtqr7//2bWUTtU/ZsA+GROAYox89y//4R/TlvCnbx7MMf06pbskSZK0GwxnO/DH1+dSEiMnDc1ln3o8s5u0u8o/CDp/9jJmLkl6m7q2bcao1L1jh+2Xub1N1bWjXsAx/TszZkBnRqRxqv4/vPoRNz43kx8f159LRu+flhokSdKeM5ztwLf+NJGXZy0lBDisTwfG5eVy/MAudXqyAGlPbe9B0CN6tkumuh/Qmb6dW9aZ+7R2R+lU/S/PWso7H62sMFX/mNT9c3trqv43P1jO1+97h2MP3Jc7vz6sXn/fJUmq7wxnO/HhsnU8XbCY8QWLmLdiA42zsxjVvxPj8roy9oDONM3JjPtlpNqyowdBl/aOHbF/R9o0a5j/abF+cxFvfrii7FEAn6zZBCRT9Y/p35lRtThV/6LVGznpjtdp36IxT11yBC2b1O0eSkmSGjrDWTXFGJm2qJDxBYt5Zspilq7dTIvG2Rw3aF/G5XXliP061Pi031K6rNm0ldffX56acr7ig6BHp4bx7exB0A1R+an682ct5b0Fn03VP6pfJ0bV4FT9m7YWc8bdbzF32XqeuvQI9uvUsgauQJIkpdMehbMQQnfgQWBfoAS4J8Z4Wwjhl8BJwBbgQ+CbMcbVOzpWpoez8opLIu98tILxBYt57r9LWLupiA4tGnPikC6cnNeVYT3aOrRIdUrpg6DzZyVD9UofBN26aSOO6d+Z0f07cXS/TnTchQdB67Op+vNnLeWVOcsqTNU/ekBnRg/otFtT9ccY+cnjU3ls8kL+8I0RfP7AfWrpCiRJ0t60p+GsC9AlxvheCKEVMBk4BegGvBxjLAoh/AIgxnjFjo5Vl8JZeZuLipkwexlPFyzmpZmfsrmohG7tmjEuL5dxeV3pt0+rdJcoVWlnD4IePaAzB9XCg6AbqvJT9b88aykzlnw2Vf/oAcmjBao7Vf9Db8/nmqf+y2Vj9ufyY/vXdumSJGkvqdFhjSGE8cBvY4wvllv2JeDLMcazdrRvXQ1n5a3dtJUXpn/K+CmLef39ZZREGLBvK8bldeWkoV3o1i4zpt1Ww1X6IOj82ct4K0MeBN1QfVK4iQmpSUVe/2A5Gyo9dmB7U/VPnr+Sr9zzNkfu35H7zhnp0FJJkuqRGgtnIYRewKvAoBjjmnLLnwH+FmN8eEf714dwVt6ytZv5x9TFjJ+ymP8sWA3AyF7tODmvKycM7kL7Fo3TW6AahApTwM9eykfLUlPAd2xR1luTSQ+CbqhK26l00pW5qan690s9sLt0qv7VG7Zwwh2v07xxNk9fcqQzx0qSVM/USDgLIbQEXgFujDE+UW75T4ERwKmxioOFEC4ALgDo0aPH8Pnz5+/6FdQBC1Zs4Okpi3iqYDEfLF1Ho6zAUX07Mi6vK58/cB9aOMOaasjmomKmL17D5HmreHfeSt78YNuHJ9elB0E3VHOXry97AHb5qfrbNMth5fotPHnJ4QzYt3W6y5QkSTVsj8NZCCEHeBZ4Psb4m3LLzwEuAsbGGDfs7Dj1reesKjFGZi5Zy/gpi3imYDGLCzfRNCeLzx+4L+OG5nJ0v05pe4it6qYV6zYzef4qJi9YxeR5q5i6qJAtRSUA9GjfnKP6dqw3D4JuqNZvLuKND5aTP3sp785dyY+O7c8XBndJd1mSJKkW7OmEIAF4AFgZY/x+ueXHA78BjokxLqtOIQ0hnJVXUhKZNH8V4wsW8Y9pS1i9YSttmuXwxcFdGJeXy8G92nsviSooKYl8uGwdk+avSgLZ/FVlw99ysgODurZhRM92DO/ZjmE929G51d55CLIkSZJqxp6GsyOB14BpJFPpA1wN3A40AVaklr0dY7xoR8dqaOGsvC1FJbz+wTLGFyzmhemfsnFrMV3aNOWkobmcPDSXgbmtnZq/AdqwpYgpHxcyef5KJs9fxXsLVlO4cSuQPDdrWI92jOiVhLHBXdv4QHRJkqQ6zodQZ5gNW4p4ccanPF2wmFfmLKOoJLJfpxaMy+vKuLxcenbwXqH6aknhRibPX8Wkeat4b8Eqpi9eQ3FJ8newb+eWDE/1ig3v2Y7eHVsY2CVJkuoZw1kGW7V+C8/9dwnjCxbz7tyVAOR1b8u4vFxOGNLFYWt1WFFxCbM+WZuEsfmreG/+qrLnjDXNySKve1uG92zHiJ7tOahHW9o2d3ZPSZKk+s5wVkcsXr2RZ6YsZnzBYmYsWUNWgCP278jJQ3M5btC+tG7qlNqZrHDjVv6zIAlhk+avouDj1WzYUgzAvq2bMrxXu7L7xQ7o0pocH/wsSZLU4BjO6qD3P13L06mgtmDlBho3ymLsgM6My8tlVP/O3nuUZjFGFqzcwKR5n/WKzVm6lhghK8CBua0Z3qMdw3u1Z3jPdnRt60OfJUmSZDir02KMFHy8mvEFi3l26mKWr9tCqyaNOH7QvozL68ph+3Ug2xkfa93momL+u6iwwv1iy9dtAaBV00YM69EuNUSxHUO7t/W5dpIkSaqS4ayeKCou4a2PVvDUfxbz/PRPWLe5iE6tmnDikC6My+vK0G5tnECihixPPVusdIjitIWFbClOJivt2aF52aQdI3q2p2/nlj4SQZIkSdViOKuHNm0t5uVZSxlfsIj8WcvYUlxCzw7NGTc0l5PzurJ/55bpLrHOKCmJfLBsHZPmlT5bbCXzViTPVG+cncXgbm2S54qlesc6tWqS5oolSZJUVxnO6rnCjVt5/r+fMH7KIt78cAUxwsDc1ozLy+Wkobl0aeP9TuVt2FJEwcermTxvFZNTE3is2VQEQIcWjRnW87OJOwb5bDFJkiTVIMNZA7J0zSaembqEpwsWMWVhISHAwb3aMy6vK18cvG+DnK598eqNqR6x5DVjyWfPFuu3T0uG92xfdr9Yzw7NHRoqSZKkWmM4a6DmLl/P0wWLGT9lER8tWw9Ao6xAVlYgOwSyswJZAbKzSt9X/Fp+fcVlqfchkJVFFcvKHT8rkB2oYln5Y1HFskrrt3v+SutTy5as3lg2i+Liwk0ANMvJJq97W0b0asewnu0Y1r0dbZr7eAJJkiTtPYazBi7GyPTFa5gweykbtxZTXAIlMVJckrxK33+2rNz6GCmptF1xpGxZ2fpyX4tLqGJZpfXbLCtfR81cd26bpuWGKLbngC6taOSzxSRJkpRGOwpnzvfdAIQQGNS1DYO6tkl3KdUSYxLQKgbCWCkQUsWyz4Jeu+aNyfXZYpIkSapDDGfKOCEkQyF9fpskSZIaEsd4SZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGMJxJkiRJUgYwnEmSJElSBjCcSZIkSVIGCDHGvXeyEJYB8/faCauvI7A83UWoRtmm9Y9tWv/YpvWPbVr/2Kb1j22afj1jjJ2qWrFXw1mmCiFMijGOSHcdqjm2af1jm9Y/tmn9Y5vWP7Zp/WObZjaHNUqSJElSBjCcSZIkSVIGMJwl7kl3Aapxtmn9Y5vWP7Zp/WOb1j+2af1jm2Yw7zmTJEmSpAxgz5kkSZIkZYA6F85CCMeHEGaHED4IIVxZbvnfQggFqde8EEJBFfvmhRDeCiFMDyFMDSGcWW5d7xDCOyGE91PHaryd85+T2ub9EMI5u7q/tpUBbfqvEMLqEMKzlZbbprspnW1aE38mtK00t2nPEMLk1DmmhxAu2pX9VbV0/9ub2rZ1CGFRCOG3u7O/Kkp3m4YQisud5+ld3V/bqsU2vTR1zBhC6LiD8/t7794WY6wzLyAb+BDoAzQGpgAHVrHdr4H/qWJ5P6Bv6n0usARom/r8KPCV1Pu7gIur2L898FHqa7vU+3bV3d9X5rVpat1Y4CTg2UrLbdM62KY18WfCV8a1aWOgSep9S2AekGub1t02LXec24A/A78tt8w2raNtCqzbznLbNPPa9CCgV+rf047bOb+/96aj3dNdwC4VC4cBz5f7fBVwVaVtAvBx6R/GnRxvCtA3tc9yoFFV5ym3/VeBu8t9vju1rFr7+8q8Ni233yjKhTPbtO63aU3t7yuz2hToACwg+UXDNq3DbQoMB/4KnEsqnNmmdb5NtwlntmnmtWmlZfPYfjjz9940vOrasMauJH8ASy1MLSvvKODTGOP7OzpQCOFgkv+F+JDkh/3qGGNR5eOGEEaEEO7dyfm3u792Kt1tuj226e7LmDat7v7aqbS3aQihewhhaqqOX8QYF+9of+1UWts0hJBF8r/9P650ONt096X97ynQNIQwKYTwdgjhlNQy23T31Vab7mg7f+9Ns0bpLmAXhSqWVZ5u8qvAX3Z4kBC6AA8B58QYS0II2z1ujHEScN5Ozl+dulS1dLfpntSlqmVEm+7K/tqptLdpjPFjYEgIIRd4KoTwOFBSjbpUtXS36XeA52KMH1faxb+nuy/dbQrQI8a4OITQB3g5hDANWFONulS1WmnTHW3r773pV9fC2UKge7nP3YDFpR9CCI2AU0mGSlQphNAa+Afw/2KMb6cWLwfahhAapf4XoMJxK51/VKXzT9iF/bWtdLfp9timuy/tbVpLfyYasrS3aanUL37TSf63+O+7ur/KpLtNDwOOCiF8h+Q+wsYhhHUkw7Zs092T7jYl1aNNjPGjEMIEkvua/Hu6+2qrTXfl/KMqnX8C/jytVXVtWONEoG9qhpjGwFeAp8ut/xwwK8a4sKqdU/s8CTwYY3ysdHmMMQL5wJdTi84BxldxiOeBY0MI7UII7YBjScbYVnd/bSvdbVol23SPpLVNa+vPRAOX7jbtFkJolnrfDjgCmG2b7pG0tmmM8awYY48YYy/gR6njXGmb7pF0/z1tF0JoknrfkeTv6QzbdI/USpvuAn/vTYddvUkt3S/gi8AckjGzP6207k/ARTvY9+vAVqCg3Csvta4P8C7wAfAYn80MNgK4t9wxvpXa5gPgm+WWV7m/rzrRpq8By4CNJP9LdJxtWnfbdHf295Xxbfp5YCrJzexTgQvKHds2rYNtWulY51JxtkbbtA62KXA4MC3193Qa8G3bNKPb9DKS33mKSHq9StvR33vT/Aqpb7AkSZIkKY3q2rBGSZIkSaqXDGeSJEmSlAEMZ5IkSZKUAQxnkiRJkpQBDGeSJEmSlAEMZ5IkSZKUAQxnkiRJkpQBDGeSJEmSlAH+PxEnT0dO/LLRAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABMUElEQVR4nO3dd3hUZfrG8e+bRiAJgZBCSUKvoUQ6KgKigL0AIrKWdbGs61rXspZVd+261v25iN1VUBBR14ooKBYIZSnSOwklJAFCEkh/f3/MJARIQkLKmZncn+uaKzNnTnkmLyFz5z3nGWOtRURERERERJzl53QBIiIiIiIionAmIiIiIiLiERTOREREREREPIDCmYiIiIiIiAdQOBMREREREfEACmciIiIiIiIeQOFMRERERETEAyiciYj4CGNMdplbsTHmcJnHk5yu72QYY7YZY85yuo7KGGPmG2Mm19G+I40xPxtjMowxB4wxvxpjTjtmnduNMXuMMZnGmDeNMY3KPBdhjJltjMkxxmw3xlxxzLYjjTHrjDGHjDHzjDFt6+J1iIhI1SiciYj4CGttaMkN2AFcUGbZ+07XdyxjTIAvHKOOZQPXAlFAc+Ap4L8lr8sYMxq4FxgJtAM6AI+U2f7/gHwgBpgE/NsYk+DeNhL4GHgQiACWAB/W+SsSEZEKKZyJiPg4Y4yfMeZeY8xm9wzMDGNMhPu5dsYYa4z5vTEm2Riz3xhzozFmgDFmpXu25l9l9nWNeybnZfdMzTpjzMgyz4cbY94wxuw2xuw0xjxqjPE/ZtvnjTH7gIeNMR2NMd+760o3xrxvjGnmXv8/QDyuMJJtjLnbGDPcGJNyzOsrnV0zxjxsjPnIGPOeMeYgcM0JaupkjPnB/VrSjTHlhhNjTLB7nyUzWIuNMTHGmMeAocC/3DX+y71+N2PMt8aYfcaY9caYy8rs621jzBT381nu45c7Y2WtzbXWrrfWFgMGKMIV0iLcq1wNvGGtXW2t3Q/8A7jGfZwQYCzwoLU221r7E/AZcKV720uB1dbamdbaXOBhoI8xplt5tYiISN1TOBMR8X23ABcDw4DWwH5cMyplDQI6AxOAF4D7gbOABOAyY8ywY9bdAkQCDwEfl4Q94B2gEOgEnAKMAiaXs2008BiuwPGEu67uQByukIC19kqOngF8uoqv9yLgI6AZ8P4JavoHMAdX4IkFXq5gn1cD4e76WgA3AoettfcDC4Cb3TXe7A5F3wLT3K9zIvBKyYyV2yT3sSOB5e46K2SMWQnk4gpXr1tr97qfSgBWlFl1BRBjjGkBdAGKrLUbjnk+obxtrbU5wOYyz4uISD1TOBMR8X03APdba1OstXm4ws+4Y075+4d7lmYOkANMt9butdbuxBU+Timz7l7gBWttgbX2Q2A9cJ4xJgY4B7jNWpvjDhDPA5eX2XaXtfZla22htfawtXaTtfZba22etTYNeA5XiKyJX621n7hnm5qeoKYCoC3Q2v36f6pgnwW4Qlkna22RtXaptfZgBeueD2yz1r7lfp3LgFnAuDLrfGGt/dE9HvcDQ4wxcRW9IGttb/druQIoW2MokFnmccn9sHKeK3k+rIJtj31eRETqmbefiy8iIifWFphtjCkus6wI13VIJVLL3D9czuPQMo93Wmttmcfbcc18tQUCgd3GmJLn/IDkMuuWvY8xJhp4CdepgWHu9fdX6VVVrOwxTlTT3bhmsJKMMfuBf1pr3yxnn//BNWv2gfu0y/dwBd6CctZtCwwyxhwosyzAvY/jarTWZrtP82x9TO1HcZ96ON0Ys9YYs9xauwLXNWlNy6xWcj+rnOdKns9y3z/R8yIiUs80cyYi4vuSgXOstc3K3ILds2Ino40pk3RwXRe2y32cPCCyzHGaWmvLniZXNtSB65RGC/S21jYFfofrVMeK1s8BmpQ8cF87FnXMOmW3qbQma+0ea+111trWuGYYXzHGdDr2BbtnCR+x1vYATsU1O3ZVBTUmAz8c8/0Otdb+scw6pbNkxphQXNeQ7Tr2uBUIxNX4A2A10KfMc32AVGttBrABCDDGdD7m+dXlbes+HbNjmedFRKSeKZyJiPi+KcBjJU0njDFRxpiLarC/aOAWY0ygMWY8rmvFvrTW7sZ1/dY/jTFN3Y1IOh5zvdqxwnDN4BwwxrQB7jrm+VSOBBFwBY5gY8x5xphA4AGgERU4UU3GmPHGmFj36vtxBa2iY/djjBlhjOnlDoMHcZ3mWLLesTV+DnQxxlzp/h4FuhusdC+zzrnGmNONMUG4Zu4WWWuPmzUzxgwuWc8Y09gYcw+uGc9F7lXeBf5gjOlhjGnu/n687X7tObi6Mf7dGBNiXC34L+LIDN5soKcxZqwxJhj4G7DSWruuou+niIjULYUzERHf9yKuRhJzjDFZwEJcjTlO1iJczUPScTX1GOeeqQHXbFIQsAZX2PkIaFXJvh4B+uK61ukLXGGirCeAB9wdEv9irc0EbgJeB3bimklLoXKV1TQAWGSMycb1PbrVWru1nH20dG93EFgL/IDr1EZwfX/HGVeny5estVm4mo5cjms2bA+uFvhlQ+Q0XM1U9gH9cDUIKU8jXM1bMtyv91zgPGvtLgBr7dfA08A8XKeXbnfvt8RNQGNc1wlOB/5orV3t3jYNVzfHx9zfl0EcfX2giIjUM3P0ZQMiIiIVM8ZcA0y21p7udC3eyhjzNpBirX3A6VpERMSzaOZMRERERETEAyiciYiIiIiIeACd1igiIiIiIuIBNHMmIiIiIiLiARTOREREREREPEBAfR4sMjLStmvXrj4PKSIiIiIi4jGWLl2abq2NKu+5eg1n7dq1Y8mSJfV5SBEREREREY9hjNle0XM6rVFERERERMQDKJyJiIiIiIh4AIUzERERERERD1Cv15yVp6CggJSUFHJzc50uRXxMcHAwsbGxBAYGOl2KiIiIiMgJOR7OUlJSCAsLo127dhhjnC5HfIS1loyMDFJSUmjfvr3T5YiIiIiInJDjpzXm5ubSokULBTOpVcYYWrRooRlZEREREfEajoczQMFM6oT+XYmIiIiIN/GIcOa0xx57jISEBHr37k1iYiKLFi0CYPLkyaxZs6ZWjtGuXTvS09MrXefxxx+v9n7ffvttbr755qOWvfXWWyQmJpKYmEhQUBC9evUiMTGRe++9t9r7rw8vvPAChw4dcroMERERkaM9/TTMm3f0snnzXMtF6kCDD2e//vorn3/+OcuWLWPlypXMnTuXuLg4AF5//XV69OhRb7WcTDgrz+9//3uWL1/O8uXLad26NfPmzWP58uU8+eSTtbL/6rLWUlxcXOHzJxPOCgsLa1qWiIiISOUGDIDLLjsS0ObNcz0eMMDZusRnNfhwtnv3biIjI2nUqBEAkZGRtG7dGoDhw4ezZMkSAEJDQ7nnnnvo168fZ511FklJSQwfPpwOHTrw2WefAcfPYp1//vnMnz//uGNefPHF9OvXj4SEBKZOnQrAvffey+HDh0lMTGTSpEkAvPfeewwcOJDExERuuOEGioqKANfMWJcuXRg2bBg///xzlV/rM888w4ABA+jduzcPPfQQANu2baNbt25MnjyZnj17MmnSJObOnctpp51G586dSUpKAuDhhx/myiuv5Mwzz6Rz58689tprJ9xv9+7duemmm+jbty/Jycn88Y9/pH///iQkJJSu99JLL7Fr1y5GjBjBiBEjSr/XJT766COuueYaAK655hruuOMORowYwT333MPmzZsZM2YM/fr1Y+jQoaxbt67K3wsRERGRSuXkQFwcPPAAXHQRXHCB6+tNN0FWFsyZAz/8AIsWwfLlsG4dbN0Ku3bBvn2u7d3v3TySZgU9kuPdGp02atQo/v73v9OlSxfOOussJkyYwLBhw45bLycnh+HDh/PUU09xySWX8MADD/Dtt9+yZs0arr76ai688MIqH/PNN98kIiKCw4cPM2DAAMaOHcuTTz7Jv/71L5YvXw7A2rVr+fDDD/n5558JDAzkpptu4v333+fss8/moYceYunSpYSHhzNixAhOOeWUEx5zzpw5bNy4kaSkJKy1XHjhhfz444/Ex8ezadMmZs6cydSpUxkwYADTpk3jp59+4rPPPuPxxx/nk08+AWDlypUsXLiQnJwcTjnlFM477zx+++23Cve7fv163nrrLV555RXAdfpoREQERUVFjBw5kpUrV3LLLbfw3HPPMW/ePCIjI0/4OjZs2MDcuXPx9/dn5MiRTJkyhc6dO7No0SJuuukmvv/++yqPg4iIiDQw1kJGBuze7brt2VPx/ayso7f9/HPX17//vXrH9PeHRo0gOLj8r1VdVt31j10WFARlr8cvmRWcMQNGjDgyKzhjRs2+x1IjHhXOHvnvatbsOlir++zRuikPXZBQ4fOhoaEsXbqUBQsWMG/ePCZMmMCTTz5ZOltTIigoiDFjxgDQq1cvGjVqRGBgIL169WLbtm3Vqumll15i9uzZACQnJ7Nx40ZatGhx1DrfffcdS5cuZYB72vzw4cNER0ezaNEihg8fTlRUFAATJkxgw4YNJzzmnDlzmDNnTmmQy87OZuPGjcTHx9O+fXt69eoFQEJCAiNHjsQYc9xru+iii2jcuDGNGzdmxIgRJCUl8dNPP1W437Zt2zJ48ODS7WfMmMHUqVMpLCxk9+7drFmzht69e1frezd+/Hj8/f3Jzs7ml19+Yfz48aXP5eXlVWtfIiIi4iPy8yE19cShKzUVCgqO3z4sDFq2hFatoG/fI/dbtXJt88QTcOWV8J//wLPPQp8+kJsLeXmuW8n9ypZV9lxmZuX7qq3LOUpCW9nAdvbZEBMDaWnQrx9MnQrvvw8hIRXfQkPLX96kCfg5fGLe00+7gqf7jCzAFTwXL4a773auriryqHDmFH9/f4YPH87w4cPp1asX77zzznHhLDAwsLT7n5+fX+lpkH5+fqXXPwUEBBx1bVV5bdznz5/P3Llz+fXXX2nSpAnDhw8vdz1rLVdffTVPPPHEUcs/+eSTk+pCaK3lr3/9KzfccMNRy7dt21b6Wip7bXB890NjTKX7DQkJKX28detWnn32WRYvXkzz5s255pprKmxzX/Y4x65Tss/i4mKaNWtWOtMoIiIiPsZayM4+EqwqC10ZGcdvbwxERR0JWgkJR4euVq2OPC7znuUo8+bBnXfCrFmuN/sXX3z0bFN9KSqqnRBY3rJly2D9eoiNdS1butR1SmbJrbrBsHHjygNcVYPesetUNfh5+YygR4Wzyma46sr69evx8/Ojc+fOACxfvpy2bdue1L7atWvHK6+8QnFxMTt37iy9XquszMxMmjdvTpMmTVi3bh0LFy4sfS4wMJCCggICAwMZOXIkF110EbfffjvR0dHs27ePrKwsBg0axK233kpGRgZNmzZl5syZ9OnT54S1jR49mgcffJBJkyYRGhrKzp07CQwMrNbr+/TTT/nrX/9KTk4O8+fP58knn6Rx48ZV2u/BgwcJCQkhPDyc1NRUvvrqK4YPHw5AWFgYWVlZpac1xsTEsHbtWrp27crs2bMJCws7bn9Nmzalffv2zJw5k/Hjx2OtZeXKlVX6XoiIiEgtq85sRXExpKeXH7KOfVxew7CgoCPBqlMnGDq0/NAVHQ3VfK9znMWLjw5iI0a4Hi9eXL/hzN/fFU6aNKnd/ZYElwcfhH//G5577vjXlZ/vCmnZ2UeHtspu5a27c+fxy8qbxaxMSfA7UdA7+2w4/3zX7fvv6z9M14BHhTMnZGdn8+c//5kDBw4QEBBAp06dSpt0VNdpp51Weopgz5496du373HrjBkzhilTptC7d2+6du161Gl/119/Pb1796Zv3768//77PProo4waNYri4mICAwP5v//7PwYPHszDDz/MkCFDaNWqFX379i1tFFKZUaNGsXbtWoYMGQK4Tud877338Pf3r/LrGzhwIOeddx47duzgwQcfpHXr1rRu3bpK++3Tpw+nnHIKCQkJdOjQgdNOO+2o133OOefQqlUr5s2bx5NPPsn5559PXFwcPXv2JDs7u9x63n//ff74xz/y6KOPUlBQwOWXX65wJiIins3LT7k6TmGha7alSxcYNw5eeAE6d3Y1y3jmGbjkErjuuqNDV2pq+Y0ywsOPBKuBA4+e2Sp7v3nzo6+dqkvljcmIEV7zRr9SZWeUSl5TebOCQUGuW/PmtV9DSfCrSejLyXH9uzp2WX6+67U8+KBXjZex1tbbwfr3729Luh+WWLt2Ld27d6+3GuTkPPzww4SGhvKXv/zF6VKqRf++RETEoxz7hvjYx9VhrWvmITf35G4lp7bVZPsT/YHYz881g1VR0Cq537Jl7c8KSeV87Q8FZZX8XE2eDK+/7nEzZ8aYpdba/uU91+BnzkRERETqzYgR8NJLrrbs/fq53gife67rzeO771Y/INVUQICrMURFtyZNICKi8nVKmksEB8MXX8Ann7hmyx55xBXMqnGWjtQjX50VPPYPHqNGOXOd4ElSOJMqefjhh50uQURExDe0aeM67erHH10zS99+W3HwadrUFXDKC0I1vTVqVLvBad48+OmnI9cvTZzomhkTqU+ecp3gSVI4ExEREalP+fkQGQk33ghTpnjNX/QrVdXrl0TqmpfPCDr8QQQiIiIiDci8ea4ZpRkz4B//cH297DLXcm9W2WyFiFSZZs5ERERE6ouXn3JVIS+frRDxFApnIiIiIvVFIUZEKqHTGgF/f38SExPp2bMn48eP51B5H3hYRddccw0fffQRAJMnT2bNmjUVrjt//nx++eWX0sdTpkzh3XffPeljl9i2bRs9e/Y8atnDDz/Ms88+W6391FY9IiIiIiJyYpo5Axo3bszy5csBmDRpElOmTOGOO+4ofb6oqKhaH9Zc4vXXX6/0+fnz5xMaGsqpp54KwI033ljtY9SVwsJCj6pHRERERMTXedfM2dNPH3/B7Lx5ruW1ZOjQoWzatIn58+czYsQIrrjiCnr16kVRURF33XUXAwYMoHfv3rz66qsAWGu5+eab6dGjB+eddx579+4t3dfw4cMp+dDtr7/+mr59+9KnTx9GjhzJtm3bmDJlCs8//zyJiYksWLDgqNmt5cuXM3jwYHr37s0ll1zC/v37S/d5zz33MHDgQLp06cKCBQuq/Ror2/d9993HsGHDePHFF0vr2bVrF4mJiaU3f39/tm/fzvbt2xk5ciS9e/dm5MiR7NixA3DNHt5yyy2ceuqpdOjQoXQmUUREREREKuZd4WzAgKM7GpW0bR0woFZ2X1hYyFdffUWvXr0ASEpK4rHHHmPNmjW88cYbhIeHs3jxYhYvXsxrr73G1q1bmT17NuvXr2fVqlW89tprR52mWCItLY3rrruOWbNmsWLFCmbOnEm7du248cYbuf3221m+fDlDhw49apurrrqKp556ipUrV9KrVy8eeeSRo+pMSkrihRdeOGp5WZs3bz4qUE2ZMqVK+z5w4AA//PADd955Z+my1q1bs3z5cpYvX851113H2LFjadu2LTfffDNXXXUVK1euZNKkSdxyyy2l2+zevZuffvqJzz//nHvvvbeaIyEiIiIi0vB41mmNt90G7tMLK9S6NYwe7fpQw927oXt31yfQVxBSSEyEF16odJeHDx8mMTERcM2c/eEPf+CXX35h4MCBtG/fHoA5c+awcuXK0lmgzMxMNm7cyI8//sjEiRPx9/endevWnHnmmcftf+HChZxxxhml+4qIiKi0nszMTA4cOMCwYcMAuPrqqxk/fnzp85deeikA/fr1Y9u2beXuo2PHjqWnasKRD5E+0b4nTJhQYV0///wzr7/+euls3a+//srHH38MwJVXXsndZS5yvvjii/Hz86NHjx6kpqZW+npFRERERMTTwllVNG/uCmY7dkB8vOtxDZW95qyskJCQ0vvWWl5++WVGjx591DpffvklxphK92+tPeE61dGoUSPA1ciksLCw1vYLR7/msnbv3s0f/vAHPvvsM0JDQ8tdp+xrLKkRXK9fREREREQq51nh7AQzXMCRUxkffBD+/W946KF6aT87evRo/v3vf3PmmWcSGBjIhg0baNOmDWeccQavvvoqV111FXv37mXevHlcccUVR207ZMgQ/vSnP7F161bat2/Pvn37iIiIICwsjIMHDx53rPDwcJo3b86CBQsYOnQo//nPf0pnumrqZPZdUFDAZZddxlNPPUWXLl1Kl5966ql88MEHXHnllbz//vucfvrptVKjiIiIiEhD5Fnh7ERKglnJhzeOGHH04zo0efJktm3bRt++fbHWEhUVxSeffMIll1zC999/T69evejSpUu5QScqKoqpU6dy6aWXUlxcTHR0NN9++y0XXHAB48aN49NPP+Xll18+apt33nmHG2+8kUOHDtGhQwfeeuutWnst1d33L7/8wuLFi3nooYd46KGHANeM4UsvvcS1117LM888Q1RUVK3WKCIiIiLS0Jj6POWsf//+tqR7YYm1a9fSvXv3qu3g6addzT/KBrF582Dx4vI/1FEavGr9+xIRERERqWPGmKXW2v7lPeddM2flBbCSGTQREREREREv5l2t9EVERERERHyUwpmIiIiIiIgH8IhwplbrUhf070pEREREvInj4Sw4OJiMjAy9kZZaZa0lIyOD4OBgp0sREREREakSxxuCxMbGkpKSQlpamtOliI8JDg4mNjbW6TJERERERKrkhOHMGBMHvAu0BIqBqdbaF93P/Rm4GSgEvrDWVruffWBgIO3bt6/uZiIiIiIiIj6lKjNnhcCd1tplxpgwYKkx5lsgBrgI6G2tzTPGRNdloSIiInK8/MJidh44TKvwYIID/Z0uR0REauCE4cxauxvY7b6fZYxZC7QBrgOetNbmuZ/bW5eFioiINFTWWtKy89iSluO+ZbMl3fU1ef9hiootrcKDue2szoztG0uAv+OXlIuIyEkw1WnEYYxpB/wI9HR//RQYA+QCf7HWLq5s+/79+9slS5acdLEiIiK+LLegiK3pxwewLek5ZOUWlq7XKMCP9pEhdIgKoUNkKK2aBTNzSQrLkw/QMSqEu0Z3ZXRCS4wxDr4aEREpjzFmqbW2f3nPVbkhiDEmFJgF3GatPWiMCQCaA4OBAcAMY0wHe0zaM8ZcD1wPEB8ff5IvQURExDdYa9mdmesKYOnZbEnLYXOa6+uuzMOU/S3aOjyYDlGhXHJKGzpEhtA+KpQOkSG0adYYP7+jg9cVA+P5ZnUqz3yzjhvfW0afuGbcM6Yrp3aMrOdXKCIiJ6tKM2fGmEDgc+Aba+1z7mVf4zqtcb778WZgsLW2wraLmjkTEZGGIievsDSAbS6ZCUvLYWt6DocLikrXCwnyp0NUaOksWIco14xY+8gQmgRVv6lyYVExHy/byfNzN7A7M5czukRx9+iu9GwTXpsvT0RETlJlM2cnDGfGdU7EO8A+a+1tZZbfCLS21v7NGNMF+A6IP3bmrCyFMxER8SVFxZad+w+z2T0DVhLAtqRnk3owr3Q9PwOxzZscF8A6RoUSHdaoTk4/zC0o4t1ft/F/8zaTebiAC/u05s5RXWjbIqTWjyUiIlVX03B2OrAAWIWrlT7AfcBc4E0gEcjHdc3Z95XtS+FMRES8UeahgnID2LaMQ+QXFpeuF9448KgA1jEqhA5RocRHNHGsk2Lm4QKm/riZN37aSmGRZeLAeP48shPRYcGO1CMi0tDVKJzVJoUzERHxVAVFxSTvO3TkVMS9R64Jy8jJL10vwM8Q36IJHSJD3eHLFcA6RIYQERLksU049h7M5aXvN/JBUjKB/n5MHtqe687oQNPgQKdLExFpUBTOREREcDXj2JeTf6QLYlqO63qw9Gx2ZByisPjI78TI0KCjTkEsuR8X0YRAL25Vvy09h2fnrOfzlbtp3iSQP43oxO8Gt9VnpImI1BOFMxERadAKiop586etvPrjFvaVmQULCvCjfYuQ4wJYh8hQwpv49ozSqpRMnv5mHQs2ptM6PJjbzu7C2L6x+Pt55syfiIivUDgTEZEGa+n2/dw/exXr9mQxvGsUZ3SOKm3G0bpZ4wYfRn7ZlM5TX69jRUomnaNDuWt0V87uEeOxp2eKiHg7hTMREWlwMg8X8Mw363h/0Q5aNg3m4QsTGJ3Q0umyPJK1lq9/28Mz36xnS3oOfeObcc+Ybgzq0MLp0kREfI7CmYiINBjWWj5fuZu/f76GjOw8rjm1PXeM6kJoo+p/ZlhDU1hUzMylKbwwdwOpB/MY0TWKu8d0o3urpk6XJiLiMxTORESkQdiRcYgHP/2NHzak0atNOE9c2ksfvnwSDucX8c6v23hl3iay8gq5OLENd5zdhbiIJk6XJiLi9RTORETEpxUUFfPagi28OHcjAX6Gv4zuylVD2jX468lqKvNQAf/+YTNv/byVYmuZNKgtN5/ZicjQRk6XJiLitRTORETEZy3dvo/7Pv6N9alZjEloyUMX9qBVeGOny/IpezJzefG7jcxYkkyjAD8mD+3AdUPbE6bPSBMRqTaFMxER8TmZhwp48ut1TE/aQZtmjXnkwgTO6hHjdFk+bXNaNs/N2cAXq3YTERLEzSM6MWlwPI0C9BlpIiJVpXAmIiI+w1rLZyt28Y/P17D/UAHXntaO287qQogaftSbFckHePqbdfy8KYM2zRpzx9lduPiUNjqNVESkChTORETEJ2zPyOGBT35jwcZ0+sSG89glavjhpAUb03jq63X8tvMgXWPCuHtMV87sFq3PSBMRqYTCmYiIeLX8QlfDj5e+20igvx93je7K7wa31UyNBygutnz5226e/WY92zIOMaBdc+4Z043+7SKcLk1ExCMpnImIiNdK2rqP+2evYuPebM7t1ZKHLkggpmmw02XJMQqKivlwcTIvfreRtKw8zuoezV2ju9G1ZZjTpYmIeBSFMxER8ToHDuXz5Ffr+GBxMm2aNeYfFydwZjc1/PB0h/ILeevnbUz5YTPZeYVccorrM9Jim+sz0kREQOFMRES8iLWWT5bv5NHP13LgcAGTT2/PrWd1pkmQGn54k/05+Uz5YTNv/bINLPxucFv+NKIjLfQZaSLSwCmciYiIV9iansMDn6zi500ZJMY14/FLetGjdVOny5Ia2J15mBe+3cjMpck0CQrguqEdmDy0vbprikiDpXAmIiIeLa+wiFd/2MK/5m2iUYAfd4/pxhUD49Xww4ds2pvFM9+s55vVqUSGBvHnMzszcWA8QQF+TpcmIlKvFM5ERMRjLdySwf2zV7E5LYfze7fib+f3IFoNP3zW/3bs56mv17Fwyz7iIhpz59ldubBPa/wUxEWkgVA4ExERj7M/J5/Hv1zLzKUpxEU05h8X9WR412iny5J6YK3lhw1pPP31etbsPki3lmHcM6Ybw7tG6TPSRMTnKZyJiIjHsNYya9lOHv9yLQcPF3DdGR245czONA7yd7o0qWfFxZb/rtzFP+dsYMe+QwxsH8G953Sjb3xzp0sTEakzCmciIuIRNqdlc//sVSzcso++8c14/NJedGuphh8NXX5hMR8u3sGL320iPTuPUT1iuGt0VzrH6DPSRMT3KJyJiIij8gqL+Pf8zbwybzPBgX7cc043Jg6I13VGcpScvELe/Gkrr/64hUP5hYztG8vtZ3ehdbPGTpcmIlJrFM5ERMQxv2xO54HZv7ElPYcL+7TmgfO7Ex2mhh9SsX05+fzfvE3859ftRIYGMf+uEerqKCI+o7Jwpg8ZERGROrEvJ5/HvljLrGUpxEc04d1rB3JGlyinyxIvEBESxIPn92BIhxZMfncJ361N5ZxerZwuS0SkzimciYhIrbLWMnNpCo9/uZbs3EL+NKIjfz6zM8GBavgh1TOiWzStw4OZlrRD4UxEGgSFMxERqTWb9mZx3+zfSNq6j/5tm/P4pb3ooqYOcpL8/QwTBsTz/NwN7Mg4RHyLJk6XJCJSp3QCt4iI1FhuQRHPzVnPOS8uYP2eLJ68tBczbhiiYCY1NmFAHH4Gpi/e4XQpIiJ1TjNnIiJSIz9tTOeBT1axLeMQl5zShvvP605kaCOnyxIf0TI8mDO7xTBzSTK3n9VFjUFExKfpfzgRETkp6dl53P7hcn73xiIA3vvDIJ6fkKhgJrVu0qB40rPzmbs21elSRETqlGbORESkWoqLLTOWJPPEV+s4lF/ILWd24qYRndTwQ+rMGV2iaNOsMdOTdnCuGoOIiA9TOBMRkSrbmJrFfbNXsXjbfga2i+DxS3vSKVrXlUndcjUGieO5bzewPSOHti1CnC5JRKRO6LRGERE5odyCIp75Zh3nvrSAjXuzeXpsbz64frCCmdSby/rH4e9n+GBxstOliIjUGc2ciYhIpX7ckMYDn/zGjn2HuLRvG+4/tzstdF2Z1DNXY5BoNQYREZ+m/9lERKRcaVl53PrB/7jqzST8/QzTJg/iucsSFczEMVcMVGMQEfFtmjkTEZGjFBdbPliczJNfrSW3oJhbR3bmj8M7quGHOK6kMci0RWoMIiK+SeFMRESO8pePVvDxsp0M7hDBY5f0omNUqNMliQBqDCIivk+nNYqISKkvVu7m42U7uWl4R6ZfN1jBTDxOSWOQ6UlqDCIivkfhTEREANc1Zg98soo+seHccXYXjDFOlyRynJLGIB8tTSa/sNjpckREapXCmYiIYK3lrx+vIie/iH9e1ocAf/16EM91xSBXY5Bv16gxiIj4Fv32FRERZi3bydy1qdw9uqs+u0w83hmdXY1BpiftcLoUEZFapXAmItLA7TpwmEc+W83A9hFce1p7p8sROSF/P8PlA+L4aVM62zNynC5HRKTWKJyJiDRgxcWWuz9aSZG1PDuuD35+us5MvMNlA9QYRER8j8KZiEgD9v6i7fy0KZ37z+tOfIsmTpcjUmUxTYMZqcYgIuJjFM5ERBqobek5PP7lOs7oEsUVA+OdLkek2iaqMYiI+BiFMxGRBqio2PKXmSsI9Dc8Pba32uaLV1JjEBHxNQpnIiIN0OsLtrBk+34euSiBluHBTpcjclLKNgbZlq7GICLi/RTOREQamA2pWfxzzgbGJLTk4sQ2TpcjUiMljUE+WKzGICLi/U4YzowxccaYecaYtcaY1caYW495/i/GGGuMiay7MkVEpDYUFBVzx4zlhAUH8OglPXU6o3g9NQYREV9SlZmzQuBOa213YDDwJ2NMD3AFN+BsQCd7i4h4gX99v4nfdh7ksUt6ERnayOlyRGqFGoOIiK84YTiz1u621i5z388C1gIl58E8D9wN2DqrUEREasWqlEz+NW8Tl57ShjE9WzpdjkitKWkMMi1pu9OliIjUSLWuOTPGtANOARYZYy4EdlprV9RFYSIiUntyC4q4Y8ZyokIb8dAFCU6XI1KrShqD/LwpQ41BRMSrVTmcGWNCgVnAbbhOdbwf+FsVtrveGLPEGLMkLS3tZOsUEZEaeO7bDWzcm81T43oT3iTQ6XJEal1JY5Dpi3WlhYh4ryqFM2NMIK5g9r619mOgI9AeWGGM2QbEAsuMMcedJ2OtnWqt7W+t7R8VFVV7lYuISJUs3raP1xZsYdKgeIZ10f/D4ptKG4MsSVFjEBHxWlXp1miAN4C11trnAKy1q6y10dbadtbadkAK0Ndau6dOqxURkWrJySvkzhkriG3emPvO7e50OSJ16opB8WTk5DNnjd6OiIh3qsrM2WnAlcCZxpjl7tu5dVyXiIjUgie+Wkvy/kP8c3wiIY0CnC5HpE4NdTcGmZ6kUxtFxDud8De1tfYnoNIPwnHPnomIiAf5cUMa7y3cwXVD2zOwfYTT5YjUOX8/w8SBcTw7ZwPb0nNoFxnidEkiItVSrW6NIiLiHTIPF3DPrJV0ig7lzlFdnS5HpN6M76/GICLivRTORER80CP/Xc3erDyeu6wPwYH+TpcjUm9imgZzVnc1BhER76RwJiLiY75ZvYePl+3kTyM60Tu2mdPliNS7iQPVGEREvJPCmYiID8nIzuP+2atIaN2Um0d0crocEUec4W4MMm2RTm0UEe+icCYi4iOstTzwyW8cPFzIc5clEhSg/+KlYfJzNwb5ZXMGW9NznC5HRKTK9JtbRMRHfLZiF1/9toc7RnWha8swp8sRcdRl7sYgH6itvoh4EYUzEREfkHowlwc/+Y2+8c24bmgHp8sRcVy0uzHIzKUp5BUWOV2OiEiVKJyJiHg5ay13f7SSgiLLPy9LxN+v0o+mFGkwrhjUln05+cxZnep0KSIiVaJwJiLi5T5YnMwPG9L467ndaK8P3RUpNbRTJLHNGzNdpzaKiJdQOBMR8WLJ+w7x6OdrOK1TC343qK3T5Yh4FFdjkHg1BhERr6FwJiLipYqLLX+ZuQI/Y3h6XB/8dDqjyHHG94slQI1BRMRLKJyJiHipt37ZxqKt+/jbBT1o06yx0+WIeCRXY5AYNQYREa+gcCYi4oU27c3m6a/XcVb3aMb1i3W6HBGPNnFQvBqDiIhXUDgTEfEyhUXF3DlzBU2C/Hn80l4Yo9MZRSpT0hhk2iKd2igink3hTETEy0z5YTMrkg/w6MW9iA4LdrocEY9X0hjk1y0ZbEnLdrocEZEKKZyJiHiR1bsyefG7jVzQpzXn9W7ldDkiXqOkMciHi5OdLkVEpEIKZyIiXiKvsIg7Z6ygWZMg/n5hgtPliHgVNQYREW+gcCYi4iVenLuRdXuyeGpsL5qHBDldjojXUWMQEfF0CmciIl5g2Y79TPlhMxP6x3FmtxinyxHxSmoMIiKeTuFMRMTDHc4v4i8zVtAqvDEPnN/d6XJEvJYag4iIp1M4ExHxcE99vY4t6Tk8M743YcGBTpcj4tXG93c1BvlAjUFExAMpnImIeLBfNqfz9i/buObUdpzaMdLpckS8XnSYqzHIR2oMIiIeSOFMRMRDZeUWcNfMlbSPDOGeMd2cLkfEZ1zhbgzyjRqDiIiHUTgTEfFQj36+lt2Zh/nnZX1oHOTvdDkiPuP0TpHERTRmuhqDiIiHUTgTEfFA369L5cMlydw4rCN945s7XY6IT/HzM1w+QI1BRMTzKJyJiHiY/Tn53DNrFd1ahnHrWZ2dLkfEJ6kxiIh4IoUzEREP87fPVnPgUD7/vKwPjQJ0OqNIXYgOC+bsHmoMIiKeReFMRMSDfL5yF/9dsYtbR3YmoXW40+WI+LSJA9UYREQ8i8KZiIiH2JuVy4Of/Eaf2HBuHNbR6XJEfF5JY5Bpi7Y7XYqICKBwJiLiEay13PfxKg7lF/HPyxIJ8Nd/zyJ1raQxyMIt+9QYREQ8gn77i4h4gI+WpjB37V7uHtONTtGhTpcj0mCUNAaZnqS2+iLiPIUzERGH7TxwmL//dw2D2kfw+1PbOV2OSIOixiAi4kkUzkREHFRcbLn7oxUUW8uz4/vg52ecLkmkwbliUDz7DxXw9W97nC5FRBo4hTMREQe9t2g7P2/K4IHzexAX0cTpckQapNM6RhIf0USnNoqI4xTOREQcsjU9hye+XMewLlFcPiDO6XJEGiw/P8PlA+NYuGUfm9UYREQcpHAmIuKAomLLX2auINDf8NTY3hij0xlFnDSun6sxyAeaPRMRBymciYg44LUFW1i6fT//uLgnLcODnS5HpMEr2xgkt0CNQUTEGQFOFyAivic9O4+1uw+yZtdB1uw+SFpWHqMTWnLxKW0IbxzodHmOW78ni+fmbOCcni25sE9rp8sREbcrBsXz1W97+Gb1Hi5KbON0OSLSACmcichJKy62bMvIYc3ug0eFsdSDeaXrtGnWmJBG/jz02Wqe+Got5/VqzRWD4ugb37xBnspXUFTMHTOW07RxAI9e3LNBfg9EPFVJY5Bpi3YonImIIxTORKRKDucXsT41yx3AMlmz6yDr9mRxKN91+k+An6FTdCindYqkR6um9GjdlB6tmtKsSRAAv+3MZHrSDj5dvotZy1LoEhPK5QPiubRvm9J1GoKXv9/E6l0HefXKfrQIbeR0OSJSRkljkKe/Xs/mtGw6RukD4UWkfhlrbb0drH///nbJkiX1djwROTnp2Xmls2AlX7ekZVPs/u8irFEA3d3hqySEdY4JpVGA/wn3nZNXyOcrdzEtKZkVyQcICvDjvF6tmDgwngHtfHs2bWXKAS555RcuSmzNc5clOl2OiJRjb1Yupz7xPdec2o4Hzu/hdDki4oOMMUuttf3LfU7hTKThKiq2bHefllg2jO3NOvq0xB7HBLHY5o1rJUSt2XWQDxbvYPaynWTlFdIxKoSJA+O5tG8sESG+NZuWW1DE+S//RE5eIV/fdoauvRPxYDe9v5RfN2fw619HEhx44j86iYhUh8KZiHA4v4h1e44EsLW7jz8tsXNM2FEhrEerpoQ3qfsQcSi/kC9W7mZ60g6W7ThAkL8fY3q25PKBcQzp0MInZtMe+2INry3YyrvXDuSMLlFOlyMilViwMY0r30jixcsTde2ZiNS6ysJZg7/mbP76vYQFBzTY5gTim9Ky8o6ZDctka3rOkdMSgwPo0aopEwbElYaxTtFVOy2xLjQJCmB8/zjG949j/Z4spift4ONlKXy2YhftI0O4fEAcY/vFEuml12glbd3H6z9t5XeD4xXMRLyAGoOIiFMa/MzZeS8tYPWug7SPDGFs3zZc0jeWNs0aO12WSJUUlXRLPOb6sLR6Oi2xLuUWFPHlqt18kJRM0rZ9BPobRvVoycSB8ZzasQV+fp5df4mcvELOeXEBAF/dOpSQRg3+b2IiXuGV+Zt4+uv1zL1jGJ2i1RhERGqPTmusRHZeIV+t2s2sZSks3LIPY2BIhxaM7RvLOb1a0iRIb6TEMxx7WuKa3QdZtzuLw+4PSw30N3SODjsqiHVvWT+nJda1TXuzmJ6UzKxlKRw4VEB8RBMuHxjHuH6xRId59gc43z97FdOSdjDjhiEMaBfhdDkiUkVpWXkMeeI7NQYRkVqncFZFyfsO8fGynXz8vxS2ZxyiSZA/5/Rsxbh+sQxqH+E1f6kX77c3K/e42bBtZU5LbBoc4A5h4aVhrFN0KEEBfs4WXsdyC4r4ZvUepiftYOGWfQT4Gc7qHsPEQfEM7RTpcT+jP2xI4+o3k7j+jA7cd253p8sRkWpSYxARqQs1CmfGmDjgXaAlUAxMtda+aIx5BrgAyAc2A7+31h6obF+eHs5KWGtZsn0/s5am8MXK3WTlFdKmWWPG9m3DpX1jaRcZ4nSJ4kOstaxPzWLO6lSWbN/Pml0HSc8+clpibPPGRzfpaN2UNs08/7TEurY5LZsPFyfz0dIU9uXkE9u8MZcPcF23FtPU+dm0zMMFjH7+R8KCA/jvn0/XGzsRL/TTxnR+98YiNQYRkVpV03DWCmhlrV1mjAkDlgIXA7HA99baQmPMUwDW2nsq25e3hLOySv5SP2vZTn7amEaxhf5tmzO2Xyzn9W5F02DvP2VM6l9RsWXZjv3MWb2HOWtS2Z5xCIDurZqSUPa0xFZN1XL9BPIKi/h2TSrTk3bw86YM/P0MZ3aL5oqBruYb/g7Npt3x4XI+XbGLT246jV6x4Y7UICI1U1xsGf7sfFqFB/PhDUOcLkdEfEStntZojPkU+Je19tsyyy4BxllrJ1W2rTeGs7L2ZOYy+387mbUshU17s2kU4MfohJaM7RfL6Z0iHXsTKN4ht6CInzelM2d1KnPXppKRk0+Qvx+ndmrBqB4tOat7NNEeMOPjzbal5/DB4mQ+WppMenY+rcODuWxAHJf1j6N1PTb6+fq3Pdz43lJuHdmZ28/uUm/HFZHa9+/5m3nq63VqDCIitabWwpkxph3wI9DTWnuwzPL/Ah9aa9+rbHtvD2clrLWsTMlk1rIUPl2+i8zDBcQ0bcTFp7RhXN9YOseEOV2ieIjMQwXMW7+XOWv2MH99GofyiwhtFMCIbtGM6hHD8K5RhGn2tdblFxbz3dpUpiXtYMHGdPwMjOgazcSB8QzvGkWAf91dm5eRnceo53+kVbNgZt90GoF1eCwRqXtqDCIita1WwpkxJhT4AXjMWvtxmeX3A/2BS205OzPGXA9cDxAfH99v+/bt1X8FHiyvsIjv1+5l1rIU5q1Po6jY0ic2nLH9Yrmgd2uahwQ5XaLUs92Zh/l2TSpzVqeycEsGhcWW6LBGnN0jhlEJLRncIcKxzxNriJL3HeLDxcl8uCSZtKw8Ypo2YkL/OC4bEEds8ya1eixrLX98bxnfr9vL57ecThf9oUbEJ/zp/WX8vDmdhWoMIiK1oMbhzBgTCHwOfGOtfa7M8quBG4GR1tpDJ9qPr8ycVSQ9O49Pl+/io6UprN19kEB/w8huMYzrF8uwrlH6C7qPstayaW82c9akMmf1HlakZALQITKEUQktGZUQQ2JsM4/rJNjQFBQV8/26vUxP2sEPG9IAGNYlissHxDOye3St/Hx+8r+d3Pbhcv56TjduGNaxxvsTEc+gxiAiUptq2hDEAO8A+6y1t5VZPgZ4DhhmrU2rSiG+Hs7KWrProPu0x52kZ+fTIiSIixLbMLZfGxJaqzmAtysutvwveT9zVqcyZ00qW9NzAEiMa8aohBhG9WipaxM8WMr+Q8xYksKMxcnsOZhLVFgjLusfy+UD4omLOLnZtD2ZuYx6/ge6xITx4Q1DdA2qiA8pLraM+Od8YpoGM0ONQUSkhmoazk4HFgCrcLXSB7gPeAloBGS4ly201t5Y2b4aUjgrUVBUzI8b0pi1LIW5a/aSX1RMt5ZhjOsXy0WJbYgKa+R0iVJFeYVF/LI5gzmr9/Dtmr2kZ+cR4GcY0rGFa4asR4xHtHCXqissKmb++jSmJ+1g3vq9FFsY2jmSiQPjOat7TJU/N85ayzVvLSZp6z6+unWoPm5DxAepMYiI1BZ9CLWHOHAon/+u2MVHy3ayIvkA/n6G4V2iGNsvlpHdo3Udkgc6mFvAvHV7mbMmlfnr9pKTX0RIkD/DSxt6RKvVvY/YnXmYGYtT+HDxDnZl5hIZGsS4fnFcPiDuhGFr2qId3Dd7Ff+4KIErh7Srn4JFpF6lZ7sag1w1pB0PqjGIiNSAwpkH2rQ3i1nLdjJ72U72HMwlvHEgF/Rpxbh+cfSJDW/wHzDspNSDuXy7JpVvVu9h4ZYMCooskaFBpQ09Tu3YQkHahxUVW37ckMa0pB18v24vRcWWUzu2YOLAeEYlxBw39jsyDjHmxR/pG9+cd68dqGsLRXyYGoOISG1QOPNgRcWWXzan89HSFL5ZvYfcgmI6RoUwtl8sl5zShlbh9ffZTA2Zq6HHHuasTmV58gEA2rVowuiShh5xzXUNUQOUejCXmUuSmZ6UzM4Dh4kICWJcv1guHxBHh6hQiostl7+2kLW7DvLN7WfU62epiUj9+3lTOpNeX8QLExK5+BQ1BhGRk6Nw5iWycgv4ctVuZi3dSdK2fRgDp3eKZGzfWEYntKRxkP5KV1uKiy0rUg7wzepU5qzZw5Y0V0OP3rHhjOoRw+gEV0MPzWAKuP69LNiUzvRFO5i7NpXCYsug9hG0axHCh0uSeXZ8H8b1i3W6TBGpY2oMIiK1QeHMC23PyGHWsp18vCyFlP2HCW0UwHm9WjG2XywD2jVXaDgJ+YXF/LqlpKFHKnuzXA09BndowaiEGM7qHqOZDzmhvVm5fLQ0hQ+Sktmx7xBndY/htav66WdSpIE40hjkDDpF67MMRaT6FM68WHGxJWnbPmYtTeHLVbvJyS8iPqIJl/Ztw9i+sSfd9ruhyMotYP76tNKGHll5hTQJ8mdYlyhGJcRwZtcYwpuooYdUX8nsa9eWYTQJCnC6HBGpJ2oMIiI1pXDmIw7lF/L1b3uYtSyFXzZnYC0Mah/B2H6xnNurFaGN9AYRXDMbc9fsZc6aPfyyKYP8omJahARxVvcYRiXEcFqnSF3ILSIiJ02NQUSkJhTOfNDOA4f55H87mbU0hS3pOTQO9GdMz5aM7RvLkI4tGlzziq3pOXyzeg9zVu/hf8kHsBbiI5q4rh/r2ZK+8WroISIitUONQUSkJhTOfJi1lv8lH+CjpSl8vmIXB3MLaRUezCWntOGcnq0IDQ7Az4CfMfj7GfyMwc/P/dgY/PwMfoYjz5kjjz35GpriYsuqnZmlHRY37s0GoGebpozq4eqw2DUmzKNfg4iIeKfSxiBhwcy4UY1BRKR6FM4aiNyCIuauTWXW0hR+2JBGcQ2H1pgjIc64A1vZ+37ucOfvDnR+7mWuYAf+pfcN/u5AeCQkHvO4JCSaY9YvZ/9FxZZfN2ew52Au/n6Gge0iGJ0Qw1k9YohtrmvwRESk7k35YTNPfqXGICJSfQpnDdDerFyStu6jsMhSbC1Fxa6vxZYj94stRdY1+1ZUbCmyFnvc865tiotL9oN7P2X2WYx7vSP7LLl/om2OHPtIHSXHK7vPsnVbC33iwhnVoyVndoumeUiQ099uERFpYEoag1w5uB1/u0CNQUSk6ioLZ+og4aOiw4I5v3drp8sQERHxSZGhjRiV0JJZy1K4e0xXNQYRkVrh53QBIiIiIt7oioHxZB4u4Kvfdjtdioj4CIUzERERkZMwpEML2rVowvRFyU6XIiI+QuFMRERE5CT4+RkuHxhP0rZ9bEzNcrocEfEBCmciIiIiJ2lcv1gC/Q3TkzR7JiI1p3AmIiIicpLKNgbJLShyuhwR8XIKZyIiIiI1MEmNQUSkliiciYiIiNTAYHdjkGmLdjhdioh4OYUzERERkRrw8zNMHBjP4m371RhERGpE4UxERESkhsa6G4NMS9LsmYicPIUzERERkRqKDG3E6ISWfLxspxqDiMhJUzgTERERqQVXqDGIiNSQwpmIiIhILRjSUY1BRKRmFM5EREREaoExagwiIjWjcCYiIiJSS8apMYiI1IDCmYiIiEgtaaHGICJSAwpnIiIiIrWopDHIl6vUGEREqkfhTERERKQWlTQGma5TG0WkmhTORERERGpR2cYgG9QYRESqQeFMREREpJaVNAbR7JmIVIfCmYiIiEgtK2kMMmtpihqDiEiVKZyJiIiI1IErBsVzMLdQjUFEpMoUzkRERETqwJAOLWgfGcK0RTq1UUSqRuFMREREpA64GoPEsWS7GoOISNUonImIiIjUkbF9Ywny99PsmYhUicKZiIiISB1pEdqI0T1b8vEyNQYRkRNTOBMRERGpQxMHxnEwt5AvVqoxiIhUTuFMREREpA6VNAbRZ56JyIkonImIiIjUITUGEZGqUjgTERERqWPj+sWpMYiInJDCmYiIiEgdiwgJUmMQETkhhTMRERGRenDFwHg1BhGRSimciYiIiNSDwR0i6BAZwjQ1BhGRCiiciYiIiNQDV2OQeJZu38/6PWoMIiLHUzgTERERqSdj+8US5O+ntvoiUi6FMxEREZF6EhESxJieLZm1LIXD+WoMIiJHUzgTERERqUdXDmlLVm4hf5q2TJ0bReQoJwxnxpg4Y8w8Y8xaY8xqY8yt7uURxphvjTEb3V+b1325IiIiIt5tQLsIHr24J9+v28v1/1mqgCYipaoyc1YI3Gmt7Q4MBv5kjOkB3At8Z63tDHznfiwiIiIiJ/C7wW15emxvFmxM49q3F3Mov9DpkkTEA5wwnFlrd1trl7nvZwFrgTbARcA77tXeAS6uoxpFREREfM5lA+L45/g+LNySwTVvLSY7TwFNpKGr1jVnxph2wCnAIiDGWrsbXAEOiK716kRERER82KV9Y3l+QiJLt+/n6jeTyMotcLokEXFQlcOZMSYUmAXcZq09WI3trjfGLDHGLElLSzuZGkVERER81kWJbXh54imsSD7A795IIvOwAppIQ1WlcGaMCcQVzN631n7sXpxqjGnlfr4VsLe8ba21U621/a21/aOiomqjZhERERGfcm6vVrwyqS9rdmUy6fWFHDiU73RJIuKAqnRrNMAbwFpr7XNlnvoMuNp9/2rg09ovT0RERKRhGJXQkqlX9mdDajYTX1tERnae0yWJSD2ryszZacCVwJnGmOXu27nAk8DZxpiNwNnuxyIiIiJykkZ0i+b1q/qzJS2bia8tJC1LAU2kITHW2no7WP/+/e2SJUvq7XgiIiIi3uiXzen84e0ltG4WzLTrBhPTNNjpkkSklhhjllpr+5f3XLW6NYqIiIhI3Tu1YyTvXDuQPZm5THj1V3YdOOx0SSJSDxTORERERDzQwPYRvPuHQWRk5zNh6q8k7zvkdEkiUscUzkREREQ8VL+2zXlv8iAyDxVw+dSFbM/IcbokEalDCmciIiIiHqxPXDOmXTeYnPxCJry6kC1p2U6XJCJ1ROFMRERExMP1bBPO9OsGU1BUzISpC9m0N8vpkkSkDiiciYiIiHiB7q2a8sH1g7EWJry6kHV7DjpdkojUMoUzERERES/ROSaMD28YTIC/YeLUhazelel0SSJSixTORERERLxIx6hQPrx+CI0D/bnitUWsTDngdEkiUksUzkRERES8TLvIED68YQhhwQFMem0Ry3bsd7okEakFCmciIiIiXiguogkf3jCEiNAgrnojicXb9jldkojUkMKZiIiIiJdq06wxH14/hOiwRlz9ZhK/bs5wuiQRqQGFMxEREREv1jI8mA9uGEybZo35/dtJ/LQx3emSROQkKZyJiIiIeLnosGCmXz+Ydi1CuPadxcxfv9fpkkTkJCiciYiIiPiAyNBGTL9uMJ2jQ7n+3aXMXZPqdEkiUk0KZyIiIiI+onlIENMmD6Z7qzBufG8pX/+22+mSRKQaFM5EREREfEh4k0D+M3kQvWPD+dO0//HfFbucLklEqkjhTERERMTHNA0O5N0/DKJvfDNu/eB/zP5fitMliUgVKJyJiIiI+KDQRgG8c+1ABrVvwR0zVjBzSbLTJYnICSiciYiIiPioJkEBvHnNAE7vFMldH61k2qIdTpckIpVQOBMRERHxYY2D/Hntqv6M6BrFfbNX8c4v25wuSUQqoHAmIiIi4uOCA/2ZcmU/zuoew0Ofreb1BVucLklEyqFwJiIiItIANArw55VJfTmnZ0se/WIt/56/2emSROQYCmciIiIiDURQgB8vTzyFC/q05qmv1/HSdxudLklEyghwugARERERqT8B/n68MCGRQD/Dc99uoKComDvO7oIxxunSRBo8hTMRERGRBsbfz/DM+D4E+vvx8vebKCiy3DOmqwKaiMMUzkREREQaIH8/wxOX9iLA3zDlh80UFBXzwHndFdBEHKRwJiIiItJA+fkZHr24J4H+frzx01YKiop5+IIE/PwU0EScoHAmIiIi0oAZY3jogh4E+hteW7CVgiLLYxf3VEATcYDCmYiIiEgDZ4zhvnO7E+jvxyvzXac4PjW2N/4KaCL1SuFMRERERDDGcNforgT6+/HidxspLCrm2fF9CPDXJy+J1BeFMxEREREBXAHt9rO7EOhveHbOBgqLLc9PSCRQAU2kXiiciYiIiMhRbj6zM4H+fjzx1ToKiywvTTyFoAAFNJG6pp8yERERETnODcM68rfze/D16j3c9P5S8gqLnC5JxOcpnImIiIhIua49vT3/uCiBuWv3cv27S8ktUEATqUsKZyIiIiJSoSuHtOPJS3vx48Y0Jr+zhMP5CmgidUXhTEREREQqdfnAeJ4Z14efN6fz+7eTyMkrdLokEZ+kcCYiIiIiJzSuXywvTEgkaes+rn4ziazcAqdLEvE5CmciIiIiUiUXJbbh5Yl9+V/yAa58I4nMwwpoIrVJ4UxEREREquy83q34vyv6snpXJr97fREHDuU7XZKIz1A4ExEREZFqGdOzJVN+14/1e7KY+Noi9uUooInUBoUzEREREam2kd1jeO3q/mxJy2bi1IWkZeU5XZKI11M4ExEREZGTMqxLFG9eM4Dt+3K4fOqv7D2Y63RJIl5N4UxERERETtppnSJ5+/cD2Z2Zy4SpC9mdedjpkkS8lsKZiIiIiNTI4A4tePfagaRl5fHo52udLkfEawU4XYCIiIiIeL/+7SL44PrBxDVv4nQpIl5L4UxEREREakXPNuFOlyDi1XRao4iIiIiIiAc4YTgzxrxpjNlrjPmtzLJEY8xCY8xyY8wSY8zAui1TRERERETEt1Vl5uxtYMwxy54GHrHWJgJ/cz8WERERERGRk3TCcGat/RHYd+xioKn7fjiwq5brEhERERERaVBOtiHIbcA3xphncQW8U2utIhERERERkQboZBuC/BG43VobB9wOvFHRisaY693XpS1JS0s7ycOJiIiIiIj4tpMNZ1cDH7vvzwQqbAhirZ1qre1vre0fFRV1kocTERERERHxbScbznYBw9z3zwQ21k45IiIiIiIiDdMJrzkzxkwHhgORxpgU4CHgOuBFY0wAkAtcX5dFioiIiIiI+LoThjNr7cQKnupXy7WIiIiIiIg0WMZaW38HMyYN2F5vB6y6SCDd6SKkWjRm3kXj5X00Zt5HY+Z9NGbeRePlfTx1zNpaa8ttxlGv4cxTGWOWWGv7O12HVJ3GzLtovLyPxsz7aMy8j8bMu2i8vI83jtnJNgQRERERERGRWqRwJiIiIiIi4gEUzlymOl2AVJvGzLtovLyPxsz7aMy8j8bMu2i8vI/XjZmuORMREREREfEAmjkTERERERHxAF4XzowxY4wx640xm4wx95ZZ/qExZrn7ts0Ys7ycbRONMb8aY1YbY1YaYyaUea69MWaRMWaje19BFRz/avc6G40xV1d3+4bGA8bra2PMAWPM58cs13hVwMkxq40xb4gcHrO2xpil7mOsNsbcWJ3tGyKn/190r9vUGLPTGPOvk9m+oXF6zIwxRWWO81l1t2+I6nDMbnbv0xpjIis5vt4vVpMHjJlnvGe01nrNDfAHNgMdgCBgBdCjnPX+CfytnOVdgM7u+62B3UAz9+MZwOXu+1OAP5azfQSwxf21uft+86pu39BuTo+X+7mRwAXA58cs13h54JjVxpg3tJsHjFkQ0Mh9PxTYBrTWmHnmeJXZz4vANOBfZZZpvDx0zIDsCpZrzOp/zE4B2rn/r4us4Ph6v+hlY+ZezyPeMzo+GNUcuCHAN2Ue/xX46zHrGCC5ZIBOsL8VQGf3NulAQHnHKbP+RODVMo9fdS+r0vYN7eb0eJXZbnjZHzSNl+ePWW1t3xBunjRmQAtgB65fjBozDx0voB/wAXAN7nCm8fL4MTsunGnM6n/Mjlm2jYrDmd4vetmYlVlnOA6/Z/S20xrb4BqUEinuZWUNBVKttRsr25ExZiCuZL4Z1xuKA9bawmP3a4zpb4x5/QTHr3D7Bs7p8aqIxqtiHjNmVd1enB8zY0ycMWalu46nrLW7Ktu+gXN0vIwxfrj+8nzXMbvTeFXM8Z8xINgYs8QYs9AYc7F7mcasYnU1ZpWtp/eLNeP0mFWk3scsoC53XgdMOcvsMY8nAtMr3YkxrYD/AFdba4uNMRXu11q7BJh8guNXpa6GyOnxqkldDZVHjFl1thfnx8xamwz0Nsa0Bj4xxnwEFFehrobI6fG6CfjSWpt8zCb6GauY02MGEG+t3WWM6QB8b4xZBRysQl0NVZ2MWWXr6v1ijTk9ZjWpq1Z5WzhLAeLKPI4FdpU8MMYEAJfiOmWjXMaYpsAXwAPW2oXuxelAM2NMgDsZH7XfY44//Jjjz6/G9g2N0+NVEY1XxRwfszoac1/m+JiVcL95XI3rr5uzqrt9A+H0eA0BhhpjbsJ1jWCQMSYb1ylEGq/yOT1muGejsdZuMcbMx3UNjX7GKlZXY1ad4w8/5vjz0e+yyjg9ZhWp9zHzttMaFwOd3V1TgoDLgc/KPH8WsM5am1Lexu5tZgPvWmtnliy3rpNI5wHj3IuuBj4tZxffAKOMMc2NMc2BUbjOO63q9g2N0+NVLo1XpRwds7oacx/n9JjFGmMau+83B04D1mvMKuToeFlrJ1lr46217YC/uPdzr8arUk7/jDU3xjRy34/E9TO2RmNWqToZs2rQ+8Xqc3rMyuXImFkPuAiwOjfgXGADrvNI7z/mubeBGyvZ9ndAAbC8zC3R/VwHIAnYBMzkSPex/sDrZfZxrXudTcDvyywvd/uGfvOA8VoApAGHcf1VZrTGy3PH7GS2183xMTsbWInr4uuVwPVl9q0x87DxOmZf13B0t0aNlweOGXAqsMr9M7YK+IPGzNExuwXX+4lCXDMoJeOk94veP2Ye8Z7RuA8qIiIiIiIiDvK20xpFRERERER8ksKZiIiIiIiIB1A4ExERERER8QAKZyIiIiIiIh5A4UxERERERMQDKJyJiIiIiIh4AIUzERERERERD6BwJiIiIiIi4gH+H9cmKpWi/OkHAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABUS0lEQVR4nO3deVzVZf7//8fFruCKoKIo7pobKu45ila211Sa5phZ2jJTOdNe82mq33ea9r2mRct2S22zps1Ky9zRUFPcRUURcUNAkeVcvz/eR0RzAQXeh8PzfrudG+e819fhAj1Prut9vY21FhEREREREXFXgNsFiIiIiIiIiMKZiIiIiIiIT1A4ExERERER8QEKZyIiIiIiIj5A4UxERERERMQHKJyJiIiIiIj4AIUzERERERERH6BwJiLiJ4wxOSUeHmPMwRKvR7ld3+kwxqQaY85xu46TMcbMNsaMq6BjNzDGzDXG7DbG7DPGzDfG9C+xfoQxZo0xJssYs9MY844xpnaJ9fWNMZ8ZY3KNMZuNMdccc/whxpjVxpgDxphZxpjmFfE+RESkdBTORET8hLU24vAD2AJcUmLZB27XdyxjTJA/nKOC5QDXA1FAPeAJ4MsS72su0N9aWwdoCQQB/y6x/ytAPtAQGAW8aozpCE7wAz4FHgTqA0nAxxX9hkRE5MQUzkRE/JwxJsAYc58xZoO3B2aqMaa+d12cMcYaY8YaY7YaY/YaY242xvQ0xiz39ta8XOJY13l7cl7y9tasNsYMKbG+jjHmTWNMujFmmzHm38aYwGP2fc4Yswd42BjTyhjzk7euXcaYD4wxdb3bvwc0wwkjOcaYe4wxg4wxace8v+LeNWPMw8aY6caY940x+4HrTlFTa2PMz973sssYc9xwYowJ8x7zcA/WYmNMQ2PMo8AA4GVvjS97t29vjJlpjNnj7dkaXuJYbxtjXvOuz/ae/7g9VtbaPGvtGmutBzBAEU5Iq+9dv9Vau6vELkVAa+95woErgQettTnW2l+BGcBo77ZXACuttdOstXnAw0BXY0z749UiIiIVT+FMRMT/3Q5cDgwEYoC9OD0qJfUG2gBXA88D/wTOAToCw40xA4/ZdiPQAHgI+PRw2APeAQpxAkI34Dxg3HH2jQYexQkcj3nr6gDE4oQErLWjOboH8MlSvt/LgOlAXeCDU9T0/4DvcQJPU+ClExxzDFDHW18kcDNw0Fr7T2AOcKu3xlu9oWgm8KH3fY4E/nu4x8prlPfcDYBkb50nZIxZDuThhKtJ1tqdJdadbYzJArJxwtjz3lVtgSJr7doSh1qG06Z4vy47vMJamwtsKLFeREQqmcKZiIj/uwn4p7U2zVp7CCf8XHXMkL//5+2l+R7IBaZYa3daa7fhhI9uJbbdCTxvrS2w1n4MrAEuMsY0BC4A/m6tzfUGiOeAESX23W6tfclaW2itPWitXW+tnWmtPWStzQSexQmRZ2K+tfZzb29T7VPUVAA0B2K87//XExyzACeUtbbWFllrl1hr959g24uBVGvtZO/7XAp8AlxVYpv/WWt/8bbHP4G+xpjYE70ha20X73u5Bvj1mHW/eoc1NgWeAlK9qyKArGMOlQXUKuV6ERGpZFV9LL6IiJxac+AzY4ynxLIinOuQDsso8fzgcV5HlHi9zVprS7zejNPz1RwIBtKNMYfXBQBbS2xb8jnGmGjgRZyhgbW82+8t1bs6sZLnOFVN9+D0YC0yxuwFnrHWvnWcY76H02v2kXfY5fs4gbfgONs2B3obY/aVWBbkPcYfarTW5niHecYcU/tRvEMPpxhjUowxydbaZces32aM+Rb4COiOc71a7WMOUxunh41SrBcRkUqmnjMREf+3FbjAWlu3xCPM2yt2OpqYEkkH57qw7d7zHAIalDhPbWttyWFyJUMdOEMaLdDFWlsb+AvOUMcTbZ8L1Dz8wnvtWNQx25Tc56Q1WWt3WGvHW2tjcHoY/2uMaX3sG/b2Ej5irT0L6IfTO3btCWrcCvx8zPc7wlp7S4ltinvJjDERONeQbT/2vCcQjDP5x/EEAa28z9cCQcaYNiXWdwVWep+v9L4+XEe4d9+ViIiIKxTORET832vAo4cnnTDGRBljLjuD40UDtxtjgo0xw3CuFfvaWpuOc/3WM8aY2t6JSFodc73asWrh9ODsM8Y0Ae4+Zn0GRweRtUCYMeYiY0ww8H9A6IkOfqqajDHDjDFNvZvvxQlaRccexxiTaIzp7A2D+3GGOR7e7tgavwLaGmNGe79Hwd4JVjqU2OZC77ViITg9dwuttX/oNTPG9Dm8nTGmhjHmXpwez4Xe9aOMMc2MoznOdXw/et97Ls5sjP+fMSbcOFPwX8aRHrzPgE7GmCuNMWHAv4Dl1trVJ/p+iohIxVI4ExHxfy/gTCTxvTEmG1iAMzHH6VqIM3nILpwwcJW1drd33bVACLAKJ+xMBxqf5FiP4AzBywL+hxMmSnoM+D/vDIl3WWuzgL8Ck4BtOD1paZzcyWrqCSw0xuTgfI8mWGs3HecYjbz77QdSgJ9xhjaC8/29yjgzXb5orc3GmXRkBE5v2A6cKfBLhsgPcSZT2QP0wJkg5HhCcSZv2e19vxcCF1lrD/eynQXMwwm4c3Gu/xtfYv+/AjVwrhOcAtxirV0J4L3G70qcNtyL8zNR8vpAERGpZOboywZEREROzBhzHTDOWnu227VUVcaYt4E0a+3/uV2LiIj4FvWciYiIiIiI+ACFMxERERERER+gYY0iIiIiIiI+QD1nIiIiIiIiPkDhTERERERExAcEVebJGjRoYOPi4irzlCIiIiIiIj5jyZIlu6y1UcdbV6nhLC4ujqSkpMo8pYiIiIiIiM8wxmw+0ToNaxQREREREfEBCmciIiIiIiI+QOFMRERERETEB1TqNWciIiIiIr6ioKCAtLQ08vLy3C5F/FBYWBhNmzYlODi41PsonImIiIhItZSWlkatWrWIi4vDGON2OeJHrLXs3r2btLQ0WrRoUer9NKxRRERERKqlvLw8IiMjFcyk3BljiIyMLHOvrMKZiIiIiFRbCmZSUU7nZ0vhTERERETEJY8++igdO3akS5cuxMfHs3DhQgDGjRvHqlWryuUccXFx7Nq166Tb/Oc//ynzcd9++21uvfXWo5ZNnjyZ+Ph44uPjCQkJoXPnzsTHx3PfffeV+fiV4fnnn+fAgQNul1FM15yJiIiIiLhg/vz5fPXVVyxdupTQ0FB27dpFfn4+AJMmTarUWv7zn//wwAMPnPFxxo4dy9ixYwEnFM6aNYsGDRqc8XFPl7UWay0BAcfvk3r++ef5y1/+Qs2aNUt9zMLCQoKCKiZGqedMRERERCrdews2szO7es+SmJ6eToMGDQgNDQWgQYMGxMTEADBo0CCSkpIAiIiI4N5776VHjx6cc845LFq0iEGDBtGyZUtmzJgB/LEX6+KLL2b27Nl/OOfll19Ojx496NixI2+88QYA9913HwcPHiQ+Pp5Ro0YB8P7779OrVy/i4+O56aabKCoqApyesbZt2zJw4EDmzp1b6vf61FNP0bNnT7p06cJDDz0EQGpqKu3bt2fcuHF06tSJUaNG8cMPP9C/f3/atGnDokWLAHj44YcZPXo0gwcPpk2bNkycOPGUx+3QoQN//etf6d69O1u3buWWW24hISGBjh07Fm/34osvsn37dhITE0lMTCz+Xh82ffp0rrvuOgCuu+467rjjDhITE7n33nvZsGED559/Pj169GDAgAGsXr261N+LkzqcJivj0aNHDysiIiIi1dtLP661ze/9yj717WpX61i1apWr58/OzrZdu3a1bdq0sbfccoudPXt28bqBAwfaxYsXW2utBezXX39trbX28ssvt+eee67Nz8+3ycnJtmvXrtZaaydPnmz/9re/Fe9/0UUX2VmzZllrrW3evLnNzMy01lq7e/dua621Bw4csB07drS7du2y1lobHh5evO+qVavsxRdfbPPz86211t5yyy32nXfesdu3b7exsbF2586d9tChQ7Zfv35HnfNYh8/73Xff2fHjx1uPx2OLiorsRRddZH/++We7adMmGxgYaJcvX26Liops9+7d7dixY63H47Gff/65veyyy6y11j700EO2S5cu9sCBAzYzM9M2bdrUbtu27aTHNcbY+fPnF9dy+H0XFhbagQMH2mXLlv3he3Ps92HatGl2zJgx1lprx4wZYy+66CJbWFhorbV28ODBdu3atdZaaxcsWGATExOP+z043s8YkGRPkJc0rFFEREREKs1/Z6/n6e/XckW3Jvzj3LZul1PskS9Xsmr7/nI95lkxtXnoko4nXB8REcGSJUuYM2cOs2bN4uqrr+bxxx8v7q05LCQkhPPPPx+Azp07ExoaSnBwMJ07dyY1NbVMNb344ot89tlnAGzdupV169YRGRl51DY//vgjS5YsoWfPngAcPHiQ6OhoFi5cyKBBg4iKigLg6quvZu3atac85/fff8/3339Pt27dAMjJyWHdunU0a9aMFi1a0LlzZwA6duzIkCFDMMb84b1ddtll1KhRgxo1apCYmMiiRYv49ddfT3jc5s2b06dPn+L9p06dyhtvvEFhYSHp6emsWrWKLl26lOl7N2zYMAIDA8nJyWHevHkMGzaseN2hQ4fKdKwTUTgTERERkUrx+s8bePLbNVwWH8NTw7oSGKCZEgMDAxk0aBCDBg2ic+fOvPPOO38IZ8HBwcUz/wUEBBQPgwwICKCwsBCAoKAgPB5P8T7Hm8J99uzZ/PDDD8yfP5+aNWsyaNCg425nrWXMmDE89thjRy3//PPPT2sGQmst999/PzfddNNRy1NTU4vfy8neG/xx5kNjzEmPGx4eXvx606ZNPP300yxevJh69epx3XXXnXCK+5LnOXabw8f0eDzUrVuX5OTkU731MlM4ExEREZEKN/GXjTz2zWou6RrDMz4YzE7Ww1VR1qxZQ0BAAG3atAEgOTmZ5s2bn9ax4uLi+O9//4vH42Hbtm3F12uVlJWVRb169ahZsyarV69mwYIFxeuCg4MpKCggODiYIUOGcNlll/GPf/yD6Oho9uzZQ3Z2Nr1792bChAns3r2b2rVrM23aNLp27XrK2oYOHcqDDz7IqFGjiIiIYNu2bQQHB5fp/X3xxRfcf//95ObmMnv2bB5//HFq1KhRquPu37+f8PBw6tSpQ0ZGBt988w2DBg0CoFatWmRnZxdPWtKwYUNSUlJo164dn332GbVq1frD8WrXrk2LFi2YNm0aw4YNw1rL8uXLS/W9OBWFMxERERGpUJPmbOTRr1O4qHNjnhvelaBAzUkHzjC82267jX379hEUFETr1q2LJ+koq/79+xcPEezUqRPdu3f/wzbnn38+r732Gl26dKFdu3ZHDfu78cYb6dKlC927d+eDDz7g3//+N+eddx4ej4fg4GBeeeUV+vTpw8MPP0zfvn1p3Lgx3bt3L54o5GTOO+88UlJS6Nu3L+AM53z//fcJDAws9fvr1asXF110EVu2bOHBBx8kJiaGmJiYUh23a9eudOvWjY4dO9KyZUv69+9/1Pu+4IILaNy4MbNmzeLxxx/n4osvJjY2lk6dOpGTk3Pcej744ANuueUW/v3vf1NQUMCIESPKJZwZ55q0ypGQkGAPzzojIiIiIv5v8txNPPLlKi7o1IgXR3Yj2IeCWUpKCh06dHC7DDmFhx9+mIiICO666y63Symz4/2MGWOWWGsTjre97/x2iIiIiIhfeXd+Ko98uYqhHRv6XDAT8UUa1igiIiIi5e69BZv51xcrOfeshrw0sruCmZy2hx9+2O0SKo1+S0RERESkXH24cAsPfv4753SI5pVruhMSpI+cIqWh3xQRERERKTcfLdrCA5+tYHD7aF4ZpWAmUhb6bRERERGRcjE1aSv3f7aCgW2j+O+o7oQGlX42PhFROBMRERGRcjB9SRr3frKcs1s34PXRPQgLVjATKSuFMxERERE5I58uTePu6cvo36oBE69NUDArg8DAQOLj4+nUqRPDhg3jwIEDp32s6667junTpwMwbtw4Vq1adcJtZ8+ezbx584pfv/baa7z77runfe7DUlNT6dSp01HLHn74YZ5++ukyHae86qlqNFujiIiIiJy2L5K3cde0ZfRtGalgdhpq1KhBcnIyAKNGjeK1117jjjvuKF5fVFRUpps1HzZp0qSTrp89ezYRERH069cPgJtvvrnM56gohYWFPlVPZVLPmYiIiIiclhnLtvOPj5Pp1aI+b47pSY0QPw5mTz4Js2YdvWzWLGd5ORkwYADr169n9uzZJCYmcs0119C5c2eKioq4++676dmzJ126dOH1118HwFrLrbfeyllnncVFF13Ezp07i481aNAgkpKSAPj222/p3r07Xbt2ZciQIaSmpvLaa6/x3HPPER8fz5w5c47q3UpOTqZPnz506dKFP//5z+zdu7f4mPfeey+9evWibdu2zJkzp8zv8WTHfuCBBxg4cCAvvPBCcT3bt28nPj6++BEYGMjmzZvZvHkzQ4YMoUuXLgwZMoQtW7YATu/h7bffTr9+/WjZsmVxT2JVoXAmIiIiImX21XInmCXE1eet6/w8mAH07AnDhx8JaLNmOa979iyXwxcWFvLNN9/QuXNnABYtWsSjjz7KqlWrePPNN6lTpw6LFy9m8eLFTJw4kU2bNvHZZ5+xZs0aVqxYwcSJE48apnhYZmYm48eP55NPPmHZsmVMmzaNuLg4br75Zv7xj3+QnJzMgAEDjtrn2muv5YknnmD58uV07tyZRx555Kg6Fy1axPPPP3/U8pI2bNhwVKB67bXXSnXsffv28fPPP3PnnXcWL4uJiSE5OZnk5GTGjx/PlVdeSfPmzbn11lu59tprWb58OaNGjeL2228v3ic9PZ1ff/2Vr776ivvuu6+MLeEuDWsUERERkTL5ekU6Ez5Kpnuzuky+ric1Q/zgI+Xf/w7e4YUnFBMDQ4dC48aQng4dOsAjjziP44mPh+efP+khDx48SHx8POD0nN1www3MmzePXr160aJFCwC+//57li9fXtwLlJWVxbp16/jll18YOXIkgYGBxMTEMHjw4D8cf8GCBfzpT38qPlb9+vVPWk9WVhb79u1j4MCBAIwZM4Zhw4YVr7/iiisA6NGjB6mpqcc9RqtWrYqHasKRm0if6thXX331CeuaO3cukyZNKu6tmz9/Pp9++ikAo0eP5p577ine9vLLLycgIICzzjqLjIyMk75fX+MHv0kiIiIiUlm+/X0Ht0/5jfjYukwe24vw0Gr0cbJePSeYbdkCzZo5r89QyWvOSgoPDy9+bq3lpZdeYujQoUdt8/XXX2OMOenxrbWn3KYsQkNDAWcik8LCwnI7Lhz9nktKT0/nhhtuYMaMGURERBx3m5Lv8XCN4Lz/qqQa/TaJiIiIyJn4fuUObv1wKV2a1uHtsT2J8KdgdooeLuDIUMYHH4RXX4WHHoLExAovbejQobz66qsMHjyY4OBg1q5dS5MmTfjTn/7E66+/zrXXXsvOnTuZNWsW11xzzVH79u3bl7/97W9s2rSJFi1asGfPHurXr0+tWrXYv3//H85Vp04d6tWrx5w5cxgwYADvvfdecU/XmTqdYxcUFDB8+HCeeOIJ2rZtW7y8X79+fPTRR4wePZoPPviAs88+u1xqdJsf/UaJiIiISEX5YVUGf/twKR2b1OHt63tRKyzY7ZIq1+FgNnWqE8gSE49+XYHGjRtHamoq3bt3x1pLVFQUn3/+OX/+85/56aef6Ny5M23btj1u0ImKiuKNN97giiuuwOPxEB0dzcyZM7nkkku46qqr+OKLL3jppZeO2uedd97h5ptv5sCBA7Rs2ZLJkyeX23sp67HnzZvH4sWLeeihh3jooYcAp8fwxRdf5Prrr+epp54iKiqqXGt0kzlVV58xJhZ4F2gEeIA3rLUvGGPigdeAMKAQ+Ku1dtHJjpWQkGAPzxojIiIiIlXDT6szuOm9JXRoXJv3buhNnRr+EcxSUlLo0KFD6TZ+8kln8o+SQWzWLFi8GEpc7yRS0vF+xowxS6y1CcfbvjQ9Z4XAndbapcaYWsASY8xM4EngEWvtN8aYC72vB51R9SIiIiLiU2at2cnN7y2lfaPavHe9/wSzMjteADvcgyZSTk4Zzqy16UC693m2MSYFaAJYoLZ3szrA9ooqUkREREQq389rM7npvSW0aRjBezf0ok7NahrMRCpJma45M8bEAd2AhcDfge+MMU/j3C+t3wn2uRG4EaBZs2ZnUKqIiIiIVJY56zIZ/24SraIieP+G3tStGeJ2SSJ+r9Q3oTbGRACfAH+31u4HbgH+Ya2NBf4BvHm8/ay1b1hrE6y1CVFRUeVRs4iIiIhUoLnrdzHunSRaNgjng3G9qRfuv8Gsqk21LlXH6fxslSqcGWOCcYLZB9baT72LxwCHn08DepX57CIiIiLiU+Zt2MUN7ywmLtIJZvX9OJiFhYWxe/duBTQpd9Zadu/eTVhYWJn2O+WwRuPc0e1NIMVa+2yJVduBgcBsYDCwrkxnFhERERGfsmDjbm54O4nYejX5YHxvIiNCT71TFda0aVPS0tLIzMx0uxTxQ2FhYTRt2rRM+5TmmrP+wGhghTEm2bvsAWA88IIxJgjIw3tdmYiIiIhUPYs27WHs5MU0qVeDD8f3oYGfBzOA4OBgWrRo4XYZIsVKM1vjr4A5weoe5VuOiIiIiFS2pNQ9XDd5EY3rhvHh+N5E1fL/YCbii0o9IYiIiIiI+J8lm/cy5q1FNKodxkfj+xBdq2zXyIhI+VE4ExEREammlm5xgllUrVA+HN+H6NoKZiJuUjgTERERqYaSt+5jzJuLiIwIYcqNfWhUR8FMxG0KZyIiIiLVzPK0fYx+cyF1w4OZMr4PjevUcLskEUHhTERERKRa+X1bFn+ZtJA6NZxgFlNXwUzEVyiciYiIiFQTv2/LYtSkhdQKc4JZ03o13S5JREpQOBMRERGpBlZt389f3lxIeEggH93Yh9j6CmYivkbhTERERMTPrd6xn1GTFlAjOJApCmYiPkvhTERERMSPrc3IZtTEhYQEBTBlfB+aR4a7XZKInIDCmYiIiIifWpeRzTUTFxAYYJgyvg9xDRTMRHyZwpmIiIiIH1q/M4eRExdijGHKjX1oGRXhdkkicgoKZyIiIiJ+ZkNmDiMnLgBgyvjetFIwE6kSFM5ERERE/MimXbmMfGMBHo9lyvjetI6u5XZJIlJKQW4XICIiIiLlI9UbzAo9linj+9CmoYKZSFWinjMRERERP7B5dy4jJy7gUGERH47vTbtGCmYiVY16zkRERESquK17DjDyjQUcLCjiw3F9aN+ottslichpUM+ZiIiISBW2dc8BRryxgNz8It6/oTdnxSiYiVRVCmciIiIiVdS2fQcZOXEB2XkFvH9Dbzo1qeN2SSJyBjSsUURERKQK2r7vICPemE/WwQI+GNebzk0VzESqOvWciYiIiFQx6VlOj9m+3ALeu6E3XZrWdbskESkH6jkTERERqUJ2ZOVxzcSF7M7J590behEfW9ftkkSknKjnTERERKSK2Lk/j2smLmDn/jzeub4n3ZvVc7skESlH6jkTERERqQKstdz0/hJ27M/jnet70aN5fbdLEpFypnAmIiIiUgV88/sOftuyjyev7ELPOAUzEX+kYY0iIiIiPq6gyMNT362hbcMIruzR1O1yRKSCKJyJiIiI+LiPFm1h065c7j2/PYEBxu1yRKSCKJyJiIiI+LCcQ4W88OM6erWoz+D20W6XIyIVSOFMRERExIdNmrORXTn53HdBe4xRr5mIP1M4ExEREfFRmdmHeOOXjVzQqZGmzRepBhTORERERHzUiz+u41Chh7uHtnO7FBGpBApnIiIiIj5o065cpizawshesbSMinC7HBGpBApnIiIiIj7o6e/WEBIUwO1D2rhdiohUEoUzERERER+TvHUf/1uRzrgBLYmuFeZ2OSJSSRTORERERHyItZbHvk6hQUQIN/6ppdvliEglUjgTERER8SGz12SycNMebh/ShojQILfLEZFKpHAmIiIi4iOKPJbHv1lN88iajOjZzO1yRKSSKZyJiIiI+IhPl6axJiObu4e2IyRIH9NEqhv91ouIiIj4gLyCIp6duZauTetwUefGbpcjIi5QOBMRERHxAe/MSyU9K497L2iPMcbtckTEBQpnIiIiIi7bdyCfV2atZ1C7KPq1auB2OSLiklOGM2NMrDFmljEmxRiz0hgzocS624wxa7zLn6zYUkVERET8039nbyD7UCH3nt/e7VJExEWlmZ+1ELjTWrvUGFMLWGKMmQk0BC4DulhrDxljoiuyUBEREV90ML+Ijbty2JCZy4adOaTuzqVdo1qM7NmMeuEhbpcnVcC2fQd5e14qV3RrSofGtd0uR0RcdMpwZq1NB9K9z7ONMSlAE2A88Li19pB33c6KLFRERMQt1loycw6xYWcuGzJzvA8njG3bd7B4uwADDWuH8UXydl74YR1XdG/Cdf1a0K5RLRerF1/37PdrAbjjvLYuVyIibivTnQ2NMXFAN2Ah8BQwwBjzKJAH3GWtXVzuFYqIiFSSgiIPm3cfOBLASoSx7LzC4u1qhgTSKiqCnnH1GBEVS6voCFpFRdA8siZhwYGs3rGft+em8unSbUxZtJX+rSO5vn8LEttFExCgiR7kiJT0/Xz6WxrjB7SkSd0abpcjIi4z1trSbWhMBPAz8Ki19lNjzO/AT8AEoCfwMdDSHnNAY8yNwI0AzZo167F58+ZyLF9ERKTssg4WsDEzh/U7vT1g3gC2ZfcBCj1H/htrWDuUVlER3kc4raNr0So6nEa1w0o1m96e3HymLNrCe/M3s2N/HnGRNRnTL45hCbFEhJbp76Pip66bvIilm/fyyz2J1K2pYbAi1YExZom1NuG460oTzowxwcBXwHfW2me9y77FGdY42/t6A9DHWpt5ouMkJCTYpKSksr8DERGRMvJ4LNuzDhYPPyw5HDEz+1DxdsGBhrjIcCeARYcXh7GWUeHUCgsul1oKijx88/sOJs/dxG9b9hERGsSwhKZc1y+O5pHh5XIOqXrmbdjFNRMXcv8F7blpYCu3yxGRSnKycHbKP9sZ50+DbwIph4OZ1+fAYGC2MaYtEALsOvNyRURESi+voIiNmX+8FmzjrhzyCjzF29WpEUzr6AgS20Ud6Q2LjiC2Xg2CAiv2zjLBgQFc2jWGS7vGkLx1H5PnbuK9+Zt5e14qQ9o35Pr+cfRtFal7W1Uj1lqe+GY1jeuEMaZfnNvliIiPKM2Yiv7AaGCFMSbZu+wB4C3gLe/wxnxgzLFDGkVERMqDtZbdufneHjAniK339oZt23eQw//7GANN69WgVVQE/VpFFl8L1ioqnPrhIT4RfuJj6/LCiG48cGEH3pu/mQ8XbeGHlAzaN6rFdf3iuLxbE8KCA90uUyrY/1aksywti6eu6qL2FpFipb7mrDxoWKOIiJxMYZGHLXsOHLkObOeR3rCsgwXF29UIDqRlVHiJHjDneYsG4VXug25eQREzkrfz1txNrN6RTb2awVzTuxmj+8TRqE6Y2+VJBSgo8nDOsz8TFhTI1xMGEKhJYkSqlTMa1igiIlKRCoo8vDJrPV8tT2fz7lwKio780TC6ljMhxyVdGx81FLFx7TC/mfUwLDiQ4T1jGZbQlAUb9zB57ib+O3sDr/+8kQs7N2Zs/zi6NavndplSjqYs2sLm3Qd467oEBTMROYrCmYiIuGbTrlz+/tFvLEvLYkCbBpx3VsPiANYyKpza5TQhR1VgjKFvq0j6topky+4DvDM/lamLtzJj2XbiY+sytn8cF3ZuTHAFXx8nFSvnUCEv/LCO3i3qk9gu2u1yRMTHaFijiIhUOmstU5O28siXqwgODODxKzpzQefGbpflc3IOFTI9aStvz0sldfcBGtYOZXSf5lzTuzn1wzXtelX07My1vPjjOj7/W3/iY+u6XY6IuOCMp9IvLwpnIiKyNzef+z5dzncrM+jXKpJnhnelcR3dfPdkPB7L7LU7mTw3lTnrdhEaFMDl8U0Ye3Yc7RvVdrs8KaWd2XkMemo2ie2ieWVUd7fLERGX6JozERHxCb+u28Wd05LZk5vPPy/swA1nt/Cba8cqUkCAYXD7hgxu35B1GdlMnpfKp0vT+DhpK/1aRTK2fwsGt4/W9Us+7sUf15Ff6OGuoe3cLkVEfJR6zkREpMIdKizi6e/WMHHOJlpHR/DCiHg6xtRxu6wqbd+BfKYs2sq781NJz8qjWf2ajOkXx/CEpuV282wpPxszczj3uV+4plcz/t/lndwuR0RcpGGNIiLimrUZ2Uz4KJmU9P2M7tOcBy7sQI2QqjXdvS8rLPLw3coM3pq7iSWb9xIeEsiwhFjG9IujRYNwt8sTr1veX8LPazP5+e5EomqFul2OiLhIwxpFRKTSWWt5d/5m/vN1ChGhQbw5JoEhHRq6XZbfCQoM4KIujbmoS2OWp+1j8txUPli4mXfmpzK4XTRj+7egf+tIn7gBd3W1dMtevvl9BxOGtFEwE5GTUs+ZiIiUu8zsQ9wzfRmz1mSS2C6KJ6/qqg+llWjn/jzeX7iFDxZsZnduPm0bRjC2fwsuj2+iXstKZq3l6jcWsDEzh9l3JxIRqr+Li1R3GtYoIiKV5qfVGdw9bTk5hwr550UdGN2nuXptXJJXUMSXy7YzeW4qq9L3U7dmMCN7NePavs01Q2Yl+TElgxveSeL/XdaR0X3j3C5HRHyAwpmIiFS4g/lF/OfrFN5bsJn2jWrx4shutG1Yy+2yBKf3ZtGmPbw1dxMzV2VgjOH8To24vn8Lujerq/BcQYo8lgte+IX8Qg8z7xioG4iLCKBrzkREpIKt3J7FhI+SWb8zh/EDWnDX0HaEBmn4nK8wxtC7ZSS9W0aydc8B3p2fykeLt/K/5el0bVqHsf1bcGHnxoQEKTyUp0+WprE2I4dXrumuYCYipaKeMxEROW0ej2XSrxt56rs11A8P4Zlh8ZzdpoHbZUkp5B4q5NOlaUyem8rGXblE1wpldJ/mXNO7GZERuj7wTOUVFJH49Gyia4fx+V/7qXdSRIqp50xERMrdjqw87pyWzNz1uxnasSGPX9GFeuEhbpclpRQeGsTovnGM6t2cn9dlMnluKs/MXMtLs9ZzWdcYxvZvwVkxtd0us8qaPNe5/9xzV8crmIlIqSmciYhImX2zIp37Pl1BfqGHJ67szPCEWH0AraICAgyJ7aJJbBfN+p3ZvD0vlU+WbGPakjT6tKzPU1d1JbZ+TbfLrFL2Hcjnv7PXM7h9NH1aRrpdjohUIRoALSIipZZ7qJB7pi/jlg+WEhdZk68nDODqns0UzPxE6+ha/Pvyziy4fwj3X9CelPRsRk5cwLZ9B90urUp5ZdZ6cg4Vcs/57dwuRUSqGIUzEREpleSt+7joxTlMW5LGrYmtmX5LP1o0CHe7LKkAdWoGc9PAVrx/Q2+yDhRwzcQFZOzPc7usKiFt7wHembeZK7s3pX0jDQsVkbJROBMRkZMq8lhe+nEdV746j4Iiy8c39uWuoe00+1w10LlpHd65oRe7sg9xzcQFZGYfcrskn/fszLVg4I5z27pdiohUQfqfVURETmjrngNc/fp8npm5lou7NObrCQPo1aK+22VJJererB6Tx/Zi+748/jJpIXty890uyWet2r6fz37bxth+ccTU1U2+RaTsFM5EROS4Pv9tGxe+MIc1O7J5/up4XhjRjTo1gt0uS1zQq0V93hyTQOruXP4yaSH7DiigHc8T366mdlgwfx3U2u1SRKSKUjgTEZGjZB0sYMJHv/H3j5Np16gWX08YwOXdmrhdlrisX+sGvHFtAut35nDtW4vYn1fgdkk+Zd76Xfy8NpO/JbaiTk39EUNETo/CmYiIFFu0aQ8XvjCHr5anc+e5bfnoxj6aRl2KDWwbxX9HdWfV9v1c99Yicg4Vul2ST/B4LI99s5qYOmFc2zfO7XJEpApTOBMREQqKPDz93RpGvDGfoEDD9Jv7ctuQNgRp0g85xjlnNeTla7qxLC2L699ezIF8BbT/rUhnxbYs7jivHWHBgW6XIyJVmP7XFRGp5jbtyuWqV+fx8qz1XNWjKV/fPoBuzeq5XZb4sPM7Nea5q+NJSt3D+HeTyCsocrsk1+QXenjquzW0b1SLP2v4r4icoSC3CxAREXdYa5matJVHvlxFcGAAr47qzgWdG7tdllQRl3aNoaDQw13Tl3HTe0t449oehAZVv16jKYu2sGXPASaP7UlggG7GLiJnRuFMRKQa2pubz32fLue7lRn0axXJM8O70riOpv6WsrmyR1MKijzc9+kK/vbBb/x3VHdCgqrPoJzsvAJe/HEdfVtGMqhtlNvliIgfUDgTEalmfl23izunJbMnN59/XtiBG85uQYD+4i+naUSvZuQXefjXFyuZ8NFvvDSyW7W5VnHiLxvZnZvPfRe0xxj9DonImVM4ExGpJg4VFvH0d2uYOGcTraMjeOu6nnSMqeN2WeIHru0bR36hh3//L4U7pi7juavj/X6I3879eUycs4mLujSma2xdt8sRET+hcCYiUg2szchmwkfJpKTvZ3Sf5jxwYQdqhFS/64Ok4owb0JL8Ig9PfruGkKAAnryyi1/3yL7w4zoKijzcfV47t0sRET+icCYi4sestby3YDOP/i+FiNAg3hyTwJAODd0uS/zUXwe1Jr/Qw/M/rCM4MID//LmTXw7325CZw0eLtzKqdzPiGoS7XY6I+BGFMxERP5WZfYh7pi9j1ppMEttF8eRVXYmqFep2WeLnJgxpQ36hh//O3kBIoOHhSzv6XUB76ts1hAUFcPuQNm6XIiJ+RuFMRMQP/bQ6g7unLSfnUCH/32UdGd2nud99QBbfZIzh7qHtyC/0MOnXTYQEBfDAhR385udvyea9fLtyB/84py0NIvTHDhEpXwpnIiJ+5GB+Ef/5OoX3FmymfaNaTLmxD20b1nK7LKlmjDH886IOFBR5mDjHCWh3ndeuygc0ay1PfLOaBhGhjBvQwu1yRMQPKZyJiPiJlduzmPBRMut35jB+QAvuGtquWt4UWHyDMYaHLulIfpGHV2ZtICQwkAnnVO1hgD+m7GRR6h7+3+WdCA/VRygRKX/6l0VEpIrzeCyTft3IU9+toV7NEN6/oTdnt2ngdlkiBAQYHr28M/mFlud+WEtIUAC3DGrldlmnpbDIwxPfrqZlg3BG9Ix1uxwR8VMKZyIiVdiOrDzunJbM3PW7GdqxIY9f0YV64SFulyVSLCDA8ORVXSjwhpvgQMO4AS3dLqvMPl26jXU7c3h1VHeCq8lNtkWk8imciYhUUUu37GXs5MXkF3p44srODE+IrfLX9Ih/CgwwPDu8KwVFzo2qQ4MCGN03zu2ySu1gfhHPzlxLfGxdzu/UyO1yRMSPKZyJiFRB+w7kc+sHS6lTI5h3ru9FC91rSXxcUGAAL4zoRsEHS3jwi5UEBwYwolczt8sqlcnzNrFjfx4vjIjXH0BEpEKpX15EpIqx1nL39OVk5hzi5Wu6KZhJlRESFMAro7ozsG0U93+2gk+WpLld0intzc3n1dkbGNI+mt4tI90uR0T8nMKZiEgV8868VGauyuDe89vTpWldt8sRKZPQoEBeH92Dfq0iuXv6Mr5ctt3tkk7qlVnryT1UyD3nt3e7FBGpBk4ZzowxscaYWcaYFGPMSmPMhGPW32WMscYYTQ0mIlLBft+WxX++Xs2Q9tHccLbusyRVU1hwIBOvTSCheX3+/nEy3/6+w+2SjmvrngO8O38zV3ZvSrtGul+giFS80vScFQJ3Wms7AH2AvxljzgInuAHnAlsqrkQREQHIOVTIbVN+o354CE8N66prX6RKqxkSxFtje9K1aR1um7KUH1My3C7pD56duRZj4I7z2rpdiohUE6cMZ9badGvtUu/zbCAFaOJd/RxwD2ArrEIREQHgX5//zubdubwwIp76mi5f/EBEaBBvX9+LDo1rc8v7S/llbabbJRVbuT2Lz5O3MbZ/CxrXqeF2OSJSTZTpmjNjTBzQDVhojLkU2GatXVYRhYmIyBHTl6Tx6W/bmDCkrSYlEL9SOyyYd6/vRevoCMa/m8S8DbvcLgmAJ75dQ+2w4Cp702wRqZpKHc6MMRHAJ8DfcYY6/hP4Vyn2u9EYk2SMScrM9J2/iImIVBXrd+bw4Oe/06dlfW4d3NrtckTKXd2aIbw/rjfNI2tyw9tJLE7d42o9c9fv4pe1mdya2Jo6NYJdrUVEqpdShTNjTDBOMPvAWvsp0ApoASwzxqQCTYGlxpg/3JnRWvuGtTbBWpsQFRVVfpWLiFQDeQVF3PrhUmqEBPLCiG4EBug6M/FP9cND+GBcHxrXDWPs5MX8tmWvK3V4PJbHvkmhSd0ajO7b3JUaRKT6Ks1sjQZ4E0ix1j4LYK1dYa2NttbGWWvjgDSgu7XWN6dbEhGpoh79Xwqrd2TzzLCuNKwd5nY5IhUqqlYoH47rQ2RECNe+tYgVaVmVXsNXK9L5fdt+7jyvLWHBgZV+fhGp3krTc9YfGA0MNsYkex8XVnBdIiLV3re/p/Pegs2MH9CCxPbRbpcjUika1Qnjw/F9qFMjmNFvLWTV9v2Vdu78Qg9Pf7eG9o1qcVl8k1PvICJSzkozW+Ov1lpjre1irY33Pr4+Zps4a61vXMErIuIHtu45wD3Tl9O1aR3uHqqb30r10qRuDaaM70ON4ED+8uZC1mVkV8p5P1i4mS17DnDfBe01hFhEXFGm2RpFRKTiFRR5mPDRb1gLL43sTkiQ/qmW6ie2fk0+HN+HwADDNZMWsjEzp0LPl51XwEs/radfq0gGttU18iLiDv2PLyLiY56duZalW/bxnys60yyyptvliLimRYNwPhzXG4/Hcs3EhWzenVth53rjl43syc3nvgva6wbvIuIahTMRER/yy9pMXp29gZG9Yrmka4zb5Yi4rk3DWrw/rjd5hUVcM3EhaXsPlPs5du7PY9KcTVzcpTFdmtYt9+OLiJSWwpmIiI/YmZ3HHVOTadswgn9d3NHtckR8RofGtXn/ht5k5xVwzcSFpGcdLNfjP/fDOgo9Hu4e2q5cjysiUlYKZyIiPsDjsdzx8TJyDhXy8jXdqRGiKbxFSurUpA7v3tCbPbn5jJq4kJ3788rluOt35jA1aSujejeneWR4uRxTROR0KZyJiPiAV3/ewK/rd/HwJR1p27CW2+WI+KT42Lq8PbYnO/bnMWrSQnbnHDrjYz713WpqBAdy2+DW5VChiMiZUTgTEXFZUuoenp25lku6xnB1z1i3yxHxaQlx9XlzTE+27j3AqEkL2Zubf9rHWrJ5D9+tzODGP7UkMiK0HKsUETk9CmciIi7adyCfCR8l06RuDf7z506aJU6kFPq2imTitQls3JXL6LcWknWwoMzHsNby2NeriaoVyrgBLSqgShGRslM4ExFxibWWe6YvZ2d2Hi9f041aYcFulyRSZQxoE8Xrf+nBmh3ZjHlrEdl5ZQtoP6TsJGnzXv5+ThtqhgRVUJUiImWjcCYi4pJ352/m+1UZ3Ht+e03fLXIaEttH8/I13fl9WxbXv72Y3EOFpdqvsMjDE9+upmWDcIYnaCixiPgOhTMRERes3J7Fo/9LYXD7aG44W0OqRE7X0I6NeGFEN5Zs3su4d5I4mF90yn2mL0lj/c4c7jm/HcGB+igkIr5D/yKJiFSy3EOF3Pbhb9QLD+bpYV11nZnIGbqoS2OeHR7Pgk27ufG9JPIKThzQDuYX8dwPa+nerC5DOzaqxCpFRE5N4UxEpJI9+MXvpO7O5YUR3agfHuJ2OSJ+4fJuTXjiii7MWbeLv36wlPxCz3G3e2vuJjL2H+K+CzroDyMi4nMUzkREKtEnS9L4dOk2bh/Shj4tI90uR8SvDO8Zy78v78RPq3dy25SlFBQdHdD25Obz2uwNnNMhml4t6rtUpYjIiSmciYhUkg2ZOTz4xe/0blGf2wa3cbscEb/0lz7NeeiSs/huZQb/+DiZwhIB7eWf1pObX8i957d3sUIRkRPT3LEiIpUgr6CIWz/8jdCgAF4Y0Y3AAA2nEqkoY/u3IL/Qw2PfrCYkMICnhnVl+76DvLcglWE9YmnTsJbbJYqIHJfCmYhIJfjP1ymkpO/nresSaFQnzO1yRPzeTQNbkV/o4ZmZawkODCCvsIgAY/jHuW3dLk1E5IQUzkREKti3v+/g3fmbGXd2Cwa3b+h2OSLVxm1D2pBf5OGln9YDcMugVvrjiIj4NIUzEZEKlLb3APdMX0aXpnW4R9e5iFS6O7w9Zd/+voObB7ZyuRoRkZNTOBMRqSAFRR5un/IbHgsvjexGSJDmYBKpbMYY7jyvHXee187tUkRETknhTESkgjw3cy1Lt+zjpZHdaB4Z7nY5IiIi4uP0Z1wRkQowZ10mr/68gRE9Y7mka4zb5YiIiEgVoHAmIlLOdmbn8Y+Pk2kdFcFDl3R0uxwRERGpIjSsUUSkHHk8ljunLiM7r5APxvWhRkig2yWJiIhIFaFwJiJSjl77ZQNz1u3isSs6066RbnQrIiIipadhjSIi5WTJ5j088/1aLurSmBE9Y90uR0RERKoYhTMRkXKQdaCA26ck06RuDR67ojPGGLdLEhERkSpGwxpFRM6QtZZ7PllGxv48PrmlH7XDgt0uSURERKog9ZyJiJyh9xZs5ruVGdx7fnu6xtZ1uxwRERGpohTORETOwMrtWfz7qxQS20Vxw9kt3C5HREREqjCFMxGR05R7qJDbPvyNeuHBPD2sKwEBus5MRERETp+uORMROU3/+mIlm3bn8uG4PkRGhLpdjoiIiFRx6jkTETkNny5N45Oladw2uA19W0W6XY6IiIj4AYUzEZEy2piZw/99/ju9WtTn9sGt3S5HRERE/ITCmYhIGeQVFHHrh78RGhTACyPiCQrUP6MiIiJSPnTNmYhIGTz2dQqr0vfz5pgEGtep4XY5IiIi4kcUzkTkuA4VFpF1oIB9BwvYm5vPvoMFtIoKp3V0LbdLc813K3fwzvzN3HB2C4Z0aOh2OSIiIuJnqn04+2jRFgKMYWinRtSpEex2OSLlrrDIw76DBew7UMC+A/nsO1DA3gP5ZB10vjrLC9h3MJ+9uQXFyw/kFx33eN2a1WV4QiwXd2lMrbDq8zuzbd9B7pm+nM5N6nDP+e3cLkdERET8kLHWVtrJEhISbFJSUqWdrzSufn0+CzftISQwgMT2UVwW34TB7aMJCw50uzSRoxR5LPsPB6qDBWQdKBmunGV7SwSwfQfz2ZdbQPahwhMeMzDAULdGMHVrBlO3Zoj3eQh1awZTr2YwdWqGUK9mMHVrhFC7RhCLNu1hatJW1mbkEBYcwIWdGzM8IZbeLepjjP/e46uwyMPVbyxgzY5svrrtbOIahLtdkoiIiFRRxpgl1tqE466r7uHMWsuytCy+SN7Gl8vS2ZVziIjQIM7r2JDL4pvQv1WkLviXcuXxWLIPFf6xF8s7dPBw2NrrHVJ4eLv9eQWc6NfVGKhTI5h6NUO8X4+ErLo1QqgXHly83gleIdSpGUyt0KAyhyprLcvTspiatJUZydvJPlRI88iaDE+I5YruTfzyOqynvlvNK7M28MKIeC6Lb+J2OSIiIlKFnVE4M8bEAu8CjQAP8Ia19gVjzFPAJUA+sAEYa63dd7Jj+WI4K6nIY1mwcTdfJG/jm993kJ1XSIOIEC7q3JhL45vQvVldv+4dkPJjreX3bfuZmZLB79uySvRmOWHLc5Jfu9phQUeClbc366herKOWO9vVDgsmIKDyfzYP5hfx7cp0pi5OY/7G3QQY+FPbKIYnxDKkQzShQVW/B/rXdbsY/dZChveI5YmrurhdjoiIiFRxZxrOGgONrbVLjTG1gCXA5UBT4CdrbaEx5gkAa+29JzuWr4ezkvIKipi9JpMZy7bxY8pODhV6aFqvBpd2jeGy+Ca0a1R9J0WQ48srKGL+xt38sCqDH1N2smN/HgEG2jasRYOIUG+oKtm7VSKAeZfXDguqsj21W3YfYPqSrUxbkkZ6Vh71agZzebcmDE+IpUPj2m6Xd1oysw9xwQtzqFszmC9vPZsaIVU/bIqIiIi7ynVYozHmC+Bla+3MEsv+DFxlrR11sn2rUjgrKTuvgO9XZvDFsu3MXb+LIo+lfaNaXNI1hku7xhBbv6bbJYpLduccYtaaTH5YlcEv6zI5kF9EzZBABraN4pwODUlsH0398BC3y6xURR7L3PW7+DhpKzNXZpBf5KFzkzoMT2jKpfFNqszEOx6PZczkRSzatIcZt56tP8iIiIhIuSi3cGaMiQN+ATpZa/eXWP4l8LG19v2T7V9Vw1lJmdmH+HpFOjOWbWfJ5r0A9Ghej8viY7iwc2MaRIS6XKFUtA2ZOfywKoMfUjJYsnkvHguNaodxzlnRnNOhIX1aRmpCGa+9ufl8kbyNj5PSSEnfT2hQAOd3asTwhFj6tox0ZShmab06ewNPfLua//y5M9f0buZ2OSIiIuInyiWcGWMigJ+BR621n5ZY/k8gAbjCHudgxpgbgRsBmjVr1mPz5s1lfwc+auueA8xYtp0ZydtZk5FNYIDh7NYNuLRrDOd1bFitphn3Z4VFHpZu2ccPKRn8sCqDjbtyAegYU5tzOjTk3LMa0jGmtq5HPIXft2UxLWkrnydvJ+tgAU3q1mBYQlOu6tGUpvV8q/d5yea9DH99Pud3bMTL13RT24qIiEi5OeNwZowJBr4CvrPWPlti+RjgZmCItfbAqY7jDz1nJ7J6x35mJG/ni+TtbNt3kNCgAM7p0JBL42MY1C7KLyZGqE5yDhUyZ20mM1MymLV6J3sPFBAcaOjbqgHndohmSIeGxNT1v1kJK0NeQREzV2UwNWkrv67fBUD/Vg0YltCUoR0bud7rmHWggAtfnIMx8PWEAdTWH1lERESkHJ3phCAGeAfYY639e4nl5wPPAgOttZmlKcSfw9lh1lqWbtnLF8nb+d/ydHbn5lMrLIgLOjXisvgm9GkZSaAPD+WqztKzDvJDyk5+WJXB/A27yS/yULdmMIPbRXPOWQ0Z0KaBekPLWdreA3yyZBvTlmwlbe9BaocFcVm8M4lIpyaV3xtpreWW95fyQ0oG02/pR3xs3Uo9v4iIiPi/Mw1nZwNzgBU4U+kDPAC8CIQCu73LFlhrbz7ZsapDOCupoMjD3PW7mLFsO9/9voPc/CKiaoVySZcYLouPoUvTOhou5SJrLSu373eGK6Zk8Ps25zLKuMianHtWQ87p0JAezetV2dkTqxKP9zYWU5O28s3vOzhU6KF9o1oMT4jlz92aUK+SJlV5b8FmHvz8dx64sD03/qlVpZxTREREqhfdhNoH5BUU8WPKTr5I3sbsNZnkF3mIi6zJpV1juDS+Ca2jI9wusVo4VFjE/A27+SHFme4+PSsPY6BHs3qc4w1kraLCFZpdlHWwgC+XbWda0laWpWUREhjAuWc1ZFhCUwa0iaqwnudV2/dz+X/n0q9VJG+N6enTk5WIiIhI1aVw5mOyDhbw3e87+GLZNuZt2I21zuQSl8XHcHGXGF3LVM725uYza81OfkjJ4Oc1meTmF1EjOJA/tW3AOR0aMrh9NJGaZdMnrd6xn6mL0/jstzT2HiigUe0wrurRlGEJTWkeGV5u58k9VMglL/9KTl4h30wYoJ8HERERqTAKZz4sY38eXy1PZ0byNpalZQHQq0V9Z2r+To0rbTiXv9mYmeOdXXEnSZv34LHQsHYoQzo05NwODenbStPdVyX5hR5+THEmEfl5bSYeC71b1Gd4QiwXdG5EzZCgMzr+XdOW8cnSND4Y15t+rRqUU9UiIiIif6RwVkWk7splxrLtfJ68jY2ZuQQFGAa2jeLS+BjOPavhGX8A9WdFHmcilh9WZTAzJYONmc509x0a1+bcDs6EHp1i6miomh/YkZXHJ0vTmJa0ldTdB4gIDeKSrjEMT2hKfGzdMg9J/ey3NP7x8TJuH9yaO85rV0FVi4iIiDgUzqqYwxNVfLlsOzOWbSc9K48awYGce1ZDLouPYUCbKEKCNElF7qFC5qzLZOaqncxas5M9ufkEBxr6tIzknA4NGdIh2ufunyXlx1rLok17mJqUxtcr0jlYUESb6AiGJ8RyebcmRNU69dDEjZk5XPzSr3SKqcOH43tr8hcRERGpcApnVZjHY1mcuocvlm3n6xXp7DtQQN2awVzYuTGXdo2hV1z9atUbtCMrr3h2xXkbdpNf6KFOjWAS20VxzlkN+VPbKN2XqhrKzivgf8vTmZq0laVb9hEUYBjcPprhCbEMahd13NB1qLCIK/47j237DvLNhAE0rqNrPUVERKTiKZz5ifxCD3PWZTJj2Xa+X5nBwYIiGtcJ45KuMVzaNYaOMZV/X6iKZq1lVfp+fljlTOixYptzXV7zyJqc08GZXbFnnKa7lyPW78xmWlIanyxNY1dOPlG1Qrmiu3PvtFZRR2ZFfXjGSt6el8qkaxM456yGLlYsIiIi1YnCmR86kF/IzFUZzEjezs9rMyn0WFpGhdOsfk0CjPE+IDDA+zzA+9oYjDEEBnCC5c7rAO9+geaY1wEG493+qP0DvPv/YXtK1OO8Lt6uxLqjjhtgyM4rYPaaTH5YlcF273T33WLrcs5ZzoQeraMj/C6ISvkqKPIwa/VOpialMWvNToo8loTm9RieEEtocAATPkrm+v4t+NclZ7ldqoiIiFQjCmd+bm9uPt/8voNvfk8n62ABHmsp8ji9TkUei8daPBbvcou1lFh+6nVFnsr7GSmpRnAgA9o4090nto8u1TVEIsezMzuPz5ZuY2rSVjZ4J4vp1KQ2n9zSj9AgzdopIiLiN558Enr2hMTEI8tmzYLFi+Gee9yrqwSFMzljR4IexcGt+LU3zBXZY8KdhxLLncB4VAj0HqfkOo/3mEGBhvjYupruXsqVtZalW/Yxc1UGo3o3I7a+JowRERHxK7NmwfDhMGkSdOsGGzY4r6dOPTqwuehk4Uxzs0upGGMICtQwQqnajDH0aF6PHs3ruV2KiIiIlJf8fFi2DBYudB6hoXD55dCxI2Rk+FQwOxWFMxERERERqRqshU2bjgSxhQvht9/g0CFnfePG0Ls3tGsHP/0EDz5YZYIZKJyJiIiIiIiv2rsXFi06EsQWLYJdu5x1NWpAQgLcdpsTyHr3hqZNYfZsZyjjgw/Cq6864ayKBDSFMxERERERcV9+PixffnSv2Nq1zjpjoEMHuOSSI0GsUycIOibOHL7m7PBQxsREn7vm7GQUzkREREREpHJZC6mpRwexpUuPDE9s2NAJYGPGOF8TEqBOnVMfd/Hio4NYYqLzevHiKhHONFujiIiIiIhUrH37nIBUcnjizp3OurAw6NHjSI9Y797QrJnTW+aHNFujiIiIiIhUjoICWLHi6F6x1auPrG/fHi644EgQ69wZgoPdq9eHKJyJiIiIiMjpsRa2bPnj8MSDB531UVFOABs1yvnasyfUretqyb5M4UxEREREREpn//6jhycuXOjcSwyc+4t17w433XSkVywuzm+HJ1YEhTMRERERkersySedHq2SE2bMmuUEr/PPPzqIpaQ4vWXg3Ets6FDo1csJYl26QEiIO+/BTyiciYiIiIhUZz17OtPNT5rkXC82bRp8+ikEBsL99zvbNGjgBLARI44MT6xXz926/ZDCmYiIiIhIdZWTA9u3Q6tWcPnlR5Z36ADnnXdkeGKLFhqeWAkUzkREREREqpO8PPjmG/joI/jyS2fyjthY6NsX5s+HBx6ARx91u8pqSeFMRERERMTfFRbCTz/BlCnOkMX9+52ZFK+/3hmqeOiQ8/XBB+HVV+Gcc6rETZv9jcKZiIiIiIg/8nhg3jynh2zaNOemz7VrwxVXwMiRMHgwBAU5k3+MGAFTpzqBLDHRuQbt8GupNApnIiIiIiL+wlpITnZ6yD7+2LkHWVgYXHKJE8guuMB5XdLixUcHscRE5/XixQpnlczYw1NhVoKEhASblJRUaecTEREREakW1q51AtmUKbBmjdMjNnSoE8guvRRq1XK7QvEyxiyx1iYcb516zkREREREqqKtW50hi1OmwG+/ObMpDhwId9wBV14JkZFuVyhlpHAmIiIiIlJVZGY6149NmQK//uos69ULnn3WuU6sSRN365MzonAmIiIiIuLLsrLgs8+cXrIffoCiIujYEf79b2cij1at3K5QyonCmYiIiIiIrzl4EL76yukh+/prZ6r7Fi3gnnuc68g6d3a7QqkACmciIiIiIr6goAC+/94JZF98ATk50KgR3Hyz00PWu7dzXZn4LYUzERERERG3FBXBnDlOIJs+HfbsgXr1nDA2cqQzwUdgoNtVSiVROBMRERERqUzWOvcQ++gj515k27dDzZpw2WVOIBs6FEJC3K5SXKBwJiIiIiJSGVaudHrIPvoINmxwAtgFFziB7OKLITzc7QrFZQpnIiIiIiIVZdOmI/ciW7ECAgJg8GB44AG44gqoW9ftCsWHKJyJiIiIiJTVk09Cz56QmHhk2axZznDF0aNh6lQnkC1c6Kzr1w9eegmuusqZ5EPkOBTORERERETKqmdP56bPU6c6AW3GDBg1Ctq0gfvvB48HunaFxx+Hq6+GuDi3K5YqQOFMRERERKSsEhOdYHbllRAVBWvXOsuzs+Gf/3SuI+vQwd0apcpROBMRERERKav8fPj5Z9i3D/buhT594OWXoXt33YtMTluA2wWIiIiIiFQpSUmQkACPPOLMuHjnnbB+Pezfr2AmZ+SU4cwYE2uMmWWMSTHGrDTGTPAur2+MmWmMWef9Wq/iyxURERERcUleHtx3H/Tu7dybrHZt+OYbePppZ4jj8OHOpCAip6k0PWeFwJ3W2g5AH+BvxpizgPuAH621bYAfva9FRERERPzPvHkQHw9PPAFjx8Jtt8Hnnx+ZrfHwNWiLF7tZpVRxp7zmzFqbDqR7n2cbY1KAJsBlwCDvZu8As4F7K6RKERERERE35ObC//0fvPACxMbC99/Duecef9vExKOn1hcpozJNCGKMiQO6AQuBht7ghrU23RgTXf7liYiIiIi4ZNYsGDcONm6Ev/7VmRa/Vi23qxI/VuoJQYwxEcAnwN+ttfvLsN+NxpgkY0xSZmbm6dQoIiIiIlJ5srPhlltg8GBngo/Zs+GVVxTMpMKVKpwZY4JxgtkH1tpPvYszjDGNvesbAzuPt6+19g1rbYK1NiEqKqo8ahYRERERqRjffQedOsHrr8Mdd8Dy5TBwoNtVSTVRmtkaDfAmkGKtfbbEqhnAGO/zMcAX5V+eiIiIiEgl2LsXrr8ezj8fataEuXPhmWec5yKVpDQ9Z/2B0cBgY0yy93Eh8DhwrjFmHXCu97WIiIiISNUyYwZ07AjvvgsPPAC//QZ9+7pdlVRDpZmt8VfgRHfTG1K+5YiIiIiIVJJdu2DCBPjwQ+jSBb78Enr0cLsqqcZKPSGIiIiIiIhfsBamTYOzznK+PvKIc38yBTNxWZmm0hcRERERqdJ27IC//Q0+/RQSEuDHH6FzZ7erEgHUcyYiIiIi1YG18P77zrVl//ufc8+y+fMVzMSnqOdMRERERPxbWhrcfLMTyvr2hbfegvbt3a5K5A/UcyYiIiIi/slamDTJ6S376Sd4/nmYM0fBTHyWes5ERERExP+kpsK4cc41ZYMGOSGtVSu3qxI5KfWciYiIiIj/8Hjg5ZehUydYuBBefdUJaApmUgWo50xERERE/MO6dXDDDc7QxaFD4Y03oFkzt6sSKTX1nImIiIhI1VZUBM8849xIevlymDwZvvlGwUyqHPWciYiIiEjVtWoVXH+9M4TxkkvgtdcgJsbtqkROi3rORERERKTqKSiARx+Fbt1g/Xr48EP44gsFM6nS1HMmIiIiIlVLcrLTW/bbbzBsmDMBSHS021WJnDH1nImIiIhI1XDoEPzrX9CzJ2zfDtOnw9SpCmbiN9RzJiIiIiK+b9Eip7ds5UoYPRqeew4iI92uSqRcqedMRERERHzXwYNwzz3Qty/s2wdffQXvvqtgJn5J4UxERETE1z35JMyadfSyWbOc5f5s7lyIj4ennnLuX7ZyJVx0kdtViVQYhTMRERERX9ezJwwfDpMmwYoV8PnnzuuePd2urGLk5sKECTBgAOTnw8yZzg2l69RxuzKRCqVrzkRERER8XWKiM/HFeedBYaGzLDAQxoyBRo2gceOjHyWXNWwIwcHu1l8WP/0E48bBpk1w663w2GMQEeF2VSKVQuFMREREpCpITHTC2JtvOiGte3dIT3cemzbB/PmQmfnH/YyBBg3+GOKOF+rCwyv/fR22fz/cfbfTQ9a6Nfz8M/zpT+7VI+IChTMRERGRqmDWLOcmyw8+CK++Cvfd5wS2kgoKICPjSGjbsePI88OPlBRneUHBH88REXHqANeokTMZhzGn9z6efNIZjlmy9scfdx7Z2XDXXfDII1Cz5ukdX6QKUzgTERER8XWzZjnXmE2d6oSaxMSjXx8WHAxNmzqPk/F4YM+eE4e4HTtg6VLneU7OH/cPDj4S3E42rPJ4QyoPXz83dSp07QojR8L330OzZvDdd9C795l/v0SqKIUzEREREV+3ePHRQezwNWiLF/+x96w0AgKcoY4NGkDnziffNifnxL1wO3Y4QyrnzYNdu/6474mGVI4YAZdeCtY6k3+MGuUM1wwNLft7EfEjxlpbaSdLSEiwSUlJlXY+EREREakk+fmwc+fxA9yxrw9PagIwfrxznZlINWGMWWKtTTjeOvWciYiIiMiZCwkp/ZDKGTPg+uvhllucYDZy5On1AIr4Gd3nTEREREQqz88/O71ln3wCjz7qDM8cPvyPN9kWqYYUzkRERESk8pzs+jmRak7XnImIiIiIiFSSk11zpp4zERERERERH6BwJiIiIiIi4gMUzkRERERERHyAwpmIiIiIiIgPUDgTERERERHxAQpnIiIiIiIiPkDhTERERERExAconImIiIiIiPiASr0JtTEmE9hcaScsvQbALreLkKOoTXyT2sX3qE18k9rF96hNfJPaxfeoTSpec2tt1PFWVGo481XGmKQT3aVb3KE28U1qF9+jNvFNahffozbxTWoX36M2cZeGNYqIiIiIiPgAhTMREREREREfoHDmeMPtAuQP1Ca+Se3ie9Qmvknt4nvUJr5J7eJ71CYu0jVnIiIiIiIiPkA9ZyIiIiIiIj6gyoUzY8z5xpg1xpj1xpj7Siz/2BiT7H2kGmOSj7NvvDFmvjFmpTFmuTHm6hLrWhhjFhpj1nmPFXKC84/xbrPOGDOmrPv7Ix9ok2+NMfuMMV8ds7zatgm42y7l0a7+yOU2aW6MWeI9x0pjzM1l2d+fuf1vmHfb2saYbcaYl09nf3/jdpsYY4pKnGdGWff3RxXYJrd6j2mNMQ1Ocn59/joOH2gXfQYrb9baKvMAAoENQEsgBFgGnHWc7Z4B/nWc5W2BNt7nMUA6UNf7eiowwvv8NeCW4+xfH9jo/VrP+7xeaff3x4fbbeJdNwS4BPjqmOXVsk18oV3Ko1397eEDbRIChHqfRwCpQEx1bhNfaJcSx3kB+BB4ucSyatkuvtAmQM4JlqtNyr9NugFx3n+TGpzg/Pr85YPt4t1On8HKu13dLqBMxUJf4LsSr+8H7j9mGwNsPfzDdorjLQPaePfZBQQd7zwlth8JvF7i9eveZaXa3x8fbrdJif0GlfyHoTq3iS+1S3nt7w8PX2oTIBLYgvOfcbVtE19pF6AH8BFwHd5wVp3bxUfa5A/hTG1S/m1yzLJUThzO9PnLB9ulxDaD0GewcntUtWGNTXB+wA5L8y4raQCQYa1dd7IDGWN64fyVYQPOB5V91trCY49rjEkwxkw6xflPuH814HabnEh1bhPwoXYp7f7VgOttYoyJNcYs99bxhLV2+8n2ryZcbRdjTADOX7XvPuZw1bldXP9dAcKMMUnGmAXGmMu9y9QmR5RXm5xsO33+OjW32+VEqnu7nJEgtwsoI3OcZfaY1yOBKSc9iDGNgfeAMdZajzHmhMe11iYB405x/tLU5a/cbpMzqcuf+US7lGX/asD1NrHWbgW6GGNigM+NMdMBTynq8mdut8tfga+ttVuP2UW/K0er7H+/mllrtxtjWgI/GWNWAPtLUZe/qpA2Odm2+vxVKm63y5nUJSdQ1cJZGhBb4nVTYPvhF8aYIOAKnCEix2WMqQ38D/g/a+0C7+JdQF1jTJA35R913GPOP+iY888uw/7+yO02OZHq3CbgA+1SQe1albneJod5P3SuxPmL6idl3d/PuN0ufYEBxpi/4lwLGGKMycEZnlRd28XtNsHbq4y1dqMxZjbO9TfV+XelotqkLOcfdMz5Z1O9/08B99vlRKp7u5yRqjascTHQxjsDTAgwAphRYv05wGprbdrxdvbu8xnwrrV22uHl1loLzAKu8i4aA3xxnEN8B5xnjKlnjKkHnIczhra0+/sjt9vkuKp5m4DL7VJR7VrFud0mTY0xNbzP6wH9gTXVvE3A5Xax1o6y1jaz1sYBd3mPc181bxe3f1fqGWNCvc8b4PyurFKblH+blIE+fx2f2+1yXGqXM2R94MK3sjyAC4G1OGNi/3nMureBm0+y71+AAiC5xCPeu64lsAhYD0zjyKxmCcCkEse43rvNemBsieXH3b86PHygTeYAmcBBnL8iDa3ubeJ2u5zO/tXh4XKbnAssx7ngezlwY4ljV9s2cbtdjjnWdRw9W2O1bReXf1f6ASu8vysrgBvUJhXaJrfj/N9diNO7crgd9PmrarSLPoOV88N4v4EiIiIiIiLioqo2rFFERERERMQvKZyJiIiIiIj4AIUzERERERERH6BwJiIiIiIi4gMUzkRERERERHyAwpmIiIiIiIgPUDgTERERERHxAQpnIiIiIiIiPuD/B58lRcP90THQAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABPYklEQVR4nO3dd3hUVf7H8fdJhxRa6AFC7xBCQIoK2F10UVEsSFFBQf1ZVte6rriru+pasSFWRNcGYmEtWECRmgRD6CAQINTQE0JImfP7405CgoEESHInyef1PPMwc+t3TgrzyTn3XGOtRURERERERNzl53YBIiIiIiIionAmIiIiIiLiExTOREREREREfIDCmYiIiIiIiA9QOBMREREREfEBCmciIiIiIiI+QOFMRERERETEByiciYhUEcaYjEIPjzHmcKHXw92u71QYY1KMMee5XceJGGPmGGPGlNOxI40x84wxe4wx+40xC4wx/Y/ZppUxZqYxJt0Ys9sY83ShdXWNMTOMMYeMMZuMMdcds++5xpjVxphMY8xsY0yL8ngfIiJSOgpnIiJVhLU2LP8BbAYuLbTsA7frO5YxJqAqnKOcZQA3AvWBOsBTwFf578sYEwR8D/wENAKigPcL7f8KkA00BIYDrxljOnv3jQQ+Ax4B6gIJwMfl/5ZEROR4FM5ERKo4Y4yfMeYBY8x6bw/MJ8aYut510cYYa4y5wRizxRizzxgzzhjTyxiT7O2tebnQsUZ7e3JeMsYc8Pa6nFtofS1jzFvGmO3GmK3GmMeNMf7H7Pu8MWYvMMEY09oY85O3rt3GmA+MMbW9208FmuOEkQxjzH3GmIHGmNRj3l9B75oxZoIxZpox5n1jzEFgdAk1tTHG/Ox9L7uNMcWGE2NMiPeY+T1Y8caYhsaYJ4CzgJe9Nb7s3b6DMeZ7Y8xeY8waY8ywQsd61xgzybs+3Xv+YnusrLVZ1to11loPYIA8nJBW17vJaGCbtfY5a+0h7/bJ3vOEAkOBR6y1GdbaX4EvgRHefa8AVlhrP7XWZgETgO7GmA7FfiOJiEi5UzgTEan67gAuAwYATYB9OD0qhZ0BtAWuBl4AHgbOAzoDw4wxA47ZdgMQCTwKfJYf9oApQC7QBugBXACMKWbfBsATOIHj3966OgLNcEIC1toRFO0BfJrSGQJMA2oDH5RQ0z+BWTiBJwp46TjHHAXU8tZXDxgHHLbWPgzMBW731ni7NxR9D/zX+z6vBV7N77HyGu49dySQ5K3zuIwxyUAWTrh601q7y7uqD5BijPnGGy7nGGO6ete1A/KstWsLHWopztcU779L81dYaw8B6wutFxGRCqZwJiJS9d0CPGytTbXWHsEJP1ceM+Tvn95el1nAIeBDa+0ua+1WnPDRo9C2u4AXrLU51tqPgTXAYGNMQ+Bi4C5vL84u4HngmkL7brPWvmStzbXWHrbW/m6t/d5ae8RamwY8hxMiT8cCa+3n3t6miBJqygFaAE287//X4xwzByeUtbHW5llrE621B4+z7SVAirX2He/7XAJMB64stM3/rLW/eL8eDwN9jTHNjveGrLXdvO/lOqBwjVHe9zIRJ+D+D/jCO9wxDDhwzKEOAOHe5yWtFxGRClbZx+KLiEjJWgAzjDGeQsvycK5Dyrez0PPDxbwOK/R6q7XWFnq9CScYtAACge3GmPx1fsCWQtsWfo4xpgFOsDgLJxT44fTsnY7C5yippvtwerAWG2P2Ac9aa98u5phTcXrNPvIOu3wfJ/DmFLNtC+AMY8z+QssCvMf4Q43W2gzvMM8mx9RehHfo4YfGmFXGmCRr7VKcr82v1tpvAIwxzwB/w+mFzMAJdIVFAOne5yWtFxGRCqaeMxGRqm8LcLG1tnahR4i3V+xUNDWFkg7OdWHbvOc5AkQWOk+EtbbwMLnCoQ6cIY0W6GatjQCuxxnqeLztDwE18194rx2rf8w2hfc5YU3W2h3W2rHW2iY4PYyvGmPaHPuGvb2Ej1lrOwH9cHrHRh6nxi3Az8e0d5i1dnyhbQp6yYwxYTjXkG079rzHEQi08j5PLub8+dYCAcaYtoWWdQdWeJ+v8L7OryMUaF1ovYiIVDCFMxGRqm8S8ET+pBPGmPrGmCGncbwGwB3GmEBjzFU4vTRfW2u341y/9awxJsI7EUnrY65XO1Y4Tg/OfmNMU+Cvx6zfydEgAk7gCDHGDDbGBOL0EgUf7+Al1WSMucoYE+XdfB9O0Mk79jjGmEHGmK7eMHgQZ5hj/nbH1jgTaGeMGeFto0DjTLDSsdA2fzLGnOkdfvhPYJG19g+9ZsaYPvnbGWNqGGPux+nxXOTd5H2gjzHmPG9tdwG7gVXea8g+A/5hjAk1zhT8QzjagzcD6GKMGWqMCQH+DiRba1cfrz1FRKR8KZyJiFR9L+JMJDHLGJMOLMSZmONULcKZPGQ3zqQeV1pr93jXjQSCgJU4YWca0PgEx3oMiMW51ul/OGGisH8Df/POkHivtfYAcCvwJrAVpyctlRM7UU29gEXGmAycNrrTWruxmGM08u53EFgF/MzRKetfxLmGb58xZqK1Nh1n0pFrcHrDduBMgV84RP4XZzKVvUBPnAlCihOMM3nLHu/7/RMw2Fq7DcBauwant3GS970NAf5src327n8rUAPnOsEPgfHW2hXefdNwZnN8wrvvGRS9PlBERCqYKXrZgIiIyPEZY0YDY6y1Z7pdS2VljHkXSLXW/s3tWkRExLeo50xERERERMQHKJyJiIiIiIj4AA1rFBERERER8QHqORMREREREfEBCmciIiIiIiI+IKAiTxYZGWmjo6Mr8pQiIiIiIiI+IzExcbe1tn5x6yo0nEVHR5OQkFCRpxQREREREfEZxphNx1unYY0iIiIiIiI+QOFMRERERETEByiciYiIiIiI+IAKveasODk5OaSmppKVleV2KVLFhISEEBUVRWBgoNuliIiIiIiUyPVwlpqaSnh4ONHR0Rhj3C5HqghrLXv27CE1NZWWLVu6XY6IiIiISIlcH9aYlZVFvXr1FMykTBljqFevnnpkRURERKTScD2cAQpmUi70fSUiIiIilYlPhDO3PfHEE3Tu3Jlu3boRExPDokWLABgzZgwrV64sk3NER0eze/fuE27zr3/966SP++6773L77bcXWfbOO+8QExNDTEwMQUFBdO3alZiYGB544IGTPn5FeOGFF8jMzHS7DBERERGp7J5+GmbPLrps9mxneSVQ7cPZggULmDlzJkuWLCE5OZkffviBZs2aAfDmm2/SqVOnCqvlVMJZcW644QaSkpJISkqiSZMmzJ49m6SkJJ588skyOf7Jstbi8XiOu/5Uwllubu7pliUiIiIiVU2vXjBs2NGANnu287pXL3frKqVqH862b99OZGQkwcHBAERGRtKkSRMABg4cSEJCAgBhYWHcf//99OzZk/POO4/FixczcOBAWrVqxZdffgn8sRfrkksuYc6cOX8452WXXUbPnj3p3LkzkydPBuCBBx7g8OHDxMTEMHz4cADef/99evfuTUxMDLfccgt5eXmA0zPWrl07BgwYwLx580r9Xv/zn//Qq1cvunXrxqOPPgpASkoKHTp0YMyYMXTp0oXhw4fzww8/0L9/f9q2bcvixYsBmDBhAiNGjOCcc86hbdu2vPHGGyUet2PHjtx6663ExsayZcsWxo8fT1xcHJ07dy7YbuLEiWzbto1BgwYxaNCggrbON23aNEaPHg3A6NGj+ctf/sKgQYO4//77Wb9+PRdddBE9e/bkrLPOYvXq1aVuCxERERGpYjweaNcO/v53GDIErr/eCWaffALez5k+z1pbYY+ePXvaY61cufIPyypSenq67d69u23btq0dP368nTNnTsG6AQMG2Pj4eGuttYD9+uuvrbXWXnbZZfb888+32dnZNikpyXbv3t1aa+0777xjb7vttoL9Bw8ebGfPnm2ttbZFixY2LS3NWmvtnj17rLXWZmZm2s6dO9vdu3dba60NDQ0t2HflypX2kksusdnZ2dZaa8ePH2+nTJlit23bZps1a2Z37dpljxw5Yvv161fknMfKP+93331nx44daz0ej83Ly7ODBw+2P//8s924caP19/e3ycnJNi8vz8bGxtobbrjBejwe+/nnn9shQ4ZYa6199NFHbbdu3WxmZqZNS0uzUVFRduvWrSc8rjHGLliwoKCW/Pedm5trBwwYYJcuXfqHtjm2HT799FM7atQoa621o0aNsoMHD7a5ubnWWmvPOeccu3btWmuttQsXLrSDBg36w/t3+/tLRERERMpIXp61qanW/vqrte+/b+3jj1s7Zoy1551nbZs21gYFWQtFH4884nbVfwAk2OPkJden0i/ssa9WsHLbwTI9ZqcmETx6aefjrg8LCyMxMZG5c+cye/Zsrr76ap588smC3pp8QUFBXHTRRQB07dqV4OBgAgMD6dq1KykpKSdV08SJE5kxYwYAW7ZsYd26ddSrV6/INj/++COJiYn08nbBHj58mAYNGrBo0SIGDhxI/fr1Abj66qtZu3ZtieecNWsWs2bNokePHgBkZGSwbt06mjdvTsuWLenatSsAnTt35txzz8UY84f3NmTIEGrUqEGNGjUYNGgQixcv5tdffz3ucVu0aEGfPn0K9v/kk0+YPHkyubm5bN++nZUrV9KtW7eTarurrroKf39/MjIymD9/PldddVXBuiNHjpzUsURERETEh3g8sH07pKQU/9i8GbKzi+7TsCFER0PPnjB0qPP8wAF46im45RZ47TWn16yS9Jz5VDhzi7+/PwMHDmTgwIF07dqVKVOm/CGcBQYGFsz+5+fnVzAM0s/Pr+D6p4CAgCLXVhU3jfucOXP44YcfWLBgATVr1mTgwIHFbmetZdSoUfz73/8usvzzzz8/pVkIrbU8+OCD3HLLLUWWp6SkFLyXE703+OPsh8aYEx43NDS04PXGjRt55plniI+Pp06dOowePfq409wXPs+x2+Qf0+PxULt2bZKSkkp66yIiIiLiC8oqfOU/mjeHmjWLbp9/jdn06U4gu+CCSjW0scRwZowJAX4Bgr3bT7PWPmqMqQt8DEQDKcAwa+2+0ynmRD1c5WXNmjX4+fnRtm1bAJKSkmjRosUpHSs6OppXX30Vj8fD1q1bC67XKuzAgQPUqVOHmjVrsnr1ahYuXFiwLjAwkJycHAIDAzn33HMZMmQId999Nw0aNGDv3r2kp6dzxhlncOedd7Jnzx4iIiL49NNP6d69e4m1XXjhhTzyyCMMHz6csLAwtm7dSmBg4Em9vy+++IIHH3yQQ4cOMWfOHJ588klq1KhRquMePHiQ0NBQatWqxc6dO/nmm28YOHAgAOHh4aSnpxMZGQlAw4YNWbVqFe3bt2fGjBmEh4f/4XgRERG0bNmSTz/9lKuuugprLcnJyaVqCxERERE5jqefdibPKBxkZs+G+Hi4774T71sR4ask8fFFg9igQc7r+PiqEc6AI8A51toMY0wg8Ksx5hvgCuBHa+2TxpgHgAeA+8ux1nKRkZHB//3f/7F//34CAgJo06ZNwSQdJ6t///4FQwS7dOlCbGzsH7a56KKLmDRpEt26daN9+/ZFhv3dfPPNdOvWjdjYWD744AMef/xxLrjgAjweD4GBgbzyyiv06dOHCRMm0LdvXxo3bkxsbGzBRCEncsEFF7Bq1Sr69u0LOMM533//ffz9/Uv9/nr37s3gwYPZvHkzjzzyCE2aNKFJkyalOm737t3p0aMHnTt3plWrVvTv37/I+7744otp3Lgxs2fP5sknn+SSSy6hWbNmdOnShYyMjGLr+eCDDxg/fjyPP/44OTk5XHPNNQpnIiIiIqcjf7bD/ICT3xP1ySdO+Nqx4/jha9Om8g9fJSkuQFaiYY3GuSatlBsbUxP4FRgPvAcMtNZuN8Y0BuZYa9ufaP+4uDibP/thvlWrVtGxY8eTLlwq1oQJEwgLC+Pee+91u5STou8vERERkZM0e7YTpGJiYMEC6NwZDh48cfgq7lEe4asKMMYkWmvjiltXqmvOjDH+QCLQBnjFWrvIGNPQWrsdwBvQGhxn35uBmwGaN29+KvWLiIiIiEh5sxbmzIHnnoN9+5yQFhoKAQEQGwtXXKHwVc5KFc6stXlAjDGmNjDDGNOltCew1k4GJoPTc3YqRYr7JkyY4HYJIiIiIlIecnLg44+dUPbbb1CrlhO6xo2D996Df/+70gwLrOxO6ibU1tr9wBzgImCndzgj3n93lXVxIiIiIiJSTvbtcyYAadkSRoyArCy45x4IDISZM+HZZ51rzYYNc3rRpNyVGM6MMfW9PWYYY2oA5wGrgS+BUd7NRgFflFONIiIiIiJSVjZsgDvvhGbN4P77oUMH+PprWL4cGjQ4/myHUu5KM6yxMTDFe92ZH/CJtXamMWYB8Ikx5iZgM3DViQ4iIiIiIiIumj/fGbo4Ywb4+8O118Jf/gKFZ7uu5LMdVnYlhjNrbTLQo5jle4Bzy6MoEREREREpA7m5Thh77jlYuBDq1HF6y26/HZo0cbs6OcZJXXNWVfn7+xMTE0OXLl246qqryMzMPOVjjR49mmnTpgEwZswYVq5cedxt58yZw/z58wteT5o0iffee++Uz50vJSWFLl2KztkyYcIEnnnmmZM6TlnVIyIiIiIVLD0dXngB2rZ1rhlLS4OXX4YtW+Bf/1Iw81Glmq2xqqtRowZJSUkADB8+nEmTJvGXv/ylYH1eXt5J3aw535tvvnnC9XPmzCEsLIx+/foBMG7cuJM+R3nJzc31qXpEREREpBS2bIGJE2HyZOfeZGeeCc8/D5de6gxlFJ9WuXrOnn76jzPFzJ7tLC8jZ511Fr///jtz5sxh0KBBXHfddXTt2pW8vDz++te/0qtXL7p168brr78OgLWW22+/nU6dOjF48GB27To6aeXAgQPJv+n2t99+S2xsLN27d+fcc88lJSWFSZMm8fzzzxMTE8PcuXOL9G4lJSXRp08funXrxuWXX86+ffsKjnn//ffTu3dv2rVrx9y5c0/6PZ7o2A899BADBgzgxRdfLKhn27ZtxMTEFDz8/f3ZtGkTmzZt4txzz6Vbt26ce+65bN68GXB6D++44w769etHq1atCnoSRURERKScJCbC8OHQqpUTxi6+GBYtgrlz4bLLFMwqicoVznr1KjqV5+zZzutevcrk8Lm5uXzzzTd07doVgMWLF/PEE0+wcuVK3nrrLWrVqkV8fDzx8fG88cYbbNy4kRkzZrBmzRqWLVvGG2+8UWSYYr60tDTGjh3L9OnTWbp0KZ9++inR0dGMGzeOu+++m6SkJM4666wi+4wcOZKnnnqK5ORkunbtymOPPVakzsWLF/PCCy8UWV7Y+vXriwSqSZMmlerY+/fv5+eff+aee+4pWNakSROSkpJISkpi7NixDB06lBYtWnD77bczcuRIkpOTGT58OHfccUfBPtu3b+fXX39l5syZPPDAAyf5lRARERGREnk88OWXMHAgxMXBV1/BHXfA+vXw0UfQu7fbFcpJ8q1hjXfdBd7hhcfVpAlceCE0bgzbt0PHjvDYY86jODExznjbEzh8+DAxMTGA03N20003MX/+fHr37k3Lli0BmDVrFsnJyQW9QAcOHGDdunX88ssvXHvttfj7+9OkSRPOOeecPxx/4cKFnH322QXHqlu37gnrOXDgAPv372fAgAEAjBo1iquuOjoZ5hVXXAFAz549SUlJKfYYrVu3LhiqCUdvIl3Ssa+++urj1jVv3jzefPPNgt66BQsW8NlnnwEwYsQI7is0u89ll12Gn58fnTp1YufOnSd8vyIiIiJyEjIzYcoUp4ds3Tpo3ty5J9mYMRAR4XZ1chp8K5yVRp06TjDbvNn5RqxT57QPWfias8JCQ0MLnltreemll7jwwguLbPP1119jjDnh8a21JW5zMoKDgwFnIpPc3NwyOy4Ufc+Fbd++nZtuuokvv/ySsLCwYrcp/B7zawTn/YuIiIjIadqxw5nU47XXYO9eZ/TYRx/B0KEQUPk+1ssf+dZXsYQeLuDoUMZHHnG+MR99tELuu3DhhRfy2muvcc455xAYGMjatWtp2rQpZ599Nq+//jojR45k165dzJ49m+uuu67Ivn379uW2225j48aNtGzZkr1791K3bl3Cw8M5ePDgH85Vq1Yt6tSpw9y5cznrrLOYOnVqQU/X6TqVY+fk5DBs2DCeeuop2rVrV7C8X79+fPTRR4wYMYIPPviAM888s0xqFBEREZFCli1zpsL/738hJweGDIF77oH+/aEMOwDEfb4VzkqSH8zy71o+aFDR1+VozJgxpKSkEBsbi7WW+vXr8/nnn3P55Zfz008/0bVrV9q1a1ds0Klfvz6TJ0/miiuuwOPx0KBBA77//nsuvfRSrrzySr744gteeumlIvtMmTKFcePGkZmZSatWrXjnnXfK7L2c7LHnz59PfHw8jz76KI8++ijg9BhOnDiRG2+8kf/85z/Ur1+/TGsUERERqdashVmznOGK338PNWvC2LHOZUBt2rhdnZQTU5FDzuLi4mz+7IX5Vq1aRceOHUt3gKefdrpvCwex2bMhPr74u5lLtXdS318iIiIibjtyBD74wOkpW7HCuZzn//4PbrkFSpi3QCoHY0yitTauuHWVq+esuACW34MmIiIiIlJZ7d7tXLLzyiuwcyd06+ZM+nHNNRAU5HZ1UkEqVzgTEREREalK1qxxZl2cMgWyspz7k91zD5xzjq4nq4YUzkREREREKpK18PPPzvVkM2dCcDCMGAF33w2dOrldnbjIJ8JZWU81LwKawl9ERER8TE6OM5Hdc8/BkiUQGenMPD5+PDRs6HZ14gP83C4gJCSEPXv26IO0lClrLXv27CEkJMTtUkRERKS6efppZ9K6fPv3OxN6REbC9dc7N5GePNm5b++ECQpmUsD1nrOoqChSU1NJS0tzuxSpYkJCQoiKinK7DBEREaluevVybvf0n//Ab785QSwrC3r0gMcfh4suAj/X+0jEB7kezgIDA2nZsqXbZYiIiIiInJr0dFi+HJYudR7JyZCRATfc4EzqERTkBLSxY92uVHyc6+FMRERERKRSsBZSUo6GsPwgtn790W1q1XKmwR8zBjZuhP/9z7kdlIKZlILCmYiIiIjIsTIy/tgblpzs9JKB0yPWpo0zVHHUKOje3Xk0b+6smz3bGdr4yCPO/ct0b14pBYUzEREREam+rIVNm4qGsKVLnd6w/AnrIiKc3rARI46GsC5dIDS0+GPmB7NPPjkaygq/FjkOhTMRERERqR4OHTraG5YfwpKT4eBBZ70x0Lq1E74KB7EWLU7uhtDx8UWD2KBBzuv4eIUzOSFTkVPYx8XF2YSEhAo7n4iIiIhUQ9Y609QXDmFLl8Lvvx/tDQsPd3rDunUr2hsWFuZu7VLlGWMSrbVxxa1Tz5mIiIiI+Jann3amoy/cyzR7ttPzdN99RbfNzHR6wwqHsORkOHDg6DatWzshbPhwJ4R16wbR0ZrOXnyOwpmIiIiI+Jb8+4TlDw3Mv4brpZdg5syiIWzdOvB4nP3CwqBrV7j22qMhrGtXp5dMpBJQOBMRERER35J/jdbQodC2rXMj5+BgJ3Tla9XKCV/XXHM0iLVsqd4wqdQUzkRERETEt1h7dGji4sXQtClccknR3rCICLerFClzCmciIiIi4jt27YLRo+GbbyAoCG6/Hd57D66+WjMdSpWnfl8RERER8Q3ffef0jP3wg3P92DffwLPPOkMchw1zrj0TqcIUzkRERETEXUeOwD33wEUXQWSk01v25ZdwzjnO+sL3CROpwjSsUURERETcs2aNM9HHb7/BbbfBf/4DNWr8cbtBgzSsUao89ZyJiIiISMWzFt58E2JjnRtGf/EFvPxy8cFMpJpQOBMRERGRirVvn3MN2dix0LevMzPjn//sdlUirlM4ExEREZGKM3euMyX+55/DU0/BrFnQpInbVYn4BIUzERERESl/ubnw97/DwIHODaXnz4f77tNNo0UK0YQgIiIiIlK+Nm6E4cNhwQLnHmYTJ0J4uNtVifgchTMRERERKT8ffgjjxh19fs017tYj4sPUjywiIiIiZS893eklu+466NwZli5VMBMpgcKZiIiIiJSt+Hjo0QOmTnWuM/vlF4iOdrsqEZ+ncCYiIiIiZcPjcWZg7NcPsrNhzhx47DEI0JU0IqWhnxQREREROX1bt8LIkfDTT3DllTB5MtSp43ZVIpWKes5ERERE5PR88YVz77KFC+HNN+GTTxTMRE6BwpmIiIiInJrDh+G22+Cyy6B5c1iyBG66CYxxuzKRSknhTERERERO3rJl0KsXvPoq3HOPcw+z9u3drkqkUlM4ExEREZHSsxZeftkJZrt3w7ffwjPPQHCw25WJVHqaEERERERESictDW68EWbOhD/9Cd55Bxo0cLsqkSpDPWciIiIiUrIffnAm/Zg1C1580QloCmYiZUrhTERERESOLzsb7rsPzj8fateGxYvhjjs06YdIOdCwRhEREREp3tq1cN11kJgI48bBs89CzZpuVyVSZZXYc2aMaWaMmW2MWWWMWWGMudO7PMYYs9AYk2SMSTDG9C7/ckVERESk3FnrXE8WGwsbN8Jnn8FrrymYiZSz0vSc5QL3WGuXGGPCgURjzPfA08Bj1tpvjDF/8r4eWH6lioiIiEi527/f6SX7+GMYOBCmToWoKLerEqkWSgxn1trtwHbv83RjzCqgKWCBCO9mtYBt5VWkiIiIiFSAefOcYYxbt8ITT8D994O/v9tViVQbJ3XNmTEmGugBLALuAr4zxjyDMzyyX1kXJyIiIiIVIDfXCWP/+AdERzsh7Ywz3K5KpNop9WyNxpgwYDpwl7X2IDAeuNta2wy4G3jrOPvd7L0mLSEtLa0sahYRERGRsrJpEwwaBBMmOL1mv/2mYCbiEmOtLXkjYwKBmcB31trnvMsOALWttdYYY4AD1tqIEx0nLi7OJiQklEHZIiIiInLaPvkEbr4ZPB549VW4/nq3KxKp8owxidbauOLWlWa2RoPTK7YqP5h5bQMGeJ+fA6w73UJFREREpAJkZMBNN8HVV0OHDk5vmYKZiOtKc81Zf2AEsMwYk+Rd9hAwFnjRGBMAZAE3l0uFIiIiIlJ2EhOd4Yvr1sHDD8Ojj0JgoNtViQilm63xV+B4t4DvWbbliIiIiEi58HjguefgoYegQQP46SdnqnwR8RmlnhBERERERCqRp5+G2bOd59u3w0UXwV//Cu3awdKlCmYiPkjhTERERKQq6tULhg2Df/0LunWDn3+GsDCYOBHq1XO7OhEpxknd50xEREREKolBg+DZZ2HUKGcYY2goTJ/uLBcRn6SeMxEREZGqauRIp/ds1y64/XYFMxEfp3AmIiIiUlXNnu1M/PHII/Daa0evQRMRn6RwJiIiIlIVzZ7t9Jp98gn84x/Ov8OGKaCJ+DCFMxEREZGqKD7eCWT5QxkHDXJex8e7W5eIHJex1lbYyeLi4mxCQkKFnU9ERERERMSXGGMSrbVxxa1Tz5mIiIiIiIgPUDgTERERERHxAQpnIiIiIiIiPkDhTERERERExAconImIiIiIiPgAhTMREREREREfoHAmIiIiIiLiAxTOREREREREfIDCmYiIiIiIiA9QOBMREREREfEBCmciIiIiIiI+QOFMRERERETEByiciYiIiIiI+ACFMxERERERER+gcCYiIiIiIuIDFM5ERERERER8gMKZiIiIiIiID1A4ExERERER8QEKZyIiIiIiIj5A4UxERERERMQHKJyJiIiIiIj4AIUzERERERERH6BwJiIiIiIi4gMUzkRERERERHyAwpmIiIiIiIgPUDgTERERERHxAQpnIiIiIiIiPkDhTERERERExAconImIiIiIiPgAhTMREREREREfoHAmIiIiIiLiAxTOREREREREfIDCmYiIiIiIiA9QOBMREREREfEBCmciIiIiIiI+QOFMRERERETEByiciYiIiIiI+ACFMxERERERER+gcCYiIiIiIuIDFM5ERERERER8QInhzBjTzBgz2xizyhizwhhzZ6F1/2eMWeNd/nT5lioiInJ6rLVulyAiInJcAaXYJhe4x1q7xBgTDiQaY74HGgJDgG7W2iPGmAblWaiIiEhpeTyWTXszWbX9oPeRzqrtB9mfmc0jl3Timt7N3S5RRETkD0oMZ9ba7cB27/N0Y8wqoCkwFnjSWnvEu25XeRYqIiJSnINZOazZkV4kiK3Zkc7hnDwA/Ay0qh9GbIs67DqYxQOfLWPtzgwe+lMHAvw1ul9ERHxHaXrOChhjooEewCLgP8BZxpgngCzgXmttfJlXKCIiwtHesNXeELZyezqrdxwkdd/hgm1q1QikY+NwrundjI6NIujYOIK2DcMICfQHIDfPwxNfr+LteRv5PS2Dl6/rQURIoFtvSUREpIhShzNjTBgwHbjLWnvQGBMA1AH6AL2AT4wxrewxA/qNMTcDNwM0b65hJCIiUrL0rBxWF/SGOf8W1xsW06w21/ZuTsfG4XRsHEGjiBCMMcc9boC/H49e2pl2DcN55PPlXP7KPN4c1YuWkaEV9dZERESOy5Tm4mhjTCAwE/jOWvucd9m3OMMa53hfrwf6WGvTjnecuLg4m5CQUBZ1i4hIFeDxWDYXvjbMG8iO7Q3r0MgJX50aR9ChcTjtGoYX9IadqoUb9jD+/UQ8Fl4dHkv/NpGn+3ZERERKZIxJtNbGFbuupHBmnD9BTgH2WmvvKrR8HNDEWvt3Y0w74Eeg+bE9Z4UpnImIVF/pha4Nyx+SuGZHOpnZR3vDWkaG0sEbwjo2DqdDowga1zpxb9jp2LwnkzHvxbM+7RATLu3EiL7R5XIeERGRfCcKZ6UZ1tgfGAEsM8YkeZc9BLwNvG2MWQ5kA6NOFMxERKR6yO8NW73DCWGrth9k9Y6DbNl7tDcsIiSAjo0jGBbXrGBIYtsG4dQIOr3esJPVvF5Npo/vx10fJfHIFytYszOdRy/tTKAmChEREReUalhjWVHPmYhI1VLQG1ZotsRje8OiI0Pp2DiCjt6hiR0bl29v2KnI81ie/m41r/+8gX6t6/Hq8Fhq1wxyuywREamCTmtYY1lSOBMRqdx+27yPOWvSvNeH/bE3LH9IYv41Yu0aVnxv2OmYnpjKg58to0ntEN4cFUebBuFulyQiIlWMwpmIiJwWay3vzk/hnzNXYnGuDXOmqneuC+vYJIImPtYbdqoSN+3llqmJHMnx8NJ1PRjYvoHbJYmISBWicCYiIqcsN8/DY1+tZOrCTZzfqSHPDute5e8NtnX/YcZMSWDNjoM8PLgTN/aPrhLBU0RE3HeicKYrnkVE5LjSs3K4aUoCUxdu4uazWzHp+p5VPpgBNK1dg2nj+nJ+p4b8c+ZKHpi+jOxcj9tliYhIFVfqm1CLiEj1smVvJjdNiWdD2iH+fUVXru3d3O2SKlRocACvDe/JCz+sZeJPv7Nx9yFeuz6WemHBbpcmIiJVlHrORETkD5Zs3sflr85j+4EsptzYu9oFs3x+foa/XNCeidf2YGnqfoa8Mo/VOw66XZaIiFRRCmciIlLEV0u3cc3khdQMCmDGrf3o3ybS7ZJc9+fuTfjklr5k53oY+up8vl+50+2SRESkClI4ExERwJmR8aUf1/F/H/5Gt6a1+Py2/ppKvpDuzWrz5e1n0rpBGDdPTeC1OeupyEm1RESk6lM4ExERjuTmcc8nS3n2+7VcFtOED8aeQd1Q3YT5WI1qhfDxzX0Z3LUxT327mns+WUpWTp7bZYmISBWhCUFERKq5vYeyGTc1kcUpe/nL+e34v3PaaNr4E6gR5M9L1/agfcNwnv1+LRv3HOL1ET1pEB7idmkiIlLJqedMRKQaW5+WweWvziMpdT8Tr+3BHee2VTArBWMM/3duWyZdH8vq7ekMeXkey7cecLssERGp5BTORESqqfm/7+byV+aRkZXLh2P78OfuTdwuqdK5qEtjpo3viwGumrSAb5Ztd7skKQfZuR4278nE49E1hiJSvkxFXswcFxdnExISKux8IiJSvI/jN/PwjOW0jAzl7dG9aFa3ptslVWq70rO4ZWoiv23ez93nteOOczU0tKo4cDiHayYvZNX2g4SHBNA9qjbdm9WiW1RtYprVpmGEhrOKyMkxxiRaa+OKW6drzkREqhGPx/LUd6t5/ecNnNU2kleGxxIREuh2WZVeg/AQPhzbh4dmLOP5H9aydlc6z1zZnRpB/m6XJqchKyePse8l8PuudP56YXu27T/M0tT9vP7zBnK9vWiNIkLo3qwW3ZvVJiaqNl2jahGunykROUUKZyIi1URmdi53f5zEdyt2MvyM5jz2584E+Gt0e1kJCfTn2au6075hOE9+u5rNezJ5Y2QcjWqpZ6Uyys3zcPt/fyM+ZS8Tr+nBpYWG/Wbl5LFi20GWbtnP0tT9JKce4LsVzr3vjIHW9cPoHlWbGG9o69AogqAA/ayJSMk0rFFEpBrYeTCLMVMSWL7tAH8b3Ikb+0dr2F05+nHVTu748DdCgwOYPDKOmGa13S5JToK1lvumJfNpYir/GNKZkX2jS9xnf2Y2yakHCgJb0pb97M7IBiDI349OTSKIaVabblFOYGtZLxQ/P/0MilRHJxrWqHAmIlLFrdx2kJumxHPgcA4Tr+nBeZ0aul1StbBmRzo3TYknLf0IT1/ZjSExTd0uSUrp39+s4vWfN3DnuW25+/x2p3QMay3bDmQ5YW2LE9aWbT1AZrZzX7zC1691916/1kDXr4lUCwpnIiLV1A8rd3LHR79Rq0Ygb46Ko3OTWm6XVK3syTjC+A+WsHjjXm4f1Ia/nN9OvSU+bvIv6/nX16sZ0acF/xjSuUx7mPM8lt93ZThhLXU/yan7Wb09veD6tca1QryBzQltXZvq+jWRqkjhTESkmrHW8va8FB7/30q6NKnFW6Pi9Fd5l2Tnevj7F8v5KH4LF3ZuyHPDYggN1iXfvmhaYir3frqUwd0aM/GaHvhXQJA+9vq1pVv2k7InE3CuX2tTP8wJa1G6fk2kqlA4ExGpRnLzPEz4agXvL9zMhZ0b8vzVMdQMUhhwk7WWd7xhuX2jCN4Y2ZOoOrp9gS/5YeVObnk/kb6t6vHW6DiCA9ybaXPfoWyStx4oGBK5NLX469fyh0RG6/o1kUpF4UxEpJo4mJXDbR8sYe663Ywb0Jr7LmyvD20+5Oe1adz+3yUEB/jx+oie9GxR1+2SBFi8cS8j3lpEh0bhfDC2D2E+1rNprWXr/sMs3XKgYLKR5YWuX4sICfD2rtUu6GVTT7mI71I4ExGpBrbszeTGd+PZuPsQ/7q8K8N6NXO7JCnG77syGDMlnm37s3ji8i5cFaevk5tWbT/IsNcXUD88mGnj+lE3NMjtkkrl2OvXlm7Zz+od6eR5r19rUiuEboXCWusGYdQPC9Yfa0R8gMKZiEgVl7hpHze/l0BOnodJI3rSr3Wk2yXJCezPzOa2/y5h3u97uPnsVtx/UYcKub5Jitq8J5Ohk+bjbwzTb+1H09o13C7ptBzOzmPl9gMkbTk6pf8m7/Vr4AyJbFqnBlEFj5pFniu8iVQMhTMRkSrsy6XbuPfTpTSuFcLbo3vRun6Y2yVJKeTkefjnzJW8t2AT53RowIvXxGhmvgqUln6EKyfN58DhHD69pS9tG4a7XVK52Hcom2VbD7Bpbyap+zJJ3XeY1H2H2bovs+A6tnxFw1vR4NasTg0iFd5EyoTCmYhIFWStZeKPv/P8D2vpHV2XSSN6VpohWXLU1IWbmPDlClpFhvLWqF40r6eJQsrbwawcrnl9IRt3H+KDsWcQ27yO2yW5IjM7l237D7PFG9hKDG8BfkTVruENcApvIqdK4UxEpIo5kpvHA9OXMeO3rVwR25R/X9HV1dnl5PTM/3034z9Ygp+BV4f3pG/rem6XVGVl5eQx6u3FJG7ax5uj4hjYvoHbJfmszOxcthYT3PKf7zlUuvDWrK7zvH5YcJneN06kslI4ExGpQvZkHOGWqYkkbNrHvRe047ZBbfSBpwpI2X2IMe8lkLL7EP8Y0oXrzmjudklVTm6eh1s/WMKslTt58ZoYhsQ0dbukSu1kw1twgF+xvW75zxXepLo4UTjzrbliRUTkhH7flcGN78az82AWL1/Xg0u6NXG7JCkj0ZGhfHZrP+748DcemrGMtTvT+dvgjgT464bDZcFay8MzljNr5U4mXNpJwawM1AwKoG3D8ONer1dceNvi/Xf51gPsPYnw1j2qtibNkWpB4UxEpJKY9/tuxr2fSHCAHx/d3Ice1fQ6maosIiSQt0b14t9fr+LNXzeyPi2Dl6+NpVZNTRRyup7+bg0fJ2zhjnPaMLp/S7fLqRZKCm+HjuSydX/xvW6Fw1uAn2HN4xdXZOkirlE4ExGpBD5cvJlHPl9O6/phvDkqjmZ1NWlEVeXvZ/jbJZ1o1zCchz9fxuWvzuPNUXG00iycp+zNuRt4bc56rjujOXef387tcsQrNDiAdg3DaVdCeEtLP6JeM6k2NFZCRMSH5Xks//p6FQ9+toz+bSKZNr6vglk1MaxXM/47tg/7D+dw2SvzmLsuze2SKqXpiak8/r9V/KlrI/45pIuuaapE8sNb/za6b6NUHwpnIiI+KjM7l3HvJzL5lw2M7NuCt0bF6T5Y1Uyv6Lp8cVt/mtSuweh34nlz7gY8noqbyKuy+2n1Tu6bnkz/NvV4/uoY9b6IiM9TOBMR8UE7DmQx7PUF/LjKmbzgH0O6aGKIaqpZ3ZpMG9+P8zo24PH/reK6NxeyZW+m22X5vISUvdz6wRI6NY7g9RFxutWEiFQK+p9eRMTHLN96gCGv/MrGtEO8NaqXJi8QwoIDmHR9T54e2o3lWw9y0Qu/8NHizVTk7XAqk9U7DnLju/E0qVWDd2/oRViwLrEXkcpB4UxExId8v3InV01agL8xTBvfj0EddINccRhjGNarGd/edRbdm9Xmgc+WcYP3tgpy1Ja9mYx8azE1gvx576be1AsLdrskEZFSUzgTEfEB1lre+GUDN09NoF3DMD6/rT8dG0e4XZb4oKg6NXn/pjN47M+dWbhhDxc8/wtfJG1VLxqwO+MII95axJFcD1NvOoOoOpo8R0QqF4UzERGX5eR5eGjGcp74ehUXd2nERzf3pUFEiNtliQ/z8zOM6hfNN3eeTZsGYdz5URK3frCEPRlH3C7NNelZOYx6ezE7Dmbx9uhex52eXUTElymciYi46MDhHG54J54PF2/m1oGtefnaWGoEaeICKZ2WkaF8cktfHry4Az+u2sUFz//Ct8t3uF1WhcvKyWPsewms2ZHOa9f3pGcL3aBdRConhTMREZds3pPJ0Nfms2jjHv5zZTfuu6gDfprqW06Sv5/hlgGtmXnHmTSuHcK49xO5++MkDmTmuF1ahcjzWO786DcWbtjLM1d1Z1B7XacpIpWXwpmIiAsSUvZy2avzSEs/wtSbzuCquGZulySVXLuG4cy4tT93ndeWr5Zu44IXfmbOml1ul1WurLU8PGMZ363Yyd8v6cRlPZq6XZKIyGlROBMRqWBfJG3lujcWUatGIDNu7UefVvXcLkmqiEB/P+46rx0zbu1PrRqBjH4nngc/W0bGkVy3SysXz8xaw0fxW7h9UBtuPFO3nBCRyk/hTESkAs34LZU7P0qiR/PazLi1H63qh7ldklRBXaNq8eXtZ3LLgFZ8FL+Zi174hQXr97hdVpl669eNvDJ7Pdf2bs49F7RzuxwRkTKhcCYiUkF2pWcx4cuV9Iquw9SbzqB2zSC3S5IqLCTQnwcv7si0cX0J8DNc+8ZCHvtqBYez89wu7bTN+C2Vf85cyUWdG/H4ZV0wRtdqikjVoHAmIlJBHvtqJYez83hyaDeCAvTrVypGzxZ1+frOsxjdL5p35qUweOJclmze53ZZp2z26l389dNk+raqxwvXxOCvSXREpArRpwMRkQrw/cqd/C95O3ec24bWGsooFaxmUAAT/tyZ/445gyO5Hq58bT5Pf7uaI7mVqxctcdNexn+QSIfG4Uwe2ZOQQN12QkSqFoUzEZFylp6VwyOfL6dDo3BuPru12+VINdavTSTf3nUWV/Vsxqtz1jPk5Xms2HbA7bJKZc2OdG54J57GtWrw7g29CQ8JdLskEZEyp3AmIlLOnv52DTvTszScUXxCeEggT13ZjbdHx7HnUDZDXp7HSz+uIzfP43Zpx7VlbyYj315ESKA/793Ym8iwYLdLEhEpF/qUICJSjhJS9jJ14SZu6NeSmGa13S5HpMA5HRoy666z+VPXxjz7/VqGvjaf33elu13WH+zOOMLItxdzODuPqTedQbO6Nd0uSUSk3JQYzowxzYwxs40xq4wxK4wxdx6z/l5jjDXGRJZfmSIilc+R3Dzun55M09o1NNW3+KQ6oUFMvLYHr1wXy+a9mfxp4q+88csG8jzW7dIAZ0jw6HcWs/3AYd4e3Yv2jcLdLklEpFyVpucsF7jHWtsR6APcZozpBE5wA84HNpdfiSIildMrs9ezPu0QT1zehdDgALfLETmuwd0aM+vuAQxoV58nvl7FNZMXsGnPIVdrysrJ45apiazans6rw2OJi67raj0iIhWhxHBmrd1urV3ifZ4OrAKaelc/D9wH+Maf2EREfMSaHem8Nud3Lu/RlIHtG7hdjkiJ6ocHM3lET54b1p3VO9K56IW5TF24CWsr/r/4PI/l7o+TmL9+D/+5shvndGhY4TWIiLjhpK45M8ZEAz2ARcaYPwNbrbVLS9jnZmNMgjEmIS0t7dQrFRGpJPI8lvunJxMeEsgjl3RyuxyRUjPGcEVsFLPuPpu46Do88vlyRr69mG37D1dYDdZa/vb5cr5ZvoO/De7IFbFRFXZuERG3lTqcGWPCgOnAXThDHR8G/l7SftbaydbaOGttXP369U+1ThGRSmPqghSStuzn75d0om5okNvliJy0xrVq8N6NvXni8i4kbtrHhc//wqcJWyqkF+2579fy4eLN3DqwNWPOalXu5xMR8SWlCmfGmECcYPaBtfYzoDXQElhqjEkBooAlxphG5VWoiEhlsHX/YZ7+bg0D2tVnSEwTt8sROWXGGIaf0YJv7zybjo0j+Ou0ZMa+l8Cu9KxyO+c78zby0k+/c02vZvz1wvbldh4REV9VmtkaDfAWsMpa+xyAtXaZtbaBtTbaWhsNpAKx1tod5VqtiIgPs9bytxnLAHji8i44vz5FKrfm9Wry0c19+NvgjvyybjcXPP8LM5O3lfl5Pv9tK499tZILOzfk8cv08yMi1VNpes76AyOAc4wxSd7Hn8q5LhGRSufLpduYvSaNey9oT1Qd3YtJqg4/P8OYs1rx9R1n0qJuTW7/72/c/t8l7DuUXSbHn71mF/d+upQ+rery4jU9CPDXbVhFpHoyFTkLU1xcnE1ISKiw84mIVJS9h7I577mfaVa3Jp+N74e/n/7qL1VTbp6H13/ZwAs/rKV2zSD+fXlXzut06rMpJm7ax/A3F9K6fhgf3dyH8JDAMqxWRMT3GGMSrbVxxa3Tn6ZERMrA4/9bycHDOTw1tKuCmVRpAf5+3DaoDV/cdib1QoMY814Cf/10KQezck76WGt3pnPju/E0igjh3Rt6K5iJSLWncCYicpp+WZvGZ0u2Mn5gazo0inC7HJEK0alJBF/efia3D2rD9CWpXPT8L/y6bnep90/dl8nItxYTFODH1JvOoH54cDlWKyJSOSiciYichszsXB6asYxW9UO5bVAbt8sRqVBBAX7ce2F7po/vR0iQP9e/tYhHPl9OZnbuCffbk3GEkW8t5lB2Lu/d2JtmdXWNpogIKJyJiJyW52atJXXfYZ68ohshgf5ulyPiih7N6/D1HWdx05kteX/RJi5+cS7xKXuL3TbjSC43vBvP1v2HeXt0Lzo2Vm+ziEg+hTMRkVO0dMt+3p63keFnNKd3y7pulyPiqpBAfx65pBMfju2Dx1qGvb6Af329iqycvIJtjuTmccvUBFZsO8irw2PpFa2fGxGRwhTOREROQU6eh/unJ9MgPIT7L+7gdjkiPqNPq3p8c+fZXNu7OZN/2cAlL/1Kcup+8jyWuz9OYt7ve3h6aDfO7XjqMzyKiFRVAW4XICJSGU3+ZQOrd6Tzxsg4IjTDnEgRYcEB/OvyrlzYuRH3T0vm8lfn06NZbRI27ePhP3VkaM8ot0sUEfFJ6jkTETlJ69MyePHHdQzu2pjzT+P+TiJV3YB29fnu7rMZ0r0JCZv2MW5Aa8ae3crtskREfJZ6zkREToLHY3nws2WEBPjx6J87uV2OiM+rVSOQ566O4b6LOtAwQtPli4iciHrOREROwkfxW1i8cS9/G9yJBuEhbpcjUmk0qhWCMbpBu4jIiSiciYiU0s6DWfz761X0a12Pq+J0zYyIiIiULYUzEZFS+vsXy8nO8/Cvy7uqB0BERETKnMKZiEgpfLt8O9+t2Mnd57cjOjLU7XJERESkClI4ExEpwYHDOTzyxQo6N4lgzJkt3S5HREREqijN1igiUoInv1nF3kPZvDO6FwH++puWiIiIlA99yhAROYEF6/fw4eItjDmzJV2a1nK7HBEREanCFM5ERI4jKyePh2Yso3ndmtx1Xju3yxEREZEqTsMaRUSOY+KP69i4+xAfjDmDGkH+bpcjIiIiVZx6zkREirFy20Fe/2UDV/WMon+bSLfLERERkWpA4UxE5Bi5eR4e+CyZOjUDeXhwR7fLERERkWpCwxpFRI7x7vwUklMP8PJ1PahdM8jtckRERKSaUM+ZiEghm/dk8sysNZzXsQGDuzZ2uxwRERGpRhTORES8rLU8/PkyAvz8+OdlXTDGuF2SiIiIVCMKZyIiXp8t2crcdbu5/6L2NK5Vw+1yREREpJpROBMRAXZnHOGf/1tJzxZ1GH5GC7fLERERkWpI4UxEBPjHVyvJPJLHk1d0xc9PwxlFRESk4imciUi199PqnXy5dBu3DWpD24bhbpcjIiIi1ZTCmYhUaxlHcvnbjOW0axjG+IGt3S5HREREqjHd50xEqrVnvlvD9oNZTLuuH0EB+nuViIiIuEefRESk2krctI8pC1IY1Teani3quF2OiIiIVHMKZyJSLWXnenhgejKNI0K498L2bpcjIiIiomGNIlI9vTZnPet2ZfD26DjCgvWrUERERNynnjMRqXbW7Uzn5dnr+HP3JpzToaHb5YiIiIgACmciUs14PJYHPltGaHAAf7+0k9vliIiIiBRQOBORauWDRZtI3LSPRwZ3IjIs2O1yRERERAoonIlItbFt/2Ge+nYNZ7WN5IrYpm6XIyIiIlKEwpmIVAvWWh75fDl5Hsu/Lu+KMcbtkkRERESKUDgTkWrhf8u28+PqXdxzQTua1a3pdjkiIiIif6BwJiJV3v7MbCZ8uYJuUbUY3S/a7XJEREREiqWb+4hIlffE/1axLzOH9248gwB//U1KREREfJM+pYhIlfbrut18mpjKLWe3olOTCLfLERERETkuhTMRqbIOZ+fx0IxltIwM5Y5z27pdjoiIiMgJaVijiFRZL/ywls17M/no5j6EBPq7XY6IiIjICVX7nrOf16axdMt+t8sQkTK2fOsB3pi7gWt7N6NPq3pulyMiIiJSomrfc/b0t6tZse0gsc1rM7p/Sy7u0ohATRggUqnl5Hm4b1oykWHBPHBxR7fLERERESmVap9CPrq5DxMu7cS+zBzu+PA3znzqJ176cR27M464XZqInKK3ft3Iyu0H+ceQLtSqEeh2OSIiIiKlYqy1FXayuLg4m5CQUGHnOxkej+XndWm8Oy+Fn9emEeTvx6Xdm3BD/2i6NK3ldnnig6y1GGPcLkOOkbL7EBe+8AuD2jdg0oiebpcjIiIiUoQxJtFaG1fcuhKHNRpjmgHvAY0ADzDZWvuiMeY/wKVANrAeuMFau7/Mqq5gfn6GQe0bMKh9A9anZTBlfgrTElOZviSVXtF1GN2vJRd0bqghj9Wcx2NZsGEP0xJT+Xb5DoyBuqFB1AsLpl5oEPVCg6gbFkRkaDD1woKoGxpEZFgwdUOd55qUonxZa3nws2UEBfjx2JDObpcjIiIiclJK7DkzxjQGGltrlxhjwoFE4DIgCvjJWptrjHkKwFp7/4mO5cs9Z8U5mJXDpwmpTJmfwua9mTSuFcL1fVpwbe/m1A0Ncrs8qUAb0jKYviSVGUu2su1AFuEhAfypS2PCQgLYk3GEPYey2ZORzZ5DR9h7KJucvOJ/rsKCAwpCW71Qb6A7JsTVC3PW1Q0NIihAfww4GR/Hb+b+6cv49xVdubZ3c7fLEREREfmDE/WcnfSwRmPMF8DL1trvCy27HLjSWjv8RPtWtnCWL89jmbNmF+/OT2Huut0EBfhxWUwTRvdrqZvaVmEHDucwM3kb0xNTWbJ5P34Gzm5Xn6GxUZzfqeFxe8GstRzMymXvoewiwW3voSPszsh2lh864g1zzus8T/E/h+EhAUdD2zHBrV5Y0UBXt2YQAdW4Z3fXwSzOe+5nOjaO4MOxffDz05BTERER8T1lFs6MMdHAL0AXa+3BQsu/Aj621r5/ov0razgrbN3OdN6dn8JnS7ZyOCePM1rW5Yb+0ZzXsWG1/mBcVeTmeZj7+26mJ6Yya+VOsnM9tGsYxtDYKC7r0ZSGESFlfk6Px3IwK6f4EFck3B3tmTtOlqN2zUCnFy60cC+cM+yycK9cvbAg6tQMwr8KBZhbP0jkh1W7+PbOs2hVP8ztckRERESKVSbhzBgTBvwMPGGt/azQ8oeBOOAKW8zBjDE3AzcDNG/evOemTZtO/h34oAOZOXySsIUpC1JI3XeYprVrMKJvC67p1YzaNTXksbJZuzOd6YmpzPhtK7vSj1C7ZiBDujdhaM8oujat5VMTf3g8lv2Hc44b4o7tlduXmU1xP+aB/oYW9UJpFRlKq/phtKofSuv6obSKDKNOJRu2+92KHdwyNZG/Xtie2wa1cbscERERkeM67XBmjAkEZgLfWWufK7R8FDAOONdam1nScapCz9mx8jyWH1ft5N35Kcxfv4eQQD8u79GUUf2i6dBIQx592b5D2Xy5dBvTElNZtvUAAX6Gge0bcGXPpgzq0IDggKoxeUeex7Ivs2hw23som20HDrMx7RDr0zLYvDezyHVydUODvKHNG9y8Aa5FvZo+NynOwawczn/uZ+rUDOKr/zvT5+oTERERKey0wplxugymAHuttXcVWn4R8BwwwFqbVppCqmI4K2z1joNMmZ/CjN+2kpXjoW+reoz2DnmsSsPHKrOcPA9z1qQxPTGVH1fvJCfP0qlxBEN7RjEkpgmRYcFul+iK3DwPW/YdZkNaBhvSDrFhdwbrdzn/7s7ILtguwM/QvG7NP4S2VvVDqRca5EoP48MzlvHh4s3MuLU/3ZvVrvDzi4iIiJyM0w1nZwJzgWU4U+kDPARMBIKBPd5lC6214050rKoezvLtO5TNxwlbmLpgE1v3HyaqTg1G9Y1mWFwzatXUDXHdsGLbAaYnbuWLpK3sOZRNZFgQQ2KaMjQ2SpO6lODA4ZwioW2Dt7ctZXcm2Xmegu1q1Qh0QltkoSGS3t628uqFXLxxL8NeX8CYM1vyt0s6lcs5RERERMpSmc7WeDqqSzjLl5vn4YdVO3lnXgqLNu6lRqA/V8Q2ZXS/aNo2DHe7vCovLf0IXyRtZVpiKqt3pBPk78e5HRswNDaKAe3ra/jbacrzWLbuO8x6b2DLD3Dr0zLYlX6kYDs/A83q1izSy9YqMozW9UOpHx58yr1tWTl5/GniXLJzPcy6+2xqBpV420YRERER1ymc+YCV2w7y7vyNfJ60jexcD2e2iWR0v2gGdWigIY9l6EhuHj+t2sW0xFTmrE0jz2PpHlWLK3tGcWn3JpqspYKkZ+WwcfehgtC2fvch1u/KYOPuQxzJPdrbFh4cUOwQyZaRoSXesPvZWWt46affee/G3pzdrn55vyURERGRMqFw5kP2Hsrmw8WbmbpgEzsOZtG8bk1G9YvmqrgoIkI05PFUWGtJTj3AtMRUvkrexv7MHBpGBHNZj6ZcGRulXkof4vFYth04fLSnzRvg1qdlsP1AVsF2xkDT2jUKQlv+EMlW9UNpFBHCmp3pXDLxV/4c04TnhsW494ZERERETpLCmQ/KyfMwa8VO3p2/kfiUfdQM8ufKnlGM7BtNmwa6R1Np7DiQxYzftjJ9SSq/78ogOMCPCzo34sqeUZzZJlI9kpVMZnau97q2Q3+4xi0zO69gu5pB/gQF+OFvDD/8ZUClm/ZfREREqjeFMx+3fOsB3pmXwldLt5Gd5+HsdvW5oV80A9rVx08Bo4isnDxmrdzJtMRUfl2XhsdCzxZ1uLJnFIO7NVbvYxVkrWXHwayjQyTTDrF5bybX92nOOR0aul2eiIiIyElROKskdmcc4cNFm5m6cBO70o/QMjKUUX1bMLRnFOHVOHRYa0nctI/pS1KZmbyd9KxcmtauwRWxTbkiNoqWkaFulygiIiIiUioKZ5VMdq6Hb1fs4N15G1myeT9hwQFc2TOKUf2iq1UQ2br/MJ8lpvLZb1vZuPsQNQL9ubhrI66MjaJPq3rqVRQRERGRSkfhrBJbumU/785PYWbyNnLyLIPa12d0/5ac1SaySoaTzOxcvlm2g+lLUlmwYQ/WQp9WdRkaG8XFXRsTFqzp0kVERESk8lI4qwJ2pWfx30WbeX/hZnZnHKFV/VBG94vmitioSh9YPB7Loo17mb4klW+WbedQdh7N69ZkaGwUV8Q2pVndmm6XKCIiIiJSJhTOqpDsXA9fL9vOO/M2sjT1ADUC/aldMxA/Y/D3cx5+BgL8/PDzM/j7gb8x+PkZAvzMMdt5l/kZ/L3Li25HwXb5+xTezr/w8iL7+OFvKGE757Fi20E+W5JK6r7DhAUHMLhrY4b2jKJXdJ1TvjmxiIiIiIivOlE4q9xdLtVQUIAfl/VoymU9mvLb5n18kbSNzOxc8jzgsZZcj8XjseR5LHnWeZ7rsXisd5nHkpPn4XCOdztrnX0Lnh99FN4nf92x23lOM9sbA2e2ieTeC9pzYedG1Ag68Y2HRURERESqKoWzSqxH8zr0aF7H1RqsdQJaSSHueGGvflgwDSJCXH0PIiIiIiK+QOFMTosxpmAIo4iIiIiInDo/twsQERERERERhTMRERERERGfoHAmIiIiIiLiAxTOREREREREfIDCmYiIiIiIiA9QOBMREREREfEBCmciIiIiIiI+QOFMRERERETEByiciYiIiIiI+ACFMxERERERER9grLUVdzJj0oBNFXbC0osEdrtdRDWltneP2t49anv3qO3dpfZ3j9rePWp79/hq27ew1tYvbkWFhjNfZYxJsNbGuV1HdaS2d4/a3j1qe/eo7d2l9neP2t49anv3VMa217BGERERERERH6BwJiIiIiIi4gMUzhyT3S6gGlPbu0dt7x61vXvU9u5S+7tHbe8etb17Kl3b65ozERERERERH6CeMxERERERER9Q6cKZMeYiY8waY8zvxpgHCi3/2BiT5H2kGGOSitk3xhizwBizwhiTbIy5utC6lsaYRcaYdd5jBR3n/KO826wzxow62f0rMx9o+2+NMfuNMTOPWa62L8e2L4uvXWXmctu3MMYkes+xwhgz7mT2r+zc/p3j3TbCGLPVGPPyqexfWbnd9saYvELn+fJk96/MyrHtb/ce0xpjIk9wfn3Oca/tq+3nHHC3/cvq/4wyYa2tNA/AH1gPtAKCgKVAp2K2exb4ezHL2wFtvc+bANuB2t7XnwDXeJ9PAsYXs39dYIP33zre53VKu39lfrjd9t515wKXAjOPWa62L8e2L4uvXWV9+EDbBwHB3udhQArQRG1f/m1f6DgvAv8FXi60TG1fzm0PZBxnudr+1Nu+BxDt/T0SeZzz63OOS23v3a5afs7xhfYvi99bZdYWbn8xTvIL1xf4rtDrB4EHj9nGAFvyG7iE4y0F2nr32Q0EFHeeQttfC7xe6PXr3mWl2r8yP9xu+0L7DSz8S0ttX3FtX1b7V6aHL7U9UA/Y7P1PQ21fAW0P9AQ+AkbjDWdq+wpr+z+EM7X9qbf9MctSOP4HVH3OcantC20zkGr2OceX2v/Y/d1o/8o2rLEpzhclX6p3WWFnATuttetOdCBjTG+cZL4e50PPfmtt7rHHNcbEGWPeLOH8x92/CnG77Y9Hbe+okLYv7f5ViOttb4xpZoxJ9tbxlLV224n2r0JcbXtjjB/OX2j/eszh1PaO8v6dE2KMSTDGLDTGXOZdprZ3nErbn2g7fc5xuN32x1Md2h58qP3d/qwTUJ4HLwemmGX2mNfXAh+e8CDGNAamAqOstR5jzHGPa61NAMaUcP7S1FXZud32p1NXZecTbX8y+1chrre9tXYL0M0Y0wT43BgzDfCUoq7Kzu22vxX42lq75Zhd9H3vKO/fOc2ttduMMa2An4wxy4CDpairsiuXtj/RtvqcU8Dttj+duqoCn2h/X/isU9nCWSrQrNDrKGBb/gtjTABwBc5QlGIZYyKA/wF/s9Yu9C7eDdQ2xgR4k3GR4x5z/oHHnH/OSexfmbnd9sejtq+Ati+nr11l4Hrb5/N+UF2B85fD6Se7fyXkdtv3Bc4yxtyKc71fkDEmA2eojdq+nL/vvT3EWGs3GGPm4Fwzou/7U2/7kzn/wGPOPwf9vq+Itj+e6tD24APt7yufdSrbsMZ4oK131pQg4Brgy0LrzwNWW2tTi9vZu88M4D1r7af5y60ziHQ2cKV30Sjgi2IO8R1wgTGmjjGmDnABzrjT0u5fmbnd9sVS2wPl3Pbl9bWrJNxu+yhjTA3v8zpAf2CN2h4o57a31g631ja31kYD93qP84DaHij/7/s6xphg7/NInO/7lWp74BTb/iToc457bV+satL24HL7+9RnHesDFwGezAP4E7AWZxzow8esexcYd4J9rwdygKRCjxjvulbAYuB34FOOzpAWB7xZ6Bg3erf5Hbih0PJi969KDx9o+7lAGnAY5y8sF6rty7/tT2X/qvRwue3PB5JxLkxOBm4udGy1fTn/zil0rNEUna1RbV++3/f9gGXe7/tlwE1q+zJp+ztw/u/MxfnLf35763OO77R9tf2c43b7l7B/hba/8Z5UREREREREXFTZhjWKiIiIiIhUSQpnIiIiIiIiPkDhTERERERExAconImIiIiIiPgAhTMREREREREfoHAmIiIiIiLiAxTOREREREREfIDCmYiIiIiIiA/4f+KvKiJMkYQMAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABfL0lEQVR4nO3dd3iUVd7G8e9JBxJCgAAJLfROAoQuCjZUJPYugoiKZW3rrrrqqruuq2t5XbGyCqICFlTEjgVUOgFDTeihJUAIJSGQft4/ZsBQEyCTZ2Zyf65rrmSees9JCPObc57zGGstIiIiIiIi4qwApwOIiIiIiIiIijMRERERERGvoOJMRERERETEC6g4ExERERER8QIqzkRERERERLyAijMREREREREvoOJMRERERETEC6g4ExHxE8aYfWUepcaYA2We3+B0vlNhjEk3xpzrdI4TMcbMNMaM8tCx6xtjZhtjso0xe4wxc40x/cusDzXG/J8xJsMYs9sY87oxJrjM+rrGmM+NMXnGmI3GmOuPOP45xpg0Y8x+Y8wMY0xzT7wOERGpGBVnIiJ+wlobfvABbAKGllk20el8RzLGBPnDOTxsHzASiAaigOeAL8u8roeBRKAz0BboDjxWZv/XgEKgIXAD8IYxphO4Cj/gM+BxoC6QDHzk4dcjIiInoOJMRMTPGWMCjDEPG2PWuXtgPjbG1HWvizPGWGPMzcaYze7el9HGmJ7GmKXu3ppXyxxrhLsnZ4wxZq+71+WcMusjjTHvGGMyjTFbjTFPG2MCj9j3/4wxu4AnjTGtjDE/u3PtNMZMNMbUcW//PtAMVzGyzxjzV2PMQGPMliNe36HeNWPMk8aYKcaYD4wxOcCIcjK1Nsb84n4tO40xxyxOjDFh7mMe7MFaaIxpaIz5FzAAeNWd8VX39u2NMT8YY3YZY1YZY64uc6x3jTFvutfnus9/zB4ra22+tXaVtbYUMEAJriKtrnuTocAr1tpd1tos4BVcxRzGmFrAFcDj1tp91tpZwDRgmHvfy4EV1tpPrLX5wJNAvDGm/bGyiIiI56k4ExHxf/cAlwJnAbHAblw9KmX1BtoA1wAvA48C5wKdgKuNMWcdse16oD7wBPDZwWIPmAAUA62BbsD5wKhj7NsA+BeuguPf7lwdgKa4igSstcM4vAfwPxV8vZcAU4A6wMRyMv0TmI6r4GkCjDnOMYcDke589YDRwAFr7aPAb8Dd7ox3u4uiH4BJ7td5HfD6wR4rtxvc564PpLhzHpcxZimQj6u4ettau+PgKveDMs+bGGMicfWklVhrV5dZvwTXzxT31yUHV1hr84B1ZdaLiEgVU3EmIuL/bgcetdZusdYW4Cp+rjxiyN8/3b0004E8YLK1doe1diuu4qNbmW13AC9ba4ustR8Bq4AhxpiGwIXAfdbaPHcB8X/AtWX2zbDWjrHWFltrD1hr11prf7DWFrh7fl7CVUSejrnW2qnu3qba5WQqApoDse7XP+s4xyzCVZS1ttaWWGsXWWtzjrPtxUC6tXa8+3UuBj4FriyzzdfW2l/dP49Hgb7GmKbHe0HW2q7u13I9UDbjt8C9xphoY0wjXIU4QE0gHNh7xKH2AhHu78tbLyIiVczXx+KLiEj5mgOfG2NKyywrwXUd0kHby3x/4BjPw8s832qttWWeb8TV89UcCAYyjTnUmRMAbC6zbdnvMcY0wDUUbwCuoiAAV8/e6Sh7jvIy/RVXD9YCY8xu4EVr7bhjHPN9XL1mH7qHXX6Aq+AtOsa2zYHexpg9ZZYFuY9xVEZr7T73MM/YI7Ifxj30cLIxJtUYk2KtXYKr97EOrt63AuB/uArpHUAjXAVdWbWBXPf3+8pZLyIiVUw9ZyIi/m8zcKG1tk6ZR5i7V+xUNDZlKh1c14VluM9TANQvc57a1tqyw+TKFnXgGtJoga7W2trAjRw+TO/I7fNw9QoB4L52LPqIbcruc8JM1tpt1tpbrbWxuHoYXzfGtD7yBbt7CZ+y1nYE+uHqHbvpOBk3A78c0d7h1to7ymxzqJfMGBOO6xqyjCPPexzBQEt3rgPW2ruttY2ttS2BbGCRtbYEWA0EGWPalNk3Hljh/n6F+/nBHLWAVmXWi4hIFVNxJiLi/94E/nVw0gn3ELhLTuN4DYB7jDHBxpircF0r9o21NhPX9VsvGmNquyciaXXE9WpHisDVg7PHGNMY+MsR67fjLkTcVgNhxpghxjVl/GNA6PEOXl4mY8xVxpgm7s134yq0So48jjFmkDGmi7sYzME1zPHgdkdm/Apoa4wZ5m6jYPcEKx3KbHORMeYMY0wIrp67+dbao3rNjDF9Dm5njKlhjHkIV4/nfPf6xsaYWOPSB9fMi0+4X3sertkY/2GMqWVcU/Bfwh89eJ8DnY0xVxhjwoC/A0uttWnHa08REfEsFWciIv7vv7gmkphujMkF5uGamONUzcc1echOXMPqrrTWZrvX3QSEACtxFTtTgJgTHOspXNO/7wW+xlVMlPVv4DH3DIkPWmv3AncCbwNbcfWkbeHETpSpJzDfGLMPVxvda63dcIxjNHLvlwOkAr/gGtoIrva90rhmunzFWpuLa9KRa3H1hm3DNQV+2SJyEq4iahfQA9cEIccSimvylmz3670IGGKtPdjL1gqY426HCcDD7usGD7oTqIFrmONk4A5r7QoA9zV+V+D6Ge7G9TtR9vpAERGpYubwywZERESOzxgzAhhlrT3D6Sy+yhjzLrDFWvtYeduKiEj1op4zERERERERL6DiTERERERExAtoWKOIiIiIiIgXUM+ZiIiIiIiIF1BxJiIiIiIi4gWCqvJk9evXt3FxcVV5ShEREREREa+xaNGindba6GOtq9LiLC4ujuTk5Ko8pYiIiIiIiNcwxmw83joNaxQREREREfECKs5ERERERES8gIozERERERERL1Cl15wdS1FREVu2bCE/P9/pKOJnwsLCaNKkCcHBwU5HEREREREpl+PF2ZYtW4iIiCAuLg5jjNNxxE9Ya8nOzmbLli20aNHC6TgiIiIiIuVyfFhjfn4+9erVU2EmlcoYQ7169dQjKyIiIiI+w/HiDFBhJh6h3ysRERER8SVeUZw57V//+hedOnWia9euJCQkMH/+fABGjRrFypUrK+UccXFx7Ny584TbPPPMMyd93HfffZe77777sGXjx48nISGBhIQEQkJC6NKlCwkJCTz88MMnffyq8PLLL7N//36nY4iIiIiIOKrca86MMU2B94BGQCkw1lr7X/e6PwF3A8XA19bav3owq0fMnTuXr776isWLFxMaGsrOnTspLCwE4O23367SLM888wx/+9vfTvs4N998MzfffDPgKgpnzJhB/fr1T/u4p8pai7WWgIBjfxbw8ssvc+ONN1KzZs0KH7O4uJigIMcvmRQRERERqTQV6TkrBv5sre0A9AHuMsZ0NMYMAi4BulprOwEveDCnx2RmZlK/fn1CQ0MBqF+/PrGxsQAMHDiQ5ORkAMLDw3nooYfo0aMH5557LgsWLGDgwIG0bNmSadOmAUf3Yl188cXMnDnzqHNeeuml9OjRg06dOjF27FgAHn74YQ4cOEBCQgI33HADAB988AG9evUiISGB22+/nZKSEsDVM9a2bVvOOussZs+eXeHX+vzzz9OzZ0+6du3KE088AUB6ejrt27dn1KhRdO7cmRtuuIEff/yR/v3706ZNGxYsWADAk08+ybBhwzj77LNp06YN//vf/8o9bocOHbjzzjvp3r07mzdv5o477iAxMZFOnTod2u6VV14hIyODQYMGMWjQoENtfdCUKVMYMWIEACNGjOCBBx5g0KBBPPTQQ6xbt44LLriAHj16MGDAANLS0ircFiLinfYeKGLmqh2s2pbrdBQREZEqV27Xg7U2E8h0f59rjEkFGgO3As9aawvc63Z4MqinnH/++fzjH/+gbdu2nHvuuVxzzTWcddZZR22Xl5fHwIEDee6557jssst47LHH+OGHH1i5ciXDhw8nKSmpwuccN24cdevW5cCBA/Ts2ZMrrriCZ599lldffZWUlBQAUlNT+eijj5g9ezbBwcHceeedTJw4kfPOO48nnniCRYsWERkZyaBBg+jWrVu555w+fTpr1qxhwYIFWGtJSkri119/pVmzZqxdu5ZPPvmEsWPH0rNnTyZNmsSsWbOYNm0azzzzDFOnTgVg6dKlzJs3j7y8PLp168aQIUNYvnz5cY+7atUqxo8fz+uvvw64ho/WrVuXkpISzjnnHJYuXco999zDSy+9VOHevdWrV/Pjjz8SGBjIOeecw5tvvkmbNm2YP38+d955Jz///HOFfw4i4ryMPQdYmL6L5PTdLEzfxartuVgLwYGGscMSGdS+gdMRRUREqsxJjQszxsQB3YD5wPPAAGPMv4B84EFr7cLTCfPUlytYmZFzOoc4SsfY2jwxtNNx14eHh7No0SJ+++03ZsyYwTXXXMOzzz57qLfmoJCQEC644AIAunTpQmhoKMHBwXTp0oX09PSTyvTKK6/w+eefA7B582bWrFlDvXr1Dtvmp59+YtGiRfTs2ROAAwcO0KBBA+bPn8/AgQOJjo4G4JprrmH16tXlnnP69OlMnz79UCG3b98+1qxZQ7NmzWjRogVdunQBoFOnTpxzzjkYY456bZdccgk1atSgRo0aDBo0iAULFjBr1qzjHrd58+b06dPn0P4ff/wxY8eOpbi4mMzMTFauXEnXrl1Pqu2uuuoqAgMD2bdvH3PmzOGqq646tK6goOCkjiUiVau01LJmxz4Wpu86VJBt3XMAgFohgXRvHsVFXWKIb1qH579P4/YPFvHO8EQGtIl2OLmIiEjVqHBxZowJBz4F7rPW5hhjgoAoXEMdewIfG2NaWmvtEfvdBtwG0KxZs0oLXpkCAwMZOHAgAwcOpEuXLkyYMOGo4iw4OPjQ7H8BAQGHhkEGBARQXFwMQFBQEKWlpYf2OdY07jNnzuTHH39k7ty51KxZk4EDBx5zO2stw4cP59///vdhy6dOnXpKsxBaa3nkkUe4/fbbD1uenp5+6LWc6LXB0bMfGmNOeNxatWoder5hwwZeeOEFFi5cSFRUFCNGjDjuNPdlz3PkNgePWVpaSp06dQ71NIqI98kvKmHZ1r2HCrHk9F3k5Lv+pjSICKVni7rcOqAFiXF1ad8ogqDAP0bad20cyXX/m8et7yXz7s296NOy3vFOIyIi4jcqVJwZY4JxFWYTrbWfuRdvAT5zF2MLjDGlQH0gq+y+1tqxwFiAxMTEwwq3I52oh8tTVq1aRUBAAG3atAEgJSWF5s2bn9Kx4uLieP311yktLWXr1q2Hrtcqa+/evURFRVGzZk3S0tKYN2/eoXXBwcEUFRURHBzMOeecwyWXXML9999PgwYN2LVrF7m5ufTu3Zt7772X7OxsateuzSeffEJ8fHy52QYPHszjjz/ODTfcQHh4OFu3biU4OPikXt8XX3zBI488Ql5eHjNnzuTZZ5+lRo0aFTpuTk4OtWrVIjIyku3bt/Ptt98ycOBAACIiIsjNzT00rLFhw4akpqbSrl07Pv/8cyIiIo46Xu3atWnRogWffPIJV111FdZali5dWqG2EBHP2LO/kEUbd7PQXYgt3bKXwhLXB1atG4QzpGsMic3r0jOuLk3r1jjhB01RtUL4YFRvrhs7j5HvLuS9kb1IjKtbVS9FRETEERWZrdEA7wCp1tqXyqyaCpwNzDTGtAVCgBPPFe+F9u3bx5/+9Cf27NlDUFAQrVu3PjRJx8nq37//oSGCnTt3pnv37kdtc8EFF/Dmm2/StWtX2rVrd9iwv9tuu42uXbvSvXt3Jk6cyNNPP835559PaWkpwcHBvPbaa/Tp04cnn3ySvn37EhMTQ/fu3Q9NFHIi559/PqmpqfTt2xdwDef84IMPCAwMrPDr69WrF0OGDGHTpk08/vjjxMbGEhsbW6HjxsfH061bNzp16kTLli3p37//Ya/7wgsvJCYmhhkzZvDss89y8cUX07RpUzp37sy+ffuOmWfixInccccdPP300xQVFXHttdeqOBOpItZatuw+QPLGXYeKsdXbXf9WgwMNXRpHcnP/OBLj6tKjeRR1a4Wc9Dnqh4cy8dbeXPvWPEaMX8gHo3qT0LROJb8SERER72GOGIV49AbGnAH8BizDNZU+wN+AH4FxQAJQiOuasxPOxpCYmGgPzn54UGpqKh06dDiV7FKFnnzyScLDw3nwwQedjnJS9PslUjlKSi1p23IOTdyRnL6bbTmuYccRoUH0iIuiZ1xdEptHEd+0DmHBFf/gpzzb9uZz9Vtz2b2/kMm39qFz48hKO7aIiEhVM8YsstYmHmtdRWZrnAUcb+zJjacTTEREvNOBwhJSNu8hOX0XCzfuZvHG3ewrcF0vFhMZRq8WdekZF0ViXF3aNowgMODkr4WtqEaRYUy6tTfXvDWPG9+Zz+Rb+9AhprbHziciIuKUcnvOKpN6zqSq6fdLpGKy9xWQvNE1PHFh+m6Wb91LcanFGGjXMILEgz1jcXVpXKeGIxk3Ze/n6rfmUlRSyoe39aFNw6OvRxUREfF2p9VzJiIi/sVay6Zd+w9dK7YwfRfrsvIACAkMIL5pJLee2ZKecVH0aFaXyJonN3mQpzSrV5PJt/Xh6rfmcv3b8/notj60jA4vf0cREREfoeJMRMTPFZeUkpqZ67pWzD2BR1au676AkTWCSWwexZU9mtIzLorOjSMr9Xqxytaifi0mjerNtWPncf3/5vPR7X1oXq9W+TuKiIj4ABVnIiJ+bPzsDbzw/SryCl2zujaJqsEZresfGqbYOjqcAA9eL+YJbRpGuKbZ/98fBVqTqJpOxxIRETltKs5ERPxQaanl6a9TGTd7AwPbRXNF9yYkxkURE+nM9WKVrUNMbT64pTfXlynQ/OW1iYh4jf/8B3r2hEGD/lg2YwYsXAh//atzufxYgNMBvEFgYCAJCQl07tyZq666iv3795/ysUaMGMGUKVMAGDVqFCtXrjzutjNnzmTOnDmHnr/55pu89957p3zug9LT0+ncufNhy5588kleeOGFkzpOZeURkaqVX1TC3ZMXM272Bkb2b8E7w3syND7W74qXzo0jee+W3uzKK+SG/81nh3tqfxERr/Sf/7gKm7JmzHAt91Y9e8LVV/+Re8YM1/OePZ3N5cfUcwbUqFGDlJQUAG644QbefPNNHnjggUPrS0pKTupmzQe9/fbbJ1w/c+ZMwsPD6devHwCjR48+6XN4SnFxsVflEZGK2Z1XyK3vJbNo024eG9KBUQNaOh3JoxKa1mHCyJ4Me2cB1789nw9v60P98FCnY4mIHO1gofPxx66eqIOFzscfg7VQXAyFha5HUdHR31fFsmOtDwmBc8+FRo1g7154//3De9KkUvlWcVYFXasDBgxg6dKlzJw5k6eeeoqYmBhSUlJYtmwZDz/8MDNnzqSgoIC77rqL22+/HWstf/rTn/j5559p0aIFZW9NMHDgQF544QUSExP57rvv+Nvf/kZJSQn169fnnXfe4c033yQwMJAPPviAMWPG8NNPPx260XNKSgqjR49m//79tGrVinHjxhEVFcXAgQPp3bs3M2bMYM+ePbzzzjsMGDDgpF7jiY7dr18/Zs+eTVJSErm5uYSHh3P99ddz0UUXHdp/2bJlrF+/HoCRI0eSlZVFdHQ048ePp1mzZowYMYLatWuTnJzMtm3b+M9//sOVV15ZKT8fETm+zbv2M3z8ArbsPsBr13fnoi4xTkeqEj2a12XciJ6MGL+AG9923QctqlaI07FEfIuGr3mOtbBuHWzfDmefDYMHuwqe/ftdXwcPdhVCnhQc7HqEhPzx9Xjfh4ZCRMThy1asgKVLXce6+mq46CIYPhwuvti1XiqNbxVnJ/rEoRIUFxfz7bffcsEFFwCwYMECli9fTosWLRg7diyRkZEsXLiQgoIC+vfvz/nnn8/vv//OqlWrWLZsGdu3b6djx46MHDnysONmZWVx66238uuvv9KiRQt27dpF3bp1GT169KFiDOCnn346tM9NN93EmDFjOOuss/j73//OU089xcsvv3wo54IFC/jmm2946qmn+PHHH496LevWrSMhIeHQ823bth06z4mOvWfPHn755RfANRQSIDY29lDP4muvvcYvv/xC8+bNGTp0KDfddBPDhw9n3Lhx3HPPPUydOhWAzMxMZs2aRVpaGklJSSrORDxs6ZY9jHx3IcWllomjetMzrq7TkapUn5b1ePumnoycsJAb35nPpFF9vOYWACI+4eB7rGefhUsugWXLKvU9VrVhLWzYAMnJsGiR6+vixbBnj2t9SAhER0NGhqvNzzzz2AXS6Sw7cn1wMJjTmPjp4Pvtxx+HV1+F88+HX36BadOgXj247jpXodajx+mdRwBvK87uuw/cRcBxxca6PmGIiYHMTOjQAZ56yvU4loQEcBcex3PgwIFDhcyAAQO45ZZbmDNnDr169aJFixYATJ8+naVLlx66nmzv3r2sWbOGX3/9leuuu47AwEBiY2M5++yzjzr+vHnzOPPMMw8dq27dE79p2rt3L3v27OGss84CYPjw4Vx11VWH1l9++eUA9OjRg/T09GMeo1WrVocKKvij0Crv2Ndcc81xc82ePZu3336b3377DYC5c+fy2WefATBs2DD+WuaTtUsvvZSAgAA6duzI9u3bT/h6ReT0/JS6nbsn/U698BAmjOxFq2p6768z2tTnrWE9uP29Rdw0fgEf3NKLiDAVaCIVMmiQqxA791wYNcr1JrtLF9eyZcugY0fXIyZGb8APshY2bjy8EFu0CHbvdq0PDob4eLjmGkhMdBUvWVlwww2uQueNN+C557x7iGDZjpBBg1yPq6+GyZNdvX0TJsD//ucq2jp2dBVpN97oer8up8S7irOKiIpy/WHYtAmaNXM9P01lrzkrq1atP+6dY61lzJgxDB48+LBtvvnmG0w5f6SsteVuczJCQ13XUwQGBlJcXFxpx4XDX3NZmZmZ3HLLLUybNo3w8GO/8Sv7Gg9mBA4b6ikilWvi/I08PnU5nWIjeWdEIg0iwpyO5KhB7Rrw2g3dueODRYwYv5D3RvaiVqjv/Vcn4ohBg+Daa2HSJNeH2zVrwkcf/VFsANSu/Ueh1qHDH983awYBfjzPnLWwefPRhVh2tmt9UBB07QpXXukqxBIToXPnw4f8zZjhKsyOLHQOPvdGCxcenu9gEX9wuOuFF7p6BT/6yFWoPfQQPPKIq3dt+HBXL2wN/5qMytO863+scnq4gMO7Vt94A554okp+oQcPHswbb7zB2WefTXBwMKtXr6Zx48aceeaZvPXWW9x0003s2LGDGTNmcP311x+2b9++fbnrrrvYsGHDYcMaIyIiyMnJOepckZGRREVF8dtvvzFgwADef//9Qz1dp+tUjl1UVMTVV1/Nc889R9u2bQ8t79evHx9++CHDhg1j4sSJnHHGGZWSUUTKZ63l+e9X8frMdQxqF82r13dXEeJ2XseGjLmuG3dP/p1bJixk/Ihe1Ajx3htri3iNGTNg+vQ/3mN9/DEMHAg7dsDKla5Haqrr69dfw7hxf+xbsya0b3900daypatw8SXWwtathxdiycmwc6drfVCQq/C69NI/CrEuXVzXap3IiQodby3OjnW94cHC8qA6deD2212P1avhvfdcj+uug8hIV8/h8OHQt696XSvAt/61HK9rtQo+cRg1ahTp6el0794day3R0dFMnTqVyy67jJ9//pkuXbrQtm3bYxY60dHRjB07lssvv5zS0lIaNGjADz/8wNChQ7nyyiv54osvGDNmzGH7TJgw4dCkHS1btmT8+PGV9lpO9thz5sxh4cKFPPHEEzzxxBOAq8fwlVdeYeTIkTz//POHJgQREc8rLC7lr1OWMDUlg+t6NeOfl3QiKNCPP7E+BRd2ieGlklLu/yiFW99L5u3hiYQFq0ATOa7y3mM1bHj0e61du/4o1g5+/eUX+OCDP7YJCYG2bY8u2tq0Kb+YqSoZGX8UYAeLsR07XOsCA6FTJ0hKcg1LTEx09ZCFncIohYoUOr6ubVt4+mn4xz9cv1MTJrh+H8aOdf3Mb7rJ9WjWzOmkXstU5ZCzxMREm5ycfNiy1NRUOnToULEDaCYhOUkn9fsl4gNy8osY/f4i5qzL5i+D23HnwFaVOmza30xZtIW/TFnCWW2jeWtYD0KDVKCJHFNlvsfKzYW0tMOLtpUrYf16V68UuIqeVq0OL9g6dHD1vh3nEotKkZl5+LDE5GTYts21LiDAlePg9WGJia5rxjQs7/Tk5sKnn8K777qKd2Ncv2fDh8MVV3j25+2ljDGLrLWJx1znU8WZyEnS75f4k4w9B7h5/ELWZe3jP1d25fLuTZyO5BMmL9jEI58t47yODXn9hu4Eq5dRxBkHDriGvZUt2FJTXcvKXkMfF3d00dahg2v4XFnlFZTbtx9diGVkuLYzxnXMIwuxalgoVKkNG1z3SZswwVWs16oFV13lKtTOPNO/r1ssQ8WZVFv6/RJ/kZqZw83jF5JXUMybw3rQv3V9pyP5lPfmpvP3L1ZwUZdGvHJtNw0DFfEmRUWwdu3RRVtaGuTn/7FdbOzhRVt+vmsI3SefuK4BGzfONZyuWzfXLIpbtrj2MwbatTu8EEtIgONMcCZVwFqYNctVpH38sat3LS4Ohg1zFWqtWjmd0KNUnEm1pd8v8Qez1uxk9AeLCA8N4t2RPWnfqLbTkXzS27+t5+mvU7kkIZaXrk4gMEDDQX3J9BXbePbbNB67uANnt2/odBypCiUlkJ5+dNG2ciXs2/fHdsb8MVwSXIXYwSKsRw9XsRYRUeXxpYL274epU13DHn/80fWzPOMMV5F21VWuSUX8jNcXZ+3bt9c1E1LprLWkpaWpOBOf9umiLTz06VJaNwhn/M09iYnUtQ+n4/WZa/nPd6u4skcT/nNFVwJUoPmEvIJizn5xJjtyC7AWbj+zJQ8ObqchqtXVwdkUDxZskya5hjIOGwZjxvjlm/lqY8sW1wQiEya4ek7DwuDyy12F2jnnuK5V9AMnKs4c/6sWFhZGdna27oUllcpaS3Z2NmGnMpuSiBew1jLmpzX8+ZMl9G5Zl49H91VhVgnuHNia+89ty5RFW3h06nL93+MjXp2xlu05BUwa1YcbejfjrV/Xc/Vbc9mye7/T0cQJxkCTJq57acXHu65jevxx+PZbWLzY6XRyOpo0gYcfdhXd8+bBzTe7fq6DB0Pz5q51qalOp/Qox3vOioqK2LJlC/llxxSLVIKwsDCaNGlCcHCw01FETkpxSSmPTV3Ohws3c3m3xjx7RVdCghz/LM1vWGt5YfoqXpuxjuF9m/NkUieN3vBiG3bmMfj/fmVofCwvXh0PwFdLM3j402UEBhiev7Ir53dq5HBKccSR0/8f+Vz8Q0EBfPmla9jjd9+5hrv26uXqTbv2Wqhb1+mEJ82rhzWKiMgf8gqKuWvSYmauyuLuQa358/ltVTh4gLWWZ75J5X+/bWDUGS14dEgHtbOXGvnuQhZs2MXPD55Fg4g/RkOk78zj7smLWb41h5H9W/Dwhe31IUZ1o1ssVT/btrmGsU6YAEuXuu6jl5TkKtQGDwYf+UBexZmIiA/YkZvPyHcXkpqZyz8v6cz1vXWTTk+y1vLUlyt5d046dw5sxV8Gt1OB5mV+TtvOyHeTefSiDtx6Zsuj1hcUl/Dvb9J4d0468U0iefX67jStW9OBpCJS5VJSXL1pkyZBVhY0aAA33OC6JjEpyauLdhVnIiJebu2OfYwYv4DsfYW8fkN3BrVv4HSkasFay6NTlzNp/ibuO7cN953b1ulI4lZQXMLg//uVwADDt/eeecJese+WZ/KXKUsBeP7KrlzQOaaqYoqI04qKXNelTZjgGv5YVOSaOOT22+GJJ2DFCq8b7nqi4iyoqsOIiMjhFmzYxa3vJRMcaPjo9j50bVLH6UjVhjGGpy/pTFFxKS//uIaQoADuHNja6VgCvDNrA+nZ+3lvZK9yhyte0DmGTrGR3D1pMaM/WMzwvs155KIOhAX7x8xuInICwcGunrKkJMjOhsmTXbN2vv46TJ8Oe/Z4VWFWHg3OFhFx0NdLM7nxnfnUCw/h8zv7qzBzQECA4dkrunJpQiz/+W4Vb/+23ulI1d62vfm8+vNazu/YkDPbRldon6Z1a/LJ6H7cckYLJszdyBVvzCF9Z56Hk4qIV6lXD+6+G1atgtGjXTc3v+MOnynMQMWZiIgjrLW8/dt67pq0mK6NI/l0dD9dK+OgwADDC1fFM6RLDE9/ncqEOelOR6rW/v1tKsWllseGdDyp/UKCAnj84o7876ZEtuw+wMVjZvHlkgwPpRQRrzVjBkyZ4rrFwhtvuJ77CBVnIiJVrKTUNRHF01+nclGXRnwwqjdRtUKcjlXtBQUG8PK1CZzXsSFPTFvBpPmbnI5ULS1M38UXKRmMPrMlzeqd2gcW53VsyDf3DqBtw3D+NPl3/vb5MvKLSio5qYh4pbK3VPjHP1xfr77aZwq0coszY0xTY8wMY0yqMWaFMeZe9/InjTFbjTEp7sdFno8rIuLb8otKuHPiIt6dk84tZ7Tg1eu667oYLxIcGMCr13djULtoHp26jCmLtjgdqVopKbU88cUKYiPDuOM0r/1rXKcGH93el9vPasmk+Zu49LXZrMvaV0lJRcRrLVx4+DVmgwa5ni9c6GyuCip3tkZjTAwQY61dbIyJABYBlwJXA/ustS9U9GSarVFEqrNdeYWMmrCQ3zfv4fEhHRl5RgunI8lx5BeVcOt7ycxau5OXr0ngkoTGTkeqFt6ft5HHpy7nteu7M6Rr5c24OCNtBw98nEJBcSnPXNaFS7vp5ykizjnRbI3l9pxZazOttYvd3+cCqYD+qomInISN2Xlc8cYcVmTk8Pr13VWYebmw4EDGDkukd4u6PPDxEr5Zlul0JL+3O6+QF6evom/LelzUpVGlHntQ+wZ8c+8AOsXW5r6PUnhoylIOFGqYo4h4n5O65swYEwd0A+a7F91tjFlqjBlnjImq7HAiIv4gZfMeLn99Drv3FzLp1t5c2EX3YPIFNUICeWd4T7o1rcM9k39n+optTkfyay/+sIrc/GKeTOrkkZuBx0TWYPKtfbh7UGs+XrSZS16bxZrtuZV+HhGR01Hh4swYEw58Ctxnrc0B3gBaAQlAJvDicfa7zRiTbIxJzsrKOv3EIiI+5MeV27l27Fxqhgby6R396NG8rtOR5CTUCg1i/M096dw4krsmLWbGqh1OR/JLKzL2Mmn+Job1aU67RhEeO09QYAAPDm7HeyN7kb2vkKRXZ/NJ8maPnU9E5GRVqDgzxgTjKswmWms/A7DWbrfWllhrS4H/Ab2Ota+1dqy1NtFamxgdXbF7lYiI+IP3523ktveTadswgs/u6E+r6HCnI8kpiAgLZsLIXrRrFMHt7y9i1pqdTkfyK9Zanpq2kjo1Q7j/3LZVcs4BbaL59t4BxDeN5C9TlvLAxynkFRRXyblFRE6kIrM1GuAdINVa+1KZ5WXH5VwGLK/8eCIivqe01PLcd2k8PnU5g9o14MPb+hAdEep0LDkNkTWCeX9kb1rWr8Wo9xYyb32205H8xrQlGSxI38VfB7cjsmZwlZ23Qe0wJo7qw73ntOHz37eS9Oos0rblVNn5RUSOpSI9Z/2BYcDZR0yb/x9jzDJjzFJgEHC/J4OKiPiCguIS7v84hTdmruOG3s14a1gPaoYEOR1LKkFUrRAmjupN06iajHx3Icnpu5yO5PPyCop55ptUujSO5KrEplV+/sAAw/3ntWXiLb3JyS/mkldn8+GCTZQ3k7WIiKeUO5V+ZdJU+iLiz/YeKOL295OZt34Xf72gHXec1cojExuIs3bk5nPtW/PYkVvAB6N6k9C0jtORfNZz36Xxxsx1fHZnP7o3c3ZesazcAu7/KIVZa3dySUIs/7qsC+Gh+mBFRCrfaU2lLyIi5du65wBXvTmHRRt38/I1Cdw5sLUKMz/VICKMSbf2oW6tEIa9M5/lW/c6HcknbdiZxzu/beCK7k0cL8wAoiNCmTCyFw+e35Yvl2QwdMwsVmToZysiVUvFmYjIaVqRsZfLX59N5p58JtzcSze4rQYaRYYx6dbe1A4L5sZ35pOaqWuVTtY/v1pJSFAAD13YzukohwQGGO4+uw2Tb+3D/sJiLnt9Du/P26hhjiJSZVSciYicht/WZHHNW/MIMIYpd/SjX+v6TkeSKtIkqiaTb+1DjeBAbnx7Pmt36J5ZFfVz2nZ+TtvBvee0oUFEmNNxjtK7ZT2+uWcAfVvW4/Gpy7l70u/k5Bc5HUtEqgEVZyIip+iT5M3cPH4hTaJq8Pmd/T16fybxTs3q1WTSrX0ICDCMGL+QnfsKnI7k9QqKS/jHlytpGV2L4f3inI5zXPXCQxk/oicPXdCe71Zs4+JXZrFsi4Y5iohnqTgTETlJ1lr+++Ma/jJlKX1a1uOT0X1pFOl9n/5L1WhRvxbvDE8kK7eA0e8voqC4xOlIXm3crHTSs/fz5NBOhAR599uQgADDHQNb8dFtfSgqKeWKN+bw7uwNGuYoIh7j3X8VRUS8TFFJKQ9/uoz/+3E1l3dvzLgRPYkIq7p7M4l36tqkDi9eHU/yxt088tkyvXk/jm178xnz8xrO69iQM9tGOx2nwhLj6vLNPQMY0KY+T365ktEfLGLvfg1zFJHKp+JMRKSCCopLGDUhmY+SN3PP2a158ap4r//kX6rOxV1juf/ctny2eCtv/bre6The6d/fplJcanl8SEeno5y0qFohvD08kceGdOCn1B0MGfMbKZv3OB1LRPyM3lWIiFTQ1N+38svqLP55SSceOL+dpsqXo9xzTmuGxsfy3Hdp/LByu9NxvMrC9F18kZLB6DNb0qxeTafjnBJjDKMGtOST0X2xFq58Yw5v/7ZePaUiUmlUnImIVIC1lvGz02nfKIIb+zR3Oo54KWMMz1/Zla6NI7n3w981xb5bSanliS9WEBsZxh0DWzsd57R1axbFN/cM4Oz2DXj661RufS+ZPfsLnY4lIn5AxZmISAXMXZdN2rZcRvZvoR4zOaGw4EDG3pRI7bBgRk1IJitXMzhOXrCJlZk5PDqkIzVCAp2OUykiawbz1rAePDG0I7+szuKi//7Goo27nI4lIj5OxZmISAWMm51O3VohJCXEOh1FfEDD2mG8PTyR7LwCbn8/mfyi6juD4+68Ql6Yvoq+LetxUZdGTsepVMYYbu7fgk/v6EdQYABXvzWPN39ZR2mphjmKyKlRcSYiUo6N2Xn8lLadG3o3IyzYPz71F8/r3DiS/7s6gcWb9lTrGRxf+mE1ufnFPJHU0W97nbs2qcNX95zB4E4NefbbNEZOWEi27nknIqdAxZmISDkmzNlIoDG61kxO2oVdYnjw/LZ8/vtWXp+5zuk4VW5lRg4T529kWJ/mtG9U2+k4HlU7LJjXru/OPy/tzJx12Vz0ym8s2KBhjiJyclSciYicwL6CYj5J3syQrjE0rK0bTcvJu2tQay5JiOX571fx3fJtTsepMtZanpy2gjo1Q7j/3LZOx6kSxhiG9WnO53f2o2ZIENeOncv42RucjiUiPkTFmYjICUxJ3kxuQTE392/hdBTxUcYYnruiKwlN63D/Ryks37rX6UhVYtqSDBak7+Ivg9sRWbN63ai9U2wkX/7pDAa0iebf36aRm68bVotIxag4ExE5jtJSy7tz0unWrA4JTes4HUd8mGsGxx5E1Qzm1veS2ZGb73Qkj8orKOaZb1Lp0jiSqxObOh3HEeGhQdxzThsKi0uZvkL3vBORilFxJiJyHDNW7SA9e796zaRSNIgI43/DE9mzv4jb3lvk1zM4vjZjLdtzCngyqROBAf45CUhFdG9WhyZRNZi2JMPpKCLiI1SciYgcx/jZ6TSqHcaFnf1r+m9xTqfYSF6+NoGUzXv465SlfjmDY/rOPN7+bQOXd29Mj+ZRTsdxlDGGofGxzFq7U7M3ikiFqDgTETmG1dtzmbV2J8P6Nic4UH8qpfIM7tSIv17QjmlLMnj157VOx6l0//xqJSFBATx8QXuno3iFpPhYSkot31SjyWBE5NTpHYeIyDGMn51OaFAA1/dq5nQU8UN3nNWKy7s15sUfVvPNskyn41SaGWk7+CltB/ec05oGmt0UgPaNImjTIJwvUzS0UUTKp+JMROQIu/MK+fz3LVzWrTFRtUKcjiN+yBjDv6/oQo/mUTzwcQrLtvj+DI4FxSU89eUKWkbXYkQ/Xad5kDGGpPhYFqTvYuueA07HEREvp+JMROQIkxduIr+olBH945yOIn4sNCiQt4b1oF6tUG59L5ntOb49g+O4WemkZ+/niaGdCAnS24uyhsbHAvCVJgYRkXLor6eISBlFJaW8P3cj/VrVo32j2k7HET9XPzyUt4cnkpNfxK3vJXOg0DdncNy2N58xP6/hvI4NOatttNNxvE5c/VrEN62jWRtFpFwqzkREyvh+xTYy9+YzUtPnSxXpEFOb/17bjWVb9/LglCU+OYPjs9+mUlxqeXxIR6ejeK2k+FhWZOSwLmuf01FExIupOBMRKWP87HSa16vJ2e0bOB1FqpHzOjbk4Qva8/XSTP770xqn45yUhem7mJqSwe1ntqRZvZpOx/FaF3eNwRiYpolBROQEVJyJiLgt3bKHRRt3M7xvHAHV+Ma54ozbzmzJlT2a8PKPa/jSR4a/lZRanvhiBbGRYdw5sLXTcbxaw9ph9GlRjy+XZPhk76iIVI1yizNjTFNjzAxjTKoxZoUx5t4j1j9ojLHGmPqeiyki4nnjZ6cTHhrEVYlNnI4i1ZAxhn9d1pmecVE8+MkSlmze43Skck1esImVmTn8bUgHaoQEOh3H6yUlxLJ+Zx4rMnKcjiIiXqoiPWfFwJ+ttR2APsBdxpiO4CrcgPOATZ6LKCLieTty8vlqaQZX9mhCRFiw03GkmgoNCuTNG3sQHeGawTFzr/dOvb47r5AXpq+iT8u6DOkS43Qcn3Bh50YEBxpNDCIix1VucWatzbTWLnZ/nwukAo3dq/8P+Cug/nkR8WkfzNtIcallRL84p6NINVcvPJR3hvckr6CYW99LZn9hsdORjumlH1aTm1/Mk0mdMEbDgCuiTs0QzmwTzZdLMigt1VsnETnaSV1zZoyJA7oB840xScBWa+0STwQTEakq+UUlTJy/ibPbNSCufi2n44jQrlEEY67vxoqMHB78ZInXvZFfmZHDxPkbGdanuW45cZKSEmLJ3JvPwvRdTkcRES9U4eLMGBMOfArch2uo46PA3yuw323GmGRjTHJWVtap5hQR8Zgvl2SQnVfIyDM0fb54j7PbN+TRizrwzbJtvPzjaqfjHGKt5clpK6hTM4T7z23rdByfc17HhtQIDtTQRhE5pgoVZ8aYYFyF2URr7WdAK6AFsMQYkw40ARYbYxodua+1dqy1NtFamxgdrRtTioh3sdYyfnY67RpG0K9VPafjiBzmljNacE1iU175eS1fpGx1Og4A05ZksCB9F38Z3I7Imro+82TVDAni3I4N+WZZJkUlpU7HEREvU5HZGg3wDpBqrX0JwFq7zFrbwFobZ62NA7YA3a212zyaVkSkki3YsIuVmTmM6B+n62bE6xhj+OelnenVoi5/mbKU3zftdjRPXkEx//4mjS6NI7k6samjWXxZUnwsu/cXMWvtTqejiIiXqUjPWX9gGHC2MSbF/bjIw7lERKrE+Nnp1KkZzKUJjcvfWMQBIUEBvHljDxrVDuPW9xaRsce5GRxfm7GWbTn5PJnUiUDdC/CUndm2PrXDgvhSN6QWkSNUZLbGWdZaY63taq1NcD++OWKbOGutPv4REZ+yedd+pq/cxnW9mukeTeLV6tYK4Z3hiRQUlXDLhGTyCqp+Bsf0nXm8/dsGLu/emB7No6r8/P4kNCiQCzvH8P2KbeQXlTgdR0S8yEnN1igi4k/em5uOMYZhfZo7HUWkXG0aumZwXLUth/s/SqnyGRz/+dVKQoICePiC9lV6Xn+VlBBLXmEJP6XucDqKiHgRFWciUi3lFRTz4cLNXNi5EbF1ajgdR6RCBrZrwGNDOjJ95XZe/GFVlZ13RtoOfkrbwT3ntKZB7bAqO68/69OyHtERoUxb4h0TvYiId1BxJiLV0meLt5CbX8zN/TV9vviWm/vHcV2vZrw2Yx2f/77F4+crKC7hH1+tpGV0LUb007+XyhIYYLi4awwzVmWRk1/kdBwR8RIqzkSk2ikttYyfk058k0i6N6vjdByRk2KM4R+XdKJPy7o8NGUZizZ6dgbHcbPS2bAzjyeGdiIkSG8bKlNSfCyFxaV8v1yTXYuIi/7Kiki18+uaLNZn5XFz/xaaPl98UnBgAG/c0IPYOmHc/n4yW3bv98h5tufkM+bnNZzXsSFntdW9SitbQtM6NKtbUzekFpFDVJyJSLUzbnY6DSJCuahLjNNRRE5ZVK0Q3h7ek4LiUkZNSGafB2Zw/Pc3qRSXWh4f0rHSjy2uXtCh8THMWZfNzn0FTscRES+g4kxEqpW1O/bx6+osbuzTXEO0xOe1bhDO6zd0Z82Ofdz3YQollTiD48L0XUxNyeD2M1vSrF7NSjuuHC4pvjElpZZvlmU6HUVEvIDemYhItfLunA2EBAZwfe9mTkcRqRQD2kTz94s78mPqdv7zfVqlHLOk1PLEFyuIjQzjjoGtKuWYcmztGkXQrmEE03RDahFBxZmIVCN79xfx6aKtXJIQS/3wUKfjiFSam/o258Y+zXjrl/VMWXT6MzhOXrCJlZk5/G1IB2qGBFVCQjmRpIRYkjfu9ti1gyLiO1SciUi18VHyJg4UlWj6fPE7xhieGNqJ/q3r8chnS1mYvuuUj7VnfyEvTF9Fn5Z1GaLrMqvE0K6xAHy5REMbRao7FWciUi0Ul5QyYc5GereoS8fY2k7HEal0wYEBvH59D5pG1eT29xexedep9cK8OH01ufnFPJnUSbOZVpFm9WrSrVkdzdooIirORKR6+DF1O1v3HFCvmfi1yJrBvD08keIS1wyOuSd5c+OVGTlMnL+RYX2a076RPsSoSknxsaRm5rB2R67TUUTEQSrORKRaGDcrnSZRNTivY0Ono4h4VMvocN64sQdrs/Zx70nM4Git5clpK6hTM4T7z23r4ZRypCFdYwgwaGIQkWpOxZmI+L3lW/eyIH0Xw/vGERigYVri//q3rs9TSZ34OW0Hz36bWqF9pi3JYEH6Lv4yuB2RNYM9nFCO1CAijL6t6jFtSQbWVt4tEUTEt6g4ExG/N352OjVDArm6Z1Ono4hUmRv7NGd43+b877cNfLRw0wm3zSso5t/fpNG5cW2uTtS/E6ckxceSnr2fZVv3Oh1FRByi4kxE/FpWbgFfLsngyh5NiKyh3gCpXh6/uCMD2tTnsanLmb8++7jbvTZjLdty8nkqqZN6lx10QacYggONhjaKVGMqzkTEr02av4nCklKG94tzOopIlQsKDODV67vTtG5NRn+wiE3ZR8/gmL4zj7d/28Dl3RrTo3ldB1LKQZE1gzmrbQO+XJpR4WsFRcS/qDgTEb9VUFzCB/M3MrBdNK2iw52OI+KIyBrBjBvek1ILt0xYSM4RMzj+86uVBAcaHr6wvUMJpaxLEmLZnlPAgg2nfq86EfFdKs5ExG99vTSTrNwCTZ8v1V5c/Vq8cWN3NuzM40+Tfqe4pBSAGWk7+CltB/ec04YGtcMcTikA53ZoSM2QQN3zTKSaUnEmIn7JWsv42em0iq7FmW3qOx1HxHH9WtXnn5d25pfVWTzzTRoFxSX846uVtIyupQ8wvEiNkEDO69iQb5dnUlhc6nQcEaliKs5ExC8t2ribZVv3MqJ/C4zRBAciANf1asbI/i0YN3sDw8ctYMPOPP5+cUdCgvR2wJskxceyZ38Rs9ZmOR1FRKqY/hqLiF8aPzud2mFBXNG9sdNRRLzK3y5qz1lto5m3fhfndmjIwHYNnI4kRxjQJprIGsGatVGkGgpyOoCISGXL2HOA71ZsY9QZLagZoj9zImUFBQYw5vpuvPXLOob1iXM6jhxDSFAAF3VpxBcpGRwoLKFGSKDTkUSkiqjnTET8zntzN2KtZVjf5k5HEfFKtcOC+cvg9jSK1CQg3mpofCz7C0v4MXW701FEpAqpOBMRv7K/sJjJCzYxuFMjmkTVdDqOiMgp6d2iHg0iQjVro0g1o+JMRPzK579vZe+BIs0+JyI+LTDAMDQ+ll9WZbH3QFH5O4iIXyi3ODPGNDXGzDDGpBpjVhhj7nUv/6cxZqkxJsUYM90YE+v5uCIix2et5d3Z6XSKrU3PuCin44iInJak+FgKS0r5fvk2p6OISBWpSM9ZMfBna20HoA9wlzGmI/C8tbartTYB+Ar4u+diioiUb9banazZsY+Rmj5fRPxA1yaRNK9XU0MbRaqRcosza22mtXax+/tcIBVobK3NKbNZLcB6JqKISMWMn51O/fBQLo6PcTqKiMhpM8aQFB/LnHU72ZGb73QcEakCJ3XNmTEmDugGzHc//5cxZjNwA+o5ExEHbdiZx89pO7ihdzNCgzTttIj4h6T4WEotfLM00+koIlIFKlycGWPCgU+B+w72mllrH7XWNgUmAncfZ7/bjDHJxpjkrCzd6V5EPOPd2RsIDjTc0KeZ01FERCpNm4YRtG8UoaGNItVEhYozY0wwrsJsorX2s2NsMgm44lj7WmvHWmsTrbWJ0dHRp55UROQ4cvKLmLJoC0O7xtIgQvdtEhH/kpQQy+JNe9i8a7/TUUTEwyoyW6MB3gFSrbUvlVnepsxmSUBa5ccTESnfxws3k1dYounzRcQvDe3qmhBbvWci/q8iPWf9gWHA2e5p81OMMRcBzxpjlhtjlgLnA/d6MqiIyLGUlFomzE0nsXkUXZpEOh1HRKTSNa1bkx7No/hSxZmI3wsqbwNr7SzgWHNSf1P5cURETs5PqdvZvOsAj1zYwekoIiIekxQfyxPTVrB6ey5tG0Y4HUdEPOSkZmsUEfE242en07hODc7v2NDpKCIiHnNRlxgCDExLUe+ZiD9TcSYiPis1M4e567MZ1rc5QYH6cyYi/is6IpT+reszbUkG1urWsiL+Su9mRMRnjZ+9gbDgAK7t2dTpKCIiHjc0PpZNu/azZMtep6OIiIeoOBMRn5S9r4CpKRlc3r0JdWqGOB1HRMTjBndqREhggIY2ivgxFWci4pMmL9hEYXEpN/eLczqKiEiViKwRzMB20Xy5NIOSUg1tFPFHKs5ExOcUlZTy/ryNDGhTnzaatUxEqpFLEhqTlVvA/PXZTkcREQ9QcSYiPuebZZlszylgpG46LSLVzDkdGlArJFA3pBbxUyrORMTnjJ+dTsv6tTirbbTTUUREqlRYcCDnd2rEt8u3UVhc6nQcEalkKs5ExKcs3rSblM17GN4vjoAA43QcEZEqlxQfy94DRfy6OsvpKCJSyVSciYhPGT87nYjQIK7o0cTpKCIijjijTX2iagZraKOIH1JxJiI+Y9vefL5dlsnVPZsSHhrkdBwREUcEBwZwYZcYfli5nf2FxU7HEZFKpOJMRHzG+/PSKbGW4X3jnI4iIuKopPhYDhSV8MPK7U5HEZFKpOJMRHxCflEJk+Zv4rwODWlWr6bTcUREHNUrri6NaofxpYY2ivgVFWci4hO+SNnK7v1F3Kzp80VECAgwDI2P4ZfVWezZX+h0HBGpJCrORMTrWWsZNyud9o0i6NOyrtNxRES8QlJ8Y4pKLN8t3+Z0FBGpJCrORMTrzV2XzartuYzs3wJjNH2+iAhA58a1aVG/lmZtFPEjKs5ExOuNm51O3VohJCXEOh1FRMRrGGMYGh/L3PXZ7MjJdzqOiFQCFWci4tU2ZufxU9p2ru/VjLDgQKfjiIh4laT4WKyFr5ZmOh1FRCqBijMR8WoT5mwk0BiG9W3udBQREa/TukE4HWNqa2ijiJ9QcSYiXmtfQTGfJG9mSNcYGtYOczqOiIhXSkqIJWXzHjZm5zkdRUROU7UvztZl7WPvgSKnY4jIMUxJ3kxuQbGmzxcROYGh8a7rcXXPMxHfV62LM2st932YwqAXZjJp/iZKSq3TkUTErbTU8u6cdLo1q0NC0zpOxxER8VqN69SgZ1yUhjaK+IFqXZwZY3j2ii60bhDO3z5fxsVjZjFvfbbTsUQEmLFqB+nZ+9VrJiJSAUnxsazevo+0bTlORxGR01CtizOATrGRfHRbH167vjs5B4q4duw87pq4mC279zsdTaRaGz87nUa1w7iwcyOno4iIeL2LusQQGGCYlqLeMxFfVu2LM3D1oA3pGsNPfz6LB85ry09p2znnxV94afoq9hcWOx1PpNpZvT2XWWt3Mqxvc4ID9WdKRKQ89cJD6d+6Pl8uzcBaXaYh4qv0rqeMsOBA7jmnDT//eSAXdG7EKz+v5ewXfuGLlK36QydShcbPTic0KIDrejVzOoqIiM9Iio9l864D/L55j9NRROQUlVucGWOaGmNmGGNSjTErjDH3upc/b4xJM8YsNcZ8boyp4/G0VSS2Tg3+e203pozuS3REKPd+mMKVb85l6ZY9TkeTKpKamcMH8zYyd102e/YXOh2nWtmdV8jnv2/hsm6NqVsrxOk4IiI+Y3CnhoQEBWhoo4gPC6rANsXAn621i40xEcAiY8wPwA/AI9baYmPMc8AjwEMezFrlEuPq8sVd/ZmyeAv/+W4VSa/O5qoeTfjLBe1oEKF7Lvkbay0L03fzxsy1zFiVddi6mMgw2jeKoENMbdrH1KZjTARx9WoRpCF3lW7ywk3kF5Uyon+c01FERHxKRFgwZ7drwFdLM3lsSAf9HyXig8otzqy1mUCm+/tcY0wq0NhaO73MZvOAKz0T0VkBAYarE5tyYedGvDpjLeNmbeDb5du4++zW3Nw/jtCgQKcjymkqLbX8lLaDN2auZfGmPdSrFcKD57dlSNdYNu3aT1pmDqmZOaRty+W3NTspdt9yITQogLYNI2jfKIL2MbXpEBNBh0a1iVJvzykrKinl/bkb6deqHu0b1XY6joiIz7kkIZbvVmxj3vpdnNGmvtNxROQkVaTn7BBjTBzQDZh/xKqRwEeVlMkrRYQF88iFHbi2ZzP+9XUqz36bxuQFm3hsSEfO7dAAY4zTEeUkFZWUMi0lgzd/WceaHftoElWDf1zSiat6NKVGiKvoblG/Fme1jT60T0FxCet25LmLNVfBNmPVDj5ZtOXQNo1qh9E+xt3L5u5ta1lfvWwV8f2KbWTuzecfl3R2OoqIiE8a1L4B4aFBTFuyVcWZiA8yFZ3owhgTDvwC/Mta+1mZ5Y8CicDl9hgHM8bcBtwG0KxZsx4bN26sjNyO+3V1Fv/4aiVrd+xjQJv6PH5xR9o2jHA6llTA/sJiPlywmbd/W0/G3nzaN4rgjoGtGNIl5pQLqKzcgkMFW2pmLqmZOazL2kdRieufREhQAG0ahB8q2Dq6h0fqmqrDXfHGHLJyC5jx4EACA/SBh4jIqXjg4xR+WLmd5MfO1QgfES9kjFlkrU085rqKFGfGmGDgK+B7a+1LZZYPB0YD51hry70xWGJiok1OTq5wcG9XVFLKxHkbeemH1eQVljCsT3PuO7cNdWrqDbc32p1XyIS56bw7J509+4voFVeXOwa2YmC7aI/0fBYWl7Iua99hBVvatlyycgsObdMgItR9HZu7YGtUm5bRtarl9PFLt+wh6dXZ/P3ijow8QzeeFhE5VTNX7WDE+IWMHdaD8zvpXpEi3uZExVm5wxqN613rO0DqEYXZBbgmADmrIoWZPwoODGBE/xYkJTTm/35YzXtz05maspU/n9eW63o10zA2L7F1zwHe/m09Hy7YzIGiEs7t0JA7BrakR/O6Hj1vSFAAHWJq0yGmNpd1+2P5zn0FpLmLtdRtOaRl5jJ3XTaFJaWu/QIDaN0g/LCCrUNMBPXCQz2a12njZ6cTHhrEVYlNnI4iIuLT+reuT91aIUxbkqHiTMTHlNtzZow5A/gNWAaUuhf/DXgFCAWy3cvmWWtHn+hY/tZzdqS0bTk8NW0lc9dn065hBE8M7Ui/1hrv7ZQ123N585f1fJGyFYCkhFhGn9XKK4efFpWUsj4r71DBlpqZS1pmDjvK9LJFu3vZOjSKOHRNW8v64YQE+f6HADty8un/3M/c0Ls5TyZ1cjqOiIjPe2zqMqYs2sKix86jVuhJTTEgIh522sMaK4u/F2fgmo79+xXb+dc3K9m86wCDOzXk0Ys60qxeTaejVRuLNu7mjZnr+DF1OzWCA7m2V1NGDWhJ4zo1nI520rL3FZC2zd3LlplL2rYc1mzfd6iXLTjQ0LpBBB0OTjwSXYuYyBrERIZRp2awz0xU89L0VYyZsZYZfx5IXP1aTscREfF5Czbs4uq35vLfaxO4JKGx03FEpAwVZw7ILyrhnVkbeG3GWopLLKMGtOCuQa316ZWHWGuZuTqLN2auY8GGXdSpGczwvnEM7xfnd5NuFJWUsmFn3mEFW2pmDttzCg7bLjQogJjIMBpFhhETWcP9NYxGtf94Xq9WCAEOT7yRX1RC/2d/JqFpHd4Z0dPRLCIi/qK01NL/uZ/pEFObcfrbKuJVTuuaMzk1YcGB3DWoNVf2aMJz36Xx+sx1TFm0hYcuaM9l3Ro7/obYXxSXlPL1skzemLmOtG25xESG8feLO3JNz6Z+WwgHB7rur9a2YQSXJPyxfFdeIRuz89i2N5/Mvflsy3F/3XuAhem72J6Tf2j2yD+OZWhY2120uXvcGh167irioiNCPTpz4pdLMsjOK+Tm/poERESksgQEGJLiY3ln1gZ25xXqHpwiPkI9Z1Xk9027efLLlSzZvIf4pnV4cmhHujWLcjqWz8ovKuGT5M2M/W09m3cdoHWDcEaf1Yqk+Fi/uAbLE0pLLdl5he7i7UCZ4s393F3UFRSXHrZfYIChQURomZ63GmWKN9fXhrXDTmmGSWstQ16ZRXFpKd/fd6bPDMMUEfEFy7fu5eIxs3jmsi5c37uZ03FExE3DGr1EaallaspWnv02jR25BVzerTEPXdiehrXDnI7mM/buL+L9eemMn51Odl4h3ZrV4c6BrTmnfQP1RlYCay179he5e94OlCne/ijiMvfms7+w5LD9jIH64aFH9LwdXsQ1rB1GWPDh99uZvz6ba8bO49+Xd+G6XnrjICJSmay1nPPSLzSICOXD2/o6HUdE3DSs0UsEBBgu796E8zs14vUZa3n7tw18t2Ibdw1qzS1ntDjqjav8YXtOPu/M2sDEeRvJKyxhYLto7jirFb1a1FVvSyUyxhBVK4SoWiF0jK19zG2steQWFJcp2g4v4jZm72fe+mxy8ouP2rdurZDDhk0u37qXOjWDuVQXq4uIVDpjXEMb//vTGrbtzadRpD4MFvF26jlz0Kbs/TzzTSrfrdhGk6gaPDakA4M7NVKxUca6rH2M/WU9n/++leLSUobGx3L7ma2OWziI98grKGZbzh9FW+aeA2Tm5B9W1O3eX8QD57XlnnPaOB1XRMQvrc/ax9kv/sJjQzowakBLp+OICBrW6PXmrN3JU1+uZNX2XPq1qsffh3akfaPqXXws2byHN39Zx3crthESGMDViU25dUBL3ZLAzxQWl+oaQRERD7t4zG8EGsMXd5/hdBQRQcMavV6/1vX5+p4zmLxgEy/+sJqL/vsb1/duxgPntfO7aeBPxFrL7LXZvPHLWmavzSYiLIg7B7ZiRL8WREeEOh1PPECFmYiI5yXFx/LMN2ls2JlHC91LUsSrqefMy+zZX8jLP67h/XkbqRUSyP3nteXGPs1PaSY8X1FSavlu+Tbe+GUty7fm0CAilFEDWnBdr2ZEhAU7HU9ERMSnZew5QL9nf9YwchEvoWGNPmj19lz++dVKfluzk9YNwvn7xR05s22007EqVUFxCZ8t3spbv6wjPXs/LevX4vazWnJpt8aEBmlyFBERkcpy9Vtz2ZVXyA/367YlIk7TsEYf1LZhBO+N7MWPqTt4+uuV3DRuAed2aMhjQzoQ5+NDEnLzi5g4fxPjZm1gR24BXZtE8sYN3Tm/UyOP3uxYRESkukqKj+WxqctJzczVpFoiXkw9Zz6goLiE8bPTGfPTGgpLShnZvwVnto0mMMAQFGAICgwgKMAQGGAIDjQEBgS4l7uXBQQQGOje1r3OiXuCZeUWMH72Bt6ft5Hc/GIGtKnP6LNa0a9VPX2KJyIi4kG78grp9a8fGTWgJQ9f2N7pOCLVmoY1+okdufk8/90qPlm05bSPZQyuou1QgXd4UfdHsRdwWBF4ooIw2P3ctf/h22bvK+CLJRkUlZRyUecYRp/Vii5NIiuhVURERKQiRoxfwJrt+5j10CB9KCriIA1r9BMNIsJ4/qp47j67NdtzCiguLaW4xFJSaikutRSXlFJc6npeVFJ6zOWu55aS0lKKDi4rsa5jlVpKSixFpYfvW3a/4tJSikpK2V9Ycpxtjp0hMMBwRffG3HZmK80UJSIi4oCk+Fge+HgJizftpkfzuk7HEZFjUHHmg5rXq0XzeipwREREpOLO79SI0KBlTEvJUHEm4qX8d352ERERETkkPDSIczo04OtlmRSXlDodR0SOQcWZiIiISDWRFN+YnfsKmbMu2+koInIMKs5EREREqomB7aKJCA1i2pIMp6OIyDGoOBMRERGpJsKCAxncuRHfL99GflGJ03FE5AgqzkRERESqkaT4WHILipm5KsvpKCJyBBVnIiIiItVIv1b1qB8ewpca2ijidVSciYiIiFQjQYEBXNQlhh9Tt7OvoNjpOCJShoozERERkWomKT6WguJSfli5zekoIlKGijMRERGRaqZ7syga16nBFyka2ijiTVSciYiIiFQzAQGGofGxzFqzk115hU7HERE3FWciIiIi1VBSfCzFpZZvlmU6HUVE3FSciYiIiFRDHWIiaN0gXDekFvEi5RZnxpimxpgZxphUY8wKY8y97uVXuZ+XGmMSPR9VRERERCqLMYak+FgWpu8ic+8Bp+OICBXrOSsG/myt7QD0Ae4yxnQElgOXA796MJ+IiIiIeEhSfCzWwldLNLRRxBuUW5xZazOttYvd3+cCqUBja22qtXaVpwOKiIiIiGfE1a9F1yaRGtoo4iVO6pozY0wc0A2Y75E0IiIiIlKlkuJjWbZ1L+uz9jkdRaTaq3BxZowJBz4F7rPW5pzEfrcZY5KNMclZWVmnklFEREREPOTirrEYg3rPRLxAhYozY0wwrsJsorX2s5M5gbV2rLU20VqbGB0dfSoZRURERMRDGkWG0btFXaYtycBa63QckWqtIrM1GuAdINVa+5LnI4mIiIhIVUqKb8z6rDxWZFR4cJSIeEBFes76A8OAs40xKe7HRcaYy4wxW4C+wNfGmO89mlREREREPOLCzo0ICjB8qaGNIo4KKm8Da+0swBxn9eeVG0dEREREqlpUrRDObBvNl0syeOiC9gQEHO+tn4h40knN1igiIiIi/ikpPpaMvfks2rTb6Sgi1ZaKMxERERHhvI4NCQsO4N056U5HEam2VJyJiIiICLVCgxh9Viu+XprJ579vcTqOSLWk4kxEREREALh7UGt6xkXx2OfL2Zid53QckWpHxZmIiIiIABAUGMDL13YjMMBwz+TfKSwudTqSSLWi4kxEREREDmlcpwbPXdGVJVv28tIPq52OI1KtqDgTERERkcNc2CWG63o1481f1jFrzU6n44hUGyrOREREROQof7+4I60bhHP/xylk7ytwOo5ItaDiTERERESOUiMkkDHXdWPvgSIe/GQJ1lqnI4n4PRVnIiIiInJMHWJq8+hFHZixKovxs9OdjiPi91SciYiIiMhx3dS3Oed2aMCz36axImOv03FE/JqKMxERERE5LmMM/7kynqhawfxp8u/sLyx2OpKI31JxJiIiIiInVLdWCP93TQIbdubx1LSVTscR8VsqzkRERESkXP1a1efOga34KHkzXy3NcDqOiF9ScSYiIiIiFXLfuW1JaFqHRz5bxuZd+52OI+J3VJyJiIiISIUEBwYw5rpuYOHeD3+nuKTU6UgifkXFmYiIiIhUWNO6NXn6ss4s3rSHV35a43QcEb+i4kxERERETsolCY25skcTxsxYy9x12U7HEfEbKs5ERERE5KQ9ldSJuHq1uP+jFHbnFTodR8QvqDgTERERkZNWKzSIMdd1IzuvgIc+XYq11ulIIj5PxZmIiIiInJLOjSN56IL2TF+5nQ/mb3I6jojPU3EmIiIiIqdsZP8WnNU2mqe/WsmqbblOxxHxaSrOREREROSUBQQYXrgqnoiwYP40eTH5RSVORxLxWSrOREREROS0REeE8tLV8azevo+nv17pdBwRn6XiTERERERO25lto7ntzJZ8MG8T36/Y5nQcEZ+k4kxEREREKsWD57ejS+NI/jplKRl7DjgdR8TnlFucGWOaGmNmGGNSjTErjDH3upfXNcb8YIxZ4/4a5fm4IiIiIuKtQoICeOW6bhSVlHL/RymUlGp6fZGTUZGes2Lgz9baDkAf4C5jTEfgYeAna20b4Cf3cxERERGpxlrUr8U/L+nM/A27eH3GWqfjiPiUcosza22mtXax+/tcIBVoDFwCTHBvNgG41EMZRURERMSHXN69MZckxPLyT2tITt/ldBwRn3FS15wZY+KAbsB8oKG1NhNcBRzQoNLTiYiIiIjPMcbw9KWdia0Txr0fprD3QJHTkUR8QoWLM2NMOPApcJ+1Nuck9rvNGJNsjEnOyso6lYwiIiIi4mMiwoJ55dpubM/J52+fLcNaXX8mUp4KFWfGmGBchdlEa+1n7sXbjTEx7vUxwI5j7WutHWutTbTWJkZHR1dGZhERERHxAd2aRfHA+W35elkmHydvdjqOiNeryGyNBngHSLXWvlRm1TRguPv74cAXlR9PRERERHzZ6DNb0b91PZ6ctpK1O/Y5HUfEq1Wk56w/MAw42xiT4n5cBDwLnGeMWQOc534uIiIiInJIQIDhpasTqBESyJ8m/05+UYnTkUS8VkVma5xlrTXW2q7W2gT34xtrbba19hxrbRv3V03FIyIiIiJHaVg7jOev7EpqZg7PfZfmdBwRr3VSszWKiIiIiJyKczo0ZES/OMbPTufntO1OxxHxSirORERERKRKPHxhezrE1ObBT5ayIyff6TgiXkfFmYiIiIhUibDgQMZcl8D+wmLu/ziF0lJNry9SloozEREREakyrRtE8OTQTsxem81bv653Oo6IV1FxJiIiIiJV6pqeTRnSJYYXp68iZfMep+OIeA0VZyIiIiJSpYwxPHN5FxrWDuOeyb+Tm1/kdCQRr6DiTERERESqXGSNYP57bQJbdu/n71+scDqOiFdQcSYiIiIijkiMq8t957bl89+38tniLU7HEXGcijMRERERccxdg1rTq0VdHp+6nPSdeU7HEXGUijMRERERcUxggOHlaxIICgzgng9/p7C41OlIIo5RcSYiIiIijoqtU4PnrujK0i17eXH6KqfjiDhGxZmIiIiIOO6Czo24oXcz3vp1Pb+uznI6jogjVJyJiIiIiFd4/OKOtG0YzgMfL2HnvgKn44hUORVnIiIiIuIVwoIDeeW6buTkF/Hnj5dQWmqdjiRSpVSciYiIiIjXaN+oNo8P6cAvq7MYN3uD03FEqpSKMxERERHxKjf2ac55HRvy3HdpLN+61+k4IlVGxZmIiIiIeBVjDP+5oiv1aoVyz+TfySsodjqSSJVQcSYiIiIiXieqVgj/d00CG7LzeHLaCqfjiFQJFWciIiIi4pX6tqrH3YNa88miLUxbkuF0HBGPU3EmIiIiIl7r3nPa0L1ZHR79bBmbd+13Oo6IR6k4ExERERGvFRQYwH+v7QbAPR/+TlFJqcOJRDxHxZmIiIiIeLWmdWvyzOVd+H3THv774xqn44h4jIozEREREfF6Q+NjuTqxCa/NXMucdTudjiPiESrORERERMQnPJnUiRb1a3H/Rynsyit0Oo5IpVNxJiIiIiI+oWZIEK9c243deUX8dcpSrLVORxKpVCrORERERMRndG4cyUMXtufH1O28P2+j03FEKlW5xZkxZpwxZocxZnmZZfHGmLnGmGXGmC+NMbU9G1NERERExGVk/zgGtYvm6a9TSduW43QckUpTkZ6zd4ELjlj2NvCwtbYL8Dnwl0rOJSIiIiJyTMYYnr8qntphwfxp0u8cKCxxOpJIpSi3OLPW/grsOmJxO+BX9/c/AFdUci4RERERkeOqHx7K/10Tz5od+5i0YJPTcUQqRdAp7rccSAK+AK4CmlZaIhERERGRChjQJprJt/ahd4u6TkcRqRSnOiHISOAuY8wiIAI47lymxpjbjDHJxpjkrKysUzydiIiIiMjR+raqR0CAcTqGSKU4peLMWptmrT3fWtsDmAysO8G2Y621idbaxOjo6FPNKSIiIiIi4tdOqTgzxjRwfw0AHgPerMxQIiIiIiIi1U1FptKfDMwF2hljthhjbgGuM8asBtKADGC8Z2OKiIiIiIj4t3InBLHWXnecVf+t5CwiIiIiIiLV1qlOCCIiIiIiIiKVSMWZiIiIiIiIF1BxJiIiIiIi4gVUnImIiIiIiHgBFWciIiIiIiJeQMWZiIiIiIiIFzDW2qo7mTFZwMYqO2HF1Qd2Oh2iGlA7e57auGqonT1PbVw11M6epzauGmpnz1MbV57m1troY62o0uLMWxljkq21iU7n8HdqZ89TG1cNtbPnqY2rhtrZ89TGVUPt7Hlq46qhYY0iIiIiIiJeQMWZiIiIiIiIF1Bx5jLW6QDVhNrZ89TGVUPt7Hlq46qhdvY8tXHVUDt7ntq4CuiaMxERERERES+gnjMREREREREv4HPFmTHmAmPMKmPMWmPMw2WWf2SMSXE/0o0xKcfYN8EYM9cYs8IYs9QYc02ZdS2MMfONMWvcxwo5zvmHu7dZY4wZfrL7+wIvaOPvjDF7jDFfHbHcb9oYnG3nyvg5+QKH27i5MWaR+xwrjDGjT2Z/X+L03wz3trWNMVuNMa+eyv7ezuk2NsaUlDnPtJPd31d4sJ3vdh/TGmPqn+D8eo/h+TbWewwPt3Nl/V2vtqy1PvMAAoF1QEsgBFgCdDzGdi8Cfz/G8rZAG/f3sUAmUMf9/GPgWvf3bwJ3HGP/usB699co9/dRFd3fFx5Ot7F73TnAUOCrI5b7RRt7QztXxs/J2x9e0MYhQKj7+3AgHYj1pzb2hnYuc5z/ApOAV8ss84t29oY2BvYdZ7lftHEVtHM3IM79d6D+cc6v9xgebmP3dnqP4fnfZb9/j+HRn5/TAU4qLPQFvi/z/BHgkSO2McDmg78U5RxvCdDGvc9OIOhY5ymz/XXAW2Wev+VeVqH9feHhdBuX2W9g2T+c/tTG3tTOlbW/Nz68qY2BesAm939SftPG3tLOQA/gQ2AE7uLMn9rZS9r4qOLMn9rYk+18xLJ0jv+GVu8xPNzGZbYZiN5jeLydj9zf39rZUw9fG9bYGNcv0kFb3MvKGgBst9auOdGBjDG9cH2asA7XG6c91triI49rjEk0xrxdzvmPu78PcrqNj8ef2hi8qJ0rur8PcryNjTFNjTFL3Tmes9ZmnGh/H+VoOxtjAnB9+vuXIw7nT+3s+O8yEGaMSTbGzDPGXOpe5k9tDJ5r5xNtp/cYVdvGx+NPbQxe1M5+/B7DY4KcDnCSzDGW2SOeXwdMPuFBjIkB3geGW2tLjTHHPa61NhkYVc75K5LLVzjdxqeTy5d4RTufzP4+yPE2ttZuBroaY2KBqcaYKUBpBXL5Eqfb+U7gG2vt5iN20e/ykQc5vb8Xzay1GcaYlsDPxphlQE4FcvkSj7TzibbVewygatv4dHL5Eq9oZz9/j+ExvlacbQGalnneBMg4+MQYEwRcjmuIyzEZY2oDXwOPWWvnuRfvBOoYY4Lc1fxhxz3i/AOPOP/Mk9jfFzjdxsfjT20MXtDOHvo5eRPH2/gg95vaFbg+qfz0ZPf3ck63c19ggDHmTlzX9oUYY/bhGsbjL+3sdBvj7vXFWrveGDMT13Un+l0+wnHa+WTOP/CI889Ef5cPc5ptfDz+1MbgBe1cDd5jeIyvDWtcCLRxz/QSAlwLTCuz/lwgzVq75Vg7u/f5HHjPWvvJweXWWgvMAK50LxoOfHGMQ3wPnG+MiTLGRAHn4xorW9H9fYHTbXxMftbG4HA7e+rn5GWcbuMmxpga7u+jgP7AKj9rY3C4na21N1hrm1lr44AH3cd52M/a2enf5ShjTKj7+/q4fpdX+lkbg4fa+SToPYbn2/iY/KyNweF2ribvMTzHesGFbyfzAC4CVuMau/roEeveBUafYN8bgSIgpcwjwb2uJbAAWAt8wh+zrCUCb5c5xkj3NmuBm8ssP+b+vvjwgjb+DcgCDuD69Gewv7Wx0+18Kvv74sPhNj4PWIrrQuilwG1lju03bex0Ox9xrBEcPluj37Szw7/L/YBl7t/lZcAt/tjGHm7ne3D9f1aMq6fgYNvqPUbVt7HeY3i4ncvZ36/a2RMP424oERERERERcZCvDWsUERERERHxSyrOREREREREvICKMxERERERES+g4kxERERERMQLqDgTERERERHxAirOREREREREvICKMxERERERES+g4kxERERERMQL/D9QaGv8wnpt+gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABZZElEQVR4nO3dd3iUVd7G8e9JI4GEmtBLQu8ECB2kWVBQsAAqi4AigmBd17K7rLivrq7rWhAVCyIqFsCCBbugdBIw9BKEQEINLQRCSJnz/jEDGzCQAEmemeT+XNdcZJ55ym9OQpI75zznGGstIiIiIiIi4iw/pwsQERERERERhTMRERERERGvoHAmIiIiIiLiBRTOREREREREvIDCmYiIiIiIiBdQOBMREREREfECCmciIiIiIiJeQOFMRKSEMMYcy/VwGWNO5Ho+zOn6LoYxJtEYc7nTdZyPMWaBMWZ0MVxnhDHG5r6WZ9tKY8xRY0yyMeZZY0xArtcrG2M+M8YcN8bsMMbcetY5+xpjNhlj0o0x840x9Yr6fYiIyLkpnImIlBDW2tBTD2AncG2ubTOdru9suUOEL1+jOBhjKgGPAevPeqkscD8QDnQC+gIP5Xr9FSATqAYMA14zxrTwnDMc+BSYCFQG4oCPi+xNiIhIvhTORERKOGOMnzHmUWPM78aYg8aYWcaYyp7XIj29MaOMMUnGmMPGmLHGmA7GmDXGmCPGmCm5zjXSGLPYGPOyMSbV0+vSN9frFYwx04wxe4wxu4wxTxpj/M869gVjzCFgkjGmgTHmZ09dB4wxM40xFT37vwfUBb709P49bIzpZYxJPuv9ne5dM8ZMMsbMMca8b4w5CozMp6aGxphfPO/lgDEmz3BijAn2nPOgp01ijTHVjDFPAT2AKZ4ap3j2b2qM+cEYc8gYs9kYMyTXud4xxkz1vJ7muX5+PVZPA5OBA7k3Wmtfs9YutNZmWmt3ATOBbp7rlANuBCZaa49ZaxcBXwDDPYffAKy31s621mYAk4A2xpim+dQiIiJFROFMRKTkuxcYBPQEagKHcfeo5NYJaAQMBV4E/gZcDrQAhhhjep617zbcvTWPA5+eCnvADCAbaAi0Ba4ERudxbFXgKcDgDh41gWZAHdwhAWvtcM7sAXy2gO93IDAHqIg7rJyvpv8DvgcqAbWBl89xzhFABU99VYCxwAlr7d+AhcAET40TPKHoB+ADz/u8BXj1VI+VxzDPtcOBeE+deTLGdARigKkFeO+X8b/etcZAjrV2S67XV+P+nOL5d/WpF6y1x4Hfc70uIiLFTOFMRKTkuwv4m7U22Vp7Enf4uemsIX//Z63NsNZ+DxwHPrTW7vf0xizEHWpO2Q+8aK3NstZ+DGwG+htjqgFXA/dba49ba/cDLwA35zp2t7X2ZWtttrX2hLV2q7X2B2vtSWttCvA87hB5KZZaaz+31rqA8vnUlAXUA2p63v+ic5wzC3coa2itzbHWrrTWHj3HvgOARGvtdM/7XAV8AtyUa5+vrbW/ej4ffwO6GGPqnH0iTw/fq8A9nvdzTsaYUbhD3HOeTaFA6lm7pQJhBXxdRESKWYkYiy8iIudVD/jMGJP7l/sc3PchnbIv18cn8ngemuv5LmutzfV8B+6er3pAILDHGHPqNT8gKde+uT/GGFMV93C9HrhDgR/unr1Lkfsa+dX0MO4erBXGmMPAf621b+dxzvdw95p95Bl2+T7uwJuVx771gE7GmCO5tgV4zvGHGq21xzzDPGueVTvA3cAaa+3SvN+qmzFmEPAMcLm19tTQx2O4w2lu5YG0Ar4uIiLFTOFMRKTkSwJut9YuPvsFY0zkRZyvljHG5ApodXHfy5QEnATCrbXZ5zjWnvX8ac+21tbag56QMeU8+x/HPQnGqfr9gYjzXOO8NVlr9wJ3es7VHfjRGPOrtXbrWftlAU8AT3jabB7uHsNpedSYBPxirb3i7OvlcrqXzBgTintCjt157NcX6GmMucbzvDLQ1hgTba2d4Dm+H/Am0N9auzbXsVuAAGNMI2ttgmdbG/437HE97uGap+ooBzTgj5OOiIhIMdGwRhGRkm8q8NSpSSeMMRHGmIGXcL6qwL3GmEBjzGDc94rNs9buwX3/1n+NMeU9E5E0OOt+tbOF4e7BOWKMqQX85azX9wH1cz3fAgQbY/obYwKBvwNlznXy/Goyxgw2xtT27H4Yd9DKOfs8xpjexphWnjB4FPcwx1P7nV3jV0BjY8xwTxsFGvcEK81y7XONMaa7MSYId8/dcmvt2b1mACNxt2+05xGHOyT+zVNXH9z3q91orV1x1ns/jns2xn8aY8oZY7rhvh/vVA/eZ0BLY8yNxphg4B+4e+k2naM5RUSkiCmciYiUfC/h7tn63hiTBizDPTHHxVqOe/KQA7gn9bjJWnvQ89ptQBCwAXfYmQPUOM+5ngDa4b7X6WvcYSK3p4G/e2ZIfMham4p7qN9bwC7cPWnJnN/5auoALDfGHMPdRvdZa7fncY7qnuOOAhuBX3APbQR3+95k3DNdTrbWpuGedORm3L1he4F/c2aI/AD3ZCqHgPa4Jwj5A2vtEWvt3lMP3NPiH/W0A7inwa8AzDP/W9Pum1ynuBsIwX2f4IfAOGvtes+5U3DP5viUp106ceb9gSIiUszMmbcNiIiInJsxZiQw2lrb3elafJUx5h0g2Vr7d6drERER76KeMxERERERES+gcCYiIiIiIuIFNKxRRERERETEC+Tbc2aMCTbGrDDGrDbGrDfGPOHZXtkY84MxJsHzb6WiL1dERERERKRkyrfnzLhX7SznWSQzEFgE3AfcAByy1j5jjHkUqGStfaTIKxYRERERESmB8l2E2rPI6DHP00DPw+JeK6WXZ/sMYAFw3nAWHh5uIyMjL65SERERERERH7dy5coD1tqIvF7LN5wBeBbdXAk0BF6x1i43xlTzLO6JtXaPMaZqfueJjIwkLi7uAkoXEREREREpOYwxO871WoFma7TW5lhro4HaQEdjTMsLuPgYY0ycMSYuJSWloIeJiIiIiIiUKhc0lb619gju4Yv9gH3GmBoAnn/3n+OYN6y1MdbamIiIPHvvRERERERESr2CzNYYYYyp6Pk4BLgc2AR8AYzw7DYCmFtENYqIiIiIiJR4BbnnrAYww3PfmR8wy1r7lTFmKTDLGHMHsBMYXIR1ioiIiIgUqqysLJKTk8nIyHC6FCmBgoODqV27NoGBgQU+piCzNa4B2uax/SDQ94IqFBERERHxEsnJyYSFhREZGYl79SiRwmGt5eDBgyQnJxMVFVXg4y7onjMRERERkZIiIyODKlWqKJhJoTPGUKVKlQvulVU4ExEREZFSS8FMisrFfG0pnImIiIiIOOSpp56iRYsWtG7dmujoaJYvXw7A6NGj2bBhQ6FcIzIykgMHDpx3n3/9618XfN533nmHCRMmnLFt+vTpREdHEx0dTVBQEK1atSI6OppHH330gs9fHF588UXS09OdLuO0Ai1CLSIiIiIihWvp0qV89dVXrFq1ijJlynDgwAEyMzMBeOutt4q1ln/961/89a9/veTzjBo1ilGjRgHuUDh//nzCw8Mv+bwXy1qLtRY/v7z7pF588UX+9Kc/UbZs2QKfMzs7m4CAoolR6jkTERERkRJpddIRftq4z+kyzmnPnj2Eh4dTpkwZAMLDw6lZsyYAvXr1Ii4uDoDQ0FAeeeQR2rdvz+WXX86KFSvo1asX9evX54svvgD+2Is1YMAAFixY8IdrDho0iPbt29OiRQveeOMNAB599FFOnDhBdHQ0w4YNA+D999+nY8eOREdHc9ddd5GTkwO4e8YaN25Mz549Wbx4cYHf63/+8x86dOhA69atefzxxwFITEykadOmjB49mpYtWzJs2DB+/PFHunXrRqNGjVixYgUAkyZNYvjw4fTp04dGjRrx5ptv5nveZs2acffdd9OuXTuSkpIYN24cMTExtGjR4vR+kydPZvfu3fTu3ZvevXufbutT5syZw8iRIwEYOXIkDz74IL179+aRRx7h999/p1+/frRv354ePXqwadOmArfFeZ1Kk8XxaN++vRURERERKWrbU47Zdv/83vZ89md7Misnz302bNhQzFWdKS0tzbZp08Y2atTIjhs3zi5YsOD0az179rSxsbHWWmsBO2/ePGuttYMGDbJXXHGFzczMtPHx8bZNmzbWWmunT59ux48ff/r4/v372/nz51trra1Xr55NSUmx1lp78OBBa6216enptkWLFvbAgQPWWmvLlSt3+tgNGzbYAQMG2MzMTGuttePGjbMzZsywu3fvtnXq1LH79++3J0+etF27dj3jmmc7dd3vvvvO3nnnndblctmcnBzbv39/+8svv9jt27dbf39/u2bNGpuTk2PbtWtnR40aZV0ul/3888/twIEDrbXWPv7447Z169Y2PT3dpqSk2Nq1a9tdu3ad97zGGLt06dLTtZx639nZ2bZnz5529erVf2ibs9th9uzZdsSIEdZaa0eMGGH79+9vs7OzrbXW9unTx27ZssVaa+2yZcts796982yDvL7GgDh7jrykYY0iIiIiUqIcOHaSEdNX4LKWt0d2ICgg/8FiT3y5ng27jxZqHc1rlufxa1uc8/XQ0FBWrlzJwoULmT9/PkOHDuWZZ5453VtzSlBQEP369QOgVatWlClThsDAQFq1akViYuIF1TR58mQ+++wzAJKSkkhISKBKlSpn7PPTTz+xcuVKOnToAMCJEyeoWrUqy5cvp1evXkRERAAwdOhQtmzZku81v//+e77//nvatnWvznXs2DESEhKoW7cuUVFRtGrVCoAWLVrQt29fjDF/eG8DBw4kJCSEkJAQevfuzYoVK1i0aNE5z1uvXj06d+58+vhZs2bxxhtvkJ2dzZ49e9iwYQOtW7e+oLYbPHgw/v7+HDt2jCVLljB48P+WeT558uQFnetcFM5EREREpMQ4fjKb29+JZd/RDD68szP1I0LzP8hB/v7+9OrVi169etGqVStmzJjxh3AWGBh4euY/Pz+/08Mg/fz8yM7OBiAgIACXy3X6mLymcF+wYAE//vgjS5cupWzZsvTq1SvP/ay1jBgxgqeffvqM7Z9//vlFzUBoreWxxx7jrrvuOmN7YmLi6fdyvvcGf5z50Bhz3vOWK1fu9PPt27fz3HPPERsbS6VKlRg5cuQ5p7jPfZ2z9zl1TpfLRcWKFYmPj8/vrV8whTMRERERKRGyclyMm7mK9buP8sbw9rStW6nAx56vh6uobN68GT8/Pxo1agRAfHw89erVu6hzRUZG8uqrr+Jyudi1a9fp+7VyS01NpVKlSpQtW5ZNmzaxbNmy068FBgaSlZVFYGAgffv2ZeDAgTzwwANUrVqVQ4cOkZaWRqdOnbjvvvs4ePAg5cuXZ/bs2bRp0ybf2q666iomTpzIsGHDCA0NZdeuXQQGBl7Q+5s7dy6PPfYYx48fZ8GCBTzzzDOEhIQU6LxHjx6lXLlyVKhQgX379vHNN9/Qq1cvAMLCwkhLSzs9aUm1atXYuHEjTZo04bPPPiMsLOwP5ytfvjxRUVHMnj2bwYMHY61lzZo1BWqL/CiciYiIiIjPs9byyCdr+HVLCs/c0Iq+zao5XVK+jh07xj333MORI0cICAigYcOGpyfpuFDdunU7PUSwZcuWtGvX7g/79OvXj6lTp9K6dWuaNGlyxrC/MWPG0Lp1a9q1a8fMmTN58sknufLKK3G5XAQGBvLKK6/QuXNnJk2aRJcuXahRowbt2rU7PVHI+Vx55ZVs3LiRLl26AO7hnO+//z7+/v4Ffn8dO3akf//+7Ny5k4kTJ1KzZk1q1qxZoPO2adOGtm3b0qJFC+rXr0+3bt3OeN9XX301NWrUYP78+TzzzDMMGDCAOnXq0LJlS44dO5ZnPTNnzmTcuHE8+eSTZGVlcfPNNxdKODPue9KKR0xMjD0164yIiIiISGF59ttNvLrgdx64vDH3Xd6oQMds3LiRZs2aFXFlcqkmTZpEaGgoDz30kNOlXLC8vsaMMSuttTF57a+p9EVERETEp727NJFXF/zOLR3rcm/fhk6XI3LRNKxRRERERHzWt+v28PgX67m8WTX+b2CLi5qwQrzbpEmTnC6h2KjnTERERER80orth7j3o3ja1qnIy7e0JcBfv9qKb9NXsIiIiIj4nC370hg9I5balUKYNqIDIUEFn1xCxFspnImIiIiIT9mTeoIRb6+gTKA/M0Z1pFK5IKdLEikUCmciIiIi4jNST2Qx8u1Y0jKyeWdUB+pULut0SSKFRuFMRERERHxCRlYOY96NY9uBY7w+vD0talZwuqRL5u/vT3R0NC1btmTw4MGkp6df9LlGjhzJnDlzABg9ejQbNmw4574LFixgyZIlp59PnTqVd99996KvfUpiYiItW7Y8Y9ukSZN47rnnLug8hVWPr9FsjSIiIiLi9Vwuy59nrWb59kO8dHM03RqGO11SoQgJCSE+Ph6AYcOGMXXqVB588MHTr+fk5FzQYs2nvPXWW+d9fcGCBYSGhtK1a1cAxo4de8HXKCrZ2dleVU9xUs+ZiIiIiHg1ay3//GoDX6/dw9+uacbA6FrFX8Szz8L8+Wdumz/fvb2Q9OjRg61bt7JgwQJ69+7NrbfeSqtWrcjJyeEvf/kLHTp0oHXr1rz++uuAu10mTJhA8+bN6d+/P/v37z99rl69ehEXFwfAt99+S7t27WjTpg19+/YlMTGRqVOn8sILLxAdHc3ChQvP6N2Kj4+nc+fOtG7dmuuvv57Dhw+fPucjjzxCx44dady4MQsXLrzg93i+c//1r3+lZ8+evPTSS6fr2b17N9HR0acf/v7+7Nixgx07dtC3b19at25N37592blzJ+DuPbz33nvp2rUr9evXP92T6CsUzkRERETEq73+6zbeWZLIHd2juPOy+s4U0aEDDBnyv4A2f777eYcOhXL67OxsvvnmG1q1agXAihUreOqpp9iwYQPTpk2jQoUKxMbGEhsby5tvvsn27dv57LPP2Lx5M2vXruXNN988Y5jiKSkpKdx555188sknrF69mtmzZxMZGcnYsWN54IEHiI+Pp0ePHmccc9ttt/Hvf/+bNWvW0KpVK5544okz6lyxYgUvvvjiGdtz+/33388IVFOnTi3QuY8cOcIvv/zCn//859PbatasSXx8PPHx8dx5553ceOON1KtXjwkTJnDbbbexZs0ahg0bxr333nv6mD179rBo0SK++uorHn300Qv8TDhLwxpFRERExGt9uiqZZ77ZxLVtavK3a5oV3YXuvx88wwvPqWZNuOoqqFED9uyBZs3giSfcj7xER8OLL573lCdOnCA6Ohpw95zdcccdLFmyhI4dOxIVFQXA999/z5o1a073AqWmppKQkMCvv/7KLbfcgr+/PzVr1qRPnz5/OP+yZcu47LLLTp+rcuXK560nNTWVI0eO0LNnTwBGjBjB4MGDT79+ww03ANC+fXsSExPzPEeDBg1OD9WE/y0ind+5hw4des66Fi9ezFtvvXW6t27p0qV8+umnAAwfPpyHH3749L6DBg3Cz8+P5s2bs2/fvvO+X2+jcCYiIiIiXunXLSk8PGcNXepX4bnBrfHzM84WVKmSO5jt3Al167qfX6Lc95zlVq5cudMfW2t5+eWXueqqq87YZ968eRhz/jax1ua7z4UoU6YM4J7IJDs7u9DOC2e+59z27NnDHXfcwRdffEFoaGie++R+j6dqBPf79yUKZyIiIiLiddbtSmXc+ytpWDWU129rT5mAIl5kOp8eLuB/QxknToTXXoPHH4fevYu2LuCqq67itddeo0+fPgQGBrJlyxZq1arFZZddxuuvv85tt93G/v37mT9/PrfeeusZx3bp0oXx48ezfft2oqKiOHToEJUrVyYsLIyjR4/+4VoVKlSgUqVKLFy4kB49evDee++d7um6VBdz7qysLIYMGcK///1vGjdufHp7165d+eijjxg+fDgzZ86ke/fuhVKj0xTORERERMSr7DyYzsjpK6hYNogZt3ekfHCg0yX9L5jNmuUOZL17n/m8CI0ePZrExETatWuHtZaIiAg+//xzrr/+en7++WdatWpF48aN8ww6ERERvPHGG9xwww24XC6qVq3KDz/8wLXXXstNN93E3Llzefnll884ZsaMGYwdO5b09HTq16/P9OnTC+29XOi5lyxZQmxsLI8//jiPP/444O4xnDx5Mrfffjv/+c9/iIiIKNQanWSKs6svJibGnpo1RkRERETkbAePneSmqUs5dDyTT8Z1oWHVsCK71saNG2nWrID3sT37rHvyj9xBbP58iI2FXPc7ieSW19eYMWaltTYmr/3VcyYiIiIiXiE9M5vbZ8Sx+8gJPrizU5EGswuWVwA71YMmUkg0lb6IiIiIOC47x8WED35jbfIRXr6lLe3rnX9WQZGSSD1nIiIiIuIoay1//WwtP2/az1PXt+TKFtWdLknEEeo5ExERERFHvfDDFmbFJXNvn4YM61SvWK/ta1Oti++4mK8thTMRERERcczM5TuY/PNWhsTU5oErGud/QCEKDg7m4MGDCmhS6Ky1HDx4kODg4As6TsMaRURERMQR36/fy8TP19G7SQRPXd+qUBdLLojatWuTnJxMSkpKsV5XSofg4GBq1659QcconImIiIhIsVu54xD3fPgbrWpX5JVh7Qj0L/4BXYGBgURFRRX7dUXORcMaRURERKRYbd1/jDtmxFGzYghvj4ihbJD6C0RA4UxEREREitG+oxmMeHsFAX5+zBjVkSqhZZwuScRrKJyJiIiISLE4mpHFiLdXcCQ9k3dGdaBulbJOlyTiVdSHLCIiIiJF7mR2Dne9u5Kt+4/x9sgOtKxVwemSRLyOwpmIiIiIFCmXy/LnWatZuu0gzw9pw2WNI5wuScQraVijiIiIiBSpf83byFdr9vBIv6bc0O7CphYXKU0UzkRERESkyLy1cBtvLdrOyK6RjO1Z3+lyRLyawpmIiIiIFIm58bt48uuNXNOqOhMHNC/2RaZFfE2+4cwYU8cYM98Ys9EYs94Yc59ne7QxZpkxJt4YE2eM6Vj05YqIiIiIL1i89QAPzV5Nx6jKPD8kGn8/BTOR/BRkQpBs4M/W2lXGmDBgpTHmB+BZ4Alr7TfGmGs8z3sVXakiIiIi4gvW707lrvdWEhVejjeHxxAc6O90SSI+Id9wZq3dA+zxfJxmjNkI1AIsUN6zWwVgd1EVKSIiIiK+IelQOiOnxxIWHMCM2ztSoWyg0yWJ+IwLmkrfGBMJtAWWA/cD3xljnsM9PLJrYRcnIiIiIr7j8PFMRkxfwcmsHGaO60qNCiFOlyTiUwo8IYgxJhT4BLjfWnsUGAc8YK2tAzwATDvHcWM896TFpaSkFEbNIiIiIuJlTmTmcMeMWJIPn+CtER1oXC3M6ZJEfI6x1ua/kzGBwFfAd9ba5z3bUoGK1lpr3FPvpFpry5/vPDExMTYuLq4QyhYRERERb5Gd42Ls+6v4adM+XhvWjn4tazhdkojXMsastNbG5PVaQWZrNLh7xTaeCmYeu4Geno/7AAmXWqiIiIiI+BZrLRPnrufHjfuYdG0LBTORS1CQe866AcOBtcaYeM+2vwJ3Ai8ZYwKADGBMkVQoIiIiIl5r8k9b+XDFTsb1asCIrpFOlyPi0woyW+Mi4FwLU7Qv3HJERERExFd8tGInL/y4hRva1eLhq5o4XY6IzyvwhCAiIiIiIqf8tHEff/t8HZc1juDfN7bGfSeMiFwKhTMRERERuSC/7TzM+A9W0bxGeV4b1o5Af/1KKVIY9D9JRERERAosM9vFXe+tpFr5YN4e2YFyZS5o2VwROQ/9bxIRERGRAvtp4z72p51k+sgORISVcbockRJFPWciIiIiUmCz4pKoXj6YyxpHOF2KSImjcCYiIiIiBbI3NYNftqRwY/ta+PtpAhCRwqZwJiIiIiIF8smqZFwWhsTUcboUkRJJ4UxERERE8uVyWWbFJdG5fmXqVSnndDkiJZLCmYiIiIjka/n2Q+w4mK5eM5EipHAmIiIiIvmaHZdEWJkArm5Zw+lSREoshTMREREROa+jGVnMW7eHa6NrEhLk73Q5IiWWwpmIiIiInNeXq3eTkeViqIY0ihQphTMREREROa9ZsUk0rR5G69oVnC5FpERTOBMRERGRc9q09yirk1MZHFMHY7S2mUhRUjgTERERkXOaFZtMoL/h+ra1nC5FpMRTOBMRERGRPJ3MzuGz35K5onk1KpcLcrockRJP4UxERERE8vTTxv0cTs/S2mYixUThTERERETy9HFsEjUqBNOjUYTTpYiUCgpnIiIiIvIHu4+c4NeEFG5qXxt/P00EIlIcFM5ERERE5A8+WZmMtTC4vYY0ihQXhTMREREROYPLZZm1Moku9atQt0pZp8sRKTUUzkRERETkDMu2HyTp0AmGdlCvmUhxUjgTERERkTPMik0iLDiAfi2rO12KSKmicCYiIiIip6WeyOKbdXsZGF2T4EB/p8sRKVUUzkRERETktC9W7+ZktouhMXWdLkWk1FE4ExEREZHTZsUm0bR6GC1rlXe6FJFSR+FMRERERADYsPsoa3elMrRDHYzR2mYixU3hTEREREQAmBWXRJC/H4OiazldikippHAmIiIiIpzMzuHz+F1c0aIalcoFOV2OSKmkcCYiIiIi/LBhH0fSsxgSo7XNRJyicCYiIiIifBybRM0KwXRvGO50KSKllsKZiIiISCm368gJFm09wE0xdfD300QgIk5ROBMREREp5ebEJWMtDG5f2+lSREo1hTMRERGRUszlssxemUS3hlWoU7ms0+WIlGoKZyIiIiKl2NJtB0k+fEITgYh4AYUzERERkVLs49gkygcHcFWL6k6XIlLqKZyJiIiIlFKp6Vl8u34vg9rWIjjQ3+lyREo9hTMRERGRUmru6l1kZrs0pFHESyiciYiIiJRSs+KSaF6jPC1rVXC6FBFB4UxERESkVFq/O5V1u44yJEbT54t4i3zDmTGmjjFmvjFmozFmvTHmvlyv3WOM2ezZ/mzRlioiIiIihWVWbBJBAX4MalvL6VJExCOgAPtkA3+21q4yxoQBK40xPwDVgIFAa2vtSWNM1aIsVEREvIe1lpRjJ9m8N41Ne9IoW8afoTF1CPDXgAwRX5CRlcPn8bu5qkV1KpYNcrocEfHIN5xZa/cAezwfpxljNgK1gDuBZ6y1Jz2v7S/KQkVExBknMnNI2O8OYZv2prFp71E2703j4PHMM/b7/LddvHhzW2pVDHGoUhEpqO837CP1RJaGNIp4mYL0nJ1mjIkE2gLLgf8APYwxTwEZwEPW2thCr1BERIqFy2VJOpzOxj1p7h4xTwjbfvA41rr3CQ70o0m1MPo2q0rT6uVpWj2MJtXD+DUhhYmfr+fqF3/lmRtbc02rGs6+GRE5r9lxSdSqGEK3BuFOlyIiuRQ4nBljQoFPgPuttUeNMQFAJaAz0AGYZYypb+2pH+GnjxsDjAGoW7duoRUuIiIX7/DxTDbtTWPz3qOe3rA0tuxLIz0zBwBjoF7lsjSpHsa1bWrStHoYTWuUp27lsvj7mT+c7/q2tWlXtxL3fhTP3TNXMTSmDo9f15yyQRf0N0ARKQbJh9NZtPUA9/ZphF8e/59FxDkF+qlpjAnEHcxmWms/9WxOBj71hLEVxhgXEA6k5D7WWvsG8AZATEzMGcFNRESK1snsHH7ff5zN+46eMSxx39GTp/epWDaQptXDGBJT53QIa1wt9IKDVb0q5Zgztgsv/LCF1375ndgdh5h8c1tN0S3iZeasTAZgsIY0inidfH/yGmMMMA3YaK19PtdLnwN9gAXGmMZAEHCgKIoUEZHzs9ayOzWDzXuPnjEscVvKcbJd7r+LBfn70aBqKN0ahNPEE8KaVg+jalgZ3N/qL12gvx8P92tK94bhPDArnhteXcLD/Zpwe7co/YVexAu4XJbZccl0axBO7UplnS5HRM5SkD+LdgOGA2uNMfGebX8F3gbeNsasAzKBEWcPaRQRkcKXlpHFln2eXrA97hC2aW8aaRnZp/epVTGEptXDuLxZtdMhLCq8HIHFNJti14bhfHPfZTw8Zw1Pfr2RhQkHeG5wGyLCyhTL9UUkb4t/P8CuIyd45OqmTpciInkwxZmnYmJibFxcXLFdT0TEl2XnuEg8eDxXCHMHseTDJ07vE1om4PSkHKdCWONqYVQICXSw8v+x1vL+sh08+fVGwoIDeG5wG3o10corIk6558Pf+HVLCsv/2pfgQH+nyxEplYwxK621MXm9pju1RUS80NrkVCZ8uIodB9MB8Pcz1A8vR3SditzSsS5NqoXRtEYYtSqGFNqQxKJgjGF4l0g6RlXh3g9/Y+T0WO7oHsXD/ZpQJkC/GIoUpyPpmXy3fi+3dKijYCbipRTORES8iLWW95bt4MmvNhIeGsSzN7amRa3yNIgI9elfpppUD2PuhG78a95Gpi3azrJtB5l8S1saRIQ6XZpIqTE3fjeZ2S6GdKjjdCkicg4KZyIiXiItI4tHP13L12v20LtJBM8PiaZSuSCnyyo0wYH+/HNgS3o0iuDhOasZMHkRk65rzpCYOl7d+ydSUnwcm0SLmuVpUVMzqIp4q+K5M1xERM5rw+6jXDdlMd+u28sj/ZoybUSHEhXMcruieTW+ue8y2tatyCOfrGXCB7+Rmp7ldFkiJdq6Xals2HOUoeo1E/FqCmciIg6y1vLhip0MenUxx09m88HoTozr1aDETztfvUIw793RiYf7NeG79Xu5ZvJCYhMPOV2WSIk1Ky6JoAA/Brap5XQpInIeCmciIg45fjKbB2et5rFP19IpqjLz7utBp/pVnC6r2Pj7Ge7u1ZA547ri72cY+vpSXvhhC9k5LqdLEylRMrJy+Py3XfRrUZ0KZb1jJlcRyZvCmYiIA7bsS+O6KYv4PH4XD17RmHdGdSQ8tHSuARZdpyJf39udQdG1eOmnBG5+YxnJh9OdLkukxPhu/V6OZmRrSKOID1A4ExEpZnNWJnPdlEWknshm5h2duLdvI/xL+DDG/IQFB/L80GheHBrNpr1pXP3SQr5es8fpskRKhFlxSdSuFEKXUtQzL+KrFM5ERIrJicwc/jJ7NQ/NXk10nYrMu687XRuGO12WVxnUthZf39ud+hGhjP9gFY/MWUN6ZrbTZYn4rKRD6SzeepDB7euU+HtZRUoChTMRkWKwdf8xBr2ymDmrkrm3T0Nmju5M1bBgp8vySvWqlGPO2C7c3asBs1YmMWDyItbtSnW6LDlLRlYOd7wTy5/eWs6BYyedLkfOYfbKZIyBm2JqO12KiBSAwpmISBGbG7+L66YsIuXYSWaM6siDVzYp9cMY8xPo78fD/Zoy845OHM/M5vpXF/PWwm24XNbp0gTIcVke+DienzbtZ0XiIQZOWcz63QrQ3ibHZZkTl0T3huHUqhjidDkiUgAKZyIiRSQjK4e/fraW+z6Kp0XN8sy7tweXNY5wuiyf0rVhON/edxm9mlTlya83MuqdWFLS1EvjJGst/5i7jm/W7eXv/ZsxZ2wXclyWm15bqvsEvczirQfYnZqhiUBEfIjCmYhIEUg8cJwbXl3CB8t3clfP+nxwZ2eqV9AwxotRqVwQbwxvz/8NasmybQe5+qVfWbB5v9NllVov/pjAzOU7GduzAaN71Kd17Yp8cU83mtYIY/wHq3j+hy3q4fQSH8clUbFsIFc0r+Z0KSJSQApnIiKFbN7aPQx4eRG7jpxg2ogYHru6GYH++nZ7KYwxDO9cjy8mdKdKuTKMnB7L/321gZPZOU6XVqq8t2wHL/2UwOD2tXmkX5PT26uGBfPRmM7c1L42k39KYNzMlRw/qYlcnHT4eCY/rN/HoOhalAnwd7ocESkg/bYgIlJITmbn8Pjcddw9cxWNqoUy774e9G2mv1gXpibVw5g7oRu3danHtEXbuf6VJWzdf8zpskqFeWv38I+56+jbtCpP39AKY868b7JMgD//uak1Ewc054cN+7jxtSUkHdJ6dU75PH4XmTkuhsRoSKOIL1E4ExEpBEmH0hk8dSkzlu7gju5RfDymi27ALyLBgf78c2BL3rwthj2pJ7j25UV8tGIn1mooXVFZsvUA938UT/u6lZhyazsCztETbIzhju5RvDOqI7uPnOC6KYtY+vvBYq5WrLV8HJtEq1oVaF6zvNPliMgFUDgTEblE36/fS//JC9l+4DivD2/PxAHNCQrQt9eidkXzanxz32W0rVuRRz9dy/gPVpGanuV0WSXOul2pjHlvJZHhZZk2ogMhQfkPkbuscQRzJ3Sncrkghk9bznvLdhRDpXLKul1H2bQ3jSGaCETE5+i3BxGRi5SV4+LJrzYw5r2V1KtSjq/v6cFVLao7XVapUr1CMO/f0YlH+jXl+/X7uGbyQmITDzldVomx4+BxRk5fQYWQQN69vRMVygYW+Nio8HJ8Nr4bPRqFM/Hzdfzts7VkZruKsFo55eO4nZQJ8OO6NjWdLkVELpDCmYjIRdh95ARDX1/KW4u2M6JLPeaM60LdKmWdLqtU8vMzjOvVgDnjuhLgbxj6+lJe+GEL2TkKApdif1oGw6etIMdlmXF7x4uabbR8cCBvjejAXT3rM3P5ToZPW85BLVhdpDKycpgbv5urW1anQkjBw7SIeAeFMxGRCzR/036umbyQLfuOMeXWtjwxsKVmQ/MC0XUq8vW9PRjUthYv/ZTAzW8sI/mwJqS4GEczshj5tntNubdHdqBh1dCLPpe/n+Gxq5vxwtA2/JZ0hOumLGbjnqOFWK3k9u26vaRlZGsiEBEfpXAmIlJA2Tku/v3tJka9E0uNCiF8eU93BrTWsCFvElomgOeHRPPSzdFs2pvG1S8t5Ks1u50uy6dkZOUw5t04tuxL47U/taNt3UqFct7r29Zm9l1dyHa5uPG1JXy7TgtWF4WPY5OoUzmEzvWrOF2KiFwEhTMRkQLYm5rBrW8u57UFv3NLx7p8dndXosLLOV2WnMPA6FrMu7cHDSJCmfDBbzw8ZzXpmVp3Kz85LssDH8ezbNshnhvchl5Nqhbq+dvUqcgXE7rTqFoYY99fxYs/asHqwrTzYDpLtx1kSPs6+PmZ/A8QEa+jcCYiko9ft6TQf/JC1u1O5cWh0Tx9QyuCAzWM0dvVrVKW2WO7ML53A2avTGbA5EWs25XqdFley1rLP+au45t1e/l7/2YMalurSK5TrXwwH4/pzA1ta/HijwmM/2CVgnMhmb0yCWPgxva1nS5FRC6SwpmIyDnkuCzP/7CFEdNXUCU0iC8mdC+yX1ilaAT6+/GXq5oyc3Qn0jNzuP7Vxby7NFFrouXhxR8TmLl8J2N7NmB0j/pFeq3gQH/+O6QNf7umGd+t38uNry3V/YGXKMdlmbMymcsaRVBTayyK+CyFMxGRPLhnqlvO5J8SuKldbeaO735JkyKIs7o2COeb+3rQvWE4/5i7nvs+iuf4SfXWnPLesh289FMCg9vX5pF+TYrlmsYY7rysPm+P7EDy4XQGTlnMiu1aBuFiLUxIYU9qhiYCEfFxCmciImdZ8vsB+k9exKqdh3n2ptb8Z3CbAi28K96tUrkgpo3owENXNuarNbsZ9Mpitu5Pc7osx81bu4d/zF1H36ZVefqGVhhTvPcq9WpSlc/Hd6NCSCC3vrmMD1fsLNbrlxSz4pKoVDaQy5sX7n2CIlK8FM5ERDxcLsvLPyXwp7eWExYcwNzx3fVX6BLGz88woU8j3rujE4eOZ3LdlMV8ubr0zua4ZOsB7v8onvZ1KzHl1nYE+Dvza0GDiFA+G9+Nrg3DeezTtfxj7jqytE5dgR06nskPG/YxqG0tLesh4uMUzkREgIPHTjJi+gr++8MWrm1Tky8ndKdJ9TCny5Ii0q1hOF/d251mNcpzz4e/MemL9WRml64wsG5XKmPeW0lkeFmmjejgeO9whZBApo/swJ09onh36Q5um7aCw8czHa3JV3z22y6ycixDO+iPSSK+TuFMREq92MRD9J+8iOXbD/Gv61vx4tBoypUJcLosKWI1KoTw0ZjO3N4tineWJDL0jaXsST3hdFnFYsfB44ycvoIKIYG8e3snKpQNdLokwL1g9d/6N+e/g9uwcsdhrntlEZv3aujp+VhrmR2XRJvaFWhavbzT5YjIJVI4E5FSy+WyvLbgd25+YxnBgX58dndXbu1Ut9jvuRHnBPr78Y9rm/PKre3YsjeN/pMXsSjhgNNlFSn3ZDcryHFZZtzekeoVgp0u6Q9ubF+bj+7qTEaWixteXcz36/c6XZLXWpOcyqa9aQzWEGyREkHhTERKpcPHMxn9bhz//nYT/VpU58t7utOiZgWnyxKH9G9dgy/u6U54aBDD33bP0lkSF0c+mpHFyLdjSUk7ydsjO3j1DKTt6lbiywndaVA1lDHvrWTKzwlaAiEPH8clUSbAj+uiazpdiogUAoUzESl1Vu08zICX3T0k/xzYgim3tiUs2DuGdYlzGkSE8vn4bgxsU5Pnf9jC7TNiS9Q9TxlZOYx5N44t+9KYOrw9betWcrqkfFWvEMysu7owKLomz32/hQkf/saJzByny/IaJzJz+DJ+N9e0qkF5fQ8TKREUzkSkVNmyL42bX1+Gnx/MGdeF27pEahijnFY2KIAXhkbzf4NasmTrQQa8vIg1yUecLuuS5bgsD3wcz7Jth3hucBt6No5wuqQCCw7054Wh0Tx6dVPmrd3DTVOXsOtI6bg3MD/frNtD2slszSorUoIonIlIqWGt5Ykv1xMS5M9nd3ejde2KTpckXsgYw/DO9Zg9tgsAN722lPeX7fDZIXXWWv4xdx3frNvL3/s3Y1DbWk6XdMGMMYzt2YBpI2LYeTCdgVMWEZeoBatnxSVRr0pZOtev7HQpIlJIFM5EpNT4bv1eFm89yJ+vbEx4aBmnyxEv16ZORb66pztdGlTh75+v48FZq0nPzHa6rAv24o8JzFy+k7E9GzC6R32ny7kkfZpW47PxXQktE8Atby7j49jSu2D1joPHWbbtEIPb11bvv0gJonAmIqVCRlYO//fVRppWD+PWjnWdLkd8RKVyQUwf2YEHr2jM5/G7GPTKYn5POeZ0WQX23rIdvPRTAoPb1+aRfk2cLqdQNKwaxtzx3elcvwqPfLKWSV+sJ7sULlg9Oy4ZP+Oe2VJESg6FMxEpFd74dRu7jpzg8WtbEOCvb31ScH5+hnv7NuLd2zuSknaSgVMWM2/tHqfLyte8tXv4x9x19G1aladvaFWielcqlHUvWH1Hd/cadSOnx3IkveRM3pKfHJdlzspkLmscQY0KIU6XIyKFSL+hiEiJt+vICV5dsJX+rWrQpUEVp8sRH9WjUQRf39uDhlVDuXvmKv755QayvLTHZsnWA9z/UTzt61Ziyq3tSuQfJAL8/Zg4oDnP3tSaFdsPMfCVxSTsKx0LVv+6JYW9RzMYqolAREqckvfdWkTkLE/P2wjAY9c0dbgS8XU1K4Yw664ujOwayduLt3PzG8vYm5rhdFlnWLcrlTHvrSQyvCzTRnQgJMjf6ZKK1JCYOnw4phPHT+Zw/atL+GnjPqdLKnKz4pKoXC6Ivs2qOV2KiBQyhTMRKdGWbTvIV2v2MK5nQ2pXKut0OVICBAX4Mem6Fky+pS0b9xyl/+SFLN56wOmyAEg8cJyR01dQISSQd2/vRIWypWPtq/b1KvPFhG5EhZdj9LtxvLpgq8/Orpmfg8dO8uPGfVzfthZBAfo1TqSk0f9qESmxsnNcTPpiPbUqhnBXT9+epU68z3VtavLFhG5UKhfE8GnLeWX+Vlwu5wLB/rQMbnt7BTkuy4zbO1K9QrBjtTjhVK/mgNY1efbbzdz3UTwZWSVvwerPfttFVo7V2mYiJVS+4cwYU8cYM98Ys9EYs94Yc99Zrz9kjLHGmPCiK1NE5MJ9GJvEpr1p/L1/M4IDS/bQLnGGe+bAbgxoXZP/fLeZO9+NIzU9q9jrOJqRxci3Y0lJO8nbIzvQsGposdfgDUKC/Jl8czR/uaoJX67ZzeCpS9mTWnIWrLbWMisuiTZ1KtKkepjT5YhIEShIz1k28GdrbTOgMzDeGNMc3MENuAIovQuNiIhXOnw8k/9+v5ku9avQr2V1p8uREqxcmQBeujmaJ65rwa8JKfR/eSFrk1OL7foZWTmMeTeOLfvSmDq8PW3rViq2a3sjYwzjezfkzeExbEs5xrUvL2bljsNOl1Uo4pOOsGXfMU0EIlKC5RvOrLV7rLWrPB+nARuBWp6XXwAeBkrmwG4R8VnP/7CFtIxsHr+ueYmaQly8kzGGEV0jmXVXF1wuy41Tl/DB8p1Fft9TjsvywMfxLNt2iOcGt6Fn44givZ4vubx5NT4b341yZfy55Y1lfLhiJzkODjstDLPikgkO9GNAmxpOlyIiReSC7jkzxkQCbYHlxpjrgF3W2tX5HDPGGBNnjIlLSUm5+EpFRApo456jzFy+g+Gd69G0enmny5FSpG3dSnx1bw86RVXmr5+t5aHZaziRWTT3PVlr+cfcdXyzbi8TBzRnUNta+R9UyjSu5h522iGqEo99upa+/13Ae0sTi+xzUpTSM7P5cvVurmlVg/LBpWOiF5HSqMDhzBgTCnwC3I97qOPfgH/kd5y19g1rbYy1NiYiQn/RE5GiZa1l0hfrqRASyAOXN3a6HCmFKpcL4p1RHbmvbyM+/S2Z619dzPYDxwv9Oi/+mMDM5TsZ27MBd3SPKvTzlxQVywbx7u2dmHJrWyqUDWLi3PV0eeYnnvtuM/vTvGsZhPP5Zu1ejp3M1pBGkRKuQOHMGBOIO5jNtNZ+CjQAooDVxphEoDawyhijGztExFFfr93D8u2HeOiqJqVmGnHxPv5+hgeuaMz0kR3YezSD615exLfr9hTa+d9btoOXfkpgcPvaPNKvSaGdt6Ty9zMMaF2Tz+/uyuyxXegYWZlXFmyl+zPzeXjOarb4wOLVH8clEVmlLB2jKjtdiogUIZPfeHjjvlljBnDIWnv/OfZJBGKstedd6CUmJsbGxcVdXKUiIvk4kZlD3/8uoGLZIL68pzv+frrXTJy368gJ7p65itVJR7izRxQP92tKoP/Fr2Qzb+0exn+wir5NqzL1T+0JuIRzlWbbDxxn2qJtzFmZTEaWi56NI7izR326Nazidfepbj9wnN7PLeAvVzVhfO+GTpcjIpfIGLPSWhuT12sF+Y7eDRgO9DHGxHse1xRqhSIiheC1X35nd2oGk65roWAmXqNWxRBm3dWZ27rU482F27n1zWXsO3pxw+mWbD3A/R/F075uJV6+pZ2C2SWICi/Hk4NaseTRvvz5isas332UP01bztUvLeSTlclkZrucLvG02XFJ+Bm4sV1tp0sRkSKWb89ZYVLPmYgUlaRD6Vz+/C9c1aI6k29p63Q5InmaG7+LRz9ZS7kyAbx8S1u6NKhS4GPX7Url5jeWUbNiMLPv6qphu4UsIyuHL+J38+bCbSTsP0a18mUY0TWSYR3rOdrW2Tkuuj7zMy1rVeDtkR0cq0NECs+l9pyJiHi9f83biJ8xPHZNU6dLETmngdG1mDuhG+VDAhj21jJeXbAVVwGmd088cJyR01dQISSQd2/vpGBWBIID/RnSoQ7fP3AZ74zqQKOqYTz77Wa6PPMTk75Yz86D6Y7U9WtCCvvTTjIkRr1mIqWBwpmI+LzFWw/wzbq9jO/dgBoVQpwuR+S8GlcL44sJ3bm6VQ2e/XYzY95bSeqJrHPuvz8tg9veXkGOyzLj9o5UrxBcjNWWPsYYejWpyvujOzHv3h70a1md95ftoNdz8xn3/spiX9D649gkqpQLok/TasV6XRFxhsKZiPi07BwXT3y5njqVQxjdo77T5YgUSGiZAKbc0pbHr23Ogs37ufblRazblfqH/Y5mZDHy7VhS0k4yfVRHGlYNdaDa0qt5zfI8PySaRY/0YcxlDVi89QA3vraEG15dzLfr9hT5otYpaSf5aeN+bmhXi6AA/comUhrof7qI+LT3l+1gy75jTOzfnOBAf6fLESkwYwyjukXx8V1dyMx2ccNrS/g4dufp1zOychjzbhxb9qUxdXh7outUdK7YUq56hWAevbopSx/ry+PXNifl2EnGvr+KPv9dwIwliaRnZhfJdT//bRfZLssQrW0mUmpoQhAR8VkHj52k93MLaFOnIu/e3tHrpr8WKaiDx05y30fxLNp6gMHtazPpuhY8NHs136zby4tDoxnUtpbTJUouOS7Ld+v38ubCbfy28wgVQgIZ1qkuI7tGUrV84Qw7tdZyxQu/EhYcwGd3dyuUc4qIdzjfhCABxV2MiEhhee77LaRn5vD4tc0VzMSnVQktw4zbO/LSj1uY/PNWvt+wj9QTWUwc0FzBzAv5+xmuaVWDa1rVYOWOQ7z563Ze++V33ly4jeva1GJ0jyia1Sh/Sdf4LekIW/cf4+kbWhVS1SLiCxTORMQnrduVykexOxnVNYqGVcOcLkfkkvn7GR68sglt61Xi4TlruKdPQ+7oHuV0WZKP9vUq0354ZXYcPM7bi7YzKy6ZT1Yl06NROKN71OeyRuEX9cejWbFJhAT6M6B1jSKoWkS8lYY1iojPsdYyeOpSth84zs8P9aJCiKYVl5LFWqveYB91JD2Tmct38s6SRFLSTtKkWhh39IhiYHRNygQU7L7Y9MxsOjz5I1e3qsFzg9sUccUiUty0zpmIlChfrN5N3I7DPNyviYKZlEgKZr6rYtkgxvduyKJHevOfm1pjDDw8Zw3d/z2fV+Zv5Uh6Zr7n+HrNHo5n5mgiEJFSSMMaRcSnHD+ZzdPzNtGqVgUGt9cvLiLincoE+DM4pg43ta/NwoQDvLlwG//5bjNTft7K4Jja3NE9inpVyuV57Ky4JKLCy9EhslIxVy0iTlM4ExGf8uqCrew9msErw9ri56feBRHxbsYYLmscwWWNI9i09yhvLdzOhyt28t6yHVzZvBp39qhP+3qVTveWbks5Rmyie2SAelBFSh+FMxHxGTsOHufNX7dzQ9tatK9X2elyREQuSNPq5XlucBsevqoJM5Ym8v6ynXy3fh/RdSpyZ4/6XNWiGrPikvH3M9zUrrbT5YqIAxTORMRnPPn1RgL8DY9c3dTpUkRELlrV8sH85aqmjO/dkDkrk3lr4XbGf7CKOpVDSMvIpneTiEJbL01EfIsmBBERn/DrlhR+2LCPe/o0opp+aRGREqBsUAC3dYlk/kO9mPqndlQNC+ZIehbDOtdzujQRcYh6zkTE62XluHjiy/VEVinL7d0jnS5HRKRQ+fsZ+rWsQb+WNTh0PJPK5YKcLklEHKKeMxHxejOWJPJ7ynEmDmhe4HWCRER8kYKZSOmmcCYiXi0l7SQv/ZhAryYR9Gla1elyRERERIqMwpmIeLXnvtvMiawcJg5ormmlRUREpERTOBMRr7U66QizViZxe/coGkSEOl2OiIiISJFSOBMRr+RyWSZ9uZ4q5cpwT5+GTpcjIiIiUuQUzkTEK30ev4vfdh7hkX5NCAsOdLocERERkSKncCYiXufYyWye/mYTbepU5MZ2tZ0uR0RERKRYaJ0zEfE6L/+cQEraSd68LQY/P00CIiIiIqWDes5ExKtsP3Cctxdt56b2tYmuU9HpckRERESKjcKZiJdzuSzWWqfLKDb/99UGygT483C/Jk6XIiIiIlKsNKxRxAulpJ1kYUIKv2xJYWHCAcqV8efZG9vQpUEVp0srUvM37efnTfv52zXNqBoW7HQ5IiIiIsVK4UzEC2TnuPgt6Qi/bHYHsrW7UgEIDw2iZ+MI4pOOcOtby7ijWxQPXdWE4EB/hysufJnZLv751QbqR5RjRNdIp8sRERERKXYKZyIO2ZN64nQYW7T1AGkZ2fj7GdrXrcRfrmpCz8YRNK9RHj8/Q3pmNk/P28Rbi7bza0IKzw+JpmWtCk6/hUI1ffF2th84zjujOhAUoBHXIiIiUvoonIkUk5PZOcQlHuaXLSn8sjmFzfvSAKhRIZj+rWrQs3EEXRuGUyHkj2t6lQ0K4P8GtaRvs6o8PGcN17+6mPsvb8zYng3wLwGzGe4/msHknxLo27QqvZpUdbocEREREUconIkUoR0Hj58OY0t+P8iJrByC/P3oEFWJm9o3o2eTCBpVDcWYggWsXk2q8t39l/H3z9fxn+828/Om/Tw/pA31qpQr4ndStP797WayciwTBzR3uhQRERERxyiciRSiE5k5LNt2kF+2pLBg834SD6YDULdyWQbH1KZn4wg6169CuTIX/1+vUrkgptzaliviqzFx7jqufmkhEwc05+YOdQoc8rzJbzsP88mqZMb1akBkuG+HTBEREZFLoXAmcgmstfyecowFnnvHlm8/RGa2i+BAP7rUr8LIrpH0bFKVqEIOHcYYBrWtRceoyvxlzmoe+3QtP27Yx9M3tvKpWQ5dLsukL9ZTNawM43s3dLocEREREUcpnIlcoLSMLBZvdfeO/bolhV1HTgDQqGoot3WuR88mEXSIrFwsMyrWrBjCe7d3YsbSRJ75ZhNXvfArT9/Qin4taxT5tQvDnFXJrE5O5YWhbQi9hN5EERERkZJAvw2J5MNay/rdR933jm1JYdWOw2S7LKFlAujWsArjezekZ5MIalUMcaQ+Pz/DqG5R9GgUzgMfr2bs+6u4sV1tHr+uOeWD/zi5iLc4mpHFs99uol3digyKruV0OSIiIiKOUzgTycPh45ks3HqAXzan8GtCCilpJwFoXqM8Yy6rT8/GEbSrV4lAf++Z8r1h1TA+vbsrL/+UwCsLfmfZtoM8N9h7F65++acEDh7PZPrIjj55r5yIiIhIYVM4EwFyXJY1yUdO3zu2OvkI1kLFsoH0aBRBz8YRXNYonKrlvft+rkB/Px68sgm9m1blwVmrvXbh6q37jzF9cSJDY+rQqnbJWq9NRERE5GKV+nB28NhJKpUNwq8ErBUlF+bAsZOnw9jChBSOpGdhDLSpXZF7+zSiV5MIWteu6JPriLWtW4mv7+3Ov+ZtPL1w9QtDo2lR0/kgZK3ln19tICTIn4euauJ0OSIiIiJeo9SHs/s/jmfnoXSGd67H4Jg6eS4ALCXLul2pTFu0nS9X7ybbZQkPLUPfptXo2SSCHg3DqVQuyOkSC0XZoACeHNSKy5tV4+E5axj0incsXP3Txv38uiWFiQOaEx5axrE6RERERLyNsdYW28ViYmJsXFxcsV2vIL5as5t3FicSt+MwZYP8uaFdLUZ0iaRRtTCnS5NC5HJZft60n7cWbWPZtkOUC/JncEwdbmpfm+Y1ypf4ntPDxzP5++fr+HrtHtrXq+TYwtUZWTlc+cKvBAX48c19Pbzqnj0RERGR4mCMWWmtjcnztdIezk5ZtyuVd5Yk8sXq3WRmu+jeMJwRXSPp07SqTw5rE7cTmTnMWZXM9EXb2XbgODUqBDOqWyRDO9Qtdb2k1lrmxu9m4tx15LisIwtXvzJ/K//5bjPv3dGRHo0iiu26IiIiIt7iksKZMaYO8C5QHXABb1hrXzLG/Ae4FsgEfgdGWWuPnO9c3hzOTjl47CQfxSbx/rId7EnNoE7lEG7rHMmQmDpUKFu6fpn3ZfuOZvDu0kRmLt/JkfQsWteuwOge9bm6ZfVS31uz+8gJHpq9miW/H6Rv06rFtnD13tQM+vx3Ad0bhvPGbXl+PxIREREp8S41nNUAalhrVxljwoCVwCCgNvCztTbbGPNvAGvtI+c7ly+Es1Oyc1x8v2Ef7yxOZEXiIUIC/bm+XS1Gdo2ksYY8eq31u8+8n+zK5tUY3aM+MfUqabr2XFwuyztLEvn3t5soVyaAf13fin4tqxfpNe//6DfmrdvLjw/0pG6VskV6LRERERFvVajDGo0xc4Ep1tofcm27HrjJWjvsfMf6UjjLbf3uVGYsSWRu/G5OZrvo2qAKI7pGcnmzahry6AVcLsuCLft5a+F2lvx+kLJB/gyJqcOobpGO3FflS7buT+P+j+NZt+tokS5cHZd4iJumLmVC74aaoVFERERKtUILZ8aYSOBXoKW19miu7V8CH1tr3z/f8b4azk45fDyTj2KTeG9pIrtTM6hVMYTbutRjaIc6VCxbMmb48yUnMnP49Ldkpi3azraU41QvH8zIbpHc0qGuhqBegMxsFy//nMAr87dSo0II/x3Shs71C2/h6hyXZeAriziQlsnPD/WkbFCpnyRWRERESrFCCWfGmFDgF+Apa+2nubb/DYgBbrB5nMwYMwYYA1C3bt32O3bsuPB34GWyc1z8uHEf7yxJZNm2QwQH+jEouhYjukbSrEZ5p8sr8fanZfDe0h28v2wHh9OzaFmrPHf2qM81rWqU+vvJLsWqnYd58ON4dhxKZ3T3KP58ZeEsXP3hip089ulaJt/Sluva1CyESkVERER81yWHM2NMIPAV8J219vlc20cAY4G+1tr0/M7j6z1nedm45yjvLk3ks992kZHlolNUZUZ1cw95DFBQKFQb9xxl2qLtfBG/myyXi8ubVWN09yg6RlXW/WSFJD0zm3/N28j7y3bSpFoYzw9tc0kLV6emZ9H7vwtoGBHKx3d11udJRERESr1LnRDEADOAQ9ba+3Nt7wc8D/S01qYUpJCSGM5OOZKeycexSby7dAe7jpygZoVg/tSlHjd3qEvlErKosRNcLssvCSlMW7idRVsPEBLoz+CY2ozqFkVUuO4nKyrzN+/n4TlrOJKeyQNXNOauyy5u4eonvlzPjCWJfHlP90sKeSIiIiIlxaWGs+7AQmAt7qn0Af4KTAbKAAc925ZZa8ee71wlOZydkuOy/LhxHzOWJLLk94OUCfBjYHRNRnSN1C+nFyAjK4fPftvFtEXb2br/GNXKl2FE10hu7VhX9/cVk9wLV8fUq8TzQ6IvaJbFLfvSuPqlhdzcoQ5PXd+qCCsVERER8R1ahNohm/emMWNpIp+t2sWJrBw6RlZmRNdIrmqhIY/nkpJ2kveWue8nO3Q8k+Y1ynPnZVH0b1WToAC1WXG72IWrrbX8adpy1iansuAvvdV7LCIiIuKhcOaw1PQsZsUl8e6yRJIOnaBGhWD+1LkeN3eoQ5XQMk6X5xU2701j2qJtfP7bbjJzXFzerCp3dK9P5/q6n8wbnL1w9TM3tiYi7Nxfu9+u28vY91fyxHUtGNE1svgKFREREfFyCmdeIsdl+XnTfmYsSWTR1gMEBfhxXZuajOwaSctapW/Io7WWXxMO8NbCbSxMOEBwoB83tXffT9YgItTp8uQsBV24OiMrh8uf/4VyQQF8fW939RKLiIiI5KJw5oUS9rmHPH66ahfpmTnE1KvEiK6R9GtZvcRPB5+RlcPcePf9ZFv2HSMirAwjPfeTVdLwN6+XsC+NB2a5F66+qX1tHr+2OWG5Fq5++acE/vvDFj64sxNdG4Q7WKmIiIiI91E482KpJ7KYHeee5XHnoXSqlS/DnzrV45ZOdQkvYUMeDxw7yfue+8kOHMukWY3yjO4exYA2NSgTcOnraUnxOdfC1buPnKDPfxfQp2lVXh3W3ukyRURERLyOwpkPcLksC7bsZ/riRBYmHCDI348BbWowsmskrWtXdLq8S5KwL41pi7bz6W+7yMx20adpVUZ3j6JLgyq6n8zHrdxxmD/P+t/C1cmHT/Dzpv389Oee1K5U8JkdRUREREoLhTMfs3X/Md5dmsgnK5M5nplDu7oVGdE1kqtb1vCZGQuttSzaeoC3Fm7nly0plAnw48b2tbm9WxQNq+p+spIkPTObp77eyMzlOwG4r28jHriiscNViYiIiHgnhTMfdTQji09WJjNjSSKJB9MJCvAjOMAPfz+Dv58fAX4Gfz9DgL/B3xjPds9zPz/8DQT4+eXaZgjwM/iZ/+1z6hz+xuDvb/53Tj+Dn9+p535nbPc/42O/s/Y1HEnPZObynWzam0Z4aBlGdKnHsM71NJ16CTd/835+2riPv13TnJAgDVMVERERyYvCmY9zuSy/JKSwZOsBsnIsOS5LtsuS43KR7bK4Tj//3785p5+7Tm8v6H45OZYce+Y+F6pp9TDu6B7FddE1dT+ZiIiIiIjH+cJZQHEXIxfOz8/Qu0lVejep6sj1rfWENGvPCHDZLovL5n7uDnh+fob64eV0P5mIiIiIyAVQOJN8Gc8wSH2xiIiIiIgUHd+YXUJERERERKSEUzgTERERERHxAgpnIiIiIiIiXkDhTERERERExAsonImIiIiIiHgBhTMREREREREvoHAmIiIiIiLiBRTOREREREREvIDCmYiIiIiIiBdQOBMREREREfECCmciIiIiIiJeQOFMRERERETECyiciYiIiIiIeAGFMxERERERES+gcCYiIiIiIuIFFM5ERERERES8gMKZiIiIiIiIF1A4ExERERER8QIKZyIiIiIiIl5A4UxERERERMQLKJyJiIiIiIh4AYUzERERERERL6BwJiIiIiIi4gUUzkRERERERLyAwpmIiIiIiJQMzz4L8+efuW3+fPd2H6BwJiIiIiIiJUOHDjBkCHz0EWza5A5mQ4a4t/uAAKcLEBERERERuWTWuv9t1gxuuQUaNYLDh2HWLOjd29naCkg9ZyIiIiIi4ruOHYOpU6FVK+jTB9avh65dISEBxo3zmWAGCmciIiIiIuKLEhLggQegdm13CAsKgrffhpkzYcsWmDgRXnvtj/egeTGFMxERERER8Q0uF8ybB1dfDY0bw5QpcM01sGQJrFwJkZEwfLh7KOM//+n+d8gQnwlo+YYzY0wdY8x8Y8xGY8x6Y8x9nu2VjTE/GGMSPP9WKvpyRURERESk1DlyBF54wR3I+veH+HiYNAl27oQPPoAuXcAYiI098x6z3r3dz2NjHSy+4Iw9dePcuXYwpgZQw1q7yhgTBqwEBgEjgUPW2meMMY8Clay1j5zvXDExMTYuLq5QChcRERERkRJu7Vp379j770N6OnTrBvfcA9df7x7G6IOMMSuttTF5vZbvbI3W2j3AHs/HacaYjUAtYCDQy7PbDGABcN5wJiIiIiIicl7Z2TB3Lrz8MvzyCwQHw623woQJ0Lat09UVqQuaSt8YEwm0BZYD1TzBDWvtHmNM1cIvT0RERERESoX9++HNN90zLyYnu+8fe/ZZuP12qFLF6eqKRYHDmTEmFPgEuN9ae9QYU9DjxgBjAOrWrXsxNYqIiIiISEm1YoV76OLHH0NmJlx+ObzyivveMn9/p6srVgUKZ8aYQNzBbKa19lPP5n3GmBqeXrMawP68jrXWvgG8Ae57zgqhZhERERER8WUnT7on6pgyxR3OQkNhzBi4+273ItKlVEFmazTANGCjtfb5XC99AYzwfDwCmFv45YmIiIiI13j22T9OST5/vnu7SEEkJ8Pf/w516sBtt0Fqqvvesl273P+W4mAGBVvnrBswHOhjjIn3PK4BngGuMMYkAFd4nouIiIhISdWhw5lrRs2f737eoYOzdZ3NV0Kkr9R5qax1T+wxeLD7PrJ//cs99f3338OGDe6JPsqXd7pKr5DvVPqFSVPpi4iIiPi4+fPhyishPBwOHICmTSEiwj2teWDgxT0K+9jFi+FPf/rfelenQmTu9a+8wdl1eWudF+v4cZg50z10ce1aqFQJRo+GceMgKsrp6hxzSVPpi4iIiIic1rs3NGkC69dD/fruYJaZ6f5FPCurYI/s7OKptU8f8PMDl8s9HfvAge4JJvz83I/cH5/9vLA+zm+/Dh3gmmugVSt3m44f727PtWuhZk2oXNm9uLIv+f13ePVVePtt9+LRbdrAW2/BLbdA2bJOV+fV1HMmIiIiIgV3qndn3Dh47bWL6+Wx1h3QsrLcQaSgoe7sR37H/vgjLFrkHkLXtSvk5LiDmst17o/P91phfXz28yNH3OE2L0FB7pB2vkeNGlChgrMhzuVyD1OcMgXmzXMHzxtvdA9Z7NbN9wJmEVLPmYiIiIhcurOH3fXufXHD8Iz53xDEoupJmT/fHRQmTnSHyKee8s6hgqfa9MEH3XW+9BLUqwe7d//xsW6dOwAdPfrH84SE5B/iatZ0z4p4MZ591t3Ll7sN58+HhQvdwfCVVyAhAapVc7f5XXe5rycXROFMRERERAomNvbMINa7t/t5bKx3BZ/CCpFF7Xx1Dh587uOOHYM9e/4Y3k5tW7UKvvwS0tP/eGxYWMF64kJCzjzu1GQwp2qdPt097T1ARoa7d3LSJLjpJndvn1wUDWsUERERkZLlXL08sbHw8MPO1XW2oqzTWkhLy7sH7uzHyZN/PL5ixT+GtmPH4J13oEoV2LHD3fM5bJh76GL79pdWbylyvmGNCmciIiIiIqWVtXD48Ll74XI/ck/k0qcPfPSRe0IYuSC650xERERERP7IGPeMkJUrQ8uW597P5YK5c+GOO9zDGV9/3X0PnDcNEy0BCrIItYiIiIiIlGa//AJjxsAnn8CTT7rvPcu9ILkUCoUzERERERE5v/NNBiOFRveciYiIiIiIFJPz3XOmnjMREREREREvoHAmIiIiIiLiBRTOREREREREvIDCmYiIiIiIiBdQOBMREREREfECCmciIiIiIiJeQOFMRERERETECyiciYiIiIiIeIFiXYTaGJMC7Ci2CxZcOHDA6SJKGLVp4VJ7Fj61aeFSexY+tWnhUnsWPrVp4VJ7Fj5vbdN61tqIvF4o1nDmrYwxcedapVsujtq0cKk9C5/atHCpPQuf2rRwqT0Ln9q0cKk9C58vtqmGNYqIiIiIiHgBhTMREREREREvoHDm9obTBZRAatPCpfYsfGrTwqX2LHxq08Kl9ix8atPCpfYsfD7XprrnTERERERExAuo50xERERERMQL+Fw4M8b0M8ZsNsZsNcY8mmv7x8aYeM8j0RgTn8ex0caYpcaY9caYNcaYobleizLGLDfGJHjOFXSO64/w7JNgjBlxocd7Gy9oz2+NMUeMMV+dtd0n2xOcbdPC+Jx4G4fbs54xZqXnGuuNMWMv5Hhv5fT/e8++5Y0xu4wxUy7meG/idHsaY3JyXeeLCz3eGxVhm07wnNMaY8LPc/0S9bMevKJNS9TPeyfbs7C+D3sbh9vUe37eW2t95gH4A78D9YEgYDXQPI/9/gv8I4/tjYFGno9rAnuAip7ns4CbPR9PBcblcXxlYJvn30qejysV9Hhvezjdnp7X+gLXAl+dtd3n2tMb2rQwPife9PCC9gwCyng+DgUSgZq+2p7e0Ka5zvMS8AEwJdc2n2tTb2hP4Ng5tvtcexZDm7YFIj3/l8PPcf0S9bPeG9rUs1+J+XnvdHsWxvcNb3t4QZt6zc97xz8ZF/iJ6wJ8l+v5Y8BjZ+1jgKRTn6B8zrcaaOQ55gAQkNd1cu1/C/B6rueve7YV6HhvezjdnrmO60Wub9a+2p7e1KaFdbzTD29qT6AKsBP3N32fbE9vaVOgPfARMBJPOPPVNvWS9vxDOPPV9izKNj1rWyLn/iWtRP2s94Y2zbVPL0rAz3tvac+zj/fV9vS2NsXhn/e+NqyxFu5PyinJnm259QD2WWsTznciY0xH3Cn5d9yfhCPW2uyzz2uMiTHGvJXP9c95vJdzuj3PxVfbE7yoTQt6vJdzvD2NMXWMMWs8dfzbWrv7fMf7AEfb1Bjjh/svn38563S+2qaOf40CwcaYOGPMMmPMIM82X21PKLo2Pd9+JflnPTjfpufiq23qNe1ZQn7Wgxe0qbf8vA8oypMXAZPHNnvW81uAD897EmNqAO8BI6y1LmPMOc9rrY0DRudz/YLU5Y2cbs9LqctbeUWbXsjxXs7x9rTWJgGtjTE1gc+NMXMAVwHq8lZOt+ndwDxrbdJZh+hr9OL/z9e11u42xtQHfjbGrAWOFqAub1UkbXq+fUv4z3pwvk0vpS5v5BXtWYJ+1oMXtKm3/Lz3tXCWDNTJ9bw2sPvUE2NMAHAD7iEzeTLGlAe+Bv5urV3m2XwAqGiMCfAk4zPOe9b1e511/QUXcLy3cbo9z8VX2xO8oE2L6HPiFMfb8xTPL7/rcf/l7pMLPd6LON2mXYAexpi7cY/rDzLGHMM9hMUX29Tp9sTz112stduMMQtw31+hr9E/tumFXL/XWddfgO9+HwXn2/RcfLVNHW/PEvazHrygTU9x+ue9rw1rjAUaeWZNCQJuBr7I9frlwCZrbXJeB3uO+Qx411o7+9R26x5EOh+4ybNpBDA3j1N8B1xpjKlkjKkEXIl73GlBj/c2Trdnnny4PcHhNi2qz4mDnG7P2saYEM/HlYBuwGYfbk9wuE2ttcOstXWttZHAQ57zPOrDber012glY0wZz8fhuL9GN/hwe0IRtekFKGk/68H5Ns2TD7epo+1ZAn/Wg/Nt6j0/760X3AR4IQ/gGmAL7nGkfzvrtXeAsec59k9AFhCf6xHtea0+sALYCszmfzO2xABv5TrH7Z59tgKjcm3P83hvf3hBey4EUoATuP9qcpUvt6fTbXoxx3v7w+H2vAJYg/vG4jXAmFzn9sn2dLpNzzrXSM6crdEn29Thr9GuwFrP1+ha4A5fb88ibtN7cf+sycb91+9T7Viif9Z7SZuWqJ/3TrZnPsf7ZHt6QZt6zc9747moiIiIiIiIOMjXhjWKiIiIiIiUSApnIiIiIiIiXkDhTERERERExAsonImIiIiIiHgBhTMREREREREvoHAmIiIiIiLiBRTOREREREREvIDCmYiIiIiIiBf4f5x8Z9zdctOdAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABWQUlEQVR4nO3dd3RU1d7G8e9OoYVOQgkBQu8kkNAEpKmgiKACFkSsiBV7ub5e9SrqtYsNEQuKXgUsiBVUQFBqMCC9txAgoYQUUme/f5wBAwYIkORMkuez1ixmTv3NnBkmz+x99jHWWkRERERERMRdfm4XICIiIiIiIgpnIiIiIiIiPkHhTERERERExAconImIiIiIiPgAhTMREREREREfoHAmIiIiIiLiAxTOREREREREfIDCmYhICWGMScl18xhjDud6PNzt+s6EMWarMeY8t+s4GWPMHGPMTUWwn5HGGJt7X8aY64wxOccd+1655lc3xnxljEk1xmwzxlx93Db7GmPWGmPSjDGzjTENCvt5iIjIiSmciYiUENbaikduwHZgYK5pn7hd3/GMMQElYR9FwRhTDXgEWJXH7AW5j721dk6ueW8CmUAtYDjwtjGmtXebwcCXwGNAdWAp8HnhPQsRETkVhTMRkRLOGONnjHnYGLPJGLPPGDPFGFPdOy/c2xpzvTFmhzHmgDFmtDGmozFmhTHmoDHmjVzbus4Y87sx5nVjTJK31aVvrvlVjDHvGWPijTFxxpinjTH+x637ijFmP/CEMaaxMeZXb12JxphPjDFVvct/DNQHZnhbhB40xvQyxuw87vkdbV0zxjxhjJlmjJlsjDkEXHeKmpoYY+Z6n0uiMSbPcGKMKefd5j7va7LEGFPLGDMW6AG84a3xDe/yLYwxs4wx+40x64wxw3Jt60NjzHjv/GTv/k/VYvUsMA5IPPURP7qfIOBy4DFrbYq1dj7wDTDCu8hlwCpr7VRrbTrwBBBhjGmR332IiEjBUjgTESn57gIGAz2BUOAATotKbp2BpsAVwKvAo8B5QGtgmDGm53HLbgaCgceBL4+EPWASkA00AdoDFwA35bFuTWAsYHCCRyjQEqiHExKw1o7g2BbA5/P5fAcB04CqwCenqOkpYCZQDQgDXj/BNkcCVbz11QBGA4ettY8C84A7vDXe4Q1Fs4BPvc/zKuCtIy1WXsO9+w4GYr115skY0wmIBsafYJH23mC53hjzWK7WwmZAjrV2fa5ll+McU7z/Lj8yw1qbCmzKNV9ERIqYwpmISMl3C/CotXantTYDJ/wMOa7L31PW2nRr7UwgFfiftXavtTYOJ3y0z7XsXuBVa22WtfZzYB0wwBhTC7gQuNtam2qt3Qu8AlyZa91d1trXrbXZ1trD1tqN1tpZ1toMa20C8DJOiDwbC6y1X1trPUDlU9SUBTQAQr3Pf/4JtpmFE8qaWGtzrLUx1tpDJ1j2YmCrtfYD7/NcBnwBDMm1zHfW2t+8x+NRoKsxpt7xG/K28L0F3Ol9Psf7DWiDEwIvxwmCD3jnVQSSjls+CaiUz/kiIlLESkRffBEROakGwFfGmNx/3OfgnId0xJ5c9w/n8bhirsdx1lqb6/E2nJavBkAgEG+MOTLPD9iRa9nc9zHG1MTprtcDJxT44bTsnY3c+zhVTQ/itGAtNsYcAF6y1r6fxzY/xmk1+8zb7XIyTuDNymPZBkBnY8zBXNMCvNv4R43W2hRvN8/Q42oHuA1YYa1dkNcTtdZuzvXwL2PMf3DC2bNACk44za0ykOy9f6r5IiJSxBTORERKvh3ADdba34+fYYwJP4Pt1TXGmFwBrT7OuUw7gAwg2FqbfYJ17XGPn/VOa2et3WeMGQy8cZLlU4EKuer3B0JOso+T1mSt3Q3c7N1Wd+BnY8xv1tqNxy2XBTwJPOl9zb7HaTF8L48adwBzrbXnH7+/XI62khljKuIMyLErj+X6Aj2NMRd5H1fH6cYYaa29I4/lLU5XUYD1QIAxpqm1doN3WgR/DyqyCqe75pE6goDG5D3oiIiIFAF1axQRKfnGA2OPDDphjAkxxgw6i+3VBO4yxgQaY4binCv2vbU2Huf8rZeMMZWNMxBJ4+POVzteJZwWnIPGmLr83SXviD1Ao1yP1wPljDEDjDGBwP8BZU+08VPVZIwZaowJ8y5+ACfc5By/HWNMb2NMW28YPITTzfHIcsfX+C3QzBgzwvsaBRpngJWWuZa5yBjT3RhTBqflbpG19vhWM4DrcF7fSO9tKU5IfNRb14Xe7qR4B/J4DJjufe6pOKMx/scYE2SM6YZzPt6RFryvgDbGmMuNMeWAf+O00q090espIiKFS+FMRKTkew2nZWumMSYZWIgzMMeZWoQzeEgizqAeQ6y1+7zzrgXKAKtxws40oM5JtvUk0AHnXKfvcMJEbs8C/+cdIfF+a20STle/iUAcTkvaTk7uZDV1BBYZY1JwXqMx1toteWyjtne9Q8AaYC5O10ZwXt8hxhnpcpy1Nhln0JErcVrDdgP/5dgQ+SnOYCr7gSicAUL+wVp70Fq7+8gNZ1j8Q97XAZyWtRXGmFSc1rwvgWdybeI2oDzOeYL/A2611q7ybjsB5zy1sd7XpTPHnh8oIiJFzBx72oCIiMiJGWOuA26y1nZ3u5biyhjzIbDTWvt/btciIiK+RS1nIiIiIiIiPkDhTERERERExAeoW6OIiIiIiIgPUMuZiIiIiIiID1A4ExERERER8QFFehHq4OBgGx4eXpS7FBERERER8RkxMTGJ1tqQvOYVaTgLDw9n6dKlRblLERERERERn2GM2XaieerWKCIiIiIi4gMUzkRERERERHyAwpmIiIiIiIgPKNJzzvKSlZXFzp07SU9Pd7sUKWHKlStHWFgYgYGBbpciIiIiInJKroeznTt3UqlSJcLDwzHGuF2OlBDWWvbt28fOnTtp2LCh2+WIiIiIiJyS690a09PTqVGjhoKZFChjDDVq1FCLrIiIiIgUG66HM0DBTAqF3lciIiIiUpz4RDhz29ixY2ndujXt2rUjMjKSRYsWAXDTTTexevXqAtlHeHg4iYmJJ13mmWeeOe3tfvjhh9xxxx3HTPvggw+IjIwkMjKSMmXK0LZtWyIjI3n44YdPe/tF4dVXXyUtLc3tMkRERESkuHv+eZg9+9hps2c704uBUh/OFixYwLfffsuyZctYsWIFP//8M/Xq1QNg4sSJtGrVqshqOZNwlpfrr7+e2NhYYmNjCQ0NZfbs2cTGxvLcc88VyPZPl7UWj8dzwvlnEs6ys7PPtiwRERERKWk6doRhw/4OaLNnO487dnS3rnwq9eEsPj6e4OBgypYtC0BwcDChoaEA9OrVi6VLlwJQsWJFHnroIaKiojjvvPNYvHgxvXr1olGjRnzzzTfAP1uxLr74YubMmfOPfQ4ePJioqChat27NhAkTAHj44Yc5fPgwkZGRDB8+HIDJkyfTqVMnIiMjueWWW8jJyQGclrFmzZrRs2dPfv/993w/1xdeeIGOHTvSrl07Hn/8cQC2bt1KixYtuOmmm2jTpg3Dhw/n559/plu3bjRt2pTFixcD8MQTTzBixAj69OlD06ZNeffdd0+53ZYtW3LbbbfRoUMHduzYwa233kp0dDStW7c+uty4cePYtWsXvXv3pnfv3kdf6yOmTZvGddddB8B1113HvffeS+/evXnooYfYtGkT/fv3Jyoqih49erB27dp8vxYiIiIiUgL17g1TpsDgwTBypBPMpkxxphcH1toiu0VFRdnjrV69+h/TilJycrKNiIiwTZs2tbfeequdM2fO0Xk9e/a0S5YssdZaC9jvv//eWmvt4MGD7fnnn28zMzNtbGysjYiIsNZa+8EHH9jbb7/96PoDBgyws2fPttZa26BBA5uQkGCttXbfvn3WWmvT0tJs69atbWJiorXW2qCgoKPrrl692l588cU2MzPTWmvtrbfeaidNmmR37dpl69WrZ/fu3WszMjLsOeecc8w+j3dkvz/99JO9+eabrcfjsTk5OXbAgAF27ty5dsuWLdbf39+uWLHC5uTk2A4dOtjrr7/eejwe+/XXX9tBgwZZa619/PHHbbt27WxaWppNSEiwYWFhNi4u7qTbNcbYBQsWHK3lyPPOzs62PXv2tMuXL//Ha3P86zB16lQ7cuRIa621I0eOtAMGDLDZ2dnWWmv79Olj169fb621duHChbZ3797/eP5uv79EREREpAitXGltv37WgnN77DG3K/oHYKk9QV5yfSj93J6csYrVuw4V6DZbhVbm8YGtTzi/YsWKxMTEMG/ePGbPns0VV1zBc889d7S15ogyZcrQv39/ANq2bUvZsmUJDAykbdu2bN269bRqGjduHF999RUAO3bsYMOGDdSoUeOYZX755RdiYmLo6G2CPXz4MDVr1mTRokX06tWLkJAQAK644grWr19/yn3OnDmTmTNn0r59ewBSUlLYsGED9evXp2HDhrRt2xaA1q1b07dvX4wx/3hugwYNonz58pQvX57evXuzePFi5s+ff8LtNmjQgC5duhxdf8qUKUyYMIHs7Gzi4+NZvXo17dq1O63XbujQofj7+5OSksIff/zB0KFDj87LyMg4rW2JiIiISAmRkACPPw4TJkC5chAUBGPGwNtvO61mxaTlzKfCmVv8/f3p1asXvXr1om3btkyaNOkf4SwwMPDo6H9+fn5Hu0H6+fkdPf8pICDgmHOr8hrGfc6cOfz8888sWLCAChUq0KtXrzyXs9YycuRInn322WOmf/3112c0CqG1lkceeYRbbrnlmOlbt249+lxO9tzgn6MfGmNOut2goKCjj7ds2cKLL77IkiVLqFatGtddd90Jh7nPvZ/jlzmyTY/HQ9WqVYmNjT3VUxcRERGRkiojA8aNg6efhtRUGDgQ5s2DqVOdQHbeecWqa6NPhbOTtXAVlnXr1uHn50fTpk0BiI2NpUGDBme0rfDwcN566y08Hg9xcXFHz9fKLSkpiWrVqlGhQgXWrl3LwoULj84LDAwkKyuLwMBA+vbty6BBg7jnnnuoWbMm+/fvJzk5mc6dOzNmzBj27dtH5cqVmTp1KhEREaesrV+/fjz22GMMHz6cihUrEhcXR2Bg4Gk9v+nTp/PII4+QmprKnDlzeO655yhfvny+tnvo0CGCgoKoUqUKe/bs4YcffqBXr14AVKpUieTkZIKDgwGoVasWa9asoXnz5nz11VdUqlTpH9urXLkyDRs2ZOrUqQwdOhRrLStWrMjXayEiIiIixZy18OWX8OCDsHkzDBgAL74I33wDd931dxA7cg7akiUKZ8VBSkoKd955JwcPHiQgIIAmTZocHaTjdHXr1u1oF8E2bdrQoUOHfyzTv39/xo8fT7t27WjevPkx3f5GjRpFu3bt6NChA5988glPP/00F1xwAR6Ph8DAQN588026dOnCE088QdeuXalTpw4dOnQ4OlDIyVxwwQWsWbOGrl27Ak53zsmTJ+Pv75/v59epUycGDBjA9u3beeyxxwgNDSU0NDRf242IiKB9+/a0bt2aRo0a0a1bt2Oe94UXXkidOnWYPXs2zz33HBdffDH16tWjTZs2pKSk5FnPJ598wq233srTTz9NVlYWV155pcKZiIiISEkXEwP33gu//QZt2sDMmXD++c68Fi3+uXwx6tZonHPSikZ0dLQ9MvrhEWvWrKFly5ZFVoOcmSeeeIKKFSty//33u13KadH7S0RERKSEiIuDRx+Fjz6C4GB46im48UYIKF7tTcaYGGttdF7zitczERERERGR0iUtDV54wbmQdHa205XxkUegShW3KytwCmeSL0888YTbJYiIiIhIaeLxwCefOEEsLg6GDoX//hcaNnS7skJT6i9CLSIiIiIiPmb+fOjcGa69FurUcUZgnDKlRAczUDgTERERERFfsWWLM/R9jx4QH++cX7ZoEXTv7nZlRULdGkVERERExF1JSfDMM/Dqq84AH08+CfffDxUquF1ZkVI4ExERERERd2Rnw8SJ8O9/Q0ICjBwJY8dC3bpuV+aKU3ZrNMaUM8YsNsYsN8asMsY86Z3+gjFmrTFmhTHmK2NM1UKvtpD4+/sTGRlJmzZtGDp0KGlpaWe8reuuu45p06YBcNNNN7F69eoTLjtnzhz++OOPo4/Hjx/PRx99dMb7PmLr1q20adPmmGlPPPEEL7744mltp6DqERERERH5h5kzoX17uPVW5/pkS5fChx+W2mAG+TvnLAPoY62NACKB/saYLsAsoI21th2wHnik0KosZOXLlyc2NpaVK1dSpkwZxo8ff8z8/FzkOS8TJ06kVatWJ5x/fDgbPXo011577Rntq6BlZ2f7VD0iIiIiUkKsWQMDBkC/fs4w+V98AXPnQlSU25W57pThzDpSvA8DvTdrrZ1prc32Tl8IhBVSjX97/nmYPfvYabNnO9MLSI8ePdi4cSNz5syhd+/eXH311bRt25acnBweeOABOnbsSLt27XjnnXcAsNZyxx130KpVKwYMGMDevXuPbqtXr14cuej2jz/+SIcOHYiIiKBv375s3bqV8ePH88orrxAZGcm8efOOad2KjY2lS5cutGvXjksvvZQDBw4c3eZDDz1Ep06daNasGfPmzTvt53iybf/rX/+iZ8+evPbaa0fr2bVrF5GRkUdv/v7+bNu2jW3bttG3b1/atWtH37592b59O+C0Ht51112cc845NGrU6GhLooiIiIiUYomJcOed0LatMxrjCy/A6tVw2WVgjNvV+YR8jdZojPE3xsQCe4FZ1tpFxy1yA/BDAdf2Tx07OqO3HAlos2c7jzt2LJDNZ2dn88MPP9C2bVsAFi9ezNixY1m9ejXvvfceVapUYcmSJSxZsoR3332XLVu28NVXX7Fu3Tr++usv3n333WNawo5ISEjg5ptv5osvvmD58uVMnTqV8PBwRo8ezT333ENsbCw9evQ4Zp1rr72W//73v6xYsYK2bdvy5JNPHlPn4sWLefXVV4+ZntumTZuOCVS5WwNPtu2DBw8yd+5c7rvvvqPTQkNDiY2NJTY2lptvvpnLL7+cBg0acMcdd3DttdeyYsUKhg8fzl133XV0nfj4eObPn8+3337Lww8/fJpHQkRERERKjMxMePllaNoU3noLRo2CjRudAT/KlnW7Op+SrwFBrLU5QKT3vLKvjDFtrLUrAYwxjwLZwCd5rWuMGQWMAqhfv/7Jd3T33RAbe/JlQkOdJtA6dZzhNVu2dEZzOUFIITLSGfXlJA4fPkxkZCTgtJzdeOON/PHHH3Tq1ImG3mspzJw5kxUrVhxtBUpKSmLDhg389ttvXHXVVfj7+xMaGkqfPn3+sf2FCxdy7rnnHt1W9erVT1pPUlISBw8epGfPngCMHDmSoUOHHp1/2WWXARAVFcXWrVvz3Ebjxo2JzfVaHrmI9Km2fcUVV5ywrt9//52JEyceba1bsGABX375JQAjRozgwQcfPLrs4MGD8fPzo1WrVuzZs+ekz1dERERESiBrYfp0eOABJ4z17w8vvgitW7tdmc86rdEarbUHjTFzgP7ASmPMSOBioK+11p5gnQnABIDo6Og8lzkt1ao5wWz7dqhf33l8lo6cc3a8oKCgo/ettbz++uv069fvmGW+//57zCmaYa21p1zmdJT1/sLg7+9Pdnb2KZY+Pbmfc27x8fHceOONfPPNN1SsWDHPZXI/x7K5fgU5wVtDREREREqq2Fi45x6YMwdatYIffnDCmZxUfkZrDDkyEqMxpjxwHrDWGNMfeAi4xFp75sMb5vbqq84BPNnt8cedEwcfe8z59/HHT778KVrN8qtfv368/fbbZGVlAbB+/XpSU1M599xz+eyzz8jJySE+Pp7Zx58TB3Tt2pW5c+eyZcsWAPbv3w9ApUqVSE5O/sfyVapUoVq1akdbqD7++OOjLV1n60y2nZWVxbBhw/jvf/9Ls2bNjk4/55xz+OyzzwD45JNP6F5KLg4oIiIiIicQHw833ggdOsDKlfDmm7B8uYJZPuWn5awOMMkY448T5qZYa781xmwEygKzvC0mC621owuvVP4+x2zKFOjd27nlflyIbrrpJrZu3UqHDh2w1hISEsLXX3/NpZdeyq+//krbtm1p1qxZnkEnJCSECRMmcNlll+HxeKhZsyazZs1i4MCBDBkyhOnTp/P6668fs86kSZMYPXo0aWlpNGrUiA8++KDAnsvpbvuPP/5gyZIlPP744zz++OOA02I4btw4brjhBl544QVCQkIKtEYRERERKUYOH4aXXoLnnnPOMbvvPnj0Uaha1e3KihVTlF3OoqOj7ZHRC49Ys2YNLVu2zN8Gnn/eGfwjdxCbPRuWLIFc5zuJHHFa7y8RERERObnj/x63Fv7v/5wWsqQkZ+TF55+Hxo3drdOHGWNirLXRec07rXPOXJdXADvSgiYiIiIiIoXryOjpU6ZAuXJwww2wdq0zEuP06VBAp+KUVsUrnImIiIiIiHsiI+Hmm51zyDIzwc8PHnoInnnGuS9nReFMRERERERObNs2p1Xs66/ht98gJwcqVnTC2QMPOOeZSYHwiXirodalMOh9JSIiInIGrIU//3RGRY+MhPBwGDMG9u51WsnefNPp0vjYY/Dee84YEFIgXG85K1euHPv27aNGjRoFei0wKd2stezbt49y5cq5XYqIiIiI78vKclrFvv4avvnGuaawnx906+ZcOHrQIGjSxNXR00sD18NZWFgYO3fuJCEhwe1SpIQpV64cYWFhbpchIiIi4psOHYIff3S6LH7/PRw8COXLwwUXwBNPwMUXQ0jIsessWXJsEOvd23m8ZInCWQFwfSh9EREREREpIrt2OS1j06fDr786540FB8PAgU7r2PnnQ4UKbldZopWcofRFRERERCT/rIXVq50wNn06LF7sTG/cGO680wlk55wD/v7u1imAwpmIiIiISMmSkwN//PH3CIubNjnTO3WCsWOdQNaqFWi8B5+jcCYiIiIiUtylpcHMmU4g+/ZbSEyEMmWgTx+4/3645BIIDXW7SjkFhTMRERERkeIoIQFmzHAC2axZcPgwVKkCAwY4rWP9+0Plym5XKadB4UxERERExFc8/zx07HjsyIezZzujIT74IGzY8Pf5Y7//7pxTVq8e3HijE8h69oTAQPfql7OicCYiIiIi4is6djz2umG//AJDhsBFFznnia1Z4ywXEeFcBHrwYOdC0Tp/rERQOBMRERER8RW9e8Pnn8OllzojKsbGgsfjTDv3XLjlFqeFLDzc7UqlECiciYiIiIj4isWL4emnISkJli2DFi3g0UedlrPq1d2uTgqZn9sFiIiIiIiUeuvXw9Ch0LmzE8qCguCRR5xRF+vWVTArJRTORERERETcEh8Po0c755P98ANcey0EBDijMD7zjHPu2bBhzqAgUuIpnImIiIiIFLWkJKe7YuPG8P77cOutzsWiW7eGqVP/Hq2xd28noC1Z4m69UiSMtbbIdhYdHW2XLl1aZPsTEREREfEp6enw5ptOq9j+/XDVVfDUU05Ik1LBGBNjrY3Oa55azkRERERECltODnz4ITRrBvff7wyZv2wZfPqpgpkcpXAmIiIiIlJYrHXOH4uIgOuvh1q1nGuX/fgjtG/vdnXiYxTOREREREQKw++/Q48ecMklkJnpnDu2eDH06eN2ZeKjFM5ERERERArS6tXOhaK7d3cG+Rg/HlatcobKN8bt6sSHKZyJiIiIiBSEHTvghhugbVuYMwfGjoWNG+GWWyAw0O3qpBgIcLsAEREREZFibf9+ePZZeP115xyzu++Gf/0LatRwuzIpZhTORERERETORFoajBsHzz0Hhw45F5B+8klo0MDtyqSYUrdGEREREZHTkZ0N774LTZvCI484g34sX+4Mla9gJmdB4UxEREREJD+shS+/hDZtYNQoJ4j99pszVH7btm5XJyWAwpmIiIiIyKnMmQNdu8Lll4OfH3z99d9D5YsUkFOGM2NMOWPMYmPMcmPMKmPMk97p1Y0xs4wxG7z/Viv8ckVEREREitDy5XDRRdC7N8TFwXvvwYoVzlD5GhZfClh+Ws4ygD7W2gggEuhvjOkCPAz8Yq1tCvzifSwiIiIiUvxt3QojRkD79rBwITz/PKxf7wyVH6Ax9aRwnDKcWUeK92Gg92aBQcAk7/RJwODCKFBEREREpMgkJDhD4TdvDtOmwYMPOheSfuABKF/e7eqkhMtX7DfG+AMxQBPgTWvtImNMLWttPIC1Nt4YU7MQ6xQRERERKTwpKfDKK/DCC5CaCjfeCI8/DnXrul2ZlCL5GhDEWptjrY0EwoBOxpg2+d2BMWaUMWapMWZpQkLCGZYpIiIiIlIAnn8eZs/++3FmJowZA3XqwL//DeefD6tWwYQJCmZS5E5rtEZr7UFgDtAf2GOMqQPg/XfvCdaZYK2NttZGh4SEnF21IiIiIiJno2NHGDYMfvkFPvsMGjZ0LiTdqBEsWABffAEtWrhdpZRS+RmtMcQYU9V7vzxwHrAW+AYY6V1sJDC9kGoUERERESkY3brBzTdDv35w1VWwZw88+yzExkKXLm5XJ6Vcfs45qwNM8p535gdMsdZ+a4xZAEwxxtwIbAeGFmKdIiIiIiJnLjER3nkH3nwT4uOhRg3Ytw8eeQQe1qDj4htOGc6stSuA9nlM3wf0LYyiREREREQKxKpV8OqrMHkypKdD//7OaIwvvACPPQZvvw19+jjXMRNxmS7SICIiIiIli8cDP/7ohLJZs5wh8EeOhLvucroxDhsGU6Y4gax372Mfi7jotAYEERERERHxWampTktYq1YwYIDTavbMM7BjB4wf70xfsuTYINa7t/N4yRJ3axcBjLW2yHYWHR1tly5dWmT7ExEREZFSYMcO51yyCRPgwAFnRMZ77oEhQyAw0O3qRI5hjImx1kbnNU/dGkVERESkeFq40Om6OG0aWAuXXeaEsq5dwRi3qxM5bQpnIiIiIlJ8ZGXBl186oWzhQqhSxQlkd9wBDRq4XZ3IWVE4ExERERHfd+AAvPsuvP467NwJTZo496+7DipWdLs6kQKhcCYiIiIivmvdOnjtNZg0CdLSnGHv33rLGfDDT2PbScmicCYiIiIivsVa+Plnp+vi999D2bIwfDiMGQPt2rldnUihUTgTEREREd9w+DB88okTylatglq14MknYfRoqFnT7epECp3CmYiIiIi4Kz7eGQp//HjYtw8iI+HDD+HKK51WM5FSQuFMRERERNwRE+O0kn3+OWRnwyWXOCMvnnuuhsKXUknhTERERESKTk4OTJ/uhLJ585yRFm+9Fe66Cxo3drs6EVcpnImIiIhIwXn+eejYEXr3/nva7NlOEKtUCcaNg61bITwcXn4ZbrjBuVaZiCiciYiIiEgB6tgRhg2DKVOcgDZ5Mtx8szMvPR169ICXXoJBg8Df391aRXyMwpmIiIiIFJzevZ1zyC691Bltcf16J4RddRXcfTdERbldoYjPUjgTERERkYLVogUcOgRJSdC9uxPWQkPdrkrE5+my6iIiIiJSsNatg8qV4eGHYe1a57GInJLCmYiIiIgUnNmznXPOvvoKnn3WOfds2DBnuoiclMKZiIiIiBScJUv+HgwEnH+nTHGmi8hJGWttke0sOjraLl26tMj2JyIiIiIi4kuMMTHW2ui85qnlTERERERExAconImIiIiIiPgAhTMREREREREfoHAmIiIiIiLiAxTOREREREREfIDCmYiIiIiIiA9QOBMREREREfEBCmciIiIiIiI+4JThzBhTzxgz2xizxhizyhgzxjs90hiz0BgTa4xZaozpVPjlioiIiIiIlEwB+VgmG7jPWrvMGFMJiDHGzAKeB5601v5gjLnI+7hX4ZUqIiIiIiJScp0ynFlr44F47/1kY8waoC5ggcrexaoAuwqrSBERERERkZIuPy1nRxljwoH2wCLgbuAnY8yLON0jzyno4kREREREREqLfA8IYoypCHwB3G2tPQTcCtxjra0H3AO8d4L1RnnPSVuakJBQEDWLiIiIiIiUOMZae+qFjAkEvgV+sta+7J2WBFS11lpjjAGSrLWVT7ad6Ohou3Tp0gIoW0REREREpPgxxsRYa6Pzmpef0RoNTqvYmiPBzGsX0NN7vw+w4WwLFRERERERKa3yc85ZN2AE8JcxJtY77V/AzcBrxpgAIB0YVSgVioiIiIiIlAL5Ga1xPmBOMDuqYMsREREREREpnfI9IIiIiIiIiIgUHoUzERERERERH6BwJiIiIiIi4gMUzkRERERERHyAwpmIiIiIiIgPUDgTERERERHxAQpnIiIiIiIiPkDhTERERERExAconImIiIiIiPgAhTMREREREREfoHAmIiIiIiLiAxTOREREREREfIDCmYiIiIiIiA9QOBMREREREfEBCmciIiIiIiI+QOFMRERERETEByiciYiIiIiI+ACFMxERERERER+gcCYiIiIiIuIDFM5ERERERER8gMKZiIiIiIiID1A4ExERERER8QEKZyIiIiIiIj5A4UxERERERMQHKJyJiIiIiIj4AIUzERERERERH6BwJiIiIiIi4gMUzkRERERERHyAwpmIiIiIiIgPOGU4M8bUM8bMNsasMcasMsaMyTXvTmPMOu/05wu3VBERERERkZIrIB/LZAP3WWuXGWMqATHGmFlALWAQ0M5am2GMqVmYhYqISMGw1nIgLYstialkZnvo0qg6xhi3yxIRESn1ThnOrLXxQLz3frIxZg1QF7gZeM5am+Gdt7cwCxURkdOTnJ7F1sQ0NiemsDUxja37UtmcmMrWxFSSDmcdXW5Auzo8f3k7gsrm5/c6ERERKSyn9U1sjAkH2gOLgBeAHsaYsUA6cL+1dkmBVygiIieUnpXD1n2pbElIZYv33637UtmSmEZiSsYxy9atWp7w4Apc3K4ODYODaBgcxNrdybw0cx3rdyczfkQUjUMquvRMREREJN/hzBhTEfgCuNtae8gYEwBUA7oAHYEpxphG1lp73HqjgFEA9evXL7DCRURKi8xsD9v3p7E1MfWY1q8tianEJ6Ufs2xIpbI0rBFE3xY1CfcGsIbBQTSoUYFygf7/2HbflrWIrFeVO//3J4Pe+J2XhkXQr3XtonpqIiIikos5LkvlvZAxgcC3wE/W2pe9037E6dY4x/t4E9DFWptwou1ER0fbpUuXFkTdIiIlSo7HEnfgMFv2/R28jtx2HkjDk+u/6qoVAgmvEUSj4KB/BLBK5QLPaP9xBw9z2+QYlu9M4rZejbnvgub4++k8NBERkYJmjImx1kbnNe+ULWfGOUv8PWDNkWDm9TXQB5hjjGkGlAESz75cEZGSyeOx7ElOPxq6nBCWxpbEFHbsP0xmjufoskFl/GkYEkS7sCoMigyl4ZEgViOIakFlCry2ulXL8/ktXXlyxiremrOJv+KSeO3K9lQvhH2JiIhI3k7ZcmaM6Q7MA/4Cjvzl8C/gZ+B9IBLIxDnn7NeTbUstZyJSmmzcm8JXf+5kc4ITxrbtS+NwVs7R+WUC/GhYI4jw4Ao0DK5Iw+AKhNcIomFIECEVy7o2guLnS7bz2PRVhFQsy/hromgbVsWVOkREREqik7Wc5atbY0FROBOR0iAhOYNXf17PZ0t2YID61Ssc7X4YHvx3d8Q6lcvh56NdB1fsPMitk5eRkJLB04PaMKxjPbdLEhERKRHOqlujiIjkT1pmNhPnbeGduZvIyPZwTef63NW3KTUqlnW7tNPWLqwqM+7szl3/+5MHv1jBnzsO8sQlrSgb8M9BRURERKRgKJyJiJylHI9lWswOXp61nj2HMujfujYP9m9Oo2I+LH31oDJMuqETL85cx9tzNrE6/hBvD+9AaNXybpcmIiJSIqlbo4jIGbLWMmd9As99v5Z1e5JpX78qj17Ukujw6m6XVuB+XLmb+6cup2yAH69f1Z5zmgS7XZKIiEixpG6NIiIFbGVcEs/+sIbfN+6jQY0KvDW8Axe2qe3aIB6FrX+b2jSpWZHRk2O45r1FPNS/BaPObVRin6+IiIgbFM5ERE5D3MHDvPTTOr6KjaNq+UAeH9iK4Z0bUCbAz+3SCl2TmhWZfns3Hpy2gmd/WMvynQd5fkgEFcvqq0RERKQg6BtVRCQfDqVn8dbsTbz/+xYAbjm3Mbf2akyV8md20efiKqhsAG9c3Z7IeVV57se1rN/zO+OviaJJzeJ9fl1JtGN/GuN+2cBFbevQq3mIWjlFRIoBnXMmInISmdkePlm0jXG/bOBAWhaXta/Lff2aU1eDYvDHpkTu/PRPMrI9vDi0Hf3b1HG7JPFaE3+Ia99fTEJyBgCR9apyz/nNOLdpsEKaiIjLdJ0zEZHTZK3lh5W7ef7HtWzdl0a3JjV45MKWtKmrCzLnFp90mNGTl7F8x0Fu6dmIBy5oToB/ye/i6csWb9nPjZOWEFQmgPeui2bFziTe+HUjcQcPE9WgGvee34xzGtdQSBMRcYnCmYjIaYjZtp+x361h2faDNK9ViYcvakGvZuoWdiIZ2Tk8OWM1ny7azjmNa/D6Ve2L5bXdSoKfV+/h9k+XUbdaeT6+sfPRFt6M7BymLN3Jm79uZPehdDo1rM695zejS6MaLlcsIlL6KJyJiOTDlsRUnv9xLT+s3E3NSmW574JmDImqh7+fQll+TFm6g//7eiXBQWV4+5ooIupVdbukUmXq0h08/OVftAmtzAfXd6J6UJl/LJOelcPnS3bw5uyN7E3OoGujGtx7QTM6lsDLP4iI+CqFMxGRk9ifmsm4XzYweeE2ygT4MbpnY27q0ZAKZTRm0un6a2cSoyfHkJCcwZODWnNVp/pul1QqTPhtE898v5YeTYMZf00UQacYQTM9K4dPFm3n7TmbSEzJoEfTYO4+rxlRDaoVUcUiIqWXwpmISB7Ss3J4//ctvD17E2lZOVzZsR53n9eMkErqknc2DqRmctdnfzJvQyJXRNfjyUGtKRfo73ZZJZK1lud+WMs7v21mQLs6vDwsgrIB+X+tD2fmMHnhNsbP3cS+1Ex6NgvhnvObEalWT5+3Y38az/24lhu7N6RDfYVqkeJE4UxEJBePx/LVn3G8NHMdu5LSOa9lLR6+sDlNalZyu7QSI8djeXnWOt6cvYl2YVV4+5oojXBZwLJzPDz85V9Mi9nJiC4NeOKS1mfcBTc1I5uPFmzjnd82cTAti74tanLP+c00AI6P+n1jIrd/uoyDaVmE16jAj3efqx9ARIoRhTMREa/5GxJ55vs1rI4/RERYFR65qKUGRShEM1ft5r4pywnwN7x+VQe6Nw12u6QSIT0rhzs+XcbPa/Zy93lNGdO3aYEMWJOSkc2kP7Yy4bfNJB3O4oJWtbj7vGa0Cq1cAFXL2bLW8t78LTzz/Rqa1KzI9d0a8siXf3Fbr8Y82L+F2+WJSD4pnIlIqbd29yGe/X4tc9cnEFatPA/2b8HFbevgp8E+Ct3mhBRGT45h494U7u/XnFt7NtbIl2ch6XAWN01awtJtB/jPJa0Z0TW8wPdxKD2LD+ZvZeL8zSSnZ3NR29qM6duM5rXVuuyW9KwcHv5iBV/H7qJ/69q8OCyCimUDuG/KcqbHxjHjzu60rKMQLVIcKJyJSKm1Oymdl2etY1rMTiqVC+TOPk0Y0bXBaZ2XI2cvNSObh75Ywbcr4unXuhYvDo2gUrlAt8sqdvYeSufa9xezKSGFV66I5OJ2oYW6v6TDWbw3fwvvz99CamY2A9rW4e7zmqoLcBGLO3iYWz5eyqpdh7j3vGbc3rvJ0R+WDqRmct7LcwmrXoEvbz1Ho8uKFAMKZyJS6qRkZPPO3E28O28zHg+MPKcBt/duQtUK/xxeXIrGkS5Zz/6wlgY1KvDONVE0raU/8vNra2IqI95fxL6UTN4ZEUWPpiFFtu+DaZm8O28zH/y+lcNZOQyKCOWuvk1pFFKxyGoorRZu3sftnywjM9vDK1dEcl6rWv9YZnpsHGM+i+Xxga24vltDF6oUkdOhcCYipUZWjofPluzgtZ/Xk5iSySURoTzQrzn1qldwuzTxWrh5H3d8uoy0zBxeGBLBgHZ13C7J562MS+K6DxaT47F8eH0n164htz81k3d+28RHf2wjIzuHwe3rclefpoQHB7lST0lmreWjBdt46tvV1K9RgXevjabxCcKwtZaRHyxh6db9zLq3pwbfEfFxCmciUuJZa5m1eg/P/biWzQmpdG5YnX9d1FIXQvZRu5PSufWTGP7cfpBR5zbiwX7NCfD3c7ssn7Rg0z5u/mgpVcoHMumGTjSp6X5rVUJyBu/M3cTHC7eR7bFc3qEud/Zpqh9BCkh6Vg7/nr6SKUt3cl7Lmrx8RSSVT9ENeMf+NC545TfOaVyDiSOjdV6niA9TOBOREi12x0Ge+X4Ni7fsp3FIEA9f2JLzWtbUHyc+LjPbw1Pfrubjhdvo2qgGr1/dnuCKusZcbj+u3M1d//uTBjUq8NGNnahTxbdaRPYeSuftuZv4ZNF2PB7L0Ogwbu/dhLBqCmlnandSOqMnxxC74yB39W3K3X2b5nvgoonzNvP0d2t44+r2hX4+ooicOYUzESmREpIzeHLGKr5dEU9wxbLcc35TroiupxaYYuaLmJ3866u/qB5UhreGd6C9LqgLwGeLt/Ovr/4iol5VPriuo0+fL7k7KZ235mzks8U7sFiu6FiP23s38bkw6etitu1n9ORlpGVk89KwSPq3qX1a62fneLj0rT+IT0rnl3t7UqWCBt0R8UUKZyJS4mTneLhywkL+ikvilnMbMapnYyqWDXC7LDlDK+OSGD05hr2HMnj8klZc3al+qW35tNby1pxNvPDTOno2C+HtazpQoUzxeG/vOniYN2dvZMrSHRgMV3Wqx229m1Crcjm3S/N5/1u8nX9PX0ndquWZcG00zc5wsJyVcUkMevN3hkaF8dzl7Qq4ShEpCApnIlLivDxzHeN+3chrV0YyKLKu2+VIATiYlsmYz2KZuz6BoVFhPDW4DeUCS9clDzwey9PfreH937cwODKUF4ZGEFgMW4J37E/jzdkbmRqzkwA/w/DODRjdqxE1KymkHS8z28OTM1bxyaLt9GwWwrgr2591i9ez36/hnd8289moLnRpVKOAKhWRgqJwJiIlyoJN+7h64kIu7xDGi0Mj3C5HClCOx/Laz+sZ9+tG2tStzNvDo0rNIBNZOR4emLqcr2N3cX23cB4b0KrYXyR9+740Xv91A1/+GUegv+HaruHccm4jaujcQgD2Jqdz2+RlLN12gNE9G/NAv+YFcp2yw5k5XPDqXAL9/Ph+TI9S9yOHiK9TOBOREmN/aiYXvvYbQWUDmHFHd4LUlbFE+nn1Hu6ZEoufMVzfLZwRXRqU6D/o0zKzue2TZcxZl8AD/ZpzW6/GJapb55bEVF7/ZQNfx8ZRLtCfkeeEM6pHI6oF+e55dIVt+Y6D3PJxDAcPZ/LCkAgGRhTsAB7zNiQw4r3F3NmnCfdd0LxAty0iZ0fhTERKBGstN3+0lN/WJ/LV7efQOrSK2yVJIdqamMp/vl3Nr2v3UibAj8s71OWGbg1L3IWrD6ZlcsOHS4jdcZCxl7blqk713S6p0GxKSGHcLxv4ZvkuKgT6c323hlzfLbxEB++8TPMOglOzUlkmjIimVWjlQtnPvZ/H8s3yXXx3Vw+a1y5ZnxuR4kzhTERKhA9+38KTM1bz+MBWXN+todvlSBHZuDeF93/fwhcxO8nI9tCreQg3dW9EtyY1in3rUnzSYa59bzHb9qUx7qpI+rcpHRfk3rAnmVd/2cB3K+IpG+DHZR3qcmP3hjSpWbIDRFaOh7HfreHDP7ZyTuMavHF1B6oXYuvh/tRM+r40h/DgIKaNPqdAukyKyNlTOBORYm9lXBKXvfUH5zYL5t1rdYHV0mh/aiafLNzGpAXbSEzJoEXtStzYvSGXRIZSNqD4nVOzKSGFa99bTNLhLCZcG8U5jYPdLqnIbdybzHvzt/Llsr+D9809GnFO4+IfvI+3LyWD2z9dxsLN+7mxe0MeubBFkVz248tlO7l3ynL+M6g113YNL/T9icipKZyJSLGWmpHNwNfnk5qZzQ9jzi3UX5rF96Vn5fDN8l28N28L6/YkE1yxLCO7NmB4lwbF5r2xfMdBrv9wCX4GPry+E23qlu4uuvtSMvhk0XY+WrCVxJRMWtSuxE09GjEwok6xDN7HWxmXxC0fx5CQksFzl7Xlsg5hRbZvay3Xvr+YP7cfZNa95+racyI+4KzCmTGmHvARUBvwABOsta/lmn8/8AIQYq1NPNm2FM5E5Ew8MHU505bt5NObutC1sYaFFoe1lvkbE5k4bwtz1ydQLtCPyzuEcUP3hjQOqeh2eSc0f0Mioz5eSvWgMnx8Y2caBge5XZLPOD54h1TyBu/ODYrt4CHTY+N46IsVVKtQhndGRNEurGqR17B9XxoXvDqX7k1CePfaqBLXKilS3JxtOKsD1LHWLjPGVAJigMHW2tXe4DYRaAFEKZyJSEGbHhvHmM9iNeKYnNT6Pcm8P38LX/4ZR2a2h74tanJjj4Z0beRb3eO+XbGLez6PpXFIRSbd0EkXZz6B4hq8c8vO8fD8T+uY8NtmOoVX583hHQip5N7AJxN+28Qz36/l7eEduLBt6Ti3UcRXFWi3RmPMdOANa+0sY8w04ClgOhCtcCYiBWnbvlQGjJtPi9qV+GxUlyI5P0OKt8SUDCYv3MbHC7axLzWTVnUqc1OPhlzcLpQyAe6+fz5euI1/T19JdINqTBzZkSrlz+5Cw6VFcQneuR1My+TO//3JvA2JXNu1Af83oJXr77/sHA+D3vydvckZ/HxvT73/RFxUYOHMGBMO/Aa0AXoBfa21Y4wxWzlBODPGjAJGAdSvXz9q27Ztp1u/iJRCmdkeho7/gy2JqXw/pgdh1UrHhYilYKRn5TA9No6J87awYW8KNSuVZeQ54QzvXJ+qFYq2e5y1ltd+2cCrP2/gvJY1eePqDroo8BlITMng4wXbmLzQ94J3bmt3H2LURzHsTkrnqcGtuaKj71wa4a+dSQx6cz5XdKzPs5e1dbsckVKrQMKZMaYiMBcYC/wIzAYusNYmnSyc5aaWMxHJr2e/X8M7v21m/DUdSs3w4lLwrLXMXZ/Ae/O3MG9DIuUD/RkS5XSPK4pzvXI8lie+WcXHC7dxeYcw/nt5W7UAn6X0rBy+/jOOifO3sNHl4H287/+K5/6py6lYNoDxI6LoUL+aq/XkZex3q3l33ham3NKVTg2ru12OSKl01uHMGBMIfAv8ZK192RjTFvgFSPMuEgbsAjpZa3efaDsKZyKSH3PXJzDy/cUM71yfsZfq110pGGt3H+K9eVuYHruLLI+H81rW4qbuDenUsHqhdI/LzPZw75RYvl0Rz6hzG/HIhS18thtecZRX8B4aHcb13YomeOeW47G8PGsdb87eRIf6VRl/TRQ1ffR8wrTMbC545TfKBvjx/ZgeJWI0TJHi5mwHBDHAJGC/tfbuEyyzFbWciUgB2JuczkWvzaNGUFmm39FN3b+kwO1NTmfygm18vHAbB9KyaFu3Cjf1aMhFbesQWECtWqkZ2YyeHMO8DYk8cmELbunZuEC2K3kr6uCdW9LhLO75PJZf1+7lyo71eHJQa58PPEd+ALurb1PuPb+Z2+WIlDpnG866A/OAv3CG0gf4l7X2+1zLbEXhTETOksdjGfnBYhZv2c+MO7vTrFYlt0uSEiw9K4cvl8Uxcf5mNiekUrtyOa7rFs5VHetTpcKZD5awPzWT6z9YzMpdh3j2srYMi65XgFXLyRRF8M5t495kRn0Uw/b9aTxxSWuGd65fbFpH7/7sT777K57v7+pBU/1fK1KkdBFqESkW3pm7iWd/WMvYS9swvHMDt8uRUsLjcbrHTZy/md837qNCGX+GRdfj+m7hNKhxet3j4g4eZsR7i4g7cJg3ru7A+a1qFVLVcjKFFbxzm7V6D/d8Hku5QD/eGh5V7M7fSkzJ4LyX59I4pCJTb+mKn1/xCJUiJYHCmYj4vNgdBxny9h+c36oWbw3vUGx+fZaSZfWuQ0ycv5kZy3eR7bFc0KoWN/VoRHSDaqd8T27Yk8yI9xaTmpnNeyM7Frs/1kuiggzeubf5+q8beeXn9bQLq8L4a6IIrVq+gCsvGtNidnL/1OU8NbgNI7roBzGRoqJwJiI+LTk9iwHj5pPjsXx/V48C+2Vb5EztOZTORwu2MnnhdpIOZxERVoUbezTioja18xxtcdn2A1z/wRLKBPgx6fpOtAqt7ELVcjJ5Be+bezQiKh/B+4iUjGzu/TyWmav3cFmHujxzadtifV6stZYR7y1m+Y6DzLq3J7Wr+OYgJiIljcKZiPgsay1jPovlu7/imXJLF6IaqLVBfEdaZjZfLIvj/flb2JKYSt2q5bnunHCu6FSPyuWcHxHmrNvLrZOXUbNyWT6+oTP1a+iafL7sSPD+ZNF2DqZlEVGvKjd1b8iFJwjeR2xJTGXUR0vZnJjKoxe15Ppu4SWihX/bvlQueOU3ejUP4Z0Ref6tKCIFTOFMRHzWlKU7eHDaCu6/oBl39GnqdjkiefJ4LL+u3cvE+ZtZuHk/QWX8uaJjfcKDK/CfGatpVqsSk27oREilsm6XKvmUn+B9xOx1e7nrf38S4Gd48+oOnNMk2KWqC8fbczbx3x/XMv6aKPq3qe12OSIlnsKZiPikjXtTGPj6fCLrVWXyTZ3x1wnpUgysjEvivflbjnaP69ywOu+OjP7HH/RSPJwoeF/fLZywauV5e+4mXvhpHS1qV2bCiCjqVS95LaNZOR4ueeN39qVk8PN9PfVeFilkCmci4nPSs3K49K0/2J10mB/vPpdaPnrBVpET2Z2UzvyNiVzcrk6xPu9I/pY7eHuspVmtSqzdnczAiFCev7wd5cuU3OO8fMdBLn3rd67uXJ+nB7d1uxyREu1k4azgL/ohIpIPz/2wljXxh3hxaISCmRRLtauUY0hUmIJZCdKmbhVeuSKS+Q/14ZaejTl0OIuHL2zBuCsjS3QwA4ioV5XrzmnI5IXbWbp1v9vliJRaajkTkSL38+o93PTRUq7vFs7jA1u7XY6IiACpGdlc8MpvlC/jz3d3dadsQMkOpCJuUcuZiPiM3UnpPDBtOa1DK/PwhS3cLkdERLyCygbw9KVt2Lg3hfFzNrtdjkippHAmIkUmx2MZ89mfZGR7eP2q9vpVVkTEx/RuXpNLIkJ5c/ZGNu5NdrsckVJH4UxEisybszeyaMt+/jOoDY1CKrpdjoiI5OGxi1tRvow/j3z5Fx5P0Z3+IiIKZyJSRJZs3c+rP69ncGQol3eo63Y5IiJyAiGVyvLogJYs2XqAz5bscLsckVJF4UxECt3BtEzG/O9P6lWvwFOD22CMrmcmIuLLhkaF0bVRDZ79YQ17D6W7XY5IqaFwJiKFylrLQ1+sYG9yBuOubE8lXdxURMTnGWN45rK2ZGR7ePybVW6XI1JqKJyJSKGavGg7P63aw4P9mxNRr6rb5YiISD41DA5iTN+m/LByNzNX7Xa7HJFSQeFMRArN2t2HeOrb1ZzbLISbujdyuxwRETlNo85tRIvalfj39FUkp2e5XY5IiadwJiKF4nBmDnd++ieVywXy0tAI/Px0npmISHET6O/Hs5e1ZU9yOi/8tM7tckRKPIUzESkU//l2NRv2pvDKFRGEVCrrdjkiInKG2tevxsiu4Xy8cBsx2w64XY5IiaZwJiIF7rsV8fxv8XZG92xMj6YhbpcjIiJn6f5+zalTuRyPfLmCzGyP2+WIlFgKZyJSoHbsT+PhL1cQUa8q913QzO1yRESkAFQsG8DTl7Zh/Z4U3pm7ye1yREoshTMRKTBZOR7GfPYnWHj9yvYE+uu/GBGRkqJPi1oMaFeH13/dyKaEFLfLESmR9JeTiBSYV39ez7LtBxl7WVvq16jgdjkiIlLAHh/YinKBfvzry7/weKzb5YiUOApnIkXM47FsTkhhxvJdPPvDGp76djWxOw5ibfH+kvtjYyJvzdnEsOgwLokIdbscEREpBDUrlePRAS1ZtGU/U5bucLsckRInwO0CREqyrBwPG/emsDIuiVW7DrFqVxKrdx0iNTMHgDL+fmDgvflbaFqzIkOiwri0Q11qVirncuWnZ19KBnd/Hkuj4CCeuKS12+WIiEghGhZdjy+XxfHM92vo07JmsfvOEvFlpih/rY+OjrZLly4tsv2JFKX0rBzW7k4+Joit3Z18dFSrCmX8aVmnMm1CK9M6tAqt61amac1KpGfn8N2KeKbF7CRm2wH8/Qw9m4UwJCqMvi1rUjbA3+VndnLWWm6ctJT5GxP5+rZutAqt7HZJIiJSyDYnpND/tXmc36oWb17dwe1yRIoVY0yMtTY6r3lqORM5A8npWazedYiVuw6xyhvGNiakkOPtf1+lfCBt6lbmunPCae0NYw2Dg/DP40LMZQL8uKpTfa7qVJ9NCSl8EbOTL5fFcdvaZVStEMigiFCGRtejdWhljPG9Czm///tWfl27lycvaa1gJiJSSjQKqchdfZrw4sz1XNZ+D31b1nK7JJESodS3nP2xKZEq5QNpVcc3//AV9+1LyXBC2K4kVsU5/27dl3Z0fs1KZWlTt8rRENambmXqVi1/Vu+nHI9l/sZEpi7dwczVe8jM9tCidiWGRIUxuH1dgiv6xkWdV8Ylcelbv9OreU0mjIjSZ0hEpBTJzPYw8PX5JKdnMfPenlQsq9/8RfLjZC1npT6cDRg3j1W7DtE4JIiBEaEMjAilcUhFt8sSF1hriU9KP6Zb4sq4Q+w+lH50mfrVK9A6tDJt6lahVWhlWodWLvS+9klpWcxYsYupMTtZvuMgAX6G3i1qMiQqjN7Na1ImwJ1xfVIyshn4+nwOZ+bww5geVAsq40odIiLinmXbD3D5238wsmu4zjkWyaezCmfGmHrAR0BtwANMsNa+Zox5ARgIZAKbgOuttQdPti1fDGf7UzP5ceVuvlkex6It+7EWWtWpzCWRoVzcrg5h1TQceEnk8Vi27ktl1a5DrPQO0rEyLokDaVkA+BloHFLx2CBWpwpVKgS6WveGPclMi9nJl3/GkZCcQfWgMgyOrMuQqLAi71J475RYvv4zjk9v7kKXRjWKdN8iIuI7Hp++ko8WbuPLW8+hff1qbpcj4vPONpzVAepYa5cZYyoBMcBgIAz41VqbbYz5L4C19qGTbcsXw1luew6l892KeL5ZvovYHQcB6FC/KgMjQhnQro5GIyqmjoyYuMobwFbvOsTq+EOkZGQDEOhvaF67Eq3rOF0SW9etQsvalSlfxncH4sjO8fDbhgSmxezk59V7yczx0Dq0MkOiwhgUWZfqhdyK9dWfO7nn8+Xc1bcp957frFD3JSIivi0lI5vzX55LlfKBzLizO4H+ulKTyMkUaLdGY8x04A1r7axc0y4Fhlhrh59sXV8PZ7nt2J/GjBW7+CZ2F2t3J+NnoEujGgyMCOXCNrWpWkFduHxVdo6HFXFJzN+QyPwNicTuPHjKERPd6hpYEA6kZvLN8l1Mi9nJX3FJBPob+raoxZCoMHo1DyGggL8ktySmcvG4ebQOrcKnN3cu8O2LiEjxM2v1Hm7+aCkP9GvO7b2buF2OiE8rsHBmjAkHfgPaWGsP5Zo+A/jcWjv5ZOsXp3CW24Y9ycxYEc+M5bvYkphKgJ/h3GYhDIyow/mtausEWJdZa9m2L415GxOZvyGBPzbtIzk9G2OgdWhlujSsQduwKicdMbGkWBN/iC9idvJ1bByJKZkEVyzLpe2d0R6b1ap01tvPzPZw+dt/sH1/Gj+M6UFo1fIFULWIiJQEt30Sw89r9vLT3efSMDjI7XJEfFaBhDNjTEVgLjDWWvtlrumPAtHAZTaPjRljRgGjAOrXrx+1bdu2038GPsJay6pdh5ixfBczlu9iV1I6ZQP86NuyJgPbhdK7RU3KBfpuV7iS5GBaJr9v3Mf8jQnM25DIzgOHAahbtTzdmwTTvWkw3ZoEF3r3Pl+VleNhzroEpi7dwa9r95LtsbQLq8LQqDAGRoSeccvv2O9W8+68LbwzIop+rWsXcNUiIlKc7T2UTt+X59LG27NCI/iK5O2sw5kxJhD4FvjJWvtyrukjgdFAX2tt2onWP6K4tpzlxeOxLNt+gBnLd/HdX/EkpmRSsWwAF7SqxcCIULo3DVaf6wKUkZ3Dsm0Hmb8xgfkbElkRl4S1UKlsAF0a16BH02C6NwmmYXCQvgyOsy8lg69jdzF16Q7W7k6mjL8f57eqxZDoMHo0Cc53t8TZ6/Zy/QdLGNGlAU8NblPIVYuISHH06aLt/Ourv3h+SDuGRddzuxwRn3S2A4IYYBKw31p7d67p/YGXgZ7W2oT8FFKSwllu2TkeFm7ez4zlu/hhZTyH0rOpWiGQC9vUZmBEKJ0b1ijRXekKg7WW9XtSmLchgfkbE1m0eT+Hs3Lw9zO0r1eV7k2D6dE0mIiwqjrn6TSs2pXE1KU7mR4bx4G0LGpVLsul7cMYEhVGk5onvoTE3kPpXPjaPEIqleXr27uphVhERPLk8ViunLCQdXuS+fnenoRU8o3rcor4krMNZ92BecBfOEPpA/wLGAeUBfZ5py201o4+2bZKajjLLTPbw2/rE5ixYhezVu8hLTOHkEplGdC2DgMjQulQv6padk5g76F05m90BvGYvzGRvckZADQKCaJHk2C6Nw2hS6PqVCrn7nD2JUFmtodf1+5hWsxOZq9LIMdjaV+/KkOiwri4XShVyv/9Gns8lmvfX8zSbfuZcUd3mhbAuWsiIlJybdybwkWvzaNfm9q8flV7t8sR8Tm6CLVLDmfm8MvaPcxYvovZ6xLIzPZQt2p578Wu69CqTuVSHdTSMrNZtGX/0VEV1+1JBqB6UBm6NQn2BrJgDTpRyPYmpzP9z11MjdnB+j0plA3wo1/r2gyJCqNbk2De+W0Tz/+4jmcva8tVneq7Xa6IiBQD437ZwMuz1vPG1e25uF2o2+WI+BSFMx9wKD2LmaucoDZ/YyI5HkvjkCBvUAulcciJu5SVFDkey8q4JOZvTGTehgSWbTtIZo6HMgF+dAqvTnfveWOt6lTGT91Ai5y1lr/ikpgWs5PpsbtIOpxFnSrl2JucQf/WtXnj6val+scEERHJv8xsD1dOWMDynUm8ekUkAyMU0ESOUDjzMftTM/n+L2do/sVb92MttKpTmUsiQ7m4XR3CqlVwu8QCs2N/GvM2JDJ/ozPE/cG0LMB5vj2aOi1jHcOr6xwmH5OelcMva/YyNWYHB1Iz+ejGzsd0dRQRETmVlIxsbvhwCUu37ue/l7djqAYIEQEUznza7qR0vvsrnm+W72L5joMAdKhflUsiQrmoXR1qVirnboGnKelwFgs2JXoDWSLb9jmDeNapUu6YIe6DK+oEYRERkZLucGYOoz5eyrwNiTw1qDUjuoa7XZKI6xTOiont+9KYscK5htra3cn4GejSqAbRDarh7+eHnwE/P4OfMfj7gZ85ct8cnefvnebnnebvZzDGme7vx9H7ft71/b3bc265lvduy3in5bXPI/O270vzdlVMZMXOg3gsBJXxp2vjGt5AFkLjEA1xLyIiUhplZOdw+yd/8vOaPTx6UUtuPreR2yWJuErhrBhavyeZb5fvYsaKeLYkprpdzin5+xkiwqrQvWkIPZoGE1mvqq7zJiIiIgBk5Xi4+/NYvlsRz73nN+POPk30o62UWicLZwFFXYzkT7Nalbj3gubce0FzrLV4LHisJcdjsRZyrMVjLR6PM+3I/GOW8VhyrMVaS47nn+s79/Ne39k2/1jfk3t573LVg8rQpXENKmuIexEREclDoL8f465sT7kAf16etZ7DWTk82K+5AprIcRTOigGnKyL4Y9C4GSIiIlIc+fsZXhjSjnKBfrw9ZxOHM3P498WtNEKzSC4KZyIiIiJSJPz8DE8PbkP5QH8mzt9CelYOYy9ti78CmgigcCYiIiIiRcgYw6MDWlK+jD+v/7qR9KwcXhwaQYDOVRdROBMRERGRomWM4b4LmlMu0J8XflpHRraH165sT5kABTQp3fQJEBERERFX3N67Cf++uBU/rNzNLR8vJT0rx+2SRFylcCYiIiIirrmhe0OeubQtc9YncOOkJaRlZrtdkohrFM5ERERExFVXd67Py8MiWLBpH9e+t5hD6VlulyTiCoUzEREREXHdpe3DeOPqDsTuOMg1ExdxMC3T7ZJEipzCmYiIiIj4hIva1uGdEVGs3Z3MlRMWkpiS4XZJIkVK4UxEREREfEbflrV4f2RHtu5L5Yp3FrA7Kd3tkkSKjMKZiIiIiPiU7k2D+eiGzuw5lMGwdxawY3+a2yWJFAmFMxERERHxOZ0aVmfyTZ05mJbJFe8sYEtiqtsliRQ6hTMRERER8UmR9ary2aiupGd7GPbOAtbvSXa7JJFCpXAmIiIiIj6rVWhlptzSBQNc8c4CVsYluV2SSKFROBMRERERn9akZiWm3NKVCmUCuOrdhSzbfsDtkkQKhcKZiIiIiPi88OAgPr+lC9WDyjBi4iIWbt7ndkkiBU7hTERERESKhbBqFZhyS1fqVC3PdR8sZu76BLdLEilQCmciIiIiUmzUqlyOz0d1oWFwRW6etJRZq/e4XZJIgVE4ExEREZFipUbFsnx2cxdahlbm1skxzFi+y+2SRAqEwpmIiIiIFDtVKgQy+cZOdKhfjTGf/cm0mJ1ulyRy1hTORERERKRYqlQukA9v6Ei3JsHcP3U5Hy/c5nZJImdF4UxEREREiq0KZQJ499pozmtZk8e+XsnEeZvdLknkjCmciYiIiEixVi7Qn7eGRzGgbR2e/m4Nr/+ywe2SRM5IwKkWMMbUAz4CagMeYIK19jVjTHXgcyAc2AoMs9bqioAiIiIiUuTKBPjx2pWRlA3w46VZ6zmclcMD/ZpjjHG7NJF8y0/LWTZwn7W2JdAFuN0Y0wp4GPjFWtsU+MX7WERERETEFQH+frw4NIKrO9fnrTmbeHLGaqy1bpclkm+nbDmz1sYD8d77ycaYNUBdYBDQy7vYJGAO8FChVCkiIiIikg9+foaxg9tQLsCf93/fQkZ2DmMHt8XPTy1o4vtOGc5yM8aEA+2BRUAtb3DDWhtvjKlZ8OWJiIiIiJweYwyPXdySCmX8eWP2RtKzPLwwpB0B/hpuQXxbvsOZMaYi8AVwt7X2UH777xpjRgGjAOrXr38mNYqIiIiInBZjDPf3a065QD9enLme9KwcXruyPWUCFNDEd+Xr3WmMCcQJZp9Ya7/0Tt5jjKnjnV8H2JvXutbaCdbaaGttdEhISEHULCIiIiKSL3f0acpjF7fih5W7GT05hvSsHLdLEjmhU4Yz4zSRvQessda+nGvWN8BI7/2RwPSCL09ERERE5Ozc2L0hYy9tw69r93LTpKWkZWa7XZJInvLTctYNGAH0McbEem8XAc8B5xtjNgDnex+LiIiIiPic4Z0b8NLQCP7YlMjI9xeTnJ7ldkki/5Cf0RrnAyc6waxvwZYjIiIiIlI4Lo8Ko1ygP2M++5NrJi5i0g2dqFqhjNtliRylMyJFREREpNQY0K4O46+JYk18Mq/+vMHtckSOcVpD6YuIiIiIFHfntarF/0Z1oVWdym6XInIMhTMRERERKXWiGlRzuwSRf1C3RhERERERER+gcCYiIiIiIuIDFM5ERERERER8gMKZiIiIiIiID1A4ExERERER8QEKZyIiIiIiIj5A4UxERERERMQHKJyJiIiIiIj4AIUzERERERERH6BwJiIiIiIi4gOMtbbodmZMArCtyHaYf8FAottFSKHR8S3ZdHxLNh3fkk/HuGTT8S3ZdHzPTANrbUheM4o0nPkqY8xSa22023VI4dDxLdl0fEs2Hd+ST8e4ZNPxLdl0fAueujWKiIiIiIj4AIUzERERERERH6Bw5pjgdgFSqHR8SzYd35JNx7fk0zEu2XR8SzYd3wKmc85ERERERER8gFrOREREREREfECxC2fGmP7GmHXGmI3GmIdzTf/cGBPrvW01xsTmsW6kMWaBMWaVMWaFMeaKXPMaGmMWGWM2eLdV5gT7H+ldZoMxZuTpri8n5wPH90djzEFjzLfHTf/QGLMlVw2RBfesSw83j68xpoExJsa7j1XGmNGns76cmtufX++ylY0xccaYN3JN0+e3ABTi8b3Du01rjAk+yf71/VuIfOD46vu3kLl5jPUdfBqstcXmBvgDm4BGQBlgOdAqj+VeAv6dx/RmQFPv/VAgHqjqfTwFuNJ7fzxwax7rVwc2e/+t5r1fLb/r6+bbx9c7ry8wEPj2uOkfAkPcfo2K883t4+vdZ1nv/YrAViD0dN4fuvnu8c21ndeAT4E3ck3T59e3j297INz7mQw+wf71/VuCj693OX3/luBjjL6D830rbi1nnYCN1trN1tpM4DNgUO4FjDEGGAb87/iVrbXrrbUbvPd3AXuBEO86fYBp3kUnAYPz2H8/YJa1dr+19gAwC+h/GuvLybl9fLHW/gIkF8izkeO5enyttZnW2gzvw7J4ew7o81tgXP/8GmOigFrAzIJ4QnKMQjm+3sd/Wmu3nmL/+v4tXG4fX33/Fj5Xj7G+g/OvuIWzusCOXI93eqfl1gPYc+QNdCLGmE44KX4TUAM4aK3NPn67xphoY8zEU+z/hOvLaXH7+J7KWG9T/ivGmLL5XEf+5vrxNcbUM8as8NbxX+8XjD6/BcPV42uM8cP5xfeBE2xWn9+zU1jH92TL6fu36Lh9fE9Fn9+z5/ox1ndw/hS3cGbymHb8cJNXkUfiP2YjxtQBPgaut9Z6TrZda+1Sa+1Np9h/fuqSU3P7+J7MI0ALoCNOt5qH8rGOHMv142ut3WGtbQc0AUYaY2rlsy45NbeP723A99baHXksr8/v2Sus43tC+v4tUm4f35PR57dguH6M9R2cP8UtnO0E6uV6HAbsOvLAGBMAXAZ8fqINGGMqA98B/2etXeidnAhU9a7/j+3mY//5XV9Ozu3je0LW2njryAA+wOkeIKfHZ46v99e6VTi/EurzWzDcPr5dgTuMMVuBF4FrjTHPgT6/BaSwju/Z7l+f34Lh9vE9IX1+C4zPHGN9B59ccQtnS4Cm3lFdygBXAt/kmn8esNZauzOvlb3rfAV8ZK2demS6tdYCs4Eh3kkjgel5bOIn4AJjTDVjTDXgAuCn01hfTs7t43tC3l+KjvSNHgysPJ31BXD5+Bpjwowx5b33qwHdgHX6/BYYV4+vtXa4tba+tTYcuN+7nYe929bn9+wVyvE9Dfr+LVxuH98T0ue3wLh6jPUdfBqsD4xKcjo34CJgPU4/10ePm/chMPok614DZAGxuW6R3nmNgMXARmAqf48oEw1MzLWNG7zLbMRp0uVk6+tW7I7vPCABOIzzK1M/7/Rfgb9wvhQmAxXdfq2K483N4wucD6zAGaFqBTAq17b1+S3mx/e4bV3HsaM16vPr28f3Lu//t9k4v5gf+czq+7d0HV99/5bgY4y+g/N9M94XRURERERERFxU3Lo1ioiIiIiIlEgKZyIiIiIiIj5A4UxERERERMQHKJyJiIiIiIj4AIUzERERERERH6BwJiIiIiIi4gMUzkRERERERHyAwpmIiIiIiIgP+H/CTh6eXR+wbgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAE/CAYAAADyhar3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABnDElEQVR4nO3dd3hUVf7H8fdJJ40aegmdEAgBAkqTKqDYFSwI9oJlrauuyqK7utZd60/B1bVgBQSxoKBSLCAQMJQQeksgCaEkQELqnN8fEzAgJYEkdzL5vJ4nD5k7t3xmLpOZ75xzzzHWWkRERERERMQ7+TgdQERERERERCqOij4REREREREvpqJPRERERETEi6noExERERER8WIq+kRERERERLyYij4REREREREvpqJPRERERETEi6noExHxEsaYgyV+XMaYQyVuj3Y63+kwxmw1xgxxOsfJGGPmG2NuroTjXGeMsSWPZdyeMsbsMMZkFWeJLnF/HWPMDGNMtjFmmzHmmmP2OdgYs9YYk2OMmWeMaVHRj0NERCqfij4RES9hrQ09/ANsBy4ssewjp/Mdyxjj5w3HqAzGmNrA34DEY+4aCdwI9APqAIuAySXu/z8gH2gAjAbePFwUGmPqAdOB8cXbxgOfVdyjEBERp6joExHxcsYYH2PMI8aYTcaYPcaYKcaYOsX3RRa3Ht1gjEk2xuwzxtxujOlhjFlpjMk0xrxeYl/XG2N+Nca8VtyytNYYM7jE/TWNMe8YY1KLW5+eMsb4HrPtS8aYvcATxpjWxpi5xbl2G2M+MsbUKl5/MtAc+Kq4tfIhY8wAY0zKMY/vSGugMeYJY8w0Y8yHxpj9wPWnyNTGGLOg+LHsNsYct+gxxgQV73NP8XOy1BjTwBjzNO6C6/XijK8Xr9/BGPO9MWavMWadMWZUiX29Z4yZWHz/geLjn6qF7RngVWD3MctbAr9Yazdba4uAD4GOxccJAS4HxltrD1prfwG+BMYUb3sZkGitnWqtzQWeALoYYzqcIouIiFQxKvpERLzfX4BLgP5AY2Af7hagks4C2gJXAi8DjwFDgGhglDGm/zHrbgbqAROA6YeLSOB9oBBoA3QFhgI3H2fb+sDTgMFd0DQGooBmuIsPrLVjOLrF8vlSPt6LgWlALeCjU2T6JzAHqA00BV47wT6vA2oW56sL3A4cstY+BvwM3FWc8a7iYut74OPix3k18EbJbpe4W93+ifs5TCjOeVzGmJ5AHDDxOHd/CrQxxrQzxvgX5/yu+L52QJG1dn2J9VfgPqcU/7vi8B3W2mxgU4n7RUTES6joExHxfrcBj1lrU6y1ebiLqiuO6fr4T2ttrrV2DpANfGKt3WWt3YG7qOlaYt1dwMvW2gJr7WfAOmCEMaYBcB5wr7U221q7C3gJuKrEtjutta9ZawuttYestRuttd9ba/OstRnAf3AXp2dikbX2C2utCwg/RaYCoAXQuPjx/3KCfRbgLvbaWGuLrLXLrLX7T7DuBcBWa+27xY9zOfA5cEWJdb6x1v5UfD4eA3oZY5odu6PiFsk3gLuLH8+xUnGfn3XAIdzdPe8rvi8UyDpm/SwgrJT3i4iIl/CKax1EROSkWgAzjDEli4Yi3Nd5HZZe4vdDx7kdWuL2DmutLXF7G+6WuhaAP5BqjDl8nw+QXGLdkr9jjKmPu9tiP9zFhg/ulsgzUfIYp8r0EO4WtyXGmH3Av621/zvOPifjbuX7tLj76Ye4C+mC46zbAjjLGJNZYpkfR19rdySjtfZgcXfXxsdkB7gDWGmtXXT8h8oEoEdxtjTgWmBucaviQdxFb0nhwIHi3091v4iIeAm19ImIeL9k4Dxrba0SP0HFrXino4kpUUHhvu5uZ/Fx8oB6JY4Tbq0t2V2wZLEI7q6dFoix1objLlrMSdbPBoIP3yhuCYs4Zp2S25w0k7U2zVp7i7W2Me4W0TeMMW2OfcDFrZpPWms7Ar1xt+aNPUHGZGDBMc93qLV2XIl1jrTqGWNCcQ+ksvPY4wKDgUuNMWnGmLTiY/+7xHWWXYDPiltxC6217+HuqtoRWA/4GWPalthfF/4YDCax+PbhHCFAa/48WIyIiFRxKvpERLzfRODpw4OFGGMijDEXn8H+6gN/Mcb4G2NG4r4Wb5a1NhX39XH/NsaEFw8g0/qY6wGPFYa7xSnTGNME+Osx96cDrUrcXg8EGWNGFF/D9jgQeKKdnyqTMWakMaZp8er7cBdwRcfuxxgz0BjTubjI3I+7u+fh9Y7N+DXQzhgzpvg58jfugXGiSqxzvjGmrzEmAHdL42Jr7bGtfADX435+Y4t/4oEncXcJBVgKjCweVMbHGDMGd8vmxuJr9KYD/zDGhBhj+uC+3vFwi+MMoJMx5nJjTBDwd9ytimtP9HyKiEjVpKJPRMT7vYJ71MY5xpgDwG+4B1Q5XYtxD/qyG/dgLFdYa/cU3zcWCADW4C6ipgGNTrKvJ4FuuK8l+wZ3kVLSM8DjxSNmPmitzcLd5fFtYAfulr8UTu5kmXoAi40xB3E/R/dYa7ccZx8Ni7fbDyQBC3B38QT383uFcY98+qq19gDuwWKuwt16lwY8x9HF6ce4u2buBbrjHtjlT6y1mcWtkWnW2jTc0y/sL34eKN7vCtyDwWTivp7vcmttZvH9dwA1cF+H+QkwzlqbWLzvDNyjez5d/LycxdHXX4qIiJcwR1+WISIicmLGmOuBm621fZ3OUlUZY94DUqy1jzudRUREqge19ImIiIiIiHgxFX0iIiIiIiJeTN07RUREREREvJha+kRERERERLyYij4REREREREv5leZB6tXr56NjIyszEOKiIiIiIh4jGXLlu221kZU5jErteiLjIwkPj6+Mg8pIiIiIiLiMYwx2yr7mOreKSIiIiIi4sVU9ImIiIiIiHgxFX0iIiIiIiJerFKv6TuegoICUlJSyM3NdTqKeJmgoCCaNm2Kv7+/01FERERERBzjeNGXkpJCWFgYkZGRGGOcjiNewlrLnj17SElJoWXLlk7HERERERFxjOPdO3Nzc6lbt64KPilXxhjq1q2rFmQRERERqfYcL/oAFXxSIfT/SkRERETEQ4o+pz399NNER0cTExNDbGwsixcvBuDmm29mzZo15XKMyMhIdu/efdJ1/vWvf5V5v++99x533XXXUcveffddYmNjiY2NJSAggM6dOxMbG8sjjzxS5v1XhpdffpmcnBynY4iIiIiIeKVTXtNnjGkGfAA0BFzAW9baV4wxnwHti1erBWRaa2MrKGeFWbRoEV9//TXLly8nMDCQ3bt3k5+fD8Dbb79dqVn+9a9/8eijj57xfm644QZuuOEGwF1szps3j3r16p3xfk+XtRZrLT4+x/+O4eWXX+baa68lODi41PssLCzEz8/xS1JFRERERDxeaVr6CoEHrLVRwNnAncaYjtbaK621scWF3ufA9ArMWWFSU1OpV68egYGBANSrV4/GjRsDMGDAAOLj4wEIDQ3l4Ycfpnv37gwZMoQlS5YwYMAAWrVqxZdffgn8udXtggsuYP78+X865iWXXEL37t2Jjo7mrbfeAuCRRx7h0KFDxMbGMnr0aAA+/PBDevbsSWxsLLfddhtFRUWAuyWvXbt29O/fn19//bXUj/WFF16gR48exMTEMGHCBAC2bt1Khw4duPnmm+nUqROjR4/mhx9+oE+fPrRt25YlS5YA8MQTTzBmzBgGDRpE27Zt+e9//3vK/UZFRXHHHXfQrVs3kpOTGTduHHFxcURHRx9Z79VXX2Xnzp0MHDiQgQMHHnmuD5s2bRrXX389ANdffz33338/AwcO5OGHH2bTpk0MHz6c7t27069fP9auXVvq50JERETkeD5Zsp2dmYecjiFSvg63wpT2B5gJnFvitgGSgban2rZ79+72WGvWrPnTssp04MAB26VLF9u2bVs7btw4O3/+/CP39e/f3y5dutRaay1gZ82aZa219pJLLrHnnnuuzc/PtwkJCbZLly7WWmvfffdde+eddx7ZfsSIEXbevHnWWmtbtGhhMzIyrLXW7tmzx1prbU5Ojo2Ojra7d++21lobEhJyZNs1a9bYCy64wObn51trrR03bpx9//337c6dO22zZs3srl27bF5enu3du/dRxzzW4ePOnj3b3nLLLdblctmioiI7YsQIu2DBArtlyxbr6+trV65caYuKimy3bt3sDTfcYF0ul/3iiy/sxRdfbK21dsKECTYmJsbm5OTYjIwM27RpU7tjx46T7tcYYxctWnQky+HHXVhYaPv3729XrFjxp+fm2Odh6tSp9rrrrrPWWnvdddfZESNG2MLCQmuttYMGDbLr16+31lr722+/2YEDB/7p8Tv9/0tERESqjp/XZ9gWD39t//lVotNRxIsB8baMNdiZ/pSpf5wxJhLoCiwusbgfkG6t3XCmBeiTXyWyZuf+M93NUTo2DmfChdEnvD80NJRly5bx888/M2/ePK688kqeffbZI61LhwUEBDB8+HAAOnfuTGBgIP7+/nTu3JmtW7eWKdOrr77KjBkzAEhOTmbDhg3UrVv3qHV+/PFHli1bRo8ePQA4dOgQ9evXZ/HixQwYMICIiAgArrzyStavX3/KY86ZM4c5c+bQtWtXAA4ePMiGDRto3rw5LVu2pHPnzgBER0czePBgjDF/emwXX3wxNWrUoEaNGgwcOJAlS5bwyy+/nHC/LVq04Oyzzz6y/ZQpU3jrrbcoLCwkNTWVNWvWEBMTU6bnbuTIkfj6+nLw4EEWLlzIyJEjj9yXl5dXpn2JiIiIHLYvO5/7pyTQpn4oDwxtf+oNRKqQUhd9xphQ3N0477XWlqzMrgY+Ocl2twK3AjRv3vw0Y1YsX19fBgwYwIABA+jcuTPvv//+n4o+f3//I6NB+vj4HOkO6uPjQ2FhIQB+fn64XK4j2xxvuoD58+fzww8/sGjRIoKDgxkwYMBx17PWct111/HMM88ctfyLL744rVEprbX87W9/47bbbjtq+datW488lpM9NvjzaJjGmJPuNyQk5MjtLVu28OKLL7J06VJq167N9ddff8LpFEoe59h1Du/T5XJRq1YtEhISTvXQRURERE7KWssj01eyLyefd2/oQY0AX6cjiZSrUhV9xhh/3AXfR9ba6SWW+wGXAd1PtK219i3gLYC4uDh7suOcrEWuoqxbtw4fHx/atm0LQEJCAi1atDitfUVGRvLGG2/gcrnYsWPHkevhSsrKyqJ27doEBwezdu1afvvttyP3+fv7U1BQgL+/P4MHD+biiy/mvvvuo379+uzdu5cDBw5w1llncc8997Bnzx7Cw8OZOnUqXbp0OWW2YcOGMX78eEaPHk1oaCg7duzA39+/TI9v5syZ/O1vfyM7O5v58+fz7LPPUqNGjVLtd//+/YSEhFCzZk3S09P59ttvGTBgAABhYWEcOHDgyGAzDRo0ICkpifbt2zNjxgzCwsL+tL/w8HBatmzJ1KlTGTlyJNZaVq5cWarnQkRERKSkz5YmMzsxncfOjyK6cU2n44iUu9KM3mmAd4Aka+1/jrl7CLDWWptSEeEqw8GDB7n77rvJzMzEz8+PNm3aHBlcpaz69OlzpKtkp06d6Nat25/WGT58OBMnTiQmJob27dsf1f3x1ltvJSYmhm7duvHRRx/x1FNPMXToUFwuF/7+/vzf//0fZ599Nk888QS9evWiUaNGdOvW7cgALyczdOhQkpKS6NWrF+Du1vrhhx/i61v6b7J69uzJiBEj2L59O+PHj6dx48Y0bty4VPvt0qULXbt2JTo6mlatWtGnT5+jHvd5551Ho0aNmDdvHs8++ywXXHABzZo1o1OnThw8ePC4eT766CPGjRvHU089RUFBAVdddZWKPhERESmTzRkHefKrNfRpU5eb+rZ0Oo5IhTDuawlPsoIxfYGfgVW4p2wAeNRaO8sY8x7wm7V2YmkOFhcXZw+PhnlYUlISUVFRZc0tleyJJ54gNDSUBx980OkoZaL/XyIiInIi+YUuLn9zIcn7cvjunnNoWDPI6UhSDRhjlllr4yrzmKds6bPW/oJ7hM7j3Xd9eQcSEREREakML/+wnlU7sph4bXcVfOLVNLu1lMoTTzzhdAQRERGRcvPb5j28uWATV/VoxvBODZ2OI1KhSjM5u4iIiIiI18jKKeD+zxKIrBvC+As6Oh1HpMKppU9EREREqg1rLY9+sYpdB/L4fFxvQgL1cVi8n1r6RERERKTamL58B9+sTOW+c9vRpVktp+OIVAoVfSIiIiJSLWzbk83fZ66mZ8s63N6/tdNxRCqNij7A19eX2NhYOnXqxMiRI8nJyTntfV1//fVMmzYNgJtvvpk1a9accN358+ezcOHCI7cnTpzIBx98cNrHPmzr1q106tTpqGVPPPEEL774Ypn2U155RERERJxWWOTi3s8S8PExvHRlLL4+xx2cXsQrqRMzUKNGDRISEgAYPXo0EydO5P777z9yf1FRUZkmMT/s7bffPun98+fPJzQ0lN69ewNw++23l/kYFaWwsNCj8oiIiIicidfmbuT37Zm8dnVXmtSq4XQckUpVtVr6nn8e5s07etm8ee7l5aRfv35s3LiR+fPnM3DgQK655ho6d+5MUVERf/3rX+nRowcxMTFMmjQJcF8MfNddd9GxY0dGjBjBrl27juxrwIABHJ6M/rvvvqNbt2506dKFwYMHs3XrViZOnMhLL71EbGwsP//881GtcQkJCZx99tnExMRw6aWXsm/fviP7fPjhh+nZsyft2rXj559/LvNjPNm+H330Ufr3788rr7xyJM/OnTuJjY098uPr68u2bdvYtm0bgwcPJiYmhsGDB7N9+3bA3dr5l7/8hd69e9OqVasjLZ8iIiIiTli2bS+vzd3AZd2acGGXxk7HEal0Vavo69EDRo36o/CbN899u0ePctl9YWEh3377LZ07dwZgyZIlPP3006xZs4Z33nmHmjVrsnTpUpYuXcp///tftmzZwowZM1i3bh2rVq3iv//971HdNQ/LyMjglltu4fPPP2fFihVMnTqVyMhIbr/9du677z4SEhLo16/fUduMHTuW5557jpUrV9K5c2eefPLJo3IuWbKEl19++ajlJW3atOmoQm3ixIml2ndmZiYLFizggQceOLKscePGJCQkkJCQwC233MLll19OixYtuOuuuxg7diwrV65k9OjR/OUvfzmyTWpqKr/88gtff/01jzzySBnPhIiIiEj5OJBbwD2fJtCkdg2evCja6TgijvCs7p333gvF3SxPqHFjGDYMGjWC1FSIioInn3T/HE9sLLz88kl3eejQIWJjYwF3S99NN93EwoUL6dmzJy1btgRgzpw5rFy58kirVVZWFhs2bOCnn37i6quvxtfXl8aNGzNo0KA/7f+3337jnHPOObKvOnXqnDRPVlYWmZmZ9O/fH4DrrruOkSNHHrn/sssuA6B79+5s3br1uPto3br1kS6r8Mfk6qfa95VXXnnCXL/++itvv/32kdbFRYsWMX36dADGjBnDQw89dGTdSy65BB8fHzp27Eh6evpJH6+IiIhIRZkwM5HUrFym3NaLsCB/p+OIOMKzir7SqF3bXfBt3w7Nm7tvn6GS1/SVFBIScuR3ay2vvfYaw4YNO2qdWbNmYczJLwS21p5ynbIIDAwE3APQFBYWltt+4ejHXFJqaio33XQTX375JaGhocddp+RjPJwR3I9fREREpLLNTNjB9N93cO+QtnRvceafGUWqKs8q+k7RIgf80aVz/Hh4802YMAEGDqzwaMOGDePNN99k0KBB+Pv7s379epo0acI555zDpEmTGDt2LLt27WLevHlcc801R23bq1cv7rzzTrZs2ULLli3Zu3cvderUISwsjP379//pWDVr1qR27dr8/PPP9OvXj8mTJx9pmTtTp7PvgoICRo0axXPPPUe7du2OLO/duzeffvopY8aM4aOPPqJv377lklFERETkTKXsy+HxL1bTrXkt7hrYxuk4Io7yrKLvVA4XfFOmuAu9gQOPvl2Bbr75ZrZu3Uq3bt2w1hIREcEXX3zBpZdeyty5c+ncuTPt2rU7bgEVERHBW2+9xWWXXYbL5aJ+/fp8//33XHjhhVxxxRXMnDmT11577aht3n//fW6//XZycnJo1aoV7777brk9lrLue+HChSxdupQJEyYwYcIEwN3C+eqrr3LjjTfywgsvEBERUa4ZRURERE5Xkcty/2crsBZevrIrfr5VaxgLkfJmKrPrXVxcnD08muVhSUlJREVFlW4Hzz/vHrSlZIE3bx4sXQolricTOaxM/79ERETEK/zfvI28MHsd/xnVhcu6NXU6jshRjDHLrLVxlXnMqtXSd7zC7nCLn4iIiIhUewnJmbz0/Xou7NKYS7s2cTqOiEdQW7eIiIiIeIXsvELu/fR3GoQH8dQlncp1ID2RqqxqtfSJiIiIiJzAP75aw7a9OXx6y9nUrKHpGUQO84iWPg3pLxVB/69ERESqj29XpfJZfDJ3DGjNWa3qOh1HxKM4XvQFBQWxZ88efUCXcmWtZc+ePQQFBTkdRURERCpYatYhHpm+ipimNbl3SLtTbyBSzTjevbNp06akpKSQkZHhdBTxMkFBQTRtqhG7REREvJnLZXlgygryC128clVX/DU9g8ifOF70+fv707JlS6djiIiIiEgV9PYvm1m4aQ/PXd6ZlvVCnI4j4pH0VYiIiIiIVEmrd2Txwux1DI9uyKi4Zk7HEfFYKvpEREREpMo5lF/EPZ/+Tp2QAJ65rLOmZxA5Cce7d4qIiIiIlNXTs9awKSObD286i9ohAU7HEfFoaukTERERkSrlhzXpfPjbdm7p15K+bes5HUfE46noExEREZEqY9eBXB76fCVRjcJ5cFh7p+OIVAkq+kRERESkSnC5LA9OXUl2XiGvXhVLoJ+v05FEqgQVfSIiIiJSJby/aCs/rc/g8RFRtG0Q5nQckSpDRZ+IiIiIeLy1aft55tu1DOpQn2vPbuF0HJEqRUWfiIiIiHi03IIi7vkkgfAgP56/IkbTM4iUkaZsEBERERGP9tx3a1mXfoB3b+hBvdBAp+OIVDmnbOkzxjQzxswzxiQZYxKNMfeUuO9uY8y64uXPV2xUEREREalu5q/bxbu/buX63pEMbF/f6TgiVVJpWvoKgQestcuNMWHAMmPM90AD4GIgxlqbZ4zRq1BEpBIUFLlYtGkPs1alsmV3Nq9e3ZUG4UFOxxIRKXd7Dubx4NSVtGsQyiPndXA6jkiVdcqiz1qbCqQW/37AGJMENAFuAZ611uYV37erIoOKiFRnBUUuft24m1mrUpmzJp3MnAJCA/0odLm4/cNlfHrr2Rq6XES8irWWhz9fyf5DBUy+qSdB/vobJ3K6ynRNnzEmEugKLAZeAPoZY54GcoEHrbVLyz2hiEg1lV/oLvS+WZXK92vSyTpUQFigH0M6NuD8zo3o17Ye89buYtxHy/n7F4k8e3lnDW4gIl7jo8Xb+SFpF+Mv6EhUo3Cn44hUaaUu+owxocDnwL3W2v3GGD+gNnA20AOYYoxpZa21x2x3K3ArQPPmzcstuIiIN8orLOKXDX8UegdyCwkL9OPcw4Veu3pHteid17kRdw9qw2tzN9KpSThjekU6F15EpJxs3HWAp75ZQ7+29bihd6TTcUSqvFIVfcYYf9wF30fW2unFi1OA6cVF3hJjjAuoB2SU3NZa+xbwFkBcXNxRBaGIiLiHIv9lg7vr5vdJ7kIvPMiPoR0bMiKmIX3a1Dtp1837hrRjzc79PPnVGto1COOsVnUrMb2ISPnKKyziL58kUMPfl3+P7IKPj3owiJypUxZ9xt1X6B0gyVr7nxJ3fQEMAuYbY9oBAcDuiggpIuJtcguK+Gl9BrNWpfJD0i4O5hVSs4Y/w6Mbcn5MI/q0rkeAX+mmUvXxMbx0VSyX/N+v3PHRcr66uy+Na9Wo4EcgIlIx/jNnPWtS9/PWmO7U1yBVIuWiNC19fYAxwCpjTELxskeB/wH/M8asBvKB647t2ikiIn/ILShi/jp3ofdjUjrZ+UXUCvZnROdGnB/TiN6t6+LvW7pC71jhQf78d2wcl7z+K7dOjmfa7b016IGIVDm/btzNpJ82c81ZzRka3dDpOCJew1RmnRYXF2fj4+Mr7XgiIk47lF/E/HW7+GZVKnPX7iInv4jawf4M79SQ8zo1otcZFHrH82NSOjd/EM8lsU34z6guGthFRKqMfdn5nPfKzwQH+vL13X0JDijTeIMiVYYxZpm1Nq4yj6lXk4hIOcvJL2Te2gxmrU5lbtIuDhUUUSckgItjmzCicyPOblUHv3Is9EoaHNWAB85tx4tz1hPdOJyb+7WqkOOIiJQnay2PzljFnuw83r6ujwo+kXKmV5SISDnIzitk3rpdzFqVyry1GRwqKKJeaACXdXMXej1bVlyhd6w7B7Yhced+/jUriQ4Nw+nbtl6lHFdE5HRNjU/h29VpPHJeBzo1qel0HBGvo6JPROQ0ZecV8uPaXcxamcr89bvILXBRLzSQK7o35fziQs/XgVHnjDG8OLILmzOyueuT5Xx5Z1+a1w2u9BwiIqWxZXc2T3yVSK9WdblVvRNEKoSKPhGRMjiYV8iPSel8szKVBeszyCt0UT8skCvjmnF+50bERTpT6B0rJNCPt8Z256LigV0+H9ebkED9yRcRz1JQ5OLeT3/H39eHf4/S9AwiFUWfAERETiG/0MWsVal8s8pd6OUXumgQHsjVPZu7C70WtT3yg0qLuiG8dnVXrn93CX+dtoL/u6abBnYREY/yyg8bWJGSxf9d001TzYhUIBV9IiInUeSy3P3JcmYnptMwPIjRZzVnROdGdGvumYXesc5pF8Ej53XgX7PW8sb8Tdw5sI3TkUREAFi8eQ//N38jI7s3ZURMI6fjiHg1FX0iIifx9DdJzE5M57Hzo7ipb8sqUegd65Z+rUjcuZ8X56wjqlEYgzo0cDqSiFRz+YUu7p+yguZ1gplwUbTTcUS8XuUMJSciUgX975ct/O/XLdzYpyW3nNOqShZ84B7Y5dnLYujYKJx7PklgU8ZBpyOJSDU3d206OzIP8fcLOhKq641FKpyKPhGR4/hudRr//GYNw6Ib8NiIKKfjnLEaAb68NTaOAD8fbv0gngO5BU5HEpFqbEp8Cg3DgxjQvr7TUUSqBRV9IiLHWL59H/d8+juxzWrx8pVdPWI0zvLQpFYN/m90N7buyeG+zxJwuazTkUSkGkrfn8v8dbu4vHsTr/n7KuLpVPSJiJSwbU82N78fT8OaQbw9No4aAb5ORypXZ7eqy98v6MgPSbt4+ccNTscRkWro8+UpuCyM7N7M6Sgi1YY6UYuIFNubnc/17y7FWsu71/egbmig05EqxNheLUjcmcWrP26gY6MwhnfSqHkiUjmstUyNT6FnyzpE1gtxOo5ItaGWPhERILegiFs/iGdH5iHevi6OVhGhTkeqMMYY/nFxJ2Kb1eL+KStYl3bA6UgiUk3Eb9vHlt3ZjOze1OkoItWKij4RqfZcLssDU1YQv20fL42KpXuLOk5HqnBB/r5MGtOdkEA/bp0cT1aOBnYRkYo3ZWkyIQG+nN9ZPQxEKpOKPhGp9p77bi3frErlsfOjqtUEwQ3Cg5h4bXd2Zh7irk+WU6SBXUSkAmXnFfLNqlQuiGlMiKZpEKlUKvpEpFqbvGgrk37azNheLbi5X0un41S67i1q88+LO/Hzht08P3ut03FExIt9syqVnPwiRvVQ106RyqavWUSk2vphTToTvkxkSFR9JlwYjTHVc+jwq3o2Z/XOLCYt2Ex045pc1KWx05FExAtNjU+mVUQI3ZrXdjqKSLWjlj4RqZZWpmRy9ye/06lJTV692nvm4jtdf78gmp6RdXho2gpW78hyOo6IeJnNGQdZunUfo+KaVdsv2EScpKJPRKqd5L053PjeUuqGBvDOdT0IDlCnhwA/H/5vdDdqBwdw2+Rl7DmY53QkEfEiU5el4OtjuKxrE6ejiFRLKvpEpFrJying+neXUFBkee+GHkSEeedcfKcjIiyQt8bEsftgHnd+vJyCIpfTkaoFay2rUrJwaSAd8VKFRS4+X5bCgHYR1A8PcjqOSLWkok9Eqo28wiJunRxP8t5DvDWmO23qhzkdyeN0blqTZy7rzG+b9/L0N0lOx6kWpsancOHrv/D6vI1ORxGpED9v2M2uA3mMjGvmdBSRaktFn4hUCy6X5a9TV7J4y15eGBnDWa3qOh3JY13WrSk39W3Jewu3MjU+2ek4Xq2wyMXr8zbiY+DlH9azdOtepyOJlLsp8cnUDQlgUIf6TkcRqbZU9IlItfDinHV8uWInDw1vz8WxuqbkVP52Xgf6tKnLY1+sJiE50+k4XuvLFTvZvjeHF0d2oVmdYO755Hcyc/KdjiVSbvYczOOHpHQu7dqEAD997BRxil59IuL1Pl68nTfmb+Kas5ozrn9rp+NUCX6+Prx+dTfqhwVy2+R4dh3IdTqS1ylyWV6ft5EODcO4JLYJr13dlYyDeTw0bSXW6vo+8Q5fJOykoMiqa6eIw1T0iYhXm7duF+NnrmZg+wj+cVH1nYvvdNQOCeC/Y+PYf6iQcR8uJ79QA7uUp1mrUtmckc1dg9rg42OIaVqLh4d3YM6adD78bZvT8UTOmLWWqfHJdGlak/YNdQ21iJNU9ImI11q9I4s7P1pOh4ZhvH5NN/x89SevrKIahfPiyC4s27aPCV8mOh3Ha7hcltfnbqR1RAjndWp0ZPmNfVoyoH0E//wmiaTU/Q4mFDlzq3ZksTbtgFr5RDyAPgGJiFfakXmIG95bSu3gAP53fQ9CAjUX3+kaEdOIOwa05pMl2/losVqgysOcNemsSz/AXYPa4OvzR+uzj4/hxZFdqFXDn7s+Xk5OfqGDKUXOzNT4FAL9fLiwS2Ono4hUeyr6RMTrZB0q4IZ3l5BbUMS7N/SggeaFOmMPDG3PwPYRTJiZqBEmz5C1ltfmbiCybjAXxvz5w3C90EBevjKWzbuzefLLNQ4kFDlzuQVFzEzYwXmdGlKzhr/TcUSqPRV9IuJV8gtdjPtwGVt2ZzPp2u60a6DrSMqDr4/h5au60qxOMOM+XEZq1iGnI1VZ89btInHnfu4Y2OaEXY57t6nHnQPa8Fl8Ml+u2FnJCUXO3OzENPbnFjJKXTtFPIKKPhHxGtZaHvl8JQs37eG5y2Po3aae05G8Ss0a/vx3bHdyC1zcNnkZuQVFTkeqcqy1vPrjRprWrsGlXU8+dci9Q9rSvUVtHp2+iu17ciopoUj5mBqfQtPaNThbc6KKeAQVfSLiNV76YQPTf9/B/ee247JuTZ2O45Xa1A/jpStjWZmSxaMzVmlqgTL6ZeNuEpIzGTegNf6nGFjIz9eHV66KxcfA3Z/+rtFTpcpI3pvDr5t2c0X3pvj4aMRkEU9wyqLPGNPMGDPPGJNkjEk0xtxTvPwJY8wOY0xC8c/5FR9XROT4pixN5tUfNzAqril3D2rjdByvdm7HBtw3pB3Tl+/g3V+3Oh2nynC38m2gUc0gruheui8lmtYO5rnLY1iRnMm/56yr4IQi5ePz5SkApf5/LiIVrzQtfYXAA9baKOBs4E5jTMfi+16y1sYW/8yqsJQiIifx0/oMHp2xin5t6/H0pZ01F18luHtQG4Z2bMDTs5JYuHG303GqhN8272Xp1n3cdk4rAv18S73deZ0bMfqs5kz6aTML1mdUYEKRM+dyWaYtS6FP63o0rR3sdBwRKXbKos9am2qtXV78+wEgCTj5hQgiIpVkzc793PHRctrUD+WN0d1O2WVOyoePj+E/V8bSql4Id368nOS9uubsVF6bu4F6oYFc1bN5mbcdf0FH2jcI44EpCew6kFsB6UTKx2+b95Cy7xAj49TKJ+JJyvTpyBgTCXQFFhcvussYs9IY8z9jTO3yDicicjKpWYe48b2lhAb68e4NPQgL0rDglSk00I//jo2jyGW5dfIyzSl3Esu27WXhpj3cdk4rgvxL38p3WJC/L69d05WDeYXc/9kKXC5dSymeaUp8MuFBfgyLbuh0FBEpodRFnzEmFPgcuNdaux94E2gNxAKpwL9PsN2txph4Y0x8Roa6pYhI+TiQW8AN7y7lYF4h797Qg0Y1azgdqVqKrBfCq1d3ZV3afh6atlIDu5zAqz9upE5IAKPPLnsr32HtGoQx4cJoftm4m0k/bS7HdCLlI+tQAd+uTuPi2Can9eWGiFScUhV9xhh/3AXfR9ba6QDW2nRrbZG11gX8F+h5vG2ttW9Za+OstXERERHllVtEqrGCIhd3fLScjbsO8sbobkQ1Cnc6UrU2oH19Hhrega9XpjJxgYqRY61IzmTB+gxu6tuS4AC/M9rXVT2aMSKmES/OWcfy7fvKKaFI+fhqxU7yCl3q2inigUozeqcB3gGSrLX/KbG8UYnVLgVWl388EZGjWWt5bMYqft6wm39d1plz2unLJE9w2zmtuLBLY56fvZb563Y5HcejvDZ3IzVr+DO2V4sz3pcxhmcu60yjmkH85ZPfyTpUUA4JRcrH1PhkOjQMo3OTmk5HEZFjlKalrw8wBhh0zPQMzxtjVhljVgIDgfsqMqiICLg/QE+JT+Evg9syKq6Z03GkmDGG5y+PIaphOHd/8jtbdmc7HckjrNm5nx+S0rmhT2S5XXMaHuTPq1d3JTUrl0ena65E8Qzr0g6wIiWLkXHNNIKyiAcqzeidv1hrjbU2puT0DNbaMdbazsXLL7LWplZGYBGpvj5flsJ/vl/PZd2acN+Qtk7HkWPUCPBl0pju+PkYbvkgXgO7AK/P20BooB839G5Zrvvt1rw2Dw5tzzerUvl0aXK57lvkdEyNT8bf13BJbGOno4jIcWhscxGpEhZu3M3Dn6+kd+u6PHtZjL5J9lDN6gTz+jXd2LjrIC/Mrt6TiW9IP8C3q9O4vnckNYPLf2TZ285pRb+29Xjyq0Q2pB8o9/2LlFZ+oYsZv+9gSFQD6oYGOh1HRI5DRZ+IeLz16Qe47cNltIoI4c1ruxPgpz9dnqxPm3qM7dWC9xZuZdm2vU7Hcczr8zZSw9+XG/uWbyvfYT4+hn+P6kJooB93ffw7uQVFFXIcKb3qeg7mrt3Fnux8dbkX8WD65CQiHi19fy7X/28JNfx9efeGntSsobn4qoKHhnegcc0a/HXaymr5QXjL7my+WrGTMWe3oE5IQIUdp35YEP8eFcu69AP88+s1FXYcObU1O/fT/Z/f8+Fv25yOUummxidTPyyQfm3rOR1FRE5ARZ+IeKzsvEJufG8pmYcK+N/1PWhSS3PxVRWhgX48c1lnNmdk8+qPG5yOU+n+b95GAvx8uLlfqwo/Vv92Edx2Tis+Wrydb1fp8nonWGt54qtEsvOLeO7btWQcyHM6UqVJ35/LvHW7uLx7U/x89bFSxFPp1SkiHqmwyMWdHy9nbdoB/m90NzppCPAq55x2EYzs3pRJP21m9Y4sp+NUmuS9Ocz4fQdX92xORFjlXN/0wND2dGlWi4c/X0nKvpxKOab84ZtVqSzZspdb+rUkt7CIZ79d63SkSjN9+Q5cFkZ219x8Ip5MRZ+IeBxrLeNnJjJ/XQb/vLgTA9vXdzqSnKbHR3SkbkgAf522koIil9NxKsUb8zfiawy3ndO60o4Z4OfDa1d1xVq459MECqvJc+0JcvIL+dc3SUQ3DueR86K4qW8rPl+eUi2uZ7XWMnVZMj0ia9MqItTpOCJyEir6RMTjvLlgE58s2c4dA1pzzVnNnY4jZ6BmsD9PXdKJpNT9TJy/yek4FW5H5iGmLUthVI+mNKwZVKnHbl43mKcv68yybft4+Yfq16XWKRPnb2JnVi5PXhSNr4/h7kFtaFQziPFfJFLk8u45FJdv38fmjGxGagAXEY+nok9EPMrMhB08/906LurSmAeHtnc6jpSDodENuSCmEa/O3cB6L59aYNKCTVgLt/evvFa+ki7q0pgr45rxf/M3snDjbkcyVCfJe3OY+NNmLo5tTFxkHQBCAv14bEQUa1L38/Fi7x7UZcrSFIIDfBnRuZHTUUTkFFT0iYjH+H37Pv46dSVntazDCyNj8PHRXHze4smLogkL8uehaSu9tvVj1/5cPl2azOXdmtK0drBjOSZc1JFW9UK497ME9hysPgOKOOGpb9bg52P423lRRy0f0bkRvVvX5YXZ67z2HGTnFfL1yp2M6NyIkEA/p+OIyCmo6BMRj/G/X7cSEujLW2PiCPTzdTqOlKO6oYFMuLAjCcmZvPvrFqfjVIhJP22myGW5Y6AzrXyHBQf48fo13cg8VMADU1fg8tIi22k/b8hgdmI6dw5s86euvMYYnrwompz8Il6Yvc6hhBVr1qpUsvOLGNVDXTtFqgIVfSLiEfIKi5i3dhdDOzakZrDm4vNGF3VpzJCoBrwwex1bd2c7Hadc7T6Yx0eLt3Fxl8a0qBvidByiGoUzfkQU89dl8D8vLbKdVFDk4smv1tCibjA39W153HXaNgjjhj6RfBafTEJyZuUGrART41NoWS+EuBa1nY4iIqWgok9EPMLCTXs4mFfI8E4NnY4iFcQYw9OXdiLAz4eHP1/pVS1Qb/+8hbxCF3cMbON0lCOuPbsFw6Ib8Nx3a1mZkul0HK/ywaJtbNx1kPEjOhLkf+JeCX8Z3JZ6oYH8feZqr+rWvGV3Nku27mVkXFOMUTd8kapARZ+IeITZq9MIDfSjd5u6TkeRCtQgPIjHR0SxeMtePl6y3ek45WJfdj6TF21lROdGtKnvOcPWG2N47vIYIkIDufuT3zmQW+B0JK+w+2AeL3+/nv7tIhgcdfLpZMKC/Hns/ChWpmQxJT65khJWvGnLkvExcHk3zc0nUlWo6BMRxxW5LN+vSWdA+whdy1cNjIprRt829XhmVhI7Mg85HeeMvfvrFrLzi7hrkOe08h1WKziAV67uSvLeHMZ/sRprvae1ySkvzl7HoYIi/n5hx1K1cl0c25iekXV4/ru1ZObkV0LCilXkskxblsKA9vVpEF6505KIyOlT0Scijlu2bR97svPVtbOaMMbwzGWdscCj01dV6UJkf24B7y7cyvDohnRoGO50nOPqEVmHe4e044uEnXy+fIfTcaq0lSmZfBafzI19W9K6lJORG2N48uJo9ucW8uKcqj+oy08bMkjfn8fI7mrlE6lKVPSJiONmJ6YR4OfDgPYn7yol3qNZnWAeHt6BBeszqnQh8v6vWzmQW+iRrXwl3TmwDWe3qsP4L1azKeOg03GqJJfL8sSXidQNCeTuMp7vqEbhjDm7BR8t3s7qHVkVlLByTI1Ppk5IAIOjGjgdRUTKQEWfiDjKWst3q9Po26YeoZrrqVoZc3YLekTW5p9fr2HXgVyn45TZwbxC3vl1C4M71KdTk5pOxzkpXx/Dy1d2Jcjfh7s//p28wiKnI1U5XyTsYPn2TB4e3p6woLKPMHzfue2oGxLA+Jmrq+wgRnuz8/l+TTqXxDYhwE8fIUWqEr1iRcRRiTv3syPzEMOi9a1xdePjY3j28hgOFRRVyevNPvxtG5k5Bdw9uK3TUUqlYc0g/j2qC2tS9/PMrLVOx6lSDuYV8sy3a+nSrNZpD15Ss4Y/Dw/vwO/bM/l8eUo5J6wcMxN2UFBkGdVDXTtFqhoVfSLiqDmJafgYGKKuQtVS64hQ7j+3HbMT05m1Ks3pOKWWk1/If3/aTL+29YhtVsvpOKU2qEMDbuzTkvcWbuX7NelOx6kyXpu7gYwDeTx5UTQ+Pqc/RcHl3ZrSrXktnv12LVmHqtZoqtZaPluaTEzTmh57/aqInJiKPhFx1HeJafSIrEPd0ECno4hDbu7bks5NajLhy9Xsza4aoxt+vHg7e7Lz+UsVaeUr6eHz2hPdOJy/TltBalbVHz21om3OOMj/ftnCyO5Nz7jA9/Ex/OPiTuzNyeel79eXT8BKkrhzP2vTDjAyrpnTUUTkNKjoExHHbNmdzfr0gwyL1qid1Zmfrw8vjIwh61AB//gq0ek4p5RbUMRbP23m7FZ16BFZx+k4ZRbo58vr13SjoNDFPZ8meNWk4RXhn1+vIcjPl4eGdyiX/XVqUpPRZzXng0VbSUrdXy77rAxT4pMJ8PPhopjGTkcRkdOgok9EHDM70d2db5imaqj2OjQM544BbfgiYSdz13p2t8Mp8cnsOpDHXwZVvVa+w1rWC+Gfl3RiyZa9vDZ3g9NxPNbctenMW5fBPUPaEhFWfr0RHhzanpo1/Pn7zKpxLWtuQRFf/L6D4dENqRlc9kFsRMR5KvpExDHfrU6jc5OaNKlVw+ko4gHuHNiG9g3CeHT6avbneub1TvmFLibO30T3FrXp1bqu03HOyGXdmnJZ1ya8+uMGFm/e43Qcj5NXWMQ/v06idUQIY3tFluu+awUH8NDwDizduo8vEjx/ypI5a9LZn1vIKHXtFKmyVPSJiCPSsnJJSM7UqJ1yRICfD89fEcOuA7k8MyvJ6TjH9fnyFHZm5XL3oDYYc/oDeniKf1zSiRZ1Q7jn0wT2VZHrKSvLu79uZcvubCZcGF0h0xNcGdeMLk1r8q9ZazngoV9yHDY1PpkmtWrQu4p/0SFSnanoExFHfL/G3bVzuLp2SgldmtXiln6t+GRJMr9u3O10nKMUFLl4Y/5GYprWpH+7CKfjlIvQQD9eu7ore7Lz+Ou0lVWiq2FlSN+fy2s/bmBIVAPOqaBzfXhQl90H83jlB8/tYrsj8xC/bNzNFd2bntHIpSLiLBV9IuKI7xLTaBURQpv6YU5HEQ9z37ntaFkvhEemryQnv9DpOEfMTNhJ8t5D3D2orVe08h3WqUlN/nZeFD8kpfPBom1Ox/EIz327loIiy/gLoir0OF2a1eLKuGa8u3Ar69MPVOixTtfny1KwFq7orrn5RKoyFX0iUukyc/L5bfNejdopxxXk78tzl8eQvPcQL8xe53QcAIpcljfmbSSqUThDouo7Hafc3dAnksEd6vP0N0kk7sxyOo6jlm3by/Tfd3DLOS1pUTekwo/30PAOhAb6MWFmose1tLpclqnLkundui7N6gQ7HUdEzoCKPhGpdD8m7aLIZRmuok9OoGfLOozt1YL3Fm5l2ba9Tsfh65U72bw7m794ybV8xzLG8MLILtQO8efuT34nO89zWlgrU5HL8sSXa2gYHsQdA9pUyjHrhATw4LD2LNq8h69XplbKMUvrty17SN57SAO4iHgBFX0iUum+S0yjUc0gYprWdDqKeLCHhnegcc0a/HXaSnILihzL4XJZ/m/eRto1CPXq1uk6IQG8fGVX9+AlX3r+fIkVYWp8Mqt2ZPG38zsQEuhXace9pmdzohuH8/Q3SR5VcE+NTyEsyE/XXot4ARV9IlKpcvIL+Wl9BkM7NvDKFhMpP6GBfjxzWWc2Z2Tz6o/ODXQxOzGN9ekHuXNgG68fyKJX67rcPbAN05alMLMKTCVQnrIOFfD87HX0iKzNRV0qdwJy3+JBXdL25/La3I2VeuwT2Z9bwKxVqVzUpTFB/r5OxxGRM6SiT0Qq1U/rM8grdGlCdimVc9pFMLJ7Uyb9tJnVOyr/WjNrLa/N3UireiFcEFO5hYBT/jK4LT0ia/PYjNVs3Z3tdJxK8/IP68nMyeeJi6Id+UKqe4vaXNG9Ke/8splNGQcr/fjH+npFKnmFLnXtFPESKvpEpFLNTkyndrA/PSPrOB1FqojHR3SkbkgAf522koIiV6Ue+8ekXaxJ3c8dA9vg6+WtfIf5+frw8lVd8fUx3P3J7+QVOte1trKsTz/AB4u2cXXP5kQ3dq7b+cPDOxDk78sTXzo/qMuU+GTaNwhTN3wRL3HKos8Y08wYM88Yk2SMSTTG3HPM/Q8aY6wxpl7FxRQRb5Bf6OKHpHQGRzXAz1ffOUnp1Az256lLOpGUup+J8zdV2nGttbw6dwPN6tTg4tjq0cp3WJNaNXj+ihhW7cjilg+WedTUGeXNWsuTXyUSEuDLA0PbO5olIiyQ+89tx88bdjM7Mc2xHOvTD5CQnMnIuKbqhi/iJUrzqasQeMBaGwWcDdxpjOkI7oIQOBfYXnERRcRb/LZ5DwdyC716MAypGEOjG3Jhl8a8OndDpc1ntmB9BitTsrhjQBv8q+GXFMOiG/Lc5Z35ZUMG1769mMycfKcjVYjZien8unEPDwxtT52QAKfjMObsFnRoGMY/v07iUL4zraxT45Px8zFc0rWJI8cXkfJ3yncxa22qtXZ58e8HgCTg8F+Bl4CHAM+aWEZEPNLsxDSCA3zp11YdA6TsnriwI2FB/jw0bSVFrop92zl8LV/jmkFc3q36Tkp9ZY/mvDG6G6t37OfKSb+Rvj/X6UjlKregiKe+WUP7BmGMPqu503EAd/faJy+KZkfmId6YX/mDuhQUuZi+fAeDo+pTLzSw0o8vIhWjTF9dGmMiga7AYmPMRcAOa+2KU2xzqzEm3hgTn5GRcfpJRaRKc7ksc9akM6B9hEaCk9NSNzSQCRd2JCE5k3d/3VKhx1q0aQ/Ltu3j9gGtCfCrfq18JQ3v1Ih3b+hByr4crpi4kG17vGdwl7d+2kzKvkNMuKijR3U5P6tVXS6JbcykBZsrfTCduWt3sSc7XwO4iHiZUv+FM8aEAp8D9+Lu8vkY8PdTbWetfctaG2etjYuIiDjdnCJSxf2evI+MA3nq2iln5KIujRkS1YAXZq+r0A/Dr87dQP2wQH3wLdanTT0+vuVsDuYWcsXERSSl7nc60hk73JI2onMjerf2vN4Hfzs/Cn9fw5NfVe6gLlPjU4gIC6R/O31mE/EmpSr6jDH+uAu+j6y104HWQEtghTFmK9AUWG6M0ac5ETmu2Ynp+PsaBnao73QUqcKMMTx9aScC/Hx4+POVuCqgm+fSrXv5bfNebj2nlVqlS+jSrBZTb++FrzGMmrSI+K17nY50Rv41KwmAv53fweEkx9cgPIh7h7Rj3roMfkzaVSnH3HUgl3nrdnF5t6Ye1fIpImeuNKN3GuAdIMla+x8Aa+0qa219a22ktTYSSAG6WWudG2pKRDyWtZbvVqfRu3U9woP8nY4jVVyD8CDGj+jI4i17+WhJ+Y8j9uqPG6gbEsDos1qU+76rujb1w5g2rhcRoYFc+85i5q2rnGKkvC3atIdvVqYyrn8bmtYOdjrOCV3fJ5I29UN58utEcgsqflCXGct3UOSyjIyrvtexinir0nyN0wcYAwwyxiQU/5xfwblExIusTTvA9r056top5WZkXFP6ta3Hs7OS2JF5qNz2m5Ccyc8bdnNzv1bUCFAr3/E0rR3MlNt70ToilFvej2dmwg6nI5VJYZGLJ79KpEmtGtzWv5XTcU7K39eHf1wUTfLeQ0xcULHTlVhrmRKfTPcWtWkdEVqhxxKRylea0Tt/sdYaa22MtTa2+GfWMetEWmt3V1xMEanKZiemYQyc27GB01HESxhj+NelnbHAo9NXlds1T6/9uIFawf6M6aVWvpOpFxrIJ7eeTbcWtbn3swQmL9rqdKRS+3jJdtamHWD8BVFVovtu7zb1GBHTiDfnbyJ5b06FHWf59kw2ZWQzSq18Il5JHbZFpMJ9tzqNuBa1iQjT8N9SfprVCebh4R1YsD6Dz5efeWvT6h1Z/Lh2Fzf1aUlooF85JPRu4UH+fHBjTwZ3qM/4mYm8+uOGSh1w5HTsy87n33PW07t13SrV8+DxEVH4GMM/vl5TYceYGp9MDX9fRsQ0rrBjiIhzVPSJSIXavieHtWkHqtQHLKk6xpzdgh6RtfnHV4nsOsM55F6fu5GwID+u6xNZPuGqgSB/X968tjuXdW3Cf75fzz++XlMhg+uUl39/v46DeYVMuDAa95AFVUOjmjW4e3Abvl+TXiHXUebkF/L1ylRGxDTSFx4iXkpFn4hUqNmJ7vGdVPRJRfDxMTx3eQx5hS7Gz1x92i1N69IO8F1iGjf0jtRgQ2Xk7+vDiyO7cGOflrz761YenLqCgiKX07H+JHFnFh8v3s6Ys1vQvmGY03HK7Oa+rWhVL4Qnv0wkr7B8B3X5dlUaB/MKNUWJiBdT0SciFeq7xDQ6NgqnWR3PHSFPqrZWEaHcd247ZiemM2vV6Q0i/fq8jYQE+HJj35blnK568PExjL8gigfObcf033cw7sNllTLaZGlZa3nyyzXUCg7gviHtnI5zWgL8fHjiomi27snh7Z+3lOu+p8QnE1k3mB6Rtct1vyLiOVT0iUiF2XUgl+Xb96mVTyrczX1b0rlJTSZ8uZq92fll2nbjroN8vXInY3pFUis4oIISej9jDHcPbss/L47mx7W7GPu/JezPLXA6FgBfrUxlyda9/HVYe2oGV92W3HPaRTAsugGvzd1QbqPWbt2dzeItexkZ16xKdXkVkbJR0SciFeb7NelYC8M6adROqVh+vj68MDKGrEMF/OOrxDJt+8a8jQT6+XBzP7XylYcxvSJ5+cpYlm/bx9Vv/cbug3mO5snJL+Rf3yTRqUm4V3RfHH9BRwCe/qZ8BnWZtiwFHwOXdWtSLvsTEc+kok9EKsx3q9OIrBtM+wZV7/oZqXo6NAznjgFt+CJhJz8mpZdqm217spm5Yiejz2pBvVCNLlteLo5twn+vi2NTxkFGTlxEyr6Km2rgVN6Yt4m0/bk8cWE0vj5VvyWrae1g7hzQhlmr0vhlw5nNllXkskxblsI57SJoVLNGOSUUEU+kok9EKkTWoQIWbdrDsOiG6jIklebOgW1o3yCMx2asLlXXwjfmbcLXx3DbOZ49SXdVNLB9fT686Sz2HMzjijcXsSH9QKVn2LYnm7d+2sylXZsQF1mn0o9fUW45pxUt6gYz4cvV5Bee/qA5P2/IIG1/rle0gIrIyanoE5EKMW/tLgpdlqG6nk8qUYCfD89fEcOuA7k8MyvppOum7Mvh8+UpXNWjGfXDgyopYfUSF1mHz27rRZG1jJq0iITkzEo9/lPfJOHna3jkvA6VetyKFuTvy4QLO7IpI5t3fz39QV2mLkuhdrA/g6Pql2M6EfFEKvpEpELMTkyjflggXZvVcjqKVDNdmtXiln6t+GRJMr9uPHH3t4kLNmEM3N6/dSWmq36iGoUz7fZehAb5cc1/fzvpOSlPP63P4Ps16dw1qA0NvLCoH9ShAUOi6vPKjxtIyyr7HJX7svP5PjGdi2ObEOjnWwEJRcSTqOgTkXKXW1DE/HUZDI1ugI8XXEMjVc9957ajZb0QHpm+kpz8wj/dn5aVy5SlKVzRvSmNa+laporWom4I027vTbPawdzw7lK+W51aoccrKHLx5FeJtKgbzE1ePA3H3y+IptBl+dcpWrWPZ2bCDvKLXOraKVJNqOgTkXL30/oMDhUUaaoGcUyQvy/PXR5D8t5DvDB73Z/un/TTJoqsZVz/Ng6kq54ahAcx5bZedGoSzh0fLeezpdsr7FjvL9zKpoxs/n5BR69uxWpeN5jb+7fmyxU7WbRpT5m2nRKfQqcm4XRsHF5B6UTEk6joE5FyNzsxnfAgP85uVdfpKFKN9WxZh+t6teC9hVuJ37r3yPKMA3l8vHg7l8Q2oXndYAcTVj81g/358Oaz6Ns2goc/X8WkBZvK/RgZB/J45YcNDGgfwaAO3n+t2h0DWtO0dg0mfLmagqLSDeqyekcWa1L3q5VPpBpR0Sci5aqgyMUPSekMiWqAv6/+xIizHhregcY1a/DQ5yvJLSgC4O2fN1NQ5OLOgbqWzwnBAX68PTaOC2Ia8cy3a3n227VYa8tt/y/MXktuYRHjL+hYLUYODvL3ZfwFHVmffpAPFm0r1TZT45MJ8PPhoi6NKzidiHgKfSITkXK1ZMtesg4VaNRO8QghgX48c1lnNmdk8+qPG9ibnc/k37ZxYZfGtIoIdTpetRXg58MrV3Vl9FnNmbhgE3+bvooi15kXfgnJmUyJT+HGPi1pXY3O79CODejfLoKXv1/PrgMnH9Qlt6CILxJ2Miy6IbWCAyopoYg4TUWfiJSr2YlpBPn70L9dhNNRRAA4p10Eo+KaMumnzfxt+koOFRRx10Bdy+c0Xx/DU5d04u5Bbfh0aTJ3f7KcvMKi096fy2V54stEIsICuWtQ9Tq/xhieuCiavEIXz3679qTr/pCUTtahAkZ2b1pJ6UTEE6joE5Fy43JZZiem0b9dBDUCvHfwBKl6HhvRkbohAcxOTOe8Tg1p2yDM6UiCu1h5YGh7Hh8RxaxVadz8fjzZeX8ebbU0pv++g4TkTB4Z3oGwIP9yTur5WtYL4eZ+LZm+fMdR17Aea0p8Co1rBtGnTb1KTCciTlPRJyLlZkVKJun78zRqp3icmjX8ee7yGBrVDOIvg9s6HUeOcXO/Vrw4sgsLN+3hmrcXsy87v0zbH8gt4Nlv1xLbrBaXdm1SQSk9312D2tCoZhDjZyZSeJxBXXZmHuLnDRlc0b0pvppOR6RaUdEnIuVmdmI6fj6GwR0aOB1F5E8GdqjPwkcG0aGhhqj3RFd0b8rEa7uTlLqfUZMWlWnC8dfmbmT3wTyevCi6Ws8NGhzgx+MjOpKUup+Pl/x5SozPl6VgLVzRXaN2ilQ3KvpEpFxY6+7a2at1XWoGV7+uVVI1VIfRHKuyczs24P0bepKalcvlby5ky+7sU26zKeMg7/66hVFxTenSrFbFh/Rw53duSJ82dXlx9jr2HMw7stzlskxdlkKvVnU1VYlINaSiT0TKxYZdB9myO1ujdorIGenVui6f3HI2hwqKGDlxIYk7s064rrWWf3y1hiA/X/46rEMlpvRcxhievCianPwinvvuj0Fdlmzdy/a9OYzqoQFcRKojFX0iUi5mr04D3EOHi4icic5NazL19l4E+Ppw1aTfWLLl+AOTzF27iwXrM7hnSFsiwgIrOaXnalM/jBv7tmRKfAq/b98HwJT4ZMIC/Rge3cjhdCLiBBV9IlIuvktMo1vzWjQID3I6ioh4gdYRoUwb15v64YGMeWcxPyalH3V/XmER//h6DW3qh3Jd70hnQnqwvwxuS4PwQP4+M5GsnAJmrUrlgi6NNbKySDWlok9Ezljy3hwSd+7XqJ0iUq4a16rB1Nt7075hGLdOXsYXv+84ct87v2xh254cJlzYEX9ffZw5VmigH4+eH8WqHVncMjme3AIXo+LUtVOkutJfSRE5Y3PWuL+BV9EnIuWtTkgAH99yNj0j63DvZwm89+sW0rJyeX3uRoZ2bEC/thFOR/RYF3VpzFkt67Bky17a1g8lVgPdiFRbKvpE5IzNTkyjQ8MwIuuFOB1FRLxQaKAf797Qg6EdG/DEV2u48q1FFLosj4/o6HQ0j2aM4R8XdyLA14drzmqu0WtFqjEVfSJyRnYfzGPp1r0atVNEKlSQvy9vjO7GyO5N2bYnh1v7tdLUA6XQvmEYi/42iOt6RTodRUQc5Od0ABGp2n5Yk461MCxao3aKSMXy8/Xh+StiGBnXjG7Nazkdp8qoG6qRTUWqOxV9InJGZiem0axODTo2Cnc6iohUA8YYeras43QMEZEqRd07ReS0Hcgt4NeNexjWsaGuFRERERHxUCr6ROS0zVuXQX6Ri2GddD2fiIiIiKc6ZdFnjGlmjJlnjEkyxiQaY+4pXv5PY8xKY0yCMWaOMaZxxccVEU8yOzGNeqGBdGte2+koIiIiInICpWnpKwQesNZGAWcDdxpjOgIvWGtjrLWxwNfA3ysupoh4mtyCIuav3cW5HRvg66OunSIiIiKe6pRFn7U21Vq7vPj3A0AS0MRau7/EaiGArZiIIuKJft24m+z8Io3aKSIiIuLhyjR6pzEmEugKLC6+/TQwFsgCBpZ3OBHxXLMT0wgL9KN363pORxERERGRkyj1QC7GmFDgc+Dew6181trHrLXNgI+Au06w3a3GmHhjTHxGRkZ5ZBYRhxUWufh+TTqDouoT4KfxoEREREQ8Wak+rRlj/HEXfB9Za6cfZ5WPgcuPt6219i1rbZy1Ni4iIuL0k4qIx1i6dR/7cgoYFq1RO0VEREQ8XWlG7zTAO0CStfY/JZa3LbHaRcDa8o8nIp5odmIaAX4+9G+nL3JEREREPF1prunrA4wBVhljEoqXPQrcZIxpD7iAbcDtFZJQRDyKtZY5iWmc0zaCkMAyXRYsIiIiIg445Sc2a+0vwPHGY59V/nFExNOt2pHFzqxc7ju3ndNRRERERKQUNAKDiJTJ7MQ0fH0MQ6I0VYOIiIhIVaCiT0TKZHZiOme1rEPtkACno4iIiIhIKajoE5FS27jrIBt3HdSonSIiIiJViIo+ESm12YlpAAyNVtdOERERkapCRZ+IlNqcxDS6NKtFo5o1nI4iIiIiIqWkok9ESmVn5iFWpGQxTK18IiIiIlWKij4RKZU5xV07dT2fiIiISNWiok9ESmV2Yjpt64fSOiLU6SgiIiIiUgYq+kTklPZm57N4yx618omIiIhUQSr6ROSUfkhKx2XVtVNERESkKlLRJyKnNCcxjSa1atCpSbjTUURERESkjFT0ichJHcwr5KcNuxka3QBjjNNxRERERKSMVPSJyEktWJdBfqFLXTtFREREqigVfSJyUrMT06gTEkCPyDpORxERERGR06CiT0ROKK+wiLlrd3FuVAN8fdS1U0RERKQqUtEnIie0cNMeDuYVMqxTA6ejiIiIiMhpUtEnIic0JzGNkABfereu53QUERERETlNKvpE5LiKXJbv16QzsEN9gvx9nY4jIiIiIqdJRZ+IHNeybfvYfTBfo3aKiIiIVHEq+kTkuGYnphHg68OA9hFORxERERGRM6CiT0T+xFrL7MQ0+ratR1iQv9NxREREROQMqOgTkT9J3LmflH2HGBatUTtFREREqjoVfSLyJ3MS0/AxMCRKRZ+IiIhIVVfti76DeYUUFrmcjiHiUWYnphMXWYe6oYFORxERERGRM1Stiz5rLXd9vJyx/1vC7oN5TscR8QhbdmezLv0AwzVqp4iIiIhXqNZFnzGG8zs1In7bPi587Rd+377P6UgijpudmAbAUF3PJyIiIuIVqnXRBzCqRzOmj+uNr49h1KRFTF60FWut07FEHDM7MY1OTcJpWjvY6SgiIiIiUg6qfdEH0KlJTb6+uy9929Rj/MxE7p+ygkP5RU7HEql0aVm5/L49U107RURERLyIir5itYIDeOe6Htw3pB1fJOzg0jd+ZevubKdjiVSq79e4u3YOU9EnIiIi4jX8nA7gSXx8DPcMaUuXZjW597MELnz9F/4zKpZzO+raJvkzl8uyP7eAfTkF7MvJZ192PvtyCsjMyWdfTj57s92/hwf5c32fSKIahTsd+ZRmJ6bTql4IbeqHOh1FRERERMqJir7jGNC+Pl/d1Zc7PlrOLR/Ec8eA1jwwtD2+PsbpaFJBCopcZB6neNubk+9eXrxsX3FBl1l8v+sEl3/6+hhq1fCndkgAqZmH+Cw+mYHtIxg3oA09W9ap3AdXSpk5+SzavIdbz2mFMfq/LiIiIuItTln0GWOaAR8ADQEX8Ja19hVjzAvAhUA+sAm4wVqbWYFZK1WzOsFMvb0XT3yZyBvzN7EiJZNXr+qqecuqgEP5RUcVZ3uz84tb347+/UhRl13AgbzCE+4v0M+H2sEB1Ar2p05IAFENw6kV7E/t4ABqhwRQu/j3w/fXCg4gLNAPn+IvCbJyCpj821b+9+tWRk1aRFyL2owb0JqB7esfWccT/Ji0iyKXVddOERERES9jTjVSpTGmEdDIWrvcGBMGLAMuAZoCc621hcaY5wCstQ+fbF9xcXE2Pj6+XIJXpilLk3l85mrqhgTwxuhudG1e2+lIUsLug3n8e8565q/bxb6cfHILXCdcNzTQj9ohh4u0Pwo2dwHnT63gAOoUF3C1Q9y/1wjwLZech/KLmLosmUkLNrMj8xDtG4Rx+4BWXBDTGH9f5y+vvfWDeFamZLHwkUEeVYyKiIiIeBNjzDJrbVylHrOs0xMYY2YCr1trvy+x7FLgCmvt6JNtW1WLPoDVO7K4/cNlpO/PZcKF0Yw+q7m6wDmsoMjF5EXbeOmH9RzKL2J4p4Y0qhnkLtyKW+BqlSzoagQQ4Od8cVVQ5OKblam8OX8T69IP0KRWDW49pxWj4pqVW4FZVjn5hXT75/dcGdeMJy/u5EgGERERkerA44s+Y0wk8BPQyVq7v8Tyr4DPrLUfnmz7qlz0gfuap3s/S2D+ugwu69aEpy/p7NiH9Oru1427eeLLRDbsOki/tvWYcGF0lRt8xFrL3LW7eGP+JpZt20edkABu6B3J2F6R1Az2r9Qs361O5fYPl/PxzWfRu029Sj22iIiISHXi0UWfMSYUWAA8ba2dXmL5Y0AccJk9zs6MMbcCtwI0b968+7Zt28ojt2NcLsurczfwyo8baN8gjEljutOibojTsaqN5L05PP1NEt8lptG8TjDjL+jIkKj6Vb7VdenWvbw5fxNz1+4iJMCXa85qzk19W9GwZlClHP++zxKYt24X8Y8Nwc8DupqKiIiIeCuPLfqMMf7A18Bsa+1/Siy/DrgdGGytzTnVfqp6S19J89ft4p5PE3BZy0ujYhmiaR0q1KH8It5csIlJCzbhYwx3DWrDTX1bEuTvXS2tSan7mbRgE1+tTMXHwGVdm3Jr/1a0jqi4Vsz8QhdxT33P0OiGvDiyS4UdR0REREQ8tOgz7iaU94G91tp7SywfDvwH6G+tzSjNwbyp6AN3q9O4j5axesd+7hrYhvvObadpHcqZtZZZq9J4+ps17MzK5aIujfnb+R1oVLOG09EqVPLeHN76aTNT4pPJL3IxPLoh4wa0JqZprXI/1k/rMxj7vyX8d2yc5qQUERERqWCeWvT1BX4GVuGesgHgUeBVIBDYU7zsN2vt7Sfbl7cVfQC5BUVMmJnIZ/HJ9Gtbj1eu6kqdkACnY3mFtWn7eeLLRH7bvJeoRuE8eVG0x85xV1EyDuTx3sItfLBoGwdyC+nTpi7j+rehT5u65dal9bEZq5jx+w6Wjz/X61pORURERDyNRxZ95ckbi77DPlu6nfEzE6kXEsAb13YntlktpyNVWZk5+bz0/Xom/7aN8Br+PDi0PVf3bF6tW1EP5Bbw8eLtvP3LFjIO5BHTtCbj+rdmaHTDM3peXC7LWc/8SFyL2rx5bfdyTCwiIiIix6Oir4pblZLFuI+WsWt/Hn+/sKOmdSijIpfl06XbeXH2OrIOFXDt2S24/9x21ApWy+lhuQVFzPh9B5MWbGLrnhxa1Qvhtv6tuKRrEwL9yt5Kt2zbXi5/cxGvXBXLxbFNKiCxiIiIiJSkos8LZObkc8+nCSxYn8Hl3Zry1CWdNK1DKSzdupcJMxNZk7qfs1rW4YmLoolqFO50LI9V5LJ8tzqNN+ZvJHHnfhqEB3Jz31ZcfVZzQgP9Sr2ff81K4t1ft7Bs/LmEB1XuNBEiIiIi1ZGKPi/hclle+XEDr87dQIeG4Uy8tpumdTiBtKxcnvk2iZkJO2lUM4jHRkQxonMjtZCWkrWWXzbu5s35m1i4aQ/hQX5c1zuS63tHUjc08JTbDnhxPi3qhvDBjT0rKbGIiIhI9aaiz8vMW7eLe4undXj5ylgGR2lkxMNyC4p455ct/N+8jRS6LLef04rbB7QmOKD0rVRytITkTCbO38TsNWkE+vlwZVwzbu7XimZ1go+7flLqfs575Wf+dWlnrjmreSWnFREREameVPR5IU3rcDRrLT8m7eKf36xh254chkU34PERHU9YmEjZbdx1gEkLNjPj9x1Y4KIujbm9f2vaNww7ar2Xf1jPKz9uYMmjQ4gIO3mroIiIiIiUDxV9XkrTOrhtyjjIP75aw4L1GbSpH8qECzvSr22E07G81s7MQ7zzyxY+WbKdnPwihkTVZ9yA1nRv4Z724rxXfiYkwJdp43o7nFRERESk+lDR5+U+XbKdv3+ZSERoIG+M7kaXajKtw4HcAl6bu5H//bKFGv6+3HtuO8b2aoG/r4/T0aqFfdn5fLBoG+8t3MK+nAJ6Rtbhsm5NeGT6Kh4fEcXN/Vo5HVFERESk2lDRVw2sSsni9g+XkXEgjwkXdeSant47rYPLZZn++w6e/XYte7LzGNW9GX8d3p56pxhgRCpGTn4hny1N5r8/bWZnVi4APz80UF1rRURERCqRir5qYl92Pvd+5p7W4Yru7mkdgvy9a1qHFcmZTPgykYTkTLo2r8UTF0ZXm5ZNT1dQ5OLLhJ1kHirgpr4tnY4jIiIiUq2o6KtGilyWV4undYhqGM7Ea7vTvG7Vb3HJOJDHC7PXMiU+hYiwQB4Z3oFLuzbBpxoPXiMiIiIicpiKvmpo3tpd3PtZAtZaXr4qlkEdqua0DgVFLt5fuJVXfthAbmERN/ZpyV2D2hCmCb9FRERERI5woujTSBoOG9ihPl/f3ZdmdYK58b14/jNnHUWuyivEy8PPGzI475WfeeqbJLq1qM13957D386PUsEnIiIiIuIBNBO2B2hWJ5jPx/Xm7zNX8+rcjfyenMmrV3WltodP67B9Tw5PfbOGOWvSaVE3mHeui2NQh/peOzCNiIiIiEhVpKLPQwT5+/L8FV3o1rw2f/8ykQte+4UHh7UjNNAfP19DgK8Pfj4GP18f/H0Nfj7uf/19ffA7/G+J+w/frogCLCe/kDfnb2LST5vx8zE8NLw9N/VtSaCfdw1GIyIiIiLiDVT0eZirejanY+Nwxn24nPs+W3HG+3MXggZ/H3dx6Ofr4y4gfQ1+Pn8UjX4+JZb7+uBfvN2R9YsLSj8fww9J6aRm5XJJbGMeOS+KhjWDyuGRi4iIiIhIRVDR54Fimtbih/v7s2V3NoUuFwVFlsIiF4UuS0GRi8IiS6HLRf7h5UWWAlfxv4fXK3RR4PrzdgVFxfs7dv0iFwVFLvILXWTnFx213z+2dW8XWTeEV6/uSo/IOk4/VSIiIiIicgoq+jxUjQBfOjYOdzqGiIiIiIhUcRq9U0RERERExIup6BMREREREfFiKvpERERERES8mIo+ERERERERL6aiT0RERERExIup6BMRERERkbJ5/nmYN+/oZfPmuZeLx1HRJyIiIiKVR8WCd+jRA0aN+uNczpvnvt2jh7O55LhU9ImIiIhI5TlcLLz9NhQVqVioqgYOhM8+g8svh3vvdZ/DKVPcy8XjaHJ2EREREak8AwfCO+/AxRfD/fdDYSG89pqKhaokJQU++gg++AD27YNXXoFGjWDhQmjQAKKiwBinU0oJaukTERERkco1bJi7hejAAcjNhZtvhthY+Pe/ITXV6XRyPAcPwuTJcO650Lw5PPKIu7ALDYXBgyEjAx5/HKKjoUMH9/2LF4PL5XRyQUWfiIiIiFS2hQthwQIYPx7q1IG774bAQHjwQWja1F0UTp7sLjTEOUVF8OOPcN110LAhjB0LGze6z9vkyZCeDl9+CT/8AHPmuM/lPfe4i8J//xvOPhuaNYM773SvU1Dg9COqtoy1ttIOFhcXZ+Pj4yvteCIiIiLiYQ5fw3f4+q+Stxs3hg8/dP9s3QohIXDppTBmjLs1ydfX6fTVQ1KSu+vmhx+6u3KGh7vP0dix0KcP+Pi4B97p0ePobrnz5sHSpfDQQ+5un19/DTNmwHffwaFDULs2XHCB+5wOGwbBwc49RgcZY5ZZa+Mq9Zgq+kRERESk0pyqWAB3l8Bff3W3Jk2ZAllZ7mvGrrnGXQB26eJMdm+WkQGffuou9uLj3QX2sGHuQu+ii6BGjdPfd06OuyVwxgz46it3QVijhnv/l17qLgTr1Cm/x+LhVPSJiIiIiJSUm+tuMZo8GWbNcg/80rkzXHstjB4NTZo4nbDqysuDb75xF3rffON+bmNj3YXe1Ve7u3SWt4IC+OkndwH4xRewY4e7wBwwwF0AXnKJ159Tjyz6jDHNgA+AhoALeMta+4oxZiTwBBAF9LTWnrKaU9EnIiIiIqdt9253y9/kyfDbb+6BRAYNcrf+XXYZhIU5ndDzWeseYOWDD9wte/v2uYu7a691P48xMZWXxeVytyrOmOH+WbfOvbxnT3cBeOml0L595eWpJJ5a9DUCGllrlxtjwoBlwCWAxV0ETgIeVNEnIiIiIpVmw4Y/rv/bvNndXfDw9X9DhoCfZiY7ytat7ufqgw/cz93h52vsWPf1kp7wfCUl/VEAHq4ZoqLcBf2ll0K3bl4xFYRHFn1/2sCYmcDr1trvi2/PR0WfiIiIiDjBWvdooIev/9u3zz1X3DXXuFuvunb1ikLhtOzfD9OmuQu9BQvcywYMcBd6l1/uHqDFUyUnu7t/zpjh7g5aVOQeFfSSS9wFYN++nlGongaPL/qMMZHAT0Ana+3+4mXzUdEnIiIiIk47fI3a5MnufwsKoGNHd+vf6NHu6QO8XWGhe3qEDz5wF0y5udCunbvQu/ZaaNHC6YRlt2ePewCYGTPcA8Lk5kLduu4BZi691D13YFCQ0ylLzaOLPmNMKLAAeNpaO73E8vmcpOgzxtwK3ArQvHnz7tu2bTvTzCIiIiIiJ7dnD0yd6i4AFy50t/YNGOAuAD29let0rFzpLvQ++gjS0tzTI1x9tbvY69nTe1o7Dx6E2bPdBeDXX7tHdg0JgfPOcxeAGzdCv34nHx3WYR5b9Blj/IGvgdnW2v8cc9981NInIiIiIp5q0yb39WyTJ7t/r1EDLr7YXQAOHeruJliaqSSccLJcY8fCxx+7i70VK8DfH0aMcC8//3z3hPfeLD/f/VzMmAEzZ7qLXV9f9zyCd93lPm9JSUfPC+kBPLLoM8YY4H1gr7X23uPcPx8VfSIiIiLi6ax1j/o5eTJ89hns3Qv167tbxKKi4PHHjz9pvJPFwrE5vvvOfTsqyj3YicvlbskbOxauvBLq1XMuq5NcLve5nTHDXQjv3Alt27qv8XT6HB7DU4u+vsDPwCrco3UCPAoEAq8BEUAmkGCtHXayfanoExERERGPkJ/vnvfvww/d14vl57sHCtm9291VcM4cuP9+6NTp6O1O1E2yrMvLss2qVe4Wv9at3S161rqvTxwzxv3TocOJj1EdWQvjxsGkSTB+PPzjH04nOopHFn3lSUWfiIiIiHicffv+uP7vl1+cTnNyXbrASy9B//7ubozyZ4dbR8eNgzffVEsfUDXHORURERERKS+1a8Ott7q7A15xBYwc6S4UXnzR3XXysBM1lpR1eVm3WboUHn4YbrsN3nnHvUwF3/Ed2x124EDP6KbrMBV9IiIiIiKHi4Vp09zFwZVXekaxMG8ePPYYTJ/uzjFsmGfk8lRLlx793Awc6L69dGm1fr7UvVNEREREpCqO3ukhUxBI2eiaPhERERERES/mRNGnzsAiIiIiIiJeTEWfiIiIiIiIF1PRJyIiIiIi4sVU9ImIiIiIiHgxFX0iIiIiIiJeTEWfiIiIiIiIF1PRJyIiIiIi4sVU9ImIiIiIiHixSp2c3RiTAWyrtAOWXj1gt9Mh5IzpPHoHnUfvoPPoPXQuvYPOo3fQefQO7a21YZV5QL/KPJi1NqIyj1daxph4a22c0znkzOg8egedR++g8+g9dC69g86jd9B59A7GmPjKPqa6d4qIiIiIiHgxFX0iIiIiIiJeTEWf21tOB5ByofPoHXQevYPOo/fQufQOOo/eQefRO1T6eazUgVxERERERESkcqmlT0RERERExItVuaLPGDPcGLPOGLPRGPNIieWfGWMSin+2GmMSjrNtrDFmkTEm0Riz0hhzZYn7WhpjFhtjNhTvK+AEx7+ueJ0Nxpjryrq9uHnAefzOGJNpjPn6mOXvGWO2lMgQW36P2vs4eR6NMS2MMcuKj5FojLm9LNvLH5x+PRavG26M2WGMeb3EMr0ey6ACz+Ndxfu0xph6Jzm+3h/LgQecR70/lhMnz6XeI8uP06/J4nXP/D3SWltlfgBfYBPQCggAVgAdj7Pev4G/H2d5O6Bt8e+NgVSgVvHtKcBVxb9PBMYdZ/s6wObif2sX/167tNvrxzPOY/F9g4ELga+PWf4ecIXTz1FV+HH6PBYfM7D491BgK9C4LP8P9OP8eSyxn1eAj4HXSyzT69EzzmNXILL4NVbvBMfX+6MXnMfi9fT+6AXnEr1HesV5LLGfM36PrGotfT2BjdbazdbafOBT4OKSKxhjDDAK+OTYja216621G4p/3wnsAiKKtxkETCte9X3gkuMcfxjwvbV2r7V2H/A9MLwM24ub0+cRa+2PwIFyeTTVl6Pn0Vqbb63NK74ZSHHPBb0ey8zx16MxpjvQAJhTHg+omqqQ81h8+3dr7dZTHF/vj+XD6fOo98fy4+i51HtkuXH8NVle75FVrehrAiSXuJ1SvKykfkD64Sf4RIwxPXFX7JuAukCmtbbw2P0aY+KMMW+f4vgn3F6Oy+nzeCpPFzfBv2SMCSzlNtWR4+fRGNPMGLOyOMdzxX9Q9XosG0fPozHGB/c3pH89wW71eiydijqPJ1tP74/lz+nzeCp6PZae4+dS75HlwtHzWJ7vkVWt6DPHWXbs8KNXc5xK+6idGNMImAzcYK11nWy/1tp4a+3Npzh+aXLJH5w+jyfzN6AD0AN3N6WHS7FNdeX4ebTWJltrY4A2wHXGmAalzCV/cPo83gHMstYmH2d9vR5Lr6LO4wnp/bFCOH0eT0avx7Jx/FzqPbJcOH0ey+090u9kd3qgFKBZidtNgZ2Hbxhj/IDLgO4n2oExJhz4BnjcWvtb8eLdQC1jjF/xNx9H7feY4w845vjzy7C9uDl9Hk/IWpta/GueMeZd4MGybF/NeMx5tNbuNMYk4v627fOybl/NOX0eewH9jDF34L7uJMAYc9Ba+4hej2VSUeexLMcfcMzx56P3x7Jy+jyekF6PZeYx51LvkWfE6fNYbu+RVa2lbynQ1rhHHQoArgK+LHH/EGCttTbleBsXbzMD+MBaO/XwcmutBeYBVxQvug6YeZxdzAaGGmNqG2NqA0OB2WXYXtycPo8nVPxNzOH+2ZcAq8uyfTXj6Hk0xjQ1xtQo/r020AdYp9djmTl6Hq21o621za21kbjfsD6w1j5SvG+9HkuvQs5jGej9sXw4fR5PSK/HMnP0XOo9stw4eh7L9T3SesDIOGX5Ac4H1uPuD/vYMfe9B9x+km2vBQqAhBI/scX3tQKWABuBqfwx4lEc8HaJfdxYvM5G3E20nGx7/XjsefwZyAAO4f4WZ1jx8rnAquIXzodAqNPPlSf/OHkegXOBlbhH0loJ3Fpi33o9VpHzeMy+rufokcn0evSM8/iX4r+Thbi/4T78GtT7o3eeR70/esG5RO+RXnEej9nX9ZzBe6Qp3khERERERES8UFXr3ikiIiIiIiJloKJPRERERETEi6noExERERER8WIq+kRERERERLyYij4REREREREvpqJPRERERETEi6noExERERER8WIq+kRERERERLzY/wOd9TWVCn2XlQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABqpUlEQVR4nO3dd1xUV/rH8c+hSxELoCJ2sGHBGktMLIkaNdEkmrKpm977ppueTdts8kt2Ezc9u+mJLT2maBJ7xd6wU0RABRSpc35/DBo0IKDAHeD7fr3mJXPn3nOf4TrMPHPOeY6x1iIiIiIiIiLO8nI6ABEREREREVFyJiIiIiIi4hGUnImIiIiIiHgAJWciIiIiIiIeQMmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHgAJWciInWEMeZAiZvLGHOoxP1LnI7vRBhjthtjznA6juMxxswxxlxTje1bY8zBEtfyrRKPdTPG/GCMSTfG/GnhUmNME2PM9OLjdxhj/nLM4yOMMRuMMTnGmNnGmDbV9TxERKR8Ss5EROoIa23w4RuwEzi7xLYPnY7vWMYYn7pwjhrSs8S1LJkIFgCfAVeXcdy/gXygGXAJ8LoxJhbAGBMGTAMmA02ApcCn1RS/iIhUgJIzEZE6zhjjZYy53xizxRiTYYz5zBjTpPixtsU9M381xuwyxuwzxtxgjOlnjFlljNlvjPlXibauNMbMM8a8aozJLO51GVHi8VBjzNvGmBRjTJIx5iljjPcxx75kjNkLPGaM6WCM+aU4rnRjzIfGmEbF+/8PaA18VdxjdK8xZqgxJvGY53ekd80Y85gx5gtjzAfGmCzgynJiijbG/Fr8XNKNMaUmJ8aYgOI2M4p/J0uMMc2MMU8DQ4B/Fcf4r+L9OxtjfjTG7DXGbDTGXFCirfeMMVOKH88uPv8J9VhZazdaa98G1pYScxBwPjDZWnvAWjsX+BK4rHiX84C11trPrbW5wGNAT2NM5xOJRURETp6SMxGRuu82YAJwOhAJ7MPdo1LSKUAMcCHwMvAQcAYQC1xgjDn9mH23AmHAo8C0w8ke8D5QCEQDvYCRwDWlHBsBPA0Y4JniuLoArXAnCVhrL+PoHsDnK/h8xwNfAI2AD8uJ6UlgFtAYiAJeLaPNK4DQ4viaAjcAh6y1DwG/A7cUx3hLcVL0I/BR8fO8GHjtcI9VsUuKzx0GxBfHeTy/GWN2G2OmGWPalv8rAKAjUGSt3VRi20rc15Tif1cefsBaexDYUuJxERGpYUrORETqvuuBh6y1idbaPNzJz8Rjhvw9aa3NtdbOAg4CH1tr91hrk3AnH71K7LsHeNlaW2Ct/RTYCIw1xjQDzgLusNYetNbuAV4CLipxbLK19lVrbaG19pC1NsFa+6O1Ns9amwb8E3cSeTIWWGtnWGtdQMNyYioA2gCRxc9/bhltFuBOyqKttUXW2mXW2qwy9h0HbLfWvlv8PJcDU4GJJfb5xlr7W/H1eAgYaIxpVUZ7pwNtgc5AMvB1BYdrBgOZx2zLBEIq+LiIiNSwujIWX0REytYGmG6McZXYVoR7HtJhqSV+PlTK/eAS95OstSWLT+zA3fPVBvAFUowxhx/zAnaV2LfkzxhjIoBXcA8NDCnef1+FnlXZSp6jvJjuxd2DtdgYsw940Vr7Tilt/g93r9knxcMuP8Cd8BaUsm8b4BRjzP4S23yK2/hTjNbaA8XDPCOPif3w478V/5hvjLkdyMLdy7i6lHOXdAB3clpSQyC7go+LiEgNU8+ZiEjdtws4y1rbqMQtoLhX7ES0NCUyHdzzwpKLz5MHhJU4T0NrbclhcsdWFHymeFsPa21D4FLcQx3L2v8gEHj4TvHcsfBj9il5zHFjstbuttZea62NxN3D+JoxJvrYJ1zcS/i4tbYrMAh379jlZcS4C/j1mN93sLX2xhL7HOklM8YE4y7IkXzsectgOfp3VJZNgI8xJqbEtp78MT9tbfH9w3EEAR0oZf6aiIjUDCVnIiJ13xTg6cNFJ4wx4caY8SfRXgRwmzHG1xgzCXcvzrfW2hTc87deNMY0LC5E0uGY+WrHCsHdg7PfGNMS+Nsxj6cC7Uvc3wQEGGPGGmN8gYcB/7IaLy8mY8wkY0xU8e77cCc+Rce2Y4wZZozpXpwMZuEe5nh4v2Nj/BroaIy5rPh35FtcYKVLiX3GGGNONcb44e65W2St/VOvmTEm1hgTZ4zxLk7iXgSSgPXFjxtjTADgV3w/wBjjX/zcD+KuxviEMSbIGDMY93y8wz1404Fuxpjzi9t4BFhlrd1Q1u9TRESql5IzEZG67/9wV+mbZYzJBhbiLsxxohbhLh6Sjruox0RrbUbxY5fjThTW4U52vgBaHKetx4HeuOc6fYM7mSjpGeDh4gqJ91hrM4GbgLdwJykHgUSO73gx9QMWGWMO4P4d3W6t3VZKG82Lj8vCnRj9intoI7h/vxONu9LlK9babNxFRy7C3Ru2G3iOo5PIj3AXU9kL9MFdIKQ0zXCXt8/CXUilLTCuxHDKNriHnR7u7TqEew7gYTcBDXDPE/wYuNFauxageI7f+biv4T7c/ydKzg8UEZEaZo6eNiAiIlI2Y8yVwDXW2lOdjqW2Msa8ByRaax92OhYREfEs6jkTERERERHxAErOREREREREPICGNYqIiIiIiHgA9ZyJiIiIiIh4ACVnIiIiIiIiHsCnJk8WFhZm27ZtW5OnFBERERER8RjLli1Lt9aGl/ZYjSZnbdu2ZenSpTV5ShEREREREY9hjNlR1mMa1igiIiIiIuIBlJyJiIiIiIh4ACVnIiIiIiIiHqBG55yVpqCggMTERHJzc50OReqYgIAAoqKi8PX1dToUEREREZFyOZ6cJSYmEhISQtu2bTHGOB2O1BHWWjIyMkhMTKRdu3ZOhyMiIiIiUi7HhzXm5ubStGlTJWZSpYwxNG3aVD2yIiIiIlJrOJ6cAUrMpFro/5WIiIiI1CYekZw57emnnyY2NpYePXoQFxfHokWLALjmmmtYt25dlZyjbdu2pKenH3efv//975Vu97333uOWW245atu7775LXFwccXFx+Pn50b17d+Li4rj//vsr3X5NePnll8nJyXE6DBERERGp7Z5/HmbPPnrb7Nnu7bVAvU/OFixYwNdff83y5ctZtWoVP/30E61atQLgrbfeomvXrjUWy4kkZ6X561//Snx8PPHx8URGRjJ79mzi4+N59tlnq6T9yrLW4nK5ynz8RJKzwsLCkw1LREREROqafv3gggv+SNBmz3bf79fP2bgqqNzkzBjTyhgz2xiz3hiz1hhze/H2T40x8cW37caY+GqPthqkpKQQFhaGv78/AGFhYURGRgIwdOhQli5dCkBwcDD33Xcfffr04YwzzmDx4sUMHTqU9u3b8+WXXwJ/7sUaN24cc+bM+dM5J0yYQJ8+fYiNjeWNN94A4P777+fQoUPExcVxySWXAPDBBx/Qv39/4uLiuP766ykqKgLcPWMdO3bk9NNPZ968eRV+ri+88AL9+vWjR48ePProowBs376dzp07c80119CtWzcuueQSfvrpJwYPHkxMTAyLFy8G4LHHHuOyyy5j+PDhxMTE8Oabb5bbbpcuXbjpppvo3bs3u3bt4sYbb6Rv377ExsYe2e+VV14hOTmZYcOGMWzYsCO/68O++OILrrzySgCuvPJK7rrrLoYNG8Z9993Hli1bGD16NH369GHIkCFs2LChwr8LEREREamDhg2DDz+ECRPgssvcidlnn7m31wbW2uPegBZA7+KfQ4BNQNdj9nkReKS8tvr06WOPtW7duj9tq0nZ2dm2Z8+eNiYmxt544412zpw5Rx47/fTT7ZIlS6y11gL222+/tdZaO2HCBHvmmWfa/Px8Gx8fb3v27Gmttfbdd9+1N99885Hjx44da2fPnm2ttbZNmzY2LS3NWmttRkaGtdbanJwcGxsba9PT06211gYFBR05dt26dXbcuHE2Pz/fWmvtjTfeaN9//32bnJxsW7VqZffs2WPz8vLsoEGDjjrnsQ6f94cffrDXXnutdblctqioyI4dO9b++uuvdtu2bdbb29uuWrXKFhUV2d69e9u//vWv1uVy2RkzZtjx48dba6199NFHbY8ePWxOTo5NS0uzUVFRNikp6bjtGmPsggULjsRy+HkXFhba008/3a5cufJPv5tjfw+ff/65veKKK6y11l5xxRV27NixtrCw0Fpr7fDhw+2mTZustdYuXLjQDhs27E/P3+n/XyIiIiJSA1wuaxcssPbmm61t2tRacN8mT3Y6sj8Bltoy8qVyS+lba1OAlOKfs40x64GWwDoA4666cAEw/GQTxce/Wsu65KyTbeYoXSMb8ujZsWU+HhwczLJly/j999+ZPXs2F154Ic8+++yR3prD/Pz8GD16NADdu3fH398fX19funfvzvbt2ysV0yuvvML06dMB2LVrF5s3b6Zp06ZH7fPzzz+zbNky+hV3wR46dIiIiAgWLVrE0KFDCQ8PB+DCCy9k06ZN5Z5z1qxZzJo1i169egFw4MABNm/eTOvWrWnXrh3du3cHIDY2lhEjRmCM+dNzGz9+PA0aNKBBgwYMGzaMxYsXM3fu3DLbbdOmDQMGDDhy/GeffcYbb7xBYWEhKSkprFu3jh49elTqdzdp0iS8vb05cOAA8+fPZ9KkSUcey8vLq1RbIiIiIlLLJSTABx+4b1u2QEAADBwIy5bBLbfA66+7e81qSc9ZpdY5M8a0BXoBi0psHgKkWms3V2FcNcrb25uhQ4cydOhQunfvzvvvv/+n5MzX1/dI9T8vL68jwyC9vLyOzH/y8fE5am5VaWXc58yZw08//cSCBQsIDAxk6NChpe5nreWKK67gmWeeOWr7jBkzTqgKobWWBx54gOuvv/6o7du3bz/yXI733ODP1Q+NMcdtNygo6Mj9bdu28Y9//IMlS5bQuHFjrrzyyjLL3Jc8z7H7HG7T5XLRqFEj4uPjy3vqIiIiIlKXpKfDp5+6E7KFC8EYGD4cHn4YwsLgr3+FGTPcCdkZZ9SqoY0VTs6MMcHAVOAOa23J7q2LgY+Pc9x1wHUArVu3Pu45jtfDVV02btyIl5cXMTExAMTHx9OmTZsTaqtt27a89tpruFwukpKSjszXKikzM5PGjRsTGBjIhg0bWLhw4ZHHfH19KSgowNfXlxEjRjB+/HjuvPNOIiIi2Lt3L9nZ2ZxyyincfvvtZGRk0LBhQz7//HN69uxZbmyjRo1i8uTJXHLJJQQHB5OUlISvr2+lnt/MmTN54IEHOHjwIHPmzOHZZ5+lQYMGFWo3KyuLoKAgQkNDSU1N5bvvvmPo0KEAhISEkJ2dTVhYGADNmjVj/fr1dOrUienTpxMSEvKn9ho2bEi7du34/PPPmTRpEtZaVq1aVaHfhYiIiIjUMocOwVdfuROy776DwkLo0cNdhfHiiyEqyr3f888fnYgNG+a+v2RJ3UnOjDG+uBOzD62100ps9wHOA/qUday19g3gDYC+ffvak4q2Ghw4cIBbb72V/fv34+PjQ3R09JEiHZU1ePDgI0MEu3XrRu/evf+0z+jRo5kyZQo9evSgU6dORw37u+666+jRowe9e/fmww8/5KmnnmLkyJG4XC58fX3597//zYABA3jssccYOHAgLVq0oHfv3kcKhRzPyJEjWb9+PQMHDgTcwzk/+OADvL29K/z8+vfvz9ixY9m5cyeTJ08mMjKSyMjICrXbs2dPevXqRWxsLO3bt2fw4MFHPe+zzjqLFi1aMHv2bJ599lnGjRtHq1at6NatGwcOHCg1ng8//JAbb7yRp556ioKCAi666CIlZyIiIiJ1hcsFv/7qTsi++AKysiAyEu68Ey691J2cHevee/+8rRYNazTuOWnH2cE9xux9YK+19o5jHhsNPGCtPb0iJ+vbt689XP3wsPXr19OlS5fKxCwOeOyxxwgODuaee+5xOpRK0f8vERERkVpm9Wp3QvbRR5CYCCEhMHGiOyE7/XSoROeCJzLGLLPW9i3tsYr0nA0GLgNWlyiX/6C19lvgIo4zpFFERERERKRcSUnw8cfupGzlSvDxgdGj4R//gLPPhsBApyOsERWp1jgXKLUChbX2yqoOSDzTY4895nQIIiIiIlKXZGfDtGnuhOznn93F7085BV59FS68EIqrk9cn5S5CLSIiIiJSLz3/PMyeffS22bPd2xXPiSkogG++cRfxaNYMrrwStm2DRx6BTZvc1RdvuaVeJmZQyVL6IiIiIiL1Rr9+f5RhHzAA5syByy+H//4XcnJOrM1y6j0cV7duMGmS+/zDhsGCBe4eps8+O/E2a4K17mqJH3wAn3wCaWnQpIm75P2ll7p/tyewVFRdpORMRERERKQ0w4bB++/DWWdBXt4f28eMcS4mgLFj//i5aVO4/Xb3v4dvYWFH3y95a9wYvKpw8Nzzz7uT2JLVEGfPdidjEyfChx+6k7JNm8DfH845x52QjR4Nfn5VF0cdoeRMRERERKQ0iYkwefIfidmIETBy5Mm3e7K9RD/84J6jNXAgdOkCGRnu27p1f/xc1lJLxrgTtOMlcKUlef7+pbdXsndx2DD34s+XXQZt2sB997n3GTrUXeJ+4kQIDT25517HKTkDvL296d69O4WFhXTp0oX333+fwBOsCHPllVcybtw4Jk6cyDXXXMNdd91F165dS913zpw5+Pn5MWjQIACmTJlCYGAgl19++Qk/F4Dt27czbtw41qxZc2TbiZTCr6p4RERERGqdxYthwgTYvx8aNnT3Tr3+Ojz0kLNrZh2eYzZ5sjuep5/+czzWQmbmH4laabf0dPe/iYnu6ogZGccfqhkUVHYCd9FF7h6xyEh3D9lhzz7rnlvWunX1/C7qICVnQIMGDYiPjwfgkksuYcqUKdx1111HHi8qKqrUYs2HvfXWW8d9fM6cOQQHBx9Jzm644YZKn6O6FBYWelQ8IiIiIjXm00/dhSpCQyEgAKZO/WMh45K9RDVt9uyjz19WPMZAo0buW4cOFW8/N7f0BK60244d7n/37ftjHt2mTe75Y6+/Dj17ah7ZCahdydnxxrSWthr4CRgyZAirVq1izpw5PP7447Ro0YL4+HhWr17N/fffz5w5c8jLy+Pmm2/m+uuvx1rLrbfeyi+//EK7du0ouaj30KFD+cc//kHfvn35/vvvefDBBykqKiIsLIy3336bKVOm4O3tzQcffMCrr77Kzz//fKR3Kz4+nhtuuIGcnBw6dOjAO++8Q+PGjRk6dCinnHIKs2fPZv/+/bz99tsMGTKkUs/xeG0PGjSIefPmcc4555CdnU1wcDB/+ctfGFNibPXq1avZunUrAFdddRVpaWmEh4fz7rvv0rp1a6688koaNmzI0qVL2b17N88//zwTJ06skusjIiIiUm1cLnjiCXj8cTj11D8SoMOfPYcNcydCS5Y4k5wtWXJ0IlbV8QQEQMuW7ltFFRXBV1/BVVfBTTfBf/7jTtiUmJ2Q2lVK//CY1sMlRA9/e9CvX5U0X1hYyHfffUf37t0BWLx4MU8//TTr1q3j7bffJjQ0lCVLlrBkyRLefPNNtm3bxvTp09m4cSOrV6/mzTffZP78+X9qNy0tjWuvvZapU6eycuVKPv/8c9q2bcsNN9zAnXfeSXx8/J8SrMsvv5znnnuOVatW0b17dx5//PGj4ly8eDEvv/zyUdtL2rJlC3FxcUduU6ZMqVDb+/fv59dff+Xuu+8+si0yMpL4+Hji4+O59tprOf/882nTpg233HILl19+OatWreKSSy7htttuO3JMSkoKc+fO5euvv+b++++v5JUQERERqWE5Oe4heI8/7u41++knd6J2bNIzbFiVdQpU2r33elY8AL/9Btde6+5dfOopd7JY8vO6VIpn9ZzdcQcUDy8sU2QkjBoFLVpASop7EuTjj7tvpYmLg5dfPm6Thw4dIi4uDnD3nF199dXMnz+f/v37065dOwBmzZrFqlWr+OKLLwDIzMxk8+bN/Pbbb1x88cV4e3sTGRnJ8OHD/9T+woULOe2004601aRJk+PGk5mZyf79+zn99NMBuOKKK5g0adKRx8877zwA+vTpw/bt20tto0OHDkeGasIfi0iX1/aFF15YZlzz5s3jrbfe4vfffwdgwYIFTJs2DYDLLruMe0v8YZgwYQJeXl507dqV1NTU4z5fEREREUclJbnnly1b5h6pdc896vmpqOruzatnPCs5q4jGjd2J2c6d7smFjRufdJMl55yVFBQUdORnay2vvvoqo0aNOmqfb7/9FlPOi9daW+4+leFfXC3H29ubwsLCKmsXjn7OJaWkpHD11Vfz5ZdfEhwcXOo+JZ+jf4mKPvZk1vMQERERqU7LlrmLWWRlwcyZcPbZTkdUu5TWa1dyKKhUimcNa3z5Zffifse7Pfqou9t58mT3v48+evz9y+k1q6hRo0bx+uuvU1BQAMCmTZs4ePAgp512Gp988glFRUWkpKQwu5Qu3IEDB/Lrr7+ybds2APbu3QtASEgI2dnZf9o/NDSUxo0bH+mh+t///nekp+tknUjbBQUFXHDBBTz33HN07NjxyPZBgwbxySefAPDhhx9y6qmnVkmMIiIiIjXi889hyBDw8YF585SYieNqV89ZRSvUVINrrrmG7du307t3b6y1hIeHM2PGDM4991x++eUXunfvTseOHUtNdMLDw3njjTc477zzcLlcRERE8OOPP3L22WczceJEZs6cyauvvnrUMe+///6Roh3t27fn3XffrbLnUtm258+fz5IlS3j00Ud59NFHAXeP4SuvvMJVV13FCy+8cKQgiIiIiIjHs9Y9P+qRR2DQIJg+HSIinI5KBFOTQ8769u1rly5detS29evX06VLl4o1UAPVGqVuqdT/LxEREan7Dh1yVxb85BP3YslvvOGuUihSQ4wxy6y1fUt7rHb1nGlMq4iIiIicqJQUGD8eli51L5B8770q/CEepXYlZyIiIiIiJ2LFCnfhj337YNo0d3VGEQ/jWQVBRERERESq2rRp7kWljYG5c5WYicfyiORMpdalOuj/lYiISD1nLTz9NJx/PnTvDosXu9fAFfFQjidnAQEBZGRk6IO0VClrLRkZGQRogq+IiEj9lJvrLvjx8MNwySXuJZaaN3c6KpHjcnzOWVRUFImJiaSlpTkditQxAQEBREVFOR2GiIiI1LTdu+Hcc2HhQnfP2QMPqPCH1AqOJ2e+vr60a9fO6TBEREREpC5YudK9mHRGBkydCued53REIhXm+LBGEREREZEqMXMmDB4MLhf8/rsSM6l1lJyJiIiISO1mLTz3nHsoY9eusGQJ9O7tdFQileb4sEYRERERkROWlwfXXQf//S9ceCG8+y40aOB0VCInRD1nIiIiIlI77dkDI0a4E7PHH4ePP1ZiJrWaes5EREREpPZZvdpd+GPPHvjsM5g0yemIRE6aes5EREREpHb56isYNAgKCuC335SYSZ2h5ExEREREagdr4R//gPHjoVMnWLwY+vZ1OiqRKqPkTEREREQ8X14eXH01/O1vMHGiu8esZUunoxKpUkrORERERMSzpaXBmWe6KzE++ih88gkEBjodlUiVU0EQEREREfFca9a4C3/s3u2uxnjRRU5HJFJt1HMmIiIiIp7h+edh9uw/7n/7LfTvD+np8OuvSsykzlPPmYiIiIh4hn794IIL4NNPYeVKuPtu8PaG995zJ2kidZySMxERERHxDMOGueeTjR0Lubng5wfTp8OYMU5HJlIjNKxRRERERDzHiBHQvbv753vvVWIm9YqSMxERERHxHLNnw7ZtMHkyTJly9Bw0kTqu3OTMGNPKGDPbGLPeGLPWGHN7icduNcZsLN7+fPWGKiJSt+TkFzJjRRLX/Xcp05YnOh2OiIjzZs92zzn77DN44gn3vxdcoARN6o2KzDkrBO621i43xoQAy4wxPwLNgPFAD2ttnjEmojoDFRGpCwqLXMxNSGfGiiRmrUslJ78IHy/D4u17ObNrM0ICfJ0OUUTEOUuWuBOyYcPc94cNc99fsuSPbSJ1WLnJmbU2BUgp/jnbGLMeaAlcCzxrrc0rfmxPdQYqIlJbWWtZmZjJjBVJfL0qmfQD+TQM8GF8XEvO7dUSPx8vJvx7Hv9dsIObh0U7Ha6IiHPuvffP24YNU2Im9UalqjUaY9oCvYBFwAvAEGPM00AucI+1dkmVRygiUkvtyDjIjBXJzIhPYlv6Qfx8vBjROYIJvVoytFM4/j7eR/Yd3jmCN3/fyuUD26j3TEREpJ6qcHJmjAkGpgJ3WGuzjDE+QGNgANAP+MwY095aa4857jrgOoDWrVtXWeAiIp4o40AeX69KYUZ8Eit27scYOKVdE244vT2ju7UgtEHpidcdZ8Rwzr/m8f787dwyPKaGoxYRERFPUKHkzBjjizsx+9BaO614cyIwrTgZW2yMcQFhQFrJY621bwBvAPTt2/eoxE1EpC44lF/ErHW7mbEiid82p1PksnRuHsL9Z3XmnJ6RRDZqUG4bPaIaMaJzBG/+vo0rBrVV75mIiEg9VG5yZowxwNvAemvtP0s8NAMYDswxxnQE/ID06ghSRMTTFBa5mL8lgxkrkvhh7W4O5hfRIjSAa4e0Z0KvSDo3b1jpNu84oyNn/2su783bzq0j1HsmIiJS31Sk52wwcBmw2hgTX7ztQeAd4B1jzBogH7ji2CGNIiJ1ibWW1UmZzFiRzJcrk0k/kEdIgA9n94xkQq+W9G/bBC8vc8Ltd48K5YwuEbw1dxtXDG5LQ/WeiYiI1CsVqdY4Fyjr08alVRuOiIjn2ZmRw8z4JKbHJ7E17SB+3l4M6xzOub1aMrRTBAG+3uU3UkF3nNGRca+6e89uU++ZiIhIvVKpao0iIvXF3oP5fLMqmRnxySzbsQ9wF/a4dkh7xnRrQWhg9fRqdWsZyhldmvHW71u5Ur1nIiIi9YqSMxGRYofyi/hpfSoz45OYszGNQpelY7Ng7h3difFxLWlZgcIeVeGOM2IY92oq787dzu1nqPdMRESkvlByJiL1WpHLsmBLBtOLC3scyCukecMArj61HePjWtKlRQjuukg1p1vLUM7s2oy357p7z8oqvy8iIiJ1i5IzEal3rLWsTc5ixookvlyZzJ7sPEL8fRjTvTkT4lpySvumeJ9EYY+qcPuIGMatS+W9eeo9ExERqS+UnIlIvZKWnceV7y5mbXIWvt6GoZ0iOLdXS4Z3rtrCHierW8tQRnZtxlvqPRMREak3lJyJSL3hclnu/nwlCXsO8OSEbpzdowWNAv2cDqtMt58Rw6xXUnl33jbuOKOj0+GIiIhINfNyOgARkZry9txt/LYpjcnjunLZgDYenZgBxEaGMiq2GW/P3UbmoQKnwxEREZFqpuRMROqFVYn7ef6HDYyObc4lp7R2OpwKu31ER7JzC3ln7janQxEREZFqpuRMROq8A3mF3PrxCsKD/Xn2/O41Xn3xZHSNbMjo2Oa8M3cbmTnqPRMREanLlJyJSJ03ecYadu3N4f8u7uXxQxlLc9uIGLLzCnl7nnrPRERE6jIlZyJSp01dlsj0FUncPqIj/do2cTqcE3K49+xd9Z6JiIjUaUrORKTO2pp2gMkz19C/XRNuGR7tdDgn5fYzinvP5m51OhQRERGpJkrORKROyiss4rZPVuDn48X/XRTn+KLSJ6tLi4ac1a05787bzv6cfKfDERERkWqg5ExE6qQXvt/ImqQsnj+/By1CGzgdTpX4o/dMc89ERETqIiVnIlLnzN64h7fmbuPygW0YGdvc6XCqTOfmDRnTXb1nIiIidZWSMxGpU/Zk5XLPZyvp3DyEB8d0cTqcKnf7iI4cyCvkrd/VeyYiIlLXKDkTkTrD5bLc9dlKDuYX8q+/9CLA19vpkKpcp+YhjO3egvfmb2ffQfWeiYiI1CVKzkSkzpjy2xbmJqTz2NmxREeEOB1OtbltRAwH8wt5S5UbRURE6hQlZyJSJyzfuY8XZ21ibI8WXNivldPhVKtOzUMY070F781T75mIiEhdouRMRGq9rNwCbvt4Bc0bBvD3c7tjTO0um18Rt4+IIaegiDd/V++ZiIhIXaHkTERqNWstD05bTUpmLq9c3IvQBr5Oh1QjOjZzzz17f/529qr3TEREpE5QciYitdrnSxP5elUKd53ZkT5tGjsdTo063Hv2lnrPapTLZZmxIomc/EKnQxERkTpGyZmI1FoJew7w6JdrGdShKTec3sHpcGpcTLMQxvWIVO9ZDft5wx7u+DSeR2eudToUERGpY5SciUitlFtQxK0fr6CBnzcvXRiHt1fdn2dWmtuGR2vuWQ2bsSIJgM+XJfLTulSHoxERkbpEyZmI1ErPfreB9SlZ/GNSD5o1DHA6HMeU7D3LOJDndDh1XlZuAT+tT+Xi/q3p3DyE+6etVq+liIhUGSVnIlLr/LQulffmb+eqwe0Y3rmZ0+E47vYR0RwqKOLN37c5HUqd9/2a3eQVupjUN4qXLowj81A+k2eswVrrdGgiIlIHKDkTkVpld2Yuf/tiJbGRDbnvrE5Oh+MRoiNCOLtHJP9doN6z6jYzPok2TQPp1aoRXVo05I4zOvLN6hS+XJnsdGgiIlIHKDkTkVqjyGW549MV5BW6ePXiXvj7eDsdkse4bUQMhwqKeENzz6rN7sxc5m/JYHxcyyNr6V1/Wnt6tW7EIzPXkpqV63CEIiJS2yk5E5Fa47XZCSzcupfHz4mlfXiw0+F4lOiIYM7pGcl/5+8gXb1n1eKrlclYCxPiIo9s8/H24sVJPckrLOK+qas0vFFERE6KkjMRqRWWbt/Lyz9vZnxcJBP7RDkdjke6dXgMeYVFvPmbes+qw4z4JHpGhf7pi4H24cHcP7ozczam8cmSXQ5FJyIidYGSMxHxeJk5Bdz+STwtGzXgqQndjgwpk6Md6T1boN6zqrY5NZu1yVmMj2tZ6uOXD2zLoA5Neerrdezam1PD0YmISF2h5ExEPJq1lvunrSI1K5dXLu5FSICv0yF5tFtHuHvP3lDvWZWaEZ+Et5fh7J6RpT7u5WV4fmIPjDHc/flKXC4NbxQRkcpTciYiHu3jxbv4bs1u/jaqE3GtGjkdjsfrEB7M+LiW/HfBdvWeVRGXyzJjRTKDo8MID/Evc7+oxoE8cnZXFm/byzvztKyBiIhUnpIzEfFYm1KzefyrtQyJCePaIe2dDqfWuHV4NPmFLv7z6xanQ6kTlu3cR9L+Q5zbq/Res5Im9YnijC4RPP/DRhL2ZNdAdCIiUpcoORMRj5RbUMStH60gJMCHFy/oiZeX5plVVPvwYCbEteR/C3eQlq3es5M1Y0USDXy9Gdm1ebn7GmP4+3ndCfLz5q7PVlJQ5KqBCEVEpK5QciYiHumpb9axMTWbFy+IIyIkwOlwap1b1HtWJfILXXyzOoWRsc0I8vep0DERIQE8NaE7qxIzeW22fv8iIlJx5SZnxphWxpjZxpj1xpi1xpjbi7c/ZoxJMsbEF9/GVH+4IlIffL9mNx8s3Ml1p7Xn9I7hTodTK7UPD2ZCr5Z8sGgHe7K1OPKJ+nVTGvtzCphQRpXGsozt0YJzekby6i+bWZOUWU3RiYhIXVORnrNC4G5rbRdgAHCzMaZr8WMvWWvjim/fVluUIlJvJO0/xH1TV9EjKpR7RnZyOpxa7dbhMRQUWf7zqyo3nqgZK5JoEuTHqTFhlT72ifGxNAny467P4sktKKqG6EREpK4pNzmz1qZYa5cX/5wNrAcq9xWiiEgFFBa5uOOTFRQWuXjlol74+Wjk9cloFxbEhLiWfLBQvWcnIju3gJ/Wp3J2jxb4elf+/2KjQD+em9iDTakHeOnHTdUQoYiI1DWVercxxrQFegGLijfdYoxZZYx5xxjTuKqDE5H65dVfEliyfR9PnduNtmFBTodTJ9w6PJpCl3rPTsT3a3aTV+hifK8T/z5yWKcILu7fijd+38rS7XurMDoREamLKpycGWOCganAHdbaLOB1oAMQB6QAL5Zx3HXGmKXGmKVpaWknH7GI1EkLt2bw6i+bOa93S87tFeV0OHVG25K9Z1nqPauMGfFJtGkaSK+TXF/vobFdiWrcgLs/X8nBvMKqCU5EROqkCiVnxhhf3InZh9baaQDW2lRrbZG11gW8CfQv7Vhr7RvW2r7W2r7h4ZrYLyJ/tu9gPnd+Gk+bpkE8Mb6b0+HUOYd7z6ao96zCUrNymb8lg/FxLTHm5JZxCPb34YWJPdm5N4dnvltfRRFKZSzetpd7v9DSBiLi+SpSrdEAbwPrrbX/LLG9RYndzgXWVH14IlLXWWu5d+oq0g/k8cpFvQiuYLlyqbi2YUGc26slHy5S71lFfRmfjLUwIa78hacrYkD7plw1uB0fLNzJb5s0iqSmvfrLZj5bmsjHi3c6HYqIyHFVpOdsMHAZMPyYsvnPG2NWG2NWAcOAO6szUBGpmz5YuIMf16Vy3+jOdI8KdTqcOutw79nrWvesQmbEJ9EzKpT24cFV1ubfRnUiOiKYe79YReahgiprV45vd2Yu8xLS8fU2vPTjJjJz9LsXEc9VkWqNc621xlrbo2TZfGvtZdba7sXbz7HWptREwCJSd6xPyeLJb9YztFM4Vw1u53Q4dVqbpkGc16slHy7aSap6z45rc2o2a5OzGF/Jtc3KE+DrzT8v6EnagTwe/3JtlbYtZZsZn4TLwssX9mL/oQJe/WWz0yGJiJRJdapFxBE5+YXc+vEKQhv48o9JPfHyOrl5PVK+W4fHUOSyvD5HvWfHMyM+CW8vw9k9q2ZIY0k9ohpx87Bopq1I4vs1u6u8fTmatZZpy5Po1boRY3u0YFKfKN5fsJ3t6QedDs3jrNi5j117c5wOQ6TeU3ImIo548ut1bEk7wEsXxBEW7O90OPVC66aBnN+7JR8t3snuTPWelcblssyMT2ZwdBjhIdXz//KWYdHERjbkoemrST+QVy3nELd1KVlsTM3mvN7uCrD3jOyEr7eXCrMcY8XOfZz3+nyGPD+bia/P538Ld7DvYL7TYYnUS0rORKTGfbMqhY8X7+KG0ztwakyY0+HUK7cMi8HlskzR3LNSLdu5j8R9h6qsEEhp/Hy8+OcFcWTnFvLgtNVYa6vtXPXdtOVJ+Hobzu7hrmEW0TCAm4Z24Ie1qSzYkuFwdJ6hyGWZPHMNESH+/G1UJzIPFTB5xhr6//0nrnl/KV+vSia3oMjpMEXqDSVnIlKjdu3N4f5pq4hr1Yi7zuzodDj1jrv3LEq9Z2WYsSKJBr7ejIptXq3n6dQ8hLtHdmTWulSmr0iq1nPVV4VFLmbGJzG8cwSNAv2ObL9mSHsiQwN46pt1uFxKjD9ctIM1SVlMHteVm4dFM+vO0/jmtlP56+B2rE7azy0fraDvUz9xz+crmZeQTpF+ZyLVSsmZiNSYgiIXt3+yAiy8enEvfL31J8gJtwyPxuWyvD4nwelQPEp+oYtvVqdwZtdmBNXAkg7XDGlP3zaNefTLtSTvP1Tt56tvft+cTvqB/CNDGg8L8PXmvrM6szY5i6nLEx2KzjOkZefxwg8bOTU6jLHd3b2LxhhiI0N5cEwX5t8/go+uOYWzujXnhzW7ueStRQx69mee/mYda5Mz1esrUg30yUhEasz//bSZ5Tv38/fzutOqSaDT4dRbrZoEMrFPFB8v3qXesxJ+3ZTG/pwCzu1VtVUay+LtZfjHpJ4UFlnum7pKH3Sr2NTliTQK9GVYp4g/PXZ2j0h6tmrECz9sJCe/0IHoPMMz364nt6CIx8fHlrrYureXYVB0GC9M6smSh8/g33/pTfeWjXhv/nbGvjKXkS/9xr9nJ5C4T4VERKqKkjMRqRHzE9L595wELugbVS1V8KRybh4WjctaXlPv2REz4pNoEuRXo/Mg24YF8eDYLvy+OZ0PFmmB5KqSlVvAj+tSOadnJH4+f/6o4+VleGRcF/Zk5zHl160OROi8hVszmLYiietOa0+HCqznF+DrzdgeLXjrir4sfvAMnprQjUaBvu6et+dmc8GUBXy0aCf7c1RIRORkKDkTkWq392A+d3waT7uwIB47J9bpcAR379mkvlF8sngXKZkaUpedW8BP61I5u0eLGh9ue+kprRkSE8bfv1mvEu9V5LvVKeQVuv40pLGkPm2aMK5HC974bUu9ew0UFLl4ZOYaWjZqwC3DYip9fOMgPy4d0IbPbxjE7/cO42+jOpFxMI8Hp6+m39M/cd1/l/Lt6hQVEhE5AUrORKRaWWv52+cr2Z9TwKsX9yLQr/rn8kjF3DS0uPdstio3fr9mN3mFLsbX0JDGkowxPD+xBz7ehns+X6mCC1Vg6vIk2ocH0TMq9Lj73Te6My4LL3y/sYYi8wzvztvGptQDPHZOLA38vE+qrVZNArl5WDQ/3XU6X996KlcMbMuKXfu56cPl9Hv6J+77YhXzt6Sr+IpIBSk5E5Fq9cPa3fy8YQ8PjOlMbOTxPyhJzTrce/bpkl31viDFjPgk2jQNpFerRo6cv0VoAx4/J5alO/bx5u/1c5hdVdm1N4fF2/Zyfu+oUudRldSqSSBXn9qOaSuSWLlrf80E6LCUzEO8/NNmRnSO4MyuzaqsXWMM3VqG8vC4rix8YAQfXH0KI7s25+tVyfzlzUUMfu4Xnvl2PetTsqrsnCJ1kZIzEalWszek0TDAh8sHtnU6FCmF5p5BalYu87dkMD6uZbkf5qvTub1aMiq2Gf+ctYmNu7Mdi6O2O7w0wfgKrlV309AOhAX78dQ36+pFUZYnv15HkctW6xBzby/DqTFhvHhBT5Y+fCavXtyLri0a8vbcbZz1f78z6qXfeH3Olnr/pZBIaZSciUi1sdYyNyGdQR3C8PZy7kOvlC2qcSCT+raq171nX61MxlqqdeHpijDG8PdzuxMS4MNdn8WTX+hyNJ7ayFrLtOWJDGjfhKjGFasIGxLgy11ndmLJ9n18t2Z3NUforN82pfHt6t3cMiy6xirmNvDz5uyekbx9ZT8WP3QGT46PJTjAh+e+38CgZ3/hwv8s4JPFO8k8VFAj8Yh4OiVnIlJtdmTkkLT/EIOjmzodihzHzcM6ANTb3rPpK5LoGRVK+wpUrKtuTYP9+ft53VmbnMW/ftnsdDi1zvKd+9mekXPcQiClubBfKzo3D+GZ79bX2SIWeYVFPPrlWtqFBXHd6e0diaFJkB+XDWzL1BsH8evfhnLXmR1Jy87j/mmr6ffUT9zwv2V8vyaFvMK6eQ1EKkLJmYhUm7kJ6QAMjq650uRSeSV7z5LqWe/Z5tRs1iZnMT6u5guBlGVUbHPO69WSf8/ZUm/mQVWV6SsSCfD14qxuzSt1nLeX4aGxXdi19xDvz99ePcE57I1ft7It/SCPnxOLv8/JFQGpCm2aBnHbiBh+vvt0vrxlMJcOaMPSHfu44YPl9HvqJ+6fuopZa3ezMyNHxUSkXlHZNBGpNvMS0okMDaBdWJDToUg5bh4WzedLd/Ha7ASePre70+HUmBnxSXgZGNezhdOhHOXRc2JZsDWDuz6L55vbhhDg6/yHaU+XV1jEVytTGBXbnJAA30ofPyQmnOGdI/jXLwmc3yeKsGD/aojSGbv25vCv2QmM7d6C0zqGOx3OUYwx9IhqRI+oRjw4pjPztmQwc0USX65M5pMluwAI8vOmY/MQOjcPoVOzEDo1b0jn5iE0DvJzOHqRqqfkTESqRZHLMn9LBiO7NnO0yIJUTMtGDbigbys+W7qLG4d2qPB8ndrMWsvM+GROjQknIiTA6XCOEtrAl+cn9uCytxfzwg8bmTyuq9MhebzZG/aQeaig0kMaS3pwTBdGvfwbL/24qU59SfHYl2vx9jI8PK6L06Ecl4+3F6d3DOf0juE8nV/E+t1ZbNydzcbd2WzYncX3a3bz8eJdR/aPCPGn0+GkrThhi44I1pcZUqspORORarE2OZPMQwWcGqMhjbXFTcOi+WzpLl6bs4W/16EPpmVZtmMfifsOcdeZHZ0OpVRDYsK5bEAb3pm3jTO7NmNAe83dPJ6py5OICPFncIcT/z1FRwRz6Smt+d/CHVwxqC0dm4VUYYTO+HFdKj9v2MODYzrTIrSB0+FUWAM/b3q3bkzv1o2PbLPWkpadx4biZG1DceL2/oIdRwroeHsZ2jYNpHPzhnRqHnIkeWvVOBAvFaaSWkDJmYhUi8PzzQZ1UHJWW7Rs1IAL+7nnnt1UD3rPpq9IooGvN6NiKzc/qSY9MKYzv21O457PV/L9HacR7K+37dLsPZjP7A17+Ovgtvh4n9x0+jvO6Mj0FUk89c16/ntV/yqK0BmH8ot47Mu1dGwWzF8Ht3M6nJNmjCGiYQARDQOOGp5ZWORie0ZOcS+bO2lbnZTJN6tTjuwT6OdNx2aHe9kOJ20NaaKhkeJh9FdeRKrFvIR0OjcPITyk7szbqA9uGhrNZ0sS+ffsBJ45r4fT4VSb/EIX36xO4cyuzQjy4IQn0M+HFyf1ZNJ/FvD0N+vq9DU5GV+tTKbQZU9qSONhjYP8uG1EDE99s545G/cwtFNEFUTojH/N3kzS/kN8et0AfE8yafVkPt5eREcEEx0RzNgef8wfPZhXyKbUw8Mi3f/OWpd6ZC4bQHiIf4m5bCF0adFQQyPFUZ77jiQitVZuQRFLtu/jsgFtnA5FKimyUQP+ckpr/rtgO5cOaENsZKjTIVWLXzelsT+ngAm9nF3brCL6tm3Cdae15z+/bmVk1+YM61x7k4XqMm15Il1aNKRLi4ZV0t7lA9vywcIdPP3Nek6NDjvp3jgnbEk7wBu/beW8Xi05pZ4OiQ3y96FX68b0OnZo5IE8d8KWUpy0pWbxv4U7yCseGulloG1YUHHS1vDI0MjWTTQ0UqqfkjMRqXJLt+8jv9DFqSqhXyvdeUZHvlqZzMMz1jD1hkF18sPIjPgkmgT5MSTGsyrXleWuMzsye8Me7pu6ill3nkajQA3FOixhzwFWJmby8NiqK3bh5+PFA2O6cP3/lvHx4p1cNrBtlbVdE6y1PDJzDQG+3jwwxrOLgNQ0YwwRIQFEhAQc9fovclm2Zxws0cuWxbrkLL5bsxtbXMk/JMCHFZPPrJXJutQeSs5EpMrNTUjHx8vQv10Tp0ORExAa6MsDY7pwz+cr+XzZLi7s19rpkKpUdm4BP61L5cJ+rWrNUC9/H2/+eUEcE/49j8kz1/Lqxb2cDsljTF+RiJeBc+Kqthd0ZNdmnNKuCS/9tJlz4loS2qDy5fmd8vWqFOYlZPDE+FgNLa8gby9Dh/BgOoQHM6b7H0Mjc/IL2ZR6gI27s0g/kK/ETKqd/oeJSJWbvyWd3q0be/RcHjm+83u3pH/bJjzz3Qb2Hsx3Opwq9f2a3eQVupjQy3MWnq6Ibi1DuW1EDF+tTObrVclOh+MRXC7L9OVJnNax6pdDMMYweVxX9uXk8+/ZCVXadnXKzi3gya/X0a1lQy45RUPLT1agnw9xrRpxYb/W3Dws2ulwpB5QciYiVWp/Tj6rkzIZrCGNtZoxhicmxJKdW8jz329wOpwqNTM+mTZNA+nVqpHToVTaTUM70DMqlMkz1rAnO9fpcBy3cFsGyZm5VVIIpDTdWoYysXcU783bzo6Mg9Vyjqr28k+bSTuQx5Pju+FdB4cki9R1Ss5EpEot2JKBtXBqTP2cgF6XdG7ekKsGt+WTJbtYvnOf0+FUidSsXOZtSWd8z8hauTi6j7cXL14QR05+EQ9MXY09PBmmnpq2PIlgfx9Gdm1Wbee4Z1QnfLwNz37n+V9SbNidxXvzt3NRv9ZHFcEQkdpDyZmIVKm5CekE+/vQI6qR06FIFbj9jI40bxjAw9PXUFjkcjqck/bVymSshfG1bEhjSdERwfxtVCd+3rCHz5cmOh2OY3LyC/ludQpjujev1rLnzRoGcMPpHfhuzW4Wbc2otvOcLJfL8vD0NTQM8OHeUZ2cDkdETpCSMxGpUvMS0hnQvkmtKbQgxxfs78PkcV1Zl+IuNV3bTV+RRI+oUDqEBzsdykm5anA7TmnXhCe+Xkfivhynw3HErLWpHMwvqrYhjSVdO6Q9LUIDeOqb9bhcntlbOXV5Ikt37OP+szrTWAsri9Ra+vQkIlVm194ctmfkaL5ZHTOme3OGxITxz1mb2JNVe+c5JezJZm1yFhPiam+v2WFeXoZ/TOqJtZa/fb7KYxOG6jRtRRItGzWgf9vqrwrbwM+be0d3YnVSJtNXJFX7+SorM6eAZ7/bQO/WjZjUp5XT4YjISVByJiJVZv6WdACtb1bHGGN4Ynw38gpdPP3teqfDOWEzViTjZWBczxbl71wLtGoSyORxXVmwNYP3F2x3OpwalZqVy9zNaZzXu2WNrcM3vmdLekaF8sIPG8nJL6yRc1bUC7M2sC8nnycndKuT6xKK1CdKzkSkysxNyCAixJ/oiNo9ZEz+rF1YEDec3p6Z8cnMT0h3OpxKs9YyIz6JU2OqvuS6ky7s14qhncJ59rsNbEk74HQ4NWZmfBIuC+fW4NxBLy/Dw+O6sjsrlzd+21pj5y3Pyl37+XDRTi4f2JbYyFCnwxGRk6TkTESqhMtlmZ+QzuDosFpZBU/Kd9OwaFo1acDkmWvIL6xdxUGW7dhH4r5DTKjihYqdZozhufN74O/jxaMz19aL6o3WWqYuS6JX60a0r+G5g/3aNmFs9xb859et7M50fohvkcsyeeYawoL9uWtkR6fDEZEqoORMRKrEht3ZZBzM13yzOizA15snzunGlrSDvDXXc3oOKmL6iiQCfL0YGdvc6VCqXLOGAdx+RkfmJqTz66Y0p8OpdutSstiYms15DlXcvG90Z4pclhd+2OjI+Uv6ePFOViVm8vDYLjQM8HU6HBGpAkrORKRKzCse6jY4Wuub1WXDOkcwsmszXvl5c62pEphf6OKb1SmM7NqcYH8fp8OpFpcNaEObpoE88+0Giup4cZBpy5Pw9TaM6+FML2jrpoH89dS2TF2eyOrETEdiAEg/kMcLP2xkYPumnNOzbvUIi9RnSs5EpErMTUinQ3gQLUIbOB2KVLNHzu6KwfDEV+ucDqVCftuUxv6cAib0qrsfYP18vLh3VGc2pmbzxbJdTodTbQqLXMyMT2Z45whHy8XfPCyapkF+PPn1OseGkj773QYO5hXyxPhYDSUXqUOUnInIScsrLGLxtr2q0lhPRDUO5LYRMcxal8rP61OdDqdc0+OTaBLkx5CYcKdDqVZjujenV+tGvDhrEwfzPKuaYFX5PSGd9AN5NbK22fE0DPDlzjM7snj7Xn5Yu7vGz790+16+WJbINUPaE9MspMbPLyLVp9zkzBjTyhgz2xiz3hiz1hhz+zGP32OMscYYfSoTqadW7NzPoYIizTerR64+tR3REcE89tVacguKnA6nTNm5Bfy0LpVxPVrU+YXRjTE8PLYLe7LzePP32jUnsKKmLU+iUaAvwzpFOB0KF/VrRcdmwfz92w3kFdbca6CwyMXDM9YQGRrAbSOia+y8IlIzKvJOVQjcba3tAgwAbjbGdAV34gacCeysvhBFxNPNS0jHy8CADppvVl/4+XjxxPhYdu09xGuzE5wOp0zfr9lNXqGL8XVg4emK6NOmCWO6N+eN37bW6gXDS5OVW8Cstbs5p2ckfj7OJ9o+3l48NLYrO/fm8N/5O2rsvO/N386G3dk8cnZXAv3q5hxKkfqs3L9u1toUa+3y4p+zgfXA4Xe5l4B7gbo9+1hEjmtuQjo9WzVStbB6ZlCHMCbERTLl161s9dA1tmbGJ9O6SSC9WzdyOpQac++ozhQUuXjpp01Oh1KlvludQl6hy/EhjSWd3jGcoZ3CeeWXzWQcyKv286Vm5fLyT5sZ2imcUXWw8qiIVHLOmTGmLdALWGSMOQdIstaurI7ARKR2yMotYOWu/ZpvVk89OLaLe42tLz1vja3UrFzmb0lnQlxkvSqY0DYsiEsHtOHTJbvYlJrtdDhVZuryJNqHBdEzyrMWWn5oTBdy8ot4+afN1X6up75ZT36Ri8fPUREQkbqqwsmZMSYYmArcgXuo40PAIxU47jpjzFJjzNK0tLq//opIfbNwSwYui+ab1VMRIQHcPbIjv29O59vVNV8Y4Xi+WpmMy8J4h9bDctJtw2MI8vfhmW/XOx1Kldi1N4fF2/ZyXu+WHpeUxDQL4S/9W/PR4p1srsZkeF5COl+tTObG0zvQpmlQtZ1HRJxVoeTMGOOLOzH70Fo7DegAtANWGmO2A1HAcmPMn/rYrbVvWGv7Wmv7hofX7UpZIvXR/C0ZNPD1plc9GjYmR7t0QBu6tmjIE1+v5YAHVQmcEZ9Ej6hQOoQHOx1KjWsc5Metw6OZvTGNuZvTnQ7npE1fkQTABA9NtO88syOBft48XU3JcF5hEZNnrqFN00BuHNqhWs4hIp6hItUaDfA2sN5a+08Aa+1qa22EtbattbYtkAj0ttZ61temIlLt5iak079dE/x9vJ0ORRzi4+3FU+d2IzUrj//zkHlOCXuyWZOUVW8KgZTm8oFtadmoAU9/u75WL0xtrWX6iiQGtG9CVONAp8MpVZMgP24bHsOcjWn8uqnqRwm99fs2tqYd5LFzYgnw1d9akbqsIj1ng4HLgOHGmPji25hqjktEaoHdmbkk7Dmg+WZC79aNubh/K96Zt50Nu7OcDocZK5LxMnB2zxZOh+KYAF9v7h3difUpWUd6nmqjFbv2sy39oEcVAinN5YPa0KZpIE9/s47CIleVtbtrbw6v/rKZUbHNPGIJARGpXhWp1jjXWmustT2stXHFt2+P2aettbb2j5sQkUqZl+B+2Wu+mYC7SmDDAB8mz1jjaHEQay0z4pMYHB1GREiAY3F4grN7RNIzKpQXZ23kUL7nrkd3PNOWJxLg68VZ3Ty7OqG/jzcPnNWZTakH+GTJripr94mv12EwPHJ2bJW1KSKey/mFQkSk1pqXkE7TID86Nw9xOhTxAI2D/Lj/rM4s2b6Pqcud66lZtmMfifsOca6Hzk+qSV5ehgfHdCElM5d35m1zOpxKyyss4quVKYyKbU5ILViqY1Rsc/q3a8JLP24iK7fgpNv7eX0qP65L5bYRMbRs1KAKIhQRT6fkTEROiLWWuQnpDIoOw8vLs6qniXMm9WlF79aNeObb9ezPyXckhhnxSQT4ejFS60ABcEr7ppzZtRmvzU4gLbv61+KqSrM37CHzUEGtSbSNMUwe25W9Ofn8+yQXZ88tKOKxr9YSHRHM1ae2q6IIRcTTKTkTkROSsOcAe7LzODW6qdOhiAfx8jI8OaEb+3LyeeGHjTV+/vxCF1+vSmFk1+YE+/vU+Pk91f1ndSa30MX//ewZBVsqauryJMJD/GvVvNbuUaGc1yuKd+duZ2dGzgm389rsBHbtPcQT42Px89HHNZH6Qq92ETkhczXfTMoQGxnKFYPa8tHinazctb9Gz/3bpjT25xQwoVdkjZ7X03UID+aSU1rz8eJdJOw54HQ4FbL3YD6zN+xhQlwkPt616+PK30Z1wtvL8Nz3G07o+G3pB5ny61bGx0UyqIP+xorUJ7Xrr52IeIx5Cem0aRrosaWtxVl3ndmR8GB/Hp6xpkbLuM+IT6JJkB9DYrSu5rFuHxFDA19vnv3uxBKGmvb1qmQKXdbjqzSWpnloANef3p5vVqewZPveSh1rreWRmWvw9/HioTFdqilCEfFUSs5EpNIKilws3LpXvWZSppAAXx4a24XVSZl8tGhHjZwzO7eAH9elMq5HC3xrWU9LTWga7M+NQzvw0/pUFm7NcDqcck1dnkSXFg3p0qKh06GckOtOa0+zhv489fU6XJX4guK7Nbv5fXM6d57ZkYiG9bvaqEh9pHcvEam0VYn7OZBXWKvmgUjNO6dnJIM6NOX5HzbWSCGKH9amklfoqtcLT5fn6lPb0SI0gL9/u75SCUNNS9hzgJW79nN+79p7LQP9fLh3VGdWJmYyc2XFqpcezCvkia/W0aVFQy4f2KaaIxQRT6TkTEQqbe7mDIyBge1VDETKZozhifHdyC0o4pnv1lf7+WasSKJ1k0B6t25U7eeqrQJ8vfnbqE6sSszkq1XJTodTpukrEvEycE5c7Z47eG6vlnRvGcrz31dsnblXft7M7qxcnpoQW+vm2YlI1dArX0QqbV5COt0iQ2kc5Od0KOLhoiOCuXZIe6YtT2JRNQ6lS83KZf6WdCbERWKMlnY4nglxLYmNbMjz328kt8DzFqZ2uSzTlycxJCa81i8i7uVlmDyuKymZubz5+9bj7rspNZu3527jgr5R9GnTpIYiFBFPo+RMRCrlYF4hy3fu03wzqbBbh7sX0J08cw0FRa5qOcdXK5NxWRhfS9bDcpKXl+GhMV1I2n+I9+ZvdzqcP1m4LYPkzFzOq8VDGkvq364JZ3VrzutztpCalVvqPtZaHp6xhiB/H+4b3bmGIxQRT6LkTEQqZfG2vRS6rOabSYU18PPmsXNi2ZR6gHfnbauWc8yIT6JHVCgdwoOrpf26ZlB0GMM7R/Dv2QnsPejMYuFlmb48iWB/H0Z2rTuLiN9/VmeKXJZ/lLH234z4JBZv28t9ozvTNNi/hqMTEU+i5ExEKmVuQjp+Pl70bdvY6VCkFjmzazNGdI7g5Z82k5J5qErbTtiTzZqkLBUCqaQHzurMwbxCXvl5s9OhHHEov4hvV6cwpntzGvh5Ox1OlWnTNIgrB7fli+WJrEnKPOqxzEMFPP3Nenq2asRF/Vo5FKGIeAolZyJSKfMS0unXtjEBvnXng5PUjMfOiaXIZXny63VV2u6MFcl4GTi7Z4sqbbeui2kWwoX9WvPBwh1sSz/odDgAzFq3m4P5RbVybbPy3DwsmsaBfjz59Tqs/aNS5j9nbSTjYD5Pje+Gl5fmS4rUd0rORKTC0rLz2LA7W/PN5IS0ahLIrcOj+Xb1buZs3FMlbVprmRGfxODosFpfPMIJd54Zg5+PF895yMLUU5cn0bJRA/q3rXsFMUIb+HLnGTEs2raXWetSAViTlMn/Fu7gsgFt6B4V6nCEIuIJlJyJSIXN35IOoPlmcsKuPa097cOCePTLtVVSKXDZjn0k7jvEBA1pPCERIQHccHoHvl+7m6Xb9zoaS2pWLnM3p3Fur5Z1tgfp4v6tiYkI5plv15NbUMTDM9bQJMiPu0d2cjo0EfEQSs5EpMLmJaQT2sCX2Eh9wysnxt/Hm8fHx7IjI4f//Hr80uIVMSM+iQBfL0Z1qzvFI2raNUPa0ayhP099s/6o4XY1bWZ8Ei4L59aRKo2l8fH24qGxXdiekcNlby8iftd+HjirC6ENfJ0OTUQ8hJIzEakQay1zN6czqENTvOvot9pSM4bEhDOuRwv+PSeBHRknPtcpv9DFN6tSOLNrc4L9faowwvol0M+Hu8/sRPyu/XyzOsWxOKYtTyKuVaM6X3FzaKcITusYzpLt++jftkmdWTJARKqGkjMRqZDtGTkkZ+ZqvplUiYfHdsXXy/Dol2tPuLfmt01p7Msp4NxekVUcXf1zfp8oOjcP4bnvN5BXWPMLU69LzmLD7mzOryeJyqNnd2VwdFOePrebFk0XkaMoORORCpmboPlmUnWahwZw55kdmbMxjR/Wpp5QGzPik2gS5MeQmPAqjq7+8fYyPDimC7v2HuJ/C3bU+PmnLU/E19swrkf9SLQ7hAfz4TUDiGkW4nQoIuJhlJyJSIXM25xOy0YNaNM00OlQpI64clBbOjcP4Ymv1nIwr7BSx2bnFvDjulTG9WiBr7feyqrCaR3DOa1jOK/+ksD+nJpbmLqwyMWM+GSGd46gcZBfjZ1XRMQT6R1NRMpV5LLM35LOqdFhGoIjVcbH24unJnQjOTOXV36p3ELIP6xNJa/QpYWnq9gDZ3UmK7eAf/2SUGPn/D0hnfQDeXVybTMRkcpSciYi5VqTlElWbiGDYzSkUapW37ZNmNQnird/38bm1OwKHzczPonWTQLp3bpR9QVXD3Vp0ZBJfaL474Id7MzIqZFzTlueRKNAX4Z1iqiR84mIeDIlZyJSrsPzzQZ1aOpwJFIX3X9WZ4L8fXh4xpoKFQfZk5XLvIR0JsRFqie3Gtx1Zie8vQzP/1D9C1Nn5RYwa+1uzu4RiZ+PPpKIiOgvoYiUa15COp2bhxAW7O90KFIHNQ32597RnVi0bS8z45PL3f/Llcm4LIzvpSGN1aF5aADXntaer1elsHznvmo913erU8grdKmcvIhIMSVnInJch/KLWLp9n6o0SrW6qF9rerZqxFPfrCfzUMFx950Rn0SPqNA6vx6Wk64/rT1hwf78vZoXpp62PIn2YUHEtWpUbecQEalNlJyJyHEt3bGX/CKX5ptJtfL2Mjw1vht7D+bxz1kby9wvYc8B1iRlqRBINQvy9+GuMzuydMe+E17qoDy79uawaNtezuvdUsNTRUSKKTkTkeOam5COr7ehf9smTocidVz3qFAuHdCG/y3cwZqkzFL3mRmfhJeBs3u2qOHo6p8L+kYRExHMs9+tJ7/QVeXtz1iRBMAEDU8VETlCyZmIHNe8hHR6tW5MkL+P06FIPXD3yE40CfLjoRlrcLmOHk5nrWVGfBKDo8OICAlwKML6w8fbiwfHdGF7Rg4fLarahamttUxbkcSA9k2Iaqy1E0VEDlNyJiJl2nswn7XJWZpvJjUmtIEvD43twspd+/lkya6jHlu+cx+79h5igoY01pihncIZ1KEp//fz5nLnAlbGil372ZZ+kPN6aW0zEZGSlJyJSJkWbMnAWhis5Exq0IS4lpzSrgnPfb+BjAN5R7ZPX5FEgK8Xo7o1dzC6+sUYw4NjurD/UAGvz9lSZe1OW56Iv48XZ3XXtRQRKUnJmYiUaW5COsH+PvSMCnU6FKlHjDE8OaEbB/MKee5791pbBUUuvlmVwpldmxOsIbY1qlvLUM7t1ZJ35m0jcd/JL0ydV1jEVytTGBXbnJAA3yqIUESk7lByJiJlmr8lnQHtm+LjrT8VUrM6Ngvh6iHt+GxpIku37+W3TWnsyylgQlyk06HVS/eM7IQB/vFD2ZU0K2r2hjQyDxVobTMRkVLoE5eIlGrX3hx2ZORwanRTp0OReuq24TG0CA3g4Rlr+GJZIo0DfTmtY7jTYdVLkY0acPWp7ZgRn8yqxP0n1da05YmEh/hrLquISCmUnIlIqeYlpANwqtY3E4cE+fvw6Nld2bA7m+/W7GZcj0h81YvrmBuHdqBpkB9///bEF6beezCf2Rv3MCEuUj3yIiKl0F9GESnV3IR0mjX0p0N4sNOhSD02KrY5Qzu5e8u0HpazQgJ8ueOMGBZu3cvP6/ecUBtfr0qmoMhyXm9VaRQRKY2SMxH5E5fLMn9LBoOjwzDGOB2O1GPGGJ6f2INnz+tO79aNnA6n3ruof2vahwfxzHfrKSyq/MLUU5cn0bl5CF1aNKyG6EREar9ykzNjTCtjzGxjzHpjzFpjzO3F2580xqwyxsQbY2YZYzRLW6SOWL87i70H8zUnRDxCREgAF/VvrS8KPICvtxf3j+7MlrSDf1qHrjwJew6wctd+zlevmYhImSrSc1YI3G2t7QIMAG42xnQFXrDW9rDWxgFfA49UX5giUpMOzzfT+mYicqwzuzajf7smvPzTJrJzK74w9fQViXgZGK+KmyIiZSo3ObPWplhrlxf/nA2sB1paa7NK7BYEnNjsYBHxOHMTMoiJCKZZwwCnQxERD2OM4aExXUg/kM9/ft1aoWNcLsuMFckMiQknQn9XRETKVKk5Z8aYtkAvYFHx/aeNMbuASyij58wYc50xZqkxZmlaWtpJhisi1S2vsIjF2zLUayYiZerZqhHj4yJ58/etpGQeKnf/Rdv2krT/kNY2ExEpR4WTM2NMMDAVuONwr5m19iFrbSvgQ+CW0o6z1r5hre1rre0bHq71aUQ83fId+8ktcCk5E5HjumdkJ6yFF2dtKnffacsTCfb3YWTX5jUQmYhI7VWh5MwY44s7MfvQWjutlF0+As6vysBExBnzEtLx9jKc0r6J06GIiAdr1SSQvw5uy9TliaxNzixzv0P5RXy7OoUx3ZvTwM+7BiMUEal9KlKt0QBvA+uttf8ssT2mxG7nABuqPjwRqWlzE9LpGRVKwwBfp0MREQ9307BoQhv4Hndh6lnrdnMwv4hze6lKo4hIeSrSczYYuAwYXlw2P94YMwZ41hizxhizChgJ3F6dgYpI9cs8VMCqxP0qoS8iFRLawJfbR8QwLyGDOZtKn1c+dXkSLRs14JR26o0XESmPT3k7WGvnAqUtLvNt1YcjIk5auDUDl1UJfRGpuEtOacP787fzzLfrGRIdho/3H9/77snKZe7mNG4aGo2Xl9apExEpT6WqNYpI3TYvIZ0Gvt70at3Y6VBEpJbw8/HivtGd2ZR6gC+WJR712Mz4ZFwWzlWVRhGRClFyJiJHzE1I55T2TfDz0Z8GEam40d2a06dNY178cRMH8wqPbJ+6PJG4Vo3oEB7sYHQiIrWHPoGJCAApmYfYmnZQ881EpNKMMTw0tgtp2Xm88Zt7Yep1yVls2J3N+eo1ExGpMCVnIgLAvIQMQPPNROTE9G7dmLHdW/DGb1vZk5XLtOWJ+HobxvWIdDo0EZFaQ8mZiADu+WZhwX50ahbidCgiUkvdO7oThS4Xz/+wkRnxyQzrFEHjID+nwxIRqTXKrdYoInWftZa5CekM6hCmimoicsLaNA3i8oFteXvuNgDO6621zUREKkM9ZyLC5j0HSMvO03wzETlptw6PpmGAD40CfRnWOdzpcEREahX1nIkIczenAzA4RsmZiJycRoF+vHZJH/KLivD38XY6HBGRWkXJmYgwLyGddmFBtGzUwOlQRKQOOFVf9IiInBANaxSp5wqKXCzcmsHg6KZOhyIiIiJSryk5E6nnVu7az8H8Is03ExEREXGYkjORem5uQjrGwMD2Ss5EREREnKTkTKSem5eQTo+WoYQG+jodioiIiEi9puRM5CRl5hRwKL/I6TBOyIG8Qlbs3M9gDWkUERERcZySM5ETlF/oYsqvWxj47M+c//p8DuYVOh1SpS3elkGhyyo5ExEREfEASs5ETsC8hHTO+r/fePa7DfSMasTG1Gxu+3gFRS7rdGiVMndzBv4+XvRp09jpUERERETqPSVnIpWwOzOXWz5aziVvLaKgyPL2FX35+LoBPHZOLD9v2MPT36x3OsRKmZeQTr+2TQjw1UKxIiIiIk7TItQiFZBf6OLdedv4v583U+Sy3HlGR64/vf2RpOayAW3YlnaQd+Zto11YIJcNbOtswBWwJzuXjanZTOjV0ulQRERERAQlZyLlmp+QziNfriVhzwHO6BLBI+Niad008E/7PTS2CzsyDvLYV+to1SSQoZ0iHIi24uYnZABofTMRERERD6FhjSJl2J2Zy60fr+Avby0ir7CIt6/oy1tX9Cs1MQPw9jK8cnEvOjUL4ZaPVrBxd3YNR1w5cxPSaRToS9fIhk6HIiIiIiIoORP5k4IiF2/+tpURL87hh7W7ueOMGH6883RGdGlW7rFB/j68fWVfAv28ueq9JaRl59VAxJVnrWV+QjqDOjTF28s4HY6IiIiIoORM5Cjzt6Qz5v9+5+lv1zOgfVN+uvN07jijY6UKZrQIbcDbV/Rj78F8rv3vUnILPG8NtG3pB0nOzFUJfREREREPouRMBEjNyuW2j1fwlzcXkVtYxFuX9+XtK8sewlie7lGhvHxRHCsT93P3ZytxeViJ/XkJ6YDmm4mIiIh4EhUEkXqtoMjF+/O389KPmyhwWW4fEcONQztUSWn5UbHNeeCszvz92w20CwvinlGdqiDiqjE3IZ2oxg1o3eTEkk8RERERqXpKzqTeWrAlg0e/XMOm1AMM6xTOY+fE0qZpUJWe49oh7dmWfpB/zU6gbVgQE/tEVWn7J6LIZZm/JYOx3VtgjOabiYiIiHgKJWdS76Rm5fL3b9czMz6ZqMYNePPyvpzRJaJaEhVjDE+M78bOvTk8MG0VUY0bMKB90yo/T2WsTsokO7dQ881EREREPEy9n3OWV1hEkYfNB5LqUVDk4q3ftzLixV/5bs1ubhsRw093nc6ZXZtVaw+Sr7cXr13Sh9ZNArnhg2VsSz9YbeeqiMPzzQZ1cDZJFBEREZGj1evkzOWy3PlpPLd+vNwjK+pJ1Vm4NYOxr/zOU9+sp1/bxvx452ncdWblqjCejNAGvrx7ZX+8jOGq95awPye/Rs5bmrmb0+naoiFNg/0di0FERERE/qxeJ2deXoberRvz7erdXPnuYrJyC5wOSarYnqxc7vhkBRe9sZCDeUW8eXlf3rmyX5XPLauI1k0DeeOyPiTtO8T1/1tGfqGrxmM4lF/Esh37ODVGQxpFREREPE29Ts4ArhnSnv+7KI5lO/ZxwZQFpGblOh2SVIHCIhdvz93G8Bd/5dvVu7lteHSNDGEsT9+2TXhhUg8WbdvLA9NWY23NDqldsn0v+UUuzTcTERER8UAqCAKMj2tJ0yB/rv/fUs57bT7vX9Wf6Ihgp8OSE7RoawaPzFzLxtRshnYK57GzY2kbVvM9ZWUZH9eSbekHefmnzbQPD+LmYdE1du55Cen4eXvRr23jGjuniIiIiFRMve85O+zUmDA+vX4geYUuJk6Zz7Id+5wOSSppT3Yud34az4VvLORAXiH/uawP717Zz6MSs8NuHxHD+LhIXvhhI9+sSqmx885NSKd3m0YE+ul7GRERERFPo+SshG4tQ5l24yAaNfDlkrcW8vP6VKdDkgooLHLxztxtjPjHr3yzKoVbi4cwjopt7rHreBljeO78HvRp05i7Posnftf+aj/n3oP5rE3OYnAHDWkUERER8URKzo7RumkgX9w4iE7NQrjuf8v4bMkup0OS41i8bS/jXp3LE1+vo1ebxvxw52ncPbITDfxqpgrjyQjw9eaNy/oQ0dCfa95fSuK+nGo93/wt7hL6g1UMRERERMQjKTkrRViwPx9dO4DB0WHcO3UVr/68ucYLN8jx7cnO5a5P47ngPwvIzi1kyqV9eP+v/WjngUMYj6dpsD/vXtmPvMIirn5vKdnVWDF0XkI6If4+9GgZWm3nEBEREZETV25yZoxpZYyZbYxZb4xZa4y5vXj7C8aYDcaYVcaY6caYRtUebQ0K8vfh7Sv6cl6vlrz44yYmz1yjxao9QJHL8t489xDGr1elcMsw9xDG0d08dwhjeaIjQphyaR+2pB3glo9WUFhUPSX25yakM6BDU3y89Z2MiIiIiCeqyKe0QuBua20XYABwszGmK/Aj0M1a2wPYBDxQfWE6w9fbixcv6MkNp3fgg4U7uflDLVbtpMR9OfzlzYU89tU64lo34vs7hnDPqNoxhLE8g6PDeHJCN37dlMbjX62r8p7anRk57Np7iFNVQl9ERETEY5Vbss1amwKkFP+cbYxZD7S01s4qsdtCYGL1hOgsYwz3n9WZiBB/nvxmHZe/vZg3r+hLaANfp0OrN6y1TF2exGNfrgXghYk9mNgnqtb2lJXl4v6t2ZZ+kDd+20r78CD+OrhdlbU9N6F4vpmSMxERERGPVal62saYtkAvYNExD10FfFpFMXmkq05tR3iIP3d9Fs8FUxbw3lX9aBHawOmw6ryMA3k8OH01P6xNpX+7Jrw4qSetmgQ6HVa1uW90Z7anH+TJr9fRpmkgwzs3q5J2521Jp3nDADqE1645eSIiIiL1SYUnnxhjgoGpwB3W2qwS2x/CPfTxwzKOu84Ys9QYszQtLe1k43XU2T0jef+v/Unaf4jzX5vP5tRsp0Oq035en8qol39n9oY0HhzTmY+vHVCnEzMAby/DyxfF0TWyIbd+tIJ1yVnlH1QOl8syPyGdwdFhda63UURERKQuqVByZozxxZ2YfWitnVZi+xXAOOASW8YkGWvtG9bavtbavuHh4VURs6MGRYfx6fUDKHBZJk5ZwNLte50Oqc45mFfIA9NWc/X7SwkL9mPmLYO57rQOeHvVj8Qi0M+Ht6/oR0iAL1e/v4Q9Wbkn1d66lCz25RRwakzTKopQRERERKpDRao1GuBtYL219p8lto8G7gPOsdZW7wJNHiY20r1YdZMgPy55axGz1u52OqQ6Y9mOvYx55Xc+WbKT609vz8xbBtOlRUOnw6pxzRoG8PaVfck8VMDV7y8lJ7/whNuad3i+mRafFhEREfFoFek5GwxcBgw3xsQX38YA/wJCgB+Lt02pzkA9TasmgXxxw0A6Nw/hhg+W8fHinU6HVKvlF7p44YcNTJqygCKX5dPrBvLAWV3w96n9lRhPVGxkKK9c1Is1yZnc9elKXCe4lMPchHQ6NgsmomFAFUcoIiIiIlWpItUa5wKljSf7turDqV2aBvvz8XUDuOnD5TwwbTV7svK4bUS05vVU0qbUbO78NJ61yVlc0DeKyeO6EhKgapgAZ3RtxsNju/Lk1+t4/oeN3H9W50odn1tQxJLte7m4f+tqilBEREREqkqlqjXKnwX6+fDm5X15YNpqXvppE6nZuTw5vlu9mR91MlwuyzvztvH8DxsJ8ffhjcv6MDK2udNheZyrBrdlW/oBpvy6hXZhgVzYr+KJ1vKd+8gtcGl9MxEREZFaQMlZFfD19uKFiT2ICPHntTlbSM/O45WLexHgW3+H5JUnaf8h7vlsJQu2ZnBGl2Y8e353woL9nQ7LIxljeOzsWHZk5PDQ9DW0ahzIoAomW/MS0vH2MpzSXsVARERERDxdhUvpy/EZY7h3dGceO7srP65P5dK3FrE/J9/psDyOtZbpKxIZ/dJvrErcz3Pnd+fNy/soMSuHj7cX/76kN+3Dg7jhg2Uk7DlQoePmJmTQq1Ujgv31PYyIiIiIp1NyVsWuHNyOf13cm1WJmUyasoDk/YecDslj7DuYz80fLefOT1fSqXkI391+Ghf2a605ehXUMMCXt6/oh5+PF1e9t4S9B4+f/GfmFLA6cT+DNaRRREREpFZQclYNxvZowftX9Wd3Zi7nvTafTVqsmtkb9zDy5d/4cV0q947uxKfXD6R107q9oHR1aNUkkDcu78vurFyu/99S8gqLytx3wdYMXBZOjVFyJiIiIlIbKDmrJgM7NOXT6wfispaJr89n8bb6uVh1Tn4hD01fzV/fXUKTQD9m3DyYm4ZGq2DKSejdujEvTurJku37uH/qaspY/515CekE+XkT16pRzQYoIiIiIidEyVk16hrZkKk3DiIsxJ9L317E92vq12LVy3fuY+wrc/lo8U6uHdKOmbcMJjYy1Omw6oSze0Zyz8iOTF+RxKu/JJS6z7yEdPq3a4Kvt17mIiIiIrWBPrVVM/di1YPo2qIhN324jA8W7nA6pGpXUOTin7M2MvH1+eQXuvjomgE8NLarqldWsZuHRXNe75b888dNzIxPOuqxpP2H2Jp+UPPNRERERGoRlXCrAU2C/Pjo2lO45aMVPDxjDXuy87jzjJg6WQgjYU82d366ktVJmZzfO4pHz+lKQy0oXS2MMTxzXncS9x3ib1+sIqpxA/q0aQK4e81A881EREREahP1nNWQQD8f/nNZHyb1ieKVnzfzwLTVFBa5nA6ryrhclnfnbWPsK3NJ3JfDlEt78+IFPZWYVTN/H2/+c2kfIkMDuO6/y9iZkQO4k7OwYD86NQtxOEIRERERqSglZzXI19uL5yf24JZh0XyyZBc3fLCMQ/llV9urLVIyD3HZO4t4/Kt1DOrQlB/uPI3R3Vo4HVa90TjIj7ev7Eehy3LV+0vIPFTAvIQMBkeH1cneWREREZG6SslZDTPGcM+oTjw5PpafN+zhkrcWsq+c9ao82cz4JEa99Bsrdu7n7+d2550r+xEREuB0WPVOh/Bgplzah+3pB7nwPwtIP5Cn+WYiIiIitYySM4dcNrAtr/2lN2uSspg4ZT5JtWyx6v05+dzy0XJu/ySe6Ihgvr1tCH85RQtKO2lgh6b8/bzubNjtXldPyZmIiIhI7aKCIA46q3sLGgf5ce1/l3Lea/N4/6r+dG7e0OmwyvXrpjTu/WIlGQfy+duoTlx/Wnt8VK7dI1zQtxV7snJZnZRJy0YNnA5HRERERCrBlLWAbXXo27evXbp0aY2dr7bYsDuLK95ZTE5+EW9e3pcB7Zs6HVKpDuUX8cx36/nvgh3ERATz0oVxdGupdctERERERCrKGLPMWtu31MeUnHmGxH05XPHOYnbtPcTkcV1oFxaMn4+X++bt/tf/mPt+Pl74eJkaGUq4ctd+7vw0nq3pB7lqcDvuHd1J65aJiIiIiFTS8ZIzDWv0EFGN3YtVX/3+EibPXFvh44zh6OStROJ2dCLnjZ936QleeQng+pQspvy6lYgQfz685hTNZRIRERERqQZKzjxI4yA/Pr1+IOtTssgtcJFf6CK/qIj8Qhd5hYfvF/97zP284zyWX+gi81BB8c9Fpe5XUHT8HtRze7XksXNiCW2gdctERERERKqDkjMP4+vtRY+oRjV+XpfLupO2UhI3X28v2oUF1XhMIiIiIiL1iZIzAcDLyxDg5a15ZCIiIiIiDlH9cxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDGGttzZ3MmDRgR42dsOLCgHSng5BK0TWrXXS9ah9ds9pH16z20TWrXXS9ah9PvWZtrLXhpT1Qo8mZpzLGLLXW9nU6Dqk4XbPaRder9tE1q310zWofXbPaRder9qmN10zDGkVERERERDyAkjMREREREREPoOTM7Q2nA5BK0zWrXXS9ah9ds9pH16z20TWrXXS9ap9ad80050xERERERMQDqOdMRERERETEA9S65MwYM9oYs9EYk2CMub/E9k+NMfHFt+3GmPhSjo0zxiwwxqw1xqwyxlxY4rF2xphFxpjNxW35lXH+K4r32WyMuaKyx9c3HnC9vjfG7DfGfH3M9veMMdtKxBBXdc+6dnPymhlj2hhjlhWfY60x5obKHF9fOf06K963oTEmyRjzrxLb9DorRTVer1uK27TGmLDjnF/vY5XkAddM72WV5OQ103vZiXH6dVa8r/PvZdbaWnMDvIEtQHvAD1gJdC1lvxeBR0rZ3hGIKf45EkgBGhXf/wy4qPjnKcCNpRzfBNha/G/j4p8bV/T4+nZz+noVPzYCOBv4+pjt7wETnf4dedrN6WtWfE7/4p+Dge1AZGWueX27OX3NSrTzf8BHwL9KbNPrrGavVy+gbfHrJqyM8+t9rJZds+L99F5Wi64Zei+rddesRDuOv5fVtp6z/kCCtXartTYf+AQYX3IHY4wBLgA+PvZga+0ma+3m4p+TgT1AePExw4Evind9H5hQyvlHAT9aa/daa/cBPwKjK3F8feP09cJa+zOQXSXPpn5w9JpZa/OttXnFd/0p7t3Xa+y4HH+dGWP6AM2AWVXxhOq4arlexfdXWGu3l3N+vY9VntPXTO9llefoNdN72Qlx/HXmKe9ltS05awnsKnE/sXhbSUOA1MMXqCzGmP64M/MtQFNgv7W28Nh2jTF9jTFvlXP+Mo+v55y+XuV5urjr+yVjjH8Fj6nrHL9mxphWxphVxXE8V/xHVq+xsjl6zYwxXri/yfxbGc3qdXa06rpex9tP72Mnx+lrVh69xv7M8Wum97JKc/SaedJ7WW1Lzkwp244tN3kxpWTURzViTAvgf8BfrbWu47VrrV1qrb2mnPNXJK76yOnrdTwPAJ2BfriH99xXgWPqA8evmbV2l7W2BxANXGGMaVbBuOorp6/ZTcC31tpdpeyv19mfVdf1KpPex06a09fsePQaK53j10zvZZXm9DXzmPcyn+psvBokAq1K3I8Ckg/fMcb4AOcBfcpqwBjTEPgGeNhau7B4czrQyBjjU/xtxlHtHnP+ocecf04ljq9vnL5eZbLWphT/mGeMeRe4pzLH12Eec82stcnGmLW4vymbWtnj6xGnr9lAYIgx5ibccyv8jDEHrLX363VWquq6XpU5/9Bjzj8HvY8dj9PXrEx6jZXJY66Z3ssqzOlr5jHvZbWt52wJEGPclW78gIuAL0s8fgawwVqbWNrBxcdMB/5rrf388HZrrQVmAxOLN10BzCyliR+AkcaYxsaYxsBI4IdKHF/fOH29ylT8zcrh8csTgDWVOb4Oc/SaGWOijDENin9uDAwGNuo1dlyOXjNr7SXW2tbW2ra437D+a629v7htvc7+rFquVyXofazynL5mZdJrrEyOXjO9l50QR6+ZR72XWQ+o0FKZGzAG2IR7HOlDxzz2HnDDcY69FCgA4kvc4oofaw8sBhKAz/mjyk5f4K0SbVxVvE8C7i5Tjnd8fb95wPX6HUgDDuH+VmZU8fZfgNW4X2AfAMFO/6485ebkNQPOBFbhrtK0CriuRNt6jXngNTumrSs5usKVXmc1e71uK/47V4j7G+fDryu9j9X+a6b3slp0zdB7Wa27Zse0dSUOvpeZ4pOKiIiIiIiIg2rbsEYREREREZE6ScmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHgAJWciIiIiIiIeQMmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHiA/wcnGp/cELJdNQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABpzklEQVR4nO3dd1hUZ9rH8e9DrwIqNkAQe8feYospJqb3ZtRUs5tN9t1skm3ZZEv6ZtN2E1NNc5NNNz0mWUuMvYCJXRQFQcVCkV6e948ZDCoqKHCG4fe5rrlgzpxyDweYued5zn0bay0iIiIiIiLiLB+nAxARERERERElZyIiIiIiIh5ByZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIuIljDEHq90qjTFF1e5f63R8J8MYk2aMOcPpOI7HGDPPGHNTA+7fGmMKqp3Ll4+x3v/c6/pVW9bSGPORe/vtxphrjthmgjFmgzGm0Bgz1xgT31DPQ0RETkzJmYiIl7DWhlXdgB3A+dWWzXI6viNVTyKa8jEaSf9q5/KoRNCdfNf0XP8NlAJtgWuB540xvd3btAY+BO4DWgIrgP82UPwiIlILSs5ERLycMcbHGPM7Y0yqMWafMeZdY0xL92MJ7tGWacaYdGPMAWPMdGPMEGPMGmNMjjHmX9X2NdUY84Mx5lljTK571GVCtccjjDGvGGOyjDE7jTF/N8b4HrHtk8aY/cADxpjO7hGffcaYvcaYWcaYSPf6bwIdgU/dI0b3GGPGGWMyjnh+h0bXjDEPGGPeN8a8ZYzJA6aeIKYuxpj57uey1xhTY3JijAly73Of+2ey3BjT1hjzIDAa+Jc7xn+51+9hjPnGGLPfGLPRGHNFtX29ZoyZ4X483338kx6xMsZEAPcD9xyxPBS4FLjPWnvQWrsQ+ASY7F7lEmCttfY9a20x8ADQ3xjT42RjERGRU6PkTETE+90BXASMBToAB3CNqFQ3DOgKXAk8BfwROAPoDVxhjBl7xLpbgda4koIPq5I94HWgHOgCDADOAm6qYds2wIOAAR52x9UTiMOVJGCtnczhI4CP1fL5Xgi8D0QCs04Q09+AOUAUEAs8e4x9TgEi3PG1AqYDRdbaPwLfA7e7Y7zdnRR9A/zH/TyvBp6rGrFyu9Z97NZAsjvO41lgjNlljPnQGJNwxGMPAc8Du45Y3g2osNZuqrYsBdc5xf01peoBa20BkFrtcRERaWRKzkREvN+twB+ttRnW2hJcyc9lR0z5+5u1tthaOwcoAN621u6x1u7ElXwMqLbuHuApa22Ztfa/wEZgkjGmLXAO8GtrbYG1dg/wJHBVtW0zrbXPWmvLrbVF1tot1tpvrLUl1tps4J+4kshTsdha+7G1thJocYKYyoB4oIP7+S88xj7LcCVlXay1FdbaldbavGOsex6QZq2d6X6eq4APgMuqrfO5tXaB+3z8ERhhjIk7xv7GAglADyAT+Kzq3BljBgOjqDmpDANyj1iWC4TX8nEREWlk3jIXX0REji0e+MgYU1ltWQWu65Cq7K72fVEN98Oq3d9prbXV7m/HNfIVD/gDWcaYqsd8gPRq61b/HmNMG+AZXFMDw93rH6jVszq26sc4UUz34BrBWmaMOQA8Ya19tYZ9volr1Owd97TLt3AlvGU1rBsPDDPG5FRb5ufex1ExWmsPuqd5djgi9qrHF7i/LTXG3AnkAT2NMWuB54A7rbXl1Z5flYO4ktPqWgD5tXxcREQamZIzERHvlw7cYK394cgHapgiVxsxxhhTLUHriOtapnSgBGhtrS0/xrb2iPsPu5f1s9buM8ZcBPzrOOsXACHV4vcFoo9zjOPGZK3dBdzs3tdpwLfGmAXW2i1HrFcG/AX4i/tn9gWuEcNXaogxHZhvrT3zyONVc2iUzBgThqsgR+Zx1j8sHFzTQVsAg4H/uhMzX/fjGcaYy4FVgJ8xpqu1drP7sf7AWvf3a3FN16yKIxToXO1xERFpZJrWKCLi/WYAD1YVnTDGRBtjLjyF/bUB7jDG+LuTgJ7AF9baLFzXbz1hjGlhXIVIOh9xvdqRwnGN4OQYY2KAu494fDeQWO3+JiDIGDPJGOMP/AkIPNbOTxSTMeZyY0yse/UDuBKfiiP3Y4wZb4zp604G83BNc6xa78gYPwO6GWMmu39G/sZVYKVntXXONcacZowJwDVyt9Rae9SomTGmtzEmyRjj607ingB2AutxTUHsACS5b+e6Nxvk3l8BrmqMfzXGhBpjRuG6Hq9qBO8joI8x5lJjTBDwZ2CNtXbDsX6eIiLSsJSciYh4v6dxjWzNMcbkA0twFeY4WUtxFQ/Zi6uox2XW2n3ux64HAoB1uJKd94H2x9nXX4CBuBKNz3ElE9U9DPzJXSHxt9baXOAXwMu4kpQCIIPjO15MQ4ClxpiDuH5Gd1prt9Wwj3bu7fJwJUbzcU1tBNfP9zLjqnT5jLU2H1fRkatwjYbtAh7l8CTyP7iKqezHlUwdqw9dW1zl7fNwFVJJAM5zX+9nrbW7qm5Atnub3dbaUvf3vwCCcV0n+DZwm7V2LYD7Gr9LcZ3DA7h+J6pfHygiIo3MHH7ZgIiIyLEZY6YCN1lrT3M6lqbKGPMakGGt/ZPTsYiIiGfRyJmIiIiIiIgHUHImIiIiIiLiATStUURERERExANo5ExERERERMQDKDkTERERERHxAI3ahLp169Y2ISGhMQ8pIiIiIiLiMVauXLnXWhtd02ONmpwlJCSwYsWKxjykiIiIiIiIxzDGbD/WY5rWKCIiIiIi4gGUnImIiIiIiHgAJWciIiIiIiIeoFGvOatJWVkZGRkZFBcXOx2KeJmgoCBiY2Px9/d3OhQRERERkRNyPDnLyMggPDychIQEjDFOhyNewlrLvn37yMjIoFOnTk6HIyIiIiJyQo5PaywuLqZVq1ZKzKReGWNo1aqVRmRFREREpMlwPDkDlJhJg9DvlYiIiIg0JR6RnDntwQcfpHfv3vTr14+kpCSWLl0KwE033cS6devq5RgJCQns3bv3uOs89NBDdd7va6+9xu23337YspkzZ5KUlERSUhIBAQH07duXpKQkfve739V5/43hqaeeorCw0OkwREREREQc5fg1Z05bvHgxn332GatWrSIwMJC9e/dSWloKwMsvv9yosTz00EP84Q9/OOX9TJs2jWnTpgGupHDu3Lm0bt36lPd7sqy1WGvx8an5s4CnnnqK6667jpCQkFrvs7y8HD+/Zv/rKyIiIiJepNmPnGVlZdG6dWsCAwMBaN26NR06dABg3LhxrFixAoCwsDDuvfdeBg0axBlnnMGyZcsYN24ciYmJfPLJJ8DRo1jnnXce8+bNO+qYF110EYMGDaJ37968+OKLAPzud7+jqKiIpKQkrr32WgDeeusthg4dSlJSErfeeisVFRWAa2SsW7dujB07lh9++KHWz/Xxxx9nyJAh9OvXj/vvvx+AtLQ0evTowU033USfPn249tpr+fbbbxk1ahRdu3Zl2bJlADzwwANMnjyZ008/na5du/LSSy+dcL89e/bkF7/4BQMHDiQ9PZ3bbruNwYMH07t370PrPfPMM2RmZjJ+/HjGjx9/6Gdd5f3332fq1KkATJ06ld/85jeMHz+ee++9l9TUVCZOnMigQYMYPXo0GzZsqPXPQqQhlJZX8t363RwsKXc6FBEREWmKqkY1jnUD4oC5wHpgLXBntcd+BWx0L3/sRPsaNGiQPdK6deuOWtaY8vPzbf/+/W3Xrl3tbbfdZufNm3fosbFjx9rly5dba60F7BdffGGttfaiiy6yZ555pi0tLbXJycm2f//+1lprZ86caX/5y18e2n7SpEl27ty51lpr4+PjbXZ2trXW2n379llrrS0sLLS9e/e2e/futdZaGxoaemjbdevW2fPOO8+WlpZaa6297bbb7Ouvv24zMzNtXFyc3bNnjy0pKbEjR4487JhHqjru119/bW+++WZbWVlpKyoq7KRJk+z8+fPttm3brK+vr12zZo2tqKiwAwcOtNOmTbOVlZX2448/thdeeKG11tr777/f9uvXzxYWFtrs7GwbGxtrd+7cedz9GmPs4sWLD8VS9bzLy8vt2LFjbUpKylE/myN/Du+9956dMmWKtdbaKVOm2EmTJtny8nJrrbWnn3663bRpk7XW2iVLltjx48cf9fyd/v2S5qGkrMLOWrLdjnz4Oxt/72f2gU9+cjokERER8VDACnuMfKk288LKgbustauMMeHASmPMN0Bb4EKgn7W2xBjT5lQTxb98upZ1mXmnupvD9OrQgvvP733Mx8PCwli5ciXff/89c+fO5corr+SRRx45NFpTJSAggIkTJwLQt29fAgMD8ff3p2/fvqSlpdUppmeeeYaPPvoIgPT0dDZv3kyrVq0OW+e7775j5cqVDBkyBICioiLatGnD0qVLGTduHNHR0QBceeWVbNq06YTHnDNnDnPmzGHAgAEAHDx4kM2bN9OxY0c6depE3759AejduzcTJkzAGHPUc7vwwgsJDg4mODiY8ePHs2zZMhYuXHjM/cbHxzN8+PBD27/77ru8+OKLlJeXk5WVxbp16+jXr1+dfnaXX345vr6+HDx4kEWLFnH55ZcfeqykpKRO+xI5VaXllby3Mp3n5qayM6eI/nGRxEQF8/6KDH57VndCAzX1VkREmoHHHoMhQ8A9CwqAuXNh+XK45x7n4mqCTvjOwVqbBWS5v883xqwHYoCbgUestSXux/Y0ZKANydfXl3HjxjFu3Dj69u3L66+/flRy5u/vf6j6n4+Pz6FpkD4+PpSXu6Yw+fn5UVlZeWibmsq4z5s3j2+//ZbFixcTEhLCuHHjalzPWsuUKVN4+OGHD1v+8ccfn1QVQmstv//977n11lsPW56WlnbouRzvucHR1Q+NMcfdb2ho6KH727Zt4x//+AfLly8nKiqKqVOnHrPMffXjHLlO1T4rKyuJjIwkOTn5RE9dpN6VlFfw3ooMnpu7hczcYgZ0jOTBi/swtls0q3bkcOnzi/hw9U4mD493OlQREZGGN2QIXHEFvPuuK0GbO/fn+1IndfpY1xiTAAwAlgKPA6ONMQ8CxcBvrbXLTyWY441wNZSNGzfi4+ND165dAUhOTiY+/uTeUCUkJPDcc89RWVnJzp07D12vVV1ubi5RUVGEhISwYcMGlixZcugxf39/ysrK8Pf3Z8KECVx44YX83//9H23atGH//v3k5+czbNgw7rzzTvbt20eLFi1477336N+//wljO/vss7nvvvu49tprCQsLY+fOnfj7+9fp+c2ePZvf//73FBQUMG/ePB555BGCg4Nrtd+8vDxCQ0OJiIhg9+7dfPnll4wbNw6A8PBw8vPzDxUtadu2LevXr6d79+589NFHhIeHH7W/Fi1a0KlTJ9577z0uv/xyrLWsWbOmVj8LkZNVUl7Bu+6kLCu3mIEdI3nk0n6M7tr60IcKAztG0jcmgjcWpXHdsI5q6SAiIt5v/HhXInbxxdCyJWRlwbRpUFIC27dDXBwcozCcHK7WyZkxJgz4APi1tTbPGOMHRAHDgSHAu8aYRPc8yurb3QLcAtCxY8d6C7y+HDx4kF/96lfk5OTg5+dHly5dDhXpqKtRo0YdmiLYp08fBg4ceNQ6EydOZMaMGfTr14/u3bsfNu3vlltuoV+/fgwcOJBZs2bx97//nbPOOovKykr8/f3597//zfDhw3nggQcYMWIE7du3Z+DAgYcKhRzPWWedxfr16xkxYgTgms751ltv4evrW+vnN3ToUCZNmsSOHTu477776NChAx06dKjVfvv378+AAQPo3bs3iYmJjBo16rDnfc4559C+fXvmzp3LI488wnnnnUdcXBx9+vTh4MGDNcYza9YsbrvtNv7+979TVlbGVVddpeRMGkRJeQXvLk/nuXmpZOUWMyg+iscu68dpXVrXOKJ8/Yh47n5/DYu37mNkZ+cqpYqIiDSagAA4eBBycyE0FJ5/3nUD1/2ePaFXL9et6vtOnaAO70WbA3NELlXzSsb4A58BX1tr/+le9hWuaY3z3PdTgeHW2uxj7Wfw4MG2qvphlfXr19OzZ8+TfgLSOB544AHCwsL47W9/63QodaLfLzkVxWUV/Hd5Os/PS2VXXjGD46P49RndGNWl1XFHxIrLKhjx8HcM69SKGZMHNWLEIiIiDli7FoYNg+JiuPNOeOMNeOklaN0a1q37+bZ+PWRk/LxdYCD06HF4wtarF3TpAnWc4dWUGGNWWmsH1/TYCUfOjOsdyCvA+qrEzO1j4HRgnjGmGxAAHL/LsohIE1BcVsE7y3bw/PxUdueVMDShJU9c0Z+RnY+flFUJ8vflyiEdeXGBq1BITGRwI0QtIiLigB07YNw4KCqCt96Cq6+G8877+ZqzW245fP3cXNiw4fCkbckSePvtn9fx84Nu3Q5P2Hr1ci0LCmrUp9fYajOtcRQwGfjRGJPsXvYH4FXgVWPMT0ApMOXIKY3iPR544AGnQxBpcMVlFby9bAczqpKyTi158sokRiTWLimr7rrhruRs1pLt3DOxRwNFLCIi4qC9e+Gss1zTGV980ZWYwc/XoC1ffngFR4CICNco27Bhhy8vKICNGw9P2n78ET76CKoK7vn4QGLi4Qlbr16u0beqQnRNvHJkbao1LgSO9a7kuvoNR0Sk8RWXVfCfpa6Rsuz8EoZ1aslTVw5gROdWJ974GGKjQjijZ1veWZ7OHRO6EuSvOfUiIuJFCgpcI2RpafDNNzB69OGPjx9/dGJ2PKGhMHCg61ZdcTFs3nz09Mgvv4Sysp/Xi493JWphYfC3v8Ejj8B118GqVU2qcqSa8IhIs1VUWsGspdt5YcFWsvNLGJ7YkmeuOrWkrLopIxOYs243n63J4rJBsfWyTxEREceVlcHll7tGoz788OjErD4FBUHfvq7bkTGkph6dtG3Y4Erobr8dnn0W9u37ucR/E6DkTESanaqkbMb8rew9WMLIzq3419UDGJZYP0lZlZGdW9GlTRivL0rj0oExKqsvIiJNX2Ul3HCDa+TqpZfgwgudicPf3zWdsUcPuOSSn5dXVLhG8/74R/jvf+G++5pMYgZKzkSkGSksLWfWkh28sCCVvQdLGdWlFc9NGMjQTi0b5HjGGKaMiOe+2WtJTs9hQMeoBjmOiIhIo7nnHlfhj7//HW66yelojubr6ypS8t13rsTs+efrPsXSQeoGB/j6+pKUlESfPn24/PLLKSwsPOl9TZ06lffffx+Am266iXXr1h1z3Xnz5rFo0aJD92fMmMEbb7xx0seukpaWRp8+fQ5b9sADD/CPf/yjTvupr3hEnFZYWs6LC1IZ/ehcHvxiPT3ateC96SOYddPwBkvMqlw8MJawQD/eWLy9QY8jIiLS4P7xD3jiCfjVr+APf3A6mprNnfvzNWZ//avr6xVXuJY3ARo5A4KDg0lOTgbg2muvZcaMGfzmN7859HhFRUWdmjVXefnll4/7+Lx58wgLC2PkyJEATJ8+vc7HaCjl5eUeFY/IySgsLefNxdt5ccFW9hWUMrpra+6c0JXBCQ2bkFUXFujHZYNimbV0O384tyfR4YGNdmwREZF688YbcPfdrkTnqafAU6fqL19++DVmx6sc6YGa1sjZY48dnfXOnetaXk9Gjx7Nli1bmDdvHuPHj+eaa66hb9++VFRUcPfddzNkyBD69evHCy+8AIC1lttvv51evXoxadIk9uzZc2hf48aNo6rp9ldffcXAgQPp378/EyZMIC0tjRkzZvDkk0+SlJTE999/f9joVnJyMsOHD6dfv35cfPHFHDhw4NA+7733XoYOHUq3bt34/vvv6/wcj7fvP/zhD4wdO5ann376UDyZmZkkJSUduvn6+rJ9+3a2b9/OhAkT6NevHxMmTGDHjh2Aa/TwjjvuYOTIkSQmJh4aSRRpLAUl5Tw/L5XTHp3Lw19uoHdMBB/cNpI3bxzWqIlZlckj4imrsLyzbEejH1tEROSUffGF6zqzCRNcSZqPB6cQ99xzdBI2fnyTKKMPTS05GzLk8GHJqmHLIUPqZffl5eV8+eWX9HVXg1m2bBkPPvgg69at45VXXiEiIoLly5ezfPlyXnrpJbZt28ZHH33Exo0b+fHHH3nppZcOm6ZYJTs7m5tvvpkPPviAlJQU3nvvPRISEpg+fTr/93//R3JyMqOPqHJz/fXX8+ijj7JmzRr69u3LX/7yl8PiXLZsGU899dRhy6tLTU09LKGaMWNGrfadk5PD/Pnzueuuuw4t69ChA8nJySQnJ3PzzTdz6aWXEh8fz+23387111/PmjVruPbaa7njjjsObZOVlcXChQv57LPP+N3vflfHMyFycg6WlPPcvC2c9uj/ePSrDfSNieDDX4zkjRuGMijeueu9OkeHMbpra2Yt3UFZRaVjcYiIiNTZkiVw2WWQlOTqORaoGSANybOmNf761+CeXnhMHTrA2WdD+/aQleXqHP6Xv7huNUlKcg29HkdRURFJSUmAa+TsxhtvZNGiRQwdOpROnToBMGfOHNasWXNoFCg3N5fNmzezYMECrr76anx9fenQoQOnn376UftfsmQJY8aMObSvli2P/8l9bm4uOTk5jB07FoApU6Zw+eWXH3r8EndFmkGDBpGWllbjPjp37nxoqib83ET6RPu+8sorjxnXDz/8wMsvv3xotG7x4sV8+OGHAEyePJl7qn0icdFFF+Hj40OvXr3YvXv3cZ+vyKkqKCnntUVpvPz9Vg4UljGuezR3TujqUQU4poxI4KY3VjBn7W4m9WvvdDgiIiIntn49TJoEMTGu0bPwcKcj8nqelZzVRlSUKzHbsQM6dnTdP0XVrzmrLrSq0ziu6YvPPvssZ5999mHrfPHFFycsj22trdcS2oHuTyx8fX0pLy+vt/3C4c+5uqysLG688UY++eQTwsLCalyn+nMMrPapirW2XmMUOdIvZq1i/qZsxneP5s4zupEUF+l0SEcZ36MNcS2DeX1xmpIzERHxfOnprgGRgAD4+mto08bpiJoFz5rW+NRTMG/e8W/33w+Fha7SmIWFrvvHW/8Eo2a1dfbZZ/P8889T5u5EvmnTJgoKChgzZgzvvPMOFRUVZGVlMbeGSjAjRoxg/vz5bNu2DYD9+/cDEB4eTn5+/lHrR0REEBUVdWiE6s033zw00nWqTmbfZWVlXHHFFTz66KN069bt0PKRI0fyzjvvADBr1ixOO+20eolRpC7mb8pm/qZs/nBuD2ZOG+qRiRmAr49h8vB4lm3bz/qsPKfDERERObb9+2HiRMjNdfUzS0x0OqJmo2mNnFUvjVnVr6D6/QZ00003kZaWxsCBA7HWEh0dzccff8zFF1/M//73P/r27Uu3bt1qTHSio6N58cUXueSSS6isrKRNmzZ88803nH/++Vx22WXMnj2bZ5999rBtXn/9daZPn05hYSGJiYnMnDmz3p5LXfe9aNEili9fzv3338/9998PuEYMn3nmGW644QYef/xxoqOj6zVGkdqoqLQ89Pl64luFMHVkJ6fDOaErBsfxxJxNvLF4Ow9f0tfpcERERI5WWAjnnw+pqfDVV65LhKTRmMaccjZ48GBbVb2wyvr16+nZs2ftdvDYY67iH9UTsblzXaUxm0gFFmlcdfr9kibnnWU7+N2HP/LctQM5t2/TmCp47/tr+CQlkyW/n0BEiL/T4YiIiPysrAwuvth1fdn774O7zoHUL2PMSmvt4Joe86xpjSfSxEtjikj9KSgp54lvNjGwYyTn9GnndDi1dv3IeIrKKnhvZbrToYiIiPzMWrjlFvj8c3juOSVmDmlayZmIiNuLC7aSnV/CHyf1qteCOw2td4cIhiRE8cbi7VRWqliOiIh4iN//Hl57DR54AKZPdzqaZkvJmYg0ObvzinlxwVYm9W3vaP+yk3X9iAR27C9k3qY9J15ZRESkoT35JDz6KNx2G/z5z05H06x5RHKmUuvSEPR75b3+OWcT5ZWV3DOxu9OhnJSJfdrRJjyQ1xdtdzoUERFp7mbNgt/8Bi69FJ59FprQbBRv5HhyFhQUxL59+/RGWuqVtZZ9+/YRFBTkdChSz9Zn5fHuynSmjEggvlXNffk8nb+vD9cOi2f+pmy27S1wOhwREWmuvv4apk6FcePgrbfA19fpiJo9x0vpx8bGkpGRQXZ2ttOhiJcJCgoiNjbW6TCknj30xXpaBPlz++ldnA7llFw9LI5/zd3Mm4u38+fzezkdjoiINDfLlrlGy/r0gY8/Bn2g7REcT878/f3p1Mnz+xOJiPPmb8rm+817+dOknkSGBDgdzilpEx7EOX3a896KdO46qxuhgY7/OxYRkeZi40Y491xo29bVZDoiwumIxM3xaY0iIrVR1XC6Y8sQJo+IdzqcejFlZAL5JeV8tHqn06GIiEhzsXMnnHWWawrj119Du6bTjqY5UHImIk3C+yvT2bg7n3sn9iDQzzvmxA/sGEmfmBa8sThN192KiEjDy8mBiRNh/37XiFmXpn2JgDdSciYiHq+gpJwn5mxiQMdIzu3rPZ/wGWO4fkQCm3YfZPHWfU6HIyIi3qyoCM4/HzZtcl1jNnCg0xFJDZSciYjHe+n7rezJL+FPk3o2qYbTtXFB/w5Ehfjzhsrqi4hIQykvh6uugh9+gDffhAkTnI5IjkHJmYh4tD15xbwwv6rhdEunw6l3Qf6+XDmkI3PW7WJnTpHT4YiIiLex1tVc+pNP4Jln4IornI5IjkPJmYh4tH9+07QbTtfGtcM6AvCfpRo9ExGRenbfffDyy/CnP8HttzsdjZyAkjMR8VgbduXx7op0rm/CDadrI65lCBN6tuXtZekUl1U4HY5XU+EVEWlWnn0WHnwQbr4Z/vpXp6ORWlByJiIe66EvNhAW6MevmnjD6dqYOjKB/QWlfL4my+lQvNaybfvpff/XrM/KczoUEZGG99//wp13wkUXwXPPgZdds+2tlJyJiEeavymbBZuyuWNC1ybfcLo2RnZuRefoUN5YnOZ0KF7rneU7KCytYMb8VKdDERFpWN9+C5Mnw+jR8Pbb4OfndERSS0rORMTjVFRaHv5iPXEtg72m4fSJGGOYMjKBlIxcVu844HQ4XqeotIKvf9pFkL8Pn63JIn1/odMhiYg0jJUr4eKLoUcPmD0bgoKcjkjqQMmZiHicD1ZmsGGXdzWcro1LBsYSFujHG4tVGKS+fbdhNwWlFTx0cV8M8MrCbU6HJCJS/zZvhnPOgdat4auvIDLS6YikjpSciYhHKSwt5x9zNjKgYyST+rZ3OpxGFRbox2WDYvl8TRbZ+SVOh+NVZidn0rZFIBcmxXBhUgzvLN/B/oJSp8MSETk1jz0Gc+e6vs/KgrPPhpISuOwy6NDB2djkpCg5ExGP8tKCbV7bcLo2rhseT2lFJf9dvsPpULxGbmEZ8zbu4fx+HfD1Mdw6NpHiskre1AiliDR1Q4a4+pZ9+qlrxCwrC3x84NxznY5MTpKSMxHxGHvyinlhQSrn9m3nlQ2na6NLmzBGd23NW0t2UFZR6XQ4XuHLn7Ioq7BcmBQDQLe24Uzo0YbXF6dRVKrWBSLShI0eDXfdBZdcAj/+CIGB8OGHMH6805HJSVJyJiIe45/fbKKsopJ7zu7hdCiOmjIigV15xXyzbrfToXiF2cmZJLYOpU9Mi0PLbh3bmf0Fpby/Mt3ByERETtJPP8Hdd0NcHPz+9+DvD5WVcMcdSsyaOCVnIuIRqhpOTx6eQEJr7204XRvje7QhNiqY1xelOR1Kk7crt5gl2/ZxQVKHw6bJDkmIYkDHSF76fhvlGqEUkaZg715XU+nBg6FvX3jqKRg2DP7yFwgNhfvug+ef//kaNGmSlJyJiEd4uBk1nD4RXx/D5OHxLN22Xw2TT9FnazKxFi7of/iF8cYYbh3TmR37C/lq7S6HohMROYHSUvj4Y1dp/A4dXCNjlZXw9NOQmelqMv3ss/Duu/DXv7q+XnGFErQmTMmZiDhuwaZs5m/K5lendyUq1PsbTtfGFYPjCPTzUVn9UzQ7OZN+sREkRocd9diZvdqS2DqUF+ZvxVrrQHQiIjWwFlatciVeMTGuxGzxYlditmaN67E77oDoaFi+3JWQVU1lHD/edX/5cmefg5w0JWci4qiKSstD7obT149sHg2nayMqNICLkmL4ePVOcgvLnA6nSUrNPsiPO3OPGjWr4utjuHlMIj/uzGVx6r5Gjk5E5Ai7dsETT0C/fjBoEMyY4Uq2PvsMMjLgH/9wTWes7p57jr7GbPx413JpkpSciYijPljVPBtO18bkEfEUlVXwnopWnJRPkjMxBs4/RnIGcPGAGFqHBTJjwdZGjExExK242DXSNWkSxMbCb3/run7s+eddyVrVY35+TkcqjUTJmYg4prC0nCfmbCQprvk1nK6NPjERDI6P4s0l26ms1LS7urDW8klKJiMSW9G2RdAx1wvy92XaqAQWbMpmXaau7xORRmAtLFkC06dD+/Zw5ZWu6Yr33APr1//8WFSU05GKA5SciYhjXlqwjd15zbfhdG1MGZnA9n2FzN+U7XQoTcqPO3PZtreAC5OOPWpW5bph8YQG+PLCgtRGiExEmq30dHjoIejRA0aMgDfecI2KzZkDaWk/PybNmpIzEXFEVcPpc/q0Y3BC82w4XRtn925Hm/BAXl+c5nQoTcrs5EwCfH2Y2PvEI7IRIf5cPbQjn63JIn1/YSNEJyLNRkEBvPUWnHEGxMfDH/8I7drBK6+4pi2+9RaceSb4alq/uCg5ExFHPPntJkrLK7l3oj4lPJ4APx+uGdaReRuz2ba3wOlwmoSKSsunKZmM6x5NRIh/rba5cXQnDPDKwm0NG5yIeL/KSpg/H264wZWITZ4MW7fCn/8Mqak/P9aihdORigdSciYijW7jrnz+uzydySPim33D6dq4ZmhH/HwMb6qsfq0s3bqPPfklXJgUU+tt2kcEc2FSDP9dns6BgtIGjE5EmrzHHju6j9jcuXDvvfDAA9ClC4wbB++9B5df7krGtmxxPZaY6EDA0pQoORORRvfwl+sJC/TjjtO7Oh1Kk9CmRRDn9m3PeyvTKSgpdzocjzc7OZPQAF8m9GxTp+1uGZNIUVkFby5REiwixzFkyM+NnvPy4O674ayzXEnbX/8KnTvDm2+6pi2++iqMGQM+essttXPC3xRjTJwxZq4xZr0xZq0x5k738geMMTuNMcnu27kNH66INHXfb85m3kY1nK6rKSPjyS8u5+PknU6H4tFKyiv44qcszu7TjiD/ul3D0b1dOKf3aMNri9IoLqtooAhFpMnr1cs1LXHiRGjVytV/rF07ePBB2L4dvvkGrrvOVRJfpI5qk8aXA3dZa3sCw4FfGmN6uR970lqb5L590WBRiohXqKi0PPj5emKj1HC6rgZ2jKJ3hxa8vigNa1VW/1jmbcwmv7i8TlMaq7t1TCL7C0p5b2VGPUcmIk2WtbB6NfztbzBsmKv8/WOPQUAAlJfDtGmwYwf84Q8QF+d0tNLEnTA5s9ZmWWtXub/PB9YDJ/eqJyLNmhpOnzxjDFNGJrBp90GWbN3vdDge65PkTFqFBjCqc6uT2n5op5YkxUXy0oKtVKi3nEjzVVgIn34Kt97qSrgGDnQV9AD4y1/ghRcgKAjuu8+13rx5joYr3qNOE2CNMQnAAGCpe9Htxpg1xphXjTHqlCcix1S94fR5/dRw+mRc0L8DkSH+vKGy+jXKLy7j2/W7Oa9fe/x8T+76DmMM08cmsmN/IV/9tKueIxQRj7Z9Ozz3HJx7LrRsCRdcAP/5DwwfDjNnuq4hW7oUTjvNVRL/3Xdd15i9++7P16CJnKJav3oZY8KAD4BfW2vzgOeBzkASkAU8cYztbjHGrDDGrMjOVhNVkebq5e9dDaf/qIbTJy3I35crh8QxZ91uMnOKnA7H48xZu5uS8kouOMkpjVXO7NWOTq1DmTE/VVNIRbxZRQX88INrOmK/fpCQAL/8JWzaBLfd5rp2bN8+eP99mDoV2rZ1bbd8uSshGz/edX/8eNf95cudeibiRWqVnBlj/HElZrOstR8CWGt3W2srrLWVwEvA0Jq2tda+aK0dbK0dHB0dXV9xi0gTsie/mBnzU5nYux1D1HD6lFw3LB5rLbOWqqLgkWanZBIbFczAjpGntB9fH8PNoxP5cWcui7fuq5/gRMQz5OTAf//r6j3Wtq1rFOyxx34u7LFhA2zeDE8+6WocHVBD4ap77vk5Masyfrxrucgp8jvRCsb1EfcrwHpr7T+rLW9vrc1y370Y+KlhQhSRpu7Jbza7Gk6fo4bTpyquZQgTerbl7WXp/Or0rnWuSOitsvNL+GHLXqaPTayXkdlLBsbwz2828sL8rYzs3LoeIhQRR1gLGzfCZ5+5bgsXukbMWrVyTV887zxXGfzISKcjFQFqkZwBo4DJwI/GmGT3sj8AVxtjkgALpAG3NkB8ItLEbdqdz3+X72DKyAQ6qeF0vZgyIoFv1u3mix+zuGRgrNPheITP12RSUWlPukrjkYL8fZk2qhOPf72RdZl59OrQol72KyKNoLQUFiz4OSFLTXUt79fPNbp13nmuqou++nBLPM8JkzNr7UKgpo8hVTpfRE7o4S/WE6qG0/VqVJdWJEaH8vqiNCVnbrNTMunZvgXd2obX2z6vGxbPc3O38OKCVJ66akC97VdETtJjj7kaQFefUjh3rutarylT4IsvXMnYnDlw8KCrmuLpp8Ndd8GkSdCxo3Oxi9SS2pWLSINZuHkvczdm86vTu6jhdD0yxjBlRAIpGbkkp+c4HY7jduwrZPWOHC5M6lCv+40I8efqoR35dE0WGQcK63XfIrVhrSV9f6EK01QZMuTnqojWusrZn3eeq5Jiu3auxtBLl8K117rK2+/bB59/7iruocRMmgglZyLSICoqLX//fJ2r4fSIBKfD8TqXDoolLNCPNxalOR2K4z5J2QnA+f3rNzkDuOG0ThjglYXb6n3fIicya+kORj82l9MencvfPlvH8rT9zbv/3vjx8NRTrmvFWrSA6dNd/cgiI+Hvf3c1ik5PhxkzXElbSIjTEYvUWW2uORMRqbMP3Q2nn7l6gIpWNICwQD8uHRjD28vS+cOknrQOC3Q6JEdYa/k4OZOhCS2JiQyu9/13iAzmgqQOvLMsnTtO76oRYGk05RWVzJifStc2YXRsGcKbi7fzysJttA4L5KzebTmnTzuGJ7bC/yR7+jVZI0ZAZaVr2uIFF8BLL0GbNk5HJVJvmtlftIg0hqLSCv4xZyP94yI5Xw2nG8zkEQmUVlTyzrIdTofimPVZ+WzZc5AL6nlKY3W3jEmkqKyCt5aofYE0ns9/zCLjQBF3n92dV6YOYeV9Z/DM1QMY1qklH6/eyeRXljHob9/wm3eTmbN2F8VlFU6H3Di2b3eNmt13HyxaBGvXOh2RSL3SyJmI1LuXv9/K7rwS/nXNQDWcbkBd2oQxumtr3lqyg+ljO+PX3D5BB2an7MTPx3Bu34b7EKBHuxaM7x7Na4vSuHlMokaCpcFZa5kxfytd2oRxRk9X4+PwIH8u6N+BC/p3oLisggWbsvlq7S6+XbebD1ftJCTAl/Hd23B2n3aM7x5NeJC/w8+iAcyd67rmrKoB9Pjxh98X8QLN75VcRBrUnvxinlfD6UZz/YgEduUV88263U6H0ugqKy2fJmcypls0LRt4uuGtYzuzr6CU91dmNOhxRAAWbN7L+qw8bhmTiI/P0R9wBfn7clbvdvzziiRW3ncmb944lIsGxLB0237ueHs1g/72LTe8tpx3V6RzoKDUgWfQQJYvPzwRGz/edX/5cmfjEqlHGjkTkXr11LdqON2YTu/RhpjIYF5blMY5DTh65IlWbD9AZm5xo/yuDevUkv5xkbz0/VauHtoR3xreMIvUlxnzUmnbIpCLatG3z9/Xh9FdoxndNZq/XdiHVTsO8NVPu/jqp138b8MefH0Mwzq1ZGKfdpzdux1tWwQ1wjNoIPfcc/SyqhE0ES+hkTMRqTebd+fzzrIdXDc8Xg2nG4mvj2HyiHiWbtvPhl15TofTqGYn7yTY3/fQtK+GZIxh+phEtu8r5Ou1uxr8eNJ8paTnsHjrPm48rRMBfnV7m+brYxiS0JL7zuvFwnvH8+ntpzF9bCK78or58+y1DHvoOy557gdeXJDKjn1qDyHiiZSciUi9eaiq4fQENZxuTFcOjiPQz4c3FjefghWl5ZV8/mMWZ/ZqS2hg40wCOat3OxJahfDC/FT1nZIGM2N+KuFBflw99NT6chlj6Bsbwd1n9+B/d43j29+M4a4zu1FSXslDX2xgzONzOefp73n6281s2p2v32kRD6HkTETqRVXD6dvHd2nw63/kcFGhAVyY1IGPVu0kt6jM6XAaxcIt2eQUltV74+nj8fUx3DwmkZSMXJZs3d9ox5XmY9veAr5au4vJw+PrvaBHlzbh/GpCVz6/YzTf3zOeP03qSUiAL09+u4mznlzAhCfm8+hXG0hJz1GiJuIgJWcicsoqKi0PfrGemMhgpoxMcDqcZun6EQkUlVXw3op0p0NpFLOTM4kM8Wd01+hGPe6lA2NpHRbAjPmpjXrc5sBaS2l5pdNhOOrFBVvx9/Vh2qhODXqcuJYh3DQ6kQ9uG8myP0zgbxf1oUNkMC8u2MqF//6BUY/8j798upalW/c176bXIg5QQRAROWUfrd7J+qw8nr4qSWXGHdInJoLB8VG8uWQ7N4zqVGOFN29RWFrOnLW7uXhgTJ2vyTlVQf6+TBvVice/3sj6rDx6tm/RqMf3Zk/M2cR7K9P55jdjaeGNZeBPYE9+MR+syuCyQbFEhzdeU/k2LYKYPDyeycPjOVBQyrfrd/P12l3MWrqDmT+k0So0gLN6t2Vin/YM7BhJWKCfWqSINCAlZyJySopKK/jH166G0xf0b7wpZnK060cmcMfbq5m/OZvx3ds4HU6D+WbdborKKrjQod+364bF8++5W3hxwVaevDLJkRi8TW5RGTN/2EZBaQUvzt/Kb8/u7nRIjW7mD2mUVVRy8+hEx2KICg3g8sFxXD44joMl5czbuIcvf9rF7ORM3l7mGpUP8PUhKtSfqJAAWoYGEBUaQMuQqq/+rq+hAYcebxkaoA/tROpAyZmInJJXFm5lV14xz1w9QJ+mOmxi73ZEhwfy+qI0r07OPknOpH1EkGN99CJC/Ll6aEdeW5TGXWd1IzYqxJE4vMmspdspKK2gf1wkryzcxvUj4mnTlEu+11F+cRlvLdnOOX3aeUyl27BAP87r14Hz+rmaXv+wZS+p2QfZX1DGgYJS9heWcqCglPVZeRwoKCWnqIxjXaoW7O/rTuSqJXVHJXf+rmQuJIDIkIBGHxUX8RRKzkTkpGXnl/D8vFTO7t2WoZ3UcNppAX4+XDO0I09/t5m0vQUkeMibvPp0oKCU+ZuyufE0Z6du3nBaJ15flMarC9P48/m9HIvDG5SUVzDzhzRGd23N3y7swxn/nM8z/9vM3y/q63RojebtZTvILy5n+tjOTodSoyB/Xyb0bMuE47StqKi05BaVsb+glAOFpa6v1ZK4/QVlh5bv2F/I/oJS8ovLj7m/8EA/okKPGJFzj9BFhQQQ5O9DoJ8vAX4+BPr5HPHVl8Aj7gf4+ag/oTQJSs5E5KQ9+e0mSsoruXeiGk57imuHdeTfc7fw5pLt3Hee9yUNX/yURXml5YJGrNJYk5jIYC7o34F3lu/gjgldiAxRhdKT9fHqnWTnl/DkFUkktA7lmmEdmbV0Bzeelugxo0gNqaS8glcWbmNk51b0i410OpyT5utjDk1jrK3S8kpyiko5UHCcpK6wjL0HS9m0+yAHCkspLK046Rj9fMxRSdzRyZ3vYfcDj1zP14dA/6qvvrQI8mdSv/YnHZPIkZScichJ2bGvkHeW7eD6EQkkRoc5HY64tWkRxDl92/PuinTuOqsbIQHe9W9+dnImXdqE0csDCnHcMjaRD1fv5K0l27n9dPX2OxmVlZYXFmyld4cWjOrSCoBfnd6V91dm8I85G/n3NQMdjrDhzV6dye68Eh6/rL/ToTS6AD8f2oQH0Sa89lNYi8sqyCkso7isgpLySkrLKykpr3B/rbr9fP/wr0cur6C0opKSsspDX3OLyigpO3K5+3555VFTN9u1CFJyJvXKu161RaTRLErdS6WF60fEOx2KHGHKiHg+Tcnko9U7uXaY95yfzJwilm3bz11ndvOI6xt7tGvBuO7RvLYojZtGJ6rowUn4bsMetmYX8PRVSYfOaXR4IDeNTuSZ7zZz65icJj2adCKVlZYZC1Lp1b4Fo7u2djqcJiHI35d2Ec78rVlrKa+0hyV45ZXNu/2D1D9dbSkiJyUlI4cWQX7NYtpRUzMoPoreHVrw+qI0Kr2oR9GnKZkAjk9prO7WMZ3Ze7CUD1ZlOB1Kk/TC/FRiIoOZ1PfwkYebR3eiZWgAj3y5wasbIn+zfjdbswu4dWyiR3zgIMdnjMHf14fQQD9ahgbQLiJIBYGk3ik5E5GTkpyeS/+4SL2h8EDGGG4Zk8im3Qd5Y3Ga0+HUm9nJmSTFRRLfynM+EBie2JL+sRG8tGCrmvXW0crt+1mx/QA3j+6En+/hb0fCg/y5fXwXFqXu4/vNex2KsGFZa5kxP5W4lkcnpyLSfCk5E5E6KywtZ+OuPAbERTodihzDBf07MK57NI9+tZHt+wqcDueUbd6dz7qsPC70oFEzcCXCt47tTNq+Quas3eV0OE3KC/O3EhnizxVD4mp8/NrhHYmNCubRrzZ41QhwleVpB1i9I4ebRycelZyKSPOl/wYiUmc/7cyj0kJ/JWceyxjDw5f0xc/XcPf7a5r8m9tPUjLxMXjkhfdn925HQqsQZsxP9eopePVpy56DfLN+N9cPjz9m0ZpAP1/uOqsbazPz+HRNZiNH2PBmzE+lZWgAlw+qOTkVkeZJyZmI1FlKeg6g5MzTtY8I5r7zerFs237eXLLd6XBOmrWW2cmZjOrSuk5V3RqLr4/h5jGJpGTksmTrfqfDaRJe/n4rAb4+XD8y4bjrXdg/hp7tW/DEnE2UlntP4YWNu/L534Y9TB2ZQHCACsmIyM+UnIlInSWn5xAbFUzrsECnQ5ETuHxQLOO6R/PIlxua7PTG1ek57NhfyAX9PWtKY3WXDoyldVgALyxIdToUj7cnv5gPV+3kskGxJ/wf4uNjuGdid3bsL+TtZTsaKcKG98L8VIL9fZk83HuqqYpI/VByJiJ1lpyeo1GzJuLQ9Eafpju98ZPkTAL8fDi7TzunQzmmIH9fpo5MYN7GbNZn5Tkdjkd77Yc0yioruXl0Yq3WH9ctmuGJLXn2f5spKClv4Oga3s6cIj5JyeSqoXFE1aFhs4g0D0rORKROsvNL2JlTRJIX9x7yNk15emN5RSWfrclkQo82tAjydzqc47pueDwhAb68tGCr06F4rIMl5by5ZDvn9GlHQi3bcBhjuHdiD/YeLOXl77c1cIQN7xX3c7iplsmpiDQvSs5EpE7WZOQAut6sqbl8cCxjuzW96Y2LUvex92ApFybFOB3KCUWGBHDVkI58kpLJzpwip8PxSO8s20F+cTm3jOlcp+0GdIxiYu92vLgglb0HSxoouoaXU1jKO8t3cEH/DsREBjsdjoh4ICVnIlInyek5+PoY+sS0cDoUqQNjDI9c6preeE8Tmt44OzmT8CA/xnWPdjqUWrlxdCcs8OrCpj/CU9/KKip5ZeE2hnVqSdJJfLhz98TuFJdX8q//ban/4BrJG4u3U1hawa1j65acikjzoeRMROokOT2Hbm3Dj1n+WjxX1fTGpU1kemNxWQVfr93FOX3aEeTfNCraxUQGc0H/Dry9bAe5hWVOh+NRPk3JJCu3mOknmZh0jg7jisGxzFq6nR37Cus5uoZXVFrBa4vSOL1HG7q3C3c6HBHxUErORKTWrLWkpOeQFBfhdChykqpPb/T0N7j/27CHgyXlTWJKY3W3jEmksLSCt5Z6fgLcWKy1vLhgK93ahp3SKOidE7rh62P45zcb6zG6xvH+ynT2F5Ry6xhdayYix6bkTERqLW1fIXnF5fRXMZAmq/r0xrvfT/Ho6Y2zk3cSHR7I8MRWTodSJz3bt2Bst2hm/rCN4rIKp8PxCPM3ZbNhVz63jOmMMeak99MuIohpozrxcXImazNz6zHChlVeUcmL329lQMdIhnZq6XQ4IuLBlJyJSK0lpx8AIKljpLOByClpCtMbc4vKmLshm/P7dcDX5+TfzDvl1rGJ7D1Yyoerdjodikd4Yf5W2rUIqpdeddPHdiYi2J/Hvmo6o2df/LSL9P1FTB97asmpiHg/JWciUmsp6bmEBPjStY2ul2jqPH1649c/7aK0opILkzy38fTxjEhsRb/YCF76fisVHjw62RjWZOSweOs+bjgtgQC/U3/bERHszy/Hd2b+pmwWpe6thwgblrWWGfNS6Rwdypk92zodjoh4OCVnIlJryek59ImJaJIjGXI4T5/eODtlJwmtQugX2zSvbzTGMH1sZ7btLWDO2l1Oh+OoFxZsJTzQj6uHdqy3fV4/IoEOEUE8+tVGrPWs390jfb95L+uy8rh1TGd89L9TRE5AyZmI1EpJeQXrMvMYoP5mXqP69EZPKl6xJ6+YRan7uCAppklPATu7dzviW4UwY36qxycQDWXHvkK+/DGLa4Z3JLwem4gH+fvy6zO7kZKew1c/eXby+8KCVNq2COTCAU1zFFhEGpeSMxGplQ1Z+ZRWVKr5tJepmt748BeeM73x0zVZWEu9XJ/kJF8fw82jE0nJyGXptv1Oh+OIlxduxdfHcMOoTvW+70sHxtK1TRiPf72R8orKet9/ffgxI5cftuzjhlGdCPRrGu0gRMRZSs5EpFZSMnIAlJx5GWMMD1/ibk79gWdMb/wkeSd9YlrQpU2Y06GcsssGxdIqNIAX5qc6HUqj23ewhHdXpHPxgBjatgiq9/37+hjumdiDrXsLeHdFRr3vvz7MmJ9KeJAf1wyrvymdIuLdlJyJSK0kp+fQOiyQDhH1/yZLnNUhMpg/ndeTJVudn964bW8BKRm5XNi/afU2O5Ygf1+mjkxg7sZsNuzKczqcRvXG4u0Ul1VySwP29TqjZxsGx0fx1LebKCr1rLYFaXsL+PKnLK4bHl+vUzpFxLspORORWklOzyEpLrJJXwMkx3bF4DjGeMD0xk+SMzEGzuvf3rEY6tvkEfEE+/vy4oKtTofSaIpKK3hjcRpn9GxDlwas7mqM4d5zerAnv4RXf9jWYMc5GS9+vxU/Hx+mjUpwOhQRaUKUnInICeUWlbE1u4CkuKZZOU9OzBjDIw5Pb7TWMjtlJ8M6taR9RHCjH7+hRIYEcNXQOD5JziQzp8jpcBrFeyvTOVBYxq1jOzf4sYYktOSMnm2YMS+VAwWlDX682sjOL+H9lRlcOiiGNuGabSAitafkTERO6MeMXEDXm3k7p6c3rs3MY2t2ARcmeceUxupuPK0TFnh1oWeN7jSE8opKXvp+KwM6RjI4PqpRjnn32T0oKC3nuXlbGuV4J/Laom2UVVRy8+iGm9IpIt5JyZmInFBVMZB+sZGOxiENr2p6oxPNqWcn78Tf13BOn3aNetzGEBsVwvn92vP2sh3kFpY5HU6D+mrtLtL3F3HrmM6NNg26e7twLhkYy+uLtrPT4dHJgyXlvLl4OxN7tyMxuukXtRGRxqXkTEROaPWOHBKjQ4kI1kXt3q5qeqOvadzpjRWVlk9SMhnbrQ2RIQGNcszGdsuYzhSUVjhedKUhWWt5Yf5WEluHcmavto167P87sxsYePKbTY163CO9vXQHecXlTG+EKZ0i4n2UnInIcVlrXcVANGrWbDgxvXHZtv3szivhwqSm3dvseHp1aMGYbtHM/CGN4jLPqixYXxan7uPHnbncNDoRX5/GLR4UExnMlBHxfLgqg4278hv12FVKyyt5ZeE2RiS20jRwETkpSs5E5LiycovZe7BEbzSamcae3vhJyk5CAnw5o2fjjrY0tuljE9l7sISPVu90OpQG8cKCrbQOC+CSgc5cN/iLcV0IDfDj8a83OHL82ck72ZVXzPRxGjUTkZNzwuTMGBNnjJlrjFlvjFlrjLnziMd/a4yxxpjWDRemiDglOT0HgCQlZ81K1fRGn0aY3lhSXsEXP+7i7N7tCA7wbbDjeIIRia3oFxvBiwu2UuEBDb/r0/qsPOZvymbaqE4E+TtzHqNCA5g+rjPfrt/D8rT9jXrsykrLCwu20rN9C8Z01VsiETk5tRk5Kwfustb2BIYDvzTG9AJX4gacCexouBBFxEkp6TkE+PrQo33D9SoSz9QhMpg/TXJNb5zVgNMb52/MJreojAu8eEpjFWMMt47pzLa9BXyzbpfT4dSrFxdsJSTAl+uGxTsaxw2jOtEmPJBHvtyAtY2XAH+3YQ9b9hxk+thE9YMUkZN2wuTMWptlrV3l/j4fWA9UzVd4ErgH8K6P/0TkkOT0HHp2aEGgn3ePaEjNrhzibk795QbS9zfM9MbZKZm0DA3gtC7NY7RhYp92xLcK4fGvN5Jb5B2VG3fmFPFpSiZXDelIRIizhYOCA3z59RndWLn9AN+u39Nox50xP5XYqGAm9fWeBuoi0vjqdM2ZMSYBGAAsNcZcAOy01qY0RGAi4ryKSsuPO3NJilXz6eaq+vTGu9+v/+mNB0vK+Xbdbib1bY+/b/O4DNrXx/DQxX3Zvq+Q6W+upLS80umQTtmrC7dhgRtHd3I6FACuGBxLYutQHvtqQ6NMH12etp+V2w9w8+hE/JrJ77GINIxa/wcxxoQBHwC/xjXV8Y/An2ux3S3GmBXGmBXZ2dknG6eIOGDznnwKSytI6hjpdCjioIac3jhn7S5Kyiu9ukpjTUZ1ac1jl/Vj8dZ93NMASW9jyi0s4+1lOzi/X3tiIoOdDgcAP18f7j67O5v3HOSDVRkNfrwX5qcSFeLPFYPjGvxYIuLdapWcGWP8cSVms6y1HwKdgU5AijEmDYgFVhljjuocaq190Vo72Fo7ODo6uv4iF5EGl+IuBtJfZfSbvSuHxDG6a+t6n944OzmTmMhgBnaMqrd9NhWXDIzl7rO783FyJo/P2eh0OCftraXbKSyt4JYxnlWhcGKfdvSPi+TJbzY1aOuCTbvz+Xb9HqaMTPD6gjYi0vBqU63RAK8A6621/wSw1v5orW1jrU2w1iYAGcBAa613Xd0s0swlp+fSIsiPhFahTociDjPG8Mil/ep1euPegyUs3LKXC5I64NPIPbE8xS/GdeaaYR15fl4qby5pes2pi8sqmPlDGmO6RdOrQwunwzmMMYZ7J3YnK7eYNxanNdhxXpi/lWB/X6aMSGiwY4hI81GbkbNRwGTgdGNMsvt2bgPHJSIeIDk9h/5xkc32jbMcLqaepzd+8WMWFZW22U1prM4Yw18v6M2EHm24f/ZPfLNut9Mh1clHq3ey92AJt45JdDqUGo3s3Jqx3aL599zUBim+kplTxOzknVw5JI6o0IB637+IND+1qda40FprrLX9rLVJ7tsXR6yTYK3d23BhikhjKywtZ9PufPU3k8PU5/TG2cmZ9GgXTo92njXi0tj8fH149poB9ImJ4Fdvr2L1jgNOh1QrlZWWlxZspU9MC0Z2buV0OMd0z8Tu5BaVMWN+ar3v+xV3IZSbPKQQiog0fSopJCI1WpuZR0Wl1fVmcpjq0xvveX/NSU9vTN9fyMrtB5pFb7PaCAnw45UpQ2gTHsRNr68gbW+B0yGd0Dfrd7N1bwG3juns0X29eneI4KKkDsz8YRu7covrbb9VhVAu6N+B2KiQetuviDRvSs5EpEaHioFo5EyOUDW9cfHWfcxatuOk9vFJSiYA5/dTclYlOjyQ16YNodJaps5cxr6DJU6HdFwvuPt6ndPnqFpgHueus7pTUWl5+rtN9bbPN5ekUVhawa1jPXNKp4g0TUrORKRGq9NziIkMJjo80OlQxAMdmt74xfqTmt74SXImg+OjiGupEYfqEqPDeHnKYLJyi7nx9RUUlTZclcFTsSJtP6t25DSZvl5xLUO4dlg8767IYMueg6e8v6pCKOO6Rzf7abkiUr88/z+qiDgiJT1H15vJMZ3K9MYNu/LYuDu/WRcCOZ5B8S15+qoBpGTkcMc7qxuliXJdzZi/lagQfy4fHOt0KLV2++ldCPLz4R9fn3rbgvdWZrCvoJTpYz2rfYCINH1KzkTkKHsPlpBxoIj+cRFOhyIeLCYymD+exPTG2cmZ+PoYzu3bvgGja9om9mnHA+f35pt1u3ngk7VY6zkJ2pY9+Xy7fjeTRyQQEuDndDi11joskJvHJPLV2l2sOoWiK+UVlby0YCtJcZEM69SyHiMUEVFyJiI1WJORA6j5tJzYVXWc3lhZafkkOZPRXVvTKkxTZo9nysgEbhmTyJtLtvPCgq1Oh3PISwu2Eejnw5QR8U6HUmc3jU6kdVgAj3654aQT3q/W7mLH/kKmj/XsQigi0jQpORORoyTvyMHHQN9YjZzJ8dV1euOqHQfYmVOkKY219LuJPTivX3se+XIDs5N3Oh0Ou/OK+Wj1Tq4YHNckk+uwQD9+dXpXlm7bz7xN2XXe3lrLjPmpJLYO5axebRsgQhFp7pScichRkjNy6dY2vElNWRLn1GV64+zkTIL8fTizl+dX+PMEPj6GJ67oz7BOLfnteyksSnW2pejMH9Ior6xs0n29rh7akY4tQ3j0yw11bgXxw5Z9/LQzj1vGJOLjo1EzEal/Ss5E5DDWWhUDkTqrzfTGsopKPv8xizN6tiUsUIl/bQX6+fLi5MEktArl1jdXsnFXviNx5BeXMWvpds7p0574VqGOxFAfAvx8uOusbmzYlc/slLqNRs6Yn0qb8EAuHhjTQNGJSHOn5ExEDpO2r5DcojL1N5M6qT698d4Pap7euHDLXvYXlHJhkt7Y1lVEiD8zpw0h2N+XqTOX1Wsz5dp6Z1k6+cXl3DKm6ff1Or9fB3p3aMETczZRUl67dgU/ZuSycMtebjitE4F+vg0coYg0V0rOROQwVc2nNXImdVU1vXFRas3TGz9JziQi2J+x3aIdiK7pi40KYea0IeQVlTF15jLyi8sa7dil5ZW8snAbwxNbesUHNz4+hnsn9iDjQBGzltSu0ugLC1IJD/TjmmEdGzg6EWnOlJyJyGGS03MI9vela5swp0ORJuhY0xuLSiv4eu0uzu3bjgA/vfScrN4dInj+ukFs2XOQ295aRWl5ZaMc99OUTHblFXOrF/X1Gt21NaO6tOJfc7ecMNHdvq+AL37M4trh8bQI8m+kCEWkOdIrpIgcJiUjh74xEfj56t+D1N2xpjd+u343haUVXNBfUxpP1Zhu0Tx8SV8WbtnL7z5c0+A90Ky1vLAgle5twxnnRaOexrhGz/YXlPLSCVoVvPT9Vvx8fLhhVELjBCcizZbefYnIIaXllazNzCOpY6TToUgTVn1643/c0xtnJ2fSrkUQQ9W0t15cPjiO35zZjQ9X7eSf32xq0GPN25jNpt0HuWVMotf19eoXG8mkvu15eeE29uTXfB3f3oMlvLcig0sGxtCmRVAjRygizY2SMxE5ZMOuPErLK9V8Wk5Z9emNP+3MZf6mPZzfvz2+Kj9eb351eheuGhLHs//bwn+W1u66qZPxwoJU2kcEcX5/7+xN99uzu1NSXsmz322p8fHXfkijtKLSKwqhiIjnU3ImIodUFQPpH6fm03JqqqY3GmO45qUllFVYVWmsZ8YY/n5RH8Z1j+ZPH//I/zbsrvdjJKfnsGTrfm48rZPXXivYqXUoVw2J4+1lO0jbW3DYYwUl5byxOI2ze7UjMVrX4YpIw/PO/7QiclKS03NpHRZATGSw06GIF4iJDOYP5/Ykr7icxOhQendo4XRIXsfP14d/XzOQXh1a8MtZq1mTkVOv+39xQSrhQX5cNdS7KxTeOaEr/r4+PHHEFNG3l+0gr7ic6eO8pxCKiHg2JWcickhy+gGS4iK97roScc7VQ+OYOjKBX5/RTb9XDSQ00I9Xpw6hVVgAN7y2nB37am4CXldpewv46qddXDc83uubhrdpEcSNp3Xi05RMfszIBQ5vH6DWIiLSWJSciQgAecVlpGYX6HozqVfGGB64oDcXeOn1Sp6iTXgQr98wlPJKy5SZy9hfUHrK+3x5oatC4bSRCaceYBNwy9hEokL8eezrDQB8kpJJVq53tQ8QEc+n5ExEAA59WuwNDWZFmqPO0WG8fP1gduYUcdPryykuqzjpfVVVKLx4QPOpUNgiyJ9fju/C95v38v3mbF6Yn0qPdt7VPkBEPJ+SMxEBXBf+Axo5E2nCBie05Okrk1idnsOd76ymovLkeqC9sXg7JeWV3NzMKhReNzyemMhg7nh7NZv3HGT62M6ajisijUrJmYgAruQssXUoESH+TociIqfgnL7tuW9SL75eu5u/fbauzk2qC0tdFQrP7NWWLm2aV4XCIH9ffnNmNw4UlhETGcx5/do7HZKINDPefYWviNSKtZbk9BxO69La6VBEpB7ccFonMnOKeHnhNmIig+s0Avbu8nRyCsu4tZmNmlW5aEAM8zdlc3bvdvj56jNsEWlcSs5EhF15xWTnl9A/Vv3NRLzFH87tSVZuMQ9+sZ52tWwiXV5RycsLtzEoPorBCS0bIUrP4+tjeObqAU6HISLNlD4SEhGSd+QAkNQxytlARKTe+PgYnriiP0MSorjr3RSWbt13wm2++GkXGQeKuKWZjpqJiDhNyZmIkJyRg7+voWf7cKdDEZF6FOTvy0vXDyauZTA3v7GCzbvzj7mutZYX5qeS2DqUM3u2bcQoRUSkipIzESElPYde7VsQ6OfrdCgiUs8iQwJ4bdpQAv19mTpzObvzimtcb1HqPtZm5nHLmER8fFShUETECUrORJq5ikrLjxm56m8m4sXiWoYwc+oQDhSWMm3mcg6WlB+1zoz5qbQOC+SiATEORCgiIqDkTKTZ27LnIAWlFSQpORPxan1iInju2oFs3J3PbW+tpKyi8tBjazNz+X7zXqaNSiDIXyPoIiJOUXIm0sylVDWfVnIm4vXGdW/Dwxf35fvNe/n9hz8e6oH20oKthAb4ct2weIcjFBFp3lRKX6SZS87IITzIj06tQp0ORUQawRVD4tiZU8TT320mJjKYywfH8umaLKaOTFATehERhyk5E2nmknfk0D82UgUARJqRX5/RlUx3gvbNut0YXI2rRUTEWZrWKNKMFZVWsHF3vq43E2lmjDE8dElfxnSLZl1WHhf070BMZLDTYYmINHsaORNpxtZm5lJRaXW9mUgz5O/rw3PXDuS5uVu4briuNRMR8QRKzkSaseRDxUAinA1ERBwRFujHPRN7OB2GiIi4aVqjSDOWnJ5DTGQwbcKDnA5FREREpNlTcibSjKVk5GjUTERERMRDKDkTaab2HSwhfX8R/WMjnQ5FRERERFByJtJspWTkAGo+LSIiIuIplJyJNFPJ6bn4GOgbo2mNIiIiIp5AyZlIM5WSnkO3tuGEBqpoq4iIiIgnUHIm0gxZa13FQHS9mYiIiIjHUHIm0gxt31dITmEZSR0jnQ5FRERERNyUnIk0Q4eKgWjkTERERMRjKDkTaYaS03MI8vehW9swp0MREREREbcTJmfGmDhjzFxjzHpjzFpjzJ3u5X8zxqwxxiQbY+YYYzo0fLgiUh9S0nPoGxOBn68+nxERERHxFLV5Z1YO3GWt7QkMB35pjOkFPG6t7WetTQI+A/7ccGGKSH0pLa/kp8w8ktTfTERERMSjnDA5s9ZmWWtXub/PB9YDMdbavGqrhQK2YUIUkfq0cVc+peWVaj4tIiIi4mHq1ODIGJMADACWuu8/CFwP5ALj6zs4Eal/ySoGIiIiIuKRan3BiTEmDPgA+HXVqJm19o/W2jhgFnD7Mba7xRizwhizIjs7uz5iFpFTkLwjh1ahAcRGBTsdioiIiIhUU6vkzBjjjysxm2Wt/bCGVf4DXFrTttbaF621g621g6Ojo08+UhGpFykZOSTFRWKMcToUEREREammNtUaDfAKsN5a+89qy7tWW+0CYEP9hyci9SmvuIzU7IO63kxERETEA9XmmrNRwGTgR2NMsnvZH4AbjTHdgUpgOzC9QSIUkXrzU0Yu1qLkTERERMQDnTA5s9YuBGqa//RF/YcjIg1pdXoOAP1jI5wNRERERESOog60Is1ISnoOnVqHEhkS4HQoIiIiInIEJWcizUhKRo5GzUREREQ8lJIzkWZiV24xu/NKdL2ZiIiIiIdScibSTCSnHwAgScmZiIiIiEdScibSTCSn5+Lva+jZvoXToYiIiIhIDZSciTQTKek59GzfgiB/X6dDEREREZEaKDkTaQYqKi1rMnLoHxvpdCgiIiIicgxKzkSagdTsgxSUVuh6MxEREREPpuRMpBlIrmo+reRMRERExGMpORNpBlLScwgP8iOxdajToYiIiIjIMSg5E2kGktNd15v5+BinQxERERGRY1ByJuLlissq2LArn/5xEU6HIiIiIiLHoeRMxMutzcylotKqUqOIiIiIh1NyJuLlVu/IAVClRhEREREPp+RMxMulZOTSISKINi2CnA5FRERERI5DyZmIl0tJz1EJfREREZEmQMmZiBfbX1DKjv2FSs5EREREmgAlZyJeLKWq+bSKgYiIiIh4PCVnIl4sOT0HHwP9YlVGX0RERMTTKTkT8WIpGTl0bRNOaKCf06GIiIiIyAkoORPxUtZadzEQjZqJiIiINAVKzkS81I79hRwoLCMpLsrpUERERESkFpSciXip5KpiIBo5ExEREWkSlJyJeKmU9FyC/H3o1jbc6VBEREREpBaUnIl4qeT0A/TpEIG/r/7MRURERJoCvWsT8UJlFZX8lJlHkppPi4iIiDQZSs5EvNDGXfmUllfSX8mZiIiISJOh5EzEC1UVA9HImYiIiEjToeRMxAslp+fQMjSA2Khgp0MRERERkVpScibihVLSc0iKi8QY43QoIiIiIlJLSs5EvEx+cRlbsg/SPzbS6VBEREREpA6UnInUgrWW8opKp8OolR935mKtmk+LiIiINDV+Tgcg4qSCknKy80vYe7CE7PwSsqu+um/Vl4cF+vHatKEeXwFRxUBEREREmiYlZ+J1Sssrf06qqiVcNS0rLK04ansfAy1DA4kOd926tAknOjyQz3/M5MbXl/PhbaPo2CrEgWdWOynpOSS0CiEyJMDpUERERESkDpp9crYnr5iS8kriWnrum22BikrL/oLS445yZR90PZZTWFbjPiKC/V0JV1gg/WMjiQ4PpHXYz0lYtPv7lqEB+PocXUjj8sGxXPr8IqbMXMYHt42kZahnJj8p6bkMS2zpdBgiIiIiUkfNOjmz1jLtteUUlVXw4W0jNdLgYfKLy/j1O8ms2ZnLvoMlVNqj1wn296VNC1di1bVNGCMSWx2VbEWHB9IqLIBAP99TiqdzdBgvXz+Ya15eyk2vL+c/Nw8nyP/U9lnfduUWsyuvWMVARERERJqgZp2cGWO4//zeXPfyUm55cyVv3jj0lN/AS/0or6jk9v+sZuGWvVwyIIZ2EUGHJVxVI16hgY37Kzw4oSVPX5nEL/6zil+/k8y/rx1Y4yibUw5db9Yx0tE4RERERKTumnVyBjC0U0v+cUV/7nh7NXe/t4anrkzCx4PebDdH1loe+HQt8zdl8/Alfbl6aEenQzrMOX3b86dJvfjbZ+v422fruP/8Xh7TTywlIwc/H0Ov9i2cDkVERERE6qjZJ2cAF/TvQMaBQh77aiOxUcHcM7GH0yE1a6/+kMZbS3Zw65hEj0vMqtx4Wicyc4p4ZeE2YqOCuWl0otMhAa5iID3bt/C46ZYiIiIicmJKztxuG9uZ9P1FPDcvldioEK4Z5plJgbf7dt1u/v75Os7u3ZZ7PTxJ/uO5PcnKLeLvn6+nfUQwk/q1dzSeikrLmoxcLhrQwdE4REREROTkqAm1mzGGv13Ym3Hdo7lv9k/M3bjH6ZCanZ925nLHO6vpGxPBU1cO8PjppT4+hn9ekcTg+Cj+791klm3b72g8W7MPcrCknKS4KEfjEBEREZGTo+SsGj9fH/51zUC6tw3n9lmrWJuZ63RIzcau3GJufH05kcH+vHz9YIIDmsa0vCB/X166fjCxUcHc/MYKtuzJdyyWn5tPRzgWg4iIiIicPCVnRwgL9GPmtCG0CPbnhteWk5lT5HRIXq+gpJwbX1/OweJyXpk6hDYtgpwOqU6iQgN4fdpQ/H19mPLqcvbkFzsSR3J6DuGBfiS2DnPk+CIiIiJyapSc1aBtiyBmThtCYUkF02YuJ6+45qbGcuoqKi13vrOa9Vl5/OuagfRsolUG41qG8OrUwewvKOWG15ZTUFLe6DGkZOTQLy7C46eDioiIiEjNlJwdQ492LXj+ukGkZh/kF2+toqyi0umQvNKDn6/n2/V7eOCC3ozv0cbpcE5Jv9hInrt2IOuz8vnlf1ZR3oi/M8VlFWzIylfzaREREZEm7ITJmTEmzhgz1xiz3hiz1hhzp3v548aYDcaYNcaYj4wxkQ0ebSM7rWtrHr6kLwu37OX3H/6ItdbpkLzKm4vTePWHbUwdmcD1IxKcDqdejO/Rhr9f1Id5G7P508c/NdrvzNrMPMorLf3jIhvleCIiIiJS/2ozclYO3GWt7QkMB35pjOkFfAP0sdb2AzYBv2+4MJ1z+eA47pjQlfdXZvDMd1ucDsdrzNu4hwc+XcfpPdpw33m9nA6nXl09tCO3j+/CO8vT+df/Gud35udiIJGNcjwRERERqX8n7HNmrc0Cstzf5xtj1gMx1to51VZbAlzWMCE67//O6ErGgUKe/HYTsVHBXDoo1umQmrQNu/K4/T+r6dY2nGeuHoCvF14jdddZ3cjMLeKJbzbRPjKYyxr4dyYlPYf2EUG0bWLFVERERETkZ3VqQm2MSQAGAEuPeOgG4L/1FJPHMcbwyCX92JVbzL0frKF9RBAju7R2OqwmaU9+MTe+toKQAF9enTqYsEDv7INe9TuzJ6+E332whrYtAhndNbrBjpeSkaPrzURERESauFoXBDHGhAEfAL+21uZVW/5HXFMfZx1ju1uMMSuMMSuys7NPNV7HBPj58Px1g0iMDuXWt1ayabdz/ayaqqLSCm5+fQX7C0p5ZcoQ2kcEOx1Sgwrw8+G56wbSpU0Yt721inWZeSfe6CQcKChl+75CXW8mIiIi0sTVKjkzxvjjSsxmWWs/rLZ8CnAecK09RuUDa+2L1trB1trB0dENN3LQGCKC/Xl16hCC/H2ZNnM5e/Kc6WfVFFVWWn7zbjJrduby9FVJ9I1tHo2SWwT5M3PaEMKD/Jj22rIG6ZuXnJEDQH81nxYRERFp0mpTrdEArwDrrbX/rLZ8InAvcIG1trDhQvQssVEhzJw6hAOFpdzwujP9rJqix77eyJc/7eKP5/bkrN7tnA6nUbWPCD7UN2/qzGXkFtVv37yU9ByMcZXyFxEREZGmqzYjZ6OAycDpxphk9+1c4F9AOPCNe9mMhgzUk/SJieDf1wxkXWYetzdyP6um6L/LdzBjfirXDuvIjad1cjocR/Ro14IXJg9i294Cbn1zBSXlFfW275T0HLq2CfPa6/dEREREmosTJmfW2oXWWmOt7WetTXLfvrDWdrHWxlVbNr0xAvYU43u04a8X9mHuxmzu/2SteqAdww9b9vLHj35idNfWPHBBb1wDsc3TyC6tefyy/izZup973l9DZeWp/85Ya0lOVzEQEREREW+gj9pPwXXD40k/UMgL87cS1zKE6WM7Ox2SR9myJ5/pb60kMTqUf187EH/fWtef8VoXDYhhZ04Rj3+9kQ6Rwdw7sccp7S99fxEHCstI6hhZPwGKiIiIiGOUnJ2ie8/uwc4DRTzy5QZiIoM5v38Hp0PyCPsOljDtteUE+vnwypQhtAjydzokj/GLcZ3JzCni+XmpdIgMZvLw+JPe16FiIBo5ExEREWnylJydIh8fwz8u78/uvGLuejeFdhFBDElo6XRYjiouq+CWN1eyJ6+Ed24ZTlzLEKdD8ijGGP5yQW925RZz/+yfaNciiDN7tT2pfaWk5xDo50P3duH1HKWIiIiINDbNM6sHQf6+vDh5MLFRwdz8xgpSsw86HZJjrLXc8/4aVm4/wJNXJjGgY5TTIXkkP18fnr1mAH1jIvjV26tITs85qf0kp+fQJyZCU0ZFREREvIDe0dWTqNAAZk4bgq8xTJu5nL0HS5wOyRFPfruZT1IyuWdid87t297pcDxaSIAfL08ZQpvwIG58bTnb9xXUafuyikp+2plLkppPi4iIiHgFJWf1KL5VKC9NGczuvGJuen0FRaX1Vy69KfhwVQbPfLeZKwbHcpuKo9RKdHggr00bQqW1TJ25nP0FpbXeduOufErKK+mv5ExERETEKyg5q2cDO0bx9FUDSMnI4df/XU1FPZRLbwqWbt3HvR+sYURiK/5+Ud9mXTK/rhKjw3h5ymAyc4q46fXlFJfVLqlPcRcDSVIxEBERERGvoOSsAUzs044/TerF12t38+Dn650Op8Ft21vArW+tJK5lCDOuG0SAn36t6mpQfEueviqJ1ek53PlO7ZL65B05tAwNIK5lcCNEKCIiIiINTe+iG8iNp3Vi6sgEXv1hGzN/2OZ0OA0mp7CUG15bjgFmTh1CRIhK5p+siX3a8+fzXEn93z5bd8LG5ikZOfSPjdAopYiIiIiXUCn9BnTfeb3IzCnir5+to0NkMGf3bud0SPWqtLySW99cyc4DRcy6eRjxrUKdDqnJmzaqE5k5Rbz0/TZiIoO5eUxijesdLCln856DKroiIiIi4kU0ctaAfH0MT181gH6xkdz5zuqTLpfuiay1/P7DH1m6bT+PX96v2fd2q0+/P6cnk/q158Ev1vNpSmaN66zJyMFaVAxERERExIsoOWtgwQG+vDJlMNHhgdz42nJ27Ct0OqR68e+5W/hgVQa/PqMrFybFOB2OV/HxMTxxeX+GJrTkrndTWLp131HrpKTnAioGIiIiIuJNlJw1gtZhgbw2bSjllZapry0jp7D25dI90acpmfxjziYuHhDDnRO6Oh2OVwry9+XF6wcR19LV2HzLnvzDHk9JzyG+VQhRoQEORSgiIiIi9U3JWSPpHB3GS9cPJmN/Ebe8sbLW5dI9zcrtB7jrvRSGJETxyKUqmd+QIkMCeG3aUAL9fZny6nL25BUfesxVDCTSueBEREREpN4pOWtEQzu15B9X9GdZ2n7ufn8NlU2sB1r6/kJueWMF7SOCeGHyYAL9fJ0OyevFtQxh5tQhHCgs5YbXl3OwpJzdecVk5RbrejMRERERL6PkrJFd0L8D90zszqcpmTw+Z6PT4dRablEZ015bTnml5dWpQ2ip6XSNpk9MBP++diDrs/L55axVrEg7AECSkjMRERERr6JS+g64bWxn0vcX8fy8VOKiQrhmWEenQzqusopKfjlrFWl7C3jzxmF0jg5zOqRmZ3z3Njx0cR/u/eBH1mTk4Odj6N2hhdNhiYiIiEg90siZA4wx/O3C3ozrHs19s39i7sY9Tod0TNZa/jz7JxZu2cvDl/RlROdWTofUbF05pCN3nN6FA4Vl9GgfTpC/ppWKiIiIeBMlZw7x8/XhX9cMpEe7cH45axU/7cx1OqQavfT9Vt5els4vx3fm8sFxTofT7P3fmd244/Qu3HRazc2pRURERKTpUnLmoLBAP16dOoTIYH9ueG05O3OKnA7pMF/9tIuHv9zApL7tuevM7k6HI7hGXX9zVncuGqDeciIiIiLeRtecOaxtiyBmThvKZc8vYtrMZVwztCNB/r4E+vsQ5Hf410A/X4LcXwP9fVzr+fkQ4OtT7yXt12Tk8Ov/rqZ/bCRPXNEfHx+VzBcRERERaUjG2sYr5z548GC7YsWKRjteU/LDlr3c/MYKCkvr3v/MGAj0+zlZO/LrkUld9fs1ffX1Mfz98/UE+vnw0S9GER0e2ADPWERERESk+THGrLTWDq7pMY2ceYhRXVqz+s9nUlBSQUl5BcVllT9/LauguLzmryVHLq++nftrYWk5+wuqL/9529KKyhrjCQ/yY9ZNw5SYiYiIiIg0EiVnHiTQz7fRGztXVFpKyyspdidrVV/bhAcSpV5mIiIiIiKNRslZM+frYwgO8CU4QGXZRUREREScpGqNIiIiIiIiHkDJmYiIiIiIiAdQciYiIiIiIuIBlJyJiIiIiIh4ACVnIiIiIiIiHkDJmYiIiIiIiAdQciYiIiIiIuIBlJyJiIiIiIh4ACVnIiIiIiIiHkDJmYiIiIiIiAcw1trGO5gx2cD2Rjtg7bUG9jodhByTzo9n0/nxXDo3nk3nx7Pp/Hg2nR/PpXNzYvHW2uiaHmjU5MxTGWNWWGsHOx2H1Eznx7Pp/HgunRvPpvPj2XR+PJvOj+fSuTk1mtYoIiIiIiLiAZSciYiIiIiIeAAlZy4vOh2AHJfOj2fT+fFcOjeeTefHs+n8eDadH8+lc3MKdM2ZiIiIiIiIB9DImYiIiIiIiAdocsmZMWaiMWajMWaLMeZ31Zb/1xiT7L6lGWOSa9g2yRiz2Biz1hizxhhzZbXHOhljlhpjNrv3FXCM409xr7PZGDOlrtt7Mw84N18ZY3KMMZ8dsfw1Y8y2ajEk1d+zbjqcPD/GmHhjzEr3MdYaY6bXZfvmwOm/H/e6LYwxO40x/6q2TH8/NOj5ud29T2uMaX2c4+u15xg84Nzotec4nDw/eu05Maf/ftzr6rWnOmttk7kBvkAqkAgEAClArxrWewL4cw3LuwFd3d93ALKASPf9d4Gr3N/PAG6rYfuWwFb31yj391G13d6bb06fG/djE4Dzgc+OWP4acJnTP6PmfH7cxwx0fx8GpAEd6nJ+vfnm9Pmptp+ngf8A/6q2TH8/DXt+BgAJ7r+J1sc4vl57PPTcuNfTa4+Hnh/02uPR56fafvTaU+3W1EbOhgJbrLVbrbWlwDvAhdVXMMYY4Arg7SM3ttZustZudn+fCewBot3bnA687171deCiGo5/NvCNtXa/tfYA8A0wsQ7bezOnzw3W2u+A/Hp5Nt7H0fNjrS211pa47wbiHrXX384hjv/9GGMGAW2BOfXxhLxMg5wf9/3V1tq0Exxfrz3H5vS50WvP8Tl6fvTac0KO//3otedoTS05iwHSq93PcC+rbjSwu+qX5ViMMUNxfUqQCrQCcqy15Ufu1xgz2Bjz8gmOf8ztmxGnz82JPOgecn/SGBNYy228iePnxxgTZ4xZ447jUfc/cv3tuDh6fowxPrg+Gb37GLvV30/DnJ/jrafXntpx+tyciP52HD4/eu05LkfPj157atbUkjNTw7Ijy01eTQ3Z/WE7MaY98CYwzVpbebz9WmtXWGtvOsHxaxOXt3P63BzP74EewBBc04LurcU23sbx82OtTbfW9gO6AFOMMW1rGVdz4PT5+QXwhbU2vYb19ffTcOfnmPTaU2tOn5vj0d+OB5wfvfYcl9PnR689NfBzOoA6ygDiqt2PBTKr7hhj/IBLgEHH2oExpgXwOfAna+0S9+K9QKQxxs/9Kcph+z3i+OOOOP68OmzvzZw+N8dkrc1yf1tijJkJ/LYu23sJjzk/1tpMY8xaXJ/GfVDX7b2U0+dnBDDaGPMLXNdlBBhjDlprf6e/H6Dhzk9djj/uiOPPQ6894Py5OSb97QAedH702lMjp8+PXntq0NRGzpYDXY2rwk4AcBXwSbXHzwA2WGszatrYvc1HwBvW2veqlltrLTAXuMy9aAowu4ZdfA2cZYyJMsZEAWcBX9dhe2/m9Lk5JvcnOlXzpi8CfqrL9l7C0fNjjIk1xgS7v48CRgEb9bdziKPnx1p7rbW2o7U2AdcL4BvW2t+5962/nwY6P3Wg155jc/rcHJP+dgCHz49ee07I0fOj155jsB5QlaQuN+BcYBOuOa1/POKx14Dpx9n2OqAMSK52S3I/lggsA7YA7/FzdZ/BwMvV9nGDe50tuIZvOd72zenmAefmeyAbKML1adDZ7uX/A37E9Yf9FhDm9M+quZ0f4ExgDa5KUGuAW6rtu9n/7Th9fo7Y11QOr5ilv5+GPT93uP9fleP6xLrqb0avPU3n3Oi1x0PPD3rt8ejzc8S+pqLXHqy1GPcPQERERERERBzU1KY1ioiIiIiIeCUlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAf4f0nymxarMurYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAE/CAYAAAAUrGGzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABvOklEQVR4nO3dd3xUVfrH8c9J7yEkoYQWIKGX0EuooqKigr2ggr2ude266m/Vta1rL6hrr4iAa0elJEiHUAMkdEJL6BBIPb8/ZsCAlASS3JnJ9/16zSuZO7c8MzeTO8+cc55jrLWIiIiIiIiI9/NzOgARERERERGpHErwREREREREfIQSPBERERERER+hBE9ERERERMRHKMETERERERHxEUrwREREREREfIQSPBERERERER+hBE9ExEcYY/aUuZUaY/aVuT/c6fhOhDFmtTHmVKfjOBZjzCRjzHVVuH9rjNlb5ly+W+axtw477wXGmN1lHq9tjBnr3n6NMebyw/Y9yBiz1BiTb4yZaIxpUlXPQ0REqkeA0wGIiEjlsNZGHPjdGLMauM5a+6tzER2bMSbAWlvs7ceoJh2ttdmHL7TW3gTcdOC+MeYDoLTMKq8DhUBdIAX43hgz31q72BgTB3wDXAf8D/gn8CXQs4qeg4iIVAO14ImI+DhjjJ8x5gFjzApjzFZjzFfGmNruxxLdLURXG2PWGWO2G2NuMsZ0M8YsMMbsMMa8VmZfI40xU40xrxpjdrpbfwaVeTzaGPOeMWajMSbHGPOkMcb/sG3/Y4zZBjxujGlujPndHVeeMeZTY0wt9/ofA42B/7lbp+4zxgwwxqw/7PkdbOUzxjxujPnaGPOJMWYXMPI4MSUZYya7n0ueMebLo7yGIe59bnW/JrOMMXWNMU8BfYHX3DG+5l6/lTFmgjFmmzFmmTHm4jL7+sDd8jbBGLPbffyTbjkzxoQDFwAfHnb/UWvtHmttOvAtcKV7k/OBxdba0dba/cDjQEdjTKuTjUVERJyjBE9ExPfdDgwD+gMJwHZcLTtl9QCSgUuAl4CHgVOBtsDFxpj+h627EogDHgO+OZAw4kouioEkoBNwOq4WosO3rQM8BRjgX+64WgONcCUaWGuvBNYC51hrI6y1z5Xz+Q4FvgZqAZ8eJ6Z/Ar8AMUBD4NWj7HMEEO2OLxZXq9k+a+3DQBpwmzvG29yJ1QTgM/fzvAx4wxjTtsz+hruPHQdkuOM8linGmE3GmG+MMYlHWecCIBeY4r7fAiix1i4vs858XOcU98/5Bx6w1u4FVpR5XEREvJASPBER33cj8LC1dr21tgBXAnWhMaZsN/1/Wmv3W2t/AfYCn1trt1hrc3AlMJ3KrLsFeMlaW2St/RJYBgwxxtQFzgTutNbutdZuAf4DXFpm2w3W2lettcXW2n3W2mxr7QRrbYG1Nhd4EVciejKmWWvHWWtLgajjxFQENAES3M8//Sj7LMKV2CVZa0ustXOstbuOsu7ZwGpr7fvu5zkXGANcWGad7621U9zn42GglzGm0VH21x9IBFoBG4DvDjt3B4wAPrLWWvf9CGDnYevsBCLL+biIiHghjcETEfF9TYCxxpiyY7NKcI3LOmBzmd/3HeF+RJn7OWWSCIA1uFrgmgCBwEZjzIHH/IB1ZdYt+zvGmDrAK7i6OUa6199ermd1dGWPcbyY7sPVkjbTGLMd+Le19r9H2OfHuFrvvnB3If0EV9JcdIR1mwA9jDE7yiwLcO/jLzFaa/e4u6wmHBb7gccPtMgVGmPuAHbhau1ceGAdd3LYH7i+zKZ7cCW4ZUUBu8v5uIiIeCG14ImI+L51wJnW2lplbiHu1rkT0cCUyZZwjZPb4D5OARBX5jhR1tqyXf7KJobg6p5pgQ7W2ijgClzdNo+2/l4g7MAd91i6+MPWKbvNMWOy1m6y1l5vrU3A1dL5hjEm6fAn7G6tfMJa2wbojauV7qqjxLgOmHzY6x1hrb25zDoHW+uMMRFAbVyvYXlYDn2NcMfyh7V2ZZlly4EAY0xymWUdgcXu3xe77x+IIxxoXuZxERHxQkrwRER831vAUwcKeRhj4o0xQ09if3WA240xgcaYi3C1Jv1grd2Iazzbv40xUe7iLs0PG793uEhcLUk7jDENgHsPe3wz0KzM/eVAiDFmiDEmEHgECD7azo8XkzHmImNMQ/fq23ElTyWH78cYM9AY096dUO7C1WXzwHqHx/gd0MIYc6X7NQp0F61pXWads4wxfYwxQbhaEGdYa//SemeMaWuMSTHG+LsTwX8DOUDmYateBXxw2HPfi6tK5v8ZY8KNMam4xiceaEkcC7QzxlxgjAkB/gEssNYuPeKLKSIiXkEJnoiI73sZV/XEX4xrjrTpuIqdnKgZuAqy5OEqlHKhtXar+7GrgCBgCa6E6Wug/jH29QTQGdfYr+9xJSRl/Qt4xF258u/W2p3ALcC7uBKdvcB6ju1YMXUDZhhj9uB6je6w1q46wj7qubfbhSu5moyrmya4Xt8LjasC6SvW2t24CrlciqtVbhPwLIcmop/hKlCzDeiCq+jKkdTFNXXBLlzFaRKBs8t2DTXG9MJVIGb0Eba/BQjFNW7yc+Bma+1iAPeYxwtwncPtuP4mLj3CPkRExIuYQ4dRiIiIHJ0xZiSu+fX6OB2LtzKuuerWW2sfcToWERHxPWrBExERERER8RFK8ERERERERHyEumiKiIiIiIj4CLXgiYiIiIiI+AgleCIiIiIiIj4ioDoPFhcXZxMTE6vzkCIiIiIiIh5jzpw5edba+Kraf7UmeImJicyePbs6DykiIiIiIuIxjDFrqnL/6qIpIiIiIiLiI5TgiYiIiIiI+AgleCIiIiIiIj6iWsfgiYiIiIh4iqKiItavX8/+/fudDkV8UEhICA0bNiQwMLBaj6sET0RERERqpPXr1xMZGUliYiLGGKfDER9irWXr1q2sX7+epk2bVuux1UVTRERERGqk/fv3Exsbq+ROKp0xhtjYWEdah5XgiYiIiEiNpeROqopTf1tK8EREREREHPLUU0/Rtm1bOnToQEpKCjNmzADguuuuY8mSJZVyjMTERPLy8o65ztNPP13h/X7wwQfcdttthyx7//33SUlJISUlhaCgINq3b09KSgoPPPBAhfdfHV566SXy8/OdDqNSaQyeiIiIiIgDpk2bxnfffcfcuXMJDg4mLy+PwsJCAN59991qjeXpp5/moYceOun9XH311Vx99dWAK7GcOHEicXFxJ73fE2WtxVqLn9+R27VeeuklrrjiCsLCwsq9z+LiYgICPDeNOm4LnjGmkTFmojEm0xiz2BhzR5nH/maMWeZe/lzVhioiUr127S/ip0Ub2VNQ7HQoIiLigzZu3EhcXBzBwcEAxMXFkZCQAMCAAQOYPXs2ABEREdx///106dKFU089lZkzZzJgwACaNWvGt99+C/y1Ne3ss89m0qRJfznmsGHD6NKlC23btmXUqFEAPPDAA+zbt4+UlBSGDx8OwCeffEL37t1JSUnhxhtvpKSkBHC10LVo0YL+/fszderUcj/X559/nm7dutGhQwcee+wxAFavXk2rVq247rrraNeuHcOHD+fXX38lNTWV5ORkZs6cCcDjjz/OlVdeySmnnEJycjLvvPPOcffbunVrbrnlFjp37sy6deu4+eab6dq1K23btj243iuvvMKGDRsYOHAgAwcOPPhaH/D1118zcuRIAEaOHMndd9/NwIEDuf/++1mxYgVnnHEGXbp0oW/fvixdurTcr0WVO5DVHu0G1Ac6u3+PBJYDbYCBwK9AsPuxOsfbV5cuXayIiCcrLim1k5ZtsX/7bK5t8fAPtsn939n7v57vdFgiIlIFlixZ4ujxd+/ebTt27GiTk5PtzTffbCdNmnTwsf79+9tZs2ZZa60F7A8//GCttXbYsGH2tNNOs4WFhTYjI8N27NjRWmvt+++/b2+99daD2w8ZMsROnDjRWmttkyZNbG5urrXW2q1bt1prrc3Pz7dt27a1eXl51lprw8PDD267ZMkSe/bZZ9vCwkJrrbU333yz/fDDD+2GDRtso0aN7JYtW2xBQYHt3bv3Icc83IHj/vzzz/b666+3paWltqSkxA4ZMsROnjzZrlq1yvr7+9sFCxbYkpIS27lzZ3v11Vfb0tJSO27cODt06FBrrbWPPfaY7dChg83Pz7e5ubm2YcOGNicn55j7NcbYadOmHYzlwPMuLi62/fv3t/Pnz//La3P46zB69Gg7YsQIa621I0aMsEOGDLHFxcXWWmtPOeUUu3z5cmuttdOnT7cDBw484mtwpL8xYLY9Tt50Mrfjti1aazcCG92/7zbGZAINgOuBZ6y1Be7HtlRu6ikiUn2Wb97NmDnrGTsvhy27C4gODeSirg3Zvb+YL2ev46peibRJiHI6TBERqSJP/G8xSzbsqtR9tkmI4rFz2h718YiICObMmUNaWhoTJ07kkksu4ZlnnjnYanRAUFAQZ5xxBgDt27cnODiYwMBA2rdvz+rVqysU0yuvvMLYsWMBWLduHVlZWcTGxh6yzm+//cacOXPo1q0bAPv27aNOnTrMmDGDAQMGEB8fD8All1zC8uXLj3vMX375hV9++YVOnToBsGfPHrKysmjcuDFNmzalffv2ALRt25ZBgwZhjPnLcxs6dCihoaGEhoYycOBAZs6cSXp6+lH326RJE3r27Hlw+6+++opRo0ZRXFzMxo0bWbJkCR06dKjQa3fRRRfh7+/Pnj17+OOPP7jooosOPlZQUFChfVWlCnUeNcYkAp2AGcDzQF9jzFPAfuDv1tpZlR6hiEgV2ba3kG8zchgzN4eFOTsJ8DMMaBnPBZ0bckrrOgQH+LMzv4jJy3N56oclfHJtD1VbExGRSuXv78+AAQMYMGAA7du358MPP/xLghcYGHjw+uPn53ewS6efnx/Fxa5hBAEBAZSWlh7c5kjl+SdNmsSvv/7KtGnTCAsLY8CAAUdcz1rLiBEj+Ne//nXI8nHjxp3QddBay4MPPsiNN954yPLVq1cffC7Hem7w14qUxphj7jc8PPzg/VWrVvHCCy8wa9YsYmJiGDly5FGnLyh7nMPXObDP0tJSatWqRUZGxvGeuiPKneAZYyKAMcCd1tpdxpgAIAboCXQDvjLGNHM3O5bd7gbgBoDGjRtXWuAiIieisLiU35duYczc9UxcuoXiUkvbhCj+cXYbzk1JIC4i+JD1o8MCuWNQMk/8bwm/ZW7h1DZ1HYpcRESq0rFa2qrKsmXL8PPzIzk5GYCMjAyaNGlyQvtKTEzkjTfeoLS0lJycnIPj18rauXMnMTExhIWFsXTpUqZPn37wscDAQIqKiggMDGTQoEEMHTqUu+66izp16rBt2zZ2795Njx49uOOOO9i6dStRUVGMHj2ajh07Hje2wYMH8+ijjzJ8+HAiIiLIyckhMDCwQs9v/PjxPPjgg+zdu5dJkybxzDPPEBoaWq797tq1i/DwcKKjo9m8eTM//vgjAwYMACAyMpLdu3cfLARTt25dMjMzadmyJWPHjiUyMvIv+4uKiqJp06aMHj2aiy66CGstCxYsKNdrUR3KleAZYwJxJXefWmu/cS9eD3zjTuhmGmNKgTggt+y21tpRwCiArl27HpL8iYhUB2stC9bv5Ju56/l2/ga25xcRHxnM1amJXNClIa3qHbvr5RU9m/Dx9DU8/UMm/VrEExSgGWZEROTk7dmzh7/97W/s2LGDgIAAkpKSDhY+qajU1NSD3R3btWtH586d/7LOGWecwVtvvUWHDh1o2bLlIV0Yb7jhBjp06EDnzp359NNPefLJJzn99NMpLS0lMDCQ119/nZ49e/L444/Tq1cv6tevT+fOnQ8WXzmW008/nczMTHr16gW4uqZ+8skn+Pv7l/v5de/enSFDhrB27VoeffRREhISSEhIKNd+O3bsSKdOnWjbti3NmjUjNTX1kOd95plnUr9+fSZOnMgzzzzD2WefTaNGjWjXrh179uw5YjyffvopN998M08++SRFRUVceumlHpPgmcMa3P66gqud8kNgm7X2zjLLbwISrLX/MMa0AH4DGh/egldW165d7YFqQCIiVW3Tzv2MnZfDmLnryd6yh6AAP05vU5cLujSkb1IcAf7lT9R+y9zMtR/O5h9nt+GaPk2rMGoREakumZmZtG7d2ukw5Dgef/xxIiIi+Pvf/+50KBV2pL8xY8wca23XqjpmeVrwUoErgYXGmAz3soeA/wL/NcYsAgqBEcdK7kREqsO+whJ+XryJMXPXMzU7j1ILXZvE8PR57RnSoT7RoRXrEnLAKa3q0Ccpjpd/y+L8zg2oFRZUyZGLiIiInLzyVNFMB442mvKKyg1HRKTiSksts1ZvY8zc9fywcBN7CoppUCuU2wYmcX7nhiTGhR9/J8dhjOGRs1tz1stpvPxbliNjNURERGqixx9/3OkQvIrnTsEuInIca7buZczcHMbOW8+6bfsID/LnrPb1uaBLQ7on1sbPr3IrXraqF8Ul3Rrz8bQ1XNGzCc3jI46/kYiIiEg1UoInIl5l1/4ifliwkTFz1zNr9XaMgdTmcdx9WgsGt61HWFDV/lu7+7QW/G/+Bv71QybvjuhWpccSERERqSgleCLi8UpKLWlZuYyZm8MvizdRUFxK8/hw7jujJed1akD96NBqiyU+MphbBjbnuZ+WMTU7j9SkuGo7toiIiMjxKMETEY+VtXk3X89Zz9h5OWzZXUCtsEAu6daI8zs3pGPDaMcmHb8mtSmfzVjLP79bwve398W/kruCioiIiJwoTeYkIh7px4UbOf2lKbyXvooODWvx1hWdmfHQIP5vaDtSGtVyLLkDCAn054EzW7F0025Gz17nWBwiIuL9/P39SUlJoV27dlx00UXk5+ef8L5GjhzJ119/DcB1113HkiVLjrrupEmT+OOPPw7ef+utt/joo49O+NgHrF69mnbt2h2y7PHHH+eFF16o0H4qK56aSC14IuJxFuXs5K6vMkhpVIt3rupKXESw0yH9xZD29Xm/yWpe+GU5Z3dMICJY/05FRKTiQkNDycjIAGD48OG89dZb3H333QcfLykpqdCE4Ae8++67x3x80qRJRERE0Lt3bwBuuummCh+jqhQXF3tUPN5GLXgi4lG27NrPdR/OpnZYEKOu9MzkDlzTJjx6dhvy9hTwxsRsp8MREZGq9txzMHHiocsmTnQtryR9+/YlOzubSZMmMXDgQC6//HLat29PSUkJ9957L926daNDhw68/fbbAFhrue2222jTpg1Dhgxhy5YtB/c1YMAAZs+eDcBPP/1E586d6dixI4MGDWL16tW89dZb/Oc//yElJYW0tLRDWtkyMjLo2bMnHTp04LzzzmP79u0H93n//ffTvXt3WrRoQVpaWoWf47H2/dBDD9G/f39efvnlg/Fs2LCBlJSUgzd/f3/WrFnDmjVrGDRoEB06dGDQoEGsXbsWcLVi3n777fTu3ZtmzZodbNGsSZTgiYjH2F9UwvUfzWbX/iLeHdGN+EjPTO4OSGlUi2EpCbybvop12068S42IiHiBbt3g4ov/TPImTnTd71Y5FZWLi4v58ccfad++PQAzZ87kqaeeYsmSJbz33ntER0cza9YsZs2axTvvvMOqVasYO3Ysy5YtY+HChbzzzjuHdLk8IDc3l+uvv54xY8Ywf/58Ro8eTWJiIjfddBN33XUXGRkZ9O3b95BtrrrqKp599lkWLFhA+/bteeKJJw6Jc+bMmbz00kuHLC9rxYoVhyRlb731Vrn2vWPHDiZPnsw999xzcFlCQgIZGRlkZGRw/fXXc8EFF9CkSRNuu+02rrrqKhYsWMDw4cO5/fbbD26zceNG0tPT+e6773jggQcqeCa8n/oUiYhHsNby99HzWZCzk1FXdqVNQpTTIZXLfWe04qfFm3ju52W8elknp8MREZETdeed4O4qeVQJCTB4MNSvDxs3QuvW8MQTrtuRpKTASy8dc5f79u0jJSUFcLXgXXvttfzxxx90796dpk2bAvDLL7+wYMGCg61RO3fuJCsriylTpnDZZZfh7+9PQkICp5xyyl/2P336dPr163dwX7Vr1z5mPDt37mTHjh30798fgBEjRnDRRRcdfPz8888HoEuXLqxevfqI+2jevPnBbqfw50Tlx9v3JZdcctS4pk6dyrvvvnuw1XDatGl88803AFx55ZXcd999B9cdNmwYfn5+tGnThs2bNx/z+foiJXgi4hFe+S2b7xZs5IEzW3Fam7pOh1NuCbVCuaFvM175PZuRvRPp0iTG6ZBERKSqxMS4kru1a6FxY9f9k1R2DF5Z4eHhB3+31vLqq68yePDgQ9b54Ycfjlt0zFpbqYXJgoNdvWv8/f0pLi6utP3Coc+5rI0bN3Lttdfy7bffEhERccR1yj7HAzGC6/nXNOqiKSKO+37BRv7z63LO79yAG/s1czqcCruxf3PqRAbzz++WUFpa8y4kIiI+4aWXYNKkY98eewzy8+HRR10/H3vs2Osfp/WuvAYPHsybb75JUVERAMuXL2fv3r3069ePL774gpKSEjZu3MjEw8cIAr169WLy5MmsWrUKgG3btgEQGRnJ7t27/7J+dHQ0MTExB1vKPv7444MtbifrRPZdVFTExRdfzLPPPkuLFi0OLu/duzdffPEFAJ9++il9+vSplBh9gVrwRMRRC9bv4J7RGXRtEsO/zm/v6PQHJyo8OIB7B7fk3q8X8L8FGxia0sDpkEREpLIdGHP31VcwcKDrVvZ+FbruuutYvXo1nTt3xlpLfHw848aN47zzzuP333+nffv2tGjR4ojJUnx8PKNGjeL888+ntLSUOnXqMGHCBM455xwuvPBCxo8fz6uvvnrINh9++CE33XQT+fn5NGvWjPfff7/SnktF9/3HH38wa9YsHnvsMR577DHA1XL5yiuvcM011/D8888THx9fqTF6O1OdzZZdu3a1B6r5iIhs2rmfoa+nE+Dnx/jbUj22YmZ5lJZaznktne17C/ntngGEBlW8pLWIiFSvzMxMWrduXb6Vn3vOVVClbDI3cSLMmgVlxn+JlHWkvzFjzBxrbdeqOqa6aIqII/YVuipm7tlfzHsjPXc6hPLy83NNm7Bh537eS1/pdDgiIlLZ7rvvry11AwcquROPowRPRKpdaanlntEZLNqwk1cu60Sret5RMfN4ejaLZXDburwxaQVbdu13OhwRERGpgZTgiUi1e+m3LH5YuIkHz2zFoNbeUzGzPB48szVFJaW88Msyp0MRERGRGkgJnohUq2/nb+CV37K4qEtDru/rfRUzjycxLpyRvRMZPWc9i3J2Oh2OiIgcR00soy/Vw6m/LSV4IlJtMtbt4N7R8+meWJsnz2vnlRUzy+O2U5KpFRrIk98v0QeHSnTTx3N4ZNxCvaYiUmlCQkLYunWr/q9IpbPWsnXrVkJCQqr92JomQUSqxcad+7j+o9nUiQrmzSs6Exzgu1Umo0MDueu0Fvxj/GImLNnM6W3rOR2S18vespufFm8CoG1CNJd1b+xwRCLiCxo2bMj69evJzc11OhTxQSEhITRs2LDaj6sET0SqXH5hMdd9OJt9hSV8el0PYr28YmZ5XN69MR9NW8PTP2QyoGUdggLUYeJkjJu3AT8DnRvH8Pi3i0lpVIvW9X2jOI+IOCcwMJCmTZs6HYZIpdInDhGpUqWllru/nE/mxl28elknWtSNdDqkahHg78fDQ1qzems+H01b7XQ4Xq201DIuI4fUpDjeurIL0aGB3PrZXPYWFDsdmoiIiMdRgiciVerFCcv5afEmHjqrNQNb1XE6nGo1sGUd+rWI55Xfsti+t9DpcLzWnLXbWb99H+d1akBcRDAvX9qJ1Xl7eXTcIo2bEREROYwSPBGpMuMzcnhtYjaXdmvEtX1qZheYR4a0Zk9BMS/9utzpULzWuHk5hAb6M9g9lrFX81juGNSCb+blMHrOeoejq5nmr9vB6NnrnA5DRESOQAmeiFSJuWu3c+/XC+jRtDb/N9R3K2YeT4u6kVzWvTGfzFhL9pY9TofjdQqLS/luwUZOa1OX8OA/h43fdkoSvZvH8o/xi1i+ebeDEdY81lruH7OAe79ewNJNu5wOR0REDqMET0QqXc6Ofdzw0RzqRYXw1hVdanyBkbtPa0FYoD9P/5DpdCheZ9KyLezcV8R5nRocstzfz/DSpSlEBAdw66dzyS/UeLzqMiUrj6WbXEn1fyaoZVpExNPU7E9dIlLp9ha4KmYWFJXw3oiuxIQHOR2S42IjgrntlCR+X7qFtCyV4q6IcRk5xIYH0Sc57i+P1YkM4aVLOpGdu4fHxi92ILqaadSUFdSNCubWgc35efFmFuXsdDokEREpQwmeiFSa0lLLXV9msGzTLl69vBPJNaRiZnmMTE2kce0wnvwuk+KSUqfD8Qq79hfxa+YWzumYQKD/kS9XfZLjuG1gEqPnrOebuRqPV9UW5exkavZWrkltyo39mxMdGsiLasUTEfEoSvBEpNK88MsyflmymUfPbsOAljWrYubxBAf48+CZrVi2eTdfzVYiUh4/LdxEYXEpww7rnnm4OwYl071pbR4Zt0jjHKvYqCkriQgO4LIejYkKCeSGfs34fekW5q7d7nRoIiLipgRPRCrFN3PX88akFVzeozEjeyc6HY5HOqNdPbon1ubFCcvYvb/I6XA83th5OTSNC6djw+hjrhfg78crl3YiJNCf2z6by/6ikmqKsGZZty2f7xdu5HJ3cgcwsncitcODNBZPRMSDHDfBM8Y0MsZMNMZkGmMWG2PucC9/3BiTY4zJcN/OqvpwRcQTzVmzjQfGLKRXs1ieOLdtja2YeTzGGB45uzV5ewp5feIKp8PxaBt27GP6qq0MTUko199TvegQXry4I0s37eaJ/2k8XlV4L30VBrg6NfHgsvDgAG7q34y0rDxmrd7mWGwiAjz3HEyceOiyiRNdy6VGKU8LXjFwj7W2NdATuNUY08b92H+stSnu2w9VFqWIeKz12/O54aM5JNQK4Y3hnY86VkpcOjSsxfmdG/Df9FWs25bvdDge69v5G7AWhqUcu3tmWQNa1uHmAc35fOY6xmfkVGF0Nc+O/EK+nLWOc1MSqB8deshjV/ZMJD4ymH//ssyh6EQEgG7d4OKL/0zyJk503e/Wzdm4pNod95OYtXajtXau+/fdQCZQ/iuuiPisPe6KmYUlpbw7opsqZpbTfYNb4e9neObHpU6H4rHGzcuhU+NaJMaFV2i7e05rQdcmMTz0zUJW5mo8XmX5ZPoa9hWVcEO/Zn95LDTIn1sGNGf6ym38kZ3nQHQiAsDAgfD55zB0KFx4IVxwAXzxhWu51CgV+qrdGJMIdAJmuBfdZoxZYIz5rzEmprKDExHPVVJqufOLeWRt2cMbwzuTVCfC6ZC8Rr3oEG7s34zvF25ktrq1/UXmxl0s3bT7L3PflUeAvx+vXNaJwAA/bv1snsbjVYL9RSV88Mca+reIp1W9qCOuc1n3xtSPDuHfE5Zjra3mCEUEgPnz4cEHYfduGDMGtm+H886Dfv3gjjvggw9c6xQWOh2pVLFyJ3jGmAhgDHCntXYX8CbQHEgBNgL/Psp2NxhjZhtjZufmav4nEV/x3M9L+TVzC4+d04a+yfFOh+N1bujXjHpRIfzzuyWUluoDcVnjMnII8DMMaV//hLZPqBXKixd3JHPjLp78fkklR1fzjJ2XQ96eAm48QuvdASGB/tw6MIk5a7Yzebmu9SLVav9+ePhh6NoVsrIgMhKuuw4iIuCUU6C4GN59F66+GlJSXI937gzXXguvvQZTp8Ie9XjwJeVK8IwxgbiSu0+ttd8AWGs3W2tLrLWlwDtA9yNta60dZa3taq3tGh+vD4EivmD07HW8PXklV/RszFW9Ep0OxyuFBQVw3xktmb9+J+Pna7zYAaWllvHzNtC/RTyxEcEnvJ9TWtXlhn7N+GT6Wr5bsKESI6xZSkst76StpF2DKHo1jz3muhd3bUTDmFBeVCueSPVJT3clbU8/7UrmAgJg/Hh45x349ltX8vbUU7BrF2Rmurpw3nknxMW5Hv/b36BPH4iKghYt4JJL4Jln4OefYcsWp5+dnKDyVNE0wHtAprX2xTLLy361eh6wqPLDExFPM2v1Nh4au5DUpFgeO6et0+F4tWEpDejQMJrnflrGvkJ1JQSYvmorm3btZ+gJdM883L2DW9KpcS0eGLOQNVv3VkJ0Nc+vmZtZmbuXG/s1P24106AAP24/JZkF63fya6Y+GIpUqV274NZboW9fVwveTz/BoEEwevSfY+4GDoSvvoJZs8DfH1q1gksvhWefhV9+cSVw69a5Er0nnoB27WDmTFc3zzPOgLp1oUEDGDIEHnnE1e1z5UrQFzgezxzvWzZjTB8gDVgIlLoXPwRchqt7pgVWAzdaazcea19du3a1s2fPPrmIRcQx67blM/T1qdQKDWTsLalEhwU6HZLXm7lqGxe/PY27Tm3BHacmOx2O4+77ej7fL9jI7EdOIzTI/6T3t25bPkNeSaNJbDhf39yL4ICT32dNcsGbf7B5134m/X0AAeWokFtcUsqpL04mNCiA7//WBz8/354yxVrL7oLig/MCilSL77+Hm26CnBy4/XZ48klXd8zKsn07ZGTAvHl//szMhBL3F5HR0a5Ww5QU6NTJdWvdGgIDXVMydOt2aGGXiRNdSeZ991VejF7OGDPHWtu1qvYfcLwVrLXpwJH+Q2taBJEaZPf+Iq79cBbFJaW8O6KrkrtK0r1pbc5qX4+3Jq/g0u6NqBsV4nRIjtlfVMKPCzdxRrv6lZLcATSqHcbzF3Xkxo/n8K8flvL4uWp1Lq85a7YxZ812Hj+nTbmSO3AVubnj1GTu+nI+Py3exFknOI7SW7wxaQXP/7yMxrXD6JoYQ7fE2nRtEkPz+AifT27FAbm5ru6Vn30Gbdq4Wud69ar848TEuBK0sknavn2waNGhSd+oUa7lAMHBrhbAunXhn/90dRm9/nqYNs01VcNXX1V+nHJUx03wRERKSi13fJHBity9fHRNd5rFq2JmZXrgjNb8umQLz/+8jBcu6uh0OI75fekWdhcUn1D1zGMZ3LYeV6cm8v7U1fRsFssZ7epV6v591duTV1IrLJCLuzWq0HbndmzA6xNX8J8Jyxncth7+PproLN20i5d+XU73prWJCQtkyvJcvpnrGk9bKyyQLo1j6JpYm26JMbRrEE1IoFqP5QRZ60rq7rjD1TXzscdc3SiDT3yccoWFhrpa5srOqVdSAsuXH5r0zZjhKthy++1w993g5wc33ODq6mktHKert1QOJXgiclzP/JjJ70u38M9h7UhNinM6HJ/TODaMq/skMmrKSkb2TqRdg2inQ3LE2Hk51IkMPm4xjxPx4JmtmbNmO/d9PZ+2CVE0qh1W6cfwJStz9zAhczO3DUwiLKhiHxX8/Qx3nprMbZ/N47sFGxhagcnqvUVxSSn3jl5AVEggbw7vTGxEMNZaVm/NZ9bqbcxZvZ1Za7bx21LXWMQgfz86NIymq7uFr0uTGM0bWpl8uVvg2rWu7pg//gg9eriqYbZr53RULv7+rq6ZrVvD5Ze7llkL69fDPfe4xgPWru2q1Pnaa9C0qWts3xlnuM5VZKSz8fuwCs2DJyI1z5ez1vJO2ipG9GrClT2bOB2Oz7p1YBK1w4L4v++W1MgKhNv3FjJp2RaGpiRUSYtPUIAfr13WGWvhts/nUVhcevyNarB30lYR6O93wlVyz2pXn1b1Inn51yyKS3zvtX4nbRULc3byxNC2B6u9GmNoGhfOxV0b8eyFHfj9ngHMeeRURl3ZhZGpiZRay3vpK7nuo9l0+ucETn1xMg9+s4Axc9azZuveGvm+rzTdurm6AT77rGuOt4kTXffLtjZ5m9JSV1LUti1Mngz/+Y+rIqanJHdHYwxkZ7vOwaOPulrwPvkE3ngD2reHjz5yTcQeG+uq+vnss665+fT3X6mOW2SlMqnIioh3mb5yK1e+N4OezWJ5f2S3co/DkRPzyfQ1PDJuEW9d0Zkz2vn22KXDHXju3/2tT5W2YP64cCM3fzqX6/o05ZGz21TZcbxZ7u4CUp/9nQs6N+Rf57c/4f38tGgTN30yhxcu6siFXRpWYoTOyt6yh7NeSeOUlnV484rOx60uWtb+ohIWrN/JrNXbmL3aNcZx1/5iAOIjg+na5M9una3rRxGo/7nl99prrpL/oaGuZOHFF10tX97YJTAz0zWP3R9/wGmnwdtvu1q/vMGB5Pqrr1ytdIffLyx0Jao//eS6LVjg2q5+fRg82NW6d+qprgTQh1V1kRUleCJyRGu35jP09XRiwoNcFTNDVVSlqhWXlHLWK2kUFJfyy139alTFxwvf/IOd+4r45a5+FfrAfCL+MX4RH01bw7tXdeXUNnWr9Fje6N+/LOO1idn8dnf/kxpva63lnNfS2bWvmN/u6e8TyUpJqeXCt/5gVd5efrmrH3UiT64oUmmpJWvLHle3zjXbmbV6G+u3u4pWhAb606lxrYNJX6fGtYhUtc6jKyqCq66CL75wdR0sKXFNC3DllXDFFdC4sdMRHl9hoau76T//CeHhrla7q67yriS1ot1lN2xwTdnw00+un9u3u1r9unX7sztnt26uc+pDlOCJSLXbW1DMsNensmV3AeNvTSUxLtzpkGqMKctzueq/M3n4rNZc36+Z0+FUi3Xb8un73ETuHdySWwcmVfnx9heVcMGbf7B++z5+uKMvDWqFVvkxvcXegmJ6P/M7PZvV5u0rT/6zx+9LN3PNB7P51/ntuay7F3zAPo5301by5PeZ/OeSjpzXqWpaJTft3M/sNduYvXo7s9dsY8mGXZRa8DPQql4U3RJj6OJu5asfrb/dgw60FN18s6s74MiRrjnd0tJcjw8c6Er2LrjANam3p5k1C669FhYudD2PV15xVaSsSUpKXK/Dzz+7Er4ZM1ytsTExcPrprha+wYMhIcHpSE+aEjwRqXbfzF3P3V/N5/2R3RjYqo7T4dQ4V78/k9lrtjPp7wMOju/xZa/9nsULvywn/f6BNIypnuInq/P2cvar6bSoG8GXN/byidalyvD+1FU88b8ljLm5N12axJz0/qy1nPfGH2zZtZ+J9w7w6lbp1Xl7OePlKaQ2j+PdEV2rvKX5gD0Fxcxbu/1gwjdv7Q7yC13zkTWoFUrXxBh6N4/lgs4Na243+mN1C2zSxDUG7OOPXWPDQkPhvPNcLWODBkGAw/UG9+6Ff/wDXnoJ6tWDN9+Ec891NiZPsXUr/Prrn905N21yLe/Q4c/WvdRUCPK+gkVVneDV0P8EInIsaVl51A4Pon+LeKdDqZEeHtKa/MISXvo1y+lQqpy1lrHzcujetHa1JXcAiXHh/Ov89sxdu4MXfllWbcf1ZMUlpbyXvupglcfKYIzhntNbsGHnfr6cta5S9umE0lLLfWMWEOjvx1Pnta+25A4gIjiAvsnx3HVaCz69ricLHjud/93Wh3+c3YaURrWYtmIr949ZyNUfzGJnflG1xeVRZs36M7kD18+vvnItb9bMlUAtX+4a0zZiBPzwgys5aNQI/v73P8eBVbfffnMVHnnxRdeccUuWKLkrKzYWLrkE3n/f1ZVz/nxXUZbYWFf31VNOcVXpPPdcV6vtypWu7Z57zpXklzVxomt5DaEET0QOYa0lPTuP1KQ4TdTrkKQ6kQzv0ZjPZq4la/Nup8OpUotydrEidy/DHCilf07HBC7v0Zi3J69korucfU32w6JNrN++jxsquWtwn6Q4uifW5rXfs9lfVFKp+64un8xYw8xV23h0SBvqRZ/cuLuTFeDvR/uG0VzTpymvD+/MjIcG8ewF7Zm+citDX08ne4tv/884ovvuO3TMF7julx3zZYxrUvA333S1BI0Z45p24OWXoWNHSEmBf/8bNm6s+ni3b4drrnEVE/H3h0mT4K23ILpmTpFTLsa4Wu7uuw9+/93Vujd+vCthX7QIbr0VmjeHFi1g+nQYNsyVyINvVFWtICV4InKIZZt3k7u7gL7Jmu/OSXee2oKwIH+e+iHT6VCq1Nh5OQT5+zGkvTNVQ/9xdhta1Yvk7q8y2LhznyMxeAJrLaOmrKBZfDintq7ccT/GGO4+vQVbdhfwyfQ1lbrv6rBuWz7P/LiUvslxXNTV86qBGmO4pFtjPr++J3sKihn2+h/8vnSz02F5tuBgOP98GDfOldC9+qpr2d//Dg0bwplnuiYWz8+v/GOPGQNt2rimC7j/flfrYf/+lX8cXxcZ6Wq5e/11WLHC1UL7yiuQnOzqzrlrFwwZAt27H9p9t4ZQgicih0hbngegBM9htcODuGNQMpOW5TJ5ea7T4VSJ4pJSvp2/gYGt4okOc6Y6YEigP68P70xBcSm3fz7PJ+dsK49pK7ayKGcX1/dtViUt9z2bxZKaFMtbk1eQX1hc6fuvKtZaHvhmAQZ45oIO1do1s6K6JtZm/G19aBIbxrUfzubNSSs0t155xMXBbbe5CnpkZsIDD7i6Sg4f7hoTd801rha20pP837BxoyupvPBC15QAM2fCM8+4xgTKyTHGldj97W/w/fewbRtMmAA9e7q66d58c41K7kAJnogcJi07j6Q6EarO5gGu6pVIYmwYT363xCcTjz9WbCVvTwHndar+7pllNY+P4Knz2jFr9Xb+8+tyR2NxyttTVhIXEVyl5+Lu01qSt6eQj6Z5TyveF7PWMTV7Kw+e1dorqq02qBXK1zf15qz29Xn2p6Xc+WWG13aLdUSrVvDUU7Bqlatb34UXwujRruSgaVN4+GFYurRi+7QW3n0XWreGH390JXUzZkDnzlXzHARCQlxdX7OzXZOtv/nmX8fk+TgleCJy0P6iEmas3EqfJLXeeYKgAD8ePKs1WVv28LkXF6g4mnHzcogKCWBAS+crtZ7XqSEXd23IG5NWMMVHW0yPJnPjLiYvz2Vk7yaEBFZdlcsuTWIY0DKetyevYE+B57fibdixj6e+z6Rns9pc7kVTPIQG+fPaZZ24d3BLxmds4OK3p9Xo7scnxM8PBgyA//4XNm92ddds08aVnLVu7Rq799prkJd37P1kZ7sqdV5/vWuM34IFrm6ZgZrPsEqVraL6f//n+nnxxTUqyVOCJyIHzVmznYLiUnXP9CCnt6lLj6a1eWnCcnbv950KefmFxfy0eBNDOtSv0qSiIp44tx3JdSK468sMNu/a73Q41eadKSsJC/Lnip5NqvxYd5/Wgu35RbyfvqrKj3UyrLU8NHYhJaWWZy/o4HUFp4wx3DowiXeu6sqKLXs497WpzF273emwvFNYGFx2mav1bf16eOEFKChwdQesX99VzGPMGHj66T8TiOJi13pt27oqd771lqswSHKyo0+lxjhWVdUaQgmeiBw0JSuXQH9Dz2axTocibsYYHhnShq17C3lj0gqnw6k0E5ZsJr+whKEOVM88mtAgf16/vDP5hSXc8cU8Skp9f/zShh37+Hb+Bi7p1ohaYVU/l1SHhrU4tXVd3klbyc59nvuFxZi5OUxalsu9g1vSJDbc6XBO2Glt6jL21lRCA/259O3pjJ7tez0BqlX9+nDPPZCR4brdcYeru+WFF8K//gVnnQVPPOEa+3Xvva5tPvoIbrzR1Soo1aM8VVV9nP7aROSg9Kw8OjWOITzY4Ylf5RDtG0ZzfqcGvJe+ivXbq6CqmwPGzsshITqE7om1nQ7lEMl1I/m/oW2ZvnIbL//m+/MQvj91FRa4tk/Tajvm3ae1YNf+Yt5LW1ltx6yILbv283//W0zXJjGM7J3odDgnrUXdSMbfmkrXxBju/XoB//TRMb3VrmNHVyvdunWuqo3nnusqxPL4465iLZGRrla/iy92OlKpgZTgiQgAeXsKWLxhF/3UPdMj/X1wS/wMPPeT90/KnbengLSsPIZ2auCRXd8u6tqI8zs34NXfs/gj+zhjbLzYrv1FfD5zHUPa16/WSebbJERxVvt6/HfqarbvLay245aHtZaHxy2ioLiU5y70vq6ZRxMTHsSH13RnZO9E3ktfVbMnRa9sAQEweDB8+ink5sKll7qmV7jzTtdE3CIOUIInIgBMdX+Q7ZMc73AkciQJtUK5vm8zvp2/gYx1O5wO56R8N38DJaXW8eqZx/LPoe1oFhfOHV9mkLu7wOlwqsRnM9ayp6C40ic2L487T23B3sJi3p7iWa14/1uwkQlLNnP3aS1oFh/hdDiVKtDfj8fPbcsz57smRR/2xtSaOSl6VZozB379tcZWbhTPoQRPRABX98zo0EDaN4h2OhQ5ihv7NycuIpgnv1vi1fNbjc3YQJv6UbSoG+l0KEcVHhzA68M7s2tfEXd9meFz4/EKi0t5f+oqUpNiaefAe75F3UjO7ZjAh3+s9pgEOm9PAY+NX0THRrW4rm/1J73V5dLujfns+p7s3l/Eea//wcSlW5wOyTeocqN4ECV4IoK1lrSsPFKTYvH3kS5JvigiOIB7Tm/B7DXb+WnRJqfDOSErc/cwf90Oj269O6BVvSieOLct6dl5vDEx2+lwKtX4jBw27yrghn7NHYvhjkHJFBSX8NZkzyge9Nj4xewtKOH5Czv4/P/Bbu5J0RvHhnHNh7M0KXplUOVG8SBK8ESEFbl72LRrP33VPdPjXdy1ES3rRvLMT0spLPa+QgnjMjZgDJzTMcHpUMrlkm6NGJqSwH9+Xc70lVudDqdSlJZa3klbSat6kY6OuW0WH8H5nRvyyfQ1jk9L8ePCjXy/cCO3D0ry6JblyqRJ0SuZKjeKB1GCJyJMWe4ef6cJzj2ev5/hoSGtWbM1n4+mrXY6nAqx1jJuXg69m8dSLzrE6XDKxRjDU+e1JzE2nDu+mMfWPZ7RnfBkTFq+heWb93BDv2YY42xL1R2DkikptY62kG7fW8ij4xfRNiGKG/s716LphCNNir5pZ82ZA1LEVynBExHSs/NIjA2jUe3qq6QnJ65/i3j6tYjnld+yPK4K4bHMW7eDtdvyGeZBc9+VR0RwAK9e3ont+UXc9dV8Sr18PN7bk1eSEB3iEa2ojWqHcVHXRnw+cx05O/Y5EsP/fbeEHflFPH9hRwL9a97HogOToo+6sgsrtuzhnNfSNSm6iJeref/JROQQhcWlTF+5Vd0zvczDZ7VmT0Exr/zuPXO1jZuXQ3CAH2e0q+d0KBXWNiGaR89uw5TlubzmxePx5q/bwYxV27imT1OPSWb+dkoSAK/9Xv2v62+Zmxk7L4dbBibRJiGq2o/vSU5vW49vbvlzUvSv56x3OiQROUGe8d9dRBwzd+128gtL6KP577xKy3qRXNKtMR9PW8OqvL1Oh3NcRSWl/G/+Bk5rU5fIkECnwzkhV/RozLCUBF6csJz/pq9yOpwTMmrKSiJDAri0e2OnQzkooVYol3VvxOjZ61i7Nb/ajrtzXxEPjV1Iy7qR3DYwqdqO68la1vtzUvS/j57Pk5oUXcQrKcETqeHSsnLx9zP0ah7rdChSQXef1oLgAD+e+THT6VCOa8ryXLbnF3lF9cyjMcbw/EUdGdy2Lv/33RI+mOpdSd7arfn8uGgjw3s0ISI4wOlwDnHLwCT8/Uy1tkg/9f0S8vYU8vxFHQgK0MehA8pOiv6uJkUX8Ur6jyZSw6Vn5ZHSqBZRXtqqUpPFRwZz84Dm/Lx4MzM8vMLj2Hk5xIQF0q+Fd3cFDvT349XLOnNam7o8/r8lXlXo5t30lfj7Ga5OTXQ6lL+oGxXCFT2b8M3c9azM3VPlx5u8PJevZq/nhn7N6NCwVpUfz9sceVL0qj8vIlI5lOCJ1GA78gtZkLOTvuqe6bWu7dOM+tEhPPVDpscW/9i9v4gJSzZzdocEjxn3dTKCAvx4/fLOnNq6Dv8Yv5iPp69xOqTj2ra3kK9mr2NYSgPqRnlmBdObBzQnOMCfl3+r2la83fuLeHDMAprHh3PHoOQqPZa3O3RS9KmaFF3ESxz3SmuMaWSMmWiMyTTGLDbG3HHY4383xlhjjD4hiniZqdlbsRYleF4sNMifewe3ZMH6nYyfn+N0OEf08+LNFBSXMsyLu2ceLijAj9eHd2ZQqzo8Om4Rn87w7CTv42lr2F9Uyg39mjkdylHFRQQzonci387fwPLNu6vsOM/8uJSNu/bz3IUdCQn0r7Lj+IrDJ0V/a7ImRRfxdOX5KrUYuMda2xroCdxqjGkDruQPOA1YW3UhikhVSc/OJTI4gI7qouTVhqU0oH2DaJ7/aZlHTlQ8bl4OjWuH0blxLadDqVTBAf68cUVnBraM5+Gxi/h8pmdeCvcVlvDhtNWc0qoOyR4+ifeN/ZoRHhTAS78ur5L9/5Gdx6cz1nJtalO6NImpkmP4orKToj/z41Lu0qToIh7tuAmetXajtXau+/fdQCZw4GvY/wD3AfoqR8TLWGuZsjyPXs1jCfCBbnM1mZ+f4ZEhrdmwcz/veVh1x8279jN1RR7DOjVwfFLtqhAc4M+bV3RhQMt4HvxmIV/O8rwk7+u569m2t5AbPbj17oCY8CCuSU3kh4WbWLxhZ6XuO7+wmPu/WUBibBj3nN6yUvddExyYFP3vp7dgnCZFF/FoFfpUZ4xJBDoBM4wx5wI51tr5VRGYiFSt1Vvzydmxj75eXvRCXHo0i+X0NnV5Y2I2ubsLnA7noG8zNmAtDEtxflLtqhIS6M9bV3ShX4t4HvhmIV/NXud0SAeVlFreTVtJx0a16N60ttPhlMu1fZsRFRLAS79W7li8535axrpt+3j2gg6EBqlr5okwxnDbKcmHTIo+T5Oii3iccid4xpgIYAxwJ65umw8D/yjHdjcYY2YbY2bn5uaeaJwiUsnSslzvx75JGn/nKx44sxUFxaX8p4q6t52IsfNy6NgwmmbxEU6HUqVCAv0ZdWUX+iTFcf+YBR4zSfQvizexZms+N/Zr5jUtqNGhgVzftxkTlmxmwfodlbLPWau38eG01Yzo1YQezTQlzMkqOyn6JaOmM8ZD/t5FxKVcCZ4xJhBXcveptfYboDnQFJhvjFkNNATmGmPqHb6ttXaUtbartbZrfLxaCkQ8RVpWHg1jQmkSG+Z0KFJJmsVHcEXPJnwxc22VFqkor+Wbd7Nk4y6fKq5yLCGB/rxzVVdSm8dx79fz+Wausx96rbW8PWUlTWLDGNz2L5dnj3Z1n6bEhAXy4oST/7Jif1EJ9329gAa1QrnvjFaVEJ1AmUnRm8Rwj3tSdE+t5CtS05SniqYB3gMyrbUvAlhrF1pr61hrE621icB6oLO1dlOVRisilaKopJRpK7bSNznea77Vl/K5Y1AyEcEBPPW985Ofj5uXg7+f4ewOvts983AHkrxezWK5Z/R8xs5zLsmbtXo7Get2cF2fpvj7edf7PCI4gBv7N2fSslzmrDm5LoAvTljOqry9PHtBB8I9bIJ3b3dgUvQrejbm3fRVTMlSTy0RT1CeFrxU4ErgFGNMhvt2VhXHJSJVaP66HewpKNb0CD4oJjyI2wclM3l5LlOWO/dhq7TUMj5jA32T44iPDHYsDieEBvnz3ohu9Gwayz1fzWd8hjPTV4yasoLa4UFc2KWRI8c/WVf1akJcRBAvTlh2wvuYt3Y776at5LLujUhVd/QqEejvxyND2hAc4MeU5XlOhyMilK+KZrq11lhrO1hrU9y3Hw5bJ9Faq3e1iJdIy8rDz0Dv5hqL4ouu7NWExrXDePqHTEoc6jI1a/U2cnbs47wa0j3zcKFB/rw3sivdEmtz15cZfDt/Q7UeP3vLbn7N3MKVPZt4bUGRsKAAbh6QxNTsrUxfubXC2xcUu7pm1o0K4cGzWldBhHJASKA/3RJrk56tFjwRT6Da6CI1UFpWLu0b1qJWWJDToUgVCA7w54EzW7F0025GO1TRcVxGDmFB/pzWpq4jx/cEYUEBvH91N7q6k7zvFlRfkjdqykqCA/y4qleTajtmVRjeozF1o4J58ZflFZ5c+5Xfssjasoenz29PVEhgFUUoB/RJjmP55j1s3qWpE0ScpgRPpIbZua+I+et30k/dM33ame3q0bVJDP+esJy9BcXVeuyC4hK+X7CRwW3rERZUs8c8hQUF8P7IbnRuXIs7vsjgh4Ubq/yYW3btZ9y8DVzUtSGxEd7dPTYk0J9bByYxc/U20rPL31FoUc5O3pq8kgs6N2RgyzpVGKEc0MfdBXZqBc6TiFQNJXgiNcy0FVspKbUHL8bim4wxPDykNbm7C3h78opqPfbEpbns2l9cY6pnHk94cADvX92dTo1q8bfP5/FjFSd57/+xmuLSUq7r4/kTm5fHJd0akRAdwr/L2YpXWFzK30fPJzY8iH+c3aYaIhSANvWjiA0PIj1LCZ6I05TgidQw6dm5hAf506lxjNOhSBXr1DiGczomMCptJRt37qu2446bl0NcRDCpGuN5UESwq7tmx4bR/O3zefy0qGqKTu8pKOaT6Ws4o109EuPCq+QY1S04wJ+/DUomY90OJi7bctz135y0gqWbdvPUee2JDlPXzOri52fonRRHenZehbvTikjlUoInUsOkZeXRs1ksQQF6+9cE9w1uSamF538+8UqEFbEzv4jfl27h3I4JBPjrb6ysyJBAPrymO+0bRnPbZ3P5ZXHlJ3lfzFzL7v3F3NCveaXv20kXdmlI49phvDjh2K14Szft4rWJWZzbMaFGj/90Sp+kWLbsLmD55j1OhyJSo+nqK1KDrNuWz5qt+fTR+Lsao1HtMK5Jbco3c3NYlLOzyo/3w6KNFJaU1tjqmcdzIMlr2yCaWz+by69LNlfavotKSvlv+iq6N61NSqNalbZfTxDo78ftg5JZlLOLX47ymhWXlHLv6AVEhQTy+LltqzlCAeiTHA+4CnmJiHOU4InUIGnusRF93RdhqRluGdic2uFBPPn9kirvOjV2Xg7N4sNp1yCqSo/jzaJCAvnomu60qR/FzZ/O4bfMyknyvl+wkQ0793NjP98Ye3e4YSkJNIsL5z8TllN6hOk/RqWtZGHOTv5vaDtqh6tCsBMa1AqlWVy4Cq2IOEwJnkgNkpaVS/3oEJrH+8bYHCmfqJBA7jo1mekrt/Fr5vHHMJ2onB37mLlqG+elNMAYU2XH8QXRoYF8dG0PWteP4uZP5jJx6cmdF2stb09ZSVKdCJ+tGhng78cdpyazdNNuflh0aKGa7C27eWlCFme2q8eQDvUdilDANV3CjFXbKCwudToUkRpLCZ5IDVFSapmanUff5Dh9+K6BLuvemObx4fzrh0yKSqrmg9f4jBwAhqaoe2Z5RIcG8vE1PWhRL4IbP57DpHIUEDmatKw8Mjfu4oa+zfDz89339zkdEmhRN4KXfs2ixN2KV1JquffrBYQF+/N/Q9s5HKGkJsWRX1jC3LXbnQ5FpMZSgidSQyxYv4Nd+4sPjpGQmiXA34+HzmrNyry9fDp9TaXv31rL2Lk5dG0SQ+PYsErfv6+KDgvkk2t7kFQnghs+nsPk5Sc2dmnUlJXUiQxmaKeESo7Qs/j5Ge46tQXZW/bw7XzXFwrvT13FvLU7ePyctsRHeve8f76gV/NY/P2MpksQcZASPJEaIj0rD2PQ/Hc12Cmt6pCaFMvLv2Wxc19Rpe57ycZdZG3Zo7nvTkCtsCA+va4HzeMjuP6j2RUuULEoZyfp2XlcndqU4AD/KorScwxuW4829aN4+dcssrfs5vmfl3Fq6zoMTfHt5NZbRIUE0rFhNGkahyfiGCV4IjVEWlYebROiVHygBjPG8PBZbdixr4jXJ2ZX6r7Hzcsh0N8wpL3GP52ImHBXktcsLpzrPpxdoSIV76StJDzIn8t7NK7CCD2Hn5/h7tNasHprPhe/PZ2gAD+eHNZeXc89SJ/keBau38HO/Mr9IklEykcJnkgNsKegmLlrt6t6ptAmIYoLOzfkg6mrWbctv1L2WVJq+Xb+Bvq3qEOMvkA4YbXDg/js+p40jQvn2g9n8Uc5krz12/P5bsFGLuvemOjQmjOp96DWdejYMJptewt59Ow21IsOcTokKaNvchylFqatVCueiBOU4InUANNXbKW41NJX3TMF+Pvglvj7GZ75aWml7G/6yq1s3lWgue8qQW13S16T2uFc8+Espq3Yesz1/5u+GgNc06dp9QToIYwx/Pvijjx2Thsu6tLQ6XDkMCmNahEe5H9wah4RqV5K8ERqgPTsPEIC/eiSGON0KOIB6kaFcEO/Zny/YCNz1px8pbux83KIDA5gUGvfLM9f3WIjgvn0+h40ignjmg9mMX3lkZO8nflFfDFrLed0TCChVmg1R+m8pDqRXJ3aVF0zPVCgvx89m8WSrnF4Io5QgidSA6Rl5dKjaWyNKMAg5XNj/2bUiQw+6cnP9xWW8NOiTZzZvh4hgfr7qixxEcF8dn1PGsSEcvX7s5i5attf1vlkxhryC0u4vq9vTmwu3q1PchxrtuZXWldwESk/JXgiPm7Djn2syN1L32R1z5Q/hQUF8PfBLZm3dgffLdh4/A2O4tfMzewpKFb1zCoQHxnMZ9f3IKFWCCPfn8ms1X8mefuLSnh/6mr6JsfRJiHKwShFjuzANUeteCLVTwmeiI87MBeRCqzI4S7o3JDW9aN49qel7C8qOaF9jM/IoV5UCD2bxlZydAJQJzKEz6/vSb2oEEb+dyZz1riSvHHzcsjbU8CN/Zo7HKHIkTWPj6BeVIjmwxNxgBI8ER83JSuXOpHBtKgb4XQo4mH8/QyPDGnN+u37+PCP1RXeftveQiYty2VoSgJ+fhoHVVXqRIXw+Q09qRMVwoj/zmL26m2MSltJ24QoUpOUWItnMsaQmhTH1BV5lJSeeDdwEak4JXgiPqy01DI1O48+yXEqRCBHlJoUxymt6vDaxGy27S2s0LbfL9hAcalV98xqUDfK1ZIXFxHEZe9MZ2XuXm7o10zva/FofZPj2JFfxOINO50ORaRGUYIn4sMWb9jF9vwijb+TY3rorFbkF5bw8q/LK7Td2Hk5tKoXSev6GgNWHepFu1ryEmqF0iQ2TJPKi8dLdU/No+kSRKqXEjwRH5aWnQv8eZEVOZKkOpFc1r0Rn8xYS/aWPeXaZs3Wvcxdu0Otd9WsfnQoP93Rj3G3pBLgr0u4eLb4yGBa1YtkqgqtiFQrXR1EfFja8jxa1YukTmSI06GIh7vz1BaEBfrzzI+Z5Vp/3LwNGAPndkyo4sjkcKFB/sSEBzkdhki59E2OY/bq7ewrPLFCTiJScUrwRHzUvsIS5qzZru6ZUi5xEcHcMjCJXzO38MeKY3/bbq1lfEYOPZrWrpETbItI+aUmxVFYUsrM1X+dy1FEqoYSPBEfNWPVVgpLSjU9gpTb1amJNKgVylPfZ1J6jKp3C9bvZGXeXs5T90wROY4eTWMJ8vcjPSvX6VBEagwleCI+Ki0rj6AAP7o3re10KOIlQgL9ue+MlizesItv5uUcdb2x83IICvDjjHYq8iEixxYa5E+XJjGkZ291OhSRGkMJnoiPSs/Ko3tibUIC/Z0ORbzIuR0T6NioFi/8vIz8wuK/PF5UUsr/5m/g1NZ1iA4NdCBCEfE2fZLjyNy4i9zdBU6HIlIjKMET8UGbd+1n2ebd9NH4O6kgYwyPDmnNpl37eWfKqr88np6dx9a9hQxLUfdMESmfA2PBjze+V0QqhxI8ER+U7p5zSAVW5ER0TazNWe3r8faUFWzZtf+Qx8bPy6FWWCADWtZxKDoR8TZtE6KJDg3UfHgi1eS4CZ4xppExZqIxJtMYs9gYc4d7+T+NMQuMMRnGmF+MMaqVLeIh0rJyiQ0PonU9TUAtJ+b+M1pRVFLKv3/5c/LzvQXF/Lx4M2e1r09QgL4fFJHy8fczpCbFkp6Vh7VHL+AkIpWjPFfoYuAea21roCdwqzGmDfC8tbaDtTYF+A74R9WFKSLlVVpqSc/eSp/kOPz8jNPhiJdqEhvOiF6JfDVnHZkbdwHwy5JN7CsqUfVMEamwPknxbNq1nxW5e50ORcTnHTfBs9ZutNbOdf++G8gEGlhrd5VZLRzQVzIiHmDppt3k7SmgT5K6Z8rJ+dspyUSHBvL0D5lYaxk7bwMNY0Lp0jjG6dBExMscGDKg6RJEql6F+tgYYxKBTsAM9/2njDHrgOGoBU/EI6Rnuy6emv9OTlZ0WCC3n5JMWlYeo+esJz0rl2EpDdQyLCIV1qh2GE1iw0jP1jg8kapW7gTPGBMBjAHuPNB6Z6192FrbCPgUuO0o291gjJltjJmdm6tvbUSqWlpWHsl1IqgXHeJ0KOIDrujZhMTYMB78ZiGlFoZ10nBrETkxqUlxTF+5jaKSUqdDEfFp5UrwjDGBuJK7T6213xxhlc+AC460rbV2lLW2q7W2a3y8WhREqtL+ohJmrtqm6RGk0gQF+PHAma0pKbW0bxBNUp1Ip0MSES/VNymOPQXFZKzb4XQoIj6tPFU0DfAekGmtfbHM8uQyq50LLK388ESkImav3k5BcSn91D1TKtHgtnW5vm9T7j6thdOhiIgX6908Dj/z51Q+IlI1AsqxTipwJbDQGJPhXvYQcK0xpiVQCqwBbqqSCEWk3NKycgn0N/RoVtvpUMSHGGN4eEgbp8MQES8XHRZI+4a1SM/O4y59YSRSZY6b4Flr04Ejjaj/ofLDEZGTkZaVR5cmMYQFlee7GxERkerVNymONyevYNf+IqJCAp0OR8QnaaZaER+Ru7uAJRt3qXqmiIh4rNSkOEpKLdNXbHU6FBGfpQRPxEf8scI1pqGvCqyIiIiH6tykFqGB/pouQaQKKcET8RFpWXnUCgukbUK006GIiIgcUXCAPz2a1VaCJ1KFlOCJ+ABrLWlZuaQmxeGvSahFRMSD9UmKY2XuXjbs2Od0KCI+SQmeiA/I3rKHzbsK6Juk7pkiIuLZDowV13QJIlVDCZ6ID5jivkhqgnMREfF0LepGEB8ZTJq6aYpUCSV4Ij4gPSuXZnHhNIwJczoUERGRYzLG0CcpjqnZeZSWWqfDEfE5SvBEvFxBcQnTV25T652IiHiNPklxbNtbSOamXU6HIuJzlOCJeLm5a3awr6hE89+JiIjXOPClpMbhiVQ+JXgiXi4tKxd/P0PPZrWdDkVERKRc6kaF0KJuhKZLEKkCSvBEvFx6dh6dG9ciMiTQ6VBERETKLTUpjpmrtrG/qMTpUER8ihI8ES+2fW8hC3N20idJ3TNFRMS79E2Oo6C4lNmrtzsdiohPUYIn4sWmrsjDWujbQgVWRETEu/RoGkugv1E3TZFKpgRPxIulZ+URGRJAhwbRTociIiJSIeHBAXRqHEN6dq7ToYj4FCV4Il7KWktaVh69m8cS4K+3soiIeJ++SXEs3rCLbXsLnQ5FxGfoU6GIl1qVt5ecHfs0PYKIiHit1OQ4rIWp6qYpUmmU4Im4lZZaJi7bwluTV1BUUup0OMeV5p47qK8mOBcRES/VoUE0kSEBmg9PpBIFOB2AiNN25BcyevZ6PpmxhjVb8wFYvmk3L1zUET8/43B0R5eWlUfj2mE0iQ13OhQREZETEuDvR+/msaRn52GtxRjPve6KeAsleFJjLcrZycfT1jB+fg77i0rplhjDPae3ZGXuHl76NYuY8CAeGdLaIy82RSWlTF+5lXNTEpwORURE5KT0SY7n58WbWb01n6Zx+tJS5GQpwZMapbC4lB8XbeSjaWuYs2Y7oYH+nNepIVf2bEKbhCjAVbxk574i3ktfRe3wIG4dmORw1H+VsW4HewqK6afumSIi4uX6JrmuZelZuUrwRCqBEjypETbs2MdnM9byxay15O0ppGlcOI+e3YYLuzQkOjTwkHWNMTw6pA078ot4/udlxIQFcXmPxg5FfmRpWXn4GejVXAmeiIh4tyaxYTSoFUpaVh5X9kp0OhwRr1fjE7yiklIC/IxHdsOTk2OtZdqKrXw0bQ0TMjdTai2DWtXhyl6J9E2KO+b4Oj8/w3MXdmBHfiGPjFtITFggZ7avX43RH1taVi4dG9X6S3IqIiLibYwx9E2O4/uFGykuKdXUPyInqUYneNZa7vt6AQDPXNCe4AB/hyOSyrCnoJhv5q7no2lryN6yh5iwQK7v24zhPRrTqHZYufcT6O/HG8O7cOV7M7jjiwyiQgNJTXK+xWznviLmr9vBbR7YdVRERORE9EmO44tZ61iQs5POjWOcDkfEq9XoBA8gqU4Ez/+8jPXb83n7yq7UDg9yOiQ5QVmbd/Px9DWMmbOevYUldGgYzQsXdeTsDvUJCTyx5D00yJ/3RnTjklHTuOGj2Xx+Q086NKxVuYFX0LQVeZRa16B0ERERX5DaPA5jID0rTwmeyEmq0W3gxhhuHZjEa5d3YsH6nQx7fSrZW/Y4HZZUQHFJKT8u3Mhlo6Zz2n+m8MWsdQxuV49xt6by7W19uLBLwxNO7g6IDgvkw2u6ExMexMj3Zzn+N5KWlUd4kD+dGtdyNA4REZHKEhMeRLuEaM2HJ1IJanSCd8DZHRL44oae5BcWc94bU5marX8uni53dwGv/pZF3+cmcvOnc1m7LZ/7zmjJtAdO4cWLU0hpVKtSj1c3KoRPru2Bn4Gr3pvBhh37KnX/FZGWlUev5rEEaoyCiIj4kNSkOOau3c6egmKnQxHxavqE6NapcQxjb0mlfnQII/47k89nrnU6JDmMtZY5a7Zx++fz6P3Mb/x7wnKS6kTwzlVdmXLfQG4ZkERsRHCVHT8xLpwPr+nO7v3FXPXfmWzfW1hlxzqaNVv3snZbPn3VPVNERHxM3+Q4ikstM1dtdToUEa+mBK+MRrXDGHNzb1KT4njwm4U8/UMmJaXW6bBqvH2FJXw5ay1DXknngjenMXHpFq7o2YTf7+nPx9f24LQ2dfE/RkXMytQ2IZp3RnRl7bZ8Rn4wi73V/C1jmrvrSh/NfyciIj6mS5MYggP8Dl7rROTE1PgiK4eLDAnkvRFd+b/vljBqykpW5e3l5UtTCAvSS1XdVuft5ZPpaxg9Zz079xXRql4kT53XjmEpDQgPdu589GwWy2uXdeKmT+Zw0ydzeHdE12qrwJqelUeDWqE000SwIiLiY0IC/enetLbG4YmcpOO24BljGhljJhpjMo0xi40xd7iXP2+MWWqMWWCMGWuMqVXl0VaTAH8//m9oOx4/pw2/ZW7m4rensWnnfqfDqhFKSi2/L93MyPdnMuCFSXzwx2r6JMfx1Y29+PGOvgzv0cTR5O6A09vW45kLOpCWlcfdX82vlpbe4pJS/liRR5+kOM3bKCIiPqlvchxZW/boc5fISSjPJ+Vi4B5r7VxjTCQwxxgzAZgAPGitLTbGPAs8CNxfhbFWu5GpTWkcG8bfPpvHsNen8u6IrrRrEO10WD7JWss3c3N46bflrNu2jzqRwdx5ajKXdW9M3agQp8M7oou7NmJHfiFP/7CUmLBA/jm0XZUmXgtydrJrfzF9W6h7poiI+KYD882mZ+dxYZeGDkcj4p2O24Jnrd1orZ3r/n03kAk0sNb+Yq09MABpOuCT78JTWtXl65t742fg4renMWHJZqdD8jmr8vYy/N0Z3DN6PrXDgnjt8k5MfeAU7jy1hccmdwfc0K85N/ZvxifT1/KfX7Oq9FjpWXkY45orSERExBe1rhdFbHiQKpqLnIQK9XUzxiQCnYAZhz10DfBlJcXkcVrXj2Lcralc/9Fsbvh4Ng+f1Zpr+zRVN7mTVFhcyjtpK3n5tyyCA/x46rx2XNatMX7VVDClsjxwRit27C3ild+yqB0WyMjUplVynLSsXNo3iCYmPKhK9i8iIuI0Pz9DalIc6dl5WGv1WUvkBJS7iqYxJgIYA9xprd1VZvnDuLpxfnqU7W4wxsw2xszOzc092XgdUycqhC9u6MUZbevx5PeZPDxuEUUlpU6H5bXmrNnG2a+m8fzPyzitdV1+u7s/w3s08brkDsAYw1PnteP0NnV5/H9LGJ+RU+nH2L2/iHlrd9AnSa13IiLi2/okx5G7u4Blm3c7HYqIVypXgmeMCcSV3H1qrf2mzPIRwNnAcGvtEatMWGtHWWu7Wmu7xsd799xdoUH+vH55Z24e0JzPZqzlmg9msXNfkdNheZWd+4p4eOxCLnxrGnv2F/PeiK68PrwzdTy8K+bxBPj78cplnejZrDb3fDWficu2VOr+p6/cRnGp1fQIIiLi8w58malqmiInpjxVNA3wHpBprX2xzPIzcBVVOddam191IXoWPz/D/We04rkLOzBtxVYuePMP1m6tMU//hFlr+WHhRk57cTKfz1zLNalNmXB3fwa1rut0aJUmJNCfd67qSqv6kdz8yRzmrNlWaftOz8olNNCfLk1iKm2fIiIiniihVijN4sM1H57ICSpPC14qcCVwijEmw307C3gNiAQmuJe9VZWBepqLuzbi42t7kLu7gGFvTK3UD/O+JmfHPq77cDa3fDqX+Mhgxt/ah0fPbuMR0x1UtsiQQD64ujv1o0O5+v1ZLNtUOd1L0rLz6NGsdrXNtyciIuKkvklxzFy1jYLiEqdDEfE65amimW6tNdbaDtbaFPftB2ttkrW2UZllN1VHwJ6kV/NYxt7Sm6iQAC57Z0aVjL3yZiWllvfSV3Hai5P5Y8VWHj6rNeNvTaV9Q9+eaiIuIpiPrulOaJA/V/13Buu2nVwLb86OfazM3UvfZO/u4iwiIlJefZLj2VdUwtw1O5wORcTrlLvIihxZs/gIxt6SSkqjWtzxRQYv/bqcowxHrFEW5ezkvDem8s/vltC9aW1+uasf1/drRoB/zfiTa1Q7jI+u6cH+olKufG8GubsLTnhf6Vmu4kR9Nf5ORERqiJ7NauPvZ0jP9t4CfSJOqRmftqtYTHgQH1/bnQs6N+SlX7O488sM9hfVzC4F+YXFPPX9Eoa+PpUNO/bz6mWdeH9kNxrVDnM6tGrXsl4k/x3Zjc27Chj5/kx27T+xgjxTsvKoGxVMcp2ISo5QRETEM0WGBNKpUS0VWhE5AUrwKklwgD8vXNSBewe3ZHzGBoa/O4Ote0681cYbTVy2hdNenMI7aau4uGsjfru7P+d0TKjRc9h0aRLDm1d0Ztmm3Vz/4ewKJ/4lpZap2Xn0SYqv0a+jiIjUPKlJcSzI2cmO/EKnQxHxKkrwKpExhlsHJvH65Z1ZlLOTYW9MJXuL78/hsmX3fm77bC5Xvz+L0CB/Rt/Ui3+d357osECnQ/MIA1rW4d8Xd2TGqm3c/vk8iiswf+LiDTvZkV9EvxbqnikiIjVL3+Q4rIVpK7Y6HYqIV1GCVwWGdKjPFzf0ZF9hKee98YfPdi8oLbV8PnMtp/57Mr8s3szdp7Xg+9v70C2xttOheZyhKQ14/Jw2/LJkMw+NXVjucZoHSkSnaoJzERGpYTo2qkVEcABp2b75OUqkqijBqyKdGscw7tbeJESHMuL9mXw2Y63TIVWq7C27uWTUNB78ZiGt60fx4519uX1Qssr4H8PI1KbcPiiZr2av55mflpZrm7SsXFrXjyIuIriKoxMREfEsgf5+9GwW67NflItUFSV4VahhTBhf39yLvslxPDR2IU99v4SSUu+usLm/qIQXJyznzJfTWL55D89d0IEvbuhJ83gVACmPu05N5sqeTXh78kpGTVlxzHXzC4uZs2Y7/VQ9U0REaqi+yXGs3ZbP2q0nN+WQSE3iezNNe5jIkEDevaor//xuCe+krWL11nxevjSFsCDve+mnr9zKQ2MXsjJ3L8NSEnjk7DZqWaogYwyPn9uW7fmFPP3DUmqFBXFx10ZHXHfGqm0UlVj6KMETEZEa6sAQhbTsXIbHNnE4GhHvoBa8ahDg78cTQ9vx+Dlt+C1zMxe9NY1NO/c7HVa57cgv5L6v53PpqOkUlZTy4TXdeenSTkruTpC/n+HFi1PomxzHA2MW8MviTUdcL215HsEBfhrTKCIiNVbz+HDqR4cwVePwRMpNCV41GpnalPdGdGN13l6Gvp7OopydTod0TNZaxmfkMOjfkxkzN4cb+zfjlzv7079FvNOheb2gAD/euqILHRrW4rbP5zF95V8rhKVn59K9aW1CAjWuUUREaiZjDH2S4piavdXrh7mIVBcleNVsYKs6fH1zb/yN4aK3ph219cZpa7fmc9V/Z3LHFxk0rB3G/27rw4NntiY0SMlGZQkPDuD9kd1oXDuM6z+cfUjCv2nnfpZv3kNfdc8UEZEark9yHDv3FXn8F+MinkIJngNa149i3G2ptKgbwY2fzOGdKSvLXTa/qhWVlPLW5BWc/tJk5q7ZzuPntOGbm3vTJiHK6dB8Ukx4EB9f252o0EBGvj+TVXl7AUh3d0Xpk6TWUhERqdkOjMNLVzdNkXLxvkofPqJOZAhf3NCLe0Zn8NQPmfy8eBMx4UEEBfgR5O++Bfx5C/T3Izjgz+WBZR93P3b4sqAAQ5C//2H7MQT5+2GM+UtMGet28MCYBSzdtJvT2tTliXPbklAr1IFXp2apHx3KR9d256K3pnHlezMYc3Nv0rJyiYsIplW9SKfDExERcVRcRDCt60eRlpXLrQOTnA5HxOMpwXNQaJA/r13WmdfrZfNr5mbWbcunqKSUwpJSCov/vBWVWApLSiv12H8miuZg8rd++z7qRAbz1hVdOKNdvUo9nhxb8/gIPri6G5eNms5V780kb08BfZPj8PP7ayIuIiJS0/RNjuODqavJLyz2ykrkItVJ7xCH+fkZ/jYomb8NSj7metbag4lfUYn9MwEsKaGw2B6aFB5hWdGB30tKKSh7v/jP5ed2DOGm/s2JDAmspmcvZXVoWItRV3Xl6vdnUVhSSp9kdc8UEREB6JMUx6gpK5m5ahsDWtZxOhwRj6YEz0sYYwgO8Cc4QEVOfFlqUhyvXNaJUVNWcEorXcBEREQAujetTVCAH+lZeUrwRI5DCZ6IhzmjXT11kRURESkjJNCfbokxKrQiUg6qoikiIiIiHi81KY6lm3azZfd+p0MR8WhK8ERERETE4/V1Tx30R/ZWhyMR8WxK8ERERETE47VNiCImLJC0LHXTFDkWJXgiIiIi4vH8/Ay9k+JIz87FWut0OCIeSwmeiIiIiHiFvklxbN5VQPaWPU6HIuKxlOCJiIiIiFdITYoDUDVNkWNQgiciIiIiXqFR7TASY8NI1zg8kaNSgiciIiIiXqNPchzTV26lqKTU6VBEPJISPBERERHxGn2S4tlbWMK8tTucDkXEIynBExERERGv0at5LH4G0rNynQ5FxCMpwRMRERERrxEdGkiHhrVUaEXkKJTgiYiIiIhX6Zscx/z1O9m1v8jpUEQ8znETPGNMI2PMRGNMpjFmsTHmDvfyi9z3S40xXas+VBERERER6JMUR0mpZdqKrU6HIuJxytOCVwzcY61tDfQEbjXGtAEWAecDU6owPhERERGRQ3RqHENYkL+mSxA5goDjrWCt3QhsdP++2xiTCTSw1k4AMMZUbYQiIiIiImUEBfjRo2ltjcMTOYIKjcEzxiQCnYAZFdjmBmPMbGPM7NxcVTsSERERkZPXJzmeVXl7Wb893+lQRDxKuRM8Y0wEMAa401q7q7zbWWtHWWu7Wmu7xsfHn0iMIiIiIiKH6JscB8BUteKJHKJcCZ4xJhBXcveptfabqg1JREREROTYkutEUDcqmDSNwxM5RHmqaBrgPSDTWvti1YckIiIiInJsxhhSk+L4Y8VWSkut0+GIeIzytOClAlcCpxhjMty3s4wx5xlj1gO9gO+NMT9XaaQiIiIiImX0SYpj295Clmws9+ghEZ9Xniqa6cDRSmWOrdxwRERERETKp0+SaxxeenYe7RpEOxyNiGeoUBVNERERERFPUScqhJZ1IzUfnkgZSvBERERExGv1SY5j5upt7C8qcToUEY+gBE9EREREvFaf5DgKi0uZtXqb06GIeAQleCIiIiLitXo0rU2gv1E3TRE3JXgiIiIi4rXCggLo3DiGdE14LgIowRMRERERL9c3OY7FG3axdU+B06GIOE4JnoiIiIh4tf4t6gDw4R+rnQ1ExAMowRMRERERr9auQRTnd27AqxOzmaqumlLDKcETEREREa9mjOHJYe1Iio/gji/msWXXfqdDEnGMEjwRERER8XphQQG8MbwzewtKuP2LeRSXlDodkogjlOCJiIiIiE9IrhvJk8PaMX3lNl7+LcvpcEQcoQRPRERERHzGBV0aclGXhrw2MZspy3OdDkek2inBExERERGf8n9D29GiTiR3fpnBpp0ajyc1ixI8EREREfEpoUH+vD68M/uLSrj9c43Hk5pFCZ6IiIiI+JykOhE8fV57Zq7exosTljsdjki1UYInIiIiIj5pWKcGXNa9EW9MWsHEZVucDkekWijBExERERGf9dg5bWlVL5K7v8xgw459TocjUuWU4ImIiIiIzwoJ9OeN4Z0pLC7lb5/Po0jj8cTHKcETEREREZ/WLD6Cf13QgTlrtvPCL8ucDkekSinBExERERGfd27HBIb3aMzbk1fyW+Zmp8MRqTJK8ERERESkRnj07Da0qR/FPaPnk6PxeOKjlOCJiIiISI1wYDxecYnlts/mUlis8Xjie5TgiYiIiEiNkRgXzrMXdGDe2h08//NSp8MRqXRK8ERERESkRhnSoT5X9WrCO2mrmLBE4/HEtyjBExEREZEa5+EhrWnXIIp7vspg3bZ8p8MRqTRK8ERERESkxgkO8Of1yztjLdz2+TyNxxOfoQRPRERERGqkJrHhPHdhB+av28G/fsx0OhyRSqEET0RERERqrDPb12dk70Ten7qanxZtcjockZN23ATPGNPIGDPRGJNpjFlsjLnDvby2MWaCMSbL/TOm6sMVEREREalcD53Vmo4No7n36/ms3arxeOLdytOCVwzcY61tDfQEbjXGtAEeAH6z1iYDv7nvi4iIiIh4laAAP167vDMGuPWzuRQUlzgdksgJO26CZ63daK2d6/59N5AJNACGAh+6V/sQGFZFMYqIiIiIVKlGtcN4/qKOLMzZydPfazyeeK8KjcEzxiQCnYAZQF1r7UZwJYFAnUqPTkRERESkmgxuW49r+zTlw2lr+H7BRqfDETkh5U7wjDERwBjgTmvtrgpsd4MxZrYxZnZubu6JxCgiIiIiUi3uP6MVKY1qcf+YBazO2+t0OCIVVq4EzxgTiCu5+9Ra+4178WZjTH334/WBLUfa1lo7ylrb1VrbNT4+vjJiFhERERGpEq7xeJ3w9zPc+tlc9hdpPJ54l/JU0TTAe0CmtfbFMg99C4xw/z4CGF/54YmIiIiIVK+GMWH8+6KOLN6wiye/X+J0OCIVUp4WvFTgSuAUY0yG+3YW8AxwmjEmCzjNfV9ERERExOud2qYuN/RrxifT1/K/+RucDkek3AKOt4K1Nh0wR3l4UOWGIyIiIiLiGe4d3JI5a7bzwJgFtE2Ioll8hNMhiRxXhapoioiIiIjUFIH+frx6WSeCAvy49bN5Go8nXkEJnoiIiIjIUSTUCuXFi1PI3LiLJ/6n8Xji+ZTgiYiIiIgcw8BWdbipf3M+n7mW8Rk5TocjckxK8EREREREjuPvp7egW2IMD36zkOwte5wOR+SolOCJiIiIiBxHgL8fr17WmZBAf279dC77CjUeTzyTEjwRERERkXKoFx3Cfy5JYfmW3Tz+7WKnwxE5IiV4IiIiIiLl1L9FPLcOSOLL2ev4Zu56p8MR+QsleCIiIiIiFXDnqcn0aFqbh8cuImvzbqfDETmEEjwRERERkQoI8Pfjlcs6ERbkzy2fziW/sNjpkEQOUoInIiIiIlJBdaNCePnSTmTn7uHRcRqPJ55DCZ6IiIiIyAnokxzH305JZszc9Yyevc7pcEQAJXgiIiIiIifsjkHJ9GoWy6PjF7Fsk8bjifOU4ImIiIiInCB/P8PLl6UQERzILZ/OYW+BxuOJs5TgiYiIiIichDqRIbxyaQqr8vby0bQ1TocjNVyA0wGIiIiIiHi73klxfHZ9T7ol1nY6FKnhlOCJiIiIiFSCns1inQ5BRF00RUREREREfIUSPBERERERER+hBE9ERERERMRHKMETERERERHxEUrwREREREREfIQSPBERERERER+hBE9ERERERMRHKMETERERERHxEUrwREREREREfIQSPBERERERER9hrLXVdzBjcoE11XbA8osD8pwOQgCdC0+ic+FZdD48h86F59C58Bw6F55F58NzHOlcNLHWxlfVAas1wfNUxpjZ1tquTschOheeROfCs+h8eA6dC8+hc+E5dC48i86H53DiXKiLpoiIiIiIiI9QgiciIiIiIuIjlOC5jHI6ADlI58Jz6Fx4Fp0Pz6Fz4Tl0LjyHzoVn0fnwHNV+LjQGT0RERERExEeoBU9ERERERMRHeF2CZ4w5wxizzBiTbYx5oMzyL40xGe7bamNMxhG2TTHGTDPGLDbGLDDGXFLmsabGmBnGmCz3voKOcvwR7nWyjDEjKrq9L/GAc/GTMWaHMea7w5Z/YIxZVSaGlMp71p7JyXNhjGlijJnjPsZiY8xNFdne1zj9vnCvG2WMyTHGvFZmWY17X0CVno/b3Pu0xpi4Yxxf1ww3DzgXuma4OXkudM04lNPvC/e6uma4VeH5+NS930XGmP8aYwKPcvzKuWZYa73mBvgDK4BmQBAwH2hzhPX+DfzjCMtbAMnu3xOAjUAt9/2vgEvdv78F3HyE7WsDK90/Y9y/x5R3e1+6OX0u3I8NAs4Bvjts+QfAhU6/RjXlXLiPGez+PQJYDSRU5Fz6ys3pc1FmPy8DnwGvlVlWo94X1XA+OgGJ7r/3uKMcX9cMDzkX7vV0zfCAc4GuGR5zLsrsR9eMqj8fZwHGffv8SH/bVOI1w9ta8LoD2dbaldbaQuALYGjZFYwxBrgY14t3CGvtcmttlvv3DcAWIN69zSnA1+5VPwSGHeH4g4EJ1tpt1trtwATgjAps70ucPhdYa38DdlfKs/Fujp4La22htbbAfTcYd88AvS+ceV8YY7oAdYFfKuMJebkqOR/u+/OstauPc3xdM/7k9LnQNeNPjp4LXTMO4fj7QteMQ1Tl+fjBugEzgYZHOH6lXTO8LcFrAKwrc3+9e1lZfYHNB17gozHGdMeVna8AYoEd1triw/drjOlqjHn3OMc/6vY+zOlzcTxPuZvH/2OMCS7nNt7K8XNhjGlkjFngjuNZ9z82vS+q+VwYY/xwfbN471F2W5PeF1B15+NY6+macWROn4vjqUnvDcfPha4ZBzl6LnTN+IsqPx/urplXAj+571fJNcPbEjxzhGWHlwG9jCNk1YfsxJj6wMfA1dba0mPt11o721p73XGOX564fI3T5+JYHgRaAd1wNXPfX45tvJnj58Jau85a2wFIAkYYY+qWMy5f4/S5uAX4wVq77gjr17T3BVTd+TgqXTOOyulzcSw17b3h+LnQNeMgp8+FrhmHqo7z8QYwxVqbBlV3zfC2BG890KjM/YbAhgN3jDEBwPnAl0fbgTEmCvgeeMRaO929OA+o5d7+L/stx/HLu70vcfpcHJW1dqO7FbwAeB9Xk7sv85hz4f4WdjGub7j0vqj+c9ELuM0Ysxp4AbjKGPMM1Mj3BVTd+TjZ4+u9Uf3n4qhq4HvDY86FrhmOnwtdMw5VpefDGPMYri6bd1fw+BV+b3hbgjcLSDauSjJBwKXAt2UePxVYaq1df6SN3duMBT6y1o4+sNzdH3YicKF70Qhg/BF28TNwujEmxhgTA5wO/FyB7X2J0+fiqNzfnBzoJz0MWFSR7b2Qo+fCGNPQGBPq/j0GSAWW6X1R/efCWjvcWtvYWpsI/N29nwfc+65p7wuoovNRAbpm/Mnpc3FUNfC94ei50DXjEI6eC10z/qLKzocx5jpcY+wuO0Yra+VdM6wHVK2pyA1XFZrluPq0PnzYYx8ANx1j2yuAIiCjzC3F/VgzXIMes4HR/FnhqSvwbpl9XONeJxtX0yvH2t6Xbx5wLtKAXGAfrm89BruX/w4sxPXP6BMgwunXypfPBXAasABXtakFwA1l9q33RTWei8P2NZJDK6LVuPdFFZ+P293/d4pxfZN64P2ga4bnngtdMzzgXKBrhseci8P2NRJdM6ryfBS793lg+T+OdD6opGuGcW8kIiIiIiIiXs7bumiKiIiIiIjIUSjBExERERER8RFK8ERERERERHyEEjwREREREREfoQRPRERERETERyjBExERERER8RFK8ERERERERHyEEjwREREREREf8f9qES3wRWxSTwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABdZklEQVR4nO3dd3iUVdrH8e9JIwkJgdB7qNIJEEIXENeGrhWxA4oIrnVd665l39Vd21qwIWBBxS6oa2+A1IQAAaRDEnpNg/R23j9mggEDBEjyzEx+n+uaK5mn3nMch9xzzrmPsdYiIiIiIiIizvJzOgARERERERFRciYiIiIiIuIRlJyJiIiIiIh4ACVnIiIiIiIiHkDJmYiIiIiIiAdQciYiIiIiIuIBlJyJiIiIiIh4ACVnIiI+whiTVeZRYozJLfP8WqfjOxXGmBRjzNlOx3E8xpi5xpjxVXh9f2PM48aYXcaYQ8aYFcaYumX2322M2WOMyTTGvGmMqVVmX6QxZrYxJtsYs9UYc81R1x5hjFlvjMkxxswxxrSuqtchIiInpuRMRMRHWGvDSh/ANuCiMttmOh3f0YwxAb5wj2rwT2AgMACoA1wP5AEYY84FHgBGAFFAW/fxpV4BCoDGwLXAa8aYru5zGwCzgIeBSCAB+KjKX42IiByTkjMRER9njPEzxjxgjNlijEk1xnxsjIl074syxlhjzDhjzHZjTLoxZqIxpq8xZpUxJsMY83KZa401xiw0xrzk7qlZb4wZUWZ/hDHmDWPMbmPMTnePj/9R5z5vjEkDHjPGtDPG/OKO64AxZmZpr5Ax5l2gFfA/d+/ffcaYYcaYHUe9vsO9a8aYx4wxnxpj3jPGHATGniCm9saYee7XcsAYU25yYowJdl8z1d0mS40xjY0xTwBDgJfdMb7sPr6TMeZHY0yaMWaDMebKMtd62xgzxb3/kPv+5fZYGWPqAXcBN1trt1qX36y1ee5DxgBvWGvXWGvTgX8BY93n1gYuBx621mZZaxcAX+JK7gAuA9ZYaz9xX+8xoKcxplN5sYiISNVTciYi4vvuAC4BhgLNgHRcPSpl9QM6AKOBF4C/A2cDXYErjTFDjzo2CWgAPArMKk32gBlAEdAe6AWcA4wv59xGwBOAAf7jjqsz0BJXkoC19nqO7AF8uoKv92LgU6AuMPMEMf0L+AGoB7QAXjrGNccAEe746gMTgVxr7d+B+cBt7hhvcydFPwLvu1/n1cCrpT1Wbte6790ASHTHWZ7u7tivcA9d3GiM+UuZ/V2BlWWerwQaG2PqAx2BYmvtxqP2dy3vXGttNrClzH4REalmSs5ERHzfLcDfrbU7rLX5uJKfK44a8vcva22etfYHIBv4wFq7z1q7E1fy0avMsfuAF6y1hdbaj4ANwEhjTGPgfOAua222tXYf8DxwVZlzd1lrX7LWFllrc621m621P1pr8621+4HncCWRp2OxtfZza20JrmGAx4upEGgNNHO//gXHuGYhrqSsvbW22Fq7zFp78BjHXgikWGvfcr/O5cBnwBVljvnaWvur+7/H34EBxpiW5VyrBa6ksCPQxn2Nx4wxf3LvDwMyyxxf+nt4OftK94cf49yj94uISDXzhbH4IiJyfK2B2caYkjLbinHNQyq1t8zvueU8DyvzfKe11pZ5vhVXz1drIBDYbYwp3ecHbC9zbNnfMcY0AibjGhoY7j4+vUKv6tjK3uNEMd2Hqwcr3hiTDvzXWvtmOdd8F1ev2YfuYZfv4Up4C8s5tjXQzxiTUWZbgPsaf4jRWpvlHubZ7KjYwdX2AP9nrc0FVhljPgQuwNU7l4UrAS1V+vuhcvaV7j/k/v1E+0VEpJqp50xExPdtB8631tYt8wh294qdiuamTKaDa17YLvd98oEGZe5Tx1pbdphc2aQOXEMaLdDDWlsHuA7XUMdjHZ8NhJY+cc8da3jUMWXPOW5M1to91tqbrbXNcPUwvmqMaX/0C3b3Ev7TWtsFV3GOC4EbjhHjdmDeUe0dZq2dVOaYw71kxpgwXAU5dh19X2DVMe5Rag3Qs8zznsBea20qsBEIMMZ0OGr/mvLOdQ/HbFdmv4iIVDMlZyIivm8K8ERp0QljTENjzMWncb1GwB3GmEBjzChcc8W+sdbuxjV/67/GmDruQiTtjpqvdrRwXD04GcaY5sC9R+3fi6sCYamNQLAxZqQxJhD4B1CLYzhRTMaYUcaYFu7D03ElQcVHX8cYM9wY092dDB7ENcyx9LijY/wK6GiMud7dRoHuAiudyxxzgTFmsDEmCFfPXZy19uheM6y1W3ANK/27MaaW+xqj3fcAeAe4yRjTxV085B/A2+5zs3FVY/w/Y0xtY8wgXPPxSnvwZgPdjDGXG2OCgUeAVdba9cdqTxERqVpKzkREfN+LuKr0/WCMOQQswVWY41TF4SoecgBXUY8r3D014OpNCgLW4kp2PgWaHuda/wR645rr9DWuZKKs/wD/cFdI/Ju1NhO4FZgO7MTVk7aD4zteTH2BOGNMFq42utNam1zONZq4zzsIrAPm4RraCK72vcK4Kl1OttYewlV05CpcvWF7gKc4Mol8H1cxlTSgD64CIcdyNa6hkqm42uhha+3PANba74CngTm4hpdudV+31K1ACK55gh8Ak6y1a9zn7sdVzfEJd7v048j5gSIiUs3MkdMGREREjs0YMxYYb60d7HQs3soY8zaww1r7D6djERERz6KeMxEREREREQ+g5ExERERERMQDaFijiIiIiIiIB1DPmYiIiIiIiAdQciYiIiIiIuIBAqrzZg0aNLBRUVHVeUsRERERERGPsWzZsgPW2obl7avW5CwqKoqEhITqvKWIiIiIiIjHMMZsPdY+DWsUERERERHxAErOREREREREPICSMxEREREREQ9QrXPOylNYWMiOHTvIy8tzOhTxMcHBwbRo0YLAwECnQxEREREROSHHk7MdO3YQHh5OVFQUxhinwxEfYa0lNTWVHTt20KZNG6fDERERERE5IceHNebl5VG/fn0lZlKpjDHUr19fPbIiIiIi4jUcT84AJWZSJfS+EhERERFv4hHJmdOeeOIJunbtSo8ePYiOjiYuLg6A8ePHs3bt2kq5R1RUFAcOHDjuMf/+979P+rpvv/02t9122xHb3nrrLaKjo4mOjiYoKIju3bsTHR3NAw88cNLXrw4vvPACOTk5TochIiIiIuIox+ecOW3x4sV89dVXLF++nFq1anHgwAEKCgoAmD59erXG8u9//5uHHnrotK8zbtw4xo0bB7iSwjlz5tCgQYPTvu6pstZircXPr/zvAl544QWuu+46QkNDK3zNoqIiAgJq/NtXRERERHxIje852717Nw0aNKBWrVoANGjQgGbNmgEwbNgwEhISAAgLC+P++++nT58+nH322cTHxzNs2DDatm3Ll19+CfyxF+vCCy9k7ty5f7jnJZdcQp8+fejatStTp04F4IEHHiA3N5fo6GiuvfZaAN577z1iY2OJjo7mlltuobi4GHD1jHXs2JGhQ4eycOHCCr/WZ555hr59+9KjRw8effRRAFJSUujUqRPjx4+nW7duXHvttfz0008MGjSIDh06EB8fD8Bjjz3G9ddfz1lnnUWHDh2YNm3aCa/buXNnbr31Vnr37s327duZNGkSMTExdO3a9fBxkydPZteuXQwfPpzhw4cfbutSn376KWPHjgVg7Nix/PWvf2X48OHcf//9bNmyhfPOO48+ffowZMgQ1q9fX+G2EBEREalqH8ZvY3uaRgdJxdX45Oycc85h+/btdOzYkVtvvZV58+aVe1x2djbDhg1j2bJlhIeH849//IMff/yR2bNn88gjj5zUPd98802WLVtGQkICkydPJjU1lSeffJKQkBASExOZOXMm69at46OPPmLhwoUkJibi7+/PzJkz2b17N48++igLFy7kxx9/rPCwyx9++IFNmzYRHx9PYmIiy5Yt49dffwVg8+bN3HnnnaxatYr169fz/vvvs2DBAp599tkjhlquWrWKr7/+msWLF/N///d/7Nq167jX3bBhAzfccAMrVqygdevWPPHEEyQkJLBq1SrmzZvHqlWruOOOO2jWrBlz5sxhzpw5J3wdGzdu5KeffuK///0vEyZM4KWXXmLZsmU8++yz3HrrrSf130FERESkqizfls6Ds1fzxoJkp0MRL+JR48L++b81rN11sFKv2aVZHR69qOsx94eFhbFs2TLmz5/PnDlzGD16NE8++eTh3ppSQUFBnHfeeQB0796dWrVqERgYSPfu3UlJSTmpmCZPnszs2bMB2L59O5s2baJ+/fpHHPPzzz+zbNky+vbtC0Bubi6NGjUiLi6OYcOG0bBhQwBGjx7Nxo0bT3jPH374gR9++IFevXoBkJWVxaZNm2jVqhVt2rShe/fuAHTt2pURI0ZgjPnDa7v44osJCQkhJCSE4cOHEx8fz4IFC4553datW9O/f//D53/88cdMnTqVoqIidu/ezdq1a+nRo8dJtd2oUaPw9/cnKyuLRYsWMWrUqMP78vPzT+paIiIiIlUhv6iY+z9dRZM6wdxzTkenwxEv4lHJmVP8/f0ZNmwYw4YNo3v37syYMeMPyVlgYODh6n9+fn6Hh0H6+flRVFQEQEBAACUlJYfPKa+M+9y5c/npp59YvHgxoaGhDBs2rNzjrLWMGTOG//znP0ds//zzz0+pCqG1lgcffJBbbrnliO0pKSmHX8vxXhv8sfqhMea4161du/bh58nJyTz77LMsXbqUevXqMXbs2GOWuS97n6OPKb1mSUkJdevWJTEx8UQvXURERKRavfLLZjbty+KtsX0JDw50OhzxIh6VnB2vh6uqbNiwAT8/Pzp06ABAYmIirVu3PqVrRUVF8eqrr1JSUsLOnTsPz9cqKzMzk3r16hEaGsr69etZsmTJ4X2BgYEUFhYSGBjIiBEjuPjii7n77rtp1KgRaWlpHDp0iH79+nHnnXeSmppKnTp1+OSTT+jZs+cJYzv33HN5+OGHufbaawkLC2Pnzp0EBp7ch8UXX3zBgw8+SHZ2NnPnzj08FLMi1z148CC1a9cmIiKCvXv38u233zJs2DAAwsPDOXTo0OGiJY0bN2bdunWcccYZzJ49m/Dw8D9cr06dOrRp04ZPPvmEUaNGYa1l1apVFWoLERERkaqydtdBXp27hUt7NWd4p0ZOhyNexqOSMydkZWVx++23k5GRQUBAAO3btz9cpONkDRo06PAQwW7dutG7d+8/HHPeeecxZcoUevTowRlnnHHEsL8JEybQo0cPevfuzcyZM3n88cc555xzKCkpITAwkFdeeYX+/fvz2GOPMWDAAJo2bUrv3r0PFwo5nnPOOYd169YxYMAAwDWc87333sPf37/Cry82NpaRI0eybds2Hn74YZo1a0azZs0qdN2ePXvSq1cvunbtStu2bRk0aNARr/v888+nadOmzJkzhyeffJILL7yQli1b0q1bN7KyssqNZ+bMmUyaNInHH3+cwsJCrrrqKiVnIiIi4pii4hLu/2wVdUMDeeTCLk6HI17IWGur7WYxMTG2tPphqXXr1tG5c+dqi0FOzWOPPUZYWBh/+9vfnA7lpOj9JSIiItXltblbeOq79bxyTW9G9mjqdDjioYwxy6y1MeXtq/HVGkVERERETlfS/iye/2kj53ZtzAXdmzgdjnipGj+sUSrmscceczoEEREREY9UUmK5/7NVBAf48a+Lu51S8TYRUM+ZiIiIiMhpeS9uK0tT0vnHhV1oVCfY6XDEiyk5ExERERE5RTvSc3jq2/UM6dCAUX1aOB2OeDklZyIiIiIip8Bay4OzVmOBf1/aXcMZ5bQpORMREREROQWfLtvB/E0HuP+8TrSMDHU6HPEBSs4Af39/oqOj6datG6NGjSInJ+eUrzV27Fg+/fRTAMaPH8/atWuPeezcuXNZtGjR4edTpkzhnXfeOeV7l0pJSaFbt25HbHvsscd49tlnT+o6lRWPiIiIiK/ZdzCPf321lr5R9bi+f2unwxEfoWqNQEhICImJiQBce+21TJkyhb/+9a+H9xcXF5/UYs2lpk+fftz9c+fOJSwsjIEDBwIwceLEk75HVSkqKvKoeEREREQ8ySNfrCGvqIQnL++Bn5+GM0rl8K6es6efhjlzjtw2Z45reyUZMmQImzdvZu7cuQwfPpxrrrmG7t27U1xczL333kvfvn3p0aMHr7/+OuAaa3zbbbfRpUsXRo4cyb59+w5fa9iwYZQuuv3dd9/Ru3dvevbsyYgRI0hJSWHKlCk8//zzREdHM3/+/CN6txITE+nfvz89evTg0ksvJT09/fA177//fmJjY+nYsSPz588/6dd4vGs/9NBDDB06lBdffPFwPLt27SI6Ovrww9/fn61bt7J161ZGjBhBjx49GDFiBNu2bQNcvYd33HEHAwcOpG3btod7EkVERER8wTerd/Pdmj3cfXZH2jUMczoc8SEnTM6MMcHGmHhjzEpjzBpjzD/d2yONMT8aYza5f9ar8mj79oUrr/w9QZszx/W8b99KuXxRURHffvst3bt3ByA+Pp4nnniCtWvX8sYbbxAREcHSpUtZunQp06ZNIzk5mdmzZ7NhwwZWr17NtGnTjhimWGr//v3cfPPNfPbZZ6xcuZJPPvmEqKgoJk6cyN13301iYiJDhgw54pwbbriBp556ilWrVtG9e3f++c9/HhFnfHw8L7zwwhHby9qyZcsRCdWUKVMqdO2MjAzmzZvHPffcc3hbs2bNSExMJDExkZtvvpnLL7+c1q1bc9ttt3HDDTewatUqrr32Wu64447D5+zevZsFCxbw1Vdf8cADD5zkfwkRERERz5SeXcAjX/xGt+Z1uHlIG6fDER9TkWGN+cBZ1tosY0wgsMAY8y1wGfCztfZJY8wDwAPA/acVzV13gXt44TE1awbnngtNm8Lu3dC5M/zzn65HeaKj4YUXjnvJ3NxcoqOjAVfP2U033cSiRYuIjY2lTRvX/3Q//PADq1atOtwLlJmZyaZNm/j111+5+uqr8ff3p1mzZpx11ll/uP6SJUs488wzD18rMjLyuPFkZmaSkZHB0KFDARgzZgyjRo06vP+yyy4DoE+fPqSkpJR7jXbt2h0eqgm/LyJ9omuPHj36mHEtXLiQ6dOnH+6tW7x4MbNmzQLg+uuv57777jt87CWXXIKfnx9dunRh7969x329IiIiIt7iX1+tJSOnkHdu7EeAv3cNQhPPd8LkzFprgSz300D3wwIXA8Pc22cAcznd5Kwi6tVzJWbbtkGrVq7np6nsnLOyateuffh3ay0vvfQS55577hHHfPPNNycsm2qtrdTSqrVq1QJchUyKiooq7bpw5Gsua/fu3dx00018+eWXhIWV331f9jWWxgiu1y8iIiLi7eas38esFTu5/az2dGlWx+lwxAdVKN03xvgbYxKBfcCP1to4oLG1djeA+2ej047mhRdg7tzjPx59FHJy4OGHXT8fffT4x5+g16yizj33XF577TUKCwsB2LhxI9nZ2Zx55pl8+OGHFBcXs3v3buYcPScOGDBgAPPmzSM5ORmAtLQ0AMLDwzl06NAfjo+IiKBevXqHe6jefffdwz1dp+tUrl1YWMiVV17JU089RceOHQ9vHzhwIB9++CEAM2fOZPDgwZUSo4iIiIinOZRXyEOzV9OhURi3ndXe6XDER1WoWqO1thiINsbUBWYbY7qd4JTDjDETgAkArVq1OpUYf1c6x+zjj2H4cNej7PMqNH78eFJSUujduzfWWho2bMjnn3/OpZdeyi+//EL37t3p2LFjuYlOw4YNmTp1KpdddhklJSU0atSIH3/8kYsuuogrrriCL774gpdeeumIc2bMmMHEiRPJycmhbdu2vPXWW5X2Wk722osWLWLp0qU8+uijPProo4Crx3Dy5MnceOONPPPMMzRs2LBSYxQRERHxJE99t549B/P4bNJAagWcfBVvkYowJzvkzBjzKJAN3AwMs9buNsY0BeZaa8843rkxMTG2tHphqXXr1tG5c+eK3fzpp13FP8omYnPmwNKlUGa+k0ipk3p/iYiIiJRjSVIqV01dwk2D2/DwhV2cDke8nDFmmbU2prx9J+w5M8Y0BAqttRnGmBDgbOAp4EtgDPCk++cXlRfyMZSXgJX2oImIiIiIVLLcgmIe+GwVrSJDueecjic+QeQ0VGRYY1NghjHGH9cctY+ttV8ZYxYDHxtjbgK2AaOOdxEREREREW/z/E8bSUnN4f3x/QgNqtCMIJFTVpFqjauAXuVsTwVGVEVQIiIiIiJOW7k9g+nzk7g6tiUD2zdwOhypATxicQaVWpeqoPeViIiInKqCohLu+3QVjcKDefACzV+X6uF4chYcHExqaqr+kJZKZa0lNTWV4OBgp0MRERERL/TKnM1s2HuIJy7tRp3gQKfDkRrC8YGzLVq0YMeOHezfv9/pUMTHBAcH06JFC6fDEBERES+zfs9BXp27mYujmzGic2Onw5EaxPHkLDAwkDZt2jgdhoiIiIgIRcUl3P/pKsKDA3n0oq5OhyM1jOPJmYiIiIiIp3hzYTIrd2Qy+epeRNYOcjocqWEcn3MmIiIiIuIJkg9k898fNnJ258Zc1KOp0+FIDaTkTERERERqvJISy/2frSIowI8nLu2GMcbpkKQGUnImIiIiIjXezPhtxCen8Y+RnWlcR9WexRlKzkRERESkRtuZkcuT36xjcPsGXBnT0ulwpAZTciYiIiIiNZa1lr/PXk2Jhf9c1l3DGcVRSs5EREREpMaavWInczfs577zzqBlZKjT4UgNp+RMRERERGqk/Yfy+b+v1tK7VV1uGBDldDgiSs5EREREpGZ69MvfyMkv5ukreuDvp+GM4jwlZyIiIiJS43z3226+Wb2HO8/uQPtG4U6HIwIoORMRERGRGiYzp5B/fL6GLk3rMOHMtk6HI3JYgNMBiIiIiIhUp399vZb0nALeHteXQH/1VYjn0LtRRERERGqMeRv38+myHUwc2pZuzSOcDkfkCErORERERKRGyMov4qFZq2nXsDa3n9XB6XBE/kDDGkVERESkRnj6u/Xsyszl04kDCA70dzockT9Qz5mIiIiI+Lz45DTeWbyVMQOi6NM60ulwRMql5ExEREREfFpeYTH3f7aKFvVCuPfcM5wOR+SYNKxRRERERHzaCz9tIvlANu/d1I/atfTnr3gu9ZyJiIiIiM9avSOTafOTGB3TksEdGjgdjshxKTkTEREREZ9UUFTCvZ+upH7tIB4a2dnpcEROSP26IiIiIuKT3liQzPo9h5h6fR8iQgKdDkfkhNRzJiIiIiI+6cuVu4iNiuScrk2cDkWkQpSciYiIiIjPycwpZP2egwxqr3lm4j2UnImIiIiIz1makoa10K+t1jQT76HkTERERER8TlxyKkEBfkS3rOt0KCIVpuRMRERERHxOXHIa0S3rEhzo73QoIhWm5ExEREREfMqhvEJ+25lJ/zYa0ijeRcmZiIiIiPiUhK3plFjo17a+06GInBQlZyIiIiLiU+KT0wjwM/RqVdfpUEROipIzEREREfEpcUmp9GgRQWhQgNOhiJwUJWciIiIi4jNyCopYtSNTQxrFK50wOTPGtDTGzDHGrDPGrDHG3OneHm2MWWKMSTTGJBhjYqs+XBERERGRY1u+NYOiEks/FQMRL1SRvt4i4B5r7XJjTDiwzBjzI/A08E9r7bfGmAvcz4dVXagiIiIiIscXl5yKn4GYKCVn4n1OmJxZa3cDu92/HzLGrAOaAxao4z4sAthVVUGKiIiIiFREXHIa3ZpHEFZL883E+5zUu9YYEwX0AuKAu4DvjTHP4hoeObCygxMRERERqai8wmISt2cwZkBrp0MROSUVLghijAkDPgPustYeBCYBd1trWwJ3A28c47wJ7jlpCfv376+MmEVERERE/iBxewYFRSX0a6NiIOKdKpScGWMCcSVmM621s9ybxwClv38ClFsQxFo71VobY62Nadiw4enGKyIiIiJSrrikNIyBvioGIl6qItUaDa5esXXW2ufK7NoFDHX/fhawqfLDExERERGpmLjkVDo3qUNESKDToYickorMORsEXA+sNsYkurc9BNwMvGiMCQDygAlVEqGIiIiIyAkUFJWwfFs6V8e2cjoUkVNWkWqNCwBzjN19KjccEREREZGTt3pnBnmFJVrfTLxahQuCiIiIiIh4qiVJaQDEqhiIeDElZyIiIiLi9eKS0+jYOIzI2kFOhyJyypSciYiIiIhXKyouYVlKmkroi9dTciYiIiIiXu23XQfJLiimX1vNNxPvpuRMRERERLxaXFIqALEqBiJeTsmZiIiIiHi1+OQ02jaoTaPwYKdDETktSs5ERERExGsVl1jiU9I0pFF8gpIzEREREfFa63Yf5FBekYqBiE9QciYiIiIiXisu2bW+mXrOxBcoORMRERERrxWXlEqryFCaRoQ4HYrIaVNyJiIiIiJeqaTEsjQljX6q0ig+QsmZiIiIiHilTfuySM8pVAl98RlKzkRERETEK8Ulu9Y3699WxUDENyg5ExERERGvFJeURrOIYFrU03wz8Q1KzkRERETE61hriUtOpV/b+hhjnA5HpFIoORMRERERr7NlfzYHsgpUDER8ipIzEREREfE68e71zVQMRHyJkjMRERER8Tpxyak0DK9Fmwa1nQ5FpNIoORMRERERr2KtJS7Jtb6Z5puJL1FyJiIiIiJeZVtaDnsO5tFPJfTFxyg5ExERERGvEpfkmm/WX/PNxMcoORMRERERr7IkOZXI2kG0bxTmdCgilUrJmYiIiIh4lfjkNGKjNN9MfI+SMxERERHxGjszctmRnku/thrSKL5HyZmIiIiIeI24pFQA+rVRMRDxPUrORERERMRrxCWlERESSKcm4U6HIlLplJyJiIiIiNeIS06lb1Qkfn6abya+R8mZiIiIiHiFvQfzSEnNob/mm4mPUnImIiIiIl4hLtm1vlms1jcTH6XkTERERES8QlxSKmG1AujStI7ToYhUCSVnIiIiIuIV4pLTiImqR4C//oQV36R3toiIiIh4vANZ+Wzel6US+uLTlJyJiIiIiMeLd8830+LT4suUnImIiIiIx4tPTiMk0J/uzSOcDkWkyig5ExERERGPtyQplT6t6xGo+Wbiw0747jbGtDTGzDHGrDPGrDHG3Flm3+3GmA3u7U9XbagiIiIiUhNl5BSwYe8h+qmEvvi4gAocUwTcY61dbowJB5YZY34EGgMXAz2stfnGmEZVGaiISGXJLyqmVoC/02GIiEgFxSenYS30a6tiIOLbTpicWWt3A7vdvx8yxqwDmgM3A09aa/Pd+/ZVZaAiIqfCWktKag5Lk9OIT0ljaUoa29JyGDewDQ9f2BljjNMhiojICcQlp1ErwI+eLTXfTHxbRXrODjPGRAG9gDjgGWCIMeYJIA/4m7V2aaVHKCJyEopLLOt2H2SpOxGLT07nQFY+APVCA4mJiqRbswjeXJhMbmERj1/SHX8/JWgiIp4sPjmNXq3qatSD+LwKJ2fGmDDgM+Aua+1BY0wAUA/oD/QFPjbGtLXW2qPOmwBMAGjVqlWlBS4iApBXWMzK7RmuRCwlneVb08nKLwKged0QBrevT982kcRGRdKuYRh+fgZrLa2/D+XVuVvILSjm2VE9taCpiIiHOphXyJpdmdx2VgenQxGpchVKzowxgbgSs5nW2lnuzTuAWe5kLN4YUwI0APaXPddaOxWYChATE3NE4iYicrIycwtZvjXdNUQxOY1VOzIpKC4BoGPjMC6ObkZsm0hioiJpXjek3GsYY7jvvE6EBvnz7A8bySssYfLVvQgKUIImIuJplqWkU2Khv4qBSA1wwuTMuCZkvAGss9Y+V2bX58BZwFxjTEcgCDhQFUGKSM2192Ae8clp7mGK6azfcxBrIcDP0K15BGMHRdE3KpKY1vWoVzvopK5921kdCAkK4F9frWXCuwlMua4PwYEaMiMi4kmWJKcS6G/o1aqe06GIVLmK9JwNAq4HVhtjEt3bHgLeBN40xvwGFABjjh7SKCJyMqy1JB/IPjxXrLR4B0BokD+9W9XjzhEdiI2KJLpVXUKDTmrabLluGtyGkEB//v75asa9tZTpY2KoXev0rysiIpUjLimNni3qEhKkL8/E91WkWuMC4Fiz5a+r3HBEpCYpKi5h/Z5DR/SMlRbviKwdREzretwwoDV9oyLp0qxOlS08ek2/VoQE+XHPxyu54c143hzbl4iQwCq5l4iIVFx2fhGrd2YycWhbp0MRqRb6elhEqlVJieXjhO18vXo3K7ZlHFG8Y0iHBvSNiiS2TT3aNQyr1jL3l/ZqQXCAP3d8uIJrpy/hnRv7EXmSwyRFRKRyLd+WTnGJpV8brW8mNYOSMxGpNvsO5vG3T1fx68b9tG8UxiW9mtE3KpK+UZE0O0bxjup0fvemTA3055b3lnHV1MW8N74fjcKDnQ5LRKTGiktKw9/P0Lu15ptJzaDkTESqxfdr9vDAZ6vILSzmX5d047p+rTxyAejhnRrx1ti+jJ+RwOjXlzBzfD+PSBxFRGqiuORUujWPIExzgaWGUN1oEalSOQVFPDhrFbe8u4xmdUP46vbBXN+/tUcmZqUGtW/AuzfFcuBQPqOmLGZrarbTIYmI1DiudSwzVUJfahQlZyJSZVZuz2Dk5AV8uHQ7E4e2Y/atg2jfKNzpsCokJiqS92/uT3ZBEVe+vpjN+7KcDklEpEZZvi2dguIS+rVVciY1h5IzEal0xSWWl3/ZxOWvLSKvsJj3x/fngfM7ed0iz91bRPDhhP4Ul8Do1xezdtdBp0MSEakx4pLSMMb1ZZlITeFdfymJiMfbnpbDVVMX8+wPGzmvWxO+u/NMBrTz3ipbnZrU4eNb+hMU4MdVUxeTuD3D6ZBERGqE+OQ0ujStQ51gLW0iNYeSMxGpNJ+v2MkFL85n3e5DPHdlT166uhcRod7/j2rbhmF8fMsAIkIDuW56HPHJaU6H5JUKi0t4+PPf+O633U6HIiIeLr+omOXb0lVCX2ocJWcictoycwu544MV3PVRImc0CefbO4dwWe8WHl3042S1jAzlk1sG0qhOLW54M475m/Y7HZLXeXXOFt5dspWJ7y1n+vwkp8MREQ+2akcm+UWabyY1j5IzETktS5JSueDF+Xy9ejf3/KkjH07oT8vIUKfDqhJNIoL5aMIAourX5qa3E/hx7V6nQ/Iaa3Zl8tIvmxjZvSnnd2vC41+v419fraWkxDodmoh4oLikVABiNd9MahglZyJySgqKSnjqu/VcPW0Jgf6GTycO4PYRHQjw9+2PlYbhtfhwQn86Nw1n0nvL+N/KXU6H5PEKikr42yerqBsaxOOXdOPla3ozdmAUbyxI5vYPV5BXWOx0iCLiYeKS0+jUJJx6tYOcDkWkWmlFPxE5aVv2Z3Hnhyv4bedBRse05JGLulC7Bi0QWjc0iPfG9+PGt5dypzu5GBXT0umwPNYrczazbvdBpl7f5/AfWo9e1IWmEcH859v17D+Uz7TrY3xifqKInL7C4hKWbU1nVJ8WTociUu18+ytuEalU1lreW7KVkZPnsyM9lynX9eGpK3rUqMSsVHhwIDNujGVguwbc++kq3l2c4nRIHum3nZm8Mmczl/ZqzjldmxzebozhlqHtePGqaFZsS+eKKYvYlZHrYKQi4il+25lJTkExsSoGIjWQkjMRqZDUrHxufieBf3z+G32jIvn+rjM5r1uTE5/ow0KDApg+JoazOzfi4S/WMPXXLU6H5FFcwxlXUq92EI9e1KXcYy6Obs6MG2PZk5nHpa8uZN1urSUnUtPFuSvixrbRfDOpeZScicgJzdmwj3NfmM+vmw7w8IVdmDEulsZ1gp0OyyMEB/rz2nV9GNm9Kf/+Zj0v/LQRa1XkAuClXzaxfs8h/nNpd+qGHnveyMB2Dfhk0gAMhiunLGbR5gPVGKWIeJq4pFTaNaxNw/BaTociUu2UnInIMeUVFvPoF78x7q2l1K8dxJe3DeKmwW3w8/OdEvmVIdDfjxeviuby3i144adNPPnt+hqfoK3ekcmrc7dwWe/mnN2l8QmP79SkDrNuHUjTusGMeSueLxJ3VkOUIuJpikssCSnp9GurIY1SM9W8iSIiUiFrdmVy14eJbNqXxY2D2nDfeWcQHOjvdFgeK8Dfj2eu6EFIkB+v/5pEbmExj13UtUYmsvlFxdzzSSINwoJ49MKuFT6vWd0QPpk4kAnvJHDnh4nszszjljPb+tR6eSJyfGt3HeRQfhH9NKRRaiglZyJyhJISy/QFSTzz/Qbqhgbxzo2xnNmxodNheQU/P8O/Lu5GSKA/0+Ynk1tQzJOX98C/hiVoL/60iY17s3hrbN+TrsAYERLIOzfFcs/HK3ny2/XszsjlkYu61rg2FKmp4pJd65v1UzEQqaGUnInIYbszc7nn45Us2pLKOV0a8+TlPYjUGjMnxRjDQxd0JiQogMk/byK3sJjnR0cT6OPrv5VauT2DKfO2MKpPC4Z3anRK16gV4M/kq3rRNCKYafOT2XMwjxev6qWeW5EaIC45jdb1Q2kSoXnNUjMpORMRAL5ZvZsHZ62moKiEJy/rzui+LTWc7BQZY/jrnzoSGuTPk9+uJ7+ohJev6UWtAN9OLvIKi7nnk5U0Cg/mHxeWX52xovz8DH8f2YUmESE8/vVarp0ex/QbYrQgrZw0ay2vzdvCR0u307hOMFH1Q2ldvzat64fSOrI2rRuEUidYa+x5gpISy9KUNM6pwDxVEV+l5EykhsvKL+KxL9fw6bId9GwRwQtX9aJNg9pOh+UTJg5tR0igP49+uYbxMxKYen0MIUG+m6C98NMmNu/L4u1xfYkIqZw/dm8a3IYmdYK5++NELp+yiBnjYmkZGVop1xbfV1RcwiNfruH9uG3ERkVSUmL5Zf1+DmTtOOK4eqGBtK5fm6j6obRy/2ztTuLq1w7SF1XVZMPeQ2TkFGpIo9RoSs5EarBlW9O5+6NEdqTncPtZ7bljRIcaM/yuuowZGEVIoD/3z1rFmLfieXNsX8J8cNHu5dvSmfrrFkbHtGTYGac2nPFYRvZoSsPwWoyfsZTLXlvEW2P70q15RKXeQ3xPbkExt3+wgp/W7eXWYe2499wzDidZ2flFbE3NYVtaNimpOWxNzWFrajZLU9L5YuUuyhZbrR3k/3tP2+Gfrt+b1gmukUV/qkpcknu+WVsVA5Gay1RnueeYmBibkJBQbfcTkfIVFZfw0i+beXnOZppGBPP86Gj6Rukfw6r0ReJO/vrxSro1j+CdcbEnXSjDk+UVFjNy8nxyC4r57u4zq2yI2Ka9hxjzZjyZuYW8el0fhqpQjRxDenYBN81YyortGTx2UVfGDIyq8Ln5RcXsSM9la2q2O2nLOfz79vQcCot//7spKMCPlvVCiKpfm1b1Q4/42aJeiL7sOkmT3lvGqh2ZLHzgLKdDEalSxphl1tqY8vb53te3InJC//1xI6/N3cJlvZrz2MVdNd+iGlwc3ZzgQH9uf38FV01bwszx/Xym2MpzP25ky/5s3rkxtkrfSx0ahzP7L4MY82Y8N729lCcv78EVfVpU2f3EO21Py2HMW/HsSM/ltWt7c163pid1fq0Af9o1DKNdw7A/7CsusezKyGVbWg4pqdlsS3X93Jqaw6ItqeQWFh8+1s9A83ohrnlt9UM5p2sTfaFwHNZa4pPT1EZS4yk5E6lhDuUV8t7irYzs0ZTnRkc7HU6Ncm7XJkwbE8OEdxK4xp2g1Q+r5XRYp2XZ1jSmzU/i6thW1bLkQuM6wXwycQAT31vG3z5ZyZ7MXP4yvL3mBJ1AyoFsJrybQKvIUJ66vIfXv++OZc2uTMa+tZT8wmLeu6kfsZW8Vpa/n6FlZCgtI0MZ1L7BEfustezPyv9Db9vW1Gy+XLmLmXHbuHlIG+47r5N61MqxZX8WqdkFGtIoNZ6SM5Ea5uOEHRzKL+KWM9s6HUqNNLRjQ94Y05fx7yzl6mlLmDm+Pw3DvfMP5bzCYu79ZBXNIkL4+8jO1Xbf8OBA3hoby/2freLZHzayKzOP//tzVwL0B2+5ErdncNPbSykqsaSk5nDB5Pm8MLoXA9r5VtGFhZsPcMu7ywgPDmDmpIF0bBxerfc3xtAoPJhG4cF/GCaeX1TM41+tY9r8ZJZvy+Dla3rRNCKkWuPzdEuS0gCtbyaif8lEapCi4hLeWphMbFQkPVrUdTqcGmtwhwa8OaYv29JyuHraEvYdynM6pFPy7PcbSDqQzdNX9Kj2IidBAX48d2VPJg1rx/tx25j43jJyC4pPfGIN88v6vVw9dQmhtfyZfetAZt86kNpBAVwzfQnP/biR4pLqm3delT5fsZOxb8XTvG4Is26t/sTsRGoF+POvS7ox+eperN99kJGTF/Drxv1Oh+VR4pLTaFynFq3rqxqr1GxKzkRqkB/W7mVHei43DWnjdCg13sD2DXh7XCy7MnK5auoS9h70rgRtaUoabyxM5rr+rf4wvKu6GGO4/7xO/N/FXfl5/T6unraE1Kx8R2LxRB/Gb+Pmd5bRvlEYsyYNom3DMLo2i+B/tw/m0l7NmfzzJq6etoQ9md713ivLWsvr87Zw10eJ9Gldj48nDvDoHqk/92zGl7cPplF4Lca8Fc9zP2zwmQT5dFhriUtKpV+b+hqiLDWekjORGmTa/CRa1w/l7M5a4NMT9G9bn7fHxbI3M4+rpnrPH8m5BcXc+8lKmtcN4cHzq28447HcMCCKKdf1Yd3ug1z+2iK2pmY7HZKjrLU89+NGHpi1msHtG/DhhCOHztauFcBzV0bz31E9+W1nJue/+Cu/rN/rYMSnpqTE8n9freU/365nZI+mzLgxttLW16tK7RqGMfvWQVzRuwWTf9nM9W/Esf9Qzf5SYWtqDvsO5Wu+mQhKzkRqjGVb01mxLYObBrfBX+vyeIzYNpHMuDGW/YfyuWrqYnZn5jod0gk9/f16UlJzePqKHtT2kDXbzu3ahPdv7kdGbiGXvbqIldsznA7JEYXFJdz/2Som/7yJUX1aMH1MzDH/G13epwX/u30wTSJCuPHtBB7/ai0FRSXVHPGpySt0rWH21sIUbhzUhpeu6kWtAO9Z4D0kyJ9nRvXk6St6sHxbOhdMns8S9xpfNVFcsnt9s0ou4CLijZScidQQbyxIIiIkUKXHPVBMlCtBO5BVwOjXl7Azw3MTtLikVN5elMINA1ozsJ0zwxmPpU/rSD6bNJCQIH+umrrEK3uDTkd2fhE3v5PAxwk7uOOs9jx9RY8TVgV09eIM5IYBrZm+IJlRUxaxLTWnmiI+NZm5hYx5M56vV+/m7xd05pGLunjtQtBXxrTk878MIrxWANdMW8IrczZTUgOHOcYlpdEgLKjc5QtEaholZyI1wPa0HL77bQ/X9GtFaJBn9HTIkfq0rse7N8WSnl3AVVMXsyPd8/5Aziko4t5PV9GyXij3n9fJ6XDK1a5hGLNuHUi7RrW5+Z1lfLR0m9MhVQtXz+sSft24n39f2p2/nnNGhefuBAf6838Xd2PKdb1JPpDNyMnz+d/KXVUc8anZnZnLlVMWs3xbOi9eFc3NPlB1tlOTOnx5+2Au6N6UZ77fwE0zlpKeXeB0WNUqLjmN2DaRmm8mgpIzkRrhrYUp+BnDmAFRTocix9GrVT3eG9+PzJxCRr++hO1pnpWgPf3dBraledZwxvI0Cg/mwwkDGNS+Afd/tprnf9yItb7bG5F8IJvLX1vEpn2HmHZDDNf0a3VK1zmvW1O+vmMI7RuHcfsHK3hw1iqPqoC5ce8hLnt1ETszcnl7XCwXRzd3OqRKE1YrgJeu7sW/Lu7Kws2pXPjSAlZsS3c6rGqxPS2HnRm5KqEv4qbkTMTHZeYW8tHSbVzUsxlNIoKdDkdOoGfLuswc35+s/CKumrrEY4aYLd7iGs44dmAU/dt6/h9RYbUCeGNMDKP6tODFnzdx/2erKCz2jvlUJ2PFtnQuf20RWflFfHBzf0acZrGflpGhfHzLACYObccH8du5+JUFbNx7qJKiPXXxyWlc8doiikosH93S37EKoVXJGMP1A6L4dNIAjIErX1/MmwuSffqLBXD1mgEqBiLipuRMxMd9tHQb2QXF3DRY5fO9RfcWEcwc34/sgiJGT11MygFnqw9m5xdx32craV0/lPvOO8PRWE5GoL8fT1/RgzvOas/HCTu4+Z0EsvOLnA6r0vy0di9XT1tCWK0APps0kF6t6lXKdQP9/Xjg/E68c2MsadkF/PnlBXwYv82xJOGb1bu57o04GoTXYtakgXRtFuFIHNWlR4u6fH37EIZ2bMT/fbWWW2cu52BeodNhVZn45FTqhgbSsZFnrU0n4hQlZyI+rLC4hLcXpjCgbX26NfftP2h8TbfmEbw/vj95hcWMnrqYpP1ZjsXy5Lfr2ZGeyzNX9PS6OYvGGP56zhn8+9Lu/LpxP1dNXcLaXQedDuu0zYzbyoR3E+jYOJzPJg2kTYPalX6PMzs25Js7h9CndT0emLWaOz5M5FA1JwlvL0zmL+8vp3vzCD6bOJCWkTVjgeKI0ECm3dCHhy7oxA9r9/LnlxawZlem02FVibjkNPpGRXptUReRynbC5MwY09IYM8cYs84Ys8YYc+dR+/9mjLHGGN8bYyDi5b79bQ+7MvMYr0WnvVKXZnX4YEJ/iootV01dwuZ91Z+gLdp8gHeXbGXcwDbEenGZ62v6tWLaDTFsTc3mgsnzueODFY73SJ4Kay3P/bCBv8/+jaEdG/LBzUeuYVbZGoUH886N/bj33DP4ZvVuLnxpAat2ZFTZ/UqVlFie/HY9j/1vLWd3bszM8f2oVzuoyu/rSYwxTDizHR9N6E9eYQmXvrqIDxzswawKezLz2JqaoxL6ImVUpOesCLjHWtsZ6A/8xRjTBVyJG/AnoGaUwxLxItZaps9Pom2D2gw/o5HT4cgp6tTElaCV2NIErfrm/2Tlu6oztmlQm3vP9Z7hjMcyonNj5t93FrcOa8cPa/dw9nPz+Pvs1ew96B2LfxcWl3Dvp6uY/MtmRse0ZNoNx17DrDL5+xn+Mrw9H07oT2FRCZe/tog3qnAuVEFRCfd8spIp87Zwbb9WTLmuD8GB3rOGWWWLiYrk6zsG069NJA/OWs1fP17pM8NzS9c384Z5rCLV5YTJmbV2t7V2ufv3Q8A6oLRE0vPAfYDvfI0j4iOWpqSzakcmNw5uo+EiXq5j43A+nNAfY+CqqUuqrUDDf75Zx67MXJ4d1YOQIN/44zgiNJD7zuvEr/cO5+rYVny0dDtDn5nDk9+uJzPHc+f1ZOcXcdOMBD5dtoO7zu7Ak5d3J+AEa5hVtr5RkXxzp2su1L++Wsv4GQmVXvI9K7+Im2YsZfaKnfztnI48fkk3/PX5Rf2wWrw9Lpa//qkjnyfu5OJXFrLJAwq1nK4lSWmEBwfQuWkdp0MR8Rgn9clujIkCegFxxpg/AzuttStPcM4EY0yCMSZh//79px6piJyU6fOTqBcayOW9tei0L2jfyJWg+RnD1VOXsH5P1c6bWrDpADPjtjF+cBv6tPa9IUeN6gTzr0u68fM9QzmvaxNe/3ULQ57+hVfmbCanwLN6JfYdymP01MUs3HyApy7vzl1nd3RsPai6oUFMu6EPj17UhfmbDnD+i/OJS0qtlGvvO5TH6NcXs2hLKk9f0YPbzuqgda/K8Pcz3DGiA+/d1I+MnAL+/PJCZq/Y4XRYpyUuOZW+UZFKwEXKqHByZowJAz4D7sI11PHvwCMnOs9aO9VaG2OtjWnYsOGpxikiJyHlQDY/rtvLdf1b+0yPh7gWWP5wQn8C/A3XTIurssIWh/IKuf+zVbRtWJt7zvH+4YzH07p+bV64qhff3DGEvlGRPPP9BoY+M5d3F6dQUOR86f2k/Vlc/toituzLZtoNfRjd99TWMKtMxhjGDWrDrFsHEhzox9XTlvDiT5soLjn1QTRJ+7O47NVFJO3PZvqYGK6MaVmJEfuWQe0b8PUdQ+jeIoK7P1rJg7NWk1foOevRVdT+Q/kk7c/WfDORo1QoOTPGBOJKzGZaa2cB7YA2wEpjTArQAlhujGlSVYGKSMW9tTCZQD8/rh/Q2ulQpJK1bRjGRxMGUCvAj2umL6mSCm7//mYduzNzeXZUzxoz16dz0zq8MbYvn04cQJv6tXn4izWc/dw8Pl+xk5LTSDpOx7KtrjXMcvKL+XBCf87qdHprmFW2bs0j+OqOIVzUsxnP/7SR66bHndL8veXutdpyC1yvU3NkT6xxnWDeH9+PScPa8UH8Ni57dZHXFbiJd69v5s2FhkSqQkWqNRrgDWCdtfY5AGvtamttI2ttlLU2CtgB9LbW7qnSaEXkhDJyCvg4YQd/jm5Go3AtOu2LohrU5sMJ/QkN9OeaaXH8trPyErRfN+7ng/jt3HxmW3pX0rpZ3iQmKpKPbunPW+P6UrtWAHd9lMgFk+fz87q91Vol74c1e7hm2hIiQgL5bNJAerasW233PhlhtQJ4YXQ0T1/Rg8TtGVzw4nzmbthX4fN/WruXa6YtoY6Hv05PFODvx/3ndeLNsTHszMjlopcW8O3q3U6HVWFxyamEBvlrmReRo1Sk52wQcD1wljEm0f24oIrjEpFT9H78NnILtei0r2tdvzYf3TKAsFoBXDNtCSu3Z5z2NQ+6hzO2bxTG3Wd3PP0gvZQxhuFnNOLr2wfz4lXRrv+fZiQwasriw9/2V6X3lmxl4nvL6NS0Dp9NGkhUFaxhVpmMMVwZ05L/3T6IBmG1GPvWUv7zzToKi48/LPSD+G1HrNXm6a/TU53VqTFf3zGYto3CmDRzOf/83xqPGJJ7InFJafRpXY/Aai5sI+LpKlKtcYG11lhre1hro92Pb446Jspae6DqwhSRiigoKmHGohSGdGig6lc1QMvIUD66pT8RoYFc90YcK7aln9b1Hv9qLXsP5tWo4YzH4+dnuDi6OT/9dShPXNqNbWk5XPn6Ysa9FV8lw0mttTzz/Xr+8flvDDujER/c3I/6YVW3hllla98onC9uG8Q1/Vrx+q9JjJqymO1pOX84zlrL8z9u5MFZqznTvVZbAy96nZ6oRb1QPrllAGMHRvHWwhSufH0xOzNynQ7rmNKyC9iw95BK6IuUQ19XiPiQr1fvYu/BfPWa1SAt6oXy4YQB1AsN4oY34lm29dQStDkb9vFxwg5uGdqOaA0tO0Kgvx/X9mvNvHuH88D5nVi+LYORkxdU6kLWhcWutb1embOFq2NbMvX6PoQGVf0aZpUtONCff1/anVeu6c2WfVlcMHk+35QZaldUXMIDn63mxZ83cUWfFtW2VltNEBTgx2N/7sqr1/Zm874sRk6ezy/r9zodVrmWprh6oFUMROSPlJyJ+AjXotPJdGgUxtCOqoxakzSvG8JHt/SnflgQY96MZ9nWkxt6l5lbyAOfraJj4zDuOrtDFUXp/UKC/Jk4tB2/3jecvwxvx49r93L2c/N46DQXss7KL+LGt5cya/lO/vqnjvz70upfw6yyjezRlG/uHELbhmHcOnM5f5+9mvTsAia8u4yPErZz2/D2PHNFDw1pqwIXdG/K/24fTNOIEG58O4Gnv1tP0QmGmFa3uKQ0agX40b2F5puJHM1U5wTnmJgYm5CQUG33E6lJFm05wDXT4njysu5cFet8uW2pfnsy87hm2hL2Hszj7Rtj6RtVsW+l//bJSmav2MnsWwfSo0Xdqg3Sh+w7lMfLv2zm/bhtBPgbxgyMYtLQdtQNDar4NQ7mMe7tpazfc4j/XNqdK/v6Vgn5gqISnv1hA1N/TSIowI+i4hL+eXE3ru+vSrJVLa+wmH/+bw0fxG8ntk0kz13Zkxb1Qp0OC4CRk+dTJziQDyb0dzoUEUcYY5ZZa2PK26evrER8xBvzk6lfO4hLejV3OhRxSJOIYD6c0J8mEcGMeTO+QosD/7J+L58u28Gkoe2UmJ2kRuHB/N/F3fjlnmGc360pU39NYsjTcyq8kPXmfVlcWnZtLx9LzMA11O6hCzrz1ri+dG4SzmvX9VFiVk2CA/35z2U9eO7KnqzekclZ/53H09+tJyvf2UXWM3MLWbv7IP3aakijSHnUcybiA7bsz2LEf+dx19kduKsGV9kTl32H8rh2Whw70nN5c2xfBrQrf9J9Zk4hf3p+HvVCg/jy9kHUClARkNOxfs9Bnv1+Az+t20eDsFrcMaI9V/VtRVDAH78HXbY1jZtmJBDgZ3hzbF8lxlKldmXk8sz3G5i9YicNwoK455wzuDKmJf5+ptpj+XndXm6akcAHN/c/5meTiK9Tz5mIj3tzQTJBAX5cp2+kBVePzgcT+tMyMoRxb8ezcHP5xXT/+b81pGYX8N8reyoxqwSdmtRh+hjXQtZtG9TmkS/WMOK5ucxesYPiMgtZf79mD9dMi6NeaBCzJg1SYiZVrlndEJ4fHc3nfxlEVP3aPDhrNSMnz2fBpuovtB2XnEaQvx+9WtWt9nuLeAMlZyJeLi27gM+W7+CyXs1VjloOaxBWiw9u7k9U/drc+PZSft24/4j9P67dy6wVO/nL8PZaBLaSlV3IOrxWIHd/tJKRk+fz09q9vLs4hUnvLaNz0zp8OnEArep7xhwgqRmiW9blk4kDePXa3mQXFHHdG3Hc+PZSNu87VG0xxCWnEd2yrpbrEDkGJWciXm7mkq3kFZZwo8rny1Hqh9Xi/Zv707ZhGOPfSWDuhn0AZOQU8NDs1XRuWofbhrd3OErfVLqQ9Ve3D2by1b3IKyxm/DsJPPzFGs7q1IgPbu7vVWuYie8wxnBB96b8ePdQHjy/E0uT0zj3hfk8+sVvpGUXVOm9s/KL+G1nJrEqoS9yTFpcRMSL5RcVM2PxVoZ2bEjHxuFOhyMeKLJ2EO+P78d1b8Qx4Z1lvH59H75I3El6dgFvj+tb7nwoqTx+foY/92zG+d2a8EnCDlKz8pk0rJ3Xl8oX7xcc6M8tQ9txRZ8WPP/TRt5dspVZK3Zyx1kduGFg6yoZ6rxsazrFJVbFQESOQ/86iHixLxN3cSArn5uHtHU6FPFg9WoH8f74/pzRJJyb30ng88Rd3HZWe7o203DG6hLo78c1/Vpx+4gOSszEo9QPq8Xjl3Tnu7vOpE/rejzxzTrOef5XvvttN5VdNC4uKZUAP0Of1vUq9boivkT/Qoh4KWstbyxIplOTcAa1V8UrOb6I0EDeG9+Pni3r0rtVXf6i4YwiUkbHxuG8PS6WGTfGEuTvx8T3ljN66hJW78istHvEJafRvUUEoUEauCVyLErORLzUws2prN9ziJsGt8GY6i+HLN4nIiSQTycO4JOJAwlU742IlGNox4Z8e+cQHr+kG1v2ZfHnVxZwz8cr2ZOZd1rXzS0oZtWODPq10ZeJIsejf51FvNS0+Uk0CKvFn6ObOR2KeBFjjCNrG4mI9wjwdy3NMufeYUw4sy3/W7mL4c/O5fkfN1ZogfXyrNiWTmGx5puJnIiSMxEvtHHvIeZt3M+YAVUzaVtERKROcCAPnt+Zn+8ZylmdG/Hiz5sY/uxcPl22g5KSk5uPtiQ5DT8DMZpvJnJcSs5EvNCbC5IJDvTjWi06LSIiVaxlZCivXNObTycOoEmdYP72yUr+/MoCliSlVvgacUmpdG0WQXhwYBVGKuL9lJyJeJkDWfnMWrGTy3u3ILJ2kNPhiIhIDRETFcnsWwfx4lXRpGUVcNXUJdzybgIpB7KPe15eYTErtmfQT+ubiZyQkjMRL/Pu4q0UFGnRaRERqX5+foaLo5vz8z3DuOdPHZm/6QB/en4ej3+1lsycwnLPWbk9g4KiEvq1VTEQkRNRcibiRfIKi3lvyVZGdGpEu4ZhTocjIiI1VEiQP7eP6MDcvw3jsl4teGNhMsOencOMRSkUFpcccWx8chrGQGyUes5ETkTJmYgX+XzFTlKzC7hpiHrNRETEeY3qBPPUFT346vbBdGpSh0e/XMO5L/zKz+v2Hl7EOi45jTMahxMRqvlmIiei5EzES1hrmb4gma7N6jBAQ0NERMSDdG0Wwfs392P6DTFg4aYZCVz/Rjyrd2SybGs6/fXvlkiFaIl2ES8xb+N+Nu/L4vnRPbXotIiIeBxjDGd3acyZHRsyM24rL/y0iYteXgCgYiAiFaTkTMRLTJ+fTOM6tRjZXYtOi4iI5woK8GPcoDZc2qs5k3/ezOKkVAa2a+B0WCJeQcmZiBdYt/sgCzYf4L7zziAoQKORRUTE89UNDeKRi7o4HYaIV9FfeSJe4I0FyYQE+nNNbCunQxERERGRKqLkTMTD7TuYxxeJO7kypgV1Q7XotIiIiIivUnIm4uHeXbKVohLLuEEqny8iIiLiy5SciXiw3ALXotN/6tyYqAa1nQ5HRERERKqQkjMRD/bZ8h2k5xQyfkhbp0MRERERkSqm5EzEQ5WUWN5ckEyPFhH0jarndDgiIiIiUsWUnIl4qDkb9pF0IJvxQ9pq0WkRERGRGkDJmYiHmj4/mWYRwZzfrYnToYiIiIhINajxyVlBUYnTIYj8wW87M1mclMrYQVEE+tf4/01FREREaoQApwNw2l8/TiSnoJh7zulI12YRTocjArgWna4d5M/ovlp0WkRERKSmqNFfyVtr6dY8gmVb0xk5eQF/eX85W/ZnOR2W1HB7MvP438pdjO7bioiQQKfDEREREZFqUqN7zowxTBzajqtjWzF9fhJvLEjm29W7ubx3C+48uwMt6oU6HaJUsn2H8li5PZPE7ems2XWQM5qEc+OgNjSuE+x0aIfNWJxCibWMGxTldCgiIiIiUo2Mtfb4BxjTEngHaAKUAFOttS8aY54BLgIKgC3AOGttxvGuFRMTYxMSEioj7ipxICuf1+Zu4d0lW7HWck1sK/5yVnsahXvOH+5ScTkFRfy28yCJ29PdCVkGOzNyAfD3M7RtUJst+7MI8PPj0l7NmTC0Le0ahjkac3Z+EQP+8zODOzTg1Wv7OBqLiIiIiFQ+Y8wya21MufsqkJw1BZpaa5cbY8KBZcAlQAvgF2ttkTHmKQBr7f3Hu5anJ2eldmXk8tIvm/g4YQeB/oZxg9pwy5ltqRsa5HRocgzFJZbN+7JI3J5OojsR27j3EMUlrvd3i3oh9GxZl14t6xLdsi5dm0UQEuTPttQcps1P4uOE7RQUl3BOl8bcMrQdvVs5s67YjEUpPPrlGj6bNJA+rbW2mYiIiIivOa3krJyLfQG8bK39scy2S4ErrLXXHu9cb0nOSqUcyOb5nzby5cpdhAUFMOHMtowb3IawWjV6NKhH2JOZVyYRS2f1jkyyC4oBqBMcQE93Ehbdsi49WtSlYXit417vQFY+Mxal8M7irWTmFhLbJpJJQ9sx7IyG1bbGWHGJ5az/ziWydhCzbx1ULfcUERERkepVacmZMSYK+BXoZq09WGb7/4CPrLXvHe98b0vOSq3fc5D//rCRH9fuJbJ2ELcOa8d1/VsTHOjvdGg1QlZ+Eat2ZByeK7ZyeyZ7DuYBEOhv6NK0zuFkrGfLurSpXxs/v1NLqLLzi/hw6XbemJ/Ersw8OjUJ55ahbbmwR7MqL2n//Zo93PLuMl69tjcXdG9apfcSEREREWdUSnJmjAkD5gFPWGtnldn+dyAGuMyWczFjzARgAkCrVq36bN269eRfgYdYsS2d//6wkQWbD9A0Ipjbz+rAqJgWWoeqEhUVl7Bh76EjErGN+w5R+s5qXT/0cI9Yz5Z16dK0TpUkyYXFJXyZuIvXf93Cxr1ZNK8bwk2D23BVbEtCg6qm5/TKKYvZlZnL3L8NI0DvKRERERGfdNrJmTEmEPgK+N5a+1yZ7WOAicAIa23Oia7jrT1nR1u05QDPfr+B5dsyaF0/lL/+qSMX9Wh2yr01NZW1lp0ZuYcTscTtGazemUleoWth8HqhgUf0iEW3qEu92tU776+kxDJnwz6mzNvC0pR06oYGcsOAKMYOjCKyEmNZuT2Di19ZyMMXduGmwW0q7boiIiIi4llOtyCIAWYAadbau8psPw94Dhhqrd1fkUB8JTkDV2Lxy/p9PPvDRtbtPsgZjcO555yO/KlL42qbo+SNdmXksmhLKou2HGDxllR2Z7qGJwYF+NG1WZ3DvWLRLevSKjLUo9py2dY0psxL4se1ewkO9GN0TEvGD2lLy8jTX3Lh9g9WMHf9PhY9eBbhwVrbTERERMRXnW5yNhiYD6zGVUof4CFgMlALSHVvW2KtnXi8a/lSclaqpMTy9erdPPfjRpIPZNOzZV3uPecMBrWv71GJhVMOZOWzeEsqi7aksnjLAVJSXR2skbWDGNC2PrFtIunVqi6dmtQhKMA7hvJt3neI1+cl8XniTkosjOzelIlD29GlWZ1Tut7OjFzOfHoONw6K4u8ju1RytCIiIiLiSSq1WuPp8MXkrFRRcQmzlu/khZ82siszj/5tI7n33DPo0zrS6dCqVWZuIXFJpclYKhv2HgIgvFYA/dpGMqBdAwa2q88ZjcO9fhjo7sxc3lyQzPtx28guKObMjg2ZOLQtA9qeXGL+72/W8caCZH69bzjN64ZUYcQiIiIi4jQlZ9Uov6iYD+K28fKczRzIKuCsTo2455yOdG0W4XRoVSI7v4ilKWks3pLK4qRUftuZSYmF4EA/+kZFMqBdfQa2a0C3ZnV8tshFZk4h78Vt5a2FKRzIyqdniwhuGdqOc7s2wf8ECWhWfhED/v0zwzo14qWre1VTxCIiIiLiFCVnDsgpKOLtRSlMmbuFg3lFXNijKXf/qSPtGoY5HdppySssZsW2DBZvOcCiLakkbs+gqMQS6G/o1aoeA93JWM+WEdQKqFlLDeQVFvPZ8h1M/TWJrak5tGlQm5uHtOWy3s2PWVHyjQXJ/OurtXz+l0FEt6xbvQGLiIiISLVTcuagzNxCpv2axJsLk8krLOaKPi24Y0QHWtQ7/SIS1aGouIRVOzPd88YOkJCSTn5RCX4Gureo607G6hPTOpKQoJqVjB1LcYnlu9/2MGXeFlbvzKRBWC3GDYriuv6tiQj5vdhHUXEJw56dS9OIYD6ZONDBiEVERESkuig58wAHsvJ5dc4W3lviWuftmn6tuHV4OxqFBzsc2ZFKSizr9hw8XMQjPjmNrPwiADo1CWege85YbNtI6qiq4HFZa1m8JZXX5m1h/qYDhNUK4Jp+rbhxUBuaRATzzerd3DpzOVOu68N53Zo4Ha6IiIiIVAMlZx5kV0YuL/2yiY8TdhDk78fYQVFEt6xLgJ/Bz88Q4Gfw9zME+Pnhf/j3o3/64efH4WMC/Az+/gZ/c+RxFSlKYa1ly/4sV3n7zaksSU4lI6cQgLYNah+eM9a/bST1w2pVdfP4rN92ZvL6r0l8vWoX/n6GS3s1Z82ug2TlF/HLPcNOODdNRERERHyDkjMPlHwgmxd+2siXK3dRVf8JSpM7f/N7AhdQZpu/vyEnv5jU7AIAmtcNYWC7+gxwP5pGqHJgZduWmsO0+Ul8nLCd/KISHruoC2MHadFpERERkZpCyZkH252ZS1p2AcUl9vCj6IifJRSXQHFJye/bi8vst5bi4pKjznH9LClzjfK3WwL8DH1a12Nguwa0jAzR2mzVJDUrnwWbD3BB96YE+mgVSxERERH5o+MlZwHVHYwcqWlEiHqoaqD6YbW4OLq502GIiIiIiAfRV/YiIiIiIiIeQMmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHgAJWciIiIiIiIeQMmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHgAJWciIiIiIiIeQMmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHgAJWciIiIiIiIeQMmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHgAJWciIiIiIiIeQMmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHgAJWciIiIiIuIbnn4a5sw5ctucOa7tXkDJmYiIiIiI+Ia+feHKK39P0ObMcT3v29fZuCoowOkARERERETERzz9tCsRGj78921z5sDSpXDffRW/TnExZGXBoUO//yz7OHpb2edNm8Kf/gSxsbBpE3z88ZHxeDAlZyIiIiIiUjlKe67eegtq14aFC10J2403wjPPVDzJysmp+D3DwiA83PUIC4PISGjbFhYvhocf9prEDJSciYiIiIhIZWnVCoYMgYsuOnL7iy/+/nvZZKr00aLFkc/LO+bobWFhrgTQ76iZWqVDGR9+GF57zZWceUmCpuRMREREREROnbXw66/wwgvwxRfg7w/du8Pq1TB+PNx77+8JVWjoH5OpylSamJUOZRw+/MjnHk4FQURERERE5OTl58M770CfPjBsGMyfDw89BO+/D7t3u3quPv8cdu50zQMLC6vaxAxcc9vKJmLDh7ueL11atfetJMZae/wDjGkJvAM0AUqAqdbaF40xkcBHQBSQAlxprU0/3rViYmJsQkJCJYQtIiIiIiKO2L8fpkyBV1+FPXugSxe46y647jpYsuTInqqje7IEY8wya21MefsqkroWAfdYazsD/YG/GGO6AA8AP1trOwA/u5+LiIiIiIgvKh2m2LIlPPIIREfD99/Db7/BzTdDSIjX91w57YQ9Z384wZgvgJfdj2HW2t3GmKbAXGvtGcc7Vz1nIiIiIuLzKqucvCcoKYFvv3XNJ/vpJ1cCdsMNcOed0Lmz09F5pdPtOSt7oSigFxAHNLbW7gZw/2x0mnGKiIiIiHg/L18IGYDsbNewxc6d4cILYe1a+Pe/Yft215BGJWZVosLVGo0xYcBnwF3W2oPGmIqeNwGYANCqVatTiVFERERExDOVlLgKXmzZcuQjMhJGjID69V3rdk2c6KpWWFAAQUFOR31s27fDyy/D1KmQkQExMTBzJowaBYGBTkfn8yo0rNEYEwh8BXxvrX3OvW0DGtYoIiIiIr4uPx+Sk/+YgG3Z4tqen//7sQEBEBUF7dq5CmcsX+4qH1+6qHJQkGuuVmzs748OHaq+iuGJxMXB88/Dp5+6SuNfdpmryMfAgVDBThmpmOMNazxhz5lxdZG9AawrTczcvgTGAE+6f35RCbGKiIiIiJyeU5nzlZFRfvK1ZQvs2OFKWEqFhbmSry5dXIstt2v3+6NlS1eCdvRCyNOnu7YvXQrx8fDWW64eKoA6dVzxliZrfftC8+ZV1jyHFRXBrFmupGzJElccd90Ft93mSjCl2lWklP5gYD6wGlcpfYCHcM07+xhoBWwDRllr0453LfWciYiIiEiVO7p8e+nzV16BJk3KT8DSjvoztnHjI5Ouso+GDY/fm3Ss+5etYlhcDOvW/Z6sxcfDqlWuhAmgWbMjk7WYGKhbt3LaJz3dlSy+9JJrGGO7dq4CH2PHuoZeSpU6Xs/ZSVdrPB1KzkRERESkWsyZA3/+s2vx46Qk17DBwsLf9/v7Q+vW5Sdfbdu6esdO1alWa8zNhcTEIxO2TZt+33/GGb8na7Gx0LMnBAdX/N6XXAKTJ8Pbb7sKfgwbBnffDSNHutpDqoWSMxERERGpefr2hYQEV1Jz4YVHJmCtWnlHgYv0dNdrKE3W4uJg717XvsBAV4JWdkjkrl1w9dW/99L98otr/ljnzq5zAwNd+++6yzX3TaqdkjMRERERqVlKhxJOmuSa81V2SKE3s9Y1B65s71pCgqsiJLiGJbZrBxs2wJAh8PPPriGUDRu62mLSJNfQTnHMaRUEERERERHxKkfP8Ro+/I9zvryVMa6iIy1bunrEwFXOf8OG35O1+HhXBckffoBGjeA//4FrrvnjEEjxOA7X7BQRERERqWRLlx6ZiA0f7nq+dKmzcVUVPz/XsMUxY1xFT55+2rXO2l/+4krc2rRRYuYlNKxRRERERMRXVKRSpDjqeMMa1XMmIiIiIuIralqvoY9Rz5mIiIiIiEg1Uc+ZiIiIiIiIh1NyJiIiIiIi4gGUnImIiIiIiHgAJWciIiIiIiIeQMmZiIiIiIiIB1ByJiIiIiIi4gGUnImIiIiIiHgAJWciIiIiIiIeoFoXoTbG7Ae2VtsNK64BcMDpIGootb1z1PbOUds7R23vLLW/c9T2zlHbO8dT2761tbZheTuqNTnzVMaYhGOt0i1VS23vHLW9c9T2zlHbO0vt7xy1vXPU9s7xxrbXsEYREREREREPoORMRERERETEAyg5c5nqdAA1mNreOWp756jtnaO2d5ba3zlqe+eo7Z3jdW2vOWciIiIiIiIeQD1nIiIiIiIiHsDrkjNjzHnGmA3GmM3GmAfKbP/IGJPofqQYYxLLOTfaGLPYGLPGGLPKGDO6zL42xpg4Y8wm97WCjnH/Me5jNhljxpzs+d7MA9r+O2NMhjHmq6O2v22MSS4TQ3TlvWrP4GTbG2NaG2OWue+xxhgz8WTO93ZOv+/dx9Yxxuw0xrxcZpve96fe9re5r2mNMQ2Oc3993jvX9vq8d6Dt9Xnv7PvefWyN/LyHKm3/me7r/maMedMYE3iM+3vGZ7611msegD+wBWgLBAErgS7lHPdf4JFytncEOrh/bwbsBuq6n38MXOX+fQowqZzzI4Ek98967t/rVfR8b3443fbufSOAi4Cvjtr+NnCF023kq23vvmct9+9hQArQ7GT+23nrw+m2L3OdF4H3gZfLbNP7/tTbvhcQ5X4vNzjG/fV571Dbu4/T570z73t93jv4vncfW+M+76uh/S8AjPvxQXnvXTzoM9/bes5igc3W2iRrbQHwIXBx2QOMMQa4ElfjH8Fau9Fau8n9+y5gH9DQfc5ZwKfuQ2cAl5Rz/3OBH621adbadOBH4LyTON+bOd32WGt/Bg5VyqvxLo62vbW2wFqb735aC3ePu973LlX9vjfG9AEaAz9UxgvyIlXS9u7nK6y1KSe4vz7vnWt7fd471Pb6vHf2fV+DP++hatv/G+sGxAMtyrm/x3zme1ty1hzYXub5Dve2soYAe0v/Ax2LMSYWV2a+BagPZFhri46+rjEmxhgz/QT3P+b5PsTptj+RJ9zd2M8bY2pV8Bxv4XjbG2NaGmNWueN4yv3Bp/e9S5W1vTHGD9e3hPce47J635982x/vOH3euzjd9iei930Vtr0+7w+r1rav4Z/3UA3t7x7OeD3wnfu5R37me1tyZsrZdnS5yaspJ6M+4iLGNAXeBcZZa0uOd11rbYK1dvwJ7l+RuLyd021/PA8CnYC+uLqj76/AOd7E8ba31m631vYA2gNjjDGNKxiXt3O67W8FvrHWbi/neL3vT63tj0mf94c53fbHo/d9Fbe9Pu+PUJ1tX5M/76F62v9V4Fdr7Xzw3M98b0vOdgAtyzxvAewqfWKMCQAuAz461gWMMXWAr4F/WGuXuDcfAOq6z//DdStw/4qe782cbvtjstbudvdW5wNv4eoa9yUe0/bub1DX4Pr2Su/7qm/7AcBtxpgU4FngBmPMk6D3/Wm0/eneX+/7qm/7Y9L7vvraXp/31d72NfnzHqq4/Y0xj+Ia5vjXk7x/tb/3vS05Wwp0MK6qKUHAVcCXZfafDay31u4o72T3ObOBd6y1n5Rud49BnQNc4d40BviinEt8D5xjjKlnjKkHnAN8fxLnezOn2/6Y3N+SlI5FvgT47WTO9wKOtr0xpoUxJsT9ez1gELBB73ugitveWnuttbaVtTYK+Jv7Og+4r633/Sm0/UnQ571zbX9Met9Xbdvr8965tq/hn/dQhe1vjBmPa07Z1cfpzfScz3zrARVaTuaBq+LKRlzjSP9+1L63gYnHOfc6oBBILPOIdu9ri2uS4GbgE36vVhQDTC9zjRvdx2zG1WXK8c73pYcHtP18YD+Qi+sbjnPd238BVuP6sHoPCHO6rXyp7YE/AatwVU5aBUwoc22976v4fV/mWmM5snqX3ven3vZ3uD9DinB9A1r6Xtfnvee0vT7vHWh79Hnv6Pu+zLXGUsM+76u4/Yvc1yzd/kh57Y+HfOYb901FRERERETEQd42rFFERERERMQnKTkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ/w/0ODzJM8eI/oAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABZrUlEQVR4nO3dd3RU1d7G8e8mhB56J0DoPbSASJGqoliQYkMBO5arYvd6veprx94QsaJioQh6EZEiVXoJofcAoaQAaYT0/f5xJjFAAgkkmcnk+ayVlZkzp/xmO87iyS7HWGsRERERERER9yrh7gJERERERERE4UxERERERMQjKJyJiIiIiIh4AIUzERERERERD6BwJiIiIiIi4gEUzkRERERERDyAwpmIiIiIiIgHUDgTEfESxpj4LD/pxphTWZ6PcHd9F8IYE2qMGeDuOs7FGLPIGHN3AZ7fxxjzijHmsDEmzhizwRhT2fXazcaYHcaYGGNMhDFmkjGmYpZjqxpjZhhjThpj9htjbj3j3P2NMduNMQnGmIXGmIYF9T5EROT8FM5ERLyEtbZCxg9wALg2y7bJ7q7vTMaYkt5wjULwEtAduBSoCNwOJLpe+xvoYa2tBDQGSgKvZDn2EyAZqAWMAD41xrQBMMZUB34BngeqAmuBnwv6zYiISM4UzkREvJwxpoQx5hljzB5jzDFjzBRjTFXXawHGGGuMucMYc9AYc8IYM8YY08UYE2KMiTbGfJzlXKONMX8bYz5y9dZsN8b0z/J6JWPMl8aYI8aYQ64eH58zjn3PGHMceNEY08QY85errihjzOQsvULfAQ2A/7l6/54yxvQxxoSd8f4ye9eMMS8aY6YZY743xsQCo89TU1NjzGLXe4kyxmQbTowxZVznPOZqkzXGmFrGmFeBXsDHrho/du3f0hgzzxhz3NWzdWOWc31jjJngej3Odf1se6yMMVWAR4F7rLX7rWOztTYRwFp70FobleWQNKCp69jywFDgeWttvLV2GfAbTrgDGAJssdZOdZ3vRaC9MaZldrWIiEjBUzgTEfF+DwODgd5AXeAETo9KVpcAzYCbgPeB54ABQBvgRmNM7zP23QtUB14AfskIe8AkIBUnIHQErgDuzubYmsCrgAFed9XVCqiPExKw1t7O6T2A43L5fq8HpgGVgcnnqellYC5QBfAHPsrhnKOASq76qgFjgFPW2ueApcBDrhofcoWiecAPrvd5CzA+o8fKZYTr2tWBYFed2Wnnqn2YMeaoMWanMebBrDsYY3oaY2KAOJww9r7rpeZAmrV2Z5bdN+L8N8X1e2PGC9bak8CeLK+LiEghUzgTEfF+9wHPWWvDrLVJOOFn2BlD/l621iZaa+cCJ4EfrbUR1tpDOOGjY5Z9I4D3rbUp1tqfgR3AIGNMLeAq4FFr7UlrbQTwHnBzlmMPW2s/stamWmtPWWt3W2vnWWuTrLWRwLs4IfJirLDWzrTWpuMMAzxXTSlAQ6Cu6/0vy+GcKTihrKm1Ns1au85aG5vDvtcAodbar13vcz0wHRiWZZ/frbVLXP89ngMuNcbUz+Zc/jihsDnQyHWOF40xl2fsYK1d5hrW6A+8BYS6XqoAxJxxvhjAL5evi4hIIfOGsfgiInJuDYEZxpj0LNvScOYhZQjP8vhUNs8rZHl+yFprszzfj9Pz1RDwBY4YYzJeKwEczLJv1scYY2oCH+IMDfRz7X8iV+8qZ1mvcb6ansLpwVptjDkBvGOt/Sqbc36H02v2k2vY5fc4gTclm30bApcYY6KzbCvpOsdZNVpr413DPOueUTs4bQ/wf9baU0CIMeYn4Gqc3rlM1tpDxpg5wE9AJyAeJ5xmVRGnh41cvC4iIoVMPWciIt7vIHCVtbZylp8yrl6xC1HPZEk6OPPCDruukwRUz3KditbarMPksoY6cIY0WiDQWlsRuA1nqGNO+58EymU8cc0dq3HGPlmPOWdN1tqj1tp7rLV1cXoYxxtjmp75hl29hC9Za1vjLM5xDTAyhxoPAovPaO8K1tr7s+yT2UtmjKmAsyDH4TOvC4TkcI2clASauB7vBEoaY5pleb09sMX1eIvreUYd5V3HbkFERNxC4UxExPtNAF7NWHTCGFPDGHP9RZyvJvCwMcbXGDMcZ67YbGvtEZz5W+8YYyq6FiJpcsZ8tTP54fTgRBtj6gFPnvF6OM4qhBl2AmWMMYOMMb7Af4DSOZ38fDUZY4YbY/xdu5/ACUFpZ57HGNPXGNPOFQZjcYY5Zux3Zo2zgObGmNtdbeRrnAVWWmXZ52rXXLFSOD13q6y1Z/aaYa3dgzOs9DljTGnXOW5yXQNjzAhjTAPjaIgzj2+B69iTOKsx/p8xprwxpgfOfLyMHrwZQFtjzFBjTBngv0CItXZ7Tu0pIiIFS+FMRMT7fYCzSt9cY0wcsBJnYY4LtQpn8ZAonDAwzFp7zPXaSKAUsBUn7EwD6pzjXC/hDMGLAX7HCRNZvQ78x7VC4hPW2hjgAeAL4BBOT1oY53aumroAq4wx8Tht9Ii1dl8256jtOi4W2AYsxhnaCE77DjPOSpcfWmvjcBYduRmnN+wo8Canh8gfcBZTOQ50xlkgJCe34AyVPIbTRs9baxe4XmsNLMcJuH/jzP+7J8uxDwBlceYJ/gjcb63dAuCa4zcU57/hCZzPRNb5gSIiUsjM6dMGREREcmaMGQ3cba3t6e5aiipjzDdAmLX2P+6uRUREPIt6zkRERERERDyAwpmIiIiIiIgH0LBGERERERERD6CeMxEREREREQ+gcCYiIiIiIuIBShbmxapXr24DAgIK85IiIiIiIiIeY926dVHW2hrZvVao4SwgIIC1a9cW5iVFREREREQ8hjFmf06vaVijiIiIiIiIB1A4ExERERER8QAKZyIiIiIiIh6gUOecZSclJYWwsDASExPdXYp4mTJlyuDv74+vr6+7SxEREREROS+3h7OwsDD8/PwICAjAGOPucsRLWGs5duwYYWFhNGrUyN3liIiIiIicl9uHNSYmJlKtWjUFM8lXxhiqVaumHlkRERERKTLcHs4ABTMpEPpciYiIiEhR4hHhzN1effVV2rRpQ2BgIB06dGDVqlUA3H333WzdujVfrhEQEEBUVNQ593nttdfyfN5vvvmGhx566LRtX3/9NR06dKBDhw6UKlWKdu3a0aFDB5555pk8n78wvP/++yQkJLi7DBEREREp6saNg4ULT9+2cKGzvQgo9uFsxYoVzJo1i/Xr1xMSEsL8+fOpX78+AF988QWtW7cutFouJJxl54477iA4OJjg4GDq1q3LwoULCQ4O5o033siX8+eVtZb09PQcX7+QcJaamnqxZYmIiIiIt+nSBW688Z+AtnCh87xLF/fWlUvFPpwdOXKE6tWrU7p0aQCqV69O3bp1AejTpw9r164FoEKFCjz99NN07tyZAQMGsHr1avr06UPjxo357bffgLN7sa655hoWLVp01jUHDx5M586dadOmDRMnTgTgmWee4dSpU3To0IERI0YA8P3339O1a1c6dOjAfffdR1paGuD0jDVv3pzevXvz999/5/q9vvXWW3Tp0oXAwEBeeOEFAEJDQ2nZsiV33303bdu2ZcSIEcyfP58ePXrQrFkzVq9eDcCLL77I7bffTr9+/WjWrBmff/75ec/bqlUrHnjgATp16sTBgwe5//77CQoKok2bNpn7ffjhhxw+fJi+ffvSt2/fzLbOMG3aNEaPHg3A6NGjeeyxx+jbty9PP/00e/bsYeDAgXTu3JlevXqxffv2XLeFiIiIiHihvn1hyhQYPBjuuccJZlOmONuLAmttof107tzZnmnr1q1nbStMcXFxtn379rZZs2b2/vvvt4sWLcp8rXfv3nbNmjXWWmsBO3v2bGuttYMHD7aXX365TU5OtsHBwbZ9+/bWWmu//vpr++CDD2YeP2jQILtw4UJrrbUNGza0kZGR1lprjx07Zq21NiEhwbZp08ZGRUVZa60tX7585rFbt26111xzjU1OTrbWWnv//ffbSZMm2cOHD9v69evbiIgIm5SUZLt3737aNc+Ucd0///zT3nPPPTY9Pd2mpaXZQYMG2cWLF9t9+/ZZHx8fGxISYtPS0mynTp3sHXfcYdPT0+3MmTPt9ddfb6219oUXXrCBgYE2ISHBRkZGWn9/f3vo0KFzntcYY1esWJFZS8b7Tk1Ntb1797YbN248q23ObIepU6faUaNGWWutHTVqlB00aJBNTU211lrbr18/u3PnTmuttStXrrR9+/Y96/27+/MlIiIiIoXsiy+sBefn+efdXc1ZgLU2h7zk9qX0s3rpf1vYejg2X8/Zum5FXri2TY6vV6hQgXXr1rF06VIWLlzITTfdxBtvvJHZW5OhVKlSDBw4EIB27dpRunRpfH19adeuHaGhoXmq6cMPP2TGjBkAHDx4kF27dlGtWrXT9lmwYAHr1q2ji6sL9tSpU9SsWZNVq1bRp08fatSoAcBNN93Ezp07z3vNuXPnMnfuXDp27AhAfHw8u3btokGDBjRq1Ih27doB0KZNG/r3748x5qz3dv3111O2bFnKli1L3759Wb16NcuWLcvxvA0bNqRbt26Zx0+ZMoWJEyeSmprKkSNH2Lp1K4GBgXlqu+HDh+Pj40N8fDzLly9n+PDhma8lJSXl6VwiIiIi4kWshTffhGefBV9feOwx+PRTp9esiPSceVQ4cxcfHx/69OlDnz59aNeuHZMmTTornPn6+mau/leiRInMYZAlSpTInP9UsmTJ0+ZWZbeM+6JFi5g/fz4rVqygXLly9OnTJ9v9rLWMGjWK119//bTtM2fOvKBVCK21PPvss9x3332nbQ8NDc18L+d6b3D26ofGmHOet3z58pnP9+3bx9tvv82aNWuoUqUKo0ePznGZ+6zXOXOfjHOmp6dTuXJlgoODz/fWRURERMTbpafD44/D++9D6dLw229wxRVw5ZVFamijR4Wzc/VwFZQdO3ZQokQJmjVrBkBwcDANGza8oHMFBAQwfvx40tPTOXToUOZ8raxiYmKoUqUK5cqVY/v27axcuTLzNV9fX1JSUvD19aV///5cf/31jB07lpo1a3L8+HHi4uK45JJLeOSRRzh27BgVK1Zk6tSptG/f/ry1XXnllTz//POMGDGCChUqcOjQIXx9ffP0/n799VeeffZZTp48yaJFi3jjjTcoW7Zsrs4bGxtL+fLlqVSpEuHh4fzxxx/06dMHAD8/P+Li4qhevToAtWrVYtu2bbRo0YIZM2bg5+d31vkqVqxIo0aNmDp1KsOHD8daS0hISK7aQkRERES8SHIy3HknTJ4MPXrASy9B//7Oaxlz0NasUTgrCuLj4/nXv/5FdHQ0JUuWpGnTppmLdORVjx49MocItm3blk6dOp21z8CBA5kwYQKBgYG0aNHitGF/9957L4GBgXTq1InJkyfzyiuvcMUVV5Ceno6vry+ffPIJ3bp148UXX+TSSy+lTp06dOrUKXOhkHO54oor2LZtG5deeingDOf8/vvv8fHxyfX769q1K4MGDeLAgQM8//zz1K1bl7p16+bqvO3bt6djx460adOGxo0b06NHj9Pe91VXXUWdOnVYuHAhb7zxBtdccw3169enbdu2xMfHZ1vP5MmTuf/++3nllVdISUnh5ptvVjgTERERKU5OnoRhw2DOHHjtNXjmGThzlFkRGtZonDlphSMoKMhmrH6YYdu2bbRq1arQapAL8+KLL1KhQgWeeOIJd5eSJ/p8iYiIiHipY8dg0CCnV+yzz+Duu91dUa4YY9ZZa4Oye63Y95yJiIiIiEgRc/CgM59s716YPt1ZOt8LKJxJrrz44ovuLkFEREREBLZtcxb7iI2FP/+E3r3dXVG+Oe9NqI0xZYwxq40xG40xW4wxL2V57V/GmB2u7eMKtlQRERERESnWVq6Enj0hNRWWLPGqYAa56zlLAvpZa+ONMb7AMmPMH0BZ4Hog0FqbZIypWZCFioiIiIhIMfbHH87iH3XrOj1mjRu7u6J8d96eM9eNrDOWy/N1/VjgfuANa22Sa7+IAqtSRERERESKr8mT4brroEULWLbMK4MZ5CKcARhjfIwxwUAEMM9auwpoDvQyxqwyxiw2xnQpwDpFRERERKQ4ev99uO026NULFi2CWrXcXVGByVU4s9amWWs7AP5AV2NMW5whkVWAbsCTwBRjzrypABhj7jXGrDXGrI2MjMy/yvORj48PHTp0oG3btgwfPpyEhIQLPtfo0aOZNm0aAHfffTdbt27Ncd9FixaxfPnyzOcTJkzg22+/veBrZwgNDaVt27anbXvxxRd5++2383Se/KpHRERERCTPrIVnn4WxY2HoUJg9GypWdHdVBSpPqzVaa6ONMYuAgUAY8It1bpS22hiTDlQHIs84ZiIwEZz7nOVH0fmtbNmyBAcHAzBixAgmTJjAY489lvl6Wlpanm7WnOGLL7445+uLFi2iQoUKdO/eHYAxY8bk+RoFJTU11aPqEREREZFiJDUV7rsPvvrK+f3JJ3AB/x4vanKzWmMNY0xl1+OywABgOzAT6Ofa3hwoBUQVVKEAjBsHCxeevm3hQmd7PunVqxe7d+9m0aJF9O3bl1tvvZV27dqRlpbGk08+SZcuXQgMDOSzzz4DwFrLQw89ROvWrRk0aBAREf9MvevTpw8ZN92eM2cOnTp1on379vTv35/Q0FAmTJjAe++9R4cOHVi6dOlpvVvBwcF069aNwMBAbrjhBk6cOJF5zqeffpquXbvSvHlzli5dmuf3eK5z//vf/6Z379588MEHmfUcPnyYDh06ZP74+Piwf/9+9u/fT//+/QkMDKR///4cOHAAcHoPH374Ybp3707jxo0zexJFRERERM7r1Cmnp+yrr+C//4VPPy0WwQxyN6yxDrDQGBMCrMGZczYL+ApobIzZDPwEjHL1ohWcLl3gxhv/CWgLFzrPu+TPdLfU1FT++OMP2rVrB8Dq1at59dVX2bp1K19++SWVKlVizZo1rFmzhs8//5x9+/YxY8YMduzYwaZNm/j8889PG6aYITIyknvuuYfp06ezceNGpk6dSkBAAGPGjGHs2LEEBwfTq1ev044ZOXIkb775JiEhIbRr146XXsq8gwGpqamsXr2a999//7TtWe3Zs+e0QDVhwoRcnTs6OprFixfz+OOPZ26rW7cuwcHBBAcHc8899zB06FAaNmzIQw89xMiRIwkJCWHEiBE8/PDDmcccOXKEZcuWMWvWLJ555pk8/pcQERERkWIpOtq5ufT//gcffwwvvQRnz5zyWucd1mitDQE6ZrM9GbgtX6t59FFwDS/MUd26zn+wOnXgyBFo1cr5j5ZDSKFDB2cS4TmcOnWKDh06AE7P2V133cXy5cvp2rUrjRo1AmDu3LmEhIRk9gLFxMSwa9culixZwi233IKPjw9169alX79+Z51/5cqVXHbZZZnnqlq16jnriYmJITo6mt6u+zaMGjWK4cOHZ74+ZMgQADp37kxoaGi252jSpEnmUE345ybS5zv3TTfdlGNdf//9N1988UVmb92KFSv45ZdfALj99tt56qmnMvcdPHgwJUqUoHXr1oSHh5/z/YqIiIiIcOQIDBzo3GT6xx/hHP8u9VZ5mnPmEapUcYLZgQPQoIHz/CJlnXOWVfny5TMfW2v56KOPuPLKK0/bZ/bs2WSzDspprLXn3ScvSpcuDTgLmaSmpubbeeH095zVkSNHuOuuu/jtt9+oUKFCtvtkfY8ZNYLz/kVEREREcrRrF1xxBURGwu+/w+WXu7sit/CscHaeHi7gn6GMzz/vjD994QXo27fAS7vyyiv59NNP6devH76+vuzcuZN69epx2WWX8dlnnzFy5EgiIiJYuHAht95662nHXnrppTz44IPs27ePRo0acfz4capWrYqfnx+xsbFnXatSpUpUqVKFpUuX0qtXL7777rvMnq6LdSHnTklJ4cYbb+TNN9+kefPmmdu7d+/OTz/9xO23387kyZPp2bNnvtQoIiIiIsXI+vVOj5m1zlL5QUHurshtPCucnU9GMJsyxQlkffue/rwA3X333YSGhtKpUyestdSoUYOZM2dyww038Ndff9GuXTuaN2+ebdCpUaMGEydOZMiQIaSnp1OzZk3mzZvHtddey7Bhw/j111/56KOPTjtm0qRJjBkzhoSEBBo3bszXX3+db+8lr+devnw5a9as4YUXXuCFF14AnB7DDz/8kDvvvJO33nqLGjVq5GuNIiIiIlIM/PUXDB4MVavC3LmQpSOgODKFOeQsKCjIZqxemGHbtm20atUqdycYN85Z/CNrEFu4ENasgSzznUQy5OnzJSIiIiKFZ9o0GDHCCWR//umsLVEMGGPWWWuz7R4sWj1n2QWwjB40EREREREpGiZMgAcegO7dnZUZ82EdCW+Qm6X0RURERERELp61zirr998PgwY5QxkVzDIVrZ4zEREREREpmtLS4OGHYfx4GD0aPv8cSiqOZOURPWdaal0Kgj5XIiIiIh4iKQluvdUJZk89BV99pWCWDbeHszJlynDs2DH9Q1rylbWWY8eOUaZMGXeXIiIiIlK8jBvnLNqXIS4OLr3UWWH97bfhzTchH+8B7E3cHlf9/f0JCwsjMjLS3aWIlylTpgz+/v7uLkNERESkeOnS5Z/bXbVpA716wc6d8Mwz8Pjj7q7Oo7k9nPn6+tKoUSN3lyEiIiIiIvmhb18nmA0b5jw/fhxeew2efda9dRUBbg9nIiIiIiLiZWrXhpQUZ0jj6NEKZrnk9jlnIiIiIiLiRdavh27dID4e7r0XZs06fQ6a5EjhTERERERE8sfSpc4cs/h4+PZb+OwzZ4jjjTcqoOWCwpmIiIiIiFy82bPhiiugfHn48Ue47TZne8YctDVr3FtfEaA5ZyIiIiIicnF+/tkJY4GBMGcO1Khx+ut9+zo/ck7qORMRERERkQv3+edwyy3Ovcz++uvsYCa5pnAmIiIiIiIX5q23nEU/rrrK6TGrVMndFRVpCmciIiIiIpI31sJzz8FTT8FNN8GMGVCunLurKvI050xERERERHIvPR3+9S8YP97pNRs/Hnx83F2VV1DPmYiIiIiI5E5KCowc6QSyp56CCRMUzPLRecOZMaaMMWa1MWajMWaLMealM15/whhjjTHVC65MERERERFxq8REGDYMJk+G11+HN98EY9xdlVfJzbDGJKCftTbeGOMLLDPG/GGtXWmMqQ9cDhwo0CpFRERERMR94uLg+uth0SKn1+z++91dkVc6b8+ZdcS7nvq6fqzr+XvAU1mei4iIiIiINzl2DPr3hyVL4LvvFMwKUK7mnBljfIwxwUAEMM9au8oYcx1wyFq7sSALFBERERERNzl8GHr3hpAQZ0XGESPcXZFXy9VqjdbaNKCDMaYyMMMYEwg8B1xxvmONMfcC9wI0aNDgwisVEREREZHCs3cvDBgAkZHOPcz69HF3RV4vT6s1WmujgUXA9UAjYKMxJhTwB9YbY2pnc8xEa22QtTaohu4WLiIiIiLi+bZsgZ49ISYG/vpLwayQ5Ga1xhquHjOMMWWBAcAGa21Na22AtTYACAM6WWuPFmSxIiIiIiJSwNasgcsucx4vWQJduri3nmIkN8Ma6wCTjDE+OGFuirV2VsGWJSIiIiIihW7hQrjuOqhZE+bNg8aN3V1RsXLecGatDQE6nmefgPwqSERERERE3OB//4Phw6FpU5g7F+rWdXdFxU6e5pyJiIiIiIgXmjwZbrgB2reHxYsVzNxE4UxEREREpDgbPx5uv92ZZzZ/PlSr5u6Kii2FMxERERGR4shaeP11ePBBuPZamD0b/PzcXVWxpnAmIiIiIlLcWAvPPAP//rdzY+lp06BMGXdXVezl6ibUIiIiIiLiJdLS4IEHYOJEp9fsww+hhPpsPIH+K4iIiIiIFBfJyU5P2cSJ8Nxz8NFHCmYeRD1nIiIiIiLFQUKCs1T+7Nkwbhw8+aS7K5IzKCaLiIiIiHijceOcm0oDxMTAwIFOMBsyRMHMQymciYiIiIh4oy5d4MYbYcYM6NcP/v7bWY3xoYfcXZnkQMMaRURERES8Ud++MHYsDBvmzCurUAFmznS2i0dSz5mIiIiIiLeJiIBbbnEW/ahWDVJT4ZFHFMw8nMKZiIiIiIi3sBa+/RZatYJffoHRo51tzz8Pn376zxw08UgKZyIiIiIi3iA01Fn0Y9QoaNkSJkyAWbNgyhT4v/9zft94owKaB1M4ExEREREpytLS4P33oU0bWL4cPv4Yli6FyEgnkGUMZezb13m+Zo1by5WcGWttoV0sKCjIrl27ttCuJyIiIiLi1TZtgrvvhtWr4eqrnaGLDRq4uyo5B2PMOmttUHavqedMRERERKSoSUqC//4XOnWCvXvhhx+cIYwKZkWaltIXERERESlK/v7b6S3bvh1uuw3eew+qV3d3VZIP1HMmIiIiIlIUxMbCgw9Cz55w6hT88Qd8952CmRdROBMRERER8XS//+4s+PHpp879yjZvdlZmFK+icCYiIiIi4qkybiZ9zTVQqZKzGuP770OFCu6uTAqAwpmIiIiIiKex1hmy2KoVTJ8OL70E69dDt27urkwK0HnDmTGmjDFmtTFmozFmizHmJdf2t4wx240xIcaYGcaYygVerYiIiIiItwsNhauugpEjoUULCA52VmYsVcrdlUkBy03PWRLQz1rbHugADDTGdAPmAW2ttYHATuDZAqtSRERERMTbpaXBBx9A27bOiowffQTLlkHr1u6uTArJeZfSt85dquNdT31dP9ZaOzfLbiuBYflfnoiIiIhIMbB5s7M8/qpVTq/ZhAm6Z1kxlKs5Z8YYH2NMMBABzLPWrjpjlzuBP/K5NhERERER75ZxM+mOHWHPHudm0r//rmBWTOUqnFlr06y1HQB/oKsxpm3Ga8aY54BUYHJ2xxpj7jXGrDXGrI2MjMyHkkVEREREvMDff0OHDvDyy3DzzbBtm7MyozHurkzcJE+rNVpro4FFwEAAY8wo4BpghGv4Y3bHTLTWBllrg2rUqHFx1YqIiIiIFDXjxsHChf88j4uDwYOdm0knJOhm0pLpvHPOjDE1gBRrbbQxpiwwAHjTGDMQeBroba1NKOA6RURERESKpi5d4MYbYcoUJ4yNHg1RUXDDDfDtt7pnmWQ6bzgD6gCTjDE+OD1tU6y1s4wxu4HSwDzjdL2utNaOKbhSRURERESKoL594YsvnIU+kpLAxwc+/hgefNDdlYmHyc1qjSFAx2y2Ny2QikREREREvMnSpfCvf0FysvP86acVzCRbeZpzJiIiIiIiuZSWBv/3f9Cnj/O4UiV4/nmYOPH0OWgiLgpnIiIiIiL57eBB6NcPXnjB+Z2UBL/84oS1KVOcOWgKaHIGhTMRERERkfw0Ywa0bw/r1zsLflx+OUyd6sw9A+f3lCmwZo176xSPk5sFQURERERE5HxOnYLHH4dPP4XOneHHH6FZs+z37dv3n7Am4qKeMxERERGRi7VlC3Tt6gSzJ56A5ctzDmYiOVDPmYiIiIjIhbLWWeDj0UehYkWYMweuvNLdVUkRpZ4zEREREZELceIEDB8OY8bAZZfBxo0KZnJRFM5ERERERPJq2TJn0Y9ff4W33oI//oDatd1dlRRxCmciIiIiIrmVce+y3r2hVClnbtkTT0AJ/bNaLp7mnImIiIiI5EZYGIwYAUuWOL/Hj3fmmYnkE4UzEREREZHzmTkT7rrLuZn0t9/C7be7uyLxQup/FRERERHJyalT8OCDcMMNEBAAGzYomEmBUTgTEREREclOxr3Lxo93bi69YoXuXSYFSsMaRURERESyshY+/9y5d5mfn7MS48CB7q5KigH1nImIiIiIZMi4d9l990HPns69yxTMpJAonImIiIiIwOn3Lhs3DubM0b3LpFApnImIiIhI8ZbdvcuefFL3LpNCpzlnIiIiIlJ8hYXBbbfB4sW6d5m4nf4cICIiIiLeb9w4WLjw9G2vvALNm8Patc69y77/XsFM3ErhTERERES8X5cucOONTkA7dQoGD4bnnwd/f927TDyGhjWKiIiIiPfr2xemTIGhQ8HXFyIinFUZv//emWcm4gHUcyYiIiIixUPfvtCggRPMbrnFCWsKZuJBzhvOjDFljDGrjTEbjTFbjDEvubZXNcbMM8bscv2uUvDlioiIiIhcoIULnQVAxo6FefPOnoMm4ma56TlLAvpZa9sDHYCBxphuwDPAAmttM2CB67mIiIiIiOdZuNCZczZ1Krz7rtNrljEHTcRDnDecWUe866mv68cC1wOTXNsnAYMLokARERERkYu2Zo0TyPr2dZ5nzEFbs8a9dYlkYay159/JGB9gHdAU+MRa+7QxJtpaWznLPiestWcNbTTG3AvcC9CgQYPO+/fvz6/aRUREREREihRjzDprbVB2r+VqQRBrbZq1tgPgD3Q1xrTN7cWttROttUHW2qAaNWrk9jAREREREZFiJU+rNVpro4FFwEAg3BhTB8D1OyK/ixMRERERESkucrNaYw1jTGXX47LAAGA78BswyrXbKODXAqpRRERERETE6+XmJtR1gEmueWclgCnW2lnGmBXAFGPMXcABYHgB1ikiIiIiIuLVzhvOrLUhQMdsth8D+hdEUSIiIiIiIsVNnuaciYiIiIiISMFQOBMREREREfEACmciIiIiIiIeQOFMRERERETEAyiciYiIiIiIeACFMxEREREREQ+gcCYiIiIiIuIBFM5EREREREQ8gMKZiIiIiIiIB1A4ExERERER8QAKZyIiIiIiIh5A4UxERERERMQDKJyJiIiIiIh4AIUzERERERERD6BwJiIiIiIi4gEUzkRERERERDyAwpmIiIiIiIgHUDgTERERERHxAApnIiIiIiIiHkDhTERERERExAMonImIiIiIiHiA84YzY0x9Y8xCY8w2Y8wWY8wjru0djDErjTHBxpi1xpiuBV+uiIiIiIiIdyqZi31SgcetteuNMX7AOmPMPGAc8JK19g9jzNWu530KrlQRERERERHvdd5wZq09AhxxPY4zxmwD6gEWqOjarRJwuKCKFBERERER8Xa56TnLZIwJADoCq4BHgT+NMW/jDI/snt/FiYiIiIiIFBe5XhDEGFMBmA48aq2NBe4Hxlpr6wNjgS9zOO5e15y0tZGRkflRs4iIiIiIiNcx1trz72SMLzAL+NNa+65rWwxQ2VprjTEGiLHWVjzXeYKCguzatWvzoWwREREREZGixxizzloblN1ruVmt0eD0im3LCGYuh4Hersf9gF0XW6iIiIiIiEhxlZs5Zz2A24FNxphg17Z/A/cAHxhjSgKJwL0FUqGIiIiIiEgxkJvVGpcBJoeXO+dvOSIiIiIiIsVTrhcEERERERERkYKjcCYiIiIiIuIBFM5EREREREQ8gMKZiIiIiIiIB1A4ExERERER8QAKZyIiIiIiIh5A4UxERERERMQDKJyJiIiIiIh4AIUzERERERERD6BwJiIiIiIi4gEUzkRERERERDyAwpmIiIiIiIgHUDgTERERERHxAApnIiIiIiIiHkDhTERERERExAMonImIiIiIiHgAhTMREREREREPoHAmIiIiIiLiARTOREREREREPIDCmYiIiIiIiAdQOBMREREREfEA5w1nxpj6xpiFxphtxpgtxphHsrz2L2PMDtf2cQVbqoiIiIiIiPcqmYt9UoHHrbXrjTF+wDpjzDygFnA9EGitTTLG1CzIQkVERERERLzZecOZtfYIcMT1OM4Ysw2oB9wDvGGtTXK9FlGQhYqInCkpNY09ESfZGR7H9qNxRMUncUePANrUreTu0kRERETyLDc9Z5mMMQFAR2AV8BbQyxjzKpAIPGGtXZPvFYpIsZeWbjlwPIEdR+PYcTSOneFx7AiPY1/USdLSLQAlSxhKlyzBzA2HuL9PEx7q15TSJX3cXLmIiIhI7uU6nBljKgDTgUettbHGmJJAFaAb0AWYYoxpbK21Zxx3L3AvQIMGDfKtcBHxPtZawmOT2BEex86jTm/YzvA4dkXEkZiSnrlfg6rlaFHbj4FtatO8th8ta/sRUK08CcmpvDxrGx/9tZs5m48yblggHRtUceM7EhEREck9c0aWyn4nY3yBWcCf1tp3Xdvm4AxrXOR6vgfoZq2NzOk8QUFBdu3atflRt4gUcTEJKexw9YDtOBrLzqPx7AiPI+ZUSuY+NfxK07K2H81r+dGilh8tavvRtGYFypc+99+VFu6I4N+/bCI8NpG7ezXmscubU8ZXvWgiIiLifsaYddbaoOxeO2/PmTHGAF8C2zKCmctMoB+wyBjTHCgFRF18uSLiTRJT0tgVHp8ZwnaEx7PzaBxHYxMz9/ErXZIWtf0YFFgnM4Q1r+VH1fKlLuiafVvUZO7Yy3j9j+1MXLKXeVvDeXNoIF0bVc2vtyUiIiKS787bc2aM6QksBTYBGeOK/g3MB74COgDJOHPO/jrXudRzJuL9th6OZc6Wo05vWHg8ocdOkvE1U6pkCZrVrECLWn40r+2EsBa1/KhTqQzO34Hy39+7o3jmlxAOHj/FqEsb8tTAlufteRMREREpKOfqOcvVsMb8onAm4r2stUxedYCX/reFtHRLQPXyTgir5cwJa17bj4ZVy1HS57y3V8x3J5NSeevPHUxaEUq9ymV5c2ggPZpWL/Q6RETEkZKWzmeL9zCwbR2a1qzg7nJECpXCmYgUqMSUNJ6fuZmp68Lo3bwG79/UgSoXOCSxIK0JPc7T00LYG3WSW7rW59mrW1GxjK+7yxIRKVbS0y1PTN3ILxsO0SWgClPuu7TARk+IeKJzhbPC/xO2iHiVsBMJDJuwnKnrwni4X1O+Gt3FI4MZQJeAqsx+pBf39W7Mz2sOcsW7S/hre7i7yxIRKVbenLOdXzYconPDKqwJPcGSXVqyQCSDwpmIXLCluyK59qNl7D+WwBcjg3jsihb4lPDsv36W8fXh2ataMeOBHlQsW5I7v1nLYz8HE52Q7O7SRES83hdL9/LZkr2MvLQhP9xzCfUql+WduTsozJFcIp5M4UxE8sxay/hFuxn11Wpq+pXht4d6MqB1LXeXlSft61fmf//qycP9m/HbxsMMeHcJczYfcXdZIiJea+aGQ7zy+zaublebF65tQ+mSPjzSvxkhYTHM26pRDCKgcCYieRSXmMKY79cxbs4OBgXWZcaD3WlUvby7y7ogpUv68NjlzfntoZ7UqliaMd+v58HJ64mKT3J3aR4tIjaRoZ8u56Ef1rM7Is7d5YhIEbBkZyRPTN3IpY2r8d5NHTJHWQzpVI9G1cvz7rydpKer90xE4UxEcm1XeBzXf/I387dF8Pw1rfnw5g6UK1X0l6VvXbciMx/swZNXtmDe1nAuf3cxvwYf0jCbbETEJXLL5yvZejiWv7ZHcMV7Sxj7czD7ok66uzQR8VAbD0Yz5vt1NKvlx2cjO1O6pE/mayV9SvDogGZsPxrH75s0ekFEqzWKSK78sekIT0zdSNlSPnx8aye6Na7m7pIKxO6IOJ6cFsKGA9EMaFWTVwa3o3alMu4uyyNExiVxy+crORx9im/u6EqTGuWZuGQvk1aEkpJmGdKxHg/3b0b9quXcXaqIeIi9kfEMm7CC8qV9mD6mOzUrnv19mp5uueqDpaSkpTN37GVuueWKSGHSUvoicsFS09J5688dfLZkLx0bVObTEZ29PqykpVu+/nsfb8/dga9PCZ4f1JrhQf7FeqnnqPgkbpm4krATp/j6ji6nhfOIuEQmLNrL96v2k55uGR5Un4f6NaVe5bJurFhE3C0iNpEhny7nVHIa0+4/9xD4OZuPMub7dbw1LJDhQfULsUqRwqdwJiIX5Fh8Ev/6cQPL9xzjtm4NeP6a1qcNR/F2oVEneXp6CKv2HadXs+q8PqQd/lWKX6/Qsfgkbv18FfuPn+Tr0V25tEn2vaZHYxIZv2g3P64+gMFwc9f6PNCnqdeHeRE5W2xiCjd9tpL9x07y073dCPSvfM79rbVc+/EyohNS+OvxPpQqqd4z8V4KZyKSZxsPRnP/9+uIOpnMq4PbFtu/ZKanWyavPsAbs7cB8MxVLRlxSUNKePgtA/LL8ZPJ3Pr5SvZFneTr0V3o3rT6eY85FH2Kj//azdS1BylRwjDikgbc36cJNf0U0i7Ensh4Yk6l0KlBFXeXIpIriSlpjP56NWtDT/DV6C5c1rxGro5buCOCO75ewyuD23Jbt4YFXKWI+yiciUie/LT6AP/9dQs1/Erz2e2daVuvkrtLcruwEwk8+8smlu6K4pJGVXlzaCABRXSVytw6cTKZW1zB7MtRXejZ7PzBLKuDxxP4cMEuftlwCF8fw6hLA7j3ssZUq1C6gCr2LokpaXz01y4+W7yX1HTLmN5NePyK5vgWg/k40QnJRMQlUcuvDBXLlizWQ4qLmrR0y79+XM/sTUf54OYOXN+hXq6PtdYybMIKwk4ksPjJvpTxLT4jNaR4UTgTkVxJSk3jxd+28OPqg/RqVp0Pb+5IlfKl3F2Wx7DWMnVdGC/P2kpKWjpPXNGCO3o08vgbb1+IEyeTGfHFKnZHxvPlqCB6NcvdX76zsy/qJB8u2MXM4EOU9fXhjh4B3NOrMZXL6bOVk793R/HcjE2EHktgaCd/SvuW4IdVB+jcsAof3tLRq+fz/Rp8iP/M3ExcYioApUuWoFbFMtSuWIaaFUtTq2IZarl+1/T753H50kV/5diizlrLf3/dwncr9/OfQa24u1fjPJ9j+Z4obv18Fc9f05q7ejYqgCpF3E/hTETO63D0Ke7/fh0bw2J4sG8THru8hVeGjvwQHpvIczM2MX9bBB0bVOatYYE0renn7rLyTXSCE8x2RcTz+cggeudySNL57I6I4/35u/h90xHKlyrJnT0bcVfPRlQq65sv5/cGx+KTePX3bfyy4RAB1crx2g3tMoeSzgo5zDPTN+FTwvD28PZcXsRu/H4+sYkp/HfmZmYGH6Zjg8qMvLQhx+KTCY9NJDw2ifDYRCLikjgak8iplLSzjvcrXTJLeHMFOb8yp4e5iqWL1bzZwvbRgl28M28n9/VuzLNXtbrg89z6+Up2hsex+Mm+Ct3ilRTOROSclu+O4qEfN5Ccms47N7bnyja13V2Sx7PW8tvGw7z42xZOJqUx9vLm3HtZ4yIfaGMSUhjx5Up2Ho1n4sjO9GlRM9+vsf1oLO/P28WcLUepWKYk9/RqzB09G1GhGP8jzFrLtHVhvDZ7G/FJqYzp3YQH+zY9a1jX/mMneeiHDWw6FMNdPRvx9MCWXrFwwqq9x3hsykaOxibyr35Neahv0xyXU7fWEpeUSkSW0PZPeMvyODaJ5LT0s46vUs7XFdTKUMvv9J64WhXL4F+lrIbeXoAfVx/g2V82MaRTPd4Z3v6ihqKu23+CoZ8u56mBLXigT9N8rFLEMyiciUi2rLVMXLKXN+dsp0mNCky4vTNNalRwd1lFSlR8Es/P3Mwfm49ySaOqvHtThyI75CzmVAq3f7mK7Ufi+Oz2zvRtmf/BLKvNh2J4f/5O5m+LoEo5X+69rAmjujf0ihub58XeyHiem7GZFXuPEdSwCq8NaUfzWjn3xCalpvH67O18szyU9v6V+PjWTkX23nLJqem8P38nny7eQ/0q5Xj/5g75tvCJtZbohBSOxiZmhrXw2ETCXQEuI9xFxieRlv7Pv4WMgevb1+XRAc29fl5pfpm7xVkG/7LmNfh8ZFC+zIu885s1rNt/gqVP96ViGfWui3dROBORs8QnpfLUtI3M3nSUq9vVZtyw9sW65+JiWGuZvv4QL/y6mRIlDK8MbpunSfCeIDYxhdu/WMXWI7F8dntn+rUsvCFzGw9G8978nSzaEUn1CqUY07sJt3Vr6PWLASSnpjNh8R4+Xrib0iVL8MxVLbmlS4NcrwQ6Z/NRnpq2EQuMGxrIVe3qFGzB+WxPZDyP/hTMpkMx3Bjkz3+vbeOW76C0dMuxk0mZ4W31vuNMWhFKappzz76H+zelTqWi+QeXwrAm9Di3fbGKVnUq8sM9l+TbH1c2H4rhmo+W8Uj/Zoy9vHm+nFPEUyicichp9kTGc99369gbGc8zV7Xknl6NtRpaPjhwLIGxU4JZt/8EgzvU5aXr2xaJ+VSxiSmM/HI1Ww7H8OmIzgxw01ymdfuP8968XSzbHUUNv9I82KcJN3dt4JUhbU3ocZ79ZRO7I+IZFFiHF65pTc2Keb/VwMHjCTz04wY2Hoxm5KUN+ffVrTy+vay1TF51gFd+30oZXx/eGNKOgW09K1hGxCbyycLd/LD6AMYYbu/WkAf6NNFwxzPsOBrH8AnLqe5XmmljulM1nxeQuv/7dSzdFcXSp/pqcSrxKgpnIpJpzuajPDF1I6VKluDjWzrm6r5VknupaemMX7SHDxbsonbFMrx7Y3suaZz9TZs9QVxiCiO/Ws2msBjGj+jEFR4w33Dl3mO8O28nq/cdp06lMjzYtyk3BtX3irlVMQkpvDFnGz+uPki9ymV5ZXDbix4+mpyazlt/bufzpftoU7ciH9/aiUYeOhwvKj6Jp6eFsGB7BL2aVeft4e2pdQGhtLBk3A5i+vowyvj6cFfPRtzdq3GR+KNLQTsUfYqh45djsUy/vzv+VfJ/aO3O8DiufH8J9152cQuMiHgahTMRIS3d8s7cHYxftIf29Svz6YhO1C2ic6OKgg0HTjD252D2H09gTO8mjB3Q3OPCRXxSKqO+Ws3Gg9F8fGsnBrZ1fzDLYK1l+Z5jvDN3B+sPRFOvclke7t+UIZ38i+R9vqy1/C/kCP/3v62cSEjmrp6NeHRAs3ydX7dgWziPT91ISmo6rw1p53FDa//aHs5T00KITUzlmYEtGd09oMjczH13RDzvzd/J7yFHqFTWl/t6N2Z094BiNz8yw4mTyQybsJyIuCSmjrmUlrUrFti1Hv1pA3O2HGXJU311I3vxGgpnIsXc8ZPJPPLTBpbuiuKWrg148brWWk66EJxMSuXlWVv5ac1B2taryPs3daRpTc9YcCU+KZXRX61mw8FoPrm1o8cNK8tgrWXxzkjem7eTjWExNKxWjjG9m3Blm9r5PoSqoBw8nsB/Zm5m8c5IAv0r8fqQdrSpWzA3dj8cfYqHf9zA2v0nuKVrfV64to3bhzmeSk7jtdnb+G7lflrW9uP9mzsU6D/mC9KWwzG8O3cnC7ZHUL1CaR7q24RbLmlQrL5PE5JTGfHFKrYcjuW7O7sW+MiAfVEnGfDuYm7v1pAXr2tToNcSKSwKZyLF2OZDMdz33Toi45N4+fo23NSlgbtLKnb+3HKUZ6aHcColjf8Mas2ISxq4dY7fyaRU7vh6DesOnOCjWzpydRFYSMJay1/bI3h33k62HI6lhIFODaowoHUtBrSqSZMaFTxu3mRqWjpfLtvHe/N34mMMT1zZgpGXBhT47RZS09J5d95Oxi/aQ4tafnwyoqPb7sO3+VAMj/y0gT2RJ7mrZyOevLKF28Nifli3/wRv/bmdlXuPU69yWR7p34whnerluPy/t0hJS+e+79axaEcEn97WudBuu/L0tBBmbDjEoif7aMSHeIWLCmfGmPrAt0BtIB2YaK39IMvrTwBvATWstVHnOpfCmUjhmrL2IP+ZuZnq5Usx4fbOBPpXdndJxVZEbCJPTAthyc5I+resyZvDAqnuhsUFEpJTGf21s0T1hzd3ZFCg5wezrKy1bDoUw/xtEczfGs7WI7EANKxWjv4tnaDWpVFVtw993Hgwmmd+2cS2I7Fc3roWL13XptD/Ubl4ZySP/RxMQnIaLw9uy7DO/oV27bR05zYd787bQdXypXhneAd6NvOu+a3WWv7efYy35u5g48FoGlcvz9jLmzOoXZ0iM1wzL6y1PDE1hOnrw3jthnbceknh/aEv7EQCfd9exLDO9Xl9SLtCu65IQbnYcFYHqGOtXW+M8QPWAYOttVtdwe0LoCXQWeFMxDOkpVte+G0z3688QI+m1fjw5o5aZcwDpKdbJq0I5fU/tlOxTEneHBpI/1aFtzJiQnIqd36zhtX7jvPBzR25tn3dQrt2QTkcfYoF2yNYsC2c5XuOkZyajl+ZkvRuXoMBrWrRp0UNKpcrvOGP8UmpvP3nDiatCKWmX2leuq6tW+fyhccm8shPG1i59zhDO/nz8uA2BT5P6lD0KR77OZhV+45zVdvavHZDO69eac9ay/xtEbz95w52hMfRqk5FnriiOf1a1vS43tyL8cYf25mweA9jBzTnkQHNCv36//11Mz+sOsCCx3vTsJpnLngjklv5OqzRGPMr8LG1dp4xZhrwMvArEKRwJuIZXp61lS+X7eO+yxrz5JUtvH6oTVGzMzyOh3/cwPajcdzWrQHPXd2asqUKdqjXqeQ07vxmDav2HeO9mzp43GIR+eFkUirLdkexYFs4f22PICo+GZ8Shs4NqzCgVU36t6pVoDdZ/3PLUV74dQvhcYmM7NaQJ65sgZ8H3Dw3Ld3y4YJdfPjXLhpXL88nIzoV2JyvX4MP8Z+Zm0lPt7x4XRuGdfb3qoByLunplv+FHOa9eTsJPZZAxwaVefKKFl6xIu6Xy/bx8qytjLikAa8MbuuW/6bhsYlcNm4hgwLr8O6NHQr9+iL5Kd/CmTEmAFgCtAX6AP2ttY8YY0JROBPxCD+uPsCzv2xidPcATZ72YEmpabwzdycTl+ylSY3yfHBzR9rWK5hFIhJT0rhr0hpW7DnGuzd2YHBH7wtmZ0pPt2wMi2bBtgjmbwtn+9E4ABpXL09/V1ALalglX/5wcSTmFC/8uoW5W8NpWduP14e0o2ODKhd93vy2fHcUj/wcTOypFF66rg03damfb//IjjmVwgu/bmZm8GE6NajMezd1KLa9Gylp6UxfF8YHC3ZxJCaRHk2r8cQVLTzyM5EbvwYf4pGfghnYpjafjOhU4HMmz+W12dv4Yule5o69zG3zKEXyQ76EM2NMBWAx8CowB1gIXGGtjTlXODPG3AvcC9CgQYPO+/fvv6A3ISLnt3xPFCO/XE2PptX5clSQesyKgOW7o3hsykai4pN47Irm3HdZk3z9x09iShr3fLuWZbujeGd4e4Z0Krx5R54k7EQCf22PYN7WcFbtPU5yWjqVyvrSp0UN+reqRe/mNfJ876q0dMt3K0J5e+5OUtPTeXRAc+7q2cjt893OJTIuicemBLN0VxTXta/La0PaUaH0xQ1zXLX3GI9N2cjR2EQe7teMB/s20XcPzv97P6w6wCcLd3PsZDIDWtXk8Sta0KpO0VmpcumuSO78Zg2dGlRh0p1d3b6Yy7H4JC4bt5A+LWvyya2d3FqLyMW46HBmjPEFZgF/WmvfNca0AxYACa5d/IHDQFdr7dGczqOeM5GCsy/qJIM/+ZuafqWZ/kB3KnrAcCrJneiEZJ6bsZnfNx2ha6OqvHtj+3y5oWvWYPbWsPaFuiCEJ4tPSmXpzkjmb4tg4Y4Ijp9MpmQJQ5eAqvRvVZMBrWoRcJ6bOG89HMuzMzax8WA0lzWvwSvXt6VBtfy/CW9BSE+3fLp4D+/M3UGDquX4+NZOF9Rrm5yaznvzdzJh8R4aVC3Hezd1oFMR7R0qSCeTUvlmeSgTFu8hPimVawLrMnZAMxoX4BDb/LApLIabJ66gftVy/HzfpR5z4+135u7go7928/vDPQvslhQiBe1iFwQxwCTguLX20Rz2CUXDGkXcJiYhhRvG/030qRRmPtCjyPwjUf5hreWX9Yd44bctGAOvDG57UfPCElPSuO+7dSzZFcm4oYEMD6qfj9V6j7R0S/DBE8zf5iwqsjM8HoAmNcozoFUt+reqRacGlTN7ghKSU/lg/i6+WLaPKuV8ef6a1lzXvm6RnFe1et9xHv5xA8dPJvP8Na24rVvDXL+P3RHxjP05mE2HYrgpqD7/vbY15S+yB87bxSSkMHHpHr5aFkpyWjrDOvnz8IBm1PPApeH3RZ1k2KfLKePrwy8PdKdWRc+5+XPMqRR6vfkXXRtV5YtRXdxdjsgFudhw1hNYCmzCWUof4N/W2tlZ9glF4UzELVLS0hn99WpW7zvO5Lu70bVRVXeXJBfh4PEEHv05mHX7T3Bd+7q8PLhtnv9inZSa5roXkRPMbuyiYJZbB44lsGB7OAu2RbBq3zFS0iyVy/nSt0VN2vtX4otl+wg7cYqbu9TnmataFupKkAXh+MlkHp8SzMIdkVzdrjavDwk85+fNWsvkVQd45fetlPH14Y0h7Tz2BuaeKjIuifGLdjN55QEAbr2kAQ/2bUoNP89YUTciLpGhny7nZFIa08Zc6pE9fB//tYu35+5kxgPdi+xcPinedBNqES9lreX5X50l898apt4Rb5Gals6ni/bw/oJd1K5YhndubE+3xtVydWxSahr3f7+ev7ZH8MaQdtzcVTcdv1CxiSks3RnF/G3hLNwRQXRCCk1qlOf1IYFe9UeQ9HTLF8v2Mm7ODupULsPHt3Siff3KZ+0XFZ/E09NCWLA9gl7NqvP28PYe1aNS1ByKPsVHC3YxdV0YpXxKcEePAK5tX5c6lcpQqayvW3pj4xJTuOmzleyLOsmP93ajQzafA08Qn5TKZeMW0qZuRb676xJ3lyOSZwpnIl7qm7/38eL/tnJf78Y8e1Urd5cj+Sz4YDSP/rSB/ccTGNO7CWMHNKdUyZwXWkhOTeeByeuYvy2i0G8S6+1S09LZE3mSgOrlKF3SvYsiFJR1+0/w8I8biIhL5JmrWnFnj4DMgPDX9nCemhZCbGIqz17VklGXBnjljZbdYV/USd6bt5PfNh7O3Fa6ZAlqVypD7YplnN+ux3UqlaFWxTLUqVSWGn6l83XxoKTUNO742rkP4hejgujToma+nbsgfL5kL6/O3sZP93bL9R+vRDyFwpmIF1q0I4I7v1lD/1a1+Oy2zvqHkpc6mZTKK79v5cfVB2lbryLv39SRpjXPHmaUnJrOgz+sZ97WcF4Z3JbbujV0Q7VS1EUnJPPktBDmbQ1nQKtavDy4DZ8s3M33Kw/QsrYfH9zckRa1tYR5QdgbGc/2o3EcjUnkaGyi8zvL4+S09NP2L2Ggpl8ZalUqQ50zQlzW37lZYTEt3fLwjxv4fdMR3rupPTd09PzFg04lp9H7rYUEVCvPz/d1K5LzPqX4UjgT8TK7wuMYMn45/lXLMW3MpZqIXwz8ueUoz0wP4VRKGs9dffriDSlp6Tw4eT1zt4bz8vVtuP3SAPcWK0WatZav/w7l9T+2kZpusRbu7tmIJwe28NpeQ09nreVEQgpHYk4RHpvIkZhEwmOc35lBLjaRuMTUs46tXM73rMCWtUeuTsWyvDtvB5NW7Oe5q1txz2WN3fAOL8y3K0L5769b+PbOrlzWvIa7yxHJNYUzES9y/GQygz/5m4TkNH59qIdHrvQlBSMiNpEnpoWwZGck/VrW5M2hgVQu58u/ftjAnC1Heem6NozqHuDuMsVLhIRF8/Ffuxl5aQA9m1V3dzmSCyeTUrPtdTsSk5gZ6o6dTCK7f/rd06sRzw1qXfhFX4Sk1DT6vb2Y6hVKMfPBHuo9kyJD4UzESySlpnH7F6sJDovm53u7aZWqYig93fLtilBe+2M7fqVL0qpORZbtjuKFa1tzR49G7i5PRDxccmo6EXH/hLWjMYlUKF2SG4PqF8nh8VPWHOSp6SF8PjKIy1vXcnc5IrmicCbiBay1PDkthGnrwvjwlo5c176uu0sSN9oZHscjPwWz7Ugsz1/Tmrt6KpiJSPGTmpbOgHcXU8bXh9kP9yqSAVOKn3OFs5yX/RIRjzJxyV6mrQvjkf7NFMyE5rX8mPlgd/589DIFMxEptkr6lGDs5c3ZfjSO3zcdcXc5IhdN4UykCJi3NZw35mxnUGAdHunfzN3liIcoXdJHK+eJSLF3TWBdmteqwHvzd5J6xqqWIkWNwpmIh9tyOIZHftpAYL1KvDO8vYZsiIiIZOFTwvDY5c3ZG3mSmcGHz3+AiAdTOBPxYBFxidwzaS0Vy/jy+cigXN2vRkREpLi5sk1t2tStyAcLdpKcqt4zKboUzkQ8VGJKGvd+u44TCSl8MSqImhXLuLskERERj2SM4YkrWnDw+Cmmrjvo7nJELpjCmYgHstby1LQQgg9G895NHWhbr5K7SxIREfFofVrUoFODyny0YDeJKWnuLkfkgiiciXigDxfs5reNh3lqYAsGtq3t7nJEREQ8Xkbv2dHYRH5YdcDd5YhcEIUzEQ8zK+Qw783fyZBO9bi/dxN3lyMiIlJkdG9ane5NqjF+0W4SklPdXY5InimciXiQjQejeXzKRoIaVuH1Ie0wRiszioiI5MXjVzQnKj6ZScv3u7sUkTxTOBOvFxGXyJKdkUTEJrq7lHM6EnOKe75dSw2/0nx2e2dKl9TKjCIiInnVuWFV+raowYTFe4hNTHF3OSJ5UtLdBYjkp/ikVDaFxbAxLJqNB6MJCYvhUPQpAHx9DIPa1eGOHo1oX7+yews9Q0JyKndPWktCchrf3XUJ1SqUdndJIiIiRdZjl7fg2o+X8eXSfYy9vLm7yxHJNYUzKbKSU9PZcTQuM4htDItmV0Q81jqvN6hajk4Nq3BHjwBa1PZj4fZIpqw9yMzgw3RsUJk7ejTiqra18fVxbwdyerpl7M/BbDsSy5ejutCitp9b6xERESnq2vlXYmCb2ny5bB+juwdQpXwpd5ckkivGZvxLthAEBQXZtWvXFtr1xHtYawk9lsDGg9EEu4LYlsOxmTearFa+FO3rV6a9f2UC61eivX9lqmbzRRyflMq0tQeZtGI/+6JOUqtiaW7v1pBbujZwW2/VuDnbGb9oD89f05q7ejZySw0iIiLeZsfROAZ+sIT7LmvCM1e1dHc5IpmMMeustUHZvqZwJp4oIi6RjQdjMnvENh6MJjbRWXWprK8P7fwr0aF+ZQL9nSDmX6VsnhbPSE+3LN4ZyVd/72PprihKlSzB9e3rMrpHAG3qFt49xaavC+PxqRu5pWsDXruhrRYAERERyUeP/LSBP7ccZclTfanpV8bd5YgACmfn9NvGw5QpWYI+LWpSqqTWR3GHuMQUNh2KYePBGEJcQexwjLN4h08JQ4tafrSvX5kO9SvRvn5lmtaoQMl8HIq4OyKOb5aHMn3dIU6lpNG1UVXu7BHAgFa18vU6Z1obepxbP19FUEAVJt3Z1e3DK0VERLzN3sh4Ln9vCSMvbcgL17ZxdzkiwEWGM2NMfeBboDaQDky01n5gjHkLuBZIBvYAd1hro891Lk8MZ4M/+Zvgg9FULV+K69rXZVhnf9rUragejAKSMU8sOGOe2MFodkf+M0+sYbVytPevnBnGWtepRNlShbNqYUxCClPWHmTSilDCTpyiXuWyjLy0ITd3aUClcr75eq2DxxMY/MnfVCzry4wHulO5nMbCi4iIFISnpm1k5obDLHqyD3Url3V3OSIXHc7qAHWsteuNMX7AOmAw4A/8Za1NNca8CWCtffpc5/LEcJaals7SXVFMWx/GvC3hJKel07K2H0M7+XN9x7rqAs8HMQkpzN16lN83HWH5nmOZ88SqVyiVGcTa169MYL1KHjFhNy3dMm9rON8s38fKvccp6+vDDZ3qcUf3AJrVuvjFOuISUxj66XKOxiQy88EeNK5RIR+qFhERkewcPJ5Av3cWMTyoPq/d0M7d5Yjk77BGY8yvwMfW2nlZtt0ADLPWjjjXsZ4YzrKKSUjhfyGHmbYujOCD0fiUMPRuXoOhnfzp36omZXx136nciklI4c+tR5m96Qh/744iJc1Sr3JZrmxTm84Nq9C+fiXqVc7bPDF32Ho4lknLQ5kRfIjk1HR6Nq3OHT0C6NuiJiVK5L32tHTL3ZPWsGRXFN/e2ZUeTasXQNUiIiKS1X9/3cwPqw7w1+N9aFCtnLvLkWIu38KZMSYAWAK0tdbGZtn+P+Bna+335zre08NZVrsj4vllfRgzNhziSEwilcr6cm37Ogzt5E+H+pU9PlS4Q06BbFBgHQa1q0Ogf6Ui227HTybz4+oDfLdiP0djE2lYrRyjLg1geJA/fmVyP+Tx5Vlb+XLZPl4Z3JbbujUswIpFREQkQ3hsIpeNW8g1gXV558b27i5Hirl8CWfGmArAYuBVa+0vWbY/BwQBQ2w2JzPG3AvcC9CgQYPO+/fvz/s7cKO0dMvyPVFMXxfGnC1HSUxJp0mN8gzt7M+Qjv7UrlS8hz1mDWTLdkWRmu4EsmsC63B1EQ9k2UlJS2fO5qN8/fc+1h+IpnwpH4YH1WdU9wAaVS9/zmN/XH2AZ3/ZxOjuAbx4nSYli4iIFKZXf3f+QDp3bG+a1tSUAnGfiw5nxhhfYBbwp7X23SzbRwFjgP7W2oTznaco9ZxlJy4xhdmbjjB93SFWhx7HGOjZtDrDOvtzRevahbZwhbsVt0CWk40Ho/lmeSizQg6Tmm7p26Imo7sH0KtZ9bPe//I9UYz8cjU9mlbny1FBBboKpIiIiJztWHwSvcYtpF/Lmnx8ayd3lyPF2MUuCGKAScBxa+2jWbYPBN4FeltrI3NTSFEPZ1ntP3aS6esP8cv6MMJOnKJC6ZJcE1iHoZ39CWpYxevCSXRCMnO3hvN7iDNkMTXd4l+lLIPaFa9Alp2I2EQmrzrA5FX7iYpPpmnNCozqHsDQTvUoV6okeyPjuWH8cmr6lWb6A92pmIdhkCIiIpJ/3v5zBx8v3M3sh3vRum5Fd5cjxdTFhrOewFJgE85S+gD/Bj4ESgPHXNtWWmvHnOtc3hTOMqSnW1btO8709WHM3nSEhOQ0GlYrx9BO/gzpVA//KkV30ml0QjJzt4Tz+yYFstxISk1j1sYjfL18H5sPxVKxTElu6lKfBdsiiD6VwswHemgSsoiIiBvFJKTQc9xfBPpX4vORQZQrVdLdJUkxpJtQF5KTSanM2XyU6evDWLH3GNZCt8ZVGda5Ple1rU350p7/BXCuQDYosA7t6imQnY+1lnX7T/D18lDmbD5KCQOT7+5G10ZV3V2aiIhIsffdilCe/3ULDaqW461hgVzSuJq7S5JiRuHMDcJOJDBj/SGmrw8j9FgC5Ur5MLBtbYZ19qdbo2oXtAx7QVEgKzhHYk4ReyqVFrUv/v5oIiIikj9W7j3GU9NCOHA8gdHdA3hqYAv1okmhUThzI2st6w+cYNq6MGZtPEJcUir1KpdlSKd6XBNYl8rlfDEGfIzBp4TBuH77GONsL2EoYQwlDPkakHIMZK5l7xXIRERExJslJKfy5h/bmbRiPw2rleOtYe01ykUKhcKZh0hMSWPu1nCmrQtj2a5I0vPY9CUMTlBzhbcSBudxZoAz+JQgy+Ms+7i2ZfTY7QqPUyATERGRYm/FnmM8NX0jYSdOOb1oV7YsNitwi3sonHmg8NhElu6KIjk1nXRrSbeWtHTnx1pIsxmPLWnpznObsY917ePa/5/jnQVK0q2zj/OYLI9d+1hLs1oVFMhEREREcNYNeHPOdr5dsZ+AauV4a3h7ugSoF00KhsKZiIiIiMh5LN8TxVPTQjgUfYo7ujfiyStbqBdN8t25wpnuhCsiIiIiAnRvUp0/H72MEZc04Ku/93H1h0tZG3rc3WVJMaJwJiIiIiLiUr50SV4Z3I4f7r6E5NR0hn+2gldmbSUxJc3dpUkxoHAmIiIiInKG7k2r8+dYpxfti2X7uPqDpazbr140KVgKZyIiIiIi2ajg6kWbfPclJKWmM2zCCl79Xb1oUnAUzkREREREzqGHqxftlq4N+HypMxdt3f4T7i5LvJDCmYiIiIjIeVQoXZLXbmjH93ddQlJKOsMnLOe12dvUiyb5SuFMRERERCSXejarzpxHe3FTlwZMXLKXqz9cyvoD6kWT/KFwJiIiIiKSB35lfHl9SDu+u6sriclpDPt0Oa+rF03ygcKZiIiIiMgF6NWsBn+OvYybutTnsyV7GfThUjaoF00ugsKZiIiIiMgFcnrRApl0Z1cSktMY+ulyXv9DvWhyYRTOREREREQuUu/mTi/a8M71+WzxXq75aBnBB6PdXZYUMQpnIiIiIiL5oGIZX94cFsg3d3ThZFIqQ8b/zZtztpOUql40yR2FMxERERGRfNSnRc3MXrRPF+3hmg+XsVG9aJILCmciIiIiIvksoxft6zu6EJeYypBPlzNOvWhyHgpnIiIiIiIFpK+rF21Ix3qMX7SHaevC3F2SeLCS7i5ARERERMSbVSrry1vD2zO0sz9dAqq6uxzxYApnIiIiIiKFoFvjau4uQTzceYc1GmPqG2MWGmO2GWO2GGMecW2vaoyZZ4zZ5fpdpeDLFRERERER8U65mXOWCjxurW0FdAMeNMa0Bp4BFlhrmwELXM9FRERERETkApw3nFlrj1hr17sexwHbgHrA9cAk126TgMEFVKOIiIiIiIjXy9NqjcaYAKAjsAqoZa09Ak6AA2rmcMy9xpi1xpi1kZGRF1muiIiIiIiId8p1ODPGVACmA49aa2Nze5y1dqK1NshaG1SjRo0LqVFERERERMTr5SqcGWN8cYLZZGvtL67N4caYOq7X6wARBVOiiIiIiIiI98vNao0G+BLYZq19N8tLvwGjXI9HAb/mf3kiIiIiIiLFQ27uc9YDuB3YZIwJdm37N/AGMMUYcxdwABheIBWKiIiIiIgUA+cNZ9baZYDJ4eX++VuOiIiIiIhI8ZSn1RpFRERERESkYBhrbeFdzJhIYH+hXTD3qgNR7i6imFBbFy61d+FRWxcetXXhUnsXHrV14VFbFx619dkaWmuzXca+UMOZpzLGrLXWBrm7juJAbV241N6FR21deNTWhUvtXXjU1oVHbV141NZ5o2GNIiIiIiIiHkDhTERERERExAMonDkmuruAYkRtXbjU3oVHbV141NaFS+1deNTWhUdtXXjU1nmgOWciIiIiIiIeQD1nIiIiIiIiHqDIhTNjzEBjzA5jzG5jzDNZtv9sjAl2/YQaY4KzObaDMWaFMWaLMSbEGHNTltcaGWNWGWN2uc5VKofrj3Lts8sYMyqvxxclHtDWc4wx0caYWWds/8YYsy9LDR3y7127hzvb2hjT0BizznWNLcaYMXk5vihy92fbtW9FY8whY8zHWbbps336sedq64dc57TGmOrnuL6+swuvrYvNdza4t72L2/e2uz/brn31nX1xbT3Zdd7NxpivjDG+OVy/2Hxn58haW2R+AB9gD9AYKAVsBFpns987wH+z2d4caOZ6XBc4AlR2PZ8C3Ox6PAG4P5vjqwJ7Xb+ruB5Xye3xRenH3W3teq0/cC0w64zt3wDD3N1G3tLWrmuWdj2uAIQCdfPy36oo/bi7vbOc5wPgB+DjLNv02c59W3cEAlyf1+o5XF/f2YXU1q79isV3tie0N8Xoe9vdbZ3lPPrOvri2vhowrp8fs/tcUoy+s8/1U9R6zroCu621e621ycBPwPVZdzDGGOBGnP/wp7HW7rTW7nI9PgxEADVcx/QDprl2nQQMzub6VwLzrLXHrbUngHnAwDwcX5S4u62x1i4A4vLl3Xg2t7a1tTbZWpvkeloaV4+6l36uwQM+28aYzkAtYG5+vCEPViBt7Xq+wVobep7r6zs7iwJu6+L0nQ1ubu9i9r3t9s+2vrP/cRFtPdu6AKsB/2yuX5y+s3NU1MJZPeBgludhrm1Z9QLCMz4cOTHGdMX5q8AeoBoQba1NPfO8xpggY8wX57l+jscXYe5u6/N51dVl/p4xpnQuj/FUbm9rY0x9Y0yIq443XV+q3vi5Bje3tzGmBM5fHZ/M4bT6bGfjjLY+1376znYUdlufjzd9rsED2rsYfW+7ta31nZ2/be0azng7MMf1vLh+Z+eoqIUzk822M5ebvIVs0vxpJzGmDvAdcIe1Nv1c57XWrrXW3n2e6+emrqLG3W19Ls8CLYEuOF3fT+fiGE/m9ra21h601gYCTYFRxphauayrKHJ3ez8AzLbWHsxmf322szvJ2W2dI31nn6Yw2/pcvO1zDR7Q3sXoe9vdba3v7NNdbFuPB5ZYa5dCsf7OzlFRC2dhQP0sz/2BwxlPjDElgSHAzzmdwBhTEfgd+I+1dqVrcxRQ2XX8WefNxfVze3xR4u62zpG19oirZzwJ+BqnG74o85i2dv3ldQvOX8a88XMN7m/vS4GHjDGhwNvASGPMG6DPdnZyaOuLvb43frbd3dY58sLPNXhQexeD7213t7W+s10utq2NMS/gDHN8LI/X98bPdY6KWjhbAzQzzootpYCbgd+yvD4A2G6tDcvuYNcxM4BvrbVTM7a7xr8uBIa5No0Cfs3mFH8CVxhjqhhjqgBXAH/m4fiixN1tnSPXX2Qyxj0PBjbn5XgP5Na2Nsb4G2PKuh5XAXoAO7z0cw1ubm9r7QhrbQNrbQDwhOs8z7jOrc92Fjm1dR7oO/sfBd3WOfLCzzW4ub2L2fe2W9ta39n509bGmLtx5pTdco6ey+L0nZ0z6wGrkuTlB2e1l504Y1ifO+O1b4Ax5zj2NiAFCM7y08H1WmOcCYq7gan8swpSEPBFlnPc6dpnN053Lec6vij/eEBbLwUigVM4f0250rX9L2ATzpfg90AFd7dVUW5r4HIgBGdVphDgXm/+XLu7vc8412hOX/lLn+3ct/XDru+FVJy/oGZ8nvWd7b62Ljbf2e5ub4rZ97a7P9tZzjUafWdfaFunus6Zsf2/2bU1xeg7O6cf43rDIiIiIiIi4kZFbVijiIiIiIiIV1I4ExERERER8QAKZyIiIiIiIh5A4UxERERERMQDKJyJiIiIiIh4AIUzERERERERD6BwJiIiIiIi4gEUzkRERERERDzA/wPKGFj9zqJn9wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAE/CAYAAAAOkIE9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0gUlEQVR4nO3dd3xUVfrH8c9JJySEFgJJgNBr6E1QAal2BFHXBnZdu+7adv3p7qqrrmtdV9fVVVfddUWwKyAKNiRA6L0lQEJCGiSBkH5+f0yCoScwkzsz+b5fr3mR3Llz7zOXYZhnnnPOY6y1iIiIiIiIiO8JcDoAEREREREROTlK6ERERERERHyUEjoREREREREfpYRORERERETERymhExERERER8VFK6ERERERERHyUEjoREREREREfpYRORMRPGGP21bhVGmMO1Pj9CqfjOxnGmFRjzFin4zgeY8wCY8z1Hjx+oDHmMWPMLmNMoTFmuTGmaY37OxpjPq+6L8cY83SN+5obYz4yxuw3xmw3xlx+2LHHGGM2GGOKjDHzjTHtPfU8RETEM5TQiYj4CWttRPUN2AGcX2Pbe07HdzhjTJA/nKMe/AEYDpwGNAGuAooBjDEhwNfAt0BrIB54t8ZjXwZKgRjgCuAVY0yvqse2BGYBDwPNgaXA/zz/dERExJ2U0ImI+DljTIAx5gFjzFZjTK4x5gNjTPOq+xKMMdYYc40xZqcxZo8x5mZjzGBjzCpjzF5jzN9qHGu6MeYnY8xLxpj8qurOmBr3Rxlj3jDGZBhj0qsqS4GHPfY5Y0we8KgxppMx5tuquHKMMe9VV5+MMe8A7YDPqqqM9xljRhlj0g57fgereMaYR40xHxpj3jXGFADTTxBTZ2PMd1XPJccYc9SExhgTVnXM3KprssQYE2OMeRw4A/hbVYx/q9q/uzHma2NMnjFmozHmkhrHessY82rV/YVV5z9qZcwY0wy4C7jBWrvduqyx1hZX7TId2GWtfdZau99aW2ytXVX12MbAFOBha+0+a+2PwKe4EkKAycBaa+2MquM9CvQ1xnQ/+itJRES8kRI6ERH/dwcwCRgJxAJ7cFVuahoKdAEuBZ4HfgeMBXoBlxhjRh627zagJfAIMKs6QQTeBsqBzkB/YDxw/VEe2wp4HDDAn6vi6gG0xZVYYK29ikMrjU9TOxcCHwJNgfdOENOfgLlAM1zVrZeOccxpQFRVfC2Am4ED1trfAT8At1XFeFtVIvU18J+q5/kr4O/VlbEqV1SduyWwoirOo0msiv1iY0ymMWaTMebWGvcPA1KNMV9VJaQLjDGJVfd1BSqstZtq7L8S198pVX+urL7DWrsf2FrjfhER8QFK6ERE/N9NwO+stWnW2hJcCdPFhw1H/FNVdWcusB/4r7U2y1qbjith6V9j3yzgeWttmbX2f8BG4FxjTAxwNnBXVbUoC3gOuKzGY3dZa1+y1pZbaw9Ya7dYa7+21pZYa7OBZ3ElnqfiZ2vtx9baSlxDFI8XUxnQHoitev4/HuOYZbgSuc7W2gprbbK1tuAY+54HpFpr36x6nsuAmcDFNfb5wlr7fdXfx++A04wxbY9yrHhciWRXoEPVMR41xoyrcf9lwIu4kuIvgE+qhmJGAPmHHS8fiKz6+UT3i4iID1BCJyLi/9oDH1UNFdwLrAcqcM2rqra7xs8HjvJ7RI3f0621tsbv23ElE+2BYCCjxrn+gatKVW1nzcCMMa2MMe9XDYUswDX/q2Xdn+Ihap7jRDHdh6tKuNgYs9YYc+0xjvkOMAd437gWJ3naGBN8jH3bA0Orz1d1zitwzXE7IkZr7T4gD9c1PNyBqj//WJUArwLeB86pcf+P1tqvrLWlwDO4Es8ewD5cCW1NTYDCqp9PdL+IiPgAJXQiIv5vJ3C2tbZpjVtYVfXtZMQZY0yN39sBu6rOUwK0rHGeJtbamkP4aiaC4BpuaYE+1tomwJW4Eqxj7b8fCK/+pWouXPRh+9R8zHFjstZmWmtvsNbG4qpk/t0Y0/nwJ1xVjfyDtbYnrgVKzgOuPkaMO4HvDrveEdbaW2rsc7AaZ4yJwLUoya7DzwusOsY5at5/rPs2AUHGmC41tvUF1lb9vLbq9+o4GgOdatwvIiI+QAmdiIj/exV4vHrhDWNMtDHmwlM4XivgDmNMsDFmKq5q0JfW2gxc89H+aoxpYlyLsXQ6bP7d4SJxVYr2GmPigN8edv9uoGON3zcBYcaYc6sqZL8HQo918BPFZIyZaoyJr9p9D67kqOLw4xhjRhtjEqsSyAJcQzCr9zs8xs+BrsaYq6quUbBxLTLTo8Y+5xhjTq8aGvknIMlae0j1sir+rbiGvP7OGBNadYxLq84BrormMGPM2KrY7gJygPVVc+JmAX80xjQ2xozANb/wnarHfgT0NsZMMcaEAf8HrLLWbjjW9RQREe+jhE5ExP+9gGt1w7nGmEJgEa7FSU5WEq4FVHJwLWxysbU2t+q+q4EQYB2uBOlDoM1xjvUHYACuuVtf4EpAavoz8PuqoYu/sdbmA78GXgfScVXs0ji+48U0GEgyxuzDdY3utNamHOUYraseV4BryOp3/NIe4AVccxL3GGNetNYW4lp45TJcVbdM4CkOTTz/g2tBmTxgIK4hmcfyK1zDOHNxXaOHrbXfAFhrN+Kqar5a9dwuBC6oGn4JrmvVCNe8x/8Ct1hr11Y9NhvXKpiPVz12KIfOdxQRER9gDp0GISIicmzGmOnA9dba052OxVcZY94C0qy1v3c6FhER8X2q0ImIiIiIiPgoJXQiIiIiIiI+SkMuRUREREREfJQqdCIiIiIiIj5KCZ2IiIiIiIiPCqrPk7Vs2dImJCTU5ylFRERERES8RnJyco61Ntpdx6vXhC4hIYGlS5fW5ylFRERERES8hjFmuzuPpyGXIiIiIiIiPkoJnYiIiIiIiI9SQiciIiIiIuKj6nUO3dGUlZWRlpZGcXGx06GInwkLCyM+Pp7g4GCnQxERERER8QjHE7q0tDQiIyNJSEjAGON0OOInrLXk5uaSlpZGhw4dnA5HRERERMQjHB9yWVxcTIsWLZTMiVsZY2jRooUqvyIiIiLi1xxP6AAlc+IRel2JiIiIiL/zioTOaY8//ji9evWiT58+9OvXj6SkJACuv/561q1b55ZzJCQkkJOTc9x9nnjiiTof96233uK22247ZNubb75Jv3796NevHyEhISQmJtKvXz8eeOCBOh+/Pjz//PMUFRU5HYaIiIiIiM9xfA6d037++Wc+//xzli1bRmhoKDk5OZSWlgLw+uuv12ssTzzxBA899NApH+eaa67hmmuuAVyJ5Pz582nZsuUpH/dkWWux1hIQcPTvD55//nmuvPJKwsPDa33M8vJygoIa/MtXRERERBq4E1bojDFtjTHzjTHrjTFrjTF31rjvdmPMxqrtT3s2VM/IyMigZcuWhIaGAtCyZUtiY2MBGDVqFEuXLgUgIiKC+++/n4EDBzJ27FgWL17MqFGj6NixI59++ilwZLXsvPPOY8GCBUecc9KkSQwcOJBevXrx2muvAfDAAw9w4MAB+vXrxxVXXAHAu+++y5AhQ+jXrx833XQTFRUVgKsC17VrV0aOHMlPP/1U6+f6l7/8hcGDB9OnTx8eeeQRAFJTU+nevTvXX389vXv35oorrmDevHmMGDGCLl26sHjxYgAeffRRrrrqKs466yy6dOnCP//5zxMet0ePHvz6179mwIAB7Ny5k1tuuYVBgwbRq1evg/u9+OKL7Nq1i9GjRzN69OiD17rahx9+yPTp0wGYPn0699xzD6NHj+b+++9n69atTJw4kYEDB3LGGWewYcOGWl8L8S0bMgtYk57vdBgiIiIi3qe6enKsG9AGGFD1cySwCegJjAbmAaFV97U60bEGDhxoD7du3bojttWnwsJC27dvX9ulSxd7yy232AULFhy8b+TIkXbJkiXWWmsB++WXX1prrZ00aZIdN26cLS0ttStWrLB9+/a11lr75ptv2ltvvfXg488991w7f/58a6217du3t9nZ2dZaa3Nzc6211hYVFdlevXrZnJwca621jRs3PvjYdevW2fPOO8+WlpZaa6295ZZb7Ntvv2137dpl27Zta7OysmxJSYkdPnz4Iec8XPV558yZY2+44QZbWVlpKyoq7Lnnnmu/++47m5KSYgMDA+2qVatsRUWFHTBggL3mmmtsZWWl/fjjj+2FF15orbX2kUcesX369LFFRUU2OzvbxsfH2/T09OMe1xhjf/7554OxVD/v8vJyO3LkSLty5cojrs3h12HGjBl22rRp1lprp02bZs8991xbXl5urbX2rLPOsps2bbLWWrto0SI7evToI56/068vOTXLd+yx17212La//3Pb8+GvbMGBUqdDEhERETklwFJ7grypLrcTjlmz1mYAGVU/Fxpj1gNxwA3Ak9bakqr7sk41ufzDZ2tZt6vgVA9ziJ6xTXjk/F7HvD8iIoLk5GR++OEH5s+fz6WXXsqTTz55sCpULSQkhIkTJwKQmJhIaGgowcHBJCYmkpqaWqeYXnzxRT766CMAdu7cyebNm2nRosUh+3zzzTckJyczePBgAA4cOECrVq1ISkpi1KhRREdHA3DppZeyadOmE55z7ty5zJ07l/79+wOwb98+Nm/eTLt27ejQoQOJiYkA9OrVizFjxmCMOeK5XXjhhTRq1IhGjRoxevRoFi9ezI8//njM47Zv355hw4YdfPwHH3zAa6+9Rnl5ORkZGaxbt44+ffrU6dpNnTqVwMBA9u3bx8KFC5k6derB+0pKSup0LPFei1PyeOnbzfywOYeoRsFcMbQd7yXtYGZyGtNHqA2FiIiISLU6TUIyxiQA/YEk4C/AGcaYx4Fi4DfW2iVuj7AeBAYGMmrUKEaNGkViYiJvv/32EQldcHDwwVUTAwICDg7RDAgIoLy8HICgoCAqKysPPuZoS+YvWLCAefPm8fPPPxMeHs6oUaOOup+1lmnTpvHnP//5kO0ff/zxSa3eaK3lwQcf5Kabbjpke2pq6sHncrznBkeuGmmMOe5xGzdufPD3lJQUnnnmGZYsWUKzZs2YPn36MVsK1DzP4ftUH7OyspKmTZuyYsWKEz118RHWWn7aksuL325mcUoeLSNCeODs7lw5rD0RoUGs3VXA2z9v5+rTEggI0AqmIiIiIlCHhM4YEwHMBO6y1hYYY4KAZsAwYDDwgTGmY1UZsebjbgRuBGjXrt1xz3G8SpqnbNy4kYCAALp06QLAihUraN++/UkdKyEhgb///e9UVlaSnp5+cP5ZTfn5+TRr1ozw8HA2bNjAokWLDt4XHBxMWVkZwcHBjBkzhgsvvJC7776bVq1akZeXR2FhIUOHDuXOO+8kNzeXJk2aMGPGDPr27XvC2CZMmMDDDz/MFVdcQUREBOnp6QQHB9fp+X3yySc8+OCD7N+/nwULFvDkk0/SqFGjWh23oKCAxo0bExUVxe7du/nqq68YNWoUAJGRkRQWFh5cuCUmJob169fTrVs3PvroIyIjI484XpMmTejQoQMzZsxg6tSpWGtZtWpVra6FeBdrLfM3ZvHiN1tYsXMvMU1C+b/zevKrIe1oFBJ4cL9rRiRw5/sr+H5zNqO6tXIwYhERERHvUauEzhgTjCuZe89aO6tqcxowqyqBW2yMqQRaAtk1H2utfQ14DWDQoEGHJHveYN++fdx+++3s3buXoKAgOnfufHChkroaMWLEweGLvXv3ZsCAAUfsM3HiRF599VX69OlDt27dDhmSeOONN9KnTx8GDBjAe++9x2OPPcb48eOprKwkODiYl19+mWHDhvHoo49y2mmn0aZNGwYMGHBwsZTjGT9+POvXr+e0004DXENN3333XQIDA0/wyF8MGTKEc889lx07dvDwww8TGxtLbGxsrY7bt29f+vfvT69evejYsSMjRow45HmfffbZtGnThvnz5/Pkk09y3nnn0bZtW3r37s2+ffuOGs97773HLbfcwmOPPUZZWRmXXXaZEjofUllpmbM2k5e+3cK6jALimjbisUm9mToontCgI1+XZ/duw2OR63lrYaoSOhEREZEq5rCC2pE7uMa/vQ3kWWvvqrH9ZiDWWvt/xpiuwDdAu8MrdDUNGjTIVq8aWW39+vX06NHj5J+B1ItHH32UiIgIfvOb3zgdSp3o9eV9yisq+WJ1Bn/7dgubs/bRoWVjfj2qE5P6xxEcePyFd5+ft4nn521m/m9G0aFl4+PuKyIiIuKNjDHJ1tpB7jpebSp0I4CrgNXGmBVV2x4C/gX8yxizBigFph0vmRORhq2sopKPlqfz9/lbSM0tomtMBC9c1o/z+sQSWMs5cZcPbcfL87fw759THRmiLSIiIuJtarPK5Y/AsT5tXenecMRbPfroo06HID6quKyCGclpvLpgK+l7D9ArtgmvXjmA8T1b13lxk1aRYZyT2IYZS9O4d3w3IkLVXF5EREQaNn0aEhGPOFBawX8W7+C177eyu6CE/u2a8tik3ozqFn1SK7VWmz48gU9W7GLWsjSuPi3BfQGLiIiI+CAldCLiVvtKynnn5+28/sM2cveXMrRDc569pB/DO7U4pUSuWv92zegbH8VbC1O5cmh7tTAQERGRBk0JnYi4RX5RGW8tTOVfP6WQf6CMM7tGc9vozgzp0Nzt55o+IoG7/7eSH7fkcGbXaLcfX0RERMRXKKETkVOSu6+Ef/2Uwr8XbqewpJyxPWK4/azO9G3b1GPnPCexDY9/4WphoIROREREGrLjrxHeQAQGBtKvXz969+7N1KlTKSoqOuljTZ8+nQ8//BCA66+/nnXr1h1z3wULFrBw4cKDv7/66qv8+9//PulzV0tNTaV3796HbHv00Ud55pln6nQcd8Uj/imroJjHPl/H6U/N5+8LtnJmt2i+vOMMXp82yKPJHEBoUCCXD2nH/I1ZbM/d79FziYiIiHgzVeiARo0asWLFCgCuuOIKXn31Ve65556D91dUVNSpAXe1119//bj3L1iwgIiICIYPHw7AzTffXOdzeEp5eblXxSPeIyP/AK8s2Mr7S3ZSUWm5sG8svx7dic6tIus1jiuGtefvC7by75+38/B5Pev13CIiIiLewrcqdE8/DfPnH7pt/nzXdjc544wz2LJlCwsWLGD06NFcfvnlJCYmUlFRwW9/+1sGDx5Mnz59+Mc//gGAtZbbbruNnj17cu6555KVlXXwWKNGjaK6kfrs2bMZMGAAffv2ZcyYMaSmpvLqq6/y3HPP0a9fP3744YdDqmgrVqxg2LBh9OnTh4suuog9e/YcPOb999/PkCFD6Nq1Kz/88EOdn+Pxjv3QQw8xcuRIXnjhhYPx7Nq1i379+h28BQYGsn37drZv386YMWPo06cPY8aMYceOHYCrSnnHHXcwfPhwOnbseLBiKb6vrKKSi1/5mf8u3sHk/nF8e+9Inr20X70ncwAxTcI4O7ENHyzZyf6S8no/v4iIiIg38K2EbvBguOSSX5K6+fNdvw8e7JbDl5eX89VXX5GYmAjA4sWLefzxx1m3bh1vvPEGUVFRLFmyhCVLlvDPf/6TlJQUPvroIzZu3Mjq1av55z//ecgQymrZ2dnccMMNzJw5k5UrVzJjxgwSEhK4+eabufvuu1mxYgVnnHHGIY+5+uqreeqpp1i1ahWJiYn84Q9/OCTOxYsX8/zzzx+yvaatW7cekoS9+uqrtTr23r17+e6777j33nsPbouNjWXFihWsWLGCG264gSlTptC+fXtuu+02rr76alatWsUVV1zBHXfccfAxGRkZ/Pjjj3z++ec88MADdfybEG/13cZs0vce4KVfDeDJKX1o36Kxo/FMH55AYUk5s5anOxqHiIiIiFO8a8jlXXdB1dDHY4qNhQkToE0byMiAHj3gD39w3Y6mXz94/vnjHvLAgQP069cPcFXorrvuOhYuXMiQIUPo0KEDAHPnzmXVqlUHq035+fls3ryZ77//nl/96lcEBgYSGxvLWWeddcTxFy1axJlnnnnwWM2bH3/Vv/z8fPbu3cvIkSMBmDZtGlOnTj14/+TJkwEYOHAgqampRz1Gp06dDg4jhV8ag5/o2Jdeeukx4/rpp594/fXXD1YFf/75Z2bNmgXAVVddxX333Xdw30mTJhEQEEDPnj3ZvXv3cZ+v+I4ZyTtpGRHCmB6tnA4FgAHtmpIYF8XbC1O5cmg7t7RFEBEREfEl3pXQ1UazZq5kbscOaNfO9fspqjmHrqbGjX+pPlhreemll5gwYcIh+3z55Zcn/BBprXXrB83Q0FDAtZhLebl7h5rVfM41ZWRkcN111/Hpp58SERFx1H1qPsfqGMH1/MX35e4r4Zv1WVx7egeCA72juG+MYfrwBO6dsZKftuRyepeWTockIiIiUq+841NZteefhwULjn975BEoKoKHH3b9+cgjx9//BNW52powYQKvvPIKZWVlAGzatIn9+/dz5pln8v7771NRUUFGRgbzD5/jB5x22ml89913pKSkAJCXlwdAZGQkhYWFR+wfFRVFs2bNDlbC3nnnnYMVtVN1MscuKyvjkksu4amnnqJr164Htw8fPpz3338fgPfee4/TTz/dLTGKd/poeTrllZapA+OdDuUQ5/VtQ4vGIby1MNXpUERERETqnW9V6KrnzH3wAYwe7brV/N2Drr/+elJTUxkwYADWWqKjo/n444+56KKL+Pbbb0lMTKRr165HTY6io6N57bXXmDx5MpWVlbRq1Yqvv/6a888/n4svvphPPvmEl1566ZDHvP3229x8880UFRXRsWNH3nzzTbc9l7oee+HChSxZsoRHHnmERx55BHBVJl988UWuvfZa/vKXvxAdHe3WGMW7WGv5MDmNvm2b0iWm/hdAOZ7QoEB+NaQdLy/Ywo7cItq1CHc6JBEREZF6Y+pzONygQYNs9aqP1davX0+PHj1qd4Cnn3YtgFIzeZs/H5YsgRrzt0Sq1en1Jce0Oi2f8//2I49N6s2Vw9o7Hc4RMvOLGfHUt1w7IoHfnasWBiIiIuK9jDHJ1tpB7jqeb1Xojpa0VVfqRMRjZiTvJDQogPP7xjodylG1jgpjYu/W/G/JTu4e15XwEN96axMRERE5Wd41h05EvE5xWQWfrNjFxN6tiWoU7HQ4x3TN8AQKisv5SC0MRETEB6zYuZfPVu5yOgzxA0roROS4vl63m/wDZUwd2NbpUI5rYPtm9IptwtsLU7WyqoiIeLWUnP1c+9YSnpm7keKyCqfDER/nFQmdPnyJJ+h15R4zktOIa9qI4Z1aOB3KcRljmDY8gU279/Hz1lynwxERETmqrMJirv5XEgBvXTOEsOBAhyMSX+d4QhcWFkZubq4+fItbWWvJzc0lLCzM6VB8Wkb+AX7YnM2UAXEEBHh/0+4L+sbSXC0MRETESxUWl3HNm0vIKSzlzemD6dDy6P1/RerC8ZUD4uPjSUtLIzs72+lQxM+EhYURH+9dPdN8zaxl6VgLF3v5cMtqYcGBXDa4La9+t5WdeUW0ba4WBiIi4h1Kyyu5+d1kNmYW8vq0QfRt29TpkMRPOJ7QBQcH06FDB6fDEJHDWGuZsXQnwzo296neblcOa88/vt/Gu4u28+A5alkhIiLOq6y0/PbDlfy0JZdnpvZlVLdWTockfsTxIZci4p2WpO4hNbfI6xdDOVxs00ZM6BXD+0t2cqBUE81FRMR5f/5qPZ+s2MV9E7tx8UCNHhL3UkInIkc1Y+lOIkKDODuxtdOh1Nn04R3IP1DGxyvUwkBERJz1z++38c8fUpg+PIFbRnZyOhzxQ0roROQI+0vK+WJ1BucmtvHJJt2DE5rRo41aGNRWQXGZls0WEfGAT1ak8/iX6zk3sQ0Pn9cTY7x/gTHxPUroROQIX67OoKi0gqmDfHNYiDGG6cPbsyGzkEXb8pwOx6tZa5n6ys9M+9diKiuV/IrIL8oqKtmWvc/pMHzWj5tz+M2MlQzt0Jy/XtKXQB9YLVp8kxI6ETnCjOQ0OrZszMD2zZwO5aRd2C+OpuHBvK0WBse1afc+Nu4uJCkljw+T05wOR0S8yKsLtjL+ue9J21PkdCg+Z016Pje9s5RO0RG8dvUg9ZoTj1JCJyKHSM3Zz+KUPC4eFO/TQ0NcLQzaMXddJul7DzgdjteavSYTY6BXbBMe/3I9OftKnA5JRLyAtZYZyWmUV1o+Wqb5yHWxI7eI6W8uoWl4CG9dM4SoRsFOhyR+TgmdiBziw+Q0AgxMGeCbwy1ruuq09gC88/N2hyPxXrPXZjKwXTOev7QfRaXlPPHFeqdDEhEvkLx9DzvyimgUHMjMZWmaj1xLuftKuPpfSZRXVvL2tYNpHRXmdEjSACihE5GDKiotM5elcWbXaGKa+P5/QnFNGzG+Z2veX7JDi34cxfbc/azPKGBi79Z0iYnk5pGdmLU8nYVbcpwOTUQcNnNZGuEhgTx4TndSc4tI3r7H6ZC83v6Scq59awmZBcW8MW0wnVtFOh2SNBBK6ETkoJ+25JCRX+xzveeOZ9rwBPYWlfGJWhgcYc7aTAAm9HK1prh1dGfatwjndx+vUQIs0oAVl1Xw+aoMJvZuzeQB8QerdHJsZRWV3PqfZaxOz+elXw3w6Tno4nuU0InIQTOS02gaHszYnq2cDsVthnVsTvfWkby1cLuGDB1m9ppMesU2oW3zcMA17/CxSb1JydnPKwu2OhydiDhl3vrdFBaXM2VAvKsfae/WfL4yQ1/0HIO1lgdmrmbBxmwevyiRcT1jnA5JGhgldCICQH5RGXPWZjKpXxyhQf6zGpcxhmnDE1ifUcCSVA0Zqra7oJhlO/YysdehjePP6BLNhf1ieWXBVrZkablykYZo1rJ02kSFMaxjCwCmDIynsKScuet2OxyZd/rLnI3MXJbG3WO78qsh7ZwORxogJXQiAsCnK9MpLa/k4oG+vxjK4Sb1iyOqUTBvLUxxOhSvMbdquOXE3q2PuO/35/YkLDiA3320WlVNkQYmu7CE7zZlM6l/3MG+aad1bEFsVBgz1drkCG8vTOXvC7Zy+dB23DGms9PhSAOlhE5EANdwyx5tmtA7LsrpUNyuUUgglw1uy5y1u9mlFgaAa3XLjtGN6dwq4oj7oiNDefCcHiSl5DFTy5WLNCifrtxFRaVlcv+4g9sCAgwXDYjjh83Z7C4odjA67/Ll6gwe/Wwt43rG8KcLe/t0qx/xbUroRISNmYWsSstnqh9W56pdOaw91lreXaQWBnv2l7JoWx4Te7U+5geQSwe1ZVD7Zjz+xTry9pfWc4Qi4pRZy9LoEx9Fl5hDV2icPCCeSgsfL9eXPAA/b83lrvdXMKBdM176Vf+D1UwRJyihExFmLN1JcKBhUo1vZP1N2+bhjO0Rw/tLdjb4if3z1u+motIedbhltYAAw+MXJVJYXM6fv1RvOpGGYENmAWt3FRxSnavWKTqC/u2aqicdsD6jgBv/vZR2LcJ5Y9ogwoL9Z965+CYldCINXFlFJR8tT2dM9xiaNw5xOhyPmj48gbz9pXy2cpfToThqztpMYqPCSDzB8NpurSO58cyOzEhO4+etufUUnYg45aNl6QQFGM7vG3vU+6cMiGfT7n2sSS+o58i8R/reA0x/czGNQ4N4+9ohNA337/83xTcooRNp4L7dkEXu/lIuGey/wy2rndapBV1jInhrYWqD/YZ5X0k532/OYULvYw+3rOn2s7rQtnkjfvfxakrKG3ZlU8SfVVRaPlqezqhurWgREXrUfc7vE0tIUECD7Um3Z38pV7+RRFFpBW9fO4S4po2cDkkEUEIn0uDNWJpGq8hQzuwS7XQoHlfdwmDtrgKStzfMFgYLNmZRWl55RLuCY2kUEsifLuzNtuz9/OO7bR6OTkSc8uOWHLIKS5gy4NhD76PCgxnXM4ZPVrhWRW5IDpRWcN3bS9i55wCvXz2Ibq0jT/wgkXpywoTOGNPWGDPfGLPeGLPWGHNn1fZHjTHpxpgVVbdzPB+uiLhTdmEJ8zdmcdGAOIICG8b3Oxf1j6NJWBBvLkx1OhRHzF6TSYvGIQxKaF7rx4zq1orz+rThb/O3sC1bvelE/NGsZWlENQrmrB6tjrvfxQPi2VNUxvyNWfUUmfPKKyq5/b/LWb5zLy9c2o+hVf35RLxFbT7BlQP3Wmt7AMOAW40xPavue85a26/q9qXHohQRj/h4eToVlZapA9s6HUq9CQ8J4tLBbZm9JpPM/Ia1/HZxWQXzN2QxvldMnVdk+7/zehIaFMDvP17TYIerivirwuIy5qzN5Py+bQgNOv4CH2d0aUl0ZGiD6UlnreXhT9Ywb/1u/nhBL85ObON0SCJHOGFCZ63NsNYuq/q5EFgP+O9SeCINhLWWD5bupH+7pkftRebPrhqWQKW1vJfUsFoY/LQlh/2lFUyo5XDLmlo1CeP+id1ZuDWXj1do2XIRf/LVmkyKyyqZPODEc6mDAgOY1C+W+RuzGkRLkxe+2cx/F+/kttGdueq0BKfDETmqOo2xMsYkAP2BpKpNtxljVhlj/mWMaXaMx9xojFlqjFmanZ19atGKiNusTMtnc9Y+LhnUcKpz1dq1CGdM9xj+k7SjQbUwmL0mk8jQIIZ3anlSj798SDv6t2vKY5+vZ2+R/3+QE2koZi1Lo0PLxvRv27RW+08ZGE9ZheVTP/9y5z9JO3h+3mamDozn3vFdnQ5H5JhqndAZYyKAmcBd1toC4BWgE9APyAD+erTHWWtfs9YOstYOio72/0UXRHzFjKU7CQsO4Lw+DXP4yPThCeTuL+WLVRlOh1Ivyisq+Xr9bsb0aEVI0MnNlwwIMDxxUSJ7D5Tx5Fcb3ByhiDghbU8Ri7blMbl/XK1WvgXo3roJvWKbMHOZ/yZ0c9dm8vuPVzO6WzRPTE6s9bURcUKt/lc3xgTjSubes9bOArDW7rbWVlhrK4F/AkM8F6aIuFNxWQWfrtzF2b3bEBkW7HQ4jhjRuQWdWzWcFgaLU/LYW1R23GbitdGjTROuP70D7y/ZyeKUPDdFJyJO+Xi5KymbdJRm4sczZUA8q9Pz2ZhZ6ImwHLU0NY/b/7ucxPimvHzFAIIbyKJh4rtqs8qlAd4A1ltrn62xvebX+hcBa9wfnoh4wpy1mRQWlzN1oP/3njuW6hYGq9PzWbZjr9PheNzstZmEBQdwZtdTHylx59guxDVtxEMfrW5wS5eL+BNrLbOWpTO0Q3PaNg+v02Mv7BdLUIDxu550W7IKue7tpcQ1bcSb0wcTHhLkdEgiJ1SbrxxGAFcBZx3WouBpY8xqY8wqYDRwtycDFRH3+TA5jfhmjRjWwJdentw/jsiwIN728xYGlZWWOWszGdk12i0fTsJDgnhsUm+2ZO3jnz+oN93xlFdUcs8HK1TNFK+0YudetuXsZ0otFkM5XIuIUEZ1a8VHy9Mpr/CPL3Yy84u5+o3FhAQF8Pa1Q2jeOMTpkERqpTarXP5orTXW2j41WxRYa6+y1iZWbb/AWtswJqKI+Lj0vQf4cUsOUwbEE1DHpev9TePQIC4Z1JYvV2ewu8B/WxisSNvL7oKSUx5uWdPo7q04J7E1L36zme25+912XH/zw+YcZi1L55FP11JZ6d9De7/flM31by/l/cU7tGiOj5i1LJ3QoADOTjy594aLB8aRXVjCD1ty3BxZ/cs/UMa0fy2moLicN6cPrnPFUsRJGhQs0sDMTE7DWri4AQ+3rOnq09pTYS3vJe1wOhSPmbMmk6AAw1ndY9x63EfO70VwoHrTHc+M5J0YA+szCpi7brfT4XhMeUUlj3y6lvkbs3hg1moGPTaPa95czKxlaRQWlzkdnhxFSXkFn63axYRerU96LvXo7q1oGh7s8z3prLXc+t4ytuXs4x9XDaR3XJTTIYnUiRI6kQakstLyYXIawzu10LePVdq3aMxZ3Vrxn6TtlJT7XwsDay2z12YyvHNLohq5dwGcmCZh/HZCN37YnMOnK3e59dj+YM/+Uuaty+LqYe3p2LIxz8/b5LdVulnL00nJ2c/frxjA57efznVndGDT7n3c88FKBj42j5veWcpnK3dRVFrudKhSZf6GLPYWlTF5wMm3Fg4NCuSCvrHMXbeb/AO+m7h/vW43P27J4f/O68mIzifX1kXESUroRBqQxal57MgrYuogVedqmjY8gZx9pXy52v9Gjm/ILGR7bhETT6KZeG1cOaw9feOj+NPn68gv8t0PdJ7wyYp0SisquXRwO24f05kNmYXMXZfpdFhuV1ZRyYvfbKZ3XBPG94yhd1wUD57dgx/vH82sXw/niqHtWL5jL7f/dzkD/zSP2/6zjDlrMxtUD0hvNHNZOtGRoZx+ignMlAHxlJZX+mwLmIpKyzNzN9IxujG/GtLO6XBETooSOpEGZMbSNCJDg5jYq2H2njuWM7q0pFN0Y95auN3pUNxu9ppMjIFxPd073LJaYIDhicmJ7Ckq46k56k1X04zkNHrFNqFnbBMu6BtXVaXb7HdVuhlL00jbc4B7xnU9pFeXMYYB7ZrxyPm9+PnBMbx/4zAmD4hj4dZcbnonmcGPzeOeD1Ywf0MWZX6yqIavyNtfyvwNWUzqF0vQKS7J3yc+is6tInx2tcuPl6ezafc+7h3X7ZSvhYhT9MoVaSD2lZTz5eoMzuvbhkYhgU6H41WqWxis3LmX5Tv2OB2OW81Zm8ng9s2Jjgz12Dl6xUZxzfAE/pO0g+TtWs0RYN2uAtbuKjjYGiQwwHDHmC5syCxkzlr/qdKVlFfwt283069tU0Z3a3XM/QIDDMM6tuDxixJZ/NAY/n3tEM5ObM28dbu55q0lDH58Hg/OWsVPW3Ko8LOE1xt9tnIX5ZWWKW6YS22MYcqAeJK37yElx7cWSCotr+S5eZtIjIvibDcuGiVS35TQiTQQX6zaxYGyCqYOaut0KF5p8oB4IkL9q4VBSs5+NmQWMqEePqjcPa4rsVFhPDRrjaotuBZDCQkM4MJ+v8xPOr9vLB2jG/PCN/5Tpfvfkp3syi/m3vGHVueOJyjQ1Q/x6Yv7svT343hj2iBGdY3m0xW7uOL1JIY+8Q3/98kalqTm+c118jazlqXRs00Turdu4pbjXdQ/jgDjOq4v+e/iHaTtOcBvJ3Rr8Ks+i29TQifSQMxYmkan6Mb0b9vU6VC8UkRoEFMHxfPF6gyyCv2jhUF1JWhCL88Mt6ypcWgQf7iwNxt3F/L6DykeP583Ky2v5JMVuxjbsxXNavSxCgww3OlHVbrisgpenr+FwQnNTnoeVkhQAGN6xPD8Zf1Jfngcr1wxgKEdmvO/JTuZ+urPjHjqWx77fB0rdu7VSqpusiWrkJVp+ae0GMrhWkeFcXqXaGYtS/eZJHx/STkvfbuZYR2bc0YXLYQivk0JnUgDsC17H0u372HqoLa1/ha9Ibr6tATKKiz/8ZMWBrPXZJIYF0V8s/pZ0XRczxgm9IrhhW82sTOvqF7O6Y2+3bCbvP2lTB14ZDX8vD6uKp0/zKV7L2kHuwtKuGdcN7e8r4QFB3J2YhtevmIAyQ+P44XL+tErNoq3f05l0ss/ceZf5vPU7A2s21Wg5O4UzFqWTmCA4YJ+sW497pQBcaTvPcCilFy3HtdT3vwphZx9pdw3sbv+XxSfp4ROpAH4MDmNwADD5P7u+0bWH3Vo2ZjR3aJ5L2kHpeW+PWwwI/8AK3budWsz8dp49IJeBBrToHvTzViaRqvI0KN+619dpdu4u5DZPlylKyot55UFWzitYwtO69TC7cePCA3iwn5xvD5tEEt/P46/XNyHDi0jeO37bZzz4g+MffY7nvt6E1uyCt1+bn9WWWn5aHk6Z3ZpSavIMLcee0Kv1kSGBjEzOd2tx/WEPftL+cd32xjXM4YB7Zo5HY7IKVNCJ+LnKiotM5elMbJrNK2auPc/cH80bXgC2YUlfLXGN5fgrjZ3rauJ9QQPtSs4ljZRjbh3fDe+25TNF37YBuJEsgqLWbApm8kD4o+5Yt55fWLpFN2YF3y4SvfOz9vJ2VfKPeO7evxcUY2CmTqoLf++dgiLHxrD4xf1plVkGC9+u5mxz37PeS/9QPreAx6Pwx8s2pZLRn4xkwe4v3VNWHAg5/Zpw1drMthf4t39Bl/9biv7Ssv5zfhuToci4hZK6ET83Pebs9ldUHJwtT05vjO7RNOxZWPe8vHFUWavyaRzqwg6t4qo93NPG55AYlwUf/hsnU83Gz4ZHy1Lp6LSHrfXY/WKlxt3F/LVGt+r0u0rKefV77ZyRpeWDE5oXq/nbhERyhVD2/PfG4eR9OAYHjm/J5t37+PZuZvqNQ5fNXNZOpGhQR5rYzJlYDxFpRXM9uLXdWZ+MW8tTOWi/nF0ax3pdDgibqGETsTPfbg0jeaNQxjTw/MLY/iDgADD1ae1Z/mOvazcudfpcE5K3v5SklJyPdZM/EQCAwxPXJRI7r4Snpmz0ZEYnGCtZUZyGgPaNaVT9PET6fP6xNK5VQQvfLPJ56p0by9MZU9RGfeM83x17nhaNQnjmhEduGpYez5ansaWrH2OxuPt9peU89WaDM7t04awYM+0rhnUvhntW4TzYbL3rnb54rebqbSWu8c6+/oVcScldCJ+bG9RKV+v282F/WIJCdI/99qaMjCexiGBPtvCYN663VRa6n3+XE2J8VFMG57Au0nb/a6337Gs2LmXLVn7atUapLpKt2n3Pp+q0hUUl/Ha99s4q3sr+nvJ3KNbRnUiLDiQ5+apSnc8c9ZmUlRa4ZHhltWMMUzuH8/P23JJ2+N9CyOl5Oznf0t2cvmQdrRtXj+LRYnUB33CE/Fjn6zYRWlF5VFX25Njiwxzzdn5fFUGuwt8r4XB7LWZxDVtRK9Y9/SYOln3ju9GTGQYD85a3SB6081ITiMsOIDz+rSp1f7nJrbxuSrdv35MIf+A89W5mlpEhHLtiA58sSqDdbsKnA7Ha81alk7b5o0Y1N6ziXh1O4SPlnnf4ijPfr2JkMAAbjuri9OhiLiVEjoRPzYjeSe9YpvQ0+EP9r7outM7YLE872Pf+hcWl/Hj5hwm9m7t+FLcEaFBPHpBLzZkFvLmT/7dm664rILPVu7i7N5tiAwLrtVjalbpvvSBRXj2FpXyxg8pTOgVQ++4KKfDOcQNZ3QkMiyIZ7/2rX+v9SUj/wA/bc3hov7xHm+g3bZ5OEM7NGfW8nSvWul27a58Plu5i+tO70B0ZKjT4Yi4lRI6ET+1blcBa9ILtBjKSWrbPJwrhrbnf0t2+tTcnPkbsymtqHR0uGVNE3rFMLZHDM99vdkrh2C5y5y1mRQWl9f539vBKp0PrHj5+g8pFJaUc5cXzj2KCg/mpjM7Mm/97gYzxLcuPl6+C2upt9Y1UwbGk5Kzn2Ve9HfxlzkbiWoUzA1ndnQ6FBG3U0In4qdmJO8kJDCAC/up99zJuv2szoSHBPH07A1Oh1Jrc9Zk0jIi1Gt6Kxlj+MOFvTAG/u+TtV71jb07zViaRnyzRgzrWLeebNV96TZneXeVLm9/KW/+lMK5fdrQo413Vvynj+hA88YhqtIdxlrLrGVpDGrfjISWjevlnOcktqFRcCAfeklPusUpeSzYmM0tozoR1ah2FXQRX6KETsQPlZZX8smKXYzrGUOzxiFOh+OzWkSEctOZHZm7bjfJ2/OcDueEissqmL8xi/G9Ygj08LCquohr2oh7xnXl2w1ZXr2c+clK3+sazjZlwMkNZzsnsQ1dqqp0FV5apfvH91spKqvgrjHeO/coIjSIW0Z24ofNOSzalut0OF5jTXoBm7P2eXQxlMNFhAYxsXdrPl+1i+Kyino779FYa3l69gZimoQy7bQER2MR8RQldCJ+6NsNu8nbX8rFx+mFJbVz3Rmu+RZ//nKD11eXfticQ1FphWPtCo5n+vAEerZpwqOfraWw2L96081MTsNauPgkhzdXz6XbnLWPL72wGXt2YQn/XridC/vG0iXGu/t2XXVae1pFhvLXuRu9/t9rfZm5LI2QoADOTazdYj3uMmVAPIXF5Xy9bne9nvdw327IYun2PdwxpguNQjzTrkHEaUroRPzQjKVpxDQJ5cwu0U6H4vPCQ4K4a2wXlm7fw7z1WU6Hc1yz12TSJCyozsP+6kNQYABPTE4kq7CEv/pRE+jKSsuHyWmc1rHFKS2Dfm5Vle7Fb7yvSvfqd1spKa/gDi+uzlULCw7k9rM6syR1D99vznE6HMeVVVTy6cpdjOsRQ1R4/Q41PK1TC9pEhTFzmXM96SorLX+Zs5GEFuFcUot2IiK+SgmdiJ/JKihmwaZsJg+I96phd77s0kFt6diyMU/N3kC5ly6/X1ZRybz1uxnbI8Zrew72a9uUq4e15+2fU322afvhFqfmsSOviKmnWA0PCDDcOdZVpfvCi6p0uwuKeXfRdiYPiKfjCZqle4tLB7cjrmkjVemA7zZmk7e/9GArgfoUGGC4qH8c32/KJsuh9i+frdrFhsxC7hnfjeBA73xfFHEHvbpF/Mys5elUVFqtbulGQYEB3DexG1uy9jn6bfPxJG3LI/9AGRO8ZHXLY7l3QjeiI0J56KPVXpsc18WMpWlEhAZxdu9TH852Tu82dI3xrird3+dvoaLScocP9e0KCQrgzrFdWJWWz1yHh/s5bdbyNFo0DuHMrs6M1pgyMJ5KCx+vqP/FUUrLK/nr3E30bNOE8+p5uKlIfVNCJ+JHrLXMWLqTQe2b+cy36b5iQq/W9G/XlGe/3sSBUmcn+R/N7LUZNAoO9Pphtk3Cgnn0gl6s3VXAWwtTnQ7nlOwrKefL1Rmc16eNW+bmBAQY7hzTlS1eUqVL33uA/y7eydRB8bRrcfLDSZ0wuX8cHVs25tm5vtO03d32FpUyb10WF/SLdaw61Sk6gn5tmzIzuf570v1v6U525BXx2wndPN57T8RpSuhE/MjynXvZmr3/lId/yZGMMTx4dg92F5Tw5kLvapJdWWmZs3Y3o7pF+8Sk/7N7t+as7q147utNZBU6MxTLHb5clcGBsgq3/ns7u3drusZE8MK8TY5X6V6evwWL5TYfqs5VCwoM4K5xXdm4u5DPVu1yOhxHfL4qg9KKSqbU4+qWR3PxwHg27i5k7a6CejvngdIKXvxmM0MSmjOqm3d/ySXiDkroRPzIjKVpNAoO5Nw+sU6H4peGdGjO2B6teGXBVvbsL3U6nIOW79xDdmGJ1zQTPxFjDA+f15OS8kqen7fZ6XBO2ozknXSMbuzWnn/VVbqt2fv53MFEZGdeER8s2cllVfPRfNF5iW3oFhPJ8/M2+8Xw3rqatSyNrjER9Ip1tm/g+X1iCQkK4MPk+huu/ubCFLILS7hvYjeMUXVO/J8SOhE/caC0gs9X7uLsxNZEhAY5HY7fum9id/aXlPPy/C1Oh3LQ7DWZhAQGcFb3Vk6HUmsdWjbmymHteX/xDjbvLnQ6nDpLydnPktQ9XDww3u0fGM/u3ZpuMZGOzqV78ZvNBAQYbh3d2ZHzu0NAgOGe8V1JydnPrOXe0eC6vqTk7GfZjr1MHuD+12ddRYUHM65HDJ+u3EVpuecT6/yiMl5dsJWzurdiUEJzj59PxBsooRPxE7PXZlBYUs7UgVqa2ZO6xkRy8cB4/v3zdnbmFTkdDtZaZq/NZETnFkSG1e+y5KfqjjFdaBwaxJ+/2uB0KHX2YfJOAgweGc5WveKlU1W66gToiqHtaB0VVu/nd6fxPWPoEx/FC/M2U1LufXNfPeWjZWkYA5P61f/qlkczZWAceftLmb/R861f/vH9VgpLyvnthG4eP5eIt1BCJ+InZixNo13zcIZ20DeSnnb3uK4YA8997Xw/tXUZBezMO+Azwy1rat44hNtGd+bbDVn8tMV3eoZVVFpmJqczsms0MU08k/BM7NWa7q0jecGBKt2L32wmONBwy6hO9XpeTzDGcO/4bqTvPcAHS3Y6HU69qKy0zFqezumdW3pNQn5ml2haRoQy08PDLrMKivnXTylc0DeWHm2cHWoqUp+U0In4gZ15RSzcmsvFA+O1mlc9aBPViGtGdOCjFemsq8eJ/kczZ00mAQbG9ohxNI6TNW14AnFNG/HYF+sdXwSktn7ckkNmQTFTPdio2DWXrgvb6rlKtyWrkE9WpHP1aQm0ivSOZOBUndmlJUMSmvPSt1soLvP/Kt2S1DzS9hxwfDGUmoICA5jUL5b5G7PI8+D845e+3UJ5heWecV09dg4Rb6SETsQPzKwaXjNFvefqzS0jO9EkLJinZjs7XHD22kyGdGhOi4hQR+M4WWHBgdw3sRvrMwr4yEfmOc1YupOm4cGM6eHZOYsTHKjSPT9vM2HBgdx0Zsd6OV99cFXpupJVWMI7P293OhyPm7UsncYhgYzv5V1f8kwZGE9ZheVTD/Wk25FbxH8X7+CyIW1p36KxR84h4q2U0In4uMpKy4fJaYzo1NJnV6PzRVHhwdw2ujPfbcpmoUPDBbdm72PT7n1M7OV7wy1ruqBvLH3bNuWZORu9ssdfTflFZcxdt5tJ/eIIDfJsi4iaVbrPVnq+Srchs4AvVmdwzYgEn/2C4FiGdmzBGV1a8sp3W9lXUu50OB5TXFbBF6szODuxDeEh3rU4Vo82TejZpgkzl3kmoXv2640EBRru8ME2GyKnSgmdiI9btC2XtD0H1HvOAVed1p64po3481cbHGlePGdtJgDjfTyhM8bwu3N6kFlQzBs/bnM6nOP6dGU6peWVXFxP1fDqKl19rHj5/NebiQgJ4oYz/Kc6V9O947uRt7+Ut37yrj6S7jR33W72lZQzeYB3LIZyuCkD41mdns8mN69suyGzgE9W7mL68A608tC8VhFvpoROxMfNSE4jMiyICT7+od4XhQUHcs+4rqxOz+eL1Rn1fv45azLp27YpsX5QmR3SoTkTesXwyoKtZBeWOB3OMc1ITqNHmyb0jouql/MFBBjuGtuFbTn7+XSl54akrknPZ/baTK49vQNNw0M8dh4n9WvblLE9YvjH99vILypzOhyPmJmcRmxUGMM6tHA6lKO6sF8sQQHG7YujPDNnIxGhQdwy0vcX8hE5GUroRHxYQXEZX63J4IK+sYQFe3b4lxzdpP5xdG8dyTNzN9ZLj6Vq6XsPsDIt3+eHW9Z0/8TulJRX8tw851cPPZqNmYWsSstnaj3PVR3f01Wle+mbLR5rkP38vE00CQvi2tM7eOT43uKecV0pLC7nnz94dyX4ZGQVFPPD5mwuGhDntYtjtYwIZVS3aD5anu621/LS1Dzmrc/i5pGdiAr3rdYtIu6ihE7Eh32xKoPiskqPrrYnxxcYYLj/7O5sr5qQX1/mVg23nOBlCx+cio7REV7dbHzG0p0EBxom9a/f4Ww1q3SfeWDFy5U79zJvfRY3ntmRqEb+/YG4Z2wTzuvThn/9lELuPu+tBJ+MT1bsotLCRf29e/j9lAHxZBWW8KMb5h5ba3l6zkZaRoRyzYiEUw9OxEcpoRPxYTOW7qRLqwj6xtfP8C85ulFdoxnWsTkvfrO53hZcmL0mk24xkXSMjqiX89UXb202XlZRyUfL0xnTPYbmjet/SOL4nq3p0aYJL3qgSvfs15toFh7M9BH+XZ2rdtfYrhSXVfDKgq1Oh+JWM5el0bdtUzq38u73hLN6tCKqUbBbFkf5blM2i1PyuGNMZ69bBEakPimhE/FRO3KLWLZjL1MHxWOMdw6vaSiMMTx4dg9y95fy2veeH8qVs6+EJal5TPDBZuIn4q3Nxr/dkEXu/lLHFh+qXvEyJWc/n7pxxcvk7Xl8tymbm0Z2IiK0YXwg7twqgov6x/POou1k5hc7HY5brNtVwIbMQqZ46WIoNYUGBXJB31jmrs2koPjk5zJWVlqenr2Rts0bcdngdm6MUMT3nDChM8a0NcbMN8asN8asNcbcedj9vzHGWGNMS8+FKSKHW7jV9WH3rO7+M+TOl/Vt25RzE9vw+g/byCr07IfEeet2U2nxq/lzNVU3G3/8i/WOrB56NDOWphEdGcrIrtGOxTC+Zww92jSpap7snirds19vomVECFef1t4tx/MVd43tQkWl5eX5W5wOxS1mLUsjONBwXp9Yp0OplSkD4ykpr+SLVSe/mNQXqzNYl1HAPeO6EhKk+oQ0bLX5F1AO3Gut7QEMA241xvQEV7IHjAPqb+KIiACQlJJHy4hQOkWrgaq3+M2EbpSWV/LiN5s9ep7ZazNp1zycHm0iPXoep1Q3G1/nJc3GswtLmL8xi8n94wgKdO6DY/VcupSc/Xyy4tSrdIu25fLTllxuHtmpwQ1Xa9s8nEsHt+X9JTvYmVfkdDinpLyiko9X7GJ0t1aODAc+GX3jo+gU3fikV7ssq6jk2a830S0mkgv6en9VUsTTTvg/k7U2w1q7rOrnQmA9UP2v5zngPsA7vkIVaUAWp+QxtENzDbf0Ih1aNuZXQ9rx38U72Za9zyPnKCgu46ctOUzs3dqv/+7P7xNL3/go/uIFzcY/Xp5ORaX1il6P43vG0LNNE176dvMpVemstTz79SZaRYZy5bCGVZ2rdvtZXTDGePwLGE/7YUsOOftKmDzA+ddnbRljmDIwnqXb95Cas7/Oj5+xNI2UnP38dkI3Ar10RU+R+lSnrxqNMQlAfyDJGHMBkG6tXemJwETk2HbmFZG+9wBDOjR3OhQ5zB1juhAaFMAzczd65PjzN2RRVmH9vu9gQIDhd+f2dLzZuLWWGck76de2KZ1bOV8RNcZw59gupOYWnVKV7qctuSxOyePW0Z0bbMuT1lFhXDWsPTOXpbHVQ1/A1IdZy9JpGh7MWd1bOR1KnUzuH0+AcQ0XrYvisgpe+GYTA9o1ZUwP33rOIp5S64TOGBMBzATuwjUM83fA/9XicTcaY5YaY5ZmZ2efbJwiUkNSSh4AQzsqofM20ZGh3HBGR75cncnyHXvcfvzZazJpFRlK/7ZN3X5sb+MNzcZXpeWzafc+r6jOVTvVKp2rOreRNlFhXDakYbc8uWVUJ8KCA3l+nm9W6QqKy5i7NpML+sb63Dyy1lFhjOjckpnL0us0V/bfP6eyu6CE+yZ29+tRCiJ1Uat//caYYFzJ3HvW2llAJ6ADsNIYkwrEA8uMMUd8ZWytfc1aO8haOyg62rnJ5CL+JGlbLk3Dg+nqBRUDOdINZ3akZUQIf/5qA9a6b0T6gdIKFmzMZkKv1l7bONjdqpuNP+9Qs/EZyTsJDQrg/L7es9iEMa65dKm5RXx8ElW6BZuyWbZjL7ed1ZnQoIZZnatW3b/ss5W7WJ9R4HQ4dfbV6gxKyit9arhlTRcPjCd97wEWpeTWav+C4jL+vmArI7tGM6xjCw9HJ+I7arPKpQHeANZba58FsNautta2stYmWGsTgDRggLU206PRigjgqtANSWjeYD7U+5qI0CDuGNOFxSl5zN+Y5bbjfr85mwNlFUz0w3YFx3Kw2fiSnfXebLy4rIJPV+xiYu/WNAnzrobb43rG0Cu27lU6ay3Pfb2J+GaNmDqwYVfnqt14Riciw4J49mtnvjQ4FTOT0+kY3dhne5GO79maiNAgZibXbvGjf36/jb1FZfx2QjcPRybiW2pToRsBXAWcZYxZUXU7x8NxicgxZOQfYEdekebPeblfDWlHQotwnvpqIxVuWnp/zppMmoYHN7i/+zvGdCE8OLDem43PXbebguJyr0x8XFW6rmzPLarTSqDz1mexKi2fO87q4nND9DwlKjyYG87oyNfrdrNy516nw6m1HblFLE7NY8oA3+1F2igkkHMT2/DVmgz2l5Qfd9/swhLe+DGFc/u0oXecbyawIp5Sm1Uuf7TWGmttH2ttv6rbl4ftk2Ct9Z4OsCJ+bHHV/DkNN/FuwYEB/GZCNzbuLqzzpP+jKS2vZN763YztEUOwg0vnO6F54xBuPav+m43PWLqTuKaNGN7JO/+tje3Ril6xTfjb/Nr1pausdK1smdAinMk+0IC6Pl17egeahQfzVx+q0lUn8pP6+/bf5ZSB8RSVVjB7zfEHeb08fwsl5ZXcO65rPUUm4jsa1qcCET+waFsekWFB9GjTxOlQ5ATOTWxD3/gonv16E8Vlp7b0/qJtuRQUl/ttM/ETmV7PzcZ37T3Aj1tymDIgzmuHNte1SjdnbSbrMwq4c2wXR/vpeaOI0CBuGdWJ7zdlH/zSzJtZa5m1PI3TOrYgrmkjp8M5JYMTmtGueTgzj/PF1868It5L2s4lg+LpGB1Rj9GJ+Aa9o4v4mKSUXAYnNFfvHR9gjOH+s7uTkV/M2wtTT+lYs9dmEh4SyOldWronOB9T383GZy1Lw1q42AuHW9Y0tkcresc14aVvt1B2nCpdZaXluXmb6BTdWI2Yj+GqYQlER4byzJyNbl3MyBOW7djD9twiv6i0GmOYPCCOn7flkr73wFH3eX7eZowx3DGmSz1HJ+IblNCJ+JDswhK2Ze9naAObQ+XLhndqyahu0bw8fwv5RWUndYyKSsvctbsZ3b1Vg+0ZBr80G39mrmebjVtr+TA5jaEdmtOuRbjHzuMOxhjuGtOVHXnHr9J9vjqDTbv3cdfYrvoy6BgahQRy+1mdWZyax4/1OLT3ZMxclk5YcABnJ7ZxOhS3mDIgHmvho6NU6TbtLmTW8jSmD0+gTZRvVyNFPEUJnYgPqR4K1NAWxfB190/sTmFJOX9fsOWkHr9sxx5y9pU02OGW1QICDA+d04OM/GL+9VOKx86zJHUPqblFTB3k3dW5amN6tCIxLoq/HaNKV17havvQLSaSc/0kAfCUSwe3Ja5pI6+u0hWXVfD5yl1M7OVaIdIftG0ezpAOzZm5LP2I6/7MnI1EhARxy8hODkUn4v2U0In4kKSUXMJDArXCl4/p0aYJF/WP482Fqew6xpCi45m9JpOQwABGd2/lgeh8y9COLRjfM4a/z9/isWbjM5bupHFIIOck+kYCXd2X7lhVuk9X7mJb9n7uHtfFa+cDeovQoEDuHNOFlWn5zFvvvpYj7vTthiwKist9tvfcsVw8IJ6UnP0s27H34LblO/Ywd91ubjizI80ahzgXnIiXU0In4kOStuUxsH2zBrfKoT+4Z1xXsNS515W1ltlrMjmjS0u/+Tb+VD1wtueaje8vKeeL1Rmc26cN4SG+c73P6u6q0r307eZDqnRlFZW88M1merZpwvievpGgOm3ygDgSWoTz17kb62UBnrqatSyNmCahjOjsX/Npz05sTVhwwMHFUay1PD17Iy0ah3Dt6R0cjk7Eu+lToYiP2LO/lI27C9WuwEfFNwtn2vD2zFyWxobMglo/bu2uAtL3HmBCA2omfiIdoyO4Ymg7jzQb/3J1BkWlFT4z3LJadZVuZ94BPlr2S5Xuo2XpbM8t4p5xXVWdq6WgwADuHteVDZmFfLE6w+lwDpGzr4QFG7OZ1D/O7+ZCRoYFM7FXaz5fuYvisgp+3JLDz9tyue2szvoyS+QElNCJ+IjFqZo/5+t+Pcr1weTp2Rtr/ZjZazIJDDCM7RHjwch8z51juxIeHMiTbm42PiM5jQ4tGzOofTO3Hrc+nNW9FX3io3hpvqtKV1ruqs71jY9iTA8N162L8/vE0i0mkufmbapVj7/68umKXZRXWib396/hltWmDIynoLicr9ft5unZG4lr2ojLh7ZzOiwRr6eETsRHJG3LIzQogD7xmj/nq5o1DuHXo1wNshdty63VY2avzWRoh+Y01/yRQ1Q3G/9mQxYL3bQi4fbc/SxOyePigfEY43vVj5pVulnL0piRvJP0vQe4e1xXn3w+TgoIMNw9rivbsvfXS5uM2pq1PI3ecU3o1jrS6VA8YninlrRuEsYfPlvH6vR87hrbhdCghruyr0htKaET8RFJKbkMaNdM/7n5uGtGJNC6SRhPfrXhhKvobckqZEvWPiZquOVRHWw2/qV7mo1/mJxGgMGne3uN7lZVpft2C3/7dgsD2zdjZNdop8PySRN6xZAYF8UL32ymtNz5Kt3GzELWpBf4bXUOIDDAcNGAOHL2ldClVYTfLfwi4ilK6ER8QP6BMtZlFDC0o4Zb+rqw4EDuGdeVFTv3MntN5nH3nbN2N4AWsziG6mbja3ederPxikrLzOQ0Tu8S7dO9rqqrdGl7DpCRX8w9qs6dNGMM947vStqeA3ywdKdjcVhrWbergL/O3UhggOGCfrGOxVIfLh3UlsjQIB46p4ffzRMU8RQldCI+IHl7HtZq/py/mDwgji6tInh6zsaj9g2rNntNJv3bNaV1VFg9Rudbzu8TSx83NBtfuDWHXfnFTB3o+xWB0d1aMTihGWd0acnwTlpE6VSM7BrNoPbNeOnbzRSXea6Z/eGstazYuZc/f7WeUc8s4JwXf2De+t1cOyKBlhGh9RaHExJaNmbVo+PVpkWkDpTQifiApG15hAQGMKCd7y3UIEcKCgzg/ondScnZz/+WHP2b/7Q9RaxOz2/wzcRPJCDA8Ds3NBufsTSNJmFBjOvp+4vPGGP4zw3D+Nf0warOnSJjDL+Z0I3dBSW8u2i7R89VUWlJ2pbLo5+uZfiT3zLp5Z9444cU2rdozJ8nJ7L4d2P53bk9PRqDt9DrVqRutA6siA9YlJJH37ZRhAVr/py/GNPDVUV5ft5mLuofR+PDluWuHm45QQndCdVsNn7JoLZER9atgpF/oIw5azO5ZFBbv/k3pl6V7jOsYwtO79ySVxZs5VdD2h3xb/VUlFVUsmhbLl+tyWTu2t3k7CshJCiAM7tE85vx3RjbI4ao8GC3nU9E/JPe8UW83L6Sctak5zO0g4ZO+RNjDA+c3YOcfSW88eORlaU5azLp3jqShJaNHYjO91Q3G3/hm7o3G/9s5S5KyiuZOsj3h1uKZ9w7viu5+0t5a2HqKR+rpLyCb9bv5jczVjL48Xlc9cZiPl6eztAOzXnpV/1Z9vA4Xp82iCkD45XMiUitqEIn4uWWbd9DRaXVgih+aGD7ZkzoFcM/vtvK5UPbHZwbk11YwpLtedw5povDEfqO6mbj7ybtYPrwBDq3qv2y7jOS0+gWE0linFqCyNH1b9eMsT1a8Y/vtnLlsPZENapbolVUWs6Cjdl8tSaT+Ruy2FdSTmRYEON6xDCxd2vO7BrtN9VhEal/qtCJeLmklFwCA4zmz/mp+yZ2p7i8kr99u+Xgtq/X7cZa1K6gju4Y04Xw4ED+/GXtm41v3l3Iyp17mTrIN3vPSf25e1xXCorLeeOHbbXav6C4jI+Xp3PTO0sZ8Kev+fV7y/hpSw7n9WnDW9cMJvn343j20n6M79VayZyInBJV6ES8XNK2PBLjotw6b0O8R6foCC4Z1Jb3krZzzYgE2rdozOy1mSS0CKdbjH82D/aUFhGh/Hp0Z56avYGFW3IY3rnlCR8zIzmNoADDpP6+23tO6kev2CjOTWzDGz+mMG14Ai2Ostrknv2lfL1uN1+tyeCnLbmUVlTSKjKUSwa1ZWLv1gxJaE6Q5jeKiJvpXUXEix0orWBl2l4Nt/Rzd4/tQlBAAM/M3UT+gTIWbslhQu/WqhidhGtG1L7ZeFlFJbOWpTO6eyu/Xwpe3OPucV04UFbBP77/pUqXVVDMOz+ncvk/FzHo8XncN3MVm3bv4+rT2jPzltNY9OAY/nhhb4Z3aqlkTkQ8Ql/5i3ix5Tv3UFZhGaYFUfxaqyZhXHd6B/42fwstI0Ior7RqV3CSqpuN3/n+Cj5ekc7kAcde6OS7jdnk7Cvxi95zUj86t4pkUv843l6YSrPwEL5Zv5vkHXuwFjpGN+bmkR2Z2KsNveOa6AsZEak3+qpIxIslbcsjwMDABM2f83c3jexIs/Bg3vwpldZNwugb39TpkHxWdbPxv8zZeNxm0DOSd9IyIkQNjKVO7hrTlYpKy1OzN7CvpJy7xnRl7t1n8s09I/nthO4kxkcpmROReqUKnYgXS0rJpWdsE5qEaelqfxcZFsztZ3Xhj5+vY0KvGAIC9IHwZAUEGB46pweXvbaIN35M4dbRnY/YJ3dfCd+sz2L68AT1bJM6adcinI9vHUHj0CA6qK2IiHgB/S8m4qVKyitYvmOv+s81IFcMa8f1p3fgmhEdnA7F5w3r2IJxPWN4ZcFWcvaVHHH/xyt2UV5pmTqorQPRia/rHRelZE5EvIYSOhEvtXJnPiXllQztoAVRGorQoEB+f15PNRN3kwfO7s6Bsgqen3dos3FrLTOW7qRPfBTdWmslURER8W1K6ES81OKUXAAGJyihEzkZnaqajf938U62ZBUe3L52VwEbMgu1GIqIiPgFJXQiXiopJY/urSNp1jjE6VBEfNadVc3Gn/zql2bjM5buJCQogAv6qveciIj4PiV0Il6orKKS5O17NNxS5BRVNxuftz6LhVtzKC6r4OMVuxjfM4aocC02JCIivk8JnYgXWp2eT1FpBUM7akEUkVNV3Wz8iS/XM3fdbvIPlGkxFBER8RtK6ES80OKUPACGqEIncsrCggP57YRurEkv4NFP19ImKozTO7d0OiwRERG3UEIn4oWStuXSKboxLSNCnQ5FxC9c0NfVbDxvfymTB8QRqD5/IiLiJ5TQiXiZikrL0tQ9Gm4p4kYBAYZHzu9Fx5aNuWxwO6fDERERcZsgpwMQkUOt21VAYUm5FkQRcbOB7Zvx7W9GOR2GiIiIW6lCJ+Jlkqr6zw3toAqdiIiIiByfEjoRL5OUkkf7FuG0jgpzOhQRERER8XJK6ES8SGWlZUlqnoZbioiIiEitKKET8SIbdxeyt6hMwy1FREREpFaU0Il4kaRtVfPnOqpCJyIiIiInpoROxIssTs0jrmkj4puFOx2KiIiIiPiAEyZ0xpi2xpj5xpj1xpi1xpg7q7b/yRizyhizwhgz1xgT6/lwRfyXtZbFKZo/JyIiIiK1V5sKXTlwr7W2BzAMuNUY0xP4i7W2j7W2H/A58H+eC1PE/23N3kfOvlINtxQRERGRWjthQmetzbDWLqv6uRBYD8RZawtq7NYYsJ4JUaRhWLQtD1D/ORERERGpvaC67GyMSQD6A0lVvz8OXA3kA6OP8ZgbgRsB2rVrdwqhivi3xSl5xDQJpX0LzZ8TERERkdqp9aIoxpgIYCZwV3V1zlr7O2ttW+A94LajPc5a+5q1dpC1dlB0dLQ7YhbxO9ZaklJyGdKhBcYYp8MRERERER9Rq4TOGBOMK5l7z1o76yi7/AeY4s7ARBqS7blF7C4o0YIoIiIiIlIntVnl0gBvAOuttc/W2N6lxm4XABvcH55Iw5CU4uo/N0wLooiIiIhIHdRmDt0I4CpgtTFmRdW2h4DrjDHdgEpgO3CzRyIUaQCSUvJo0TiETtERTociIiIiIj7khAmdtfZH4GiTer50fzgiDVPStjyGdGiu+XMiIiIiUie1XhRFRDwjbU8R6XsPaP6ciIiIiNSZEjoRhyVV95/rqP5zIiIiIlI3SuhEHJaUkktUo2C6xUQ6HYqIiIiI+BgldCIOW5ySx+CE5gQEaP6ciIiIiNSNEjoRB+0uKCY1t0jtCkRERETkpCihE3HQom2u/nNDO2j+nIiIiIjUnRI6EQclpeQRERpEz9gmTociIiIiIj5ICZ2Igxan5DEooRmBmj8nIiIiIidBCZ2IQ3L2lbAla5+GW4qIiIjISVNCJ+KQxSnV/ee0IIqIiIiInBwldCIOSdqWS3hIIIlxUU6HIiIiIiI+SgmdiEOSUvIY2L4ZwYH6ZygiIiIiJ0efJEUcsLeolA2ZhQxJ0HBLERERETl5SuhEHPDL/DktiCIiIiIiJ08JnYgDklLyCA0KoG9bzZ8TERERkZOnhE7EAUkpufRv15TQoECnQxERERERH6aETqSeFRSXsW5XAUPUf05ERERETpESOpF6lpy6h0oLwzpoQRQREREROTVK6ETq2aKUXIIDDf3bNXM6FBERERHxcUFOByDiTtmFJfz5q/WEBgXwxEWJGGOcDukISdvy6BvflEYhmj8nIiIiIqdGCZ34BWstM5el86fP11FQXIa10L9tMy4Z3Nbp0A6xv6ScNen53HhmR6dDERERERE/oCGX4vN25hVx9b8W85sZK+kaE8Hcu85kWMfm/PHzdaTtKXI6vEMs27GH8kqr/nMiIiIi4hZK6MRnlVdU8voP2xj/3Pcs37GXP03qzf9uPI0uMZH85eK+WGu578NVVFZap0M9KGlbHoEBhoHtNX9ORERERE6dEjrxSet2FTD5lYU89sV6RnRuwdf3nMlVw9oTEOCaM9e2eTi/P68nC7fm8m7Sdoej/UVSSi6946KICNVoZxERERE5dfpUKT6luKyCl77dzD++20bT8GD+dnl/zk1sc9TFTy4b3JbZazL585cbOLNLNAktGzsQ8S+KyypYuTOfa0YkOBqHiIiIiPgPVejEZyzalss5L/zAy/O3Mql/HPPuGcl5fWKPuZKlMYanpvQhONDwmxkrqXB46OXyHXsprahkiPrPiYiIiIibKKETr1dQXMaDs1Zz2WuLKKus5N3rhvLM1L40DQ854WNbR4Xxhwt7sXT7Ht74cVs9RHtsSSm5GAODEpTQiYiIiIh7NPghl9ZaKi0EBnhfvzKBOWsz+b9P1pBdWMKNZ3bkrrFdCA+p28t2Ur84vlqdyTNzNzG6Wyu6xER6KNrjS9qWR882TYhqFOzI+UVERETE/zToCl1lpWsVxIc/WYO13rMSokBWYTG/fi+Zm95Jpll4CB/fOoKHzulR52QOXEMvH78okYjQIO6dsZKyikoPRHx8JeUVLNuxh6Ed1K5ARERERNynQSd0AQGG6MhQ/pO0g3/9lOp0OIKrYvq/JTsY+9fvmLc+i99O6MZnt59On/imp3Tc6MhQHpvUm1Vp+byyYKt7gq2D1Wn5lJRr/pyIiIiIuFeDH3L5m/HdSMnZz2NfrCOhRThjesQ4HVKDlZqznwdnrebnbbkM6dCcJycn0jE6wm3HPyexDRf0jeXFbzYzpkcresVGue3YJ5KUkgeghE5ERERE3KpBV+jAVaV79pJ+9I6N4vb/LmfdrgKnQ2pwyisqefW7rUx4/nvWpOfzxEWJvH/DMLcmc9X+eGEvmjUO4d4PVlJSXuH24x/Lom25dIuJpHnjEy/kIiIiIiJSWw0+oQNoFBLI69MGEdUomOvfXkJWQbHTITUYa9LzufDln3jyqw2M7BrNvHtHcvnQdgcbhLtb0/AQnpqSyIbMQl6Yt9kj5zhcWUUlydv3MLSjqnMiIiIi4l5K6KrENAnj9WmD2HugjBv+vZTisvqr3jRExWUV/Pmr9Vz48k9kFZbwyhUDeO3qQcQ0CfP4uc/qHsMlg+J59butLN+xx+PnW7urgKLSCg23FBERERG3U0JXQ6/YKF64rD+r0vO594OVVDrciNpfLdyaw4Tnv+cf323j4gHxzLt7JGcntqnXGB4+rydtohpx7wcrOVDq2eQ9aVsuoPlzIiIiIuJ+SugOM65nDA+d3YMvVmfw3LxNTofjV/KLyrj/w1Vc/s8kAP5z/VCeurgPUeH135ctMiyYpy/uw7ac/fxlzkaPnispJY+O0Y1pFen56qOIiIiINCwNfpXLo7n+jA5szd7HS99uoUPLxkweEO90SD7NWsvsNZn836drydtfys0jO3HX2C6EBQc6GteIzi25+rT2vLkwhfG9YhjW0f094ioqLUtS8jivb6zbjy0iIiIicsIKnTGmrTFmvjFmvTFmrTHmzqrtfzHGbDDGrDLGfGSMaerxaOuJMYY/TerN8E4teGDmapak5jkdks/aXVDMTe8kc8t7y2gVGcont47ggbO7O57MVXvg7O60ax7Obz9cyf6Scrcff31GAYUl5QzTgigiIiIi4gG1GXJZDtxrre0BDANuNcb0BL4Geltr+wCbgAc9F2b9Cw4M4JUrBhLfrBE3vZPMjtwip0PyOcnb85jw/Pd8tymbB8/uzie3jqB3XP31fquN8JAg/jq1L2l7DvDEl+vdfnz1nxMRERERTzphQmetzbDWLqv6uRBYD8RZa+daa6tLGosAvxuXGBUezBvTB1NpLde8tZj8A2VOh+Qz5q7N5PJ/JtEsPISv7jyDm0Z2IijQO6dsDkpozg1ndOS9pB18tynbrcdO2pZLu+bhtIlq5NbjioiIiIhAHRdFMcYkAP2BpMPuuhb4yk0xeZUOLRvz6pUD2ZFXxG3/WUZZRaXTIXm995K2c/O7yXRv04QPbz7NIw3C3e2ecV3p3CqC+z9c5bbEvbLSsjg1j6GqzomIiIiIh9Q6oTPGRAAzgbustQU1tv8O17DM947xuBuNMUuNMUuzs91b/agvwzq24PGLEvlhcw6PfroWa9XO4GistTw7dyO/+2gNo7q14r83DKVFRKjTYdVKWHAgz17Sl+x9Jfzxs3VuOeamrEL2FpUx1AOLrYiIiIiIQC0TOmNMMK5k7j1r7awa26cB5wFX2GNkOdba16y1g6y1g6Kjo90RsyMuGdSWm0d24r2kHbz5U6rT4XidsopK7p+5ihe/3cKlg9ry2lUDCQ/xrUVU+8Q35dZRnZi5LI25azNP+XiLq+bPqUInIiIiIp5Sm1UuDfAGsN5a+2yN7ROB+4ELrLUNYsWQ+yZ0Y0KvGB77Yh3fbtjtdDheo6i0nBv/vZQPlqZxx5guPDkl0Wvny53IbWd1oWebJjz00Wry9pee0rGStuURGxVGfDPNnxMRERERz6jNp+4RwFXAWcaYFVW3c4C/AZHA11XbXvVkoN4gIMDw3KX96BnbhNv/s5z1GQUnfpCfy91Xwq9eW8R3m7J54qJE7hnXFdd3AL4pJCiAv17Sl/wDZTz8yZqTPo61lqSUXIZ2bOHT10NEREREvFttVrn80VprrLV9rLX9qm5fWms7W2vb1th2c30E7LTwkCDemDaYyLBgrntrCVmFxU6H5JjtufuZ8spCNu4u5B9XDeLyoe2cDskterRpwl1ju/LFqgw+W7nrpI6xNXs/OftKNdxSRERERDzKN8fFOSymSRivTxvEnqIybvh3MsVlFU6HVO9Wp+Uz5ZWF7D1QxnvXD2NczxinQ3Krm87sSN+2TXn4kzUnlbQvVv85EREREakHSuhOUu+4KJ6/rB+r0vZy74yVVFY2nJUvv9uUzaWv/UxoUCAzbxnOwPbNnA7J7YICA/jr1L4cKK3gwZmr67yyaVJKLtGRoXRo2dhDEYqIiIiIKKE7JRN6teaBid35YlUGz8/b5HQ49WJmchrXvbWEhBaN+ejXw+nkAz3mTlbnVhHcN7E732zI4sPktFo/zlpL0jZX/znNnxMRERERT1JCd4puPLMjlw5qy4vfbuGj5bX/0O9rrLW8PH8L985YydCOzfnfTcNo1STM6bA87prhCQzp0Jw/fraOXXsP1OoxO/KKyCwoVv85EREREfE4JXSnyBjDnyb15rSOLbj/w9UsTc1zOiS3q6i0/N8na/nLnI1c2C+WN6cPITIs2Omw6kVAgOGZi/tSYS33fbiqVkMvk7a5XgPDNH9ORERERDxMCZ0bhAQF8MqVA4hr1ogb30lmR67/tOUrLqvg1veW8c6i7dx4Zkeeu6QfIUEN62XTrkU4vzu3Bz9uyeHdpB0n3D8pJY/mjUPo3Mp/h6OKiIiIiHdoWJ/MPahpeAj/mj6YikrLtW8voaC4zOmQTtneolKueiOJOesyefi8njx0Tg8CAhrmnLDLh7TjjC4t+fOX69meu/+4+yal5DIkQfPnRERERMTzlNC5UYeWjXn1yoGk5uzn1veWUV5R6XRIJy197wEufvVnVu7M56Vf9ee60zs4HZKjjDE8NaUPgQGG385YdcxVTdP3HiBtzwGGdtRwSxERERHxPCV0bnZapxY8cVEiP2zO4dHP1tZ5uXtvsCGzgCl/X8ju/GLevnYI5/WJdTokrxDbtBGPnN+Lxal5/OunlKPuk7QtF4ChHbQgioiIiIh4nhI6D7hkcFtuGtmRdxft4K2FqU6HUyc/b81l6is/Y7HMuOU0TuukxKSmKQPiGNsjhqfnbGRLVuER9y9OyaNJWBDdWkc6EJ2IiIiINDRK6Dzk/gndGd8zhj99vo75G7KcDqdWPl+1i2n/WkxMVBizfj2C7q2bOB2S1zHG8MTk3jQOCeTeD1YeMaw2KSWPIR2aE9hA5xqKiIiISP1SQuchAQGG5y/rR482Tbj9v8vZkFngdEjH9a8fU7j9v8vpEx/FhzefRlzTRk6H5LVaRYbxp0m9WZmWzz++33Zwe1ZBMSk5+zXcUkRERETqjRI6DwoPCeKNaYNpHBrIdW8tJbuwxOmQjlBZaXniy/X88fN1TOjZmnevH0rT8BCnw/J65/WJ5bw+bXh+3ibW7XIl64tSXP3ntCCKiIiIiNQXJXQe1joqjDemDSZvfyk3/HspxWUVTod0UGl5JXd/sILXvt/GVcPa8/IVAwgLDnQ6LJ/xpwt7E9UohHs+WEFpeSWLU3KJCA2iZxsNVRURERGR+qGErh70joviuUv7sTJtL7+ZsdIrVr4sLC7jmrcW88mKXfx2Qjf+eGEvzfuqo2aNQ3hyciIbMgt56dvNJG3LY2D7ZgQF6p+ViIiIiNQPffKsJxN7t+b+id35fFUGz83b7GgsWQXFXPKPRSRty+OZqX25dXRnNcE+SWN7xnDxwHj+vmArm7P2abiliIiIiNSrIKcDaEhuOrMj27L38eI3m2kVGcqIzi0JDwkkLDiQ8JBAguuhsrMlax/T/rWYPUWlvD5tEKO6tfL4Of3d/53fk5+25JCRX6wFUURERESkXimhq0fGGB6blMj23CJ+//GaI+4PDjQ0Cg4kPCSI8JBAGoUEVv0ZRHiw6/dGIYGEB9fYXmO/X5LDqu3B1duDCAsOYNmOvVz39hKCAgzv3ziMPvFN6/8i+KEmYcG8+Kv+vLtoO33io5wOR0REREQaEFOf87kGDRpkly5dWm/n81YHSiv4cUsO+0rKKCqt4EDVrais6s/S8oPbiw5u/2XbgTLX9rqoHlHZrnk4/752CO1bNPbAMxMRERERkeMxxiRbawe563iq0DmgUUgg43rGnNIxrLUUl1X+kvxVJXlFpeWHJH3VSeGB0nKMMVx1WntaRoS66ZmIiIiIiIiTlND5KGPMwSGYmrUlIiIichKefhoGD4bRo3/ZNn8+LFkC993nXFwidaBVLkVERESkYRo8GC65xJXEgevPSy5xbRfxEarQiYiIiEjDNHo0fPABXHABXHklfPih6/eaFTsRL6cKnYiIiIg0XNXVuFdfhdNOg1GjHA1HpK6U0ImIiIhIw7VkCYSEQPv28NlnMG4cFBY6HZVIrSmhExEREZGGqXrO3IcfwtatMH06fPMN9OgBK1Y4HZ1IrSihExEREZGGacmSX+bMBQbCm2/Cc89BQQEMGwYvvwz12LNZ5GSosbiIiIiISE3Z2TBtGnz1FUyeDG+8AU2bOh2V+Al3NxZXhU5EREREpKboaPj8c1efuk8/hf79ISnJ6ahEjkoJnYiIiIjI4QIC4Le/hR9+cA27PP10+OtfobLS6chEDqGETkRERETkWIYNg+XL4fzz4Te/cf2Zk+N0VCIHKaETERERETmeZs1g5kz4299g3jzo1w++/97pqEQAJXQiIiIiIidmDNx6KyxaBI0auVbGfOwxqKhwOjJp4JTQiYiIiIjUVv/+sGwZXHYZPPwwTJgAmZlORyUNmBI6EREREZG6iIyEd991tTNYuBD69oWvv3Y6KmmglNCJiIiIiNSVMXDtta7m5NHRrkrd734H5eVOR3akp5+G+fMP3TZ/vmu7+DwldCIiIiIiJ6tXL1i8GK67Dp54AkaNgp07nY7qUIMHwyWXuBZ0yctzJXOXXOLaLj5PCZ2IiIiIyKkID4d//hPeew9WrnStgvnZZ05H5eqZt3y569a5M4wfDy1awNlnw4svuhZ2EZ93woTOGNPWGDPfGLPeGLPWGHNn1fapVb9XGmMGeT5UEREREREvdvnlrgVT2reHCy6Ae+6B0tL6O39lJaxa5UrWLroIWraEAQPg3ntdvfP69XPtV14O06e74svNrb/4xCNqU6ErB+611vYAhgG3GmN6AmuAyYCacIiIiIiIAHTpAj//DLffDs89ByNGwNatnjmXtbBuHbz8Mlx8McTEuBZoufNOV6XwoovgnXdcQ0Bfe83158MPQ1QUjBkDL7wAHTvCn/8MRUWeiVE8LuhEO1hrM4CMqp8LjTHrgThr7dcAxhjPRigiIiIi4ktCQ38Z0njtta4q2T//6Zq3diqshU2bXHPg5s+HBQsgK8t1X7t2cO65rjl8o0e7qoTVqufMffCB677Ro12/v/46fPQRPPSQq2n6H/7gqtwFnTBFEC9Spzl0xpgEoD+Q5JFoRERERET8xUUXueav9ewJl14KN98MBw7U/vHWwpYtrsTriisgLg66d4dbboGffnLNiXv9dVcFMDUV3nrLlZDVTObAtRJndTIHrj8/+ACys+HTT+H7710J4Q03QJ8+8MknrnOLTzC2ln9ZxpgI4DvgcWvtrBrbFwC/sdYuPcbjbgRuBGjXrt3A7du3n2rMIiIiIiK+o6wMfv97V5uA1q3hySdh2rRf7p8/35V03XefKzGrrsDNnw9paa59YmJ+qa6NHu1a5MSdI+WsdVXrHnzQVQUcMcIV7/Dh7juHAGCMSbbWum0NkloldMaYYOBzYI619tnD7lvAcRK6mgYNGmSXLj3hbiIiIiIi/uerr+Cyy6CgAB54wDV37X//c1XGRoyADRtcCR24ettVD58cPRq6dXNvAncs5eWuhumPPgqZmTBpkivO7t09f+4Got4TOuOaJPc2kGetveso9y9ACZ2IiIiIyInt2uVqG7BqFUREwL59ru3Nmx+awPXsWT8J3LHs3+9a1OXpp10/X3edK8mLjXUuJj/hREJ3OvADsBqorNr8EBAKvAREA3uBFdbaCcc7lhI6EREREWnwKipc89++/db159NPQ2IiBHhhi+jsbHjsMXjlFddiKXff7RoaGhXldGQ+y90J3QlfNdbaH621xlrbx1rbr+r2pbX2I2ttvLU21Fobc6JkTkREREREcC1CsmqVq4XAsmWQl+edyRy4hn6+8IJrOOikSfDEE9CpEzz/PJSUOB2dUMdVLkVERERE5BTUbCHwxz+6/rzkEtd2b9axI/znP5CcDP37uyp13bvDe++5GpqLY5TQiYiIiIjUl2O1EFiyxNm4amvAAPj6a5g7F5o1gyuvhIEDXb+LI5TQiYiIiIjUl/vu+yWZqzZ6tGu7Lxk3DpYudVXo9u6FCRNc25Ytczaup58+sto5f75ru59SQiciIiIiInUXEACXX+6aX/f8864m6gMHurZt2+ZMcjVwIEyd6hoempb2yxDXwYM9d06H1bqxuDtolUsRERERET+Vnw9/+Qs8+6yrn91557kWgJkxw1WFrDl/8PAqZbXKSlcrhz17XJW/o92Od19BgatJOkCvXrB79/HP5wBHGou7ixI6ERERERE/t2sX/OEPrgblISGufnrjxsG8ea7qWfPmx07M8vNPvMhKZCQ0bXrorVmzQ3+fPx8++8y1kugf/+i553oSlNCJiIiIiIj327ABHnwQPv740O2NG584ITvW/U2auPrhHU91JfCWW1z98/y8QneCqyEiIiIiInISuneHO+5wDbv81a/g/ffhv/91Ves85fBhnaNHn3iYp4/ToigiIiIiIuJ+1cnVhx/C3/7mmkt3+eWe7bnn620hToKGXIqIiIiIiPs9/bRrdcmalbH5813Jla+1aXAjzaETERERERHxUe5O6DTkUkRERERExEcpoRMREREREfFRSuhERERERER8lBI6ERERERERH6WETkRERERExEcpoRMREREREfFRSuhERERERER8lBI6ERERERERH1WvjcWNMdnA9no7Ye21BHKcDsKP6fp6lq6v5+jaepaur2fp+nqWrq9n6fp6jq6tZ9Xm+ra31ka764T1mtB5K2PMUnd2a5dD6fp6lq6v5+jaepaur2fp+nqWrq9n6fp6jq6tZzlxfTXkUkRERERExEcpoRMREREREfFRSuhcXnM6AD+n6+tZur6eo2vrWbq+nqXr61m6vp6l6+s5uraeVe/XV3PoREREREREfJQqdCIiIiIiIj7K5xI6Y8xEY8xGY8wWY8wDNbb/zxizouqWaoxZcZTH9jPG/GyMWWuMWWWMubTGfR2MMUnGmM1Vxwo5xvmnVe2z2Rgzra6P92ZecG1nG2P2GmM+P2z7W8aYlBox9HPfs64/Tl5fY0x7Y0xy1TnWGmNursvjfYHTr9+qfZsYY9KNMX+rsU2v3+Nf39uqjmmNMS2Pc36/fe8Fr7i+fvv+6+S11Xuv51+7Vfvqvbfu1/e9quOuMcb8yxgTfIzz673Xs9fXPe+91lqfuQGBwFagIxACrAR6HmW/vwL/d5TtXYEuVT/HAhlA06rfPwAuq/r5VeCWozy+ObCt6s9mVT83q+3jvfnm9LWtum8McD7w+WHb3wIudvoa+fL1rTpnaNXPEUAqEOsPr11vuL41jvMC8B/gb3r91vr69gcSql6TLY9xfr997/WG61u1n1++/zp9bdF7r8dfu1X76r237tf3HMBU3f57tNcfeu/16PWt2s8t772+VqEbAmyx1m6z1pYC7wMX1tzBGGOAS3BdvENYazdZazdX/bwLyAKiqx5zFvBh1a5vA5OOcv4JwNfW2jxr7R7ga2BiHR7vzZy+tlhrvwEK3fJsvI+j19daW2qtLan6NZSq6ryfvHbBC16/xpiBQAww1x1PyMt45PpW/b7cWpt6gvP783svOH99/fn919Frq/dez7929d570tf3S1sFWAzEH+X8eu/17PV123uvryV0ccDOGr+nVW2r6Qxgd/UFPhZjzBBc2fhWoAWw11pbfvhxjTGDjDGvn+D8x3y8D3H62p7I41Xl7OeMMaG1fIw3cfz6GmPaGmNWVcXxVNWbjz+8dsHh62uMCcD1Dd5vj3FYvX6rHHZ9j7dfQ3nvBeev74n48uvX8Wur917PXV+99wKneH2rhgJeBcyu+l3vvYfy5PU9kVq/fn0toTNH2Xb4Mp2/4ihZ9CEHMaYN8A5wjbW28njHtdYutdZef4Lz1yYub+f0tT2eB4HuwGBcZf/7a/EYb+P49bXW7rTW9gE6A9OMMTG1jMsXOH19fw18aa3deZT99fqtPsiR1/eYGtB7Lzh/fY/H11+/jl9bvfd69PrqvffUr+/fge+ttT+A3nup3+t7PHV6/fpaQpcGtK3xezywq/oXY0wQMBn437EOYIxpAnwB/N5au6hqcw7QtOrxRxy3Fuev7eO9mdPX9pistRlVVesS4E1cJXJf4zXXt+rb4bW4vnXyh9cuOH99TwNuM8akAs8AVxtjngS9fmvsc7Tre6rn1+v3l31O5foekx+8fr3m2uq99+hO8frqvfcUrq8x5hFcQwTvqeP59fr9ZZ9Tub7HVOfXr/WCSYm1vQFBuCZkduCXyYu9atw/EfjuOI8PAb4B7jrKfTM4dHLnr4+yT3MgBdfE0GZVPzev7eO9+eb0ta2x7yiOnBjapupPAzwPPOn09fK164vrTapR1c/NgE1AYl3/frz15vT1PWz/6Rw6MV+v3+Nc3xr7pHL8RVH88r3XG65vjX387v3X6Wur9976ee1W7af33jpcX+B6YGH16/MYj9d7rwevb419T/m91/GLeRIX/5yqN8StwO8Ou+8t4ObjPPZKoAxYUePWr+q+jrgmLW6pepFWr0o1CHi9xjGurdpnC67SKsd7vC/dvODa/gBkAwdwfWsyoWr7t8BqYA3wLhDh9LXytesLjANW4XqzWgXc6E+vXaev72HHms6hHyr0+j3+9b2j6t97Oa5vRqtfsw3mvddLrq/fvv86eW3Re6/HX7s1jjUdvffW5fqWVx2zevv/He36ovdeT19ft7z3mqoHiYiIiIiIiI/xtTl0IiIiIiIiUkUJnYiIiIiIiI9SQiciIiIiIuKjlNCJiIiIiIj4KCV0IiIiIiIiPkoJnYiIiIiIiI9SQiciIiIiIuKjlNCJiIiIiIj4qP8HAIfcIZAStq0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB02klEQVR4nO3dd3xUVfrH8c9JJyTUJISEDqETeu+igmLB3tvqWtbe6676W7vu2l3X7tpFxYZYUJDepZdMgNBJIZBCSD+/PybB0BMyPd/365UXydx7z33m5maYZ845zzHWWkRERERERMS7grwdgIiIiIiIiCg5ExERERER8QlKzkRERERERHyAkjMREREREREfoORMRERERETEByg5ExERERER8QFKzkRERERERHyAkjMRkQBhjMmv8lVujNlX5edLvB3f8TDGpBljTvR2HEdjjJlujLnGje0HG2MeM8ZsN8bkGWP+MMY0qtgWbox5vmLbbmPMa8aY0CrHNjHGTDLG7DXGbDLGXHxQ22OMMWuNMQXGmGnGmNbueh4iInJsSs5ERAKEtTaq8gvYDJxe5bGPvB3fwYwxIYFwDg94FBgCDAYaAJcBhRXb7gP6Ad2BjkAf4KEqx74KFAPNgEuA/xhjugEYY2KAr4C/A02ARcBnbn4uIiJyFErOREQCnDEmyBhznzFmvTFmlzHmc2NMk4ptbYwx1hhzlTFmS0Xvy/XGmP7GmOXGmD3GmFeqtHWlMWa2MeZlY0xORa/LmCrbGxpj3jbG7DDGbKvo8Qk+6NjnjTHZwCPGmPbGmN8q4soyxnxUpVfoA6AV8F1F7989xphRxpitBz2//b1rxphHjDFfGGM+NMbkAlceI6YOxpjfK55LljHmsMmJMSaios1dFddkoTGmmTHmcWA48EpFjK9U7N/ZGPOLMSbbGLPOGHN+lbbeM8a8XrE9r+L8h+2xMsY0Bm4D/mqt3WSdVlprK5Oz04GXrLXZ1tpM4CXgLxXH1gfOAf5urc231s4CvsWZ3AGcDayy1k6saO8RoKcxpvNhbyQREXE7JWciIoHvFmACMBJIAHbj7FGpaiCQBFwAvAA8CJwIdAPON8aMPGjfDUAM8DDwVWWyB7wPlAIdgN7AycA1hzk2DngcMMCTFXF1AVriTBKw1l7GgT2Az1Tz+Z4JfAE0Aj46Rkz/BH4GGgMtgJeP0OYVQMOK+JoC1wP7rLUPAjOBmypivKkiKfoF+LjieV4EvFbZY1XhkopzxwBLK+I8nB4VsZ9rjNlpjEkxxtxYZbup+Kr6cwtjTEOcPWll1tqUKtuX4fydUvHvssoN1tq9wPoq20VExMOUnImIBL7rgAettVuttUU4k59zDxry909rbaG19mdgL/CJtTbDWrsNZ/LRu8q+GcAL1toSa+1nwDpgvDGmGXAKcJu1dq+1NgN4HriwyrHbrbUvW2tLrbX7rLWp1tpfrLVFFT0//8aZRNbGXGvt19bacpzDAI8WUwnQGkioeP6zjtBmCc6krIO1tsxau9ham3uEfU8D0qy171Y8zyXAl8C5VfaZbK2dUfH7eBAYbIxpeZi2WuBMCjsCbSvaeMQYc1LF9inArcaYWGNMPM5EHCASiAJyDmovB4iu+P5Y20VExMMCYSy+iIgcXWtgkjGmvMpjZTjnIVVKr/L9vsP8HFXl523WWlvl5004e75aA6HADmP2d+YEAVuq7Fv1e4wxcTiH4g3HmRQE4ezZq42q5zhWTPfg7MFaYIzZDfzLWvvOYdr8AGev2acVwy4/xJnwlhxm39bAQGPMniqPhVS0cUiM1tr8imGeCQfFDs5rD/B/1tp9wHJjzKfAqTh75x7H2UO4FCgC3sSZSGcA8TiT06oaAHkV3+cfY7uIiHiYes5ERALfFuAUa22jKl8RFb1ixyPRVMl0cM4L215xniIgpsp5Glhrqw6Tq5rUgXNIowWSrbUNgEs5cJjewfvvxdkrBDgrGQKxB+1T9ZijxmSt3Wmt/au1NgFnD+NrxpgOBz/hil7CR621XXEW5zgNuPwIMW4Bfj/oekdZa2+oss/+XjJjTBTOghzbDz4vsPwI56iMa5+19iZrbaK1th2wC1hsrS0DUoAQY0xSlUN6Aqsqvl9V8XNlHPWB9lW2i4iIhyk5ExEJfK8Dj1cWnagYAndmLdqLA24xxoQaY87DOVfsB2vtDpzzt/5ljGlQUYik/UHz1Q4WjbMHZ48xJhG4+6Dt6UC7Kj+nABHGmPHGWTL+ISD8SI0fKyZjzHnGmBYVu+/GmQSVHdyOMWa0MaZHRTKYi3OYY+V+B8f4PdDRGHNZxTUKNc4CK12q7HOqMWaYMSYMZ8/dfGvtwb1mWGvX4xxW+qBxls3vgnNe4PcVcSUaYxKM0yCclRcfrjh2L85qjP9njKlvjBmKcz5eZQ/eJKC7MeYcY0wE8A9gubV27ZGup4iIuJeSMxGRwPcizip9Pxtj8oB5OAtzHK/5OIuHZOEcVneutXZXxbbLgTBgNc5k5wug+VHaehRn+fccYDLOZKKqJ4GHKiok3mWtzQH+BrwFbMPZk7aVoztaTP2B+caYfJzX6FZr7cbDtBFfcVwusAb4HefQRnBe33ONs9LlS9baPJxFRy7E2Ru2E3iaA5PIj3EmUdlAX5wFQo7kIpxDJXfhvEZ/t9b+WrGtPTCn4jq8D9xXMW+w0t+AejiHOX4C3GCtXQVQMcfvHJy/w90474mq8wNFRMTDzIHTBkRERI7MGHMlcI21dpi3Y/FXxpj3gK3W2oeOta+IiNQt6jkTERERERHxAUrOREREREREfICGNYqIiIiIiPgA9ZyJiIiIiIj4ACVnIiIiIiIiPiDEkyeLiYmxbdq08eQpRUREREREfMbixYuzrLWxh9vm0eSsTZs2LFq0yJOnFBERERER8RnGmE1H2qZhjSIiIiIiIj5AyZmIiIiIiIgPUHImIiIiIiLiAzw65+xwSkpK2Lp1K4WFhd4ORQJMREQELVq0IDQ01NuhiIiIiIgck9eTs61btxIdHU2bNm0wxng7HAkQ1lp27drF1q1badu2rbfDERERERE5Jq8PaywsLKRp06ZKzMSljDE0bdpUPbIiIiIi4je8npwBSszELXRfiYiIiIg/8YnkzNsef/xxunXrRnJyMr169WL+/PkAXHPNNaxevdol52jTpg1ZWVlH3eeJJ56ocbvvvfceN9100wGPvfvuu/Tq1YtevXoRFhZGjx496NWrF/fdd1+N2/eEF154gYKCAm+HISIiIiL+7plnYNq0Ax+bNs35uB+o88nZ3Llz+f7771myZAnLly9n6tSptGzZEoC33nqLrl27eiyW40nODueqq65i6dKlLF26lISEBKZNm8bSpUt56qmnXNJ+TVlrKS8vP+L240nOSktLaxuWiIiIiASa/v3h/PP/TNCmTXP+3L+/d+OqpjqfnO3YsYOYmBjCw8MBiImJISEhAYBRo0axaNEiAKKiorj33nvp27cvJ554IgsWLGDUqFG0a9eOb7/9Fji0F+u0005j+vTph5xzwoQJ9O3bl27duvHGG28AcN9997Fv3z569erFJZdcAsCHH37IgAED6NWrF9dddx1lZWWAs2esY8eOjBw5ktmzZ1f7uT777LP079+f5ORkHn74YQDS0tLo3Lkz11xzDd27d+eSSy5h6tSpDB06lKSkJBYsWADAI488wmWXXcYJJ5xAUlISb7755jHb7dKlC3/729/o06cPW7Zs4YYbbqBfv35069Zt/34vvfQS27dvZ/To0YwePXr/ta70xRdfcOWVVwJw5ZVXcscddzB69Gjuvfde1q9fz7hx4+jbty/Dhw9n7dq11b4WIiIiIhKARo+GN96ACRPg0kudidnnnzsf9wfWWo999e3b1x5s9erVhzzmSXl5ebZnz542KSnJ3nDDDXb69On7t40cOdIuXLjQWmstYH/44QdrrbUTJkywJ510ki0uLrZLly61PXv2tNZa++6779obb7xx//Hjx4+306ZNs9Za27p1a5uZmWmttXbXrl3WWmsLCgpst27dbFZWlrXW2vr16+8/dvXq1fa0006zxcXF1lprb7jhBvv+++/b7du325YtW9qMjAxbVFRkhwwZcsA5D1Z53p9++sn+9a9/teXl5basrMyOHz/e/v7773bjxo02ODjYLl++3JaVldk+ffrYq666ypaXl9uvv/7annnmmdZaax9++GGbnJxsCwoKbGZmpm3RooXdtm3bUds1xti5c+fuj6XyeZeWltqRI0faZcuWHXJtDr4OEydOtFdccYW11torrrjCjh8/3paWllprrT3hhBNsSkqKtdbaefPm2dGjRx/y/L19f4mIiIiIm23dau3HH1t7/fXWduliLfz59fe/ezu6QwCL7BHyJa+X0q/q0e9WsXp7rkvb7JrQgIdP73bE7VFRUSxevJiZM2cybdo0LrjgAp566qn9vTWVwsLCGDduHAA9evQgPDyc0NBQevToQVpaWo1ieumll5g0aRIAW7ZsweFw0LRp0wP2+fXXX1m8eDH9K7pg9+3bR1xcHPPnz2fUqFHExsYCcMEFF5CSknLMc/7888/8/PPP9O7dG4D8/HwcDgetWrWibdu29OjRA4Bu3boxZswYjDGHPLczzzyTevXqUa9ePUaPHs2CBQuYNWvWEdtt3bo1gwYN2n/8559/zhtvvEFpaSk7duxg9erVJCcn1+janXfeeQQHB5Ofn8+cOXM477zz9m8rKiqqUVsiIiIi4meshbQ0+P13mDHD+bV+vXNbdDQMG+b8mjgR/vY3+M9/nL1mftJz5lPJmbcEBwczatQoRo0aRY8ePXj//fcPSc5CQ0P3V/8LCgraPwwyKCho//ynkJCQA+ZWHa6M+/Tp05k6dSpz584lMjKSUaNGHXY/ay1XXHEFTz755AGPf/3118dVhdBay/3338911113wONpaWn7n8vRnhscWv3QGHPUduvXr7//540bN/Lcc8+xcOFCGjduzJVXXnnEMvdVz3PwPpVtlpeX06hRI5YuXXqspy4iIiIi/spaWLfuwGRs61bntiZNYMQIuPFGGDkSevZ0bj//fPjqK2dCduKJfjW00aeSs6P1cLnLunXrCAoKIikpCYClS5fSunXr42qrTZs2vPbaa5SXl7Nt27b987WqysnJoXHjxkRGRrJ27VrmzZu3f1toaCglJSWEhoYyZswYzjzzTG6//Xbi4uLIzs4mLy+PgQMHcuutt7Jr1y4aNGjAxIkT6dmz5zFjGzt2LH//+9+55JJLiIqKYtu2bYSGhtbo+X3zzTfcf//97N27l+nTp/PUU09Rr169arWbm5tL/fr1adiwIenp6UyZMoVRo0YBEB0dTV5eHjExMQA0a9aMNWvW0KlTJyZNmkR0dPQh7TVo0IC2bdsyceJEzjvvPKy1LF++vFrXQkRERER8VHk5rFjhTLIqE7LMTOe2+HhnEjZihPPfLl0g6KASGgsXHpiIjR7t/HnhQiVn/iA/P5+bb76ZPXv2EBISQocOHfYX6aipoUOH7h8i2L17d/r06XPIPuPGjeP1118nOTmZTp06HTDs79prryU5OZk+ffrw0Ucf8dhjj3HyySdTXl5OaGgor776KoMGDeKRRx5h8ODBNG/enD59+uwvFHI0J598MmvWrGHw4MGAczjnhx9+SHBwcLWf34ABAxg/fjybN2/m73//OwkJCSQkJFSr3Z49e9K7d2+6detGu3btGDp06AHP+5RTTqF58+ZMmzaNp556itNOO42WLVvSvXt38vPzDxvPRx99xA033MBjjz1GSUkJF154oZIzEREREV/yzDPOSolVE6Np05zJ0j33QEkJ/PHHn8nYrFmwZ49zvzZt4JRTnMnYiBHQoQMcawTZPfcc+pgfDWs0zjlpntGvXz9bWf2w0po1a+jSpYvHYpDj88gjjxAVFcVdd93l7VBqRPeXiIiIiBdVlrKv7M366Se44AI45xzn8MTZs2HvXue+nTr9mYiNGAGtWnk3djcxxiy21vY73LY633MmIiIiIiJuMno0vPoqnHYaxMTA5s3Ox995B3r0gKuuciZiw4c7hy3WcUrOpFoeeeQRb4cgIiIiIv7CWvjtN2di9u23UFbmTMwGDoQHHnBWVGzSxNtR+pw6vwi1iIiIiIi4SE4OvPSSs1jHiSc655Kdd54zEfv7351l76OjlZgdgXrORERERESkdpYvd/aSffghFBQ4e8j+9z+Ii4NLL4UvvvizMIcflbb3NPWciYiIiIhIzRUXwyefOOeL9ezpTMYuvBAWLYJ58+Cyy2DZsiOXtpdDqOdMRERERESqb8sWeOMNePNNSE+H9u3hX/+CK688dLiin5e29zT1nAHBwcH06tWL7t27c95551FQUHDcbV155ZV88cUXAFxzzTWsXr36iPtOnz6dOXPm7P/59ddf53//+99xn7tSWloa3bt3P+CxRx55hOeee65G7bgqHhERERHxc9bC1Klw9tnO9ccefxwGDIApUyAlBe64Q/PIXEA9Z0C9evVYunQpAJdccgmvv/46d9xxx/7tZWVlNVqsudJbb7111O3Tp08nKiqKIUOGAHD99dfX+BzuUlpa6lPxiIiIiIgX7NnjHK742muwbp2zHP4998B11zmTNHEp/+o5e+YZ50J2VU2b5nzcRYYPH05qairTp09n9OjRXHzxxfTo0YOysjLuvvtu+vfvT3JyMv/9738BsNZy00030bVrV8aPH09GRsb+tkaNGkXlots//vgjffr0oWfPnowZM4a0tDRef/11nn/+eXr16sXMmTMP6N1aunQpgwYNIjk5mbPOOovdu3fvb/Pee+9lwIABdOzYkZkzZ9b4OR6t7QceeICRI0fy4osv7o9n+/bt9OrVa/9XcHAwmzZtYtOmTYwZM4bk5GTGjBnD5op1K6688kpuueUWhgwZQrt27fb3JIqIiIiIn1i+3JmAJSbCrbdC48bOJG3LFnjySSVmbuJfyVn//s7qLpUJWuWK4/37u6T50tJSpkyZQo8ePQBYsGABjz/+OKtXr+btt9+mYcOGLFy4kIULF/Lmm2+yceNGJk2axLp161ixYgVvvvnmAcMUK2VmZvLXv/6VL7/8kmXLljFx4kTatGnD9ddfz+23387SpUsZPnz4AcdcfvnlPP300yxfvpwePXrw6KOPHhDnggULeOGFFw54vKr169cfkFC9/vrr1Wp7z549/P7779x55537H0tISGDp0qUsXbqUv/71r5xzzjm0bt2am266icsvv5zly5dzySWXcMstt+w/ZseOHcyaNYvvv/+e++67r4a/CalL9haVMjs1C2utt0MRERGp2yoLfAwb5izw8cEHcNFFsHgxzJ3rLPAREeHtKAPaMYc1GmNaAv8D4oFy4A1r7YsV224GbgJKgcnW2sPM+KuB226DiuGFR5SQAGPHQvPmsGOHcw2FRx91fh1Or17wwgtHbXLfvn306tULcPacXX311cyZM4cBAwbQtm1bAH7++WeWL1++vxcoJycHh8PBjBkzuOiiiwgODiYhIYETTjjhkPbnzZvHiBEj9rfV5BjjcXNyctizZw8jR44E4IorruC8887bv/3ss88GoG/fvqSlpR22jfbt2+8fqgl/LiJ9rLYvuOCCI8Y1e/Zs3nrrrf29dXPnzuWrr74C4LLLLuOeKhM+J0yYQFBQEF27diU9Pf2oz1fqprJyy5eLt/Lsz+vIzCvi5Yt6c3rPBG+HJSIiEtieecbZsVG1IMdnnzkLfKxcCRkZ0KGDs8DHVVc5e8zEY6oz56wUuNNau8QYEw0sNsb8AjQDzgSSrbVFxpg4dwa6X+PGzsRs82Zo1colN0zVOWdV1a9ff//31lpefvllxo4de8A+P/zwA8aYo7ZvrT3mPjURHh4OOAuZlJaWuqxdOPA5V7Vjxw6uvvpqvv32W6Kiog67T9XnWBkjoB4ROcSc9Vk89v0aVu/IpVfLRtQPC+aV31IZ36M5QUGu+1sRERGRg1SORPvsMygvd3ZwzJrl3Hb66XDjjXDSSRDkXwPsAsUxkzNr7Q5gR8X3ecaYNUAi8FfgKWttUcW2jCO3Uk3H6OEC/hzK+Pe/w3/+Aw8/7JFSnGPHjuU///kPJ5xwAqGhoaSkpJCYmMiIESP473//y+WXX05GRgbTpk3j4osvPuDYwYMHc+ONN7Jx40batm1LdnY2TZo0ITo6mtzc3EPO1bBhQxo3bszMmTMZPnw4H3zwwf6erto6nrZLSko4//zzefrpp+nYseP+x4cMGcKnn37KZZddxkcffcSwYcNcEqMErg2Z+Tw5ZS2/rE4nsVE9XrqoN6cnN+ebpdu57bOl/Lw6nXHd470dpoiISOAaPdrZK3byyVBWBsY4hy4+8YTmkfmAGlVrNMa0AXoD84FngeHGmMeBQuAua617V5OrTMwqF7Lz4Arj11xzDWlpafTp0wdrLbGxsXz99decddZZ/Pbbb/To0YOOHTseNtGJjY3ljTfe4Oyzz6a8vJy4uDh++eUXTj/9dM4991y++eYbXn755QOOef/997n++uspKCigXbt2vPvuuy57LjVte86cOSxcuJCHH36Yhx9+GHD2GL700kv85S9/4dlnnyU2NtalMUpg2VNQzEu/pvK/uWmEhwRx99hOXD2sLRGhziqopyU35/mpKbwyzcHYbs1c2tMsIiIiVWRkOHvLwsJg3z647z5nYiY+wVR3yJkxJgr4HXjcWvuVMWYl8BtwK9Af+AxoZw9q0BhzLXAtQKtWrfpu2rTpgHbXrFlDly5dqhft4cbITpvmXGH8cAvcSZ1Xo/tLXK6krJwP5m7ixV8d5BWWcEH/ltxxUidio8MP2ffzhVu458vlvHtlf0Z39swoaRERkTpl717n++hlyyAyEm6+2TkSzQMdHfInY8xia22/w22rVs+ZMSYU+BL4yFr7VcXDW4GvKpKxBcaYciAGyKx6rLX2DeANgH79+tVu8pFWGBfxC9Zapq7J4Mkf1rAhay/DOsTw4PgudGne4IjHnNUnkRd/dfDSbw5GdYpV75mIiIgrlZY6hy8uWgTR0fDVVx4fiSbHdsyZfsb5DultYI219t9VNn0NnFCxT0cgDMhyQ4wi4kdWbc/hkrfm89f/LQID71zZjw+uHnDUxAwgNDiI60e154/Ne5izfpeHohUREakDrIVbboHvvoMzz4Svv/4zERs92pmYLXTv7CSpnur0nA0FLgNWGGOWVjz2APAO8E7F8MZi4IqDhzSKSN2RkVvIcz+vY+LirTSsF8qjZ3Tj4oGtCA2ufrWn8/q24JXfHLz0q4OhHWLcGK2IiEgd8vTTzuGL99zj/P5gGonmM6pTrXEWcKTxRZe6IghXl5oXAZXw95TCkjLenLGB//y+npKycq4e2pabT0iiYWRojduKCA3m2hHt+ef3q1mwMZsBbY++JqCIiIgcw8cfw/33O4c0Pvmkt6ORY/D6AgYRERHs2rVLb6TFpay17Nq1iwitYu825eWWr//YxgnPTedfv6QwIimWX24fyUOndT2uxKzSxQNaERMVxsu/OVwYrYiISB00bRpceSWMGgXvvqu1y/xAjUrpu0OLFi3YunUrmZmZx95ZpAYiIiJo0aKFt8MISIvSsvnn5DUs27KH7okN+PcFvRjUrqlL2q4XFsw1w9vx1JS1LN2yh14tG7mkXRERkTpl5Uo46yxISoJJkyD80ErJ4nu8npyFhobStm1bb4chItWwJbuAp6asZfKKHTRrEM5z5/Xk7N6JBAW5dljypYNa8/rv63nlNwdvXdHfpW2LiIgEvG3b4NRTneXyp0yBRo28HZFUk9eTMxHxfbmFJbw6LZV3Z6URFAS3jkniupHtiAxzz0tIVHgIfxnaln//ksKq7Tl0S2jolvOIiIgEnNxcZ2K2ezfMnAmtWnk7IqkBDTwVkSMqLSvnw3mbGP3sdP77+wZO75nA9LtGc/tJHd2WmFW6YkgbosNDeHVaqlvPIyIiEjBKSuDcc2H1avjyS+jVy9sRSQ2p50xEDuv3lEwen7yalPR8BrRtwnvju9Kjhed6sBrWC+WKIW14dXoqjvQ8kppFe+zcIiIifsda+Otf4ZdfnMU/Tj7Z2xHJcVDPmYgcYPuefVzxzgKueGcBhSXlvH5pHz67dpBHE7NKfxnWlnqhwbyi3jMREZGje+QReP99579XXunlYOR4KTkTkf2KS8u5/sPFLErL5sFTu/DLHSMY172519YhbFI/jMsGtea7ZdvZmLXXKzGIiIj4vLfegv/7P/jLX+Af//B2NFILSs5EZL/np6awfGsO/zq/J38d0Y7wkGBvh8TVw9sSGhzEa+o9ExEROdSUKXD99TB2LLz+OnjpA1VxDSVnIgLA3PW7eP339VzYvyXjujf3djj7xUVHcNGAVkz6Yxtbsgu8HY6IiIjvWLIEzjsPkpNh4kQIDfV2RFJLSs5EhD0Fxdzx+VLaNK3P30/r6u1wDnHdyHYEGcPrv6/3digiIiK+IS0Nxo+Hpk1h8mSIVuGsQKDkTKSOs9bywKQVZOYV8eKFvagf7ntFXJs3rMe5/VowcdFWduYUejscERER78rOdq5lVljoHNbY3HdGvEjtKDkTqeMmLt7KDyt2cufJnUhu0cjb4RzRDSPbU2Yt/52h3jMREanDCgthwgRYvx6++Qa6+t6IFzl+Ss5E6rCNWXt55NtVDGrXhGtHtPN2OEfVskkkZ/VO5OP5m8nMK/J2OCIiIp5XXg5XXAEzZzrL5o8Y4e2IxMWUnInUUSVl5dz26R+EBgfx/AW9CA7y/epON47uQElZOW/N3ODtUERERDzv3nvh88/hmWfgwgu9HY24gZIzkTrqhakpLNuaw1Nn96B5w3reDqda2sbU5/SeCXwwbxO79xZ7OxwRERHPeflleO45uOkmuOsub0cjbqLkTKQOmrdhF69NX8/5/VpwSg//mkR84+gOFBSX8c7sjd4ORURExDMmTYJbb3XONXvhBa1lFsCUnInUMTkFJdzxmbNs/sOnd/N2ODXWsVk0p3SP573ZaeTsK/F2OCIiIu41dy5cfDEMHAgffQTBwd6OSNxIyZlIHWKt5YGvV5CRV8QLF/hm2fzquOmEDuQVlfK/OWneDkVERMR9HA44/XRo0QK+/RYiI70dkbiZkjOROuSLxVuZvHwHt5/UkZ4tG3k7nOPWLaEhYzrH8fbsjeQXlXo7HBEREdfLyIBTTnEOYZwyBWJjvR2ReICSM5E6Iq2ibP7Atk24fmR7b4dTazed0IE9BSV8NG+Tt0MRERFxrYICZ4/Z9u3w/ffQoYO3IxIPUXImUgeUlJVz62dLCQ4yflM2/1h6t2rM8KQY3py5gX3FZd4OR0RExDXKyuCii2DRIvjkE+dcM6kzlJyJ1AEv/epg2ZY9PHl2MgmN/KNsfnXcfEISWfnFfLJgs7dDERERqT1r4ZZbnPPLXnoJzjzT2xGJhyk5EwlwCzZm8+q0VM7r24Lxyf5VNv9YBrRtwsC2TfjvjPUUlar3TERE/Mwzz8C0aX/+/Oyz8NprMHIk3Hij9+ISr1FyJhLAcvaVcPtnS2nVJJJHzvC/svnVcfMJSaTnFjFx0VZvh+IzduYUkp5b6O0wRETkWPr3h/PPdyZon3wC994L4eHw9797OzLxEiVnIgHKWsuDk1aQnlvICxf29tuy+ccytENTerdqxH+mr6ekrNzb4fiE6z5czOVvL8Ba6+1QRMQDcvaVcNrLM1mYlu3tUKSmRo+Gzz93Dl+89FIIDYVvvoExY7wdmXiJkjORAPXVkm18X1E2v5cfl80/FmMMt5yQxLY9+5j0xzZvh+N1u/KLWLZlD+vS81iYttvb4YiIB8xOzWLltlw+nq/5t35n7174+GPIy4Pycrj1Vhg71ttRiRcpORMJQJt27eUf36xkQICUzT+WUZ1i6Z7YgNempVJax3vPZqVmARAcZPhQywyI1AkzHc6/+6lr0ikurduvgX5l2TLo1w/eegvq1YMHHoD33jtwDprUOUrORAJMSVk5t34aWGXzj8UYw02jk0jbVcDkFTu8HY5XzUjJolFkKJcObMWUlTvIyi/ydkgi4mazU7NoHBlKXmEpc9ZneTscORZr4cUXYcAA50LTDRvC5Mnw+OPOIY6Vc9CkTlJyJhJgXv7VwdIte3ji7B4kBlDZ/GM5uWszOjWL5pXfUikvr5tzray1zHRkMqxDDJcNbk1JmVWhFJEAt3lXAZuzC7hhVHuiwkP4adVOb4ckR5ORAaedBrfd5hy+eNNNMGmSc+4Z/DkHbeFCr4Yp3qPkTCSALNiYzSvTUjm3bwtOS07wdjgeFRRkuPGEDjgy8vmxjr45WZeeR0ZeESOSYukQF82gdk34eMGmOpusitQFsyt6yk7o3IzRneP4eVU6Zfqb902//AI9e8Kvv8LLLzsLfzz66J+JWaXRo+Gee7wTo3idkjORAFFZNr9lAJfNP5bxPZrTLrY+L/+WWicrFc5Mcb5JG94xBoBLBrZmS/Y+fndkejMsEXGjWY4s4htE0D62Pqd0j2fX3mJVbfQ1xcXOZOvkk6FJE1iwwNljZgJ/2oHUnJIzkQBgreXvX69kZ24hL1zQi6gALZt/LMFBhhtHdWDNjlx+XZPh7XA8boYjk6S4KJo3dA5nHdstnpiocD6apwpuIoGovNwye30WQzvEYIxhZMdYwkOC+HFl3Rw94JNSU2HoUOfi0tdd5xyumJzs7ajEhyk5EwkAXy/dxrfLtnP7iUn0btXY2+F41Rm9EmjZpB4vT6tbvWeFJWXM35jN8KTY/Y+FhQRxQf8W/LY2nW179nkxOhFxh9U7ctlTUMLwJGdvef3wEEZ2jOXHlTs1nNnbrIX//Q9694b16+HLL+H11yEy0tuRiY9Tcibi5zbvKuDvX69iQJsm3DCqg7fD8brQ4CD+NqoDy7bs2V9eui5YsDGb4tJyRlQMaax0Yf9WWODTBeo9Ewk0la9xQzo03f/YuO7x7MwtZNnWPV6KSsjNdS4ofcUV0KePs2T+2Wd7OyrxE0rORPxYaVk5t332B8bA8xfWjbL51XF2n0SaN4zg5d8cdab3bEZKJmHBQQxs2/SAx1s2iWR0pzg+XbiFkjq+BpxIoJmdmkWnZtHERUfsf2xMl2aEBJk6WxjJ6+bPd/aWffYZ/POf8Ntv0LKlt6MSP6LkTMSPvfxbKks27+GJs+pW2fxjCQ8J5vqR7VmYtpv5G+vGxPiZjiz6t21MvbDgQ7ZdOqgVmXlF/LI63QuRiYg7FJaUsSAtm2FJB/aWN6wXypAOMfy4cmed+XDKJ5SVwZNPwrBhzu9nzICHHoLgQ1+TRY5GyZmIn1qUls3Lvzk4u08ip/esW2Xzq+OC/i2JjQ7n5d8c3g7F7dJzC1mXnseIKvPNqhrZMY7ERvX4cN4mD0cmIu6yKG03xaXlDOsQc8i2U7rHs2lXAWt35nkhsjpo+3ZnJcYHHoBzzoGlS2HIEG9HJX5KyZmIH8otLOHWT5fSonEk/3dmd2+H45MiQoO5dng7ZqfuYvGm3d4Ox61mpDhL5Q8/QnIWHGS4eGAr5qzfxfrMfE+GJiJuMis1i5Agw4C2TQ7ZdlLXZgQZmKKqje733XfO6ovz5sHbb8Mnn0CjRt6OSvyYkjMRP/SPyrL5F9bdsvnVccmgVjSpH8YrAd57NtORRUxUOF2aRx9xn/P7tSQkyPDxfBUGEQkEs1Oz6NOqMfUP839ATFQ4/ds04SclZ+6zb59zrbIzznDOKVuyBP7yF61dJrWm5EzEz3z9xza+XrqdW8ck0aeOl80/lsiwEK4e1pZp6zJZsTXH2+G4RXm5ZVZqFiOSnOscHUlsdDhju8fzxeKtFJaUeTBCEXG13XuLWbk955D5ZlWd0j2edel5bFBvueutXg0DB8Krr8Lttzt7zTp18nZUEiCOmZwZY1oaY6YZY9YYY1YZY26tePwRY8w2Y8zSiq9T3R+uSN22JbuAv3+9kv5tGnPjaJXNr47LB7emQUQIr0wLzN6zVdtzyd5bzPCOR36TVunSga3J2VfC98t3eCAyEXGXOet3YS0MPcx8s0pju8cDqGqjK1nrXKusb19IT4cpU+Df/4bwcG9HJgGkOj1npcCd1touwCDgRmNM14ptz1tre1V8/eC2KEWkomz+UgCev0Bl86srOiKUq4a25adV6azdmevtcFxuhsM532xYh8PPN6tqULsmtI+tr8IgIn5uVmoW0eEh9GzR8Ij7NG9Yj14tG/Gjhja6Rna2s9jHDTfAiBHOtcvGjfN2VBKAjpmcWWt3WGuXVHyfB6wBEt0dmIgc6JVpqSzetJvHzupOi8aR3g7Hr1w1tA1R4SG88luqt0NxuRkpmXRt3oDY6GN/cmuM4ZKBrVm6ZQ8rtwXmME+RumBWaiaD2jclJPjob+PGdY9n+dYctu4u8FBkAeCZZ2DatAMfe+EFaNcOvv8ennvO2WMWH++V8CTw1WjOmTGmDdAbmF/x0E3GmOXGmHeMMZr8IuImizdl89KvDs7unciZvfTZSE01igzjssGtmbxiR0BVK8wvKmXJ5t3VGtJY6Zy+LYgIDeIjFQYR8UubdxWwJXvfYUvoH2xcN2cC8dMqrXFYbf37w/nnOxO00lK4/HLnvLKoKJg7F+68E4JUskHcp9p3lzEmCvgSuM1amwv8B2gP9AJ2AP86wnHXGmMWGWMWZWZm1j5ikTomr7CE2z5bSmLjejx6Zjdvh+O3rhnWlvCQIF6dFji9Z/PW76KkzDLyCCX0D6dhvVDO6JnAN0u3kVdY4sboRMQdZqVmAUefb1apTUx9OsdH8+NKzTOtttGj4fPP4dxzoW1b+OAD5/DFtWudc81crLzckpa1lx9X7uTFqQ5Ky8pdfg7xL9WqwW2MCcWZmH1krf0KwFqbXmX7m8D3hzvWWvsG8AZAv379tFS9SA29MNXB9j2FfH7dYKIjQr0djt9qGhXOJQNb896cNG4b05FWTf1/aOhMRyb1QoPp26ZmAxcuGdiazxdtZdIf27h8cBv3BCcibjErNZPmDSNoH1u/Wvuf0r05L/yaQkZeIXHREW6OLkCMHu0sj79sGZx9Nnz5pUuazd5bzNqduazdkce6nXmsTc8jZWce+yoq6BoDE3on0Lpp9X63EpiOmZwZZ23mt4E11tp/V3m8ubW28qOYs4CV7glRpG5bmJbNkPZN6dtaI4dr67oR7fhg3ib+83sqT56d7O1wam2mI4tB7ZoQHhJco+N6tmxEj8SGfDRvM5cNan3UEvwi4jvKyi1z1u/ixC7Nqv13O657PM9PTeHnVelcOqi1myMMENOmwdatcPPNzkWlp01zJmzVVFhSRmpGvjMB25nL2p3OZCwjr2j/Pk3qh9E5PpoLB7SkS3wDOsVHk9QsisgwrV1a11XnDhgKXAasMMYsrXjsAeAiY0wvwAJpwHVuiE+kTisvtzjS87loQCtvhxIQ4hpEcGH/lnyyYDM3nZBEYqN63g7puG3JLmBD1t7jfrN16aBW3PvlChZt2k3/Nk1cHJ2IuMPq7bnsKSip1nyzSh2bRdEupj4/rdqp5Kw6pk1zzjmbONGZkJ11lvPnzz8/JEErL7ds27OvIvnKZU1FErYxay9l5c7BYmEhQXRsFsXwpFg6x0fTuXk0neKjiY0K1wdjcljHTM6stbOAw909Kp0v4mbb9uxjX0kZSc2ivB1KwLhuZHs+nLeJT+Zv5q6x/rto6EyHc97JiBoUA6nq9J4JPDZ5DR/O26TkTMRPzEx1zt2vznyzSsYYxnaP580ZG9hTUEyjyDB3hRcYFi48MBGrmIO2b/Y8lrdOZl16Hmt2OJOxlPR88otK9x/askk9Osc34JTu8XSu6A1r0zTymFU1RapS36mID3Nk5AHOTz7FNRIb1WNohxi+WbaNO0/u6LefXM50ZJLQMIL2scd3b0SGhXBOnxZ8PH8z/zitiKZRWkRVxNfNTs2ic3x0tZbOqOqU7vH8Z/p6pq7J4Ny+LdwUXYC45x4A1uzI5Zul21m7M5d1O8vZkZ8Mb8wDnIWVOsdHc06fRDrFN6Bz82g6NosmKlxvq6X2dBeJ+LCUdGfZ9w5x0V6OJLBM6JXInROXsWTzbvq29r9eo9KycmalZnFq9+a1Si4vGdiK9+akMXHxVq4f2d6FEYq/+WLxVnbvLeb0ngnEN1TRCF9UWFLGwrTdXHYcQxN7JDYksVE9fly5Q8nZMRSXlvPKbw5em74eY6B9bBSD2jWlU3y0c1hifAOaNdCQRHEfJWciPsyRnk+zBuE0rKcqja40tns8D369gkl/bPPL5GzZ1hzyCksZ0bH6JfQPJ6lZNAPaNuHj+Zu5dng7goL0ZqMuSs8t5L4vl1NabnliyhqGto/hrN6JjO0er54AH7IwLZvi0nKGJdV8KLMxhrHd4vlw/ibyi0r1ez2CFVtzuPuLZazdmcfZvRP5x+ldNQxUPE6DYEV8mCMjjyT1mrlcVHgIJ3WN5/vlOygu9b81ZWakZGIMDO3QtNZtXTqoNZuzC5hZsXaS1D3/m5tGmbV8cPUAbj4hiU3Ze7lz4jL6PzaVWz/9g+nrMrT2kg+YlZpFaLBhwHHOER3XPZ7i0nKmrc1wcWT+r6i0jGd+XMuE12azu6CYt6/ox78v6KXETLxCH52I+KjycktqRj4X9G/p7VAC0lm9E/hu2XZmpGRyYtdm3g6nRmY6Mklu0cglbxzGdYunaf0wPpy3iZG17IkT/7OvuIyP5m/m5K7NGJ4Uy/CkWG4/MYnFm3bz1R/bmLx8B98s3U5MVDhn9Ezg7D6JdEtooCFdXjA7NYverRpT/zh7vfq2bkxMVDg/rtrJ6T0TXByd/1q6ZQ93T1yGIyOf8/q24KHTumq0iniVkjMRH7Vtzz4KisvUc+Ymw5NiaVI/jElLt/lVcpazr4SlW/Zw0+gOLmkvLCSI8/u35L+/r2dHzj6aN/Tf5QWk5ib9sY09BSX8ZWjb/Y8ZY+jXpgn92jTh4dO7Mm1tJl//sY0P523indkb6RAXxVm9E5nQO9Gvl6PwJ9l7i1m1PZc7Tux43G0EBxnGdmvGpD+2UVhSRkRozdZHDDSFJWU8/0sKb87cQLMGEbx3VX9GdYrzdlgiGtYo4qtSM5zFQFSp0T1Cg4M4Lbk5U1enk1tY4u1wqm1OahblFoa7sJfr4gGtsMAnC7a4rE3xfdZa3pm9ke6JDRjQ9vBD5cJDghnXPZ7XL+vLggfH8PhZ3WkcGcqzP61j6FO/ccF/5/LZws1+9Tfkj+asz8JaGHoc882qGtc9noLisv1LcdRVizdlc+pLM/nvjA1c0L8lP90+QomZ+AwlZyI+KiXdWUZfPWfuM6F3IkWl5fy4cqe3Q6m2GY4sosND6NWykcvabNkkklEdY/l0wWZKNLeozvg9JZPUjHyuHta2WsMUG0WGccnA1ky8fggz7h7NHSd1JCOviHu/XEG/x6Zy40dLmLo63S/ncfq62alZREeEkJzYsFbtDGrXlIb1QpmycoeLIvMv+4rL+Of3qzn39bkUlZTzwdUDePLsZBpEaBij+A4NaxTxUY6MfOKiw2kYqf803KV3y0a0bhrJN0u3cX4/35/bZ61lRkomg9s3JdTFi5peMrA11/xvEb+uSWdc9+YubVt80zuz04iLDmd8j5rPP2rVNJJbxiRx8wkdWLY1h0lLtvLd8h1MXrGDxpGhnN4zgbN6J9KrZSPNT6slay0zHVkMbte01osZhwYHcWKXZvyyeiclZeUufx3xZQs2ZnPPF8tI21XApYNacd8pXVS1UnxS3fmrFPEzjvQ8OjZTr5k7GWOY0CuROet3sTOn0NvhHNPGrL1s27PPpUMaK43uHEdio3p8OG+zy9sW3+NIz2NGSiaXD25NWMjxvxUwxtCrZSMePbM78x8Yw9tX9GNIhxg+XbiFs16bwwn/+p0XpzrYvKvAhdHXLZuzC9i6e99xldA/nFO6x5NbWMrc9btc0p6vKygu5ZFvV3HBG3Mps5aP/zqQxyb0UGImPkvJmYgPstbiyMinQ5zmm7nbhN6JWAvfLtvm7VCOqXKeyMgk1ydnwUGGiwa0ZFZqFhuz9rq8ffEt78xOIzwkiIsH1nxB4yMJDQ5iTJdmvHpxHxY9dCLPnJNMswbhPD81hRHPTuPc/8zhw3mb2FNQ7LJz1gWzKpa5GNrBNcnZsKQY6ocFM8WPhnMfr7nrdzHuhZm8NyeNKwa34cdbRzCkvWuuo4i7KDkT8UGVlRrVc+Z+bWPq07NlI77+Y7u3QzmmGSmZtG4aSaumkW5p//z+LQkJMnw8f5Nb2hffkL23mK+WbOXsPok0qe+edZwaRIRyfv+WfHrtYGbfdwL3jOtEzr4SHvp6JQMe/5XrPljEwrRst5w70MxyZJHQMIJ2MfVd0l5EaDCjO8fxy+qdlJVbl7Tpa/KLSnno6xVc9OY8ggx8ft1gHjmj23EvQyDiSUrORHyQo6JSY5IqNXrEWb0SWL0jl3U787wdyhEVl5Yzd8MuhrtoaNPhxEVHMLZbPBMXb6WwpMxt5/E3OftKePantWTlF3k7FJf4eP4mikrLDyif706Jjerxt1Ed+Pn2EXx/8zAuG9yaxZt2c8U7C8jI8/3hxN5UVm6Zs34XQzvEuHTu3rju8WTlF7MoABPkWY4sxj4/g4/mb+aaYW2ZcuuII1YjFfFFSs5EfJBjf6VGJWeecFrPBIKDDF8v9d2hjYs37aaguIwRbhjSWNUlg1qxp6CEycvrZjW3w/nXz+t4ddp6nv1xnbdDqbXi0nL+N3cTw5NiSPJwz7wxhu6JDfn7aV35/LrBFJeW8/wvDo/G4G9Wbc8hZ1+Jy+abVRrdKY6wkCB+XBU4QxtzC0u4/6vlXPr2fMJDg/ji+sE8dFpX6oXV7fXcxP8oORPxQY70fGKjw2kU6Z4hR3KgmKhwhifF8O3S7ZT76DCfmY5MQoIMg9s3det5BrdrSrvY+nykoY0ArN6ey4fzNtGkfhgTF2/Zv/6gv5q8YjsZeUVcPcwzvWZH0i42iksHteazhZt9usfa2yrnmbp6nlT98BBGJMXy08qdWOubr3k1MX1dBmOfn8FnC7dw3ch2/HDLcPq2Vm+Z+CclZyI+KCUjX4tPe9hZvRPZtmefz86DmenIok+rxkS7eT0eYwyXDGzNks17WL09163n8nXWWh75dhWNIsP44vrB1AsN5t+/+G/vmbWWt2dtpENcFCPdUPGzpm4Zk0T98BCenLLG26H4rNmpWXSOjyY2OtzlbZ/SPZ7tOYUs35rj8rY9JWdfCXdPXMaV7y4kKjyEL28Ywv2ndCEiVL1l4r+UnIn4GGstqel5Wnzaw07q2ozIsGCfHNq4K7+Ildtz3DrfrKpz+7QgPCSID+t479m3y7azIC2be8Z2ol1sFNcMb8cPK3aybMseb4d2XBam7WbltlyuGtrGJ9Yea1I/jJtP6MD0dZnMdGR6Oxyfs6+4jEVpuxnmoiqNBzuxSzNCgozfVm38dU06Jz//O1/9sY0bR7fn+1uG0btVY2+HJVJrSs5EfMz2nEL2FpepGIiHRYaFMLZbPJOX76Co1LeKYcxKzcJa3LK+2eE0rFhE+Js/tpFfVOqRc/qa/KJSHp+8huQWDfcvUH7N8LY0qR/Gsz/5Z+/Z27M20CgylLN7t/B2KPtdMaQNLRrX4/HJawK2cuDxWpiWTXFZucvnm1VqGBnK4PZN+XHlDr8a2rinoJg7PlvK1e8volG9ML7+21DuHtuZ8BD1lklgUHIm4mP+LAainjNPm9A7kdzCUqat9a1P8Wc6smgUGUqPxIYeO+elg1qzt7iMSX/4Xk+iJ7z8m4OMvCIePaMbQUHOXqboiFBuHN2BWalZzKqYC+QvNu8q4OfV6VwysJVPFUgIDwnm3nGdWbszjy8Xb/V2OD5ldmoWocHGrZUGx3WPJ21XAevS/WPe30+rdnLS8zP4dtl2bhmTxHc3D6NHC8+9Lop4gpIzER/jSK8oo69KjR43tH1TYqLC+dqHEhJrLTMdmQztEENwkOeGovVs0ZDuiQ34aN4mv/pU3RXWZ+bzzqyNnNe3xSHDpC4Z2IrERvV45qe1fnVd3puTRrAxXDaojbdDOcRpyc3p3aoRz/28jr11tKf2cGalOueZRoa5b22uk7vGYwz86AdDG//5/Wqu+2AxsVHhfHPTUO44qSNhIXobK4FHd7WIj3Fk5BETFU5jNy0OK0cWEhzE6T2b89vaDHL2lXg7HABS0vNJzy1ipJtL6B+ssjDI2p15LNm826Pn9iZrLY9+t5qIkGDuGdf5kO0RocHcdmISy7fm+MUbWoC8whI+X7SF05KbE98wwtvhHMIYw0Pju5CRV8QbMzZ4OxyfsCu/iFXbc90236xSbHQ4/ds08fl7+feUTN6etZFLBrbim5uG0i1BvWUSuJScifiYlHRVavSms3onUlxWzpQVvrHO14wU5xBLd807OZozeyUQHR7Ch/M2e/zc3vLL6nRmpGRy20kdj1gh7+w+LUiKi+LZn9dRWlbu4Qhr7vNFW8kvKuUvXi6ffzR9Wzfh1B7xvDFjA+m5Wph6zvpdgGf+7sd1i2ftzjw2Zu11+7mOR35RKQ98tYL2sfX5x+ldCQ3WW1cJbLrDRXyItZbUjHwNafSiHokNaRdb32fmWs1wZNIhLoqERvU8fu7IsBDO7pPI5OU7yN5b7PHze1phSRn/nLyajs2iuHxw6yPuFxxkuPPkTmzI3MtXS3zjPjmSsnLLe3M20r9NY5JbNPJ2OEd177jOlJaX86+f/bPgiivNTs0iOiLEI/NMx3WPB3x3aOOzP65le84+njm3p4p+SJ2g5EzEh+zIKSS/qJSkZioG4i3GGCb0SmT+xmy27dnn1VgKS8pYsDGbER4e0ljVJYNaU1xWzheLt3gtBk95Y8YGtmTv45Ezuh3z0/mx3ZrRs2Ujnp+aQmGJb1X3rOqX1TvZkr3P64tOV0frpvW5YnAbJi7eWqfX2HPOM81icLumhHiglyihUT16tmjIj6t8LzlbmJbN+3M3ceWQNvRtrTL5UjcoORPxIY4MFQPxBRN6JQLw7dLtXo1jwcZsikrLGd7R80MaK3VsFs2ANk34aP5mygO41PnW3QW8Oi2V8T2aM6T9sa+3MYZ7x3ViR04hH87z3fXg3pmVRovG9Tipa7y3Q6mWm09IokFEKE/8sMavCq640qZdBWzbs89j6xoCjOvenGVb9rDdyx9IVVVYUsa9XyynReN63HVyJ2+HI+IxSs5EfEhlGf2O6jnzqlZNI+nbujGT/tjq1TeIMx2ZhAUHMdCNpbSr45JBrdi0q4BZqf5VPr4mHp+8hiBjeGB8l2ofM6R9DMOTYnh1Wiq5hb5RQKaqFVtzWJCWzZVD2ni00mdtNIwM5ZYxScxKzWJ6im8taeEplX9nQ91cDKSqyqGNP/lQ79mLvzrYkLWXp85Opn64+ypWivgaJWciPiQlPY+YqDBVavQBE3olkJKez5od3lv/Z0ZKFv3bureUdnWM6x5P0/phfDTfd3uIamN2ahZTVu7kxtHtSazh3L57xnZmd0EJb/lglcG3Z20gKjyEC/q39HYoNXLZoNa0aRrJE5PX+EXBFVeb5cgioWEEbWPqe+ycbWPq0zk+mik+Mu9s5bYc3pixgfP7tfBKMSQRb1JyJuJDHBn5WnzaR4xPTiAkyPDNUu8UfEjPLWRdeh7DvTjfrFJ4SDDn9WvJ1DUZ7MwJrEp6JWXlPPztKlo1ieSa4e1qfHyPFg0Zn9yct2ZtJDOvyA0RHp/03EK+X76D8/q1IDoi1Nvh1EhYSBD3ndIZR0Y+ny+qWwtTl5Vb5qzPYlhSDMZ4trdzbLd4FqZle/0+Likr554vltO0fhgPju/q1VhEvEHJmYiPsNaSmp5Pksro+4Qm9cMY1SmWb5Zup8wLc61mOpxDm7xZDKSqiwe0otxaPlkQWGX135+TRmpGPv84rSsRocdXCe7OkzpSVFrOq9NSXRzd8fvf3DTKrOWqIb5fCORwxnaLp3+bxvz7l3Xk16GFqVduyyG3sNSjQxorndIjHmudy0l4039/X8/qHbk8NqE7Dev51wcLIq6g5EzER+zMLSRPlRp9ypm9EtmZW8j8Dbs8fu4ZKZnERIXTOd437odWTSMZkRTLpws3B8xQs4y8Ql6Y6mB0p1jGdIk77nbaxUZxfr8WfDR/E1uyC1wY4fHZV1zGx/M3c1KXZrRqGuntcI6LMYYHx3clK7+Y16ev93Y4HuON+WaVOjWLpk3TSKas9N4aj6kZebz0ayrjk5tzcjf/KGIj4mpKzkR8REq6KjX6mhO7NCMqPISvPTy0sbzcMis1i+FJMQT5UCGHSwe1Jj23iKlrMrwdiks8PWUdxaXl/OP0brUeQnbLmCSCjOH5qSkuiu74TfpjG7sLSvyifP7R9GrZiDN6JvDmzA3syPGdKoLuNMuRRZfmDYiJOvwC6O5kjGFc9+bMXb+LnALPF7gpK7fc88VyIsODefSMbh4/v4ivUHIm4iNUqdH31AsLZlz3eKas2OnRtaxW78gle28xI7xYQv9wTugcR0LDiIAoDLJ4UzZfLtnK1cPbuqTwQvOG9bhySBsm/bGNdTu9V0TGWss7szfSPbEBA7xc5dMV7h7bCQs8+1PgL0y9r7iMxZt2M6xDU6/FMK57PKXllqlrPD+08X9z01iyeQ8Pn97VK8mpiK9QcibiIxzp+TStH0YTVWr0KWf1TiSvqJRfPdhb9HtFCfFhHXxjvlml4CDDhQNaMdORRVrWXm+Hc9zKyi0Pf7uK+AYR3DS6g8vavWFUe6LCQ7yaSMxwZJGakc9fhrb1eEEJd2jZJJKrhrbhqyXbWLktx9vhuNXCtGyKy8q9MqSxUs8WDWneMMLjC1JvyS7gmR/XMbpT7P51JkXqKiVnIj7CkZGnYiA+aFC7psRFh3t0aONMRyZdmzcgNtr3Pj2+sH9LQoIMH/txYZDPFm5h5bZcHhjfxaXrJzWKDOP6ke2ZuiadxZuyXdZuTbw9ayNx0eGclpzglfO7w42jO9A4MpTHJq8O6IWpZ6VmERYc5NUeT2MMY7vFMyMlk70eKsRireX+r1YQHGR4/KweAfGhgkhtKDkT8QHWWhzpKqPvi4KDDGf2SmD6ugx27y12+/n2FpWyeNNuhvvYkMZKcQ0iOLlbMyYu2uLRoZ6usqegmGd/WsvAtk04Pbm5y9u/amgbYqLCeXrKOo8nEo70PGakZHL54NaEhQTOf+8NIkK57cSOzNuQ7dEebE+b5ciiT+tGXl/X8JTu8RSVljN9nWcWAZ+4aCuzUrO475TOJNRwnUGRQBQ4r94ifiw9t4i8olI6qufMJ03onUhJmWXyCvdXMZu3YRclZdZnSugfziUDW7O7oMSrVd2O179+TiFnXwmPnFH7IiCHExkWwq1jOrAgLZvpKZ55c1vpndlphIcEcfHA1h49rydcPLAV7WLr88SUNZQESLXQqnblF7F6Ry7DvDiksVK/Nk2IiQrzyN93em4h/5y8mgFtm3DxgFZuP5+IP1ByJuIDUiqKgXRQz5lP6tq8AUlxUR5ZkHqmI4uI0CD6tWns9nMdryHtm9Iupj4fzvOvoY2rt+fy0fxNXD64DV2aN3DbeS7o34qWTerxzI/rKPfQGnnZe4v5aslWzu6TGJDzVkODg7j/lC5syNzLp348pPZIZq93LtcxzAc+lAkOMpzUNZ5pazPc2jtureWhr1dSXFrO0+ck+1RlWhFvUnIm4gMcGc4y+uo5803GGCb0TmRh2m63r2M1IyWTQe2aEh5yfAsie4IxhosHtmLxpt2s2ZHr7XCqxVrLw9+upFFkGLef2NGt5woLCeLOkzqxZkcu33ugtxXgkwWbKSot56qh/l0+/2hO7BLHoHZNeH6qg9xCz5d6d6fZjiyiI0LokdjQ26EAzqGNe4vLmOXIcts5Jq/YwS+r07njpI4uqZgqEiiUnIn4AEd6Hk3qh9FU5YN91pm9nAUW3Nl7tiW7gA1Ze316SGOlc/u2IDwkyG/K6n+zdDsL03Zzz9hONIwMdfv5zuiZQOf4aP718zq3D8MrLi3n/TlpDE+KCeilOIwxPHhqV7L3FvPatMBZmNpa57qGQ9o3JdhHeo8GtWtKg4gQt1Vt3L23mIe/WUVyi4Z+vx6fiKspORPxAY6MfC0+7eNaNI5kQJsmTPpjm9sKPcys+JTa19Y3O5xGkWGclpzApCXbyPdQVbfjlV9UyhM/rCG5RUPO79fSI+cMCjLcM64Tm3YV8NnCLW491+QV28nIK6oTb3J7tGjI2b0TeWf2Rrbudm8vtqek7Spg2559PjGksVJYSBAndm3GL6vT3fLhwv99v5qcfSU8c24yIcF6KypSlf4iRLzMWktKusro+4MJvRNZn7mXVdvdM5RvpiOT5g0jaB/rH/fCpYNasbe4zCNz8Wrj5d8cZOQV8egZ3Tw6r2V0pzj6t2nMi7862Ffsnrk71lrenrWR9rH1/aLH1RXuGtsJQ+AsTD0r1fmhjC8UA6lqXLd4cvaVMH+Da5eFmLY2g0l/bONvozvQOd59cz9F/JWSMxEvy8grIq+wNKCHIwWK8T2aExYcxKQ/XJ+MlJaVMzs1ixFJsX6zzk+vlo3o2rwBH87b7LPrT63PzOedWRs5r28LerfybJEVYwz3jOtMZl4R787Z6JZzLEzbzcptufxlWNs6U1AhoVE9rhnelm+Wbmfplj3eDqfWZjuySGxUjzZNI70dygFGdIwlMizYpVUb8wpLeGDSCjo2i+LG0e1d1q5IIDlmcmaMaWmMmWaMWWOMWWWMufWg7XcZY6wxxrc+8hHxE39WavSP3pK6rGFkKKM7x/Ltsu2UubgK37KtOeQWlvrs+maHY4zh0kGtWbMjlyWb93g7nENYa3n0u9VEhARzz7jOXomhf5smjOkcx+vT15NT4PoiFm/P2kCjyFDO7t3C5W37shtGdSAmKownJq/x2Q8GqqOs3DJnfRbDOsT43IcyEaHBjO4Ux0+r0l32evf0j2tJzy3k6XOSfbrokYg3VafnrBS401rbBRgE3GiM6QrOxA04CQi8urYiHuJIr6zUqJ4zfzChVyKZeUXMWe/aKmYzHZkYA0Pb+09yBs5CKVHhIbw/J83n3iT/sjqdGSmZ3H5SR2KjvVds566xncgrKuU/v7u2iMXmXQX8vDqdiwe0ol5Y3XqjGxUewu0ndWRBWjY/rUr3djjHbcU254cyQ5N88+9+XPd4svKLWLJ5d63bmrdhFx/O28xfhrb1eC+2iD85ZnJmrd1hrV1S8X0esAZIrNj8PHAP4Fv/I4v4EUdGHo0jQ2kagGsTBaLRneOIjghx+dDGmY4skls0orGf3Qf1w0O4oH9Lvl22ncveXoCjoifY2wpLyvjn5NV0bBbFZYO9uyhzl+YNOLNnAu/N2Uh6bqHL2n1vThrBxnD54DYua9OfXNCvJUlxUTw1ZQ3Fpf65MPXsivlmQ9o39XIkhze6cxxhIUH8uLJ2VRv3FZdx35fLadUkkjtP7uSi6EQCU43mnBlj2gC9gfnGmDOAbdbaZe4ITKSucKTnk9Qs2ueGtMjhRYQGM75Hc35audNlRR5y9pWwdMseRvjop+fHcv8pnXn0jG4s37qHcS/O5JFvV7llCF9N/Pf3DWzJ3scjZ3Qj1Aeqwd1xUidKyywv/epwSXt5hSV8vmgL45ObE98wwiVt+puQ4CAeOLULabsK/GZJh4PNdGTStXkDYnx0GZWo8BBGJMXw48qdteoZf2FqCmm7CnjqnB51rpdXpKaq/T+WMSYK+BK4DedQxweBf1TjuGuNMYuMMYsyMzOPN06RgLS/UqPmm/mVM3slsre4jF/WuGY41dz1WZSVW0Z09M9qeyHBQVwxpA3T7x7Nhf1b8r+5aYx6bhofzd/k8rl51bF1dwGvTU9lfI/mDPGRYaKtmkZy8cBWfLpwCxuz9ta6vc8XbSW/qLROlM8/mlGdYhnWIYYXf3V4/QOBmiooLmXJpj0M8/EPZcZ2i2fbnn2s2JZzXMcv27KHN2du4KIBLX3m71HEl1UrOTPGhOJMzD6y1n4FtAfaAsuMMWlAC2CJMSb+4GOttW9Ya/tZa/vFxvrnGw8Rd8nMKyJXlRr9zsC2TWjeMIKvXTS08feULKLCQ+jVspFL2vOWJvXDePysHnx/83CSmkXz4KSVnP7yLOZv2OXROB6fvIYgY3hgfBePnvdYbjqhA2HBQfz7l5RatVNWbnlvzkb6t2lMcotGrgnOTxljeODULuTsK+GVaa7plfSUhWm7KS4rZ6iPldA/2EldmxEcZI5raGNxaTn3frmcuOgI7j/Vt/4eRXxVdao1GuBtYI219t8A1toV1to4a20ba20bYCvQx1rrnqXkRQJUSkUxEK1x5l+Cggxn9krk95RMduUX1aotay0zUjIZ3L6pTwy/c4WuCQ347NpBvHJxb/YUFHPBG/O48eMlbNuzz+3nnuXIYsrKndw4uj2Jjeq5/Xw1ERcdwdXD2vLdsu2sPM5eCHAWOtmSvY+/DK3bvWaVuiY04Nw+LXh/ziY27/KfhalnOTIJCw5iQJsm3g7lqBpFhjG4XdPjGtr4n+nrWbszj8cmdKdBRKibIhQJLNV5JzAUuAw4wRiztOLrVDfHJVInODKcxROS4tRz5m8m9E6grNwyeUXt1gBK21XAtj37/HZI45EYYzgtOYFf7xzFbScmMXV1OmP+NZ0XpqZQWOKeBZlLysp55LtVtGoSyTXD27nlHLV17ch2NIoMrdUCyu/M2kiLxvU4udshg1XqrLvGdiI4yPD0T2u9HUq1zUrdRd/Wjf1iDta47vFsyNqLIyO/2sekpOfxyjQHZ/RM4MSuzdwYnUhgqU61xlnWWmOtTbbW9qr4+uGgfdpYa11bV1qkDkhJz6dxZCgxUf5VoU+gc3wDOsdH17pq44wU51xcfy0Gciz1woK57cSO/HbXKMZ0acYLUx2M+dfvTF6+w+Wl99+fk0ZqRj4Pn96ViFDffMPbICKUG0a25/eUTOaur/lwzxVbc1iQls2VQ9oQXEcWna6OZg0iuHZEOyYv38HiTbUv++5uWflFrNmR6/PzzSqd3K0ZxsCUFdUbIFVWbrnni+VER4Ty8Old3RydSGAJjDE0In4qNSOPpDhVavRXZ/VO5I/Ne0irRYGHmY5MWjeNpHXT+i6MzPckNqrHqxf34dNrBxEdEcKNHy/hojfnsWZHrkvaz8gr5IWpDkZ3imVMF9/+lP6KIW1o1iCcZ35aW+ME9Z3ZG6kfFsz5/Vu6KTr/de2IdsRGh/P45NU+t+bewSpL6Pv6fLNKcdER9GvdmB9XVS85e3f2RpZu2cPDp3elqY9WohTxVUrORLzEWakxX/PN/NgZvRIwBr5Zuv24ji8uLWfu+l0M95NPz11hULumfH/zMP45oTtrd+Yx/qWZPPT1CnbvLa5Vu09NWUtxaTn/OL2biyJ1n4hQZ2/iH5v3MHVNRrWPS88t5Ltl2zm/f0vN3zmM+uEh3HVyR5Zs3sMP1ezh8ZbZqVk0iAihR2JDb4dSbeO6N2fNjlw27Tr6h1Gbdu3luZ/XcWKXOM7omeCh6EQCh5IzES/JzCsiZ1+Jyuj7seYN6zGobVO+XrrtuD6pX7J5N3uLyxieFFjzzY4lJDiIywa1Zvpdo7hsUGs+WbCFUc9N5/05aZSW1Xwx4cWbsvlqyTauHt6WtjH+0QN5Xt8WtIupz7M/ra32cgMfzN1EmbVcOaSNe4PzY+f2bUnn+Gie+nENRaXumdtYW9ZaZjmyGNI+xq+Gpo7t5uyRPlrVRmst9325gtCgIB6b0EOjQkSOg5IzES+pnFitMvr+7azeiWzM2suyrTWvvjfTkUlwkGFI+6ZuiMz3NYoM49Ezu/PDLcPpltCAh79dxfiXZjEntfpTmMvKLQ9/u4r4BhHcNLqDG6N1rZDgIO48uRMp6fnVWpKhsKSMj+Zv4qQuzQJ+CGxtBAc5S+tvyd7HB3N9c2HqjVl72Z5TyFA/6zFv0TiS5BYNmXKU5OzThVuYu2EXD4zvUmcXRxepLSVnIl6Sku6s1NhBwxr92rge8YSFBB3XmmczUrLo06oR0XV8iFqn+Gg+umYgr1/al73FpVz81nyu/2AxW7KPXRb9s4VbWLktlwfGd6F+eIgHonWdU7rH0yOxIf/+JeWYvTxfLdnG7oKSOr/odHWM6BjLyI6xvPSro9bDZd2hcr7ZcD+Zb1bV2G7xLN2yhx05hy6LsSNnH09MXsPgdk25UHMiRY6bkjMRL3Fk5NMoMpRYTZb2aw0iQjmxSxzfLdtOSQ2G5O3KL2Ll9hxG1LEhjUdijGFc93im3jGSu07uyO8pmYz59+/86+d1FBSXHvaYPQXFPPvTWga2bcLpyc09HHHtBQUZ7hnXiW179vHx/M1H3M9ayzuzN9ItoQED2vr2mli+4sHxXcgvKuWl33xvYepZqVkkNqpH66aR3g6lxk7p7ly+4aeDes+stTw0aSUl5eU8dY6GM4rUhpIzES9xpOeRFBel/8QCwIReiezaW8ysGgzHm71+F9bC8ABb36y2IkKDuemEJH67ayTjusXz8m+pjPnX73xzmHl9//o5hdzCUh45o5vf/h0N6xDD4HZNeeW3VPKLDp+EznBkkZqRz9XD2vrt8/S0js2iuaB/Kz6Yu4mNtaim6mqlZeXMWb+LYR1i/PJ32S42io7Nog6p2vjtsu38ujaDu07upGG3IrWk5EzEC/6s1Kj5ZoFgVKc4GkWG1mho44yUTBpFhvpVtTZPat6wHi9d1JuJ1w+mSf0wbv10Kef/dy4rtznn9q3ansNH8zdx2aDWdGnewMvRHj9jnL1nu/YW8/bMjYfd5+1ZG4mNDue0ZFW+q4nbT0oiPCSIp6f4zsLUK7blkFdY6jfrmx3OuO7NWbAxm135RYBzFMCj362mV8tGXDVUw25FakvJmYgXZOarUmMgCQsJ4tQezfl5VTp7j9D7UZW1lpmOTIZ28K9qbd7Qv00Tvr1pGE+e3YP1mXs5/ZVZ3P/Vcv7xzSoaRYZx+4kdvR1irfVu1Zix3Zrx5swNZB80R8qRnseMlEwuH9SasBD9l10TcdERXD+yPT+u2smCjdneDgf4c76ZPxcBGtctnnILv6xOB+DR71aTV1jCM+cm6/VMxAX0Si/iBanpqtQYaM7qnci+kjJ+Xn3s9ZVS0vNJzy1ihB9/eu5JwUGGiwa0Ytpdo7hqSFsmLtrK4k27uWdsJxpGBkYxlbtO7kRBcSmvTUs94PF3ZqcRHhLExQNbeSky/3bN8HbEN4jg8cmrKa/mkgXuNNORRdfmDfx6YeYuzaNp3TSSKSt3MnV1Ot8u285No5P0/5mIiyg5E/GCykqN6jkLHH1bNaZF43pM+uPYC1LPdGQC1Ln1zWqrYb1Q/nF6V368bThPnNWD8/sFTkW4pGbRnNOnBf+bt4lte5yV8HbvLearJVs5q3eiX7+Z96Z6YcHcNbYTy7bm8N3y41ss3lUKiktZsnm33y86b4xhXLd45qzP4oFJK+gcH80No9p7OyyRgKHkTMQLHBn5NKwXSmy03nAFiqAgw5m9EpjlyCQzr+io+85wZNEhLoqERvU8FF1g6RAXzcUDWxEUYEOobjupI1h4cWoKAB8v2ExRaTl/Ufn8Wjm7dyLdEhrwxA9rWLplj9fiWLAxm5Iyy1A/LKF/sHHd4ykps2TlF/H0OckaciviQvprEvECR3q+KjUGoAm9Eim38N2yI39CX1hSxvwNu/z+03NxvcRG9bhscGu+WLyV1dtzeX9OGsOTYjRcrJaCggxPn5NMkDGc/dpsnvxhDYUlR19Xzh1mObIICw6ifxv/Xw6hZ4tG9GzRkFvGJNGzZSNvhyMSUJSciXiYtZaUjDxVagxASc2i6Z7YgK+XHrlq48K0bIpKyxmhEvpyGH8b1Z56ocFc9d4CMvKK1GvmIt0TG/LT7SO4oH9L/jtjA6e+OJNFaZ4tEjIrNYt+bRpTLyzYo+d1h6Agwzc3DeO2ACjII+JrlJyJeFhWfjF7ClSpMVBN6JXI8q05rM/MP+z2GSmZhAUHMVCLCcthNI0K568j2pGeW0T72PqM1LxEl2kQEcqTZyfz4dUDKS4r57z/zuWRb1cdcZFzV8rMK2LtzryAGNIoIu6l5EzEwxwZzmIgGqoUmM7omUCQgW+OsObZTIfz0/PIsBAPRyb+4prh7Uhu0ZDbT+oYcPPqfMGwpBh+um0EVwxuw3tz0hj7wgzm1GAB+eMxZ72z/WFKzkTkGJSciXiYo6KMflIz9ZwForgGEQztEMPXS7dj7YGluzNyC1m7M09DGuWoosJD+PamYVp02o3qh4fwyBnd+Py6wQQbw8VvzeeBSSvIKyxxy/lmObJoWC+U7lp0XkSOQcmZiIc5MvJoEBFCnCo1BqwJvRLZnF3Aks17Dnh8hsP56bmKgYj4hgFtmzDl1hFcO6Idny7YzMnPz2D6ugyXnsNay+zULIa0b6pFmkXkmJSciXhYSno+Sc2iVakxgI3tHk9EaBBfHzS0caYjk5iocLrEN/BSZCJysHphwTxwahe+vGEIUeEhXPnuQu6auIycAtf0om3I2sv2nELNNxORalFyJuJhqRn5dNSQxoAWFR7CSV3j+X75dkrKygEoL7fMdGQxPClG84hEfFDvVo35/pZh3HxCByb9sY0Tn/+dn1ftrHW7s1PVYy4i1afkTMSDsvKLyN5bTIc4FQMJdGf1TmB3QQkzUjIBWL0jl+y9xXqDJuLDwkOCufPkTnxz41BiosK59oPF3PzJH+zKP/rC8kczy5FFi8b1aNUk0oWRikigUnIm4kGVxUDUcxb4hifF0qR+GJMqhjbOcDiTtGFKzkR8XvfEhnx701DuPKkjP67cwUnPz+C7ZYcW+TmW0rJy5q7fxbAOMRrKLiLVouRMxIMqy+gnqecs4IUGB3FacnN+WZ1OXqGzB61L8wbERUd4OzQRqYbQ4CBuHpPE9zcPp2Xjetz8yR9c/+FiMvIKq93G8m055BWV6kMZEak2JWciHuRIzyc6IoRmDVSpsS6Y0DuRotJyJv2xjcWbdjOio96gifibTvHRfHnDEO4/pTPT1mVy0r9n8OXirdXqRZtdUaF1SHv97YtI9Sg5E/GglPQ8kuKiNLyljujdshGtm0by3E/rKCmzjEjS+mYi/igkOIjrRrZnyq3DSYqL4s6Jy7jqvYVs37PvqMfNTM2iW0IDmtQP81CkIuLvlJyJeJCzUqOGNNYVxhjO7JVIbmEpEaFB9G3d2NshiUgttI+N4vPrBvPw6V2ZvyGbk5+fwScLNh+2F21vUSl/bN6tIY0iUiNKzkQ8ZFd+Ebv2FtMhTsVA6pIJvRIAGNSuKRGhwV6ORkRqKyjIcNXQtvx02wh6JDbk/q9WcOnb89mSXXDAfgvSsikpswzT+mYiUgNKzkQ8xJFRWalRPWd1SbvYKO48qSPXj2zv7VBExIVaNY3k478O5ImzerBsSw4nPz+D92ZvpLzc2Ys225FFWEgQ/ds08XKkIuJPQrwdgEhd4UivqNSoMvp1zs1jkrwdgoi4gTGGiwe2YlSnWO7/agWPfLeaySt28PQ5ycxKzaJf68bqMReRGlHPmYiHpKTnEx0eQnwDlVIXEQkkCY3q8d5V/XnuvJ6s25nHKS/OZO3OPM03E5EaU3Im4iGOjDw6NFOlRhGRQGSM4dy+LZh6x0hGdIwlOMgwpnMzb4clIn5GwxpFPMSRns+JXfQftYhIIItrEMEbl/Ulr6iUBhGh3g5HRPyMes5EPKCyUqPmm4mIBD5jjBIzETkuSs5EPKCyUmOSKjWKiIiIyBEoORPxgD/L6KvnTEREREQOT8mZiAc40vNUqVFEREREjkrJmYgHONLzValRRERERI5KyZmIBzgy8kiK05BGERERETkyJWcibpa9t5is/GI6qhiIiIiIiByFkjMRN3Ok5wHQQT1nIiIiInIUSs5E3OzPSo3qORMRERGRIztmcmaMaWmMmWaMWWOMWWWMubXi8X8aY5YbY5YaY342xiS4P1wR/+NIzyMqPITmDVWpUURERESOrDo9Z6XAndbaLsAg4EZjTFfgWWttsrW2F/A98A/3hSnivxwZ+XSIU6VGERERETm6YyZn1tod1tolFd/nAWuARGttbpXd6gPWPSGK+LeU9HxVahQRERGRYwqpyc7GmDZAb2B+xc+PA5cDOcBoVwcn4u927y0mK79I881ERERE5JiqXRDEGBMFfAncVtlrZq190FrbEvgIuOkIx11rjFlkjFmUmZnpiphF/EZlMZAOzdRzJiIiIiJHV63kzBgTijMx+8ha+9VhdvkYOOdwx1pr37DW9rPW9ouNjT3+SEX8kCPDWUZfPWciIiIicizVqdZogLeBNdbaf1d5PKnKbmcAa10fnoh/c6TnUz8smARVahQRERGRY6jOnLOhwGXACmPM0orHHgCuNsZ0AsqBTcD1bolQxI85MvLo0CxalRpFRERE5JiOmZxZa2cBh3tn+YPrwxEJLCnp+YzsqOG8IiIiInJs1S4IIiI1s6egmMy8IjqqGIiIiIiIVIOSMxE3qazUmBSnYiAiIiIicmxKzkTcxJFekZyp50xEREREqkHJmYibpKTnERkWTELDet4ORURERET8gJIzETdJzcgnKS6KoCBVahQRERGRY1NyJuImKel5dNB8MxERERGpJiVnIm6QU1BChio1ioiIiEgNKDkTcQNHRh6gYiAiIiIiUn1KzkTcICVdZfRFREREpGaUnIm4gSMjj3qhwSQ2UqVGEREREakeJWcibuBIzyepmSo1ioiIiEj1KTkTcQNHRh4d4jTfTERERESqT8mZiIvl7CshPbeIjs0030xEREREqk/JmYiLpVZWalTPmYiIiIjUgJIzERerrNSonjMRERERqQklZyIu5kjPV6VGEREREakxJWciLlZZDESVGkVERESkJpScibiYIz1f881EREREpMaUnIm4UM6+EnbmFpKk+WYiIiIiUkNKzkRcKDXDWQxEPWciIiIiUlNKzkRcyJHuLKOvSo0iIiIiUlNKzkRcyJGRT0RoEC0aq1KjiIiIiNSMkjMRF0pJV6VGERERETk+Ss5EXCg1I5+OcRrSKCIiIiI1p+RMxEVyC0vYkVNIh2YqBiIiIiIiNafkTPyaIz2Pmz/5gzmpWd4OZX+lRvWciYiIiMjxCPF2ACLHo7CkjFenpfL67+spKbPMTs3ix9uGExcd4bWYKis1JqnnTERERESOg3rOxO/MTs3ilBdn8vJvqZyenMBn1w6ioLiUuyYup7zcei0uR3plpcZIr8UgIiIiIv5LyZn4jV35Rdzx+VIueWs+1lo+vHog/76gFwPbNeWh8V2ZkZLJu3PSvBZfSkY+7WOjCFalRhERERE5DhrWKD7PWsvExVt54oc17C0q5eYTOnDj6A5EhAbv3+eSga2Yvi6Tp6esZUj7pnRp3sDjcaam5zGwXVOPn1dEREREAoN6zsSnpWbkc+Eb87jni+UkxUXxwy3DufPkTgckZgDGGJ4+pwcNI0O55ZM/KCwp82iceYUlbM8ppEOc5puJiIiIyPGp88nZnoJitmQXeDsMOUhhSRnP/5LCqS/OZM2OXJ46uwefXTuYpGZHroTYNCqcf5/fE0dGPk/8sMaD0YKjslLjUeITERERETmaOj2s0VrLpW/Pp6wcJv1tyCG9MeIdc9Zn8dCklWzI2suEXgk8OL4rsdHh1Tp2eFIs1wxry1uzNjKyYyxjujRzc7ROqenO5CxJPWciIiIicpzqdM+ZMYY7TurImh25/PP71d4Op87L3lvMnZ8v4+I351NabvnfXwbwwoW9q52YVbp7XCe6NG/APV8sJyOv0E3RHiglPY/wkCBaNlGlRhERERE5PnU6OQM4oXMzrhvZjo/mb+a7Zdu9HU6dZK3li8VbGfOv6XyzdBt/G9Wen28fwYiOscfVXnhIMC9d2Iv8olLu9lB5fYcqNYqIiIhILdX55AzgrpM70bd1Y+7/agUbs/Z6O5w6ZUNmPhe/OZ+7Ji6jXWwUk28Zzj3jOtd6iGlSs2geOq0rv6dk8p4Hyus70vPoqMWnRURERKQWlJwBocFBvHxRb0KCDTd+tMTjlf7qoqLSMl6c6mDcCzNZuT2HJ87qwcTrBtMp3nUFNS4d2IoTu8Tx1JS1rNmR67J2D1ZZqfFoxUpERERERI5FyVmFhEb1+Nd5PVm9I5fHJmv+mTvN37CLU1+cyfNTUxjbPZ5f7xzJxQNbEeTiIYHO8vrJNIwM5dZP3VdePzVDxUBEREREpPaUnFUxpkszrhvRjg/nbeb75Zp/5mq79xZzzxfLuOCNeRSXlfPeVf15+aLexEVHuO2cTaPCee68nqSk5/Okm8rrV5bRV8+ZiIiIiNRGnS6lfzh3je3EwrRs7vtyBd0TGtImpr63Q/J71lom/bGNxyavIXdfCTeMas8tJyRRL8wzSxeM7BjLX4a25Z3ZGxnVKY7RneNc2r4jPY+wkCBaqVKjiIiIiNSCes4OEhocxMsX9yE4yHDjx5p/Vlsbs/Zy6dvzuePzZbRuGsn3twzj3nGdPZaYVbpnXCc6x0dz9xfLyMwrcmnbqtQoIiIiIq6g5OwwEivmn63ansvjk90zFC7QFZeW88pvDsa+MIPlW3N4bEJ3vrx+CJ3jG3glnojQYF66qDd5haXc/cUyrHVdeX1Her4qNYqIiIhIrR0zOTPGtDTGTDPGrDHGrDLG3Frx+LPGmLXGmOXGmEnGmEZuj9aDTuzajGtHtOODeZuYvHyHt8PxKwvTsjn1pZk893MKJ3Vtxq93jOTSQa1dXvCjpjo2i+bB8V2Yvs515fXzi0rZtmefioGIiIiISK1Vp+esFLjTWtsFGATcaIzpCvwCdLfWJgMpwP3uC9M77h7bid6tGnHvl8tJ0/pn1fLR/E2c9/pc9hWX8e6V/Xn14j7ENXBfwY+aumxQa8Z0juPJKWtZu7P25fVTVQxERERERFzkmMmZtXaHtXZJxfd5wBog0Vr7s7W2tGK3eUAL94XpHaHBQbyi+WfV9r+5aTw4aSVjOsfxyx0jXF54wxWMMTx9bjINIkK59ZOltf6dOtLzAJXRFxEREZHaq9GcM2NMG6A3MP+gTX8BprgoJp9Sdf7ZE24qxR4I3pu9kX98s4oTuzTjtUv7EBnmu4VAY6LCee68ZNal5/HUlLW1asuRka9KjSIiIiLiEtVOzowxUcCXwG3W2twqjz+Ic+jjR0c47lpjzCJjzKLMzMzaxusVJ3Ztxl+Ht+V/czfxwwrNPzvYWzM38Mh3qxnbrRmvXdKH8BDPVmI8HqM6xXHV0Da8NyeNaWszjrsdR3oe7WLqExKs2joiIiIiUjvVekdpjAnFmZh9ZK39qsrjVwCnAZfYI5S/s9a+Ya3tZ63tFxsb64qYveKecZ2d88++WM6mXZp/VumNGet5bPIaTu0RzysX9yEsxH+SlHvHda51ef2U9Hw6ar6ZiIiIiLhAdao1GuBtYI219t9VHh8H3AucYa0tcF+IviE0OIiXL+pNUMX8s6JSzT/7z/T1PPHDWk5Lbs6LF/Ym1M96j6qW17/nOMrr71WlRhERERFxoeq8mx4KXAacYIxZWvF1KvAKEA38UvHY6+4M1Be0aBzJc+f1ZOW2XJ6o4+ufvTotlad/XMuZvRJ44YJefpeYVerYLJoHTu3CtHWZvF/D8vqq1CgiIiIirnTMqg3W2lnA4Rao+sH14fi+k7o245phbXlr1kYGtWvKKT2aezskj3txqoPnp6ZwVu9EnjuvJ8FeXr+sti4f3JrfUzJ5YspaBrePoVN89ZItx/7kTD1nIiIiIlJ7/tnd4WX3jOtMr5aNuOeL5WzeFfAjOvez1vLvX1J4fmoK5/RpERCJGTjL6z9zbjINIkK45ZM/ql1e35GeR1hwEK1VqVFEREREXEDJ2XEIC3HOPzOGOjP/zFrLv35O4aVfHZzfrwXPnpscEIlZpZiocJ49r2eNyus7MvJpF6tKjSIiIiLiGnpXeZxaNnHOP1uxLYcnf6jdWlm+zlrLMz+t45VpqVw0oCVPnZ1MUAAlZpVGd4rjyiEV5fXXHbu8fkp6nuabiYiIiIjLKDmrhZO7xXP1sLa8NyeNH1cG5vpn1lqemrKW/0xfzyUDW/H4hB4BmZhVuu+UznRqFs3dE5eTlX/k8voFxaVs3a1KjSIiIiLiOkrOaunecZ3p2bIRdwfg/DNrLY9NXsN/Z2zg8sGteWxC94BOzODP8vq5hSXcPfHI5fUrKzV2VDEQEREREXERJWe1FBYSxCsX9cYAN30SOPPPrLX83/ereXvWRq4c0oZHz+iGc8m7wNcpPpoHTunMtHWZfDBv02H3caQ7k7MOcRrWKCIiIiKuoeTMBVo2ieTZ83qyfGtOtYtJ+DJrLQ9/u4p3Z6dx9bC2PHx61zqTmFW6YkgbRneK5fHJa0hJzztke0pGHqHBhjZNValRRERERFxDyZmLjO0Wz1+GtuXd2Wn8uHKnt8M5buXlloe+Xsn/5m7iuhHteGh8lzqXmEFlef2eRB+hvL4jPZ92MVGq1CgiIiIiLqN3li503ymd6dmiIXd/sYwt2f43/6y83PLg1yv4aP5mbhjVnvtO6VwnE7NKsdHhPHtuT9buzOPpHw/sEXVk5GnxaRERERFxKSVnLhQWEsQrF/cB4KaPl1BcWu7liKqvvNxy31fL+WTBFm4a3YF7xnaq04lZpdGdneX1352dxvSK8voFxaVsyd5HR5XRFxEREREXUnLmYi2bRPLsuT1Z5kfzz8rKLXd/sZzPF23l1jFJ3HlyRyVmVVSW17+rorz++oy9ACqjLyIiIiIupeTMDcZ1j+eqoW14Z/ZGflrl2/PPysotd01cxpdLtnL7iR25/SQlZgeLCA3mxYt6kVtYwr1fLGddRYEQLUAtIiIiIq6k5MxN7j+li3P+2UTfnX9WWlbO7Z8tZdIf27jr5I7cemKSt0PyWZ3jG3D/KZ35dW0GL/3qIDTY0FqVGkVERETEhZScuUnl/DOLb84/Ky0r57bPlvLtsu3cO64zN52gxOxYrhzShpEdY9mcXUC7mChCValRRERERFxI7y7dyDn/LJllW3MOqfbnTSVl5dzy6R98v3wHD5zamRtGtfd2SH7BGMNz5/UkJiqM7okNvR2OiIiIiASYEG8HEOjGdW/OlUPa8PasjQxs24STu8V7NZ7i0nJu/mQJP61K56HxXbhmeDuvxuNvYqPD+em2EUSEBns7FBEREREJMOo584D7T+1McouG3OXl+WfFpeXc+LEzMXv49K5KzI5T06hw6ofrcw0RERERcS0lZx4QHhLMKxf1wVq46ZM/vDL/rKi0jBs+XMwvq9P5vzO7cdXQth6PQUREREREjkwf/3tIq6aRPHNuMjd8tIRbPvmDPq0bUS8shMjQYCLDgqkXFkxkWEiV74OpF+r8Piw4qFbl7QtLyrj+w8VMX5fJ42d155KBrV34zERERERExBWUnHnQKT2a87dR7Xlt+np+rMH6Z8FBhsjQKklbRRJXmcBVJnT1Qg9M7ir3/WLxVmakZPLk2T24aEArNz5DERERERE5XsZa67GT9evXzy5atMhj5/NVZeWWfSVlFBSXsq+4jIKKr8KSyu//fLxyv4LisgP23Vfy52P7Ko7bV3Fs+UG/UmPg6bOTOb9/S+88YRERERERAcAYs9ha2+9w29Rz5gXBQYao8BCi3FBUwlpLUWm5M1ErKWNfcSmRYSEkNKrn8nOJiIiIiIjrKDkLMMYYIkKDiQgNprG3gxERERERkWpTtUYREREREREfoORMRERERETEByg5ExERERER8QFKzkRERERERHyAkjMREREREREfoORMRERERETEByg5ExERERER8QFKzkRERERERHyAkjMREREREREfoORMRERERETEBxhrredOZkwmsMljJ6y+GCDL20EEGF1T19L1dD1dU9fS9XQ9XVPX0vV0PV1T19L1dD1fvaatrbWxh9vg0eTMVxljFllr+3k7jkCia+paup6up2vqWrqerqdr6lq6nq6na+paup6u54/XVMMaRUREREREfICSMxERERERER+g5MzpDW8HEIB0TV1L19P1dE1dS9fT9XRNXUvX0/V0TV1L19P1/O6aas6ZiIiIiIiID1DPmYiIiIiIiA/wu+TMGDPOGLPOGJNqjLmvyuOfGWOWVnylGWOWHubYXsaYucaYVcaY5caYC6psa2uMmW+McVS0FXaE819RsY/DGHNFTY/3NT5wPX80xuwxxnx/0OPvGWM2Vomhl+uetXt585oaY1obYxZXnGOVMeb6mhzvi7x9j1bs28AYs80Y80qVx3SPHnpNb6po0xpjYo5yfr2O/rmPK66nXkcPPLZW1zQQX0fB+/dpxb4B81rqxuv5UUW7K40x7xhjQo9w/oB6HQWfuKa+8VpqrfWbLyAYWA+0A8KAZUDXw+z3L+Afh3m8I5BU8X0CsANoVPHz58CFFd+/DtxwmOObABsq/m1c8X3j6h7va1/evp4V28YApwPfH/T4e8C53r5G/nZNK84ZXvF9FJAGJOgePf57tGL7i8DHwCu6R496TXsDbSruu5gjnF+voy68nhX76XXUtfdoQL2O+sI1rdJOQLyWuvl6ngqYiq9PDnePEWCvo75wTSv284nXUn/rORsApFprN1hri4FPgTOr7mCMMcD5OC/+Aay1KdZaR8X324EMILbimBOALyp2fR+YcJjzjwV+sdZmW2t3A78A42pwvK/x9vXEWvsrkOeSZ+MbvHpNrbXF1tqiih/Dqegd1z16/PeoMaYv0Az42RVPyAe45ZpW/PyHtTbtGOfX62gVLrieeh09SG2vaQC+joIP3KcB9lrqzuv5g60ALABaHOb8gfY6Ct6/pj7zWupvyVkisKXKz1srHqtqOJBe+Qs6EmPMAJyZ+XqgKbDHWlt6cLvGmH7GmLeOcf4jHu/jvH09j+Xxiq7p540x4dU8xtu8fk2NMS2NMcsr4ni64kVK9+hxXE9jTBDOT+nuPkKzukf/vKZH20+vo+67nseie/Q4rmmAvY6Cl69pAL6Wuv16Vgy9uwz4seLnQH4dBe9f02Px2D3qb8mZOcxjB5ebvIjDZNQHNGJMc+AD4CprbfnR2rXWLrLWXnOM81cnLl/k7et5NPcDnYH+OLvt763GMb7A69fUWrvFWpsMdACuMMY0q2Zcvsjb1/NvwA/W2i2H2V/36IHX9Ij0OurW63k0ukeP85oG2OsoeP+aBtprqSeu52vADGvtTAj411Hw/jU9Go/eo/6WnG0FWlb5uQWwvfIHY0wIcDbw2ZEaMMY0ACYDD1lr51U8nAU0qjj+kHarcf7qHu9rvH09j8hau6OiB7oIeBdnd7c/8JlrWvFJ7yqcnzTpHj2+6zkYuMkYkwY8B1xujHkKdI9y6DWt7fl1jx7f9Twi3aO1v6YB8joK3r+mgfZa6tbraYx5GOeQvDtqeH7do8d/TY/I4/eo9YFJgNX9AkJwTnpsy5+TBbtV2T4O+P0ox4cBvwK3HWbbRA6cQPm3w+zTBNiIc/Jl44rvm1T3eF/78vb1rLLvKA6dfNm84l8DvAA85e3r5Q/XFOeLWb2K7xsDKUAP3aO1u0cr9rmSAyex6x498j5pHL0giF5HXXQ9q+yj11HX3aMB9TrqC9f0oP38/rXUndcTuAaYU3kPHuH4gHod9YVrWmVfr7+Wev2XcRy/vFMrXijXAw8etO094PqjHHspUAIsrfLVq2JbO5yTBFMrbuzKSk39gLeqtPGXin1ScXaZcrTjff3LB67nTCAT2IfzU5OxFY//BqwAVgIfAlHevlb+cE2Bk4DlOF/UlgPX6h6t3T1apa0rOfANhe7RQ6/pLRV/x6U4P/GsvC/1Oure66nXURdeUwLwddTb1/Sgtq4kAF5L3Xg9SyvarHz8H4e7ngTY66iPXFOfeC01FScVERERERERL/K3OWciIiIiIiIBScmZiIiIiIiID1ByJiIiIiIi4gOUnImIiIiIiPgAJWciIiIiIiI+QMmZiIiIiIiID1ByJiIiIiIi4gOUnImIiIiIiPiA/wfL8hIPuGeeEAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB2wElEQVR4nO3dd1iUV9rH8e+hSxERQQVF7B1R1ESNUaKJyaZomukx2fSyKZu+u9lk993sZtM2ZTd1s9m0TY+mmmJEY+wNFRXBrogUK0hnzvvHgEGDCjrDzMDvc11zAc885R59HLnn3Oc+xlqLiIiIiIiIeJafpwMQERERERERJWciIiIiIiJeQcmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiLSTBhjius8HMaY0jo/X+Hp+I6HMWazMWa8p+M4GmPMLGPM9W469+jD/l6LjTHWGHNhzfNTjDFLjTH7jTHbjTFPGGMC6hzf1hgz1RhzwBizxRhz+WHnH2eMyTTGlBhj0owxXdzxOkREpGGUnImINBPW2vDaB7AVOLfOtnc9Hd/h6iYRvnwNd7LWzjns7/UcoBj4pmaXUOAuoB1wEjAOuLfOKf4FVADtgSuAl4wx/QGMMe2AT4GHgbbAEuADd78mERE5MiVnIiLNnDHGzxjzoDFmgzFmlzHmQ2NM25rnEmtGYq41xmwzxuwxxtxsjBlmjFlpjNlrjPlnnXNdY4yZa4x5wRizr2bUZVyd5yONMa8bY3KNMTnGmL8YY/wPO/YfxpjdwKPGmO7GmJk1cRUaY941xrSp2f9tIAH4ombE6H5jzFhjzPbDXt/B0TVjzKPGmI+NMe8YY/YD1xwjph7GmNk1r6XQGFNvcmKMCak5566aP5PFxpj2xpjHgNHAP2ti/GfN/n2MMd8bY3YbY9YZYybXOdd/jTEv1zxfVHP9ho5YTQE+ttYeALDWvlSTwFVYa3OAd4FRNdcJAy4EHrbWFltrfwI+B66qOdcFwGpr7UfW2jLgUWCQMaZPA2MREREXU3ImItL83QFMAsYAccAenCMqdZ0E9AQuAZ4Ffg+MB/oDk40xYw7bdyPO0ZpHgE9rkz3gTaAK6AEMBs4Arq/n2FjgMcAAf6uJqy/QGWeSgLX2Kg4dAXyiga93IvAx0AZnsnK0mP4P+A6IAjoBLxzhnFOAyJr4ooGbgVJr7e+BOcDtNTHeXpMUfQ/8r+Z1Xga8WDtiVeOKmmu3A9Jr4jwqY0wocFHN6zmSU4HVNd/3AqqttVl1nl+B8++Umq8rap+oSfg21HleRESamJIzEZHm7ybg99ba7dbacpzJz0WHlfz9n7W2zFr7HXAAeM9am18zGjMHZ1JTKx941lpbaa39AFgHnG2MaQ+cBdxlrT1grc0H/gFcWufYHdbaF6y1VdbaUmvtemvt99bacmttAfAMziTyRMy31k6z1jqA1seIqRLoAsTVvP6fjnDOSpxJWQ9rbbW1dqm1dv8R9j0H2GytfaPmdS4DPsGZWNX6ylr7Y83fx++BEcaYzsd4XRcChcDs+p40xlwLDAWeqtkUDuw7bLd9QEQDnxcRkSbm07X4IiLSIF2AqcYYR51t1TjnIdXKq/N9aT0/h9f5Ocdaa+v8vAXnyFcXIBDINcbUPucHbKuzb93vMcbEAs/jLA2MqNl/T4Ne1ZHVvcaxYrof5wjWImPMHuBpa+1/6jnn2zhHzd6vKbt8B2fCW1nPvl2Ak4wxe+tsC6g5xy9itNYW15R5xh0W++GmAG8d9mcPgDFmEvA4MN5aW1izuRhnclpXa6Cogc+LiEgT08iZiEjztw04y1rbps4jpGZU7HjEmzqZDs55YTtqrlMOtKtzndbW2rplcocnFn+r2ZZkrW0NXImz1PFI+x/A2QQDgJq5YzGH7VP3mKPGZK3daa29wVobh3OE8UVjTI/DX3DNKOGfrLX9gJE4R8euPkKM24DZh/15h1trb6mzz8FRMmNMOM6GHDsOv26dfToDY4G36nnuTOA1nOWfq+o8lQUEGGN61tk2iJ/LHlfX/Fx7njCge53nRUSkiSk5ExFp/l4GHqttOmGMiTHGTDyB88UCdxhjAo0xF+OcK/a1tTYX5/ytp40xrWsakXQ/bL7a4SJwjuDsNcbEA/cd9nwe0K3Oz1lAiDHmbGNMIPAHIPhIJz9WTMaYi40xnWp234Mz0ao+/DzGmFRjzMCaZHA/zjLH2v0Oj/FLoJcx5qqaP6PAmgYrfevs8ytjzCnGmCCcI3cLrbVHGzW7Cphnrd1wWFyn4ZyvdqG1dtFhr/0Azm6MfzbGhBljRuGcj1c7gjcVGGCMudAYEwL8EVhprc08ShwiIuJGSs5ERJq/53B26fvOGFMELMDZmON4LcTZPKQQZ1OPi6y1u2qeuxoIAtbgTHY+Bjoe5Vx/AobgnOv0Fc5koq6/AX+o6ZB4r7V2H3Ar8G8gB+dI2naO7mgxDQMWGmOKcf4Z3Wmt3VTPOTrUHLcfWItz3tc7Nc89h3MO3x5jzPPW2iKcTUcuxTkathP4O4cmkf/D2UxlN5CCs0HIsV5DfY1AHsbZqORr8/M6aNPrPH8r0ArnPMH3gFustasBaub4XYjz73APznui7vxAERFpYqae0nUREZF6GWOuAa631p7i6Vh8lTHmv8B2a+0fPB2LiIh4F42ciYiIiIiIeAElZyIiIiIiIl5AZY0iIiIiIiJeQCNnIiIiIiIiXkDJmYiIiIiIiBcIaMqLtWvXziYmJjblJUVERERERLzG0qVLC621MfU9d8zkzBjTGXgL5xovDuBVa+1zxpgPgN41u7UB9lprk492rsTERJYsWdKI0EVERERERJoPY8yWIz3XkJGzKuAea+0yY0wEsNQY87219pI6F3ga5wKiIiIiIiIichyOmZxZa3OB3Jrvi4wxa4F4YA2AMcYAk4HT3BiniIiIiIhIs9aohiDGmERgMLCwzubRQJ61NtuFcYmIiIiIiLQoDW4IYowJBz4B7rLW7q/z1GXAe0c57kbgRoCEhIRfPF9ZWcn27dspKytraCgiDRISEkKnTp0IDAz0dCgiIiIiIsfUoEWojTGBwJfAt9baZ+psDwBygBRr7fZjnWfo0KH28IYgmzZtIiIigujoaJwVkiInzlrLrl27KCoqomvXrp4OR0REREQEAGPMUmvt0PqeO2ZZY82csteBtXUTsxrjgcyGJGZHUlZWpsRMXM4YQ3R0tEZkRURERMRnNGTO2SjgKuA0Y0x6zeNXNc9dylFKGhtKiZm4g+4rEREREfElx0zOrLU/WWuNtTbJWptc8/i65rlrrLUvuz9M93rsscfo378/SUlJJCcns3Chs9/J9ddfz5o1a1xyjcTERAoLC4+6z1//+tdGn/e///0vt99++yHb3njjDZKTk0lOTiYoKIiBAweSnJzMgw8+2OjzN4Vnn32WkpIST4chIiIiIu7wxBOQlnbotrQ053Y5RKO6NTZH8+fP58svv2TZsmWsXLmSGTNm0LlzZwD+/e9/069fvyaL5XiSs/pce+21pKenk56eTlxcHGlpaaSnp/P444+75PyNZa3F4XAc8fnjSc6qqqpONCwRERERaQrDhsHkyT8naGlpzp+HDfNsXF6oxSdnubm5tGvXjuDgYADatWtHXFwcAGPHjqW2gUl4eDgPPPAAKSkpjB8/nkWLFjF27Fi6devG559/DvxyFOucc85h1qxZv7jmpEmTSElJoX///rz66qsAPPjgg5SWlpKcnMwVV1wBwDvvvMPw4cNJTk7mpptuorq6GnCOjPXq1YsxY8Ywd+7cBr/WJ598kmHDhpGUlMQjjzwCwObNm+nTpw/XX389AwYM4IorrmDGjBmMGjWKnj17smjRIgAeffRRrrrqKk477TR69uzJa6+9dszz9u3bl1tvvZUhQ4awbds2brnlFoYOHUr//v0P7vf888+zY8cOUlNTSU1NPfhnXevjjz/mmmuuAeCaa67ht7/9LampqTzwwANs2LCBM888k5SUFEaPHk1mZmaD/yxEREREpImkpsKHH8L558N99zkTsw8/dG6XQ1lrm+yRkpJiD7dmzZpfbGtKRUVFdtCgQbZnz572lltusbNmzTr43JgxY+zixYuttdYC9uuvv7bWWjtp0iR7+umn24qKCpuenm4HDRpkrbX2jTfesLfddtvB488++2yblpZmrbW2S5cutqCgwFpr7a5du6y11paUlNj+/fvbwsJCa621YWFhB49ds2aNPeecc2xFRYW11tpbbrnFvvnmm3bHjh22c+fONj8/35aXl9uRI0cecs3D1V7322+/tTfccIN1OBy2urrann322Xb27Nl206ZN1t/f365cudJWV1fbIUOG2GuvvdY6HA47bdo0O3HiRGuttY888ohNSkqyJSUltqCgwHbq1Mnm5OQc9bzGGDt//vyDsdS+7qqqKjtmzBi7YsWKX/zZHP7n8NFHH9kpU6ZYa62dMmWKPfvss21VVZW11trTTjvNZmVlWWutXbBggU1NTf3F6/f0/SUiIiIi1trp060F5+Phhz0djUcBS+wR8qUGr3PWFP70xWrW7Nh/7B0boV9cax45t/8Rnw8PD2fp0qXMmTOHtLQ0LrnkEh5//PGDozW1goKCOPPMMwEYOHAgwcHBBAYGMnDgQDZv3tyomJ5//nmmTp0KwLZt28jOziY6OvqQfX744QeWLl3KsJrh3tLSUmJjY1m4cCFjx44lJiYGgEsuuYSsrKxjXvO7777ju+++Y/DgwQAUFxeTnZ1NQkICXbt2ZeDAgQD079+fcePGYYz5xWubOHEirVq1olWrVqSmprJo0SJ++umnI563S5cunHzyyQeP//DDD3n11VepqqoiNzeXNWvWkJSU1Kg/u4svvhh/f3+Ki4uZN28eF1988cHnysvLG3UuEREREWkCe/bAlVc6v+/WDV56yTlqppGzX/Cq5MxT/P39GTt2LGPHjmXgwIG8+eabv0jOAgMDD3b/8/PzO1gG6efnd3D+U0BAwCFzq+pr4z5r1ixmzJjB/PnzCQ0NZezYsfXuZ61lypQp/O1vfztk+7Rp046rC6G1loceeoibbrrpkO2bN28++FqO9trgl90PjTFHPW9YWNjBnzdt2sRTTz3F4sWLiYqK4pprrjlim/u61zl8n9pzOhwO2rRpQ3p6+rFeuoiIiIh40uTJsGsX9O0L+fnOkkaVNtbLq5Kzo41wucu6devw8/OjZ8+eAKSnp9OlS5fjOldiYiIvvvgiDoeDnJycg/O16tq3bx9RUVGEhoaSmZnJggULDj4XGBhIZWUlgYGBjBs3jokTJ3L33XcTGxvL7t27KSoq4qSTTuLOO+9k165dtG7dmo8++ohBgwYdM7YJEybw8MMPc8UVVxAeHk5OTg6BgYGNen2fffYZDz30EAcOHGDWrFk8/vjjtGrVqkHn3b9/P2FhYURGRpKXl8f06dMZO3YsABERERQVFdGuXTsA2rdvz9q1a+nduzdTp04lIiLiF+dr3bo1Xbt25aOPPuLiiy/GWsvKlSsb9GchIiIiIk3k009hxgyYMgWGD4fbboPu3Z2J2eLFSs4O41XJmScUFxfzm9/8hr179xIQEECPHj0ONulorFGjRh0sERwwYABDhgz5xT5nnnkmL7/8MklJSfTu3fuQsr8bb7yRpKQkhgwZwrvvvstf/vIXzjjjDBwOB4GBgfzrX//i5JNP5tFHH2XEiBF07NiRIUOGHGwUcjRnnHEGa9euZcSIEYCznPOdd97B39+/wa9v+PDhnH322WzdupWHH36YuLg44uLiGnTeQYMGMXjwYPr370+3bt0YNWrUIa/7rLPOomPHjqSlpfH4449zzjnn0LlzZwYMGEBxcXG98bz77rvccsst/OUvf6GyspJLL71UyZmIiIiIt8jPh5tugiFD4LXXYNky5/alS+GCC5SY1cM456Q1jaFDh9ra7oe11q5dS9++fZssBjk+jz76KOHh4dx7772eDqVRdH+JiIiIeIC1zgTs66+dSVn//lBaChER8MAD8Nhjno7QY4wxS621Q+t7rsWPnImIiIiIiIu9+y5Mm+ZcaLp/zdSlVq2c3y9d6tHQvJmSM2mQRx991NMhiIiIiIgv2L4dbr8dRo6E3/720OdSUuCLL5wja8fR5K65a/GLUIuIiIiIiItYC9dfD5WV8OabcHh/g5QUKCx0JnDyC0rORERERETENV57Db791lnO2KPHL59PSXF+VWljvZSciYiIiIjIidu40VnGOH483HJL/fsMGuQcTVNyVi8lZyIiIiIicmIcDrj2Wmfi9frr4HeENKNVK+jXT8nZESg5A/z9/UlOTmbAgAFcfPHFlJSUHPe5rrnmGj7++GMArr/+etasWXPEfWfNmsW8efMO/vzyyy/z1ltvHfe1a23evJkBAwYcsu3RRx/lqaeeatR5XBWPiIiIiDRzzz0HP/7o/JqQcPR9U1KcyVkTLunlK5ScAa1atSI9PZ2MjAyCgoJ4+eWXD3m+IYs81+ff//43/fr1O+LzhydnN998M1dfffVxXcvVqqqqvCoeEREREfFSa9fCQw/BuefClCnH3j8lxblAdU6O+2PzMb6VnD3xBKSlHbotLc253UVGjx7N+vXrmTVrFqmpqVx++eUMHDiQ6upq7rvvPoYNG0ZSUhKvvPIKANZabr/9dvr168fZZ59Nfn7+wXONHTuW2kW3v/nmG4YMGcKgQYMYN24cmzdv5uWXX+Yf//gHycnJzJkz55DRrfT0dE4++WSSkpI4//zz2bNnz8FzPvDAAwwfPpxevXoxZ86cRr/Go537d7/7HWPGjOG55547GM+OHTtITk4++PD392fLli1s2bKFcePGkZSUxLhx49i6dSvgHD284447GDlyJN26dTs4kigiIiIizUxVlTMhCwuDV19tWHt8NQU5It9KzoYNg8mTf07Q0tKcPw8b5pLTV1VVMX36dAYOHAjAokWLeOyxx1izZg2vv/46kZGRLF68mMWLF/Paa6+xadMmpk6dyrp161i1ahWvvfbaISNhtQoKCrjhhhv45JNPWLFiBR999BGJiYncfPPN3H333aSnpzN69OhDjrn66qv5+9//zsqVKxk4cCB/+tOfDolz0aJFPPvss4dsr2vDhg2HJFR1RwOPdu69e/cye/Zs7rnnnoPb4uLiSE9PJz09nRtuuIELL7yQLl26cPvtt3P11VezcuVKrrjiCu64446Dx+Tm5vLTTz/x5Zdf8uCDDzbyb0JEREREfMLf/w6LF8NLL0GHDg07ZtAg55w0JWe/4F2LUN91F6SnH32fuDiYMAE6doTcXOjbF/70J+ejPsnJ8OyzRz1laWkpycnJgHPk7LrrrmPevHkMHz6crl27AvDdd9+xcuXKg6NA+/btIzs7mx9//JHLLrsMf39/4uLiOO20035x/gULFnDqqacePFfbtm2PGs++ffvYu3cvY8aMAWDKlClcfPHFB5+/4IILAEhJSWHz5s31nqN79+6k1/mzrF1E+ljnvuSSS44Y19y5c/n3v/99cLRu/vz5fPrppwBcddVV3H///Qf3nTRpEn5+fvTr14+8vLyjvl4RERER8UHp6c7fwS+5xDlg0lChoWoKcgTelZw1RFSUMzHbutU52TAq6oRPWTvn7HBhYWEHv7fW8sILLzBhwoRD9vn6668xxxi+tdYec5/GCA4OBpyNTKqqqlx2Xjj0NdeVm5vLddddx+eff054eHi9+9R9jbUxgvP1i4iIiEgzUl7uLGeMjoZ//avxx6ekwDffOJuCuPD3ZF/nXWWNzz4Ls2Yd/fHII1BSAg8/7Pz6yCNH3/8Yo2YNNWHCBF566SUqKysByMrK4sCBA5x66qm8//77VFdXk5ubS9rhc+KAESNGMHv2bDZt2gTA7t27AYiIiKCoqOgX+0dGRhIVFXVwhOrtt98+ONJ1oo7n3JWVlUyePJm///3v9OrV6+D2kSNH8v777wPw7rvvcsopp7gkRhERERHxcn/+M6xc6Vx0Ojq68cenpEBeHuzY4frYfJhvjZzVzjH78ENITXU+6v7sRtdffz2bN29myJAhWGuJiYlh2rRpnH/++cycOZOBAwfSq1evehOdmJgYXn31VS644AIcDgexsbF8//33nHvuuVx00UV89tlnvPDCC4cc8+abb3LzzTdTUlJCt27deOONN1z2Whp77nnz5rF48WIeeeQRHnnkEcA5Yvj888/z61//mieffJKYmBiXxigiIiIiXmrBAnj8cfj1r+Gcc47vHEOGOL8uXQrx8a6LzceZpiw5Gzp0qK3tXlhr7dq19O3bt2EneOIJZ/OPuolYWppzEmKd+U4itRp1f4mIiIjI0ZWUwODBUFYGq1ZB69bHd54DB5zH/uEPR+4d0UwZY5Zaa4fW95xvjZzVl4DVjqCJiIiIiIh7/e53kJUFM2Ycf2IGztb7ffqoKchhvGvOmYiIiIiIeKe0NHjuObj9dhg37sTPl5Ki5OwwSs5EREREROToiorg2muhRw/nfDNXSEmBnTvVFKQOryhrdHWreRFQC38RERERl7nnHti2DebMcZYkukJKivPr0qXOtYzF8yNnISEh7Nq1S79Ii0tZa9m1axchISGeDkVERETEt02f7myZf++9MHKk686bnOxc42zZMted08d5fOSsU6dObN++nYKCAk+HIs1MSEgInTp18nQYIiIiIr5r92647jro39+5tpkrhYerKchhPJ6cBQYG0rVrV0+HISIiIiIih7vjDigogC+/hOBg158/JQVmznT9eX2Ux8saRURERETEC33yCbz7Ljz88M+LRrtaSoqzIcjOne45v49RciYiIiIiIofKy4Obb3YmTw895L7r1G0KIkrORERERESkDmudiVlREbz5JgQGuu9agwc7m4IoOQO8YM6ZiIiIiIh4kXfegWnT4MknnY1A3Ck8HHr3VnJWQyNnIiIiIiLitH07/OY3MGoU3H1301wzJUXJWQ0lZyIiIiIi4ixnvO46qKyE//4X/P2b5ropKZCT45zn1sIpORMRtzlQXsUz363j/Bfnsqu43NPhiIiIyNG8+ip89x089RT06NF011VTkIOOmZwZYzobY9KMMWuNMauNMXfWee43xph1NdufcG+oIuIrqh2WDxZvZexTs3h+5nqWb93LR0u3ezosEREROZKNG+Gee+D0053NQJqSmoIc1JCGIFXAPdbaZcaYCGCpMeZ7oD0wEUiy1pYbY2LdGaiI+IY52QU89tVaMncWMSShDa9clcLj0zN5f9FWbhzdDT8/4+kQRUREpK7qarjmGmcZ4+uvOxOlphQRAb16KTmjASNn1tpca+2ymu+LgLVAPHAL8Li1trzmuXx3Bioi3i07r4hr3ljEVa8v4kBFFf+8fDCf3DKSIQlRXD48gc27SliwcZenwxQRERGAJ56AtDTn9889B3PmwC23wHvveSYeNQUBGjnnzBiTCAwGFgK9gNHGmIXGmNnGmGFuiE9EvFxhcTm/n7qKM5+bw9Ite/jdr/ow47djOCcpDlPzyduZAzrQJjSQdxdt9XC0IiIiAsCwYTB5srPxx+9+ByNHOkfNhnnoV/ohQ5ydIvNb9nhPg9c5M8aEA58Ad1lr9xtjAoAo4GRgGPChMaabtdYedtyNwI0ACQkJLgtcRDyrrLKa13/axEuzNlBaWc2VJyVw5/hetA0L+sW+IYH+XDikE2/N30xhcTntwoM9ELGIiIgclJoKb78N557rXGQ6MxM+/ti53RPqNgU56yzPxOAFGjRyZowJxJmYvWut/bRm83bgU+u0CHAA7Q4/1lr7qrV2qLV2aExMjKviFhEPcTgsn6XnMO7p2Tz57TpO7hbNd3efyp8mDqg3Mat12fDOVFZbPlFjEBEREc9bvBjuuguqqqC0FG67zXOJGTibgkCLL21sSLdGA7wOrLXWPlPnqWnAaTX79AKCgEI3xCgiXmLx5t2c/+Jc7nw/nTahgfzvhpP495ShdI8JP+axPWIjGJ7YlvcWbeWwAXYRERFpKpWV8MgjMGIE7NoFkZHw8MPw0ks/z0HzhMhI6NmzxSdnDSlrHAVcBawyxqTXbPsd8B/gP8aYDKACmHJ4SaOINA+bCw/w+PRMvlm9kw6tQ3jq4kFcMDi+0Z0XLzupM3d/sIL5G3cxsvsvBtpFRETEndasgauugmXLnC3zly2DqVOdI2apqc45aB9+6NnSxrlzPXNtL3HM5Mxa+xNwpN/ArnRtOCLiTfaVVPL8zGzemr+ZQH8/fnt6L24Y3Y1WQf7Hdb6zBnTk0c/X8L+FW5WciYiINBWHw9mR8aGHnG3rP/kE1q93/lybiKWmOhOzxYs9m5y9/z4UFEALnQ7V4IYgItJyVFQ5eHvBFp7/IZv9ZZVMTunMPWf0IrZ1yAmdt7YxyNsLNrOruJxoNQYRERFxr82bnWuYzZ7tbP7x2mvQvn39+9aOoHlKbVOQZctgwgTPxeFBjWqlLyLNm7WWbzJ2csY/ZvN/X65hYHwkX98xmr9flHTCiVmtg41BlqkxiIiIiNtYC2+8AUlJzmTnP/+Bzz47cmLmDYYMcX5twfPONHImIgCs3L6Xv3y1lkWbdtMjNpw3rhnG2N4xB9cqc5We7SMYlhjFe4u2ccPobi4/v4iISIuXlwc33giffw5jxjjXMktM9HRUxxYZCT16tOjkTCNnIi3cjr2l3P1BOuf9cy4b8ov5y6QBfHPnaFL7xLotcbr8pAQ2FR5g/sZdbjm/iIhIi/XppzBgAHz7LTzzDMyc6RuJWa2UFCVnItLyFJdX8eS3maQ+NYuvVuVyy9juzLpvLFee3IUAf/e+NZw1oCORrQJ5b9E2t15HRESkxdi7F66+Gi68EBISnKWMd98Nfj72635KCmzZ4mzz3wKprFGkBfopu5C7PlhOYXEFE5PjuG9CbzpFhTbZ9UMC/blgSDzvLtiqxiAiIiInasYMuPZayM2FP/4R/vAHCAz0dFTHp7YpyNKlcMYZno3FA3wslRaRE7V1Vwm3vLuUtmFBTLttFM9dOrhJE7Nalw1PoKLawafLcpr82iIiIs1CSQnccYdzzbKwMJg3D/70J99NzKDFNwVRcibSgpRVVnPzO0vxM4bXpwwjuXMbj8XSq30EQ7tE8d6irWj9ehERkUZatAgGD4YXXnAmaMuWwfDhno7qxLVpA927KzkTkebvj59lsCZ3P89ekkzntk0/Wna4y09KYGPhARZs3O3pUERERHxDZaWzdHHkSCgtdZY0PvcchHr+/3WXacFNQZScibQQHyzeyodLtnPHaT1I7RPr6XAA+NXAjrQOCeC9RVs9HYqIiIj3W70aTj4Z/u//4IorYNUqGDfO01G5XkqKc/HsFtgURMmZSAuQkbOPhz9bzeie7bhzfC9Ph3OQszFIJ77J2MnuAxWeDkdERMQ7ORzOtvgpKbB1q7Nd/ptvOtcFa45qm4IsW+bZODxAyZlIM7e3pIKb31lKu7Agnrt0MP5+3rXo8+Un1TYG2e7pUERERLzP5s1w2mlwzz0wYQJkZMD553s6KvdqwU1BlJyJNGMOh+W3H64gb38Z/7piCG3Dgjwd0i/UNgb5nxqDiIhIS/bEE5CW9vPP1sL990Pv3s4RpDfegGnToH17j4XYZKKioFs3JWci0ry8OGs9MzPz+eM5/RicEOXpcI7osuEJbCw4wMJNagwiIiIt1LBhMHmyM0HbuRNGjYInn4S+fZ1zy665Box3Vb+41ZAhSs5EpPmYk13A099nMSk5jitP7uLpcI7q7CQ1BhERkRYuNRXeeQfOO885ajR/Ptx6q3PUrIt3/z/uFikpsGkT7G5ZH9wqORNphnbsLeXO99PpGRvOXy8YiPHyT9pqG4NMX7WTPWoMIiIiLU1ZGfzrX3DddVBc7GyRf/PNzm1+LfTX9RbaFKSF/m2LNF8VVQ5ufXcZFVUOXroyhdCgAE+H1CCXDXc2BvlEjUFERKSlKCuDf/7Tuejy7bdD27bODox/+AN8/PGhc9BamhbaFETJmUgz89hXa0jftpcnL0qie0y4p8NpsN4dIkhRYxAREWkJysrghRecSdlvfuP8+vTTkJsLU6c61zH78MOf56C1RNHRkJiokTMR8V2fpefw5vwtXH9KV84a2NHT4TRabWOQRWoMIiIizVFpKTz/vDMZu+MO6NEDZs6E2bOhqsqZkKWmOvdNTXX+vHixZ2P2pJQUjZyJiG/KyiviwU9WMSwxigfO6uPpcI7L2QM7EqHGICIi0tzUTcruvBN69nSOiM2e7UzCjHG2za9NzGqlpjq3t1QpKbBhA+zd6+lImoySM5FmoKiskpvfXkpYcAD/vHwIgf6++U+7VZA/FwyO5+sMNQYREZFmoLQUnnvO2X3xzjuda5alpcGsWTB2rKej834tsCmIb/4GJyIHWWt54JOVbNldwj8vH0z71iGeDumEXHZSAhVVagxyuG8ydrJw4y5PhyEiIg1RWgrPPutMyu66y7lW2axZzsRMSVnD1SZnLai0UcmZiI97/adNfL1qJ/dP6M3J3aI9Hc4J69OhNUMS2vCeGoMcVFnt4L6PV3DfxyupdujPRETEa5WUwD/+AV27wt13Q79+ztLFmTNhzBhPR+d7oqOda7wpORMRX7Bo027+Nj2TM/q158ZTu3k6HJe5bHgCGwoOsHjzHk+H4hWWbdlDUVkVW3eXMGtdvqfDERGRw5WUwDPPOEfKfvtbGDAAfvwRfvgBTj3V09H5thbWFETJmYiPyi8q4/b/LaNzVCuemjzI6xeaboxzkuLUGKSOtHUFBPgZYiKCeXP+Fk+HIyInyFrL/A27VB3QHNQmZV27wj33/JyUzZgBo0d7OrrmISUF1q+Hffs8HUmTUHIm4oOqqh385n/L2V9WyUtXptA6JNDTIblUqyB/zh8cz1erctUYBJi1Lp+hiVFcdXIXfswqYGNBsadDEpET8O3qPC57bQHTM3Z6OhQ5XgcOONclq03KkpJgzhwlZe7QwpqCKDkT8UFPfreOhZt289fzB9K3Y2tPh+MWl9c0Bvl0eY6nQ/Go3H2lZO4sIrV3LJcNTyDQ3/D2Ao2eifiyr1flAvDpspb9/uYTnnji0EWgDxyAm2+G9u3h3nth0CD46Sf4/ns45RTPxdmctbCmIErORHzMNxk7eWX2Rq44KYELhnTydDhu06dDawarMQiz1hUAkNonlpiIYM4e2JGPl2znQHmVhyMTkeNRXlXNzMx8Av0Ns7Py2Vui6gCvNmwYTJ4MX38NTz4J8fHwyivO7otz58J338GoUZ6Osnlr1w4SEpSciYj32VR4gPs+WkFSp0j+eG4/T4fjdpcNT2B9fjFLtrTcxiBpmfnEt2lFz9hwAK4emUhReRVTW/iIooiv+im7kOLyKu4+vReV1ZavakbRxEulpsKHH8KFFzoXgy4pgRdegMWLYeRIT0fXcrSgpiBKzkR8RGlFNbe8sxR/f8OLVwwhOMDf0yG53TlJHYkIDuC9hS2zMUh5VTVz1xcytnfMwYYvgzu3YWB8JG/N39yiRxRFfNX0jJ1EhARw/Snd6BkbzjR90OL9UlPhuuuc3z/4INx+u2fjaYlSUiA7u0U0BVFyJuIDrLX8fuoq1uUV8ewlyXSKCvV0SE0iNCiA84fE8+Wq3BZZ+rNk8x4OVFQztnfswW3GGK4e0YWsvGLma1FqEZ9SWe3g+zV5nN63PUEBfkwaHM/izXvYvqfE06HJ0aSlwQcfwMMPw0svHToHTZpG7byz5cs9G0cTUHIm4gP+t2grny7P4c5xPQ/5Rb0luHRYTWOQFjhxfta6fIL8/RjZ/dDFxc8dFEdUaCBvzVNjkMbaV1Lp6RCkBVuwcRf7Sis5c0AHAM4bFAfAZ+k7PBmWHE1amnPO2Ycfwp//7Pw6ebIStKY2ZIjzawsobVRyJuLlVmzby58+X8OYXjHccVpPT4fT5PrFtSa5c8tsDJK2roCTurUlLDjgkO0hgf5cOjyB79bsJGdvqYei8z0zM/MY8pfvWZu739OhSAs1PWMnoUH+nNorBoDObUMZlhjFtOU5Le79zWcsXuxMyFJTnT/XzkFbvNizcbU0sbHQqZOSMxHxrD0HKrj13WXERATz7CXJ+Pk1n4WmG+Py4Qlk5xeztAU1Btm2u4T1+cVHHCm94qQEAP63UKNnDfXmvC1UO6zWlhKPqHZYvlu9k9Q+sYQE/jxneGJyPNn5xazRhwbe6f77f07MaqWmOrdL02ohTUGUnIl4qWqH5c4P0ikoKufFK4YQFRbk6ZA85pxBzsYg/2tBjUFmrcsHILV3TL3Pd4oKZXzf9ry3aBtlldVNGZpPytlbyo/ZzmUJflib5+FopCVasnk3hcUVnFVT0ljr7IEdCfAzagwiciwpKZCVBfub9wcZSs5EvNQLM7P5MauAR87rx6DObTwdjkeFBgUwaXDLagyStq6ALtGhdG0XdsR9poxMZPeBCr5aqVbcx/Lh4m0AXHlyAqt37Cd3n8pBpWlNz9hJcIAfqYeNhkeFBTG2dyyfr9hBtUOljSJHVNsUJD3do2G4m5IzES80a10+z/2QzQVD4rl8eIKnw/EKlw13NgZpCet7lVVWM29DIWN7/dxCvz4ju0fTIzact+ZvbrrgfFC1w/LRkm2M7hnDlBGJAPywNt+zQUmL4nBYvl29k1N7xfxiDinApMFx5O0vZ6E6sIocWW1y1sxLG4+ZnBljOhtj0owxa40xq40xd9Zsf9QYk2OMSa95/Mr94Yo0f9v3lHDXB+n0bh/BY5MGHvWX85akX1xrBrWQxiALN+2mrNLB2D5H78xpjGHKiC6s2L6P9G17myY4H/RjVgE79pVx6bDO9IgNJ6FtKDMzlZxJ01mxfS+5+8p+UdJYa3zf9oQHB7SID59Ejlv79hAfr+QMqALusdb2BU4GbjPG9Kt57h/W2uSax9dui1KkhSivqubWd5dRXW156coUWgU1/4WmG+Py4Z3Jymv+jUHSMvMJDvBjRLfoY+57/pBOhAcH8Na8ze4PzEe9t2gr0WFBjO/bHmMM4/rGMnd9IaUVmqsnTeObjJ0E+hvG9W1f7/Mhgf6cOaAD32Ts1BxSkaNpAU1BjpmcWWtzrbXLar4vAtYC8e4OTKQl+vMXa1i5fR9PTR501LlGLdW5g+IIDw7gf4uad2OQWevyGdk9+pCObkcSHhzARSmd+HJlLoXF5U0QnW/JLyrjh8x8LkrpRFCA87+8cX3aU17l4Kf1hR6OTloCa50dQkd2b0dkq8Aj7jcpOZ6i8iqN6oocTUoKrFsHRUWejsRtGjXnzBiTCAwGFtZsut0Ys9IY8x9jTJSrgxNpST5Lz+HdhVu5aUw3JvSvv/SlpXM2Bonjq5W5zXYx4U2FB9i8q4TUY5Q01nXlyV2oqHbwfjNPWo/Hx0u3U+2wXDKs88Ftw7u2JSI4QF0bpUmsyd3P1t0lRyxprDWiezSxEcEqbRQ5mpQUsLZZNwVpcHJmjAkHPgHustbuB14CugPJQC7w9BGOu9EYs8QYs6SgoODEIxZppt6ev4U+HSK474zeng7Fq102PIHyKgdTl2/3dChukVbzqfnYXg1PznrEhjO6ZzveWbCVqmqHu0LzOQ6H5YPF2xjetS3dYsIPbg8K8OPUXjH8kJmPQ93xxM2+ydiJn4HT+9Vf0ljL389w3qA4Zq3LbzFdaUUarQU0BWlQcmaMCcSZmL1rrf0UwFqbZ62tttY6gNeA4fUda6191Vo71Fo7NCam/vV6RFo6ay1ZeUUMTYwiwF9NVI+mf1wkgzpF8t6ibc2yMcisrAK6xYSREB3aqOOuHpHIzv1lfL9Go0G1FmzcxZZdJVw2vPMvnhvXN5aConIyduzzQGTSkkzP2MlJXaOJDg8+5r6TBsdTWW35epUWShepV4cOEBfXspMz42wV9zqw1lr7TJ3tHevsdj6Q4frwRFqG/KJy9pdV0at9hKdD8QmXDU9gXV4Ry7Y2r8YgJRVVLNi46xfrIDXEaX1i6RTVijfVVv+g9xdvo3VIAGcN6PiL51J7x+JnYIZa6osbrc8vYn1+MWcNbFipev+41vSIDdeC1CJH08ybgjTkI/pRwFXAaYe1zX/CGLPKGLMSSAXudmegIs1ZVp5zYmvPWCVnDXGwMcjCbZ4OxaXmb9hFRZXjuJIzfz/DVSd3YcHG3azb2XwnSjfUngMVfJOxkwuGdKq3sUpUWBApXaI070zcanrNCFhD5xEbY5iUHMeizbvZvqfEnaGJ+K6UFMjMhOJiT0fiFg3p1viTtdZYa5Pqts231l5lrR1Ys/08a21uUwQs0hxl5TnfYHq1Dz/GngIQFhzAxOQ4vly5o1k1Bklbl09okD/Duh5ff6XJQzsTHOCn0TPg0+U5VFQ7DmkEcrjT+rRn9Y795O4rbcLIpCWZnrGTlC5RtG8d0uBjJiY7G2J/lr7DXWGJ+LZm3hREk1tEvEDWziKiw4IaNCdBnGobg0xLbx7lP9Za0jILGNWjHcEBx7e+XVRYEBOT45i6LId9pc0naW0say3vL9rKoM5t6Nux9RH3G9/XOUL5QzMobXz6u3U889061udr1NRbbN1Vwprc/cfs0ni4zm1DGdolis/Sc5rlvFqRE9bMm4IoORPxAln5RfTUqFmjDIiPJKlTJP9buLVZ/AKzPr+YnL2ljO19Yo2Trh6RSGllNR8vbZ7dLBti2da9ZOcXc9lRRs3A2eUyoW2oz5c2ZucV8cLM9Tw/cz3jn/mRXz03h1dmb2DHXo0IetL0DGdB0fEsjTJxcDxZecWszVWyLfILHTs6H0rORMQdrLWszytWM5Dj8HNjkL2eDuWEzVrnXGpk7HHMN6trQHwkKV2ieHv+5hbbJv79RVsJC/Ln3EFxR93PGMO4vrHM3bCLkoqqJorO9aal5+Bn4Os7RvPIuf0ICvDjb9MzGfn4TCa/PJ93Fmxh9wG1Zm9q0zN2MjA+ks5tG9d5FeDsgR0J8DPNpjJAxOWacVMQJWciHpa7r4yi8ip6KjlrtPMGxREW5M97zWDx5bR1+fRuH0F8m1YnfK4pIxPZvKuEH7Nb3tqSRWWVfLkyl3MHxREWHHDM/cf3bU9FlYO563c1QXSu53BYPkvfwSk9Y+gX15prR3Vl2m2jmH3fWO49oxe7Syr4w7QMhj82g2vfWMS05TkcKPfdRNRX5O4rJX3bXs5sZEljrbZhQYztHcPn6TuobqEfsogcVW1TkAMHPB2Jyyk5E/Gw2k6NvWJV1thYYcEBTBwc72wM4sNzrIrKKlm8eTdj+7hmLcgz+3cgJiKYt+Zvccn5fMln6Tsorazm0uEJDdp/WGJbIoIDfLa0cenWPWzfU8qk5ENHCbtEh3H7aT35/u5T+fqO0Vw/uhtZecXc9UE6KX/5ntv/t4zv1+RRUaVFy93hmwxnl8bGzjera2JyPDv3l7Fwk29+cCDiVikp4HA0y6YgSs5EPCz7YKdGjZwdj8uHJ1BW6eAzHy7/mbt+F5XV9rha6NcnKMCPy4cnkLYuny27mt+nikfzweJt9OkQwaBOkQ3aPyjAj1N7xfBDZr5PloFOW55Dq0D/I85rMsbQL641D57Vhzn3p/LRzSO4OKUz8zbs4oa3ljDssRk8+MlK5m0o1AiNC03P2Env9hF0izn+D93G921PeHCA1jwTqc+QIc6vzbC0UcmZiIdl5RXRLjyYqLAgT4fikwbERzIw3rcbg8xal09EcAApXY6vhX59Lj8pAX9jeLsFjZ5l5OxjVc4+LhuegDGmwceN6xtLQVE5q3L2uTE616uocvDVqlxO79e+QSWcfn6GYYlt+b9JA1j4u3G8ce0wxvWJ5YsVO7j8tYWM+NsP/N+Xa1ixba/P/lvyBgVF5SzevPu4SxprtQpyJt3TV+2krLLaRdGJNBNxcdC+PSxb5ulIXE7JmYiHZeUXa32zE3T5SQlk7ixi+ba9ng6l0ay1zFpXwCk92xHo77q35PatQzhzQAc+XLLNp5tdNMb7i7cSHODHpJp1ohoqtXcsfgafK22cnVXA3pJKJg0+euOT+gT6+5HaO5ZnLklmyR9O51+XDyG5cxvenr+Fif+aS+pTs3jm+yzW5zfPRV7d6bs1O7EWzhp4YskZwKTBcRSVV5GW6fvLPYi4lDHNtimIkjMRD3J2aixSSeMJOre2MchC32sMkrmziJ37y1xW0ljXlJGJ7C+rahGL2ZZUVPHZ8h38amBHIkMDG3VsVFgQKV2i+MHHfgGelp5D27AgRvc8sbmKrYL8OTupI69ePZTFfxjPExcmER/VihdmZjP+mdmc/fwcXv1Rrfkb6puMnXRtF0ZvF7yvj+zejpiIYKaqtFHkl1JSYM0aKCnxdCQupeRMxINy9pZyoKJaydkJCg8O4LzkeL5YuYP9Zb7VGCRtnTMhGHOC65vVZ2iXKPp1bM2b8zY3+zK1r1ftpKi8ikuPsbbZkYzr257VO/aTu883EpCiskpmrMnjnKSOLh1xjWwVyORhnXn3+pNZ+NA4/nhOPwL8/fjr1zWt+V+Zz7sLt/jcv7OmsrekgvkbdnHmgA6NKq09En8/w3mD4pi1roC9JVoOQeQQtU1BVqzwdCQupeRMxIN+bgaissYTVdsYxNcmz8/KLKB/XGvatw5x+bmNMUwZ2YXMnUUs3rzH5ef3Ju8v2kq3dmEM79r2uI4f18c5cvnDWt8YPfsmYyflVQ4mDW5cCWdjxLYO4dendOWz20Yx696x3HN6L3YVl/P7qRlc8soCdXqsx/dr8qhy2BPq0ni4ScnxVFQ7+HrVTpedszkoLq9i4cZdrNyuOZItVkqK82szK21UcibiQbVt9LXG2Ykb2CmSAfGtfaoxyL6SSpZu3eOWksZa5w2KJ7JVIG/O2+y2a3hadl4RS7bs4ZJhnY97tKJHbDgJbUN9Zt7ZtPQcukSHMrhzmya5XmK7MH4zriczfjuGf14+mLW5+/nnzOwmubYv+SZjJ/FtWjEwvmHdQhtiQHxruseEtegFqUsrqlm6ZTdvzN3Ebz9IZ/wzsxn46Ldc8uoCzvvnXMY+NYtnvlunOZItTXw8xMY2u+Ts2O2dRMRtsvKKad86mMhWjZsjI/W7fHgXfjd1Fcu27nVp50N3mbO+gGqHZawbShprtQry55JhnXn9p03s3FdGh0jXj9B52vuLtxHob7gwpdNxn8MYw7i+sby7cCslFVWEBnnvf495+8uYt2EXv0nt4ZLSucYwxnBOUhwz1+bzr1kbOKN/Bwa4MBHxZUVllczJLuSqEV1c+vdijGFScjxPf59Fzt5SlyxU783Kq6rJzC1iZc4+Vm3fy8rt+8jOLz641ENMRDCDOkVyblIcAzu1prC4gs/Td/DPtPU8P3M9/eNaMzE5jnMHxdExsnn/WbV4zbQpiPf+7yPSAmSpGYhLTUyO4+/fZPLqjxt45aqhng7nmGatKyCyVSDJbh79uPKkLrw2ZyP/W7iF357R263XamrlVdV8umw7p/drT7vw4BM61/i+7Xlj7mZ+yi7kjCOsG+YNvlixA2thohtLGo/lkXP789P6Qu79aAWf334KQQEqxJmZmU9FtcOlJY21JtYkZ5+l53Dr2B4uP7+nVFY7WLeziFU5+1i5fR+rcvaybmcRldXORKxtWBAD4yM5o197BnZqQ1KnyHpLwCcP7Uz+/jK+WJnL5+k5/PXrTP42PZOTurZlYnI8Zw3oQJtQLVfTLKWkwHffQWkptGoeybiSMxEPcTgs6/OLuWx4gqdDaTbCggOYMqILz89cz/r8InrEem/i63A4W+if2iuGABc2dKhPQnQo4/rE8r9FW7nttB4EB/i79XpN6bvVeewpqeTSYSf+72hYYlsiggOYmZnv1cnZ1OU5JHWKpPsJLHB8oiJDA/nbBQO57s0lvDAzm3uaWdJ/PL7J2ElsRDBDElw/ap8QHUpKlyg+W77DZ5OzqmoH6wuKnUnY9n2szNnH2tz9B+cutg4JIKlTG64f3Y2k+EgGdookvk2rBo9CxrYO4bpTunLdKV3ZVHiAz9N38Fl6Dg99uoo/fpbBmF6xTEyOY3zf9rQKaj7vgS1eSgpUVzubgpx8sqejcQklZyIesn1PKaWV1WoG4mLXjOrKa3M28dKsjTw9eZCnwzmi1Tv2U1hcTqobSxrrunpEIjPWLuKbjJ1MbOQ6YN7s/cVbiW/TilN6tDvhcwUF+HFq7xh+yMzH4bD4+TVtyWBDZOcVsXrHfv54Tj9Ph8K4vu25cEgnXpy1gTP6dWBgp5Zb3lhaUc2sdQVclNLJbffNpOQ4Hv5sNWtz99O3Y2u3XMNVHA7LxsIDrMrZezAZW71jP6U1i2mHBwcwIL4114xMZGB8JEmdIkloG+qyctCu7cK4c3xP7hjXg9U79vNZeg6fr9jBjLV5hAX5c0b/DkxMjmNUD9euLykeULcpiJIzETkRagbiHm3Dgrh0eGfenr+F357Ry2vnZ6Sty8cYOLVX0yRnp/RoR7d2Yfx33uZmk5xt2XWAuet38dvTe7nsF+JxfWL5amUuq3L2MaiJmm00xrT0HPwMnDOoo6dDAeCP5/bjp/UFzvLG34xqVqOyjTE7K5/Symq3lDTWOjspjj99sYZpy3O8Njmrdlge/GQl0zN2UlxeBUCrQH8GxLfmsuEJJHVyjoh1jQ5rkg8/jDEMiI9kQHwkD57Vl4WbdvF5+g6+XpXL1OU5RIcFcXZSRyYmxzEkIarJ53CKC3TqBDExzWremZIzEQ/Jyq9NzjRy5mo3jO7GOwu28NqPG3n0vP6eDqdeaevySerU5oTnSTWUn5/hqhFd+NMXa1i5fS9Jndo0yXXd6cMl2/AzcPHQ428EcrjU3rH4GfhhbZ7XJWfWWj5L38GoHu2IjfCOxi6RrQJ5/IIkrv3vYl74YT33TmiZ5Y3TM3YSFRp43Es5NETbsCDG9Irh8xU7eODMPl45svvvORv5aOl2Lhgcz4ju0SR1akOP2HD8vSBWfz/DyO7tGNm9HX+a2J/Z6wr4bMUOPli8jbfmb6FTVCvOGxTHxOR4enfQh6Y+oxk2BdFYroiHZOcV0zEyhNYh6tToanFtWjEpOZ73F29lV3G5p8P5hd0HKkjftpexTTRqVuvClE6EBvnz1vwtTXpdd6iqdvDRku2k9o51aUe2qLAgUrpEMcML1ztbumUP2/eUcr4HG4HUJ7VPLBeldOKl2RtYuX2vp8NpcuVV1cxcm88Z/Tq4ff7oxMHx5O4rY+Gm3W69zvFYvWMfT323jrMGdODpyYO4eGhneneI8IrE7HDBAc7Sxn9dPoSlD5/OM5MH0T0mnFd+3MiEZ3/kzGd/5KVZG9i+p8TToUpDpKTA6tXOpiDNgJIzEQ/JyitSSaMb3Ty2O+VVDt6Yu9nTofzCnOwCrHX+UtuUWocEcsGQeD5fsYPdByqa9NquNjMzn/yici51Q0OdcX3bsyZ3Pzv2etd/9FOX5xAS6OeVzUoePqcfMeHB3PvRCsqrqj0dTpOau76QovIqzhzo/r+X0/u2JyzIn2nLvWvNs7LKau56P52o0CD+ev5AnyoPDA8O4IIhnXjz18NZ8NA4/nRef0KD/Pn7N5mc8vc0Ln55Hm8v2OLz75nNWm1TkJUrPR2JSyg5E/GA6ppOjb1iVdLoLt1jwjmzfwfenL+ZorJKT4dziLTMfKLDgkjywPpQU0YkUlHl4IPF25r82q70/uJtxEYEu6Whyvi+zqR5Zqb3jJ5VVDn4alUuZ/TrQHiw981IiGwVyN8uHEhWXjHPzWhZi1NPX7WTiJAARnU/8aY0x9IqyJ8JAzrwdUYuZZXekwQ/Pj2T7Pxinrp4EFFhvtuyPiYimCkjE/n01lH8eF8q903ozd6SSh6elsHwx2Yw5T+LeHvBFnL3edcHNy1e3aYgzYCSMxEP2La7hPIqh9Y4c7Nbx/agqKyKdxdu9XQoB1U7LLOzChjTK8Yjc0Z6to9gZPdo3lmw5eCirr4md18ps9blc/HQTm4pI+seE05C21B+WJvn8nMfr9lZBewtqWTS4DhPh3JEqb1juTilEy/P3sCKbXs9HU6TqKx28P3aPMb3bd9ka71NSo6nqKyKNC/58GDWunz+O28z145KbLIGR00hITqU21J78N3dpzL9ztFcN7orm3cd4OFpGYz420x+9dwcnvk+i5Xb9+Lw0ffSZqNzZ2jXTsmZiBy/nzs1auTMnQZ2imR0z3a8/tMmr/mUecX2vewpqWRsE5c01nX1iERy9pYyw4uSj8b4aMl2HBYuGeqeNQKNMYzrG8vcDbsoqahyyzUaa1p6Dm3Dghjd07t/+f3DOf1o3zqEez9a4TX/5txp4cbd7C2p5Ew3dmk83Mju0cREBDMt3fOljbsPVHDfxyvp1T6cB87s4+lw3MIYQ9+OrXnorL7MuncsM357Kg+e1YewYH/+OTOb8/45l5P/9gMPfbqSGWvyKK1o/ve912lmTUGUnIl4QHZ+MaA2+k3hlrHdKSgq5+Ol2z0dCgCzMvPxM3BqT/eXQB3J+L6xxEWG8Nb8zR6L4Xg5HJYPFm/jlB7tSIgOddt1xvdtT0WVg5+yC912jYYqKqtkxpo8zknq6PVrMkW2CuTxC5PIzi/muR+af3nj9IxcQoP8GdOEI0YB/n6cmxRHWmYB+0o8V7JtrbNt/r6SSp69ZDAhgc1/GQVjDD1iI7h5THc+unkkS/5wOk9fPIihiVF8sSKX699awuD/+47r31zMe4u2kr+/zNMhtxy1TUHKfP/P3Lvf5UWaqay8IuLbtPLKuSPNzYhu0SR3bsMrP26gqtrh6XCYlVXA4IQo2oR6bl5GgL8fV5zchbnrd7G+ZkkHXzFnfSE5e0u5ZFhnt15nWGJbIoID+MELujZ+k7GT8iqHz6xPN6ZXDJcM7cwrszeQ3ozLG6sdlm9X55HaO7bJE5NJg+OoqHbwdUZuk163ro+WbOe7NXncN6E3/eK8c901d2sbFsSFKZ148YoUlj18Om9fN5xLhyWQubOIhz5dxfC//sB5//yJ52Zkk5GzD2tV/ug2KSlQVQWrVnk6khOm5EzEA7LyiumlksYmYYzh1rHd2ba7lK9Wee4XGYCConJWbt/nliYWjXXpsM4EBfj5XFv9DxZvJSo0kDP6t3frdYIC/Di1dwwz1+V7fD7JZ+k7SGgbypCENh6NozF+f07fZl/euHTLHgqLy5u0pLHWwPhIusWEeaxr4+bCAzz6xWpGdo/mulO6eiQGbxMU4MfonjE8el5/5tyfyjd3jea+Cb3x9zM8+0MW57zwE6Men8kfpq0ibV1+s/134TFDhji/NoPSRiVnIk2sqtrBhvxiNQNpQuP7tqdnbDgvzdrg0U8uZ2cVADC2t+fmm9WKDg/m3KQ4Plm63eu6WR5JYXE536/J48IhnQgOcP9Ixfi+sRQUlbMqZ5/br3UkefvLmLuhkEnJcT7Vnrx1iLO8cX1+Mc820+6N0zNyCQrwa/IlMcD5odOk5HgWbtpNThMv+VBV7eCuD9IJ8DM8PXmQVy6G7WnGGPp0aM1tqT2YeusoFv1uPE9clMTATpF8uiyHa99YzJD/+54b31rCh0u2UeiF63H6nC5doG1bJWci0nhbdpdQUe3QfLMm5OdnuGVsdzJ3Fnm0PXraunxiI4Lp7yUlQFNGduFARTWfeMl8vGP5ZOl2Kqstlw53b0ljrbG9YvEzeLRr4xcrdmCtc/FhXzOmVwyXDuvMqz9uYPnWPZ4Ox6WstXybsZNTe8Z4rDx9Uk2Z6+fpO5r0uv9MW0/6tr389YKBLl0AvjmLiQhm8tDOvHLVUJY9fDpvXDuMC4bEsypnH/d/vJJhj83g/Bfn8q+09WTu3K/yx+PRjJqCKDkTaWLZNZ0aVdbYtM4dFEd8m1a86KHRs6pqB3OyChjbO8ZrRkCSOrUhuXMb3pq/xeOle8dirbMRyNAuUfSIbZoPNqLCgkjpEsUMD847m5aeQ1KnSLrH+Ob7xe/P7kuHZljeuGL7PnbsK+MsD5Q01kqIdpa6ftaEXRuXbd3DCzPXc8HgeM5J8t5lHbxZSKA/qb1j+cukgcx78DS+uuMU7h7fC4fD8uS36zjz2TmMfiKNRz7LIE8NRRonJQUyMqDct0cilZyJNLGsPGenxh5agLpJBfr7cdOYbizdsodFm3Y3+fWXb9vL/rIqryhprGvKyC5sLDzA3A2e70p4NIs27WZj4QEuHe6e9vlHMq5ve9bk7mdHE5eOAazPLyIjZ7/PNAKpT0RNeeOGggP84/ssT4fjMtMzcgnwM4zv6965j8cyaXA8mTuLWJu73+3XOlBexd0fpNOhdQiPTuzv9uu1BMYY+sdFcse4nnx2+yks+t04/nbBQPp0iODjpdsJ8vLurF4nJQUqK32+KYj+1kWaWFZeEZ3btiI0SJ0am9rkoZ1pFx7Ei7M2NPm10zLz8fcznOLBFvr1+dXAjkSHBfHmPO9uDPL+4m1EhARw9sCOTXrd8X2dyfQPHiiHnbZ8B34Gzh3UtK/Z1U7tFcNlwzvz2pyNLGsG5Y3WWr7J2MnIHu2IDA30aCxnD+xIgJ9pkjXP/vzFGrbtLuEflyTTOsSzr7u5im0dwmXDE/j3lGEs/+MZRIV5rquvT0pJcX718dJGJWciTSw7r5heTVSWJYcKCfTn2lFdmZ1VQEYTN3lIW1fA0C5RXvdLTXCAP5cNT+CHzDy27S7xdDj12ldSydercpmUHE+roKZtWd49Jpwu0aHMbOJ5Z9ZapqXnMKpHO2IjQpr02u7wu1/1pWNkq2ZR3rg2t4gtu0o8WtJYKzo8mFN7xfB5+g63liZ/k7GTD5Zs45ax3Rneta3briM/CwrQr+iNlpgIUVFKzkSk4SqrHWwsLFYzEA+6akQXIoIDeGl2042e7dxXxtrc/R7p6tYQV5ycgJ8xvLPQO0fPpi7fTnmVw+1rm9XHGMNpfWKZu2EXJRVVTXbdpVv2sH1PKef7YCOQ+kSEBPL3C5PYWHCAZ3y8vPGbjFz8DJzRz7MljbUmJseRu6+MhW4q187fX8ZDn65kYHwkd47r5ZZriLhEM2kKouRMpAlt2XWAymqrZiAe1DokkCtHdGH6qlw2FR5okmvOWucsiUv1svlmtTpGtmJC//Z8sHib141qWGt5f/E2BsZHMiA+0iMxjO/bnooqBz9lN928vKnLcwgJ9OOM/p4fnXGVU3q24/KTEnhtzkaWbvHd8sbpGTsZ3rUt0eHBng4FgDP6dSAsyN8tjUGstdz78UpKK6v5xyXJGs0R75eS4pxz5sNNQfSvTKQJ1TYD0RpnnnXtqEQC/P14pYlGz9LW5RMXGeLVSfnVIxLZW1LZ5G25j2XF9n1k7ixqsvb59RmW2JaI4AB+aKKujRVVDr5alcvp/Tp4rE27u/zuV32Ji2zFfT5a3rg+v5js/GLOGuA98wBbBfkzoX8HvlqV6/I/0zfnbebHrAJ+f3Y/NbES31DbFCQjw9ORHDclZyJNKCuvCGPw2bbYzUVsRAiTh3bik2Xb2bnPva2KK6oczF2/izG9Y72mhX59Turalt7tI/jvvM1etcbO+4u20irQn/MGea5td1CAH6f2juGHzPwmWXLgx6wC9pZUcv7g5teqPDw4gCcuSmJj4QGe/m6dp8NptG8ycgGY4GUjmhMHx1NUVnVwlN4VsvKK+Nv0TE7rE8uVJzVtl1SR49YMmoIoORNpQtl5xSS0DW3ypgbySzed2h2HhX/P2ejW6yzZspvi8ipSe8e49TonyhjD1SO7sCZ3v9d01Csur+LzFTs4J6kjER5upDK+byyFxeWsbIJGMlPTc2gbFsTont59zxyvUT3accVJCfz7p00s3dL0y1qciOkZOxmS0IYOkd7VpGVU92jahQczbblrRr7Lq6q56/10woMD+PuFSV79wZLIIbp29fmmIErORJpQVl4RPdWp0St0bhvKuUkd+d+irew5UOG268xaV0Cgv2FUD+9qoV+fScnxRIQEeE1b/S9W7KCkorrJ1zarz9hesfgZ3N61saiskhlr8jgnqSOBzXiNo4dqyhvv/WglpRW+Ud64dVcJq3fs96qSxloB/n6cO6gjMzPz2VdaecLne+b7LNbk7ufvFyYRE+Edc+tEGsQYGDKkeSdnxpjOxpg0Y8xaY8xqY8ydhz1/rzHGGmO8/zcPEQ+qqHKwqfAAvTuopNFb3DK2ByUV1bw5f7PbrpGWmc9JXaMJ84G5Q2HBAUwe2pmvV+WSv9+95Z4N8f7ibfRqH86QhDaeDoWosCBSukQxw83zzr7J2El5lcOnF55uiPDgAJ68KIlNhQd4ykfKG79Z7SxpPNMLWujX5/zB8VRUO5i+KveEzjN/wy5e/XEjl5+UwHgv6Ugp0ii1TUEq3PfBqzs15GO5KuAea21f4GTgNmNMP3AmbsDpwFb3hSjSPGwqPECVw6oZiBfp3SGC8X1j+e+8zRwod32b9O17SsjOL2asl5c01nXVyV2ocljeXejZt/W1uftZsW0vlw5L8JqSqnF927Mmdz879pa67Rqfpe8goW2oVySk7jayRzuuOrkL/5m7icWbvb+8cXrGTgbEt6Zz21BPh1KvgfGRdGsXdkILUu8rqeSeD9PpGh3GH87u68LoRJpQSoozMfPRpiDHTM6stbnW2mU13xcBa4Haj/T+AdwPeM/scREvlZVXBKCyRi9zy9ge7C2p5L1Frk9GZq0rAGCsl7bQr09iuzDG9Ynln2nr+f3UVRQWe6Yd8fuLthLk7+dV63yN7+v8e/wh0z2jZ3n7y5i3oZBJyXFek5C624Nn9aFTlLN7ozeXN+buK2X51r1eWdJYyxjDxOR4Fm7afdwfIDz8WQb5ReU8e2kyoUHeP9ovUi8fbwrSqIJ2Y0wiMBhYaIw5D8ix1q44xjE3GmOWGGOWFBQUHH+kIj4uO68IPwPdYsI8HYrUkdIlipO6tuXfczZRXuXaXw5nrcunc9tWdPexv/OnJw/iqpO78MHibYx9chb/SlvfpG3Pyyqrmbo8hzMHdCAqLKjJrnss3WPC6RIdyg9umnf2xYodOKyz815LERYcwBMXDmLzrhKe/NZ7yxu/zdgJeG9JY61Jg+OwFj5f0fjGIJ+l5/D5ih3cNb4nSZ3auD44kabSrRu0adP8kzNjTDjwCXAXzlLH3wN/PNZx1tpXrbVDrbVDY2J8p7RHxNWy8opJjA4jJFCdGr3Nrak92Lm/jGnLXbeIa1llNXPX7yLVy1vo16dNaBCPntefb+8+lRHdo3ny23Wc9tQspi7f3iSt5Kdn5LK/rMqja5vVxxjDuD7tmbdhFyUVri+DnZaeQ1KnyBa31MaI7tFcPaILb8zbxKJN3lneOD1jJ73ah3v9302X6DAGJ7Rp9HvZ9j0l/GFaBkO7RHHL2B5uik6kidQ2BVm2zNORHJcGJWfGmECcidm71tpPge5AV2CFMWYz0AlYZozx7o+URDwoK7+Inl68CHFLdmrPdvSPa83LszdS7aLkY9Gm3ZRWVpPqQyWNh+seE85rVw/lvRtOpm14EHd/sIJJL85l4cZdbr3ue4u2kRgdyohu0W69zvEY1zeWiioHP2UXuvS86/OLyMjZ3+wbgRzJA2c6yxvv/9j7yhsLi8tZvHk3Z3pxSWNdk5LjydxZRObO/Q3av9phuefDFVgL/7gkGX8/3/owSaReKSmwcqVzQWof05BujQZ4HVhrrX0GwFq7yloba61NtNYmAtuBIdbanW6NVsRHlVdVs2VXiZqBeCljDLeO7cGmwgN8k+Gat7G0dfkEB/hxshcmGI01ons0n992Cv+4ZBAFReVc8uoCbnxrCRsLil1+rQ0FxSzatJvJwzp75YjjsMS2RAQH8IOLuzZOW74DPwPnDvKNBMDV6pY3PvFtpqfDOcR3q/NwWDjLy0saa52T1BF/P9PgNc9e/XEjCzft5tHz+nttsxORRnniCQgOhvJyWL3auS0tzbndBzRk5GwUcBVwmjEmvebxKzfHJdKsbCw4QLXD0lPJmdc6c0AHurUL48VZ67H2xEfPZq8rYET36Gaz4Lifn+H8wZ1Iu3cs903ozdz1hZzxjx959PPV7HbhOnEfLN5GgJ/hopROLjunKwUF+HFq7xh+yMx3WYmntZZp6TmM6tGO2AjvWty4KY3oHs2UEV3477zNXlXeOD0jl8ToUPp08I337+jwYE7t2Y7P03OOeY9m5Ozjme/XcfbAjlw4pGWO2kozNGwY/Otfzu+XLnUmZpMnO7f7gIZ0a/zJWmustUnW2uSax9eH7ZNorXVtjYdIM1LbqbGXyhq9lr+f4aYx3Vi9Yz8/nmDJ2ubCA2wsPMDYXs1vnm1IoD+3pfZg1n2pTB7Wmbfmb2bMk2m8+uOGE26oUlHl4JOl2xnXN9ark5TxfWMpLC5nZc4+l5xv6ZY9bN9TyqQWWtJY1wNn9aFzVCj3fbzCLfP6GmtfSSXzN+zizAEdvXIk90gmDY5nx74yFh1liYLSimrufH85bcOCeOz8AT71+kSOKjUVPvrIOffspZecidmHHzq3+4BGdWsUkeOTnVeMv5+hazvf6trX0pw/uBMdWofwYtr6EzrPrHXOkjdfaqHfWDERwfz1/IF8e9epDO0SxV+/zmTc07P5YsWO4x55nLE2j10HKrh0eIKLo3Wtsb1i8TO4rGvjtPQcQgL9mOAjZXPuFBrkXJx6y64SnvjG890bv1+bR5XD+kxJY63T+7UnNMifz46y5tnj09eyoeAAT1+cTJtQ7+mKKuIS48bB8OHOkbNbbvGZxAyUnIk0iay8IhKjQwkOaB4lbs1VUIAf14/uysJNu1m6Zc9xnydtXQHd2oWR2AKS8Z7tI3jj2uG8c91JhAcH8Jv3lnPBS/NYuqXxZWnvLdpKXGQIp/b07hHHqLAghnZpywwXzDurqHLw5cpcTu/XgfBgrSsFcFK3aK4Zmch/521mgZubzxzLNxm5xLdpRVKnSI/G0VihQQFM6N+Br1bm1juinbYunzfnb+G6U7pySs92HohQxM3S0mDDBnj4YefoWVqapyNqMCVnIk0gO79YzUB8xGXDE2gTGshLszYc1/GlFdXM37irWY+a1eeUnu346o7RPHFREjl7Srnwpfnc9u4ytuw60KDjt+0u4af1hVw8tLNPdIs7rW8sa3P3H/div7V+zCpgb0kl5w+Oc1FkzcP9Z/amS3Qo93+80mPljcXlVfyYXciE/h18suRv0uB49pdVkZZ56Bqzu4rLue+jlfTpEMF9E3p7KDoRN6qdY/bhh/DnPzu/Tp7sMwmakjMRNyurrGbLrgNqBuIjwoIDuGZkIjPW5rFuZ1Gjj5+/sZCKKgepfbx79Mcd/P0Mk4d2ZtZ9Y7lrfE9mZuYz/pnZ/OXLNewrOXo744+WbANg8jDvWtvsSMb3dSbfP2Se2OjZtPQc2oYFMdrLRwubmrO8cRDb9pTwh6kZ7Ctt+nbYMzPzqahycNZA3ypprDWqezTtwoMOKW201vLgp6vYX1rJs5cma91NaZ4WLz50jllqqvPnxYs9G1cDKTkTcbMNBcU4rJqB+JJrRiYSGuTPy7MbP3o2a10BrQL9Gd61rRsi8w2hQQHcNb4Xs+4by/mD43l97ibGPJXGf37aREWV4xf7V1U7+HDJdsb0iiG+TSsPRNx43WPC6RIdekLzzorKKvl+TR5nD+xIoL/+Oz7c8K5tuXVsdz5dnsOIv/3Ao5+vbvBIrCt8k5FLTEQwKQlRTXZNVwrw9+OcpDh+yMw/mNx+sHgb36/J4/4ze9OnQ2sPRyjiJvff/8s5Zqmpzu0+QP8biLhZdp5zLSiVNfqONqFBXD48gc9X7GDb7pIGH2etZWZmPqN6RGt+IdC+dQhPXDSIr+8YzcD4SP785RrO+MdsvsnIPaRpyOysAnbuL+NSHxk1A+faeOP6tGfehl3HXXb37eo8yqscTBqsLo1Hct+EPnz5m1M4c0AH3l24hbFPzeKGt5awYOMulyx5cSSlFdWkZRYwoX97/HygzPZIzh8cT0WVg28yctlUeIA/fbGGUT2i+fWorp4OTUSOQMmZiJutyysi0N+QGN38m0M0J9eP7oafcS7Q2lAbCg6wfU9pi5tvdix9O7bmrV8P541rhxHo78fN7yzjklcWsGLbXgDeW7SNduHBjOvb3rOBNtL4vrFUVDmYc5xLL0xbnkNC21CGJLRxbWDNzID4SJ6ZnMzcB07j9tQeLNm8m0tfXcA5L/zEp8u21zsae6JmZxVQWlnNWQN8e1HwpE6RdG0XxidLc7j7g3SCAvx46uJBPp1wijR3Ss5E3Cw7r4iu7cIICtA/N1/SITKEC4d04sMl2ygoKm/QMT+30Nf8ocMZY0jtHcv0O0fz2PkD2FhYzMR/zeW2d5eRti6fi1I6+Vxp39DEtkQEBzDzOLo25u0vY96GQiYlx/lkswlPiG0dwj1n9Gb+Q+P42wUDqahy8NsPV3DK32fyz5nZLl0M/ZuMXKJCAznJx8uTjTFMTI5j0ebdpG/by98uGEjHSN8oHRZpqXzrf0IRH5SVV6xmID7qpjHdqax28J+5mxq0f9q6fHq1D6dTVKibI/NdAf5+XHFSF2bdl8rtqT2YsTaPaoflEh8qaawVFODHqb1j+CEzH4ejcSV2X6zYgcPCRJU0NlpIoD+XDU/gu7tP5c1fD6dPx9Y89V0WI/72Aw99uor1+Y1v5FNXeVU1P6zN5/R+7QnwsQ8M6jMpOR4/AxcMiedXA317JFCkJdCiKiJuVFpRzbY9JVw4pJOnQ5Hj0LVdGGcN7Mg787dwy9jutA4JPOK+B8qrWLRpt+ZyNFB4cAD3TujNFScnsG13qc8u0D6+byxfrcxlZc4+kju3afBx09JzGBgfSfcYNQo6XsYYxvSKYUyvGLLyinhj7iY+Xbad9xZtZUyvGK47pSuje7Zr9MjkvPW7KCqv8vmSxlqJ7cL48jej6RGre03EF/j+R0IiXmx9fjFWnRp92i1julNUXsXb87ccdb+56wuprLaMUUljo3SMbOXTnS3H9orFz9Coro3r84vIyNmvRiAu1Kt9BH+7IIl5D57GPaf3Yk3ufq7+zyImPPsj7y/aSlnlLxdiPpLpGblEBAcwske0GyNuWv3iWqu0XsRH6F+qiBtl5TnLa1TW6LsGxEcyplcMb8zddNRf8NLWFRAeHMDQLr6baEjjRYUFMbRLW2Y0Yt7ZtOU78DNw7qDmMTLjTaLDg/nNuJ789EAqT188iAA/Px78dBUjH5/JM9+tI7+o7KjHV1U7+H5NHuP6xqrjqoh4hJIzETfKyi8iyN+PxGjNQfJlt47tTmFxBR/WLJR8OGsts9blc0qPdvp0ugUa1zeWtbn7ydlbesx9rbVMS89hVI92xEaENEF0LVNwgD8XpnTiqztO4b0bTmZIQhteSFvPKY+ncc+HK1i9Y1+9xy3ctJs9JZWc2UxKGkXE9+i3CBE3ys4rpltMWLOYVN6SDe/alpQuUbwyeyOV1b9s270ur4jcfWWk9lFJY0s0rq9z6YSZmccePVu6ZQ/b95QyKVkljU3BGMOI7tH8e8owZt4zlkuHd+brVbmc/fxPXPrqfL5fk3dIM5fpGbm0CvRnTC/9WxYRz9BvjCJulJVXpJLGZsAYw61ju5Ozt5QvVuz4xfNpmQUAWt+sheoeE06X6NAGzTublp5DSKAfEwZ0aILIpK6u7cL488QBLHhoHA+e1Yctu0q44a0lnPb0LN6ct5miskq+XZ1Hap8YWgWppFFEPEPJmYibHCivYvueUnqpQ1azcFqfWPp0iOClWRt+0TZ91rp8+nVsTfvWKlNriYwxjOvTnnkbdlFSUXXE/SqqHHy1MpfT+3UgPFjNkj0lMjSQm8d058f7U3n+ssFEhgbxyOerGf7YDxQUlaukUUQ8SsmZiJuszy8G1AykuTDGcMvY7mTnFzOjzgjJ/rJKlmzZo4WnW7jxfWOpqHIwJ7vwiPv8mFXAnpJKJiXHNWFkciSB/n6cNyiOabeO5JNbRpDaJ4be7SM4rY9GwEXEc5ScibhJbadGtdFvPs4e2JGEtqG8OGsD1jpHz37KLqTaYUnVL3Qt2rCubYkIDjhqaeO09ByiQgM5VfOZvIoxhpQubXnxihS+vftUjWqKiEcpORNxk+z8YoIC/OgS7ZuL68ovBfj7ceOp3Ujftpf5G3cBkJaZT+uQAAY3YgFiaX4C/f04tXcMMzMLflH2ClBUVsn3a/I4JymOQDUIEhGRI9D/ECJusm5nEd1jwvH3M54ORVzoopROxEQEH5x7NiurgFN7xagjpzC+byyFxeWszPllm/ZvV+dRXuXQwtMiInJU+m1CxE2y84rorZLGZick0J/rTunKnOxCPlyyjYKiclLVpVGAsb1i8TPUW9r4WXoOCW1DGZLQpukDExERn6HkTMQNisoq2bGvTM1AmqkrTkqgdUgAf/x8NQBj1AxEgKiwIIZ2acuMtYeud5a/v4y56wuZmByHMRpJFxGRI1NyJuIG2TWdGnspOWuWIkICuXpEIhVVDpI6RdIuPNjTIYmXGNc3lrW5+8nZW3pw2+crduCwMFELT4uIyDEoORNxg2x1amz2rh2VSERIAGdqMWGpY1zf9gDMrFPaOC09h4HxkfTQmociInIMSs5E3CArr5iQQD86R4V6OhRxk+jwYH564DRuOrW7p0MRL9I9Jowu0aEHSxvX5xeTkbNfjUBERKRBlJyJuEFWXhE9YsPxU6fGZi2yVaC6ccohjDGM69Oe+Rt2caC8is/Sc/AzcO6gjp4OTUREfICSMxE3yM4rples5puJtETj+8ZSUe1gTnYh09JzGNWjHbERIZ4OS0REfICSMxEX21dayc796tQo0lIN69qWiJAAnp2RxbbdpUxSIxAREWkgJWciLrY+X81ARFqyQH8/xvSKIXNnESGBfkxQ0xgREWkgJWciLpaVpzb6Ii3duL7OhclP79eB8OAAD0cjIiK+QsmZiItl5RXRKtCf+DatPB2KiHjIaX3aMzihDdeMTPR0KCIi4kP0cZ6Ii2XnFdOzvTo1irRkka0CmXrrKE+HISIiPkYjZyIuti6viJ7q1CgiIiIijaTkTMSF9pZUUFBUrmYgIiIiItJoSs5EXOhgM5AOGjkTERERkcZRcibiQll5tW30lZyJiIiISOMoORNxoey8IsKDA4iLDPF0KCIiIiLiY46ZnBljOhtj0owxa40xq40xd9Zs/z9jzEpjTLox5jtjTJz7wxXxbll5xfSIDccYdWoUERERkcZpyMhZFXCPtbYvcDJwmzGmH/CktTbJWpsMfAn80X1hiviG7PwiNQMRERERkeNyzOTMWptrrV1W830RsBaIt9bur7NbGGDdE6KIb9h9oILC4grNNxMRERGR49KoRaiNMYnAYGBhzc+PAVcD+4BUVwcn4ktqm4H0VHImIiIiIsehwQ1BjDHhwCfAXbWjZtba31trOwPvArcf4bgbjTFLjDFLCgoKXBGziFfKPtipUWWNIiIiItJ4DUrOjDGBOBOzd621n9azy/+AC+s71lr7qrV2qLV2aExMzPFHKuLlsvKKiQgOoENrdWoUERERkcZrSLdGA7wOrLXWPlNne886u50HZLo+PBHfkZVXRM/26tQoIiIiIsenIXPORgFXAauMMek1234HXGeM6Q04gC3AzW6JUMQHWGvJyitiQv8Ong5FRERERHzUMZMza+1PQH1DAV+7PhwR31RYXMGekko1AxERERGR49bghiAicmRqBiIiIiIiJ0rJmYgLZB1MzjRyJiIiIiLHR8mZiAtk5RfTOiSA2IhgT4ciIiIiIj5KyZmIC2TnFdG7Q4Q6NYqIiIjIcVNyJnKCnJ0ai9UMREREREROiJIzkRNUUFTOvtJKesWqGYiIiIiIHD8lZyInKCuvGFAzEBERERE5MUrORE5QbadGlTWKiIiIyIlQciZygrLzi4gKDaRdeJCnQxERERERH6bkTOQE1TYDUadGERERETkRSs5EToCzU2MRvdqrGYiIiIiInBglZyInIG9/OUVlVWoGIiIiIiInTMmZyAlYV9sMJFbJmYiIiIicGCVnIicguyY5U1mjiIiIiJwoJWfiU5Zs3s2YJ9OYuny7p0MBnG30o8OCiA4P9nQoIiIiIuLjlJyJz/hixQ4u//dCtuwq4bGv1lJUVunpkGo6NWrUTEREREROnJIz8XrWWl6atYHfvLecQZ0iefPXwyksruCV2Rs9Htf6/GI1AxERERERl1ByJl6tstrB76au4u/fZHLeoDjevu4kxvSKYWJyHK/N2UjuvlKPxbZjXxnF5erUKCIiIiKuoeRMvFZRWSXXvbmE9xZt4/bUHjx7STIhgf4A3HtGbyzw5LfrPBZf1sFmIErOREREROTEKTkTr7RjbykXvzyfeesLeeLCJO6d0Bs/P3Pw+c5tQ7l2VCJTl+eQkbPPIzGqU6OIiIiIuJKSM/E6GTn7OP/FueTsKeW/1w5n8rDO9e5369getGkVyGNfrcVa28RROpuBxEQE0yY0qMmvLSIiIiLNj5Iz8SppmflMfmU+/sbw8S0jOaVnuyPuG9kqkLvG92L+xl2krctvwiidsvOKNGomIiIiIi6j5Ey8xtvzN3Pdm4vpFhPG1NtG0bvDsedyXX5SAl3bhfHXrzOpqnY0QZRODoclO7+YnrGabyYiIiIirqHkTDzO4bA89tUaHv5sNam9Y/ngxhG0bx3SoGMD/f148Kw+rM8v5oMl29wc6c9y9pZSUlGtZiAiIiIi4jJKzsSjSiuqufXdZbw2ZxNTRnTh1auHEhYc0KhznNGvPcMT2/KP77OabGHq7Hw1AxERERER11JyJh5TWFzOZa8t4Ns1O3n4nH48el5//Ot0ZGwoYwy/O7tvky5MvW5nMQA9NXImIiIiIi6i5Ew8Yn1+Mee/OJfMnft56YoUrjulK8Y0PjGrldy5DecNarqFqbPzimjfOpjIVoFuv5aIiIiItAwtPjmrdlhKK6o9HUaLsmDjLi54cS6lFdW8f+MIzhzQwSXnvW+Cc2Hqp77Ncsn5jiYrv0jzzURERETEpVp0cmat5Ya3lnDXB8s9sk5WSzR1+Xauen0hsa1DmHrrKJI7t3HZuWsXpv50+Xa3LkztcFjWq1OjiIiIiLhYi07OjDGM7B7Nt6vzeGn2Bk+H06xZa3n+h2zu/mAFKV2i+OTmkXRuG+ry69QuTP3Xr923MPW2PSWUVTrUDEREREREXKpFJ2cA153SlXMHxfHUt+v4MavA0+E0SxVVDu77eCXPfJ/FBYPjeevXJxEZ6p65WpGtArlzXE/mbdjFrHXu+fvMylMzEBERERFxvRafnBlj+PuFA+kZG8Ed7y9n2+4ST4fUrOwrreSaNxbx8dLt3DW+J09PHkRQgHtvu8tP6kLXdmE89vVatyxMnZWnNvoiIiIi4notPjkDCA0K4JWrUqh2WG55dylllWoQ4grbdpdw0UvzWLx5N09fPIi7xvc6oY6MDRUU4McDZ7pvYersvCLiIkOICFGnRhERERFxHSVnNRLbhfHsJclk5OznD9My1CDkBK3YtpfzX5xH3v4y3vr1SVyY0qlJrz+hf3uGJUbxj++zKC6vcum5s/KKVdIoIiIiIi6n5KyOcX3bc8e4nny8dDvvLtzq6XB81nerd3LJq/MJCfTj01tHMqJ7dJPHYIzh92f3q1mY2nXNXqodlg0FxSppFBERERGXU3J2mLvG9SS1dwx/+mI1S7fs8XQ4Puc/P23ipneW0rtDa6beOooeHmw3746FqbfuLqG8yqGRMxERERFxOSVnh/HzMzx7yWA6Rrbi1neXkl9U5umQfEK1w/Lo56v585drOKNfe96/4WRiIoI9HRb3TeiNwwFPf+eahal/bgai5ExEREREXOuYyZkxprMxJs0Ys9YYs9oYc2fN9ieNMZnGmJXGmKnGmDZuj7aJRIYG8vKVKewrreT2/y2n0g0d/5qT0opqbnp7Kf+dt5nrT+nKi1ek0CrI39NhAT8vTP3Jsu2s3nHiC1Nn1yRnPWNV1igiIiIirtWQkbMq4B5rbV/gZOA2Y0w/4HtggLU2CcgCHnJfmE2vX1xrHr8giUWbdvO3rzM9HY7XKi6v4po3FvFDZh5/Oq8/fzinH/5+7u/I2Bi3pvYg0kULU6/LKya+TSvCggNcFJ2IiIiIiNMxkzNrba61dlnN90XAWiDeWvudtba2Dd4CoGnb8TWBSYPjuWZkIv+Zu4nP0nM8HY7X2VdayVWvL2TJlj08e0kyU0YmejqketUuTD13/YkvTJ2dV6RmICIiIiLiFo2ac2aMSQQGAwsPe+rXwHQXxeRVfn92X4YntuXBT1aRuXO/p8PxGrsPVHD5awvIyNnHvy4fwsTkeE+HdFRXnNSFxOhQ/noCC1NXVTvYWHBA881ERERExC0anJwZY8KBT4C7rLX762z/Pc7Sx3ePcNyNxpglxpglBQUnNmrhCYH+fvzzisFEhARw09tL2Vda6emQPC6/qIzLXl3A+vxiXr16KGcO6ODpkI4pKMCPB8/qQ3Z+MR8u2X5c59i8q4SKanVqFBERERH3aFByZowJxJmYvWut/bTO9inAOcAV9giTeay1r1prh1prh8bExLgi5iYXGxHCS1cOYcfeUu7+IB2Ho+UuUJ27r5RLX1nA1t0lvHHNMFJ7x3o6pAab0L8DwxKjeOY4F6bOPtipUWWNIiIiIuJ6DenWaIDXgbXW2mfqbD8TeAA4z1pb4r4QvUNKl7b88Zx+zMzM5/mZ2Z4OxyO27S5h8ivzyS8q563rhjOyRztPh9Qoxhh+96u+FBaX8+pxLEydlVcMQA91ahQRERERN2jIyNko4CrgNGNMes3jV8A/gQjg+5ptL7szUG9w5clduGBIPM/9kM3MzDxPh9OkNhUeYPIr89lfWsW715/EsMS2ng7puAxOiOLcQXG8OmcjO/c1bg27rPwiOrdtRWiQOjWKiIiIiOs1pFvjT9ZaY61NstYm1zy+ttb2sNZ2rrPt5qYI2JOMMfz1/IH07dCau95PZ8uuA54OqUlk5RUx+ZX5lFc5eO+GkxnUuY2nQzoh99csTP3Ud+sadVx2XhG9YjXfTERERETco1HdGgVCAv155aoUjDHc9PZSSioaP3fJl2Tk7OPSVxdggA9uPJl+ca09HdIJ69w2lGsauTB1ZbWDTYUH6NVByZmIiIiIuIeSs+PQuW0oz182mHV5RTz06aoTXtjYWy3fuofLX1tAq0B/PrxpRLPqUnjb2MYtTL258ACV1VbNQERERETEbZScHacxvWK494zefJa+gzfmbvZ0OC63aNNurnp9EW1Cg/jgppNJbBfm6ZBcKjI0kDtOq1mYOuvYSzzUNgPpqbJGEREREXETJWcn4JYx3Tm9X3v++vVaFm7c5elwXOan7EKm/GcRsa2D+fCmEXSKCvV0SG5x5ck1C1N/deyFqbPyivAz6tQoIiIiIu6j5OwE+PkZnp48iIS2odz2v+Xk7W9c9z9vNDMzj1+/uZgu0aF8cOMIOkSGeDokt6m7MPVHS4++MHV2fhEJbUMJCfRvouhEREREpKVRcnaCWocE8spVKZRUVHHLO0upqDr6CIw3m74ql5veXkrv9hG8d8PJxEQEezokt5vQvwNDu0Tx9HdHX5h63c6iZjXnTkRERES8j5IzF+jZPoInLxrEsq17+b8v13g6nOMybXkOt7+3nKRObXj3hpOICgvydEhNwhjD788++sLU5VXVbN5VomYgIiIiIuJWSs5c5Oykjtx4ajfeXrCFj49RIudtPli8lbs/TGdYYhRv/Xo4rUMCPR1SkxqcEMU5SR2PuDD1psIDVDssvTRyJiIiIiJupOTMhe6f0JsR3aL5/dRVZOQ0bP0sT3tr/mYe+GQVo3vG8N9rhxMWHODpkDzigTP74HDA0/UsTK1OjSIiIiLSFJScuVCAvx//vHww0WFB3PT2UvYcqPB0SEf16o8b+ONnqzm9X3teuzqlRTe76Nw2lCkju/Dxsu2s2bH/kOeyazo1dotpXssJiIiIiIh3UXLmYtHhwbx0ZQoFReXc8f5yqh3et0C1tZbnZmTz168zOTupIy9eMYTggJabmNW6PbVnvQtTZ+UVkRgd1qKTVxERERFxPyVnbjCocxv+PLE/c7ILeeb7X5bJeZK1lie+Xcc/ZmRx4ZBOPH/pYAL9dRvAzwtT/7S+kNl1FqbOziump5qBiIiIiIib6bdyN7l0eAKXDuvMv9I28O3qnZ4OB3AmZn/6Yg0vzdrAFScl8ORFSfj7GU+H5VWuPLkLXaJD+evXzoWpyyqr2bzrgJqBiIiIiIjbKTlzo0fP68+gTpHc8+EKNhQUezQWh8Pyu6kZ/HfeZn49qit/mTQAPyVmvxAU4MeDZ/YhK8+5MPXGggM4LFrjTERERETcTsmZG4UE+vPSlSkEB/hx09tLj7rIsTtVVTu496MVvLdoK7eldufhc/pijBKzIzlzQAdSahamTt+2F4DeSs5ERERExM2UnLlZXJtWvHDZYDYWFHP/xysOaTTRFCqrHdz5fjqfLs/hntN7cd+EPkrMjqHuwtRPfptJgJ+hazt1ahQRERER92qZi1o1sZE92vHgWX3469eZ/OmLNQxOaEOrQH9aBfn/4mtoYAAhQX4E+fudcBJVVlnN7f9bxoy1+fz+V3254dRuLnpFzd+QhCjOTurIVytz6REbTlCAPscQEREREfdSctZEbhjdjdU79vPfeZv577xj7+9nIDQogJBAf1oF+dUkbf60CvQjNCiAVoH+hAT6ExrkTOoOfh/4c6L34ZJtzMku5P8m9ueqEYluf43NzQMT+vD96jyVNIqIiIhIkzBNWWY3dOhQu2TJkia7nrex1rJzfxklFdWUVlRTVlnt/L6yzvc1Px/8Wvv9YdtLKqooq3Qc8v3hjIG/X5DE5GGdPfBqm4f5G3bRMTKERJU1ioiIiIgLGGOWWmuH1vecRs6akDGGjpGt3HJuh8NSXuWgpKLqYLIXFhzgtuu1FCO6R3s6BBERERFpIZScNRN+fsY5dy3I39OhiIiIiIjIcVCXAxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLGGtt013MmAJgS5NdsOHaAYWeDkIE3YviPXQvirfQvSjeQveiuEoXa21MfU80aXLmrYwxS6y1Qz0dh4juRfEWuhfFW+heFG+he1GagsoaRUREREREvICSMxERERERES+g5MzpVU8HIFJD96J4C92L4i10L4q30L0obqc5ZyIiIiIiIl5AI2ciIiIiIiJewOeSM2PMmcaYdcaY9caYB+ts/8AYk17z2GyMSa/n2GRjzHxjzGpjzEpjzCV1nutqjFlojMmuOVfQEa4/pWafbGPMlMYeL82HJ+9FY0wXY8zSmmusNsbc3JjjpXlx4714e805rTGm3VGur/dFATx7L+p9Uepy4734bs15M4wx/zHGBB7h+npflONjrfWZB+APbAC6AUHACqBfPfs9Dfyxnu29gJ4138cBuUCbmp8/BC6t+f5l4JZ6jm8LbKz5GlXzfVRDj9ej+Ty84F4MAoJrvg8HNgNxDT1ej+bzcPO9OBhIrLm/2h3h+npf1KP2XvD0vaj3RT1q7wV33ou/AkzN470j/B+t90U9jvvhayNnw4H11tqN1toK4H1gYt0djDEGmIzzH8whrLVZ1trsmu93APlATM0xpwEf1+z6JjCpnutPAL631u621u4BvgfObMTx0nx49F601lZYa8trfgymZhRc92KL5JZ7sebn5dbazce4vt4XpZZH70W9L0od7rwXv7Y1gEVAp3qur/dFOW6+lpzFA9vq/Ly9Zltdo4G82n9UR2KMGY7z05QNQDSw11pbdfh5jTFDjTH/Psb1j3i8NFuevhcxxnQ2xqysiePvNf+B6F5sedx1Lx5tP70vSn08fS/qfVFquf1erClnvAr4puZnvS+KS/hacmbq2XZ4u8nLqOdTkENOYkxH4G3gWmut42jntdYusdZef4zrNyQuaV48fS9ird1mrU0CegBTjDHtGxiXNC/uuhePSO+LcgSevhf1vii1muJefBH40Vo7B/S+KK7ja8nZdqBznZ87ATtqfzDGBAAXAB8c6QTGmNbAV8AfrLULajYXAm1qjv/FeRtw/YYeL82Hp+/Fg2o+GV6N81NA3Ystj7vuxRO9vu7FlsfT9+JBel9s8dx6LxpjHsFZ5vjbRl5f96Ick68lZ4uBnjWdboKAS4HP6zw/Hsi01m6v7+CaY6YCb1lrP6rdXlM3nAZcVLNpCvBZPaf4FjjDGBNljIkCzgC+bcTx0nx49F40xnQyxrSq+T4KGAWs073YIrnlXmwEvS9KLY/ei3pflDrcdi8aY67HOafssqOM7Op9UY7f8XYS8dQDZ5ecLJy1v78/7Ln/Ajcf5dgrgUogvc4juea5bjgndq4HPuLnjk9DgX/XOceva/ZZj3OYm6Mdr0fzfXjyXgROB1bi7EC1Erixzrl1L7awhxvvxTtwfgJchfPT3dr7T++LehzpfvLYvaj3RT0Ou5/cdS9W1Zyzdvsfa7brfVEPlzyMtSp1FRERERER8TRfK2sUERERERFplpSciYiIiIiIeAElZyIiIiIiIl5AyZmIiIiIiIgXUHImIiIiIiLiBZSciYiIiIiIeAElZyIiIiIiIl5AyZmIiIiIiIgX+H/KvRQdtLAQ2gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAAE/CAYAAADouUp5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4F0lEQVR4nO3dd3xUVfrH8c9JJwESWmgp9E7o1QaoIMGuIAgI7rr+bKvu6rquq6u7a9dVV9dd13XXBmLvYBek9yo1oYWaRknv5/fHJBiQkjIzdyb5vl+veZGZuXPvM8PNZJ455zyPsdYiIiIiIiIi/iHA6QBERERERESk6pTEiYiIiIiI+BElcSIiIiIiIn5ESZyIiIiIiIgfURInIiIiIiLiR5TEiYiIiIiI+BElcSIiIiIiIn5ESZyISB1hjMmpdCkzxuRXuj7Z6fhqwhizyxhzgdNxnI4xZp4x5gYP7fucE/5fc4wx1hhzVfn9040xpSfcP6LS45saYz4yxuQaY3YbY649Yf/nG2O2GGPyjDFzjTHxnngeIiLiXkriRETqCGttw4oLkAJcUum2mU7HdyJjTFBdOIYnWWsXnPD/ejGQA3xZabMllbex1s6rdN+LQBHQEpgM/MsY0xPAGNMc+BB4AGgKrATe8fiTEhGRWlMSJyJSxxljAowx9xpjthtjMo0x7xpjmpbf1658ZOd6Y8weY8xhY8xNxphBxpj1xpgjxph/VNrXdGPMImPMC8aYo+WjOOdXuj/SGPNfY8wBY8w+Y8zDxpjAEx77rDHmEPCQMaajMeb78rgyjDEzjTFR5du/CcQBn5WPMN1jjBlhjNl7wvM7NlpnjHnIGPO+MWaGMSYLmH6GmDoZY34ofy4ZxpiTJjHGmLDyfWaWvyYrjDEtjTGPAOcA/yiP8R/l23czxnxjjDlkjNlqjJlQaV+vGWNeKr8/u/z4VR0Bmwa8b63NPdOGxpgI4CrgAWttjrV2IfApMLV8kyuBjdba96y1BcBDQB9jTLcqxiIiIg5REiciUvfdDlwOnAe0AQ7jGqGpbAjQGbgGeA74I3AB0BOYYIw574RtdwDNgQeBDyuSQuB1oAToBPQDRgM3nOSx0cAjgAEeK4+rOxCLK5nAWjuV40cUn6zi870MeB+IAmaeIaa/Al8DTYAY4IVT7HMaEFkeXzPgJiDfWvtHYAFwW3mMt5UnT98Ab5U/z0nAPytGwMpNLj92c2BteZynZYwJB64ufz6V9StPQLcZYx6oNPrYBSi11m6rtO06XP+nlP+7ruKO8sRwe6X7RUTERymJExGp+/4P+KO1dq+1thBXknT1CVMN/2qtLbDWfg3kArOstWnW2n24kpR+lbZNA56z1hZba98BtgLjjDEtgbHAndbaXGttGvAsMLHSY/dba1+w1pZYa/OttcnW2m+stYXW2nTgGVzJZm0ssdZ+bK0tAxqfIaZiIB5oU/78F55in8W4krdO1tpSa+0qa23WKba9GNhlrX21/HmuBj7AlYBVmG2tnV/+//FHYJgxJvYMz+sqIAP4odJt84FeuJLFq3AljL8rv68hcPSEfRwFGlXxfhER8VF+vVZARESqJB74yBhTVum2UlzrpCqkVvo5/yTXG1a6vs9aaytd341rJC0eCAYOGGMq7gsA9lTatvLPGGOigedxTUlsVL794So9q1OrfIwzxXQPrhGx5caYw8DfrLX/O8k+38Q1Cvd2+XTPGbgS4+KTbBsPDDHGHKl0W1D5Pn4Wo7U2p3x6aZsTYj/RNOCNyq+9tXZHpfs3GGP+giuJewzX2rnGJ+yjMZBd/vOZ7hcRER+lkTgRkbpvDzDWWhtV6RJWPspWE21NpYwI17q1/eXHKQSaVzpOY2tt5el5lZM/cCUbFkiw1jYGpuCaYnmq7XOB8Ior5WvbWpywTeXHnDYma+1Ba+2vrLVtcI1Y/tMY0+nEJ1w+6vhna20PYDiu0bbrThHjHuCHE17vhtbamyttc2zUzRjTEFdhkf0nHrfSNrHACOCNU21TKZaK128bEGSM6Vzp/j7AxvKfN5ZfrzhGBNCx0v0iIuKjlMSJiNR9LwGPVBTPMMa0MMZcVov9RQO3G2OCjTHjca1lm2OtPYBrfdnfjDGNywuqdDxhPd2JGuEaETpijGnLT1MBK6QCHSpd3waEGWPGGWOCgfuB0FPt/EwxGWPGG2Niyjc/jCsJKj1xP8aYkcaY3uVJYxau6ZUV250Y4+dAF2PM1PLXKNi4CsV0r7RNojHmbGNMCK6RwGXW2tONwk0FFltrt58Q19jyaayUFyR5APik/Lnn4qo++RdjTIQx5ixc6wUrRgQ/AnoZY64yxoQBfwLWW2u3nCYOERHxAUriRETqvr/jqkr4tTEmG1iKq8BITS3DVQQlA1dxkquttZnl910HhACbcCVF7wOtT7OvPwP9ca3Fmo0r6ajsMeD+8oqQd1trjwK3AK8A+3CNzO3l9E4X0yBgmTEmB9drdIe1dudJ9tGq/HFZwGZc69JmlN/3d1xrDA8bY5631mbjKp4yEdfo2kHgCY5PNt/CVRTmEDAAV6GTMz2HEwuaAJwPrDfG5AJzcL1+j1a6/xagAa51jLOAm621GwHK1yBehev/8DCuc6Ly+kUREfFR5vhlDSIiIqdmjJkO3GCtPdvpWPyVMeY1YK+19n6nYxEREf+kkTgRERERERE/oiRORERERETEj2g6pYiIiIiIiB/RSJyIiIiIiIgfURInIiIiIiLiR4K8ebDmzZvbdu3aefOQIiIiIiIiPmPVqlUZ1toWtdmHV5O4du3asXLlSm8eUkRERERExGcYY3bXdh+aTikiIiIiIuJHlMSJiIiIiIj4ESVxIiIiIiIifsSra+JOpri4mL1791JQUOB0KFLHhIWFERMTQ3BwsNOhiIiIiIi4jeNJ3N69e2nUqBHt2rXDGON0OFJHWGvJzMxk7969tG/f3ulwRERERETcxvHplAUFBTRr1kwJnLiVMYZmzZpphFdERERE6hzHkzhACZx4hM4rEREREamLfCKJc9ojjzxCz549SUhIoG/fvixbtgyAG264gU2bNrnlGO3atSMjI+O02zz66KPV3u9rr73Gbbfddtxtr776Kn379qVv376EhITQu3dv+vbty7333lvt/XvDc889R15entNhiIiIiIj4BcfXxDltyZIlfP7556xevZrQ0FAyMjIoKioC4JVXXvFqLI8++ij33Xdfrfdz/fXXc/311wOu5HHu3Lk0b9681vutKWst1loCAk7+ncFzzz3HlClTCA8Pr/I+S0pKCAqq96eviIiIiNRD9X4k7sCBAzRv3pzQ0FAAmjdvTps2bQAYMWIEK1euBKBhw4b8/ve/Z8CAAVxwwQUsX76cESNG0KFDBz799FPg56NiF198MfPmzfvZMS+//HIGDBhAz549efnllwG49957yc/Pp2/fvkyePBmAGTNmMHjwYPr27cv//d//UVpaCrhG2rp06cJ5553HokWLqvxcn3rqKQYNGkRCQgIPPvggALt27aJbt27ccMMN9OrVi8mTJ/Ptt99y1lln0blzZ5YvXw7AQw89xNSpUxk1ahSdO3fmP//5zxn32717d2655Rb69+/Pnj17uPnmmxk4cCA9e/Y8tt3zzz/P/v37GTlyJCNHjjz2Wld4//33mT59OgDTp0/nt7/9LSNHjuT3v/8927dv56KLLmLAgAGcc845bNmypcqvhbiPtZblOw+x70i+06GIiIiI1A8VoySnugCxwFxgM7ARuKPSfb8Gtpbf/uSZ9jVgwAB7ok2bNv3sNm/Kzs62ffr0sZ07d7Y333yznTdv3rH7zjvvPLtixQprrbWAnTNnjrXW2ssvv9xeeOGFtqioyK5du9b26dPHWmvtq6++am+99dZjjx83bpydO3eutdba+Ph4m56ebq21NjMz01prbV5enu3Zs6fNyMiw1lobERFx7LGbNm2yF198sS0qKrLWWnvzzTfb119/3e7fv9/GxsbatLQ0W1hYaIcPH37cMU9UcdyvvvrK/upXv7JlZWW2tLTUjhs3zv7www92586dNjAw0K5fv96Wlpba/v372+uvv96WlZXZjz/+2F522WXWWmsffPBBm5CQYPPy8mx6erqNiYmx+/btO+1+jTF2yZIlx2KpeN4lJSX2vPPOs+vWrfvZa3Pi6/Dee+/ZadOmWWutnTZtmh03bpwtKSmx1lo7atQou23bNmuttUuXLrUjR4782fN3+vyq61buOmTHv7TYxv/+c3vVPxc5HY6IiEidkpqVb7/YsN/pMMTNgJX2DHnTmS5VmY9WAtxlrV1tjGkErDLGfAO0BC4DEqy1hcaY6NomlH/+bCOb9mfVdjfH6dGmMQ9e0vOU9zds2JBVq1axYMEC5s6dyzXXXMPjjz9+bPSnQkhICBdddBEAvXv3JjQ0lODgYHr37s2uXbuqFdPzzz/PRx99BMCePXtISkqiWbNmx23z3XffsWrVKgYNGgRAfn4+0dHRLFu2jBEjRtCiRQsArrnmGrZt23bGY3799dd8/fXX9OvXD4CcnBySkpKIi4ujffv29O7dG4CePXty/vnnY4z52XO77LLLaNCgAQ0aNGDkyJEsX76chQsXnnK/8fHxDB069Njj3333XV5++WVKSko4cOAAmzZtIiEhoVqv3fjx4wkMDCQnJ4fFixczfvz4Y/cVFhZWa19Sc0mp2Tz51Va+2ZRK84ahnN8tmu+2pJGUmk3nlo2cDk9ERMTvfbsplXs+WE9xaRnDOzWncZj63spPzpjEWWsPAAfKf842xmwG2gK/Ah631haW35fmyUA9KTAwkBEjRjBixAh69+7N66+//rMkLjg4+Fi1w4CAgGPTLwMCAigpKQEgKCiIsrKyY485WXn7efPm8e2337JkyRLCw8MZMWLESbez1jJt2jQee+yx427/+OOPa1R10VrLH/7wB/7v//7vuNt37dp17Lmc7rnBz6s9GmNOu9+IiIhj13fu3MnTTz/NihUraNKkCdOnTz9l+f/Kxzlxm4p9lpWVERUVxdq1a8/01MWN9h3J59lvtvHh6r1EhARx9+guXH9We/KLSxn22He8vWIPD1zcw+kwRURE/FZ+USmPzNnEjKUp9GjdmOcn9VUCJz9TrcoQxph2QD9gGfAUcI4x5hGgALjbWruiNsGcbsTMU7Zu3UpAQACdO3cGYO3atcTHx9doX+3ateOf//wnZWVl7Nu379h6ssqOHj1KkyZNCA8PZ8uWLSxduvTYfcHBwRQXFxMcHMz555/PZZddxm9+8xuio6M5dOgQ2dnZDBkyhDvuuIPMzEwaN27Me++9R58+fc4Y25gxY3jggQeYPHkyDRs2ZN++fQQHV+8N4ZNPPuEPf/gDubm5zJs3j8cff5wGDRpUab9ZWVlEREQQGRlJamoqX3zxBSNGjACgUaNGZGdnHyu+0rJlSzZv3kzXrl356KOPaNTo5yM7jRs3pn379rz33nuMHz8eay3r16+v0msh1Xcot4gX5ybz5pLdYOAXZ7XnlpGdaBoRAkBEaBCje7Tig9V7+d2YroQFBzocsYiIiP/5cd9R7nh7DdvTc7nx3A7cNboLoUH6myo/V+UkzhjTEPgAuNNam2WMCQKaAEOBQcC7xpgO5fM8Kz/uRuBGgLi4OLcF7i45OTn8+te/5siRIwQFBdGpU6djxUaq66yzzjo2NbFXr17079//Z9tcdNFFvPTSSyQkJNC1a9fjphveeOONJCQk0L9/f2bOnMnDDz/M6NGjKSsrIzg4mBdffJGhQ4fy0EMPMWzYMFq3bk3//v2PFTw5ndGjR7N582aGDRsGuKaRzpgxg8DAqr8xDB48mHHjxpGSksIDDzxAmzZtaNOmTZX226dPH/r160fPnj3p0KEDZ5111nHPe+zYsbRu3Zq5c+fy+OOPc/HFFxMbG0uvXr3Iyck5aTwzZ87k5ptv5uGHH6a4uJiJEycqiXOz3MIS/rdwJy/P30FuUQlX9Y/hzgu70Daqwc+2nTQ4jtkbDvDVxoNc1retA9GKiIj4p7IyyysLd/DUV1tpGhHCjF8O4ezOzlUWF99nTsi5Tr6RMcHA58BX1tpnym/7Etd0ynnl17cDQ6216afaz8CBA21FtccKmzdvpnv37jV+AuIdDz30EA0bNuTuu+92OpRq0flVM0UlZby9IoXnv0smI6eQ0T1a8rsxXU+73q2szHLe03NpG9WAt28c5sVoRURE/NfBowXc9d5aFiVnMqZnSx6/MoEm5TNdpG4yxqyy1g6szT7OOBJnXAuU/gtsrkjgyn0MjALmGWO6ACHA6btZi4hPKyuzfLZ+P3/7ehsph/IY0r4pL183gP5xTc742IAAw8RBcTz11VZ2pOfQoUXDMz5GRESkPvvyxwPc++EGCovLeOKq3kwYGFuj2gdS/1RlOuVZwFRggzFmbflt9wH/A/5njPkRKAKmnTiVUuqOhx56yOkQxIOstczbls6TX25l84EsurduzGvXD+K8Li2q9cdk/IAYnvlmG++s2MMfEjUCKiIicjK5hSX85bNNvLNyDwkxkTx3TV99+SnVUpXqlAuBU32Km+LecETE21btPswTX25h+c5DxDUN5+8T+3JJQhsCAqr/TWB04zDO7xbN+6v2ctforoQEBXggYhEREf+1bs8R7nxnLbsyc7l1ZEfuvKALwYH6eynVU63qlCJSd5zY6+2vl/XkmkFxtU68Jg2J4+tNqXy7OZXE3q3dFK2IiIh/Ky2zvPTDdp79ZhvRjUKZ9auhDO3Q7MwPFDkJJXEi9UzlXm/hIUHcdWEXfnF2eyJC3fN2cG7nFrSNasCs5SlK4kRERHD97f3NO2tZvvMQFye05pHLexMZrt5vUnNK4kTqieN6vfHzXm/uEhhgmDAwlme/3caeQ3nENg136/5FRET8yWfr9nPfRxuwFp6Z0Icr+rVV8RKpNU3ABQIDA+nbty+9evVi/Pjx5OXl1Xhf06dP5/333wfghhtuYNOmTafcdt68eSxevPjY9Zdeeok33nijxseusGvXLnr16nXcbQ899BBPP/10tfbjrnjEWbmFJbzwXRLnPTmXVxft5LK+bZj7uxHcf3EPtydwFSYMiiHAwNsrUjyyfxEREV+XXVDMb99dy69nraFzdEPm3H4OV/aPUQInbqGROKBBgwasXbsWgMmTJ/PSSy/x29/+9tj9paWl1WqKXeGVV1457f3z5s2jYcOGDB8+HICbbrqp2sfwlJKSEp+KR6rPWsus5Xt45pttx3q93T2mK11O0+vNXVpHNmBk12jeW7lXC7ZFRKTeWbX7MHe+s4Z9h/O54/zO/HpUJ4L0t1DcyL/OpiefhLlzj79t7lzX7W5yzjnnkJyczLx58xg5ciTXXnstvXv3prS0lN/97ncMGjSIhIQE/v3vfwOuD8q33XYbPXr0YNy4caSlpR3b14gRI6hobv7ll1/Sv39/+vTpw/nnn8+uXbt46aWXePbZZ+nbty8LFiw4brRs7dq1DB06lISEBK644goOHz58bJ+///3vGTx4MF26dGHBggXVfo6n2/d9993Heeedx9///vdj8ezfv5++ffseuwQGBrJ79252797N+eefT0JCAueffz4pKa5Rl+nTp3P77bczfPhwOnTocGxkUrxr9oYD3PfRBjo0j+CDm4fz8nUDvZLAVZg4OI607EK+35J25o1FRETqgJLSMp77dhsT/r0Ea+G9m4bxmwu7KIETt/OvM2rQIJgw4adEbu5c1/VBg9yy+5KSEr744gt69+4NwPLly3nkkUfYtGkT//3vf4mMjGTFihWsWLGC//znP+zcuZOPPvqIrVu3smHDBv7zn/8cNz2yQnp6Or/61a/44IMPWLduHe+99x7t2rXjpptu4je/+Q1r167lnHPOOe4x1113HU888QTr16+nd+/e/PnPfz4uzuXLl/Pcc88dd3tl27dvPy7xeumll6q07yNHjvDDDz9w1113HbutTZs2rF27lrVr1/KrX/2Kq666ivj4eG677Tauu+461q9fz+TJk7n99tuPPebAgQMsXLiQzz//nHvvvbea/xNSW5k5hfzpk430iYnkrV8NYUD8mZt1u9vIri1o2TiUt5drSqWIiNR9KZl5TPj3Ep77NonL+rThizvOYUB8U6fDkjrKt6ZT3nknlE9rPKU2bWDMGGjdGg4cgO7d4c9/dl1Opm9feO650+4yPz+fvn37Aq6RuF/+8pcsXryYwYMH0759ewC+/vpr1q9ff2xU6ejRoyQlJTF//nwmTZpEYGAgbdq0YdSoUT/b/9KlSzn33HOP7atp09P/Qh89epQjR45w3nnnATBt2jTGjx9/7P4rr7wSgAEDBrBr166T7qNjx47HpojCT826z7Tva6655pRxLVq0iFdeeeXY6N+SJUv48MMPAZg6dSr33HPPsW0vv/xyAgIC6NGjB6mpqad9vuJ+D322ieyCYp68eqhj3/4FBQYwYWAsL85NZt+RfNpGNXAkDhEREU+y1vLRmn386ZONGAN/n9iXy/q2dTosqeN8K4mriiZNXAlcSgrExbmu11LlNXGVRUREHPvZWssLL7zAmDFjjttmzpw5Z1ygaq116yLW0NBQwFWQpaSkxG37heOfc2UHDhzgl7/8JZ9++ikNGzY86TaVn2NFjOB6/uI9X208yGfr9vPbC7vQtZX3pk+ezISBsfxjbjLvrtjDby7s4mgsIiIi7nY0v5j7P/6Rz9btZ3C7pjxzTR9imqgqs3iebyVxZxgxA36aQvnAA/Cvf8GDD8LIkR4PbcyYMfzrX/9i1KhRBAcHs23bNtq2bcu5557Lv//9b6677jrS0tKYO3cu11577XGPHTZsGLfeeis7d+6kffv2HDp0iKZNm9KoUSOysrJ+dqzIyEiaNGnCggULOOecc3jzzTePjZzVVk32XVxczIQJE3jiiSfo0uWnD+LDhw/n7bffZurUqcycOZOzzz7bLTFKzR3JK+L+j3+kR+vG3Dyio9PhENs0nHM6t+DdlXu4/fzOBAaoIpeIiNQNy3Zk8tt315GaVcDvxnTlpvM66u+ceI1vJXFnUpHAvfuuK3EbOfL46x50ww03sGvXLvr374+1lhYtWvDxxx9zxRVX8P3339O7d2+6dOly0oSoRYsWvPzyy1x55ZWUlZURHR3NN998wyWXXMLVV1/NJ598wgsvvHDcY15//XVuuukm8vLy6NChA6+++qrbnkt197148WJWrFjBgw8+yIMPPgi4RiCff/55fvGLX/DUU0/RokULt8YoNfOXzzdxOLeIV6cP8pmKkJMGxXLzzNX8sC2NUd1aOh2OiIhIrb08fzuPfbGF+KbhvH/zcPrGRjkdktQzxptT3QYOHGgrqjVW2Lx5M927d6/aDp580lXEpHLCNncurFgBldZjiVSo1vnl5+ZuSeP611bw61GduGt0V6fDOaa4tIxhj31Pv7go/nPdQKfDERERqZWtB7MZ+/f5XNijJc9M6EtEqH+NiYjzjDGrrLW1+lDkX2fdyRK1ihE5kXosq6CY+z7aQOfohtw2qpPT4RwnODCAqwfE8J8FO0jNKqBl4zCnQxIREakRay0Pz95Ew9AgHr8yQQmcOMY35luJSK08NmczqVkFPDW+D6FB1W9M72kTB8VSWmZ5b+Uep0MRERGpsblb01iQlMGdF3ShSUSI0+FIPaYkTsTPLUzKYNbyPfzqnA4+Oye/XfMIhndsxtsr9lBWpmqlIiLif4pLy3j48810aBHB1GHxTocj9ZxPJHEqQS+eUB/Oq9zCEu79cD0dmkf4fAn/iYPj2Hs4n4XJGU6HIiIiUm1vLNnNjoxcHhjXw2eKh0n95fgZGBYWRmZmZr34wC3eY60lMzOTsLC6vf7qyS+3sO9IPk9enUBYsO9No6xsTM+WNAkP5u0VKU6HIiIiUi2Hcov4+7fbOLdLC0Z0beF0OCLOFzaJiYlh7969pKenOx2K1DFhYWHExMQ4HYbHLN95iNeX7Gb68HYMbNfU6XDOKDQokKv6x/Da4l2kZxfSolHomR8kIiLiA577dhu5RaXcP647xqgXnDjP8SQuODiY9u3bOx2GiF/JLyrlnvfXEdu0Afdc5DvtBM5k4uA4Xlm4kw9W7+Wm85xvRi4iInIm21KzmbkshclD4ujSspHT4YgAPjCdUkSq75lvtrIrM48nrkwgPMTx72KqrFN0Qwa3a8rby1M0hVpERHyetZa/fr6JiJBAfnOBb689l/pFSZyIn1mdcpj/LtzJtUPiGN6pudPhVNvEwbHsysxjyY5Mp0MRERE5rXlb09VSQHySkjgRP1JQXMo976+nVeMw/jC2m9Ph1Ehi79Y0Dgvi7eXqGZdfVMqvZ60hOS3b6VBEROQExaVl/HX2JrUUEJ+kJE7Ejzz/XRLJaTk8emVvGoUFOx1OjYQFB3Jl/xi+/PEgh3KLnA7HUYuSM/hs3X5enLvd6VBEROQEby7ZzY70XO4f110tBcTn6IwU8RMb9h7l3/N3cPWAGEZ0jXY6nFqZODiWotIyPly91+lQHFXRM2/2+gP1PqEVEfElh3OLeO7bbZzTuTkj/fxvrtRNSuJE/EBRSRm/e38dzSJCeGBcD6fDqbVurRrTLy6KWfW8wMmi5AzaNQunqLSM91ZqeqmIiK+oaCnwwMU91FJAfJKSOBE/8M95yWw5mM0jV/QmMtw/p1GeaNLgOLan57Jy92GnQ3FEWlYBSWk5TBocx+B2TXlreQplZfU3oRXxB68v3kVSqtaw1nVJqdnMUEsB8XFK4kR83OYDWfzj+2Qu69uGC3u0dDoct7k4oTWNQoOYtSzF6VAcsWi7ayrlWZ2aM3loHLsz845NrxQR37P3cB4PfrqRZ7/d5nQo4mEPz95MREggd6qlgPgwJXEiPqyktIx73l9PZINgHrykp9PhuFV4SBCX9m3D7A0HOJpX7HQ4XrcwKZOo8GB6tG7MRb1a0SwihBlLdzsdloicwsIk15cs329JI6+oxOFoxFPmbk3jh23p3HFBF5qqpYD4MCVxIj7s5QU72LDvKH+5rFed/GMyaXAchSVlfLSmfhU4sdayKDmDszo2JyDAEBoUyIRBsXy3JY0DR/OdDk9ETmJBUgZBAYaC4jK+35LmdDjiAcWlZTz8+SY6NI9g6lC1FBDfpiROxEclp2Xz3LdJjO3VinEJrZ0OxyN6tY2kd9tI3l6xp14VONmensvBrALOqtSs/drBcZRZq/55Ij6otMyyMDmDS/u2oXnDUGavP+B0SOIBM5buZnt6Ln8c152QIH1EFt+mM1TEB5WWWX73/nrCQwL5y2W9nA7HoyYNjmPLwWzW7jnidChes7h8PdzZlZK42KbhnNelBW+vSKG4tMyp0ETkJDbsO8rR/GJGdI0msXcr5m5NI7dQUyrrEldLgSTO6dycUd3UUkB8n5I4ER/06qKdrEk5wkOX9KRFo1Cnw/GoS/u2ITwkkFnL60+Bk4VJGcQ0aUBcs/Djbp8yJJ7UrEK+25zqUGQicjILtqVjjOuLl8TerTWlsg76+3dJZBcUq6WA+A0lcSI+ZldGLk9/vZXzu0VzWd82TofjcQ1Dg7i0Txs+W3eA7IK6X+CkpLSMJTsyjxuFqzCyWzRtIsOYWU8rdor4qgVJGfRqE0nTiBAGtWtKi0ahzNmgKZV1RXJaNm8u3c3kIfFqKSB+Q0mciA8pK7Pc88F6ggMDeOSK3vXm28CJg+PILy7lk7X7nQ7F4zbsO0p2Qclx6+EqBAYYJg2OY0FSBjszch2ITkROlF1QzOqUw5zT2fU7GxhgGNurFd9v0ZTKuuLh2ZsJDwnkNxeqpYD4DyVxIj5kxrLdLN95iAfG9aBVZJjT4XhNn5hIurVqxNsr6v4I1OLtmQAM79jspPdfMziWoADDW8vUbkDEFyzdcYiSMss5nVscu21c79YUlmhKZV0wd2sa87amc8f5netkFWipu5TEifiIPYfyePyLLZzTuTnjB8Y4HY5XGWO4dkgcP+7LYsPeo06H41ELkzLo3roxzRqefK1jdKMwxvRsxXur9lJQXOrl6ETkRAuS0gkPCaR/fNSx2waWT6lUlUr/VtFSoH3zCK4b1s7pcESqRUmciA+w1vKHDzdggMeurD/TKCu7rG9bwoIDmFWHR+Pyi0pZtfswZ3c6+ShchclD4jiSV6w1NyI+YEFSBkM7NCM0KPDYbYEBhsReqlLp72ZWtBRIVEsB8T9nPGONMbHGmLnGmM3GmI3GmDvKb3/IGLPPGLO2/JLo+XBF6qZ3VuxhYXIG9yZ2J6ZJ+JkfUAdFNghmXO82fLp2f539ULRi1yGKSstOuh6usmEdm9GhRQQzlmpKpYiT9hzKY2dG7rH1cJUllk+p/E5TKv3Skbwini1vKXB+d7UUEP9Tla8dSoC7rLXdgaHArcaYHuX3PWut7Vt+meOxKEXqsANH83lk9maGdmjK5MFxTofjqEmDY8kpLOHz9XWzwMmi5AyCAw2D2zc97XbGGCYPiWd1yhE27c/yUnQicqIFSa6ejpXXw1UY2K4p0Y1CmaMplX7puW9dLQXuH6eWAuKfzpjEWWsPWGtXl/+cDWwG2no6MJH6wFrLfR9uoLisjCeuSiAgoH7/IRkQ34TO0Q2ZtXyP06F4xKLtGfSPa0J4SNAZt72qf1tCgwKYqQInIo5ZkJROm8gwOraI+Nl9gQGGxN6tNaXSD1W0FLh2SBxdW/loS4Enn4S5c4+/be5c1+0iVHNNnDGmHdAPWFZ+023GmPXGmP8ZY5q4OziRuu6jNfuYuzWd343pRnyzn39IqG+MMUwcHMfaPUfYfKBujUAdyi1i4/6sM06lrBAVHsIlfdrw8Zp95OgDoojXlZSWsSg5g3M6tzjlSI2mVPqnYy0FLvDhlgKDBsGECfD991BU5ErgJkxw3S5CNZI4Y0xD4APgTmttFvAvoCPQFzgA/O0Uj7vRGLPSGLMyPT299hGL1BFpWQX8+bNNDIhvwvTh7ZwOx2dc2a8tIYEBvL28bhU4WbI9E2upchIHMGVoPLlFpXy0Zp8HIxORk1m/7yhZBSWc0+XUv7MD45sQ3SiU2XV0CnhdVLmlwKmqBPuEkSPhxRdhzBho1gyuvhrefdd1uwhVTOKMMcG4EriZ1toPAay1qdbaUmttGfAfYPDJHmutfdlaO9BaO7BFi5/PKRepj6y13P/xj+QXl/LEVQkE1vNplJU1iQhhbO9WfLhmH/lFdafE/sLkDBqGBtEnJrLKj+kTE0nPNo2ZuXQ31loPRiciJ1qwLQNj4KyOp07iAsqnVM7bmq4Rcz9QXFrGI7M3+0dLgc8/h1tuAWMgJwcaNYJzz3U6KvEhValOaYD/Aputtc9Uur11pc2uAH50f3giddPsDQf4elMqv72wC52iGzodjs+ZOCiO7IKSOlVif/F2V5nyoMCqz2I3xjBlaDxbDmazOuWwB6MTkRMtSEonoW0kTc7QAHpcQvmUys2pXopMauqtZSkkp+X4dkuBoiK46y645BKIioKGDeHSS2H3brjhBqejEx9SlTP4LGAqMOqEdgJPGmM2GGPWAyOB33gyUJG64lBuEX/6ZCMJMZHccHZ7p8PxSUM7NKV98wjeriM94/YcymN3Zt4Z+8OdzGV929AoNIgZS+vGayHiD7IKilmz58hJq1KeaEBcE1o2Dq1TXzrVRa6WAts4u5MPtxTYsQPOPhueeQYuuwyOHoUPPoCPP4YLLoDXXoPnnnM4SPEVValOudBaa6y1CZXbCVhrp1pre5fffqm1Vu9eIlXw7aZUDuUW8dfLelVrVKY+McYwcVAsK3YdJik12+lwam1RsqtMeXXWw1UIDwniyv5tmb3+AIdyi9wdmviQg0cLOJpf7HQYgmsNa2mZPWl/uBMFBBjG9mrNXE2p9Gl//y6JrPxi7r+4u2+2FHj/fejXD7Ztc/08fPhPa+CMgQ8/hJgY+NOfQDUmhGpWpxSR2ktKyyYkKIBebau+Nqo+umpADMGBhrdX+H+7gYXJGUQ3Cq3x1NnJQ+MpKi3j/VX+/1rIyeUUljD62R8Y/Mi33Pn2GhZvz6CsTOsgnTJ/WzoRIYH0i6ta4e1xCa0p0pRKn5WclsObS3YzaXAc3Vo1djqc4xUUuNa+jR8P3brBmjVw1VVwzz3HFzFp1Ag++8w13XLaNCgrcy5m8QlK4kS8LCkth44tGqqYyRk0bxjK6B6t+GD1XgqK/bfASVmZZfH2TM7u1LzG3/52admIwe2aMnNZij7Yl7PWklVQd0atPl27n6yCEi7s0ZLvtqRx7X+WMeLpefzj+yQOHi1wOrx6Z0FSBsM6NqvyuqmKKZWz1fjbJz0yexMNQgL57YU+1lJgyxYYMgT+9S+4+25YsADan2aZRd++8Oyz8MUX8LeTFoWXekRJnIiXJaXm0FnFTKpk4uBYjuQV89XGg06HUmNbDmZzKLeoRlMpK5s8NI7dmXksLJ+aWd/NWJbCkEe+Y/+RfKdDcYtZy1Po1qoRL0zqx4o/XsBz1/SlbVQDnv56G8Mf/47rX13Olz8eoKhE37572u7MXFIO5VVpPVyFiimV87ZpSqWvmbc1jbm+2FLgzTdh4EDYtw9mz4annoKQ0xfRAeCmm1ztBu67D5Ys8Xyc4rOUxIl4UW5hCfuO5NOlpZK4qjirY3NimzZglh/3jKvNerjKLurVimYRIcxcttsdYfm1sjLL/xbuJL+4tE70E9yw9ygb9h1l0uA4jDGEBQdyeb+2zLpxKD/8bgS3jOjE5gPZ3DRjNcMe+45HZm8iOc3/14r6qvlJrt/ZqqyHq+xiTan0OSWlZTw8ezPtmoX7TkuBnByYPh2uuw4GDIB16yAxseqPNwb+8x/X+riJE+GwKhfXV0riRLwoOS0HgE7RjRyOxD8EBBgmDopj6Y5D7MzIdTqcGlmYnEHHFhG0igyr1X5CgwIZPzCWbzen1fvpdYu2Z7AzI5eo8GBmrdhDcal/j07NWpFCWHAAl/dr+7P74ptFcPeYriy6dxSvTh/EoHZNeXXRLi54Zj5X/nMR76xI0ciPmy3Ylk7bqAa0bx5Rrcf1j2tCq8ZhmlLpQ95aXt5SYFwP32gpsH49DBoEb7zhKlDy3XfQ9ue/92cUFQXvvAP798MvfgHqI1ov+cAZLVJ/JJUncZ01Eldl4wfEEBhg/LLdQFFJGct3HuLsWo7CVZg8JI4ya/16ZNId3liym6YRITx+ZW/Sswv5eqP/jnzkFJbwyZp9XJzQhsgGwafcLjDAMLJbNC9NHcDS+87nj4ndySoo4fcfbGDwI99yz/vrWLX7kJrC11JxaRlLtmdybpfqr2ENCDCM7d2KedvSya5D6zX91dG8Yp75ZhtndWrGBU63FLAW/v1v1/q3I0fg22/hz3+GoKCa73PwYHjiCVf7gRdfdFek4keUxIl4UVJaNsGBhvim4U6H4jeiG4dxfrdo3l+51+/WA61JOUx+cWmtp1JWiG0aznldWvD2ihRK/Hz0qab2Hcnnu82pXDMolgt7tCKmSQPeXLrL6bBq7LN1+8ktKmXS4LgqP6Z5w1B+dW4HvvnNuXxw83AuSWjD7PUHuOpfS7jgmR94ef520rMLPRh13bVuzxGyC0uqtR6usnG9XVMqv9+S5ubIpLqOtRQY18PZlgJHj7qmPd50E5x7LqxdC6NGuWffv/kNXHyxqzn46tXu2af4DSVxIl6UnJpDh+YN1R+umiYNiSMzt4hv/WytyaLkDAIMDO1Y/SbfpzJ5SDypWYV8u7l+fkictSwFi2tUMjDAcO0Q13Rbf10jNmt5Cl1bNqJ/XFS1H2uMYUB8E564OoHlf7yAJ69KICo8hEfnbGHYY99x4xsr+W5zar1N+GtifpLrd3Z4DX9nK6ZUfq4plY5KTsvhjSW7mDg4ju6tHWwpsHIl9O/vatj92GOuqpItW7pv/8a4GoBHR8M110BWlvv2LT5PnyRFvCgpLYdOmkpZbed2bkHbKP8rcLIwOYOEmCgah516mlx1jeoWTZvIsHpZ4KSwpJS3V6RwfrdoYpq4RrMnDIwlJDCAGUv969wA+HHfUdbvPcqkwbG1HimICA1iwqBYPrh5ON/+9lx+cXZ7Vqcc5pevr+SsJ77nyS+3sMtP15V604KkdBJioogKr0KVwJOomFL5g6ZUOurROZtpEBzIXU61FLAWnnvO1bC7uBh++AHuvRcCPPCxu1kzeOst2LED/u//tD6uHlESJ+Il+UWl7Dmcp/YCNRAYYJgwMJYFSRnsOZTndDhVklVQzLq9R922Hq5CYIBh0uA4FiRl+G2xl5r68seDZOQUMWVo/LHbmjcMJbF3Kz5YtZe8Iv8q8DFreQqhQQFc0S/GrfvtFN2I+xK7s+QP5/PSlAH0bBPJSz9sZ8TT87jm30v40M97L3rK0bxi1u05wrnVrEp5op+qVNbP0XKn/bAtne+3pHG7Uy0FMjPh8stdUx3HjnVNnzzrLM8e85xz4C9/gbffhv/+17PHEp9RixWVIlId29NzsNbVuFmqb8KgGP7+3TbeXpHC78Z0czqcM1q24xClZdZt6+Equ2ZQLH//LolZy1O4L7G72/fvq2Ys3U18s3DOPWG90pSh8Xy8dj+frN1frbVlTsotLOGTtfsZl9CayHD3jdRWFhwYwEW9WnFRr1YcPFrAB6v38u7KPfz23XW8PH8HH91yFg1CAj1ybH+0eHsGZRbO6VKz9XAV+sWWV6nccOCkFUfl1MrKLAUlpeQVlZJfVEp+ceWfS8gvKiOvqIT8YtdteeXb/PRzCat2H6Zds3CmDW/n/SewaJFr/Vtqqmsk7vbbXVMeveHee2HePNcxhw6FXr28c1xxjJI4ES9JKl+zo5G4mmkd2YARXaN5d+Ve7rygC8E+vq5wUXIGYcEB9I+Pcvu+oxuHMbpnS95buYffXtiFsOC6/0F884EsVuw6zB8TuxMQcPyHogHxTejWqhFvLtnNxEG1n5roDZ+t209OYQmTh3gn6WwVGcatIztx83kdmfPjAX49aw0PfbqRJ65O8Mrx/cH8pAwahgbRNzaqVvsJCDAk9m7NjGW7yS4oppEbp1P7m7yiEjbuz2LdniNsS80mp7DkFAlaKXlFJRQUV3/9ZlhwAOEhQTQIDqRBSCBtohrwh7HdvdtSoKzMVSnygQegXTtYvNjVyNubAgNdDcT79nWtj1u+HCKq1yZD/IuSOBEvSUrNISjAEN9Mb6o1NWVoHL94bSXfbEolsXdrp8M5rUXJGQxu34zQIM8kWFOGxDNnw0HmbDjAlf3dOx3PF725dDehQQGMH/jz52qMYcrQeO7/+EfW7DlC/7gmDkRYPbOWp9ClZUOvxxoQYLg4oQ1bD2bzwvfJDOnQtF6cP2dirWX+tnSGdWzmli+IxiW04n+LdvLd5rR6MxpXVFLG1oPZrNt7hPV7j7B+71G2pWZTVr5Eq3nDUKLCgwkPCSQsOJCmESHENHH9HB4SSHhIUKWfA0/ycxDhIYHHkrXwkEDCggJ/9qWOxz35pKvX28iRruupqTBuHKxa5UqeXn4ZGjtUTKVVK5gxA0aPdo3IaWplnaYkTsRLktJyaNc8wjcajvqp87pEu0rKL9nt00lcalYBSWk5XD3Acx+Oh3VsRofmEcxcllLnP4RnFRTz8Zp9XNqnzSkLTlzery2Pf7GFGUt2+3wS9+O+o6zbe5QHL3Gu9Pkd53dm2c5D3P/xjyTERNGpns8Q2JWZx74j+dx0Xge37K9fbBNaR7qqVNbFJK6szLIjI4d1e46yfu8R1u09yqYDWcfawESFB5MQE8WFPVrSJyaKhJhIohuHORy1mwwaBBMmwLvvukbgxo+Hw4fht7+Fp5/23vTJU7ngArjvPnjkEVeiOWWKs/GIxyiJE/GS5LQcurXSerjaqCgp/+SXW0lOy6ZTtG++nouSMwA8sh6ugjGu1+Lh2ZvZfCDL2TLaHvbR6n3kFZUydVj8KbdpGBrEFf3a8s7KPdx/cQ+aRtSsuqA3vL2ioqCJcx/ugwIDeGFSPxL/voBbZ67m41vr9/q4BUnpADXuD3eigADD2F6tmbHU/6dUWmvZdySf9XuPsm7vEdbtOcKP+7LIKXQVEgoPCaRX20imDYsnISaKPjFRxDZt4BfTmmtk5EiYNcvVny0vzzWN8ZVX4Je/dDqynzz0kKsi5k03uZqCd3GoSqd4lIYERLygoLiU3Zm5Wg/nBv5QUn5RciZNwoPp4eHE6uoBMYQGBTBjad1tN2Ct5c2lu+kTE0lCTNRpt50yNJ6ikjLeW7nHO8HVQF5RCR+v2c+43q1rXMbeXVo2DuOZa/qyNTWbP3+20dFYnDZ/WwaxTRsQ3yzcbfscl9CaotIyv+tvmZFTyPdbUnn2m21c/+pyBj78LWc/MZdbZq7mfwt3kl9UyhX92vLU1Ql8/Ztz2fDQGN79v2H8cVwPLunThrhm4XU3gatw/vkQG+v6+e67fSuBAwgKciWaYWGuUcOCAqcjEg/QSJyIF+zMyKXMQmdVpqy1yiXlfzemKxGhvvU2Zq1lUXIGwzs19/hajajwEC7p04aP1+zjD4ndaehjr4U7LNmRSXJaDk9VoQBH11aNGNyuKTOXpfCrczp4f61MFXy+7gA5hSVM8lJBkzM5r0sLbh3ZkRfnbmdoh2Z1curfmRSXlrFkewaX9Wvr1uSjX2wUrSPDmL3+oNvbSLhLaZll+c5Dx9axrdtzlH1H8gHXrMDO0Q0Z2S362Jco3Vo38tg6X78yb56rlcADD8C//gVjxvy0Rs5XxMTA66+7Rgzvvhv+8Q+nIxI3q3t/8UV80LbU8sqUavTtFlOHuUrKf7rO90rKb0/P5WBWgdv7w53K5CFxvL9qLx+v2Xdc/7S6YsbS3USFB3NJnzZV2n7KsHhun7WG+UnpjOga7eHoqm/m8hQ6RzdkYLzvrNv7zQVdWLHzMPd9tIHeMZF0bFG/3qfWpBwht6i01v3hTlRRpfLNJbvJKiimsQ9Oqbz/4x+Ztdw1qyGuaTj94qKYPrwdCTGR9Gob6XNfkvmEuXN/WhM3cqTrUvm6Lxk3Du66C/72N1dsV13ldETiRppOKeIFyWk5BBho31yVKd2hf9xPJeWttU6Hc5xj6+E6eieJ6xsbRc82jZmx1Pdei9pKzSrgq42pTBgYW+U2Chf1bEXzhiE+Od124/6jrNtzhEmD43xqullQYADPT+pHWHAgt85cXe8agS9ISifAwDAP/M4m9nZNqfzOB6dULt6ewazlKVw3LJ7VD1zI/HtG8o9r+/OrczswpEMzJXCnsmLF8QnbyJGu6ytWOBvXqTz6qGtd3C9/CTt3Oh2NuJGSOBEvSErNoV2zCE1DcRNjDFOHxbPpQBarU444Hc5xFia71tbEuXFtzelUlNffcjCb1SmHvXJMb3lrWQpl1larl1pIUADXDIrl+y2px6aF+Yq3l+8hJCiAK/v73pTFVpFhPDOhD1sOZvPnzzY5HY5XzU/KoG9sFJEN3D9S1i82ijaRYcxef8Dt+66NguJS7vtwA/HNwrkvsbtPFwLyOffc8/MRt5EjXbf7opAQePtt188TJ0JRkbPxiNsoiRPxgqS07HpfwtvdLu/bloahQT5V1KOktIylOzK9NpWywqV92tAwNIiZPjj6VFPFpWXMWp7CeV1aVLu34qTBcVhg1jLfeT1cBU32+URBk1MZ0TWaW0Z0ZNbyFD5Zu8/pcLziSF4R6/cecVtVyhMFBBjG9m7N/G0ZZBUUe+QYNfH8d0nsyszj0St6V3mUW/xY+/auCprLl7vaD0idoCROxMOKSsrYlZmn9XBuFhEaxFX92zJ7/QEycwqdDgeADfuOkl1Q4tHWAicTERrElf3b8vmGAxzOrRvfsn6zKZW07EKm1mCdX0yTcM7vFs3bK1KO9a1y2ufrD5BdWOJzazhP9NsLuzCoXRPu+3ADO9JznA7H4xYlZ2ItnNvFc7+zx6pUbvKNKZWb9mfx8vwdjB8Q4/X3KnHQ1VfDLbe41sfNnu10NOIGSuJEPGxXZi6lZZbOPtrTzJ9NGRpPUWkZ763a63QowE/r4YZ1aOb1Yx8rr7/Kd8vrV8cbS3bRNqpBjYuTTBkaT0ZOEV9uPOjmyGpm1vIUOkU3ZFA73ylocjIV6+NCggK49a01dX593IKkdBqFBtHnDO0raqNiSuWcDc5PqSwts/zhw/VEhQfzx3HdnQ5HvO1vf4M+fWDaNNjrG383peaUxIl4WFKq69tsjcS5X+eWjRjSvikzl+2mtMz5oh4LkzPo0boxzRqGev3YXVr+VF6/zAdei9pISs1m6Y5DTBkaT2AN2wSc27kFcU3DfWK67eYDWaxJ8b2CJqfSOrIBz1zTl80HsvjL53V3fZy1lgVJGQzv1IygQM99HDLGVaXSF6ZUvrZ4F+v2HuVPl/T02Wm94kFhYa4iLAUFcO21UFLidERSC0riRDxsW2o2xlDvynZ7y9Rh8ew5lM/8bemOxpFfVMrq3Uc4281lyqtj8tA4dmfmsWh7hmMxuMOMpbsJCQxgwsCa99YKCDBMHhLH8p2H2How243RVd+s5SmugiZ+1INtZNdobjqvI28tS+HTdfudDscjdmTksu9IvsfWw1WW6ANTKvccyuNvX29lVLdoLklo7Vgc4rAuXeCll2DBAvjzn52ORmpBSZyIhyWn5RDXNFyLxz1kdI9WtGgUypsOj7is2HWIotIyR9eYXNSrFc0iQnxi9KmmcgtL+GD1PsYltK71iOb4gbGEBAUwc5lzr0d+USkfrd5HYq9WNPGzCoB3je7CwPgm/OGD9ezMyHU6HLdbUP7Fz7leSOL6xUbRNqqBY1UqrbXc//GPGOCvl/fyixFh8aApU+D66+GRR+Dbb52ORmpISZyIhyWlZdNZlSk9JiQogEmDYpm7NY09h/Ici2NRcgYhgQGOrnkKDQpk/MBYvt2cxsGjBY7FURsfrdlHTmGJWxqXN40I4eLerflw9T5yC52ZNvT5+v1+UdDkZILL18cFBwVwSx3sH7cgKYP4ZuFeaQdijGFsr1YsSMrgaL73p1R+um4/P2xL5+4xXWkb1cDrxxcf9MIL0K2bK6FL9Y2iO1I9SuJEPKi4tIydGbl0UlETj5o0JI4AY3hruXMl5RcmZ9AvLorwEGcb5F47OI4ya3l7he+U168qay0zlu6mZ5vG9I+Lcss+Jw+NJ6ewhI8dKpk/a3kKHVtEMLh9U0eOX1ttohrwzIQ+bD6QxV/r0Pq4opIyluzI5BwvTn92qkrlodwi/vzZJvrGRnHdsHZePbb4sIgI1/q4o0ddiVyZb1TylapTEifiQbsz8ygutRqJ87DWkQ04v1s076zYQ2GJ90cLDuUWsXF/ltf7w51MXLNwzu3cgreX76Gk1L/+KK/cfZgtB7OZOjTebdO9+sdF0aN1Y95cshtrvVvwZctBVzN6fylociqjurXk/87rwMxlKXxWR9bHrU45TF5RqVfWw1XoWz6l0ttVKh+evYms/GIev6p3jQsFSR3VqxeMG+eaUvn44z/dPncuPPmkc3FJlSiJE/Gg5DRXQYUuLTUS52lTh8VzKLeILzZ4v6T8ku2ZAJzlYFGTyqYMjedgVgHfbk5zOpRqeWPJbhqFBXFp3zZu26cxhilD49lyMJvVKYfdtt+qmLUshZDAAK7qX/MCLb7i7tFdGRDfhD98uIFddWB93IKkdAIDDMM6eq8diKtKZSvmJ6V7bUrlgqR0Ply9j5vO60i3Vo29ckzxM7fcAqGhcP/9rmInc+fChAkwaJDTkckZKIkT8aCK9gIdoyMcjqTuO6tjc9o3j3CkwMnC5AwahQaR0DbS68c+mZFdW9A6MszRgh7VlZZdwJc/HmD8gFi3T0m9rG8bGoUG8eYS770e+UWlfLhmH2N7+19Bk5OpWB8XFGi49S3/Xx+3ICmD/nFRNA4L9upxE3u3prjU8o0XplTmF5Vy30cb6NA8gttGdfL48cRPjRoF778PxrhG5caPd02zHDnS6cjkDJTEiXjQtrQcYpo0cHydVH1QUVJ+1e7DbNqf5dVjL0rOYGhHz/aaqo6gwAAmDY5jQVKG34yavLtiD8WllslD3V8AJCI0iCv7t2XOhoNk5hS6ff8nM3vDAbIL/LOgyam0jWrA38b3YeP+LB6ZvdnpcGrsUG4RG/Yd9epUygrenFL57Lfb2HMon0ev7K3qyHJ6F18MU6dCdjYMGaIEzk/4xicOkToqKVWVKb3p6gExhAYFMMOLI1B7DuWRciiPs7w4LasqJg6KJSjA2WIvVVVSWsbMZSmc3am5x/opThkaT1FpGe+u3OuR/Z9o1vIUOjSPYIifFjQ5lfO7t+TGczvw5tLdfL7eP9fHLUrOwFq8WtSkgjGGcQmtWeDhKZU/7jvKKwt2MGlwLEM7+NZ7k/iguXNh9mxo3hy+/tp1XXyekjgRDykpLWNHRi6dtR7Oa6LCQ7i0Txs+XrOPrALvrDlZlOxqrO1kk++TiW4cxuieLXlv5R6fn/r23ZY0DhwtYOqw2rcVOJXOLRsxpH1T3lq+m9IyzxY42Xowm1W7D/t9QZNT+d2YrvSLi+LeD/xzfdyCpHQahwWREBPlyPE9PaWypLSM33+wnmYNQ7l3bHePHEPqkIo1cO++C7/7HZSUwFVXKZHzA0riRDxkz+F8ikrK6KSROK+aOiyevPIGy96wMDmDlo1DPTaCVBuTh8RzOK+YL350psFwVc1YupvWkWGc3y3ao8eZOiyePYfymV/e5NlTZi0vL2gywP8LmpxMcGAA/7i2P4EB/rc+zlrLgqQMzu7c3LFKjX1iIssbf3tmJPO/C3eycX8Wf7m0J5ENvLvmT/zQihU/rYGbMgUCAmDsWNft4tOUxIl4SFKqqzKlplN6V0JMFH1iInlzqedLypeVWRZvz+SsTs19csRleMdmdGgewYylvjulckd6DguSMrh2cJzH1xSO7tGK5g1DPVr8pqC4lA9X7+WiXq1oWgcKmpxK5fVxj87xn/Vx29NzOHC0wJH1cBUqplQuTM7gaJ57ZwykZObx7LfbuLBHSy7q1cqt+5Y66p57floD16YNjB4N8+fDXXc5G5eckZI4EQ9JSnNVptR0Su+bMjSe5LQclu085NHjbD6YxaHcIp/oD3cyxhiuLS/2svmAd4u9VNWMpSkEBxquGRzr8WOFBAUwaXAsc7emsedQnkeOMXv9AbLqWEGTU7mgR0tuOLs9byzZ7fXeZzU1f1v59GeHf2fHlU+p/HqT+1qiWGu576MNBAUE8NfLevnkF0viB6ZNg717NZ3SD5wxiTPGxBpj5hpjNhtjNhpj7jjh/ruNMdYY45ufYkQckpyWQ5vIMBqGqjKlt13Spw2RDYI93m6gYj3cWT6axEGlYi8OtF44k7yiEt5btYeLerUmulGYV445aXAcBjxW8GXW8hTaN49gaIe6VdDkVO65qBt9Y6P4/fvr2Z3p++vjFiSl06F5BLFNwx2NIyEmkpgm7q1S+cHqfSxMzuD3Y7vRKtI7v09SB112GURGwuuvOx2JnEFVRuJKgLustd2BocCtxpge4ErwgAsB352rI+KQbanZdNIonCPCggMZPyCGr348SFpWgceOsyg5k07RDWnZ2Hc/MEWFh3BxgqvYS05hidPhHOezdfvJLihh6lDPFTQ5UZuoBpzfvSXvrthDYYl713JtS81m5e7DTBocW29GQUKCAvjHtf0wBm57a43bX1N3KiwpZemOQ45UpTyRMYZxvd03pTIjp5CHZ29iYHwTJteDUWDxoAYN4Jpr4IMPIMs3Z3CIyxmTOGvtAWvt6vKfs4HNQNvyu58F7gE8u/BExM+UllmS03K0Hs5Bk4fGU1JmeXvFHo/sv7CklOU7Dzk+LasqpgyNI7eolHc99FrUhLWWN5bspmvLRgxq18Srx546NJ7M3CK+/NF9U9mgUkGT/nWzoMmpxDQJ5+nxfdiw7yiPzdnidDintGr3YfKLSx1dD1dZohunVP7ls03kFpbw2JW9CXCoYIvUIdOnQ36+qwm4+KxqrYkzxrQD+gHLjDGXAvustes8EZiIP9t3OJ/CkjIlcQ5q3zyCczo3561lKZSUlrl9/2tSjpBfXOrTUykr9I2NYliHZjw6Z7PPrF1as+cIG/dnMXVYvNdHrc7u1Jz4ZuFunWLqKmiyjzG9WtGsYajb9usvRvdsxS/Pbs9ri3fxhY+cYydakJRBUIBhqI/0dKyYUjm7lq/X3K1pfLpuP7eO7KQ12OIeQ4dC586aUunjqpzEGWMaAh8Ad+KaYvlH4E9VeNyNxpiVxpiV6emeLess4iuS0sorU7ZUEuekqUPjOZhVwHdb0ty+70XJGQQYGOIHa5+MMbx83QD6xEbx61lr+HSd802aZyzZTcPQIC7v1/bMG7tZQIBhypB4Vuw6zJaD7pkuNGfDAY7mFzPJCwVafNXvL+pGn9go7vlgPSmZnikcUxsLktLpH9/EZ9YpH5tSmVTzKZW5hSXc/9GPdIpuyM0jOro5Qqm3jHEVOJk/H3bscDoaOYUqJXHGmGBcCdxMa+2HQEegPbDOGLMLiAFWG2N+Vs/WWvuytXagtXZgixa+MYVBxNMqKlN2ita3ok4a1S2a1pFhHinqsSg5gz6xUTQO848+TI3CgnnjF4MZEN+EO99ew4er9zoWy6HcIj5ff4Ar+7d17AP11QNiCHFjwZdZy1No1yycYR18Y5THCSFBAfxjUj8McNus1T61Pi4zp5Af92Vxrg+sh6tsXEJrSsosX9VwSuXTX29l35F8Hr+yN6FBgW6OTuq1qVNdydwbbzgdiZxCVapTGuC/wGZr7TMA1toN1tpoa207a207YC/Q31rr3gUGIn4qKTWHlo1D1WjVYUGBAVw7OI4FSRnsSM9x236zCopZt/eoX6yHqywiNIjXrh/E0A7NuOu9dY6tkXtnxR6KSsu8WtDkRE0iQrgkoQ0fra59wZek1GxW7DrsqnxZTwqanEps03CeGt+H9Xt9a33cwvJKsr6yHq5C77Y1r1K5ds8RXlu8iylD4xjYzvdnBIifiYuDUaNcSVyZ+5ckSO1VZSTuLGAqMMoYs7b8kujhuET8WlJaNp01CucTrhkcS1CAYeYy9xXRXbbjEKVl1i/Ww50oPCSI/00fxNmdmnPPB+uZucy7rQdKyywzl+1maIemjq/fqSj48tGafbXaz6zlewgONFw1oH4VNDmVMT1bcf1Z7Xht8S63F4+pqQVJGUSFB9OrbaTToRznWOPvpAyO5BVV+XHFpWXc+8F6WjYK456LunkwQqnXpk2DnTthwQKnI5GTqEp1yoXWWmOtTbDW9i2/zDlhm3bW2gzPhSniP8rKK1N2UlETnxDdKIyLerXivZV7yC9yz/SuRckZNAgOpF9clFv2521hwYH857qBjOoWzR8/+pHXF+/y2rF/2JbG3sP5TB3azmvHPJW+sVH0atuYGUt2Y23NiiwXFJfyweq9jOnZiub1sKDJqfxhbHf6xETyu/fXkVy+Rtgp1loWJKVzVqfmBPpg5cZxvV1TKr/elFrlx7w8fwdbDmbzl8t6+s2UbvFDV14JDRuqwImPqlZ1ShE5s/1H88krKlVREx8yZWg8WQUlfLbePQU9FiZnMKh9U79egxIWHMhLUwZwYY+WPPjpRl5Z4J3F628s2U10o1BG92zpleOdjjGuAidby6dD1sSXPx7kaH4x16o313FCggJ4cXJ/QoMCmf7qCtKzCx2LZVtqDqlZhT63Hq5C77aRxDZtwOz1VZtSuSM9h79/l8TYXq0Y3fNnpQhE3CciAsaPh/feg9xcp6OREyiJE3GziqImmk7pO4a0b0rn6IZuKWKRmlVAcloOZ3fy/wIWIUEB/HNyfxJ7t+Lh2Zv517ztHj3e7sxcftiWzqTBcQQH+safn0v7tqFRWFCNz423lrkKmgytxwVNTiWmSTj/nTaQjJxCbnhjpdtGwqtrQZKrMvbZPrYeroIxhsTerVmUfOYplWVllj98uIHQoAD+fGlPL0Uo9dr06ZCTAx9+6HQkcgLf+CsqUockp1YkcRqJ8xXGGKYOi2f93qOs23OkVvtaVF4gwR/Xw51McGAAz0/sx6V92vDEl1t44bskjx3rrWUpBBjDJB8atQoPCeKq/jF88eOBao8WJadls3zXISYOjlOD5VPoExvF8xP7sX7vEe58Zw2lZTWbtlob85My6NgigrZRDbx+7Kq6uHcb15TKjaefUvnuyj0s23mI+xK7E904zEvRSb129tnQvr2mVPogJXEibpaUlk3zhqE0iQhxOhSp5Ip+bQkPCeTNWo7GLUzOoGlECN1bNXZTZM4LCgzg2Wv6cmW/tvztm2088/XWGq8RO5WC4lLeWbmH0T1a0irStz58ThkaT3Gp5d2V1avWWVHQ5GoVNDmt0T1b8cC4Hny1MZXH5mz26rELiktZtiPT56pSnqhX28auKZWnqVKZll3Ao3M2M7h9U64ZWH/7EYqXBQTAddfB999DivsKhEntKYkTcbOktByNwvmgRmHBXNGvLZ+t21+tKnCVWWtZlJzB8I7N6tzIS2CA4anxfZgwMIbnv0/mya/cm8h9vv4AR/KKmTrMubYCp9IpuiHDOzbjrWUpVR4pqihoMrqHCppUxS/Obs/04e14ZeFO3lyyy2vHXbnrMIUlZZzbxbdHzl2Nv9ucdkrlnz/dREFJGY9d2bvOvf+Ij7vuOrAW3nzT6UikEiVxIm5krSU5NUdFTXzUlKHxFJaU8f6qmjW63p6eS2pWYZ2ZSnmiwADD41cmcO2QOP41bzuPztnstkTuzaW76dgiwmebYU8ZGs++I/nM25pWpe2/2niQI3nFXDvEd6aG+roHLu7BBd2jefDTjXy/peqVGGtjQVI6wYGGIe1987yr7FiVypNMqfxmUyqzNxzg9lGd6NhCf1/Eyzp0gHPPdU2pdPMsDak5JXEibnQwq4DswhKNxPmo7q0bMzC+CTOW7qasBmtzKtbD+VuT7+oICDA8cnkvpg2L5z8LdvLnzzbVOpFbv/cI6/YcYerQeJ9thn1hj5ZENwqt8nTbt5alEN8s3GeTUl8UGGD4+8R+9GjTmNveWsOP+456/JjzkzIYEN+EiNAgjx+rtnq1bUxc03A+P2FKZXZBMQ98/CNdWzbixnM7OhSd1HvTpkFSEixd6nQkUk5JnIgbJZUXNemkypQ+a+qweHZl5rEwufqtLRcmZxDXNJzYpuEeiMx3GGN46NKe/PLs9ry2eBf3f/xjjZLeCm8u2U14SCBX+vDaseDAACYOjuOHbemkZOaddtvktByW7TzExEEqaFJdEaFB/G/aIKIaBPPL11ew/0i+x46Vll3A5gNZPr8erkJFlcrFyRkczv1pSuVTX20lNbuAx6/qTUiQPraJQ8aPh/BweO01pyORcno3EHGjY+0FNJ3SZ13UqxXNIkKqXeCkpLSMpdsz6+xUyhMZY7h/XHduOq8jM5el8IcPN9QokTuSV8Sn6/Zzeb+2Pt+UeNLgWAKMYeby058bby9PIShABU1qKrpxGP+7fhB5haX84rUVZBcUe+Q4FSPn5/pJEgdwcUJF4++DAKzafYg3l+5m2rB29Itr4nB0Uq81auRq/v3OO5DvuS9fpOqUxIm4UXJaNk3Cg2mmypQ+KzQokGsGxfLd5tRqjQKs33eU7MKSOj2V8kTGGH5/UVd+PaoT76zcw93vr6t2ifj3V+2lsKSMKUN8r6DJiVpHNuCC7tG8t3IvBcUn72l2rKBJz5a0aKSCJjXVrVVj/jmlP8lpOdz61hqKS8vcfowF2zJoEh5Mzzb+U0m2ZxvXlMrZGw5SWFLKvR9soHXjMO4e09Xp0ERcPeOOHoVPPnE6EkFJnIhbJaXm0LllI59d9yMukwbHYYFZy6teLnlx+bf6wzrWrzVQxhjuGt2V317YhQ9X7+M376ylpIofuMvKLG8u3c3A+Cb08JMP0lOHtuNQbhFf/HjyUu9fbTzI4bxin+p156/O6dyCR67oxfxt6fzpk41urYZqrWV+UgZnd27hV1NejTGMS3A1/n5szhaS0nJ4+IpeNPSDNX1SD4wcCbGx6hnnI5TEibiJtVbtBfxEbNNwRnWNZtbyPRSVVC0hWZicQc82jWlaT0dZbz+/M/dc1JVP1+3njrfXVmnkZEFyBrsz83yyrcCpDO/YjPbNI5ix9OQJ/qzlKcQ1DeesjvVnRNaTrhkUxy0jOjJreQr/nr/DbfvdcjCbjJxCzunsf/9P43q3prTM8triXVzSpw2jurV0OiQRl4AAmDoVvv4a9u93Opp6T0mciJukZxdyNL9YSZyfmDIsnoycQr7aePCM2+YVlbB695F6NZXyZG4Z0Yk/JnZn9oYD3Dpz9RkT4DeX7KZ5wxAu6tXKSxHWXkCAYfKQOFbtPszG/cdXT9yRnsPSHYeYODjWr0Z3fN3do7tycUJrHv9iC7PXn7rZdXUsSEoH8MskrmebxsQ3CyeyQTB/uriH0+GIHG/aNCgrgxkznI6k3lMSJ+ImPxU1UWVKf3Be5xbENm1QpQInK3Ydpqi0rN4UNTmdX53bgYcu6cHXm1K5ecYqCktOvnZs7+E8vt+SyjWDYgkNCvRylLVz9YAYQoMCfjYa9/aKPSpo4gEBAYanx/dhYHwTfvPuWlbtPlTrfS5IyqBzdENaRzZwQ4TeZYzhxWv7M+OXQ7TuUnxPly4wbJh6xvkAJXEibpKUmg2gkTg/4RpxiWf5zkNsK/+/O5XFyRmEBAYwqF1TL0Xn26af1Z6HL+/Fd1vSuPGNVSctAvLWMlcCdK0fFDQ5UVR4CJf2acMna/eRVV45sbCklPdX7S3vJxfmcIR1T1hwIC9fN5A2kWH86o1V7M7MrfG+CopLWbbzkN+0FjiZXm0j6R0T6XQYIic3bRps2gSrVjkdSb2mJE7ETZLScmgcFqRvTv3IhIGxhAQFMOMMo3ELkzPoHx9FgxD/GlHypClD43niqt7MT0rnhtdXkl/0UyJXWFLKOyv2cH73lrSN8r+REHA9v7yiUj5avQ+Arzamcii3SAVNPKhpRAivXj8Yay3Xv7riuF5p1bF85yGKSso4p4tGzkU84pprIDRUPeMcpiROxE2S0nLoosqUfqVpRAgX927Nh6v3kVNYctJtDuUWsXF/Vr1fD3cy1wyK4+mr+7B4ewbXv7ac3PLX8MsfD5KZW8TUof43ClehT2wUCTGRzFi6G2sts5alENu0gc4DD2vfPIKXrxvI3sP5/N+bp56uezoLktIJCQxgSHuNnIt4RFQUXH45zJoFhYVOR1NvKYkTcZPktBw1+fZDU4bFk1NYwsdr9p30/sXbXa0FtB7u5K4aEMOz1/Rl+c5DTPvfcrILinljyW7aNQv3+4RnytB4ktJyeGfFHpbsyGTioDgVNPGCQe2a8vSEPizfdYh73l9f7dYDC5IyGNiuCeEhKssv4jHTp8OhQ/D5505HUm8piRNxg8ycQg7lFtEpWkVN/E2/2Ch6tml8bMTlRIuSM2gUFkTvtlqfciqX9W3LC5P6s2bPEa7852JW7T7MlKHxfp/wXJLQhsZhQTzwyY8EBRjGD1RBE2+5tE8bfjemK5+s3c8z32yr8uPSsgrYcjDbr9fDifiFCy+E1q3VM85BSuJE3GBbanllShU18TvGGKYMjWfLwWxW7T78s/sXJWcytEMzggL1dnk64xJa8+K1/dmVmUtYcADjB8Q6HVKtNQgJZPzAWIpLLRd0V0ETb7tlREeuGRjLC98n8+7KPVV6zIIk18i5P7YWEPErgYEwZQrMmQOpqU5HUy/pU4mIGySnlVem1HRKv3RZ3zY0Cg36WbuBlMw8Ug7l+f20QG+5qFcr3vrVUP45uT+R4cFOh+MW1w2LJ7pRKL88p73TodQ7xhgevqIX53Ruzn0fbmBRcsYZH7MgKZ1mESH0aN3YCxGK1HPTpkFpKbz1ltOR1EtK4kTcICkth4ahQbRqrG/q/VF4SBBXDYhhzoYDZOT8tEh7kdbDVdugdk0Z1a2l02G4TXyzCJb/8QK1l3BIcGAAL07uT8cWDblpxqpjrVxOpqzMsjA5g7M7N/f7qbwifqFnTxg4UFMqHaIkTsQNklJz6BTdUJUp/diUofEUl1reWfHTtK2FyRm0ahxGxxYRDkYmUr81Dgvmf9cPIiw4kOmvriAtu+Ck220+mEVGTpHWw4l407RpsG4drF3rdCT1jpI4ETdwtRfQVEp/1im6IcM7NuOtZSmUllnKyixLtmdyVqfmSs5FHNY2qgH/mzaIQ7lF3PD6SvKKft4SROvhRBwwaRIEB2s0zgFK4kRq6XBuERk5hXRWZUq/N2VoPPuO5DNvaxqbD2ZxKLeIszo1czosEQF6x0TywqR+/LjvKHe8vZbSsuOryS5ISqdry0a01LR2Ee9p1gwuuQRmzoTiYqejqVeUxInUUnK6qzJlJ43E+b0Le7QkulEoby7dfayIgtbDifiOC3q05E8X9+CbTak8Mnvzsdvzi0pZsfOwRuFEnDB9OqSnw5dfOh1JvaIkTqSWtpUvtFd7Af8XHBjApMFx/LAtnfdX7aVzdEN9qy/iY6af1Z7rz2rH/xbt5PXFuwBYtjOTotIyzumi9XAiXnfRRdCiBbz2mtOR1CtK4kRqKSk1h/CQQNpENnA6FHGDSYPjCDCGbak5GoUT8VH3j+vBhT1a8ufPNvLtplQWJGUQEhTAYFURFfG+4GCYPBk++wwyM52Opt5QEidSS8lprsqUKmldN7SKDOPC7q4S+UriRHxTYIDh7xP70qttJL+etYbP1+9ncLumNAgJdDo0kfpp+nTXmrhZs5yOpN5QEidSS0lp2SpqUsfcNqoTo7pFq6iJiA8LDwnilWkDaRoRQmpWodbDiTipTx/XRVUqvUZJnEgtHM0vJjWrkM4qalKn9Gobyf+mDyI8JMjpUETkNKIbhfHa9YMY07Mll/Zt43Q4IvXbtGmwciVs3Oh0JPWCkjiRWkhOc1WmVFETERFndG7ZiH9PHUhrrUsWcdbkyRAUpNE4L1ESJ1ILSccqU2o6pYiIiNRj0dEwdizMmAElJU5HU+cpiROphaS0HMKCA2jbRN8Ai4iISD03fTocOADffut0JHWekjiRWkhKy6Fji4YEqjKliIiI1HfjxkHTpuoZ5wVK4kRqITk1W+vhRERERABCQ2HSJPj4YzhyxOlo6jQlcSI1lF1QzP6jBXRuqfVwIiIiIoBrSmVhIbzzjtOR1GlK4kRqaHt6LqDKlCIiIiLHDBgAPXqoSqWHnTGJM8bEGmPmGmM2G2M2GmPuKL/9r8aY9caYtcaYr40xatAi9cqxypQaiRMRERFxMcbVM27JEti2zelo6qyqjMSVAHdZa7sDQ4FbjTE9gKestQnW2r7A58CfPBemiO9JSsshJCiAWFWmFBEREfnJlCkQEKDROA86YxJnrT1grV1d/nM2sBloa63NqrRZBGA9E6KIb0pKzaZD8wiCAjUrWUREROSYNm1g9Gh4800oK3M6mjqpWp8+jTHtgH7AsvLrjxhj9gCTOcVInDHmRmPMSmPMyvT09FqGK+I7ktJyNJVSRERE5GSmT4c9e2DuXKcjqZOqnMQZYxoCHwB3VozCWWv/aK2NBWYCt53scdbal621A621A1u0aOGOmEUcl1dUwt7D+XRRURMRERGRn7vsMoiMVM84D6lSEmeMCcaVwM201n54kk3eAq5yZ2Aivmx7WnllypZK4kRERER+JiwMrrkGPvwQsrOdjqbOqUp1SgP8F9hsrX2m0u2dK212KbDF/eGJ+KakNNebUadoTacUEREROanp0yEvD95/3+lI6pyqjMSdBUwFRpW3E1hrjEkEHjfG/GiMWQ+MBu7wZKAiviQpLYfgQEN8s3CnQxERERHxTUOHQufOmlLpAUFn2sBauxAwJ7lrjvvDEfEPSanZtG8eQbAqU4qIiIicXEXPuPvvhx07oEMHpyOqM/QJVKQGktJy6KyplCIiIiKnN3WqK5l74w2nI6lTlMSJVFNBcSkph/LopMqUIiIiIqcXFwejRrmSOPWMcxslcSLVtD09B2uhi3rEiYiIiJzZ9OmwcycsXOh0JHWGkjiRakpOywHUXkBERESkSq64Aho2VIETN1ISJ1JNSak5BAYY2jWLcDoUEREREd8XEQHjx8N770FurtPR1AlK4kSqKSktm3bNwgkJ0q+PiIiISJWEhEBODnz00U+3zZ0LTz7pXEx+TJ9CRaopKVWVKUVERESqZfx4CAiAZ55xXZ87FyZMgEGDnI3LTymJE6mGwpJSdmXmaj2ciIiISHWcfz5MmQJr1sAdd7gSuHffhZEjnY7MLymJE6mGnRm5lFnorMqUIiIiItXz4IOuf59/Hm6+WQlcLSiJE6mGpNTyypTqESciIiJSPbt3Q2AgxMfDv/7lmlIpNaIkTqQaktJyCDDQvrkqU4qIiIhUWcUauPHjYd8+ePVV13UlcjWiJE6kGpLTsolvFkFYcKDToYiIiIj4jxUrXGvgbr4ZSkqgqMh1fcUKpyPzS0FOByDiT7al5tBJUylFREREqueee1z/FhdDZCTMmQOvvKJ1cTWkkTiRKioqKWNXRq7Ww4mIiIjUVHAwjB4NX3wB1jodjd9SEidSRbszcykps2ovICIiIlIbY8fC/v2wfr3TkfgtJXEiVZSUVlGZUu0FRERERGrsootc/86Z42wcfkxJnEgVJaXmYAx0bKGROBEREZEaa90a+vdXElcLSuJEqigpLZvYJuE0CFFlShEREZFaSUyExYvh8GGnI/FLSuJEqig5LUdFTURERETcITERysrg66+djsQvKYkTn7b5QBaX/mMhv3/f2YWvJaVl7EjPpZOKmoiIiIjU3uDB0LSpplTWkPrEiU8qK7O8snAHT3+1DYtl/d6jXNm/LUM6NHMknt2H8igqLVNRExERERF3CAyEMWPgyy9dI3IBGluqDr1a4nP2H8ln8ivLeHTOFkZ2a8EPvxtJm8gw/vL5JkrLnOknkpRaUZlSI3EiIiIibpGYCGlpsHq105H4HSVx4lM+WbuPMc/NZ/3eIzx5dQIvTRlAm6gG3JvYnY37s/hg1V5H4kpOywagk5I4EREREfcYMwaM0ZTKGlASJz7haF4xt89awx1vr6VLy0Z8cce5TBgYizEGgEsSWjMgvglPfrWV7IJir8eXlJZD26gGRIRqBrKIiIiIW7Ro4VobpySu2pTEieMWb8/gor/PZ86GA9x1YRfeuXEocc3Cj9vGGMOfLu5BRk4h/5y33esxJqXm0FlFTURERETcKzERli+H9HSnI/ErSuLEMYUlpTwyexOTX1lGg+BAPrh5OL8+vzNBgSc/LfvERnFl/7b8d8FOUjLzvBZnaZlle7raC4iIiIi4XWIiWAtffeV0JH5FSZw4YsvBLC77xyL+s2Ank4fE8fntZ9MnNuqMj/v9Rd0IDDA89sVmzwdZbs+hPApLVJlSRERExO3694foaPjiC6cj8Sv1PonLKSwhNavA6TDqjbIyyysLdnDpC4vIyCnkf9MH8vDlvQkPqdpas5aNw7hlREe++PEgS3dkejhal6Q0V2VK9YgTERERcbOAALjoIlergdJSp6PxG/U6ibPWMvmVZdz45iqKSsqcDqfOO3A0nyn/XcbDszdzXtcWfHXnuYzq1rLa+/nVuR1oG9WAv3zmnZYDSeWVKTWdUkRERMQDEhPh0CHX2jipknqdxBljuOncDqzbc8Sr0/Pqo8/W7WfMs/NZu+cIj1/Zm5enDqBZw9Aa7SssOJB7x3Zj04Es3lu5x82R/lxyag6tI8NoFBbs8WOJiIiI1DujR7tG5FSlssrqdRIHMLZ3a64/qx2vLtrFFxsOOB1OnZNVUMxv3lnLr2etoUOLhsy5/RwmDo471jqgpi5OaM3A+CY8/bXnWw4kpeWoP5yIiIiIpzRpAsOHK4mrhnqfxAH8YWx3+sRGcc/769mVket0OHXG0h2ZjH1uAZ+u289vLujC+zcNo13zCLfs2xjDny7pQUZOEf+Ym+yWfZ5MWZklOS1HRU1EREREPGnsWFi9Gg4edDoSv6AkDggJCuDFa/sREGC4ZeZqCoq1qLI2CktKeeyLzUz6z1KCAw3v3zSMOy44deuAmkqIieLqATG8unAXuzM9k3zvO5JPfnGpesSJiIiIeFJiouvfL790Ng4/oSSuXEyTcJ6Z0IdNB7L4y+ebnA7Hb21LzebyFxfz7x92MHFQHLNvP4d+cU08drzfjelKUKDh0TmeWdOooiYiIiIiXtCnD7RurSmVVaQkrpLzu7fkpvM68tayFD5Zu8/pcPxKWZnlfwt3cvELC0nLKuCV6wby2JW9iQitWuuAmmrZOIxbR3biq42pLN6e4fb9J6W62gtoOqWIiIiIBxnjGo37+mso9my9g7pASdwJ7h7dhcHtmvKHDzeQXN4fTE7v4NECpr26nL98volzOjXnyzvP5YIe1W8dUFO/PLs9baMa8NfPN7u95UBSWg7RjUKJDFdlShERERGPSkyEo0dhyRKnI/F5SuJOEBQYwPOT+tEgOJBbZq4iv0jr405n9voDjHluPit3HebRK3rzyrSBtGhUs9YBNRUWHMh9id3ZfCCLd93cciApLUfr4URERES84YILIChIUyqr4IxJnDEm1hgz1xiz2Riz0RhzR/ntTxljthhj1htjPjLGRHk8Wi9pFRnGs9f0JSkthwc++dHpcHxSUUkZd7+3jlvfWk275hHMvv1srh1S+9YBNZXYuxWD2zXl6a+2kuWmlgPWWpJTszWVUkRERMQbGjeGs89WElcFVRmJKwHustZ2B4YCtxpjegDfAL2stQnANuAPngvT+87t0oJfj+rM+6v2un10x98VlpRyy8xVvL9qL78e1Yn3bxpGhxbOjlYZY3jg4h4cyivixe/d03LgwNECcotK1SNORERExFsSE2HDBti71+lIfNoZkzhr7QFr7eryn7OBzUBba+3X1tqS8s2WAjGeC9MZd5zfmeEdm/HAxz+y+UCW0+H4hMKSUm6ZsZpvN6fx18t6ctforgS7uXVATfWOieTq/jH8b9FOt/T7S0qrKGqiJE5ERETEKypaDXzxhbNx+Lhqffo2xrQD+gHLTrjrF0Cde6UDAwx/n9iPxg2CuXXmanIKS878oDqssKSUm2es5rstafz18l5MHdbO6ZB+5ndjuhISGOCWlgNJqeXtBVpqOqWIiIiIV/ToAXFxmlJ5BlVO4owxDYEPgDuttVmVbv8jrimXM0/xuBuNMSuNMSvT09NrG6/XtWgUyguT+rErM5c/fLgBa91b/dBfVCRw329J4+HLezF1aLzTIZ1UdOMwbhnZia83pbI4uXYtB5JSc2jeMISmESFuik5ERERETqui1cC330JhodPR+KwqJXHGmGBcCdxMa+2HlW6fBlwMTLanyG6stS9bawdaawe2aNHCHTF73dAOzbhrdFc+W7efGctSnA7H6wqKS7npzVV8vyWNR67oxRQfTeAq/PLs9sQ0acBfPt9Uq5YDSWnZWg8nIiIi4m2JiZCTAwsXOh2Jz6pKdUoD/BfYbK19ptLtFwG/By611uZ5LkTfcPN5HRnRtQV//WwTG/YedTocrykoLuWmGauYuzWdR6/ozeQhvp3AwU8tB7YczObtFTVLuq21rvYCqkwpIiIi4l2jRkFIiNbFnUZVRuLOAqYCo4wxa8svicA/gEbAN+W3veTJQJ0WEGB4dkJfmjcM4Za3VnE0v+53ki8oLuX/3lzFvPIE7tohcU6HVGVje7VicPum/O3rbTVqOZCWXUh2QYl6xImIiIh4W0QEnHee1sWdRlWqUy601hprbYK1tm/5ZY61tpO1NrbSbTd5I2AnNYkI4YVr+3PgSAH3vL+uTq+Pq0jgftiWzmNX+lcCB66WA3+6uAeH84p44bukaj8+KdVVmVLTKUVEREQckJgImzfDzp1OR+KTfKM2vB8ZEN+Ee8d246uNqfxv0S6nw/GIguJSbixP4B6/sjeTBvtXAlehV9tIJgyI5bXFu9hZzZYD2yoqU2o6pYiIiIj3qdXAaSmJq4Ffnt2e0T1a8ticzaxOOex0OG5VUFzKr95YyYKkdJ64qjcT/TSBq3DXmC6EBgXyyOzqtRxISsshKjyY5g1VmVJERETE6zp3ho4dNaXyFJTE1YAxhqeu7kPrqDBum7maw7lFTofkFhUJ3MLkDJ64MoFrBvl3AgcQ3SiMW0d24tvNqSxMqnrLgeS0bLpEN8JV10dEREREvKqi1cD330NBgdPR+BwlcTUUGR7Mi9f2JyOniN++u5ayWpSy9wXHJXBXJTBhUKzTIbnN9We1I7ZpA/76+SZKSsvOuL21lm2pOXRSURMRERER54wdC/n58MMPTkfic5TE1UJCTBQPXNyduVvTeWn+dqfDqbHKCdyTVyUwYWDdSeDA1XLgj4nd2ZqazawVe864fUZOEUfzi+msoiYiIiIizhkxAsLCNKXyJJTE1dKUofFcnNCap7/aytIdmU6HU235RaXc8LorgXvq6j6Mr2MJXIUxPVsxpH1Tnvl66xnbQySlqaiJiIiIiOMaNHD1jFMS9zNK4mrJGMPjVyXQrlkEt89aQ3p2odMhVVl+USk3vLGCRdtdCdzVA2KcDsljjDH86ZIeHMkv5vkztBxITnO1F1CPOBERERGHJSZCcjIkVb9lVF2mJM4NGoYG8eLk/hzNL+bOd9ZQ6gfr4/KLSvnl6ytYvD2Tp+t4AlehZ5tIrhkYy+uLd7EjPeeU221LzaZRWBDRjUK9GJ2IiIiI/MzYsa5/NRp3HCVxbtK9dWP+elkvFiVnnnGkx2kVCdySHZn8bXwfrqoHCVyFu0Z3JSz49C0HklJz6NJSlSlFREREHNehA3TrpiTuBEri3Gj8wBiu6h/D898nsSAp3elwTiqvqIRfvLaCpTsyeWZCH67sX38SOIAWjUK5bVQnvtuSxvxtJ/8/Sk7LUVETEREREV8xdqyrQmVurtOR+AwlcW5kjOGvl/ekc3RD7nx7LQeP+lZPi4oEbtnOTJ6Z0Jcr+tWvBK7C9We1I65pOA/P/nnLgcycQjJzi+ikJE5ERETENyQmQmEhzJ3rdCQ+Q0mcm4WHBPHPyf3JLy7l9llrqtSXzBsqErjlOw/x7DV9ubxfW6dDckxoUCD3JXZnW2oOs5anHHffT0VNVJlSRERExCeccw5ERGhKZSVK4jygU3QjHrmiF8t3HeJv32xzOhzyikq4/tWfErjL+tbfBK7CmJ4tGdahGc98s42jeT+1HEiqSOI0EiciIiLiG0JD4YILXEmc9f0Cgt6gJM5DrugXw6TBcfxr3na+35LqWBy5hSVMf3UFK3YpgavMGMMDF/fgaH4xf69UiCY5LYeIkEBaR4Y5GJ2IiIiIHCcxEXbvhs2nLk5XnyiJ86AHL+lBj9aN+c0769h7OM/rx88tdI3Ardx1iOcm9lMCd4IebRpzzaA43liy69g0ym2p2XRSZUoRERER36JWA8dREudBYcGB/HNyf0rLLLe9tYaiEu+tj6tI4FalHObvE/txaZ82Xju2P7lrdBcaBAfy6BzXtzpJaTl00VRKEREREd8SGwu9esEXXzgdiU8IcjqAuq5d8wievDqBW2au5q731jG8YzPCggNoEBxIaHAgYUGBNAgJPHZb2LFLACGBATUaEcopLOH6V5ezOuUIf5/Yl4sTlMCdSvOGofz6/E48OmcLn67bT3p2IZ1bKokTERER8TmJifDss5CVBY0bOx2No5TEeUFi79b833kd+PcPO/hs3f4qPy7AuEbzGlRK7I6/fuJtrkRwQXIG6/ce5fmJ/RiX0NqDz6xumDa8HTOXpXDfhxsA6BytypQiIiIiPicxEZ58Er77Dq64wuloHKUkzkv+MLY7t5zXibziEgqKy8gvKqWgpJSC8n/zi8ooKC4lv7iUgmOXyreVHbs9v7iUvKISMnOLKKx0W0FxGfnFpTQIDlQCVw2hQYH8MbE7N765CkA94kRERER80fDhrhG4OXOUxDkdQH0SGR5MJMEePYa1ljILgQEqzFEdF/ZoyfCOzdiw7yhtoxo4HY6IiIiInCg4GEaP/qnVQD0uRKfCJnWMMUYJXA0YY/jn5P68c+MwAvT6iYiIiPimsWNh/35Yv97pSBylJE6kXFR4CD3a1O9FsiIiIiI+7aKLXP/W8yqVSuJERERERMQ/tGkD/frV+35xSuJERERERMR/JCbC4sVw+LDTkThGSZyIiIiIiPiPxEQoLYVvvnE6EscoiRMREREREf8xZAg0bVqvp1QqiRMREREREf8RGOhqNfDll1BW5nQ0jlASJyIiIiIi/iUxEVJTYc0apyNxhJI4ERERERHxL2PGuJp919MplUriRERERETEv0RHw6BBSuJERERERET8RmIiLFsGGRlOR+J1SuJERERERMT/JCaCtfDVV05H4nVK4kRERERExP8MGAAtWsAXXzgdidcpiRMREREREf8TEAAXXeRqNVBa6nQ0XqUkTkRERERE/FNiImRmwooVTkfiVUriRERERETEP40e7RqRq2dVKpXEiYiIiIiIf2raFIYNUxJ3ImNMrDFmrjFmszFmozHmjvLbx5dfLzPGDPR8qCIiIiIiIidITIRVq+DgQacj8ZqqjMSVAHdZa7sDQ4FbjTE9gB+BK4H5HoxPRERERETk1MaOdf1bj1oNnDGJs9YesNauLv85G9gMtLXWbrbWbvV0gCIiIiIiIqfUty+0bl2vplRWa02cMaYd0A9Y5pFoREREREREqsMY12jcV19BSYnT0XhFlZM4Y0xD4APgTmttVjUed6MxZqUxZmV6enpNYhQRERERETm1xEQ4ehSWLHE6Eq+oUhJnjAnGlcDNtNZ+WJ0DWGtfttYOtNYObNGiRU1iFBERERERObULLoCgoHozpbIq1SkN8F9gs7X2Gc+HJCIiIiIiUg2RkXD22UriKjkLmAqMMsasLb8kGmOuMMbsBYYBs40x9accjIiIiIiI+JaxY2H9eti3z+lIPK4q1SkXWmuNtTbBWtu3/DLHWvuRtTbGWhtqrW1prR3jjYBFRERERER+JjHR9e8XXzgbhxdUqzqliIiIiIiIT+rZE2Jj68WUSiVxIiIiIiLi/4xxjcZ98w0UFTkdjUcpiRMRERERkbohMRFycmDhQqcj8SglcSIiIiIiUjeMGgUhIXV+SqWSOBERERERqRv++U/o1ev44iZz58KTTzoXkwcoiRMRERERkbph0CDYuhU2bYJdu1wJ3IQJrtvrECVxIiIiIiJSN4wcCS++6Pr5lltcCdy777pur0OUxImIiIiISN1x3XUQFeWaUnnzzXUugQMlcSIiIiIiUpfMm+f69+674V//ck2prGOUxImIiIiISN1QsQbuww/hqadcUyknTKhziZySOBERERERqRtWrDh+DdzIka7rK1Y4G5ebGWut1w42cOBAu3LlSq8dT0RERERExJcYY1ZZawfWZh8aiRMREREREfEjSuJERERERET8iJI4ERERERERP6IkTkRERERExI8oiRMREREREfEjSuJERERERET8iJI4ERERERERP6IkTkRERERExI94tdm3MSYd2O21A1ZdcyDD6SCkXtE5J07QeSfepnNOnKDzTrytuudcvLW2RW0O6NUkzlcZY1bWtmu6SHXonBMn6LwTb9M5J07QeSfe5sQ5p+mUIiIiIiIifkRJnIiIiIiIiB9REufystMBSL2jc06coPNOvE3nnDhB5514m9fPOa2JExERERER8SMaiRMREREREfEjfpfEGWMuMsZsNcYkG2PurXT7O8aYteWXXcaYtSd5bF9jzBJjzEZjzHpjzDWV7mtvjFlmjEkq31fIKY4/rXybJGPMtOo+XvyPk+ecMSbeGLOq/BgbjTE3Vefx4r88eN7dVr5Pa4xpfprj672unnHynNN7Xf3kwXNuZvl+fzTG/M8YE3yK4+t9rh5y8rxz63udtdZvLkAgsB3oAIQA64AeJ9nub8CfTnJ7F6Bz+c9tgANAVPn1d4GJ5T+/BNx8ksc3BXaU/9uk/OcmVX28Lv538YFzLgQILf+5IbALaFPVx+vinxcPn3f9gHbl51LzUxxf73X17OID55ze6+rZxcPnXCJgyi+zTvH3Ve9z9fDiA+ed297r/G0kbjCQbK3dYa0tAt4GLqu8gTHGABNwvXjHsdZus9Ymlf+8H0gDWpQ/ZhTwfvmmrwOXn+T4Y4BvrLWHrLWHgW+Ai6rxePE/jp5z1toia21h+dVQykfPdc7VeR4578qvr7HW7jrD8fVeV/84es7pva5e8uQ5N8eWA5YDMSc5vt7n6idHzzt3vtf5WxLXFthT6fre8tsqOwdIrXiBT8UYMxhXNrwdaAYcsdaWnLhfY8xAY8wrZzj+KR8vfs/pcw5jTKwxZn15HE+Uv2nonKvbPHXenW47vdfVb06fc3qvq388fs6VT2ebCnxZfl3vc+L0eee29zp/S+LMSW47sbzmJE6SOR+3E2NaA28C11try063X2vtSmvtDWc4flXiEv/k9DmHtXaPtTYB6ARMM8a0rGJc4r88dd6dkt7r6j2nzzm919U/3jjn/gnMt9YuAL3PCeD8eee29zp/S+L2ArGVrscA+yuuGGOCgCuBd061A2NMY2A2cL+1dmn5zRlAVPnjf7bfKhy/qo8X/+P0OXdM+Tc1G3F9Q6Rzrm7z1HlX2+PrvKu7nD7njtF7Xb3h0XPOGPMgrmluv63m8XXO1W1On3fH1Pa9zt+SuBVA5/LqLSHARODTSvdfAGyx1u492YPLH/MR8Ia19r2K28vnrs4Fri6/aRrwyUl28RUw2hjTxBjTBBgNfFWNx4v/cfScM8bEGGMalP/cBDgL2Kpzrs7zyHlXDXqvq38cPef0XlcveeycM8bcgGvN26TTjAjrfa5+cvS8c+t7nfWBSjHVueCq/LIN1/zTP55w32vATad57BSgGFhb6dK3/L4OuBYhJgPv8VPlmIHAK5X28YvybZJxDaFyusfr4v8XJ8854EJgPa7qSeuBG3XO1Y+LB8+723F9E1mC61u+inNN73X1/OLkOaf3uvp58eA5V1K+z4rb/3TiOVd+Xe9z9fDi5Hnnzvc6U/4gERERERER8QP+Np1SRERERESkXlMSJyIiIiIi4keUxImIiIiIiPgRJXEiIiIiIiJ+REmciIiIiIiIH1ESJyIiIiIi4keUxImIiIiIiPgRJXEiIiIiIiJ+5P8Br5FztytcskAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABxsklEQVR4nO3dd1xUV/rH8c+hiyCogIqgKNgVscUea2ISTS+aYnozyWaTzWazLW3Lb7PJpjfTNr2amF4siRpjF8UCdgVRAVEBsYCU8/tjwEVjAWXmDvB9v17zCnPnzr3P4GUyz5znPMdYaxERERERERFn+TgdgIiIiIiIiCg5ExERERER8QpKzkRERERERLyAkjMREREREREvoORMRERERETECyg5ExERERER8QJKzkRERERERLyAkjMRkXrCGLOvyq3cGHOwyv2rnY7vVBhj0o0xo52O40SMMbONMTe76dhDj/p33WeMscaYSyseN8aYfxhjthtjCipi6Vbl+c2MMZ8bY/YbYzKMMVcddfxRxpi1xpgDxphZxpi27ngdIiJSPUrORETqCWttSOUN2AqcX2Xb+07HdzRjjF99OIc7WWvnHvXvOg7YB/xQscvlwI3AUKAZsAB4t8ohXgQOAS2Aq4GXK5M3Y0wEMBV4sOK5S4GP3f6iRETkuJSciYjUc8YYH2PMH40xm4wxu40xnxhjmlU8FlcxEnODMSbTGJNnjLndGNPPGLPSGJNvjHmhyrGuN8bMM8Y8XzFSs9YYM6rK42HGmDeMMVkVozn/MMb4HvXcp40xe4BHjDHxxpifKuLaZYx53xgTXrH/u0Ab4OuKEaM/GGOGG2O2HfX6Do+uGWMeMcZ8aox5zxizF7j+JDElGGPmVLyWXcaYYyYnxpigimPurvidLDHGtDDG/BNXYvRCRYwvVOzf2RgzwxizxxizzhhzRZVjvWWMmVzxeGHF+as7YnUd8Km1dn/F/XbAL9bazdbaMuA9oGvFeRoDlwIPWmv3WWt/Ab4CJlY89xIg1Vo7xVpbBDwC9DTGdK5mLCIiUsuUnImI1H93AxcBw4BoIA/XiEpV/YEOwHjgGeAvwGigG3CFMWbYUftuBiKAh4Gplcke8DZQCiQAvYCzgZuP8dwo4J+AAf5VEVcXIBZXkoC1diJHjgA+Xs3XeyHwKRAOvH+SmP4OTAeaAjHA88c55nVAWEV8zYHbgYPW2r8Ac4G7KmK8qyIpmgF8UPE6rwReqlpuiGsU6++4focpFXGekDEmGLis4vVU+ghIMMZ0NMb4V8RZOarWESiz1q6vsv8KXP+mVPx3ReUDFQnfpiqPi4iIhyk5ExGp/24D/mKt3WatLcaV/Fx2VMnf3621Rdba6cB+4ENr7U5r7XZcyUevKvvuBJ6x1pZYaz8G1gFjjTEtgHOBe6y1+621O4GngQlVnrvDWvu8tbbUWnvQWrvRWjvDWltsrc0FnsKVRJ6OBdbaL6y15UCTk8RUArQFoite/y/HOWYJrqQswVpbZq1NttbuPc6+44B0a+2bFa9zGfAZrsSq0rfW2p8r/j3+Agw0xsSe5HVdCuwC5lTZloXr32cdcBBXmeO9FY+FAAVHHaMACK3m4yIi4mF1uhZfRESqpS3wuTGmvMq2MlzzkCrlVPn54DHuh1S5v91aa6vcz8A18tUW8AeyjDGVj/kAmVX2rfozxpgo4DlcpYGhFfvnVetVHV/Vc5wspj/gGsFabIzJA5601v73GMd8F9eo2UcVZZfv4Up4S46xb1ugvzEmv8o2P46cC3Y4Rmvtvooyz+ijYj/adcA7R/3uHwb6VcSWDVwD/FQxSrcPV3JaVROgsOLnkz0uIiIeppEzEZH6LxM411obXuUWVDEqdipamyqZDq55YTsqzlMMRFQ5TxNrbdUyuaqJBbhKGi2QaK1tgiu5MCfYfz8QXHmnYu5Y5FH7VH3OCWOy1mZba2+x1kbjGmF8yRiTcPQLrhglfNRa2xUYhGt07NrjxJgJzDnq9x1irZ1UZZ/Do2TGmBBcDTl2HH3eKvvEAsOBd456qCfwccWoaKm19i1cJZpdgfWAnzGmw1H7p1b8nFpxv/IcjYH4Ko+LiIiHKTkTEan/JgP/rGw6YYyJNMZceBrHiwLuNsb4G2MuxzVX7DtrbRau+VtPGmOaVDQiiT9qvtrRQnGN4OQbY1oD9x/1eA7Qvsr99UCQMWZsxRyrvwKBxzv4yWIyxlxujImp2D0PV6JVdvRxjDEjjDE9KpLBvbjKHCv3OzrGb4COxpiJFb8j/4oGK12q7HOeMWaIMSYA18jdImvtiUbNJgLzrbWbjtq+BLi8ojmJjzFmIq6Rwo0Vc8imAn8zxjQ2xgzGNR+vcgTvc6C7MeZSY0wQ8BCw0lq79gRxiIiIGyk5ExGp/57F1aVvujGmEFiIqzHHqVqEq3nILlxNPS6z1u6ueOxaIABIw5XsfAq0OsGxHgV645rr9C2uZKKqfwF/reiQ+HtrbQFwB/A6sB3XSNo2TuxEMfUDFhlj9uH6Hf3WWrvlGMdoWfG8vcAaXPO+3qt47Flcc/jyjDHPWWsLcTUdmYBrNCwb+DdHJpEf4CpJ3AP0wdUg5GSv4e1jbP83rqYeKUA+rvlml1pr8ysevwNohGue4IfAJGttKkDFHL9Lcf0b5uG6JqrODxQREQ8zR5aui4iIHJ8x5nrgZmvtEKdjqauMMW8B26y1f3U6FhER8S4aORMREREREfECSs5ERERERES8gMoaRUREREREvIBGzkRERERERLyAkjMREREREREv4OfJk0VERNi4uDhPnlJERERERMRrJCcn77LWRh7rMY8mZ3FxcSxdutSTpxQREREREfEaxpiM4z2mskYREREREREvoORMRERERETECyg5ExERERER8QIenXN2LCUlJWzbto2ioiKnQ5F6JigoiJiYGPz9/Z0ORURERETkpBxPzrZt20ZoaChxcXEYY5wOR+oJay27d+9m27ZttGvXzulwREREREROyvGyxqKiIpo3b67ETGqVMYbmzZtrRFZERERE6gzHkzNAiZm4ha4rEREREalLvCI5c9o///lPunXrRmJiIklJSSxatAiAm2++mbS0tFo5R1xcHLt27TrhPv/3f/9X4+O+9dZb3HXXXUdse/PNN0lKSiIpKYmAgAB69OhBUlISf/zjH2t8fE945plnOHDggNNhiIiIiEhd9/jjMGvWkdtmzXJtrwMafHK2YMECvvnmG5YtW8bKlSuZOXMmsbGxALz++ut07drVY7GcSnJ2LDfccAMpKSmkpKQQHR3NrFmzSElJ4bHHHquV49eUtZby8vLjPn4qyVlpaenphiUiIiIi9U2/fnDFFf9L0GbNct3v18/ZuKqpwSdnWVlZREREEBgYCEBERATR0dEADB8+nKVLlwIQEhLCAw88QJ8+fRg9ejSLFy9m+PDhtG/fnq+++gr49SjWuHHjmD179q/OedFFF9GnTx+6devGq6++CsAf//hHDh48SFJSEldffTUA7733HmeccQZJSUncdtttlJWVAa6RsY4dOzJs2DDmzZtX7df6xBNP0K9fPxITE3n44YcBSE9Pp3Pnztx88810796dq6++mpkzZzJ48GA6dOjA4sWLAXjkkUeYOHEiI0eOpEOHDrz22msnPW6XLl2444476N27N5mZmUyaNIm+ffvSrVu3w/s999xz7NixgxEjRjBixIjDv+tKn376Kddffz0A119/Pb/73e8YMWIEDzzwAJs2beKcc86hT58+DB06lLVr11b7dyEiIiIi9dCIEfDJJ3DhhXD77a7E7JNPXNvrAmutx259+vSxR0tLS/vVNk8qLCy0PXv2tB06dLCTJk2ys2fPPvzYsGHD7JIlS6y11gL2u+++s9Zae9FFF9mzzjrLHjp0yKakpNiePXtaa61988037Z133nn4+WPHjrWzZs2y1lrbtm1bm5uba621dvfu3dZaaw8cOGC7detmd+3aZa21tnHjxoefm5aWZseNG2cPHTpkrbV20qRJ9u2337Y7duywsbGxdufOnba4uNgOGjToiHMerfK806ZNs7fccostLy+3ZWVlduzYsXbOnDl2y5Yt1tfX165cudKWlZXZ3r172xtuuMGWl5fbL774wl544YXWWmsffvhhm5iYaA8cOGBzc3NtTEyM3b59+wmPa4yxCxYsOBxL5esuLS21w4YNsytWrPjV7+bo38OUKVPsddddZ6219rrrrrNjx461paWl1lprR44cadevX2+ttXbhwoV2xIgRv3r9Tl9fIiIiIuJhCxda6+NjLVj74INOR/MrwFJ7nHzJ8Vb6VT36dSppO/bW6jG7Rjfh4fO7HffxkJAQkpOTmTt3LrNmzWL8+PE89thjh0drKgUEBHDOOecA0KNHDwIDA/H396dHjx6kp6fXKKbnnnuOzz//HIDMzEw2bNhA8+bNj9jnxx9/JDk5mX4VQ7AHDx4kKiqKRYsWMXz4cCIjIwEYP34869evP+k5p0+fzvTp0+nVqxcA+/btY8OGDbRp04Z27drRo0cPALp168aoUaMwxvzqtV144YU0atSIRo0aMWLECBYvXswvv/xy3OO2bduWAQMGHH7+J598wquvvkppaSlZWVmkpaWRmJhYo9/d5Zdfjq+vL/v27WP+/Plcfvnlhx8rLi6u0bFEREREpJ7JzoaxY10/33cfvPyya9SsjoyceVVy5hRfX1+GDx/O8OHD6dGjB2+//favkjN/f//D3f98fHwOl0H6+Pgcnv/k5+d3xNyqY7Vxnz17NjNnzmTBggUEBwczfPjwY+5nreW6667jX//61xHbv/jii1PqQmit5U9/+hO33XbbEdvT09MPv5YTvTb4dfdDY8wJj9u4cePD97ds2cJ//vMflixZQtOmTbn++uuP2+a+6nmO3qfymOXl5YSHh5OSknKyly4iIiIiDcGhQzB6NOzeDa+9Bjff7ErU6lBpo1clZyca4XKXdevW4ePjQ4cOHQBISUmhbdu2p3SsuLg4XnrpJcrLy9m+ffvh+VpVFRQU0LRpU4KDg1m7di0LFy48/Ji/vz8lJSX4+/szatQoLrzwQu69916ioqLYs2cPhYWF9O/fn9/+9rfs3r2bJk2aMGXKFHr27HnS2MaMGcODDz7I1VdfTUhICNu3b8ff379Gr+/LL7/kT3/6E/v372f27Nk89thjNGrUqFrH3bt3L40bNyYsLIycnBy+//57hg8fDkBoaCiFhYVEREQA0KJFC9asWUOnTp34/PPPCQ0N/dXxmjRpQrt27ZgyZQqXX3451lpWrlxZrd+FiIiIiNRDd98Nqanw4IOuxAz+NwdtyRIlZ3XBvn37+M1vfkN+fj5+fn4kJCQcbtJRU4MHDz5cIti9e3d69+79q33OOeccJk+eTGJiIp06dTqi7O/WW28lMTGR3r178/777/OPf/yDs88+m/Lycvz9/XnxxRcZMGAAjzzyCAMHDqRVq1b07t37cKOQEzn77LNZs2YNAwcOBFzlnO+99x6+vr7Vfn1nnHEGY8eOZevWrTz44INER0cTHR1dreP27NmTXr160a1bN9q3b8/gwYOPeN3nnnsurVq1YtasWTz22GOMGzeO2NhYunfvzr59+44Zz/vvv8+kSZP4xz/+QUlJCRMmTFByJiIiItIQvfKK6/bAA/C3vx35WB0qazSuOWme0bdvX1vZ/bDSmjVr6NKli8dikFPzyCOPEBISwu9//3unQ6kRXV8iIiIi9dy8ea7ka+RI+PZbqMHggxOMMcnW2r7HeqzBt9IXEREREZE6avt2uPRSaNMGPvzQ6xOzk2nwZY1SPY888ojTIYiIiIiI/E9REVxyCezbBz/+CE2bOh3RaVNyJiIiIiIidYu1MGkSLF4MU6dCN883FnQHlTWKiIiIiEjd8uKL8NZb8NBDcPHFTkdTa5SciYiIiIhI3TF7NtxzD5x/Pjz8sNPR1ColZyIiIiIiUjds3QqXXw4dOsB774FP/Upn6terOUW+vr4kJSXRvXt3Lr/8cg4cOHDKx7r++uv59NNPAbj55ptJS0s77r6zZ89m/vz5h+9PnjyZd95555TPXSk9PZ3u3bsfse2RRx7hP//5T42OU1vxiIiIiIictgMH4KKL4NAh+OILaNLE6YhqnRqCAI0aNSIlJQWAq6++msmTJ/O73/3u8ONlZWU1Wqy50uuvv37Cx2fPnk1ISAiDBg0C4Pbbb6/xOdyltLTUq+IRERERkQbMWrj1VkhJga+/hk6dnI7ILerWyNnjj8OsWUdumzXLtb2WDB06lI0bNzJ79mxGjBjBVVddRY8ePSgrK+P++++nX79+JCYm8sorrwBgreWuu+6ia9eujB07lp07dx4+1vDhw6lcdPuHH36gd+/e9OzZk1GjRpGens7kyZN5+umnSUpKYu7cuUeMbqWkpDBgwAASExO5+OKLycvLO3zMBx54gDPOOIOOHTsyd+7cGr/GEx37z3/+M8OGDePZZ589HM+OHTtISko6fPP19SUjI4OMjAxGjRpFYmIio0aNYuvWrYBr9PDuu+9m0KBBtG/f/vBIooiIiIjIKXn6aXj/ffj732HsWKejcZu6lZz16wdXXPG/BG3WLNf9fv1q5fClpaV8//339OjRA4DFixfzz3/+k7S0NN544w3CwsJYsmQJS5Ys4bXXXmPLli18/vnnrFu3jlWrVvHaa68dUaZYKTc3l1tuuYXPPvuMFStWMGXKFOLi4rj99tu59957SUlJYejQoUc859prr+Xf//43K1eupEePHjz66KNHxLl48WKeeeaZI7ZXtWnTpiMSqsmTJ1fr2Pn5+cyZM4f77rvv8Lbo6GhSUlJISUnhlltu4dJLL6Vt27bcddddXHvttaxcuZKrr76au++++/BzsrKy+OWXX/jmm2/44x//WMN/CRERERGRCjNnwv33uxab/vOfnY7GrbyrrPGee1xDlScSHQ1jxkCrVpCVBV26wKOPum7HkpQEzzxzwkMePHiQpKQkwDVydtNNNzF//nzOOOMM2rVrB8D06dNZuXLl4VGggoICNmzYwM8//8yVV16Jr68v0dHRjBw58lfHX7hwIWeeeebhYzVr1uyE8RQUFJCfn8+wYcMAuO6667j88ssPP37JJZcA0KdPH9LT0495jPj4+MOlmvC/RaRPduzx48cfN6558+bx+uuvHx6tW7BgAVOnTgVg4sSJ/OEPfzi870UXXYSPjw9du3YlJyfnhK9XREREROSYNm+G8eOha1dX63xjnI7IrbwrOauOpk1didnWrdCmTa2sBF51zllVjRs3PvyztZbnn3+eMWPGHLHPd999hznJRWKtPek+NREYGAi4GpmUlpbW2nHhyNdcVVZWFjfddBNfffUVISEhx9yn6musjBFcr19EREREpEb273c1ALHW1QDkOJ9B6xPvSs5OMsIF/K+U8cEH4eWXXWsbjBjh9tDGjBnDyy+/zMiRI/H392f9+vW0bt2aM888k1deeYVrr72WnTt3MmvWLK666qojnjtw4EDuvPNOtmzZQrt27dizZw/NmjUjNDSUvXv3/upcYWFhNG3alLlz5zJ06FDefffdwyNdp+tUjl1SUsIVV1zBv//9bzp27Hh4+6BBg/joo4+YOHEi77//PkOGDKmVGEVERESkgbMWbrgBUlPh++8hPt7piDzipMmZMSYWeAdoCZQDr1prnzXGfAxUtkkJB/KttUluitOlMjH75BNXQjZixJH33ejmm28mPT2d3r17Y60lMjKSL774gosvvpiffvqJHj160LFjx2MmOpGRkbz66qtccskllJeXExUVxYwZMzj//PO57LLL+PLLL3n++eePeM7bb7/N7bffzoEDB2jfvj1vvvlmrb2Wmh57/vz5LFmyhIcffpiHKxb6++6773juuee48cYbeeKJJ4iMjKzVGEVERESkAXvsMZgyBZ54As4+2+loPMacrOTMGNMKaGWtXWaMCQWSgYustWlV9nkSKLDW/u1Ex+rbt6+t7F5Yac2aNXTp0qV60T7+uKv5R9VEbNYsWLIEqsx3EqlUo+tLRERERJz33XcwbhxMmODq0FjP5pkZY5KttX2P9dhJR86stVlAVsXPhcaYNUBrIK3i4Aa4Avh1J4zadqwErHIETURERERE6rb16+Gqq6BnT3j99XqXmJ1MjVrpG2PigF7AoiqbhwI51toNx3nOrcaYpcaYpbm5uaccqIiIiIiI1GN797oagPj7uxqABAc7HZHHVTs5M8aEAJ8B91hrq3axuBL48HjPs9a+aq3ta63tGxkZeeqRioiIiIhI/VReDtde6xo5++QTaNvW6YgcUa1ujcYYf1yJ2fvW2qlVtvsBlwB9TieI2m41LwJq4S8iIiJSZ/z97/Dll/Dssw16ytJJR84q5pS9Aayx1j511MOjgbXW2m2nGkBQUBC7d+/WB2mpVdZadu/eTVBQkNOhiIiIiMiJfPklPPIIXHcd/OY3TkfjqOqMnA0GJgKrjDEpFdv+bK39DpjACUoaqyMmJoZt27ah+WhS24KCgoiJiXE6DBERERHv5mRH9LQ0uOYa1/knT25wDUCOVp1ujb8Ax/wtWWuvP90A/P39adeu3ekeRkRERERETkW/fkeuHVx1bWF3ys93NQBp3BimTgVVPFVvzpmIiIiIiNRTI0bAQw/BmDHg5weHDkH//q6OicuXu5pzVN4iImpndKuszNUyPz3dlQyq2glQciYiIiIi0nD9/DP87W/w44+u1vUHDkBCgqut/ZtvQmHhkfsHB0ObNkcmbFVv0dHg63vsc1Utn3zoIfj+e7j3Xpg3DwYPdv9rrQOUnImIiIiINCTWukar/vY3mDMHWrSASZNcZYz33Qcvv+z6efhwV+lhRsaRt/R013+Tk2HXriOP7efnGgWrTNbi4o5M3K64Au64A/7v/2DcOHj3XfeXT9YhxpNdEvv27WuXLl3qsfOJiIiIiEgFa2HGDFdSNm+eK1l64AHo2BEmTjz2nLOTtbXfvx+2bv11Ald5277ddd6jxcRAUVH1zlHPGGOSrbV9j/WYRs5EREREROoza10lhH/7Gyxa5EqMXnwRbrzR1YTj8cePTJJGjHDdX7Lk5IlT48bQpYvrdiwlJbBt25EJ2w8/wIIF8OCDDS4xOxmNnImIiIiI1EfWwtdfu5Ky5GRXaeGf/+xaTyww0JmYKkflJk36X/lkA0vQTjRydtJFqEVEREREpA4pL3e1pu/dGy68EPLy4I03YMMGuPVW5xOzTz5xJYyffOK6P2uWM/F4ISVnIiIiIiL1QVmZK+Hp2RMuvdQ1H+ytt2DtWlcJo7+/s/EtWXL88kkBVNYoIiIiIlK3lZXBxx/DP/4Ba9ZA587w17/C+PGu7oniVVTWKCIiIiJS35SWwjvvQNeucPXV4OMDH30Eq1e77isxq3OUnImIiIiIeKvHH//1nKwZM1xztTp3djX3CAqCTz+FlStdo2XHWwRavJ6SMxERERERb9Wv3/+aZhw65Fok+pxzYMoUCAuDL76A5ctdc8x89NG+rtNYp4iIiIiItxoxAj78EC64wJV87d3rGjH7z3/gvPPAGKcjlFqk5ExERERExFulpLjWJtu3z3X/qqvgvfeUlNVTGvsUEREREfE2+/a5Shj79nWtTxYa6urAOH06zJ7tdHTiJkrORERERES8yZdfujowPvUUnHuuq8HHl1/C3/+uhZvrOSVnIiIiIiLeIDMTLr4YLrrI1exj3jwYOtTV/EMLNzcImnMmIiIiIuKk0lJ44QV48EHXgtKPPQa/+x34+8OgQb/ef8SI/yVrUq8oORMRERERccqSJXDbba52+Oed50rS2rVzOipxiMoaRUREREQ8be9e+M1voH9/yM52lS5+840SswZOyZmIiIiIiKdYC59+Cl26wIsvwp13wpo1cNllao8vSs5ERERERDwiPR3OPx8uvxyiomDhQnj+eVfzDxGUnImIiIiIuFdJCTz+OHTr5lqj7KmnXHPNzjjD6cjEy6ghiIiIiIiIuyxY4Gr4sWoVXHghPPcctGnjdFTipTRyJiIiIiJS2/Ly4PbbYfBg18+ffw5ffKHETE5IyZmIiIiISG2xFj780NXw47XX4J57IC3NtbC0yEkoORMRERERqanHH4dZs47c9t570KkTXHUVxMa65pU99RSEhjoTo9Q5Ss5ERERERGqqXz+44gpXgnboENx0E0ycCNu2uTowLlwIvXs7HaXUMWoIIiIiIiJSUyNGwCefwCWXgJ8f7NoFZ54JH3wArVs7HZ3UURo5ExERERE5FSNGuEbPdu2CCRNgzhwlZnJalJyJiIiIiJyKWbNg6lT4y19g5sxfz0ETqaGTJmfGmFhjzCxjzBpjTKox5rdVHvuNMWZdxfbH3RuqiDgpOSOP7fkHnQ5DRETEO8ya5Ro1++QT+Mc/XP+tnIMmcoqqM+esFLjPWrvMGBMKJBtjZgAtgAuBRGttsTEmyp2Biogz1mbv5V/frWXO+lx6tA7jq7sGY4xxOiwRERFnLVniSshGjHDdr5yDtmTJ/7aJ1NBJkzNrbRaQVfFzoTFmDdAauAV4zFpbXPHYTncGKiKelbO3iKemr2dKciYhgX6c060lP6RmM2/jboZ0iHA6PBEREWf94Q+/3jZihBIzOS01mnNmjIkDegGLgI7AUGPMImPMHGNMPzfEJyIetr+4lKdnrGf4E7OZunwbNw5ux89/GMGzVyYRFRrIS7M3Oh2iiIiISL1U7Vb6xpgQ4DPgHmvtXmOMH9AUGAD0Az4xxrS31tqjnncrcCtAmzZtai1wEaldZeWWKUszeXLGenILixmb2Io/jOlE2+aND+9z89B2/N93a0nJzCcpNty5YEVERETqoWqNnBlj/HElZu9ba6dWbN4GTLUui4Fy4Fe1TtbaV621fa21fSMjI2srbhGpJdZaZq3byXnPzuWPU1fRplkwn00axItX9T4iMQO4qn9bwhr589IsjZ6JiIiI1LaTjpwZ18z/N4A11tqnqjz0BTASmG2M6QgEALvcEaSIuEfqjgL+9d1aftm4i7bNg3n56t6c073lcRt+hAT6cd3Atjz300Y27iwkISrUwxGLiIiI1F/VGTkbDEwERhpjUipu5wH/BdobY1YDHwHXHV3SKCLeKavgIL+fsoJxz//C6h0FPDSuKzPuHca5PVqdtBPj9YPb0cjfl5dnb/ZQtCIiIiINQ3W6Nf4CHO/T2jW1G46IuNO+4lJembOJ1+ZuprwcbhnanjuHJxAW7F/tYzRrHMCEM2J5d0EGvzu7I63DG7kxYhEREZGGo0bdGkWkbiotK+e9hRkMf2IWz/+0kbO7tuTH+4bx5/O61Cgxq3Tz0PYAvPazRs9EREREaku1uzWKSN1jreWntTv51/dr2bhzH2fENeP167qcdqfF1uGNuKhXaz5aspXfjEygeUhg7QQsIiIi0oBp5Eyknlq9vYCrXlvETW8vpazc8srEPnx824Baa4F/+7B4ikvLeWt+eq0cT0RERKSh08iZSD2zPf8gT05bx9Tl22nWOIBHL+jGVf3b4O9bu9/FJESFMKZrS96en86tZ7YnNKjm5ZEiIiIi8j9KzkTqib1FJbw8exNv/LIFgEnD45k0PJ4mbkyaJg2P54fUbD5YtJXbhsW77TwiIiIiDYGSM5E6zlrLe4u28vSM9ezZf4iLe7XmvrM7EtM02O3n7hkbzuCE5rz+yxauGxRHkL+v288pIiIiUl9pzplIHffdqmwe/GI1HaJC+PquITw9PskjiVmlO4YnkFtYzNRl2z12ThEREZH6SMmZSB1WXm559sf1JESF8MEtA+gRE+bxGAbFN6dnTBiv/LyJ0rJyj59fREREpL5QciZSh32/Opv1Ofu4e1QHfH2Ot1a8exljmDQ8nozdB/hudbYjMYiIiIjUB0rOROqo8nLLcz9uID6yMWN7tHI0lrO7tiQ+sjEvz96EtdbRWERERETqKiVnInXUtNRs1uUUOjpqVsnHx3D7sHjWZO1l9vpcR2MRERERqauUnInUQa65ZhtoH9mYcYnRTocDwIVJrYkOC+LlWZucDkVERESkTlJyJlIHTU/LZm12IXePdH7UrFKAnw83D23P4vQ9LE3f43Q4IiIiInWOkjOROqa83PLMzA20j2jM+T29Y9Ss0oQzYmka7M9LszV6JiIiIlJTSs5E6pjpaTmszS7kN6MSvGbUrFJwgB83DG7HT2t3siZrr9PhiIiIiNQpSs5E6hBrXR0a20U05nwvmWt2tOsGxtE4wJfJczR6JiLeYX1OIS/O2qhusiLi9ZScidQh09NySMvay10jEvDz9c4/37Bgf64e0JavV+xg6+4DTocjIsJLszbyxLR1pO7QiL6IeDfv/HQnIr9SOWoW1zyYC5O8c9Ss0k1D2uHn48MrP2v0TEScVVJWzk9rdwLw9codDkcjInJiSs5E6oiZa3aSumMvd43s4LWjZpVaNAni0j6tmZK8jZ2FRU6HIyIN2JIte9hbVEqTID++WZGl0kYR8Wre/QlPRADXqNkzM9fTtnkwF3n5qFml286Mp7SsnP/+ku50KI547Pu1/OObNKfDEGnwpqflEOjnw/3ndGZ7/kGWZ+Y7HZKIyHEpOROpA36sGDW704vnmh0tLqIx5/VoxXsLMyg4WOJ0OB518FAZb83fwuu/bCF1R4HT4Yg0WNZaZqTlMCQhgguTognw9eGbFVlOhyUiclx141OeSANmreXZHzfQplkwF/dq7XQ4NXL7sHj2FZfy3sIMp0PxqDnrcykqKcfXx/Dk9PVOhyPSYK3JKmR7/kHO6tqCJkH+DO8UyberdlBertJGEfFOSs5EvNxPa3eyansBd41IwL+OjJpV6t46jGEdI/nvL1s4eKjM6XA8ZnpqNmGN/LlnVAd+WruTpel7nA5JpEGakZaDMTCqSwsAxvWMJmdvMUv0NykiXqpufdITaWAqR81imzXi4t51a9Ss0h3D49m9/xBTkjOdDsUjSsrKmbkmh1FdorhpaDsiQwN5/Id1akIg4oAZa7LpFRtOZGggAKO7RNHI35dvVqq0UUS8k5IzES82e10uK7fVzVGzSme0a0aftk15Zc5mSsrKnQ7H7RZtdnWGG9OtJcEBfvxmZAKL0/fw84ZdTocm0qDsyD/I6u17Oatry8PbggP8GNkliu9WZVHaAN6PRKTuqZuf9kQagMoOjTFNG3FJ7xinwzllxhgmDYtne/5Bvl5R/9cYmpaaTZC/D2d2iARgQr82xDRtxBPT1mqei4gHzVyTA8BZXVscsf38xFbs3n+IhZtV2igi3kfJmYiXmr0+lxXbCrizDo+aVRrZOYpOLUJ5efamep2glJdbpqdlM7xjFI0CfAEI8PPh3tEdWb19Lz+kZjscoUjDMSMth/YRjUmICjli+/BOUYQE+jWIL4tEpO6p25/4ROopay3PztxA6/BGXFqHR80q+fgYJg2PZ8POfYe/za6PVmzLJ2dvMWO6H/lN/UW9WtMhKoQnp69TKZWIB+wtKmHh5t2/GjUDCPL35ayuLfghNZtDpfp7FBHvouRMxAvNWZ9LSmY+d45IIMCvfvyZjktsRUzTRrw0e1O9bY7xQ2o2fj6GkZ2O/EDo62O47+xObMrdz9Tl2x2KTqThmL0ul5Iye8zkDOD8nq0oOFjCLxtzPRyZiMiJ1Y9PfSL1SGWHxtbhjbisT90fNavk5+vDbWe2JyUzv17O9bDWMj01h4HxzQkL9v/V42O6tSAxJoxnZ26guLThLCsg4oQZaTk0bxxArzZNj/n4kIRIwhr5a0FqEfE6Ss5EvMzPG3axfGs+d4yIrzejZpUu7xtLREgAL83e6HQotW7Dzn1s2bWfs7u1PObjxhjuH9OJ7fkH+XDRVg9HJ9JwHCotZ/banYzqEoWvjznmPgF+PpzTrSXT03IoKtGXJSLiPerXJz+ROs4112w90WFBXN4n1ulwal2Qvy83DmnH3A27WLWtwOlwatW01a5mH2cfp4wKYEhCBAPbN+eFWRs5cKjUU6GJNCiLt+yhsLj0iBb6xzKuZyv2FZcye51KG0XEe5w0OTPGxBpjZhlj1hhjUo0xv63Y/ogxZrsxJqXidp77wxWp337ZuItlW/OZVI/mmh3tmgFtCQ30Y/KcTU6HUqumpWXTq004LZoEHXcfYwy/H9OJXfsO8ea8dM8FJ9KAzEhzLWcxJCHihPsNbN+c5o0D+HqlujaKiPeozqe/UuA+a20XYABwpzGma8VjT1trkypu37ktSpEGwLWu2QZahQVxRd/6M9fsaE2C/LlmYFu+W53F5tx9TodTK7blHWD19r2MOU5JY1V92jZldJcoJs/ZRMGBEg9EJ9JwWGuZkZbD0A6Rh5ezOB4/Xx/O7dGSn9bs1Ei2iHiNkyZn1tosa+2yip8LgTVAa3cHJtLQzNu4m+SMPO4YHk+g34k/VNR1Nw5uR4CvD6/M2ex0KLVieqpreYDqJGcA953diX3Fpbzyc/0aPTwdW3cfYPX2+lXqKp6XumMvOwqKjtul8WjnJ0ZzsKSMmWt2ujkycUL6rv28OGsjnyzJdDoUkWqrUd2UMSYO6AUsqth0lzFmpTHmv8aYY7dEEpGTcnVoXE/LJkFc0a/+zTU7WmRoIFf0jWXq8m1kFRx0OpzTNi01m04tQmkX0bha+3dp1YQLekbz5rx0dhYWuTm6uuH3U1ZwzRuL1JxBTsuMtBx8DIzqHFWt/fvFNaNFk0C+0YLU9UbmngO8PHsTY5+by/D/zOaJaev48+er2JZ3wOnQRKql2smZMSYE+Ay4x1q7F3gZiAeSgCzgyeM871ZjzFJjzNLcXE26FTmW+Zt2syQ9jztG1P9Rs0q3ntmecgtvzN3idCinZfe+Ypak72FMt+p9U1/p3tEdKSkr58Wf6l/nyprKLihiScYe8g+UMD2t/i5SLu43Iy2HPm2b0jwksFr7+/gYxvaIZva6XPYWqcy4rtqef5DXft7MhS/8wtDHZ/HvH9bi7+vDX8d2YeodgzCGelOpIfVftZIzY4w/rsTsfWvtVABrbY61tsxaWw68BpxxrOdaa1+11va11vaNjIysrbhF6g1Xh8YNtGjiGk1qKGKbBXNBz2g+WLyVvP2HnA7nlM1ck0O55bgt9I8nLqIxV/SL5YPFW8nc07C/0f1+dRbWQniwPx8v0TIDcmq25R0gLWsvo7vU7IuScT1bcaisnBmp+mKgLskuKOKNX7ZwyUvzGPzYT/zzuzWUW/jTuZ2Z+4cRfHHnYG4e2p7ebZpyWZ8YPl6ayc69qlQQ71edbo0GeANYY619qsr2VlV2uxhYXfvhidR/CzbvZnH6HiYNiyfIv2GMmlW6fVg8Bw6V8faCdKdDOWXTUnNoHd6IbtFNavzcu0d2wBjDMzM3uCGyuuO7VVl0bhnKjYPbMW/jbrbubtjJqpyamRWjrtWdb1apV2w4rcMbqWtjHbCzsIi356dz+eT5DPjXj/z9mzSKSsq5f0wn5tw/nK9/M4TbhsUT2yz4iOfdPiye0rJyXpur0TPxftUZORsMTARGHtU2/3FjzCpjzEpgBHCvOwMVqa+embmBqNBAJpzRxulQPK5Ty1BGd4nirfnp7C+ue93S9hWX8suGXYzp1hLX91g10zIsiOsGtuXz5dvYkFPohgi9X3ZBEUsz8jivRysu6xODj4EpyXV78n5uYTGFKpHzuBlrcoiPbEz7yJAaPc8Yw7ierfhlw646PYpfX+3eV8x7CzOY8OoC+v/fjzz8VSp7D5byu7M68uN9w/jut0O5c0QCbZsff85v2+aNuTCpNe8vqtuVGtIwVKdb4y/WWmOtTazaNt9aO9Fa26Ni+wXW2ixPBCxSnyzYtJvFW/YwaXjDGzWrNGl4AvkHSvhwcd0rZ5u9bieHysprPN+sqknDEwgO8OOpGetrMbK6o7Kk8bwerYgOb8SZHSOZsnQbpWXlTod2SvYVl3LW03Po84+Z3PLOUr5M2c6+OvjFQ11TcLCERZv3nHTh6eM5PzGa0nLLD6nZtRyZnIq8/Yf4aPFWrnl9EWf834/89YvV7Cws5jcjOzDj3jOZdu+Z3D2qA/E1SMTvGO6q1HhzXt2e5yz1n5/TAYg0ZM/+uJ7I0ECubICjZpX6tG1K/3bNeH3uFq4dGFenFt+elppD88YB9I1rdsrHaNY4gJuHtuOZmRtYuS2fxJjw2guwDqgsaUyIcn3ImtAvltvfW8bPG3IZ2fnUk16nfL5sG/kHSrikV2vmb9rNjLQcAv18GNEpirGJrRjZOYrGgfpfb22bvW4npeW2xiWNlbpFN6FdRGO+WbmjQb8fO6ngQAnT07L5ZmUW8zbuorTcEtc8mEnD4hmb2IrOLUNPqUKhUocWoZzTrSVvzk/n5jPb0yTIvxajF6k9+j+EiEMWbt7Nws17eHBc1wY7alZp0vB4rn9zCV8s315nlhIoLi1j1tqdjO3RCl+fU//AAHDTkHa8PT+dJ6at492b+tdShN6vsqTx3tEdD28b2bkFESEBfLQ4s84lZ9Za3l6QQY/WYTx5RU+shWVb8/hmZRbfrcrih9Rsgvx9GNk5irE9ohnROZLgAP1vuDZMT8shIiSQXrHhp/R8YwznJ7bihVkbyS0sJjK0et0e5fQUFpUwIy2Hb1dm8fOGXErKLDFNG3Hz0PaMS2xFt+gmp5WQHe3OEQn8kJrNuwsyuHNEQq0dV6Q26f8KIg55duYGIkMDubq/vqUd1jGSbtFNmDxnE5f2iTntZMcT5m/azb7iUs7pfmplVFWFBvlzx/AE/vndGhZs2s3A+Oa1EKH3q1rSWCnAz4dLe8fwxi9b2FlYRFRokIMR1syCTbvZuHMf/7m8J8YYjIG+cc3oG9eMh8Z1ZUn6Hr5dlcV3q7L5blU2jfx9GdUlinGJrRjeKarBf0lzqopLy5izLpdxia3wOY33jnE9o3nup418vzqLawfG1V6AclhxaRnLt+Yzf9Nu5m/cRUpmPqXlluiwIK4fFMe4xGgSY8JqNSGrqkdMGMM7RfLfX7Zw4+B2NArQ35x4HyVnIg5YtHk3Czbv5q9ju+gDGa5vrScNj+euD5YzLTX7iA/r3mp6ajYhgX4MSqidRGriwLa88csWnpi2ls8mDXLbhxNvcnRJY6XL+8byys+bmbpsO7cPi3coupp7a346TYP9GZf46+vXx8fQv31z+rdvzsPnd2Pxlj18u2oH369ylXEFB/gyuksLxia2YljHSL0v1MDCzXtcc/1OsaSxUscWoXRqEcrXK3YoOaslZeWW1B0FzNu4m/mbdrEkfQ9FJeX4GOjROoxbzmzP6C4t6BUbflqJdU3cNSKByyYv4MPFW7lxSDuPnFOkJpSciTjg2R83EBESyNX92zoditc4t3sr4pqv4+XZmzi3+6l1P/SUsnLLjLQchneKrLVFw4P8fbl7VAf+/Pkqflq7k1E1XKuprsnZ++uSxkoJUSH0i2vKx0syue3M9l59LVTalneAmWtyuK0aS2L4+hgGxjdnYHxzHjm/G4u27OGblVn8sDqLr1bsICTQj9FdohibGM2ZHSMazML0p2pGmmsUcnBCxGkfa1xiK56csZ6sgoO0CmtUC9E1LNZaNuXuY97G3czbuIuFm3ezt8jVEKdjixAm9GvDoHjXlxRhjZyZ89U3rhn92zXjlZ83cfWANvr7Eq+j5EzEwxZv2cP8Ta5RM5VU/I+vj+G2YfH8aeoqftm4i6EdvHfR+uSMPHbtO8SYGi48fTKX943h1Z838cS0dYzoFOWxb5Kd8P2qX5c0VjW+Xxt+P2UFi7fsoX977y/zfG+hq9voNQNq9oWLn68PgxMiGJwQwd8u7MbCzbv5ZoVrftoXKTsIDfTjrG4tGJfYiiEJkXWqYY4nWGuZmbaTMztG1Mpo47ie0Tw5Yz3frszi5qHtayHC+m9b3oHDZYrzN+1mZ2ExADFNG3Fu91YMSnB9EeFNJcp3jUxg4huL+Sx5O1dpaoF4GSVnIh727I/riQgJ0KjZMVzSuzXPzFzPS7M2eXVyNi01mwBfH4Z3qt0Y/X19uPesjvz2oxS+XrmDC5Na1+rxvcm3xylprHRej5Y8+lUqHy/N9PrkrKikjI+XbOWsri1oHX7qoy3+vj4M7RDJ0A6R/OPi7szbuItvV2YxLTWbqcu20yTIj7O7tWRsYiuGJETg76tEbdX2ArL3FvH7rp1q5XjtIhrTvXUTvlZydly79xW7krFNrlLFjIpF4yNCAhgYH8Hg+OYMio+gTfPgkxzJOUMSIugZE8bkOZu4om8MfvpbEi+i5EzEg5am72Hext38+bzOGjU7hkA/X24e0p5/freG5Vvz6NWmqdMh/Yq1lmmp2QxOaE6oG1oxn58YzcuzN/H0jPWc16NVvfwAfqKSxkrBAX5ckBTNZ8u28fD53RwrgaqOr1bsIO9ACdcNiqu1Y/r7+jC8UxTDO0Xxz4t7MG/jLr5euYNpq7P5NHkbYY38uSgpmntGd6Rp44BaO29dMyMtBx8DIztH1doxxyVG89j3a8ncc4DYZt6bYHhKYVEJi7fsOTxvbG12IQChgX70b9+M6wbGMTghgo4tQupECTK45jnfNbIDt7yzlK9X7uDiXjFOhyRymJIzEQ969scNNG8cUOPSp4bkyv5teGHWRl6evYlXr+3rdDi/kpa1l215B7nLTW2YfXwMvz+7Eze/s5RPk7fVyzWXTlbSWGl8v1jeX7SVr1bsYKKX/s1Ya3l7fjodW4Qw0E0jfAF+PozoHMWIzlEUl5Yxd/0uvlm5g/cWbeXrlVn86dzOXNYnps58MK5NM9Jy6BvXjGa1mKCO7dGKx75fy9crd3DH8IbXbn3P/kOs2JZPcnoe8zftYsW2AsrKLQF+PvSLa8r9YzoxKL45PVqH1ekRp1Gdo+jcMpQXZ23iwp6t63UZudQtSs5EPCQ5Yw9zN+ziT+d21tpGJxAS6Md1A9vy3E8b2ZBTSIcWoU6HdIRpqa5v6kefZme4ExnVJYrebcJ5duYGLu7Vut517vt2VRadWhy/pLFSj9ZhdGnVhI+XbPXa5GzZ1nxSd+zlHxd190hyFOjny+iuLRjdtQW3D4/nL5+v5v5PVzIleRv/d3F3EqK86+/FnTL3HGBtdiF/HdulVo8b2yyYXm3C+WZFVr1Pzg4eKiN1RwEpmfms2FbAisx8tu5xlSn6+hgSY8KYNCyeQfHN6d22ab16L/LxMdwxIoG7P3R1CT63DnQJloZBnxBFPOSZmRto1jiAiQO980OmN7l+cDtem7uFl+ds4qkrkpwO5wjTU7Pp27YZESHuW6TWGMP9Yzpz5WsLeW9hRr2a+1KdksZKxhgm9Ivl4a9SWb29gO6twzwQYc28PT+d0EA/Lu7l+fmBnVs2YcptA5mSnMm/vl/Luc/O5dYz23PXiA4Nomx6eloOwGm30D+W8xOj+ds3aWzK3Ud85Im/RKgrysotG3YWsiIzn5RMVyK2LqeQsnILQOvwRvSMDePq/m3oGRtO99ZhhATW74+JY3u04ukZ63lh1kbO8fIuwdJw1O+/OhEvkZyRx9wNu/ijRs2qpVnjACacEcu7CzL43VkdiWnqHfM+MnbvZ212IQ+O6+r2cw2Mb87QDhG8OGsj4/vFumV+mxOqW9JY6aKk1vzzuzV8sjTT65KznXuL+G5VFhMHtqWxQx9ifXwM4/u1YXSXFvzfd2t5cdYmvlqxg79d0J0RtTgPyxvNSMumY4sQ2jZvXOvHHpvYir9/m8Y3K7L47egOtX58d7PWsj3/ICsyC1ixLZ+UzHxWby/gwKEyAJoE+dEzNpw7usTTMyacxNgwr+qm6Cm+Pq41Nv/w6Upmr89lRKf6/TcjdYM+JYp4wLM/VoyaeWlplje6ZWh73luYwWs/b+bRC7s7HQ7g6tIIcLYbSxqrun9MJy54YR5v/LKFe6ox0lQXVLeksVJYsD/ndm/J58u38+fzvGvR9g8Wb6W03HrFgsXNQwJ58oqeXNYnhr9+sYob3lrCeT1a8tC4brQMq38fuvMPHGJJeh63D3PPqHKLJkGcEdeMr1fu4O5RCV4/opJ/4NDhssQVmfms2JbPrn2HANecxW7RTbiibyxJseH0jA0nrnmw178mT7m4V2uenbmBF37ayPCOkfq9iOOUnIm42fKtefy8Ppc/nNPJsW/X66Lo8EZclNSaj5Zk8ptRHdxaRlhd01Jz6BbdxGMd3BJjwjmnW0ten7uFawfG1WrTAyfUpKSxqvH9YvkyZQffr87ymq5qh0rLeX/RVoZ1jKRdRO2P3JyqgfHN+f63Z/La3M089+MG5qzL5Xdnd+K6gW3rdPOGo81at5OycstZXWt3rcGqxvWM5sEvVrMup5DOLZu47Tw1dai0nFXbCw4nYSsy80mvaGdvDCREhjC8UxQ9Y8NJigmnU8tQrY93Av6+Ptw2rD0PfZnKws17GBjv3Ut3SP2nv1YRN3v2xw00Dfb3im/X65rbhsVzqKyct+alOx0KO/cWkZyRV+sLT5/MfWd35MChUibP2eTR87pDTUsaKw1o15y2zYP5aHGmmyKruWmp2eQWFnN9LbbPry0Bfj7cOSKBGfcOo1+7Zvz9mzQueGEeKZn5TodWa2ak5RAVGkiiG0tdz+3eEl8fw9crdrjtHDVVXFrG5a8s4NKX5/O3b9JYvGUPnVs24YFzOvPBLf1Z+fDZzPjdMP5zeU8mDmhLj5gwJWbVcEXfWCJCAnlx1kanQxFRcibiTimZ+cxel8vNQ9vX+4nV7pAQFcKYri15e0E6hUUljsZS2XzA08lZhxahXNwrhrfnp5NdUOTRc9e2mpY0VvLxMVzRN5ZFW/awZdd+N0VXM2/PT6dt82CGdfTexdLbNA/mzev78fLVvdm9v5iLX5rHX79YRcFBZ/+WTldxaRlz1uUyumsLt7Y/jwgJZFB8c75ZmYW11m3nqYl/f7+OFZn5/O3Cbiz68ygW/GkUkyf2YdLweAbFR9SbuameFuTvy61ntuOXjbtYvjXP6XCkgVNyJuJGHy7aSmigX60uTtvQ3DEinsKiUt5ftNXROKalZhPXPJiOLTzfue2e0R0ot5bnftrg8XPXlsqSxrGJp9au+rI+MfgY+GSp86Nnq7cXsDQjj4kD2nr92kjGGM7t0YqZvxvG9YPi+GDRVkY9OYcvU7Z7TcJRU/M37Wb/oTK3dGk82vmJ0WTsPsCq7QVuP9fJ/LQ2h//O28L1g+K4dmAcLZrUv7mETrq6f1vCg/01eiaOU3Im4kZLM/bQr10zjZqdhsSYcIYkRPDGL1soKilzJIaCgyUs2LSbMd2cabUc2yyYK89owydLMkn3kpGjmjrVksZKLZoEMbJzFJ8mb6OkrLyWo6uZdxak08jfl8v7xjoaR02EBvnz8Pnd+OquIbQOD+K3H6Uw8Y3FXjMSWRMz0nJoHODLIA/MDRrTrSX+voZvVma5/Vwnkl1QxO+nrKRLqyb88dzOjsZSXzUO9OOGQe2YuWYna7L2Oh2ONGBKzkTcJP/AITbl7qdP26ZOh1LnTRoeT25hMZ8t2+bI+Wet3UlpueVsD5c0VnXXyAT8fA3PzFzvWAyn47tV2adU0ljV+H5tyC0sZtbanbUYWc3k7T/Elyk7uLh3a8Ia1b0Ssu6tw5h6x2D+fmE3VmTmM+bpn3l6xnrHvvioqfJyy8y0HIZ1iiTQz/2dO8OC/TmzQyTfrNhBebkzI41l5ZZ7Pl5OUUkZL1zVy6s6ltY31w+KIyTQT6Nn4iglZyJusnxrPgC92yg5O12D4pvTMyaMV+ZsptSBUZNpqdlEhQbSKzbc4+euFBUaxA2D2/Hlih2sza5b3+rm7C1iScaeUy5prDSiUyRRoYGOljZ+vDST4tJyrq3Di8n7+hgmDozjx98P49weLXn2xw2c88zPzN2Q63RoJ7VyewE7C4s9UtJYaVzPVuwoKGJ5pjNzkV6atZGFm/fw6AXd6s2C2N4qLNifawa05dtVWWzK3ed0ONJAKTkTcZPkjDx8fQw9Y71r4dy6yBjDpOEJbN1zgG9Xeba8qKikjNnrcjm7m3ubD1TH7WfGExLox3+m1a3Rs9Mtaazk5+vDpX1i+GntTkeao5SVW95dkEH/ds28qrX6qYoKDeLZCb1476b+GGOY+MZi7v5wOTsLvbfxzIy0bHx9jEcXCx7dpQWBfj58vcLzpY1L0/fwzI8buDApmsv6eMcyEvXdzUPbEejnw8uz636HXKmblJyJuElyRh5dWzUhOEDzzWrD2V1bEB/ZmJdnb/JoI4O5G3ZxsKTM410ajyUs2J/bh8Uzc00Oy+pQR7HaKGmsdEXfWMotjpS4/rR2J9vzD3pl+/zTMaRDBN//dii/HdWBH1ZnM+rJOby7IJ0yh8r4TmRGWg5nxDUjPNhza/6FBvkzolMU367K8ujvpOBACb/9KIWYpo34x0XdtTiyh0SEBDKhXxu+WL6dbXkHnA5HGiAlZyJuUFpWTkpmPr3bhDsdSr3h42O4fVg8a7MLmb3Oc+VXP6zOpkmQHwPae8fCpNcPiiMiJIAnflhXJ7rtVZY0nu6oWaV2EY0Z0L4ZHy/J9PgcoLfnp9MqLMijJXWeEuTvy71ndeSHe4aSGBPGg1+mcsnL81ntBV0KK2Xs3s/6nH2MduD3f37PaHILi1m0ZbdHzmet5YHPVpKzt4jnJvRSi3wPu21Ye4yBV+ZsdjoUaYCUnIm4wdrsQg6WlNFbzUBq1YVJrYkOC+Kl2Z6ZrF1aVs6Pa3MY1aUF/r7e8XbZONCPO0cksGDzbuZt9MwHxdNRWdI4NrH2Rh4n9GvD1j0HWLjZc69/485Cftm4i2sGtMXPS64Fd2gfGcJ7N/Xn2QlJbM87wAUv/ML01GynwwJco2bgGkX3tJGdowgO8PVY18b3Fm3lh9Rs/nBOJ3o6ONe1oWoV1ohLe8fw8dJMdu713jJfqZ/q7/9hRBxUWXKmTo21K8DPh1vObM+S9DyWpO9x+/kWb9lD/oESxnTzrpGSq/q3oXV4I56YttbrR8/+V9IYWmvHPKd7S5oE+fGxBxuDvLMggwBfH8b3qzvt80+VMYYLk1rz433D6d46jPumrCBzj/PlXdPTcujcMpTYZsEeP3ejAF9Gd2nB96uy3L6Uw9rsvfz9mzSGdYzk5iHt3XouOb5Jw+MpLSvntbkaPRPPUnIm4gbJGXm0aBJI6/BGTodS70zo14ZmjQN4yQOtjqelZhPo58OZHSPdfq6aCPTz5bejO7BiWwHTUnOcDue4aruksVKQvy8X9WrN96uzyT9wqFaPfSyFRSV8lryNcT1bERES6PbzeYuwRv68eFVvAO78YBnFpc6129+z/xBL0/c4WlI6LrEVeQdKmL/JfSO2Bw+VcdcHywlr5M+TV/R0vAlRQ9a2eWMu6BnN+4u2krff/e8zIpWUnIm4QXJGHn3aNtUEbjdoFODL9YPimLUu160LhVprmZ6Ww5kdI72yqcslvVrTPrIxT05f55WNG8A9JY2VxveL5VBpOV8s317rxz7a1GXb2X+ojOsGxrn9XN4mtlkwT1zWk5XbCvjXd2sdi+OntTsptzianA3rFElooB9fr9jhtnP87ZtUNuXu4+krkhrUFwHe6o4RCRw4VMab87Y4HYo0IErORGpZzt4ituUd1PpmbnTdwDgaB/i6tdXxym0FZBUUeUWXxmPx8/Xh/rM7sWHnPj5cvNXpcI7JHSWNlbpFh9GjdRgfLcl0a2lnebnl7QXp9IwNb7Bzf87p3pKbhrTjrfnpfOuhOVdHm5GWTcsmQfRo7dzSJIF+vpzdrSXTUrPdMor49YodfLg4k9uHxTOkQ0StH19qrmOLUMZ0a8Fb89PZW1TidDjSQCg5E6llyzJc883UDMR9woL9uXpAW75ZuYOM3fvdco5pqa71lEZ38dx6SjV1TveWDGjfjP9MX+eR8r6acFdJY1Xj+8WyNruQVW7sKDhv0y425+7n+kF1d9Hp2vDAOZ1Jig3ngc9Wkr7LPX9zx1NUUsbP63cxumuU49UI43q2orColJ/X76rV42buOcCfp66iV5twfndWx1o9tpyeu0Z0YG9RKe8uyHA6FGkglJyJ1LLkjDwC/HzoFl33F6n1ZjcNaYefjw+v/OyeydrTUrMZ0N6z6ynVlDGGRy7oxt6DJTw1w7sWpnZnSWOlC5KiCfL34aMl7msM8vb8dCJCAtyaZNYFAX4+vHBVL3x9DHe8v4yiEs/NP5u30bXW4FldnR/FHpIQQXiwP9+srL3SxpKycn7z4XIw8NyEXl7TGVZcesSEMaxjJP/9ZQsHDzk371IaDr0DiNSyZVvzSGwdRqCfr9Oh1GstmgRxaZ/WfLp0W623Ot64s5BNufu9tqSxqs4tmzBxQFveW5jh1jl4NeXOksZKTYL8Oa9HK75K2cGBQ6W1fvzMPQf4ce1Orjyjjf6egZimwTx1RU/SslzdBD1lRloOIYF+DGjfzGPnPB5/Xx/O7d6SmWk5tfZB/akZ60nJzOexSxId6UQpJ3fXyAR27z/ktSXkUr8oOROpRUUlZazevlct9D3ktjPjKS0v541anqxd2QHxbC/4pr467j2rI2GN/Hnkq1SvaK3viZLGShP6tWFfcalb5kK9uzADH2O4qn+bWj92XTWqSwtuO7M97y/aypcp7m/GUl5umblmJ8M6RXpNgnx+YjT7D5Uxa93O0z7W3A25TJ6ziSvPiGVsYsMenfVm/eKacUa7Zrz682ZHu5ZKw3DS5MwYE2uMmWWMWWOMSTXG/Paox39vjLHGGM1elQYvdUcBh8rKNd/MQ+IiGnNej1a8v3ArBQdrb7L2tNRsesaG0zIsqNaO6U7hwQH8fkwnFm3Zw7ernGnYUJUnShor9YtrSvuIxnxSy2ueHTxUxsdLMjmnW0tahWlJjKp+P6YTfdo25c9TV7Epd59bz7U8M59d+4odWXj6ePq3b05ESOBplzbmFhZz78crSIgM4aFx3WopOnGXu0YkkL23iM+S3f+lhDRs1Rk5KwXus9Z2AQYAdxpjuoIrcQPOAjTOK4JrvhmgTo0eNGl4PPuKS3l3QXqtHG9H/kFWbivwuoWnT2ZCvzZ0bdWEf367xi0lfjXhiZLGSsYYrugXy5L0PDburL1E4asV2yk4WMK1Axt2I5Bj8fd1zT8L8PPhzveXuXUezoy0HPx8DMM7eU9jHl8fw9geLflxzU72FZ/a31p5ueW+KSsoLCrh+at60SjAO0YF5fiGdoigZ0wYk+dsotTNC5FLw3bS5Mxam2WtXVbxcyGwBmhd8fDTwB8A5+toRLxAckYebZoFExmq9Wk8pVt0GMM7RfLmvPRa+ZA4PTUboE7MN6vK18fw6IXdyCoocusSAyfjyZLGSpf0bo2fj6m10TNrLW/Nz6Bzy1DOaOf8PCdv1CqsEU+PT2JtdiGPfJXqtvPMSMumf/tmhDXyd9s5TsW4ntEUl5bz45pTWwT+9V828/P6XP46riudW6p5VF1gjOHOEQls3XOAr2uxIYzI0Wo058wYEwf0AhYZYy4AtltrV7gjMJG6xlpLcka+5ps5YNKweHbvP1QrH86npeaQEBVCfGRILUTmWf3imnFhUjSv/LyZrbsPOBKDJ0saK0WFBjGqSxSfJW/jUOnpf6O9NCOPNVl7uW5QnOOt273Z8E5R3Dkino+XZjJ12bZaP/7m3H1syt3PWV28bxS7T5umtAoLOqUFqVdk5vP4D+s4p1tLrtF8xjpldJcWdGoRyouzNlFernEJcY9qJ2fGmBDgM+AeXKWOfwEeqsbzbjXGLDXGLM3NzT3VOEW83ra8g+zaV6z5Zg44o10z+rRtyqs/b6bkNMpN8vYfYnH6njpX0ljVn87tgp+P4R/feq6bXlWeLGmsakK/Nuzef+iURzKqemt+Ok2C/LgwKboWIqvf7h3dkf7tmvGXz1ezIaewVo89I831bznai+abVfLxMYzt0Yo563MpOFD9+a6FRSX85sPltGgSxL8vTVTyX8f4+BjuGBHPxp37mFZRZSFS26qVnBlj/HElZu9ba6cC8UA7YIUxJh2IAZYZY371Vam19lVrbV9rbd/IyMjai1zEy1TON+uj+WYeZ4zhjuHxbM8/yFcpp15uMnNNDmXllnO61d2uaS3DgrhrZALT03L4eb1nvxDb6UBJY6UzO0bSskkQH5/m6Gl2QRHTVmczvl8swQF+tRRd/eXn68NzV/YiOMCXO95fVqvzHWeuyaFrqybENPXO9vLn94ympMwyLa16H9Kttfzl89Vszz/IsxOSCAv2rlJNqZ5xidG0i2jMC7M2ekV3XKl/qtOt0QBvAGustU8BWGtXWWujrLVx1to4YBvQ21qrrxGkwUrOyKNxgC+dWnp2xEBcRnaOolOLUF6ec+rlJtNSc2gd3ojurev2HJCbhrSjbfNgHv069bRGEmvq+9XZHi9prOTrY7i8bwxz1ueyI//gKR/ng8VbKbOWiQPiai+4eq5FkyCendCLjbn7+OsXq2vlA+vufcUkZ+RxlheOmlVKjAmjTbNgvqnmMg5Tkrfx1Yod3DOqA33jNJexrvL1MUwaFk/qjr3M9vAXYNIwVGfkbDAwERhpjEmpuJ3n5rhE6pzkjDx6tWmKr4/KVJxgjGHScFe5ycxTKG3bX1zK3A25nNW1RZ0vNQr08+WhcV3ZlLuft+ene+y8367McqSksdIVfWOxFqYsPbX5T4dKy/lg0VZGdoqiTXPvHK3xVkM6RHD3yA5MXbb9lH//Vf24diflFq9OzowxjEtsxbyNu9i9r/iE+27cuY+Hv0xlQPtm3DEiwUMRirtc1Ks10WFBvPCTRs+k9lWnW+Mv1lpjrU201iZV3L47ap84a+0u94Up4t32FZeyNnsvvduEOx1KgzYusRWxzRrx0uxNNf4f5pz1uRSXlte5Lo3HM7JzFMM7RfLszA3kFp74g2NtcLKksVJss2CGJETwydLMUxo9/X51Frv2FXPtoLjaD64BuHtUBwYnNOfBL1ezNnvvaR1rRpprFLtbtHePYo9LjKas3PLDCeYfFZWU8ZsPl9MowJdnJ/TSF3j1QICfD7cNiyc5I4+Fm/c4HY7UMzXq1igix7YyM59yi5qBOMzP14dbz4wnJTOfBZt31+i501KzaRrsT7+4+vFvaIzhwXFdKSot4/Ef1rr9fE6WNFY1vl8s2/MPMm9Tzb8vfGt+Ou0jGjM0IcINkdV/vj6GZ8b3okkjf+54f9kprwF28FAZczfkMrpLlNePYndpFUp8ZOMTdm187Pu1rMnay38uT6RFk7qxsL2c3Ph+sUSEBPLirI1OhyL1jJIzkVpQ2Qykl5qBOO7yPjFEhATWaK2vQ6Xl/LR2J6O7tMDPt/68LcZHhnDj4HZMSd5GSma+W8/ldEljpbO7tSA82J+PltSsMcjKbfks35rPxIFt8dHIximLDA3kuQm9SN+1n798vuqUSr5+2biLopJyzurq/aPYrtLGaBZt2cPOvUW/enx6ajZvzU/nxsHtGNnZe0s0peaC/H25ZWg7ftm4y+3vr9Kw1J9PISIOSt6aR8cWIV63UGpDFOTvy41D4pi7YRerthVU6zkLNu+msKi03pQ0VnXXyAQiQwN5+KtUt63L4w0ljZUC/Xy5uFdrpqdms2f/oWo/7+35GQQH+HJpnxg3RtcwDIxvzr2jO/Jlyg4+WLy1xs+fkZZNaJAf/dvXjaYZ5/dshbXw7aojG4NkFRzkD5+tpFt0Ex44t5ND0Yk7XT2gLWGN/HnhJ42eSe1RciZymsrLLcsy8rT4tBe5ZkBbQgP9eHlO9f6HOS01m+AAX4Z0qH/lbKFB/vzxnM6syMznMzcsFAzeU9JYaXy/WErKbLUXRt69r5ivV+7g0t4xNAnSFyy14c4RCQztEMGjX6exenv1viQBKCu3/LhmJyM6ReFfR0axE6JC6dwy9IiujWXllt9+lMKh0nKev7IXgX6+DkYo7hIS6McNg+OYuSaHNVmnN89SpFLdeOcT8WKbcvext6hUJY1epEmQPxMHtuX71dlsyt13wn3Lyy0z0nIY0SmKIP/6+QHq4l6t6d0mnH//sI69RdVfMLe6vl2ZRccWIY6XNFbq3LIJSbHhfLI0s1pldR8vzeRQaTnXDmzrgegaBh8fwzPjk2gWHMBdHyyjsJrX3fKteezef8iruzQey/k9o0nOyGN7xTIOz/+0gcVb9vD3C7vTPjLE4ejEna4fFEfjAF/NPZNao+RM5DQdXnxaI2de5YbB7Qjw9eGVOSeee7Y8M4/cwmLO7la3PgzWhI+P4ZELurF7fzHP/7ihVo9dWdI4tkd0rR73dI3vF8v6nH0sP8lckNKyct5bkMHghOZ0aOEdyWV90TwkkOev6kVm3kH++Fn15p/NSMvB39cwrFOkByKsPecnuq7/b1fuYOHm3Tz34wYu6dVaZbINQHhwABMHxvHtqixmrdvpdDhSDyg5EzlNy7bmER7sT/uIxk6HIlVEhgZyRd9YPl++nayC4y9KPC3V9WFwROcoD0bneYkx4YzvG8ub89LZuPPEo4k14W0ljZXO7xlNcIAvHy8+cWOQmWt2sqOgiGsHxnkmsAamX1wzfn92J75dlcW7CzNOuv+MtBwGtG9e58pL2zQPJjEmjE+Tt3Hvxym0aRbM3y7q7nRY4iG3D2tP11ZNuPntpUxZWrNmRCJHU3ImcpqSM/Lo06ap17d8bohuPbM95RZen7vlmI9ba/lhdTaD4iPq3IfBU/H7MZ1oFODLo1+n1trCqd+u8q6SxkohgX6MS2zF1yt3nLCl+9vz02kd3ojRXervyKnTbjuzPSM6RfKPb9awclv+cffbuHMfm3ftr3MljZXOT4xmfc4+du0r5vkrexMS6Od0SOIh4cEBfHTrAAa2b879n67kxVlanFpOnZIzkdOQt/8Qm3L3a30zLxXbLJgLekbz4eKt5B2jc9/a7EK27jlQL7s0HktESCD3ju7I3A27mJGWc9rH27m3iCXp3lfSWGl8vzYcOFTGtyuPvQbV+pxCFmzezTUD2mphYDfy8TE8dUUSESEB3PnBMgoOHnv+WeU1WVcT5XE9WxEc4MtfzutCj5gwp8MRDwsN8ue/1/fjwqRonpi2joe+TKXMTR1ypX5TciZyGpZnar6Zt5s0PJ4Dh8p4a376rx6blpqNMdTZb+pPxcSBbekQFcLfv02jqKTstI7lrSWNlXq3CSchKuS4a569syCdAD8fxveL9XBkDU/TxgE8f1VvsvKL+MOnK445qjAjLZvurZsQHd7IgQhPX6uwRqQ8dDbXD27ndCjikAA/H56+Iolbz2zPuwszuPP9Zaf9PisNj5IzkdOQnJGHr48hUd+Seq2OLUIZ3aUFb81PZ/9R5W3TUnPo06YpkaGBDkXnef6+Pjx8fjcy9xzk9bmbT+tY3lrSWMkYw4R+sSzfms+67MIjHttbVMLUZdu5sGc0zRoHOBRhw9KnbVP+eG5npqXm8N956Uc8lltYzPLMfM7q4p2JfnUF+OljVUPn42P483ldeHBcV35IzWbiG4soOFD7XXKl/tK7iMhpSM7Io2urJgQHaG6BN5s0PJ6CgyV8WGVB3Mw9B1iTtbfBlDRWNaRDBOd0a8mLszaxI//4zVJOxNtLGitd3Ks1/r6Gj48aPft06TYOHCrjukFxzgTWQN00pB1ndW3Bv75bw/KteYe3/7gmB2sb1ii21G83DWnH81f2YkVmAZdNnn/K77XS8Cg5EzlFpWXlrMgsUEljHdCnbVP6t2vG63O3UFzqKjGZlpoN0CCTM4C/jO1CubX86/u1p/R8by9prNQ8JJCzu7Zk6vJth//ty8st7yxIp0/bpnRvrVFvTzLG8J/LetIyLIi7PlhO/gHXXNAZaTm0Dm9El1beOQorcirO7xnNWzf2I7ugiEtemv+rEXyRY1FyJnKK1mYXcrCkTM1A6og7RiSQvbeIL5ZvB1zJWZdWTWjTPNjhyJwR2yyY24fF8/WKHSzavLvGz/f2ksaqrugXS/6BksMNJ37ekEv67gNadNohYcH+vHhVb3YWFnHfJyvYX1zKLxt3cVbXFup6K/XOoPgIPrl9IOXWctnk+Sw8hfdbaViUnImcIi0+Xbec2SGCbtFNmDxnMzv3FrE0I48x9Xjh6eq4fVg8rcMb8fBXqZSWlVf7eXWlpLHSkIQIWoc3Olza+M6CDCJDAzm3eyuHI2u4esaG8+fzuvDj2p3c/l4yxaXlnK2SRqmnurRqwtQ7BhEVGsi1byzmu1VZTockXkzJmcgpSs7Io2WTIKLDgpwORarBGMOk4fFs2bWf+z9dibUNt6SxUqMAX/4ytgtrswv58DgdDY+lrpQ0VvL1MVzeN4a5G3Yxb+MuZq3byVVntFHzBoddPyiOc7u3ZO6GXTQJ8qNfu2ZOhyTiNjFNg/n09kH0iAnjzg+W8fYxOgiLgJIzkVOWnJFH77bhKsOpQ87t3op2EY2Zsz6XNs2C6dzS+0vy3O3c7i0Z2L45T05fd8y14I6lLpU0Vrq8byzGwJ0fLMPXGK7u38bpkBo8Ywz/viyR9pGNGdczGn9ffSSR+q1p4wDev7k/o7u04OGvUvn3D2u1WLX8it4JRU5Bzt4itucfpHcblTTWJb4+htvObA/AmG6a3wKuD8gPX9CVwqJSnpyx7qT7V5Y0ntejbpUEtg5vxJkdIsk/UMK5PVoR1UQj3t6gSZA/0+45k39e1N3pUEQ8Isjfl5ev7s1V/dvw8uxN3DdlBSU1KCuX+k/JmcgpWKb5ZnXWJb1juH1YvFqoV9G5ZRMmDmjLB4u2krqj4IT7Hi5prGPJGcDEAW3xMXDD4DinQ5Eq/H199EWJNCh+vj7886Lu/O6sjkxdtp2b3l76q3U4peFSciZyCpIz8gjw86FbtNpw1zUBfj788dzOxDRtmF0aj+fe0R0Ja+TPo1+lnbDMprKksUOLulPSWGl01xYs/etZGvEWEccZY7h7VAf+fWkP5m3cxYRXF5JbWOx0WOIFlJyJnILkrXn0jAlTQwGpN8KC/bl/TGcWp+/h65XH7iRWV0saq2rWOMDpEEREDhvfrw2vXduHDTsLufTl+aTv2u90SOIwfbIUqaGikjJWby/Q+mZS74zvF0u36Cb837drOHDo1yU2dbmkUUTEW43s3IIPbxlAYVEJl748nxWZ+U6HJA5SciZSQ6u3F1BSZlUaJfWOr4/h0Qu6kb23iJdmbfrV43W5pFFExJv1atOUzyYNolGALxNeXcisdTudDkkcouRMpIaWbXU1A1FyJvVR37hmXNyrNa/+vJmM3f8rr6kPJY0iIt6sfWQIU+8YRPvIxtz89lKmLK3++pNSfyg5E6mh5Iw82jYPJjI00OlQRNzij+d2xs/X8I9v1xzeppJGERH3iwoN4qNbBzCwfXPu/3QlL87aqLXQGhglZyI1YK0lOSOfPho1k3qsRZMgfjOyAzPScpizPhdQSaOIiKeEBvnz3+v7cWFSNE9MW8dDX6ZSVq4EraFQciZSA5l7DrJrX7GagUi9d+OQOOKaB/Po16lsyzugkkYREQ8K8PPh6SuSuO3M9ry7MIM7319GUUmZ02GJByg5E6mB5K17AC0+LfVfoJ8vD53flc25+7nlnWSVNIqIeJiPj+FP53XhoXFdmZaWzbVvLKbgQInTYYmbKTkTqYHkjDxCAv3oqNIuaQBGdm7BiE6RrMnaq5JGERGH3DikHc9f2YuUzHz+9k2a0+GIm/k5HYBIXbIsI5+k2HB8fYzToYh4xIPjujJ/01wuTGrtdCgiIg3WuMRookKDSIgKcToUcTMlZyLVtK+4lLXZe7lrZAenQxHxmPaRIfzywEiaBvs7HYqISIN2RrtmTocgHqDkTKSaVmTmU24130waHi0bISIi4hknnXNmjIk1xswyxqwxxqQaY35bsf3vxpiVxpgUY8x0Y0y0+8MVcU5yRh7GQFJsuNOhiIiIiEg9VJ2GIKXAfdbaLsAA4E5jTFfgCWttorU2CfgGeMh9YYo4Lzkjjw5RIYQ1UnmXiIiIiNS+kyZn1tosa+2yip8LgTVAa2vt3iq7NQa0Op7UW+XllmVb81TSKCIiIiJuU6M5Z8aYOKAXsKji/j+Ba4ECYERtByfiLTbl7qOwqJTebZSciYiIiIh7VHudM2NMCPAZcE/lqJm19i/W2ljgfeCu4zzvVmPMUmPM0tzc3NqIWcTjkjPyADUDERERERH3qVZyZozxx5WYvW+tnXqMXT4ALj3Wc621r1pr+1pr+0ZGRp56pCIOSs7Io2mwP+0iGjsdioiIiIjUU9Xp1miAN4A11tqnqmyvutjTBcDa2g9PxDskV8w3c/05iIiIiIjUvurMORsMTARWGWNSKrb9GbjJGNMJKAcygNvdEqGIw/L2H2Jz7n4u7R3jdCgiIiIiUo+dNDmz1v4CHGu44LvaD0fE+yzP1HwzEREREXG/ajcEEWmokjPy8PUx9IwJdzoUEREREanHlJyJnERyRh7dopvQKMDX6VBEREREpB5TciZyAiVl5azILND6ZiIiIiLidkrORE5gbVYhB0vKNN9MRERERNxOyZnICSRn7AGgt5IzEREREXEzJWciJ7Bsaz4tmwQRHRbkdCgiIiIiUs8pORM5geQMLT4tIiIiIp6h5EzkOLILitief1AljSIiIiLiEUrORI5j2VYtPi0iIiIinqPkTOQ4kjPyCPTzoWurJk6HIiIiIiINgJIzkeNIzsgjMSaMAD/9mYiIiIiI++lTp3gla62j5y8qKSN1R4Hmm4mIiIiIxyg5E69irWXynE0k/W0GizbvdiyO1dsLKCmz9Gmj5ExEREREPEPJmXiN0rJy/vrFah77fi0HS8q4+6Pl7N5X7EgsyRmuZiAaORMRERERT1FyJl5hX3EpN7+zlPcXbWXS8HimThpE3oES7v1kBeXlni9xTM7II655MBEhgR4/t4iIiIg0TErOxHE5e4u4YvIC5m7Yxf9d3IMHzulM99ZhPDiuKz+vz2Xyz5s8Go+1lmVb8zRqJiIiIiIe5ed0ANKwrc3eyw1vLmHvwRJev64vIzpFHX7smv5tWLhpN09OX0+/uGb0i2vmkZi27jnArn2H6K35ZiIiIiLiQRo5E8fM3ZDLZS8voNxaPrl94BGJGYAxhn9d2oPW4Y24+8Pl5O0/5JG4tPi0iIiIiDhByZk44pMlmdzw5hJimjbi8zsG0y067Jj7NQny58WrerN73yHum+KZ+WfJGXmEBPrRsUWo288lIiIiIlJJyZl4lLWWJ6ev4w+frWRgfHOm3D6Q6PBGJ3xOj5gw/nxeZ35au5PXf9ns9hiTM/Lp1SYcXx/j9nOJiIiIiFRSciYeU1xaxu8+WcHzP23kir4x/Pf6foQG+VfrudcNiuOcbi15/Id1h8sO3aGwqIR12Xs130xEREREPE7JmXhEwYESrvvvYj5fvp3fn92Rf1+aiL9v9S8/Ywz/viyRlmFB/OaD5eQfcM/8sxWZBZRbrW8mIiIiIp6n5EzcLnPPAS55eR7LMvJ5ZnwSd43sgDE1LxkMa+TPC1f1ZmdhEb+fshJra3/+2bKteRgDSbHhtX5sEREREZETUXIGbvmQLy4rMvO5+KV55BYW885NZ3BRr9andbyk2HAeOKczM9fk8N956bUTZBXJGXl0jAolrFH1yi1FRERERGpLg07OrLU8+nUq//fdGqdDqZemp2Yz/tUFBPn7MvWOQQxo37xWjnvTkHaM7tKCx75fw4rM/Fo5JkB5uRafFhERERHnNOjkzBiDtfDa3C18sjTT6XDqlbfmbeG295Lp1CKUz+8YTEJU7bWlN8bwn8sTiQoN4s4PllFwsKRWjrsxdx+FRaVa30xEREREHNGgkzOAv47twpCECP7y+SqWpu9xOpw6r6zc8rev03jk6zRGd2nBR7cOJDI0sNbPEx4cwHNX9iK7oIgHPq2d+WfJGVp8WkRERESc0+CTMz9fH168qjcxTYO57d1ktuUdcDqkOuvgoTLueD+Z/87bwg2D45h8TR8aBfi67Xx92jblD+d04ofUbN5ZkHHax0vOyKNZ4wDimgfXQnQiIiIiIjXT4JMzgLBgf16/ri+Hysq5+e2l7C8udTqkOmfXvmImvLaQ6Wk5PDSuKw+f380jizjfPKQ9IztH8c9v17B6e8FpHWvZ1jx6twk/pU6SIiIiIiKnS8lZhfjIEF68qjfrcwq59+MUysvVwbG6NuXu4+KX5rEuey+Tr+nDjUPaeezcPj6GJy/vSfOQAO78YBmFRac2/2zP/kNszt2vZiAiIiIi4hglZ1Wc2TGSB8d1ZXpaDk/NWO90OHXCos27ueSl+Rw8VMZHtw5kTLeWHo+haeMAnr+yF9vyDvLHqatOaf7Z8q0V883aKDkTEREREWcoOTvK9YPiuPKMWF6YtZEvU7Y7HY5X+zJlOxPfWEzzkAA+v2Owows3941rxn1nd+TblVm8v2hrjZ+fnJGHn48hMSa89oMTEREREamGkyZnxphYY8wsY8waY0yqMea3FdufMMasNcasNMZ8bowJd3u0HmCM4dELunNGu2bc/+lKUmpxHa36wlrLi7M28tuPUujVJpypkwYR28z5Jhq3nxnPsI6R/O2bNFJ31Gz+WXJGHt2im7i1gYmIiIiIyIlUZ+SsFLjPWtsFGADcaYzpCswAultrE4H1wJ/cF6ZnBfj5MPmaPkSFBnLrO0vJLihyOiSvUVJWzp+mruKJaeu4MCmad246g/DgAKfDAlzzz566oidNg/2564Pl7KtmY5eSsnJWbMunl0oaRURERMRBJ03OrLVZ1tplFT8XAmuA1tba6dbayk+/C4EY94Xpec0aB/DGdf3YX1zKre8u5eChMqdDctzeohJufGsJHy3J5DcjE3hmfBKBft410tQ8JJDnJvQiY/d+/vJ59eafrc0qpKikXOubiYiIiIijajTnzBgTB/QCFh310I3A97UUk9fo1DKUZyf0YtX2Au7/dEWtLHRcV23LO8BlL89nwabd/PvSHtx3dievbTnfv31z7h3dkS9TdvDxksyT7p+c4Vp8XMmZiIiIiDip2smZMSYE+Ay4x1q7t8r2v+AqfXz/OM+71Riz1BizNDc393Tj9bjRXVvwhzGd+WZlFi/8tNHpcByRkpnPRS/OJ6ugiLdvPIPx/do4HdJJ3TEigSEJETz8VSprs/eecN/krfm0CgsiOryRh6ITEREREfm1aiVnxhh/XInZ+9baqVW2XweMA662xxlWsta+aq3ta63tGxkZWRsxe9ztw9pzca/WPDljPT+sznI6HI/6flUWE15dQKMAHz6/YxCDEyKcDqlafH0MT49Pokkjf+58f9kJFxZflpGn9c1ERERExHHV6dZogDeANdbap6psPwd4ALjAWnvAfSE6zxjDvy7pQVJsOPd+vKLGnQDrImstk+dsYtL7y+jaqgmf3zGYhKhQp8OqkcjQQJ4dn8TmXft58MvVx9wnu6CI7fkHtb6ZiIiIiDiuOiNng4GJwEhjTErF7TzgBSAUmFGxbbI7A3VakL8vr17bh/Bgf255eym5hcVOh+Q2lR0ZH/t+LeMSW/HBLQOICAl0OqxTMighgrtHdmDqsu1MWfrr+WfLKhaf1siZiIiIiDitOt0af7HWGmttorU2qeL2nbU2wVobW2Xb7Z4I2ElRoUG8dm1f9hw4xG3vLqW4tP51cCw4WMINb7o6Mt41IoHnJvQiyN+7OjLW1N2jOjCwfXMe+jKVDTmFRzyWnJFHoJ8PXVs1cSg6ERERERGXGnVrFOjeOownL09i2dZ8/jS1eq3a64rMPQe49OX5LNqym/9c3pPfj+mEj493dmSsCV8fw7MTkmgc6MudHyw7YlmE5Iw8esaEE+CnPwURERERcZY+kZ6CsYmtuGe0q1TutbmbnQ6nVizbmsdFL84jt7CYd27sz2V96tWydUQ1CeLp8Uls2LmPh79yzT8rKikjdUeBShpFRERExCv4OR1AXXX3yA5syNnHv75fS0JUCCM7t3A6pFP27cosfvdJCi3Dgvjv9f2IjwxxOiS3GNohkjuHJ/DCrI0MjG9OTNNgSsqs1jcTEREREa+gkbNT5ONj+M/lPekW3YS7P0xh/VFzmeoCay0vztrInR8so0frMD6/Y3C9Tcwq3TO6A2fENeMvn68+3CCkd5twZ4MSEREREUHJ2WlpFODLa9f2pVGALze/vZQ9+w85HVK1HSot5w+fruSJaeu4MCma927uT7PGAU6H5XZ+vj48d6WrycknS7cR1zyY5nW0E6WIiIiI1C9Kzk5Tq7BGvDqxD9l7i7jj/WRKysqdDumkCg6UcN1/FzMleRu/HdWBZ8Yn1fmOjDXRMiyIp67oCaiFvoiIiIh4DyVntaBXm6b8+9IeLNy8h4e/SvXqDo4Zu/dz8cvzWJqxh6eu6Mm9Z3XEtc54wzK8UxRv33gG953dyelQREREREQANQSpNRf3imFd9j4mz9lE55ahXDswzumQfmVp+h5ufTeZcmt576b+9G/f3OmQHDWsY6TTIYiIiIiIHKbkrBbdP6YTG3cW8ujXabSPCGFIhwinQzrsy5Tt3P/pSlqHN+K/1/ejXURjp0MSEREREZEqVNZYi3x9DM9M6EVCZAh3vJ/Mll37nQ4Jay3P/7iB336UQlJsOFMnDVJiJiIiIiLihZSc1bKQQD9ev64vvj6Gm95eQsHBEsdiKS4t474pK3hyxnou7tWad286g6YNoCOjiIiIiEhdpOTMDWKbBTP5mj5s3X2A33y4nFIHOjjmHzjExDcWM3XZdn53VkeeuqIngX4NpyOjiIiIiEhdo+TMTfq3b84/LurOz+tz+b/v1nr03Om79nPxS/NJ2ZrPsxOSuHtUhwbZkVFEREREpC5RQxA3mnBGG9blFPLfeVtoFxHMuMRoAv19CPTzxdfHPcnS4i17uPXdpRjgg1v60zeumVvOIyIiIiIitct4ck2uvn372qVLl3rsfN6gtKycG95awtwNu47Y7udjCPTzIdDfl6CK/wb6+VTcfCuSuKo/Vzxe9eejnr9zbxGP/7COmGaNePP6frRtrsYfIiIiIiLexBiTbK3te6zHNHLmZn6+Pky+pg/fr85mX1EJxaXlFbcyikpc/y0u+d+24tJyikvK2V9cyp795RSVlP3vOVV+Pp4B7ZvxyjV9CQv29+CrFBERERGR06XkzAMaB/pxWZ+YWjuetZZDZa4krajkf8ldWbklISrEbSWTIiIiIiLiPkrO6iBjTEVpoy9NgjRCJiIiIiJSH6hbo4iIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFjLXWcyczJhfI8NgJqy8C2OV0EFJv6foSd9L1Je6ma0zcSdeXuJO3Xl9trbWRx3rAo8mZtzLGLLXW9nU6DqmfdH2JO+n6EnfTNSbupOtL3KkuXl8qaxQREREREfECSs5ERERERES8gJIzl1edDkDqNV1f4k66vsTddI2JO+n6Eneqc9eX5pyJiIiIiIh4AY2ciYiIiIiIeIE6l5wZY84xxqwzxmw0xvyxyvaPjTEpFbd0Y0zKMZ6bZIxZYIxJNcasNMaMr/JYO2PMImPMhopjBRzn/NdV7LPBGHNdTZ8v3s3J68sY09YYk1xxjlRjzO01eb54PzdeX3dVHNMaYyJOcH69f9VjTl5fev+q/9x4fb1fcdzVxpj/GmP8j3N+vX/Vc05eY171HmatrTM3wBfYBLQHAoAVQNdj7Pck8NAxtncEOlT8HA1kAeEV9z8BJlT8PBmYdIznNwM2V/y3acXPTav7fN28++YF11cAEFjxcwiQDkTr+qofNzdfX72AuIprJuI459f7Vz2+ecH1pfevenxz8/V1HmAqbh8e5/+Pev+q5zcvuMa85j2sro2cnQFstNZuttYeAj4CLqy6gzHGAFfg+uUfwVq73lq7oeLnHcBOILLiOSOBTyt2fRu46BjnHwPMsNbusdbmATOAc2rwfPFujl5f1tpD1triiruBVIxs6/qqN9xyfVXcX26tTT/J+fX+Vb85en3p/avec+f19Z2tACwGYo5xfr1/1X+OXmPe9B5W15Kz1kBmlfvbKrZVNRTIqfwHOh5jzBm4suRNQHMg31pbevRxjTF9jTGvn+T8x32+1ClOX18YY2KNMSsr4vh3xRuMrq/6wV3X14n20/tXw+H09aX3r/rN7ddXRanZROCHivt6/2pYnL7GvOY9rK4lZ+YY245uN3klx8iojziIMa2Ad4EbrLXlJzqutXaptfbmk5y/OnGJ93P6+sJam2mtTQQSgOuMMS2qGZd4P3ddX8el968GxenrS+9f9Zsnrq+XgJ+ttXNB718NkNPXmNe8h9W15GwbEFvlfgywo/KOMcYPuAT4+HgHMMY0Ab4F/mqtXVixeRcQXvH8Xx23Guev7vPFuzl9fR1W8W1NKq5viXR91Q/uur5O9/y6vuoHp6+vw/T+VS+59foyxjyMqwTtdzU8v66v+sPpa+wwp9/D6lpytgToUNE1JQCYAHxV5fHRwFpr7bZjPbniOZ8D71hrp1Rur6hBnQVcVrHpOuDLYxxiGnC2MaapMaYpcDYwrQbPF+/m6PVljIkxxjSq+LkpMBhYp+ur3nDL9VUDev+q3xy9vvT+Ve+57foyxtyMa07ZlScYrdX7V/3n6DXmVe9h1gs6tNTkhqvjynpcdaR/Oeqxt4DbT/Dca4ASIKXKLanisfa4JgluBKbwv44tfYHXqxzjxop9NuIaMuVEz9etbt2cvL6As4CVuDoUrQRu1fVVv25uvL7uxvWtYymub/Qqrym9fzWgm5PXl96/6v/NjddXacUxK7c/dPT1VXFf71/1/ObkNeZN72Gm4qQiIiIiIiLioLpW1igiIiIiIlIvKTkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES/w/3C7zeTqXmtZAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACA2klEQVR4nO3dd3xUVfo/8M+Zkt57JQWSECAhQEikg6CCWLCAulhw7bvuusVV19Xvur9dXVd3XddtKva2CmIXUFGqtIRe0oAkkJBeJz0zc35/zEwMkEDKzNyZyef9es0rycyde58Jl8l95jznOUJKCSIiIiIiIlKWSukAiIiIiIiIiMkZERERERGRQ2ByRkRERERE5ACYnBERERERETkAJmdEREREREQOgMkZERERERGRA2ByRkRERERE5ACYnBERuQghREuvm1EI0d7r5+VKxzcUQogSIcQCpeM4HyHEJiHEnTbc/8VCiL1CiGYhxAkhxN29HpsghPhKCFErhDhn4VIhRJAQ4mMhRKsQolQI8aOzHp8vhMgXQrQJITYKIeJs9TqIiOjCmJwREbkIKaWP5QbgJIAre933rtLxnU0IoXGFY9iSEEIL4GMALwHwB3ADgOeEEBPNm3QDWAXgjn528W8AXQDCASwH8F8hxHjzvkMAfATgcQBBAHIBfGCbV0JERAPB5IyIyMUJIVRCiEeEEMeFEHVCiFVCiCDzY/FCCCmEuF0IcUoI0SCEuFcIMVUIcVAI0SiE+Fevfa0QQnwvhPinEKLJPOoyv9fj/kKIV4UQFUKIciHEn4QQ6rOe+3chRD2AJ4QQo4UQ35njqhVCvCuECDBv/zaAUQA+N4/+PSSEmCuEKDvr9fWMrgkhnhBCfCiEeEcI0QxgxQViGiOE2Gx+LbVCiD6TEyGEh3mfdebfSY4QIlwI8SSAWQD+ZY7xX+btxwohvhFC1AshCoQQy3rt6w0hxIvmx3Xm4/c3YhUEwA/A29IkB0AegHEAIKUskFK+CuBIHzF7A7gOwONSyhYp5TYAnwG4xbzJtQCOSClXSyk7ADwBYKIQYmw/sRARkY0xOSMicn0/B7AEwBwAUQAaYBpR6S0bQBJMIzPPA/gdgAUAxgNYJoSYc9a2JwCEAPg9gI8syR6ANwHoAYwBMAnApQDu7OO5YQCeBCAA/NkcVyqAWJiSBEgpb8GZI4DPDPD1Xg3gQwABAN69QEx/BPA1gEAAMQD+2c8+b4Np5CoWQDCAewG0Syl/B2ArgPvNMd5vToq+AfCe+XXeBOA/lhErs+XmY4cA2G+O8xxSyioA/wNwuxBCLYSYBiAOwLYB/B6SARiklIW97jsA078pzF8P9DpWK4DjvR4nIiI7Y3JGROT67gHwOyllmZSyE6bk5/qzSv7+KKXskFJ+DaAVwP+klNVSynKYko9JvbatBvC8lLJbSvkBgAIAi4UQ4QAWAfiFlLJVSlkN4O8Abuz13NNSyn9KKfVSynYp5TEp5TdSyk4pZQ2A52BKIodjh5TyEymlEaZRp/PF1A1TshNlfv39JT3dMCVlY6SUBinlHillcz/bXgGgREr5uvl17gWwBsD1vbb5Ukq5xfzv8TsA04QQsf3s738A/g9AJ0z/Fr+TUp4awO/BB0DTWfc1AfAd4ONERGRnTl2LT0REAxIH4GMhhLHXfQaY5iFZVPX6vr2Pn316/VwupezdfKIUppGvOABaABVCCMtjKgC9E4kzkgohRBiAF2AqDfQ1b98woFfVv97HuFBMD8E0grVbCNEA4G9Sytf62OfbMI2avW8uu3wHpiSpu49t4wBkCyEae92nMe/jnBillC3mMs8onPv7GQvTPLBrYBqNSwLwhRDitJTyyz5f/Q9aYEpOe/MDoBvg40REZGccOSMicn2nACySUgb0unmYR8WGIlr0ynRgmhd22nycTgAhvY7jJ6XsXSZ3dkfBP5vvS5dS+gG4GaZSx/62bwXgZfnBPHcs9Kxtej/nvDFJKSullHdJKaNgGmH8jxBizNkv2DxK+Acp5TgA02EaHbu1nxhPAdh81u/bR0p5X69tekbJhBA+MM0tO332cQFMAFAgpfxKSmmUUhYA+BKm0cALKQSgEUIk9bpvIn6Yn3bE/LMlDm8Ao9HH/DUiIrIPJmdERK7vRQBPWppOCCFChRBXD2N/YQB+LoTQCiGWwjRXbK2UsgKm+Vt/E0L4mRuRjD5rvtrZfGEawWkUQkQD+M1Zj1cBSOz1cyEADyHEYmHqZPgYAPf+dn6hmIQQS4UQMebNG2BKtAxn70cIMU8IkWZOBpthKnO0bHd2jF8ASBZC3GL+HWnNDVZSe21zuRBiphDCDaaRu139lCruA5AkTO30hRBiNEyJ4QFzXEII4QHAzfyzhxDC3fzaW2Hqxvj/hBDeQogZMM3Hs4zgfQxgghDiOvM+/g/AQSllfn+/TyIisi0mZ0REru8fMHXp+1oIoQOwE6bGHEO1C6byulqYmnpcL6WsMz92K0yJwlGYkp0PAUSeZ19/ADAZprlOX8KUTPT2ZwCPmTskPiilbALwEwCvACiHaSStDOd3vpimAtglhGiB6Xf0gJSyuI99RJif1wxTt8TNMJU2Aqbf7/XC1OnyBSmlDqamIzfCNBpWCeAvODOJfA+mZir1AKbA1CDkHFLK4wB+DFPpZ7P5uGsAvGreJA6mslPLaFc7THMALX4CwBOmeYL/A3CflPKIed81MHVzfNL8e8nGmfMDiYjIzsSZ0waIiIj6J4RYAeBOKeVMpWNxVkKINwCUSSkfUzoWIiJyLBw5IyIiIiIicgBMzoiIiIiIiBwAyxqJiIiIiIgcAEfOiIiIiIiIHACTMyIiIiIiIgegsefBQkJCZHx8vD0PSURERERE5DD27NlTK6UM7esxuyZn8fHxyM3NtechiYiIiIiIHIYQorS/x1jWSERERERE5ACYnBERERERETkAJmdEREREREQOwK5zzoiIiIiIHEV3dzfKysrQ0dGhdCjkgjw8PBATEwOtVjvg5zA5IyIiIqIRqaysDL6+voiPj4cQQulwyIVIKVFXV4eysjIkJCQM+HksayQiIiKiEamjowPBwcFMzMjqhBAIDg4e9KgskzMiIiIiGrGYmJGtDOXcYnJGRERERKSQJ598EuPHj0d6ejoyMjKwa9cuAMCdd96Jo0ePWuUY8fHxqK2tPe82Tz311KD3+8Ybb+D+++8/477XX38dGRkZyMjIgJubG9LS0pCRkYFHHnlk0Pu3h+effx5tbW1Kh9GDc86IiIiIiBSwY8cOfPHFF9i7dy/c3d1RW1uLrq4uAMArr7xi11ieeuopPProo8Pez+23347bb78dgCkp3LhxI0JCQoa936GSUkJKCZWq7zGp559/HjfffDO8vLwGvE+9Xg+NxjZpFEfOiKhHY1sXdhyvUzoMIiKiEaGiogIhISFwd3cHAISEhCAqKgoAMHfuXOTm5gIAfHx88PDDD2PKlClYsGABdu/ejblz5yIxMRGfffYZgHNHsa644gps2rTpnGMuWbIEU6ZMwfjx4/Hyyy8DAB555BG0t7cjIyMDy5cvBwC88847yMrKQkZGBu655x4YDAYAppGx5ORkzJkzB99///2AX+uzzz6LqVOnIj09Hb///e8BACUlJRg7dizuvPNOTJgwAcuXL8eGDRswY8YMJCUlYffu3QCAJ554ArfccgsuvvhiJCUlYeXKlRfcb2pqKn7yk59g8uTJOHXqFO677z5kZmZi/PjxPdu98MILOH36NObNm4d58+b1/K4tPvzwQ6xYsQIAsGLFCvzqV7/CvHnz8PDDD+P48eNYuHAhpkyZglmzZiE/P3/Av4vzsmST9rhNmTJFEpFj2lpYI7Oe/EbGPfyFPFLepHQ4RERENnf06FFFj6/T6eTEiRNlUlKSvO++++SmTZt6HpszZ47MycmRUkoJQK5du1ZKKeWSJUvkJZdcIru6uuT+/fvlxIkTpZRSvv766/KnP/1pz/MXL14sN27cKKWUMi4uTtbU1Egppayrq5NSStnW1ibHjx8va2trpZRSent79zz36NGj8oorrpBdXV1SSinvu+8++eabb8rTp0/L2NhYWV1dLTs7O+X06dPPOObZLMf96quv5F133SWNRqM0GAxy8eLFcvPmzbK4uFiq1Wp58OBBaTAY5OTJk+Xtt98ujUaj/OSTT+TVV18tpZTy97//vUxPT5dtbW2ypqZGxsTEyPLy8vPuVwghd+zY0ROL5XXr9Xo5Z84ceeDAgXN+N2f/HlavXi1vu+02KaWUt912m1y8eLHU6/VSSikvvvhiWVhYKKWUcufOnXLevHl9/g76OscA5Mp+8qULjscJIWIBvAUgAoARwMtSyn+YH/sZgPsB6AF8KaV8yDopIxHZS0e3Ac9+VYBXtxUjMcQbQnRiQ14VxkX5KR0aERGR3fzh8yM4errZqvscF+WH3185vt/HfXx8sGfPHmzduhUbN27EDTfcgKeffrpntMbCzc0NCxcuBACkpaXB3d0dWq0WaWlpKCkpGVRML7zwAj7++GMAwKlTp1BUVITg4OAztvn222+xZ88eTJ06FQDQ3t6OsLAw7Nq1C3PnzkVoaCgA4IYbbkBhYeEFj/n111/j66+/xqRJkwAALS0tKCoqwqhRo5CQkIC0tDQAwPjx4zF//nwIIc55bVdffTU8PT3h6emJefPmYffu3di2bVu/+42Li8NFF13U8/xVq1bh5Zdfhl6vR0VFBY4ePYr09PRB/e6WLl0KtVqNlpYWbN++HUuXLu15rLOzc1D76s9AiiX1AH4tpdwrhPAFsEcI8Q2AcABXA0iXUnYKIcKsEhER2U1+ZTN+8f5+5FfqcOu0OPx2USpuWrkTG/Kq8PP5SUqHR0RE5PLUajXmzp2LuXPnIi0tDW+++eY5yZlWq+3p/KdSqXrKIFUqFfR6PQBAo9HAaDT2PKevFu6bNm3Chg0bsGPHDnh5eWHu3Ll9bielxG233YY///nPZ9z/ySefDKkDoZQSv/3tb3HPPfeccX9JSUnPaznfawPO7XwohDjvfr29vXt+Li4uxl//+lfk5OQgMDAQK1as6LfFfe/jnL2NZZ9GoxEBAQHYv3//hV76oF0wOZNSVgCoMH+vE0LkAYgGcBeAp6WUnebHqq0eHRHZhNEo8dr3xXhmfQH8PLV4fcVUzBtr+nzlknHheParAlQ1dyDcz0PhSImIiOzjfCNctlJQUACVSoWkJNMHovv370dcXNyQ9hUfH4///Oc/MBqNKC8v75mv1VtTUxMCAwPh5eWF/Px87Ny5s+cxrVaL7u5uaLVazJ8/H1dffTV++ctfIiwsDPX19dDpdMjOzsYDDzyAuro6+Pn5YfXq1Zg4ceIFY7vsssvw+OOPY/ny5fDx8UF5eTm0Wu2gXt+nn36K3/72t2htbcWmTZvw9NNPw9PTc0D7bW5uhre3N/z9/VFVVYV169Zh7ty5AABfX1/odLqepiXh4eHIy8tDSkoKPv74Y/j6+p6zPz8/PyQkJGD16tVYunQppJQ4ePDggH4XFzKoNiNCiHgAkwDsAvAsgFlCiCcBdAB4UEqZM+yIiMimKps68ODqA9h2rBYLUsPx9HVpCPH54VOr+alheParAnyXX42bskYpGCkREZFra2lpwc9+9jM0NjZCo9FgzJgxPU06BmvGjBk9JYITJkzA5MmTz9lm4cKFePHFF5Geno6UlJQzyv7uvvtupKenY/LkyXj33Xfxpz/9CZdeeimMRiO0Wi3+/e9/46KLLsITTzyBadOmITIyEpMnT+5pFHI+l156KfLy8jBt2jQApnLOd955B2q1esCvLysrC4sXL8bJkyfx+OOPIyoqClFRUQPa78SJEzFp0iSMHz8eiYmJmDFjxhmve9GiRYiMjMTGjRvx9NNP44orrkBsbCwmTJiAlpaWPuN59913cd999+FPf/oTuru7ceONN1olOROmOWkD2FAIHwCbATwppfxICHEYwHcAHgAwFcAHABLlWTsUQtwN4G4AGDVq1JTS0tJhB01EQ7P2UAV++9EhdOmN+L8rx+HGqbHnlAlIKTHrmY1ICffFqyumKhQpERGR7eXl5SE1NVXpMOgCnnjiCfj4+ODBBx9UOpRB6+scE0LskVJm9rX9gFrpCyG0ANYAeFdK+ZH57jIAH5mbjuyGqVnIOYsYSClfllJmSikzLZMHici+dB3deHD1Afzk3b2ID/bClz+fiZuyRvVZNy6EwILUcGw7Vov2rgt/GkZERERE1jGQbo0CwKsA8qSUz/V66BMAFwPYJIRIBuAG4PxLjxOR3eWW1OOXq/ajvKEdP794DH42Pwla9fk/l5mfGoY3tpdg27FaXDIu3E6REhEREZ3riSeeUDoEuxnInLMZAG4BcEgIsd9836MAXgPwmrm8sQvAbWeXNBKRcroNRrzwbRH+vfEYogM9sfreaZgSFzSg52YnBMPHXYNv86qYnBERERHZyUC6NW4D0F/PzJutGw4RWcOJmhb88oP9OFDWhKVTYvB/V46Dr8fAuyK5aVSYkxyKb/OrYTRKqFSDb5tLRERERIMzoDlnROQcpJR4b9dJLH5hG0rq2vCf5ZPx7NKJg0rMLBaMC0ONrhMHy5tsECkRERERnW1QrfSJyHHVtXTi4TWHsCGvCjPHhOCvSyciwn/o65TNTQ6DSgDf5lUhIzbAeoESERERUZ84ckbkAjbmV+Oy57diS1ENHr9iHN76cdawEjMACPR2Q2ZcEDbkcX15IiIiW1Gr1cjIyMCECROwdOlStLW1DXlfK1aswIcffggAuPPOO3H06NF+t920aRO2b9/e8/OLL76It956a8jHtigpKcGECRPOuO+JJ57AX//610Htx1rxOBuOnBE5sfYuA55am4e3d5ZibIQv3rkzC2Mj/Ky2/wXjwvDU2nyUNbQhJtDLavslIiIiE09PT+zfvx8AsHz5crz44ov41a9+1fO4wWAY1GLNFq+88sp5H9+0aRN8fHwwffp0AMC999476GPYil6vd6h47IkjZ0RO6nB5E67451a8vbMUd85MwCc/nWHVxAwA5qeaOjV+l8/RMyIiGuGeeQbYuPHM+zZuNN1vJbNmzcKxY8ewadMmzJs3Dz/60Y+QlpYGg8GA3/zmN5g6dSrS09Px0ksvATDNNb///vsxbtw4LF68GNXVP/y9njt3LnJzcwEA69evx+TJkzFx4kTMnz8fJSUlePHFF/H3v/8dGRkZ2Lp16xmjW/v378dFF12E9PR0XHPNNWhoaOjZ58MPP4ysrCwkJydj69atg36N59v3o48+ijlz5uAf//hHTzynT59GRkZGz02tVqO0tBSlpaWYP38+0tPTMX/+fJw8eRKAafTw5z//OaZPn47ExMSekURnweSMyMkYjBL/2XQMS/79PVo7DXj3zmw8dsU4eGgH/6nahYwO9UFiiDe+OVpl9X0TERE5lalTgWXLfkjQNm40/Tx1qlV2r9frsW7dOqSlpQEAdu/ejSeffBJHjx7Fq6++Cn9/f+Tk5CAnJwcrV65EcXExPv74YxQUFODQoUNYuXLlGWWKFjU1NbjrrruwZs0aHDhwAKtXr0Z8fDzuvfde/PKXv8T+/fsxa9asM55z66234i9/+QsOHjyItLQ0/OEPfzgjzt27d+P5558/4/7ejh8/fkZC9eKLLw5o342Njdi8eTN+/etf99wXFRWF/fv3Y//+/bjrrrtw3XXXIS4uDvfffz9uvfVWHDx4EMuXL8fPf/7znudUVFRg27Zt+OKLL/DII48M8l9CWSxrJHIiZQ1t+NWqA9hdXI/FaZF48poJCPBys+kx56eG4c3tpWjp1MPHnW8ZRETkon7xC8BcXtivqCjgssuAyEigogJITQX+8AfTrS8ZGcDzz593l+3t7cjIyABgGjm74447sH37dmRlZSEhIQEA8PXXX+PgwYM9o0BNTU0oKirCli1bcNNNN0GtViMqKgoXX3zxOfvfuXMnZs+e3bOvoKDzr3na1NSExsZGzJkzBwBw2223YenSpT2PX3vttQCAKVOmoKSkpM99jB49uqdUE/hhEekL7fuGG27oN67vv/8er7zySs9o3Y4dO/DRRx8BAG655RY89NBDPdsuWbIEKpUK48aNQ1WVc33AzCstIifRpTdi6Ys7oOvQ429LJ+LaydEQwvbrj81PDcfKrcXYWliDRWmRNj8eERGRwwoMNCVmJ08Co0aZfh6m3nPOevP29u75XkqJf/7zn7jsssvO2Gbt2rUXvBaQUlr1esHd3R2AqZGJXq+32n6BM19zbxUVFbjjjjvw2WefwcfHp89ter9GS4yA6fU7E5Y1EjmJTQXVqGjqwN9vyMB1U2LskpgBQGZcIPw9tfgmz7k+eSIiIhqU558HNm06/+33vwfa2oDHHzd9/f3vz7/9BUbNBuqyyy7Df//7X3R3dwMACgsL0draitmzZ+P999+HwWBARUUFNp49Jw7AtGnTsHnzZhQXFwMA6uvrAQC+vr7Q6XTnbO/v74/AwMCeEaq33367Z6RruIay7+7ubixbtgx/+ctfkJyc3HP/9OnT8f777wMA3n33XcycOdMqMSqNI2dETmLN3jKE+LhhbkqoXY+rUaswLyUUmwpqYDBKqFX2SQqJiIgcimWO2apVwLx5plvvn23ozjvvRElJCSZPngwpJUJDQ/HJJ5/gmmuuwXfffYe0tDQkJyf3meiEhobi5ZdfxrXXXguj0YiwsDB88803uPLKK3H99dfj008/xT//+c8znvPmm2/i3nvvRVtbGxITE/H6669b7bUMdt/bt29HTk4Ofv/73+P3v/89ANOI4QsvvIAf//jHePbZZxEaGmrVGJUk7DnUl5mZKS1dY4ho4Bpau5D11AbcOi0ej18xzu7H//zAafzsf/vw4b3TkBl//lp1IiIiZ5GXl4fU1NSBbfzMM6bmH70TsY0bgZwcoNd8J6Le+jrHhBB7pJSZfW3PkTMiJ/D5wdPoNkhcNzlGkePPSQmFRiXwTV4VkzMiIhqZ+krALCNoRFbCOWdETmDNnjKMjfDFuCjrrmM2UH4eWmQnBuHbPK53RkRERGQrTM6IHNyxah0OlDXh+inKjJpZLEgNx7HqFpTUtioaBxEREZGrYnJG5ODW7C2HWiVwVUaUonEsSA0HAGxg10YiInIhztZqnZzHUM4tJmdEDsxglPh4bzlmJ4UgzNdD0Vhig7yQHO7D0kYisrsaXSd0Hd1Kh0EuyMPDA3V1dUzQyOqklKirq4OHx+Cu39gQhMiBbT9ei8rmDjx2xQA7SdnYgtRwvLTlBJrauuHvpVU6HCIaIW5+ZRdSInzxwk2TlA6FXExMTAzKyspQU1OjdCjkgjw8PBATM7hpKUzOiBzYR3vL4eeh6SkpVNr81HD8Z9NxbCqsxtUZ0UqHQ0QjQFuXHgVVOtS2dEJKCSG41iJZj1arRUJCgtJhEPVgWSORg2rp1GP94UpcMTEKHlq10uEAADJiAxDi44YNLG0kIjsprGoBANS1duF4DRsSEZFrY3JG5KDWHqpAe7cB1012nBEqtUpgXkoYNhVUo9tgVDocIhoBCiqbe77fXVyvYCRERLbH5IzIQX20twwJId6YPCpQ6VDOMD81HLoOPXJKeJFERLZXUNkCD60Kob7u2F1cp3Q4REQ2xeSMyAGdqm/DzhP1uHZStMPNr5iVFAI3jQobjrK0kYhsr6CqGcnhvshKCMKu4np21SMil8bkjMgBfbyvHACwZJLjlDRaeLtrMH10ML7Nr+JFEhHZXEGlDinhvshOCEJFUwfKGtqVDomIyGaYnBE5GCklPtpbhosSgxAb5KV0OH1akBqO0ro2HK9pUToUInJhtS2dqG3pQkqEaeQM4LwzInJtTM6IHMzekw0oqWvDdZMHty6GPc1PDQMAfDNCSxv//k0hnv0qX+kwiFxeYaUOAJAS4YvkMF/4e2qZnBGRS2NyRuRgPtxTDk+tGovSIpUOpV+R/p4YH+WHb/OqlA7F7qSUeGtHCV7cfAJlDW1Kh0Pk0vJ7JWcqlcDU+CDsZjMiInJhTM6IHEhHtwFfHDyNhRMi4OPu2GvEL0gNx56TDahr6VQ6FLs6XtOKhrZuGIwSr24rVjocIpdWWKVDoJcWoT7uAIDshCAU17aiurlD4ciIiGyDyRmRA9mQVwVdh96hSxotFqSGQ0pgY0GN0qHYVa75U/tJowLwQc4pNLV1KxyRYzIYJf698RiqdbyIpqHLr9QhJcK3p2ttz7wzjp4RkYtickbkQNbsKUOkvwemjQ5WOpQLmhDth3A/9xFX2phb2oAgbzc8uSQNbV0GvLOrVOmQHNL+Uw149qsCvL/7lNKhkJMyGiWKqnQYG+HXc9/4KD94uamRw3lnROSimJwROYhqXQe2FNViyaRoqFWOtbZZX4QQmJ8aji2FNejUG5QOx25yS+oxJS4Q46L8MCspBG9sLxlRr3+gdhc3mL/yIpqGpryxHa1dBiSH+/bcp1GrMCUuELt4XhGRi2JyRuQgPtt/GgajdIqSRosFqWFo7TJg54mRcaFUretASV0bpsYHAgDunp2IGl0nPjGvS0c/sJR/7iltQLfBqHA05Ix6NwPpLSs+CAVVOjS2dSkRFhGRTTE5I3IQH+4pw8TYAIwJ81E6lAGbPjoEnlr1iClt3FNiGg3KjDfNe5k5JgTjIv3w8pYTMBq5ILeF0SiRW9qAUF93tHcbcLi8SemQyAkVVpmSs+TwM98TsxKCICWQa/7/SETkSpicETmAI6ebkF+pw/WTo5UOZVA8tGrMTArBhqNVkNL1k5Ockga4a1SYEOUPwFTaeffsRByvacXGgpG55ltfCqt1aGrvxl2zEgCAJWg0JPmVOkQHeMLXQ3vG/RNjA+CmVrEpCBG5JCZnRA7go73l0KoFrkiPUjqUQVuQGobTTR3Iq9ApHYrN7SmtR0ZsANw0P7x1Lk6PRJS/B17ackLByBxLjnlEY+H4SIwO9ea8MxqSgspmjD2rpBEwfSiUERvApJ+IXBKTMyKFdRuM+HR/OeaPDUegt5vS4QzaxWPDIYRpGQBX1talx+HTzcg0zzez0KpV+PHMBOwursf+U43KBOdgcorrEe7njtggT2QlBCOnpB4Gln3SIHTpjThR03rOfDOLrIQgHC5vQmun3s6RERHZFpMzIoVtKaxBbUsXrpviPI1Aegv1dcfEmACXn3e2/2QjDEbZM9+stxuzRsHXQ4OXtxxXIDLHIqVETkk9psYHQQiB7IQg6Dr0yK9sVjo0ciInalugN8rzJmcGo8Tek5x3RkSuhckZkcLW7C1DkLcb5iSHKh3KkF0yLhwHyppQ3ey6Cw7nlDRACGDyqMBzHvNx12B5dhzWH65EaV2rAtE5jrKGdlQ0dfQsFmz5umuEdPQk6yjop1OjxeS4QKhVgiWzRORymJwRKaiprRsbjlbjqolRZ8xjcjbzU8MAAN/mu25TjNzSeqSE+8LfU9vn47fPiIdaJfDqtmI7R+ZYcktNF8uZcaakLCrAE7FBnryIpkEpqNRBoxJIDOm7e62PuwYTovw474yIXI7zXg0SuYDPD55Gl8GI6520pNEiJdwX0QGeLlvaqDcYsbe0AVP7KGm0CPfzwJKMaKzKPYX61pG7/tLu4gb4emjOGPHIig/G7pL6EdHRk6yjoFKHxFDv835olZUQhP2nGrkIPBG5FCZnRApas7cMKeG+GB/lp3QowyKEwCXjwrHtWC3au1zvQim/UofWLsM5zUDOdtfsRHR0G/H2jlI7ReZ4ckrqkWkuObPITghCfWsXjte0KBgZOZP8Sh1SIs7/vjg1PghdeiMOlnEdPSJyHUzOiBRyoqYF+0424trJ0RBCXPgJDm5+ahg6uo34/lit0qFYXa55PaW+moH0lhzui3kpoXhrRwk6ul0vSb2Q+tYuHKtuOef3ZJl3tpPzzmgAdB3dKG9sR0p43yWNFpaRbJbMEpErYXJGpJCP9pZDJYBrJjnXwtP9yU4Iho+7Bt/mu15pY05pA6L8PRAd4HnBbe+ePRp1rV1Ys7fMDpE5FksSa0nGLOKCvRDu586LaBqQwirTCOuFRs4Cvd2QEu7LeWdE5FKYnBEpwGiU+HhfOWYlhSLMz0PpcKzCTaPCnORQbMirhtGF1rSSUiK3pP6Co2YWFyUGIT3GH69sLR5xa3vllNTDTaNCeoz/GfcLIZCVEIzdxZx3RhdWWGXq1NjXAtRny0oIwp6SeugNRluHRURkFxdMzoQQsUKIjUKIPCHEESHEA+b7nxBClAsh9ptvl9s+XCLXsLO4DuWN7bh2smuMmlnMTw1Dja4Th8pdZw5IWUM7qpo7MfUC880shBC4e3Yiimtb8c1R1xtFPJ/dJQ3IiAmAu0Z9zmNZCUGobO7Aqfp2BSIjZ1JQqYOXm3pAI9VZCUFo7TLgaAXX0SMi1zCQkTM9gF9LKVMBXATgp0KIcebH/i6lzDDf1tosSiIXs2ZPOXzdNbhsfITSoVjVvJQwqARcqmujpTX8lLiBjZwBwMLxEYgJ9BxRi1K3delxpLyp36Yp2ZZ5Z8V19gyLnFB+ZTOSw32hUl14Lq6lhJYls0TkKi6YnEkpK6SUe83f6wDkAXCtj/uJ7Ki1U491hyuwOD0SHtpzRxicWaC3GzLjgvBNnuusd5ZT0gBfd02/i+H2RaNW4c6ZCdh7shF7SkfGReP+k43QGyWmJvSdxCaF+SDI240X0XReUkoUVOoGVNIImJawiA/24rwzF9HWpceHe8rQ0qlXOhQixQxqzpkQIh7AJAC7zHfdL4Q4KIR4TQgxsJofohFu/eFKtHUZcJ2Tr23WnwXjwpBX0YzyRtcoX8stqcfks1rDD8SyqbEI8NLipc0nbBSZY9ldUg8hgClxff8pEEJganwgkzM6r5qWTjS0dSM5fOAfhmQlBCGnpN6l5rqONFJKrD1UgQV/24wHVx/Ayi0j432TqC8DTs6EED4A1gD4hZSyGcB/AYwGkAGgAsDf+nne3UKIXCFEbk1NzfAjJnJyH+0rw6ggL2T2cxHr7OanhgMAvnOB0sbGti4UVrUMeL5Zb15uGtxyURy+yavCiRGwvldOST3GRvjBz0Pb7zZZCcE4Wd+GiibXSNzJ+goqB94MxCIrIRiNbd0oqnb9/2eu6Fh1C255dTd+8u5e+HlqkRLui7WHKpQOi0gxA0rOhBBamBKzd6WUHwGAlLJKSmmQUhoBrASQ1ddzpZQvSykzpZSZoaGh1oqbyCmdbmzH9uN1LrO2WV9Gh/ogIcTbJUob955sAHDh9c36c+u0eGjVKqzcWmzNsBxOt8GIfScbkXWBJDab84PoAizJ2WDKiHvOqxKeV86ktVOPP6/Lw6J/bMGBskb84arx+OJnM3HzRaNQVN3Scy4QjTQD6dYoALwKIE9K+Vyv+yN7bXYNgMPWD4/ItXy8rxxSAtdOcs2SRosFqWHYebzO6ecN5JQ0QKMSmBgTMKTnh/q647rJ0Viztwy1LZ3WDc6BHD3djLYuQ7/zzSxSI/3g667h/CDqV0GlDiE+bgj2cR/wc2ICPRHh58Gk30lIKfH5gdOY/7fNeGnzCSzJiMbGB+fitunx0KhVuGxCBFQC+PLgaaVDJVLEQEbOZgC4BcDFZ7XNf0YIcUgIcRDAPAC/tGWgRM5OSok1e8uQFR+EUcFeSodjU/NTw9FlMGJroXOXMueW1GNCtD883YbeuOXOWYnoNhjx1vYS6wXmYHLMIxZTLzDCqFYJZHLeGZ1HQZVuUKNmgGUdvSDsLq7jOnoOrqhKh+Wv7MLP/rcPwT5uWHPfdDy7dCJCeiXjYb4eyE4IxheHKvjvSSPSQLo1bpNSCilleu+2+VLKW6SUaeb7r5JSskCY6Dz2n2rEiZpWXDfF9ZudZsYFwt9Tiw1OXNrY0W3AgVNNQ5pv1tvoUB8sSA3HWztL0dbl3COJ/dldXI9RQV4IH8CC6lkJwThW3eLSI4k0NEajRGGVDinhfoN+blZCEKqaO3Gyvs0GkdFwtXTq8eSXR7HoH1txuLwJf7x6PD67f2a/DYQWp0fiRE0r8lnaSCPQoLo1EtHQrdlbBg+tCpenRV54YyenUaswLyUUGwuqYXDSDmqHy5vQZTAOeb5Zb/fMTkRjWzdW55ZZITLHIqVEbmnDBUfNLCzrUuU6yfyg7/KrkF/JBY7t4WR9Gzq6jUiJ8Bn0cy3zzlgy61iklPh0fzku/usmrNxajOunxGDjg3Nxy7T483bAXdhT2sjP/WnkYXJGZAedegM+P1CBy8ZHwPc83excyfzUcNS3dmGfuamGs8ktNTcDsUJXzSlxgZg0KgCvbDsBvcE47P05kuM1rahv7UJWwsB+T2nR/vDUqrHzhONfRJfWteLHb+Ri4fNbcetru7GtqJZlVjaU39MMZPAjZ2O4jp7DKajU4caXd+KB9/cj3M8DH/9kOp6+Ln1A8wlDfNwxbXQwvmRpI41ATM6I7OC7vGo0tXfj2smu3QiktzkpodCohNOWNuaW1CMxxHtQjQn6I4TAPbMTcaq+HV8dcf4lBnqzzDcb6Aijm0aFyXEBTnERvf5wJQDg3jmjkVfRjJtf3YXFL2zDJ/vK0e1iSbYjKKwyJWfJ4YMfOeM6eo6juaMb/+/zo7j8ha0oqNLhyWsm4JOfzsCkUYP7oGtxWhSKa1txtIIj1zSyMDkjsoM1e8sQ7ueOmWNClA7Fbvw8tMhODMK3TrjemdFoKtXLHOZ8s94uGReB+GAvvLzluEt9EpxTUo8QHzckhngP+DlZ8cHIq2xGU3u3DSMbvnWHK5EW7Y9HFo3Ftofn4Znr0tFlMOIXH+zH7Gc2YuWWE9B1OPZrcCYFlTqMCvKCl5tmSM/nOnrKklLio71luPivm/H69mLcMDUWG389F8uz485bwtify8aHQ60SLG2kEYfJGZGN1bZ0YlNBDZZMih7SHyhnNn9sOIqqW1Ba16p0KINyvKYFjW3dVplvZqFWCdw5KxEHyppcal5MTkk9MuOCBrVuX1ZCEKQE9pQ67u+hoqkd+081YuGECACAu0aNZVNj8fUvZuP1FVMRH+yNJ9fmYfqfv8NTa/NwupEJwXANpVNjb1xHTzlHTzdj2Us78KtVBxAd6IlPfzoDT12ThkBvtyHvM9jHHdNZ2kgjEJMzIhv7bP9p6I0S142gkkaLBanhAOB0pY05Jab5ZgNtcjFQ10+JQZC3G17ecsKq+1VKZVMHTtW3X3B9s7NNGhUAN7UKuxx43pmlpHGROTmzUKkE5o0Nw//uvgif3z8Tc8eG4dVtxZj9zEb88oP9OHqaJVhD0ak3oLi2FSnhQ0/OUiP94OOuYXJmR03t3XjisyO44p9bcay6BU9fm4aP75uO9CGuDXm2xWmRKK1rwxH+v6IRhMkZkY2t2VuGtGh/JA/josNZjQr2QnK4DzYcda7SxtxSU6levJXXo/PQqnHrtDh8l1+NoirnbxG9u2d9s8GVf3po1ZgY6+/QI4jrDlciJdwXiaH9z39Ki/HHP2+ahE0PzsWt0+Lx1ZFKXP7CVtzy6i5sKazhp/2DcKy6BQajHNbImWUdvRwn6QTqzIxGidW5pzD/b5vw5o4SLM+Ow8YH5+LGrFFQWbFC5LLxEVCrBL5gaSONIEzOiGwov7IZR04347rJrr+2WX8WpIYjp6Te4ecX9ZZb0oApcYGDKtUbqFunxcNDq8LKrc4/epZbUg9vNzXGRQ5tXarD5U1o7XS8td9qdJ3IKanvKWm8kNggL/zfleOw45H5eHjhWBRU6nDra7ux6B9bsWZPGbr0bB5yIZZmIGOHkZwBpvOqsKoF9a1d1giL+nC4vAnXv7gdv/nwIGKDvPD5/TPxxyUTEOA19BLG/gR6u2HGmBB8eeg0P+ygEYPJGZENfbS3HBqVwJUTo5QORTHzU8OhN0psLqxROpQBqWruwMn6NquXNFoEebth6ZRYfLLvNKqbO2xyDHvZXVyPyXGB0KgH/6ckKyEYeqPEvpON1g9smL4+WgkpgUVpA0vOLPy9tLhv7mhsfXgenr0+HUYp8evVBzD7mY14afNxNLN5SL/yK3XQqgXiB9FYpi9Z5v+3HD2zDoNR4lh1Cz47cBp/WZ+PW1/bjav+tQ2ldW145vp0rLl3OiZE+9s0hivSInGqvh2HyptsehwiRzG0lkhEdEF6gxEf7yvHvLFhVmnH7qwyYgMQ7O2GDUercJUTJKm55vlm1mwGcrY7ZyXgnV2leH17CR5eONZmx7GlpvZuFFTpsGjC0BZVnxIXCLVKYFdxHWYmOVYX0/WHKxEf7DXk+U/uGjWWZsbi+ikx2FxYg5VbT+DP6/Lxz++O4capsbh9ZgKiAzytHLVzK6jUYXSoD7RDSPR7S4vxh7tGhd3F9bhs/OCS65FO19GN/Eod8iqacfR0M/IqmlFQpUNHt2nkV6MSGBPmgztmJuD+i5Pg72mfNTsvHR+ORz82dW201lw2IkfG5IzIRrYeq0WNrnNENgLpTa0SuHhsGL46Uolug3HYF1+2lltaDw+tCuOjBl+qN1Bxwd5YOD4C7+wsxU/njYGPu/O9Fe8tbYCUwNQBLj59Nh93DSZE+TncvLPGti7sOF6HO2clDrusVQiBuSlhmJsShsPlTVi59QRe316C17eX4Ir0SNw1K9Hmow7OorBSh6xBNpbpi7tGjUmjnGMdPaVIKVHW0I6jFaYELK+iGUcrmnGq/oeOo4FeWqRG+mF5dhxSI/0wLtIPY8J84Kax//t3gJcbZiaF4IuDFXhk0ViblJsTORLnuyIgchIf7S1HgJcWF48NUzoUxc1PDcfqPWXIKanH9NGONUpyttySBkyKDbR5Enn37ESsO1yJD3JO4Y6ZCTY9li3sLqmHVi0wKXboa8FlJQThzR2l6Og2wEOrtmJ0Q7chrxp6ozynS+NwTYj2xz9unISHFo7F69uK8b/dJ/Hp/tOYPjoY988bg+kjaA3EszW1d+N0UweShznfzCIrIRj/+q4Iuo5u+HrYZ3THUXV0G1BgHg0z3Uzf68xzPYUAEoK9kR4TgBunjkJqpC9SI/0Q4efhUEnQ4rRI/KbgIA6UNSEjNkDpcIhsiskZkQ00d3Tj6yOVuGFqrCKfNDqaWUkhcNOo8G1etUMnZy2dehw53YSfzhtj82NNGhWIrPggvLatGLdOi3P4EcWz5RTXY0K0Pzzdhp5UZSUEY+XWYhwsa7LKqIk1rD9cgegAT6TH2GZEKzrAE49dMQ4/m5+E93efxOvfl2D5q7uw6p5pNpvn6Ois1QzEIjshCC9IYE9pA+amjJwPxzr1Buw6UY/Dp5t6krATNS0wmvtoeLupMTbSD1dPisK4SH+kRvoiJcJ3yIt+29Ol4yPw6MeH8OXB00zOyOU5/v9IIif05cEKdOqNI76k0cLbXYPpo4OxIa8Kjy1OdahPZHvbf7IRRmnb+Wa93T07EXe+lYu1hypwdYbzdPTs6DbgYFkTVsyIH9Z+psYHQghg14k6h0jOWjr12FJUi5uz42x+jvp7anHPnNFYflEcFv1jC3696gDWPTAL3k5Y4jpcBZWm5CwlwjqlxJNGBUCjEthdXO/yyVmn3oBtRbX48mAFvjla1TMiFh3gidRIP1w+IcJUlhjlh9hAL6u2ubcnf08tZieF4suDFXj0csf9G0JkDSPvrwCRHazZU4YxYT42+/TdGc1PDcfjnxzG8ZoWjAlzzDXfckrqoRLA5FEBdjnexWPDMDrUGy9tPoGrJkY5zQXHwbImdBmMwx7pCfByQ0q4b896aUr7Lr8aXXrjoLs0DoePuwZ/W5qBG17egSfX5uGpa9LsdmxHUVCpg6+7BlH+HlbZn5ebBmkx/i4776xLb8T3x2rxxcEKfH20EroOPfw9tViUFoFFaZGYHBsIfy/XK+dcnB6Jb/Orse9UIyaPGno5NZGjY3JGZGWlda3ILW3AQwtTnOZi2x4WpIbh8U9Mc3ocNTnbU9qAsRF+dpunolIJ3DUrEY98dAjbj9dhhpPMO7K0Kc+MG/4FUnZCEFbvKXOIZjHrD1cg1NcdU+x84ZeVEIS7ZyXipS0ncMm4cMxz8dGesxVU6pAc4WvV98usBFPJsCPNZxyOboMpIfvyYAW+OlKJ5g49fD00uGx8BBanR2LG6BCXL6FfMC4cbmoVvjxYweSMXJpr/08mUsCaveUQArhmkvOUqdlDpL8nxkf54du8KqVD6ZPeYMTekw2YGm/fP/pLJkUjxMcdL21xnkWpdxfXIynMB4Hew190NishGG1dBhw53WyFyIauvcuAjfk1uGx8uCKlX7+8JBkp4b54+MODaBhBCyhLKVFQpUOKleabWWQnBKHbILH/VKNV92tP3QYjNhfW4KEPDyDzTxuw4vUcrD9SiQXjwvHaikzseewS/HXpRMxLCXP5xAwA/Dy0mJ0cirWHKmA0ckFqcl2u/7+ZyI6MRomP9pZh5pgQRPpzHaOzLUgNx57SBtQ74MVnXoUObV0GTLFzUwYPrRq3z4jHlsIa5FUom6AMhMEosbe0AVOtNEfM0op/d3GdVfY3VJsLa9DebcDC8UNbt224PLRqPHfDRDS0deHxTw8rEoMSqpo70dTePeQ15fozJS4IQsDpShv1BiO2FtXgkTUHMfXJDbjttd1Ye6gS88eG4dXbMpH72AI8tywDF48NHxEJ2dmuSI9ERVMH9p1qUDoUIpsZef+ziWwop6QeZQ3tbATSjwWp4TBKYGN+tdKhnMNSqmfvkTMAWJ49Cl5uaqx0gtGz/EpTG+4sKyWxYb4eSAzxxq4Tyl5Ef3WkEgFeWmQnKteYZHyUP36xIBlfHKzAZwdOKxaHPRVUWZqBWDc58/fUYmyEn1MkZ3pzyeJvPzqErKe+xS2v7sbnB05jbnIoVt5qTshuyMD81HC4a5y/RHM45qeaRgm/OFihdChENsM5Z0RWtGZvGbzd1Lh0fLjSoTikCdGm9XPWHqrAdVMcK4HNLa1HdICnIiOeAV5uWJYZi3d2luLBy1IQFeC4o6455otda42cAUB2YhC+OFgBg1FCrUBJYZfeiA15VVg4PkLxeW/3zE7EhrwqPP7JYWTFByHCSk0yHFVBpWm02NojZ4CptPGDnFMOMZ/xbAajxK7iOnx5sALrD1eirrULXm5qLEgNx+L0SMxJDnWJuXLW5uuhxVxzaePji8c5bfdJovNxrHcrIifW3mXA2kOVuDwt0inWjVGCEAJLM2PwXUE1TtW3KR1ODyklckvsP9+stztmJkACeGN7iWIxDEROSQOi/D0QbcUEMishCLoOfU9LdXv7/ngtdB16u3Zp7I9GrcJzyzLQpTfioTUHIaVrz63Jr9QhzNfdKvMXz5aVEIT2bgMOlzdZfd9DYTBK7Dheh8c+OYTspzbgRyt34aO95Zg2Ohgv3jwZex+/BC/cNAmXjY9gYnYei9MjUdXciT0nWdpIronJGZGVfH20Ei2deocbEXI0P8oeBZUQeGdXqdKh9DhV345qXafd1jfrS2yQFy5Pi8R7u06iuaNbsTjOR0qJnJJ6q46aAaamIIBy887WH6qEr7vGYbplJoR449HLx2JLYQ3e3XVS6XBsqtAGzUAsLEs9OEJpo5QSd72Vi5tW7sSaPeXITgzGf5ebErJ//WgyFk6IZEI2QKbyTlPXRiJXxOSMyEpySxrg666x2lwcVxXp74lLx4VjVc4pdHQblA4HQO/5Zsr+2909KxEtnXr8z0EvyE/Wt6Fa12n131N0gCeiAzyxS4GLaL3BiK+PVuLi1DCHms9z80VxmJUUgie/zENJbavS4diEwShRVNVik5JGAAj1dUdiqLdDJGff5Vfju/xq/OziMdjz+AL8+0eTsSgtEp5ujnPOOQsfdw3mpYRh7SFTKTSRq2FyRmQlhVU6JIX7sAZ+AG6dFo+Gtm587iBND3JL6+HnoUFSmI+icaTF+GNaYjBe/74EXXqjorH0xXKRa4skNjsxCLuL6+1exre7uB4Nbd1YNEH5ksbehBB45vp0aNUCv1q13yUvQkvqWtGpN9ps5AwwzTvbXVKv6O9PbzDiqbV5SAzxxs/nJ7Hs3QoWp0eiWteJXAdZwJ7ImpicEVlJUXULkhx0cWVHc1FiEJLDffDWjlKHmFOTU9KAKXGBDpFY3z0nEZXNHQ6TuPaWU1IPf0+tTZLY7IQg1LV24XiNfUeJ1h2uhIdWhTnJjrfwc6S/J/7f1ROw92QjXtpyXOlwrK7QPMdwbISfzY6h9HxGAHg/5xSO17TikUVjHa4xibO6eGwYPLQqfHmIpY3kevguQWQFdS2dqG/tQlK4siMvzkIIgVumxeNQeZPii8Q2tHbhWHWLovPNepubHIqUcF+s3HrCIRLX3ixNU2yRxP4w78x+n4QbjRJfHanE3OQwhy0vuzojCpenReDv3xTiqMILdVtbfqUOQgBjbDhirfR8Rl1HN57fUIishCBcMo5dfK3F212Di8eGYe2hSpccVaaRjckZkRUUVrUAAJJtNHfCFV07KRq+7hq8tUPZxiB7Sk0dv5Seb2YhhMBdsxORX6nDpsIapcPpUaPrxInaVpv9nuKDvRDq645ddryI3neqAdW6Tofo0tgfIQT+tCQN/p5u+NWq/ejUO8Y8TWsoqNQhPtjbpomxZT5jTokynf1e2nwCtS1d+N3lqRBC+ZF5V7I4LQq1LZ0OMaeQyJqYnBFZQVG1qWSGydnAebtrcN2UGHx5sAK1LZ2KxZFTWg83tQrpMf6KxXC2qyZGIcLPAy9tdpxSNsvcDluNMAohkJ0QhF0n7DfvbN2hSripVbh4rOOVNPYW5O2Gv1yXhvxKHf7+TZHS4VhNYZXOZs1AestOCMIuBeYzVjS1Y+XWE7g6IwoTYwPseuyRYN7YUHhq1fjykOOVgBMNB5MzIisorNLB112DcD93pUNxKjdfFIcugxEf5JxSLIbckgZMiPZzqDbWbhoV7piZgJ0n6hUv+7TIKWmAh1aFtGjbJbHZCUGobO5AWUO7zY5hIaXEusOVmJkUAl8Prc2PN1zzU8Nx49RYvLTleE93UWfW0W1ASV0rkm3YDMRiakIQals6UWznrpd//aoQUgIPXppi1+OOFF5uGlycGob1hyuhNzheAyWioWJyRmQFRVUtSAr3YdnKII0J88HMMSF4d2epIn9cO7oNOFTW5DAljb3dlD0Kfh4ahxk9yympR0ZsANw0tvuzYZkfZI+W+ofLm1He2I6FDtal8Xweu2IcogM88etVB9DaqVc6nGEpqmqBUQJj7ZCcZSXYf72zI6eb8NG+Mtw+Ix6xQV52O+5Ic0VaJGpbuljaSC6FyRmRFRRVt7CkcYhunRaH000d2JBXbfdjHypvQpfB6DDNQHrzcdfglmlxWH+kEidqWhSNpaVTjyOnbZ/EJoX5IMBLi10nbD/vbN3hCqhVApekOk+TBh93Df62dCJONbThybV5SoczLAVVplJwW7bRt0gM8UaIj5vdLuCllHhqbR78PbX4ybwxdjnmSDU3JQxebmp8wa6N5EKYnBENU21Pp0YmZ0MxPzUc0QGeeGtHid2PbSkPmxIXaPdjD8SK6QnQqlVYubVY0Tj2ljbAKG3fNEWlEsiKN61LZUtSSqw/XIlpicEI9Haz6bGsLTsxGHfNSsR7u05iY4H9P9CwloLKZrhpVIizw6iSEAJZ5nln9rCpsAbfH6vDA/OT4O/p+CWzzszTTY35qeEsbSSXwuSMaJgKzZ8AK72AsbNSqwSWXzQK24/X4Vi1fdciyi1pwJgwHwQ56AV6qK87rp8SgzV7y1Ct61AsjtySeqgEMNkOSWxWQhBK69pQ2WS711tY1YITta1OVdLY268uSUZyuA8e/vAgGtu6lA5nSAqqWpAU5gONndb9yooPQnljO8oa2mx6HL3BiKe+zEN8sBeWZ8fZ9FhksjgtEvWtXdh5gqWN5BqYnBEN07FqttEfrhsyY+GmUdm1rb7RKJFbUo9MBx01s7h7ViK6DUa8/n2JYjHsLqnH+Ch/+LhrbH6sbMu6VDYcPVt/uBJCAJeOd56Sxt48tGo8tywD9a1dePzTI0qHMyQFlc12KWm0sMxntHUzldV7ylBU3YJHFo216fxM+sHclFB4u7FrI7kOvnMQDVNhlQ6+HuzUOBzBPu64Ij0Sa/aUQdfRbZdjFlW3oLlD75DzzXqLD/HGogkReGdnqd1+N7116Y3Yd7IRmfH2SWJTI33h466x6byzdYcrkBkXiDBfD5sdw9YmRPvjFwuS8PmB0/jsgHNdlDa2daGqudMubfQtUiJ84eehsem8s9ZOPf72dSEy4wJx2XjnHJV1Rh5aNRaMM5U2drO0kVwAkzOiYSqsMjUDYafG4bltWjxauwz4eF+5XY6XW2q6SJtqp6RjOO6dMxq6Dj3+t/uk3Y99qLwJnXojsuyUxGrUKkyJC7TZRXRJbSvyK3VYOCHSJvu3p3vnjEZGbAAe/+QwqpqVK3sdrIJK+zUDsVCrBKbG23be2UtbTqC2pROPLuaC0/a2OC0SDW3d2HHcfovYE9kKkzOiYZBSoqhKx/lmVjAxNgATY/zx1o5SuywWm1vSgFBfd4xygjbX6TEBmD46GK9uK0an3mDXY9t68em+ZCcGoai6BXU2WJx83eFKAHDa+Wa9adQqPLdsIjr1Bjz04UG7L7I8VJZOjWMj/Ox63KyEIJyoabXJovdVzR1YueUEFqdHYvIox//Ax9XMTg6Fj7sGXx5k10ZyfkzOiIahtqULDW3d7NRoJbdOi8ex6ha7fPqZU1KPqfGBTvMJ9z1zRqOquROf7rNvCVtOST0SQ7wR6mu/st1s87pUOSUNVt/3+sMVmBjjj+gAT6vvWwmJoT549PJUbC6swXsKjKwORX6lDn4KlIJb1jvLscHo2XNfF0JvNOLhy8Zafd90YR5aNS4ZF471R1jaSM6PyRnRMBSZuwsmh3PkzBoWp0ciyNsNb9q4rX5FUzvKGtoxJc6x55v1NjspBOMi/fDSluMwGu0zQmI0SuSUNNhtvplFWnQA3DUq7Cq2bpJe3tiOA2VNLlHS2NvN2XGYOSYEf/oiDyW1rUqHc0GFlTqMjfCz+wcjE6L94alVW720Ma+iGav2nMJt0+IxKtjxR+Jd1eK0SDS1d+P7Y7VKh0JKe+YZYOPGM+/buNF0vxNgckY0DEVV7NRoTR5aNW6YGotvjlahvLHdZsfJNY/IOMN8MwshBO6Zk4jjNa3YkFdll2Meq2lBU3u3zdc3O5ubRoXJo6w/72y9uaRxkQuUNPamUgk8c306NGqBX68+AIOdkvehkFKioEqH5Aj7f6ClVaswOS7A6ufVn9flw89Di/sv5oLTSpqVHAJfljYSAEydCixb9kOCtnGj6eepU5WNa4CYnBENQ2GVqTwnzI4lX65uefYoAMB7u2zXVn9PaQO83NQYF2nfOS/DtTgtEjGBnnhx83G7zC+yXMRaysHsKTsxCEcrmtFsxQ6V6w9XYGyEL+JDvK22T0cRFeCJ/3f1eOwpbcDLW04oHU6/Tjd1QNehR4qd55tZZMUHI6+yGU3t1jmvNhfWYEthDX528RgEeDnmeokjhbtGjUvGh+OrI5Xo0rO0cUSbNw9YtQpYsgS4805TYrZqlel+J8DkjGgYiqpakMROjVYVE+iF+anheH/3KZs1v8gpqcekUQF2WwDXWjRqFe6alYi9JxuRW2r9+VhnyympV6xpSlZCEKQE9lhp3lm1rgO5pQ0u0QikP0syorFoQgSe+6YAeRXNSofTp8JKSzMQZaoNes6r0uGPnhmMEn9em4dRQV64ZRoXnHYEV6RHorlDz9JGAo4dA5qbgVdfBe67z2kSM4DJGdGQSSlRWK3jfDMbuG1aPOpau7D2kPXLU3Qd3ciraEamE803621ZZiwCvbR4cdNxmx8rp7geWfFBinz4MCk2EFq1sNr8oK+PVEFKYJGLzTfrTQiBPy2ZAH9PN/zyg/127+w5EPnm5Cw5TJnkbNKoAKudV2v2lCG/UoeHFqbAXaO2QnQ0XDPHhMLXQ4MvWNo4ckkJPPUUcPfdgFYLPPww8N//njsHzYExOSMaotqWLjS2dSNJoYsMVzZjTDASQ73x5nbrlzbuO9kIo4Tdm1xYi6ebGrdNj8e3+dU960XZQnljO043dSg2L8/TTY30mACrNQVZf7gSiSHeLv9hSrCPO56+Ng35lTo8v6FI6XDOUVDZjEh/D/h7aRU5vodWjYkxw5931talx9++KUBGbAAWp7luwu9s3DQqXDY+Al8frXTIDyfIxoxG4Be/AH73O8DdHfjyS+Dpp00ljb3noDm4CyZnQohYIcRGIUSeEOKIEOKBsx5/UAghhRAhtguTyPEUVVk6NTI5szYhBG69KA77TzXiYFmjVfedW1IPlQAmOfFaRLdNi4enVm3TuUWWduNTFZhvZpGdEIRDZU1o69IPaz8NrV3YcaIOCydEjIgS5AXjwnFDZixe2ny8Z506R1FQ1WLXxaf7kmWF8+qVrcWoau7EY1xw2uEsTo+ErkOPbUUsbRxRurqAm28GXngBmDnTlJhdconpMcsctJwcZWMcoIGMnOkB/FpKmQrgIgA/FUKMA0yJG4BLADjH4ipEVlRoTs6SXPyTeKVcOyUGXm5qvLXDuqNnuaUNGBflBx93jVX3a0+B3m64YWosPt1fjtM26mq5u6Qevu4auy8U3FtWQhD0Rol9JxuHtZ9v8qpgMEqXLmk822NXpCIqwBO/Xn0ArZ3DS26tpdtgxPHqFqQo/IHWcM+ral0HXtx8HIsmRNh1cXYamBmjQ+DvqWXXxpGktRW46irgf/8D/vxnYMsWYP78M7eZNw946CFl4hukCyZnUsoKKeVe8/c6AHkAos0P/x3AQwAct28vkY0UVbewU6MN+Xloce3kaHx24DQaWrusss9ugxH7TjY67Xyz3u6YmQAJ4NVtxTbZf25JPSbHBUKtUm5UYEpcIFQCw54ftP5wJWICPTEh2rm6cw6Hr4cWf106ESfr2/DU2jylwwEAlNa1ostgVHzkzHJeDbW08e/fFKFLb8TDC7ngtCMylTaG45ujVejoZmmjy6urMyVi33wDvPIK8MgjgJOPZg9qzpkQIh7AJAC7hBBXASiXUh6wRWBEjq6oqgXJ7NRoU7dOi0eX3ogPck9ZZX9HTzejvdtg93W7bCE2yAtXpkfif7tPoqnNeu3mAVMZYGFViyIt9Hvz9dBifJQ/dp0Y+rwzXUc3thXVYuH4kVHS2NtFicG4c2YC3t11EpsLa5QOp6cZiNLJmeW8GkpyVlilwwc5J3HLtDiXXJLBVSxOj4KuU4+tLG10bSdPmkoY9+8H1qwB7rhD6YisYsDJmRDCB8AaAL+AqdTxdwD+bwDPu1sIkSuEyK2pUf6PA5E1WDo1JnG+mU0lh/viosQgvL2j1CoL6+aY5984azOQs90zZzTaugx4e2eJVfdradOfGaf87ykrIQj7TjUOeXL/d/nV6DIYsSjNdVvon8+vL01BXLAXnt9QqHQoKKjUQa0SGB2qfCl4VkIQ9p5sGPR6WH9emwdvdw1+fnGSjSIja5g+OhgBXlp8efC00qGQreTlATNmAKdPA199ZVrTzEUMKDkTQmhhSszelVJ+BGA0gAQAB4QQJQBiAOwVQpzz109K+bKUMlNKmRkaGmq9yIkUVNPSae7UqPxFhqu7bVo8yhvbsTG/etj7yi1pQGyQJ8L9PKwQmfJSI/0wJzkUr39fYtXynZySeripVZgYG2C1fQ5VdkIQuvRGHCxrGtLz1x+uRJivOybFKp9oKsFDq8bt0+Ox72Qj9p9qVDSWgkod4oO94KFVvu381PggdOqNOFTeOODnfH+sFhsLTAtOB3pzwWlHplWrsHB8BEsbXdWuXaYRs+5u0/yyOXOUjsiqBtKtUQB4FUCelPI5AJBSHpJShkkp46WU8QDKAEyWUlbaNFoiB3GsqgUAOzXawyXjwhHh54E3d5QMaz9SSuSWNmCqC8w36+3eOaNR19qFD/eUWW2fOSX1SI/xd5iLaGBo84PauwzYVFCDy8ZHQKXg3DmlXTclBj7uGrzxvW3mJw5UQZVO0QYzvVmWiBjofEajUeLJL/MQHeCJW6fF2zAyspbF6ZFo7TI4REkvWdH69cDFFwOBgcD27cDEiUpHZHUDGTmbAeAWABcLIfabb5fbOC4ih1bY00afI2e2plGrsDx7FLYW1eJETcuQ91Na14balk6X6652UWIQJsYGYOXWE1Yp/WzvMuBQWZOiLfR7C/R2Q0q4L3YOYd7Z5sJqtHcbsGjCyCxptPD10OL6KTH48lAFqps7FImhrUuPk/VtDvOBVrCPO5LCfAac9H+8rxxHK5rx0MIUh/jQgi5sWmIwAr3YtdGlvPcecOWVQHIy8P33QGKi0hHZxEC6NW6TUgopZbqUMsN8W3vWNvFSSs66pBGjsLoF/p5ahLJTo13cmDUKWrXA2zuH3lbfMt9MqUWVbUUIgXtnJ6K0rg3rDg//ImTfqQbojdKhfk9ZCUHYU9oAvWFw84PWHa5EoJdW8cYmjuC26fHoNki8u0uZlW+KqlogpfLNQHrLSghCbknDBT/UaO8y4K9fF2BijD+uTI+yU3Q0XBq1CgsnRGJDHksbXcILLwDLl5vKGTdtAsLDlY7IZgbVrZGITIqqdEgK8xlx3d+UEurrjsvTIvFhbtmQ12zKLWmAv6fWIZoRWNul4yOQEOKNlzafgJTDGz3LKW6AEMAUByr/zE4MQluXAUdONw/4OZ16A77Lq8al4yKgUfNPXUKIN+alhOLdXSeH3FxlOArMnRrHOlhy1tKpR17F+c+r174vRkVTBx69PHVEl8c6oyvSI9HWZcCmguHPWSaFSAn87nfAAw8A114LrFsH+PsrHZVN8S8W0SBJKVFY1cJOjXZ267Q46Dr1+GR/+ZCen1Naj8y4QJe8uFKrBO6enYhD5U3YfnzobecBILe0HinhvvD31FopuuHLGsK8s++P1ULXqcfCEdqlsS8rZiSgtqUTaw/Zv8wrv1IHD60KsUFedj92fywjquebd1aj68R/Nh7DpePCkZ0YbK/QyEqyE4IQ7O2GL1ja6Jz0euDuu4GnnjJ9XbUK8HCNhl7nw+SMaJBqWjrR1N7N+WZ2NnlUIMZH+eGt7aWDHh2qa+nEiZpWl5tv1ts1k6IR6uuOFzcfH/I+9AYj9pY2ONw6cGF+HkgI8cau4oEnnusOVcLXQ4MZo0NsGJlzmTUmBImh3nj9+5Jhj7AOVmGVDsnhvoouan62SH9PjArywu7znFf/+LYQnXojHlnEBaedkam0MQLf5lWjvYuljU6lowNYtsy0sPRjjwEvvgioR8Z8TyZnRINUxE6NihBC4NZpcSio0g26c98e87pdjjSPyto8tGrcPiMeW4tqcbh8aG3nj1Y0o7XL4DDNQHrLig/C7uJ6GAfQ9KTbYMQ3eVVYkBoONw3/zFmoVAK3T4/HwbIm7LNzW/38Sh1SHPA9MyshCDklDX0mq8eqW/C/3aewPHsUEl2wHHqkWJweifZuAzaytNF5NDUBCxcCH39smmv2xz8CI2gaCf9qEQ2SpVNjEkfO7O6qidHw99TirR2DawySW9oAN40KaTGuXae+PDsOPu4avLTlxJCen1NiSmKzHGzkDDDNO2vu0KPA/P/vfHYX16OxrRuXjWdJ49munRwDX3cN3vi+xG7HrGvpRG1Lp0M1A7HISghCfWsXjvfRCfbpdfnw0qrx8/lccNqZZScEI8THjV0bnUVlJTB3rqkb43vvAT/7mdIR2R2TM6JBKqwyd2r0YadGe/N0U+OGqbFYf6QSlU0DbwmeU1KP9Gh/uGtcuyTC31OL5dmj8OXB0zhZ1zbo5+cU1yM2yBMR/o5X02+ZHzSQUdN1hyvgqVVjTnKorcNyOt7uGiybGou1hypQZae2+paE2hGTs+x+5p3tOF6HDXlVuG/eaATzvd6pqVUCiyZE4tv8KrR1Da2hFNnJ8ePAjBlAYSHwxRfATTcpHZEimJwRDdKxah2Sw9mpUSk3Z8fBKCXe2z2wluAd3QYcLm9y6flmvd0+IwFqlcAr2wY3eialRE5JvcMu0h0T6IXoAM8LzjszGiW+OlKFeWND4enm2sn4UN06LQ4GKfHuMJamGAxLp0ZHLGscFeSFMF/3M5J+o1HiqbV5iPL3wI9nJCgYHVnL4vRIdHQb8V0+Sxsd1v79psSsqQn47jvgssuUjkgxTM6IBoGdGpU3KtgL81LC8N6uk+jSX3jdqwOnGtFtcKx1u2wpwt8D10yKxqrcU6hr6Rzw807UtqKutcsh55tZZCWY5p2dr5nFnpMNqNF1YuGESDtG5lzigr0xf2wY3t110i7rPxVW6RDo5ZjrQgohkJUQhF0nfjivPjtwGofKm/AbLjjtMqbGByHU152ljY5q82ZgzhzAzQ3YuhXIzlY6IkUxOSMahBqduVNjGOebKemWaXGobenE+iOVF9w219wMZErcyEjOAODu2aPR0W3Em9tLBvyc3J5Fuh03OctOCEJtSxdO1Lb2u826Q5Vw06hw8dgwO0bmfFZMT0Bda5ddWoznV+qQEuHrsNUG2QlBqGzuQFlDOzq6DXj2qwJMiPbD1ROjlQ6NrEStErh8QgS+y68e8lqZZCXPPANs3PjDz598AlxyialF/vffA6mpioXmKJicEQ1CoblTI0fOlDUnKRRxwV54awDJR05JPZLDfRDg5Wb7wBzEmDAfXDIuHG/uKB3whcju4gYEebthdKi3jaMbugvNO5NS4qsjlZidFAIfd409Q3M6M8YEY0yYD17/vtimbfWNRolCB+3UaJGVYFq/bFdxPV7/vgTlje1ccNoFLU6PQqfeiG9Z2qisqVNNLfI3bgRefdW0sLSUwEsvAbGxSkfnEJicEQ1CUTU7NToClUrglovikFvagCOn+28bbzBK7CltwBQHnUdlS/fOGY2m9m58kHNqQNvnlJgW6XbU0Q0ASAjxRoiPe7/J2cGyJpQ3trOkcQCEEFgxPR5HTjf3LDVhC+WN7WjtMiAlws9mxxiupDAfBHhpsf5wBf6z8RgWpIZhOtfHczmZcYEI83XHlwdPKx3KyDZvnmkx6SuvBO68E9BogE8/BZYsUToyh8HkjGgQCqtaEODFTo2OYOmUWHhoVXj7PG31C6t00HXoR8x8s96mxAUiKz4Ir24rRrfh/HPzqpo7cLK+rWdkylEJIZCdEIRdJ+r6HO1Zd7gSGpXAglSWNA7EtZOj4euhweuDKH8drJ5mIA7YqdFCpRKYGh+EDXnVaOs2cMFpF6VSCVyeFomNBTVoYWmjso4cAVrN5em/+Q1w+eXKxuNgmJwRDUJRlQ7JYY47d2Ik8ffSYklGND7ZX46mtu4+t8ntWXzasZMOW7lnTiLKG9vxxQU+Kc5xgvlmFlkJQTjdZJof1JuUEusPV2Da6OARVcI6HF5uGtw4NRbrD1eioqn9wk8YAksb/WQHrzawtNS/cWosxoQ5biJJw3NFeiS69EZ8m1dlmwOcPZ8KMP38zDO2OZ4zeukl09plbm7Ao48CL7987u9shGNyRjRApk6NOoxx8IuMkeSWaXHo6DZi9Z6+S/dyS+oR7ueOmEBPO0fmGOalhCE53AcvbT5x3nlFOcX18NSqMS7KcUvPLLIT+553VlClQ0ldGxZO4MLTg3HrtHhIKfGOjdrqF1TqEB3gCV8PrU32by2L0yNxRXokfnlJstKhkA1NHhWICD8P2zXC6T2fCjB9XbbMdD+Z5pjde68pMfv8c+DJJ00ljr1/Z8TkjGiganSdaO7Qs1OjAxkf5Y+p8YF4e2cpjMZzk4/ckgZkxgeN2JFOlUrgntmjkV+pw6aCmn63213SgMlxAdCqHf9PQnKYL/w9teckZ+sOVUII4NJxTM4GIzbICwtSw/GejdrqF1TqMNaBSxotIv098a8fTUYIS9ZdmkolsDg9EpsLatDQ2mX9A8ybB7z7LrBoEXD77aakY9Uq0/0j3ZtvAnfdBaSkAJ99Blx6qel+yxy0nBxl43Mgjv+XmMhBWDo1Jjtw17GR6JZp8Sita8PmojOTj9ON7ShvbEfmCGqh35crJ0Yh0t8DL24+3ufjzR3dyK9sdoqSRuCH+UFnL0a9/nBlz1pGNDgrZsSjoa0bnx2wbqOELr0Rx2takOwEyRmNHNdPiUGXwYhP95fb5gDp6YC3N/DGG6a5VEzMTAnr7bcDCxaYFps+e4HpefOAhx5SJDRHxOSMaIAKqyydGnmh4UgWjo9AqK/7OW31R/p8Mws3jQp3zEzAruJ67Dt5ble+PaUNkNK5fk/ZCUEoqWtDVXMHAOBETQsKqnRYxJLGIZmWGIyUcF+88X2JVdvqF9e2Qm+UTjFyRiNHaqQf0mP8sSq3zDYHyMszfQ0JAd56i/PNPvgAuPVWYO5c05pmHh5KR+TwmJwRDVBRtQ4BXlqE+LDZgCNx06hwU9YobCqsQWndD4sT55bUw9tNzQtDADdljYK/p7bP0bOc4npoVAKTRgXYP7AhOnve2brDpsXIOd9saIQQWDEjHkcrmpFTYr22+vmVzQAcu1MjjUxLM2NxtKIZh8v7X4plSCxzzD78EDh6FBg9Gnj4YeCpp6x7HGexZg2wfDkwc6ZpjpmXl9IROQUmZ0QDVFTVwk6NDmp59iiohTijqUFOSQMmxwVC4wTzqGzN212DWy6Kw9dHq3C8puWMx3JK6jE+2h9ebs6zaPO4SD94u6l7krP1hyuRERuASP+R2fjFGpZkRMPfU4vXvy+22j4Lq3TQqAQSQzhPlxzLVROj4K5RYXXuwNaBHLCcnB/mmIWGArt3A8nJwOOPAx99ZN1jObpPPwVuvBG46CLgiy9MpZ40ILxqIRoAS6dGLj7tmML9PHDZ+Ah8kHMK7V2GnnlUmSNw8en+rJgRDze1Ciu3nOi5r6PbgAOnmpDlZOvAadQqTDHPOztV34ZD5U0saRwmTzc1bsyKxVdHKlHeaJ22+gWVOiSGesNNw0sNciz+nlosnBCBT/aftm4jnIceOnOOWVCQKUHLzjaNqL3/vvWO5ci++AJYuhTIzATWrgV8OXo+GHzHJBqAakunRs43c1i3TotDc4cenx0ox17zPKpMJ0s6bCnExx1LM2Pw0d5yVJvnah0qb0KXwYhMJ5pvZpGdEITCqha8n3MSAEsareGWi+IA4LwLuw9GfqUOKRGOvzwDjUzLMmPR1N6Nb47aaM0zC39/4KuvgBkzTCV+b75p2+Mpbf164LrrgIkTTd/78T1gsJicEQ1ATzMQttF3WFkJQRgb4Ys3t5cit6QBapVARmyA0mE5lLtmJUJvNOK170sA/DBny5magVhYFg1+ZWsxUiP9EBfMkpnhign0wqXjIvB+zkm0dw1vNKGlU4+yhnaksNqAHNS0xGBEB3hilbVLG/vi6wusWwfMnw+sWGFaeNkVbdgALFkCjB8PfP21KTGlQWNyRjQAljb67NTouIQQuGVaHI5WNOP9nFMYH+UHb3fnmUdlD3HB3liUFol3d5aiuaMbuSX1GBPmgyBv52tykxbjD3eNCp16I0sarWjFjHg0tnUPu8245QMtjpyRo1KpBJZmxmDbsVqrlfKel5eXaX2vyy8H7rkHeOEF2x/TnjZtAq66yrSO2TffAIGsXBkqJmdEA3CsWodAdmp0eEsyouHroUFtSyfnm/Xj3tmjoevU452dpcgtbcBUJy39dNeoezpMMjmznuyEIKRG+uGN7cNrq19QaU7O+IEWObDrp8QAAD60VVv9s3l4AB9/DFxzDfDAA8Czz9rnuLa2dSuweDGQmGgaPQsOVjoip8bkjGgACqtakBTOTo2Ozttd0/PH1lmTDltLi/HHjDHB+Oe3x6Dr0DtlSaPFTVmjcM2kaI5oW5EQArdPj0d+pQ47T9QPeT8FlTp4uakRE8gOmuS4YgK9MGN0CFbvOQWj0Xpr/J2Xm5tp7a8bbjA1EPnjH+1zXFvZvh1YtAgYNQr49ltTl0oaFiZnRBdg6dSYzLkTTuGe2aNx49RYzErmH4j+3DtnNNrNHcqcOTm7OiMaf78hQ+kwXM5VGVEI9NLije1Db6tfUKlDcrgvVCp+oEWObWlmDMoa2rHzRJ39DqrVAu++a1qc+f/+D3jsMcCKC8Dbza5dwMKFQHQ08N13QHi40hG5BCZnRBdQ1dwJXYceSWH8dN4ZRPh74Onr0uHD+Wb9mjkmBBOi/RAd4MmRDTqHh1aNm7JG4ZujVThV3zbo50spUVClY0kjOYXLxkfAz0Njn8YgvanVwOuvA3fdBTz5JPDgg86VoOXmApddBoSFmRKzyEilI3IZTM6ILqCo2typkSNn5CKEEHjx5il4bcVUlupSn26+KA7irIXdB6q2pQv1rV1IiWByRo7PQ6vG1RnRWHe4Ek3t3fY9uEoFvPQS8LOfAc89B9x/P2A02jeGodi3D7j0UlPTj+++M42ckdUwOSO6AEunRq5xRq4kJtCLF8/Ur6gATywcH4H/7T6Jti79oJ5raQYylucXOYllmbHo1Bvx+YHT9j+4EMA//mEaOfvPf0ydHA1WXBjb2g4eBC65xLQ8wMaNprlmZFVMzoguoKhKhyBvN4T4uCsdChGR3ayYEY/mDj0+2Te4C9b8ymYAQDKTM3ISE6L9MDbCF6vtXdpoIQTwzDOmuWevvALcfjugH9yHInZx5IhprTZPT1NiFh+vdEQuickZ0QUUVukwhotPE9EIkxkXiPFRfnhje/Gg2uoXVukQ4sMPtMh5CCGwLDMWB8qaej5cUCAIU+fGP/4RePttYPlyoNvOZZbnk59vSsy0WlMpY2Ki0hG5LCZnROchpURRdQs7NRLRiCOEwIrp8SisasH24wPvZFdQqWPJLDmdJZOioVULrLbXmmf9eewx4K9/BVatApYuBTo7lY0HAIqKgIsvNn2/cSOQlKRsPC6OyRnReVg6NXK+GRGNRFdOjEKwtxte/75kQNsbjRKFVS18zySnE+TthkvGhePjfeXo0ivclOPXvwb+9S/g009NC1a3tysXy/HjwLx5pjLL774DUlKUi2WEYHJGdB6FVeZOjWyjT0QjkIdWjR9lj8K3+VU4WXfhtvqnGtrQ3m1gMxBySkszY1Hf2oXv8quUDgX46U+Bl18G1q8HrrwSaG21z3GfecY0OgYAxcWmxEynM5VZjhtnnxhGOCZnROfRk5yxrJGIRqjl2XFQC4G3dpRccNt8c6fGlAg/G0dFZH2zk0IR4eeBVUqXNlrcdRfwxhumZGnRIlOSZGtTpwLLlgHvv28qZWxoMLX8v+oq2x+bAABcpZXoPI5Vt7BTIxGNaBH+HliUFokPck/hl5ckw/s8C7wXVlqqDfiBFjkftUrguinR+O+m46hq7kC4n4fSIQG33gq4u5tGri69FFi3DggIsM6+dTrT6FhJyZlf/f2Bm24yHdfTE/joI9MIGtkFkzOi8yis0vEig4hGvBXT4/H5gdP4aF85brkort/t8qt0GBXkdd4EjsiRLZ0Si39vPI41e8vwk7ljlA7H5IYbADc34PrrgawsYMcOIDjY9NjGjUBODvDQQ+c+r60NKC09M/Hq/X19/Znbe3sDCQlAaioQFPTDfpmY2RXfPYn6IaVEUVULlkyKVjoUIiJFTR4VgPQYf7zxfTFuzh4FIUSf27FTIzm7+BBvZCUEYXVuGe6bM7rfc93urrkG+NOfgEcfNZUe7twJ7NtnGuH67W9N89POHgWrOmvunLu7aW2yhARTkmf53vI1ONjU0n/jRlNp4+OPA//9ryk5Y4JmN0zOiPpR2dwBXaee882IaMSztNX/1aoD2HasFrOSQs/ZplNvQHFtKxaOj1AgQiLrWZYZiwdXH0BuaQOmxgcpHc4Pfvtb0zpjv/kNEB39w0LVllEzrRYYNcqUaF155ZmJV3w8EB5umj92PpbEbNWqH5Ky3j+TzTE5I+pHUVULAHZqJCICgMXpkXhqbR7e+L6kz+TseHUrDEbJkTNyepenReD3nx7GqpxTjpWcAcCDDwJHjwKvvw7Mng3ccccPCVhUFKBWD2//OTlnJmLz5pl+zslhcmYn7NZI1A9Lp0YuQE1EBLhr1PhRdhy+K6hGSe25bb0LqpoBgG30yel5uWlw5cQofHmoAi2deqXDOdPGjcDnn5tKDo8eBWJjTUlabOzwEzOg7zlm8+b1PaeNbILJGVE/iqpaEOzthmB2aiQiAgDcnD0KaiHwZh9t9QsqW6BVC8SHeNs/MCIrW5oZi7YuA9YerFA6lB/0Ljn8f//P9HXZsh/WJSOXwOSMqB+F1TrONyMi6iXMzwOL0yOxOrfsnBGFgspmjA71gVbNSwtyfpNHBWB0qDdW5Z5SOpQfnK/kkFzGBd9BhRCxQoiNQog8IcQRIcQD5vv/KIQ4KITYL4T4WggRZftwiexDSoljVS2cb0ZEdJbbZySgpVOPNXvOXKiXnRrJlQghsCwzFrmlDThe06J0OCYsORwRBvLxlh7Ar6WUqQAuAvBTIcQ4AM9KKdOllBkAvgDwf7YLk8i+LJ0aOd+MiOhMGbEByIgNwJvbS2A0SgBAc0c3Tjd1MDkjl3LN5GioVQKrc8suvDGRlVwwOZNSVkgp95q/1wHIAxAtpWzutZk3AGmbEInsr9DSqTGcFxpERGe7fUY8TtS2YktRDQCgsNLUQInNQMiVhPl6YF5KGNbsLYPeYFQ6HBohBlUYLoSIBzAJwC7zz08KIU4BWA6OnJELKerp1MgLDSKisy2aEIlQX3e8sb0EAFDA90xyUcsyY1Cj68TmwhqlQ6ERYsDJmRDCB8AaAL+wjJpJKX8npYwF8C6A+/t53t1CiFwhRG5NDU9scg6FVToEe7shyNtN6VCIiByOm0aFm7PjsKmgBidqWlBQqYOvuwbRAZ5Kh0ZkVfPGhiHEx82xGoOQSxtQciaE0MKUmL0rpfyoj03eA3BdX8+VUr4spcyUUmaGhp67aCWRIyqqbmGnRiKi8/hR9iho1QJv7ShFfqUOyRG+EEIoHRaRVWnVKlw7OQbf5lWjtqVT6XBoBBhIt0YB4FUAeVLK53rdn9Rrs6sA5Fs/PCL7s3RqZHkOEVH/Qn3dcWV6FFbnnkJeRTPfM8llLcuMgd4o8cm+cqVDoRFgICNnMwDcAuBic9v8/UKIywE8LYQ4LIQ4COBSAA/YMlAie6loMnVqZDMQIqLzu216PFq7DNB16NkMhFzWmDBfTB4VgA9yTkFK9r8j29JcaAMp5TYAfdUprLV+OETKKzRPbE8KY1kjEdH5TIwNwORRAdh7spFt9MmlLcuMxSMfHcKBsiZkxAYoHQ65sEF1ayQaCY5Vm9ros0SHiOjCfjY/CQkh3hgf5ad0KEQ2szg9Ep5aNRuDkM0xOSM6S2GVDiE+7NRIRDQQ81LCsPHBufD10CodCpHN+HpocXlaJD7ffxrtXQalwyEXxuSM6CyFVS1ICuOoGREREf1gWWYMdJ16rD9SoXQo5MKYnBH1IqXEMbbRJyIiorNkJQQhPtgLq3LKlA6FXBiTM6JeKpo60MJOjURERHQWIQSWZsZix4k6nKxrUzocclFMzoh6sXRqTGanRiIiIjrLtZOjoRLA6j1sDEK2weSMqJeiKnZqJCIior5F+ntidnIoPtxTBoORa56R9TE5I+rF0qkxkJ0aiYiIqA/LMmNR0dSBbcdqlQ6FXBCTM6JeiqrZqZGIiIj6Nz81DIFeWq55RjbB5IzIzNKpMZmdGomIiKgf7ho1lkyKxjdHqtDQ2qV0OORimJwRmZ1mp0YiIiIagKVTYtFlMOLT/eVKh0IuhskZkVlPp0YmZ0RERHQe46L8kBbtj1W5XPOMrIvJGZFZkTk5S2IbfSIiIrqAZZkxOFrRjMPlTUqHQi6EyRmRWVFVC0J83NmpkYiIiC7oqonRcNOosJqNQciKmJwRmRWyGQgRERENkL+XFgvHR+CT/afR0W1QOhxyEUzOiGDu1Fil43wzIiIiGrBlmbFoau/GN0erlA6FXASTMyIA5Y3taO0yYAznmxEREdEATR8djOgAT655RlbD5IwIpsWnAXZqJCIiooFTqQSunxKDbcdqUd7YrnQ45AKYnJFDeH5DIW59bTf0BqMixy/qaaPPkTMiIiIauOunxEBKYM0ettWn4WNyRop7a0cJnt9QhC2FNfhAobKAwqoWhPq6I8CLnRqJiIho4GKDvDBjTDBW7zkFo1EqHQ45OSZnpKgNR6vwxGdHsCA1DFPjA/H8hiK0durtHkdRlY7rmxEREdGQLMuMxan6duwsrlM6FHJyTM5IMYfKmvCz/+3D+Ch/vHDTJDyyKBU1uk68srXYrnFIKVFU3cL5ZkRERDQkl42PgK+HBqtzWdpIw8PkjBRR1tCGH7+ZgyBvN7y6IhNebhpMiQvEwvEReHnLcdS2dNotlvLGdrR1GZDE+WZEREQ0BB5aNa7OiMLaQxVo7uhWOhxyYkzOyO6a2rtx++s56Og24I3bpyLM16PnsYcWpqBDb8QL3xbZLZ6iKnZqJCIiouFZlhmLTr0Rnx84rXQo5MSYnJFddemNuO+dPSipa8VLt0xB0lkJUWKoD27KisV7u06iuLbVLjEVmjs1cs4ZERERDVVatD/GRvhiFUsbaRiYnJHdSCnxyEcHsf14Hf5yXTqmjw7pc7sH5ifDTaPCs1/l2yWuomp2aiQiIqLhEUJgaWYsDpxqREGlTulwyEkxOSO7+ce3Rfhobzl+uSAZ106O6Xe7UF933DUrEWsPVWLfyQabx1VUpeP6ZkRERDRs10yKhptahXd2liodCjkpJmdkFx/uKcPzG4pw/ZQY/Hz+mAtuf9fsRIT4uOPP6/Ihpe3WDDEaTZ0ak8I434yIiIiGJ8jbDUsmRWH1nlNoaO1SOhxyQkzOyOa+P1aLR9YcxIwxwXjqmjQIIS74HB93DR5YkITdxfX4Lr/aZrFZOjWyGQgRERFZw52zEtHRbcTbHD2jIWByRjZVWKXDve/sQWKoN/6zfArcNAM/5W6cGovEEG88vS4feoPRJvEdqzZ1amQbfSIiIrKG5HBfzEsJxZvbS9DRbVA6HHIyTM7IZqqbO3D76znw0Krx+u1Z8PfUDur5WrUKv7ksBUXVLViz1zadjyydGpNZ1khERERWcvfs0ahr7cLH+8qVDoWcDJMzsonWTj1+/GYOGtq68PqKqYgO8BzSfhZOiMCkUQF47ptCtHdZ/9OnwqoWhPm6w99rcIkjERERUX8uSgxCWrQ/Vm49AaPRdnPnyfWM+OSspVOPU/VtSofhUvQGI37+v304eroZ/7xpEiZE+w95X0IIPHp5KqqaO/Ha98VWjNKkqFrH+WZERERkVUII3DU7ESdqWvGtDefOk+sZ0cmZlBI3vrwDP/vfPhj4qYZVSCnxh8+P4tv8avzhqvGYnxo+7H1OjQ/CgtRwvLjpOOqt2PnIaJQoqmrBGC4+TURERFZ2+YQIRAd4YuWWE0qHQk5kRCdnQgjcOTMR+0814r3dJ5UOxyW8srUYb+8sxd2zE3HLtHir7ffhhSlo7dLjn98VWW2f5Y3taO9mp0YiIiKyPo1ahTtmJmB3Sb1d1m0l1zCikzMAuDojCjPHhOCZdfmobu5QOhyntvZQBZ5cm4fL0yLwyMKxVt13Urgvbpgai3d2luJknXXKUIuqzc1A2KmRiIiIbGDZ1Fj4eWiwcitHz2hgRnxyJoTAH5dMQKfBiD98cVTpcJzWntIG/PKD/Zg8KgDPLcuASnXhtcwG6xcLkqFWCTz7dYFV9ldYZW6jz06NREREZAM+7hosvygO6w9XorSuVelwyAmM+OQMABJCvHH/vDH48mAFNhZw0uZgldS24q63chHh74GVt2bCQ6u2yXHC/Txw58xEfH7gNA6WNQ57f4VVOnZqJCIiIpu6fXo81CqBV7dZv7EZuR4mZ2b3zEnE6FBvPP7JYZu0bHdVDa1duP2NHEgp8cbtWQj2cbfp8e6Zk4ggbzc8vS4fUg6vicux6hbONyMiIiKbCvPzwJKMaKzKPYUGKzY2I9fE5MzMXaPGU9ekoayhHf/41npNJ1xZR7cBd72Vi/LGdqy8NRMJId42P6avhxY/v3gMth+vw+bCmiHvx9KpMYnzzYiIiMjG7pqdiI5uI97ZWap0KOTgmJz1kp0YjKVTYvDK1hPIr2xWOhyHZjRKPLj6AHJLG/DcsonIjA+y27F/lB2HuGAvPL0uf8hLILBTIxEREdlLcrgv5qWE4s0dJejoZoUW9Y/J2VkevTwVfp5aPPrRIa7ofh7PfFWALw5W4JFFY3FFepRdj+2mUeHBS1OQX6nDx/vKh7SPwipTp8YkrnFGREREdnDX7ETUtnQN+dqFRgYmZ2cJ9HbD7y5Pxd6TjXg/55TS4Tikd3eV4sXNx/Gj7FG4Z3aiIjEsTotEeow/nvu6YEifQBVVmzs1cuSMiIiI7GBaYjAmRPth5dYTHACgfl0wORNCxAohNgoh8oQQR4QQD5jvf1YIkS+EOCiE+FgIEWDzaO3k2snRmJYYjKfX5aFax7XPettYUI3/+/QI5qaE4v9dNR5CWL9l/kCoVAKPLBqL000deHN7yaCfX1ilQ7ifO/w92amRiIiIbE8Igbtnj8aJmlZ8m8/u4NS3gYyc6QH8WkqZCuAiAD8VQowD8A2ACVLKdACFAH5ruzDtSwiBP10zAR3dRvzpizylw3EYh8ub8NN392JshC/+9aPJ0KiVHXidPjoE81JC8e+Nx9DYNrjuR0VV7NRIRERE9nX5hAhEB3hi5RYuSk19u+DVtZSyQkq51/y9DkAegGgp5ddSSr15s50AYmwXpv2NDvXBT+aNxmcHTmPLMLoCuorTje24480c+Htq8dqKqfBx1ygdEgDg4UVjoevU498bjw34OUajxLHqFozhfDMiIiKyI41ahR/PTMDuknrsO9mgdDjkgAY19CGEiAcwCcCusx76MYB1VorJYdw3dzQSQ7zx2CeHR3Rnnab2bvz4jRy0dRrw+u1TEe7noXRIPcZG+OG6yTF4c3spyhraBvQcdmokIiIipdwwNRZ+Hhqs3MrRMzrXgJMzIYQPgDUAfiGlbO51/+9gKn18t5/n3S2EyBVC5NbUONcIlLtGjT9dMwEn69vwr+8GPjLjSjq6DbjrzVwcr2nBf26ejLERfkqHdI5fXZIMIYDnvi4c0PaWTo3JXOOMiIiI7MzHXYPlF8Vh/eFKlNa1Kh0OOZgBJWdCCC1Midm7UsqPet1/G4ArACyXUvbZdkZK+bKUMlNKmRkaGmqNmO1q+ugQXDs5Gi9tOd5zUT9S6A1G3P/ePuSU1uNvyzIwK8kx//2iAjxx+4wEfLy/HEdON11w+8IqU6fGMWEcOSMiIiL7WzE9HmqVwGvbipUOhRzMQLo1CgCvAsiTUj7X6/6FAB4GcJWUcmD1ZE7qd5enwttdg999PHLWPpNS4pGPDmFDXhX+cNV4XDXRvmuZDdZ9c0fD31OLp9flX3DboiodIvw82KmRiIiIFBHu54ElGdFYlVuGhtbBNTUj1zaQkbMZAG4BcLEQYr/5djmAfwHwBfCN+b4XbRmokoJ93PHo5anIKWnA6j0jY+2zp9fl48M9ZXhgfhJunRavdDgX5O+pxf3zxmBrUS22FdWed9ui6hYksaSRiIiIFHTX7ES0dxvwzs5SpUMhBzKQbo3bpJRCSpkupcww39ZKKcdIKWN73XevPQJWytIpMchKCMJTa/NR29KpdDg29dLm43hpywncclEcfrEgSelwBuyWaXGICfTEn9fl9TvCaenUmMSSRiIiIlJQcrgv5qaE4s0dJSO68RydSdmFqpyIEAJPXTMBbV16PPml6659tir3FP68Lh9XpEfiCQUXmR4Kd40aD16agiOnm/HZgdN9blPWYOnUyJEzIiIiUtbdsxNR29KFj/eVKx0KOQgmZ4MwJswX980ZjY/3leP7Y+cvnXNG3xytwm8/OoRZSSF4blkG1CrnScwsrpoYhfFRfvjr1wXo1J/7KZSlqUsS2+gTERGRwqYlBmNCtB9Wbj0xYvoa0PkxORukn8wbg/hgL5db+2zXiTrc/95eTIjyw4s3T4GbxjlPDZVK4JFFY1HW0I63d5xbw11YbUrOuAA1ERERKU0IgbtmJeJETSu+y69WOhxyAM55Ba4gD60af1qShuLaVvxn03Glw7GKo6ebceebuYgJ9MTrt2fB212jdEjDMispFLOSQvCvjcfQ1N59xmPHqlrYqZGIiIgcxuVpkYgO8MTLW7goNTE5G5KZSSFYkhGF/246hmPVLUqHMyylda249bXd8PHQ4K07shHk7aZ0SFbxyKKxaGrvxn/PSqALq3Xs1EhEREQOQ6tW4cczE7C7pB77TjYoHQ4pjMnZED12xTh4uZnWPutn/W2HV63rwC2v7obeaMTbd2QhOsBT6ZCsZnyUP5ZkROP174txurEdwA+dGpM534yIiIgcyA1TY+HrocErW7ko9UjH5GyIQnzc8dtFY7GruB4f7ilTOpxBa2rvxm2v5aC2pROvr5iKMS7YWv5XlyRDSuDv3xQCAE41tKGj24gkzjcjIiIiB+LjrsHy7DisO1yBk3VtSodDCmJyNgzLMmORGReIp9bmod6JVnfv6DbgrjdzcaxahxdvnoJJowKVDskmYoO8cNv0OHy4twz5lc0oqjKVoLJTIxERETma22fEQ60SeHUb556NZEzOhkGlEnjq2jToOvR4aq1zrH2mNxhx/3v7kFNaj78ty8Ds5FClQ7Kpn84bA193Df6yLr+nUyPnnBEREZGjCffzwNUZ0ViVW4YGJ/rQn6yLydkwJYf74p45ifhwTxl2HK9TOpzzklLitx8dwoa8KvzhqvG4amKU0iHZXICXG34ybww2FtTgw9wyRPp7wM+DnRqJiIjI8dw1KxHt3Qa8s/Pc5YBoZGByZgU/uzgJo4K88LuPD/W58LGjeHpdPlbvKcMD85Nw67R4pcOxmxXT4xHp74ETta1c34yIiIgcVkqEL+amhOLNHSUutZ4uDRyTMyvw0KrxxyUTcKK2FS9ucsw64Zc2H8dLW07glovi8IsFSUqHY1ceWjV+fWkKALBTIxERETm0u2cloralC5/sK1c6FFIAkzMrmZMciqsmRuHfG4/hRI1jrX22OvcU/rwuH1ekR+KJq8ZDCKF0SHZ3zaRo3DtnNK6fEqN0KERERET9mjY6GOOj/PDy1hMwGp1zuSYaOiZnVvTYFalw16rw2CeHHWbts2+OVuGRjw5hVlIInluWAbVq5CVmAKBWCTyyaCxSI/2UDoWIiIioX0II3D07ESdqWvFdfrXS4ZCdMTmzojBfDzyyaCy2H6/Dxw4wFL3rRB3uf28vJkT54cWbp8BNw39uIiIiIkd3eVokogM88fJWx5wuQ7bDq3Uru2nqKEweFYA/fZmnaBvUo6ebceebuYgJ9MTrt2fB212jWCxERERENHBatQq3z4jH7uJ67D/VqHQ4ZEdMzqzMsvZZc3s3nl6Xr0gMpXWtuPW13fDx0OCtO7IR5O2mSBxERERENDQ3Zo2Cr4cGK7dw9GwkYXJmA2Mj/HDnrER8kHsKu07Yd+2zal0Hbnl1N/RGI96+IwvRAZ52PT4RERERDZ+PuwbLs+Ow7nAFTta1KR0O2QmTMxt5YH4SYgI98btPDqNLb7TLMZvau3HbazmobenE6yumYkwY28YTEREROasV0+OhVgm8uo2jZyMFkzMb8XQzrX12rLoFL285bvPjdXQbcNebuThWrcOLN0/BpFGBNj8mEREREdlOhL8HrpoYjVW5ZYr2MiD7YZcIG5qXEobF6ZF44btjyC1tgIdGDXetCh4aNTy0Krhr1fDQmL66a1Tw0Krhccb3qjN/7vV8d60K7hoVhBDQG4y4/719yCmtxws3TsLs5FClXzoRERERWcHdsxOxZm8Z3t1VivsvTlI6HLIxJmc29vsrx6FLb0R1cwc6uo3o0BvQ0W1Ap96Ijm4DOrqHV/LorlFBq1ahpVOP/3f1eFw5McpKkRMRERGR0lIifDEnORRvbC/FnbMS4aFVKx0S2RCTMxsL8/XAylsz+31cSokugxEd3UZ0mpO1Tr3hzESu5/tej3Ub0NkryUuPCcB1U2Ls+MqIiIiIyB7unp2I5a/swif7ynFj1iilwyEbYnKmMCEE3DVquGvUgKdW6XCIiIiIyMFMHx2M8VF+WLn1BJZlxkKlEkqHRDbChiBERERERA5MCIG7ZyfieE0rvsuvVjocsiEmZ0REREREDu7ytEhE+Xvg5a1sq+/KmJwRERERETk4rVqFH89MwO7ieuw/1ah0OGQjTM6IiIiIiJzAjVmj4OuhwcotHD1zVUzOiIiIiIicgI+7Bj/KHoX1RypRretQOhyyAXZrJCIiIiJyEnfOTMR1k2MQ5uuhdChkA0zOiIiIiIicRKivO0J93ZUOg2yEZY1EREREREQOgMkZERERERGRA2ByRkRERERE5ACYnBERERERETkAJmdEREREREQOgMkZERERERGRA2ByRkRERERE5ACYnBERERERETkAJmdEREREREQOgMkZERERERGRAxBSSvsdTIgaAKV2O+DAhQCoVToIcgk8l8iaeD6RtfBcImvhuUTWMpLPpTgpZWhfD9g1OXNUQohcKWWm0nGQ8+O5RNbE84mshecSWQvPJbIWnkt9Y1kjERERERGRA2ByRkRERERE5ACYnJm8rHQA5DJ4LpE18Xwia+G5RNbCc4mshedSHzjnjIiIiIiIyAFw5IyIiIiIiMgBOF1yJoRYKIQoEEIcE0I80uv+D4QQ+823EiHE/j6emyGE2CGEOCKEOCiEuKHXYwlCiF1CiCLzvtz6Of5t5m2KhBC3Dfb55DiUPJeEEHFCiD3mYxwRQtw7mOeTY7HhuXS/eZ9SCBFynuPzfcmFKHk+8b3JtdjwXHrXvN/DQojXhBDafo7P9yYXoeS5NOLel6SUTnMDoAZwHEAiADcABwCM62O7vwH4vz7uTwaQZP4+CkAFgADzz6sA3Gj+/kUA9/Xx/CAAJ8xfA83fBw70+bw5zs0BziU3AO7m730AlACI4rnkfDcbn0uTAMSbz4+Qfo7P9yUXujnA+cT3Jhe52fhcuhyAMN/+18/fOb43ucjNAc6lEfW+5GwjZ1kAjkkpT0gpuwC8D+Dq3hsIIQSAZTD9A59BSlkopSwyf38aQDWAUPNzLgbwoXnTNwEs6eP4lwH4RkpZL6VsAPANgIWDeD45DkXPJSlll5Sy0/yjO8yj2DyXnJJNziXzz/uklCUXOD7fl1yLoucT35tcii3PpbXSDMBuADF9HJ/vTa5D0XNppL0vOVtyFg3gVK+fy8z39TYLQJXlJOiPECILpkz8OIBgAI1SSv3Z+xVCZAohXrnA8ft9Pjkspc8lCCFihRAHzXH8xfyGxXPJ+djqXDrfdnxfcl1Kn098b3IdNj+XzCVotwBYb/6Z702uSelzaUS9Lzlbcib6uO/sdpM3oY+s/YydCBEJ4G0At0spjefbr5QyV0p55wWOP5C4yLEofS5BSnlKSpkOYAyA24QQ4QOMixyLrc6lfvF9yaUpfT7xvcl12ONc+g+ALVLKrQDfm1yY0ufSiHpfcrbkrAxAbK+fYwCctvwghNAAuBbAB/3tQAjhB+BLAI9JKXea764FEGB+/jn7HcDxB/p8chxKn0s9zJ/+HIHpUyeeS87HVufScI/Pc8k5KX0+9eB7k9Oz6bkkhPg9TKVpvxrk8XkuOR+lz6UeI+F9ydmSsxwASebOLG4AbgTwWa/HFwDIl1KW9fVk83M+BvCWlHK15X5znetGANeb77oNwKd97OIrAJcKIQKFEIEALgXw1SCeT45D0XNJCBEjhPA0fx8IYAaAAp5LTskm59Ig8H3JtSh6PvG9yaXY7FwSQtwJ05yym84zMsv3Jteh6Lk04t6XpAN0JRnMDaauLoUw1ar+7qzH3gBw73meezOAbgD7e90yzI8lwjQR8RiA1fihK0wmgFd67ePH5m2OwTQsi/M9nzfHvSl5LgG4BMBBmDoeHQRwN88l573Z8Fz6OUyfWOph+jTQcv7wfcmFb0qeT3xvcq2bDc8lvXmflvv/7+xzyfwz35tc5KbkuTTS3peE+YURERERERGRgpytrJGIiIiIiMglMTkjIiIiIiJyAEzOiIiIiIiIHACTMyIiIiIiIgfA5IyIiIiIiMgBMDkjIiIiIiJyAEzOiIiIiIiIHACTMyIiIiIiIgfw/wGpnrEXGLE3XwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABn6klEQVR4nO3dd3hU1dbH8e9Or4SShA6hBQQCoTfpFuwVUFGxYMFr16ve4lXfq157L4gFewHsXVRA6TWAlIQOCZACBFJI3+8fk2BASkJmcibJ7/M882TmzClrksMwa9be6xhrLSIiIiIiIuIsH6cDEBERERERESVnIiIiIiIiXkHJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiUksYY7LL3UqMMQfKPR7ndHwnwhizxRhzitNxHIsxZpYxZoIH9z/CGLPMGLPfGLPJGHP9Udb71RhjjTF+5ZY1NMZ8bozJMcZsNcZcdtg2I40x64wxucaYmcaY1p56HSIicnxKzkREaglrbVjZDdgGnFNu2QdOx3e48klETT6GJxlj/IHPgdeACGAs8Iwxpvth640DjvRaXwYKgMbAOOBVY0yX0m0igc+A+4GGwBLgE8+8EhERqQglZyIitZwxxscYc58xZqMxZrcxZqoxpmHpczGl1ZarjTHbjTF7jTE3GmP6GGNWGmMyjTEvldvXVcaYucaYF40x+0qrLiPLPR9hjHnTGLPTGJNijHnYGON72LbPGmP2AA8aY9qVVnx2G2MyjDEfGGPql67/HtAK+Lq0+nePMWaYMSb5sNd3sLpmjHnQGDPdGPO+MWY/cNVxYmpvjJld+loyjDFHTE6MMUGl+9xd+jtZbIxpbIx5BBgMvFQa40ul63cyxswwxuwxxiQaY8aU29fbxphJpc9nlR7/aBWrhkA94D3rshhYC3Qu/zsHHgDuOSzmUOAi4H5rbba1dg7wFXBF6SoXAquttdOstXnAg0B3Y0yno8QiIiIepuRMRKT2uxU4HxgKNAP24qqolNcP6ICrMvMc8C/gFKALMMYYM/SwdTcBkbiSgs/Kkj3gHaAIaA/0AE4DJhxh22jgEcAA/yuN6ySgJa4kAWvtFRxaAXyigq/3PGA6UB/44Dgx/Rf4CWgAtABePMo+x+OqXLUEGgE3Agestf8CfgduLo3x5tKkaAbwYenrvBR4paxiVWpc6bEjgYTSOP/CWpsKfARcbYzxNcYMAFoDc8qt9ijwKrDrsM1jgWJrbVK5ZStw/U0p/bmi3LFygI3lnhcRkWqm5ExEpPa7AfiXtTbZWpuPK/m5+LAhf/+11uZZa38CcoCPrLVp1toUXMlHj3LrpgHPWWsLrbWfAInAWcaYxsAZwO3W2hxrbRrwLHBJuW13WGtftNYWWWsPWGs3WGtnWGvzrbXpwDO4ksiqmG+t/cJaW4Kr6nSsmApxJTvNSl//nCPvkkJcSVl7a22xtXaptXb/UdY9G9hirZ1S+jqXAZ8CF5db51tr7W+lf49/AQOMMS2Psr+PgP8A+bj+Fv+y1m4HMMb0BgZx5KQyDNh32LJ9QHgFnxcRkWpWo8fii4hIhbQGPjfGlJRbVoxrHlKZ1HL3DxzhcVi5xynWWlvu8VZcla/WgD+w0xhT9pwPsL3cuuXvY4yJBl7ANTQwvHT9vRV6VUdX/hjHi+keXBWsRcaYvcDT1tq3jrDP93BVzT4uHXb5Pq4kqfAI67YG+hljMsst8yvdx19itNZmlw7zbMZffz+dcM0DuwBXNa4D8I0xZgfwPfAKcJu1tqjc6yuTjSs5La8ekFXB50VEpJqpciYiUvttB86w1tYvdwsqrYqdiObm0EygFbCj9Dj5QGS549Sz1pYfJlc+qQPXkEYLdLPW1gMuxzXU8Wjr5wAhZQ9K545FHbZO+W2OGZO1dpe19jprbTNcFcZXjDHtD3/BpVXCh6y1nYGBuKpjVx4lxu3A7MN+32HW2onl1jlYJTPGhOGaW7bj8OMCXYFEa+2P1toSa20i8C2uamA9oDfwiTFmF7C4dJtkY8xgIAnwM8Z0KLe/7sDq0vurSx+XxREKtCv3vIiIVDMlZyIitd8k4JGyphPGmChjzHlV2F80cKsxxt8YMxrXXLHvrLU7cc3fetoYU6+0EUm7w+arHS4cVwUn0xjTHPj7Yc+nAm3LPU4CgowxZxlXJ8N/A4FH2/nxYjLGjDbGtChdfS+uRKv48P0YY4YbY+JKk8H9uIY5lq13eIzfALHGmCtKf0f+xtVg5aRy65xpjDnZGBOAq3K3sGyo4mGWAx2Mq52+Mca0w5UYrsA1BLEZEF96O7N0m16l+8vB1Y3x/4wxocaYQbjm45VV8D4HuhpjLjLGBOEaOrnSWrvuaL9PERHxLCVnIiK13/O4uvT9ZIzJAhbgasxxohbiGl6Xgaupx8XW2t2lz10JBABrcCU704Gmx9jXQ0BPXInGt7iSifL+B/y7tEPi3dbafcBNwBtACq5KWjLHdqyY+gALjTHZuH5Ht1lrNx9hH01Kt9uPq1vibFxDG8H1+73YuDpdvmCtzcLVdOQSXNWwXcDjHJpEfoirmcoeXMnUEa9DZ63dCFyDa+jn/tLjfgq8Wdq9cVfZDUgv3SzVWltQev8mIBjXPMGPgInW2tWl+07H1c3xkdLfSz8OnR8oIiLVzBw6bUBEROTojDFXAROstSc7HUtNZYx5G0i21v7b6VhERMS7qHImIiIiIiLiBZSciYiIiIiIeAENaxQREREREfECqpyJiIiIiIh4ASVnIiIiIiIiXsCvOg8WGRlpY2JiqvOQIiIiIiIiXmPp0qUZ1tqoIz1XrclZTEwMS5Ysqc5DioiIiIiIeA1jzNajPadhjSIiIiIiIl5AyZmIiIiIiIgXUHImIiIiIiLiBap1ztmRFBYWkpycTF5entOhSC0TFBREixYt8Pf3dzoUEREREZHjcjw5S05OJjw8nJiYGIwxTocjtYS1lt27d5OcnEybNm2cDkdERERE5LgcH9aYl5dHo0aNlJiJWxljaNSokSqyIiIiIlJjOJ6cAUrMxCN0XomIiIhITeIVyZnTHnnkEbp06UK3bt2Ij49n4cKFAEyYMIE1a9a45RgxMTFkZGQcc51HH3200vt9++23ufnmmw9ZNmXKFOLj44mPjycgIIC4uDji4+O57777Kr3/6vDcc8+Rm5vrdBgiIiIiIo5yfM6Z0+bPn88333zDsmXLCAwMJCMjg4KCAgDeeOONao3l0Ucf5Z///GeV93P11Vdz9dVXA66kcObMmURGRlZ5vyfKWou1Fh+fI38X8Nxzz3H55ZcTEhJS4X0WFRXh51fnT18RERERqUXqfOVs586dREZGEhgYCEBkZCTNmjUDYNiwYSxZsgSAsLAw7r33Xnr16sUpp5zCokWLGDZsGG3btuWrr74C/lrFOvvss5k1a9Zfjnn++efTq1cvunTpwuTJkwG47777OHDgAPHx8YwbNw6A999/n759+xIfH88NN9xAcXEx4KqMxcbGMnToUObOnVvh1/rkk0/Sp08funXrxgMPPADAli1b6NSpExMmTKBr166MGzeOn3/+mUGDBtGhQwcWLVoEwIMPPsgVV1zBiBEj6NChA6+//vpx93vSSSdx00030bNnT7Zv387EiRPp3bs3Xbp0ObjeCy+8wI4dOxg+fDjDhw8/+LsuM336dK666ioArrrqKu68806GDx/Ovffey8aNGxk1ahS9evVi8ODBrFu3rsK/CxEREZGarLjEMvm3jezNKXA6FHGnsqpGddx69eplD7dmzZq/LKtOWVlZtnv37rZDhw524sSJdtasWQefGzp0qF28eLG11lrAfvfdd9Zaa88//3x76qmn2oKCApuQkGC7d+9urbV2ypQp9m9/+9vB7c866yw7c+ZMa621rVu3tunp6dZaa3fv3m2ttTY3N9d26dLFZmRkWGutDQ0NPbjtmjVr7Nlnn20LCgqstdZOnDjRvvPOO3bHjh22ZcuWNi0tzebn59uBAwcecszDlR33xx9/tNddd50tKSmxxcXF9qyzzrKzZ8+2mzdvtr6+vnblypW2uLjY9uzZ01599dW2pKTEfvHFF/a8886z1lr7wAMP2G7dutnc3Fybnp5uW7RoYVNSUo65X2OMnT9//sFYyl53UVGRHTp0qF2xYsVffjeH/x6mTZtmx48fb621dvz48fass86yRUVF1lprR4wYYZOSkqy11i5YsMAOHz78L6/f6fNLRERExBO+Skixre/9xn69IsXpUKSSgCX2KPmSV40Le+jr1azZsd+t++zcrB4PnNPlqM+HhYWxdOlSfv/9d2bOnMnYsWN57LHHDlZrygQEBDBq1CgA4uLiCAwMxN/fn7i4OLZs2VKpmF544QU+//xzALZv38769etp1KjRIev88ssvLF26lD59+gBw4MABoqOjWbhwIcOGDSMqKgqAsWPHkpSUdNxj/vTTT/z000/06NEDgOzsbNavX0+rVq1o06YNcXFxAHTp0oWRI0dijPnLazvvvPMIDg4mODiY4cOHs2jRIubMmXPU/bZu3Zr+/fsf3H7q1KlMnjyZoqIidu7cyZo1a+jWrVulfnejR4/G19eX7Oxs5s2bx+jRow8+l5+fX6l9iYiIiNREJSWWF39dT4foMM7s2tTpcMSNjpucGWOCgN+AwNL1p1trHzDGNAQ+AWKALcAYa+1ez4XqOb6+vgwbNoxhw4YRFxfHO++885fkzN/f/2D3Px8fn4PDIH18fCgqKgLAz8+PkpKSg9scqY37rFmz+Pnnn5k/fz4hISEMGzbsiOtZaxk/fjz/+9//Dln+xRdfnFAXQmst//jHP7jhhhsOWb5ly5aDr+VYrw3+2v3QGHPM/YaGhh58vHnzZp566ikWL15MgwYNuOqqq47a5r78cQ5fp2yfJSUl1K9fn4SEhOO9dBEREZFa5fs/dpGUms0Ll/bAx0fdqWuTilTO8oER1tpsY4w/MMcY8z1wIfCLtfYxY8x9wH3AvVUJ5lgVLk9JTEzEx8eHDh06AJCQkEDr1q1PaF8xMTG88sorlJSUkJKScnC+Vnn79u2jQYMGhISEsG7dOhYsWHDwOX9/fwoLC/H392fkyJGcd9553HHHHURHR7Nnzx6ysrLo168ft912G7t376ZevXpMmzaN7t27Hze2008/nfvvv59x48YRFhZGSkoK/v7+lXp9X375Jf/4xz/Iyclh1qxZPPbYYwQHB1dov/v37yc0NJSIiAhSU1P5/vvvGTZsGADh4eFkZWUdbFrSuHFj1q5dS8eOHfn8888JDw//y/7q1atHmzZtmDZtGqNHj8Zay8qVKyv0uxARERGpqUpKLC/8sp52UaGcFaeqWW1z3OSsdFxkdulD/9KbBc4DhpUufweYRRWTMydkZ2dzyy23kJmZiZ+fH+3btz/YpKOyBg0adHCIYNeuXenZs+df1hk1ahSTJk2iW7dudOzY8ZBhf9dffz3dunWjZ8+efPDBBzz88MOcdtpplJSU4O/vz8svv0z//v158MEHGTBgAE2bNqVnz54HG4Ucy2mnncbatWsZMGAA4BrO+f777+Pr61vh19e3b1/OOusstm3bxv3330+zZs1o1qxZhfbbvXt3evToQZcuXWjbti2DBg065HWfccYZNG3alJkzZ/LYY49x9tln07JlS7p27Up2djZH8sEHHzBx4kQefvhhCgsLueSSS5SciYiISK3205pdJKZm8dzYeHxVNat1jCv3Os5KxvgCS4H2wMvW2nuNMZnW2vrl1tlrrW1wrP307t3blnU/LLN27VpOOumkE4ldqtGDDz5IWFgYd999t9OhVIrOLxEREaktSkosZ704h/zCYmbcOVTJWQ1ljFlqre19pOcq1ErfWltsrY0HWgB9jTFdK3Hw640xS4wxS9LT0yu6mYiIiIiIlDNjbSprd+7n5hHtlZjVUpXq1mitzTTGzAJGAanGmKbW2p3GmKZA2lG2mQxMBlflrIrxikMefPBBp0MQERERqbOsdc01i2kUwrndmzkdjnjIcStnxpgoY0z90vvBwCnAOuArYHzpauOBLz0Uo4iIiIhInfbL2jRW79jP34a3x8+3QoPfpAaqSOWsKfBO6bwzH2CqtfYbY8x8YKox5lpgGzD6WDsREREREZHKs9by/C/radUwhAt6NHc6HPGginRrXAn0OMLy3cBITwQlIiIiIiIuMxPTWJWyjycu6qaqWS2nv66IiIiIiJdyVc020KJBMBf0VNWstlNyBvj6+hIfH0/Xrl0ZPXo0ubm5J7yvq666iunTpwMwYcIE1qxZc9R1Z82axbx58w4+njRpEu++++4JH7vMli1b6Nr10IaaDz74IE899VSl9uOueERERETkxMxOSmfF9kz+Nrw9/qqa1XqV6tZYWwUHB5OQkADAuHHjmDRpEnfeeefB54uLiyt1seYyb7zxxjGfnzVrFmFhYQwcOBCAG2+8sdLH8JSioiKvikdERESkrimba9a8fjAX9WzhdDhSDWpW+v3EEzBz5qHLZs50LXeTwYMHs2HDBmbNmsXw4cO57LLLiIuLo7i4mL///e/06dOHbt268dprrwGufzQ333wznTt35qyzziIt7c8rCgwbNoyyi27/8MMP9OzZk+7duzNy5Ei2bNnCpEmTePbZZ4mPj+f3338/pLqVkJBA//796datGxdccAF79+49uM97772Xvn37Ehsby++//17p13isff/zn/9k6NChPP/88wfj2bFjB/Hx8Qdvvr6+bN26la1btzJy5Ei6devGyJEj2bZtG+CqHt56660MHDiQtm3bHqwkioiIiEjF/b4+g+XbMrlpeDsC/GrWx3Y5MTXrr9ynD4wZ82eCNnOm63GfPm7ZfVFREd9//z1xcXEALFq0iEceeYQ1a9bw5ptvEhERweLFi1m8eDGvv/46mzdv5vPPPycxMZFVq1bx+uuvHzJMsUx6ejrXXXcdn376KStWrGDatGnExMRw4403cscdd5CQkMDgwYMP2ebKK6/k8ccfZ+XKlcTFxfHQQw8dEueiRYt47rnnDlle3saNGw9JqCZNmlShfWdmZjJ79mzuuuuug8uaNWtGQkICCQkJXHfddVx00UW0bt2am2++mSuvvJKVK1cybtw4br311oPb7Ny5kzlz5vDNN99w3333VfIvISIiIlK3lVXNmkYEcXEvVc3qCu8a1nj77VA6vPComjWD00+Hpk1h50446SR46CHX7Uji4+G55465ywMHDhAfHw+4KmfXXnst8+bNo2/fvrRp0waAn376iZUrVx6sAu3bt4/169fz22+/cemll+Lr60uzZs0YMWLEX/a/YMEChgwZcnBfDRs2PGY8+/btIzMzk6FDhwIwfvx4Ro/+80oFF154IQC9evViy5YtR9xHu3btDg7VhD8vIn28fY8dO/aocc2dO5c33njjYLVu/vz5fPbZZwBcccUV3HPPPQfXPf/88/Hx8aFz586kpqYe8/WKiIiIyKHmbdzN0q17+e95XQj0q/z0GqmZvCs5q4gGDVyJ2bZt0KqV63EVlZ9zVl5oaOjB+9ZaXnzxRU4//fRD1vnuu+8wxhxz/9ba465TGYGBgYCrkUlRUZHb9guHvubydu7cybXXXstXX31FWFjYEdcp/xrLYgTX6xcRERGRirHW8vzP62lSL4gxfVo6HY5UI+8a1vjcczBr1rFvDzwAublw//2unw88cOz1j1M1q6jTTz+dV199lcLCQgCSkpLIyclhyJAhfPzxxxQXF7Nz505mHj4nDhgwYACzZ89m8+bNAOzZsweA8PBwsrKy/rJ+REQEDRo0OFiheu+99w5WuqrqRPZdWFjImDFjePzxx4mNjT24fODAgXz88ccAfPDBB5x88sluiVFERESkLluwaQ+LtuzhxqFtVTWrY2pW5axsjtnUqTB8uOtW/rEHTZgwgS1bttCzZ0+stURFRfHFF19wwQUX8OuvvxIXF0dsbOwRE52oqCgmT57MhRdeSElJCdHR0cyYMYNzzjmHiy++mC+//JIXX3zxkG3eeecdbrzxRnJzc2nbti1Tpkxx22up7L7nzZvH4sWLeeCBB3jggQcAV8XwhRde4JprruHJJ58kKirKrTGKiIiI1FXP/5JEdHggl/Rt5XQoUs1MdQ456927ty3rXlhm7dq1nHTSSRXbwRNPuJp/lE/EZs6ExYuh3HwnkTKVOr9EREREHLZw027GTl7Af87uzDUnt3E6HPEAY8xSa23vIz1XsypnR0rAyipoIiIiIiI13PO/rCcyLJDL+qlqVhd515wzEREREZE6avGWPczbuJsbh7YlyF9zzeoiJWciIiIiIl7ghV/WExkWwLh+rZ0ORRziFcmZWq2LJ+i8EhERkZpi6da9/L4+g+uHtCU4QFWzusrx5CwoKIjdu3frg7S4lbWW3bt3ExQU5HQoIiIiIsf1/C/raRgawOX9VTWryxxvCNKiRQuSk5NJT093OhSpZYKCgmjRooXTYYiIiIgc0/Jte/ktKZ17R3UiJMDxj+fiIMf/+v7+/rRpozahIiIiIlI3vfDLehqE+HPlAFXN6jrHhzWKiIiIiNRVK7ZnMjMxnQmD2xIa6HjdRBym5ExERERExCEv/rqeiGBVzcRFyZmIiIiIiAP+SNnHz2vTmHByG8KD/J0OR7yAkjMREREREQc8/8t66gX5MX5QjNOhiJdQciYiIiIiUs1W79jHjDWpXHNyG+qpaiallJyJiIiIiFSzF3/ZQHiQH1cPUtdy+ZOSMxERERGRarR2535+WL2Lqwe1ISJYVTP5k5IzEREREZFq9OKv6wkL9ONaVc3kMErORERERESqSeKuLL5btYurBsYQEaKqmRxKyZmIiIiISDV58df1hAb4cu3JqprJXyk5ExERERGpButTs/h21U7GD4yhQWiA0+GIF1JyJiIiIiJSDV78dQPB/r5MGNzW6VDESyk5ExERERHxsA1p2Xy9cgdXDGhNQ1XN5CiUnImIiIiIeNjLMzcQ5OfL9aqayTEoORMRERER8aBN6dl8mZDCFQNa0ygs0OlwxIspORMRERER8aCXZm4gwM+H61Q1k+NQciYiIiIi4iFbMnL4MmEH4/q1JipcVTM5NiVnIiIiIiIe8vLMDfj5GG4YoqqZHJ+SMxERERERD9i2O5fPlqdwad9WRNcLcjocqQGUnImIiIiIeMDLMzfg62OYOKyd06FIDaHkTERERETEzQqLS/g8IYWLeragsapmUkFKzkRERERE3GxLRg4FRSX0bdPA6VCkBlFyJiIiIiLiZompWQDENg53OBKpSZSciYiIiIi4WVJqNj4G2kWFOR2K1CBKzkRERERE3CxpVxYxkaEE+fs6HYrUIErORERERETcLCk1i44a0iiVpORMRERERMSN8gqL2bI7R/PNpNKUnImIiIiIuNGGtGxKrJqBSOUpORMRERERcaOk0k6NHZuoGYhUjpIzERERERE3SkzNIsDXh9aNQp0ORWoYJWciIiIiIm6UtCuLtlGh+Pvqo7ZUznHPGGNMS2PMTGPMWmPMamPMbaXL440xC4wxCcaYJcaYvp4PV0RERETEuyWlZtOxieabSeVVJJ0vAu6y1p4E9Af+ZozpDDwBPGStjQf+U/pYRERERKTOysorJCXzgJqByAnxO94K1tqdwM7S+1nGmLVAc8AC9UpXiwB2eCpIEREREZGaICk1G0DXOJMTctzkrDxjTAzQA1gI3A78aIx5ClcFbuBRtrkeuB6gVatWVQhVRERERMS7/dmpUcmZVF6FZykaY8KAT4HbrbX7gYnAHdbalsAdwJtH2s5aO9la29ta2zsqKsodMYuIiIiIeKXEXVmEBPjSvH6w06FIDVSh5MwY448rMfvAWvtZ6eLxQNn9aYAagoiIiIhInZaUmkWHxuH4+BinQ5EaqCLdGg2uqthaa+0z5Z7aAQwtvT8CWO/+8EREREREao6k1Cw6NtbFp+XEVGTO2SDgCmCVMSahdNk/geuA540xfkAepfPKRERERETqoozsfDKyC9SpUU5YRbo1zgGOVpft5d5wRERERERqJjUDkarSZctFRERERNwgaVdpcqbKmZwgJWciIiIiIm6QlJZN/RB/osIDnQ5FaiglZyIiIiIibpC0K4vYxuG4+umJVJ6SMxERERGRKrLWkpiapSGNUiVKzkREREREqmjX/jyy8oqIVTMQqQIlZyIiIiIiVZSoZiDiBkrORERERESqqKyNfqwuQC1VoORMRERERKSKEndlEx0eSP2QAKdDkRpMyZmIiIiISBUlpWbp4tNSZUrORERERESqoLjEsj7N1UZfpCqUnImIiIiIVMH2PbnkFZaoGYhUmZIzEREREZEqSCxrBqJhjVJFSs5ERERERKogqbSNfododWqUqlFyJiIiIiJSBYmpWbRsGExooJ/ToUgNp+RMRERERKQKklKzNN9M3ELJmYiIiIjICSooKmFTeo46NYpbKDkTERERETlBmzNyKCqxusaZuIWSMxERERGRE3SwU6MqZ+IGSs5ERERERE7Q+tQsfH0MbaNCnQ5FagElZyIiIiIiJyhxVxZtIkMJ9PN1OhSpBZSciYiIiIicIHVqFHdSciYiIiIicgIOFBSzdU+u5puJ2yg5ExERERE5ARvSsrEWOjYJczoUqSWUnImIiIiInAB1ahR3U3ImIiIiInICklKzCPDzoXUjdWoU91ByJiIiIiJyAhJ3ZdEhOgxfH+N0KFJLKDkTERERETkBSalZGtIobqXkTERERESkkvYdKGTnvjwlZ+JWSs5ERERERCppfWkzEHVqFHdSciYiIiIiUknq1CieoORMRERERKSSknZlERrgS/P6wU6HIrWIkjMRERERkUpKTM0itkk4xqhTo7iPkjMRERERkUqw1pK4K4uOGtIobqbkTERERESkEjKyC9ibW6j5ZuJ2Ss5ERERERCoh6WCnRiVn4l5KzkREREREKiFJnRrFQ5SciYiIiIhUQlJqFg1DA4gMC3A6FKlllJyJiIiIiFRC4q4sYhuHqVOjuJ2SMxERERGRCrLWkpSarU6N4hFKzkREREREKmjHvjyy84uIVTMQ8QAlZyIiIiIiFZS0q7RToypn4gFKzkREREREKiixtFNjByVn4gFKzkREREREKihpVxZNI4KICPZ3OhSphZSciYiIiIhUUGJqlq5vJh6j5ExEREREpAKKSyzr07LpqGYg4iFKzkREREREKmDr7hwKikroEB3mdChSSyk5ExERERGpgKTSZiCqnImnKDkTEREREamAxF3ZGAPtVTkTDzlucmaMaWmMmWmMWWuMWW2Mua3cc7cYYxJLlz/h2VBFRERERJyTlJpFq4YhhAT4OR2K1FIVObOKgLustcuMMeHAUmPMDKAxcB7QzVqbb4yJ9mSgIlJ1hcUl/LoujamLt5OdX8R71/YjwE8FdBERkYpQp0bxtOMmZ9bancDO0vtZxpi1QHPgOuAxa21+6XNpngxURE7chrRspi3ZzqfLUsjIzqdBiD97cwuZumQ7l/dv7XR4IiIiXi+/qJjNGTmM6tLE6VCkFqtUTdYYEwP0ABYCTwKDjTGPAHnA3dbaxUfY5nrgeoBWrVpVNV4RqaCc/CK+XbWTqYu3s2TrXnx9DCM6RTO2d0uGdYxi7OQFvDxzAxf3akGQv6/T4YqIiHi1Tek5FJdYYtUMRDyowsmZMSYM+BS43Vq73xjjBzQA+gN9gKnGmLbWWlt+O2vtZGAyQO/evS0i4jHWWpZvz2Tq4u18vWIHOQXFtI0M5b4zOnFhz+ZEhwcdXPeuU2O57I2FfLxoG1cNauNg1CIiIt7vYKdGDWsUD6pQcmaM8ceVmH1grf2sdHEy8FlpMrbIGFMCRALpHolURI5qd3Y+ny9P4ZPF21mflk2wvy9ndWvK2D4t6d26AcaYv2wzoF0j+rVpyMuzNnJJ31aqnomIiBxDUmoWfj6GNpGhTocitdhxkzPj+lT3JrDWWvtMuae+AEYAs4wxsUAAkOGJIEXkr4pLLL+tT2fq4u38vDaVwmJLfMv6/O/COM7u1pTwIP9jbm+M4c5TYxk7eQHvL9jKhMFtqylyERGRmidxVzZto0LVSEs8qiKVs0HAFcAqY0xC6bJ/Am8Bbxlj/gAKgPGHD2kUEffbtjuXaUu3M31pMjv35dEwNIArB8Qwtk/LSneQ6te2ESe3j+TVWRu5rF8rtQYWERE5iqTULLq1iHA6DKnlKtKtcQ7w1zFRLpe7NxwROZK8wmJ+XL2LTxZvZ97G3fgYGBIbxX/O7szIkxpX6Vu8O06N5aJX5/HOvK1MHNbOjVGLiIjUDrkFRWzbk8voXi2cDkVqOX1NLuLF/kjZx9Ql2/lieQr784po2TCYu06N5eLeLWgaEeyWY/Rq3YBhHaN47beNXN6/1XGHQ4qIiNQ161OzAdSpUTxOyZmIF9q6O4ebP1zOqpR9BPj5cEbXJozt3ZL+bRvh43O0QvaJu/PUWM59aS5vz93CLSM7uH3/IiIiNVmiOjVKNVFyJuJlikssd05dwdbdOfzfeV04r3tzIkI8W83q1qI+p5zUmNd/38SVA2OICFb1TEREpEzSriyC/H1o2TDE6VCkllO7GREvM2XuZpZu3ctD53XhygExHk/Mytxxagf25xXx5pzN1XI8ERGRmiIxNYsO0eH4emD0ikh5Ss5EvMjG9Gye/DGRU06K5vz45tV67C7NIjijaxPemrOZzNyCaj22iIiIN0tKzap0R2SRE6HkTMRLFJdY7pm+kiB/Xx69IO6IF472tNtPiSWnoIjJv22q9mOLiIh4o8zcAlL359OxSZjToUgdoORMxEuUDWd88NzORNcLciSGjk3CObtbM96et4Xd2fmOxCAiIuJNkso6NapyJtVAyZmIF/hzOGPjah/OeLjbRnYgr7CY11Q9ExER+bNTo9roSzVQcibisOISy9+nrSgdztjVkeGM5bWPDuP8+Oa8O38LaVl5jsYiIiLitKRdWYQH+tHEoVEtUrcoORNx2FtzNrNsW6ajwxkPd+vIDhQWW16dtdHpUERERByVmJpFbJNwx788lbpByZmIgzamZ/PUT94xnLG8mMhQLurZnA8WbmPnvgNOh1OtrLUs3rKHwuISp0MRERGHWWvVqVGqlZIzEYd423DGw90yogMlJZZXZtat6tmPq1MZPWk+j3631ulQRGoVfeEhNVF6Vj6ZuYV0bKxOjVI9lJyJOKRsOOND53bxmuGM5bVsGMKYPi35ePE2kvfmOh1OtZkyd3Ppzy3M25DhcDQitcP61Cy6PvAjv6xNdToUkUopawYSq2YgUk2UnIk4oPxwxvPimzkdzlHdPLw9BsPLMzc4HUq1WL1jHws37+H2UzrQNjKUu6etYN+BQqfDEqnxPl68nfyiEp78MZGSEut0OCIVVtZGv6OGNUo1UXImUs28fThjec3qB3Np35ZMW5LMtt21v3r2zrwtBPv7cvXANjwzNp7UrHwe+mq102GJ1GiFxSV8sTyFqPBA1u3K4sfVu5wOSaTCknZlERkWQKOwQKdDkTpCyZlINfP24YyHu2l4e3x9DC/8ut7pUDxqd3Y+XyTs4MKezYkI8Se+ZX3+Nrw9ny1P4ftVO50OT6TG+nVdGrtzCnj0gjjaRoXy3M/rVT2TGiNRzUCkmik5E6lGZcMZT+3s3cMZy2tcL4jL+7fms2XJbErPdjocj/lo0TYKikq4amDMwWW3jGhPXPMI/vn5Kl3zTeQETVuSTHR4IMM7RnHbyA4kpmbx/R+qnon3KymxrFdyJtVMyZlINSk/nPERLx/OeLgbh7Yj0M+XF36pndWzwuIS3luwlcEdIulQ7j9hf18fnh3bndyCYu77dBXW6tt+kcpIz8pnZmIaF/Rsjp+vD2d3a0b76DCe/yVJ1TPxeimZB8gpKKajmoFINVJyJlJN3pyz6c/hjOHeP5yxvKjwQK4c2JovV+xgfWnnqtrk+z92kbo/n6sHxfzlufbR4dw7qhO/rkvjk8Xbqz84kRrsy4QUiksso3u1AMDXx3DryA4kpWbz3R8aLizeLamsU6MqZ1KNlJyJVIMNadk89VNSjRrOeLgbhrQjxN+X52ph9WzK3M3ENAphWGz0EZ+/amAMA9s14r/frKkTjVFE3MFay7QlycS3rE/76D8/3J4V19RVPft5PcWqnokXO9hGX9c4k2qk5EzEw4pLLPdMX0FIQM0bzlhew9AArh7Uhm9X7mTtzv1Oh+M2CdszWb4tk/EDY/DxOfLfxsfH8OTo7vgYw51TE/SBUqQCVqXsIzE1i9G9Wxyy3NfHcNvIDqxPy+ZbNdup0UpKLD+t3sX9X/xRKy87krQri+b1gwkP8nc6FKlDlJyJeFhNHs54uOsGtyU80I/nfk5yOhS3eXvuZsIC/bi4V4tjrte8fjAPndeFJVv38vrvm6opOpGaa/rSZAL9XPPMDndWXFNiG4fx/M9J+rKjBiooKmH60mROe+43rn9vKe8t2Mors2rf9TATU7NVNZNqp+RMxIPKhjOe1rkx53avmcMZy4sI8efawW34cXUqf6TsczqcKkvbn8e3q3YyuneLCn0zekGP5pzRtQnP/JRUq6qHIu6WV1jMlwk7OL1LEyKC//pvy8fHcNvIWDam5/DNyh0ORCgnIregiLfmbGbYkzO5e9oK/H19eOHSHpwf34wpc7ewI/OA0yG6TVFxCRvTsolVMxCpZkrORDykuMTy99LhjA/X4OGMh7vm5DZEBPvz7IyaXz17f8FWikos4wfEVGh9YwyPXBBHvWB/7vgkgfyiYs8GKFJD/bw2lX0HCv8ypLG8M7o2oWPjcF74RXPPvN3enAKe+zmJgY/9yv99s4YWDUN4++o+fHfryZzbvRl3n94RLLVqVMWW3bkUFJfQUc1ApJopORPxkDfnbGJ5LRnOWF69IH+uH9KWX9alsXzbXqfDOWH5RcV8sHAbIzpGExMZWuHtGoYG8MTFcazblcWzM2pfcxQRd5i2JJlmEUEMbBd51HV8fAy3ndKBjek5fL1C1TNvtCPzAP/39RoGPvYrz/28nt6tG/LpxAFMvWEAwzpGH/zSsUWDEK4c0JrpS5NrTUdfdWoUpyg5E/GA2jac8XDjB8bQMDSAZ3+uucnJ1yt2sjungKsHtan0tiM6NebSvi157beNLN6yxwPRiSdYa9mUnk1hcYnTodRqu/bl8fv6dC7q1QLfozTZKTOqSxM6NXFVz4r0d/EaG9KyuHvaCoY8MZN352/hjLgm/HTHEN4Y35terRsecZu/DW9PaIAfT/yYWM3Rekbirix8DLSP1pwzqV5KzkTcrLYOZywvLNCPG4a05bekdJbUwOTEWsuUuZvpEB3GoPaNTmgf/zqrMy0aBHPn1ASy84vcHKF4wtQl2xnx9Gy6PfgTl72+gOd+TmLexgwOFGh4qjt9tjyZEgsX9Tx2kx1wVc9uP6UDmzJy+Fpzzxy3fNtern93Cac88xvfrNzB5f1bM+vvw3hmTPxxK0gNQgO4cVg7ZqxJrZH/LxwuKTWLmEahBPn7Oh2K1DFKzkTc7I3fa+dwxsNdOSCGyLBAnqmBc8+WbN3L6h37uWpQzAknz2GBfjwzJp7kvQd45Ns1bo5Q3G1fbiGP/5BItxYRjO3TkszcQp7/ZT2Xvb6Qbg/9yEWvzuOx79cxc10a+/NqX0vw6mKtZfqSZPrGNKzwcOHTOpdVzzaoeuYAay2zk9K5ZPJ8LnhlHgs37+HWkR2Yd99IHjy3Cy0ahFR4X1cPiiE6PJDHvl+HtTV7HmFiapaGNIoj/JwOQKQ22ZCWzdMzau9wxvKCA3yZOKwd//1mDfM37mZAuxOrQDlhytzNRAT7c0GP5lXaT5+YhtwwpB2TZm/klJMaM/Kkxm6KUNzt2Z+TyMwt4L1r+9KlWQQA+w4UsmzrXhZu3sOizbt54/dNTJq9ER8DJzWtR982DenXpiG9YxoSGRbo8CuoGZZt28umjBxuHNauwtu4qmex3Pj+Ur5M2MFFx7mshbhHcYnlu1U7eXXWRtbs3E+TekH8+6yTuLRvK0IDT+zjYUiAH7ed0oF/ff4Hv6xN45TONfM9Ma+wmC0ZOZwd19TpUKQOUnIm4iZ1YTjj4cb1a8Xk3zby7Iwk+rftXyNec0rmAX5cncqEk9sQElD1t8A7Tu3ArMQ07v10FT/eXp9G+hDvdRJ3ZfHegq1c1q/VwcQMICLYn+GdohneKRqAAwXFLN/mStYWb9nDR4u2MWXuFgDaRYXSt00j+rVpSN82DWlWP9iJl+L1pi9NJtjflzMr+aH29C6N6dy0Hi/+up7z4pvh56uBPZ6SV1jMZ8tSeO23jWzdnUvbqFCeuLgb58c3J8Cv6r/3Mb1b8ubvm3n8h3UM7xR93HmH3mhjejYlFrXRF0coORNxk7LhjM9fEl+rhzOWF+Tvy9+Gt+c/X65mzoYMBneIcjqk43pv/lastVwxoLVb9hfo58uzY+M576W5/OvzP3j18p41IkmtK6y1PPT1asIC/bjr1I7HXDc4wJeB7SMZ2N7VYbCgqIRVKftYVFpZ+2blDj5atA2AFg2C6RvjStT6tmlIm8jQOv93P1BQzNcrdnJmXFPCKll5McbVufGG95byRcKO414UXiovK6+QDxZu4805m0nPyqd7iwj+cXlPTu3cxK0JlL+vD38/vSMTP1jGp8uSGdO7pdv2XV3Wp2YDqI2+OELJmYgbbEjL4ukZSZzepfYPZzzc2D4tmTRrI8/MSOLk9pFe/QH1QEExHy3axuldmlRqHsXxnNS0HneeFstj36/j8+UpXFiBRghSPX74YxfzNu7mv+d1oUFoQKW2DfDzoVfrBvRq3YCJw9pRXGJZt2t/abK2h9lJ6Xy2PAWAyLBA+rZpwOldmnBefNWGy9ZUP6zeSXZ+0TGvbXYsp3VuTJdmrurZ+XWwelZSYikoLqGwuISiYkthcUnpY0tRufuFxSUUFpVQWGJdP0ufK9vG9di1Tdn9vTkFfJGQQlZeEYM7RPL82HgGtGvksffrUV2b0L1lfZ6dkcS53ZvVuKYaialZ+PuaSl1mRcRdlJyJVFFxieXuaSsJCfDlv+fXjeGM5QX6+XLziA788/NVzEpMPzhEzBt9vjyFfQcKuWpgjNv3fd3gtvyyNpUHvlxNv7aNaK5hb447UFDMw9+upVOTcC7t26rK+/P1MXRpFkGXZhFcPaiNqzV/Rs7BZG3hpt18t2oXKZkHuGlYeze8gppl2pJkWjUMoW/MkVutH48xrrln1727hM+Wp9TIiktF7ckpYMX2TBJKbyuTM9mb67lGNAF+Ppx6UmNuHNqOuBYRx9+giowx3DeqE5e+voB352/h+iEVn4PoDZJ2ZdEuKgz/OvYFgXgHJWciVfTG75tI2F63hjMebnTvFrw6ewPPzEhiWMcor0xQrbW8PW8znUsbPbibr4/h6dHxnPH8b9w9dQUfTOiHTw2ca3E81lqv/PseyWu/bSQl8wAfX9/fI1UYYwztosJoFxXGpX1bUVxiuXNqAk/8kEhogB/jPfAlgLdK3pvLvI27ueOU2Cqd96ecFE3X5vV46dcNXNCjea34cJxXWMzqHfsPSca27ckFwMe4LnJ8WucmNKsfjL+fIcDXB39fH/x8Df6+PgQcdv/w5/z9DH4+f9739/XB3+fP+34+xpF/swPaNWJYxyhenrmRsb1bERHiX+0xnKjE1Cx6tmrgdBhSRyk5E6mCujycsTx/Xx9uGdGBe6avZMaaVE7r0sTpkP5i3sbdJKVm8+TF3Tz2QaVVoxDuP7sz9322irfnbeGakyt/gWtvlpVXyOVvLqJz03AevSDOq5O05L25vDprI2d3a0r/ttXTSdTXx/DU6O7kFhTzwFerCQnwZXQtrv6U9+nSFIyBi3pVbUinMYbbR8Yy4d0lfL4shTF9atbvr6TEsnl3DgnbXEnYiuRM1u7cT2Gxq61804ggureoz2X9WhHfsj5xzSNOuDNiTXDP6Z0468XfeXX2Ru47o5PT4VRIdn4RyXsPuKXaLnIiau87goiHlQ1nDA3w5eHzvfuDanW4sEdzXpm5gWd/Xs8pJzX2uqrRlLmbaRQawDkeTqLH9mnJjDWpPP7DOobERtI+unZMKC8usdz+cQIrtmeyYnsmPVo18OphZ49+txZj4J9nnlStx/X39eGly3ow4Z0l3PvpSkIC/DirW+1ux11SYpm+bDsD2zVyy1zOkSdF061FBC/OXM8FPb27epaRnX9IIrZieyb781wXpQ8N8KVbi/pMGNyW7i3q06NVfRrXq1ujKzo3q8f58c2ZMnczVw2MoUmE97/+9alZALrGmThGyZnICXq9dDjjC5f2ICpc7dP9fH247ZQO3PHJCn5YvavSrbQ9aevuHH5Zl8bNw9t7fGK6MYb/XRTH6c/+xh2frOCzmwZ69YfLinr6p0R+WZfGg+d05qc1rrl1PVvV98rkc96GDL5btYu7To11pOV9oJ8vr13Ri/FvLeK2j5cTHODDiE4183pPFbFw8x627zlw3G6YFeWae9aBa95ewqdLk7nESyoYBwqK+WPHPlZsz2T59kwStmWSknkAcFVNOzYO56xuzejRsj7xrerTLiqsRraRd7c7T43l25U7ee7nJB67qJvT4RxXUmlypk6N4pSa/4lBxAF7cgp4pnQ44zm1/Fvxyji3e3PaRYXy7Iwkikus0+Ec9M68rfgaw+X93dM+/3iiw4P434VxrErZx4u/bqiWY3rSlwkpvDJrI5f2bcX4gTE8OzaekABfbv5wOXmFxU6Hd4ii4hIe+noNLRoEc92Qto7FERLgx5tX9eGkpvW48f1lzNuQ4VgsnjZ9aTLhgX6c7sbhzMM7RtO9RQQvzdxAQVGJ2/Z7IoqKS/jX56vo+uCPjJ40n4e/XUvCtkziW9bnX2eexNQbBrDqwdP47rbB/O/COMb0aUls43AlZqVaNgzh8v6tmbpkOxvSspwO57gSd2UT7O9LiwZq6iTOUHImcgJ+S0qnoKiEm4a1r/PDGcvz9XF1W1ufls03K3c4HQ7gmj8wbcl2zoxrWq1DikZ1bcqFPZvz8swNJGzPrLbjutuq5H3cM30lfWMa8tC5XTDG0LheEE+N6c66XVk88u1ap0M8xAcLt5GYmsW/z+rsePvuekH+vHtNX9o0CmXCu0tYunWvo/F4QnZ+Ed+t2snZ3ZsSHOC+33dZ58bkvQf4dFmy2/ZbWXmFxfztw2V8sHAbY3q34PUre7PoXyOZe98IXh7Xk+uGtKVvm4ZuuaB9bXbziPaEBPjxxA+JTodyXEmpWcQ2DvO6oflSdyg5EzkBs5PSaRgaQFxzz7ckrmnOimtKpybh/PebtWwv7UjmpE+XJpOVX8TVg2Kq/dgPntuFxuGB3PlJAgcKvKvCVBFpWXlc/94SIsMCeeXyngT4/flfxvCO0Vw3uA3vLdjKD3/sdDDKP+3JKeDpnxI5uX0kp3fxjmGEDUIDeG9CX6LDA7lqyiL+SNnndEhu9d3KnRwoLObiXu6ffzisYxTxLevz0q/OVM+y84u49p3F/Lg6lf+c3Zn/XdiNUzs3rrNdeauiYWgANwxpy09rUr3+S4rE1CzNNxNHKTkTqaSSEstvSekM6RCpb9aOwMfH8OKlPSgoKmb8lEVk5hY4FktJieXteVuIb1mfHg60Ra4X5M9To7uzKSOHx773rgrT8eQXFXPje0vJzC1k8pW9iAz767zKv5/eiW4tIrhn+kqS9zqfiD/1UyI5BcU8cE5nr6poR4cH8cF1/akX5M+Vby2qEUO7Kmra0u20jQqlZ6v6bt932dyzlMwDTFu63e37P5a9OQWMe2MhCzbt4anR3Wtd51UnXDu4DZFhgTz+/Tqs9Z5h7+XtySkgPSufjk2UnIlzlJyJVNKqlH3szilgWEfvvdiy0zo0DueN8X1I3nOACe8scWxe0uykdDZn5DhSNSszsH0k1wxqwzvzt/L7+nTH4qgMay33f/EHy7Zl8tTo7nRpduQKcYCfDy9e2oMSC7d+tJzCYufmBv2Rso+PFm1j/IAYOnjht97N6wfz/oR++BjDuDcWsm2388lsVW3JyGHxlr1c3KuFx5LhobFR9GhVn5ersXqWuj+PsZPns3bnfl4d15OLe7WoluPWdiEBftx+SgcWbdnDr+vSnA7niJLUqVG8gJIzkUqalZiOMTAkNsrpULxa3zYNeXZsPEu27uX2jxMcaRAyZd4WosMDOaOrs01b7hnVkfbRYfx92kr25RY6GktFvD1vC1OXJHPriPbHbQPfulEoj14Yx7JtmTz3c1I1RXgoay0PfrWahiEB3HZKB0diqIg2kaF8MKEf+UUlXPbGAnbuO+B0SFUyfWkyPgYu6um55KVs7tmOfXlMXeL56tnW3Tlc9Oo8UvYe4O2r+3jlNRtrsrF9WtImMpTHf1jnVU2jyhzs1KjKmThIyZlIJc1KSqNbi/o0DA1wOhSvd1a3pvz7rJP4YfUu/vvNmmodyrIhLZvfktK5on/rQ+ZKOSHI35dnx8STkZ3Pf776w9FYjmfO+gwe/nYtp3VuzO2nxFZom3O7N2Ns75a8Mmsjcx3oSvjVih0s2bqXe0Z1JCLYv9qPXxkdm4Tz7jV9ycwtZNwbC8nIznc6pBNSXGL5dFkyQ2KjPN5oZ0iHSHq2qs/LMzeQX+S5Kvzanfu5eNJ8cvKL+PC6/gxsF+mxY9VV/r4+3H1aR5JSs/l8eYrT4fxF4q4sIoL9idblccRBSs5EKmFvTgErtmcyVFWzCpswuC3XntyGt+dt4c05m6vtuG/P20yArw+X9vOOayTFtYjg1pEd+DJhh9d0sjzclowc/vbhMtpHhfHM2PhKzal84NzOtIsK4/ZPEqo14cjJL+LR79bSrUUEoz3QlMITurWoz1tX9WFH5gGueHNRjaimHm7uhgx27surliF/xhjuODWWnfvymLrEM50bl27dw9jX5uNrDFNvGED3lvU9chyBM+Oa0L1FBM/8lOh1l+JISs2iY+Nwr5qzKnWPkjORSvh9QwYl1tVFTCruX2eexFlxTXn427V8vcLzicm+A4V8ujSFc+ObHbGRhVNuGtaO7i3r88/PVjFvo3dd9yorr5AJ7y7BGHj9yt6EBVauNXhIgB8vXdaDfQcKuWvqCkqqacjSyzM3kLo/nwfO6VKjGvT0bdOQyVf0ZmNaNuOnLCI7v8jpkCpl+tJkIoL9OeWk6umKeXL7SHq3bsArHqiezU5K5/I3FtEwNIBpNw7wyjmLtYkxhntHdWLHvjzem7/V6XAOstaSuCuL2CZhTocidZySM5FKmJWYRoMQf7q3qO90KDWKj4/h6THd6RPTgLumrmDBpt0ePd7Uxds5UFjMVQNjPHqcyvLz9eHFS3oQFR7I5W8s5MVf1ldbEnMsxSWW2z9OYHNGDq+M60mrRiEntJ9OTerxn7M7MzspnTfmbHJzlH+1JSOHN37fzIU9m9OrdfV346yqIbFRvHRZD1al7GPCO4u9ropwNPsOFPLj6l2cF9+s2q4lVzb3bOe+PD5Z7L65Z9+u3MmEdxYTExnKtBsH0rLhiZ37UjkD20cyJDaKl2dtYN8B76gcp+7PZ39eER2VnIvDjpucGWNaGmNmGmPWGmNWG2NuO+z5u40x1hijwdlSq5W10B/cIQrfGvQNvbcI8vfl9St706pRCNe/u+TgxGt3Ky6xvDN/C31jGtLVC69D16pRCF/dfDLndG/G0zOSGD9lEbsdnnf09E+J/LIujQfO6VzleTbj+rXijK5NeOKHRI9ffPvhb9fg72u4b1Qnjx7Hk07r0oRnxnRn4eY93Pj+Ukeu51VZX6/YQX5RSbUPIx3UvhF9Yhrw8swNbklkP160jVs+Wkb3FvX5+Pr+RGmeUbW6d1RHMnMLeW32RqdDAf5sBqLKqTitIpWzIuAua+1JQH/gb8aYzuBK3IBTgW2eC1HEO6zesZ+M7AINaayC+iEBvH11HwL9fbnqrUWk7s9z+zFmrEklee8BR9vnH09ooB/PjY3n0QviWLh5D2e9MIfFW/Y4EsuXCSm8Mmsjl/ZtxRX9W1d5f8YYHruwG43rBXHLR8vYn+eZb8VnJqbx89o0bh3ZgWgPN6TwtPPim/PoBXHMSkzn9k+WU+TgJQkqYtrSZDo2Dqdr83rVelxjDHecEkvq/vwqV88mzd7IfZ+tYkhsFO9d28/rG8nURl2aRXB+fDPemruZXfvc/39BZamNvniL4yZn1tqd1tplpfezgLVA89KnnwXuAZwflyPiYbOTXNdlGdxByVlVtGgQwpSr+rDvQCHj31pElps/vL89bzPN6wdzaufqmQtzoowxXNavFZ/fNJAgfx8umbyASbM3Vuswx1XJ+7hn+kr6xjTkoXO7uG0SfESIPy9cGs+OzDz+8dkqt3fpLCgq4b9fr6FtZChXD6odFwe+tG8r7j+7M9+t2sU9n670iuGuR7I+NYsV2zMZ3dtz1zY7lgHtGtG3TUNemXVi1TNrLY99v47Hvl/H2d2aMvmK3gQHVM/QTPmru07rSHGJ5flfnLkMR3mJu7KICg9UJ2ZxXKXmnBljYoAewEJjzLlAirV2hScCE/E2sxLTiWseoaEvbtC1eQSvXt6LDWnZTHx/mduGcq3duZ8Fm/ZwxYDW+PnWjCm1XZpF8PUtJzOqSxMe+34dE95dwt6cAo8fNy0rj+vfW0JkWCCvXN7T7Zcb6NW6IXeeGsu3K3e6dY4QuBLwTRk53H9OZ8cvk+BO157chjtPjeWzZSk88NXqar30REVNX5qMn4/h/B7Nj7+yB7jmnnUgdX8+Hy2q3KCd4hLLPz//g0mzNzKuXyuev6RHrTp/aqKWDUMY1681U5cksyEt29FYyjo1ijitwu9Kxpgw4FPgdlxDHf8F/KcC211vjFlijFmSnp5+onGKOGpfbiHLtu3VkEY3GhIbxf8ujGPOhgzu+3SlWz6ITpm72VWF6lMzWqqXCQ/y56XLevDQuV34fX06Z784h2Xb9nrsePlFxdz43lIycwuZfGUvj3W0nDi0HSe3j+TBr1e7bY5h2v48nv95PSM7RTO8Y7Rb9ulNbhnRnhuGtOW9BVt57Id1XpWgFRWX8NnyFIZ3ina0C+rAdpH0a9OQV2ZtrHD1rKCohFs/Xs5Hi7bxt+HtePj8rpo77CVuGdGeYH9fnvox0bEYSkosSanZGtIoXqFCyZkxxh9XYvaBtfYzoB3QBlhhjNkCtACWGWOaHL6ttXaytba3tbZ3VJQ+2ErN9PuGdLXQ94DRvVty16mxfLY8had/qtqwlj05BXyRsIMLe7agfkjNG5ZijGH8wBg+nTgQY2DMpPm8OWez2z+cW2v59+d/sGxbJk+N7k6XZp5rmuLjY3hmbHfCAv24+cNlbmni8PgPiRQWW+4/u7MbIvQ+xhjuO6MTl/dvxWuzN/HSrxucDumg2UnppGflV8u1zY7njlNjSc/K58OFx6+e5RYUcd27S/h25U7+eWYn/n56J13Hyos0CgvkusFt+WH1Lo9+KXUsyXsPcKCwmI5qoy9eoCLdGg3wJrDWWvsMgLV2lbU22lobY62NAZKBntbaXR6NVsQhsxLTiQhWC31PuHlEey7t25KXZm7gg4Unfs2bjxZto6CoxOva51dWtxb1+faWwQzvFM1/v1nDje8vdWur6SlztzBtaTK3jmjPWd2aum2/RxMdHsTTY+JJSs3mv9+sqdK+lm3by6fLkrnm5DbERIa6KULvY4zh/87tyoU9m/P0jKRqvXj7sUxfmkyj0ABGdHK+Ytm/bSMGtG3Eq7OPXT3bl1vIFW8u4vf16Tx+URzXD2lXjVFKRU0Y3IbIsAAe+96ZanGimoGIF6lI5WwQcAUwwhiTUHo708NxiXgNay2zk9I5uUNkjZnHVJMYY/jveV0Z3jGK+7/4g5/XpFZ6H4XFJbw3fysnt4+sFf+5RoT4M/mKXvz7rJP4ZW0aZ7/4O6uS91V5v7+vT+fhb9dwWufG3H5KrBsirZihsVHcMLQtHyzcxnerdp7QPkpKLA9+tZro8EBuHtHezRF6Hx8fwxMXdeOMrk347zdr+LiS86vcbU9OAT+vTeX8Hs3x95L3wdtP6UB6Vj7vLzjylzppWXmMnTyflcmZvHRZT8b2aVXNEUpFhQb6cdvIDizavIdZidU/BUZt9MWbVKRb4xxrrbHWdrPWxpfevjtsnRhrbYbnwhRxzpqd+0nPymdYrIY0eoqfrw8vXdaTrs0juPmjZZW+PtYPf+xi1/48r26fX1nGGCYMbssnNwyguNhy0avzeG/+lhP+VnlLRg43f7icDtHhPDs2Hp9qnm9z92kd6d6yPvd+upLte3Irvf30pcmsTN7HP87sRFignwci9D5+vj48f0kPhnWM4h+fr+LLhBTHYvkyIYXCYusVQxrL9GvbiIHtGjFp9iYOFBxaPdu+J5cxk+azbU8ub13VhzPjPF8llqq5pG8rYhqF8PgP6yiu5m6libuyaNEguM68t4h3846vv0S8WNm3eEM138yjQgP9eHN8H6LDg7j27cVsycip8LZT5m6mdaOQWtkgolfrBnx762AGtW/E/V+u5paPllf68gNZeYVMeHcJPgbeGN+bUAc+gPj7+vDiJT3Awq0fL6ewEtfy2negkMd/WEfPVvU5P96ZLoFOCfDzYdLlvejXpiF3Tl3BD3+cWOWxqqYtSaZr83qc1LR6r212PHecGktGdv4hQ6LXp2Zx8aR57M0t5P0J/XT5kxrC39eHu07ryLpdWXyxvHq/iFCnRvEmSs5EjmN2YjpdmtUjOrxmX+i2JogKD+Ttq/tQYi1XTVnE7uz8426zYnsmy7ZlMn5ATLVXg6pLg9AA3hzfh3tGdeT7P3Zx7ktzWbNjf4W2LS6x3P5xApszcnh5XE9aNgzxcLRH16pRCI9eGMfybZk8M6PiDWBe+GU9e3ILeOjcrnWykUOQvy9vjO9DtxYRTPxgGc/8lFitlYXVO/axZud+Rvfyvi6ofWIacnL7SCbN3khuQREJ2zMZ/dp8Six8ckN/erZq4HSIUglnxTUlrnkEz8xIcksDoYooLC5hY3o2sU2UnIl3UHImcgz7DhSyVC30q1XbqDDeGN+HnfvyuOadJX8ZrnS4t+dtITTAl9G9vWe4lSf4+BhuGtaeDyf0Iye/iAtemcvHi7Ydd5jj0z8l8su6NB48pzMD20VWU7RHd073ZlzatyWvztrIb0nHn1uyPjWLd+Zt4ZI+LYlr4bnOkt4uLNCPj67rz8U9W/DCrxsq/OWFO0xfmkyArw/ndm9WLcerrNtP6UBGdgH3fbqKca8voF6QP5/eOJBOTbyryifH5+Pj6laaknngqHMJ3W1LRg6FxVaVM/EaSs5EjmHehgyKSyxDY2vfcDlv1qt1A168tAerkjO55aNlFB1lCFza/jy+WbmD0b1bEh7kX81ROqNf20Z8d9tg+sQ05L7PVnHX1BXkFhQdcd0vE1J4ZdZGLu3bisv7t67mSI/uP2d3oUN0GHdOTSAtK++o61lreejrNQQH+HL3aR2rMULvFOTvy5Oju/P4RXEs3LyHs1+cw9Ktnm09XlBUwpcJOzilczQNQr3zEhW9YxoyuEMkX63YQYsGIUy/cQCtGjlXIZaqGdQ+ksEdInlp5gb2V3II94lQp0bxNkrORI5hVmI64UF+9GxV3+lQ6pzTujThwXO78PPaNB78evURK0TvL9xGUYllfA1vn19ZkWGBvHNNX+44JZbPE1I496W5f7nI86rkfdwzfSV9Yxry0LldvGo4YHCALy9d1pOsvCLumrqCkqMM0ftpTSpzNmRw56mxNHLwosfeZmyfVnw2cSD+vj6MfW0+U+a6/3p4ZX5dl8qenAKvHNJY3gPndGH8gNZ8ckN/outpCHpNd++oTmTmFvLa7I0eP1bSrix8fQxto2rv5TmkZlFyJnIUZS30B6uFvmOuHBDDjUPb8f6Cbbwy69D/pPOLivlw4VaGd4ymTS2+5tXR+PoYbjulA+9f24/M3ALOe2ku05cmA64W4te/t4TIsEBeubwnAX7ed/52bBLOA+d04ff1Gbz226a/PJ9XWMx/v1lDbOMwr6r6eYuuzSP4+uaTGdYxmoe+XsPNHy0nO//IFdSqmL40mejwQAZ3cH5I7LG0jw7jofO61sgL0MtfdW0ewbndm/HmnM2k7T96db2yMnMLSNieyZcJKTz/83ru/CSBjxdvJ6ZRCEH+vm47jkhVqGeoyFGs25XFrv15DNOQRkfdc3pHdu07wJM/JtI0IogLe7rmln2zYicZ2QU1/qLTVTWofSTf3TqYWz5azt3TVrBo8242pGWTmVvI9IkDiPTiitOlfVsyd0MGT/+USL+2DQ9p3vD6b5tI3nuADyb085rranmbsuvhvfbbJp78cR1rd+5n0uW93DY8Ky0rj5mJ6Vw3uK2+oJJqd9dpsXy3aifP/bKeRy+Iq9A21lr25hayZXcOWzJy2LI7l627//yZmXvoMMlmEUG0iwqr9XOWpWZRciZyFGqh7x18fAxPXNydtKx87pm+kujwIAa1b8SUeZtpHx3m9d/oV4foekF8MKEfz/28npdmbgDglXE96dLMuxtoGGN49MI4ViRncutHy/n21sFEBPuzI/MAL8/awBldmzCovf6+x+LjY5g4rB3xLetzy0fLOe+luTx2URznueGSA18sT6G4xLuubSZ1R+tGoYzr14r3F27j2pPb0C4qDHAlYBnZBQeTLlcSlsPW3bls2Z1DVt6fFWRjoHn9YGIahXJWXFNiGoXSulEIbSJDadlQ1TLxTsZT49SPpHfv3nbJkiXVdjyRqhj72nz2HSjkh9uHOB2KAPvzChkzaT7Jew9w76iO3P/lah4+v6uGvB1m3sYM9uQUcHY37+ysdyTLtu1l9KT5jOrShJcu68EtHy1nxppUfr5zqKOt/2ua1P153PLhchZt2cMV/Vvz77NPItDvxD58Wms57dnfCAvy4/ObBrk5UpGKycjOZ+gTM2kXHUbLBiFszshh6+4ccsp18fX1MbRoEEzrRqHENAo55GfLhsEn/G9AxJOMMUuttb2P9JwqZyJHkJVXyNKte5kwuK3ToUipekH+TLm6Dxe8PI/7v1xNvSA/LuxZty5IXBHe0C6/snq2asDdp3Xk8R/WEfapH9+s3MltIzsoMaukxvWC+OC6fjz5YyKTf9vEyuRMXh7XkxYNKv97XJm8j/Vp2RUeTibiCZFhgdwysgNP/5RIVl4RMY1C6NumoSv5igwlplEozesHe+W8WpETpeRM5AjmbthNUYnV9c28TNOIYN6+pg+XTl7A+IExhAToLay2uGFIW+ZtzOCTJdtpXj+YG4e2czqkGsnf14d/nnkSPVs14O/TVnD2i3N4bmw8wzpWbu7stKXbCfTz4ezuTT0UqUjF3Di0HTcMaetVHWdFPElfNYgcweykNMID/ejVusHxV5Zq1alJPRb8cyS3jezgdCjiRj4+hmfGxDOgbSMevTCO4AANRaqKUV2b8NUtJ9OkXhBXv72YZ2YkUXyUSxYcLq+wmK8SdjCqaxPq1ZHrB4p3U2ImdYmSM5HDWGuZlZjOoPaR6hLnpQL9fPWfdS0UFR7IR9f3Z2isKtbu0CYylM9vGsRFPVvwwi/ruWrKInZn5x93uxlrUtmfV+T11zYTEamN9MlT5DBJqdns3JenIY0iUuMFB/jy5MXdeOzCOBZu3sPZL85h6da9x9xm2tJkmkUEMbBdo2qKUkREyig5EznM7KQ0QC30RaR2MMZwSd9WfDZxIH6+hrGvzWfK3M0cqVvzzn0H+H19Ohf1aoGPj6rTIiLVTcmZyGFmJabTsXE4TSOCnQ5FRMRtujaP4JubBzOsYxQPfb2GWz5aTnZ+0SHrfLYsBWvRtc1ERByi5EyknOz8IhZv2aMhjSJSK0WE+DP5it7cM6oj363ayXkvzSEpNQtwzbedvjSZvm0a0rpRqMORiojUTUrORMqZtyGDwmKrIY0iUmv5+BhuGtae9yf0Y9+BQs57aS5fJqSwdOteNmfkMFpVMxERx+giQSLlzEpKJzTAl96tGzodioiIRw1sF8m3tw7m5g+XcdvHCTSNCCIkwJcz43RtMxERp6hyJlLKWsvsxHQGto8kwE//NESk9mtcL4gPr+vPdYPbsHNfHmd3a0pooL63FRFxit6BRUptTM8mJfMANw1v53QoIiLVxt/Xh3+d1Znz4psTE6m5ZiIiTlJyJlJqVmI6AMM6RjsciYhI9evaPMLpEERE6jyN3RIpNSsxnQ7RYTSvrxb6IiIiIlL9lJyJADn5RSzarBb6IiIiIuIcJWciwIJNuykoLmForIY0ioiIiIgzlJyJ4BrSGBLgS582DZwORURERETqKCVnUudZa5mVlMbAdo0I9PN1OhwRERERqaOUnEmdtykjh+17DjBUXRpFRERExEFKzqTOO9hCP1bNQERERETEOUrOpM6bnZRO26hQWjYMcToUEREREanDlJxJnXagoJgFm3YzTF0aRURERMRhSs6kTluwaTcFRSW6vpmIiIiIOE7JmdRpsxLTCPb3pW+bhk6HIiIiIiJ1nJIzqdNmJaUzoF0jgvzVQl9EREREnKXkTOqsLRk5bN2dy1B1aRQRERERL6DkTOqsWYlpAJpvJiIiIiJeQcmZ1FmzktJpExlK60ahTociIiIiIu7wxBMwc+ahy2bOdC2vAZScSZ2UV1jM/I27NaRRREREpDbp0wfGjHElZNa6fo4Z41peA/g5HYCIExZs2k2+WuiLiIiI1C7Dh8PLL8MZZ8CAAfDHHzB1qmt5DaDKmTjCWsu6XftJyTzgyPFnJaYT6OdD/7aNHDm+iIiIiLhZfj48/jhccw0UFcGsWTBxYo1JzECVM6lGKZkHmLsho/S2m4zsfAL9fHj76r4MaFe9SdJvSen0b6sW+iIiIiK1wrffwu23w4YNMHAgrFsHf/sbvPqqKzmrIQmakjPxmH25hczftPtgQrYpIweAyLBATm7fiAHtGvHG75u59p3FvD+hHz1bNaiWuLbtzmVTRg5XDGhdLccTEREREQ9Zvx7uuMOVnHXs6KqcPfkkTJ/+Z1I2ZkyNGdqo5EzcJq+wmGXb9jJ3QwZzNuxmVXImJRZCAnzp37YR4/q35uT2kcQ2DsMYA8DwjtGMfm0+499axEfX9adr8wiPxzkrqayFfrTHjyUiIiIiHpCdDQ8/DM88A0FB8NRTcMst8NxzhyZiw4e7Hi9eXCOSM2OtrbaD9e7d2y5ZsqTajlcRmzNyCPTzoVn9YKdDqXFKSixrdu4vTcYyWLxlD3mFJfj6GHq0rM+g9pGc3CGS7i3qE+B39OmNyXtzGTNpPnlFJXxyfX86NA73aNzXvL2YjenZzP679/8DFREREZFyrIUPP4R77oEdO+Cqq+B//4MmTZyOrMKMMUuttb2P9FydrpxZa/nbB8vYm1vAO9f0JdbDSUFtsH1PLnNKk7F5GzLYm1sIQGzjMC7t24qT20fSt01DwoP8K7zPFg1C+PC6/ox+bT7j3ljI1BsGEBPpmWuP5RUWM29jBmN6t/TI/kVERERqtCeecLWdL19lmjnTVXm65x7n4gJYvtxVHZs7F3r3hk8/hf79nY3Jzep0cmaM4anR3Rk/ZREXvzqPt67qQ++Yhk6H5VX25BQwf+Nu5pTOG9u2JxeAJvWCGNGpMSd3aMSgdpFE1wuq0nFiIkP5YEI/xpYmaJ/c0J8WDULc8RIOUVbdUwt9ERERkSMou07Y++9Dly6QlARjx7qGBjolIwP+/W+YPBkiI+HNN10VM5/a13i+TidnAJ2b1eOziQMZ/9Yixr2xkBcv7cFpXWpOWdRTikssT/6YyGu/bcRaCA/0o3+7Rlx7chsGtY+kXVTowXlj7hLbOJz3ru3Hpa8v4PLSClpVk77DzUpMJ8DPhwFtI926XxEREZEabft2WLAA5s+H6GgYNcq13McHTj8ddu2CtDTXc9WlqAgmTYL774esLLjtNnjgAahfv/piqGZ1fs5ZmT05BVz99mJWJWfyyAVxXNq3ldMhOSYrr5DbP07gl3VpXNyrBZf1a0W35hH4+VbPtxNLt+7lijcX0rx+MB9f359GYYFu2/fIp2fRrH4w713bz237FBEREalR8vJg2TJXIjZ/vispS0lxPRcU5BoyWFTkWt6pE6Smwt69rue7d4dTT4VTToHBgyHE/SOdANc1ym69FVatghEj4IUXXJW8WuBYc86O+2nbGNPSGDPTGLPWGLPaGHNb6fInjTHrjDErjTGfG2PquznuatUwNICPruvHkNgo/vHZKp7/eT3Vmbh6i227c7no1XnMSkrnv+d14anR3enZqkG1JWYAvVo34M3xfdi2J5cr31rEvgOFbtnv9j25bEzPUZdGERERqTushS1b4OOPXZWnfv2gXj0YNAjuvtuVpA0Z4kp+Fi2Cffvg//7Pdb2w++93DSmcOtX13COPQMOGrnVHjYIGDWDkSFdDjiVLoLi46vFu3+4aRjl8OOzf75pX9vPPtSYxO57jVs6MMU2BptbaZcaYcGApcD7QAvjVWltkjHkcwFp777H25c2VszKFxSXc9+kqPl2WzLh+rfi/87ri6+Pe4XveasGm3Ux8fyklFl4Z15NB7Z0d+jcrMY3r3l1C1+YRvHdtP8ICqzYK970FW7n/iz/4+c6htI8Oc1OUIiIiItXsWE07br4Zli79syI2f75rSCJAcLBruwEDXLd+/f7a5XDmzEOvC3b4Y4CcHPj9d1fSNGMGrFzpWt6woavKVVZZa9u24q8pL8/VDv/RR10J5X33wd//7rnKnIOOVTmr9LBGY8yXwEvW2hnlll0AXGytHXesbWtCcgauLo5P/JjIq7M2cnqXxjx/SQ+C/H2dDsujPly4jf98+QetGoXw5vg+tPFQt8TK+uGPXfztw2X0iWnA21f3rdLfYcI7S1i3az+/3zPc7fPlRERERKpNWcL0yScQE+NqkPHMM9CqFWza5BqSCNCu3Z+JWP/+EBcH/sfpqH0i3RpTU+GXX1yJ2owZfw6RbNvWlaSdeqoraWvY8K/7t9ZVkXvmGdfQyYsugqefhtatq/Qr8mZuS86MMTHAb0BXa+3+csu/Bj6x1r5/rO1rSnJWZsrczfzfN2vo07ohr4/vTURwxdvD1xRFxSU8/O1a3p63hSGxUbx4aQ+ve51fJqRw+ycJDOkQxeQrexHoV/kELb+omB7/N4MLezbn4fPjPBCliIiISDXIznYlQJMnw48/upIbcM0VK5+I9e8PUQ50p7YWEhP/rKrNnOlq5mEM9OoFsbHw7beuxLJ1a7jiCteQyNatXUnmyJHVH3M1c0tyZowJA2YDj1hrPyu3/F9Ab+BCe4SdGWOuB64HaNWqVa+tW7dW/hU46OsVO7hzagJtI8N455q+NIlwb/dAJ+3LLeTmj5bx+/oMrj25Df84o1O1zi2rjI8XbeO+z1ZxepfGvHxZz0rHOXdDBuPeWMgbV/bmlM6NPRSliIiIiAekpMA338BXX7kqVPn5ro6FzZvD6tVw/fXw8svg54WN2AsLXVW3GTNcCduCBX9W9spGMt10Ezz77PGrerVElRqClO7AH/gU+OCwxGw8cDYw7kiJGYC1drK1tre1tneUE9l7FZ3TvRnvXN2XlMwDXPjKXDakZTkdkltsSs/mglfmsmDTbh6/KI77z+7stYkZwCV9W/HAOZ35cXUqd01bQXFJ5YbjzkpMI8DXhwHtGnkoQhERERE3sRYSElyNOfr0gRYt4MYbYe1amDgRfv3VNQcsNdXVtOOzz1xzwLyRvz8MHOhqgf/777B7tyvJ7NPH9TrvuANeeqnOJGbHU5FujQZ4E1hrrX2m3PJRwL3AudbaXM+F6LyB7SP5+Pr+FBRbLp40n6Vb9zodUpX8vj6d81+eS+aBQj6Y0J+xfWrGZQOuHtSGv5/ekS8TdvCvz1dVqpvmrMR0+rRpQGgVm4qIiIiIeER+vmuY4s03u4b49egBDz7oSlr+9z/44w/YuNFVYQK47DJXgvZ//+f6OWaMawiht6tXD8LCYPNmV2L57rs1I+5qUpFSySDgCmCEMSah9HYm8BIQDswoXTbJk4E6rWvzCD6bOJD6wf6Me2MBv6xNdTqkSrPW8vbczVw1ZTHN6gfz5d8G0bdNQ6fDqpS/DW/PzcPb8/Hi7Tz09ZoKJWgpmQdYn5bNsFi10BcREREvsns3vPcejB4NkZGu9vRTpkDPnq75Vzt3wrx5rs6FXbr8OQxw8eJDuycOH+56vHixc6+losp3f6xpiWU1OG4ZwVo7BzhSa7vv3B+Od2vVKITpEwdyzduLuf69pfzvgjjG9GnpdFgVUlBUwgNfreajRds45aTGPHdJfJVb0zvlrtNiyS0o5q25mwkJ8OWeUZ2Ouf7sxHQAhnWsecNqRUREpAY6VsfD8893Dev7+muYMwdKSqBpU1cl7NxzXV0Ng4OPvf8jdU0cPvzQ43mrYyWWNSF+D6t0K/2qqGndGo8mJ7+IiR8s47ekdO4+LZa/DW/v1a3Z9+QUMPH9pSzcvIebhrXj7tM64lPDr91mreWfn//BR4u2cfdpsdw8osNR173+3SWs3rGfOfeqhb6IiIhUg/LVoSFDXM067rvPVR3bvt21TvfucM45roSsVy/w8d65/+Jex2oIUjNLJw4LDfTjzfG9uXf6Sp76KYm0rHweOKeLV16sOik1i2vfWUzq/nyeGxvP+T2aOx2SWxhjeOT8ruQVFvPUT0kEB/hx7clt/rJeQVEJczdkcF6P5krMREREpHoMH+6aS3XGGa6k68AB8PWFTp1cVa9zzqnV1/GSE6fk7AT5+/rw1OjuRIUH8tpvm8jIzueZMfFedbHqX9amctvHCQQH+PLJ9f3p0aqB0yG5lY+P4cmLu5FXWMx/v1lDsL8vl/U7tLnJkq17yCkoZmishjSKiIhINRo1ynXR5Z07XRdWfvNNiIhwOirxcqqfVoGPj+EfZ57Ev886ie9W7eKqKYvYn1fodFhYa3lt9kYmvLuEmMgQvrp5UK1LzMr4+frw/CU9GN4xin99sYrPlycf8vzspHT8fQ2D2kc6FKGIiIjUSbNmua7xdf/9MHs2LFvmdERSAyg5c4MJg9vy/CXxLN26lzGT5pO6P8+xWPIKi7lr2gr+9/06zoxryrQbBtI04jiTSmu4AD8fXr28FwPaNuLuaSv54Y+dB5+bnZhO79YNa2zzExEREamB1JFQTpCSMzc5L745b13Vh+17crnwlXlsTM+u9hjSsvK47PUFfLYshTtPjeWlS3sQHOA9wyw9Kcjfl9ev7E18y/rc8tFyZq5LY+e+A6zblaUujSIiIlK9anKre3GUujW62arkfVz99iKKSyxvXdWn2oYT/pGyj+vfXcKe3AKeGRPPmXFNq+W43mZ/XiGXvb6A9anZnN2tGZ8uS+bH24fQsUm406GJiIiIiByzW6MqZ24W1yKCTycOpF6wP5e9vpCZ69I8fszvV+1k9KT5WGD6jQPrbGIGUC/In3ev6UfrRiF8uiyZJvWCiG0c5nRYIiIiIiLHpcqZh6Rn5XP124tYuzOLXq0b4O9r8PPxOfjTz9fg7+uDn4/Bz9fn0OfL3fc9uM2h65Vt/0fKPl6ZtZEererz2hW9iA4Pcvqle4W0rDyueXsxIzpGc+dpHZ0OR0REREQEOHblTMmZB2XnF/HwN2vYnJFDUYmlqLiEwmJLUUlJ6ePSZaXPFRVbCktcP4tKKv53ubBHcx69MM6r2vh7C2utrm8mIiIiIl5DF6F2SFigH49d1O2EtrXWHkzgDiZs5RK5siTPz8eHdlGhSkCOQr8XEREREakplJx5KWMM/r4Gf18IRhUxEREREZHaTg1BREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES9grLXVdzBj0oGt1XbAiosEMpwOQmoknTtyInTeyInSuSMnSueOnAidN57R2lobdaQnqjU581bGmCXW2t5OxyE1j84dORE6b+RE6dyRE6VzR06Ezpvqp2GNIiIiIiIiXkDJmYiIiIiIiBdQcuYy2ekApMbSuSMnQueNnCidO3KidO7IidB5U80050xERERERMQLqHImIiIiIiLiBWpccmaMGWWMSTTGbDDG3Fdu+SfGmITS2xZjTMIRto03xsw3xqw2xqw0xowt91wbY8xCY8z60n0FHOX440vXWW+MGV/Z7cUZTp43xpjWxpilpcdYbYy5sTLbi7M8eO7cXLpPa4yJPMbx9Z5TQzl57uh9p+by4HnzQel+/zDGvGWM8T/K8fWeU0M5ee7oPceNrLU15gb4AhuBtkAAsALofIT1ngb+c4TlsUCH0vvNgJ1A/dLHU4FLSu9PAiYeYfuGwKbSnw1K7zeo6Pa61dnzJgAILL0fBmwBmum88f6bh8+dHkBM6fkQeZTj6z2nht684NzR+04NvHn4vDkTMKW3j47y/5Xec2rozQvOHb3nuOlW0ypnfYEN1tpN1toC4GPgvPIrGGMMMAbXyXMIa22StXZ96f0dQBoQVbrNCGB66arvAOcf4finAzOstXustXuBGcCoSmwvznD0vLHWFlhr80sfBlJasdZ5UyN45NwpfbzcWrvlOMfXe07N5ei5o/edGsuT5813thSwCGhxhOPrPafmcvTc0XuO+9S05Kw5sL3c4+TSZeUNBlLLTrCjMcb0xZXlbwQaAZnW2qLD92uM6W2MeeM4xz/q9uIVnD5vMMa0NMasLI3j8dI3Pp033s9T586x1tN7Tu3g9Lmj952ayePnTemQtCuAH0of6z2ndnD63NF7jpvUtOTMHGHZ4e0mL+UI3wgcshNjmgLvAVdba0uOtV9r7RJr7YTjHL8icYlznD5vsNZut9Z2A9oD440xjSsYlzjLU+fOUek9p9Zw+tzR+07NVB3nzSvAb9ba30HvObWI0+eO3nPcpKYlZ8lAy3KPWwA7yh4YY/yAC4FPjrYDY0w94Fvg39baBaWLM4D6pdv/Zb8VOH5FtxdnOH3eHFT6LdJqXN9e6bzxfp46d6p6fJ073s/pc+cgve/UKB49b4wxD+AaqnZnJY+v88b7OX3uHKT3nKqpacnZYqBDadeXAOAS4Ktyz58CrLPWJh9p49JtPgfetdZOK1teOoZ2JnBx6aLxwJdH2MWPwGnGmAbGmAbAacCPldhenOHoeWOMaWGMCS693wAYBCTqvKkRPHLuVILec2ouR88dve/UWB47b4wxE3DNKbv0GFVYvefUXI6eO3rPcSPrBV1JKnPD1TEmCdc42H8d9tzbwI3H2PZyoBBIKHeLL32uLa5JjhuAafzZcaY38Ea5fVxTus4GXCVfjrW9bt5xc/K8AU4FVuLqnLQSuF7nTc25efDcuRXXN51FuL5FLDtf9J5TS25Onjt636m5Nw+eN0Wl+yxb/p/Dz5vSx3rPqaE3J88dvee472ZKf2kiIiIiIiLioJo2rFFERERERKRWUnImIiIiIiLiBZSciYiIiIiIeAElZyIiIiIiIl5AyZmIiIiIiIgXUHImIiIiIiLiBZSciYiIiIiIeAElZyIiIiIiIl7g/wG8zqNMPyRXFAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABc50lEQVR4nO3dd1zVZf/H8dfFEAc4ASduxT3RnInasLulTc1cZZbtXXfd/Rp30+Zd992wYZam2bBhWVmJWwEVtzhxIMpQEBCQcf3+OEdCQwUFzgHez8fjPDjnfNfnwNfjeZ/r+l6XsdYiIiIiIiIiruXh6gJERERERERE4UxERERERMQtKJyJiIiIiIi4AYUzERERERERN6BwJiIiIiIi4gYUzkRERERERNyAwpmIiIiIiIgbUDgTEakgjDFpBW55xpiMAo9Hu7q+c2GMiTHGXOTqOs7EGBNmjJlYivsfYoxZY4w5aozZZYyZVGDZ+6f83bOMMakFltc1xsw1xqQbY/YYY246Zd9DjTFbjTHHjDELjTHNSut1iIjI2SmciYhUENZa3xM3YC9wZYHnZrq6vlMZY7wqwjFKkzHGG5gLfADUAm4E3jDGdAWw1t5xyt99FvBVgV38DzgO1AdGA+8ZYzo69+0PfAs8BdQFIoEvy+SFiYhIoRTOREQqOGOMhzHmcWPMTmNMkjFmjjGmrnNZc2OMNcZMMMbsM8YcMcbcYYzpZYxZb4xJNsb8t8C+xhtjlhlj3jHGpDhbXYYWWF7LGPOxMSbOGBNrjHneGON5yrZvGmMOA88YY1oZY/501pVojJlpjKntXP9zoCnwo7NV6FFjTKgxZv8pry+/dc0Y84wx5mtjzAxjzFFg/Flqam2MWeR8LYnGmELDiTGmqnOfSc7fSYQxpr4x5gVgIPBfZ43/da7fzhizwBhz2BgTbYy5ocC+PnW2eC0wxqQ6j3+6Fqu6QE3gc+sQAWwBOhRSYw3gWmD6KY+fstamWWuXAj8AY5ybXANsstZ+Za3NBJ4Buhpj2p2mFhERKWUKZyIiFd+9wHBgENAIOIKjRaWgC4A2OFpm3gKeBC4COgI3GGMGnbLuLsAfeBr49kTYwxEMcoDWQHfgEmBiIdsGAi8ABnjJWVd7IAhHSMBaO4aTWwCnFPH1Xg18DdQGZp6lpn8DvwF1gCbAO6fZ5zgcLVdBQD3gDiDDWvsksAS421nj3c5QtAD4wvk6RwHvnmixchrtPLY/EOWs82+stYdwtIZNMMZ4GmP6As2ApYWsfi2QACx2Pm4L5FprtxVYZx2OvynOn+sKHCsd2FlguYiIlDGFMxGRiu924Elr7X5rbRaO8HPdKV3+/m2tzbTW/gakA7OstfHW2lgc4aN7gXXjgbestdnW2i+BaOByY0x94DLgfmtturU2HngTGFlg2wPW2nestTnW2gxr7Q5r7QJrbZa1NgF4A0eIPB8rrLXfWWvzcLQ6nammbBxhp5Hz9RcWek6sVw9oba3NtdauttYePc26VwAx1tppzte5BvgGuK7AOj9Zaxc7/x5PAn2NMUGn2d8s4P+ALBx/iyettfsKWW8c8Jm11jof+wIpp6yTAvgVcbmIiJSxct0XX0REiqQZMNcYk1fguVwc1yGdcKjA/YxCHvsWeBxbIAAA7MHR8tUM8AbijDEnlnkABYPESaHCGBMIvI2ja6Cfc/0jRXpVp1fwGGer6VEcLVjhxpgjwOvW2k8K2efnOFrNZju7Xc7AEZKyC1m3GXCBMSa5wHNezn38rUZrbZqzm2cj/v77aYfjOrAROFrj2gDzjDEHrLU/FVgvCEeova3A5mk4wmlBNYHUIi4XEZEyppYzEZGKbx9wmbW2doFbVWer2LlobAokHRzXhR1wHicL8C9wnJrW2oLd5AqGOnB0abRAF2ttTeBmHF0dT7d+OlD9xAPntWMBp6xTcJsz1mStPWitvc1a2whHC+O7xpjWp75gZyvhs9baDkA/HK1jY09T4z5g0Sm/b19r7eQC6+S3khljfHFcW3bg1OMCnYBoa+2v1to8a2008BOO1sCCxgLLrbW7Cjy3DfAyxrQp8FxXYJPz/ibn4xN11ABaFVguIiJlTOFMRKTiex944cSgE8aYAGPM1eexv0DgXmOMtzHmehzXiv1srY3Dcf3W68aYms6BSFqdcr3aqfxwtOAkG2MaA4+csvwQ0LLA421AVWPM5cYxkuG/AJ/T7fxsNRljrjfGNHGufgRH0Mo9dT/GmMHGmM7OMHgURzfHE+udWuM8oK0xZozzd+TtHGClfYF1/mGMGWCMqYKj5W7VaboqrgXaGMdw+sYY0wpHMFx3ynpjgU9Pee3pOEZjfM4YU8MY0x/H9XgnWvDmAp2MMdcaY6ri6Dq53lq7tZA6RESkDCiciYhUfP/BMUrfb8YxB9ZKHANznKtVOLrXJeIY1OM6a22Sc9lYoAqwGUfY+RpoeIZ9PQv0wHGt0084wkRBLwH/co6Q+LC1NgW4E/gIiMXRkrafMztTTb2AVcaYNBy/o/ustbsL2UcD53ZHcYyWuAhH10Zw/H6vM46RLt+21qbiGHRkJI7WsIPAK5wcIr/AMZjKYaAnjgFC/sZauxO4BUfXz6PO434DfHxiHecgIU04eQj9E+4EquG4TnAWMNlau8m57wQcg4i84Py9XMDJ1weKiEgZMydfNiAiInJ6xpjxwERr7QBX11JeGWM+BfZba//l6lpERMS9qOVMRERERETEDSiciYiIiIiIuAF1axQREREREXEDajkTERERERFxAwpnIiIiIiIibsCrLA/m7+9vmzdvXpaHFBERERERcRurV69OtNYGFLasTMNZ8+bNiYyMLMtDioiIiIiIuA1jzJ7TLVO3RhERERERETegcCYiIiIiIuIGFM5ERERERETcQJlec1aY7Oxs9u/fT2ZmpqtLkQqmatWqNGnSBG9vb1eXIiIiIiJyVi4PZ/v378fPz4/mzZtjjHF1OVJBWGtJSkpi//79tGjRwtXliIiIiIiclcu7NWZmZlKvXj0FMylRxhjq1aunFlkRERERKTdcHs4ABTMpFTqvRERERKQ8cYtw5movvPACHTt2pEuXLnTr1o1Vq1YBMHHiRDZv3lwix2jevDmJiYlnXOfFF18s9n4//fRT7r777pOemzZtGt26daNbt25UqVKFzp07061bNx5//PFi778svPXWWxw7dszVZYiIiIhIeTdlCixcePJzCxc6ni8HKn04W7FiBfPmzWPNmjWsX7+e33//naCgIAA++ugjOnToUGa1nEs4K8yECROIiooiKiqKRo0asXDhQqKionj55ZdLZP/FZa0lLy/vtMvPJZzl5OScb1kiIiIiUtH06gU33PBXQFu40PG4Vy/X1lVElT6cxcXF4e/vj4+PDwD+/v40atQIgNDQUCIjIwHw9fXlscceo2fPnlx00UWEh4cTGhpKy5Yt+eGHH4C/t2JdccUVhIWF/e2Yw4cPp2fPnnTs2JGpU6cC8Pjjj5ORkUG3bt0YPXo0ADNmzKB3795069aN22+/ndzcXMDRMta2bVsGDRrEsmXLivxaX331VXr16kWXLl14+umnAYiJiaFdu3ZMnDiRTp06MXr0aH7//Xf69+9PmzZtCA8PB+CZZ55hzJgxDBkyhDZt2vDhhx+edb/t27fnzjvvpEePHuzbt4/JkycTEhJCx44d89d7++23OXDgAIMHD2bw4MH5v+sTvv76a8aPHw/A+PHjefDBBxk8eDCPPfYYO3fuZNiwYfTs2ZOBAweydevWIv8uRERERKQCGjwY5syB4cNhwgRHMJszx/F8eWCtLbNbz5497ak2b978t+fKUmpqqu3atatt06aNnTx5sg0LC8tfNmjQIBsREWGttRawP//8s7XW2uHDh9uLL77YHj9+3EZFRdmuXbtaa62dNm2aveuuu/K3v/zyy+3ChQuttdY2a9bMJiQkWGutTUpKstZae+zYMduxY0ebmJhorbW2Ro0a+dtu3rzZXnHFFfb48ePWWmsnT55sp0+fbg8cOGCDgoJsfHy8zcrKsv369TvpmKc6cdxff/3V3nbbbTYvL8/m5ubayy+/3C5atMju3r3benp62vXr19vc3Fzbo0cPO2HCBJuXl2e/++47e/XVV1trrX366adtly5d7LFjx2xCQoJt0qSJjY2NPeN+jTF2xYoV+bWceN05OTl20KBBdt26dX/73Zz6e/jqq6/suHHjrLXWjhs3zl5++eU2JyfHWmvtkCFD7LZt26y11q5cudIOHjz4b6/f1eeXiIiIiJShlBRrb73VWnDcnnrK1RX9DRBpT5OXXD6UfkHP/riJzQeOlug+OzSqydNXdjztcl9fX1avXs2SJUtYuHAhN954Iy+//HJ+a80JVapUYdiwYQB07twZHx8fvL296dy5MzExMcWq6e2332bu3LkA7Nu3j+3bt1OvXr2T1vnjjz9YvXo1vZxNsBkZGQQGBrJq1SpCQ0MJCAgA4MYbb2Tbtm1nPeZvv/3Gb7/9Rvfu3QFIS0tj+/btNG3alBYtWtC5c2cAOnbsyNChQzHG/O21XX311VSrVo1q1aoxePBgwsPDWbp06Wn326xZM/r06ZO//Zw5c5g6dSo5OTnExcWxefNmunTpUqzf3fXXX4+npydpaWksX76c66+/Pn9ZVlZWsfYlIiIiIhXI77/DLbfA/v1QrRrcfz+8956j1ayctJy5VThzFU9PT0JDQwkNDaVz585Mnz79b+HM29s7f/Q/Dw+P/G6QHh4e+dc/eXl5nXRtVWHDuIeFhfH777+zYsUKqlevTmhoaKHrWWsZN24cL7300knPf/fdd+c0CqG1ln/+85/cfvvtJz0fExOT/1rO9Nrg76MfGmPOuN8aNWrkP969ezevvfYaERER1KlTh/Hjx592mPuCxzl1nRP7zMvLo3bt2kRFRZ3tpYuIiIhIRZaWBo88Au+/D0FBUKsWfPutI5BdfHG56tp41nBmjKkKLAZ8nOt/ba19usDyh4FXgQBr7ZmHIzyLM7VwlZbo6Gg8PDxo06YNAFFRUTRr1uyc9tW8eXPeffdd8vLyiI2Nzb9eq6CUlBTq1KlD9erV2bp1KytXrsxf5u3tTXZ2Nt7e3gwdOpSrr76aBx54gMDAQA4fPkxqaioXXHAB9913H0lJSdSsWZOvvvqKrl27nrW2Sy+9lKeeeorRo0fj6+tLbGws3t7exXp933//Pf/85z9JT08nLCyMl19+mWrVqhVpv0ePHqVGjRrUqlWLQ4cOMX/+fEJDQwHw8/MjNTUVf39/AOrXr8+WLVsIDg5m7ty5+Pn5/W1/NWvWpEWLFnz11Vdcf/31WGtZv359kX4XIiIiIlJBhIU5ri3bswceegjq1IF+/f4KYieuQYuIqBjhDMgChlhr04wx3sBSY8x8a+1KY0wQcDGwt1SrLEVpaWncc889JCcn4+XlRevWrfMH6Siu/v3753cR7NSpEz169PjbOsOGDeP999+nS5cuBAcHn9Ttb9KkSXTp0oUePXowc+ZMnn/+eS655BLy8vLw9vbmf//7H3369OGZZ56hb9++NGzYkB49euQPFHIml1xyCVu2bKFv376AozvnjBkz8PT0LPLr6927N5dffjl79+7lqaeeolGjRjRq1KhI++3atSvdu3enY8eOtGzZkv79+5/0ui+77DIaNmzIwoULefnll7niiisICgqiU6dOpKWlFVrPzJkzmTx5Ms8//zzZ2dmMHDlS4UxERESkMkhPh3/+E955B1q3hiVLoMDny5OUo26NxnFNWhFXNqY6sBSYbK1dZYz5Gvg38D0QcraWs5CQEHti9MMTtmzZQvv27YtduJStZ555Bl9fXx5++GFXl1IsOr9EREREKpilSx2tZTt2wL33wosvQoHLadydMWa1tTaksGVFGkrfGONpjIkC4oEFzmB2FRBrrV1XcqWKiIiIiIgUIiPD0XXxwgshN9cxh9l//lOugtnZFGlAEGttLtDNGFMbmGuM6QI8CVxytm2NMZOASQBNmzY990rFpZ555hlXlyAiIiIildXKlTBuHGzbBpMnw5QpUGBu3IqiWJNQW2uTgTDgaqAFsM4YEwM0AdYYYxoUss1Ua22ItTbkxPDvIiIiIiIiZ5WZCY8/7rieLDMTFiyAd9+tkMEMijZaYwCQba1NNsZUAy4CXrHWBhZYJ4YiXHMmIiIiIiJSJJGRjtayzZth4kR4/XWoWdPVVZWqorScNQQWGmPWAxE4rjmbV7pliYiIiIhIpXT8ODz1FPTpAykpMH8+fPhhhQ9mUISWM2vteqD7WdZpXlIFiYiIiIhIJRUV5WgtW78exo+HN9+E2rVdXFTZKdY1ZxWVp6cn3bp1o1OnTlx//fUcO3bsnPc1fvx4vv76awAmTpzI5s2bT7tuWFgYy5cvz3/8/vvv89lnn53zsU+IiYmhU6dOJz33zDPP8NprrxVrPyVVj4iIiIjIGWVnw3PPQa9eEB8PP/wA06ZVqmAGRRytsaKrVq0aUVFRAIwePZr333+fBx98MH95bm5usSZrPuGjjz464/KwsDB8fX3p168fAHfccUexj1FacnJy3KoeEREREakgpkxxhLATE0Nv2ADXXOOYt2z0aHj7bahb17U1ukj5ajmbMsUxn0FBCxc6ni8hAwcOZMeOHYSFhTF48GBuuukmOnfuTG5uLo888gi9evWiS5cufPDBBwBYa7n77rvp0KEDl19+OfHx8fn7Cg0N5cSk27/88gs9evSga9euDB06lJiYGN5//33efPNNunXrxpIlS05q3YqKiqJPnz506dKFESNGcOTIkfx9PvbYY/Tu3Zu2bduyZMmSYr/GM+37iSeeYNCgQfznP//Jr+fAgQN069Yt/+bp6cmePXvYs2cPQ4cOpUuXLgwdOpS9e/cCjtbDe++9l379+tGyZcv8lkQREREREXr1ghtugN9/h5degu7dYedOePZZmDGj0gYzKG/h7MQf8kRAW7jQ8bhXrxLZfU5ODvPnz6dz584AhIeH88ILL7B582Y+/vhjatWqRUREBBEREXz44Yfs3r2buXPnEh0dzYYNG/jwww9P6qZ4QkJCArfddhvffPMN69at46uvvqJ58+bccccdPPDAA0RFRTFw4MCTthk7diyvvPIK69evp3Pnzjz77LMn1RkeHs5bb7110vMF7dy586RA9f777xdp38nJySxatIiHHnoo/7lGjRoRFRVFVFQUt912G9deey3NmjXj7rvvZuzYsaxfv57Ro0dz77335m8TFxfH0qVLmTdvHo8//ngx/xIiIiIiUmENHgwffwyXXQZPPAFeXvDNN/B//+fqylzOvbo13n+/4yLAM2nUCC69FBo2hLg4aN/ekbJPE1Lo1g3eeuuMu8zIyKBbt26Ao+Xs1ltvZfny5fTu3ZsWLVoA8Ntvv7F+/fr8VqCUlBS2b9/O4sWLGTVqFJ6enjRq1IghQ4b8bf8rV67kwgsvzN9X3bN8G5CSkkJycjKDBg0CYNy4cVx//fX5y6+55hoAevbsSUxMTKH7aNWqVX5XTfhrEumz7fvGG288bV3Lli3jo48+ym+tW7FiBd9++y0AY8aM4dFHH81fd/jw4Xh4eNChQwcOHTp0xtcrIiIiIpVIUpLjs3tenuPxo4/CiBGurclNuFc4K4o6dRzBbO9eaNrU8fg8FbzmrKAaNWrk37fW8s4773DppZeetM7PP/+MMeaM+7fWnnWd4vDx8QEcA5nk5OSU2H7h5NdcUFxcHLfeeis//PADvqeZ9K/gazxRIzhev4iIiIgI8fFw8cWwZYtjIun77oP33nO0pp24Bq0Sc69wdpYWLuCvroxPPeX4Qz79dJn8IS+99FLee+89hgwZgre3N9u2baNx48ZceOGFfPDBB4wdO5b4+HgWLlzITTfddNK2ffv25a677mL37t20aNGCw4cPU7duXfz8/Dh69OjfjlWrVi3q1KnDkiVLGDhwIJ9//nl+S9f5Opd9Z2dnc8MNN/DKK6/Qtm3b/Of79evH7NmzGTNmDDNnzmTAgAElUqOIiIiIVEAHD8LQoY6BP6pXh7lz/wplN9wAc+ZU+oDmXuHsbE4EsxN/uDL8Q06cOJGYmBh69OiBtZaAgAC+++47RowYwZ9//knnzp1p27ZtoUEnICCAqVOncs0115CXl0dgYCALFizgyiuv5LrrruP777/nnXfeOWmb6dOnc8cdd3Ds2DFatmzJtGnTSuy1FHffy5cvJyIigqeffpqnn34acLQYvv3229xyyy28+uqrBAQElGiNIiIiIlKBxMbCkCGOnxMmwI03/vX5ffBgx+f5iIhKH85MWXY5CwkJsSdGLzxhy5YttG/fvmg7OHXYTXAEtogIR19VkVMU6/wSERERkZK3d68jmMXHw/z50L+/qytyKWPMamttSGHLylfLWWEBTP1TRURERETc0+7djmB25AgsWAAXXODqitxa+QpnIiIiIiJSPuzY4QhmaWnwxx/Qs6erK3J7CmciIiIiIlKytm51BLPsbMdlSF27urqicsEtwllJDzUvAhrCX0RERMQlNm6Eiy5y3A8Lg44dXVpOeeLh6gKqVq1KUlKSPkhLibLWkpSURNWqVV1dioiIiEjlsW6dYzwIDw8Fs3Pg8pazJk2asH//fhISElxdilQwVatWpUmTJq4uQ0RERKRyWL3aMcG0ry/8+Se0bu3qisodl4czb29vWrRo4eoyRERERETkXK1aBZdeCnXqOIKZPt+fE5d3axQRERERkXJs2TJHi5m/PyxapGB2HhTORERERETk3ISFOVrMGjZ0BLOmTV1dUbmmcCYiIiIiIsX3++/wj39As2aOYNa4sasrKvcUzkREREREpHjmz4crroA2bRytZw0auLqiCkHhTEREREREiu6HH2D4cMcw+X/+CQEBrq6owlA4ExERERGRovnmG7j2WujWDf74A+rVc3VFFYrCmYiIiIiInN3s2XDjjdC7N/z2G9Su7eqKKpyzhjNjTFVjTLgxZp0xZpMx5lnn868aY7YaY9YbY+YaY2qXerUiIiIiIlL6pkyBhQv/evz553DTTY7RGH/5BWrVcl1tFVhRWs6ygCHW2q5AN2CYMaYPsADoZK3tAmwD/llqVYqIiIiISNnp1QtuuMER0D75BMaOBS8v+O9/wc/P1dVVWF5nW8Faa4E050Nv581aa38rsNpK4LqSL09ERERERMrc4MGOboxXXgnp6eDt7RgIZNgwV1dWoRXpmjNjjKcxJgqIBxZYa1edssotwPwSrk1ERERERMqatY6h8h95xBHMAB5+WMGsDBQpnFlrc6213YAmQG9jTKcTy4wxTwI5wMzCtjXGTDLGRBpjIhMSEkqgZBERERERKRVLl8KgQY7JpePiHF0Yn3wSPvzw5GvQpFQUa7RGa20yEAYMAzDGjAOuAEY7uz8Wts1Ua22ItTYkQHMgiIiIiIi4n7VrHYFs4EDYvh3uuw9ycuD77+H552HOnL+uQZNSU5TRGgNOjMRojKkGXARsNcYMAx4DrrLWHivVKkVEREREpORFRzuGx+/RA1auhFdegZ07oVEjRyAbPNix3uDBjscREa6tt4Izp2nw+msFY7oA0wFPHGFujrX2OWPMDsAHSHKuutJae8eZ9hUSEmIjIyPPv2oRERERETl3e/fCc8/Bp59C1arwwAPw0EOau6wMGGNWW2tDCltWlNEa1wPdC3m+dQnUJiIiIiIiZSU+Hl58Ed57z/H4nnvgn/+EwEDX1iVAEcKZiIiIiIiUc8nJ8Prr8OabkJEBEybA//2fY1JpcRsKZyIiIiIiFdWxY/DOO45ryY4ccQzq8dxzEBzs6sqkEMUarVFERERERMqB48fh3XehVSt4/HHo2xfWrIEvv1Qwc2NqORMRERERKY+mTIFevf4aURHg99/ho48gPBx273YMjf/VVzBggOvqlCJTy5mIiIiISHnUq9dfc49Z6+iuOGyYo3Wsdm2YPx8WLVIwK0fUciYiIiIiUh6dmHtsxAioXh3i4iAoCN54A665BjzUDlPeKJyJiIiIiJRHeXkQFgYpKY7blVfCt9+Clz7il1eK0yIiIiIi5U1aGlx/vaMro4+PY66yFStgyRJXVybnQeFMRERERKQ8iYmB/v1h7lyoUQN+/tkxsfScOX9dgyblksKZiIiIiEh5sXixYyCQPXvgllvgxx9hyBDHshPXoEVEuLZGOWfqkCoiIiIiUh5MnQp33eWYu+yHH6Bt27+vM3jwyUPrS7miljMREREREXeWnQ133w233w4XXQQrVxYezKTcUzgTEREREXFXSUlw6aXwv//Bww/DvHmOOcykQlK3RhERERERd7RxI1x1FcTGwvTpMHasqyuSUqZwJiIiIiLibn74AUaPBl9fWLQI+vRxdUVSBtStUURERETEXVjrGBZ/+HBo1w4iIxXMKhG1nImIiIiIuINjxxzD43/5Jdx0E3z0EVSr5uqqpAyp5UxERERExNX27YOBAx3zlL38MsyYoWBWCanlTERERETElVasgBEjHC1nP/wAV1zh6orERdRyJiIiIiLiKp9+CqGhjoE/Vq5UMKvkFM5ERERERMpaTg48+CBMmODozhgeDh06uLoqcTF1axQRERERKUtHjsDIkfDbb3DPPfD66+Dt7eqqxA2o5UxEREREpLRMmQILF/71ODoaunSB33+HqVPh7bcVzCTfWcOZMaaqMSbcGLPOGLPJGPOs8/m6xpgFxpjtzp91Sr9cEREREZFypFcvuOEGR0CbPx969oTYWHjjDbjtNldXJ26mKN0as4Ah1to0Y4w3sNQYMx+4BvjDWvuyMeZx4HHgsVKsVURERESkfBk82DFv2ZVXQno6eHrCzJkwapSrKxM3dNaWM+uQ5nzo7bxZ4GpguvP56cDw0ihQRERERKRca9wYMjIc9x9+WMFMTqtI15wZYzyNMVFAPLDAWrsKqG+tjQNw/gwstSpFRERERMqrAwegZk3417/g449PvgZNpIAihTNrba61thvQBOhtjOlU1AMYYyYZYyKNMZEJCQnnWKaIiIiISDm0cKHjmrNvv4V//xvmzPnrGjSRUxRrtEZrbTIQBgwDDhljGgI4f8afZpup1toQa21IQEDA+VUrIiIiIlKeREQ4AtngwY7Hgwc7HkdEuLYucUvGWnvmFYwJALKttcnGmGrAb8ArwCAgqcCAIHWttY+eaV8hISE2MjKyhEoXEREREREpX4wxq621IYUtK8pojQ2B6cYYTxwtbXOstfOMMSuAOcaYW4G9wPUlVrGIiIiIiEglc9ZwZq1dD3Qv5PkkYGhpFCUiIiIiIlLZFOuaMxERERERESkdCmciIiIiIiJuQOFMRERERETEDSiciYiIiIiIuAGFMxERERERETegcCYiIiIiIuIGFM5ERERERETcgMKZiIiIiIiIG1A4ExERERERcQMKZyIiIiIiIm5A4UxERERERMQNKJyJiIiIiIi4AYUzERERERERN6BwJiIiIiIi4gYUzkRERERERNyAwpmIiIiIiIgbUDgTERERERFxAwpnIiIiIiIibkDhTERERERExA0onImIiIiIiLgBhTMRERERERE3oHAmIiIiIiLiBhTORERERERE3MBZw5kxJsgYs9AYs8UYs8kYc5/z+W7GmJXGmChjTKQxpnfplysiIiIiIlIxeRVhnRzgIWvtGmOMH7DaGLMAmAI8a62db4z5h/NxaOmVKiIiIiIiUnGdNZxZa+OAOOf9VGPMFqAxYIGaztVqAQdKq0gREREREZGKrigtZ/mMMc2B7sAq4H7gV2PMazi6R/Yr6eJEREREREQqiyIPCGKM8QW+Ae631h4FJgMPWGuDgAeAj0+z3STnNWmRCQkJJVGziIiIiIhIhWOstWdfyRhvYB7wq7X2DedzKUBta601xhggxVpb80z7CQkJsZGRkSVQtoiIiIiISPljjFltrQ0pbFlRRms0OFrFtpwIZk4HgEHO+0OA7edbqIiIiIiISGVVlGvO+gNjgA3GmCjnc08AtwH/McZ4AZnApFKpUEREREREpBIoymiNSwFzmsU9S7YcERERERGRyqnIA4KIiIiIiIhI6VE4ExERERERcQMKZyIiIiIiIm5A4UxERERERMQNKJyJiIiIiIi4AYUzERERERERN6BwJiIiIiIi4gYUzkRERERERNyAwpmIiIiIiIgbUDgTERERERFxAwpnIiIiIiIibkDhTERERERExA0onImIiIiIiLgBhTMRERERERE3oHAmIiIiIiLiBhTORERERERE3IDCmYiIiIiIiBtQOBMREREREXEDCmciIiIiIiJuQOFMRERERETEDSiciYiIiIiIuAGFMxERERERETegcCYiIiIiIuIGzhrOjDFBxpiFxpgtxphNxpj7Ciy7xxgT7Xx+SumWKiIiIiIiUnF5FWGdHOAha+0aY4wfsNoYswCoD1wNdLHWZhljAkuzUBERERERkYrsrOHMWhsHxDnvpxpjtgCNgduAl621Wc5l8aVZqIicnbWWvYePEbUvmfX7U1i3L5nD6cd5fkQn+rXyd3V5IiIiInIGRWk5y2eMaQ50B1YBrwIDjTEvAJnAw9baiBKvUEROKz41k3X7Uli/P5mofclsiE0h+Vg2AD5eHnRqXIs8a7n100g+ndCLC1rWc3HFIiIiInI6RQ5nxhhf4BvgfmvtUWOMF1AH6AP0AuYYY1paa+0p200CJgE0bdq0xAoXqWyOZmazcX8KUfuTWb8vhXX7k4lLyQTA08PQtr4fwzo2oGtQbbo0qUXb+n54e3qQkJrFyKkrmPBpBJ/d0puQ5nVd/EpEREREpDDmlCxV+ErGeAPzgF+ttW84n/sFR7fGMOfjnUAfa23C6fYTEhJiIyMjS6JukQotMzuXLXFH87smrtufzM6E9PzlzetVp0sTRwjrFlSbjo1qUa2K52n3F380k5FTV3LoaCaf3XoBPZvVKYuXISIiIiKnMMasttaGFLbsrC1nxhgDfAxsORHMnL4DhgBhxpi2QBUg8fzLFalcrLVsj09zXieWzLp9KWw9eJTsXMcXJwF+PnRtUpvh3Rrnt4rVrl6lWMcIrFmVWZP6MHLqSsZ9Es7nt/ame1MFNBERERF3ctaWM2PMAGAJsAHIcz79BPA78AnQDTiO45qzP8+0L7WcifxlT1I6c9fG8t3aWGKSjgHg5+NF5ya16BpUm67Onw1qVsXxHcn5i0vJ4MYPVnLk2HFmTryALk1ql8h+RURERKRoztRyVqRujSVF4UwquyPpx5m3IY65a/azZm8yxkCfFvW4qlsjejWvS0v/Gnh4lEwQO53Y5Axu/GAFRzOy+eK2PnRqXKtUjyciIiIif1E4E3GhzOxc/twaz9y1sYRFx5Oda2lb35cR3ZtwdbdGNKpdrcxr2nf4GCOnriT9eA5fTOxDh0Y1y7wGERERd7MxNoXgBo4BtURKi8KZSBnLy7NExBzmu6hY5q2PIzUzhwA/H67u2ogRPRrToWHNEuuqeK72Jh1j5NQVZGTnMmtSH9o1UEATEZHK68uIvTz2zQZeHNGZmy7QCONSes5rQBARKbod8WnMXbuf79YeIDY5g+pVPBnWsQHDuzemf2t/PEu5y2JxNK1XnS9ucwwSMvrDVcya1Ie29f1cXVaZsNa6PByLiIj7WLcvmae+3wTAn1sPKZyJyyiciZynhNQsflx3gLlrY9kQm4KHgQFtAnjk0mAu6Vif6lXc959Zc/8azJrUhxs/WMFNH65k9qQ+tA6s2AFtR3waYz5exdi+zZkc2srV5YiIiIslpWUxecZqAnx96N60Nn9siSczO5eq3qefokaktLjvp0YRN5ZxPJffNh9k7tpYlmxPJDfP0rFRTf51eXuu6taIQL+qri6xyFrkB7SVjPpwFbMn9aFVgK+ryyoVObl5PDQnioNHM3nll62kZ+Xw0CVt1YomIlJJ5eTmcc+stSSlH+ebyf2IT81k3vo4ImIOM7BNgKvLk0pI4UykiHLzLCt2JjF3bSy/bIwj/XgujWpVZdKFLRnRvXG57hLYKsCXWbddwKgPVzJq6kq+vL0vLfxruLqsEvde2E7W7U/h7VHdWbEzkf8u3EH68Rz+74oOCmgiIpXQq79Gs3xnEq9d35VOjWuRcdyXKl4ehEUnKJyJSyiciRTBhv0p3PZZJAePZuLn48UVXRoxvHtjLmhRt9SHvi8rber7MXNinwIBrQ/N6lWcgLYxNoX//LGdK7s24qqujbiyS0OqeXvxybLdZBzP5YURnd3qmkARESldP62P44PFuxjTpxnX9WwCQLUqnvRpWY+F0fE8dUUHF1colZHGCRUpgnf+3E5WTi7/vak7Ef+6iFeu60LfVvUqTDA7IbiBHzMnXkBWTi6jpq5k3+Fjri6pRGTl5PLQnHXUqVGF567qCIAxhqeuaM89Q1ozO2IfD86JIjs3z8WViri3lIxsdiemu7oMkfMWfTCVR75eR89mdf4WwkLbBrArIZ29SRXj/0ApXxTORM7i0NFM/tgazw29griiS6MKf4Fw+4Y1mTHxAtKP5zJy6kr2Hyn//zm9sWAb0YdSmXJtF+rUqJL/vDGGhy4J5tFhwXwfdYC7Zq4hKyfXhZWKuK+UY9lc+95yLn1zMQs2H3J1OSLnLCUjmztmrKaGjxfvju5BFa+TPw6HBju6M4Zti3dFeVLJKZyJnMVXkfvIzbOM7FV5htXt2KgWMydeQGpmNqM+XMmB5AxXl3TOImMOM3XxLkb2CmJwu8BC17kztDXPXtWR3zYfYuL0SDKOK6CJFJSZncttn0WyN+kYLfxrMHnGauZviHN1WSLFlpdneWhOFPsOH+Pd0T2oX/PvA3i18K9Bs3rVCYtOcEGFUtkpnImcQV6eZXbEPvq1qlchB8g4k06Na/H5rReQfMwR0OJSyl9AS8/K4aGv1tG4djX+dZZrB8b1a86U67qwbEci4z4JJzUzu4yqFHFvjg+z6wiPOcxrN3Tl68l96RpUm7tnreX7qFhXlydFdDQzm3X7kvk+KpY3F2zjvtlrmfRZJHuSKlc31f8u3MHvWxzXk/VqXrfQdYwxhLYNYPnORDKz9WWdlC0NCCJyBkt3JLL/SAaPDmvn6lJcomtQbT67pTdjPg7nJucw+4V9y+iuXpq/hb2HjzHrtj74+pz97e6GkCCqeXvywJdR3PzRKqbf0pva1aucdTtxneM5eRzPzSvS31fOzfM/beGnDXE8+Y/2XNW1EQCf3dKbWz6N4IEvo8jOtfmDKYhrZWbnEpOUzu6EdHaf+JmYTkxSOolpx/PXMwYa165GyrFsbvpwFV/e3ocmdaq7sPKysXBrPG/+vo1rujdmbN9mZ1w3tF0g01fsYdXuwwxqq1EbpezofzORM5gVvpc61b25tGN9V5fiMt2b1mH6Lb0Y+3E4o5wTVZeHedwWb0tgxsq93DqgBX1a1ivydld2dVxXeNfMNYycupLPb72AAD+fUqxUztXWg0eZMC2CuJRMAv18aOFfg5YBvrQKqJF/v0mdanh7qpPIufpoyS4+WbabCf2bM3Fgi/zna/h48emE3tz2WSSPfL2OnNw8RvauPF2/XSk7N499h48Rk5TOrgLha3dCOgdSMk9aN9DPh+b+NbiofX1a+NeguX8NWvrXIKhudap6e7IxNoWbPlzJqA9XMuf2vjSsVc1Fr6r07UlK577Za2nfoCYvjOh81ulT+rash4+XB2HR8QpnUqaMtbbMDhYSEmIjIyPL7Hgi5yMhNYu+L/3BhP7NefJyDacbEXOYcZ+E06h2NWZP6oO/r/sGlpSMbC59czG+Vb2Yd8+AcxrEZen2RG77LJKGtasyc+IFFfpDS3m0clcSt30WSfUqntx8QTP2HD7G7sR0diWkceTYX11SvTwMTetVp6UzrLVwfjhtGeCLv28VzW93Bj+sO8C9s9byj84N+O+oHoWOTpuZncvtn69m0bYE/n11R8b0bV72hVYwmdm5JKZlkZDquB06msnuxGPsTkwjJukYew8fIzfvr89utap555/Xzf0dX0ycCGJFaVGO2pfMzR+tIsDPhy8n9SGwHPWOKKpjx3O45t3lHDyayY93DyCobtFaCcd9Es7ew8dY+HBo6RYolY4xZrW1NqTQZQpnIoV7L2wnr/yylT8eGkSrAF9Xl+MWVu5KYsK0CILqVmPWbX2o56YB7cEvo/h+3QHm3tmPLk1qn/N+ImIOM2FaBLWre/PFxD40rVdxu/1k5+bh5WHKRViZvyGO+76MIqhONT679QIa1z45OB9JP86uxPT8sHaidWF3UjrHc/6aLsHPx4uWBVrZHD8dj6tXqdwdS1bsTGLcJ+F0C6rNZ7f2PuMXHFk5udw1cy2/bznEU1d04NYBLU67bmWVm2c5nH7cEbgKBK+/HmfmPz6amfO37at5e+aHroLhq6V/jZNGoD1Xq/ccZszH5ePLt+Ky1nL/l1H8sO4A0yf05sJitIJ9umw3z/y4mUWPhFaoeT/F9RTORIopL88y+PUw6tesypzb+7q6HLeyfGcit3waQfN6Nfjitj7ULYEPBiXpl40HuWPGau4d2oYHL2573vtbvz+ZsZ+E4+PlwcyJfWgdWPGC+i8bD/L4t+vp3LgWb93YzW1DN8BnK2J4+odNdA+qzcfjehXrg2lunuVAcoYjuCWkFQhw6cSeMiJpw1pVaRlQgwGtAxjXr1mlCmtbDx7l+vdXUL9mVb6+o2+Rrrs8npPHfbPXMn/jQR6/rB13DGpVBpW6lrWW1Kyck4PWacJXUloWeYV83KpRxZMAP5+/br4+pzyuSmBNHwL9fEr9i5NVu5IYNy2c5vVqMOu2PiUS+tzBx0t38+95m3nk0mDuGty6WNvGJKYT+loYz17VkXH9mpdOgVIpKZyJFNOyHYmM/mgVb93YjeHdG7u6HLezdHsit06PoFWAL5/f2tttPswnpmVx6ZuLaVi7KnPv7F9i1xptPXiUmz8Kx1rLZ7f2pmOjWiWyX1fLOJ7Lv3/azBer9tK2vi97ko5Rp3oV/je6Oz2bFT6KmatYa3ntt2j+t3AnF7WvzzujulOtSsnNOZhxPLfANTyO1rbt8WlsiE3B39eHe4a0ZmTvIHy8KvY8h3EpGYz433LyrGXuXf3/1ip5Jjm5eTwwZx0/rjvAgxe35d6hbUqx0tKTmZ1LQmrWX10LC23pctyycv4+cb23p8Hf93Rh66/7/r4+1HCzgWyWbk/klukRtAn05YuJfahV3dvVJZ2XlbuSGP3RKi5qH8j7N/c8p4A7+LUwmtWrzqcTepdChVJZKZyJFNPdX6xhyfZEVj0xtMJPOn2uFm1LYNJnkTSsVZXpt/R2eZcPay23f76asOgE5t07gLb1/Up0/7sS0hj90SrSs3KYfktvujetU6L7L2ubDxzl3tlr2RGfxu0XtuShS4LZHp/KnTPXEHskg8cva8etA1q4RTfH7Nw8nvh2A1+t3s+o3kH8++pOeJXRIB+r9xxhyi9bWbX7ME3qVOOBi9oyvHtjPAu5/qq8S8nI5ob3VxCbnMGc2/vSoVHNYu8jN8/yyFfr+HZtLPcMac2DF7d1i3PIWkti2nHiC3QfPF3oSi2kWyFAvRpVTtvCVTCM1armXej1eeXFwuh4bv9sNe0b+vH5xAuoWbV8BrS4lAyufGcpNat58/1d/fE7x9fxzA+bmBW+l3VPX6LPA1JiFM5EiiEpLYs+L/3BmD7N+b8rNRDImazec5iJ0yPxMIaPx/eiW1Btl9Xyzer9PPTVOv55WTtuL6UuVfsOH+Pmj1eRmJrFx+N7FWsUSHdhreXT5TG89PNWalX35s0bujGgjX/+8qOZ2Tzy1Tp+3XSIyzo1YMp1Xc75Q01JOHY8h7tmrmFhdAL3DW3D/Re1KfMP+9ZaFm9P5NVft7Ix9iht6/vy0CXBXNKhvlsEj5KQlZPLuE/CiYw5wqcTep90ThRXbp7liW838GXkPm4f1JLHh7Vz6e8pMuYwU36JJjzm8N+W+fp4nbWFK8DPh7o1qlSqUT8XbD7E5Bmr6RpUm+m39C53U1Vk5eRy4wcr2X4ole/v7k/rwHP/si4sOp7x0yKYNqEXg4MDS7BKqcwUzkSKYerinbz481YWPHAhbUq49aUi2pWQxvhpEcSnZvLOqB5c3KHspx04kJzBpW8upl1DP2ZP6luqrRqHjmYy+qNV7Dt8jA/G9CS0HP1nnZSWxSNfr+fPrfEMbRfIlOu6FNol1VrLR0t28/IvW2latzrvju5B+4bFb0U5X4fTj3PLpxGs35/Mv4d3YvQFZ56XqLRZa5m/8SCv/RbNroR0ugbV5rFLg+nX+tyDjDvIy7Pc92UUP647wJs3dmVE9/Ofsywvz/J/P2xkxsq9TOjfnP+7okOZB7StB4/y2q/R/L4lngA/Hyb0b05L/xr513L5+1WpVNcSFtf8DXHcPWstIc3q8OmE3iXajbi0PTF3A1+s2sv7N/dkWKcG57WvzOxcuj33GyN7NeWZqzqWUIVS2SmciRSRtZahry+ibo0qfD25n6vLKTcS07K49dMINsSm8OxVZTuctrWWMR+Hs2bvEebfN7BMulcmpWUx5uNwtsen8s6oHuf9n39ZWLwtgYe+WkdKRjZP/qM9Y/s2O+uH5YiYw9w1cw0pGdk8P7wT14cElVG1jlbKcZ+EE5ucwdujunNpR/f5Hefk5vHNmv289ft24lIyGdDan0cuDaarC1uOz8eLP29h6uJdPDosmDtDizdgwplYa3lu3mamLYvh5j5Nee6qTmXS3W/f4WO8sWAb30XF4uvjxR2DWjGhf3MFsXPwfVQsD3wZRb9W/nw0LqRcdOv7MmIvj32zgTtDW/HosHYlss8J08LZnZhO2CODS2R/ImcKZ5WnjV6kCFbtPsyuxHRGaTLVYvH39WHWpD4MaRfIU99v4uX5W8krbGiyUjBj5R6W7kjkiX+0L7Pr3uo5X2+nxrW464s1zF27v0yOey6O5+Tx4s9bGPtJOLWd116M69e8SK0YvZrX5ad7B9KzWR0e+Xo9j3+znszs3FKvefOBo1zz3nIS07KYMfECtwpmAF6eHtzYqykLHw7lX5e3Z3PcUa7+3zJu/zyS7YdSXV1esUxbtpupi3cxpk8zJpdwd2BjDP93RQduH9SSGSv38s9vN5Tq+0JCahZPf7+RIa+H8fOGOCZd2JIljw7mrsGtFczO0dXdGjPluq4s25nIHTNWk5VT+v/+z8e6fck89f0mBrbx56FLgktsv4PbBRKT5JhLUaS0qeVMpID7Zq/lz63xhD9xUbnqwuEucnLzeObHTcxYuZerujbi1eu7lOrodjGJ6Vz2nyX0alGX6RN6lXm3qfSsHCZOj2Tl7iReGN6Zmy5wr1C/KyGNe2evZWPsUUZf0JR/Xd7hnM7r3DzLW79v450/d9ChYU3eu7lHqQXh5TsTuf2z1fhW9WL6Lb1LfGCX0pCWlcNHS3bx0ZLdjsluezTh/ova0KSOe8+LN39DHHd+sYaL29fnvZt7llp3YGstby7Yxtt/7uCaHo159bquJXqso5nZfLh4Fx8v3U1WTh439gri3iFtaFCr4k2m7Cqzwh3h+qL29Xl3dA+qeLnfd/tJaVlc+c5SjDHMu2dAiU4FsDfpGBe+upCnr+zAhP6ax0/O33m1nBljgowxC40xW4wxm4wx952y/GFjjDXGlO9O91LpHUk/zvwNB7mme2MFs3Pk5enBv6/uxKPDgvlh3QHGfRJOSkZ2qRwrN8/y0Ffr8PY0TLm2i0sGHKjh48W0Cb0IbRvAE3M38NGSXWVeQ2GstcyJ3McV7yxl/5EMPhjTkxdGdD7n89rTw/DQJcFMG9+L2OQMrnhnKb9uOljCVcO89QcY/0kEDWpV5ZvJ/cpFMAPHoBL3X9SWxY8O5pb+Lfhh3QGGvLaIZ37YRGJalqvLK1T47sPc92UUPZrW4e1R3Uv1Ok1jDA9eEsyDF7fl2zWx3P9lFNm5fx+Cvrgys3P5cPEuLpyykHf+3MGQdoH8/uAgXhzRWcGshI3q3ZTnru7I71sOcd/steSUwN+vJOXk5nHPrLUkpR/ngzE9S3yOtqb1qtPSvwYLoxNKdL8ihSnKVx85wEPW2vZAH+AuY0wHcAQ34GJgb+mVKFI2vl0by/HcPEa5WetHeWOM4c7Q1vxnZDdW7znCde8t/9sEvyVh6uJdrN5zhOeu7uTSD2JVvT35YEwIl3VqwPM/beGdP7ZTlj0STpWSkc09s9by6Nfr6dKkFvPvG1hi3QIHtwvkp3sH0NK/Brd/vpoXf95SIh+ywdG97p5Za+kaVIuv7+hHo2LMr+Uu6taowr+u6EDYw6Fc06Mxn6/cw4VTFvL6b9EczSydLynOxY74VG77LJImdarx0diyu47o3qFtePyydvy47gD3zlrL8ULmCCuKnNw8vozYy+DXwnjh5y10aVKbefcM4L839aCFv2un9KjIxvZtzr8ub8/8jQd5cM46csuo63pRTPk1muU7k3hxRGc6NS6deShDgwNZuSuJjOPu3bVTyr9id2s0xnwP/Ndau8AY8zXwb+B7IMRam3imbdWtUdyVtZaL31yMX1Uv5t7Z39XlVBjLdyZy++erqebtybQJvUps8uatB49y1TvLGNo+kHdH93CL4cxzcvN49Ov1fLs2lnYN/BgUHEBo20BCmtcpsyG4I2MOc9/sKA4ezeTBi9tyx6BWpdIikpWTyws/beGzFXvo1bwO/72pB/VrnltAttbyyi/RvL9oJ5d2rM9/RnYvF4MOFMWuhDReX7CNn9bHUbu6N5MHtWJcv+YufX2HjmZyzbvLycrJY+6d/QiqW/ZdLz9eupt/z9vMRe0D+d/oHkXu+myt5ZeNB3nVOVpmt6DaPDosmH6t1HGnLL0btoMpv0RzbY8mvHpdF5fP6TZv/QHu/mIt4/o249mrO5XacRZvS2DsJ+FMG9+Lwe3Kzyi94p5KbLRGY0xzYDHQCQgFhlpr7zPGxKBwJuVYRMxhrn9/BVOu7cINvcpuRLrKIPpgKhOmObo3vndzTy5sG3Be+zuek8fV/1tGQmomv95/YaFDwbtKXp7l85V7mL8xjsiYI+TkWXx9vOjfuh6hwYGEBgfQsFbJtwjl5ln+++cO/vPHNhrXqcbbI7uXySTZ30fF8s9vN1C9iidvj+xe7CHls3PzeOyb9Xy7JpbRFzTluas7VcjJnTfGpvDqr9Es2pZA/Zo+3Du0DTeEBJX5vFmpmdnc8MFK9ial8+XtfUuthaEoPl8Rw1Pfb2JQ2wA+GNPzrIF12Y5EXvllK+v3p9A60JdHLq1Y88yVN2/9vo23ft/OqN5BvDC8s8sCWvTBVEa8u4wODWvyxW19SvVauMzsXLo/t4DrQ5rwXCmGQKkcSiScGWN8gUXAC8AvwELgEmttypnCmTFmEjAJoGnTpj337NlzTi9CpDQ9OCeK3zYdIvzJoRrVqxQcTMlk/LRwdsSn8dI1nc9rSPbXf4vmnT938OHYEJfMqVZUqZnZLNuRxKJt8YRFJxCXkglAcH0/QoMDGBQcQEizuuf9YSI2OYMHZkcRHnOY4d0a8e/hncp00ujth1KZPHMNuxLSeOiSYCYPalWkD2rpWTncOXMNi7Yl8NDFbbl7SOsK/0F71a4kpvwazeo9R2hWrzoTB7YktG1AmbReHc/J45ZPI1i5K4mPx/di0Hl+SVISZofv5Z9zN9C/lT8fjg0p9JrIdfuSefXXaJbuSKRx7Wrcf1EbrunRpEKG+PLEWsurv0bzbthOxvZtxrNXdSzzf78pGdkM/98y0rJy+OmeAQSeY+t9cdz6aQTb49NY9EhohX+/ktJ13uHMGOMNzAN+tda+YYzpDPwBHHOu0gQ4APS21p72KnG1nIk7SjmWTe8Xf+f6kCY8P7yzq8upsFIzs5k8Yw1LdyRy/0VtuG9om2L/5xa1L5lr31vO8G6Nef2GrqVUacmz1rLtUBph0Y6gFrnnMNm5jla1fq3+alUr7nVWP2+I4/Fv1pObZ3l+RKcSmTz4XKRn5fD4txv4cd0BBgcH8OaN3ahd/fQX5CelZXGLc168F0d0ZmQlmrrCWsufW+N59ddoth50DLvfrF51+rf2Z2Brf/q18qdW9ZIN19ZaHpyzjrlrY3n1ui5lOl/d2Xyzej+PfL2OXs3r8sn4XtTwcXw5tiM+jdd/i2b+xoPUrVGFuwe3ZnSfpqU6+qsUj7WWF37awkdLdzNxQAuevLx9mQWWvDzLpM8jCYtOYPakPoQ0r1smxz3R4vvHQ4NoFeBbJseUium8wplx/EubDhy21t5/mnViULdGKac+XbabZ37czE/3Diixa6KkcMdz8nj8W0c3thtCmvDCiM5F7tqVmZ3LP95eQubxXH554EJqlmHrUElLy8ph2Y5EwqITWBQdzwFnq1rb+r6OoNY2gJDmp29VO3Y8h+d+3MzsiH10DarN2yO7ldkcb6djrWXGyj08N28zgX5VeXd0j0InZd6bdIyxn6zi4NFM/juqBxe5cetnabLWsjMhnaXbE1i6I5GVuw6TlpWDh4HOjWsxoI0/A1oH0KNZ7fMOJK/8spX3wnby0MVtuWdomxJ6BSXn+6hYHpyzjm5BtXnpms58vGQ3X63eRzVvT267sCUTB7bE10c9GtyRtZZnftjE9BV7mBzaikcvDS71gGat5e0/dvDm79t47uqOjO3bvFSPV9C+w8cYOGUhT13RgVsHaEh9OXfnG84GAEuADcCJoZWesNb+XGCdGBTOpByy1jLsrSX4eHvww90DXF1OpVBwzqML2wbw7ugeRfrg9eyPm5i2LIaZEy+gfzGvbXJn1lq2x//VqhYR42hVq1HFk36t/QkNDiA0OJDGzla1jbEp3Dt7LbsT07ljUCsevLhtmV+7dCZR+5K5a+YaElKzeOqK9tzcp1n+h7WNsSmMnxZBTl4eH4/rRc9mpX9dXHmRnZvHun3JLNmeyNIdiUTtSyY3z1LN25PeLeoysI0/A9r4E1zfr1gffk980z+qd1NeHNHJbbti/bwhjntnrSUnz1LF04Ob+zTjrsGt3OqaUimctZYn5m5kVvhe7hvahgcublti+07JyGbboVS2Hkxl28FUog+lEn0wlZSMbK7p0ZjXr+9a5uf00NfDaFS7Gp/fekGZHlcqlhIbEOR8KZyJu1mz9wjXvLucl67pzKhK1LXKHcwO38uT322kXQM/po3vdcbrBZbvTOSmD1eV+mhc7iAtK4flOxIJ25bAouiE/GkI2gT60qVJbX5cd4A6Nbx584ZuxR6Ao6wcST/OA3OiCItO4OpujXhxRGfW7k3m9s8jqV29CtNv6U3rQHUJOpPUzGxW7jrM0u0JLNmRyK6EdAD8fX0Y0LoeA9oEMKC1/xmnkfh100HumLGaoe0Cef/mnni5UYgvzIkvKCYObOH2E3jLyfLyLI9+s56vV+/nkUuDuWtw62Jtn5mdy474NKIPpv4Vxg6l5l+rC+Dn40VwAz/aNvCjU6NaXNOjsUtGPn1+3mY+W7GHqKcv1jXqcs4UzkRO45Gv1vHzhjhWPXmRus24wMLoeO6auYY61avw6YRetClk0uHUzGyGvbWEKl4e/HzvwEo1Qbi1lh3xaYRFJxC2LZ6ImCOEtg3g5Wu7ULeEJ1ktaXl5lnfDdvDGgm0E1a3OgeQMWgX4Mv2W3uc87H5ldiA5g6U7Elm6PZFlOxJJSj8OQOtAXwa09mdgG38uaFkv/31s9Z7D3PThKto1rMms2y7Qh0gpdbl5lgfnRPF91AH+dXl7Jg5sWeg6e5LSiS7QChZ9KJWYxHROTJtWxdOD1oG+BDfwc9zqO342rFXVLVp+l25P5OaPV/HxuBCGtq+c3bLl/CmciRTiaGY2vV/4nRHdG/PSNV1cXU6ltWF/ChM+jeB4Ti5Tx4bQp2W9k5Y/+vU6vl69n68n96NHGQwP787y8qzL5xQqrmU7Erlv9lpaB/rywZgQalUrv9cKuou8PMvWg6ks3ZHAku2JhO8+TFZOHl4ehu5Na9OnZT0+X7mH2tW8+WZyP3UNlDKTk5vHvbPX8vOGgzzxj3a0re93UkvY9kNpZDknHzcGmtWtXiCA1SS4gR/N61V361berBzHkPrX9GisQcTknCmciRTi85V7eOq7jfxwd3+6NKnt6nIqtX2HjzF+Wjj7Dmfw2g1duaprIwD+2HKIW6dHcmdoKx4d1s7FVcq5Op6Th7encYtvvSuizOxc1uw5whJny9rGAynUrV6Fb+/s5/KBYqTyyc7N486Za1iw+VD+c4F+Pie1ggU38KNNoF+57QkxcXokWw8eZcmjg/W+JufkTOFM/RykUrLW8sWqvXRsVJPOLpyIVRyC6lbnm8n9mPTZau6dtZa45AxuCAni8W830K6BH/dd5H4jzEnRlebEsAJVvR2Dx/Rr7c9jwxzX/AHUcfOur1IxeXt68N+buvPnlnjq1KhCcH2/CncuhgYH8PuWQ+xMSNf1s1Li9D+mVErr96ewJe4oo3o31bdebqJ29Sp8dmtvLu/SkJfmb+WKd5aSfOw4b97YTXMbiRRDnRpVKtyHYSlffLw8uaxzQ/q0rFchz8XQYMck7mHR8S6uRCoihTOplGaF76WatydXd2vk6lKkgKrenrwzsju3DWxBbHIG91/UlvYNa7q6LBERkXxN6lSnTaAvYdEJri5FKiB1a5RKJy0rhx/WHeDKrg3xK8cTGVdUHh6GJy/vwJg+zQmqW83V5YiIiPxNaHAA05fvIT0rhxoa7VlKkFrOpNL5IeoAx47nal4zN9e0XnV1ORUREbc0ODiQ47l5LN+Z5OpSpIJROJNKZ1b4Xto18KNbUG1XlyIiIiLlUEjzutSo4qnrzqTEKZxJpbIxNoUNsSkaCERERETOWRUvD/q39icsOoGynJZKKj6FM6lUZoXvxcfLg+HdG7u6FBERESnHQoMDiU3OYEd8mqtLkQpE4UwqjfSsHL6POsAVXRpRq5oGAhEREZFzd2JI/YXq2iglSOFMKo156w+QlpXDqN5Bri5FREREyrlGtasRXN9PQ+pLiVI4k0pjVvg+2gT60rNZHVeXIiIiIhVAaHAAETGHScvKcXUpUkEonEmlsPnAUaL2JWsgEBERESkxocGBZOdalu1IdHUpUkEonEmlMDtiL1W8PLimhwYCERERkZIR0rwOvj5e6tooJUbhTCq8jOO5zF0byz86NaB29SquLkdEREQqCG9PD/q3rkdYdLyG1JcSoXAmFd5PG+JIzcxhVO+mri5FREREKpjBwYHEpWSy7ZCG1Jfzp3AmZSozO5eUjOwyPeas8L20DKhB7xZ1y/S4IiIiUvEN0pD6UoK8XF2AVGzWWnYnprNoWwKLtiWwclcSuXmWW/q34O4hrfGrWrrzjW07lMrqPUd48h/tNRCIiIiIlLiGtarRroEfYdHx3DGolavLkXJO4UxKXFpWDst3JLJoWwKLtyew73AGAC38azCyV1NSM3P4YPEuvlkTy6PDgrmuRxM8PEonOM0K30sVTw+u7dmkVPYvIiIiEhocyEdLdpGamV3qXzxLxVbpw1lqZja+Pl5qVTkP1lo2xx11tI5FJ7B6zxFy8izVq3jSr5U/ky5sxaA2ATStVz1/m7F9m/HMj5t49Ov1zFi5h6ev7Fji849lZufy7ZpYLu3UgLo1NBCIiIiIlI7Q4ADeX7STZTsSGdapoavLkXKs0oez+2dHkZiWxUOXBDOwjb9CWhEdTj/Oku2OroqLtyWSmJYFQPuGNZk4sCWD2gbQs1kdqngVfllj16DafHNHP75fF8vL87dy7XvLGdG9MY9f1o76NauWSI3zN8aRkpHNqN5BJbI/ERERkcL0bFYHP+eQ+gpncj7OGs6MMUHAZ0ADIA+Yaq39jzHmVeBK4DiwE5hgrU0uxVpLnLWWSzs24D9/bGfsJ+H0blGXhy8J1sARhcjJzWPd/mQWRTsC2frYFKyFOtW9GdAmgEFtA7iwjT+BxQhWHh6GEd2bcEmHBrwbtoMPF+/m100HuWtwa24d0IKq3p7nVfOs8H00r1edvi3rndd+RERERM7E29ODAW38CYtOwFqrL/vlnJmzzclgjGkINLTWrjHG+AGrgeFAE+BPa22OMeYVAGvtY2faV0hIiI2MjCyRwktSVk4uX0bs450/d5CQmsWFbQN46OK2dA2q7erSXCouJYPFzoE8lm5P5GhmDh4Gujetw4VtAhgUHEDnxrXwLKHrxfYmHeP5nzbz2+ZDNK1bnScvb88lHeqf0xvcjvg0LnpjEY9f1k4X54qIiEipmxOxj0e/Wc/8+wbSvmFNV5cjbswYs9paG1LYsrO2nFlr44A45/1UY8wWoLG19rcCq60EriuJYl3Bx8uTsX2bc33PID5fGcN7YTu5+n/LuLhDfR66pC3tGlSef2CxyRnMidjH/I1x+fN1NKhZlcs6NeTCtgEMaO1Preqlc6Fr03rVmTo2hKXbE3n2x03c/vlqBrT25/+u7EDb+n7F2tfs8L14exqu00AgIiIiUgZODKkfFp2gcCbn7KwtZyetbExzYDHQyVp7tMDzPwJfWmtnnGl7d205O1VqZjbTlsXw4eJdpB3P4YoujXjgoja0DPB1dWmlIjs3jz+2xDM7Yi+LtiUA0KdFPYa0C+TCtgG0re9b5s3zObl5zFi5hzcWbCP9eC5j+jTjgYvaFikYZuXk0ufFP+jXyp//je5RBtWKiIiIwGX/WYJfVS/m3N7X1aWIGzuvlrMCO/EFvgHuPyWYPQnkADNPs90kYBJA06ZNi1G26/hV9ebeoW0Y27cZUxfvYtqyGH7eEMe1PRpzz5A2BNWtfvadlAMxiel8GbmPryL3k5iWRf2aPtw9uDU3hAS5/DV6eXowvn8LrurWmNd/i+azFTF8HxXLg5cEc1PvpmfsSvnrpkMcOZbNSA0EIiIiImVocHAAHyzexdHMbGpqSH05B0VqOTPGeAPzgF+ttW8UeH4ccAcw1Fp77Gz7KS8tZ6dKSM3ivbCdzFi1B2stI3s15e4hrUtsVMGylJWTyy8bDzI7fB8rdiXh6WEYHBzIyF5BhAYH4OVZ+OiKrrb5wFGe/XETq3Yfpl0DP565qiN9TjPQx6ipK9mffIxFDw8utfnTRERERE4VvvswN3ywgndH9+AfnTVqoxTuTC1nRRkQxADTgcPW2vsLPD8MeAMYZK1NKEoh5TWcnXAgOYP/LtzBnIh9eHoYxvZtxuTQ1uViDq3th1KZFb6Pb9fuJ/lYNk3qVGNkryCu6xlEg1rlI2Raa/l5w0Fe/HkLsckZXN65If/8Rzua1PmrlW93YjqDXwvjkUuDuWtwaxdWKyIiIpVNTm4e3f+9gMs6NWDKdV1dXY64qfMNZwOAJcAGHEPpAzwBvA34AEnO51Zaa+84077Kezg7YU9SOv/5YzvfrY2lmrcntwxowcSBLalVzb2arzOO5zJv/QFmR+xj9Z4jeHsaLunQgJG9g+jfyr/ctiplZufywaJdvLdoB9bC7YNaMXlQK6pV8eSl+Vv4aMluVjw+pFjD+ouIiIiUhLtmriEi5jCrnhiqIfWlUOcVzkpSRQlnJ+yIT+XNBdv5aUMcNat6cfugVozv15waPq6d23tjbAqzI/by/doDpGbl0NK/BiN7B3FNjyb4+/q4tLaSFJucwUs/b2He+jga1qrKY8Pa8e95mwlpXocPxhR6vouIiIiUqq8i9/HI1+v56d4BdGxUy9XliBtSOCtlG2NTeHPBNv7YGk+9GlWYHNqKm/s0O+9JlIsjNTObH9YdYHb4PjbEplDFy4PLOzdkZK8gereoW6G/uQnffZhnftjE5jjHODWfTuhFaHCgi6sSERGRyig+NZPeL/yhSyzktBTOysjqPUd4Y0E0y3Yk0aBmVe4e0prrejbBx8ujVMKRtZa1+5KZHb6XeevjOHY8l+D6fozqHcSI7k1KbT4yd5SbZ5kTuY8tcUd5+sqOJTYxtoiIiEhxXf72EqpX8eSrO/q5uhRxQwpnZWz5zkRe+zWaNXuT85/z8jB4ehi8PT2cPx2PvTw88u+fWObl6YGXh8GrsPXzl3mwMTaF6EOpVPP25MquDRnZuyndg2pX6FYyEREREXf32q/RvLdoJ2ueutjtxiQQ1yuRec6k6Pq18uebyfVYvD2R9fuSyc6z5OblkZNrycmz5OTmOX9asvPyyHXez3Guc2L97FxLRnYuObmO+7l5J68f4OfDCyM6cVXXRvhpLg0RERERtxAaHMB/F+5g6fZELu+iIfWl6BTOSokxhkFtAxjUNsDVpYiIiIhIGeoWVJta1bxZGB2vcCbF4p4zDouIiIiIlFNenh4MbOPPom0J5OWV3SVEUv4pnImIiIiIlLDQ4EASUrPyR5MWKQqFMxERERGREnbi0paw6HgXVyLlicKZiIiIiEgJC/DzoXPjWoRFJ7i6FClHFM5ERERERErB4OAA1uw9QvKx464uRcoJhTMRERERkVIwKDiQPAtLtie6uhQpJxTORERERERKQbeg2tSu7hhSX6QoFM5EREREREqBp4fhwjYBLNaQ+lJECmciIiIiIqUkNDiAxLTjbDqgIfXl7BTORERERERKyYVtAzAGdW2UIlE4ExEREREpJf6+PnRpXEvznUmRKJyJiIiIiJSiQcGBrN2XzJF0DakvZ6ZwJiIiIiJSigYHB2AtfBcV6+pSxM0pnImIiIiIlKKuTWrTr1U9XvhpC4u2Jbi6HHFjCmciIiIiIqXIw8Pw/pietKnvx+QZq1m/P9nVJYmbUjgTERERESllNat6M31CL+rWqMKEaRHsTkx3dUnihhTORERERETKQGDNqnx2S28sMPaTVcSnZrq6JHEzCmciIiIiImWkZYAvn4zvRWLqccZ/EkFqZrarSxI3ctZwZowJMsYsNMZsMcZsMsbc53y+rjFmgTFmu/NnndIvV0RERESkfOsWVJv3bu7BtkOp3DFjNVk5ua4uSdxEUVrOcoCHrLXtgT7AXcaYDsDjwB/W2jbAH87HIiIiIiJyFqHBgUy5rgvLdiTx0Jx15OVZV5ckbsDrbCtYa+OAOOf9VGPMFqAxcDUQ6lxtOhAGPFYqVYqIiIiIVDDX9GhCfGoWL8/fSoCfD/93RQeMMa4uS1zorOGsIGNMc6A7sAqo7wxuWGvjjDGBJV+eiIiIiEjFdfuFLYk/msUny3YT6FeVyaGtXF2SuFCRw5kxxhf4BrjfWnu0qKneGDMJmATQtGnTc6lRRERERKRCMsbwr8vbk5iWxSu/OFrQruvZxNVliYsUabRGY4w3jmA201r7rfPpQ8aYhs7lDYH4wra11k611oZYa0MCAgJKomYRERERkQrDw8Pw2vVdGdDan8e+Wc/C6EI/VkslUJTRGg3wMbDFWvtGgUU/AOOc98cB35d8eSIiIiIiFV8VLw/eu7kH7Rr4ceeMNazde8TVJYkLFKXlrD8wBhhijIly3v4BvAxcbIzZDlzsfCwiIiIiIufAr6o3n07oTYCfD7d8GsHOhDRXlyRlzFhbdsN2hoSE2MjIyDI7noiIiIhIeROTmM517y/Hx8uTb+/sR/2aVV1dkpQgY8xqa21IYcuKdM2ZiIiIiIiUjeb+NZg2vjfJx44z7pNwjmZmu7okKSMKZyIiIiIibqZzk1q8P6YnO+LTmPRZJJnZua4uScqAwpmIiIiIiBsa2CaA167vyspdh3lwThS5eWV3OZK4RrEmoRYRERERkbIzvHtjEtOyeP6nLfj7buLZqzpS1PmGpfxROBMRERERcWMTB7YkPjWLqYt3Ub9mVe4a3NrVJUkpUTgTEREREXFzjw9rR0JqFq/+Gk2Arw839ApydUlSChTORERERETcnIeHYcp1XUhKP84/526gnm8Vhrav7+qypIRpQBARERERkXLA29OD90b3oGOjmtz1xRpW7zni6pKkhCmciYiIiIiUEzV8vPhkfC8a1KzKrdMj2BGf6uqSpAQpnImIiIiIlCP+vj58dssFeHl4MPbjcA6mZLq6JCkhCmciIiIiIuVM03rV+XRCL45m5jDuk3BSjmW7uiQpAQpnIiIiIiLlUKfGtZg6pie7EtN4N2yHq8uREqDRGkVEREREyql+rf354rY+dGlSy9WlSAlQOBMRERERKcd6Na/r6hKkhKhbo4iIiIiIiBtQOBMREREREXEDCmciIiIiIiJuQOFMRERERETEDSiciYiIiIiIuAGFMxERERERETegcCYiIiIiIuIGFM5ERERERETcgMKZiIiIiIiIG1A4ExERERERcQPGWlt2BzMmAdhTZgcsOn8g0dVFiNvTeSJFpXNFikLniRSFzhMpKp0r5Ucza21AYQvKNJy5K2NMpLU2xNV1iHvTeSJFpXNFikLniRSFzhMpKp0rFYO6NYqIiIiIiLgBhTMRERERERE3oHDmMNXVBUi5oPNEikrnihSFzhMpCp0nUlQ6VyoAXXMmIiIiIiLiBtRyJiIiIiIi4gbKXTgzxgwzxkQbY3YYYx4v8PyXxpgo5y3GGBNVyLbdjDErjDGbjDHrjTE3FljWwhizyhiz3bmvKqc5/jjnOtuNMeOKu72UDVeeJ8aYZsaY1c5jbDLG3FGc7aXslOJ5crdzn9YY43+G4+v9pJxw5bmi95TyoxTPk5nO/W40xnxijPE+zfH1nlIOuPI80ftJOWCtLTc3wBPYCbQEqgDrgA6FrPc68H+FPN8WaOO83wiIA2o7H88BRjrvvw9MLmT7usAu5886zvt1irq9bpXmPKkC+Djv+wIxQCOdJ+51K+XzpDvQ3Pm39z/N8fV+Uk5ubnCu6D2lHNxK+Tz5B2Cct1mn+b9H7ynl4OYG54neT9z8Vt5aznoDO6y1u6y1x4HZwNUFVzDGGOAGHCflSay126y12533DwDxQIBzmyHA185VpwPDCzn+pcACa+1ha+0RYAEwrBjbS9lw6XlirT1urc1yPvTB2UKt88TtlMp54ny81lobc5bj6/2k/HDpuaL3lHKjNM+Tn60TEA40KeT4ek8pH1x6nuj9xP2Vt3DWGNhX4PF+53MFDQQOnThxT8cY0xvHtwc7gXpAsrU259T9GmNCjDEfneX4p91eXMLV5wnGmCBjzHpnHa8430B1nriX0jpPzrSe3k/KJ1efK3pPKR9K/TxxdlMbA/zifKz3lPLH1eeJ3k/cXHkLZ6aQ504dbnIUhXzTcNJOjGkIfA5MsNbmnWm/1tpIa+3Esxy/KHVJ2XH1eYK1dp+1tgvQGhhnjKlfxLqk7JTWeXJaej8pt1x9rug9pXwoi/PkXWCxtXYJ6D2lnHL1eaL3EzdX3sLZfiCowOMmwIETD4wxXsA1wJen24ExpibwE/Ava+1K59OJQG3n9n/bbxGOX9TtpWy4+jzJ5/w2ahOOb8F0nriX0jpPzvf4Ok/cj6vPlXx6T3FrpXqeGGOextF97cFiHl/niXtx9XmST+8n7qm8hbMIoI1zNJkqwEjghwLLLwK2Wmv3F7axc5u5wGfW2q9OPO/sm7sQuM751Djg+0J28StwiTGmjjGmDnAJ8Gsxtpey4dLzxBjTxBhTzXm/DtAfiNZ54nZK5TwpBr2flB8uPVf0nlJulNp5YoyZiOOaslFnaHXVe0r54NLzRO8n5YB1g1FJinPDMRLNNhz9a588ZdmnwB1n2PZmIBuIKnDr5lzWEsfFkzuAr/hrJJsQ4KMC+7jFuc4OHE3JnGl73SrfeQJcDKzHMQLTemCSzhP3vJXieXIvjm9Hc3B883ji3ND7STm9ufJc0XtK+bmV4nmS49znief/79TzxPlY7ynl4ObK80TvJ+5/M84/hoiIiIiIiLhQeevWKCIiIiIiUiEpnImIiIiIiLgBhTMRERERERE3oHAmIiIiIiLiBhTORERERERE3IDCmYiIiIiIiBtQOBMREREREXEDCmciIiIiIiJu4P8BSjt8aRXMGAsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB510lEQVR4nO3dd3yV5f3/8deVnZAFJCGDhD3DSNhTQVRwolYcRdS2ztbuobVD+/21ta0d1i5XbR0o7q2oICh7hxk2IYPskJBJxrl+f5yEBgyQwDk5J8n7+XicB8k9Pye5uXM+93Vdn8tYaxERERERERHP8vF0ACIiIiIiIqLkTERERERExCsoORMREREREfECSs5ERERERES8gJIzERERERERL6DkTERERERExAsoORMREREREfECSs5ERDoJY0xFs5fDGFPd7Pv5no7vXBhjMowxF3s6jjMxxiw3xtzhxuNfZYzZ0fh7XG2MGX7K+u8bY/KMMWXGmGeNMYHN1vUwxrxljKk0xhw2xnz1lH1nGWN2G2OqjDHLjDF93PU+RETk7JSciYh0Etba0KYXkAlc1WzZQk/HdypjjF9nOIc7GWMGAQuBe4BI4D3g3ab3ZYyZDTwAzAL6Av2BXzU7xD+AWqAXMB/4lzEmuXHfKOBN4BdAD2Aj8Iq735OIiJyekjMRkU7OGONjjHnAGHPAGFNsjHnVGNOjcV1fY4w1xnzNGJNljDlqjLnHGDPeGLPNGFNqjPl7s2PdboxZZYz5W2NLzW5jzKxm6yOMMf82xuQaY3KMMb82xviesu9fjDElwMPGmAHGmM8a4yoyxiw0xkQ2bv8CkAS819hq9BNjzAxjTPYp7+9E65ox5mFjzOvGmBeNMceA288S00BjzOeN76XIGNNicmKMCWo8ZnHjz2SDMaaXMeY3wHTg740x/r1x+6HGmE+NMSXGmD3GmBuaHeu/xpgnGteXN57/dC1Ws4EV1tqV1tp64PdAAnBh4/rbgH9ba3daa48C/w+4vfE83YCvAL+w1lZYa1cC7wILGve9DthprX3NWlsDPAyMNsYMPU0sIiLiZkrOREQ6v+8A1+D8QB8PHMXZotLcRGAQcCPwGPAz4GIgGbjBGHPhKdseBKKAh4A3m5I94DmgHhgIpAKXAne0sG8M8BvAAI80xjUMSMSZJGCtXcDJLYB/aOX7nQu8jrOlaeFZYvp/wCdAd6A38LfTHPM2IKIxvp44W7KqrbU/A1YA9zXGeF9jUvQp8FLj+7wZ+GdTi1Wj+Y3njgLSGuNsiWl8nfr9iMbvk4GtzdZvBXoZY3oCg4EGa+3eU9Ynt7SvtbYSONBsvYiItDMlZyIind/dwM+stdnW2uM4k5/rT+ny9/+stTXW2k+ASuBla22BtTYHZ/KR2mzbAuAxa22dtfYVYA9whTGmF3AZ8D1rbaW1tgD4C3BTs32PWGv/Zq2tt9ZWW2v3W2s/tdYet9YWAn/mf61C52qNtfZta60DCD9LTHVAHyC+8f2vPM0x63AmZQOttQ3W2k3W2mOn2fZKIMNa+5/G97kZeAO4vtk2H1hrv2j8ffwMmGyMSWzhWJ8CFza2GAYADwIBQEjj+lCgrNn2TV+HtbCuaX3YafY9db2IiLSzDt0XX0REWqUP8JYxxtFsWQPOcUhN8pt9Xd3C96HNvs+x1tpm3x/G2fLVB/AHco050djjA2Q127b51xhjYoDHcXYNDGvc/mir3tXpNT/H2WL6Cc4WrPXGmKPAn6y1z7ZwzBdwtpotaux2+SLOhLeuhW37ABONMaXNlvk1HuNLMVprKxq7ecafEjvW2t3GmNuAvwNxjefdBTR17azAmYA2afq6vIV1TevLT7PvqetFRKSdqeVMRKTzywIus9ZGNnsFNbaKnYsE0yzTwTku7EjjeY4DUc3OE26tbd5NrnlSB84ujRYYZa0NB27h5G58p25fyf9ajWgcOxZ9yjbN9zljTNbaPGvtndbaeJwtjP80xgw89Q03thL+ylo7HJiCs3Xs1tPEmAV8fsrPO9Rae2+zbU60khljQnEW5Dhy6nkbz/26tXaEtbYnzm6kfYANjat3AqObbT4ayLfWFgN7Ab/GoiLN1+9sad/G7pgDmq0XEZF2puRMRKTzewL4TVPRCWNMtDFm7nkcLwb4jjHG3xgzD+dYsQ+ttbk4x2/9yRgT3liIZMAp49VOFYazBafUGJMA/PiU9fk4KxA22QsEGWOuMMb4Az8HAjmNs8VkjJlnjOnduPlRnIlWw6nHMcbMNMaMbEwGj+Hs5ti03akxvg8MNsYsaPwZ+TcWWBnWbJvLjTHTGrsq/j9gnbX2pFazZucea4zxNcZEA08C71lrdzeufh74hjFmuDGme+PP47+N770SZzXG/zPGdDPGTMU5Hq+pBe8tYIQx5ivGmCDgl8C2ZscWEZF2puRMRKTz+yvOKn2fGGPKgbU4C3Ocq3U4i4cU4SzqcX1jSw04W5MCcHa9O4qzMEfcGY71K2AMzrFOH+BMJpp7BPh5Y4XEH1lry4BvAs8AOThb0rI5szPFNB5YZ4ypwPkz+q619lALx4ht3O8YkA58jrOLITh/vtcbZ6XLx6215TiLjtyEszUsD2eVxeZJ5Es4W8FKgLE4C4Sczl+BUpxj+0qBO5tWWGsXA38AluHsXnq48bhNvgkE4xwn+DJwr7V2Z+O+hTirOf6m8ecykZPHB4qISDszJw8bEBEROT1jzO3AHdbaaZ6OpaMyxvwXyLbW/tzTsYiIiHdRy5mIiIiIiIgXUHImIiIiIiLiBdStUURERERExAuo5UxERERERMQLKDkTERERERHxAn7tebKoqCjbt2/f9jyliIiIiIiI19i0aVORtTa6pXXtmpz17duXjRs3tucpRUREREREvIYx5vDp1qlbo4iIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4gXYdc9aSuro6srOzqamp8XQo0skEBQXRu3dv/P39PR2KiIiIiMhZeTw5y87OJiwsjL59+2KM8XQ40klYaykuLiY7O5t+/fp5OhwRERERkbPyeLfGmpoaevbsqcRMXMoYQ8+ePdUiKyIiIiIdhseTM0CJmbiFrisRERER6Ui8IjnztN/85jckJyczatQoUlJSWLduHQB33HEHu3btcsk5+vbtS1FR0Rm3+e1vf9vm4/73v//lvvvuO2nZf/7zH1JSUkhJSSEgIICRI0eSkpLCAw880Objt4fHHnuMqqoqT4chIiIiIuJRHh9z5mlr1qzh/fffZ/PmzQQGBlJUVERtbS0AzzzzTLvG8tvf/pYHH3zwvI/zta99ja997WuAMylctmwZUVFR533cc2WtxVqLj0/LzwIee+wxbrnlFkJCQlp9zPr6evz8uvzlKyIiIiKdyFlbzowxicaYZcaYdGPMTmPMd5ut+7YxZk/j8j+4N1T3yM3NJSoqisDAQACioqKIj48HYMaMGWzcuBGA0NBQ7r//fsaOHcvFF1/M+vXrmTFjBv379+fdd98FvtyKdeWVV7J8+fIvnfOaa65h7NixJCcn89RTTwHwwAMPUF1dTUpKCvPnzwfgxRdfZMKECaSkpHD33XfT0NAAOFvGBg8ezIUXXsiqVata/V4fffRRxo8fz6hRo3jooYcAyMjIYOjQodxxxx2MGDGC+fPns2TJEqZOncqgQYNYv349AA8//DALFizgoosuYtCgQTz99NNnPe6wYcP45je/yZgxY8jKyuLee+9l3LhxJCcnn9ju8ccf58iRI8ycOZOZM2ee+Fk3ef3117n99tsBuP322/nBD37AzJkzuf/++zlw4ABz5sxh7NixTJ8+nd27d7f6Z9EZ7TxSxr78ck+HISIiIiLnqqlV43QvIA4Y0/h1GLAXGA7MBJYAgY3rYs52rLFjx9pT7dq160vL2lN5ebkdPXq0HTRokL333nvt8uXLT6y78MIL7YYNG6y11gL2ww8/tNZae80119hLLrnE1tbW2rS0NDt69GhrrbX/+c9/7Le+9a0T+19xxRV22bJl1lpr+/TpYwsLC6211hYXF1trra2qqrLJycm2qKjIWmttt27dTuy7a9cue+WVV9ra2lprrbX33nuvfe655+yRI0dsYmKiLSgosMePH7dTpkw56Zynajrvxx9/bO+8807rcDhsQ0ODveKKK+znn39uDx06ZH19fe22bdtsQ0ODHTNmjP3a175mHQ6Hffvtt+3cuXOttdY+9NBDdtSoUbaqqsoWFhba3r1725ycnDMe1xhj16xZcyKWpvddX19vL7zwQrt169Yv/WxO/Tm89tpr9rbbbrPWWnvbbbfZK664wtbX11trrb3ooovs3r17rbXWrl271s6cOfNL79/T11d7yCyutPe9tNn2uf99O/E3S2xdfYOnQxIRERGR0wA22tPkS2ftF2atzQVyG78uN8akAwnAncDvrLXHG9cVnG+i+Kv3drLryLHzPcxJhseH89BVyaddHxoayqZNm1ixYgXLli3jxhtv5He/+92J1pomAQEBzJkzB4CRI0cSGBiIv78/I0eOJCMjo00xPf7447z11lsAZGVlsW/fPnr27HnSNkuXLmXTpk2MHz8egOrqamJiYli3bh0zZswgOjoagBtvvJG9e/ee9ZyffPIJn3zyCampqQBUVFSwb98+kpKS6NevHyNHjgQgOTmZWbNmYYz50nubO3cuwcHBBAcHM3PmTNavX8/KlStPe9w+ffowadKkE/u/+uqrPPXUU9TX15Obm8uuXbsYNWpUm3528+bNw9fXl4qKClavXs28efNOrDt+/HibjtXRlVXX8c9l+/nPqgx8fODykbF8uD2PT3flc9nIOE+HJyIiIiJt1KZBO8aYvkAqsA54FJhujPkNUAP8yFq7weURtgNfX19mzJjBjBkzGDlyJM8999yXkjN/f/8T1f98fHxOdIP08fGhvr4eAD8/PxwOx4l9Wirjvnz5cpYsWcKaNWsICQlhxowZLW5nreW2227jkUceOWn522+/fU5VCK21/PSnP+Xuu+8+aXlGRsaJ93Km9wZfrn5ojDnjcbt163bi+0OHDvHHP/6RDRs20L17d26//fbTlrlvfp5Tt2k6psPhIDIykrS0tLO99U6nrsHBS+syeWzJXkqr67g2NYEfzx5CTFgQ27KX8dyaDCVnIiIiIh1Qq5MzY0wo8AbwPWvtMWOMH9AdmASMB141xvRvbKprvt9dwF0ASUlJZzzHmVq43GXPnj34+PgwaNAgANLS0ujTp885Hatv377885//xOFwkJOTc2K8VnNlZWV0796dkJAQdu/ezdq1a0+s8/f3p66uDn9/f2bNmsXcuXP5/ve/T0xMDCUlJZSXlzNx4kS++93vUlxcTHh4OK+99hqjR48+a2yzZ8/mF7/4BfPnzyc0NJScnBz8/f3b9P7eeecdfvrTn1JZWcny5cv53e9+R3BwcKuOe+zYMbp160ZERAT5+fl89NFHzJgxA4CwsDDKy8tPFC3p1asX6enpDBkyhLfeeouwsLAvHS88PJx+/frx2muvMW/ePKy1bNu2rVU/i47KWsuS9AIe+Sidg4WVTO7fk59dMYwRCREntrllUh9+99Fu9uaXM7jXl39uIiIiIuK9WpWcGWP8cSZmC621bzYuzgbebEzG1htjHEAUUNh8X2vtU8BTAOPGjTspcfMGFRUVfPvb36a0tBQ/Pz8GDhx4okhHW02dOvVEF8ERI0YwZsyYL20zZ84cnnjiCUaNGsWQIUNO6vZ31113MWrUKMaMGcPChQv59a9/zaWXXorD4cDf359//OMfTJo0iYcffpjJkycTFxfHmDFjThQKOZNLL72U9PR0Jk+eDDi7c7744ov4+vq2+v1NmDCBK664gszMTH7xi18QHx9PfHx8q447evRoUlNTSU5Opn///kydOvWk933ZZZcRFxfHsmXL+N3vfseVV15JYmIiI0aMoKKiosV4Fi5cyL333suvf/1r6urquOmmmzptcrYjp4xff7CLtQdL6B/djWduHcesYTFfas28cVwif/l0L8+vyeDX14z0ULQiIiIici7MKQ1dX97A+envOaDEWvu9ZsvvAeKttb80xgwGlgJJp7acNTdu3DjbVP2wSXp6OsOGDTv3dyDt4uGHHyY0NJQf/ehHng6lTTr69ZVbVs2jH+/hrS05dA8J4HsXD+LmCUn4+56+0OqPXtvKh9tzWfvgLMKD2tY6KiIiIiLuZYzZZK0d19K61rScTQUWANuNMWmNyx4EngWeNcbsAGqB286UmIlI61Ucr+fJzw/w9IqDOCzcdUF/vjVzYKuSrdsm9+X1Tdm8uSmb26f2a4doRURERMQVWlOtcSVwugoUt7g2HPFWDz/8sKdD6BLqGxy8ujGbP3+6l6KK41w1Op6fzB5CYo/WT9A9sncEKYmRPL/2MLdN6XtOBWREREREpP2ddRJqEWkfy/cUcMXjK3nwre307RnCW9+cwt9uTm1TYtbktil9OFhYyar9xW6IVERERLyNtZZnVhwko6jS06HIeVByJuJhu/OOseDf67j9PxuoqW/gX/PH8No9k0lN6n7Ox7x8ZBw9uwXw3JoM1wUqIiIiXslay28/TOfXH6Tz8vpMT4cj56FN85yJiOsUlNfw50/28urGLMKC/Pn5FcO4dXJfAvzO/5lJoJ8vN01I5F/LD5B9tIre3dve+iYiIiLer8FhefDN7byyMYtbJ/fh/jlDPR2SnAclZyLtrLq2gadXHOSJzw9Q1+Dg9in9+M6sgUSGBLj0PF+d2Id/LT/AwnWZulGLiIh0QrX1Dr7/ShofbM/l2xcN5AeXDNZY8w5O3RoBX19fUlJSGDFiBPPmzaOqquqcj3X77bfz+uuvA3DHHXewa9eu0267fPlyVq9efeL7J554gueff/6cz90kIyODESNGnLTs4Ycf5o9//GObjuOqeOR/yqrruPSxz/nzp3u5cHA0n37/Qn551XCXJ2YACZHBXDK8F69syKKm7uxz4YmIiEjHUVVbzx3Pb+SD7bn87PJh/PDSIUrMOgG1nAHBwcGkpaUBMH/+fJ544gl+8IMfnFjf0NDQpsmamzzzzDNnXL98+XJCQ0OZMmUKAPfcc0+bz+Eu9fX1XhVPZ/HKhkyySqr5z9fGM3NIjNvPd9vkvny8M58PtuXylbG93X4+ERERcb+y6jq+8d8NbM48yu+/MpIbxyd5OiRxkY7VcvaHP8CyZScvW7bMudxFpk+fzv79+1m+fDkzZ87kq1/9KiNHjqShoYEf//jHjB8/nlGjRvHkk08CzgGY9913H8OHD+eKK66goKDgxLFmzJhB06TbixcvZsyYMYwePZpZs2aRkZHBE088wV/+8hdSUlJYsWLFSa1baWlpTJo0iVGjRnHttddy9OjRE8e8//77mTBhAoMHD2bFihVtfo9nOvaDDz7IhRdeyF//+tcT8Rw5coSUlJQTL19fXw4fPszhw4eZNWsWo0aNYtasWWRmOgeg3n777XznO99hypQp9O/f/0RLYldX3+DgudWHmdS/R7skZgCTB/RkYEwoz6893C7nExEREfcqqjjOzU+tZWt2KX//6hglZp1Mx0rOxo+HG274X4K2bJnz+/HjXXL4+vp6PvroI0aOHAnA+vXr+c1vfsOuXbv497//TUREBBs2bGDDhg08/fTTHDp0iLfeeos9e/awfft2nn766ZO6KTYpLCzkzjvv5I033mDr1q289tpr9O3bl3vuuYfvf//7pKWlMX369JP2ufXWW/n973/Ptm3bGDlyJL/61a9OinP9+vU89thjJy1v7sCBAyclVE888USrjl1aWsrnn3/OD3/4wxPL4uPjSUtLIy0tjTvvvJOvfOUr9OnTh/vuu49bb72Vbdu2MX/+fL7zne+c2Cc3N5eVK1fy/vvv88ADD7TxN9E5fbIrn5zSar7ejhNDG2O4dXIftmaVsjWrtN3OKyIiIq6XU1rNDU+s4WBRBc/cNp7LR8Z5OiRxMe/q1vi970Fj98LTio+H2bMhLg5yc2HYMPjVr5yvlqSkwGOPnfGQ1dXVpKSkAM6Ws2984xusXr2aCRMm0K+f84P0J598wrZt2060ApWVlbFv3z6++OILbr75Znx9fYmPj+eiiy760vHXrl3LBRdccOJYPXr0OGM8ZWVllJaWcuGFFwJw2223MW/evBPrr7vuOgDGjh1LRkZGi8cYMGDAia6a8L9JpM927BtvvPG0ca1atYpnnnnmRGvdmjVrePPNNwFYsGABP/nJT05se8011+Dj48Pw4cPJz88/4/vtKp5deYikHiHMGtarXc97bWoCv/9oN8+vOcyfEiPb9dwiIiLiGgcKK1jwzDrKj9fzwjcmMr7vmT9PSsfkXclZa3Tv7kzMMjMhKcn5/XlqPuasuW7dup342lrL3/72N2bPnn3SNh9++OFZB19aa106QDMwMBBwFjKpr6932XHh5PfcXG5uLt/4xjd49913CQ0NbXGb5u+xKUZwvv+ubmtWKRsPH+WXVw7H16d9B+uGBfnzlbG9WbQhiwcvH0rP0MCz7yQiIiJeY0dOGbc9ux6ARXdNIjk+wsMRibt4V7fGxx6D5cvP/HroIaiqgl/8wvnvQw+defuztJq11uzZs/nXv/5FXV0dAHv37qWyspILLriARYsW0dDQQG5uLstOHRMHTJ48mc8//5xDhw4BUFJSAkBYWBjl5eVf2j4iIoLu3bufaKF64YUXTrR0na9zOXZdXR033HADv//97xk8ePCJ5VOmTGHRokUALFy4kGnTprkkxs7o2VWHCA30Y944zxTlWDCpD7X1Dl7ZmOWR84uIiMi52ZBRws1PrSXQz4fX7pmsxKyT61gtZ01jzF59FWbOdL6af+9Gd9xxBxkZGYwZMwZrLdHR0bz99ttce+21fPbZZ4wcOZLBgwe3mOhER0fz1FNPcd111+FwOIiJieHTTz/lqquu4vrrr+edd97hb3/720n7PPfcc9xzzz1UVVXRv39//vOf/7jsvbT12KtXr2bDhg089NBDPPTQQ4CzxfDxxx/n61//Oo8++ijR0dEujbEzySur4YNtudw6uS9hQf4eiWFQrzCmDOjJwrWZ3H3BgHZvvRMREZG2W76ngHte3ER8RDAv3DGRhMhgT4ckbmbas8vZuHHjbFP1wibp6ekMGzasdQf4wx+cxT+aJ2LLlsGGDdBsvJNIkzZdX27y6Me7+efyA3z+o5kk9QzxWByLd+Ryz4ubeWrBWC5NjvVYHCLieQ6H5c0tOVw+MpaQgI71nFakq/hgWy7fe2ULg2LCeP4bE4jSsIROwxizyVo7rqV13tWt8Wx+8pMvt5DNnKnETLxWdW0DL63L5JJhvTyamAFcPKwXcRFBvKCy+iJd3or9Rfzota38d3WGp0MROS9HK2uZ+49VbM486ulQXGrR+ky+/fJmUhIjefmuSUrMupCOlZyJdDBvp+VwtKqOr09rv/L5p+Pn68P8iUms2FfEgcIKT4fjVgXHakjT1AEip7V4Rx4A76Yd8XAkIufn1Y1ZbM0q5a3NOZ4OxWWe/uIgD7y5nemDonn+6xOJCPbMkAjxDCVnIm5ireXZlYcYHhfOxH7eUe72pglJBPj68MKazt169shHu7nhyTWUVNZ6OhQRr9PgsHy6K4+QAF9255WzJ+/LhalEOgKHw/LiOuffs5X7izwczfmz1vLHj/fwmw/TuWJkHE/fOo7gAF9PhyXtzCuSM5VaF3fw9HW1cn8R+woq+Pq0fi6dSuF8RIUGcsWoON7YlE3lcddOw+AtrLWs3F9Ebb2DNzZlezocEa+zMaOEoopa7p8zFF8fwztpnafFQbqWz/cVklVSzbg+3TlUVElWSZWnQzpnDofloXd38vdl+7lpfCKP35xKgJ9XfEyXdubx33pQUBDFxcUe/yAtnYu1luLiYoKCgjwWw7MrDxEVGshVo+M8FkNLFkzuQ/nxet7a0jk/kB0orKSw/Dj+voaF6w7jcOjeItLc4p15BPj5cP3Y3kwbGMU7aUf0/0Q6pIVrDxMVGsiv5iYDHbf1rK7BwQ9f28rzaw5z1wX9eeS6kaqq3IV5vERT7969yc7OprCw0NOhSCcTFBRE796emVfsQGEFy/YU8v2LBxPo511dElITIxmZEMHzazKYPzHJa1r1XGXNAecf529fNIg/f7qXVQeKmD4o2sNRiXgHay0f78jjgkHRdAv0Y25KPD94dSubM48yrq93dL8WaY2skiqW7i7gvpkDGR4XTq/wQFbuK+LmCUmeDq1NauoauO+lLSxJz+fHs4fwzRkDOt3fZWkbjydn/v7+9Ovn+WIJIq7031UZBPj6MH+S9/2RMMawYHIffvL6NtYdKmFS/56eDsmlVh8oJiEymLsv7M9/V2ewcG2mkjORRttzyjhSVsMPLh0CwKXJsQT5b+edtCNKzqRDeXl9Jga4eYLzIeO0gdEs3Z1Pg8N2mFaniuP13PncRtYcLOb/zU1mweS+ng5JvIDHuzWKdDZlVXW8vimbuSnxXlv69urR8USG+PP8mgxPh+JSDodlzcFiJg/oSaCfL/PG9ebT9Hzyymo8HZqIV/hoRx5+PoaLh8UAEBrox8XDevHB9lzqGhwejk6kdY7XN/DKhiwuHtaL+MZJmacPiqK0qo6dR8o8HF3rHK2sZf7Ta1mfUcJfbhytxExOUHIm4mKLNmRSXdfA16Z6b4twkL8vN45L5OOd+eSWVXs6HJdJzztGaVUdUwY4WwO/OiGJBofllQ1ZHo7MczKKKvnrkn0aUyRYa1m8I4/JA3oSGRJwYvnclARKKmtZua9jjteRrmfxjjyKK2u5ZVKfE8umDowCYEUHuI5LKmu58ak1pOeV88QtY7k21TNDMMQ7KTkTcaH6BgfPrc5gcv+eDI8P93Q4Z3TLpD44rOXldZmeDsVl1hwoBmByY3LWp2c3LhgczcvrM6nvoq0CT684yF+W7CUtu9TToYiH7Suo4FBRJbOTY09afuHgaCKC/XlbVRulg3hx7WH69gxhWmNCBhAdFsiwuHBW7PP+GgYvrTvM3vwK/nv7eC4Z3svT4YiXUXIm4kIf78znSFmNV0w6fTaJPUK4aEgML63Pora+cyQuqw8U0z+qG3ERwSeW3TIxibxjNSzdXeDByDzDWstnje/748ZJh6Xr+mh7HsbApcknfxgM8PPh8pFxfLIzn6razjnFhnQe6bnH2JBxlFsm9cHnlLFl0wdFsenwUa+/jpekFzC6dwRTmiWXIk2UnIm40LOrDtGnZwgXDY3xdCitcuuUvhRVHOejHbmeDuW81Tc4WH+ohEkDTi5wctHQGOIigljYiVoIW2tX7jFyy2oI9PNh8c48TVnSxS3emce4Pt2JCfvyFCPXpMRTXdfAp7vyPRCZSOu9uPYwgY1TQZxq2sAo6hos6w6VeCCy1iksP87W7FJmDVOLmbRMyZmIi6RllbLp8FFun9K3w1SKmj4wir49Q3h+zWFPh3LetueUUXG8/sR4syZ+vj7cND6JL/YWcri40kPRecZn6QUYA/fNHMjh4ip255V7OiTxkMPFlaTnHvtSl8Ym4/v2IC4iiHfSjrRzZCKtV15Tx1tbcrhqdPxJ4yabTOjXgwA/H1bs9d5xZ8t2F2AtzBrWMR7iSvtTcibiIv9ZdYiwQD/mjUv0dCit5uNjWDC5L5sOH2VHTseocHU6qxvHm7U0NcCN4xPx9TG8tL5rtZ4t2V3A6N6R3DwxCWOcg+ila2r63Z8uOfPxMVw9Op4v9hZSUlnbnqGJtNrbW3Koqm1gQbNCIM0F+fsyoW8PVu733nFnS9LziY8IYnicd49LF885a3JmjEk0xiwzxqQbY3YaY77buPxhY0yOMSat8XW5+8MV8U55ZTV8sC2XG8YnEhro8ekD2+T6sb0J9vflhQ7eerbmQDFDY8NanL4gNiKIS4b14rWN2Ryvb/BAdO2vsPw4W7NKmTU0hqjQQMb37cHHO5WcdVWLd+YxMiGCxB4hp91mbkoC9Q7Lh9s7fjdn6Xystbyw9jCjekcwOjHytNtNGxTF3vwK8o953xQqNXUNrNhXxEXDYjTRtJxWa1rO6oEfWmuHAZOAbxljhjeu+4u1NqXx9aHbohTxci+szcBhLbdP6evpUNosItifa1ITeGdrDqVVHfOJ+fH6BjZklJyo0tiSWyb1oaSylo+2d40EZVljIZCmcQ2XjYhld145h4q6VtdOcT482pJZypwRLbeaNRkWF8agmFDeUdVGr2etpcALkw93Wn+ohL35FSeVz2/JNC8uqb/mQDHVdQ1crPFmcgZnTc6stbnW2s2NX5cD6UCCuwMT6SiqaxtYuC6TS4b3OuNTaW926+Q+1NQ5eG1jtqdDOSdbMks5Xu9gyoDTV76aMqAnfXuGsHBdx24hbK2lu51dZ4bFhQH/686mro1dT1OL6em6NDYxxjA3JZ4NGUfJPlrVHqFJGzkclsU7crn676uY8NulrPfiwheu9sLaw4QH+XHVqPgzbjc8Lpye3QJY6YUl9Zek5xMS4Nti93uRJm0ac2aM6QukAusaF91njNlmjHnWGNPd1cGJdARvbcmhtKqOr3vxpNNnMywunAl9e/DC2sMdcrLi1QeK8THOweCn4+NjmD+xDxsyjrI771g7Rtf+Wuo6Ex8ZzOjeESxW18YuZ/GOPAbFhDIwJvSs285NcT57fXerCoN4k7oGB29syubSx77gnhc3U15TR7cAX17dmOXp0NpFQXkNH+/MY964RIIDfM+4rY+PYerAKFbuL/aqCrVNU5tMHxRFkP+Z34N0ba1OzowxocAbwPestceAfwEDgBQgF/jTafa7yxiz0RizsbDQ+55iiJwPay3PrjpEcnz4GRODjuDWKX3ILKni870d7//pmgNFjEyIICLY/4zbXT+2NwF+Pixc27kLg6w7VEJVbQOzhp7cdWb2iFi2ZpVypLTaQ5FJeyuprGXdoeKzdmlsktgjhDFJkbyrqo1eoaaugRfWHmbmH5fzw9e24udjePzmVJb+cAZXjIrjo+25VNd2/nG0r27Ioq7BMn9iUqu2nzYoiqKK415VoXbnEefUJiqhL2fTquTMGOOPMzFbaK19E8Bam2+tbbDWOoCngQkt7WutfcpaO85aOy46OtpVcYt4hRX7ithfUMHXp/br8IN7ZyfHEhMWyPNrMjwdSptU1daTllX6pfnNWtK9WwBXjozjrS05VB737klKz8fS9HyC/X2/NAZvTmO3tk/UetZlLNmVj8OevUtjc9ekJrA7r7zTtzB7s4rj9Tz1xQGm/2EZv3h7B9Fhgfz7tnF89N3pXD06Hl8fwzWpCVTWNvDJrs79/7m+wcFL6zKZPiiK/tFnb/0F52TUACu8qGvj0sapTTrKPKjiOa2p1miAfwPp1to/N1se12yza4Edrg9PxLs9u+oQUaGBXDk67uwbezl/Xx++OjGJ5XsLyehARSM2ZhylrsGecbxZc/MnJVFxvL7TzudkrWVpegFTB36560z/6FAG9wpV18Yu5KMduST2CCY5vvVluy8fGYevj+m0/0e8WWlVLX/5dC9Tf/cZv/1wN0N6hfHSnRN5894pzBrW66SHgJP69SQ+Ioi3t3TuAi6f7S7gSFkN8yeeuRBIc3ERwQyMCfWqoiBLd+eTkhjZYkVhkeZa03I2FVgAXHRK2fw/GGO2G2O2ATOB77szUBFvs7+gguV7ClkwqQ+Bfp2j//hXJyThawwvru04RTNWHyjGz8cwvm/rhr2OSerO0NgwFq477FXjEVxlb34FOaXVXHyaCU7nJMey/lAJxRXH2zmy1luyK5/ffbSbrVmlnfJ31F6O1dSxan8xc5Jj29SyHxUayLSBUbybdqRDjkHtiAqO1fDbD9OZ+rvP+OvSfUzo14O3vjmFF++YyJQBUS3+/nx8DHNTE/hiXxGF5d77//l8vbguk9jwoNPe005n2sAo1h8qoabO890+84/VsC27TFUapVVaU61xpbXWWGtHNS+bb61dYK0d2bj8amutJkaRLuW/qw8R4OvD/Emt6wPfEcSEBzFnRCyvbszqMOMY1hwoIjUpkpCA1s0vZ4zhlkl92HnkGGlZpe4NzgOWpOcDp+86M3tELA77v+28TYPD8vO3d/DE5weY+49VXPjocv6weDe7jhxTotZGy3YXUNvgaPV4s+auSY0np7SazZlH3RCZNMkqqeLnb29n2h+W8cyKg1wyvBcff+8Cnr51HKlJZ3/gdG1qAg0Oy3udtIBLRlElX+wt5KsTk/DzbVMNO6YPiuJ4vYNNhz1/DX92YmoTdWmUs2vblS4igLPryRubcpibEt/puijcOrkvx2rqO8RcR2XVdWzPKWNyK7s0NrkmNYFuAb682AkLg3y2u4BRvSOICQ9qcf3wuHASewR7bUn9z/cWkHeshj9cP4pHrx9F36huPPnFQS5/fAUX//lz/vLpXvYXVHg6zA5h8Y48YsICSU1sezHlS4bHEuTvw9sd4D7QEe0vKOcHr6Qx44/LeXVDNl8Z05tlP5rBYzelMiQ2rNXHGdwrjOT48E77e1q47jB+Poabxie2ed9J/Xvi72v4wgvGnS1NzychMpghvVr/u5WuS8mZyDlYtCGL6roGvtaBy+efzvi+zm5/z6/x/m5/6w+V4LDOOczaIjTQj2tSE3h/25EOO/F2S4orjrM58+gZB5wbY5iTHMuq/cUcq6lrx+ha5+X1WUSFBnJtagLzxiXy/NcnsP7BWfzm2hFEhwXy+Gf7uPjPn3PZX1fwj2X7ySzWfFwtqa5tYPmeQmYnx+Lj0/ZiRaGBflwyPJYPtuVS1+BwQ4Rd0/bsMu55YROX/OULPtqRx9em9OWLn8zkketG0qdnt3M65rWpCWzLLut0Dy1q6hp4dWO2s1jVaR42nUm3QD9Sk7qz0sPjzqprnVObXNxsahORM1FyJtJGdQ0OnludweT+PRnehkH2HYUxhlsn92VX7jGv6A5yJqsPFBHo50NqUmSb950/sQ/H6x28vqljTrzdkuV7CrGWs45rmDMiltoGB8sau9p4i4JjNXy2u4Drx/bGv1kXpp6hgcyf2IdFd01m7U9n8dBVwwn29+HRj/dwwaPLmPv3lTyz4iC5ZZoioMkX+wqprms4py6NTeaOjudoVZ1XVbzrqNYdLObWZ9dz1d9XsvpAEd+eOZBVD1zEz68cTmxE2xOP5q4eHY+Pgbe2dJ57GcB7W49QVl3HLZNaXwjkVNMHRrHzyDGPjrFdtb+I4/UOLh6u8WbSOkrORNro45155JbV8PVpna/VrMk1qfGEBfnx/BrvLgyy5kAx4/v2OKeCLMPjwxmTFMlL6zK9voWwtZbuzqdXeOBZK/OlJnYnOiyQj72sauNrm7JpcFhuPEMXpl7hQXxtaj/e/OZUVt4/k59eNhSHhV9/kM7kRz5j3hOreX5NRqcukNAai3fkERnif17zL14wOJrIEH9VbTwHNXUNbM0q5aV1mcx7YjU3PrWWXUfKuH/OUFY9cBE/uHQIPboFuORcMeFBTBsUzdtbOlcBlxfXZTIwJpRJ/c/9Gp4+2DmF06oDxa4Kq82W7s4nNNCPif3a1sNDuq7WjaAXkROeXXmIPj1DOvVcJSEBfswbm8gLazMoKB9GTNj5Pdl1h+LGCUZ/PDv+nI9xy6Q+/ODVraw5UMyUgW0bt+ZtausdfLG3iKtGx5+164yPj2F2ci/e2JRDTV3Dl0rue4LDYXllQxaT+vegX1Trunf17h7C3RcO4O4LB3CoqJL3tx7h/W25/PKdnTz87k4mD+jJlaPimZMcS3cXfRDuCGrrHSxJz2dOcuxJLZBtFeDnw+Uj43hrcw5VtfWtLrrT1RRXHGdX7jF2HTl24t8DhRU05UkJkcH86upkbhyf6Lb/a9elJvC9V9LYkFHCxP4dPwnYll3K1qxSfnV18nl1BRyZEEFEsD8r9hZy9ehz/1txrhwO59QmFwyOIsBP7SHSOrrTirTBlsyjbM4s5aGrhuN7DuM4OpIFk/vw7KpDLFqfxXdmDfJ0OF+y9mAJwJcmWm6Ly0fG8X/v7+LFdYc7fHK2/lAJFcfrmdXKhwZzkuN4cW0mX+wt5NI2TFDsLmsOFpNZUsUPLx18Tvv3i+rGt2cN4tuzBrEnr5z3tx3hva1H+Omb2/nF2zuYPiiKK0fFc0lyL8KD/F0cvXdZc7CY8pr68+rS2GTu6HheWpfJp7vymZuS4ILoOi6Hw3K4pKoxCSs7kYzlH/tfK218RBDD48O5bEQsw+PDGR4XQe/uwec07q8tLk3uRUiAL29tyekUydmLaw8T7O/LtWPO75rz9TFMGdCTlfuLsNa2+5ivHUfKKCg/zqyh6tIorafkTKQN/rMqg7BAP+aNa3vlqI6mX1Q3LhwczcJ1h7l3xoDzegLvDqsPFBEa6MeohIhzPkaQvy/zxvbmP6syKDhWc06Dzr3F0t35BPr5MLWVSebE/j2ICPZn8c48r0jOXl6fSWSIP7NdEMuQ2DCGxA7hB5cMZueRY7zX2KL2w9e20u0dX16/dwrD4jrfeNEmi3fk0i3At9XXwpmM79uD+Igg3kk70qWSs+raBvbkl5+UiO3OK6eqcYoRPx/DwJhQpg6IakzCwhkWF+6xFtqQAD/mJMfywfZcHr462Staw89VWVUd7249wrWpvV3yIGXaoCg+2pHHgcJKBsaEuiDC1luSXoCPgZmduKeNuJ6SM5FWyi2r5sPtudw2pS+hgV3jv86tk/vwjec28umufC4fGefpcE6y5kAxE/r1aPPcN6f66sQ+PL3iEK9syOLbXthC2BrWOrvOTB0YRXBA6z6U+fv6cPGwXny6K4+6BodHk++Sylo+2ZnP/ElJLv1QaYxhREIEIxIieOCyoWzOPMqdz2/il+/s4NW7J3fKymkNDssnO/O5aFgvl/wsfXwMV6XE8+8VhyiprHXZOClvYa2loNzZRTq9WdfEg826JYYF+jEsPpwbxiWeSMQGxoR6XQJ07ZgE3tySw2e7C7zuft0Wr2/OpqbOwS0umkP0gkHOcWcr9xW2e3K2ND2fMUndO93/G3GvrvEJU8QFXlhzGIe13D6lr6dDaTczhsSQ2COY51ZneNUf+9yyag4WVfLVief/x7tfVDemDYzi5fWZfHPmwA7ZXfVAYQWZJVXcdUH/Nu03Z0Qsb2zOZu3BYqY3foDxhDc3Z1Pb4OCm8e6b0N0Yw9g+Pbh/zhDuf2M7b6flcG1qb7edz1M2ZpRQXFnLHBe2hs4dncCTnx/kg+25LDiPynmeVnm8nj355ezJc77Sc4+xJ7+c0qr/TSmREBnMsLhwLh8Zx/C4cJLjw+ndPbhDJPJTBkQRExbIm5tzvOp+3RYOh+XFtYcZ26c7yfHn3iuiucQeIfTpGcKKfUXc3o7T3+SWVbPzyDHunzO03c4pnYOSM5FWqK5t4KX1mVwyvBeJPUI8HU678fUx3DKxD498tJu9+eUM9pIJNNc0Vt46n/Fmzc2fmMS9CzezbHdBhyx3vCTdWRJ/1rC2dZ2ZPiiKkABfFu/I81hyZq1l0YYsUpMi2zT57rmaNzaRl9Zl8tsPd3PxsF6EdbLxZx/tyCPQz4cZQ1z3+xwWF8bgXqG8m5bTIZKz+gYHh4oq2d2YhO3OK2dP/jGySv431UJIgC+De4UxJzmWobFhDIkNZ1hcGJEhHbeFw9fHMDclnv+syuiwrZyrDxRzqKiS78wa6NLjThsYxdtbctq1l8DSxvvyxW28L4soORNphbe25FBaVcc3prWtZaIzmDcukT99speX12fy0FXJng4HcP4BjwzxZ1isa8YNXTy8FzFhgby47nCHTM4+Sy9geFw4cRHBbdovyN+XmUNj+HhnPv83d4RHWg03HT7K/oIK/vCVUe1yPh8fw//NHcE1/1zFX5fs4+dXDm+X87YHay0f78zjgsHRdHNh12tjDHNTEnj04z1kH62id3fveEBlrSX/2HF25x070Rq2O6+c/QUV1DZOnO3rY+gX1Y1RvSO5YWwiQ2LDGBob3i5FOjzh2tTePL3iEB9sO8KCyX09HU6bvbA2gx7dArhshGtb/qYPimLhuky2ZJae1/QSbbE0PZ+kHiHt3pVSOj4lZyJnYa3l2VWHGJEQzvi+3T0dTrvr0S2AS5N78daWHO6fM9Tj4yystaw5UMzk/j1d9uHK39eHmyYk8bfP9pFVUtWhWkePVtay8XAJ9808tyfNc5Jj+WBbLpszjzK+b/t8aGnu5fVZhAb6ceXo9uuGNToxkpvGJ/Kf1RncMD7Ra1qEz9e27DJyy2r40aVDXH7sq0fH8+jHe3h36xG+OcO1rRqtVV3bwDtpOezKPXaiVays+n9dEnuFBzIkNpxpg6IY0iuMoXFhDIj2vrFh7jQ8PpyhsWG8uSWnwyVnuWXVLEkv4M7p/V3+O5s8IAofAyv2FbZLclZVW8+qA8XMn5jUIbrEinfxrvJrIl5oxb4i9hdU8PWp/brsTfbmCUmUVtV5xaTFmSVV5JRWu6xLY5ObxidigJfWZ7r0uO72+d5CHBYuGnZuLX4zh8YQ4OvD4h3t/7stq67jg+1HuDolvt3n0Prx7KGEBvrx0Ds7O80k5It35uHnY7j4HK+FM0nsEcLYPt1510MTUjsclm+/vIUH3tzOG5uyqW9wcPnIOH51dTKL7ppE2i8vYd2DF/P81yfw4OXD+MrY3iTHR3SpxKzJNakJbMksJaOo0tOhtMnL67NwWMt8F4wlPlVEsD+jEyNZsa/I5cduyYp9RdTWO7jEDf8XpfNTciZyFv9eeYjosECuGNUxB1i7wuT+PUnqEcLLXpC4NI03m+Li5Cw+MphZw3rx6oYsausdLj22Oy1JzycqNPCcpxQIDfRj+qAoFu/Ia/ck5d20HGrqHNw0vv2npujRLYAfXTqYNQeL+WB7bruf39WstSzekcfkAT2JCHHPOLq5KfHszitnd94xtxz/TP6+bD9L0vP5xZXD2f7wbN785lQeuW4kt03py6T+PTv0WDFXm5sSjzHO7vgdRV2Dg5fXZzJjcLTbei5MHxjFtuxSypoVgHGXpen5hAX5Mb6dulBK56LkTOQM9heU8/neQhZM6kOgX9d7AtvEx8dw4/hE1h4s4ZCHn8auPlBMdFggA6Jd349//sQkiitrWewFLYStUdfg4PO9hVw0NPq8unjOHhFLTqmzslh7WrQhi+Fx4Yw8j7nqzsdXJ/ZheFw4v/kgncrj9R6JwVX25ldwqKjSJRNPn84VI+Pw9TG8086tZ8t2F/CXJXu5LjWBr0/t2ynHirlSXEQwUwb05O20nA7TKvzJznwKy4+zYLL7Cs5MHxyNw8Kag+5tPXM4LJ/tLuTCwdFeNz+odAy6akTO4D+rMgjw83FJyfaObt7Y3vj6GBZt8FzrmbWW1QeKmTKgp1u6mF4wKJqkHiG8uPawy4/tDhsySiivqWfWeXaduXhYL3x9TLt2bdyeXcbOI8e4eUKix7oL+/oY/t81yeSW1fD3Zfs9EoOrLN6RhzFwiRsL2vQMDWT6oCjeTTuCw9E+H/oziir57qItDIsN5zfXjuyyXcvb6pqUBA4XV7E5s9TTobTKi2sP07t7MBcOdl9lw5TESEID/fjCzV0bt2aXUlRx3C3di6VrUHImchqlVbW8sTmba1LiiQoN9HQ4HhcTHsSsoTG8sSnbY93+9hdUUFRx3OVdGpv4+Bi+OjGJ9YdK2Jdf7pZzuNJn6QUE+PowbWDUeR2nR7cAJvbr0a4thi9vyCTI34e5qQntds6WjO3Tg6+M6c0zKw5ysLDCo7Gcj4925DK+Tw9iwoLcep65KfHklFazKfOoW88DzqIK97y4CR8fw5MLxrZ6gnWBy0bGEeTvw1tbsj0dylntLyhnzcFi5k/s49aKsf6+Pkzq34OVbk7OlqYX4OtjXDqdhXQtSs5ETuPl9VnU1Dn4WjtOWuntbp6QRFFFLUvT8z1y/tUnxpudXzJyJvPG9ibA14eF6zw/vu5slu4uYPKAni4pmz5nRCz7CyrYX+D+pLTyeD3vph3hipHxhHvBPGP3XzaEID9fHn5vV4fpBtZcRuOcXrPd2KWxyaXDYwny9+GdNPeOZ7LW8pPXt7E3v5y/3ZzaoSqoeoPQQD8uHR7L+9tyvX4M7YtrMwnw9eGGce6fFH7awCgyS6rILK5y2zmWpOcztk93jYOUc6bkTKQFdQ0Onl+TwZQBPRkW55q5tDqDCwZHEx8RxMsbsjxy/tUHiujdPditH9R6hgZy2chY3tiUTVWt945DOljoHGPU1omnT+fS4c4P9h/vdH/i/cG2XCqO13PThPYvBNKSmLAgvnfJYL7YW8gnuzzz4OF8NFVRnZ3s/m5U3QL9uGS4c/qFugb3feh/ZsUh3t+Wy49mD/HYBOkd3bWpCZRW1bFsT4GnQzmtyuP1vLEpm8tHxtKzHXqoTB/svJZW7C90y/Gzj1axO69cE0/LeVFyJtKCT3bmk1tWw9fVanYSXx/DvHGJrNhXSFaJ+548tqTBYVl7sMRtXRqbmz+xD+XH63lvq2fKhrfGZ7udH7guGuqaDwGxEUGkJkW2y7izRRsyGRgTyrg+3jNv4G2T+zCkVxj/994uauoaPB1Om3y0I4+RCRHtNjn03NHxHK2qY8U+93zAXb2/iEc+SueyEbHce+EAt5yjK5g+KIqo0ADe9uKqje+kHaH8eL1bC4E01z+qG/ERQazY656ujU335fMdByxdm5IzkRZ8sbeQiGB/Zrrog29nckNj2fPXNrZv61l67jHKquvc2qWxyfi+3RncK5QX13pv18Yl6fkMjQ1z6QfyOcmxbM8pI/uo+xLvvfnlbM4sdc4r50XFHfx8fXj46mRySqv55/IDng6n1XLLqknLKnVrlcZTXTA4msgQf7dUbcwprea+l7fQPzqUR+eN9qprpKPx8/XhqtHxLE0vaJfy8W1lreXFtYcZFhfOmKT2eVBjjGHaoChWHyiiwQ1FbZakF9AvqptbqglL16HkTKQFW7KOkpoU6dbByR1VQmQwFw6O5tWNzolg28vqA84nna6efLolxhjmT+zD9pwytmWXuv18bVVWXceGjKMu69LYZHay+7s2vrzeOb7kujHuH1/SVpMH9OSq0fE88fkBt45JcaVPGn9X7ZmcBfj5cPnIOD7Zme/SKQhq6hq498VN1NU7eHLBWEJdMJayq7s2NYHaBodXzuW3ObOUXbnHWDCpT7sm4dMHRXOspt7l9/aK4/WsPVCsLo1y3pSciZyivKaOfQUVpCRGejoUr3XT+CTyjtXw+V73dGtqyZoDxfSP7kavcPdWo2ty7ZgEgv19vbKs/ud7C2lwWC4a6tquM32jujE0NoyP3dS1saaugbe25HBpci96dPPOwfI/u3wYfj6G/3t/l6dDaZWPduQyKCa03Z/UX5OSQHVdA0tcVBzIWssv3t7Btuwy/nxjiloeXGRkQgQDort5ZdfGF9ceJjTQj7kp8e163qkDozAGl1dtXLG3kNoGh7o0ynlTciZyim3ZZVgLqe3UzaIjmjUshqjQQF5e3z7d/uoaHKw/1D7jzZqEB/lzTWo872494nVdgj5Lz6dntwC3PECYMyKWDYdLKCw/7vJjf7wzj9KqOm4a773zBsZGBPGdWYNYkp7Pst3eW0gBoLjiOOsPlXBZO7aaNRnXpzvxEUEu+9C/cF0mr23K5jsXDXTrXG1djTGG68b0Zn1GSbuPEz6T4orjfLAtl6+MSXBJtdm26NEtgOT4cFa4ODlbkl5ARLC/V42llY5JyZnIKdKySgFI6R3p0Ti8mb+vD/PG9eaz3QXkldW4/XzbssuorG1ol/Fmzc2f2IeaOgdvetFcQfUNDpbtKWTGkBi3dLudMyIWa+FTN1QtXLQ+i8Qewe2aZJ+Lr0/tR//objz83k6vLg6yJD0fh6VdSuifysfHcFVKPF/sK6K44vwS+U2Hj/Kr93YyY0g03714sIsilCZXj3a2THlT69lrm7KpbXBwy6T2KQRyqmkDo9mceZQKF3XLbXBYlu0pYMaQaPx89dFazo+uIJFTbMk8Sv/obkSEeH7+JW920/hEHLZ9CoOsaRxvNql/+36oH5EQwejESBauy/Sa+a82Z5ZSVl3ntnENQ3qF0bdniMsnpM4oqmTNwWJuGp+Ej5eP5Qzw8+Hhq5I5XFzFMysOejqc01q8I4/EHsEM99B0H9ekJNDgsHx4Ht1gC47VcO+Lm4iPDOavN6ZqnK8bJPYIYUK/HryVluMV97EGh2XhusNM6t+DQb3CPBLDBYOiqHdY1h0sdsnx0rKOUlJZqy6N4hJKzkSasdaSllWq8Wat0KdnN6YM6MkrG7NwuKHqVXOrDxQzLC7cI+OU5k9MYn9BBesOlbT7uVuyND0ff19nxTF3MMYwe0Qsq/cXUVbtuu6cizZk4etjuH6s9xUCackFg6OZkxzL35ftJ6e02tPhfMmxmjpW7i/ishFxHqtoODQ2jMG9QnnnHFtkausdfHPhZspr6nnilrF6IOZG16UmcLCwkm3ZZZ4OhS/2FpJVUu2xVjOAsX27E+Tv47KujUvSC/DzMVw4WHPyyflTcibSTPbRaooqajXerJVumpBE9tFqVu53z5wx4CwisfHwUY91hbtqVDzhQX5eUxhk6e4CJvbrSViQ+z7IzkmOpd5h+Wy3a7o21jU4eH1TNjOHxLRbQRdX+PmVwwD4zQfeVxxk2e4C6hrsiQqbnmCMYW5KAhsPHz2n8Uy/+WAXGw8f5ffXj2KYh1r/uorLRsYR4OfDW17QtfGFtYeJDgs8MfG9JwT6+TKhX0+XzdW3ND2f8X17EBGsBwxy/s6anBljEo0xy4wx6caYncaY756y/kfGGGuMad/BICJusKVxvFmqWs5aZXZyL7qH+LNog/sKg2zOPEptvcNjyVlwgC/Xj03k4515bimS0RaHiyvZX1Dh8hL6pxrdO5LY8CCXTUi9ND2foorj3Dwh0SXHay+9u4fwrRkD+XB7nssru52vxTvy6BUe6PF7VdN4pve2tW3Oszc2ZfPcmsPcMa3fiWOI+0QE+3PxsBje23qEunacAuVUWSVVLNtTwM3jEwnw82z7wPSBURworCS37PxaxrNKqtib7/77snQdrfmfUQ/80Fo7DJgEfMsYMxyciRtwCeC9M7WKtMGWzKME+fswJNYz/eA7mkA/X64b05tPdzk/fLvDmgPF+BgY36+HW47fGl+dmERdg+XVdp54+1RL053VA2e5uIT+qXx8DHNGxPL53kKqas9/wPyiDVnEhgd1yC4/d17Qn6QeITz07g5q6z33oba56toGlu8pZHZyrMfH7yX2CGFsn+68s6X1ydmOnDIefGs7k/r34IHLhroxOmnu2tTeFFfWuqy16Fy8tD4TH2O4eaLnK7ZOH+xsUzjfro1N00lcrPFm4iJnTc6stbnW2s2NX5cD6UBC4+q/AD8BPD/CVMQF0rJKGZkQgb+qLbXazRMSqWuwvLHJPRUN1xwoZmTvSMLd2I3vbAbGhDK5f09eWpdJg5vH153J0t35DIoJJalniNvPNTs5lpo6B5/vOb8Pcjml1Xy+t5AbxvXukFXMgvx9eeiq4RworOQ/qw55OhzAOc9ddV0DczzYpbG5a1Li2ZNfzu68Y2fdtqSylrtf2ESPbgH8/atjOuQ10VFdODia7iH+vLnZM10bj9c38MqGLGYNjSEuItgjMTQ3pFcY0WGB552cLU0vYEB0N/pGdXNRZNLVtemuaIzpC6QC64wxVwM51tqtZ9nnLmPMRmPMxsJCzz2tETmb4/UN7Mw5pmIgbTQwJozxfbvzyoYsl1cCqzxeT1pWqVeUXp8/KYmc0mq+aMeJt5srr6lj3cESLmqnrjPj+3anR7eA867a+OoGZ2vjvHEdq0tjc7OG9WLW0BgeX7qvXaaOOJuPd+YRGeLPBA+2Jjd3+cg4fH0Mb5+l9ay+wcF3Xt5CYcVxnrhlLFGhge0UoYCzCumVo+L5dFc+5TXtP3fjG5tyKKmsZcFkzxUCac4Yw7SBUazaX3TORa2O1dSx9mAxF2tuPnGhVidnxphQ4A3gezi7Ov4M+OXZ9rPWPmWtHWetHRcd3fG6tEjXkZ5bTm2DQ8VAzsFN45M4WFTp8oqGGzJKqHdYr0jOLh0eS1RooMcKg3yxt4h6h223rjN+vj5cMqwXn6UXcLz+3Ob6anBYXtuYxbSBUST2cH9rnzv98qrh1Dksj3yU7tE4ausdLEnP55Jhvbym1alnaCAXDIriva1Hzvgh99FP9rByfxG/njuC0XoI5hHXjkngeL2Dj1w0nrS1lu0u4KF3dzC+b3emtvN8lWcyfVAUJZW17Mo9e6tvS77YW9iu92XpGlp1ZzfG+ONMzBZaa98EBgD9gK3GmAygN7DZGOMdfSxEzkFa5lEAtZydg8tHxhEW5Mei9a4dfrrmQDH+voZxfTzfQhDg58ON43vz2Z4CDhdXtvv5l+7OJzLEv10LQMwZEUv58XpWHzi3uYC+2FfIkbIabp7g+fEl56tPz27cc0F/3kk7wloXzY10LlYfKKK8pp7LRnrXn9u5KQnklFazqfE+eqoPtuXy5OcHmT8xiRvGd9xW1I4uNTGSvj1DeKsduzauPlDEPS9uYkhsGP++fbzHx0k2N22gM1E814rDS9ML6B7izxg91BUXak21RgP8G0i31v4ZwFq73VobY63ta63tC2QDY6y17fsoRsSFtmSV0is8kLiIjlPq21sEB/hybWoCH+7Io7Sq1mXHXX2gmNSk7gQH+LrsmOdj/sQ+dAvw45sLN7ukUEZrNTgsy/cUMnNITLu2lkwZ2JPQQD8+Psen7IvWZ9KzW0Cneap874yBJEQG89A7O6n3UMW7j3fmERroxxQvan0AuGR4L4L9fXm7hVLte/PL+fHrW0lNiuSXVw33QHTSxBjDNakJrD1UzJF2mL9v0+ES7nhuI317duOFr0/06NjhlsSEBzGkV9g5FUmpb3CwbE8BM4fEaPJ0canW/JWfCiwALjLGpDW+LndzXCLtrmnyaU9N6NrR3TQ+idp6h8vm0SmrqmPHkTKv6NLYJD4ymMdvTmFX7jF++OpWt0++3SQt6ygllbVcNLR9SzUH+vly0dAYPtmV3+ZCKAXlNSxNL+D6sb09XjLbVYIDfPnFlcPYk1/OCx7o3trgsHyyM5+ZQ2MI8veOBxZNugX6ccnwXnywPfekqpZl1XXc/cImQgL8eOKWsQT6eVfcXdG1qQlYC++ktW36g7banl3G7c9uIDY8iBfumED3bgFuPd+5mjYoig0ZR6mpa1v37c2ZpZRW1TGrkzx8Eu/RmmqNK621xlo7ylqb0vj68JRt+lprvWsSGJE2KK44zuHiKo03Ow/D48MZ3TuCRetdUxhk7aFirMXrWgguGtqLBy8bxkc78nhsyd52OeeS9AL8fAwXeKAU/ZwRsZRU1rIho23jCV/flE29w3JjJ+vCNjs5lumDovjzJ3vbfd67DRklFFfWctkI7+rS2GRuSjylVXWs3O9shXA4LD94JY2skir+OX9Mh5qAvDPr07MbY5IieWtLtsuLODXZk1fOgmfXER7sz4t3TCQmzHt/99MHRVFb72B9G8dML03Px9/XcMFg7/obJR1f53icKXKetmaXAhpvdr5umpDEnvzyE5N5n481B4oJ8vdhdGLE+QfmYndM78e8sb15/LP9vLfVvU+fAT5LL2B83x5EBLd/l6ALB0cT6OfTpgmpHQ7LKxuymNCvB/2jQ90YXfszxvDw1cnU1Dfw+8W72/Xci3fkEejn47XzxU0fFE1kiP+Jqo1/+2w/S3cX8PMrhnlNZUlxunZMb/bmV5xzIYwzOVhYwfxn1hHo58PLd04iPtLzZfPPZGK/ngT4+rR53NmS9Hwm9utJmJd11ZSOT8mZCLAlsxQfA6N6e18i0JFcNTqekABflxQGWXOgmPF9e3hlNyhjDL++dgTj+3bnR69tZasLktHTySqpYk9+ObPaqYT+qboF+nHB4Gg+3pnX6qfsaw8Vc7i4ipsndK5WsyYDokP5+rR+vL4pm02HWy6A4WoOh+XjnXlcMDiaboF+7XLOtgrw8+GKkXF8uiuf97Ye4bGle7kuNYHbpvT1dGhyiitHxuHva1xeGCSrpIr5z6zDWsvCOya1y5yM5ys4wJexfbq3aZqUjKJKDhRWeuy+LJ2bkjMRnOPNhsSGExLgnR96OorQQD+uHh3Pe1tzz2sencLy4+zJL2eyF403O1Wgny9P3DKW6LBA7nx+o9vmv/psdwGAR8c1zEmOJbeshm3ZZa3aftH6LMKD/LhsRJybI/Oc71w0iF7hgfzynR3tMjH5tpwycstqvLZLY5O5KQlU1zXwnUVbGBYbzm+vG6lxvF6oe7cAZgyJ4Z2tR1xW3CavrIb5z6yjqraBF74xkYExHafVfPrgKHbnlbe6q/KS9HyATlPsSLyLkjPp8hwOS1pmKalJkZ4OpVO4aUIS1XUNvHse3f2aSpV723izU/UMDeTft42n8ng9dz6/kerac5sP7EyW7i6gf3Q3+kV1c/mxW2vWsBj8fEyrJqQ+WlnL4h15XDemt9cVrXClboF+/OyK4ew8coyXXTyFREsW78jDz8cwa6h3fxgc16c7CZHBRAT78+SCsZ36GujorktNoLD8+DlPldFcUcVx5j+zlpLKWp77+gSGx4e7IML2M32gs6vwqlZ2bVySns/gXqEdfv5G8U5KzqTLO1hUQfnxeo03c5HRvSMYGht2Xh9YVx8oJizQjxEd4A/8kNgwHr85lR1HyvjR61tdOsC+4ng9aw8UM6udqzSeKjIkgMkDerJ4x9m7Nr65JYfaBkenKwTSkqtGxTGxXw8e/XgPJZWum0LiVNZaFu/IZfKAnkSEePf4Fh8fw/PfmMC735qmD65ebubQGMKD/M67wm5pVS0L/r2enNJqnr19fIf8W5ocH073EH9W7Dt7clZWVceGjKNqNRO3UXImXd7mzFIAxqjlzCWMMdw8IYkdOcfYkdO6bnCnWnOgiIn9e7TrnF7nY9awXjwwZygfbMvlr0v3uey4K/cVUdvg8IpSzbOTYzlUVMm+gorTbmOtZdH6TEYnRjIszvsT6/NljOH/5o6g4ng9j368x23n2ZNfTkZxVYfpJjogOrRDjDXq6oL8fbliVByLd+RRefzc5m0sr6njtmfXc6CggqdvHddhC7/4+BimDIxixb7Csz6AWr63gAaH9Yr7snROHeOTj4gbpWWVEhbkR/+ojtM/3ttdk5LgrNR1Dq1nOaXVZBRXMdnLuzSe6q4L+nPdmAQeW7KPD7bluuSYS9PzCQ/yY2wfz0/xcOnwXhjDGas2bs4sZV9BBTd3gVazJkNiw7htcl8Wbchk0fpMtmQeJf9YjUvHoS3ekYcxzomeRVzp2tTeVNc18Mmutk80X1Vbzzf+u5GdR47xj/ljmD7IO6uIttYFg6IoKD9+xgdQAEvTC+jZLaBDthBKx6DqB9Llbcl0Tj7t46NB664SEeLPFSPjeCftCD+7YlibCq2sOdA03sx7i4G0xBjDI9eN5HBxFT98LY2kHiGMPI/qnw6HZdmeAmYMicHfC1oQY8KDGJvUncU78vjOrEEtbrNofSbdAny5anR8O0fnWd+7ZBAf78zjgTe3n1jm52PoFR5EXEQQcZHBxEc4v46NCCY+Moi4iGB6dgto1X1n8Y48xvfpQXRYoDvfhnRB4/p0p3f3YN7cnMO1qb1bvV9NXQN3v7CJjYdL+OtNqZ3iwcG0xuRyxb4iBvcKa3GbugYHy/cUcGlyLL76zCBuouRMurSq2nr25B3j4pkDPR1Kp3PThCTe3JLD+9tyuWFc61tSVh8oonuIP0NO88fRmwX6+fLkgrHM/fsq7nh+A+/eN+2cJ97dml1KUUWtV5VqnjMill9/kE5mcdWXuq2V19Tx/rZcrkmN99pS7+4SHuTPkh9cyMGiCvLKajhSVkNuaTW5ZTXkllWzLbuUj3fWUFt/clW8AF8fYiOCiI0IciZvJ5K4YOeyyGDKquvYnVfOL68c7qF3J52Zj4/hmpQE/rl8PwXHaohpxf2qrsHBfS9tZsW+Ih69flSneRiTEBlM/6hurNhXyDem9Wtxm40ZRzlWU8/FXnRfls6na/0FFTnF9uwyHBZVanSD8X27MyC6G4vWZ7Y6ObPWsvZAMZMH9OywLZlRoYE8c9s4vvKv1dz1/EZeuXvyOVWs+2x3Ab4+xqsmHJ6d7EzOPt6Zx50X9D9p3TtpR6iua+Cm8Ukeis6zggN8SY6PIDm+5dZSay3FlbXkljoTttyyGo6UVZ/4fuPho+Rvz6Wu4eTukE1P52d7eQl96biuHZPA35ft592tR7hjev8zbtvgsHz/lTSWpBfw/+YmM68ND946gmmDonhtYzbH6xtanGNzaXo+Ab4+Hb4Lp3g3JWfSpW1pnDx4dO9Ij8bRGRljuGl8Er/5MJ29+eWn7SbS3OHiKo6U1XBvBxtvdqphceE8dmMKd7+4iR+/vo3Hb0pp81xPS9ILGNunO5EhAW6Ksu0Se4QwIiGcj3bkfik5W7Qhk6GxYZrI/TSMMUSFBhIVGnja7q4Oh6Wo4jhHymrIK6vmSGPi1is8iITI4HaOWLqKAdGhjO4dwZubc86YnDkclvvf2Mb723J58PKhLJjct/2CbCfTB0Xz/JrDbD5c2uI8m0t3FzBpQM8u1ztA2pfnBzKIeFBaZilJPULoGaqxHO5w3ZgE/H1NqwuDrO6g481acmlyLD+ePYT3th7h75/tb9O+R0qrSc895vES+i2ZkxzL5sxS8o/9b9LtHTll7Mg5xs0TkjTh8Hnw8THEhAeRkhjJnBFxfH1aP352xfCztmaInK9rUhPYlXuMPXnlLa631vLLd3fw+qZsvnfxIO66YEA7R9g+JvXvga+PYeX+wi+tO1BYwaGiSnVpFLdTciZd2paso+rS6EY9QwO5NDmWt7bkUFN39gmaVx8oold4IP09OOGyK9174QCuS03gT5/u5aPtra/guHR3AYBXlmqe09i97pNmE1Iv2pBJoJ8P16QkeCosETkPV42Ox9fH8OaW7C+ts9byyEe7eXFtJndf0J/vnqYgUGcQFuRPamJki/OdLU3PB+AiL3xoJp2LkjPpsnLLqsk/dlzlcN3s5vFJlFbV8fHOM5dqttay5kAxUwZEdZrWF2MMv71uJKlJkfzg1a2tnvfts/R8+vQMYUC09yWpA2PCGBDdjcWNv8+q2nre2XKEK0bGef0EySLSsqjQQC4cHM07W47gOGUaiMeW7OOpLw5y6+Q+PHDZ0E5zfz6d6YOi2Z5TxtFTJpZfsquAYXHh9O6uOfzEvZScSZe1pXHy6dQkz88h1ZlNGdCTxB7BZ+3auDe/guLK2hb7+XdkQf6+PLVgHN1D/Lnz+Y0UNOsO2JKq2npWHShm1tBeXvshaM6IWNYeLOFoZS0fbMul/Hg9N03omoVARDqLa1ITyDtWw9qDxSeWPfn5Af66dB/Xj+3Nw1cle+09yZWmDYrC2v91swc4WlnLxsMl6tIo7ULJmXRZaVmlBPj6MCyu45Vs70h8fJyFQdYeLOFQUeVpt1t9wNmNpDOMNztVdFggT982jtKqOu56YdMZu3iu2l9Mbb3Dq0ron2pOchwNDsuS9HwWbciif3Q3xvfVQw6RjuzS4b0IDfTjzS05ADy/JoNHPtrNlaPi+P1XRnXYCrptNbp3BGFBfieNO1u+twCH9c6u5tL5KDmTLmtL5lGSE8JbLJcrrjVvbG98fQyLNpy+9Wz1gWKSeoR02i4jyfER/OXG0aRllXL/G9uw1ra43dL0fMIC/Rjft0c7R9h6IxLCSYgM5ukVB9l0+Cg3jU/sEk/URTqzIH9fLhsRy0fbc3lhTQa/fGcnFw/rxV9uTOlSEy77+fowuX9PvthbdOI+vSS9gOiwQEYlqBqtuJ+SM+mS6hocbM8p03izdhITHsSsoTG8sSn7SxPxgnPunHUHi5ncv/O1mjU3Z0QcP7p0MO+kHeGfyw98ab3DYflsdwEXDI4mwM97b8/GGGYnx7I3vwJ/X8NXxvT2dEgi4gLXpiZQWdvAL97ZyfRBUfz9q6n4+3rvvchdpg+OJqe0moziKmrrHXyxp5CLhsR0mdZD8ayu9z9OBNiTV05NnUPjzdrRzROSKKqoPVHxqrldR45xrKaeKQM7d3IG8K2ZA5mbEs+jH+/5UpGUHUfKKCg/7tVdGps0VW28dHispqIQ6SQm9e/JwJhQJvXvwVMLxhHk3zV7lkwf6Jxrc+W+QjZklFB+vL5D3Jelc9AsetIlNU0+naqWs3ZzweBo4iOCeHlDFpeNjDtpXdN4s87ecgbOVqfff2UUGcVVfP+VNF6/ZwrD48MBWJpegI+BGUO8/0PA2D7dufuC/lw/Vq1mIp2Fj4/h/W9PI9DPp0t3Ve7TM4Te3YNZsa+Ig0WVBPj5MG1QlKfDki5CLWfSJW3JPEpUaAC9uwd7OpQuw9fHMG9cIiv2FZJVUnXSutUHihkYE0pMeJCHomtfQf6+PL1gLBHB/tzx3AYKy48DsHR3PmOSutOjW4CHIzw7Xx/DTy8fxqBeKqgj0pkE+ft26cQMnA/Rpg+KZs2BYj7dlc/UAT0JCVB7hrQPJWfSJaVllZKSGNnl/wC1txvGJwLw2sasE8tq6x1syCjplFUazyQmPIinbx1HSVUtd7+wkcziKnbkHOMidZ0REfG46YOiKD9eT/bRalVplHal5Ey6nLKqOg4WVmq8mQckRAZz4eBoXt2YTX2DszDItuxSqmobulxyBjAiIYK/3JDC5sxSbn56LQAX60OAiIjHTRnQk6bntxpvJu1JyZl0OWnZpQCq1OghN41PIu9YDcv3OOeQWX2gGGNgYr+ul5wBXDYyjh9cMpic0mp6dw9mUEyop0MSEenyIkMCGJPUndG9I4iL0BAIaT/qQCtdTlpmKcbAqN6ar8QTZg2LISo0kEUbMrl4eC9WHyhieFw43TvAOCt3+fZFA6lvcNAvupu62oqIeIl/zR/j6RCkC1JyJl3OlqyjDIoJJSzI39OhdEn+vj7MG9ebJz8/wOHiSjZnlnLrpD6eDsujjDH84NIhng5DRESa6SpFqsS7qFujdCnWWtKySklN1HgzT7ppfCIOCz99czu19Y4uMb+ZiIiIyNmcNTkzxiQaY5YZY9KNMTuNMd9tXP7/jDHbjDFpxphPjDHx7g9X5PxkFFdRWlVHSlKkp0Pp0vr07MaUAT1ZfaAYXx/D+L49PB2SiIiIiMe1puWsHvihtXYYMAn4ljFmOPCotXaUtTYFeB/4pfvCFHGNtKyjAKQqOfO4myYkAc6xf+piKiIiItKK5Mxam2ut3dz4dTmQDiRYa48126wbYN0ToojrbMkspVuAL4NiNHGup81O7kXv7sHMSY71dCgiIiIiXqFNBUGMMX2BVGBd4/e/AW4FyoCZrg5OxNXSskoZ2TsCXx9VxPO0QD9fvvjxTHz0uxAREREB2lAQxBgTCrwBfK+p1cxa+zNrbSKwELjvNPvdZYzZaIzZWFhY6IqYRc5JTV0Du44c0+TTXkSJmYiIiMj/tCo5M8b440zMFlpr32xhk5eAr7S0r7X2KWvtOGvtuOjo6HOPVOQ87TxSRr3DavJpEREREfFKranWaIB/A+nW2j83Wz6o2WZXA7tdH56I62zJLAUgVcmZiIiIiHih1ow5mwosALYbY9Ialz0IfMMYMwRwAIeBe9wSoYiLbMkqJSEyWJNKioiIiIhXOmtyZq1dCbQ0MORD14cj4j5pmaWa30xEREREvFarC4KIdGQF5TXklFarS6OIiIiIeC0lZ9IlpDWNN1PLmYiIiIh4KSVn0iVsySrFz8eQHB/h6VBERERERFqk5Ey6hLTMUobHhxPk7+vpUEREREREWqTkTDq9BodlW3ap5jcTEREREa+m5Ew6vX0F5VTWNmi8mYiIiIh4NSVn0uk1TT6dktjds4GIiIiIiJyBkjPp9NIyS4kM8advzxBPhyIiIiIiclpKzsTtrLXsyy/HWuuR82/JOkpKYiTGtDSXuoiIiIiId1ByJm7lcFh+9vYOLvnLF7y2Mbvdz19eU8e+ggpS1aVRRERERLyckjNxmwaH5SdvbOOldZlEhvjzp0/3UFVb364xbMsuw1pIUTEQEREREfFySs7ELeoaHHzvlTRe35TN9y8ezNO3jiP/2HGeXXmoXeNIyyoFIKV3ZLueV0RERESkrZScicvV1jv49ktbeG/rER64bCjfvXgQ4/v24NLhvXji84MUVRxvt1i2ZJbSP7obESH+7XZOEREREZFzoeRMXKqmroF7XtzE4p15PHTVcO65cMCJdfdfNpTqugYeX7qvXWKx1pLWWAxERERERMTbKTkTl6mubeDO5zfy2e4CfnPtCL42td9J6wdEh3LzhEReWpfJwcIKt8eTfbSaoopaUpNUDEREREREvJ+SM3GJyuP13P6f9azcX8Sj149i/sQ+LW733VmDCfTz4Q+L97g9pi2N481S1XImIiIiIh2AkjM5b8dq6ljw73VsPHyUx25MYd64xNNuGx0WyN0XDmDxzjw2HS5xa1xpmaUE+fswJDbMrecREREREXEFJWdyXkqrarnlmXVszynjH19NZW5Kwln3uWN6P2LCAvnNB+lunZh6S9ZRRiZE4O+ry1xEREREvJ8+tco5K644zs1Pr2N3bjlP3DKWOSPiWrVfSIAfP7hkMJszS/l4Z55bYjte38DOI8c03kxEREREOgwlZ3JOCo7VcNNTazlUVMEzt41j1rBebdr/+rG9GRQTyu8X76GuweHy+NJzy6mtd6hSo4iIiIh0GF0+Oaupa6Csus7TYXQouWXV3PjUWnJKq/nP7RO4YHB0m4/h5+vDA5cN5VBRJS+vz3R5jGmZRwFITYp0+bFFRERERNyhSydn1lpu/896vrlwk1tabzqjrJIqbnhyDUXlx3nhGxOYPKDnOR/roqExTOrfg78u2Ud5jWsT5C1ZpfQKDyQuItilxxURERERcZcunZwZY7h+bCKr9hfz/97f5elwvF5GUSU3PrmGsqo6XrxjImP79Div4xljePDyYRRX1vLk5wddFKVTWlYpqYkabyYiIiIiHUeXTs7AOfbprgv68/yaw7y49rCnw/Fa+wvKueHJNdTUO3j5rkmMdtFYrlG9I7l6dDzPrDxIXlmNS45ZXHGcw8VVpKhLo4iIiIh0IF0+OQO4f85QZg6J5uF3d7L6QJGnw/E66bnHuPHJtTgsLLprEsnxES49/o9nD6HBYfnzp66ZmHprdimgyadFREREpGNRcgb4+hj+enMqfaO68c2FmzlcXOnpkLzGjpwybn56Lf6+Prx69yQG93L9hM6JPUK4dXJfXt+Uze68Y+d9vLTMUnx9DCN7uzaJFBERERFxJyVnjcKD/Hnm1nFYC3c8t9HlBSo6os2ZR7n56bV0C/Dj1bsn0z861G3n+vZFAwkN9ON3H+0+72NtySplSK8wQgL8XBCZiIiIiEj7OGtyZoxJNMYsM8akG2N2GmO+27j8UWPMbmPMNmPMW8aYSLdH62Z9o7rxr/ljOFhUyXcXpdHgsJ4OyWPWHyphwTPr6NEtgFfvmUxSzxC3ni8yJIBvzRzI8j2FrNp/7l1LHQ5LWlapxpuJiIiISIfTmpazeuCH1tphwCTgW8aY4cCnwAhr7ShgL/BT94XZfqYMjOLhq5P5bHcBf1h8/q04HdGq/UXc9ux6YiOCePXuySREtk85+tum9CUhMphHPkrHcY6J8cGiCspr6jXeTEREREQ6nLMmZ9baXGvt5savy4F0IMFa+4m1tr5xs7VAb/eF2b4WTOrDLZOSePKLg7yxKdvT4bSrZXsK+Np/N5DUI4RFd02mV3hQu507yN+XH80ezI6cY7y79cg5HWNLZimgyadFREREpONp05gzY0xfIBVYd8qqrwMfuSgmr/DQVclM7t+Tn765nU2Hj3o6nHbx0fZc7np+I4NiQnn5rklEhwW2ewxzRyeQHB/Oox/voaauoc37b8kqJSzIj/5R7hsfJyIiIiLiDq1OzowxocAbwPestceaLf8Zzq6PC0+z313GmI3GmI2FhYXnG2+78ff14Z/zxxAXGcTdL2ziSGm1p0NyG2st/1i2n3sXbmZEQgQv3TmJHt0CPBKLj49zYuqc0mqeX5PR5v3TMktJSYzEx8e4PjgRERERETdqVXJmjPHHmZgttNa+2Wz5bcCVwHxrbYuDhKy1T1lrx1lrx0VHR7si5nbTvVsAz9w6jpq6Bu58fiNVtfVn36mDqalr4PuvpPHox3u4enQ8L985iYhgf4/GNHVgFBcOjubvn+2ntKq21ftV1dazO+8YKRpvJiIiIiIdUGuqNRrg30C6tfbPzZbPAe4HrrbWVrkvRM8a1CuMv92cyq7cY/zota3nXKjCGxWU13DTU2t5O+0IP7p0MH+9KYUgf19PhwXAA5cNpfx4Pf9Ytr/V+2zPLsNhNd5MRERERDqm1rScTQUWABcZY9IaX5cDfwfCgE8blz3hzkA9aebQGH562VA+3J7H45/t83Q4LrEjp4y5f1/FnrxynrhlDPddNAhnHu4dhsWFc/2Y3jy3+jBZJa3L/bdklQIwunek+wITEREREXGTs87Sa61dCbT0qf1D14fjve6c3p/deeU8tmQfg2LCuGJUnKdDOmeLd+Ty/Ve2Ehniz2v3TGZEQoSnQ2rRDy4dzHvbjvDHT/bw15tSz7p9WmYpfXqG0DO0/QuZiIiIiIicrzZVa+zKjDH89tqRjEmK5IevpbEjp8zTIbWZtZa/f7aPe17czJDYMN65b6rXJmYAcRHBfGNaP95JO8K27NKzbr8l66jGm4mIiIhIh6XkrA2C/H15YsFYeoQEcOfzGykor/F0SK1WU9fAdxel8cdP9nJNSjyL7ppETFj7zWF2ru6+cAA9ugXw2w/TOU3NGQByy6rJP3Zck0+LiIiISIel5KyNYsKCeOrWcZRW1XH3C5vOaS6u9lZwrIYbn1rLu1uP8OPZQ/jLjd5T+ONswoP8+c5FA1l7sITle04/FUNa4+TTKUnd2ykyERERERHXUnJ2DkYkRPCnG0azJbOUB9/afsYWHU/bkVPG3H+sYl9+OU8uGMu3Zg70qsIfrfHViX3o2zOERz5Kp77B0eI2W7JKCfDzYXhceDtHJyIiIiLiGkrOztHlI+P43sWDeHNzDk99cdDT4bToo+25XP/Eagzw+j1TmJ0c6+mQzkmAnw8/mTOUvfkVvLE5u8Vt0jJLSY4PJ8BPl7SIiIiIdEz6JHsevnPRIK4YGcfvFu/ms935ng7nBGstjy/dx70LNzM8Lpx37pvG8PiO3aJ02YhYUpMi+dMne780GXhdg4NtOaWkJqpLo4iIiIh0XErOzoOPj+GP80YzPC6c77ycxt78ck+HRE1dA99ZlMafP93LdakJvHTnJKLDOn5peWMMD14+jILy4/x7xaGT1u3JK6emzkGKJp8WERERkQ5Mydl5Cg7w5elbxxHk78sdz23kaGWtx2LJP1bDjU+u4f1tR/jJnCH86YbRHabwR2uM79uDS4f34onPD1BUcfzE8qbJp1WpUUREREQ6MiVnLhAfGcxTt44lr6yGexduou40RSvcaXt2GXP/vop9BRU8ectYvjmj4xX+aI37LxtKTb2Dvy7Zd2JZWmYpUaEB9O4e7MHIRERERETOj5IzFxmT1J1HrhvJ2oMl/Oq9ne167g+25TLvydX4+hjeuHcKl3bQwh+tMSA6lJsnJPLS+kwOFFYATZNPd++UyaiIiIiIdB1KzlzoK2N7c/eF/XlxbSYvrMlw+/mstfx1yT6+9dJmkuMjePtbUxnWBUrJf3fWYIL8fPjD4t2UVdVxsLCSVI03ExEREZEOzs/TAXQ2P5k9lH35FTz83i76R4cydWCUW85TU9fAj17byvvbcrluTAKPXDeSQL/OM77sTKLDArn7wgH8+dO9DOnlnMZA481EREREpKMz7TmB8rhx4+zGjRvb7XyeUl5Tx3X/XM3hkip6hQcS4u9HcIAvwf6+hAT4nvK132mWN33duG+ALyH+zn9Lq+q464WNbM8p4/45Q7n7gv5drktfVW09Mx5dTmFjYZBtD11KWJC/h6MSERERETkzY8wma+24ltap5cwNwoL8+c/XxvPMikOUVddRVVtPdZ2D6tp68o7VUV3XQHVtA1W1DVTXNVBb3/YCIt0CfHlqwTguGd7LDe/A+4UE+PGDSwbzwJvbGdwrVImZiIiIiHR4Ss7cpHf3EB6+OrlV29Y3OKipdziTuMaErarWmcBV1zZQVddAdeO6qsZk7oqRcQzqFebmd+Hdrh/bm1c2ZjF1gHu6joqIiIiItCclZ17Az9eHUF8fQgP162gLP18f3vrmVE+HISIiIiLiEqrWKCIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIFzhrcmaMSTTGLDPGpBtjdhpjvtu4fF7j9w5jzDj3hyoiIiIiItJ5+bVim3rgh9bazcaYMGCTMeZTYAdwHfCkOwMUERERERHpCs6anFlrc4Hcxq/LjTHpQIK19lMAY4x7IxQREREREekC2jTmzBjTF0gF1rklGhERERERkS6q1cmZMSYUeAP4nrX2WBv2u8sYs9EYs7GwsPBcYhQREREREen0WpWcGWP8cSZmC621b7blBNbap6y146y146Kjo88lRhERERERkU6vNdUaDfBvIN1a+2f3hyQiIiIiItL1tKZa41RgAbDdGJPWuOxBIBD4GxANfGCMSbPWznZLlCIiIiIiIp1ca6o1rgROV5LxLdeGIyIiIiIi0jW1qVqjiIiIiIiIuIeSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLnDU5M8YkGmOWGWPSjTE7jTHfbVzewxjzqTFmX+O/3d0froiIiIiISOfUmpazeuCH1tphwCTgW8aY4cADwFJr7SBgaeP3IiIiIiIinvGHP8CyZScvW7bMubwDOGtyZq3NtdZubvy6HEgHEoC5wHONmz0HXOOmGEVERERERM5u/Hi44Qb46CMoKnImZjfc4FzeAfi1ZWNjTF8gFVgH9LLW5oIzgTPGxLg+PBERERERkVa68EK44w648koYNgzy8+HVV2HmTE9H1iqtLghijAkF3gC+Z6091ob97jLGbDTGbCwsLDyXGEVERERERM7s88+dLWS/+x306gU7d8K993aYxAxamZwZY/xxJmYLrbVvNi7ON8bENa6PAwpa2tda+5S1dpy1dlx0dLQrYhYRERER6Vg6+Fgor7ZvH1x7LcyYAQUF8OCDUFcHv/gF/OtfX/65e7HWVGs0wL+BdGvtn5utehe4rfHr24B3XB+eiIiIiEgn0DQWatkyZ+LQwcZCeaWSEvj+92H4cFiyBH79a3jqKefr1Vfh//7P+W/Tz70DMNbaM29gzDRgBbAdcDQufhDnuLNXgSQgE5hnrS0507HGjRtnN27ceL4xi4iIiIh0PMuWOVt4fH2d37/+eofqcuc1amvhn/90Jl9lZfCNbzi/jo11tkSOH3/yz3XZMtiwAX7yE8/F3IwxZpO1dlyL686WnLmSkjMRERER6dLuuguefhrCw2HLFujf39MRdRzWwjvvwI9/DPv3wyWXwJ/+BCNHejqyNjlTctbqgiAiIiIiInIeli2Dt96CO++E8nKYPBkOHfJ0VB3D5s3O1rBrrwV/f/jwQ/j44w6XmJ2NkjMREREREXdrGmP26qvOMVH/+hcUFjoTtIwMT0fnvbKz4bbbYNw42LXL2Z1x2za47DIwxtPRuZySMxERERERd9uw4eT5tu6+25mglZU5lx0+7Nn4vE1FBTz0EAweDIsWOceL7dvnLI3v16apmjsUjTkTEREREfGUjRudY6ciI53zdCUleToiz2pogOeeg5//HHJz4cYb4ZFHoF8/T0fmMhpzJiIiIiLijcaNg08/haNHnfN0ZWZ6OqL20dK8b3/6EyQmOqsv9ukDq1c7W806UWJ2NkrOREREREQ8qSlBKy52dnHMyvJ0RO7XfN633budY+9+9CNwOJwJ2erVzmVdjJIzERERERFPGz/emaAVFTkTtOxsT0fkXjNnwmOPweWXOyeRXrfOOc1ARoazK2MnLPbRGkrORERERES8wYQJ8MknUFDgTF5ycjwdkevV18Pbb8OcObBgARw/7py/7PvfhyefhKAgT0foUUrORERERES8xcSJzgQtP79zJWjZ2fDww86xZNdeCzt2wK23Qvfu8ItfwPPPf3kMWhek5ExERERExJtMmuScYDk315mgHTni6YjOTUMDfPQRzJ3rTMr+7/9g9Gh45x3473/hgw/g9dedy1999X9j0LowJWciIiIiIt5m8uSTE7TcXE9H1Hp5efDb38LAgc4xZWvXwv33w4ED8OGHcPXVsHnzyfO+zZzp/H7DBs/G7mGa50xERERExFutWgWzZ0Pv3s5Wpbg4T0fUMofDGd+TT8JbbznHll10Edxzj7PlLCDA0xF6Dc1zJiIiIiLSEU2dCosXO8dsXXSRs1XKmxQVOecnGzoULr4Yli6F734X9uxxfj1vnhKzNlByJiIiIiLizaZNc47dyspyJmj5+e1z3pYmil62DH7/e1i5Em65BRISnPOTxcTACy84C5j88Y8weHD7xNjJKDkTEREREfF206c7x2sdPtx+CVrziaIB3nsPrroKnnjCGc977znnJtu+/X/JWhcvhX++lJyJiIiIiHQEF1zgTNAyMpwJWkGBe883cyY8+yxccw2kpjoLeVRWQnQ0PPOMs4rk3/4GI0a4N44uxM/TAYiIiIiISCtdeKGzBP3llzsTtGXLnMmSK1gL+/fD6tXO16pVsGuXc3lamjNBe/ppGDvWNeeTL1FyJiIiIiLSkcyYAe+/D1de6UzQPvvs3BK0mhrYtOl/idjq1VBY6FwXEeEs5z9hArz5prPq4r//DceOufStyMmUnImIiIiIdDQXXeQc83XllTBqFPzrX87uh02WLXPOGfaTn/xvWV7e/1rFVq92Jma1tc51TXOSTZnirBA5bBh8/rlzzNlbbzm7OM6e7fy++fxk4lKa50xEREREpKNassSZVDkc8PrrzgRt2TJnEvXII875xppaxQ4edO4TGAjjxv0vEZs82Vlt8VR/+IOzKEjzRKylpE/a5EzznCk5ExERERHpyD79FK64wpmgTZ0Ka9aAvz9UVTnX9+rlXD5livM1ZowzQROPOFNypm6NIiIiIiId2SWXOMegXX45fPGFsxXsuuv+l5D16wfGeDpKaQWV0hcRERER6ej8/SEyEn78Y2cL2g03OOcd699fiVkHouRMRERERKQjaxpj9tprznFir7568uTR0mEoORMRERER6cg2bDi5guLMmc7vN2zwbFzSZioIIiIiIiIi0k7OVBBELWciIiIiIiJe4KzJmTHmWWNMgTFmR7Nlo40xa4wx240x7xljwt0bpoiIiIiISOfWmpaz/wJzTln2DPCAtXYk8BbwYxfHJSIiIiIi0qWcNTmz1n4BlJyyeAjwRePXnwJfcXFcIiIiIiIiXcq5jjnbAVzd+PU8INE14YiIiIiIiHRN55qcfR34ljFmExAG1J5uQ2PMXcaYjcaYjYWFhed4OhERERERkc7tnJIza+1ua+2l1tqxwMvAgTNs+5S1dpy1dlx0dPS5xikiIiIiItKpnVNyZoyJafzXB/g58IQrgxIREREREelqzjoJtTHmZWAGEAXkAw8BocC3Gjd5E/ipbcVs1saYQuDwecTrLlFAkaeDEK+j60JOR9eGtETXhbRE14W0RNdF19bHWttil8KzJmddgTFm4+lm6ZauS9eFnI6uDWmJrgtpia4LaYmuCzmdcy0IIiIiIiIiIi6k5ExERERERMQLKDlzesrTAYhX0nUhp6NrQ1qi60JaoutCWqLrQlqkMWciIiIiIiJeQC1nIiIiIiIiXqDDJWfGmDnGmD3GmP3GmAeaLX/FGJPW+MowxqS1sG+KMWaNMWanMWabMebGZuv6GWPWGWP2NR4r4DTnv61xm33GmNvaur+4hyevC2NMH2PMpsZz7DTG3NOW/cV93Hhd3Nd4TGuMiTrD+XW/8FKevDZ0z/BebrwuFjYed4cx5lljjP9pzq97hhfy5HWh+0UXZK3tMC/AFzgA9AcCgK3A8Ba2+xPwyxaWDwYGNX4dD+QCkY3fvwrc1Pj1E8C9LezfAzjY+G/3xq+7t3Z/vTrtdREABDZ+HQpkAPG6Ljr1dZEK9G38XUed5vy6X3jpywuuDd0zvPDl5uvicsA0vl4+zd8S3TO88OUF14XuF13s1dFaziYA+621B621tcAiYG7zDYwxBrgB50V+EmvtXmvtvsavjwAFQHTjPhcBrzdu+hxwTQvnnw18aq0tsdYeBT4F5rRhf3EPj14X1tpaa+3xxm8DaWyR1nXhcW65Lhq/32KtzTjL+XW/8F4evTZ0z/Ba7rwuPrSNgPVA7xbOr3uGd/LodaH7RdfT0ZKzBCCr2ffZjcuamw7kN/1HOB1jzAScTyMOAD2BUmtt/anHNcaMM8Y8c5bzn3Z/aReevi4wxiQaY7Y1xvH7xhuwrgvPctd1cabtdL/oGDx9beie4Z3cfl00dltbACxu/F73DO/n6etC94supqMlZ6aFZaeWm7yZFp5cnHQQY+KAF4CvWWsdZzqutXajtfaOs5y/NXGJ+3j6usBam2WtHQUMBG4zxvRqZVziPu66Lk5L94sOw9PXhu4Z3qk9rot/Al9Ya1eA7hkdhKevC90vupiOlpxlA4nNvu8NHGn6xhjjB1wHvHK6AxhjwoEPgJ9ba9c2Li4CIhv3/9JxW3H+1u4v7uHp6+KExqdZO3E+RdN14Vnuui7O9/y6LjzP09fGCbpneBW3XhfGmIdwdmf7QRvPr+vCszx9XZyg+0XX0NGSsw3AoMbqNAHATcC7zdZfDOy21ma3tHPjPm8Bz1trX2ta3tjXdxlwfeOi24B3WjjEx8ClxpjuxpjuwKXAx23YX9zDo9eFMaa3MSa48evuwFRgj64Lj3PLddEGul94L49eG7pneC23XRfGmDtwjim7+QytrLpneCePXhe6X3RB1guqkrTlhbOyzV6c/XV/dsq6/wL3nGHfW4A6IK3ZK6VxXX+cgzH3A6/xv8o444Bnmh3j643b7MfZNM2Z9ter818XwCXANpwVnLYBd+m68I6XG6+L7+B8mlqP80ll07Wg+0UHeXny2tA9w3tfbrwu6huP2bT8l6deF43f657hhS9PXhe6X3S9l2n85YqIiIiIiIgHdbRujSIiIiIiIp2SkjMREREREREvoORMRERERETECyg5ExERERER8QJKzkRERERERLyAkjMREREREREvoORMRERERETECyg5ExERERER8QL/H9Y6t2X4Ks5sAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAE/CAYAAADVKysfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9qUlEQVR4nO3dd3hUVfoH8O+ZSe89IYUUIKRACBC6lISqWBAVXV07urr6s65lV13Lurvq2nfXXteyLioidnqvCYSWkADphWTSe5mZ8/tjJjFASJ2ZO5l8P88zD8mde899J7kZ7jvnnPcIKSWIiIiIiIjIOqmUDoCIiIiIiIjOj0kbERERERGRFWPSRkREREREZMWYtBEREREREVkxJm1ERERERERWjEkbERERERGRFWPSRkREREREZMWYtBER2QghREOXh14I0dzl++uUjm8ghBB5QogFSsfREyHEFiHESjO2f4kQ4qjx97hLCBHX5blrhBBZQohaIUS5EOJjIYRHl+d9hBDfCCEahRD5Qohrz2p7vhDiuBCiSQixWQgRbq7XQUREA8ekjYjIRkgp3ToeAAoAXNJl22dKx3c2IYSdLZzDnIQQYwB8BuAOAF4AvgOwtsvr2glglpTSE0AUADsAz3Zp4t8A2gAEArgOwJtCiHhj234AVgN4AoAPgFQA/zPzSyIiogFg0kZEZOOEECohxKNCiFNCiEohxCohhI/xuQghhBRC3CyEKBRCVAsh7hBCTBFCHBZC1Agh/tWlrZuEEDuFEP809u4cF0LM7/K8pxDifSFEqRCiWAjxrBBCfdaxrwghqgA8JYQYJYTYZIyrQgjxmRDCy7j/JwBGAvjO2Mv0sBBinhCi6KzX19kbJ4R4SgjxlRDiUyFEHYCbeolptBBiq/G1VAghuk1ahBBOxjYrjT+T/UKIQCHEXwHMBvAvY4z/Mu4fI4RYL4SoMvaErejS1kdCiLeMz9cbz3++Hq7FALZLKXdIKbUAngcQAmAuAEgpC6WUFV321wEYbTyPK4ArADwhpWyQUu4AsBbA9cZ9lwM4JqX8UkrZAuApABOEEDHniYWIiBTCpI2IyPbdA2AZDDf6wQCqYeiB6WoagDEArgbwKoDHACwAEA9ghRBi7ln75gDwA/AkgNUdSSCAjwFoYUgcJgJYBGBlN8cGAPgrAAHg78a4YgGEwZA8QEp5Pc7sMXyhj6/3MgBfwdAz9VkvMf0FwDoA3gBCAfzzPG3eCMDTGJ8vDD1fzVLKxwBsB3C3Mca7jcnSegCfG1/nbwC80dHDZXSd8dx+ANKNcXZHGB9nfz+uc4MQFwghagHUw5CkvWp8KhqATkqZ3eX4QzD8TmH891DHE1LKRgCnujxPRERWgkkbEZHt+x2Ax6SURVLKVhiSoivPGjr4Fylli5RyHYBGAP+VUpZLKYthSEomdtm3HMCrUsp2KeX/AGQBWCqECARwIYD7pJSNUspyAK8AuKbLsSVSyn9KKbVSymYp5Ukp5XopZauUUgPgZRh7kQZht5RyjZRSD8Cjl5jaAYQDCDa+/h3nabMdhmRttJRSJ6VMk1LWnWffiwHkSSk/NL7OAwC+BnBll31+kFJuM/4+HgMwQwgR1k1b6wHMNfYwOgD4EwAHAC4dOxh74TxhSDr/ASDP+JQbgNqz2qsF4N7H54mIyEoM6bH+RETUJ+EAvhFC6Lts08Ewz6lDWZevm7v53q3L98VSStnl+3wYesrCAdgDKBWis3NIBaCwy75dv4YQIgDA6zAMMXQ37l/dp1d1fl3P0VtMD8PQ47VPCFEN4CUp5QfdtPkJDL1sXxiHb34KQyLc3s2+4QCmCSFqumyzM7ZxToxSygbjcNHgs2KHlPK4EOJGAP8CMMJ43gwAZwwRNe5bLIT4GcAXACYBaIAhae3KA4YeOfTheSIishLsaSMisn2FAC6UUnp1eTgZe9EGIkR0yYBgmHdWYjxPKwC/LufxkFJ2HW7XNdkDDEMjJYAEKaUHgN/izOGAZ+/fiC69TMa5af5n7dP1mB5jklKellLeJqUMhqFH8g0hxOizX7CxV/FpKWUcgJkw9KbdcJ4YCwFsPevn7SalvLPLPp29akIINxgKgZScfV7jub+SUo6TUvrCMBw1HMD+7vaFITkcZfw6G4CdsZhJhwkAjhm/Pmb8viMOV+Oxx0BERFaFSRsRke17C8BfO4pdCCH8hRCXDaK9AAD3CCHshRBXwTAX7UcpZSkM88NeEkJ4GAugjDprPtzZ3GHo8akRQoQAeOis58tgqIrYIRuAkxBiqRDCHsDjABzP13hvMQkhrhJChBp3r4YhAdOd3Y4QIlkIMd6YJNbBMFyyY7+zY/weQLQQ4nrjz8jeWNgltss+FxnnojnA0NO3V0p5Ri9bl3NPFkKohRD+AN4G8J2U8rjxueuEECOFQTgM8wQ3Gl97IwzVIZ8RQrgKIWbBMN+vo8fvGwDjhBBXCCGcAPwZwOGOtomIyHowaSMisn2vwVA1cJ0Qoh7AHhgKggzUXhiKllTAkCRcKaWsND53AwxzrjJgSIK+gmFY3/k8DcNQvloAP8CQZHT1dwCPGys2/kFKWQvg9wDeA1AMQ8/bOUMFz9JTTFMA7BVCNMDwM7pXSpnbTRtBxuPqAGQC2ArDUEXA8PO9Uhgqb74upayHodjJNTD0np2Goepj1+Tycxh6zaoATIahMMn5vAagBoa5gzUAbuvyXByAXTAkvjuN+3R9/vcAnGGYh/hfAHdKKY8BgHEO4RUw/A6rYbgmus4/JCIiKyHOnJZARER0fkKImwCslFJeoHQsQ5UQ4iMARVLKx5WOhYiIhgb2tBEREREREVkxJm1ERERERERWjMMjiYiIiIiIrBh72oiIiIiIiKwYkzYiIiIiIiIrZmfJk/n5+cmIiAhLnpKIiIiIiMhqpKWlVUgp/ftzjEWTtoiICKSmplrylERERERERFZDCJHf32M4PJKIiIiIiMiKMWkjIiIiIiKyYkzaiIiIiIiIrJhF57R1p729HUVFRWhpaVE6FLIxTk5OCA0Nhb29vdKhEBERERENmOJJW1FREdzd3REREQEhhNLhkI2QUqKyshJFRUWIjIxUOhwiIiIiogFTfHhkS0sLfH19mbCRSQkh4Ovryx5cIiIiIhryFE/aADBhI7PgdUVEREREtsAqkjal/fWvf0V8fDwSEhKQmJiIvXv3AgBWrlyJjIwMk5wjIiICFRUVPe7zt7/9rd/tfvTRR7j77rvP2Pbhhx8iMTERiYmJcHBwwPjx45GYmIhHH3203+1bwquvvoqmpialwyAiIiKioe6FF4DNm8/ctnmzYfsQNuyTtt27d+P777/HgQMHcPjwYWzYsAFhYWEAgPfeew9xcXEWi2UgSVt3br75ZqSnpyM9PR3BwcHYvHkz0tPT8dxzz5mk/f6SUkKv15/3+YEkbVqtdrBhEREREZGtmTIFWLHi18Rt82bD91OmKBvXIA37pK20tBR+fn5wdHQEAPj5+SE4OBgAMG/ePKSmpgIA3Nzc8Mgjj2Dy5MlYsGAB9u3bh3nz5iEqKgpr164FcG6v18UXX4wtW7acc85ly5Zh8uTJiI+PxzvvvAMAePTRR9Hc3IzExERcd911AIBPP/0UU6dORWJiIn73u99Bp9MBMPSkRUdHY+7cudi5c2efX+s//vEPTJkyBQkJCXjyyScBAHl5eYiJicHKlSsxbtw4XHfdddiwYQNmzZqFMWPGYN++fQCAp556Ctdffz1SUlIwZswYvPvuu722Gxsbi9///veYNGkSCgsLceeddyIpKQnx8fGd+73++usoKSlBcnIykpOTO3/WHb766ivcdNNNAICbbroJDzzwAJKTk/HII4/g1KlTWLJkCSZPnozZs2fj+PHjff5ZEBEREZENSk4GVq0CLrsM+N3vDAnbqlWG7UOZlNJij8mTJ8uzZWRknLPNkurr6+WECRPkmDFj5J133im3bNnS+dzcuXPl/v37pZRSApA//vijlFLKZcuWyYULF8q2tjaZnp4uJ0yYIKWU8sMPP5R33XVX5/FLly6VmzdvllJKGR4eLjUajZRSysrKSimllE1NTTI+Pl5WVFRIKaV0dXXtPDYjI0NefPHFsq2tTUop5Z133ik//vhjWVJSIsPCwmR5eblsbW2VM2fOPOOcZ+s47y+//CJvu+02qdfrpU6nk0uXLpVbt26Vubm5Uq1Wy8OHD0udTicnTZokb775ZqnX6+WaNWvkZZddJqWU8sknn5QJCQmyqalJajQaGRoaKouLi3tsVwghd+/e3RlLx+vWarVy7ty58tChQ+f8bM7+OXz55ZfyxhtvlFJKeeONN8qlS5dKrVYrpZQyJSVFZmdnSyml3LNnj0xOTj7n9St9fRERERGRheXkSGlnJyUg5RNPKB3NOQCkyn7mUYqX/O/q6e+OIaOkzqRtxgV74MlL4s/7vJubG9LS0rB9+3Zs3rwZV199NZ577rnO3p0ODg4OWLJkCQBg/PjxcHR0hL29PcaPH4+8vLx+xfT666/jm2++AQAUFhbixIkT8PX1PWOfjRs3Ii0tDVOMXbnNzc0ICAjA3r17MW/ePPj7+wMArr76amRnZ/d6znXr1mHdunWYOHEiAKChoQEnTpzAyJEjERkZifHjxwMA4uPjMX/+fAghznltl112GZydneHs7Izk5GTs27cPO3bsOG+74eHhmD59eufxq1atwjvvvAOtVovS0lJkZGQgISGhXz+7q666Cmq1Gg0NDdi1axeuuuqqzudaW1v71RYRERER2RgpDb1rWi1wzz3Am28aetmGeE+bVSVtSlGr1Zg3bx7mzZuH8ePH4+OPPz4nabO3t++sRqhSqTqHU6pUqs75VXZ2dmfM3equ3PyWLVuwYcMG7N69Gy4uLpg3b163+0kpceONN+Lvf//7GdvXrFkzoKqIUkr88Y9/xO9+97sztufl5XW+lp5eG3BuNUYhRI/turq6dn6fm5uLF198Efv374e3tzduuumm85bj73qes/fpaFOv18PLywvp6em9vXQiIiIiGi4efxxITQXuvht47TVg2TKbGCJpVUlbTz1i5pKVlQWVSoUxY8YAANLT0xEeHj6gtiIiIvDGG29Ar9ejuLi4cz5YV7W1tfD29oaLiwuOHz+OPXv2dD5nb2+P9vZ22NvbY/78+bjssstw//33IyAgAFVVVaivr8e0adNw7733orKyEh4eHvjyyy8xYcKEXmNbvHgxnnjiCVx33XVwc3NDcXEx7O3t+/X6vv32W/zxj39EY2MjtmzZgueeew7Ozs59areurg6urq7w9PREWVkZfvrpJ8ybNw8A4O7ujvr6evj5+QEAAgMDkZmZibFjx+Kbb76Bu7v7Oe15eHggMjISX375Ja666ipIKXH48OE+/SyIiIiIyAZVVACvvgrExhr+BX6d47Z/P5O2oayhoQH/93//h5qaGtjZ2WH06NGdxUH6a9asWZ1DDceNG4dJkyads8+SJUvw1ltvISEhAWPHjj1j+ODtt9+OhIQETJo0CZ999hmeffZZLFq0CHq9Hvb29vj3v/+N6dOn46mnnsKMGTMwYsQITJo0qbNASU8WLVqEzMxMzJgxA4BhWOinn34KtVrd59c3depULF26FAUFBXjiiScQHByM4ODgPrU7YcIETJw4EfHx8YiKisKsWbPOeN0XXnghRowYgc2bN+O5557DxRdfjLCwMIwbNw4NDQ3dxvPZZ5/hzjvvxLPPPov29nZcc801TNqIiIiIhqsHHgDa2w1JWtd7URsYHikMc+F62EGIMAD/ARAEQA/gHSnla0KI/wEYa9zNC0CNlDKxp7aSkpJkRzXGDpmZmYiNjR1Q8GQ5Tz31FNzc3PCHP/xB6VD6hdcXERER0TDwyy/AkiXAE08AzzyjdDQ9EkKkSSmT+nNMX3ratAAelFIeEEK4A0gTQqyXUl7d5cQvAajtX7hERERERESD1NgI3HEHMHYs8Kc/KR2NWfSatEkpSwGUGr+uF0JkAggBkAEAwlA1YgWAFDPGSQp76qmnlA6BiIiIiOhcf/4zkJcHbNsGODkpHY1Z9GtxbSFEBICJAPZ22TwbQJmU8sR5jrldCJEqhEjVaDQDDpSIiIiIiOgMqamGoiO/+x0we7bS0ZhNn5M2IYQbgK8B3Cel7LqY2m8A/Pd8x0kp35FSJkkpkzrWFiMiIiIiIhqU9nbgttuAwEDg+eeVjsas+lQ9UghhD0PC9pmUcnWX7XYAlgOYbJ7wiIiIiIiIuvHyy0B6OrB6NeDpqXQ0ZtVrT5txztr7ADKllC+f9fQCAMellEXmCI6IiIiIiOgcJ08CTz0FXH654WHj+jI8chaA6wGkCCHSjY+LjM9dgx6GRg4VarUaiYmJGDduHK666io0NTUNuK2bbroJX331FQBg5cqVyMjIOO++W7Zswa5duzq/f+utt/Cf//xnwOfukJeXh3Hjxp2x7amnnsKLL77Yr3ZMFQ8RERERkclIaZjD5uAA/OtfSkdjEX2pHrkDgDjPczeZOiAlODs7Iz09HQBw3XXX4a233sIDDzzQ+bxOp+vXItQd3nvvvR6f37JlC9zc3DBz5kwAwB133NHvc5iLVqu1qniIiIiIiAAAH30EbNoEvPUWEBysdDQW0a/qkYp74QVg8+Yzt23ebNhuIrNnz8bJkyexZcsWJCcn49prr8X48eOh0+nw0EMPYcqUKUhISMDbb78NAJBS4u6770ZcXByWLl2K8vLyzrbmzZuHjsXEf/75Z0yaNAkTJkzA/PnzkZeXh7feeguvvPIKEhMTsX379jN6w9LT0zF9+nQkJCTg8ssvR3V1dWebjzzyCKZOnYro6Ghs376936+xp7b/9Kc/Ye7cuXjttdc64ykpKUFiYmLnQ61WIz8/H/n5+Zg/fz4SEhIwf/58FBQUADD0Nt5zzz2YOXMmoqKiOnseiYiIiIgGpawMePBBQ6XI225TOhqLGVpJ25QpwIoVvyZumzcbvp8yxSTNa7Va/PTTTxg/fjwAYN++ffjrX/+KjIwMvP/++/D09MT+/fuxf/9+vPvuu8jNzcU333yDrKwsHDlyBO++++4Zwx07aDQa3Hbbbfj6669x6NAhfPnll4iIiMAdd9yB+++/H+np6Zh9VonSG264Ac8//zwOHz6M8ePH4+mnnz4jzn379uHVV189Y3tXp06dOiPReuutt/rUdk1NDbZu3YoHH3ywc1twcDDS09ORnp6O2267DVdccQXCw8Nx991344YbbsDhw4dx3XXX4Z577uk8prS0FDt27MD333+PRx99tJ+/CSIiIiKibtx7r2Ex7XfeAVRDK5UZjD5Vj7SY++4zVIDpSXAwsHgxMGIEUFoKxMYCTz9teHQnMdGwdkMPmpubkZiYCMDQ03brrbdi165dmDp1KiIjIwEA69atw+HDhzt7jWpra3HixAls27YNv/nNb6BWqxEcHIyUlHPXGN+zZw/mzJnT2ZaPj0+P8dTW1qKmpgZz584FANx444246qqrOp9fvnw5AGDy5MnIy8vrto1Ro0Z1DvkEfl0cu7e2r7766vPGtXPnTrz33nudvXu7d+/G6tWGYqLXX389Hn744c59ly1bBpVKhbi4OJSVlfX4eomIiIiIevX998D//gc88wwQE6N0NBZlXUlbX3h7GxK2ggJg5EjD94PUdU5bV66urp1fSynxz3/+E4sXLz5jnx9//BGGApvnJ6XsdZ/+cHR0BGAooKLVak3WLnDma+6qtLQUt956K9auXQs3N7du9+n6GjtiBAyvn4iIiIhowOrrgTvvBOLjgUceUToai7OupK2XHjEAvw6JfOIJ4M03gSefBJKTzR7a4sWL8eabbyIlJQX29vbIzs5GSEgI5syZg7fffhs33HADysvLsXnzZlx77bVnHDtjxgzcddddyM3NRWRkJKqqquDj4wN3d3fU1dWdcy5PT094e3tj+/btmD17Nj755JPOnrHBGkjb7e3tWLFiBZ5//nlER0d3bp85cya++OILXH/99fjss89wwQUXmCRGIiIiIqIzPPYYUFwMrFplqBo5zFhX0tabjoRt1SpDopacfOb3ZrRy5Urk5eVh0qRJkFLC398fa9asweWXX45NmzZh/PjxiI6O7jYB8vf3xzvvvIPly5dDr9cjICAA69evxyWXXIIrr7wS3377Lf75z3+ecczHH3+MO+64A01NTYiKisKHH35ostfS37Z37dqF/fv348knn8STTz4JwNDD+Prrr+OWW27BP/7xD/j7+5s0RiIiIiIiAMDu3YbS/nfdBcyYoXQ0ihCWHLqWlJQkO6opdsjMzERsbGzfGnjhBUPRka4J2ubNwP79QJf5VEQd+nV9EREREZF1aWsDJk0CamuBjAzA3V3piAZNCJEmpUzqzzFDq6etu8Sso8eNiIiIiIhsy/PPA8eOAd99ZxMJ20ANnzqZREREREQ0dBw/Djz7LHD11cDFFysdjaKYtBERERERkXXR64HbbwdcXYHXXlM6GsVZxfBIU5fEJwK41AARERHRkPXuu8D27cD77wOBgUpHozjFe9qcnJxQWVnJG2wyKSklKisr4eTkpHQoRERERNQfJSWGWhYpKcDNNysdjVVQvKctNDQURUVF0Gg0SodCNsbJyQmhoaFKh0FERERE/XH33YaqkW+/DXA0HgArSNrs7e0RGRmpdBhERERERKS01auBb74BnnsOGD1a6WishuLDI4mIiIiIiFBTY+hlmzABeOABpaOxKor3tBEREREREeHRR4GyMmDtWsDeXulorAp72oiIiIiISFnbtxvmsN13H5CUpHQ0VodJGxERERERWdYLLwCbNxu+bmkBbrvNUNrf21vZuKwUh0cSEREREZFlTZkCrFgBrFplSN6ysgBPT2DWLKUjs0pM2oiIiIiIyLKSkw0J2/LlQG0t4OhoqBqZnKx0ZFaJSRsREREREVmOlMCmTcDrrxsqRgLAXXcxYesB57QREREREZH5NTYaio2MGwcsWABs3Qq4uBiKj/znP7/OcaNzMGkjIiIiIiLzycsDHnoICA0F7rjDMBTy4YcNZf2//x545RXDUMkVK5i4nQeTNiIiIiIiMi0pgS1bDHPWRo0yJGYLFxpK+6elAb6+hkStY0hkxxy3/fsVDdtaCSmlxU6WlJQkU1NTLXY+IiIiIiKyoOZm4LPPDPPVjhwxJGe33w7ceScQFqZ0dFZBCJEmpezXYnQsREJERERERINTWAi88QbwzjtAVRWQkAC89x5w7bWAs7PS0Q15TNqIiIiIiKj/pAR27DD0qn3zjeH7ZcuAe+4B5swBhFA6QpvBpI2IiIiIiLr3wguGhbC7luP/5Rfg/feBkyeBgwcBb2/gwQeB3/8eCA9XLlYbxqSNiIiIiIi6N2WKoarjqlVAdDTwyCPA558betXi4w0l/H/7W0PpfjIbJm1ERERERNS95GTgww+BpUuBlhZDsjZzJvCXvxie4xBIi2DSRkRERERE55IS+OILw9DH5mbDtrvvBv75T2XjGoa4ThsREREREZ0pMxNYsMBQ/dHdHfDyAp54wpDEcQFsi2PSRkREREREBo2NwKOPAhMmAAcOAPfeayjhv3o18MwzhrltK1YwcbMwJm1ERERERMOdlIbELDYWeP554LrrgKwsIDjYkKh1VI9MTjZ8v3+/svEOM70mbUKIMCHEZiFEphDimBDi3i7P/Z8QIsu4/QXzhkpEAJCjacBNH+7DG1tOKh0KERER2YKTJ4GLLgKuuMJQvn/7dkPxkYAA4OGHzyz3Dxi+f/hhZWIdpvpSiEQL4EEp5QEhhDuANCHEegCBAC4DkCClbBVCBJgzUKLhTqeXeH9HDl5al41WrR77cqvw2+nh8HCyVzo0IiIiGoqam4HnnjP0rDk4AK+8Yig0Ysdahdam1542KWWplPKA8et6AJkAQgDcCeA5KWWr8blycwZKNJydLK/HFW/uwt9+PI450f744KYkNLXp8GVqkdKhERER0VD0ww+GddaeeQZYvhw4fhy47z4mbFaqX3PahBARACYC2AsgGsBsIcReIcRWIcQUM8RHNKxpdXq8seUkLnp9B/IrG/HaNYl45/rJSIkJRFK4Nz7elQedXiodJhEREQ0VeXnAsmXAxRcDjo7Axo2GxbKDg5WOjHrQ56RNCOEG4GsA90kp62AYWukNYDqAhwCsEuLc1fWEELcLIVKFEKkajcZEYRPZvqzT9Vj+5i688HMW5scEYN39c3FZYgg6/sxumhWBgqombMliJzcRERH1orUV+Otfgbg4YP16w7DIQ4eAlBSlI6M+6FP/pxDCHoaE7TMp5Wrj5iIAq6WUEsA+IYQegB+AMzIzKeU7AN4BgKSkJHYJEPWiXafHW1tO4fVNJ+DuZI9/XzsJSxNGnLPf4vggBHk44aNdeZgfG6hApERERDQkrF9vmKuWnW0oNvLyy8DIkUpHRf3Ql+qRAsD7ADKllC93eWoNgBTjPtEAHABUmCFGomEjo6QOy/69Ey+tz8bi+CCsv39OtwkbANirVbh+Rji2n6jAibJ6C0dKREREVueFF85cP62oCJg3D1i0CNDrgZ9+Ar76ignbENSX4ZGzAFwPIEUIkW58XATgAwBRQoijAL4AcKOx142I+qlNq8cr67Nx6b92oKyuBW/9dhL+de0k+Lo59njcNVPC4GCnwse78ywTKBEREVmvKVMMC1+vXw+8+CIwZgywdStw003AkSPAkiVKR0gD1OvwSCnlDgDnzFUz+q1pwyEafo4W1+IPXx7C8dP1WJYYjCcviYe3q0OfjvV1c8RlE4LxdVoxHlocA09nlv8nIiIatpKTgX//G7jwQkCnM5Tx//RTw0LZNKT1q3okEZlOq1aHF3/JwmX/3omqxja8e0MSXr1mYp8Ttg43zoxAc7sOX6YWmilSIiIiGhJKSoDHHwfUasP3jzzChM1GMGkjUsChwhpc8s8d+Nfmk1iWGIL198/FwriBFRMZF+KJqRE++Hg3y/8TERENW6Wlhp62wkLAxQV44gngzTfPnONGQxaTNiILamnX4bmfjuPyN3airlmLD2+agpdWTICny+CGNd40KwKFVc3YdJzl/4mIiIad06cNCVtBAeDkBKxebVg0e9Uqwxw3Jm5DHpM2Igs5UFCNpa9vx1tbT+GqyWFY98AcJMcEmKTtRXGBGOHphI935ZmkPSIiIhoiysoMCVtRkaHgyOrVhu8Bw7+rVgH79ysaIg1en9ZpI6KBa2nX4aV1WXh/Ry6CPJzw8S1TMTfa36TnsFOr8Nvp4fjHL1k4UVaPMYHuJm2fiIiIrFBHwlZYCPz4IzBnzrn7JCf/msTRkMWeNiIzyiipw0Wvbce723NxzdSR+OX+OSZP2Dr8ZupIONip8BF724iIiGxfeTmQkgLk5wM//NB9wkY2g0kbkZlodXrc+8VBNLRq8dnKafjb5ePh7mS+kvw+rg5YlhiM1QeKUdvUbrbzEBERkcI0GkPClptrSNjmzlU6IjIzJm1EZvLZ3gKcKG/As8vGYdZoP4ucs6P8/yqW/yciIrJNHQlbTg7w/ffAvHlKR0QWwKSNyAyqG9vw8vpsXDDab8Cl/AciPtgTUyNZ/p+IiMgmVVQA8+cDJ08C331nSN5oWGDSRmQGr2zIRkOrFk9cHAchhEXPffPMCBRVN2NjZplFz0tERERmVFlpSNhOnDAkbPPnKx0RWRCTNiITO366Dp/uycdvp43E2CDLV3FcGBeIYE8nFiQhIiKyFZWVwIIFQFYWsHat4WsaVpi0EZmQlBLPfJcBD2d73L8wWpEY7NQqXD8jArtOVSLrdL0iMRAREZGJVFUBCxcCmZnAt98avqZhh0kbkQn9cqwMu05V4oGF0fBycVAsjmumhMGR5f+JiIiGtqoqQ69aRgawZg2weLHSEZFCmLQRmUhLuw5//TED0YFuuHbqSEVj8XZ1wOUTQ/DNwSLUNLUpGgsRERENQHU1sGgRcOwY8M03wJIlSkdECmLSRmQi7+/IRWFVM568JB52auX/tG6cGYGWdj3+t5/l/4mIiIaUmhpDwnbkiCFhu/BCpSMihSl/Z0lkA8rqWvDvzSexKC7QYmuy9SZ2hAemRfrgP7vzWf6fyMY99OUh/HLstNJhEJEpdCRshw4BX38NXHSR0hGRFWDSRmQCz/98HFqdxGNLY5UO5Qw3z4pAcU0zNrD8P5HNOl3bgi/TivDBjlylQyGiwaqtNcxbS083JGwXX6x0RGQlmLQRDdLBgmqsPlCMW2dHItzXVelwzrAgNhAhXs74aGee0qEQkZkcKKgGAKTmV6OupV3haIhowOrqDAnbwYPAV18Bl1yidERkRZi0EQ2CXi/x9HcZ8Hd3xF3Jo5UO5xyG8v/h2J1TieOn65QOh4jMIC3fkLTp9BI7TlQoHA0RDUhdnaHQSFoasGoVcOmlSkdEVoZJG9EgrEkvRnphDR5ZEgM3Rzulw+nWNVPC4GSvwscs/09kk9LyqzFppBc8ne2x6Xi50uEQUV+88AKwebPh6/p6Q6GRvXuB3/wGWLZM0dDIOjFpIxqgxlYtnvvpOCaEeWH5xBClwzkvL5eO8v/FqG60nfL/X6YW4uGvDikdBpGiWtp1OFZSi6mRvpgT7Y8tWRroWXiIyPpNmQKsWAH88IMhYduzB3BzA26+WenIyEoxaSMaoDe2nER5fSuevCQOKpVQOpwedZb/T7Wd8v+rDxRjVWoRssvqlQ6FSDFHimvRrpOYHO6NlBh/VDS04mhJrdJhEVFvkpOB//7X0Ku2axfg6mpYPDs5WenIyEoxaSMagILKJry7PRfLJ4Zg0khvpcPpVUyQB2ZE+eKT3fnQ6vRKhzNoUkpklBrm6K0+UKxwNETK6ZjPNmmkF+aM8YcQwObjGoWjIqI+WbAASEkBpATuu48JG/WISRvRAPztx0zYqQQeXhKjdCh9dpMNlf8vrmlGbXM77NUCaw4Wcx06GrbS8qsR6ecKXzdH+Lo5YkKoFzZncV4b0ZCweTNw4ADwxBPAm2/+OseNqBtM2oj6adfJCvx87DTuSh6NIE8npcPps47y/x/aQPn/jBJDL9sNMyJwuq4Fu09VKhwRkeVJKXEgv/qM3v6UmAAcKqpBZUOrgpERUa82bzbMaVu1CnjmGcO/K1YwcaPzYtJG1A9anR7PfJ+BUG9n3HpBpNLh9ItaJXDjzHDsza1CZunQLv+fUVoHlQDuTh4Ndyc7rD5QpHRIRBaXX9mEysY2TA7/NWlLHhsAKYGt2RwiSWTV9u83JGodQyKTkw3f79+vbFxktZi0EfXDf/cX4vjpejy+NBZO9mqlw+m3FUm2Uf7/WEkdIv1c4e3qgIsTRuCno6fR2KpVOiwii+qYz9Y1aYsP9oC/uyNL/xNZu4cfPncOW3KyYTtRN5i0EfVRTVMbXl6XhRlRvlgcH6R0OANiKP8fOuTL/2eU1CEu2BMAsHxSKJrbdfj56GmFoyKyrLSCarg72mFMgFvnNpVKYF60P7Zla2yi6BARERkwaSPqo1c3nEBtczv+fEkchLDuEv89uWlmBFq1enyxf2iW/69takdxTTPiRngAAJLCvRHm44zVBzlEkoaXA/nVmBjufc6SI8kxAahr0eJgYY0ygRERkckxaSPqgxNl9fhkTz6unTYSscZkYagaG+SOmaN88cnuvCH5SfyxUsMaVPHBht+DEALLJ4Zi16lKlNQ0KxkakcXUtbQjq6wek7tZcuSCMX6wUwkOkSQisiFM2oh6IaXEM99nwNVBjQcWjlU6HJO4aWYESmpbsD5j6JX/76gc2TV5Xj4pBFICa9K5ZhsND+kFNZDyzPlsHTyc7JEU4Y3NTNqIiGwGkzaiXmzMLMf2ExW4f2E0fFwdlA7HJObHBiLU2xkfDsGCJBmldQhwd4S/u2PntnBfVySFe2P1gWJIyTXbyPal5VdDJYAJYZ7dPp8SE4Djp+vZ+0xEZCOYtBH1oFWrw7M/ZGB0gBt+Oz1c6XBMRq0SuHFGBPblVuFYSa3S4fRLRkld59DIrpZPCsXJ8gYcKR5ar4doIA4UVGNskAfcney7fT55bAAAYEsWS/8TEdkCJm1EPfhoZx7yKpvwxMVxsFfb1p/LiqQwONurh1T5/1atDifLGxDXTdK2dPwIONipsPoAh0iSbdPpJQ4W1GByuNd59xkd4IZQb2dszuIQSSIiW9DrXagQIkwIsVkIkSmEOCaEuNe4/SkhRLEQIt34uMj84RJZTnl9C/656SQWxAZgbrS/0uGYnKeLPZZPCsGa9BJUDZHy/yfKGqDVS8SNOHdImKeLPRbGBmLtoRK0aYdegRWivsouq0dDq7bb+WwdhBBIHhuAnScr0KrVWTA6IiIyh750HWgBPCiljAUwHcBdQog443OvSCkTjY8fzRYlkQJe/CULrVodHlsa1/vOQ9RNMyPQptXjv/sKlA6lTzqKkHTX0wYYCpJUNbZhazaHhJHt6lxUe6RPj/slx/ijqU2HfblVlgiLiIjMqNekTUpZKqU8YPy6HkAmgBBzB0akpMNFNfgyrQi3zIpEpJ+r0uGYzZhAd1ww2g+f7skfEuX/j5XUwtVBjXAfl26fnxPtD19XB6w+MDzWbNPq9Mguq1c6DLKwA/nV8HNzRJiPc4/7zYjyg6OdiqX/rdDhoho8810G6lralQ6FiIaIfk3SEUJEAJgIYK9x091CiMNCiA+EEOcfp0E0hEgp8fR3GfB1dcTdKaOVDsfsbpwZgdLaFqwbAuX/M0rrEDvC45zFhDvYq1W4NDEYGzPLUdM0NIZ8DsZ/9xVg8avbkKNpUDoUsqC0gmpMDveCEN3/HXRwdlBjxihfFiOxIpUNrXjkq8O47N878cHOXKw5yDm4RNQ3fU7ahBBuAL4GcJ+Usg7AmwBGAUgEUArgpfMcd7sQIlUIkarR8D8Osn5rD5UgLb8aDy8Ze97KbLYkJSYAYT7O+GhnntKh9Eivl8gsrT/v0MgOV0wKRZtOj+8Pl1ooMuVsyCyHlMAvx6w/4SbT0NS3Ir+yqcf5bF2lxAQgt6IRuRWNZo6MeqLV6fHhzlzMe3ELvj5QhJUXRCLKzxU/Hz2tdGhENET0KWkTQtjDkLB9JqVcDQBSyjIppU5KqQfwLoCp3R0rpXxHSpkkpUzy97e9Yg5kW5ratHjup+MYH+KJKyeFKh2ORXSW/8+rwlErLpdfUNWEhlZtt+X+u4oP9kB0oJvND5FsaddhT04lAGBdBm/8hosDBcb5bH1M2uZFG0r/c6Ft5ew+VYmlr+/A099lIDHMCz/fNxuPLY3DReNHYG9uFaqHSCEoIlJWX6pHCgDvA8iUUr7cZfuILrtdDuCo6cMjsqy3tuagtLYFT10ad94heLboqiFQ/j+j1FiEpJvKkV0JIbB8UigOFNTYdO/CnpxKtGr1mBrhg4MFNSiva1E6JLKAA/nVcFCrEB/c899Bh5G+Lhjl78rS/wooqWnGXZ8fwG/e3YOGVi3e+u1k/OeWqRgd4A4AWDIuCDq9xIZM9pQTUe/60tM2C8D1AFLOKu//ghDiiBDiMIBkAPebM1AicyuqbsLbW0/hssRgTA7vuSqbrfF0tscVk0Pw7aESVDa0Kh1OtzJK6qBWCYwJdOt132WJIRAC+MaGe9u2ZmvgaKfC4xfHAgDW88ZvWEjLr8a4EA842av7fExKTAD25lShsVVrxsioQ0u7Dv/adALzX9qKDRlluG/BGGx8cC6WjAs6Yx5ifLAHQryc8csx9pQTUe/6Uj1yh5RSSCkTupb3l1JeL6Ucb9x+qZTS9ieQkE37+0/HoRICj14Yo3QoirhxhqH8v7XOBTtWUosxAW59ulkN8nTCBaP9sPpgMfR6aYHoLG9rtgbTo3wxPsQT4b4uWD8ECsnQ4LRqdThcXNvnoZEdkscGoE2nx65TlWaKjABDEasNGWVY/Oo2vLguG3Oj/bHhgbm4b0F0t+9bQggsjg/CthMVaGBCTUS96Ff1SCJbdaSoFj8cLsWd80ZhhGfPZbRt1ZhAdwR7OmFfnnWu6ZRRWoe4ET3PZ+tq+aQQFFU3Y7+Vvp7BKKxqQo6mEXOj/SGEwKK4QOw6WYl6lg+3acdK6tCm1fc7aUuK8IGbox2HSJpRjqYBN3+0Hyv/kwo7lcAnt07FW9dPRth5lifpsGRcENq0emzh74aIesGkjQhAWr7hxv6aqWEKR6KspAgfpOZVQUrr6p2qaGhFWV1rr5Uju1ocHwRXBzVWH7C9ktpbjIuHzxtrKO60KD4IbTq91S8q/ocvD+Ge/x7ErpMVNtsDak4HjItqTxrZv6TNwU6FC0b7YfPxcqv72x7qGlsNxasWv7oNqXnVeHxpLH6+bw5mj+lb4bXJ4d7wc3MYllUka5raMPuFTTZfNIrIVJi0EQHIrWiEu6Md/N0clQ5FUUkR3iira0VRdbPSoZwhs7MISd+TNhcHO1w4fgR+OFKKlnaduUJTxNYsDcJ8nDsXfp800hu+rg5YZ8Wl/7PL6vFVWhF+PFKKa9/bi+SXtuDNLaegqbfOOZTWKC2/GmE+zgjwcOr3sckx/iitbUEWF2M3CSklvk0vRspLW/DW1lO4dEIINv1hLlbOjoK9uu+3VmqVwMK4IGw+Xm5z71O9eWtrDgqrmm3ygzUic2DSRgQgp6IRkf6uvS5Wa+uSjAVY0oyf6FuLYyXGpK0fPW2AYYhkQ6t2SCwc3letWh12naroHBoJGG785scGYPPxcrRp9QpH2L216SVQCWDzH+bh5RUTEOjuhOd/Po4Zf9+IOz5Jw5ascujY+3ZeUkqk5ldjcj972TrMG2so/b+Jpf8HLaOkDle/vQf3fpGOAHcnfH3nTLy0YgIC3PufTAOGIZKNbYa/6+GivK4FH+3KhYOdCntzObSbqC+YtBEByNE0dvZaDGdjg9zh7mhndfPAMkrqEOLlDC8Xh34dNz3SF8GeTjY1/CYtrxpNbbrO9bc6LIoLQn2rtnPtNmsipcTaQyWYNdoPYT4uWD4pFKvumIEND8zFzbMMawTe9OF+zHlhM17bcAKltdbV02sNiqqboalv7fd8tg6BHk6ID/bAluPWPYTWmtU0teGJNUdx8T+346SmAX9fPh5r7po14N9JhxlRvnB3shtWQyRf33QCWp3EX5eNQ7tOYvuJ4ZOwEg0UkzYa9lradSipbUaUX++l5G2dWiUwMdzb6nraMkrrENuPoZEdVCqByyeFYFu2BuX1trGO2dZsDezVAjNG+Z6x/YIxfnC2V1tlFcn0whoUVDXh0gnBZ2wfHeCGx5bGYfcfU/Cvayci0s8Vr2zIxqznNuGWj/Zj3bHT0Oqss+fQ0joW1Z40iAQhJSYAaQXVqG1ir0Z/6PQSn+3NR/KLW/DZ3nxcPz0cmx+ch99MHQm1CdbzdLBTYX5MANZnlA2L672gsglf7CvENVPDcPnEEHg622NjJnuAiXrDpI2GvfzKJkgJRPqzpw0AksK9kVVWj9pm67ixa27TIUfTgPh+Do3scPnEUOilYXieLdiSpcGUCB+4Otqdsd3JXo250f5Yn1FmdUU+1h4qgYOdCovHBXX7vKOdGhcnBOPTldOw7aFk3DlvFI4W1+L2T9Iw87lNePGXLBRWNVk4auuSll8NVwc1xga6D7iNeWMDoNNLbDvB3rbu6PUSp2tbsCenEl/sK8BzPx3HnZ+mIeWlLXjsm6MYE+iOH+6ZjacvGwdPF3uTnnvJuCBUN7VbbfVeU3plQzbs1AL3pIyBnVqFeWP9OTzahKSUOFFWj/e25yDDOLWAbINd77sQ2bYcTQMAIIrDIwEYipFIafhkP3lsQO8HmNnx03XQy/7PZ+swOsANE8K88PWBYqycHWXi6CyrtLYZWWX1+NPk7tcSXBQfiJ+PncaR4lpMCPOybHDnodNLfH+4FCljA+Dh1PuN7khfFzy0OAb3L4jGpuPl+GJ/Id7YchL/2nwSs8f44ZopI7EwLhAOdsPrM8e0/GokjvSCXT+KXJwtMcwL3i722JxVjkvO6vUcLvR6idN1LciraEReZRPyKxuRV9mIvIom5Fc1oqX9154ue7VAmI8LRvm74cFFY3FJwgizzXueE+0PJ3sVfjl6GjNH+ZnlHNYg63Q91qQX4/Y5UZ0FdVJiAvBtegkOFdX0uzIqGdQ2tWPHyQpsy9Zg2wkNSmsNI0seuyh2wP93kvVh0kbDXk5FIwBwTptRYpgX1CqBtDzrSNoyBlA58mxXTArBn789hoySuiH9H9g2Y0n/udHd/15SYgKgVgmsyzhtNUnbnpxKaOpbcWli/5IEO7UKi+KDsCg+CCU1zViVWohV+wtx1+cH4OvqgCsmh+LqKWEY5W/7w5obW7XILK3D3cmjB9WOWiUwN9ofW7M00OslVCYY2meNdHqJ0tpm5FU0Ia+y0ZiYNSGvohH5VU1nFOtxUKsw0tcFEb4umD3GD+F+rojwdUGEryuCvZxNMvyxL1wc7DA32h+/HCvDk5fE2+zv5sV1WXBztMOdc0d1bpsb7Q+1SmBTZjmTtj7S6SUOFdUYkrRsDdILa6CXgLuTHS4Y7Yd75vtjTrQ/QryG57qztopJGw17uRWNCPRwPGe42XDl4mCHccEeVlOM5FhJHTyc7BDqPfD/fC5OCMZfvs/ANweLEBccZ8LoLGtLlgZBHk6IDuw+UfFyccDUCB+sO1aGhxZ33xtnaWvTS+DmaIeUmIF/ABDs5Yz7FkTj/1LGYNsJDb7YV4APduTinW05mBrpg+umjcSlE4JttvrrIeMN2WDms3VIjgnAmvQSHC6uRaKVJPaD1abVY8dJDb4/XIpDhTUorGpGW5e5YY52KoT7uiDCzxXJMQGGr31dEe7rghGelkvMerM4Pgi/HCuzqd9NVwcKqrE+owx/WBR9RlEpLxcHTA73xsbj5fjD4rEKRmjdTte2YFu2BluzNdhxsgK1ze0QAkgI9cLdyaMxJ9ofiWGD640n68a7VBr2citYOfJsk8N98Pm+fLRp9YoPQ+voHRvMDbmPqwOSxxpuVh9ZEjMk/1Nr1+mx40QFlvYyRGtRfCCe/i7DKq7rVq0OPx4txaL4QDjZqwfdnlolkDw2AMljA1Be34Kv0orwv/2FuPeLdDS0anHdtHATRG19OgoDTTRBL8ScMf6GpReOlw/pxKBdp8euU5X4/lAJfjl2GnUtWng42WF6lC8WxAV2JmWRfq4IdHcaEj1X82MCYacS+Pno6SH9uzmfF3/Jgp+bA26eFXnOc/NjAvD3n46jpKYZwewdAmAokrY/rwpbswxDHrPLDFM5AtwdsTAuEHOi/TF7tB+8XftXVZmGLiZtNOzlaBqwZNwIpcOwKkkR3vhgZy6OldSa5EZxoHR6ieOn63Dt1MHfjC+fFIp1GWXYcbKic82qoSS9sAb1rVrMjfbvcb+FcYakbX3Gadw+Z1SP+5rb1iwN6lu051SNNIUAdyf8ft5o3DFnFC5/cxfe256La6aYppqftUkrqEZ0oBs8nQdf/MLb1QETR3pjc1Y57l8YbYLoLEer02NvbhW+P1yCn4+eRnVTO9wc7bAoLhBLE0Zg9hh/xT9kGgxPF3vMGOWLn4+W4pElY22q53jHiQrsOlWJJy+J63ZUy/zYQPz9p+PYdLwcv51umx++9EZKiVOaRmw1Dnncm1uJlnY9HNQqTIn0xhWTQjEn2h8xQe42dW1Q3zFpo2GturEN1U3tGMXKkWdIMg7DSsuvVjRpy61oQEu73iTz0JJj/OHlYo/VB4qHZNK2JascapXAzNE9FykI9XZBfLAH1h0rUzxpW3uoBD6uDpjVS8yDoVIJ3D47Cnd9fgAbMsuwOL77CpVDlV4vcSC/GksTTPfBUvJYf7y4Lhua+lb4uzuarF1z0Okl9uf9mqhVNLTBxUGNBbGBuDhhhLGAx+B7ca3FknFBeOybo8gua8DYoIFXCrUmUkr845fjCPFyxrXTRna7zyh/Q8/oxsyyYZe07TpVge8OlWBbdgWKawxrVEb5ueKaKSMxN9of06J84OLA23Vi0kbDXG4li5B0J8DDCSN9XLA/r0rRiovHjOWKB1ruvytHOzUuSQjGqtRC1Le0w70PlQytydZsDSaP9O5Tb8uiuCC8ulHZm/LGVi02ZJbhqslhsDfzcNTF8YEI83HGu9tybC5pO6VpQF2L1qQFGpJjAvDiumxsySrHVUlhJmvXVPR6iQMF1fj+cCl+PFKK8vpWONmrMD/GkKjNGxsAZwfbSdS6WhgXiMfXHMXPR0/bTNL2y7EyHCqqxQtXJsDRrvvfmxACKTEB+GxvAZratMMiScmvbMRfvs/EhswyuDnaYeYoX/w+eRTmjPFHmI+L0uGRFbL9vwqiHuRomLSdT1KEN7ZlayClVGwoRkZpHRzUKpNVCFw+KQSf7MnHT0dOY8UU67tZPR9NfSuOFtfhoT5O0l8UH4hXNmRjY2YZrpna/Sfb5rY+owwt7fp+V40cCDu1CrfOisRT32XgQEG1TVWg65jPNtkERUg6xI3wQKCHI7ZkaawmaZNSIr2wpjNRK61tgYOdCslj/XFxQjBSYgKGRbGoAHcnTB7pjZ+Pnca9C8YoHc6g6fQSL63Lwih/VyyfGNLjvvNjAvHhzjzsOlmJBXGBForQ8hpbtfj35pN4b3su7NUCjyyJwS0XRJw3oSXqYPvvgEQ9yK1ogJ1K8FOtbiSF+2D1gWLkVTYpltRmlNRhTKCbyeapJIZ5IcrPFV8fKBpSSduvpf57ns/WISbIHaHezliXoVzStvZQCYI9DTeglnBVUhheXp+N97bn4I3rJlvknJaQll8Nbxd7k/4NCmEo6PLDkVK06/Rm7wk9HykljhbX4fvDJfj+cCmKa5phrzYsS/DIkhjMjw0Ycj3iprBkXBCe/SETBZVNGOk7tP9vWnOwGCfKG/DGdZN6LQA1NdIHrg5qbDxebpNJm5QS36aX4O8/ZaKsrhXLJ4XgkSUxCDSuV0fUGyZtNKzlVjRipI+LYjct1mxKhOFmOzWvSpGkTUqJjJI6zI813fwzIQSWTwrBi+uyUVjVNGSS9a3ZGvi5OfZ5rTohBBbFBeHTvflobNVavIeiurEN27I1uHV2pMWq9rk62uG308Px1tZTyK9sRLivbfSepxVUY3K4t8l7u+eNDcAX+wuRll+N6VG+Jm27N9WNbXh3ew5+OFKK/Mom2KkELhjjh/sXRmNhXKBJCq4MZYvjDUnbL8dO47Y5yg1PH6w2rR6vbMjG+BBPXDiu92HLDnYqzIn2x6bjZZBynE0V2zhSVIunvjuGtPxqJIR64s3fTrapEQFkGbxTpWEtR6N8WXRrNcrfUK0uNa9akfOX17eisrFtUItqd2eZcYjOmoPFJm3XXHR6ie0nNJgT7devBGhRfCDatPrOXjpL+vFoKbR6aZaqkT25aWYE1CqBD3bkWvS85lLV2IYcTaNJ1mc72wVj/GCvFticVW7ytnui00vc+Vka3t6Wg5E+Lnj+ivFIfXwBPrp5Kq6cHDrsEzYACPMxFBP6+dhppUMZlP/uK0BRdTMeWtz3SpgpMQEoq2vtnM881FU0tOLRrw/j0n/vQH5lI164IgFrfj+LCRsNCJM2Grb0eom8ykZEsXJkt1QqgaRwb6TmK7PIdobxP+24YE+Tthvq7YLpUT5YfbAYUkqTtm0Oh4tqUN3U3uehkR2Swr3h7WKPdRllZors/L5NL8HoADeTJ9y9CfBwwrLEEKxKLUJ1Y5tFz20OBwuM89nMcIPn5miHqZE+2Hzcsknb29tOYU9OFf6+fDw+uXUarp4y8oyFlslgSXwQ0vKrUV7XonQoA9LUpsU/N53EtEgfzB7T9+qxyTEBEALYZOHr0tTadXq8vyMXyS9uwVdpRVh5QSQ2/WEeVkwJGxJrBpJ1YtJGw1ZpXQta2vWI9DNNkQtbNDnCG6c0jahS4Ab4WEktACB2hOkrqC2fFIrcikYcLKwxedumtjVbAyEMiyL3h51ahfmxgdiYWYZ2nd5M0Z2rtLYZ+/OqcOmEYEWGN902JwrN7Tp8tjff4uc2tbT8atipBBJCvczSfvLYAGSXNaCousks7Z/tUGENXl6XjaUJI3DV5FCLnHOoWmIcTviLAh+6mMKHO/NQ0dCKh5fE9Ot9wM/NEYlhXtiYOTRfN2CYg3zha9vxl+8zMHGkN36+bw4eWxoHj2E4P5NMi0kbDVu5rBzZq6RwHwC/VrCzpIzSOoT7upilEMGF44LgZK/C6gNFJm/b1LZmazAh1Averv3vjVgUF4i6Fi325Vqut/T7Q6WQEhYfGtkhOtAd88b646Nd+Whp1ykSg6mk5VcjPtjDbOXtk2MM80W3ZJl/CG1jqxb3fnEQAe6O+Nuy8TY1X8kcRge4IcrPFb8cHXpDJGub2vH21lNYEBswoKqn82MCcKioFuX1Q6uXsaCyCbf9JxU3fLAP7To93rshCR/fPAWjA/jBMJkGkzYatnIqGgCAwyN7kBDqCQe1SpEhkhkldWYbXufuZI/F8UH47lApWrXWe2Nf3diG9MKafg+N7DB7jD+c7FVYZ8G5Md8eKsaEUE9EKPhhyG2zo1DR0Iq16SWKxTBY7To9DhXVmGU+W4coP1eM9HGxyBDJp9YeQ0FVE165OhGeLuxx6I0QAovHBWFPTiVqmobWUN+3t51CfasWDy7q2xIlZ0uJMVSO3HLc8vNxB6KxVYt//HIcC17eip0nK/DIkhisu38OFsQF8sMJMikmbTRs5Wga4eqgRoBCiw8PBU72aowL8bB4MZL6lnbkVTaZdU7U8kmhqG1ut/icnv7YfrICUgLzxg4saXN2UGP2GH+szyizyPy9HE0DjhbX4RKFetk6zBzli7gRHnhnew70euuft9idzNI6tLTrTbo+29kMpf/9sfNUhVl7Jb8/XIIv04rw+3mjMc3ClSqHsiXxQdDqJTZmWu971NnK61vw4c48XDohGLEDfP+OHeGOEZ5O2HjcuodISimx5mAxUl7agn9vPoWLE0Zg8x/m4c55o7jmGpkFkzYatnIrGhHp78pPwnoxJcIHR4pqLTrU7PjpegBAfIj5krZZo3wR4O6Irw9YbxXJrVkaeLnYD2pO06K4QJTUtlikGtvaQyUQAoonbUII3D4nCifLG7BVgeqZpmCORbW7kxwTgJZ2PfbkVJql/eKaZvxx9REkhnnZxGLRlpQQ6okRnk5DqorkvzadRLtOj/sXRA+4DSEEUmICsP1EhdWOhDhaXIur3tqN+/6XjgB3J3x950y8fHUi11wjs2LSRsNWTkUDi5D0weRwb7Tp9DhSXGuxc3ZWjhxh2sqRXdmpVVg2MQSbj5crUmilN3q9xNZsDWaP8Yd6ENXG5scGQiVg9iGSUkqsTS/B9Ehfq7hxWZowAiM8nfDOthylQxmQtPxqBHs6YYSns1nPMz3KF072KrPMa9PpJe7/Ih16vcRr1yRyPcx+EkJgcXwQtmVr0NiqVTqcXhVWNeG/+wqwYkrYoIdHz48NQFObDntzlKlefD6VDa344+rDuORfO5BnLOH/7V2zzP7hChHApI2GqVatDkXVzYhiEZJedfxnZMkhksdKauHj6oBAD/MOXV0+KQRavcR3h6xv7lNGaR0qGloxb4Dz2Tr4uDpgSoSP2Uv/HyupQ05FIy5NVLaXrYO9WoVbZkVid04ljhRZ7gMHUzmQX23W+WwdnOzVmDXKD5uOl5t8CO2bW05iX14VnrlsnM0sdm5pi+OD0KrVD4ke41c2ZEMlBO5JGXyP6sxRfnCyV1lV6f9t2RrMe3ELvkwtwq2zWMKfLI9JGw1LBZVNkJJFSPrC180RUf6uSM2z3CeeGaV1iA/2MPvQ1ZggD8SN8LDKKpIdN2mzo/u+xtH5LIwLxPHT9civbBx0W+ez9lAJ7NUCFxpLlVuDa6aGwd3RDu9uH1q9bSU1zSipbbHYp/fzYgJQUNWEnArTXR8HC6rxyoYTuGRCMJZPCjFZu8PNlAhv+Lg64BcrHyKZXVaPbw4W48aZEQjyHHxPu5O9GheM9sOGTMvMx+2NlBLP/pABfzdH/HzfHDx+MUv4k+UxaaNhqePmhOX++2ZKuA/SCqotUtShXadH9ukGiy3MvHxSCA4V1eJkeb1FztdXW7M1iA/2QID74G+AFsUZEqn1Zupt0xt7K+dG+1vVQsnuTva4ZmoYfjhSiuKaZqXD6bMDBZaZz9Yh2VjoxlRFeepb2nHvF+kI8nDCs8vGcd7wINipVVgYG4hNmeVWO78LAF5alwU3BzvcOXeUydpMiQlEUXUzTpQ3mKzNgdp+ogLZZQ24O2U0S/iTYpi00bCUwzXa+mVyhDdqmto7l0kwp5PlDWjT6REXbJmk7dLEYKhVAqutqCBJXUs70vKrB1w18mwjfV0QE+SOdcfMk7Ttz6tCaW2L4gVIunPzrEgIAB/uyFU6lD5Ly6+Gk71qwNX3+ivU2wXRgW7YnGWapO3JtcdQVN2EV69JhKczeyMGa8m4INS3arHrlHmKxQxWemENfjlWhtvmRA1oPcnzSTGuI2gN1TPf25GLAHdHXJxgfe9xNHwwaaNhKbeiAf7ujmZZuNkWTYkwLLK93wLz2jqKkMRbKGkLcHfCnDF++OZgsdWUh991sgI6vcTc6ACTtbkoPgip+VWobGg1WZsd1h4qgbO9GgvjAk3e9mAFeznj4oQR+O++AtQ2tysdTp8cKKjBhFAvixbuSB4bgH25VWgYZMGLtYdKsPpAMe5OGdP5vkGDM3O0L9wc7ax2oe0Xf8mCr6sDbrkg0qTtBnk6IT7YA5sULv2fdboe27I1uHFmBBzseNtMyuHVR8NSbkUje9n6IcLXBb6uDhYpRpJRWgcne5VFK3sunxSK0toWs5U976+t2Rq4O9ph4kgvk7W5KC4QeglsNPHE/nadHj8eKcXCuEC4ONiZtG1TWTk7Co1tOnyxr0DpUHrV0q7DseJai1ejS44JQLtOYufJigG3UVjVhMe+OYJJI71wT8poE0Y3vDnaqZESE4B1GWXQWckHSx12nazAjpMV+H3yaLg5mv7vf35MANLyq1GtYIXf93fkwNlejeumjVQsBiKASRsNUzmaRlaO7AchBCaHeyM13/zFSDJK6jA2yGNQZe77a2FcINwd7axizTYpJbZkaXDBGD+T9rTEB3sgxMvZ5EMkd5yoQHVTOy61wqGRHcaFeGLWaF98uDMPbVq90uH06HBRLbR6afGkbXK4N9wd7QY8r02r0+P+/6VDSuC1aybCjuX9TWpxfBCqGtuw34IFoXojpcTzv2Qh2NPJbAlNSqzhwyalqmdq6lux5mAJrpwcalXzdWl44rsqDTu1Te2obGxj5ch+mhLhg/zKJpTXt5jtHFJKHCuptVgRkg5O9mosTRiBn46WoqlN2fWQTpQ3oLS2BXMHWer/bEIILIwLxPYTGpO+xrWHSuDpbI85Jo7X1G6bHYXTdS34/rD1Le/QVcei2hNHWjZps1erMDvaD5uzBlb6/9+bTyE1vxp/WRaPMB8XM0Q4vM0b6w8HO5VVVZFcn1GGQ4U1uHfBGDjZq81yjoQQT/i5OZp8hEBffbInH+16PW6eFaHI+Ym6YtJGw05uZUcRElaA6o/JEYabyDQzDpEsrmlGXYvWYvPZulo+KRRNbTrFb4q2Ghc5nmuiIiRdLYoLRKtWj23ZAx8C11Wz8ed10fggq5/rMTfaH9GBbnhnW45VlBA/n7T8akT5ucLHhAUd+ip5bADK6lqRUVrXr+PS8qvx+qYTWJYYjMsnhpopuuHN1dEOc8b445ejp63i+tXpJV5cl4Uof1dcMcl8v3OVSiAlxh9bssrRrrNsL3lLuw6f7snH/JhARPnzfoGUZ93/yxKZQY7GUAGRc9r6Z1ywJxztVEjNN1/S1lGExFKVI7tKCvdGmI+z4lUkt2SXY2ygO0Z4Opu87SmRPvB0tse6DNMkphuPl6GpTWeVVSPPJoTAytlROH66HjtPWsfcxbNJKXGgwDKLanen44OCLVl9H4pW19KOe784iBGeTnhm2ThzhUYwVJEsqW3BkWLlF4v/Nr0Y2WUNeHDhWLMPhU2JCUR9i9Yic6q7+uZgMaoa27BytmkLrBANVK9/aUKIMCHEZiFEphDimBDi3rOe/4MQQgohBr8CLJEF5FY0Qq0SGMkhPP3iYKfChDAvsy6yfaykDkIAMUHuZjvH+ahUApdPDMWOkxU4XWu+IaA9aWzVYn9utVl62QDDELj5MQHYdLwcWhN8av1tegkC3B0xLdLXBNGZ32WJwfB3d8Q7VrrYdl5lE6oa2yw+n61DgLsTEkI9+zWv7c9rjqK0tgWvXZPIxYbNbEFsANQqgZ8VriLZptXjlQ3ZiA/2wIXjgsx+vgvG+MFBrbJoFUm9XuL9HbkYF+KBaZGsgkrWoS8fj2gBPCiljAUwHcBdQog4wJDQAVgIwPpLchEZ5VQ0Iszb2eqHc1mjKRHeOFZSZ7Z5XxmldYjyc1WsCuHyiSGQEvj6QJEi59+TU4k2nd7k89m6WhQfiJqm9kEv31Db3I6tWRpcMiHYokVjBsPRTo2bZkZgW7YGmf0cAmgJHfPZlEraAGDe2AAcKOhbtb41B4uxJr0E/5cyGpPDeWNrbl4uDpge5YOfFR4i+b/9BSisasZDi8dCZYG/fTdHO0yL8rHovLatJzQ4Wd6AlRdEcXF4shq93rVKKUullAeMX9cDyAQQYnz6FQAPA1B+gDVRH+VqWO5/oJLCfaDVS6QX1pil/YySOsQFe5ql7b6I8HPF7DF+eGvrKZTXWb63bUuWBi4OaiRFmO+mfU60PxztVIMeIvnL0dNo0+mtumpkd66bNhIuDmq8t936FttOy6+Gu5MdRis4fyZ5rD/0Eth2ouchkoVVTXh8zVEkhXvj7mSW97eUJfFByKloxMnyBkXO39ymw+ubTmJqhI9ZP1w62/yYAORoGpFb0WiR872/PRdBHk64aPwIi5yPqC/61dUghIgAMBHAXiHEpQCKpZSHzBEYkTno9dK4RhsnFQ/EpJHeEMI8xUhqmtpQXNNs8cqRZ3v60ni0avV4+vsMi55XSokt2eWYOcoXjnbmqcQGAC4OdrhgtB/WHSsb1Kf13x4qRrivCxJClUuyB8LLxQErksKw9lCxYsNgz+dAfjUmjfS2SO/F+UwI9YKvq0OPQyS1Oj3u/eIgBIBXrk5keX8LWhRvGI6oVMGkj3blQVPfioeXjLVoD9T82EAAwCYL9LZlltZhx8kKLqZNVqfPV6MQwg3A1wDug2HI5GMA/tyH424XQqQKIVI1GmXW2SDqUFbfguZ2Hcv9D5Cniz2iA9zNUoyko2KdEpUju4ryd8M9KaPxw+FSbMy03ByKvMomFFY1W+TT60XxgSiuae53lcAO5fUt2H2qEpdNCB6SQ4duvSASOr3ER7vylA6lU21zO7LL6xUdGgkY5nbOjfbH1mzNeRdyfn3TSRwoqMGzl49jeX8LC/RwwqSRXvhZgaSttrkdb209hZSYACRFWHY4bJiPC6ID3Swyr+39Hblwtlfj2qlcTJusS5+SNiGEPQwJ22dSytUARgGIBHBICJEHIBTAASHEOTNSpZTvSCmTpJRJ/v7WvY4P2b5cjWFoBRfWHrikCG8cyK8+7w3dQHVUjoxVuKcNAG6fMwrRgW54Ys1RNLRaZt22LVmGT5DnRgeY/VzzYwMhBAa80PYPh0uhl8CliUNraGSHMB8XXDhuBD7fm2+x329v0gtrIKWy89k6JMcEoLqpHYeKas55bn9eFf616QSWTwzBZYkh5x5MZrdkXBCOFtehsKrJoud9d1sOapvb8eCiaIuet0NKTCD25lShrqXdbOcor2vBt+nFWJEUCk8XFtYh69KX6pECwPsAMqWULwOAlPKIlDJAShkhpYwAUARgkpTSelZ9JOrGKeN4+Ej2tA1YUoQ36lu1yC6rN2m7GSV1CHB3hL+7o0nbHQgHOxX+vjwBpXUteGldlkXOuTVbgyg/V4z0NX/PhZ+bI5LCvbE+Y2BJ27fpJYgd4YHRAZav8mkqK2dHoq5Fi1X7C5UOBYBhPptKABPCvJQOBXPG+EMlcM4Qydrmdtz3RTpCvV3w9GXxCkVHixUYIqmpb8UHO3NxyYRgxCs073h+bAC0eontJlpnsjuf7MmHVi9x8yyW+Sfr05eetlkArgeQIoRINz4uMnNcRGaRq2mEs70aQR5OSocyZCUZq8SZuvR/RmmdIuuznc/kcG/8dlo4PtqVZ7bCKx1a2nXYk1OJORac2L8oLggZpf3/tL6gsgnphTW4bIj2snWYONIbUyN88P6OXJMsfzBYB/KrERPkATdHZSqnduXpYo/J4d7YnPVr0ialxONrjuJ0naG8vzvL+ysm3NcVMUHuFkvapJR44efjaNXq8cBCZXrZAGBimBe8XOyx0UxDJJvbDItpL4wNRARH45AV6kv1yB1SSiGlTJBSJhofP561T4SU0nwffRCZSG5FAyL9XIfkPBxrEertjEAPR5POa2tp1+FkeYPi89nO9vCSsQh0d8IfVx9Buxlv7PfmVqGlXY95ZlqfrTsL4wwT+/vb2/bd4RIAGBILavfmtjlRKK5pxk8Kr3ul00scLKi2iqGRHZJjAnC0uK6ziurqA8X47lAJ7ps/BhNHWk+cw9WScUFIza+Gpr7VrOdp0+rx4KpD+DKtCCtnRypaedlOrcK8aH9syTr/fMvB+PpAEaqb2rFydpTJ2yYyBZbFoWElp6KRQyMHSQiBpHAfpJqwguTJ8gZo9RJxI6yrEqG7kz2eviwemaV1eH+H+UrEb83SwNFOhelRllukOsLPFdGBbv0u/f9tejGmRHgjxMvZTJFZzvyYAET5ueKdbTmKrnuVdboejW0660raxhrmVm7J0iC/shF//vYopkb44Pcs728VlowLgpT9/9ClP+pa2nHTh/uw+mAxHlwYjUeXxJjtXH2VEhuIqsY2k49+0OslPtiRi4RQT0wx45IrRIPBpI2GjTatHoVVTRjFYQ+DlhThjeKaZpTUNJukvWMltQBgVcMjOyyOD8Li+EC8uiEb+ZXmWSNoa3Y5pkX5wsnefKX+u7MoLgj7cqv6tJAyABw/XYfssoYhtzbb+ahUArfOjsSR4lrszTXtcN/+SCtQflHts8UEuWOEpxPWZZTh3i/SoVIJvHJN4pBZSN3WjQ10R4Svi9mqSJbUNOOqN3djX24VXrpqAv5v/hirGKEyd4w/1Cph8iqSm7PKkVPRiJWzuZg2WS8mbTRsFFQ1QS9ZhMQUOue1mWiIZEZJHVwd1Ai30vLhT186DnYqFR5fc9TkPTKFVU04pWnEPAvOZ+uwKD4Qegls7OPaR2vTS6BWCZtacPaKSaHwcXXAu9tyFIvhQH41/N0dEeptPb2XQgjMGxuADZllSC+swd+Xj7eJ3lVbIYTA4nFB2HWyArXNpq2mmFFSh8vf2ImSmmZ8fMtUXDE51KTtD4aniz2mRHhjY6Zp12t7b3sugj2dcOG4c4qgE1kNJm00bOR2VI7kwtqDFjvCHS4OaqSZqBhJRmkdYkd4KLqocE+CPJ3wyJKx2H6iAmvSi03a9tZsw/qVcy04n63D+BBPBHk4YX0fhkhKKbH2UAkuGO0HXzflK3yaipO9GjfMCMfG4+U4Wd6gSAxp+dWYPNLb6j7hTzZek1dODsXFCbbRu2pLFscHQauXJu112patwYq3d0MlBL68cwZmjfYzWdumMj8mEMdP16Oo2jRLHhwtrsXunErcNCsC9lwonqwYr04aNnI0hhsyJSdS2wo7tQoTR3qZpKdNr5fIKLGuypHduW5aOCaN9MJfvs9EVR+HE/bF1mwNQr2dFVk7UAiBRfGB2JqtQXObrsd9DxTUoKi62WaGRnZ1/fRwONqp8P4Oy/e2lde3oKCqyaqGRnaYHxuIF6+agGdY3t8qJYZ6IdDDET+bqJDOqtRC3PLRfoR6O+Ob389CTJB1vienxBrmW569JMVAfbAjF64Oalw9hYtpk3Vj0kbDRm5FI/zcHODpzFLVppAU7oPM0rpBL05cUNWExjYd4qxgUe2eqFQCf1+egLrmdjz7Q4ZJ2mzT6rHrZAXmjfVXrJdlUVwQWtr12HGy5wLA3x0qgaOdCoviAy0UmeX4ujniysmh+PpAsdmr8Z3tQH4NAGCSFSZtapXAlZND4eKg/DIEdC6VSmBxfFCfPnTpiZQSL6/PxsNfHcaMUb748o4ZCPK03mVxovxcEeHr0udh3T05XduCtYdKsGJKGO8NyOoxaaNhI6eikb1sJpQU4Q29BA4WDK63LaO0DgAUW7C1P8YGueOOuaOw+kAxdpwY/ConqflVaGzTYW50gAmiG5hpUT5wd7LDuh4KGmh1enx/uATzYwNsdn2uWy+IRLtOj09251n0vAcKquGgVmFciHV/aEHWaUm84UOXjmHW/dWm1eMPXx7G6xtP4KrJofjgpilW/zcuhEBKTCB2napEU9vgPjT8z+486KXEzTO5mDZZPyZtNGzkaJi0mdLEkd5QCWD/IEv/HyuphVolMCZwaMw1vDtlNCL9XPGnb44M6tNtwDA00l4tMGOU5Ur9n81erUJKjKHgxPkWmd6dU4mKhjabHBrZIcrfDQtiA/GfPfmD/r32R1p+NcaHesLRzrKVQ8k2TI30gZeL/YAW2q5racctH+3H1weKcP+CaLxwZcKQmdM1PzYAbVo9dp6sHHAbTW1afLa3AIvjgzDS1zqLYBF1NTT+OokGqa6lHRUNrYjyHxqJwVDg5miH2BEeSMsfXDGSjJI6jPZ3s3i5+4Fyslfjr5ePQ0FVE17fdGJQbW3N0mBKhA/cHJUdfrYoLgjVTe1IO88cxbXpJXB3tMO8scr1CFrC7XOiUNPUjq/SCi1yvlatDkeKaq1yPhsNDXZqFRbEBmJDZhnatN1/6NKd0tpmrHhrN/bkVOLFqybg3gXWUdK/r6ZE+MDd0W5QRVi+TitCbXM7Vs5mLxsNDUzaaFjI66wcyZ42U0oK98bBgprz9tD0RUZpHeKtvAjJ2WaO8sNVk0PxzrYcZBqHd/bX6doWHD9dj7kKlPo/29yx/nBQq7Cum4V6W9p1+PnoaSweFzRkEuuBSgr3RmKYF97fkQud3vyLbR8trkObTo9JI5m00cAtiQ9CfYsWu3P61uuUWVqHy/+9C0XVzfjw5im40opK+veVg50Kc6L9sTGzfEDLsOj1Eu/vyEVimBf//mjIYNJGw0KOxpC0KVGhz5YlRfigqU2HzNL6AR1f0dCKsrpWq68c2Z3HlsbCy9kej64+MqAb/G0Klvo/m5ujHWaN9sX6jLJzboC2ZGlQ36q16aGRHYQQuH1OFPIqm7C+mwTW1A4YezYnhXuZ/Vxkuy4Y4wcXB3WfqkhuP6HBVW/tBgB8eccMzB6j/PvPQKXEBKC8vhVHi/v/wdnG4+XIq2zCytmRQ6qHkYY3Jm00LORUNEIlwHHrJpYUYfiEcv8A12vLKDH8Z2vtlSO74+XigD9fEodDhTX4zwCKV2zN1iDIwwljA91NH9wALIwLQkFVE7LKzkzA1x4qhp+bA2YqOO/OkhbHByHMxxnvbjd/+f+0/GqM9HFBgLv1Vuoj6+dkr0ZyTADWZ5T1+AHSl6mFuPlDY0n/u2Yidgi+73ZlqLoLbBzAEMn3tucgxMsZS+K5mDYNHUzaaFjIrWhEqLcLJ/ub2AhPZ4R4OZ93LlRvOipHDsWeNgC4dEIw5kb74x+/ZKG4prnPx2l1emw/ocHcaOVK/Z9tQVwAhADWHfv1Bqi+pR0bM8uxdPwI2A2RAgWDpVYJ3DorEmn51YOer9kTKSXSCqo5n41MYkl8ECoaWnGgm2q+Ukq8uiEbD311GNOjfLHqjhkY4emsQJSm5evmiIlhXtjUz9L/R4pqsTe3CjfPihg272tkG3i10rCQW9HA+WxmkhThjdT8qgHNK8goqUOIlzO8XBzMEJn5CSHw7LJxkBL485qjff4ZpBfWoK5FaxVDIzsEuDthYpgX1mX8OsRqfUYZWrV6XJpo+0Mju7oqybBm0zvbzNfbVlTdDE19q1Wuz0ZDzzzjvNSzh0i26/R4+KvDeHXDCVwxyVDS38PKS/r3x/zYQBwuqkV5XUufj3lvRw7cHO2wYkqYGSMjMj0mbWTzpJTIZbl/s0mK8EFZXSuKqvve09ThWEntkB+iE+bjggcWRmPj8XL81Ic5JYBhaKRaJTBrtJ+Zo+ufRfFBOFpc19lr+G16CUK8nIfdRH1XRzvcMCMcvxwrw7Xv7sHOkxUD+lCiJx2905OH2c+WzMPdyR4XjPHDz0dPd16r9caS/l+mFeGe+WPw4lUJcLCzrdu+lBhDRdvNWX3rbSupacYPh0tx9ZQwm0peaXiwrb9eom6U17eisU2HUf5M2swhydhTkNrPoWRNbVrkVDQO2aGRXd08KwLxwR54cu0x1Da397r/liwNJo30gqezdd00LIoLBACsP3YalQ2t2HGyApcmBlvNEE5L+r+UMXh8aSxOljfguvf2Ytkbu7Du2GnoTVRVMi2/Gq4OaowNso45jTT0LYkPQnFNM46V1OF0bQuuems3dp+qxAtXJOCBhdE2+XccE+SOYE8nbMzsW9L2sXEx7ZtmRpg3MCIzYNJGNq+jcmSkH9doM4foQHe4O9n1e5HtrNP1kBJDrtx/d+zUKjy3PAGVDa14/ufjPe5b0dCKI8W1VlHq/2xR/m4YHeCG9Zll+PHoaej0clhUjeyOg50KK2dHYdvDyfjb5eNR3diG2z9Jw5LXtmHNweJBLXMBGJK2iSO9oVbZ3o00KWNBXCBUAnhz6ylc/sZOFFY14YObptj0MEAhBObHBmLHyQq0tOt63LexVYvP9xbgwnEjEObDomQ09DBpI5uXU9EAAIhkT5tZqFUCk0Z6I62fSduxIVw5sjvjQz1xy6xIfL63oMdqmttPGEr9W+tC1QvjArEnpwqf7y3AmAA3xAzzniAnezWunTYSmx6ci1evTgQA3Pe/dKS8tBWf7c1Hq7bnG8XuNLRqcfx0HeezkUn5uDpgWqQvfjhcCr2UWHXHDMyxwg+HTC0lNgBNbTrs6WWdui9TC1HfosWtXEybhigmbWTzcjWNcLJXYYQHy2qbS1K4N7LK6lHb1PvQwA4ZpXXwcLJDqPfQr2LW4f6F0QjxcsYfVx857838liwN/NwcrDZZXRQXCJ1eIrO0DpcN06GR3bFTq7BsYgh+vncO3rl+MrxdHfDYN0cx+/nNeG97DhpbtX1u61BhDfQSrBxJJnf7nCjMG+uPb34/C/HBnkqHYxEzonzhbK/usYqkTi/xwc48TBrJxbRp6GLSRjYvt6IREb6uUHEYktkkRfgAQLflps8no6QOccEeNpUUuDra4dnLx+FkeQPe3HLqnOd1eolt2RrMGeNvtdfjhFAvBLg7AgAuGaZDI3uiUgksig/Cmt/PxGcrp2F0gBue/SETs57fhNc2nEBNU1uvbaTlV0MIIDHMy/wB07CSHBOAj26eimAv2/kwrDdO9mrMGu2HjZnl5y0YtD6jDAVVTVg5O8rC0RGZDpM2snm5FY2I4tBIs0oM84KdSvR5kW2dXuL46TrEjbC9T4KTxwbg0gnBeGPzKZwsP3Oh6qPFtahuareqUv9nU6kEbpoVgUsnBCPcl3835yOEofrn57dNx+rfz0RSuA9e2ZCNWc9twt9/zOyxBHlafjWiA9ytrhAN0VA1PzYAxTXNyC5r6Pb593fkINTbubPYEtFQxKSNbFq7To+CqiaW+zczZwc14kM8kdrHRbZzKxrQ0q63icqR3Xni4jg4O6jxp9VHz6g2uCVLAyGA2WOsN2kDgN/PG43XfzNR6TCGjEkjvfHejUn4+b7ZWBAXiHe35+CCFzbj8TVHUFjVdMa+er3EgYJqzmcjMqGO0v8bj5ed81x6YQ3251Xj5lmRXEybhjRevWTTCquaoNVLRLFypNklhXvjUGEN2rS9V9XrKEJiC5Uju+Pv7ojHLorFvrwq/C+1sHP71uxyJIR6wcd1aC4mTj2LCfLAa9dMxOY/zMMVk0Kxan8R5r24BQ/8Lx0nygy9ric1Dahv0XI+G5EJBXo4YXyIJzZ1U/r//R25cHe0w4qkUAUiIzIdJm1k03IrjOX+OTzS7KZEeKNVq8fRktpe980oqYODWoVR/rabTF+VFIrpUT74m3GoXE1TG9ILazBvGFRzG+7CfV3x9+Xjse3hZNw0MwI/HT2Nha9sw+8+ScUX+wxJPJM2ItNKiQnAgYJqVDX+Oq+0uKYZPx4pxTVTw+DOxbRpiGPSRjatY422KA6PNLvJ4YZiJH0p/Z9RWocxgW5wsLPdtyAhBP52+Xi0avV4+vsMbD9RAb2EVc9nI9MK8nTCExfHYeejKbgnZTR2n6rEBztz4ePqgAhfrhNFZErzYwOgl8CWrF972z7amQsAuGkWy/zT0Ge7d0xEAHIqGuHj6gAvFw5HMzd/d0dE+Lr0WoxESmmoHGmlJe9NKcrfDf+XPBo/HC7Fqxuy4eVijwmhXkqHRRbm4+qABxaNxc5HU/D40lj8+eI4m6qaSmQNxgV7wt/dERuNpf/rW9rxxb5CXDR+BEKGUTVNsl1M2sim5VY0sAiJBU0O90FafvV5yy4DQHl9Kyob22x2PtvZfjd3FMYEuOGUphGzx/hDbaWl/sn83J3ssXJ2FJZNDFE6FCKbo1IJpIwNwLYsDdp1eqxKLUJ9qxa3XsBeNrINTNrIpuVoGpm0WdCUCG9UNrZ1ziXszjHjnLe4YbLwq4OdCs9dMR52KsFy00REZpQSG4D6Vi325FTiw525mBLhzfUQyWbYKR0Akbk0tGpRXt/KNdosKCnCUFwhNb8aUecpMpJhrBwZO8LdYnEpbXK4D/Y/tgBeLpwIT0RkLheM9oODWoWn1h5DUXUzHl8ap3RIRCbDnjayWXkVLEJiaVF+bvBysUdqD/PaMkrrEO7rMuwqeXm7OnAeExGRGbk62mHGKF+c0jRipI8LFnJ0A9kQJm1ks3I6yv1zjTaLUakEksK9e1xk+9gwKUJCRESWNz/WsND2LbMiOIeYbAqHR5LNytE0QAggnKW1LWpyuA82ZJajsqEVvm6OZzxX39KO/MomXDmJi5wSEZHpLZ8UioZWLa6ZOlLpUIhMij1tZLNyKxoR4uUMJ3u10qEMK1OM89rSuultO366HgAQH8KeNiIiMj03Rzv8ft5o/t9PNodJG9ms3ApWjlTCuBBPOKhV3SZtx4qNlSNHDI/KkURERESm0GvSJoQIE0JsFkJkCiGOCSHuNW7/ixDisBAiXQixTggRbP5wifpGSokcTSOLkCjAyV6NhFDPbhfZziitg4+rAwI9HLs5koiIiIi605eeNi2AB6WUsQCmA7hLCBEH4B9SygQpZSKA7wH82XxhEvWPpqEVDa3a85adJ/OaHOGNI8W1aGnXnbE9o9RQhIRVFImIiIj6rtekTUpZKqU8YPy6HkAmgBApZV2X3VwBSPOESNR/uZqOypHsaVPClHAftOskDhfVdm5r1+mRfboB8cGcz0ZERETUH/2a0yaEiAAwEcBe4/d/FUIUArgO7GkjK/JruX8mbUqYHN6xyPavQyRPljegTadHHJM2IiIion7pc9ImhHAD8DWA+zp62aSUj0kpwwB8BuDu8xx3uxAiVQiRqtFoTBEzUa9yKxrhYKdCiJez0qEMS96uDhjl74rUvF+LkWSUGDrnuUYbERERUf/0KWkTQtjDkLB9JqVc3c0unwO4ortjpZTvSCmTpJRJ/v7+A4+UqB9yNI2I9HWFigtrKmZKhA/S8quh1xtGTmeU1sHJXsV5hkRERET91JfqkQLA+wAypZQvd9k+pstulwI4bvrwiAYmt6KBQyMVNjncG7XN7TipaQAAHCupxdggD6iZSBMRERH1S1962mYBuB5AirG8f7oQ4iIAzwkhjgohDgNYBOBecwZK1FdanR4FVU2I9GfSpqQpET4AgNS8akgpkVFSx6GRRERERANg19sOUsodALr7aPxH04dDNHhF1c1o10mu0aawcF8X+Lk5IDWvCnOi/VDXomXlSCIiIqIB6Ff1SKKhINdYOTKKPW2KEkIgKdwHqfnVONZRhIRJGxEREVG/MWkjm3PKOIcq0o8FL5SWFOGNgqombMnSQAggJshd6ZCIiIiIhhwmbWRzcisa4eViDx9XB6VDGfaSjPPa1hwsRqSfK1wceh2RTURERERnYdJGNie3opGVI61EfLAHnOxVaG7XIT7YU+lwiIiIiIYkJm1kc3I0TNqshb1ahcQwLwBcVJuIiIhooJi0kU1pbNXidF0LK0dakaRwwxBJFiEhIiIiGhhOMCGbklfZUTmSRUisxSUTgpFeWINJI72UDoWIiIhoSGLSRjalo9w/h0daj7FB7vh05TSlwyAiIiIasjg8kmxKjsaQtEX4MmkjIiIiItvApI1sSm5FI0K8nOHsoFY6FCIiIiIik2DSRmYjpYReLy16zhyW+yciIiIiG8OkjcyivqUdl/5rJ+5flW6xc0opkaNpYNJGRERERDaFSRuZnE4vcf//0nGkuBbfppfgRFm9Rc5b2diG+hYtovyZtBERERGR7WDSRib34rosbMgsxwMLo+Fkr8I723Iscl5WjiQiIiIiW8SkjUzqm4NFeHPLKVw7bST+L2U0rk4Kw5r0YpTVtZj93LnGypFRflyjjYiIiIhsB5M2MpmDBdV45OsjmBbpg6cvjYcQAitnR0Gnl/hwZ57Zz3+qogEOahVCvJ3Nfi4iIiIiIkth0kYmcbq2Bb/7JA2BHo5487eTYa82XFphPi64cPwIfLYnH/Ut7WaNIVfTiHBfF6hVwqznISIiIiKyJCZtNGgt7Trc/kkqGlu1eO+GKfBxdTjj+d/NiUJ9qxZf7Cs0axy5LPdPRERERDaISRsNipQSD311GEeKa/HqNRMxNsj9nH0SQr0wI8oXH+zMRbtOb5Y4dHqJ/MomRLJyJBERERHZGCZtNChvbDmF7w6V4KHFY7EwLvC8+90+NwqltS347lCJWeIorm5Gm06PUSxCQkREREQ2hkkbDdi6Y6fxj1+ysCwxGHfOHdXjvvOi/TE20B3vbMuBlNLkseRUNAAAe9qIiIiIyOYwaaMBySytw33/S8eEUE88d0UChOi5+IcQArfNicLx0/XYmq0xeTw5Gq7RRkRERES2iUkb9VtlQytWfpwKdyc7vHNDEpzs1X067tIJwQjycDLLYtu5FY3wcLKD71lFUIiIiIiIhjombdQvbVo97vz0ACoaWvHO9UkI9HDq87EOdircckEEdp2qxNHiWpPGlVvRiEh/t157/IiIiIiIhhombdRnUko8ufYo9uVV4YUrEzAhzKvfbfxm6ki4O9rhbRP3tuVWNCKKQyOJiIiIyAYxaQPMUhjDFn28Kw//3VeI388bhcsSQwbUhruTPa6dNhI/HC5BYVWTSeJqbtOhuKaZ89mIiIiIyCYN66RNSom//5iJf/ySpXQoVm/7CQ3+8kMmFsYF4g+Lxg6qrZtnRUKtEnh/R65JYsurNBQhiWLlSCIiIiKyQcM6aRNCoK6lHW9tPYW0/Gqlw7FaOZoG3PXZAYz2d8MrVydCpRrcvLEgTydclhiC/+0vRHVj26Djy61g5UgiIiIisl3DOmkDgMeWxmGEpzP+8OUhNLfplA7H6tQ2t2Plf1Jhp1bhvRuT4OZoZ5J2b58TheZ2HT7dkz/otnI0xjXamLQRERERkQ0a9kmbm6MdXrgyAbkVjXhxHYdJdqXTS9zz34MoqGzCG9dNQpiPi8najg50R/JYf3y0Kw8t7YNLlnMqGjHC0wkuDqZJKImIiIiIrMmwT9oAYNZoP1w/PRwf7MzFvtwqpcOxGn//MRNbszV45rJxmB7la/L2b58zCpWNbfj6QNGg2smtaGQvGxERERHZLCZtRo9eGIMwbxf84ctDaGrTKh2O4r5MLcR7O3Jx44xwXDttpFnOMT3KBwmhnnhvey50+oFV8JRSIkfDpI2IiIiIbBeTNiNXRzv848oEFFQ14fmfjisdjqJS86rw2DdHMWu0L564OM5s5xFC4HdzRiG3ohHrM8oG1EZ1Uztqm9uZtBERERGRzWLS1sW0KF/cPCsCH+/Ox66TFUqHo4jimmbc8Wkagr2c8O9rJ8FObd5LZMm4IIz0ccHb204NaL283ApDEZJR/m6mDo2IiIiIyCr0ekcuhAgTQmwWQmQKIY4JIe41bv+HEOK4EOKwEOIbIYSX2aO1gIcXxyDSzxUPfXUYDa3Da5hkU5sWKz9ORWu7Hu/dOAVeLg5mP6daJbBydiQOFtQgdQDLLuRoWO6fiIiIiGxbX7pRtAAelFLGApgO4C4hRByA9QDGSSkTAGQD+KP5wrQcZwc1XrwqASW1zfjbj5lKh2Mxer3Eg6sOIet0HV6/diJGB1iu5+qqyWHwdrHH21tz+n1sTkUj7NUCod7OZoiMiIiIiEh5vSZtUspSKeUB49f1ADIBhEgp10kpO7qi9gAINV+YljU53Ae3zY7C53sLsC1bo3Q4FvHaxhP46ehp/PHCWCSPDbDouZ0d1LhhRgQ2ZJbhZHlDv47N1TRipI+L2YdxEhEREREppV93ukKICAATAew966lbAPxkopiswgMLozHK3xWPfH0YdS3tSodjVt+mF+O1jSdw5eRQrJwdqUgMN8wIh6OdCu9t719vm6HcP+ezEREREZHt6nPSJoRwA/A1gPuklHVdtj8GwxDKz85z3O1CiFQhRKpGM3R6rZzs1XhpRSLK6lrw7PcZSodjNr8cO40HVh3C1Agf/PXycRBCKBKHr5sjrkoKxeoDxSiva+nTMTq9RG5lI6L8OZ+NiIiIiGxXn5I2IYQ9DAnbZ1LK1V223wjgYgDXyfOU/pNSviOlTJJSJvn7+5siZotJDPPCHXNHYVVqETYdH1hJemu2+Xg57v78AMaHeOL9m5LgaKdWNJ6VF0ShXa/HR7vy+rR/SU0z2rR6RLEICRERERHZsL5UjxQA3geQKaV8ucv2JQAeAXCplLLJfCEq694FYzA20B2Pfn0EtU22M0xyx4kK/O7TNIwNcsfHt0yFu5O90iEhws8VS+KD8Ome/D5V7sytYOVIIiIiIrJ9felpmwXgegApQoh04+MiAP8C4A5gvXHbW+YMVCmOdmq8tGICKhvb8PR3x5QOxyT25lRi5X/2I8rPFZ/cMg2ezsonbB1unxOFuhYt/re/sNd9czSGoiWRHB5JRERERDbMrrcdpJQ7AHQ30elH04djncaFeOKu5NF4feMJLBkXhEXxQUqHNGBp+dW45aP9CPFyxqcrp8Hb1fxrsfXHxJHemBrpg/e35+CGGeGw76EqZG5FI9wc7eDv5mjBCImIiIiILIt10vvo7uTRiBvhgT99cxTVjW1KhzMgh4tqcNMH++Dv7ojPb5sOPytNdn43JwoltS344XBpj/vlVBiKkChVPIWIiIiIyBKYtPWRg50KL141AbXNbfjz2qE3TDKjpA7Xv78Pni72+Py26Qj0cFI6pPNKHhuA0QFueHtbDs5T3wZAR7l/Do0kIiIiItvGpK0f4oI9cE/KGHx3qAQ/Hum5F8ianCirx2/f3wsXBzX+e9t0BHs5Kx1Sj1QqgdvnRCGztA47TlZ0u09Luw7FNc1M2oiIiIjI5jFp66c75o3C+BBPPL7mKCoaWpUOp1c5mgZc+95eqFUCn982HWE+LkqH1CeXJQYjwN0Rb2/tfrHt/MomSAlE+XNhbSIiIiKybUza+slercJLKyagoUWLJ9Yc7XH4ntIKKptw7bt7oddLfL5y2pDqlXK0U+PmWZHYcbICR4trz3k+t8JQOZJrtBERERGRrWPSNgDRge64f2E0fjp6Gt/1UixDKcU1zbj2vT1o0erw6cppGBPornRI/XbttJFwdVDj3e3n9rad0hjWaItg0kZERERENo5J2wDdNjsSiWFe+PO3R1Fe36J0OGcoq2vBte/uQW1zOz65ZRpiR3goHdKAeDrb4zdTR+L7w6Uoqj5z/fbcikYEejjCzbHXVSuIiIiIiIY0Jm0DZGccJtncpsOfVh+xmmGSmvpWXPvuHlTUt+LjW6ZifKin0iENyi0XREIA+GBH3hnbWTmSiIiIiIYLJm2DMMrfDQ8tHosNmeX45mCx0uGgqrENv31vL0pqWvDhzVMxaaS30iENWrCXMy6dEIwv9hegtqm9c3uOpgGRfixCQkRERES2j0nbIN08KxJJ4d54cu0xnK5VbphkbXM7rn9/L3IrG/HejUmYGumjWCymdtucKDS16fDp3nwAQHVjG6qb2lmEhIiIiIiGBSZtg6RWCbx41QS06/R4dPVhRYZJ1re044YP9uFEWQPevn4yZo32s3gM5hQ7wgNzov3x4c48tLTrkFtpKEIS5c+kjYiIiIhsH5M2E4jwc8WjS2KwJUuDL1OLLHruxlYtbv5wP44V1+Jf105E8tgAi57fUu6YE4WKhlasOViMXGPlSM5pIyIiIqLhgEmbidwwIwLTo3zwzPcZKK5ptsg5W9p1WPlxKg4UVOO1ayZiUXyQRc6rhBmjfDEuxAPvbM/BSU0D7FRiyCwUTkREREQ0GEzaTESlEvjHlROglxKPfGX+YZKtWh1u/yQNe3Ir8dKKCViaMMKs51OaEAK3zxmFHE0jVu0vxEgfF9irefkSERERke3jXa8Jhfm44E8XxWLHyQp8vq/AbOdp0+px12cHsC1bg+eXJ+DyiaFmO5c1uWhcEEK9nVHZ2MahkUREREQ0bHBlYhO7btpI/Hz0NP76QyZUQsDT2R6ujnZwc1TD1dEOrg52cHO0g6ujHRzs+p8za3V63PvFQWzILMdflo3DiilhZngV1slOrcKtF0Ti6e8ymLQRERER0bDBpM3EhBB4/soEXPavHfjj6iM97uugVsHVmMy5Of6azBn+VXf52q4z8duQWY6fjp7G40tjcf30cAu9Kutx9ZQw/Hz0NJJjbLPgChERERHR2YQlS9QnJSXJ1NRUi51PSS3tOmjqW9HYpkVDixYNrVo0turQ2NrxtRYNbYZ/G1t1ndt+fV7Xuc/Zv6KHFo/FXcmjlXlhREREREQ0YEKINCllUn+OYU+bmTjZq01S3VBKiaa2X5M9e7WKVROJiIiIiIYRJm1WTgjROTySAwKJiIiIiIYfVo8kIiIiIiKyYkzaiIiIiIiIrBiTNiIiIiIiIivGpI2IiIiIiMiKMWkjIiIiIiKyYkzaiIiIiIiIrBiTNiIiIiIiIivGpI2IiIiIiMiKMWkjIiIiIiKyYkzaiIiIiIiIrJiQUlruZEJoAORb7IR95wegQukgSHG8DqgDrwUCeB3Qr3gtEMDrgH412GshXErp358DLJq0WSshRKqUMknpOEhZvA6oA68FAngd0K94LRDA64B+pcS1wOGRREREREREVoxJGxERERERkRVj0mbwjtIBkFXgdUAdeC0QwOuAfsVrgQBeB/Qri18LnNNGRERERERkxdjTRkREREREZMWGXNImhFgihMgSQpwUQjzaZfv/hBDpxkeeECK9m2MThRC7hRDHhBCHhRBXd3kuUgixVwhxwtiWw3nOf6NxnxNCiBv7ezyZhpLXgRAiXAiRZjzHMSHEHf05nkzLjNfC3cY2pRDCr4fz8z3BCih5HfA9wXqY8Tr4zNjuUSHEB0II+/Ocn+8HVkLJa4HvCdbDjNfB+0KIQ8btXwkh3M5zftO9J0gph8wDgBrAKQBRABwAHAIQ181+LwH4czfbowGMMX4dDKAUgJfx+1UArjF+/RaAO7s53gdAjvFfb+PX3n09ng+buQ4cADgav3YDkAcgmNeBzV0LEwFEGH+/fuc5P98TrOBhBdcB3xOs4GHm6+AiAML4+O95/m/g+4GVPKzgWuB7ghU8zHwdeHTZ72UAj3ZzvEnfE4ZaT9tUACellDlSyjYAXwC4rOsOQggBYAUMf0hnkFJmSylPGL8uAVAOwN94TAqAr4y7fgxgWTfnXwxgvZSySkpZDWA9gCX9OJ5MQ9HrQErZJqVsNX7rCGOPNa8DRZjlWjB+f1BKmdfL+fmeYB0UvQ74nmA1zHkd/CiNAOwDENrN+fl+YD0UvRb4nmA1zHkd1HU53hlAd0VCTPqeMNSSthAAhV2+LzJu62o2gLKOH/L5CCGmwpB1nwLgC6BGSqk9u10hRJIQ4r1ezn/e48kslL4OIIQIE0IcNsbxvPGPmdeB5ZnrWuhpP74nWB+lrwO+J1gHs18HxqFw1wP42fg93w+sk9LXAt8TrINZrwMhxIcATgOIAfBP4zazvScMtaRNdLPt7Mz2N+gmWz6jESFGAPgEwM1SSn1P7UopU6WUK3s5f1/iItNR+jqAlLJQSpkAYDSAG4UQgX2Mi0zLXNfCefE9wSopfR3wPcE6WOI6eAPANinldoDvB1ZM6WuB7wnWwazXgZTyZhiGTWYCuNq4zWzvCUMtaSsCENbl+1AAJR3fCCHsACwH8L/zNSCE8ADwA4DHpZR7jJsrAHgZjz+n3T6cv6/Hk2kofR10Mn5ydgyGT2p4HVieua6FwZ6f14JlKX0ddOJ7gqLMeh0IIZ6EYWjUA/08P68Dy1P6WujE9wRFmf3/Bimlznj8Ff04/4Cug6GWtO0HMMZYccUBwDUA1nZ5fgGA41LKou4ONh7zDYD/SCm/7NhuHJe8GcCVxk03Avi2myZ+AbBICOEthPAGsAjAL/04nkxD0etACBEqhHA2fu0NYBaALF4HijDLtdAPfE+wDopeB3xPsBpmuw6EECthmJ/ymx56Yfl+YD0UvRb4nmA1zHIdCIPRHV8DuATA8W6aMO17grSC6i79ecBQtScbhjGlj5313EcA7ujh2N8CaAeQ3uWRaHwuCoYJpScBfIlfq/4kAXivSxu3GPc5CUM3KXo6ng/buw4ALARwGIYqRIcB3M7rwCavhXtg+JRMC8MnYB2/f74nWOFDyeuA7wnW8zDjdaA1ttmx/c9nXwfG7/l+YCUPJa8FvidYz8Mc1wEMnV47ARwBcBTAZzBWkzTne4IwHkhERERERERWaKgNjyQiIiIiIhpWmLQRERERERFZMSZtREREREREVoxJGxERERERkRVj0kZERERERGTFmLQRERERERFZMSZtREREREREVoxJGxERERERkRX7f5iqQCOVvQzkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACGDklEQVR4nO3dd3xb5fX48c8jeW/HO7ETx3bikZ04gwTIZEOhg9CWUmgLLbR00T0otKX9tpRfSzcFCi1tOoCWDSWDhBWy4yyPLDuJ996Wh/T8/pBkHMdOPCRdST7v18uv2JLuvUe5lqxzn/OcR2mtEUIIIYQQQghhLJPRAQghhBBCCCGEkORMCCGEEEIIIbyCJGdCCCGEEEII4QUkORNCCCGEEEIILyDJmRBCCCGEEEJ4AUnOhBBCCCGEEMILSHImhBBCCCGEEF5AkjMhhPATSqn2AV82pVTXgJ9vNjq+sVBKlSml1hkdx/kopbYppW534/6vU0oddpzH7UqpvEH3ZyilXlZKtSml6pVSDw64b5JS6jmlVIdS6pRS6uODtl2rlCpWSnUqpbYqpaa563kIIYS4MEnOhBDCT2itI5xfwGngugG3bTA6vsGUUgH+cAx3UkrNADYAdwIxwEvAi87npZQKAjYBbwDJQCrw9wG7+D3QAyQBNwN/VErNcmwbD/wXuBeYBOwB/u32JyWEEGJYkpwJIYSfU0qZlFLfVkqdUEo1KKWeVkpNctyXrpTSSqlPKaXOKKWalFJ3KqUWK6UOKqWalVK/G7Cv25RS7yqlfquUanGMuqwdcH+0UurPSqkqpVSFUuoBpZR50La/Uko1AvcrpTKVUm844qpXSm1QSsU4Hv83YCrwkmPU6JtKqVVKqfJBz69/dE0pdb9S6lml1N+VUq3AbReIKUsp9abjudQrpYZMTpRSIY59Njj+T3YrpZKUUj8BLgF+54jxd47H5yilNimlGpVSJUqp9QP29Rel1COO+9scxx9uxOoK4G2t9Tta6z7g58AUYKXj/tuASq31L7XWHVpri9b6oOM44cCHgXu11u1a63eAF4FbHNt+CDiitX5Ga20B7gfmKaVyholFCCGEm0lyJoQQ/u9LwA3YP9BPBpqwj6gMtBSYAdwEPAx8D1gHzALWK6VWDnrsSSAeuA/4rzPZA/4K9AFZwALgcuD2IbZNBH4CKOD/HHHlAmnYkwS01rdw9gjgg4zM9cCz2EeaNlwgph8DG4FY7KNOvx1mn7cC0Y744rCPZHVprb8HvA3c7YjxbkdStAn4h+N5fgz4g3PEyuFmx7HjgQJHnENRjq/BP892/LwMKFNKveZILrcppeY47psJWLXWRwdsfwD7OcXx7wHnHVrrDuDEgPuFEEJ4mCRnQgjh/z4HfE9rXa617sae/HxkUMnfjx2jLhuBDuCfWutarXUF9uRjwYDH1gIPa617tdb/BkqAa5RSScBVwFccozi1wK+Ajw7YtlJr/VutdZ/WuktrfVxrvUlr3a21rgN+yfujQmP1ntb6ea21DYi6QEy9wDRgsuP5vzPMPnuxJ2VZWmur1nqv1rp1mMdeC5RprZ90PM99wH+Ajwx4zCta67cc5+N7wEVKqbQh9rUJWOkYMQwCvgsEAWGO+1Mdz+U32BPcV4AXHI+NAFoG7a8FiHR8f6H7hRBCeJgkZ0II4f+mAc85yvGagSLAin0eklPNgO+7hvg5YsDPFVprPeDnU9gTg2lAIFA14Fh/wj565HRmYGBKqUSl1L8c5Yat2OdLxY/+KZ5l4DEuFNM3sY9E7VJKHVFKfXqYff4NeB34l1KqUin1oFIqcJjHTgOWOo/nOObN2OeEnROj1rodaMT+f3gWrXUx9lG73wFV2P9vCgFnaWcX8I7W+jWtdQ/wEPYkMhdox56cDhQFtDm+v9D9QgghPEySMyGE8H9ngKu01jEDvkIco2JjMUUpNbDUbipQ6ThONxA/4DhRWuuBZXIDkzqwlzRqYK7WOgr4BGeX8Q1+fAfvjxrhmDuWMOgxA7c5b0xa62qt9R1a68nYRxj/oJTKGvyEHaOEP9Ra5wHLsY+OfXKYGM8Abw76/47QWt814DH9o2RKqQjsDTkqBx/XcexntdaztdZx2MtIpwG7HXcfHOL4TkeBAGVvKuI0Dzji+P6I42dnHOFA5oD7hRBCeJgkZ0II4f8eAX7ibDqhlEpQSl0/jv0lAl9SSgUqpW7EPkrzqta6Cvv8rf+nlIpS9kYkmYPmqw0WiX0Ep1kpNQX4xqD7a4CMAT8fBUKUUtc4Rq6+DwQPt/MLxaSUulEplep4eBP2RMc6eD9KqdVKqTmOZLAVe5mj83GDY3wZmKmUusXxfxSo7A1Wcgc85mql1MWO8sMfAzu11meNKg449iKllFkplYB91O8lx4ga2Ecalyml1jli+wpQDxQ55pD9F/iRUipcKbUC+3y8vzm2fQ6YrZT6sFIqBPgBcHDAvoUQQniYJGdCCOH/fo29S99GpVQbsAN7Y46x2om9eUg99qYeH9FaNzju+yT2OVGF2JOdZ4GU8+zrh8BC7HOdXsGeTAz0f8D3HeWBX9datwCfBx4HKrCPpJVzfueLaTGwUynVjv3/6Mta69Ih9pHs2K4Ve1nom7zfsv7X2OfwNSmlfqO1bsPedOSj2EfDqrF3WRyYRP4D+yhYI7AIe9njcH4NNGOf29cM3OG8Q2tdgn208RHHc7se+ICjxBHs/1eh2OcJ/hO4S2t9xLFtHfZujj9xbLuUs+cHCiGE8DB19rQBIYQQYnhKqduA27XWFxsdi69SSv0FKNdaf9/oWIQQQngXGTkTQgghhBBCCC8gyZkQQgghhBBCeAEpaxRCCCGEEEIILyAjZ0IIIYQQQgjhBSQ5E0IIIYQQQggvEODJg8XHx+v09HRPHlIIIYQQQgghvMbevXvrtdYJQ93n0eQsPT2dPXv2ePKQQgghhBBCCOE1lFKnhrtPyhqFEEIIIYQQwgtIciaEEEIIIYQQXkCSMyGEEEIIIYTwAh6dczaU3t5eysvLsVgsRoci/ExISAipqakEBgYaHYoQQgghhBAXZHhyVl5eTmRkJOnp6SiljA5H+AmtNQ0NDZSXlzN9+nSjwxFCCCGEEOKCDC9rtFgsxMXFSWImXEopRVxcnIzICiGEEEIIn2F4cgZIYibcQn6vhBBCCCGEL/GK5MxoP/nJT5g1axZz585l/vz57Ny5E4Dbb7+dwsJClxwjPT2d+vr68z7mpz/96aj3+5e//IW77777rNuefPJJ5s+fz/z58wkKCmLOnDnMnz+fb3/726Pevyc8/PDDdHZ2Gh2GEEIIIYQQhjJ8zpnR3nvvPV5++WX27dtHcHAw9fX19PT0APD44497NJaf/vSnfPe73x33fj71qU/xqU99CrAnhVu3biU+Pn7c+x0rrTVaa0ymoa8FPPzww3ziE58gLCxsxPvs6+sjIGDC//oKIYQQQgg/MuFHzqqqqoiPjyc4OBiA+Ph4Jk+eDMCqVavYs2cPABEREXzrW99i0aJFrFu3jl27drFq1SoyMjJ48cUXgXNHsa699lq2bdt2zjFvuOEGFi1axKxZs3j00UcB+Pa3v01XVxfz58/n5ptvBuDvf/87S5YsYf78+Xzuc5/DarUC9pGxmTNnsnLlSt59990RP9df/OIXLF68mLlz53LfffcBUFZWRk5ODrfffjuzZ8/m5ptvZvPmzaxYsYIZM2awa9cuAO6//35uueUW1qxZw4wZM3jssccuuN/c3Fw+//nPs3DhQs6cOcNdd91Ffn4+s2bN6n/cb37zGyorK1m9ejWrV6/u/792evbZZ7ntttsAuO2227jnnntYvXo13/rWtzhx4gRXXnklixYt4pJLLqG4uHjE/xe+5FRDB0dr2owOQwghhBBCuJtzVGO4LyAN2AoUAUeALw+474tAieP2By+0r0WLFunBCgsLz7nNk9ra2vS8efP0jBkz9F133aW3bdvWf9/KlSv17t27tdZaA/rVV1/VWmt9ww036Msuu0z39PTogoICPW/ePK211k8++aT+whe+0L/9Nddco7du3aq11nratGm6rq5Oa611Q0OD1lrrzs5OPWvWLF1fX6+11jo8PLx/28LCQn3ttdfqnp4erbXWd911l/7rX/+qKysrdVpamq6trdXd3d16+fLlZx1zMOdxX3/9dX3HHXdom82mrVarvuaaa/Sbb76pS0tLtdls1gcPHtRWq1UvXLhQf+pTn9I2m00///zz+vrrr9daa33ffffpuXPn6s7OTl1XV6dTU1N1RUXFeferlNLvvfdefyzO593X16dXrlypDxw4cM7/zeD/h2eeeUbfeuutWmutb731Vn3NNdfovr4+rbXWa9as0UePHtVaa71jxw69evXqc56/0b9f4/XygUqd8/3X9OIHNmmr1WZ0OEIIIYQQYpyAPXqYfGkkdWF9wNe01vuUUpHAXqXUJiAJuB6Yq7XuVkoljjdR/OFLRyisbB3vbs6SNzmK+66bNez9ERER7N27l7fffputW7dy00038bOf/ax/tMYpKCiIK6+8EoA5c+YQHBxMYGAgc+bMoaysbFQx/eY3v+G5554D4MyZMxw7doy4uLizHrNlyxb27t3L4sWLAejq6iIxMZGdO3eyatUqEhISALjppps4evToBY+5ceNGNm7cyIIFCwBob2/n2LFjTJ06lenTpzNnzhwAZs2axdq1a1FKnfPcrr/+ekJDQwkNDWX16tXs2rWLd955Z9j9Tps2jWXLlvVv//TTT/Poo4/S19dHVVUVhYWFzJ07d1T/dzfeeCNms5n29na2b9/OjTfe2H9fd3f3qPblzaw2zS83lfD7rSeIjwimtq2bwqpWZk+JNjo0IYQQQgjv9eCDsHgxOCqyANi6FXbvhm9+07i4RuiCyZnWugqocnzfppQqAqYAdwA/01p3O+6rdWeg7mQ2m1m1ahWrVq1izpw5/PWvfz0nOQsMDOzv/mcymfrLIE0mE319fQAEBARgs9n6txmqjfu2bdvYvHkz7733HmFhYaxatWrIx2mtufXWW/m///u/s25//vnnx9SFUGvNd77zHT73uc+ddXtZWVn/cznfc4Nzux8qpc673/Dw8P6fS0tLeeihh9i9ezexsbHcdtttw7a5H3icwY9x7tNmsxETE0NBQcGFnrrPabX08pV/FfBGcS0fW5LGl9bOYPnP3uCN4lpJzoQQQgghzmfxYli/Hv71L1i71p6YrV8PTz9tdGQjMqqOCkqpdGABsBP4BXCJUuongAX4utZ693iCOd8Il7uUlJRgMpmYMWMGAAUFBUybNm1M+0pPT+cPf/gDNpuNioqK/vlaA7W0tBAbG0tYWBjFxcXs2LGj/77AwEB6e3sJDAxk7dq1XH/99Xz1q18lMTGRxsZG2traWLp0KV/+8pdpaGggKiqKZ555hnnz5l0wtiuuuIJ7772Xm2++mYiICCoqKggMDBzV83vhhRf4zne+Q0dHB9u2beNnP/sZoaGhI9pva2sr4eHhREdHU1NTw2uvvcaqVasAiIyMpK2trb9pSVJSEkVFRWRnZ/Pcc88RGRl5zv6ioqKYPn06zzzzDDfeeCNaaw4ePDii/wtvdqKunTue2sPphk5+fMNsPrF0Kkop5qbGsLWkli+tnWF0iEIIIYQQ3mv1avj3v+Gqq2DpUigqsidmA0fSvNiIkzOlVATwH+ArWutWpVQAEAssAxYDTyulMhx1lAO3+yzwWYCpU6e6LHBXaW9v54tf/CLNzc0EBASQlZXV36RjtFasWNFfIjh79mwWLlx4zmOuvPJKHnnkEebOnUt2dvZZZX+f/exnmTt3LgsXLmTDhg088MADXH755dhsNgIDA/n973/PsmXLuP/++7noootISUlh4cKF/Y1Czufyyy+nqKiIiy66CLCXc/7973/HbDaP+PktWbKEa665htOnT3PvvfcyefJkJk+ePKL9zps3jwULFjBr1iwyMjJYsWLFWc/7qquuIiUlha1bt/Kzn/2Ma6+9lrS0NGbPnk17e/uQ8WzYsIG77rqLBx54gN7eXj760Y/6dHK2tbiWL/1zP0EBJjbcvpSlGe+Xuq7OTuDXW47R2NHDpPAgA6MUQgghhPByVVXQ0wNvvw333usziRmAGpRLDf0gpQKBl4HXtda/dNz2P+xljdscP58Almmt64bbT35+vnZ2P3QqKioiNzd3zE9AeMb9999PREQEX//6140OZVR84fdLa80ftp3goY0l5KVE8egn85kSE3rWYw6WN/OB373Lr26axwcXpBoUqRBCCCGEl6uqgpkzwWKBb30L/vQnrxs5U0rt1VrnD3XfBVvpK/sEoD8DRc7EzOF5YI3jMTOBIOD8qywLIc7S2dPHF/+5n1+8XsK1cyfz7J3Lz0nMAGZPjiY+IoitxcNe+xBCCCGEmNi0ho98BNrb4fHH4YEH7InZ+vX2uWc+YCRljSuAW4BDSqkCx23fBZ4AnlBKHQZ6gFsHlzQK/3H//fcbHYLfOdPYyWf/tpfi6la+fVUOn7s0Y9hmLyaTYuXMRDYX1WC1acym0TeFEUIIIYTwaxs2wPbtcOedcOut9ttWr7YnaLt3e9Xo2XBG0q3xHWC4T4KfcG04QkwM751o4PMb9tJn0zxx22JWZ194JYo1OYn8Z185+083kZ8+yQNRCiGEEEL4iMpK+NKXYPly+N3vzr5v9WqfSMxgBGWNQgjX0Vrzl3dL+cSfdxIXEcwLX1gxosQM4OIZ8ZhNiq0lPrtqhRBCCCGE62kNn/scdHXBk0/CKBreeRtJzoTwkO4+K9/6z0Huf6mQ1dkJPPf55WQkRIx4++jQQBZNi5V5Z0IIIYQQA/3tb/Dyy/DTn9qbgfgwSc6E8IDaVgsffXQHT+8p50trsnj0lnwiQ0a3zhzYSxsLq1qpbhl6AW8hhBBCiAmlshK+/GVYscJe1ujjJDkDzGYz8+fPZ/bs2dx44410dnaOeV+33XYbzz77LAC33347hYWFwz5227ZtbN++vf/nRx55hKeeemrMx3YqKytj9uzZZ912//3389BDD41qP66KZ6Lbf7qJa3/7DiXVbfzx5oXcc3k2pjE29HCWQG6T0kYhhBBCTHRaw2c/C93dPl/O6DTiRaj9WWhoKAUFBQDcfPPNPPLII9xzzz3991ut1lEt1uz0+OOPn/f+bdu2ERERwfLlywG48847R30Md+nr6/OqeHzV03vO8P3nDpMUHcxTn1lOTnLUuPY3MymCydEhbC2p5aNLvG9RdyGEEEIIj3nqKXjlFXj4YZgxw+hoXMK3Rs4efPDcNQq2brXf7iKXXHIJx48fZ9u2baxevZqPf/zjzJkzB6vVyje+8Q0WL17M3Llz+dOf/gTYGzzcfffd5OXlcc0111Bb+/6IxqpVq3Auuv2///2PhQsXMm/ePNauXUtZWRmPPPIIv/rVr5g/fz5vv/32WaNbBQUFLFu2jLlz5/LBD36Qpqam/n1+61vfYsmSJcycOZO333571M/xfPv+7ne/y8qVK/n1r3/dH09lZSXz58/v/zKbzZw6dYpTp06xdu1a5s6dy9q1azl9+jRgHz380pe+xPLly8nIyOgfSZxIeq027n/xCN989iD56bG8+IWLx52YASilWJ2TyDvH6unus7ogUiGEEEIIH1RRYS9nvOQS+OIXjY7GZXwrOVu8+OxF5LZutf+8eLFLdt/X18drr73GnDlzANi1axc/+clPKCws5M9//jPR0dHs3r2b3bt389hjj1FaWspzzz1HSUkJhw4d4rHHHjurTNGprq6OO+64g//85z8cOHCAZ555hvT0dO68806++tWvUlBQwCWXXHLWNp/85Cf5+c9/zsGDB5kzZw4//OEPz4pz165dPPzww2fdPtCJEyfOSqgeeeSREe27ubmZN998k6997Wv9t02ePJmCggIKCgq44447+PCHP8y0adO4++67+eQnP8nBgwe5+eab+dKAOt+qqireeecdXn75Zb797W+P8kz4tsaOHj755138ZXsZn14xnac+vYTY8CCX7X91diIdPVb2lDW5bJ9CCCGEED5Da7jjDujpgSeeAJNvpTTn411ljV/5CjjKC4c1eTJccQWkpEBVFeTmwg9/aP8ayvz59qHO8+jq6mL+/PmAfeTsM5/5DNu3b2fJkiVMnz4dgI0bN3Lw4MH+UaCWlhaOHTvGW2+9xcc+9jHMZjOTJ09mzZo15+x/x44dXHrppf37mjTp/GtUtbS00NzczMqVKwG49dZbufHGG/vv/9CHPgTAokWLKCsrG3IfmZmZ/aWa8P4i0hfa90033TRsXO+++y6PP/54/2jde++9x3//+18AbrnlFr75zW/2P/aGG27AZDKRl5dHTU3NeZ+vPymqauWOp/ZQ29bNQzfO4yOLUl1+jOVZcQQFmNhaXMuKrHiX718IIYQQwqv95S/w2mvw619DVpbR0biUdyVnIxEba0/MTp+GqVPtP4/TwDlnA4WHh/d/r7Xmt7/9LVdcccVZj3n11VdR6vzNHbTWF3zMaAQHBwP2RiZ9fX0u2y+c/ZwHqqqq4jOf+QwvvvgiERFDt38f+BydMYL9+U8EHd193PbkLgCe/txFzE+LcctxwoICWJYRxxsltXz/2jy3HEMIIYQQwiuVl9sHdC69FO6+2+hoXM67xgAffhi2bTv/1333QWcn3Huv/d/77jv/4y8wajZSV1xxBX/84x/p7e0F4OjRo3R0dHDppZfyr3/9C6vVSlVVFVsHz4kDLrroIt58801KS0sBaGxsBCAyMpK2trZzHh8dHU1sbGz/CNXf/va3/pGu8RrLvnt7e1m/fj0///nPmTlg7Yjly5fzr3/9C4ANGzZw8cUXuyRGX/X7rcepae3mDzcvclti5rQ6O4GTdR2cauhw63GEEEIIIbyGs5yxr8/vyhmdfGvkzDnH7OmnYfVq+9fAn93o9ttvp6ysjIULF6K1JiEhgeeff54PfvCDvPHGG8yZM4eZM2cOmegkJCTw6KOP8qEPfQibzUZiYiKbNm3iuuuu4yMf+QgvvPACv/3tb8/a5q9//St33nknnZ2dZGRk8OSTT7rsuYx239u3b2f37t3cd9993HfffYB9xPA3v/kNn/70p/nFL35BQkKCS2P0NacaOnj87VI+tGAKi6aNfzT3QlZnJ/LDlwrZVlLHrcuHHu0UQgghhPArTz4J//sf/Pa3kJlpdDRuoTxZcpafn6+d3QudioqKyM3NHdkOHnzQ3vxjYCK2dSvs3g0D5jsJ4TSq369xuOOpPbx7vJ6tX19FUlSI248HsOahbaRNCuOvn17ikeMJIYQQQhjmzBmYPRsWLoQtW3x61EwptVdrnT/Ufb41cjZUAuYcQRPCIG8drWNTYQ3fvDLbY4kZwKrsRP6+8xRdPVZCg3x/0UUhhBBCiCE5yxmtVvjzn306MbsQ/31mQnhAr9XGj14uZFpcGJ+5eLpHj706J4GePhvvnaz36HGFEEIIITzqz3+G11+3V9FlZBgdjVtJcibEODz13imO17Zz7zV5BAd4dvRqyfRJhAWZeaO49sIPFkIIIYTwRadPwz332Cvl7rzT6GjcziuSs4nSal14lrt/r+rbu3l401EunZnA2txEtx5rKMEBZlZkxbO1uE5eQ0IIIYTwP1rD7beDzeb35YxOhj/DkJAQGhoa5MOlcCmtNQ0NDYSEuG8O2EOvl9DVa+UH1+a5dB270VidnUhFcxfHa9sNOb4Qwj0svVb5uyiEEI8/Dps2wS9+AdM9O33EKIY3BElNTaW8vJy6ujqjQxF+JiQkhNTUVLfs+1B5C//ec4bPrJhOVuLQi3J7wuqcBADeKK5lRlKkYXEIIVzH0mvlov/bwtcuz+YTy6YZHY4QQhjj1Cl7OeOaNfC5zxkdjccYnpwFBgYyfYJkwsI/aK25/6UjxIUH8aV1MwyNJSU6lJzkSLaW1PK5lf653ocQE01xdRtNnb28dbROkjMhxMTkLGeECVPO6DRxnqkQLvJCQSV7TzXxjSuyiQoJNDocVucksqesiVZLr9GhCCFcoLCyFYD9Z5qltFEIMTE9+ihs3gwPPQTp6UZH41GSnAkxCh3dffzfa0XMTY3mxkVpRocDwJqcRPpsmneOSUt9IfzBkcoWAOrauqlssRgcjRBCeFhZGXz967BuHXz2s0ZH43GSnAkxCn/Ydpya1m7uu24WJpMxTUAGW5AWQ1RIAFulpb4QfqGwqpWYMPuo/P7TTQZHI4QQHuQsZ1TK3gzEoIZrRpLkTIgROtXQwWNvlfLBBVNYNC3W6HD6BZhNXDozgW1H67DZpARKCF9mtWmKq9q4bu5kggNMFJxuNjokIYTwnD/9CbZssZczTpuYc24lORNihB54pYgAs+LbV+UYHco51uQkUtfWzRHHXBUhhG8qre+gq9fKvLQYZk+JZv+ZZqNDEkIIzygttZczXnYZ3HGH0dEYRpIzIUbgraN1bCqs4e41WSRFuW/ttLG6dGYCSsHWEiltFMKXOeeb5aVEsSAthkMVLfT02QyOSggh3OTBB2HrVvsi05/5jL0r46c/bV/XbIKS5EyIC+i12vjRy4VMiwvjMxd757IP8RHBzE2N8bvkzGrTvH6kWso1xYRRWNVKkNlEVmIEC6bG0tNno6hKRsSF97nvhcNsKaoxOgzh6xYvhvXr7euZbd1qbwDyxS/ab5+gJDkT4gKeeu8Ux2vb+f41eQQHmI0OZ1hrshMpONNMQ3u30aG4zFtH6/jc3/byyqEqo0MRwiMKK1uZkRRBUICJBVNjACiQ0kbhZWpaLfz1vVM8u7fc6FCEr1u9Gr7wBfj1ryEjA/76V3j6afvtE5QkZ0KcR317Nw9vPsqlMxNYl5todDjntTonAa3hrWN1RofiMoWOEYPXDktyJvyf1prCylbyUqIASIkOITEyWDo2Cq+z42QDACXVbQZHInya1vCzn8EPfwipqXDyJNx114ROzECSMyHO66HXS+jqsfKDa/NQXt7OdfbkaOIjgtla7D/JWbHjD/8bxbV09vQZHI0Q7lXb1k1DRw+zJtuTM6UUC6bGSFMQ4XV2nGwEoKyhA0uv1eBohE/q6bG3zP/Od2DtWrBY4N574Y9/tJc3TmCSnAkxjEPlLfx7zxluXZ5OVmKE0eFckMmkWJWdwJtH6+iz+kcDgZLqVuIjgrH02thW4j9JpxBD6W8GMjm6/7YFU2M51dDpV+XKwvftLG0gJNCETcOxmnajwxG+pqkJrroKnngCbrkFDhywlzL+6Ef2f9evn9AJmiRnQgxBa80PXzrCpLAgvrR2htHhjNjq7ERaunr9Yo5Kd5+VE3UdfGRRKnHhQbwq886Enyt0LIWRmxLZf9uCtBgADpQ3GxCREOeqbbVwsq6DG+ZPAaC4WhrWiFE4eRKWL4e334annoLZs8+eY7Z6tf3n3buNjdNAAUYHIIQ3evFAJXtONfHzD88hOjTQ6HBG7OIZ8ZhNiq0lteSnTzI6nHE5UduB1aaZNTmK1tnJPL+/AkuvlZBA723KIsR4FFa1Mi0ujMiQ999z5qRGYzYp9p9uZk1OkoHRCWG3s9Re0njT4jSe218h887EyL33Hlx/PVitsHkzXHrp0I9bvXpCzzuTkTMhBuno7uOnrxYxZ0o0Ny5KMzqcUYkODSR/Wixv+MG8s5Ia+9XYnORIrpmTQmePVUobhV87MqAZiFNYUADZSZHsP91sTFBCDLLjZAMRwQHMmRLNjKQISmokORMj8O9/2xOu6GjYsWP4xExIcibEYH/Ydpya1m7u/0AeJpN3NwEZyuqcRIqqWqlusRgdyrgUV7cRZDaRHh/O0umTiA0LlK6Nwm+1WXo51dDZ3wxkoAVTYzhwplnW+xNeYcfJBhanxxJgNpGdFNXfuEmIIWkNP/kJfPSjsGSJPTGb4TvTRYwgyZkQA5xq6OCxt0r54IIpLJrmm2WBq7PtLf+3+fiC1MVVbWQmRhBoNhFgNnHFrGS2FNVKZzDhl4qq7B9w84ZIzuanxdDW3ceJOmm8IIxV19bNiboOlmbEAfbKhrq2bho7egyOTHilnh741Kfg+9+HT3wCNm2CuDijo/J6kpwJMcADrxQRYFZ8+6oco0MZs5lJEUyJCeWNYt9Ozkqq28hNfr8xwlVzUmjv7uPtY/UGRiWEexQ6OjXOGtCp0WnB1FgAKW0UhttZal/fbJkzOXM0r5GmIOIcjY1wxRX2RaXvv9/e/CM42OiofIIkZ0I4vH2sjk2FNXxhdRZJUSFGhzNmStlb6r97vJ7uPt8cZWru7KG61UL2gORseWYc0aGBvCZdG4UfKqxqJS48iMTIcz+8ZMSHExUSwP4zshi1MNaOkw2EB5mZ7Rjhdb5HS1MQcZYTJ+Cii2D7dvj73+G++8DL14r1JpKcCQH0Wm388KVCpk4K4zMXTzc6nHFbnZ1IR4+VPWW++WHOOYdhYHIWaDZxeV4Sm4pqfDbpFGI4RypbyZscNeRi9yaTYv7UWBk5E4bbebKR/PRJBJjtHx8TIoKZFB4kyZl43zvvwNKl0NBg78h4881GR+RzJDkTAnjqvVMcr23n3mvz/KJV+/KsOIICTGz10dJG5x/6nOSz599cPSeFNksf7x6X0kbhP3r6bByraR9yvpnT/LQYjta00d7d58HIhHhffXs3x2rb+0sawV6pkZ0UKU1BhN0//gFr19rnle3YAZdcYnREPkmSMzHhNbR38/Dmo1wyI551uYlGh+MSYUEBLMuI4w0fbQpSXN1GTFggSVFnl3ityIonMiSAVw9VGxSZEK53vLadHqvtnDb6Ay2YGoNNw0FZjFoYZJdjfbOlGWc3y8pOjuRoTZt0E53ItIYf/cg+SnbRRfb1zLKyjI7KZ0lyJia8hzaW0NVj5b7r8oYsKfJVq7MTOFnXwamGDqNDGbWS6laykyLPOR9BASYuy0ti45FqevpsBkUnhGsVVtmbKQzVDMRpfmoMIE1BhHF2nGwgLMjMnCln/57mJEfS2WPlTFOnQZEJQ3V3w6232ueVffKTsHEjTPLNbtfeQpIzMaEdrmjhX7vPcOvydLISIy+8gQ95v6W+by3cbLNpSqrbyEke+nxcPTuFVksf209IaaPwD0cqWwgNNDM9PnzYx8SGB5ERH07BmWbPBSbEADtONpCfPolA89kfHZ1zg6W0cQJqaIDLL4e//Q1+/GP4y18gKMjoqHyeJGdiwtJac/+LR5gUFsSX1vrfgojp8eFkxIf7XEv9iuYuOnqsZCcPXeJ1ycx4IoIDeE1KG4WfKKxsJSclEvMFFr2fnxbD/tPNaC3lY8KzGtq7OVrTztLp546IzEySjo0TxoMPwtat9u+PHXu/hPFjH7OvZeZH1UdGkuRMTFgvHqhkz6kmvnFFNtGhgUaH4xarshN572QDXT2+093QefXVuX7OYMEBZtblJvJ6YTW9ViltFL5Na01hVet555s5LZgaQ317N+VNXR6ITIxES2ev0SF4hHO+2cBmIE7hwQFMnRQmydlEsHgxrF8PDz8My5ZBTQ2Eh8MddxgdmV+R5ExMWP9v41FmT4nixvw0o0Nxm9U5CfT02XjvpO+UAJY4FjN1Xo0dylVzUmju7GXHyQZPhSWEW5Q3ddFm6Ttvp0an/sWopbTRcFprfvRSIYt/spnSet+b1ztaO0sbCQ00Mzd16HmR2cmRshC1P7NaYedO2LbNPp/sq1+1j5KZzfDf/8Lq1UZH6FcumJwppdKUUluVUkVKqSNKqS87br9fKVWhlCpwfF3t/nCFcA1Lr5XTjZ1cOSv5gqVEvmzJ9EmEBZl9qrSxqLqNtEmhRAQHDPuYlTMTCA8yS9dG4fOOVF64GYhTdnIkIYEmCqQpiOH++OYJnni3lB6rjTd9tCvuaNjnm8WeM9/MKSc5krKGTiy9vlOlIS6gocHeGv8Tn4CkJPtI2QMPQEKCPRlraIC775bEzA1GMnLWB3xNa50LLAO+oJTKc9z3K631fMfXq26LUggXq26xAJAcHWpwJO4VHGBmRVY8W4vrfGaeir0ZyPlHEUICzazJtXdt7JPSRuHDCitbMCnIPs9IsVOg2cScKdHsP+Obi8v7i6d3n+HB/5Vw/fzJTJ0Uxrsn/HsEv7Gjh+LqtiFLGp2ykyOx2jTHa9s9GJlwKZsN9u61N/ZYvhwSE+2t8V9/Ha6+Gv75T6irs99/6BDcey/88Y/vz0ETLnPB5ExrXaW13uf4vg0oAqa4OzAh3KnKkZylRIcYHIn7rc5OpKK5yyf+aHb3WSmt7xi2U+NAV89OpqGjp38uhBC+qLCqlcyECEKDzCN6/IKpsRypaKW7T0YojLCpsIZv//cgl85M4BcfmceKrDh2nGjw64tE/eubDdEMxMn5ni3zznxMczM88wx86lMweTLk59tb4lut8IMf2EsZa2rgqafgox+FAwfsc86eftq+rtnTT9t/lgTNpUY150wplQ4sAHY6brpbKXVQKfWEUip2mG0+q5Tao5TaU1fnWy29hf+qbrVPqE+eCMlZTgKAT5Q2Hq9tx2rT/a2Zz2dVdiKhgWZePVzlgciEcI/CytYRzTdzWpAWQ4/VRlGVfAj2tF2ljdz9j33MSY3hjzcvJCjAxPLMeNq6+zhU0WJ0eG6z42QDIYEm5jrW2htKelw4QQEmSmrk99IrDOyq6LR1K/z853DwIPzsZ3DppRAfb0+uXnjBXp741FNQXW1Pyu67D5YsAdOAVGH3bntC5ixlXL3a/vPu3Z57bhPAiJMzpVQE8B/gK1rrVuCPQCYwH6gC/t9Q22mtH9Va52ut8xMSEsYfsRAuUN3SDUBylP8nZynRoeQkR7LVB+ZFFDs+cI5k5Cw0yMyanET+d7gGq803SjaFGKipo4fKFsuIOjU6zZ8aA8D+01La6EnF1a185q+7mRIbypO3LSbcMSd2eaa91G+7H5c27ixtZNG0WIIChv/IGGA2kZUQIWudjcVwidSDD459n86uilu3QlubfZTr6qvhoYdg3jz4znegvR2+9S145x2orbWXLd5yi72ccTjf/Oa5c8xWr7bfLlxm+Bn3AyilArEnZhu01v8F0FrXDLj/MeBlt0QohBtUt3QRGRLQ/wfW363OSeSxt07SauklKsR7lw0oqWkjKMBEetzwi/EOdNWcZF45VMXussbzzocQwhsVVo28GYhTSnQoyVEh7D/dzKdWuCsyMdCZxk4++eddhAcF8NSnlzAp/P1FduMigslNieLd4/V8YXWWgVG6R3NnD8XVrdyzbuYFH5uTHMm7J3ynM7DXcCZSGzbAggWweTN84Qv25htvvAEdHWd/tbefe9tQ9/X1wZo17x8nNBRWrrQnaVdeaS9jFF7pgp9MlVIK+DNQpLX+5YDbU7TWznqiDwKH3ROiEK5X1WKZEPPNnNbkJPLHbSd451g9V89JMTqcYRVXtzEjMYKAYTqCDbY6O5HgABOvHaqS5Ez4nCOV9lK40ZQ1gn29M2kK4hkN7d3c+sQuLL1WnrlzOamxYec8ZkVmHE/tOIWl10pI4MjmDvqKnaWNaA3LMi/8/pqdHMl/91fQ3NlDTFjQBR8vHJylgR/4gD25cvrCF4bfxmSyry8WHg4REe9/HxUFKSnv/3zggL1E8ZZb4M9/hkDvvTgr3jeSYYMVwC3AIaVUgeO27wIfU0rNBzRQBnzODfEJ4RbVrRa/79Q40IK0GKJCAthaXOvVyVlJdSsrsuJH/Pjw4ABWZyfy2uFq7rtuFiY/XhZB+J/CylZSokPOGokZiQVTY3jtcDX17d3ERwS7KTrR0d3Hp/+ym4rmLv5++9Jh58KuyIrn8XdK2XuqaVTvX75g58lGggNMw65vNpDz/+dCnR3FEFavtresf+QRuO46+/fOBGtwAhYeDsHB9nXGzmfrVvsaZM6uiu+8I23vfcQFkzOt9TvAUL8B0jpf+KyqFgu5F2jX7k8CzCYunZnAtqN12GzaK5OYpo4ealq7RzTfbKCr5iTzvyPV7D3dxOL04buJCffp6bPR1WMlOkyuyo5GYVXrqOabOc1Ps/ffKjjdzLq8JFeHJbD/Tt/5970crmzlT59YdN73liXTJxFgUrx7vN7vkrMdJxtYNC2W4IALjwg6l0ApkeRs9LZuhWeffT+R+upXx5dIbd36flfF1avtXwN/Fl5tVN0ahfAHPX026tu7J0SnxoHW5CRS19bdv+itt3FOJL/QGmeDrc1NIijAxKuHpGujUR78XzH5P9nE/S8eobGjx+hwfIKl18qJug5mjbKkEWDOlGjMJiWljW5is2m+/swB3j5Wz/99aM4FE+Dw4ADmp8Xw7nH/mm/V0tlLUXUrS6ePLNFKigomJixQmoKM1sBEylXt6aWrok+T5ExMOLVtFrSeGGucDXTpzASUwmu7NpZU25PG0Y6cRQQHsHJmAv87XI1NujZ6nNaaVw5VERMWxFPvlbHywa38futxunpkHa7zKaluw2rTo55vBvZOpbkpkew/3ez6wCY4rTU/ermQFw9U8q0rc1ifnzai7ZZnxXOoooWWrl43R+g5u8oc880yRlaRoJQiOymy/71cjJA7EinpqujTJDkTE061YwHqiTZyFh8RzNzUGO9NzmraiA0LJCFy9HNorp6TTFWLhf1nml0fmIF+8MJhnny31OgwzquwqpWqFgvfuCKb179yKUsz4vjF6yWsfmgbT+8+I8scDMM5gp2XMvJOjQMtSIvlYHmL/P+62B+2neAv28v4zMXTuXNlxoi3uzgrHpu2lwH6ix0nGwgOMDEvLWbE2+QkR3K0pl0ulI2GJFJiEEnOxIRT5UjOUiZQQxCnNdmJFJxppqG92+hQzlFU1UZ2ciTqQpOch7A2N4kgs71ro7/o7OnjHztP89hbJ9Haez/obCmqRSl758wZSZE8fms+//7sMpKiQ/jmfw5y1a/f4o3iGq9+DkYorGohMjiAtEljex+anxZDe3cfx2vbL/xgMSL/3n2aX7xewg3zJ/O9q3NH9V40Py2G0EAz2/2otHFnaQMLpsaMqgNldnIU7d19VDR3uTEyIfybJGdiwpmoI2cAq3MS0BreOlZndChnsdk0R2vaRj3fzCkqJJBLZsTz2uFqv0kCCk4302fTVLZYvHaeIMCW4lrmpcacNeK5NCOO5z+/nD/cvJCePhuf/ssePvbYDg742cjmeBypbCV3ctSYLkaAvWMjyGLUrrLxSDXf+e8hLp2ZwIMfmTfqpklBASaWTJ/Eu36yGHVLVy9HKltH3dhjYMdGIcTYSHImJpyqFgthQWaiQibGAtQDzZ4cTXxEMFuLvSs5K2/qorPHOur5ZgNdNSeFiuYuDpa3uDAy4+wqa0Qpe7fkTYU1RoczpNo2CwfONLM2J/Gc+5RSXD0nhU33rORH18/iWE071//+Xe7+xz5ONXQYEK33sNo0xVVtY2oG4jQ9Ppzo0ECZd+YCu0ob+eI/9zMnNYY/3ryQoICxfTRakRXH8dp2alotLo7Q83Y71jcbaTMQJ2dyJvPOhBg7Sc7EhFPd2kVydMiYr1j7MpNJsSo7gTeP1tFntRkdTr8ixx/y4dYRGonLcpMINCu/6dq4q7SR3OQo8qfFstFLk7NtjiR/be7w3ewCzSY+eVE6276xii+uyWJLUS3rfvkm9794xCvLaz2hrKGDrl7rmNroOymlWDA1hgIZjRyXoqpWPvPX3UyJDeXJ2xYTHjz2i3bLM+1t9Lef8P3Sxp2lDQQFmPpHaEcqIjiA1NhQGTkTYhwkORMTTlWLZcJ1ahxodXYiLV29XvWhrsTxh3xm0tiTs+iwQFZkxfPq4SqfL23stdrYf7qZJdMncVleEkVVrZxp7DQ6rHNsLqphcnQIuSkXPm+RIYF87fJstn1jFR9ZlGrv7PiLbROys2N/M5BxjJyBfZ7T0do22iz+0yHQk840dnLrE7sIDwrgb59ZOurFwAfLS4kiNiyQd475fmnjjpONLEgb3Xwzp5zkyP73dCHE6ElyJiacmhYLyVETrxmI08Uz4jGblFd1bSypbmNaXNi4rloDXD07hTONXV49R2skDle00NVrdSRnyYA9EfImll4rbx+rZ01u4qhGoZOiQvi/D83l9a9cyjJHZ8dVD22dUJ0dCytbCTQrZiSO/WIEwIKpsWiN35TyelJDezeffGIXll4rT31mCVNixv83wWRSXJQZx/YT9T59gajV0suRyhaWjnEh6ezkSE7Wd9DdN7EuugjhKpKciQnFatPUtHVP6JGz6NBA8qfF8oYXzTsrrm4lexyjZk6X5SVhNile8fHSxt1ljQAsTp/E9PhwshIjvG7e2Y6TDXT1Ws9b0ng+zs6OT3/uIlKiQydUZ8cjlS3MSIwc89wmp/mpMQBeNQruC9q7+/jUX3ZT2dzFE7ctHteI/WDLM+OparFQWu+78yr3lDViG8X6ZoNlJ0dhtWlO1Pru/4EQRpLkTEwo9e3dWG2apAmcnAGszE6gqKqVujbj5/xYeq2U1neMqxmIU2x4EMsz43jtkG+XNu4qbWJ6fHh/B8TL8pLYWdpIS6f3lK9tKaolNNDMRWO8uu60ZPoknhvU2fGjj/pvZ0etNYWVreNqBuIUHRZIRkK4dGwchZ4+G3f+bS9HKlv5w80LyU8fWwIynIuz7PPOfLlr446TjQSZTSycGjum7Z3v5SU1vl3BIIRRJDkTE0r/GmdREzs5W+GYuP6eFyyYery2HZu2X211havnpFDW0ElRlW/OebDZNLvLGlmc/v4Ho8vykrDatNeUomqteaO4lotnxI9pTspggzs7Hq+1d3a85+kCvyt1rGvrpqGjZ9zzzZwWpMWy/3SzT1+M8BSbTfO1Zw7wzvF6fvahOWMe9T2faXFhTIkJ9en1znaebGD+GOebgb2TaKBZSVMQIcZIkjMxoVS32BfGnIhrnA00e0o0kSEBvOcFXcWcf8BzRtBUYiQuz0vCpPDZro3Hattp6eplyYAW1vMd64h5S2ljcXUbFc1dQ7bQH4+BnR1vW57Of/dVeN2afOPV3wxkHJ0aB1owNYaGjh7ONMqiv+ejteZHLxfy0oFKvn1VDjfmp7nlOEoplmfG8d7JBmw+eGGhzdLLoYqWMZc0gv11nJkQIU1BhBijibfQk5jQ+kfOJnhyZjYplmXEsd0LSm9KqlsJDjCRHhfukv3FRQSzLCOOVw9V8bXLZ/rckgm7HPPNlgwotzKZFOtyk3ixoILuPivBAeMfrRqPN4rtI3hrXJycOUWGBPLdq3N5+WAlG3acZnW2e45jhMIqe3KW66qRM+di1GeamBoX5pJ9Gqmrx8rbx+o4WtNGj1XTa7XRZ7XRa9X0WG309tnoHfDzWfc5v/rs2/Xa3v++p89GW3cft188nc9dmuHW57AiK55n9pZTWNXK7CnRbj2Wq+051YRNM+ZmIE45yZHsLG10UVRCTCySnIkJpbrFQpDZNO6Wyf5geWYcmwprKG/qJDXWuA91xdVtzEiKwGxyXRJ19ZwUvv/8YY7WtI9r7TQj7C5tJCkqmLRJZ3ePuzwviX/uOs32Ew2GJyubi2qYlxpNohvLg4MCTKzPT+ORN09Q2dzFZBd00/MGRypbmDopjKiQQJfsLzspktBAM/tPN3P9/Cku2aenNXb0sKWoho2FNbx9rA5L7/trMAaaFYFmEwEmRVCAiUCz88t++/u3KSKCA86+z/nYAPvP6XHh3LJsmtsv2CzPtCc27xyv97nkbMfJBgLNaszzzZyyk6N4vqCSls5eosNc87suxEQhyZmYUKpaLBN2AerB3l8wtYH1+cYmZytnJrh0n1fMSubeFw7zyqEqn0rOtNbsKm1kcfqkc35HL8qMIyzIzKbCGkOTs/r2bgrONPOVtTPdfqyPLZnKH988wb92n+Gey9x/PE9wVTMQpwCziTmp0ez3sQYqZxo72VhYw8Yj1ex2dAdMiQ7hpvw0LstLJj89luAAk0++VydGhTAjMYJ3j9dz58pMo8MZlR0nG5mfFkNo0PhG599vCtLGkumubboihL+TOWdiQql2JGcCZiZFEBcexHsGljY2dvRQ19btkk6NAyVEBrMkfRKv+di8s/KmLqpbLSwd4sNMSKCZlTMT2FxYY+hclq3FtWgNa3PdnyCmTQpj5cwE/rXrNL1W24U38HLt3X2UNXS6bL6Z04KpMRRWtmDp9d51pbTWHK5o4ZebjnLlw29xyYNb+fHLhbR09XL36ixeuvtitn97DT+8fnZ/oxlfTMycVmTFs7us0afW+mrv7uNwRQtLp4+vpBHovyhWUi0dG4UYLUnOxIRS1do14eebOSll/IKpxY4/3O4Y3bpmbgrHats5VuM7k9J3OeZoLB7mSvNleUnUtnVzsMK4RYe3FNWSHBXi0tGf87l56TRq27rZUuQdnSrHo8gx32zWFBcnZ2mx9Fp1/3w2b9FrtbH9eD33v3iEi3++lWt/+w6/e+MYUSGBfP+aXN78xir+95VLuefybOakRvt0MjbYiqx4LL029p9uNjqUEdtT1ojVplk2zvlmYB8FjQwJkI6NQoyBlDWKCcNm09S0dMvI2QArsuJ5+WAVJ+s7yEyI8Pjxix3t7t2RnF0xK5n7XjzCq4eq+bILF5l1p91ljUSHBjIzceh41+QkYjYpNhVWMz8txrPBAd199mYN1y+Y4rEP0quzE0iJDmHDzlNcOTvZI8d0l8L+To2unYfU3xTkdPO45wqNV0d3H28drWNjYQ1vFNfS0tVLcICJS2Yk8OV1M1ibk0hcRLChMXrC0oxJmBRsP17vkmTHE3acbCTApFg4LWbc+1JKkZscJR0bhRgDSc7EhNHY2UOP1Tbh1zgbyDlxffvxekOSs5LqNuLCg0hww4e1pKgQ8qfF8trhKr68bobL9+8Ou8oayZ8Wi2mY5igxYUEsSZ/ExiM1fOOKHA9HBztPNtLRY2WdB0oanQLMJj66eCq/2nyUUw0dTHNRV08jHKlsYVJ4EElRrv19T4oKYXJ0iGMx6uku3fdI1Ld32xt6HKnh7eP19PTZiAkLZF1uEpfPSuKSGfGEBU2sjxtRIYHMTY3h3RMN3GN0MCO0s7SBeWkxLjtX2cmRPF9Qgdbar0ZFhXA3KWsUE0a1o41+crR/dH1zhamTHAumGjTvrLimjezkSLf94b56TgrF1W2cqGt3y/5dqa6tm5N1HcOWNDpdlpfEsdp2yuo7PBTZ+7YU1RASaOpvJuMpNy1Ow2xS/GPXaY8e19UKq+zNQNzx+75gaiwFBjQF+dFLhSz+yWa+9Z9DlNS08Yml0/jXZ5ex53vr+H/r53HFrOQJl5g5rciKo+BMM22WXqNDuaCO7j4Olo9vfbPBspMjabP0Uen42yuEGBlJzsSEIWucncs578yIBVNtNs3R6ja3dlN0lsH5QmOQPc71zUaQnAEeX5Baa82W4louzrI3a/Ck5OgQLstN4pk95T7VYGGgXquNo9XtLm8G4rRgagzlTV3Utnnug/Ch8haeeLeU6+ZO5tUvXcLb31zND67LY1lGHAFm+XixIjMeq033zyX1ZntPNWG1aZc0A3FyNnoq9rK5kEJ4O3n3FBNGdaskZ0NZkRVHc2cvRR7uqnW6sZOuXqvLOzUOlBIdysKpMbx6qNptx3CVXWWNhASamD35/POR0iaFkZMc6fHk7GhNO+VNXazJSfLocZ1uXjaVxo4e/nfY+8/lUI7XttNjtZHnpkYqzjmIBR5sQPHg68XEhgXywAdnk+emEUFftnCafTmAd48b1xF3pHacbCDApFg0zXVzFmc6kzOZdybEqEhyJiaM6pYuAkxqQkxGH42LMuwlap5uqe/8g52T7N6uf1fPSaGwqtWQMsDR2F3WyIK0WIICLvy2fHleEntONdLY0eOByOy2FNuTwTU5xqyxtiIznmlxYWzY4Zuljc5mIO7qcjl7SjQBJuWx9c62H6/n7WP1fGF1lssW1PY3IYFm8tNj2X6i3uhQLmjHyQbmpEYTHuy6EtSokECmxIRKUxAhRkmSMzFhVLVYSIoKwTxMs4WJKjk6hIyEcN497tkPECXVbSgFM93cSfGqOSkAvHrYe0sb2yy9FFa2XnC+mdPls5KxafscME/ZUlTL7ClRhnU7NZkUH18ylV1ljRz1oeURnI5UthISaGJ6vHsa74QEmsmbHOWRkTOtNT9/vYSU6BA+sWya24/ny1ZkxVNc3UZ9e7fRoQyrs8c538z1XSWzkyMlORNilCQ5ExNGdYvF5V3S/MXyzDh2lTZ6dKHfkppWpk0KIzTIvfOXpsSEMi8thte8uLRx76kmbBqWpI8sOZs1OYrJ0SFs9FBpY0N7N/tON7HWoJJGp48sSiXIbOIfO31v9KywqoWc5Ci3XhyanxbDgfJmrG6eP/r6kRoOnGnmq+tmenz+oa9Z4WieY1TTpZHYe6qJPhetbzZYdnIkJ+ra6enz/UXkhfAUSc7EhFHdYiFFOjUOaXlmPB09Vg6We25x4+Iq9zYDGejq2ckcqmjhTGOnR443WrvLRre+kFKKdXlJvH2sjq4e9zfI2FZSh9awLtfY5CwuIpir5iTzn33ldPb0GRrLaGitKaxsddt8M6cFU2Po7LG6dWTRatM8tLGEzIRwPrRwituO4y9mT4kmKiSA7R6uTBiNnScbMbt4vplTTnIkfTbNyXrv75grhLeQ5ExMCFprqlossgD1MC5yXDF9z0NzIyy9VsoaOtw+38zpamdpo5d2bdxd2sSsKdGjajl+WV4Sll4b73jgQ9+W4hoSI4PdNl9qNG5eOo02Sx8vH/DOczmU8qYuWi19bv//W5Bm/3C9342ljf/dV87x2na+fnm2dGQcAbNJsSwjjne9eN7ZjpMNzJkSTYQL55s5OS/ASWmjECMn76xiQmjt6qOr1yqdGocRGx5EXkqUx7qKHatpx6Zxa6fGgdImhTFnSjSvemGnP0uvlYLyZpakj+6q9dLpcUQGB7Cp0L3PqafPxltH61mbmzjs4tietDg9lhmJEWzYecroUEas0NFK3F1t9J2mxYURGxZIwZkmt+zf0mvl4c3HmJsa3b9MhbiwFVnxnGns4nSD943cd/VYOVDezFIXrm82UEZ8BAEmJR0bhRgFSc7EhFDV2gUgI2fnsTwzjr2nm7D0ur9Mztm231NljQBXzUnmwJlmypu86wPSwfIWevpsLB7hfDOnoAATq3MS2VJU69Y5RrtKG2nv7jOshf5gSiluXjqVA+UtHPJgGe54HKlsxaTc35lUKcX8tBi3jZxt2HmaiuYuvnVljrTNH4UVWfbKBG8cPdt3uoleq3vmm4H9fSozIUJGzoQYBUnOxIQgC1Bf2PKsOHr6bOw75Z6r7gOVVLcREmhiWly424/ldPVse2mjt62Ttdux+PRokzOwlzY2dPSw/7T7ztmW4hqCA0xcnBXvtmOM1gcXphISaOIfu3xj9KywspWMhAi3N78BWDA1lmO17bR09bp0v22WXn6/9TgXZ8Wzwot+F3xBZkIEiZHBHu+IOxI7TjZgNiny3TDfzEk6NgoxOpKciQmh2pGcJUtDkGEtTp+E2aQ80lWspLqNmUmRHl3WID0+nLyUKK+bd7artJGZSRHEhgeNettV2QkEmpXbujZqrdlSVMuKrHiPJBYjFR0ayAfmTeaFgkpaLa5NQtyhsLLF7SWNTgumxgBwsLzZpft9/O1SGjt6+MYV2S7d70SglOLirHjeO9GAzc2dNEdr58lGZk+OItKNa9VlJ0dS0dxl2Gv1RF07LxRUcKqhA6296/9fiKFIciYmhKoWC0pBYqS00h9OZEgg81KjPbJganF1G9luXt9sKFfPSWbf6WaqWro8fuyhWG2avaeaxjRqBvZztiwjjk2FNW750HG8tp3TjZ2GLTx9PjcvnUZnj5UX9lcYHcp5NXX0UNli8VgzlXlpMSiFS9c7a2jv5vG3T3LV7GTmpcW4bL8TyfKseBo6eijxojX6unqsFJxpdltJo5NzbvFRg0bPvv7MAb78rwJW/mIbi3+yhc/9bQ+PvXWSvaea6O5zfxm/EKMlyZmYEKpbukiICCZQuoud1/LMeA6Ut9Dmxiuc9e3d1Ld3e3S+mZOza6O3lDYWVbXS3t3HkhEuPj2Uy/OSKK3v4ESd61tVbymuBWBtrvclZ3NTo5k9JYoNO0979dXwImczEA8lZ1EhgWQmRLD/TLPL9vn7rSfo6rXytctl1Gys+uedeVFp4/7TTfRYbW5rBuLkfK83oinIqYYO9p9u5lMr0nnghtlcMiOeoqo2fvJqER/+43bm3L+Rj/xxO//3ahEbj1R79WLhYuJwfd9UIbxQVYtF5puNwPLMOH639Ti7yxrd1gDCOffAU230B8pIiCAnOZJXD1XxqRXTPX78wXaVjn2+mdO6vCTufeEIGwtryEp0bcK7paiGvJQor1wf0N4YZBrf+e8h9p1uYtE0937AHKsjlZ7p1DjQgrQYNhfZR1PH27ijvKmTv+84xY2L0shKjHBRhBNPSnQoGfHhbD/RwO2XZBgdDgA7ShsxKcgfx/vPSEyJCSUyOMCQeWcvFFQCcPslGUyJCeUTy6YBUNtmYd+pJvaeamLPqSaeeLeUP711EoD0uDAWTZvEommx5KfHkpUQ4RWdasXEIcmZmBBqWi1Mj/dc8wlftXBaLEEBJrYfb3Bbcua8epqT4vmRM4CrZqfw8Jaj1LRaSIoyNmHfXdZIamwok2PGnvykRIcyNzWaTYU1fH5Vlstia+roYe+pJu5e7bp9utoH5k3mJ68UsWHHaa9NzgqrWkmOCiEuwnMl1QumxvLM3nJON3aOu+nOw5uPgYIvr5vhougmruVZcTy3r4Jeq80rqjh2nGxwLJLtvvlmYL+QMtOApiBaa54vqGDJ9ElMGfQemxgZwpWzU7jS0SjK0mvlcEULexwJ29aSWv6zrxyAqJAAFk6LZdHUWBZNi2X+1JhRrUkpxGjJb5eYEKpaLCzPlA5jFxISaGbR1Fi3NgUpqW4lPiKIeA9+WB3omrnJ/GrzUV4+WMVnLjZu9Exrze6yRi6dkTDufV2Wm8QvNx+lts1CYqRrEs5tR2uxaVib6x0t9IcSHhzABxdM4d97znDvtXljaqribkcqWzxW0ujkbAqy/3TzuJKzYzVt/HdfOZ+5ePq4LiAIuxWZ8fx9x2kOnGl2+2jVhVh67fPNbr1omkeOl50cycsHKl0ymjtSRypbOVnXwe0XX3ikMiTQTH76pP7zorWmrKGTPWWN7DttT9i2ldQB9oXFc1Mi+eCCVEP/hgj/ZfylGyHcrL27jzZLn6xxNkIrsuIorGqlsaPHLfsvrm4zZL6ZU1ZiJHNTo3lmzxlD5yqV1ndQ397D4nHMN3O6bFYSWsOWoloXRGa3uaiWhMhg5kyJdtk+3eHjS6fS02frv8rtTSy9Vk7UdXisGYjTzKRIwoLM415i4aGNJYQFBXCXC0dkJ7KLMuNQCt497v6OuBey/3QzPX02tzcDccpNjqTV0kd1q8UjxwN4oaCCQLPi6jmjXzBdKcX0+HBuzE/j/z40l41fXcmBH1zOk59azF0rM9Eafvxyodetmyn8gyRnwu9Vyxpno3KRY4Rxx0nXf4Cw2jRHa9oMmW820Pr8NIqr2zho4CLGrphv5pSdFEnapFA2HnFNo5Neq423SupYk53o9XMtclOiWDQt1isbg5RUt2G1aY/ONwP7lf25qdHjagqy/3QTrx+p4bOXZjDJC0ckfVFMWBCzJ0d7xWLUO042oDww38wp2/GeX1zlmdJGq03z4oFKVs5MJCbMNb+/0WGBrM5O5OtXZPObjy0A4I1i110QE8JJkjPh95zJmdHzi3zF3NRowoPMbmmpf7qxE0uvzdCRM4APzJ9MSKCJf+85Y1gMu8oaiQsPIjNh/HMhlVJclpvMuyca6OjuG/f+dpc20tbdxxov7NI4lJuXTqW0voP3PLBG32gUOjo1zprs+dHHBVNjKaxsxdI7+lbhWmt+/r9i4sKDpGzLxZZnxbH/dBOdPeN/nY7HztIGZk2OIjrUvfPNnJxLp3iqY+PO0gZqWru5fv5kt+w/MyGCjPhwNruwWkEIJ0nOhN9zrmklI2cjE2g2sWT6JLfMOyuptn9YzTE4OYsKCeTq2Sm8VFBJV48x69zsLmtkcfokl82/uCwviZ4+G28drRv3vrYU1xIUYOLiLN+Yp3n1nBRiwgLZsPO00aGcpbCylcjgAFJjPT9fa35aDH02zZHK0Y8Ov32snh0nG/nimizCg2VquiutyIyn16rZXTa+ktPxsPRa2Xe6mWXTPVPSCPZRp5TokP6/Ae72wv5KwoPMrHPjnNm1uYnsONFAuwsuiAkxkCRnwu/JyNnorciK52RdR///nasUVbWhFMxwccv3sVi/OI227j5eO1zl8WNXt1g409jlkvlmTovTY4kJC2RTYc249qO1ZktRDRdlxPnMB/OQQDM3Lkrl9SPV1HpwTsuFHKlsITclypDS0AWOxaL3j3IxaptN8+DrxaTGhvKxpVNdH9gEtzh9EkFmE9sNXO+s4Ix9vtlSD803c8pOjvTIyJml18qrh6u4YlYyoUFmtx1nbW4SPVYbb7vggpgQA0lyJvxeVauFSeFBhAS6703a31yUaf+j7erSxpLqNqbHhbv1D+ZILZ0+iWlxYfx7t+dLG3eV2eebLXHhfI8As4k1OYm8UVJLn9U25v2crO+grKGTdT5S0uj0sSVT6bNpnjawVHUgq01TXN3m8U6NTolRIUyJCR11cvbq4SoOV7Ty1XUzCQ4w/nXqb0KDzCyYGsM7BiZnO082opRr339GIjs5khN17fSO4/1pJLaV1NFm6eP6BVPcepz8abFEhwZKaaNwOUnOhN+rbrGQLKNmo5KbHEVMWKDLSxtLaozt1DiQUor1+WnsLG2krL7Do8feVdpAeJCZXBev9XZ5XhLNnb3jKpnaUmQfeVvjxS30h5KREMGKrDj+uesMVpvxjUHKGjro7LEalpyBvaV+wSiagvRabfy/jUeZmRTBDW7+YDuRrciKp7CqlSY3dcS9kB0nG8hNjiI6zDPzzZxykiPptWpK3fx++0JBBfERQazIdO/IYIDZxOrsBLaW1HrFe47wHxdMzpRSaUqprUqpIqXUEaXUlwfd/3WllFZK+cbkBDHhVLVYZL7ZKJlMiosy4njvRIPLOuB19Vgpa+jwmuQM4MMLUzEpPD7asru0iUXpkwhw8UK0l8xIICjAxMbCsXdt3FxUS05y5DmLtvqCm5dOo6K5izePGn8lu7DS2QzEuORsfloMFc1d1Iyw1PPZveWU1nfwjStyMHt5l05ftiIrDq3hPTd0xL2Q7j4r+043eayF/kDZSY6OjW4sbWy19LKluJZr5052+fvrUNbmJtHY0TPuZSuEGGgkv7l9wNe01rnAMuALSqk8sCduwGWAd83CFmKA6pYuWeNsDJZnxlHR3MXpRtes43K0pg2tjW8GMlBydAirshP5z77ycZUCjkZzZw8lNW0sSY91+b7DgwO4OCueTYU1Y0qqmzt72Huqya2T6N3psrwkEiKD2bDD+D9JhVWtBJqVofMrF0y1/46NpLTR0mvl4c1HWTg1xudKWn3N3NQYwoPMvGtAaeOBMy1099lYluH5RbAzE8Mxm5Rbm4L873A1PX02t3VpHGxldgIBJiWljcKlLpicaa2rtNb7HN+3AUWAs97hV8A3ARnPFV7J0mulqbNXRs7GYLmjU5+rFkwtcVwtNXqNs8HW56dR09rNW8c8M6l7j6Pk0BXrmw3lsrwkypu6xnR1+s2jdVht2mda6A8WaDZxU34ab5TUGr447JHKVrISIwkKMG72wKzJUQSa1YhKG/+6vYya1m6+dWWOyzqIiqEFmk0sy4hzS0fcC3Gub7bEhc2IRio4wExGfHj/3wJ3eLGgkmlxYcx3NMRxt6iQQJZmTGJz0fgaMQkx0Kj+aiil0oEFwE6l1AeACq31AXcEJoQrOLsNJkf7XomW0TLiw0mKCnZZU5Di6jZCA81MnRTmkv25ytrcROIjgjzWGGRXWSNBZhPz3PThYW1uIkoxpq6NW4pqiY8IYn5qjOsD85CPLkkDMKTRy0CFla2GljSCvYtl3uToC5ZctXT18odtJ1iVneDxDn4T1fKseErrO6ho7vLocXeWNpCTHOWyhZlHy50dG2tbLWw/Uc/18yZ79ALD2pwkjte2c6rBs3OXhf8acXKmlIoA/gN8BXup4/eAH4xgu88qpfYopfbU1Um7UeFZ1Y65FjJyNnpKKZZnxrts3llJTSszkyIMaSt+PoFmEx9cMIUtRbXUtXW7/Xi7ShuZmxrttu6hiZEhLEiLGXVy1mu1sa2kltXZiV53jkYjNTaM1dmJ/Gv3Gbd3hRtObauF+vZu8lKMHyVekBbDwfKW85btPvrWCVq6evn65dkejGxiW5FlT4I9WdrY02dj76kmlhowauaUkxxJeVOXW9YGe/FAJTYNH5jv2WY2zjJwKW0UrjKi5EwpFYg9Mdugtf4vkAlMBw4opcqAVGCfUip58LZa60e11vla6/yEhATXRS7ECLw/cibJ2VhclBlHQ0cPR2vax72v4irv6dQ42E2L0+izaZ7fX+HW43T29HG4osXtJUWX5SVzqKKFylFcld9T1kSrpY+1PlrSONDNS6dS19bN5nGu+TZWR6qMbwbitGBqDF29Vkpqhh6tqG2z8MQ7ZVw3bzKzp0R7OLqJKzspkviIII+ud3awvBlLr82QZiBO2Y6ydneUNr54oJLZU6LISoxw+b7PZ2pcGDOTIgx7vxH+ZyTdGhXwZ6BIa/1LAK31Ia11otY6XWudDpQDC7XWY28RJoQbVDmTM2mlPybLXbTeWV1bNw0dPV4338wpKzGShVNj+PeeMy7rTjmUgtPN9Nm0SxefHsplec4ruSP/sPBGcQ1BZhMXz/D9i2irshOZHB3Chp3GNAZxdmrM9YbkLM3eFGS4eWe/e+M4vVYbX7tspgejEkopLsqM510XdsS9kB2O7pBGj5yB65Ozk3XtHCxv4QYPj5o5rctNYldZIy2dvYYcX/iXkYycrQBuAdYopQocX1e7OS4hXKK6pYuokADCgwOMDsUnpcaGMS0ubNxNQd5vBuKdI2dgHz07XtvOvlEu2jsau8rsi78umub6To0DZSVGkBEfPqrSxi1FtSzNmESEH7xWzCbFx5ZM5Z3j9W5fU2kohZWtpE0KJSrEs+tIDSVtUihx4UFDdmw83dDJP3ae5qbFaaTHh3s+uAluRWYcdW3dHK8df2XCSOw42UhOciSx4cbMNwOYEhNKeJDZ5R0bXyioRCm4dq5nujQOtjY3CatNs80LlvEQvm8k3Rrf0VorrfVcrfV8x9ergx6TrrU2brl7IYZhX+NMmoGMx/LMOHaebBhXq/lixx9iby1rBLhm7mTCgsw87cZGErtKG8lNjvLIh/bL8pLYcbKBVsuFr+SerGvnZH2Hz7bQH8pNi9MwmxT/3OX50bPCqlZmpXhHiaBSivlpMUM2BfnlphICzIovrZ1hQGRiRX9HXPd/fHLONzOypBHsa2jOdHFTEK01LxRUcFFGnGFTGOanxRAXHsQWmXcmXMC4Hr9CeEB1q0Xmm43TRZnxtHX3caRy7Fc6i6vbiI8IJi4i2IWRuVZEcADXzEnh5YOVdLhhsnqv1cb+080ea2F9+awkeq2abSUXbsT0RrH9A8WaHN+fb+aUGBXC5XlJPLPnDJZeq8eO297dR2l9B3leUNLotGBqDCfqOs4quSqqauWFA5Xctnw6SVL2bYi0SWFMnRTGux5oqX+oopmuXqsh65sNlpMcSUlNm8vKOQ+Wt1DW0Omxtc2GYjYp1uQksq2k1rBGRMJ/SHIm/FpVi0Xmm43TRRnOeWdj/wBRUt1Gbor3jpo53bQ4jY4eK68cqnL5vg9XtNDVa/VYcjY/LZb4iKARlTZuLqohOymSNC9b5mC8bl46jabOXv532HPToYu9qBmIk3Mx6gPlzf23PfR6CZHBAdy1MtOgqATYuzbuGGdlwkjsONkIwJLpxi+VkJ0USXNnL7Uu6o77fEEFQWYTV85Occn+xmptbhKtlj52lzUaGofwfZKcCb/V02ejvr1bRs7GKSEymOykyDE3BbHaNEdr2shO8v7kbNG0WDISwt1S2uj8g+2uxacHM5sUa3OS2FZcS0/f8B/8Wrp62V3W5BddGgdbnhlHelwYG3ae8tgxnSPM3jRyNjc1GqXon3e2u6yRLcW13Lkqk+gw4+fFTWTLM+Nps/RxqKLFrcfZcbKB7KRIJhk438zJ2bHRFaWNVpvmpQNVrMlJJDrU2N/lS2bEE2Q2SWmjGDdJzoTfqm2zoLWsceYKF2XGsbuske6+0ZeHlTV00N1n8+r5Zk5KKW7KT2PPqSaXT9LfVdrI9PhwEiI9V9p5WV4Sbd19/V3ahvLm0TqsNu2XyZnJpPj40qnsLmtyS+vuoRRWtjIpPMirRuwjQwKZkRjB/jNNaK35+WvFJEYG86nl040ObcJ7vyOu+0obT9a129c384KSRni/MZRzlHk8tp+op76929CSRqfw4ACWZ8WxuajGYx04hX+S5Ez4LVnjzHWWZ8Zh6bVRMIZOhu93avSekYTz+dDCVMwmxTN7XDd6ZrNpdpc1sTjdvV0aB7t4Rjyhgebzlja+UVTDpPAg5qd5NjZP+ciiNILMJv7hodGzwqpW8lKisK9C4z0WpMVScKaZN4pr2XOqiS+tnUFokHsWQhcjFxcRTE5ypFuaglhtmsffPslVv36bAJPixkVpLj/GWMSGB5EUFeySCybP768kMjiA1V4yX3ZtbhKnGjo5UeeZDpzCP0lyJvyWc40z6dY4fksz4jCpsV3dLa5uw6RgRpJnFwYdq4TIYNbkJPKffeUum9h9rLadlq5ej8/3CAk0c8mM+GGv5PZZbWwtqWNVdgJmk3clE64yKTyIq+ck8999FXT2uL7Ry0C9Vhsl1W1eVdLotGBqDM2dvXzvucNMiwvjpsXe8UFd2Ls27jnV5NLGNaX1Hdz0p/d44JUi+3vAPSuZk+odHUTBXto43rJGS6+V149Uc+XsZEICveNCw1pHkrhZShvFOEhyJvyWjJy5TnRoILOnRPPeGJKzkupW0uPDveaP50jclJ9GfXsPW4td8wd2l2O+2RIPzTcb6PJZyVS1WDhccW4J0b7TzbR09fpVC/2h3LxsGm3dfbx0oNKtxzlR106P1eZVzUCc5k+NAewdbO+5bCaBZvnz7y1WZMX1t7ofL5tN88Q7pVz167c4WtPG/7txHo99Mp9ELyqzBXtp4/G69nE1QtlSVEt7dx83LDBm4emhTI4JZdbkKLYUjXyNSSEGk3dn4beqWiyEBZmJCvH9RXW9wfLMePafaRr16ENxdZtXLz49lFXZCSRGBvO0i0obd5c2khQVTNokz4/irslJxKRgU+G5HQu3FNUQaFZcMiPe43F5Uv60WGYmRbBhp3vXPDviSIDzUrwvOZuRGElkcAC5KVFcZ9BCvWJoS6bHEWBS4y5tLKvv4KOP7uBHLxeyPDOeTfes5MOLUr2uxBbsHRt7+myUNYx9kfgXCipIjAw2fO22wdbmJrH3VBONHT1GhyJ8lCRnwm9Vt3aRHB3ilX+YfNHyzDh6rfa5UyPV2dPH6cZOn5lv5hRgNvHhRalsLamjttUyrn1prdlV2sji9EmG/C5OCg8iP30SG4eYd7a5qIal0+OI9MCi2EZSSvGJZdM4WN7CwQHt5F2tsKqVkEATGQneV8JrNikeuzWfP968EJOflrD6qojgAOanxYx5vTObTfPku6Vc+eu3KKpu5Rcfmcufb8336vXrnA2ixlra2NLZy7aSOq6bN9nrSrLX5SZi07is8kJMPJKcCb9V3WKRTo0ulJ8eS6BZjaql/tGadrTGJzo1DrY+Pw2rTfPsvvJx7ae8qYvqVovH1jcbyuV5SRRXt3GmsbP/trL6Dk7Udfhll8ah3LBgCqGBZjbscN/oWWFlK9nJUV73YdFpWUYc6fHhRochhrA8K55D5fYy49E43dDJRx/bwQ9fKmRZRhybvrqSG/PTvP6iZFZiBGaTGnNTkNcOV9FjtXHDfO8paXSaPTmapKhgthRLaaMYG0nOhN+qbrGQHCXNQFwlLCiABWmxo5p3VlJtL/PytbJGgOnx4SyZPoln9pSPqy3yrlLn4q/GJWeX5dnnlA0cPdviuKq7Nse/55s5RYUEcv38ybxwoIJD5a5fU0przZHKFq8saRTeb0VmHDbNeZe9GMhm0/x1exlXPPwWRZWtPPiRuTx522KfmWMdEmgmPS5szCNnzxdUkBEfzuwp3vd6M5kUa3KSeLOkbkzLzwghyZnwS1abpqatW0bOXOyizDgOVbTQ0jmyq7tFVW2EBZlJiw1zc2TusT4/jdL6jlGVcg62u6yR6NBAZiYal6BOiwsnOynyrHlnbxTXMCMxgqlxvnluxuL2S6YTGmjmut+9w93/2Edp/djnuwxW0dxFq6XPK5uBCO+3YGosoYFmto9g3tnphk4+/vgO7nvxCEumT2LjPZey3gdGywbLSY4a08hZVUsXO0sbuX7+FK99zutyE+nosbLzZKPRoQgfJMmZ8Ev17d1YbdpnriL6ihVZ8WgNO0pHdnW3pLqNmUmRPjvH5eo5yUQEB/Dv3WNvDLKrtJH8abGG/x9clpfE7rImmjt7aLX0svNkI2smSEmjU1ZiJG9+czV3r85iS1Etl/3yTb733KFxzysEOFLpaAYiyZkYg6AAE4unTzrvvDObTfO398q48tdvcaSilZ9/eA5/+dRin10uJjs5ktONnXR0j67J1EsHKtEar1h4ejgrsuIJCTRJ10YxJpKcCb/0/hpnkpy50vy0GEICTSMqbdRaU1Lje50aBwoLCuC6eZN59VAVbZbRzQUBqGvr5mR9B4sNLGl0uiwvCatN80ZxLW8draPPpv2+hf5QokIC+foV2bz5zVV8bMlU/r37DJf+YisP/q941PN9BiqsbMWkINfHmt8I77EiM47jte3UDHGx4ExjJzc/vpN7XzjCommxvP7VS7lp8VSvHTkaCedc5KM1oxs9e35/JfPSYrx6/mRIoJmLsxLYXFQ7rrJ4MTFJcib8UnVLFyBrnLlaUICJxemTRtQUpK69m8aOHp9sBjLQTYvT6Oq18tKBqlFvu6fM+PlmTnOm2Cepbyqs4Y2iWmLCAlk4NdbosAyTGBnCj2+YzZavreTyvGT+sO0Elz64lUffOjGmxYALq1qZHh9OaJDvrOcnvMuKLPuSFgPfX202zd92nOKKh9/iUEULP/vQHJ769BImx/jmaNlAzgt3oyltPFbTRmFVKzd48aiZ07rcRCqau8a92LaYeCQ5E37p/ZEz3/8D5m2WZ8ZztKadurbu8z6uuMr+B8nXk7N5qdFkJ0WOac2zXWWNhASamD052g2RjY7JpFiXm8SbR+t4o6SW1dmJXttV0JOmxYXzm48t4OUvXsz8tBh++moxqx/axr93nx7VArmFla3kecF5Fr4rLyWK2LBA3j1ur0wob+rklid2cu/zh1k41T5a9tElvj1aNlBabBhhQeZRJS8vFFRiUnDN3BQ3RuYazrLxzUMsYyLE+UhyJvxSdYuFoAATsWH+vX6TEZZn2hf8vNDomfNqqK+tcTaYUoob81MpONM86vKb3WWNLEiLJSjAO95qL8tLorPHSnNn74RpoT9Ss6dE89dPL+GfdywjKSqEb/3nEFc8/Bb/O1x1wbKk5s4eKpq7pBmIGBeTSXFRZhzvHq/nHztPc8Wv3qLgdDM//eAc/vaZJUzxg9GygUwmxYykyBGPnGmteeFABSuy4kmM9P6qmMTIEOalxbBZ1jsTo+QdnxiEcLGqFgvJUbIAtTvMnhJNZEjABeedFVe3kRgZzKTwIA9F5j4fWphKoFmNqjFIm6WXwspWr5hv5nRRZhwRwQEEmBSXzkwwOhyvdFFmHM99fjmPfGIRAHf+fR83/GH7eS9GFDqbgUgbfTFOyzPjqWqx8N3nDjF/agyvf/VSPr7Uf0bLBstJiqSkpm1E87L2nW7mTGMX13vh2mbDWZeTyIEzzdS2jb/pkJg4JDkTfqm6xSLzzdzEbFIsy4hj+wWTs1afL2l0mhQexGV5STy3v4KevpGVuu091YRNw5J070nOggPMfGxJGjcsmEJUiIwqD0cpxZWzk3n9K5fy4IfnUttq4eOP7eSTT+zicMW5a6QVVkmnRuEal+clsWBqDA/cMJu/f2YpqT66DMlIZSdH0tjRQ137+cvkAV4oqCA4wMQVs3ynkdE6xxqTbxTJ6JkYOUnOhF+qau2STo1utDwzjtONnZxp7Bzy/j6rjWO17T7dqXGw9flpNHb0sHmErZF3lzUSYFIsnBbj3sBG6XvX5PHQjfOMDsMnBJhNrF+cxtavr+J7V+dysLyZa3/7Dl/8537KBqyRdqSylaSoYOIjgg2MVviDxKgQnvv8Cj6xbJrfjpYNNNKmIL1WG68crGJdXhKRPnRhKSc5kikxoWyW5EyMgiRnwu/YbJqalm4ZOXOj5Zn2rmLDlTaWNXTS02fz+flmA10yI4GU6JARNwbZXdrErCnRhAUFuDky4W4hgWbuuDSDN7+xmi+szmRzYQ3rfvkm33/+ELVtFgorW5klzUCEGLXsESZn7xyvp6Gjh+vneX+XxoGUUqzNTeSd43Vj6gIrJiZJzoTfaezsocdqIyVKkjN3mZkUQXxE0LDzcJx/aP2lrBHs5ZwfWZTKW0frqHIs1TAcS6+VgjPNLEmfuK3q/VF0aCDfuCKHN7+xio8uSeNfu86w8sFtHKttk/lmQoxBXIR9xLmo6vzJ2YsFlUSHBrIq2/caGa3LTcLSa+Pd4xdegkYIkORM+KFqRxv9ZGmj7zZKKS7KjGf7iYYhJ3IXV7diNimyEiMMiM59blyUhk3Ds3vKz/u4g+Ut9FhtLPai+WbCdRKjQnjghjlsvmcl6/KS0NgbiQghRi83JZKSmtZh7+/s6eP1I9VcPSfZazrfjsbSjEmEB5mltFGMmO/9lgtxAdX9a5zJyJk7Lc+Mo7atmxN1HefcV1zdRnpcGCGB/rUg79S4MJZnxvH03jPYbMN3F9vtWHxakjP/lh4fzm8/toDCH17Zv4CwEGJ0spMiOVbTjnWY99TNRbV09lh9qkvjQMEBZlZmJ/BGcc15/24I4STJmfA7Va2SnHnC+dY7K6luI8dPy7xuWpzGmcYudpwcvlvlrtJGZiZFEOsHywiICwsN8q+LEEJ4UnZyJN19Nsoazr3QB/DC/gpSokO8qvPtaK3NSaKmtZvDled2exViMEnOhN+pbukiwKSIk85pbjV1UhhTYkLZfvzsJKWju4/TjZ3kJPnPfLOBrpiVTFRIwLCNQaw2zd5TTTJqJoQQI+BsHDVUU5DGjh7ePFrHB+ZNxmTy3e6Vq3MSMSmktFGMiCRnwu9UtVhIigrB7MNv5L5AKcXyzDjeO9lwVqlGSY3/NQMZKCTQzA0LpvDa4WpaunrPub+oqpX27j6WeNHi00II4a1mJEVgUvZy+MFePVRFn037bEmj06TwIBZNi2XLCJdiERObJGfC78gC1J6zPCuOlq7e/kV44f2rn/7URn+w9flpdPfZeLGg4pz7dpXKfDMhhBipkEAz6XHhlFSf2xTkhYIKZiRGkJvi+xf71uYmcaSylcrm83f7FUKSM+F3JDnznIsyzl3vrKS6jfAgM6mx/tstc/aUaPJSovj3EKWNu8saSY0NZXKM/z5/IYRwpezkyHPKGsubOtld1sQNC6b4xYLc63LtywBsKZbSRnF+kpwJv6K1pqrFImuceUhydAgZCeG8O6ApSHF1KzOTI316fsBI3LQ4jcMVrRwZMMFba83uskafnrguhBCelp0cyanGTjp7+vpve/FAJQAf8LGFp4eTmRBBelwYmwultFGcnyRnwq+0dvXR1WuVkTMPWp4Zx67SRnqtNrTWFFe3keOn880GumH+FIICTDwzYM2z0voO6tt7WCzzzYQQYsRykiPRGo7VtPff9mJBJYumxZI2KczAyFxHKcXa3CTeO9FAR3ffhTcQE5YkZ8KvVLXaa7klOfOcFZnxdPZYOVjeTG1bN82dvWT7aafGgaLDArlyVjLP7a/A0msFZL6ZEEKMRfagjo3F1a0UV7dxw3z/GDVzWpubSI/VxtvHzl2CRggnSc6EX6mSBag9blmGY72z4w393bb8dY2zwdbnp9HS1ctGR5nKrrJG4sKDyEwINzgyIYTwHVMnhRESaOr/G/L8/krMJsXVc1IMjsy1FqdPIiokgM3StVGchyRnwq9UO5Kz5GhpxuApseFB5KVE8e6J+v5uWxOhrBHsJZ2psaE8vdveGGR3WSOL0yf5xeR1IYTwFLNJMTMpkpKaVmw2zUsHKrl0RrzfrVcaaDaxKjuRrcW1WAcsQSPEQJKcCb9S1WJBKUiM9K83dG+3PDOOfaeaKTjTTFJUMDFhQUaH5BEmk+LGRWm8e6KePWWNnGnskvlmQggxBtlJ9o6Ne041UdHc5fNrmw1nbW4iDR09FJxpNjoU4aUkORN+pabFQkJEMIFm+dX2pBVZ8fRYbWwqrPHr9c2G8pH8VAC+99xhAOnUKIQQY5CdHEl9ew9PvFNKaKCZy/KSjA7JLVbNTCTApKS0UQxLPsEKv1LVapH5ZgZYPH0SZpOi16onTEmj05SYUC6ZkUBJjX19N39YLFUIITzNeWHvf0equXxWEuHBAQZH5B7RYYEsTp/EFknOxDAkORN+pbqlSzo1GiAiOIB5qdGA/ernRLPeMXq2cFosATJqK4QQozbwb8f1ftalcbC1uYkcrWnndEOn0aEILySfIoRfqWqxkCLNQAyxPDMemJjJ2WV5SWQlRvhdZzEhhPCUhMhg4sKDiA0L5JIZCUaH41bOkk0pbRRD8c8xYzEhtXf30Wbpk5Ezg3xi2TSCAkzkTrA5ZwDBAWY237PS6DCEEMKnfeaS6USGBPr9vPFpceFkJUawpbiGT1883ehwhJeR5Ez4jWpZ48xQydEhfGntDKPDEEII4aM+vyrL6BA8Zm1uIn9+u5RWSy9RIYFGhyO8iH9fmhATSv8aZ1GSnAkhhBDCe12Wm0SfTfNmSZ3RoQgvI8mZ8BtVLV0AMudMCCGEEF5twdRYJoUHSddGcQ5JzoTfcI6cJUbJAtRCCCGE8F5mk2JVdgJbS+ros9qMDkd4EUnOhN+oarUQFx5ESKDZ6FCEEEIIIc7rstwkWrp62XOqyehQhBe5YHKmlEpTSm1VShUppY4opb7suP3HSqmDSqkCpdRGpZR/L0ohvF51i0U6NQohhBDCJ1wyM4Egs0lKG8VZRjJy1gd8TWudCywDvqCUygN+obWeq7WeD7wM/MB9YQpxYVUtFmkGIoQQQgifEBEcwLLMODYX1RodivAiF0zOtNZVWut9ju/bgCJgita6dcDDwgHtnhCFGJnqli4ZORNCCCGEz1iXm0hpfQcn6tqNDkV4iVHNOVNKpQMLgJ2On3+ilDoD3IyMnAkDWXqtNHX2yhpnQgghhPAZa3ISAaS0UfQbcXKmlIoA/gN8xTlqprX+ntY6DdgA3D3Mdp9VSu1RSu2pq5O1HIR71LQ61jiTNvpCCCGE8BGpsWHkpkSxuVBKG4XdiJIzpVQg9sRsg9b6v0M85B/Ah4faVmv9qNY6X2udn5CQMPZIhTiPKkcbfRk5E0IIIYQvWZebyJ5TjTR19BgdivACI+nWqIA/A0Va618OuH3GgId9ACh2fXhCjIxzjTOZcyaEEEIIX7I2Nwmbhm1HZfRMjGzkbAVwC7DG0Ta/QCl1NfAzpdRhpdRB4HLgy+4MVIjzcY6cSbdGIYQQQviSuVOiSYgMltJGAUDAhR6gtX4HUEPc9arrwxFibKpbuogKCSA8+IK/0kIIIYQQXsNkUqzNSeTlg1VYeq2EBJqNDkkYaFTdGoXwVlUtFlKkGYgQQgghfNANC6bQ3t3Hn948aXQowmCSnAm/UN1qkflmQgghhPBJyzLiuGZuCr/fdpyy+g6jwxEGkuRM+AX7yJkkZ0IIIYTwTT+4No8gs4kfvHgErbXR4QiDSHImfF5Pn4369m4ZORNCCCGEz0qKCuGey2by1tE6XjtcbXQ4wiCSnAmfV9tmQWtZ40wIIYQQvu2TF00jLyWKH71USHt3n9HhCANIciZ83vtrnElDECGEEEL4rgCziQc+OJuaNgu/2nTU6HCEASQ5Ez5P1jgTQgghhL9YODWWjy6eyl+2l1FY2Wp0OMLDJDkTPu/9kTNJzoQQQgjh+751ZTYxoYF8//lD2GzSHGQikeRM+LzqVgthQWaiQmQBaiGEEEL4vpiwIL5zdS77Tjfz7z1njA5HeJAkZ8LnVbfY1zhTShkdihBCCCGES3x44RSWTJ/Ez14rpqG92+hwhIdIciZ8XlVLl3RqFEIIIYRfUUrxwA2z6eju42evFRsdjvAQSc6Ez6tusZAcJZ0ahRBCCOFfZiZFcvslGTyzt5zdZY1GhyM8QJIz4dOsNk1NW7eMnAkhhBDCL31pbRZTYkL5/nOH6bXajA5HuJkkZ8Kn1bd3Y7Vp6dQohBBCCL8UFhTAfdflUVLTxhPvlBodjnAzSc6ET3OucSYjZ0IIIYTwV5fPSmZdbiIPbz5GRXOX0eEIN5LkTPi06hb7G5SMnAkhhBDCn9133Sw0mh++eMToUIQbSXImfNr7I2fSEEQIIYQQ/ittUhhfWjuDjYU1bCmqMToc4SaSnAmfVt1iISjARGxYoNGhCCGEEEK41e0XZzAjMYL7XjxCV4/V6HCEG0hyJnxaVYuFFFmAWgghhBATQFCAiR/fMJvypi5+t/WY0eEIN5DkTPg0+xpnMt9MCCGEEBPDsow4PrRwCo++dZLjtW1GhyNcTJIz4dOqWrukU6MQQgghJpTvXp1LaKCZ7z9/GK210eEIF5LkTLiU1abZfqIem839bxRaa2paukmS5EwIIYQQE0h8RDDfvDKHHScbeb6gwuhwhAtJciZc6mevFfHxx3byr91n3H6sxo4eeqw2UqSsUQghhBATzMeXTGVeWgw/eaWIls5eo8MRLiLJmXCZZ/eW89jbpZhNiqf3uD85c7bRT5Y2+kIIIYSYYEwmxU9umE1jRw+/2FhsdDjCRSQ5Ey6x91QT3/3vIS7OiucbV2RTcKaZozXunaRa3b/GmYycCSGEEGLimT0lmk9elM6GnacpONNsdDjCBSQ5E+NW1dLF5/62l5SYEH738QXcuCiVAJPiaTeXNla1SnImhBBCiInta5fPJCEimO8/fwirB+b8C/eS5EyMS1ePlc8+tRdLr5XHP5lPTFgQcRHBrMtN4rn9FfT02dx27OqWLgJMiriIYLcdQwghhBDCm0WGBHLvtXkcrmjl7ztOGR2OGCdJzsSYaa355n8OcriyhV9/dD4zkiL771u/OJWGjh7eKK512/GrWiwkRYVgNskC1EIIIYSYuK6dm8LFWfE89HoJtY7KIuGbJDkTY/aHbSd46UAl37wih7W5SWfdd+mMBBIjg3nGjY1BqlssJEtJoxBCCCEmOKUUP7p+Ft19Nh54pcjocMQ4SHImxmRTYQ0PbSzh+vmTuXNlxjn3B5hNfGRRKltLaqlx0xUcSc6EEEIIIewyEiK4c1UmLx6o5J1j9UaHI8ZIkjMxaiXVbXzlX/uZMyWan394LkoNXVZ4Y34aNg3/2Vfu8hi01lS1WGSNMyGEEEIIh8+vymRaXBg/eOEw3X1Wo8MRYyDJmRiVpo4ebn9qN+HBATx6Sz4hgeZhHzs9Ppwl6ZN4Zk85Wru2e1BrVx9dvVYZORNCCCGEcAgJNPOj62dzsr6DP7150uhwxBhIciZGrNdq4/Mb9lHT2s2fblk0osToxvxUSus72HOqyaWxVLV2AZAiC1ALIYQQQvRbOTOBa+ak8LutxznV0GF0OGKUJnxyprXG0ivDviPx45cLee9kAz/70BwWTI0d0TZXz0khPMjs8jXPqhwLUMvImRBCCCHE2e69No9Ak+IHLxxxefWScK8JnZxprbnjqT187ZkDRofi9TbsPMVT753ic5dm8KGFqSPeLjw4gOvmTeaVQ1W0d/e5LJ7qFlmAWgghhBBiKMnRIXz1spm8ebSOrSXuW9ZIuN6ETs6UUuSmRPHKwSoOV7QYHY7X2nGygfteOMKq7AS+eWXOqLe/MT+Nzh4rrxysdFlM1S0WTAoSImUBaiGEEEKIwW5bns7PPjSHS2YkGB2KGIUJnZwB3HFpBjFhgfzi9RKjQ/FKZxo7uevve5kaF8ZvPrZgTAs+L5waQ2ZCOE/vcV3XxuoWC/ERwQSaJ/yvsBBCCCHEOQLMJj66ZKp8VvIxE/5sRYUEctfKTN48WsfOkw1Gh+NVOrr7uOOpPVhtmsc/mU9USOCY9qOUYn1+GntPNXG8tt0lsVW1WqSkUQghhBBC+JUJn5wB3Lo8naSoYB58vUQmTTrYbJp7ni7gaE0bv/v4QjISIsa1vw8tTMVsUjyzxzWNQapbuqQZiBBCCCGE8CuSnGFfE+JLa2ew91QTW4pk0iTAw5uP8vqRGr53TR6Xzhx/rXJCZDBrchL5z74Keq22ce+vqsUibfSFEEIIIYRfkeTMYX1+GulxYTy0sQSbbWKPnr18sJLfvHGc9fmpfHpFusv2uz4/jfr2braV1I1rP+3dfbRZ+mTkTAghhBBC+BVJzhwCzSa+etlMiqvbePGA67oK+prDFS18/ZkDLJoWy49vmI1So28AMpxV2QnERwTz9DhLG6WNvhBCCCGE8EeSnA1w3dzJ5KZE8ctNR+npG3/pna+pa+vms0/tITYsiEc+sYjgALNL9x9oNvHhhVN4o7iW2jbLmPfjTM6SoyQ5E0IIIYQQ/kOSswFMJsU3r8jmdGMn/3ZR4wpf0d1n5c6/76Wxs4fHPpnvtvXDbsxPw2rTPLevYsz7qGrpApA5Z0IIIYQQwq9IcjbIquwEFqfH8tstx+jqsRodjkdorbn3+cPsPdXEQzfOY/aUaLcdKysxgkXTYnl6z5kxd8Z0jpwlRskC1EIIIYQQwn9cMDlTSqUppbYqpYqUUkeUUl923P4LpVSxUuqgUuo5pVSM26P1AKUU37wyh9q2bv6yvczocDziyXfLeHpPOV9ck8W1cye7/Xjr81M5UdfBvtPNY9q+qtVCXHgQIYGuLbsUQgghhBDCSCMZOesDvqa1zgWWAV9QSuUBm4DZWuu5wFHgO+4L07MWp09idXYCj7x5gpauXqPDcau3jtbxwCuFXJaXxFfXzfTIMa+ZO5mwIPOY1zyrbrFIp0YhhBBCCOF3Lpicaa2rtNb7HN+3AUXAFK31Rq11n+NhO4BU94XpeV+/IpuWrl4efeuE0aG4TVl9B3f/Yx8zEiP51U3zMZlc15nxfCKCA7hmTgovHaiko7vvwhsMYl/jTJIzIYQQQgjhX0Y150wplQ4sAHYOuuvTwGsuiskrzJoczXXzJvPEO2Xj6izorSy9Vj6/YR9KKR6/NZ+I4ACPHn/94jQ6eqy8eqhq1NvWtMrImRBCCCGE8D8jTs6UUhHAf4CvaK1bB9z+PeyljxuG2e6zSqk9Sqk9dXXjW3zY0+65bCY9Vhu/f+O40aG43AOvFFJY1cr/u3EeaZPCPH78/GmxTI8P55k95aPaztJrpbGjRzo1CiGEEEIIvzOi5EwpFYg9Mdugtf7vgNtvBa4FbtbDtN7TWj+qtc7XWucnJCS4ImaPmR4fzvr8NP6x6zRnGjuNDsdlXjpQyd93nOazl2awLi/JkBiUUtyYn8quskZO1rWPeLuaVlnjTAghhBBC+KeRdGtUwJ+BIq31LwfcfiXwLeADWmv/yVwG+fLaGZiU4lebjxodikuU1nfwnf8eYsHUGL5xRbahsXx4YSomBc/uHfnoWZVzAWopaxRCCCGEEH5mJCNnK4BbgDVKqQLH19XA74BIYJPjtkfcGahRkqNDuHV5Os/tr+BoTZvR4YyLpdfKFzbsw2xS/O7jCwk0G7vMXVJUCKuzE3l2bzl9VtuItqmW5EwIIYQQQvipkXRrfEdrrbTWc7XW8x1fr2qts7TWaQNuu9MTARvhrpWZRAQF8NDrJUaHMi4D55lNifGOOVs35qdR29bNW8dGNh+xf+RMyhqFEEIIIYSfMXboxEfEhgfx2Usz2FhYw/7TTUaHMybeMM9sKGtyEokLD+Lp3SMrbaxu6SIqJIBwD3eXFEIIIYQQwt0kORuhT188nfiIIB78XwnD9D7xWt40z2ywoAATH1wwhc1FNTS0d1/w8fY1zrxj1E8IIYQQQghXkuRshMKDA/jC6izeO9nAO8frjQ5nxLxtntlQ1i9Oo8+meW5/xQUfWy1rnAkhhBBCCD/lfZ/UvdjHl05lSkwov3jdd0bPvHGe2WAzkyKZnxbDv3efueD/q33kTJIzIYQQQgjhfyQ5G4XgADNfWTeDg+Ut/O9wtdHhXJC3zjMbyvr8NI7VtnOgvGXYx/T02ahv75aRMyGEEEII4ZckORulDy1MJSsxgoc2loy4/bsRvHme2VCunZdCSKCJp/ecGfYxtW0WtEZGzoQQQgghhF+S5GyUzCbF1y+fyYm6Dv47gjlSRvCFeWaDRYUEcvXsFF4qqKSrxzrkY95f48w7yzOFEEIIIYQYD+//1O6FrpiVzLzUaH69+RjdfUMnEkbyhXlmQ1m/OI227j5eO1w15P3ONc5k5EwIIYQQQvgjSc7GQCnFN67IoaK5iw07Thsdzll8aZ7ZYEunT2JaXNiwpY01rc6RM0nOhBBCCCGE/5HkbIwunhHP8sw4fr/1OO3dfUaHA7w/z2yhj8wzG0wpxY2LUtlxspFTDR3n3F/VYiE8yEykLEAthBBCCCH8kCRn4/CNK7Jp6OjhiXdKjQ6lf55ZgFnxWx+ZZzaUDy9KxaTg2b3l59xX3WJf40wpZUBkQgghhBBCuJdvfoL3EgumxnJ5XhKPvXWSpo4eQ2Px1Xlmg6VEh3LpzASe3VuO1Xb2mmdVLV2kSDMQIYQQQgjhpyQ5G6evX5FNR08ff3zzhGExOOeZfe7SDNbm+tY8s6Gsz0+jqsXC28fqzrq9usVCUpTMNxNCCCGEEP5JkrNxmpkUyQcXpPLX7WX9rd49aeA8s6/74DyzoazNTSQ2LJBn9rxf2mi1aWrauqVToxBCCCGE8FuSnLnAV9bNwKY1v95yzKPH9Zd5ZoMFB5i5YcEUNhZW0+goF61v78Zq09KpUQghhBBC+C3/+DRvsLRJYdy8dBpP7zlDaf25XQbd5ccv+8c8s6Gsz0+j16p53rHQt6xxJoQQQggh/J0kZy7yhdVZBAeY+OWmox453osHKtmw03/mmQ2WmxLF3NRont5zBq011S1dgKxxJoQQQggh/JckZy6SEBnMp1dM56UDlRyuaHHrsUrrO/jOfw761TyzodyYn0ZxdRuHK1oHjJz51wihEEIIIYQQTpKcudAdl2YQHRrIQxtL3HYMS6+Vz2/YR2CAya/mmQ3lA/MmExxg4uk9Z6husRAUYCI2LNDosIQQQgghhHAL//1kb4Do0EDuWpXJtpI6dpU2uuUYP365kCI/nWc2WHRoIFfOTuaFggpK6ztIkQWohRBCCCGEHwswOgB/c+tF6TzxTil3/X0vGQnhRIcGEhUSSFRooP17x7/22wOIDgvsf0xYkPm8yYe/zzMbyk35abxQUMkbxbUsmhZrdDhCCCGEEEK4jSRnLhYaZOY3H1vAk++W0trVR2WzhaKuNlotvbRZ+s67bYBJ9SdwUc7kzZHIRYYE8rf3yvx+ntlgyzLiSI0NpbypSzo1CiGEEEIIvybJmRssy4hjWUbcObdbbZo2Sy+tXX20dPXS0tVLq6X3/e+7BnxvsT+mvKmr//akqBC/n2c2mMmkuHFRGr/afJRkaQYihBBCCCH8mCRnHmQ2KWLCgogJCxr1tlprtLYnKxPNR/JT+cO248xIjDA6FCGEEEIIIdxGkjMfoZRiovbCmBITyvZvrxlTUiuEEEIIIYSvkORM+IS4iGCjQxBCCCGEEMKtJs7kJSGEEEIIIYTwYpKcCSGEEEIIIYQXkORMCCGEEEIIIbyAJGdCCCGEEEII4QUkORNCCCGEEEIILyDJmRBCCCGEEEJ4AUnOhBBCCCGEEMILSHImhBBCCCGEEF5AkjMhhBBCCCGE8AKSnAkhhBBCCCGEF1Baa88dTKk64JTHDjhy8UC90UEIQ8i5n7jk3E9Mct4nLjn3E5ec+4nLW8/9NK11wlB3eDQ581ZKqT1a63yj4xCeJ+d+4pJzPzHJeZ+45NxPXHLuJy5fPPdS1iiEEEIIIYQQXkCSMyGEEEIIIYTwApKc2T1qdADCMHLuJy459xOTnPeJS879xCXnfuLyuXMvc86EEEIIIYQQwgvIyJkQQgghhBBCeAGfS86UUlcqpUqUUseVUt8ecPu/lVIFjq8ypVTBENvOV0q9p5Q6opQ6qJS6acB905VSO5VSxxz7Chrm+Lc6HnNMKXXraLcXY2fkuVdKTVNK7XUc44hS6s7RbC/Gzo3n/W7HPrVSKv48x5fXvEGMPPfymjeWG8/9Bsd+DyulnlBKBQ5zfHndG8TIcy+ve2O58dz/WSl1wHH7s0qpiGGO7x2ve621z3wBZuAEkAEEAQeAvCEe9/+AHwxx+0xghuP7yUAVEOP4+Wngo47vHwHuGmL7ScBJx7+xju9jR7q9fPn0uQ8Cgh3fRwBlwGQ59z593hcA6Y5zGT/M8eU1P3HPvbzm/fPcXw0ox9c/h3m/l9f9xD338rr3z3MfNeBxvwS+PcT2XvO697WRsyXAca31Sa11D/Av4PqBD1BKKWA99hfeWbTWR7XWxxzfVwK1QIJjmzXAs46H/hW4YYjjXwFs0lo3aq2bgE3AlaPYXoydoedea92jte52/BiMY9RZzr3bueW8O37er7Uuu8Dx5TVvHEPPvbzmDeXOc/+qdgB2AalDHF9e98Yx9NzL695Q7jz3rQO2DwWGarjhNa97X0vOpgBnBvxc7rhtoEuAGucJGo5Sagn2zPwEEAc0a637Bu9XKZWvlHr8AscfdnvhMkafe5RSaUqpg444fu548cu5dy93nffzPU5e897B6HMvr3njuP3cO0rabgH+5/hZXvfewehzL69747j13CulngSqgRzgt47bvPJ172vJmRritsHZ78cYIqM+aydKpQB/Az6ltbadb79a6z1a69svcPyRxCXGx+hzj9b6jNZ6LpAF3KqUShphXGLs3HXehyWvea9h9LmX17xxPHHu/wC8pbV+G+R170WMPvfyujeOW8+91vpT2Msdi4CbHLd55eve15KzciBtwM+pQKXzB6VUAPAh4N/D7UApFQW8Anxfa73DcXM9EOPY/pz9juD4I91ejJ3R576f4yraEexXcOTcu5e7zvt4jy/n3f2MPvf95DXvcW4990qp+7CXO90zyuPLuXc/o899P3nde5zb3/O11lbH9h8exfE9fu59LTnbDcxwdE0JAj4KvDjg/nVAsda6fKiNHds8BzyltX7Gebuj/ngr8BHHTbcCLwyxi9eBy5VSsUqpWOBy4PVRbC/GztBzr5RKVUqFOr6PBVYAJXLu3c4t530U5DVvHEPPvbzmDeW2c6+Uuh373JKPnWckVV73xjH03Mvr3lBuOffKLsv5PXAdUDzELrznda+9oEPLaL6wd9s5ir2O9HuD7vsLcOd5tv0E0AsUDPia77gvA/sE0ePAM7zfrScfeHzAPj7teMxx7EOmnG97+fKPcw9cBhzE3j3oIPBZOfc+f96/hP1KWR/2q2DOcy2veS/5MvLcy2veb899n2Ofztt/MPjcO36W1/0EPPfyuve/c499IOpd4BBwGNiAo3ujt77uleOgQgghhBBCCCEM5GtljUIIIYQQQgjhlyQ5E0IIIYQQQggvIMmZEEIIIYQQQngBSc6EEEIIIYQQwgtIciaEEEIIIYQQXkCSMyGEEEIIIYTwApKcCSGEEEIIIYQXkORMCCGEEEIIIbzA/wdcPBrfRHvB5AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACD/klEQVR4nO3dd3xb5fX48c8jee/txCN24sQhie04icNICE7YO5Qy2lJGWYWWTkppaSn02wkdULqYpbSl5ccm7JkdIAvbcabtxIlXvPeW9fz+kGScxNuSriyf9+vlVyzp6t6jXMvWuc95zqO01gghhBBCCCGEMJbJ6ACEEEIIIYQQQkhyJoQQQgghhBAeQZIzIYQQQgghhPAAkpwJIYQQQgghhAeQ5EwIIYQQQgghPIAkZ0IIIYQQQgjhASQ5E0IIIYQQQggPIMmZEEJ4CaVU24Avq1Kqc8Dta4yObzyUUqVKqbONjmM4Sql1SqmbXbj/S5RShfbzuEUpNX/AY/5KqYeUUpVKqUal1N+UUr4DHo9SSr2ilGpXSh1WSn3luH2fpZTap5TqUEqtVUqluOp1CCGEGJkkZ0II4SW01iGOL+AIcMmA+541Or7jKaV8vOEYrqSUmgM8C9wGRACvA2sGvK4fATlABpAOLAZ+OmAXfwV6gHjgGuDvSqkF9n3HAC8D9wJRwHbg/7n2FQkhhBiOJGdCCOHllFImpdSPlFIlSql6pdTzSqko+2OpSimtlPqaUqrMPvpym1JqqVKqQCnVpJT6y4B93aCU2qyU+rNSqtk+6nLWgMfDlVJPKaWqlFIVSqlfKqXMxz33IaVUA3C/UipNKfWRPa46pdSzSqkI+/b/BmYAr9tHjX6olFqplCo/7vX1j64ppe5XSr2olPqPUqoFuGGEmGYrpdbbX0udUmrQ5EQpFWDfZ739/2SbUipeKfUrYAXwF3uMf7Fvf5JS6n2lVINSar9S6qoB+/qnUupR++Ot9uMPNWJ1HrBRa71Ja20BHgASgVz745cAj2itG7TWtcAjwI324wQDXwTu1Vq3aa03AWuAa+3PvRzYrbV+QWvdBdwPLFRKnTRELEIIIVxMkjMhhPB+3wYuw/aBPgFoxDaiMtApwBzgauBh4CfA2cAC4CqlVO5x2x4EYoD7gJcdyR7wDGABZgOLgHOBmwd5bhzwK0ABv7HHNQ9IxpYkoLW+lmNHAB8c5etdDbyIbaTp2RFi+gXwHhAJJAF/HmKf1wPh9viisY1kdWqtfwJsBO6wx3iHPSl6H/iv/XV+GfibY8TK7hr7sWOAPHucg1H2r+NvZwzzeJJSKhzbSFqf1vrAgMfzsZ1T7P/mOx7QWrcDJQMeF0II4WaSnAkhhPf7OvATrXW51robW/JzxXElf7/QWndprd8D2oH/aa1rtNYV2JKPRQO2rQEe1lr3aq3/H7AfuEgpFQ9cAHxXa92uta4BHgK+NOC5lVrrP2utLVrrTq11sdb6fa11t33k5498Pio0Xh9rrV/VWluBsBFi6gVSgAT76980xD57sSVls7XWfVrrHVrrliG2vRgo1Vo/bX+dO4GXgCsGbPOm1nqD/Xz8BDhNKZU8yL7eB3LtI4Z+wD2AHxBkf/xt4DtKqVil1DRsiTj2x0OA5uP21wyE2r8f6XEhhBBuNqlr8YUQQoxKCvCKUso64L4+bPOQHKoHfN85yO2QAbcrtNZ6wO3D2Ea+UgBfoEqp/sEcE1A2YNuB36OUisNWircCW1JgwjayNxEDjzFSTD/ENoK1VSnVCPxBa/2PQfb5b2yjZs/Zyy7/gy3h7R1k2xTgFKVU04D7fOz7OCFGrXWbvcwz4bjY0VrvU0pdD/wFmG4/7h7AUdr5K2wjhHlAN/AEtkS6BpiGLTkdKAxotX/fNsLjQggh3ExGzoQQwvuVARdorSMGfAXYR8XGI1ENyHSwzQurtB+nG4gZcJwwrfXAMrmBSR3YSho1kKW1DgO+yrFlesdv387no0bY547FHrfNwOcMG5PW+qjW+hatdQK2Eca/KaVmH/+C7aOEP9dazweWYRsdu26IGMuA9cf9f4dorW8fsE3/KJlSKgRbQ47K449rP/aLWusMrXU0tjLSFGCb/bFOrfUdWutErfUsoB7YobXuAw4APvamIg4Lgd3273fbbzviCAbSBjwuhBDCzSQ5E0II7/co8CtH0wl7CdzqCewvDvi2UspXKXUltrlib2mtq7DN3/qDUirM3ogk7bj5ascLxTaC06SUSgTuOu7xamDWgNsHgACl1EXK1jL+p4D/UDsfKSal1JVKqST75o3YEq2+4/ejlFqllMq0J4Mt2MocHdsdH+MbQLpS6lr7/5GvvcHKvAHbXKiUOt1eqvgL4FOt9TGjZgOOvUQpZVZKxQKPAa9rrffZH0tUSiUom1OxdV68z/7a27F1Y/w/pVSwUmo5tvl4jhG8V4AMpdQXlVIBwM+AAse+hRBCuJ8kZ0II4f3+hK1L33tKqVbgE2yNOcbrU2zNQ+qwldVdobWutz92HbY5UXuwJTsvYivHG8rPsbV/bwbexJZMDPQb4Kf2Dok/0Fo3A98AngQqsI2klTO84WJaCnyqlGrD9n/0Ha31oUH2Mc3+vBZgL7AeW4kh2P5/r1C2TpePaK1bsTUd+RK20bCj2LosDkwi/4stiWoAlmBrEDKUPwFN2Ob2NQG3DHgsDdiC7f/hGeBH9nmDDt8AArGVOf4PuF1rvRvAPsfvi9jOYSO2n4mB8wOFEEK4mTp22oAQQggxNKXUDcDNWuvTjY5lslJK/RMo11r/dKRthRBCTC0yciaEEEIIIYQQHkCSMyGEEEIIIYTwAFLWKIQQQgghhBAeQEbOhBBCCCGEEMIDSHImhBBCCCGEEB7Ax50Hi4mJ0ampqe48pBBCCCGEEEJ4jB07dtRprWMHe8ytyVlqairbt2935yGFEEIIIYQQwmMopQ4P9ZiUNQohhBBCCCGEB5DkTAghhBBCCCE8gCRnQgghhBBCCOEB3DrnTAghhBBCCE/R29tLeXk5XV1dRocivFBAQABJSUn4+vqO+jmSnAkhhBBCiCmpvLyc0NBQUlNTUUoZHY7wIlpr6uvrKS8vZ+bMmaN+npQ1CiGEEEKIKamrq4vo6GhJzITTKaWIjo4e86isJGdCCCGEEGLKksRMuMp4frYkORNCCCGEEMIgv/rVr1iwYAFZWVlkZ2fz6aefAnDzzTezZ88epxwjNTWVurq6Ybf59a9/Peb9/vOf/+SOO+445r6nn36a7OxssrOz8fPzIzMzk+zsbH70ox+Nef/u8PDDD9PR0WF0GP1kzpkQQgghhBAG+Pjjj3njjTfYuXMn/v7+1NXV0dPTA8CTTz7p1lh+/etfc88990x4P1/72tf42te+BtiSwrVr1xITEzPh/Y6X1hqtNSbT4GNSDz/8MF/96lcJCgoa9T4tFgs+Pq5Jo2TkTAgP0mOxsm5/DX1WbXQoQgghhHCxqqoqYmJi8Pf3ByAmJoaEhAQAVq5cyfbt2wEICQnh7rvvZsmSJZx99tls3bqVlStXMmvWLNasWQOcOIp18cUXs27duhOOedlll7FkyRIWLFjA448/DsCPfvQjOjs7yc7O5pprrgHgP//5DyeffDLZ2dl8/etfp6+vD7CNjKWnp5Obm8vmzZtH/Vp/97vfsXTpUrKysrjvvvsAKC0t5aSTTuLmm28mIyODa665hg8++IDly5czZ84ctm7dCsD999/Ptddey5lnnsmcOXN44oknRtzvvHnz+MY3vsHixYspKyvj9ttvJycnhwULFvRv98gjj1BZWcmqVatYtWpV//+1w4svvsgNN9wAwA033MD3v/99Vq1axd13301JSQnnn38+S5YsYcWKFezbt2/U/xfDcmSTQ30BycBaYC+wG/jOgMe+Bey33//gSPtasmSJFkIMrrWrV3/1yU90yt1v6H9uPmR0OEIIIYTX27Nnj6HHb21t1QsXLtRz5szRt99+u163bl3/Y7m5uXrbtm1aa60B/dZbb2mttb7sssv0Oeeco3t6enReXp5euHCh1lrrp59+Wn/zm9/sf/5FF12k165dq7XWOiUlRdfW1mqtta6vr9daa93R0aEXLFig6+rqtNZaBwcH9z93z549+uKLL9Y9PT1aa61vv/12/cwzz+jKykqdnJysa2pqdHd3t162bNkxxzye47jvvvuuvuWWW7TVatV9fX36oosu0uvXr9eHDh3SZrNZFxQU6L6+Pr148WL9ta99TVutVv3qq6/q1atXa621vu+++3RWVpbu6OjQtbW1OikpSVdUVAy7X6WU/vjjj/tjcbxui8Wic3NzdX5+/gn/N8f/P7zwwgv6+uuv11prff311+uLLrpIWywWrbXWZ555pj5w4IDWWutPPvlEr1q1atD/g8F+xoDteoh8aTTjcRbgTq31TqVUKLBDKfU+EA+sBrK01t1KqTjnpItCTD01rV3c+M9t7K1qJTEikMfWl/Dlk2fg5yOD20IIIYQ7/Pz13eypbHHqPucnhHHfJQuGfDwkJIQdO3awceNG1q5dy9VXX81vf/vb/tEaBz8/P84//3wAMjMz8ff3x9fXl8zMTEpLS8cU0yOPPMIrr7wCQFlZGUVFRURHRx+zzYcffsiOHTtYunQpAJ2dncTFxfHpp5+ycuVKYmNjAbj66qs5cODAiMd87733eO+991i0aBEAbW1tFBUVMWPGDGbOnElmZiYACxYs4KyzzkIpdcJrW716NYGBgQQGBrJq1Sq2bt3Kpk2bhtxvSkoKp556av/zn3/+eR5//HEsFgtVVVXs2bOHrKysMf3fXXnllZjNZtra2tiyZQtXXnll/2Pd3d1j2tdQRkzOtNZVQJX9+1al1F4gEbgF+K3Wutv+WI1TIhJiijlY28b1T2+lrrWHJ6/PwaQU1/9jKy/vLOdLJ88wOjwhhBBCuJDZbGblypWsXLmSzMxMnnnmmROSM19f3/7OfyaTqb8M0mQyYbFYAPDx8cFqtfY/Z7AW7uvWreODDz7g448/JigoiJUrVw66ndaa66+/nt/85jfH3P/qq6+OqwOh1pof//jHfP3rXz/m/tLS0v7XMtxrgxM7Hyqlht1vcHBw/+1Dhw7x+9//nm3bthEZGckNN9wwZIv7gcc5fhvHPq1WKxEREeTl5Y300sdsTDPZlFKpwCLgU+B3wAql1K+ALuAHWuttTo9QCC/22ZFGbnpmOwp47tZTWZgcgdaahUnh/G1dCVcsScLHLKNnQgghhKsNN8LlKvv378dkMjFnzhwA8vLySElJGde+UlNT+dvf/obVaqWioqJ/vtZAzc3NREZGEhQUxL59+/jkk0/6H/P19aW3txdfX1/OOussVq9ezfe+9z3i4uJoaGigtbWVU045he985zvU19cTFhbGCy+8wMKFC0eM7bzzzuPee+/lmmuuISQkhIqKCnx9fcf0+l577TV+/OMf097ezrp16/jtb39LYGDgqPbb0tJCcHAw4eHhVFdX8/bbb7Ny5UoAQkNDaW1t7W9aEh8fz969e5k7dy6vvPIKoaGhJ+wvLCyMmTNn8sILL3DllVeitaagoGBU/xcjGXVyppQKAV4Cvqu1blFK+QCRwKnAUuB5pdQsex3lwOfdCtwKMGOGjAII4fDRvmq++exnxIb6868bTyY1xnY1RinFHWfO4ZZ/bef1gkq+sCjJ4EiFEEII4QptbW1861vfoqmpCR8fH2bPnt3fpGOsli9f3l8imJGRweLFi0/Y5vzzz+fRRx8lKyuLuXPnHlP2d+utt5KVlcXixYt59tln+eUvf8m5556L1WrF19eXv/71r5x66qncf//9nHbaaUyfPp3Fixf3NwoZzrnnnsvevXs57bTTAFs553/+8x/MZvOoX9/JJ5/MRRddxJEjR7j33ntJSEggISFhVPtduHAhixYtYsGCBcyaNYvly5cf87ovuOACpk+fztq1a/ntb3/LxRdfTHJyMhkZGbS1tQ0az7PPPsvtt9/OL3/5S3p7e/nSl77klORMHZdLDb6RUr7AG8C7Wus/2u97B1tZ4zr77RLgVK117VD7ycnJ0Y6uM0JMZf9v2xHueaWQ+dPD+McNS4kN9T/mcatVc+EjG+nts/Le93Ixm2SBTCGEEMLZ9u7dy7x584wOQ4zg/vvvJyQkhB/84AdGhzJmg/2MKaV2aK1zBtt+xHopZSu8fArY60jM7F4FzrRvkw74AcOvbifEFKe15pEPi7j7pV0snx3Dc7eeekJiBmAyKe44czYlte28U3jUgEiFEEIIIYS7jaascTlwLbBLKZVnv+8e4B/AP5RShUAPcP3xJY1CiM9Z+qz8bM1u/vvpES5fnMgDX8zCd5j5ZBdkTCct9gB//qiICzOnjWsCrhBCCCHEZHf//fcbHYLbjKZb4yZgqE+FX3VuOEJ4p86ePr71v8/4YG8131iZxl3nzR0x2TKbFN9cNZvvP5/PB3trOGd+vJuiFUIIIYQQRpA2cEK4WGN7D9c8+Qkf7qvm55cu4IfnnzTqUbBLFyaQHBXIXz4qQgamhRBCCCG8myRnQrhQeWMHVzy6hcLKFv72lcVcvyx1TM/3MZv4xsrZ5Jc3s7FIpnQKIYQQQngzSc6EcJE9lS1c/rct1LZ285+bTuGCzOnj2s/lixOZHh7AXz4qdnKEQgghhBDCk0hyJoQLbCmu4+rHPsZsUrx4+zJOnhk17n35+5i5LTeNraUNfHKw3olRCiGEEMJoZrOZ7OxsMjIyuPLKK+no6Bj3vm644QZefPFFAG6++Wb27Nkz5Lbr1q1jy5Yt/bcfffRR/vWvf4372A6lpaVkZGQcc9/999/P73//+zHtx1nxTDaSnAnhZGvyK7n+6a1MjwjgpduXkR5/4sryY3X10mRiQvxl9EwIIYTwMoGBgeTl5VFYWIifnx+PPvroMY+PZpHnwTz55JPMnz9/yMePT85uu+02rrvuunEdy9ksFotHxeNOkpwJ4URPbjzIt//3GYtmRPLCbctIiAh0yn4DfM3cesZMNhXXsfNIo1P2KYQQQogxePBBWLv22PvWrrXd7yQrVqyguLiYdevWsWrVKr7yla+QmZlJX18fd911F0uXLiUrK4vHHnsMsK2fescddzB//nwuuugiampq+ve1cuVKtm/fDsA777zD4sWLWbhwIWeddRalpaU8+uijPPTQQ2RnZ7Nx48ZjRrfy8vI49dRTycrK4gtf+AKNjY39+7z77rs5+eSTSU9PZ+PGjWN+jcPt+5577iE3N5c//elP/fFUVlaSnZ3d/2U2mzl8+DCHDx/mrLPOIisri7POOosjR44AttHDb3/72yxbtoxZs2b1jyROFpKcCeEEVqvml2/s4Zdv7uWCjGn868aTCQ/0deoxrjklhcggX/4qo2dCCCGE+y1dCldd9XmCtnat7fbSpU7ZvcVi4e233yYzMxOArVu38qtf/Yo9e/bw1FNPER4ezrZt29i2bRtPPPEEhw4d4pVXXmH//v3s2rWLJ5544piRMIfa2lpuueUWXnrpJfLz83nhhRdITU3ltttu43vf+x55eXmsWLHimOdcd911PPDAAxQUFJCZmcnPf/7zY+LcunUrDz/88DH3D1RSUnJMQjVwNHC4fTc1NbF+/XruvPPO/vsSEhLIy8sjLy+PW265hS9+8YukpKRwxx13cN1111FQUMA111zDt7/97f7nVFVVsWnTJt544w1+9KMfjfFMGGs0i1ALIYbRbenjrhcKbOWMp6Xws0sWYDY5f8HoYH8fbjp9Jr9/7wCFFc1kJIY7/RhCCCHElPXd70Je3vDbJCTAeefB9OlQVQXz5sHPf277Gkx2Njz88LC77OzsJDs7G7CNnN10001s2bKFk08+mZkzZwLw3nvvUVBQ0D8K1NzcTFFRERs2bODLX/4yZrOZhIQEzjzzzBP2/8knn3DGGWf07ysqavh58M3NzTQ1NZGbmwvA9ddfz5VXXtn/+OWXXw7AkiVLKC0tHXQfaWlp5A34v3QsIj3Svq+++uoh49q8eTNPPvlk/2jdxx9/zMsvvwzAtddeyw9/+MP+bS+77DJMJhPz58+nurp62NfraSQ5E2ICWrt6+fq/d7ClpJ67zz+J23JnjXoNs/G4blkqj204yF/XFvP3ry5x2XGEEEIIMYjISFtiduQIzJhhuz1BjjlnxwsODu7/XmvNn//8Z84777xjtnnrrbdG/NyhtXbqZxN/f3/A1sjEYrE4bb9w7GseqKqqiptuuok1a9YQEhIy6DYDX6MjRmDSrRMrZY1CTMAd//2MrYca+ONVC7l9ZZpLEzOAsABfbliWytuFRzlQ3erSYwkhhBBTysMPw7p1w3/ddx90dMC999r+ve++4bcfYdRstM477zz+/ve/09vbC8CBAwdob2/njDPO4LnnnqOvr4+qqirWHj8nDjjttNNYv349hw4dAqChoQGA0NBQWltP/CwRHh5OZGRk/wjVv//97/6Rrokaz757e3u56qqreOCBB0hPT++/f9myZTz33HMAPPvss5x++ulOidFoMnImxDhVt3SxoaiWb505h8sXJ7ntuF9bPpOnNh3ir2uL+dOXFrntuEIIIcSU5phj9vzzsGqV7WvgbRe6+eabKS0tZfHixWitiY2N5dVXX+ULX/gCH330EZmZmaSnpw+a6MTGxvL4449z+eWXY7VaiYuL4/333+eSSy7hiiuu4LXXXuPPf/7zMc955plnuO222+jo6GDWrFk8/fTTTnstY933li1b2LZtG/fddx/33XcfYBsxfOSRR7jxxhv53e9+R2xsrFNjNJJy51BfTk6OdnSNEWKye2ZLKfet2c0H3z+D2XETb5c/Fr95ay9PbDzIh3euZGbM4CUAQgghhBje3r17mTdv3ug2fvBBW/OPgYnY2rWwbRsMmO8kxECD/YwppXZorXMG217KGoUYpzd3VZEeH+L2xAzgphUz8TWb+Ps66dwohBBCuMUPf3jiCNmqVZKYCaeS5EyIcahp7WJbaQMXZEw35PhxoQF8+eQZvLyzgvLGDkNiEEIIIYQQziXJmRDj8G7hUbSGi7KMSc4Abj1jFkrBo+tLDItBCCGEEEI4jyRnQozDW7uOkhYbzJy4wdu5ukNCRCBXLEni+W3lVLd0GRaHEEIIMZlNtlbrYvIYz8+WJGdCjFFdWzefHqrnoszpLm+dP5Lbc2fTpzWPbzhoaBxCCCHEZBQQEEB9fb0kaMLptNbU19cTEBAwpudJK30hxujd3Uexargg07iSRocZ0UGszk7g2U8P842VaUSH+I/8JCGEEEIAkJSURHl5ObW1tUaHIrxQQEAASUljW25JkjMhxuitXVXMignmpGnu79I4mG+snM0rn1Xw5KZD3H3+SUaHI4QQQkwavr6+zJw50+gwhOgnZY1CjEF9WzefHGzggsxphpc0OsyOC+HCzOn8a0spTR09RocjhBBCCCHGSZIzIcbgvT3V9Fk1F3pASeNAd6yaTXtPH//cUmp0KEIIIYQQYpwkORNiDN7aVUVKdBDzp4cZHcox5k0P45z58Ty9uZTWrl6jwxFCHKe8sYN/bj4kTQeEEEIMS5IzIUapsb2HLSX1XOgBXRoHc8eq2TR39vLvTw4bHYoQ4jj//uQw97++hyMNsmi8EEKIoUlyJsQove8oaczwrJJGh4XJEZyRHsuTGw/R0WMxOhwhxAC7K1oAyC9vNjgSIYQQnkySMyFG6c1dVSRHBZKR6FkljQN9+8zZNLT38L+tZUaHIoSw01pTWGlLygrKmowNRgghhEeT5EyIUWju6GVzcR0XZnhmSaNDTmoUp86K4rH1JXT19hkdjhACqGzuoqnDNhe0QEbOhBBCDEOSMyFG4b09R7F4YJfGwXzrzDnUtHbzwo5yo0MRQgCFFbaELDs5gl0VzVj6rAZHJIQQwlNJcibEKLxdeJTEiECyksKNDmVEy9KiWTQjgkfXldA7ST4Elta180ZBpdFhCOESuyuaMZsUV+Uk09nbR3Ftm9EhCSGE8FCSnAkxgubOXjYW1XKhBy08PRylFN86czYVTZ288lmF0eGMyuMbD/Kt/31GfVu30aEI4XSFlS3Mjg3hlFlRABSUSWmjEEKIwUlyJsQIPtxbTW+f5oJJUNLosGpuHAsSwvjb2uJJUUJVXN2G1rCxqM7oUIRwusKKZhYkhjEzOphQfx/yy5uMDkkIIYSHkuRMiBG8tauKhPAAFiVHGB3KqDlGz0rrO3hzV5XR4QxLa82BmlYA1h+oNTgaIZyrpqWLmtZuMhLCMZkUmUnh0hRECCHEkCQ5E2IYrV29bDhQx/ke3qVxMOfOn8acuBD+8lExVqs2Opwh1bf30NTRi69ZseFArUfHKsRY7a60rW+WkWibr5qVFMHeqhbppiqEEGJQkpwJMYwP99bQ02floqxpRocyZiaT4o4zZ1NU08Z7e44aHc6QiqptzREuWZhAfXtP/3pQQngDR6fG+Qm29RGzk8OxWDV7q1qMDEsIIYSHkuRMiGG8tauKaWEBLEqONDqUcbk4K4GZMcE8ufGQ0aEMqdhe0njj8pkArN8vpY3CexRWNjMrJpgQfx/ANnIGst6ZEEKIwUlyJsQQ2rotrDtQy/kZ0zCZJldJo4PZpDjrpDh2VTTT56HlgkU1bYT6+7AgIYyspHDWybwz4UV2V7awIPHzJTimhwcQE+JPflmTcUEJIYTwWJKcCTGEj/bV0GOxToqFp4eTPi2UbouVIw0dRocyqOKaNmbHh6CUIjc9ls+ONNLc0Wt0WEJMWFNHD+WNnSywlzSCrVlPdnK4dGwUQggxKEnOhBjCWwVVxIX6k5MyOUsaHebGhwKw/2irwZEMrqimjTlxIQDkpsdi1bCpWFrqi8mvvxlIwrGL12clRXCwrp3WLrkIIYQQ4liSnAkxiPZuC2v310zqkkaH2fbEp6ja85Kzpo4ealu7+2PMTo4gLMCHdftrDI5MiIlzNAMZOHIGkJUUjtawq0LmnQkhhDiWJGdCDGLt/hq6vaCkESDY34fkqED2e2ByVlxj69Q4J842uudjNrFiTizrD9SitWfOkRNitAorW0iMCCQy2O+Y+x1NQfLLJDkTQghxLEnOhBjE27uOEhPiz9LUKKNDcYq58aEc8MDkrMienDlGzgBy58ZS09rN3irPi1eIsdhd0UxGYtgJ90cF+zEjKogCmXcmhBDiOJKcCXGczp4+PtpXw/kZ8ZgneUmjw5z4UA7WttNjsRodyjGKa9oI9DWTGBHYf19ueiwA66Vro5jEWrt6OVjXfsJ8M4espHBppy+EEOIEkpwJcZx1+2vo7O3jwozJX9LoMDc+FItVU1rfbnQoxyiqaWN2XMgx8/riwwI4aVoo6w/IvDMxeTlGfjMSB0/OFiZFUNHUSW1rtzvDEkII4eEkORPiOG/uqiI62I+TZ3pHSSNAuod2bCyubj2mpNFh5dw4tpc2Sjc7MWn1NwMZpKwRbCNngJQ2CsNsKqqjvNEzl1gRYiqT5EyIAbp6bSWN5y6Yho/Ze94es2KDMZuUR807a+3qpbK5a9DkLDc9FotVs6Wk3oDIhJi43ZUtxIX6ExcaMOjjGYnhmBTkS2mjMEBTRw83PL2Vhz8oMjoUIcRxvOfTpxBOsG5/LR09fVzkBV0aBwrwNZMSHeRRyVlJra3Ecs4gydmSlEhC/H1k3pmYtHZXNp/QQn+gYH8f5sSFysiZMMR7u6uxWDW75OKAEB5nxORMKZWslFqrlNqrlNqtlPqO/f77lVIVSqk8+9eFrg9XCNd6u7CKyCBfTp3lPSWNDraOjW1Gh9HPse7aHHvJ5UB+PiaWpUWzfr+01BeTT1dvH0U1bUPON3NwNAWRn3Fjrcmv5F8flxodhlu9uasKgKKaVjp6LAZHI4QYaDQjZxbgTq31POBU4JtKqfn2xx7SWmfbv95yWZRCuEFXbx8f7q3hPC8raXRIjw+ltL6drt4+o0MBoLi2DT8fE8mRgYM+njs3loqmTkpqPSehFGI09h1tpc+qWTBEp0aHhckRNLT3UN7Y6abIxPEeW1/Ct//3Gb98cy/dFs/43ehqTR09bC6uY05cCFYNe6tajA5JCDHAiJ9AtdZVWuud9u9bgb1AoqsDE8LdNhbV0dZt4QIvK2l0mDstFK0/X/jZaMXVbcyKCR4yEXa01F+3X0obxeTiaAYy2BpnAy10LEYtpY1up7Xm9+/u5zdv72N2XAg9Fmv/efN2jpLGu86bCyCljUJ4mDENDyilUoFFwKf2u+5QShUopf6hlIoc4jm3KqW2K6W219bKhyzhud7aVUV4oC/L0qKNDsUl0uNtc7s8Zd6Zo43+UJIig5gdFyLzzsSks7uymYgg32PW7xvM3Gmh+JlNst6Zm1mtmp+/voe/rC3mS0uT+e/NpwCwvbTR4Mjc441dVSRHBXLO/HhiQvzZVSEjZ0J4klEnZ0qpEOAl4Lta6xbg70AakA1UAX8Y7Hla68e11jla65zY2NiJRyyEC3Rb+vhgTzXnzo/H1wtLGgFSooPxM5vY7wHJWWdPH2WNHcyJO3G+2UAr02P59GCDzIkQk0phRQsZCeEoNfwi9n4+JuYlhJFX1uSewASWPit3vVjAP7eUcsuKmfzm8kziwgKYGRPM9sPen5w1tttKGi/KTEApRWZi2JQZMRRishjVp1CllC+2xOxZrfXLAFrraq11n9baCjwBnOy6MIVwrU1FdbR2W7gwyztLGgF8zSZmxQZzwAPWOiupbUNrmBM/9MgZ2Oad9fRZ+eSgtNQXk0OPxcr+o61Drm92vOykcAormumzSlMQV+u29HHHfz/jpZ3lfP+cdO65cF5/Ar0kJZIdhxu9vjnLe3uO0mfV/R2JMxPDKapppbNnasy3E2IyGE23RgU8BezVWv9xwP0DP8V+ASh0fnhCuMdbu44SFuDD8rQYo0NxqbnTPKNjo6PJx2Bt9AdamhpFoK+Z9TLvTEwSRTWt9PRZyRihGYhDVlIEHT190vjGxTp6LNz8zHbe2X2Un108n2+fNeeYkc2clEga2ns4WNduYJSu90ZBFTOigvrnQ2YkhmPVsKdKRs+E8BSjGTlbDlwLnHlc2/wHlVK7lFIFwCrge64MVAhX6bFYeX/PUc6ZPw0/H+8saXRIjw+loqmT1q5eQ+Moqm7Dx6RIiQ4edrsAXzOnpUXLvDMxaeyutM3fGW6Ns4EWJtuSuHwpbXSZ5s5erntqK5uL63jwiixuPH3mCdvkpNqmze/w4nlnje09bCmp58LM6f2JaWaS7edPmoII4TlG061xk9Zaaa2zBrbN11pfq7XOtN9/qda6yh0BC+Fsm0vqaOmycGHmNKNDcbl0+5piRQZ3bCyqaSUlOmhUyXBueiyl9R2UevkVbeEddlc0E+xnJnWECw8Os2JCCPH3kY6NLlLX1s2XH/+E/PIm/vKVxVyVkzzodrNiQogI8mX74QY3R+g+7+62lTRePKB8f1pYgDQFEcLDePcwgRCj8FZBFaH+Ppw+x7tLGsG2EDVg+Lyzopq2EZuBOKyca2skJKNnYjIorGxhQUI4JtPwzUAcTCZFZmK4dGx0garmTq567GMO1rXxxHU5XDjMMikmk2LJjEivbgry5i5bSePAUV1pCiKE55HkTExpvX1W3ttTzdnz4/H3MRsdjsslRQYS6Gs2dN5Zt6WPw/UdIzYDcUiJDiY1Ooh1+2tcHJkYTF5ZE28UVErDilHos2r2VLaMuhmIQ1ZyOHurWqbMIsjuUFrXzhV//5jalm7+deMprJwbN+JzlqRGcrC2nYb2HjdE6F4N9pLGi7Kmn9BFVJqCCOFZJDkTU9qWknqaO3uHvaLqTUwmxZz4EEPXOiut66DPqodd4+x4uemxfHywnq5e+fDgbj9+eRd3/PczLnpkI+v213h9N7uJOFTXRmdv36ibgTgsTIqgt0+zr8r4TqreYN/RFq587GM6e/v4362ncvLMqFE9LyfFtt0OLxw9e2/3sV0aB/q8KYiUNgrhCSQ5E1Pa27uqCPH3YcUUKGl0SI8PNXSts+IaR6fG0ZU1AqycG0dXr5Vtpd47H8QT1bd1s7eqhbPnxdHR08cNT2/jq099KiVQQyi0z9vJSBxjcpYcASDzzpwgr6yJqx/7BJOC579+6pjORVZSOL5m5ZXzzt7cVUVKdNCgjWocTUHkfS2EZ5DkTExZvX1W3t19lLPmxRHg6/0ljQ5z40Opbe2m0aDSnaKaVpSCWbGja5gAcMqsKPx8TKyTlvputaXEtr7cN1fN5oPv53L/JfPZW9XKxX/exHee+4yyhg6DI/QshRXN+PuYSBvDzzZAQngAMSF+5JfJh+OJ2FJSxzVPfEJ4oC8v3raM2WO4AAS27rAZieFe17GxYZAujQPZmoL4ybxHITyEJGdiyvr0YAONHb1ckDE1ShodHHO9jCptLKppY0ZU0JgS4iA/H06ZGSVNQdxsS0kdof4+ZCaG4+dj4oblM1l310q+uSrNdmHjD+v5xRt7DEv0PU1hZTPzpofhYx7bn1alFFlJERTIyNm4fbCnmhue3kZiZCAv3HYayVFB49pPTkokBRXNXjX/791hShrB9vOXkRguI2dCeAhJzsSU9eauKoL8zP3dAKeKudPsHRsNSs6Kq9tGXHx6MLnpsRTXtFHe6D2jNa/lVbClpM7oMIa0qbiOU9Oij0k2wgJ8ueu8k1j3g1V8YVEiT28+xBm/W8vf15VM6TmBVqtmd0VL/+K+Y5WVFE5xbRtt3RYnR+b9Xsur4Lb/7OCkaaH8v1tPIz4sYNz7WpISRY/F6lWJylvDlDQ6ZElTECE8hiRnYkqy9Fl5b/dRzjxpapU0gq2EJTTAx5B5Z5Y+Kwfr2sZcbgTe11LfatX89NVCHnh7n9GhDOpIfQdlDZ0sT4se9PFp4QE8cEUW73z3DE5OjeKBd/ax6vfreHFH+ZTs7FjW2EFrt4UFY2wG4rAwOQKtZTHgsfrvp0f47v/LY0lKJM/efAqRwX4T2t+SFNti1Nu9pLSxv0vjECWNDtIURAjPIcmZmJK2Hmqgvr1nyDIPb6aUYm58qCHt9I80dNDbp8c1cpYWG0JiRCDrvWTe2aH6dlq7LBRUNFPf1m10OCfYbB/RG2n9v/T4UJ66YSn/u+VU4kL9+cEL+VOys+PuSnszkPEmZ0kRAFLaOAaPrS/hnld2sWpuHM/ceDKhAb4T3mdsqD+p0UFes96Zo6RxpI7E0hRECM8hyZmYkt4qrCLQ1zyqtW+80Zz4UA5Ut7r9w3ORo1PjKNc4G0gpRe7cWDYX19FjsTo7NLfLL2sCQGtb+aCn2VxcR1yoP2mxoztXp6VF8+o3l/OXryyakp0dCyua8TEp0qeN/WcbICrYj6TIQGnKMApaa37/7n5+8/Y+Ls6azqNfXeLUCoglKVHsPNzoFRcX3iyoInWEkkb4vCnIrinyfhXCk0lyJqacPqvmncJqzjwpjkC/qVXS6DA3PoSmjl5qW907YuNooz/aD/zHy02Ppb2nzyvWISoobybIz0xUsJ/HjQZarZotJfWcPjtm2FKo4ymluDgr4YTOjt+dAp0dCytbSI8PndBi9guTI8izJ+3iRFpryhs7+Nlru/nL2mK+tDSZP31pEX4+zv0ok5MaSX17D4fq2p26X3erb+vm44NDd2kcSJqCCOE5fIwOQAh321baQF1bNxdkTjM6FMOk25uC7K9uJW4Ck+fHqqi6lcSIQIL9x/erZ/nsGHxMivUHajltiLlQk0VeWROZieFMCw9gQ1EtVqvGZBp9IuRK+4620tDew7LZ41v/z9HZ8fIlSTy2voSnNh3irV1Hue60FO44czYRQRObF+RptNbsrmjmrHkTG4lfmBTOmwVV1Ld1Ex3i76ToJq8+q2ZvVQs7DjeyrbSBHYcbqWruAuCWFTO558J5Y7p4MFo5jnlnhxuZNc4LSZ7g3d3Vti6NWaMr389MDGfDgVo6e/qm7IVLITyBJGdiynlrVxUBviZWTdGSRrDNEwI4UN3Gijnu61ZZVNPG7HHMN3MI8fchJzWSdftr+NEFJzkxMvfqsVjZU9nCDctTOWlaKK/lVbKnqmXMixe7iqOD5PLZE0uAHZ0drz01lYfeP8A/Nh/i+e1lfGPVbG4+feaYW857qqMtXdS390z4/GX1zztrZtVJU+/3U0ePhbwjTWwrbWT74QY+O9LU371yWlgAOamR5KREcvLMaOaPUKY3EWmxIYQH+rKjtJGrcpJddhxXe2uXraRx/vTR/V9lDmgK4miMIoRwP0nOxJRitWreLjzKyvS4cY/eeIOYEH+ig/04cNR9HRutVk1JbRunzZrYB/6Vc+P47dv7qG7pmlDLbCPtO9pCT5+VhUkRnDwzCrB1ofSU5GxTcR2zYoOZHh7olP05OjvetGImD7y9j9++vQ+zUtxyxiyn7N9ohRW2ZiDj7dTokJEYjlKQX940JZKzmpYutg8YFdtd2UKfVaMUzI0P5bJFCeSkRJGTGkliRKBLRskGYzIplqREsv1wg1uO5wr1bd1sKanj9pVpo/5/G9gURJIzIYwzdT+diilp++FGalu7uXCUZR7eLD0+1K3t9CuaOunqtY6rGchAuemx/PbtfazfX8tVSyfnVW1HM5CFyeHEhvqTkRjG+v21fHPVbGMDwzaqt/VQA1csSXL6vh2dHa958hOe3HSQ65alTGiOlqcorGjGpGDe9LEvETFQiL8Pc+JC+n8+vInVqimubWN7aSPbSxvYfriRI/Z5iAG+JhYmRXB7bhpLUiNZPCOS8MCJd16ciCUpkXy0r4bG9p4Jt+c3wru7q7FqRuzSOJA0BRHCM0hyJqaUt3ZV4edj4swpcFV6JHOnhfLC9jK01m65Il1UY0sEJ1LWCHDStFDiw/xZf2DyJmd5Zc3EhPiRGGEbmcpNj+XR9Qdp6eolzAntwCcWWxMdPX0sSxvffLPRuC03jWuf2sqrn1Vw9dIZLjuOu+yubGZWbAhBfhP/k5qVFMHafTVue1+60qG6dj7cW83HJfVsP9xIc2cvADEhfixJieS601JYkhLJgoRwpzf1mCjHvLMdhxs5e368wdGM3Zu7KpkZEzzqkkaQpiBCeApJzsSUYStprGJleiwhU7ik0WFOfAjtPX1UNHWSFBnk8uMV2ddVmx07sdEFpRS56bG8U3gUS591Us5bKihvYmFSRP+H79z0OP66toQtxXWcn2HsqO7m4jpMigmXnw7n9NkxZCSG8dj6g1yxJBmzhzRCGa/CihZOnRXllH0tTArnxR3lbntfOpOlz8rOI018sLeaD/ZWc7DW1u1wVmww5y+YRk5qJEtTo0iJDvL4xHNhcgS+ZsX2SZic1bd183FJ/ZhKGh0yE8PZWFQnTUGEMJB8QhVTxmdljVS3dI+pzMObze1vCtLqnuSspo24UH/CgyY+MpSbHsfz28vJK2siJ9U5H4rdpbWrl+LaNi5ZmNB/36IZEYT6+7D+QK1HJGeZieFOOU9DUUpxe+5svvnfnby/56jhr3ki6tq6OdrS5bT5ggObgkyG5Ky1q5cNB+r4YG81a/fX0NTRi69ZceqsaK4/LZUzT4ojOcrzX8fxAnzNLEgIZ8cknHf2zu6jWDVclJkw8sbHyUgMp8+qpSmIEAaS5ExMGY7FXZePsz24t5ljT872H23jzJNcf2W4qKZtwvPNHE6fE4PZ3lJ/siVnuyqa0Rqykj7/MO9rNrF8dgzr99caWs7W1m0hr6zJLY06zs+YRmp0EH9fV8J5C6Z5/EjKUHZXOqcZiMNJ00PxM5vIL2vy2AtJZQ0dfLi3mg/31fDJwXp6+zSRQb6cOTeOs+fHs2JODKEGl+c6Q05KJP/65DDdlr5JNTfyrV1VzIwJHtccyMxEaQoihNEkORNTRllDJ4G+ZmJCJt/kblcID/RlengARW5oCqK1pqSmzWlNJsIDfVmUHMG6/bXcee5cp+zTXfLLbBcJFtpHSBxy58byzu6jFNe09SfO7rb1UD0Wq+Z0N1zAMJsUt56Rxj2v7OLjkvpxr6lmNMf8HGe1dvf3MTNveij55U1O2Z8zWK2avPImW0K2t4Z99i6vabHB3Lh8JmfPj2fxjMhJX556vJzUSJ7cdIjCiskzilRnL2n8xsrZ47rgMT1cmoIIYTRJzsSUUd7YQVKk+9oxTwZz3NSx8WhLF23dFtIm2AxkoNz0WP7w/gHq2rqJmUQL9uaXNZESHXRCB7gz0m3rza0/UGtYcra5uB4/H5PbPohevjiRP75/gL+vL5m0ydnuymZSooOc2l0wKymCVz6roM+qDUt4OnosbCqylSt+tK+WurZuzCbF0tRIfnrRPM6aF8/MmGBDYnOXJSm2UfkdhxsmTXL2rr2kcbyjrtIURAjjTb6Z9EKMU3lj56Sc++BKc+NDKKppo8+qXXocRzOQOU5MzlbaFxHfWFTrtH26Q769GcjxEiMCmRMXwvoDxr2ezcV1LE2NJMDXPSVcAb5mbjp9JhuL6ibth8HCihYynFTS6LAwOYK2bgsHa9ucut+R9Fk1z209wtee3kr2/73Prf/ewduFRzktLZo/fSmbnT89h+duPY2bV8zy+sQMIDbUn5ToILaXNhodyqi9WVDFrHGWNDpkJoZTVNNGV2+fEyMTQoyWJGdiynCMnInPpceH0mOxcri+3aXHKapxfnK2ICGMmBA/1u2fPMlZTUsXVc1dLEyOGPTx3PRYPj3YQEePxb2BAbWt3ew72urSFvqDuebUGYT6+/D39SVuPa4zNHf0cqShgwWJzilpdFhon4+YX+7ehPXpzYf40cu7KKlt56unpPDfm09h573n8OcvL2J1dqJLm8R4qiUpkew43IjWrr2A5Qx1bd18crCeCzOnT6hCZGBTECGE+0lyJqaE5s5eWroskpwdJ72/Y6Nrr9AX17QSFexHtBPLD00mxRlzYtlwoNblI3/O4viwnZ08+EhL7txYevqsfHrQ/R3itpTUAbhlvtlAYQG+XHNqCm/vqqK0zrUXCZxtd5XtfDp75GxWbAjBfmYK3DjvrMdi5alNhzhlZhTr71rJzy6Zz7LZMfhOwqUqnCknJYr69h5K6zuMDmVE7xTauzRmTayRzMCmIEII95vav3XFlFHeaPvDOhlaU7uTo3viARfPOyuqbpvw4tODyZ0bS2NH76T5EJFf1oTZpJg/ffAP80tTowjwNRlS2riluJ6wAB+ntYQfixuXp+JjNvH4xoNuP/ZE7K5wdGp07siZ2WSb9+POkbPX8yupau7itnGsjeXNclJtc822l3p+S/23dtlKGk+aNrE5q9PDA4gO9uvvcCyEcC9JzsSUUN7YCSAjZ8cJ8vNhRlSQS5uCaK0pqnFNcrZiTixKMWlKG/PLm5gbHzrk4q4BvmZOmxXt9uRMa82m4jpOS4s2pAFFXFgAVyxJ4sUd5dS0drn9+ONVWNls+yDrgoY02ckR7K1socdidfq+j6e15rENJcyND2WlvTGNsJkdG0JYgA87Dnv2vDNHSeNFWRMraQRpCiKE0SQ5E1OCIzlLlpGzE6THh3LgqOuSs7q2Hpo7e50638whKtiPrKQI1h+ocfq+nc1q1eSXNQ0538whNz2WQ3XtLp8HONCRhg4qmjoNXQPw1hWzsPRZeXpzqWExjNXuyhanrW92vKykCHr6rOw76vp5P+v213Kguo2v586SUbPjmEyKJSmRbPfw5MxR0uistfGykqQpiBBGkeRMTAllDR0E+5mJmIIT2keSHh/Cobp2l12hL6qxJX5z4lzTHj43PZa8siaaOnpcsn9nKa1vp6XLMuR8M4dcexfKDW4cPdtcXA8Yu0B7akwwF2RO5z8fH6alq9ewOEaro8dCSW0bGU5uBuKQ5camII+uLyEhPIBLFia4/FiTUU5qFMU1bR79O+bNgipmxU68pNFBmoIIYRxJzsSUUN7YSVJkkFwVHsTcaaFYrJpDLmrGUOzo1Bjv/JEzgJVzY7Fq2FhU55L9O4tj/sZII2ep0UHMiApya2nj5uI6poUFMMvg9ui356bR2m3h2U+OGBrHaOytakFr5zcDcUiKDLTN+ylrcsn+HT470sinhxq48fSZU775x1Aca5x5amljbWs3nx6q56IJdmkcSJqCCGEc+U0spgRpoz80R8dGV807K6puIzTAh7hQ1ywUvTApgvBAX0PXBxuNvLImgvzMI44gKqXITY9lS0k93RbXlxRZrZotJXUsnx1j+MWLjMRwVsyJ4R+bD3l8OVWhvRmIqxqoKKXISgon38UdGx9bf5CwAB++dPIMlx5nMluYFIGPSXlsaeM7u53TpXEgR1OQXdIURAi3k+RMeD2tNRWyAPWQZsUGYzYpilyVnNW0MicuxGUf/M0mxYo5Maw/UIvVg1vq55c3kZEQPqqGG7npsXT09LHDDYvf7qlqobGjl+Wzo11+rNG4PTeN2tZuXt5ZYXQowyqsaCYmxI/4MNdcdADbvLPimjbau12z7t3B2jbe3XOUa09LIcTfxyXH8AaBfmYWJIa75f04Hm8VVJEWG8zceOeVjjuaguySkTMh3E6SM+H1WjottHbLGmdD8fcxkxodxH4XNQUprml3SafGgVbOjaO2tZu9bmieMB49Fiu7K1tYOMJ8M4fT0qLxNSu3jAY61jczcr7ZQKelRbMwKZzHN5R49Pp1hfZmIK4cbVyYHI5Vu6607ImNh/A1m7hh2UyX7N+b5KREkl/e5JbumWPhipJGh8xEaQoihBEkORNer6x/jTNJzoYyd1qoS9Y6a2zvoa6t22XNQBzOSLclFp7aUn//0VZ6LNYR55s5BPv7sDQ1yi3J2abiembHhRAfFuDyY42GUorbctMore/gncKjRoczqK7ePoqqW52+vtnxspIiAFyy3lRNaxcv7SzniiVJxLqo5Nib5KRE0m2xUljpWSNJn5c0Or+ZS2aS8U1BXsur4JktpW4p8RbCU0hyJryeLEA9svT4UA43dNDZ49w/gMW1tmYgs13UDMQhLjSABQlhHjvvLM8+b2ih/cP2aOSmx7LvaCtHm1237le3pY9thxpYnuYZJY0O5y6YxqyYYP6+vhitPW/07EB1KxardvmC3TEh/iRGBPb//DjTM1tK6e2zcsuKWU7ftzdaYl+M2tNKG98sqCQtNph0F/yONbopSGdPH/e8vIv71uzmrD+s57W8Co8uXRfCWSQ5E15P1jgbWXp8KFpDiT2ZcpaianunRheXNYItmdl5uNEj27AXlDURHew3ptHb3Lm2xYBd2VL/syNNdPb2eUxJo4PZpPh67iwKK1rYVOx5XTj7m4G4qFPjQAuTwylwcnLW1m3h3x8f5vwF05hpcIfOySIuNICU6CC2lTYYHUq/mtYuth5q4KKsBJeU1xrdFOSjfTW09/Tx/XPSCQvw5TvP5XHpXzexxQN/JwjhTJKcCa9X3thJqL8PYYEy4X0o/R0bnTzvrKimlSA/Mwnhri8pzU2PxWLVHvmHO7/ctvj0WD5AzY0PJT7M36WjgVuK6zApOGWWZ42cAVy2KJH4MH8eXV9idCgnKKxsJjTAh+Qo1/9cZyVFUNbQSUO789bYem7rEVq6LNx6hoyajcWSlEh2HG70mNHcd+0LT1/kpIWnj2d0U5A1+RXEhvrzzVWzeeNbp/PQ1QtpbO/lK09+yg1Pb3XLAu1CGEGSM+H1yho6SIwMNLxNuCdLjQ7Cz2xy+ryz4po20mJDMI2iQ+FELU6JJNTfx+NKG9u6LRTVtPUvKjxajpb6G4tqsfS5pgnBpuI6suxLEXgafx8zN50+k83F9eS7eK2vsdpd2UKGi5uBODhKYZ3VUr+3z8pTmw5xyswoFs2IdMo+p4qclCjq23sore8wOhQA3txVxey4EJeUNDoY1RSkpauXtftruShzOmaTwmRSfGFREh/emcs9F57EzsONXPCnjdz1Qj5VzZ1ujU0IV5PkTHg9xwLUYmg+ZhNpcSFOX+usuKbNLSWNAL5mE8tnx7B+f63HXNkG2FXejNYjLz49mNz0OFq6LC5Z66q1q5f88maPaaE/mC+fPIOwAB+PGj3r7bOyt6qFjETXNgNxyEwKRykoKHPO6MXr+ZVUNXdxW26aU/Y3leTY551t94DSxprWLj491MCFLujSOFBGojFNQd4tPEqPxcql2cc2OgnwNXPrGWls+OEqbj59Jq/lVbLyd+t44J19HlnSLsR4SHImvJrWmvLGDreUH0126fEh/XPEnKG1q5eq5i6XNwMZaOXcWCqbuyiqce7cuYnIH0czEIfTZ8dgUrD+gPNLNT892ECfVXvcfLOBQgN8ufa0FN7ZfZSDTp4POV4ltW30WKwubwbiEOLvQ1psiFPmnWmteWz9QebGh7LSPqdRjN7s2BDCAnzY4QGLUb9beBSt4WInLjw9mMwkY5qCrMmvJDkqkEVDXNSKCPLjJxfN58M7c7kwczp/X1dC7oNr+cemQx633IEQYyXJmfBqTR29tPf0ycjZKKTHh1LR1Emrk64+Ftc4moG4to3+QGek2z5wrveglvr5ZU3MiAoiKthvzM8ND/Jl0YxIl5Rqbi6pw9/HxGIPL227YdlM/MwmHt9w0OhQgM+bgSxwQzMQh4VJEeSXN094RHjdgVr2V7dy6xmzpMx7HEwmxZKUSLZ7QHL2RoGjpNG1v18TDGgKUtfWzZaSei5dOHKjk+SoIB66Ops3vnU68xPC+L839nD2H9fzen6lR1VQCDEWkpwJryZrnI3eXPsf+QNOGj0rqnFfp0aHhIhA0uNDWHegxm3HHElBefO4ShodctNjKShvcmpDCIAtxfWcPDOKAF+zU/frbLGh/lyZk8TLOyuobnHdsgKjVVjRTJCf2a1dDhcmh1PX1k3lBJdVeHRdCdPDA7hkofPXxJoqclKjKK5po6nDue/Hsahp7WJraYPLGoEMZERTkLd2VdFn1Vy6MHHUz8lIDOc/N53CMzeeTJCfmW/97zMu++tmPi6pd2GkQriGJGfCqzna6EtyNrK502zJWZGT5p0V17Th52MiOcq9o5Yr58ax7VAj7d0Wtx53MDWtXVQ0dbJwjM1ABjojPRatYWOR80bPalq72F/dyrI0zy1pHOjWFWlYrFb+semQ0aGwu7KZedPDMLuhyY1D/2LUE2iM8tmRRj491MBNp8/Ez0f+9I/XkhT7emcGjp69Yy9pvMjFJY0O7m4K8lpeJXPjQ/v/Jo2Wo4nSm99ewe+vXEhNazdffuITbvrnNqc3uxLCleQ3tPBqsgD16CVGBBLoa3ZaU5DimjZmxQS79UMs2EaaevqsfHLQ+CumjiYOExk5y0wMJzLI16mljY6ryad78HyzgWZEB3FxVgLPfnqE5k7jJv1brdreqdE9zUAc5k0PxdesyJ9AadnjGw4SGuDDl06e4cTIpp6FSRH4mJShpY1vFlQxxw0ljQ6OpiB73dAUpLyxgx2HG09oBDIWZpPiiiVJrP3BSu4+/yS2ljZw/sMbuPvFAo5OcPRZCHeQ5Ex4tfLGTsICfDyyVbinMZkU6fEhTrvCWFTTyhw3fXgYKCc1kiA/M+s8YN5ZfnkTZpNiwQQ+zJtNihVzYtlwoA6r1TlzKDYV1REe6Mt8NycZE/H13Fm0dVv4zyeHDYvhUH07HT19LHBTMxAHfx8z86aHjbspyKG6dt7ZfZRrT00hxF/We5yIQD8zCxLD2VFqTHJW02IrabzQDSWNDu5sCvJ6fhUAl2RNvPQ2wNfM7SvT2HDXKr62fCYvf1bOyt+v5Q/v7afXRcuTCOEMIyZnSqlkpdRapdRepdRupdR3jnv8B0oprZSaHJdgxZRS1tAho2ZjkB4fyv6jE59z1tFjobyx063zzRz8fcwsS4tm3YEawyeE55U1kR4fSpDfxD4Q56bHUtfW7ZR21lprNhfXcdqsaLePak7EgoRwctNjeXrzIbevueTg+HCa4cZmIA5ZSeHsKm8eV4L+xMaD+JpN3LA81fmBTUE5KZHklzcZ0hXwnd3uLWkEW1OQqGA/CtzQFGRNfiXZyRHMiHbe3+3IYD/uvXg+H35/JefMn8afPyrm0XWeszyHEMcbzciZBbhTaz0POBX4plJqPtgSN+Ac4IjrQhRi/GxrnMl8s9GaOy2UurbuCTefOFjbjtbubQYyUG56LGUNnYYuFqu1pqC8mezkiX+QX5Fuu/bljNLG0voOKpu7WD5n8l1Pu31lGnVtPbywo9yQ4++pbMHPbGKOG5eHcMhKiqC128LBuvYxPa+2tZsXd5TzxcVJxIUGuCi6qSUnJZJui5XCSve2lwdbl0Z3ljSCbS5XphuaghTXtLK3qoVLXdSwZkZ0EH/+8iIuzJzGX9YWU9bgGYuJC3G8EZMzrXWV1nqn/ftWYC/gaKHzEPBDQPqVCo9jW+NMFqAeizn9HRsnVtpYVNNq359RyVkcAGv3Gde18XB9B82dveNa3+x4caEBLEgIc0pytrnYtmba8jTPXXx6KKfMjCI7OYInNhzEYkBZUmFlMydND8XX7P4ZAY6fo7GWNj6zpZTePiu3rJjp/KCmqCX2xajdXdpY09LFttIGt46aObijKciavEpMyvVrt9178XzMJsX9a3a79DhCjNeY/sIopVKBRcCnSqlLgQqtdb4rAhNiohrae+js7ZMFqMdgrpOSs+KaNnxMipRo97UbH2hGdBBz40N5c1eVIceHAYtPT6AZyEC56bHsPNxIywTXodtcXEdCeIBbW8E7i1KK21emcaShg7cKj7r12FprCita3Lq+2UCz40II8jOPqbSsvdvCvz4u5bz505gVa8yFEm8UFxrAjKggth9ucOtx33Z0aXTjfDMHVzcF0VqzJr+SU2dFExfm2hHe6eGBfPfsOXy4r4b391S79FhCjMeokzOlVAjwEvBdbKWOPwF+Norn3aqU2q6U2l5ba/wEfTF1lPW30ZeRs9GKD/MnLMCH/UcnOHJW3UZqTLAhIwwOqxclsONwo2GlK3llTQT4mpxW2pmbHovFqtlSPP4ulH1WzccH61k2O2bSLkJ8zrx40mKD+fu6ErfOKSxv7KS5s5eMRGOaqJhNtvWm8sbQTv+5bWW0dFn4eu4s1wU2ReWkRLLjcKNbfwbf3FVFenyIIY2WXN0UZFdFM6X1HS4raTze15bPJD0+hPvX7Kazx5g5rEIMZVSfnJRSvtgSs2e11i8DacBMIF8pVQokATuVUtOOf67W+nGtdY7WOic2NtZ5kQsxgnJZgHrMlFKkx4dSNMGFqItr2gybb+bg+CO/Jr/SkOPnlzWRmRiOj5MS1MUpkYT4+0yotHFPZQtNHb2TpoX+YEwmxddz09hb1cKGojq3HXe3fX6RUSNnAAuTwtlT1TKqRhS9fVae2niQk2dGsWhGpBuim1qWpEZS19bDYTfNa3WUNLqzS+NAjqYgrpp3tiavEl+z4oIM97w+X7OJX6zOoKKpk7+sLXLLMYUYrdF0a1TAU8BerfUfAbTWu7TWcVrrVK11KlAOLNZau7fORIhhyALU45M+LZT91a3jviLcbemjtL7d8OQsKTKIpamRvPpZhdu7Nvb2WSmsbHHKfDMHX7OJ5bOj2XCgdtyvZ3OJLZlZNgnnmw10WXYi08IC+Pu6Yrcds7CiBbNJcdIYF8Z1poXJEfRYrKMqO36joJLK5i5uk1Ezl8hJiQJw23pnL39WYVhJI9gu3GUkhrOrwvlljX1WzesFleSmxxEe5L5lb06ZFc3lixJ5fMNBSmon3qVYCGcZzSXd5cC1wJlKqTz714UujkuICStv7CAiyJfQAFnjbCzmxofS3NlLTWv3uJ5/qK4dq4bZBpTeHG91diJFNW1OaUE/FvuPttJjsTptvplDbnocFU2d4/4gsbm4jvT4EJfP6XA1Px8TN6+YyScHG/jsiHs+HBdWNjMnLoQAX7NbjjcYR7I/Ummj1prH1h8kPT6ElfbmOMK55sSFEBbgww43zDsrrWvnTx8UkZsea0hJo0NmYhgHqlud3hRk66EGqlu6J7Tw9Hj9+MJ5BPia+dlrhYYvvSKEw2i6NW7SWiutdZbWOtv+9dZx26Rqrd1XXyLEKJQ1SBv98UifYFMQR0nkbA9oQHBR5nR8TIrX8txb2uhoBpLt5OTsDHtL/fEssN1t6WNbaQPL0iZvSeNAXz55BuGBvjy63vXrFdmagTQbWtIItiqAyCDfETs2rjtQy76jrdx6RhqmSbSW3WRiMikWp0Sy3cUdG/usmrtezMfHrPjtFzNdeqyRZCZGuKQpyJr8SgJ9zZw9z/0XEmJD/bnrvLlsLq7njQLjGkgJMZBxs/WFcLHyxg6SIqQZyFil29vfj7cpSHFNGyYFs2KN7wYYGezHyrmxrMmrpG8ci/eOV35ZE1HBfk6/OJAUGcTsuJBxzTvbebiJrl7rpJ5vNlCwvw/Xn5bCu7urKa6ZWAObkdS0dlPX1mNYMxAHpRRZSREjdmx8bH0J08IC3NZcYarKSYmkqKaNpo6JrQs5nKc3H2JbaSP3X7KA6eHGXmx0RVOQHouVtwurOGd+PEF+Pk7b71hcc0oKGYlh/OKNPbROsBuuEM4gyZnwSp+vcSYjZ2MVHeJPTIjfuEfOimvamBEVZGj510CrsxM52tLF1kPua3udX9ZMVlK4Szoi5qbH8umhhjF3GNtcXIfZpDhlVpTTYzLK9ctSCfA18dj6gy49jqMZSEaisSNnYJt3dqC6lY4ey6CP55U18cnBBm46fSZ+PvIn3pWW2Oed7XRRaW1xTSsPvrufs+fFc/nixJGf4GKuaAqyqbiWpo5eQy8kmE2KX16WSW1bNw9/IM1BhPHkN7fwSnVtPXRbrCRHycjZeKTHh7J/nB0bi2pamR1n/Hwzh7PnxRPsZ+a1vAq3HK+t28KBmlanNgMZKDc9lh6LlU8Oja2l/uaSOhYmhXvVHMzoEH+uzknm1bwKqpo7XXacwooWlIJ5040dOQNbx0artsU0mMc3lBAa4MOXTk52c2RTT3ZyBD4m5ZLSRkuflTufzyfYz8yvL8/wiKUvXNEUZE1eJeGBvpyRbmw37+zkCL588gz+uaXUZWu5Ga2x3XUjvMK5JDkTXkna6E9MenwoxdWtWMdYCtjbZ+VQXTtz4o2fb+YQ6GfmvAXTeGtXFd0W169nU1jRjNbOn2/mcPLMKAJ8Tawfw7yzlq5e8suaWO4lJY0D3bxiFlYNT2485LJjFFY0MzMmmBB/Y8quBsqyJ/2DzTsrrWvn7cKjXHtqilcl4Z4q0M/MgoQwl3RsfGzDQfLLm/nFZRnEhXpOA5/MxDCKnNQUpLOnj/f2VHNBxjSPGOX94XlzCQ/05aevFo75b5+nau7s5T+fHGb1XzZx7sMbsPSNvAyHMJ7x7wYhXEAWoJ6Y9PhQ2nv6qGga22jE4foOevu0RzQDGWj1okRauiys3Tf+NcJGK9/eSS8ryTUlcAG+Zk6dZWupP1qfHmzAqvGaZiADJUcFsTo7gac3H+LxDa5ZmHp3ZQsZBjcDcYgN9ScxIpD8QeadPbHxIL4mEzcsT3V/YFPUkpQo8suaRrX23GjtqWzh4Q8OcFHWdC7O8qx5g5mJ4Vic1BTkw33VdPT0eczcyIggP350wUnsONzIizvLjQ5n3KxWzZaSOr73//I4+Vcf8NNXC+m2WLk9Nw2LlySd3k6SM+GVZORsYuZOsyVXY513VlxjK4X0pJEzgOVp0cSE+LmltLGgvJnkqECiQ/xddozc9FgO1rVzZJQL4G4uriPA18TilAiXxWSk/1udwfkZ0/j1W/u447+f0d49+Hys8Who76GiqZMFCcaXNDpkJYWfMHJW29rNCzvK+eKSRI8aafF2OamRdFus/fMSJ6rHYuXOF/IJD/TjF6sznLJPZ3LMu3RGU5A1eZXEhfpzyizPWXfxisVJLEmJ5Ldv73NpoxdXqGjq5JEPi8j9/Vq+8sSnfLC3mqtyknn9jtN5+zsruPH0mR4zF1wMT5Iz4ZXKGzuJCvYj2APKkCYjx1o6+8ecnNm2T/OwkTMfs4mLsxL4cF8NLS7uxpVX1uSy+WYOufb5GeuLRjd6trm4jqWpUfj7eOcf5hB/H/76lcX8+IKTeLuwisv+upmDTlpU1pOagThkJUVwuL7jmDkk//q4lN4+KzevkEWn3SknJRKAHU4qbfzLR0XsrWrhN5dnEhXs55R9OlNiRKBTmoI0d/aybn8tF2clYPag5R5MJsUvL8ugubOXB9/db3Q4I+rq7eP1/EqufepTTn/gI/74/gFmRAXxpy9ls+0nZ/OLyzLIdFFzKuE6kpwJrySdGicmLMCX6eEB/WuWjVZRTRuJEYEemRSvzk6gx2LlncKjLjtGbWs3FU2dLk/OZsYEkxwVOKp5Z9UtXRTVtHlNC/2hKKX4em4a/7rxFOrauln9l828v6d6wvt1NN7wpJGzhfaS2QL7B+T2bgv/+vgw586P97gLI94uLiyA5KhApzQFyS9r4q/rSrh8cSLnzI93QnTO56ymIO8WHqWnz2rIwtMjmTc9jOtPS+V/W4+MuOC7UQormrnvtUJO+fWHfOt/n3Gwtp1vnzmHjT9cxbM3n8rq7EQZJZvEJDkTXqm8oUOSswlKjw8d81pnRdVtHlfS6JCdHEFKdJBLSxsdpWYLXdQMxEEpRW56LFtK6kac67KlpA7AK5uBDOb0OTG8/q3TSYkJ4pZ/beeP7x+Y0OT+wspmkiIDiQjynFGMjKRwlIIC+wfH/7etjObOXr6em2ZsYFNUTkoU2w83Tmi+Y1dvH3e+kE9siD/3XbLAidE5nzOagqzJryQlOqj/QoOn+d45c4gN8eenr+5y6xqZw2ls7+Gfmw9x4Z82cvGfN/G/bWXkpsfyn5tOYeMPV/G9c9KlQ7WXkORMeB2rVVPe1CnNQCZo7rRQimvbRv2Hqc+qKaltY06cZyZnSilWZyeypaSe6pYulxwjv6wJk8ItixXnpsfR0dPH9sPDr9+2qaieiCBf5ntAG3h3SYoM4sXblnHFkiQe+bCIm57ZRnPH+MpZd1c0e0wzEIewAF9mxQSTX95Eb5+VpzYd4uTUKBbPiDQ6tClpSUokdW3dHGkY3RzQwTz0/gGKa9p44IoswgM9u9OmoynIvjFevHOoae1iS0kdl2QleGy5XWiALz+9eD6FFS3899PDhsXRZ9VsOFDLHf/dySm//pD7X9+DyQS/WL2AbfeczSNfXsTpc2IweVBpqJg4Sc6E16lr66bHYiVZRs4mJD0+lB6LlcP17aPavryxg26LldkempwBXJadgNbwen6lS/afX95MenwoQX6uL+s8LS0aX7Ni/TBdG7W2de1alhY95f54B/ia+d0VWfzysgw2FddxyV82jbnDXEtXL6X1HW5JtsdqYVIE+eXNvFFQSUVTJ1/PlblmRslJtSXF4y1t3F7awOMbD/Llk2f0zyf1ZI75l+Odd/ZWQRVWjUeWNA50SdZ0lqVF8+C7+6lt7XbrscsaOvjje/tZ8cBHXPePrWwqruMrp8zgzW+fzhvfWsG1p6USHuTZSbwYP0nOhNeRNvrOkR4/to6Njk6NnrQA9fFmxYaQlRTOa3nOT8601uSXN7lsfbPjhfj7kJMSNey8s4N17VQ1d02ZksbjKaX46qkpPHfraXRb+rj8b1vGVNa6t9I+38yDmoE4ZCWFU9vaze/fPcCcuBBWzY0zOqQpKz0ulNAAn3Gtd9bRY+EHL+STGBHITy6a54LonC8xIpDIIF92DbLW3misya/kpGmhpMd77t8KsP3++L/VGXT19vGbt/e65Zjdlj4efGcfK3+/jj+vLWZOfCh//cpiPr3nLO6/dAELPGwUX7iGJGfC60gbfeeYHReCUrD/6OiaghT1J2eeO3IGcOnCBHZVNFPipG5+DkcaOmjq6HX5fLOBcufGsu9o65BlmluK7fPNvHB9s7FYkhLJ6986nczEcL7zXB6/eGMPvaNYjLXQnpx5WlkjfD6vsaKpk1vPmDXlRkY9icmkWDwjkh0jlBgP5sF39lNa38HvrljoEYucj4ZSisykiHE1BSlr6GDnkSYu8ZC1zUYyOy6EW1bM4uWdFXx6sN6lx8ora+LiRzbxt3UlfGFRIpvvPpNnbjyZi7Kme22nXTE4Sc6E1ym3j5wlSnI2IUF+PsyIChr1yFlRdRvxYf4eP1/i0oUJmBS89plzG4PkuXjx6cH0t9QforRxc3E9iRGBpETLKHJcaADP3nIKNyxL5alNh/jqk5+OWKq0u6KZ+DB/YkNdt2bdeM2bHoaPSTEtLIDV2YlGhzPl5aREcqC6bUxzG7eU1PHPLaXcsCyV09I8Z62v0RhvU5DXC2xVC56y8PRofOvMOSRGBHLva4WjuqgzVl29ffzmrb1c/rfNtHVb+OfXlvL7KxeSECGfYaYqSc6E1ylv7CA62M8t8368XXp86BjKGluZ48EljQ5xYQEsS4vh1bzKCXVXO15+WTMBvia3luqcNC2UuFD/QZOzPqttvtny2dEeO+ne3XzNJu6/dAEPXb2Q/PImLvnzJj47MnQpWmFls8eWEQX4mvnOWXP4+eoF+PnIn3KjLbHPO9s5zM/TQK1dvdz1QgEzY4K5+/yTXBmaS4y3KciavEoWzYiYVF0FA/3M3HfJfA5Ut/HPzaVO3feOww1c+KeNPLbhIFcvncF73zuDlVKiPOXJb3ThdcobO0maRL/4PVl6fAiH6trptgx/dVRrTXFNm8eXNDqszk7gSEMHnzlxDZv88iYyEsLxNbvv16qjpf6mojosx13R3V3ZTEuXZcrONxvOFxYl8dLty/D1UVz92Cf899MjJ2zT2dNHcU0bGR60vtnxvnXWHM5bMM3oMAS2pTrMJjVi91SHX7+1l6rmTn5/ZRaBfpOvZG08TUEOVLey72jrpBo1czhnfjxnnRTHQx8coKq5c8L76+zp4/9e38MVj35Mt8XKf246hd9cnklogGdXngj3kORMeJ0yWePMadLjQ7FYNYfqhu/YWNXcRXtP36RJzs7PmIafj4k1TmoM0ttnZXdls1vnmznkzo2lubOX/PJjPyRtss83WzbF55sNZUFCOK/fcTqnpkVzzyu7+NFLBceUaO092oJVe2YzEOF5gvx8WJAQNqqOjev21/C/rWXccsYslqREuSE653M0BSksH31ytiavEpOCi7KmuzAy11BKcf+lC+izan75xsSag3x6sJ7z/7SBf2w+xFdPSeHd753B6XPk97T4nCRnwqtYrZqKpk5Jzpxk7jRbid5Ii1E7moF46hpnxwsN8OXseXG8UVB5wojTeByobqWr12pIcnb67BhM6sR5Z1uK6zlpWqhHzpfyFBFBfjx9w1LuWDWb57aVcfVjH1PZZLsqvts+IpAhyZkYpSUpkf1rzw2luaOXu18qYE5cCN87O92N0TmXUoqMxPBRj5xprVmTX8mytBjiQgNcHJ1rJEcFcceq2by5q4oNwyxhMpT2bgv3vVbI1Y9/gtbwv1tO5ReXZUyaRjDCfSQ5E16lprWb3j4tbfSdZGZMMGaToqh6+M6GRfZ5aXM8vDXyQKuzE6lr6+kfYZqI/DLbB5TspIgJ72usIoL8yE6OOCY56+rtY1tpg4yajYLZpPjBeXN57NollNS2c8mfN7GlpI7CihYig3xJCJ+cHySF+y1NjaKr18ruyqG7GP789d3UtfXwx6uyCfCdfOWMA2UmhtsvTI3cFCS/vJkjDR2TsqRxoFtzZzEzJpifvVY4pmYoW4rrOO/hDfzrk8N8bXkq73x3xaRrAiPcR5Iz4VUcbfRlAWrn8PcxMzMmmP0jNAUprmkjOtiPqGA/N0U2cSvnxhIW4OOUNc/yy5qIDPIlOcqYn7vc9DgKyptoaO8BYOfhRrotVpbPlj/+o3Xegmm8dsdyIoP9uPaprbxdWEVGYrg0UxGjlpPiWIx68Hln7+4+ysufVfDNVbPJdGNXV1fJShp9U5A1eZX4mU2clzG550j6+5j5+aULKK3v4PENB0fcvrWrl3te2cVXnvwUX7OJ579+GvddskAalolhSXImvEpZ/xpnMnLmLHNH0bGxqKaNtElS0ujg72PmoqzpvLv7KB09lgntK7+8iaykCMM+yOfOjUVr2FhkGz3bVFyH2aQ4ZZYkZ2ORFhvCq99czrnz42npskhJoxiTuLAAkqMCB5131tDew09e2cX86WHcsWq2AdE532ibgvRZNW8UVJI7N9bjl1oZjTPSY7koczp/XVvMkfqOIbfbcKCW8x7awHNbj3DrGbN4+zsrWJo6OecYCveS5Ex4lfIG23wRmXPmPOnxoRxp6KCzZ/ASDq01RdWtk2a+2UCrsxPp6Onjg701495HR4+FA9Wthsw3c8hMDCcyyLe/tHFzST3ZyREyl2EcQvx9+Ns1i3nq+hxuOyPN6HDEJJOTEsX2w40nLNNx76uFNHf28serF3rN0gejbQry6aF6alq7J31J40D3XjwfH5Pi/td3n3Cumzt7+eGL+Vz3j60E+pl58fZl3HPhvElfxircxzt+QwhhV97YSUyIv/wSdKL0+BC0tpUuDqa2rZuWLsukTM5OTo1ienjAhBakLqywdfXLTjZulMVsUqyYE8uGA3U0dfSwq7xJWuhPgFKKs+bFEx40+a/yC/dakhJJXVs3Rxo+H1F5Pb+SN3dV8d2z0zlpmucuzTBWo20K8np+JUF+Zs6eF++myFxvWngA3z07nY/21fD+nur++z/aV815D23gxR3l3L4yjTe/vYLFMyINjFRMRpKcCa9S3tRh2Lwfb5Xu6Ng4RGljsb1ZyGRqBuJgMikuXZjA+gO1/fO1xirfvlZalgHNQAbKTY+lrq2bf2wuxaphuUw2F8LtclId885spY01rV3c+1ohC5Mj+PoZs4wMzSVGagrSY7Hy1q6jnDM/flKu5zacG5anMjc+lJ+/voeq5k6+/3weN/5zO+GBvrz6zeXcff5JcqFYjIskZ8KrlDV0ynwzJ0uJCsLPxzTkvLPJ1kb/eKuzE7FYNW/uqhrX8/PKm0iKDCQmxNiW9SvSbSNlT2w4SKCvmUVytVYIt0uPCyU0wKe/tPGel3fR2dPHH65ciI8bF6h3l8zE4ZuCbDhQS3Nnr1eVNDr4mk384rIMKpo6OePBtazJq+TbZ85mzbeWG36xTkxu3vebQkxZfVZNpaxx5nQ+ZhOzY0OGSc5aCQ3wmbTrac2bHkp6fMi4Sxvzy5pY6AF/iONCA1iQEEZnbx8nz4zymnktQkwmJpNi8YxIdhxu4KWdFXywt4a7zpvL7El68Wokjq6TQ5U2rsmvJDzQlxVzYt0ZltucPDOKG5fPJDMxnNfuWM73z52Lv4+MlomJkb/ewmtUt3RhsWpJzlwgPT6EA0NcGS2qbmNOXMikbTmulGJ1diLbDzdS1jB0563B1LV1U97YyUID55sNlJtu+wB0usw3E8IwOSmRHKhu4+drdnNyqu3Du7carilIR4+F9/dUc2HmNK++WPSzS+bz8jeWsyDBM/4OiMnPe98tYsopb7R1akyWskanS58WSmVzFy1dvSc8VlzTxpy4yTffbCBHyc2a/LGteVZQ3gTgESNnABdlTScmxJ+z53vPxHshJpsl9nlnFqvmd1dmYTJNzgtXozFcU5AP9tbQ2dvHJV5Y0iiEK0lyJrxGef8aZzJy5mxz7c0+io4rbWxo76G+vYc58ZO7ZCc5KoiclEhey6s4oS3ycPLLmjEpPGY9rAUJ4Wz/6dnMjAk2OhQhpqxFyZHMig3m56sXkBLt/e/FoZqCrMmrJD7Mn1NmSnMiIcZCkjPhNcrsa5wlREhy5mzp9uTsQPWx7fQd7fW9YT7F6kWJHKhuY2/V8AtuD5Rf3kR6fCjBsp6YEMIu0M/MR3eu5KqcZKNDcQtHU5D9A0rfmzt6WX+ghouzEjB78cihEK4gyZnwGuWNHcSFyhpnrpAYEUiQn/mYP75gawYCk7ON/vEuypyOj0nxWt7oGoNorT2mGYgQQhjFUTkwsLTxnd1V9PZpr+zSKISrSXImvEZ5YyfJUTLfzBVMJsWc+NATOjYWVbcR5GcmITzAoMicJyrYj9z0WNbkV2K1jlzaWNbQSWNHL1ke0gxECCGMkBQZSESQL7sGNAVZk19JSnQQWUny+1GIsZLkTHiN8qYOmW/mQnPjQwYta5w9iTs1Hu/S7ASqmrvYWtow4rZ5HtYMRAghjKCUInNAU5Ca1i4+Lqnn0oUJXvO3QQh3kuRMeAVLn5XKpi5JzlwoPT6UurZu6tu6++9zJGfe4pz58QT5mUdV2phf1oS/j4m50yZ/SacQQkzEwKYgbxZUYdVISaMQ4yTJmfAKR1u66LNqkqSNvssc3xSkpauXoy1dk76N/kBBfj6ct2AabxZU0W3pG3bbgvImMhLD8TXLr1EhxNQ2sCnIa3mVnDQt1CvmIgthBPlUIbyCY40zGTlzHccIkWPemaNT4xwvGjkDWJ2dQEuXhXX7a4fcxtJnZVdFs5Q0CiEEnzcFeauwiryyJi7NllEzIcZLkjPhFWQBateLC/UnPND38+Ss2nva6A90+uwYooP9WJM39ILUB6rb6Oq1slCagQghRH9TkKc3lwJwSZYkZ0KMlyRnwiuUNXSgFEyPmPxdAz2VUor0+JD+5KyophU/H5PXdcj0MZu4OGs6H+ytprWrd9Bt8qUZiBBC9HM0BemxWFk8I8Lr/i4I4U6SnAmvUN7YSXxoAP4+ssaZK6XHh7L/aCtaa4pq2kiLDfHKBUZXL0qk22LlncKjgz6eX9ZEeKAvKdHyAUQIIcA27wykEYgQEyXJmfAK5Y3SRt8d5k4LpaXLQnVLN8U1bV4338xhUXIEKdFBvDZEaWNeWRMLkyOkTbQQQtidNS+e9PgQLpHkTIgJkeRMeAVZgNo9HB0b88qaKG/s9NrkTCnF6oUJbCmpo6al65jHOnosFNW0kS2LqwohRL8lKZG8971cokP8jQ5FiElNkjMx6fX2Walq7pSRMzdwJGdvF1YB3tcMZKBLsxOxani9oOqY+3dXttBn1SxMjjAmMCGEEEJ4LUnOxKR3tLkLq5Y2+u4QFexHTIg/H+ypBmBOvPcmZ7PjQshIDDthQer8siYAsqQZiBBCCCGcTJIzMemVNXYAyALUbjJ3WgjtPX34mBQp0cFGh+NSl2UnUlDezMHatv778sqaSIwIJDZUSneEEEII4VySnIlJT9Y4c685cbbSxpkxwfiavftXyCULE1AKXh3QGCS/vEnWNxNCCCGES4z4yUoplayUWquU2quU2q2U+o79/l8opQqUUnlKqfeUUtKeRxiivKEDk4Jp4bLGmTvMnWZLzry5pNEhPiyAZWnRvJZXgdaa+rZuyho6ZX0zIYQQQrjEaC57W4A7tdbzgFOBbyql5gO/01pnaa2zgTeAn7kuTCGGVt7YybSwAPx8vHsUx1M4moLMto+gebvV2Ykcru8gv7yZgopmAGkGIoQQQgiXGPHTrNa6Smu90/59K7AXSNRatwzYLBjQrglRiOGVN3bKfDM3WpAQxoo5MZwzL97oUNzi/Ixp+PmYePWzCvLLmjCpzxdbFUIIIYRwJp+xbKyUSgUWAZ/ab/8KuA5oBlY5OzghRqO8sYNT06KNDmPKCPA18++bTjE6DLcJC/DlrJPieKOgknnTw5gTF0qw/5h+dQohhBBCjMqo68CUUiHAS8B3HaNmWuufaK2TgWeBO4Z43q1Kqe1Kqe21tbXOiFmIfj0WK0dbumTkTLjU6uxE6tp62FhUR5YsPi2EEEIIFxlVcqaU8sWWmD2rtX55kE3+C3xxsOdqrR/XWudorXNiY2PHH6kQg6hq7pQ1zoTLrToplrAA22iZzDcTQgghhKuMplujAp4C9mqt/zjg/jkDNrsU2Of88IQYnqONviRnwpX8fcxcmDkdgGxJzoQQQgjhIqOZOLEcuBbYpZTKs993D3CTUmouYAUOA7e5JEIhhlFuX4Ba1jgTrnZbbhrhgb7Mmx5mdChCCCGE8FIjJmda602AGuSht5wfjhBjU97YidmkmC5rnAkXS40J5scXzjM6DCGEEEJ4MVkYSkxqZQ0dTAsLwMcsP8pCCCGEEGJyk0+0YlKzrXEm882EEEIIIcTkJ8mZmNRkAWohhBBCCOEtJDkTk1a3pY/q1i6So2TkTAghhBBCTH6SnIlJq7KpC62RkTMhhBBCCOEVJDkTk5ajjb7MORNCCCGEEN5AkjMxackC1EIIIYQQwptIciYmrfLGDnxMimlhssaZEEIIIYSY/CQ5E5NWWUMn0yNkjTMhhBBCCOEd5FOtmLTKGztIipBmIEIIIYQQwjtIciYmLVmAWgghhBBCeBNJzsSk1NXbR01rN8lRMnImhBBCCCG8gyRnYlKqaJJOjUIIIYQQwrtIciYmpc/b6MvImRBCCCGE8A6SnIlJSRagFkIIIYRXefBBWLv22PvWrrXdL6YMSc7EpFTe2ImvWREva5wJIYQQwhssXQpXXfV5grZ2re320qXGxiXcysfoAIQYj7KGDhIiAjGblNGhCCGEEEJM3KpV8NxzcPHF8PWvw7//Dc8/b7tfTBkyciYmJWmjL4QQQgivEx8PPT3w0EOwerUkZlOQJGdiUipv7JQFqIUQQgjhXWprITQUwsPhqafg7ruNjki4mSRnwim2lTbw0PsH0Fq7/FhdvX3UtXWTHCUjZ0IIIYTwEo45Zi+9BMXFsGiRrRnI5ZdDb6/R0Qk3keRMTFhRdSs3Pr2NP31YxM4jjS4/nrTRF0IIIYTX2bbt8zlmMTGwdStccQW88gqccw7U1BgdoXADSc7EhNS3dXPjM9vw9zUT5Gfmhe3lLj9mmbTRF0IIIYS3+eEPj51j5uMDL7wA//kPfPop5OTAjh3GxSfcQpIzMW7dlj6+/u8d1LR088R1S7ggYzpvFFTR0WNx6XFl5EwIIYQQU8Y118DmzaAUnH66rYuj8FqSnIlx0Vrz45d2sf1wI3+4aiGLZkRyZU4Sbd0W3ik86tJjlzd24Gc2ERfq79LjCCGEEEJ4hMWLYft2OPVUuO46+P73weLai+HCGJKciXH527oSXv6sgu+fk87FWQkAnDIzihlRQS4vbSxv7CQxMhCTrHEmhBBCiKkiNhbeew++8x1bq/3zzoO6OqOjEk4myZkYs7d2VfG7d/ezOjuBb505u/9+pRRXLEni44P1lDV0uOz45Q0dMt9MCCGEEFOPry88/DD885+2UsecHMjLMzgo4UySnIkxyS9r4vvP57F4RgQPfDELpY4dvfrikiSUghd3uG70TBagFkIIIcSUdv31sHEj9PXBsmXwv/8ZHZFwEknOxKhVNnVy87+2ExPiz+PX5RDgaz5hm8SIQJanxfDijnKsVuevedbRY6G+vUeagQghhBBialu61DYPLScHvvIVuOsumYfmBSQ5E6PS3m3h5me209nTx1PXLyUmZOhmHFfmJFHR1MknB+udHkdFf6dGGTkTQgghxBQXHw8ffADf/Cb8/vdw4YXQ0GB0VGICJDkTI+qzar7zXB77jrbw568sYu600GG3P2/BNEIDfHjBBaWNn69xJiNnQgghhBD4+cFf/gJPPQXr19tG0goKjI5KjJMkZ2JED76zjw/2VvOzi+ezam7ciNsH+Jq5ZGECbxdW0dLV69RYHGucJcvImRBCCCHE5268ETZsgO5uOO00eP55oyMS4yDJmRjW/9t2hMc2HOTaU1O4flnqqJ935ZIkunqtvFlQ5dR4yhs78fMxDVtWKYQQQggxJZ1yCuzYAdnZcPXV8OUv25qGOKxdCw8+aFh4YmSSnIkhfVxSz09eKWTFnBjuu2T+CZ0Zh5OdHMHsuBBe2F7m1JjKG21t9GWNMyGEEEKIQUybZkvCLr4YnnvOtnB1Y6PtvquusjUSER5ryidnpXXt7DgsEyePd6iundv+s4PUmGD+8pXF+JjH9qOilOLKJUnsPNJEcU2b0+Iqa+iU+WZCCCGEEMPx84PXX4fvf9/W0TE9Ha680lbquGqV0dGJYUzp5ExrzTee3cldLxZg6bMaHY7HaOro4aZ/bsOk4B/XLyU80Hdc+/nC4kTMJuXUNc8cI2dCCCGEEGIEf/gDXHMN1NVBSookZpPAlE7OlFJ8+6zZHKxt59W8SqPD8Qi9fVZu/89Oyhs7efy6HGZEj3+UKi40gJXpsby8s9wpyW9bt4XGjl5JzoQQQgghRmPtWnj3XVuDkJ074Te/MToiMYIpnZyBre37goQw/vThAXosU3v0TGvNva8W8vHBen5zeSZLU6MmvM8rc5Koae1mY1HdhPdV0d+pUcoahRBCCCGG5Zhj9vzztu9nzYKf/ARefdXoyMQwpnxyppTiB+fOpayhkxd2OLd5xWTz1KZDPLetjG+uSuOLS5Kcss8zT4onKtjPKf+3ZQ2ONc5k5EwIIYQQYljbtn0+x8zf35aUmc1w772gtdHRiSFM+eQMYOXcWBbPiOAvHxXT1ds38hO80Ad7qvnVW3u5MHMad54z12n79fMxsTo7gQ/21NDY3jOhfZXLAtRCCCGEEKPzwx8eO8csMxN+/WsoLIR//9u4uMSwJDnDNnp257lzqWru4n9bjxgdjtvtqWzh2899RmZiOH+4MtvpbeqvXJJMT5+V1/IqJrSf8sZOAnxNxIT4OSkyIYQQQogp5PvfhxUr4FvfgiNT7zPvZCDJmd2ytGhOnRXFX9eW0NFjMToct6lp6eLmZ7YRHujLk9flEOhndvox5ieEsSAhjBcm2LWxvNHWRn8s660JIYQQQgg7sxmeeQasVrj+etu/wqNIcmbnGD2ra+vmXx8fNjoct+jq7eOWf22nqbOXJ6/PIS4swGXHunJJErsrW9hT2TLufZQ3SRt9IYQQQogJmTkTHnkE1q2Dhx82OhpxHEnOBliaGkVueiyPri+htavX6HBcymrV3Pl8PgUVzTx8dTYLEsJderzV2Yn4mU0TagxiW4BakjMhhBBCiAm54QZYvRruuQd27zY6GjGAJGfHufPcdJo6enl6c6nRobjUwx8c4M1dVfz4gpM4d8E0lx8vMtiPs+fH8Vpe5biWLGjp6qW5s1eagQghhBBCTJRS8PjjEB4OX/0q9EysaZtwHknOjpOVFMG58+N5YsNBmjq88wd1c3Edj3xUzFU5SdyyYpbbjnvlkmQa2nv4aF/1mJ8ra5wJIYQQQjhRXBw88QTk5cH99xsdjbAbMTlTSiUrpdYqpfYqpXYrpb5jv/93Sql9SqkCpdQrSqkIl0frJt87J53WbgtPbDxodChO195t4e6XCpgZE8z/rc5wa3ONFXNiiAv154XtY28MUm5PzqSsUQghhBDCSS69FG68ER54ALZsMToawehGzizAnVrrecCpwDeVUvOB94EMrXUWcAD4sevCdK9508O4OGs6T28upa6t2+hwnOp37+6noqmTB6/IIsDX+Z0Zh+NjNnH54iTWHailprVrTM+VBaiFEEIIIVzg4YchJQWuvRba2oyOZsobMTnTWldprXfav28F9gKJWuv3tNaOnvOfAEmuC9P9vnt2Ol29fTy6rsToUJxm66EG/rmllOtPS2VpapQhMVyZk0SfVfPKzrGteVbe2Emgr5moYFnjTAghhBDCaUJDbe31Dx2CO+80Opopb0xzzpRSqcAi4NPjHroReHuI59yqlNqulNpeW1s7riCNMDsuhC8sSuLfnxymumVsozyeqKu3j7tfKiApMpC7zptrWBxpsSEsnhHBCzvK0VqP+nnljbY2+rLGmRBCCCGEk61YAXfdZWsS8sYbRkczpY06OVNKhQAvAd/VWrcMuP8n2Eofnx3seVrrx7XWOVrrnNjY2InG61bfOWsOfVbNX9cWGx3KhD30wQEO1bXzwBezCPb3MTSWK3OSKa5pI6+sadTPKW/sJDlKmoEIIYQQQrjE//0fZGXBzTfDJBpQ8TajSs6UUr7YErNntdYvD7j/euBi4Bo9lmGQSWJGdBBXLU3mf1uPUN7YYXQ445Zf1sQTGw7ypaXJLJ8dY3Q4XJw1nQBfEy/sGH1jkLJGWYBaCCGEEMJl/P3h3/+Gxka47Tbwvo/2k8JoujUq4Clgr9b6jwPuPx+4G7hUaz15M5cR3LFqNgrFnz+cnKNn3ZY+7noxn7jQAO65aJ7R4QAQGuDLBRnTeT2/kq7evhG3b+7spbXLIsmZEEIIIYQrZWXBL38JL79sS9SE241m5Gw5cC1wplIqz/51IfAXIBR4337fo64M1CgJEYF85ZQZvLiznEN17UaHM2Z/XVvCgeo2fvWFDMICfI0Op9+VS5Jo7bLw7u6jI27rGLWUBaiFEEIIIVzs+9+3zUG74w44fNjoaKac0XRr3KS1VlrrLK11tv3rLa31bK118oD7bnNHwEb4xqo0fM2KP31wwOhQxmRPZQt/W1vMFxYlcta8eKPDOcaps6JJigzkxVGUNpbLAtRCCCGEEO5hNtu6N2oNN9wAVqvREU0pY+rWOFXFhQZw/bJUXsuvpKi61ehwRqW3z8pdL+YTEeTLzy6eb3Q4JzCZFF9cnMSm4joqmjqH3VbWOBNCCCGEcKOZM+FPf4J162zroAm3keRslG47I41gPx8emiSjZ49vOMjuyhZ+sTqDSA9dG+yKJUloDS+PMHpW3thJsJ+ZiCDPKcsUQgghhPBqX/saXHop3HMPFBYaHc2UIcnZKEUG+3Hj6TN5a9dRCiuajQ5nWMU1rfzpgyIuzJzGBZnTjQ5nSMlRQZw2K5oXdw6/5ll5YydJkUGyxpkQQgghhLsoBU88AWFh8NWvQk+P0RFNCZKcjcFNp88kLMCHh9733NGzPqvmrhcLCPI38/NLM4wOZ0RX5iRxuL6DrYcahtymvLGD5CgpaRRCCCGEcKu4OHjyScjPh/vvNzqaKUGSszEID/Tl67lpfLivhp1HGo0OZ1BPbz7EZ0eauP+SBcSG+hsdzoguyJhOiL/PkGueaa37R86EEEIIIYSbXXop3HgjPPAAbN5sdDReT5KzMbphWSpRwX4eOXpWWtfO79/bz1knxbE6O8HocEYl0M/MxVnTeWtXFe3dlhMeb+7spa1b1jgTQgghhDDMQw/BjBlw3XXQOjma401WkpyNUbC/D99YmcbGojo+OVhvdDj9rFbN3S8V4Gsy8asvZE6q+VlX5iTR0dPHm7uqTnjM0UZfkjMhhBBCCIOEhcG//gWHDsGddxodjVeT5GwcvnpqCnGh/vzxvQPDNrJwp2e3HuHTQw389OJ5TAsPMDqcMVk8I5JZscG8uP3E0kZZgFoIIYQQwgOsWGH7euIJeOONz+9fuxYefNC4uLyMJGfjEOBr5ltnzmZraQMbi+qMDoeKpk5++9ZeTp8dw1U5yUaHM2ZKKa5YksTW0gZK69qPeaysQRagFkIIIYTwCPfcY1uk+rrroLbWlphddRUsXWp0ZF5DkrNxumppMokRgfzhvf2Gjp5prfnxy7vQwG8un1zljAN9cXESJgUvHtcYpLyxg1B/H8ICfQyKTAghhBBCAHDeefDoo9DYaFuo+tJL4b//hVWrjI7Ma0hyNk7+Pma+fdZs8sub+WBvjWFxvLijnA0HavnRBSeRHDV5R5fiwwI4Iz2Wl3aW02f9PNktb+wkMTJw0iadQgghhBBe5eabbd0b29uhrQ3uuANeegk8ZKrPZCfJ2QRcvjiJ1Ogg/vj+AaxW9/9AVrd08Ys39nByahRfPSXF7cd3tiuXJFPV3MXm4s9LRcsbOyd10imEEEII4VXWroU1a+CnP7U1CunuhiuugNNOgw0bjI5u0pPkbAJ8zSa+e3Y6e6taeLvwqFuPrbXmJ68U0m2x8sAVWZhMk39k6ez5cUQE+faveWZb46xDOjUKIYQQQngCxxyz55+HX/wCXn3VNoL2gx9AWRnk5sIll8Du3UZHOmlJcjZBlyxMYE5cCH98f/8x5Xiu9npBFR/srebOc9OZGRPstuO6kr+PmdULE3h391GaO3pp7OilvadPOjUKIYQQQniCbdtsiZljjtmqVbbbsbFQVAS/+Q1s3AhZWXDTTVB+YiduMTxJzibIbFJ875x0SmrbeS2vwi3HrG/r5v41u1mYHMFNp89yyzHd5cqcZHosVtYUVA5ooy8jZ0IIIYQQhvvhD09s/rFqle3+oCD40Y+gpAS++134z39gzhzbfU1NRkQ7KUly5gTnL5jG/OlhPPxBEb19Vpcf7741u2nt6uV3V2Rh9oJyxoEWJIRx0rRQXtxeJgtQCyGEEEJMNtHR8Ic/wP79trloDz4IaWnwxz/a5qeJYUly5gQmk+LOc9M50tDBSztcO3z7TuFR3iio4ttnziE9PtSlxzKCUoorc5LJL2/mo322LphS1iiEEEIIMcmkpsK//w07d9rWQbvzTpg713af1fWDGZOVJGdOcuZJcWQnR/DIh0V0W/pccoymjh7ufa2Q+dPDuG1lmkuO4Qkuy07Ax6R45bMKwgJ8CA/0NTokIYQQQggxHtnZ8M478MEHtlG1666DxYvh3Xel/f4gJDlzEqUUPzh3LpXNXTy3tcwlx/jFG3tpaO/hwSuy8DV776mLDvHnrHlx9Fm1jJoJIYQQQniDs86yNRT573+hpQXOPx/S0+Gxx47dbu1aWynkFOW9n/ANsHx2NKfMjOIva4tZu7+GnUcaKalto66te8Jz0dbur+GlneXcnptGRmK4kyL2XFcuSQZkvpkQQgghhNcwmeDLX4a9e+FPf4KaGrjtNjjzTFu3x48+srXqX7rU6EgNo7QbhxNzcnL09u3b3XY8I2wvbeDLT3xCb9+J/69BfmbCA30JD/QlzP5vhP3f8EBfwoOOfczxZVaKCx/ZSLC/D29++3T8fcwGvDL3svRZOeehDVyZk8Q3Vs42OhwhhBBCCOFsLS3wjW/As8/abisFs2bZSiFnzbI1EnF8JSeDj8/I+3zwQVtyN7Cr5Nq1tlG7H/7QJS9jrJRSO7TWOYM+JsmZ81W3dFHR1ElzZy8tnb00d/bS3GH7t8lxe+Bjnb109Aw/T82k4KXbl7FoRqSbXoXx+qza67pRCiGEEEKI43zve/Dww7akKi7O1o7/0KFjuzv6+EBKii1ROz5xmzULQkJs2w1cKHvVqhNve4DhkrNRpJ9irOLDAogPCxjTc3osVlq6emnqODFxa+7sZUFC2JRKzABJzIQQQgghvN3atbY10e69F/7+d3jgAVsSZbVCRQUcPGhL1hxfBw/aEq2GhmP3Exf3eaJ2wQWwerWthPLllz0qMRuJjJwJIYQQQggh3G8io1xNTYMnbiUlUFb2ebv+e++F//s/l7+UsZCRMyGEEEIIIYRn2bbt2ERs1Srb7W3bRk7OIiJsLfkXLz7xsffegy99Cb7yFdto3KpVMnI2GBk5E0IIIYQQQrjMJJ9zJq30hRBCCCGEEN5huNG4SUBGzoQQQgghhBDCTWTkTAghhBBCCCE8nCRnQgghhBBCCOEBJDkTQgghhBBCCA8gyZkQQgghhBBCeABJzoQQQgghhBDCA0hyJoQQQgghhBAeQJIzIYQQQgghhPAAkpwJIYQQQgghhAdw6yLUSqla4LDbDjh6MUCd0UEIt5BzPbXI+Z465FxPLXK+pw4511PHVDrXKVrr2MEecGty5qmUUtuHWqVbeBc511OLnO+pQ8711CLne+qQcz11yLm2kbJGIYQQQgghhPAAkpwJIYQQQgghhAeQ5MzmcaMDEG4j53pqkfM9dci5nlrkfE8dcq6nDjnXyJwzIYQQQgghhPAIMnImhBBCCCGEEB5g0iVnSqnzlVL7lVLFSqkfDbj//yml8uxfpUqpvEGem62U+lgptVspVaCUunrAYzOVUp8qpYrs+/Ib4vjX27cpUkpdP9bni9Ez8lwrpVKUUjvsx9itlLptLM8XY+PCc32HfZ9aKRUzzPHlfe1GRp5veW+7lwvP9bP2/RYqpf6hlPId4vjy3nYjI8+3vLfdy4Xn+imlVL79/heVUiFDHN9739ta60nzBZiBEmAW4AfkA/MH2e4PwM8GuT8dmGP/PgGoAiLst58HvmT//lHg9kGeHwUctP8baf8+crTPl69Jda79AH/79yFAKZAg53rSnetFQKr9/MUMcXx5X0+t8y3vbe841xcCyv71vyF+j8t7e2qdb3lve8e5Dhuw3R+BHw3yfK9+b0+2kbOTgWKt9UGtdQ/wHLB64AZKKQVche3Newyt9QGtdZH9+0qgBoi1P+dM4EX7ps8Alw1y/POA97XWDVrrRuB94PwxPF+MnqHnWmvdo7Xutt/0xz7KLOfaJVxyru23P9Nal45wfHlfu5eh51ve227lynP9lrYDtgJJgxxf3tvuZej5lve2W7nyXLcMeH4gMFhzDK9+b0+25CwRKBtwu9x+30ArgGrHSR+KUupkbNl+CRANNGmtLcfvVymVo5R6coTjD/l8MW5Gn2uUUslKqQJ7HA/Yf4HIuXY+V53r4baT97VxjD7f8t52H5efa3t527XAO/bb8t42jtHnW97b7uPSc62Ueho4CpwE/Nl+35R5b0+25EwNct/xGfWXGSRLP2YnSk0H/g18TWttHW6/WuvtWuubRzj+aOISY2P0uUZrXaa1zgJmA9crpeJHGZcYG1ed6yHJ+9pQRp9veW+7jzvO9d+ADVrrjSDvbYMZfb7lve0+Lj3XWuuvYSt33Atcbb9vyry3J1tyVg4kD7idBFQ6biilfIDLgf831A6UUmHAm8BPtdaf2O+uAyLszz9hv6M4/mifL0bP6HPdz37lbTe2q0Byrp3PVed6oseXc+0aRp/vfvLedjmXnmul1H3YSqG+P8bjy7l2DaPPdz95b7ucy3+Pa6377M//4hiO7xXnerIlZ9uAOfZOLH7Al4A1Ax4/G9intS4f7Mn257wC/Etr/YLjfnsN81rgCvtd1wOvDbKLd4FzlVKRSqlI4Fzg3TE8X4yeoedaKZWklAq0fx8JLAf2y7l2CZec6zGQ97V7GXq+5b3tVi4710qpm7HNO/nyMCOn8t52L0PPt7y33col51rZzHZ8D1wC7BtkF9793tYe0JVkLF/YOvYcwFab+pPjHvsncNswz/0q0AvkDfjKtj82C9sk02LgBT7v+JMDPDlgHzfatynGNgzLcM+Xr8l5roFzgAJsHYgKgFvlXE/Kc/1tbFfYLNiunjnOr7yvp+j5lve215xri32fjvt/dvy5tt+W9/YUOd/y3p785xrboNFmYBdQCDyLvXvjVHpvK/sLEUIIIYQQQghhoMlW1iiEEEIIIYQQXkmSMyGEEEIIIYTwAJKcCSGEEEIIIYQHkORMCCGEEEIIITyAJGdCCCGEEEII4QEkORNCCCGEEEIIDyDJmRBCCCGEEEJ4AEnOhBBCCCGEEMID/H+D3zsFdLnSvwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB18klEQVR4nO3dd1iUV9rH8e+hS7MBCopi79iNJbaYTTGmx/S+6cmbsunJpu1uejZ903tidlNNMdUk9l6iKAjYsAEKFnrnvH/MYNCggM4wA/w+18Xl8JTz3MPD4NxzzrmPsdYiIiIiIiIinuXj6QBEREREREREyZmIiIiIiIhXUHImIiIiIiLiBZSciYiIiIiIeAElZyIiIiIiIl5AyZmIiIiIiIgXUHImIiIiIiLiBZSciYg0UsaY/GpflcaYomrfX+Tp+I6EMSbNGHO8p+M4HGPMbGPMVW5s/w1jTIrznl5ew/7bjDGZxpgcY8w7xphA5/ZAY8zbxpgtxpg8Y8zvxpiTDzp3kjEm2RhTaIyZZYzpXG2fMcY8aYzZ7fx6yhhj3PU8RUTkz5SciYg0Utba0KovYCtwarVt0zwd38GMMX5N4RoNYDVwA7Dy4B3GmBOBe4BJQBzQFXjEudsP2AaMB1oCDwCfGmPinOdGAF86t7cBlgOfVGv+GuAMYCAQD0wBrnXh8xIRkVooORMRaWKMMT7GmHuMMRudPSCfGmPaOPfFGWOsMeYKY8w2Y8xeY8x1xpjhxpgEY8w+Y8zL1dq63BizwBjzkrOnJtkYM6na/pbO3poMY8wOY8y/jDG+B537nDFmD/CwMaabMeY3Z1zZxphpxphWzuM/BDoB3zp7/+4yxkwwxmw/6Pnt710zxjxsjPncGPORMSYXuLyWmLobY+Y4n0u2MaZ6clL9GkHONnc7fybLjDHtjDGPAmOBl50xvuw8vrcxZqYxZo+z1+vcam29Z4x5zbk/z3n9zjVdF8Ba+x9r7a9AcQ27LwPettYmWmv3Av8ELneeV2Ctfdham2atrbTWzgA2A0Od554FJFprP7PWFgMPAwONMb2rtf1va+12a+0O4N9VbYuISMNQciYi0vTcjKMHZDwQA+wF/nPQMccAPYDzgOeB+4HjgX7AucaY8QcduwmIAB4CvqxK9oD3gXKgOzAYOAG4qoZzo4BHAQM87oyrDxCLI0nAWnsJB/YAPlXH53s68DnQCphWS0z/BH4GWgMdgZcO0eZlOHqfYoG2wHVAkbX2fmAecJMzxpuMMSHATOBj5/O8AHjFGNOvWnsXOa8dAaxyxnkk+uHoWauyGmhnjGl78IHGmHZATyCxpnOttQXARuf2Q7Vd/TmIiIibKTkTEWl6rgXud/aAlOBIfs45aMjfP621xdban4EC4L/W2l3OHpN5OJKaKruA5621ZdbaT4AU4BTnm/+TgVudvTa7gOeA86udm26tfclaW26tLbLWbrDWzrTWllhrs4BncSSRR2ORtfYra20lEF5LTGVAZyDG+fznH6LNMhxJWXdrbYW1doW1NvcQx04B0qy17zqf50rgC+Ccasd8Z62d67wf9wOjjDGxR/BcQ4Gcat9XPQ6rfpAxxh9nomqtTT7EuVXnhx1ifw4QqnlnIiINpymMzRcRkQN1BqYbYyqrbasA2lX7fme1x0U1fB9a7fsd1lpb7fstOHq+OgP+QEa19+8+OOY9Van+GGNMFPAijqGBYc7j99bpWR1a9WvUFtNdOHqwlhpj9uIYxvdODW1+iKPX7H/OYZcf4Uh4y2o4tjNwjDFmX7Vtfs42/hSjtTbfOcwz5qDY6yIfRwJapepxXtUGY4yP89qlwE2HObfq/LxD7A8H8g+69yIi4kbqORMRaXq2ASdba1tV+wpy9oodiQ4H9Z50AtKd1ykBIqpdJ9xaW30o3MFv7B93bou31oYDF+MY6nio4wuA4KpvnHPHIg86pvo5h43JWptprb3aWhuDo4fxFWNM94OfsLOX8BFrbV9gNI7esUsPEeM2YM5BP+9Qa+311Y7Z30tmjAnFUZAj/eDr1kEijoIdVQYCO621u51tG+BtHIn42Qclkwec6xyO2Y0/hj3W1HYiIiLSYJSciYg0Pa8Bj1YVnTDGRBpjTj+K9qKAm40x/saYqTjmin1vrc3AMX/r38aYcGchkm4HzVc7WBiOHpp9xpgOwJ0H7d+JowJhlVQgyBhzinOo3t+BwEM1XltMxpipxpiOzsP34ki0Kg5uxxgz0RgzwJkM5uIY5lh13MExzgB6GmMucf6M/J0FVvpUO2ayMeZYY0wAjp67JdbaGnvNjDEBxpggHEmrv7M4SdX/1x8AfzXG9DXGtHb+PN6rdvqrOO7PqdbaooOang70N8ac7Wz/QSCh2rDHD4C/GWM6GGNigNsPaltERNxMyZmISNPzAvAN8LMxJg9YjKMwx5FagqN4SDaOoh7nVPXU4OhNCgCScCQ7nwPRh2nrEWAIjvlM3+Eo7V7d48DfnRUS77DW5uAoK/8WsANHT9p2Du9wMQ0Hlhhj8nH8jG6x1m6uoY32zvNygXXAHBxDG8Hx8z3HOCpdvmitzcNRdOR8HL1hmcCTHJhEfoyjmMoeHNUTD7cO3c84hpaOBt5wPh4HYK39EXgKmIVjeOkWZ7s4k/FrgUFApjlozTvnHL+zcdzDvTh+J6rPD3wd+BZYA6zFcX9eP0ycIiLiYkZDyUVE5FCMYxHkq6y1x3o6lsbKGPMesN1a+3dPxyIiIt5NPWciIiIiIiJeQMmZiIiIiIiIF9CwRhERERERES+gnjMREREREREvoORMRERERETEC/g15MUiIiJsXFxcQ15SRERERETEa6xYsSLbWhtZ074GTc7i4uJYvnx5Q15SRERERETEaxhjthxqn4Y1ioiIiIiIeAElZyIiIiIiIl5AyZmIiIiIiIgXaNA5ZzUpKytj+/btFBcXezoUaWKCgoLo2LEj/v7+ng5FRERERKRWHk/Otm/fTlhYGHFxcRhjPB2ONBHWWnbv3s327dvp0qWLp8MREREREamVx4c1FhcX07ZtWyVm4lLGGNq2baseWRERERFpNDyenAFKzMQt9HslIiIiIo2JVyRnnvboo4/Sr18/4uPjGTRoEEuWLAHgqquuIikpySXXiIuLIzs7+7DHPPbYY/Vu97333uOmm246YNu7777LoEGDGDRoEAEBAQwYMIBBgwZxzz331Lv9hvD8889TWFjo6TBERERERDzK43POPG3RokXMmDGDlStXEhgYSHZ2NqWlpQC89dZbDRrLY489xn333XfU7VxxxRVcccUVgCMpnDVrFhEREUfd7pGy1mKtxcen5s8Cnn/+eS6++GKCg4Pr3GZ5eTl+fs3+11dEREREmpBm33OWkZFBREQEgYGBAERERBATEwPAhAkTWL58OQChoaHcfffdDB06lOOPP56lS5cyYcIEunbtyjfffAP8uRdrypQpzJ49+0/XPOOMMxg6dCj9+vXjjTfeAOCee+6hqKiIQYMGcdFFFwHw0UcfMWLECAYNGsS1115LRUUF4OgZ69mzJ+PHj2fBggV1fq5PP/00w4cPJz4+noceegiAtLQ0evfuzVVXXUX//v256KKL+OWXXxgzZgw9evRg6dKlADz88MNccsklHHfccfTo0YM333yz1nb79OnDDTfcwJAhQ9i2bRvXX389w4YNo1+/fvuPe/HFF0lPT2fixIlMnDhx/8+6yueff87ll18OwOWXX87f/vY3Jk6cyN13383GjRs56aSTGDp0KGPHjiU5ObnOPwsRERGR5uSz5dtI3Znn6TCkFs0+OTvhhBPYtm0bPXv25IYbbmDOnDk1HldQUMCECRNYsWIFYWFh/P3vf2fmzJlMnz6dBx98sF7XfOedd1ixYgXLly/nxRdfZPfu3TzxxBO0aNGCVatWMW3aNNatW8cnn3zCggULWLVqFb6+vkybNo2MjAweeughFixYwMyZM+s87PLnn39m/fr1LF26lFWrVrFixQrmzp0LwIYNG7jllltISEggOTmZjz/+mPnz5/PMM88cMNQyISGB7777jkWLFvGPf/yD9PT0w7abkpLCpZdeyu+//07nzp159NFHWb58OQkJCcyZM4eEhARuvvlmYmJimDVrFrNmzar1eaSmpvLLL7/w73//m2uuuYaXXnqJFStW8Mwzz3DDDTfU6z6IiIiINAe7cou5f/pa3luY5ulQpBZeNS7skW8TSUrPdWmbfWPCeejUfofcHxoayooVK5g3bx6zZs3ivPPO44knntjfW1MlICCAk046CYABAwYQGBiIv78/AwYMIC0trV4xvfjii0yfPh2Abdu2sX79etq2bXvAMb/++isrVqxg+PDhABQVFREVFcWSJUuYMGECkZGRAJx33nmkpqbWes2ff/6Zn3/+mcGDBwOQn5/P+vXr6dSpE126dGHAgAEA9OvXj0mTJmGM+dNzO/3002nRogUtWrRg4sSJLF26lPnz5x+y3c6dOzNy5Mj953/66ae88cYblJeXk5GRQVJSEvHx8fX62U2dOhVfX1/y8/NZuHAhU6dO3b+vpKSkXm2JiIiINAdvL9hMeWUl14zt6ulQpBZelZx5iq+vLxMmTGDChAkMGDCA999//0/Jmb+///7qfz4+PvuHQfr4+FBeXg6An58flZWV+8+pqYz77Nmz+eWXX1i0aBHBwcFMmDChxuOstVx22WU8/vjjB2z/6quvjqgKobWWe++9l2uvvfaA7Wlpafufy+GeG/y5+qEx5rDthoSE7P9+8+bNPPPMMyxbtozWrVtz+eWXH7LMffXrHHxMVZuVlZW0atWKVatW1fbURURERJqtnKIypi3eyuQB0cRFhNR+gniUVyVnh+vhcpeUlBR8fHzo0aMHAKtWraJz585H1FZcXByvvPIKlZWV7NixY/98repycnJo3bo1wcHBJCcns3jx4v37/P39KSsrw9/fn0mTJnH66adz2223ERUVxZ49e8jLy+OYY47hlltuYffu3YSHh/PZZ58xcODAWmM78cQTeeCBB7jooosIDQ1lx44d+Pv71+v5ff3119x7770UFBQwe/bs/UMx69Jubm4uISEhtGzZkp07d/LDDz8wYcIEAMLCwsjLy9tftKRdu3asW7eOXr16MX36dMLCwv7UXnh4OF26dOGzzz5j6tSpWGtJSEio089CREREpLn4aPEW8kvKuW58N0+HInXgVcmZJ+Tn5/N///d/7Nu3Dz8/P7p3776/SEd9jRkzZv8Qwf79+zNkyJA/HXPSSSfx2muvER8fT69evQ4Y9nfNNdcQHx/PkCFDmDZtGv/617844YQTqKysxN/fn//85z+MHDmShx9+mFGjRhEdHc2QIUP2Fwo5nBNOOIF169YxatQowDGc86OPPsLX17fOz2/EiBGccsopbN26lQceeICYmBhiYmLq1O7AgQMZPHgw/fr1o2vXrowZM+aA533yyScTHR3NrFmzeOKJJ5gyZQqxsbH079+f/Pz8GuOZNm0a119/Pf/6178oKyvj/PPPV3ImIiIi4lRcVsG7CzYzrmck/Tu09HQ4UgfGWttgFxs2bJitqn5YZd26dfTp06fBYpAj8/DDDxMaGsodd9zh6VDqRb9fIiIi0lx9uCiNB75O5H/XjGRk17a1nyANwhizwlo7rKZ9zb5ao4iIiIhIU1NeUcnrczcxuFMrjunSxtPhSB01+2GNUjcPP/ywp0MQERERkTr6bk0G2/cW8eCUvkdUTE48Qz1nIiIiIiJNiLWWV2dvpHtUKMf3aefpcKQelJyJiIiIiDQhs1OySM7M47rx3fDxUa9ZY6LkTERERESkCXl19kZiWgZx2sAYT4ci9aTkTERERESkiVietoelaXu4amxXAvz0Vr+x0R0DfH19GTRoEP3792fq1KkUFhYecVuXX345n3/+OQBXXXUVSUlJhzx29uzZLFy4cP/3r732Gh988MERX7tKWloa/fv3P2Dbww8/zDPPPFOvdlwVj4iIiIg0jFdnb6R1sD/nj4j1dChyBGqt1miMiQU+ANoDlcAb1toXjDEDgdeAUCANuMham+vGWN2mRYsWrFq1CoCLLrqI1157jb/97W/791dUVNRrseYqb7311mH3z549m9DQUEaPHg3AddddV+9ruEt5eblXxSMiIiIih5ecmcuvybu47fieBAeoKHtjVJees3LgdmttH2AkcKMxpi/wFnCPtXYAMB24031hOj31FMyadeC2WbMc211k7NixbNiwgdmzZzNx4kQuvPBCBgwYQEVFBXfeeSfDhw8nPj6e119/HXBUw7npppvo27cvp5xyCrt27drf1oQJE6hadPvHH39kyJAhDBw4kEmTJpGWlsZrr73Gc889x6BBg5g3b94BvVurVq1i5MiRxMfHc+aZZ7J37979bd59992MGDGCnj17Mm/evHo/x8O1fd999zF+/HheeOGF/fGkp6czaNCg/V++vr5s2bKFLVu2MGnSJOLj45k0aRJbt24FHL2HN998M6NHj6Zr1677exJFRERExH1en7OJ4ABfLh3V2dOhyBGqNTmz1mZYa1c6H+cB64AOQC9grvOwmcDZ7gpyv+HD4dxz/0jQZs1yfD98uEuaLy8v54cffmDAgAEALF26lEcffZSkpCTefvttWrZsybJly1i2bBlvvvkmmzdvZvr06aSkpLBmzRrefPPNA4YpVsnKyuLqq6/miy++YPXq1Xz22WfExcVx3XXXcdttt7Fq1SrGjh17wDmXXnopTz75JAkJCQwYMIBHHnnkgDiXLl3K888/f8D26jZu3HhAQvXaa6/Vqe19+/YxZ84cbr/99v3bYmJiWLVqFatWreLqq6/m7LPPpnPnztx0001ceumlJCQkcNFFF3HzzTfvPycjI4P58+czY8YM7rnnnnreCRERERGpj217CvlmdToXjOhE65AAT4cjR6he/Z3GmDhgMLAEWAucBnwNTAVqHNhqjLkGuAagU6dOh7/ArbeCc3jhIcXEwIknQnQ0ZGRAnz7wyCOOr5oMGgTPP3/YJouKihg0aBDg6Dn761//ysKFCxkxYgRdunQB4OeffyYhIWF/L1BOTg7r169n7ty5XHDBBfj6+hITE8Nxxx33p/YXL17MuHHj9rfVps3hV2nPyclh3759jB8/HoDLLruMqVOn7t9/1llnATB06FDS0tJqbKNbt277h2rCH4tI19b2eeedd8i4FixYwFtvvbW/t27RokV8+eWXAFxyySXcdddd+48944wz8PHxoW/fvuzcufOwz1dEREREjs5b8zbhY+CqsV08HYochTonZ8aYUOAL4FZrba4x5krgRWPMg8A3QGlN51lr3wDeABg2bJg96ohbt3YkZlu3QqdOju+PUvU5Z9WFhITsf2yt5aWXXuLEE0884Jjvv/++1lXXrbUuXZk9MDAQcBQyKS8vd1m7cOBzri4jI4O//vWvfPPNN4SGhtZ4TPXnWBUjOJ6/iIiIiLhHdn4J/1u2jTMGdSC6ZQtPhyNHoU7JmTHGH0diNs1a+yWAtTYZOMG5vydwylFHU0sPF/DHUMYHHoBXX4WHHoKJE4/60rU58cQTefXVVznuuOPw9/cnNTWVDh06MG7cOF5//XUuvfRSdu3axaxZs7jwwgsPOHfUqFHceOONbN68mS5durBnzx7atGlDWFgYubl/rqHSsmVLWrduzbx58xg7diwffvjh/p6uo3UkbZeVlXHuuefy5JNP0rNnz/3bR48ezf/+9z8uueQSpk2bxrHHHuuSGEVERESk7t5fmEZpRSXXju/q6VDkKNWlWqMB3gbWWWufrbY9ylq7yxjjA/wdR+VG96pKzD791JGQTZx44PdudNVVV5GWlsaQIUOw1hIZGclXX33FmWeeyW+//caAAQPo2bNnjYlOZGQkb7zxBmeddRaVlZVERUUxc+ZMTj31VM455xy+/vprXnrppQPOef/997nuuusoLCyka9euvPvuuy57LvVte+HChSxbtoyHHnqIhx56CHD0GL744otceeWVPP3000RGRro0RhERERGpXX5JOe8vTOOEvu3oHhXm6XDkKJnahpwZY44F5gFrcJTSB7gP6AHc6Pz+S+BeW0tjw4YNs1XVC6usW7eOPn361C3ap55yFP+onojNmgXLlkG1+U4iVer1+yUiIiLSyLwxdyOPfZ/MVzeOYVBsK0+HI3VgjFlhrR1W075ae86stfOBQ02YeuFoAqu3mhKwqh40EREREZFmpKS8grfmbWZ0t7ZKzJqIuqxzJiIiIiIiXmb6yh3syivh+gndPB2KuIiSMxERERGRRqai0vL63E307xDOsd0jPB2OuIhXJGcqtS7uoN8rERERaap+Ssxkc3YB14/v7tIlm8SzPJ6cBQUFsXv3br2RFpey1rJ7926CgoI8HYqIiIiIS1lreXX2RuLaBnNS//aeDkdcqM6LULtLx44d2b59O1lZWZ4ORZqYoKAgOnbs6OkwRERERFxqwYbdrNmRw+NnDcDXR71mTYnHkzN/f3+6dOni6TBERERERBqFV+dsICoskLOGdPB0KOJiHh/WKCIiIiIidbN62z4WbNjNVWO7EOjn6+lwxMWUnImIiIiINBKvzt5IeJAfF4zo5OlQxA2UnImIiIiINAIbduXzU1Iml46KIyzI39PhiBsoORMRERERaQTemLuRAF8fLh8T5+lQxE2UnImIiIiIeLmMnCKm/76D84bHEhEa6OlwxE2UnImIiIiIeLm3522m0sLVY7t6OhRxIyVnIiIiIiJebF9hKR8v3cqp8dHEtgn2dDjiRkrORERERES82AeLtlBYWsF1E7p5OhRxMyVnIiIiIiJeqrC0nHcXbGZS7yh6tw/3dDjiZkrORERERES81CfLtrG3sIzr1WvWLCg5ExERERHxQmUVlbw5dxPD41ozLK6Np8ORBqDkTERERETEC32zKp30nGL1mjUjSs5ERERERLxMZaXltTkb6dUujIm9ojwdjjQQJWciIiIiIl7m1+RdrN+Vz/UTumGM8XQ40kCUnImIiIiIeJnX52ykY+sWTImP9nQo0oBqTc6MMbHGmFnGmHXGmERjzC3O7YOMMYuNMauMMcuNMSPcH66IiIiISNNWUFLO8i17OXtIR/x81ZfSnPjV4Zhy4HZr7UpjTBiwwhgzE3gKeMRa+4MxZrLz+wnuC1VEREREpOlL3ZkHQN8YrWvW3NSanFlrM4AM5+M8Y8w6oANggarfmJZAuruCFBERERFpLlIyHclZ7/ZhHo5EGlpdes72M8bEAYOBJcCtwE/GmGdwDI8c7ergRERERESam+TMPIIDfIltHezpUKSB1XkQqzEmFPgCuNVamwtcD9xmrY0FbgPePsR51zjnpC3PyspyRcwiIiIiIk1WSmYePdqF4eOjKo3NTZ2SM2OMP47EbJq19kvn5suAqsefATUWBLHWvmGtHWatHRYZGXm08YqIiIiINFnWWlJ25tG7nYY0Nkd1qdZocPSKrbPWPlttVzow3vn4OGC968MTEREREWk+svJL2FNQSi/NN2uW6jLnbAxwCbDGGLPKue0+4GrgBWOMH1AMXOOWCEVEREREmgkVA2ne6lKtcT5wqAGvQ10bjoiIiIhI81WVnKnnrHnSqnYiIiIiIl4iOTOPiNBA2oYGejoU8QAlZyIiIiIiXiIlM09DGpsxJWciIiIiIl6gotKSujNPQxqbMSVnIiIiIiJeYMvuAkrKK5WcNWNKzkREREREvECyKjU2e0rORERERES8QHJmHsZAjyglZ82VkjMRERERES+QkplLXNsQWgT4ejoU8RAlZyIiIiIiXiAlM49e7dRr1pwpORMRERER8bDC0nK27Cmkd7SSs+ZMyZmIiIiIiIet35mPtSoG0twpORMRERER8bAUZ6XGXu3DPRyJeJKSMxERERERD0vOzCPI34dObYI9HYp4kJIzEREREREPS9mZS892Yfj6GE+HIh6k5ExERERExMNUqVFAyZmIiIiIiEdl55eQnV9KLxUDafaUnImIiIiIeFBVMZDeKgbS7Ck5ExERERHxoOT9lRrVc9bcKTkTEREREfGglMxc2oYEEBkW6OlQxMOUnImIiIiIeFBKZp56zQRQciYiIiIi4jGVlZbUnflKzgRQciYiIiIi4jFb9xRSVFZBbyVngpIzERERERGP+aMYiCo1CvjVdoAxJhb4AGgPVAJvWGtfMMZ8AvRyHtYK2GetHeSmOEVEREREmpyUzDyMgZ7tQj0diniBWpMzoBy43Vq70hgTBqwwxsy01p5XdYAx5t9AjruCFBERERFpilJ25tKpTTDBAXV5Wy5NXa2/BdbaDCDD+TjPGLMO6AAkARhjDHAucJwb4xQRERERaXKSM/Po1U7zzcShXnPOjDFxwGBgSbXNY4Gd1tr1LoxLRERERKRJKy6rIC27QMVAZL86J2fGmFDgC+BWa21utV0XAP89zHnXGGOWG2OWZ2VlHXmkIiIiIiJNyIZd+VRaFQORP9QpOTPG+ONIzKZZa7+stt0POAv45FDnWmvfsNYOs9YOi4yMPNp4RURERESahD8qNarnTBxqTc6cc8reBtZZa589aPfxQLK1drs7ghMRERERaapSMnMJ8PMhrm2wp0MRL1GXnrMxwCXAccaYVc6vyc5953OYIY0iIiIiIlKz5Mw8ekSF4uerpYfFoS7VGucD5hD7Lnd1QCIiIiIizUFKZh7H9ojwdBjiRZSmi4iIiIg0sL0FpezKK1GlRjmAkjMRERERkQb2RzEQVWqUPyg5ExERERFpYCmZjpWp1HMm1Sk5ExERERFpYCk782gV7E9UWKCnQxEvouRMRERERKSBrcvIo1e7MByrVok4KDkTEREREWlAlZWW1J15GtIof6LkTERERESkAW3fW0RhaQW9o1UMRA6k5ExEREREpAElO4uB9FLPmRxEyZmIiIiISANKcZbR79lOyZkcSMmZiIiIiEgDSt6ZR2ybFoQG+nk6FPEySs5ERERERBpQSmYevdppvpn8mZIzEREREZEGUlJewebsAlVqlBopORMRERERaSAbduVTUWlVDERqpORMRERERKSBVBUDUc+Z1ETJmYiIiIhIA0nJzCPA14e4iBBPhyJeSMmZiIiIiEgDSc7Mo1tUKP6+ehsuf6bfChERERGRBpKSmachjXJISs5ERERERBpATmEZmbnFKgYih6TkTERERESkASRn5gIoOZNDUnImIiIiItIAUnaqUqMcnpIzEREREZEGkJyZR3iQH+3DgzwdingpJWciIiIiIg3AUQwkHGOMp0MRL1VrcmaMiTXGzDLGrDPGJBpjbqm27/+MMSnO7U+5N1SRpqesopL8knJPhyEiIiJuZq0lNTNP883ksPzqcEw5cLu1dqUxJgxYYYyZCbQDTgfirbUlxpgodwYq0pRUVlpmrMngmZ9SKCwt59e/TaBlsL+nwxIRERE32bGviLySciVncli19pxZazOstSudj/OAdUAH4HrgCWttiXPfLncGKtJULNyYzRmvLODm//5OoJ8PuwtKeem39Z4OS0RERNwoJVPFQKR29ZpzZoyJAwYDS4CewFhjzBJjzBxjzHA3xCfSZCRn5nLFu0u58M0lZOeV8O+pA/nx1nFMHdqR9xelsWV3gadDFBERETdJdiZnPZWcyWHUZVgjAMaYUOAL4FZrba4xxg9oDYwEhgOfGmO6WmvtQeddA1wD0KlTJ5cFLtJYZOQU8ezPqXy+cjthgX7ce3JvLhsdR5C/LwC3n9CLb1dn8OSPybxy0VAPRysiIiLukJKZR4dWLQgP0jQGObQ6JWfGGH8cidk0a+2Xzs3bgS+dydhSY0wlEAFkVT/XWvsG8AbAsGHDDkjcRJqynKIyXpuzkXfmb8ZauOrYLtw4sTutggMOOK5deBDXju/K87+sZ3naHobFtfFQxCIiIuIuKSoGInVQl2qNBngbWGetfbbarq+A45zH9AQCgGw3xCjSqJSUV/D2/M2Mf3oWr87eyOQB0fx6+3juP6XvnxKzKteM60q78ED+9d06Dup8FhERkUautLySjVn5Ss6kVnXpORsDXAKsMcascm67D3gHeMcYsxYoBS47eEijSHNSWWn5NiGdp39KYfveIsb2iODuk3rTv0PLWs8NDvDj9hN6cdfnCXybkMFpA2MaIGIRERFpCJuy8ymvtCoGIrWqNTmz1s4HDrVS3sWuDUekcVqwIZvHf1jH2h259IkO54MrBzCuZ2S92jh7SEfeXZDGkz8kc0LfdvvnpImIiEjjVlWpUT1nUpt6VWsUkQOty8jlsneWctFbS9hbUMZz5w3ku/87tt6JGYCvj+Hvp/Rhx74i3luY5vpgRURExCOSM/Pw8zF0jQj1dCji5epcrVFE/pC+r4h//5zKl79vJzzIn/sn9+GSUZ2PurdrTPcIjusdxX9+28DUoR1pGxrooohFRETEU1Iy8+gWGUqAn/pF5PD0GyJSD7nFZTz+wzomPDObbxPSuWZsV+beOZGrx3V12TDE+yb3prCsghd+1cLUIiIiTYEqNUpdqedMpI6KSiu45K0lJOzI4czBHbj9hF50aNXC5dfpHhXGBSNimbZkK5eOiqN7lIZAiIiINFY5RWXs2FfEhcdovV+pnXrOROqgstJy2yerSNiRw2sXD+XZcwe5JTGrcuvxPWnh78sTP6xz2zVERETE/VJ3OoqB9IlWz5nUTsmZSB08+WMyPyZmcv/kPpzYr73brxcRGsgNE7vxy7pdLNyo5QNFREQaq+T9lRrDPRyJNAZKzkRq8fGSrbw+dxOXjOzMX4/t0mDXvXJMFzq0asGj362jslJLCIqIiDRGKZm5hAX5EdMyyNOhSCOg5EzkMOamZvHA12uZ0CuSh07tizGHWvLP9YL8fbnrpF4kpufy5e87Guy6IlI3xWUVfLxkK2UVlZ4ORUS8WEpmHr3ahTXoewhpvJSciRxCSmYeN0xbSY+oUF66YDB+vg3/cjk1PoaBHVvyzE8pFJVWNPj1ReTQvlmdzn3T1/D9mgxPhyIiXspaS7IqNUo9KDkTqcGuvGKufG8ZwQG+vHP5cMKC/D0Sh4+P4e9T+pKZW8yb8zZ5JAYRqdmc1CwAvl2t5ExEapaRU0xecTm9lZxJHSk5EzlIUWkFV7+/nD0Fpbx92XBi3FiVsS6Gx7XhpH7teW3ORnblFns0FhFxqKi0zF+fjY9xDH/OKSrzdEgi4oVSVAxE6knJmUg1lZWWWz/5nYQdObx4wWAGdGzp6ZAAuOfk3pRVVPLszFRPhyIiwOrt+8gpKuPy0V0orahkZtJOT4ckIl5of6XGduo5k7pRciZSzRM/JvNT4k7+fkpf/tK3nafD2S8uIoRLRsbx6fJtJGfmejqcI1ZYWr5/vReRxmxuahbGwE3HdadDqxbMSEj3dEgi4oVSMnOJbhlEy2DPTI+QxkfJmYjTtCVbeGPuJi4d1Zkrx8R5Opw/uXlSd8KC/Hn0u8a7MPXLv23g5BfmsTEr39OhiByVOalZxHdsRZuQAKbERzN/fTb7Cks9HZaIeBkVA5H6UnImguON1oNfJzKhVyQPTmnYkvl11So4gP87rjvz1mczO2WXp8M5Ir8l76Ki0vKchmdKI7avsJTV2/YxvmckAFPiYyivtPyUmOnhyETEm5RVVLIxK1/JmdSLkjNp9pIzc7nRWTL/5QuHeKRkfl1dOiqOzm2Deez7dZQ3srWVduUWk5yZR/vwIGYkZJCU3niHZ0rzNn9DNpUWxveMAKB/h3A6tw1mRoKqNorIHzZnF1BWYVWpUerFe9+FijSAXbnF/PW95YQE+vLuFcMJDfTzdEiHFeDnwz0n9SZ1Zz6fLt/u6XDqZd76bACePW8gLVv48++fUzwckciRmZuaRXiQHwM7tgLAGMOU+GgWbtzN7vwSzwYnIl7jj2IgqtQodafkTJqtwtJyrvrgj5L50S09WzK/rk7q357hca15dmYK+SXlng6nzuauz6JtSAAju7Tl2vFd+TV5Fyu27PV0WCL1Yq1lTmoWx/aIOKCXfUp8DBWVlh/WamijiDikZObi62PoFhXi6VCkEVFyJs1SRaXltk9WsWZHDi9dMJj+HbyjZH5dGGO4/5S+ZOeX8trsjZ4Op04qKy3z1mcztkcEPj6Gy0fHEREayNM/JWOt9XR4InWWujOfnbkl++ebVendPoyukSGq2igi+6Vk5tE1IoRAP19PhyKNiJIzaZae+GEdPyXu5IFT+nK8F5XMr6tBsa04bWAMb87bRPq+Ik+HU6ukjFz2FJQyzvmGNjjAj5smdmPxpj0s2LDbw9GJ1N2cVEcxnnEHJWeOoY0xLNm8R4vFiwigSo1yZJScSbPz0eItvDlvM5eN6swVXlgyv67uOqkXFnjmJ++fuzUnNQuAY3tE7N92wTGd6NCqhXrPpFGZm5pNz3ahNQ6DPjU+Gmvh+zUqDCLS3OWXlLN9b5GKgUi9KTmTZmV2yi4e+iaRib0iecBLS+bXVcfWwVw5pgtf/r6DNdtzPB3OYc1NzaJPdDhRYUH7twX6+XLL8T1YvT2HmUk7PRidSN0UlpazdPMexvWIrHF/j3Zh9GoXpqqNIkJKVTGQ9ioGIvVTa3JmjIk1xswyxqwzxiQaY25xbn/YGLPDGLPK+TXZ/eGKHLnkzFxu+vh3erYL4yUvL5lfVzdM7EabkAD+9V2S1/Y+5ZeUs3LrXsb1jPjTvrMGd6BrZAj//jmVikrvjF+kypJNeyitqGR8r5qTM4Ap8dEs37KXjBzvH24sIu5TlZyp50zqqy7vTsuB2621fYCRwI3GmL7Ofc9Zawc5v753W5QiR2lXbjFXvruMkEBf3rl8mNeXzK+r8CB/bju+B0s27/Ha3qfFG3dTVmFr7G3w8/Xhb3/pScrOPBVSEK83JzWLIH8fhse1OeQxUwbGAPCdes8aVF5xGe8vTOPit5awfmeep8MRISUzl5AAXzq0ahyVoMV71JqcWWszrLUrnY/zgHVAB3cHJuIqhaXl/PX95ewrKmtUJfPr6oIRnegWGcITPyRT5oULU89dn0ULf1+GxbWucf/k/tH0jQ7n2ZmpXhm/SJW5qVmM7NqWIP9DV17rEhFCv5hwDW1sIMmZudw/fQ3HPPYrD32TyPwN2bw1b7OnwxIhOTOPnu3D8PFpvNMnxDPqNa7LGBMHDAaWODfdZIxJMMa8Y4yp8Z2XMeYaY8xyY8zyrKyso4tWpJ4qKi23/G8ViemNr2R+Xfn5+nDf5D5syi5g2uItng7nT+atz2Zk1zaHLCXs42O448SebNldyGeNbGFtaT627SlkU3bBIeebVTclPoZV2/axbU9hA0TW/JSWV/LN6nTOfW0RJz0/j89WbGfygGi+vnEM5wztyIyEdApLG88akNL0WGtJ2ZmnIY1yROqcnBljQoEvgFuttbnAq0A3YBCQAfy7pvOstW9Ya4dZa4dFRtb+n5qIK705bxMzk3bywJS+TOrT+Erm19VxvaMY3a0tL/y6npyiMk+Hs9+2PYVszi5gbC1vaCf2imJo59a8+Ot6issqGig6kbqrqjh6uPlmVabERwPwnao2ulRGThH//jmF0U/8xs3//Z3M3GLum9ybJfdO4pmpAxkY24qpQztSUFrBD2u0GLh4zq68EvYVltGrnZIzqb86JWfGGH8cidk0a+2XANbandbaCmttJfAmMMJ9YYocmVnJu4jv2JIrxnTxdChu5ViYug/7isr4z6wNng5nv6o3tAevCXUwYwx3nNCLzNxiPvLC3j+ROalZdGjVgq4RIbUeG9smmIGxrTSP0gWstSzYkM21Hy7n2Cdn8fKsDcR3bMm7Vwxn9h0TuGZcN1qHBOw/fkSXNnRuG8xnK7Z5MGpp7pJVqVGOQl2qNRrgbWCdtfbZatujqx12JrDW9eGJHDlrLUkZuQxogkMZa9IvpiVnDe7IewvTyC32jt6zeesdb2i7Rdb+hnZUt7aM7RHBK7M3kl+iIUkNobyikqWb91BUqt7Kwyktr2TRxt2M7xVZ5+U3pgyIZu2OXNKyC9wcXdOUU1TGuws2M+nZOVz01hKWbt7D1WO7MvfOibxz+XAm9oqqcS6PMYZzhnRk8aY9bN3d9IeV7sor9tpKvc1ZSmYuoEqNcmTq0nM2BrgEOO6gsvlPGWPWGGMSgInAbe4MVKS+tu8tIq+4nL4xzeeTq4tGdqK0vJKfEz1fubGsopKFG3YzrmdEnd/Q3nFCL/YUlPLufE3obwivzt7Iua8vYvA/f+aq95fzybKtZOWVeDosr7Ny617yS8rrNN+syinOoY3qPaufpPRc7v1yDSMf+5VHvk0iPMifZ88dyKJ7J3HPyb2JbRNcaxtnD+2IMfD5yqY7h7WotIKHv0lkxKO/8u6CNE+HIwdJzswjKizwgF5dkbqqtZ64tXY+UNM7K5XOF6+WmO5YmLlfTPPoOQMYHNuK2DYt+GZ1OucM7ejRWFZt20deSXmt882qGxjbihP6tuONuZu4ZFRnWgXrPzZ3yS8p5635mxnRpQ19o8OZmbSTX9btxJg1DIptxfF92nFC33Z0jwpt1Iu1u8Lc1Cz8fAyju7et8zkxrVowtHNrZiRkcNNxPdwYXeNXUl7Bj2sz+XDRFpZv2Uugnw+nD4rhkpFxDOhY/7/fMa1acGz3CL5YsZ1bJ/VoctXyVm7dyx2frmZTdgFtQgJ4d+FmLh8d1+SeZ2OWkplHL/WayRFq/KvwihxCUnouPqZ5DSswxnBqfAwLNmSzO9+zPSDzUrPwMTCm258Xnz6c20/oRX5pOa/N2eSmyATgg0Vp5BSVcf/kPjx8Wj/m3z2RH24Zy23H96Si0vL0Tyn85bm5THhmNv+ckcSijbspb6ZLHcxdn8WQTq0JD/Kv13lT4qNJzsxjw658N0XWeJWWV7IsbQ9P/pjMmCd+45b/rSI7v4S/n9KHJfdN4qlzBh5RYlblnKEd2bGviMWbdrswas8qKa/gqR+TOefVhZSUV/LxVcfw8Gn92LaniDnrVQ3bW5RXVLJ+V36zeu8hrtU0VuIVqUFiei7dIkMPuyZRU3TaoBhemb2R79dkcMmoOI/FMWd9NoNiW9EyuH5vaHu1D+P0gTG8t3AzVx4bR1RYkJsidL+UzDw+XJzGA1P6HnIpAU8oLC3nrXmbGd8zkoGxrQBHYt8nOpw+0eHcPKkHmTnF/LLO0Zv24aItvD1/My1b+HNc7yiO79OO8b0im8xi7oeTlVfC2h253Hlir3qfO3lANP+YkcSMhHRuPb6nG6JrPCoqLWt35LBw424WbdrNss17KCqrwMc4qs1eMiqOsd0jXNb7c2K/9oQF+fHZiu2M7l6/D4i8UWJ6Drd/uprkzDzOGxbL36f0ISzIn9LySiJCA/lw0RYm9orydJgCpO0upLS8kt4qBiJHqOn/zyrNVlJGLsd0aePpMBpc7/bh9GwXyter0j2WnO0tKCVh+z5uPsLhXLce35MZCRn857cNPHJ6fxdH13Be+DWV79dk0i0y1Ksqhn68ZCt7Ckq5eVL3Qx7TvmUQF4/szMUjO5NfUs681CxmrtvJb8m7mP77DgJ8fRjZrS1/6RPFpD7tiGnVtBZ3rzJ/g7PiaD2G51ZpFx7EiLg2zEjI4JZJPZrV8NDKSsc6T4s27mbhxt0s2bybvGJHoZ8eUaGcO6wjo7pFMLJrG7cMXw7y9+W0gTF8sXI7j5zer969nt6ivKKSV2dv5IVf19M6JIB3Lh/Gcb3/WBYmwM+HC0bE8vKsDWzbU1inOXniXsnOYiAa1ihHSsmZNEl7CkrJyCluVsVAqjttYAzP/JzKjn1FdPDAm+YFG7OxtvYS+ocSFxHCucNj+XjpVq4a27VRvuHYlVfMz4k78fUxvPzbBqYOi/WKnqbisgpen7uJ0d3aMrRz3T68CA304+QB0Zw8IJryikpWbt3HzKRMxxqCXyfywNeJ9IsJ5y9923FS//ZN6hPjOSlZtA0JoN8R/i2ZMjCGB75a61yQtun8XA5mrWVzdoGjZ8zZO7anoBSAzm2DmRIfvT8Za6je8KnDYpm2ZCvfJWRwwYhODXJNV9qwK4/bP13N6u05nDYwhkdO61djgYkLRnTiP7M2MG3JVu45ubcHIpXqUjLz8PUxdI8K9XQo0khpzpk0SUnpjk+umlMxkOpOHRgDwLerPVMpbm5qFuFBfgw8ijkj/3dcd4wxvPjrehdG1nA+W76d8krLv6cOZHdBKW/O9Y45dJ8s20ZWXgn/d4S9mn6+Pozo0ob7T+nLrDsm8MvfxnP3Sb0J8vflhV/Xc9Lz85rMWnWVlZZ567MZ2+PIh9ud3L89PgZmrG56C1Jv31vIp8u3cdsnqxj5+K8c9+85/P2rtazcupcJvSJ5ZupAFtxzHHPunMjjZ8Vz2sCYBh2mPLBjS3pEhfLZ8sa15llFpeWteZuY/OJ8tu4p5D8XDuHFCwYfsvJfTKsW/KVvOz5ZtpXiMi2L4WnJmXnEtQ1udlMqxHU8/zGuiBtUVWrsG910P6k+nM5tQxgU24pvVqVz3fhuDXptay1zU7MZ0z0CP98j//wnumULLh3ZmXcWbOba8d0a1aeQlZWW/y7dyuhubTljcAd+TsrkzXmbuHhkZyLDAj0WV0l5Ba/O3sjwuNaM7Hr0Q36NcXw63D0qlOsndCM7v4S7Pk/g71+txQKXjOx89EF7UGJ6LrsLShnf68h6gAEiQgMZ3S2CGQnp3H5Cz0Y7tLGotILN2QWk7MxlyaY9LNy4m617HOuItQ0JYFS3tozuFsGobm2JaxvsFc/TGMPUYR157PtkNuzKbxR/Q7buLuSOz1azNG0Px/dpx+NnDajT34xLRsbxU+JOvl+TwVlDPFupt7lLycxrNuurinsoOZMmKSkjl5iWQc16jZHTBsbwjxlJDf6mZMOufDJzi494SGN110/oxn+XbuW5man856IhLoiuYcxdn8X2vUX7hxjdcUIvfkrcycu/rffoHLrPV2wnM7eYp86Jd8ub54jQQF69eAg3fLSSB75aCzTuBG2uswJefZaDqMkp8dHc++UaEtNz6e/Fb9qstWTllbAxq4CNWfnOrwI27sonPaeIqrWOw4P8GNm1LVeOiWNUtwh6tvPe5RbOGNyBJ39M4fMV2716yJ+1lo+XbuXR79bhawz/njqQs4Z0qPPPdXS3tnSNCOHDxVuUnHlQQUk5W/cUenwpG2nclJxJk5SYntts55tVmRIfzb++S+Kb1en87S8NVyluTmrVG9qjr5DWNjSQvx7bhRd/28D1O3K8+o1tdR8v2UpEaAAn9G0PQNfIUM4d5phD99dju9KpbcPPoStzFhYYFNvKJffmUAL9fHmleoJmrUerhh6NOSlZ9O8QTkTo0fV2ntSvPQ98tZZvE9K94ne4tLySLbsL/ki+nP9u2pVPXkn5/uNa+PvSLSqEYXGt6RoRS7eoELpHhdIjKgzfRrKmVlRYEBN7RfLlyu3ccULPo+rNd5eMnCLu+jxh/xDaJ8+Or3eBHR8fw8UjO/OPGUmsbUR/K5ua1J15gIqByNFRciZNTlFpBZuy8pk8INrToXhUVHgQI7u25dvV6dx2fMNVipu7PpuukSF0bO2aBOSqcV15f9EW/v1zCu9eMcIlbbpTZk4xvybv4ppxXQnw++ON4K3H92D679v598wUXjh/cIPHNf33HWzfW8Q/Tu/n9t+FqgTtxmkreeDrRIBGl6DlFpexcuterhnX9ajbah0SwJjuEXyXkME9J/Vu0F6mtTtySEzP2d8DtjErn217i6iotPuPaR8eRLeoEM4c0oFukaF0iwyla2QI7cODmsTCxucM7cgv63Yxb302E3t7T7l5ay3Tf9/BQ98kUl5h+ecZ/bn4mE5H/Ptx9tCOPP1TCh8u2sKT58S7OFqpi5RMR3KmNc7kaCg5kyYnOTOXStt855tVd9rAGO75cg1rd+Qe1YKudVVcVsGSTbtdWhktPMif68Z348kfk1metodhcd69PMIny7ZRUWm5YPiBP4N24UFcOaYLr8zeyNVjuzboJ9vlFZW8MmsD/TuEN9haSIF+vvznoj8SNAtc2ogStIUbdlNeaRnvguG54OjJvvPzBFZvz2GQc205d/vv0q3c++UawFFyvUvbEPrGhHPqwJj9SViXyBCvqCLqTsf1bkebkAA+W7HNa5KzrLwS7p++hp+TdjI8rjXPTB1I57YhR9Vmyxb+nDE4hum/7+C+yX3qvcakHL3kzDyCA3yJddGHk9I8eV//vshRStxfqVHJ2cn9o/H3NXyzekeDXG9Z2h5Kyitd9oa2ymWjHYU0nvopBWtt7Sd4SHlFJf9btpVxPSNrHLp47fhutGzhz1M/pTRoXDMSMkjbXchNExt2ra2qBO34PlE8+HUiHyxKa7BrH62567MIDfRjSOfWLmnvhH7tCfD1YUYDVVBNSs/loW8SGdsjgrl3TmTdP07ip9vG8cpFQ7n9hF6cMbgDAzq2bPKJGTgS09MHxfBL0i72Osv7e9IPazI48fm5zE7N4v7JffjfNaOOOjGrcvHIzhSXVfLZisZVobKpSMnMo0e7sCbR4yyeo+RMmpykjFzCg/zo2LppLopbHy2D/RnfM5JvV2dQWen+pGbe+mwCfH04xgWVAKsLDvDj/47rztLNe5i3PtulbbvS7JQsMnKKufAQPYctW/hz48RuzE3NYuHGhnkeFZWWl35bT692YZzQt13tJ7hYoJ8vr1w0lOP7tGs0CZq1ljkpWYzu1hZ/F81RatnCn3E9I/hujftfi/kl5dz08UpaB/vz3HmD6NQ2uNHMEXOXqUNjKa2o5OtVDfNBVU3KKyq57ZNVXD9tJR1bt+C7/zuWq8d1dem96RfTkiGdWjFtydYG+ZsvfygqrSApI5fe7TSkUY6OkjNpcqqKgXhr9bCGdurAGDJzi1matsft15qbmsWwuNYEB7j+0/jzh3eiQ6sWPPOz9/aefbx0K1FhgUzqc+ihU5eOiiO6ZRBP/tgwz+OHtRlszCrg/yZ199inuQF+Prxy0ZBGk6Btyi5gx74il1QcrW5KfAwZOcWs3LrXpe1WZ63lvi/XkLa7gBfPH3zUxUyair4x4fSLCeezFds9FsMHi7Yw/fcd/N9x3fni+tH0cNOb+EtHxbE5u4AFDfQBkDg8+WMyOUVlnDG4g6dDkUZOyZk0KeUVlSRn5Dbbxadr8pe+7Wjh78s3bh5OtTO3mOTMPJe/oa0S4OfDrcf3IGF7Dj8l7nTLNY7G9r2FzErZxfnDYw/b2xLk78ttf+nJ6m37+HFtpltjqqy0vPzbBrpFhnByf88WyKlK0P7S15Ggvb8wzaPxHM6cFEfFUVcPzz2+bzsC/XyYkeC+Ban/t2zb/gqtx3Rt67brNEZTh3YkMT2XJOfQ94aUlVfCczNTGdczkr/9pafLemRrcvKA9rQJCeCDRU1jMfjGYP76bN5bmMblo+MY1U2vOzk6Ss6kSdmcXUBJeaWKgVQTHODH8X3b8cOaDMoqKt12narhhu4s037m4A50jQzh3z+nHFBtzht8smwbBjivDsVQzh7SkR5RoTz9UwrlbrwnM9ftJDkzj5uO6+4Vw9oC/Hz4z4WOBO2hbxJ5b8FmT4dUo7nrs+gaEUJsG9dO6g8N9GNiryi+W5Phlt/f6vPMbpjQ3eXtN3anD+pAgK+PR+ZjPfljMsXlFTx8at8GqZZ63vBYfl23kx37itx6LYGcojLu/Hw1XSNDuPsk711LTxoPJWfSpCRlOIuBdFByVt3pA2PYW1jGfDfO15qbmkVEaCB92rvvZ+/n68Ptf+nF+l35DVbkpC7KKir537JtTOwVRYc6rE/k62O488RebMou4NPl7hlmZa1jrlnntsGcGh/jlmsciaoE7YS+7Xj42ySvS9CKyypYvGm323qApwyMJiuvhKWbXTvMuGqeWasWjnlmKkjwZ61DAji+bxRfr0qntNx9H4ocbMWWvXy+YjtXje1K18jQBrnmRcd0wgL/XbK1Qa53KKu37WN3folHY3C3R75JZFdeCc+dO4gWAb6eDkeaACVn0qQkpucS4OdDtwb6D7CxGNczkpYt/N02tLGy0jJ/QzbjekS4/U3hyf3b0y8mnOdmrm/QN1iH8+u6nWTllXDhMXVfQuAvfdsxtHNrnv8llaLSCpfHNDsli7U7crlxQnevW3g3wM+Hly8cwon9HAnau16UoC1L20NxmesrjlY5rncULfx9+W6N616LB8wzu0DzzA5n6tBY9hSU8lvyrga5XkWl5aFv1tI+PIibJjZcb2bH1sFM6h3F/5ZtpaTc9X9f6mLRxt2c/p8FjHnyNx7+JpHtews9Eoc7/bAmgy9/38FNE7szsIGWyJCmz7v+xxY5SknpufRqF+bW8fyNUYCfDyf3b8/PiZluSQQS03PZU1DK2J7uG9JYxcfHcMcJvdi6p5BPl3tHuehpS7YS0zKICfVYQ8wYw90n9WZXXgnvLnRtcmKt5YVf19OhVQvOHOKdk9MD/Hx46QJHgvaIFyVoc1KyCPBzfcXRKsEBfhzXJ4of1mS6bEhr9XlmIzXP7LDG9oggKiyQzxtoaON/l25l7Y5c7j+lDyENvGzBxSM7k51f6va5rTUpLC3n7i8S9vfcf7R4CxOens3fPl3F+p15DR6PO+zKK+a+6WsY0KElNx3n5cOIn3oKZs06cNusWY7t4nX0DlaaDGstiek5mm92CKcNjKGgtMItnxjPXe8ooDC2h3t6Gw42oVckwzq35qXf1lNc5plPhats2V3AvPXZnD+iU73ndY3o0oZJvaN4dfZG9hW6bv2l+RuyWbVtHzdM7ObVH1RU70F75Nsk3pnv+QRt7vosRsS1cUvF0Sqnxkezu6CUxZuOfmjjuoxcHtY8szrz8/XhrCEdmZWSxa68Yrdea29BKc/8nMKorm2ZEt/wBXnG9Yikc9tgPlrc8IVBnvoxha17Cnnq7HienjqQuXdN5JJRnflhTSZ/eW4u13ywnFXb9jV4XK5ireXeL9ZQUFrBc+cN9Oq/swAMHw7nnvtHgjZrluP74cM9G5fUyMt/m0TqLiOnmL2FZZpvdgjHdG1LVFigW+ZqzUnNol9MeIMNpzLGMWdrZ24JH3q4Itl/l27D18dw3vDYIzr/zpN6kV9SziuzN7osppd+3UB0yyDOGdrRZW26i7/vHwnaP2Z4NkFL31dE6s58tw1prDKhVxQhAb7MSDi6oY35JeXcOG0lLTXPrF6mDutIRaXlq9/dO2/1qZ9SyCsu55HT+3lkaRcfH8PFx3RmWdpe1mU0XIXKZWl7eH9RGpeN6ry/YmhMqxY8dGo/FtxzHDcf153Fm3Zzxn8WcOGbi5m/Pttrl0c5lE+Xb+PX5F3cfVJvukc1gnXNJk6ETz6BM86A885zJGaffurYLl5HyZk0GVXlkdVzVjNfH8Mp8dHMSskit7jMZe3ml5SzcsveBus1q3JM17aM7RHBK7M3sLfAdb1O9VFaXslny7dxfJ8o2oUHHVEbvduHc+bgDry3MI10F1RWW7xpN0vT9nDtuK4E+jWOyelVCdpJ/drzjxlJvO2hBG2eswfYXcVAqgT5+/KXvu34MTHziCuoWmu5f7rmmR2JbpGhDOnUis+Wb3dbUpCwfR//W7aVy0fH0dODixJPHdaRQD8fPmyg3rOi0gru+jyBjq1bcFcNlQvbhATwtxN6sfDeSdw3uTcbduVz8dtLOP0/C/hxrfsXaHeFbXsK+ce3SYzq2pYrRsd5Opy6qaiAr7+G3FxHUpaTA6+/Dp99Bvn5no5ODlJrcmaMiTXGzDLGrDPGJBpjbjlo/x3GGGuMcf9kE5HDSEzPxRjoo+TskE4bGENpeSU/uXAOwqKNuymvtIxrgPlmB7v/lD7kFZfzzxlJDX5tgJ8SM9ldUMqFx3Q+qnb+9peeYOH5X1KPOqaXfltPRGgg59ehpL838ff14aULB3Ny//b800MJ2pzULNqHB9GznfsLCk2Jj2FfYRnzNxxZBdVPlm3j61Xp3Ha85pkdianDYlm/K5/V23Nc3nZlpeXBrxNpGxLILcf3cHn79dEqOIDTBsbw1e87XPqh3KE8OzOFzdkFPHlW/GHn2IUG+nHNuG7Mu3sij505gJyiMq77aCXHPzeHT5dv85piTwerqLTc/ulqfIzhmXMHNo7e6qIimDoVXnwRWrSACy8EX1/48UdHD1pkJJx5Jnz0kSNpE4+rS89ZOXC7tbYPMBK40RjTFxyJG/AXwLO1WkWApIwcurQNafBJ143JoNhWdGoT7NKqjXNTswgO8GVo59Yua7OuercP54YJ3fjy9x3MSmmY6mvVfbxkK7FtWjC2+9Elph1bB3PJqM58vmL7UU2WX7FlDws27Oa68V0J8m8cvWbV+fv68OIFfyRob83b1GDXLq+oZP76bMb1jGiQIWhje0YQFuTHjNX1X5B6XUa19cwasAJgUzIlPpogfx8+c0NRoc9XbGfVtn3cN7k34UH+Lm+/vi4Z1ZnC0gq+XOGeZTuqrNy6l7fnb+bCYzoxuo5/EwP9fLnwmE78dvsEXrpgMIF+vtz1eQITnp7FO/M3U1ha7taY6+vt+ZtYmraHh07rV6dlUzwuOxsmTYLp0yEkBL77DqZNg++/B39/eO45uPpqWLoULrnEkahNngzvvAO7d3s6+mar1uTMWpthrV3pfJwHrAOqyn89B9wFeH8/tDR5iem59IlRr9nhGGM4dWA0CzZkk5XnmrVn5q3PYmTXth4bQnfjcd3pERXK/V+uIb+k4f4j35iVz6JNu7lgRCeXfHp648TuhAT48dRPKUfcxou/bqBNSEC9Svp7m6oEbfKA9vzru3UNlqCt3r6P3OJyxvese8XNoxHo58uJ/drzc1JmvUqdHzzPzBsWF2+MwoL8Obl/NN+sTndpUaGcwjKe/DGZYZ1bc+Zg76iUGt+xFQM7tuTDxVvcNoyzuKyCOz9bTfvwIO49uf4LMfv6GE4dGMP3Nx/Lu1cMp2PrYP4xI4kxT/zGi7+uJ6fQ/b1+tUnJzOOZn1I5oW87zvbSKrgH2LgRRo+GlSvh4ovh22//mGM2caJjeGNpqaNHbds2WLgQbr4Z1q2Dv/4V2rWD44+HV1+FzIav+Nmc1WvOmTEmDhgMLDHGnAbssNaudkdgIvWRU1TG9r1F9FNyVqvTBnag0sL3a+r/if3Btu4uJG13IeN6eG5Uc6CfL0+eE09GbjFP/pDcYNf975Kt+PkYpg49skIgB2sTEsA147oyM2knK7bUv4rf6m37mJOaxVVju7i10mBD8Pf14YXz/0jQpv/u3k/8AeakZuNj4Nij7AWtjynx0eQVlzM3tW5DG6vPM3vhfM0zO1pTh3Ykr7icnxJd98bzuV9S2VtY6rEiIIdyyag4NmYVsGiTe3pDXvh1PRuzCnj87HjCjqK30BjDxF5RfHrdKD6/bhSDO7Xm2ZmpjH7iVx77fh07c91bYfNQSssrue2TVYS38OOxswZ41b2t0dKlMGqUo/fr11/hww//XPxj4kS46y7HYx8fx/HPPAObNsGKFXD33bB9O9xwA8TEwNix8MILjkROpfndqs7JmTEmFPgCuBXHUMf7gQfrcN41xpjlxpjlWVlZRxqnyGGpGEjd9WofRq92YS4Z2jingQoo1GZIp9ZcMboLHy7ewtLNR1+evDbFZRV8vnI7J/ZvT2SY694g/3VsFyJCA3nyh5R6f8L90m8baNnCn0tHxbksHk+qStBGdm3D3V+scXvZ7TmpWQyKbUXL4IYbhjamewStgv35ro5VG6vPMxvVTfPMjtbIrm3p0KoFn7touF9Sei4fLErj4pGd6RfT0iVtusqU+GhaBfu7pbptwvZ9vDF3E1OHdnRppdNhcW145/Lh/HDLWCb1acdb8zYx9slZvPDLeioauHDIC7+mkpSRy2NnDvD+D0W+/RYmTIDQUEdv2Jgx9TvfGBgyBB591NGLtnYtPPSQYz7arbdCp07w7rtw6qmOeWqg0vwuVqfkzBjjjyMxm2at/RLoBnQBVhtj0oCOwEpjTPuDz7XWvmGtHWatHRYZ6dk3cNJ0JTnLBHvbf4je6rRBMazYspftewuPqp15qVl0aNWCLhEhLorsyN1xYk9i27Tg7i8S3L722Q9rM9hXWMZFLi66ERzgxy2TurM0bU+91qNLSs/ll3U7uXJMF0Kb0JxLf18fXrloKO3CA7nmg+Vu+9R8b0EpCdv3NfiHDP6+PpzUrz0zk3bW+jureWau5+NjOHtoR+ZvyGbHUVZKtdby0DdraRUc4Cjw42WC/H05b1gsPyftJDPHda+j0vJK7vo8gYjQAP4+pa/L2q2uT3Q4L14wmFl3TODE/u157pdULntnqcuG5tdmxZa9vDp7I1OHduSEfn96m+tdXn3VUS6/Xz9YtAh69Tq69oxxtPXQQ5CQAKmp8PjjjsSvoMAxT613b0fBEZXmd5m6VGs0wNvAOmvtswDW2jXW2ihrbZy1Ng7YDgyx1mpQqnhEYnoOkWGBLu3FaMpOGxgDwLdHUIygSllFJQs37mZcz0ivGOIRHODHE2fFszm7gOd/We/Wa328ZCtdIkLc0ntx/ohOxLUN5qkfU+r86fDLs9YTFujH5WPiXB6Pp7UJCeCtS4dTUFLONR8sd0viPX9DNtbi9vXNajIl3rE4/OzDFLQpKCnnxo81z8wdpg7tiLUcdbGMr1elsyxtL3ed2ItWwQEuis61LjymE5XW8t+lrqvh9vKsDSRn5vHYmQNo2cK9vc6d24bw4vmDePLsASxL28PkF+exaKN7i1YUlpZz+6eriG7ZggdPdU/y6RKVlXDvvY4hiCefDLNnO+aMuVqPHnDPPbBsGaSlwfjxkJLimLvm2/iKUHmruvScjQEuAY4zxqxyfk12c1wi9ZKUnqv5ZvUQ2yaYwZ1aHdXQxt+37iO/pJzxHiihfyhjukdw3rBY3py3iTVuKJENkLozj2Vpe7lwRCe3JKX+vj7cfkIvUnbm1WmR3NSdeXy/JpPLx8S5/c2Rp/RqH8Zz5w1i9fYc7v1yjcuLGsxJzaJVsD/xHVu5tN26GNm1DW1DAvg2oeYPSqy1/P2rtaRla56ZO8S2CWZk1zZ8vvLI1zzLKy7j0e/XMbBjS84d5po5qO7QuW0I43tG8t+lW494fb3qEtNzeGXWBs4c3IFJfdyQCNTAGMN5wzvx1Y1jCAv046K3FvPSr+vdtj7a498ns2VPIc9MHXhUc+ncqqTE0YP1xBNw7bXw1VeOyozutmkTJCbCVVc5etEmTIBHHnGsqeZpjXxOXF2qNc631hprbby1dpDz6/uDjomz1h7ZYi0iR6mkvIINu/I136yeThsYw7qMXDbsOrLS7fPWZ+HrYxjVzXuSM4D7TulD25AA7voiwSVvQA728ZKtBPj6cPbQji5vu8opA6Lp3yGcZ2em1lrJ7+XfNhAS4MuVY7q4LR5vcEK/9txxQk+m/76D1+e6roKjtZa5qVkc2z3CIz1Sfr4+nDygPb+t21Vj2fBPl29j+u87NM/MjaYOjWXL7sIjnq/64q/ryc4v4R+n9/f6da8uHdWZXXkl/Jy486jaKauo5M7PEmgVHMBDHuhR6hMdzjf/dyxT4mP498xULnt3KbvzXTvMcU5qFh8u3sJfx3Tx3tfevn1w0knw8cfw2GOOYY1+DTC0vWqO2aefwptvwjffQEAAPPywo3T/dvcXcTqs4cMd8VUlaI1sTly9qjWKeKPUzHzKK63mm9XTKfHR+Bj4ZtWR9Z7NrSqg4GW9NS1b+PPPM/qzLiOX1+dsdGnbRaUVfLFyO5MHtKdNiPuGLvn4GO4+qTc79hXx0eJDD0HalJXPjIR0Lh7VmdZujMdb3DixO1Pio3nyx2R+Sz66N5dVkjPz2JVX4tGiNlPiYygqq+DXdQcObUzOzOXBrxM5trvmmbnTyQPaExrod0SFQdbvzOPdBWmcNyyWgbGtXB+ci43vGUXH1i34cHHaUbXz2uyNJGXk8q8z+ntsGGdooB8vnD+Ix84cwJLNjmGOrioIta+wlLs+X02PqFDuOPEo5225y9atcOyxsGCBoxrjvfc65og1hGXLDpxjdsop8MMPjgRo+XIYONBRmMRTJk6Et992xDVlyh+JZCOZE6fkTBq9pAzH8LW+GtZYL1FhQYzq1pZvVqfXezjPnoJSEnbkMK6Hdxb5ObFfe06Jj+bFXzcccc9gTb5NSCevuJwLj+nssjYPZWyPSI7tHsHLv60nt7jmNX7+M2sjAX4+XD22q9vj8QbGGJ4+ZyB9o8O5+b+rXHJv56Y6Ko56Yr5ZleFxbYgKC2RGtaqNBSXl3DBtJeGaZ+Z2wQF+nDIgmu/WZFBQj7USrbU8/G0iwQG+3Omtb+AP4utjuOiYzizetIfUI1zwPiUzjxd/W8+U+GhO6u/ZAhnGGC48phPTbxhNC39fLnhzMf+ZteGohzk++HUiu/NLefbcQQT5e+FcqlWrHKXvt22DH390rGPWkO66q+bS/J984lhXrXNnOO00uOUWx7DLhpSbC//8J1x6KRQVORbevv76RpOYgZIzaQIS03MJDfSjc5tgT4fS6Jw2MIa03YWs2VG/+VkLnAUUxnrRfLODPXxqP4IDfbnr8wSXlV3+eMlWukeFMjyutUvaq83dJ/Vmb2EZb9YwjG/r7kK+WrWDC0d0blbzkFoE+PLmpcMI8vflqveXs6+w9Kjam5OaRe/2YbQLD3JRhPXn62OYPCCaWSlZ5BWXHTTPbJAKHTWAqcM6UlhaUa/1H79fk8mCDbu588RetG1Er8HzhscS4OfDR4vrX1a/vKKSOz9fTXiQP4+c1s8N0R2ZfjEt+fb/juWk/u15+qcUrnx/GXsKjuxvw7er0/lmdTo3T+rBgI5eOCJn5kwYN86xNtn8+XDccZ6O6EA9ezoqRd5yi2OB65EjHUVD3K2gwDGnrEsXePBB6N8fWreGBx5wDPc8eA6aF1NyJo1eUnoufaLDvH6svzc6qV80/r6Gr+s5tHFuahYtW/gz0AMFFOoqMiyQB6f0ZeXWfXywKO2o20tMz2HVtn1cdIx7CoHUZEDHlpwSH81b8zazK+/A8tevztmAr4/h2vHNo9esuphWLXj9kqGk7yvmpo9/p/wI5xYWlJSzPG2vx9fpAzh1YDSl5ZX8um7X/nlmtx7fk9FeNqezqRrauTVdI0L4rI5DGwtLy/nXd0n0jQ5vkJ50V2oTEsCUAdF8uXIH+fXoKQR4c95mErbn8Mjp/bwuIQ0L8uflCwbzzzP6s3DDbk55cR7L0+o3zHFnbjEPfL2WgbGtuGFCNzdFehTeew8mT3YkIIsWwYABno6oZoGB8Pzzjrlo27bB0KHwwQfuuVZxsSMJ7NbNsXD2Mcc4krGUFPjiC/jHPxxDGqvPQfNySs6kUaustKzLyFUxkCPUMtif8T2jmJGQXufeJWstc9d7roBCfZw5uAMTekXy1I8pbNtzdGu6fbxkK4F+Ppw12H2FQGpyxwm9KKuo5KVfN+zftmNfEZ+v2M75w2M92uPjSUM7t+ZfZ/Zn/oZsHv1+3RG1sXjTbkorKj06pLHK4NjWxLQM4s15m/bPM7tR88wajDGONc+Wbt7Dlt0FtR7/n1kbyMgp5h+n9/P6v4M1uXhUZ/JLypleh4qwVTbsyue5X1I5qV97ThkQ7cbojpwxhktGdubLG0bj7+vDeW8s5rU5G+s0zNFau3+dzGfPHYifrxe9RbbWkWRccYWjfP3cudCxYf8vOiKnngqrV8OwYXDZZY6qknkummpQWgqvv+4o73/LLdCnj6Mn8fvvHUMbq88xmzjR8f2yZa65tpt50W+eSP1t2VNIQWmFioEchdMGxbAzt6TOE6nX78pnZ24JY3t4/yf6xhgePXMAPgbum37kJdjzS8r56vcdnDowhpbBDVsApUtECOcNj+W/S7eSlu140/jabEehk+vGe+Enuw3o3GGx/PXYLry7II1PltV/7aa5qVm08PdlWAMNUz0cHx/DKfHRJKbnap6Zh5w9pCM+hloLg2zOLuDNuZs5a0gHhsW1aaDoXGtwbCv6dwjno0Vb6vR3saLScufnqwkO8OWfZ/T3irUtD6d/h5bMuPlYTujbjid+SOaqD5azt5Zhjh8v3crslCzuPbkP3SJDGyjSQ6heCr6sDK6+2rEQ9JAhjuSjZSN6z9OhA/z6q6PM/scfO57DihVH3l55Obz/vmPx6+uug9hYR/uzZsGYMY5jDjUn7q67jvy6DUjJmTRqiekqBnK0ju8TRXCAb53XPKsqoOANQ8HqokOrFtxzcm/mrc+u85Clg32zKp2C0gouPKaTi6Orm1sm9cDf14dnfk5hZ24xnyzfxjlDOxLTqoVH4vEm957cm7E9Ivj7V2vrPYRpTmoWo7q1JdDPOyb8nzM0lqiwQF48f7DmmXlA+5ZBjO0RyRcrth9yJIG1loe/SSTAz4d7Tu7dwBG6TlUPU4pz3cbavLtgM79v3cfDp/ZrNL+b4UH+vHLREB45rR/z1mdxyovzWLm15ueall3Av2as49juEVwy0guGqVaVgv/uO0dhjbffhuBgePppR8n6xsbX1zEPbNYsxzDEUaPgueccPYJ1VVnpKDjSvz9cfrljPtl33zmqVXrbvLujpORMGrWk9Fz8fAw92nn4U65GLDjAj7/0bccPazMoLa997s6c1Cy6R4U2qsTgomM6MyKuDf+akcSu3OLaTzjIx0u30Lt9GIM9VCo7KjyIvx7bhRkJGdzx2WoqKi3Xj9eQN3CsE/byBUPo2DqY6z5awY59RXU6b8vuAtJ2FzLOi3qAe7UPY+n9x3vvmkrNwNRhHUnPKWbhxpqXbv1l3S7mpGZx6/E9iApr3EOKTxvYgfAgv1rn5G7OLuDpn1I4vk8Upw+KaZjgXMQYw2Wj4/ji+tH4+hrOfW0Rb87ddEBvYUWl5fbPVuPna3jqnHjvmL8+cSK88w6ccQb89BOEhsKMGY0/CRk3zlFpcvJk+NvfHGXus7IOf4618PXXMGgQnH++Yx23L790lOyfPLnhlg9oQErOpFFLTM+le1So13zy3VidNjCGfYVlzN9w+D+SxWUVLN28p1EMaazOx8fwxNkDKC6v5MGvE+t1bsL2fazdkctFIzt7dCjPNeO70jrYn3nrszlzcAc6tVV10iotg/1589JhlJRVcvX7y2tczPlg+0vo94pyd3jSiBzfpx0tW/jz2fI/97IXl1XwjxmJ9GwXymWj4xo+OBdrEeDL1GGx/Lg2808Fh6pUVlru/jyBQD8fHj1zgNcPZzyU+I6tmPF/Y5nUJ4pHv1/H1R+sIKfQsUTJ63M3smLLXv55en/v+tDxlFMcBT+shdtua1Sl4A+rbVuYPh1efhl++cWxJtq11/65WMdvv8Ff/wojRjiS1OJix7DI1avhzDObZFJWRcmZNGpJGbmab+YCY3tE0rKFf60LUi/dvIeS8spGM6Sxuq6Rodx2fE9+TMysV7nsaYu3Ehzgyxke/sQ4PMifW4/vSaCfj3dWEfOw7lGhvHjhYNZl5nLHZ6trnUczJzWb2DYtiFOSK9UE+fty+qAYfkrMJKfowPUFX5uzkW17inj4tH74e1OxiKNw0TGdKK+0fLJ0W437P1iUxtK0PTwwpW+jLz7UsoU/r108lAen9GVO6i4mvziPT5dv47mZqUwe0N77egXnzHFUOmyEpeBrZQzceCMsWQLh4fDGG45etF9+cex/7jk48URH72F2Nrz7LiQlwQUXOIZINnFN46+LNEu78orJyivRfDMXCPDzYfKA9vyctJOi0opDHjc3NYsAXx9Gdmmcw66uHtuF/h3CefDrtXVaHyu3uIxvVqdz+qAYwoIathBITS4d1Zllfz+erp6erO6lJvaK4t6Te/P9mkxe+m3DIY8rLa9k0cZsxveMbLQ9AeI+U4fGUlJeybfV5uFu21PIq7M3MiU+ukktb9A1MpSxPSL4eOnWPy1JsXV3IU/+mML4npGcM7QRVAasA2MMVx7bhc+uGw3AXZ8n0LJFAP86w8t6BWfNcsw5+/TTRlkKvs4GDXIUB7niCigshJNPdiwT8Le/OYqeVJXEv/xyx3DGZkLJmTRaSem5APRTcuYSpw6MobC0gl+Tdx7ymHnrsxnepTUtAhrnJ1d+vj48dfZA9hWW8c8ZtZdf/+r3HRSVVXDhCC+YII7jjUW4FySJ3uzqsV05a3AHnp2Zyo9rM2s8ZsWWvRSUVjCuR+PrARb3698hnF7twg4oIPTPGUn4+hjuP6WPByNzj0tGdiYjp5hf1u3av62y0lFW3tfH8PhZXpa4uMCg2FZ8f/NYLh8dxysXDaFNiJcV2Vi2rFGXgq+XkBBHD9m0aY6FtdPS4IQTHL2G113XOAugHCUlZ9JoJTqTsz5a48wljunSlqiwwEMObczMKSZlZ16jf0PbNyac68Z344uV25mdsuuQx1lr+XjJVgZ0aMmAjho621gYY3jsrAEMjG3F3z5dxbqM3D8dMyc1Cz8fw+juTacHRFzHGMPUYR1ZvW0f63fmMTtlFz8n7eT/jutBdEsvmpPkIsf1jiKmZRAfLd6yf9vHS7eyaNNu7pvcx7vmYblQy2B/Hj6tHyO6eOFyCI28FPwRiY6GsDC45x5YuRIWL/Z0RB6j5EwaraT0XGLbtKBlC/UkuIKvj2FKfAyzU7L+NNcCYO76xlVC/3BuOq473SJDuH/6WvJLai4esXLrPpIz87jIQ+Xz5cgF+fvyxiVDCQvy46r3l7M7v+SA/XNTsxjauTWhgc1nmIzUzxmDO+DnY5i2ZCuPfJtE14gQrjw2ztNhuYWfrw8XjezM/A3ZbMzKZ/veQh7/fh1jurflghGxng5PmoOqYZyffQaPP950h3HWkZIzabSSMnLpq14zlzptUAylFZX8VMNwsHnrs4kMC6R3+zAPROZaQf6+PHVOPOk5RTz9Y3KNx0xbsoXQQD9OHehlk8SlTtqFB/HGJcPIzi/h+mkr9y8TsSuvmKSMXMb3avwfMoj7RIQGMrF3FO8tTGNzdgEPndavSVcFPndYLP6+hg8XbeHeL9dggSfOim9ywxnFSzWnYZx1oORMGqX8knI2ZxeoUqOLDezYks5tg/+0IHVFpWX++izG9ohoMv9ZD+3chstGxfH+oi0sO2jx4n2FpXyXkMGZgzsQot6VRmtgbCueOieepZv38NA3iVhrmZfqWL+qsQ/PFfeb6iyCcWK/doxvAiMGDicyLJCT+0fzwaI05q3P5p6TexPbRpVMpYE0x2Gch6HkTBql5AwVA3EHYwynDYxh4cbsA9a9Wbsjh72FZU3uDcqdJ/aiQ6sW3P15AsVlf1Sp/GLlDkrKK7lQQxobvdMHdeD6Cd3479KtfLR4C3NSs4gIDVSvu9TquN5R3HNyb/55Rn9Ph9IgLh3VmUoLx3Rpw8XHeEcRJJHmSMmZNEpVxUBURt/1ThsYQ6WF7xP+WAtsnnO+2ZgmVkAhJNCPx88awKbsAl78dT1QVQhkC4M7tVKxmSbijhN6Mal3FA9/m8Qv63YyrkcEPj5NowdY3MfP14frxncjKqxxr+9VV0M7t+apc+J58YLBen2IeJCSM2mUktJzaRMSQPtGviimN+rRLoze7cMOGNo4NzWb/h3CiQgN9GBk7jGuZyRTh3bk9bmbWLsjh6Wb97Axq4CL9Mlxk+HrY3j+/EF0iQihsLRC881EamCM4dxhsY1+sWmRxk7JmTRKiRk59I0ObzLzn7zNaYNiWLl1H9v2FJJXXMbKrXub9Bydv5/SlzYhAdz1eQIfLNpCeJAfU+KjPR2WuFBYkD/vXDacC0Z0YlKfdp4OR0REpEZKzqTRKauoJDUzX/PN3OjUeEeFwm8T0lm0cTfllZaxTTg5axnszz9P70dSRi7frcng7KEdCfJvupXZmqtObYN5/KwBKqEvIiJeS8mZNDobduVTWlGp+WZuFNsmmCGdWvHNqnTmrs8iJMCXoZ1bezostzqpfzSTB7QH4MIRKgQiIiIiDa/W5MwYE2uMmWWMWWeMSTTG3OLc/k9jTIIxZpUx5mdjjBYDkgaRlK5KjQ3htIExJGfm8fWqdEZ1a0uAX9P/LOepcwbyyTUj6dGu8a/lJiIiIo1PXd5tlQO3W2v7ACOBG40xfYGnrbXx1tpBwAzgQfeFKfKHxPRcgvx96BIR6ulQmrRT4mPwMZBXXN6khzRWFxroxzFd23o6DBEREWmmak3OrLUZ1tqVzsd5wDqgg7U2t9phIYB1T4giB0pMz6F3+3B8VerXrSLDAhndzVE6f1wTW99MRERExBvVa1a0MSYOGAwscX7/KHApkANMPPSZIq5hrSUpI5dTB2oUbUO45fge9I0JJ65tsKdDEREREWny6jyJxBgTCnwB3FrVa2atvd9aGwtMA246xHnXGGOWG2OWZ2VluSJmaca27y0ir7hc880ayPC4Ntw3uY+WLBARERFpAHVKzowx/jgSs2nW2i9rOORj4OyazrXWvmGtHWatHRYZqaFRcnQS9xcDaenhSEREREREXKsu1RoN8Dawzlr7bLXtPaoddhqQ7PrwRA6UlJ6Dj4FeqqYnIiIiIk1MXeacjQEuAdYYY1Y5t90H/NUY0wuoBLYA17klQpFqkjJy6RYZSosALRAsIiIiIk1LrcmZtXY+UNOEk+9dH47I4SWm5zKiSxtPhyEiIiIi4nJNf1VZaTL2FJSSkVOsYiAiIiIi0iQpOZNGI8lZDKRvtIqBiIiIiEjTo+RMGo2kjBwA+qrnTERERESaICVn0mgkpucS3TKINiEBng5FRERERMTllJxJo5GUnqv5ZiIiIiLSZCk5k0ahqLSCjVn59I1WciYiIiIiTZOSM2kUkjNzqbTQN0bFQERERESkaVJyJo1CUoajUqOGNYqIiIhIU6XkTI5KTmEZu3KL3X6dxPRcwoP86Ni6hduvJSIiIiLiCUrO5Ij9uDaDCc/M4uQX5rGnoNSt10pKz6VvTDjGGLdeR0RERETEU5ScSb3lFZdxx2erue6jlbQLDyKnqIx/zkhy2/UqKi3JmblafFpEREREmjQlZ1IvSzfv4eQX5vHlyu3cNLE739x0LDdM6Mb033cwK2WXW665OTuf4rJKzTcTERERkSZNyZnUSWl5JU/+mMx5byzCxxg+u24Ud5zYiwA/H248rjvdo0K5/8s15JeUu/zaiemOYiB9lZyJiIiISBOm5ExqlbozjzP+s4BXZ2/kvGGxfH/LWIZ2brN/f6CfL0+eHU9GbjFP/Zjs8usnpecS4OtD96hQl7ctIiIiIuIt/DwdgHivykrLewvTeOLHZEID/XjjkqGc0K99jccO7dyay0bF8f6iNE4dGMPwuDY1HnckEtNz6dk+FH9ffZYgIiIiIk2X3u1KjTJyirj0naX8Y0YSx3aP4Kdbxx0yMaty54m9iGnZgru/SKC4rMIlcVhrScrIpZ+KgYiIiIhIE9fsk7Pisgpyi8s8HYZX+XZ1Oic+N5cVW/by2JkDePuyYUSGBdZ6XkigH4+dNYBNWQW8/NsGl8SSmVvMnoJSzTcTERERkSavWQ9rtNZy2TtLMQbev3IEgX6+ng7Jo3KKynjo67V8tSqdQbGteO68QXSJCKlXG+N7RnL2kI68NmcjkwdEH3VSlbjDUQxElRpFREREpKlr1j1nxhguGNGJxZv2cM8Xa7DWejokj1m4MZuTn5/LtwkZ3HZ8Tz6/blS9E7MqD0zpQ6tgf+7+IoHyisqjiispIxdjoHe0kjMRERERadqadXIGcMbgDtx5Yi+m/76DZ2emejqcBldcVsGj3yVx0VtLCPT35YvrR3PL8T3wO4riG62CA3jktP6s2ZHD2/M3H1V8iek5xLUNITSwWXfyioiIiEgzoHe8wA0TurF9byEv/baBDq1acP6ITp4OqUGsy8jltk9WkZyZx8UjO3Hf5D4EB7jmV2LygPb8pW87np2Zygn92h9xL1xSRi7xHVu5JCYREREREW/W7HvOwDG88Z+n92d8z0ju/2ots1N2eTokt6qstLwxdyOnv7yA7PxS3r18OP86Y4DLEjNw/Ez/dUZ/Avx8uOeLBCor6z9kNKeojG17iuirIY0iIiIi0gzUmpwZY2KNMbOMMeuMMYnGmFuc2582xiQbYxKMMdONMa3cHq0b+fn68J+LhtCrXRg3TlvJ2h05ng7JLdL3FXHhW4t57PtkJvSK5KdbxzKxd5RbrtUuPIj7JvdhyeY9/G/Ztnqfvy5DxUBEREREpPmoS89ZOXC7tbYPMBK40RjTF5gJ9LfWxgOpwL3uC7NhhAb68e4Vw2nZwp8r31vGjn1Fng7JpdbuyOG0lxewZnsOT50Tz+uXDKVtaO0l8o/G+cNjGdW1LY9/v47MnOJ6nZuY7kjOVEZfRERERJqDWpMza22GtXal83EesA7oYK392Vpb7jxsMdDRfWE2nHbhQbx35QiKyiq44t2l5BQ1jTXQ5q/P5vw3FhPo58PXN43h3GGxGGPcfl1jDI+fNYDSikr+/tXaelXETErPJTIskKiwIDdGKCIiIiLiHeo158wYEwcMBpYctOtK4AcXxeRxPduF8frFQ9mcXcD1H62gtPzoysF72terdnDFe0vp2LoFX1w/mu5RYQ16/biIEG4/oSe/rNvJd2sy6nxeYnqO5puJiIiISLNR5+TMGBMKfAHcaq3Nrbb9fhxDH6cd4rxrjDHLjTHLs7KyjjbeBjO6ewRPnh3Pwo27ueeLhEa7Btpb8zZxy/9WMaRTaz65dhTtW3qmF+rKMV0Y0KElD32dyN6C0lqPLymvYMOufM03ExEREZFmo07JmTHGH0diNs1a+2W17ZcBU4CL7CGyF2vtG9baYdbaYZGRka6IucGcNaQjt/+lJ1/+voPnGtkaaJWVlke/S+Jf361j8oD2vH/lCFq28PdYPH6+Pjx5djw5RWX887ukWo9fvzOf8kqr+WYiIiIi0mzUpVqjAd4G1llrn622/STgbuA0a22h+0L0rJuO6855w2J58bcNfLJsq6fDqZPS8kpu+3QVb87bzGWjOvPSBUMI8vf1dFj0jQnnuvHd+HLljlqXK0hKr6rU2LIhQhMRERER8bi69JyNAS4BjjPGrHJ+TQZeBsKAmc5tr7kzUE8xxvCvM/szrmck901fy5xU7x6amV9SzpXvLePrVencdVIvHj6tH74+7i/8UVc3HdedbpEh3D99Lfkl5Yc8LjE9h5AAXzq3CW7A6EREREREPKcu1RrnW2uNtTbeWjvI+fW9tba7tTa22rbrGiJgT/D39eEV5xpoN3y0gsR071wDLSuvhPPfWMSiTbt5+px4bpjQvUEqMtZHkL8vT54dT3pOEc/8lHLI4xLTc+kTHY6PFyWWIiIiIiLuVK9qjc1Z1Rpo4c410NK9bA20zdkFnP3qQjbuKuCty4YxdVisp0M6pGFxbbh0ZGfeX5TGii17/rS/stKyLiNXxUBEREREpFlRclYP7cKDePeK4RSWVHDFu8vILfaONdBWb9vHOa8uJL+knP9eM5KJvaI8HVKt7jypN9HhQdz9xRpKyisO2LdlTyEFpRUqBiIiIiIizYqSs3rq3T6c1y4ZysasfK9YA212yi7Of2MxLQJ8+fy6UQyKbeXReOoqNNCPR88awIZd+fzntw0H7FMxEBERERFpjpScHYExzjXQFmzYzT1fem4NtC9WbOeq95fTJSKEL28YTdfIUI/EcaQm9orizMEdeGX2RtZl7F86j8T0HPx8DD3aNa7nIyIiIiJyNJScHaGzh3bktuN78uXKHTz3y/oGvba1lldnb+T2z1ZzTNc2fHLtSKLCPLO49NF6YEpfWrbw5+4vEiivcPRCJmXk0j0qlEA/z5f/FxERERFpKErOjsLNk7ozdWhHXvx1PZ8u29Yg16ystDzybRJP/pjMaQNjePfyEYQFeW5x6aPVJiSAh07rR8L2HN5dkAY4KjVqvpmIiIiINDd+ng6gMTPG8NhZA8jMLea+6Wto3zKIcT0j3Xa9kvIK/vbpar5LyOCqY7tw3+Q+TaLU/Knx0Xyzagf/npnCkM6tyMor0XwzEREREWl21HN2lKrWQOseFcoN01buL2bharnFZVz2zlK+S8jg/sl9+PuUvk0iMQNHkvvPM/rj5+PDtR+uBKBvtHrORERERKR5UXLmAmFB/rx3xQjCgvy44r2lbMzKp7iswmWFQnbmFnPua4tYsWUvz583iKvHdXVJu94kumUL7p3cm+z8EgANaxQRERGRZkfDGl2kfcsg3rl8OFNfW8Skf8/Zv72Fvy8tAnxp4e9LkL9Ptce+B+3zJTjgj21V+319DE//lMK+wlLeuXw4Y3u4b9ikp10wvBMzVmeQnV9CyxaNdx6diIiIiMiRMA1ZBn7YsGF2+fLlDXY9T0jdmcfCDdkUlVVSVFZBcVkFRaUVFJU5voqdjwtLnfuq7S8uq6Cs4s/3IyI0gPeuGEH/Dk1/HlbVz6t1SICnQxERERERcTljzApr7bCa9qnnzMV6tgujZ7uwIz6/rKJyf9JWXOpI8KJbBRHeiCsy1keQsxdRRERERKS5UXLmZfx9ffD39WnU5fFFRERERKT+VBBERERERETECyg5ExERERER8QJKzkRERERERLyAkjMREREREREvoORMRERERETECyg5ExERERER8QJKzkRERERERLyAkjMREREREREvoORMRERERETECyg5ExERERER8QLGWttwFzMmC9jSYBesuwgg29NBiNvo/jZtur9Nm+5v06d73LTp/jZtur9HprO1NrKmHQ2anHkrY8xya+0wT8ch7qH727Tp/jZtur9Nn+5x06b727Tp/rqehjWKiIiIiIh4ASVnIiIiIiIiXkDJmcMbng5A3Er3t2nT/W3adH+bPt3jpk33t2nT/XUxzTkTERERERHxAuo5ExERERER8QKNLjkzxpxkjEkxxmwwxtxTbfsnxphVzq80Y8yqGs4dZIxZZIxJNMYkGGPOq7avizFmiTFmvbOtgENc/zLnMeuNMZfV93w5PE/eX2NMZ2PMCuc1Eo0x19XnfKmdG+/vTc42rTEm4jDX1+vXjTx5f/X6dT833t9pznbXGmPeMcb4H+L6ev26kSfvr16/DcON9/htY8xq5/bPjTGhh7i+XsN1Ya1tNF+AL7AR6AoEAKuBvjUc92/gwRq29wR6OB/HABlAK+f3nwLnOx+/Blxfw/ltgE3Of1s7H7eu6/n68vr7GwAEOh+HAmlAjO5vo7i/g4E45z2LOMT19fpt2vdXr9/Ge38nA8b59d9D/H3W67dp31+9fhv3PQ6vdtyzwD01nK/XcB2/GlvP2Qhgg7V2k7W2FPgfcHr1A4wxBjgXxx+AA1hrU621652P04FdQKTznOOAz52Hvg+cUcP1TwRmWmv3WGv3AjOBk+pxvhyeR++vtbbUWlvi/DYQZ8+y7q/LuOX+Or//3VqbVsv19fp1L4/eX71+3c6d9/d76wQsBTrWcH29ft3Lo/dXr98G4c57nFvt/BZATQUt9Bquo8aWnHUAtlX7frtzW3VjgZ1Vv0CHYowZgeOTg41AW2Cftbb84HaNMcOMMW/Vcv1Dni/14un7izEm1hiT4IzjSecfIN1f13DX/T3ccXr9NhxP31+9ft3L7ffXOdztEuBH5/d6/TYcT99fvX7dz6332BjzLpAJ9AZecm7Ta/gINLbkzNSw7eDs/AJqyPgPaMSYaOBD4AprbeXh2rXWLrfWXlXL9esSl9TO0/cXa+02a2080B24zBjTro5xSe3cdX8PSa/fBuXp+6vXr3s1xP19BZhrrZ0Hev02ME/fX71+3c+t99haewWO4Y7rgPOc2/QaPgKNLTnbDsRW+74jkF71jTHGDzgL+ORQDRhjwoHvgL9baxc7N2cDrZzn/6ndOly/rufL4Xn6/u7n/MQuEcenSLq/ruGu+3u019f9dQ1P39/99Pp1C7feX2PMQziGSP2tntfX/XUNT9/f/fT6dRu3/4221lY4zz+7HtfXPT5IY0vOlgE9nFVdAoDzgW+q7T8eSLbWbq/pZOc504EPrLWfVW13joOeBZzj3HQZ8HUNTfwEnGCMaW2MaQ2cAPxUj/Pl8Dx6f40xHY0xLZyPWwNjgBTdX5dxy/2tB71+3cuj91evX7dz2/01xlyFYz7KBYfpLdXr1708en/1+m0QbrnHxqF71WPgVCC5hib0Gq4r6wVVSerzhaPqTyqOca73H7TvPeC6w5x7MVAGrKr2Nci5ryuOiaobgM/4o2rQMOCtam1c6TxmA44uXQ53vr4az/0F/gIk4KhglABco/vbaO7vzTg+lSvH8Ylb1T3V67eZ3F+9fhv1/S13tlm1/cGD76/ze71+m+j91eu38d5jHB09C4A1wFpgGs7qjXoNH9mXcf5QRERERERExIMa27BGERERERGRJknJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4gf8HBfrT0XLxAKMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABmiUlEQVR4nO3dd1zV5fvH8dfNVAQBFbeAeysqbk3NSkvbmZWVVrb37vtt/6pvu8yW2bSypTbVhpbmHmiIe+NEwcUQ2ffvj3MwVBTQA+cA7+fjcR6e85nX4cMHz3Xu+75uY61FRERERERE3MvL3QGIiIiIiIiIkjMRERERERGPoORMRERERETEAyg5ExERERER8QBKzkRERERERDyAkjMREREREREPoORMRERERETEAyg5ExEpp4wxaQUeecaYIwVej3B3fKfDGBNvjDnH3XGcijFmtjFmdCkef7wxZr3zmo4qZP39xpg9xphkY8wnxhj/42LLKPB7sP64fQcaY9YZY9KNMbOMMREF1hljzMvGmP3OxyvGGFNa71NERE6k5ExEpJyy1gbmP4DtwIUFlk10d3zHM8b4VIRzlIEVwB3A8uNXGGMGAY8BA4FIoAnw7HGb3VXg96BlgX1rAd8DTwI1gBjg2wL73QJcAnQEOgBDgVtd8o5ERKRYlJyJiFQwxhgvY8xjxpjNzhaQ74wxNZzrIo0x1hhzgzFmhzHmoDHmNmNMV2NMnDHmkDHmnQLHGmWMmW+MedvZUrPOGDOwwPpgY8zHxpgEY8wuY8zzxhjv4/Z90xhzAHjGGNPUGPOXM659xpiJxpgQ5/ZfAOHAL85Wn0eMMf2NMTuPe39HW9eMMc8YYyYbY740xqQAo4qIqZkx5m/ne9lnjCmYnBQ8RxXnMfc7fyZLjTF1jDEvAH2Bd5wxvuPcvpUxZoYx5oCz1evKAsf6zBgzzrk+1Xn+iMLOC2Ctfdda+yeQUcjqkcDH1trV1tqDwHPAqJMd6ziXAauttZOstRnAM0BHY0yrAsd+3Vq701q7C3i9BMcWEREXUHImIlLx3IOjBaQfUB84CLx73DbdgebAcGAM8DhwDtAWuNIY0++4bbcAtYCnge/zkz1gApADNAM6AecBowvZtzbwAmCAF51xtQYa4UgSsNZex7EtgK8U8/1eDEwGQoCJRcT0HPAHEAo0BN4+yTFHAsHO+GoCtwFHrLWPA3P5t3XqLmNMNWAG8JXzfV4NvGeMaVvgeCOc564FxDrjPB1tcbSs5VsB1DHG1Cyw7EVn4jnfGNP/ZPtaaw8Dm53LT3bsgu9BRERKmZIzEZGK51bgcWcLSCaO5OeK47r8PWetzbDW/gEcBr621iY6W0zm4khq8iUCY6y12dbab4H1wBBjTB3gfOA+a+1ha20i8CZwVYF9d1tr37bW5lhrj1hrN1lrZ1hrM621ScAbOJLIM7HQWvujtTYPqF5ETNlABFDf+f7nneSY2TiSsmbW2lxr7TJrbcpJth0KxFtrP3W+z+XAFOCKAttMs9bOcV6Px4GexphGp/FeA4HkAq/znwc5/30UR1fHBsB4HK2QTU+yb/7+QSdZnwwEatyZiEjZqQh980VE5FgRwA/GmLwCy3KBOgVe7y3w/EghrwMLvN5lrbUFXm/D0fIVAfgCCQU+v3sBOwpsW/A5xpjawFgcXQODnNsfLNa7OrmC5ygqpkdwtGAtMcYcxNGN75NCjvkFjlazb5zdLr/EkfBmF7JtBNDdGHOowDIf5zFOiNFam+bs5ln/uNiLIw1HApov/3mq89iLC6ybYIy5GrgARwvh8fvm7596imOnHXftRUSkFKnlTESk4tkBnG+tDSnwqOJsFTsdDY5rPQkHdjvPkwnUKnCe6tbagl3hjv9g/6JzWQdrbXXgWhxdHU+2/WEgIP+Fc+xY2HHbFNznlDFZa/dYa2+21tbH0cL4njGm2fFv2NlK+Ky1tg3QC0fr2PUniXEH8PdxP+9Aa+3tBbY52kpmjAnEUZBj9/HnLYbVOAp25OsI7LXW7j/J9pZ/f77H7OvsjtnUufxkx16NiIiUGSVnIiIVzzjghfyiE8aYMGPMxWdwvNrAPcYYX2PMMBxjxaZbaxNwjN963RhT3VmIpOlx49WOF4SjheaQMaYB8PBx6/fi6JaXbwNQxRgzxBjjCzwB+HMSRcVkjBlmjGno3PwgjuQl9/jjGGMGGGPaO5PBFBzdHPO3Oz7GqUALY8x1zp+Rr7PASusC21xgjOljjPHD0XK32FpbaKuZMcbPGFMFR1Ll6yxOkv//9efATcaYNsaYUOfP4zPnfiHGmEHO7X2MYzqFs4Dfnfv+ALQzxlzuPP5TQJy1dl2BYz9gjGlgjKkPPJh/bBERKRtKzkREKp63gJ+BP4wxqcAiHIU5TtdiHMVD9uEo6nFFgZaa6wE/YA2OZGcyUO8Ux3oW6IxjPNM0HKXdC3oReMJZIfEha20yjrLyHwG7cLSk7eTUThVTV2CxMSYNx8/oXmvt1kKOUde5XwqwFvgbR9dGcPx8rzCOSpdjrbWpOIqOXIWjNWwP8DLHJpFf4SimcgDogqNAyMn8gaNraS8c48aO4EiysNb+BrwCzMLRvXSb87jg6M75PJCE41rdDVxirV3v3DcJuBzHNTyI43ei4PjAD4BfgJXAKhzX54NTxCkiIi5m1JVcREROxjgmQR5tre3j7ljKK2PMZ8BOa+0T7o5FREQ8m1rOREREREREPICSMxEREREREQ+gbo0iIiIiIiIeQC1nIiIiIiIiHkDJmYiIiIiIiAfwKcuT1apVy0ZGRpblKUVERERERDzGsmXL9llrwwpbV6bJWWRkJDExMWV5ShEREREREY9hjNl2snXq1igiIiIiIuIBlJyJiIiIiIh4ACVnIiIiIiIiHqBMx5wVJjs7m507d5KRkeHuUKSCqVKlCg0bNsTX19fdoYiIiIiIFMntydnOnTsJCgoiMjISY4y7w5EKwlrL/v372blzJ40bN3Z3OCIiIiIiRXJ7t8aMjAxq1qypxExcyhhDzZo11SIrIiIiIuWG25MzQImZlAr9XomIiIhIeeIRyZm7vfDCC7Rt25YOHToQFRXF4sWLARg9ejRr1qxxyTkiIyPZt2/fKbf53//+V+LjfvbZZ9x1113HLPv000+JiooiKioKPz8/2rdvT1RUFI899liJj18WxowZQ3p6urvDEBEREZHy7pVXYNasY5fNmuVYXg5U+uRs4cKFTJ06leXLlxMXF8fMmTNp1KgRAB999BFt2rQps1hOJzkrzA033EBsbCyxsbHUr1+fWbNmERsby0svveSS45eUtZa8vLyTrj+d5CwnJ+dMwxIRERGRiqZrV7jyyn8TtFmzHK+7dnVvXMVU6ZOzhIQEatWqhb+/PwC1atWifv36APTv35+YmBgAAgMDefTRR+nSpQvnnHMOS5YsoX///jRp0oSff/4ZOLEVa+jQocyePfuEc15yySV06dKFtm3bMn78eAAee+wxjhw5QlRUFCNGjADgyy+/pFu3bkRFRXHrrbeSm5sLOFrGWrRoQb9+/Zg/f36x3+urr75K165d6dChA08//TQA8fHxtGrVitGjR9OuXTtGjBjBzJkz6d27N82bN2fJkiUAPPPMM1x33XWcffbZNG/enA8//LDI47Zu3Zo77riDzp07s2PHDm6//Xaio6Np27bt0e3Gjh3L7t27GTBgAAMGDDj6s843efJkRo0aBcCoUaN44IEHGDBgAI8++iibN29m8ODBdOnShb59+7Ju3bpi/yxEREREpAIaMAC++w4uuQRGjXIkZt9951heHlhry+zRpUsXe7w1a9acsKwspaam2o4dO9rmzZvb22+/3c6ePfvoun79+tmlS5daa60F7PTp06211l5yySX23HPPtVlZWTY2NtZ27NjRWmvtp59+au+8886j+w8ZMsTOmjXLWmttRESETUpKstZau3//fmuttenp6bZt27Z237591lprq1WrdnTfNWvW2KFDh9qsrCxrrbW33367nTBhgt29e7dt1KiRTUxMtJmZmbZXr17HnPN4+ef9/fff7c0332zz8vJsbm6uHTJkiP3777/t1q1brbe3t42Li7O5ubm2c+fO9oYbbrB5eXn2xx9/tBdffLG11tqnn37adujQwaanp9ukpCTbsGFDu2vXrlMe1xhjFy5ceDSW/Pedk5Nj+/XrZ1esWHHCz+b4n8OkSZPsyJEjrbXWjhw50g4ZMsTm5ORYa609++yz7YYNG6y11i5atMgOGDDghPfv7t8vERERESlDiYnWjhhhLTgeTz7p7ohOAMTYk+RLbi+lX9Czv6xmze4Ulx6zTf3qPH1h25OuDwwMZNmyZcydO5dZs2YxfPhwXnrppaOtNfn8/PwYPHgwAO3bt8ff3x9fX1/at29PfHx8iWIaO3YsP/zwAwA7duxg48aN1KxZ85ht/vzzT5YtW0ZXZxPskSNHqF27NosXL6Z///6EhYUBMHz4cDZs2FDkOf/44w/++OMPOnXqBEBaWhobN24kPDycxo0b0759ewDatm3LwIEDMcac8N4uvvhiqlatStWqVRkwYABLlixh3rx5Jz1uREQEPXr0OLr/d999x/jx48nJySEhIYE1a9bQoUOHEv3shg0bhre3N2lpaSxYsIBhw4YdXZeZmVmiY4mIiIhIBWEtfPkl3H8/HDoEAQFw773w/vuOVrNy0nLmUcmZu3h7e9O/f3/69+9P+/btmTBhwgnJma+v79Hqf15eXke7QXp5eR0d/+Tj43PM2KrCyrjPnj2bmTNnsnDhQgICAujfv3+h21lrGTlyJC+++OIxy3/88cfTqkJoreU///kPt9566zHL4+Pjj76XU703OLH6oTHmlMetVq3a0ddbt27ltddeY+nSpYSGhjJq1KiTlrkveJ7jt8k/Zl5eHiEhIcTGxhb11kVERESkItu6FW69FWbMgDZtIC8PpkxxJGTnnluuujZ6VHJ2qhau0rJ+/Xq8vLxo3rw5ALGxsURERJzWsSIjI3nvvffIy8tj165dR8drFZScnExoaCgBAQGsW7eORYsWHV3n6+tLdnY2vr6+DBw4kIsvvpj777+f2rVrc+DAAVJTU+nevTv33nsv+/fvp3r16kyaNImOHTsWGdugQYN48sknGTFiBIGBgezatQtfX98Svb+ffvqJ//znPxw+fJjZs2fz0ksvUbVq1WIdNyUlhWrVqhEcHMzevXv59ddf6d+/PwBBQUGkpqZSq1YtAOrUqcPatWtp2bIlP/zwA0FBQSccr3r16jRu3JhJkyYxbNgwrLXExcUV62chIiIiIhVATg689RY89RR4e8O770JqKnTr9m8ilj8GbelSJWflQVpaGnfffTeHDh3Cx8eHZs2aHS3SUVK9e/c+2kWwXbt2dO7c+YRtBg8ezLhx4+jQoQMtW7Y8ptvfLbfcQocOHejcuTMTJ07k+eef57zzziMvLw9fX1/effddevTowTPPPEPPnj2pV68enTt3Ploo5FTOO+881q5dS8+ePQFHd84vv/wSb2/vYr+/bt26MWTIELZv386TTz5J/fr1qV+/frGO27FjRzp16kTbtm1p0qQJvXv3PuZ9n3/++dSrV49Zs2bx0ksvMXToUBo1akS7du1IS0srNJ6JEydy++238/zzz5Odnc1VV12l5ExERESkMvjnH7j5Zli2DC68EN57Dxo2LHzbctSt0TjGpJWN6Ohom1/9MN/atWtp3bp1mcUgp+eZZ54hMDCQhx56yN2hlIh+v0REREQqkPR0ePZZeP11qFUL3n4brrgCTmPYj7sYY5ZZa6MLW1fpW85ERERERKQc+PNPx9iyzZvhppvg1VchNNTdUbmUkjMplmeeecbdIYiIiIhIZXTgADz0EHz6KTRrBn/9VW66KZZUpZ+EWkREREREPJC18M030Lo1fP45/Oc/EBdXYRMzKEbLmTGmCjAH8HduP9la+7Qx5lXgQiAL2AzcYK09VIqxioiIiIhIZbB9O9xxB0ybBtHR8McfUAkKvxWn5SwTONta2xGIAgYbY3oAM4B21toOwAbgP6UWpYiIiIiIVDyvvAKzZv37OjcX7r4bmjd3LH/jDVi0qFIkZlCMljPrKOeYX8vc1/mw1to/Cmy2CLjC9eGJiIiIiEiF1bXrv5NEh4XBsGGwbp2jtWzSJIiMdHeEZapYY86MMd7GmFggEZhhrV183CY3Ar+6OLYy4+3tTVRUFO3atWPYsGGkp6ef9rFGjRrF5MmTARg9ejRr1qw56bazZ89mwYIFR1+PGzeOzz///LTPnS8+Pp527dods+yZZ57htddeK9FxXBWPiIiIiEihBgyADz6AIUMcrWPr18N//wtLllS6xAyKWa3RWpsLRBljQoAfjDHtrLWrAIwxjwM5wMTC9jXG3ALcAhAeHu6KmF2uatWqxMbGAjBixAjGjRvHAw88cHR9bm5uiSZrzvfRRx+dcv3s2bMJDAykV69eANx2220lPkdpycnJ8ah4RERERKSCSU11zFf2+utw5Ihj2YMPwgsvuDcuNypRtUZnwY/ZwGAAY8xIYCgwwp5kNmtr7XhrbbS1NjosLOzMoj2+Tyo4Xr/yypkdt4C+ffuyadMmZs+ezYABA7jmmmto3749ubm5PPzww3Tt2pUOHTrwwQcfAGCt5a677qJNmzYMGTKExMTEo8fq378/+ZNu//bbb3Tu3JmOHTsycOBA4uPjGTduHG+++SZRUVHMnTv3mNat2NhYevToQYcOHbj00ks5ePDg0WM++uijdOvWjRYtWjB37twSv8dTHfu///0v/fr146233joaz+7du4mKijr68Pb2Ztu2bWzbto2BAwfSoUMHBg4cyPbt2wFH6+E999xDr169aNKkydGWRBERERERMjNh7Fho2tQxoXSnTo75yp58EiZMOPHzfiVSZHJmjAlztphhjKkKnAOsM8YMBh4FLrLWnn4/wJLI75Oaf8FmzXK87trVJYfPycnh119/pX379gAsWbKEF154gTVr1vDxxx8THBzM0qVLWbp0KR9++CFbt27lhx9+YP369axcuZIPP/zwmG6K+ZKSkrj55puZMmUKK1asYNKkSURGRnLbbbdx//33ExsbS9++fY/Z5/rrr+fll18mLi6O9u3b8+yzzx4T55IlSxgzZswxywvavHnzMQnVuHHjinXsQ4cO8ffff/Pggw8eXVa/fn1iY2OJjY3l5ptv5vLLLyciIoK77rqL66+/nri4OEaMGME999xzdJ+EhATmzZvH1KlTeeyxx0p4JURERESkwsnNhS++gFat4N57oV07ePddWLsWpkyB//s/x9izgp/3K5nidGusB0wwxnjjSOa+s9ZONcZswlFef4YxBmCRtfbM+sHddx84uxeeVP36MGgQ1KsHCQmOeQ+efdbxKExUFIwZc8pDHjlyhKioKMDRcnbTTTexYMECunXrRuPGjQH4448/iIuLO9oKlJyczMaNG5kzZw5XX3013t7e1K9fn7PPPvuE4y9atIizzjrr6LFq1KhxyniSk5M5dOgQ/fr1A2DkyJEMGzbs6PrLLrsMgC5duhAfH1/oMZo2bXq0qyb8O4l0UccePnz4SeOaP38+H3300dHWuoULF/L9998DcN111/HII48c3faSSy7By8uLNm3asHfv3lO+XxERERGpwKx1lMT/739h5UpHS9kHH8C558KrrzoSsvy5ywYMcLxeurRCz2d2MsWp1hgHdCpkebNSiagooaGOxGz7dggPd7w+QwXHnBVUrVq1o8+ttbz99tsMGjTomG2mT5+OMzk9KWttkduUhL+/P+AoZJKTk+Oy48Kx77mghIQEbrrpJn7++WcCAwML3abge8yPERzvX0REREQqofnz4bHHYN48aNbMMan0sGHg5ezAV+DL/aMGDKiUiRmUcMxZqRszBmbPPvXj6achPd3RJzU93fH6VNsX0WpWXIMGDeL9998nOzsbgA0bNnD48GHOOussvvnmG3Jzc0lISGBWIU2wPXv25O+//2br1q0AHDhwAICgoCBSU1NP2D44OJjQ0NCjLVRffPHF0ZauM3U6x87OzubKK6/k5ZdfpkWLFkeX9+rVi2+++QaAiRMn0qdPH5fEKCIiIiLl3MqVcNFF0KcPbNoE778Pa9bA8OH/JmZygmJVa/QY+WPM8ps+Bww49nUpGj16NPHx8XTu3BlrLWFhYfz4449ceuml/PXXX7Rv354WLVoUmuiEhYUxfvx4LrvsMvLy8qhduzYzZszgwgsv5IorruCnn37i7bffPmafCRMmcNttt5Genk6TJk349NNPXfZeSnrsBQsWsHTpUp5++mmefvppwNFiOHbsWG688UZeffVVwsLCXBqjiIiIiJRD8fGOxpMvvoDq1eF//4N77oGT9M6SY5my7HIWHR1t86sX5lu7di2tW7cu3gFeecVR/KNgIjZrlqNPamFNolLplej3S0RERESKVthn8h9+cJTEX7oUjHEkZI8+CjVrui9OD2WMWWatjS5sXflqOVOfVBERERER98qvoP7ddxAdDXff7SiBbwzceCM88ww0bOjuKMul8pWciYiIiIiIew0YAN9+6xhTlpfnqAPRty+MH+8oky+nTcmZiIiIiIgU37598OabkJbmeH3jjfDxx+6NqYLwiFIpKrUupUG/VyIiIiIuNmsWdOwIv/3mKPLxxBPw88+VdtJoV3N7clalShX279+vD9LiUtZa9u/fT5UqVdwdioiIiEj5l5PjmMpq4EDw9obAQPjlF3juOcfYsyuvVILmAm7v1tiwYUN27txJUlKSu0ORCqZKlSo01GBUERERkTMTHw/XXAMLFzq6MDZuDL17/1uUb8AAR4K2dKkK9Z0htydnvr6+NG7c2N1hiIiIiIjI8SZPhtGjHYU/vvoKrr668O1UQd0l3N6tUUREREREPEx6Otx6KwwbBi1bQmzsyRMzcRklZyIiIiIi8q+VKx1zmY0f75hIet48aNLE3VFVCkrOREREREQErIX334du3eDAAfjjD3jpJfD1dXdklYaSMxERERGRyu7AAbj8crjjDujfH1asgHPPdXdUlY6SMxERERGRymzuXMfcZVOnwuuvw7RpULu2u6OqlJSciYiIiIhURrm58OyzjpayKlVgwQJ44AHwUorgLvrJi4iIiIhUZK+8cuIE0d9+C82bwzPPOOYwW74coqPdEp78S8mZiIiIiEhF1rUrXHnlvwnac885yuInJMDnn8MXX0BQkHtjFMADJqEWEREREZFSNGAAfPedI0GLjISYGGjRwjHGrHlzd0cnBSg5ExERERGp6Dp3hoAAR2LWvTvMmQN+fu6OSo6jbo0iIiIiIhVZQgJ06QLbt8Oll8LmzTB/vrujkkIoORMRERERqag2bnS0mm3eDC+/DN9//28Xx+OLhIjbKTkTEREREamIli2D3r0hJQXeew8eecSxPH8M2tKl7o1PTqAxZyIiIiIiFc3MmY4ujDVrOiaZbtny2PUDBjge4lHUciYiIiIiUpF8+y1ccAE0buyYWPr4xEw8lpIzEREREZGK4p13HHOY9ejhqMhYv767I5ISUHImIiIiIlLeWQtPPgl33w0XXQS//w4hIe6OSkqoyOTMGFPFGLPEGLPCGLPaGPOsc3kNY8wMY8xG57+hpR+uiIiIiIgcIycHbrkFnn8eRo+GyZOhalV3RyWnoTgtZ5nA2dbajkAUMNgY0wN4DPjTWtsc+NP5WkREREREysqRIzBsGHz0ETzxBIwfDz6q+VdeFZmcWYc050tf58MCFwMTnMsnAJeURoAiIiIiIlKIQ4dg0CD46ScYOxaeew6McXdUcgaKNebMGONtjIkFEoEZ1trFQB1rbQKA89/apRaliIiIiIj8a/duOOssWLQIvv7aMdZMyr1itXlaa3OBKGNMCPCDMaZdcU9gjLkFuAUgPDz8dGIUEREREZF8GzY4Wsz27YPp0+Gcc9wdkbhIiao1WmsPAbOBwcBeY0w9AOe/iSfZZ7y1NtpaGx0WFnZm0YqIiIiIVGZLl0Lv3nD4MMyapcSsgilOtcYwZ4sZxpiqwDnAOuBnYKRzs5HAT6UUo4iIiIiIzJgBAwZAYCDMnw/R0e6OSFysOC1n9YBZxpg4YCmOMWdTgZeAc40xG4Fzna9FRERERORMvfKKo2Us39dfw/nnQ1AQLFgAzZu7LzYpNUWOObPWxgGdClm+HxhYGkGJiIiIiFRqXbvClVfCd99BXBzcdx/4+jpK5der5+7opJRoEgQREREREU8zYAB8+y0MGeKYy8zPD37+2VEIRCqsEhUEERERERGRMtKjB4SEOJ4//LASs0pAyZmIiIiIiCdavBiysuCJJ+CDD44dgyYVkpIzERERERFPM2uWY8zZpEnw3HOOsWdXXqkErYJTciYiIiIi4mmWLnUkZAMGOF4PGOB4vXSpe+OSUmWstWV2sujoaBsTE1Nm5xMREREREfEkxphl1tpCJ6lTy5mIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHKDI5M8Y0MsbMMsasNcasNsbc61weZYxZZIyJNcbEGGO6lX64IiIiIiIiFZNPMbbJAR601i43xgQBy4wxM4BXgGettb8aYy5wvu5feqGKiIiIiIhUXEUmZ9baBCDB+TzVGLMWaABYoLpzs2Bgd2kFKSIiIiIiUtEVp+XsKGNMJNAJWAzcB/xujHkNR/fIXq4OTkREREREpLIodkEQY0wgMAW4z1qbAtwO3G+tbQTcD3x8kv1ucY5Ji0lKSnJFzCIiIiIiIhWOsdYWvZExvsBU4Hdr7RvOZclAiLXWGmMMkGytrX6q40RHR9uYmBgXhC0iIiIiIlL+GGOWWWujC1tXnGqNBker2Nr8xMxpN9DP+fxsYOOZBioiIiIiIlJZFWfMWW/gOmClMSbWuey/wM3AW8YYHyADuKVUIhQREREREakEilOtcR5gTrK6i2vDERERERERqZyKXRBERERERERESo+SMxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDKDkTERERERHxAErOREREREREPICSMxEREREREQ+g5ExERERERMQDKDkTEREREXGhI1m57g5ByqkikzNjTCNjzCxjzFpjzGpjzL0F1t1tjFnvXP5K6YYqIiIiIuLZPpu/lc7PzWBfWqa7Q5FyyKcY2+QAD1prlxtjgoBlxpgZQB3gYqCDtTbTGFO7NAMVKe+S07OZvSGRkAA/+rUIc3c4IiIi4mK7Dx3hld/XcyQ7l6VbD3B++3ruDknKmSKTM2ttApDgfJ5qjFkLNABuBl6y1mY61yWWZqAi5dH2/enMWLuXmWv2siT+ALl5Fl9vw/e396Z9w2B3hyciIiIu9NzUNeRZi5+PFzHbDio5kxIr0ZgzY0wk0AlYDLQA+hpjFhtj/jbGdD3JPrcYY2KMMTFJSUlnHLCIJ8vLsyzffpBXflvHeW/+zVmvzuK5qWs4cDiL2/o14avR3alZzZ97v/mH9Kwcd4crIiIiLjJrfSK/rtrD3Wc3J6pRCDHxB9wdkpRDxenWCIAxJhCYAtxnrU0xxvgAoUAPoCvwnTGmibXWFtzPWjseGA8QHR1tEalgjmTlMm/TPmau2cuf6xLZl5aJt5ehe+MaXNU1nHNa1yG8ZsDR7d8Y3pERHy3mualrefGy9m6MXERERFwhIzuXp39aTdOwatzctwnpWTmM+3sL6Vk5BPgV++O2SPGSM2OML47EbKK19nvn4p3A985kbIkxJg+oBah5TCq8xNQM/lqbyMy1e5m7cR+ZOXkE+fvQv1Vtzmldm/4tahMc4Fvovr2a1uKWs5rwwd9b6N8yjEFt65Zx9CIiIuJK783axPYD6Xx1c3f8fLyIjqxB7qzNxO44RK+mtdwdnpQjRSZnxhgDfAystda+UWDVj8DZwGxjTAvAD9hXGkGKuJu1lg1705i5di8z1uwldschABqEVOXqbuGc26YOXSNr4OdTvJ7CD57bkvmb9vHYlDiiGoVQp3qVUoxeRERESsuWpDTG/b2FSzs1OJqIdQ4PxRiIiT+o5ExKpDgtZ72B64CVxphY57L/Ap8AnxhjVgFZwMjjuzSKlHeHM3MYM3MDv63ew44DRwDo2DCYB89twTlt6tCqbhCO7y9Kxs/Hi7eu6sTQsfN48LsVfH5jN7y8Sn4cEREp3/LyLPsPZxEW5O/uUOQ0WGt56qfV+Pt68d8LWh9dHlzVl5Z1gliqcWdSQsWp1jgPONmnxmtdG46I5ziUnsWoT5cSt/MQ/VvW5vZ+zRjYurbLWrmahgXy1IVt+M/3K/l43lZuPquJS44rIiLlx5szN/Dh3C3MfmgAdYPVi6K8+SUugXmb9vHcxW1PSLCjI0P58Z/d5OZZvPUFrBRTiao1ilQWiSkZDP9gEWt2pzDu2i58Mqor13QPd3n3w6u6NmJQ2zq88vs6Vu9OdumxRUTEsx04nMXH87aSkZ3H5wvj3R2OlFBKRjbPTV1Dh4bBXNM94oT10RE1SMvMYd2eFDdEJ+WVkjOR4+w4kM4V4xay42A6n93QlfNKsWCHMYaXLutAjWp+3PP1PxzJyi21c4mIiGcZP2cLR7Jz6dgwmImLt2uKlXLmjT82sC8tk+cvaVdoy1h0ZCjgGHcmUlxKzkQK2LA3lcvfX0BKRjZf3dyDXs1KfxBvaDU/Xh8Wxeakw7wwfU2pn09ERNxvf1omny+M58IO9XnqwjYkH8lmyrKd7g5LimnVrmQ+XxjPdT0i6NAwpNBtGoRUpV5wFY07kxJRcibitGLHIa78YCEA397Sk6hGIWV27j7NHeX1v1y0nRlr9pbZeUVExD3Gz3W0mt0zsDmdw0Pp2CiET+bHk5en2mqeLjfP8viPq6hRzZ8Hz2t50u2MMXSJCCUm/iCqmSfFpeRMBFiweR/XfLiIoCo+TL6tFy3rBpV5DA+e14I29arz6JQ4ElMyyvz8rrY3JUP/GYmIFGJfWiafL9jGRR3r06x2IMYYRvdpzNZ9h/lrXaK7w5MifLN0Oyt2HOKJIa0Jrlr4nKb5ukbWYE9KBrsOHSmj6KS8U3Imld6MNXsZ9elSGoRWZfJtvQivGeCWOPx9vBl7dRTpWTk8OGlFuf72dNGW/fR48U/+N32tu0MREfE44+dsITPH0WqW7/x2dWkQUpWP5m1xY2RSlH1pmbz86zp6NqnJxVH1i9xe486kpJScSaX2wz87ue3LZbSuV51vb+np9smgm9UO4okhbZi7cR+fLoh3ayynKzfP8n+/rMEAH87dym+rEtwdkoiIx0hKdYw1uziqAU3DAo8u9/H2YlSvSBZtOcCqXare66lenL6OI9m5PHdJu2LNc9qqbnUC/X2I2aZxZ1I8Ss6k0pqwIJ77v11B98Y1mDi6O6HV/NwdEgAjuodzTus6vPzrOtbsLn/ldycv28GahBRevaIjHRuF8PCkOLbuO+zusESKbcPeVL6L2eHuMKSCGj9nM1k5edx9drMT1g3v1ohqft58PG+rGyKToizesp8py3dyy1lNaFY7sOgdAG8vQ6fwELWcSbEpOZNKx1rL239u5OmfV3Nemzp8Mqorgf5FzsdeZowxvHx5e4IDfLn3m3/IyC4/5fVTM7J59fcNdIkI5bLODXj3mk54extu/3KZpgmQcuFwZg43TVjKI5Pj+H65KueJayWmZvDFom1cEtWAJmEnfrivXsWX4V3D+WXFbvYkl/+xxxVJVk4eT/y4ioahVblrQPOidyiga2QN1u9NJflIdilFJxWJkjOpVKy1vDBtLa/P2MBlnRvw3ojOVPH1dndYJ6gZ6M/rwzqyMTGtXI3bem/2ZvalZfLU0DYYY2gYGsCY4VGs35vKEz+uUoEQ8Xiv/r6eHQeO0Lx2IE/8uIotSWnuDqnSqoh/Lz74ewvZuZa7B578w/0NvSPJs5YJmpTao3wyfysbE9N49qK2VPUr2eeG6IhQrIXl29V6JkVTciaVRm6e5dEpcXw0byujekXy2hUd8fH23FvgrBZh3NSnMZ8v3Mafaz2/vP6OA+l8PHcrl3VuQMcC0xD0b1mbu89uzpTlO/lmacXrKpacns2mRH2ArwgWb9nPZwviGdUrks9v6oafjxd3f/0PmTlq9S0LuXmW2B2HeHfWJkZ8tIhWT/7G2D83ujssl0lMyeBLZ6tZ41rVTrpdoxoBDGpbl680KbXH2HkwnbdmbuS8NnUY2LpOifePCg/B28sQo/nOpBg895OpiAtl5uRy11fL+S5mJ/cObM7TF7bBy6vogbzu9sjglrSqG8Qjk+NITPXsLi7/m74Wby/Do4NbnbDu3oHN6du8Fk//vLpCDXTPy7OM/HQJQ9+eS7zG1ZVrR7JyeWRKHOE1AnhkcEvqBVfl1Ss6snp3Ci//ut7d4VVI1lo27k3ls/lbufnzGKL+7w8ueXc+r/6+nv1pWbSqV523/txYYf5mjPt7Czl5ttCxZscb3bexJqX2IP/3yxoAnr6o7WntH+DnQ7v61VmqcWdSDErOpMJLz8ph9IQYfl21h6eGtuH+c1sUq8KSJ/D38ebtqzuRlpnDw5PiPLabz6It+/l11R7u6N+00IqX3l6Gt67qRM1qftz25TKS0ytGv/ufVuwidschsnMtj30fV66nP6jsXv19Pdv2p/Py5R0I8HOMQT23TR1G9Yrkk/lby0XrdXmw82A63y3dwb3f/EO3//3JuW/O4Zlf1rB+TypDO9Tj7as7EfPEOfx231lMuKErNar58cjkOLJz89wd+hlJTMlg4uJtXNqpAZGnaDXL1zk8lKhGIXw8b6v+rrjZn2v38seavdx7TnMahFQ97eNER9ZgxY5DZOWU799lKX1KzqRCS07P5rqPlzB/0z5evaIDN/Zp7O6QSqx5nSCeGNKavzck8ZkHltfPzbM8N3UN9YOrcPNZTU66XY1qfrw7ojN7UzJ44LvYcv+B43BmDi/9uo6ODYN57uJ2LNpywOO6bR44nMWCzfs4eDjL3aF4tJj4A3y6YCvX9YigZ9Oax6x77PxWtKlXnYcmrVCBhtOwPy2TX1bs5j/fr6Tfq7Po8/IsHpkSx/xN++nZpCYvX96euY8MYM4jA3jxsg5c2LE+tQL9AQgJ8OP5S9qxJiGFcbM3u/mdnJn3Zm8udqsZOApDje7bmPj96fypSand5khWLk//vJrmtQO5sfeZfX6IjgglMyePVbsrRkuwlB7PKVEn4mKJqRlc//EStiQd5r0RnRncrp67Qzpt1/aIYPb6JF78dR09m9akVd3q7g7pqCnLdrJ6dwpjr+5UZHGVzuGhPH5Ba575ZQ3v/72ZOwcU74OKJxr392b2pmTy3ogudA4PYWrcbv43fS0DWoVRL/j0v111laycPEZ+soSVzi5hDUKq0r5BMO0bBtO2fnXaNwimpvNDcGWWkZ3LI5PjqB9clcfOP7FLbhVfb96+phMXvj2Pe7/5h69u7oF3OegS7S5pmTks2bqf+Zv2M3/TPtbtSQUgyN+H7k1qMLJnJL2b1aJFncBi9WAY1LYuF3asz9i/NnJe27q0rBtU2m/B5famZPDVku1c3rkBETWLbjXLN7itc1LquVs4t03JxznJmXtn1kZ2HjzCt7f0wM/nzNozuhydjPoAncNDXRGeVFBKzqRC2nEgnes+XkxiaiafjOpKn+a13B3SGTHG8PIVHRg8Zi73fh3LT3f19ogqk2mZObzy+3o6h4dwYYfiJb8je0WybPshXv9jPZ3CQ+jVtPxdmx0H0hk/ZwsXR9WnS4TjP9mXLuvAeWP+5vEfVvHxyGi3d519/Y/1rNyVzH8vaEWehZW7klm9K5nfVu85uk394Cq0axBMuwbBtHf+GxZUuRK2N2ZsYMu+w0wc3Z1qJ5lSo2lYIP93cTsemrSCd2dt4p5TVNqrLFIystmSdJjNiWlsTkpzPE9KY8u+w+TmWfx8vIiOCOXhQS3p1bQm7RsEn3YBpmcubMOCTft4ZPIKptzey6MLORXm/dmbycuzJS6/nj8p9QvT17JyZzLtGwaXUoRSmE2JqYyfs4XLOzeke5OaRe9QhNpBVYisGUBM/EFuOcsFAUqFpeRMKpxNiWlc+9Fi0rNy+HJ09wrzDVWtQH9eG9aBUZ8u5aVf1/HMaQ5MdqV3Z21iX1pmiZIRYwwvXdaeNbuTuefrf5h6d1/qBp84Ts2TvfTrOozhmOIn4TUDeOi8ljw/bS0/r9jNxVEN3Bbf3I1JfDBnC9d0D+eWs5oesy75SDardyezelcKK3cls2pXMn+s+Xc8VZ3q/kcTtXb1HS1thY0jrAiWbz/IR3O3cHW3cHo3O/WXBJd3bsC8jUmMmbmBHk1q0q1xjTKK0n3y8iy7Dh1hc1Iam/OTL+fzpNTMo9v5eBnCawbQNCyQQW3r0rNpTbpEhLrsC6Sagf48e3Fb7vrqHz6at5Xb+jUteicPsSc5v9WsIeE1A0q8//BujRgzcwMfz9vCmKs6lUKEUhhrLU/8uIoAPx/+c8GJLeqnq0tEDWatT8Ra6/Yv8MRzKTmTCue/P6wkOzeP727r6VHd/1yhf8va3NA7kk/nx9OvZRgDWtZ2WywnK51fHNX8fRh3bRcufnc+d321nK9v6YFvOfk2fPGW/UxbmcD957Sg/nGDw2/o3ZipcQk8+8sa+jSr5ZZug/vTMnnguxU0rx3Ik0PanLA+uKovvZrWOqbFMjUjmzW7Hcnaaue/f65LJL/+TFiQP+3qV6d9wxCu6xFRIVrXMrJzeXjSCupWr8J/i/HhyxjD85e2J3bHIe775h+m39uXkAC/Moi09B3OzGHrPkfy5WgJczzfuu8wmQWKFwRX9aVpWDX6twijae1AmtSqRtPagYTXCCj1+3dI+3r80nY3b8zYwLlt6tC0kAmcPdF7szc5Ws2KOdbsePmTUn++MJ7Hzm9d7r7IKq9+it3Noi0HeOHSdkfHQLpC18hQpizfyZZ9h8vN77CUPSVnUqHsSc5gafwBHjinRYVLzPI9OrgVCzfv5+FJK/jtvrNc+h9HSbz4q6N0/iODTu9bxeZ1gnjxsvbc+00sL/+6jieGnphIeJrcPMuzvziKn9xSSPETby/DK1d0YMjYuTz7yxrGXl2233Rba3l4chzJR7L5/MZuxZ4oNaiKL92b1Dym687hzBzWJuS3rqWwalcyf2/YyNQVu/n6lh7lvjVtzMyNbE46zIQbuxFUxbdY+wT6+/D21Z257P35PDI5jg+u6+LR336nZ+WQlJpJUmomic5//32dQVJaJokpjnX5vAyE1wigSVggfZvXomlYIE3CAmkaVo0a1fzc9n6NMTx3STvOfWMOj0yO47tbe3r82L+E5CN8s2QHw6Ib0qhGyVvN8t3QO5LPFmxlwsL4QqcqEddKPpLN89PW0LFRCFd3DXfpsaMjHS3uMfEHlJzJSSk5kwpl+soErIULijn+qTyq4uvNW1d14sJ35vHwpBV8MqprmX9gWrxlP9NX7uGBc1uc0Te5F0c1YNm2g3w0bytdIkI5v71nX7dJMTtYk5DC21d3Omni06JOEHcNaM6bMzdwUcf6nFOGA/k/WxDPX+sSeebCNrSud2ZfTlTz9yE6ssbRDxMAS+MPMOqTJVw9flG5TtBW7DjE+DmbGR7diH4twkq0b/uGwTw6uBXPT1vLF4u2cX3PyNIJ8iSstexLyyIxNeOEhOvoIy2TxJQMDmedOHm2t5ehVqAfYUH+hAX606ZedSJqVqNpWDWahAUSUTMAfx/3j2ctTO2gKjx9YRse+G4FExbEe3z13fdmbSbPWu7of2aFjxrVCGBwu7pMXLSNuwY0O+nYSHGN1/9Yz4HDWXx2QzeXz4faNKwaoQG+xMQfZLiLEz+pOHSHS4UyNW43retVr/DfSLWsG8TjF7Tm6Z9X89Jv63hscKsyS9By8yz/l186v+/JS+cX1+NDWrNiZzIPT46jZd0gmnjotUvJyOa1P9bTNTKUoUUk/7f3b8qvqxJ4/MeVdGtSg+rFbJk5E2t2p/Di9HUMbFWbkb0iS+UcXSNrMOHGbowsxwlaZk4uD01aQe2gKjw+tPVpHePG3o2Zv2kfz09bS3REDdrUL5tW+qTUTB6evILZ65NOWBdUxedowtWuQTBhLWs7Xgf5U9v5b1iQP6EBfh7f4nQql3ZqwNS4BF75fR0DW9cuUfXDsrT70BG+XbqDYdGNzqjVLN9NfRozfeUepizfWeZfCFQmcTsP8cWibYzsGUm7Bq4vwGKMoUtEDWK2aTJqOTklZ1Jh7Dp0hOXbD/HwoJbuDqVMXN8zgk2JaXzw9xZyci1PDGldJgnalOWO0vlvXRVV7G5zp+Lv4817IzozdOxc7pi4nB/u6O2S47raO39tYv/hLD4d1a3In7OfjxcvX96BS9+bz4vT1/LiZR1KNbb0rBzu/no5IQG+vDqsY6n+HkQXSNCuGr+Ir2/uUa7Gwbz95yY2Jqbx6aiup500e3kZXhvWkfPfmstdXy9n6t19jk5cXVrmbEjige9WkJKRzf3ntKBl3aCjiVetQH+PvGdKgzGGFy5tx3lvzOHRKXF8NbqHy1s3XOHdWZuwWO4c4JriJfmTUn8ybysjukeU6wTbU+XmWR7/YRW1Av154LwWpXaerpGhzFy7l6TUzAoxfldcr3yMwBcphl9XJgAU2apRURhj+L+L23JD70g+nreVp39eXeoTO6dl5vCqs3T+RR3ru+y4DUKqMuaqTqzfm8rjP67EWs+aoHrrvsN8On8rw7o0LHY5646NQri5bxO+XrKDBZv2lWp8z01dw5Z9h3lzeBQ1qpV+kYroyBp8flM3klIzufrDReVmcuaVO5N5/+/NXN65IQNanVkxnZqB/owZHsXWfYd55ufVLorwRFk5efxv+lqu/2QJNar58vNdvbn3nOYMbleXLhGhNKoRUGkSs3z1gqvyxNDWLNpygIlLtrs7nBPsOnSE72IcrWYNQ8+81QyOm5R67d6id5AS+2rxNlbuSubJoW1KtbdDtHO+s2VqPZOTUHImFcYvcQm0bxDssd1cSoMxhqeGtuHWs5rw+cJtPP7jqlJN0N6btYmk1EyeurCty1tn+rUI456zm/P98l18vWSHS499pl6YtgZ/H28eKmGr7H3ntCCyZgCPfb+S9KycUolt+soEvl6yg1vPalpkOXhX6hLhaEFLSs3kqvELSUg+UmbnPh1ZOXk8PHkFNav58ZSLis/0alaLO/s347uYnfwUu8slxyxo677DXP7+AsbP2cK1PcL5+a4+FbbQUUldGd2Ivs1r8dL0tew8mO7ucI7x7qxNANw54MzGmh3v6KTU87a69LjiGBLx/LS19G5Ws9hzdp6udg2C8fPxIib+QKmeR8ovdWuUCmHHgXRW7DjEY+dXvkpWxhgeO78VPt6Gd2dtJjs3j5cv7+Dybi87DqTz0bytXNapAVElLJ1fXPcMbM7y7Qd55ufVtG8Q7BGTrs7ZkMTMtYk8dn4rageVrPteVT9vXrq8A1eNX8Qbf2xweUXKXYeO8NiUODo2DObBUuyGczJdIkKP6eL4zS09qBdctegd3eCdWZtYtyeVj66PJjjAdd+K33dOcxZt2c/jP6wiqlGIS74cstby/fJdPPnTKny9vfjgui4MalvXBdFWHMYYXrysPYPenMN/vl/J5zcW3d24LOw8mM6kmB0M79qIBiGuvRd8vL24oXckz08ru0mpv1mynXF/b8bLGPx8vKji642/jxf+vt5Ucf7r7+OFf8F1Pt5U8fX6dztfx7L8bTo2CiHQQ4qaWGsZ++cm3py5geiIUMZe1anUf4/8fbyJahjCUrWcyUl4xt0hcoamObs0DvHwan+lxRjDQ+e1xNfbizEzN5KTm8drwzri48K5h176dR3exvDw4NIb0+ftZXjrqk4MHTuX2ycuY+rdfdw6l1RObh7PTV1DRM0AbugdeVrH6NGkJiO6h/PJ/K0M6VCPTi6aFD03z3L/N7Hk5lnGXt3JbfPEdYkI5fObujHyY89N0FbvTua9WZu4tFMDl1fP9PH2YsxVUVzw1lzu/vofJt/WCz+f078WqRnZPPHjKn6K3U23xjUYMzzqhPn0xKFhaACPnd+KJ39azaSYnVzZtZG7Q+LdWZswmDOu0HgyV3ZtxJiZG8tkUuoP52zhhelriWoUQqMaAWRm55KRk0dmdi4pR7JJzM4lKyePzJw8MrJzyczJIzMnl+zcU/feaBhalbev7uSyv4WnKyM7l0cmx/Hzit1c1rkBL17WvswqlUZHhjJ+zhaOZOVWum7JUjQlZ1IhTItLoKPzP5DKyhjDfee0wNfbi1d/X09OnuXN4VEu+dC+ZOuBoxMvl/YH7xrV/Hh3RGeu/GAh938by8cju7ptwP/ExdvZmJjG+Ou6nNF/2o+d34q/1iXy6JQ4frm7j0s+ALzz1yaWxB/gjSs7ur0rb+dwR4J2/cf/FgnxlIQiOzePhyfFERLgx9MXls5ceg1DA3jlig7c9uVyXvtjPf+94PSqQP6z/SD3fPMPuw9l8OC5LbhjQDMVfijCiO4RTI1L4LlpazirRZhbi9PsOJDOpJidXN0tvNR+/6tX8eXK6EZ8vjCeR89vVSp/j621vPXnRsbM3MiQ9vV4c3hUib5wyMnNIys3j8zsPDJycsnM/jeB25uSwbO/rGHYuIU8Mrglo/s0ccvf98TUDG75fBmxOw7xyOCW3N6vaZm2vEZHhvLebEvsjkP0bFqz6B2kUinybjPGNDLGzDLGrDXGrDbG3Hvc+oeMMdYYU3aDHUQK2Lb/MCt3JTO0kraaHe/OAc347wWtmBqXwN1f/UNWTt4ZHS8vz/J/U1dT7yQTL5eGTuGhPDGkDbPWJ/He7E1lcs7jHTycxRszNtC7WU3OPcPWlqAqvrxwaTs27E3jvVmbzzi2mPgDvPXnBi6Jqs9lnRue8fFcoZMzQTuQlsVV4xex+5BnjEF7f/Zm1iSk8MKl7Uq1FXZwu3pc2yOc8XO2MGt9Yon2zcuzvDd7E8PGLSQvD769pQd3D2yuxKwYvLwML1/egezcPB7/wb3FhN6dtQkvY7jDRRUaT+aG3pHkWcuEBdtcfmxrLf+bvpYxMzdyRZeGjL26U4lbgn28vQjw8yG0mh/1gqsSWasaLesG0bFRCOe1rcv0e/pyTus6/G/6Om6csJT9aZlFH9SF1iakcMk781m/J5Vx13bmjv7NyrxLbJfwfyejFjlece64HOBBa21roAdwpzGmDTgSN+BcwPPKJUmlMTXO0aWxIk88XVK3nNWUpy9sw2+r93DHxGVk5pw4GW1xTV6+k1W7Unjs/FZl2v3i+p4RXNSxPm/M2MD8Uq52WJgxMzeQmpHNU0NdU/zk7FZ1uCSqPu/O2sS6PSmnfZzkI9nc+00sDUMDeO6SdmcclyvlJ2gHDzsStF1uTtDW7Unh7b82cmHH+mUyZuuJIW1oVTeIh75bQWJK8SpY7k3J4NqPF/PKb+sZ1LYu0+/te8zE31K0yFrVeHhQK/5cl8iPpVCYpTh2HEhn8rKdXN2tUan3LsiflPqrxds4nOm6QkN5eZYnflzFh3O3MrJnBK+UwthlgOAAX96/tjPPXdyWBZv2c8HYuSzcvN/l5ynMzDV7ufz9BeRay6TbejK4nXs+NwQH+NKyTpDmO5NCFZmcWWsTrLXLnc9TgbVAA+fqN4FHAM+qey2VyrS4BDqHh7h88HV5d0Pvxjx3STtmrk3kls+XkZFd8gQtv3R+JxeXzi+O/AH/TcICuefrf8q0XPuGval8uXg7I7pH0LJukMuO+9SFbQmu6ssjk+PIyS15i6a1lv/+sJK9KRm8dVUUQWUwuXVJdQoP5YvR3TmYnsVV4xe6LUHLzs3joUkrqF7Fl2cvalsm56zi680713TicFYO938XW2Tl1D/X7mXwmDn8s/0QL1/enneu6URwVc+7puXBqF6RdA4P4Zmf15CYWvZTO7zz1ya8vAy3l9JYs+Pd1KcJKRk5TF620yXHy3HeLxMXb+f2/k155qK2pdrd0BjDdT0j+eHOXlTz82HER4sYM3MDuaVUbdhay4dztnDzFzE0DQvk57v6lMok0yXRJTKU5dsOltp7lvKrRG3VxphIoBOw2BhzEbDLWruiNAITKY4tSWmsSUhhSIeyTRzKi+t6RPDy5e2ZszGJ0RNiOJJVsgTt/dnO0vlD27ilElo1fx/GXduZI9m53DRhaZmUzLbW8tzUNQT6+/DAua6tgFijmh/PXNSWuJ3JfDK/5OWwJ8XsZFpcAvef28Ltg+lPJapRCF/e1J1D6dlcNX6hW0qdj5+zhVW7UnjuknZlMvdbvma1g3jmwrbM37Sf9/8uvAtrRnYuz/y8mpsmxFAvuCq/3N2H4V3DPaLaYHnl7WV45YqOHMnO5akfV5dp98bt+9OZvHwn13QLL7Mxb10iQukUHsIn87ee8Yf7zJxc7vrqH77/ZxcPD2rJo4NbldnvYtv6wfx8dx8uiWrAmJkbGfHRIvYWs9W5uLJy8nhsykpemL6W89vV5btbe1KnuvvGJubrGhlKamYO6/ekujsU8TDFTs6MMYHAFOA+HF0dHweeKsZ+txhjYowxMUlJSacbp0ihpsVV7iqNxTG8azivXdGRBZv3ccNnS4rdDWbHgXQ+nLuVSzs1cGsi0Kx2EO9c04lt+9O54K25/L56T6me78+1iczduI/7zmlOaCl8qB/aoR7ntK7D639sIH7f4WLvtzkpjad/Xk3PJjW5rV/pjmlxhY4FErSrP1xUpgnahr2pvOUsZnCBG/42DO/aiKEd6vHGjA0nTDS7KTGVS96dz2cL4rmxd2N+uLMXzWoHlnmMFVGz2oHcf04Lflu9h+krS/fvREFv/7URHy/D7f3L9r4c3acJ285wUuqM7Fxu+XwZv63ew1ND27h8brbiCPT34Y3hUbw2rCMrdiRz/ltzmV3CcZsncyg9i+s/Wcy3MTu4a0Az3rm6s8dUR4yOcHRfXrZN487kWMVKzowxvjgSs4nW2u+BpkBjYIUxJh5oCCw3xpzQqd9aO95aG22tjQ4LC3Nd5CI4Suh3jQx1a4Wu8uDyLg15c3gUS+MPMvKTJaRmZBe5z0u/rcPLwCOlWDq/uM5uVYdp9/QhomY1bv1iGU//tOq0umkWJTMnl+enraFZ7UCu7RHh8uODozvPC5e2w8/Hi0enxBVr0vDMnFzu+fofqvh68ebwqHJTKKJjoxAmju5Ocno2V40vmwQtJzePhyetILCKD89eXDbdGY9njOF/l7WnfkgV7vn6H5KPZGOt5esl2xn69jwSUzP5ZFQ0T13YpsxKd1cWN/dtTIeGwTz106oyKTQRv+8w3/+zi2u6h5d5a8ygtnXOaFLqtMwcRn6yhDkbk3j58vbc2KexiyMsmSu6NOSXu3tTO8ifUZ8u5cXpa8k+je7f+TYnpXHJu/NZvu0Qbw7vyEODWrqt8m9hGoZWpU51f5bGa9yZHKs41RoN8DGw1lr7BoC1dqW1tra1NtJaGwnsBDpba8vuqyqp9DYlprJuT6pazYrp4qgGjL2qE7E7DnH9J0tIPnLyBG3J1gNMi0vgtn5NPWbOqoia1Zhyey9u6tOYCQu3cdl7C9iSlObSc0xYEE/8/nSeHNqmVOcNq1O9Co9f0JrFWw/w9dKi6ym9+tt6Vu9O4dUrOpa7LyI6NAxh4ugepBxxJGg7DpRugvbRvK2s2JnMsxe1pVagf6me61SqV/Fl7FWd2JuSwcOTVnDnV8v5z/criY6owW/39uXsVq6db00cfLy9ePWKjqRkZPPsL2tK/XzvzNrkaDVzQ2t2/qTUS7YeIG7noRLtm5yezbUfLSZm20HGDI9ieNfw0gmyhJrVDuLHO3szons4H8zZwpUfLDytvxnzN+3j0nfnk5qRw1c3d+fSTp5R1bYgYwzRkTVUsVFOUJxPH72B64CzjTGxzscFpRyXSJGmxiVgDG7ptlReDelQj3dHdGbVrmSu+3gxh9KzTtimYOn8W8/yrO5zfj5ePDm0DR+PjGZ38hGGvj2PH/5xzYD4pNRMxv65ibNb1aZfi9Jv5R/etRG9mtbkxenrSEg+edGM2esT+WjeVq7vGeHyCZTLSvuGwUwc3YPUjJxSTdA2JabxxowNDGpbh6EeUL21U3goDw1qyR9r9vLH6r08dn4rPr+xG7U9YLxLRdaybhB3n92cn1fs5o9S7AYdv+8wP/yzixHdI9x2Ta/s2ohAfx8+LkHr2b60TK76cBFrdqfw/ojOXBzVoOidylAVX29euLQ9717TmU170xgydi6/rUoo9v4TF2/j+k+WUDe4Cj/e2dujq592jQhld3KG2yvbimcpTrXGedZaY63tYK2Ncj6mH7dNpLW27GtdS6VlrWVqXALdImvog04JDWpblw+u68K6hFSu+XAxBw4fm6BNcVPp/JIY2LoOv97bl3b1g7n/2xU8NGkF6VlnVlL69T/Wk5GdyxNDTm8C4ZIyxvDSZR3Iycvj8R9WFVrAICk1k4cmraBlnaDTntjYUzgStO6kZZZOgpabZ3l48goC/Lx57pJ2HlNc45a+TXhiSGu+v6MXt/Vr6lHdqiqy2/s3pXW96jz+46pCv4RyhbF/bcTX23Bb/7KZ/7Ew1av4MrxrI6bFJRRrbsGE5CNc+cFCtu5L4+NR0ZxXBlNMnK4hHeox7Z6+NK5Vjdu+XM5TRXRnz82zPPvLah7/YRV9m9diyu29aFQjoAwjLrn8xFGtZ1JQ6fXbESlFG/amsSkxjaFlXN69oji7VR0+HBnN5qQ0rh6/iKRUx9iMw5k5vOKm0vklVS+4Kl/d3J27z27GlOU7ufDteaxNOL35w1btSubbmB2M6hVJk7CyK84QXjOAh85ryV/rEvl5xe5j1uXlWR6ctILUjBzevqYTVXw9M1EuiXYNjk3Qtu0/THZuHlk5eWTm5JKRncuRrFzSs3I4nJlDWmYOqRnZJB/JJjk9m0PpWRw8nMWBw1nsT8skKTWTxNQMElMyGPf3Zv7ZfohnLmxL7SDP+cLGy8swum8TOjQMcXcolYqvtxevXtGBA4ezeG7qWpcff0tSGj/+s4tru0e4/fdtVC/npNQL40+53fb96Qwbt5DElEw+v7E7fZt7fh2A8JoBTLqtFzf3bcznC7dx6Um6s6dmZHPThKV8Ot9RaOej66M9cqqR47WqG0Q1P29iNO5MCvBxdwAip2Na3G68DAz24G/9PF2/FmF8OqorN02I4arxC/n65h58vnAbSamZfHBdF49peTgVH28vHjyvJT2a1OS+b2O5+N35PDW0DSO6F78subWW//tlDTUC/Lh7YPNSjvhEN/RuzNS4BJ75eTW9m9U6Ok7qk/lbmbMhiecuaUeLOq6ba83d8hO0ER8tpt+rs1167HNa1+HiKM/+UkHKTrsGwdzerynvzNrE0I71GNCy9mkfy1pLSkYOe1My2JuSwWfz4/Hz8eJWD6ic+u+k1Nu55+zmVPM/8aPdpsRURny0mMycPL66uXu5+rLAz8eLx4e0oWfTmjz43QqGvj2P5y9px2WdHePIdhxI56YJS9mcdJgXLm3HiO6lU8ypNPh4e9E5IpSlajmTAkxZzgUSHR1tY2Jiyux8UjFZaxn4+t/UDa7CVzf3cHc45d7iLfu54bOlhAX5k5CcwQXt6jLmqk7uDqvEklIzeeC7WOZu3MeQ9vX432XtizWh77S4BO78ajn/u7Q913R3z6D4DXtTGTJ2LoPb1ePtqzuxalcyl743nwEta5ebRLmkNiWmHR1Hkv/+jAGDwcv8+zz/rRvjXO58bpzPcS738/bi/Pb1CCzkg6lUXpk5uQwdO4+0zBx+v/8sqhfSmnIkK/do0rU3NZO9ycc9T3W8zsg+tnLgPQObu3wuxNO1bNtBLn9/Ac9e1JaRvSKPWbd6dzLXfbwEL2OYOLo7LeuW3y97EpKPcO/XsSyJP8AVXRpycVR97vsmluzcPN6/tgu9m9Vyd4gl9tbMjYz5cwMrnj6v0N9PqZiMMcustdGFrlNyJuXNmt0pXDB2rls/TFc0y7YdYOQnS8nJy+OvB/tTP8QzKjSWVF6e5YM5W3jtj/XUC67CO9d0JqpRyEm3z8jOZeDrf1O9qi9T7+7j1hL1Y//cyBszNvDWVVG8NXMj6Vm5/Hpv31KZa02kMondcYjL3ptP/5a1aVU3iL0pmf8mYykZpGScOF61iq8XdatXoc7Rh3+B51WoW70K4TU9azzTpe/N58DhLP56sP/Rv2XLtx9k1CdLCPT3YeLNPWhcq5qbozxzObl5jP1zI2/P2oS1EFkzgI9HdaVpGXZJd6X5m/Yx4qPFfHZDV/qfQeuulC+nSs70FaOUO9NW7sbbyzC4nbo0ukqXiBr8dFdvko9kl9vEDBzje27v35RujWtwz9f/cMX7C3h0cCtu6tO40EIMH87Zwq5DR3j9yo5unzvstn5Nmb4ygXu/icUYmDi6uxIzEReIahTCrf2a8v7szczdmETtoCrUru5P07BAejerRe3q/tQJciZdwf7Url6FIH+fctdiPbpPE+78ajkz1+5lUNu6LNy8n5smLKV2kD9fju5Ow1DPSiZPl4+3Fw+c15IeTWvy+6o93HdOi3L9tzKqUQjeXoaY+INKzgRQciblTH6Vxl5Na1KjHP8x9kTl9VvHwnSJCGX6PX15ZMoKXpi+lgWb9/HasI7ULDDv1Z7kDN6bvZkL2telR5OabozWwc/Hi1eu6MAV4xZy21lN6NW0/HXPEfFUjwxqya1nNaF6Fd8KWzEzf1Lqj+duxc/bi9u+XEZEzQC+vKl7haxq3KtprQrxd7Kavw9t61cnZpvGnYmDqjVKubJ6dwrb9qd7xBxG4tmCA3wZd20X/u/itszftJ8Lxs5l0Zb9R9e//Ns6cq3lP+d7Ton6Dg1DWPbEOTxwXkt3hyJSoRhjCAnwq7CJGRSYlDr+ADd/HkPzOoF8c0vPCpmYVTRdIkKJ3XGIrJy8ojeWCk/JmZQrv8TtxsfLMEhVGqUYjDFc3zOSH+7sRTU/H675cBFjZm4gJv4AP/yzi5v7Nva4eXDKQ/lnEfFMw7s2okY1P6IahfDVzT3Uw6Sc6BpZg4zsPFbvTnZ3KOIB1K1Ryg1rLdPiEujTvBYhAfoPR4qvbf1gfr67D0/9uIoxMzfy3qzN1A7y547+zdwdmoiIywRV8WXWg/0JrOLj9nG0UnzREaGAo+pmp/BQN0cj7qaWMyk34nYms/PgEYa0V5dGKblAfx/eGB7Fa8M6EljFh6cvbFvofEAiIuVZcICvErNypnb1KoTXCNB8ZwKo5UzKkalxu/H1NpzXRl0a5fRd0aUhl3duUO4qsYmISMUVHRnK3+uTsNbq/6dKTi1nUi7kd2k8q3kYwQEakyNnRv/xiYiIJ+kaWYP9h7OI35/u7lDEzZScSbmwfPshdidnMERVGkVERKSCyR93pq6NouRMyoVpcQn4+Xhxbps67g5FRERExKWahgUSEuBLjJKzSk/JmXi8vDzL9JUJ9GsRpjLjIiIiUuF4eRmiI0KJ2XbQ3aGImyk5E4+3bPtB9qRkaOJpERERqbC6RNRgS9Jh9qdlujsUcSMlZ+LxpsUl4O/jxcDW6tIoIiIiFVPXSMe4M7WeVW5KzsSj5eZZpq1MYEDL2gRqTioRERGpoNo3DMbPx0vjzio5JWfi0ZbGHyApNZOhHdWlUURERCoufx9vOjYMVstZJafkTDzatLgEqvh6cXar2u4ORURERKRUdYmowapdyRzJynV3KOImSs6kxA6lZ/HR3C18u3R7qZ4nJzePX1clMLBVHQL81KVRREREKraukaFk51pW7Dzk7lDETfSJV4pt1a5kPl8Yz0+xu8nMyQNg6750Hh3cEmOMy8+3ZOsB9qVlqUqjiIiIVApdnJNRL9t2kB5Naro5GnEHJWdySlk5jtarzxduY9m2g1T19eayzg25tkc4Xy3ezri/N5N8JIvnL2mPt5drE7Rf4hII8POmf0t1aRQREZGKLyTAj+a1A1mqoiCVlpIzKdSe5Ay+WryNr5bsYF9aJpE1A3hyaBuu6NKQ4KqOiaCfv6QdoQF+vDNrEylHcnhzeBR+Pq7pKZuTm8dvqxIY2LoOVf28XXJMEREREU8XHVmDqXG7ycuzeLn4i2/xfJU+ObPWlkqXvPLIWsuSrQf4fOE2flu9hzxrObtlba7rGcFZzcNO+ANhjOGhQS0JCfDl+WlrScnI5oPrurhkfNjCLfs5mJ6tLo0iIiJSqXSNDOXrJdvZkJhKq7rV3R2OlLFKn5w9+8saAB4d3KrSttAczszhx9hdfL5gG+v3phJc1Zeb+jTm2u4RhNcMKHL/0X2bUL2qL49NiePajxbzyaiuhAT4nVFMU1ckEOjvQ78WYWd0HBEREZHyJDqiBgBL4w8qOauEKnVy5mg1g0/nxzNnYxJvXhlFx0Yh7g6rzGzdd5gvFm5j0rIdpGbk0KZedV65vAMXdqxf4kT1yuhGVK/iyz1f/8PwDxbxxU3dqF29ymnFlZ2bx2+r93BumzpU8a2cCbOIiIhUTo1qVKV2kD8x8Qe4rkeEu8ORMlbkACFjTCNjzCxjzFpjzGpjzL3O5a8aY9YZY+KMMT8YY0JKPVoXM8bw9IVtmTi6O0eycrns/QW8OWMD2bl57g6t1OTmWf5cu5frP1nCgNdm88WieAa0rM2U23sy7Z4+XNm10Wm3IA5uV5dPb+jKjoPpXDFuIdv3p5/WceZt2kfykWyGtFeXRhEREalcjDF0jaxBTLwmo66MilO9IQd40FrbGugB3GmMaQPMANpZazsAG4D/lF6Ypat3s1r8dt9ZXNSxPm/9uZHL31/ApsQ0d4flUoczcxg/ZzP9X5vFTRNiWL8nhQfObcH8x85m7NWd6BJRwyVj73o3q8VXN/cgJSObK8YtYN2elBIfY1pcAkFVfOjbotYZxyMiIiJS3nSJCGXXoSPsPnTE3aFIGSsyObPWJlhrlzufpwJrgQbW2j+stTnOzRYBDUsvzNIXXNWXN4dH8d6Izuw4kM6QsXP5ZN5W8vKsu0M7I9m5eXyxaBv9Xp3N/6avo35wVd69pjPzHj2bewY2p3bQ6XU9PJWoRiFMurUnXsZw5biFLNtW/G9+snLy+H31Hs5rUxd/H3VpFBERkcqna6Rj3FlMCT5DScVQorrnxphIoBOw+LhVNwK/uigmt7qgfT1+v+8sejWtyf9NXcN1nywul99aWGv5dWUCg96cw5M/rqJxrQCm3N6Lb2/tyZAO9fD1dk3J+5NpXieISbf1pEY1P679aDFzNiQVa7+5G5NIzchRlUYRERGptFrXCyLAz5tlmu+s0in2J3RjTCAwBbjPWptSYPnjOLo+TjzJfrcYY2KMMTFJScX7gO5utatX4ZNRXXnxsvb8s/0Qg8bM4fvlO7G2fLSiLd6yn0vfW8DtE5fj7WX46Ppovru159FZ58tKoxoBTLqtF41rVeOmCUuZFpdQ5D7T4hIIrupL72bq0igiIiKVk4+3F53DQ1mqcWeVTrGSM2OML47EbKK19vsCy0cCQ4ER9iSZi7V2vLU22lobHRZWfsqiG2O4uls4v917Fi3rBPHAdyu4Y+JyDhzOcndoJ7V+Tyo3fbaU4eMXsSc5g1cu78Bv953FOW3quG0ut7Agf76+pQdRjUK46+vlfL1k+0m3zcjO5Y81exnUto7LJrMWERERKY+6RISybk8KqRnZ7g5FylBxqjUa4GNgrbX2jQLLBwOPAhdZa0+vLF85EF4zgG9v7cmjg1sxc+1ezntzDn+t2+vusI6RkHyEhyet4Py35rAk/gCPDm7FrIf6c2XXRnh7wMzywVV9+fzG7vRrEcZ/vl/J+7M3F7rdnA1JpGXmMKRD/TKOUERERMSzdI2sQZ6Ff7YfcncoUoaK0zzRG7gOONsYE+t8XAC8AwQBM5zLxpVmoO7k7WW4vX9Tfr6rD7UC/bjxsxj+830chzNzit65FCWnZ/Pir2vp/+psfordzY29GzPn4QHc3r+px02oXdXPm/HXRXNRx/q8/Ns6Xvx17QndRKetTCA0wJdeTWu6KUoRERERzxAVHoK3lyFG484qlSInobbWzgMKa36Z7vpwPFvretX56a7evDljIx/M2cz8Tft5/cqORyvqlJWM7Fy+WLiNd2ZtIiUjm0ujGnD/uS1oVCOgTOMoKT8fL8YMjyK4qi8f/L2F5PRsXri0Pd5ehozsXGau2ctFUfVLvViJiIiIiKcL9Pehdb0gjTurZIpMzuRY/j7ePHZ+Kwa2rs0D38Vy5QcLufWsptx/bvNSL/2em2f58Z9dvDFjA7sOHaFfizAeHdyKNvWrl+p5XcnLy/B/F7clJMCXt/9yJJdvDo9i9vpEDmflMqS9ujSKiIiIAERH1OCbpdvJzs3Tl9eVhJKz09Q1sga/3nsWL0xbw7i/NzN7fSJvDo+idT3XJ0rWWmZvSOLlX9exbk8q7RsE8+oVHehVTisaGmN48LyWhAT48dzUNaRmxODv40XNan70aFK2rZAiIiIinqprZA0+WxDPmt0pdGwU4u5wpAwoOTsDgf4+vHhZB85pXYdHp6zk4nfmc/fZzejYKARfby/8fAy+3l5HH/4++c8Nvj5e+DmXn6poR9zOQ7w4fR0Lt+wnvEYAb1/diSHt6+HlAYU+ztRNfRoTXNWXR6fEkZtnGdE9HB99KyQiIiICQHSkYxqkpfEHlJxVEkrOXGBg6zr8fl8Ij/+witdnbCjx/l4GRzLn7YWvjzN58/bCx8sQvz+dGtX8eObCNlzTPaLClZi/oktDqlfx4f+mruHqbuHuDkdERETEY9SpXoUmtarx++o9jO7bxN3hSBkwZTmxcnR0tI2JiSmz85U1ay0bE9NIzcgmK8eSnZt39JGVa8nOyX+eR1ZOHtm5tsD6PLJzjn2dlZNH89pB3NgnkqAqvu5+eyIiIiJSxj6au4Xnp61l6t19aNcg2N3hiAsYY5ZZa6MLW6eWMxcyxtCiTpC7wxARERGRCmJYdCPemLGBzxbE89qwju4OR0pZxeojJyIiIiJSgQRX9eWKLg35OXY3+9Iy3R2OlDIlZyIiIiIiHmxkr0iycvP4avF2d4cipUzJmYiIiIiIB2saFki/FmF8uWgbWTl57g5HSpGSMxERERERD3dD70gSUzP5dVWCu0ORUqTkTERERETEw53VPIwmtarxyfx4d4cipUjJmYiIiIiIh/PyMozqHcmKHYdYvv2gu8ORUqLkTERERESkHLi8c0OC/H34TK1nFZaSMxERERGRcqCavw9Xdm3E9JUJ7EnOcHc4UgqUnImIiIiIlBMje0aSay1fLtrm7lCkFCg5ExEREREpJ8JrBnBO6zp8tWQ7Gdm57g5HXEzJmYiIiIhIOXJDr0gOHM7i5xW73R2KuJiSMxERERGRcqRn05q0rBPEp/Pjsda6OxxxISVnIiIiIiLliDGGG3pHsjYhhSVbD7g7HHEhJWciIiIiIuXMxVENCAnw5VOV1a9QlJyJiIiIiJQzVf28ubpbOH+s2cOOA+nuDkdcRMmZiIiIiEg5dF2PCIwxKqtfgSg5ExEREREph+qHVGVw27p8vWQ76Vk57g5HXEDJmYiIiIhIOXVD70hSMnL4fvkud4ciLqDkTERERESknOoSEUq7BtX5bIHK6lcESs5ERERERMopYww39GrMpsQ05m3a5+5w5AwpORMRERERKceGdqxHrUA/ldWvAIpMzowxjYwxs4wxa40xq40x9zqX1zDGzDDGbHT+G1r64YqIiIiISEH+Pt5c0z2Cv9YlsnXfYXeHI2egOC1nOcCD1trWQA/gTmNMG+Ax4E9rbXPgT+drEREREREpY9f2CMfX2zBhQby7Q5EzUGRyZq1NsNYudz5PBdYCDYCLgQnOzSYAl5RSjCIiIiIicgq1g6owtEN9Ji/bSWpGtrvDkdNUojFnxphIoBOwGKhjrU0ARwIH1HZ5dCIiIiIiUiyjekWSlpnD5GU73R2KnKZiJ2fGmEBgCnCftTalBPvdYoyJMcbEJCUlnU6MIiIiIiJShI6NQugcHsKEBfHk5amsfnlUrOTMGOOLIzGbaK393rl4rzGmnnN9PSCxsH2tteOttdHW2uiwsDBXxCwiIiIiIoW4oXdj4venM2t9oR/NxcMVp1qjAT4G1lpr3yiw6mdgpPP5SOAn14cnIiIiIiLFNbhdXepWr8JnKgxSLhWn5aw3cB1wtjEm1vm4AHgJONcYsxE41/laRERERETcxNfbi+t6RjB34z427k11dzhSQsWp1jjPWmustR2stVHOx3Rr7X5r7UBrbXPnvwfKImARERERETm5q7uF4+fjxadqPSt3SlStUUREREREPFuNan5cElWf75fv5FB6lrvDkRJQciYiIiIiUsHc0LsxGdl5fLt0h7tDkRJQciYiIiIiUsG0rledHk1q8PnCbeTk5rk7HCkmJWciIiIiIhXQqF6N2XXoCDPW7HV3KFJMSs5ERERERCqgc9vUoWFoVRUGKUeUnImIiIiIVEDeXoaRPSNZsvUAq3cnuzscKQYlZyIiIiIiFdSV0Y2o6uvNp/Pj3R2KFIOSMxERERGRCio4wJfLuzTg59jd7EvLdHc4UgQlZyIiIiIiFdioXpFk5ebx9eLt7g5FiqDkTERERESkAmtWO4i+zWvxxaJtZOWorL4nU3ImIiIiIlLB3di7MYmpmfy6KsHdocgpKDkTEREREang+rUIo3GtaioM4uGUnImIiIiIVHBeXoaRPSOI3XGItQkp7g5HTsLH3QGIiIiIiEjpuyK6EZ3CQ2ldr7q7Q5GTUMuZiIiIiEglEOjvQ8dGIe4OQ05ByZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAYy1tuxOZkwSsK3MTlh8tYB97g5CXErXtOLRNa14dE0rHl3TikfXtOLRNXW/CGttWGEryjQ581TGmBhrbbS74xDX0TWteHRNKx5d04pH17Ti0TWteHRNPZu6NYqIiIiIiHgAJWciIiIiIiIeQMmZw3h3ByAup2ta8eiaVjy6phWPrmnFo2ta8eiaejCNORMREREREfEAajkTERERERHxAOUuOTPGDDbGrDfGbDLGPFZg+bfGmFjnI94YE1vIvlHGmIXGmNXGmDhjzPAC6xobYxYbYzY6j+V3kvOPdG6z0RgzsqT7y4nceU2NMRHGmGXOc6w2xtxWkv2lcKV4Te9yHtMaY2qd4vy6T13MnddU92npKMVrOtF53FXGmE+MMb4nOb/uUxdz5zXVfVo6SvGafmyMWeFcPtkYE3iS8+s+LWvW2nLzALyBzUATwA9YAbQpZLvXgacKWd4CaO58Xh9IAEKcr78DrnI+HwfcXsj+NYAtzn9Dnc9Di7u/Hh55Tf0Af+fzQCAeqK9r6rHXtBMQ6bxOtU5yft2nFe+a6j4tX9f0AsA4H1+f5G+v7tOKd011n5ava1q9wHZvAI8Vsr/uUzc8ylvLWTdgk7V2i7U2C/gGuLjgBsYYA1yJ44/HMay1G6y1G53PdwOJQJhzn7OByc5NJwCXFHL+QcAMa+0Ba+1BYAYwuAT7y4ncek2ttVnW2kznS3+crcm6pmekVK6p8/U/1tr4Is6v+9T13HpNdZ+WitK8ptOtE7AEaFjI+XWfup5br6nu01JRmtc0pcD+VYHCilDoPnWD8pacNQB2FHi907msoL7A3vxfxpMxxnTD8S3EZqAmcMham3P8cY0x0caYj4o4/0n3lyK5+5pijGlkjIlzxvGy8w+YrunpK61reqrtdJ+WLndfU92nrlfq19TZ9e064Dfna92npcvd11T3qeuV6jU1xnwK7AFaAW87l+k+dbPylpyZQpYdn+lfTSHfHhxzEGPqAV8AN1hr8051XGttjLV2dBHnL05cUjh3X1OstTustR2AZsBIY0ydYsYlhSuta3pSuk9Lnbuvqe5T1yuLa/oeMMdaOxd0n5YBd19T3aeuV6rX1Fp7A47ujmuB4c5luk/drLwlZzuBRgVeNwR2578wxvgAlwHfnuwAxpjqwDTgCWvtIufifUCIc/8TjluM8xd3fzmRu6/pUc5v+Fbj+BZK1/T0ldY1PdPz65qePndf06N0n7pMqV5TY8zTOLpPPVDC8+uanj53X9OjdJ+6TKn/7bXW5jr3v7wE59c1LUXlLTlbCjR3VojxA64Cfi6w/hxgnbV2Z2E7O/f5AfjcWjspf7mzD/Us4ArnopHAT4Uc4nfgPGNMqDEmFDgP+L0E+8uJ3HpNjTENjTFVnc9Dgd7Ael3TM1Iq17QEdJ+6nluvqe7TUlFq19QYMxrHWJWrT9FCqvvU9dx6TXWflopSuabGoVn+c+BCYF0hh9B96g7WA6qSlOSBo2LQBhx9Zh8/bt1nwG2n2PdaIBuILfCIcq5rgmOQ6yZgEv9WHIoGPipwjBud22zC0TzMqfbXw7OvKXAuEIejAlIccIuuqUdf03twfJOXg+NbuvzrqPu0Al9T3afl7prmOI+Zv/yp46+p87Xu0wp0TXWflp9riqNxZj6wElgFTMRZvVH3qfsfxvkDFhERERERETcqb90aRUREREREKiQlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAZSciYiIiIiIeAAlZyIiIiIiIh5AyZmIiIiIiIgHUHImIiIiIiLiAf4fSLZN32f0JBcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAE/CAYAAADyhar3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9tUlEQVR4nO3dd3hb1fkH8O+RvPd2vOKd7RE7ew9WSEIYYZWGUVYoFGjpD2gpBdrSUrqYBcIeAQqBJBDCJglxhjM94jiJHY9427LjvaXz+0OycRI7lm1JV5K/n+fRE1vSvfeVr+Xoveec9xVSShAREREREZF9UikdABEREREREZkPkz4iIiIiIiI7xqSPiIiIiIjIjjHpIyIiIiIismNM+oiIiIiIiOwYkz4iIiIiIiI7xqSPiIiIiIjIjjHpIyKyUUKI5j43nRCirc/3Nygd33AIIYqEEBcoHcf5CCG2CyFuM+P+1wkhjhvO6c39PP5rIUSlEKJBCPGGEMK5z2NRQoitQojThue8IIRw6PP4UiHEMSFEqxBimxAiss9jQgjxdyFEreH2tBBCmOt1EhGR5TDpIyKyUVJKj54bgFMAVva5b73S8Z2tb/Jhy8ewgEwAvwRw6OwHhBAXA3gYwFIAUQBiADzR5yn/BVANIARAMoCFhn1BCBEA4FMAjwLwA3AAwP/6bHsHgMsBJAFIBLACwJ0mek1ERKQgJn1ERHZGCKESQjwshDhpGLH5SAjhZ3gsSgghhRC3CCFKDCNCa4UQ04UQWUKIeiHEC332dbMQYpcQ4nnDyNIxIcTSPo97CyFeF0JUCCHKhBB/EUKoz9r2P0KIOgCPCyFihRA/GOLSCCHWCyF8DM9/F8BYAJ8bRisfFEIsEkKUnvX6ekcDhRCPCyE2CCHeE0I0Arh5kJjihBA7DK9FI4Tom/T0PYaLYZ+1hp/JfiFEsBDiSQDzAbxgiPEFw/MnCCG+FULUGUbprumzr7eEEC8bHm8yHD+yv+MCgJTyRSnl9wDa+3n4JgCvSylzpJSnAfwZwM19Ho8G8JGUsl1KWQngKwCTDY9dCSBHSvmxlLIdwOMAkoQQE/rs+19SylIpZRmAf521byIislFM+oiI7M+90I/YLAQQCuA0gBfPes5MAPEArgXwDIBHAFwAfYJwjRBi4VnPLQAQAOAxAJ/2JJEA3gbQDSAOwFQAFwG4rZ9tgwA8CUAA+JshrokAIqBPPiClXIMzRyyfNvL1rgKwAYAPgPWDxPRnAN8A8AUQDuD5AfZ5EwBvQ3z+ANYCaJNSPgJgJ4B7DDHeI4RwB/AtgPcNr/N6AP8VQkzus78bDMcOAJBhiHM4JkM/EtgjE0CwEMLf8P2zAK4TQrgJIcIALIM+8TtnWyllC4CT+Ckp7G/ffV8DERHZKCZ9RET2504AjxhGbDqgT6pWnzX18c+G0aBvALQA+EBKWW0Y4dkJfbLUoxrAM1LKLinl/wAcB7BcCBEMfVJxv5SyRUpZDeA/AK7rs225lPJ5KWW3lLJNSpkvpfxWStkhpawB8G/ok9OR2COl3CSl1AHwGiSmLgCRAEINrz9tgH12QZ/sxUkptVLKg1LKxgGeuwJAkZTyTcPrPATgEwCr+zznCynlj4bz8QiA2UKIiGG8Vg8ADX2+7/na0/DvDugTtUYApdBP4dw0wLY923sO8HgDAA+u6yMisn1M+oiI7E8kgI2GaYn1AHIBaAEE93lOVZ+v2/r53qPP92VSStnn+2LoR+oiATgCqOhzrFegH+3qUdI3MCFEkBDiQ8O0y0YA70E/+jUSfY8xWEwPQj/auE8IkSOE+MUA+3wXwNcAPhRClBuKmjgO8NxIADN7jmc45g0AxvQXo5SyGUAd9D/DoWqGPrHt0fN1kxBCZYj5UwDu0P9cfQH8fYBte7ZvOs++m88690REZIOY9BER2Z8SAMuklD59bi6GUbzhCDtrtGcsgHLDcToABPQ5jpeUsu+UwLMThr8Z7kuUUnoB+Dn0SdhAz28B4NbzjWFtXuBZz+m7zXljklJWSilvl1KGQj8i+l8hRNzZL9gwqvmElHISgDnQj+bdOECMJQB2nPXz9pBS3tXnOb2jekIID+gLqZSffVwj5EBfaKVHEoAqKWWtYZ8RAF4wjKTWAngTwKX9bWuYlhpruH+gfeeAiIhsHpM+IiL78zKAJ3uKhQghAoUQq0awvyAA9wohHIUQV0O/Fm+rlLIC+vVx/xJCeAl9AZnYs9YDns0T+hGlesOas/876/Eq6CtS9jgBwEUIsdww0vYHAM4YwGAxCSGuFkKEG55+GvoETnv2foQQi4UQCYYksxH66Z49zzs7xi0Axgkh1hh+Ro5CXxhnYp/nXCqEmCeEcIJ+bV+6lPKMUdA+x3YSQrhAnww7GorK9Px//Q6AW4UQk4QQvoafx1uG164BUAjgLiGEg6FAzk34aZ3eRgBThBBXGfb/RwBZUspjffb9GyFEmBAiFMADPfsmIiLbxqSPiMj+PAvgMwDfCCGaAOyFvqDKcKVDX/RFA30xltWGUSRAP/rlBOAo9EnUBujbBQzkCQAp0K8X+wL6qYh9/Q3AHwzTJH8rpWyAvuXAawDKoB/5K8X5nS+m6QDShRDN0P+M7pNSFvazjzGG7Rqhnx67A/qpqID+57ta6CufPielbIK+WMx10I/eVUI/pbJvcvo+9EVw6gCkQj/9cyDfQD/Fdg6AdYavFwCAlPIrAE8D2Ab9NNtiw357XAngEgA1APKhL2jza8O2NQCugv4cnob+d6Lv+stXAHwOIBvAEejPzyvniZOIiGyE4FR9IiIaiNA3B79NSjlP6VhslRDiLQClUso/KB0LERGNThzpIyIiIiIismNM+oiIiIiIiOwYp3cSERERERHZMY70ERERERER2TEmfURERERERHbMwZIHCwgIkFFRUZY8JBERERERkdU4ePCgRkoZaMljWjTpi4qKwoEDByx5SCIiIiIiIqshhCi29DE5vZOIiIiIiMiOMekjIiIiIiKyY0z6iIiIiIiI7JhF1/T1p6urC6WlpWhvb1c6FLIzLi4uCA8Ph6Ojo9KhEBEREREpRvGkr7S0FJ6enoiKioIQQulwyE5IKVFbW4vS0lJER0crHQ4RERERkWIUn97Z3t4Of39/JnxkUkII+Pv7cwSZiIiIiEY9xZM+AEz4yCz4e0VEREREZCVJn9KefPJJTJ48GYmJiUhOTkZ6ejoA4LbbbsPRo0dNcoyoqChoNJrzPuevf/3rkPf71ltv4Z577jnjvjfffBPJyclITk6Gk5MTEhISkJycjIcffnjI+7eEZ555Bq2trUqHQURERERklxRf06e0PXv2YMuWLTh06BCcnZ2h0WjQ2dkJAHjttdcsGstf//pX/P73vx/xfm655RbccsstAPTJ5rZt2xAQEDDi/Q6XlBJSSqhU/V9jeOaZZ/Dzn/8cbm5uRu+zu7sbDg6j/teXiIiIiGhQg470CSEihBDbhBC5QogcIcR9fR77lRDiuOH+p80bqnlUVFQgICAAzs7OAICAgACEhoYCABYtWoQDBw4AADw8PPDQQw8hNTUVF1xwAfbt24dFixYhJiYGn332GYBzR91WrFiB7du3n3PMyy+/HKmpqZg8eTLWrVsHAHj44YfR1taG5ORk3HDDDQCA9957DzNmzEBycjLuvPNOaLVaAPqRvHHjxmHhwoXYtWuX0a/1H//4B6ZPn47ExEQ89thjAICioiJMmDABt912G6ZMmYIbbrgB3333HebOnYv4+Hjs27cPAPD4449jzZo1WLJkCeLj4/Hqq68Out+JEyfil7/8JVJSUlBSUoK77roL06ZNw+TJk3uf99xzz6G8vByLFy/G4sWLe3/WPTZs2ICbb74ZAHDzzTfjN7/5DRYvXoyHHnoIJ0+exCWXXILU1FTMnz8fx44dM/pnQURERDRabThYiiNlDUqHQZbUMwoz0A1ACIAUw9eeAE4AmARgMYDvADgbHgsabF+pqanybEePHj3nPktqamqSSUlJMj4+Xt51111y+/btvY8tXLhQ7t+/X0opJQC5detWKaWUl19+ubzwwgtlZ2enzMjIkElJSVJKKd9880159913926/fPlyuW3bNimllJGRkbKmpkZKKWVtba2UUsrW1lY5efJkqdFopJRSuru792579OhRuWLFCtnZ2SmllPKuu+6Sb7/9tiwvL5cRERGyurpadnR0yDlz5pxxzLP1HPfrr7+Wt99+u9TpdFKr1crly5fLHTt2yMLCQqlWq2VWVpbUarUyJSVF3nLLLVKn08lNmzbJVatWSSmlfOyxx2RiYqJsbW2VNTU1Mjw8XJaVlZ13v0IIuWfPnt5Yel53d3e3XLhwoczMzDznZ3P2z+Hjjz+WN910k5RSyptuukkuX75cdnd3SymlXLJkiTxx4oSUUsq9e/fKxYsXn/P6lf79yiw5Lb/JqVQ0BiIiIqIeTe1dcvwftspHN2UrHcqoBeCAHCRvMvVt0PlxUsoKABWGr5uEELkAwgDcDuApKWWH4bHqkSagT3yeg6PljSPdzRkmhXrhsZWTB3zcw8MDBw8exM6dO7Ft2zZce+21eOqpp3pHl3o4OTnhkksuAQAkJCTA2dkZjo6OSEhIQFFR0ZBieu6557Bx40YAQElJCfLy8uDv73/Gc77//nscPHgQ06dPBwC0tbUhKCgI6enpWLRoEQIDAwEA1157LU6cODHoMb/55ht88803mDp1KgCgubkZeXl5GDt2LKKjo5GQkAAAmDx5MpYuXQohxDmvbdWqVXB1dYWrqysWL16Mffv2IS0tbcD9RkZGYtasWb3bf/TRR1i3bh26u7tRUVGBo0ePIjExcUg/u6uvvhpqtRrNzc3YvXs3rr766t7HOjo6hrQvc+rW6vD8D/l4YVs+AGDP75YgyNNF4aiIiIhotPv6SCXau3RYlRymdChkQUNaFCWEiAIwFUA6gH8AmC+EeBJAO4DfSin3mzxCC1Cr1Vi0aBEWLVqEhIQEvP322+ckfY6Ojr3VIFUqVe90UJVKhe7ubgCAg4MDdDpd7zb9tQvYvn07vvvuO+zZswdubm5YtGhRv8+TUuKmm27C3/72tzPu37Rp07CqUkop8bvf/Q533nnnGfcXFRX1vpbzvTbg3GqYQojz7tfd3b33+8LCQvzzn//E/v374evri5tvvnnAdgp9j3P2c3r2qdPp4OPjg4yMjMFeusUV17bg/v9l4PCpelwwMRjf5VZh8+Fy3L4gRunQiIiIaJTblFGGsX5uSBnro3QoZEFGJ31CCA8AnwC4X0rZKIRwAOALYBaA6QA+EkLEGIYs+253B4A7AGDs2LHnPcb5RuTM5fjx41CpVIiPjwcAZGRkIDIyclj7ioqKwn//+1/odDqUlZX1rofrq6GhAb6+vnBzc8OxY8ewd+/e3sccHR3R1dUFR0dHLF26FKtWrcKvf/1rBAUFoa6uDk1NTZg5cybuu+8+1NbWwsvLCx9//DGSkpIGje3iiy/Go48+ihtuuAEeHh4oKyuDo6PjkF7f5s2b8bvf/Q4tLS3Yvn07nnrqKbi6uhq138bGRri7u8Pb2xtVVVX48ssvsWjRIgCAp6cnmpqaeovNBAcHIzc3F+PHj8fGjRvh6el5zv68vLwQHR2Njz/+GFdffTWklMjKyjLqZ2EuUkp8fLAUT3yWA7VK4Pnrp2JlUiiu+O8ubDhYitvmR7ONBBERESmmuqkdu/I1uHtxHD+TjDJGJX1CCEfoE771UspPDXeXAvjUkOTtE0LoAAQAqOm7rZRyHYB1ADBt2rQzEkJr0NzcjF/96leor6+Hg4MD4uLieourDNXcuXN7p0pOmTIFKSkp5zznkksuwcsvv4zExESMHz/+jOmPd9xxBxITE5GSkoL169fjL3/5Cy666CLodDo4OjrixRdfxKxZs/D4449j9uzZCAkJQUpKSm+Bl/O56KKLkJubi9mzZwPQT2t97733oFarjX59M2bMwPLly3Hq1Ck8+uijCA0NRWhoqFH7TUpKwtSpUzF58mTExMRg7ty5Z7zuZcuWISQkBNu2bcNTTz2FFStWICIiAlOmTEFzc3O/8axfvx533XUX/vKXv6CrqwvXXXedYknf6ZZO/H5jNr48UolZMX749zXJCPVxBQCsTg3HIxuP4EhZIxLCvRWJj4iIiOjzzAroJDi1cxQSZw3MnfsE/WWAtwHUSSnv73P/WgChUso/CiHGAfgewNizR/r6mjZtmuyphtkjNzcXEydOHP4rIIt4/PHH4eHhgd/+9rdKhzIklvj9SsvT4IGPM1DX0okHLhqP2+fHQK366epZQ1sXpj/5Ha6fHoEnVk0xayxEREREA7nshTTopMSWX81XOpRRTQhxUEo5zZLHNKY5+1wAawAsEUJkGG6XAngDQIwQ4giADwHcdL6Ej8jetHdp8ZctR/Hz19Ph4eyAjb+ci7ULY89I+ADA29URF08eg82Z5ejoHnxUloiIiMjUCmqakVXagMs5yjcqGVO9Mw3AQJN+f27acMhaPf7440qHYFWOVzbhvg8P41hlE26cHYnfLZsIV6eBp8quTg3H55nl+CG3GssSQiwYKRERERGwKaMcQgArk0KVDoUUMKTqnUSjnU4n8dbuIjz11TF4uTjgjZunYcmE4EG3mxcXgGAvZ2w4WMqkj4iIiCxKSonNGWWYE+uPYC+2kBqNmPQRGam6sR2/3ZCFH0/UYMmEIDy9OhEBHs6DbwhArRK4MiUc634sQHVTO3v2ERERkcVklNSjuLYVdy+OUzoUUogxa/qIRr2vcypx8TM/Yl9hLf58+RS8ftM0oxO+HlelhEOrk9h8uNxMURIRERGda3NGOZwcVLhkyhilQyGFMOkjOo+Wjm48/EkW7nz3IMJ8XbHlV/OxZlbksHrbxAV5YOpYH2w4WArWPCIiIiJL6NbqsCWrHBdMDIKXy9B6NJP9YNIHQK1WIzk5GVOmTMHVV1+N1tbWYe/r5ptvxoYNGwAAt912G44ePTrgc7dv347du3f3fv/yyy/jnXfeGfaxexQVFWHKlDNbAzz++OP45z//OaT9mCoeW5VRUo/lz+3E/w6UYO3CWHx611zEBXmMaJ+rU8NxvKoJR8oaTRQlERER0cDS8jXQNHeyaucox6QPgKurKzIyMnDkyBE4OTnh5ZdfPuNxY5qf9+e1117DpEmTBnz87KRv7dq1uPHGG4d1LFPr7u62qngsSauTeP77PFz10m50duvw/m2z8PCyCXByGPnbZUViKJwcVNhwsMQEkRIRERGd3+aMcni7OmLR+CClQyEF2VbS9/TTwLZtZ963bZv+fhOZP38+8vPzsX37dixevBg/+9nPkJCQAK1Wi//7v//D9OnTkZiYiFdeeQWAvhrSPffcg0mTJmH58uWorq7u3deiRYvQ04z+q6++QkpKCpKSkrB06VIUFRXh5Zdfxn/+8x8kJydj586dZ4zGZWRkYNasWUhMTMQVV1yB06dP9+7zoYcewowZMzBu3Djs3LlzyK/xfPv+/e9/j4ULF+LZZ5/tjae8vBzJycm9N7VajeLiYhQXF2Pp0qVITEzE0qVLcerUKQD60c57770Xc+bMQUxMTO/Ip6341zfH8a9vT+DShBB8ed8CzI71N9m+2bOPiIiILKW1sxtf51Ti0oQQk1y8JttlW2d/+nTgmmt+Svy2bdN/P326SXbf3d2NL7/8EgkJCQCAffv24cknn8TRo0fx+uuvw9vbG/v378f+/fvx6quvorCwEBs3bsTx48eRnZ2NV1999YyRux41NTW4/fbb8cknnyAzMxMff/wxoqKisHbtWvz6179GRkYG5s+ff8Y2N954I/7+978jKysLCQkJeOKJJ86Ic9++fXjmmWfOuL+vkydPnpGo9R29PN++6+vrsWPHDjzwwAO994WGhiIjIwMZGRm4/fbbcdVVVyEyMhL33HMPbrzxRmRlZeGGG27Avffe27tNRUUF0tLSsGXLFjz88MNDPBPK+upIJebHB+D566fC2830c99Xp4ajvrULP+RWD/5kIiIiomH69mgVWju1uDyZvflGO+tq2XD//UBGxvmfExoKXHwxEBICVFQAEycCTzyhv/UnORl45pnz7rKtrQ3JyckA9CN9t956K3bv3o0ZM2YgOjoaAPDNN98gKyurd9SqoaEBeXl5+PHHH3H99ddDrVYjNDQUS5YsOWf/e/fuxYIFC3r35efnd954GhoaUF9fj4ULFwIAbrrpJlx99dW9j1955ZUAgNTUVBQVFfW7j9jYWGT0+Vn2NFcfbN/XXnvtgHHt2rULr732Wu/o4p49e/Dpp58CANasWYMHH3yw97mXX345VCoVJk2ahKqqqvO+XmtSVt+GAk0LfjZzrNmOwZ59REREZAmbM8oR6u2C6VHn/+xJ9s+6kj5j+PrqE75Tp4CxY/Xfj1DPmr6zubu7934tpcTzzz+Piy+++IznbN26ddBKjlLKYVV7HIizs75VgFqtRnd3t8n2C5z5mvuqqKjArbfeis8++wweHv0XM+n7GntiBGBTlSp35WkAAPPjA812DPbsIyIiInOrbe7AjhM1uH1+DFQq030OJdtkXdM7n3kG2L79/LfHHgNaW4FHH9X/+9hj53/+IKN8xrr44ovx0ksvoaurCwBw4sQJtLS0YMGCBfjwww+h1WpRUVGBbWevOQQwe/Zs7NixA4WFhQCAuro6AICnpyeamprOeb63tzd8fX17R9Tefffd3pG5kRrOvru6unDNNdfg73//O8aNG9d7/5w5c/Dhhx8CANavX4958+aZJEYl7czXINDTGeOCR1alczDs2UdERETm9EV2BbQ6icuncmon2dpIX88avo8+AhYv1t/6fm9Gt912G4qKipCSkgIpJQIDA7Fp0yZcccUV+OGHH5CQkIBx48b1m0AFBgZi3bp1uPLKK6HT6RAUFIRvv/0WK1euxOrVq7F582Y8//zzZ2zz9ttvY+3atWhtbUVMTAzefPNNk72Woe579+7d2L9/Px577DE89thjAPQjnM899xx+8Ytf4B//+AcCAwNNGqMSdDqJXfkaLBwXaNKR2f707dl32/xosx+PiIiIRpdNh8swYYwnJozxUjoUsgLCklPvpk2bJnuqWfbIzc3FxIkTjdvB00/ri7b0TfC2bQP27wf6rCcj6jGU368jZQ1Y8Xwa/nV1Eq5KDTdzZMD69GI8svEIPr9nHhLCvc1+PCIiIhodTtW2YsE/tuGhSybgrkWxSodDZxFCHJRSTrPkMa1reudgHnzw3BG9xYuZ8JFJpOXr1/PNiw+wyPHYs4+IiIjMYXNGGQDgMlbtJAPbSvqIzCgtT4NxwR4I9rJMYRX27CMiIiJTk1JiU0YZZkT7IczHVelwyEow6SMC0N6lxb6iOsyLM1/Vzv5clRLGnn1EFlKkacE1L+9BTVOH0qEQEZlNTnkjTta04PLkMKVDIStiFUmfLZX0J9sxlN+r/UV16OzWYb6Fpnb2mB8f2Nuzj4jM69ujVdhXVIfvc22ndygR0VBtOlwGR7XApQljlA6FrIjiSZ+Liwtqa2uZ+JFJSSlRW1sLFxfjpmqm5WngqBaYGWPZ5qVqlcAVU8Ox/UQNRx+IzCyjtB4AsOtkrbKBEBGZiVYn8VlmORaND4KPm5PS4ZAVUbxlQ3h4OEpLS1FTU6N0KGRnXFxcEB5uXBXOtHwNUsb6ws3J8m+J1alheHnHSWzOKMNt82Msfnyi0SLLkPTtztdAp5NsVkxEdmdvQS2qmzo4tZPOoXjS5+joiOjoaKXDoFGstrkDOeWN+O1F4wZ/shnEBXkiOcIHHx8oxa3z2LOPyBxqmztQUteG8cGeOF7VhGOVTZgUyt5VRGRfNh0ug4ezA5ZODFI6FLIyik/vJFJaz1SvefGWLeLS1+rUcByvakJOeaNiMQzXt0ercOtb+6HVcYo2Wa+ssgYA6O1XtfukRslwiIhMrr1Li6+OVGLZlDFwcVQrHQ5ZGSZ9NOql5dXAy8UBCWHKNUhf2duzz/YKunx0oATfH6vGvsI6pUMhGlBWSQOEAC6YFIyYQPfevpxERPbih2PVaOroxuVTObWTzsWkj0Y1KSXS8jSYExsAtYLre7zdHHHRpGBsyiizqZ59Op3E/iJ9srclq1zhaIgGlllaj7hAD3g4O2BeXADSC/QVe4mI7MWmw2UI8nTGrBh/pUMhK8Skj0a1Ak0LyhvaMc/CrRr6szo1HPWtXdh2zHZ69h2vakJ9axc8nR3w1ZFKdGv5IZqsj5QSWaX1SAz3AQDMjQtAW5cWh0+dVjYwIiITqW/txLbj1bgsKVTRi9hkvZj00aiWlqef4mXp/nz9scWefekF+vWQ910Qj9qWTuwpYCl8sj5l9W3QNHciOUI/hXtWjD9Ugq0byLSklPg8sxzNHd1Kh0Kj0NbsSnRpJad20oCY9NGotjNPgwg/V0T6uysdSm/Pvm3HbadnX3phHcJ8XPHzWZFwd1JjS2aF0iERnSOrVF/EpWekz9vVEQnhPtjFdX1kQlmlDfjVB4fxfnqx0qHQKLQpowyxge6YzKrENAAmfTRqdWl12FtQi3lxylXtPNvq1DBodRKbM8qUDmVQUkrsK6zDzBg/uDiqceGkYHyVU4kuTvEkK5NZUg8ntQoTQjx775sX54+Mkno0tXcpGBnZk57iQCxqRZZWVt+GfYV1uDw5jG2faEBM+mjUyiypR3NHt1VM7ezRt2eflNbdAiG/uhm1LZ2YFa1fML4iMRQNbV2sikhWJ7O0HhNDPOHs8FMJ87lxAdDqJD+gk8n0LBfYX3QaOrawIQv6LENfSG0VG7LTeTDpo1ErLV8DIYA5sdZV5cpWevbtNazfmxnjBwCYPy4Ani4OnOJJVkWrk8gubUBShM8Z96eM9YWzg4oXKcgk2jq1OFh8GiHeLmho68KJ6ialQ6JRZHNGGVLG+mCsv5vSoZAVY9JHo1ZangaJYd7wcXNSOpQz2ErPvr2FdRjj5YKxfvr/ZJwd1Lho0hh8c7TSptpOkH0rqGlGS6e2dz1fDxdHNWZE+3FdH5nEvqI6dGp1uGdJHABgP0eQyUKOVTbiWGUTC7jQoJj00ajU1N6FwyX1VtGq4Wy20LNPSon0Av16vr7rB1YkhaCpvRs/nuAHabIOGSX1ANBbubOvuXEBOFHVjOqmdgtHRfYmLa8GTmoVrpwajhBvF6Qz6SML2XS4HGqVwPKEEKVDISvHpI9Gpb0FddDqpFUVcenL2nv2FWhaoGnuwMzoM6fGzosLgI+bIxu1k9XIKm2Ah7MDYgI8znlsbqz+os/ufLZuoJFJy69FaqQvXJ30I8j7i+qsfl022T6dTuKzjDIsiA+Av4ez0uGQlRs06RNCRAghtgkhcoUQOUKI+wz3Py6EKBNCZBhul5o/XCLTSMurgaujGimRPkqH0i9r79mXXqC/it2znq+Ho1qFSyaPwXdHq9DeZZ2jlDS6ZJbWIyHMG6p+mhVPCvWCj5sj1/XRiNQ0dSC3orF35sj0KD9UNXbgVF2rwpHRcByvbMJNb+zDD8eqlA5lUPuL6lDe0M6pnWQUY0b6ugE8IKWcCGAWgLuFEJMMj/1HSplsuG01W5REJrYzX4MZ0X5nVPOzJtbesy+9sBYBHs6ICTi3v+GKxFC0dGqx/bh1jlLS6NHRrUVuRSMS+5naCejfZ3Ni/bErX8NRGTOTUiKvqskuf867T+ovGsyL0yd9M6P1F8NYGda26HQSb6QVYuULadhxogbv7rH+foubMsrh5qRvmUQ0mEGTPillhZTykOHrJgC5AHhJgWxWeX0bCmparKpVQ3+stWffQOv5esyK8YO/uxM+z2IVT1LWsYomdGklks8q4tLXnNgAVDS0o1DTYrnARpnqpnbc9vYBXPifH7E1u1LpcEwuLU8Db1dHTAnTX1yIC/KAr5sjkz4bUtXYjpve3Ic/bTmKeXEBWJkUivTCOnR2W2/f2c5uHbZmV+CiScFwc3JQOhyyAUNa0yeEiAIwFUC64a57hBBZQog3hBC+A2xzhxDigBDiQE1NzciiJTKBnl5K1ljEpS9r7dl3qq4VlY3tmBXTf6sLB7UKl0wZgx9yq9Ha2W3h6Ih+kllaDwBIPKtdQ189ozOs4mkeXx2pwMX/+RFp+Rq4O6nxVY59JX1SSqTlazAn1h9qwxRiIQSmR/lhXxGTPlvw1ZFKXPLMj9hfVIc/Xz4Fr980DSsTQ9DaqcWhU6eVDm9A249Xo6GtC6s4tZOMZHTSJ4TwAPAJgPullI0AXgIQCyAZQAWAf/W3nZRynZRympRyWmCgdRbNoNFlZ74GgZ7OGB/sqXQog7LGnn096/lmRfsN+JwViaFo69Li+1xO8STlZJY0IMDDGaHeLgM+J9LfDWE+rlzXZ2KN7V144KNMrH3vEMJ93fDFvfNwaUIIdhyvRpfWekdPhqpA04KKhvZzLiLOiPZDcW0rqhpZGdZatXR048ENmVj73kGE+bpiy6/mY82sSAghMMuQxPdcJLZGmzPK4e/uhPlx1n0Bm6yHUUmfEMIR+oRvvZTyUwCQUlZJKbVSSh2AVwHMMF+YRKah00nsztdgXlxAv1MTrY019uzbW1gLf3cnxAWdWw2xx4xoPwR6OrOKJykqs7QeSeHe532vCyEwN84fe07WQquznhF1W7a3oBbLntmJjYdLce+SOHz6yzmIC/LE0onBaGzvxoEi6x09GaremSNx5yZ9ANf1WatDp07j0ud24uODpfjlolh8etfcM/5P83JxRFK4N3Za6cWgxvYufJtbhZVJoXBQsxA/GceY6p0CwOsAcqWU/+5zf9+GIFcAOGL68IhMK7eyEbUtnef8B22trLFnX3pBHWZE97+er0dPz6Btx2vQ3MEpnmR5Te1dOFnTfE5T9v7MjQtAY3s3jpQ1mD8wO9bepcVft+bi+lf3wlEtsOGuOfjNRePhaPhQOj8+AE5qlU1URTRWWr4GEX6uiPQ/s6jVpBAvuDupsZ9TPK1Kt1aHZ747gatf3oNurcSHt8/Cg5dMgJPDuR+H58UHIru0Hg2tXQpEen5fHalEZ7cOq5JDlQ6FbIgxlwfmAlgDYMlZ7RmeFkJkCyGyACwG8GtzBkpkCraynq8va+rZV1LXirL6tt7qdOezIjEEnd06fHfUfj7gke3ILmuAlEDSAJU7+5pj6NfHKZ7Dd7S8Eate2IV1PxbghpljsfW++UgZe+ZSf3dnB8yK9bebad/dWh32nqzt9yKig1qFlEhfjvRZkeLaFlzzyh48810eViaGYOt98zFzgLXpgP4ihU4Cewqs7+/C5owyRPq7Ifk865WJzmZM9c40KaWQUib2bc8gpVwjpUww3H+ZlJKl+sjqpeVrMC7YA8FeA6/xsTbW1LMvvbCnP9/A/1H2SBnrixBvF07xNKPa5g68suMkSk+zH9jZskr1o3bGjPQFejpjwhjP3tL7ZDytTuKl7Sex6sU01LV24s1bpuMvlycMWE1w6YQgFGhaUFDTbOFITS+ztAFNHd2YF9d/vYKZ0X44XtWE+tZOC0dGfUkp8dGBElz67E7kVTfj2euS8cx1U+Ht6nje7ZIjfODh7ICdVraur6qxHbtP1mJVcphNLFMh68GJwDRqtHdpsa+wbsD/oK2VNfXsSy+ohY+bo1FFcFQqoS/ccKIGDW3WNz1mKKSUaGq3vtfw8o6T+NuXx7DwH9tx34eHOT2xj8ySeoz1c4Ofu5NRz58bF4D9RafR3mUd06htwanaVly3bg/+/tUxXDAxGF/fvwCLxwedd5slE/SP/2AFMxdGKi1PAyGAObH9XwSbHuUHKWFXaxhtzemWTvxy/SE8uCELU8K88dX9C7Aq2bhql45qFWbF+FndDIDPM8shJXA5p3bSEDHpo1HjQNFpdHTrMC9+8FEqa2MtPfvSC+swPcoPKpVxVxdXJIagSyvxjY2XaX97dxFm/vV7VDdZTyW+bq0OmzLKMTfOH7+YG4Xvc6ux4vk03PDaXuw4UWNVbT6UkFXagMTwwad29pgXF4DObh0/oBtBSon/7T+FZc/+iGMVTfj3NUn47w0pRiXYEX5uGB/sie9ybX/a9658DaaEesN3gNedFOEDJ7WK6/oUsjOvBpc8+yO+y63Cw8sm4P3bZyHMx3VI+5gXF4Di2laU1FnPbIpNGWVIDPdGTODAxdSI+sOkj0aNnfk1cFQLzIy2vaSvp2efklM8KxracKqu1aj1fD2SI3wQ7uuKLTbcqF2rk3h9VyFaO7XYfNh6pqqm5WtQ09SBNbOi8MjySdj18BI8vGwC8qubcdMb+7Ds2Z345GCpVTcXNpeapg6U1bcNab3LjGg/OKiE1V3VtzY1TR24/Z0DeOiTbCSG++CrXy/AlSnhQ5pmtnRiEPYXnbbpGQDNHd04dOr0edeHuziqkRTh3TstniyjvUuLP31+FGte3wcPZwds/OVcrF0Y29tHcSh6zq+1TPHMr27GkbJGo0crifpi0kejRlqeBlPH+sLduf+1JtbuqpQwHKtswrFKZXr29fbnM2I9Xw8hBJYnhmBXvganW2xzXcuOE9UoqWuDu5MaGw6WWs0I2sbDZfBxc8TiCfrpyt6ujli7MBY7H1yCf16dBCmBBz7OxIKnt+GVHSfRaIXTU80lq6cpuxHr+Xq4Oztg6lgfrus7j29y9E2sf8zT4A/LJ2L9bTOHPHICAEsnBkOrk9hxosYMUVrGvsJadOvkoJWgZ0T74UhZA1o7WcXYEo5VNuLyF3fhjV2FuHF2JLb8aj6mhBk/4n+22EAPjPFywS4ruRi0OaMMKgGsTAoZ/MlEZ2HSR6NCbXMHcsobbbqJ6aUJIVCrBDZnKDPalF5YC08XB0wM8RrSdisTQ9Gtk/jaRqd4vrunGEGeznjwkgk4XtWEI2XKJN19NXd04+ucSqxIDIGzg/qMx5wcVFidGo6v7p+Pt26ZjphAd/zty2OY87cf8OQXR1Fe36ZQ1JaTWVIPlQCmhA3td3VuXACyyxpYeOMsTe1deHBDJu549yCCvVyw5VfzcNv8GKOneZ8tOcIHfu5O+MGGp3juzNPA2UGF1Ejf8z5vepQfunUSh0/VWyawUezdPUW47Pld0DR34s2bp+NPq6bA1Uk9+IbnIYTAvPgA7DqpUbyPp5QSmzPKMTcuAEGetlOMjqwHkz4aFXadrAVgW60azubv4Yz58QH4LKMcOgX+80kvqMOMKL8hT5GZHOqFKH83m5zieaq2FdtP1OD6GWNx+dQwODmo8PHBEqXDwpfZFWjv0uHKlPABnyOEwKLxQXj/9lnY8qt5WDIhCG/sKsKCp7fh1//LwNFy5ZNXc8ksbcC4YM8BK0gOZF5cAKQE9hj+Xox2UkqkF9Ri2bM7seFgKe5eHItNd8/FOCMKOZ2PWiWweHwQth2vQbfWNqcf78rXYEa0H1wcz59UpEb6QiXAKZ5mVlzbgkc352BWrD++un8+Fk84f0GhoZgfH4D61i7klCtbKOtIWSNO1bViZSILuNDwMOmjUWFXngZeLg5Dmu5ljVYlh6Ksvg2HTlm22ER1YzsKNC2YGWP8er4ePVM8d5/UQNOsbPXRoXovvRgqIXD9jLHwdnXExZPHYHNGOTq6la3w+OmhMkQHuGOqkWvWpoR547nrp2L7bxfhxtlR+DqnEpc+txNrXk/Hzjz7KvoipURWaT2ShvFeT4rwgbuTGrtG2RRPKSVqmjqwO1+Dt3YV4vcbs3H1y7uR/Kdvce26vVAJgY/Xzsb/Xdx/E+vhWDoxCA1tXThYbHuFc6oa23GiqnnQqZ0A4OniiEmhXtjPpM+sPjlYCiGAv1+VgAAPZ5Puu6ePp9Lr+rYeqYCDSuCiycGKxkG2yzYXNxENgZQSafkazIkNGNZCbmty4aQxcHHMxuaMckyLGnoCNly9/fmGWQRnRWIoXtx2El8eqcSaWZGmDM1s2ru0+OhACS6eHIwx3vqpNFenhuPzzHJ8n1uNSxOUWVNRVt+GPQW1+M2F44bcoynCzw1/XDkJ9y2Nx3vpxXhrdxHWvL4Pk0K8cMeCGCxPDIGj2ravBZbUteF0axcSjWjKfjZHtQozY/yxK99+R/pqmztwoqoZedVNOFHVpP+6qgmnW39a8+nl4oBxwZ64NCEEE0M8cVVKuMnXQs+PD4CjWuCHY9VG9f20JmmGD/9zjVwuMCPKH+vTi9HZrTNZ0kw/0ekkPjlUhnlxAQjxHvoa08H09PFMy9Pg7sVxJt+/MaSU+DK7ArNj/eHjZlwbGqKzMekju1eoaUFZfRvuWhSrdCgj5uHsgAsmBuOL7Ar8ceUki31ATy+shYezAyaHDm2NVI8JYzwRG+iOLZnlNpP0fZ5ZjvrWLqyZFdV739y4AIzxcsGGg6WKJX2bDuvbdlwxdfjV27zdHHH34jjcNj8amw+XY93OAtz/vwz8+9sT2HDXbJteL5JpKOIynJE+QH+OfzhWjdLTrQj3dTNdYBZW39qJE1XNOFHVhLye5K66CZrmn9Yrejo7ID7YAxdPHoP4YE+MC/bAuGBPBHk6m73ps6eLI2bF+OO73Cr87tKJZj2Wqe3K18DP3QmTjFzfPCPaD2/sKkR2WcOgawBp6PYU1KKsvg0PLZtgtmPMjw/A27uL0dapHfE6weHIrWhCUW0r7lxo+59jSDlM+sju9ZRgn2/D6/n6WpUchi1ZFUjL05h03cL5pBfUITXSFw7DTDKFEFiRGIrnfshDdWM7grysP6l4d28x4oM8MKvPlFa1SuDKlDC88mOBIq9DSolPD5ViRpQfIvxGnpA4O6hxzfQIrE4Nx/fHqnH3+kN4ausx/Pva5JEHq5DMkno4O6gwfszw1p31TNnbnV+La6bbRtLX0NqFzNJ6ZJbUI7O0HlmlDahu+mkqtbuTGnHBnlgyIQjjgj17E7wxXi5mT+7OZ8mEIDzx+VEUaVoQFeCuWBxD8dPMEX+jC9lMj9InevsK65j0mcGGg6XwdHHARZPMN+1xXnwgXt1ZiH1FdVg4LtBsxxnI1uwKqFUCF08eY/Fjk/1g0kd2b2eeBhF+roj0t40PFYNZOC4Q3q6O2JxRZpGkT9PcgbzqZlyRMrK+QCuTQvDs93nYml2Bm+dGmyg688go0X9w/tOqyed8KF6dGo7/bj+JjYfLLH7VNau0ASdrWnD7/BiT7lelErhwUjDuWBCDF7bl49rpETY35a5HVmkDJoV6DXsUfFywBwI8nLHrpAbXTI8wcXQj196lxdGKRn2CV1KPzNIGFGpaeh+PDXTHvLgAjB/jaUjwPBDm46pocjeQpROC8cTnR/H9sWrcOs+6/yb0yKtuRnVTx5AuIvp7OCMuyAP7i+pwFzhSY0qN7V348kgFrkwJH7SozkjMiPKDk1qFtLwaiyd9Ukpsza7ArBg/+LlzaicNH5M+smvdWh32nqzFiiT7qXbl5KDCpQkh2JxRhtbO7iFXKByqfSNcz9cjLsgTE8Z4YkuW9Sd97+4phruTut8plDGBHkiN9MWGg6W4Y0GMRT9Mbzxcpj//ieaZWnr34jhsPFyGP27OwZZ759nc+r5urQ7ZZQ24dgTJmhACc+P8sStfAymlosmSTidxsqYZGYYRvMySBuRWNKLbUL03yNMZyRE+WJ0ajuQIHySEe8PLxVGxeIdqrL8b4oM88H1ulc0kfTuHuJ6vx/QoP2zJKodWJ21+bbk12Zqlr2R8derAlYxNwdVJjWlRvooUczlR1YwCTQt+YSPvEbJeTPrIrmWW1qOpo9uoKmu2ZFVyKD7Ydwrf5VbjMjMntOkFtXB1VCMxfPgNbnssTwjBv749gfL6NoQOo6mzJdS1dOLzrHJcMy0cngN8gF6dGo7ffZqNrNIGJBlZQXOkurQ6fJZZjgsnBZvtg72rkxp/XDkJd757EO/sKbaZD+I98mua0dalRdIwirj0NTcuAJszynG8qgkTxgxvHetwVDa090nw9KPNzR36pt4ezg5IDPfG7QtikBTug+QIn94CQ7Zs6cRgvLazAI3tXTaRsO7K1yA6wH3I6z1nRvvhg32ncKyyEZNDR/63lPQ2HCxFbKA7ki3wd3hefACe/uo4apo6EOhp2gqh57M1uwJCgFM7acRs6zIu0RDtzNNACGBOrG1OVRvIjCg/jPFywWcZZWY/VnphHaZF+Zpk1KdnxHVrtvX27PvoQAk6u3W4cXbUgM9ZnhgCZwcVNhwstVhcO47XoK6lE1eNcJrtYC6aFIxF4wPxn29PoLqx3azHMrXMknoAwy/i0qNnFMdSVTzzq5sw/+kfMOtv32Ptewfx2s4CNHd044qpYfjn1Un47jcLkPXYRXj/9ll46JIJuGTKGLtI+AB964ZuncSPJ2qUDmVQnd067C2oHdZFxOnR+rXBbN1gOgU1zThQfBqrUyMsMiI/r/fvgmVH+7ZmV2BGlJ9FE02yT0z6yK6l5WmQEOYNXzubB69SCVyWHIrtx2twuqVz8A2G6XRLJ45VNmFmtGnaQ0QHuGNyqBc+t9JG7VqdxPr0YsyM9jtvA2ovF0dcMmUMNmeUob3LMj37Pj1cCn93J8yPN+96EiEEHl85GZ3dOvx1a65Zj2VqmaUN8HRxQNQI1++G+bgiOsDdIh/upJR47LMcNLZ14/GVk7Dxl3OQ/fjF+Oyeefjz5VOwOjUccUGeRhcNsTUpY33h6+aIH3KrlQ5lUBkl9Wjt1A55aieg/50K83HFviImfabyyaFSqARwpZkvhPWYHOoNHzdHi07xzKtqQl51M5abaUo/jS5M+shuNbV34XBJvd1N7exxWVIounUSXx6pNNsxej6gmLKox4rEUGSW1KOkrtVk+zSVHSeqUVLXhjWzB28rsTo1HI3t3fgut8rscTW0duG7o9W4LDnUIuvsogLcsXZhDDZllCO9wHZ61mWW6JuymyJBmhvnj/SCWnRpdSaIbGDfHq3Crnx938Wb50Zj6lhfsxaksDZqlcDi8UHYdrwaWsNaRWuVllcDlQBmD3PmyIxoP+wrPA0prft12gKtTuLTQ2VYMC4QwRaqoqxWCcyNDehd72sJXx6p5NROMhkmfWS30gvqoNVJzLOTVg1nmxzqhdhAd2w24xTP9II6ODuoTLKer8cKwxXLL6xwiuc7e4oR5Ols1H+wc2IDEOrtYpEpnl9kV6BTq8NVKeYtVtDXXYviEO7rij9uzjF74mMK7V1aHK9sMtnv6tzYALR0anunjJpDR7cWf/kiF+OCPXDDzLFmO461WzIxCKdbu3D41GmlQzmvtHwNEsN94O06vLWHM6L9oGnuOKPaKg3PrnwNKhracXWqZSvszosPQGVjO07WNFvkeFuzKzAt0tdiiS3ZNyZ9ZLfS8jVwdVTbbV8kIQRWJYdhX1EdyuvbzHKM9MJapIz1hbOD6UYeIvzckBThgy1Z5SbbpykU17Zgx4kaXD9jrFGjafqefeH48UQNqsy89u3TQ6WID/LA5FDLFRVxdVLjjysm4XhVE97eXWSx4w5XTrm+qqWpCuvMjvWHED/1+TSHN9KKcKquFX9cMXnYPTDtwYJxgXBQCXxnxVM8G9u7kFnaMKJ+rzN61vVxiueIbThYCm9XRyydaJletT16Zg5ZYopnQU0zjlU2YdkUTu0k0xi9/8uQ3duZV4MZ0X4mTViszWVJoZASZkmgGtq6cLSiETNjTLOer68VCSE4UtaIIiu64r0+/RRUQuD6GcaPuFyVGg6d1LdSMJfi2hYcKD6NK1PCLd4+4MJJwVg8PhDPfJdn9sR2pLJK6wGMvIhLDx83JySEeZttXV91Yzte+CEPF04KttvZCMbycnHEjGg/fG+BqdLDtedkLbQ6Oaz1fD1iAtwR4OGEdBZzGZGGti58nVOJy5JCLT4VOsLPDVH+bkizQNLXs3RjWQKndpJpMOkju1TR0IaTNS0juiprC6IC3JEU4YPNGaZP+g4U1UHKkffn60/PonRrGe1r79LiowMluHhy8JCqIkYHuGNapC8+PlBitjUeGw+XQQjg8qmW7zUphMDjl01Gp9b6i7pklTYg2MvZpFUt58QG4PCperQY2iaY0tNfH0eXVuKRSyeafN+2aOnEYORVN+NUrfWt9QX00wldHdVIGTv8mSNCCEyP8uNI3whtySpHR7cOV0+z3HT3vubGBWCvBdb7bs2uQMpYH4R4W2d7I7I9TPrILvVMvRgNV9BXJYUip7wR+dVNJt1vemEdnNQqTB3rY9L9AkCojytSI32xxUqqeH6eWY761i6smRU15G1Xp4bjZE0LMsyw9ktKiY2HyzAn1l+x//gj/d2xdmEsNmeUY89J6y3qkllSj0QTjfL1mBcXgG6dxD4Tj8xkltRjw8FS/GJeNKICRlZp1F4snaCfpvf9Mesc7UvL02BmjB+cHEb2sWl6lB9K6trMNiV/NNhwsBTjgj2QEKZMv8P58fr1vodP1ZvtGMW1Lcgpb8SlCZzaSabDpI/sUlqeBgEezhh/nrL79mJFYghUAvjMxKN96QW1SI7wMdv0mRWJIThW2WTyZHU43t1bjPggD8waxlTW5YkhcHE0T8++Q6dOo7i2FVdOVeaKdo9fLoo1FHU5YpVFXRraulCgaTF5g+ZpUb5wclCZdF2flBJPfJ6DQE9n3LMkzmT7tXVRAe6IDXTHD8esb11fWX0bCjQtJqkErdS6PmuvjGqs/OomHD5Vj9Wplp/u3mN2bABUZl7v2zO185IpnNpJpsOkj+yOTiexK1+DeXH+iv2nYElBXi6YExuAzZnlJpti2NTehSPl5lnP1+PShBAIAcVH+zJK6pFV2oA1syOH9fvi6eKIZVNC8Flmucl79n1yqAyujmrF/+N3cVTj8ZWTkVfdjLd2FSkaS3+ySxsAwKRVZgH9654e5WvSdX2fZZbj0Kl6/N/F4+Hh7GCy/dqDCyYGY29BLZrau5QO5Qy7TDhzZGKIFzydHUw+enw+VY3tmPqnb7DqxV3YnFFmlRdujLXhYBnUKoHLp1qmN19/vF0dkRjug7S8GrMdY2t2BZIifBDu62a2Y9Dow6SP7E5uZSNqWzoxz8xNrK3JZcmhKK5tRabhw+9IHSg+Da1OYpYJ+/OdLdjLBTOi/LAlq0LRvlXv7CmCu5MaV4zgQ8Tq1HA0tXfjm6Omm5rW3qXFlsxyXDJlDNytIDm4YFIwlk4IwjPfnUBlg3UVdck0FHFJDPMx+b7nxAbgWGUTapo6Rryv1s5u/G3rMSSEeWO1Bdtv2IolE4LQpZUWbX5tjLR8DQI9TTNzRK0SSI3ytWjS90ZaIZo7utHQ2on7PszAvL//gBd+yENt88h/py1Jq5PYeLgUi8YFIshT2RYG8+MDkFnagEYzXKAoqWtFVmkDLuUoH5kYkz6yOz1X5e21KXt/LpkyBk4OKmwyURXJ9II6OKrFiIoWGGNFYgjyq5txvEqZKZ51LZ3YklWBK1LC4OkyvN5bADA7xt/kPfu2HatGY3s3rkxR7or22R5bORldOoknrayoS2ZJPaID3OHtNvxzOJCevyO7T448EXl5+0lUNrbj8csmmaSBvL1JjfSFt6sjvrei1g0/zRwJMNnMkelRfsirbkZdS6dJ9nc+DW1dWJ9+CssTQ/HDA4vwxs3TMC7YE//85gRmP/UDHtyQidyKRrPHYQo/5tWgqrEDq1OVv2AyLy4AWp00yzrnr3qqdrJVA5kYkz6yOzvzNIgP8jBpFT9r5+XiiCXjg7AlqwLdJpi6k15Yi8RwH7g6mbcc9iVT9OsRt2QqM8XzowMl6OzW4cbZUSPaj0olcFVqONLyakw2CvbJoTIEezljTqz1XLwY6++GXy6KxeeZ5dhtxvUsQ5VV2mDyqZ09poR5w8vFYcRTPEvqWvHKjwVYlRyK1EjzTZu2ZQ5qFRaND8S249VWswbtWGUTals6R9Sq4WwzLbiu7729xWju6MadC2KgUgksmRCMd2+diW9/vQCrU8PxWWY5lj27E9ev24tvciqt5ufenw0HS+Hr5oilE4OVDgVTx/rCzUltltYNW49UYEqYF8b6c2onmRaTPrIr7V1a7CusGxVVO8+2KjkUmuYO7CkY2ZXH1s5uZJc29H4wMadAT2fMjvXHF9mWn+Kp1Um8t7cYM6P9MM4E07ZWG3r2fXp45KN9tc0d2H68Gpcnh0FtZSNCaxfGYqyfG/74WQ46u5VfG1TV2I7KxnaT9ec7m1olMDvWH7vya0f0O/rUl8egEgIPL5tgwujsz9KJwahr6TRLNdzhSMvXr9sy5cyRhHBvODmosN/MUzzbu7R4c1cRFowLxJSzKl3GB3vir1ckYO/vluLhZRNQXNuCO949iMX/3I7XdhaYZdriSDS0duHbnCqsSg4bcQVVU3ByUGFmtJ/Ji7mU17fh8Kl6jvKRWSj/ziEyoYPFp9HRrbP7/nz9WTwhCJ7ODiPu2Xew+DS6dRIzzbier68ViaEo1OjLU1vSjhPVKD3dhjWzI02yv0h/d8yI8sOGA6UjTmC3ZFWgWydxpRWu+3JxVOPxyyYhv7oZb+4qVDocZBqSg6QI85VvnxcXgLL6NhQPs4dcekEtvsiuwF2LYtlzaxAL4wOhVgmradSell+LOBPPHHF2UGNqhA/2mXmkb8PBUmiaO7B2YcyAz/Fxc8LahbH48cHFePFnKQjydMZfvsjF7L9+j8c/y0GhpsWsMRrrs8wydGp1VjG1s8e8+EAUalpQetp0vSV7qnayVQOZA5M+sis78zRwVAuzNBS3di6GKo9fHakcURXJ9II6fbGBSPOu5+txyeQxcFAJi1fxfGdPMYI8nXHxZNMtll+dGo4CTQsOjbB/06eHSjEpxAvjx1hny5ElE4JxwcRgPPt9HioalO03lllaD7VKYHKo+ZK+nql9w7mqr9VJPPH5UYT5uOKOBQN/+CY9bzdHTI/ytYrWDfqZI7VmWR8+M9oPOeWNaO7oNvm+AaBbq8O6HwuQFOGD2UZcwHNQq7A8MQQb7pqDz++Zh4snj8H69GIs+dd2/OKt/diZV6Nowa0NB0sxYYwnJod6KRbD2XouLpuyuu+X2RWYGOKFaPbvJDNg0kd2JS2/BlPH+lpFtUMlrEoOQ3NHN7aN4ANTemEtpoR5W6ycvK+7E+bGBWBLlulaTgymuLYFO07U4PoZY+GoNt2fwUsTQ+DqqB5RQZf86mZkljZYVQGX/jy2chK0Ooknv1C2qEtWaQPGB3uarZ8kAEQHuCPE22VYH+4+OlCCoxWN+N2lE8waoz25YGIwjlU2mXQEZTgOnTqN9i6dWZK+6dF+0OokDhWfNvm+Af2I0am6Vty1MHbIBWgSwr3x72uTsevhJbh3STyySuux5vV9uOg/P+L99FNo6zRta5rBnKhqQmZpg6K9+foTH+SBIE9nk1WbrWxox4Hi06zaSWbDpI/sRl1LJ3LKGzF/FFXtPNvsWH8EeDgPe4pne5cWmSUNmGWB9Xx9rUgMQenpNpO1nBjM+vRTUAmB62eMNel+PZwdsGzKGGwZQc++jYdLoVYJXJYcatLYTC3Czw2/XBSHLVkVJr3SPRRSSmSW1CPJxE3ZzyaEwNy4AOwpqB1SoYuGti788+vjmBHlh+WcrmW0JROCAEDxKp5peRqoVQKzYk0/cyRlrC/UKmGW1g1SSry0/SRiAt1x0aThFz0J8nTBry8ch10PL8E/r06Ck4MKv9+YjdlPfT+iC4tDteFgKRwU7s3XHyEE5sUFYPfJWuhMUADnqyP62S7L+LeCzGTQpE8IESGE2CaEyBVC5Agh7jvr8d8KIaQQYvR+0iarsCtfAylN00DXVqlVAiuTQvDD8Wo0tA19If6hU6fRqdWZtSl7fy6aNAaOaoEtmSNbj2iM9i4tPjpQgosnB5ulwuvqaeFo6ujG1zmVQ95Wp5PYdLgc8+MDFO9DZYw7F8boi7psPqJIUZei2lY0tncjyUyVO/uaFxeA+tYuHB3C2tPnv89DXWsn/rhyklWNUFi7mEAPxAS443uFp3im5WswNcLHLLMe3J0dMCXUyyzr+nbmaXC0ohFrF8SapDWIs4Maq1PDseVX8/DRnbMxxssF9354GMW15l/v163V4dNDZVg8IQgBHs5mP95QzYsPQF1LJ46aoO3F1iOVGB/sibggDxNERnQuY0b6ugE8IKWcCGAWgLuFEJMAfUII4EIAp8wXIpFx0vI08HRxQKKZqvjZilXJYejs1g0r6UgvqINKANOiLJv0ebs5YkF8ILZmV5jkiun5fJZZjvrWLqyZFWWW/c+K9keYj+uwpnimF9ahrL7NKgu49KenqMvJmha8oUBRlyxDU3Zzj/QBwBzDaI+x6/pO1jTjrd1FuG56xDmVE2lwSyYEYe/JWrOteRtMfWsnsssazHoRcUa0HzJK6tHRbdrpki9tP4lgL2esmmra2QJCCMyI9sOrN06DSgj8cv2hEa0fN8aOEzXQNFtHb77+zBvBet++qpvasb+oDssSOLWTzGfQpE9KWSGlPGT4uglALoCeMfb/AHgQgPU2dqFRQUqJtHwN5sT6W12Je0tLCvdGpL8bPhvGFM/0wlpMDvWG1wgalQ/XiqQQlDe043CJeda49HhvbzHigzwwy0yjmb09+/I1KK8fWpGTTw+VwtPZYURTsixtyYRgXDgpGM99nzfk1ztSGSX1cHFUId4CV8aDvFwwLtjD6Cbtf9lyFK6Oajxw0XgzR2aflk4MRqdWZ5Y+aMbYfbIWUsKslaCnR/mhs1uHLBNOa88oqceeglrcNi8Gzg7mWUMa4eeGf1+ThJzyRjzx+VGzHKPHhoOl8Hd36p3ya22CvFwwPthzxL+nX+dUQUpW7STzGtKaPiFEFICpANKFEJcBKJNSZpojMKKhKKptRVl9G+bFByodiuKEEFiVFIrdJzWobjS+UXh7lxaHT9VbpD9ffy6YGAwnBxU+N2Oj9oySemSVNmDN7EizTre7KiUMUgIbD5cZvU1bpxZbsyuwLGGMzRX8+OMKZYq6ZJU2ICHMGw4mLMZzPnPjArCvsG7Q0Y1tx6ux7XgN7rsg3iqnpNmCaVG+8HRxUKx1Q1q+Bh7O5p05Mt0wo8KU6/pe3n4SXi4OuH6madcrn23pxGDctSgWH+w7hU8Pjbw3aX9Ot3Tiu1x9bz5TFtwytXnxAdhXNPjfhfPZmlWB2EB3i1zAotHL6HeREMIDwCcA7od+yucjAP5oxHZ3CCEOCCEO1NTUDDdOovNKy9P/bo3mIi59XZYcCp3EkNogZJbUo6NbZ7H+fGfzdHHE4vGB+DyzHNlmKujyzp4iuDupcYWZCwJE+rtjRrQfNhw0vmffN0cr0dKptZmpnX1F+LnhnsVx+CK7AjvzLPN3vkurw5GyBotO554XF4CObt15Ky52aXX485ajiAlwx42zoywWm71xVKuwaHwQth2vNvuU7/6k5WkwK8bfrMmGr7sTxgV7mCzpO1nTjK+PVuLG2VEWqb78wIXjMDPaD49sPILjlU0m3//mjDJ0aSWunmbdfxPnxQegs1uH/cNcn6lp7kB6YS2WJ4Rw7S+ZlVF/zYQQjtAnfOullJ8CiAUQDSBTCFEEIBzAISHEOZORpZTrpJTTpJTTAgM5CkPmkV5YhzAfV0T6uykdilWIC9L3M9o8hMIo6YV1EAKYYeH1fH3dtSgOQghc9mIaHtmYjdMtnSbbd11LJ7ZkVeDKlHB4WmD66tWp4SjUtOCgkSXZPz1UhjAfV0V//iNx+4IYRPm74bHNOSZfo9SfE1VN6OjWIdECRVx6zIj2g1olsOs8Uzzf2VOMgpoW/GHFRDg5WO/ohC24YGIQNM2dyDSs3bSUU7WtOFXXinlx5r8ANiPaDweLTw+pKuxA1u0ogJNahZvnRo08MCM4qFV4/vqpcHd2wF3rD5p8/eWGQ6WYHOqFiSHW05uvPzOj/eCoFsOe4vlNThV0klU7yfyMqd4pALwOIFdK+W8AkFJmSymDpJRRUsooAKUAUqSUQ68cQWQCOeWNSAjz5lWyPlYlhyKzpB5FGuMqrKUX1mLCGC94u1l+PV+P5Agf/PDbhfjF3Gh8uL8Ei/+1HevTi03ygeijAyXo7NZhzexIE0Q6uEsTQuDmZFzPvuqmduzMq8EVU8NMUm1PCfqiLpNRoGnB62nmL+qSWaIfDU62QBGXHp4ujkiO8EFafm2/j9c2d+CZ705g4bhALB5vnWuQbMnCcYFQq4TFWzf0FOWwxHKB6VF+aO7oRu4Iqz9WNrTj08OluGZahEWnFAd5ueD566eiSNOC332abbJeq7kVjThS1mi1BVz6cnNyQMpY32H36/vySAWiA9wxYYyniSMjOpMxlyHnAlgDYIkQIsNwu9TMcREZram9C4WaFkwJs+6rgZa2MikUQuirVQ6ms1uHg8WnFVvP15eXiyMeXTEJX943HxPHeOGRjUew6sU0o0fM+qPVSby3txgzo/0wLtgy/7G6Oztg2ZQQbMmqGLSZ8WcZ5dBJ4Aorb8g+mEXjg3Dx5GA8/30+ysxc1CWrtB4+bo4Y62fZ0f25cQHILq1HQ+u5LVH+9e0JtHVq8eiKibwAZQI+bk5IjfS1eOuGXfkajPFyQWygu9mPNcPwNzd9hFM839hVCJ0E7lgQY4qwhmR2rD8euGg8Ps8sx7t7i02yzw0HS+GoFliVbBt/E+fHB+BoRSNqmzuGtF1dSyd2n6zFsilj+DeDzM6Y6p1pUkohpUyUUiYbblvPek6UlFKZEls06uVW6NcSTA5lWfS+Qrz1UwU3ZZQNevU1u6we7V06s1W0HI5xwZ54//aZeP76qdA0deKql3bjtx9noqZpaP+pAsCOE9UoPd1m8TVWq1PD0WxEz75PDpUhKcIHsYG2v4j/0RWTICHxly3mreqXUVKPxHAfi39QmhvrD50E9hScOdp3tLwRH+47hRtnRyEuiFfsTWXphCDkVjSa/SJCD61OYtdJDebFB1jkdyvE2xVj/dywr7D/0WNjNLR2Yf3eYqxIDEGEhS+C9LhrYSyWTAjCn7ccRUZJ/Yj21aXVYdPhMiydEAw/dyfTBGhmPaPCu04O7Tx+e7QSWp1k1U6yCC44IJuXU66f5jU5lCN9Z1uVHIaCmhbkDNJQem+B/irzjGhlirgMRAiBlUmh+P6BhbhrUSw2Z5RhyT+34420QnRrjW8G/s6eYgR5OuOiyZZthTAz2g/hvufv2Zdb0YjcikZcZeOjfD3Cfd3wqyXx+PJIJbZkDb1tiDFaO7uRV91skabsZ5s61heujuozWjdIKfGnLTnwcXPCfUvjLR6TPVs6Uf+e/cFCo31HyxtR39rV23/NEqZH+WF/0elhT418d28RWjq1uHNBrIkjM55KJfDva5IQ5OmCu9cfGtF67G3HqlHb0mkTUzt7JIR5w9vVsbeonLG2ZldirJ8bP7+QRTDpI5t3pKwRgZ7OCPJyUToUq7Nsyhg4qgU2Z5y/dUB6YR3GBXtY7VVVd2cHPHTJBHx9/wJMjfTFn7YcxfLn0rDHiKuqxbUt2HGiBtfPGGvxst8qlcDq1HDsOqkZcKRi4+EyOKoFViSatpGyku5YEIOUsT54+JNso9eUDkVOeSO0OokkC1bu7OHkoMLMGL8zmjF/daQSewvq8MBF4xRdE2uPYgPdEenvZrHWDTvz9R/a51ow6ZsZ7Ye6lk6crGke8rbtXVq8uasIi8YHYpLCiYOPmxP+e0MKqpva8ZuPMoZddXXDwVIEeDhj4XjbKf6nVgnMifVHWp7G6OS9obULu/I1WJbAqZ1kGUz6yObllDfwKtkAfN2dsHBcID7LLB+wGEq3VoeDRXWYpVCrhqGICfTA27dMx7o1qWjp7Mb1r+7Frz44jIqGgad+vbe3GCoh8DMz960ayFUp4ZAS+LSf0T6tTmLT4TIsGh9ktQn3cDiqVXj+ZylQqwTu+eCQyat5ZhqmjyVGKDOle25sAApqWlDR0Ib2Li2e3JqLCWM8cd10ZX7H7JkQAksnBGP3yVq0dpq2OmR/duVrMGGMJwI9LVcMZXp0T7++oa9b/vhACWpbOrF2oXKjfH0lRfjg0RWTsO14DV7acXLI29c2d+CHY9W4YmqoVffm68/cuACUN7SjwMgLXd/mVqFbJ3HpFE7tJMuwrXcU0Vnau7TIq25m0nceq5LDUNXYMWAvqCPljWjp1GKmlU3tHIgQAhdNHoPvfrMQ918Qj29yKrH0Xzvw0vaT6Ow+c8pne5cWHx0oxcWTgxGs0EhwhJ8bZsX4YcOhc3v27crXoLqpw26mdvYV5uOKf16dhCNljfiriZu2Z5Y2INTbBUGeypzTnlGgXfm1eG1nAUpPt+GPKydBbaOVV63dBROD0NmtG3ZJfGO1d2mxv+i0Rad2AkCUvxsCPZ2HvK6vW6vDup0FmDrWxyqKcPVYMysSK5NC8a9vjp8xDdoYmzLK0a2TWJ0aYabozGd+vP73xtjf063ZFQjzcbVo2xka3Zj0kU07UdUErU5iCou4DOiCicFwc1Ljs8z+p3imGwpSzLCiDw3GcHFU4/4LxuG73yzEvLgA/P2rY7jkmR+x48RPayo+yyxHQ1sX1syKUi5QAKtTI1Bc24oDZ1Ug/fRQKbxdHbF4gn2W979wUjBumxeNt/cU48vsCpPtN6u03qJN2c82YYwn/N2dsPFwKV7cdhLLpozBnFjLJgqjybQoP3g6O5i9dcO+wjp0duswL96y51IIgRmGdX1D8UV2BUrq2rB2YaxVTQ8UQuBvVyYgKsAd936QgerGdqO33XCwFInh3hhvg+0LIv3dEeHnesbU74E0tndhZ14NLuXUTrIgJn1k03oKlLBy58BcndS4ePIYbM2u7HeaXXphHWID3S06ncmUIvzcsO7GaXjrlumQAG56Yx/ueOcASupa8e6eYsQHeShelXTZlDFwc1Lj4wMlvfc1d3Tjq5xKrEgMgbODWsHozOvBSyYgKcIHD36ShVO1rSPeX31rJ4prW5Fkwf58Z1OpBObEBWBXfi20UuL3l05ULJbRwMlBhQXjA/HD8ephrxMzxq58DZzUKkUugM2I9kNZfRtKTxv3HpFS4uUdBYgNdMeFEy1boMoYHs4OePnnqWjp6MY9Hxw2qvBWTnkDcitsozffQObFBWLvydpBX+/3uVXo0ko2ZCeLYtJHNu1IWQM8XRwQ4eeqdChW7bLkUDS0deHHE2degdTqJPYX1mGmDaznG8yi8UH46v75ePCS8diZp8HSf+1AdlkD1syOVPxKqruzA5YnhOCLrIredUlfHalEe5cOV6bY7gccYzg5qPDC9VMhAJOs78ss1VfrVaJyZ19zY/XvmTvmxyhWJn80WTohCDVNHcguazDbMXbmaZAS6QM3JwezHWMg06P0ieb+IuP69e04UYPcikasXRgLlZVOKx4X7Iknr5iCfYV1+Ne3JwZ9/scHSuGkVuGyJNstajU/PgBNHd3ILK0/7/O2ZlcixNsFyQrOWKDRh0kf2bSc8kZMDvVS/EO9tZsXFwA/d6dzqngeLW9EU0e3Va0HGQlnBzV+uSgO3z+wEBdNDkZMgDuumGod6+VWp4ajpVOLr47oe/Z9eqgUUf5uSBnro2xgFhDh54Z/XJ2ErNIGPPXlsRHtK6ukHkIAUxRO+i5LDsXDyybg7sVxisYxWiwaHwSVgNkatdc2d+BoRaPF1/P1GD/GE14uDgOuvT7bS9tPIsTbxeqbl1+ZEo7rZ4zFS9tPnrcCa2e3DpszynDhpGD4uNluUas5sf4QQn8BYSBN7V3YcaIGl0wZY7UJO9knJn1ks7q1OhyrbOTUTiM4qlVYnhCC73Kr0NzxUwW8dEPhAFuo3DkUoT6ueOFnKfjht4vg6WIdJfSnR/lhrJ8bNhwsRXl9G/YU1OKKqeGj5oLFxZPH4Ja5UXhzV9GgzerPJ7O0HjEB7vBS+Ly6OTlg7cJYuDrZ79Rca+Ln7oSUsb5ma93Q01S7p8m2palVAtOi/JBuRNJ36NRppBfW4dZ50XBysP6PcY+tnITJoV749f8yUFLX//TVH45V4XRrl01P7QT0bSsSwrzPW8zlh2PV6OzWYTmndpKFWf9fC6IBFGha0N6lY+VOI61KDkV7lw7fHv3pA/fegjpE+bspVtlyNFGpBK5KCcfuk7V4cVs+pITVjEJayu+WTURiuDf+7+PMAT/8nY+UEhklDYr05yPlLZ0YjJzyxvO2aBmuXXkaeLk4ICFMuYuIM6L9UFDTAk1zx3mf9/L2k/B2dcT1M2yjRYiLoxov3ZAKCeDu9/uf4r3hYCmCPJ17K2DasnlxAThcUo+m9q5+H/8yuxJBns5IGetr4chotGPSRzYrp1y/tmOKgv9J25KUsb4I83HF5oxyAIBOJ7G/qM5mWjXYgysNrRnWp5/C9ChfjPUfXWvB9Ov7UiAlcM8Hh89psTGYioZ2aJo7FC3iQsq5YKK+yu0PJp7iKaVEWr4Gc2IDFG270VNAZv95Rvvyq5vwzdEq3DQ7Eu7Oll97OFxj/d3wL8MU779sObOFS01TB7Ydr8EVKWFwsLHefP2ZFx8ArU4iveDc89jS0Y1tx6uxjFM7SQG2/+6iUSunrBHODirEBLgrHYpNUKkELksOxc48DWqbO3CssgkNbV2YqXBly9Ekws8NcwwFQOy9gMtAxvq74enVicgsqcfTXw1tfV+WoTgC+1qNTnFBHojwczV564ai2laU1bdhrsKjTFNCveHiqMK+8xRzeWVHAVwcVbhpTpTlAjORiyaPwR0LYvDu3uIz1pdvOlwGrU7iahuf2tkjNdIXro7qfls3bDtejY5uHat2kiKY9JHNOlLegAkhXnZxZdBSViWHQquT2Jpd0buezx4qd9qS2+ZHIy7IA5eO4v/0lyWE4KbZkXgtrRDfHTV+jVZGSQMc1QITQzilezQSQmDphGDsytegrXNkVWD7SsvT9/acr1ARlx5ODiqkjPUdsJhLRUMbNmWU4dppEfD3sM0WO/938XhMj/LF7z7NRn51E6SU2HCwFMkRPogLsr3efP1xdlBjRrQfdubVnPPYl9mVCPBw7q3WSmRJ/LRMNklKiaPljZjC9XxDMmGMF8YHe2JzRjnSC+oQ4eeKMB+2u7CkJROC8d1vFsLb1ToKzCjl98snYkqYFx74OBNl9cat0coqrceEMV5wcWTxlNFq6cQgdHTrsMuIBtjGSsvXINzXFZFWMN16epQfcisa0djPerDXdxZCJ4Hb5scoEJlpOKpVeP76FLg6qnHXe4ewr7AOx6uabL6Ay9nmxwfgZE3LGetP2zq1+OFYNS6ZEqzoNGIavZj0kU0qPd2GxvZuVu4chsuSQ3Gg+DR25tVwPR8pxtlBjReuT4FWJ3HP+4fQNUgzY51OIru0AUkRfM+PZjOj/eHh7IDvjw2viqeUEs0d3SjUtGB/UR22Zldg98lazIsLsIpKujOj/aCTwMHi02fcX9/aiff3ncLKxBCb7ws5xtsFz10/Ffk1zbj17QNwclBhpQ335uvPXMOocd/WDTtOVKOtS4tLp4zeWR6kLNtZBUzUx5GyniIuHOkbqsuSQvGPr4+jpVNrN/35yDZFBbjjqasScM/7h/HPr4/jd5dOHPC5BZoWNHV0I5GVO0c1JwcVFowLwPe51ZBS9iZqLR3d0DR3oKapQ/9vc+dPX5/1b3vXuRcYLpocbOmX0q+pY33hoBLYV1iHxeODeu9/d08xWju1WLsoVsHoTGduXAB+fcE4/PvbE1iZFGp3Mx8mjPFEgIcz0vI0uGZaBADgi+xK+Lk79RbsIbI0Jn1kk3LKG6FWCYwLto81AJYU4eeG1EhfHCw+bXf9+cj2rEgMxd6CWrzyYwFmxvhhyYT+P3xnltQDAJJZuXPUWzIhGFuzK3HZC7vQ0NYFTXMHWvtZ4ycE4OfmhAAPZwR4OmFapC8CPJwR6OlsuM8ZgR7OCPZytpo1cq5OaiSEe59RwbOtU4s3dxdh8fhATBhjPxc671kcB08XB1w4yToSblMSQmBenD925mmg00l0anX4IbcKlyWHsg4BKYZJH9mknPIGxAd5cG3PMN2zJA5fH6lEuC/X85Hy/rB8Eg4V1+OBjzLxxb3zEdrPOtOs0nq4OakRG+ihQIRkTS6cFIzZMf4QAogOcO9N4vT/6pO8IE9n+Lk72eQH7BlRfnhjVyHau7RwcVTj44MlqGvpxF2L4pQOzaRUKoFb5kYrHYbZzIsPxKaMchyrbELp6Va0dGpHdQEvUh6TPrJJR8obsSA+UOkwbNbi8UFnTB0iUpKLoxov3pCCFc/txL0fHMYHd8yC41kf1jNLG5AQ5s0CCARvV0d8cMcspcMwmxnRfnjlxwJklNQjNdIXr+woQGqkL6ZHsZm3LZlnWNeXll+D3Iom+Lg5cnYNKcr2LoHRqFfd1I6apg5MZuVOIrsRHeCOv16ZgAPFp/Hvb0+c8Vhntw5HyxvZlJ1GhWmRfhAC2FdYhy+yKlBW34a1C2OtotAMGW+MtwvigjzwfW41vjtahYsmBZ9zMYvIkvjbRzYnp7wRAJj0EdmZVclhuH7GWLy0/SS2H/+pAffxyiZ0anVIYhEXGgW83RwxPtgT+wrr8PKOk4gP8sDSCZyZYYvmxQUgvbAOTR3dbMhOimPSRzYnx1C5cxKTPiK789jKSZgwxhO/+SgTlQ3tAICM0noAQGI42zXQ6DAz2g9p+Rocq2zCnQtjoeK0Zps0P14/xdPLxQFzYwMUjoZGOyZ9ZHNyyhsR5e8GTxf7KvFMRD+t72vv0uLeDw+jW6tDVkk9/NydWHiIRo3phrL+od4uuMzOetiNJjNj/OGkVuHCSWPg5MCP3KQsFnIhm3OkvAGJYT5Kh0FEZhIb6IEnr5iCX/8vE898l4fM0nokhXtzTRONGjOj/eHiqMJdi+OYLNgwD2cHfHjnLET5uysdChGTPrItDW1dKKlrw/UzxiodChGZ0RVTw7H3ZB1e3J4PAFg2hethaPQI9HTGvkcugKczP6bZupSxrLpK1oGXj8imHO0t4sK1PUT27vHLJmNckCekZFN2Gn28XBw5uk1EJsOkj2xKTrm+iAsrdxLZP1cnNV76eQquTg3HzBg/pcMhIiKyWZw3QDYlp7wRY7xcEODhrHQoRGQBMYEe+MfVSUqHQUREZNM40kc2Jae8gaN8RERERERDwKSPbEZbpxb51c1M+oiIiIiIhoBJH9mMY5WN0ElgchiLuBARERERGYtJH9mMnN7KnRzpIyIiIiIy1qBJnxAiQgixTQiRK4TIEULcZ7j/z0KILCFEhhDiGyFEqPnDpdEsp7wBPm6OCPNxVToUIiIiIiKbYcxIXzeAB6SUEwHMAnC3EGISgH9IKROllMkAtgD4o/nCJNKP9E0O9WLfIiIiIiKiIRg06ZNSVkgpDxm+bgKQCyBMStnY52nuAKR5QiQCurQ6HKtsYlN2IiIiIqIhGlKfPiFEFICpANIN3z8J4EYADQAWmzo4oh751c3o7NZxPR8RERER0RAZXchFCOEB4BMA9/eM8kkpH5FSRgBYD+CeAba7QwhxQAhxoKamxhQx0yj0UxEXjvQREREREQ2FUUmfEMIR+oRvvZTy036e8j6Aq/rbVkq5Tko5TUo5LTAwcPiR0qiWU94AV0c1ogPclQ6FiIiIiMimGFO9UwB4HUCulPLffe6P7/O0ywAcM314RHo5ZY2YFOoFtYpFXIiIiIiIhsKYNX1zAawBkC2EyDDc93sAtwohxgPQASgGsNYsEdKop9NJHK1oxJUpYUqHQkRERERkcwZN+qSUaQD6G17ZavpwiM51qq4VzR3dLOJCRERERDQMRhdyIVLKkfIGACziQkREREQ0HEz6yOrllDfCUS0wLthT6VCIiIiIiGwOkz6yekfKGhAf5AknB/66EhERERENFT9Fk1WTUuJoeSOmhHE9HxERERHRcDDpI6tW1diB2pZOrucjIiIiIhomJn1k1Y6U9RRx4UgfEREREdFwMOkjq5ZT3gghgIkhTPqIiIiIiIaDSR9ZtZzyBkQHuMPdedCWkkRERERE1A8mfWTVcsobMYXr+YiIiIiIho1JH1mt0y2dKKtv43o+IiIiIqIRYNJHVutoRSMAsHInEREREdEIMOkjq8XKnUREREREI8ekj4ZESolurc4ix8opb0SYjyt83Z0scjwiIiIiInvEpI+M1tjehevW7cVVL++BTifNfryc8gZM4igfEREREdGIMOkjo9S3duLnr6UjvbAOmSX1+C63yqzHa+noRoGmhZU7iYiIiIhGiEkfDaq2uQPXv5qOYxVNWLcmFWP93PDf7SchpflG+45VNkJKrucjIiIiIhopJn10XtWN7bhu3V4Uaprx2k3TcNHkMbhjQQwySuqxt6DObMfNKTdU7gxj0kdERERENBJM+mhAFQ1tuHbdXpTVt+GtW2ZgwbhAAMDq1HAEeDjjv9vzzXbsI2UN8Hd3whgvF7Mdg4iIiIhoNGDSR/0qqWvFNa/sgaapA+/eOgOzYvx7H3NxVOPWedHYmadBdmmDWY6fU96ISaFeEEKYZf9ERERERKMFkz46R6GmBde+sgeNbd1Yf/tMpEb6nfOcG2aNhaezA17ecdLkx+/s1uFEVRObshMRERERmQCTPjpDXlUTrn1lD9q7dfjg9llIDPfp93leLo5YMzsSW49UoKCm2aQxnKhqQpdWYgrX8xERERERjRiTPuqVW9GI69bthQTwvztmDdoj75a50XBSq7DuxwKTxnG0p4gLR/qIiIiIiEaMSR8BALJLG3D9q3vh5KDCR3fORnyw56DbBHo645ppEfjkUCkqG9pNFsuR8gZ4ODsg0s/NZPskIiIiIhqtRn3SV93UjuOVTUqHoaiDxafxs1f3wsPZAR/dORvRAe5Gb3vHghjoJPDaTtON9uWUN2JSiBdUKhZxISIiIiIaqVGd9EkpcdMb+3HP+4fQ2a1TOhxFpBfU4sbX0+Hv4YSP7pyNiCGOrkX4uWFlYgje33cK9a2dI45Hq5PIrWgcdGopEREREREZZ1QnfUII/Paiccirbsa6H01fhdLapeVpcNOb+xDi44qP7pyNUB/XYe1n7aJYtHZq8fbu4hHHVKhpQWunFlPCuJ6PiIiIiMgURnXSBwBLJwZjeUIInvshH4WaFqXDsZgfjlXhF2/vR5S/Oz68YxaCRtAEfcIYLyydEIS3dheitbN7RHHllOv7/k3mSB8RERERkUmM+qQPAB5bOQnODir8/tNsSCmVDsfsvjpSiTvfPYjxwZ748I5ZCPBwHvE+f7k4Fqdbu/DhvpIR7edoeSOcHFSIC/IYcUxERERERMSkDwAQ5OWChy6ZgD0FtfjkUJnS4ZjVZ5nluPv9Q0gI88b622fCx83JJPtNjfTDjGg/vLqzYETrI4+UN2DCGE84qvmrSURERERkCvxkbfCzGWORGumLv3xxFLXNHUqHYxYbDpbi/g8PIzXSF+/cOhNeLo4m3f9di2JR0dCOzRnDS5yllMgpb+TUTiIiIiIiE2LSZ6BSCfztygS0dHTjyS9ylQ7H5N5PP4XffpyJuXEBePuWGfBwdjD5MRaNC8TEEC+8vOMkdLqhT5Mtb2hHfWsXJrEpOxERERGRyQya9AkhIoQQ24QQuUKIHCHEfYb7/yGEOCaEyBJCbBRC+Jg9WjMbF+yJtQtj8enhMqTlaZQOx2Te21uM32/MxpIJQXj1xmlwdVKb5ThCCNy1KBYna1rwzdGqIW9/pExfxGUKR/qIiIiIiEzGmJG+bgAPSCknApgF4G4hxCQA3wKYIqVMBHACwO/MF6bl3L04DtEB7nhkUzbau7RKhzNiu/M1eOyzHCydEISXf54KF0fzJHw9Lp0yBpH+bnhpe/6Qi+LklDdCJfTVQImIiIiIyDQGTfqklBVSykOGr5sA5AIIk1J+I6Xsqc+/F0C4+cK0HBdHNZ68fAqKa1vx3Pd5SoczIiV1rbj7/UOICXDHs9dPhZOD+WfzOqhVuGNBDDJLG7D7ZO2Qtj1a3oDYQA+zjUQSEREREY1GQ8oChBBRAKYCSD/roV8A+NJEMSluTlwAVqeGY92PBThW2ah0OMPS1qnFne8ehFYn8eqN08yyhm8gV6WEI9DTGS9tH1rD+yNljWzKTkRERERkYkYnfUIIDwCfALhfStnY5/5HoJ8Cun6A7e4QQhwQQhyoqakZabwW88ilE+Hl6oiHP8mGdhhFSZQkpcRDn2Qht7IRz10/FVEB7hY9voujGrfNi0ZavgZZpfVGbVPb3IHKxnZW7iQiIiIiMjGjkj4hhCP0Cd96KeWnfe6/CcAKADfIARZwSSnXSSmnSSmnBQYGmiJmi/B1d8KjKyYio6Qe69OLlQ5nSF7dWYDPMsvxfxePx6LxQYrE8LOZY+Hl4mD0aF9Ouf46wiQmfUREREREJmVM9U4B4HUAuVLKf/e5/xIADwG4TErZar4QlXN5chjmxwfg6a+Oo7KhXelwjLIzrwZPfXkMyxNCcNfCWMXi8HRxxI2zo/BVTiXyq5sHff6Rcn3lzsls10BEREREZFLGjPTNBbAGwBIhRIbhdimAFwB4AvjWcN/L5gxUCUII/OXyKejS6vD4ZzlKhzOoU7WtuOf9wxgX7Il/XJ0Ifb6unJvnRsFJrcIrOwYf7cspb0SEnyu8XU3bMJ6IiIiIaLQzpnpnmpRSSCkTpZTJhttWKWWclDKiz31rLRGwpUX6u+O+C+LxVU4lvsmpVDqcAbV0dOOOdw8AANatmQY3J8sVbhlIgIczrpsegU0ZZSivbzvvc4+WN2JyCEf5iIiIiIhMzfw1/O3A7fNjMGGMJ/64OQdN7V1Kh3MOKSX+b0MmTlQ14YWfTcVYfzelQ+p1+4IY6CTw2s7CAZ/T1N6FQk0LpoRxPR8RERERkakx6TOCo1qFv16ZgKqmdvzrmxNKh3OOl3acxNbsSjy8bALmx1tXsZxwXzesSgrFB/tO4XRLZ7/Pya1oAsD1fERERERE5sCkz0gpY32xZlYk3t5ThIySeqXD6bXteDX+8fVxXJYUitvnxygdTr/WLopFW5cWb+0u6vfxI2WGIi4c6SMiIiIiMjkmfUPwfxePR7CnC373aTa6tDqlw0GhpgX3fXAYE8d44e9XKV+4ZSDjgj1xwcRgvLW7CC0d3ec8nlPeiEBPZwR5uigQHRERERGRfWPSNwSeLo54/LLJyK1oxOtpA69Rs4Tmjm7c8c4BqFUCr6xJhauTWtF4BvPLxbFoaOvCB/tOnfNYTnkDm7ITEREREZkJk74humTKGFw4KRjPfHcCp2qVaU+o00k88FEGCjQtePFnKYjws57CLQNJGeuLmdF+eG1nITq6tb33t3dpkVfdjClcz0dEREREZBZM+obhT6smQy0EHtmUDSmlxY//4rZ8fJ1Thd9fOhFz4gIsfvzh+uXiOFQ2tmPz4fLe+05UNUGrkxzpIyIiIiIyEyZ9wxDi7Yr/u3g8duZp8Flm+eAbmNB3R6vw7+9O4MqpYfjF3CiLHnukFsQHYHKoF17ecRJanT5ZzilvBMDKnURERERE5sKkb5jWzI5CUoQP/vT5UdS39t+KwNRO1jTj1//LwJRQb/z1ygSrLdwyECEE7loUiwJNC742NLo/UtYATxcHRPi5KhwdEREREZF9YtI3TGqVwFNXJqC+rQt/3Zpr9uM1tnfh9ncOwMlBhVfWpMLF0boLtwxk2ZQQRPm74aXtJyGlRE55IyaHetlcAktEREREZCuY9I3AxBAv3DY/Gh8dKMWek7VmO45OJ/Gb/2XgVG0r/ntDCkJ9bHdUTK0SuHNhLLLLGrDjRA2OVTZyaicRERERkRkx6Ruh+5eOQ4SfKx7ZmI32Lu3gGwzDs9/n4bvcajy6YhJmxvib5RiWdGVKGIK9nPHHzTlo79JhCpuyExERERGZDZO+EXJ1UuPJyxNQoGnBf7efNPn+v86pxLPf5+Hq1HDcODvS5PtXgrODGrfNi8GpOn3LC470ERERERGZD5M+E1gwLhCXJ4fipe35yKtqMtl+86qa8Jv/ZSApwgd/vnyKXa17u37mWHi7OsLZQYWYAHelwyEiIiIislsOSgdgL/6wYhK2n6jBhf/5EW5Oang4O8DDxQGehn89nB3g4ewIz56vDf/2ft/7fEd4uDhASok73j0IVycHvPJz2y3cMhAPZwf8YflEnKprhYOa1x6IiIiIiMyFSZ+JBHg4471bZ+K73Co0t3ejuaMbTR3dvV9rmlr197V3obmjGzojero7qgU+uH0Wxni7mP8FKODqaRFKh0BEREREZPeY9JnQlDBvTAkbfH2alBJtXVo0t5+ZGDYZ/m02JIapkX6YFuVngciJiIiIiMheMelTgBACbk4OcHNyQJDSwRARERERkV3jYioiIiIiIiI7xqSPiIiIiIjIjjHpIyIiIiIismNM+oiIiIiIiOwYkz4iIiIiIiI7xqSPiIiIiIjIjjHpIyIiIiIismNM+oiIiIiIiOwYkz4iIiIiIiI7xqSPiIiIiIjIjjHpIyIiIiIismNM+oiIiIiIiOwYkz4iIiIiIiI7xqSPiIiIiIjIjg2a9AkhIoQQ24QQuUKIHCHEfYb7rzZ8rxNCTDN/qERERERERDRUDkY8pxvAA1LKQ0IITwAHhRDfAjgC4EoAr5gzQCIiIiIiIhq+QZM+KWUFgArD101CiFwAYVLKbwFACGHeCImIiIiIiGjYhrSmTwgRBWAqgHSzRENEREREREQmZXTSJ4TwAPAJgPullI1D2O4OIcQBIcSBmpqa4cRIREREREREw2RU0ieEcIQ+4Vsvpfx0KAeQUq6TUk6TUk4LDAwcToxEREREREQ0TMZU7xQAXgeQK6X8t/lDIiIiIiIiIlMxZqRvLoA1AJYIITIMt0uFEFcIIUoBzAbwhRDia7NGSkREREQ02jz9NLBt25n3bdumv5/ISMZU70wDMFCJzo2mDYeIiIiIiHpNnw5ccw3w1lvAJZcAP/6o//6jj5SOjGyIMX36iIiIiIhICYsXA2+8AaxaBcyaBRw/rk/4Fi9WOjKyIUNq2UBERERERBa2ciWQkADs2gUsWcKEj4aMSR8RERERkTXbtg0oLQXGjAE+/hh47z2lIyIbw6SPiIiIiMhabdv20xq+3bsBd3fg5puBL79UOjKyIUz6iIiIiIis1f79P63hi47Wf63VAo8+CkipdHRkI5j0ERERERFZqwcfPHMN37JlwGOPAQcPAuvWKRcX2RQmfUREREREtuTRR4GLLwbuvVc/Ekg0CCZ9RERERES2RK0G1q8HQkKA1asBjUbpiMjKMekjIiIiIrI1/v7Ahg1AZSVwww36dX5EA2DSR0RERERki6ZNA154AfjmG+CJJ5SOhqwYkz4iIiIiIlt1223ALbcAf/4z8MUXSkdDVopJHxERERGRrRICePFFIDkZ+PnPgYICpSMiK8Skj4iIiIjIlrm6Ap98ov/6qquAtjZl4yGrw6SPiIiIiMjWxcQA774LZGQA99yjdDRkZZj0ERERERHZgxUrgD/8AXjjDeC115SOhqwIkz4iIiIiInvx+OPAhRfqR/sOHlQ6GrISTPqIiIiIiOyFWg28/z4QFKRf31dbq3REZAWY9BERERER2ZOAAH3j9ooKfUVPNm4f9Zj0ERERERHZmxkzgGefBb76CvjLX5SOhhTGpI+IiIiIyB7deSdw443AE0/okz8atZj0ERERERHZIyGAl14CEhKAn/0MKCpSOiJSCJM+IiIiIiJ75eamb9yu0wGrVwPt7UpHRApg0kdEREREZM/i4oB33tG3cLjqqjMf27YNePppZeIii2HSR0RERERk7y67TD/Fc+tW4MEH9fdt2wZccw0wfbqysZHZOSgdABERERERWcA77wC5ucA//gGUlgLffgt89BGweLHSkZGZcaSPiIiIiGg0UKuBr78GvL2BDz7Q9+/bs0efAJJdY9JHRERERDRaHDkCODgAq1YBzc3AI48AkZHAsmXAxx8DHR1KR0hmwKSPiIiIiGg06FnD9/HHwKZN+lE/X1/9Wr8jR/SPhYYC994LZGQoHS2ZEJM+IiIiIqLRYP/+M9fwLV6sb+eQkKDv4ff118CFFwKvvAJMnaq/Pf88UFuraNg0ckJKabGDTZs2TR44cMBixyMiIiIioiGqqwPefx94803g0CHAyQm4/HLgllv0SaFabdrjPf20voJo34Iy27bpk9SeSqN2RAhxUEo5zZLH5EgfERERERH9xM8PuOcefV+/w4eBtWuB777Tr/uLigL+8Ad9MrZt25nbDbfn3/Tp+qmlPftjKwmTG3SkTwgRAeAdAGMA6ACsk1I+K4TwA/A/AFEAigBcI6U8fb59caSPiIiIiMgGdXQAn38OvPGGfhqoTgc4OgK/+Q1w3XXAvn3AQw8BTz0FpKYCUg7tdvAg8Oc/AzfcoJ+CasetJJQY6TMm6QsBECKlPCSE8ARwEMDlAG4GUCelfEoI8TAAXynlQ+fbF5M+IiIiIiIbV1am7/n3wgtAebnp9+/sDMybpx/pmzFD/29YGCCE6Y+lAKtM+s7ZQIjNAF4w3BZJKSsMieF2KeX4823LpI+IiIiIyE5ICdx6q37t39VX60fphBjaTaXS/5uRATz+ODB/vn4qaUQEUFgIdHfrjzVmjD7560kEp00D/P3PjckG1gcqkfQ5DOXJQogoAFMBpAMIllJWAIAh8QsyfXhERERERGSVtm/XT/l89FHgpZeAu+4a3pTMbduAJ58ENm7Ub9+zpm/LFn0j+f37f7p9/vlP28XEnJkIpqT8tD6wZ3poz74++shkL9sWGT3SJ4TwALADwJNSyk+FEPVSSp8+j5+WUvr2s90dAO4AgLFjx6YWFxebJHAiIiIiIlJI32Tq7ORqqInfUEbnGhr06//6JoKnTukfU6mASZOA8HAgLU0/8vjJJ1a3PtBqp3cKIRwBbAHwtZTy34b7joPTO4mIiIiIRh9rmkZZVXVmErhv30+9BR99FPjTnywbzyCsMukTQggAb0NftOX+Pvf/A0Btn0IuflLK855hJn1ERERERGRWP/ygX2N43XVWWQnUWvv0zQWwBsASIUSG4XYpgKcAXCiEyANwoeF7IiIiIiIiZWzbBlx7LbBhA/Dii/qEr28PwFFq0EIuUso0AAPVR11q2nCIiIiIiIiGaf/+M0f2Fi/Wf79/v1WN9lnakFs2jASndxIRERER0WhmrdM7iYiIiIiIyEYx6SMiIiIiIrJjTPqIiIiIiIjsGJM+IiIiIiIiO8akj4iIiIiIyI4x6SMiIiIiIrJjTPqIiIiIiIjsGJM+IiIiIiIiO2bR5uxCiBoAxRY7oPECAGiUDoJGjOfRPvA82geeR/vBc2kfeB7tA8+jfRgvpfS05AEdLHkwKWWgJY9nLCHEASnlNKXjoJHhebQPPI/2gefRfvBc2geeR/vA82gfhBAHLH1MTu8kIiIiIiKyY0z6iIiIiIiI7BiTPr11SgdAJsHzaB94Hu0Dz6P94Lm0DzyP9oHn0T5Y/DxatJALERERERERWRZH+oiIiIiIiOyYzSV9QohLhBDHhRD5QoiH+9z/PyFEhuFWJITI6GfbZCHEHiFEjhAiSwhxbZ/HooUQ6UKIPMO+nAY4/k2G5+QJIW4a6vakp+R5FEJECiEOGo6RI4RYO5Tt6SdmPI/3GPYphRAB5zk+348moOR55PvRdMx4Htcb9ntECPGGEMJxgOPz/WgCSp5Hvh9Ny4zn8nUhRKbh/g1CCI8Bjs/3pAkoeR5N+p6UUtrMDYAawEkAMQCcAGQCmNTP8/4F4I/93D8OQLzh61AAFQB8DN9/BOA6w9cvA7irn+39ABQY/vU1fO1r7Pa8Wc15dALgbPjaA0ARgFCeR6s6j1MBRBnOTcAAx+f70T7OI9+P1n8eLwUgDLcPBvi7yvejfZxHvh9t41x69XnevwE83M/2fE/ax3k02XvS1kb6ZgDIl1IWSCk7AXwIYFXfJwghBIBroP+DdgYp5QkpZZ7h63IA1QACDdssAbDB8NS3AVzez/EvBvCtlLJOSnkawLcALhnC9qSn6HmUUnZKKTsM3zrDMOLN8zhkZjmPhu8PSymLBjk+34+moeh55PvRZMx5HrdKAwD7AIT3c3y+H01D0fPI96NJmfNcNvbZ3hVAfwU6+J40DUXPoynfk7aW9IUBKOnzfanhvr7mA6jq+QEPRAgxA/rs+SQAfwD1Usrus/crhJgmhHhtkOMPuD31S+nzCCFEhBAiyxDH3w1vRJ7HoTHXeTzf8/h+ND2lzyPfj6Zh9vMo9NMB1wD4yvA934+mp/R55PvRdMx6LoUQbwKoBDABwPOG+/ieND2lz6PJ3pO2lvSJfu47Oyu+Hv1k2mfsRIgQAO8CuEVKqTvffqWUB6SUtw1yfGPiop8ofR4hpSyRUiYCiANwkxAi2Mi46CfmOo8D4vvRLJQ+j3w/moYlzuN/AfwopdwJ8P1oJkqfR74fTces51JKeQv00wVzAVxruI/vSdNT+jya7D1pa0lfKYCIPt+HAyjv+UYI4QDgSgD/G2gHQggvAF8A+IOUcq/hbg0AH8P25+zXiOMbuz3pKX0eexmuluRAf5WG53FozHUeR3p8nsehUfo89uL7cUTMeh6FEI9BPyXpN0M8Ps/j0Ch9Hnvx/ThiZv/bKqXUGra/agjH57kcGqXPY9/njeg9aWtJ334A8YZqNU4ArgPwWZ/HLwBwTEpZ2t/Ghm02AnhHSvlxz/2G+e3bAKw23HUTgM397OJrABcJIXyFEL4ALgLw9RC2Jz1Fz6MQIlwI4Wr42hfAXADHeR6HzCzncQj4fjQNRc8j348mY7bzKIS4Dfr1QdefZxSX70fTUPQ88v1oUmY5l0IvrudrACsBHOtnF3xPmoai59Gk70lpBZVxhnKDvvrUCejnwz5y1mNvAVh7nm1/DqALQEafW7LhsRjoFzbnA/gYP1XKmQbgtT77+IXhOfnQD9HifNvzZn3nEcCFALKgr8CUBeAOnkerO4/3Qn91rRv6K1c9547vRzs7j3w/2sR57Dbss+f+P559Hg3f8/1o4+eR70frP5fQD9jsApAN4AiA9TBUgeR70v7Ooynfk8KwEREREREREdkhW5veSUREREREREPApI+IiIiIiMiOMekjIiIiIiKyY0z6iIiIiIiI7BiTPiIiIiIiIjvGpI+IiIiIiMiOMekjIiIiIiKyY0z6iIiIiIiI7Nj/AwayvDM86k2TAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAE/CAYAAADcwItlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACBj0lEQVR4nO3dd3iV5fnA8e9zsncgk5CQAAkzZEAYYQm4cE9wUPeoVrtba6d22Frbn7VTq7VWq1ZRQVw4AdkjQAJhhhHIgiyy9znP749zTgyQnTOT+3NduZKc8447vJzk3O9zP/ejtNYIIYQQQgghhHANBmcHIIQQQgghhBDiK5KkCSGEEEIIIYQLkSRNCCGEEEIIIVyIJGlCCCGEEEII4UIkSRNCCCGEEEIIFyJJmhBCCCGEEEK4EEnShBBCCCGEEMKFSJImhBBuSilV1+HDpJRq7PD9MmfH1x9KqXyl1EXOjqM7Sql1Sql77Xj855VShyzX9M5znktWSn2ilCpXSp230KlS6mGlVJZSqlkp9Z9Onr9QKXVQKdWglFqrlIrv8JxSSv1eKVVh+XhKKaXs8TMKIYToniRpQgjhprTWgdYP4CRwVYfHXnN2fOdSSnkOhnM4QA7wDWBXJ8+1AsuBe7rYtxj4DfDvc59QSoUDK4CfA8OBLODNDpvcD1wLpAIpwJXA1/vzAwghhBgYSdKEEGKQUUoZlFKPKqWOWkZEliulhlueS1BKaaXUXUqpAqXUGaXUA0qp6UqpPUqpKqXU3zoc606l1Cal1F+VUtWWUZgLOzwfopR6USlVopQqUkr9Rinlcc6+f1JKVQKPK6XGKqXWWOIqV0q9ppQKtWz/X2AU8L5lNPARpdQCpVThOT9f+2ibUupxpdTbSqlXlVI1wJ09xJSolPrS8rOUK6U6Jikdz+FrOWaF5d9kh1IqSin1BDAP+Jslxr9Ztp+glPpMKVVpGQVb2uFY/1FKPWd5vtZy/vjOzgugtf671voLoKmT5w5prV8E9nWx7wqt9btARSdPXw/s01q/pbVuAh4HUpVSEyzP3wH8n9a6UGtdBPwfcGdXcQohhLAfSdKEEGLw+RbmEZELgBjgDPD3c7aZCSQBNwHPAD8FLgImA0uVUhecs+0xIBx4DFhhTfqAl4E2IBFIBy4B7u1k30jgCUABv7PENRGIw5wsoLW+jbNHBJ/q5c97DfA2EAq81kNMvwY+BYYBscBfuzjmHUCIJb4w4AGgUWv9U2AD8LAlxoeVUgHAZ8Drlp/zFuAfSqnJHY63zHLucCDbEqejTcY8SgeA1roeOGp5/LznLV93/BmEEEI4iCRpQggx+Hwd+KllRKQZcxJ04zmlgL/WWjdprT8F6oH/aa1LLSMoGzAnN1alwDNa61at9ZvAIeAKpVQUcBnwHa11vda6FPgTcHOHfYu11n/VWrdprRu11ke01p9prZu11mXA05iTyYHYorV+V2ttAoJ7iKkViAdiLD//xi6O2Yo5OUvUWhu11ju11jVdbHslkK+1fsnyc+4C3gFu7LDNh1rr9Zbr8VMgUykVN5Afuh8CgepzHqsGgrp4vhoIlHlpQgjheIOhdl8IIcTZ4oGVSilTh8eMQFSH7093+Lqxk+8DO3xfpLXu2KTiBOaRsHjACyjp8D7eABR02Lbj1yilIoG/YC4ZDLJsf6ZXP1XXOp6jp5gewTyitV0pdQZzed9587eA/2IeRXvDUo75KubEt7WTbeOBmUqpqg6PeVqOcV6MWus6S/lnzDmx21sd5iS2o2Cgtovng4G6c669EEIIB5CRNCGEGHwKgMu01qEdPnwto2T9MfKc0ZRRmBtUFADNQHiH8wRrrTuWyJ37Bv93lsdStNbBwNcwl0B2tX094G/9xjK3LOKcbTru021MWutTWuv7tNYxmEcc/6GUSjz3B7aMGv5Saz0JmI15tOz2LmIsAL485987UGv9YIdt2kfNlFKBmBt3FJ97Xjvbh7kpiDWOAGAsX81vO+t5y9edzn0TQghhX5KkCSHE4PMc8IS1OYVSKkIpdc0AjhcJfEsp5aWUWoJ5LtlHWusSzPO7/k8pFWxpWDL2nPls5wrCPGJTpZQaCfzwnOdPA2M6fH8Y8FVKXaGU8gJ+Bvh0dfCeYlJKLVFKxVo2P4M54TKeexyl1EKl1BRLUliDufzRut25MX4AjFNK3Wb5N/KyNGKZ2GGby5VSc5VS3phH8rZprTsdRVNKeSulfDEnr16WJiYGy3PK8py35XtfpZRPh309Lc97AB6W561VMyuBZKXUDZZtfgHs0VoftDz/CvA9pdRIpVQM8H3gP139WwshhLAfSdKEEGLw+TPwHvCpUqoW2Iq5gUd/bcPcZKQcc/OPG7XW1u6Bt2NOGPZjTnreBkZ0c6xfAlMxz3f6EHNL+I5+B/zM0lHxB1rraszt6P8FFGEeWSuke93FNB3YppSqw/xv9G2t9fFOjhFt2a8GOAB8ibnkEcz/vjcqc2fMv2itazE3J7kZ8+jYKeD3nJ1Mvo656UolMA1zI5GufIq55HQ28Lzl6/mW5+It31tHuBoxzxG0+pnlsUcxj1I2Wh7DMgfwBszX8Azm/xMd5w/+E3gf2AvkYr4+/+wmTiGEEHaipNRcCCFEV5R5MeV7tdZznR2Lu1LmRaULtdY/c3YsQggh3IOMpAkhhBBCCCGEC5EkTQghhBBCCCFciJQ7CiGEEEIIIYQLkZE0IYQQQgghhHAhkqQJIYQQQgghhAvx7HkT2wkPD9cJCQmOPKUQQgghhBBCuIydO3eWa60jutvGoUlaQkICWVlZjjylEEIIIYQQQrgMpdSJnraRckchhBBCCCGEcCGSpAkhhBBCCCGEC5EkTQghhBBCCCFciEPnpHWmtbWVwsJCmpqanB2KGGR8fX2JjY3Fy8vL2aEIIYQQQgjRa05P0goLCwkKCiIhIQGllLPDEYOE1pqKigoKCwsZPXq0s8MRQgghhBCi15xe7tjU1ERYWJgkaMKmlFKEhYXJCK0QQgghhHA7Tk/SAEnQhF3I/yshhBBCCOGOXCJJc7YnnniCyZMnk5KSQlpaGtu2bQPg3nvvZf/+/TY5R0JCAuXl5d1u89vf/rbPx/3Pf/7Dww8/fNZjL730EmlpaaSlpeHt7c2UKVNIS0vj0Ucf7fPxHeGZZ56hoaHB2WEIIYQQQgjhEnqck6aUigNeAaIBE/C81vrPlue+CTwMtAEfaq0fsWOsdrFlyxY++OADdu3ahY+PD+Xl5bS0tADwr3/9y6Gx/Pa3v+UnP/nJgI9z1113cddddwHm5HDt2rWEh4cP+Lj9pbVGa43B0Pk9gWeeeYavfe1r+Pv79/qYbW1teHo6fUqlEEIIIYQQNtebkbQ24Pta64nALOAhpdQkpdRC4BogRWs9GfijHeO0m5KSEsLDw/Hx8QEgPDycmJgYABYsWEBWVhYAgYGB/OhHP2LatGlcdNFFbN++nQULFjBmzBjee+894PxRrSuvvJJ169add85rr72WadOmMXnyZJ5//nkAHn30URobG0lLS2PZsmUAvPrqq8yYMYO0tDS+/vWvYzQaAfNI2bhx47jgggvYtGlTr3/WP/zhD0yfPp2UlBQee+wxAPLz85kwYQL33nsvycnJLFu2jM8//5w5c+aQlJTE9u3bAXj88ce57bbbWLRoEUlJSbzwwgs9HnfixIl84xvfYOrUqRQUFPDggw+SkZHB5MmT27f7y1/+QnFxMQsXLmThwoXt/9ZWb7/9NnfeeScAd955J9/73vdYuHAhP/rRjzh69CiLFy9m2rRpzJs3j4MHD/b638JeGlraWHuoFK21s0MRQgghhBDuyjrK0dsPYBVwMbAcuKgv+06bNk2fa//+/ec95ki1tbU6NTVVJyUl6QcffFCvW7eu/bkLLrhA79ixQ2utNaA/+ugjrbXW1157rb744ot1S0uLzs7O1qmpqVprrV966SX90EMPte9/xRVX6LVr12qttY6Pj9dlZWVaa60rKiq01lo3NDToyZMn6/Lycq211gEBAe377t+/X1955ZW6paVFa631gw8+qF9++WVdXFys4+LidGlpqW5ubtazZ88+65znsp73k08+0ffdd582mUzaaDTqK664Qn/55Zf6+PHj2sPDQ+/Zs0cbjUY9depUfdddd2mTyaTfffddfc0112ittX7sscd0SkqKbmho0GVlZTo2NlYXFRV1e1yllN6yZUt7LNafu62tTV9wwQU6JyfnvH+bc/8d3nrrLX3HHXdorbW+44479BVXXKHb2tq01lovWrRIHz58WGut9datW/XChQvP+/kd+f9r14lKveAPa3X8jz7Q72UXOey8QgghhBDCfQBZuoe8qU/1YkqpBCAd2Ab8AZinlHoCaAJ+oLXeMZCE8Zfv72N/cc1ADnGeSTHBPHbV5C6fDwwMZOfOnWzYsIG1a9dy00038eSTT7aP3lh5e3uzePFiAKZMmYKPjw9eXl5MmTKF/Pz8PsX0l7/8hZUrVwJQUFBAXl4eYWFhZ23zxRdfsHPnTqZPnw5AY2MjkZGRbNu2jQULFhAREQHATTfdxOHDh3s856effsqnn35Keno6AHV1deTl5TFq1ChGjx7NlClTAJg8eTIXXnghSqnzfrZrrrkGPz8//Pz8WLhwIdu3b2fjxo1dHjc+Pp5Zs2a17798+XKef/552traKCkpYf/+/aSkpPTp327JkiV4eHhQV1fH5s2bWbJkSftzzc3NfTqWrbQaTfx1zRH+vvYIUUE+RAf78t8tJ7gqNcYp8QghhBBCCPfW6yRNKRUIvAN8R2tdo5TyBIZhLoGcDixXSo2xZIcd97sfuB9g1KhRNgvcljw8PFiwYAELFixgypQpvPzyy+claV5eXu3dAg0GQ3t5pMFgoK2tDQBPT09MJlP7Pp21f1+3bh2ff/45W7Zswd/fnwULFnS6ndaaO+64g9/97ndnPf7uu+/2q2uh1pof//jHfP3rXz/r8fz8/PafpbufDc7vlqiU6va4AQEB7d8fP36cP/7xj+zYsYNhw4Zx5513dtkev+N5zt3GekyTyURoaCjZ2dk9/eh2dbSsju++mc2ewmqunzqSx6+ezJvbC3jiowMcKKlh4ohgp8YnhBBCCCHcT6+SNKWUF+YE7TWt9QrLw4XACktStl0pZQLCgbKO+2qtnweeB8jIyOh2ok53I172cujQIQwGA0lJSQBkZ2cTHx/fr2MlJCTwj3/8A5PJRFFRUft8ro6qq6sZNmwY/v7+HDx4kK1bt7Y/5+XlRWtrK15eXlx44YVcc801fPe73yUyMpLKykpqa2uZOXMm3/72t6moqCA4OJi33nqL1NTUHmO79NJL+fnPf86yZcsIDAykqKgILy+vPv18q1at4sc//jH19fWsW7eOJ598Ej8/v14dt6amhoCAAEJCQjh9+jSrV69mwYIFAAQFBVFbW9ve3CQqKooDBw4wfvx4Vq5cSVBQ0HnHCw4OZvTo0bz11lssWbIErTV79uzp1b+FLWiteWXLCX63+gC+Xh78Y9lULp8yAoAlGbH88dND5uevn+KQeIQQQgghxODRm+6OCngROKC1frrDU+8Ci4B1SqlxgDfQfY95F1RXV8c3v/lNqqqq8PT0JDExsb2ZR1/NmTOnvXQwOTmZqVOnnrfN4sWLee6550hJSWH8+PFnlQPef//9pKSkMHXqVF577TV+85vfcMkll2AymfDy8uLvf/87s2bN4vHHHyczM5MRI0YwderU9oYi3bnkkks4cOAAmZmZgLnM89VXX8XDw6PXP9+MGTO44oorOHnyJD//+c+JiYkhJiamV8dNTU0lPT2dyZMnM2bMGObMmXPWz33ZZZcxYsQI1q5dy5NPPsmVV15JXFwcycnJ1NXVdRrPa6+9xoMPPshvfvMbWltbufnmmx2SpJ2uaeIHb+WwIa+cC8ZF8IcbU4gM9m1/PtTfm2vSYnh3dxGPXjaBEL++JcNCCCGEEGJoU+dUJ56/gVJzgQ3AXswt+AF+AnwO/BtIA1owz0lb092xMjIytLVbotWBAweYOHFif2IXDvT4448TGBjID37wA2eH0ie2/v/1wZ5ifroyl5Y2Ez+9YiLLZo7qtPw0t6iaK/+6kZ9fOYl75o622fmFEEIIIYR7U0rt1FpndLdNjyNpWuuNQFeToL7Wn8CEcDfVja08tiqXd7OLSY0L5U9LUxkTEdjl9skjQ5g6KpRXt57grtkJGAx9n0cohBBCCCGGJlkNWPTK448/7uwQnGbTkXJ+8FYOpbXNfPeicTy0cCyeHj0vMXjH7AS+/UY2G46YyyKFEEIIIYToDUnShOhCU6uRpz4+xL83HWdMRAArHpxNalxor/dfnBxNeKA3/92SL0maEEIIIYToNUnShOhEblE1330zm7zSOu7IjOfRyybi5937JisAPp4e3Dx9FH9fd4SCygbihvvbKVohhBBCCDGY9FyzJcQQYjRp/r72CNf+fRPVja28fPcMfnlNcp8TNKtbZ47CoBSvbjth40iFEEIIIfrhqadg7dqzH1u71vy4cBmSpAlhcaKinqX/3MIfPjnEpcnRfPrd+QMuU4wJ9ePiiVEs31FAU2vPSyUIIYQQQtjV9OmwdOlXidratebvp093blziLJKkAR4eHqSlpZGcnMySJUtoaGjo97HuvPNO3n77bQDuvfde9u/f3+W269atY/Pmze3fP/fcc7zyyiv9PrdVfn4+ycnJZz32+OOP88c//rFPx7FVPO7g/ZxiLvvzBg6fruXPN6fxt1vSCfX3tsmxb58dz5mGVt7PKbbJ8YQQQggh+m3hQli+HJYsgbvvNidoy5ebHxcuQ+akAX5+fmRnZwOwbNkynnvuOb73ve+1P280Gvu06LPVv/71r26fX7duHYGBgcyePRuABx54oM/nsJe2tjaXisee2owmfrpyL0mRgTz7tWnEhPrZ9PiZY8JIigzkv1tPsCQjzqbHFkIIIYTos4ULITQUXnoJHn1UEjQX5F4jaQ6ooZ03bx5Hjhxh3bp1LFy4kFtvvZUpU6ZgNBr54Q9/yPTp00lJSeGf//wnAFprHn74YSZNmsQVV1xBaWlp+7EWLFiAdfHujz/+mKlTp5KamsqFF15Ifn4+zz33HH/6059IS0tjw4YNZ412ZWdnM2vWLFJSUrjuuus4c+ZM+zF/9KMfMWPGDMaNG8eGDRv6/DN2d+yf/OQnXHDBBfz5z39uj6e4uJi0tLT2Dw8PD06cOMGJEye48MILSUlJ4cILL+TkyZOAeTTxW9/6FrNnz2bMmDHtI4uuKqewmpqmNu6dN8bmCRqAUorbMuPZU1hNdkGVzY8vhBBCCNEnv/89HD1q/vq5585/fy2czr2SNDvX0La1tbF69WqmTJkCwPbt23niiSfYv38/L774IiEhIezYsYMdO3bwwgsvcPz4cVauXMmhQ4fYu3cvL7zwwlnli1ZlZWXcd999vPPOO+Tk5PDWW2+RkJDAAw88wHe/+12ys7OZN2/eWfvcfvvt/P73v2fPnj1MmTKFX/7yl2fFuX37dp555pmzHu/o6NGjZyVWzz33XK+OXVVVxZdffsn3v//99sdiYmLIzs4mOzub++67jxtuuIH4+Hgefvhhbr/9dvbs2cOyZcv41re+1b5PSUkJGzdu5IMPPuDRRx/t45VwrA15ZSgFcxPD7XaO66fGEujjySub8+12DiGEEEKIHn3+Ofz0pxASYv7eWvIoiZpLca1yx+98Byxlh12KiYFLL4URI6CkBCZOhF/+0vzRmbQ0eOaZbg/Z2NhIWloaYB5Ju+eee9i8eTMzZsxg9OjRAHz66afs2bOnfVSourqavLw81q9fzy233IKHhwcxMTEsWrTovONv3bqV+fPntx9r+PDh3cZTXV1NVVUVF1xwAQB33HEHS5YsaX/++uuvB2DatGnk5+d3eoyxY8e2l3DCV4tR93Tsm266qcu4Nm3axL/+9a/20bstW7awYsUKAG677TYeeeSR9m2vvfZaDAYDkyZN4vTp093+vM62/nAZKbGhDAuwzRy0zgT6eHL91JG8sb2An14xkbBAH7udSwghhBCiS3//OxiN8O9/w113QVOTeU7ajh1S9uhCXCtJ641hw8wJ2smTMGqU+fsB6jgnraOAgID2r7XW/PWvf+XSSy89a5uPPvoIpVS3x9da97hNX/j4mN/ge3h40NbWZrPjwtk/c0clJSXcc889vPfeewQGBna6Tcef0RojmH9+V1Xd2Ep2QRUPLUy0+7luz4znlS0neGNHgUPOJ4QQQghxlqoq2LABFiyA664zD2Ts3m1O3CRBcymuVe74zDOwbl33H489Bg0N8POfmz8/9lj32/cwitZbl156Kc8++yytra0AHD58mPr6eubPn88bb7yB0WikpKSEtZ0MFWdmZvLll19y/PhxACorKwEICgqitrb2vO1DQkIYNmxY+4jVf//73/aRr4Hqz7FbW1tZunQpv//97xk3blz747Nnz+aNN94A4LXXXmPu3Lk2idGRNh8px6Rh/gBb7fdGYmQQs8eG8fq2kxhNrpu4CiGEEGKQ+vWvobIS/vQnUArS02HPHvPImnAp7jWSZp2DZm0TunChw9qG3nvvveTn5zN16lS01kRERPDuu+9y3XXXsWbNGqZMmcK4ceM6TXgiIiJ4/vnnuf766zGZTERGRvLZZ59x1VVXceONN7Jq1Sr++te/nrXPyy+/zAMPPEBDQwNjxozhpZdestnP0tdjb968mR07dvDYY4/x2GOPAeYRxL/85S/cfffd/OEPfyAiIsKmMTrK+rxyAn08SYsLdcj5bs+M54FXd/HFgdNcMjnaIecUQgghhCAvD/76V/McNMs0H9LSoL7e3ESkw4144XzKkaVoGRkZ2trt0OrAgQNMnDixdwd46ilzk5COCdnateYa2g7zoYSw6u7/l9aaub9fy+SYYJ6/PcMh8bQZTcx7ai1jIwJ59d6ZDjmnEEIIIQTXXWduGpKXB9GWG8XZ2ebRtDfegG76EgjbUkrt1Fp3++bTtcode/LII+ePmC1cKAma6Jfj5fUUVTUyzwGljlaeHgaWzRzFxiPlHCmtc9h5hRBCCDGErV0L774LP/7xVwkawKRJ4OXVc+M+4XDulaQJYUPrD5cBcEGS45I0gJtnjMLbw8CrW0849LxCCCGEGIKMRvjudyE+3vy5I29vmDzZ3DxEuBRJ0sSQtSGvnPgwf0aF+Tv0vOGBPlw+JZp3dhZS12zb7pxCCCGEEGf5z38gJ8e8gLWf3/nPp6XJSJoLcokkzZVbtAv31d3/q5Y2E1uOVTDfwaNoVrdlJlDb3MbK3UVOOb8QQgghhoDaWvPC1bNnm5vtdSY9HU6fNq8/LFyG05M0X19fKioqJFETNqW1pqKiAl9f306fzzpRSUOLkXlJ4Q6OzGzqqFCSRwbz3y358n9fCCFcUE5BFS1tJmeHIcTA/O535gTM2nK/M9ZOjzKa5lKc3oI/NjaWwsJCysrKnB2KGGR8fX2JjY3t9LkNeeV4GhSZY8McHJWZUorbZyXwyDt72Ha8klljnBNHX727u4gd+ZU8cd0UZ4cihBB2s7+4hmv+vonfXJvM12bFOzscIfonPx+efhq+9jWYMaPr7VJTzZ9374bLLnNIaKJnTk/SvLy8GD16tLPDEEPM+sNlTI0fRpCvl9NiuDotht+uPsArW/LdJkn73/aTbDteye2ZCYyPDnJ2OEIIYRerss2l6LtOnJEkTbivRx8Fg8E8mtadkBAYM0ZG0lyM08sdhXC08rpm9hXXMN9JpY5Wvl4eLM2I45N9pzlV3eTUWHrDaNLsLaoGYHlWgZOjEUII+zCZNO/lFAOQU1jl3GCE6K9Nm+DNN83LVHVRVXSWtDTp8OhiJEkTQ87GvHIA5jtwfbSufG1mPCateX2b67fjP3y6loYWI0G+nqzcXSRzNYQQg9KO/EpKqpsYHxXEsfJ6appanR2SEH1jMplb7cfEwA9/2Lt90tPhyBFzoxHhEiRJE0PO+rwyhvl7MTkmxNmhMCrMn4XjI3l9e4HLJz3ZBVUAfP/icVTWt/DFgdPODUgIIexgVU4x/t4efOeiJLSG3MJqZ4ckRN+8/jrs2GEucwwI6N0+1uYhOTl2C0v0jSRpYkjRWrMhr5y5SRF4GLrocuRgt2XGU17XzMf7Tjk7lG7lFFQR6u/F12bFEx3sy5tS8iiEGGRa2kx8tLeESyZFtc8VzpEkTbiT+nrzXLSMDHPDkN5KTzd/lnlpLkOSNDGkHDxVS1lts9Na73fmgqQI4sP8eWVzvrND6VZ2QRWpsaF4ehi4cVos6w+XUVLd6OywhADMNxHe2H7S2WEIN7f+cBlVDa1ckzaSYQHejBruzx6ZlybcyR//CEVF5pb7hj68zY+JgfBwmZfmQiRJE0PK+sPmpR6ctYh1ZwwGxW2z4sk6cYZ9xa55x7a+uY3Dp2tJiwsFYElGLCYNK3bJYtzCNfzx00P8ZOVeyuuanR2KcGOrcooZ5u/FXMuNvJTYEHIspd5CuLzCQnjqKViyBObO7du+SplH02QkzWVIkiaGlA155YyLCiQ6pPNFrp1lybQ4fL0M/HeLazYQ2VtUjUlD2qhQAOLDApg1ZjjLswowmWQxbuFc9c1tbDtWiUnDp/tkrqTon/rmNj7bf4orUkbg5WF+e5QaG0pxdRNltZL8Czfwk5+A0Qi//33/9k9Lg9xcaJVmOa5AkjQxZDS2GNmeX+lSo2hWIf5eXJs2knezi6hucL1fjtamIamxoe2PLc2I40RFA9vzK50TlBAWm46U02I04e1hYHVuibPDEW7qs/2naWo1cU3ayPbHUi3VA1LyKFzejh3w3/+auzr2d/3h9HRoaYEDB2wbm+gXSdLEkLHteAUtbSbmuUDr/c7clhlPU6uJt3a6XkOO7JNVxIf5MzzAu/2xy5JHEOTjyfIdrhevGFrWHiol0MeT2zLj2XK0wiVvdAjXtyq7iJGhfkwbNaz9seSRwRiUNA9xJ2W1zdz7cha/Wz2EEg2tzclZZCT8+Mf9P461w6PMS3MJPSZpSqk4pdRapdQBpdQ+pdS3LY8/rpQqUkplWz4ut3+4QvTf+sPl+HgamDl6uLND6dTkmBAy4ofx360nXK6EMLugqn0+mpWftwdXpcXwUW6JrCMknEZrzdqDZcxLCufq1BjaTJrPZHkIhyivax40CXFFXTPr88q5Oi0GQ4fOv/7eniRFBsm8NDex80QlV/51A58fOM3rW0/SZnTtpW1s5q23zItXP/EEBAf3/zjjxoGfn8xLcxG9GUlrA76vtZ4IzAIeUkpNsjz3J611muXjI7tFKYQNrM8rY8bo4fh6eTg7lC7dlhnPiYoG1ueVOTuUdqeqmzhV03RWqaPV0ow4mlpNvJ9T7PjAhAD2l9RwqqaJhRMiSYkNYWSoHx9LyaNdtRlN/PPLo8z9/Rq+8fpOZ4djEx/tLcFo0lyTFnPec6lxIewprEJr17p5Jr6iteY/m45z0z+34uPpwTcXJVLb3MaeoiEwAtrUBD/6EaSmwl13DexYHh6QkiIjaS6ixyRNa12itd5l+boWOACM7H4vIVxLcVUjR0rrXHI+WkeXJY8gPNCHV1yogYh1Ppq1aUhHqbEhjI8KYnlWoWODEsJi7cFSABaMj0ApxaWTo1mfV05dc5uTIxuc9hVXc90/NvO71QcJ9fNm89GKQdFUY1V2MeOjgpgQff4oREpsKGcaWik8I0uOuKKGlja+/UY2j7+/nwvGRfD+w3O5e85olIKNeeXODs/+nnkG8vPh6afNSdZAWTs8yk0Jp+vTnDSlVAKQDmyzPPSwUmqPUurfSqlhXe8phHNtsIxMzXfR+WhW3p4Gbp0Rx9pDpRRUNjg7HMCcpHl5KCaNOP/Ni1KKJRmx5BRUcehUrROiE0PdFwdLSYkNITLI3LF1cXI0LW0m1liSN2EbTa1Gnvr4IFf/bRMl1Y38/dapvHTXdLSGT/adcnZ4A1JQ2UDWiTNc3ckoGnzVMClbSh5dzrGyOq79+ybe31PMDy4Zxwu3ZxDi78WwAG+SY0LYeGSQJ2mnTplLHK+5BhYtss0x09Kgutqc+Amn6nWSppQKBN4BvqO1rgGeBcYCaUAJ8H9d7He/UipLKZVVVuY6JVxiaFmfV05UsA/jogKdHUqPbp0Zj0EpXt3qGqNpOQVVTBwR3GWZ6HXpI/HyUCzPkgYiwrEq6prJLqhi4fjI9semxQ8jPNBHSh5taNuxCi7/8wb+se4o16WP5PPvXcAVKSOYEB1EQpg/H+e6d5L2/h5zufbVqZ0naeOjg/D2NEiHRxfzcW4JV/9tE2W1zbxy9wweXpR01nzCOYnh7D55hvrBPKr+859DczP84Q+2O2Z6uvmzzEtzul4laUopL8wJ2mta6xUAWuvTWmuj1toEvADM6GxfrfXzWusMrXVGRIRrj2KIwclo0mzMK2dekrkcytVFh/hy6eQo3swqoKnV6NRYjCbNnsLzm4Z0FBbow0UTo1i5u4iWtiEySVu4hC8Pl6E1LJrwVZLmYVBcOjmKtQfLaGxx7uvH3dU0tfLTlXu56fmttBhN/PeeGfxxSSqh/uYur0opFiePYMuxCs7Utzg52v5btbuYjPhhxA337/R5b08Dk0YES4dHF9FmNPG7jw7wwKu7GBsRwAffmse8TqYyzEsKp9Wo2X58kC4Tk50NL74IDz8MSUm2O25yMhgMMi/NBfSmu6MCXgQOaK2f7vD4iA6bXQfk2j48IQZub1E11Y2tzEsKd3YovXbbrASqGlp5z8kNOY6U1lHfYuw2SQNzA5HK+ha+kK56woHWHCwlPNCHKSNDznr8suQRNLYaXaoBj7v5bP9pLnl6Pf/bfpJ7547m0+/O7/SN8GXJ0RjduKPmwVM1HDpd22nDkI5SY0PILarG6GKdd4eastpmvvbiNv65/hjLZo5i+QOZjAz163TbafHD8PE0sGEwzUt76ilYu9Y8X+x734Phw2HBAvPjtuLvDxMmyEiaC+jNSNoc4DZg0Tnt9p9SSu1VSu0BFgLftWegQvTX+sNlKEWnbzBc1awxwxkXFcibTl6DzNp2uqckbf64CKKDfaXkUThMm9HE+sNlLBgfcVaJE8DMMcMJ9fdy+zI8Zyirbeah13dx3ytZhPp7seIbc/jZlZPw9/bsdPuvOmq657/1quxiPAyKy6eM6Ha7lNhQGlqMHCmtc1Bk4lzW9vq7T1bxf0tSeeK6Kfh4dt0ow9fLgxmjh7NpMM1Lmz4dli41z0NbuxaWLYN77jE/bktpaZKkuYDOf+t2oLXeCHRWIyYt94Vb2JBXRnJMyFkLMbs6a5e6v689QnVjKyF+Xk6JY3dBFcG+niSEBXS7nYdBccO0kTy77iinqpuIDvF1UIRiqNp54gw1TW1nlTpaeXkYuHhiFB/vO0VLmwlvzz71yBqStNa8s6uI33y4n4ZmI9+/eBxfv2Bsj/921t9Vr249QW1TK0G+zvld1R8mk+a97GLmJYUTFujT7baplhtVOYVVjI8OckB0wkprzcub8/nNhweICfVj5TdmMCmmd2uBzUkM58nVBymtaSIyeBD8XVq4EF57DS67DMLD4fXXYfly8+O2lJZmPnZFBYSF2fbYotfkL5cY1GqaWtl1sor549yn1NFqbmI4Jg1bj1U4LYbsgipS40LPG6nozJJpcZg0vLNL2vHb0o/e3sPX/rWNNQdPu9wi58605lApngbVZRnzZVOiqW1qY9PRQXQX3U4KKhu4/d/b+cFbOSRGBPLRt+fyzQuTep3cXjYlmhaj+3XU3HXyDEVVjT2WOgKMCQ8gyMdTmoc4WH3z+e31e5uggfnvKDC4fg+MG2dO0MrL4cEHbZ+ggTQPcRGSpIlBbcvRCowm7Valjlbpo4bh7+3htHVeGlraOHSqhvQeSh2tEsIDmDl6OMuzCmTRVxspPNPAm1kFbM+v5O7/ZHHxn77kf9tPOr2hjCtYe7CUGaOHdzlyMycxnCAfTz7e655leI5gNGle3HicS/60nl0nzvCrayaz/OuZJEb2baRo2qhhRAT5sNrN/q3fzS7C18vAxZOie9zWYFAkjwwhp0CahzjKsbI6rvvHJj7YU8wPLx3f3l6/LyaNCGZ4gPfgmpd2/DiYTObOjs8+ay57tLW0NPNnaR7iVJKkiUFt/eEyArw9mDrK/Zbx8/Y0MHP0cKet85JbVINJf1Xm0xtLM+I4UdHAtsHaTcvBVmWbG8d8/O15PHNTGr5eHvx4xV7mPLmGP3+eR0Wd+y8i3B8FlQ0cPl3XaamjlY+nB4smRvLp/lO0GaXr6LkOnarlhmc38+sP9jNrzHA+/d4F3J6Z0KtR83MZLB011x0upaHFPdqdtxpNfLinhIsnRRPo0+PMD8D8u/DgqRqa2+Qmib1Z2+uX17Xwyt0zeWhhYr//b84eG8amI+WD4+bh2rXmOWnLl8OvfmX+vHSp7RO18HCIjZWRNCeTJE0MahvyyskcG+62c1LmJkVwvLyewjOOX9g6u+AM0HPTkI4unzKCQB9Pt20gsv5wmcssIq61ZsWuQqYnDGNMRCDXpo/kg2/O5fX7ZpIaF8qfPj/M7CfX8JOVezlaNrSaGaw9ZC6rW9hNkgbmzoNnGloHbwvufjhT38LTnx3myr9u4GRlA3++OY1/3zm9yw55vXV58giaWk18ecg9OmpuzCvnTEMr13SxNlpnUmNDaDVqDpTU2jGyoe3c9vrvf3MucwfYmXluYjina5oHR9OXHTvOnoO2cKH5+x07bH+utDQZSXOy3t0+EsIN5ZfXc7KygXvnjXZ2KP3WXk9/pJybpo9y6LmzC6qIG+7X44T6jvy8PbgqNYaVuwt5/OrJBLtRE4HGFiP3vpzF7MQw/nNXp8s+OtTeomqOltVzz9wx7Y8ppZg9NpzZY8M5UlrLvzYc5+2dhby+7SQXTYzk3nljmDl6uFusBzgQaw6WEh/mz5jw7hvaXDAuEj8vD1bnnmJ2ovvNS7WV/PJ6Pj9wms/2nybrxBmMJs116SP5+ZWTbNZQacbo4Qzz92J17iku66FToitYlV1EiJ8X88f1vhQ+xXLDqqe1I0X/1Da1ct8rWWw9VsmymaP4xVWTuu3e2FvWJG/jkXKSoty86csjj5z/2MKF9puX9tFH0NgIfgO7iSP6xz2HF4ToBesaSfPdcD6a1bioQCKDfJxST59TUE1qbGif97tpehxNrSY+yCmxfVB2tPPEGVosbd1LqhudHQ4rdhXh7WHgii7e8CZGBvHkDSls+tEivnVhErtOVnHz81u5+m+bWJVdROsgLfFrbDGy5WgFC8dH9piM+nl7sGB8BJ/sOzWkmq6YTJpdJ8/w+48PcvHTX7Lgj+v4zYcHqG5s5RsLxvLBN+fyp5vSbNrx1tPDwCWTollzsNTlywEbWtr4dP9pLp8yok9VFjEhvoQHepNtWZpE2NZ/t55g67FK/tiL9vp9ETvMn4Qwf6fN73ZbaWnmuW979zo7kiFLkjQxaK0/XE7ccD/iw/ydHUq/KaWYmxjO5qMVDn2TWVrbRFFVY7/uFqfGhjAuKtDtSh63HqvAoMCk4e0s53aobDWaeD+nmAsnRvY4UT4iyIfvXTyOzY8u4onrktu7oV3w1FpeWH+M2qZWB0XtGJuPltPcZup2PlpHi5OjKa1tZtfJM3aOzLmaWo18vv80j76zhxm//YLr/7GZ59cfIyLIh8eumsSGRxby8Xfm8/1LxpN8zuLftrJ4SjR1zW0u/2b48wOlNLQYe9XVsSOlFKmxoewplOYhtqa15q2sQmaMHs6N02Jtfvy5SeFsPVYxaG9e2YV0eHQ6KXcUg1JLm4ktR8u5Nn2k25d+zUkMZ8XuIvaX1NjtzdW5sk9WAZA+KrTP+yqlWJoRx28+PMDh07WMc5Pykq3HKkiJDSXAx4M3swr6PVHdFjbklVFR38J16SN7vY+vlwfLZsZzy/RRrDlYygsbjvHERwf48xd53DIjjjvnjB7wvCNXsOZgKf7eHswcM7xX2y+aEIm3h4HVuafISOjdPu6ivK6ZNQdK+ezAaTbkldHUaiLIx5MLxkdw8aQoFozrOcm3pTljwwny9WR17ikunBjlsPP21ardRYwI8WVGP/4/pMSGsuZQqdutCefqduSf4Xh5PQ8tTLTL8ecmhvPq1pNkF1QxfZD9HrCbhAQICZF5aU4kSZoYlHafPEN9i9EtW++fq2M9vcOStIIqPA2KyTH9O9916SN5cvVBlu8o4GdXTrJxdLbX0NJGTmEV98wdw6SYYL71v91sPlox4Anr/bViVxHD/L1YML53o0UdGQyKiyZFcdGkKPYUVvHChuP8e1M+/96Uz9WpMfzm2mQCetnNztVorVl7sJS5ieG9LoUK8vViblI4H+ee4mdXTHT7mzZHSuva55ftOnkGrc1leDdlxHHRpChmjg5zWqMkb08DF02M4rP9p2k1mvDycL1inTP1LXx5uIx75o7u102YlLgQtDbPGZ09dujOc7S1N3cUEOjjyeVTel4OoT8yx4RjUOaGMZKk9ZJS5pJHGUlzGtf7DSqEDazPK8PDoJidGObsUAYsKtiXcVGBbHJgK/6cwiomjAjC16t/cwLCAn24aGIUK3YX0dLm+uUlO0+codWoyRwbxiWTogj19+KNHSedEktNUyuf7T/NlSkxA36znRIbyl9vSWf9Iwu5c3YCK3cX8dKm4zaK1PEOna6luLqp16WOVouToymqamRvkXuVqRlNmrzTtazYVcjj7+1j0R/XcdHTX/Lk6oM0txn59oVJfPituWx6dBG/vCaZeUkRTu9kuzg5murGVrYeq3BqHF35KLeENpPm6j6WOlpZ5+lKyaPt1Da18tHeEq5KHYG/t31uIIX4ezElNtRpS9q4rbQ02LMHjK49z3Swcs/bqUL0YENeOelxoW7VXbA7cxMjeG3bCZpajf1OnHrLZNLsKajmmvT+vYmxuml6HB/vO8Wag6dZnOza3d62HqvAw6DIiB+Gr5cH16aN5PVtJzlT38IwGzZX6I2P956iuc3EdVN7X+rYk5Ghfvz8yknkl9fz4sbj3DVntFuOpq052LvW++e6eGIUHgbF6txTpPSjGY4jtBlNHC2rZ29RNbmWj/0lNTS0mN8c+XoZmJ4wnLvmJHDhxChiXLR09YJxEfh7mztqumIlw6rsYhIjA5k0Irhf+w8P8CZuuB97CqtsG9gQ9sGeEhpbjSzNiLPreeYlhvPsl0epaWodNO8N7C49HRoaIC8PJkxwdjRDjoykiUGnsr6FvUXVfWqt7OrmJoXR3GYiK9/+zQ+OltVR29xGWtzAFgCflxROVLAPy53chKM3th6rJCU2pD1xuWl6HC1GEyt3Fzk8lhW7CxkdHkC6HVp8P7QokTMNrby+zTmjhAO19mApk2OCiQr27dN+wwK8yRwTxse5p1xiQds2o4kDJTUszyrgF6tyue4fm0h+/BMufWY9P3grhzd3mJvuLM2I4/+WpPLJd+aT+/il/PeemdyWmeCyCRqY50YuHB/Jp/tOYXSxjprFVY1sP17JNakxAyp7TYkNJadARtJsZXlWAUmRgXZf1mBOYjhGk2bbMVk3sdfS0syfZV6aU7jfrVQherDxSDlam5OEwWLm6DC8PBQbj5TbfZ6Utb10WtzA5r95ehi4cVosz647yqnqJqJD+vbG2lEaWtrIKajivvlfrUc2cUQwqXGhvLmjgLvmJDhsHlNRVSNbj1Xy3YvG2eWcU0cNY25iOM9vOMZtmfF2H5W1pTP1Lew8cabfjQUWJ0fzs3dzOXy6jvHRjmtm02o0cfh0LblF1ewtqmZvUQ0HS2potpQBB3h7MDkmhFtnxDMlNpjkmBDGRATi4aSmNbawODmaD/eWkJVfycwxrlNy/l5OMUC/Sx2t0mJD+XBPCeV1zYT3YR1Jcb6807XsPlnlkPmiU+ND8fPyYGNeGRdPct3GNi5l4kTw9jbPS7vlFmdHM+RIkiYGnfWHywj193LZsqb+CPDxJH3UMDYeKQPsW3KQXVBFkK8nY8IDB3ysJdPi+Pvao7yzq9BuXbsGKiv/DG0mzaxz3kzePD2OH6/YS3ZBFemjBjaq2FvvWkbu+tLVsa8eXpTIzc9vZXlWAbdnJtjtPLa2Pq8Mk+57qaPVJZOj+PmqXFbnljgsSXsvp5gfvpXTnpAF+ngyOSaY22bFMyU2hOSRIYwOC3BaF1F7WTghEm9Pc0dNV0rSVmUXkz4qlPiw7hdB70lKrPkG1p7CKhZNkDf7A7E8qwBPg+JaO/7Os/Lx9GDG6OEyL60vvL1h8mQZSXMSKXcUg4rWmg15ZcxJDHfrO9GdmZsYzr7iGirrW+x6nuyCKlJjQ23yxjEhPICZo4fzVlaBS5SZdWbrsQo8LfPROroqNQZ/b4/20jN701qzcncR0xOGMcqOa/vNHD2c6QnDeG7dUbdo6mK15mApwwO8+7XAOkBkkC/T44fzce4p2wbWhcr6Fn6xKpfx0UH85ZZ01v5gAXseu4Q3v57Jz66cxDVpIxkbETjoEjQwJ6Pzk1xrEfHDp2s5UFLDNakDG0UDSB4ZgkEhJY8D1NJmYsWuIi6aGOWwEcl5SeEcLaunpLrRIecbFNLTzSNpLvo3fDCTJE0MKodP13G6ppn5g6jU0WpuUjhamxfztZfGFiMHT9WSOsBSx46WZsSRX9HA9uOuOQ/AvD5ayHmNNAJ9PLliygjezymmvrnN7nHkFtVwpLSO69Jtv5BrR0opHlqYSHF1Eyt3u/58QTB3OfzycBkLxkUM6ObL4uRoDp6q5Xh5vQ2j69zvVx+krqmNPy5J5erUGEaHD74Rs+5clhxNSXUTOS7SYOO97GIMCq5IGXiSFuDjSWJkoMv8bO5qzcFSKupbuGm6fRuGdDQn0bKkjYsvuO5S0tKgrAyKi50dyZAjSZoYVNYfLgNwya5iA5UyMoQgX0+7/nHZV1yN0aQH3DSko8umRBPo48mbWY4ZkeqL+uY29hRWn1fqaHXzjDjqW4x8uKfE7rGs2F2It4eBK6bYvxPmBeMimDIyhH+sO0qb0fVH03afPENVQyuLJvav1NFqcbJ5DabVufa9njtPnOHNrALumTvabRZzt7WLJkbhaVAOG7nsjtaaVTlFzEkMJyLINiM2qbGh7CmsdtkKAXewPKuAqGAfh84fnxAdRHigt5Q89oW1eYisl+ZwkqSJQWV9XhmJkYEu3f2svzw9DGSOCWNDXrnd3hh81TQk1GbH9Pf25KrUGD7aW0JtU6vNjmsLWSc6n49mNXXUMBIjA+2+Zlqb0cT7OcVcODGSEH/7t4ZWSvHwokROVDTwgQMS0IFac7AUD4Ma8M2XmFA/UuNC7Zo4tBlN/PzdXEaE+PKtC5Psdh5XF+LvxezEcFa7QEfNXSerKKhs5Jo02817SokLpbK+hcIzUjbXH6drmlh3qJQbp8Xi6cBFz5VSzEkMZ9MR+/0d7cqXh8v44Vs5/OaD/fz1izz+uyWfVdlFfHm4jOyCKvLL6zlT3+JyXVFJTTV/lnlpDieNQ8Sg0dRqZPvxSpbNjHd2KHYzLymcT/ef5kRFAwnhA5v83pndBVWMDPWz2d1mq6UZsfxv+0k+2FPCLTNG2fTYA9E+Hy2h85FDpRQ3T4/jNx8e4PDpWruNimzIK6e8rsWuDUPOdfHEKMZHBfG3tUe4OjXGpUvx1hwsJSN+GCF+A09gL0uO5snVByk800DsMNvP/Xt16wn2l9Twj2VT3XItOlu6LDmaH6/Yy/6SGibH2K6Euq/eyy7Cx9PApZNt1+Qjtb15SDVxw+03h3SwentnISZtbi7laHMTw1mVXczBU7VM7Od6eX3VZjTxkxV7qahvxqBU+/qHXQn29STE34tQP29C/LwI8fcixM+LUD/z5xA/L/y8PfD1snx4Gr762svytacHPl4GfDwNA+ucGRwMY8fKSJoTDO2/IGJQ2X68kuY2E/PGDb75aFZzLSMJG46U2yVJyymosstaNWlxoYyLCuTNHQUul6SlxoXi7931r8Lr0kfy+48P8uaOAn5+5SS7xLFidxHD/L1YMH5g5Xx9YTAoHlqUyLf+t5tP9p3iMgeUWfZHcVUjB0/V8uPLbNPV1JqkfZx7invnjel5hz4orWni/z49zLykcC6zlFYOZZdMiuKnK/eyeu8ppyVpbUYTH+wp4aKJUQTZcAHjCdHBeHsYyCms4ooU13ztuCqtNW9lFTBz9HC7/B3riXUZm01Hyh2WpH22/zRFVY0897VpLE6OpqXNRHVjK9WNLVQ3tlLV0HrWZ+tHVUMLVY2tFFc3Um15rq2PI21KgY/nV4mbNYnzsSR3ft4evHTn9O4TufR02LVrgP8Koq8kSRODxvrDZXh7GJg12nVaPttaQpg/I0P92JhXxm2zbDtiWF7XTOGZRu6wQ1t2pRRLM+w/ItUX1vloD1zQ/Rv1sEAfLpkUzcrdRTyyeDw+nrZdW6y2qZVP951iaUYc3p6OrUC/YsoI/vTZYf665giLk6Mdth5cX6w9VArAon623j9XfFgAE0cE2yVJ++1HB2huM/Gra5Jd8t/S0cICfZgxejirc0v4waXjnRLDpqMVVNS3DHhttHN5exqYGBNMjqVEXPTe9uOV5Fc08M1FzikHHhHix9iIADbkldv8d0BXXtx4nFHD/dvXZ/P2NBAR5NPnqhWtNfUtRqobW2lsaaOp1URTq/Grz20dvm410tz21ddfbdPh+VYTdU1tPf++SkuDt9+G6moIcd6o+FAjSZoYNDbklTN99DD8vN1ngd6+UkoxNzGcj3JLMJq0TZcZyD5ZBUDaqFCbHbOj69JH8uTqgyzfUcDP7DQi1Rc78isxdjMfraOl0+P4cG8Jn+8vtfld89W5p2huM3HdVMeVOlp5GBTfWDCWH769h7WHSl1yzac1B0qJHeZHYuTA1+2zWjw5mme+OExpTRORwbZZZH3L0QrezS7mW4sSGe2E0QFXdVnyCB57bx95p2tJcsLNmVXZRQT5erJgvO2bSaXGhvDOzkKb/y4e7JZnFRLo48nlThy9n5sYzvKsQprbjDa/8XaunIIqsk6c4RdXThrw/xOlFIE+ngQ6upQ6Pd38OScH5s937LmHMGkcIgaFU9VNHDpdy/xB2NXxXHOTwqltamOPjds/5xRW4WFQJNupLCks0IeLJkaxcneRS6zPtfVYJV4eimnxPXeynJsYzshQP7s0EFm5q4jR4QGk26HMtDeuTR/JyFA//rrmiNMbPJyrqdXIpqPlLJoQadORqcumRKM1fLLPNg1EWtpM/GJVLnHD/fiGiy7a7iyXTrZ21HR8l8fGFiOf5J7i8uQRdnkjnhIbSn2LkaNldTY/dlfe2H6SLw6cdpn15/qqtqmVj/aWcFVqjFNvqM5NiqCx1ciuE1V2P9eLG48T5OPJUgcuNWBz0uHRKSRJE4PChrzB23r/XLPHmkd+bN2KP7ugivFRQXb9w7l0eiwV9S2sOVhqt3P01tZjFaTGdj8fzcrDoFiSEcvGI+UUVDbYLIaiqka2Hq/g2rSRTiuP8/Iw8OCCsew+WcWWoxVOiaErW45V0NRqYqGNSh2tkiIDGRMRYLPE4d+bjpNXWsfjV03G12vwjuT3R3SIL1NHhTolSfvi4GnqW4xcY+NSR6s0y3qSjip5PFBSw6Mr9nLPy1ks/vN63tlZSKsbLKHR0Qd7SmhsNTp0bbTOzBwzHA+DYpOdW/GXVDfy0d4Sbpoe5/jRL1saMQIiIyVJczBJ0sSgsD6vnIggHyaOcP5cJ3sLC/RhckywTdd5MZk02QVVdit1tJqfFEFUsA/LnbxmWl1zG3uLul4frTNLMsxvKt7aabsFoN/dXYTWOLSrY2dunBZLVLAPf11zxKlxnGvtwVL8vDzI7MN16g2lFJclR7PteCWV9S0DOlZxVSN//jyPiyZGceFE1ysXdQWXTxnBgZIaTlTYfxHxjlZlFxMV7MNMG///sRoTHkigjyd7Cqvtcvxz/W/7Sbw9DTxxXTIKxfffymHBH9bx743HaWhpc0gMA/XmjgLGRQW2d8d0lmBfL9LiQtlg5yTt5c0nMGnNHbMT7Hoeu1PKPJombfgdSpI04fZMJs3GvDLmJYUPmcn6c5PC2XXyDPXNtvnDfKy8ntqmNtJiQ21yvK54ehi4YWos6w6Vcrqmya7n6k5f5qNZjQz1Y35SBG9nFdhkHRutNSt3F5ERP4xRYc5t4e3r5cH988ey5VgFWfmVTo3FSmvNmoOlzEkMs8vo1GXJIzCaNJ/tH9gIz68/2I9G89hVzp9n6aqcUfJY3dDKukOlXJUSY7f5YgaDInlksM1LzzvT2GJk5a4iLk+OZtnMeD7+zjz+fWcGI0P9+NUH+5n95Br+9NnhAd90sKfDp2vJLqhiaUacS/ytnpMYzt7CKqob7LN+Z0NLG//bfpLFydGDY5mG9HTYtw9aXPf/2GAjSZpwe7nF1ZxpaB0S89Gs5iaG02rUbD9umzfU1nIde4+kASzNiMOkzevkOMvWYxW9no/W0U3T4yiubmovrx2I3KIajpTWOaVhSGdumRFHWIA3f1vrGqNpR0rrKDzTaPNSR6vJMcHEDvMb0MLW6w6Vsjr3FN9clDQ43oTZSdxwf6aMDHFokrY6t4RWo7bpAtadSY0LZX9JDc1t3a97NVAf7CmmtrmNWy3rgCqlWDQhiuUPZPLOg5lkxA/nz1/kMfvJL3j8vX0UnrFdWbatLN9RgJeHcnrlgNW8pHBMGrYcs89o2js7C6lubOWeuaPtcnyHS0uD1lbYv9/ZkQwZkqQJt7fBMjfLuvbJUDA9YTjengablTxmF1QR6OPJ2AjbddDrSkJ4ADNGD+etrAKnNarYeqyStLjQPs+/u2hiFMMDvHlzx8DLNVfsLsTbw8CVU+wzX6av/L09uXvuaNYdKmOvg8q3umOdt7jQTmvHWUseNx4pp6ap73fSm1qNPPbePsaEB3DvvEHyJsyOFidHk1NQRXFVo0POtyq7mDHhASSPtO86WKmxobQaNQdLau16nte3n2RsRADTE86/sTQtfjj/uiODz747nytTYnh16wku+MM6vvtmNgdP1dg1rt5qaTOxcncRF02MIiywb23n7SUtLpQAbw+bTh2wMpk0/96UT2pcKFNH9e1moMuydniUeWkOI0macHtfHi5jckww4S7yi98RfL08mJEw3GbNQ7ILqkiJDXFYG+mlGXHkVzTYbCSwL2qbWsnt43w0K29PAzdMHcln+09TXtfc7xjajCbezylm0YRIQvxtt8DuQN2eGU+wryd/W5vn7FBYc7CUCdFBxIT62e0ci5NH0GrUrDnQ90Y2//zyGCcqGvjVNcl2b+E9GFgX9x7IyGVvnapuYuvxCq5Oi7F7WV2KZW6VPUseD5TUsPtkFbfMGNXtz5MUFcQfl6Sy4UcLuWt2Ap/sO8XiZzZw10vb2XaswqndW9ccLKWivoWlGa7T4dDLw8CsMWE2b8IF5vUdj5fXc/ecBJco7bSJxETw95d5aQ4kSZpwa7VNrew6cYb544ZOqaPVnMRwDp2upXSAc7uaWo0cKKkh1YEt4C+fEk2gj6dNm3D0VtaJM32ej9bRTdPjaDNpVuzqf+wb8sopr2txmVJHqyBfL+6cM5pP9p3m0Cn7jgx0p7qxlawTZ2y2gHVX0uNCiQr2YXVuSZ/2O1nRwD/WHeGKlBFDagR/IMZEBDI+KsghSdr7OcVojd1LHcE8VzU80JvsAvuNPlsbhtwwNbZX248I8eNnV05i86OL+P7F49hTWM1Nz2/l+mc38+m+U05p3788q4DoYF+X+1s9JzGc/IoGm3btBXPb/REhvk5dC87mPDwgNVVG0hyoxyRNKRWnlFqrlDqglNqnlPr2Oc//QCmllVLyl0o43NZjlbSZNPOG4Bsl68880FKNfcU1tJk0aQ5M0vy9Pbliygg+2ltis+YnvbX1qHk+Wn9LUBIjg8iIH8abO/pfrrlidxGh/l52K+UbiLtmJxDg7cHfnTg3bf3hMowmbfckzWBQLJ4czZeHy3rdHU9rzePv78PToPj5FdIspC8WJ0ez40QlpbX2bRq0KqeI1NgQhywqrpQiJTbUbiNpHRuGDAvw7tO+of7efPPCJDb+aBG/umYyZbXN3P/fnVzyzHqWZxU4bL3K0zVNrDtUyg3TRrrcot/Wv6O2bMW/v7iGzUcruD0zAS+PQTYWkpZmTtJM7rX0g7vqzf+eNuD7WuuJwCzgIaXUJDAncMDFgO1XeBWiF9YfLsPf26PPDSAGg0kjghnm7zXgJC3b0jTE0YspL8mIpaHFyId7+zaKMVBbj1WQHjdsQOvBLZ0ex9GyenaeONPnfWubWvl03ymuTBmBt6fr/QEfFuDN1zLj+WBPMcccuEhvR2sPlhLq70W6A+ZyLE4eQVOriXWHetcM5rP9p1lzsJTvXjyO6BBfO0c3uFgXEf9032m7neNIaR25RTVc7YBRNKuU2BCOlNVRZ4cbTu+f0zCkP/y8Pbg9M4F1P1jAn29Ow8vDwCNv7+HCp9c5pMHI2zsLMWlYMs11Sh2tEiMDiQr2sem8tH9vOo6flwe3zhhls2O6jPR0qKmB/HxnRzIk9PgOQWtdorXeZfm6FjgAWH/7/Ql4BHBeobMY0jbklTFrTNiQnBNiMChmJ4azMa98QHMNsguqGBHiS2SwY99wTosfxpjwAN7OclzJY21Tq2V9tOEDOs4VU0YQ6OPJG/1oILI69xTNbSauS+9d6ZIz3Dt3DF4eBp5dd9Th5zaaNOsOl7FgXIRD7rrPGD2csADvXnUebGhp45fv72d8VJD7r3vkBOOjghgdHmDXksc3d5xEKbgqxXFlZqmxoWgNuUW2L3n83/aTJEYGdtowpK88PQxckzaSj741l5fumk5VQyv3/CerX41zektrzVtZBcwcPZwEB4xs9pVSijmJ4Ww+WmGTMtDS2ibeyy7mxmmxLjXf2GbS0syfZV6aQ/TpNq5SKgFIB7Yppa4GirTWOfYITIienKxoIL+igflDsNTRal5iOKW1zeSV9n/EI6egyqGljlZKKW6YFsv2/Eryyx2zyG1W/hlMmn7PR7MK8PHkqtQYPtxT0uc3OCt3FZEQ5s9UByx30F8RQT7cMmMUK3cX2XyuRk9yCquorG+xW+v9c3kYFJdMjmLNgdM0tXbfRv1va45QVNXIr69NHnxlTA6glGJxcjRbjlVwxsbreWmteebzw7yw4ThXp8Y49KaTtXmIdSkTW+ltw5C+UkqxcHwkzy6bxtGyOh5+fTdtRvuUr20/Xkl+RQM3TXe9UTSruYnhVNa3sL9k4J0wX916khajibvmJAw8MFeUnGyemybz0hyi139llFKBwDvAdzCXQP4U+EUv9rtfKZWllMoqKxv42kJCWG06am2971oTkR3J2rSgv92pKuqaOVnZ4JQkDeCGqbEYlOPWTNtyrAJvDwNTbVAee/P0OBpbjbyfU9zrfYqrGtl6vIJr00e6fMevr18wBqXgn+sdO5q29mApBgUXOLDBwKWTo6lvMXb7OjpSWscLG45x/dSRzBg9sJHYoeyy5GjzIuIHbFfy2GY08ZOVe3nm8zxumBrLH5ek2uzYvREW6EPsMD/22HjpCmvDkOvttK7Y3KRwnrgumfWHy/jFe/vs0v1xeVYhQT6eXJbsug005ibaZn53U6uR17ae4MIJkYxxwHI2TuHnBxMmyEiag/QqSVNKeWFO0F7TWq8AxgKjgRylVD4QC+xSSkWfu6/W+nmtdYbWOiMiYui+mRa2t7eommBfT8ZGuF4JhaPEDvMnIcy/339cciyT3R3Z2bGj6BBf5iVF8M6uQowO6Di29VgFaaNC8fUaeHlsSmwIE6KDWN6Hksd3s4vQGpdZzLU7I0L8uHFaHMt3FHJ6gB1E+2LNwVKmxQ8j1L9vTRIGYvbYcIJ8PbssedRa89h7ufh5efDjyyY6LK7BaMrIEEaGDmwR8Y4aW4w88Oou/re9gIcWjuWPS1KcMsqZGhva/vvUFgbSMKQvbpo+igcuGMvr207yrw3HbXrs2qZWPtpbwlVpMQOaA2xvkcG+jIsKHHDzkFXZRVTUtwyexau7Ym0eIuyuN90dFfAicEBr/TSA1nqv1jpSa52gtU4ACoGpWmv799YVwiK3qJrkkSEuPyJhb3OTwtl6rKJfnbqyC6oxKPMbJ2dZkhFLSXUTm4/afq2ajmoGsD5aZ5RS3DQ9jpzCavYX91wmo7Vm5a4ipsUPIz7MPW4sPHjBWIxa8/z6Yw453+maJvYV1zis1NHK29PAxROj+PzAaVo7Kft6f08Jm45U8MNLxxMRNHTWY7QHa8njxrxyagc4F+pMfQvL/rWVLw6e5lfXTOaHl05w2t+D1LgQCs80UjGA9RM7skXDkN565NLxXD4lmt+uPmDT+YIf7CmhsdXoUmujdWVuYgTbj1f2WPLcFa01L248zoToIDLH2uZvjMtKT4eiIpDqOLvrze2mOcBtwCKlVLbl43I7xyVEt1qNJg6W1JLsxOTCVcxNjKChxdjepbEvsguqGBcVRICPp+0D66WLJkYR7OvJW3ZuIJKVX2mZj2a7UrXr0kfi7WlgeVbPo2n7imvIK61zi1E0q1Fh/lyTFsNr207Y7M1nd9YeNC8qbe/W+51ZnBxNdWMrW45WnPV4bVMrv/lgP1NGhjjkDfNQcFlyNC1GE2sO9n0RcauCygZueG4zucU1/OPWqdyemWC7APshJTYUwGYlj7ZsGNITg0Hx9NI0UmND+c6bu202t+7NHQWMjwoiNdb1/07PTQqjuc3Ur469YC6VPHy6jnvmjh78N46tzUNkNM3uetPdcaPWWmmtU7TWaZaPj87ZJkFrbd/b4EJ0kHe6jhajickxwc4Oxekyx4ZhULAxr293tbTW5BRUke7kBha+Xh5ckzaST/adorrRfl3Gthy1zEezYVv3UH9vFk+OZsWuwh7vwK7YVYS3h4ErHdh1zha+sSCR5jYT/95k21Kozqw5WEpMiC/jo4Lsfq5zzR8Xgb+3x3klj898nkdZXTO/vjbZ5dZ4cldTRw0jMsiH1Xv7N2qzv7iGG57dTHltM6/eM5PLXGDBYHNVBzYpebRXw5Du+Hp58MLtGYQH+nDvK1kDbs1/+HQt2QVVLMmIdYukZeboMDwNig39nN/94sbjhAf6cHVajI0jc0HS4dFhpD2VcEu5xea7lTKSBiF+XqTEhrKhj/X0x8vrqW5sJdVyB9iZlmTE0txm6lMTjr7aeqySdBvNR+vo5ulx1DS18cm+rt9wthlNvJdTzKIJkQ6da2ULiZGBXD5lBC9vPkF1g/2S6OY2IxuPlLNwQqRT3tT5enmwcEIkn+0/1T4/8kBJDf/ZnM/N00c5rbnOYGQwKC6dHM26w6W9XkTcavORcm765xY8DIq3H5ztMk1cAn08SYwItMlImrVhyA1THTvqHhHkw0t3Tqep1Tjg1vzLdxTg5aHcpnIgwMeTqaOG9Wte2pHSWtYdKuO2WfFDYzmgsDCIi5ORNAeQJE24pX1F1QR4ezDaTeb22Nu8pHByCqr69EfVesc3zQVawU8ZGcL4qCDeslOXx+rGVvYV224+WkezxoQxarg/b3bTQGTDkXLK65q5zsFvumzloQWJ1DW38fKWfLudY9uxShpajFw40fGljlaXJUdTXtdiLo01aX7+bi4hfl48cul4p8U0WF2WHE1Tq4kve7mIOMB7OcXc8dJ2RoT68s6DsxnnhBHX7qTGhZJTUDWgLokNLW2s3FXEFVNGOOWGTlJUUHtr/ode29XpHM2etLSZWLm7iIsmRhEW6D5zOOcmhZNbXN3n5SH+vSkfb08Dy2YNwsWru5KeLiNpDiBJmnBLucU1TIoJxiDlR4C5hbBJc958mu5kn6zC39uDpEjnv9FRSrEkI5acgiryTtfa/PhfzUezfZJmMCiWZsSy+WgFJyo6X+9t5a4iQv29WDjeeQnIQEyKCeaiiZH8e9Nx6pr7NvLRW2sOluLjaSBzjPPWPVw4PhIfTwOrc0/xzq5Csk6c4dHFE+zaXW+omjF6OMP8vXq1iDjAvzYc41v/2036qGG89cBsYkL97Bxh36XGhlBR30JRVWO/j/HBnhJqm9u4ZYbz3vBbW/NvyCvnsX605l9z8DQV9S0sdeG10TozJzEcrWFzH/6OnqlvYcWuQq5LG0m4GyWkA5aWBocOQb1j1jgdqiRJE27HaNLsL66RUscO0kcNw9/bo0/rpWUXVDFlZIjLzLO5Nn0kngZllzXTthytwNvTYLf5dzdOi8Og6LSBSF1zG5/uP8WVKSPw9nTfX7kPLUykqqGV17aesPmxtdasPVTK7LFhTm3VHeDjyfxxEXy0t4QnVx9k6qhQbpwW67R4BjNPDwOXTIpmzcHSbudzmkyaJz7cz28+PMBlydG8cvcMQvy8HBhp79miecjr2xzXMKQ7A2nNvzyrkOhgX+a72RqmqbEhBPl4svFI70d3X99+kqZWE3cP9rb750pPB61h715nRzKoue87BjFkHS+vo7HVSHKMJGlW3p4GZo4e3ut6+uY2I/tLalyi1NEqPNCHhRMiWbG7iLZ+lNh0Z+vxCtLjbD8fzSo6xJeF4yN5K6vwvNhX7y2hqdXEdenu/WY/fdQw5iWF88KGY/1uU92VY+X1nKhocEpXx3NdlhxNaW0zZxpa+PW1yTJab0eLp0RT19zW5c2lljYT312ezQsbjnNHZjx/u3Wq3V7DtjBhRBDeHoZ+Nw/ZX1xDdoFjG4Z0pz+t+U9VN7HuUCk3Tot1mRuAveXpYWDW2LBerzva0mbilS35zEsKZ3y08ytSHEo6PDqEJGnC7eQWmdekkpG0s81NiuBYeX2vSm32F9fQatSku1gzhBunxVJW28yXh223/op5PlqN3deuuWl6HKW1zaw7Z47Nyt1FJIT5M9WFEuL+enhhIuV1Lbyx/aRNj2ttve/o9dE6c+HEKAK8Pbhrzmgmy40gu5rTzSLitU2t3P2fHazKLuaRxeN5/OrJLv+m38fTg4kjgvrdwv6NHc5pGNKV/rTmf2dXISZtbgbljuYlhVNQ2dhl6XpHH+0t4XRN89AbRQOIj4fQUJmXZmeSpAm3k1tUjY+ngbER0jSko7mJ5rk8vWnFb11TLdXFkrRFEyIJC/C26ZppO45Xou00H62jhRMiiQjy4c0OJY8l1Y1sOVbBtekjXeLO+EDNHBPGjITh/HP9MZrbbDeatuZgKeOiAokd5m+zY/ZXiJ8X6x9ZyE8vn+jsUAa9rhYRL61t4qZ/bmXrsQr+b0kq31iQ6Davn5TYUHKLajCZ+jaPy9kNQ7rSsTX/PS9335pfa81bWQXMGjOceDdt6jXH+ne0h9E06+LVYyMCuMDNyjptQinzaJqMpNmVJGnC7eQWVzNxRDCeHvLft6NxUYFEBvmw8UjPk55zCqqICvZhRIhrTb738jBwbfpIvjh4mso+dtjqypZj5vlo9m6h7uVh4Iapsaw5WEppTRMA7+4uRmvcpg11bzy8KJGS6iZe2XzCJmWPtU2tbD9e6RKjaFZhgT5S5ugg5y4ifqysjuv/sZn8inr+dUcGN7jZnMDUuFDqmts4Vl7Xp/1coWFIV6yt+Zvbum/Nv/14JfkVDSzNcK+GIR2NCQ8gJsS3x/ndO/LPsLeomrvnjh66vyvS02HPHmizTzMpIUmacDMmk2ZfUQ3JI2UR63MppZibGM6mI+U93sXNLqhy2XWflmTE0mrUvLu7yCbH23qsgql2WB+tMzdNj8No0ry9qxCtNSt2FTItfpjb3lXuzLykcNJHhfLERweY+IuPmffUGu58aTu/en8/r207wZajFZTWNvW6I9zGvHLaTJpFbtr5UgxMx0XEd588ww3Pbqaxxcgb989igRv+n0iNNZfIZhf0rXmIqzQM6UpvWvO/mVVAkI8nlyU7f3Hx/lJKMScxnM1HK9rXS+zMixuPEervxfVuPtd4QNLSoKkJDh92diSDlqezAxCiLwrONFDb3CZNQ7owJzGcFbuL2F/SdffLM/Ut5Fc0cNN017tjCzAhOpgpI0N4e2fhgGv9qxta2V9Sw3cuHGej6Lo3OjyAmaOHs3xHAfMSI8grreM31yY75NyOopTiP3fN4MvDZRwtreNYeT1HS+vYdqySxg4ja0E+noyJDGRsRABjI8yfx0QEEh/mf9aCr18cLCXY15Np8a755lTYl3UR8Q/2FLNydyFRwb68fNcMEsLd88bGmIhAArw92FNY1evOoNaGIT+/cpJLl3VaW/P/6J29PPbePp64Nrk93tqmVj7aW8L1U2Od2qHVFuYmhfPWzkJyi6o7nRJwsqKBT/ef5hsLxrr9zzog6enmz9nZMGmSU0MZrCRJE25FmoZ0b26SuZ5+05HyLv+Nsi2dx1LjXPffcElGLL9YtY99xdUDat6wPd86H224DaPr3s0z4vjumzn8bFUu3h4Grkxx37vKXQnx8+Lq1JizHjOZNCU1TRwrq+NoaR1Hy+o5Vl7H5iMVrNj11aioQUHccH/GRgQyJjyANQdLuWB8pJQvD2GXJUfz4Z4SUmJD+Ped0916vSkPgyJ5ZAg5fWjD/7/trtUwpDs3TR9FfkUDz647SkKYP/fPHwvA+znmLrY3uXGpo1XHeWmdJWkvbT6Op0Fxe2aCYwNzNRMmgLe3uXnIrbc6O5pBSZI04VZyi6vx8lAkRQU6OxSXFBXsy7ioQDYeKefrF4ztdJucgiqU+mpNH1d0dWoMv/ngAG9lFTL56v4naVuOVuDjaXBog5TLkkfwi1X7yCmo4tLJUS7VBMCeDAbFyFA/Rob6Me+cifR1zW0ctyRtR0vrOGoZfdt0pJzmNhOXJ0c7KWrhCi5PHsE/likuGBdBgI/7vy1JiwvlpU35tLSZelwbsaGljXd3u17DkO788JLxnKxo4HerDzJqeACLk6NZnlXA+KggUmJd9+Zfb4UH+jBxRDAb88p5aGHiWc/VNLWyfEcBV6bEEBXs66QIXYSXFyQnS/MQO3L/34ZiSMktqmZcVNBZ5VLibHMSw3l920maWo2dzsPKLqhiXGQQgS78ZijU35uLJ0exKruIn1w+sd+LQJvnow1z6NpKvl4eXJc+kle2nHD7tdFsJdDHkymxIUw55w2cyaQ509DC8AD3eHMq7MNgUFw+ZfCMOKfEhtJiNHHwVE2PN8NcuWFIVwwGxf8tTaWoqpHvvLmbXzclu0W5Zl/MTQzj5c0naGwxnlXSuHxHAfUtRu6eMwTb7ncmPR3efde8sPUgufauROpLhNvQWrOvuEbmo/VgXlI4zW0mdp44c95zWmtyCqpcutTR6sZpsZxpaOWLA6f7tX9VQwsHTtl/fbTOPLhgLA8tHMuFE92v8YEjGQyKsECfQfPGTgigfTSpNyWPrt4wpCsdW/P/8O09eHmoQdXFdm5SBC1GE9vzK9sfazOaeGlTPjMShp93w2nISkuDigoosk2jL3E2SdKE2yipbqKyvkU6O/Zg5ugwPA2KDZ20ED5Z2cCZhlbS4lz/DcH8pAiign14a2f/1kzb7qD10TozIsSPH146AS+ZZyXEkBM7zI+wAG/29LD4s7VhyC0zRrnljQpra/4gX08unzJiUI2Iz0gYjreHgU0d1kv7dP9piqoah+bi1V2xNg+RRa3tQt5BCLeRW2S+KzlZmoZ0K8DHk6mjhrHxyPmLWlsXsXbV9vsdeRgU10+N5cvDZe3rjvXFlmPW+Wjy/0UI4ThKKVJiQ8ixNGnqijs1DOlKUlQQGx9ZxO9vSHF2KDbl5+3BtPhhZ93sfHHjcUYN9+fiSVFOjMzFpKSYyxxlXppdSJIm3EZucQ0GBROjZSStJ3OTwtlXXHPegtC7T1bh5+XBODdpvLJkWixGk2ZlP9ZM23qskmnxw2T+ohDC4VJiQzlSWkd9c+cL/bpjw5CuhPh7OXTer6PMTQrnQEkN5XXNZBdUsfPEGe6cnYDHUF28ujNBQZCYKCNpdiJJmnAb+4qqSYwMHNrrkvTS3KRwtIbNR88uecwuqGLKyBC3aXc+JiKQafHDeGtnYa8XRwbzfLSDp2rIdEKpoxBCpMaFYNJfVYCc64Mcc8OQW2e6T8OQoWZu4ldL2ry48ThBPp4sne7+SwzYXFqajKTZiXu8UxMCc/t9aRrSOykjQwjy9WRjh1KNljYT+4trSBsV6rzA+mHJtFiOlNa1l2r2xjbrfDQnNA0RQghrV8c9XTQPeX27uWFIhizi7rKSR4YQ4ufF2zsL+WhvCTdNj3PprshOk54Ox49DVZWzIxl0JEkTbqG0tonTNc0yH62XPD0MZI4JY0NeefsI1IGSGlqMJreYj9bRFSkj8PUy9KmByNZjFfh6GQbFmj1CCPcTHujDyFA/sjuZl+buDUOGCg+DYvbYr/6O3jE7wdkhuaa0NPPnnBynhjEYSZIm3MK+ohoAkmNkPlpvzUsKp6iqkRMVDcBXTUMcubCzLQT5enFZ8gjezymmqdXYq322HK2Q+WhCCKdKjQthTydJ2mBoGDJUzLGUPC5OjiZuuL+To3FR0uHRbiRJE27BWtc/SZK0XrP+cdlgaSGcU1BFRJAPMSG+zgyrX5ZMi6W2qY1P9p3qcdsz9S0cPFXLrNFS6iiEcJ7U2FAKKhvPauA0mBqGDAUXT4pi4ohgvrEg0dmhuK7oaIiKknlpdiBJmnALucXVjA4PIMjXy9mhuI3R4QGMDPVjk2VeWnZBFWlxoW5ZXjNrTBixw/x4uxclj9uOmxcfdcYi1kIIYWWdl9axFb80DHEvUcG+rP72PJJlqkX30tNlJM0OJEkTbiG3qIbJMorWJ0op5iaGs/loOZX1LRwrr3e7+WhWBoPihqmxbDxSTlFVY7fbfjUfLdQxwQkhRCemxIagFOwp+Kp5iDQMEYPOU0/BsGGwfz80N5sfW7vW/LgYEEnShMs7U99CUVWj3Mnqh7lJ4dQ0tfHq1hOAeyxi3ZUbp8WiNazoYTRt67EKMuKH4+0pv96EEM4T6ONJYkRg+7w0a8OQW6VhiBhMpk+HDz6AtjbYt8+coC1dan5cDIi8ixEub1+xtWmIJGl9NdtS8vfvTcdRynxn113FDfcnc0wYb+/qes20Sut8tDHDHRydEEKcLyU2lJzCarTW7Q1DrpeGIWIwWbgQ/vY389ePP25O0JYvNz8uBkSSNOHycovNpSLJI6Xcsa/CAn2YHBNMVUMrYyMCCXbzOX1LMmI5UdHAdsu8s3NtP14ByHw0IYRrSI0LobyumaNldby7u4grpWGIGIy+9jXw8oL334cHH5QEzUYkSRMuL7eomthhfvKHrZ/mJpm7PLpzqaPV4uRoAn08u1wzbeuxSvy8PJgyMtSxgQkhRCesc2Of+PAAtc1t3CINQ8Rg9OWX5s/R0fDss+aSRzFgkqQJl7evuEZKHQdgbuLgSdL8vT25YsoIPtpbQn1z23nPbzlaQUbCMJmPJoRwCRNHBOHloVh7qEwahojByToHbelSKCuDl182fy2J2oDJOxnh0mqbWjleXi+ljgMwZ2w4v71uyqCZB7EkI5aGFiMf7S056/GKumYOna5l1hgpdRRCuAYfTw8mjjD//ZKGIWJQ2rHDPAftllvAaISAAPP3O3Y4OzK312OSppSKU0qtVUodUErtU0p92/L4r5VSe5RS2UqpT5VSMfYPVww1+y1NQyZLZ8d+MxgUt84chb+3p7NDsYlp8cMYEx5wXsmjdZ6aJGlCCFcyddQwfL2kYYgYpB55xDwHbeZM8/dbtpi/f+QR58Y1CPRmJK0N+L7WeiIwC3hIKTUJ+IPWOkVrnQZ8APzCfmGKoSpXOjuKcyiluGFaLNuPV3Kior798a3HKvDz8iDFjTtYCiEGn+9dMo4PvjlP5lWLwS08HJKSzEmasIkekzStdYnWepfl61rgADBSa13TYbMAoPOe2EIMwL6iaqKCfYgI8nF2KMKF3DA1FoOCtzuMpm05Zp6P5uUhVdxCCNcR7OtFYmSgs8MQwv4yM81JWhfL5Ii+6dO7GaVUApAObLN8/4RSqgBYhoykCTvILa6WUTRxnugQX+YlRfDOzkKMJk15XTOHT9dJqaMQQgjhLJmZ5uYhx487O5JBoddJmlIqEHgH+I51FE1r/VOtdRzwGvBwF/vdr5TKUkpllZWV2SJmMUQ0thg5Ulon89FEp26cFktxdRObj5bLfDQhhBDC2TIzzZ+l5NEmepWkKaW8MCdor2mtV3SyyevADZ3tq7V+XmudobXOiIiI6H+kYsg5cKoGk4bkGOnsKM538aQogn09eXtnIVuPVeDvLfPRhBBCCKeZPNnc3VGSNJvosd2bMveLfRE4oLV+usPjSVrrPMu3VwMH7ROiGKr2FVUDkCwjaaITvl4eXJM2kuVZBUQG+5CRMFzmowkhhBDO4ukJM2ZIkmYjvXlHMwe4DVhkabefrZS6HHhSKZWrlNoDXAJ8256BiqEnt6iG4QHejAjxdXYowkUtyYiluc1EQWUjs8YMd3Y4QgghxNCWmQk5OVBf3/O2ols9jqRprTcCna2++JHtwxHiK7nF1UyOCZbFP0WXpowMYXxUkCxiLYQQQriCzEzzotY7d8L8+c6Oxq1JbZBwSc1tRg6frpVSR9EtpRT3zR/DhOggpsj/FSGEEMK5Zs0yf5aSxwHrcSRNCGfIO11Hq1FL+33RoxunxXLjtFhnhyGEEEKI8HBITJQkzQZkJE24pNz2piHS2VEIIYQQwm3IotY2IUmacEl7i6oJ8vVk1HB/Z4cihBBCCCF6KzMTSktlUesBkiRNuKTc4hppGiKEEEII4W6si1pv3ercONycJGnC5bQaTRwoqZH5aEIIIYQQ7iY5WRa1tgFJ0oTLOVpWR0ubSTo7CiGEEEK4G09PmD5dkrQBkiRNuJzcohpAmoYIIYQQQrgl66LWDQ3OjsRtSZImXE5uUTV+Xh6MDg90dihCCCGEEKKvMjOhrc28qLXoF0nShMvZV1zNpJhgPAzSNEQIIYQQwu3IotYDJkmacCkmk2ZfcQ1TZD6aEEIIIYR7ioiQRa0HSJI04VKOV9TT0GJkcozMRxNCCCGEcFuzZsmi1gMgSZrolU/2neI3H+xH2/mFlltUDSCdHYUQQggh3FlmJpw+Dfn5zo7ELXk6OwDh+t7ccZJHV+xFa8gcG8aFE6Psdq59xTV4expIjJSmIUIIIYQQbqvjotajRzs3FjckI2miW//eeJwfvbOXeUkRxA7z469rjth1NC23qJqJ0UF4ech/TSGEEEIItzVliixqPQDyTlh06e9rj/CrD/Zz6eQoXrh9Gl+/YCzZBVVsPlphl/NprcktqmaylDoKIYQQQrg3WdR6QCRJE+fRWvP7jw/yh08OcV36SP5+61R8PD1YMi2WyCAf/rbmiF3OW3imkZqmNpJjJEkTQgghhHB7s2ZBdjY0Njo7ErcjSZo4i8mkefy9fTy77ii3zhzF/y1JxdNSeujr5cH988ew5VgFO09U2vzcXzUNkc6OQgghhBBuz7qodVaWsyNxO5KkiXZGk+aRd/bw8pYT3DdvNE9cm4zhnAWlb505imH+XnYZTcstrsbToBgXFWTzYwshhBBCCAezLmq9datz43BDkqQJAFraTHzrjd28vbOQ71yUxE8un4hS6rzt/L09uWfuaNYeKmsf+bKV3KIakqKC8PXysOlxhRBCCCGEE0RGwtixMi+tHyRJEzS1Gnnw1Z18uKeEn14+ke9cNK7TBM3qtswEgnw8+cc6242mWZuGJMsi1kIIIYQQg0dmpixq3Q+SpA1x9c1t3P2fHaw5VMoT1yVz3/wxPe4T4ufF7bPjWZ17iiOltTaJ43RNMxX1LbKItRBCCCHEYDJrFpw6BSdOODsStzLkk7SjZXXsPHHG2WE4RXVjK7e9uI1txyt5emkqy2bG93rfu+eMxtfTg3+sPWqTWKRpiBBCCCHEIGRd1FpKHvtkSCdpWmu++fpuvvW/3dQ3tzk7HIeqqGvm1he2sreomr/fOpXr0mP7tH9YoA+3zhzFqpxiTlY0DDie3OJqlIKJIyRJE0IIIYQYNFJSwN9fmof00ZBO0pRS/PKayRRVNfL0Z4edHY7DnK5p4qbnt3KktI4Xbs9gcXJ0v45z//wxeCjFc+sHPpqWW1TD2IhA/L09B3wsIYQQQgjhImRR634Z0kkawPSE4dw2K56XNh0nu6DK2eHYXUFlA0ue20JJVSMv3z2DBeMj+32sqGBflmTE8nZWIaeqmwYU175iaRoihBBCCDEoZWbC7t2yqHUfDPkkDeCRxeOJDPLl0Xf20NJmcnY4dnO0rI4lz22hurGV1+6bxawxYQM+5gMXjMWoNc+vP9bvY5TXNVNS3SRNQ4QQQgghBqNZs8yLWu/c6exI3IYkaUCQrxe/vjaZg6dqed4GpXuu6EBJDTf9cwttJhNv3D+LtLhQmxw3brg/16TF8Pr2E1TUNffrGNamIZNjJEkTQgghhBh0rM1DZF5ar0mSZnHxpCiuSBnBX744wpHSOmeHY1PZBVXc/PxWvDwMvPn1TJs35/jGgkSa20y8uPF4v/bfV1wDwCQpdxRCCCGEGHwiI2HMGJmX1geSpHXw+FWT8fP24Ccr9mIyDY4F97Yeq2DZC1sJ8fNi+dczGRsRaPNzJEYGcnnyCP675QTVja193j+3qJr4MH9C/LxsHpsQQgghhHABsqh1n/SYpCml4pRSa5VSB5RS+5RS37Y8/gel1EGl1B6l1EqlVKjdo7WziCAffnbFRLbnV/L69pPODmfA9hZWc+dL2xkR6sdbD2QSN9zfbuf6xsKx1Da38crm/D7vm1tcTbKUOgohhBBCDF6ZmVBSAifd/z22I/RmJK0N+L7WeiIwC3hIKTUJ+AxI1lqnAIeBH9svTMe5cVoscxLDeHL1wQF3LHSm0tom7nsli7AAH/533yyign3ter7JMSFcOCGSFzcd79Oac9UNrRRUNjJZFrEWQgghhBi8Zs0yf5aSx17pMUnTWpdorXdZvq4FDgAjtdafaq2t78a3An1bDdlFKaX47XVTaDOZ+Nm7uWg3HJJtbjPywH93Ut3YyvO3TyMiyMch531oUSJVDa28vq33d0j2FZubhshImhBCCCHEIJaSAn5+0jykl/o0J00plQCkA9vOeepuYLWNYnK6+LAAvnfxOD4/cJrVuaecHU6faK35+bu57DpZxR+XpDq0Y+LUUcOYPTaM5zcco6nV2Kt9cq1JmrTfF0IIIYQYvLy8ZFHrPuh1kqaUCgTeAb6jta7p8PhPMZdEvtbFfvcrpbKUUlllZWUDjddh7p4zmikjQ/jFqn1UNbQ4O5xe+8/mfJZnFfKtRYlckTLC4ed/eFEiZbXNvJVV0Kvtc4tqGBnqx/AAbztHJoQQQgghnMq6qHWT+04pcpReJWlKKS/MCdprWusVHR6/A7gSWKa7qAvUWj+vtc7QWmdERETYImaH8PQw8OQNUzjT0MJvPzrg7HB6ZWNeOb/58ACXTIriOxeNc0oMmWPCmDoqlOe+PEarseeFwXOLq5ksrfeFEEIIIQa/zExobZVFrXuhN90dFfAicEBr/XSHxxcDPwKu1lo32C9E55kcE8L988ewPKuQTUfKnR1Ot/LL63no9V2MjQjg6ZvSMBiUU+JQSvHwokSKqhp5d3dRt9vWNbdxvLxeSh2FEEIIIYYCaR7Sa70ZSZsD3AYsUkplWz4uB/4GBAGfWR57zp6BOsu3L0wiIcyfn6zcS2NL7+ZZOVptUyv3vZKFUvCv26cT6OPp1HgWjo9k0ohg/rHuKMZu1ps7UFKD1pAsnR2FEEIIIQa/qCgYPVqah/RCb7o7btRaK611itY6zfLxkdY6UWsd1+GxBxwRsKP5ennw2+uncKKigWe+OOzscM5jMmm++2Y2x8rr+cetUxkVZr+10HrLOpp2vLyej/aWdLldbpF0dhRCCCGEGFJkUete6VN3x6Fq9thwbp4ex782HG9PLFzF058d5vMDpfziyknMTgx3djjtFk+OZmxEAH9fewRTF6NpuUU1RAT5EGnnNdyEEEIIIYSLyMyE4mIo6F2TuaFKkrRe+vHlExke4M0jb+/pVUMMR3g/p5i/rT3CzdPjuD0z3tnhnMVgUDy0MJGDp2r54mBpp9vsK64mWZqGCCGEEEIMHZmZ5s8yL61bkqT1UoifF7++ZjL7S2p4ceNxZ4dDblE1P3w7h4z4YfzqmmTM/V1cy9WpMcQN9+Nva4+ctyh4U6uRvNI6aRoihBBCCDGUyKLWvSJJWh8sTh7BpZOj+NNnh8kvr3daHGW1zdz/ShbD/b159mvT8PZ0zcvo6WHggQvGklNQxaYjFWc9d/BULUaTduhi20IIIYQQwsm8vCAjQ0bSeuCa7+5d2K+uScbbw8CPV+w9b3TIEVraTDz46k4qG1p4/vYMIoJ8HB5DX9w4LZaoYB/+tjbvrMfbm4ZIZ0chhBBCiKElMxN27ZJFrbshSVofRQX78uPLJ7LlWAXLsxw74VFrzS9W5ZJ14gx/uDHVLUoFfTw9uH/+WLYeqyQrv7L98X3F1YT6ezEy1M+J0QkhhBBCCIezLmq9a5ezI3FZkqT1w83T45g5ejhPfHiA0hrH3QF4ZcsJ3thRwEMLx3JVaozDzjtQt8yIY3iAN39be6T9sdyiGpJjQlxyLp0QQgghhLAjWdS6R5Kk9YPBoPjd9VNoajPx+Pv7HHLOzUfK+dUH+7loYiTfv3i8Q85pK/7entwzdzTrDpWRW1RNS5uJQ6dqmSyljkIIIYQQQ090NCQkSPOQbkiS1k9jIgL59oVJfLT3FJ/sO2XXc52saOAbr+9iTHgAf7opDYPB/UafbsuMJ8jXk7+tOUJeaS0tRpMsYi2EEEIIMVRZF7UWnZIkbQDunz+GCdFB/GJVLjVNrXY5R11zG/e9koXW8MLtGQT5etnlPPYW7OvFnbMT+HjfKVbuKgJwizl1QgghhBDCDjIzoahIFrXugiRpA+DlYeCpG1Moq23mydUHbX58k0nzvTezOVJWx99vnUpCeIDNz+FId80Zjb+3By9uOk6gjyfxw/2dHZIQQgghhHAGWdS6W5KkDVBKbCj3zB3N69tOsu1YRc879MEznx/m0/2n+enlE5mbFG7TYzvD8ABvls0chdYwKSbYLcs2hRBCCCGEDaSmgq+vJGldkCTNBr578Tjihvvx4xV7+Tj3FBvzyskuqOJIaR2nqpuoa27DZOrbmmof7inhL2uOsGRaLHfNSbBP4E5w37wx+HoZSB8V6uxQhBBCCCGEs1gXtZbmIZ1SjlyQOSMjQ2dlZTnsfI60Ma+cu/6znVZj5/+eSkGgtycBPp4E+noS6NPhw/fsrz0Niv/79DATRwTxv/tn4ePp4eCfxr5OVNQTHuhDgI+ns0MRQgghhBDO8sgj8Oc/Q00N+Pg4OxqHUUrt1FpndLeNvEu2kblJ4Wz58YWU1jRT19xGXXMrdc1G6prO/7q+2Uhtcxt1Ta2U1Zq3r21qpb7FiNEy4jYy1I/nbps26BI0gPgw955bJ4QQQgghbCAzE/7wB/Oi1tY5agKQJM2mwgN9CA/s/10ArTVNrSZqm1sJ8fMalAmaEEIIIYQQwNnNQyRJO4skaS5EKYWftwd+3pKcCSGEEEKIQU4Wte6SNA4RQgghhBBCOMesWdLhsROSpAkhhBBCCCGcIzMTCgvNH6KdJGlCCCGEEEII55BFrTslSZoQQgghhBDCOWRR605JkiaEEEIIIYRwDm9vWdS6E5KkCSGEEEIIIZxn1izYuROam50dicuQJE0IIYQQQgjhPJmZ0NICu3c7OxKXIUmaEEIIIYQQwnmkech5JEkTQgghhBBCOM+IERAfL0laB5KkCSGEEEIIIZwrM1Oah3QgSZoQQgghhBDCuWbNgoICKCpydiQuQZI0IYQQQgghhHPJvLSzSJImhBBCCCGEcJ6nnoKqqrMXtV671vz4ENVjkqaUilNKrVVKHVBK7VNKfdvy+BLL9yalVIb9QxVCCCGEEEIMOtOnw7JlMHaseV7a2rWwdKn58SHKsxfbtAHf11rvUkoFATuVUp8BucD1wD/tGaAQQgghhBBiEFu4EJYvhyuuMK+XtnSp+fuFC50dmdP0OJKmtS7RWu+yfF0LHABGaq0PaK0P2TtAIYQQQgghxCC3cCFcey0YjbBo0ZBO0KCPc9KUUglAOrCtD/vcr5TKUkpllZWV9TE8IYQQQgghxKC3di189hn4+cGqVebvh7BeJ2lKqUDgHeA7Wuua3u6ntX5ea52htc6IiIjoT4xCCCGEEEKIwco6B235crj7btAaliwZ0olar5I0pZQX5gTtNa31CvuGJIQQQgghhBgyduz4ag7asmXmeWn33Wd+fIjqsXGIUkoBLwIHtNZP2z8kIYQQQgghxJDxyCNffT1rFoweDbt3w8cfOy8mJ+vNSNoc4DZgkVIq2/JxuVLqOqVUIZAJfKiU+sSukQohhBBCCCEGN6Xg1lvN89NOn3Z2NE7Tm+6OG7XWSmudorVOs3x8pLVeqbWO1Vr7aK2jtNaXOiJgIYQQQgghxCC2bBmYTPDmm86OxGn61N1RCCGEEEIIIexq4kRIS4PXX3d2JE4jSZoQQgghhBDCtSxbBtu2wZEjzo7EKSRJE0IIIYQQQriWm282z08boqNpkqQJIYQQQgghXEtsLFxwgTlJ09rZ0TicJGlCCCGEEEII17NsGRw6BLt2OTsSh5MkTQghhBBCCOF6brgBvL3htdecHYnDSZImhBBCCCGEcD3DhsHll8Mbb4DR6OxoHEqSNCGEEEIIIYRrWrYMSkpg3TpnR+JQkqQJIYQQQgghXNMVV0BQ0JAreZQkTQghhBBCCOGa/PzMc9PeeQeampwdjcNIkiaEEEIIIYRwXcuWQU0NfPihsyNxGEnShBBCCCGEEK5r4UKIjh5SJY+SpAkhhBBCCCFcl4cH3HyzeSStqsrZ0TiEJGlCCCGEEEII17ZsGbS0mOemDQGSpAkhhBBCCCFc27RpkJQ0ZEoeJUkTQgghhBBCuDalzKNp69ZBUZGzo7E7SdKEEEIIIYQQru/WW0FreOMNZ0did5KkCSGEEEIIIVxfUhJMnz4kSh4lSRNCCCGEEEK4h2XLYPduOHDA2ZHYlSRpQgghhBBCCPdw001gMMDrrzs7EruSJE0IIYQQQgjhHqKj4cILzUma1s6Oxm4kSRNCCCGEEEK4j2XL4Ngx2LbN2ZHYjSRpQgghhBBCCPdx3XXg6zuoG4hIkiaEEEIIIYRwH8HBcNVV8Oab0Nrq7GjsQpI0IYQQQgghhHtZtgzKyuCLL5wdiV1IkiaEEEIIIYRwL4sXQ2jooC15lCRNCCGEEEII4V58fGDJEli5EurrnR2NzUmSJoQQQgghhHA/y5aZE7T333d2JDYnSZoQQgghhBDC/cybB7Gxg7LkscckTSkVp5Raq5Q6oJTap5T6tuXx4Uqpz5RSeZbPw+wfrhBCCCGEEEIABgPccgt8/DGUlzs7GpvqzUhaG/B9rfVEYBbwkFJqEvAo8IXWOgn4wvK9EEIIIYQQQjjGsmXQ1gZvv+3sSGyqxyRNa12itd5l+boWOACMBK4BXrZs9jJwrZ1iFEIIIYQQQojzpaTApEmDruSxT3PSlFIJQDqwDYjSWpeAOZEDIm0enRBCCCGEEEJ0RSnzaNrGjXDihLOjsZleJ2lKqUDgHeA7WuuaPux3v1IqSymVVVZW1p8YhRBCCCGEEKJzt9xi/vy//zk3DhvqVZKmlPLCnKC9prVeYXn4tFJqhOX5EUBpZ/tqrZ/XWmdorTMiIiJsEbMQQgghhBBCmI0eDbNnD6qSx950d1TAi8ABrfXTHZ56D7jD8vUdwCrbhyeEEEIIIYQQPVi2DHJzYc8eZ0diE70ZSZsD3AYsUkplWz4uB54ELlZK5QEXW74XQgghhBBCCMdauhQ8PeH1150diU0orbXDTpaRkaGzsrIcdj4hhBBCCCHEEHHFFbB3L+Tnm9dQc1FKqZ1a64zutnHd6IUQQgghhBCit5Ytg4ICc6dHNydJmhBCCCGEEML9XX01+PsPipJHSdKEEEIIIYQQ7i8wEK69Ft56C1panB3NgEiSJoQQQgghhBgcli2Dykr4+GNnRzIgkqQJIYQQQgghBoecHAgOPrvkce1aeOop58XUD5KkCSGEEEIIIQaHWbPMpY4rV0JtrTlBW7oUpk93dmR9IkmaEEIIIYQQYnBYuNA8atbSArfdZk7Qli83P+5GJEkTQgghhBBCDB4PPwwhIbBqFTz4oNslaCBJmhBCCCGEEGIwWbcOlIIf/hCefdZc8uhmJEkTQgghhBBCDA7WOWgrVpjLHpcvN3/vZomaJGlCCCGEEEKIwWHHjrPnoC1caP5+xw7nxtVHSmvtsJNlZGTorKwsh51PCCGEEEIIIVyJUmqn1jqju21kJE0IIYQQQgghXIgkaUIIIYQQQgjhQiRJE0IIIYQQQggXIkmaEEIIIYQQQrgQSdKEEEIIIYQQwoVIkiaEEEIIIYQQLkSSNCGEEEIIIYRwIZKkCSGEEEIIIYQLcehi1kqpMuCEw07Ye+FAubODEP0i1869yfVzX3Lt3JdcO/cm1899ybVzX7a+dvFa64juNnBokuaqlFJZPa36LVyTXDv3JtfPfcm1c19y7dybXD/3JdfOfTnj2km5oxBCCCGEEEK4EEnShBBCCCGEEMKFSJJm9ryzAxD9JtfOvcn1c19y7dyXXDv3JtfPfcm1c18Ov3YyJ00IIYQQQgghXIiMpAkhhBBCCCGEC3G7JE0ptVgpdUgpdUQp9WiHx99USmVbPvKVUtmd7JumlNqilNqnlNqjlLqpw3OjlVLblFJ5lmN5d3H+Oyzb5Cml7ujr/kOZM6+dUipeKbXTco59SqkH+rL/UGfHa/ew5ZhaKRXezfnldTcAzrx+8tobGDteu9csx81VSv1bKeXVxfnltddPzrx28robODtevxeVUjmWx99WSgV2cX557fWTM6+dTV97Wmu3+QA8gKPAGMAbyAEmdbLd/wG/6OTxcUCS5esYoAQItXy/HLjZ8vVzwIOd7D8cOGb5PMzy9bDe7j+UP1zg2nkDPpavA4F8IEaundOvXTqQYLke4V2cX1537n395LXnmtfuckBZPv7Xxe9Nee2577WT153rXr/gDts9DTzayf7y2nPfa2ez1567jaTNAI5orY9prVuAN4BrOm6glFLAUsy/uM6itT6stc6zfF0MlAIRln0WAW9bNn0ZuLaT818KfKa1rtRanwE+Axb3Yf+hzKnXTmvdorVutnzrg2UUWa5dr9jl2lm+3621zu/h/PK6GxinXj957Q2IPa/dR9oC2A7EdnJ+ee31n1OvnbzuBsye16+mw/5+QGfNIeS1139OvXa2fO25W5I2Eijo8H2h5bGO5gGnrf/AXVFKzcCc7R4FwoAqrXXbucdVSmUopf7Vw/m73F+0c/a1QykVp5TaY4nj95YXn1y7ntnr2nW3nbzubMfZ109ee/1n92unzKVytwEfW76X155tOPvayetuYOx6/ZRSLwGngAnAXy2PyWvPNpx97Wz22nO3JE118ti5WewtdJIZn3UQpUYA/wXu0lqbujuu1jpLa31vD+fvTVxDnbOvHVrrAq11CpAI3KGUiuplXEOdva5dl+R1Z1POvn7y2us/R1y7fwDrtdYbQF57NuTsayevu4Gx6/XTWt+FuZTuAHCT5TF57dmGs6+dzV577pakFQJxHb6PBYqt3yilPIHrgTe7OoBSKhj4EPiZ1nqr5eFyINSy/3nH7cX5e7v/UObsa9fOckdjH+Y7KXLtemavazfQ88u16x1nX7928trrM7teO6XUY5jLeL7Xx/PLteuZs69dO3nd9Yvdf29qrY2W/W/ow/nl+vXM2deu43YDeu25W5K2A0iydEfxBm4G3uvw/EXAQa11YWc7W/ZZCbyitX7L+rilrnstcKPloTuAVZ0c4hPgEqXUMKXUMOAS4JM+7D+UOfXaKaVilVJ+lq+HAXOAQ3LtesUu164P5HU3ME69fvLaGxC7XTul1L2Y573c0s3IqLz2+s+p105edwNml+unzBKtXwNXAQc7OYS89vrPqdfOpq897QKdWPrygbmr0WHM9aE/Pee5/wAPdLPv14BWILvDR5rluTGYJ+AeAd7iq84sGcC/Ohzjbss2RzAPgdLd/vLhGtcOuBjYg7nLzx7gfrl2LnHtvoX5rlcb5jtK1uslr7tBcv3kteey167Nckzr478499pZvpfXnhteO3ndueb1wzw4sgnYC+QCr2HpGCivvcFx7Wz52lOWnYQQQgghhBBCuAB3K3cUQgghhBBCiEFNkjQhhBBCCCGEcCGSpAkhhBBCCCGEC5EkTQghhBBCCCFciCRpQgghhBBCCOFCJEkTQgghhBBCCBciSZoQQgghhBBCuBBJ0oQQQgghhBDChfw/70Iqet7g3XQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACI+ElEQVR4nO3dd3ib1fXA8e+VLO+9tx3HznKGEzsQSAIJYYe9KbuMlpbSXeiPttC9C6WLMtpCgbbsvSGBBLITJ3GmY2d4JZYd7y3r/v6QZJzEQ7Y17fN5Hj+xpVfve+VXcnTec+85SmuNEEIIIYQQQgjvMnh7AEIIIYQQQgghJDgTQgghhBBCCJ8gwZkQQgghhBBC+AAJzoQQQgghhBDCB0hwJoQQQgghhBA+QIIzIYQQQgghhPABEpwJIYQQQgghhA+Q4EwIIfyUUqq135dVKdXR7+frvD2+0VBKHVBKnentcQxFKbVSKXWbG/f/qFJqj/2c3nzcfTOVUu8qpeqUUoM2KlVK5SmlOpVSTx93+zKl1G6lVLtSaoVSKqvffUop9WulVL396zdKKeXyJyiEEGJQEpwJIYSf0lqHO76AQ8CF/W57xtvjO55SKmA8HMMDtgJfATYPcF8P8Bxw6zD7+Auwof8NSql44CXgh0AssBH4X79N7gAuAeYAs4ELgC+NePRCCCFGTYIzIYQYZ5RSBqXUvUqpMnsG5DmlVKz9vmyllFZK3aKUqlBKNSilvqyUmq+U2qaUalRK/bnfvm5WSn2qlPqTUqrJnnVZ1u/+KKXUE0qpGqVUlVLqZ0op43GPfVApdRR4QCk1WSn1kX1cdUqpZ5RS0fbt/w1kAq/bs3/fU0otUUpVHvf8+rJrSqkHlFIvKKWeVko1AzcPM6ZcpdTH9udSp5TqH5z0P0awfZ/19t/JBqVUklLq58Bi4M/2Mf7Zvv00pdT7Sqmj9qzXVf329S+l1CP2+1vsx88a6LgAWuu/aK0/BDoHuG+P1voJYMcQ5/8aoBH48Li7LgN2aK2f11p3Ag8Ac5RS0+z33wT8XmtdqbWuAn4P3DzYcYQQQrieBGdCCDH+3I0tA3I6kAo0YMuk9HcykAdcDTwE3AecCeQDVymlTj9u23IgHrgfeMkR7AFPAhYgF5gLnA3cNsBjE4GfAwr4pX1c04EMbEECWusbODYD+Bsnn+/FwAtANPDMMGP6KfAeEAOkA38aZJ83AVH28cUBXwY6tNb3AauAu+xjvEspFQa8Dzxrf57XAn9VSuX329919mPHA8X2cbqcUioS+Anw7QHuzseWlQNAa90GlNlvP+F++/f9n4MQQgg3k+BMCCHGny8B99kzIF3Ygp8rjpvy91OtdafW+j2gDfiP1rrWnjFZhS2ocagFHtJa92it/wfsAZYrpZKA84BvaK3btNa1wIPANf0eW621/pPW2qK17tBa79Nav6+17tJam4E/YAsix2KN1voVrbUViBxmTD1AFpBqf/6rB9lnD7agLFdr3au13qS1bh5k2wuAA1rrf9qf52bgReCKftu8qbX+xH4+7gNOUUpljOVJD+KnwBNa64oB7gsHmo67rQmIGOT+JiBc1p0JIYTnjIe5+UIIIY6VBbyslLL2u60XSOr385F+33cM8HN4v5+rtNb9i08cxJb5ygJMQE2/z+8GoH9gcEyQoJRKBB7GNjUwwr59g1PPanD9jzHcmL6HLYBZr5RqwDaN7x8D7PPf2LJm/7VPu3waW8DbM8C2WcDJSqnGfrcF2Pdxwhi11q32aZ6px419TJRSBdiyn3MH2aQVW/DaXyTQMsj9kUDrcedeCCGEG0lwJoQQ408F8EWt9afH36GUyh7F/tKUUqrfh/RM4DX7cbqAeK21ZZDHHv/B/pf222ZrreuVUpcAfx5i+zYgtN/4jUDCEMcYckxa68PA7fZ9LQI+UEp9orXed9x2PcCPgR/bf2dvYcsYPjHAGCuAj7XWZx1/vH76smRKqXBsBTmqh9h+NJYA2cAhe2AaDhiVUjO01vOwrVO7qd84woDJfL5+bQe2YiDr7T/PYYi1bUIIIVxPpjUKIcT48wjwc0fRCaVUglLq4jHsLxG4WyllUkpdiW2t2Fta6xps67d+r5SKtBcimXzcerXjRWDL0DQqpdKA7x53/xEgp9/Pe4FgpdRypZQJ+AEQNNjOhxuTUupKpVS6ffMGbIFW7/H7UUotVUrNsgeDzdimOTq2O36MbwBTlFI32H9HJmUrsDK93zbnK6UWKaUCsWXu1g0y9RClVKBSKhjb+jyTvTiJwX6fst8XaP85WCnl+H08ii3YKrB/PQK8CZxjv/9lYKZS6nL7Pn4EbNNa77bf/xTwLaVUmlIqFdu6tX8NNEYhhBDuIcGZEEKMP3/Eltl6TynVAqzFVphjtNZhKx5Sh62oxxVa63r7fTdiCxR2Ygt2XgBShtjXj4F52NYzvYmttHt/vwR+YK+Q+B2tdRO2svKPA1XYMmmVDG2oMc0H1imlWrH9jr6utd4/wD6S7Y9rBnYBH2Ob2gi23+8Vylbp8mGtdQu2oiPXYMuGHQZ+zbFB5LPYiqkcBQqxFQgZzHvYppaeii3g6gBOs9+XZf/ZkdHqwJbRQ2vdrrU+7PjCFgR32tf2Yf/3cmznsAHba6L/+sC/A68D24ESbOfn70OMUwghhIspmUouhBBiMMrWBPk2rfUib4/FXyml/gVUaq1/4O2xCCGE8G2SORNCCCGEEEIIHyDBmRBCCCGEEEL4AJnWKIQQQgghhBA+QDJnQgghhBBCCOEDJDgTQgghhBBCCB/g0SbU8fHxOjs725OHFEIIIYQQQgifsWnTpjqtdcJA93k0OMvOzmbjxo2ePKQQQgghhBBC+Ayl1MHB7pNpjUIIIYQQQgjhAyQ4E0IIIYQQQggfIMGZEEIIIYQQQvgAj645E0IIIYQQwlf09PRQWVlJZ2ent4cixqHg4GDS09MxmUxOP0aCMyGEEEIIMSFVVlYSERFBdnY2SilvD0eMI1pr6uvrqaysZNKkSU4/TqY1CiGEEEKICamzs5O4uDgJzITLKaWIi4sbcVZWgjMhhBBCCDFhSWAm3GU0ry0JzoQQQgghhPCSn//85+Tn5zN79mwKCgpYt24dALfddhs7d+50yTGys7Opq6sbcptf/OIXI97vv/71L+66665jbvvnP/9JQUEBBQUFBAYGMmvWLAoKCrj33ntHvH9PeOihh2hvb/f2MPrImjMhhBBCCCG8YM2aNbzxxhts3ryZoKAg6urq6O7uBuDxxx/36Fh+8Ytf8H//939j3s8tt9zCLbfcAtiCwhUrVhAfHz/m/Y6W1hqtNQbDwDmphx56iOuvv57Q0FCn92mxWAgIcE8YNWzmTCmVoZRaoZTapZTaoZT6er/7vqaU2mO//TduGaEQPm5XTTNVjR3eHoYQQggh/ExNTQ3x8fEEBQUBEB8fT2pqKgBLlixh48aNAISHh3PPPfdQWFjImWeeyfr161myZAk5OTm89tprwIlZrAsuuICVK1eecMxLLrmEwsJC8vPzefTRRwG499576ejooKCggOuuuw6Ap59+mpNOOomCggK+9KUv0dvbC9gyY1OmTOH000/n008/dfq5/va3v2X+/PnMnj2b+++/H4ADBw4wbdo0brvtNmbOnMl1113HBx98wMKFC8nLy2P9+vUAPPDAA9xwww2cccYZ5OXl8dhjjw273+nTp/OVr3yFefPmUVFRwZ133klRURH5+fl92z388MNUV1ezdOlSli5d2ve7dnjhhRe4+eabAbj55pv51re+xdKlS7nnnnsoKyvj3HPPpbCwkMWLF7N7926nfxdDckSTg30BKcA8+/cRwF5gBrAU+AAIst+XONy+CgsLtRDjyTNrD+qc77+pr/n7Gm8PRQghhBAjtHPnTq8ev6WlRc+ZM0fn5eXpO++8U69cubLvvtNPP11v2LBBa601oN966y2ttdaXXHKJPuuss3R3d7cuLi7Wc+bM0Vpr/c9//lN/9atf7Xv88uXL9YoVK7TWWmdlZWmz2ay11rq+vl5rrXV7e7vOz8/XdXV1Wmutw8LC+h67c+dOfcEFF+ju7m6ttdZ33nmnfvLJJ3V1dbXOyMjQtbW1uqurS5966qnHHPN4juO+++67+vbbb9dWq1X39vbq5cuX648//ljv379fG41GvW3bNt3b26vnzZunb7nlFm21WvUrr7yiL774Yq211vfff7+ePXu2bm9v12azWaenp+uqqqoh96uU0mvWfP75zPG8LRaLPv300/XWrVtP+N0c/3t4/vnn9U033aS11vqmm27Sy5cv1xaLRWut9RlnnKH37t2rtdZ67dq1eunSpQP+DgZ6jQEb9SDx0rD5OK11DVBj/75FKbULSANuB36lte6y31frmnBRCN9ntWp+994e/rqyjIigADYePEpbl4WwIJkpLIQQQvijH7++g53VzS7d54zUSO6/MH/Q+8PDw9m0aROrVq1ixYoVXH311fzqV7/qy9Y4BAYGcu655wIwa9YsgoKCMJlMzJo1iwMHDoxoTA8//DAvv/wyABUVFZSWlhIXF3fMNh9++CGbNm1i/vz5AHR0dJCYmMi6detYsmQJCQkJAFx99dXs3bt32GO+9957vPfee8ydOxeA1tZWSktLyczMZNKkScyaNQuA/Px8li1bhlLqhOd28cUXExISQkhICEuXLmX9+vWsXr160P1mZWWxYMGCvsc/99xzPProo1gsFmpqati5cyezZ88e0e/uyiuvxGg00traymeffcaVV17Zd19XV9eI9jWYEX2SVEplA3OBdcBvgcVKqZ8DncB3tNYbBnjMHcAdAJmZmWMdrxBe12Xp5bvPb+O1rdV84eRMzpqRxC3/3MD6/UdZOi3R28MTQgghhB8xGo0sWbKEJUuWMGvWLJ588skTgjOTydRX+c9gMPRNgzQYDFgsFgACAgKwWq19jxmohPvKlSv54IMPWLNmDaGhoSxZsmTA7bTW3HTTTfzyl7885vZXXnllVBUItdZ8//vf50tf+tIxtx84cKDvuQz13ODEyodKqSH3GxYW1vfz/v37+d3vfseGDRuIiYnh5ptvHrTEff/jHL+NY59Wq5Xo6GiKi4uHe+oj5nRwppQKB14EvqG1blZKBQAxwAJgPvCcUirHnqrro7V+FHgUoKioSCOEH2ts7+aOf29i/f6j3HPuNL58eg5dFiuBAQZWldZJcCaEEEL4qaEyXO6yZ88eDAYDeXl5ABQXF5OVlTWqfWVnZ/PXv/4Vq9VKVVVV33qt/pqamoiJiSE0NJTdu3ezdu3avvtMJhM9PT2YTCaWLVvGxRdfzDe/+U0SExM5evQoLS0tnHzyyXz961+nvr6eyMhInn/+eebMmTPs2M455xx++MMfct111xEeHk5VVRUmk2lEz+/VV1/l+9//Pm1tbaxcuZJf/epXhISEOLXf5uZmwsLCiIqK4siRI7z99tssWbIEgIiICFpaWvqKliQlJbFr1y6mTp3Kyy+/TERExAn7i4yMZNKkSTz//PNceeWVaK3Ztm2bU7+L4TgVnCmlTNgCs2e01i/Zb64EXrIHY+uVUlYgHjCPeVRC+KCKo+3c/M/1VBzt4I/XFHBxQRoAwSYjJ2XHsnqfvPSFEEII4bzW1la+9rWv0djYSEBAALm5uX1FOkZq4cKFfVMEZ86cybx5807Y5txzz+WRRx5h9uzZTJ069Zhpf3fccQezZ89m3rx5PPPMM/zsZz/j7LPPxmq1YjKZ+Mtf/sKCBQt44IEHOOWUU0hJSWHevHl9hUKGcvbZZ7Nr1y5OOeUUwDad8+mnn8ZoNDr9/E466SSWL1/OoUOH+OEPf0hqaiqpqalO7XfOnDnMnTuX/Px8cnJyWLhw4THP+7zzziMlJYUVK1bwq1/9igsuuICMjAxmzpxJa2vrgON55plnuPPOO/nZz35GT08P11xzjUuCM3VcouvEDWy5vSeBo1rrb/S7/ctAqtb6R0qpKcCHQObxmbP+ioqKtKPqjBD+ZFtlI1/81wZ6ejWP3lDIyTnHzs3++8dl/PLt3az7v2UkRQZ7aZRCCCGEGIldu3Yxffp0bw9DDOOBBx4gPDyc73znO94eyogN9BpTSm3SWhcNtL0zTagXAjcAZyiliu1f5wP/AHKUUiXAf4GbhgrMhPBXH+w8wtV/X0uwyciLd556QmAGsCjPlgpfVTp0g0chhBBCCCEG40y1xtXAYCv/rnftcITwLU+tOcADr+1gZloUT9w0n4SIoAG3m54cSVxYIKtLzVxRmO7hUQohhBBCjF8PPPCAt4fgMVL3W4gBWK2aX72zm0c/KefM6Yk8fO1cQgMHf7sYDIqFufGs3leP1npUlYyEEEIIIcTE5sy0RiEmlM6eXr72ny08+kk5N56Sxd9vKBoyMHNYlBdPXWsXuw+3eGCUQgghhBBivJHMmRD9NLR1c/tTG9l4sIH7zp/ObYsnOZ0FW9y37szM9JRIdw5TCCGEEEKMQ5I5E8LuYH0bl/3tM7ZVNfHX6+Zx+2k5I5qemBIVQm5iuBQFEUIIIYQQoyLBmRDAlkMNXPbXz2hs7+bZ207m/Fkpo9rPotx41u8/SmfP8D0/hBBCCCGMRiMFBQXMnDmTK6+8kvb29lHv6+abb+aFF14A4LbbbmPnzp2Dbrty5Uo+++yzvp8feeQRnnrqqVEf2+HAgQPMnDnzmNseeOABfve7341oP64aj7+R4ExMeO+UHObax9YSHhzAS19ZSFF27Kj3tTgvni6LlU0HG1w4QiGEEEKMVyEhIRQXF1NSUkJgYCCPPPLIMfc70+R5II8//jgzZswY9P7jg7Mvf/nL3HjjjaM6lqtZLBafGo8nSXAmJrR/rN7Pnc9sYnpKJC/deSqT4sPGtL8FOXGYjEqmNgohhBDjzW9+AytWHHvbihW2211k8eLF7Nu3j5UrV7J06VK+8IUvMGvWLHp7e/nud7/L/PnzmT17Nn//+98B0Fpz1113MWPGDJYvX05tbW3fvpYsWcLGjRsBeOedd5g3bx5z5sxh2bJlHDhwgEceeYQHH3yQgoICVq1adUx2q7i4mAULFjB79mwuvfRSGhoa+vZ5zz33cNJJJzFlyhRWrVo14uc41L7/7//+j9NPP50//vGPfeOprq6moKCg78toNHLw4EEOHjzIsmXLmD17NsuWLePQoUOALXt49913c+qpp5KTk9OXSfQXEpyJCes37+zmJ2/s5OwZSfzn9gXEhQ/cw2wkwoICmJsZw6pSswtGKIQQQgifMX8+XHXV5wHaihW2n+fPd8nuLRYLb7/9NrNmzQJg/fr1/PznP2fnzp088cQTREVFsWHDBjZs2MBjjz3G/v37efnll9mzZw/bt2/nscceOyYT5mA2m7n99tt58cUX2bp1K88//zzZ2dl8+ctf5pvf/CbFxcUsXrz4mMfceOON/PrXv2bbtm3MmjWLH//4x8eMc/369Tz00EPH3N5fWVnZMQFV/2zgUPtubGzk448/5tvf/nbfbampqRQXF1NcXMztt9/O5ZdfTlZWFnfddRc33ngj27Zt47rrruPuu+/ue0xNTQ2rV6/mjTfe4N577x3hmfAuqdYoJqT2bguPfFzGRXNSefDqAowG1/UlW5wbz+/f30t9a5dLAj4hhBBCeMA3vgHFxUNvk5oK55wDKSlQUwPTp8OPf2z7GkhBATz00JC77OjooKCgALBlzm699VY+++wzTjrpJCZNmgTAe++9x7Zt2/qyQE1NTZSWlvLJJ59w7bXXYjQaSU1N5Ywzzjhh/2vXruW0007r21ds7NDLN5qammhsbOT0008H4KabbuLKK6/su/+yyy4DoLCwkAMHDgy4j8mTJ1Pc73fpaCI93L6vvvrqQcf16aef8vjjj/dl69asWcNLL70EwA033MD3vve9vm0vueQSDAYDM2bM4MiRI0M+X18jwZmYkLZVNmHVcOm8NJcGZmDrd/b79/fyaVk9F81Jdem+hRBCCOFFMTG2wOzQIcjMtP08Ro41Z8cLC/t8qYXWmj/96U+cc845x2zz1ltvDVtZWms9ourTwwkKsl14NhqNWCwWl+0Xjn3O/dXU1HDrrbfy2muvER4ePuA2/Z+jY4xge/7+RKY1iglpy6FGAArSo12+79np0UQGB7BapjYKIYQQ/uOhh2DlyqG/7r8f2tvhhz+0/Xv//UNvP0zWzFnnnHMOf/vb3+jp6QFg7969tLW1cdppp/Hf//6X3t5eampqWHH8mjjglFNO4eOPP2b//v0AHD16FICIiAhaWlpO2D4qKoqYmJi+DNW///3vvkzXWI1m3z09PVx11VX8+te/ZsqUKX23n3rqqfz3v/8F4JlnnmHRokUuGaO3SeZMTEhbDjWQEx9GTFigy/dtNCgW5sazurTO5VerhBBCCOEljjVmzz0HS5favvr/7Ea33XYbBw4cYN68eWitSUhI4JVXXuHSSy/lo48+YtasWUyZMmXAQCchIYFHH32Uyy67DKvVSmJiIu+//z4XXnghV1xxBa+++ip/+tOfjnnMk08+yZe//GXa29vJycnhn//8p8uey0j3/dlnn7Fhwwbuv/9+7r//fsCWMXz44Yf54he/yG9/+1sSEhJcOkZvUp5M9RUVFWlH1RghvEVrzUm/+JDFefH84aoCtxzjmXUHue/lEj741unkJg6cfhdCOGf9/qP89t3d/PvWkwk2Gb09HCHEOLJr1y6mT5/u3Ma/+Y2t+Ef/QGzFCtiwAfqtdxKiv4FeY0qpTVrrooG2l8yZmHCqGjswt3QxN3Ps88QHszg3AYDVpWYJzoQYo49217LhQAM7qpsozBp9H0IhhBiTgQIwRwZNCBeRNWdiwnGsN5ubEe22Y2TGhZIZG8rqfdLvTIixKje3ArCjutnLIxFCCCHcS4IzMeFsOdRIsMnAtOQItx5ncV48a8rq6em1uvU4Qox3ZY7grEqCMyGEEOObBGdiwtlS0cDs9GgCjO59+S/Oi6etu7cvUyeEGLmeXisH69sBKKlu8vJohBDjkb+VWhf+YzSvLQnOxITSZellR1UzczOj3X6sUybHY1BISX0hxuDQ0XYsVk1yZDB7j7TQbZFMtBDCdYKDg6mvr5cATbic1pr6+nqCg4NH9DgpCCImlJ3VzXT3Wpmb4b5iIA5RISZmp0ezal8d3zp7qtuPJ8R4VFZrm9J4wewUHl+9n71HWpiZFuXlUQkhxov09HQqKysxm+VCqnC94OBg0tPTR/QYCc7EhNJXDMQDmTOwTW38y4p9NHX0EBVi8sgxhRhPysxtAFxUkMrjq/ezs7pZgjMhhMuYTCYmTZrk7WEI0UemNYoJZUtFI2nRISRFjizFPFqL8xKwalhTVu+R4wkx3pSbW0mMCGJmahThQQHskHVnQgghxjEJzsSEsuVQAwUeypqBLUMXFmhklR+uO2to6+bjvf43bjG+lJlbyUkIw2BQTE+JoETK6YtR6LZYqWxo9/YwhBBiWBKciQmjtqWTyoYOt/Y3O57JaGBBTpxf9jt7YvV+bvrHemqaOrw9FDFBaa0pM7cxOcHWyD0/NYpdNc30WmXhvhiZRz8p4+wHP6G92+LtoQghxJAkOBMTRnHfejP3FwPpb1FePAfr26k46l9XbbdWNgKwqtT/AksxPtS3ddPU0dMvOIukvbuX/XVtXh6Z8Dcf7zXT3t3LPnuBGSGE8FUSnIkJY0tFIyajIj810qPHXZwXD/hXkKO1pqTKtrZntR+NW4wvjkqNkxNtwZmjEIisOxMj0dHdS3FFIwC7D7d4dzBCCDEMCc7EhLHlUAMzUqMINhk9etzJCeGkRAWzep//rN+qbuqkob2HoAADn+6rwyrTyIQXOCo1Tk4IAyA3MZzAAAM7Zd2ZGIFNBxvo6bX9DdsjwZkQwsdJcCYmBEuvlW2VTR5db+aglGJRbjyf7qv3m7Uy2yttmYmr52dQ39bNrsPyYVh4Xrm5lWCTgdSoEMC2hnNqUgQlkjkTI7C2vB6jQZGTECbBmRDC50lwJiaEvUdaae/u9Vh/s+MtyounqaOH7VX+8aGypKoJo0Fx26IcQKY2Cu8oM7cyKT4cg0H13TYzLZId1c1o7R8XOoT3rSmvZ1ZaFPMyY9hzRIIzIYRvk+BMTAhbKhoAmOfhYiAOC3Nt685W+0lJ/e1VTeQlhpMZF0peYrhfVpsU/s9WqTHsmNtmpEbR2N5DVaNUERXDa++2sLWikQU5cUxLjsDc0sXRtm5vD0sIIQYlwZmYELYcaiQ+PJD0mBCvHD8+PIj81Ei/KAriKAYyy158YVFePOv3H6Wzp9fLIxMTSWdPLxUN7X2VGh1m2gv67JB1Z8IJGw80YLFqTpkcx9TkCAB2yzRtIYQPk+BMTAhbDjVQkBGDUmr4jd1kUV48mw810Nbl2312Djd3Ut/Wzax0W3B2Wl4CXRYrGw80eHlkYiI5UN+G1p9XanSYlhyJQUlwJpyztryeAIOiKCuGqUm24EzWnQkhfJkEZ2Lca2rvoczc5rX1Zg6LcxPo6dWs21/v1XEMx1EMxFG2/OScWExGxSo/qjYp/F9Z7bGVGh1CAo1MTghnh5+s3xTetaa8ntnpUYQFBZAQEURMqEmCMyGET5PgTIx7xfZmyt4OzoqyYwgKMPj81EZHMZAZKbbpY6GBAczLjGHVXt8etxhfys22Hmc58eEn3DczLUoyZ2JYbV0WtlU2sSAnDrBVzp2aHCFFQYQQPk2CMzHubTnUgEHB7PRor44j2GTkpEmxPl/5cHtVE7kJ4cf0g1ucF8/OmmbqWru8ODIxkZSZW0mLDiEk8MS+hPmpkRxu7pTXoxjShgNH6bWvN3OYlhzJ3sMt0rtRCOGzJDgT496WQ41MSYogPCjA20NhcV48pbWtHG7q9PZQBqS1ZntVc9+URodFeQkAfCpVG4WHlJnbyDluSqNDfqrt9SnZMzGUteVHMRkVhVmfV+mdkhRBW3evVPsUQvgsCc7EuGa1aoorGpnrpRL6x1uUawtyVvloSf0jzV3UtXYxKy3ymNtnpUURFWLy+ayfGB+01pSZW0+o1Ogwo69io6w7E4NbU17PnPRoQgM/vzD3ecVGmdoohPBNEpyJcW1/fRtNHT1eX2/mMC05gvjwQJ/tG1ZiL7LgqNToYDQoTp0cx+p9ddL8V7jd4eZO2rt7T6jU6BAVYiIjNoQdVZI5EwNr6eyhpOrz9WYOjuBsr6w7E0L4KAnOxLi25VAjAPN8JDgzGBQLc+P5dF+dT6552F7VhEHB9JTIE+5blBdPTVMnZeY2L4zMdepbu5j1wLus2F3r7aGIQQxWqbG/malRkjlzg9rmTpo7e7w9jDHbeKDhhPVmAOFBAaTHhEjmTAjhsyQ4E+PalkMNRAQHDFjxzVsW5cZT19rtkx8OSqqamJwQfsw0IIfF9imZq310SqazthxqpKXTwvu7jnh7KGIQ5XW2So25g0xrBFtRkAP17eMikPAVh+rbOfuhT/j+S9u9PZQxW1tej8momDfAlPapSRHskUbUQggfNWxwppTKUEqtUErtUkrtUEp93X77A0qpKqVUsf3rfPcPV4iR2XKokYKMaAwG7zWfPt5ie3GN1T7YN2x7VROzjisG4pAZF0pmbKjPTsl01nb71M1N0lTbZ5XVthJh70s1mHz763SXFAVxidYuC7c9tYHG9h42Hjjq7eGM2ZryeuZmxAxY7XNqcgTl5ja6LVYvjEwIIYbmTObMAnxbaz0dWAB8VSk1w37fg1rrAvvXW24bpRCj0N5tYffhZuZmRHt7KMdIjgomLzHc5/qd1TZ3UtvSdUKlxv4W5cWztvwoPb3++6HGsa5uz5EWmtol6+KLHJUalRr8okp+X1EQCc7GymrVfPN/xZSZ2zg3P5kjzV3UNPlvNcPmvvVmsQPePzU5AotV92VohRDClwwbnGmta7TWm+3ftwC7gDR3D0yIsdpW2YRV4zOVGvtblBfP+v1H6ezp9fZQ+pRUD1wMpL/T8uJp7bJQXNHooVG53vaqJtKiQwDYfEiyZ75oqEqNDokRwSRGBPW9bsXoPfjBXt7feYQfLJ/Ol07PAWCrH7/HN+w/ilXDguPWmzlMS7YF9nt8cGq5EEKMaM2ZUiobmAuss990l1Jqm1LqH0op3/sELCY0RzGQAh/LnIGt31mXxcpGH5pat72yGaVgxgDFQBxOmRyPQeFzWT9nObKD156UQYBBsWEcTN8ab1q7LNQ0dQ5aqbG//NRIdkrmbEze3FbDnz7ax1VF6dx8ajbTUyIxGRXFFf4b9K4tryfQaBhwvRnApPgwTEblk+t+hU23xcrN/1zPj1/f4e2hCOFxTgdnSqlw4EXgG1rrZuBvwGSgAKgBfj/I4+5QSm1USm00m31vjY0Yv7YcamBSfBgxYYHeHsoJTp4Uh8moWOVD686224uBhA3RrDsqxMTs9Gi/LQriyLLMz44lPy2KjQd9JzgWNvvNw1dqdMhPjaK0ttWnMtD+pKSqiW8/X0xhVgw/vWQmSimCTUZmpERSXOG/74015fXMzYwm2HTiejOAwAADOfHhkjnzYQ+8voOVe8y8sa1G2reIkfvNb2DFimNvW7HCdrsfcCo4U0qZsAVmz2itXwLQWh/RWvdqra3AY8BJAz1Wa/2o1rpIa12UkJDgqnELMSStNVsqGn1uvZlDWFAA8zJjWLXXdzJQJVVNzEwdPGvmsDgvnuKKRpo6/G+9liM7mJ8WRVFWDFsrGqUogI9xrAMablojwMy0SHqtWj5kj0Jdaxd3PLWRmNBA/nb9PIICPg9k5mREs72yiV4fbPcxnKaOHnZUN5/Q3+x4U5Mj5HXjo55ee5Bn1x1ickIY5pYuKhv8d/2j8JL58+Gqqz4P0FassP08f753x+UkZ6o1KuAJYJfW+g/9bk/pt9mlQInrhyfE6FQ1dmBu6fKZ5tMDWZwXz86aZupau7w9FMwtXRxu7hyyGIjDotx4rBrWlNV7YGSutb2qiUnxYYQHBTA/O4Yui1XWLPmYstpWjAZFZlzosNvmp9per1IUZGS6LVbufHoT9W3dPHpDEYkRwcfcPyc9mrbuXsrM/lcwY8P+o2jNCf3Njjc1OYKqxg5apBWDT1m//ygPvLaDJVMT+OM1cwHYJDMcxEgtXQrPPgvLl8OFF9oCs+ees93uB5zJnC0EbgDOOK5s/m+UUtuVUtuApcA33TlQIUbCsd7MF4uBOCyyl9T/1AdK0/cVA3EiOJubGUNooNEnWwEMx5YdtD3HwixbJbfxUDZ8PCkzt5ERE3JMJmcw6TEhRAYHSIA9Alpr7n+thA0HGvjNFbMHLABUYL+oVWz/O+pP1pTXExhgGHat8bTkCAD2HpHsma+oauzgzqc3kRkbyh+vmcv0lEjCAo0SnImRq6mBn/4UOjrgjTfgzjv9JjAD56o1rtZaK6317P5l87XWN2itZ9lvv0hrXeOJAQvhjC2HGgk2GZhq/w/YF81KiyIqxMRqHyiuUVLZ1DfdbziBAQYW5MT5xLhHwpEddASgCRFBZMeF+lRRFuFcpUYHpRT5qVGSORuBf689yH/WV/CVJZO5uGDgwsuT4sKICA6guLLRs4NzgbXl9RRmxgy63sxhSpLt/wYpCuIbOrp7ueOpjXRbrDx6YxFRISaMBsXczBgJzsTIfPwxzJ0L69dDRAT88Ifwt7+duAbNh42oWqMQ/mJLRQOz06IxGX33JW40KBbmxrF6X53XFzz3n+7njEW58Ryob6fiaLubR+Y6juxK/6mbhVmxbDrY4PXf/x8/KOWPH5TS3m3x6ji8rdeqKa9rc6pSo0N+aiS7a5qx+HHvPU/5rKyOH7++k2XTEvnO2VMH3c5gUMxJj/a7cvqN7d3srBl+vRnYsq7hQQGy7swHaK353ovb2FnTzB+vLSC33/u/MCuG3Yebae2a2H8bhRO0ht/+FpYtA5MJQkPh1VfhJz+xTWnsvwbNx/nuJ1chRqnL0suOqmafXm/msCg3gZqmTq+v7eg/3c8Zi/PiAVjtA1MynVVSaQvO8tM+L3oyPzuG+rZu9te1eWtYNLX38McP9/LgB3s543cf8/KWSqx+WIjBFaoaOui2WJ2q1OgwMy2KLouVMrP3zqE/OFTfzlef2cyk+DAeuqYAg2HwBt9ga0Gy+3ALHd3+UwlzvZPrzcCWdZ2SJBUbfcEjH5fz+tZqvnvOVM6YlnTMfYVZMVi1f06xFR7U1ASXXQbf+x5ceincfju8+OLnUxmXLrUFaBs2eHecTpLgTIw7O6ub6e61+kVw5ghyvNk3rL61i+qmTqfWmznkJoaTFBnkV1MbHdnByGBT321F2bY1id6c2vhZWR1WDfedP52EiCC++b+tXPa3z9gyARtkl42gUqNDvr3C6A5Zdzao1i4Ltz+1EauGx28sIqLfe2AwczKi6bVqv/q9rimvJyjAwJwM5/6WTU2OZM+RFq9nzieyFbtr+c27u7lgdgp3nj75hPsLMqNRSoqCiCFs3QpFRba1ZQ8+aAvCfvSjE9eYLV1qC978gARnYtzxh2IgDhmxoWTFhXo1yNledeJ0v+EopViUm8CnZXV+U267pKrphOc4OSGcmFATGw96ryjIJ6V1hAcFcPPCbF796kJ+e8Vsqho7uPSvn/HN/xVzuKnTa2PztLLakQdnOQnhBJsMlFTJurOBWK2ab/2vmNLaFv78hblkxzuXlXQEOMV+NLVxbflRirJjnComAzA1KZzG9h5qW7xfMXciKjO3cvd/tzAjJZLfXjEHW3HwY0UGm5iaFMGmCXixSjjhX/+CBQugvR1WroRvfAMGeB35GwnOxLizpaKR1KhgkiKDh9/YByzKjWdteT09Xloz4yim0H+6nzNOmxJPY3uPX1xZd2QHj+/jppSiMCvGa5kzrTWrSs0syInDZDRgMCiuLMpgxXeW8NWlk3lzew1Lf7eSP35Q6lfTy0arzNxGTKhpRI3jjQbF9JRIv3gdesNDH5by3s4j/GD5DBbnOd9rNDEimLToEL8JzhrautlV08yCScNPaXSYmmz7eyBFQTyvubOH25/aiMlo4O83FBISOHhAPS8rhi0HGybsdG8xgM5OuOMOuOUWOOUU2LwZFi709qhcRoIzMe5sOdTgF1kzh8V5CbR19/Zl/Dxte+WJ0/2csTDX+1MynVViD0AHmrpZlB1LeV0b9V7oN3ewvp3Khg5OmxJ/zO3hQQF895xpfPit01k6LYEHP9jLst+v5LWt1eN6CtZIKjX2l58ayc7qZvnwdpw3t9Xw8IelXFmYzi0Ls0f8+DkZUWz1k4qN6/bbst/OrDdz6CunL8GZR/VaNd/4bzGH6tv563XzSI8ZuqdhYWYMLV0WSmv9r++ecIP9+22B2GOPwfe/D++9B0lJwz/Oj0hwJsaV2pZOKhs6/GK9mcMpk+MwKFhV6p2+YdurmvrW7YxEfHgQ01Mi/WLdWUmVoxjIAMFZln3dmRfWNKyyF1RZlBs/4P0ZsaH89bpC/nvHAqJDA7n7P1u44pE1fldFz1nlowzOZqZG0dJloaLBf6qHutuO6ia+8/xW5mVG87NLZw44ZWw4c9KjqTja4ZULFyO1tryeEJOR2enRTj8mJiyQxIggyZx52O/f28NHu2u5/6J8pypr9q0N9uL0c+Ej3nwTCguhrMxWifEXv4AA56pM+xMJzsS4Uty33izaq+MYiagQE3Myor2SgWpo66aqsWNExUD6W5wXz6aDDT5fAn57ZRNZcaFEhZyYHZyVHkVggMErC85X7TWTFh3CpGHWAS3IieP1ry3i15fP4mB9Gxf/5VO+/dxWjjSPn/VoTe091LV2MznR+UqNDvn2SqOy7symrrWLO57aRHSoiUduKHR6DdbxHI2c/SF7tra8nqLsGAIDRvaxZmpyBHuOyOvGU17fWs1fV5Zx7UmZXH9yplOPyYwNJT48UIqCTGS9vfCDH8AFF0BWFmzaBBdd5O1RuY0EZ2Jc2VLRiMmo+j6s+YvFufFsq2ykqb3Ho8d1FAMZbXC2KDee7l5r35QiX7V9gGIgDkEBRmanRbHhgGefg6XXypqyek6bEu9UVsNoUFw9P5MV31nCl07P4fWt1Sz93Ur+/FEpnT3+vx5tNJUaHaYkhxNgULLuDOi2WPnK05upa+3i0RuKSIwY/drbmWlRGBQUV/j277W+tYvdh1ucysIcb2pSBKVHWv2msJE/21HdxHdf2EpRVgw/vijf6WyuUop5mTFsluDM5je/ObFf14oVttvHI7MZzjkHfv5zuPVW+OwzmHxiZc/xRIIzMa5sOdTAjJRIgk2ju1LsLYunJGDVsKbcs9kzR2Pmgab7OeOkSbEEBhh8emqjM9nBouxYSqqaPBrkbK1spKXLwqJc54s0AEQEm/j+edN5/1unsTgvnt+9t5dlv/+YN7fV+PV6tNFUanQICjCSlxTRV9xmotJac/9rO1h/4Ci/uWI2s9LHdpEqLCiAKUkRPj+Ndr394tCCnNgRP3ZqcgRdFisH66VPnjvV27O5MaGB/O36whFnOAuzYjhQ306dH0yxdbv5849tqLxihe3n+fO9Oy5XOD7wXLMGZsyAjz+GJ56Axx+HkBDvjc9DJDgT44al18q2yia/KgbiUJARTXhQAJ94OMgpqRp8up8zgk1G5mfH+HRw5ghAh2qyXZQVQ0+v9uiH0E/21qEULMwd+dV+gKy4MP5+QxHP3nYyEcEBfPXZzVz997WUHvHP9TNl5jZMRkV6zOj+452ZaqvY6M8B6lg9vfYg/1l/iDuXTObigjSX7LMgI5qtlY0+/XtdM4r1Zg7T7BUbpRm1+/T0Wrnzmc+zuQkRQSPeR6F9bbBkz/i8ofLll9um+F1yCfznPyf29fJHjsDzo4/g4Ydh0SI4ehT+8hf44he9PTqPGX+r6MSEtfdIK+3dvX613szBZDRwyuQ4Vu6uxWrVGAye6dOxvaqJ2WnRY9rHotwEfv3ObmqbO0n0wfYFn/dxG7zoSWG/oiAnj2Jq1Gis3lfH7LQookOdLxs/kFNz43nz7sX8b0MFv313N3c9u4V3vrF4VAUgvKnM3Ep2XBgBxtFdM8xPjeT5TZXUtnT5RRuNxvZu3ik5zAe7jtBlsRJsMtq+Agz27w2f3+b4OcD2fUig7fugftvtN7fx49d3csa0RL5z9lSXjXNORjT/3VDBwfp2p3ukeZpjvZlpFK+d3MRwlLKV0z9vVoobRid+8vpO1u8/ykNXF4w6mzszLYpAo4FNhxo4Oz/ZxSP0Q0uXwvLl8PTTtp+/+EX46lfhttsgzjP/h7nF0qXw3//C+edDVxcEBsILL8CFF3p7ZB4lwZkYN7ZU2K6ozc3wv8wZwLn5yby/8wjFlY3M80D2r7G9m4qjHXzhpKwx7WdxXjy/fscWbFw2L91Fo3OdkqomMmJDhgyCYsICyU0MZ6OH1p01dfRQXNHInae7Zt680aD4wsmZaDT3vVzCtsom5tiLOfiLMnMrUxIjRv14x9Tckqomnw3OWjp7+GDXEV7fWsMne81YrJrM2FDiwgMxt3TRZbHS2dNr/7LSaellJAmryQlhPHRNAUYXXtyZY89Gba1s9MngrK61i71HWrlk7ugyhSGBRrLjwiRz5ibPrjvEv9ce5Eun5Yz6HIFtlsbMtEg2eaknpc9ZsQLeeQfuuw/+9CeIj4d774UHHoDrr4evfQ1mz/b2KEfnk09sgRnA97434QIzkOBMjCNbDjUSFxZIRqx/zkc+c0YSgUYDb26r8Uhw5qhsN9piIA4zUiKJDQtkdalvBmfbq5qceo7zs2N4c1uNRzKXa8rq6bVqFucNXEJ/tC6ck8pPXt/J85sq/Co46+m1cqi+nfNmjv6K+PSUSJSyNVVfNt13et50dPeyYk8tr2+t5qPdtXRZrKRGBXProklcOCeV/NTIQbOcWmu6LFa67IGaI2jr6AvgbD93WXrptlhZMjVxxP0KhzMlKZwQk5EthxpdNlXSldaVO9abjT5bMDUpgr1+Oh3Yl208cJT7Xyvh9CkJfO/caWPeX2FWDE+uOUiXpXfUFUjHBccas+ees2Wali2z/fzEE7B+PTz1lG1t1pIlcPfdtuDGX8rNv/46/OQnEBQE3/0uPPIInHHG+JiyOQJ+craEGJ6t+XS0303ncogKMbE4L563t9dw3/nT3R4g9K3FGmK6nzMMBsXC3HhW76tDa+1Tv/+m9h4qjnZw7UnDl2wuzIrlP+srKK1tZWry6DM4zli9z0xooNHl6yMjg02cNzOZ14qr+cHyGX5TGOfQ0XYsVj2qYiAO4UEBTIoL84mKjd0WK6tKzby+tZr3dx6hrbuX+PAgrj0pkwvnpDA3I8ap97dSqm9aYxSuDbqcFWA0MCvNd5tRrymvIyzQOKaLTFOTI3hv52E6e3r95j3j66obO/jy05tJjwnl4WvmuiSbW5gVw2Or9rOjutkjFzB91oYNnwdm8PkatA0bbMHML34B//gH/PnPcNlltnVpX/mKbcpj7MiL5nhMaSlce60tkHzlFTj3XFtg1j8QnSCkIIgYF5raeygzt/llMZD+ls9Oobqpky0eKEyx3Ynpfs5anBtPbYttepEvcaYYiMN8DzY6XVVaxyk5cSOuWOaMK4syaO608O6Owy7ft7uMpVJjf/lpUV7rdWbptQVk33thK0U/e59bn9zIyr1mLipI5dnbTmbd/y3jgYvyKcyK9diaUleZkxHFjupmui1Wbw/lBGvLj1KUHTuq9WYO05IjsGoo9bG/X/6qs6eXL/17E509vTx2YyFRoa65sDBPioLYfO97JwYqS5fabgdbAPad79gaNb/8MkyaBPfcA+npcMcdsH2758c8nNZWWyCptS3zd+65ttv7B54TiARnYlwotl/VnetHU7kG4pja+Nb2Grcfq8TJ6X7OWGSfnreq1OyS/bnKSPq42RqdBrHRzWsaDtW3c7C+3eVTGh1OyYkjLTqEFzZVumX/7lBmtpUxz0kY25qm/NRIqho7aGzvdsWwhmW1atbvP8oPXynh5F98yA1PrOet7Yc5c0YS/7xlPhvuO5NfXjabU3PjXboOzNMKMmLotljZfdi3WhWYW7rYV9vKKZPHVgBhij1T7mvPz1/94JUSSqqbeOjqAnLHsI70eIkRwWTGhkozamcZjbZKjitWwNatcN118O9/29ainXGGLTv1q195v2ea1ras3s6dtjFde+2x9/cPPCcICc7EuLDlUANKwWw/D84ig02cNiWet7bb1j65S1NHDwfr213WrDs1OoSchDBW7/Otkvrbq5pIiw4hJmz47KBSivnZMW7PnK3aZwtgF+WNrL+ZswwGxeWF6azeV0dVY4dbjuFqZeZWEiOCiBjjeqn8VNsUXXf3O+vptfKbd3Zz6q8+4qq/r+H5TRUsmBzHI9cXsvEHZ/KHqwpYOjVxTNkcXzInw/Z3wtf6na0trwfGtt4MIDsujKAAg6w7c4HDTZ28uLmS2xZN4swZrl/7WZgVw8aDDT7d2sEnzZ4Njz0GlZW2gGzfPrj0UnjoIduatNdes23njZ5pDz0E//ufrcn0WWd57rg+bHz8zyEmvC2HGpmaFEF4kP8vo1w+O4UaN09t3DGCjJKzFufGs678KF0WzzVyHs5Is4OFWTFUHO3gSHOn28a0am8dqVHBTB5jlmgoVxamozW85CfZszJz65inNAJ9Fxvcve7s5c1V/HVlGTNSI/njNQVs+sFZ/OUL8zh3ZvK4XLOUFh1CfHggxRXeX8/X39ryesKDApiZOrZ1s0aDIi8pnN1SsXHM3thWjdY4tc53NOZlxWBu6aKywT8uPPmcuDjbFMfycluJ+qlToa0NLr7YNq3Q0+u7Vq60Ff649FLbuAQgwZkYB6xWTXFFo1/2NxvIsumfV210F8daLFcGZ4vyEujo6WXzwUaX7XMsHNnBkfTVmZ9tWyztrqmNll4rn5XVsSgv3q2FUzJiQzklJ47nN1W6NQPrClprympbmZw49mA1NiyQ1Khgt2bOtNY8vrqc6SmRPHFTERcXpBE2Di4KDUUpRUFGNMUVvjWdbE15PfOzY0bdG6+/qUmRUk7fBV4prmJ2ehQ5LrjYMpBC+7pymdo4RgEBtibWH38MW7ZARoZtfdrcuZ4LzCorbcFgXh7861/gQ8XEvE2CM+H39te30dTR47f9zY5nm9qYwNsl7pvauL2q2enpfs5akBOL0aB8Zt3Zjr5qlM4HZzNSIwkxGdngpn5n26qaaO60sNhNUxr7u7IonUNH21nvod5to1Xf1k1zp8UlmTNwFAVxX4bnk9I69h5p5bZFk3yqMqm7zUmPpszcRnNnj7eHAkBtcyfl5rYxrzdzmJocTm1LFw1tnlmvOB7tq22lpKqZi+akuu0YU5MjCAs0SnDmSg0N0NEB06bB++/bAiarm4v/dHXBFVfYjvvyyxA5tuz3eCPBmfB7Ww41AoybzBnA8tnJ9qmN7vkPyJXFQBwigk3MzYj2mXVnjg/oI5nyZDIaKMiIdtt//Kv21qEULMx1TzGQ/s6bmUJ4UADPb/TtqY2uqtTokJ8aSXldG+3dFpfs73iPryonMSKIC934AdQXOfrmba/0jamNa1y03sxharLt74RMbRy917ZWoxRuDc6MBsXczBivBGe2voO+M23fJfr3TCspsU1vfP55OPts6HbjhYqvfx3WrYMnn7QFheIYEpwJv7flUAMRQQEu+3DnC86cnkRggIE3t7m+HHpzZw/769rG3N9sIIvy4tle1eQTV5+3VzWTGhVMXHjQiB5XlB3Dzppm2rpc/+F+9T4zM1OjiHVhxnIwIYFGLpyTwlvba2h1w3NxFVdVanTIT41Ca9hV4/qpjbsPN7OqtI6bTs12SxsEXzYnPRqAYh8pCrK2/CgRQQEuK2o0zV6xUYqCjI7WmleLqzh1chyJkcFuPVZhVgy7Dzd7/O/aQx+UsujXKzjc5L41yR7Xv2ea0WjLYt16K3z4ISxfDi1ueD/84x/w97/b1phddpnr9z8OTKz/XcS4tOVQIwWZ0X7XO2goEcEmTstLcEvVxh32PlAjme7nrMV58WgNn5XVu3zfI1VS1TSq51iUHUuvfR2jK7V09rD5UKPbSugP5IrCDDp6enlzW7XHjjlSZeZWgk0GUqNCXLI/x0UHd6w7e3zVfkJMRq472T3FDnxZVKiJnPgwHwrO6jlpUqzLWhQkRgQRHWqSzNkoba1s4mB9OxcXpLn9WIVZMVg1FNtnzXiC1ap5bmMF5pYuvv7fLfT6+Fpepx3fM00pePxx+Oc/bVm1JUvgsAsvEm/caGuIfeaZ8LOfuW6/44wEZ8KvtXdb2H242e/7mw3kgtkpHG52/dTGEjdUanSYkx5NRFAAq/d5d92ZIzs4muc4NzMapXD5urO15UfptWqPrDdzmJcZTU5CmE9PbSwzt5ITH+6yiyvJkcHEhgX2XYRwldrmTl4truKqonSXNG73R3MyoimuaPR6GfPDTZ3sr3PdejOwFT2ZkhTBHul1NiqvbKkiMMDAuTOT3X6sAvvfaE9Obdx4sIGapk7OnpHEuv1HefjDUo8d2ytuvhlefx1274ZTT4VSFzzfujpbEZKkJPjPf2xFScSAJDgTfm1bZRNWDXMzx0cxkP6WTU8kMMDAGy6u2lhS3TSq6X7OCDAaOGVyHKtK67z6AW6nPWsycwSVGh0ig01MS450+X/8q0rNhJiMzMuKdul+h6KU4srCDDYebKDc3Oqx445EmbmVyYmum5KslCI/NbKvIqmrPLXmIBar5paFk1y6X39SkBGNuaWLGi9P63JVf7PjTUuOYO+RVq8Hn/7G0mvljW01nDE1kcgx9ip0RmSwialJEWw65Lng7NXiKkJMRh66poDL56Xz8EelfFbmG+ur3ea882zZs5YWW4C2YcPo92WxwDXXwJEj8NJLEO+5GST+SIIz4dccxUAKxmHmLCLYxOlTEnh7+2GXTm3cPsrpfs5anBdPZUMHB+vb3XaM4XxeDGR0z7MoK4bNBxuw9LquYtWq0joW5MQSFODZPliXz0vDaFC84IM9zzp7eqls6HB5z7f81Cj2Hmmh2+Ka89febeHpdQc5e0YS2fHu60/n6xxFQbzdjHpteT2RwQFMT3HtutmpyRG0dln8pnm7r1hTXk9daxeXzPVckZx5WTFsOdjgkVYhPb1W3tpew1kzkggNDOAnF+czKT6Mb/y3mLrWLrcf36tOOgk+/RTCw21THN9+e3T7+cEPbOvY/vY3KCx06RDHIwnOhF/bcqiBSfFhLi0J70uWz7JNbdzsoiuErV0WezEQ9wVni+zT9lZ5sWrj9qomkiODSYgYXXawKDuGtu5el60/qTjazv66tr7fjSclRgZz+pQEXtxc6XPrJA7Ut6G16yo1OuSnRtLTq11W3OHFzVU0tvdw2+Icl+zPX01PiSDQaKC4stGr41hTXs9Jk+Jctt7MwVEURPqdjcwrW6qJCA5gydREjx2zKCuGli4LpbXunxGwurSOhvaeviqUYUEB/OUL82js6OHbz231+V6SYzZlCqxZY2tYfeGFtgqLI/Hii/DrX8OXvwy33OKeMY4zEpwJv6W1ZktF47hcb+bgmNr45nbXTG3cUdWE1u5Zb+aQHRdKWnQIq73Y72ys2cGivmbUrll35mgvcJoHi4H0d2VhOkeau/jER3rQOZTV2io1ujo4c5z7nS4oCmK1av6xej9zMqIpyhp/06dHIijAyPTUSI8WYjhedaMtK+/K9WYOeUm24MwTRUE6e3r5x+r9lPp5dcjOnl7e3XGY82YmE2zy3KyAQvt7ceNB9/dxfG1rNVEhtv6jDtNTIvnhBTP4eK+Zx1aVu30MXpecDCtX2rJnN98Mv/oVODP9d9cu2/YnnwwPPeTWIY4nEpwJv1XV2IG5pWtc9Tc7nmNqo6uqNm6vGnlj5pFSSrE4L57PyupdOi3QWY7s4FgC0LToEFKjgtnoonVnq0vrSI4MJteFa6tGYtn0JGJCTbzgY4VByuzr4Ca5eKpgVmwo4UEBfY3Ix+LD3bXsr2ubcE2nB1OQHsX2qiavZWE/X28W6/J9RwabSIsO8Ujm7MXNlfzkjZ2c9eAnXP/4Oj7YecQvMzAf7a6ltcvikSqN/WXGhhIfHuj2oiAd3bbg8/xZySe0z7j+5EzOm5nMb9/d47LZLT4tMhLeeguuvRa+/324+27oHaLvW3MzXHophIbCCy9AkOvXuY9XEpwJv/V58+nxfTX7gtkpHGnucskf/x3VzWOa7uesRXnxtHRa2Fbl+Ya1O6ubbdnB9LGtRynMjmXjgYYxFwfotWpW76tjUV681z7cBwYYuGRuGu/vPEJju/d70DmUmVtJiw4hJNC1V9wNBsWMlEhKXJA5e2xVOWnRIZzngSp0/mBORjTt3b3s88B0soGsLa8nKsTE9GTX92kE27ozT/Q6e3FTJbmJ4Xz3nKnsq23ltqc2svT3K3li9X6aO3vcfnxXeWVLFYkRQS4vzjIcpRTzMm1rg93pw91HaO/u5aI5JwafSil+dflskqOC+dqzW2hq95/zNmqBgfD00/Dtb8Of/2wr8tE5QIEgrW0Zs337bH3U0tM9PlR/JsGZ8FtbDjUSbDIw1b5OYLxaZm9I7Yqqje4uBuKwcHI8StkyRp7mquzg/OwYDjd3jrk4wPaqJpo6ejza32wgVxZm0N1r5dVi3+l55upKjf3NSI1kV03zmDI82yobWb//KLcszCbAKP9dwufFl4pd3OLDWWvK6zl5Uqzb+lpOTY6gzNxKjxuz/uXmVjYfauTKwnS+ujSXVfcs5c9fmEtCeBA/fWMnC37xIT96taQvs+yrmtp7WLnHzIVzUl2+/s8ZhVkxHKhvd2tRjleLq0mKDOKkSQNnaqNCTPzp2rkcae7knhe3TYxKnwYD/O53tq8XXoBzz4XGxmO3+fWvbQ2tf/tbOP10rwzTn8n/NsJvFVc0MDstGtM4/9AUHhTAkikJvF0ytqmNbV0WysytfU163SkmLJCZqVGs8sIap5KqJhIjgkiMCB7TfvrWNBwY24dQx9q7RbneDc5mpEaSnxrJcxsrvDoOB6015eY2l1dqdJiZFkV7dy/769pGvY/HV+0nIiiAq+dnuHBk/i07LozI4ACKKzyfFa9saKfiaIdb1ps5TE2KoKfX9tp0l5c2V2FQcMlcWzbGZDRwwexUXrjzVF6/axHnzUzhv+srWPb7j7npH+tZsafWJ6c8vl1SQ3evlYsLPFelsb+ibNvfaHdlz5rae/h4j5kLZw8dfM7NjOF7507lnR2HeXrtQbeMxSd9+9vwzDPw2WcwfbotQwbw/vtw33225tbdvjNTw5+M70+1YtzqsvRSUt08rteb9bfcPrVxLH1ddtY0u70YSH+L8uLZcqiR1i6LR47nsL2qySXPcVpyJOFBAWNecP5JaR35qZFu6Ss3UlcWprOjutklhTLG6nBzJ+3dvS4vBuKQn2q7CDHadWdVjR28ub2Ga07KIMIDvZv8hcGgmJMR7ZVy+mvLbe9Fd06hc8zE2O2mZtRWq+blLVUsyksgKfLEC0iz0qP4/VVz+PTeM/jWWVPYVdPMLf/cwJl/+JgnPzvg8b+nQ3m1uJqc+DCP/Z9yvPzUKAKNBrf1O3tnhy34vMiJ4PO2RTksmZrAT9/c5ZK1rn7jC1+wrUNrbLStRfv1r23/ZmbCtm22UvxixCQ4E35pV42th9FECc4cUxvfHMPUxu2Vtv8wPPUf6eLceCxWzdqyeo8cD/pnB8f+HI0GxdzM6DFlzlq7LGw+2MBiL5TQH8jFBWkEGg08v8n72TN3VWp0yE0MJzDAMOpA9MnPDgBw8wRuOj2Ygoxo9hxpoaN7iGIAbrC2vJ6YUFsDYneZnBBOgEG5bd3Z2vJ6qho7uHze0AU0EiKCuHtZHqvvOYM/XlNAVKiJ+1/bwYJffMiPX9/BgTFkhF3hcFMna/fXc1FBqtfW0gabjMxMi2TTGGc3DOa1rdVMcjL4NBgUv79yDjGhJr727BbafCiIdrszz7Rlz6Ki4N57obUVmprg+edt2TMxYhKcCb+0xX6lbLwXA3FwTG0cS9XGkmr7dL8Brta6Q2F2DMEmQ18ZeU/Y5eLs4PzsWPYcaaGpY3QLvdeV12Oxaq+vN3OICQvkrBlJvLKlymUNmkfLsZ7GXdMaTUYD05IjKBnFVeyWzh7+s+4Q589KIS06xA2j829z0qPptepR/W7HYm15PSdPinPbejOwFc/JSQhzW8XGFzZXEhEUwDn5zhWYCQwwcHFBGi9/ZSGvfHUhZ81I4um1B1n6+5V88V8bWFVq9so6p9e3VqM1Hq/SeLzCrBi2VTXRZXHthYLa5k4+K6vnwjnOB59x4UE8dPVcDtS38cNXS1w6Hp83dy5s3Ai5udDVBXfdJYHZGEhwJvzSlkONpEYFDzgtZLxaPjuF2pauUZd3L3HRdD9nBQUYOXlSnEfXnTmKgcxKd83zLMqKQWtGXSlzVWkdwSZD3/o1X3BFUToN7T18uOuIV8dRZm4lIijArZVD81Mj2VHdPOIPr89trKSly8JtiyRrNpA59qIgnpzaWHG0ncoG9643c5iaHOmWXmdtXRbeKTnM8tkpo+oJVpARzYNXF/DpPWdw9xl5bKts5IYn1nPWg594vF/aq1urmJMe5fI2GCNVmBVDt8XKDhdP1X5jWw1a09d42lmnTI7j7mV5vLS5ihc2+VbrErc7eNA2vfGHP4S//Q1WrPD2iPyWBGfCL22paJgwWTOHZdOTCAow8NYoGlK3d1vYV+ua6X4jsTgvnjJzGzVNY6t46KztVU3EhweR6KIP/AWZ0RgNatTTZlaVmjl5UpxHm7MO57S8BJIig3jeyx8cysyt5CSGu3VKVH5qFI3tPSOquGnptfKP1fs5KTu2LwgRx0qICCItOoQtHgzOPu9v5oHgLCmcyoYOl6/vervkMO3dvVxeOLay4omRwXzzrCl8eu8ZPHj1HOpbu7jv5RKPZdD21bZSUtXMRV7OmgHMy3JPUZBXt1aTnxo5qt6UXzsjjwU5sfzwlRKvtZzwuBUr4KqrbEVBfvIT279XXSUB2ihJcCb8jrmli4qjHRNmvZlDeFAAS6aObmrjrppmrNq9zacHssg+nW+Vh0rq27KDkS77wB8aGEB+aiQbDoy8KEhVYwdl5jafmdLoYDQoLpuXzso9tdQ2D9CfxkPKat1XqdHh86Igzl9Vf2fHYaoaO7htsWTNhlLg4aIga8rriQ0LZEqS+xu5T7X3UHP11MYXN1WSFRdKkYsy6UEBRi6dm853z5nG+gNHeXMUF+5G47ViW7XJC2eneOR4Q0mMCCYzNtSlzagP1rextaJxxFkzB6NB8cdr5hISaOSuZzfT2ePZtZlesWGDLSBzTGVcutT284YN3h2Xnxo2OFNKZSilViildimldiilvn7c/d9RSmmllG99AhHjVrH9A8FEC84Als9OHdXURk8XA3GYmhRBQkSQR/qdObKDrn6ORVmxbK1sHPEaLUcJfV8pBtLflYXpWDW8tKXKK8dv7bJwuLnTbcVAHKYlR2JQzgdnWmseW7Wf7LhQlk1PcuvY/N2cjCgqGzrc2mPKQWvNuvKjLMiJ9UjxiWn2io2uLApS2dDOmvJ6Lpub7vLncPX8DKanRPLLt3a7PRDQWvPq1mpOnRzvsfXLwynMimHjwQaXZQ5fs/eCvHCUwRlAUmQwv79qDrsPt/CzN3e6ZFw+7XvfO3GN2dKlttvFiDmTObMA39ZaTwcWAF9VSs0AW+AGnAUcct8QhTjWlkMNmIyK/FTvlO/1pmXTEgkKMPDmtpE1Et5e1Ux8eBBJkZ4t566UYlFuPJ/uq3N7n55dNS1uyQ4WZcfQ2WMdcXnkVaV1JEYEeeRK/0jlJIRTlBXDcxsrvFJMYL/ZvZUaHUICjeQmhrOjyrlzt+lgA1srGrl10SSvNNX1JwUZtuyPJ7JnFUc7qGrs4BQPTGkESIsOISzQ6NLM2Sv2CyGXDVOlcTSMBsX9F86gqrGDRz8pd/n++yuuaORgfbtT5eU9ZV5WDOaWLiobxj59XmvNa1urOSk7ltQxFgNaOjWRO07L4em1h0a1HEFMXMMGZ1rrGq31Zvv3LcAuwPHX5UHge4DvdUcU49aWQ43MSIn0qXU8nhIWFMDSqYm8XXKY3hEEOzuqXTvdbyROmxJPfVs36/aPrV/YcEpcXAzEwTEFaSTTZqxWzaf76liUF++1MtPDubIonXJzG5sPNXr82O6u1NhffmqU05mzx1ftJyrENOY1QRPBzDRbVtITwZkn15uBrSx6XlKEy3qdaa15cXMVJ0+KJSM21CX7PN6CnDiWz0rhryv3UT2CNZYj9WpxNYEBBs6d6Vy1SU8ozBz53+jB7D7cQmltq8uCz++cPZWCjGjueWEbFUfbXbJPMf6NaM2ZUiobmAusU0pdBFRprbe6Y2BCDKTXqtla2TjhioH0d76jaqOT66A6e3opdcN0P2edNzOFuLBAHlvl3iu6tmIggSS7eKpNYqRtTcNI1p3tqG6mob2H03xwSqPD8tmphJiMvOCFnmdl5laMBkVmnHs+qPaXnxrJ4ebOYaffHaxv492dh7l+QSahgQFuH5e/Cw0MYEpSBMWV7i+nv6a8nvjwwFEVZxitackR7Dnc4pLM8uZDjeyva+Pyee4N+u89bxpWDb9+Z7db9m/ptfLGtmqWTUsk0ocas09NjiA8KMAlwdmrxdUEGBTnz3LNerrAAAN/unYuKLjrP1u83sJE+AengzOlVDjwIvANbFMd7wN+5MTj7lBKbVRKbTSbPVdSW4xPFUfbae/uZYZ9of9E5Jja6Ow0iZ01zfRaNfleCs6CTUZuPCWbj3bXuq2xK9gyZ/mpUW7JVBVlx7BpBGsaPrGvN1uY67tLccODAjh/Vgqvb63xeDPhMnMrmbGhBAW4P/vtmP48XPbsH6v3E2BQ3HhKttvHNF7MzbQVBXHn1Fitta2/WU6cR7PQU5MjaGjvweyCNXUvbq4k2GTgvFnuzTZlxIbypdNyeLW42umLdyPxWVk9da3dXu9tdjyjQTE3M3rMwZnVqnl9azWL8+KJDQt00ehs5+U3l89ma0Ujv3tvj8v2K8Yvp4IzpZQJW2D2jNb6JWAyMAnYqpQ6AKQDm5VSJ/zl0Vo/qrUu0loXJST47lVk4R/K6xzToXxvHY+nOKY2vuXk1Ma+6X5eCs4AbjwlixCT0W3rIdydHSzKiqWutZsD9c5NS1lVamZ6SqRbe3i5wpVF6bR2WXhnh2fXQ3iiUqPDjL6KjYNneJrae3huYyUXzUmbUL0Tx2pOejRNHT1Ovy9G42B9OzVNnR6b0ugw1V4UZKzrzjp7enljazXn5icT4YFs051LJpMcGcyPX9/p8nW+rxZXExFsqxrsa+ZlxrD7cPOY2h9sPtRAVWOHW9bTnTcrhesXZPLoJ+Ws2FPr8v2L8cWZao0KeALYpbX+A4DWervWOlFrna21zgYqgXla68NuHa2Y8MpqHYUEvNv40tuWz07B7OTUxu2VTcSFBZIS5b0PnTFhgVxVlM6rxVUcbnJ9+fZd9uygu1oFzM+2TaN15vfd3m1h08EGTvOxEvoDOXlSLJmxoTy3wXM9z3qtmv31bR67wBIVYiIzNpQdVYNnzp5Zf5COnl4pnz9CnmhG7Vhv5qliIA5Tk1wTnH2w6wjNnRaPrWMMDQzg3vOmsb2qiRc2u+593dnTy7s7DnPezGSfXO9dmBWDVUPxGNbQvra1mmCTgbNmuCfD+YPlM5iWHMG3n9vqlv8HxfjhTOZsIXADcIZSqtj+db6bxyXEgMrrWokLCyQ61HVTDvzRGY6qjU5MbSypbmZmmnum+43EbYtz6LVq/vnpfpfv213FQBwmJ4QTFWJioxPNqNeVH6WnV/f1ePNlSimuKExnTXm9xxarVzV00G2xejT7nZ8aOWjmrNti5cnPDrAoN57pKRN3uvRoTEmKIDTQ2NfexNWsVs3/NlaQEhXs8QtyceFBxIcHsXuMwdmLmypJjgzm1Mme+3twcUEq8zKj+c07e2jp7HHJPj/cVUtrl4VLfGxKo0NBZjRKjb4oiKXXypvbalg2PYnwIPesOQ02GfnzF+bR2dPLN/63xSuVcoV/cKZa42qttdJaz9ZaF9i/3jpum2yttWe6zIoJrczcRs4Ez5qBbWrjGdOGr9rY2dNL6ZEWr05pdMiIDeX8WSk8u+4QzS76wOCwvaqJ2LBAUt2UHTQYFEVZMWw8OHzmbFVpHUEBBuZnx7plLK52eWE6SsELmzyTPXNUavTk+3hmWhQH6tsHfN29sa2aI81dkjUbBaNBMTMtym3B2f82VrDlUCPfOXuqVy4uTUuOGNM62dqWTj4prePSeWkebc2glOL+C/Opa+3izyv2uWSfrxRXkRgRxMkezmA6KzLYxNSkCDYdGl1w9mlZPfVt3Vw8ht5mzshNDOebZ05hbflRDkn1RjGIEVVrFMLbys2t5MRP3PVm/Z0/yza1cagqgrsPt2Cxamam+UZG4EunTaaly8J/1rm2NeL2qmbyU93bKqAwO4YycxtH27qH3G5VqZmTJsX65NSfgaRFh7AoN54XNlW6vRcd9C+j77n3sWPd2a7jioJorXl81X7yEsM5fYrvraPxBwUZ0eysbnZ5Fbr61i5+9fZuTp4U65beYM6Yag/ORtK2pL9Xt1TTa9Vur9I4kDkZ0VxRmM4/Vx/gQF3bmPbV1N7Dyj21XDQn1af7/83LimHLwYZR/R17tbiKyOAATvfAerp59vYspUda3X4s4Z8kOBN+o6m9h7rWbiYnSuYMbFMbg00G3tw2+NTG7fbpfu5aizVSs9KjOHVyHP/4dL/LPsx5KjvoyIQNNW2mpqmD0tpWFvvBlMb+rihMp6qxgzX29T3uVGZuJTYskBgXVkMbzsxBKjauKatnZ00zty2e5PVpv/6qICOa7l4ru2pc0xPM4Rdv7aa928LPL53ptXMzNSmCzh7rqDIctt5mlczJiPZoC4D+vnfOVExGxc/f2jWm/bxdUkNPr/a5Ko3HK8qKoaXLQmntyIKezp5e3ttxhHNnJnukgmxeku31sLfWfdWLhX+T4Ez4jTJ7pUbJnNk405C6pLKJmFATadEhHh7d4O44LYcjzV28Wlzlkv05soPuDs5mpUURaDQMWRRkdaltdvdiH+5vNpBz8pOJCA7g+Y3u73nmyUqNDgkRQSRGBFFy3Lqzx1aVEx8e6PMfOn1ZX1GQykaX7XNteT0vbq7kjtNyyE2McNl+R+rzio0jDzx31jSz+3ALV3gp6we2Ho1fPSOX93ceYVXp6FsZvVJcRU58mM/MwBhMYdbomlF/tNu2ns5Tfwcig02kRAWzTzJnYhASnAm/UW62Tc2QNWefWz47hbrWLtbvHzhgKKlu8oliIP2dPiWBackRPLaq3CULoks8lB0MNhmZlR7FxiH+419VWkd8eBDTkr33gXI0gk1GLi5I5e2Swy5fD3i88rpWr7TCyE+NZGe/zNm+2hZW7DFzw4Jsv5mC6otSo4KJDw9y2bqzbouVH7xSQnpMCHctzXPJPkdrSlIESsGewyP/EP3ipipMRsWFbl7DNJwvLpxEZmwoP3l9J5bekc9WqGnqYN3+o1xckOZT/48MJDM2lPjwQKfWBvf3WnE1CRFBHm3XkJsYLpkzMSgJzoTfKDe3YjIqMmJDvT0Un+GY2jhQQ+ouSy97faQYSH9KKe44LYe9R1pZuWfsjelLqpqIDjWRHuP+7GBRVgzbK5vo7DmxabPVqlm9r47FefE+/yFmIFcWZtBlsfLGVvf1PGts77ZNTfZCcDYzLYrS2ta+c/fE6v0EBRi4fkGmx8cyniilKMiIdllw9tiqcvbVtvLTi2cSEujdoDkk0EhWbCh7jowsc9bTa+XV4iqWTUvyemXhYJOR+5ZPp7S2lWdGsdb39a3VaG2rAOnrlFLMy4xh8wgyZ82dPXy0p5YLZqd4dD3dlKQI9tW2emSdr/A/EpwJv1FmbiUzNhSTUV62DqGBg1dt3HO4hZ5e9/X+GosL56SSEhXMIx+XjXlf26uamOWh7GBRdizdvda+tXz97axp5mhbt9+tN3OYnR7FlKRwnnPj1MYyL2a/81Mj6bVq9hxuob61ixc3V3HZvHTiwn27Ubg/KMiIotzcRlPH2LKuFUfb+dNHpZybn8zSaYkuGt3YTEmKGHE5/Y/3mKlv6/ZYb7PhnD0jiYW5cfzh/b00DFPQ6HivFlczJyOa7Hj/mLFSmBXDgfp26lq7nNr+3ZLDdFusXOThDGdeYjidPVYqGzo8elzhH+RTrvAb5WbPNa71J+fPGnhqoyOA8LXMGYDJaODWRZNYt//omK64O7KD+ameeY6ONQ0DVchcZV9vtijXP4MzpRRXFmZQXNHIPjdNt/FGpUaH/H5FQf699iDdFiu3LpLy+a7gWHe2vXLgXnLO0Fpz/2s7MCrF/RfNcNHIxm5acgQH6toGzJYP5sXNlcSFBbLEA5X/nKGU4kcX5NPS2cODH+x1+nH7alvYUd3s9vLyrlSUbfsb7Wz27LWt1WTGhlJgfw17Sp69yflYWjWI8UuCM+EXLL1WDta3kyPB2Qn6qjZurz7m9pKqJqJCPDPdbzSuOSmTiOAAHv1k9NkzR3bQUwFobFggkxPC2DRAM+rV+8xMS44gMdI9vdY84ZK5aQQYFM9vdE/PszJzK4FGg1dek+kxIUSFmNh0sIF/rznIGdMSvVZFb7yZnR4NQHHF6HpMAby74wgf7a7lm2dNISXKd/5mTU2OxKphn5MVABvbu/lwVy0XFaT61CyPqckRXL8gi2fWHWKPk5nAV4urMSi4YE6Km0fnOvmptsJNzvQ7M7d08em+Oi6ak+rxqeiOio0jrSwpJgbf+cshxBAqGzro7rVKMZABOKY2vnPc1EZPTvcbjfCgAK5fkMU7JYc5WD+6PjwlVba1IJ7MDhZlxbLxuF46Hd29bNjf4LdZM4eEiCCWTkvkxc1V9IyieMBwymrbyI4PJcALH1qVUsxIieSV4irq27ql6bQLRYWYyEkIo7hidJmz1i4LP359B9NTIrn51GzXDm6MPq/Y6FxA8/rWarp7rV7pbTacb545hfCgAH7yxo5hizFprXm1uJqFufEkRvjPBadgk5GZaZEDXkA73pvbqrF6aT1dZLCJ5MhgSiVzJgYgwZnwC+V13psO5Q+Wz0qlrrWbdfttfaq6LVb2HG7xyfVm/d1yajYBBgOPr9o/qsdvt2cHM2I9d6W9KDuGpo6evil6AOv219Pda2XxOGhkfGVhOnWtXXzsgmItx/NWpUaHmWm2dWczUiI5xYOV2SaCgnRbUZDRVGB96P29HG7u5OeXzvRK4D6U7LhQAgMM7HHyQ/QLm6uYlhxBfqrvlZ2PCQvkW2dN4dN99by/88iQ226paOTQ0XaPr8VyhcKsGLZVNdFlGXoq6mtbq5mWHNE3xdDT8pKkYqMYmG/9FRRiEI4y+p7uj+Qvlk5LIMRk7KvauPeIZ6f7jVZiZDCXzE3luY0V1Du5gLu/kqomZqZFejQ7WGRvRr2h35XZ1aV1BAYYOMl+nz9bOi2R+PBA/rN+5JXdhtLTa+VQfbuXgzPb++H206TptKsVZEZT19pFdVPniB63s7qZf352gGvmZzIvM8ZNoxu9AKOB3IRwp4qC7KttZWtFI5fPS/fZ19d1J2eSlxjOz97cNWTw8lpxNYEBBs6dmezB0blGYVYM3RbrCU3n+6s42s7mQ41e7XEoFRvFYCQ4E36hzNxKbFig18sS+6rjpzZu7+v95XtXb493x2k5dFmsPLXm4Ige563sYHbcib10VpXWMT87xuulv13BZDRw0ynZfLi7lqfXjuycDOVgfTsWq/bq1OTzZqbw8LVzuWiONJ12tTn2dWdbR1Dgx2rV/OCV7USHmLjn3KnuGZgLTEuOcKoR9YubKzEaFBfP9d1sU4DRwI8unMGho+38Y/WBAbex9Fp5Y1s1Z05PJCLY5NkBusC8rOGLgry21bZG+0IvrqeTio1iMBKcCb9QZm6TrNkwbA2pbVMbt1c1ERkcQKYf9ITLTYzgzOmJPLXmAB3dzldE23ukhe5eKzM9VKnRQSlFYVYMG+2Zs9rmTvYcaWFxnv9PaXT4ytJclk5N4IHXdrC2vN4l+/RmpUaHwAADF81J9Wg/o4liWkoEgUbDiIKz/22sYPOhRv7v/Ok+feFtanIER5q7aGwfvAx9r1Xz8uYqTsvz/TVai/MSOHN6En/+qJTa5hMznZ+W1VPX2u23FzESI4LJjA1l0xDB2etbqynMiiE9xnv/R0rFRjEYCc6EXyg3t5ETL+vNhrJ0aiIhJiNvbquxT/fz3WIgx/vS6ZNpaO/h+U3O99gq8WKrgPnZsRw62k5tc2dfCX1/7W82EKNB8cdr55IZF8pXntlMxdH2Me/TEZxJUZ/xKSjAyIzUSLY4GZzVtXbxq7d3c/KkWC6b59tBgDNFQdaU1XO4uZPLfLAQyEB+sHw63b1WfvPunhPue7W4iojgAJZO898LToVZMWw82DDgGsg9h1vYfbjF6421pWKjGIwEZ8LnNXX0UNfaJR/qhhESaOSM6bapjbtrWnx+vVl/RVkxzM2M5vFV+7E4WSVwe1UTEcEBZMV5/sqno9/ZxoMNrCo1ExcWyPRk359COhKRwSYev7GInl4rtz+1kfZuy5j2V1bbRlJkkF9OkxLOKciIZntlk1Pv4V++tZv2bgs/v3Smz19E6gvOhshwvLi5kojgAM6akeSpYY1JdnwYX1w0iRc2VR6T7ezo7uXdksOcPzOFoAD/naY9LysGc0vXgFMGX9tahdGgOH+Wd1sESMVGMRgJzoTPK/eB6VD+YvmsFOrbum3T/fwoOFNK8aXTcjh0tJ13dhx26jElVU3MTPVOdjA/NYpgk4ENB46yel89i/LiMYzDqXI5CeH86dq57D3Swnee3zqqSnwO3q7UKNxvTkYUHT297DMPnQlYU1bPi5srueO0HHITvVMpbySSI4OJDA4YtChIa5eFd0oOc8HsVIJN/hPQ3LU0l/jwIH78+uel9T/cfYS27l6fXjfnjEJ7cZnjpzZqrXltq61FQHx4kDeGdgyp2CgGIsGZ8Hll9kqNkjkbnmNqI+BXwRnAWTOSmRQfxt8/Lh82COjptbLrcAuz0r3zHAMDDMxJj+blLVXUtXb5fX+zoSyZmsi9503jre2H+dNH+0a1D601ZbUSnI13BRm2D8TFhxoH3abbYuWHr5aQERvCXUvzPDSysVFKMS05kr2DBGdvba+ho6eXKwp9e3rm8SKCTXzv3KlsPtTYVyDj1eJqkiKDOHmSf7eamJocQXhQwAnB2ZaKRiqOdvhMi4C8RKnYKE4kwZnweeXmVgIMigw/KG7hbSGBRs6akURMqIksP/t9GQ2K2xZPYntVE2uGKUKx90gL3RarV3sJzc+OpbG9B2BcFQMZyO2Lc7h0bhp/eH8v7zqZ2eyvrrWb5k6LFPUZ57LjQokMDmBrZeOg2zy2qpx9ta385KKZflXddGpyBHuOtAx44ejFTZVMig/zyVYAw7liXjqz0qL45Vu7qWnqYOWeWi6c7f9Fc4wGxdzM6BOCM0eLgHPyfWP66ZQkqdgoTiTBmfB55eY2suJCMflYc1Jf9eOL8nn+y6f45TS7y+elEx8eyKOflA+53Y4qW1lrb66rK8y2fRCbkhROcpRvV2cbK6UUv7xsFnPSo/jW/4qHLIwwkM+LgUjmbDxTSjEnI5riiqYB76842s7DH5Zy3sxklk5L9PDoxmZKcgQtnZYT+rhVHG1n3f6jXDY3zefXzg3EYFDcf+EMDjd3cuMT6+np1Vwy178ygIOZlxnD7sPNtHbZ1svaWgTUsGya77QIcFRsLJWpjaIf+bQrfF6ZuVU+1I1ATFigX6zjGEiwychNp2Szco+Z3UP0Fdpe1UR4UADZcd7LxMzLjCHAoDhtnGfNHIJNRv5+QxFhQQHc9tQGGtoGLyt+vL4y+onyPh7v5mZEs+dw8wkFZLTW/OjVEgIMih9dOMNLoxu9aX0VG4/9u/TS5ioALvXxipNDKcqO5aI5qZTWtpKTEObVGQmuVJgVg1V/Ps12TXk9da1dXq/S2F+u/W/i3iNSsVF8ToIz4dN6rZqD9e2y3mwCuX5BFiEm45DZs+1VTeSnRno1OxgVYuKFO0/l7jP9Y92MKyRHBfP3Gwo50tzFV5/dTI+TlTXLatsIMRlJiRzfGUYBczKisWooqTo2iHl3x2FW7DHzzbOmkBIV4qXRjd6UJEdw9vmHaK01L22p5JScOK/2y3KFe8+bRkRQAFcXZfhlBnAgBZnRKPV5UZDXiquJCApgyVTfydpGhUjFRnEiCc6ET6tsaKe71yqFBCaQmLBArp6fwWvF1dQ0nTgP39JrZVdNs0+0CijIiCbSR6bHeMrczBh+eeksPiur5+dv7nLqMeV1tivy/jjVVozMnIxogGPKs7d2WXjgtZ1MT4nk5lOzvTKusYoKMZEaFXxM5mzjwQYO1rdzeaF/9DYbSmp0CGv+bxm3L87x9lBcJjLYxNSkCDYdaqCzp5d3Sg5zzsxkn6uomZcULr3OxDEkOBM+rW86lGTOJpRbF01CA/9Yvf+E+0prW+myWL1WqVHA5YXp3LZoEv/67AD/23Bo2O3LzFKpcaKIDw8iPSaE4n7B2UPv7+VISyc/v3QmAX68dnhKcsQx5fRf3FRJiMnIeTOTvTgq1wkPChh3F1AKs2LYcrCBFbtraemy+EyVxv6kYqM4nv/+lRQTQrmjjH68fLCbSDJiQ1k+K4X/rK+gubPnmPtKqmzFBvJTJTjzpnvPm8bivHh+8EoJGw8cHXS7zp5eKhs6JDibQGxFQRoB2FndzD8/O8C1J2X6ZTXD/qYmR1BmbqWn10pnTy9vbqvhvJnJhAUFeHtoYhCFWTG0dFl48IO9xIcHcupk32sRMCUpnA7730khQIIz4ePKzG3EhgUSExbo7aEID7vjtBxauyw8u+7YzExJVRNhgUZy4iWb6k0BRgN/vnYe6TGhfPnpTVQ3DvzBYn9dG1pLn8KJZG5GNFWNHdQ2d3LfK9uJDjFxzznTvD2sMZuWHEFPr+ZAXRvv7TxCS5dlXExpHM8Ks2wXBPYeaWX5rBSfzNxKxUZxPN97lQrRT5m5VT6ET1Az06JYmBvHP1bvp8vS23e7rRhI1LibfuOPokJNPHZjIZ09Vu7490Y6untP2ObzqcmSOZsoHOvO/u/lErYcauS+5dOJCvX/tZlTk2xVDHcfbuHFTZWkRgVzSo7vZWLE5zJjQ4kPt13cvciHqjT2JxUbxfEkOBM+rdzcJh/qJrAvnTaZ2pYuXi2uBmzFQHbWNDPTB4qBCJvcxAgevraAHdXNfPeFrSc06S2rbUMpmCQXWSaMmalRGA2KD3YdYUFOLJeOk75ZkxPDMBoUq0rNrCo1c+m8NLlI5OOUUpwyOd6nm4RLxUZxPAnOhM9q6uihrrVLpkNNYIvz4pmeEsljn5RjtWrKzG109liZlT4++vCMF2dMS+K750zljW01/HVl2TH3lde1khYdQkigb1VIE+4TEmhkalIEJqPiZ5fMGjel2YMCjEyKD+OFTZVYNVw2T6Y0+oNfXDqTF758ik+/DqVio+hPgjPhs8rt06GkAfXEpZTiS6flUFrbyoo9tWy3FwOZKcVAfM6dp0/mojmp/O69PXyw80jf7VKpcWK657xpPHT13L4pW+PF1OQIrBrmZkbL69pPRASbiAsP8vYwhiQVG0V/EpwJn+Wo1Chl9Ce25bNTSI0K5u+flFNS1URooFECdh+klOLXl88mPzWSb/yvmNIjLbZsZ61MTZ6ITp+SwPLZKd4ehstNsxdvuFyyZsKFpGKj6E+CM+GzyutaCTAoMmJDvT0U4UUmo4FbF+ewfv9R3thWzYyUSIyyzsMnhQQaefSGIoJNRm5/aiN7jrTQ0dMrU5PFuHFWfhKnTUngQh/slyX8V16S7QKWVGwUIMGZ8GFltW1kxoVi8sHSt8KzrpmfQWRwAHWt3VIMxMelRofwyPXzqGrs4NZ/bQCkUqMYP6YlR/LUF08iKsT/q08K35GbaMvISsVGARKcCR9WXidrVYRNWFAA1y/IAmCWBGc+ryg7lp9fMovqpk7AVuVOCCHEwPoqNkrmTADS1l74pF6r5kBdO0unJXp7KMJH3L44h4b2HpZNl9eEP7hqfgZlda2s2F1Lgo8vxhdCCG/LSwqnVDJnAsmcCR9V2dBOd6+VyfGSORM2MWGB/PKyWUSHBnp7KMJJ3z9vOu9+4zSfLmEthBC+QCo2CgcJzoRP6qvUKNOhhPBrEpgJIcTwHBUbqxqlYuNEJ8GZ8Elljh5nkjkTQgghxDjnqNi494isO5voJDgTPqnM3EZMqImYMJnCJoQQQojxTSo2CgcJzoRPKjdLpUYhhBBCTAxRISaSIoOkYqMYPjhTSmUopVYopXYppXYopb5uv/2nSqltSqlipdR7SinpyChcpszcJo1rhRBCCDFhTEmKkIqNwqnMmQX4ttZ6OrAA+KpSagbwW631bK11AfAG8CP3DVNMJM2dPdS1dpEjmTMhhBBCTBBSsVGAE8GZ1rpGa73Z/n0LsAtI01o399ssDJBXknCJvkqNEpwJIYQQYoLIk4qNghE2oVZKZQNzgXX2n38O3Ag0AUtdPTgxMZXV2is1yrRGIYQQQkwQU/pVbMyIDfXyaIS3OF0QRCkVDrwIfMORNdNa36e1zgCeAe4a5HF3KKU2KqU2ms1mV4xZjHPlda0EGBSZ8odJCCGEEBOEo2Jjaa2sO5vInArOlFImbIHZM1rrlwbY5Fng8oEeq7V+VGtdpLUuSkhIGP1IxYRRbm4jMy4Uk1GKiQohhBBiYnBUbJReZxObM9UaFfAEsEtr/Yd+t+f12+wiYLfrhycmojJzqzSfFkIIIcSEIxUbhTOpiYXADcAZ9rL5xUqp84FfKaVKlFLbgLOBr7tzoGJi6LVqDtS1MzlR1psJIYQQYmKRio1i2IIgWuvVgBrgrrdcPxwx0VU2tNPda2WyZM6EEEIIMcH0r9goRUEmJlnUI3yKo4y+VGoUQgghxETTv2KjmJgkOBM+pcxsm2ctPc6EEEIIMdFIxUYhwZnwKWXmNmJCTcSEBXp7KEIIIYQQHiUVG4UEZ8KnlJtbyZGsmRBCCCEmKKnYOLFJcCZ8SnldG5NlvZkQQgghJqjcxHCp2DiBSXAmfEZzZw/mli7JnAkhhBBiwpqSFNFXsVFMPBKcCZ/RV6kxXjJnQgghhJiYpGLjxCbBmfAZ5Y5KjYmSORNCCCHExCQVGyc2Cc6EzygztxJgUGRK00UhhBBCTFBSsXFik+BM+IxycxuZsaGYjPKyFEIIIcTENSUpgn2SOZuQ5FOw8Bnl5jYpBiKEEEKICS83MZzSI1KxcSKS4Ez4hF6rZn+9lNEXQgghhJCKjROXBGfCJ1Q1dNBtsTJZMmdCCCGEmODy7MXRSmtl3dlEI8GZ8All9kqNOZI5E0IIIcQEl5dkq9i494isO5toJDgTPuHz4EwyZ0IIIYSY2KRi48QlwZnwCeV1bcSEmogNC/T2UIQQQgghvC4vUSo2TkQSnIkh9Vo1O6qb3H6cstpWyZoJIYQQQtjlJUnFxolIgjMxpB+/voPlD69mxe5atx6nvK6NnHhZbyaEEEIIAVKxcaKS4EwM6t9rD/LUmoMoBf/bUOG24zR39mBu6WJyomTOhBBCCCFAKjZOVBKciQF9tq+OB17bwbJpidxy6iQ+2HWE+tYutxyr3NwGIJkzIYQQQgg7qdg4MUlwJk5woK6NO5/ZzOSEMB66poCr52dgsWpe3lLlluOVS6VGIYQQQohjSMXGiUmCM3GM5s4ebn1yAwYFj984n4hgE1OTI5iTEc3zGyvR2vWLUsvNbQQYFFlxoS7ftxBCCCGEv5KKjROPBGeij6XXytee3cLB+nb+dn0hmf2CpauK0tlzpIXtVa6v3FhmbiUzNhSTUV6OQgghhBAOUrFx4pFPw6LPL9/ezcd7zfzskpksyIk75r4L56QSFGDguY2uLwxSbm4jJ0HWmwkhhBBC9JeXKBUbJxoJzgQA/9twiCdW7+eWhdlcc1LmCfdHBps4b2YyrxZX09nT67Lj9lo1++vbmCzrzYQQQgghjjElSSo2TjQSnAnWldfzg1dKWJwXz33nTx90u6uKMmjptPDujsMuO3ZVQwfdFqtkzoQQQgghjpOXKBUbJxoJzia4iqPt3PnMZjJiQ/nzF+YRMMS6rwU5caTHhLh0amNZnVRqFEIIIYQYSFSoicSIIEolOJswJDibwFq7LNz25EZ6rZonbppPVIhpyO0NBsWVhRl8VlZPxdF2l4yhzF6BSKY1CiGEEEKcaEpShExrnEAkOJugeq2ab/x3C/vMrfzlC/OY5GQD6MsL0wB4cXOlS8ZRXtdGdKiJ2LBAl+xPCCGEEGI8kYqNE8uED84+K6vj/Z1HvD0Mj/vtu3v4YFct9184g0V58U4/Lj0mlIWT43l+Y6VL/kiUm1slayaEEEIIMQip2DixTOjgTGvNH97by49eLXFpBUJf99LmSh75uIzrTs7khgVZI378lUXpVDV2sKa8fsxjKTO3keNk1k4IIYQQYqKRio0Ty4QOzpRSfOusKdQ0dfK/Da7v3+WLNh9q4N4Xt3NKThwPXJSPUmrE+zgnP5nI4ACeH2NhkJbOHswtXVIMRAghhBBiEFKxcWKZ0MEZwCmT4zhpUix/Xblv3GfPqho7uOOpTaREB/PX6+ZhGqIy41CCTUYuLkjj7ZLDNHX0jHo85eY2ACZLGX0hhBBCiAFJxcaJZcIHZ47s2ZHmLp5dd8jbw3Gb9m4Ltz+5ka6eXp64qYiYMRbguLIonS6Llde3Vo96H2VmKaMvhBBCCDEcqdg4cUz44Axs/btOyYnjbx+X0dE9/rJnVqvm289tZffhZh7+wlxy7enxsZiVFsW05IgxTW0sN7dhNCgyY0PHPB4hhBBCiPEqNzGcfbVSsXEikODM7ptnTcHc0sUz6w56eygu99CHpbxdcpj/O386S6cmumSfSimuLMpga2UTew6P7kpOeV0rWbGhBAbIy1AIIYQQYjBTkiJo75aKjROBfCq2O2lSLIty4/nbyjLauy3eHo7LvL61moc/LOWqonRuXTTJpfu+pCAVk1GNOntWVttGjqw3E0IIIYQYklRsnDgkOOvnm2flUd/Wzb/XjI/s2bbKRr7z/FbmZ8fw00tmjqoy41DiwoM4c3oSL2+pottiHdFje62a/fVtst5MCCGEEGIYjoqNUhRk/JPgrJ/CrFhOm5LA3z8pp63Lv7Nntc2d3P7URuLDg/jb9YUEBRjdcpwri9Kpb+vmo921I3pcdWMH3RarVGoUQgghhBiGo2KjlNMf/4YNzpRSGUqpFUqpXUqpHUqpr9tv/61SardSaptS6mWlVLTbR+sB3zwzj6Nt3Ty55oC3hzJqWmvufWk7TR09PH5TEfHhQW471ml5CSRGBI14auM+qdQohBBCCOE0qdg4MTiTObMA39ZaTwcWAF9VSs0A3gdmaq1nA3uB77tvmJ4zNzOGM6Yl8ugn5bR0jr6Hlze9trWaj3bX8p2zpzI9JdKtxwowGri8MJ2Ve83UNnc6/ThHj7OceMmcCSGEEEIMRyo2TgzDBmda6xqt9Wb79y3ALiBNa/2e1tox928tkO6+YXrWN87Mo7G9h399esDbQxmxo23d/Pj1ncxJj+KWha4tADKYKwvT6bVqXtpS5fRjys2tRIeaiB1jvzUhhBBCiIlAKjZODCNac6aUygbmAuuOu+uLwNsuGpPXzU6P5szpSTy2qpxmP8ue/fSNnTR39PCry2djNLi2AMhgchLCmZ8dw3MbK9Dauas5ZeZWcuLDXF6kRAghhBBiPJKKjROD08GZUioceBH4hta6ud/t92Gb+vjMII+7Qym1USm10Ww2j3W8HvONM/No7rTwj9X7vT0Up63cU8vLW6r4ypLJbp/OeLwrCzMoN7ex+VCDU9uXm6VSoxBCCCGEs6Ri48TgVHCmlDJhC8ye0Vq/1O/2m4ALgOv0ICkTrfWjWusirXVRQkKCK8bsETPTojgnP4knVu+nqd33s2etXRbue7mE3MRwvnpGrsePf/7sFEIDjTy3oXLYbVs6e6ht6WKyBGdCCCGEEE6Rio0TgzPVGhXwBLBLa/2HfrefC9wDXKS1bnffEL3nG2dOoaXTwhOry709lGH97t09VDd18OvLZ7mtbP5QwoMCWD4rhTe2VQ/bxLuvGIiU0RdCCCGEcFpeUrhMaxznnMmcLQRuAM5QShXbv84H/gxEAO/bb3vEnQP1hukpkZw/K5l/fHqAxvZubw9nUJsONvDkmgPcuCCLwqxYr43jqvkZtHX38tb2w0NuV15nu+IjmTMhhBBCCOflJUZIxcZxzplqjau11kprPVtrXWD/ektrnau1zuh325c9MWBP+/qyKbR1W3hslW9mz7osvdzz4jZSIoP57rnTvDqWoqwYJsWH8dwwPc/KatswGhSZsaEeGpkQQgghhP+Tio3j34iqNU5EU5MjWD4rhX99eoCjbb6XPfvLijL21bby88tmER4U4NWxKKW4ojCd9fuPcqCubdDtyutayYwNJTBAXn5CCCGEEM7Ks1ds3Fcr687GK/l07ISvL8ujvaeXRz/xrezZnsMt/G3lPi4pSGXp1ERvDweAy+elY1DwwqbBC4OUm9uYLOvNhBBCCCFGZIq9YuPeI7LubLyS4MwJeUkRXDQnlSc/O0Bda5e3hwNAr1Vzz4vbiAg28aML8709nD7JUcGcPiWBFzZV0jvAfOheq6a8TsroCyGEEEKMlFRsHP8kOHPS3cvy6LL08vePy7w9FAD+9dkBiisauf/CGcSGBXp7OMe4qiiDw82drCo9sa9ddWMH3RYrOfGSORNCCCGEGKm8pHD2ScXGcUuCMydNTgjnkoI0/r32ILUtnV4dS8XRdn737h6WTk3gojmpXh3LQJZNTyI2LJDnN544tbHMbK/UmCiZMyGEEEKIkcpLjKBUKjaOWxKcjcDXluXR06t5ZKX31p5prfm/l7djUPCzS2dha0PnWwIDDFxckMr7O4/QcFwRlTJHjzPJnAkhhBBCjJhUbBzfJDgbgUnxYVw6N41n1h3kSLN3smcvbq5iVWkd95w3jbToEK+MwRlXFmbQ3Wvl1eKqY24vN7cSFWLyuamYQgghhBD+QCo2jm8SnI3Q3WfkYbFq/rbS82vPzC1d/PSNnRRlxXD9yVkeP/5IzEiNZFZaFM8dN7XRUanRFzN+QgghhBC+Ls++NEQqNo5PEpyNUGZcKFfMS+fZ9YeoafJsOvmB13fQ0d3Lry6fjcHg+8HNVUXp7KxppqSqqe+2MnOrVGoUQgghhBil6NBAEqRi47glwdko3HVGLlar5q8rPJc9e3/nEd7cVsPdy3LJ9ZNiGhfNSSMwwMDzGysAaOnsobalixzpcSaEEEIIMWpTpGLjuCXB2ShkxIZyZVEG/91wyCOLMZs7e/jBK9uZlhzBl06f7PbjuUpUqIlz8pN5pbiazp5eyu3FQCZL5kwIIYQQYtSkYuP4JcHZKN11Ri4Af1mxz+3H+uVbuzG3dPGbK2ZjMvrXKbuqKJ2mjh4+2HWE8jp7GX3JnAkhhBBCjFpeUjjt3b0cOtru7aEIF/OvT/o+JC06hGvmZ/Lchgoq3PjGWFtez3/WH+LWRZOYnR7ttuO4y6mT40mLDuG5jZWUm9swGhSZsRKcCSGEEEKM1uLcBIwGxb8+O+DtoQgXk+BsDL6ydDIGpdyWPevs6eXeF7eRGRvKt86a6pZjuJvRoLi8MJ1VpWZW76sjMzaUwAB52QkhhBBCjFZfgbp1ni9QJ9xLPiWPQUpUCF84OZPnN1VysL7N5ft/6INSDtS388vLZhESaHT5/j3lysJ0tIYthxql+bQQQgghhAvcdUYuGu2RJTbCcyQ4G6M7l0wmwKD400eufWOUVDXx2KpyripKZ2FuvEv37WkZsaGckhMHwGQ/qTQphBBCCOHLMmJDuaoog/9tqKCyQdaejRcSnI1RUmQw152cxctbqthf55rsmaXXyj0vbiM2LJD7zp/hkn1621Xz0wEkcyaEEEII4SJ3nZGLQvFnFycJhPcEeHsA48GXl+Tw7PqDfPN/xZwyOY6oEBPRISaiQkxEhdr/DTERHRpIWKARpYZuIP3Yqv3sqG7mb9fNIyrU5KFn4V7nz0qhqqGD82ameHsoQgghhBDjgmOJzb/XHuTOJZPJipOL4P5Oae25/ghFRUV648aNHjueJ/3r0/386aN9NHX0YBmi50SAQfUFa5EhJqLtwZsjmAsNCuDB9/eyZGoCf7+hyIPPQAghhBBC+Jva5k4W/2YFy2en8IerCrw9HOEEpdQmrfWAH/Qlc+YiNy+cxM0LJ6G1pr27l8aOHprae2jq6KGpo5umjh4a+37uobGjh+aOHo62dVNubqOpo4fmzh60hoSIIH5y8UxvPyUhhBBCCOHjEiODufGULJ5YvZ+vLs1lcoKs7/dnEpy5mFKKsKAAwoICSIsOGdFjrVZNS6eFIJOBYJP/VmcUQgghhBCe86XTJ/PMukP88YNSHr52rreHI8ZACoL4EINBERVqksBMCCGEEEI4LT48iJtOzeb1bdXsPdLi7eGIMZDgTAghhBBCCD93x+IcwgIDeOiDvd4eihgDCc6EEEIIIYTwczFhgXxxYTZvbT/Mjuombw9HjJIEZ0IIIYQQQowDty7OISI4gIc+KPX2UMQoSXAmhBBCCCHEOBAVYuL2xTm8v/MI2yobvT0cMQoSnAkhhBBCCDFO3LIwm+hQEw++L2vP/JEEZ0IIIYQQQowTEcEm7jgthxV7zGw62ODt4YgRkuBMCCGEEEKIceSmU7KJCwuU7JkfkuBMCCGEEEKIcSQsKIA7l0xm9b461pXXe3s4YgQkOBNCCCGEEGKcue7kLBIigvjD+3vRWnt7OMJJEpwJIYQQQggxzoQEGvnqksms23+UNWWSPfMXEpwJIYQQQggxDl1zUiYpUcH8XrJnfkOCMyGEEEIIIcahYJORry7NZdPBBj7ea/b2cIQTJDgTQgghhBBinLqqKIO06BAelOyZX5DgTAghhBBCiHEqMMDA3cty2VrZxIe7ar09HDEMCc6EEEIIIYQYxy6bl05WXKhUbvQDEpwJIYQQQggxjpmMBr6+LI+dNc28u+Owt4cjhiDBmRBCCCGEEOPcxQVp5CSE8eD7pVitkj3zVcMGZ0qpDKXUCqXULqXUDqXU1+23X2n/2aqUKnL/UIUQQgghhBCjYTQovnHmFPYcaeHN7TXeHo4YhDOZMwvwba31dGAB8FWl1AygBLgM+MSN4xNCCCGEEEK4wAWzUpiSFM5DH+ylV7JnPmnY4ExrXaO13mz/vgXYBaRprXdprfe4e4BCCCGEEEKIsTMYFN88cwpl5jZe21rl7eGIAYxozZlSKhuYC6xzy2iEEEIIIYQQbnNOfjIzUiL54welWHqt3h6OOI7TwZlSKhx4EfiG1rp5BI+7Qym1USm10WyWzuRCCCGEEEJ4i8Gg+OZZUzhQ385LmyV75mucCs6UUiZsgdkzWuuXRnIArfWjWusirXVRQkLCaMYohBBCCCGEcJEzpycyOz2Khz8qpdsi2TNf4ky1RgU8AezSWv/B/UMSQgghhBBCuItStuxZZUMHz2+q8PZwRD/OZM4WAjcAZyiliu1f5yulLlVKVQKnAG8qpd5160iFEEIIIYQQLrFkSgLzMqP580f76LL0ens4wi5guA201qsBNcjdL7t2OEIIIYQQQgh3U0rx7bOnct3j63hrew2Xzk339pAETgRnQgghhBBCiPHn1MlxPHv7yZySE+ftoQg7Cc6EEEIIIYSYgJRSnDo53tvDEP2MqM+ZEEIIIYQQQgj3kOBMCCGEEEIIIXyABGdCCCGEEEII4QMkOBNCCCGEEEIIHyDBmRBCCCGEEEL4AAnOhBBCCCGEEMIHSHAmhBBCCCGEED5AgjMhhBBCCCGE8AESnAkhhBBCCCGED5DgTAghhBBCCCF8gNJae+5gSpmBgx47oPPigTpvD0KMiJwz/yLny//IOfM/cs78j5wz/yLny//46jnL0lonDHSHR4MzX6WU2qi1LvL2OITz5Jz5Fzlf/kfOmf+Rc+Z/5Jz5Fzlf/scfz5lMaxRCCCGEEEIIHyDBmRBCCCGEEEL4AAnObB719gDEiMk58y9yvvyPnDP/I+fM/8g58y9yvvyP350zWXMmhBBCCCGEED5AMmdCCCGEEEII4QP8LjhTSp2rlNqjlNqnlLq33+3/U0oV278OKKWKB3hsgVJqjVJqh1Jqm1Lq6n73TVJKrVNKldr3FTjI8W+yb1OqlLpppI+faLx5vpRSWUqpTfZj7FBKfXkkj5+o3HjO7rLvUyul4oc4vrzHRsib50zeZyPnxvP1jH2/JUqpfyilTIMcX95jI+TNcybvsdFx4zl7Qim11X77C0qp8EGOL++zEfLmOfOp95nW2m++ACNQBuQAgcBWYMYA2/0e+NEAt08B8uzfpwI1QLT95+eAa+zfPwLcOcDjY4Fy+78x9u9jnH38RPvygfMVCATZvw8HDgCpcr68ds7mAtn28xA/yPHlPeZ/50zeZ75zvs4HlP3rP4P8XZT3mP+dM3mP+dY5i+y33R+Aewd4vLzP/O+c+cz7zN8yZycB+7TW5VrrbuC/wMX9N1BKKeAqbH/kjqG13qu1LrV/Xw3UAgn2x5wBvGDf9EngkgGOfw7wvtb6qNa6AXgfOHcEj59ovHq+tNbdWusu+49B2DPFcr6G5JZzZv95i9b6wDDHl/fYyHn1nMn7bMTceb7e0nbAeiB9gOPLe2zkvHrO5D02Ku48Z839Hh8CDFS8Qd5nI+fVc+ZL7zN/C87SgIp+P1fab+tvMXDEcYIGo5Q6CVuUXAbEAY1aa8vx+1VKFSmlHh/m+IM+foLz9vlCKZWhlNpmH8ev7W9YOV+Dc9c5G2o7eY+NjbfPmbzPRsbt50vZpsbdALxj/1neY2Pj7XMm77GRc+s5U0r9EzgMTAP+ZL9N3mdj4+1z5jPvM38LztQAtx0f/V7LABH1MTtRKgX4N3CL1to61H611hu11rcNc3xnxjUReft8obWu0FrPBnKBm5RSSU6Oa6Jy1zkblLzHxszb50zeZyPjifP1V+ATrfUqkPeYC3j7nMl7bOTces601rdgmzq3C7jafpu8z8bG2+fMZ95n/hacVQIZ/X5OB6odPyilAoDLgP8NtgOlVCTwJvADrfVa+811QLT98Sfs14njO/v4icbb56uP/erHDmxXXeR8Dc5d52ysx5dzNjhvn7M+8j5zilvPl1LqfmxTeb41wuPL+Rqct89ZH3mPOc3tfxe11r32x18+guPLORuct89Z/+28+j7zt+BsA5Bnr5oSCFwDvNbv/jOB3VrryoEebH/My8BTWuvnHbfb53qvAK6w33QT8OoAu3gXOFspFaOUigHOBt4dweMnGq+eL6VUulIqxP59DLAQ2CPna0huOWcjIO+xkfPqOZP32Yi57XwppW7Dttbl2iGyn/IeGzmvnjN5j42KW86Zssl1fA9cCOweYBfyPhs5r54zn3qfaR+o0DKSL2yVjfZim0d633H3/Qv48hCPvR7oAYr7fRXY78vBthh3H/A8n1dsKQIe77ePL9q32YctZcpQj5/oX948X8BZwDZsFX+2AXfI+fLqObsb25UxC7arTo7zJO8xPz5n8j7zqfNlse/TcfuPjj9f9p/lPeZH50zeY75zzrAlNT4FtgMlwDPYKwHK+8y/z5kvvc+U/aBCCCGEEEIIIbzI36Y1CiGEEEIIIcS4JMGZEEIIIYQQQvgACc6EEEIIIYQQwgdIcCaEEEIIIYQQPkCCMyGEEEIIIYTwARKcCSGEEEIIIYQPkOBMCCGEEEIIIXyABGdCCCGEEEII4QP+HzZ+iuskEisoAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACA+0lEQVR4nO3dd1iUV9rH8e+hiyCogIogWLAL9thLeje992TTt2ZLtmSzLbtJtuXdkrbpiem9m6axxIIaO3ZAUVSKUqXOef+YwaBSZYaZgd/nurhknnoPD4PP/Zxz7mOstYiIiIiIiIh3BXg7ABEREREREVFyJiIiIiIi4hOUnImIiIiIiPgAJWciIiIiIiI+QMmZiIiIiIiID1ByJiIiIiIi4gOUnImIiIiIiPgAJWciIn7KGFNa78thjDlc7/XV3o7vRBhjsowxp3o7jqYYYxYYY27x4PGfNMZscV3TG45ZN9IYM88Yk2+MOW6i0mN+J0qNMbXGmH/XW3+KMWazMabcGDPfGJNUb50xxjxkjClwfT1sjDGeep8iInI8JWciIn7KWhtR9wXsAs6rt2yut+M7ljEmqCOcox2sBe4EVjewrhp4Hbi5oR2P+Z3oBRwG3gAwxsQAbwP3AT2AlcBr9Xa/FbgASANSgXOB29r+dkREpKWUnImIdDDGmABjzL3GmB2uFpDXjTE9XOuSjTHWGHOjMWa3MeagMeZ2Y8wEY8w6Y8whY8x/6h3rBmPMEmPMv40xRa5Wl1PqrY8yxjxtjMk1xuwxxvzJGBN4zL7/NMYUAr8zxgw0xnzliivfGDPXGBPt2v5FoB/wgavV5+fGmFnGmJxj3t+R1jVjzO+MMW8aY14yxhQDNzQT0yBjzNeu95JvjKmfnNQ/R5jrmAWun0m6MaaXMeYBYDrwH1eM/3FtP9QY87kxptDV6nVZvWM9Z4x53LW+xHX+pIbOC2Ct/a+19kugooF1W6y1TwMbm/gVqHMJcABY5Hp9EbDRWvuGtbYC+B2QZowZ6lp/PfB3a22OtXYP8HfghhacR0RE3ETJmYhIx/MDnC0gM4F44CDw32O2OQlIAS4HHgF+DZwKjAAuM8bMPGbbnUAMcD/wdl2yBzwP1ACDgDHA6cAtDewbBzwAGOAvrriGAYk4kwSstddydAvgwy18v3OAN4FoYG4zMf0R+AzoDiQA/6Zh1wNRrvh6ArcDh621v8aZ7NztivFuY0xX4HPgZdf7vBJ41Bgzot7xrnadOwZY44rT064HXrDW1nV/HIGzVQ4Aa20ZsMO1/Lj1ru/rvwcREfEwJWciIh3PbcCvXS0glTiTn0uO6fL3R2tthbX2M6AMeMVae8DVYrIIZ1JT5wDwiLW22lr7GrAFOMcY0ws4C/iRtbbMWnsA+CdwRb1991pr/22trbHWHrbWbrfWfm6trbTW5gH/wJlEtsVSa+271loH0K2ZmKqBJCDe9f4XN3LMapxJ2SBrba21dpW1triRbc8Fsqy1z7re52rgLZwtV3U+stYudF2PXwOTjTGJbXnTTTHG9MP5c32+3uIIoOiYTYuAyEbWFwERGncmItJ+OkLffBEROVoS8I4xxlFvWS3OMUh19tf7/nADryPqvd5Tr/UFIBtny1cSEAzk1rt/DwB219u2/vcYY+KAf+HsGhjp2v5gi95V4+qfo7mYfo6zBWuFMeYgzm58zzRwzBdxtpq96up2+RLOhLe6gW2TgJOMMYfqLQtyHeO4GK21pa5unvHHxO5O1wGLrbWZ9ZaV4kxe6+sGlDSyvhtQesy1FxERD1LLmYhIx7MbOMtaG13vK8zVKnYi+h7TetIP2Os6TyUQU+883ay19bvCHXtj/xfXslRrbTfgGpxdHRvbvgwIr3vhGjsWe8w29fdpMiZr7T5r7festfE4WxgfNcYMOvYNu1oJf2+tHQ5Mwdk6dl0jMe4Gvj7m5x1hrb2j3jZHWsmMMRE4C3LsPfa8bnQdR7eagXOcWlq9OLoCA/lu/NpR613ft2Rsm4iIuImSMxGRjudx4IG6ohPGmFhjzJw2HC8O+IExJtgYcynOsWIfW2tzcY7f+rsxppurEMnAY8arHSsSZwvNIWNMX+Bnx6zfDwyo93orEGaMOccYEwz8Bght7ODNxWSMudQYk+Da/CDORKv22OMYY2YbY0a5ksFinN0c67Y7NsYPgcHGmGtdP6NgV4GVYfW2OdsYM80YE4Kz5W65tbbBVjNjTIgxJgxn0hrsKk4S4FpnXOtCXK/DjDGhx+w/BeiLq0pjPe8AI40xF7uO8VtgnbV2s2v9C8BPjDF9jTHxwD3Acw3FKCIinqHkTESk4/k/4H3gM2NMCbAMZ2GOE7UcZ/GQfJxFPS6x1ha41l2HM1HYhDPZeRPo08Sxfg+MxTme6SOcpd3r+wvwG1eFxJ9aa4twlpV/CtiDsyUth6Y1FdMEYLkxphTnz+iHx3T9q9PbtV8xkAF8jbNrIzh/vpcYZ6XLf1lrS3AWHbkCZ2vYPuAhjk4iX8ZZTKUQGIezQEhjPsPZtXQK8KTr+xmudUmu13UtWodxjgGs73rgbVdcR7jG+F2M8xoexPk7UX984BPAB8B6YAPO6/NEE3GKiIibGXUlFxGRxhjnJMi3WGuneTsWf2WMeQ7Isdb+xtuxiIiIb1PLmYiIiIiIiA9QciYiIiIiIuID1K1RRERERETEB6jlTERERERExAcoORMREREREfEBQe15spiYGJucnNyepxQREREREfEZq1atyrfWxja0rl2Ts+TkZFauXNmepxQREREREfEZxpjsxtapW6OIiIiIiIgPUHImIiIiIiLiA5SciYiIiIiI+IB2HXMmIiIiIuIrqqurycnJoaKiwtuhSAcUFhZGQkICwcHBLd5HyZmIiIiIdEo5OTlERkaSnJyMMcbb4UgHYq2loKCAnJwc+vfv3+L91K1RRERERDqliooKevbsqcRM3M4YQ8+ePVvdKqvkTEREREQ6LSVm4ikn8rul5ExERERExEseeOABRowYQWpqKqNHj2b58uUA3HLLLWzatMkt50hOTiY/P7/Jbf785z+3+rjPPfccd99991HLnn32WUaPHs3o0aMJCQlh1KhRjB49mnvvvbfVx28PjzzyCOXl5d4O4wiNORMRERER8YKlS5fy4Ycfsnr1akJDQ8nPz6eqqgqAp556ql1j+fOf/8yvfvWrNh/nxhtv5MYbbwScSeH8+fOJiYlp83FPlLUWay0BAQ23ST3yyCNcc801hIeHt/iYNTU1BAV5Jo1qtuXMGJNojJlvjMkwxmw0xvyw3rrvG2O2uJY/7JEIRXxMda2D+VsOUFPr8HYoIiIi4sdyc3OJiYkhNDQUgJiYGOLj4wGYNWsWK1euBCAiIoJf/OIXjBs3jlNPPZUVK1Ywa9YsBgwYwPvvvw8c34p17rnnsmDBguPOecEFFzBu3DhGjBjBk08+CcC9997L4cOHGT16NFdffTUAL730EhMnTmT06NHcdttt1NbWAs6WscGDBzNz5kyWLFnS4vf617/+lQkTJpCamsr9998PQFZWFkOHDuWWW25h5MiRXH311XzxxRdMnTqVlJQUVqxYAcDvfvc7rr32Wk4++WRSUlL43//+1+xxhw0bxp133snYsWPZvXs3d9xxB+PHj2fEiBFHtvvXv/7F3r17mT17NrNnzz7ys67z5ptvcsMNNwBwww038JOf/ITZs2fzi1/8gh07dnDmmWcybtw4pk+fzubNm1v8s2hSXTbZ2BfQBxjr+j4S2AoMB2YDXwChrnVxzR1r3LhxVsSf5Rwstxf+d7FN+sWH9qVlWd4OR0RERNpg06ZNXj1/SUmJTUtLsykpKfaOO+6wCxYsOLJu5syZNj093VprLWA//vhja621F1xwgT3ttNNsVVWVXbNmjU1LS7PWWvvss8/au+6668j+55xzjp0/f7611tqkpCSbl5dnrbW2oKDAWmtteXm5HTFihM3Pz7fWWtu1a9cj+27atMmee+65tqqqylpr7R133GGff/55u3fvXpuYmGgPHDhgKysr7ZQpU44657Hqzjtv3jz7ve99zzocDltbW2vPOecc+/XXX9vMzEwbGBho161bZ2tra+3YsWPtjTfeaB0Oh3333XftnDlzrLXW3n///TY1NdWWl5fbvLw8m5CQYPfs2dPkcY0xdunSpUdiqXvfNTU1dubMmXbt2rXH/WyO/Tm88cYb9vrrr7fWWnv99dfbc845x9bU1FhrrT355JPt1q1brbXWLlu2zM6ePbvBn0FDv2PASttIvtRse5y1NhfIdX1fYozJAPoC3wMetNZWutYdcE+6KOKbvtq8n5+8vpbqGgcxEaG8v2YvV5+U5O2wRERExA1+/8FGNu0tdusxh8d34/7zRjS6PiIiglWrVrFo0SLmz5/P5ZdfzoMPPniktaZOSEgIZ555JgCjRo0iNDSU4OBgRo0aRVZWVqti+te//sU777wDwO7du9m2bRs9e/Y8apsvv/ySVatWMWHCBAAOHz5MXFwcy5cvZ9asWcTGxgJw+eWXs3Xr1mbP+dlnn/HZZ58xZswYAEpLS9m2bRv9+vWjf//+jBo1CoARI0ZwyimnYIw57r3NmTOHLl260KVLF2bPns2KFStYvHhxo8dNSkpi0qRJR/Z//fXXefLJJ6mpqSE3N5dNmzaRmpraqp/dpZdeSmBgIKWlpXzzzTdceumlR9ZVVla26liNaVVnSWNMMjAGWA78FZhujHkAqAB+aq1Nd0tUIj6kutbB3z7bwhNf72RYn248evVY3luzh//7chv7iiroHRXm7RBFRETETwUGBjJr1ixmzZrFqFGjeP75549LzoKDg49U/gsICDjSDTIgIICamhoAgoKCcDi+G3LRUAn3BQsW8MUXX7B06VLCw8OZNWtWg9tZa7n++uv5y1/+ctTyd99994QqEFpr+eUvf8ltt9121PKsrKwj76Wp9wbHVz40xjR53K5dux55nZmZyd/+9jfS09Pp3r07N9xwQ6Ml7uuf59ht6o7pcDiIjo5mzZo1zb31VmtxcmaMiQDeAn5krS02xgQB3YFJwATgdWPMAFdTXf39bgVuBejXr5/bAhdpD3sPHeYHr3zLyuyDXH1SP+47dzhhwYGclxbPI19s46P1udw8reUTC4qIiIhvaqqFy1O2bNlCQEAAKSkpAKxZs4akpBPrlZOcnMyjjz6Kw+Fgz549R8Zr1VdUVET37t0JDw9n8+bNLFu27Mi64OBgqqurCQ4O5pRTTmHOnDn8+Mc/Ji4ujsLCQkpKSjjppJP44Q9/SEFBAd26deONN94gLS2t2djOOOMM7rvvPq6++moiIiLYs2cPwcHBrXp/7733Hr/85S8pKytjwYIFPPjgg3Tp0qVFxy0uLqZr165ERUWxf/9+PvnkE2bNmgVAZGQkJSUlR4qW9OrVi4yMDIYMGcI777xDZGTkccfr1q0b/fv354033uDSSy/FWsu6deta9LNoTouSM2NMMM7EbK619m3X4hzgbVcytsIY4wBigLz6+1prnwSeBBg/fvxRiZuIL5u/5QA/eW0NVTUO/u+K0cwZ3ffIuoGxEYyI78b7a/cqORMREZETUlpayve//30OHTpEUFAQgwYNOlKko7WmTp16pIvgyJEjGTt27HHbnHnmmTz++OOkpqYyZMiQo7r93XrrraSmpjJ27Fjmzp3Ln/70J04//XQcDgfBwcH897//ZdKkSfzud79j8uTJ9OnTh7Fjxx4pFNKU008/nYyMDCZPngw4u3O+9NJLBAYGtvj9TZw4kXPOOYddu3Zx3333ER8fT3x8fIuOm5aWxpgxYxgxYgQDBgxg6tSpR73vs846iz59+jB//nwefPBBzj33XBITExk5ciSlpaUNxjN37lzuuOMO/vSnP1FdXc0VV1zhluTMHNPQdfwGzra954FCa+2P6i2/HYi31v7WGDMY+BLod2zLWX3jx4+3dVVnRHxVTa2Dv3++lccW7GBo70gevXosA2Ijjtvu8a938OAnm1n4s9n069ny8qsiIiLiGzIyMhg2bJi3w5Bm/O53vyMiIoKf/vSn3g6l1Rr6HTPGrLLWjm9o+5ZMQj0VuBY42RizxvV1NvAMMMAYswF4Fbi+qcRMxB/sK6rgyv8t47EFO7hyYj/evWtqg4kZwLmpfQD4YN3e9gxRRERERDqollRrXAw0NvLvGveGI+I9X2/N48evraGiupZHLh/NBWP6Nrl9QvdwxiV154O1e7lr9qB2ilJERESkc/nd737n7RDaTUtazkQ6tJpaB3+dt5nrn1lBXGQoH3x/WrOJWZ3zUvuweV8JW/eXeDhKEREREenolJxJp7a/uIKrnlrOf+fv4IoJibxz51QGNtKNsSFnp/YhwMCHa9W1UURERETaRsmZdFqLtuVx9v8tYn1OEf+8PI0HL06lS0jLqwYBxEWGMXlgT95fuxcNuRQRERGRtlByJp1OrcPyj8+2cN0zK4iJCOWD70/lwjEJJ3y881LjySooZ8OeYjdGKSIiIiKdjZIz6VQOFFdw9VPL+NdX27l0XALv3jWVQXHHTy7YGmeO7E1woFHVRhEREWm1wMBARo8ezciRI7n00kspLy8/4WPdcMMNvPnmmwDccsstbNq0qdFtFyxYwDfffHPk9eOPP84LL7xwwueuk5WVxciRI49a9rvf/Y6//e1vrTqOu+LxNy2ahFqkI6ipdXDFk8vILarg75emcfG4E28tqy86PIQZKbF8sHYv9545lICAxoqbioiIiBytS5curFmzBoCrr76axx9/nJ/85CdH1tfW1rZqsuY6Tz31VJPrFyxYQEREBFOmTAHg9ttvb/U5PKWmpsan4mlPajmTTuOLjP3szC/j75e5LzGrc15aPLlFFazaddCtxxUREREf8fDDMH/+0cvmz3cud5Pp06ezfft2FixYwOzZs7nqqqsYNWoUtbW1/OxnP2PChAmkpqbyxBNPAGCt5e6772b48OGcc845HDhw4MixZs2axcqVKwH49NNPGTt2LGlpaZxyyilkZWXx+OOP889//pPRo0ezaNGio1q31qxZw6RJk0hNTeXCCy/k4MGDR475i1/8gokTJzJ48GAWLVrU6vfY1LF/9atfMXPmTP7v//7vSDx79+5l9OjRR74CAwPJzs4mOzubU045hdTUVE455RR27doFOFsPf/CDHzBlyhQGDBhwpCXRXyg5k07jmSVZJHTvwhkjerv92KcO70VoUAAfqGqjiIhIxzRhAlx22XcJ2vz5ztcTJrjl8DU1NXzyySeMGjUKgBUrVvDAAw+wadMmnn76aaKiokhPTyc9PZ3//e9/ZGZm8s4777BlyxbWr1/P//73v6O6KdbJy8vje9/7Hm+99RZr167ljTfeIDk5mdtvv50f//jHrFmzhunTpx+1z3XXXcdDDz3EunXrGDVqFL///e+PinPFihU88sgjRy2vb8eOHUclVI8//niLjn3o0CG+/vpr7rnnniPL4uPjWbNmDWvWrOF73/seF198MUlJSdx9991cd911rFu3jquvvpof/OAHR/bJzc1l8eLFfPjhh9x7772tvBLepW6N0ils3FvEisxCfn32MAI90O0wIjSIU4f14uP1ufz23OEEBeq5h4iIiF/50Y/A1b2wUfHxcMYZ0KcP5ObCsGHw+987vxoyejQ88kiThzx8+DCjR48GnC1nN998M9988w0TJ06kf//+AHz22WesW7fuSCtQUVER27ZtY+HChVx55ZUEBgYSHx/PySeffNzxly1bxowZM44cq0ePHk3GU1RUxKFDh5g5cyYA119/PZdeeumR9RdddBEA48aNIysrq8FjDBw48EhXTfhuEunmjn355Zc3GteSJUt46qmnjrTWLV26lLfffhuAa6+9lp///OdHtr3gggsICAhg+PDh7N+/v8n362uUnEmn8OySLLoEB3LZ+ESPneO8tD58tD6XpTsLmJ4S67HziIiIiJd07+5MzHbtgn79nK/bqP6Ys/q6du165HtrLf/+978544wzjtrm448/xpimHzpba5vdpjVCQ0MBZyGTmpoatx0Xjn7P9eXm5nLzzTfz/vvvExHR8Hy09d9jXYyA3011pMf70uHll1by/pq9XDyuL1HhwR47z6whcUSEBqlro4iIiD965BFYsKDpr/vvh/JyuO8+57/339/09s20mrXUGWecwWOPPUZ1dTUAW7dupaysjBkzZvDqq69SW1tLbm4u848dEwdMnjyZr7/+mszMTAAKCwsBiIyMpKSk5Ljto6Ki6N69+5EWqhdffPFIS1dbncixq6urueyyy3jooYcYPHjwkeVTpkzh1VdfBWDu3LlMmzbNLTF6m1rOpMN7Zfkuqmod3DClv0fPExYcyOkjevHJhn388YKRhAa1vrKSiIiI+Ki6MWavvw6zZzu/6r/2oFtuuYWsrCzGjh2LtZbY2FjeffddLrzwQr766itGjRrF4MGDG0x0YmNjefLJJ7noootwOBzExcXx+eefc95553HJJZfw3nvv8e9///uofZ5//nluv/12ysvLGTBgAM8++6zb3ktrj/3NN9+Qnp7O/fffz/333w84Wwz/9a9/cdNNN/HXv/6V2NhYt8boTaY9m/rGjx9v66rGiLSHqhoH0x76iqF9uvHCTRM9fr75Ww5w47Pp/O+68Zw2vJfHzyciIiInLiMjg2HDhrVs44cfdhb/qJ+IzZ8P6elQb7yTSH0N/Y4ZY1ZZa8c3tL1azqRD+2RDLgdKKnnokuR2Od+0QTF0Dw/mg7V7lZyJiIh0JA0lYHUtaCJuojFn0qE9sySLATFdmdlOBTqCAwM4a1QfPt+0n/Iq9w6SFRER8SfWWuZvOaD/D0VaQcmZdFirdx1k7e5D3DA1mQAPlM9vzHmp8RyuruXLjAPNbywiItJBLdtZyI3PpvPKit3eDkXEbyg5kw7r2SVZRIYGcdHYhHY978T+PYiLDFXVRhER6dSeXuysDrhm9yHvBtIMfyu1Lv7jRH63lJxJh7SvqIJP1udy2YREIkLbd2hlYIDh3NR4FmzJo+hwdbueW0RExBdk5Zfx5eb9BBhYl3PI2+E0KiwsjIKCAiVo4nbWWgoKCggLC2vVfioIIh3SS8uyqbWW6ycne+X856X14ZklmXy2cR+XenDia3dxOCxPL85kzuh44rq17o+IiIjIsZ5dkklQgOGaSUk8uySLQ+VVRIeHeDus4yQkJJCTk0NeXp63Q5EOKCwsjISE1vXgUnImHU5FdS0vr9jFqcN60a9nuFdiGJ0YTWKPLnywLtcvkrP1e4p44OMMMgvK+POFo7wdjnQyf/44g6Se4Vx9UpK3QxERNyg6XM0bq3I4Ly2eU4f14tklWazLKWLG4PYpztUawcHB9O/v2XlQRVpD3Rqlw3l/zV4Ky6q4cWqy12IwxnBeajxLtudTUFrptThaKj2rEIB3v91DcYW6Ykr7qXVYXliadWRsioj4v9fSd1FeVctNU/szsm8U4NtdG0V8iZIz6VCstTyzJJOhvSOZPKCnV2M5Ly2eWofl4w37vBpHS6RnFdI1JJDyqlreWb3H2+FIJ5KZX0ZFtYOdeWXsOXTY2+GISBvV1Dp4/ptsTurfg5F9o4jqEsyA2K6szSnydmgifkHJmXQoy3YWsnlfCTdOTcaY9iuf35ChvSMZFBfh81UbrbWszDrImSP7kJYQxYvLsjUwWtpNRm7xke8Xb9OYDxF/9+nGfew5dJibp33XVTAtIZq1Pl6xUcRXKDmTDuXZJZl0Dw9mzui+3g4FYwznp8WTnlVIbpHvtgjsyCujoKyKif27c82kJLYfKGXZzkJvhyWdREZuMUEBhpiIUBZty/d2OCLSRk8vziSpZzinDOt1ZFlqQhQHSirZV1ThxchE/IOSM+kwdheW83nGfq6c2I+w4EBvhwPAual9sBY+Wpfr7VAaVTfebEJyD85LiyeqSzAvLcv2clTSWWTkFjMwNoIZg2NYsj0fh0OttiL+avWug3y76xA3TkkmMOC73iupCdEArNW4M5FmKTmTDuOFpVkEGMO1k32n4tuA2AhG9u3m010b0zMLiYkIoX9MV8KCA7lsfALzNu5jf7GecIrnZeSWMKxPJDNSYjlYXs3GvcXN7yQiPumZxZlEhgZxyTFVikfEdyMowKgoiEgLKDmTDqGssoZX03dz1sje9Inq4u1wjnJ+Wjxrc4rIyi/zdigNWpFVyITkHkfG6F0zKYkah+WVFbu8HJl0dAfLqthXXMHw+G5MHRQDwKLtGncm4o/2HDrMJxv2ccXERCJCj56pKSw4kMG9IlmnoiAizVJyJh3C26tzKKmo4capvjdXyTmp8QB8uM73Ws9yiw6Tc/Aw45N7HFmW1LMrMwfH8sqKXVTXOrwYnXR0dcVAhvXpRmxkKEN7R7Joq8adifijF77JwlrL9VOSG1yflhjFupwiFZwSaYaSM/F7Dofl2W+ySEuIYmy/aG+Hc5y+0V0Yn9SdD9b63rizFZnO8WYT6yVnANdOSmJ/cSVfbNrvjbCkk9hULzkDmDE4llXZBzlcVevNsESklcoqa3h5xS7OGtmHhO7hDW6TlhBN0eFqsgvK2zk6Ef+i5Ez83sJteezMK+MGHyif35jzR8ezZX8JW/aVeDuUo9TNbzasT+RRy2cPjaNvdBdeVGEQ8aBNucXERoYSExEKwLRBMVTVOlieWeDlyESkNd5c5ey9ctO0xnuvqCiISMs0m5wZYxKNMfONMRnGmI3GmB+6lv/OGLPHGLPG9XW258MVOd6zS7KIjQzlnFHx3g6lUWeN7EOAwecKg6zMOsjYpO4EBR79pyAwwHDVSf34ZkcB2w/4VkIpHYezGEi3I68n9u9BSFCASuqL+BGHw/LskkzSEqOb7L0yuFcEYcEBrN2tcWciTWlJy1kNcI+1dhgwCbjLGDPcte6f1trRrq+PPRalSCO2Hyjl6615XHNSEiFBvtsQHBsZypSBMXywbq/P9LcvKq9my/6S47o01rl8QiLBgYaXlqkwiLhfVY2D7QdKjmq1DQsOZGJyDxYrORPxG19tPkBWQTk3T+vfZO+VoMAARsRHqWKjSDOavZu11uZaa1e7vi8BMgDvz/ArAjz/TRYhgQFcdVI/b4fSrPPT4skuKPeZalUrswuxFib0bzg5i4kI5exRfXhrVQ7lVTXtHJ10dDvySqmutQyv13IGMC0lhi37SzigqRzcoqbWwRsrd3PvW+uoqO5YY/mqalSwyBc8vTiTPlFhnDWyd7PbpiZEsWFvETUqNiXSqFY1NRhjkoExwHLXoruNMeuMMc8YY7q7OziRphQdruat1TmclxZPbGSot8Np1hkjehMcaHyma+OKrEKCAw2jE6Mb3ebaSUmUVNbw3hrfiFk6jrpKjccmZ9NTXCX11XrWJrUOy9urczj1H1/zszfX8Wr6bhZu7TjTFCzels/I++f53Djezmbj3iKW7izg+inJBAc2f0uZlhBNRbWDbQdK2yE6Ef/U4uTMGBMBvAX8yFpbDDwGDARGA7nA3xvZ71ZjzEpjzMq8vI7zH4N43xsrd1NeVcuNU5O9HUqLRIUHM3NwLB+uy8Xh8H7XxvTMQlITogkLDmx0m3FJ3RnaO5IXl2b7THdM6RgycosJCQqgf0zXo5YP692Nnl1DWLxdydmJqHVY3luzh9P++TU/eX0t4SFBPH7NWCJDg/hq8wFvh+c2//5qG1W1Dj7ftM/boXRqzyzOoktwIFdOaFnvldSEKAB1bRRpQouSM2NMMM7EbK619m0Aa+1+a22ttdYB/A+Y2NC+1tonrbXjrbXjY2Nj3RW3dHK1Dstz32QxMbkHI/tGeTucFjsvLZ59xRWkZxV6NY6K6lrW7yliQiPjzeoYY7h2chKbcotZvetQ+wQnnUJGbglDekUeV4wmIMAwdVAMi7bl64FAKzgclg/W7uWMRxbyw1fXEBIYwOPXjOPD70/jzJF9mDEklq82H/CJB0NttWb3IZZnFmKMWli96UBJBR+s3cul4xOICg9u0T7JPbvSLSyItT7SvV/EF7WkWqMBngYyrLX/qLe8T73NLgQ2uD88kYZ9kbGfnIOHucFPWs3qnDqsF2HBAXzg5Qmpv911iOpay8T+zfdGvmB0XyJDg3hxaZbnA5NOwVrLptzi46ZwqDM9JYb80ko2q8tasxwOy8frcznr/xbx/Ve+xQCPXj2Wj38wnTNH9iYgwFmg4ZShcRwoqWTDXv+/KX5y4Q4iw4K4+qR+rN51kNJKjYn1hpeW7aKq1sENjUw63ZCAAENqQjRrdx/yWFwi/q4lLWdTgWuBk48pm/+wMWa9MWYdMBv4sScDFanv2SWZ9I3uwunDe3k7lFbpGhrEKcN68fH6fV4dEJ2e5XzqPK5f0y1n4Iz54nEJfLx+H/mlle0QnXR0B0oqKSyrOqqMfn3TU5y9LFS1sXHWWj7dsI+z/7WIO+eupsbh4F9XjuHTH83g7FF9jiRldWYNicMY+DLDv7s2ZuWX8cmGfVw7KYmzRvahutayfKfmxWtvFdW1zF2WzSlD4xgQG9GqfVMTotiyr6TDFagRcZeWVGtcbK011trU+mXzrbXXWmtHuZafb63NbY+ARTJyi1m2s5BrJycd1yXKH5yfFk9hWRVLdnjvhiI9q5AhvSJb3BXlmkn9qKp18PrK3R6OrON6YWkWlz2xlA/W7u30lco2uYqBNJac9Y4KY1BcBIs07uw41lq+2LSfc/+9mNtfWkVVjYNHLh/NZz+eyflp8QQGNFzKvEfXEMb26+73486eWryT4IAAbpiSzLik7oQFa148b3hvzR4Kyqq4uYlJpxuTmhBNjcMe+TsgIkfzvztb6fSeXZJJWHAAV0xI9HYoJ2Tm4FgiQ4O8VrWxptbB6uyDzY43q29QXCSTB/Rk7rJd1HaAMSvtzVrLkwt3sjKrkO+/8i2z/76AF5Zmcbiqcz45rqvUOKx3w8kZOLs2Lt9ZoKfrLtZa5m8+wJz/LuGWF1ZSWlnD3y9N47Mfz+CCMX0bTcrqO2VYHOv3FLHfT6cpyC+t5I2VOVw0ti9x3cIICw7kpP49WbRNxcbak7WWpxdnMrR3JJMH9mz1/mmJrqIg6too0iAlZ+JXCsuqeHfNXi4am0B0eIi3wzkhYcGBnD6iN/M27KOypv1vPDNySyirqm10frPGXDs5iT2HDrNgi38/efeGTbnF5Bw8zJ8uGMXj14wjJiKU3763kSkPfsk/P99KQSfrLpqRW0Lf6C5NttxOT4mhssbBquyD7RiZ77HW8vXWPC589BtufC6dg+VVPHxJKl/+ZCYXj0toVe+BU4Y6u4H7a+vZC99kUVXr4HszBhxZNj0lhh15Zew5dNiLkXUui7fns3V/abOTTjemd7cwYiNDfWbOTxFfo+RM/MorK3ZRVePgxlYMQPZF54+Op6SyhgVb2v+J7wpXpciJrWg5AzhteC/iIkN5cVm2J8Lq0OZt3E+AgdNH9OLMkb15+44pvHH7ZMYldef/vtzG1Ie+4r53N5BdUObtUNtFRm5xo10a65zUvyfBgYaFnbBVpKK6lqU7Cvjn51uZ898lXP/MCvJKKnnwolF8dc8sLhufeEJdugf3iqBvdBe/HHdWXlXDC8uyOXVYLwbWG+P03fjEzvd74i3PLM4kJiKE89LiT2h/YwxpCVGsVTl9kQYFeTsAkZaqrnXw4tJspqfEkNKr4Spv/mLKwJ706BriLH09one7njs9s5DEHl3oHRXWqv2CAwO4cmI//vXVNrILykjq2bX5nQSAeRv2MT65BzERzsnSjTFMSO7BhOQebD9QwpMLd/Jq+i7mLs/mrJF9uHXGANKamBzcn1VU17Izr5SzRzb9e981NIix/bo7i4Kc1U7BeUlFdS1rdh9i2c4Clu4o4Nvdh6iqcRBgYER8FH+6YCSXjU8kJKhtz1ONMZwyLI43VuZQUV3b5ByHvub19N0cKq/m9pkDjlo+uFcEcZGhLNqWz+UtnGtLTtz2A6XM35LHj05NadPvT1pCNF9kHKC4oppuYS0b+yzSWSg5E7/xyYZ97Cuu4IELR3o7lDYLDgzgrJG9eWt1DmWVNXQNbZ+PorWW9KxCZg45sTkHr5zYj//M387Ly3fxy7OHuTm6jikzv4wt+0v47bnDG1w/KC6Shy9J457Th/DskizmLs/mo/W5TB7Qk1tnDmDW4NgT6jrkq7buL8FhGy8GUt/0lBj+9pmz22dPV2LbEVTW1LJm1yGW7ixg2c4CVu86Ohm7fnISkwb0ZHxyD6K6uPfG9ZRhvXhhaTZLdxQwe2icW4/tKTW1Dp5anMn4pO6MSzq6xd8Yw7SUGL7afIBah23R2Ds5cc8uySQkKIBrJiW16TiprodPG3KKmDIoxg2RiXQcSs7Ebzy7JJPknuHMHuIfNxTNmTO6L3OX7+KzTfu4cExCu5xzZ34ZBWVVre7SWKd3VBinD+/Fayt38+PTBvvVk3dvmbdxH+Ds0tiUXt3CuPesodw1eyCvrtjN04szufHZdIb2juR70wdwXlp8m1tOfMGmvU1XaqxvWkosf/tsK4u35zNndF9Ph+YxdcnYsp2FrmTsIJU1DoyBEfHduG6SMxmb0N/9ydixTurfg/CQQL7cvN9vkrOPN+wj5+Bh7j9vRIPrZ6TE8vbqPWzcW0RqQnT7BteJHCyr4q3VOVwwOv5IL4ATldrXWRRkrZIzkeMoORO/sGb3Ib7ddYj7zxt+3Pw9/mp8Unf6RnfhvTV72y05S890jjdrbTGQ+q6dlMQnG/bx0bpcLh7XPnH7s3kb9zGybzcSuoe3aPvIsGC+N2MA109J5oO1e3li4Q7ueWMtf/tsCzdN7c8VExOJ9ONuQBm5xXQNCaRfj+Z/HqP6RhHVJZjF2/wrObPWsmFPMfO3HGDZzgJWZX+XjA3v041rXMnYxOQeLZ7Owl3CggOZNiiGrzIOYOdYn2+VtdbyxNc7GBjblVMaSSanum7uF23LV3LmQS+v2EVFtYObTqB8/rG6dw2hX49w1mncmchxlJyJX3hndQ5dggO5pAMlAwEBhvPS4vnfop3kl1a2+UlkS6zIKqRn1xAGxJz4eLHJA3syMLYrLy7LVnLWjP3FFXy76xA/PX1wq/cNCQrg4nEJXDS2Lwu25PHEwh088HEG//pqG3+/NI3T23msortk5JYwpHdkix6yBAYYpg7qyeLt+Vjr+4nEvqIK3l2zh7dW5bDtQCnGOKcLuPqkJCYP9E4y1pBTh/Xis0372byvpEUtmN60ZHsBG/cW89DFoxr9nYmNDGV4n24s2pbHXbMHtXOEnUN1rYMXlmYxdVBPhjYxBUZrpCZE8e2uQ245lkhH4v99ZKRT2J5XyuDekX7dYtCQC8bEU+uwfLSufeZwT88qZHxy9zbd5BpjuHZSEmt2H2K9SiE36TNXl8a2FH0xxjB7aByv3jqZ9+6aSq9uYTz4yWYcfjjfnLWWjH3NV2qsb3pKLLlFFezIK/VgZCfucFUt763Zw7VPL2fKg1/y4CebieoSzJ8vHMXq35zGxz+czm/PG85pw3v5RGIGMGuoc8zplxn7vRxJ855YuIPYyFAuGNN0y+n0lBhWZR+krLKmnSLrXD5en8v+4soTmnS6MWkJ0ew5dJj8TjaViEhzlJyJX8jKLye5Z8u6hfmTob27MbR3JO+t2ePxc+0rqmB34eFWTT7dmIvGJdAlOJAXl2W1PbAObN7G/QyI6cqguIjmN26BtMRo7p49iJ35ZSzanu+WY7annIOHKamoYXh8y5OzafW6rPkKh8OyfGcBP39zLRMe+IIfvrqGnXll3D17EAt+Oos375jCVSf1o3tX35yLMS4yjLSEKL708fnONu4tYtG2fG6cmkxoUNPjW6enxFJda1meWdBO0XUedZNOD4jtyqzB7hunWFeRVl0bRY6m5Ex8XkV1LXuLDpPcQUu3zxndl9W7DrGroNyj5zkyv1kbxpvV6RYWzAVj+vLemr0UlVe3+Xgd0aHyKpbtLOCMkb3d2h3vrFG9iYkI4YVvstx2zPaSkdvyYiB1EnuEk9wz3FlS38uyC8r4x+dbmfm3+Vz+5DI+WpfLWSN78+qtk1j089n85PQhJLehy3B7OnloL9bsPuTTrRZPLtxJ15BArj6p+cqA45O7ExoUwMKt3v896WhWZh9kXU4RN07t79Yx3yP7diPAwJrd6oEhUp+SM/F5uwvLsRb6+8lNT2udl9YHwOOtZyuzCukaEshwN40xuWZSPyprHLyxardbjtfRfJlxgBqHdfs8dqFBgVw1sR9fbTng8YTe3TJySzAGhvZu3TyF01NiWbqzgKoah4cia1xxRTWvrNjFpY9/w8y/LuDfX20juWdXHrl8NOm/OZW/XprGpAE9/a5Q0SnD4rAW5vto61nOwXI+XJfLVSf1a1EFy7DgQE4a4ByfKO719KJMoroEc/FY9xblCQ8JIiUuUi1nIsdQciY+LzO/DMBvnki3VkL3cCYm9+DdNXuw1nPjiFZkFjI2qTtBge752I+Ij2JcUnfmLt/ls+Of3lqVQ85B7yQw8zbuo3e3sCMlo93p6klJBBrDC0uz3H5sT9qUW0Ryz66Eh7SuFtW0lBjKq2r5dtdBD0V2tJpaBwu2HOD7r3zLhD99wS/fXk9hWRU/P3MI39x7Mi/efBIXjOnb6vfhS0bEd6NXt1C+8tHk7OnFmRjgxqktH+M0fVAM2w+UsvfQYc8F1snsLizns037uHJiP4/8vqcmRLEup8ij//eJ+BslZ+LzsgpcyVkHHHNWZ86YeHbklbHRNQeUuxUdrmbL/hK3jDer79pJSWTml7Fkh+89rV6z+xD3vLGWv3yyud3PXV5Vw8JteZwxopdHWlR6dQvjjJG9eX3lbsqr/KcAQkZuCcP6tK7VDJwVQgMDTLu0iizfWcCUB7/ihmfTWbQtj8snJPLeXVP54iczuXPWIPpEdfF4DO3BGMPJQ3uxcGueV1okm3KwrIpXV+zm/NHxxEe3/Oc9fbBzfKIvdIHtKJ77JosAY7h+StsmnW5MamI0hWVV5BxUQi1SR8mZ+LysgnKiw4OJDvfNwfXucPbIPgQHGo91bVyVXYi1uD05O2tUb3p0DeHFpdluPa47PLM4E4B5G/ZxoLiiXc+9cGseFdUOt3dprO+GKckUV9Tw7rd7PXYOdyqpqGZXYTnDTqAMd7ewYEYnRrPQwzfdNbUOfvXOekKDA3j8mnEs/9Up/GHOSNISo32+jP+JOGVoHGVVtaxwzX/oK15als3h6lpunTGgVfsN6RVJbGSoXxbL8UUlFdW8lr6bs0f18dhDibQEZ8+Cdar8K3KEkjPxeVn5ZR22GEid7l1DmDk4lvfX7qXWA10EV2QeJDjQMKZftFuPGxoUyOUTEvkiY79PdSXKLTrMx+tzOX14L2oclpdX7GrX88/buJ/o8GC3FF9pzPik7gzr040Xlmb5RZegLftKgNYVA6lv2qAY1ucc4lB5lTvDOsprK3ezI6+M+84ZzpkjezdbIdDfTR0UQ2hQAF/4UEn9iupanl+axawhsa2eT8sYw/SUGBZvy/PZrtb+5PWVOZRW1ri1fP6xhvbuRkhggMadidSj5Ex8XlZ+WYctBlLfnNF92V9c6ZFS0OlZhYzqG0VYsPtvNq+a2A8LvNLOCVBTXliajcNa7jt3ODMHx/Ly8l1U17ZP162qGgdfZOzn1GG93Da+ryHGGG6YksTmfSUs97GWj4bUVWpsTRn9+qanxOCw8M0Oz5RKL6us4Z+fb2NCcndOG97LI+fwNV1CApk6KIYvN+/3mQT/rdU55JdWcduMgSe0//SUGA6WV3usi3hnUVPr4NklmYxP6n6k5L0nhAQFMCy+G2vbKTlblX2QhVvz2uVcIidKyZn4NGcZ/YoO33IGcOqwXnQNCeQ9N3dTq6iuZV3OIbd3aayT2COck4fE8cqK3T4xdqW8qoaXl+/ijBG9SewRznWTkzhQUslnG9undWDZzgJKKmo82qWxzpzRfYkOD/aLwiCbckuI6hJMn6iwE9o/LTGayNAgj8139uTCneSXVvKrs4d1yC6MjTl5aBy7Cw/7xCTftQ7L/xbuJC0hikkDTuzv1VTXvHgLt+kGvC0+XJdLzsHD3DbzxJLk1khLiGJ9TpFHeo3UV+uwfP/l1dz4XDrLdmo+PPFdSs7Ep2W7SoUnx3TcYiB1uoQEcsaI3ny8IZeK6lq3HXfN7kNU11qPJWcA10xOIr+0knkb93nsHC311uo9FB2uPtIVZ9aQOBK6d2m3BGbexn2EhwQyPSXG4+cKCw7k8vGJzNvoW91KG5KRW8ywPpEnnPgEBwYwaWBPFm3Lc3srz4HiCv63aCfnjOrDmH7d3XpsX3fyUOekwl9meL9q4+eb9pFVUM5tMwee8O9JXGQYw/p0U1GQNnA4LI8t2EFKXASnDHXfpNONSU2Ipqyqlp0efkDw9dYD7C2qIDw4kLtfXs2+ovYdiyzSUkrOxKd9V6mx47ecAcwZ05eSihoWbHHfjVK6q8vb+GTP3XTOTImlX49wrxcGcTgszy7JJDXBWeYfIDDAcM2kJJZnFrJ5n2e7Ojkcls827WfWkFiPdCFtyDWTknBYy9zlvleUpU6tw7JlX8kJjzerMz0lhpyDh488tHGXf36xjepaBz8/c4hbj+sP4qO7MLxPN68nZ9ZaHvt6J0k9w9vc6jw9JYaV2YV+VcnUl8zfcoAt+0u4Y9bAdpm/r64oyFoPFwV5efluYiJCef32yRyuquWOuauorHHfg1ARd1FyJj4tq4PPcXasqQN7EhMRwntr3Ne1MT37IEN6RXq02mVAgOGaSf1YkeX5BKgpX2/NY2deGTdP63/Uk/fLxicSEhTg8eTx290HySupbJcujXUSe4RzytBevLJit1tbXN0pq6CMw9W1bkjOYgHcWo1v+4ESXkvfxdUnJZHUSR4CHeuUYXGszC70aLGV5qzILGTt7kPcMn0AgW1MCKanxFBda1m+0/fHYvqixxbsoG90F85Li2+X8w2IjaBrSKBHi4LsK6rgq837uWx8AsP6dOOvl6bx7a5D/PHDTR47p8iJUnImPi2roIweXUOI6hLs7VDaRVBgAOemxvPl5gMUV1S3+Xi1Dsvq7INM6O/5rlqXjnMmQC8t814LztOLM+nVLZSzR/U5anmPriGclxrPO9/uccvPtTHzNu4nONAwux26AtV3w5RkCsuq+Ghdbruet6WOFANpY3KW3DOcvtFdWOzG8UQPfrKFriFB/OCUFLcd09+cPDQOh3U+3PCWJxfupGfXEC4dl9DmY01I7kFoUEC7jjt7cVk2Ty7c4fPdi5uzIrOQldkHuXXGAII9WNCovsAAw8i+UR5tOXt95W4cFq6Y0A+As0f14baZA3hp2S7eWLnbY+cVORFKzsSnZeaXkdSBJ59uyJzR8VTVOPh0fdvHb2XkFlNaWePR8WZ1utclQKv3eOUJ/JZ9JSzens91k5MbvKm4bnIS5VW1vL0qxyPnt9by6YZ9TBkYQ7ew9n2YMHVQTwbGdvXZwiAZucUEBhgGxUW06Th1pdK/2V5AjRuqby7fWcAXGfu5Y/ZAenTtuPMoNictIZqYiBC+8FLXxq37S/hy8wGum5zslu7AYcGBTOzfo93GnW0/UMJ9727gzx9vZsqDX3Hp49/wwtIs8koq2+X87vTYgu306BrCZeMT2/W8aYnRZOwt9khRqVqH5bX03UxPiaFfvfuJn50+hCkDe/LrdzewYY/mWRPfoeRMfFp2QTn9O1lXo9GJ0ST1DOe9tW2fkLpucllPzrdV360zBnC4upZHvtjWLuer75nFmYQFB3D1Sf0aXJ+WGE1aQhQvLsv2SNnwzftK2FVY3q5dGusYY7h+SjJrc4r4dtfBdj9/czJySxgY29UtN97TU2Ipqaxp81N2ay1//jiDPlFh3DTVc/M4+YOAAMPsIXF8veVAu005Ud+TC3fSJTiQ6yYnue2Y01Ni2HaglNwiz7dkPf71TsKCA3jnzin89PTBFB+u4bfvbeSkP3/BNU8t57X0XRSVe67F3l027S1m/pY8bpySTJeQ9p3jLy0hmqpax5H5EN1p4bY89hw6zJUTj/6/ISgwgH9fOYaYriHc9uIqDpZ5r1uvSH1KzsRnHa6qJbeootOMN6tjjGHO6L58s6OA/cVtqyaVnlVIQvcu9Inq4qbomjakdyRXn5TEi8uyPfKfbGMKSit5Z80eLh6b0OTYuusmJ7Mjr8wjc2XN27gPY/DaHFkXjU0gIjSI57/J8sr5m5KRW9zmLo11pgzsiTG0uVXkw3W5rM0p4p7Th7Rb8RZfdsqwOIoraliV3b7J/b6iCt5bs4fLJyTS3Y2tl0fGJ3q49WzPocO8++0erpjQjzH9unP3ySnM+/EM5v1oBnfNHkTOwXJ+8dZ6xj/wObc8n857a/ZQVumbhUoe/3oHXUMCuW5ycrufO9VVFGSNB8advbJ8FzERIZw67Pi/zT0jQnnsmnHklVTyg1e/9Xg5f5GWUHImPiu7sHMVA6lvzuh4rIUP1p54YRBrLelZhUxshy6N9f3ktMFEhAbxhw83ttvEtnOX76KqxsGNzbSAnJPahx5dQzzS/e/TDfsYn9Sd2MhQtx+7JSJCg7hkXAIfrc/1qe5Uh8qryC2qaHMxkDrdu4Ywqm8Ui9ownqiyppaH521maO9ILhzT1y1x+btpKbGEBAbw1eb27dr47JJMah32yNQX7jK0dyQxEaEe79r4v4U7AfjejAFHLR/SO5J7Th/C/J/O4oO7p3Hj1P5s3FvMD19dw7g/fc5dc1fzqZunTWmLXQXlfLhuL1dPSiIqvP3HeCd070KPriGs233IrcfdX1zBl5sPcIlrTHRD0hKj+cOcESzals/fP9vi1vP7EyWmvkPJmfisukqNna1bI8DA2AhG9Y3i3TUn3rUxM7+M/NIqxrdzcta9awg/PjWFJdsL+HyT5yd+rqyp5YWl2cwaEtvsmKaw4EAuG5/I55vcOy/YroJyNu8r8UqXxvqum5xEda3llRW7vBpHfZtcxUDclZyBs8vat7sPUXKCxV1eWraL3YWH+eXZw9pcGbCjiAgN4qQBPfgio30mawcorqhm7vJdnJMaT2IP944tNsYwIyWGxdvzcXjoprOgtJJX03cxZ3Rf+kY33DvBGMOohCh+dfYwlvziZN64fTKXjU9keWYBt7+0mvF/+oKfvLaG+V7qUlrniYU7CAoIcHuS3FLGGFIToljn5qIgr6fvptZhuWJC02PorpjYjysnJvLogh0+MV9ne6uoruXap5f7ZM+LzkjJmfisLNdcRkmdYALqhswZHc+GPcVsP3BiE3OmZ9WNN2v/SXWvnpRESlwEf/oow+PzyHy4Npf80soWjxu6+qR+WODl5e5LYOr+M/d2cjYgNoIZg2OZuzzbqzd69WXkOru3ujM5mzYollqHZdkJlEovOlzNv7/axvSUGGYOjnVbTB3BKUPj2JlXRqbrwZinvbx8F6WVNdx2TKuTu0xLiaGwrOrIAwJ3e/6bLCprHNwxq2XxBwQYJiT34A9zRrLsl6fw0s0ncc6oPnyRsZ8bn01nwgNf8Ot31rf7+LQDJRW8sSqHi8f1pVe3sHY9d32pCdFsO1Ditvnpah2WV9N3M21QTIt64Pzu/BGkJURxz+tr2eHhCbF9SVWNgzvnrmbpzoJOUxnb1yk5E5+VlV9Gz64h7V75zlecnxZPgIH3T7D1bEXmQXp0DWFgbNsq5J2I4MAAfnvecHYVlvPM4iyPncday9OLMxncK4LpKTEt2sc5L1gcr6bvclvi+OnGfQzv083tT/9PxPWTk9hfXOkzT3837S0mJiLUrd09xyZFEx4SeEJdGx9dsJ2iw9Xce9ZQt8XTUZw81Dkmpz26NlbW1PLskkymDurJyL5RHjnHtEHOvwmeKKlfWlnDc99kcfrwXgyKi2z1/kGBAUxLieGhS1JJ/82pPHXdeGYOjuW19N386t31bo+3Kc8szqKm1sFtMwa263mPlZYQhcPChj3uSaYXNVIIpDGhQYE8ds04QoICuO3FVZT66NhAd6p1WH78+hq+2nyABy4YxQXq5u0TlJyJz8rML+uU483qxHULY8rAGN5ds/eExm6lZxUyPqn7UZMxt6fpKbGcOqwX//lqGwfaWNikMct2FrIpt5ibpvZv1fu8dnIy+aVVfLqh7QnMgeIKVu86yJkjvdtqVmfWkDj69Qj3me4pGbnFDOvT+pvXpoQGBXLSCZRK33PoMM8uyeLCMX0ZEe+ZhMCf9esZTkpcBF+2Q9fG99bsZX9xpUcTgrhuYQztHemRcWcvL8+muKKGO2YNavOxQoMCOXV4L/7vijH8+LTBfLQul/fbMN64NYorqpm7LJuzRvXx+v+3qQnRAG6bjPqVFbvo2TWkVUWa4qO78J8rx7Azr5Sfv7m23cZNe4PDYbn3rXV8tC6XX589jKsaqXQs7U/JmfisrIIykjvheLP6zh8dz67Ccta0cpD0/uIKdhWWt1sJ/cb85pxhVNdaHp7nmUHWzyzJpEfXkFY/7Zs+KIbknuG8sLTtE2Z/tmk/1nq/S2OdwADDtZOSSM86yMa93p27p7rWwfYDpW6r1FjftJRYduaXkXOwvMX71A32v+f0IW6Pp6M4ZVgvVmQWenSydofD8uTCnQzr063FLd4nanpKDCuzDrqtqxw4W/2eWpTJlIE9GZ0Y7bbjAtw2YwBj+kVz37sbPPZQq74Xl2ZTUlnDHTO922oGEBsZSt/oLm6ZjPpAcQVfZBzgkvEJjRYCacyUQTH84syhfLx+H0+6Cr50NNZa/vDhJt5YlcMPTkk5rqCNeFezv7HGmERjzHxjTIYxZqMx5ofHrP+pMcYaYzz7F1Y6lfKqGvYXV5LcySagPtaZI3sTEhTAe2ta9xS1brxZe0w+3ZTkmK7cNK0/b67KYa2bq3Bl5ZfxRcZ+rj6pX6tLoQcEGK6ZlMSq7LYnMPM27iO5ZziDe7V/99HGXDY+kS7BgbzwTduTz7bYkVdKVa2D4fHuT85muG7qW9oqsnFvEe98u4ebpvZvtHiDOEvq1zgsi7Z6rsrh/C0H2H6glNtmDPB4y/70lFiqah0sz2z9+MTGvLVqDwdKKrnTDa1mxwoKDODvl6ZRWVPLL95a59GWm4pqZ9fSGYNjPda1tLVSE6Lc8n/FG6tyXIVATqw16NYZAzh7VG8e+nQz32xvn8nM29M/Pt/Kc99kcfO0/vz41BRvhyPHaMnjhBrgHmvtMGAScJcxZjg4EzfgNMB3SoNJh5DtKgbi7W4W3tYtLJhTh8Xx4bq91LSiwEN6ZiHhIYGM8MBNcWvdffIgYiND+d0H7i2t/9w3WQS5WolOxKXjEgkLDuDFNrSeFR2uZumOAs4Y2dtr3UcbEhUezAVj+vLumj0cKvfexKoZHqjUWGdQXAS9uoWyqIU3Tg9+spmoLsHcMcv7LQS+bExiNNHhwXy52TNdGx0Oy6MLdtA3ugvnpPbxyDnqm9i/ByFBAW7r2lhT6+CJhTtITYhi6qCebjnmsQbERnDvmUOZvyWP19J3e+Qc4Exg8kurfKLVrE5qQjS7CsvbNCG0w+GsWDtlYE/6n+A9hDGGhy9JY0BsBHe/8i173Fjd19se/3oH//5qO1dMSOQ35wzzqf+7xKnZ5Mxam2utXe36vgTIAOr6EP0T+DnQcTvlilccKaPfyZMzgDmj+5JfWsXiVjy9W5F1kLH9uhMU6P2eyxGhQfz8jCF8u+tQm6YGqK+4opo3Vu7mvNR44k6wulhUeDAXjHYmMCdaHe2rzfupcVif6dJY3/VTkqiscXj05q45GbklhAQFMMADn2NjDNMGxbJke36z8/N8vTWPRdvy+f7JKapG1oygwABmDY5lwZY8j8x79NCnm1mVfZC7Tx5EcDv8fQoLdo5PbMu8ePV9smEf2QXl3DlroEdvaq+bnMzkAT3544eb2F3Y8q67LVVT6+DJhTsY0y+aSQO828OivjTXZNTr9px4j4bF2/PJOdjyQiCNiQgN4olrxzmrGb60ymfmpGuLF5dm8eAnmzkvLZ4HLhylxMxHteovozEmGRgDLDfGnA/ssdaubWafW40xK40xK/Py3F8xSTqmzILOOwH1sWYNiaVbWBDvt7BrY9HhajbvK/Z6l8b6Lh6bQGpCFA9+spkyN1TAem3FbsqqarmpjXPyXDs5iYpqB2+sOrEEZt6G/cRFhjLaNZDdlwzt3Y2T+vfgxWXZXptcNCO3mMG9Ijz2kGDG4BgOlVc32TW11mH5y8cZ9OsRfsKtrJ3NKcN6UVhWxZrdB9163BeXZvHEwp1cOymp2Xmn3GnaoBi27i9lX1HbxnBZ62z1GxDbldOHe/aBTECA4a+XpmKM4advrHX7XG0frc9ld+Fh7pjp2SSztUbWJWdt6Nr4yopd9OgawukjWl4IpDEDYyP4+2VprM0p4vcfbGzz8bzp7dU53PfeRk4dFsc/LkvTHI8+rMX/YxpjIoC3gB/h7Or4a+C3ze1nrX3SWjveWjs+NlZzykjLZOWXERMRSkRokLdD8brQoEDOHtWHeRv3cbiq+Sd3q7MPYi1M8ML8Zo0JCDDcf94I9hdX8tiCHW06Vk2tg+e+yWJi/x5tHicxIj6K8UndeXFZdqtvfg5X1fL11jzOGNGbAB/9T+76KcnkHDzcLqXRj2WtZdPeYob19lzX2qmuUumLmuiy9vbqHDbvK+FnZwxpdWGAzmrG4FgCAwxfZrjv9+aLTfu5/33njeH95w1v14Rgeorz3qOtrWcLtuaRkVvM7TMHtstnPqF7OL89bzjLMwt5Zkmm245rreWxBTtIiYvg1GFtT2DcqVtYMANiu55wUZADJRV8vmk/l4xLIDSodWORG3PGiN7cOWsgr6zYzasr/HMUz6cbcvnpG2uZMrAn/7lqbLu0WsuJa9HVMcYE40zM5lpr3wYGAv2BtcaYLCABWG2M8b2+PeKXsgrKO30xkPrmjO5LWVUtn7egxPWKrEKCAgxjEn0nOQMYl9SdC0bH8+SinW3qpvPZpv3sOXSYm9vYalbn2slJZBeUt3oupIXb8jhcXeuTXRrrnD68F32iwrxSVj+vpJKCsiqPjDerExMRyrA+3Rq96a6oruXvn20lLSGKc9thfFNHEdUlmAnJ3d2WnK3LOcT3X/mWkX2j+NeVY9q9u/XQ3pHERIS2qmt4Qx6bv4M+UWFcMLr95oK6dFwCpw6L4+F5W9h+oMQtx5y/5QCb95W0W5LZWqMTolmbc+iExii/sTKHGod1e8vsPacPYXpKDL99b2Orqyd729db8/j+K98yOjGa/103vtUFtKT9taRaowGeBjKstf8AsNaut9bGWWuTrbXJQA4w1lrrG7Oeit/L6uRznB3rpP496N0tjPe+bX7MVnpmISP7RtElxPf+AP/irKEEGsOfP8444WM8vTiTfj3C3fbE96yRfYiJCG11YZB5G/cR1SWYk3xovMaxggIDuGZSEou357vtxq6lNnmwGEh9M1JiWJXdcKn0Z5Zksq+4gl+erUHvrXXqsF5s2V/S5vFOuwvLuem5lfSMCOGp68cTHtL+vSECAgzTU2JYvC3/hLsHrswqZEVWId+bPqBdW2CNMfz5olF0DQnkJ6+vpboVhaEa85irIMv5o+PdEKH7pSZEkVdSyb5WTiXgcFheTd/F5AE9GRDr3uq5gQGGf10xhtjIUO58aRUFpZVuPb6nLN9ZwG0vriQlLpJnb5xIV/VG8gst+QszFbgWONkYs8b1dbaH45JOrKyyhgMllSoGUk9AgOH80fF8vTWvySpWFdW1rMsp8vr8Zo3pE9WFu2YP5JMN+/hmR+ufYq/ZfYhV2Qe5YUqy2/rLhwQFcOXERL7acqDFN6LVtQ6+zDjAKcPifL57yOUTEgkJDHDLnG6tkZHrTAY9McdZfdNSYqiutceVSi8oreSx+Ts4dVgckwZ4pqpeR3by0DjA2cpyoorKq7nh2RVU1dTy3I0TiIs8seI97jBtUAwFZVVHHhq01qMLdtA9PJgrJrbfWLk6cZFhPHDhKNblFPHo/LZ1C0/PKiQ96yDfm97fZ/92pbrmjlu7u3VdG5fsyGd34WGu9NBkyt27hvDEteMoKKvi+69826oKyt6wLucQNz+/kr7RXXjx5okqhuRHWlKtcbG11lhrU621o11fHx+zTbK1tuNNBCFekVVXDKSTT0B9rDmj46lxWD5an9voNmt3H6Kq1uFTxUCOdcv0ASR078IfPtjU6v/cnlmcSWRoEJe5ucvKVSf1I8AYXlresgRm+c5Cig5X+3SXxjoxEaGcm9aHt1blUOLBiYWPlZFbTN/oLkSFe/aGYEKys1T6sfNy/fur7ZRV1XDvWUM9ev6OakBsBP1jup5w18bKmlpufXEluwsP8+R14xkUF+nmCFunbrLrpsYnNiYjt5ivNh/gxqn9vdLyB3D2qD7MGR3Pv7/axvo2TNL82IId9OgawuUnOP9XexjepxtBAYZ1OYdatd8rK3bRPTyYM9xQCKQxI/tG8acLRvLNjgKeWuy+cYDutmVfCdc9s4Lo8GBeuuUkekaEejskaQXffGwinVpWvrP1Ikljzo4yvE83UuIieK+JcvQrs53V1cYn+dZ4s/rCggP59dnD2LyvhFdbUeY9t+gwH6/P5fIJiW4vFNMnqgunDevF6+m7W1Qued7GfYQFBzAjxT+KHF0/OZmyqlreWpXTbufMyC1mWB/P35DXlUpfvP27cWdZ+WW8tCybyyf083pS4M9OHhrH0h0Fra6w6nBYfvbGOpZnFvLXS1N9ouUyrlsYQ3tHHvV70lKPf72DriGBXDfZu9U+/3D+SHpGhPCT19ecUFn3I0nmlGSf7PZeJyw4kCG9I1nXiiQ0r6SSzza6txBIYy4dn8iMwbH8b+HOFhXpam9Z+WVc8/RyQgIDePmWSfSJ6uLtkKSVlJyJz8lSGf0GGWO4YExf0rMOknOw4e53KzILGdwrgu5dQ9o5utY5c2RvJg3owd8/29LiOcZeWJqNw1qun5LskZium5zEwfJqPlzXeMskOG88523cx6zBcT59g1NfWmI0oxOjnT/DdiirX1Fdy878Mo+PN6tTVyp9v2uMyl/nbSEkKIAfn5bSLufvqE4ZFkdVraPVhTT+9tkW3l+7l5+dMYQ57Vg8oznTBsWQnnmwVTfUuwrK+WDtXq46qR/R4d79uxoVHsxDF6ey7UAp//h8a6v3/y7JTHZ/cG6WmhDNulYUBXlzlasQSBvnNmupu2cPoqCsitfSfat6495Dh7n6qeXUOixzbzmJfnrI7ZeUnInPycovIzZSZfQbcn6acwD3+2uPn/Os1mFZnX3Qp7s01jHG8NtzR1B0uJp/ftH8TUZ5VQ0vL9/FGSN6k9jDM//ZTB7Yk0FxEby4NKvJ7dbkHOJASSVnjPStEtTNuWFKMjvzy9pcsa4ltu0vpdZh2y85q9dlbfWug3y0PpfvTR/g1TFOHcGE5B5EhgbxVSu6Nr68fBePLtjBlRP7ceesgR6MrvWmD46lqtbB8syCFu/zxMIdBAUEcMv0AR6MrOVmDYnjyon9+N+inaw4ZpxlU+onmZ7uauwOaQlRFFfUkFXQ/DjgukIgJ/XvwUA3FwJpzMT+PZiY3IMnF+6kqsY3xp7llVRyzVPLKT5czQs3TSSll3oN+CslZ+JzsgrK6K/xZg1K7BHOuKTuvPft8clZRm4xJZU1PlsM5FjD47tx5cR+vLgsm237m64k+PbqPRQdrm7zpNNNMcZw7aQk1uYUsbaJUsnzNu4jKMBw8lD/Ss7OGtWbmIiQdimrn9FOlRrrDOvdjZiIEBZty+MvH2cQExHKrTN842banwUHBjBjSCxfbj7QohbX+VsOcN97G5g1JJY/zhnhcxUyJ7rGJy5u4bizAyUVvLEqh4vH9aVXN99J9H99zjASunfhp2+sbXGX0ycX+VaS2Zw0V1GQlow7W7qzgOyCcq7yUCGQxtw5eyB7iyp4t4mhBu3lUHkV1z69nNyiCp69cUKb5wAV71JyJj4nM7+c5Bg1xTfmgtHxbNlfcuQGuE56lvMpqj+0nNX5yWmD6RoSyB8+3NRo9xWHw/LMkkxSE6I8PpbuorF96RoS2GhlQ2st8zbsY/LAnn5X+So0KJCrJvbjqy0H2NWCp9FtsSm3mPCQQJI81Mp5rIAAw9RBMXy0Lpf0rIP8+LQUlYx2k1OGxpFfWsn6PU2P/9mwp4i75q5maO9I/nPV2Hafy6wluoQEMjG5R4uLgjyzOIuaWge3zfCtFsCI0CD+fulodh8sb9G0JHkllby+MoeLxvpWktmUlLgIwoIDWjSn2MsrdhEdHtzuBZpmDo5lRHw3Hluwg9p26C7emNLKGm54Np2deWU8ed04xvvRPYA0zPf+ekqnVlpZQ35pJUlqOWvUOanxBAUY3ltzdOtZelYhfaO7EB/tP4N/e0aE8qNTB7NoW36jVeG+3prHzrwybp7W3+NP4iPDgrlwbF8+WLeXwgamLNi6v5SsgnK/qNLYkKtOSiLQGF5cluXR82zKLWZI78h2neB2ekosNQ7LwNiuXD6+/cudd1SzhsQRYODLzY13bdxz6DA3PpdOdJdgnrlhgk93SZ+WEsOW/SVHxic2puhwNS8ty+bsUX18cvzzxP49uGVaf+Yu38XXW5sucvLMkkyqax3cNtO3ksymBAUGMDI+qtmiIPmllXy2cR8Xj01o98mVjTHcNXsQmfllfLKh6bHKnvTLt9ezfk8R/7lqDNP9pEiVNE3JmfiUrHxnMRDNcda4Hl1DmJ4Sw/tr9hzpamStZUXmQSYk+26VxsZcOzmJQXER/OmjTVTWHD9Q/5klmfTqFspZI/u0SzzXTU6mqsbB6yuPryQ5b+M+jIHTh/tXl8Y6vaPCOGNkb15L393gpM3uYK0lI7fY4/ObHWvWkFiSeoZz/3kjfLLVxl/16BrC2H7d+Wrz/gbXFx2u5sZnV1BRXctzN030+ZaZlpbUf2lZNqWVNdzuwwnNPacPISUugp+/ubbRwkrFFdW8tDSbs0f28bv/V1MTotm4t6jJKVfeXJVDda3lSi/MPwdw5ojeDIztyn/n72hx8RJ3Ss8q5IO1e7l79iBO99OHhnI8/Q8mPkVznLXMBWP6sreo4khXxqyCcvJLK5ngJ+PN6gsODOC+c4eTVVDOc0uyjlq3ZV8Ji7blc93kZEKC2ufP1eBekUwa0IOXlmUf11Xl0w37GNuvO3E+fgPalBumJFNcUXNcy6u77Dl0mJKKmnYbb1YnJiKUr382mxmD9eTY3U4eFseGPcXsKzq6tamqxsEdL60iM7+MJ64Zx2A/KEBQNz5x8bbGW5sOV9XyzOJMZg6O9emxO2HBgfzjstEUlFZx//sbGtxm7rJdlFTWcIePFWdpibTEKCqqHWzdX9rgeofD8uqKXUzs38NrU2YEBBjumDWIjNxiFmxp/TQNbeFwWP7wwSZ6dwvjtpn+MZZQWkbJmfiUupYzjTlr2mnDexEeEsh7rqqN6a6qXRP9tK/5zMGxnDosjn9/tZ0DJd/dAD67JJOw4ACuaqfyyHWum5xMzsHDLNjyXVeu3YXlbMot9ugEp+1hfFJ3hvXpxvPfZHnkSW9GrrO4S3snZ+I5p7iK33xVr2ujtZZ731rHNzsKeOjiVKYMivFWeK0SEGCYNiiGxdvzGy1y8vrK3RSUVflctcmGjEqI4u6TB/Humr18sv7ornUV1bU8vTiT6SkxPp1kNiY1IRpovCjIsp0FZBWUt/v/D8eaMzqevtFd+M/87e3aevb2t3tYv6eIX5w1xGuTo4tnKDkTn5JVUE6vbqH6Q9OM8JAgTh/ei4/X51JV4yA9q5Du4cEMimufMsKe8OtzhlNZU8vf5m0BoKC0kre/3cNFYxPafd6204b3ole30KMKg8zbuA/Ab8eb1THGcMOUJDbvK2H+lpaXSG+pjNxijIGhvX2/FUVaZnCvCBK6dzmqa+M/v9jG29/u4SenDeaisQlejK71pqXEkl9aRca+4uPWVdc6eHLhTsYldfebyrd3zR7EqL5R/Oqd9eSVVB5Z/uaqHPJLK/2y1QwguWc43cKCWNvIuLOXV+wiqkswZ4707t/k4MAAbps5gFXZB1neiukN2qKssoa/zttMWmI0c9J8Zy5BcQ8lZ+JTsvLLVAykheaM7suh8mq+3ppHelYh45N7+Fzp6tboH9OVm6b2541VOazLOcTc5buoqnFw09Tkdo8lODCAqyYm8fXWvCOtufM27mNo78gO8ft5wZi+DIqL4L53N1LawlLcLZWRW0xSj3BVS+xAjDGcMjSOxdvzqaiu5fX03fzry21cNj6B7588yNvhtVpT484+WLuXPYcOc+esgX7z9zQ4MIB/XJZGWVUtv3x7PdZaamodPLFwB6MTo5k8oKe3QzwhxhjSEqMbbDkrKK1knpcKgTTksvGJxESE8t/529vlfE98vYP9xZX89txh7Vp4SdqHkjPxKZrjrOWmpcTQo2sITy3aSVZBud92aazv7pMH0bNrCPe/v5EXl2Uzc3Cs18YSXDkxkaAAw0vLsskrqWRl9kG/bzWrExoUyEMXj2Jv0WH++ulmtx57U26xujR2QCcP60VFtYOHP93Cr95Zz/SUGB64cJTfJDD19eoWxpBekcfNd+ZwWB5bsIMhvSI5eWicl6I7MSm9Ivn5GUP4ImM/b67K4aP1uewuPMwdfpRkNiQ1IYrN+0qoqD66WNRbq71bCORYYcGB3DK9P4u25Tc5T6Y77Dl0mCcW7uS8tHjGJfn///tyPCVn4jNKKqrJL63yybLFvig4MIBzU/sc6Ubhj8VAjhUZFszPzxjKt7sOkVdSyc0enHS6OXHdwjhzZG9eX7mb99fuxVq83n3GncYl9eD6ycm8sCyblVnu6YpTWllDdkG5krMOaNKAHoSHBPLMkkwGxUXw6NVjCfbjqpjTUmJYkVXI4arvbvq/yNjPtgOlfpvQ3Di1PxOTe/CHDzbxf19sY1BcBKcN8+8xsqkJ0dQ6LBv3ftcF1VrLKyt2MyG5Oyk+VITm6pP60S0siEcXeLb17GHXA7VfnDnEo+cR7/Hfv6zS4WTlOyfG7a9iIC02Z7Szr3mX4EBGxHeMG+JLxiWQlhjN0N6RR7ofect1k52VDf/+2Rb69QjvcOOofnbGEOKjuvCLt9Yd92T6RGxxjeFp7zL64nmhQYGcNbIPfaO78OyNE4gM869J2I81PSWGqhoHK1wPJqy1PLpgB4k9unBuavtM2+FugQGGv12aRq217Mwv4/aZA/2+y1taA0VBlu0sJDO/jCu9XAjkWJFhwdwwJZl5G/ezbX+JR86xKvsg763Zy/emDyChu+6VOiolZ+Iz6srod4QxPe1lbL9oknuGM6F/D79+il1fQIBh7i0n8frtk73+9HpCcneG9o6kvKqWM0f29no87tY1NIi/XDSKHXll/Oertj/t3VRXqbGDPCiQo/3lolHM/+ks+kT5z0T3jTmpf09CAgOOlNRfurOANbsPceuMgX49T16/nuH89ZI0zhzRm/PT4r0dTpv1jgojLjL0qMmoX1mxi25hQZw9yveS6Bun9ic8JJDHFuxw+7EdDssfP9xEbGSo3xZ5kZbx379A0uEcKaOv5KzFjDG8dMtJ/O3SVG+H4lYRoUF084En887KhskAnNWBujTWN2NwLJeMS+Dxr3ewcW/DVdFaKiO3mG5hQcRH+e88cNK4kKCAdptv0NO6hAQyoX/3I0VBHluwg5iIUC4d51+VJxtyTmofHr92XIe5VqkJ0ax1tZwVllXx6YZ9XOQjhUCO1b1rCFdN7Md7a/eyq6Dcrcf+YN1e1uw+xM/PGKKCSx1cx/jkSoeQWVBG725hdAnxvT+4viyhezhxkboZ9pTLJyTyyQ+nM6Zfd2+H4jG/OWcY0eEh/OKtddTUOk74OBmuYiAdrYVROqZpg2LZvK+ErzbvZ9G2fG6e1t8nb/g7u7SEKHbmlVFcUc1bq3KoqnVw1Um+1aWxvu/NGECgMTyx0H2tZ4erannwk82M7NuNi/1s6gppPSVn4jOy8ss0+bT4HGNMhy9wER0ewh/mjGDDnmKeWpx5QsdwOCxb9pV0+J+VdBx1Y1p/8vpaIsOCuGaS797wd2ZpidEArM8p4pUVuxif1J3BPlQI5Fi9uoVxyfgE3liZw4HiCrcc88mFO8ktquC3547w+3GE0jwlZ+IzsgvK6a9KjSJecdbI3pwxohf//HwrO/NKW71/dmE55VW1KgYifmN4n2707BrCofJqrp2U5PdFTjqq1IQowJmg7PTBQiANuX3GQGocjhN+2FXfvqIKHv96B2eP6u03E6NL2yg5E59QXFFNQVmVioGIeIkxhj/OGUlIUAD3vr0eh8O2av9NrlLXajkTfxEQYJgxOJbQoABunOq9aTukadHhIST1DOfrrXl0CwviHD+optmvZzjnp8Xz0rJsDpZVtelYD8/bTK3D8suzhrkpOvF1Ss7EJ6gYiIj3xXUL475zhrMis5CXV+xq1b4ZucUEBhhSekV4KDoR9/v1OcN4+84pxEaGejsUaUKqq6S+rxYCacgdswZRXlXLc99knfAx1u4+xNur93DTtP4k9tCwj85CyZn4hExXcqZujSLeden4BKYO6smDn2xm76HDLd4vI7eYgbFd/ebGSQQgJiKUEfFR3g5DmjE+yVmQ6YqJiV6OpOWG9I7k9OG9eO6bLEora1q9v7XO0vkxESHcNVul8zsTJWfiE7JdJWeTeurJkIg3GWP4y4Wp1Dosv3l3A9a2rHtjXaVGERF3u2JiIh/9YBpDe/vX35g7Zw+i6HA1Ly/PbvW+H63PZWX2QX56+hCNh+xklJyJT8jKL6NPVJieuov4gH49w/npGUP4avMB3l+7t9ntD5VXsbeoQsmZiHhEaFCgX7Zwjk6MZtqgGP63KJOK6toW71dRXctfPt7MsD7duHS8/7QWinsoOROfkFlQpvFmIj7khinJjE6M5vcfbKKgtLLJbTNySwAVAxEROdadsweSV1LJG6tyWrzP04sz2XPoMPedO4xAlc7vdJSciU9wznGm5EzEVwQGGB6+JJWSimr+8OGmJrfNyK2r1Oi7cw+JiHjD5AE9Gdsvmie+3kF1raPZ7Q8UV/Do/O2cPrwXUwbGtEOE4muUnInXFZVXc7C8mv6agFrEpwzuFcldswfx3pq9fJmxv9HtMnKLiYkIIS4yrB2jExHxfcYY7po9iJyDh3l/TfPdxP/22Raqah386myVzu+slJyJ12UVqIy+iK+6c9YghvSK5NfvbKCkorrBbTapGIiISKNOHhrH0N6RPLpge5NzSG7YU8Qbq3K4YUqyehN1YkrOxOuOJGf6QyTic0KCAnjoklQOlFTw4Cebj1tfXetg2/5Shis5ExFpkDGGO2cPYkdeGZ9t2tfgNnWl87uHh3D3ySntHKH4EiVn4nWZ+WUYA/00waKITxqdGM1NU/szd/kulu0sOGrdzrwyqmodajkTEWnCOaP6kNwznP/O39HgFCXzNu5jeWYhPzltMFFdVDq/M2s2OTPGJBpj5htjMowxG40xP3Qt/6MxZp0xZo0x5jNjTLznw5WOKCu/jPioLiqjL+LDfnL6YPr1COfet9YdVRL6u2IgSs5ERBoTGGC4Y9ZA1u8pYuG2/KPWVdbU8uePNzO4VwRXTFDp/M6uJS1nNcA91tphwCTgLmPMcOCv1tpUa+1o4EPgt54LUzqyrIJyklUMRMSnhYcE8eBFo8gqKOefX2w9sjwjt5iQwAAGxKpbsohIUy4ck0CfqDD+O3/7UcufW5LFrsJy7jt3OEGB6tTW2TX7G2CtzbXWrnZ9XwJkAH2ttcX1NusKND7CUaQJWQVlJKkYiIjPmzIohismJPK/hTtZn1MEOIuBpPSKIFg3FCIiTQoJCuDWGQNYkVlIelYhAHkllfz7q+2cMjSO6SmxXo5QfEGr/jc1xiQDY4DlrtcPGGN2A1ejljM5AYfKqzhUXk1/JWcifuGXZw8jJiKUn7+1jupaBxm5JerSKCLSQldM6EePriE86mo9+8fnW6moruVX56h0vji1ODkzxkQAbwE/qms1s9b+2lqbCMwF7m5kv1uNMSuNMSvz8vLcEbN0IJn5qtQo4k+iugTzxwtGkpFbzAMfZZBfWqnkTESkhbqEBHLztP7M35LHW6tyeC19F9dOTmJgbIS3QxMf0aLkzBgTjDMxm2utfbuBTV4GLm5oX2vtk9ba8dba8bGxaq6Vo9WV0dcE1CL+44wRvTlnVB+e+yYLQGX0RURa4ZpJSUSGBnHPG2vp1iWYH56i0vnynZZUazTA00CGtfYf9ZbX/006Hzh+AhyRZmTll2MMJKqMvohf+d35I46Ue1ZyJiLSclFdgrluShIAPz51MNHhIV6OSHxJUAu2mQpcC6w3xqxxLfsVcLMxZgjgALKB2z0SoXRoWQXOMvqhQSqjL+JPYiND+eflaSzalk9UuObkERFpjTtnDaJfj3AuHpvg7VDExzSbnFlrFwOmgVUfuz8c6Wyy8svor/FmIn7p5KG9OHloL2+HISLid7qGBnH5hH7eDkN8kGofi9dYa8nML9McZyIiIiIiKDkTLzpUXk1xRQ3JKqMvIiIiIqLkTLwn01WpUcmZiIiIiIiSM/GiLM1xJiIiIiJyhJIz8Zqs/DICDPRTGX0RERERESVn4j1ZBeX07d6FkCD9GoqIiIiI6K5YvCaroEzjzUREREREXJSciVccKaOv5ExEREREBFByJl5SWFZFSUWNioGIiIiIiLgoOROvyHKV0e+vCahFRERERAAlZ+IlWfnlgOY4ExERERGpo+RMvCKrwFlGP6G7Ws5EREREREDJmTSi1mF5atFOtu4v8cjxM/PLSOgerjL6IiIiIiIuujOW49Q6LD9/cx1/+iiDX7293iPnyCooUzEQEREREZF6lJzJURwOy71vreOt1TmM7RfNyuyDrMoudOs5rLVk55fTv6e6NIqIiIiI1FFyJkc4HJZfvr2eN1bl8KNTU3jplpOIDg/mia93uvU8BWVVlFSqjL6IiIiISH1KzgRwJma/emc9r63czQ9OSeFHpw4mPCSIaycl8XnGfnbklbrtXFn5zjL6qtQoIiIiIvIdJWeCw2H59bsbeDV9N98/eRA/PjXlyLrrpyQTHBjAU4vc13qWWZecqeVMREREROQIJWednLWW+97bwCsrdnHnrIH85LTBGGOOrI+JCOWScQm8tWoPB0oq3HLO7IJyAgMMCd27uOV4IiIiIiIdgZKzTsxay2/f28jc5bu4feZAfnbGkKMSszrfmz6AaoeD57/Jcst5MwvKSOzeheBA/fqJiIiIiNTR3XEnZa3l9x9s4sVl2dw2YwC/OLPhxAygf0xXzhjemxeXZlNaWdPmc2fll5Gk8WYiIiIiIkdRctYJWWv5w4ebeO6bLL43vT/3njW00cSszm0zB1BcUcNr6bvbfO6s/DL6a7yZiIiIiMhROn1yVllTy4Fi94yl8gfWWv74YQbPLsnipqn9+dXZw5pNzADG9OvOxOQePL1oJ9W1jhM+f15pJWVVtSRrjjMRERERkaN06uTMWsvlTyzj+698i7XW2+F4nLWWBz7K4JklmdwwJZn7zm1ZYlbntpkD2FtUwUfrck84huyCckCVGkVEREREjtWpkzNjDJeOT2B5ZiHvrdnr7XA8ylrLg59s5qnFmVw/OYn7zxveqsQMYPaQOAbFRfDEwp0nnMzWldFXt0YRERERkaN16uQM4IoJ/UhLiOJPH2VQXFHt7XA8wlrLQ59u4YmFO7l2UhK/O39EqxMzgIAAw60zBpCRW8yibfknFEtWfhlBAYa+0SqjLyIiIiJSX6dPzgIDDH+8YCQFZZX847Ot3g7H7ay1/HXeFh7/egfXTOrHH+acWGJWZ87oeOIiQ3ly4YlNSp1VUEZij3CCVEZfREREROQoukMGUhOiufqkfrywNIuNe4u8HY7bWGv5+2dbeXTBDq6c2I8/nD+yTYkZQGhQIDdO7c/i7fls2NP6n1VWfrmKgYiIiIiINEDJmcvPTh9K9/AQ7nt3Aw5HxygO8s8vtvGf+du5YkIiD1wwkoCAtiVmda46qR8RoUGtbj2z1pJVUKZiICIiIiIiDVBy5hIVHsy9Zw1l9a5DvLkqx9vhtNkjX2zlX19u47LxCfz5wlFuS8wAoroEc+XERD5an8vuwvIW75dXUkl5VS3JmoBaREREROQ4zSZnxphEY8x8Y0yGMWajMeaHruV/NcZsNsasM8a8Y4yJ9ni0Hnbx2ATGJ3XnwU83c6i8ytvhnLDHv97BI19s45JxCTx4UapbE7M6N03rjwGeXpzZ4n3qKjWq5UxERERE5HgtaTmrAe6x1g4DJgF3GWOGA58DI621qcBW4JeeC7N9BLiKgxQdruav87Z4O5wTsmhbHg99uplzU/vw0MWeScwA+kR14fzR8byWvpuDZS1LZLMKXGX01XImIiIiInKcZpMza22utXa16/sSIAPoa639zFpb49psGZDguTDbz7A+3bh+cjIvr9jF2t2HvB1Oq+w9dJgfvPItKXERPHxJKoEeSszq3DpjAIera3lpWXaLts8qKCc40BAfHebRuERERERE/FGrxpwZY5KBMcDyY1bdBHzippi87senpRATEcp9722g1k+Kg1TVOLhz7mqqay2PXTOO8JAgj59zaO9uzBoSy3PfZFFRXdvs9ln5KqMvIiIiItKYFt8lG2MigLeAH1lri+st/zXOro9zG9nvVmPMSmPMyry8vLbG2y4iw4L5zTnDWJdTxCsrdnk7nBb588cZrNl9iIcvSWVgbES7nfe2GQMpKKvirdXNF1HJzC9TMRARERERkUa0KDkzxgTjTMzmWmvfrrf8euBc4GprbYNNTNbaJ621462142NjY90Rc7s4Py2eyQN68td5WygorfR2OE16f+1envsmi5un9efsUX3a9dyTBvQgNSGK/y3c2WQro7WW7IJyJWciIiIiIo1oSbVGAzwNZFhr/1Fv+ZnAL4DzrbUtr6fuJ4wx/GHOCMoqa3jwk83eDqdR2/aXcO9b6xif1J17zxra7uc3xnDbjIFkFZTz+aZ9jW53oKSSw9W19I/RBNQiIiIiIg1pScvZVOBa4GRjzBrX19nAf4BI4HPXssc9Gag3pPSK5Obp/XljVQ4rswq9Hc5xyipruGPuasJDAvnPVWMJ9tJYrjNH9qZfj3Ae/3onjTSgqoy+iIiIiEgzWlKtcbG11lhrU621o11fH1trB1lrE+stu709Am5vPzg5hT5RYfzm3Q3U1Dq8Hc4R1lrufXs9O/NK+dcVY+gd5b0KiIEBhu9N78+a3YdIzzrY4DZZdcmZujWKiIiIiDRIZfOa0TU0iN+eO5zN+0p4YWnLSsa3h+e/yeKDtXu55/QhTBkU4+1wuGRcIj26hvDE1zsaXJ9ZUEZIYADx0V3aOTIREREREf+g5KwFzhzZmxmDY/nH51s5UFzh7XBYvesgD3ycwSlD47hj5kBvhwNAl5BArpucxJebD7Btf8lx67Pzy0ns0cXjc6+JiIiIiPgrJWctYIzh9+ePoKrGwQMfZ3g1loLSSu6au5reUWH847LRBPhQsnPd5GTCggN4cuHO49ZlFZTRX+PNREREREQapeSshfrHdOX2mQN4b81elu4o8EoMtQ7LD19dQ0FZFY9dPY6o8GCvxNGYHl1DuGx8Iu+u2cP+ei2MDoclq0BznImIiIiINEXJWSvcMWsQCd278Nv3NlDtheIg//fFVhZvz+cP549gZN+odj9/S9wybQC1DsuzS7KOLNtfUkFFtYMktZyJiIiIiDRKyVkrdAkJ5HfnjWDbgVKeWZzZrueev/kA//pqO5eOS+DyCYnteu7W6NcznLNG9WHusmxKKqqB78ro91fLmYiIiIhIo5SctdKpw3tx6rA4/u/LbeQWHW6Xc+4uLOdHr61hWJ9u/PGCkTjnBfddt80YQEllDa+u2A1AdoFzjvJkTUAtIiIiItIoJWcn4P7zRlDrsPzxw00eP1dlTS13vbwah8Py2NVjCQsO9Pg52yo1IZrJA3ry9OJMqmocZOWXERIUQHyUyuiLiIiIiDRGydkJSOwRzt2zB/Hx+n0s3Jrn0XP94YNNrMsp4u+XpZHsR2O2bp05gH3FFXywdi+Z+WUk9Qj3qcqSIiIiIiK+RsnZCbp15gD6x3Tl/vc3UllT65FzvL06h7nLd3HbzAGcPqK3R87hKbMGxzKkVyRPLtzpTM403kxEREREpElKzk5QaFAgvz9/BJn5ZTz59fHzerXV5n3F/Oqd9ZzUvwc/O32I24/vacYYbp0xgC37S9h2oJT+Gm8mIiIiItIkJWdtMGNwLGeP6s1/5m9nd2G5245bUlHNHS+tJjIsmH9fNYagQP+8TOelxdMnKgzAr7pkioiIiIh4g3/e9fuQ+84dTmCA4fcfbHTL8ay1/PzNdewqLOe/V40lLjLMLcf1hpCgAG6a2h+AATERXo5GRERERMS3BXk7AH/XJ6oLPzwlhb98spkLH11CdJdgIsOCiQgLIjIsiMjQICLDgokMCyKi3vf1X4cEfZcjP704k0827ONXZw9lYv8eXnxn7nH9lGTiuoVyUgd4LyIiIiIinqTkzA1umtafvYcOs3V/KXmllWTml1FSUUNJZQ1VNY5m9w8JCqCbK1nbffAwZ47ozfemD2iHyD0vJCiAOaP7ejsMERERERGfp+TMDYIDA/j9nJENrqusqaW0ooaSihpKK2sorqg+6nVJRTUllc7XJRU1TB7Yk1+ePcznJ5oWERERERH3UnLmYaFBgYRGBNIzItTboYiIiIiIiA9TQRAREREREREfoORMRERERETEByg5ExERERER8QFKzkRERERERHyAkjMREREREREfoORMRERERETEByg5ExERERER8QFKzkRERERERHyAkjMREREREREfoORMRERERETEByg5ExERERER8QFKzkRERERERHyAkjMREREREREf0GxyZoxJNMbMN8ZkGGM2GmN+6Fp+qeu1wxgz3vOhioiIiIiIdFwtaTmrAe6x1g4DJgF3GWOGAxuAi4CFHoxPRERERETqe/hhmD//6GXz5zuXi19rNjmz1uZaa1e7vi8BMoC+1toMa+0WTwcoIiIiIiL1TJgAl132XYI2f77z9YQJ3o1L2iyoNRsbY5KBMcByj0QjIiIiIiJNmz0bXn8dLroIpk2DZcucr2fP9nZk0kYtLghijIkA3gJ+ZK0tbsV+txpjVhpjVubl5Z1IjCIiIiIiUt/s2ZCQAB9+COPGKTHrIFqUnBljgnEmZnOttW+35gTW2ietteOtteNjY2NPJEYREREREalv/nzYtw+GDIF58+C227wdkbhBS6o1GuBpIMNa+w/PhyQiIiIiIo2qG2P2+uuwfj2cfDI8+STccANY6+3opA1a0nI2FbgWONkYs8b1dbYx5kJjTA4wGfjIGDPPo5GKiIiIiAikp383xiw4GD77DM48E55/Hn75SyVofqzZgiDW2sWAaWT1O+4NR0REREREmvTznx/9OjAQPvoI7r4bHnoIDh+GRx4B09gtvPiqVlVrFBERERERHxQQAP/9L4SFwT//CRUV8NhjzuXiN5SciYiIiIh0BMbA3/8O4eHwwAPOFrRnnoEg3fL7C10pEREREZGOwhj405+cLWj33edsQZs71zk2TXyekjMRERERkY7mN7+BLl3gpz+FykpnAZHQUG9HJc1QJ1QRERERkY7onnuc49Defx/mzIHycm9HJM1QciYiIiIi0lHdeSc8/bSz3P4550BpqbcjkiYoORMRERER6chuugleegkWLYLTT4eiIm9HJI1QciYiIiIi0tFddRW89hqsXAmnngqFhd6OSBqg5ExEREREpDO4+GJ4+21Ytw5mz4YDB7wdkRxDyZmIiIiISGdx7rnw4YewbRuMHAlvvHH0+vnz4eGHvRObKDkTEREREelUTjsNPvkESkrgiivglVecy+fPh8sugwkTvBtfJ6bkTERERESks5k505mMdekC11wD3/++MzF7/XVnl0fxCiVnIiIiIiKd0aRJsHChc3Lq//zHmZwpMfMqJWciIiIiIp1VURGEhUF4ODz2GDzzjLcj6tSUnImIiIiIdEZ1Y8zeegtWrYLu3eGWW+DJJ70dWael5ExEREREpDNKT/9ujNnQobB8OcTEwA9/CCtWeDu6TknJmYiIiIhIZ/Tznx89xmzQIGdSFh/vnKh6yRLvxdZJKTkTERERERGn5GT4+mvo0wfOOMPZ9dGfPPzw8TH70dxtSs5EREREROQ7CQnOBC0pCc4+G+bN83ZELTdhgnMc3XPPQVmZ383dpuRMRERERESO1rs3LFjgHIt2/vnwwQfejqhlZs+Gp56Cm2+G0aP9bu42JWciIiIiInK82Fj48ktIS4OLLnJWdfR11n43HcD27XDHHX6TmIGSMxERERERaUyPHvD55zBxIlx+Obz8srcjatq//gXvvw9dusB99znnbvOjcXNKzkREREREpHFRUc5xZ9OnwzXXwLPPejuihq1cCffcAyEhzgTtD39wdmm87DK/SdCUnImIiIiISNMiIuCjj+C00+Cmm+Dxx70d0dGKipwtexERzoTs5JOdy2fPdr5OT/dufC0U5O0ARERERETED4SHw3vvwaWXOsdyVVTAj37k7aic48xuvRWys2HhQpgy5ej1s2f7zbgztZyJiIiIiEjLhIU5C4NcfDH8+Mfw0EPejgiefNLZOvbAA8cnZn5GyZmIiIiIiLRcSAi8+ipcdRXce6+zq+NXXx29TXtN/LxuHfzwh84Js3/2M8+fz8OUnImIiIiISOsEBcELL8CNN8IXX8C5536XoLXXxM+lpc7z9OjhjCXA/1MbjTkTEREREZHWCwx0TvgcGuosEHLuuc5qiY8/3j4TP991F2zb5pyLLS7Os+dqJ/6fXoqIiIiIiHcEBMCjjzq7Fh4+DH/6k7Oao6cTs+eec7aW/fa3MGuWZ8/VjpSciYiIiIjIiTMGzj8funZ1fv/3v8Pzz3vufJs2OVvNZs2C3/zGc+fxgmaTM2NMojFmvjEmwxiz0RjzQ9fyHsaYz40x21z/dvd8uCIiIiIi4lPmz3fOMfbBB85xZ5GRcMMNzkmg3a283Hmurl1h7lxn18oOpCUtZzXAPdbaYcAk4C5jzHDgXuBLa20K8KXrtYiIiIiIdCbp6d+NMZs1C9avh6FD4f774Ze/hNpa953rRz+CDRvgxRchPt59x/URzSZn1tpca+1q1/clQAbQF5gD1LVXPg9c4KEYRURERETEV/3850ePMUtIgDVr4Lbb4MEH4ayzID+/7ed55RX43/+cCd8ZZ7T9eD7IWGtbvrExycBCYCSwy1obXW/dQWvtcV0bjTG3ArcC9OvXb1x2dnYbQxYREREREb/wzDNw553Quze8/TaMHXtix9m2zblvWhosWOAs5e+njDGrrLXjG1rX4oIgxpgI4C3gR9ba4pbuZ6190lo73lo7PjY2tqW7iYiIiIiIv7vpJli8GBwOmDLFWWWxtSornePMQkKcrWd+nJg1p0XJmTEmGGdiNtda+7Zr8X5jTB/X+j7AAc+EKCIiIiIifmv8eFi1CqZNc05afeedUFXV8v1/9jP49ltnYpeY6LEwfUFLqjUa4Gkgw1r7j3qr3geud31/PfCe+8MTERERERG/FxsLn37qHJ/22GPOwiF79jS/3zvvwL//DT/+MZx3nsfD9LZmx5wZY6YBi4D1gMO1+FfAcuB1oB+wC7jUWlvY1LHGjx9vV65c2daYRURERETEX735prPUfkSEs8rjjBkNb5eVBWPGwKBBsGSJs1tjB9DUmLNmO2xaaxcDppHVp7QlMBERERER6WQuuQSGD4cLL4STT3ZOWv2DHzgnsK5TXQ1XXOEcq/baax0mMWtOiwuCiIiIiIiIuMXw4bBiBZx7rnPusrFj4eOPv1v/61/D8uXOrowDBngtzPam5ExERERERNpfVJSzvP4DDzjnRTv/fHjpJWeS9te/QlgY3Hyzt6NsVx23DqWIiIiIiPi2gAD41a9g3Dhnd8frroPQUAgMhHffPXpy605ALWciIiIiIuJdZ5wB69ZBXBxUVMBttzmXdTJKzkRERERExPuysqC2Fu65x1nFcf58b0fU7pSciYiIiIiId82fD5dd5kzK/vY357+XXdbpEjQlZyIiIiIi4l3p6c6ErG6M2ezZztfp6d6Nq501Owm1O2kSahERERER6cyamoRaLWciIiIiIiI+QMmZiIiIiIiID1ByJiIiIiIi4gOUnImIiIiIiPgAJWciIiIiIiI+QMmZiIiIiIiID1ByJiIiIiIi4gOUnImIiIiIiPiAdp2E2hiTB2S32wlbLgbI93YQ0ixdJ/+g6+Q/dK38g66Tf9B18g+6Tv6ho1+nJGttbEMr2jU581XGmJWNzdItvkPXyT/oOvkPXSv/oOvkH3Sd/IOuk3/ozNdJ3RpFRERERER8gJIzERERERERH6DkzOlJbwcgLaLr5B90nfyHrpV/0HXyD7pO/kHXyT902uukMWciIiIiIiI+QC1nIiIiIiIiPsDvkjNjzJnGmC3GmO3GmHvrLX/NGLPG9ZVljFnTwL6jjTFLjTEbjTHrjDGX11vX3xiz3BizzXWskEbOf71rm23GmOtbu39n4c3rZIxJMsascp1jozHm9tbs35l48Drd7TqmNcbENHF+fZ5awJvXSZ+nlvPgdZrrOu4GY8wzxpjgRs6vz1MLefNa6TPVch68Tk8bY9a6lr9pjIlo5Pz6TLWAN69Th/w8WWv95gsIBHYAA4AQYC0wvIHt/g78toHlg4EU1/fxQC4Q7Xr9OnCF6/vHgTsa2L8HsNP1b3fX991bun9n+fKB6xQChLq+jwCygHhdp3a9TmOAZNfPPqaR8+vz5B/XSZ8n71+nswHj+nqlkb97+jz5z7XSZ8r716lbve3+AdzbwP76TPnHdepwnyd/azmbCGy31u601lYBrwJz6m9gjDHAZTj/KB7FWrvVWrvN9f1e4AAQ69rnZOBN16bPAxc0cP4zgM+ttYXW2oPA58CZrdi/s/DqdbLWVllrK10vQ3G1EOs6Hccj18n1+ltrbVYz59fnqWW8ep30eWoxT16nj60LsAJIaOD8+jy1nFevlT5TLebJ61Rcb/8uQEMFGPSZahmvXqeO+Hnyt+SsL7C73usc17L6pgP76y50Y4wxE3Fm2zuAnsAha23Nscc1xow3xjzVzPkb3b+T8vZ1whiTaIxZ54rjIdcHXtfpaJ66Tk1tp89T63n7Ounz1DIev07G2UXuWuBT12t9nk6Mt6+VPlMt49HrZIx5FtgHDAX+7Vqmz1Trefs6dbjPk78lZ6aBZcdm0VfSQGZ+1EGM6QO8CNxorXU0dVxr7Upr7S3NnL8lcXUm3r5OWGt3W2tTgUHA9caYXi2MqzPx1HVqlD5PJ8Tb10mfp5Zpj+v0KLDQWrsI9HlqA29fK32mWsaj18laeyPObnQZwOWuZfpMtZ63r1OH+zz5W3KWAyTWe50A7K17YYwJAi4CXmvsAMaYbsBHwG+stctci/OBaNf+xx23Bedv6f6dhbev0xGupycbcT610XU6mqeuU1vPr+t0NG9fpyP0eWqSR6+TMeZ+nF19ftLK8+s6Hc/b1+oIfaaa5PG/fdbaWtf+F7fi/LpOR/P2daq/XYf4PPlbcpYOpLiqr4QAVwDv11t/KrDZWpvT0M6ufd4BXrDWvlG33NU3fD5wiWvR9cB7DRxiHnC6Maa7MaY7cDowrxX7dxZevU7GmARjTBfX992BqcAWXafjeOQ6tYI+Ty3j1eukz1OLeew6GWNuwTn+5comWj31eWo5r14rfaZazCPXyTgNqvseOA/Y3MAh9JlqGa9epw75ebI+UJWkNV84KyFtxdkf9dfHrHsOuL2Jfa8BqoE19b5Gu9YNwDl4dzvwBt9VfhkPPFXvGDe5ttmOs+mVpvbvrF/evE7AacA6nBWD1gG36jq1+3X6Ac6naTU4n1TVXRt9nvzsOunz5BPXqcZ1zLrlvz32Orle6/PkB9dKnynvXiecDRNLgPXABmAurqqA+kz533XqiJ8n4wpeREREREREvMjfujWKiIiIiIh0SErOREREREREfICSMxERERERER+g5ExERERERMQHKDkTERERERHxAUrOREREREREfICSMxERERERER+g5ExERERERMQH/D/huGcsi39vaAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACOOElEQVR4nOzdd3ibZ7n48e8jWd57byeOM+zEzmyTJh1JV5oOKJRSoEDbQ4EWyuawOZTfYc+yDhwKtAXKAbpJadqkTbqSNs1OHCexM+zES9625CFb0vP7Q5LrON7WtO/PdflKLL1630d+LVn3+9zPfSutNUIIIYQQQgghAssQ6AEIIYQQQgghhJDgTAghhBBCCCGCggRnQgghhBBCCBEEJDgTQgghhBBCiCAgwZkQQgghhBBCBAEJzoQQQgghhBAiCEhwJoQQQgghhBBBQIIzIYQIUUop65Avp1Kqd8j3twd6fFOhlKpWSl0d6HGMRSn1slLqbh/u//dKqRPuc3rnsPvuUErtU0p1KaVqlVI/UkqFDbk/WSn1lFKqWylVo5T6wLDHX6WUOq6U6lFK7VBKFQy5TymlfqiUanV//UgppXz1PIUQQlxIgjMhhAhRWutYzxdwFrhpyG2PBnp8ww0NIkL5GH5wCPgEsH+E+6KBzwKpwGrgKuCLQ+7/DdAPZAC3A79VSi0GUEqlAk8C3wSSgb3AP4Y89mPAzcBSoAy4Efi4d56SEEKIiZDgTAghZhillEEp9RWl1Cn3DMg/lVLJ7vvmKKW0UuoupdQ5pVS7UuoepdRFSqnDSqkOpdSvh+zrTqXUTqXUr5RSne5Zl6uG3J+glPqjUqpBKVWnlPqOUso47LE/V0q1AfcrpeYppba7x9WilHpUKZXo3v4vQD6w2T379yWl1HqlVO2w5zc4u6aUul8p9bhS6q9KqS7gznHGVKSUesX9XFqUUkODk6HHiHTvs9X9M9mjlMpQSn0XuAz4tXuMv3Zvv0gptU0p1eae9XrvkH09rJT6nft+i/v4BSMdF0Br/Rut9UtA3wj3/VZr/ZrWul9rXQc8CqxzHycGuAX4ptbaqrV+HfgX8CH3w98NHNVaP6a17gPuB5YqpRa5778D+KnWuta9758Cd442TiGEEN4nwZkQQsw8n8Y1A3IFkA2045pRGWo1MB+4DXgA+DpwNbAYeK9S6oph257GNVvzLeBJT7AHPALYgSJgOXAtcPcIj00Hvgso4PvucRUDebiCBLTWH+L8GcAfTfD5vhN4HEjEFayMNab/BrYCSUAu8KtR9nkHkOAeXwpwD9Crtf468Bpwn3uM97mDom3A39zP8/3A/3hmrNxudx87FTjoHqc3XA4cdf9/AeDQWlcOuf8QrnOK+99Dnju01t3AqdHuH/ZYIYQQfiDBmRBCzDwfB77ungGx4Qp+3jMs5e+/tdZ9WuutQDfwf1rrJveMyWu4ghqPJuABrfWA1vofwAngBqVUBrAJ+KzWultr3QT8HHjfkMfWa61/pbW2a617tdYntdbbtNY2rXUz8DNcQeR0vKG1flpr7QTixxnTAFAAZLuf/+uj7HMAV1BWpLV2aK33aa27Rtn2RqBaa/2Q+3nuB54A3jNkm39rrV91n4+vA5copfKm86SVUncBq4CfuG+KBTqHbdYJxE3x/k4gVtadCSGE/8yE3HwhhBDnKwCeUko5h9zmwLUOycM85P+9I3wfO+T7Oq21HvJ9Da6ZrwLABDQM+fxuAM4N2Xbo/1FKpQO/xJUaGOfevn1Cz2p0Q48x3pi+hGsG6y2lVDuuNL4/jbDPv+CaNfu7O+3yr7gC3oERti0AViulOobcFubexwVj1Fpb3Wme2cPGPmFKqZuBHwBXa61b3DdbcQWnQ8UDlineHw9Yh517IYQQPiQzZ0IIMfOcAzZprROHfEW6Z8WmImfY7Ek+UO8+jg1IHXKceK310FS44R/sv+++rUxrHQ98EFeq42jbd+MqggGAe+1Y2rBthj5mzDFprRu11h/VWmfjmmH8H6VU0fAn7J4l/LbWugRYi2t27MOjjPEc8Mqwn3es1vreIdsMzpIppWJxFeSoH37ciVBKXQc8iCv988iQuyqBMKXU/CG3LeXttMej7u89+4kB5o12/7DHCiGE8AMJzoQQYub5HfBdT9EJpVSaUuqd09hfOvBppZRJKXUrrrViz2mtG3Ct3/qpUireXYhk3rD1asPF4Zqh6VBK5QD/Oex+M1A45PtKIFIpdYNSygR8A4gYbefjjUkpdatSKte9eTuuQMsxfD9KqQ1KqVJ3MNiFK83Rs93wMT4LLFBKfcj9MzK5C6wUD9nmeqXUpUqpcFwzd7u11iPOmimlwpVSkbiCVpO7OInBfd+VuNar3aK1fmvYc+/GVY3x/ymlYpRS63Ctx/PM4D0FLFFK3eLe/38Bh7XWx933/xn4vFIqRymVDXwBeHikMQohhPANCc6EEGLm+QWuKn1blVIW4E1chTmmajeu4iEtuIp6vEdr3eq+78NAOFCBK9h5HMgaY1/fBlbgWs/0b1zBxFDfB77hrpD4Ra11J66y8n8A6nDNpNUytrHGdBGwWyllxfUz+ozW+swI+8h0P64LOAa8giu1EVw/3/coV6XLX2qtLbiKjrwP12xYI/BDzg8i/4armEobsBJXgZDRbMWVWroW+L37/5e77/smrkIlz6m3e9ptGfLYTwBRuNYJ/h9wr9b6KIB7jd8tuM5hO67fiaHrA/8X2AwcAcpxnZ//HWOcQgghvExJKrkQQojRKFcT5Lu11pcGeiyhSin1MFCrtf5GoMcihBAiuMnMmRBCCCGEEEIEAQnOhBBCCCGEECIISFqjEEIIIYQQQgQBmTkTQgghhBBCiCAgwZkQQgghhBBCBIEwfx4sNTVVz5kzx5+HFEIIIYQQQoigsW/fvhatddpI9/k1OJszZw579+715yGFEEIIIYQQImgopWpGu0/SGoUQQgghhBAiCEhwJoQQQgghhBBBQIIzIYQQQgghhAgCfl1zJoQQQgghRLAYGBigtraWvr6+QA9FzECRkZHk5uZiMpkm/BgJzoQQQgghxKxUW1tLXFwcc+bMQSkV6OGIGURrTWtrK7W1tcydO3fCj5O0RiGEEEIIMSv19fWRkpIigZnwOqUUKSkpk56VleBMCCGEEELMWhKYCV+Zyu+WBGdCCCGEEEIEyHe/+10WL15MWVkZy5YtY/fu3QDcfffdVFRUeOUYc+bMoaWlZcxtvve97016vw8//DD33Xffebc99NBDLFu2jGXLlhEeHk5paSnLli3jK1/5yqT37w8PPPAAPT09gR7GIFlzJoQQQgghRAC88cYbPPvss+zfv5+IiAhaWlro7+8H4A9/+INfx/K9732Pr33ta9Pez1133cVdd90FuILCHTt2kJqaOu39TpXWGq01BsPIc1IPPPAAH/zgB4mOjp7wPu12O2FhvgmjZOZMiAmw9A2wr6Yt0MMQQgghxAzS0NBAamoqERERAKSmppKdnQ3A+vXr2bt3LwCxsbF8+ctfZuXKlVx99dW89dZbrF+/nsLCQv71r38BF85i3Xjjjbz88ssXHPPmm29m5cqVLF68mN///vcAfOUrX6G3t5dly5Zx++23A/DXv/6Viy++mGXLlvHxj38ch8MBuGbGFixYwBVXXMHOnTsn/Fx//OMfc9FFF1FWVsa3vvUtAKqrq1m0aBF33303S5Ys4fbbb+fFF19k3bp1zJ8/n7feeguA+++/nw996ENceeWVzJ8/nwcffHDc/RYXF/OJT3yCFStWcO7cOe69915WrVrF4sWLB7f75S9/SX19PRs2bGDDhg2DP2uPxx9/nDvvvBOAO++8k89//vNs2LCBL3/5y5w6dYrrrruOlStXctlll3H8+PEJ/yzG5IkmR/sC8oAdwDHgKPCZIfd9Cjjhvv1H4+1r5cqVWohQ09Xbr9/x69d1wZef1WearYEejhBCCCG8pKKiIqDHt1gseunSpXr+/Pn63nvv1S+//PLgfVdccYXes2eP1lprQD/33HNaa61vvvlmfc011+j+/n598OBBvXTpUq211g899JD+5Cc/Ofj4G264Qe/YsUNrrXVBQYFubm7WWmvd2tqqtda6p6dHL168WLe0tGittY6JiRl8bEVFhb7xxht1f3+/1lrre++9Vz/yyCO6vr5e5+Xl6aamJm2z2fTatWvPO+ZwnuO+8MIL+qMf/ah2Op3a4XDoG264Qb/yyiv6zJkz2mg06sOHD2uHw6FXrFih77rrLu10OvXTTz+t3/nOd2qttf7Wt76ly8rKdE9Pj25ubta5ubm6rq5uzP0qpfQbb7wxOBbP87bb7fqKK67Qhw4duuBnM/zn8Nhjj+k77rhDa631HXfcoW+44QZtt9u11lpfeeWVurKyUmut9Ztvvqk3bNgw4s9gpN8xYK8eJV6ayHycHfiC1nq/UioO2KeU2gZkAO8EyrTWNqVUunfCRSGCR2+/g488spfDtR0AvFXdxpzUmMAOSgghhBBe9+3NR6mo7/LqPkuy4/nWTYtHvT82NpZ9+/bx2muvsWPHDm677TZ+8IMfDM7WeISHh3PdddcBUFpaSkREBCaTidLSUqqrqyc1pl/+8pc89dRTAJw7d46qqipSUlLO2+all15i3759XHTRRQD09vaSnp7O7t27Wb9+PWlpaQDcdtttVFZWjnvMrVu3snXrVpYvXw6A1WqlqqqK/Px85s6dS2lpKQCLFy/mqquuQil1wXN75zvfSVRUFFFRUWzYsIG33nqL119/fdT9FhQUsGbNmsHH//Of/+T3v/89drudhoYGKioqKCsrm9TP7tZbb8VoNGK1Wtm1axe33nrr4H02m21S+xrNuMGZ1roBaHD/36KUOgbkAB8FfqC1trnva/LKiIQIEja7g4//dR97qtt44LZl/NczR9lX3c57V+UFemhCCCGEmCGMRiPr169n/fr1lJaW8sgjj1wQnJlMpsHKfwaDYTAN0mAwYLfbAQgLC8PpdA4+ZqQS7i+//DIvvvgib7zxBtHR0axfv37E7bTW3HHHHXz/+98/7/ann356ShUItdZ89atf5eMf//h5t1dXVw8+l7GeG1xY+VApNeZ+Y2Levph+5swZfvKTn7Bnzx6SkpK48847Ry1xP/Q4w7fx7NPpdJKYmMjBgwfHe+qTNqmVbEqpOcByYDfwY+AypdR3gT7gi1rrPV4foRABMOBw8qm/HeDVymZ+dEsZ71yWwzMH69kr686EEEKIGWmsGS5fOXHiBAaDgfnz5wNw8OBBCgoKprSvOXPm8D//8z84nU7q6uoG12sN1dnZSVJSEtHR0Rw/fpw333xz8D6TycTAwAAmk4mrrrqKd77znXzuc58jPT2dtrY2LBYLq1ev5jOf+Qytra3Ex8fz2GOPsXTp0nHHtnHjRr75zW9y++23ExsbS11dHSaTaVLP75lnnuGrX/0q3d3dvPzyy/zgBz8gKipqQvvt6uoiJiaGhIQEzGYzW7ZsYf369QDExcVhsVgGi5ZkZGRw7NgxFi5cyFNPPUVcXNwF+4uPj2fu3Lk89thj3HrrrWitOXz48IR+FuOZcHCmlIoFngA+q7XuUkqFAUnAGuAi4J9KqUJ3HuXQx30M+BhAfn7+tAcshK85nJovPnaIrRVm7r+phPde5JopW1mQxPbjTbR395MUEx7gUQohhBAi1FmtVj71qU/R0dFBWFgYRUVFg0U6JmvdunWDKYJLlixhxYoVF2xz3XXX8bvf/Y6ysjIWLlx4Xtrfxz72McrKylixYgWPPvoo3/nOd7j22mtxOp2YTCZ+85vfsGbNGu6//34uueQSsrKyWLFixWChkLFce+21HDt2jEsuuQRwpXP+9a9/xWg0Tvj5XXzxxdxwww2cPXuWb37zm2RnZ5OdnT2h/S5dupTly5ezePFiCgsLWbdu3XnPe9OmTWRlZbFjxw5+8IMfcOONN5KXl8eSJUuwWq0jjufRRx/l3nvv5Tvf+Q4DAwO8733v80pwpobFUiNvpJQJeBZ4QWv9M/dtz+NKa3zZ/f0pYI3Wunm0/axatUp7qs4IEYy01nz1ySP8fc85vnTdQj6xvmjwvt2nW7nt92/yhw+v4uqSjACOUgghhBDecOzYMYqLiwM9DDGO+++/n9jYWL74xS8GeiiTNtLvmFJqn9Z61Ujbj1tKX7kSL/8IHPMEZm5PA1e6t1kAhANjd7cTIohprfl/z1bw9z3n+NSVRecFZgBL8xIxGRV7a9oDNEIhhBBCCDGTTSStcR3wIeCIUuqg+7avAX8C/qSUKgf6gTuGpzQKEUp+urWSh3ZW8x/r5vL5axZccH+kycji7ATpdyaEEEII4Uf3339/oIfgNxOp1vg6MFpZlg96dzhCBMZvdpzk1ztO8v6L8/jmjcWjViJaVZDEn9+swWZ3EBE28TxpIYQQQgghxjNuWqMQM91DO8/w4xdOcPOybL5zc+mYJWJXzUmi3+6kvM67fVCEEEIIIYSQ4EzMav/Yc5Zvb65g4+IMfnLrUoyGsXt3rCxIBpDURiGEEEII4XUSnIlZ65mDdXzlySNcsSCNX75/OWHG8V8OaXERFKREs7daioIIIYQQQgjvkuBMzEpbjzby+X8e4uI5yfzugysntX5sVUEy+2rakfo3QgghhJguo9HIsmXLWLJkCbfeeis9PT1T3tedd97J448/DsDdd99NRUXFqNu+/PLL7Nq1a/D73/3ud/z5z3+e8rE9qqurWbJkyXm33X///fzkJz+Z1H68NZ5QI8GZmHVerWzmvr8doDQngT/eeRFR4ZMr7LFqThKt3f2caen20QiFEEIIMVtERUVx8OBBysvLCQ8P53e/+91590+kyfNI/vCHP1BSUjLq/cODs3vuuYcPf/jDUzqWt9nt9qAajz9JcCZmlbfOtPGxv+xlXnosj9x1MbERE+kmcb5VBUkA0u9MCCGEmE1+9CPYseP823bscN3uJZdddhknT57k5ZdfZsOGDXzgAx+gtLQUh8PBf/7nf3LRRRdRVlbG//7v/wKuHq333XcfJSUl3HDDDTQ1NQ3ua/369ezduxeA559/nhUrVrB06VKuuuoqqqur+d3vfsfPf/5zli1bxmuvvXbe7NbBgwdZs2YNZWVlvOtd76K9vX1wn1/+8pe5+OKLWbBgAa+99tqkn+NY+/7a177GFVdcwS9+8YvB8dTX17Ns2bLBL6PRSE1NDTU1NVx11VWUlZVx1VVXcfbsWcA1e/jpT3+atWvXUlhYODiTGCokOBOzxqFzHfzHw3vISYziLx+5mIRo05T2My8tloQoE/tk3ZkQQggxe1x0Ebz3vW8HaDt2uL6/6CKv7N5ut7NlyxZKS0sBeOutt/jud79LRUUFf/zjH0lISGDPnj3s2bOHBx98kDNnzvDUU09x4sQJjhw5woMPPnjeTJhHc3MzH/3oR3niiSc4dOgQjz32GHPmzOGee+7hc5/7HAcPHuSyyy477zEf/vCH+eEPf8jhw4cpLS3l29/+9nnjfOutt3jggQfOu32oU6dOnRdQDZ0NHGvfHR0dvPLKK3zhC18YvC07O5uDBw9y8OBBPvrRj3LLLbdQUFDAfffdx4c//GEOHz7M7bffzqc//enBxzQ0NPD666/z7LPP8pWvfGWSZyKwJj9tIEQIOtbQxYf/9BbJMeE8evcaUmMjprwvg0GxsiCJvVKxUQghhJg5PvtZOHhw7G2ys2HjRsjKgoYGKC6Gb3/b9TWSZcvggQfG3GVvby/Lli0DXDNnH/nIR9i1axcXX3wxc+fOBWDr1q0cPnx4cBaos7OTqqoqXn31Vd7//vdjNBrJzs7myiuvvGD/b775JpdffvngvpKTk8ccT2dnJx0dHVxxxRUA3HHHHdx6662D97/73e8GYOXKlVRXV4+4j3nz5nFwyM/S00R6vH3fdttto45r586d/OEPfxicrXvjjTd48sknAfjQhz7El770pcFtb775ZgwGAyUlJZjN5jGfb7CR4EzMeKearXzoj7uJDjfy6N2ryUyInPY+VxYksf14E+3d/STFhHthlEIIIYQIeklJrsDs7FnIz3d9P02eNWfDxcTEDP5fa82vfvUrNm7ceN42zz333Jj9WT2PHW+byYiIcF3gNhqN2O12r+0Xzn/OQzU0NPCRj3yEf/3rX8TGxo64zdDn6BkjEHIF3CStUcx4X3zsEFrDX+9eTV5ytFf26Vl3tk/WnQkhhBAzwwMPwMsvj/31rW9BTw9885uuf7/1rbG3H2fWbKI2btzIb3/7WwYGBgCorKyku7ubyy+/nL///e84HA4aGhrYMXxNHHDJJZfwyiuvcObMGQDa2lyZP3FxcVgslgu2T0hIICkpaXCG6i9/+cvgTNd0TWXfAwMDvPe97+WHP/whCxYsGLx97dq1/P3vfwfg0Ucf5dJLL/XKGANNZs7EjHbwXAcHznZw/00lzEsb+UrLVCzNS8RkVOytaefqkgyv7VcIIYQQQcqzxuyf/4QNG1xfQ7/3obvvvpvq6mpWrFiB1pq0tDSefvpp3vWud7F9+3ZKS0tZsGDBiIFOWloav//973n3u9+N0+kkPT2dbdu2cdNNN/Ge97yHZ555hl/96lfnPeaRRx7hnnvuoaenh8LCQh566CGvPZfJ7nvXrl3s2bOHb33rW3zrW98CXDOGv/zlL/mP//gPfvzjH5OWlubVMQaS8udU36pVq7SnaowQ/vC5fxxkW4WZN756JXGRUysAMpqbf7MTk1Hx2D1rvbpfIYQQQvjHsWPHKC4untjGP/qRq/jH0EBsxw7YsweGrHcSYqiRfseUUvu01qtG2l5mzsSM1WTp49nD9dy+usDrgRm4Uhv//GYNNrtjUk2shRBCCBGCRgrAPDNoQniJrDkTM9b/7T7HgEPz4UsKfLL/VXOS6Lc7Ka/r8sn+hRBCCCHE7CLBmZiR+u1OHt1dwxUL0ij04lqzoVYWuErR7pOS+kIIIYQQwgskOBMz0vNHG2my2Lhz3RyfHSMtLoKClGj2SjNqIYQQImSFWql1ETqm8rslwZmYkR7eeYa5qTFcMT/Np8dZVZDMvpp2eWMXQgghQlBkZCStra3yd1x4ndaa1tZWIiMn119XCoKIGedwbQf7z3bwXzeWYDB4r+niSFbNSeKJ/bWcaen2WfqkEEIIIXwjNzeX2tpampubAz0UMQNFRkaSm5s7qcdIcCZmnId3VRMTbuQ9qyb3YpgKTzPqvTXtEpwJIYQQIcZkMjF37txAD0OIQZLWKGaUFquNZw81cMvKXOJ9UD5/uHlpsSREmdgn686EEEIIIcQ0SXAmZpT/232WfoeTD18yxy/HMxgUKwuS2CsVG4UQQgghxDRJcCZmjAGHk7/uruGy+akUpfsvxXBlQRKnmrtp7+732zGFEEIIIcTMI8GZmDFeONqIucvGXT4snz8Sz7qzfTWS2iiEEEIIIaZOgjMxYzy8s5qClGjWL0j363GX5iViMir2SnAmhBBCCCGmQYIzMSOU13Wyt6adD60p8Hn5/OEiTUYWZyewT9adCSGEEEKIaZDgTMwID++qJjrcyK2r8gJy/FUFSRyq7cRmdwTk+EIIIYQv/Xp7FX9+ozrQwxBixpPgTIS8VquNfx2q590rckiI8n35/JGsmpNEv91JeV1XQI4vhBBC+EpnzwC/fOkkf9t9NtBDEWLGk+BMhLy/7zlHv93JHX4qnz+SlQXJAJLaKIQQYsZ59kg9/Q4np1u6cTh1oIcjxIwmwZkIaQMOJ399s4ZLi1KZnxEXsHGkxUUwJyWaPSHSjPqvb9Zw5U9fljRMIYQQ43pyfx0A/XYnte09AR6NEDObBGcipG09aqahs487184J9FBYWZDM/pp2tA7+q4o7T7Zwurmb58sbAz0UIYQQQay6pZt9Ne1cW5IBwMkma4BHJMTMJsGZCGmP7KomLzmKDYv8Wz5/JKvmJNHa3c+Zlu5AD2VclWYLAI/K+gEhhBBjePJAHUrBFzcuBCQ4E8LXJDgTIetofSdvVbfx4TVzMPq5fP5IPM2og73fmc3uoLq1h+SYcN4600aVO1ATQohAcjg1fQOSah1MtNY8daCWdfNSWZARR2pshARnQviYBGciZD2yq5ook5H3Bqh8/nDz0mJJiDKxL8jXnZ1xL+j+1JVFmIxKZs+EEEHhV9uruPInL4dEavhssbemnXNtvbx7RQ4ARekxnGyW4GymqjJbONcmawoDTYIzEZLauvt55mA971qRQ0J0YMrnD2cwKFYWJLE3yCs2Vppdf1jXFKawaUkWT+yvpbdfrlYLIQJHa80zB+up7+zD3GUL9HCE25P7a4kON7JxcSYARemxnGyySgA9A1ltdj7+l338x8N7cEpFzoCS4EyEpL/vOYvN7gyKQiBDrSxI4lRzN+3d/YEeyqiqzBaMBkVhWgy3r87H0mdn8+H6QA9LCDGLnWruHlyve1pmZoJC34CDZw83cN2STGIiwgAoSovF0men2SIB9EyiteYbTx2hurWb/755CYYgWCoym0lwJkKO3eHkr2/UsHZeCgsCWD5/JJ51Z/uCeN1ZpdlCQUo0EWFGLp6bTFF6rKQ2CiECaluFefD/p0KgqNJs8OIxM5Y+O7esyB28rSjd9TdX1p3NLP/ce46nD9bz2asXsKYwJdDDmfUkOBMhZ1uFmfogKZ8/3NK8RExGFdRFQarMVha4/8Aqpbh9dT6HznVQXtcZ4JGJmepLjx/i72/JBQAxum0VjSzOjic63CgzZ0Hiyf11ZCVEnvdhvSg9FkDWnc0gJxotfOtfR1lXlMInNxQFejgCCc5ECHp4VzW5SVFcVZwR6KFcINJkZHF2AvuCdN1Z34CD6tZuFmTEDt727uW5RJoMMnsmfKKn387j+2p58kBdoIciglSzxcaBcx1cU5LB3NQYTjfLzFmgNVtsvFLZzDuX5ZxXDTkjPoLYiDBOyczZjNDTb+eTf9tPbISJn9+2LCgqXwsJzkSIOdbQxe4zbXxoTUHQvomsKkjiUG0nNnvwFdk43dyNU8P8IemgCdEmbirL5pmDdVj6BgI4OjETHWvowqnhaF0nDllkLkaw/bgZreGakgwK02I53SIf/ANt86F6HE49WKXRQynFvPRYmTmbIf7rmaOcarbyi/ctIz0uMtDDEW4SnImQ8siuaiJNBm67KDjK549k1Zwk+u1Oyuu6Aj2UC1Q1uXqaDV+rd/uaAnr6HTx9UAqDCO86UutKl+3ud3BGPnSLEWyrMJOTGEVJVjyFqTHUtvdKv7MAe/JALaU5CSOu656XFiNrzmaAJ/bV8vi+Wj61oYh1RamBHo4YQoIzETLau/t5+mAd71qeQ2J0eKCHM6qVBckA7K0OvtTGSrOFMINibmrMebcvzU1gcXY8j75ZIyWShVcdqesizD3LfbhW1jWK8/X2O3itqoWri9NRylVFVmuoaZVeS4FyotFCeV3XBbNmHkXpsZi7bHRJpkXIOtlk5RtPl7N6bjKfuXpBoIcjhpHgTISMf+w9R9+AkzuCsBDIUGlxEcxJiQ7KoiCVZitzUmMIDzv/pe8qDFLA8UYL+892BGZwYkY6Wt/J2qJUokxGCc7EBV6rasZmd3JNiauP1rw013pYKQoSOE8eqCXMoLhpafaI9xe5z5GsOwtNfQMO7vvbfqLCjfzy/cuDdonIbCbBmQgJdoeTv7xRw5rCZBZlxgd6OONaWZDM/pr2oJuFqjJbzisGMtQ7lmUTGxHGo7tr/DwqMVP1DTioarKyNDeBJTnxHJGKoGKYbRVm4iLDWF3oyjjwzOqflnL6AeFwap4+UMcVC9JIjY0YcZvBio0SnIWkb28+yvFGCz9771Iy4mWdWTCS4EyEhBePNVHX0cuda+cGeigTsmpOEq3d/YNNVYNB34CDmrYe5qeP3BsuNiKMm5dn8+zhBjp6greJtggdFQ1dOJyaJTkJlOYkUlHfhd3hDPSwRJBwODXbjzexfmE6JqPr40hMRBiZ8ZGckpmzgNh1qgVzl413D+ltNlx+cjThRoMUBQlBzxys4//eOse96+exfmF6oIcjRiHBmQgJj+yqJicxiquLQ+PNxNOMOphSG082WdH6wmIgQ33g4gL67U4e31frx5GJmeqoe6asNCeB0tx4egccnJIy6cLtwNl2Wrv7uabk/LYohWlSTj9QntpfR1xkGFeN8bc2zGhgTmq0pDWGmDMt3XztySOsKkjiC9fIOrNgNm5wppTKU0rtUEodU0odVUp9xn37/UqpOqXUQffX9b4frpiNjjd28cbpVj64poAwY2hcT5iXFktClIl91cETnL1dqXHktEaAkux4VuQn8re3zgZdSqYIPUfqOkmOCScrIZLSnEQADtd2BHRMInhsqzATZlCsX5h23u2u4Mwq70F+1m2zs6W8kRvLsok0Gcfctig9Vi60hJC+AQeffHQ/pjADv3z/8pD5LDVbTeTs2IEvaK2LgTXAJ5VSJe77fq61Xub+es5noxSz2iO7aogIM/C+IC6fP5zBoFhZkMTeIGpGXWm2YjIq5gyr1Djc7asLON3czZung2fs43npmJmHd54J9DDEMEfquliSk+CqwpcaQ0y4UdadiUHbjplZU5hCfKTpvNsLU2Pp6rPT2i3p1f70fHkjvQMObhmlSuNQRWmx1LR2B2U/T3Gh7/77GBUNXfz01qVkJ0YFejhiHOMGZ1rrBq31fvf/LcAxYPxXrhBe0NkzwFMHarl5WQ5JMcFbPn8kKwuSONXcTXuQfMCoMluYmxozuLZjNDeUZZEQZQqpwiB/fP0MP37hhDQ5DiJ9Aw6qzBZKc1wFfAwGxZKcBKnY6EWP7q7hg3/YHZI9wU41Wznd3H1BSiO4Zs4ASW30sycP1JKfHM1Kd1r+WOalx+LUUN0iLQ+C3XNHGvjLmzV89LK5XFV84etNBJ9JzWsqpeYAy4Hd7pvuU0odVkr9SSk1/qtZiEn6x96zIVE+fySedWf7gmTdWaXZyvwx1pt5RJqM3LIilxeONtJssflhZNNXabbS3e+Q8ttB5ESjBbtTsyQ7YfC2stwEKhq6GJCiINOiteYXL1bx9afKef1kC8cbLYEe0qRtqzADcPUIwZmU0/e/hs5edp1q5V3Lc1Bq/NLqnnMkFRuD29nWHr78+GGW5SXynxsXBXo4YoImHJwppWKBJ4DPaq27gN8C84BlQAPw01Ee9zGl1F6l1N7m5ubpj1jMGlpr/vJmDRfPTaYkO/jL5w+3NC8Rk1EFRVGQ3n4H59p7WDBKpcbhPrA6nwGH5rF953w8sulr7+6nxeoKImVWJnh40heX5LwdnJXmJtJvd1Jllg90U+V0ar69uYKfv1jJBvdarYr6rgCPavJerDBTkhVPzggpVtmJUYSHGaScvh89faAerRm18fRw89JiUUqCs2Bmszu47//2oxT86v3LL+hvKoLXhM6UUsqEKzB7VGv9JIDW2qy1dmitncCDwMUjPVZr/Xut9Sqt9aq0tLSRNhFiRFabnXNtvVy1KDQqNA4XaTKyODuBfUGw7uztSo2jFwMZqig9ljWFyfxt91mcQZ4qWGl+e9ZA1jMFj/K6ThKjTeQmvf3hu9QdqB2p6wjQqELbgMPJFx87xMO7qvnIpXP54x0XERcRxrGG0ArOWqw29p1tHzGlEcBoUMxNiZGZMz/RWvPk/lpWFSRRkDL2mmSPqHAjOYlRUk4/iP1gy3EO13by41uXkpccHejhiEmYSLVGBfwROKa1/tmQ27OGbPYuoNz7wxOzmSelLj1+5EaYoWBVQRKHajsDvmjaE8BMJK3R4/bVBdS29/JqVXDPeFe6r9zmJUdJJcAgUl7fSam7GIhHQXI0cZFhMsM5BX0DDu796z6ePFDHF69dwDduKMZgUCzKigu54Gz7sSa0ZtTgDKScvj+V13VR1WQds7fZSIrSY2XmLEi9cLSRh3ZWc+faOWxcnBno4YhJmsjM2TrgQ8CVw8rm/0gpdUQpdRjYAHzOlwMVs48nOEuLDd0O9qvmJNFvd1Ie4BmdyiYL4UYDc1ImfvVs4+JMUmLCeXT3WR+ObPqqzBZiI8K4tiSTo9LkOCjY7A5ONFpYPGS9GbiKgpTmJMgM5yR19Q3w4T+9xUvHm/jvm5dw35XzB4Pekqx4jjdagn6Ge6htx8xkJ0SyeIx09cK0GM629cj6RD94Yn8t4WEGbijNGn/jIYrSYjndbJVCTEGmtr2H/3zsEKU5CXz1ellnFoomUq3xda210lqXDS2br7X+kNa61H37O7TWDf4YsJg9mt3riFLjQqtK41ArC5IB2BvgfmdVZiuFaTGT6m0SHmbgvRfl8dIxMw2dvT4c3fRUmi3Mz4hlaV4iNruTSlnPFHCVjVYGHHowjXGo0twEjjV0BXw2OVS0WG28//dvsr+mnV+8bzkfWlNw3v3FWfGuFPD20Kia19vv4LWqZq4uyRiz8ERhaix2p+ZsW2g8r1A14HDyr0P1XF2cTkK0afwHDFGUHovN7qS+I3j/Psw2Aw4nn/q/A2gNv/7AciLCxu5XJ4KTrA4UQevtmbPQTWtMi4tgTkp0wIuCuAKYiac0erz/onw08Pe3grcwSJXZyoL0OMqCZD2TNM51pTQCIwZnZTmJDDg0lY0SRI+ntr2HW3/3BqearfzhjlW8Y2n2BdsUZ7lmn0IltXHnyRb6BpxjpjSClNP3l1dONNPW3c+7l08upRFcwRlIUZBg8uMXTnDgbAc/uKVswusHRfCR4EwErRarDaNBkRQdujNn4Jo921/THrAP7d02O7XtvSxIn1gxkKHyU6K5fH4af99zNijTBVusNlq7+5mfEUtBSuDXM1ltdtZ8/yXu/eu+wQqSs9GRuk7iI8PIS76wEl9ZbsLgNmJ0VWYL7/ntG7RabTx692rWLxy5MNLCzDgMCioaQqOc/rYKM3ERYayemzLmdoVSTt8vnjpQR3JMOFcsnHzBNimnH1y2Hzfz+1dP88E1+dxQNrkUVRFcJDgTQavZYiM1NhyDYfyeK8Fs1ZwkWrv7OROgstCeP5xTmTkDuH11PuYuGy8db/LmsLzCU+hkQUYcSinKcgO7nung2Q7MXTa2lDdyzc9e4dnD9QEbSyCV13WyZFgxEI/cpCgSokwBn+EMZgfPdXDr/76BQ2v+8fFLBtOjRxJpMlKYFhsS5fQdTs1Lx81csTBt3LLeCVEmUmPDZebMhzp7Bth2zMw7lmZjmkTKu0dSTDgpMeESnAWBvgEHX3zsMMVZ8XzjhpJAD0dMkwRnImg1W2ykxYVuSqOHpxl1oFIb3w5gJj9zBnDlonQy4yODsjCIp1/WAnfgWZqTGND1TPtq2lEKnrh3LfnJ0dz3twN84tHZNYs24HByvMEyYkojMBhES8XGke082cIHHnyT+EgTj99zyWDa4liKs+JDIq3x4LkOWqz946Y0ehSmxnK6RT74+8q/jzTQb3dyyySrNA41Lz1WyukHgR3Hm2jr7ucbNxQTaZJ1ZqFOgjMRtJqttpBeb+YxLy2WhCgT+wJUFKSqyUp4mGHK+edhRgPvuziPVyubOdsaXIvzK80W4iLDyHC3W1iam8CAQ3OiMTApXntr2liYEcfKgiSeuHctX7puIS9WNHHtz1+dNbNolWYL/Q4ni0cJzsC1Fu1Eo4W+ASkKMtTz5Q3c9dAe8pOjefyeSyb8mi3OiqOuo5fO3gEfj3B6tlWYCTOoUVM0h5Ny+r715P5a5qfHsiRn/AsAo/GU05e1toG1+XA9qbERrCkcO11YhAYJzkTQmikzZwaDYmVBEnsD1Iy60mxhXlosxmmkh77vonyMBsXf3gqu2bMqs3UwpRFclQCBgMzKOJyag2c7WOmeKQ0zGvjE+iKe/fSl5CVFzZpZNE/biNFmzsC17szu1BwPUBAdjP6x5yyfeHQ/S3Li+cfHLiE9fuItRErcs2vHg3z2bFtFI6sLk0mImlhVwMK0GFq7++nsCe6gMxTVtHazt6add63IGbNq5niK0mLp7B2gxdrvxdGJybDa7Lx0rIkby7Km9XdeBA8JzkRQcjo1Ldb+GRGcAawsSOJUczft3f7/A+YKYKaW0uiRmRDJVYvSeWzvuaApga61prLJct5zy0mMIjkmnCMBCM6qmixYbPbB4MxjQUbcBbNo/z48czuPlNd1ERcRRkHy6D31SnMTATgiTcMB+N9XTvHlJ45w2fw0/nr36kmXNPcEZxVBHJydbrZyqrmba4onltIIrrRGgFOS2uh1Tx2oQym4eVnOtPYjFRsDb1tFIza7k5uWShGQmUKCMxGU2nv6cTj1jEhrhLfXne3z87ozq81OXUfv4Jqs6bh9TQGt3f28cNTshZFNX7PVRkfPAPPT335uSrmaHB8OQFEQz7kdHpzB+bNouUlRfPJv+/nko/tpnYGzaEfqOinJjh+zkE92QiQpMeGzvmKj1pofbDnO97cc58ayLB788Cqiw8MmvZ+0uAhSYsKDet3Zi8dc7xtXT3C9GUg5fV/RWvPk/jrWzkshO/HCiqqTMRicybqzgNl8qIGcxCiW5134t0eEJgnORFDyNKBOi5t4ak8wW5qXiMmo/F4UpMpdDGT+FMroD3dZUSp5yVE8+mbNtPflDcOLgXiU5SZQabbQ2+/fGb59Ne2kxoaTP8aM0YKMOJ68dy3/uXEh2yrMXDPDZtHsDifHGrrGTGkEVxC9JGd2FwVxODVfffIIv3vlFLevzucX71s+bgXD0Sil3EVBgjdNdFuFmeKseHKTRn99DJeXHE2YQUk5fS/bV9PO2baeKfU2Gy4rIZLocCOnZOYsIDp6+nm1spkby7JCvrK1eJsEZyIoeRpQp8aGdo8zj0iTkcXZCezz87qz0QKYqTAYFB+4uIDdZ9o42RT4D4GjVaEszUnA4dR+T/HaX9POivykcddvhBkNfHJDEZs/NWQW7W8zYxbtZLMVm905uPZvLGW5CVQ1Wf0eRAeS1pqj9Z386qUq3vHr1/n7nnN86soivnPzkmmvFSnJjueE2RKU/QhbrTb21bRzTfHECoF4mIwG8lOiZebMy57YX0eUych1SzKnvS+lFPPSYjklAXRAPF/eiN2puWmEBvUidElwJoKSJzibKWvOwJXaeKi2069rtirNFiLCDOSNMZszGbeuysVkVPxt9zmv7G86Ks1WEqJMF/yOLM1LBPy7nqnFaqO6tWfElMbRLMwcMot21My1P3+V546E9iyaZ63f4uzxg7NABdH+1tNvZ+vRRr765GEu+f52bvjl6/x0WyVhRgM/uqWML1y7cFoFGTyKs+Lotzs5HaB+imPZfrwJp4ZrSiYfDEg5fe/qG3Dw7OF6Ni3JJCZi8im0I/FUbBT+t/lwPXNTY1icPfWKmyL4eOeVKYSXzcjgbE4Sf3j9DOV1nWM2lfWmyiYrRenTq9Q4VGpsBNctyeLxfef40nULA9pPpcrsKgYy/INtRnwk6XERfl13tn+M9WZj8cyiXV2cwRcfO8QnHt3PDWVZ/L93LCYlBNdbltd1EhNupDB1/BLwZUOKgkz25xbszrb2sP24me0nmnnzdCv9diexEWFcviCVDQvTWb8w3evvbZ5+aMcaurwyU+5N2yrMZMZHTqlk+7y0GF6tasbh1FKJzgteOtaEpc/Ou1ZMrxDIUEXpsTx1oA6rzU6slwI+Mb4mSx9vnGrlvg1FXrnAI4KHvIpEUGqx2og0GWbUG/2qOa6A7M3TbX4LzqrMFq/3PfnAxflsPlTPs4cbeM/K6a9ZmAqtNZVmCzeOksrh7ybH+2raCTcaWDLOWqvRLMyM46lPrOV/Xz3NAy9W8uapVh543zIum5/m5ZH6Vnl9F4uzEya09iEjPoI0PwfRvjLgcLKvpp3tx5vYfrxpcBahMDWGD68p4MpF6ayakzzlNWUTMS8tlnCjgYqGLt45zQp83tQ34OC1qhZuWTm1ku2FaTH0253UtfeSn+KdDIDZ7KkDtWTER7B2XqrX9jkvzV1Vs8k6mLkgfG/LkUacGklpnIFmzidfMaN4epzNpKtBqbERLMqMY9epFj65ocjnx+vqG6Chs2+wmpa3rClMpjAthkd31wQsOGuy2Ojqs7NglOdWmpPIS8eb/HYld19NO0ty4qc1kzh0Fu3eR/fxjafLefmL60PmNeBwairqu3jfxXkT2l4pRVlOwmBftFDT1t3PyyeaeOl4E69WNmPps2MyKlbPTeH9F+dz5aJ05k5gBtFbTEYD8zNiqagPrjTRnSdb6B1wTCmlEaAw7e1y+hKcTU+L1cbLJ5r5yGVzvToLObScvgRn/rP5UD2LMuOYH2Qz5WL6JDgTQanZapsxZfSHWleUyl/erKFvwOHzlEBvFgMZSinF7asL+O9nKzha3zmh9UXe9nYxkJGfW1luAlrD0bpOVnt55nA4m93B4bpO7rikwCv7W5gZx0cvK+SrTx7hWIOFkhBZS3Cq2UrvgGPcSo1DLclJYMeJJrptdq+tf/GlvgEHzx1p4P/eOsvemna0dl102bQkkysXpXPp/LSAzvYXZ8Xz8onmgB1/JNsqzMRGhLGmcGrZAp4U2dPN3WxY6M2RzT6bD9Vjd2qvVGkcqiDFVVVTyun7T11HL3tr2vnPjfKimImkIIgISp6Zs5lmXVEK/XanX/qdVY1SzdAbblmRQ0SYgb/tPuv1fU9EpTvwHO2KoadaoD/6aB2t76Lf7vTquqlrSzIwKNhSHjoFQjwzYJMJzspyE3Dq4G6eDFDT2s33nzvGJd9/ic//8xCt1n4+c9V8/nXfOt762lX86D1LuW5JVsDTsIuz4mmx2miy9AV0HB5Op+bFY01csSCNiLCpXYxKjgknIcok5fS94Mn9dSzJiWdhpncv2JmMBuakxkhRED/69+F6AG4sk8bTM5EEZyIozdTg7OK5KYQZFK+fbPH5sSrNViJNBvIm0VdoohKjw7mxLJun3YvA/a3KbCEp2jRqq4XU2AhyEqP8su7MUwxkRb73grOU2AhWz01hS3mj1/bpa0fqOokyGQfT0CbCE8gFY78zh1OzrcLMh//0Flf8+GX+8PoZ1hSm8Ojdq3npC1fw2asXUJabGFS9hUoGi4IEvtUFwMHaDlqsNq6ZROPp4ZRSFKbFSDn9aaoyWzhS18m7vDxr5lEk5fT9avOhBpbmJlCQ4r/UaeE/EpyJoNNvd9LeM0Ba7MxoQD1UbEQYy/MT2eWH4KyqyUJReqzPPjzedlEe3f0OXq30fxpVpdnC/Iy4MddjleYkcNgP5fT31bSTlxxFerx3f1+vL83kZJN1cAY02JXXdVKSHT+ptSzp8ZFkxkf6te3BeJosffx6exWX/XA7H/3zXk40dvHZq+ez88tX8tsPrmRdUWrQrgMsGVKxMRhsqzBjNCg2LJxcf7PhpJz+9D15oA6jQfEOHxWPmJceQ01rD/324OuzN9OcaenmSF2nFAKZwSQ4E0GntXvmldEfau28VA7XddLZM+DT41SaLSxI991C4WV5iYSHGThw1vcpmkNprakyW8dN1yzNTaC6tcenP2etNXtr2lnpxVkzj42LM1GKkJg9czg1R+u7JpXS6FGamxDwio1aa9441con/7aftd/fzk+2VlKYFsvvPriC1798JZ+9egGZCcF/sSgh2kR2QmTQBGcvVpi5eE4yCdGmae2nMC0Gc5ctILP0M4HTqXn6QB1XLEjz2d/VovRYHE5NTavMcPras4fqUQpuLJPgbKaS4EwEnZnY42yoS+enojW8cdp3s2edvQOYu2w+reIUHmZgSXY8B852+OwYI2ns6sNis49b6KTMve6svN53H/xr23tptth80qcrPT6SVQVJIdGY+kxLNz39jik1Qi3LSeBMSzeWPt9erBhJV98AD+88wzU/f5X3P/gmr1e1cMfaOWz/whX89e7VXLckC5MxtP5MFmfFB0VwVt3STVWTdVopjR7z0lypW2cktXFKDpxrp6Gzj3cu892H+aI01/uxrDvzvc2H67loTnJIXDASUxNaf3XErOAJzkZbTxTqluUlEhNuZOfJVp8dw5fFQIZakZ/E4bpOv6ayDBYDGWdWsCwnEfDteiZPYZcVPmqifN2SLI43WjjTEtwfSgeLgeROfuZsiaeyph9LwJfXdfLVJw+z+rsvcf/mCmIiwvjxe8rY/bWr+OaNJZNaNxdsSrLjOdXcTd+AI6DjePGYGcArwZnnfEhq49RsrTATZlCsn2Z66VjmpbsCaAnOfOt4YxeVZqukNM5wEpyJoDPTZ85MRgMXz01mpw/XnVU1+aaM/nDL85Potzv9eqV+ooFnQrSJgpRojtR1+Gws+2raiQk3sijTN+Xur1vi6g0V7FUbj9R1EhFmoGgKQY0nFfKIH4qCNHX1cctvd3Hjr17nqQN1vGNpNpvvu5RnPrmOW1fl+by9hT8UZ8XjcOrBVhqBsrXCzKLMOPKSp1+QqCAlGoOCUzJzNiXbKsysKUwhIWp66aVjiQ4PIycxSsrp+9jmQ/UYDYpNS6bWN1CEBgnORNB5e+ZsZgZn4Op3drqlm/qOXp/sv9JsIcpkJCcxyif791ienwjg13VnlWYLKTHhpEzg96M0J4FD53w7c7Y8P8mrDV2HykmMYmleIs8H+bqz8rpOirPiCZtCCuBgZU0/rDt75I1qDpxt55s3lrD7q1fzw/eUTWm2L5gVB0FRkLbufvZWt3ll1gwgIsxIblK0lNOfglPNVk43d3vtXIxlXnqszJz5kNaazYcaWDsvZUZ/PhISnIkg1GK1ER8ZNiOuYo9mXVEqgM9mz6rMVuZn+K5So0d2YhSZ8ZHs9+O6s0r3c5uIstwE6jp6abXavD4Oq83O8cYun6U0ely/JJPDtZ2ca+vx6XGmyjmNYiAepTkJPq/Y6HBqntxfx+UL0vjIpXOnXaQiWBUkRxMdbgxo77gdx5twau+kNHpIOf2p2VbhSi+92g/BmaecvtOpfX6s2ehwbSdn23okpXEWkOBMBJ1m68zscTbUwow4UmPDfRacVZot467J8pbl+YkcOOefmTOtNSebrBNO1yx1rzvzRTPqQ+c6cGp8UgxkqE1LXE1GXzganLNn1a3dWG326QVnnsqavb4rCrLrVAsNnX28Z6Vv+jwFC4NBsSgzLqDB2bYKMxnxESzJ9t6sZGFqLGdauuWD/yRtqzCzODve51kU4KrY2DfgpL7TNxkhs93mQ/WYjIqNiyWlcaaT4EwEnZnagHoog0Gxdl4qO0+1orV3P2x09gzQZLH5vBiIx/L8RM619Q6mo/pSfWcf1glUavRYkhOPUr5Zz7Svph2lXAVefCk/JZrF2fFBW7Wx3F3IY8k0gjNPZc2jPkxtfHxfLfGRYVxd7PsZhEDzVGz09nvLRPQNOHi1qpmrizO8OnNfmBZD74CDxq4+r+1zpmu22Nh/tt0vKY3wdlVNf6Q2tnX3+/wYwcTp1Dx7uIErFqT7dO2gCA4SnImg4wrOZn6J2HVFKTRbbIPFO7ylsslTMMM/M2cr3D2+/LHurNI8uecWF2miMDWGQz4Kzhakx/nlD+WmJZnsP9tBY2fwfTAtr+skPMww4VTTkXhmWHy17qyrb4AXjjbyjmXZMzpd2qM4Kx5Ln506H61pHcsbp1rp6Xd4PSAodH/wl9TGidt+3Iz2cnrpWIrSXe8Bvg7OjtZ3suo723jmYJ1PjxNM9ta009jVx01LswI9FOEHEpyJoNNssZE2Cxa7etadvV7l3dRGTwAznQ/Lk7EkJ4Ewg+LAuQ6fH2sqLQLKchO9XrHR6dTsP9vu8/VmHptKXX+Qnw/Cqo1HajspzoybVj+wpJhw8pKjfFax8bnDDfQNOLllxcxOafQocfebq/BjewKPrRVmYsKNXDIvxav7nSfl9CdtW4WZnMQoSrJ8U012uJTYCJKiTZzyceGWZw834NTwwy3HA94ywl82H6on0mSYFTP/QoIzEWS6bXa6+x0zPq0RIDcpmjkp0ew65d3grMpsJSbc95UaPSJNRkqy4/00c2YlLS6CxOiJ98ArzUnA3GXD7MV0qJPNVix9dp+vN/OYlxbLgoxYtgRZ1UatNeX1ndNKafQoy0nksI/aHjy+r5Z5aTE+T0ENFosy41AKjjVY/Hpcp1Pz4jEzVyxMIyLMuzOU6XERxIQbZeZsgnr67bxW1cI1JRko5dvCUEMV+bhio9aa58sbyU6IpL6zj0d2VfvsWMHC7nDy3JEGrirOICYiLNDDEX4gwZkIKi3Wmd3jbLi1Ram8ebqNAYf3mjhXmi0UZcT59Q/yivwkDp3rxO7F5zGSSrNl0mvpPOuZvDkrs7faFYiu8lNwBq7CIG9Vt/llbd9EnW3rwdJn90pwVpqbwLm2Xtq9vJbkTEs3e2vaec/KPL++JgIpOjyMOSkxfi+nf7iuk2aLzSdpdEopCt3VAMX4XqtqwWZ3+i2l0cPXwVml2cqZlm4+eWURGxam8ZsdJ+nomdnrz9443Uprdz83lUmVxtlCgjMRVGZ6A+rhLi1KxWqzc9iLZcQrzVYWpPsnpdFjeX4ivQMOTph9d6Xe6W6sO9kqlCXZ8RiUd9cz7atpJyUmnIKU6TfYnahNpZloDVsrgmf2zFMFczqVGj3K3Psor/duauMT+2oxKHjX8hyv7jfYlWTFc6zRv8HZtopGjAbFhoXpPtm/lNOfuG0VZuIjw7h4brJfjzsvLZb2ngGftC8B2FLegFJwbUkmX9lUjNVm5zc7TvrkWMFi86F6YiPCWL8wLdBDEX4iwZkIKm83oJ542loou6QwBaVg58lWr+yvvbufFqvNb8VAPJbneYqCdPjsGHUdvfQOOCb93KLDw1iQEefVANiz3syfMzELM+IoTI1hy5HgCc7K67owGZVXft8Wu4Ozw16c4XQ6NU/ur+Wy+WlkJsz8IkNDFWfFUdPag6XPd+0JhttWYeaiOUmTSjuejMLUWOo7e/2yzqjFagvZ9UwOp2b78SY2LEqf1lrQqfB1UZDnyxu5qCCZtLgIFmbGccuKXB7ZVRO0fSCny2Z38Hx5I9cuzpgVxYyEiwRnIqg0z7K0xqSYcBZnx/O6l/qd+bsYiEdechSpseE+Dc4qp1AMxMPV5LjTK6XFW602zrR0+229mYdSiuuWZPLG6Vavp/5NVXldJwsz4wgPm/6fkoQoE3NSor2afvrG6VbqO/u4ZYb3NhtJsbsIxIlG/6w7q2ntptJs5ZoS3/VgKkyLQWtXqqov2ewOrv35q1z9s1e8XrDJH/bVtNPW3e/3lEYYEpz5IP20uqWb440Wrlvy9u/Y569dgFLw060nvH68YPBaZQtdfXZpPD3LSHAmgkqLxYZBQUrM7AjOwFW18cDZdnr67dPeV6X7aqW/Z86UUizLS/JpUZBKs+u5zZ/CcyvLTaC1u596L5Si3+8OQP0dnAFcX5qFw6nZVmH2+7GH01pzpK7TKymNHqW5iV5tGP74vlriIsO4NgAfUgPNE5z5a92Z53fyGh9Wk/NXOf09Z1zBTbfNzgf/uJsvP37Ypw3SvW1bRSMmo+KKBf5Pg8tOiCLKZORUk/fP0fNHXVkDG4cEZ1kJUXzk0rk8fbCech/2SQyUzYfrSYo2cam7urOYHSQ4E0Gl2WojOSYCoxeblwa7S4tSGXBo3jrTNu19VZktxEWEkRWAFK7l+Ymcbun22axOldlCRnzElPqKleYmAnDEC6mN+2raMRmVV4OSiVqcHU9uUhRbgqCkfm17L529A14pBuJRlpNAXUfvYGGg6bD0DbClvIGbls6O3mbDZSVEkhhtosKPwdnCjDjyfbgOc26qJzjzbVGQ7cebiAgzsOOL67nnink8vr+Wa3/+SlBcFBmP1q6LN5fMSyUu0v/Nig0GRWFajE9mzraUN7I0N+GCSsT3rJ9HUrSJ7285FpDG677S2+9gW4WZTaVZfk9PFYElZ1sEFVcD6tkzawawqiCZcKOBnV5IbXRVaowNSFU6TzPqg15c2zVUZZNlyjOCizLjCDMor6xn2l/TzuLshIB84FdKcX1pFq+fbAn4lXzPVWpPA2lvKPVU1vTCFfDnjrh6m71nFqY0gut3pTgzngo/lNNvsdrYU93GtYt9O0MZHR5GdkIkp32c1vjyiSYumZdCYnQ4X9m0iKc/sY6k6HA++ue93Pe3/T4rduENJ5usVLf2BCSl0aMoPZZTXl5zVt/Ry6FzHefNmnnER5r49FXz2XmylVdDMA11NC8dN9PT75AqjbOQBGciqMzG4Cwq3MjKgiRe90JRkCqzlQWTrGboLWW5CRgUHKjxfmqj06k52TT5So0ekSYji7Liph2c9dudHKrtCEhKo8d1SzIZcGi2Hw/sVfwjdZ2EGRQLM733+7Y4Ox6loNwLQfQT++ooTI1h+SzpbTaS4qx4TjR24XD6djbhhaONOLUr7dbXCtNifTpzVt3SzemW7vMqTpbmJvCv+y7lC9csYOtRM1f/7BWeOVgXlLM0W/2QXjqeorRY6jp66bZNP1Xf4wV3SuN1i0de03j76gLyk6P5/nPHfP777i+bD9WTHhfh94qbIvAkOBNBpdliIy12dgVnAJfOT+VYQ9e0rsi2Wm20dvf7vRiIR0xEGAsz4zlwrsPr+z7X3kPfgHNKxUA8SnMSOVzbMa0PVEfrO7HZnX7tbzbcstxEshIieS7AVRvL67tYkBHn1RnEuEgTc1Njpt32oLqlm7eq27hlZe6s6W02kpLsePoGnFS3+namacuRRuamxrDIi4H6aDzl9H0VGO040QRwQTuA8DADn7pqPv/+9KUUpMTwmb8f5O5H9tLQ2euTcUzVtgozZbkJAa1O6ikK4s21gc+XN7oq1qaN/DcgPMzAf25cyPFGC08dqPPacQOlq2+AHSeauaEsa1Yt8xAuEpyJoKG1ptk6+2bOANbOSwFg16mpz555Cmb4uxjIUCvyEzl4tgOnl69cTqcYiEdZbgJdfXbOTqPk8j73rOCKAAZnBoNi4+JMXqlsxurFK9OTobWmvK6TJTnxXt93mbuy5nQ8ub8WpeDdK2ZXb7PhirNcr5eKet+tO2vr7ueN061cX5rpl0C4MDUGi80+WNnX23acaKYwLWbUtXPzM+J44t61fOOGYnaeauHan73K33afDYpZtKauPg6e6wjorBkMrdjonZRaT9rsdSOkNA51Q2kWS3MT+NnWEyHbBsFj21Ez/XanVGmcpSQ4E0Gjs3eAAYeelcFZaU4CcZFh01p3VtXkKTUfuOBseX4SFpvd64vBvdEioNQLfbT2n20nNymKjPjA9sy6vjSLfruTHcebAnL8+s4+2rr7fVIUpTQ3kcauPpq6plZZ0+nUPLG/jkuLUslKiBr/ATNYUXosYQbl04qN2yoacTg1m5b4PqURGJw58UXFxp5+O2+ebuXKcZpoGw2Kuy8rZOtnr6A0N4GvPXWEDzy4mxofz1CO58VjrveDa3y89m88BSkxGA3Ka73OtlWYcWrGDc4MBsVXNhVT39nHw7uqvXLsQNl8uJ6cxKhZnZY9m0lwJoKGpwH1bAzOwowGLilMYeepqQdnlWYLcZFhZMQH7ue3PD8RwOsl9avMFrISIomfRvUxTz+uqTaj1lqzr6Y9oOvNPFYWJJEaG8Hz5YFJbfTMbHmzUqNH2TSLgrx5ppW6jt5ZWwhkqIgwI0XpsT4Nzv59pJH85GgWZ3t/FnUkviynv+tkK/12JxsWjR2ceeSnRPPo3av5/rtLKa/rZOMDr/KH104HbM3TtopG8pKjWBjAC3TgSjEsSIn2WnC2pbyROSnRE0qbvWReClcuSuc3O04GTT/IyWrr7uf1qhZuWpo9q9OyZzMJzkTQ8ARnqbHhAR5JYKwrSuVcWy9nW6eWdldptrIgIy6gb+aFqTEkRJm83oy60mydVkojgMlooCQrfsozZ3UdvZi7bEERnBkNio2LM9h+vInefv+n7xyt78RoUIO9tLypJCseg5r6DOfj+2qJiwhj4yiFA2abkqx4n5XT7+jpZ9fJFjb5KaURXH20Ik0GnxQF2XGiiZhwIxfNmXgBBqUU7784n62fv5x181L5zr+Pcctvdw3O9vtLt83OzlOtXFPsv3MxlnlpsZzyQgDd2TvArpMtbFwy8ef15esW0W2z8+sdJ6d9/EB4vrwRu1Nz01L/zEaL4CPBmQganjUE6bNw5gxcwRnA61NIbdRaU2W2TKtghjcopVien8h+L86cOZyaU81WFqRP/7mV5SZQXtc5pTVxg+vN8gMfnIErtbF3wMErlc1+P/aRuk7mp8f6pJ1ATEQYRemxU2ooa7XZ2XKkkRuXZs3K3mYjKc6Kx9xlo80HswjbKszYnZrr/ZTSCK7UtTkpMV4vp6+15uUTzVw6P5XwsMl/NMpKiOIPd6ziF+9bxtm2Hm745Wv88qUq+u1Or45zNK9WNtNvdwa0hP5QRemxVLd0M+CY3vN/6Zjrd2wyabMLM+O4dWUef3mjhnPTWGMcKJsP1VOYFkOJDy5+idAgwZkIGoNpjbGBXc8TKPPSYsiMj5xSamOLtZ/2noEpl5r3puV5SVQ1Wenq804frrNtPdjsTq+spSvNSaC73zGlD3b7a9qJDjf6pSLdRKyem0xStMnvDanfLgbiuybcS3ISOFzXOekiC88daaB3wCEpjUN4Zjd9kdq4pbyRnMSowVRUf5nng3L6lWYrdR29F1RpnAylFO9clsO2z13OdUuy+Nm2Su7401t+KRayrcJMYrSJi+YEx8WjorRY7E5NzRQzQTyeL28kKyGSskm+33zumgUYDPCTrSemdXx/a+rq480zrdxUJimNs5kEZyJoNFtthBsNxEeFBXooAaGUYm1RCrtOtkx6ZqfKHPhiIB4rChLRGg6fm36vKvBOMRCPstxEAI7UdUz6sfvOtrMsL5EwY3C8bYYZDVxbkslLx5qw2f2X2mjustFi7WeJD9cYleUk0GyxYe6aXEW+x/fVMjc1JmhmN4OBp2Kjt4Ozrr4BXqtq9luVxqEK02I4197r1VkpTwn99dMIzjxSYiP41fuXc/9NJbxxupV/H/HtBRS7w8n2E01cuTA9aN6fBis2TmPdWbfNziuVzWxcnIlhkuXkMxMi+cilc3nmYP20q7/607+PNKA1ktI4y437KlZK5SmldiiljimljiqlPjPs/i8qpbRSKtV3wxSzgacB9Wy+WnRpUSrtPQOTXiNSORicBTatEWBpXiJK4bXUxqrB4Gz6gee8tBiiTEYOTTJw7LbZOdZgCWh/s5FcV5qJ1Wbn9aqpF5KZLE+hjlIfzpaUuoPoyRRvOdvaw1tn2njPLO9tNlxKbAQZ8RFeL6f/YoWZAYdmkx8aTw9XmBaDw6k52+a91MYdx5soyYr3an+wD10yh0WZcfzo+RM+vYCyp7qdjp6BoElpBJjnDs5OTWOG85XKZmx257hVGkfz8SvmkRwTzve3HAuKVgcTsflQPcVZ8RQFQRaMCJyJXGKxA1/QWhcDa4BPKqVKwBW4AdcAZ303RDFbNFtspM7S9WYennVnuyaZ2ljZZCUhyhQUlS7jI00UpcV6rWJjpdlKTmIUsRHTn1ENMxpYkhM/6UqAh8514HDqgPY3G8m6eanERYaxxY9VG4/UdWJQ+KQYiEdJVjxGg5rUeXrC3dvsXctnd2+zkRT7oCjIc0dc6WbL3IG0PxWmej74eyc46+obYG9NOxsWpXllfx5Gg+Kr1xdztq2Hv77pu49JLx4zE240cPkC745/OmIjwshKiJzWzNmW8kZSYsInVaBlqPhIE5++sohdp1oDsjZ3ss619bD/bIfMmonxgzOtdYPWer/7/xbgGOD56/dz4EtAaFySEEGt2WIjLTbwwUUgZcRHUpQey+snJ9eM2lMMJFhmDFbkJ3HgXIdXrlZWmi1eSWn0KM1J5Gh9J/ZJLFT3FANZHmTpcuFhBq4pzmDr0Ua/FR44WtfJvLRYosN9l34cFW5kfnrshCs2unqb1bJuXirZibO7t9lIirPiOdVs9drviKVvgFermrluyeTTzbzB2+X0X6tsweHU01pvNporFqRx2fxUfrW9is5e76zDHUprzbYKM2uLUojxwgUsbypKj51ycNY34GD7MTPXLs7AOI3fsQ+sLqAgJZofbDkesBYHE+VJf72pTBpPz3aTSk5WSs0BlgO7lVLvAOq01od8MTAx+7RYbUEx8xNolxal8taZ1gmnwWitvVJq3puW5yfS0TPAmWlWVLM7nJxu7vbqWrqy3AT6BpyTapS972w7CzJiSYiaep81X9lUmkVXn503Tk8uoJ+qI3WdPmk+PZynsuZEAvzdZ9qobZfeZqMpyYpnwKEHG9VP1/bjTfTbnVwfgJRGgLhIV5aAt4qC7DjRREKUiWU+avj71U3FdPYO8D8+KO1eabZytq0nqFIaPVzl9K1Tqo6782QL3f0OrptmJdDwMAP/uXEhxxstPLm/dlr78rV/HaxneX4iecnRgR6KCLAJB2dKqVjgCeCzuFIdvw781wQe9zGl1F6l1N7m5uCfVhaBYXc4ae3ul+AMV2pj34Bzwr3Cmi02OnsHvFJq3ls8M0zT7XdW09ZDv8PJfC8+N89aqcnMyuwPkubTI7lsfiox4Uae90PVxqauPposNp9WavQozUmgtbuf+s6+cbd9Yn8tsdLbbFRvV2z0TnC25Ugj6XERrAzgTHJhqnfK6TudrhL6VyxI81kxjZLseN69PJeHdlVT2+7d0u7bKlwpzVcXB2Fwlh5LT7+Dxq7xX8PDPV/eSFxkGJcUpkx7HDeUZrE0N4Gfbaukb8D/fSEn4mSTlYqGLpk1E8AEgzOllAlXYPao1vpJYB4wFziklKoGcoH9SqkL/jJqrX+vtV6ltV6VlhY8+dAiuLR196M1EpwBqwuTMSjXlcOJqDS7rh4HQ6VGj/npscRFhHHg3PTWnfmiCuXclBjiIsImXGziVLOVrj570FYAjDQZubI4gxeOmieVqjkV5fW+Lwbi4SkKcmSc89Rts/PckQZuKM0iKlx6m41kbmoMkSaDVyo2dtvs7DjRxKYApTR6FHqpnH55fSctVpvX15sN98WNC1DAT17wbmn3bRVmluYlkhEffC1oitKmVrFxwOFk2zEz1xRnTKnn3HBKudb+NXT28dDO6mnvzxeePVyPUnBDmaw3ExOr1qiAPwLHtNY/A9BaH9Fap2ut52it5wC1wAqttf9WpYsZpWmwx5kEZ/GRJpbmJU64GXWlF6sZeovBoFial8j+mo5p7ccTeHpzzZnBoFiSkzDh8sqe9WbBOnMGsGlJJm3d/bxV3ebT4xyp7UIp/NIcdVFmHGEGNe4M55byRnr6HbxnlaQ0jsZoUCzMiPNKcLbjRBM2uzMgVRqHmpcWQ3vPAO3TbK6943gzSsHl830bnGUlRPGRS+fytBdLu5u7+jhU28m1QZjSCFMvp//WmTY6egbYOMUqjSNZU5jC1cXp/M+Okz5pyD4dWms2H6pn9dzkoAyyhf9N5JLEOuBDwJVKqYPur+t9PC4xyzRb3cFZXHiARxIcLi1K5XBt54QaOVc1WUiKNpEaG1w/u+X5iRxv7KKn3z7lfVSaLeQlR3m9+ERZbgLHGiwTKpCwr6ad5Jhw5qbGeHUM3rR+YRqRJgNbjvj2+tiRuk4KU2P8Ungg0mRkYWbcuBUbH993joKU6KBrcxBsSrJdFRunW6Rny5FGUmOnXkHPWwaLgrRMb/Zsx4kmluUlkuKHC4P3rHeVdv/ec94p7b6twgwQlOvNAFJjw0mIMk1qfS/AlvIGokxGrvBy9ckvX7eI7n47v97u/bV/03GswcKp5m5uWiopjcJlItUaX9daK611mdZ6mfvruWHbzNFa+6/RjphxmgdnzuSqEcDaeak4nJrdp8efCfEUAwmWSo0eK/KTcOqJr+0aSZXZygIf9HspzU2g3+EcnHUcy76adlbkJwXdz3eo6PAw1i9I5/mjjVNafD9RR+v9UwzEoyw3gcO1oxcFOdfWw5un23jPCultNp7irHg6egamtP7Ho7ffwfbjTWxcnDmtCnre4I1y+q1WG4dqO3xSpXEk8ZEmPnPVfN443TrY9Ho6tlWYKUiJ9uqaXG9SSk26YqPTqXnhqJkNi9KINHk3TXl+RhzvXZXHX96s5lybd9f+TcfzRxsxKLgukGtmf/Qj2LHj/Nt27HDdLvwuOFrJi1nPE5ylyswZACsKEok0GcZdd+aq1GgJiubTw3kqn021KMiAw8npFt9UoSzLSQTg0Djrmdq6+znd0h3UKY0em0ozabbY2Oel/nLDtVhtNHT2+aUYiEdpTiKdvQPUtveOeP+T++tQCt4tVRrH9XZRkKmnNr5S2UTvgIMbApzSCJCbFIXJqKZVTv+Vyma0xm/BGcAHVuczNzWG7z93fFprRK02O2+cauWa4oygvjBRlBbLqUkEZ/vPttNssU27SuNoPnfNAowGxY+9vPZvOrYebWRVQbJfZm9HddFF8N73vh2g7djh+v6iiwI3pllMgjMRFFqsNmIjwnzaOymURIQZuXhuyrjBmbnLhqXPHlTFQDyS3KmA+6cYLNS0djPg0D4JPPOSo0iIMo279mN/CKw387hyUTrhRt+lNnrSC/0bnI1eWdPp1Dy+/xyXFKaQI73NxrUo0/UeUVE/9eDsuSONJMeEc/HcwKY0gquhfEFKzLSKguw40UxaXASLs32/htLDZDTw5esWUtVk5bF9Uy/t/sqJZvodzqBNafQoSo+ltbt/wmsDny9vJNxoYMNC36wBzIiP5KOXFfKvQ/UTLgrlS+faejjeaOHaxQE+jxs2wD//CTffDFddBe96Fzz4oOt24XcSnImg0GyRHmfDrZuXQlWTFfMYaUiDxUB8kPrnDcvzEzlwdmrNqE80+q4KpVJqMGVuLPvOthNmcG0b7OIiTVy+IJXnyxu8sp5luKPu4MyfH2QXZMYSbjRwuK7jgvv2VLdxrk16m01UXKSJ/OToKZfT7xtw8NIxMxsXZ/is5PxkTaecvt3h5JUTTaxfkOb3qpMbF2eyqiCJn22rpNs2tTW52yoaSYo2Bf2Fo8GiIBMIorXWbClv5LL5qcRF+q6n5McuLyQlJpzvP3fcJ++Vk7E1WNYNWizw8MPQ1QXbt0NnpytAy893BWz/7//Bs89CfT0E+Gc2GwTHO6yY9ZotNqnUOMy6olRg7JL6lYOl5oMvrRFc/c5arLZR09LGUmm2oJSrkakvlOUmUGm2jNn3Zl9NO4tzEry+9sFXrluSRX2nq4Kbtx2p62RuaoxPPzQNFxFmZFFW3IgznI/vqyUm3Mh1XqzoNtMVZ029YuOrlc109zvY5KN0s6koTIulprV7SumBB8510NVnZ8Mi/6U0enhKuzdbbDz42ulJP37A4WT78SauXBQ8gfJo5k2inP7R+i7qOnq9WqVxJHGRJj7tXvv38onA9t/derSRhRlxFKQEsODUW2/B8uXwl79AdDR84QuQkAD33AOXXQYnTsD998NNN0FODmRlwfXXwze+AU8+CdXVroBN1q15TXC/qsWs0WyVmbPhSrLiSYo2sfNk66jbVJmtpMSEBzZXfQzL3evOppLaWNVkIT852me9q0pzErE79agfVgccTg6d6whoo93JuqY4gzCDYssR7zekLq/r8mtKo0dpTgJH6jrPK3TS0+/ubVaWJanQk1CcFc+Z1u4pVVDdUt5IYrSJS+ZNvymwtxSmxTDg0FO6+LPjeBNhBsWl81N9MLLxrSxI4vrSTH7/6mmaLJMr0rLnTBtdffbAz7ZMQE5SFBFhhgmtO9tS3oDRoLjGDw21339xPjmJUfxp5xmfH2s07d397KluC1xKo8MB3/8+rFvnmjmLj3fNjv3kJ/DUU/D443D33XDsmGtG7fXX4Ze/hE2boK4OfvADuOUWmDsXUlLg73+HG25wBW1nz8q6tWmQ4EwEBUlrvJDBoFg7L5WdJ1tGTb2obLJ4tQeYty3KjCPKZJxSUZBKs9Wn6ZqeVMXRUhsr6ruw2Z1BnzY0VEK0ibVFqWwpb/Rquk5bdz91Hb2U5vgvpdGjLDcBS5+dmiHV1Z4vb6S738F7Vub5fTyhrCQrHq3heOPkUhttdgcvVpi5tiQDUxDN1MybRjn97cebWDUniXg/zgQP96WNixhwOPn5tqpJPW5rhZmIMAOXLwhMYDkZRoOiMC12QmmNz5c3sqYwmaQY3xcGCw8z8K7lOew61UqLu5WPv710vAmnhmtLAjD7X1sLV18NX/savPvd8IlPuAIyzxozzxq0PXtc38fGuoK4T30KHnoIDh0Cq9U16/a738Gtt4LRCAMD8N3vugK2d73LtQ9ZtzZpwfMuK2atvgEHlj67BGcjWFeUSmNX34jlorXWnDRbg7IYiEeY0UBZbgIHznVM6nH9difVLd0+TdfMSogkNTZ81ODM03x61ZzQCc4Arl+Sydm2Ho5Oo/DDcOWeYiDZgZg5SwQ4r9/Z4/tqyU+O5qIQOzeBNtWKjTtPtmCx2QPeeHo4Tzn9yVZsbOjs5Xijxa9VGkcyJzWG21cX8I89Z6maQFsPcL3vb6swc2lRasjMGk+knH6V2dXry1dVGkdy09JsHE7XOrdA2Hq0kayESJb4+6LXk09CWZkr8HroIdeM17e+dWEQtWEDfOlLo+8nMtI1K/bxj8P//q9rfz098NGPgtMJ/f1QUODb5zJDSXAmAu7tHmcSnA13qXvd2a5TF647a+jsw2Kz+6TUvDctz0+ior5zzLVdw51p6cbu1D4NPJVS7pS5jhHv33e2nZzEKDLiQ6v33jUlGRiU6yq0t3gCo8UBSGucnxFLeJiBI+7KarXtPew61cot0tts0nKTooiLDJt0cPbvw43ERYaxbl5wzdQkxYSTFG2adK8zzzqjQKw3G+7TV80nJjyMH2w5PqHtjzVYqOvoDYmURo+itFjqOnrp7R/9b8Dz5Y0oBRv9+LwWZsaxICOWzYfq/XZMj95+B69WNXNNiR9bIXR3uwKpW26BefPgwAG4807w5vFff901A/fJT0Jfn6vyY5f3LhTOFhKciYBrdqcUyMzZhfJToslNiuL1qguDs8FiIEHagNRjeX4iAw7N0fqJF6kYrELp45TNstxETjZZL6iYprVmX3V7SKU0eqTERrCmMIXnvFi1sbyuk4KUaBKi/J8CZjIaKMmKH5zhfHJ/HQDvXpHj97GEOqUUxZnxkyqn3293sq2ikWtKMggPC76PDIVpsZMup7/9eBM5iVFB0bw5OSacT2wo4qXjTbxxavT1xR7bKswoBVf5YV2WtxSlx6I1nBrjPG0pb2RlfhLpfr4YdlNZNnuq22jonPy6xel4/WQLfQNO/6U0HjwIq1a5yuN/+cuwcyfMn+/dY3jWmP3zn/DrX8OPf+wqFrJxo2t9m5iw4HunFbPOYANqmTkb0aVFqbxxuvWCimRVZt+Vmvem5fmJwOSaUVeZLRh8WKnRoyw3AaeGimEzCfWdfTR29YVkcAawaUkmp5u7qZpE89exlNd3BiSl0aMsN4Hyuk4cTs0T+2u5pDCFvOTogI0nlJVkx3O80XJegZWx7DrVQlefneuDqErjUJMtp2+zO9h5soUNi9KCZub1rnVzyE6I5HvPHRv3vGw71sjyvMSQupjpKac/WnB2trWHioaugFRevXFpNlrDvw97v4jSWLYedc1Gry70cc9ApxN+/nNYvdo1g7Vtm6uQR7gP1vXt2XP+GrMvfAE+8xl480346le9f7wZTIIzEXCDaY0h9MfGn9YVpWLps1M+7Gp3pdlCamyEXxZPT0d6XCS5SVGTqthYabZSkBLj8xL2nibHh4atidsXQs2nR7JxcSZKwXNeqNrY0dPPubbegFRq9CjNSaC738Fje89R09ojvc2moTgrjp5+B2eHFFgZy5YjjcRGhHFZkBafKEyLpdliw9I3MKHt95xpp6ffEfD1ZkNFmox8ceNCjtR1svnw6Cl29R29lNd1cU0gCkhMw5zUaAxq9HL6zx91vU9tXOz/5zU3NYbSnAQ2+zE4czg1Lx1v4spF6b4tsNPY6Cp5//nPuyosHjrkSjP0lS996cJ1aw884Co28uMfwyOP+O7YM4wEZyLgPMFZSmxwBxmBstZdunp4v7PKJmvQ9jcbbnl+0qRmziqbLH5JOUqPjyQzPvK8YhMA+2vaiTIZWZQZ3LOSo0mPj2RVQRLPHKxn9+nWSa33G668znVRoDSAwVlZbiIAP37hBNHS22xaJlMUZMDh5IWKRq4uTiciLDh7/RV6KjZOcN3ZjhNNhIcZWBtk6+duXpbD4ux4fvT8iVFfry8eC5KGxZMUEWakICVm9OCsvJElOfEBmw2/aWkWh851cLZ1YhcspmtfTTtt3f2+TWl87jlX0Y9XXoHf/ta1Diw1QL/zDzwAV14JH/sY7NoVmDGEGAnORMC1WG0kx4QHVYnmYJISG0FxVvx5685clRotQZ/S6LEiP5GGzr4J5fXb7A5qWnv89txKcxMuaHK8r6adZXmJQd/gdSx3rJ1DdWs3t/3+TZZ86wXe+Zud/PezFWw50jCpvkrl7rWCi7P9X0bfY15aDFEmI63d/VxfmkVMRGhUqQtGCzLiMBrUBam8I9l9uo2OnoGgq9I41GTL6e843sQlhSk+6584VQaD4mvXF1PX0cuf36gecZttFWYKU2MG0wRDyby0mBHTGhs7+9h/tiOgzc1vKMsGGHPW0pu2Hm0k3GjgioVp3tnh0ObPfX2uVMIbbnCVtt+3z9VMOpApvCYTPPYY5OW5yuufPRu4sYSI0P3kIWaMZotNKjWO49KiFPbVtA9Wu6rr6KW73xHUPc6GWu5u5DyR2bPTzd04nNpvz21pbgKnW7rpcqdF9fTbqWjoCtmURo8by7LZ941r+MOHV/HRywuJMBr465s13Pvofi7+7ktc9qPtfO4fB/nrmzUca+jCMcpalyN1neQmRQU0fTbMaKDEHRxKSuP0RJqMFKbGTGjm7N9HGogON3LFAi99iPSB/OQYjAY1oZmz6pZuTrd0s8FbH4q9bF1RKusXpvHr7Sfp6Ok/776uvgHePN0acrNmHvPSY11VeIetnd5a4aoqG4iURo+cxChWFST5pWqj1pqtFWbWFqUQ662LTBdd5CrE8dBDcPHFrkbRUVHw8MNQUuKdY0xXcjJs3uwKHt/xDlePNDEqufwoAq7ZKg2ox7O2KJUHXzvD3po2LpufFjLFQDxKsuIJDzNw4Gw7149zFX6wCqXfZs4SASiv7WRtUSqHzrkKT6ycAT20kmPCubokg6vdH+j67U7K6zvZX9PO3up2Xqtq4akDruqHcRFhLC9IYlVBEisLkliWl0hMRBjldZ0BTWn0uKo4HbvDycVzfLyAfhYozoofXFc5GrvDydajjVy5KN3naz+nIzzMQF5S1ISCs5dPNAHBUUJ/NF/dVMymX7zKr7af5Js3vv3B+uUTzQw4dMgGZ0VpsQw4NGfbeigcUuhpy5FG5qfHBnw28Kal2XzrX0ep9HFGSqXZytm2Hu65Yp73drphA/zmN3DbbRAdDfHx8PTTwdf8ubgY/vEP16zeHXe4ZtMMMkc0EvmpiIBrtkhwNp6L5yRjMiped687e7uMfmgEZ+FhBkpzEiY0c1ZltmI0qMG1JL7mCTwOu9edeQqXrMgL/eBsuPAwAyvyk7j7skJ+96GV7Pn6Vbzyn+v52XuXctOybMydffz8xUpu/8Nuyr69lRt/9Ro1rT0BLQbi8Yn1RTxz36UYDMFRYS+UFWfFU9fRS2fP6EU03qpuo7W7nxuCOKXRozAtdswy7R7bTzRTmBZDQYp/3lumYmFmHLeuzOPPb1SftwZqW4WZlJjwwSyEUOMJvoauO2vr7mf3mdagWEO6qTQTg4JnfTx7tvWoq5/b1SVevkDw3ve6gp6eHldaY7AFZh7XXQc//amrEfb99wd6NEFLgjMRUFprCc4mICYijOV5Sew66eqDU2m2kh4XQUK0//tOTdXyvEQO13XSb3eOuV2l2UJBSrTfChAkx4STmxQ1uO5sb3Ub89NjQ+pnO1VKKQpSYnj3ily+965SXvjc5Rz8r2t5+K6L+MT6ecRFmEiPiwjqtDYxeZ4U0bHWnW050kiUycj6IKpqOJrC1BiqW7vHLEPf02/nzdOtQVWlcTSfv3YBYQYDP3rB1Zi63+7k5eNNXFWcjjFEL07M8wRnQ4LobRWNODVBEZylx0VyybwUNh/2Xn/IkWytMLM8L5H0OC/3c9uxA3bvhm9+01UAxLMGLRh95jPwkY/Af/+3ayZNXECCMxFQFpsdm90pa84mYF1RKuX1nbR391PVFDrFQDyW5yfRb3eOu9alqsnq9xnBstwEDtd14HRq9p/tCPn1ZtOREGVi/cJ0vnDtQv7vY2t46+tXB8XMmfCe4izX62u016LDqXn+aCMbFqUFXeGMkRSmxdI34KR+jIJDb5xqpd/uDIngLCM+ko9eNpdnDzdw8FwHu8+0YrHZQ66E/lDxkSYy4iPOmzl7vryRvOQoSrICV2xoqJvKsjnT0s3RSTRpn4z6jl6O1HV6/zwObf78//6f69/3vjd4AzSl4H/+By67DO68E/buDfSIgo4EZyKgpMfZxF06PwWtYdepVqrM1pApBuKxoiARgANj9DvrG3BQ09rt9xYBZbmJnGvrZd/Zdjp7B1gxi4MzMfOlx0WSGhs+anC2t7qNZostoBX0JmMi5fS3H28iJtzIRXND47X9sSvmkRobzvf+fYxtFWYiTQYuLQqu8v+TVZQeyyl3cNbVN8DrJ1vYtCQraJqBX7ckkzCD8llhEE8rhGsXe3nd4PDmzxs2uL7fs8e7x/Gm8HB44gnIyIB3vhPq6gI9oqAiwZkIKE9wliozZ+Mqy00kJtzIP/aeo3fAEXIzZ1kJUWTGR7J/jHVnp5qtODXM9/NzK3PPDD28sxoI3ebTQkxUcVb8qGmNW8obiQgzBHXhjKHeDs5GXnemteblE82sK0oN2n5tw8VGhPHZqxfwVnUbf99zjkuLQmMWcyxFabGcau5Ga82O400MOHRAqzQOlxgdzuUL0nj2cMOYKbJTtfWomXlpMcxL8/LFx5GaP2/Y4Lo9mKWluSo4dnXBzTdD7/itdmYLCc5EQMnM2cSZjAbWFKbwamUzQMg0oB5qeX4iB86NPnMWqCqUi93B2fNHG0mMNlGYGrwFA4TwhpKseKrMVgaGlTZ3OjVbyhu4YkGa90p9+1habARxEWGcbhl55qyqyUpdR2/IBJse77soj3lpMfTbnVwbolUah5qXHovVZsfcZWPLkUYy4iNYnpcY6GGd56alWdR19I75d2oqOns9rRCCJxgNCqWl8Oijrn5s//Ef4MP1fqFEgjMRUBKcTc66IWktRSFSqXGoFflJnGvrHTzvw1WaLYQZFHP9HBwlRJmYmxrjKqGfnxQ0aTZC+EpxVjz9DucFqYAHzrVj7rJxQ1lopDSCq7BNYVrMqGmN24+7S+iHwHqzocKMBr79jiUszIgL2RL6QxW5Z4yO1HXycmUTGxdnBl311auLM4gIM7D5UINX9/vyiSbsTu39lMaZ4B3vgO99D/7+d9e/QoIzEVgtVhthBkVi1MyvjOcNnuAsMz6ShBD8mS3PTwTg4LmOEe+vNFuZkxpDeJj/35o8JfVnQn8zIcZT7C7CMHzd2XNHGgk3GrgyxGaZCtNiR01r3HG8ieKseDITvFwhzw8unZ/KC5+7PKBN4L3FU07/T6+foW/AGRRVGoeLizRx5aJ0nj3cgMOLqY1bj5pJi4tgmbuvphjmy1+GD34QvvENeOqpQI8m4CQ4EwHVbLGRGhsRdFfPgtWCjFjS4iJYkBl6s2YAS3ISCDOowV5iw7mqUAYmXbMs1x2chWgfISEmozDNdRFk6Lozp1Oz5UgDly9IJS4ytC7+FKbGUN/ZR0+//bzbu/oG2FvTzoaF0g4i0NLiIoiLDOON060kRZuCtqH8TUuzabHa2H261Sv76xtw8PKJJq4pyZDPOqNRCh58EFavdjXTfvDB8+/fsQN+9KPAjC0AJDgTAdVslR5nk6GU4vcfWsl/3Vgc6KFMSaTJyOLs+BErNvb2Ozjb1hOwQie3rMjlS9ctlGIgYlYwGQ0syIg9b+bsUG0H9Z19IVOlcahCd8rcmWHrzl6rbMHh1CG33mwmUkoNzp5dW5JJmDE4P4JuWJhOTLiRzYe9U7XxjVOtdPc7ZkRqqk9FRsLTT0NCAtxzj6uaI7zdKuCiiwI6PH8KzleGmDWkAfXkLc9PCsn1Zh7L85M4XNuJfVghglPNVrT2fzEQj6SYcD6xvihoPzAI4W3FmfFU1HcNNt3dUt6Iyai4OgQ/RI5WTn/HiSYSokxBV3hitvKsOwvGlEaPqHAj15RksKW8kX67c/wHjGNrhZmYcCNr56V4YXQzXGYmvPAChIXB+94HX/jC2z3chleknMHkU4gIqGaLTRpQzzLL8xPp6Xdwwmw57/ZK9/ehWIVSiFBUnBVPa3c/zRYbWmueO9LApUWpIbmedW5qDEqdH5w5na4S+pcvSJOLLkHi8gVpLMqMY21RcAcqNy3NpqNngJ0nW6a1H6dTs63CzPpF6SHTxiHgVqxwVXC02+FnPwOTyTV79sYb4HAEenR+Ie9WImAcTk1rd7/MnM0yK9xrug4M63dWabZiMioKUqSMvRD+UJLtKgpS0dBFeV0Xte29bCoNvZRGcKVMZydEcbrl7aIg5fWdtFhtst4siNy0NJvnP3t50Acql81PIz4ybNoNqQ+c66DFapsRrRD8KiUFkpJg/XpobobvfAfWroX0dHj/++HPf4ampkCP0mckOBMB097Tj8OpJTibZXKTokiNDb8gOKsyWyhMjcUkV7iF8IviTE/FRgv/PtJAmEGF9IfI4eX0dxxvRim4YoEEZ2JywsMMbFqSxdYKM30DU5+t2VZhJsygWB9ibRwCyrPG7IknXP/fuhWSk+Gb34SbbnLddscdkJEBq1a5bh8+q/ajH7m2G77fECkqIp+CRMBIj7PZSSnFsrykC4qCnDBbmC8pjUL4TUK0iZzEKCoauthS3sAl81JIjA7dku3z3OX0PWvodpxoYmluIimSOi+m4Kal2Vhtdl4+MfUZmq0VjVwyLyUkU4UDZs+e89eYbdgAjz0GsbHw8MNQX+9qWv3f/w0REa7eaMNn1ebNcwV4ngAtxIqKhAV6AGL28gRnqfKHc9ZZUZDIi8fMtHf3kxQTTrfNTm17L+9dlRfooQkxqxRnxbP9mJnufgf3XDEv0MOZlsK0GLr7HTRZXP0zD9V28NmrFgR6WCJErSlMJjU2nM2HGrhuChVMTzZZOd3czV1r53h/cDPZl7504W0bNrwdrBkMrnVpK1a4+qK1tcG2bbBlCzz/vKuZNcCCBXDjja6A7ZlnQqqoiMyciYCRmbPZa3mea93ZwdoOwPVHDKQYiBD+VpIVR3e/A6NBsXFx8FbQm4jCVNf7x6lmK69UNqM1IddMWwSPMKOB60uzeOm4GavNPv4DhtlWYQYIyeqnISU52dUbbeis2ne+A2lp0NMDf/wj3HtvyARmIMGZCKBmqwRns1VZbgIGBQdqXKmNnkqN8wNURl+I2ao4y7XubE1hMskxoZvSCOeX099xopnU2AgWu4ueCDEVNy3Npm/AyUvHzJN+7NaKRspyE8hKiPLByMSIPLNqX/+6K+0xJQU+/Wn47W8vXIMWxCQ4EwHTYrERZTISEx7cVZuE98VEhLEoM54D5zoAqGqyEm40UJAcHdiBCTHLlOUlYjQo3rk0J9BDmbbM+EiiTEZONll5tbKZ9QvTMBhUoIclQtjK/CSyEiInXbWxqauPA2c7QrrATkjzrDF77DH4xS9cKY1D16AFOQnORMA0W10NqJWSP56z0fL8RA6e7cDp1FSaLRSmxUgvIiH8LCcxipe/uJ5bV+UGeijTZjAo5qbGsPlQPZ29A2yQCnlimgwGxY1lWbxS2Uxnz8CEH7fNPdN2TUlopwqHrJGKivzzn67bQ4B8EhIB02yxSUrjLLY8PwmLzc7JZitVZisLJKVRiIDIS46eMRfJCtNiaO3ux2hQXLYgNdDDETPATUuzGXBoXjjaOOHHbKswU5ASLeuoA+VLX7pwjdmGDSMXGwlCEpyJgGm22EiTSo2z1or8RABeq2qhrqNX/ogJIaatMM31PrKqIIn4SClfLqavNCeBgpRoNh+eWGqjpW+AXSdbubYkY8Zc9BD+JcGZCBhPWqOYneamxpAQZeKxvecAKQYihJi+ee6iIBukSqPwEqUUN5Vls/Nky2CV6bG8UtlMv8MpKY1iyiQ4EwFhszvo6BmQ4GwWU0qxPD+R442uSo2S1iiEmK41hSmsnpvMO5ZmB3ooYga5aWk2Tg1byhvG3XZbhZnkmHBWFiT5YWRiJpLgTAREq7UfkDL6s92KfNcfr4gwA/lSqVEIMU0Z8ZH84+OXkJ0o5cuF9yzMjGNBRuy4VRv77U62H2/i6uJ0jFIpVEyRBGciIAYbUMuas1ltuXvd2by0WPlDJoQQImjdVJbNnup26jt6R91m95lWLH12rpWURjENEpyJgPAEZ6kyczarLc1LRCmkGIgQQoigdqM7Vfbfh0dPbdx61EyUycil86VSqJg6Cc5EQDRb3TNnEpzNavGRJv7rxhLuXDc30EMRQgghRjU3NYbSnIRRqzZqrdlWYebyBalEmox+Hp2YSSQ4EwExOHMWGx7gkYhAu2vdXJblJQZ6GEIIIcSYblqaxeHaTqpbui+470hdJ41dfZLSKKZNgjMREC1WGwlRJiLC5OqSEEIIIYLfDWWu1MZnR5g923rUjNGguFLaOIhpGjc4U0rlKaV2KKWOKaWOKqU+4779v5VSh5VSB5VSW5VSUrdWTFizRXqcCSGEECJ05CRGcdGcJDYfunDd2bYKMxfNSSIpRjKCxPRMZObMDnxBa10MrAE+qZQqAX6stS7TWi8DngX+y3fDFDNNs8UmlRqFEEIIEVJuWprNCbOFE+4enQDVLd2cMFskpVF4xbjBmda6QWu93/1/C3AMyNFadw3ZLAbQvhmimImarTJzJoQQQojQsmlJFgZ1fmrjtgozANeUZARqWGIGmdSaM6XUHGA5sNv9/XeVUueA25GZMzEJktYohBBCiFCTFhfB2nmpbD5Uj9aueYltFWaKs+LJS44O8OjETDDh4EwpFQs8AXzWM2umtf661joPeBS4b5THfUwptVcptbe5udkbYxYhrttmp6ffIcGZEEIIIULOTUuzqG7tobyuixarjb01bVwrs2bCSyYUnCmlTLgCs0e11k+OsMnfgFtGeqzW+vda61Va61VpaWlTH6mYMTxl9GXNmRBCCCFCzcbFmZiMis2H69l+rAmnhmsXS3AmvCNsvA2UUgr4I3BMa/2zIbfP11pXub99B3DcN0MUM400oBZCCCFEqEqMDufy+Wk8e6ie4qx4chKjKMmKD/SwxAwxbnAGrAM+BBxRSh103/Y14CNKqYWAE6gB7vHJCMWM83YDagnOhBBCCBF6blqazUvHm6jv7OPOtXNwzWUIMX3jBmda69eBkX7jnvP+cMRsMJjWKDNnQgghhAhBV5dkEBFmwGZ3Skqj8KpJVWsUwhtarDYMCpKlUaMQQgghQlBsRBjXlGSQEhPOxXOSAz0cMYNMJK1RCK9qtthIiY3AaJAUACGEEEKEpu++q5TOngHCjDLXIbxHgjPhd80Wm1RqFEIIIURIS4gykRBlCvQwxAwjob7wu2arNKAWQgghhBBiOAnOhN81WyQ4E0IIIYQQYjgJzoRfOZ2aFpk5E0IIIYQQ4gISnAm/6uwdYMChZc2ZEEIIIYQQw0hwJvyq2So9zoQQQgghhBiJBGfCrzwNqFNl5kwIIYQQQojzSHAm/MoTnMnMmRBCCCGEEOeT4Ez4lQRnQgghhBBCjEyCM+FXLVYb4WEG4iOl/7kQQgghhBBDSXAm/KrZYiMtNgKlVKCHIoQQQgghRFCR4Ez4VbP0OBNCCCGEEGJEEpwJv2q2SHAmhBBCCCHESCQ4E34lwZkQQgghhBAjk+BM+M2Aw0lbTz9p0uNMCCGEEEKIC0hwJvymrbsfraWMvhBCCCGEECOR4Ez4jfQ4E0IIIYQQYnQSnIkLNHT2sq+mzev79QRnqZLWKIQQQgghxAUkOBPn6RtwcMef3uL2P+ym22b36r49wVm6zJwJIYQQQghxAQnOxHl+sOU4lWYrfQNOdpxo8uq+m60ycyaEEEIIIcRoJDgTg16pbObhXdV8+JICUmPD2XKk0av7b7bYiIsIIyrc6NX9CiGEEEIIMROEBXoAIji0dffzxccOMT89lq9dX4zDqXlyfx29/Q6vBVPNVulxJoQQQgghxGhk5kygteYrTxymo6efB963jEiTketLs+gdcPBKpfdSG5stNlIlOBNCCCGEEGJEEpwJHttby9YKM/+5cSGLsxMAWD03maRoE895MbWxxSIzZ0IIIYQQQoxGgrNZrrqlm/s3H+WSwhTuvrRw8PYwo4GNizPZfryJvgGHV47VbLGRJsVAhBBCCCGEGJEEZ7OY3eHks/84SJhB8dP3LsVgUOfdv6k0C6vNzutVLdM+Vm+/A4vNLjNnQgghhBBCjEKCs1nsV9tPcvBcB999VynZiVEX3L92XgoJUSaeK2+Y9rFa3GX0JTgTQgghhBBiZBKczVL7atr59Y6TvHt5DjctzR5xG5PRwDUlGWyrMNNvd07reE0WCc6EEEIIIYQYiwRns5DVZufz/zxIZnwk979z8ZjbXl+aiaXPzs5T00ttbPYEZ7LmTAghhBBCiBFJcDYL/b/NRznX1sPPb1tGfKRpzG3XFaUSFxHGliPTS21slrRGIYQQQgghxiTB2SzzfHkD/9xby73r53Hx3ORxt48IM3J1SQZbK8wMOKae2thisaEUJMeET3kfQgghhBBCzGQSnMG011OFCnNXH1958gilOQl85qoFE37cpiWZdPQM8Obp1ikfu9lqIzk6HJNRfuWEEEIIIYQYyaz/pPyxP+/l8/88GOhh+JzTqfniY4foG3DwwPuWER428VN/+YI0YsKN02pI3SwNqIUQQgghhBjTrA/OClKi2VLeSENnb6CH4lMP76rmtaoWvnFDCfPSYif12EiTkQ2L0tl6tBH7FFMbJTgTQgghhBBibLM+OPvwJXPQWvPom2cDPRSfOdFo4QfPH+eqRencvjp/Svu4vjSL1u5+3qpum9Ljmy02qdQohBBCCCHEGGZ9cJaXHM3VxRn87a2z9A04Aj0cr7PZHXzm7weIjwzjh+8pQyk1pf2sX5hGpMnAlimkNmqtabbKzJkQQgghhBBjmfXBGcCd6+bQ1t3P5kP1gR6K1/3khRMcb7Two/eUkTqNmavo8DA2LEzn+aONOJ16Uo/t6rPTb3dKcCaEEEIIIcQYJDgDLilMYWFGHA/vqkbryQUewWznyRYefO0MH1yTz5WLMqa9v02lWTRbbOw72z6pxw02oJbgTAghhBBCiFFJcAYopbhz3RyO1nexp3pygUew6ujp5wv/PERhWgxfv77EK/u8clE64WEGnptkQ2pPcDadmTshhBBCCCFmOgnO3G5elkNClImHd50J9FCmTWvN158qp8Vq4xe3LScq3OiV/cZGhHHFgjSeL59camOzVWbOhBBCCCGEGI8EZ25R4Ubed3EeLxw1U9cR2mX1nzpQx7+PNPC5axZQmpvg1X1fX5pJQ2cfB2s7JvyYwbRGmTkTQgghhBBiVBKcDfGhNQVorfnrmzWBHsqUnWvr4b+eOcrFc5K554p5Xt//VcUZmIyKLZNIbWyx2jAZFQlRJq+PRwghhBBCiJlCgrMhcpOiubYkk/8L0bL6Wmu++NghFPCz25ZiNEytbP5Y4iNNXDY/jeeONE64eEqzxUZqbAQGH4xHCCGEEEKImWLc4EwplaeU2qGUOqaUOqqU+oz79h8rpY4rpQ4rpZ5SSiX6fLR+cNe6OXT0DPDMwbpAD2XSXjjayO4zbXz1+mJyk6J9dpxNSzKp6+jlSF3nhLZvtkiPMyGEEEIIIcYzkZkzO/AFrXUxsAb4pFKqBNgGLNFalwGVwFd9N0z/uXhuMsVZ8Ty0M7TK6g84nPzw+RPMT4/lvatyfXqsa0oyCDMonptgQ+pmi03WmwkhhBBCCDGOcYMzrXWD1nq/+/8W4BiQo7XeqrW2uzd7E/BtROAnSinuWjuH440Wdp9pC/RwJuzvb53lTEs3X71+EWFG32arJkaHs7YolS3lDRMKYJutMnMmhBBCCCHEeCb1KV4pNQdYDuwedtd/AFu8NKaAe8eybJKiTTy0MzTK6lttdh54sYo1hclsWJjul2NuWpJJTWsPFQ1dY27ncGpaJTgTQgghhBBiXBMOzpRSscATwGe11l1Dbv86rtTHR0d53MeUUnuVUnubm5unO16/iDQZef/F+WyrMHOurSfQwxnX/75yitbufr66qRil/FN049qSDAwKtoyT2tjW3Y9TS48zIYQQQgghxjOh4EwpZcIVmD2qtX5yyO13ADcCt+tR8tu01r/XWq/SWq9KS0vzxpj94oNrClBKBX1ZfXNXHw++dpqblmazNC/Rb8dNiY1gTWEKz42T2ig9zoQQQgghhJiYiVRrVMAfgWNa658Nuf064MvAO7TWwT+9NEnZiVFct9hVVr+n3z7+AwLk59sqcTg1X9q40O/H3lSaxenmbqqarKNu02x1BWepMnMmhBBCCCHEmCYyc7YO+BBwpVLqoPvreuDXQBywzX3b73w50EC4c90cuvrsPH2gPtBDGVGl2cI/957jw5fMIS/Zd6XzR7NxcQZKwXNjNKSWmTMhhBBCCCEmJmy8DbTWrwMjLWR6zvvDCS6rCpJYnB3Pw7vO8P6L8/y2nmuifrDlODERYdy3oSggx0+Pi+SiOclsOdLIZ69eMOI2g8GZzJwJIYQQQggxJt/WXA9xSinuWjeXSrOVN061Bno459l1qoXtx5u4b0MRSTHhARvH9UsyOWG2cHKU1MYWq43ocCMxEeNeBxBCCCGEEGJWk+BsHDeWZZESE85Du6oDPZRBTqfmB1uOk5MYxR1r5wR0LNctyQLg+fKRUxubLVJGXwghhBBCiImQ4GwckSYjH1idz4vHzJxtDY66J5sP13O4tpMvXLuASJMxoGPJTIhkZUESz41SUr/ZYpP1ZkIIIYQQQkyABGcTcPvqAoxK8ec3qgM9FGx2Bz9+4QQlWfHcvCwn0MMBXA2pKxq6qG7pvuC+ZmlALYQQQgghxIRIcDYBmQmRbCrN4h97z9FtC2xZ/b+8UUNtey9fu74YgyE4CpRsKnWlNm4pv3D2TNIahRBCCCGEmBgJzibozrVzsPTZefJAXcDG0NkzwK+2n+TyBWlcOj81YOMYLicxiqV5iWwZtu7MZnfQ2TsgaY1CCCGEEEJMgARnE7QiP5Gy3AQe3nkGrXVAxvA/L5+kq2+Ar1y3KCDHH8v1SzI5XNvJuba31+W1WPsBKaMvhBBCCCHEREhwNkFKKe5cO4dTzd28frLF78evbe/hoV3VvHt5LiXZ8X4//ng2uas2vnD07dRG6XEmhBBCCCHExElwNgk3lGWRGhvBwzur/X7sn22tRAFfuHbkZs+Blp8SzeLseJ478nZqoyc4S5W0RiGEEEIIIcYlwdkkRIQZuX11PttPNI1YmdBXyus6eepgHf9x6VyyE6P8dtzJur40i/1nO2jo7AVk5kwIIYQQQojJkOBskm5fnU+YQfGIn8rqa635/pZjJEaZuHf9PL8cc6o2LckE4Hl31UZPcJYSGx6wMQkhhBBCCBEqJDibpPT4SG4ozeKxvbVY/VBW/9WqFnaebOXTV80nPtLk8+NNR2FaLIsy49jibkjdYrWRGG0iIiywjbKFEEIIIYQIBRKcTcGd6+Zitdl5Yl+tT4/jcGq+/9wx8pOjuX11gU+P5S2blmSxp6aNpq4+V48zWW8mhBBCCCHEhEhwNgXL8hJZlpfII7uqcTp9V1b/yf21HG+08KXrFhIeFhqn6vrSTLR2VW1stkoDaiGEEEIIISYqND7xB6G71s3hdEs3r1Y1+2T/fQMOfrq1kqV5idxQmuWTY/jC/Iw4itJjee5Io2vmTIIzIYQQQgghJkSCsynatCSLtLgIHt5V7ZP9/2nnGRq7+vjapkUopXxyDF+5fkkmu8+00tDZK2mNQgghhBBCTJAEZ1MUHmbgg6sLePlEM6ebrV7dd6vVxm93nOLq4gxWF6Z4dd/+sKk0C6eGAYeWmTMhhBBCCCEmSIKzafjA6nzCjQYe8fLs2a+2n6RnwMFXNi306n79ZVFmHHNTYwDpcSaEEEIIIcRESXA2DWlxEdy4NIvH99XS1TfglX1Wt3Tz1zdruO2iPIrS47yyT39TSg32PEuVtEYhhBBCCCEmRIKzabpr7Vy6+x08vtc7ZfV//MIJwsMMfPbq+V7ZX6DcdlEe64pSKM1JCPRQhBBCCCGECAlhgR5AqCvNTWBlQRK/feUUJ5utJEeHkxwz8lekaexmzAfOtvPvIw185qr5pMdF+ukZ+EZBSgyP3r0m0MMQQgghhBAiZEhw5gWfv2YB3958lBfKG2nv6We01mdRJuOogVtyTDj/2HOO1NgIPnZ5oX+fgBBCCCGEECLgJDjzgnVFqWz93BUAOJ2azt4B2nr6ae/up7X7/H/bevppc///VLOV9u5+uvsdg/v63rtKiYmQ0yKEEEIIIcRsI1GAlxkMiqSYcJJiwiFtYo/pG3DQ3tNPt83BvLQY3w5QCCGEEEIIEZQkOAsCkSYjWQlRgR6GEEIIIYQQIoCkWqMQQgghhBBCBAEJzoQQQgghhBAiCEhwJoQQQgghhBBBQIIzIYQQQgghhAgCEpwJIYQQQgghRBCQ4EwIIYQQQgghgoAEZ0IIIYQQQggRBCQ4E0IIIYQQQoggIMGZEEIIIYQQQgQBCc6EEEIIIYQQIggorbX/DqZUM1DjtwNOXCrQEuhBiFHJ+Qlucn6Cl5yb4CbnJ7jJ+Qlucn6Cl5yb8RVordNGusOvwVmwUkrt1VqvCvQ4xMjk/AQ3OT/BS85NcJPzE9zk/AQ3OT/BS87N9EhaoxBCCCGEEEIEAQnOhBBCCCGEECIISHDm8vtAD0CMSc5PcJPzE7zk3AQ3OT/BTc5PcJPzE7zk3EyDrDkTQgghhBBCiCAgM2dCCCGEEEIIEQRCLjhTSl2nlDqhlDqplPrKkNv/oZQ66P6qVkodHOGxy5RSbyiljiqlDiulbhty31yl1G6lVJV7X+GjHP8O9zZVSqk7Jvv4mSyQ50YpVaCU2uc+xlGl1D2Tefxs4MPzc597n1oplTrG8eW1M4ZAnh95/YzPh+fnUfd+y5VSf1JKmUY5vrx+RhHIcyOvnfH58Pz8USl1yH3740qp2FGOL6+dMQTy/MjrZxRa65D5AozAKaAQCAcOASUjbPdT4L9GuH0BMN/9/2ygAUh0f/9P4H3u//8OuHeExycDp93/Jrn/nzTRx8/kryA4N+FAhPv/sUA1kC3nxi/nZzkwx/0zTx3l+PLaCe7zI6+fwJ2f6wHl/vq/Ud7f5PUTvOdGXjuBOz/xQ7b7GfCVER4vr53gPj/y+hnhK9Rmzi4GTmqtT2ut+4G/A+8cuoFSSgHvxfVGeh6tdaXWusr9/3qgCUhzP+ZK4HH3po8AN49w/I3ANq11m9a6HdgGXDeJx89kAT03Wut+rbXN/W0E7llhOTeDfHJ+3N8f0FpXj3N8ee2MLaDnR14/4/Ll+XlOuwFvAbkjHF9eP6ML6LmR1864fHl+uoY8PgoYqYiCvHbGFtDzI6+fkYVacJYDnBvyfa37tqEuA8yeX5bRKKUuxhWxnwJSgA6ttX34fpVSq5RSfxjn+KM+fhYJ9LlBKZWnlDrsHscP3W8Ucm5cfHV+xtpOXjsTF+jzI6+fsfn8/ChXytyHgOfd38vrZ2ICfW7ktTM2n54fpdRDQCOwCPiV+zZ57UxcoM+PvH5GEGrBmRrhtuGR+PsZIbo/bydKZQF/Ae7SWjvH2q/Weq/W+u5xjj+Rcc10gT43aK3Paa3LgCLgDqVUxgTHNRv46vyMSl47kxLo8yOvn7H54/z8D/Cq1vo1kNfPJAT63MhrZ2w+PT9a67twpdMdA25z3yavnYkL9PmR188IQi04qwXyhnyfC9R7vlFKhQHvBv4x2g6UUvHAv4FvaK3fdN/cAiS6H3/Bfidw/Ik+fiYL9LkZ5L7qchTX1R45Ny6+Oj/TPb6cH5dAn59B8voZkU/Pj1LqW7hSgT4/yePL+Qn8uRkkr50R+fy9TWvtcD/+lkkcX86PS6DPz9Dt5PXjFmrB2R5gvruCSzjwPuBfQ+6/Gjiuta4d6cHuxzwF/Flr/Zjndnc++Q7gPe6b7gCeGWEXLwDXKqWSlFJJwLXAC5N4/EwW0HOjlMpVSkW5/58ErANOyLkZ5JPzMwny2hlbQM+PvH7G5bPzo5S6G9e6mPePMdspr5/RBfTcyGtnXD45P8qlyPN/4Cbg+Ai7kNfO2AJ6fuT1MwodBFVJJvOFq3pSJa6c1q8Pu+9h+P/t3LtNA0EUhtGPVqiAgBbogogAEVEClZASUQc5MoTuBAcEOxYWQg7ZMZwjTbCvCfbXDe4+prsj115XH9XrwbgYx85bfvjdVs99rR5zWT0ezHEzztm2vL7t2PX/aayZTXVVbVpWGtpUt7L5tXzuW56+7VqebO0zUTsnko/6WTWf3Zhzv//hez5jW/1MmI3aWSeflpcLL9Vb9V49NVYHVDunk4/6+XmcjRsAAADAik7ts0YAAIA/SXMGAAAwAc0ZAADABDRnAAAAE9CcAQAATEBzBgAAMAHNGQAAwAQ0ZwAAABP4BFFeeiKS6+JQAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACJuklEQVR4nO3dd1xd9f348dfnXvbeARICCZBBQkK2ZmiWM27rqnW1arXaamuH/fVrtVutrZ2uatVWO9y7mmhIzDI7IQPIJAl7hcte935+f9x7kRAIF7gT3s/Hg0fg3HPP+cDhhvs+78/n/VZaa4QQQgghhBBCeJbB0wMQQgghhBBCCCHBmRBCCCGEEEJ4BQnOhBBCCCGEEMILSHAmhBBCCCGEEF5AgjMhhBBCCCGE8AISnAkhhBBCCCGEF5DgTAghhBBCCCG8gARnQgjho5RSjd0+LEqplm5f3+jp8Q2GUqpIKbXc0+M4E6XUGqXU7S48/nNKqULbNb21x2O3KKW2K6XqlVLFSqnHlVJ+3R5/RSlVZnv8QM9xKqWWKaUKlFLNSqlcpVRqt8eUUuoxpVSN7eNxpZRy1fcphBDidBKcCSGEj9Jah9k/gOPApd22verp8fXUPYjw5XO4wW7gW8COXh4LAe4H4oB5wDLg+90e/w2QprWOAC4DfqmUmgWglIoD3gIeAmKAbcB/uz33TuAKYDowDbgE+KaTvichhBAOkOBMCCGGGaWUQSn1oFLqsC0D8ppSKsb2WJpSSiulblNKnVBKnVRK3aWUmqOUylNK1Sml/tLtWLcqpTYopf6slDLZsi7Luj0eqZR6wZatKVFK/VIpZezx3CeVUrXAI0qpdKXUatu4qpVSryqlomz7/xMYC7xvy/79UCm1WClV3OP768quKaUeUUq9YcsY1QO39jOmDKXUWtv3Uq2U6h6cdD9HkO2YNbafyVal1Cil1K+ARcBfbGP8i23/SUqpVUqpWlvW69pux3pJKfWM7fEG2/lTezsvgNb6r1rrz4DWXh57Wmu9TmvdrrUuAV4FFnR7fJ/Wus3+pe0j3fb1VcA+rfXrWutW4BFgulJqku3xW4Dfaa2Lbcf+HXBrX+MUQgjhfBKcCSHE8PMdrBmQc4Fk4CTw1x77zAMygeuAPwA/AZYDU4BrlVLn9tj3CNZszcPAW/ZgD3gZ6AQygBnA+cDtvTw3AfgVoLBmd5KByUAK1iABrfVNnJoBfNzB7/dy4A0gCmuwcqYx/QJYCUQDY4A/93HMW4BI2/higbuAFq31T4B1wL22Md6rlAoFVgH/sn2fNwBPKaWmdDvejbZzxwG7bON0hnOAfd03KKWeUko1AwVAGfCR7aEpWLNyAGitm4DDtu2nPW77vPv3IIQQwsUkOBNCiOHnm8BPbBmQNqzBz1d6TPn7hda6VWu9EmgC/q21rrRlTNZhDWrsKoE/aK07tNb/BQqBFUqpUcBFwP1a6yatdSXwJHB9t+eWaq3/rLXu1Fq3aK0Paa1Xaa3btNZVwO+xBpFDsUlr/Y7W2gJE9DOmDiAVSLZ9/+v7OGYH1qAsQ2tt1lpv11rX97HvJUCR1vpF2/e5A3gT+Eq3fT7UWn9uux4/Ac5WSqUM5ZtWSt0GzAae6L5da/0tIBxrhu8twJ5JCwNMPQ5jsu3b2+MmIEzWnQkhhPtIcCaEEMNPKvC2bTpeHZAPmIFR3fap6PZ5Sy9fh3X7ukRrrbt9fQxr5isV8AfKup3rWazZI7sT3QemlEpQSv3HNt2wHngFazZpKLqfo78x/RBr9m6LUmqfUurrfRzzn8AnwH+UUqW24hj+feybCsyzn892zhuBxN7GqLVuBGqx/gwHRSl1BfAocJHWurrn47aAcj3W7ODdts2NWIPX7iKAhj4ejwAae1x7IYQQLiTBmRBCDD8nsL5pj+r2EWTLig3G6B7Zk7FAqe08bUBct/NEaK27T4Xr+cb+N7Zt02xFK76GNVjqa/8mrEUwALCtHYvvsU/355xxTFrrcq31HVrrZKwZxqeUUhk9v2FblvBnWussYD7W7NjNfYzxBLC2x887TGt9d7d9urJkSqkwrAU5Snue1xFKqQuBv2Gd/rmnn939+HLN2T6sxT7sxwm1Pbavt8dtn58yZVIIIYRrSXAmhBDDzzPAr+xFJ5RS8Uqpy4dwvATgO0opf6XUNVjXin2ktS7Dun7rd0qpCGUtRJLeY71aT+FYMzR1SqnRwA96PF4BjO/29QEgSCm1wpa5+j8gsK+D9zcmpdQ1Sqkxtt1PYg20zD2Po5RaopTKtgWD9VinOdr36znGD4AJSqmbbD8jf2UtsDK52z4XK6UWKqUCsK4926y1PiWr2O3cAUqpIKxBq7+tOInB9thSrOvVrtZab+nxvASl1PVKqTCllFEpdQHW9W+rbbu8DUxVSl1tO/5PgTytdYHt8X8A31NKjVZKJQMPAC/1/pMWQgjhChKcCSHE8PNH4D1gpVKqAfgCa2GOwdqMtXhINdaiHl/RWtfYHrsZCAD2Yw123gCSznCsnwEzsa5n+hDrmqjufgP8n2164Pe11iasZeWfB0qwZtKKObMzjWkOsFkp1Yj1Z3Sf1vpoL8dItD2vHuu00LVYp2CC9ef7FWWtdPknrXUD1qIj12PNhpUDj3FqEPkvrMVUaoFZWKc99mUl1qml84HnbJ+fY3vsIayFSj5SX/a0+5/tMY11CmOx7ft+Auvau3cBbGv8rsZ6DU9i/Z3ovj7wWeB9YA+wF+v1efYM4xRCCOFkSqaSCyGE6IuyNkG+XWu90NNj8VVKqZeAYq31/3l6LEIIIbybZM6EEEIIIYQQwgtIcCaEEEIIIYQQXkCmNQohhBBCCCGEF5DMmRBCCCGEEEJ4AQnOhBBCCCGEEMIL+LnzZHFxcTotLc2dpxRCCCGEEEIIr7F9+/ZqrXV8b4+5NThLS0tj27Zt7jylEEIIIYQQQngNpdSxvh6TaY1CCCGEEEII4QUkOBNCCCGEEEIILyDBmRBCCCGEEEJ4AbeuOetNR0cHxcXFtLa2enooYpgJCgpizJgx+Pv7e3ooQgghhBBC9MvjwVlxcTHh4eGkpaWhlPL0cMQwobWmpqaG4uJixo0b5+nhCCGEEEII0S+PT2tsbW0lNjZWAjPhVEopYmNjJSMrhBBCCCF8hseDM0ACM+ES8nslhBBCCCF8iVcEZ572q1/9iilTpjBt2jRycnLYvHkzALfffjv79+93yjnS0tKorq4+4z6//vWvB3zcl156iXvvvfeUbS+++CI5OTnk5OQQEBBAdnY2OTk5PPjggwM+vjv84Q9/oLm52dPDEEIIIYQQvu7xxyE399RtubnW7T5gxAdnmzZt4oMPPmDHjh3k5eXx6aefkpKSAsDzzz9PVlaW28YymOCsN7fddhu7du1i165dJCcnk5uby65du3j00UedcvyB0lpjsVj6fHwwwVlnZ+dQhyWEEEIIIYabOXPg2mu/DNByc61fz5nj2XE5aMQHZ2VlZcTFxREYGAhAXFwcycnJACxevJht27YBEBYWxo9+9CNmzZrF8uXL2bJlC4sXL2b8+PG89957wOlZrEsuuYQ1a9acds4rrriCWbNmMWXKFJ577jkAHnzwQVpaWsjJyeHGG28E4JVXXmHu3Lnk5OTwzW9+E7PZDFgzYxMmTODcc89lw4YNDn+vv/3tb5kzZw7Tpk3j4YcfBqCoqIhJkyZx++23M3XqVG688UY+/fRTFixYQGZmJlu2bAHgkUce4aabbmLp0qVkZmbyt7/9rd/jTp48mW9961vMnDmTEydOcPfddzN79mymTJnStd+f/vQnSktLWbJkCUuWLOn6Wdu98cYb3HrrrQDceuutfO9732PJkiX86Ec/4vDhw1x44YXMmjWLRYsWUVBQ4PDPQgghhBBCDENLlsBrr8Hll8M3v2kNzF57zbrdF2it3fYxa9Ys3dP+/ftP2+ZODQ0Nevr06TozM1Pffffdes2aNV2PnXvuuXrr1q1aa60B/dFHH2mttb7iiiv0eeedp9vb2/WuXbv09OnTtdZav/jii/qee+7pev6KFSt0bm6u1lrr1NRUXVVVpbXWuqamRmutdXNzs54yZYqurq7WWmsdGhra9dz9+/frSy65RLe3t2uttb777rv1yy+/rEtLS3VKSoqurKzUbW1tev78+aecsyf7eT/55BN9xx13aIvFos1ms16xYoVeu3atPnr0qDYajTovL0+bzWY9c+ZMfdttt2mLxaLfeecdffnll2uttX744Yf1tGnTdHNzs66qqtJjxozRJSUlZzyuUkpv2rSpayz277uzs1Ofe+65evfu3af9bHr+HF5//XV9yy23aK21vuWWW/SKFSt0Z2en1lrrpUuX6gMHDmittf7iiy/0kiVLTvv+Pf37JYQQQggh3KykRGt/f61B64ce8vRoTgNs033ESx4vpd/dz97fx/7SeqceMys5gocvndLn42FhYWzfvp1169aRm5vLddddx6OPPtqVrbELCAjgwgsvBCA7O5vAwED8/f3Jzs6mqKhoQGP605/+xNtvvw3AiRMnOHjwILGxsafs89lnn7F9+3bm2FKwLS0tJCQksHnzZhYvXkx8fDwA1113HQcOHOj3nCtXrmTlypXMmDEDgMbGRg4ePMjYsWMZN24c2dnZAEyZMoVly5ahlDrte7v88ssJDg4mODiYJUuWsGXLFtavX9/ncVNTUznrrLO6nv/aa6/x3HPP0dnZSVlZGfv372fatGkD+tldc801GI1GGhsb2bhxI9dcc03XY21tbQM6lhBCCCGEGIZuuw06OuDee+Hpp61ZMx/JnPUbnCmlUoB/AImABXhOa/1HpdR/gYm23aKAOq11jovG6VJGo5HFixezePFisrOzefnll08Lzvz9/buq/xkMhq5pkAaDoWv9k5+f3ylrq3or475mzRo+/fRTNm3aREhICIsXL+51P601t9xyC7/5zW9O2f7OO+8Mqgqh1pof//jHfPOb3zxle1FRUdf3cqbvDU6vfqiUOuNxQ0NDu74+evQoTzzxBFu3biU6Oppbb721zzL33c/Tcx/7MS0WC1FRUezatau/b10IIYQQQowUTz0FK1fCDTfAn/8MV13lU1MbHcmcdQIPaK13KKXCge1KqVVa6+vsOyilfgeYhjqYM2W4XKWwsBCDwUBmZiYAu3btIjU1dVDHSktL46mnnsJisVBSUtK1Xqs7k8lEdHQ0ISEhFBQU8MUXX3Q95u/vT0dHB/7+/ixbtozLL7+c7373uyQkJFBbW0tDQwPz5s3jvvvuo6amhoiICF5//XWmT5/e79guuOACHnroIW688UbCwsIoKSnB399/QN/fu+++y49//GOamppYs2YNjz76KMHBwQ4dt76+ntDQUCIjI6moqOB///sfixcvBiA8PJyGhgbi4uIAGDVqFPn5+UycOJG3336b8PDw044XERHBuHHjeP3117nmmmvQWpOXl+fQz0IIIYQQQgxDFgs8+ijExMCzz1q32degbd06PIIzrXUZUGb7vEEplQ+MBvYDKGua41pgqQvH6TKNjY18+9vfpq6uDj8/PzIyMrqKdAzUggULuqYITp06lZkzZ562z4UXXsgzzzzDtGnTmDhx4inT/u68806mTZvGzJkzefXVV/nlL3/J+eefj8Viwd/fn7/+9a+cddZZPPLII5x99tkkJSUxc+bMrkIhZ3L++eeTn5/P2WefDVinc77yyisYjUaHv7+5c+eyYsUKjh8/zkMPPURycjLJyckOHXf69OnMmDGDKVOmMH78eBYsWHDK933RRReRlJREbm4ujz76KJdccgkpKSlMnTqVxsbGXsfz6quvcvfdd/PLX/6Sjo4Orr/+egnOhBBCCCFGqldegRMn4OWXofvNfR+a1qisa9Ic3FmpNOBzYKrWut627Rzg91rr2f09f/bs2dpe/dAuPz+fyZMnD2TMwgMeeeQRwsLC+P73v+/poQyI/H4JIYQQQowADQ0wYQKMHQubNoHBe4vSK6W29xU7OVwQRCkVBrwJ3G8PzGxuAP59hufdCdwJMHbsWEdPJ4QQQgghhBCO+fWvobwc3nnHqwOz/jgUnCml/LEGZq9qrd/qtt0PuAqY1ddztdbPAc+BNXM2pNEKj3nkkUc8PQQhhBBCCCFOd/gw/P73cPPNMG+ep0czJP2GlbY1ZS8A+Vrr3/d4eDlQoLUudsXghBBCCCGEEOKMHngA/P2hR5VzX+RIzm8BcBOwVCm1y/Zxse2x6znDlEYhhBBCCCGEcJlVq+Ddd+H//g+Skz09miFzpFrjeqDXxlpa61udPSAhhBBCCCGE6FdHB9x/P4wfb/13GHC4IIgQQgghhBBCeI1nnoH9+61FQIKCPD0ap/DdUiZOZDQaycnJYerUqVxzzTU0NzcP+li33norb7zxBgC33347+/fv73PfNWvWsHHjxq6vn3nmGf7xj38M+tx2RUVFTJ069ZRtjzzyCE888cSAjuOs8QghhBBCCOFU1dXw05/C8uVw2WWeHo3TSOYMCA4OZteuXQDceOONPPPMM3zve9/retxsNg+oWbPd888/f8bH16xZQ1hYGPPnzwfgrrvuGvA5XKWzs9OrxiOEEEIIIUSXn/7U2tvsD38A1esKLJ/kW5mzxx+H3NxTt+XmWrc7yaJFizh06BBr1qxhyZIlfPWrXyU7Oxuz2cwPfvAD5syZw7Rp03j22WcB0Fpz7733kpWVxYoVK6isrOw61uLFi7E33f7444+ZOXMm06dPZ9myZRQVFfHMM8/w5JNPkpOTw7p1607Jbu3atYuzzjqLadOmceWVV3Ly5MmuY/7oRz9i7ty5TJgwgXXr1g34ezzTsf/f//t/nHvuufzxj3/sGk9paSk5OTldH0ajkWPHjnHs2DGWLVvGtGnTWLZsGcePHwes2cPvfOc7zJ8/n/Hjx3dlEoUQQgghhBiyvDx49ln41rdgyhRPj8apfCs4mzMHrr32ywAtN9f69Zw5Tjl8Z2cn//vf/8jOzgZgy5Yt/OpXv2L//v288MILREZGsnXrVrZu3crf/vY3jh49yttvv01hYSF79uzhb3/72ynTFO2qqqq44447ePPNN9m9ezevv/46aWlp3HXXXXz3u99l165dLFq06JTn3HzzzTz22GPk5eWRnZ3Nz372s1PGuWXLFv7whz+csr27w4cPnxJQPfPMMw4du66ujrVr1/LAAw90bUtOTmbXrl3s2rWLO+64g6uvvprU1FTuvfdebr75ZvLy8rjxxhv5zne+0/WcsrIy1q9fzwcffMCDDz44wCshhBBCCCFEL7SG++6D6GgYhn14vWta4/33g216YZ+Sk+GCCyApCcrKYPJk+NnPrB+9ycmxpjvPoKWlhZycHMCaOfvGN77Bxo0bmTt3LuPGjQNg5cqV5OXldWWBTCYTBw8e5PPPP+eGG27AaDSSnJzM0qVLTzv+F198wTnnnNN1rJiYmDOOx2QyUVdXx7nnngvALbfcwjXXXNP1+FVXXQXArFmzKCoq6vUY6enpXVM14csm0v0d+7rrrutzXBs2bOD555/vytZt2rSJt96y9iS/6aab+OEPf9i17xVXXIHBYCArK4uKioozfr9CCCGEEEI45K23YM0aeOop6Oc9tS/yruDMEdHR1sDs+HEYO9b69RB1X3PWXWhoaNfnWmv+/Oc/c8EFF5yyz0cffYTqZ56r1rrffQYiMDAQsBYy6ezsdNpx4dTvubuysjK+8Y1v8N577xEWFtbrPt2/R/sYwfr9CyGEEEIIMSQtLdaG09nZcMcdnh6NS3hXcNZPhgv4cirjQw/B00/Dww/DkiUuH9oFF1zA008/zdKlS/H39+fAgQOMHj2ac845h2effZabb76ZyspKcnNz+epXv3rKc88++2zuuecejh49yrhx46itrSUmJobw8HDq6+tPO1dkZCTR0dGsW7eORYsW8c9//rMr0zVUgzl2R0cH1157LY899hgTJkzo2j5//nz+85//cNNNN/Hqq6+ycOFCp4xRCCGEEEKI0/zud3DsGKxeDX7eFcY4i299V/bA7LXXrAHZkiWnfu1Ct99+O0VFRcycOROtNfHx8bzzzjtceeWVrF69muzsbCZMmNBroBMfH89zzz3HVVddhcViISEhgVWrVnHppZfyla98hXfffZc///nPpzzn5Zdf5q677qK5uZnx48fz4osvOu17GeixN27cyNatW3n44Yd5+OGHAWvG8E9/+hNf//rX+e1vf0t8fLxTxyiEEEIIIUSX4mL4zW/g6qvdkpjxFOXOKWezZ8/W9uqFdvn5+UyePNmxAzz+uLX4R/cLkpsLW7dCt/VOQtgN6PdLCCGEEEJ4pxtvhDffhPx8sNVx8FVKqe1a69m9PeZbmbPeAjB7Bk0IIYQQQggx/GzYAP/6F/zkJz4fmPXHt0rpCyGEEEIIIUYOi8VaOn/0aPjxjz09GpfzrcyZEEIIIYQQYuR46SXYvh1eeQX6qCo+nHhF5kxKrQtXkN8rIYQQQggfVl9vzZbNnw89qqEPVx7PnAUFBVFTU0NsbKxTe4GJkU1rTU1NDUFBQZ4eihBCCCGEGIxf/AIqK+HDD2GExAkeD87GjBlDcXExVVVVnh6KGGaCgoIYM2aMp4chhBBCCCEG6sAB+OMf4bbbYHavhQ2HJY8HZ/7+/owb5lVXhBBCCCGEEP3o3jbre9+DoCBYscK6fYS0zfKKNWdCCCGEEEKIEW7OHLj2Wnj0UetUxhtugLvusm4fITyeORNCCCGEEEIIliyB3/wG7rwTYmLgrbfgtddGVE9jyZwJIYQQQgghPG/jRvjBDyAsDGpr4e67R1RgBhKcCSGEEEIIITztk09g+XJrLzN/f3joIXj6acjN9fTI3EqCMyGEEEIIIYTnvPYaXHopJCdDSwu88Qb8/OfW7ddeO6ICNAnOhBBCCCGEEJ7x3HNw/fUwbx7cdJM1MLNPZVyyxBqgbd3q2TG6kRQEEUIIIYQQQrjfY4/Bgw/CRRdZg7KQkNP3WbJkRK07k8yZEEIIIYQQwn20hh/9yBqYXX89vPNO74HZCCSZMyGEEEIIIYR7mM3W3mXPP2/99y9/AaPR06PyGpI5E0IIIYQQQrheW5u1sfTzz8NPfgJPPSWBWQ+SORNCCCGEEEK4VlMTXHUVrFwJTzwBDzzg6RF5JQnOhBBCCCGEEK5z8iSsWAGbN8MLL8DXv+7pEXktCc6EEEIIIYQQrlFWBhdcAIWF8Prr1uyZ6JMEZ0IIIYQQQgjnO3oUzjsPysvhww9h+XJPj8jrSUEQIYQQQgghxNA8/jjk5n759d69MHs2lJbCZ59JYOYgyZwJIYQQQgghhmbOHLj2WnjtNWvPsuXLobkZ/vY3mDfP06PzGRKcCSGEEEIIIYZmyRJrYHblldagzGyGf/4TvvpVT4/Mp8i0RiGEEEIIIcTQZWVBezt0dMB3viOB2SD0G5wppVKUUrlKqXyl1D6l1H3dHvu2UqrQtv1x1w5VCPc6Wt3Ex3vLPT0MIYQQQgjvp7U1a9bSAnfdBa+8cuoaNOEQR6Y1dgIPaK13KKXCge1KqVXAKOByYJrWuk0pleDKgQrhTp8fqOKef+2gobWTjQ8uJTkq2NNDEkIIIYTwXj/8IWzaBHffDU89ZV1/Zl+DtmSJp0fnM/rNnGmty7TWO2yfNwD5wGjgbuBRrXWb7bFKVw5UCHf5x6YibntpK5HB/gBsOFTt4REJIYQQQnixI0fgT3+CnBz4y1+s2+xr0LZu9ejQfM2A1pwppdKAGcBmYAKwSCm1WSm1Vik1xwXjE8JtOs0WHn53Lz99dx+LJ8Tzv/sWERsawMbDNZ4emhBCCCGEdzKb4ZZbICgI3n0XDN3CiyVLrBk14TCHqzUqpcKAN4H7tdb1Sik/IBo4C5gDvKaUGq+11j2edydwJ8DYsWOdNnAhnKm+tYN7/7WTzw9UcceicTx40WSMBsX8jDg2HKpGa41SytPDFEIIIYTwLk88AevXw8svg7zXHzKHMmdKKX+sgdmrWuu3bJuLgbe01RbAAsT1fK7W+jmt9Wyt9ez4+HhnjVsIpzle08xVT21k46FqHr0qm5+syMJosAZiC9JjqWxo41Blo4dHKYQQQgjhZXbvhocegquugptu8vRohgVHqjUq4AUgX2v9+24PvQMste0zAQgAZHGO8ClbjtZy+V/XU9XQxj++MZfr5556x2dBhvV+g6w7E0IIIYTopq3NGpDFxMCzz4LMMHIKRzJnC4CbgKVKqV22j4uBvwPjlVJ7gf8At/Sc0iiEN3tjezE3Pv8F0SEBvHPPAuann5b4JSUmhLExIaw/JOvOhBBCCCG6PPQQ7NkDL7wAcae/hxKD0++aM631eqCvUPhrzh2OEK5nsWh+u7KQp9ccZkFGLE99dRaRIf597r8gI44PdpfSabbgZ5S+7UIIIYQY4T7/3LrW7M47YcUKT49mWJF3mmJEaW7v5O5Xt/P0msN8dd5YXrpt7hkDM4AFGbE0tHWSV2Jy0yiFEEIIIbxUfb21OuP48fC733l6NMOOw9UahfB1ZaYWbn95G/ll9fz0kixuW5DmUAVG+3THjYeqmTk22tXDFEIIIYTwXt/9Lhw/DuvWQViYp0cz7EjmTIwIu0/UcflfNnCsppkXbpnD1xeOc7g0fkxoAFlJEayXoiBCCCGGgcNVjVTWt3p6GMIXvfsu/P3v8KMfwfz5nh7NsCTBmRj2Pswr49pnN+FvNPDm3fNZMilhwMdYmBnHjmN1tLSbXTBCIYQQwj0sFs0Nz33Bzz/Y7+mhCF9TWQl33AE5OfDII54ezbAlwZkYtrTW/Pmzg9zzrx1MHR3Ju/cuYGJi+KCONT89lnazha1FtU4epRBCCOE+eSUm6d8pBk5ra/EPkwn++U8ICPD0iIYtCc7EsNTWaea7/93F71Yd4MoZo3n19nnEhQUO+nhzx8Xgb1RsOCxTG4UQQviu1QWVABTVNGGxSAck4aCXXrJOafz1r2HqVE+PZliTgiBiWPpr7mHe2VXK98+fwD1LMhxeX9aXkAA/ZoyNlmbUQgghfNrqggoAWjssVDS0khQZ7OERCa9XVAT33QfnnmstBiJcSjJnYtgxNXfw4vqjXDglkXuXZg45MLNbkB7HvtJ66prbnXI8IYQQwp0q6lvZW1LP/PRYAI5WN3l4RMLrmc3WsvkAL78MBgkdXE1+wmLYeX79ERraOrlveaZTj7swMxatYdPhGqceVwghhHCHXNuUxm8sHAfAsZpmTw5H+IInn7Q2nP7TnyA11dOjGREkOBPDSl1zOy9uKOKiqYlMTopw6rGnjYkiNMAoJfWFEEL4pM8KKhkdFcziiQkEGA0USeZMnMmePfCTn8AVV3yZPRMuJ8GZGFaeX3eURhdkzQD8jQbOGh/LRsmcCSGE8DGtHWbWH6xm6aQEjAZFSkywTGsUfWtrg5tugqgoeO45cNISEdE/Cc7EsHGyqZ2XNhZxcXYikxKdmzWzm58Rx9HqJkrqWlxyfCGEEMIVNh+tpaXDzNLJ1l6f4+JCKaqR4Ez04ZFHYPdueP55iI/39GhGFAnOxLDx/PojNLV3ct+yCS47x8KMOACp2iiEEMKnrM6vIMjfwNnjrcVA0mJDOVbTLOX0hdXjj0NurvXzDRusX190EeTne3ZcI5AEZ2JYONnUzksbirg4O2nQjaYdMWFUGHFhgRKcCSGE8Blaaz4rqGRhRhxB/kYA0uJCaeu0UF7f6uHRCa8wZw5cey18+CHcfDMkJMCWLdbtwq0kOBPDwt/WHaG5w8x9y5y/1qw7pRQLMmLZcKgGreVuoxBCCO93sLKR4pMtLJ00qmtbWmwogBQFEVZLlsCvfmUt/nHkCLS0wOuvW7cLt5LgTPi82qZ2Xt5YxIrsJCaMcl3WzG5BehzVjW0cqGh0+bmEEEKIoVptK6G/ZNKXa4fS4kIAOCrrzkRtLdxzD9x9NwQEWLd95zsSmHmIBGfC57kra2a3IFPWnQkhhPAdq/MryUqKICkyuGtbcmQwAX4G6XU2klks1oIfEyfCM8/AZZdBcDA89BA8/fSXa9CEW0lwJnxaTWMbL28s4pJpyWS6IWsGMDoqmLTYEAnOhBBCeL265na2Hatlma1Ko53BoEiNCZFy+iPV1q1w1llwxx0waRI8+yysX2+dyvjzn8Nrr1nXoEmA5nYSnAmf9rd1R2npMHPfsgy3nnd+Rhybj9bSaba49bxCCCHEQKw9UIVFw9JJCac9lhobKmvORprqarjzTpg3D06cgH/+Ez7/3Dq18bXXvpzKuGSJ9eutWz073hFIgjPhs2oa2/jHpiIunZZMRoJ7smZ2CzPiaGzrZHexya3nFUIIIQZidUElsaEBTB8Tddpj4+JCOFYr5fRHBLPZOlVxwgT4+9/h/vuhsBC+9jVrg+kf/vD0NWZLlli3C7eS4Ez4rOfWHaGlw8x33LTWrLuzx8eilKw7E0II4b06zRbWFFaxeGICBoM67fG0uFDaOy2USTn94W3TJpg7F771LZg+3dpc+ve/h4gIT49M9EKCM+GTqhvb+MfGY1w2PZmMhDC3nz86NIApyRESnAkhhPBaO0/UYWrpOG29md04Kac/vFVWwte/DvPnQ3k5/PvfsHo1TJni6ZGJM5DgTPik5z4/QlunZ7JmdgvS49hx/CTN7Z0eG4Oj/rGpiJc3Fnl6GEIIIdzos/xK/AyKhbYqwz2lxlmDMykK4uMef/zUwh2dnfDtb0NqqnVN2Q9/aJ3CeP311imMwqtJcCZ8TrVtrdnlOaNJj3d/1sxuQUYcHWbN1qKTHhuDo55fd5QnPz0gBUyES7R1mjnZ1O7pYQghelhdUMHccTFEBPn3+nhSRBCBfgaOSa8z3zZnzpeVFdets5bG/8tfICsL9uyBxx6DMM+9XxIDI8GZ8DnPrj1Me6eFby91b4XGnuakxRBgNHj91Mamtk6O1zZT19zhE4Gk8D2/X3mAi/64TooKiNM0tnXy/LojcmPIA07UNnOgorHXKo12BoMiNTaEo9XS68yn2SsrXnIJnHMOFBXBI4/Atm3WMvnCp0hwJnxKVUMb//ziGFfkjGa8B7NmAMEBRmamRnl9cHagoqHr81X7Kzw4EjFcfXG0lvL6Vg5VNXp6KMLL/GvzMX75YT6bjtR4eigjTm5hJdB7Cf3u0mJDKZLMme9bsgS++lXr5z/4ATz8sExh9FESnAmfYs+a3evhrJndgvQ49pXWU+vFU7oKyq3B2YRRYazKL0dryW4I52nvtJBfWg/ANsnMih7e210KwH7b74hwn8/yKxkXF9rvjcy0uFCO1zRjlsy3b8vNhXfegYceghdekObRPkyCM+EzKhtaeWXzMa6Y4fmsmd0C2yLrTYe9965wYXkDoQFGbpmfxonaFg5USHZDOM+BigbabVPWth+T4Ex86UhVI3tLrEHZPgnO3Kq5vZNNR2r6zZqBNXPWbrZQZmpxw8iES+TmWtecvfYa/Pzn1n/ta9CEz5HgTPiMZ9ceocOs+c5Sz1Vo7Gna6EjCA/1Y78VTGwvK65mQGM55k0cBsGp/uYdHJIaTPFsj9kmJ4Ww/Vuvh0Qhv8t7uUpSCaWMi2V8mwZk7bThUQ3unhWWOBGdxIQAUyboz37V1qzUgszeRtq9B27rVs+MSgyLBmfAJlQ2tvGJba5ZmK/3rDfyMBuaNj2HjYe8MzrTWFJQ3MCkxgoSIIKanRMm6M+FUecV1RIX4c3nOaIpqmqlqaPP0kIQX0Frz3u5S5qbFsHhiAkeqGmlpN3t6WCPG6oIKwgL9mJ0W0+++4+zl9GXdme/64Q+/DMzsliyxbhc+R4Iz4ROeWXOETov2eIXG3izIiONYTTMnar3vrmNlQxt1zR1MSgwH4PysUewuNlFR3+rhkYnhIq/YRPboSOakRQOw47hMbRTWaYxHqpq4LCeZrKQILNqaxReup7VmdUEl50yII8Cv/7d5o8Kt5fSlEbUQ3kGCM+H1KutbeXXzMa6c4V1ZM7sFGdZ1Z96YPbMXA5loC87Oy7JPbZTsmRi61g4zByoamDYmkqmjIwkwGmTdmQDg/d2l+BkUF09NYkpyBIBMbXSTfaX1VNS3sXTSKIf2NxgUabGh0utMCC8hwZnwek+vPey1WTOAzIQw4sMD2XDI+4qCFNjeDNkzZ5kJYaTGhvBpvgRnYujyy+rptGiyR0cR5G8ke0wk24pk3dlIZ7Fo3t9dyqLMOKJDAxgTHUx4kJ9UbHST1QWVKAWLJ8Y7/Jy0uBCOSuZMCK8gwZnwahX1rby6+ThXzxxNaqz3Zc0AlFIsSI9l4+FqrytTX1jeQGJEEFEhAYB1rOdNHsXGQzU0tnV6eHTC19mLgUxPiQRgVmo0e0vqae2QtUUj2fbjJyk1tXJZTjJg/X8nKylCKja6yWcFlUwfE0VcWKDDz0mLC+VEbYuU0xfCC0hwJrza02sOY7Fo7l3iPRUae7MgI47qxnYKuzV89gb55Q1dUxrtlmeNot1s4fMDVR4alRgu8opNxIUFkhgRBFiDs3azhb0lJg+PTHjSe7tKCfQzcF5WYte2rOQICsrr5c2/i1U1tJFXXOdQlcbu7OX0S+uknL4QntZvcKaUSlFK5Sql8pVS+5RS99m2P6KUKlFK7bJ9XOz64YqRpNzUyr+2HOfqmWMYGxvi6eGckX3d2fqD3rPurMNs4XBlI5OSTg3OZqdGExXiL+vOxJDtKalj2phIlFKANTgD2CbrzkasTrOFj/aUsXzyKMIC/bq2T0mOpLXDIlPnXGxNYSVaw5JBBGcARbLuTAiPcyRz1gk8oLWeDJwF3KOUyrI99qTWOsf28ZHLRilGpGfW2rJmXrrWrLvkqGDGx4Wy0YuaURdVN9FutnStN7PzMxpYOimB1QWVdNiaBwsxUE1tnRyqbCR7dGTXtriwQNJiQ9hWJMHZSLXxcA01Te1cOj35lO1ZSVIUxB1WF1QyKiKwqwiLo+zl9KVioxCe129wprUu01rvsH3eAOQDo109MDGy2bNmX5k1hpQY786a2c3PiGXzkRqvCXjy7ZUaR53+R/r8rFGYWjrkTbQYtH2l9Vj0l+vN7GalxrDj+EmvW3/pa/aWmHxy7d57u0sJD/Q7rRhFRkIY/kbFvlKZ8uoq7Z0W1h2sZumkUV3ZbEeNiggkyN/AUWlELYTHDWjNmVIqDZgBbLZtulcplaeU+rtSKtrZgxMj11NrDmGxaO5Z4v1ZM7uFGXE0tZvZfaLO00MBoLC8Hj+DIj3h9EIqizLjCfAzyNRGMWh5xXUATB19anA2Oy2a2qZ2mb42SLVN7dz7rx1c8uf1PL3msKeHMyCtHWY+2VvOBVMTCfI3nvJYgJ+BCaPCpWKjC20tqqWxrXPA683AWrQlLTZUpjUK4QUcDs6UUmHAm8D9Wut64GkgHcgByoDf9fG8O5VS25RS26qqpACB6F+5qZX/bDnBNbN9J2sGcNb4WJSC9Ye8Y91ZYXkD4+NDCfQznvZYaKAfC9JjWZVfLhkOMSh7SkwkRQaREB50yvbZsu5s0D7eW875T67lk33lxIYGsNbHivasKayioa2Ty3pMabTLSopgf2m9/J/jIp/lVxLgZ2B+Ruygni/BmRDewaHgTCnljzUwe1Vr/RaA1rpCa23WWluAvwFze3uu1vo5rfVsrfXs+HjHe26IkWvz0RrazRZuOivN00MZkKiQALJHR7LRS/qd5Zc1MDGx73UH52UlcqK2xesqTArfkFdsYtqYyNO2p8eHERHkx3aZMuuwuuZ27v/PTu56ZTujIoJ4796FfHXeWPKK66hv7fD08Bz2/u5S4sICmJ/ee3CQlRxBTVM7lQ1tbh7ZyLC6oIL56bGEBPj1v3MvrOX0m+n0kqn5QoxUjlRrVMALQL7W+vfdtid12+1KYK/zhydGotK6VgBSvbxCY2/mp8ex4/hJmjzcQ6yhtYOSupbTioF0t3yyderLqn0ytVEMjKmlg6PVTUwbE3XaYwaDYlZqNNuPS3DmiFX7Kzjvyc/5IK+M7y6fwDv3LGByUgTz0+OwaNhyxDeaeje2dfJpfgUXZyfhZ+z9rcWUZGswL1Mbne9IVSNFNc2DmtJolxYbQodZd/0NFkJ4hiOZswXATcDSHmXzH1dK7VFK5QFLgO+6cqBi5CgztRAR5Edo4ODu/nnSgoxYOi2aLUWefUN1wJYNO1NwlhARRE5KFKvyJTgTA7PP1scse/TpmTOA2WkxHKpspK653Z3D8imm5g6+99ou7vjHNmJDA3j33gXctzwTf1tgMzM1iiB/AxsOe8c06f6s2l9OW6elzymNQFdbD6nY6HyrCyqBgZfQ7y7NVrHxqExtFMKj+n33q7VeD/RW9kdK5wuXKK1rJTkq2NPDGJQ5aTEE+BnYcLCaJRMH/0dyqPLLbJUazxCcAZyXNYrfflJIuamVxMigM+4rTlXV0EZcWMCAq6INB3n9BGf2fmfbj51k2eRRbhuXr8gtqOTBt/KobmznO0szuHdpJgF+p94rDfQzMictxmumSffnvV2ljI4KZubYvmuDRQT5MzYmRCo2usBn+ZVMHBXOmOjBzzixl9M/VtMEyDIUITxlQNUahXCHMlMLST4aKAT5G5k1NpoNHu53VljeQHigH6P7CXLPz7K+cf5UsmcDsrfExNxff8p1z37RVbVwJMkrrmNsTAjRoQG9Pj59TBR+BiVFQXqob+3gB6/v5raXthIVHMA731rA986feFpgZjc/PY7CigaqvHyN1smmdtYdrOaS6UkYDGe+WTElOUKmNTpZfWsHW4tqWTp5aDcEE8IDCfY3SqVVITxMgjPhdcpMrST5aOYMYGFmHPll9dQ0eu4NVWF5AxMTw/vN6mQkhJEaGyIl9Qcot6ASreFwVSOX/WUD33ttF2WmFk8Py23yik1k91IMxC44wMiU5Ai2S3DWZe2BKi548nPe3FHMPUvSee/bC874MwTrNGmAjV4+tfGjvWV0WvQZpzTaZSVFUFTTTKOH1+UOJ+sOVNNp0SwdwpRGsJbTT40NkUbUQniYBGfCq7R2mKltaifZRzNnQFelso0eyp5prckvr+93SiNY/xifN3kUmw7XyJulAdhwuJqspAjW/GAxd52bzge7y1jyxBqeXHWA5vbh/XOsbWqn+GQL0/qY0mg3KzWG3SfqaO8c2ZXfGlo7ePDNPG75+xbCAv14+1sL+MEFk3ptcdHTlORIIoL8vH5q43u7SkmPDyUrqe/qsHZZydZ98mXdmdN8VlBBVIg/M1KihnyscXGhFNVII2ohPEmCM+FVykzWKlGJkb6bOcseHUl4kJ/H7naXmVppaO1kkgNvlMC67qzdbGFtoW/1VPKUlnYzO47VsTAzjvAgfx68aBKfPXAuyyaN4o+fHWTpE2t5c3sxFsvw7OVkn8bZX9ZnVmo0bZ2WEb2+aP3Bai548nNe23aCu85N5/1vL2T6AN5AGw2Ks8bHenVRkHJTK1uKarls+miH1l9KxUbnMls0awurWDwhvs8qmQMh5fSF8DwJzoRXKauzTg3z5cyZn9HAWeNjPdaMurC8/0qN3c1KjSY6xF/WnTlo27Fa2s2WU3o5pcSE8NcbZ/L6XWeTEBHIA6/v5oqnNrDlqG+UQR+IPcVnLgZiNzvty6IgI01jWyf/7+09fO2FzQQFGHnj7vk8eNEkgvz7z5b1tCAjjuKTLRz30mzGB3mlaA2X5fQ/pRFgVEQgMaEBEpw5ye7iOmqa2lnqpMI742JD6bRoSupGzjRtIbyNBGfCq5TaMme+vOYMYGFGHCdqPfOGKr/c+qZnwijHgjM/o4Glk0axuqCSDrlb2q/1h6rxNyrmjos57bE5aTG8860FPHnddCrr27j22U1869XtXvvGejDySkyMjw8lPMj/jPuNighiTHTwiAnOKutbeWN7Mff9ZyeLHlvNv7cc585zxvPRdxadsYJhf+zrzrw1e/be7lKyR0d2Vfrrj1KKrKQI9pWN3IyqM63Or8RoUJyb6Zzqivb+olIURAjP8b1GUmJYs2fOfLVao133N1RjY8e69dyF5Q2MjgomMvjMb567Oy8rgTd3FLO1qJb56XEuHJ3v23iohhkp0YQE9P7fp8GguHLGGC6cksRznx/hmbWH+XR/JbctTOOeJRlE9BPUeLs9xSbOGn96YNqb2anWyqVa62HXcqC1w8yWo7WsO1jFuoPVFNgy1nFhASyemMDXzkrtaikwFOnxYSSEB7LhUDU3zHXv/yX9OVrdRF6xiZ9cPHlAz8tKjuClDUV0mC1dfd3E4KwuqGRWajSRIc75f8UeZBdVN8FEpxxSCDFAEpwJr1JqaiUmNGBQ03+8SXp8GKMiPPOGyl6pcSAWZcYT4Gdg1f4KCc7OoK65nb2lJu5bltnvvsEBRu5bnsl1c1L47SeFPLv2CG9sK+a7503g+jkpTlkf4m6V9a2U17cybUyUQ/vPSo3mnV2lnKhtYWzs4PsveQOtNYUVDaw7UM3nB6vYfLSW9k4LAUYDc8ZF8+BFk1iUGcfkxIh+y8kPhFKKBRlxfH6gCotFO/XYQ/X+7lKUgkumJw3oeVOSI2g3Wzhc1cikRMfWxorTlZla2F9Wz48vmuS0Y8aHBxIaYJSiIEJ4kARnwqv4co+z7pRSLEiPY42b31C1d1o4VNnIkgGWVA4N9GNhRhyr9lfw00uyhl2Ww1m+OFKD1tZ1QI5KjAzid9dO59b5afzig/383zt7+cemIv5vRRbnTPCtRq95tvVm0/opBmI3K9WaYdt+vNYng7PqxjbWH7QGY+sOVnf1G5swKoybzkplUWYc88bFEhzg2ptJ89NjeXtnCYUVDUx2sNCPq2mteW93KXPSYkgaYAEne1XHfSX1EpwNweqCSoAhl9DvzlpOP5SiGpnWKISnSHAmvEpZXSspMb73Jq438zPieGtnCQXlDV3lo13tSHUjnRbtcDGQ7s7Lsq47K6xokDdMfdhwqIaQACPTHcwcdZc9JpL/fvMsPt5bzm/+V8DNf9/CskkJ/OWrM13+5t5Z8kpMGBQO/z5PTAwnPNCPbUUnuXLGGBePbugsFs22YydZXVDJuoNV7LMVrYgO8WdhZjyLMuM4JzOeRDffQLLfDNhwqNprgrP8sgYOVTbyyyumDvi54+JCCfQzsL+snqtdMLaRYnV+JSkxwWQkhDn1uGlxIVKwRQgPkuBMeJVSUwvzHFzP4u261p0dqnZbcPZlpcaBn2/Z5ASUglX7KiQ468OGw9XMGxdDgN/gpiQqpbgoO4mlkxP42+dHeGLlAd7eWcJX53nXWqK+5BXXkZkQ3ud6u56MBkXO2CivLgqitSa/rIF3d5Xw3u5Sykyt+BsVs1Kj+cEFEzknM54pyc6dqjhQyVHBjIsLZePhGm5fNN5j4+juvd2l+BkUF2cPbEojWIsQTUqKkABgCFo7zGw4XM31c8Y6faZDWmwoK/dVyJpAITxEgjPhNRrbOmlo7RzwFBlvlRQZzPj4UDYcruaOc9zzhiq/rAF/o2J8vGOV07pLCA8iJyWKVfkVfNuBNVUjTZmphSNVTXzVCWsIA/2M3LMkg/d3l/HfbSd8IjjTWrOn2DTgKVSzUqP542cHqW/t8KpiKCdqm3lvdynv7CzhYGUjfgbFuRPiefCiSSybPIqwQO/68zg/PZZ3dpZ4xRtmrTXv7y5lYWYcMaEBgzpGVlIEH+aVDstiMe6w6XANrR2WAU9hd0RanK2c/skW0hyswimEcB65JSK8RlePsyjfX3NmtzAjjs1HamnrNLvlfIXl9aTHhw36zdvyyaPIKzZRbmtpIL604VANgNMKpiiluG5OCrtP1JFf5v0ZhFJTKzVN7Q6vN7ObnRqD1rDzeJ1rBjYANY1t/GNTEVc/vZFFj+fy208KiQ4J4JdXTGXrT5bzwq1zuDxntNcFZmCd2tjUbu5qAu5JO46fpKSuhcumO9bbrDdZyRHUt3ZKP61B+qyggpAAI/N6aekxVPaKjUdl3ZkQHiHBmfAaXT3OhknmDKxVEFs6zOw4VueW8xWWNwxqvZnd+VnWRqarvLQhtcWieeS9fR55g7rxUDUxoQFD+vn2dOWM0QQYDfx36wmnHdNV9th+5tkDXG+XMzYKg4LtRZ5pyN3U1sk7O0u49cUtzP31Z/z03X00tXXyowsnsf5HS3jtrrP52lmpRA8yA+QuZ4+PRakvbxJ40nu7Sgn0M3D+lMRBH2OKbaq3TG0cOK01uQVVLMyIc0llY3uvsyLpdSaER0hwJrzGcOlx1t1Z42MwGhTrDla5/Fym5g5KTa1MHMJ6sYyEMNJiQ1i13zuDs7wSEy9tLOKZtYfdel6tNRsOV3N2eqxT1x5FhwZwwdRE3t5ZQmuHe7Krg7W72ISfQQ04OA0L9GNSYgTb3LjurL3Twmf5FXz73zuZ9ctV3P/fXRysaOTOc8bz8f2L+Pj+c7h7cTpjon2n+FB0aABZSRFsOOTZZtSdZgsf7ilj2eSEIWUYJyWGoxRdRVeE4worGiipa2HZZOdPaQSID7OW0z8m5fSF8Ajvm7shRqxSUytK4fZKaK4UHuTPzLFRrD9UzQ9dfK7CClsxkKTBZ3aUUpyXNYqXNhbR0NpBuBetEQL41BY0ri6opLm90+HCFEN1uKqJivo2FrigB9z1c1J4f3cpn+wr5/Kc0U4/vrPsKTYxKSl8UHfqZ6dF88b2YjrNFpf2dztc1cjf1x/loz1lnGzuIDrEn6/MGsPlOaOZNTbaq3qEDcaCjDhe2lBES7vZYxU+Nx2pobqxfUhTGgFCAvwYFxfKfh+Y0uttPsu3ltBfMtE1wZlSirS4UI5K5kwIj5DMmfAaZXUtxIcFenyxu7MtyoxnT4mJ2qZ2l56nsNz6Jmeo0+7Oy0qkw6z5/IBn79D35tP8CqJD/GntsJBb4PpspN3Gw9afhb0CpzOdPT6WlJhgr57aqLUmr7iO7NFRg3r+rNRomtvNFNiqibqC2aK59cUtvLWjhEWZ8fz91tls+clyfnlFNnPSYnw+MANrUZB2s4WtHpoiCtYpjeGBfix2QmAwJTlSpjUOwsr9FWSPjiQhwnU3MtPipNeZEJ4yvN4FC59WZmolKWr4rDezW5QZh9a4fDpSfnkDEUF+JA7xD/bMsVFEh/izan+5k0bmHCdqmykob+Cb56YTFxbIR3vK3HbuDYeqGRMdzFgX9OAzGBTXzkph4+EajnvpNKJjNc3Ut3YOuBiI3ew0a9GCbS4MKlbuK+dEbQtPXjedP90wg6WTRg27Gz1zx8Xgb1RsOOyZGydtnWY+3lfO+VMSnbLWKSspgpK6FkzNHU4Y3chwuKqR3Sfqhpy57E9abAjFJ1voMFtceh4hxOmG118u4dNKTS0kD6MpjXbTxkQREeTn8nVnheUNTEqKGHJZaj+jgaWTrA2pvekP82e2IiUXTEnkwqnW8bW0u36dltmi2XS4hgXpcS4r+f2V2WMwKHhtm3dmz/JKTACDDs6SI4NIjAhiuwsrNj6//ihjY0I4L2vwRSq8XUiAHzNSotnooaIgawqraGjt5NLpA+9t1ht7/8d9ZSanHG8keHN7MUaD4vIZrg7OQjFbNMUnXVtN83BVo9evtxXC3SQ4E15Ba01ZXeuwqtRoZzQoFmTEsf5gNVprl5xDaz3kSo3dnZc1ivrWTrYe9dz0qZ4+za8kPT6UcXGhXJydREuHmdzCSpefd2+JifrWTua7YEqjXVJkMIsnJvD69hN0elFAbLenuI4APwMTRg3u90spxay0aJdVbNxx/CTbj53k6wvSMA6D6YtnMj8jlr2lJuqaXTtNujfv7S4lJjSABRnOWXuZlSQVGwfCbNG8taOEcyfEkxDu2huZ9nL6rqzYWNXQxoV/+Jwbn99Mc3uny84jhK+R4Ex4BVNLBy0d5mHV46y7RZnxlJpaOVzlmj90xSdbaGzrZKKTgrNzJsQR6GfwmpL69a0dfHGkhuW2Uv9z02KIDQ1wy9RG+xQyZ/U368t1c1KoqG9j7QH3raVzVF6xiaykiCFNE5ydGk2pqZVSF/S1emHdUSKC/LhmdorTj+1tFmRYp0l/ccS92bOmtk4+y6/g4uxEp00XjQ8PJCE8UIqCOGjj4WrK61u5euYYl5/L3nzalUVB1hRW0mHWbD92krtf2UF7p/fdmBLCEyQ4E16htG749TjrblGm9Y29q6Y2FtoKLUwaQhn97kIC/FiYEceq/RUuy/YNxNrCKjotmvMmW4MzP6OBC6Ymsrqg0uVTYjYeqmHiqHDiwwNdep6lkxKICwvkP15WGMRs0ewtMQ16SqPd7FTbujMnl9Q/UdvM//aW8dV5qYR6YfNoZ5s+JoqQAKPb+52t2l9Ba4eFy6Y7t6JoVnKEZM4c9Ob2YiKC/FxWQr+72NAAwgL9XFoUJLewklERgfzmqmzWHqjigdd3Y7Z4/u+NEJ4mwZnwCmUmW4+zYZo5S4kJYVxcKOsOumYhv72MvrMyZwDLs0ZRfLLFpRX2HPVpfgUxoQHMGBvdtW1FdhLN7WbWuHBqY2uHma1FtS6d0mjnbzTwlVljWF1QSWV9q8vP56ij1Y00tZuZNsDm0z1NSgon2N/IDicHZy9uKMKgFLfMT3Xqcb1VgJ+BueNi3F4U5L3dpSRFBjE7Nbr/nQdgSnIEhypl3VF/Glo7+HhfOZflJLuk8XRP1nL6IRS5qEhRh9nCugPVLJmYwA1zx/LgRZN4f3cpD7+31ytuCArhSRKcCa9QarK+GU0eppkzgIUZcXxxpMYlUzfyy+oZEx08pKawPS2bnIBSeLwhdYfZQm5BJUsnJZyynmjeuBhiQgP4cI/rqkruOH6Stk6LS/qb9eba2WMwWzRv7Ch2y/kckVc8tGIgdv5GAzkpUWw75rx1Z/WtHfx363EumZY0bLPuvVmQHseRqibKTe4J4k82tfP5gSounZ7s9JYEWUmRdFo0hyobnXrcnirqW/nPluM+u7bpoz1ltHZY3DKl0S4tNtRla862FZ2koa2TJZOsWcC7zk3nm+eO55UvjvO7lQdcck4hfIUEZ8IrlNW14GdQLp865kmLMuNobjez47hzMwdgq9TopCmNdgnhQeSkRHk8ONtaVEt9ayfLbVMa7fyMBi6Ykshn+RUuu+u+8VANRoNi3vgYlxy/p/HxYcwdF8NrW094zd3jvGITIQFG0uPDhnys2WnR5Jc10NTmnDfI/91ygqZ2M7cvGu+U4/kKeybX1e057P63t5xOi3ZJ+fauio2lrq3Y+PjHhTz41h7OeXwNL28s8rn1TW9uL2F8fCg5KVFuO+e4uFCKTza75GeVW1hJgNHAwm7FZR68cBLXz0nhL7mHeH7dEaefUwhfIcGZ8AplplZGRQQN60prZ6fHYjQop687a+s0c6S6yWmVGrs7L2sUe0pMXdNOPeHT/ZUE+Bm61u119+XURtes5dtwuJrpYyIJD/J3yfF7c/2cFIpqmtnsJZUy84rrmJoc6ZTX5szUaMwWze4TdUM+VofZwosbjnLW+Bimjh5aVs/XTE6MICY0wG1TG9/bXcL4uFCmJDv3BhBAakwIoQFGl647a2k38/HeMhZlxpEeH8rD7+1j2e/X8NaOYp9Y43SspoktRbVcPXOMy9p59CY1NhSLhhMnnT+1cXVBJfPGx5yyTlQpxa+uzObi7ER++WG+17YWEcLVJDgTXqG0roWkYdjjrLvwIH9mjo1y+rqzQ5WNmC3aqevN7M63VUf8NN/1Jet7o7Xms4IKFqTH9lrs4azxMUSH+LukamN9awe7T9Q5rWy4oy6amkR4kB//9YLCIJ1mC/tK68ke4pRGu5ljo1HKOUVB/re3nFJTK7cvHFlZM7A2Lj97fCwbD9W4PMNabmpl89FaLp2e7JLAwGBQTE6KcGnFxpX7y2lqN/OtxRn8586zePnrc4kM9ud7r+3moj9+zsp95V6Tqe7NmztKUAqumuncYiz9GRcXAliDQ2c6UdvMocpGFk88vbCJ0aB48rocFmXG8eCbeXyyz3XT1oXwVhKcCa9QZmolKWr4rxlZmBHPnhITJ5uc16PIXqlxcpLzg7P0+DDGxYV6bGrjocpGjtU0s6zHlEY7V05t3HykFot2fQn9noIDjFyRM5qP9pRhau5w67l7OljZSFunZcjrzewig/2ZkBA+5OBMa83z644wPi6UpZNcX7nOG83PiKW8vpUjLix1DvBBXilaw2U5rmt6bK/YaHFRFuutHSWMjgpm3rgYlFKcOyGe9+5ZyF+/OpNOs+bOf27nqqc3sumwZ5p7n4nFonlrRzELM+Lcvq4yLdZeTt+5mbPVBdabfX29dgP9jDzztVlMGxPFt/+1k41umr4rhLeQ4Ex4nMWiKTe1kjzMM2cAiyZYexQ5czpSYXkDAX6Grj+kzqSUYvnkBDYdrqah1f2Bgr3P2plKR1+cnURTu5nPndwfbMOhaoL8DcxMjXLqcR1x3ZwU2jotvLu7xO3n7i6vuA6AbCdOG5yVFs3OYyeHNJ1s27GT5BWb+PrCcU4vUOEr7EVqXP3G9f3dpUxJjnDKmsO+ZCVF0NRu5nit86fPVTa0su5gFVfMOLWYicGgWDEtiZXfPYdHr8qm3NTKDX/7gpte2MyeYteufxuIzUdrKT7Z4tZCIHYxoQGEB/o5vSjI6oJKxsWFdjW67k1ooB8v3jqHtLgQ7vjHNqdMhRbCV0hwJjyutrmddrNl2E9rBJg2OpKIID/WHXDeG6r88gYy4sPwc1Jj2J7Oy0qkw6w90hz50/0VZI+OPOMd47PTY4lywdTGjYermZMWQ6Cf68tW9zR1dCRTR0fw7y2eLQySV2wiPMjPqYH/rLHRNLR1crBy8C0a/vb5EaJC/D3yhtVbpMaGMDoq2KX9zg5WNLC72OSSQiDdTUm2Bv+umNr43q5SLBqunNH774qf0cD1c8eS+/3F/OTiyewtMXHpX9Zzz6s7OFzl2gqSjnhzRzFhgX5cMCXR7ee2ltMPdWqvs+b2TjYdqWFJL1Mae4oODeCf35hHdGgAt764hUND+D9DCF8iwZnwuDJ7A+oRMK3Rz2hgQUYc6w5WOe1Nd2F5PZNcMKXRblZqNDGhAW6f2ljV0MbOE3WnVWnsyd9o4IKsRD7Nd15D6sqGVg5UNLp9SmN3181OIb+snr0lnmvQu6fERPboSKdmp2anWftkbSsa3NTGouomVuVX8LV5qQQHuD9w9hZKKeanx7LpSI3Lilr8+qN8wgL9uHqWa4PgzFFhGA3KJRUb395ZwrQxkWQknDnzF+Rv5I5zxvP5D5fwnWWZ5BZWcv6Tn/OjN/IorfNMQaSmtk4+2lPGiuwkj/2uOzs423jI2k7G0enIoyKCeOUb8zAaDHzt+S0Uu6A4iRDeRoIz4XGltkqAw7nHWXeLMuMpNbVyuGrof/BONrVTUd/mkkqNdkaDYumkBHILKukwu6/8dG5BJVrD8qz+/4hfPC2JxrZOpxVbsa89WejmYiDdXZYzmkA/A//ddtwj52/rNJNf5rxiIHZjY0KICwtk+yDXnb244Sj+BgM3j5Cm02eyICMOU0uHSyod5hZUkltYxXeWZRAX5toWJ0H+RjLiw5z+fRyoaGBfaT1XznC8kEZ4kD/fO28Cn/9wCTefncrbO0tY/MQafvnBfmqduFbYER/vLae53ezy4PhMxsWGUHKyxWnl9FcXVhIaYGTuOMfbk6TFhfKPr8+lqb2Tm17YQnVjm1PG4m06zBaPVkYW3kOCM+FxZba7kklRw39aI9BVEn69E0rqF9iKgUx0co+zns7LGkV9aydb3VjefVV+BcmRQWQl9f+9zU+PJTLYeVMbNxyqJjLYv6sHkydEBvuzIjuJd3eW0tLumj5uZ1JY3kCHWTNtdJRTj6uUYnZq9KCCs7rmdl7bVsxlOckkhI+M/y/OZH66rd+Zk0vqt3da+MWH+xkXF8qt88c59dh9mZLs/IqNb+0owWhQXDqIaZlxYYE8fOkUVn//XC6bnszfNxzlnMdzeWH9UaeO8Uze3FHM2JgQ5tiyzZ5gL6fvjPWAWmtyCypZmBlHgN/A3n5mJUfw4q1zKDO1cMvft1DvgTXQrnKitpnfflLA/EdXs/CxXJf3/BPeT4Iz4XFlplYC/AzEhgZ4eihukRITQlpsiFOyPIXl1jczk12YOQNrQBnoZ+BjN5U1bu0ws+5gFcuzRjlUvtvfaOD8rFF8ur+Cts6hBTJaazYcquHs8bEe77t33ZwUGmxTm9wtz1YUwVmVGrublRrN8dpmKhtaB/S8f205TkuHmW8sdE/A4O0SIoLITAhzejPqf2wq4khVEw9dMnnAb6IHKys5gor6NqdlRSwWzbu7Sjh3QvyQMn9jokN44prpfHL/OcxMjeYXH+xna5Hrb1IVn2xm05Eat/c26ynNVrTDGUVBCsobKDO1DrrC6uy0GJ7+2iwKyxu4/aVtTq/Q606dZgsr95Vzy9+3cM5vc3l6zWGyR0cSFujHE58Uenp4wsMkOBMeV2pqJSkyyKN/gNxtUWY8m47UDHmqSGFFA9Eh/sSHu3baUUiAHxdNTeSN7cXUNbt+as+GQ9W0dlj6XW/W3cXTkmho62T9EIPeYzXNlNS1sCAjdkjHcYa542IYFxfqkZ5ne4pNRIf4Myba+dONZ9kyAdsHsO6svdPCyxuLWJQZx2QHsqkjxYKMOLYW1Q75poRddWMbf/z0IOdOiHeoaIOz2DPkzpra+MWRGspMrQOa0ngmmaPCeeZrM0mKDOLhd/e5vHn12ztK0Nr9vc16sldUdMa6M3sJ/aH8Xi2ZmMDvrp3O1mO13PPqDrdOtXeG0roWfr/qAAsfy+XOf26noLyeby/JYN2PlvL3W+dw17np5BZWueUGgPBe/QZnSqkUpVSuUipfKbVPKXVfj8e/r5TSSinPLc4QPq1sBDSg7mlRZhzN7WZ2HB9av6f8sgYmJoa7JbC9a3E6ze1mXt54zOXn+jS/grBAP+aNd3xdwoL0OCKC/PhwiFkm+xSx+R5cb2anlOK6OSlsKap1e+W43cV1ZI+Jcsnv1tTkSAL8DAPqd/bhnlIq6tska9bD/PRYWjss7Dxe55Tj/W5lIS0dZh66JMutN8zsU4idNbXxrZ0lhAf6cV6W4zd4+hMS4Mf/u3gy+8vq+c9W160F1Vrz1s4S5o2LISUmxGXncUR0iD8RQX5OCc7WFFYydXQECRFD+3t/ec5ofn75VD4rqOQHr+92WX88ZzFbNJ/lV/CNl7ay8LHV/Hn1QSYmhvPsTbPY8KOlfO/8iYy2FUS7dX4aCeGBPP5xgVc3Rheu5UjmrBN4QGs9GTgLuEcplQXWwA04D/DMinUxLJSZWkdMMRC7s9KtU+aGkuWxWDQHKhqY5OL1ZnaTEiNYPjmBFzcepamt02XnsVg0n+VXcu6E+AGVsQ/wM3D+lERWDXFq48ZDNSRGBDH+DD143OmqmaPxMyhec2P2rKXdzMHKRqa7YEojWK/V9DGRDq8701rzt8+PkpkQxrkT4l0yJl81b3wsBuWcfmd7S0z8Z+sJbpmf1m91Q2eLCglgdFQw+5yQOWtpN/O/PWVclJ1IkL9zqxxeMi2JeeNieOKTQpfNIthx/CRHq5v4igcLgdh1ldMfYiPquuZ2th87yVInZWNvOiuVB86bwDu7Svn5B/u9MpApN7Xyx08Psuix1Xzj5W3klZi4e3E6n/9gCS9/fS4XTEk8rQVOcICRby/LZGvRSdZ4oH2N8A79Bmda6zKt9Q7b5w1APmDPsz8J/BDwvleF8Almi6a8vnXEFAOxiwjyZ0ZKFOuGUBTkxMlmmtvNLq3U2NPdizOoa+7g31tcdz9mT4mJyoa2Mzae7suK7CQaWjsHvQbHYtFsPFzN/IxYr5lmmxAexNJJCby5o9htU3j2l9VjtminNp/uaVZqDPtKTQ6tG9l0pIb9ZfXcvmic11wXbxEZ7E/2mCg2HB5avzOtNT97fx/RIQF8Z1mmk0Y3MJOTItjvhGIIK/eX09Ru7rO32VAopXjksimYWjr4/aoDTj8+wBvbSwj2N3JRdpJLjj9QabGhHB3imrO1B6qwaFg8yPVmvbl3aQbfWDiOlzYW8UGe+9fl9sZs0eQWVnLHP7ax4LHVPPnpAdITwnjmazPZ+OBSfnDBpH6zodfNTiElJpjfflzo9VlB4RoDWnOmlEoDZgCblVKXASVa6939POdOpdQ2pdS2qiq5CyBOVdXQhtmiz9hkeLhalBlPXomJk4Msz/xlpUb3BWezUqOZNy6G59cdddoal54+za/AoAa3LmFBRhzhQX58mDe4wiX55fWcbO7waAn93lw/N4XqxnY+y690y/n2FNcBMG1MlMvOMTs1mg6zZveJun73fWHdUWJDA7g8x7Prb7zVgvRYdp+oo3EIGe0P8srYWnSS758/kchgfyeOznFTkiM4Ut1Ec/vQMvNv7yxhdFQw8wZQrn0gJidF8LWzUnnli2PkO7nCZGuHmQ92l3LR1ETCAv2ceuzBSosLpdTUMqT/83MLKokJDWC6E/9PUUrxk4snMzoqmDd3FDvtuIPRabbw1JpDnPN4Lre9uJWdx09yx6LxrP3BYv75jXlcODUJf6Njb7kD/Ax877wJ7C+r56O93hF0CvdyODhTSoUBbwL3Y53q+BPgp/09T2v9nNZ6ttZ6dny8TEcRp+rqcTbCMmcAiybEofXgy2AXljegFEwY5b7gDOCeJRmU17fyzs4Slxx/1f4KZqfFED2I6p0BfgbOyxrFqv3lgyq2svGQNfuwwMuCs3My40mMCOK/Llzn0l1esYn48EBGRbiu0MzMVFtRkH7WXR6qbOSzgkpuOjvV6VPUhosFGXF0WjRbjg4ue9bSbuY3H+WTlRTBdXNSnDw6x2UlR6C19f+2wapqaGPdwWouz0l2avP0nr533gQig/155L19Tp1St3J/BQ1tnV4xpdFuXFwIWltLvg+G2aJZe6CKxRPinV4B12BQXDI9ifUHq93eh667/247weMfFzI2JoS/fHUGGx9cxoMXTSI1dnDT4y+bPpqJo8L5/coDdPpY0RMxdA4FZ0opf6yB2ata67eAdGAcsFspVQSMAXYopRJdNVAxPJXVWUtpj8TM2bTRkUQE+Q163VlBeT1jY0IIdfPd1UWZcUwdHcEza484vWLZidpmCsobOG8AVRp7WpGdRP0gpzauP1RNenwoo4a4YN3Z/IwGrpk9hrUHqiitc32T0rwSE9PHRLp0CmFMaADj40P7rdj49w1HCfAzcNNZ0nS6L7NSownwM7Dh0OCCs2fWHqbU1MrDl2Z5tH2EvWLjUNadvbe7FLNFu7zKYVRIAN+/YCKbj9Y6dUrdm9uLGR0VzFnjPV8t1s4eYBwd5LqzXSdOcrK5gyVOnNLY3aXTkum0aP7nwSzTOztLyEgI4193zOOSaclDbkFhNCi+f8FEjlQ38cZ2z2YFhfs5Uq1RAS8A+Vrr3wNorfdorRO01mla6zSgGJiptXZPEyQxbJTZM2cjMDjzMxqYnx7HuoPVg7rzWlDewEQ3Z83AOpXkW4szOFrd5PQ/hp/lVwCwfAgV1hZmxhEe6Dfg3mDtnRa2HK31uqyZ3bWzU7BoXP6HurGtk8NVjWQ7ufl0b2anRrP9+Mk+11XUNrXz5vZirp45mtgh9Koa7oL8jcxOjR7UDYmSuhaeWXuYFdOSmOfhgGBMdDARQX5Dqtj49s5iskdHkpHg+v8br58zlinJEfz6o/whT8UEqKhvZd3BKq6cMdqlWb+BGhc7tF5nqwsqMRoU57iomM+U5AjGx4fy/u5Slxy/Pydqm9ladJIrZ4x26g2t5ZMTmDE2ij9+dtCne7qJgXMktF8A3AQsVUrtsn1c7OJxiRGitK6VkAAjEcHeMbfe3RZNiKOkroUjA/yj19phpqi6iUke6vd0wZRExseH8lTuYadO6fk0v5L0+NCu3jqDEehn5LysUazcXzGgAhq7TtTR0mFmfrp3BmcpMSEszIjjv1tPuHSR+N4SE1q7pvl0T7NTY6hr7uBIde9tAl754hhtnRYpn++ABRlxFJQ3DLiJ828+ygfgxxdNcsWwBkQpRVZyxKB7nR2saGBvSb3Tepv1x2hQ/OyyKZSZWnl6zeEhH+/tnSVYNFztRVMaAaJDA4gM9h90Of3VBVXMSo122VpGpRSXTktm89FaKuoH1tjeGd6zBYWXTU926nGVUvzggomUmVp55QvXt7AR3sORao3rtdZKaz1Na51j+/ioxz5pWuuh1/EVI06ZqYXEEdaAurtzMq13EtcNsGTuwYpGLBq3VmrszmhQ3HVuOvvL6lnrpHK/9a0dfHGkZkhZM7uLs5MwtXQMKJOw4VA1BgVne9F0op6um5NCSV3LoNcpOmJPsbVaXrYbgrOuZtS9lNRv7TDzj01FLJkY75YsiK+bn279vd00gKqNW2xT8u46N50x0Z7tp2WXlRRJQXn9oKZMv7WzBKNBcVmOc98kn8nstBiuyEnm2c+PcLxm8OXmtda8ub2YWanRQ7o55SppcaGDCs7KTC3kl9Wz1EVTGu0unZ6M1ri9aqPWmrd3ljAnLdolPenmp8exKDOOp9YcHlLBH+FbhjYpVoghKh2BPc66S4kJIS02hHUDXHdWUG69s+zOSo09XZEzmqTIIJ7KHfodY4C1hVV0WvSQ1pvZLZoQR9gApzZuPFzN1NGRRIZ4plKdI86fMoqoEH/+68KeZ3klJkZHBRPnhmmE4+NCiQ7xZ1sv687e211KdWM7ty8a7/JxDAfZoyMJD/Rjo4OBu9mieeS9fSRFBnHXuekuHp3jspIjaO2wcLSPbGpfLBbNuztLOCczzi2/u909eNFk/AyKX3y4f9DHyCs2cbCykatnelfWzC4tNmRQvc5yC6w371wdnGUkhJGVFOH2qY37Sus5VNnIFS7M1n7//InUNrXzwrqjLjuH8C4SnAmPKqtrISnSu4ovuNvCzDi+OFIzoOqCheUNBPoZSBtkJShnCPAzcMei8WwpqmVbUe2Qj/dpfgUxoQHMGBs95GMF+hlZPjnB4amNTW2d7Dxe57XrzewC/YxcOWM0K/dVuKwy2Z7iOpf2N+tOKcWs1OjTMmdaa15Yd5RJieFdGSFxZn5GA/PGxzpcFOS1bSfYX1bPjy+eTHCA91TBnJI8uKIgXxytodTUypUeCG4SI4O4d2kGq/ZXDHomwZs7ignwM7Bimnf0NuspLdZaTn+ga59WF1QyOiqYTDc0Nb8sJ5ldJ+qGlMEcqHd2luBvVKxwYU+66SlRXDglkb+tO+LRipTCfSQ4Ex7T3mmhqrGNpKiRmzkDa7+zpnYzO/spKd5dQXkDE0aFe7SyGlj7b8WEBvDUENdbdJgt5BZUsnRSgtO+p4uzk6hr7mCjA9O8thTV0mnRLPDS9WbdXTcnhXazhbdd0MrA1NxBUU2zW6Y02s1KjeFIddMpbzrWHaymsKKBOxaNH7FTngdjQUYsx2ub+y15bmrp4IlPCpmTFs2lXhYMpMeHEWA0DHjd2ds7SggL9ON8J0yLHoxvLBxHWmwIP3t/34DbeLR1mnlvdykXTEn0WI+5/oyLCx1wOf3WDjMbDlWzdFKCW17Hl9h+l9/Pc0/2zGzRvLe7lMUTE4gKGXjrl4F44PwJNLd38vSaQy49j/AOEpwJj6mob0VrSB7hmbOz02MxGtSApjYWlDd4dEqjXUiAH7fNT2N1QeWgF/EDbCs6SX1rJ8udMKXR7pwJ8dapjQ6sQdhwsJoAPwOz04aetXO1SYkR5KRE8d+tx51ajAVgT4l1vZkzG8X2Z1bq6evOnl9/lITwQC518gL74c6e+e1vauOfPjtIbXM7D186xeuC3wA/A5mjwgZUsbGl3cz/9pZz0dREj/XCC/Qz8tNLszhS1cTLG4sG9NzV+ZXUNXdwtYvL/w9FWpy9nL7j6842H62lpcPs8imNdmOiQ5iVGu22qY2bDtdQ2dDGFTmuv26Zo8K5csYYXt50rKvKtRi+JDgTHlNmsvU4G+GZs4ggf2akRLHuoGPTYaob26hubPNYMZCebj47jdAAI0+vHXz27NP8CgKMBhZlOi9zFeRvZNnkBD7ZX97v1MYNh2uYNTbaZ5ocXz8nhQMVjew8UefU4+aVWI/nrmmNYK0K6W9UbDtmnRpbWN7A5wequGV+2pB7BY00mQlhxIcHnnFq46HKRl7eWMR1s1OY6sbrPBBTbBUbHb35sCq/gsa2Tq70cHCzdNIolkyM54+fHaSywfGqgW/uKCYhPJBFma4pNe8MabHWYhcDKQqSW1BJoJ+Bs904NfnSaUkUlDdwoGLwjcwd9c6uEsID/Vg22T3B5/3LM9Fa86fPJHs23MlfPuExX/Y4G9mZM7BObcwrMVHX3P988sJy6x+dSYmeKaPfU2SIP187O5UP80oH1QdHa82n+RXMz4h1ekNt+9TGL470/Wa1prGN/LJ6FmT4ztqmS6YnExJg5L9bnFsYJO+EidTYELcWRQnyNzJ1dGRXM+oX1h8h2N/IjfPGum0Mw4VSivnpsWw8XNNnYPPLD/cT7G/k+xdMdPPoHJeVFEFNUzsV9Y61BXh7RzHJkUGcNc7zr+GfXjqFtk4zj39c6ND+VQ1t5BZWceXM0R6fpn4mUSEBRIX4U+Tgei6tNbmFlcxPj3XrTa+LpyVhULg8e9bSbubjveVc6MZsbUpMCDfOS+W1bScGlMEUvkeCM+ExpXWSObNbmBmH1ji0mL/AFpx5w7RGu28sHIef0cCznx8Z8HMPVTZyrKbZqVMa7c6dEE9ogPGMVRs32QK3+V5eDKS7sEA/Lp2WzPt5pU4tr7ynxOTWrJnd7NRo8kpMlNS18M7OUr4ya4zL13AMVwvS46hubONAxenVDnMLKllTWMV9yzPdXtFwILKSrb+D+8tM/e5b1dDG5werudxLGjePiwvlGwvH88b2YofWEb+7qwSzRfMVL63S2F1abKjDN+COVDdxrKbZbVMa7RLCgzg7PZb3d5c6fdp3d5/as7Vu6qlnd8+SDAKMBn6/6oBbzyvcS4Iz4TFlphbCg/wIc3K2xBdNHxNJeJCfQ1MbC8vriQsLID7ce95cJYQHcc2sMby5vXjATUBX5VcAuGRqiHVq4yg+2VdBZx9TGzccqiE80I9pXjrFqy/Xzkmhud3Mh05a/F7d2EZJXYtb15vZzUqNpr3TwoNv5tFhsfB1aTo9aPNtGeCePf7aOy384oP9jI8L5eaz0zwwMsdNTrLeeHJkHev7u0sxWzRXuflN8pncuzSDhPBAHnlvX78N49/cUcK0MZFkjvKem219GRfneHCWW1AJwBI3B2cAl05Lpqimmb0lg18H3Z93d5WQGBHEPDf3xYwPD+TrC9N4f3fpkNZ5C+8mwZnwmNK6kd3jrDs/o4EF6XGsO1jd790+bykG0tM3z0mn02Lh+XUDy559ur+C7NGRJLnod+Hi7ERqm9r54kjv5f43Hq5m3vhY/Iy+9d/hzLFRZCaE8e8tJ5xyh9heDMSdlRrtZqXGANYqjcsnj/LKJry+Ykx0CKmxIacVBXl5YxFHqpt46JIsr1/LFx7kT2psiEPl9N/eWcLU0RFeFdyEBfrx/y6ezO5iE29sL+5zv/2l9eSX1fOVWd6fNQNIjQ2h1NTqUDn91QWVTBgV5pHm5hdOTcTfqHhvt/Mr2gLUNrWzprCKy3KSPTIV9c5z0okI8uOJlY5NnRW+x7v/hxbDWpmphaQoWW9mt2hCHCV1LWecS262aA5UNDBxlHesN+tubGwIl01P5tXNxx1aOwfWKUk7T9S5ZEqj3eKJCYQEGPmwl6mNJ2qbOVbT7FPrzeyUUnx13lh2najj5r9v4VDl0BbA550wodSXfabcKT48kFRbwYHbJWs2ZPPT49h8pLYrW1zV0MafPjvIkonxHslkDEZWUkS/FRsPVTawp8TElTO8L7i5PCeZWanRPPZxAaaWjl73eXNHMf5GxaXTfKMqqf2myfF+yuk3tHaw5Witx37XokICOCczng/yyvrNXA7Gh3vK6LRot1Rp7E1ksD93LU5ndUGlU3qMCu8jwZnwmDJTq8uyJb5oUYa1UteZSuofr22mtcPCpCTvuUvc3d2LM2huN/PyxmMO7Z9bUInWsDzLdX/Eg/yNLJ2UwCf7yk+b2mjPLnh78+m+3Hx2Gg9fmsWuE3Vc+Id1/Pz9/X2+EezPnpI6xseFEh7kmT5LF2cnsSgzjrnjYjxy/uFkQUYsDW2d5NmyoU98UkhLh5n/uyTLwyNz3JTkCI7VNNPQ2vfv81s7SjAaFJd5YcsFpRQ/u2wKtc3t/PHTg6c93mG28M7OEpZNGkV0qG+sr0yLdayc/vqD1XRaNEsneu5GwGU5yZSZWtl2zPH+oY56Z2cJE0aFdU2/9YTb5o8jPjyQxz8udOnaOuEZEpwJj2jtMFPb1C6VGrsZG2udjnSmdWcFtjvJ3lJGv6eJieEsn5zAixuP0uRAoYpV+RUkRwaRleTabM2K7CRqm9rZfPTUu4wbDtUQHx5IZkKYS8/vKkaD4rYF41jz/cVcMzuFFzceZekTa/jPluOYB3jHOK/Y5JH1ZnY/unAS//zGPK/ru+WLzratg9l0uIY9xSZe236CW+enkR7vO7/nWbYMbn5Z7xlhi0Xz7q5SFmXGedX62+6mjo7khrljeXlTEQd7lHZfW1hFTVM7V/vIlEb4Mjjrb93Z6oJKIoL8unoYesLyyaMI8jc4vWrj8Zpmth87yRUzRnv0/6rgACPfWZrBlqJa1h5wrA2P8B0SnAmPkB5nvVuUGcemwzW0d/ZevKKgvAGlIDPBO4MzgG8tyaCuuYN/bzl+xv1aO8ysP1jN8qxRLv8jt3hiAsH+p1Zt1Fqz8XAN89NjfT4giA0L5DdXZfP+vQsZHx/Kg2/t4fK/rnd4yku5qZXKhjaPrDcTzhcbFsjkpAjWH6zmZ+/vIyYkgO8sz/T0sAYkK8lWsbG094qNm4/WUlLX4vZqeQP1/fMnEhpg5JH3952S4XhzRzGxoQEsnui9vc16igzxJzrE/4y9ziwWTW5hFedMiPfoOt7QQD+WTRrFR3vK+iwGNRjv7rKuY/OGbO11c8aSEhPMbz8pdMn0TeE5EpwJjyirkx5nvVmUGU9Tu7nPEsyF5Q2Miw0lOMB7myXPHBvNWeNjeH7dUdo6+144vvFwNS0dZpeuN7MLDjCydLJ1aqM9o3SgopHqxjYWpPvmlMbeTB0dyWvfPJs/3TCD6oZ2vvLMJu77z07KTWeuoJlXXAdYG0KL4WFBeiybjtSw7dhJfnDBRCI8NF11sEZFBBIbGtDnurO3dxYTFujH+VmJbh7ZwMSEBvDA+RPZcKiGT/ZZK9OebGrn0/wKLs8Zjb+PFSJKiwulqLrvNWd7S01UN7a5vYR+by6dnkxNUzsbD/ffosYRWmve2VXC3HExHil00lOAn4HvLp/AvtJ6/re33NPDEU7kW/8riGGjVDJnvTo7PRajQbH+UO/rzgrK672yUmNP31qcQXl9K2/v6Lta1qr9lYQGGJk33j1rjC6emkR1Yzubj1r/UNtLjc/3wWIgZ6KUdQ3O6u+fy7eXZvC/veUs/d0a/pp7qM8qa3tKTBgNqitbIXyffR3llOQIrpmd4uHRDJxSiqzkiF4rNrZ2mPnfHmsDYG++UWV347yxTEoM55cf7qe1w8z7eaV0mDVXz/LurF9vxsWGnjFztrqgEqWsPSY9bfHEeMID/Zw2tXFvST2Hq5q8Klt7ec5oJowK43erCp2aIRSeJcGZ8Ah75ixJMmeniAjyJyclis97KQrS3N7JsdpmnwjOFmXGkT06kmc/P9Lr2ieLRfNZfgXnTown0M89b66WTIonyN/QNbVx4+Fq0mJDvOIOqCuEBPjxwPkT+ex757IoM47fflLI+U9+zif7yk9bQJ5XbCIzIcwn3ugKx5ydHsuFUxJ59KppHin37QxZSREcrGg8bZr3qv0VNLR1elVvszPxMxp4+NIpFJ9s4dm1R3hzezGTkyKYkux7N0PS4kIpM7XS0t77jZ7cgkpyUqKI9YIm50H+Rs6fksjH+8rPOIvDUW/vLCHAaODiqUlOGJ1zGA2K758/kSNVTby5o++2DcK3SHAmPKLU1EpMaABB/vJmsKdFmXHkFdedVo7+YEUjWsOkRO8ro9+TUopvLU7naHUT/9t7egn7PSUmKhva3DKl0S4kwI+lkxL4eG8FbZ1mvjhSy3wfrdI4ECkxITx702xevX0eQf4GvvnP7dz89y1dBQq01uQV18mUxmEmyN/IMzfN8ul1hFnJEbSbLRyuajxl+9s7S0iKDOIsNzcAHoqz02NZMS2Jv+YeYnexiatn+kZg2ZO95cWx2tOzZ1UNbewuNrHEg1Uae7p0ehINrZ2sLRxa0YxOs4X380pZMimeyBDvmiJ8XtYoclKi+OOnBx3qQSe8nwRnwiPKTC2SNevDosx4tLZWEuyuoNy7KzX2dMGURMbHh/JU7uHTMjWf5ldgULj9j/jF2UlUN7bxwvqjNLZ1Dqv1Zv1ZkBHHR99ZxCOXZrH7RB0X/nEdP3t/H/vL6jnZ3EG2Bys1CtEbe8+9/d2mNlY3trH2QBWX54zG4GMZwf938WQMBmu243IP9cgaKnuvs97WndmrBnrDejO7BRlxxIQG8N4QpzZuPFxDVUObx3qbnYlSih9eMJFSUyuvbj5zIS7hGyQ4Ex5RLj3O+jR9TCThQX6sP3Tqnb6C8gaC/Y2MjfGNaXgGg+Kuc9PZX1bPmh6lflftr2B2Wozb+/ssnZRAkL+BP392CLDezR5J/IwGbl0wjjU/WML1c1J4aWMRV/x1A2D9vRPCm4yLCyPI33DKurP3d5ditmiu8sHM0+ioYH51RTYPnD/Ba8v/9yfVXk6/l3VnuQWVJIQHeqSRfV/8jQYumprIZ/mVNLf3396lL+/sKiE8yM9rm7jPz4hjYUYcf809RKMDbWyEd5PgTHhEaV0LyVGSOeuNn9HA/PRYPj9QfUrGqbC8gQmJ4T51t/iKnNEkRwbxdO7hrm0napspKG/gPDdOabQLCfBjycQEWjrMZCVFEOMjzV+dLSY0gF9dmc0H317IjLHRJIQH+sRaRjGyGA2KiYkR7C/7spz+2ztLmJIcwYRRvvn7evWsMXxrcYanhzFokcH+xIQGnNbrrMNs4fMDVSyZmOB1rUkunZ5MS4eZVfsrBvX8lnYzn+wt5+KpSV69FOP7F0yktqmdv68/6umhiCGS4Ey4XVNbJ/WtnZI5O4NFmfGU1LVw1PYHUGtNQXkDk3zsDUmAn4E7zhnPlqLarp5bn+Vb/0Auz3J/cAZwUbZ1MfeCYValcTCmJFtL73/x42VuK8wixEBMSY5gf2k9WmsOVTaSV2zyqmp5I1FabEjX3ya7bUUnaWjr9MrM0ty0GEZFBPL+7tPXPztiVX4FTe1mrvDy37uclCgumDKK5z4/Qk1jm6eHI4ZAgjPhdmUmW48zyZz16ZxMaxnidbaqjVWNbdQ2tftkduP6OWOJCQ3gqTXW7Nmn+ZWkx4d2rV1wt/Mmj2LFtCSfLC/uKr6UjRUjS1ZSBPWtnRSfbOHtncUYFFyW4/kGwCNZWlwox2pOXXOWW1iJv1GxMNP71vEaDIpLpiWz9kAlpuaOAT//HVsBmnnj3NP2ZSh+cMEkWjrM/OHTg54eihgCCc6E25XW2XqcSeasT2NjQ0iNDekKzgrLrZX1JiX5XnAWHGDk6wvSWF1QyZajtWw+WuOxrJl9PH/96kyfnRYlxEiSZVu/tK/UxDs7S1mUGU9CuNzY86RxsaGU159aTn91QSXzxsUSFujnwZH17bLpyXSYNZ/sG1iz5prGNj4/UMVlOck+cRMrIyGMr84dy7+2HOdQZYOnhyMGSYIz4Xb2zJlUazyzRZlxbDpcTYfZQkGZLTjzgTL6vbnp7DTCAv2491876DBrj6w3E0L4nsmJERgUvLSxiJK6Fp8sBDLcpMadWhTkRG0zhyobvXJKo920MZGkxobwft7AqjZ+uKeMTov2qam09y/PJMTfyG8+KvD0UMQgSXAm3K60rhWlIFGCszNamBFPU7uZncfrKChvID480GcLWEQG+3PjWWOpbGgjJjSAGWOjPT0kIYQPCA4wMi4ulC+O1BIaYOT8rERPD2nEG2ev2Ghbd7a6oBLwrhL6PSmluHRaMhsOVVPV4Ph6rHd2ljApMdynbozGhgXyrSUZfFZQycZD1Z4ejhgECc6E25WZWogPC8TfKL9+Z3J2eixGg2LdwSoKK+p9pr9ZX76xcByBfgaWTUrA6APTQ4QQ3iEr2drm4cKpSQQHSOEaT0uLs7ZzKbKtO1tdUMm4OM+tI3bUpdOTsWj4317HCoMcq2lix/E6ry8E0pvbFqQxOiqYX36Yj9mi+3+C8Cry7li4XZmplaQoWW/Wn8hgf3JSolhTWMWBikafD84SwoN4796F/GTFZE8PRQjhQ+x9s66WKY1eITzIn7gwazn95vZONh2pYclE782a2U1MDGfiqHDe2+XY1MZ3dpailHW9mq8J8jfywwsnsr+snrd2FHt6OGKAJDgTblda10KyTGl0yKLMOPaUmGjvtDDRh6ZV9GViYjhRIb45NVMI4RnXzk7hl1dM5azx0v7CW6TGhnK0pomNh2po77SwZFK8p4fkkEunJ7Ht2ElK6lrOuJ/Wmnd3lTBvXAzJPnoz+bLpyUxPieKJlYVDasAt3E+CM+FWWmtr5kwqNTpkUbeyxL6eORNCiMGICQ3ga2el+kS1vJEiLTaUouomVhdWEhJgZK4PlJkHuGSaNQv2we4zZ8/yik0cqW7yqUIgPSmleGjFZCrq2/jb59KY2pdIcCbcqr6lk+Z2s/Q4c9D0MVGEB/phNCgyEsI8PRwhhBCCcXEhVDa0sXJfBQsz4nymiX1aXCjTx0T2W7XxnV0lBBgNXDg1yU0jc43ZaTFcNDWRZz8/TGV9q6eHIxwkwZlwq9KuMvqSOXOEn9HA0skJTEmOIMjfN/74CSGEGN7SbMU/qhvbvLpKY28unZ7M3pJ6jlQ19vp4p9nC+7tLWTY5gchgfzePzvkevGgSHWYLv1t5wNNDEQ6S4Ey4VVePM8mcOezRq6bxyu3zPD0MIYQQArBOa7Tz5v5mvblkWjJKwfu7e6/auOFwDdWN7Vye47tTGrtLjQ3l5rPTeG37CfLL6j09HOEACc6EW5XWWdPqyZI5c1hwgJGIIN+/eyeEEGJ4sGfOpiRHMCrCt262JkYGMScthvd2l6D16WXm39lZQkSQn88UOXHEt5dmEBHkz68/yu/1exbeRYIz4VZlphb8DIr48EBPD0UIIYQQgxAW6Mc5E+K5Ye5YTw9lUC6bnszhqibyyxpO2d7c3skn+8pZMS3JZ9bROSIqJIDvLMtk3cFq1hyo8vRwRD/6Dc6UUilKqVylVL5Sap9S6j7b9l8opfKUUruUUiuVUr7XCEK4XVldK6MigqQJsRBCCOHD/vH1uXztrFRPD2NQLpqaiNGgTisMsmp/Bc3tZq4YJlMau7vprFTSYkP49Yf5dJotnh6OOANHMmedwANa68nAWcA9Sqks4Lda62la6xzgA+CnrhumGC5KTS0kSY8zIYQQQnhIbFggCzLieH936SnT/N7ZWcLoqGDmpPlGa4CBCPAz8OBFkzhY2ch/t53w9HDEGfQbnGmty7TWO2yfNwD5wGitdfdVhaGATGIV/SoztZLkow0dhRBCCDE8XDY9meKTLew8UQdYK09+frCay3KSh21PvQumJDI3LYYnVx2gobXD08MRfRjQmjOlVBowA9hs+/pXSqkTwI1I5kz0w96AOlkyZ0IIIYTwoPOnjCLAz8D7tobUH+wuxWzRPt14uj9KKf7fislUN7bzzNrDnh6O6IPDwZlSKgx4E7jfnjXTWv9Ea50CvArc28fz7lRKbVNKbauqkkWII1lNUzvtnRaZ1iiEEEIIj4oI8mfJxHg+yCvDbNG8s6uUyUkRTBgV7umhuVROShSXTU/m+XVHKa1r8fRwRC8cCs6UUv5YA7NXtdZv9bLLv4Cre3uu1vo5rfVsrfXs+PjhU5ZUDFyZrYx+opTRF0IIIYSHXTo9maqGNv679QS7TtRx5YyRUdvuhxdORAO//aTQ00MRvXCkWqMCXgDytda/77Y9s9tulwEFzh+eGE5KbQ2ok6UBtRBCCCE8bNmkUYQEGPnFB/tRCi6bPnynNHY3JjqEry8Yx9s7S8grrvP0cEQPjmTOFgA3AUttZfN3KaUuBh5VSu1VSuUB5wP3uXKgwveV2dLnSZI5E0IIIYSHBQcYOS9rFC0dZs4eH0viCFp28a0l6cSEBvDLD6Uxtbfx628HrfV6oLeyNR85fzhiOCsztRJgNBAbGuDpoQghhBBCcNn0ZN7dVcoVw7gQSG8igvz57vJMHnp3Hyv3V3DBlERPD0nYDKhaoxBDUWpqJTEyaNiWqBVCCCGEb1k6KYF/fmMuV88c4+mhuN0Nc8eSHh/Ko/8roL1TGlN7CwnOhNuU1UkDaiGEEEJ4D6UUizLjMY7AG8d+RgP/7+LJHK1u4tXNxzw9HGEjwZlwmzJTK8nSgFoIIYQQwissnZTA/PRY/vjZQUzN0pjaG0hwJtzCbNGU17dK5kwIIYQQwksopfjJismYWjr4S+5BTw9HIMGZcJOqhjbMFk2SZM6EEEIIIbzGlORIrp45hpc3HuN4TbOnhzPiSXAm3KKrx5lkzoQQQgghvMr3z5+I0aB47GNpW+xpEpwJtyirawWkx5kQQgghhLdJjAzijnPG8+GeMrYfq/X0cEY0Cc6EW5TZM2dRkjkTQgghhPA23zxnPPHhgdKY2sMkOBNuUVrXSrC/kchgf08PRQghhBBC9BAa6McPLphIakwIze1mTw9nxPLz9ADEyFBe30JSVBBKjbw+IkIIIYQQvuDa2SlcOzvF08MY0SRzJtyitK6VZFlvJoQQQgghRJ8kOBNuUWZqkR5nQgghhBBCnIEEZ8LlOswWKhvapMeZEEIIIYQQZyDBmXC5ivpWtJYeZ0IIIYQQQpyJBGfC5cpMth5nkjkTQgghhBCiTxKciS4V9a1885/byC+rd+pxS+tsPc4kcyaEEEIIIUSfpJS+AKC5vZNvvLyVvSX1+BkN/PWrM512bMmcCSGEEEII0T/JnAksFs39/9nF/tJ6ZqdGs3JfOdWNbU47flldC+FBfoQFyr0AIYQQQggh+iLBmeCxjwtYub+C/1uRxW+uyqbDrHlze7HTjl9qkh5nQgghhBBC9EeCsxHuP1uO8+znR/jaWWO5bUEamaPCmZMWzX+2nkBr7ZRzlJlaSIqS9WZCCCGEEEKciQRnI9iGQ9X83zt7WZQZxyOXTkEpBcD1c8ZytLqJL47UOuU8ZXWtJEnmTAghhBBCiDOS4GyEOlTZyN2vbGdcXCh/vXEmfsYvfxVWTEsiIsiPf285PuTztHaYqWlql0qNQgghhBBC9EOCsxGotqmdb7y8FX+jgb/fOoeIIP9THg/yN3LVzDF8vLeck03tQzpXuVRqFEIIIYQQwiESnI0wbZ1mvvnPbZSZWnnu5tmkxIT0ut/1c1NoN1t4c8fQCoOUmqTHmRBCCCGEEI6Q4GwE0Vrz4zf3sLXoJE9cM51ZqdF97jspMYIZY6P495bjQyoMUlYnmTMhhBBCCCEcIcHZCPLX3EO8tbOE7503gcumJ/e7/w1zx3K4qoltx04O+pxltsxZkmTOhBBCCCGEOKMRH5y1d1qorG/19DBc7oO8Up5YeYArZ4zm20szHHrOJdOSCA/049+bB18YpNTUSkxoAEH+xkEfQwghhBBCiJFgRAdnWmuue24T331tl6eH4lI7jp/ke6/tZnZqNI9end1VMr8/IQF+XD4jmQ/3lGFq7hjUucvqWiRrJoQQQgghhANGdHCmlGJFdhIbDtWw8XC1p4fjEidqm7nzH9tIjAji2ZtmEeg3sAzWDXPH0tZp4e2dgysMUmaSHmdCCCGEEEI4YkQHZwBfOyuVxIggfrfywJAKX3ijhtYObn95G22dFv5+6xxiwwIHfIwpyZFMGxPJv7ecGNTPp7SuheQoyZwJIYQQQgjRnxEfnAX5G/n2sgy2HzvJmsIqTw/HaTrNFu79104OVzXyzNdmkZEQNuhj3TB3LIUVDew8UTeg5zW1dVLf2imZMyGEEEIIIRww4oMzgGtmpZASE8wTKwuHTfbs5x/sZ+2BKn5xxVQWZMQN6ViXTk8mNMA44MIg9kqNkjkTQgghhBCifxKcAQF+Bu5fNoF9pfV8vLfc08MZspc2HOUfm45x5znjuWHu2CEfLyzQj8tyknk/r5T6VscLg5Tae5xJ5kwIIYQQQoh+SXBmc8WM0WQkhPG7VQcwW3w3e5ZbUMnPP9jPeVmj+NGFk5x23BvmjqW1w8K7u0odfo70OBNCCCGEEMJxEpzZGA2K7503gUOVjby3u8TTwxmU/LJ67v3XDiYnRfDH63MwGhwrme+I7NGRTEmO4F+bjzs89bO0rhWlIFGCMyGEEEIIIfrVb3CmlEpRSuUqpfKVUvuUUvfZtv9WKVWglMpTSr2tlIpy+Whd7MIpiWQlRfDkqoN0mC2eHs6AmFqslRnDgvx44ZY5hAT4OfX4SimunzuW/LJ68opNDj2nzNRCfFgg/ka5ByCEEEIIIUR/HHnX3Ak8oLWeDJwF3KOUygJWAVO11tOAA8CPXTdM9zAYFN+/YALHa5t5fdvg+np5yi8/2E95fSvP3jTbZZmqy3OSCfY38p+tjhUGKTO1khQl682EEEIIIYRwRL/Bmda6TGu9w/Z5A5APjNZar9Rad9p2+wIY47phus+SiQnMHBvFn1cfpLXD7OnhOGRNYSWvby/mznPGk5MS5bLzRAT5c8m0JN7dVUpjW2e/+5fWtZAUIVMahRBCCCGEcMSA5psppdKAGcDmHg99Hfifk8bkUUopvn/+RMpMrfxrgKXjPaGhtYMfv7WHjIQw7luW6fLz3TBvLM3tZt7rpzCI1tqWOZPgTAghhBBCCEc4HJwppcKAN4H7tdb13bb/BOvUx1f7eN6dSqltSqltVVW+0eR5fkYc89NjeWrNIZrb+88QedKvPyqgor6Vx78yjSB/o8vPNyMlikmJ4f1Obaxv6aS53UyylNEXQgghhBDCIQ4FZ0opf6yB2ata67e6bb8FuAS4UfdRwk9r/ZzWerbWenZ8fLwzxuwWD5w/kerGdl7cUOTpofRpw6Fq/r3lON9YOI6ZY6Pdck6lFNfPSSGv2MTekr4Lg5Tay+hL5kwIIYQQQgiHOFKtUQEvAPla6993234h8CPgMq11s+uG6BmzUqNZOimBZ9cextTieONld2lq6+RHb+YxLi6UB86f6NZzXzljDIF+Bv69pe/s2Zc9ziRzJoQQQgghhCMcyZwtAG4Cliqldtk+Lgb+AoQDq2zbnnHlQD3hgfMnUN/ayQvrjnh6KKd57OMCSupa3DadsbvIEH9W2AqD9DXts7SuFYBkyZwJIYQQQgjhEEeqNa7XWiut9TStdY7t4yOtdYbWOqXbtrvcMWB3mpIcyYrsJF5Yf5SaxjZPD6fLF0dq+MemY9xydhpz0mI8MoYb5o6lsa2TD3aX9fp4uakVo0GREC7BmRBCCCGEEI6Q7sD9+O55mbR0mHn2c+/InrW0m/nRm3mMjQnhhxe6dzpjd7NTo8lICONffUxtLDW1MCo8EKNBuXlkQgghhBBC+CYJzvqRkRDOFTNG8/LGIirqWz09HH77SSHHapp57OpphAT4eWwcSilumDuWXSfqyC+rP+3xsjppQC2EEEIIIcRASHDmgPuXTcBs0fxl9SGPjmNbUS0vbjzKTWelcnZ6rEfHAnDVjNEEGA38p5fsWZmphaRImdIohBBCCCGEoyQ4c8DY2BCunZPCf7Ye50StZwpTtnaY+eEbeSRHBvPgRZM8MoaeokMDuCg7kbd3ltDSbu7abm9AnSyZMyGEEEIIIRwmwZmDvr00A6UUf/rsoEfO/+SqAxypbuKxq6cRGui56Yw93TB3LPWtnXy058vCILVN7bR1WiRzJoQQQgghxABIcOagpMhgbjorlTd3FHO4qtGt5955/CR/W3eEG+amsDAzzq3n7s+8cTGMjws9pedZmcm6Nk96nAkhhBBCCOE4Cc4G4O7F6QT5G3ly1QG3nbOt0zqdcVREED++eLLbzusopRTXz01h27GTHKxoAKC0ztqAWnqcCSGEEEII4TgJzgYgLiyQ2xak8UFeWa8VCl3hT58d5GBlI7+5KpuIIH+3nHOgrp45Bn+j4t9bTgCSORNCCCGEEGIwJDgboDsXpRMe5MfvVro+e7an2MQza4/wlVljWDwxweXnG6zYsEDOn5LIWzuLae0wU2pqIcBoIDY0wNNDE0IIIYQQwmdIcDZAkSH+fPOc8XyaX8HO4ydddp72Tgs/eGM3saEBPLQiy2XncZavzh1LXXMHn+wrp6yulcTIIAzSgFoIIYQQQgiHSXA2CLcuGEdMaAC/d+Has7/mHqKgvIFfX5lNZIh3Tmfs7uzxsaTGhvCvzcelx5kQQgghhBCDIMHZIIQF+vGtxemsO1jNF0dqnH78/aX1/DX3EFfkJLM8a5TTj+8KBoPiujkpbD5ay77SeulxJoQQQgghxABJcDZIXzsrlVERgTzxSSFaa6cdt8Nsnc4YFRLAw5dOcdpx3eErs8bgZ1A0t5slcyaEEEIIIcQASXA2SEH+Ru5dmsm2YydZe6DKacd9du1h9pXW88srphDtYwU1EsKDWD7ZmulLksyZEEIIIYQQAyLB2RBcNzuFMdHB/G7lAadkzwrLG/jjZwdZMS2JC6cmOWGE7ve1s1IBSI8L9fBIhBBCCCGE8C1+nh6ALwvwM3D/8gl8//Xd/G7lAaYkRxAZ7E9EsD+Rwf5EhvgTFuDnUNXCTtt0xvAgf35+mW9NZ+xuYWYcn37vHNLjwzw9FCGEEEIIIXyKBGdDdEVOMv/cVMRfcg/1+rhB8WWwZvuICPYnIujUbYXl9eQVm/jzDTOIDQt083fhXBkJ4Z4eghBCCCGEED5HgrMh8jMaeOPu+VQ2tGFq7sDUYv2ob/ny854fJSdbuj7vtHw5HfLi7EQumeab0xmFEEIIIYQQQyPBmRP4Gw2Mjgpm9ACLYGitaW43Y2rpoKmtk/T4MJSSxs1CCCGEEEKMRBKceZBSitBAP0ID5TIIIYQQQggx0km1RiGEEEIIIYTwAhKcCSGEEEIIIYQXkOBMCCGEEEIIIbyABGdCCCGEEEII4QUkOBNCCCGEEEIILyDBmRBCCCGEEEJ4AQnOhBBCCCGEEMILSHAmhBBCCCGEEF5AgjMhhBBCCCGE8AISnAkhhBBCCCGEF1Baa/edTKkq4JjbTui4OKDa04MQp5Br4p3kungfuSbeSa6L95Fr4p3kungfuSaul6q1ju/tAbcGZ95KKbVNaz3b0+MQX5Jr4p3kungfuSbeSa6L95Fr4p3kungfuSaeJdMahRBCCCGEEMILSHAmhBBCCCGEEF5AgjOr5zw9AHEauSbeSa6L95Fr4p3kungfuSbeSa6L95Fr4kGy5kwIIYQQQgghvIBkzoQQQgghhBDCC/hccKaUulApVaiUOqSUerDb9v8qpXbZPoqUUrt6eW6OUmqTUmqfUipPKXVdt8fGKaU2K6UO2o4V0Mf5b7Htc1ApdctAnz8cefKaKKVSlVLbbefYp5S6ayDPH85ceF3utR1TK6XiznB+ea304MlrIq+VvrnwurxqO+5epdTflVL+fZxfXis9ePKayGuldy68Ji8opXbbtr+hlArr4/zyOumFJ6+LvFZcRGvtMx+AETgMjAcCgN1AVi/7/Q74aS/bJwCZts+TgTIgyvb1a8D1ts+fAe7u5fkxwBHbv9G2z6Mdff5w/PCCaxIABNo+DwOKgOSRfE3ccF1mAGm2n3VcH+eX14r3XRN5rbj/ulwMKNvHv/v4P0xeK953TeS14t5rEtFtv98DD/byfHmdeOd1kdeKCz58LXM2FziktT6itW4H/gNc3n0HpZQCrsX6n+4ptNYHtNYHbZ+XApVAvO05S4E3bLu+DFzRy/kvAFZprWu11ieBVcCFA3j+cOTRa6K1btdat9m+DMSWDR7h1wRcdF1sX+/UWhf1c355rZzOo9dEXit9cuV1+UjbAFuAMb2cX14rp/PoNZHXSq9ceU3quz0/GOitGIK8Tnrn0esirxXX8LXgbDRwotvXxbZt3S0CKuy/bH1RSs3FGvEfBmKBOq11Z8/jKqVmK6We7+f8fT5/BPD0NUEplaKUyrON4zHbfzAj+ZqA667LmfaT18qZefqayGuldy6/Lso6de4m4GPb1/JaOTNPXxN5rZzOpddEKfUiUA5MAv5s2yavk/55+rrIa8UFfC04U71s6xnJ30AvdwdOOYhSScA/gdu01pYzHVdrvU1rfXs/53dkXMOVp68JWusTWutpQAZwi1JqlIPjGs5cdV36JK+Vfnn6mshrpXfuuC5PAZ9rrdeBvFYc4OlrIq+V07n0mmitb8M6rS4fuM62TV4n/fP0dZHXigv4WnBWDKR0+3oMUGr/QinlB1wF/LevAyilIoAPgf/TWn9h21wNRNmef9pxHTi/o88fjjx9TbrY7tbsw3qXaCRfE3DddRnq+UfydfH0Nekir5VTuPS6KKUexjpN6HsDPP9Ivi6eviZd5LXSxeX/f2mtzbbnXz2A84/kawKevy7d95PXipP4WnC2Fci0VYAJAK4H3uv2+HKgQGtd3NuTbc95G/iH1vp1+3bb3PNc4Cu2TbcA7/ZyiE+A85VS0UqpaOB84JMBPH848ug1UUqNUUoF2z6PBhYAhSP8moCLrssAyGvldB69JvJa6ZPLrotS6nasa2VuOEOWU14rp/PoNZHXSq9cck2UVYb9c+BSoKCXQ8jrpHcevS7yWnER7QVVSQbygbXS0gGsc2J/0uOxl4C7zvDcrwEdwK5uHzm2x8ZjXRx8CHidL6vPzAae73aMr9v2OYQ1/cuZnj8SPjx5TYDzgDysFYrygDvlmrj8unwH6926Tqx3wuzXQl4rXnxN5LXikevSaTumfftPe14X29fyWvGiayKvFfddE6xJgg3AHmAv8Cq2KoHyOvH+6yKvFdd8KNsPUAghhBBCCCGEB/natEYhhBBCCCGEGJYkOBNCCCGEEEIILyDBmRBCCCGEEEJ4AQnOhBBCCCGEEMILSHAmhBBCCCGEEF5AgjMhhBBCCCGE8AISnAkhhBBCCCGEF5DgTAghhBBCCCG8wP8HAykWpYiNZxQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAE/CAYAAAAUrGGzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACR4UlEQVR4nOzdd3ib1dn48e+RvPeM470ybWc7CRACCStsKC2jUAq0dNDS3bebF/praSm0femmFEoXo6GMUgokjCwgJHFCpjOceCQesSVvecmSzu8PSY6TeFvL9v25Ll9JNJ7n2HJs3c+5h9JaI4QQQgghhBBi4jP4ewFCCCGEEEIIITxDAjwhhBBCCCGEmCQkwBNCCCGEEEKISUICPCGEEEIIIYSYJCTAE0IIIYQQQohJQgI8IYQQQgghhJgkJMATQgghhBBCiElCAjwhhJiglFKWfh8OpVRXv3/f5u/1jYVSqlIpdYm/1zEUpdRGpdTdXjz+40qpw67X9M4z7rtDKbVTKdWmlKpWSj2slAo64zG3KKUOKqU6lFLHlFIr+913sVLqkFKqUym1QSmV3e8+pZT6mVKq0fXxsFJKeevzFEII4R0S4AkhxASltY5yfwDHgWv63fa0v9d3pjMDkYl6Dh/YA3wB2DXAfRHAV4EkYDlwMfBN951KqUuBnwF3AdHABUC5674k4EXgPiABKAH+2e/YnwWuBxYA84Grgc956pMSQgjhGxLgCSHEJKOUMiilvuPavWlUSq1VSiW47stRSmml1F1KqRNKqWal1OeVUkuVUnuVUi1Kqd/2O9adSqn3lFK/UUq1unZ/Lu53f6xS6kmlVJ1SqkYp9WOllPGM5/6fUqoJeEApla+Uese1LrNS6mmlVJzr8X8HsoD/uHYhv6WUWqWUqj7j8+vb5VNKPaCU+pdS6h9KqTbgzmHWNEMptcn1uZiVUv0DnP7nCHMds9H1NdmhlEpRSj0IrAR+61rjb12Pn6OUelMp1eTafbup37H+opR6zHV/u+v82QOdF0Br/Tut9dtA9wD3/UFrvUVrbdVa1wBPAyv6PeSHwP/TWn+gtXZorWtcjwO4ATigtX5ea90NPAAsUErNcd1/B/ALrXW16zm/AO4cbJ1CCCECkwR4Qggx+XwZ507MhUAa0Az87ozHLAdmAjcDjwLfBy4BCoGblFIXnvHYcpy7RvcDL7oDRuCvgA2YASwCLgPuHuC504AHAQX81LWuuUAmzkADrfXtnL4T+fAIP9/rgH8BcTgDnqHW9CNgPRAPZAC/GeSYdwCxrvUlAp8HurTW3we2APe61nivUioSeBN4xvV5fhz4vVKqsN/xbnOdOwnY7VqnJ1wAHABwBbHFQLJS6qgrhfO3Sqlw12MLce4OAqC17gCOuW4/637X3/t/DkIIISYACfCEEGLy+RzwfddOTA/OAOpjZ6Qv/khr3a21Xg90AM9qrRtcOzdbcAZGbg3Ao1rrXq31P4HDwFVKqRTgCuCrWusOrXUD8H/ALf2eW6u1/o3W2qa17tJaH9Vav6m17tFam4Bf4gxEx2Or1vplrbUDiBlmTb1ANpDm+vzfHeSYvTgDuxlaa7vWeqfWum2Qx14NVGqtn3J9nruAF4CP9XvMf7XWm12vx/eBc5VSmeP5pJVSd+EM6H7uuikFCHaddyWwEOfr+APX/VFA6xmHacWZyjnQ/a1AlNThCSHExCIBnhBCTD7ZwEuu1MIW4CBgxxkAuNX3+3vXAP+O6vfvGq217vfvKpw7cNk4A4q6fuf6I85dLLcT/RemlJqmlHrOlTrZBvwD567WePQ/x3Br+hbOXcTtSqkDSqlPDXLMvwPrgOeUUrWuhiPBgzw2G1juPp/rnLcB0wdao9baAjTh/BqOiVLqeuAh4Aqttdl1c5frz99oretct/8SuNJ1uwVnANxfDNA+yP0xgOWM114IIUSAkwBPCCEmnxM43/jH9fsI61eLNVrpZ+ziZAG1rvP0AEn9zhOjte6f1ndmcPBT123ztdYxwCdwBlyDPb4DZ2MRoC8NMfmMx/R/zpBr0lqf1Fp/RmudhnOn8/dKqRlnfsKu3cofaq0LgPNw7tJ9cpA1ngA2nfH1jtJa39PvMX27dUqpKJxNTmrPPO9IKKUuB/6EM5V1X781NwPVA6zP7QDOBiru40QC+a7bz7rf9fcDCCGEmFAkwBNCiMnnMeBBdyMPpVSyUuq6cRxvGvBlpVSwUupGnLVzr2mt63DWs/1CKRWjnM1d8s+o3ztTNM6dohalVDrwP2fcXw/k9fv3ESBMKXWVawftB0DoYAcfbk1KqRuVUhmuhzfjDIbsZx5HKbVaKTXPFVC24UzZdD/uzDW+CsxSSt3u+hoFK2fTmrn9HnOlUup8pVQIzlq8bVrr03Y3+507RCkVhjPwDXY1fDG47rsIZ/3eR7XW2wd4+lPAl1w7pfE4O26+6rrvJaBIKfVR1/H/F9irtT7kuv9vwNeVUulKqTTgG8BfBlqjEEKIwCUBnhBCTD6/Al4B1iul2oEPcDY7GattOBuymHE2SvmY1rrRdd8ngRCgFGfA9C8gdYhj/RBYjLO+67842/b391PgB65Ux29qrVtxjgx4AqjBuaNXzdCGWtNSYJtSyoLza/QVrXXFAMeY7npeG84U100400nB+fX9mHJ2IP211rodZyOXW3Duyp3EOaqgfyD6DM4GNU3AEpwpnINZjzPd8jzgcdffL3Dddx/O5i+vqVMzD1/v99wfATtwBsYHgQ9xvma4ah4/6vp3M87vif71kn8E/gPsA/bjfH3+OMQ6hRBCBCAlqfVCCCEGo5yDtu/WWp/v77VMVEqpvwDVWusfDPdYIYQQYrxkB08IIYQQQgghJgkJ8IQQQgghhBBikpAUTSGEEEIIIYSYJGQHTwghhBBCCCEmCQnwhBBCCCGEEGKSCPLlyZKSknROTo4vTymEEEIIIYQQAWPnzp1mrXWyt47v0wAvJyeHkpISX55SCCGEEEIIIQKGUqrKm8eXFE0hhBBCCCGEmCQkwBNCCCGEEEKISUICPCGEEEIIIYSYJHxagyeEEEIIIUSg6O3tpbq6mu7ubn8vRUxCYWFhZGRkEBwc7NPzSoAnhBBCCCGmpOrqaqKjo8nJyUEp5e/liElEa01jYyPV1dXk5ub69NySoimEEEIIIaak7u5uEhMTJbgTHqeUIjEx0S+7wxLgCSGEEEKIKUuCO+Et/vrekgBPCCGEEEIIP3nwwQcpLCxk/vz5LFy4kG3btgFw9913U1pa6pFz5OTkYDabh3zMT37yk1Ef9y9/+Qv33nvvabc99dRTLFy4kIULFxISEsK8efNYuHAh3/nOd0Z9fF949NFH6ezs9PcyPEpq8IQQQgghhPCDrVu38uqrr7Jr1y5CQ0Mxm81YrVYAnnjiCZ+u5Sc/+Qnf+973xn2cu+66i7vuugtwBpYbNmwgKSlp3McdK601WmsMhoH3tR599FE+8YlPEBERMeJj2mw2goICN4wadgdPKZWplNqglDqolDqglPpKv/u+pJQ67Lr9Ye8uVQjva+vuZWdVs7+XIYQQQogpoK6ujqSkJEJDQwFISkoiLS0NgFWrVlFSUgJAVFQU3/72t1myZAmXXHIJ27dvZ9WqVeTl5fHKK68AZ++mXX311WzcuPGsc15//fUsWbKEwsJCHn/8cQC+853v0NXVxcKFC7ntttsA+Mc//sGyZctYuHAhn/vc57Db7YBzh27WrFlceOGFvPfeeyP+XB955BGWLl3K/Pnzuf/++wGorKxkzpw53H333RQVFXHbbbfx1ltvsWLFCmbOnMn27dsBeOCBB7j99tu56KKLmDlzJn/605+GPe7cuXP5whe+wOLFizlx4gT33HMPxcXFFBYW9j3u17/+NbW1taxevZrVq1f3fa3d/vWvf3HnnXcCcOedd/L1r3+d1atX8+1vf5tjx45x+eWXs2TJElauXMmhQ4dG/LXwOndUO9gHkAosdv09GjgCFACrgbeAUNd904Y71pIlS7QQgaq1y6qv/vUWnf3tV/Xxxg5/L0cIIYQQXlZaWurX87e3t+sFCxbomTNn6nvuuUdv3Lix774LL7xQ79ixQ2utNaBfe+01rbXW119/vb700ku11WrVu3fv1gsWLNBaa/3UU0/pL37xi33Pv+qqq/SGDRu01lpnZ2drk8mktda6sbFRa611Z2enLiws1GazWWutdWRkZN9zS0tL9dVXX62tVqvWWut77rlH//Wvf9W1tbU6MzNTNzQ06J6eHn3eeeedds4zuc+7bt06/ZnPfEY7HA5tt9v1VVddpTdt2qQrKiq00WjUe/fu1Xa7XS9evFjfdddd2uFw6Jdffllfd911Wmut77//fj1//nzd2dmpTSaTzsjI0DU1NUMeVymlt27d2rcW9+dts9n0hRdeqPfs2XPW1+bMr8Pzzz+v77jjDq211nfccYe+6qqrtM1m01prfdFFF+kjR45orbX+4IMP9OrVqwf8Ggz0PQaU6GHipvF8DLu3qLWuA+pcf29XSh0E0oHPAA9prXtc9zV4NvQUwnc6emzc9dQO9te2ArCtoonMhJFv1QshhBBiYvvhfw5QWtvm0WMWpMVw/zWFg94fFRXFzp072bJlCxs2bODmm2/moYce6ts1cgsJCeHyyy8HYN68eYSGhhIcHMy8efOorKwc1Zp+/etf89JLLwFw4sQJysrKSExMPO0xb7/9Njt37mTp0qUAdHV1MW3aNLZt28aqVatITk4G4Oabb+bIkSPDnnP9+vWsX7+eRYsWAWCxWCgrKyMrK4vc3FzmzZsHQGFhIRdffDFKqbM+t+uuu47w8HDCw8NZvXo127dv59133x30uNnZ2Zxzzjl9z1+7di2PP/44NpuNuro6SktLmT9//qi+djfeeCNGoxGLxcL777/PjTfe2HdfT0/PqI7lTaNKHlVK5QCLgG3AI8BKpdSDQDfwTa31jgGe81ngswBZWVnjXa8QHtfda+czfyvhw+PN/Obji/jei/soqWziY0sy/L00IYQQQkxyRqORVatWsWrVKubNm8df//rXswK84ODgvo6MBoOhL6XTYDBgs9kACAoKwuFw9D1noPb8Gzdu5K233mLr1q1ERESwatWqAR+nteaOO+7gpz/96Wm3v/zyy2PqDKm15rvf/S6f+9znTru9srKy73MZ6nODsztSKqWGPG5kZGTfvysqKvj5z3/Ojh07iI+P58477xx0fEH/85z5GPcxHQ4HcXFx7N69e7hP3S9GHOAppaKAF4Cvaq3blFJBQDxwDrAUWKuUynNtO/bRWj8OPA5QXFysESKAWG0O7vnHTraWN/KLGxdw9fw0XtxVw/bKJn8vTQghhBA+NNROm7ccPnwYg8HAzJkzAdi9ezfZ2dljOlZOTg6///3vcTgc1NTU9NWv9dfa2kp8fDwREREcOnSIDz74oO++4OBgent7CQ4O5uKLL+a6667ja1/7GtOmTaOpqYn29naWL1/OV77yFRobG4mJieH5559nwYIFw65tzZo13Hfffdx2221ERUVRU1NDcHDwqD6/f//733z3u9+lo6ODjRs38tBDDxEeHj6i47a1tREZGUlsbCz19fW8/vrrrFq1CoDo6Gja29v7GsGkpKRw8OBBZs+ezUsvvUR0dPRZx4uJiSE3N5fnn3+eG2+8Ea01e/fuHdHXwhdGFOAppYJxBndPa61fdN1cDbzoCui2K6UcQBJg8spKhfAwm93BV577kA2HTTz4kSJuWOzcsSvOieedQw00WnpIjAod5ihCCCGEEGNjsVj40pe+REtLC0FBQcyYMaOv8clorVixoi/dsaioiMWLF5/1mMsvv5zHHnuM+fPnM3v27NNSGD/72c8yf/58Fi9ezNNPP82Pf/xjLrvsMhwOB8HBwfzud7/jnHPO4YEHHuDcc88lNTWVxYsX9zVfGcpll13GwYMHOffccwFnauo//vEPjEbjiD+/ZcuWcdVVV3H8+HHuu+8+0tLSSEtLG9FxFyxYwKJFiygsLCQvL48VK1ac9nlfccUVpKamsmHDBh566CGuvvpqMjMzKSoqwmKxDLiep59+mnvuuYcf//jH9Pb2cssttwRMgKfO2HA7+wHOfcq/Ak1a66/2u/3zQJrW+n+VUrOAt4GsM3fw+isuLtbubkBC+JPDofnm83t48cMafnDVXO5emdd3X0llEx97bCuPfWIJlxdN9+MqhRBCCOFNBw8eZO7cuf5ehhjGAw88QFRUFN/85jf9vZRRG+h7TCm1U2td7K1zjmTQ+QrgduAipdRu18eVwJ+BPKXUfuA54I6hgjshAoXWmh/8ez8vfljDNy6ddVpwBzAvI5aQIAMlkqYphBBCCCEmmJF00XwXGKya8hOeXY4Q3qW15sf/Pcgz245zz6p87r1oxlmPCQ0ysjAjjh0S4AkhhBBC+N0DDzzg7yVMKCPZwRNi0vjlm0d48t0K7jwvh2+tmT1oJ6ilufHsr22jo8c24P1CCCGEEEIEIgnwxJTx+41H+c07R7m5OJP/vbpgyDa/xTkJ2B2a3SdafLdAIYQQQgghxkkCPDElPPVeBQ+/cZjrFqbxkxvmYTAMPcNlSXY8SsH2CknTFEIIIYQQE4cEeGLS++eO4/zwP6VcVpDCz29cgHGY4A4gJiyYudNjKKmSAE8IIYQQQkwcEuCJSe3fu2v4zov7uGBWMr+5dRHBxpF/yy/NiWdXVQu9docXVyiEEEKIqcxoNLJw4UKKioq48cYb6ezsHPOx7rzzTv71r38BcPfdd1NaWjroYzdu3Mj777/f9+/HHnuMv/3tb2M+t1tlZSVFRUWn3fbAAw/w85//fFTH8dR6piIJ8MSk9cb+k3x97R6W5iTwx08sITRo5MM0AZbmJtDVa6e0ts1LKxRCCCHEVBceHs7u3bvZv38/ISEhPPbYY6fdP5JB4gN54oknKCgoGPT+MwO8z3/+83zyk58c07k8zWazBdR6JhoJ8MSktPFwA196dhfz0mP5851LCQ8ZXXAHsDQnAUDGJQghhBACHn4YNmw4/bYNG5y3e8jKlSs5evQoGzduZPXq1dx6663MmzcPu93O//zP/7B06VLmz5/PH//4R8A5/unee++loKCAq666ioaGhr5jrVq1ipKSEgDeeOMNFi9ezIIFC7j44ouprKzkscce4//+7/9YuHAhW7ZsOW2Xbffu3ZxzzjnMnz+fj3zkIzQ3N/cd89vf/jbLli1j1qxZbNmyZdSf41DH/t73vseFF17Ir371q7711NbWsnDhwr4Po9FIVVUVVVVVXHzxxcyfP5+LL76Y48ePA85dzC9/+cucd9555OXl9e1oTiUS4IlJZ+uxRj73953MnBbNX+9aRlTosOMeB5QSE0ZWQoQ0WhFCiDP89p0yrv3tu/5ehhC+tXQp3HTTqSBvwwbnv5cu9cjhbTYbr7/+OvPmzQNg+/btPPjgg5SWlvLkk08SGxvLjh072LFjB3/605+oqKjgpZde4vDhw+zbt48//elPp+3IuZlMJj7zmc/wwgsvsGfPHp5//nlycnL4/Oc/z9e+9jV2797NypUrT3vOJz/5SX72s5+xd+9e5s2bxw9/+MPT1rl9+3YeffTR027v79ixY6cFZf13JYc6dktLC5s2beIb3/hG321paWns3r2b3bt385nPfIaPfvSjZGdnc++99/LJT36SvXv3ctttt/HlL3+57zl1dXW8++67vPrqq3znO98Z5Ssx8Y3tna8QAWrX8WY+/dcdZCZE8PdPLyM2Inhcx1uak8CGww1orYccqyCEEFPJh8db2FfTitXmICRIrhWLSeKrX4Xdu4d+TFoarFkDqalQVwdz58IPf+j8GMjChfDoo0Mesquri4ULFwLOHbxPf/rTvP/++yxbtozc3FwA1q9fz969e/t2o1pbWykrK2Pz5s18/OMfx2g0kpaWxkUXXXTW8T/44AMuuOCCvmMlJCQMuZ7W1lZaWlq48MILAbjjjju48cYb++6/4YYbAFiyZAmVlZUDHiM/P5/d/b6W7kHlwx375ptvHnRd7733Hk888UTfruHWrVt58cUXAbj99tv51re+1ffY66+/HoPBQEFBAfX19UN+vpORBHhi0ujutXP3X0tIjg7l6buXkxgVOu5jLs2J54Vd1RwzdTBjWpQHVimEEBNfTUsXWkNdaxfZiZH+Xo4QvhMf7wzujh+HrCznv8fJXYN3psjIU/+3tNb85je/Yc2aNac95rXXXhv2ArSnL1KHhjrfXxmNRmw2m8eOC6d/zv3V1dXx6U9/mldeeYWoqIHfj/X/HN1rBOfnP9XIZTcxaby6t46mDis/vWEeKTFhHjnm0lznVa4SqcMTQog+tS1dANQ0d/l5JUJ40KOPwsaNQ3/cfz90dsJ99zn/vP/+oR8/zO7dSK1Zs4Y//OEP9Pb2AnDkyBE6Ojq44IILeO6557Db7dTV1bHhzBpB4Nxzz2XTpk1UVFQA0NTkfE8THR1Ne3v7WY+PjY0lPj6+b6fs73//e9+O23iN5di9vb3cdNNN/OxnP2PWrFl9t5933nk899xzADz99NOcf/75HlnjZCA7eGLSeHb7cfKSIjk3L9Fjx8xLiiQxMoTtlU3csizLY8cVQoiJqr27l7Zu51X7agnwxFTirrlbuxZWr3Z+9P+3F919991UVlayePFitNYkJyfz8ssv85GPfIR33nmHefPmMWvWrAGDpeTkZB5//HFuuOEGHA4H06ZN48033+Saa67hYx/7GP/+97/5zW9+c9pz/vrXv/L5z3+ezs5O8vLyeOqppzz2uYz22O+//z47duzg/vvv5/777wecO5e//vWv+dSnPsUjjzxCcnKyR9c40SlfblsWFxdrdzcfITzp8Ml21jy6me9fOZfPXJDn0WN/7u8lHKxrZ/O3vPvDWwghJgL3z1uAL188k69fOmuYZwgRuA4ePMjcuXNH9uCHH3Y2VOkfzG3YADt2QL/6LyH6G+h7TCm1U2td7K1zyg6emBSe3X6cEKOBjy7J8Pixl+YksO5APfVt3R5L/RRCiImqpuXUEObq5rEPZBZiwhkoiHPv5AkRQKQGT0x4XVY7L+yq5vKi6SREhnj8+O55eDIuQQghoKalG4CshAipwRNCiAAkAZ6Y8P67r472bhu3LvdOjVxhWgwRIUZptCKEEDgbrAQbFQsz46QGTwghApAEeGLCe2ZbFXnJkSzPHXquy1gFGQ0syopje2WzV44vhBATSU1zF6mx4WQmhHOyrRub3eHvJQkxLlOxjb7wDX99b0mAJya0Qyfb2HW8hVuXZXl1EPnSnAQOnWyjrbvXa+cQQoiJoLali/S4cNLjIrA7NPXtPf5ekhBjFhYWRmNjowR5wuO01jQ2NhIW5vv+DdJkRUxoz25zNle5YbHnm6v0tzQnAa1hZ1Uzq2dP8+q5hBAikNW0dHFefhIZ8eEAVDd1kh4X7udVCTE2GRkZVFdXYzKZ/L0UMQmFhYWRkeHd96gDkQBPTFhdVjsvfljDFfO801ylv0VZcQQZFDsqmiTAE0JMWb12B/Vt3aTHh5PuCvBqWqQOT0xcwcHB5Obm+nsZQniUpGiKCevVvbW0d9v4uA8GkEeEBFGYHkuJ1OEJIaaw+rZuHBrS48L6du2k0YoQQgQWCfDEhPXM9uNeba5ypqXZ8eyubqHHZvfJ+YQQItC4xyKkxYUTFmwkKSpURiUIIUSAkQBPTEgH69r40AfNVfpbmpuA1eZgX3WrT84nhBCBprbVGcy5d+8y4sMlRVMIIQKMBHhiQnp2u7O5yke93Fylv+LseAC2yzw8IcQU1X8HDyA9Ppzq5k5/LkkIIcQZJMATE06X1c5Lu5zNVeK93Fylv8SoUPKTI6UOTwgxZdW0dJMUFUJYsBGAjLhwalu6cTikxbwQQgQKCfDEhPOfvbW099i41QfNVc60LDeBksomeTMjhJiSalq6+nbvwJmiabU7MFlkFp4QQgQKCfDEhPPs9uPkJ0eyzEfNVforzk6grdvG4fp2n59bCCH8zT3k3M09KkE6aQohROCQAE9MKO7mKh/3YXOV/txBZUmA1+H96q0y/vp+pb+XIYSYRLTW1J61gxcBIHV4QggRQCTAExPKs9uPExLk2+Yq/WXEh5MSE8r2AK/D+/sHVTz1XoW/lyGEmERaOnvptNpPC/Dcu3nSSVMIIQKHBHhiwui02nhpVw1XFvm2uUp/SimW5iSwo6IJrQOzDq+1sxezpYfKxk7MUhcjhPAQdxDXP0UzMjSIuIhgmYUnhBABRAI8MWG8urfO2VxlebZf17EsN4GTbd0BW3Ny1HSqPnBnVWDvNIqJ42hDOy2dVn8vQ/jRQAEeODMbAvXnoRBCTEUS4IkJ45ltx5kxLYqlOfF+XUdxtqsOryow6/CONlj6/r5LAjzhAVprbnxsKz9ff9jfSxF+VOsO8OJPD/DS42TYuRBCBBIJ8MSEUFrbxu4T/muu0t/s6dFEhwWxvSIwg6eyegshQQYWZsZRIgGe8ICG9h6aO3vZW93q76UIP6pt6SIs2EB8RPBpt2fER1Dd3BmwaetCCDHVSIAnJoRTzVXS/b0UjAbFkux4dgRoJ82jJgt5Sc4xEvuqW+mx2f29JDHBHTM5d4UPnWyn1+7w82qEv7hn4J15kS09LpzuXgdNHZLCK4QQgUACPBHwOq02Xv6whqvmpRIX4Z/mKmdampPA0QZLQL6hOdpgYWZKNEuy47HaHeyvkV0XMT4V5g4ArDYH5aYOP69G+EtNS/dZ9XfgrMFz3i9pmkIIEQgkwBMB79U9zuYqH1+W5e+l9AnUeXhdVjs1LV3MSI5icZazVlEarYjx6h/UHaiVCwZTVU1z14ABngw7F0KIwCIBngh4T28PjOYq/c1LjyXEaAi4GrdjJgtaw4xpUSRHh5KTGEFJgM/sE4GvwtzBzGlRhAYZKK1t8/dyhB9099oxW3oG3sGLcw47l1EJQggRGCTAEwHtQG0re060cGsANFfpLyzYyILMWLZXBNYOnruD5oxpUQAsyU5gZ1WzND8Q41JusjAzJYo5qTEckABvSjrZ2g1w2pBzt5jwIKJDg6hu7vT1soQQQgxAAjwR0NzNVW4IgOYqZyrOSWB/TStd1sBpYnK0wYJBQU6S84r6kux4GjusVDXKGy8xNlabgxPNXeQlRVGQGkNpXZtcMJiC3PV1AwV4SinS42VUghBCBAoJ8ETAcjZXqeXqAGqu0t+ynARsDs2HJwInBfJog4WcxEhCg4wAFLvSWgMtlVRMHMebOrE7NHnJkRSmxdDa1Stv5Kcg92ueEX92gOe+XWrwhBAiMEiAJwLWf/bUYumx8fHlgdNcpb/F2fEoBTsCaB7eUZOFfFd6JsCM5ChiwoKk0YoYM3cHzdykSArSYgCkDm8KqmnuQilIiQkb8P70uHCpwRNikmjptPL+MbO/lyHGQQI8EbCe2X6CmdOiKM4OnOYq/cWGBzM7JZqSqsCow+u1O6g0d/TV3wEYDIrF2fHsDJA1iomn3DUDLy8pirnTYzAopA5vCqpt6SIlOoyQoIHfNmTER9DeY6O1q9fHKxMNbd38fN1hmVEpPOYnrx3kk09up65VLtpMVBLgiYDkbq7y8QBrrnKmZbkJ7KpqxhYAv1irGjuwOTQzkqNOu31JVjxH6i3yxkuMSbmpg8TIEGIjggkPMZKbFElpnQR4U41zyPnAu3fQf1SC1Pv62i/WH+G3G46yt1pGmIjx23qskbUl1dy9Mo/U2IFTskXgkwBPBKRntx8nNECbq/RXnJNAh9XOwbp2fy/lrA6abktcdXi7jkuaphi9CnMHecmRff8uTIuVFM0pqLala8AGK27u8QmSpulbtS1dvPhhNXBqt12IserutfP9l/aRmRDOVy6e6e/liHGQAE8EnI4eZ3OVqwK0uUp/7tl82wNg4Lk7wMs/I8BbmBmH0aDYJXV4YgzKzRZyk04FeAVpMdS0dNHcYfXjqia2QNjxHw2HQ1Pb2t23SzeQDBl27hePby5HawgyKMpd9bJCjNXvNx6j3NzBg9fPIzzE6O/liHEYNsBTSmUqpTYopQ4qpQ4opb7iuv0BpVSNUmq36+NK7y9XTAWv7nU2V7k1QJur9JcaG05GfDg7AmAe3tEGC2mxYUSFBp12e0RIEAWpMTLwXIxaa1cvZouVvH5pv4WuRisHJU1zTP7+QRVFD6xjb3WLv5cyYuaOHqw2x4BDzt0SIkMICzZIh1UfMlt6eG7Hca5flE52YoTs4IlxOdrQzh82HuW6hWlcMCvZ38sR4zSSHTwb8A2t9VzgHOCLSqkC133/p7Ve6Pp4zWurFFPKM9uOM3NaFEsCtLnKmZblJFBS1eT32WBndtDsb0l2PLtPtEy4nQPhX/07aLoVpDoDPGm0MnpPvVfBfS/vp7vXwXtHG/29nBGrbXEOOR8qwFNKkREfITV4PvTUexX02Bzcsyqf3KQoyk2ygyfGxuHQfO/F/USEBHHf1QXDP0EEvGEDPK11ndZ6l+vv7cBBILALo8SEtb+mlT3Vrdy6PLCbq/S3NDcBs8Xa92bYHxwOzbGGjrPq79yWZMfT1RsYtYJi4qgwu9J++9XgJUaFMj0mTBqtjNKfNpfzw/+UsqYwhfS4cPbXTpyGGO66uqFq8MA1KkF28HyitauXv71fxZVFqeQnR5GfHElVo3NmpRCjtbbkBNsrm/jelXNIigr193KEB4yqBk8plQMsAra5brpXKbVXKfVnpdTE2G4RAa2vucqiDH8vZcTcdXj+TIGsaemiq9c+ZIAHBMxIBzExlJs6MCjISog87faCtBgOTKAAxd9+t+EoD752kKvmp/LbWxczLz2WAzUT5+tX2zKyAC8jXmbh+co/PqiivcfGF1bnA5CXHInV7pAdVDFqpvYefvLaQZblJnBTcaa/lyM8ZMQBnlIqCngB+KrWug34A5APLATqgF8M8rzPKqVKlFIlJpNp/CsWk1ZHj41/767lqvmpxEYE+3s5I5afHEV8RLBfG60cddVenDkiwS0tLpy02DAZeC5GpdzcQWZCxFmzzwrTYjhm6qC71+6nlU0MWmsefesIj6w7zPUL0/jVzQsJNhqYlxFLZWMnbd0TY3RJTUsX0aFBxIYP/XM5PT6c5s5eOnpsPlrZ1NRptfHkuxWsnp1MYVosQF+drKRpitH60auldPc6+MlH5k2YzCkxvBEFeEqpYJzB3dNa6xcBtNb1Wmu71toB/AlYNtBztdaPa62LtdbFyclStCkG9999dVh6bNw2AZqr9KeUojgngRI/BnjHXB00Z6ZED/oY58BzCfDEyJWbOshLijzr9oLUGOwOzeGTkvI7GK01v1h/hEffKuNjSzL4xU0LCTI6f+W6G9UcqJkYaa41w4xIcOsblSBpml713PYTNHVY+eLqGX23uf+fHpNGK2IUNh5u4JU9tXxhdf6gGUBiYhpJF00FPAkc1Fr/st/tqf0e9hFgv+eXJ6aSg3VtRIYYWZw18bJ9l+UkUNnYSUN7t1/Of7TBQkJkCAmRg4+VKM6Op661uy/dSoihOByaCrOF3KSzf+m7dw2kDm9gWmseev0Qv91wlI8vy+Thj87HaDh1Zdz99Zsoaa61LV1Djkhwy4iPAGTYuTf12Ow8vrmc5bkJFOck9N2eEBlCbHiwjEoQI9ZptfGDl/eTnxzJPavy/b0c4WEj2cFbAdwOXHTGSISHlVL7lFJ7gdXA17y5UDH5mS1WkqNDJ2SKwNJc5y/aHRX+2SE72mAZND3Tzf1moER28cQInGzrprvXcdqQc7eM+HCiQ4MmTIDiS1prfvTqQf64uZzbz8nmwevnYTCc/jMtOdrZqGb/BKnDc+7ghQ37OPcsPKnD856XdtVwsq37tN07cGaS5CVHyqgEMWK/equM6uYufvKReYQGycy7ySZouAdord8FBnrHLWMRhEeZ23smbPemwrQYwoON7Khs4qr5qcM/wYO01pQ1WLhy3tDnnTM9mogQI7uqmrl2QZqPVicmKnctz0ApmgaDYm5aDKUyKuE0Dofm/lcO8PcPqrhrRQ7/e3XBoBesitJj2D8Bvn4dPTZaOntJj4sY9rHJUaGEGA1US5aAV9jsDv6w6RjzM2JZOTPprPvzkqLYUia9DsTwDtS28sS7FdxcnMnyvER/L0d4wai6aArhTWbLxA3wgo0GFmXFscMPdXhmi5XWrt5h8+eDjAYWZsZJJ81R8vd8Q39xj0jIG2RnuCA1hoN17dKW3cXh0Hz/5X38/YMqPndB3pDBHUBReizHTBY6rYHdkORUB83hd/AMBkVaXBjVsoPnFf/dV0dVYydfWDVjwO+tvORIGtp7aJ8gzXuEf9gdmu+9uI/4iGC+e+Ucfy9HeIkEeCJgmC09JEYNXkMW6IpzEjhY1+bzX65H3Q1WRlAgvSQ7noN17dLlboRaOq0s/8nbfP2fuydMx0NPOWbqICLESErMwBddCtNi6Oq1U9koNT92h+ZbL+zl2e0nuHf1DL5zxZxhU82L0mLRmoDfBXU3TBlqyHl/6TIqwSscDs3vNxxj5rQoLitIGfAx7nmV/pzJKgLf37dWsqe6lfuuLiAuYuK+5xJDkwBPBIReu4Pmzt4Ju4MHzkYrDg27jrf49Lx9IxJGGODZHZo9J1q8vKrJYUuZmYb2Hl78sIYrHt3CB+WN/l6Sz1SYO8hNihw0UClwd4IM8ADF22x2B99Yu5t/7azma5fM4ptrZo+ojrgo3dloJdDr8GpbnI2jRtJkBSAjLkJ28Lzg7UMNHK5v5wur88+q6XSTUQliOHWtXTyy7jAXzEqWUo1JTgI8ERCaOqwAJEVP3ABvUVYcRoPy+biEYw0WIkOMpMYOn0K1KCsepZBxCSO0+YiJ2PBgXrjnXEKCDHz8Tx/wk9cO0mOb/PPfys0Wcgeov3ObOS2aYKMK+B0ob+q1O/jqP3fz8u5a/mfNbL5yycwRPzclJpSkqJCAr8OraekkyKCYFj38zxdwBoJmS4/MSPQgrTW/3XCUzIRwrpk/+Jvy7MQIDApptCIGdf+/D2DXmgevL5qQDe3EyEmAJwKCqb0HgOQJnKIZGRpEYVoM2yt8G+CVNbSTPy1qRD+sY8ODmTUtWjppjoDWmi1lZs6fkcSS7AT+++XzuXVZFo9vLue6377HwUk8IqDHZqe6uWvQ+juAkCADM6dFT9lOmlabgy898yGv7q3je1fOOaur4XCUUhSmxU6IHbzpsWGnjXkYSl8nTWm04jHvH2tkz4kWPn9hft8sxYGEBhnJiI/gmKRoigG8sf8k60vr+eols8hMGL5pkpjYJMATAcFscQZ4EzlFE2BpTgK7T7T4dIdnJCMS+lucHc+u4804pDnGkMoaLJxs6+7rVhcREsSDH5nHU3cuxWyxct1v3+Pxzccm5dexqrETrU/V9Aym0NVJc6o1oumx2fnC0zt548BJ7r+mgM9eMLYZUvPSYylrsAT0bldN88iGnLv1DTuXNE2P+d2Go0yLDuWjizOGfaxzVIIEeOJ07d29PPDKAeZMj+bT5+f6eznCByTAEwHBbHGlaE74AC+eHpuD/TW+2d1p6+6lvq2HGSkjD/CKs+Np77ZR1iBpPEPZfMTZbnzlrOTTbl89ZxrrvrqSVbOT+clrh7j1iQ8m3WBnd4rXUCma4KzDa+yw0uDagZ8KunvtfPZvO3nrYAM/ur6Iu1aM/c1SUXoMdofm8Ml2D67Qs2paukbcYAUgw7UzIDt4nrHreDPvH2vkMyvzCAseflZZXlIUFWbLpLzwJMbu5+sOU9/ezUMfnU/wELvAYvKQV1kEhL4dvAlcgwenhon7alzCMVeQNpodvCXZ8QAyLmEYm8vM5CdHDvjmNjEqlD/evoRHPjaf/TVtXPHoFl7cVT1pdrLKXSlewwV4hWnORiFToQ6v3GTht++UcdWvt7C5zMRDN8zj9nOyx3VM99dvX4CmadodmpNt3aMK8FKiQzEa1KS76OEvv99wlLiIYG5dnjWix+clR9Ld66CurdvLKxMTxYfHm/nbB1V88pxsFmbG+Xs5wkckwBMBodHSQ1iwgciQ4a9QBrKkqFDykiN9VofnHpEwkg6abtmJESRFhUijlSF099rZVt7IypnJgz5GKcWNxZm8/pWVzEmN5utr93DvMx/S7GoYNJGVmzpIjg4lOix4yMfNTY0GmLR1eBXmDn634ShX/GoLF/1iEz9ff4T4iBD+cNsSblk2sjfcQ8mIDyc2PDhgv371bd3YHXpUKZpBRgPTY8IkRdMDDta18dbBBu46L5fI0KARPSfPlVYtjVYEOBtBfffFfaREh/HNNbP9vRzhQyP7iSGEl5ktVpKiQidFV6fluQn8d28dDocetJ21pxxtsBBiNJA1ioJppRSLs+IlwBtCSWUzPTYHF84aPMBzy0yI4LnPnsvjm8v55ZuH2VHZxCM3LhjRcwNVhbmDvGF27wCiw4LJToygdBI1nKk0d/DffXX8d29d3+e1JDue/726gCvmTSc1duTBznCUUhSlx/gspXu03EPORzoiwS0jPlxGJXjA7zceIzLEyB3njXynOL/fqIShLlCJqeHJdys4dLKdxz6xZNgLdmJykQBPBASzpWfC19+5Lc1J4NntJzhc387c1Bivnutog4WcpIghO6sNpDgnnvWl9Zjae0ie4Gmx3rC5zESI0cDyvIQRPd5oUNyzKp+VM5P42j93c8eft3PHudl854q5hE/AXelyk4XLi6aP6LEFqTETfhZeVeOpoM79uSzOiuO+qwu4omj6qHawRqsoLZan3qvEanMQEhRYSTWnhpyPbESCW3p8OFuPTZ2Zkd5QYe7gv3tr+cwFeaMaRj0tOpTIEKMMOxecaOrk0beOcFlByoh/novJQwI8ERBM7T1kxE+Otr3Lcp1BwfaKJu8HeCYLRa46ntFw1+HtrGqWH/wD2HzERHFOPBEho/sRWZQey3++dD6PrDvMk+9WsOWomUdvXsj8jDjvLNQLmjusNHf2kpc0srTfwrQYXt9/kvbu3gl1hfh4Y6czqNtX27eDtigrjh9cNZcr56V6Najrryg9FqvdQVlDe19NXqBwB3ij/VpkxEdQ31YTkEHrRPHHTccIMhpG3fFQKUVechTHJEVzStNa8/2X9xNkMPDD6wr9vRzhB/KTVwQEs8VKcvTEnYHXX0Z8BOlx4V6vw+vutXOiqZP8UdTfuRWlxxJiNLDreGCnab531IzN7vDpORvaujl0sn3M6U1hwUbuu7qAp+9eTpfVzg2/f58/bS738Cq9Z6QNVtwK0pwXMQ7WBW4nSLfmDiuPbTrGNb95lwse2cDP3jhEkMHAD66ay3vfuYiXvrCCu1fm+Sy4A+f/RYADAZimWdvSRXxE8KgvdGTEhePQcLJVGn2MRW1LFy/squaWpZkjHjDfn4xKEK/sqWXzERPfvGyWR9PKxcQhAZ7wO7tD09QxeVI0wbmLt62iyatdFSvMHTj06BqsuIUGGZmXEUuJj7p9jkVJZRO3PbGN53ac8Ol5t5SZAbhgVtK4jrNiRhJvfOUC5ziF1w9OmK6C7tSuvGFm4Lm5d50CtVEIQFOHlZ+9cYjzf/YOD71+CINB8f0r5/Lut1fz8hedQd1oOkV6UnZCBFGhQQHZSXO0M/Dc3MPOq1smxvd8oPnTlnK0hs9ekDem5+clRVHb2hXQ8xWF9/TY7Pzo1YMsyIzj9nNz/L0c4ScS4Am/a+604tATfwZef8tyEzBberxaB3F0DCMS+ivOjmd/TVvAvgnY5JpD9589tT497+YyE0lRIcydPv702tiIYB641pke86+d1eM+ni+UmywEGRSZI2zcMy06lMTIkIAclWC29PDT1w5y/s/e4bFNx1wzDC/g319cwWcuyAuItHCDQVGQFsP+AAyQa1tGNyLBzd2URRqtjJ7Z0sOz249z3cL0MX9/5iVHojVShzdFvX+sEbOlhy9fNAOjlxu9icAlAZ7wO/cMvMSoyZGiCafX4XlLWYMFpUa+03KmJdnxWO0O9gfgzgE459ABbK9sot5HM50cDs27ZWbOn5HksQ6oGfERrMhP4vmS6gkxfLjc1EFWQsSIh+Eq5QxQAqnRiqm9hwf/W8rKn23gT1vKubQghfVfvYDf3rqY2dOj/b28sxSlxXKwrs3n6chD0VpT0zK2HbzU2HCUQkYljMFT71XQY3Nwz6r8MR/j1KgECfCmovUHThIZYmTFjPFloYiJTQI84XfmdufcsMm0g5eXFElSVAjbvZgCeazBQmZ8BGHBY+vSuLhv4Hng1eG1dFrZV93C1fNT0Rr+u7fOJ+ctrWujscPKBR4ecXBjcQY1LV28PwE6C1aYO0Z90aAgLYayhnasNv8GKA3t3fzo1VJWPvwOT75bweVF03nz6xfyq1sWMTMl8AI7t3kZMXT3OvrqHwNBW7cNS49tTDt4IUEGUqLDZAdvlFq7evnb+1VcUTR9TKn3bu76WZmFN/XYHZo3S+tZNWfamN8biMlBumgKv3Pv4E2mAE8pxdKcBK/u4B1tsDBzHG8CkqJCyU2KDMh5eO8fa8Sh4a4VORwzdfDq3lo+NcpucmOxucyZFnr+TM9e+VxTOJ2YsCDWlpzw+LE9ye7QVDR2jLr+sDAtll679lsnyPq2bh7bdIxnth3H5tBcvzCdL67OJ2+M6cu+5u6Eu7+mlVkBEoi6d99GOwPPLT0+nBqpwRuVf3xQRXuPjS+smjGu40SEBJEWGxZQFwyEb+w63ozZYmVNoXTHnupkB0/4nTvAS55EAR440zSrm7v6Wo17ks3uoMLcMa6rvACLs+LZVdXs1WYwY7GlzER0aBALMuK4ZkEqu463+KRJyZYjZuamxoypc91QwoKNXL8onTcOnKS1s9ejx/ak2pYurDbHqAOjAtc4EF/X4dW1dnH/v/ez8uEN/G1rFdcuSOPtr1/IL25aMGGCO4C85CjCgg0B1WildowjEtwy4sO98rNvsuqy2nny3QpWzU7u66w6HnnJUbKDNwW9sf8kIUYDq2fLkPupTgI84XcmSw8hRgMx4ZNrQ9ldh7fDC7t4J5q7sNodYxqR0F9xTjyNHVYqGwPnSrvWms1HzJybn0iQ0cDV89IA76dpdvTYKKlq4gIv7bDdVJyJ1ebg33tqvHJ8TxjtiAS33KRIwoONPqvDq23p4r6X93Phwxt5ettxbliUzoZvrOKRGxeQM8q1BwKjQTkHxgfQqITaVveQ8zHu4MWFU9fSjX0C1J0Ggme3H6epw8oXV49v987NPSoh0C7eCe/RWrPuwElWzEicUDNJhXdIgCf8ztxuJTEqBKUmV7enOdNjiA4LYpsXAryyeufMsfHu4LkHngfSuITKxk5qWrpY6aqDy0qMYEFGLP/Z691umtsqGum1a4/X37kVpcdSkBrD2hLfjn0YjQrXFf/R1uAZDYq5qdGU1nk3QKlr7eL7L+3jwkc28NyO43x0SQYbvrmKhz46n6xE/3fEHI+i9FgO1LYGTCOemuYuQoIMJEaOrflVenw4Nof2WYOkicxqc/D45nKW5SawNCfBI8fMS4qkvceGyZUhIya/0ro2qpu7JD1TABLgiQBgtkyuGXhuRoO7Ds/zjTWOut6IjzfAm5EcRUxYUEANPN/iqoPrv5N2zYI09te0UenFmpLNR8yEBRv6gl5vuKk4g/01bQE7M67c3EFUaNCY0qUL0mI4WNvmtQDF4dB8/PEPeL6kmpuXZrLxf1bz0xvmjXicQ6ArSo+lw2qnsjEw6qZqWrpIiw0bczdZd4t/abQyvBd3VXOyrdtju3dAX4qydNKcOtYdqMeg4JKCFH8vRQQACfCE3zV29JA0iUYk9Lc0J4Fjpo6+OkNPOdpgISUmlJhxpmEYDIrF2fGUVAZOgLf5iJmshAiyE0/tIl05LxWAV724i7e5zMQ5eYle7Tx2/aJ0QowGni8JzJl47g6aY9lNL0yLpb3H5rU39O8fa6SysZNHbpzPj6+f57fB5N7S12glQMZN1LR0jbnBCpxK7ZRGK0PTWvOnLeXMS4/1aHr4qU6aEuBNFev2n6Q4O2FSXjAXoycBnvA7c7t10v5ActfheToF8liDZdy7d27F2fGUNVgCovlHr93B1mNmVp7xRictLpylOfH8Z4936vCqmzspN3WwcqZ3C9PjIkK4rDCFlz6sCcgB8+WmDvLGWMPmbrTird3JtSUniA0PnrTpRzNToggxGjgQII1Walu6SIsde4CX4QoOZRbe0MoaLBwzdXDz0kyPlimkx4UTGmSQRitTRKW5g8P17awpmpw/H8XoSYAn/Epr7dzBi56cAd689FjCgg0ercPTWnO0wcIMD3UJdM/DC4Q0zQ+Pt9BhtZ8V4AFcPT+Nw/XtHHHVH3rSFtdQdW81WOnv5qWZtHb18tbBeq+fazS6e+3UtHSRmzS276vZ06MxGpRX6vBaO3t548BJrl+YNmlnOwUbDcxJjQ6ITppWm4OG9p5x7eCFBRtJigqRFM1hvFnq/DlwqYfT6gwGRW5SpIxKmCLWHTgJwGWSnilcJMATftXa1UuvXU/aHbyQIAOLs+I9Og+vrrWbDqvdYzt4CzPjMBpUQMzDe7fMhEHBuflnB1pXzJuOQcGrezyfprn5iInU2DCPfU2Hcl5+Eulx4fxzR2A1W6lwvREcbYMVt7BgI/nJkV7ppPnKnhqsNgc3Fmd6/NiBpDAtlv01rX7vfHiytRutxz4iwS09PkJGJQxj/YGTLMiMIyXGs6NZwN1J0zc7eC2dVr730j6aO6w+OZ843boDJylMi5k0Ncli/CTAE351asj55KzBA2eaZmldG23dnkmBPNrg/IU93hEJbhEhQRSkxlBS5f9OmpvLzCzMjCM2/OzawmnRYZyTl8ire+s8+gbYZnfw3lFnWqgvOrkaDYqPLsng3aPmgHrz667VGe2IhP4K02K9MgtvbUk1BakxHpkPFsjmpcfS1u29OsaRcn9fZowzwMuIC/f75xLITrZ2s6e61Wu7LnlJUc6ROjaHV47f3xv7T/LMtuP8cXO5188lTtfQ1s2u4y2TNn1djI0EeMKvTO3Oq32Tbch5f8tyE9AadnqokYk7wJs5LdojxwPnuITdJ1rotXv/jcBgWjqt7K1uGbIO7ur5aZSbOzyaBri3ppW2bpvXxiMM5MYlGWgN/wqgZisVZuf31XgCvILUGE62ddPowaZCpbVt7Ktp5abiDI8dM1AVpTvrGPf7OU2zZpxDzt3SXcPOA2X0Q6B505Wm7bUALzkSu0NzvMn7aZolrgyQf3xQRWuX/+u5p5J1rjTfy6X+TvQjAZ7wq74dvElagwewKDOeYKNiu4carRw1WYgND/borueS7Hi6ex0c9PIcs6G8f6wRh2bA+ju3y4umE2RQHm22svmICaVgxQBpod6SmRDBihmJPL/zRMC8+S03dTA9JozI0KAxH6MwzRmgeDIAX1tyghCjgesWpnvsmIFqVko0QQbFfj+P0ah1BXjTY8eXNpgRH47V5vB4F+HJYv2Bk+QmRXotNdw9KuGYDzppllQ2kZ8ciaXHxj8+qPL6+cQp7u+jmT4oMRAThwR4wq/cv/jHOkx3IggPMTIvPdZjdXhHXR00PZlOWJzjHnjuvzq8LWVmokODWJAZN+hjEiJDWDEjiVf31nosTXNLmZn5GXHE+/h78KbiTKqbu/ig3PNzEsei3DUiYTwK0tydND0T4PXY7Ly8u4ZLC1N8/vr4Q1iwkZkp0eyv8e+ohJrmLpKjQ8fd0MY9KqE6gFKRA0Vbdy8flDdyaUGK11LD3f+fvT0qoaG9m8rGTm5emsmq2ck8+W4FXdbA6xI8GbV29rL1WCOXFXrv+0hMTBLgCb8yW3owGhTxEZP7zduy3ET2Vrd45JeeJztouqXGhpMeF85OP3XS1Fqz+YiJc/MTCTYO/WPpmgVpVDd3sftEy7jP29rVy+4TLT7pnnmmNYXTiQkL4p8l/m+2orWm3GQZV3omOMdApMeFe6wO763SBlo6e7l5kjdX6a8oLcbvjVZqW7vGnZ4Jp4ady6iEs208bKLXrr3a9TAmLJikqFCvN1pxlx8U5yTwhVUzaOqw8s8dx716TuH0zuF6bA4t9XfiLBLgCb8yt1tJiAzBYJjcV56W5ybQa9d8eGJ8AVRTh5WmDqtXUnoWZ8ezs7LZL28sKxs7qWnpYuUI6uAuK0whxGjg1b3jT9PcesyM3aG9Pv9uIGHBRq5bmM7r+0/6fQZhU4eVtm5bX0rXeMxNjfHYLLy1JSdIiw1jxQzfB+D+UpQeS2OHlZNt3X5bQ01L17gbrAB9Yxak0crZ3iytJzEyhEVZ8V49T16y90cl7KhsJjTIQFFaLMtyEyjOjufxzeU+ae4y1b2x/yQpMaEszIjz91JEgJEAT/iV2dIzaUck9LckJx6lGHeaprvBijcCvOLseE62dVPb6vs3llvKTMDI5tDFhAVzwaxk/ru3btz1a5uOmIkKDWJRVty4jjNWNy/NxGpz8Mpez49+GI3ycY5I6K8wLYZycwedVtu4jlPb0sXmMhMfW5KBcZJfAOrP3SnUX2maWmvnkPO48bftjwoNIi4imJqWTg+s7Gz/2VPLiofe4YpfbeG2Jz7g3md28b//3s//vXmEv75fySt7anm3zMyB2lbqWrvo7g2MtEGrzcHGQw1cMjfF69/b+T4YlVBS1cTCzDhCgpxvKb+4ega1rd38e3eNV8871XVZ7Ww6YuKygumT/iK5GL2xV9ML4QHOAG9yp2eCMygpSI0J6ABvSba7Dq+JdB83tNh8xExmQjjZiSMLMK5ZkMpbB+spqWpmWW7CmM45mrRQbylMi2Fuagxrd5zg9nOy/bIGgApXjU7eOFM0wVmHpzUcOtnO4nHsTry4qxqt4WNLpk56JsDc1GgMytlJ09PDr0eiqcNKd6/DIyma4KzD89YO3rPbj9Njc5AeF05zp5XS2jaaOq20DLEjHhFiJD4ihMSoEOefkSHctSKXeRm+G8HxQXkj7T02n7y+eUlRNHf20txh9Uoda6fVxoHaNu65ML/vtlWzk5mbGsNjm47x0cUZEnx4yeYyE929DknPFAOSAE/4ldliJd/D9WSBamlOAs/tOI7V5ui70jlaRxsshAcb+5oXeNKc6dFEhBjZVdXs046FvXYHH5Q3cu3CtBE/55K5KYQFG3h1b+2YAzx3WujnV+UP/2AvUUpxU3EGP/xPKaW1bX1NSnztmNlCsFH11UyNR18nzdq2MQd4DodmbUk15+YlkpU4tQb3RoQEkZ8c5bE019Fyj0jw1M+Y9LhwKryQItjW3cv2iiY+c0Ee3758zmn32ewOWrt6ae600tTRS1OH1fV3K80dVpo63X86j1Hf3s3Td5/j8TUOZn3pScKDjZzvg9rfvkYrZgtLIsf2s3Iou4+3YHfovkZd4Py59oVV+Xzp2Q9ZX3qSy4tSPX5e4RxuHhsezPI8z7+uYuKTFE3hN1prTJaeST0iob/luQl09zrG1QL9qMlCXnKkV66IBhkNLMyM65tn5Cu7T7Rg6bGNqtFJZGgQF89J4bV9ddjGOLtv85GRp4V60/UL0wkxGnh+p/+arZSbOshOjPRIulh6XDix4cHj6qS5raKJ402d3LR08s++G0hReiz7/DQLr9ZDM/DcMuIjqGnp8nht75YjZmwOzcVzpp11X5DRQGJUKDOmRbMsN4HLi6bz8WVZfHH1DH5wdQG/vGkhT921jH9/cQX3rMrnvaONVDV6f5QAOC9evFXawAWzksbdpXQkvD0qYUdlM0o5a7j7u3JeKjmJEfxuwzG/NgyarHrtDt4qrefiudP8loEiApt8Vwi/sfTYsNocUyJFE2Cpa6dpPGmaR+vbvTYzCZx1eAfr2ujoGV/91GhsOWLCoODcUc6hu3p+KmaLlW1j/HpuKTORnRgx4rRQb4mPDOHSwhRe+rCGHpt/aoQqzB0eSc8E59X7gtQYSsdxIeP5khNEhwZxeeHUvPJfmBZDfVsPDe2+r4etaXGeMyPeQzt48eF0Wu00e7iR0NuH6omPCB53k5IbizMwKPjnDt9cYNlX08rJtm4uK/BNWl1mfDjBRuW1UQklVU3MTokmJiz4tNuNBsXnLsxnX00r7x41e+XcU9m28ibaum2SnikGJQGe8BuzxQowJZqsgPPzzE+OHHOA19Fjo7a12+MjEvpbnB2PQ+OREQQjtbnMzMLMOGLDg4d/cD+r50wjMsTIq2NoUGK1Odh6rHHIoeq+dHNxJi2dvbxV2uDzc9vsDqoaO8j1QIMVt4K0GA6dbB/T7mpbdy+v7a/j2oVphId4f4cjEM1zNVrx1DzB0ahp7iIixDjq/4+DcQeKnhyVYHdoNh42sXr2tHHvOqfGhnPRnGk8v7Oa3jFmA4zGm6X1GA2KiwbYefSGIKOBrIQIrzRasdkd7KpqZmnOwCmCNyxOJyUmlN9vOObxc0916w6cJCzYwAV+6AAtJgYJ8ITfuIecT5UAD5zz8HZUNmEfQ/fHY65f0DNTvBfgLcpydvv01cDz1s5e9la3cP4YfkmFBRu5tCCF1/efHPUbs13Hm+mw2v0yHmEgK2YkkRYb5peZeDUtXfTaNflJnvu+KkyLocfmGFN79lf31NHd6+CmKTT77kx9A+P9kKbp7KAZ7rGhyX3Dzps910lz94lmmjqsXDTXM0HSLUuzMLX38PZB719gWV96kqU58V5peDKYvOQor4xKOHSynQ6r/bT6u/5Cg4x8ZmUeW8sb2eWnGauTkcOhWV96kgtnJU/Zi2BieBLgCb8xt0+9AG95bgLt3TYOnRz9lXlvdtB0iw0PZta0aJ8NPH//mBmHHnsd3NXz02jp7B11CtDmIyaMBsV5+YljOq+nGQ2Kjy3JYEuZqa8GylfcqVue3sEDxjTwfG3JCWanRDPfh10NA010WDC5SZF+GZVQ09Ll0SZOme5h5x78vn77YANBBuWxCzSrZieTEhPKc14ezl1p7uBIvcVn6ZluecmRVDV2jLleeTA7Kp3ZKIPt4AF8fFkWcRHBsovnQburW6hv6+HyIknPFIOTAE/4Td8OXvTUqMGD8dXhHW2wEGRQXq8ZW5ITz4dVzWPaZRytzWVmokODWJAZN6bnr5yVRExYEP/ZM7o0zS1lZhZnxREd5pk0NE+4sTgTreGFndU+PW/fDDwP1eAB5CdHERJkGHUnyCP17ew+0cKNxRke20GaqArTYsbVkGms3Dt4nhITHkRUaJBHRyW8c6iBpTkJHksjDTIauKk4k01HTB4NRM/0Zmk9gM/HX+QnRdFr1x4fV1FS1Ux6XPiQ3y+RoUHceV4Obx2s5/DJdo+ef6pad+AkQQbFRbN9P0ZFTBwS4Am/MVmsKAUJEVMnwEuPCyc9LrzvyudolDVYyE6M8HrHrCVZ8bT32Chr8O4vY0/MoQsNMrKmcDpvHqgf8RDjRksP+2tbA652ITMhgvPyE1m788S4B7iPRrnJQmx4MAkeTBkLNhqYnRJNad3odqCeLzlBkEHxkUW+ncMYiIrSY6lu7qK5w+qzc3b32mnssHqswQo4m+54chZedXMnh062c7GH0jPd3CnBa73YbOXN0nrmpsaQmeDb0R/uUQmeHFehtaaksqlvfupQ7jwvh4gQI3/YeNRj55+qtNasP1DPufmJxEYEzgVKEXgkwBN+Y7b0kBARQtAUa/G7PDeB7RVNo24dfazB4tX0TDd3PYW36/Dcc+hWzhpfoHXNgjTae2x9Yw+G8+5RM1oz7vN6w03FmZxo6uKDikafnbPC3EFuUqTHd8wK02I4UNs24u/zXruDF3fVcMncFBKnUNr2YPzRaKWmb0RCmEePmxEf7rGdsXcOOevkPN2kJDMhgpUzk1lbcsIr2QtmSw8lVU1+GV5/alSC5xqtVDd3Ud/Ww9JB6u/6i4sI4dZlWfxnbx0nmjxXizkVlTVYqDB3cJl0zxTDmFrvrEVAMbf3TKn6O7dluQmYLdZRFb1bbQ6qmjqZOS3aiytzykqIICkqhF1enof3bpkzIFs5Y3ydLM/LTyQhMoT/7K0b0eO3lJmJiwjuewMdSC4vmk50WBDPl/guTbPc1NF3hd+TCtJiaOnspa51ZK3+3z7YQGOHdcrOvjuTe2C8L9M0+2bgxXpuBw+coxI81WTl7YMN5CVF9gUtnvTxpZnUtXaz6Yjnm628c7ABh4bL/BDgJUSGEBcR7NFGK+4slOIh6u/6u3tlHkal+ONmqcUbj3X7T6IUrPHD95GYWCTAE35jtvSQOEVm4PW3bAx1eJWNHdgd2ic7eEoplmTHe33g+eYyM5kJ4WQnji9dKcho4Iqi6bxVWk+ndej5fVprtpSZWDEjySNDvT0tLNjIdQvTeG1fHa1dnp0bNpCOHhsn27o9Wn/n5g5QRroD9XzJCaZFhwZc6qy/xEWEkBEfzn4fdtJ0jzJI92CKJjh38Nq7beP+nu7osbH1WKPXRgxcPDeFpKgQnt3u+TTN9aX1pMeF9/2/8LW8pEiPjkrYUdlMdFgQs1JGdtFxemwYH12SztqSar/Md5ws3jhwkkWZcUyL8ewuu5h8hg3wlFKZSqkNSqmDSqkDSqmvnHH/N5VSWikVGAOlxIRhtlin5A5eblIkSVGhowrwfNFBs7/i7ASON3V67Rdxr909hy7ZI6mBV89Po6vX3pe+NZgj9Rbq23rG3LXTF24uzqLH5hh145ixcNfkeGM3ZM70GJQaWSfN+rZuNhxu4GNLMqZcyvZQitJifZqiWdvShUFBioffPKbHuTppjrMO772jZqx2h8fGI5wpJMjAx5Zk8s6hBurbPPezr9NqY0uZiUsLUvzWPCgvOcqjw87d9XejuVD2uQvysdkdPPluhcfWMZWcaOrkQG2bDDcXIzKS36Q24Bta67nAOcAXlVIF4Az+gEsB7/YWFpOS2TI1UzSVUizLjR9VgFdW7wzwvJFKN5AVrrTJv71f5ZXj7z7RgqXH5rFAa1luAsnRoby6Z+g0TXedXqDMvxtIUXoMc6ZH87wPZuK5U7ZyvbCDFxkaRG5i5Ig6ab64qwaHdnYSFacUpcdQYe6gvdv7u7kA1S1dTI8J83gjJ/eO4Hjr8N451EB0aNCQbfnH65almdgd2qP//7aUmemxOfxSf+eWlxxJQ3uPR76XWjqtlDVYRv065CRFctX8NJ7+4Ditnb75np5M1ru6sEqAJ0Zi2J/iWus6rfUu19/bgYOAu8XZ/wHfAnzX8k1MCp1WG51W+5QakdDfspwEalq6RlyXctRkIT0unIiQIC+vzKkgLYbrF6bx+OZyKr0wIHfLERMGBefmeybAMxoUV81LZcPhhiHfwGwuMzFjWpRH28B7mlKKm4oz2VPdOqZ5iaNRYfJegAcwNy1m2E6aWjvfTC/LSfDaOiaqIh83WvH0iAQ3d1fOmnHU4TkcmncONXDB7GSvdhLOSYrk3LxE/lniuW626w/UExMW1Jee7w95Sc5dek900tzpSt8vHkEHzTPdc2E+lh4bf9taOe51BKLuXrvXMl/WHTjJnOnR5MjPSTECo/opqZTKARYB25RS1wI1Wus93liYmNzM7c7W31NxBw9gWa5zwPZIxyUc9VEHzf6+e+Vcgo2K//dqqcePveWomQWZcR6bYwVwzYJUemwO3jpYP+D93b12tlc0TYgar48sSifEaGDtDu82Wyk3Oy8chAUbvXL8wrQYqpu7hrxav7OqmXJzBzcWS3OVMxWmOQM8X9Xh1bZ0eyXAS4wMISzYMK5RCftrW2lo7+FiL9Xf9XfLMmc32/eOmcd9LJvdwTuH6rl4borXR9wMJd+V/eGJNM0dlc0EG9WY5pcWpMWwenYyT71fSZd1ZKNtAkGPzc6Jpk52VjXx2r46nnqvgodeP8TX/7mbTzyxjUt/uYn5D6xjzn1vsOzBt/nBy/tG3Sl7KGZLDzsqm6R7phixEW8HKKWigBeAr+JM2/w+cNkInvdZ4LMAWVlZY1qkmHzMHc4h58lTNMCbPT2amLAgtlc08ZFFQ7+xtTs05SYLK/ITfbQ6p5SYML56ySwefO0gb5XWc4mH0otaO3vZc6KFey+a6ZHjuS3KjCc9LpxX99QN+DXdXtFEj83BylmBW3/nFh8ZwqUFKbz0YTXfvmI2oUHeCcAqzN7poOlWkOpsKFFa18a5g3z/ri05QWSIkSvnpXptHRNVcnQo02PCfLKD53Bo6lq7uGq+518H9yy88aRovn2wAYOCVbO9H+CtKZxOfEQwz20/Me507pKqZpo7e/2angmQlRiBQeGRRisllU0UpceO+cLQF1fP4GOPbeW5Hce5a0XuuNfjSYdPtvPKnhrq23qob+umoa2H+vZuWga4SBVsVEyLDiMlJpT85CjOy09kWkwYJ5o6+ccHxwkLMvL9q+Z6pO7yrdJ6tIY1hdI9U4zMiAI8pVQwzuDuaa31i0qpeUAusMf1jZsB7FJKLdNan+z/XK3148DjAMXFxZLKKQDniASYujt4RoNiaU4C20ZQh1fT3EWPzeHzHTyAO1fk8M+SE/zw1QOcPzPJIzs97x8z49B4vNGJwaC4an4qT71XQWtn71lDYLeUmQgxGjgn17eB8ljdtDST/+6r4+2DDV4JfrTWlJs6uGGx94aKu3egDtS2DhjgdfTYeHVvHdfMTyMy1DfpxxNNUXqMT3bwTJYeeu3aa+nL6fER49rBe+dQA4uz4kmI9H5af1iwkRsWZ/C3rZXjrhV/s7SekCADF/h57mZokJHMhAiOjTNFs7vXzt7qVu5ckTPmYxTnJLAsJ4E/bS7ntuXZhAQFTmOl//fqAbYeayQlJoxpMWFkJ0awLDeBlJhQpkWHMS0mlJSYMFJiwogLD8YwQJMZrTVhwUaeeLeCiBAjX79s9rjXte7ASTLiw/sumgkxnJF00VTAk8BBrfUvAbTW+7TW07TWOVrrHKAaWHxmcCfEYMwWV4rmFK3BA2djkHJTByZXsDuYsoZ2wHcdNPsLNhr44bWFnGjq4vHN5R455uYyM9GhQWNK7xnO1fNT6bVr1h04+0fR5iNmlubGEx7ind0wTzt/RhKpsWGs9VKzFZOlB0uPzSsjEtySo0NJjg4dtA7vv/vq6LTaZfbdEArTYjlmsgw7AmS83MFXhpcCvPEMO69v62ZfTavXumcO5OPLMum1a17YOfY0aa0160tPsiI/kagAuIDhHJUwvgBvX00rVrtjTPV3/d2zOp/a1m5e3l0zruN4UkePjR0Vzdy9Mo+t372Yf39xBY9/spgfXV/EvRfN5KalmayaPY25qTEkRIYMGNyBc8f6f68u4KbiDH79zlH+sHF8s//au3t572gjlxdO91sXVjHxjOSyyQrgduAipdRu18eVXl6XmOTMFmdQkxg5NXfw4NQ8vOHq8Hw9IuFMK2YkcdW8VH634SgnmsY3rNg9h+7c/ESv1KPMS48lOzGC/+w9fcRAfVs3h+vbJ0T9nZvRoPjYkgw2HzFR1zq+7oMDcb/R88aIhP4K02IGHZWwdscJ8pMjWZw1vjeLk1lReiwODQeHaVYzXn1Dzr21gxcXTlOHdUyB6gbX+JOL5/guPW3GtGiKs+P5544TY66lOlzfzommroCpm8pNiqLCbBlX8xj376sl4wzwVs1KpiA1hsc2HcPuoWY247X1WCNWu4MLPbDbajAofnrDfK5dkMbP3jjEX9+vHPOxNhw2YbU7WFMUGN9HYmIYSRfNd7XWSms9X2u90PXx2hmPydFaj78aWUwZZksPseHBAZWa4WtF6bGEBxuHHZdwtMFCUlQIcRH+2+383lVzMSjFj/87voYrVY2dVDd3sdJLc+iUUlw9P5X3jzXSaDm1MzoRxiMM5MYlmTg049pFGEy5lztouhWkxnC0wUJ37+kNFY6ZLJRUNXNTcaZclR7CvHR3oxVfBXjeGaB8qpPm6C9WvHWwgfS4cGal+PYi1y3Lsig3d4wolX4g6w/UoxRc7MOdx6HkJUfS3eugbhwz/nZWNpOfHEniOMsrlFJ8YXU+5aYO1g+QceEPG480EBFipDjHMxecjAbFL25awKUFKdz/ygHW7hhbNsa6AydJigqRC2FiVKbuu2vhV866hqmbngnO9MfF2XHDB3gm33fQPFN6XDj3XjSDdQfq2eQKlsZiS5n3A61rFqRhd2he33/qTcOWMjNJUaHMmR7ttfN6Q1ZiBOfmJbK2pNpjLdvdKswWQoIMpHt5ZERhWiw2h+6b5ej2fEk1RoPiI16sAZwMUmJCSYoK8XodXk1LFzFhQUSHea6zbX/uAK96lGma3b123jtq5uK503x+IeCqealEhwXx7Paxjfp9s7SeRZlxTIv2TtA8Wnl9nTTH1mjF4dCUVDV7bA7hFUWp5CZF8ruNRz3acXIstNZsPGzivPxEjza1CjYa+O2ti7hgVjLffnEvr+ypHf5J/XT32tl4qIFLC1JGNVReCAnwhF+Y261TtsFKf8tyEjl4so3WroHbyGut/TIiYSB3r8wlJzGCH75ygB7b2Npbby4zk5kQTnZihIdXd8rslGhmTIviP65fpA6H5t2jZi6YmTRozUQgu2lpBsebOse8izCYclMHuYmRXv+aFKa5O2meClBsdgcv7Kpm9expAfPmN1AppShMi2W/lztpemsGnlt6nPP//GgbrWwtb6Sr185FPhiPcKbwECMfWZTO6/tP0tJpHdVza1u62FfTyqUFgZNWl+9Kxx5rHd5Rk4XWrt5xp2e6GQ2Kz1+Yx/6aNraU+TcJrNzcQXVzFxd6oUtraJCRP35iCUtzEvjaP3ePasfy/WNmOqx2GW4uRk0CPOEXZksPSdES4C3LTUBr2Fk18Jt3U3sP7d02Zni5TmokQoOM3H9tIeXmDv78buWon99rd7D1WCMrZyZ79Uq8Uopr5qexvbKJ+rZuDtS20dRhnRDjEQZyRVEqcRHBPLZpfIX6Z/L2iAS3rIQIokKDTmv1v+mICVN7DzfJ7LsRKUqPoay+/aw0V0+qbu7q22XzhmnRoQQb1ahTNN856EybOyfPP91vb1mahdXm4MVdo2sG8mapcx7nZQHU1n5adCiRIcYx7+C56+88tYMH8JFFGUyPCeP3G4967JhjsemwM7tklZe6nYaHGPnznUspSo/l3mc+7CsbGM4b+08SHRrEefkT8/eX8B8J8IRfmCw9U3YGXn+LsuIINqpBd2fK+hqsBEZq4erZ07hkbgq/eads1I0/9pxowdJj8/h4hIFcvSAVreG1fXVsdqWFnj9jYtXfuYUFG/nCqnw2HTGx9VijR47Za3dwvKnT6/V34Gw2MDc1+rRGK2tLTpAUFcJqP+zKTERFrjTXI/XtXjuHt3fwDAZFWlw41c0jb9SkteadQw2cP8MzI1rGoiAthgUZsTy34/io0gjfLK0nLzmyb9csECilyEuOonyMoxJKKptJigr1aAZGSJCBz1yQxwflTeysavbYcUdr4xETecmRZCZ4L7skKjSIv921jPxpUXz27yVsKx/657nN7uCtgw2snjNtSvcrEGMj3zHC57p77bR320j0wTyjQBcWbGRBxuB1eP7uoDmQ+68pwObQPPjfg6N63uYyMwYF5/rgSmR+chRzU2P4z55aNh8xUZAaQ/IE3jH+5Lk5pMaG8dAbhzxSq3KiqRObQ3u9g6ZbQWoMB+vacDg0ZksPbx9s4IbFGV7ppDoZFbkarezzUh1ee3cvbd02r9djjnZUwuH6dmpauvzepOTjy7I4Um9h1/GRBSCtXb18UN7IZQGUnumWlzz2UQk7KptYmhPv8QyMjy/LJD4imD/4aRevu9fOtvJGVs3y/vdZbEQwf//0MtLjwvnUX3aw+0TLoI8tqWqmqcMq6ZliTOS3q/C5xg73DLyJ+4bbk5bmJrCvunXA9uFHGyxEhwaREhM4X6vMhAjuuTCfV/fW8f6xkddNbCkzsSAzjthw7zRxONM1C1LZdbyFkqpmvw8ZHq+wYCNfu2QWe060sO5A/biP56sOmm6FabF0WO1UNnbw8oc12Bxa0jNHISM+nNjwYK910qxtcXZV9OYOHjibNY2mBu/tg87xCKu9UBc1GtcsSCMyxMiz20fWBXHj4QZsDh1Q6ZlueUlR1LR00WUdXbrvydZuqpu7KPZgeqZbREgQd56Xy1sHGzh00ru1pgPZWt5Ij83BhbN983siKSqUp+8+h8SoUD755LZBx8isO3CSkCADq3y0LjG5SIAnfM7sGuwtTVacluUmYHNodh9vOeu+ow0W8qdFBVwb+XtW5ZMRH84Drxyg1+4Y9vGtnb3sOdHi0zEFV89LA8Du0D5JC/W2Gxank58cySPrDmEbwdd8KBWuFK18H9TggTPNDeBAbRv/3HGCxVlxAZN2PBEopShKj+FArXd28Lw9A88tPS4CU3vPiGsJ3z5Yz/yMWKbF+LcRT2RoENcuTOPVvbW0dQ/cEKu/9QfqSY4OZWFGnPcXN0ruutuKUaZpllS56++806r/jvOyiQwx8tg4h4KPxabDJsKCDSzP9XzwOpjpsWE8ffdyIkODuP3JbX3ZOm5aa9YfqOeCmUlEhgb5bF1i8pAAT/ice8j5VB+T4LYkOx6DYsA6vEAYkTCQsGAj/3t1AUfqLSMa4Pr+MTMOjU8DrazECBZkxhEebGSJl96U+FKQ0cD/rJnDMVMHL+wa31y8crOFhEjfzVacmRJFkEHxzLbjlDVYuKk40yfnnUyK0mI5VNc+ogsqo+UeXeDNJiv9j1/XOvwctkZLDx+eaPFL98yB3LI0i+5eB//ePXSb+x6bnY2HG7hkbkpAdu3tG5VgHl2jlZLKZiJCjBSkxnhjWcRFhPDRJRm8vv8klp6zs1m8adMRE+fkJfq8zjMzIYKn716OUorbnviA442n6lP317RR09LFZZKeKcZIAjzhc6cCPNnBA4gJC6YgLeasOrzWzl5M7T0BGeABXFqQwoWzknn0rTIa2od+w7blqJno0CAWZMb5ZnEuP7y2kF/ctMCjc438aU1hCouy4nj0rbJxdVQ8ZurwWXomODuwzpgWxdbyRsKDjVw1P9Vn554sCtNjsdodZ80T9ITali6Cjcrrja/S3bPwRtBoZeNhE1rDxXMCI81xfkYsBakxPLtt6GYr7x9rpMNq57KCwFj3mdz/70dbh7ejsomFmXEEebFu9toFafTYHLxZ6rvB51WNHVSYO7zWPXM4eclRPH33cnpsDm594oO+3fR1B05iUHDJ3MD8PhKBTwI84XNmi7MGbyI3vfC0ZTmJ7DrejNV26ur8UZOzY14gjEgYiFKKB64txGpz8NDrhwZ9nNaazUdMnJOf6POmGgsz47hy3uQJJpRSfPvyOdS1dvO3rZVjPk6FuYM8HwZ44KzDA7hyXqrXhmlPZvNcjVb2eyFNs6a5i9TYcK/vOLl38EYyKuGdQw2kxIRSlO6dHaPRUkrx8WWZlNa1Ddns5s3SeiJDjJyb75+xDsOJCAkiLTZsVKMS2rt7OVjX5pX6u/4WZ8WTHhfOK8PsknrSJte4Am/Mvxup2dOj+funltPa2csnntiGqb2HdQdOsjw3kQRpRifGSAI84XNmSw9RoUF+a3sdiJblJtBjc7CvpqXvNndO/syUwAzwwHk1+O6Vuby4q4aSyoE7gVY1dlLd3DUp6uACwTl5iVw4K5nfbThGa9fw9UBnau927gzn+qj+zs39Rl2aq4xNtmue4H4vdNJ0jkjwfp3b9JgwjAY1bKMVq83BpiMmLpozLaDqj69blE5YsGHQZisOh+bN0nounJ0c0L/fRjsq4cPjLTi09+rv3AwGxdULUtlSZqa5Y3SD5cdq42ET2YkRPs1oGMi8jFieumspda3dfPQP71PWYGFNADbpEROHBHjC58wWq9TfncH9i7N/Hd7RBgshQQYy4r03l8cT7r1oBqmxYdz37wPYHWenLm1xzaHzZYOVye5bl8+mtauXP45h+Lm7uUJekm8vHNxUnMkfb1/CMh82MphMDAZFQVqMFwM879bfgbOOdHpM2LCjEnZUNmHpsXFRgKRnusWEBXPVvDRe2V1DxwB1YnuqWzC19wTkeIT+3KMSRjpypaSyCYOCRVner2W+dkEaNofmtf11Xj9Xd6+drccauTBAuiwX5yTwxB3FnGxzljxI/Z0YDwnwhM+Z23uk/u4MiVGhzJgWxY4zAry8pEiMAVio319ESBA/uKqAg3VtPLOt6qz7t5SZyUwI9+hw3KmuMC2W6xam8ef3KmhoG75hRX/u2ps8H+/gRYYGsaZwekDtyEw0RWmxlNa1DXghZax67Q5OtnWT4YMAD5x1eMOlaL59sIGQIAMrZgRemuOtyzPpsNr5z56z0wjXl9ZjNCi/j3UYTl5SJJYeGyZXR+vhlFQ1U5AWQ5QPujkWpMaQlxw54NfX03ZUNtHVaw+oMQQrZiTx17uW8cNrC31y0UVMXhLgCZ8zWyTAG8iy3ARKKpv73ryVNQRmB82BXDlvOuflJ/LIusM0Wk69aei1O9h6rJGVM5Pljb2Hff3SWdjsml+9XTaq55WbO1AKCbgnoKL0GLp7HaOqnxpOfVs3Du39EQluGXHhQzZZ0Vrz9qF6zstPJCIk8NrDL86KZ+a0KJ7dcXaa5pul9ZyTl0BsRGDXmOa56rqPjaDRSq/dwYfHWyjO9s3Ou1KKaxeksa2iiZMj6LY6HpsOmwgJMnBOXmBdSDg3P5E7zsvx9zLEBCcBnvA5s6WHpGhJ0TzT8twE2ntsHKxro8tqp6ala8IEeEopfnhtIZ1WO4+sO9x3+54TLbT32Fg5Q+rvPC07MZJbl2fx3I4To5ppVW6ykBEfPmk6i04l3mi04t5NS/fyiAS3jPhwTrZ1DzruodzcQVVjJxcHyHiEMymluGVZFntOtHCw7tSA6nKThaMNFi6dAF0PRzMqobS2ja5eO0u93GClv2sXpKE1vLrXu7t4G4+YWJ6bEJAXEoQYLwnwhE/12h00d/bKDt4A3L9At1c0ccxkQWsmTIAHMDMlmrtW5PDPkhPsPtECwOYyMwYF5+VLgOcNX7poJqFBBn6+/vDwD3ZxdtCcON9X4pS85CjCgg3sr2kb/sEjVNvqmyHnbunx4Tg0g+7OvHOwAYCLAjhQumFROiFGA89tP95325ul9QBcOgHqptJiwwkLNoxoVMIOV/OsYh/OEs1LjqIoPcaraZrVzZ0cbbAETP2dEJ4mAZ7wqSZXZywJ8M6WFhdOZkJ4X4AHMHNatJ9XNTpfvngmSVGh3P/v/Tgcmi1lJhZkxgV8ytJElRwdyqfPz+W/e+vYVz38ro7W2hng+bj+TniG0aAoSI0Zsk3/aNW2OAOttFhf7eA5U4MH66T51sF65kyPJj2A64/iI0O4Yt50Xvywhi6rcx7l+tJ6CtNiAnrdbgaDIicxckSpviWVzWQmhJMS4/0uq/1duyCNPdWtVI4iO2E03OMRAqn+TghPkgBP+JS7qFsCvIEtzUlgR2UTZfUWDApykiZWnVR0WDDfu3IOe6pbeeLdcvacaJHumV722QvyiI8I5uF1g88idDvZ1k2n1e7zGXjCc4rSYymtbcPhoUYr1c1dJEaGEB7im5RddwA0UB1ea2cvJVXNXDw3MNMz+7tlaRbt3TZe21eHqb2HXcebA757Zn/5IxiVoLWmpKqJpT6qv+vvqvlpgPfSNDcdNpEeF05+gM6ZFWK8JMATPmV2NeBIlhq8AS3PTaCxw8q6AyfJToyckHVS1y9MZ2lOPD99/RAOjcy/87LosGC+uHoGW8rMvHfUPORjK/o6aMqbmomqKC0WS4+NqqbBG5WMhq9GJLiluubtDTQqYVOZCbtDB9x4hIGck5dAblIkz+04ztsH69EaLptAc8vykiM50dRJj80+6GMqGzsxW6xeH3A+kPS4cJbmxPOKF9I0rTYH7x01c+Fsaf4lJi8J8IRPmS3OFM3ESNnBG8iyXGc3r7IGy4S9suhsuFKEAqJCg1iQGefvJU16nzgnm/S4cH72xqEhZ1sdc12x9/dQXzF2ha6B8Z6ah1fT0uXTtMLQICMpMaEDjkp452A9CZEhLJwAPzOUUty8NJMdlc08+W4FGfHhzJk+cVLq85IjcWg4McSFghJX/Z23B5wP5toFaRypt3DopOdqTgFKqprosNpZJfV3YhKTAE/4lHsHLylaAryB5CRGkOz62kykBitnKkiL4TtXzOGeVfkEG+XHjLeFBRv56iUz2Vvdyuv7Tw76uApTB+HBRqb7uJ5GeM6slGhCjAaPdNLUWvt8Bw+cuzNn1uDZ7A42HjGxanZywM/+dPvYkgyCjYqyBguXFUysGY/uRktDjUooqWwmLiLYbxcbr5iXitGgeGW3Z3fxNh0xEWxUnCfdncUkJu+8hE+Z23sICzYQ6aN6j4lGKcWyXGc6zMwJHOABfPaCfL64eoa/lzFl3LA4g1kpUfx83WFsg7agt5CTFIlhgryBFmcLNhqYkxrN9oqmcdfhtXT20mm1kxbn24A/Iz7irBTNXcdbaOns5ZIA7p55pqSoUC4tcK7X/edE0TcqYYgAb0dVE0uy4v328yIpKpTz8hP5z97aITMTRmvTYRPF2Qk+GdwuhL9IgCd8qrHDSlJU6IS60ulry90BXsrEDvCEbxkNiv9ZM4dycwdrS6oHfIx00JwcrluYzofHW/jfV/aP642vO8jK8NEMPLf0+HBqW7qw9wtQ3z5UT5BBsXKC1ex+5eJZ3Hlejt/SGMcqOiyY5OjQQTtpNlp6KDd1+KX+rr9rF6Rxoqmrb/TOeJ1s7ebQyXYulO6ZYpKTAE/4lNnSIx00h3FTcSaP3rywb6ixECN1ydxpLMmO51dvH+lr3+7WY7NzoqlTOmhOAp9akcPnL8znHx8c5/+9WjrmIK+2xbcz8Nwy4sOxOTQN7adm4b1zsIHleQlEh02skSqzp0fzwLWFBE3AVPS8pMhBO2mWVDUD/qu/c1tTNJ2QIIPHmq1sOuKcsyjjEcRkN/F+IokJzdQuAd5wwoKNXL8oXXY5xagppfj25XOob+vhL+9XnnbfiaZOHBrZwZsEnK/zbD59fi5PvVfJT18furnOYNw7eL6e3eY+n7vRyvHGTsoaLBOie+ZkkpccNegOXkllEyFBBuZl+PdCY0xYMKtnJ/Pq3rrTdnzHatMRE9NjwpidMnEa4ggxFhLgCZ8yW6wyIkEIL1qWm8BFc6bxh41Hae3s7bvd3UzB3VxBTGxKKX5w1VzuODebxzeX88i6w6MO8mpbuggNMpAQ6dufye6UUHejlXcO1QNw8ZzAn383meQnR9Lc2Utzh/Ws+0qqmlmQERsQo3quXZCOqb2HbeWN4zqOze5gS5mZC2fJeAQx+UmAJ3zG7tA0dcgOnhDe9j9rZtPeY+P3m4723eZuppArO3iThlKKB64t5NblWfx+4zEefatsVM93j0jw9Zvd9LiIvvMDvH2ogbzkSHIkfdin+hqtmE/fxeuy2tlf0+r3+ju3i+ZMIzLEOO40zQ9PtNDebZP0TDElSIAnfKa504pDIwGeEF42NzWG6xem85f3KjnZ6qxzqjBbSIoKJWaC1TiJoSml+PF1RdxUnMGv3i7jt++MPMiraekm3ccNVgDCQ4wkRoZQ3dyJpcfGtvIm2b3zg8FGJeypbqHXrv1ef+cWHmLk0oIUXt9/Eqtt4A7BI7HxcANGg4xHEFODBHjCZ/pm4EmAJ4TXff3SWTi05ldvHwGcO3jSYGVyMhgUP71hPjcsSufn64/wx03HRvS82pYu0mJ9H+CBM02zurmLd8tMWO0OLp5A4xEmi4z4cIKN6qxRCe4B54uzAiPAA7h2YRqtXb1sKTON+RibjphYkhVPbLhc5BKTnwR4wmfM7c48/6QoqcETwtsyEyK4bXk2a0uqOWayyIiESc5oUDxy4wKuWZDGT18/xJPvVgz5+O5eO6b2Hr/s4IFzVEJNcxdvH2wgJiyIJdmBE0xMFUFGA1kJEWc1WtlR2cyslCjiIgLnd/X5M5KJiwgec5pmQ3s3+2vaZDyCmDIkwBM+07eDFy07eEL4wr0XzSAsyMD9/z5AY4eVXNnBm9SMBsX/3bSAK4qm86NXS/nb1spBH+tO3fX1iAQ397DzDYcbuHD2NIIn4JiBySAvOeq0UQl2h2ZXVXPA1N+5hQQZuKIolTdL688aATMSm4+YAbhwlgR4YmqQn6jCZyRFUwjfSooK5e6Vebx71PnmJi9ZOmhOdkFGA7/++CIuLUjhf/99gGe2HR/wcf4akeCWHhdOj82B2WKV+js/ykuOpKqxA5vdWdt2+GQ77T22gKm/6++aBal0Wu28dbB+1M/ddMREUlQoBakxXljZJPLww7Bhw+m3bdjgvF1MKBLgCZ8xWXoIMRqICQvy91KEmDI+c0FeXxt82cGbGoKNBn576yJWz07mey/tY23JibMeEwgBHoBBya6KP+UnRdFr130jK3ZWOevvirMDawcPYHluItOiQ/nPKNM07Q7NljITF85KxmCY5OMRxhugLV0KN9106hgbNjj/vXSpZ9cpvE7eaQufMbdbSYwKkfkzQvhQVGgQ37liDo9vLic7McLfyxE+Ehpk5A+fWMJn/lbCt1/YS7BR8ZFFGX3317Z0oRRMjw3zy/oyEpwB3pLseOJ9PIdPnNJ/VEJOUiQ7KpuZHhPWN6swkBgNiqvnp/GPD6po7eodcbOUPdUttHT2To36O3eA9rOfwfz5sHUr3HcffPvb8MIL0N0NPT3OP/t/9L9t8WK44gpYsgSOHIG1a2H1an9/ZmKUJMATPmO2yAw8IfzhpuJMbirO9PcyhI+FBRt5/PZiPvWXHXxj7R6CDAauWZAGQE1zF9OiQwkJ8k8iT2Z8BBEhRq6cl+qX8wsnd9p2uamDi+Y4O2gW58QH7IXYaxem8ef3Klh34OSIf6ZtPGzCoOCCmVNgPMLq1fDss3Dppaff/r3vDf28sLDTPyIi4P33Yc0aCe4mKEnRFD7jDPDkSq0QQvhKeIiRJ+8spjg7ga/+czev76sDoLa1y28NVgAiQ4PY8q3V3HFujt/WICAhMoS4iGCOmTqoaemitrWb4gDuaLogI5ashIhRpWluOmJiYWZcQHUF9apLLoGPftT599tug82bYft22LMHDh+Gqiqor4fWVufOncMBXV3Q3Ax1dfDnP4PRCLm5sH49/Otf/v18xJhIgCd8ptFilR08IYTwsYiQIP5811IWZMTypWc/5M3Semqau/xWf+eWGBU6+WuiJoC8pEjKTZa++XeB1kGzP6UU1yxI5b2jZkztPcM+vtHSw97qFi6cNYUa+WzYAJs2OVMz160Dm82Zujl/PsyaBVlZMG0axMRASAj0361119ytXet8blAQfOITZ9f1iYAnAZ7wCa01jR09MiJBCCH8ICo0iL98ahmF6bF84emdnAiAAE8EBveohB2VTUSFBjFnerS/lzSkaxek49Dw+v66YR/77lEzWsOqqVB/B6cHaP/v/zn/7N80ZTg7dpyquZs5E77/fecu3zPPeHfdwuMkwBM+0drVS69dyw6eEEL4SUxYMH+7axmzp0djd2i/pmiKwJGXHImpvYdNR0wsyoojKMBnEs6eHs3slGhe2T18mubGwyYSIkOYlx7rg5UFgP4BGjj/XLvWeftIfOtbp9fcffvbzkBv40ZnAxYxYQT2/2IxaZyagTdFcuCFECIAxUYE8/dPLeeT52ZzkcyfE0BekrPRyommLpYGcHpmf9cuTKOkqrlv3MdAHA7N5iMmLpiZNHVSgc8M0MD57299a2zHCwuD3/8ejh6Fhx4a//qEz0iAJ3zC1G4FIFl28IQQwq/iI0P4f9cVkZkgYzME5Cefmo9ZHIADzgdyzXxnN9ihmq3sr22lscM6NcYjeNMll8Att8BPfwplZf5ejRghCfCET/Tt4EkNnhBCCBEwshIjMCgIMigWZsb5ezkjkpUYwYLMuCHTNDceNqEUXDBTArxx++Uvnbt5X/wiaO3v1YgRkABP+MSpFE0J8IQQQohAERpkJCshgsK0GCJCJs545GsXpFFa18bRBsuA9286YmJeeiyJ8r5j/FJT4cEH4c034Z//9PdqxAhIgCd8wmzpwWhQxIUH+3spQgghhOjnx9fP4/5rC/29jFG5en4qSg2cptnSaeXD482smiW7dx5zzz2wZAl87WvOGXoioEmAJ3zC3G4lMTJk6hQ6CyGEEBPE+TOTWJw1Merv3FJiwjgnN5H/7KlFn5E2+O5RMw4NF86WRkIeYzTCY485h6T/4Af+Xo0YhgR4wifMlh5JzxRCCCGEx1y7MI1ycwcHattOu33jYROx4cETpqZwwigudtbh/f73sHOnv1cjhjBsgKeUylRKbVBKHVRKHVBKfcV1+4+UUnuVUruVUuuVUmneX66YqMwWGXIuhBBCCM+5vHA6QQbFK/3SNLXWbDpiYuXMJIySNeR5P/4xTJsGn/882O3+Xo0YxEh28GzAN7TWc4FzgC8qpQqAR7TW87XWC4FXgf/13jLFRGe2WEmKlBl4QgghhPCM+MgQLpiVzKt7anE4nGmapXVtmNp7uFDq77wjNtbZVbOkxJmyKQLSsAGe1rpOa73L9fd24CCQrrXuvx8eCUjfVDEgrTUm2cETQgghhIdduyCN2tZudh5vBpzdMwEJ8Lzplluc8/G+9z04edLfqxEDGFUNnlIqB1gEbHP9+0Gl1AngNgbZwVNKfVYpVaKUKjGZTONcrpiI2ntsWG0OkqJkB08IIYQQnnNpQQphwYa+mXgbD5soSI1hWkyYn1c2iSkFv/sddHfD17/u79WIAYw4wFNKRQEvAF91795prb+vtc4EngbuHeh5WuvHtdbFWuvi5GS5mjIVNVqsgMzAE0IIIYRnRYYGcfHcFF7bV0dLp5VdVc2smi3vN71u1iz47nfh2Wfhrbf8vRpxhhEFeEqpYJzB3dNa6xcHeMgzwEc9uTAxeciQcyGEEEJ4yzXz02jssPLwusPYHFrSM33lO9+BGTPgC19w7uaJgDGSLpoKeBI4qLX+Zb/bZ/Z72LXAIc8vT0wG5nYJ8IQQQgjhHatmJxMdGsQz244THRrE4uyJNdNvwgoLc6ZqlpXBww/7ezWin5Hs4K0Abgcuco1E2K2UuhJ4SCm1Xym1F7gM+Io3Fyomrr4dvGipwRNCCCGEZ4UFG1lTNB2AFTOSCDbKmGefuewyuPlm+MlP4OhRf69GuAQN9wCt9bvAQINEXvP8csRkZLJYUQoSIiTAE0IIIYTnXbcwjX/trGb1HEnP9Llf/hJee805BP2NN5xNWIRfySUO4XVmSw8JESEEyRU1IYQQQnjB+TOS+MtdS7lhcYa/lzL1pKXBgw/C+vXw/PP+Xo1AAjzhA+b2Hqm/E0IIIYTXKKVYNXuapGf6yxe+AIsXw1e/Cm1twz5ceJf8LxBeZ7b0SP2dEEIIIcRkZTTCY485B5/fd5+/VzPlSYAnvM5sscoOnhBCCCHEZLZ0KZxzDvzmN7Br16nbN2yQLps+JgGe8DqzRVI0hRBCCCEmve9+1/nnrbeC3e4M7m66yRn8CZ+RAE94VafVRqfVLgGeEEIIIcRkd801ziDv8GG47jpncLd2Laxe7e+VTSkS4AmvMrdbAUiKkho8IYQQQohJ78c/dnbW/O9/4fOfl+DODyTAE15lcg85lx08IYQQQojJb+PGU500f/tbZ5qm8CkJ8IRXNUqAJ4QQQggxNbhr7p57DiIj4bzznP+WIM+nJMATXmW2uFI0ZUyCEEIIIcTktmOHs+buqqvg5pth82b461+dtwufkQBPeJXZtYOXGCk7eEIIIYQQk9q3vnWq5u7uu8Ficc7G+9a3/LuuKUYCPOFVZksPseHBhATJt5oQQgghxJRxzjkwdy488YS/VzLlyLtu4VXOGXiSnimEEEIIMaUo5dzF27oVSkv9vZopRQI84VXmdqs0WBFCCCGEmIpuvx2Cg+HJJ/29kilFAjzhVWZLD0nREuAJIYQQQkw5ycnOged/+xtYrf5ezZQhAZ7wKpOlh2TZwRNCCCGEmJo+/Wkwm+GVV/y9kilDAjzhNd29dtq7bVKDJ4QQQggxVV16KWRmSrMVH5IAT3hNY4drBp7s4AkhhBBCTE1GI9x1F6xfD8eP+3s1U4IEeMJrzO3OGXgS4AkhhBBCTGF33eX886mn/LuOKUICPAHA6/vqePiNQx49pnvIuTRZEUIIIYSYwnJy4JJL4M9/Brvd36uZ9CTAE5xo6uQbz+/h9xuPcbK122PH7QvwpAZPCCGEEGJqu/tuZ4rm22/7eyWTngR4U5zDofnWv/Zid2gA3iw96bFjmy1SgyeEEEIIIXCOS0hMlGYrPiAB3hT3j21VbC1v5IfXFpKXHMm6A/UeO7bZ0kNUaBBhwUaPHVMIIYQQQkxAoaHOwecvv+wcmyC8RgK8Kex4Yyc/fe0QF8xK5ualmVxWMJ0Pyhtp7ez1yPHNFqukZwohhBBCCKdPfxp6e+Hvf/f3SiY1CfCmKIdD881/7SHIoHjohnkopVhTmILNoXnnsGd28cztPZKeKYQQQgghnIqKYPlyePJJ0Nrfq5m0JMCbov62tZLtFU3cd3UBaXHhACzIiGNadCjrPZSmabZIgCeEEEIIIfq5+244cAC2bfP3SiYtCfCmoEpzBw+9cYhVs5O5sTij73aDQXFZYQobD5vo7h1/C1uzpYekaEnRFEIIIYQQLjffDJGRzl084RUS4E0xDofmf/61h2CjgYdumI9S6rT7LyuYTlevnXfLxlf82mt30NzZKzt4QgghhBDilOhoZ5D37LPQ3u7v1UxKEuBNMU+9X8mOymbuv6aQ6bFhZ91/Tl4i0WFBrDswvnEJTR0yIkEIIYQQQgzg05+Gjg5Yu9bfK5mUJMCbQspNFh5Zd4iL5kzjo4vTB3xMSJCBi+ZM462D9djsjjGfy9TuHnIuAZ4QQgghhOjn3HNh7lxJ0/QSCfCmCLtD8z//2kuI0cBPXV0zB7OmcDrNnb2UVDWP+XxmizPAS5YaPCGEEEII0Z9Szl28rVuhtNTfq5l0JMCbIv78bgU7q5r54XWFpMScnZrZ34WzkgkJMoyrm6bZIimaQgghhBBiELffDsHBsovnBRLgTQFHGyz8fP1hLpmbwvULB07N7C8yNIiVM5JYd+AkeowzStw7eBLgCSGEEEKIs0ybBtddB3/7G1it/l7NpDLlA7z27l7KTRZ/L8Nr7K6umeEhRn5yQ9GQqZn9XVaYQk1LF6V1bWM6r7m9h/BgI5GhQWN6vhBCCCGEmOQ+/Wkwm+GVV/y9kkllygd4N//xA779wl5/L8NrnthSzofHW/jhtYVMix46NbO/S+amYFCwboxpmjIDTwghhBBCDOnSSyEzE554wt8rmVSmfIB3/aI0dlQ2c+jk2HaqAtnRhnZ+8eYR1hSmcO2CtFE9NzEqlOLsBNaPcVxCY4eVxEhJzxRCCCGEEIMwGuGuu2D9eqiq8vdqJo0pH+B9bEkmIUEGnv7guL+X4lE2u4NvPL+XyBAjP75+6K6Zg7msMIVDJ9s53tg56uea2nuk/k4IIYQQQgztrrucf/7lL35dxmQy5QO8hMgQrpqXyksf1tDRY/P3cjzm8S3l7DnRwv+7rojk6LEFWmsKpwOwvnT0u3hmi1VGJAghhBBCiKHl5MAll8Cf/wx2u79XMylM+QAP4BPnZGHpsfHv3bX+XopHHKlv59E3y7iiaDpXz08d83EyEyKYmxrDulGmadodmqYO2cETQgghhBAjcPfdcPw4vP22v1cyKUiAByzOimfO9Gj+8UHVmMcCBAqb3cE3n99DVFgQP7p+5F0zB3NZQQolVc19Yw9GornTikPLiAQhhBBCCDEC110HiYnSbMVDJMADlFLcdk42pXVtfHiixd/LGZc/bi5nb3UrP7quyCMB1prC6WgNb5WOvJumzMATQgghhBAjFhrqHHz+8svOsQliXCTAc/nIonQiQ4wTutnKoZNtPPrWEa6an8pV40jN7G9uajQZ8eGjStM0tzuHVSZFSQ2eEEIIIYQYgU9/Gnp74e9/9/dKJjwJ8FyiQoO4flE6r+6tpaXT6u/ljFqv3cE31u4hNjyYH11X5LHjKqVYUzid9442YhlhE5q+HbwxNncRQgghhBBTTFERLF/uTNOc4CVT/iYBXj+3Lc+mx+bgXzur/b2UUfvDxmMcqG3jx9cXkRDp2Z2zywpSsNodbDzcMKLHS4qmEEIIIYQYtbvvhtJS2LbN3yuZ0CTA66cgLYbFWXE8ve34hGq2UmHu4Ndvl3HtgjQuL/JMamZ/xTkJJESGsP7AyOrwTJYeQowGYsKCPL4WIYQQQggxSd18M0RGSrOVcRo2wFNKZSqlNiilDiqlDiilvuK6/RGl1CGl1F6l1EtKqTivr9YHPnFONhXmDt4/1ujvpYzY/715hGCjgfuuLvDK8Y0GxSVzp7HhUANWm2PYx5vbrSRFhYy7g6cQQgghhJhCoqOdQd5zz0F7u79XM2GNZAfPBnxDaz0XOAf4olKqAHgTKNJazweOAN/13jJ958p5qcRFBPOPD6r8vZQROVjXxit7arlrRc6YB5qPxJrC6bT32NhaPnzga7b0SP2dEEIIIYQYnYcfhoULoaMD1q513rZhg/N2MWLDBnha6zqt9S7X39uBg0C61nq91trddeMDIMN7y/SdsGAjNy7JYH1pPfVt3f5ezrB+sf4I0WFBfO6CfK+eZ8WMJCJCjCPqpmm2yJBzIYQQQggxSkuXwv/7f5CVBU8+6QzubrrJebsYsVHV4CmlcoBFwJmVj58CXvfQmvzu1uXZ2B2af+444e+lDGnX8WbeOljP5y7IIzYi2KvnCgs2smp2Mm+W1uNwDF2f6AzwZESCEEIIIYQYhdWrnTt3jY2wdStccQX86U/O28WIjTjAU0pFAS8AX9Vat/W7/fs40zifHuR5n1VKlSilSkwm03jX6xO5SZGsnJnEs9uPY7MPX3PmL79Yf5jEyBDuWpHrk/OtKZyOqb1nyGHwWmsaLVbZwRNCCCGEEKO3ejV89avOv1ut8NnPOoO+CdQA0d9GFOAppYJxBndPa61f7Hf7HcDVwG16kLaTWuvHtdbFWuvi5ORkT6zZJ25bnkVdazcbDgdmUPr+UTPvHW3kC6tnEBnqm26Vq2ZPI8igWF86eJpma1cvNocmUQI8IYQQQggxWhs2wB//CPfdB3FxEB/vbLxyww1QV+fv1U0II+miqYAngYNa61/2u/1y4NvAtVrrTu8t0T8umZtCSkxoQDZb0VrzyPrDpMaGcdvyLJ+dNzY8mHPzE1l/oH7QMRKnZuBJiqYQQgghhBgFd83d2rXOWrwXXoCmJucu3htvQEEB/OUvsps3jJHs4K0AbgcuUkrtdn1cCfwWiAbedN32mDcX6mtBRgO3LM1ic5mJ442BFb++c6iBD4+38KWLZhIWbPTpuS8rnE6FuYOjDZYB7ze1WwFIlh08IYQQQggxGjt2OIM7d82duyYvPx/27IGiIrjrLmdtXlXgbcIEipF00XxXa6201vO11gtdH69prWdorTP73fZ5XyzYl25ZlolBKZ7ZftzfS+njcGh+vv4I2YkR3Fjs+8allxWkAAzaTbNvB0/GJAghhBBCiNH41rfObqiyerXz9lmzYNMm+M1v4N13ncHe734HjsDtl+Evo+qiOdWkxoZz8ZxprC05QY/N7u/lAPDffXUcrGvja5fMItjo+5cvJSaMhZlxrC+tH/D+UymaEuAJIYQQQggPMhjg3nth/34491zn31etgiNH/L2ygCIB3jA+cU42TR1W3tg//Pw3b7PZHfzfm0eYnRLNNQvS/LaONYXT2VvdSm1L11n3mS09GA2KuHDvjm0QQgghhBBTVE4OrFsHf/4z7NsHCxbAI4+AzTbsU6cCCfCGcf6MJLITI3j6A/+nab74YQ3l5g6+ftksjAblt3VcVuhM03xzgF08c7uVxMgQDH5cnxBCCCGEmOSUctbjHTgAa9Y40zjPOw++/nVns5b+NmyAhx/2zzr9QAK8YRgMiluXZbG9sonDJ9v9to4em51fvVXGgozYvjo4f8lPjmLGtKgB6/CcQ84lPVMIIYQQQvhAWhq89BI89xxUVMCvfw1XXw3r1zvvd3fmXLrUv+v0IQnwRuDG4kxCggw8vc1/3Xqe236CmpYuvrlmNs7JFf51WUEK2yqaaOm0nna72dIjDVaEEEIIIYTvKOWclVda6gzmOjvhyivh7rtPjV04s3nLJCYB3ggkRIZw1bxUXtxVQ0eP73N7O602fvPOUZbnJnD+jCSfn38gawqnY3do3j7YcNrtZotVZuAJIYQQQgjfS06GZ56BV16B8HB48km4554pFdyBBHgjdtvyLCw9Nl7ZU+vzc//1/SrMlh7+J0B27wDmpccyPSaM9aWn0jS11pgsPTIDTwghhBBC+E9UFISGOuvx/vCHs2vyJjkJ8EZoSXY8c6ZH848PqtBa++y8bd29PLbpGKtnJ1Ock+Cz8w7HYFBcVpjCpiMmuqzOERLtPTasNofU4AkhhBBCCP9w19w9/zz84hfO9MybbppSQZ4EeCOklOK2c7I5UNvG7hMtPjvvE1sqaO3q5RuXzfbZOUfqsoLpdPc62FJmAsDc7h5yLimaQgghhBDCD3bsOL3mbvVq57937PDvunxIArxRuH5hGhEhRp7e5puRCY2WHp7cUs6V86ZTlB7rk3OOxvK8BGLCglh3wDkuobHD2XBFdvCEEEIIIYRffOtbZ9fcrV7tvH2KkABvFKLDgrl+UTr/2VN7VvdIb3hs0zG6eu18/dJZXj/XWAQbDVw8N4W3D9Vjszv6dvASIyXAE0IIIYQQwh8kwBulTyzPpsfm4F87q716npOt3fxtaxUfWZTBjGnRXj3XeKwpTKGls5ftlU2YLZKiKYQQQgghhD9JgDdKBWkxLM6K45ltx73abOU375Th0JqvXjLTa+fwhAtmJRMaZGD9gXpMFitKQUKEBHhCCCGEEEL4gwR4Y3Db8mzKzR1sPdboleMfb+zknztOcMvSLDITIrxyDk+JCAli5cxk1h84iam9h4SIEIKM8m0lhBBCCCGEP8g78TG4an4qcRHB/GNblVeO/+hbRzAaFPdeNMMrx/e0ywpTqG3tZkuZSRqsCCGEEEII4UcS4I1BWLCRG5dksP5APQ1t3R49dll9Oy/truHO83JIiQnz6LG95ZK5KRgUVDd3Sf2dEEIIIYQQfiQB3hjdujwbm0Pzzx0nPHrcX755hMiQID5/Yb5Hj+tNCZEhLHUNYZcdPCGEEEIIIfxHArwxyk2K5PwZSTy7/Th2h2eareyrbuX1/Sf59Pm5xEdOrJ2wNYXTAQnwhBBCCCGE8CcJ8MbhE+dkUdvazYZDDR453s/XHyYuIpi7V+Z65Hi+dFlhCkpBauzESCsVQgghhBBiMpIAbxwunptCSkyoR5qtbK9oYtMRE/dcmE90WLAHVudbGfERvPyFFXx8WZa/lyKEEEIIIcSUFeTvBUxkwUYDNy/N4jfvlPHN5/eQGBVCUmQoCZEhJEaFkBgZSmJUCAmRIYQFGwc9jtaan687THJ0KJ88N8d3n4CHLciM8/cShBBCCCGEmNIkwBunT5yTxXtHzbxbZqapw4rV7hjwcVGhQf0CP2fwl+D6e5fVzvbKJn50XSHhIYMHgkIIIYQQQggxFAnwxmladBgv3HMe4NyJa++x0WSx0tjRQ6PFSmOHlaYOK2ZLD02uv9e0dLOvppVGixWbq0FLVkIENy+V9EYhhBBCCCHE2EmA50FKKWLCgokJCyYnKXLYx2utaeu20WjpISEyhJAgKYkUQgghhBBCjJ0EeH6klCI2PJjY8InXVEUIIYQQQggReGTLSAghhBBCCCEmCQnwhBBCCCGEEGKSkABPCCGEEEIIISYJCfCEEEIIIYQQYpKQAE8IIYQQQgghJgkJ8IQQQgghhBBikpAATwghhBBCCCEmCQnwhBBCCCGEEGKSkABPCCGEEEIIISYJCfCEEEIIIYQQYpJQWmvfnUwpE1DlsxOOXBJg9vciBCCvRSCR1yKwyOsROOS1CBzyWgQOeS0Ci7wegWOg1yJba53srRP6NMALVEqpEq11sb/XIeS1CCTyWgQWeT0Ch7wWgUNei8Ahr0VgkdcjcPjjtZAUTSGEEEIIIYSYJCTAE0IIIYQQQohJQgI8p8f9vQDRR16LwCGvRWCR1yNwyGsROOS1CBzyWgQWeT0Ch89fC6nBE0IIIYQQQohJQnbwhBBCCCGEEGKSmHABnlLqcqXUYaXUUaXUd/rd/k+l1G7XR6VSavcAz12olNqqlDqglNqrlLq53325SqltSqky17FCBjn/Ha7HlCml7hjt8ycTf74WSqlspdRO1zkOKKU+P5rnTzZefC3udR1TK6WShji//L9w8edrIf8vzubF1+Np13H3K6X+rJQKHuT88n/DxZ+vhfzfOJ0XX4snlVJ7XLf/SykVNcj55f+Fiz9fC/l/cbYhXo+FSqkPXF+rEqXUskGeP67vbY/939BaT5gPwAgcA/KAEOD/t3MuoXWUYRh+PigpBYlNVMSagEoVURTF4kpBFLFmoyh4AaVUilgX0rpSlLoWoxtBXFRURLxU3CliEbygqFjUqAg11kBKvSAq7qzRz8V8J2dOMjOZY86cmTN9Hxjyz5z55j+ZZ96Bfy7nS+CCjPUeB/ZlLD8PODfaW4Afgc0x/ypwW7SfBnZn1E8CR+LvRLQnyta3aWqAizFgY7RPAhaALXIxcBeXAmfF/j01p3/lojkulIvh+ZgBLKaXcs5TykZzXCgbw3ExnlrvCeCBjHrlojkulIuSPoC3geujPQO8m1G/rmN7kNkYtTt4lwPz7n7E3Y8DLwM3pFcwMwNuITnJ9+Duh939u2gfA34BTouaq4HXYtXngRsz+r8OOOjuv7n778BBYHsf9W2iVhfuftzd/4rZjcTdaLkYnIuY/9zdF9boX7noUqsL5WIVVfp40wPgU2Aqo39lo0utLpSNHqp08WeqfhOQ9UMPykWXWl0oF6so8uHAeLRPBo5l1K/32B5YNkZtgHcmsJiaPxrL0lwJ/Nw54POIW6tjJCP1U4A/3H1p5XbNbJuZ7V+j/9z6FlO3C8xs2szm4ns8Gic3uRici6L1lIts6nahXPRSuQ9LHge8E3gr5pWNbOp2oWx0qdSFmT0L/AScDzwZy5SLbOp2oVz0UuRjD/CYmS0Cs8CDfdQPfZwxagM8y1i28orE7WRc5ejZiNkZwAvATnf/t2i77v6Zu+9ao/8y36tt1O0Cd19094uBrcAOMzu95PdqG1W5yEW5yKVuF8pFL8Pw8RTwvrt/AMpGAXW7UDa6VOrC3XeSPC74LXBrLFMusqnbhXLRS9H/vRvY6+7TwF7gmT7qhz7OGLUB3lFgOjU/ReoWqZltAG4CXsnbgJmNA28AD7v7x7H4V2Bz1K/abon+y9a3ibpdLBNXm74hucolF4Nzsd7+5WL4LpZRLoCKfZjZIySPQ93fZ/8noo+6XSyjbFR/nnL3f6L+5j76l4vhu0ivd6LnAop97ABej/YBksc5y9YPf5zhDXipsewEbCB54fBsui8/Xpj6fDvwXkH9GPAOsCfjswP0vrx4b8Y6k8APJC8+TkR7smx9m6YGuJgCNkV7AjgMXCQXg3WRWmeB4h9ZUS6a4UK5GJIPYBfwUWd/59QrG81xoWxU7ILkLsPWVHsWmM2oVy6a40K5KOmD5C7oVdG+BjiUUb+uY3uQ2ah9Z/6PnT8TB+D3wEMrPnsOuKeg9g7gb+CL1HRJfHYOycvZ87ETO78qtA3Yn9rGXbHOPMmtcIrq2zzV6QK4FpiL8M0Bd8tFJS7uI7mitERytaiz/5WLBrpQLobqYym22Vm+b6WPmFc2GuBC2ajeBclTYR8CXwFfAy8Sv+SoXDTThXJR3gdwBXAo9tUnwGU59X0d21Vlw6JICCGEEEIIIcSIM2rv4AkhhBBCCCGEyEEDPCGEEEIIIYRoCRrgCSGEEEIIIURL0ABPCCGEEEIIIVqCBnhCCCGEEEII0RI0wBNCCCGEEEKIlqABnhBCCCGEEEK0BA3whBBCCCGEEKIl/Ae7Oq+imuiqGQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACOQ0lEQVR4nOzdd3zU9f3A8dfnLntvSAJJSCDsHXAgAiLVVltHq7a1Vm1tq61t1Q67tb8uq221dlk77LK1zjpqXQgoIBCCgMyQDUlIcpd5GXe5u8/vj7sLATIuya0k7+fjwYPkxvc+yTe53Pven/f7rbTWCCGEEEIIIYQILkOwFyCEEEIIIYQQQoIzIYQQQgghhAgJEpwJIYQQQgghRAiQ4EwIIYQQQgghQoAEZ0IIIYQQQggRAiQ4E0IIIYQQQogQIMGZEEIIIYQQQoQACc6EEGKcUkpZ+v1zKqW6+31+fbDXNxpKqSql1MXBXsdQlFKblVK3+PH4jyqljrrP6U1nXHejUqpEKdWulDqhlLpfKRXW7/q5Sqk3lVJtSqkypdRVZ9x/vVLqiFKqSym1SSmV2+86pZT6qVLK7P53v1JK+evrFEIIcTYJzoQQYpzSWsd5/gE1wAf7XfZ4sNd3pv5BxHh+jADYB3we2DPAdTHAHUAacA6wHvgq9H3tzwMvASnAZ4F/KKUK3denAc8C33Vfvxv4d79jfxa4ElgMLAIuBz7nyy9MCCHE0CQ4E0KICUYpZVBKfUMpVe7OgDyplEpxX5enlNJKqZuVUseVUi1KqVuVUiuUUvuVUq1KqV/3O9ZNSqltSqlfubMxR5RS6/tdn6iU+pNSql4pVauU+qFSynjGfR9USjUD9yqlCtyZHbNSyqSUelwpleS+/d+BHOBFd/bv60qptUqpE2d8fX3ZNaXUvUqpp5VS/1BKtQM3DbOmmUqpLe6vxaSU6h+c9H+MKPcxze7vSbFSaopS6kfAauDX7jX+2n37OUqp15VSze6s17X9jvUXpdQj7us73I+fO9DjAmitf6O13gj0DHDd77TWb2utbVrrWuBxYJX76jlAFvCg1tqhtX4T2Abc4L7+auCg1voprXUPcC+wWCk1x339jcDPtdYn3Mf+OXDTYOsUQgjhexKcCSHExPMlXBmQNbherLcAvznjNucAs4DrgIeAbwMXA/OBa5VSa864bQWubM09wLOeYA/4K2AHZgJLgfcBtwxw3wzgR4ACfuJe11xgOq4gAa31DZyeAbzfy6/3CuBpIAlXsDLUmn4AvAYkA9OAXw1yzBuBRPf6UoFbgW6t9beBt4Hb3Wu8XSkVC7wO/NP9dX4M+K1San6/413vfuw0YK97nb5wIXDQ/fFAWxAVsMD98XxcWTkAtNadQLn78rOud3/c/2sQQgjhZxKcCSHExPM54NvuDIgVV/DzkTO2/P1Aa92jtX4N6AT+pbVudGdM3sYV1Hg0Ag9prXu11v8GjgKXKaWmAO8H7tBad2qtG4EHgY/2u2+d1vpXWmu71rpba12mtX5da23VWjcBv8AVRI7FO1rr/2itnUDCMGvqBXKBLPfXv3WQY/biCspmurNQJVrr9kFuezlQpbV+zP117gGeAT7S7zb/1Vq/5T4f3wbOU0pNH8sXrZS6GSgCfua+6Aiuc/U1pVS4Uup9uL63Me7r44C2Mw7TBsQPcn0bECd1Z0IIETgTYW++EEKI0+UCzymlnP0ucwBT+n3e0O/j7gE+j+v3ea3WWvf7vBpX5isXCAfq+71+NwDH+922/8copTKAh3FtDYx3377Fq69qcP0fY7g1fR1XBmuXUqoF1za+Pw9wzL/jypo94d52+Q9cAW/vALfNBc5RSrX2uyzMfYyz1qi1tri3eWadsXavKaWuBO4DLtZam9zH7XVf/ivgblw1ZU8CVvfdLLiC1/4SgI5Brk8ALGeceyGEEH4kmTMhhJh4jgPv11on9fsX5c6KjUb2GdmTHKDO/ThWIK3f4yRorftvhTvzhf1P3Jct0lonAJ/g9O14Z96+k1OZH9y1Y+ln3Kb/fYZck9b6pNb6M1rrLFwZxt8qpWae+QW7s4Tf11rPA87HlR375CBrPA5sOeP7Hae1vq3fbfqyZEqpOFwNOerOfFxvKKUuBf6Aa/vne2ese7/Weo3WOlVrfQmQD+xyX30QV7MPz3FigQJObYs87Xr3xwcRQggRMBKcCSHExPMI8CNP0wmlVLpS6ooxHC8D+JJ7q9w1uGrFXtZa1+Oq3/q5UirB3Yik4Ix6tTPF48rQtCqlsoGvnXF9A66AwqMUiFJKXaaUCge+A0QOdvDh1qSUukYpNc198xZcgZbjzOMopdYppRa6g8F2XNscPbc7c40vAYVKqRvc36Nwd4OVuf1u8wGl1AVKqQhcmbudWusBs2ZKqQilVBSuoDXc3ZzE4L7uIlz1ah/WWu8a4L6L3LePUUp9FcgE/uK++jlggVLqw+7jfw/Yr7U+4r7+b8BdSqlspVQW8JV+9xVCCBEAEpwJIcTE80vgBeA1pVQHsANXY47R2omreYgJV1OPj2itze7rPglEAIdwBTtP4woIBvN9YBmueqb/4mrt3t9PgO+4OyR+VWvdhqut/B+BWlyZtBMMbag1rQB2KqUsuL5HX9ZaVw5wjKnu+7UDh4EtuLY2guv7+xHl6nT5sNa6A1fTkY/iyoadBH7K6UHkP3E1U2kGluNqEDKY13BtLT0feNT98YXu676Lq1HJy+rUTLv/9bvvDUA9rtqz9cAGd50b7hq/D+M6hy24fib61wf+HngReA84gOv8/H6IdQohhPAxJVvJhRBCDEa5hiDforW+INhrGa+UUn8BTmitvxPstQghhAhtkjkTQgghhBBCiBAgwZkQQgghhBBChADZ1iiEEEIIIYQQIUAyZ0IIIYQQQggRAiQ4E0IIIYQQQogQEBbIB0tLS9N5eXmBfEghhBBCCCGECBklJSUmrXX6QNcFNDjLy8tj9+7dgXxIIYQQQgghhAgZSqnqwa6TbY1CCCGEEEIIEQIkOBNCCCGEEEKIECDBmRBCCCGEEEKEgIDWnAkhhBBCCBEqent7OXHiBD09PcFeipiAoqKimDZtGuHh4V7fR4IzIYQQQggxKZ04cYL4+Hjy8vJQSgV7OWIC0VpjNps5ceIEM2bM8Pp+sq1RCCGEEEJMSj09PaSmpkpgJnxOKUVqauqIs7ISnAkhhBBCiElLAjPhL6P52ZLgTAghhBBCiCD50Y9+xPz581m0aBFLlixh586dANxyyy0cOnTIJ4+Rl5eHyWQa8jY//vGPR3zcv/zlL9x+++2nXfbYY4+xZMkSlixZQkREBAsXLmTJkiV84xvfGPHxA+Ghhx6iq6sr2MvoIzVnQgghhBBCBME777zDSy+9xJ49e4iMjMRkMmGz2QD44x//GNC1/PjHP+Zb3/rWmI9z8803c/PNNwOuoHDTpk2kpaWN+bijpbVGa43BMHBO6qGHHuITn/gEMTExXh/TbrcTFuafMGrYzJlSarpSapNS6rBS6qBS6sv9rvuiUuqo+/L7/bJCIfys1+Fke5kJrXWwlyKEEEKISaS+vp60tDQiIyMBSEtLIysrC4C1a9eye/duAOLi4rj77rtZvnw5F198Mbt27WLt2rXk5+fzwgsvAGdnsS6//HI2b9581mNeeeWVLF++nPnz5/Poo48C8I1vfIPu7m6WLFnC9ddfD8A//vEPVq5cyZIlS/jc5z6Hw+EAXJmxwsJC1qxZw7Zt27z+Wh944AFWrFjBokWLuOeeewCoqqpizpw53HLLLSxYsIDrr7+eN954g1WrVjFr1ix27doFwL333ssNN9zARRddxKxZs/jDH/4w7HHnzp3L5z//eZYtW8bx48e57bbbKCoqYv78+X23e/jhh6mrq2PdunWsW7eu73vt8fTTT3PTTTcBcNNNN3HXXXexbt067r77bsrLy7n00ktZvnw5q1ev5siRI15/L4bkiSYH+wdkAsvcH8cDpcA8YB3wBhDpvi5juGMtX75cCxFKHA6n/tK/9ujcu1/Srx08GezlCCGEECKADh06FNTH7+jo0IsXL9azZs3St912m968eXPfdWvWrNHFxcVaa60B/fLLL2uttb7yyiv1hg0btM1m03v37tWLFy/WWmv92GOP6S984Qt997/sssv0pk2btNZa5+bm6qamJq211mazWWutdVdXl54/f742mUxaa61jY2P77nvo0CF9+eWXa5vNprXW+rbbbtN//etfdV1dnZ4+fbpubGzUVqtVn3/++ac95pk8j/vqq6/qz3zmM9rpdGqHw6Evu+wyvWXLFl1ZWamNRqPev3+/djgcetmyZfrmm2/WTqdT/+c//9FXXHGF1lrre+65Ry9atEh3dXXppqYmPW3aNF1bWzvkcZVS+p133ulbi+frttvtes2aNXrfvn1nfW/O/D489dRT+sYbb9Raa33jjTfqyy67TNvtdq211hdddJEuLS3VWmu9Y8cOvW7dugG/BwP9jAG79SDx0rD5OK11PVDv/rhDKXUYyAY+A9yntba6r2v0TbgoRGBorfneCwd4fm8dALsqzWyYNyXIqxJCCCFEMHz/xYMcqmv36THnZSVwzwfnD3p9XFwcJSUlvP3222zatInrrruO++67ry9b4xEREcGll14KwMKFC4mMjCQ8PJyFCxdSVVU1ojU9/PDDPPfccwAcP36cY8eOkZqaetptNm7cSElJCStWrACgu7ubjIwMdu7cydq1a0lPTwfguuuuo7S0dNjHfO2113jttddYunQpABaLhWPHjpGTk8OMGTNYuHAhAPPnz2f9+vUopc762q644gqio6OJjo5m3bp17Nq1i61btw563NzcXM4999y++z/55JM8+uij2O126uvrOXToEIsWLRrR9+6aa67BaDRisVjYvn0711xzTd91Vqt1RMcazIg2Syql8oClwE7gAWC1UupHQA/wVa118QD3+SzwWYCcnJyxrlcIn/nZa0f5x44aPrcmn3erWymuagn2koQQQggxyRiNRtauXcvatWtZuHAhf/3rX88KzsLDw/s6/xkMhr5tkAaDAbvdDkBYWBhOp7PvPgO1cN+8eTNvvPEG77zzDjExMaxdu3bA22mtufHGG/nJT35y2uX/+c9/RtWBUGvNN7/5TT73uc+ddnlVVVXf1zLU1wZndz5USg153NjY2L7PKysr+dnPfkZxcTHJycncdNNNg7a47/84Z97Gc0yn00lSUhJ79+4d7ksfMa+DM6VUHPAMcIfWul0pFQYkA+cCK4AnlVL57lRdH631o8CjAEVFRVLUI0LCo2+V85tN5XxsZQ7fuHQOD7x6lEffqqDb5iA6whjs5QkhhBAiwIbKcPnL0aNHMRgMzJo1C4C9e/eSm5s7qmPl5eXx29/+FqfTSW1tbV+9Vn9tbW0kJycTExPDkSNH2LFjR9914eHh9Pb2Eh4ezvr167niiiu48847ycjIoLm5mY6ODs455xy+/OUvYzabSUhI4KmnnmLx4sXDru2SSy7hu9/9Ltdffz1xcXHU1tYSHh4+oq/v+eef55vf/CadnZ1s3ryZ++67j+joaK+O297eTmxsLImJiTQ0NPC///2PtWvXAhAfH09HR0df05IpU6Zw+PBhZs+ezXPPPUd8fPxZx0tISGDGjBk89dRTXHPNNWit2b9/v1ffi+F4FZwppcJxBWaPa62fdV98AnjWHYztUko5gTSgacyrEsKPnthVw49fPsLlizL54ZULUEpRlJfMbzdr9h5v5byC1OEPIoQQQggxRhaLhS9+8Yu0trYSFhbGzJkz+5p0jNSqVav6tgguWLCAZcuWnXWbSy+9lEceeYRFixYxe/bs07b9ffazn2XRokUsW7aMxx9/nB/+8Ie8733vw+l0Eh4ezm9+8xvOPfdc7r33Xs477zwyMzNZtmxZX6OQobzvfe/j8OHDnHfeeYBrO+c//vEPjEbv3xBfuXIll112GTU1NXz3u98lKyuLrKwsr467ePFili5dyvz588nPz2fVqlWnfd3vf//7yczMZNOmTdx3331cfvnlTJ8+nQULFmCxWAZcz+OPP85tt93GD3/4Q3p7e/noRz/qk+BMnZHoOvsGrtzeX4FmrfUd/S6/FcjSWn9PKVUIbARyzsyc9VdUVKQ9XWeECIb/7q/n9n/tYU1hOo/eUEREmKthaVtXL4v/7zW+sqGQL66fFeRVCiGEECIQDh8+zNy5c4O9DDGMe++9l7i4OL761a8GeykjNtDPmFKqRGtdNNDtvcmcrQJuAN5TSu11X/Yt4M/An5VSBwAbcONQgZkQwbb5aCN3/PtdinKT+d31y/sCM4DEmHBmT4mnuFrqzoQQQgghRHB4061xKzBY5d8nfLscIfxjd1Uzt/6jhFkZ8fzxxhUD1pUV5SXz/N46HE6N0TDyYlchhBBCCOF79957b7CXEDDDDqEWYrw7WNfGzX8pJisxmr99eiWJ0QMXoK7IS8FitXP0ZEeAVyiEEEIIIYQEZ2KCq2iycOOfdxEXGcbfbzmHtLjIQW9blJcMwO7q5kAtTwghhBBCiD4SnIkJq661mxv+tAunhr9/+hyyk6KHvH12UjSZiVEy70wIIYQQQgSFBGdiQjJbrHziTztp7+7lb59aycyMuGHv42qpn0JxZTPS20YIIYQQQgSaBGdiwmnv6eXGx3ZR29LNH28sYkF2otf3LcpN5mR7D7Wt3X5coRBCCCGEi9FoZMmSJSxYsIBrrrmGrq6uUR/rpptu4umnnwbglltu4dChQ4PedvPmzWzfvr3v80ceeYS//e1vo35sj6qqKhYsWHDaZffeey8/+9nPRnQcX61nvPFqCLUQ40VPr4Nb/rqbI/Ud/OGTRZyTP7KB0n11Z1UtTEuO8ccShRBCCCH6REdHs3fvXgCuv/56HnnkEe66666+6x0Ox4iGNXv88Y9/HPL6zZs3ExcXx/nnnw/ArbfeOuLH8Be73R5S6wkkyZyJCaPX4eTzj++huKqZX1y3hHVzMkZ8jDlTE4iLDKO4SpqCCCGEEKKf+++HTZtOv2zTJtflPrJ69WrKysrYvHkz69at4+Mf/zgLFy7E4XDwta99jRUrVrBo0SJ+//vfA6C15vbbb2fevHlcdtllNDY29h1r7dq17N69G4BXXnmFZcuWsXjxYtavX09VVRWPPPIIDz74IEuWLOHtt98+Lbu1d+9ezj33XBYtWsRVV11FS0tL3zHvvvtuVq5cSWFhIW+//faIv8ahjv2tb32LNWvW8Mtf/rJvPXV1dSxZsqTvn9FopLq6murqatavX8+iRYtYv349NTU1gCt7+KUvfYnzzz+f/Pz8vkzieCHBmZgQHE7NV57cx5tHGvnhlQv40OKsUR3HaFAsy01mtzQFEUIIEQROp5Y3CEPVihVw7bWnArRNm1yfr1jhk8Pb7Xb+97//sXDhQgB27drFj370Iw4dOsSf/vQnEhMTKS4upri4mD/84Q9UVlby3HPPcfToUd577z3+8Ic/nLZN0aOpqYnPfOYzPPPMM+zbt4+nnnqKvLw8br31Vu6880727t3L6tWrT7vPJz/5SX7605+yf/9+Fi5cyPe///3T1rlr1y4eeuih0y7vr7y8/LSA6pFHHvHq2K2trWzZsoWvfOUrfZdlZWWxd+9e9u7dy2c+8xk+/OEPk5uby+23384nP/lJ9u/fz/XXX8+XvvSlvvvU19ezdetWXnrpJb7xjW+M8EwEl2xrFOOe1prvPX+AF/bV8fVLZ3P9ObljOt6K3GR+8UYpbV29JMYMPBNNCCGE8IeX3qvnS/96l5e/tJp5WQnBXs7kcscd4N5eOKisLLjkEsjMhPp6mDsXvv9917+BLFkCDz005CG7u7tZsmQJ4MqcffrTn2b79u2sXLmSGTNmAPDaa6+xf//+vixQW1sbx44d46233uJjH/sYRqORrKwsLrroorOOv2PHDi688MK+Y6WkpAy5nra2NlpbW1mzZg0AN954I9dcc03f9VdffTUAy5cvp6qqasBjFBQU9G3VhFNDpIc79nXXXTfourZt28Yf//jHvmzdO++8w7PPPgvADTfcwNe//vW+21555ZUYDAbmzZtHQ0PDkF9vqJHgTIx7T5Wc4PGdNXxuTT6fXztzzMcryktBa9hT0zKqrZFCCCHEaL1TbgagprlTgrNQlJzsCsxqaiAnx/X5GPWvOesvNja272OtNb/61a+45JJLTrvNyy+/jFJqyONrrYe9zUhERrpmxhqNRux2u8+OC6d/zf3V19fz6U9/mhdeeIG4uIE7cPf/Gj1rBMZdB27Z1ijGvb+/U82cqfF849I5PjnekulJhBmUbCsRQggRcJ6/PXWtPUFeyST00EOwefPQ/+65B7q64Lvfdf1/zz1D336YrJm3LrnkEn73u9/R29sLQGlpKZ2dnVx44YU88cQTOBwO6uvr2XRmTRxw3nnnsWXLFiorKwFobnb9jMXHx9PR0XHW7RMTE0lOTu7LUP3973/vy3SN1WiO3dvby7XXXstPf/pTCgsL+y4///zzeeKJJwB4/PHHueCCC3yyxmCTzJkY1w7UtvFebRvf/9B8n70rFB1hZEF2otSdCSGECKjmThtljRYA6ttkpEvI8dSYPfkkrFvn+tf/cz+65ZZbqKqqYtmyZWitSU9P5z//+Q9XXXUVb775JgsXLqSwsHDAQCc9PZ1HH32Uq6++GqfTSUZGBq+//jof/OAH+chHPsLzzz/Pr371q9Pu89e//pVbb72Vrq4u8vPzeeyxx3z2tYz02Nu3b6e4uJh77rmHe+65B3BlDB9++GE+9alP8cADD5Cenu7TNQaTCmSqr6ioSHu6xgjhC997/gBPFB+n+FsX+7Q+7IcvHeJvO6p57973ERk28va1QgghxEi9evAkn/t7CQYF71+YyW8+vizYS5rwDh8+zNy5c7278f33u5p/9A/ENm2C4mLoV+8kRH8D/YwppUq01kUD3V62NYpxq6fXwXPv1vKBBVN93rijKC8Fm93Jgdo2nx5XCCGEGExxZTMRYQaW5iRT3yqZs5Dz9a+fnSFbt04CM+FTEpyJcet/B+rp6LFz3Yocnx/bM4y6WLY2CiGECJDiqmaWTE8iNzWG+japORNiMpLgTIxbT+w6Tl5qDOfmD90SdjTS4iLJT4tltzQFEUIIEQCdVjsH6tpZmZdCVmI0De092B3OYC9LCBFgEpyJcamiycLOymauXTHdp+1h+yvKS6akugWnc3y1YBVCCDH+vFvTisOpWTEjhcykKJwaGjuswV7WpDDeWq2L8WM0P1sSnIlx6cndJzAaFB9ZNs1vj1GUl0JLVy8VJovfHkMIIYQA2FXVjEHBspwkshKjAenYGAhRUVGYzWYJ0ITPaa0xm81ERUWN6H7SSl+MO70OJ0+XnOCiORlkJIzsB34kVuS5tksWV7UwMyPeb48jhBBCFFc2My8rgfiocDKTXH/b6lp7WJ4b5IVNcNOmTePEiRM0NTUFeyliAoqKimLatJElEiQ4E+POm0caMVmsXFc03a+Pk5caQ1pcBMVVzXxspe+bjgghhBAANruTd4+39P2tyZTMWcCEh4czY8aMYC9DiD6yrVGMO/8uPk5GfCRrZ6f79XGUUizPTZZh1EIIIfzqvdo2enqdrHTv2EiICiM2wkhdq3RsFJPQ/fe75sf1t2mT6/JJQIIzMa6cbOth89FGrimaRpjR/z++K/JSqGnuoqFd/kAKIYTwj2J3Z+Aid3CmlCIzKVoyZ2JyWrECrr32VIC2aZPr8xUrgruuAJHgTIwrT5ccx6nhWj9vafTw/KGU7JkQQgh/Ka5sJj8tlvT4yL7LMhOjZNaZmJzWrYO//Q0uuQQWL4arroJ//evsAeATlARnYtxwOjX/3n2c8wtSyU2NDchjzs9KICrcwO5qmXcmhBDC95xOze7qlr4mVB5ZidGyrVFMXsXF0NsL+/dDWxvccAPceSeUlMAE76wpwZkYN96pMHO8uZvrVgQmawYQbjSwdLrUnQkhhPCP0sYO2rp7WTHj9OAsMykKk8WK1e4I0sqECJLaWvjxjyEiAr75TUhIgJkz4be/haIimDsXfvADqKgI9kr9QoIzMW48UXycxOhwLpk/NaCPuyIvmYN1bVis9oA+rhBCiImvuNK1M2PlAJkzgIY2GUQtJplPfQqsVvjzn11B2n/+A0eOwFNPwaOPwtSp8L3vQUEBnH++K2gzmYK9ap+R4EyMCy2dNl49cJKrlmYTFW4M6GMX5aXg1LC3pjWgjyuEEGLi21XVwpSESKanRJ92ed+sM2kKIiaTkhJ47TW47jq4/nrXZevWwZNPugK0z3wGNm+G6mq47z6wWOALX4DMTLj8cnjiCfjhD8d1t0cJzsS48Ny7tdgczoBuafRYmpOEQZ3qphWK/rmzhp++ciTYyxBCCDECWmuKK5tZkZeCUuq062TWmZh0tIa77oL0dPj970+/bt06+PrXT32ekwN33+2qSdu3z3W/ffvgYx+DH/0I3v9+VzBmt4+7bo8SnImQp7Xm38XHWTw9ibmZCQF//PiocOZMTQjppiBPlxznz1sr6XU4g70UIYQQXjrR0s3J9h5WnlFvBpDlyZxJUxAxWTz3HLz1Fvzf/0Fiovf3W7QIfvpTVzZt82b4xCcgLMwVvM2f7wrMnnxy3HR7lOBMhLy9x1s52tDBR4OQNfNYkZfMuzWtIRn8aK0pb+rEandyqK492MsRQgjhpV3uerMzOzUCxESEkRgdLpkzMTlYrfC1r7mCqVtuGd0xDAZYswb+8Acwm+Gaa6C0FG67bdwEZiDBmRgH/l18nJgIIx9cnBW0NRTlpdBlc3C4PvSCH5PFRlt3LwB7aqSrpBBCjBfFVc0kRIUxe0r8gNdnJkZRL5kzMRn8+teu7os//7kr6zVW27e7tjN+97vwu9+dXYMWwiQ4EyHNYrXzwr46Ll+USVykD35ZR6koLxkIzWHU5U2Wvo/3SNMSIYQYN3ZVuerNDAY14PVZSdHUySBqMdE1Nbla47///a7B02PlqTF78knXFsknn3R9Pk4CNAnOREj77/46umwOrluRE9R1ZCZGMy05OiTrzjzB2dKcJPZUh17wKIQQ4mwmi5WKps6z5pv1l5kYJdsaxcR3772uros//7lvjldcfHqNmafbY3Gxb47vZxKciZD2RPFxZmXEsSwnKdhLYUVeCsVVLegQm0xf1mghOtzIZQszqW3t5qS8yyqEGKV3a1r48hPv4nCG1vPcRLS7avB6M4+spGhau3rptskgajFBHTrk6sx4662u4dK+8PWvn11jdma3xxAmwZkIWUdPdvBuTSvXrZh+VovhYCjKS6apw0pNc1ewl3Ka8qZOCjJiKXL/gZe6MyHEaL20v57n99aF3PPcRLSzspmocAMLswfvSpeZKLPOxAT31a9CXJwreyYACc5ECPt38XHCjYqrl00L9lIAKMp1BT/FIVZ3Vt5ooSA9jnmZCUSGGWRroxBi1EobOgCo6FfLKvyjuKqZJdOTiAgb/KVY36wzaQoiAuX++wM3wPnVV+F//3M17UhL8/3xxykJzkRIstodPPvuCd43fyopsRHBXg4AszLiSIgK69uKEgq6bQ5qW7spSI8jIszAommJlEjmTAgxSqeCs84gr2Ri6+jp5VBdOyuH2NII/WadSeZMBMqKFa7mGW+8AeXl/hvgbLe7BkcXFMDtt/v22ONc8NrfCTGE1w420NrVG9TZZmcyGBRFeSkUh1Bw5mkGUpAeB8CynGQe21aF1e4gMswYzKUJIcaZtu5eGtqtAFSYJHPmT3tqWnFqhmwGAjDVva1RMmciYNatg7//HS67DGw2iImBF1/0/ZywP/7RVW/2zDMQGenbY49zkjkTIenfxcfJTopmVUFopbmL8pIpb+qkudMW7KUAp4KzmRmu4GxpTjI2h5MDtaE3j00IEdqOubNmRoOiXDJnflVc2YzRoFiWkzzk7SLDjKTFRUjHRhE4Fgs88IArMAPo6oJ//hN6e333GG1t8L3vuQZGX3WV7447QUhwJkLO8eYutpaZuLZo+qCzX4LF01WrJETqusqbOjEoyE2NAWBZbhKA1J0JIUastMH1Zs85M1JkW6Of7apqZn5WArFezO/MTJRZZyJA2tpcc8Y2bYL4ePjOd1yZsz/9yZVJa2vzzeP86EdgMsEvfgEh0PAt1EhwJkLOk7uPoxRcUxQajUD6W5idSITREDJ1Z+WNFqanxBAV7trCmBEfxfSUaOnYKEbM6dR86Ndb+deummAvRQRJaUMH0eFGVs9Kx2Sx0t7jw3fKRR+r3cHe461DttDvLzMxivpWyZwJPzObYf162LHD1T3x+eddg6Ffesn1+caNcMEFUDPGvxEVFfDLX8KNN8KyZb5Z+wQjwZkIKXaHk6d2n2BNYTpZSdHBXs5ZosKNLJqWGDJ1Z+VNFma66808luckU1IdevPYRGirMHWy/0Qbrx9qCPZSRJAca+xg1pQ4CtJjAaiU7JlfvHeiDZvdObLgTDJnwp8aGlw1ZQcOwCc/6QrM+g9wfuEF+NSnXIHZuefCnj2jf6y774awMFf2TAxIgjMRUt461sTJ9p6QagRypqK8FN6rbaOnN7hDQR1OTYWpk4KM04OzZbnJNHZYqZV3WsUIeLbCHqj10bYVMe6UNlgonBJPvvsNH2kK4h+7+oZPD11v5pGZFI3FapdMpvCP2lpX7Vd5uStL9thjAw9w/sMfYNs2CA+HCy903Xak3n4bnn7aFaBlZflm/ROQBGcipDyx6zhpcRFcNGdKsJcyqKLcZHodmn3HW4O6jtqWbmx2Z9+73B6eAvNQqYsT44Pn56Wxw0pju7xLP9m0dtlo6rBSOCWOnJQYjAYldWd+UlzZTEF6LKlx3nWo8wyiPinZM+FrVVWuQKuuDl55BS6+eOjbL1jg2vY4ezZccQX89rfeP5bTCXfeCdnZrsHTYlASnImQ0djRw8YjjXx42bQhh3IG2/JcV/CzO8jBT1mTq7NawRnbGudMjScmwsi7Na1BWJUYr0pqWkh1zxR8T7Jnk46nGcisKfFEhBmYnhwtwZkfOJya3dUtrBymhX5/ni3+dbIbQvjSsWOwejU0N7tmmq1e7d39MjNhyxZXg5AvfMEVaDmdw9/v8cehpAR+8hNXkxExqGFfASulpiulNimlDiulDiqlvuy+/F6lVK1Saq/73wf8v1wxkT1TUovDqbk2hLc0AiTHRjArIy7odWflja4XTmcGZ2FG1zBqaQoivNXW1UtZo4XrVkxHKQnOJqOj7jb6hVPiAchPj+sb1SF85+jJDjp67F7Xm8GpzJnUnQmfOXjQlTGzWmHzZli5cmT3j4uD555zDY/++c/hmmtcLfcH09kJ3/wmFBXB9dePaemTgTfpCTvwFa31XOBc4AtKqXnu6x7UWi9x/3vZb6sUE57Wmn8X17AyL+WsYCMUFeWlUFLdgtMZvKYb5U0WUmMjSHZnO/pbnpvMobp2um3BrYsT48Oe465AfvWsdPLTYqXubJR6eh3c8/yBoG95Ho1jDR3ERYaR5Q4E8tNiqTJ3BvU5biIq7qs38z44m5IQhVJIx0bhG3v2uGrMlHJlwBYvHt1xjEZ4+GF48EFXoHbRRdDYOPBtf/YzV23bgw+CIXR3RoWKYb9DWut6rfUe98cdwGEg298LE5PLzspmqsxdXBfiWTOPFXnJdPTYKW3sCNoayhotgwayy3KSsTs1+0+0BnZRYlzaU92C0aBYPD2RhdmJkjkbBbvDye3/3MNf36nmqZLjwV7OiJU2dDAzIw7lnjmUnx5HT6+TOhl+7FO7qprJSoxiWrL33YjDjQYy4iNl1pkYux07XEFUbCy89RbMnTu24ykFd9wBzzwD+/e7OjkeOXL6bWpr4f77Xdm1Cy4Y2+NNEiMKX5VSecBSYKf7otuVUvuVUn9WSnnXdkiIAfy7+DjxkWF8YGFmsJfiFc+7nsVVwds6WN5koSAjdsDrlnqagsjWRuGFkuoW5mUmEBMRxoLsRBrarTR2yAtBb2mt+caz7/HG4Ubio8I4WNce7CWN2LEGC4VTTr3Zk+9uNCR1Z76jtWZXZTMrZqT0BcHeykyMpl4CZTEWW7bAhg2Qlubqmjhzpu+OfdVVru2RnZ1w/vmux/L49rfBbof77vPd401wXgdnSqk44BngDq11O/A7oABYAtQDPx/kfp9VSu1WSu1uamoa+4rFhNPW3cvL79VzxdIsoiOMwV6OV6YlRzMlITJow6ibO220dPUOmjlLiY0gPy2WPdWtgV2YGHfsDid7j7f2NbpZmJ0IwMHa8RdgBMt9rxzh6ZITfHn9LD68bBpH6jtwjKPtgGaLFXOnra/eDPoHZ1J35ivV5i6aOqwj2tLokZUURX2rvGEiRunVV+HSS2H6dFfGLCfH94+xcqUrMzdliis79+1vuxqA/PWvruxadbUrgyaG5VVwppQKxxWYPa61fhZAa92gtXZorZ3AH4ABqwm11o9qrYu01kXp6em+WreYQF7YW4vV7uSjK/zwZOEnSimK8lLYHaTMmadQ/8wZZ/0ty01mT40MoxZDO3Kygy6bg6U5SQDMdwdnsrXRO4++Vc7vt1TwiXNzuOPiWczPSqC710GlafxknPp3avRIj4skPjKMinH0dYQ6z3yzkXRq9MhMjKaurVuez8Xw7r8fNm069fnzz8Pll0Nysiuj5c/5YjNmwPbtsHAh/PjHcMklkJ7u2s547bWwYoX/HnsC8aZbowL+BBzWWv+i3+X9959dBRzw/fLEZLCrqoXspGgWuF8UjhdFucnUtnYHZdhzWaPrxdTMIZqnLMtJprnTRrV5iA5KYtLzdPX0ZM7iIsPIT4uV4MwLT5ec4McvH+GyhZl8/0MLUEoxP8v1PHaofvxkHo+5a2dn9wvOlFLkp8fKtkYfKq5sJikmfMjn7cFkJkbR0+uktUsGUYthrFjhCoQ2bYJ//xuuvtp1+SOPuAIlf0tOhl27XFsozWbXej71KXjyybOHW4sBeZM5WwXcAFx0Rtv8+5VS7yml9gPrgDv9uVAxcZktVqa6O4SNJ56tKcHY2ljeaCEyzEB20uBF5Z4X29JSXwylpLqFKQmRp/0sLchOlI6Nw9h4uIG7n9nPqpmp/OK6xRgNrhqimRlxhBsVB+vGz/evtKGD+KgwpiScPhQ5Pz1OtjX6UHFVM0W5KRgMI6s3g36zzqTuTAxn3TpXIPShD8FHP+rqjvjcc67PAyUiwrWV8tZb4eWX4bbbJDAbAW+6NW7VWiut9aL+bfO11jdorRe6L/+Q1ro+EAsWE4/JYiUt7ux28KFuztR4YiOMQdnaWN5kIT89bsg/8rMy4oiPDKMkyMOyRWgrqW5heW7yaQ0KFmYnUt/Wg8liDeLKQldxVTOff3wP8zIT+P0NRUSGnaqVjQgzUDglnkPjqClIaYOFwinxZzWpmJEWS11bj4zk8IHGjh6qzF2snDG63ml9s86k7kx4Y926U7PLvvpV17bGQNu8GZ5+Gr77Xfjd707faimGJMMGRNCZLTZS4yKHv2GICTMaWJabzO4gBD/lTZ0UpA/cqdHDYFAsyUliT01rYBYlxp2G9h5OtHSzLOf0F4wLpO5sUEdOtvPpvxSTnRTNX25eQVxk2Fm3mZeZwKG69nFRH6S1prSh47ROjR6epiDjqX4uVBVXuv5OjKYZCJzKnEnHRuGVTZtcre2//W344x8DHxht2uTaWvnkk/B//+f637PVUgxLgjMRVHaHk+YuG2njMDgDKMpN4cjJdtp7AlcH0NPr4HhLl1fDupflJHP0ZDsWqz0AKxvfNh1t5O/vVGF3OIO9lIDZU316vZnH/OwEAA5KcHaa481dfPJPu4iOMPLXT60c9E2l+VkJmDttNLSHfuaxyWKltauXWRnxZ12Xn+Z6jqkwydbGsSquaiY63Djq2uq0uEjCDEpmnYnh9Q+MfvjD4ARGxcWn15h5tloWFwduDeOYBGciqFq6etGacbmtEVzDqLU+9SI3ECpNnWjtqm0ZzrLcZJwa9h1v9f/Cxrkf/fcw333+IB9+5B3KgjhcPJBKqluICDP0NbHwSIgKZ4Y0BTmNyWLlk3/eRU+vg7996hymp8QMeltPx8tD9aH//Tvm7tTYv42+x4w0mXXmK7sqm1mak0S4cXQvu4wGxZSEKOqD0IBKjDOhEBh9/etn15itW+e6XAxLgjMRVJ6alvGaOVuSk4TRoAJad9bXRt+LzNmS6UkohdSdDaO500ZZo4V1s9OpMXfygYe38vst5eNqVtVolNS0sHhaIhFhZ/8pcDUFGT91U/7U0dPLTY/tor6tm8duXsHsqWcHMv3NcV8/HmbFlTa43ogYaFtjdISR7KRoaQoyRu09vRw+2T7qLY0eWUlRkjkTw5PAaNyT4EwEldliAyA1dnxmzmIiwliQlUBxADs2ljVaUOpUPchQEqPDmZURJx0bh+HpuPn5dTN57c41rJudzk/+d4RrHtneFwxPND29Dg7UtrEsd+AGBQuyEqht7aa50xbglYUWq93B5/5ewuH6Dn53/XKW5w7/Ajs+Kpy81Jhx0U6/tMFCYnQ46fEDv0GWnx4rs87GqKS6Ba1HN9+sv8zEaKk5E2ISkOBMBFVf5myQFwbjwfLcFPYeb8VmD0ytUnlTJ9OSo4kKNw5/Y1z1RO/WtOKc4FmgsSiuaiYizMCiaYmkx0fyyCeW88uPLqG8qZMP/PJt/vh2xYTLoh2obaPXoVmeM3BwtlCaguBwau789162l5t54COLWDcnw+v7zstK4OA46Nh4rKGD2QN0avTIT3PNOhsPzU1CVXFlM2EG1TfofbQyk6I42dYjz+VCTHASnImg6gvOYsdvcLYiLxmr3cmBAM01Km+0eLWl0WNpTjJt3b1S1D+EXVWu7X2eluhKKa5Yks3rd17I6llp/PC/h7nu9+9MqK51nq2ug2XOPHVTk3Xemdaa7z5/gJffO8l3LpvL1cumjej+87MSqWnuCmizoJHydGqcNcCWRo/89DgsVjtNHaHf3CRUFVc1Mz87kZiIszt7jkRWYjS9Do2pU86FEBOZBGciqEwWG+FGRUL02P5oBdPyPNeL20AMo3Y6NRWmkQVnnjbpe6pb/bSq8a3LZudgbduA9SAZCVH84ZNF/OLaxZQ2dPD+X77Fn7dWToh3rkuqW8hLjRm03jMxOpzc1JhJG5w9+MYx/rmzhtvWFnDL6vwR339epqvj5eEQzp41dlhp77EP2AzEw7N9ulyagoxKT6+DfcfbWJk3uvlm/cmsMyEmBwnORFCZLVZSYyMH3VIzHmTER5GXGhOQpiC1rd309DpHFJzlp8WSFBMuTUEGsbemFbtTD1qsr5Ti6mXTeP2uNZyXn8r/vXSIj/5hB9Xm8ftiVWvNnpqWQbNmHguyEyfltsa/bq/i4Y3HuLZoGl+/ZPaojjE/yz2OIISDM08zkOEyZyDt9Edr/4k2bA7nmJuBgMw6E2KykOBMBJXJYiUtfnw2A+mvKC+F3dUtfq/L8DSn8KaNvofBoFg6PUmaggyiuKoFpQbf3ucxJSGKP9+0ggc+sojDde1c+tDb/O2dqnGZRatp7sJksZ013+xMC7MTOdHSTcskagrywr467n3xIBvmTeHHVy0c9RtHGQlRpMVFhnRTkNIh2uh7ZCZEERVukHb6o7Sr0gyMfvh0f57MWZ1kzoSY0CQ4E0Fl7rSROo7rzTxW5CXT3Gnze1czz9aiAi86Nfa3PDeZY40W2rpCt/4lWIqrmpk9JZ7E6PBhb6uU4pqi6bx214WsnJHC954/yMf/uIPjzV0BWKnveAJ1b4IzIGD1lMFgtTvYWWHmwddLufaRd7jz33tZkZfCrz62lLBRzqTyCPWmIKUnO0iJjRhylInBoMhLjZ1Q9ZaBtKuqhVkZcST7oCNxSmwEkWEGyZwJMcFJcCaCytRhHbczzvorcr8r6u+6s7JGC0kx4aSM8A+9p+7s3eOSPevP7nCyp6ZlxC2uMxOj+cvNK/jphxdyoLadSx56i7/vqB43WbSS6hbiI8OYlTH0vC7P1ryJtLXR4dTsO97K7zaXc8OfdrL4+69x3aM7ePjNY/TYHXz2wnz+eGOR191QhzI/K4FjDR1Y7Q4frNz3Shs7mOVFFr4gPU5mnY2Cw6nZUz3y55fBKKXITJRZZ0JMdOO3C4MY97TWmDptpMWN/22N+WmxpMRGUFzVwnUrcvz2OOVNFmamx414q9Xi6UkYFOypaWXtbO/bgQdSXWs3UxOiMBgCV394qL6dLptjVFuOlFJctyKHC2alc/fT+/nufw7wVmkTj96wPORrKEuqW/sGqA8lKSaC6SnR47opiKsjoYXt5Sa2l5vZUWGmo8cOuAYvf3RFDucVpHLujFQSY4bPno7EvMwE7E7NsQYLC9xZyFChtaaswcKVS7OHvW1+eiyvHDyJze4ccGC5GNjh+nYsVrvPgjNwzzprlcyZEBOZBGciaDqsdmx254TInCmlWJ6b7PfMWUWThfVzpoz4frGRYcyZmsCeEG0KUtfazZoHNvF/VyzgYyv9F9yeqdjdxGUs9SDZSdH8/dMr+cXrpfzqzTIO1LazcFpovRDvr6Onl6Mn23nfRbO8uv3C7EQO1Ibu1rwzaa2pae5ie7mZ7eVm3ik3YXIPu89JieGyhZmcV5DKeQWpZMRH+XUtnszjobr2kAvO6tt66LDaKRyiGYhHfnosDqemprmTmcNkW8Upuypdfw98UW/mkZkUxTvlZp8dTwgReiQ4E0Fjdr9gSp0AmTNw1Z29fqiBxo4ev7zoa+2yYbLYKMgYWb2Zx7LcJP7zbh0Opx42YxJob5U20evQvHbwZGCDs8pmpqdEMzVxbOdLKcUtq/P5/ZYKnn33REgHZ/uOt+HUw9ebeSzITuTl907S1tXr88ySLx1v7uKfu2p4YW8dte7MQkZ8JBfMTOP8mWmcl5/K9JSYgK4pLzWWmAhjSDYF8XRqHKoZiEd+miuAK2+S4GwkiquayU6K7uuy6AtZidE0tPdgdzjHXBMphAhNEpyJoOkbQD0BMmdwqu6spKqF9y/M9PnxPZ0aR9JGv7/lucn8Y0cNpQ0dzHXPYAoVb5eZAHinwkxPr8Mn9T7D0Vqzu7qZC2el++R4idHhrJ+bwYv76vj2B+aG7AunkmpXd8olOUle3b5/U5BVM9P8uLKRszucvHmkkcd31vDWsSYUsHZ2Breuyee8gjQK0mODusXUYFDMzUzgYAg2VDnmRadGD8+sM+nY6D2tNcVVzaz20fOLR2ZSFE7tmlHny6BPCBE6JDgTQWN2B2cTJXO2ICuRyDADu6v9FJw1ul4YjaSNfn99w6hrWkIqOHM6NdvLTGS5C913VTZzYaFvX9AMpNLUicliY4UP60GuWprN/w6cZGuZKWRr+0pqWpg9JZ6EKO+yYAuyXMHZe7WhE5ydbOvhieIanth1nJPtPUxJiORLF83ioyunk5kYWi9Y52cl8OyeWpxOHdB6yuGUNnSQFhfpVRfB+Khw0uMjpSnICPQ9v/hwSyO4MmfgmnUmwZkQE1NovrUrJoUm97bG9AmSOYsIM7BkepLf6s7KmyxEGA1MSx7d1qyclBjS4iJCbhj1ofp2Wrp6+eL6WUSEGdh8tCkgj1tc5akH8W57nzfWzs4gKSac596t9dkxfcnp1LxbPfzw6f6SYyOYlhwd9I6NTqdmS2kTn/3bblb99E0eeuMYhVPj+f0Ny9l290XcuaEw5AIzcDUFsVjt1ITYuIXSRotX9WYe+Wmxfh8VMpF4nl9WzvDd8wu4Mmcgs86EmMgkcyaCxpM588X8l1CxIi+F320pp8tmJybCt79eZY0WZqTFjrpeTCnF0pxk3q1p9em6xurtY64tjevnZvDye/VsKW0E5vn9cYurWkiOCR/1NtGBRIQZuGxhJs/sOYHFaicuMrSeYo81Wuiw2lmeM7IXjAuyEoPWsdFksfLU7hP8a1cNNc1dpMZG8JnV+Xx8ZQ45qYGtIRuN+e7M48G6dvLSRlcv6mtOp6asoYNriqZ7fZ/89DheOVDvx1VNLLsqW0iJjfDp8wvQ9waEzDoTYuKSzJkIGpPFSnJMOOEhWpszGkV5yTicmr1+CIDKmyyj3tLosTw3mUpTZ19gHAq2lZmYMzWejPgo1s7OoLypMyBDnYurminKS/F5TdLVy7Lp6XXy2sGTPj2uL3iypt42A/FYOC2RanMXbd2BGWKutWZHhZkv/utdzvvJRn76yhEyE6N4+GNL2f7Ni/jG++eMi8AMYNaUOMIMikP1oVN3VtvaTafNwawRZs5aunpp6bT5cWUTR3FVM0W5yT5/fkmICiM2wiiZMyEmsInzqliMO2aLjdQJsqXRY1luMkqdatHuK1a7g5rmLgrSx/bOe98w6hDJnvX0OthV1cwF7lqmNe5as82l/t3a2NjeQ7W5i5U+rgcB1/d4ekp0SG5tLKluITU2gtwRBjaeNvD+bmzRZbPz562VXPyLLXz00R1sOdrIJ87N5Y27LuTfnzuPDy3OIjLM/81ifCkq3MjMjDgO1oVOx8Zjjd53avToawpikrqz4TS091DT3OXT+WYeSikyk6IlcybEBCbBmQgak8U6IQZQ95cQFc7sKfHsrvZt3Vm1uQunhoIxZs4WTUskzKDYUxMadWfFVc3Y7E5WzXIFZwXpsUxLjmaLn+vOPMFzkQ/rzTyUUly1JJttZSYa2kPr3e09NS3uNxBG9m5+X8dGP29t/MFLh/i/lw6REB3Oz65ZzM5vXcw9H5w/7tu3z8tK4FAIBWelnk6NI/i+5qefaqcvhuaP+Wb9ZSZGUd8WWs8tQgjfkeBMBM1EzJyB6w/ynuoW7A6nz45Z1ji2NvoeUeFG5mclhExTkK1lJiKMBs5xv8OslGLt7HS2l5uw2h1+e9ziqmaiw41+Gwx85dJsnBpe3Ffnl+OPhtlipdLUOeItjQApsRFkJ0Xznh+HUff0OnhpXz0fXjaN5z6/io8sn0Z0xPjKkg1mXmYCjR1WmjpCYztxaUMHGfGRI5pbNz05mnCjolKaggxre7mJuMiwviHkvpaVGC3bGoWYwCQ4E0HTZLFOmE6N/RXlJdNpc3DkZIfPjlnuDs7yx7itEWBpTjL7T7TR68PgcbS2HjOxLDfptOYpawoz6LI52O3jraH9FVc1szQnyW/1jvnpcSyensSze0Jna+Me91bW0QRnAAuyE/yaOdt8tJEOq50rl2b57TGC5VRTkNCoOzvWYGH21JFlI8OMBnJSYqSd/jC01mw60sQFM9P8NuswMykKk8Xq1zewhBDBI8GZCAqr3UFHj53UCdSp0cOzlcWXLfXLmyxkJ0X7pAPk8txkunsdHKn3XfA4GmaLlYN17X31Zh7nF6QSYTSwxU91Zx09vRyub+8bGu4vVy3J4lB9O0d9GKSPRUl1C+FG1bdFcaQWZidSaeqkvcc/TUFe3FdPWlwE5+Wn+uX4wTTPnUE5VB/8rY1Op6as0cKsUWwVzU+Pk0HUwzhysoOT7T2sm+O/WY2eWWcNbaGRiRVC+JYEZyIozO4ZZ2nxEy9zlpUUTXZSNMU+3DpY1mTxSdYM6JtxFey6s23lZgAumHX6i5jYyDBWzEhm89FGvzzunppWnBq/NAPp7/LFWRgNiv/sDY3s2Z7qFuZnJRIVPrqtgvM9TUH8sLXRYrXzxuEGPrAw02/ZhmBKjA5nWnJ0SDQFOdHSTXevY0Qzzjzy02OpNnfhcGo/rGxi2OR+3vLnEPq+WWfSFESICWni/RUU44InOJuImTNwbW3cXdWM1mN/EeN0asobO8fcRt8jKzGKqQlRQa8723bMREJU2ICZnDWF6ZQ2WKhr9f2Lj91VzRgNiqU5ST4/dn9pcZGsKUzn+XdrcQb5xazN7mTfidZRb2mEU01B/LE17/VDJ7HanXxo8cTb0ugxPyuBwyEQnJU2uDK5s0bQqdGjIC0Om8PJiZbQGqgdSjYfaWJ+VgJTEqL89hiBmHW2p6aFxg6paxMiGCQ4E0Fhcs/ZmoiZM4CivBQa2q2caBn7H8+T7T109zp8NsxUKcWy3KSgZs601mwtM3F+QdqAQ7U97zr7Y2vjrspm5mclEBuAAdFXLs2mrq2HnZW+7d45Uofq27HanWMKztLiIslMjOI9P9Sdvbivnuyk6L5RDxPRvMxEKs2ddFrtQV1HaaMnOBtd5gyQrY2DaOvqpaSmhXV+zJoBZHkyZ35qCmKzO7n+Dzu544m9fjm+EGJoEpyJoOgLzmInaHDmfhFc7IO6s/Im33Rq7G9ZTjInWrppDFKr90pTJ7Wt3VwwK23A62dlxJGVGOXzrY1Wu4O9x1spyvXvlkaPDXOnEBcZxn+CPPNszyiHT59pQXaiz4Ozlk4bb5U2cfmiTAwDBOoTxfysBLSGIyeDmz0rPdlBZmIUCVHed2r0ONVOX5qCDOTtsiYcTu3XejOAmIgwEqPD/ZY5O1DXRnevg+3lZnZUmP3yGEKIwUlwJoLC1FdzNjG3NRZOiSc+Kswnw6j72uhn+KbmDIJfd7atzATA6kGCM6UUa2ans63MjM3uu66SB2pdGaSVMwKToYmOMHLpgqm8/F49Pb3B66xWUtNCdlL0mLdaeZqCWHyY/fnfgZPYnZoPTuAtjQDzs11NQYJdd1baYBnVlkaA5JhwEqPDqZB2+gPadKSJpJhwlkz3//NLZmIU9X7KnJW4/24lx4Tzi9dLfbI9XwjhPQnORFCYLVaiw40+6T4YiowGxfLcZJ90bCxvspAQFebTsQPzsxKIMBr62qsH2tvHTExLjiYnJWbQ26wpzMBitfs0gPRkMpcHKHMGcNXSbDqsdjYe9k+DE2/sqW4Zc9YMXMGZ1nDQh9mzF/fVkZ8e67eZUKFiakIUyTHhfmmo4i2HU1PeZKFwlPWrSiny02Olnf4AnE7NltJGLpyVPuBWbV/LSoqmzk+DqHdXN5ObGsMdFxeyq7KZbWWSPRMikCQ4E0FhslgnbNbMY0VeCscaLbR22cZ0nPLGTgoy4lDKd3/wI8OMLJyWGJSmIHaHk3fKzayelTbk17RqZiphBsXmo76rO9td1Ux+WizpAax1PDc/lSkJkTwXpK2Nda3d1Lf1sMwHDVA8Q7t9tbWxob2HHZVmPrgoy6c/36FIKcX8rMSgttOvae7CandSOMrMGUB+mv/b6de2dvs0Yx4IB+raMFlsft/S6JGZGMVJP2xr1FpT4n4z56Mrp5OZGMUvXj8q2TMhAkiCMxEU5k4bqRO03szDU3c21gCorMni03ozj2U5SbxX2xbwQab7a9vosNq5YObQL2Lio8JZnuu7lvpOp6a4qoWivMA2nTAaFFcuyWbz0UaaO8cWqI9GSV+92dizhenxkUxJiPTZ1ryX9tejNXxoycTe0ugxLyuBoyc7gjYA3tOpsXCEA6j7y0+PpbHDSoef5t2dbOth3QOb+cgj2znePH66Qr55pBGl4MJZgQnOspKiaenqpdvm2+fvanMXJouNotwUIsOM3H7RTPbUtLLZT3MnhRBnk+BMBEVTh5U0H27TC0WLpycRblRjqjtr6+6lqcPqszb6/S3PTcZmdwa8BmbrMRNKuYZND2ft7AyOnOygwQeNS8qaLLR19/YNCQ+kK5dmY3dq/ru/LuCPXVLdQnS4kTmZo39B3t9CHzYFeXFfHfOzEvzy5kMomp+VgM3hDFpDjWOeNvpjeD4pcHdsrDL5J3DaeKQBm8PJsQYLl/9qK5uOBG878EhsOtrE4mlJpAbo79pUd/2or5uCeLZ+e97Eumb5dKYlR/Og1J4JETASnImgMHfaSIub2Nsao8KNLMxOHFPdWYUfOjV6eNqW7wnw1satx0wsyEok2YsZd2tnu96F3uKDrY273O3sV84IfHA2NzOBOVPjg7K1cU9NC4unJxLuo+HOC7ITKW+yjLklfI25i73HWyd8I5D+5mW6m4IEqe6stMFCdlL0mMZIeDo2Vpj8E2BuPNxITkoM//vyarKSorn5L8X87NWjIT342mSxsv9Eq99b6PfnGURd7+O6s5LqFhKiwpjpPs8RYQa+dNEs9p9o440g1s0KMZlIcCYCzunUNHfaJnzmDFx1Z/tPtI26U1+5u7bD8261L2UkRJGdFM27AWwK0ulu8DFYC/0zzZkaz5SESDaXjv1Fwe6qZtLjI4dsQuJPVy3NZk9NK9XmwHW667LZOVjX7pNmIB6epiBjrZ160Z1FnEzBWX56HFHhhqB1bCxt6KBwFPPN+stNjcGgTj03+VK3zcG2MhPr52aQlxbLc58/n2uWT+PXm8r45J939o1gCTVvlTahNVw0J3DBWZZ7EHVdq28zZ7vd9Wb9x1pcvSyb3NQYfvF6Kc4QDpKFmCgkOBMB19rdi8OpSZ3gmTNwbx10OEe9Days0UK4UfktoFiemxzQpiA7K83YnZoLZnoXnCmlWFOYztvHTNjHWKdTXNXCyryUoDWe+NCSLJQioNmz/SfacDi1z4MzgPdOjG1r44v76ijKTSY7KdoXyxoXjAbFnKkJHKr3/SDv4dgdTiqaOsfUDARczYSmJcf4pWPj1jITVruTi+dOAVy7Dx64ZjH3f3gRu6tauPzhrZRUB3eg+0A2HW0iLS4yoB1Hpyb6PnPW2mWjrNFC0Rlbv8OMBr68fhaH69t59eBJnz2eEGJgEpyJgDN7BlBPgszZ8jEOoy5vspCXGkuYj7aknWlZThIn23t8/u7rYN4+ZiIyzDCiYGHt7Aw6euy8e7x11I9b29pNbWt3wJuB9JeZGM15+an8593agNVueALvpT6cu5SREEVGfCQHxlB3VtrQwZGTHZMqa+YxLyuBQ3XtAa/fqW7uwuZwjnrGWX+udvq+z5y9eaSB+Miws+pCr10xnWc/fz6R4Qau+/0O/rS1MmTqn+wOJ2+VNrF2dnpAh6hHhRtJjY3wac2Z5/miaIDn5yuWZJOfHsuDb0j2LFBefq+eTT5qiCXGFwnORMA1uYOzyZA5S42LpCA9lt2jbApS7qdOjR6eDn6Byp5tKzOxckYKUeFGr++zamYaRoMaU9dGT91fMJqB9HfV0myq3LVWgbCnuoWC9Fiv6vtGYqxNQV7YW4dBwQcWZvpwVePD/KwE2nvsnGgJzBsiHqUn3Z0ax7itEVzt9CtNnT59ke50ajYebuTCwnQiws5+aTI/K5EXbr+Ai+Zk8IOXDvGFf+7xW8fIkdh7vJW27t6A1pt5ZCZFUefDQdS7q1sINyoWT0866zqjQXHHxYWUNlh46b16nz2mGNjx5i7ueGIvt/69hLJGmSs42UhwJgLObHG1E/flUOVQtiIvhZLqlhG/kLHZnVSbuyjI8H29mceczHiiwg0+HfQ8mIb2HkobLF5vafRIjA5nWU4SW8bQynlXZTNxkWHMzQzuoONLF0wlMswQkK2NWmtKanwzfPpM891NQbpsI28KorXmhX11rJqZFtB5c6GirylIgOvOShtcL/B80fl1Rnos3b0OTvqgi6rHgbo2GjusrJ87eJCTGB3O729YzjffP4dXDzZwxa+3ceRk8ObGAWw62ojRoLyuo/WlzMRon2bOdlc1Mz8rcdA3zy5fmEnhlDgeeqM0pBu0TAQPvl6KUhAdYeQrT+0b87Z+Mb5IcCYCztSXOZscL8yK8lJo6+6lbIQ1GjXNnTic2q+Zs3CjgcXTkgLSsXHrMRPAqF7ErJ2dwYHadho7RvdicHdVC8tykzEGcNvRQOKjwtkwbwov7qvz+6yrClMnrV29fgnOFmYn4tRweBRNQfafaKOmuYsPLpp8WxoB5kxNwKDgUF1g685KGzuYnhJNTMToOzV6FKS53jDy5dbGNw43YlAMm4FSSvG5NQX885Zz6LDaufI323h2zwmfrWOkNh1pYnluMonR4QF/7KzEKOp9lDmz2h3sO9E24JZGD4NBcefFhVQ0dfL83sB3np0sDte389zeWm5eNYMfXLGAfcdb+f1bFcFelgggCc5EwJktNowGRVIQ/pgFw4q80dWdlTW6Xvj4Y8ZZf8tykzlY1z7qjpLe2lZmIjU2grlTR569WlPoaqn/VqlpxPdt7bJxtKGDFX4IUkbj6mXZtHT18pafh7qeGj7tn+AMRtcU5IV9dUQYDVyyYKqvlzUuREcYKUiPG3O3y5E61tDBbB/Um4F/2ulvPNzA8txkr7fgnpOfyn+/dAGLpyVx15P7+NZz7/n9OexMJ9t6OFTfHpQtjQCZSdF0WO0+2d55oLYdm905bF3uJfOnMi8zgV9uPCbZHD+5/5UjJESFc9uaAj64OIvLF2Xy0BulHApSl1cReBKciYAzWaykxEYEtHg6mHJSYkiPjxxx3ZlnUG2+nwf0Ls9Jxu7UPhssPBCtNVvLTJw/M21U531eZgJpcZGj2troCVJWBGG+2UBWz0onJTbC71sb91S3kBgdTn6a739+piREkhYXyXsjnNflcGpe2l/HmtnpQck0hIp5WQkB3dbY63BSaer0STMQcJ3/2AijzzJnJ9t6OFjXzkVzpozofhnxUTx+yzncuqaAf+6s4SOPbOd4s3+GYw/EUwe7bk56wB6zv0wfdmz0dMH01CEPxmBQ3LmhkGpzF8/ukeyZr71TbmbT0SY+v7aAxBjXc+QPrlhAYnQEdz25F6s9sG9AiOCQ4EwEnMkyOWaceSilWJGXPOLMWXmjhakJUcSNYWCsN5bmJAH+bQpS2mChscPK6hHWm3kYDJ6W+k0jrnXYVdVMuFGxZIAi92AINxr44KJMXj/UQLsfGxqUVLewLCfJL2+CKKVYmJ0w4o6NxVXNNLRb+dAk7NLY3/ysBOrbemjutAXk8apMnfQ6tE+agYDr/M9Ij+17A2msNh5pAODiIerNBhNmNPCN98/hD58sotrcxWUPv83Gww0+WddwNh1tJCsxymcZyZHKSvLdrLPdVS3kpcZ4VQd68dwMFk1L5OE3j2GzS/bMV7TW3PfKETITo7jx/Ly+y5NjI/jphxdy5GQHD288FrwFioCR4EwEnMliJW0SdGrsb3luCidaukdUvF3eZPH7lkZw1f7lpcb4te5sa5lrO+KqMRTNr5mdTmtX74g7He6uamFh9uBF7sFw5dJsrHYnrxzwz8ygtq5ejjVa/LKl0WNhdiLHGjvotnn/Tu4L++qIDjcO2fRhMpiX6doWGqhtSp5mILMyfBdE5KfF+SxztvFwIzkpMWN6vtswbwovffECpiXH8Om/7uYfO6p9srbB2OxOth4zsXZORtBmJ/oqc6a1pqS6ZdismYdSruzZiZZunio5PqbHFqe8evAk+463cufFhWf9vVo/dwrXFk3jd5vLeTcADbxEcA0bnCmlpiulNimlDiulDiqlvnzG9V9VSmmlVOBbFYlxydxpnVSZMzhVd+bt1katNeVNnRSk+69TY3/LcpPZUzPyjpLe2nqsify02DENHL5wVhoGxYi2Nvb0Oth/ojXoLfTPtGR6EjPSYvmPn7Y27jnu+jlb5sfgbIGnKYiX3fJ6HU7+9149G+ZN8UlTivHMM6w4UMOoSxs6MCjf1q/mp8dS19Y95jqvbpuDbWUm1s8de5CTmxrLs58/n/MLUnng1aNYrCPvJuqt3VXNdNocQas3A5iSEIVSUD/GzFmlqRNzp21EcyDXFqazLCeJX79ZJlvtfMDucHL/q0eZlRHH1cuyB7zNdy+fR2ZiNF95ct+I3hQT4483mTM78BWt9VzgXOALSql54ArcgA1Ajf+WKCYaU4eNVB/PXQp18zITiIkw9s3bGk5DuxWL1U5BADJnABfPnYLJYvPLu6A2u5Odlc1jbjWdFBPBkulJbBnBvLN9x1vpdeiQC86UUly5JJt3Ksw+bYXt8W51C0aDYvG0JJ8f22OBuymIt1sbt5aZaOnqnfRbGsG1TSkrMSpgdWfHGjvISYnxafY4Pz0OraHKPLbs2bYyE1a7k4vnjqzebDBR4Ua+fukc2rp7+fs7/suebTraSITRwPkFqX57jOGEGw1kxEdSN8bM2e4hhk8PRinFXRtmU9/WwxO7xn/2zGSxsvWYiT+8VcFd/97LpQ+9xYJ7XuWVA4GZ6fZUyQkqmjr52iWzCTMO/NI8Piqc+z+yiApTJ/e/eiQg6xLBMWxwprWu11rvcX/cARwGPGH9g8DXARl4IbzSZbPT3euYNG30PcKMBpbmJPX9ERyOp5bDn230+3v/gqksz03mgVeP+rwO6t2aFrpsjhHPNxvImsIM9te2YXaPYxiOp85vJO8IB8qVS7PQGp7fW+fzY5fUtDA3M55YP9YrZiZGkRob4XXHxhf31pEQFcbqQtlkAYFtCnL0ZIfPmoF45Puonf7GIw3ER4b59A2UJdOTWD0rjT++XTGqWXze2HS0iXPyU/z6O+YNX8w6K6lyNQ8a6d+bVTNTWTkjhd9sKgt4p8zR6nU4OXqyg+f31vKT/x3mk3/exYofvUHRD9/gE3/ayY9ePsy2chNTE6PISoria0/tp3qMb0AMp9vm4MHXS1mem8yGeUO/SbFqZho3npfLY9uq2F4+8u7FYnwYUc2ZUioPWArsVEp9CKjVWu/zx8LExGTqcBXAT7aaM4Ci3BQO17d71fbYE5wFouYMXO+C3vvB+Zg7bTz8hm8LjreWmTAaFOf64B3mtbPT0RrePubdH6XiqhYKp8SRFBN6P2+5qbEsz032+dZGu8PJ3ppWluX4NyBVSrEgO9GrLp89vQ5ePXiS9y/IJDIsdGr/gmleViIVTRa/b0+y2h1Umbt81gzEIz/dE5yNvimI06nZeLiRCwvTiQjzbQn8l9bPwtxp419+yOocb+6irNHC2iBuafTIShr7rLPd1c0U5SaPuHmQK3tWSGOH1e81fqPR2mVje7mJP22t5KtP7eOyh99m/vde5ZKH3uLLT+zlsa1VmDqsXDgrne9cNpfHbzmHPd/dwM5vXcxfbl7Jn29agcGg+Pzje/wafD62vZLGDivfeP8cr7b2fuP9c5mRFsvXntrv1627Ini8fjZUSsUBzwB34Nrq+G3ge17c77NKqd1Kqd1NTf6d6yNCn6nTlfGYbDVnACvyUnBqeLemddjbljdaiIsMI8OLzlm+snBaItcun85ftldR1ui7+UVvHzOxeFoiCVFjb52+MDuRlNiIvhbWQ3E4NXuqW0JuS2N/Vy7N5sjJDp82hjja0EGnzeHXZiAerqYglmFfuGw60kinzcGHlsiWRo95mQk4NRzxsmZvtCpNrmH2hT7OnMVEhJGZGDWmzNmBujYaO6x+aRCzIi+Fc/NT+P2Wcp+/sO5roT87OC30+8tMjKaurRutR7eBqaXTRnlTJ8tHubvg3PxUVs1M5ZEt5X7LUo7GltImlv7gdT7+h5384KVDbD7aREpsBDevyuOh65bwyh2rOfh/l/Dyl1fz82sXc8vqfFbNTCOlX8nFtOQYfn7NYg7WtfOj/x72yzpbOm38bnM5F8/N8PpvVXSEkZ9ds4j6tm5+9N9DflmXCC6vgjOlVDiuwOxxrfWzQAEwA9inlKoCpgF7lFJnTRXVWj+qtS7SWhelpwf/iUwEl6lj8gZnS3KSMBqUV3VnZU0WCtJjA94F7GuXziY63MgPXjo06j/2/bV19bL/RCsXzPLN777BoLhwVhpvHTMN27zkcH07HVZ7SAdnly/MJNyo+M9e32XPPF03/Z05A1fdmcOpOTzMQOUX9tWRFhfJufnBq88JNaeagvg3OPN0avR1cAYwIy2WctPog7M3DjdiUPgtA/XFi2bR2GHlqd2+zZ5tOtpEbmoMM9IC07BpKJmJUfT0OmntGt129JK+erPRP0/etaEQk8XG3/xY4zdSbxxqICbcyN8+tZLib1/M7u9czN8/fQ7f/MBcrlyazZypCYQPUtvV38XzpvDZC/P5+45qXtzn+y3ov91chsVq52uXzBnR/ZbnpvDZCwv4167jbDrifR22GB+86daogD8Bh7XWvwDQWr+ntc7QWudprfOAE8AyrbV/+kKLCcPsnuuTOgm3NcZFhjEvM4FiLzo2ljd2BqwZSH9pcZF8+eJZbClt4k0fPOG/U2HGqfFJvZnH2tkZNHfaht1O5wmCQ2X49ECSYyNYOzuD5/fWjnh+22BKqlvIiI9kWvLoO2N6a+E0d1OQITJ/HT29bDzSyOWLMjFOksHz3piWHE1CVJjf686ONXRgNKi+bYi+lJ8eS0WTZdRv5Lx5pIFlOcmnZSt86fyCVJblJPHIlgqfzePq6XWwvdzEutnBa6HfX9+ss1HWnRVXu+ZALnL/Lo/G8twU1hSm8/st5SGzzW5npZnleSlcWJju1ey2oXztktksy0nim8++R+UY3ow4U21rN399p5oPL5vG7Kkjf/Pkzg2zmD0lnruf2U9rV2BmJorA8CZztgq4AbhIKbXX/e8Dfl6XmKA8mbPJGJwBLM9N5t3jLfQ6Bn+hYLHaOdneE7BmIGe68fw8CtJj+cFLh8bcInlrWROxEca+Qde+sHpWGkrB5qNDb5MurmohKzFqTO37A+Gqpdk0tFt5p9zsk+OV1LSwPDc5IC8csxKjSImN4MAQTUFeP9SAze7kg9Kl8TRKqYA0BSlt6CA3NcYvtX75aXF09NgxWUb+wvBkWw8HattZ76MujQNRSvHFi2ZR29rNc++e8Mkx36kw09PrZN2c4NebQb9ZZ6OsOyupamGBD+ZA3rmhkJauXv6yrXJMx/EFs8VKaYOFc3z0xly40cCvP76MMKNv688efL0UcH3vRiMyzMjPr11Mc6eNe1446JM1idDgTbfGrVprpbVepLVe4v738hm3ydNaS9sYMSxzp434qLBJ2xRgRV4KPb3OIV+QlTcGtlPjmcKNBr73wflUmbv489aqMR1r6zET5+anerV9xFupcZEsyk5kc+ngmT2tNcVVzSGdNfO4aE4G8VFhPOeDxiCN7T0cb+4OSL0ZuF78zs9KGDKL+cK+OrKTolnmwwB9opiflciR+nbsQ7xZM1bHGiwU+nD4dH9jaQqy8UgDABf7eSD52tnpLMxO5Leby33yfd58pJGocIPPXviPlSdzNpqOjVa7g/21bSNqoT+YJdOTuHhuBo++VeHzjr8jtavStWvi3HzfnaOspGgevHYJh+vb+b+Xxl7ndfRkB8/uOcGN5+WO6Q3EBdmJfGn9LJ7fW8fL7wWm7b/wP9+2RxJiGE0WK+mTsN7Mo6hvGPXgdWenOjUGr55hTWE6F8/N4NdvHqOxfXTvyB5v7qLK3MUqH25p9FgzO4N9x1tp6Rz4Hfua5i4aO6wUhXC9mUdUuJHLFmbyyoH6MXfu21Pj/+HTZ1qYnUhpQ8eA7yY3d9rYeszEBxdnhcQWsFAzLzMBq93p061S/fX0Oqgyd/q8U6OH5w2kilGsf+PhRnJSYvzekVYpxe0XzaTa3MWL+8dWM6S1ZtPRJlYVpPl0ZtxYpMVFEmZQo5p1dqC2DZvd6bPnyTsuLqS9x86f3g5u9mxnZTPR4UYWZif59Ljr5mRw65oC/rmzhufHWCf8wKtHiI0I4/NrZ455XbetLWDRtES+/dx7NHV4N2ZGhDYJzkRAmS3WSbulEWBKQhQ5KTHsHqLurLzJQphBkZsa3GLz71w2j16H5r5XRjfscluZK5m+eozDpweydnY6Tg1vlw2csPfU9a0cB8EZuLo2dtocvHZobGW7JdUtRIQZ+ppNBMLC7ETsTs3Rkx1nXfe/A/XYnVoGTw9ifrZ/m4JUNHXi1Ph8xplHVlI0EWGGEWfOum0OtpWZWD83MHVbG+ZOYfaUeH79ZtmYajsrTJ3UNHexNkS2NAIYDYopCVHUt448c+b5O+SrTPuC7EQunT+VP2+tDGoN1I4KM8tzk30+ngHgK+8rpCg3mW89+17fG6kjVVzVzBuHG7l1bQHJPqi3DDca+MW1i+m0Ofjms+/5pJmXCC4JzkRAmSy2Sdmpsb+ivGR2VzcP+gRa3thJTmqMT7cCjkZeWiyfumAGz+6p5d0a74Zn9/d2mYkpCZF+eWd88bQkkmLCB22pX1zZTGJ0OLOC0FRlNFbmpZCdFD3mmWcl1S0syk4M6LbhBdmuRgIDbW18YW8dBemxzM30T3Aw3hWkxxERZvBb3dmxRlfA7I9OjeAKDGakxo4487etzITV7mT9HP/Vm/VnMLiyZ+VNnbxyYPRvgHi64q0tDK3O01lJUaPKnO2ubmFGWqxP/ybfsWEWFpudP7xd4bNjjkRrl42jDR1+23YabjTwq48vJTLcyBdGUX+mtea+/x0hIz6ST62a4bN1zcyI5+uXzOaNww08u8e3szNF4AV3tL2YdMwWq0/3gY9HK/JSeHZPLVXmrgFbMbva6IdGUHH7RTN5ds8J7n3hIM99fpXXQ0qdTs32MhPr5vjnnXGjQbF6Vjpvlbpa6p+5ruJRDlUNFoNBccWSLB7ZUs66n20m3KiICDMQbnT9i3R/HGE0EB5mINyo+i4LNxr6bnugtp2bV+UFdO3TkqNJignnwBnB2cm2HnZVNXPH+kLZ0jiIcKOB2VPifTrnrr+jJzsIMyi/tnzPT48dMGs6lI1HGoiPDGNlAOu2PrAwkwffKOVXbx7j/Qumjuq5YfPRJmZlxDE9JcYPKxy9zMRo3j0+sjfQtNaUVLdwkY+zgHOmJnDZwkwe21bFpy/I91snzsHsrGxGazjHj2M7MhOj+cW1i7npsWLufeEg9314kdf3ff1QAyXVLfz4qoVER/j2TbSbV83gtYMN3PviQc4rSO2rRxTjj2TORMD0Opy0dPVO+szZCnfdWfEAdWe9DifV5k6/12F4Ky4yjLsvncO+E208s8f7bmeH6ttp6er1y5ZGj7WF6Zgs1rO2hJksViqaOsdFM5D+bjw/j+tWTGdhdiIF6XFMiY8iLjIMBXRa7TR1WKk0dXKwto2dFc1sPNzIC/vqeGJXDX96u5KHNx7DobXfZkYNRinFwuxEDtSdHpy9tL8OreGDizMDup7xZn5WAgfr2vyyFam0wUJeWqxftnd55KfHUtPcNWQH2v6cTs3Gw41cWJju13WdyWhQfGHtTI6c7OCNww0jvn+n1c7OSnPIdGnsLzMpipNtPcPOfuyvwtRJc6fNJ81AznTHxYX09Dr4/VvlPj/2cHZWNBMZZmDx9NGPBvDG2tkZfGFdAU8UH/e6E6jd4eSBV4+SnxbLtUXTfL4mo0Hxs2sW43Bq7n5mv2xvHMckcyYCpqVvxtnkDs4K0uNIjglnd1Uz1xZNP+26481d9Dp0yGTOwNXq/R87q/npK0e5dMFU4qPCh73P28dctWD+aAbicaF7a9Hmo419W+vgVB2FJwgeL6YkRPGTq71/B/ZMWmscTk1YELbDLshO5I9vV2C1O/q2VL64r44F2Qnkh9DPciial5XAE8XHqW/r8fk73ccaO1iQ5d8XqflpcdidmprmLq+etw7UtdHYYWW9n7s0DuSKJVn8cuMxfr2pjA3zpowoo7utzESvQ7N2dmhtaQTISoym16ExdVrJiI/y6j4l7ufJIj88T87MiGPDvCk8u6eWb1w6J6CZ852VZpblJAdka/edFxdSXNXCt549wMLsRGYO0xX12T21HGu08Lvrl/nteTonNYZvXzaXbz93gH/srOGGc3P98jjCvyRzJgKmyeLqIpQ+iRuCgCvTsDw3ecCmIGV9bfSD2wykP4NBce8H52OyWPn1m2Ve3WdbmYk5U+O9fqEwGunxkSzITmBL6enzzoqrXO+c9g/YJgOlVFACM4AFWYn0OjSlJ10/v1WmTvadaJNGIF7wNG/x9dbGbpuDmuYuZvmpU6PHjL52+t7Vnb1xuBGDIuAZXoAwo4HPry1g/4m2s543hrPpaCNxkWGsCMEmQ6OZdba7upmkmHDy0/zz87Fh3lSaOqx+n+PXX1t3L4fq2zknQKUTYUYDv/rYUmIijHzh8XeH7Lbb0+vgwTdKWTw9iUsXTPXruj6+MofVs9L48X8PU232TydY4V8SnImAMVskc+ZRlJdChakTk+X0trfl7hc4BSGyrdFj8fQkrlk+jT9vqxy2M1tPr4NdVc1+zZp5rC3MYE9NK23dp+bqFFc1s3h60qSdpRcMC89oCvKSu2X55YskOBvOnKkJKIXPX8SWN1nQ2n/NQDwK3C/uve3Y+OaRBpblJAe8Fsnj6mXTyEqM4ldvlnm97UtrzaYjTayelRb0Rk0DGc2ss93VLX6ty13j3tkw0iB4LHZXuevNZviv3uxMUxKiePC6JZQ2dvC95w8Meru/bq+ivq0nIJlEpRT3f2QRYUbFF//1LmaLtNcfb0LvWUZMWJ5AZLLXnMGpLXcl1adnz8qbLGTER5LgxdbBQPvapbOJDDPyg2EGcBZXNWOzO7nAj/VmHmtmp+Nwara6t1F2Wu0crGsfNy30J4rpKdEkRof3BWcv7KtjRV6yFKR7ITYyjBmpsRyqH3yQ92iUNng6Nfr3jZ7EmHBSYyO8ypydbOvhQG076+cGpkvjQCLCDNy6toCS6hbeqTB7dZ8jJzs42d7DuiBk+7zhyZzVeZk5M7vrcpfn+u95Mj0+koXZiX0dLgNhR4WZiDADSwM88P7CwnRuXzeTp0pO8HTJ2fVnbV29/HZzOWtnp3NeQWACR1fTkiUcPdnBh3697ayGTSK0SXAmAuZU5mxyb2sEV41ORJjhrGHU5SHUqfFMGfFRfGn9TDYdbRryD+7WMhPhRuW3Vsb9LZ2eREJUGFtKXet5t6YVh1P7pY5CDE4pxYLsBA7UtnHkZDulDRbZ0jgC87ISfJ45K22wEG4MzLzE/PRYKkzDZ842HnE14rg4CPVm/V1bNJ30+Eh+tdG7bdqb3CM71oRgvRlASmwEkWEGrzNnnjcF/f08uW52OntqWgI282xnZTNLpicFZUD4HRcXcm5+Ct/5z3t9b4x4/G5LOe09vXz9kjkBXdOGeVN4+tbz0VrzkUe2j3lwtggcCc5EwJgsViLCDMRHSh+ayDAjS6Yl9Q1LBtfWmbJGCwUZoVNvdqabzp9BflosP3jpEDb7wN3Zth4zsSwnmZgI/5/nMKOB1bPS2VLahNaa4qpmDMp3Q1WF9xZkJ3L0ZAfP7qnFaFC8f6F0afTWvKwETrR009bVO/yNvXSsoYP8tLiAbMPLT4vzKnO28XAjOSkxQe9GGxVu5HMX5vNOhfmsN8gGsvlIE/OzEpiS4L8a2rFQSpGZ6P2ss5LqFiKMhr7tyP6ydk4GTg1vuXc2+FNHTy8Hats4N0hdeo0GxcMfXUpcZBhfeHwPXTY74Npq+ti2Sq5cks08d31pIC2clsgLX7yARdlJfPmJvfzk5cNjGsQuAkOCMxEwJouNtNgImXnkVpSXzIHatr4i4iaLlY4eOzNDNHMGri1B3718HhWmTv6yvfKs680WVwG4P1von2lNYToN7VYO13dQXNXMnKkJXnWUFL61MDsRm8PJ396p4vyCVNm+PALz3R0VzxwLMRaljR1+bwbikZ8ei7nTNmRw2W1zsK3MxEV+mn04Uh8/J4eU2Ah+NUyTo7auXkpqWkJ2S6NHZmI09a3eZc52V7ewIDvB7xmmxdOSSI4JZ3MAtjburm7B6ef5ZsPJSIjilx9dSlmThe/85wBaa375xjGcWnPXhsKgrSstLpJ/3HION5yby+/fquCmx3YFLJspRkeCMxEwJouVtHh5weaxIi8Fu1Oz93grAOWNodkM5Ezr5mSwbnY6D28so7Hj9Hdqt5e7ajgumBW47T+erUYbDzfwbk1rQAfbilM878L39DplS+MIzct0vaN+sM43dSGdVjvHm7v93gzEwzMuoXyIrY3bykxY7U4uDmK9WX8xEWHcsnoGW0qb2Od+Dh7I22VNOJyadXNCc0ujR2ZSFPVeZM56eh28d6KNogDU5RoNigsLXTsbRjKDbTR2VJgJNyqW5QR318SqmWl86aJZPLunlvtfPcqTu4/ziXNzgz64PCLMwA+uXMB9Vy9kR4WZK36zbcTD40XgSHAmAsbcaSU1SB26QtGynGSUom9bTXmTp41+aAdnAN+9fB5Wu4MHXjl62uVbj5lIiArz+3aZ/qYkRDE3M4G/bK+iu9ch9WZBkpMSQ3xUGBFhBi7xc6voiSY9PpKM+EifZc48IzkCF5wN305/45EG4iPDQurNkxvOzSUxOpxfbxo8e7bpSBNJMeEsmR7azytZidE0tPdgH2YY+IHaNmwOp1+GTw9k3ewMzJ22vmZB/rKzopnF05KIjgh+l94vrZ/Fqpmp/G5zOTERYdy+bmawl9TnoytzeOKz59Flc3DVb7fxyoH6YC9JDECCMxEwpg6bbHXqJzEmnMKMeIrdxdlljRZiIox9nbdCWX56HJ9aNYOnSk70veustWZrmYnzC9Iw+qk982DWzk7H7B5yHopziCYDpRSXzp/KR5ZPC8luo6FuflaCz2adBapTo0dOSgxhBkXlIJkzp1Oz8XAjFxamExEWOi874qPCuXlVHq8fauDwAIGx06nZUtrIhbPSA/6cNlKZSVE4NTR2DN02fbf7702g6nIvLExHqVNNVfyh02rnvdq2gM03G47RoHjouqXMyojjq+8rDLnxQctzk3nx9guYNSWeW/+xh1+8dtTvmU0xMqHzLCkmNK21K3MWYk9SwVaUl8ye6hYcTt3XqTEU6jG8cftFM0mLi+TeFw/idGqqzF3UtnYHpIX+mTwzdXJSYkK2aH8yeOCaxfz4qoXBXsa4NC8rgbJGCz29gw+y9daxRgsRYYaAdGoECDcayEmJGTRzdqCujcYOK+uD3KVxIDefP4O4yDB+PUDt2YG6NkwWGxfNCb11nykr0btZZ7urmslPiw3Y3+KU2AiWTE9i01H/zTsrcf8NDeR8s+Gkx0fy2p0XctOqGcFeyoCmJkbx78+eyzXLp/Hwm2V89u+76ejxXUMiMTYSnImAaO+20+vQpEkb/dOsyEvBYrVz9GQHFU2dFKSHbqfGM8VHhXP3pbN5t6aV596tZesx1x/fCwIwfPpMy3OTSYoJ5/wAzZARwtfmZyVid2qONXg3zHkopQ0dFKTHBTTbMyMtdtDgbOPhRgwK1oZgU43EmHA+eV4uLx+op6zx9BqcN480opQr+xPqMpOGn3WmtaakuiXg3WzXzc5g/4nWvlmnvrajwkyYQYVcl95Qf6M1KtzI/R9ZxPc/NJ9NR5u48jfbvB4mL/xLgjMREKZOGUA9EE991JbSJmpbu8dFvVl/H142jcXTk7jvlSO8erCBacnR5KYGvvA53Gjguc+v4psfmBvwxxbCF3zZFORYgyVgWxo98tNjqTR3Dtime+ORBpblJJMSojXHn75gBlFhRn6zqfy0yzcdbWLJ9KSQXXd/mV5kzsqbOmnp6g14Xe662RloDW+V+id7trOymYXTEomVMT0jppTixvPz+Menz6Glq5crfr0toIPDxcAkOBMBYeqQ4Gwg2UnRZCZG8dTu4wBBn/8zUgaD4t4PzqOpw8rWMhOrZ6UF7d3CGWmxJEZLrZMYn3JSYoiLDBtzUxCL1U5ta+A6NXrkp8dhszupO6Od+8m2Hg7UtrM+RLo0DiQ1LpLrz8nh+b21VJtd2T+Txcr+E60h30LfIyEqjNgI45CZs5JqV/Op5bmBrc2an5VAWlyEX7Y2dtsc7D/RGlJbGsej8wpSeeH2VeSkxvCpvxbzm01laC11aMEiwZkICE+zhlTZ1ngapRRFeSlUmMZHG/2BLM1J5upl2YCrjbAQYuQMBsW8zAQOjrEpyDF3M5BZAX4uyU9zbckuP2Nb1MYjDQBcHIL1Zv199sJ8wowGfuvOnr1V2oTWjJvgTClFZlL0kJmz3VUtJMeEB3z7vMGgWFOYwVulTT4fgLynpoVehw6ZZiDj2bTkGJ6+9Xw+uCiLB149yu3/fLdvmLYILAnOREB49ppL5uxsK9xbTAyKoGwJ9IVvf2AuX1hXEDIzjIQYj+ZlJXC4vn1MndM8NWvByJzB2e30Nx5uJCclJuR3BWQkRPGxFdN5Zs8JTrR0seloE2lxkczPSgj20ryWmRjFySFmnbnqzVKCsrth3Zx02rp72Xu8xafH3VFhxmhQARsNMNFFRxj55UeX8M33z+F/B+q5+rfbh20yI3xPgjMRECaLDaUgOUa2nZ3JU8SckxJDZFjwZ7SMRmpcJF+7ZA5R4eNz/UKEgnlZCXTZHFSZB58XdqZum4OjJzt49eBJ/vBWBf8qriEyzBDwobdpcRHER4VR0a+dfrfNwbYyExfNyQj55ggAn1tTgFLwm03lvFXaxNrZ6RhCvIV+f1mJ0dQNEpyZLFYqTJ1BmwO5eqZrHMGmI77d2rizopkFWQnEy/gOn1FK8bk1BTx280oSosJlNEoQSPWkCAiTxUpKTARhRnk/4ExzpiYQHxkW8u8sCyH861RTkPa+TBRAW3cv1eZOqs1d/f7vorq5k4b20zvgJcWEc23R9IDP5VJKkZ8ed1rmbFuZCavdOW4y6llJ0Xxk+TT+tasGGD9bGj0yk6IwWazY7M6z5smVuOebBSvDlBgTzvKcZDYdbeSrl8z2yTF7eh3sPd7KTavyfHI8cbo1helcGMQ68slMgjMREGaLVerNBmE0KB766BKZzyXEJFc4JZ5wo+Jv71TxxuEGqsxd1JhdHfb6y4iPJC81ltWz0slLjSEnNZa81BhyU2JJDOLuhIK0WLaXm/s+33ikgfjIMFbOGD/1QLetmcmTu08AsLpwfNXQZiVGozU0tPeclTktqW4hwmhgQXZikFYHa2an88CrR2lo7/HJ37t3a1qxOZycM45+vsYbCcyCQ4IzERAmi03qzYYQyp3MhBCBERFmoCg3hZ2VZk6295CbEssHFmaSmxpDbmosuakx5KTEEBMRmn+689NjefbdWjqtdqLDjWw83MiFhelnZXFCWU5qDLdcMIPmTtu42851atZZ91nB2e4qV7v5YG49Xzc7gwdePcqWo01cu2L6mI+3s9KMQUFRngRnYmIJzWd4MeGYLVYWTksK9jKEECKk/eOWc3A49bgKaDw8WzErTZ04taaxw8r6EO/SOJDxOi/x1Kyz0+vOenodHKht5+YL8oKwqlPmZsYzJSGSzaWNPgnOdlSYmZeVICNUxIQz/p79xbjkypzJtkYhhBiK0aDGZWAGrlmDABWmTjYebsSgYO04q9sazzIT3ZmzM7rrvVfbhs3hpCjA883OpJRi3ewM3i410etwjulYVruDd2tkvpmYmMbnXwAxrvT0OrBY7bKtUQghJrAZabEoBRVNFjYeaWBZTjIpsfKmXKDERoaREBVG/RmDqIurPMOng99ufu3sDDqs9r4GJaO173gbVrvUm4mJSYIz4XenZpzJH2khhJioosKNZCVGs73czIHadqmlDYKsAQZRl1S1kJ8eGxKB8qqZqYQbFZuONo7pODsrzCjFuGo2I4S3JDgTfme22ABIjZXMmRBCTGT56bHsqnRlai4eh/Vm411mYhR1/TJnTqempKYlZIY0x0eFU5SbwuYxzjvbUWlmztQEkmKCH3AK4WsSnAm/68ucxUtwJoQQE1mBuynI9JRomd0YBJlnZM4qTBZau3qDXm/W37o56Rxt6KCutXv4Gw/AZndSUt0iWxrFhCXBmfC7U5kzeYdLCCEmsvx0V1OQ9XOmyIykIMhKjKKlq5dumwOA3VXu4dN5oZE5g1PDvTcfHV327L3aVnp6nZybL8GZmJgkOBN+19RXcyaZMyGEmMg8Q44/sDAzyCuZnE6103dlpXZXt5AaG9HXSTMUzMyIIzspetR1ZzsqXNtmV0qnRjFBSXAm/M5ssREbYSQ6InjDL4UQQvjfspxktn/jImnUECSeQdSeWWe7q5pZlpscUllMpRTr5qSzrcyE1e4Y8f13VJiZPSU+JBqcCOEPEpwJvzNZrFJvJoQQk0RWUnSwlzBpZbkzZ3Wt3TR1WKkyd4VMM5D+1hZm0GVzUFw5spb6vQ53vZlsaRQTmARnwu/MnVapNxNCCCH8bGriqcyZZ5ZYKNWbeZw/M5UIo2HEWxsP1LbRZXPI8GkxoUlwJvzO1GGTejMhhBDCz6LCjaTGRlDf1k1JdTMRYYa+OsBQEhMRxjn5KSMOznZWeurNJHMmJi4JzoTfmTutpEpwJoQQQvhdZpJr1tnu6hYWZScSGRaa9d7rZmdQ0dRJjbnL6/vsqDAzMyOOdCmVEBOYBGfCrxxOTXOnjfQ42dYohBBC+FtmYjRV5k4O1LZRlBe6GaZ1c9wt9Uu9y57ZHU52V8l8MzHxSXAm/Kqly4ZTI5kzIYQQIgCyEqOoNnfR69Ah2QzEY0ZaLHmpMWw64l1wdqi+HYvVzjn5Um8mJjYJzoRfmWTGmRBCCBEwmf26ZS4P4eAMYO3sDLaXm+npHb6l/k73fLNzJXMmJjgJzoRfmS02AFJlW6MQQgjhd5nujo0F6bEkh3in5LWz07HanbxTYR72tjsqzOSnxZKREBWAlQkRPBKcCb+SzJkQQggROJ45c0W5oZ9hOjc/lahwA5uH2drocGp2VTXLfDMxKUhwJvzK5M6cpUnmTAghhPC7GWmxRIYZWDs7PdhLGVZUuJHzC9LYdLQJrfWgtztc305Hj13mm4lJQYIz4Vcmi5UwgyIxOjzYSxFCCCEmvLS4SIq/czGXLpga7KV4Zd3sdGqau6g0dQ56G898M8mciclAgjPhV2aLldS4CJRSwV6KEEIIMSkkRIWPm7+7a2e7WupvOto06G12VpjJTY0hMzF60NsIMVEMG5wppaYrpTYppQ4rpQ4qpb7svvwHSqn9Sqm9SqnXlFJZ/l+uGG9MFhupsVJvJoQQQoizTU+JoSA9ls1HB647c3rqzaRLo5gkvMmc2YGvaK3nAucCX1BKzQMe0Fov0lovAV4Cvue/ZYrxymyxkhYvwZkQQgghBrZudgY7K5rptNrPuu5oQwetXb1SbyYmjWGDM611vdZ6j/vjDuAwkK21bu93s1hg8EpOMWmZLDbSQryVrxBCCCGCZ92cDGwOJ9vLz26pv9PdZl/qzcRkMaKaM6VUHrAU2On+/EdKqePA9QySOVNKfVYptVsptbupafD9xGLi0VpjksyZEEIIIYZQlJdMbIRxwK2NOyubmZYczbTkmCCsTIjA8zo4U0rFAc8Ad3iyZlrrb2utpwOPA7cPdD+t9aNa6yKtdVF6eui3dRW+02lzYLU7SZXMmRBCCCEGERlmZNXMNDaf0VJfa83OymbZ0igmFa+CM6VUOK7A7HGt9bMD3OSfwId9uTAx/pk6ZAC1EEIIIYa3dnYGta3dHGu09F12rNFCc6dNtjSKScWbbo0K+BNwWGv9i36Xz+p3sw8BR3y/PDGemTtdwVmqDKAWQgghxBA8Q7M3HTm1tdFTb3auZM7EJOJN5mwVcANwkbtt/l6l1AeA+5RSB5RS+4H3AV/250LF+NPUYQMkcyaEEEKIoWUlRTNnajyb+tWd7ahsJisxiukpMt9MTB5hw91Aa70VGGiS4cu+X46YSDyZMwnOhBBCCDGctbMz+OPbFXT09BIXGcbOCjOrZ6WPm4HaQvjCiLo1CjESJnfmLEUaggghhBBiGOtmp2N3araVmShv6sRkscnwaTHpDJs5E2K0zJ1WEqPDiQiT9wCEEEIIMbRlucnER4ax6UgT5k7XG7zn5Eu9mZhcJDgTfmOyWEmTZiBCCCGE8EK40cDqwjQ2HW2kq9fBlIRI8lJlvpmYXCSlIfzGZLGRKvVmQgghhPDS2tkZNHZYefXgSc6ZkSr1ZmLSkeBM+I3JYiVdgjMhhBBCeGltoaulvs3ulPlmYlKS4Ez4jdlikxlnQgghhPBaRkIUC7ITADhH5puJSUhqzoRf2OxO2rp7pY2+EEIIIUbkmuXTCTPUUpAeG+ylCBFwEpwJv2h2d1mSzJkQQgghRuLG8/O48fy8YC9DiKCQbY3CL0wWGUAthBBCCCHESEhwJvziVHAmmTMhhBBCCCG8IcGZ8AuTxbWtUTJnQgghhBBCeEeCM+EXZnfmTOacCSGEEEII4R0JzoRfmCxWosINxEYYg70UIYQQQgghxgUJzoRfmC02UmMjUUoFeylCCCGEEEKMCxKcCb9oslhJi5ctjUIIIYQQQnhLgjPhF2aLjbRY6dQohBBCCCGEtyQ4E35hslilU6MQQgghhBAjIMGZ8DmnU9PcaSNVZpwJIYQQQgjhNQnOhM+1dfdid2rJnAkhhBBCCDECEpxNcr0OJ9967j12Vph9dkxzp2fGmWTOhBBCCCGE8FZYsBcgguvRtyr4584aGtutnJOf6pNjNnXYAEiXzJkQQgghhBBek8zZJFbW2MEv3zhGhNHA1rImum0Onxz3VOZMgjMhhBBCCCG8JcHZJOVwar7+9H5iIo08cM0ienqdvH2sySfHNnW4grM02dYohBBCCCGE1yQ4m6T+sr2KPTWt3PvB+XxgYSYJUWG8fqjBJ8c2d9owKEiKkeBMCCGEEEIIb0nN2SRUbe7kgVePsH5OBlcsyUIpxbo5Gbx5pBGHU2M0qDEd32SxkhIbOebjCCGEEEIIMZlI5myScTo1dz+zn3CDgR9dtRClXAHUhnlTMHfa2FPTMubHMFlssqVRCCGEEEKIEZLgbJL5564adlQ08+3L5jI1Marv8jWF6YQblU+2NposVplxJoQQQgghxAhJcDaJ1LZ285OXD7NqZirXrZh+2nXxUeGcV5DG64ca0FqP6XHMFpvMOBNCCCGEEGKEJDibJLTWfPPZ99DAfVcv6tvO2N+GeVOoNHVS3mQZ02NJ5kwIIYQQQoiRk+BsknhmTy1vlTZx96VzmJ4SM+BtNsydAsBrY9ja2GWz02VzSOZMCCGEEEKIEZLgbBJobO/h/148yIq8ZG44N3fQ201NjGLRtMQx1Z2ZLTYAyZwJIYQQQggxQhKcTXBaa779nwNY7U5++uFFGIZpb79h7hT2Hm+lsaNnVI9nssgAaiGEEEIIIUZDgrMJ7qX99bx+qIG7NhSSnx437O03zJ+C1rDxcOOoHs8kmTMhhBBCCCFGZdIHZx09vVSMsQFGqDJbrNzzwkEWT0vk0xfM8Oo+s6fEMz0letRbG83uzFmqBGdCCCGEEEKMyKQPzq77/Q7ufmZ/sJfhF/e+eIiOnl7u/8hiwozenWqlFBvmTmVrmYlOq33Ej+nZ1pgaK9sahRBCCCGEGIlJH5xdsSSL4qoWjjV0BHspPvXawZO8uK+OL140i9lT40d03w3zpmCzO3mrtGnEj2uy2IiPDCMq3Dji+wohhBBCCDGZTfrg7MPLpxFuVPxzV02wl+IzbV29fOc/B5ibmcBtawtGfP8VeckkxYSPamujyWIlLV62NAohhBBCCDFSkz44S4uL5JL5U3l2Ty09vY5gL8cnfvjfQ5g7bTzwkUWEe7mdsb8wo4GLZmfw5tFG7A7niO5rtthkS6MQQgghhBCjMOmDM4CPr8yhrbuXl9+rD/ZSxmxLaRNPlZzg1jX5LMhOHPVxNsybQmtXL8VVLSO6n8lilU6NQgghhBBCjIIEZ8B5Bankpcbwr3G+tbGjp5dvPrOfgvRYvnjRrDEd68LCdCLCDCPe2mjutJEqM86EEEIIIYQYMQnOcHUo/NjKHIqrWigdx41BfvrKEerbe7j/I4vH3JAjNjKMVQWpvH74JFprr+5jdzhp6bJJ5kwIIYQQQohRkODMzdMYZLxmz94pN/OPHTV8atUMlucm++SYG+ZN5XhzN0e9DFibu2xoDWmSORNCCCGEEGLEJDhz8zQGeabkxLhrDNJtc/CNZ/eTmxrDV98322fHvXhuBgCvH/Rua6OpwwYgmTMhhBBCCCFGQYKzfj6+Mof2Hvu4awzy89eOUm3u4r6rFxEd4bv5YhkJUSyZnsTrh70Lzsyd7gHUEpwJIYQQQggxYhKc9eNpDPLPneNna+PBujb+tK2ST5ybw3kFqT4//vvmT2H/iTZOtvUMe1uTxRWcybZGIYQQQgghRm7Y4EwpNV0ptUkpdVgpdVAp9WX35Q8opY4opfYrpZ5TSiX5fbV+5mkMsrt6/DQGefD1UuIjw/jaJXP8cvz3zZsC4FX2zGxxbWuUzJkQQgghhBAj503mzA58RWs9FzgX+IJSah7wOrBAa70IKAW+6b9lBs5HxlFjkH3HW3njcCOfWZ1PYnS4Xx6jID2OGWmxXrXUb7JYiTAaSIgK88tahBBCCCGEmMiGDc601vVa6z3ujzuAw0C21vo1rbXdfbMdwDT/LTNwUsdRY5BfvF5KUkw4N63K89tjKKXYMG8K75Sb6OjpHfK2ZotrxplSym/rEUIIIYQQYqIaUc2ZUioPWArsPOOqTwH/89Gagu7j54R+Y5CS6ma2lDbxuQsLiI/yT9bMY8O8KfQ6NFtKm4a8nclilQHUQgghhBBCjJLXwZlSKg54BrhDa93e7/Jv49r6+Pgg9/usUmq3Ump3U9PQL+5DxXn5qcxIiw3pxiC/eL2U1NgIPnlert8fa1lOMqmxEcNubTRbZAC1EEIIIYQQo+VVcKaUCscVmD2utX623+U3ApcD12ut9UD31Vo/qrUu0loXpaen+2LNfudqDDI9ZBuD7Kgws63MzG1rC4iN9H99l9GguGhOBpuONNLrcA56O5PFSmqsBGdCCCGEEEKMhjfdGhXwJ+Cw1voX/S6/FLgb+JDWust/SwyODy+bRoTREHLZM601v3i9lPT4SD5xrv+zZh4b5k2hvcfOrsrmQddltthIi5dtjUIIIYQQQoyGN5mzVcANwEVKqb3ufx8Afg3EA6+7L3vEnwsNtNS4SC5ZMJVn94RWY5Dt5WZ2VTbzhbUFRIX7buD0cFbPSicq3DDo1sb2Hjs2h5M0yZwJIYQQQggxKt50a9yqtVZa60Va6yXufy9rrWdqraf3u+zWQCw4kD62cjrtPXb+uz80GoNorfn5a0fJTIzioytzAvrY0RFGLpiZzmsHTzLQDlazZwC1ZM6EEEIIIYQYlRF1a5xsPI1BQmXm2ZbSJvbUtPKFdTMDmjXzeN+8KdS19XCwrv2s60yeAdSSORNCCCGEEGJUJDgbQig1BvHUmmUnRXNt0fSgrOGiuRkoxYBbG/syZ9KtUQghhBBCiFGR4GwYodIYZOPhRvafaONL62cSERac05YWF8nynOQBgzNTX3Am2xqFEEIIIYQYDQnOhhEKjUGcTlfWLDc1hquXTQvKGjw2zJvCofp2TrSc3qDTs60xJVaCMyGEEEIIIUZDgjMvBLsxyGuHTnKovp0vXTSLcGNwT9mGeVMAeOOM7JnJYiU5JpywIK9PCCGEEEKI8UpeSXshmI1BnE7Ng68fIz89liuWZAX88c+Unx5HQXosrx8+PTgzW2xSbyaEEEIIIcQYSHDmhWA2Bvnve/Ucbejgy+tnhUxWasO8qeysaKatu7fvMnOnlVSpNxNCCCGEEGLUQuPV/jjwkeXTA94YxOHUPPRGKYVT4rh8UfCzZh4b5k3B7tRsPtrYd5lJMmdCCCGEEEKMiQRnXkqJjQh4Y5AX9tVS3tTJHRcXYjSogDymN5ZOTyItLpLX+tWdmSxWCc6EEEIIIYQYAwnORuDjK3MC1hjE7nDyyzeOMTczgUvnT/X7442EwaC4eG4GW442YbU76Ol10NFjlzb6QgghhBBCjIEEZyNwbn4KM9Ji+WcAGoM8+24tVeYu7tpQiCGEsmYeG+ZNwWK1s6OimeZOVxv9VMmcCSGEEEIIMWoSnI2ApzFISXULR0/6rzFIr8PJwxuPsWhaIhfPzfDb44zFqplpRIcbef3QyX4DqCU4E0IIIYQQYrQkOBshT2MQf7bVf2r3CU60dHPnhkKUCr2sGUBUuJELC9N441BjX3Am3RqFEEIIIYQYPQnORqh/Y5Bum+8bg1jtDn795jGW5iSxtjDd58f3pQ3zpnKyvYfNR5sASJfMmRBCCCGEEKMmwdko9DUGec/3jUH+XXycurYevrJhdshmzTzWz8nAoOC5PbWAZM6EEEIIIYQYCwnORuHc/BTy02J9vrWxp9fBbzaVsTIvhVUzU316bH9Ijo1gRV4KHVY7MRFGYiLCgr0kIYQQQgghxi0JzkbB1Rgkx+eNQR7fWUNDu5W73he6tWZn2jBvCiBZMyGEEEIIIcZKgrNR+vDyaT5tDNJls/O7zWWcX5DKufmhnzXzeN881ww26dQohBBCCCHE2EhwNkopsRFc6sPGIH9/pxqTxcZdGwp9sLrAyUmNYfH0JPLT4oK9FCGEEEIIIcY1Cc7G4GM+agxisdp5ZEs5FxamU5SX4qPVBc7jt5zDj65aEOxlCCGEEEIIMa5JB4cx8DQGefD1UvYebyE1NpK0uAhS4yJJjXX9nxYXQUJUOAbD4DVkf91eRUtX77jLmnnERcqPkRBCCCGEEGMlr6rHQCnFXe8r5KE3jvHf/fW0dPUOeLswgyKlX7DmCdxS3R8/+lYF6+dksGR6UmC/ACGEEEIIIUTIkOBsjC5flMXli7IAsDucNHfZMFvc/zqtp/1vcn9cbe7CbLHS6a5VMyi4c5xmzYQQQgghhBC+IcGZD4UZDWTER5ERH+XV7bttDsydVrSG6Skxfl6dEEIIIYQQIpRJcBZE0RFGpkVIUCaEEEIIIYSQbo1CCCGEEEIIERIkOBNCCCGEEEKIECDBmRBCCCGEEEKEAAnOhBBCCCGEECIESHAmhBBCCCGEECFAgjMhhBBCCCGECAESnAkhhBBCCCFECJDgTAghhBBCCCFCgARnQgghhBBCCBECJDgTQgghhBBCiBCgtNaBezClmoDqgD2g99IAU7AXMcnJOQg+OQfBJ+cgNMh5CD45B8En5yD45BwEn7/OQa7WOn2gKwIanIUqpdRurXVRsNcxmck5CD45B8En5yA0yHkIPjkHwSfnIPjkHARfMM6BbGsUQgghhBBCiBAgwZkQQgghhBBChAAJzlweDfYChJyDECDnIPjkHIQGOQ/BJ+cg+OQcBJ+cg+AL+DmQmjMhhBBCCCGECAGSORNCCCGEEEKIEDDugjOl1KVKqaNKqTKl1Df6Xf5vpdRe978qpdTeAe67RCn1jlLqoFJqv1Lqun7XzVBK7VRKHXMfK2KQx7/RfZtjSqkbR3r/iSCY50AplauUKnE/xkGl1K0juf9E4cdzcLv7mFoplTbE48vvQRDPgfweuPjxHDzuPu4BpdSflVLhgzy+/B4E8RzI78EpfjwPf1JK7XNf/rRSKm6Qx5ffhSCeA/ldcBniHCxRSu1wf392K6VWDnL/Mf0c++z3QGs9bv4BRqAcyAcigH3AvAFu93PgewNcXgjMcn+cBdQDSe7PnwQ+6v74EeC2Ae6fAlS4/092f5zs7f0nwr8QOAcRQKT74zigCsiSc+Czc7AUyHN/X9MGeXz5PQj+OZDfA/+egw8Ayv3vX4M8F8nvQfDPwaT/PQjAeUjod7tfAN8Y4P7yuxD8czDpfxeGOgfAa8D73R9/ANg8wP3H9HPsy9+D8ZY5WwmUaa0rtNY24Angiv43UEop4FpcT+an0VqXaq2PuT+uAxqBdPd9LgKedt/0r8CVAzz+JcDrWutmrXUL8Dpw6QjuPxEE9RxorW1aa6v700jc2V85B2M/B+7P39VaVw3z+PJ7EORzIL8HgH/PwcvaDdgFTBvg8eX3IMjnQH4P+vjzPLT3u380MFCjAvldCPI5kN8FYOhzoIEE98eJQN0A9x/rz7HPfg/GW3CWDRzv9/kJ92X9rQYaPD/kg3GnNCNwRdmpQKvW2n7mcZVSRUqpPw7z+IPefwIK9jlAKTVdKbXfvY6fup/I5BycbjTnYKjbye/B6YJ9DuT3IADnQLm20t0AvOL+XH4PThfscyC/By5+PQ9KqceAk8Ac4Ffuy+R34XTBPgfyuzD0ObgDeEApdRz4GfDNEdw/4DHCeAvO1ACXnfkOwscY4F2J0w6iVCbwd+BmrbVzqONqrXdrrW8Z5vG9WddEEexzgNb6uNZ6ETATuFEpNcXLdU0U/joHg5Lfg7ME+xzI70FgzsFvgbe01m+D/B4MINjnQH4PXPx6HrTWN+PaancYuM59mfwunC7Y50B+F4b+Wm8D7tRaTwfuBP40gvsHPEYYb8HZCWB6v8+n0S81qZQKA64G/j3YAZRSCcB/ge9orXe4LzYBSe77n3VcLx7f2/tPBME+B33c7wodxPVulJwDtzGcg7E+vpwDtwCcgz7ye9DHp+dAKXUPrm1Fd43w8eUcuAXgHPSZxL8HEIDnI621w33/D4/g8SfTeQj2Oeh/u8n6uzDUObgReNb98VO4tkB6e//Axwg6BIr4vP0HhOEqsJvBqWK/+f2uvxTYMsT9I4CNwB0DXPcUpxfrfX6A26QAlbgK/ZLdH6d4e/+J8C8EzsE0INr9cTJQCiyUc+Cbc9DvNlUM3RBEfg+Cew7k98C/z0W3ANs93+NB7i+/B8E/B5P+98Cf5wHXO/4z+338M+BnA9xffheCfw4m/e/CUOcAV8Zxrfvj9UDJAPcf08+xL38Pgv7NHMU3/wPuH7py4NtnXPcX4P/buXeUCIIoDKOfW3EFgoam7sLIQIxcgisxdSkGBoKMhrMTJzDoGhDBAcFhSjkHOuhHdVB/3+D262bH2MvqvXr5tJyMfcctHx2vxyRu/3pzVt1/OsfVOGbd8ti5XeP/43LIDKqLajWKblVdy+BXM7htufuzabmzs513dTBRBupg7xlsxjm32+++ZjDW1cEBM1AH+82h5e2qx+q1eqseGn8OVAtzZaAWdmdQnVfPY36eqtNvxv/oOt5XHRyNQQAAABzQX/vmDAAA4F/SnAEAAExAcwYAADABzRkAAMAENGcAAAAT0JwBAABMQHMGAAAwAc0ZAADABD4AKUDmLd+X92cAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACMN0lEQVR4nO3dd3ib5dX48e8tyXvvHcdO4sRJ7OyEFSCEWWih7JZSoKUtdO/dt/TXPd+Wtm8pHdAWOgirQKFlhZKQkEnikOnYWXYc25KnPCRLun9/SHIcx0OyNe3zua5ccTQe3X6ixDrPOfc5SmuNEEIIIYQQQojwMoR7AUIIIYQQQgghJDgTQgghhBBCiIggwZkQQgghhBBCRAAJzoQQQgghhBAiAkhwJoQQQgghhBARQIIzIYQQQgghhIgAEpwJIYQQQgghRASQ4EwIIaKUUso65JdLKdU35M+3hXt9E6GUOqqUujTc6xiLUuo1pdTdQTz+g0qpg56/0zuH3Xer575OpVSLUupPSqlUz31xSqk/KKWOKaW6lVJvKaWuGvb8tUqpA0qpXqXUeqVU6ZD7lFLqh0opi+fXj5RSKljfpxBCiLNJcCaEEFFKa53s/QUcB9455LZHw72+4ZRSpqnwGiGwG/gosHOE+94AztdapwHlgAn4juc+E3ACuAhIA74BPKaUmgmglMoGnvTcnglsB/4x5NgfBq4DFgHVwDXARwL3bQkhhBiPBGdCCDHFKKUMSqkvK6XqPBmQx5RSmZ77ZiqltFLqLqXUCaVUu1LqHqXUCqVUjVKqQyn1qyHHulMp9YZS6peebM0BpdTaIfenebI1TUqpRqXUd5RSxmHP/V+lVBtwn1JqllLqVc+6zEqpR5VS6Z7H/wWYATzryf59USl1sVKqYdj3N5hdU0rdp5R6XCn1iFKqC7hznDXNVkr91/O9mJVSQ4OToa8R7zmmxXNOtiml8pRS3wVWA7/yrPFXnsfPU0q9pJRq82S2bh5yrIeVUg947u/2vH7pSK8LoLX+tdb6FaB/hPtOaK3NQ25yArM99/Vore/TWh/VWru01s8BR4BlnsdeD+zVWq/TWvcD9wGLlFLzPPffAfxUa92gtW4EfgrcOdo6hRBCBJ4EZ0IIMfV8EncG5CKgEGgHfj3sMauAOcAtwM+BrwGXAguAm5VSFw17bD2QDXwTeNIb7AF/Ahy4A4QlwOXA3SM8Nxf4LqCA73vWVQmU4A4S0FrfzpkZwB/5+P1eCzwOpAOPjrOmbwMvAhlAMfDLUY55B+7sUwmQBdwD9GmtvwZsAD7uWePHlVJJwEvAXz3f53uA/1NKLRhyvNs8r50N7PKsc0KUUhcopTqBbuAG3H9/Iz0uD6gA9npuWoA7Kwe4gzmgznP7Wfd7vh76PQghhAgyCc6EEGLq+QjwNU8GxIY7+LlxWMnft7XW/VrrF4Ee4G9a6xZPxmQD7qDGqwX4udZ6QGv9D+AgcLXnw/9VwKc9WZsW4H+BW4c896TW+pdaa4fWuk9rfVhr/ZLW2qa1bgV+hjuInIzNWuuntdYuIHWcNQ0ApUCh5/vfOMoxB3AHZbO11k6t9Q6tddcoj70GOKq1fsjzfe4EngBuHPKYf2mtX/f8fXwNOFcpVTKRb1ZrvdFT1lgM/Bg4OvwxSqkYPIGq1vqA5+ZkoHPYQzuBlFHu7wSSZd+ZEEKEzlSozRdCCHGmUuAppZRryG1OIG/In5uHfN03wp+Th/y5UWuth/z5GO7MVykQAzQN+fxuwL3vyWvo1yilcoH7cZcGpnge3+7TdzW6oa8x3pq+iDuDtVUp1Y67jO+PIxzzL7izZn/3lF0+gjvgHRjhsaXAKqVUx5DbTJ5jnLVGrbXVU+ZZOGztftFaNyql/g38HVjqvV0pZfC8th34+JCnWHEHr0Ol4s7AjXR/KmAd9ncvhBAiiCRzJoQQU88J4CqtdfqQX/GerNhEFA3LnswATnpexwZkD3mdVK310FK44R/sv++5rVprnQq8D3ep42iP7wESvX/w7B3LGfaYoc8Zc01a61Na6w9prQtxZxj/Tyk1e/g37MkSfktrPR84D3d27P2jrPEE8N9h5ztZa33vkMcMZsmUUsm4G3KcHP66E2ACZg05tgL+gDsQv2FYMLkXd7MP72OTPM/dO9L9nq/3IoQQImQkOBNCiKnnAeC73qYTSqkcpdS1kzheLvBJpVSMUuom3HvFntdaN+Hev/VTpVSqpxHJrGH71YZLwZ2h6VBKFQFfGHZ/M+4uhF6HgHil1NWeUr2vA3GjHXy8NSmlblJKFXse3o470HIOP45Sao1SqsoTDHbhLnP0Pm74Gp8DKpRSt3vOUYxyN1ipHPKYd3j2isXiztxt0VqPmDVTSsUqpeJxB60xnuYkBs99tymlZii3Utz7+F4Z8vTf4P77eafWum/YoZ8CFiqlbvAc/3+AmiFlj38GPquUKlJKFQKfAx4eaY1CCCGCQ4IzIYSYen4BPAO8qJTqBt7E3Zhjorbgbh5ixh0M3Ki1tnjuez8QC+zDHew8DhSMcaxv4S7B6wT+hbu1+1DfB77u6ZD4ea11J+628r8HGnFn0hoY21hrWgFsUUpZcZ+jT2mtj4xwjHzP87qA/cB/cZc2gvv83qjcnS7v11p34246civubNgp4IecGUT+FXczlTbc3RPHmkP3Iu7S0vOABz1fX+i5bz6wCXeA+wbu/X8fAvAEax8BFgOn1LCZd549fjfg/jtsx/2eGLo/8LfAs8Ae4G3cfz+/HWOdQgghAkxJKbkQQojRKPcQ5Lu11heEey3RSin1MNCgtf56uNcihBAisknmTAghhBBCCCEigARnQgghhBBCCBEBpKxRCCGEEEIIISKAZM6EEEIIIYQQIgJIcCaEEEIIIYQQEcAUyhfLzs7WM2fODOVLCiGEEEIIIUTE2LFjh1lrnTPSfSENzmbOnMn27dtD+ZJCCCGEEEIIETGUUsdGu0/KGoUQQgghhBAiAkhwJoQQQgghhBARQIIzIYQQQgghhIgAId1zJoQQQgghRKQYGBigoaGB/v7+cC9FTEHx8fEUFxcTExPj83MkOBNCCCGEENNSQ0MDKSkpzJw5E6VUuJcjphCtNRaLhYaGBsrKynx+npQ1CiGEEEKIaam/v5+srCwJzETAKaXIysryOysrwZkQQgghhJi2JDATwTKR95YEZ0IIIYQQQoTJd7/7XRYsWEB1dTWLFy9my5YtANx9993s27cvIK8xc+ZMzGbzmI/53ve+5/dxH374YT7+8Y+fcdtDDz3E4sWLWbx4MbGxsVRVVbF48WK+/OUv+338UPj5z39Ob29vuJcxSPacCSGEEEIIEQabN2/mueeeY+fOncTFxWE2m7Hb7QD8/ve/D+lavve97/HVr3510se56667uOuuuwB3ULh+/Xqys7MnfdyJ0lqjtcZgGDkn9fOf/5z3ve99JCYm+nxMh8OByRScMGrczJlSqkQptV4ptV8ptVcp9akh931CKXXQc/uPgrJCIYJk65E2WrqkO5MQQgghwqOpqYns7Gzi4uIAyM7OprCwEICLL76Y7du3A5CcnMyXvvQlli1bxqWXXsrWrVu5+OKLKS8v55lnngHOzmJdc801vPbaa2e95nXXXceyZctYsGABDz74IABf/vKX6evrY/Hixdx2220APPLII6xcuZLFixfzkY98BKfTCbgzYxUVFVx00UW88cYbPn+vP/7xj1mxYgXV1dV885vfBODo0aPMmzePu+++m4ULF3Lbbbfx8ssvc/755zNnzhy2bt0KwH333cftt9/OJZdcwpw5c/jd73437nErKyv56Ec/ytKlSzlx4gT33nsvy5cvZ8GCBYOPu//++zl58iRr1qxhzZo1g+fa6/HHH+fOO+8E4M477+Szn/0sa9as4Utf+hJ1dXVceeWVLFu2jNWrV3PgwAGfz8WYvNHkaL+AAmCp5+sU4BAwH1gDvAzEee7LHe9Yy5Yt00JEgqffatClX3pOf3Hd7nAvRQghhBBhsm/fvrC+fnd3t160aJGeM2eOvvfee/Vrr702eN9FF12kt23bprXWGtDPP/+81lrr6667Tl922WXabrfrXbt26UWLFmmttX7ooYf0xz72scHnX3311Xr9+vVaa61LS0t1a2ur1lpri8Witda6t7dXL1iwQJvNZq211klJSYPP3bdvn77mmmu03W7XWmt977336j/96U/65MmTuqSkRLe0tGibzabPO++8M15zOO/r/uc//9Ef+tCHtMvl0k6nU1999dX6v//9rz5y5Ig2Go26pqZGO51OvXTpUn3XXXdpl8uln376aX3ttddqrbX+5je/qaurq3Vvb69ubW3VxcXFurGxcczjKqX05s2bB9fi/b4dDoe+6KKL9O7du886N8PPw7p16/Qdd9yhtdb6jjvu0FdffbV2OBxaa60vueQSfejQIa211m+++aZes2bNiOdgpPcYsF2PEi+Nm4/TWjcBTZ6vu5VS+4Ei4EPAD7TWNs99LYEJF4UIrtcPtfL5dbsB2HasLcyrEUIIIUQk+Naze9l3siugx5xfmMo337lg1PuTk5PZsWMHGzZsYP369dxyyy384Ac/GMzWeMXGxnLllVcCUFVVRVxcHDExMVRVVXH06FG/1nT//ffz1FNPAXDixAlqa2vJyso64zGvvPIKO3bsYMWKFQD09fWRm5vLli1buPjii8nJyQHglltu4dChQ+O+5osvvsiLL77IkiVLALBardTW1jJjxgzKysqoqqoCYMGCBaxduxal1Fnf27XXXktCQgIJCQmsWbOGrVu3snHjxlGPW1payjnnnDP4/Mcee4wHH3wQh8NBU1MT+/bto7q62q9zd9NNN2E0GrFarWzatImbbrpp8D6bzebXsUbjV7GkUmomsATYAvwYWK2U+i7QD3xea71thOd8GPgwwIwZMya7XiEmZdeJDu55ZAezc1O4eG4Ov3mtjrYeO5lJseFemhBCCCGmIaPRyMUXX8zFF19MVVUVf/rTn84KzmJiYgY7/xkMhsEySIPBgMPhAMBkMuFyuQafM1IL99dee42XX36ZzZs3k5iYyMUXXzzi47TW3HHHHXz/+98/4/ann356Qh0ItdZ85Stf4SMf+cgZtx89enTwexnre4OzOx8qpcY8blJS0uCfjxw5wk9+8hO2bdtGRkYGd95556gt7oe+zvDHeI/pcrlIT09n165d433rfvM5OFNKJQNPAJ/WWncppUxABnAOsAJ4TClV7knVDdJaPwg8CLB8+XKNEGFyuMXKXQ9tJSs5lj/dtYKjll5+81odO4+1c+n8vHAvTwghhBBhNFaGK1gOHjyIwWBgzpw5AOzatYvS0tIJHWvmzJn83//9Hy6Xi8bGxsH9WkN1dnaSkZFBYmIiBw4c4M033xy8LyYmhoGBAWJiYli7di3XXnstn/nMZ8jNzaWtrY3u7m5WrVrFpz71KSwWC6mpqaxbt45FixaNu7YrrriCb3zjG9x2220kJyfT2NhITEyMX9/fP//5T77yla/Q09PDa6+9xg9+8AMSEhJ8Om5XVxdJSUmkpaXR3NzMCy+8wMUXXwxASkoK3d3dg01L8vLy2L9/P3PnzuWpp54iJSXlrOOlpqZSVlbGunXruOmmm9BaU1NT49O5GI9PwZlSKgZ3YPao1vpJz80NwJOeYGyrUsoFZAOtk16VEAHW1NnHHX/citGg+MsHVpGbGk9qQgwxRsV2Cc6EEEIIEQZWq5VPfOITdHR0YDKZmD179mCTDn+df/75gyWCCxcuZOnSpWc95sorr+SBBx6gurqauXPnnlH29+EPf5jq6mqWLl3Ko48+yne+8x0uv/xyXC4XMTEx/PrXv+acc87hvvvu49xzz6WgoIClS5cONgoZy+WXX87+/fs599xzAXc55yOPPILRaPT5+1u5ciVXX301x48f5xvf+AaFhYUUFhb6dNxFixaxZMkSFixYQHl5Oeeff/4Z3/dVV11FQUEB69ev5wc/+AHXXHMNJSUlLFy4EKvVOuJ6Hn30Ue69916+853vMDAwwK233hqQ4EwNS3Sd/QB3bu9PQJvW+tNDbr8HKNRa/49SqgJ4BZgxPHM21PLly7W364wQodLRa+fm327mZEc/f//wOSwsShu877pfv0Gs0cBj95wbxhUKIYQQIhz2799PZWVluJchxnHfffeRnJzM5z//+XAvxW8jvceUUju01stHerwvQ6jPB24HLlFK7fL8egfwR6BcKfU28HfgjrECMyHCoc/u5IN/2s5Rcy8P3r7sjMAMYHlpBrsbOrA7XKMcQQghhBBCiNDwpVvjRmC0nX/vC+xyhAicAaeLj/11JzuPt/Pr9y7lvNlnD0BcVprB7zceYe/JTpbMyAjDKoUQQgghxFjuu+++cC8hZHzJnAkRdbTWfPmJPbx6oIVvX7uQd1QVjPi4ZTPdAdmOY+2hXJ4QQgghhBBnkeBMTEk/eOEAT+xs4NOXzuF954ze9Sg3JZ4ZmYlsPyrBmRBCCCGECC8JzsSU87vX6/nt6/Xcfk4pn1o7Z9zHLyvNYMfxdmTLpBBCCCGECCcJzsSU8sSOBr77/H6urirgvnct8GlQ4rLSDFq7bZxo6wvBCoUQQgghhBiZBGdiylh/oIUvPlHD+bOz+NktizAafJtgv6zUve9s+7G2YC5PCCGEEOIsRqORxYsXs3DhQm666SZ6e3snfKw777yTxx9/HIC7776bffv2jfrY1157jU2bNg3++YEHHuDPf/7zhF/b6+jRoyxcuPCM2+677z5+8pOf+HWcQK0n2vg0hFqISLfjWDv3PrqDyoIUfnv7cuJMvg81rMhLISXOxI5j7Vy/tDiIqxRCCCGEOFNCQgK7du0C4LbbbuOBBx7gs5/97OD9TqfTr2HNXr///e/HvP+1114jOTmZ8847D4B77rnH79cIFofDEVHrCSXJnImod6i5mw88vI381HgevmslyXH+XXMwGhRLSjOkY6MQQgghRvejH8H69Wfetn69+/YAWb16NYcPH+a1115jzZo1vPe976Wqqgqn08kXvvAFVqxYQXV1Nb/97W8Bd3fqj3/848yfP5+rr76alpaWwWNdfPHFbN++HYB///vfLF26lEWLFrF27VqOHj3KAw88wP/+7/+yePFiNmzYcEZ2a9euXZxzzjlUV1fz7ne/m/b29sFjfulLX2LlypVUVFSwYcMGv7/HsY791a9+lYsuuohf/OIXg+s5efIkixcvHvxlNBo5duwYx44dY+3atVRXV7N27VqOHz8OuLOHn/zkJznvvPMoLy8fzCRGCwnORFRr7Ojj/X/YSqzJwF8+uIrs5LgJHWfZjAwONnfT1T8Q4BUKIYSY7l7Y08T6gy3jP1BEthUr4OabTwdo69e7/7xiRUAO73A4eOGFF6iqqgJg69atfPe732Xfvn384Q9/IC0tjW3btrFt2zZ+97vfceTIEZ566ikOHjzInj17+N3vfndGmaJXa2srH/rQh3jiiSfYvXs369atY+bMmdxzzz185jOfYdeuXaxevfqM57z//e/nhz/8ITU1NVRVVfGtb33rjHVu3bqVn//852fcPlRdXd0ZAdUDDzzg07E7Ojr473//y+c+97nB2woLC9m1axe7du3iQx/6EDfccAOlpaV8/OMf5/3vfz81NTXcdtttfPKTnxx8TlNTExs3buS5557jy1/+sp9/E+ElZY0iarX12Hn/H7bQY3fw2EfOpSQzccLHWj4zA63hreMdXFSRE8BVCiGEmM5cLs03/rmX0qxE1szNDfdyxFg+/WnwlBeOqrAQrrgCCgqgqQkqK+Fb33L/GsnixfDzn495yL6+PhYvXgy4M2cf/OAH2bRpEytXrqSsrAyAF198kZqamsEsUGdnJ7W1tbz++uu85z3vwWg0UlhYyCWXXHLW8d98800uvPDCwWNlZmaOuZ7Ozk46Ojq46KKLALjjjju46aabBu+//vrrAVi2bBlHjx4d8RizZs0aLNWE00Okxzv2LbfcMuq63njjDX7/+98PZus2b97Mk08+CcDtt9/OF7/4xcHHXnfddRgMBubPn09zc/OY32+kkeBMRK3PPbaLE+19/OUDK6ksSJ3UsRaVpGNQsONomwRnQgghAubAqW7MVhuxRt+aVIkIl5HhDsyOH4cZM9x/nqShe86GSkpKGvxaa80vf/lLrrjiijMe8/zzz4/bmVpr7VP3al/FxbmrlIxGIw6HI2DHhTO/56Gampr44Ac/yDPPPENycvKIjxn6PXrXCETdqCQJzkRUOm7pZf3BVj57WQWryrMmfbzkOBOVBansOC77zoQQQgTOxsOtADR323C6tM+dhEUYjJPhAk6XMn7jG/Cb38A3vwlr1gR9aVdccQW/+c1vuOSSS4iJieHQoUMUFRVx4YUX8tvf/pb3v//9tLS0sH79et773vee8dxzzz2Xj33sYxw5coSysjLa2trIzMwkJSWFrq6us14rLS2NjIwMNmzYwOrVq/nLX/4ymOmarIkce2BggJtvvpkf/vCHVFRUDN5+3nnn8fe//53bb7+dRx99lAsuuCAgaww3Cc5EVHp8xwmUgpuWB6674vLSDNbtaMDhdGEyynZMIYQQk7eh1gyA06Vp7baRnxYf5hWJCfMGZo895g7I1qw5889BdPfdd3P06FGWLl2K1pqcnByefvpp3v3ud/Pqq69SVVVFRUXFiIFOTk4ODz74INdffz0ul4vc3Fxeeukl3vnOd3LjjTfyz3/+k1/+8pdnPOdPf/oT99xzD729vZSXl/PQQw8F7Hvx99ibNm1i27ZtfPOb3+Sb3/wm4M4Y3n///XzgAx/gxz/+MTk5OQFdYzipUKb6li9frr1dY4SYKKdLs/qHrzI7L4U/f2BlwI77z12NfOrvu3juExewsCgtYMcVQggxPfUPOFn0rRcpTE/giLmHJz96HktnTL4MTgTO/v37qays9O3BP/qRu/nH0EBs/XrYtg2G7HcSYqiR3mNKqR1a6+UjPV7SAyLqbKozc7Kzn5sDmDUDWD7TvUFWWuoLIYQIhG1H27A5XINVHk0d/WFekZiUL37x7AzZmjUSmImAkuBMRJ3HtjeQlhDDpZV5AT1uUXoCBWnxbJfgTAghRABsrDUTazRw3eIiAJo6+8K8IiFEpJPgTESVzt4B/rP3FNctLiQ+xhjw4y8tzWCnBGdiCvvpiwf5+tN7wr0MIaaF12vNLCvNoCAtnvgYA02dkjkTQoxNgjMRVZ7Z3Yjd4eKm5SVBOf7y0gwaO/rk6qaYsl490MJ/9kbXzBcholFrt439TV2srshGKUVhWoL8bIlQ0dZqXUSPiby3JDgTUWXdjgYqC1JZUDi5uWajWVbq3qi9/ahkz8TU1NjRR2u3je7+gXAvRYgp7Y3D7i6Nq2e7Z2cWpMdzUvacRZz4+HgsFosEaCLgtNZYLBbi4/3r0Cqt9EXUOHCqi5qGTv7nmvkBHaY4VGVBKgkxRnYca+ediwqD8hpChIvV5qCj1x2UHTH3UF2cHt4FCTGFvV7bSkZizODFxIK0BDZ62uqLyFFcXExDQwOtra3hXoqYguLj4yku9q+BnQRnImqs295AjFFx3ZKioL1GjNHA4pJ06dgopqTG9tMlVfWtEpwJESxaazbWmjl/djYGz9DpgrR4Wrr7ZZZmhImJiaGsrCzcyxBikPzvIKKC3eHiqbcauWx+HplJsUF9rWWlGexr6qLH5gjq6wgRao0dvYNf15t7wrgSIaa2Q81WWrptXDgnZ/C2grQEXBqau21hXJkQItJJcCaiwqsHWmjrsXPTsuA0Ahlq2cwMnC7N7oaOoL+WEKHkzZylxJmob7WGeTVCTF0bat0lchfMyR68rSDdve/klDQFEUKMQYIzERXWbT9BXmocq4f8oAuWpSXupiA7pCmImGIaOvqINRpYUprBEcmcCRE0G2rNzMpJojA9YfC2gjR3cCZNQYQQY5HgTES8lq5+XjvUyvVLi0NSp5+WGENFXjI7jktwJqaWxvY+CtPjmZWTxBFzj3QnEyIIbA4nW45YWD2kpBHcZY0gg6iFEGOT4ExEvCffasTp0ty0zL9uN5OxrDSTncfacbnkw6uYOhra+yjKSKA8J5leu5PmLtn7IkSg7TjaTv+A66xKj9R4E0mxRhlELYQYkwRnIqJprVm3/QTLSzMoz0kO2esuK82gq99BbYvsyxFTR2NHH8XpiZRnJwHIvjMhguD1WjMxRsU55Vln3K6UoiA9gSYpaxRCjEGCMxHRdh7voK61h5uXB78RyFDLPcOopaW+mCr6B5y0dts8mTNPcCb7zoQIuI2HW1kyI4OkuLOnFRWkxUtZoxBiTBKciYi2bvsJEmKMvKO6IKSvW5qVSHZyLNuPtYX0dYUIFm8pVVF6Ankp8STEGKlvleBMiECyWG283djFhaM0rypIi+eklDUKIcYgwZmIWL12B8/VNHF1dQHJI1yBDCalFEtnZLBTMmdiivC20S/KSMBgUJRlJ3HELGWNQgTSG3UWAC4Y1gzEqyAtAbPVht3hCuWyhBBRRIIzEbFe2HMKq80R0kYgQy2fmcFRSy+tETgw1GK18fsN9dKwRPisod09gLrI09q7LCdJyhqFCLANh1pJS4ihqihtxPsL0uLRGpq7JHsmhBiZBGciYq3bcYKZWYmsLMsMy+svi+B9Z0+91ch3/rWft092hnspIko0dvRhNKjBWUuzspM40dYrV/CFCBCtNRsPmzl/dhZGgxrxMQXp3nb6EpwJIUYmwZmISMctvbxZ38aNy4pRauQfcsG2sCiNWJOBnRE476zO02VvT6MEZ8I3je195KfGD84KLMtJwqXheJtkz4QIhLpWK02d/WfNNxuq0HNxRJqCCCFGI8GZiEiP7ziBUnBDmEoaAeJMRqqL0th+NPKagtS1uD9Qvy3BmfBRQ0ffYEkjQHm2ezSFNAURIjBeP2QG4ILZIzcDAcgfDM4kcyaEGJkEZyLiOF2ax3c0cOGcHArSEsZ/QhAtK83g7cYu+gecYV3HcIc9mbOaBgnOhG8aPQOovcqknb4QAbXxsJmy7CRKMhNHfUxKfAwpcSaaOiRzJoQYmQRnIuJsqjNzsrOfm5aHL2vmtaw0A7vTFVEZqrYeO209dlLiTBxq7sbmiKzAUUQeh9PFqa7+MzJnqfExZCfHcUQyZ0JMmt3h4s16C6tHaaE/VEG6tNMXQoxOgjMRcR7b3kB6YgyXzc8L91JY6mkKsj2CmoLUe7JmV1XlM+DUHDzVHeYViUh3qqsfp0tTnHFmJro8O4l6aacvxKTtPN5Or905ZkmjV0FaAqckOBNCjEKCMxFROnsH+M/eU1y7qJA4kzHcyyE7OY6y7KSI6th4uMX9Yfq6xUWAlDaK8Q2dcTZUeU4SR6SsUYhJ21DbitGgOHdW1riPLUiLl4YgQohRSXAmIsozuxuxO1zctLwk3EsZtKzUPYxa68iYKVbXaiXWZGBVeRbpiTERVXIpIlOjZ3/L0LJGgLLsJMxWO519A+FYlhBTxsZaM0tK0kmJjxn3se5B1HYpSRdCjEiCMxFR1u1ooLIglYWjDPAMh2WlGVh67BGTYahr7aE8OwmjQVFVlCbt9MW4vJmzwhGCMyBi3ttCRKP2Hjs1jZ1jttAfqiDd3bGxudMWzGUJIaKUBGciYhw41UVNQyc3R0AjkKGWR9gw6sMtVmblutugVxWlcfBUd8R1kxSRpaG9j+zkOOJjziwVLs/xttOXfWdCTNQbdWa0hgt8aAYCDA6CPymljUKIEUhwJiLGuu0NxBgV13r2UkWKWTnJpMabIiI46x9wcqK9l1k5p4Mzh0uagoixNXb0ndUMBGBGZiJGg5LMmRCTsLHWTEq8iUXFvlV8eEfEyL4zIcRIJDgTEcHucPHUW41cNj+PzKTYcC/nDAaDYllpRkR0bDxq6UFrmO3NnHk+DNRIaaMYQ2NH31nNQABiTQZKMhJkELUQE6S1ZkOtmfNmZWEy+vaRqjBdBlELIUYnwZmICK8eaKatx85NyyKnEchQy2dmcrjFSkevPazr8HZqnOUZIFyUnkBGYgxvS8dGMQqXS7szZ+kjD3Qvy06SQdRCTNARcw+NHX0+7zcDSIw1kZYQQ1OHBGdCiLNJcCYiwrrtDeSlxvk0wDMcls5w7zvbeTy82bO6lh6UgvJsd+ZMKUVVcbo0BRGjMvfYsDtcI2bOwL3v7IjZissVGd1IhYgmG2rNAFzoR3AG0k5fCDE6Cc5E2LV09bP+YAvXLy32uSwk1BaXpGMyqLDvO6trtVKUnkBC7OnGDlVFqRxqlqYgYmQN7SO30fcqy06if8DFqS65ii+EvzbUmpmRmciMrES/nleQFs9JyZwJIUYw7idhpVSJUmq9Umq/UmqvUupTntvvU0o1KqV2eX69I/jLFVPRk2814tJw07LI6tI4VEKskQWFqWw/Gv7gzNsMxMvbFOSANAURI/C20S/OGPnDY7mnRFb2nY2vf8DJgVNd4V6GiBADTheb68wTqvgoSE+QCyJCiBH5kqZwAJ/TWlcC5wAfU0rN99z3v1rrxZ5fzwdtlWLK0lrz2PYTrJiZMdjWO1ItLc1gd0MHA05XWF7f5dIjB2fF6QDsaegI/aJExBscQD1aWaOnRPaIWdrpj6V/wMkHHt7GNfdvDPveUxEZ3jreQY/dObHgLDWeth67VDwIIc4ybnCmtW7SWu/0fN0N7Aciq9e5iFo7j3dQ39oTsY1Ahlpemkn/gIt9J8Nz5fxkZx/9A67BTo1ehWnxZCbFyr4zMaLG9j7SEmJIjjONeH9eahyJsUbqJHM2KofTxSf/9hab6iw4XJpDzRLICthY24pBwbmzJpY5A+nYKIQ4m18bfJRSM4ElwBbPTR9XStUopf6olMoI9OLE1Ldu+wkSY428o7og3EsZ1zLPMOpwtdT3fnj2dmr0UkqxsCiNPY1SbiXO1tjRN+p+M3C/f8qyk2TW2ShcLs2XntjDi/ua+chF5QAcapYSYgGv15pZVJJOWkKM388tTPO205emIEKIM/kcnCmlkoEngE9rrbuA3wCzgMVAE/DTUZ73YaXUdqXU9tbW1smvWEwZvXYHz9U08Y6qglGv6keS/LR4itIT2HGsLSyvP9hGP/fs8s/qojRpCiJG1NDeO2pJo1d5TjL1UtZ4Fq013/7XPp7Y2cBnLq3gy1fOIznORK0EZ9NeZ+8ANQ0dfrXQHyrfG5xJUxAhxDA+BWdKqRjcgdmjWusnAbTWzVprp9baBfwOWDnSc7XWD2qtl2utl+fkTOw/MTE1vbDnFFabg5uXR35Jo9fymRnsONaO1qFvO17XaiU9MYasEYZ0LyxKw+nS7G+S7Jk4TWtNY3sfxeMEZ2XZSTS092FzSHA/1P2vHOahN47ygfPL+OTa2SilmJ2bLGWNgk11ZlyaCY9/KUjzljVK5kwIcSZfujUq4A/Afq31z4bcPrQO7d3A24FfnpjK/nuolfzUeFbMjJ6K2GWlGTR32Qbbk4dSXYu7GYj7n+SZqorTAHhb9p2JITr7BuixO8csawR3qazWcNzSG6KVRb6H3zjC/758iBuWFvP1qysH/91V5CVHbVljj82BI0wNjaaaDYfNJMeZWFySPqHnJ8QayUiM4aTsORNCDONL5ux84HbgkmFt83+klNqjlKoB1gCfCeZCxdTT2m2jJDNhxGAjUnn3nYVjGLW7U2PSiPcVpsWTlRRLTYMEZ+K0hsE2+uNnzgBpCuLx1FsN3PfsPi6fn8cPb6jCYDj9f1RFXgqWHjsWqy2MK/RfV/8Al/7sv/zghQPhXkrU01rz+qFWzp2VRcwkZnMWpCVwSoIzIcQw42700VpvBEb69Cyt88WkWHpsg228o8XcvBSSYo1sP9rOtYtD17S0o9eO2Wo/q1Oj1+mmIBKcidMG2+injz0g1xucSVMQeGlfM59fV8N5s7K4/z1LMA378F2RlwLAoWYr5ybHhWOJE/KzFw/R1NnPjjBcWJpqjll6aWjv48MXlk/qOAVp8YP/RoUQwmvil3yEmCSL1U5W8tn7pyKZyWhgyYyMkHdsPN2pcfRgtro4jdoWqzQFEYO8mbPxGoKkxMeQkxJHfev03ku1uc7Cx/66k4WFqTz4/uXExxjPeow3OKttiZ7SxrcbO/nz5qPEmQwcOtUdlj2zU8mGw2aACTcD8SpIj5dW+kKIs0hwJsLC6dK09drJiqIrz17LSjM4eKqL7v6BkL1mnbdT4xjBmbcpyD5pCjKmAaeL7z+/nzfrLeFeStA1tveR6NnbMp7yad5Ov6ahg7v/tI3SzEQevmvlmHPhUuJNUbPvzOXSfO3pt8lMiuMzl1XQY3eGZc/sVLLhUCtF6QnMzBo7Iz2egrQEOvsG6LU7ArQyIcRUIMGZCIv2XjtaQ3aUZc7AHZy5NOw60RGy16xrtRJrNFCSOfqHgaqi6GkKUt9qDVuXspqGTn77ej3v+d2b/Pg/BxiYwg0SGjt6KUr3bV9neU4S9dM0ODvc0s0df9xKRlIsf/ngKjJG6IjqpZSiIi8lajo2/n3bCXaf6OBrV88bbL4ULYFlJHI4XWyus3BhRfak90sXDM46k+yZEOI0Cc5EWFisdgCykqIvc7ZkRjpKwY4QljbWtVopy07CaBj9w0BBWjzZyZHfFERrzR0PbeXrT4WnwWtNQwcA71hYwK/X13HTA5unbJfCxo6+cUsavcqzk2nrsdPRaw/yqiJLQ3sv7/v9VowGA498cNXg/KmxVOQlU9sc+eWBFquNH/77AKvKMrlucRFzPCWZB05JcDZRuxs66LY5uGD25EcDDbbTl1lnQoghJDgTYWH2dDqLtj1n4N6fMzcvJaTB2eEWK7NyR+7U6OVtChLpmbMTbX2caOtj5/HwzIvb09BJXmocv75tKb967xLqWq284/4NPP1WY8jXEmyN7X3jttH38jYFmU7Zs9ZuG+/7/RZ67Q7+8sGVzMwe+9+Y15zcFNp7BzBbIzuQ/cELB+ixOfjOdQtRSpEaH0NRegIHJTibsA21ZpSC82dnTfpYhenezJmUmQohTpPgTISFNziLxrJGcA+jfut4B05X8IMLm8PJ8bZeZo+x38yrqsjdFKTPHrlNQTbXuzfTt/cOhGXvS01jJ1VF6QBcU13IC59azbz8FD79j1185h+7QrqXMJh6bA7aewd8z5x5xjQcmSbt9Dv7Bnj/H7fS3GXjobtWUFmQ6vNzB5uCRHB54Lajbazb0cDdq8sHM2YAc/NTpKxxEjbUmqkuSiM9cfI/u/JSpaxRCHE2Cc5EWERzWSPA8tJMrDZHSK5AH7P04tIwa5Q2+kNVRUFTkM11lsHyzN2eEsNQsdoc1LVaqfYM7QYozkjk7x8+h89cWsE/dzVy9f0beWsKtBv3tuguzvCtaUFJZiImg6LeHB17qSajz+7kgw9v43BLNw/cvoxlpZl+Pb8iz/1vMVKDHIfTxTeefpvCtHg+uXb2GfdV5KVQ12qd0nstg6Wrf4BdJzom3aXRKz7GSFZSrGTOhBBnkOBMhIWlx4bRoEhLGL+LXCTyDqPecawt6K/lS6dGr6riyG4KorVmc72FSytziTUZ2B3CpirgPi9anz5PXiajgU9dOofHPnIuTpfmpgc28+v1h0OSGQ2WRm8bfR/LGmOMBmZkJk75jo12h4t7HtnBzuPt/PyWJVxU4f8H7ZyUONISYjjUEpmB7MObjnLgVDfffNcCEmPP7Do5Lz+FAaee8n/PwbC5zoLTpblgTnbAjlmQHs9J2XMmhBhCgjMRFharnaykWAxjNLiIZMUZCeSmxIVk3tlhzwdAb9nZWPJT48lOjovYpiBHzD00d9lYPSeH+QWp7A7xOvd4Xq+6KG3E+5fPzOT5T63myoX5/Pg/B3nf77dE7VXthsHMmW/BGbj3ndVP4bLGHpuDzz62i/8eauV7767i6uqCCR3H3bExOSLLGk919vO/Lx3iknm5XD4/76z7K6QpyIRtqG0lMdbI0hkZATtmQVoCp6SsUQgxhARnIizM1uicceallGL5zIyQNAWpa7VSlJ5w1hXw0dZVVZQasZmzzZ7ZYufOymJRsbt5SSizUzWNnRSlJ4z53ktLiOGX71nCj2+sZndDB1f9YgP/2XsqZGsMlMb2PmKNBnL8+HdWnuOedeaK4ozhcBarjX9sO84HH97Gkm+/xHM1TXz5qnncunLGpI47x9NOP9I6Nn77X/twuDT3vXPBiK3eZ+W6u74ePBW5pc+RamOtmXPLs4g1Be6jU0FaPCej9AKQECI4JDgTYWHpsUVtMxCvpTMyaGjvo7kruFc961p7fMqaebmbgnRHZFOQzXUWclPiKM9OYlFJOr12J3WtoSsN29PQccZ+s9EopbhpeQn/+uRqSjIS+chfdvDVp/ZE5DkdTUN7LwXp8X5lp8uyk7E5XFH/YfG4pZffb6jn5gc2s+K7L/OlJ/Zw4FQ37105g8c+ci73XDRr0q9RkZtMZ98Ard22AKw4MF4/1Mq/apr4+JrZzBhlQHKcyUh5dhIHT0VmSWakOtHWy1FLb0BLGsGdOevud2C1ySBqIYTb+JfihQgCi9VO6RgDlaPB8pnuJgI7jrXzjqqJlUeNx+XS1LVauWVFic/PqSpOx6VhX1On340OgklrzZv1bZw/OwulFNXF6QDsPtExWGoVTJ29Axy19HKzH+eyLDuJJ+49j5++dJDf/reerUfauP/WJcwv9L2zX7g0dvT5VdIIQzo2mnt8biQSCbTW7D3ZxYt7T/HivubBkr15+Sl8/JI5XD4/jwWFqZMeGjyU9z17qNlKbur4s9GCrX/Ayf/8823KspP48EXlYz62Ij9lcN6f8M2GWneX2UA1A/HyttM/1dnH7Nzg/z8ohIh8kjkTYWGx2qK6rBFgfkEqcSYD248Gr7TxVFc/vXanT81AvKo8+6n2RNi+s8MtVsxWG+eWu+cDlWcnkRJnCtn+uD2N3v1m6X49L9Zk4CtXVfLIB1fR1TfAdb9+g4feOBJx5WzD+TPjzKvcO+ssCvadOZwuNtWZue+ZvVzww/Vc88uN/Gr9YVLjY/j61ZW8/oU1/PvTF/LZyypYWJQW0MAMGGxPfzBC9p09+Ho9Ry29/L9rFxBnMo752Hl5KZxo66NHsjU+23i4lYK0eGb5UcXgi3xPYC9NQYQQXpI5EyHXZ3fSY3dG5QDqoWJNBhaVpAe1Y6O35M+f4CwvNY7s5Dj2NEbWnpKh+80ADAb30OxQXcGvaXS/TtUozUDGc8GcbF741Gq++HgN33p2HxV5KZw/O7AlToFiczhp6bZRlO5f9isnJY7kOFPEdvJzOF28eqCFf+89xasHWujoHSDWZODCOdl8au0cLqnMJTtEF32yk2PJSIyJiKYgxyw9/Gr9Ya6uLvAps1OR7836dbMkgM0tpipv1v/iipyAB/mFngso0dp4SAgReBKciZCz9HgGUEfpjLOhlpdm8ODr9fTZnSTEjn21eiK8nRpn+zDjzMtdMpjGHk8wEik211koTItnxpBy1uqSNP648Qg2h3Pcq/2Ttaehk5lZiaQlTnx8Q1ZyHL++bSmL/9+LvLj3VMQGZ02eq/C+DqD2UkpRlp0U0n2AvujsG+Af247zp03HaOzoIzXexKWVeVy+II/Vc3JIigv9jzJ3x8bwD3TWWnPfM3uJMSi+cfV8n54zT4Izv9S2WGnrsXOOJ+sfSHmp8SglmTMhxGkSnImQGxxAHeWZM3DPO3O4NLsbOoLyg7uu1UpqvMnv5ikLi9J47WALvXaHT10eg83l0rxZb2HNvNwzrjwvKk5nwKk50NTNopL0oK6hpqGTpaWT/yAaH2PkgtnZvLy/hfvepQN+JT0QGvyccTZUeU5SSLqQ+uKouYeH3jjCuh0N9NqdnFOeyf+8cz6XzMslxhj+qvyKvBSefqsRrcP3PvjP3mbWH2zl61dXkp/m2963koxEEmKM0k7fR296sv7B+D8+1mQgOzlO2ukLIQaF/6ebmHa8mbNo33MGDM67CdaH2bqWHmblJvv9wa+qKM3dFORkZJQ2Hmzupr13YHC/mZe3c2KwSxstVhuNHX2jzjfz19rKPBo7+jjUHFkZJq/Gjl7AvxlnXmXZSTR29NE/EJ7OlFprNtWZuftP21jz09f469bjXLkwn+c+cQF///C5XLEgPyICM4CKvGS6bQ5OBblj62h6bA7+37N7mZefwp3nzfT5eQaDe07bQQnOfPJmvTvrX5Lp/78nX0g7fSHEUOG/pC6mHbM3c5YU/ZmzjKRYZgUx03C41crFFf53B/MGPXsaOwe7SobT5roz95t5FaUnkJ0cy+6GTm4P4uvXeJqBVPnQRt8Xl8zLBeDl/c3MzY+8DmuN7X0YFD5nUoYqz0lGazhm6Q3p92ZzOHlm10n++MZR9jd1kZkUyyfWzOZ955RGRDfEkcwZ0rGxIC04H9zHcv+rtZzs7Of+9yzB5GfAOjc/hVcPtARpZVPH4H6zuYHfb+ZVkBZPXRQ04RFChEZkXH4U08pUKmsEWF6ayY5j7QEf3OudoTTLj/1mXnmp8eSkxA12KAy3zfUWSjITzmrP7m2pH+zM2Z6GTpRyl3sGQl5qPFVFabyyvzkgxwu0ho4+8lPjJ5RhOt2xMTRZQbPVxi9eruX8H6znC4/X4HS5+MH1VWz68iV89vK5ERuYwel2+uFoClLb3M0fNhzh5uXFE7oAU5GXgtlqx2yNnDltkSiY+828CtISpKxRCDFIMmci5MxWG4mxxojYCxUIy2Zm8I/tJ6g3WwM6p6Z+Ap0ah6ouSouIdvpOl2ZLvYUrF+aPeH91sXt/XI/NEbTGDjUNnczKSSY5gMdfW5nLL16pxWy1haxDoK8a2/v8bgbiVeYNzoLcsfHAqS7+uPEIT+86id3h4uK5OXzwgjIumJ0dkfv4RpKZFEt2cmzIm4Jorfn602+THG/iy1dVTugY8/Lds/oOneome3ZkvX8jiXe/2fCS7EAqSIvHanPQ1T9AavzEGxYJIaYGyZyJkHPPOJsaWTNwNwUBAj7vzNupcaJzdRYWpVHXaqXXHt5ZRvubuujqd5xV0ui1yDM0++0gZvlqGjoCtt/M69LKPLSG9RFYGtYwgRlnXklxJvJS44I262xznYX3/X4LV/58A8/sPslNy4p5+bMX8vBdK1k9J3ilY8EyJzcl5HsPn97VyJYjbXzpynlkTrA8vCLffdFHmoKM7c16C0XpCRPav+mrAm87fenYKIRAgjMRBpYeO1lToI2+V3l2EplJsWwP8L6zutYeYozqjNbz/oiUpiCD+83KR247790ftztIpY3NXf20dNsCtt/Ma0FhKvmp8byyP7KCM4fTxamu/rNKSP1Rnp3MEXPgA46W7n5u/8MWalu6+cIVc9n85bV8991VAc04h1pFXjKHW6whG0re2TfAd/+1n8Ul6dyyvGTCx8lJjiMzKfRZv2ji3W+2qjwzqBcNCj17Q2XWmRACJDgTYWC22v1uDR/JlFIsnZHBzoAHZ1ZmZiX5vdHfq2qwE2J4Sxs311soy04atTlFVnIcRekJ7A7SOr3ff3WAgzOlFJdU5rKhthWbIzydDUfS3G3D6dITLmsEKMtJCkpZ4/M1TThcmr98cBUfWzObjCnQFGhOXgpWm4OTIdoz9NMXD9LWY+c71y3EYJh4wOCe05YsmbMxhGK/GZxu3NMk+86EEEhwJsLAEoF7dCZrWWkG9eYeLAHcXF/Xap3wfjNwN63ITYkLarngeBxOF1uPtI374WZRSVrQmoLsaejAaFDMLwhscAawdl4uPXYnW+rbAn7siWqcxIwzr/LsJDp6B2jvsQdqWQA8W9PEvPyUwUYaU0FF3umBzsG2p6GTv7x5jPefOzMgzW3m5adyqLk74M2MpopQ7DeD04OomzqCkznTWvPY9hMcs0hHSCGigQRnIqRcLk1bj31K7TkDWD7Tve9s5/GOgBzP7nBxzNLL7Al0ahyqqihtsI18OLx9sgurbfT9Zl7VxemcaOujLcDBALjb6M/JTSYh1hjwY58/O5v4GENEdW30zjibTOasPMfbFCRwpY0N7b3sONbOOxcVBuyYkaAiz/1vNBQdG3/y4kGykuL47OUVATne3PwUeu1OGoMUFES7UOw3A4gxGshNiQta9vVwi5UvPl7DDb/ZzIFTkTH7UggxOgnOREh19Q/gcOkptecM3EFQjFGx/VhgMijH23pwujSzcifWDGRwXcXupiA9tvA0BTm932yczFlxOhD4YdRaa2oaOgNe0ugVH2PkgtnZvLy/JWR7jsbT0BaIzJk74AhkU5BndzcB8M7qqRWcpSfGkpMSF/SmIP0DTt6st/CuRYUB6+jnzfpJaePZQrXfzCuY7fR3HneX3DtcLm598M2gjy4RQkyOBGcipMxTbMaZV3yMkYVFaewIUMfGwy3uD8WTKWsEd9CoNexrCs/V0s31FubkJpOTMnYwXlWchlKB3x/X2OHOxlV5gr9gWFuZR2NHHwcjpLFCY0cf2cmxxMdMPFNYnJFAjFEFdN/Zs7tPsrgknRlZE29UEqkq8pKDnjl763gHNoeL88bJQvvDm/WTpiBnC9V+M6+CtHhOBqkhyFvHO0hLiOGfHzuf5DgTt/1uC9uPRk4pthDiTBKciZDy7smaanvOAJaXZlDT2BmQ5hB1k5xx5lVVFL6mIANOF9uPto1b0giQHGdiVk5ywK/oeue8LQpS5gzgknm5ABHTtbGxo4+iSXRqBDAZDczITORIgDJnh1us7GvqmnIljV7edvrB3Lu1ud6CQcHKcv8HTo8mJT6GovQEyZyNIFT7zbwK0hJo6ugPSgZ+5/F2lsxIpzQricc+ci45KXHc/oetbDpsDvhrCSEmT4IzEVKWnqmZOQN3UxC7w8XbjZPPUtW1WClIi5/0UObc1HjyUsPTFKSmoYNeu9PnDzfVxWnsOtEZ0A8nNY2dxBgVc/OD14AiLzWeqqK0iNl31tjeR/EkShq9yrKTA7bn7NndJ1EKrqkuCMjxIk1FXgp9A8Hdu7W5zszCorSADymel5/CQdmHdJZQ7TfzKkyPp2/ASVdfYEvQu/oHqG2xsnRGhud1EvjHR85lRmYidz68LSLnNAox3UlwJkLKmzmbanvOAJZ6hlHvCMC+s8l2ahyqqiiNPWEIzrz7zVb5GJwtKk7HbLUFtJ10TUMH8/JTiTMFvhnIUGsrc3nrRAfmAHbrnAittSdzNvkPlLNykjhq6cU5yWyQ1ppnd59kVVkmeakjj1OIdnPzg1se2Gd3sutEh09ZaH/NzU+hvrUHu8MV8GNHq1DvN4PT7fQDXdq463gHWjMYnAHkpMTx9w+fw9y8FD78l+28sKcpoK8phJgcCc5ESJmtdpSCjMTAXv2NBLkp8czITGTHJOedaa2pa+2ZdKdGr6qidOparVhD3BRkc72FefkpZPo4y6p6cC5bR0Be39sMJNDDp0dyaWUeWhP2q9CtVhs2h2tSzUC8yrKTsDtcnJxkNmjvyS7qzT28a1HRpNcUqbxDtIPVFGT7sTYGnDooJXZz81NwuHRAO3NGu1DvNwN3WSMEfhD1zuPtKOUeVzJURlIsj35oFdXF6Xzsrzt56q2GgL6uEGLiJlczJYSfLD02MhJjJzxYOdItL83g9dpWtNYTvuLa3GXDanMwK2dynRq9qopT3U1BTnaxsixw+1XGYnM42X60nfeumuHzcyoLUjEZFLsbOrly4eTL345Zeunud1AdgHlQ41lQmEp+ajyv7G/hpuUlQX+90QRixplXuSdzW2/uoSRz4nvYnt19EpNBcdXC/EmvKVKlJcSQnxoftKYgm+osmAyKFTMD/+/XW/J78FQ38/JTA358r5aufm793ZsYlCInOY7slDiyk2PJTo4jJyXOfZvn66zkWGLC+DMi1PvNwF3WCHCyI7AdG3ce72BuXgopI5TDpsbH8OcPrORDf97OZx/bTZ/d5df/2UKI4JDgTISUxWony8dMSjRaNjODJ99q5HhbL6VZEwuuAtUMxGth0emMVKiCs12eznL+fLiJjzFSWZAasMyZd75bdRA7NXoppbikMpd/vtWIzeEMehnlaLx7noozA5M5A6hvtXJRRc6EjuFyuUsaV8/JJmMK/7sHmJOXzKGW4ARnm+ssLCpJn/Qe1JGUZydjMigOBrkpyMv7W6hv7eGSebl09Q2wp6EDs9U+akY/PTHGHawNCeRmZiVx+zmlGAzBLTXcXBfa/WbgrrwwGlRA2+m7XJq3jrdzzRjjK5LiTPzxzhXc+8gOvvrUHvoHnHzggrKArUEI4T8JzkRIma22KdkMxGuZZ9/Z9qPtEw7ODre4g7NAlTXmpsSTnxof0qYgm+stKAWryvy78lxdnMYzu0/iculJfwCrOdFBnMnAnLzAnMfxXFqZy1+3HOfN+rYJBzOTFcjMWXZyLCnxJo5Mop3+zuPtnOzs5wtXzp30eiJdRV4Kj245FpD37lDd/QPsaezk3otmBeyYQ8WaDJTnJAW9nf6G2lYK0+L5wx3Lz6gq6LM7MVtttFptmLu9v9sxW23u27tt7GnooLXbRo/dSXFGAmsr84K2TpdLs+VIG2vm5oZsvxmA0aA8g6gDV9ZY12qlu9/BkhnpYz4uPsbIb29fzif/9hb/77l99A04+dia2QFbhxDCPxKciZCyWO1UFgavdCbcKnJTSIkzsf1YOzcsK57QMeparaTEmcadDeaPhSFuCrK5zsKCwlTS/NxbuKg4nUe3HOeopWewrG6iaho7mV+YGrLyqPNmZRMfY+DV/c3hC846+kiNN41YwuQvpRTl2UmTCs6e2X2SOJOBy+ZP3ZJGr4q8ZPoHXJxon3jWfCTbjrbhdOmAzjcbriIvhV0nOoJ2fIfTxcbDZt6xsOCsgCch1khJZuK4pbMDThfnfO8VntjZENTg7PR+s9BUGQxVkBZPUwDLGr3Dp4c2AxlNrMnAr967hM+v282P/3OQXruDz18+N6QBqhDCbWpu/BERy2y1kT2Fy5sMBsWS0gx2TqIpSF2rlfLc5ID+UKwqSqPe3BOSpiD9A07eOt4xof0a1Z5N67snWdrodGn2NnaGZL+ZV3yMkQtmZ/Py/pagzCryRUP75GecDVWek0z9BGedOZwunt/TxNrKXJKDUI4XaebkBacpyOY6C7FGw2A32GCYl59CQ3tf0P5/2N3QSXe/g9UV2RM+RozRwLWLi3h5XwsdvfYAru5M3v1moWwG4lWQnsCprgAGZ8fcw6fLs327WGAyGvjpzYt5z8oSfr2+jv/33L6w/V82lbx2sIVjlsDMjBTTgwRnImTsDhdd/Q6ypuAA6qGWl2ZwqKWbzr6BCT3/cIuV2QHab+ZVXZyG1rA3BNmzncfasTtdE2r7PTsnmYQYI7tPTG6dR8xWeuxOqkKw32yotZV5NHb0cTDIJWKjaWzvC0hJo1dZdhKNHX30D/g/WH1zvQWz1c67pujg6eHm5Aannf6mOgtLS9OJjwnePsa5nkYgwSpt3FDbilJw/qyJB2cANy4rxu508ezukwFa2dm8880m0wRnogpS4znZ0RewgMg7fNqfMlujQfG9d1dx1/kzeeiNo3z1qbeDOlx9qlt/sIU7H9rGNfdvDHs3XxE9JDgTIdPmGUCdPQ2CM61Pl5T4o7t/gOYuG7NyA1cWBaebgoSitHFzvQXjBDvLmYwGFhZNvilITYP7+1wUgjb6Q62dlwvAK/tD/0PYO+MskE0Myj0dQydS2vjMrpMkx5m4eG5uwNYTyVLiYyhMC2zHxo5eO/uauji3fHJBzXjm5p3u2BgMG2rNVBenT7opzPzCVCoLUnl8R3Davnv3m4UjawbuzJnN4aK9d2IX9obq7Dtz+LQ/lFL8zzXz+diaWfxt63E+t243DqfMwfNXa7eNL6zbTUVeMjOyEvnAn7bxwH/rJBspxiXBmQgZ74DeqdwQBGBRSTpGg5pQaaO3hCxQnRq9clLiKEiLD01wVmdhYVHahPc9VRens/dkFwOT+DBQ09BJYqxx0vvW/JWbGk91cRov728O6esCdPU5sNocAQ3OvB0b/Q3ObA4n/957issX5AU14xNp5uSlBLSs8c36NrQmKMOnhyrOSCAx1hiU4Kyzb4BdJzq4cE5gAswblhaxu6EzKGMLwrnfDKDQM4g6ELPOdnv2EE4kOAN3gPaFK+bx+csreOqtRj7xt7cm9X/ydKO15ouP76ar38Ev37OUx+85j3dUFfCDFw7wmX/smlA1gpg+JDgTIWMZzJxN7eAsKc5EZUEK24/6H5wFulPjUKFoCtJrd7C7YWL7zbyqi9OwOVyTKrGqaehgYWEaxiC33B7JJfNy2XWiY/BiRKg0dPQCgenU6DW0nb4//nuwle5+x7QpafSqyEumrtWKM0BlYG/WW4iPMbC4JD0gxxuNwaCYk5cSlOBsc50Zp0uzek5gmuRct6QIk0Hx+M7AZ8/Cud8MIN8bnAWgKchow6f99fFL5vCVq+bxwtuneHlf6C86Ras/bz7G+oOtfPWqeczNTyEh1siv3rOEL1wxl6d3neTm324O+MBxMcSPfgTr15952/r17tujgARnImQs3sxZ0tQuawRYXprJrhMdfpeC1LVaMRkUM4Kw36GqKI361h66+ydfMjOa7UfbGXDqSV3p934Q9ZYm+svhdLH3ZBdVIS5p9Lq0Mg+tCfn+ggZvG/0AZs4SY00UpMVT72fm7JndJ8lIjOH82cEtx4s0c/JSsDlcHG/rDcjxNtdZWDEzk1hT8H9Uz8tLCcqes9drzSTFGsdt5+6r7OQ4Lp6bw9NvNQYsCPYK534zgELPhZVAfGgfa/i0vz5wQRkJMcbB4FWM7eCpbr77/H7WzM3hjvNmDt6ulOJja2bzu/cvp67Fyrt+9caEtj8IH6xYATffDP/5DzQ3uwOzm2923x4FJDgTIWOxujNnU72sEWBpaQZ9A072N/n3Yaeu1UppVmJQ2r97g5W9J7sCfmyvzfUWTAbF8kl0lpuRmUh6YsyE953VtlixOVxUhyk4W1CYSn5qfMj3nQVyxtlQ5TlJfnVs7LU7eGV/C++oKgjZGINIUTHYsXHyQY7ZauNgc3fQSxq95uanYOmx09oduIyv1prXD7Vy7qzsgL4XblxWTHOXjQ21rQE7Zrj3m4E78DQZFCcnOYjaO3x6yQRLGoeLMRpYVprBliNtATneVNY/4OSTf3uL1HgTP75p0Yhdly+bn8dTHzufxFgjt/72TdZtPxGGlU5hLhcYDLByJVx1FVx2mTswe+wxWLMm3KvzyfT6ySnCytxjI9ZkmBZttb3ByfZj/v0wq2vtCUpJI7gzZ0BQh1FvrrOwqCSdpEn8HSulqCpKm3DHRm9QVx3iTo1eSikuqcxlQ20rNkfo9hU0dvSREGMkM8CjKsqyk6hvtfq8if2lfc30DTh55zQraYQhHRsDUB7ozVJMpkTYH3PzA98U5Jill4b2Pi6aRAv9kayZl0t6YgxP7GwM2DHDvd8M3J0S81LjOTXJ4Mw7fHppgLKVAKvKMjnY3B3UMQZTwQ9eOMDB5m5+fNOiMZufVeSl8M+Pnc+Ksgy+8HgN335unzRdmay9e+ErX4GZM+Hii+H116GqCvbsgXvvjZrADGQItQghi9VOdlLstBhqWZieQEFaPDuOtXPX+WU+PWfA6eKouYfL5wdnwGp2srspyETLBcdjtTnY09jJvRfNmvSxFhWn85v/1tFnd5IQ619DiZqGTlLiTZSGqTQJ4NLKXP665Thv1reFbCB1Y3sfRRkJAf/3VZ6dTFe/g7Yeu09jMJ7d3UR+ajwrJ9CtM9olxZkoSk/gUMvkm4JsqrOQHGcavKgSbIPBWXM3FwSoecfrnsxWoPabecWZjFy7qJC/bztBZ98AaQmTL90L934zr4I0dzv9yRgcPh3A2XgryzLRGrYdbeeyIP2MGo/WGpvDRVf/AF19Drr7B+jud9Dd76Crf2Dwz119nt/73Y/p6ndQWZDCd6+r8vvniT/WH2zh4U1HufO8mazxoUttemIsf7prJd/5137+sPEIh5q7+dV7lpKWOPn3cyB4z3ePzUFGYqxfIxlC5uRJ+Nvf4JFHYNcuMBrhiivghz+EtDS44w74xjfgN79xB2dREqBJcCZCxmK1TfkZZ0MtK81ghx8dG4+39eJw6YB3ahyqqigtaJmzbUfacLomt9/Mq7o4DadLs6+pk2Wl/n3I39PYSVVRWlh/kJw3K5v4GAOv7G8OXXDWEdgZZ15lQ9rpj/fvt7N3gP8eauGOc2dG5g/yEKjISw5IJ8E36yysLMvEFKLS0OzkOLKSYjl4KnBlz68fMlOSmUBpVuAvlNywrJg/bT7Gv2qaeO+qGZM+Xrj3m3kVpCcMdlqcKH+HT/tiUUk6sSYDW+otIQ/Ont19km89u5fOvgEGnGNn8JWClDgTKfExpMSbSI2PITcljqffauSYpZc/3rEiKMGPt23+3LwUvnzVPJ+fZzIauO9dC5hfkMrXnt7Dtb/eyO/vWM7s3JSArKulq589jZ109Q9gtTnptTnosTvpsTnotTvosTnptbs7/fZ6bu+xOemxu//s3de57WuXkpMSws9vP/qRe3/Y0GBq/XrYts2dBXvySXdA9soroLW7hPH+++GWWyA39/QeM28p45o1UVXaOG5wppQqAf4M5AMu4EGt9S+G3P954MdAjtbaHKyFiuhn6bFPi/1mXstLM3iupsnnD811QezU6FVVlMaL+5rp7h8IyEbxoTbXW4j17E2YrEWepiC7T/gXnNkcTvY3dfGBC3zLVgZLfIyRC2Zn88r+Fr71Lh2SbHFDe29QmqDMyna/H+tbe1g+Tjbs33ubGHDqaVnS6FWRn8Ibhy04nK4JB1anOvupN/fwnpWTDzr8MTc/hYMBGgUw4HSxuc7MtUuKgvL+rypKY05uMk/sbJh0cObdb+ZLtiPYCtPi+c/b/Wg98f83vMOnA3ne42OMLC5JD8u+s3U7GjAoxQcvKCc1wR14pcabBoMvbyCWEm8iKdY04oWhF/Y08am/7+Lm327mzx9cSV5qfMDWN7Rt/qN3nzOh8SE3ryihPCeJex7ZwXW/3sQvbl3M2kr/gmCtNSfa+thyxMK2o21sPdLGUcvIzYmSYo0kxpncv8eaSI4zkZkUS0lGIomxRpLiTCTFnb4vmBnHEXkbeniDqZdeghtvhGXL4L77oK8PysvdWbHbboOKijOfv23bmYHYmjXuP2/bNjWCM8ABfE5rvVMplQLsUEq9pLXe5wncLgOOB3WVYkqwWO3MCdDVoGjgDSp2HGv3KTg77GlX7h38GwzeD+9vN3YFvNHA5joLi2ekB2SuVV5qPHmpcX43BTl4qpsBp2ZRmPabDbW2Mo+X97dwsLmbefmpQX2tXruD9t6BoGTOijISiDUafOrY+OzuJkqzEsPWjCUSVOSmYHe6OGrpnfCFls317uucoWoG4lWRl8Jj20/gculJZz7fOt5Bj93JhQEuafRSSnHjsmK+/8IB6lutk5ppGAn7zbzy0+KxO11Yeuxj7lkajXf4dDAukJxTlsmv1h8OysW90dgcTrYesXDrihl+ZaSGu6qqgNSEGD785+3c8JtNPPLBVcwMUGbR2zb/vnfOHywPnojlMzN55uMX8OG/bOfuP2/nC1fM5d6LZo0aZLtcmtoWK1uPWNh6tJ2tRyw0d7kb+qQnxrC8NJPbVpWytDSdzKQ4kuKMJMWaSIgxRn5lw5o17nLF66+HOXNg+3Z3hqymBu66C973PjjnHHeqdCRf/OLIx4yCwAx8CM601k1Ak+frbqXUfqAI2Af8L/BF4J/BXKSIflprWq22KT/jbKjKghQSYozsONrm07ynupYe8lLjgvpDb2hTkEB+8OvsG2DvyU4+ccmcgB1zUXG63/vjvI8P1T6dsayd574K/8r+lqAHZ95OjYEcQO1lNChKsxLHnXXW0t3PpjozH7149rTYVzoab8fG2ubuiQdndRbSEmKYXxDc981w8/JT6LU7aWjvY8YkSxE31LZiNKigBpjvXlLED/99gCd3NvL5K+ZO+DiRst8MoCDN006/o39CwdmuSQ6fHsvKsixcrx5m+7H2kGUZdxxrp3/AFZCxHOfPzuavHzqHOx/ayo0PbOLhu1aycJI/K0Zrmz9RhekJrPvIeXzxiRp+9O+DHGjq5oc3VJMQa2TAMyZm6xELW4+0s/1YGx297tE4ealxrCzLYmVZJitnZjInNznyA7CR9Pe7SxWffhqeeQY6OtzZrvnz4Qc/cO8ni536nyP92nOmlJoJLAG2KKXeBTRqrXdP5x/EwjdWmwO7wzWtyhpNRvfw2B0+zjGpa7UGtaQRICs5jsK0eGoCvO9s65E2XDqwV/oXlaTz4r5mvzb872noJCMxJihBir9yU+OpLk7j5f3NfGzN7KC+VkNH8IIzcHdsPDJO5uyFPadwaXjX4ulb0gjusmSl4FCzlauqJnaMTXUWVpVlhvzDlfeq/4FTXZMOzl4/1MrikvSANOsYTW5qPBdW5PDkzgY+e1nFhM9XpOw3AyhMd5fbnezsm1CZ8s5jgRk+PZKlpemYDIqtISwBfeOwGaNBsSpAWc1FJemsu+c83v+HLbznwTf5/R3LWTXBoHxo2/wf3Thy2/yJSIg1cv+ti6ksSOHH/znIoeZuspPj2HGsnb4BdwfgmVmJXD4/jxUzM1lVlkVJZuCbQYVMezv861/wz3/CCy9ATw+kpMDy5e7yxXvvhT/+EZKTp0VgBn600ldKJQNPAJ/GXer4NeB/fHjeh5VS25VS21tbAzeTRESXwRln02AA9VDLZ2awv6mbHptjzMdpralrsQa1GYhXVXHgm4JsrrMQZzIEbNAsMFga589aaxo7qSoO7F6LyVg7L49dJzowWwM3O2okp2ecBefDZXlOMscsvWMO/X1m90nm5acMZo6mq4RYIyUZiRxqmVhTkBNt7vbz54W4pBHcQ7Rh8u3023vs1DR2sjpAXR/HcsPSYk529rN5ggOSvfvNQl1COpr8NHdwNtF2+m+dCNzw6eESY01UF6exJYTDqDcetrC4JJ3UAH4/s3OTefze88hNjeP9f9zKS/uaJ3Scwbb5Ny4KeLMMpRQfvXg2v3//ctp77ZitNm5eXsyv3ruErV9dy2tfWMOPblzETctLmJGVGDE/8wb96EfuphxDrV/vvh3gxAn41a/g0kvdDTxuvx3eeMP9+7//DevWuVvg//Of7s6Ljz3m3oM2/JhTlE/BmVIqBndg9qjW+klgFlAG7FZKHQWKgZ1Kqfzhz9VaP6i1Xq61Xp6TE5quZSLyWHrcH06nU+YM3B0bnS49WGoymtZuG902R2iCs6I0jph76OofCNgxN9dbWFaaQZwpcJuGq4vSAcY9d179A04ONXezKIL2O62tzEVrePVAcAdSN7T3EWNU5Aapm1Z5dhJ2p2swCDz79XvZcax9WjcCGWoyHRs313nmm80KfmAzXHKciZLMBA5OstvkG3VmtA58C/2RXDY/j5R4E4/vaJjQ80/vN4uM4Cw7KY4Yo+Jkp//t9AM9fHokK8uyqGnopM8e/BmOnb0D7GnoCEhJ43CF6Qmsu+c85uWncM8jO/weBH1G2/x5wcsirq3MY8tXL+Xfn76Qb127kGuqC8kNYDOToPE29PAGU6++CjfcAAcOuDNiM2bAJz4BjY3w+c/Dm29CQ4O75f0VV8Du3aM39JgGxg3OlDsc/wOwX2v9MwCt9R6tda7WeqbWeibQACzVWp8K6mpF1DJ7MmcTqaGPZktmZKAU47bU9zYDCXZZIzBYYx+o7Fl7j539TV0BH5ablhjDzKxEn5uC7D3ZhdOlI2K/mdeCwlTyU+N5dX9wg7PGjj4K0hKCVgbnbVJTZx5539lzNU0AvLNagjNwZ6COmHsYmMBQ2c31FrKSYqnIC/7/BSOZm5cy6czZhkNmUuNNIblQEh9j5J2LCvn326ewjlOhMBLvfrNVZeFvBgJgMCjy0+Jp6vA/cxaM4dPDrSrPxOHSg7PUgmlzvRmXhguCEJwBZCbF8uiHzuHc8iy+8HgNv3u93qfnma02vrCuxu+2+dPKmjXw17/Cu9/tbtxx2WXu8sWHHnKXJv7wh+5Abf9++P73YdUqMAwJSb74xbObd6xZM3KjjynIl8zZ+cDtwCVKqV2eX+8I8rrEFGOZpsFZWkIMFbkpbB8nOPO20Q9V5gwCF5xtOeK90h/4K8/VfjQF2eMJ4qojoFOjl1KKSypz2VDbis0RvCvNje29Qd1nV+bpanakdeR9Z8/sOsmikvRJ71OaKirykhlwao760OFyKK01m+ssnDMrK2xlSnPz3YHlRN+vWms21LZy/uzskM1ou2FpMX0DTp7f0+T3czfXWSjOiIz9Zl4FaQkTKmsMxvDp4ZaXZmBQhKSl/sbDZpJijQEtlx8uOc7EH+5cztVVBXz3+f388N8H0Hr08m2tNV9Yt5uu/gF+8Z7FAelOPKW0tsKf/+yeN3bTTdDZCVu2QFkZ/Pa37qHRmza5g6y5E2/iM9WN+z+n1nqj1lpprau11os9v54f9piZMuNMjMXi2XOTmTS9yhrB/YPyrWPtuMbYr1PX2kNynIm81OAHr1nJcRSlJ7CnMTDDZjfXWUiIMQYlKKouTqOps5+W7vE/qNQ0dpKTEheSc+iPSytz6bE7ebM+eB9mgjWA2iszKZa0hBjqR8icHW6xsq+py6eOpNOFd2TIIT9nhh0x93Cqqz/gWWh/zM1PxeHS1I8SiI+nrtXKyc7+kJQ0ei2dkU55dpLfpY3u/WaWiClp9CpIi59QWePOYx2kJwZ2+PRwKfExLCgMzb6zNw5bWFWeRUyQg/w4k5H737OE966awW9eq+MrT+7BMUrW29s2/ytXzQt6F96ooDXs2gXf+Q6cey7k5cEdd8Drr8N550FqqjsQ6+x0t8QvKAj3iqNCaC5riWnP0mMnNd5ErGn6veWWl2bQbXOM2SCgrtXKrJykkF0tX1iUys5j7fQPTD6bs7newvKZGUH5u/UOo645MX72bE9DJ9VFaRG3Mfq8WdnExxh4Zf/ENp2Px+Zw0tJtoyiImTOl1KgdG5/dfRKl4Jpq+aHrNTs3GYOCQ37u3fI2tQhHMxCvuZNsCvL6Ifd12lA0A/FSSnHDsmK2Hmnj+ChDd0dyqKWb9t6BCAzOEmju6h/zgt5Idh5vZ0lJ8BsirSzL5K0THUGtBmho7+WIuSco+81GYjQovnvdQj5xyWz+vu0EH/vrzrN+Pnrb5l88N4c7A9A2P6KN1dCjp8fd5v7DH4aSEliyxD0M2umEb37TvS/skUfcvz/99LRs6DFZ0++TsggLs9U27UoavZbPdJeYbD86emnj4RB1avR6R1UBjR19vOMXG8bdDzcWs9XGoWZr0DqdLShMxWhQ4+47s9ocHG61RlRJo1d8jJELZufwyv6WMctlJqqpox+tCWrmDNz7zoZnU7TWPLv7JKvKMsmLhk3qIRIfY2RGZiK1fnZs3FRnIS81brCMNBzKspOIMaoJNwXZUNtKeXZSyMsE372kCKXgiZ2+Z8/erIus/WZehenxDDg15h7fu7x6h08HY77ZcKvKMrE7XOz24aLZRL1xODxB/ucun8v/XDOf/+xt5q6HttHtaZw1tG3+jwPYNj9oxuuWOJ7hDT3++ld417vcXRSzsuDaa+Hvf3fvJ/vjH6GpCbZudQdny5fDjh3TuqHHZPk150yIibJY7dOuU6PXjMxEspNj2XmsnfedU3rW/Vabg6bOfmaFoBmI17WLi8hOjuOLj9dw0wOb+NDqcj5zWYXf9fPezfTBKsNKjDUxJzeZ3ePsO9vb2InWp9vvR5q1lbm8vL+ZA6e6qQzwYOFGz4yzYGbOwN2x8cmdjfTaHSTGun907D3ZRb25h7tXlwf1taPRnLwUv8oatdZsqbewek5OWD/4xZoMlGcnTyhzZnO4y3dvXl4chJWNrTA9gfNnZfPkWw18au0cn5rjvFnfFnH7zQDyPRc6mjr6yU3x7aKHt6ttMDs1eq2Y6Q5mtx6xsDJIge3GwxZyUuKYE8Kfi14fuKCMjKQYPr+uhvf+bgsP37WCX60/zMHmbh66c0XA2+YHhTe48gZI69ef/jPAwIC7QUd7O7S1jfz7kiVw5ZXumWMWTxlrVxd89KNw9dWwevXoc8dGatyxZs3ZTT7EiCQ4EyFh6bFRnh2e7mPhppRiWWnGqE1BvE0WQpk5Azh/djb//vRqvvf8AX77ej2vHGjhpzctGiwl9MXmOgvJcaagdkhcVJzOf/adQms96ofWPZ7mJgsjqFPjUGs9rZZfPdAS+ODM096+JCO4HzDLPP9+j5h7WFDoPs/P7j6JyaC4auFZU1SmvYq8ZF490ILN4fRpxERtixWz1R7W/WZec/NTJpRR9w7JDeV+s6FuWFbEZ/6xm61H28YtVfTuN1tbmRei1fmu0JMFb+rs8/n/42AOnx4uIymWefkpbDnSxseDcHyXS7PpsJkLK8J3oeLdS4pJS4jh3kd2cs0vN9LU2R/0tvkB5c1U3XCDex9YXZ27ff2dd7qDL+s4F45SUyEjAzIz4dQpuPxy91yyOXNCsvzpTsoaRUhM58wZwPLSTI639Y7Y2KJusI1+6EuZUuJj+P71Vfz5AyvpsTm4/jeb+PF/Dvi8l2BzvYUVMzOC2pWtuiSNjt4BTrSNvkG+pqGTwrT4iL2imZsaT3VxGi8HYd9ZQ0cfBnV6eG2weNvpe/eduVya52qaWD0nm4xp2OhnPBV5KThdesR9eiPZ5CnjioRhyHPzU2js6Bss6fLV64fMmAyKc8L0PVyxIJ/kOBNP+NAYJFL3m4G7IQjAST/a6e883h604dMjWVmWyY5j7RMaFzGe/ae6sPTYQ7bfbDSXzMvjkbtXYbU5orNt/po1cP317pb1+fkwf777trvvhv/3/+CXv4RHH4Xnn3fPGTt40N1tcWDA3cDjoYfA4XDvJ9u50z2HTISEBGci6JwuTVuvnaxpuucMTrc23jnC1ejDLVaMBsWMzPDtM7mwIof/fOZCblhaxK/X1/GuX74xbqv95q5+6lt7gv5hcpFnH9nuMfad1TR0UBWhJY1ea+flsetEB2ar7/tIfNHY3kdeanzQO5rNzHK/P737znYeb6exo493LZYujSPxt2Pj5vrIaenubQrib7fJDbWtLC3NIDkuPEU5ibEm3lGVz/N7mui1jz3zLFL3m4G7O2qsycCpLt+CM5dLs+tER0hKGr1WlWXRa3cGbCTLUN79ZsGab+aPFTMzee3zF/P4vedGX9v89evhn/90B1d9ffCZz8DDD8P//q/7to9/HN77XrjqKvecsYoKyM4Gk+nMMsj/9/+koUeISXAmgq69147WkD2NM2cLi1KJNRlGbApS12qlNDMx7J0sU+Nj+NGNi3jozhV09Nm59tdv8LOXDmF3jHxl9PR+s+D+AJ2bn0KsyTBqU5DO3gGOWnojshnIUGsrc9HaXdoYSA3tvUFvBgKQEGukKD1hMBP0zO6TxJkMXDZfShpHUp6ThNGgqPWhsYbLpXmzvi0iShrB/W8O/OvYaLba2Huyi4sqwlPS6HXjshJ67E7+/fapMR8XqfvNwF0KX5AWz8kO39rph2L49HArytyBYDDmnW08bGF2bnLQqwF8lZUcF7KMZMBMNrjatk0aeoSRBGci6LwDqLOSpm/mLM5kpLoojR3HRw7OQtkMZDxr5uXy4qcv4tpFhdz/Si3X/foN9p08eyba5joLqfEm5hcGd9ZLjNHA/ILUUZuCvH3SfXukNgPxWlCYSn5qfMBb6jd29AW9GYhXWXYS9a1WHE4Xz+9pYm1lbtiyJJEuPsZIaVaiT+309zV10dk3wHmzIyM4K0pPICnWyMFTvs9CDEd3vZGsmJnBjMzEMbs2Rup8s6EK0uJp8nEQdSiGTw+XmxJPeU4SWwMcnPUPONl6xBIRWbOoNtng6otfPLt5x5o1Izf6EAEnwZkIOm8Z13TecwawbGYGbzd2njE7xeF0ccTcE/JmIONJS4zhZ7cs5sHbl9HSbePaX2/kl6/UnrG/YHO9hZVlWRh96Io2WYtL0nm7sRPnCHN/ajxBWzCbkgSCUopLKnPZUGsOyHw5cJcMn+rspzhEwVl5ThL15h4211swW+0yeHocFbkp1PpQGri5LjRZaF8ZDIqK/BS/2um/fshMRmLMYLOYcFFKcf3SIjbVWQY7mQ4XyfvNvArTEjjla3AWguHTI1lVlsW2I20j/r88UTuPt9M/4JLgbLIkuIpqEpyJoPMGZ9O5rBHcTUEGnHowmAA40d7HgFMzKyd8+83GcvmCfF76zIVctbCAn750iOv/bxMHT3VzsqOPY5bekDUvqC5Oo9fuHGyeMtSexg5mZCaSnhj5769LK3PptTsDVgrU3NWPw6UpSg9NaVZZdhLd/Q4eeuMoyXEmLp4bJZ3LwqQiL5mjlp5xg/HN9RbKspMipowL3PvODp7q9mk2n9aaDbWtnD87OyQXa8Zzw9JitIanRsmeRfJ+M6/8tHhOdfX7FPiEavj0cKvKMum2Odjf5HuGdTxvHDZjNChWlUfu340QwSbBmQg6KWt08+4HGNqiuq7F26kxsjJnQ2UkxXL/e5bwm9uW0tjRxzt/uZGvPrUHCN58s+G8+8m8s3yG2n2iM+JLGr3Om5VNfIwhYKWNoZpx5lXuyfC+eqCFyxfkRd8G+RCbk5eCS3PW8O6hHE4XW4+0RUSXxqHm5qfQ3jtAqw8NbA42d9PSbePCMO838yrJTGRVWSZP7GwcMbiM5P1mXgXpCThdmtbusc9/KIdPD+edcRbIfWcbD1tYXJIefXu8hAggCc5E0Fl6bBgNirSE6f2fbVZyHOXZSew4dvoH2WFPJqg8wsoaR3JVVQEvfuZC1lbm8trBVjISY5jnaRwQbOXZSaTEmc5qCmKx2mjs6Iua4Cw+xsgFs3N4ZX+LTxmJ8TS09wKEpCEIcEbZ1DulpHFcFZ6uh7Uto5cH7mnsxGpzREwzEC9/moJsOBQZ+82GunFZMUfMPYP7sby8+80i7XwPV+htp985dlMQ7wWrUO438ypMT6AkM4GtRywBOV5n7wB7GjqkpFFMexKciaCzWO1kJsViiIByl3BbWprBjmPtgx/M61qs5KTERU3gmp0cx//dtpQHb1/GT25aFLK/U4NBsbAo7YySUDg9fLqqKD0k6wiEqxbm09jRx7M1TZM+lncAdaiCs8L0BGJNBjISY+QDlA/KspMwGdSYTUE2e7qeRtr+J287fV+Cs9drW5mTm0xBWmjeh764qqqAhBgjjw+beRYN+83g9NzC8fad7TzWjkHh87DqQFtVlsXWI224ArDvbHO9GZeGCyIoyBciHCQ4E0FnttrJnsYzzoZaXppBe+8A9Z525HWtVmZHQdZsKKUUly/IZ21lXkhft7okjf1NXWcMyN7jCdYWFgW3Y2QgXbekiKqiNL793D46+/wb8jtcY0cf2cmxJMSGprzQaFBcVpnHHefNDPpctakg1mRgZnbSmPPCNtdZqMhLjrgB6lnJcWQnx40bnLm767Wxek5klDR6JceZuGphPs/tbjpjz9/gfrMI39NU6Al0x2unv/N4OxV5KWHrmrqyLJP23oHBKpDJ2HjYTFKskcVhCjSFiBTy01UEnaXHNu2bgXgtn+kuPdlx1J09O9xiZVZuZDYDiTSLitMZcGoONJ3+sLi7oZPynKSo2p9gNCi+9+4qLFYbP/nPwUkdq6G9L2RZM69f37aUT19aEdLXjGYVecmjzjqzO1xsP9oesSV2c/OTx+3YuPVIGzaHi9UVkZftuHFZMd02By/uO73H8836NkoyEyjOiNz9ZgDpiTHExxjGbKcfjuHTw51T5n7vbqmffGnjxloz55RnyYUfMe3JvwARdBarnawkCc4AyrOTSUuIYcexdsxWO139johrox+pvGU7Q/ed7WnsYFGED58eSVVxGu8/dyaPbDk2YpMTX4VyxpmYmDm5KRxr6x2xY+Puhg76BpycOyvyAhuAuXmpHGruHrNkbUNtK7FGw+CH9EhyTnkWRekJg6WNg/PNInCtwymlxm2nfzgMw6eHK8lMID81ftJNQU609XLU0sv5Ui4thARnIvgsVhtZUtYIuPdOLSvNYPuxtsG28JHcqTGSFKbFk50cOziMurmrn+YuW8TPNxvN5y6vIDcljq8+uQfHkPlxvtJa0xiGzJnwT0VeClrD4Zazy742HbagFJwToSV2c/OT6R9wcbytd9THbKg1s6IsI2Sltf4wGNwzzzbWtnKqsz9q9pt55afFj9kQZOex0A+fHk4pd9v7LUfaJtXkaFOdu6mM7DcTQoIzEWR9dic9due0H0A91LLSDOpae9h+1H2lUTJnvlFKUV2czm5Ppsm73yxaOjUOlxIfw33vXMC+pi4e3nTU7+ebrXZsDpcEZxGuIs/973ukpiCb683ML0iN2Bl9c/PdezlHK21s6ernwKnuiNtvNtT1S4txaXjqrcao2W/mVZCWQFPH6JmzncfbwzJ8eriVZZm0dts4Yh59ZMR4Nh62kJsSxxy5WCmEBGciuCw9ngHU03zG2VDLPFc51+1oIDHWSEEEDZ6NdNXFaRxutWK1Oahp6MCgYH5h9DQDGe7KhflcMi+Xn710aHBmma+8j4/0vTPT3czsJGKM6qymIP0DTnYe64jY/WZwOrAcrSnI67WR10J/uLLsJJaXZvDEzgY211uiYr+ZV2F6PC3d/aNm1t863hGW4dPDrfKUiW6dYGmjy6V547CZC2Znh/17ESISSHAmgmpwALVkzgYtKk7HZFAcs/QyKydZfhj5YVFxOlrD242d1DR2Mic3hcTY8HQpCwSlFN961wJcWvOtZ/b69dzBNvqy5yyixRgNlGUnndUUZOexduxOV8QNnx4qMdbEjMzEUYOzDbWtZCfHUZkf2RdIblhWzOEWK68eaImK/WZe+WnxuDS0jDCIOpzDp4eblZNEdnLshPed7T/VRVuPXfabCeEhwZkIKm/mTPacnZYQa2SBJ9szK0c6NfrDW8JY09DBnobOqC1pHKokM5FPra3gxX3NvDSkq9x4Gjs8A6glOIt4c/JSODRsEPXmegtGg2JlWWSX2M3NTxmxrNHl0mysNbN6TnbEz7C8urqAOJOBAaeOmv1mcLqdftMI+87COXx6OKXc7+OJZs7eOOzOwEpwJoSbBGciqMzezJl0azzDslL3BzLZb+afrOQ4itITeOHtU1h67FMiOAO4e3UZc/NS+OY/36bH5vDpOQ3tfaTEm0iNojEC09XcvBROtPXRaz/9d7upzsLCorSIHwMxNy+FI+aeM+YLAuxr6sLSY4/okkav1PgYrliQD0TPfjOAgnR3yfvJEfadhXv49HCryrJo7OjjxBjNY0azodbMnNzkwcHbQkx3EpyJoDJbvZkzCc6G8s47k06N/ltUksZbxzsAqIrCNvojiTEa+N71CznZ2c/PXz7k03OkU2P08O7d8nZs7LE52H2ig/MiuKTRa25+Ck6Xpq7lzGYPGzz7zS6IkmzHF66Yyw+ur4qa/WbgbggCjNhOP9zDp4fzZoD9zZ71DzjZdrRNsmZCDCHBmQgqi9VOYqwxqvcFBcPayly+ctU81szLDfdSoo53rpnJoJiXnxLexQTQstJM3rOyhD++cZR9J7vGfXxjR19UfdCczubkud+n3qYg24624XDpiG4G4uX9N3aw+cz35OuHWpmXn0JuanRkO0oyE7l15YxwL8MvqfEmEmONZ7XT9w6fjoSSRq+5eSmkJcSw5Yh/w6h3Hm+nf8AVNUG+EKEgwZkIKveMM8maDRdnMvKRi2YRHxN5s4EiXbUnOJtXkDLlzt+XrpxHekIMX31qD84xBv+CO3NWLPvNokJpZiKxRsNgU5DN9RZijGowgx7JvN0mD5463W2y1+5g+7E2LqqI3Bb6U4FSioK0+LPa6Z8ePh057x+DQbFipv/7zt44bMZoUJwTBVlkIUJFgjMRVJYeO1nSRl8EUFVxGgYFVUXp4V5KwKUnxvK1qyvZdaKDv249PurjOvsG6LY5pKwxSpiMBspzkgZnnW2us7C4JD0qKgpijAZm5SRz8NTpzNmW+jYGnDqi55tNFYXpCTR1nRmcDQ6fnpEehhWN7pzyTI5aemnuGn0223Aba80sKUmPmPJMISKBBGciqMxWO9mSORMBlBxn4v9uW8pHL54V7qUExbuXFHHerCx+9O8DtHSP/CGnoV06NUabirwUDjVb6eof4O3GzqgoafSam59yRjv912tbiTMZoiLzF+3yU+NpGjYD0Tt8uizMw6eH8+4787WlfmfvADWNnbLfTIhhJDgTQWWx2siWNvoiwK5cWEBJ5tTcb6WU4tvXLcQ24OI7z+0f8TGDM84kcxY1KvKSaezoY/2BFlwazp0VPR9I5+ancLKzn67+AcDdDGRVedaUKyuORAXpCbRabdgdpwdR74yQ4dPDzS9IJTnOxJZ63/adba43ozVcEAUdP4UIJQnORNC4XJq2HrvsORPCT7Nykrn34lk8s/skrx9qPev+Rs+VdNlzFj28TUH+svkYsSYDSyKsJG0sc70NTU51c7Kjj8MtVi6UD9QhUZgWj9YMlgp29g5wOEKGTw9nMhpYVprh876zDbVmkmKNLI6QcQBCRAoJzkTQdPUP4HBp2XMmxATce/EsyrKT+MY/36Z/4MwZU43tfcTHGMiU+YFRo8IT4Gw/1s6yGRlRlXWaO9ixsZsNte6LBRdKM5CQ8M7+OuUJznY1dACRMXx6JKvKM6ltsWLxjNEZyxuHzZxTnkWMUT6KCjGU/IsQQTM4gFoyZ0L4LT7GyHeuW8gxSy+/Xn/4jPsaO9wzziKtrEmMbkZmInEm94/caJhvNlRRegLJcSYOnurm9VozealxzJEZjSFR6CldPunJlkfa8OnhVvk47+xEWy9HLb2y30yIEUhwJoLGe+VM9pwJMTHnz87musWFPPDfOg63nG7I0NDeR5HMOIsqRoNiVo47oDk3yoIzpRQVecnsb+rijcNmVs/JkQsDIVLgyZw1eQZRR9rw6eGqitKJjzGM2xRkU517iPlqKY8V4iwSnImgsfRI5kyIyfra1fNJiDHytafeRmv37DNv5kxEl3kFKSTFGgdn9UWTufmpbD/WTkfvgHygDqGU+BhS4kyc6uyPyOHTw8WaDCydkTFucLah1kxuShyzJQMrxFkkOBNB482cyZ4zISYuJyWOL19VyZYjbTyxs5Feu4O2Hrs0A4lCn798Ln+5exWxpuj70Ts3LxmtQSlkvlmI5afFuxuxRODw6ZGsKsviwKkuOnsHRrzf5dJsqrNwwexsycAKMYLo+wkhoobZakcpyEiMCfdShIhqt64oYVlpBt97fj97T7qHAUtwFn0K0xMi/oP1aObmpwKwsDBNGtGEWEF6Ak2d/RE7fHq4VeWZaA3bjo6cPdt/qou2Hru00BdiFBKciaCx9NjISIzFJJ2YhJgUg0Hx3XcvpKtvgC89XgPIjDMRWvPyUzAouEi6NIZcYVq8Ozg73k5GBA6fHm5xSTqxRgNbRwnONta695tJMxAhRiafmkXQmLvtZMkVViECYl5+Kh9cXUa9uQeAIsmciRDKSIrlsY+cy70Xzwr3Uqad/LR4zFYbW460sWRGRsSXAsbHuGeXjTaMeuNhM3Nyk8lLjQ/xyoSIDhKciaCx9NikGYgQAfSptXMoSk/AZFDkpsgHGxFay2dmkhShXQKnssI094WYY5ZelkRoC/3hVpZl8vbJLqw2xxm39w842Xa0TUoahRiDBGciaCxWO1nSRl+IgEmMNfHA+5bx7esWYjRE9tVzIURgFKSfvhATyZ0ah1pVnonTpdnh2SfntfN4O/0DLi6QkkYhRiXBmQgas9VGtpQ1ChFQVcVpvGfljHAvQwgRIt5ZZ5E8fHq4pTMyMBoUW4+cWdq4sdaM0aBYVR5ds/6ECCUJzkRQ2B0uuvodkjkTQgghJqHAU9YYycOnh0uKM1FVlMaW+jObgrxx2MySkvSo+T6ECAcJzkRQtMkAaiGEEGLSkuJMFKTFc96s6CoFXFWWye6GDvoHnAB09g5Q09gp+82EGIcEZyIozJ4B1NmSORNCCCEm5Z8fO58vXDE33Mvwy6ryTAacmp3H3fvONtWZ0RrZbybEOCQ4E0Fh8WTOsiVzJoQQQkxKbmo8CbHGcC/DL8tKM1EKth5xlzZuPGwmOc4UNfvmhAgXCc5EUFg8mbOsJMmcCSGEENNNWkIM8wtSB/edvXHYzDnlmcQY5aOnEGORfyEiKCxW2XMmhBBCTGcryzLZebyd+lYrRy29nC8ljUKMa9zgTClVopRar5Tar5Taq5T6lOf2byulapRSu5RSLyqlCoO/XBEtzD02Yk0G6cgkhBBCTFOryrKwOVz832t1gOw3E8IXvmTOHMDntNaVwDnAx5RS84Efa62rtdaLgeeA/wneMkW0sVjtZCfFopQMyhVCCCGmo5VlmQA8ubOBvNQ4Zucmh3lFQkS+cYMzrXWT1nqn5+tuYD9QpLXuGvKwJEAHZ4kiGlmsNplxJoQQQkxjmUmxVOQl49Jw/uxsuWArhA/82nOmlJoJLAG2eP78XaXUCeA2RsmcKaU+rJTarpTa3traOsnlimhh6bHLfjMhhBBimltVlgVISaMQvvI5OFNKJQNPAJ/2Zs201l/TWpcAjwIfH+l5WusHtdbLtdbLc3JyArFmEQUsVrt0ahRCCCGmuasW5pObEseFFfIZUAhf+BScKaVicAdmj2qtnxzhIX8FbgjkwkT00lrTarXJjDMhhBBimjtvdjZbv3Yp2bLVQQif+NKtUQF/APZrrX825PY5Qx72LuBA4JcnopHV5sDucElZoxBCCCGEEH7wpc/5+cDtwB6l1C7PbV8FPqiUmgu4gGPAPUFZoYg6gzPOpKxRCCGEEEIIn40bnGmtNwIjtdd5PvDLEVOBpccGyABqIYQQQggh/OFXt0YhfGH2ZM6kvlwIIYQQQgjfSXAmAm6wrFEyZ0IIIYQQQvhMgjMRcBarp6xR9pwJIYQQQgjhMwnORMBZeuykxpuINcnbSwghhBBCCF/Jp2cRcGarTfabCSGEEEII4ScJzkTAWax22W8mhBBCCCGEnyQ4EwFn6bHJfjMhhBBCCCH8JMGZCDjJnAkhhBBCCOE/Cc5EQDldmrZeO1my50wIIYQQQgi/SHAmAqq9147WkC2ZMyGEEEIIIfwiwZkIKLPMOBNCCCGEEGJCJDgTAWWx2gFkz5kQQgghhBB+kuBMBJQ3cyZljUIIIYQQQvhHgjMRUIOZMylrFEIIIYQQwi8SnImAsvTYMBoUaQkx4V6KEEIIIYQQUUWCMxFQFqudzKRYDAYV7qUIIYQQQggRVSQ4EwFlttrJlhlnQgghhBBC+E2CMxFQlh6bNAMRQgghhBBiAiQ4EwFlsdrJSpLgTAghhBBCCH9JcDaN1TZ38+m/v0Wv3RGwY1qsNrKkrFEIIYQQQgi/SXA2TTmcLj772G6e3nWSVw+0BOSYfXYnPXanDKAWQgghhBBiAiQ4m6YeeuMoexo7iTEqXt7XHJBjWno8A6hlxpkQQgghhBB+M4V7ASL0jll6+OlLB7m0Mo+0hBhe3t+Mw+nCZJxcrD44gFoyZ0IIIYQQQvhNMmfTjNaarz61B5PBwLevW8Bl83Pp7Btg+7H2SR/bmzmTPWdCCCGEEEL4T4KzaWbdjgbeOGzhS1fNoyAtgdVzcog1GgJS2mju9mTOpFujEEIIIYQQfpPgbBpp6e7nu//az4qZGdy2cgYASXEmzpudxcv7m9FaT+r45sHMmQRnQgghhBBC+EuCs2nkW8/uo8/u5PvXV2MwqMHb11bmcdTSS11rz6SOb7HaSYw1khgrWxmFEEIIIYTwlwRn08RL+5r5V00Tn1w7m9m5yWfcd2llLgAv759caaN7xplkzYQQQgghhJgICc6mga7+Ab7+9B7m5afw4QtnnXV/QVoCC4tSeWWywVmPnSxpoy+EEEIIIcSESHA2Dfzo3wdo7bbxgxuqiTWN/Fe+dl4eO461Y7HaJvw6ZqudbMmcCSGEEEIIMSESnE1xW4+08cibx7nr/DIWl6SP+rjL5ufh0rD+YOuEX8titUnmTAghhBBCiAmS4GwK6x9w8uUnayjOSOBzl1eM+dgFhankp8ZPuLTR5dK09djJTpHMmRBCCCGEEBMhwdkU9qtXD1Pf2sP33l01bgdFpRRrK3P576FW+gecfr9WV/8ADpeWzJkQQgghhBATNO2Ds+7+AepbreFeRsDtb+rigf/Wcf3SIi6syPHpOZfOz6PX7uTNeovfr2e2egZQy54zIYQQQgghJmTaB2e3PvgmX3qiJtzLCCinS/PlJ2pIS4jhG1fP9/l555ZnkRhr5JX9LX6/preRSHayZM6EEEIIIYSYiGkfnL1zUSHbjrZzuGXqZM8eeuMIuxs6+ea7FpCR5HsmKz7GyOo52by8vxmttV+vaemRzJkQQgghhBCTMe2Ds+uXFmEyKB7bfiLcSwmIE229/PTFQ1wyL5d3Vhf4/fxLK/No6uxn78kuv57nzZzJnjMhhBBCCCEmZtoHZ7kp8aytzOWJHQ3YHa5wL2dStNZ89ak9GBR8+7qFKKX8Psaaebkohd+ljWarHaUgIzHG79cUQgghhBBCSHAGwK0rZ2DpsfPyBNvIR4ondzayodbMl66aR1F6woSOkZ0cx9IZGX6fC0uPjYzEWExGeUsJIYQQQggxEfJJGrhwTg4FafH8fVv0ljaarTa+/a99LJ2RzvtWlU7qWJdW5rGnsZNTnf2+v363nSw/9rcJIYQQQgghziTBGWA0KG5aXsKG2lYa2nvDvZwJ+daz++i1OfnhDdUYDP6XMw51aWUuAK8c8D17ZumxSTMQIYQQQgghJkGCM4+blxcD8Nj2hjCvxH+v7G/m2d0n+dia2czJS5n08WbnJlOalcjL+/wIzqx2sqSNvhBCCCGEEBMmwZlHcUYiq+fksG77CZwu/9rIh5PV5uDrT79NRV4y9148KyDHVEpxaWUeb9RZ6LU7fHqO2WojW8oahRBCCCGEmDAJzoa4dUUJTZ39vF7bGu6l+OxH/z7Aqa5+vn99NbGmwP11rq3Mxe5wsaHWPO5j7Q4XXf0OyZwJIYQQQggxCRKcDXFpZR5ZSbH8fevxcC/FJ283dvKXN49xx7kzWVaaEdBjr5iZSWq8yafSxjYZQC2EEEIIIcSkjRucKaVKlFLrlVL7lVJ7lVKf8tz+Y6XUAaVUjVLqKaVUetBXG2SxJgM3LCvmlf0ttHT73qkwXH7+ci0pcSY+e3lFwI8dYzSwZl4urx5oGbfM0+wZQJ0tmTMhhBBCCCEmzJfMmQP4nNa6EjgH+JhSaj7wErBQa10NHAK+Erxlhs7Ny0twuDRP7mwM91LG9HZjJy/vb+bu1eWkxgdn8PPayjwsPXZ2negY83EWT+YsWzJnQgghhBBCTNi4wZnWuklrvdPzdTewHyjSWr+otfZ2i3gTKA7eMkNndm4yK2dm8o9tJ9A6chuD/OKVWlLjTdx5/sygvcZFFTmYDGrcgdQWT+YsK0kyZ0IIIYQQQkyUX3vOlFIzgSXAlmF3fQB4IUBrCrtbVpRwxNzDliNt4V7KiN5u7OSlfcHNmgGkJcSwqjxz3H1nFqvsORNCCCGEEGKyfA7OlFLJwBPAp7XWXUNu/xru0sdHR3neh5VS25VS21tbo6ML4juqCkiJN/GPbSfCvZQRhSJr5rV2Xh61LVaOWXpGfYy5x0asyUBynCno6xFCCCGEEGKq8ik4U0rF4A7MHtVaPznk9juAa4Db9Cg1gFrrB7XWy7XWy3NycgKx5qBLiDVy3eIint/TRGfvQLiXcwZv1uyDFwQ3a+Z1aWUeAC/vbxn1MRarneykWJRSQV+PEEIIIYQQU5Uv3RoV8Adgv9b6Z0NuvxL4EvAurXVv8JYYHresKMHmcPH0rshqDBLKrBnAjKxE5ualjFnaaLHaZMaZEEIIIYQQk+RL5ux84HbgEqXULs+vdwC/AlKAlzy3PRDMhYbawqI0Fhal8retxyOmMcjQrFlaQvCzZl5rK3PZerRt1Cyipccu+82EEEIIIYSYJF+6NW7UWiutdbXWerHn1/Na69la65Iht90TigWH0q0rZnDgVDd7GjvDvRQA7g9x1szr0vl5OF2a1w6NXNpo7rZJp0YhhBBCCCEmya9ujdPNuxYXEh9j4G9bw98Y5O3GTl4MQ9YMYHFxOtnJsSPuO9NaY+6xy4wzIYQQQgghJkmCszGkxsdwdVUhz+xqpMfmGP8JQXT/K7WkhCFrBmAwKC6Zl8trB1sYcLrOuM9qc2B3uKSsUQghhBBCiEmS4Gwc71lZQo/dyb/2NIVtDaezZmUhz5p5XVqZR3e/g23DZr8NzjiTskYhhBBCCCEmRYKzcSwrzWBWThJ/33o8bGvwZs3uOr8sbGu4YE42sSYDL+0/s2ujpccGyABqIYQQQgghJkuCs3Eopbh1xQx2Hu/gUHN3yF9/78nwZ80AEmNNXDA7m5f3N5/RvdLsyZxlSyt9IYQQQgghJkWCMx9cv7SIGKPiH9tC3xgkErJmXpdW5nGirY/aFuvgbYNljZI5E0IIIYQQYlIkOPNBVnIcl8/P58mdDdgczpC97t6TnfxnbzMfOD+8WTOvtZW5ALw0ZCC1xeopa5Q9Z0IIIYQQQkyKBGc+umVFCe29A7y4t3n8BweIN2v2gQvCnzUDyEuNp7o4jVeG7Duz9NhJjTcRa5K3khBCCCGEEJMhn6h9dMHsbIrSE0JW2rjvZFdEZc28Lq3M460THbR2uzNmZqtN9psJIYQQQggRABKc+chgUNyyooSNh80ct/QG/fUiLWvmtbYyF61h/QH3QGqL1S77zYQQQgghhAgACc78cOOyYgwKHtse3OzZvpNd/HvvqYjLmgHML0ilMC2elz2ljZYem+w3E0IIIYQQIgAkOPNDYXoCF1XksG7HCRxOV9BeJ1KzZuAeLXDp/Dw21JrpH3BK5kwIIYQQQogAkeDMT7eunEFzl43/HmoNyvG9WbO7IjBr5rW2Mo++AScbas209drJkj1nQgghhBBCTJoEZ366ZF4u2clx/G1rcEob73+llpQ4Ex+MgLlmozmnPJOkWCPrtp9Aa8iWzJkQQgghhBCTJsGZn2KMBm5cVsz6gy00d/UH9Nj7mzxZswvKSEuMzKwZQJzJyEVzc3jF0xRE9pwJIYQQQggxeRKcTcAtK0pwujSP72gI6HGjIWvmtXZeHk6XBpA9Z0IIIYQQQgSABGcTUJadxDnlmfxj2wlcngBlsvY3dfHC25GfNfNaMy8Xg3J/LWWNQgghhBBCTJ4EZxN064oZHG/r5c16S0COF01ZM4DMpFiWlWYAUtYohBBCCCFEIEhwNkFXLswnLSGGv2+bfGOQwazZ+TOjImvmdcuKGczLT4nYrpJCCCGEEEJEE1O4FxCt4mOMvHtJEX/dcpz2HjsZSRMv7fNmzSJxrtlYblxWzI3LisO9DCGEEEIIIaYECc4m4ZYVJTy86SgffXQn8wtTyUqOJTspjuyUWLKS4shOiSMrKZb4GOOoxzhwyp01++Qls0lPlL1bQgghhBBCTFcSnE1CZUEq71lZwsbDZnY3dNBrd474uJQ4kztwS44jKzmWrOQ4spPjyE6O5cW9zVGZNRNCCCGEEEIElgRnk/T966sHv+61O7BY7ZitNsxWOxar7fTXPXbM3TaOmHvYdrSd9l472tPo8VNr50jWTAghhBBCiGlOgrMASow1kZhpoiQzcdzHOpwu2nsH6OyzMzMrKQSrE0IIIYQQQkQyCc7CxGQ0kJMSR06KtKEXQgghhBBCSCt9IYQQQgghhIgIEpwJIYQQQgghRASQ4EwIIYQQQgghIoAEZ0IIIYQQQggRASQ4E0IIIYQQQogIIMGZEEIIIYQQQkQACc6EEEIIIYQQIgJIcCaEEEIIIYQQEUCCMyGEEEIIIYSIABKcCSGEEEIIIUQEUFrr0L2YUq3AsZC9oO+yAXO4FzFNybkPHzn34SPnPnzk3IeXnP/wkXMfPnLuwydSz32p1jpnpDtCGpxFKqXUdq318nCvYzqScx8+cu7DR859+Mi5Dy85/+Ej5z585NyHTzSeeylrFEIIIYQQQogIIMGZEEIIIYQQQkQACc7cHgz3AqYxOffhI+c+fOTch4+c+/CS8x8+cu7DR859+ETduZc9Z0IIIYQQQggRASRzJoQQQgghhBARIOqCM6XUlUqpg0qpw0qpLw+5/R9KqV2eX0eVUrtGeO5ipdRmpdRepVSNUuqWIfeVKaW2KKVqPceKHeX17/A8plYpdYe/z49m4Tz3SqlSpdQOz2vsVUrd48/zo10Qz/3HPcfUSqnsMV5f3vdhOPfyvg/auX/Uc9y3lVJ/VErFjPL68r4Pw7mX933Qzv0flFK7Pbc/rpRKHuX15X0fhnM/3d/3MOb5X6yUetNzbrYrpVaO8vxJvXcj5r2vtY6aX4ARqAPKgVhgNzB/hMf9FPifEW6vAOZ4vi4EmoB0z58fA271fP0AcO8Iz88E6j2/Z3i+zvD1+dH8KwLOfSwQ5/k6GTgKFMq5n/S5XwLM9JzP7FFeX9734Tv38r4Pzrl/B6A8v/42yv858r4P37mX931wzn3qkMf9DPjyCM+X9334zv20fd+Pd/6BF4GrPF+/A3hthOdP6r0bSe/9aMucrQQOa63rtdZ24O/AtUMfoJRSwM24/9M/g9b6kNa61vP1SaAFyPE85xLgcc9D/wRcN8LrXwG8pLVu01q3Ay8BV/rx/GgW1nOvtbZrrW2eP8bhyfrKuXebyLn3/PktrfXRcV5f3vdhOvfyvg/auX9eewBbgeIRXl/e92E69/K+D9q57xry/ARgpKYD8r4P07mf5u97GPv8ayDV83UacHKE50/2vRsx7/1oC86KgBND/tzguW2o1UCz9x/IaDwp0VjcUXoW0KG1dgw/rlJquVLq9+O8/qjPn0LCfe5RSpUopWo86/ih5z8/OfduEzn3Yz1O3vdu4T738r4/LeDnXrlL6m4H/u35s7zv3cJ97uV9f1pAz71S6iHgFDAP+KXnNnnfu4X73E/n9z2Mff4/DfxYKXUC+AnwFT+eH3Wf8aMtOFMj3Db86sN7GOGKxhkHUaoA+Atwl9baNdZxtdbbtdZ3j/P6vqwr2oX73KO1PqG1rgZmA3copfJ8XFe0C9a5H5W87weF+9zL+/5MgT73/we8rrXeAPK+HyLc517e92cK2LnXWt+Fu+RuP3CL5zZ537uF+9xP5/c9jP193gt8RmtdAnwG+IMfz4+6z/jRFpw1ACVD/lzMkNSmUsoEXA/8Y7QDKKVSgX8BX9dav+m52Qyke55/1nF9eH1fnx/Nwn3uB3muJO3FfQVLzv3Ez/1kX1/OffDP/SB53wf23Culvom75Oizfr6+nPvgn/tB8r4P/P85Wmun5/k3+PH6cu6Df+6HPm66ve9h7PN/B/Ck5+t1uEsgfX1+9H3G1xGwCdDXX4AJ9wa9Mk5vFlww5P4rgf+O8fxY4BXg0yPct44zN/t9dITHZAJHcG8UzPB8nenr86P5VwSc+2IgwfN1BnAIqJJzP7lzP+QxRxm7IYi878Nz7uV9H5z/c+4GNnnP7SjPl/d9+M69vO8DfO5xX/2fPeTrnwA/GeH58r4P37mftu/78c4/7mzjxZ6v1wI7Rnj+pN67kfTeD/tfxgT+8t7hecPWAV8bdt/DwD1jPPd9wACwa8ivxZ77ynFvTj7s+UvwdsxZDvx+yDE+4HnMYdwpa8Z6/lT6Fc5zD1wG1Hj+sdYAH5ZzH5Bz/0ncV4scuK8Eec+3vO8j4NzL+z5o597hOab39v8Zfu49f5b3fRjOvbzvA3/ucVdKvQHsAd4GHsXTQVDe95Fx7qf7+36s8w9cAOzwnJstwLJRnu/XezdS3/vK86JCCCGEEEIIIcIo2vacCSGEEEIIIcSUJMGZEEIIIYQQQkQACc6EEEIIIYQQIgJIcCaEEEIIIYQQEUCCMyGEEEIIIYSIABKcCSGEEEIIIUQEkOBMCCGEEEIIISKABGdCCCGEEEIIEQH+P0/T23gsGia1AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACDSUlEQVR4nO3dd3zV5fn/8dedTXYgA0Ig7E0IYYggMt17a92tWm2tVbvbb2v767ZWrR1aW1tn696jCgiIgz3CCIQNGWSSRXbO/fvjnMQwQtZZCe/n45EHyTmfceeTD8m5znXf12WstYiIiIiIiIhvBfh6ACIiIiIiIqLgTERERERExC8oOBMREREREfEDCs5ERERERET8gIIzERERERERP6DgTERERERExA8oOBMREREREfEDCs5ERHooY0xVqw+HMaam1dfX+3p8XWGM2WeMWejrcZyMMWaZMeY2Dx7/SWPMDtfP9JZjnrvW9Vy5MabQGPOMMSb6mLHVtroPdhyz/wJjzHZjTLUxZqkxJrXVc8YY83tjTInr40FjjPHU9ykiIsdTcCYi0kNZayObP4ADwEWtHnvB1+M7ljEmqDecwws2Ad8A1p/guc+AWdbaGGAYEAT86pht7m51H4xuftAYEw+8DvwU6AusBV5qtd8dwKXAJCANuBD4uju+IRER6RgFZyIivYwxJsAY80NjzG5XBuRlY0xf13NDjDHWGHOrMeagMeawMeZOY8w0Y0ymMabMGPOXVse6xRjzmTHmz65szXZjzIJWz8cYY54yxuQbY3KNMb8yxgQes+8jxphS4OfGmOHGmI9d4yo2xrxgjIl1bf8cMBh4x5X1+b4xZq4xJueY768lu2aM+bkx5lVjzPPGmArglnbGNMIYs9z1vRQbY1oHJ63PEeY6ZonrmqwxxiQZY34NzAb+4hrjX1zbjzHGLDLGlLoyW1e3OtbTxpgnXM9Xus6feqLzAlhr/2qtXQLUnuC5g9ba4lYPNQEj2jrWMS4HtlprX7HW1gI/ByYZY8a4nr8Z+KO1Nsdamwv8Ebilg8cWERE3UHAmItL73IMzAzIHSAYOA389ZpvTgJHANcCjwE+AhcB44GpjzJxjtt0DxAMPAK83B3vAM0AjzgBhMnA2cNsJ9k0Efg0Y4LeucY0FBuEMErDW3sjRGcAHO/j9XgK8CsQCL7Qzpl8CHwFxQArw5zaOeTMQ4xpfP+BOoMZa+xNgBV9mp+42xkQAi4D/uL7P64C/GWPGtzre9a5zxwMbXePsEmPMGcaYcqASuALnz6+137oCz8+MMXNbPT4eZ1YOAGvtEWC36/Hjnnd93vp7EBERD1NwJiLS+3wd+IkrA1KHM/i58pgpf7+01tZaaz8CjgD/tdYWujImK3AGNc0KgUettQ3W2peAHcAFxpgk4DzgXmvtEWttIfAIcG2rffOstX+21jZaa2ustbustYustXXW2iLgYZxBZHd8Ya1901rrAKLbGVMDkAoku77/T9s4ZgPOoGyEtbbJWrvOWlvRxrYXAvustf92fZ/rgdeAK1tt85619hPXz+MnwOnGmEFd+WattZ+6pjWmAH8A9rV6+gc4pzsOBJ7EmYUc7nouEig/5nDlQFQbz5cDkVp3JiLiPQrORER6n1TgDdd0vDIgC+f0t6RW2xS0+rzmBF9Htvo611prW329H2fmKxUIBvJbnevvOLNHzQ62HpgxJtEY86JrumEF8DzObFJ3tD5He2P6Ps7s3WpjzFZjzFfbOOZzwIfAi8aYPFdxjOA2tk0FTms+n+uc1wP9TzRGa20VUIrzGnaZK5D+H/Biq8dWWWsrXcHvMzjXqJ3veroKZ/DaWjTODNyJno8Gqo752YuIiAcpOBMR6X0OAudZa2NbfYS5Xsx3xcBjsieDgTzXeeqA+FbnibbWtp4Kd+wL+9+6Hkuz1kYDN+AMltra/ggQ3vyFa+1YwjHbtN7npGOy1h6y1t5urU3GmWH8mzHmuDVbrizhL6y144CZOLNjN7UxxoPA8mOud6S19q5W27RkyYwxkTgLcuQde94uCAKGn+R5y5fXdyvOYh/N44hw7bv1RM+7Pt+KiIh4jYIzEZHe5wng181FJ4wxCcaYS7pxvETgHmNMsDHmKpxrxd631ubjXL/1R2NMtHEWIhl+zHq1Y0XhzNCUGWMGAt875vkCnNPymmUDYcaYC1yZq/8DQts6eHtjMsZcZYxJcW1+GGfw0nTscYwx84wxE13BYAXOaY7N2x07xneBUcaYG13XKNg4C6yMbbXN+a61YiE4156tstYelVVsde4QY0wYzqAq2FWcJMD13PXGmMHGKRXnOr4lrudijTHnuLYPMs52CmfizAACvAFMMMZc4Tr+z4BMa+121/PPAvcbYwYaY5KB7wBPt3WtRUTE/RSciYj0Pn8C3gY+MsZUAitxFuboqlU4i4cU4wwGrrTWlrieuwkIAbbhDHZeBQac5Fi/ADJwrmd6D2dp99Z+C/yfa3rgd6215TjLyv8TyMWZScvh5E42pmnAKmNMFc5r9G1r7d4THKO/a78KnNNCl+OcggnO63ulcVa6fMxaW4mz6Mi1OLNhh4Dfc3QQ+R+cxVRKgSk4pz225SOcU0tn4lw3VoMzyAIYB3yOM8D9DOf6v9tdzwXjLKtfhPNn9S3gUmvtDgDXGr8rcP4MD+O8J1qvD/w78A6wGdiC8+fz95OMU0RE3MxoKrmIiLTFOJsg32atPcPXY+mpjDFPAznW2v/z9VhERMS/KXMmIiIiIiLiBxSciYiIiIiI+AFNaxQREREREfEDypyJiIiIiIj4AQVnIiIiIiIifiDImyeLj4+3Q4YM8eYpRURERERE/Ma6deuKrbUJJ3rOq8HZkCFDWLt2rTdPKSIiIiIi4jeMMfvbek7TGkVERERERPyAgjMRERERERE/oOBMRERERETED3h1zdmJNDQ0kJOTQ21tra+HIr1MWFgYKSkpBAcH+3ooIiIiIiLt8nlwlpOTQ1RUFEOGDMEY4+vhSC9hraWkpIScnByGDh3q6+GIiIiIiLSr3WmNxphBxpilxpgsY8xWY8y3XY+nG2NWGmM2GmPWGmOmd2UAtbW19OvXT4GZuJUxhn79+ikjKyIiIiI9RkcyZ43Ad6y1640xUcA6Y8wi4EHgF9baD4wx57u+ntuVQSgwE0/QfSUiIiIiPUm7mTNrbb61dr3r80ogCxgIWCDatVkMkOepQXrar3/9a8aPH09aWhrp6emsWrUKgNtuu41t27a55RxDhgyhuLj4pNv85je/6fRxn376ae6+++6jHvv3v/9Neno66enphISEMHHiRNLT0/nhD3/Y6eN7w6OPPkp1dbWvhyEiIiIi4lOdWnNmjBkCTAZWAfcCHxpjHsIZ5M109+C84YsvvuDdd99l/fr1hIaGUlxcTH19PQD//Oc/vTqW3/zmN/z4xz/u9nFuvfVWbr31VsAZFC5dupT4+PhuH7errLVYawkIOPF7AY8++ig33HAD4eHhHT5mY2MjQUE+XzIpIiIiIuI2HS6lb4yJBF4D7rXWVgB3AfdZawcB9wFPtbHfHa41aWuLiorcMWa3ys/PJz4+ntDQUADi4+NJTk4GYO7cuaxduxaAyMhIfvCDHzBlyhQWLlzI6tWrmTt3LsOGDePtt98Gjs9iXXjhhSxbtuy4c1566aVMmTKF8ePH8+STTwLwwx/+kJqaGtLT07n++usBeP7555k+fTrp6el8/etfp6mpCXBmxkaNGsWcOXP47LPPOvy9/uEPf2DatGmkpaXxwAMPALBv3z7GjBnDbbfdxoQJE7j++utZvHgxs2bNYuTIkaxevRqAn//859x4443Mnz+fkSNH8o9//KPd444dO5ZvfOMbZGRkcPDgQe666y6mTp3K+PHjW7Z77LHHyMvLY968ecybN6/lWjd79dVXueWWWwC45ZZbuP/++5k3bx4/+MEP2L17N+eeey5Tpkxh9uzZbN++vcPXQkRERERObk9RFS+vPUh1faOvh3LqaM5qnOwDCAY+BO5v9Vg5YFyfG6CiveNMmTLFHmvbtm3HPeZNlZWVdtKkSXbkyJH2rrvussuWLWt5bs6cOXbNmjXWWmsB+/7771trrb300kvtWWedZevr6+3GjRvtpEmTrLXW/vvf/7bf/OY3W/a/4IIL7NKlS6211qamptqioiJrrbUlJSXWWmurq6vt+PHjbXFxsbXW2oiIiJZ9t23bZi+88EJbX19vrbX2rrvuss8884zNy8uzgwYNsoWFhbaurs7OnDnzqHMeq/m8H374ob399tutw+GwTU1N9oILLrDLly+3e/futYGBgTYzM9M2NTXZjIwMe+utt1qHw2HffPNNe8kll1hrrX3ggQdsWlqara6utkVFRTYlJcXm5uae9LjGGPvFF1+0jKX5+25sbLRz5syxmzZtOu7aHHsdXnnlFXvzzTdba629+eab7QUXXGAbGxuttdbOnz/fZmdnW2utXblypZ03b95x37+v7y8RERGRnur3H2TZYT96z5ZU1fl6KL0KsNa2ES+1Oy/MOKsqPAVkWWsfbvVUHjAHWAbMB3Z2N1D8xTtb2ZZX0d3DHGVccjQPXDS+zecjIyNZt24dK1asYOnSpVxzzTX87ne/a8nWNAsJCeHcc88FYOLEiYSGhhIcHMzEiRPZt29fp8b02GOP8cYbbwBw8OBBdu7cSb9+/Y7aZsmSJaxbt45p06YBUFNTQ2JiIqtWrWLu3LkkJCQAcM0115Cdnd3uOT/66CM++ugjJk+eDEBVVRU7d+5k8ODBDB06lIkTJwIwfvx4FixYgDHmuO/tkksuoU+fPvTp04d58+axevVqPv300zaPm5qayowZM1r2f/nll3nyySdpbGwkPz+fbdu2kZaW1qlrd9VVVxEYGEhVVRWff/45V111VctzdXV1nTqWiIiIiJyYtZb3Nuczc3g/+kaE+Ho4p4yOLNqZBdwIbDbGbHQ99mPgduBPxpggoBa4wyMj9ILAwEDmzp3L3LlzmThxIs8888xxwVlwcHBL9b+AgICWaZABAQE0NjpTvUFBQTgcjpZ9TlTGfdmyZSxevJgvvviC8PBw5s6de8LtrLXcfPPN/Pa3vz3q8TfffLNLVQittfzoRz/i61//+lGP79u3r+V7Odn3BsdXPzTGnPS4ERERLV/v3buXhx56iDVr1hAXF8ctt9zSZpn71uc5dpvmYzocDmJjY9m4cWN737qIiIiIdNLWvAr2l1TzjbnDfT2UU0q7wZm19lOc0xZPZIo7B3OyDJen7Nixg4CAAEaOHAnAxo0bSU1N7dKxhgwZwt/+9jccDge5ubkt67VaKy8vJy4ujvDwcLZv387KlStbngsODqahoYHg4GAWLFjAJZdcwn333UdiYiKlpaVUVlZy2mmn8e1vf5uSkhKio6N55ZVXmDRpUrtjO+ecc/jpT3/K9ddfT2RkJLm5uQQHB3fq+3vrrbf40Y9+xJEjR1i2bBm/+93v6NOnT4eOW1FRQUREBDExMRQUFPDBBx8wd+5cAKKioqisrGwpWpKUlERWVhajR4/mjTfeICoq6rjjRUdHM3ToUF555RWuuuoqrLVkZmZ26FqIiIiIyMm9m5lPUIDh7HH9fT2UU8opX+6uqqqKb33rW5SVlREUFMSIESNainR01qxZs1qmCE6YMIGMjIzjtjn33HN54oknSEtLY/To0UdN+7vjjjtIS0sjIyODF154gV/96lecffbZOBwOgoOD+etf/8qMGTP4+c9/zumnn86AAQPIyMhoKRRyMmeffTZZWVmcfvrpgHM65/PPP09gYGCHv7/p06dzwQUXcODAAX7605+SnJxMcnJyh447adIkJk+ezPjx4xk2bBizZs066vs+77zzGDBgAEuXLuV3v/sdF154IYMGDWLChAlUVVWdcDwvvPACd911F7/61a9oaGjg2muvVXAmIiIi0k3OKY15zBoRT5ymNHpVc0EPr5g6daptrn7YLCsri7Fjx3ptDNI1P//5z4mMjOS73/2ur4fSKbq/RERERDonM6eMi//yGQ9emcbVUwf5eji9jjFmnbV26ome63ApfRERERER6f3ey8wnONBwjqY0et0pP61ROubnP/+5r4cgIiIiIh5mreXdzHzOGBFPTHjn6hNI9ylzJiIiIiIiAGw8WEZuWQ0XpCX7eiinJAVnIiIiIiICOKc0hgQGcNa4JF8P5ZSk4ExERERERHA4LO9vzufMUfHE9NGURl9QcCYiIiIiImw4WEZeeS0XpA3w9VBOWQrOgMDAQNLT05kwYQJXXXUV1dXVXT7WLbfcwquvvgrAbbfdxrZt29rcdtmyZXz++ectXz/xxBM8++yzXT53s3379jFhwoSjHvv5z3/OQw891KnjuGs8IiIiIuL/3svMJyQogIVjNaXRV1StEejTpw8bN24E4Prrr+eJJ57g/vvvb3m+qampU82am/3zn/886fPLli0jMjKSmTNnAnDnnXd2+hye0tjY6FfjERERERHPaZ7SOGdUAlFhmtLoKz0rc/bgg7B06dGPLV3qfNxNZs+eza5du1i2bBnz5s3jK1/5ChMnTqSpqYnvfe97TJs2jbS0NP7+978DznKjd999N+PGjeOCCy6gsLCw5Vhz586luen2//73PzIyMpg0aRILFixg3759PPHEEzzyyCOkp6ezYsWKo7JbGzduZMaMGaSlpXHZZZdx+PDhlmP+4Ac/YPr06YwaNYoVK1Z0+ns82bF//OMfM2fOHP70pz+1jCcvL4/09PSWj8DAQPbv38/+/ftZsGABaWlpLFiwgAMHDgDO7OE999zDzJkzGTZsWEsmUURERET80/oDhzlUUcuFmtLoUz0rOJs2Da6++ssAbelS59fTprnl8I2NjXzwwQdMnDgRgNWrV/PrX/+abdu28dRTTxETE8OaNWtYs2YN//jHP9i7dy9vvPEGO3bsYPPmzfzjH/84appis6KiIm6//XZee+01Nm3axCuvvMKQIUO48847ue+++9i4cSOzZ88+ap+bbrqJ3//+92RmZjJx4kR+8YtfHDXO1atX8+ijjx71eGu7d+8+KqB64oknOnTssrIyli9fzne+852Wx5KTk9m4cSMbN27k9ttv54orriA1NZW7776bm266iczMTK6//nruueeeln3y8/P59NNPeffdd/nhD3/YyZ+EiIiIiHjTu64pjQs0pdGn/Gta4733gmt6YZuSk+Gcc2DAAMjPh7Fj4Re/cH6cSHo6PProSQ9ZU1NDeno64Mycfe1rX+Pzzz9n+vTpDB06FICPPvqIzMzMlixQeXk5O3fu5JNPPuG6664jMDCQ5ORk5s+ff9zxV65cyZlnntlyrL59+550POXl5ZSVlTFnzhwAbr75Zq666qqW5y+//HIApkyZwr59+054jOHDh7dM1YQvm0i3d+xrrrmmzXF99tln/POf/2zJ1n3xxRe8/vrrANx44418//vfb9n20ksvJSAggHHjxlFQUHDS71dEREREfKd5SuO80QlEhvpXeHCq6XlXPy7OGZgdOACDBzu/7qbWa85ai4iIaPncWsuf//xnzjnnnKO2ef/99zHGnPT41tp2t+mM0NBQwFnIpLGx0W3HhaO/59by8/P52te+xttvv01kZOQJt2n9PTaPEZzfv4iIiIj4p7X7D1NYWafG037Av4KzdjJcwJdTGX/6U3j8cXjgAZg3z+NDO+ecc3j88ceZP38+wcHBZGdnM3DgQM4880z+/ve/c9NNN1FYWMjSpUv5yle+ctS+p59+Ot/85jfZu3cvQ4cOpbS0lL59+xIVFUVFRcVx54qJiSEuLo4VK1Ywe/ZsnnvuuZZMV3d15dgNDQ1cffXV/P73v2fUqFEtj8+cOZMXX3yRG2+8kRdeeIEzzjjDLWMUEREREe95NzOP0KAAFoxJ9PVQTnn+FZy1pzkwe/llZ0A2b97RX3vQbbfdxr59+8jIyMBaS0JCAm+++SaXXXYZH3/8MRMnTmTUqFEnDHQSEhJ48sknufzyy3E4HCQmJrJo0SIuuugirrzySt566y3+/Oc/H7XPM888w5133kl1dTXDhg3j3//+t9u+l84e+/PPP2fNmjU88MADPPDAA4AzY/jYY4/x1a9+lT/84Q8kJCS4dYwiIiIi4nlNDsv7mw8xf0wiEZrS6HPGm1POpk6dapurFzbLyspi7NixHTvAgw86i3+0DsSWLoU1a6DVeieRZp26v0REREROMV/sLuG6f6zkL1+ZzIWa1ugVxph11tqpJ3quZ4XHJwrAmjNoIiIiIiLSKe9tzqNPcCDzNaXRL/SsUvoiIiIiIuIWjU0O/rflEPPHJhIe0rNyNr2VgjMRERERkVPQ6r2lFFfVc+FENZ72F34RnKnUuniC7isRERGRtr27OZ/wkEDmjtaURn/h8+AsLCyMkpISvZAWt7LWUlJSQlhYmK+HIiIiIuJ3mqc0LhibRJ+QQF8PR1x8Prk0JSWFnJwcioqKfD0U6WXCwsJISUnx9TBERERE/M7KPaWUHqnnAk1p9Cs+D86Cg4MZOnSor4chIiIiInLKeG9zHhEhgcwdneDroUgrPp/WKCIiIiIi3tPQ5OCDLYdYOC6JsGBNafQnCs5ERERERE4hn+8uoay6QVMa/ZCCMxERERGRU8h7mXlEhQZx5ihNafQ3Cs5ERERERE4R9Y0OPtxawFma0uiXFJyJiIiIiJwiPttdTHlNAxekaUqjP2q3WqMxZhDwLNAfcABPWmv/ZIx5CRjt2iwWKLPWpntonCIiIiIi0k3vZeYTFRbEGSPjfT0UOYGOlNJvBL5jrV1vjIkC1hljFllrr2newBjzR6DcU4MUEREREZHucU5pPMTZ4/oTGqQpjf6o3eDMWpsP5Ls+rzTGZAEDgW0AxhgDXA3M9+A4RURERESkGz7dVURlbSMXakqj3+rUmjNjzBBgMrCq1cOzgQJr7U43jktERERERNzo3cx8osOCmDVCUxr9VYeDM2NMJPAacK+1tqLVU9cB/z3JfncYY9YaY9YWFRV1faQiIiIiItIldY1NLNpawDnj+xMSpJqA/qpDPxljTDDOwOwFa+3rrR4PAi4HXmprX2vtk9baqdbaqQkJ6qUgIiIiIuJtn2QXU1nXqCqNfq7d4My1puwpIMta+/AxTy8EtltrczwxOBERERER6b73MvOI6ROsKY1+riOZs1nAjcB8Y8xG18f5rueu5SRTGkVERERExLdqG5pYtK2Ac8f3JzhQUxr9WUeqNX4KmDaeu8XdAxIREREREfdZnl3EkfomTWnsARQ6i4iIiIj0Yu9l5hMXHszM4f18PRRph4IzEREREZFeqrahicVZBZw7YQBBmtLo9/QTEhERERHppZbtKKS6vkmNp3sIBWciIiIiIr3Uu5n59IsI4bShfX09FOkABWciIiIiIr1Qk8OydHshZ4/vrymNPYR+SiIiIiIivdCB0mqO1DcxeVCsr4ciHaTgTERERESkF9pxqBKA0f2jfDwS6SgFZyIiIiIivVB2QSXGwMikSF8PRTpIwZmIiIiISC+041Alg/uGEx4S5OuhSAcpOBMRERER6YV2FFQyKklTGnsSBWciIiIiIr1MXWMTe4uPMFrBWY+i4ExEREREpJfZXXiEJodVMZAeRsGZiIiIiEgvs6OgAlClxp5GwZmIiIiISC+z41AVwYGGofERvh6KdIKCMxERERGRXmbHoQqGJ0QSHKiX+z2JfloiIiIiIr1MdkGVpjT2QArORERERER6kYraBnLLalRGvwdScCYiIiIi0ovsLKgEYIwyZz2OgjMRERERkV5kx6EqAGXOeiAFZyIiIiIivciOQxVEhASSEtfH10ORTlJwJiIiIiLSi+woqGRU/yiMMb4einSSgjMRERERkV7CWsuOQ5WM1pTGHknBmYiIiIhIL1FUVcfh6gaV0e+hFJyJiIiIiPQSOw45KzUqc9YzKTgTEREREeklWoIzZc56JAVnIiIiIiK9xI5DlcRHhtAvMtTXQ5EuUHAmIiIiItJLZBdUKmvWgyk4ExERERHpBRwOS3ZBlZpP92AKzkREREREeoGDh6upaWhijDJnPVa7wZkxZpAxZqkxJssYs9UY8+1Wz33LGLPD9fiDnh2qiIiIiIi0ZburGIgyZz1XUAe2aQS+Y61db4yJAtYZYxYBScAlQJq1ts4Yk+jJgYp0V0OTgz9+lM3Ogkr+cdNUAgKMr4ckIiIi4jbZCs56vHaDM2ttPpDv+rzSGJMFDARuB35nra1zPVfoyYGKdMeh8lru/s961u4/DMDm3HImDYr17aBERERE3GhHQSWD+vYhIrQj+RfxR51ac2aMGQJMBlYBo4DZxphVxpjlxphpHhifSLd9urOYCx5bwbb8Cn556QQCDCzJKvD1sERERETcasehSkYnRft6GNINHQ7OjDGRwGvAvdbaCpxZtzhgBvA94GVjzHHzxIwxdxhj1hpj1hYVFblp2CLtczgsjy3ZyY3/WkXfiBDevnsWN85IZWpqXxZlKdErIiIivUddYxN7i48wun+kr4ci3dCh4MwYE4wzMHvBWvu66+Ec4HXrtBpwAPHH7mutfdJaO9VaOzUhIcFd4xY5qdIj9dz69BoeXpTNJZOSeevuWYxIdM6/Xjgukaz8CnLLanw8ShERERH32FN0hEaH1XqzHq4j1RoN8BSQZa19uNVTbwLzXduMAkKAYg+MUaRT1h84zIWPreCL3SX8+rIJPHJNOuEhX869XjA2CdDURhEREek9sgucxUDG9Ne0xp6sI5mzWcCNwHxjzEbXx/nAv4BhxpgtwIvAzdZa68GxipyUtZanP9vLNX//goAAw2t3zeT601I5drbt8IRIhsVHsGibgjMRERHpHbYfqiQowDA0PsLXQ5Fu6Ei1xk+BtmqO3+De4Yh0TWVtAz98bTPvbc5n4dhE/nhVOjHhwW1uv3BcEv/+bC+VtQ1EhbW9nYiIiEhPkH2okuEJkYQEdaren/gZ/fSkx9t+qIJL/vIZH2zJ54fnjeHJG6eeNDADWDAmkYYmy4qdmokrIiIiPd/2Q5WM6q/1Zj2dgjPp0V5bl8Olf/2MyrpG/nP7DO6cM7xDzaWnpMYRGx7MYk1tFBERkR6usraB3LIaxig46/HUoU56pNqGJn7xzlb+u/ogM4b15bHrJpMYFdbh/YMCA5g3OpGlOwppbHIQFKj3KURERKRnyi6oAlClxl5Ar0ilx9lfcoQrHv+c/64+yDfmDuf5r53WqcCs2cKxSRyubmD9gTL3D1JERETES76s1KjgrKdT5kx6lJKqOi7562c4HJanbp7aUha/K84cFU9woGFJVgHTh/Z14yhFREREvGfHoUrCQwIZGNvH10ORblLmTHqUJz/ZQ0VNAy99/fRuBWYAUWHBzBjWj0XqdyYiIiI92I5DlYxKiurQunvxbwrOpMcoqqzjmS/2cUn6QMYOcE+DxYVjk9hTdIQ9RVVuOZ6IiIiIt2UXVDJa6816BQVn0mM8sXw3DU2WexaMdNsxF4xNBGBJVqHbjikiIiLiLUWVdZQcqVcZ/V5CwZn0CIUVtTy/cj+Xpg90a+f7lLhwxvSP0tRGERER6ZFUDKR3UXAmPcLflu2m0WG5Z8EItx/7rHFJrNt/mMNH6t1+bBERERFP2n7IGZypjH7voOBM/F5+eQ3/WX2AKzNSSO3nvqxZswVjk2hyWJZla2qjiIiI9CzZhyrpFxFCQlSor4cibqDgTPze35buxuGw3D3f/VkzgLSBMSREhbJ4m4IzERER6Vm2F1Qqa9aLKDgTv5ZbVsOLaw5w9bRBDOob7pFzBAQYFo5NZHl2EfWNDo+cQ8Sbahua+N0H2ynVVF0RkV7N4bDsLKhktNab9RoKzsSv/eXjXRgM35znmaxZswVjkqiqa2TV3hKPnkfEGz7dWcwTy3fz9sZcXw9FREQ8KOdwDdX1TQrOehEFZ+K3DpZW88rag1wzbZDHO97PGhFPWHAAi7epaqP0fCv3ON9kWHegzLcDERERj9rhqtSo4Kz3UHAmfusvH+8iIMDwjXnDPX6uPiGBnDEinsVZhVhrPX4+EU9atbcUgPX7D/t4JCIi4kk7DlUAqtTYmyg4E7+0v+QIr67P4SvTBzMgxrNZs2YLxyaRW1bTUpJWpCeqqG1ga1458ZGh5JbVcKi81tdDEhERD9lRUEVKXB8iQ4N8PRRxEwVn4pceW7KLoADDN+Z6PmvWbP7YRACW+GlD6tqGJpocyurJya3dV4rDwtfOGArA+gPKnomI9FbZhyoZraxZr6LgTPzOnqIq3tiQw40zUkmMDvPaeROjwpg0KJZFWf5XUt9ay8KHl/PQRzt8PRTxc6v2lBISGMANMwYTGhTAOk1tFBHpleobHewuqmKU1pv1KgrOxO/8+eNdhAYF8vU53suaNTtrbCKbDpZRWOFfU8EOltaQc7iGl9YcpKFJ5f6lbSv3lJA+KJaosGAmpcQqcyYi0kvtLT5Co8MyRsFZr6LgTPzKrsJK3tqYy02np/qk0/3CcUkAfLzdv7Jnm3PLASg9Us/yHUU+Ho34q6q6RrbkVTBjWF8AJqfGsiW3nNqGJh+PTERE3G27ioH0SgrOxK/8ackuwoIDuePMYT45/+ikKAbG9mGxn60725xbTnCgoW9ECK9vyPH1cMRPrd1XSpPDctqwfgBMGRxHQ5Nliyu4FxGR3iO7oJKgAMPwhEhfD0XcSMGZ+I0dhyp5NzOPW2YOoV+k97NmAMYYzhqXxKe7iqmp959sw+bcMsb0j+aS9GQWbyukvLrB10MSP7RyTynBgYaMwXEAZKQ6/9W6MxGR3mfHoUqGxkcQEqSX872JfpriN/60JJuIkCBun+2brFmzBWMTqW1w8NmuYp+Oo5m1li25FUwYGMMVGSnUNzl4d3Oer4clfmjV3hImpcTSJyQQgPjIUFL7hWvdmYhIL7SjoFLNp3shBWfiF7blVfD+5kN8ddYQ4iJCfDqW04b2IzI0yG+mNh4sraG8poG0lBjGJ0czKimS19fn+npY4meO1DWSmVPOaa71Zs2mDI5j3f4yNVcXEelFquoaOVhaozL6vZCCM/ELf1qSTVRYEF87w7dZM4CQoADmjE5gyfZCHH7QV6y5GMjEgTEYY7g8I4V1+w+zr/iIj0cm/mTd/sPO9WZD+x31eEZqHMVVdRwsrfHRyERExN12FlQCKHPWCyk4E5/bklvOh1sL+NoZQ4kJD/b1cABYODaRoso6Mv2gkEJmbhkhgQEt1ZguTR+IMfD6ehUGkS+t2ltCUIBhimudWbPmrzW1UUSk99hxSMFZb6XgTHzu0cXZRIcF8dUzhvp6KC3mjU4kMMCweJvvpzZuyS1ndP+olgW//WPCOGNEPK9vyPWLzJ74h5V7SpmYEkNEaNBRj49KiiIyNEhFQUREepEdBZX0CQ5kUFy4r4cibqbgTHxq08EyFmcVcseZw4gO84+sGUBseAhTUuN8vu7MWsvmnHImpsQc9fjlGQPJOVzDmn2lPhqZ+JOa+iYyc8qYMazfcc8FBhjSB8UqOBMR6UWyCyoZlRRJQIDx9VDEzRSciU89sjib2PBgbpnlP1mzZmeNTWL7oUpyDlf7bAwHSqupqG1k4sCjg7NzxvcnIiRQhUEEcE5ZbGiynDa07wmfz0iNY/uhCqrqGr08MvGWDzbns79E61BFThU7DqlSY2/VbnBmjBlkjFlqjMkyxmw1xnzb9fjPjTG5xpiNro/zPT9c6U3WHzjMsh1FfP3M4UQeMxXLHywclwTAkqxCn42hdTGQ1sJDgjhv4gDe25xPbYP/9GMT31i5p4TAAMPUIW0EZ4NjcVjIPFjm3YGJVxwoqeYb/1nPnz/e5euhiIgXFFfVUVxV37IWXXqXjmTOGoHvWGvHAjOAbxpjxrmee8Ram+76eN9jo5Re6ZFF2fSNCOGm01N9PZQTGhofwbCECJ9ObdycW35UMZDWLs8YSFVdIx/5wbo48a1Ve0qZMDCmzTc5Jg9WM+re7IVV+7EWMnPKfD0UEfGCbBUD6dXaDc6stfnW2vWuzyuBLGCgpwcmvduafaWs2FnMnXOGHVfAwJ+cNTaJlXtKqKxt8Mn5N+eUM2bAl8VAWpsxtB/JMWGq2niKq21oYuPBMma0MaURIKZPMKOSIlmnio1tyswp48anVnH+n1bQ1IMK7dQ2NPHS2oMEBhh2FlZp6qrIKWBHTyij/+CDsHTp0Y8tXep8XE6qU2vOjDFDgMnAKtdDdxtjMo0x/zLGxLWxzx3GmLXGmLVFRUXdG630Go8syiY+MpQbZwzx9VBOauG4JBqaLJ9kF3v93NZatuSWM+GYKY3NAgIMl2UM5JPsIgora708OvEX6w8cpr7JcVzz6WNNSY1jw4EyVfg8xt7iI3zzhfVc/JfPWLWnlG35FS3TiXuC9zLzKatu4KuzhmCts7qriPRuOw5VEhceTEJkqK+H0rZp0+Dqq78M0JYudX49bZpvx9UDdDg4M8ZEAq8B91prK4DHgeFAOpAP/PFE+1lrn7TWTrXWTk1ISOj+iKXHW7mnhM93l3DX3OH0CQn09XBOKmNwHHHhwT6Z2thWMZDWLpucgsPC2xvzvDgy8Ser9pQSYGhzvVmzyYPjKK9pYE9xlZdG5t8KK2r5yRubWfjwcpbuKOSe+SNYfP8cjIFlO3y3zrSznlu5n2EJEXx9znBAUxtFTgU7CpzFQIzx40qN8+bBc8/BBRfA3Llw1VXw8svOx+WkOhScGWOCcQZmL1hrXwew1hZYa5ustQ7gH8B0zw1TepO3NuYSFRbE9acN9vVQ2hUYYJg3JpGlOwppbHJ49dxtFQNpbURiJJMGxfKaqjaeslbuKWF8cky7rSiam1Gf6uvOKmob+MOH25nzh2W8tOYg1582mOXfm8f9Z49mcL9w0lJiWZ7dM2Z5bM4pZ+PBMm6ckUp8ZCgDY/uwKUeZM5HezOGwZB+qZLS/FwM5dAgeeABqamD5cigvh1dfhd27fT0yv9eRao0GeArIstY+3OrxAa02uwzY4v7hSW90sLSGYQmRhAX7d9as2cKxSZRVN3j9Re3mnLaLgbR2RcZAsvIr2JZX4aWRib+obWhiw8GyNkvotzYsPoLY8OBTNjirbWjiH5/s4cwHl/LXpbs5a1wSS74zh/93yQQSor6cGjRnVAIbD5Zx+Ei9D0fbMc+v3E+f4EAuz0gBYNKgGGXOvCS/vIbbn13Lo4uzfT0UOcXkltVwpL6J0f2jfT2Utm3aBNOnO/+NjoY774SgIHjySRg50plFW73a16P0Wx3JnM0CbgTmH1M2/0FjzGZjTCYwD7jPkwOV3iO3rIaU2D6+HkaHnTkqgZDAAK9Pbdyc23YxkNYuTEsmONCoMMgJlFTV8dM3t7C2lzbr3nSwjPpGxwmbTx/LGEPG4DjWHyjz/MD8SJPD8vLag8x/aBm/fj+LtJRY3v3WGTx23WRS+0Uct/3c0QlYCyt2eX+daWeUVzfw1qZcLp2cTEwfZ9Y0LSWWg6U1lPaAwLIn+2BzPuc+uoJF2wp4cfVBXw9HTjE7Wio1Rvp4JG14+22YNcuZMevTB958Ex5/HN5/3xmoXXstLFoEp50Gc+bAO++Aw7szk/xdR6o1fmqtNdbatNZl8621N1prJ7oev9ham++NAUvP5nBYcstqSI4N8/VQOiwyNIgZw/t5td+ZtZbNueUnndLYrG9ECPNGJ/LmxjyvT730d29syOW5lfu58okv+OrTa3pddnHlnlKMgWkdyJyBc2rjrsIqyqp7/4t3ay0fbT3EuY9+wvdfzSQhKpT/3HYaz351eptFdgAmpcQSGx7s9+vOXl2fQ22DgxtmfNmKZFJKLKB1Z55ypK6RH7yayV0vrGdIv3BunTWEQxW15JXV+HpocgpprtTodz3OrIU//AEuvRTGjoWvfx1ef/3LNWbz5jmnNaanw8GD8MgjsG8fXHwxTJgATz0FdXU+/Ab8R6eqNYp0V/GROuobHQzsQZkzgIVjE9lTfITdRd4pprC/pJrKdoqBtHbFlBSKq+r8/t1+b1ueXcSw+Ai+f+5o1u4r5fzHVvCt/25gb/ERXw/NLVbtLWHcgOiWzEl7Mlz9zjb08uzZmn2lXPnEF9zx3DqaHJa/XZ/Bm9+cxcwR8e3uGxhgmD0ygU+yi/22sqXDYXl+5X6mpMYxPvnL3xETU2IwBjK17sztNh0s48I/f8rL6w7yzXnDefWumVya7uwqtF4tKsSLdhyqZGBsH6LaWWfsVfX1cNtt8P3vw5VXOteY/epXxxf/mDfPuU1UFNx7L+zaBS+8AKGhzv2HDIHf/hZ+8YtTugy/gjPxqrwyZ8n3gXHhPh5J5ywYmwTAYi81fG4uBnKyd/hbmzc6kdjwYF73w8Iguwor+erTa7zeK66mvolVe0uZNyaRb8wdwYofzOeb84azeFsBCx9ezo9ezyS/vOe+413X2MS6/Yc5bWj7UxqbTRoUQ2CA6ZUvJg+UVPPCqv3c9K/VXPXEFxwsreY3l03kw/vO5PyJAzpV1WzOqASKq+rYlu+fmdbPd5ewt/gIN7bKmoEzyz88IZJNB8t8M7BeqMlh+evSXVzx+OfUNTTx39tn8L1zxhAcGMDYAdGEBgWwfn+Zr4cpp5BsV6VGv1FSAmefDf/6F/z0p/DiixDewdd4wcHwla/A+vXOqY5pafDjH8Pvfues8vjf/zq3O8XK8Ptv91/plXIPO18M97TM2cDYPowdEM2SrMKWktWetCW3Y8VAmoUEBXDxpGReWnOQitqGdiv3edObG/L4eHshH28v5JJ07/WvX7m3hPpGB2eOcrbwiOkTzPfOGcPNM4fwt6W7eWHVfl5bn8vNp6dy19wR9I0I8drY3CEzp5y6xvb7m7UWHhLE2AFRvaIoSHl1A5/vLmbFrmI+3VnMgdJqAJJjwvjeOaP56qyhXW7VMcd1zyzPLurwGyTe9OwX++gbEcJ5E/sf91xaSgyfZBdjrfXvMts9QF5ZDfe9tJFVe0u5IG0Av7l0IjHhX/5uDQkKIC0lple+2SH+qaHJwe6iKuaOTvT1UJy2b4cLL4ScHHj+ebj++q4dxxhYuND5sWkT/PGPzozaV77izKTl5cErr5wyZfiVOROvyi1zvoAaGNezgjOAs8YmsnZ/qVequG3OLWdsB4qBtHZ5Rgp1jQ4+2Oxfyz9X73UW41i63btreD7JLiI0KOC4SoaJUWH8/OLxfPyduVyUlsxTn+7lzAeX8ujibKrqGr06xu5YtacEY+hQpcbWpgyOY+PBsh63PrG+0cHKPSU89OEOLvnrZ0z+5Ufc9cJ63t6Yx6ikKH5x8XiWfGcOn/1wPt+cN6JbPRQTokKZMDDaL9ed5ZXVsDirgGumDSI06PjvcVJKLMVVdeSXqzF9d7yXmc+5j37CltxyHrpqEn+5bvJRgVmzjMFxbM0rp7ahyQejlFPN3uIjNDRZ/ygGsmgRzJgBlZXOzFZXA7NjTZoEzz7rXI82YwZs3uxczzbQe2/u+pqCM/Gq3MM1RIUGdXiNjD9ZOC4Jh4WPPRxkNBcD6ew79pNSYhiWEOFXPc9qG5rYeLDM2dg3u4gmL67hWZ5dxGnD+rXZsmFQ33D+ePUkPrz3TM4YEc+ji3dy5oNL+eeKPT3ihdbKPaWMTooiNrxzGb+M1Diq65vY7qr45a+stWQXVPLUp3u59d+rSf9/H3Htkyt5fPluAg3cPX8kr9x5Oht+dhb/vHkqN88cwvCESLdli+aMSmD9gTLKa7w7Hbc9/119AAt8ZfqJ+0SmpTh/b6goSNdU1TXyvVc28c3/rGdoQiTv3TObK6ektHlfTR4cR0OTZWue1vmJ57VUakzycRn9xx+H886DQYNg1So4/XT3n2PXLufHzTfD4cMwZQp8/LH7z+OHFJyJVzkrNfa8rBnAhOQYEqNCPR6cdbYYSDNjDFdkpLB6bykHXVO8fG3jwTLqmxxclj6QsuoGNnhp+s/B0mr2FB1pmZ52MiOTonjixim89c1ZjE+O5lfvZTHvoWW8uPqA32aXGpocrNt/uEMl9I/1ZVEQ/5uK1djkYPG2Ar7z8iZm/HYJZz/yCb98dxv7Sqq5IiOFv984hQ0/O4vXvzGL+88axbQhfQkO9MyfsbmjE2lyWD7zoyI79Y0O/rv6IPNHJzKo74nXdIwdEE1QgFEz6i7YeLCMCx5bwWvrc/jW/BG8eufpDIk/vt1CaxmpsQBadyZeseNQJYEBhuGJJ78vPaaxEe65B77xDTj3XPjsM2cRD3drXmP28svw9NPw3HPO0vxnneXsldbLKTgTr8otq+2RUxoBAgIM88cksjy7iPpGz71o72wxkNYunexM+7+xwT+yZ6v3Oku933fWKIICDEu8NLXxk51FAMwZ1X51vmaTBsXy3NdO4z+3n0b/mDB++PpmznrkE77YXeKpYXZZZk45NQ1NzOjEerNmKXF9SIwK9at1Z3llNTyyKJvZDy7ltmfXsmR7AVNT+/K7yyfy6Q/msfS7c/nlpRM4Z3x/r62nnDwolqiwIJbvKPLK+Triw62HKK6q44bTU9vcJiw4kDEDopQ564Qmh+UvH+/kisc/p7HJ8uIdp/Ods0d3KPBPjAojJa6P1p2JV+woqGRofMQJpzS73YMPHl0xsbzcmSH785/hvvvgrbecfcs8Yc0aZ2DWvMbs+uvhjTdgxAhnif777oMm/5/h0lUKzsSrcg9X97hiIK0tGJtEVV0jazzY1HhzbjkhQR0vBtLawNg+nD6sH6+vz8Fa35cBX73XOfVuUN9wpg6J89q6s0+yixgY24fhCZ2flz9zeDyv3zWTf9w0lUaHg++/tskvrmVrK/c4A8bpnajU2MwYw5TUONb5+MVkc5bsa0+v4Yzff8xjH+90ZjFvmMKanyzkr9dncO30waT4qLJrUGAAs0fGszy7yG9+/s+t3M+gvn2YM/LkGeFJKbFk5pT7bSsAf5JzuJrrnlzJQx9lc/7EAbz/7dlM7+Q6Tmdz98N+c59I77XjUCWjvdXfbNo0Z/Zq6VLYu9e5FmztWrj/fnj4YQj0YID4/e8fX/zjootg61b49rfh0Ued/dEq/LOibncpOBOvqaxtoKK2scdmzgBmjehHSFCARxtSb84pZ2z/zhUDae2KKSnsK6n2+Tu5zVPvmgtWLBiTxPZDleR6uGFrQ5ODz3aVcOao+C6vPzLGcNa4JL41fyQHS2v8borYqr2ljEqK7HKFyYzBcRwsraGw0vtFI47NkmXmlnPX3OF88r15PPvV6Zw7ob/Hpip21pxRCRyqqPWL9Xk7DlWyem8pN5yWSkDAye/rSSmxVNY2srekd/Tz85RdhZWc96cVbMuv4OGrJ/HYteldWg+dMTiWgoo68lSERTyour6RA6XV3iujP2+eM3t1+eUwfjwcOAAPPeSspOgrQUHOwOyJJ+DDD2HWLGfhkF7GP/4Cyimh+UV5T86chYcEMXN4P5ZsL/DIu6TWWrbkdb4YSGvnTuhPn+BAnxcG2ZLrnHp3mmtd1LwxztK/nl6zt+FAGVV1jR1ab9aec8b1JzjQ8O6mPDeMzD0amhys3VfapfVmzTJSnevOvLVO5mRZss9/OJ/vnTOmzTVUvjRnlPOeXZ7t+6mNz6/cT0hQAFdNHdTutmmDVBSkI577Yj91jQ7e/dYZXJ7RdtGP9nz5/0lTG8VzsguqALo0q6bLxoxxrjOrqYG77oLvfMd75z6Zr3/dGZzl5MD06c61b72IgjPxmuYeZz21IEizBWOT2F9Sze4i978r3VwMpLniWldEhgZx7oT+vLspz6dVB1e5SuhPG+LMnA1PiCC1X7jHpzYuzy4kMMAwc0TH15u1JSY8mDmjEng3M99vpohtyS2nur6pU82njzVhYDQhgQEez672pCzZifSPCWNM/yifl9Svqmvk9fU5XJg2oEPZ0hEJkfQJDmTTQf/K+PqT+kYHb2/K46xxSe0W/WjP2AHRhAV7/v+TnNqyXRn8Md7KnNXWwvz5UFUFd9zhzKK1XoPmawsWwMqVEBvrHOdzz/l6RG7jv38VpdfJc2XOUnrwtEaA+S0ZoAK3HzuzG8VAWrs8YyAVtY0ez1KdzOq9pQxLiCAhKhRwThWcNzqRz3YVU1PvuaDxk+xiMgbHuq1wxEWTkjlUUevzNVrNmoPezjSfPlZoUCATU2I8VhRkxc6iE2TJMvw6S9aWOaMTWLvvsE974L2xIZcj9U3cdPqQDm0fFBjAhIHRypydxPLsIg5XN3D55O73TgoODCBtYCzrD5R1f2Aibdh+qJKw4ADv/P601rmma/t2+PnP4e9/dwZnzWvQ/MXo0c4AbdYsuOkm+PGPweGfVZY7Q8GZeE1OWQ0hgQEkRIb6eijdMjC2D2P6R7HYA+vOtnSjGEhrM4fHkxQdyuvrc9w0ss5pcljW7Cs9rkHy/DGJ1DU6+GKPZ8qTF1fVsTm3nDPbKZjQGQvGJhEaFMA7fjK1ceWeEkYkRhLfzf9HGYNj2ZxbTl2jewPlNftKufGp1SfIkg3w6yxZW+aOSqTRhyX1rbU898U+Jg6MYVInMuppKbFszaugwU/bQfja6+tz6BcRwplumP4MMDk1lm1qRi0elF1QyaikKALbWXPqFg8/7Gwyfcst8MADzsea16CtWeP583dG377wv//BbbfBb38LV10FR3r2etue95dSeqzcwzUMiA1rdzF7T7BwbBLr9h+mrLrercdtLgbS3RexgQGGSycPZNmOIoqr6tw0uo7bfqiCytrG46qenTasL+EhgR7L6H260/kCes5o9wVnkaFBLBibyPub833e96yxycHafYePC3q7YkpqHPWNDrbmubfa1cMfZZMQFcry783tcVmyE5mSGkdESKDP1p2t3ltKdkEVN85I7dSaqLSUGOoaHWQX+L6Yib8pr25gSVYhF6cnu+0NgwxXM+otuZpKKp6xwxWcedz//ueslnjFFfDUU0c/N2+e8zl/ExLi7H/28MPOkvujRjkDydaWLnW2B+gBFJyJ1+SW1fToYiCtzR/rbFDrzhdsDofzD/vEbqw3a+3yySk0OqxPMj6rXVPvji31HhoUyBkj4vk4q9AjBVWWZxfRNyKECcnuuYbNLkxLpriqvmVKoa9szaugqq6xW8VAmjU3o3ZnEYPPdxfzxZ4SvjF3OOEhQW47ri+FBAUwa0Q8y3f4pqT+cyv3Ex0WxEWTkju1X/qgWACtOzuBdzfnUd/k4PLJKW47Zsv/Jz+Z/iy9S+mReooq6zxfRn/HDrj2Wpg4EZ55BgJ6UJhgjLP/2TvvQGkpXHedczomfNnUeto0346xg3rQVZeeLvdw7wnO0lNi6RcR4taS+vtLq6msa2RiN9ebNRvdP4oJA6N53QdVG1fvLSUlrs8Jf94LxiaSV17LDje/o+9wWD7JLmL2yHi3Z2fnjU4kIiSQdzN9O7Vx1V5nf7PurDdrlhjtbJ7rrnVn1loeWZRNUnQo100f7JZj+os5oxPILathd1GVV89bWFnL/7Yc4qqpg+gT0rmeQoP7hhMbHqx1Zyfw+vpcRiZGMmGg+xroJkSFMqhvH69VQN1XfERZ0VPIDlcxEI+W0S8rc64zCwlxNpiO6F6hHJ+54AJYvRoSEuDOO+HKK52BWeum1n5OwZl4RV1jE4WVdT2+UmOzgADDvDGJLNtR6LapbpvdVAyktcsnp7A5t9yrf8SttazeW9pmI9d5oz1TUn9bfgUlR+rdUkL/WH1CAlk4LokPthzy6RqeVXtKGRYfQWJUmFuONyXVfc1zP91VzJp9h7l73gjCgj3YnNQHmu+pZTu8O7XxpdUHaXRYrj+t88GuMYaJA2P8rkefr+0rPsK6/Ye7VTq/Ld5sRn3Pixu48vHPWwptSe+2br9z1obHgrOmJmfGbM8eeO01SE31zHm8ZeJEyMyEgQOd389dd/WYwAwUnImXHHI15+zJDaiPtWBMIhW1jax1U+Zhc06ZW4qBtHZxejJBAcar2bPdRVWUHKlvc11UYnQYEwZG87GbC6o0TzGd7cZiIK1dlJZMWXUDn/qoMESTwxn0nuaGKY3NpqTGUVBR1+3G4NZaHl6UTXJMGFdPa78PV0+TEhfOiMRIr647a2xy8J/VB5g9Mp5hCZFdOsaklFiyCyo9Wh21p3ljQy7GwKWTOzdNtCMyBsdRWNn9/0/tOVReS2ZOORW1jXzn5U1+0+ZDPOOT7CIeXbyTWSP6kRjloYJqP/iBs2/Y3/4Gs2d75hzetnUr1NU5Kzg+/rh/VZlsh4Iz8YrmHmcpvSRzBjB7VALBgcZtGaDNueWMHRDt1op28ZGhzB2dwBsbcmjy0h/wVW2sN2tt/pgk1h84zOEj7iuosjy7iPHJ0S2l+91t9qh4osKCfFa1MSu/gsq6Rma4YUpjs+Z1Mt2d2rgsu4gNB8q4e/5IQoN6V9as2dxRCazaU0p1vXdK6i/ZXkh+eS03zOj6O9hpKTE0OSzb8pU9A+ebCG9syGXm8H4MiHH/36Iv152Vuf3YrS1xtXG5ffZQvthTwj9W7PHo+cR3Nh0s487n1zEyKYrHb5ji9mwvAM8+C3/8I9x9N9x+u/uP7wvNa8xefhl+/Wv/bANwEgrOxCtyXO8k9qbMWWRoEDOG9WNJVvf7nTkclq25FUx04xqIZpdnpFBQUcfnu72T8Vm9t5SEqFCG9Gu7St/8MYk4LG7LRFTWNrB+/2G3lcU+kdCgQM4d359FWwt8Ui575R7XerNuNJ8+1pj+UfQJDmRDN15MNq81G9S3D1dNdV+BBX8zd3Qi9U2Olp+Dpz2/cj8DYsJY4Oqr2BWTVBTkKOv2H+ZAabVbC4G0NmZAlLMZtYf6BzZbvK2AwX3D+fH5Yzl3fH8e+miHqkT2QnuKqrj16TX0jQjhmVunua1351FWrnQGZPPmOSsd9hZr1hy9xsxf2wC0QcGZeEXu4RqMgf4x7lkr4y/mj0lkd9ER9hV3r6eGu4uBtDZ/TCLRYUFemdporWXVHmd/s5O9w5c2MIb4yBC3ZR0/311Co8N6ZL1ZaxdNSqayrtEnZdVX7illSL9wt/4fCgoMIH1QbLcyZ4uzCsnMKedb80f2yD5mHTVtaBx9ggO9su5sT1EVK3YW85XpgwnqxjVNig4jKTrUo0VBrLVc+fjnXPfkSnb6eYGK19bn0ic4kHMn9PfI8YMDA0hLiWXDwTKPHB+gur6Rz3aXsGBsIsYYfnv5RPpGhHDvSxs1fbUXKaio5canVmOA5752GonRHnjtlJsLl13mXJf1yisQ7IHgz1e+//3j15j5axuAE+i9f0nFr+SW1ZAQGdrrpjwtGJMEOKcgdUfzi6eJA2O7OaLjhQUHcuGkZP635RBH6jw7JetgaQ2HKmrb7cMVEGCYOzqR5dlFbimosjy7iIiQwJZpRZ4yc3g/+kaEeH1qo6Olqbf7smbNpqTGsS2/okvT9RwO51qz1H7hXD55oNvH5k9CgwKZObwfy7xQUv+FVQcIDjRcM7376/fSUmI9WhRkc245a/cfZvW+Us770wp+/7/tfhkk1DY08W5mHudO6E9EqOfaPGQMjvNoM+oVO4upb3Rw1ljn3564iBAeumoSuwqr+O0HWR45p3hXeU0DN/9rNWXV9Tx963SGxnugamJNDVx6KVRVwdtvQz/3/22RrlNwJl6RV1bTq6Y0NhvcL5yRiZF8vL17Uxu35JYTEhTAyKSuLfxvz2WTB1LT0MRH2w555PjNmku9n2y9WbP5YxIpr2no9voMa50l9GeOiCckyLO/0oICAzhvQn+WZBV6be0RQNahCsprGpgx3H3rzZplpMbS5LBdmvr20bZDZOVX8O0FI7uV4ekp5oxO4EBpNftKqj12jpr6Jl5Ze5BzJwxwS1XO9EGx7C0+QnlNgxtGd7x3M/MJDjQsuu9MLp08kMeX7easR5a7Zbq3O328vZDK2kYuz/DsmwgZg2M92ox6SVYBUWFBTGv1BtjskQl87YyhPPvFfpa6uQqueFdtQxO3P7uW3UVVPHHjFLf1PT2KtXDbbbBuHbzwAkyY4P5zSLf0/r+m4hd6UwPqY80fm8iqPaVU1Hb9xY8nioG0NmVwHANj+/DWRs9mfFbvLSU2PJiRie0HmbNHxhMU0P2CKnuKj5BzuMaj681auzAtmZqGJrf2uGvPqj3OIiueyJxNHtS15rkOh+WRRTsZlhDBJem9O2vWbO4o5/qvZTs897N/e1MuFbWN3NiNQiCtpble3G32QPbM4bC8uymPM0cmMCwhkoeumsSLd8wgLDiQrz2zlq8/t9ZvSr2/vj6HpOhQZg6P9+h5MlI914y6yWFZklXI3NGJx/2t+N45oxnTP4rvvZpJcVWd288tsGhbAd9/dRP55Z65p5sclm+/uIHVe0v549XpHqs8zB/+AP/5D/zqV86+ZuJ3FJyJxzkclvyy2l6ZOQNYODaJRodlRXbXCm44HJYtuRWkeWC9WbOAAMPF6cms2FlMiQf/cK/eV8q0IX071AQ6KiyY6UP7djvr+Ilr/dccT/0hO8b0oX1JjAr1akPqVXtLGNS3j0f6BMZFhDA8IaLTRQze25zPjoJK7l04ikA3N/32V4P7hTM0PsJjaw6ttTz7xX5GJ0UxbYh7puimuaZKb/LAurP1Bw6TV17LRZO+LEs/Y1g/3r9nNt8/dzTLs4tY+PBy/vHJHp/2ByypqmPZjiIuTR/o8Xs1PjKUwX3DPdKMeuPBMkqO1LNw7PFFYsKCA3n02nQqahv44WuZXum1dirZVVjJPf/dwMtrczjr4U94YdV+t7YwsNbyf29u4cOtBTxw0TgunuT+Vg8AvPce/PCHcM018KMfeeYc0m0KzsTjiqrqqG9y9Koy+q1NHhRLbHhwS3njztpXcoQqDxUDae3S9IE0OSzvbc73yPEPldeyv6S63fVmrc0fk0h2QRU5h7s+TWx5dhFD4yMYfJLqkO4UGGA4f+IAlu4oorIb2dKOcjgsq/aWMsMDWbNmnW2e2+SwPLo4m1FJkVwwcYDHxuWP5oxK4IvdJR5ZU7TxYBlb8yq44fRUt5XMjgkPZki/cI8UBXlnUx6hQQEsHJd01OMhQQF8Y+4IFt03hxnD+vHr97O46M+fdrtlQ3fG2eiwXJ7hnWqiGYNjPdKMeklWAYEBpiWDe6wx/aP5wbljWJxVyH9WH3DruU9lNfVNfOOF9YSHBPLKnaczaVAMP3ljC1/558puFwNr9ujinfx39QG+MXc4t84a6pZjAvDgg1+Wj8/Kguuug+HDnVMZPVGWX9xCwZl4XI6rx5kn3vX3B0GBAcwdlcCyHUVd6iW22bU2YYKHg7PR/aMY0z/KY1MbV+/r/NS7+a4y4V1dJ1Hb0MTKPSUer9J4rIsmJVPf6GDRNs+vq8kurKSsusGtzaePNSU1jsPVDezt4AuNdzblsbvoyCmVNWs2d3QCdY2Oln5+7vTcyv1EhARymZuLq6SlxJLp5mmNzjd6DjF/TCKRbRTYGNQ3nKdunsoTN0yhvKaBKx7/nB+9nklZtfv6G3bE6xtyGTcgmtH9o7xyvoxUzzSjXpxVwPQhfYkJb7uq3q0zhzB7ZDy/fHcbu4uq3Hr+U9UDb29hZ2EVj1yTzrQhfXn+a6fx+ysmsjWvgnMe/YQnP9ndrcJWz63cz5+W7OTqqSl875zRbhw5MG2as7/X2287pzAGBkJpKcya5d7ziFspOBOPy+uFPc6OtWBsEqVH6tl4sPPvDHu6GEhrF6cns27/YQ6Wur+gwao9JUSGBjF2QMdfAA1LiGRIv/AuV7tcs6+U2gYHZ47y7DqSY2UMjmVgbB+vVG38cr2Z+4uBNJuS2vFm1I1NDv60ZCdj+kdx7njPlCT3ZzOG9SM0KMDt685Kj9TzbmY+l2ektBnsdFVaSgz55bUUVtS67Zir9pRQXFV31JTGEzHGcO6E/iy+fw63zx7Ky2tzmP/H5by2LscrU+92FVaSmVPu8UIgrXmiGfWBkmqyC6pYcIIpja0FBBgeumoSfYIDuffFjdQ3+m46qad4c8rma+tyeHltDt+cO6JlXbMxhmumDWbx/XM4c1QCv3l/O5c//jlZ+RWdPv77m/P52VtbWDAmkd9cNtH9TabnzYP//heuvBL2uJqVv/rq8WXmxa8oOBOPa373sLcWBAE4c1QCgQGGxV0oEpGZU844DxYDaa15HvvbHggqVu8tZUpqXKer9s0fk8Tnu0u6VP3wk+wiQgIDmOHBrNKJGGO4MG0AK3YWezwLsHJPCQNj+zCor+embQ5PiCQ6LKhDRQze3JjH3uIj3H/WqA6tLextwoIDmTGsn9vXnT2xfDf1jQ5ucFMhkNZamlG7MXv2TmYeESGBzBvdsSbZEaFB/OSCcbxz9xmk9gvnO69s4tonV7Kr0LO90V5fn0uga82ttzQ3d3dnM+rFruqXZx0zhfREkqLD+O3laWzOLedPS7LdNgZfaWxysGpPCb98dxuzH/yYeQ8t80qhmV2Flfzfm1s4bWhf7l048rjnk6LDePLGKfzlK5PJPVzDRX/+lIcXZVPX2LEpz1/sLuHeFzeSMTiOv3wlw3MVb6dNgwEDwOGAb31LgVkP0O6dYIwZZIxZaozJMsZsNcZ8+5jnv2uMscYY7751LT1G7uEaosOCiPJEd3s/EdMnmGlD4vi4k8GZw2HZmlfh8fVmzVLiwpk2JI43N+S69d3Hkqo6dhZWMb0L2Z35YxKpb3Tw+a6STu+7PLuIaUPjCA/xXN+itlyYlkyjw/K/LZ5rT2Ctc73ZacM8lzUD57vtkwfHtZs5a2hy8NiSnUwYGN2hF4m91ZxRCewpOuK2DPSHWw/x5Cd7uG76II9MvRufHE1ggHHburOGJgcfbDnEWeOS6BPSud6V45Kjee3Omfz28olsP1TJeX9awUMf7nBrcYVmDoflzQ25zB4Z75a2BB0VFBhAWkoMG9xYsXHJ9gJGJkaS2q9jPa/OndCfa6YO4m/LdrPaA1NwPa2mvomPth7iu69sYtqvF3PNkyt5buV+hidEUlJVz1f+sZICN2aCT3T+5nVmj103uc3AyflGXTKL75/DxZOSeWzJTi587NN23+jamlfOHc+uJbWfc+pvZ/8fdcr69VBdDT/9KTz++Jdr0MRvdSRMbwS+Y60dC8wAvmmMGQfOwA04C9DKU2lTblkNA+O8U6zBlxaOTWJHQWWnXrB5qxhIaxenD2RnYRXbD7nvHes1+5x/iLoy9W760L5EhATycSenieWV1ZBdUOX19WbNJgyMZki/cN7N9EyBFYCdhVWUHqn3SmZwSmocOwurTtoP67V1ORworeb+s0a5f/pNDzJ3tPOeW+aG7Nmeoiq++/Im0lJieOCi8d0+3omEhwQxMjHSbZmzT3cVU1bdwIVpXctGBQQYrps+mCXfmcNFacn8ZekuHl++2y1ja23l3hLyymu9VgiktYzUOLbmVbilcEx5TQOr9pSyYGzn3hD52UXjGNw3nPte2titVi/ecvhIPa+uy+GOZ9cy+Zcfccdz6/ho6yHmjk7kb9dnsP6nZ/H0rdN5+qvTKaqs4yv/WOmxtgGt15klRbcf2MdFhPDwNen8+9ZpHKlr5IrHP+f/vbPthDNCDpRUc8u/1xAVFsSzX5tObHiIJ74Fp6VLnWvOXn4Z/t//c/579dUK0Pxcu8GZtTbfWrve9XklkAU0T95+BPg+oJqt0qbcw723x1lrzcUtOtO3y1vFQFq7YOIAggIMb27MddsxV+8tJTQooEsNM0OCApg9MoGl2ws7lc1bsdNVQr+NymWeZozhoknJfL67mKJKz7xAWLXHmU30ZKXGZlNS47DWWTHwROobHfz5411MGhTb4alsvdXQ+AgG9e3D8m6uOztS18idz68jKNDw+A1TCAv23Lvnk1Jiycwpc0vG/J1NeUSHBTG7m2s94yND+ePVk7gwbQAPL8pm7T73ZnheX59LZGgQZ/sgy5sxOI5Gh235Hd8dy7OLaHRYzhrXuf93EaFBPHpNOocqavnZm1u6PQ5POFhazVOf7uXaJ79gyq8W8d1XNrE5t5xrpg7ihdtOY91Pz+KRa9I5f+KAlrWYU1Lj+Nct08grq+WGf67i8BH3Ti1vXmd297wRne6fOW90Ih/edyY3nJbKvz7byzmPfsJnu75ss1NcVcdN/1pFQ5ODZ782nQExHn5ttGaNMyBrnso4b57z6zVrPHte6ZZOTXA1xgwBJgOrjDEXA7nW2k2eGJj0HnllNQyM9d6UEl8ZlhDJ0PiIThW32JxTTqiXioE06xsRwpmjEnhnY57bphKt3ldCxuA4QoO69uJy/phE8strycrveDZveXYR/aPDGOXFa3esC9OScVj43xbPZM9W7i1lQEwYg/p6/s2NSYNiCTBtFwV5ee1BcstqTvmsGTgD87mjEvl8d0mH15ccy1rLD17LZFdhFX++LsPjb2ClDYqhrLqBg6XdW6tT29DER1sLOHdC/y7/f2/NGMNvLp/IwNg+fPvFjW5bw1lT38QHm/M5f2J/jwa9bZk8OBbALevOlmQV0DcihPRBne99N3lwHPfMH8mbG/N4y41vyHXHzoJKHlmUzXl/WsHsB5fyy3e3cfhIA9+cN4J37j6Dz384n19cMoFZI+LbXIt92rB+/PPmqewtPsINT62ivNo9mcHW68y+veD4dWYdERUWzC8vncBLd8wgKCCA6/+5ih+8mkleWQ23/nsNhypqeermaYxI9EL10O9///g1ZvPmOR8Xv9Xh4MwYEwm8BtyLc6rjT4CfdWC/O4wxa40xa4uKPNO4U/xXeU0DlXWNvbpSY2sLxiSycncJR+o6Vtxic245Y71UDKS1S9KTySuvZa0bXjhU1DawLa+iS+vNms0d43x3cmkHMxGNTQ4+3VnMmaPifRoojO4fxaikSN7Z5P7gzFrLqj0lzBjWzyvfY2RoEKP7R59wnUxtQxN/XbqLqalxnDlSy4vBue6sur6Jtfu69n/oX5/t493MfL57zmjO8MI1nZQSC3S/GfWyHUVU1TW2W6WxM6LDgvnzdZMprKzl+6+6p4HyR9sOcaS+ySdTGqFVM+purjtraHKwdHsh88ckdrltxTfnDWdKahz/9+aWbvWUdIddhZWc/9gKHvt4J5Ghgfzk/LEs++5cPrzvTL5z9mgmpsR0+PfdrBHx/P3GKewsqOKmf6/udt/J6vrGDq0z66jThvXjg2/P5q65w3l1fQ5n/P5jtuVX8LfrM1oq5IqcSIfuPGNMMM7A7AVr7evAcGAosMkYsw9IAdYbY46rq2ytfdJaO9VaOzUhwTdrQ8R3cg83V2rs/WvOAOaPTaS+ycGKncXtbuvtYiCtLRybRJ/gQLdMbVy37zAO271S74lRYaSlxHR4SuimnDIqahs7PeXEEy5MS2bN/lLyy91bPWx30RGKq+o9WkL/WFNSY9lwoOy4fn0vrj5AfnmtsmatzBzRj5DArpXUX7WnhN+8n8XZ45K4a85wD4zueKP7RxESFNDtoiDvZubRLyKE0928DnLSoFh+cO4YPtpWwLNf7O/28V5bn8vA2D5MH+K9/z/Hcjaj7t5U0rX7DlNR28jCTq43ay0oMIBHrk7HWrj/5U1d6sfpLq+szcFa+OR783jlzpncfuYwhsR3rMjJicwdnchfr89ga245t/x7TYffGD2RB97a2ql1Zh0RFhzID84dw5vfmMWsEfE8fPUk5o85dYspScd0pFqjAZ4Csqy1DwNYazdbaxOttUOstUOAHCDDWuu5smXSI+WeAj3OWps2pC9RYUF8vL395sR7m4uBdGGdVndFhAZx9vgk3t+c3+0+OKv2lhLkqvbXHfNGJ7L+wGFKO7B+YHl2MQEGzhjh+yzOhWkDsBbec3NhkFV7nevNPNl8+lhTUuOoqmsku+DL6aW1DU38ddluThval9OHe7dlgT8LDwli+tC+nS6pX1BRyzf/s4HUvuE8dPUkrwW7wYEBjBsQzaaDXV8DVV3fyJKsQs6b2N8jZb+/dsZQ5o9J5NfvZbE1r+vjLKyo5dOdRVw2eaBP2z1kpMZRVFlHzuGuv3GzOKuAkMAAZnczuzq4Xzg/v3g8q/eW8uQne7p1rK5qbHLw+oZc5o5OdGtrkLPGJfHYdZPZeLCMrz2zhpr6zk81fnVdDq+s69o6s46YmBLDc187jUvSvddvT3qujvx2nQXcCMw3xmx0fZzv4XFJL5HrmkJxKhQEAecLoDmjEvh4e1G767m2uBaK+yJzBs6pjWXVDS2FNbpq9d4S0lJiul0KeMHYRKyF5dntZyKWZxcxaVCsZ6tcddCwhEjGJ0e7tWpjQ5ODdzblkRQdypB+3ss6NzfPbb3u7PmV+ymqrOM+Zc2OM2dUAtkFVR3uuVTf6OAbL6ynur6RJ26cQrSX24tMSolhS155lzMni7MKqWlo4qIuVmlsjzHOBspxEcF86z8bupwFeWtjHg4Ll3mx8fSJfNmMumtTG621LM4qYOaIfkS4oTH5FRkDuWDiAB5etKPl7483fbKziKLKOq6a6v6ppudPHMDDV09i1d5S7nhubaeqZO4sqOSnb25hxrC+3LtwlNvHJtJZHanW+Km11lhr06y16a6P94/ZZoi1tv15XHLKySuvJSQogH4Rvn8R7S0LxiZSXFVHZjt//FqKgST6pqDF7JEJxIUH8+bGrjekrqlvIjOn3C3ZnQnJMcRHhrKknV5xh4/Uk5lT5rMS+idy0aRkNh4sc0vfq8YmB/e9tJGVe0q5e/5IrwZEg/uGEx8Z0vJisrq+kSeW72bWiH5eb/TdEzSX1O9o9uw372exbv9hHrwyjVFJXigGcIxJg2Kprm9iV2FVl/ZvfsNgmgenCvaNCOFP105mX8kRftrFCoOvrc9h0qBYhif4rlgQfNmMesOBsi7tv7uoiv0l1Z0uod8WYwy/vmwC/SJCuefFDV3KMHXHq+ty6BsR4rFqr5ekD+TBK9JYsbOYb7ywvkOzQprXmUWEBvLYtZO7vK5PxJ28W4VATjnNZfR9ObXE2+aOSiTAwMdZJ5/amOkqBuKJ6UEdERwYwAVpA1i07VCX36HecOAwjQ7brWIgzQICDPNGJ/BJdhGNTW3/UV2xqxhr8Yv1Zs0umDgAoNvZsyaH5buvbOLdzHx+fP4YbpyR6o7hdZgxhozBcS0V5p79Yj/FVfXcf5beTT6REYmRJMeEdWjd2Rsbcnj6833cdsbQLvcH6660bhQFqahtYPmOIi6YmOzx3+czhvXjngUjeX1DLq+uy+nUvtvyKth+qJIrfJw1gy+bUXc1c7Zom/O+WjjWfcFMbHgID101iT1FR3hhVffX9nXU4SP1LN5WyKXpAwkJ8tzfvKumDuI3l03k4+2F3P2f9TSc5G8JONeZ7SpyrjNLdNM6M5HuUnAmHpVTdmr0OGstLiKEKalxLD5JBsjhsGzLqyDNB+vNWrskfSC1DQ4WbWt/jdyJrNxbSoDBbZWnFoxNpKK2sc1y7gCfZBcR0ye4pfqcPxjUN5zJg2N5Z1PXs5AOh+X7r2by5sY8vnfOaO440zuFIo6VkRrHvpJq9pcc4e/LdzNnVAJTUn1XVMGfGWOYMzqRz3aVnPRFYFZ+BT96fTPTh/blB+eN8eIIjzYsPoKo0KAuFQX5aGsB9U0OLpo0wP0DO4FvzR/JaUP78tM3t7C7qOOZvjc25BAcaHwWAB8rIzWObV1sRr0kq4DxydFu74V1xsh4pqbG8dzK/W5rp9KetzflUd/k4Mopnq+e+ZXTBvPzi8bx0bYC7n1pY5tv9jWvM/vWvBHMHuk/b/aJKDgTjzpVGlAfa/6YJLblV7RZwa+5GIg3m0+fyJTBcQyM7dPlqo2r95YwLjnabWtnzhiZQHCgabNqo7WWT7KLOGNkvN9NP7kwLZlt+RWdeiHZzOGw/Oj1zby2Pof7zxrFN+eN8MAIO6Y50L7/5U0crm7gPmXNTmrOqASq6tp+Q6G8poE7n19HTJ9g/vqVDK+3zWgtIMAwYWAMmTmdX2/0zqY8UuL6kD4o1v0DO4HAAMOfrp1Mn5BAvvnC+g4FN41NDt7cmMfc0Yn09ZOp9M3NqDt7zUuq6lh34HC3qjSezM0zh7C/pJplHVjj6w6vrDvIuAHRjEuO9sr5bpk1lB+fP4b3MvP53quZx62zbL3O7NtaZyZ+RsGZeExtQxPFVXWnTKXG1pqnobQVZGzO8W0xkGYBAYaL05NZsbOYkqq6Tu1b19jEhgNlTB/ivrVIkaFBnDa0X5vXbfuhSgor6/xqvVmzCyYOwBh4t5M9z6y1/N9bW3hp7UHumT+Ce7rY+NRdJg6MITjQsG7/YRaMSfTai/GeataIfgQFmBOuO3M4LPe/tJG8shr+dn0GCVGhPhjh0dIGxZCVX9Gp5tmlR+r5bFcxF6Yle3UNZP+YMP541SS2H6rk1+9ltbv9p7uKKaqs84spjc1amlF3cmrj0h1FWOusROgJ507oT1J0KE9/7vmpjVn5FWzJrfBIIZCTuePM4Xz37FG8sSGXH72e2ZIl1Doz8XcKzsRj8strAUg+BTNnIxIjGdS3T5vFLTbn+rYYSGuXpCfT5LC8v7lzQcXmnHLqGh1uWW/W2rwxiewsrDphcY3mF8Bn+uEUlP4xYUwf0pd3MvM63NfIWssDb2/lP6sOcNfc4X6RpQoLDmRcsvNNA38Yj7+LCgtm6pA4lu04Pjj7y9JdLNleyE8vHOc3U0MnpcTS0GTJyq9sf2OX/205RKPDem1KY2vzxiRy++yhPLdyP//bcvLfUW9syCWmTzDzxnim4ERXxEeGktovvGUdZ0ct3lZA/+gwxnso0xQcGMD1p6XySXZRl7L9nfHaOudUU1+Ukb97/kjumT+Cl9fm8LO3tzh/52qdmfg5BWfiMV82oD71gjNjDAvGJPHZruITVsTanFvOuGTfFQNpbUz/aEYnRXW6auOqvaUAbg/O5o9pO+v4SXYRY/pH0T/GP/+gXjgpmV2FVewoaP+Fr7WW//fuNp79Yj93nDmM758z2m9K1X/9zGF89+xRPp9221PMGZVIVn4FBRW1LY8t21HII4uzuWzyQK8XdjmZ5nWunVl39s6mPIYlRDBugHempB3re+eMYVJKDN9/NbPNiqhVdY18uPUQF6YNIDSoe2093C1jcFynmlHXNjTxyc4iFoxN9OjvhOumDyYkMIDn3ND0uy0NTQ7e3JjLgjFJPptqet9Zo/j6nGE8v/IA1/1jpdaZid/z/StD6bVyy5x/RFNOwWmN4CxuUdfo4PPdR3eZcDgsW3PLfT6lsbVLJiezbv/hTpWCX7W3lFFJkW7/gzs0PoJh8RHHBWdH6hpZs6/UL6c0NjtvQn8CA0y7hUGstfz2g+38+7N93DprCD86b4zfBGbg7Bl093zfTq/sSY4tqX+wtJpvv7iR0UlR/OayiX71sx0Y24f4yJAON6MurKhl5d4SLvLylMbWQoIC+PN1GVgL97y44YTFVz7YnE9tg4PLM7w7da4jMgbHUlzV8WbUK/eUUF3f5LH1Zs0SokK5IG0Ar67LoaqLFXvbs2xHEcVV9V4pBNIWYww/PHcMt84awso9pVpnJn5PwZl4TO7hGgIMfpvl8LTpQ/sSERJ4XNXGPcVHOFLf5FdZieamsm93sNpgY5ODdftK3Z41azZvTCJf7Cmhuv7LFwxf7C6hocn6VQn9Y8VHhjJzeD/ezcxv811yay0PfriDJz/Zw02np/KzC8f51Yt36bwx/aNIig5leXYRtQ1N3Pn8Oqy1/P3GKd1uzu5uxhjSUmI7nDl7f3M+1uKTKY2tDe4Xzm+vmMiGA2U8vCj7uOdfX5/LkH7hZLjWePmTyZ1sRr04q4A+wYGcPtzzvQVvnjmEqrpGXutky4KOenXdQeIjQ5gz2re/t40x/OzCcTxxwxSeuGGK1pmJX1NwJh6TU1ZDUnSYT6uT+VJoUCCzRybw8faCo16ob3E1p/Z1Gf3WBvUNZ2pqHG9tzO3Q1Jtt+RUcqW9i+lDPvHiYPyaR+kYHn+0qaXnsk51F9AkOZOoQ95Tt95SL0pLZX1LN5jaakD+yKJvHl+3mK6cN5hcXj1dg1gsYY5gzKoEV2UX8+I3NbM2r4NFr00ntF+HroZ1QWkoMu4qqOpQteScznzH9oxiR6P2m2ce6MC2Z66YP5vFlu/mkVQGW3LIavthTwmWTU/zy/9OY/lGEhwR2aN2ZtZYlWYWcOSqesGDPB/bpg2KZNCiWZ77Y5/ay+iVVdSzJKuSyyQP94nWAMYZzJ/QnNtw/KnmKtMX3/1uk1zpVy+i3tmBsIgUVdWzNq2h5bHNuOWHBAYxI8H0xkNYumTyQ7IIqth9qf73U6ub1ZkM8kzmbNqQvkaFBfLz9y/5ry7OLOH14P79bT3Ksc8b3JzjQnLAh9WNLdvLYx7u4ZuogfnXJBL98ISldM2eUs0ff6+tzuWfBSOaP8eyUtO6YlBKLtV++UdSWnMPVrNt/mIsm+UfPMICfXTiOUUmR3P/yRgornWv83tzgbAVy2WT/qdLY2pfNqMva3XZrXgX55bUs8PCUxtZumZnKnqIjfLqruP2NO+GtjXk0OixXThnk1uOK9HYKzsRj8sprTslKja3NHZ2IMRxVtXFzTjljB/hHMZDWLpg4gKAAw1sdKAyyam8pqf3CPTZlNSQogNkj41m6vQhrLfuKj7C/pNqv15s1iwkP5syRCby7Ke+od6L/unQXDy/K5oqMFH57+UQCNK2mVzljZDwhQQHMHZ3AvT5uh9Ce5qz9poNlJ93uPdcbDBf5SUNngD4hgfz1KxlU1TVy30sbaXJYXl+fw/QhfRncL9zXw2tTxuA4svIrTlggqrUlWYUY82VhJG84f+IA4iNDeObzfW497qvrckhLiWF0f99nXUV6Ev96dSi9RpPDkl9We0r2OGstISqUSSmxLRkgh8OyNa+cND9ab9asb0QIs0fG8/bG3JNOb3E4LGv2lXKah9abNZs/JpFDFbVsy6/gk52uEvo9IDgDuHDSAPLKa9lw0DmN6clPdvOHD3dwaXoyD16ZpsCsF4rpE8z795zBEzdM8fufb7/IUAbG9mm3MfK7mflMSonxu6BnZFIUv7h4PJ/tKuGeFzewu+gIl/lRb7MT+bIZddlJt1ucVcDkQbHER3qvJ15oUCBfmT6Yj3cUcqCk40WhTmZrXjnb8it8WghEpKdScCYeUVhZS6PDnvLTGsHZkHpTTjmFFbV+WQyktUvSB5JXXsvak6yNyC6spKy6wWPrzZrNHe0qqZ9VyCfZRQzuG84QP3uR2JaFY5MIDQrgnU35PPXpXn7z/nYuTBvAQ1dN0kL0XmxEYpRX1gm5w6RBMWw6SaCwt/gIm3PL/WpKY2tXTx3ExZOSeS8zn5CgAM6f6NuCJe35shl1WZvbHCqvZXNuOQs91Hj6ZK6fkUqgMTz7xT63HO/VdTmEBAZwsZ/ePyL+TMGZeERLj7NTPHMGtKw9WbqjsGWNx0Q/KgbS2lnjkugTHMhbG3Pb3KZ5vZmnM2fOrGMMH247xOe7SzhzVHyPWaMVFRbM/DGJvLjmAL98dxvnTejPo9ek+91UVjl1paXEknO4hpKquhM+/66rcusFaf4Z9Bhj+PVlExiVFMkVGSnE9An29ZBOql9kKEP6hbPhJBUbl7hmWHi6hP6JJEWHce6E/ry89uBRVXK7or7RwVsb8zhrXJKKb4h0gV4piEfkljmDsxRlzhg7IIrkmDCWZBWSmeOfxUCaRYQGcda4JN7bnE994/G9hMC53mxATJhX+tfNH5PEltwKquubmDPKe2sw3OGiScnUNjg4a1wSj103WYGZ+JVJKbEAZLZRFOSdzDymDYljQIz//g6PCgvmg2+fya8uneDroXRIe82oF28rYHDfcEYm+ubvwy0zh1BR28gbG9p+c64jPt5eSOkR3/Y2E+nJ9GpBPKI5ODvVC4KA8x3e+WMTWbGzmHX7Sxnnh8VAWrskPZmy6gZW7Cw67jlrLav3OvubeSOL1bwoPijAeKXnjzudN6E/L9x2Gn/9SoZflJEWaW1iSgzGQOYJmlHvOFRJdkGV305pbC0wwPSYqcKTU+PabEZdXd/IZ7tLWDg2yWczBKakxjE+OZpnPt/XoZYqbXl1XQ6JUaHMHhnvxtGJnDr0ikE8IvdwDbHhwUSEBvl6KH5hwZgkahqa2JRTzkQ/XW/W7MxRCcSFB5+wauO+kmqKKus81nz6WOOTo0mKDm0prd+TGGOYNcJZwU/E30SGBjE8IfKEBSrezcwjwMB5E/xzSmNPldGy7uz4qY0rdhZT3+hg4VjfzRAwxnDzzCFkF1TxxZ6S9nc4gaLKOpbuKOSyjIF+/SakiD/T/xzxiNwy9Thr7fTh/ejjKhTgr8VAmgUHOhfXL9pWwJFjmtSu3uv8g32ah4uBNAsIMDx963QevDLNK+cTOZWkpTiLgrTOklhreWdTHjOHx5MQ5b2KgaeC0UltN6NeklVAVFgQ07z0xldbLp6UTFx4ME9/tq9L+7+1MZcmh+UqTWkU6TIFZ+IRakB9tLDgQGaNcE7x8NdiIK1dkj6QmoYmFm0rOOrxVXtK6RcRwvCECK+NZeyAaAb17RlVGkV6kkkpsRRX1ZNXXtvy2JbcCvaVVHOhnxYC6cmCAgOYlBJ7XMXGJodlSVYhc0cn+nwKdFhwINdOH8zirAJyDneurL61llfW5pA+KJYRieptJtJVCs7E7ay1zsyZKjUe5cbTU5k7OsFvi4G0NjU1joGxfY6r2rjKi+vNRMSzmptRZ7ZqRv1uZh5BAYZzJ/T30ah6t4zU2OOaUW88WEbJkXqfTmls7YYZqQA8t3J/p/bbklvBjoJKFQIR6SYFZ+J25TUNVNc3KXN2jDmjEnj61uk9Yh5+QIDhoknJfLKzuKXUds7hanLLary23kxEPGvsgGiCAgybXM2oHQ7Lu5n5nDkqQSXQPeREzaiXZBUQFGCY6ycVaQfG9uHscf15ac1Bahua2t/B5dV1BwkJCugRhWRE/Jn/v0qUHqe5EpWCs57tkvRkmhyW9zfnA7Bmn7O/mYIzkd4hLDiQsQOiWwKFDQcPk1tWoymNHjR5cBxwdDPqxVkFTBvSl5hw/+nVdvPMIZRVN5y052VrdY1NvLUpj3PG9/f7nnMi/k7Bmbhdcxl9TWvs2cYOiGZ0UlRL1cbVe0uJDgtiTP9oH49MRNwlLSWGzTnlOByWdzblExIUwFnjvN8E+VTRNyKEofERLRUbD5RUk11QxUI/u+YzhvVldFIUT3++v0Nl9ZdkFVJW3aApjSJuoOBM3C5XmbNe4+L0ZNbuP8zB0mpW7Sll2pC+PaankIi0b1JKLJV1jewuquK9zfnMH51IVJgyH540eXAsGw4cxlrL4ixn0SV/WW/WrLmsflZ+BWv2HV9d8livrsuhf3QYZ4xQbzOR7lJwJm6XW1ZDWHAAfSO0ZqGnu9i1duCpT/eyp/iIpjSK9DJpg5xFQZ78ZA9FlXVaL+QFGYPjKK6q52BpDUu2FzAyMZLUft6rgNtRl05OJjosiGc+33fS7Qoralm2o5DLMwbqzTsRN1BwJm6X5+pxpop+Pd+gvuFMTY1rqdql4EykdxmREEmf4EBeXZ9DeEgg88f4VwanN8pwrTtbnl3Iqj2lLBjrX1Mam4WHBHHNtEH8b+sh8str2tzujQ25OCya0ijiJgrOxO1yy2pI1pTGXqO5MEif4EC/b6AtIp0TFBjAhIHRWAsLxybRJyTQ10Pq9Ub3dzaj/uvS3TQ6LGeN89+A+MYZQ3BYywsrD5zweWstr67LYUpqHMN6QJsYkZ5AwZm4Xe7hGlJUDKTXOH/iAAIDDFNS43zeIFVE3C8tJRZAUxq9JDDAMCkllkMVtfSLCCF9UJyvh9Smwf3CWTAmkf+uPnDCsvqbcsrZWVilrJmIG+mVlrhVTX0TJUfqVQykF+kXGcpvL5/IvQtH+nooIuIBl00eyKXpyZw5SsUcvCUjNRaAeWMS/X6d1s0zh1BypJ73MvOPe+7VdQcJCw7gArVfEHGbdoMzY8wgY8xSY0yWMWarMebbrsd/aYzJNMZsNMZ8ZIzRW26iMvq91NVTBzF1iNabifRGEwbG8Oi1kwkN0pRGb5nm+n3aE9oWnDEinuEJETzzxb6jyurXNjTx9sY8zh3fn2hV+BRxm45kzhqB71hrxwIzgG8aY8YBf7DWpllr04F3gZ95bpjSU+Q1B2ex4T4eiYiIiH+aMyqB/94+g7N7QHDWXFY/M6ecDQfLWh5ftK2AitpGrpo6yHeDE+mF2g3OrLX51tr1rs8rgSxgoLW2otVmEUD7XQql12vOnCXHhvl4JCIiIv7JGMPpw/v1mKrGl2ekEBl6dFn9V9flkBwTxunD+vluYCK9UKfWnBljhgCTgVWur39tjDkIXI8yZ4KzGEhggKF/tIIzERGR3iAyNIgrp6Tw/uZ8CitrOVRey4qdRVwxJYUAP18zJ9LTdDg4M8ZEAq8B9zZnzay1P7HWDgJeAO5uY787jDFrjTFri4qK3DFm8WO5ZTX0jw4jSFX9REREeo2bTk+locnyn1UHeH1DjnqbiXhIh15BG2OCcQZmL1hrXz/BJv8BrjjRvtbaJ621U621UxMSEro+UukRcg/XqFKjiIhILzMsIZI5oxJ4YdUBXlmbw/QhfUntF+HrYYn0Oh2p1miAp4Asa+3DrR5vXVf7YmC7+4cnPU1uWY0qNYqIiPRCt8wcQlFlHXuLj3DlVGXNRDwhqAPbzAJuBDYbYza6Hvsx8DVjzGjAAewH7vTICKXHaGxycKiiVpkzERGRXmjOqASG9AunoKKO8yeqt5mIJ7QbnFlrPwVOtNrzffcPR3qygso6mhyWZAVnIiIivU5AgOGPV0+iuKqeyNCOvL8vIp2l/1niNrmH1YBaRESkN5uS2tfXQxDp1VRST9wmt6waQNMaRURERES6QMGZuE1L5kzBmYiIiIhIpyk4E7fJLaulX0QIfUICfT0UEREREZEeR8GZuE1uWY2KgYiIiIiIdJGCM3Gb3MPVmtIoIiIiItJFCs7ELay1akAtIiIiItINCs7ELUqP1FPb4FDmTERERESkixSciVvkldUC6nEmIiIiItJVCs7ELdTjTERERESkexSciVvkqMeZiIiIiEi3KDgTt8gtqyE8JJDY8GBfD0VEREREpEdScHYKcjgsP3wtk1v/vRprrVuOmXu4hoGxfTDGuOV4IiIiIiKnmiBfD0C8y1rLr97L4sU1BwFYu/8w04b07fZx88pVRl9EREREpDuUOTvF/GPFHv712V6uP20w0WFBPP35PrcctzlzJiIiIiIiXaPM2SnkzQ25/Ob97VyQNoBfXjKB8JBA/v3ZPg6V19I/JqzLx62ub+RwdQPJCs5ERERERLpMmbNTxKc7i/neq5uYMawvD189iYAAw40zhtBkLf9Ztb9bx851VWpM0bRGEREREZEuU3B2CtiSW87Xn1vL8IRInrxpKqFBgQAM7hfO/NGJ/Gf1Aeoam7p8/JwyldEXEREREekuBWe93MHSam759xpiw0N4+tbpRIcdXer+5plDKK6q54PNh7p8jrzm4EyZMxERERGRLlNw1ouVHqnnpn+tpqHJwTNfnXbCdWVnjIhnWEJEtwqD5B6uISjAkBjV9XVrIiIiIiKnOgVnvVR1fSNffXoNeWU1PHXzVEYkRp1wu4AAw00zUtl4sIxNB8u6dK7cshr6x4QRGKAeZyIiIiIiXaXgrBdqbHLwrf9sIDOnjMeum8zUdvqYXTElhYiQQJ75Yl+Xzqcy+iIiIiIi3XdKB2fWWn793jZ++0GWr4fiNtZafvLGFpZsL+T/XTKBc8b3b3efqLBgrpiSwrub8impquv0OXPL1IBaRERERKS7TungzBhDZW0j//p0LwdKqn09HLd4ZPFOXlp7kG/NH8ENM1I7vN9Npw+hvsnBi2sOdup8DU0OCipqSVHmTERERESkW07p4AzgvrNGERhgeOijHb4eSre9sGo/jy3ZydVTU7j/rFGd2ndEYiRnjIjn+ZX7aWxydHi/Q+W1OKwqNYqIiIiIdNcpH5wlRYdx++xhvL0pj8ycMl8Pp8s+2nqIn765hXmjE/j1ZRMxpvPFOW6eOYT88loWbSvo8D65LT3Owjt9PhERERER+dIpH5wB3HHmMPpGhPCb97Ow1vp6OJ22bn8p3/rvBiamxPLX6zMIDuzaj3X+mERS4vp0qqx+7mFncJYcqzL6IiIiIiLdoeAMZ0GMby8Yyco9pSzbUeTr4XTKrsIqvvbMWpJj+/Cvm6cSHhLU5WMFBhhunJHKqr2lbD9U0aF9mjNnyVpzJiIiIiLSLQrOXK6bPpgh/cL53QfbaXL0jOxZQUUtN/9rNUEBATxz63T6RYZ2+5jXTBtEaFAAz3y+v0Pb5x6uIT4ylLDgwG6fW0RERETkVNZucGaMGWSMWWqMyTLGbDXGfNv1+B+MMduNMZnGmDeMMbEeH60HhQQF8P1zx7CjoJLX1uf4ejjtOlLXyM3/Wk1ZdT1P3zqNwf3cs+YrNjyES9MH8uaGXMqrG9rdPq9cZfRFRERERNyhI5mzRuA71tqxwAzgm8aYccAiYIK1Ng3IBn7kuWF6x3kT+pM+KJaHP8qmpr7J18M5qV+9l8WOgkr+dsMUJgyMceuxb5qZSk1DE6+sa7+sfu7hGpXRFxERERFxg3aDM2ttvrV2vevzSiALGGit/cha2+jabCWQ4rlheocxhh+fP5ZDFbX867O9vh5Om5ZkFfDf1Qe448xhzBmV4Pbjj0+OYdqQOJ79Yv9Jp3haa8ktq1ExEBERERERN+jUmjNjzBBgMrDqmKe+CnzgpjH51PShfVk4NonHl+2mpKrO18M5TnFVHT94LZMx/aM63cusM26eOYQDpdUszy48yVjqqWt0MFCZMxERERGRbutwcGaMiQReA+611la0evwnOKc+vtDGfncYY9YaY9YWFfWMSog/PG801fWN/PnjXb4eylGstfzo9c1U1DTy6LXphAZ5rgjHOeP7kxQdytMnKQzS0uMsTj3ORERERES6q0PBmTEmGGdg9oK19vVWj98MXAhcb9toEGatfdJaO9VaOzUhwf1T8DxhRGIU10wbzAur9rO/5Iivh9PilbU5LNpWwPfOGc2Y/tEePVdwYADXn5bKJ9lF7CmqOuE2eS0NqJU5ExERERHpro5UazTAU0CWtfbhVo+fC/wAuNhaW+25IfrGfQtHEhQQwB8+3OHroQBwoKSaX7yzldOH9eNrZwz1yjmvnT6I4EDDs1+cOHvW3IBa1RpFRERERLqvI5mzWcCNwHxjzEbXx/nAX4AoYJHrsSc8OVBvS4wO4/bZQ3k3M5+NB8t8OpYmh+X+lzcSYAwPXT2JgADjlfMmRoVxwcQBvLYuh6q6xuOezy2rITI0iOiwrje+FhERERERp45Ua/zUWmustWnW2nTXx/vW2hHW2kGtHrvTGwP2pjvmDKdfRAi/fT+LNmZtesXfP9nN2v2H+X+Xjvf6FMKbZw6hsq6RN07Q+y3ncA0DY/vgTK6KiIiIiEh3dKpa46kmMjSIexeOZNXeUj7e3nbVQk/aklvOI4uyuWDiAC5NH+j186cPiiUtJYZnvth/XICaW6YG1CIiIiIi7qLgrB3XTh/M0PgIfvfBdhqbHF49d21DE/e9tJG48BB+dekEn2SojDHcfPoQdhVW8fnukqOeyyurUTEQERERERE3UXDWjuDAAH5w7mh2Flbx2gmm9nnSHz7cwc7CKv5w1STiIkK8eu7WLkgbQN+IEJ7+fF/LY1V1jZTXNChzJiIiIiLiJgrOOuCc8f3JGBzLw4uyqa4/vjCGJ3y2q5inPt3LTaenMmeUb1sQhAUHct30QSzJKuBgqbMwZ0ulRmXORERERETcQsFZBxhj+NH5YymoqONfn+71+PnKaxr47iubGBYfwY/OG+vx83XE9aelYozh+VXOsvq5Zc4gLVnBmYiIiIiIWyg466BpQ/py9rgknli+h5KqOo+e64G3tlBYWccj16TTJyTQo+fqqOTYPpw9LomX1hyktqGpJXOWommNIiIiIiJuoeCsE75/7hhqGpr488e7PHaOdzbl8ebGPO6ZP5JJg2I9dp6uuOn0IZRVN/D2xjxyy2oJCQwgITLU18MSEREREekVFJx1wojESK6dNojnV+5nX/ERtx//UHkt//fmFiYNiuWb84a7/fjdNWNYX0YnRfH05/vILathQGyY1xpii4iIiIj0dgrOOunbC0cSEhTAHz7c4dbjOhyW7726ifpGB49cPYmgQP/70RhjuGlmKtvyK1i+o1DFQERERERE3Mj/IgA/lxgVxu2zh/He5nw2HDjstuM+t3I/K3YW85MLxjIsIdJtx3W3yyYPJDosiIraRhUDERERERFxIwVnXXD7mcOIjwzlt+9vx1rb7ePtKqziN+9nMXd0AtefNtgNI/Sc8JAgrp46CFAZfRERERERd1Jw1gWRoUHcu3Akq/eVsiSrsFvHamhycN9LGwkPCeTBK9Iwxv/XcN14eip9ggMZnxzt66GIiIiIiPQaQb4eQE91zbRB/Ouzvfzuf9uJiwghpk8Q0WHBRPcJJjQooMNB1p+X7GRzbjlP3JBBYnSYh0ftHqn9Ilj/07MIC1ZsLyIiIiLiLgrOuig4MIAfnTeW259dyxWPf37UcyGBAUT3CSK6T3BLwBYd1vprZyDnsJa/LN3FlVNSOHfCAB99J13jL/3XRERERER6CwVn3XDWuCQW3XcmuWU1VNQ2UlHTQEVtAxU1jZS3fN5AeU0DOaXVVNQ6P29o+nKd2uC+4Txw0TgffhciIiIiIuIPFJx108ikKEYmRXV4e2stdY2OlkAuObYP4SH6MYiIiIiInOoUFXiZMYaw4EDCggN7zBozERERERHxPFV0EBERERER8QMKzkRERERERPyAgjMRERERERE/oOBMRERERETEDyg4ExERERER8QMKzkRERERERPyAgjMRERERERE/oOBMRERERETEDyg4ExERERER8QMKzkRERERERPyAsdZ672TGFAH7vXbCjosHin09iFOMrrn36Zr7hq679+mae5+uuffpmnufrrn39dZrnmqtTTjRE14NzvyVMWattXaqr8dxKtE19z5dc9/Qdfc+XXPv0zX3Pl1z79M1975T8ZprWqOIiIiIiIgfUHAmIiIiIiLiBxScOT3p6wGcgnTNvU/X3Dd03b1P19z7dM29T9fc+3TNve+Uu+ZacyYiIiIiIuIHlDkTERERERHxAz0uODPGnGuM2WGM2WWM+WGrx18yxmx0fewzxmw8wb7pxpgvjDFbjTGZxphrWj031Bizyhiz03WskDbOf7Nrm53GmJs7u39P5MtrboxJNcasc51jqzHmzs7s31N58Jrf7TqmNcbEn+T8us+/fNzj11z3uduv+Quu424xxvzLGBPcxvlPufscfHvdda+7/Zo/ZYzZ5Hr8VWNMZBvnP+XudV9ec93nx13zdGPMStf1WGuMmd7G/t26T3vNfW6t7TEfQCCwGxgGhACbgHEn2O6PwM9O8PgoYKTr82QgH4h1ff0ycK3r8yeAu06wf19gj+vfONfncR3dvyd++ME1DwFCXZ9HAvuAZF3zLl/zycAQ13WMb+P8us+9f811n7v3mp8PGNfHf9v43XLK3ed+ct11r7v3mke32u5h4Icn2P+Uu9f94JrrPm91zYGPgPNcn58PLHP3fdqb7vOeljmbDuyy1u6x1tYDLwKXtN7AGGOAq3H+YTiKtTbbWrvT9XkeUAgkuPaZD7zq2vQZ4NITnP8cYJG1ttRaexhYBJzbif17Ip9ec2ttvbW2zvVlKK5sr65556+56+sN1tp97Zxf97mXr7nuc7df8/etC7AaSDnB+U/F+xx8fN11r7v9mle02r8PcKJCAqfive7Ta677/LhrboFo1+cxQN4J9u/ufdpr7vOeFpwNBA62+jrH9Vhrs4GC5v9UbXGlVENwRvn9gDJrbeOxxzXGTDXG/LOd87e5fy/g62uOMWaQMSbTNY7fu35R6pp3/pqfbDvd57695rrPPXDNjXNa3Y3A/1xfn+r3Ofj+uuted/M1N8b8GzgEjAH+7HrsVL/XfX3NdZ8f/b3dC/zBGHMQeAj4USf2P+Veo/e04Myc4LFj37G4jhO8C3LUQYwZADwH3GqtdZzsuNbatdba29o5f0fG1VP5+ppjrT1orU0DRgA3G2OSOjiunspT17xNus99fs11nzu5+5r/DfjEWrsCdJ+7+Pq66153cts1t9beinPqXRZwjeuxU/1e9/U1133u1Py93QXcZ60dBNwHPNWJ/U+51+g9LTjLAQa1+jqFVqlRY0wQcDnwUlsHMMZEA+8B/2etXel6uBiIde1/3HE7cP6O7t8T+fqat3C967QV57tduuadv+bdPb+uueeueQvd507dvebGmAdwTkO6v5Pn783XHHx/3VvoXndyx+8Xa22Ta/8rOnF+XXPPXfPW2+k+h5uB112fv4JzCmRH9z/1XqNbP1j41tEPIAjnAr+hfLnYcHyr588Flp9k/xBgCXDvCZ57haMXC37jBNv0BfbiXGgY5/q8b0f374kffnDNU4A+rs/jgGxgoq551655q232cfKCILrPvXvNdZ+793fLbcDnzde0jf1PufvcT6677nU3XXOcGYERrT5/CHjoBPufcve6H1xz3eetrjnODONc1+cLgHXuvk97033u8wF04Yd/vusm3w385JjnngbuPMm+NwANwMZWH+mu54bhXMC8y/VDbK6yMxX4Z6tjfNW1zS6caW5Otn9v+PDlNQfOAjJd/8kzgTt0zbt1ze/B+e5SI853jpqvs+5zH15z3eduv+aNrmM2P/6zY6+56+tT7j739XXXve6+a45z9tNnwGZgC/ACrkqCutd9e811nx99zYEzgHWu67EKmNLG/p26T3vrfW5cgxYREREREREf6mlrzkRERERERHolBWciIiIiIiJ+QMGZiIiIiIiIH1BwJiIiIiIi4gcUnImIiIiIiPgBBWciIiIiIiJ+QMGZiIiIiIiIH1BwJiIiIiIi4gf+P/7ufyC5XuHuAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB1pElEQVR4nO3dd1xUV/rH8c+hi2BBwIaKHXuvsaEmMTGJqSZZ03vbtN1Nr5tNz6b38kt1k5hEU02xxt67gmJBRVHABoj08/tjBoMKSplhBvi+Xy9eDvfeufeZyxXuc885zzHWWkRERERERMSzfDwdgIiIiIiIiCg5ExERERER8QpKzkRERERERLyAkjMREREREREvoORMRERERETECyg5ExERERER8QJKzkRERERERLyAkjMRkWrKGJNZ7KvQGHOk2PcTPB1fRRhjEo0xoz0dx8kYY2YbY25w4/7fN8ZsdP5Mrzlu3WXOdYeMMSnGmE+NMfWKrY82xkw1xhwwxuwxxrxpjPErtn6UMSbeGJNljJlljGlVbJ0xxjxvjNnn/HrBGGPc9TlFRORESs5ERKopa21I0RewAzi32LKJno7veMWThOp8jCqwGrgNWFHCuvnAadba+kAbwA/4T7H1bwMpQFOgJzDcuS+MMeHAZOBRIAxYBnxd7L03AecDPYDuwDnAza75SCIiUhZKzkREahhjjI8x5gFjzBZnC8gkY0yYc120McYaY641xux0trDcYozpZ4xZY4w5aIx5s9i+rjHGzDfGvOFsrYk3xowqtr6+MeYjY0yyMWaXMeY/xhjf4977ijFmP/CEMaatMWamM640Y8xEY0wD5/afAy2Bn5ytf/cZY0YYY5KO+3xHW9eMMU8YY741xnxhjEkHrjlFTO2MMX86P0uaMaZ4clL8GEHOfe5znpOlxpjGxpingaHAm84Y33RuH2OMmWaM2e9s2RpfbF+fGGPeda7PcB6/VUnHBbDWvmWtnQFkl7Bup7U2rdiiAqBdse9bA5OstdnW2j3Ab0AX57oLgfXW2m+stdnAE0APY0yMc/3VwH+ttUnW2l3Af4FrSotTRERcT8mZiEjNcyeOFpDhQDPgAPDWcdsMANoDlwKvAg8Do3HcyI83xgw/btutQDjwODC5KNkDPgXycSQIvYAzgBtKeG8k8DRggGedcXUCWuBIErDWXsmxLYAvlPHzjgO+BRoAE08R01PAH0BDIAp4o5R9Xg3Ud8bXCLgFOGKtfRiYC9zhjPEOY0xdYBrwP+fnvBx42xjTpdj+JjiPHQ6scsZZIcaYIcaYQ0AGcBGOn1+R14DLjDHBxpjmwFk4EjRw/GxXF21orT0MbOGv5O2Y9c7XxT+DiIi4mZIzEZGa52bgYWcLSA6O5Ofi47r8PeVsXfkDOAx8aa1NcbaYzMWR1BRJAV611uZZa78GNgJjjTGNcdz8322tPWytTQFeAS4r9t7d1to3rLX51toj1trN1tpp1toca20q8DKOJLIyFlprv7fWFgL1ThFTHtAKaOb8/PNK2WcejqSsnbW2wFq73FqbXsq25wCJ1tqPnZ9zBfAdcHGxbX6x1s5x/jweBgYZY1pU5MNaa+c5uzVGAS8CicVW/4kjoUoHknB0XfzeuS4EOHTc7g4BoaWsPwSEaNyZiEjVUXImIlLztAKmOLvjHQTicHR/a1xsm73FXh8p4fuQYt/vstbaYt9vx9Hy1QrwB5KLHes9HK1HRXYWD8wYE2mM+crZ3TAd+AJHa1JlFD/GqWK6D0fr3RJjzHpjzHWl7PNz4HfgK2PMbmdxDP9Stm0FDCg6nvOYE4AmJcVorc0E9uM4hxXmTKR/A74CR3dWZ8yTgbo4zmtD4HnnWzJxJK/F1cPRAlfS+npA5nE/exERcSMlZyIiNc9O4CxrbYNiX0HOm/mKaH5c60lLYLfzODlAeLHj1LPWFu8Kd/yN/bPOZd2ttfWAK3AkS6VtfxgILvrGOXYs4rhtir/npDFZa/dYa2+01jbD0cL4tjGmHcfv0NFK+KS1tjMwGEfr2FWlxLgT+PO48x1irb212DZHW8mMMSE4CnLsPv64FeAHtHW+DnMe501ny+Q+4GPgbOf69TiKfRTFUdf53vUlrXe+Xo+IiFQZJWciIjXPu8DTRUUnjDERxphxldhfJHCnMcbfGHMJjrFiU621yTjGb/3XGFPPOAqRtD1uvNrxQnG00Bx0jon613Hr9+KoQlhkExBkjBnrbLl6BAgsbeeniskYc4kxJsq5+QEciVbB8fsxxsQaY7o5k8F0HN0ci7Y7PsafgQ7GmCud58jfOAqsdCq2zdnOsWIBOMaeLbbWHtOqWOzYAcaYIBxJq7+zOImPc90EY0xL49AKxzi+Gc7PngZsA241xvg5C61czV/jyKYAXY0xFzn3/xiwxlob71z/GXCvMaa5MaYZ8A/gk9LOtYiIuJ6SMxGRmuc14EfgD2NMBrAIR2GOilqMo3hIGo5k4GJnqww4WpMCgA04kp1vcZRxL82TQG8c45l+wdEFr7hngUec3QP/aa09hKMU/IfALhwtaUmc3Mli6gcsNsZk4jhHd1lrt5WwjybO96Xj6Bb6J44umOA4vxcbR6XL1621GTiKjlyGozVsD46uhMWTyP/hKKayH+iDo9tjaf7A0bV0MPC+8/Uw57rOwAIcCe58HOP/biz23guBMUAqsBlHYZR7AJxj/C7C8TM8gOOaKD4+8D3gJ2AtsA7Hz+e9k8QpIiIuZtSVXERESmMckyDfYK0d4ulYqitjzCdAkrX2EU/HIiIi3k0tZyIiIiIiIl5AyZmIiIiIiIgXOGW3Rueg4Tk4+s77Ad9aax83xrwInAvk4pjE8lpr7UH3hisiIiIiIlIzlSU5M0Bda22ms1LWPOAuHPOfzLTW5htjngew1t7v7oBFRERERERqolN2a7QOmc5v/Z1f1lr7h7U237l8ERBV4g5ERERERETklPzKspFznpflQDvgLWvt4uM2uQ74+lT7CQ8Pt9HR0eWNUUREREREpEZYvnx5mrU2oqR1ZUrOrLUFQE/nhJZTjDFdrbXrAIwxD+OYR2ViSe81xtwE3ATQsmVLli1bVv5PICIiIiIiUgMYY7aXtq5c1RqdBT9m45jgEmPM1cA5wARbyuA1a+371tq+1tq+ERElJogiIiIiIiK13imTM2NMhLPFDGNMHWA0EG+MGQPcD5xnrc1ya5QiIiIiIiI1XFm6NTYFPnWOO/MBJllrfzbGbMZRXn+ao6Aji6y1t7gvVBERERERkZrrlMmZtXYN0KuE5e1cEUBeXh5JSUlkZ2e7YnciRwUFBREVFYW/v7+nQxEREREROaUyFQRxp6SkJEJDQ4mOjsbZAidSadZa9u3bR1JSEq1bt/Z0OCIiIiIip1SugiDukJ2dTaNGjZSYiUsZY2jUqJFaZEVERESk2vB4cgYoMRO30HUlIiIiItWJVyRnnvb000/TpUsXunfvTs+ePVm82DHH9g033MCGDRtccozo6GjS0tJOus0zzzxT7v1+8skn3HHHHccs+/jjj+nZsyc9e/YkICCAbt260bNnTx544IFy778qvPrqq2RlqeCniIiIiFTSCy/ArFnHLps1y7G8Gqj1ydnChQv5+eefWbFiBWvWrGH69Om0aNECgA8//JDOnTtXWSwVSc5Kcu2117Jq1SpWrVpFs2bNmDVrFqtWreK5555zyf7Ly1pLYWFhqesrkpzl5+dXNiwRERERqWn69YPx4/9K0GbNcnzfr59n4yqjWp+cJScnEx4eTmBgIADh4eE0a9YMgBEjRrBs2TIAQkJCuP/+++nTpw+jR49myZIljBgxgjZt2vDjjz8CJ7ZinXPOOcyePfuEY55//vn06dOHLl268P777wPwwAMPcOTIEXr27MmECRMA+OKLL+jfvz89e/bk5ptvpqCgAHC0jHXo0IHhw4czf/78Mn/WF198kX79+tG9e3cef/xxABITE4mJieGGG26ga9euTJgwgenTp3PaaafRvn17lixZAsATTzzBlVdeyciRI2nfvj0ffPDBKffbqVMnbrvtNnr37s3OnTu59dZb6du3L126dDm63euvv87u3buJjY0lNjb26Lku8u2333LNNdcAcM0113DvvfcSGxvL/fffz5YtWxgzZgx9+vRh6NChxMfHl/lciIiIiEgNFBsLkybBuHFw442OxGzSJMfy6sBaW2Vfffr0scfbsGHDCcuqUkZGhu3Ro4dt3769vfXWW+3s2bOPrhs+fLhdunSptdZawE6dOtVaa+35559vTz/9dJubm2tXrVple/ToYa219uOPP7a333770fePHTvWzpo1y1prbatWrWxqaqq11tp9+/ZZa63NysqyXbp0sWlpadZaa+vWrXv0vRs2bLDnnHOOzc3NtdZae+utt9pPP/3U7t6927Zo0cKmpKTYnJwcO3jw4GOOebyi4/7+++/2xhtvtIWFhbagoMCOHTvW/vnnn3bbtm3W19fXrlmzxhYUFNjevXvba6+91hYWFtrvv//ejhs3zlpr7eOPP267d+9us7KybGpqqo2KirK7du066X6NMXbhwoVHYyn63Pn5+Xb48OF29erVJ5yb48/DN998Y6+++mprrbVXX321HTt2rM3Pz7fWWjty5Ei7adMma621ixYtsrGxsSd8fk9fXyIiIiJSxQ4etDYgwFqw9tFHPR3NCYBltpR8yeOl9It78qf1bNid7tJ9dm5Wj8fP7VLq+pCQEJYvX87cuXOZNWsWl156Kc8999zR1poiAQEBjBkzBoBu3boRGBiIv78/3bp1IzExsVwxvf7660yZMgWAnTt3kpCQQKNGjY7ZZsaMGSxfvpx+zibYI0eOEBkZyeLFixkxYgQREREAXHrppWzatOmUx/zjjz/4448/6NXLMWVdZmYmCQkJtGzZktatW9OtWzcAunTpwqhRozDGnPDZxo0bR506dahTpw6xsbEsWbKEefPmlbrfVq1aMXDgwKPvnzRpEu+//z75+fkkJyezYcMGunfvXq5zd8kll+Dr60tmZiYLFizgkksuObouJyenXPsSERERkRrovvsgNxeuvx7eecfRalZNWs68KjnzFF9fX0aMGMGIESPo1q0bn3766QnJmb+//9Hqfz4+Pke7Qfr4+Bwd/+Tn53fM2KqSyrjPnj2b6dOns3DhQoKDgxkxYkSJ21lrufrqq3n22WePWf79999XqAqhtZYHH3yQm2+++ZjliYmJRz/LyT4bnFj90Bhz0v3WrVv36Pfbtm3jpZdeYunSpTRs2JBrrrmm1DL3xY9z/DZF+ywsLKRBgwasWrXqVB9dRERERGqL33+HDz+EXr0c/06YUK26NnpVcnayFi532bhxIz4+PrRv3x6AVatW0apVqwrtKzo6mrfffpvCwkJ27dp1dLxWcYcOHaJhw4YEBwcTHx/PokWLjq7z9/cnLy8Pf39/Ro0axbhx47jnnnuIjIxk//79ZGRkMGDAAO666y727dtHvXr1+Oabb+jRo8cpYzvzzDN59NFHmTBhAiEhIezatQt/f/9yfb4ffviBBx98kMOHDzN79myee+456tSpU6b9pqenU7duXerXr8/evXv59ddfGTFiBAChoaFkZGQQHh4OQOPGjYmLi6Njx45MmTKF0NDQE/ZXr149WrduzTfffMMll1yCtZY1a9aU6VyIiIiISA31wQdQWAjPP+/4vmgM2tKlSs6qg8zMTP7+979z8OBB/Pz8aNeu3dEiHeV12mmnHe0i2LVrV3r37n3CNmPGjOHdd9+le/fudOzY8ZhufzfddBPdu3end+/eTJw4kf/85z+cccYZFBYW4u/vz1tvvcXAgQN54oknGDRoEE2bNqV3795HC4WczBlnnEFcXByDBg0CHN05v/jiC3x9fcv8+fr378/YsWPZsWMHjz76KM2aNaNZs2Zl2m+PHj3o1asXXbp0oU2bNpx22mnHfO6zzjqLpk2bMmvWLJ577jnOOeccWrRoQdeuXcnMzCwxnokTJ3Lrrbfyn//8h7y8PC677DIlZyIiIiK1VUEBrF3raDUbPfqv5dWoW6NxjEmrGn379rVF1Q+LxMXF0alTpyqLQSrmiSeeICQkhH/+85+eDqVcdH2JiIiI1BKTJ8NFF8FXX8Gll3o6mlIZY5Zba/uWtK7Wl9IXEREREZFqzlpHV8Y2bRwJWjVV67s1Stk88cQTng5BRERERKRkf/4JS5bA22+DX/VNcdRyJiIiIiIi1dvzz0NkJBxXcb26UXImIiIiIiLV1+rV8NtvcOedUKeOp6OpFCVnIiIiIiJSfb3wAoSEwG23eTqSSlNyJiIiIiIi1VNiInz9Ndx0EzRs6OloKk3JGeDr60vPnj3p2rUrl1xyCVlZWRXe1zXXXMO3334LwA033MCGDRtK3Xb27NksWLDg6Pfvvvsun332WYWPXSQxMZGuXbses+yJJ57gpZdeKtd+XBWPiIiIiIhb/Pe/4OMD99zj6UhcovqWMnGhOnXqsGrVKgAmTJjAu+++y7333nt0fUFBQbkmay7y4YcfnnT97NmzCQkJYfDgwQDccsst5T6Gu+Tn53tVPCIiIiIix0hNhY8+ggkTICrK09G4RPVqOXvhBZg169hls2Y5lrvI0KFD2bx5M7NnzyY2Npa//e1vdOvWjYKCAv71r3/Rr18/unfvznvvvQeAtZY77riDzp07M3bsWFJSUo7ua8SIERRNuv3bb7/Ru3dvevTowahRo0hMTOTdd9/llVdeoWfPnsydO/eY1q1Vq1YxcOBAunfvzgUXXMCBAweO7vP++++nf//+dOjQgblz55b7M55s3w899BDDhw/ntddeOxrP7t276dmz59EvX19ftm/fzvbt2xk1ahTdu3dn1KhR7NixA3C0Ht55550MHjyYNm3aHG1JFBERERFxmTffhCNH4L77PB2Jy1Sv5KxfPxg//q8EbdYsx/f9+rlk9/n5+fz6669069YNgCVLlvD000+zYcMGPvroI+rXr8/SpUtZunQpH3zwAdu2bWPKlCls3LiRtWvX8sEHHxzTTbFIamoqN954I9999x2rV6/mm2++ITo6mltuuYV77rmHVatWMXTo0GPec9VVV/H888+zZs0aunXrxpNPPnlMnEuWLOHVV189ZnlxW7ZsOSahevfdd8u074MHD/Lnn3/yj3/84+iyZs2asWrVKlatWsWNN97IRRddRKtWrbjjjju46qqrWLNmDRMmTODOO+88+p7k5GTmzZvHzz//zAMPPFDOn4SIiIiIyEkcPuxIzs47Dzp18nQ0LuNd3Rrvvhuc3QtL1awZnHkmNG0KycmOH8aTTzq+StKzJ7z66kl3eeTIEXr27Ak4Ws6uv/56FixYQP/+/WndujUAf/zxB2vWrDnaCnTo0CESEhKYM2cOl19+Ob6+vjRr1oyRI0eesP9FixYxbNiwo/sKCws7aTyHDh3i4MGDDB8+HICrr76aSy655Oj6Cy+8EIA+ffqQmJhY4j7atm17tKsm/DWJ9Kn2femll5Ya1/z58/nwww+PttYtXLiQyZMnA3DllVdyX7GnFueffz4+Pj507tyZvXv3nvTzioiIiIiUy4cfwv79cP/9no7EpbwrOSuLhg0didmOHdCypUuqshQfc1Zc3bp1j7621vLGG29w5plnHrPN1KlTMcacdP/W2lNuUx6BgYGAo5BJfn6+y/YLx37m4pKTk7n++uv58ccfCQkJKXGb4p+xKEZwfH4REREREZfIy4OXX4YhQ8BZu6Gm8K7k7BQtXMBfXRkffRTeeQcefxxiY90e2plnnsk777zDyJEj8ff3Z9OmTTRv3pxhw4bx3nvvcdVVV5GSksKsWbP429/+dsx7Bw0axO233862bdto3bo1+/fvJywsjNDQUNLT0084Vv369WnYsCFz585l6NChfP7550dbuiqrIvvOy8tj/PjxPP/883To0OHo8sGDB/PVV19x5ZVXMnHiRIYMGeKSGEVERERESvX1146Gmrfe8nQkLuddydmpFCVmkyY5ErLY2GO/d6MbbriBxMREevfujbWWiIgIvv/+ey644AJmzpxJt27d6NChQ4mJTkREBO+//z4XXnghhYWFREZGMm3aNM4991wuvvhifvjhB954441j3vPpp59yyy23kJWVRZs2bfj4449d9lnKu+8FCxawdOlSHn/8cR5//HHA0WL4+uuvc9111/Hiiy8SERHh0hhFRERERE5graMYYJcucPbZno7G5UxVdjnr27evLapeWCQuLo5OZR3E98ILjuIfxROxWbNg6dIaVaVFXKdc15eIiIiIeLepU2HsWPj0U7jqKk9HUyHGmOXW2r4lrateLWclJWBFLWgiIiIiIlKzPf88tGgBl1/u6UjconolZyIiIiIiUjstWgRz5sArr4C/v6ejcYvqNc+ZiIiIiIjUTs8/76jUfsMNno7EbbwiOVOpdXEHXVciIiIiNUR8PPzwA9xxB5QyrVNN4PHkLCgoiH379ulGWlzKWsu+ffsICgrydCgiIiIiUlkvvghBQfD3v3s6Erfy+JizqKgokpKSSE1N9XQoUsMEBQURFRXl6TBEREREpDJ27YLPP4ebboKICE9H41YeT878/f1p3bq1p8MQERERERFv9OqrUFgI//iHpyNxO493axQRERERESnRwYPw3nswfjzUggYdJWciIiIiIuKd3nkHMjJKnu+4BlJyJiIiIiIi3uOFF2DWLMjOhtdegzPPhAMHHMtrOCVnIiIiIiLiPfr1c3RjfOgh2LsXzjjD8X2/fp6OzO08XhBERERERETkqNhY+PJLR4tZs2bw7LMwaZJjeQ2nljMREREREfEu27c7KjTu3g233lorEjMoQ3JmjAkyxiwxxqw2xqw3xjzpXB5mjJlmjElw/tvQ/eGKiIiIiEiNduQIPPAA+PnBI484ioLMmuXpqKpEWVrOcoCR1toeQE9gjDFmIPAAMMNa2x6Y4fxeRERERESk4u6+G9LS4MUX4amnHF0ax4+vFQnaKZMz65Dp/Nbf+WWBccCnzuWfAue7I0AREREREakl9u+Hzz6DAQMcSRo4ujROmgRLl3o0tKpQpoIgxhhfYDnQDnjLWrvYGNPYWpsMYK1NNsZEujFOERERERGp6Z57DnJy4IMPjl0eG1srxp2VqSCItbbAWtsTiAL6G2O6lvUAxpibjDHLjDHLUlNTKximiIiIiIjUaDt3wuuvw1VXQbduno7GI8pVrdFaexCYDYwB9hpjmgI4/00p5T3vW2v7Wmv7RkREVC5aERERERGpmR5/3PHvv//t2Tg8qCzVGiOMMQ2cr+sAo4F44EfgaudmVwM/uClGERERERGpydavh08/hdtvh5YtPR2Nx5RlzFlT4FPnuDMfYJK19mdjzEJgkjHmemAHcIkb4xQRERERkZrqoYcgJMTxby12yuTMWrsG6FXC8n3AKHcEJSIiIiIitcS8efDjj/DMM9Cokaej8ahyjTkTERERERFxGWvh/vuhaVO46y5PR+NxZSqlLyIiIiIi4nI//ggLFsD770NwsKej8Ti1nImIiIiISNXLz3eMMevYEa691tPReAW1nImIiIiISNX77DPYsAG++w78lJaAWs5ERERERKSqHTkCjz0GAwbABRd4OhqvoRRVRERERESq1htvwK5dMHEiGOPpaLyGWs5ERERERKTqHDgAzz4LZ58Nw4d7OhqvouRMRERERESqznPPwaFDjgRNjqHkTEREREREqsbOnfDaa3DlldC9u6ej8TpKzkREREREpGo88YRj4ul//9vTkXglJWciIiIiIuJ+69fDJ5/AHXdAq1aejsYrKTkTERERERH3e+ghCAlx/CslUnImIiIiIiLuNX8+/Pgj3H8/NGrk6Wi8lpIzERERERFxH2sdSVnTpnDXXZ6OxqtpEmoREREREXGfn35ytJy99x7UrevpaLyaWs5ERERERMR1XngBZs1yvM7PhwcfhKgo2L/fs3FVA2o5ExERERER1+nXD8aPh0mTYNs22LAB6tWDAQM8HZnXU3ImIiIiIiKuExvrSMwuuQRyc8HPD6ZMcSyXk1K3RhERERERca2sLEeXxowM+NvfYORIT0dULSg5ExERERER19i929Fids45kJkJV18NU6f+NQZNTkrJmYiIiIiIVE5BAbz5JsTEwA8/QHCwIyn75BNHF8fx45WglYHGnImIiIiISMWtXAk33wxLl8IZZ0DPnjBmzF9jzIrGoC1dqnFnp6DkTEREREREyi8zEx5/HF59FSIi4H//g8suA2NO3DY2VolZGSg5ExERERGR8vnxR7jjDti509Fq9uyz0LChp6Oq9jTmTEREREREyiYpCS68EMaNg/r1Yf58ePddJWYuouRMRERERESO9cILxxbwKChwtJS1bQu//QbPPQcrVsDgwZ6LsQZSt0YRERERETlWv36OCouTJkG9eo65yjZtciz/+mto3drTEdZISs5ERERERORYRRUWzzvPUfjDGHj0UXjyyZILfohLKDkTEREREZEThYfDkSOO1//8J/z7356NpxbQmDMRERERETnWkSOOVrPCQrj3Xvj4Y00iXQWUnImIiIiIyLEuvxwSEx2FP/77X0cXx/HjlaC5mZIzERERERH5y08/wQ8/wMUXw333OZYVjUFbutSzsdVwxlpbZQfr27evXbZsWZUdT0REREREymH3bujeHVq0gEWLIDDQ0xHVOMaY5dbaviWtU8uZiIiIiIg4xpddfTVkZcGXXyox8wBVaxQREREREXj5ZZg+Hd5/H2JiPB1NraSWMxERERGR2m75cnjoIbjwQrjhBk9HU2spORMRERERqc0yMx3VGSMj4YMPNMm0B6lbo4iIiIhIbXb33bB5M8ycCWFhno6mVlPLmYiIiIhIbfXNN/DRR/DggzBihKejqfWUnImIiIiI1EY7dsBNN0H//vDEE56ORihDcmaMaWGMmWWMiTPGrDfG3OVc3tMYs8gYs8oYs8wY09/94YqIiIiISKUVFMCECZCfD//7H/j7ezoioWxjzvKBf1hrVxhjQoHlxphpwAvAk9baX40xZzu/H+G+UEVERERExCWeeQbmzYPPPoO2bT0djTidMjmz1iYDyc7XGcaYOKA5YIF6zs3qA7vdFaSIiIiIiLjIggXw5JOOlrMrr/R0NFJMuao1GmOigV7AYuBu4HdjzEs4ukcOdnVwIiIiIiLiQocOOZKyli3hrbc8HY0cp8wFQYwxIcB3wN3W2nTgVuAea20L4B7go1Led5NzTNqy1NRUV8QsIiIiIiLlZS3ceivs3AkTJ0L9+p6OSI5TpuTMGOOPIzGbaK2d7Fx8NVD0+hugxIIg1tr3rbV9rbV9IyIiKhuviIiIiIhUxBdfwJdfOiozDhrk6WikBGWp1mhwtIrFWWtfLrZqNzDc+XokkOD68EREREREpEJeeAFmzXK83rIFbrsNunUDv3KNbJIqVJafzGnAlcBaY8wq57KHgBuB14wxfkA2cJNbIhQRERERkfLr1w/Gj3eUyn/kEUe3xl27YMAAT0cmpShLtcZ5gClldR/XhiMiIiIiIi4RGwuTJsHYsXDkCISGwrffOpaLVypzQRAREREREalmRoyA7t0dr+++W4mZl1NyJiIiIiJSU82e7Rhv9sgj8M47f41BE6+k5ExEREREpCaaNcsx5mzSJHjqKce/48crQfNiSs5ERERERGqipUsdCVlRV8aiMWhLl3o2LimVsdZW2cH69u1rly1bVmXHExERERER8SbGmOXW2r4lrVPLmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXuCUyZkxpoUxZpYxJs4Ys94Yc1exdX83xmx0Ln/BvaGKiIiIiIjUXH5l2CYf+Ie1doUxJhRYboyZBjQGxgHdrbU5xphIdwYqUhGFhZbf1u/hkwWJXHdaa8Z0beLpkERERERESnTK5MxamwwkO19nGGPigObAjcBz1toc57oUdwYqUh6FhZY/Nuzh1ekJxO/JwNfHsH3fYYZ1CCc4oCzPJEREREREqla5xpwZY6KBXsBioAMw1Biz2BjzpzGmXynvuckYs8wYsyw1NbXSAYucjLWWP9bv4Zw35nHLFyvIzS/k1Ut7MvGGAexNz+Gjuds8HaKIiIiISInK3IRgjAkBvgPuttamG2P8gIbAQKAfMMkY08Zaa4u/z1r7PvA+QN++fS0ibmCtZUZcCq/O2MS6XelENwrm5fE9OK9HM/x8Hc8gzuzSmHf/3MJl/VsSERro4YhFRERERI5VppYzY4w/jsRsorV2snNxEjDZOiwBCoFw94QpUjJrLTPj9zLurfnc8Nky0o/k8+LF3Zl+73Au7B11NDEDuH9MDDn5hbw6fZMHIxYRERERKdkpW86MMQb4CIiz1r5cbNX3wEhgtjGmAxAApLkjSJHjWWuZvSmVV6cnsHrnQaIa1uGFi7pzQe/m+PuW/MyhTUQIfxvQkomLd3Dtaa1pFxlSxVGLiIiIiJSuLN0aTwOuBNYaY1Y5lz0E/B/wf8aYdUAucPXxXRpFXM1ay9yENF6ZvomVOw7SvEEdnruwGxf1iSo1KSvurlHtmbxiF8/9Gs+HV/etgohFRERERMqmLNUa5wGmlNVXuDYckdLN35zGy9M2sXz7AZo3qMMzF3Tj4j5RBPiVva5No5BAbh3Rlhd/38jirfsY0KaRGyMWERERESm7clVrFPGUb5cnMeHDxew+eIT/nN+Vmf8czt8GtCxXYlbkutNa06ReEM9MjaOwUI29IiIiIuIdlJyJ19uwO52Hp6xlcNtGzP7XCK4Y2IpAP98K769OgC//OKMDq5MO8fPaZBdGKiIiIiJScUrOxKulZ+dx28TlNAj25/XLe1UqKSvuwt5RdGpajxd+iycnv8Al+xQRERFxl7jkdA4czvV0GOJmSs7Ea1lr+dc3q0k6cIS3/tab8BDXzU3m62N46OwYkg4c4fOF2122XxERERFX27Evi3FvzufZX+M8HYq4mZIz8Vofzt3G7+v38sBZMfSNDnP5/oe2j2BYhwjemLmZg1l6EiUiIiLe6ZmpceQWFDIzPlXj5Ws4JWfilZZs289zv8VzVtcmXD+ktduO8+BZMaRn5/HmzM1uO4aIiIhIRS3cso/f1u+ha/N6pGXmsH53uqdDEjdSciZeJyUjmzv+t4KWYcG8cHF3HPOgu0enpvW4uHcUny3czs79WW47joiIiEh5FRRa/v3zBpo3qMN7V/bFGJi1McXTYYkbKTkTr5JfUMidX64kPTuPd67oTWiQv9uP+Y8zOuLjAy/8vtHtxxIREREpq0nLdhKXnM6DZ8fQvEEdukc1UHJWwyk5E6/y32mbWLR1P0+f342YJvWq5JhN6gdxw5A2/LR6N6t3HqySY5bFjn1Z/POb1WTm5Hs6FBHxoElLd/KSHh5ViaWJ+7n9fytIz87zdCgipGfn8dLvG+kX3ZCx3ZoCENsxglU7D7JfVRtrLCVn4jWmbdjLO7O3cHn/llzUJ6pKj33z8DY0qhvA01PjsNY7BtpOWraTb5cn8cn8bZ4ORUQ8JCUjmyd+Ws87f27h0BElDO60btchrvt4Kb+sSWZG3F5PhyPCWzM3sz8rl8fO6XJ0iEdsx0ishTmbUj0cnbiLkjPxCjv2ZXHvpFV0bV6Px8/tXOXHDw3y5+7R7VmybT/T47yju8DczWkAvD9nq57iitRSr89IICu3gIJCy9wE3Yy5y9bUTK7+vyWEBvnRqG4AM7zk74DUXolph/m/+du4uHcU3aLqH13erXl9GtUNYLa6NtZYSs7E47LzCrh14nIM8M6EPgT5u2ai6fK6rH9L2kTU5blf48gvKPRIDEUOZeWxNukgozs1Jj07n4/nJXo0HhGpeltTM/lyyU4u79+SBsH+zIzXzZg7JB86wpUfLcECn98wgNGdGvPnplTyPPx3QGq3Z6bG4e/rw7/O7HjMch8fw/COEfy5KZUCldSvkZScicc9+dN61u9O55VLe9IiLNhjcfj7+vDAmBi2pB7mq6U7PRYHwIItaRRauGV4G07v3JgP521VlyaRWualPzYS6OfDvad3YESHCGZv1M2Yqx04nMtVHy3h0JE8Pr22P20jQoiNiSQjO59liQc8HZ7UUgs2p/HHhr3cHtuOyHpBJ6yP7RjJgaw8VicdrPrgxO2UnIlHfbs8iS+X7OS2EW0Z1amxp8Ph9M6N6R8dxqvTN3m0EMfczWmEBPrRo0UD7h7dnozsfD6ap7FnIrXFyh0HmLp2DzcObUNEaCCxMZHsP5yrmzEXyszJ55pPlrJ9fxYfXNX3aNexIe3DCfD1YWa8xp1J1SteOr+0eV6HtY/Ax8BstabXSErOxGPiktN5eMpaBrVpxL2nd/B0OAAYY3hobCfSMnN5788tHotjXkIaA9s0wt/Xhy7N6jOmSxP+b942DmapOpP8Zfu+wzw7NU7dr2oYay3P/hpPeEgANw5rA8DwDo6bsVm6GXOJnPwCbv58Get2HeLNy3sxqG2jo+tCAv0Y0CZM3UjFI75eupP4PRk8dHanUod51A/2p0+rhszaqHGoNZGSM/GI9Ow8bv1iOfXr+PP65b3w8/WeS7Fniwac070pH8zdyp5D2VV+/O37DrNjfxZD24cfXXb36e3JzMnnw7lqPZO/PDM1jvfmbOXXdXs8HYq40KyNKSzZtp87R7UnJNAPgAbBAfRp1VAJgwsUFFru/moV8zfv4/mLunNGlyYnbDMqJpItqYdJTDvsgQiltkrPzuO/f2ykf3QYZ3c78bosbkTHSNbuOkRKRtXfp4h7ec8dsdQa1lru+2YNOw8c4a0JvYkIDfR0SCe478wYCgotL0+r+rmF5iY4qjQOKZacxTSpx9huTfl4/jbNbSIAxO9J5/f1jm5Xny1I9Gww1URBofX6m+2CQsvzv24kulEwl/dvecy62JhI1u9OZ2+6bsYqylrLQ5PX8uu6PTwythMXlzJty8gYRzd7JcNSld4sKp1/buejpfNLE9sxEoA/1XpW4yg5kyr34dxt/LZ+Dw+eFUO/6DBPh1Oilo2CuWpQNN8sTyJ+T3qVHnteQhrN6gfRJrzuMcvvGt2erLwCPpi7tUrjKa/XZyTw6PfrPB1GjffWrC3UDfDl7yPbsWz7AdbtOuTpkLza3IRUxr4+lxEvzWbJtv2eDqdUk1cksXFvBv88syP+x/UoGBnjuBlT18aKe+63eL5etpM7Yttxw9A2pW7XslEw7SNDlJxJldmWdpiP52/jkj5RdG1e/5Tbd2oaSuN6gcxWclbjKDmTKrVk236e+y2eMV2alDrQ1Vv8fWQ7QgP9eHZqfJUds6DQsmBLGkPah5/w1KxD41DO6d6MTxcksi8zp8piKo/8gkI+nr+NLxZvJ+lAlqfDqbG2pGby85rdXDkomhuGtKGOvy+fL9zu6bC80qa9GVzz8RKu/GgJmTn5hAb68b/F3nmusvMKeHnaJnpE1Wdst6YnrO/YOJRm9YOUMFTQu39u4b0/tzJhQEv+ccapxzmPjIlk8bZ9ZGieSakCz0yNI8DXh38eVzq/NMYYYjtGMidB0z7UNErOpMqkZuRwx/9W0KJhHV64pPspm+w9rUFwAHeMbMefm1KZ5+xq6G5rkg6Snp3P0PYRJa6/a1R7svMKeH+Od7aerdhxkANZeVgLk5YleTqcGuutWZsJ9PPhhqGtqR/sz/m9mvP9ql0qGFNMakYOD05ey5hX57B8+wEeOjuG6fcO54LezZm6bg+HsrzvhvuTBYkkH8rmgbM6lfj70RhDbEwk8zankZNf4IEIq6+vluzguV/jOad7U/49rmuZ/v6MjIkkr8BW2e9/qb3mb05j2oa93D6yHZGhJ5bOL82Ijo5pH1Zs17QPNYmSM6kyXy/dQWpmDu9c0Yd6Qf6eDqdMrhoUTfMGdXhzVkKVHG9eQhrGwGntwktc3y4yhPN6NOPThYmkZnhf69n0uL34+xr6RTfkm2U7NSeTG+zYl8UPq3YzYUArwkMc4zWvGtSKnPxCvvbw/Hze4EhuAW/OTGDEi7P4ZtlOrhoUzZ//iuWmYW0J8vfl0n4tyM0vZMpK73p4cDArl7dnbWZEx4hjKgceb2RMJFm5BV7dNdPb/Lo2mYemrGV4hwheHt8TX5+yPRjs06oh9YL81FIpbpVfUMi/f9pAi7A6XHda+XoUndauEf6+RlUbaxglZ1Jl1u9Op1VYMJ2a1vN0KGUW5O/LJX2jWLxtf5UMwp+7OY0uzeoRVjeg1G3uHNWe3PxCj5b6L830DXsZ2KYR1w9pTfKhbP7cVHU3NVm5+bz75xaWJu6nsAYnhW/P3oyvj+HmYX+Nl+nUtB79W4fx+aLttTYhLiy0TF6RxMj/zualPzYxuF04f9wzjCfO63LM/6cuzerTPao+Xy3dibXec67enr2FjJx87h8Tc9LtBrcNJ9DPRwlDGc1LSOOur1bRq2VD3rmiNwF+Zb/t8fP1YUTHSGZtTKnRv1PEs75aupONezN46KzSS+eXJjTIn37RYczeqN8HNYmSM6kyccnp1SoxK3JO96ZYC1PXJrv1OIdz8lm54wBD2pXcpbFIm4gQzu/VnM8XbSfFi6q2bUnNZGvaYU7v3JhRnRoTHhLAl0uqriXn0wXbee7XeC55dyFDX5jFs1PjWLfrkFfdgFfWroNH+G5FEpf1a0FkvWO7vlwzOJqkA0dqZbGIhVv2cd5b87h30mrCQwL56qaBfHBVX9pEhJS4/aX9WhC/J4M1Sd5RRGXXwSN8siCRC3tFnfJ3ZJ0AXwa1bcTM+JQadW27w6qdB7np82W0iajL/13dj+AAv3LvY1SnSNIyc1mjgjviBoeO5PHytE30bx3GmK4nL51fmtiOkcTvyWD3wSMujk48RcmZVInDOfls359VLZOzdpGhxDQJ5Zc17k3OFm/bR16BPWZ+s9LcObI9+YWWd7yo9WxGnKOs+6hOjfH39eGiPlHMjE+pkgQyN7+QTxZsY2CbMF69tCcdm4Ty0bxtnPPGPEb9909embaJzSmZbo/D3d6d7fh53zy87QnrTu/cmCb1gvh0YWIVR+U5W1IzueHTZVz+wSL2Z+byyqU9+OH20xjYpvRugQDn9WhGHX9fvvKSbqAv/7EJgHvLUKQCHF0bt+/LYquXTwvgSQnOQjDhIYF8dl1/6gdXrCt90eTfM52/30Rc6Y0ZCRzIyuWxc05dOr80Izo6HuiqamPNoeRMqkT8ngyspVomZ+BoPVu2/YBbn0zN2ZRGoJ8PfVo1POW20eF1ubBXcyYu3uE1cx5N35BC56b1aN6gDgCX9WtJQaHlm+XuH9szdW0ye9NzuHlYW87v1Zz/u6Yfyx4ZzbMXdqNxvSBen5nA6Jf/5OzX5vLun1uqZSXJvenZfL1sJxf1jjp6jovz9/VhwoCWzE1IY0tq9U9ET2ZfZg6P/bCOM16Zw6Kt+/jXmR2Z+c8RXNArCp8yjCcKDfJnbPem/LhqF4dz8qsg4tLFJaczeWUS1wyOLvHnWpKi+Y1qYytpWSQdyOLKj5bg7+vDF9cPOKGVuTwaBAfQt1UYM3SuxcW2pmbyyYJExvdpUabS+aVpFxlC8wZ1mKWujTVG+dv4RSogLtkxV1inpqEejqRizunejJf+2MTUtcknnRunMuZtTqN/67Ay9zn/+8j2TFm5i7dnbebJcV3dElNZ7T+cy7Lt+7ljZPujy1qH12VgmzC+XrqTW4e3LdNNc0VYa/lw3lbaRtRleIe/uoQ2CA7g8v4tubx/S1LSs/l5TTI/rt7Nc7/G89yv8fRp1ZDzejTj7G5NvXIi9OO9P2crBYWW20a0K3Wby/q35PWZCXy+cDtPnNelCqMrP2stWbkFHM7JJyMnn8M5+WTm5JOZnc/h3HwycxzrMrMdy4+uz8ln1Y6DHM7N5/L+Lbl7dIcK/fwu69eCb5cn8cvaZMb3beGGT1g2L/wWT2igH7eNOLE1tDQtwoLp0NgxB5e7fh9VZ4/9sJ7DOflMumUQLRsFV3p/sTGRPP9bPHsOZdOkfsUTPZHinpkaR5C/b5lL55fGUcU1gskrdpGTX0CgX/nGrYn3UXImVSIuOZ3QIL8yPxn2NtHhdenavB4/rXFPcpZ86AibUzIZ3zeqzO9p2SiYi/tE8eWSndwyoi1N63vu3M6KT6HQwuhOkccsv7x/S+76ahULt+4rtQJlZS3Ztp91u9J55oJupSaAkfWCuG5Ia64b0pqd+7P4cfVuflq9m8d/XM+TP61ncNtwzu3RlAt6RZWrYEBVScvMYeLi7Yzr2eykN5sRoYGM7daUb5cn8c8zOxIS6D2/4g8dyWPhln3M2+yYmmL7/izKMmTKGAgJ8CMkyI+6gY6vETGR3DmyHe0bV/xhT59WDWkbUZevl+70WHK2cMs+Zm1M5cGzYmgQXHoRoJLExkTy0dxtZGTnEVpNqt9WhZU7DjAzPoX7xnR0WU+NUZ0cydnM+BT+NqClS/YptdvchFSmx6Vw/5gYlzwcjO0YyReLdrB02wGGlGFohHg37/nLLTVa/J4MOjWp5/Vzm53MOd2b8dyv8ezcn0WLsMo/jS2uaB6dUxUDOd7tse34bkUSb83azH/O7+bSmMpjetxeGtcLpGuzY7tmnNmlCQ2C/flyyQ63JWcfzttGw2B/LuzdvEzbtwgL5vbYdtwe245NezP4afVufly9m/u/W8uqnYd49kLPncfSfDh3Gzn5hdweW3qrWZGrBkfz/ardTFmRxJWDot0fXCnyCgpZvfMgcxLSmJeQyqqdBym0UDfAl4FtGnFuj2aEOJOt0CA/6gY4XjuW+RIS5Hhdx9/XLb83jDFc1q8lT0+NI2FvRqUSvYqw1vLcr3E0rR/E1YOjy/3+kR0jee/PrcxLSOOsEiasrq1emZ5AWN0Arnbhtd8+MoSohnWUnIlL5BcU8tTPG2gZFsx1Q6Jdss9BbRsR4OfDrI0pSs5qACVn4naFhZb45HQu7lP2ViFvNLZbU577NZ6f1yRzazm6IJXFvM1phIcEEtOkfDeILcKCuaRvC0fXwRHtPNIymZNfwJxNqYzr1fyElqsgf18u6NWciYt2sP9w7kmnCKiIxLTDTI/byx2x7cpdghigQ+NQ/nFGR+49vQP/+SWOj+Zt48LezekXHebSOCvjwOFcPl+YyDndm9G2lOqDxfVq0YDuUfX5dOF2rhjYqsoeiFhrSdyXxdyEVOYmpLFwyz4yc/LxMdAtqgG3x7ZjSLtwerVs6DWtkxf0bs4Lv8fz1dKdPHpO5yo99tS1e1iddIgXL+5eoWu3+BxcSs4clm/fz5xNjpbIui5sNTbGMComkknLksjOK6jQz0ukyJdLd7JpbybvXtHbZV0QgwP8GNimEbM2plT57zJxPe/4Cyk12s4DWRzOLai2xUCKtAgLpkeLBvyydrdL91tYaJm/OY0h7RpVaFxWUWvKmzM3uzSuslq0dT+Hcws4vVPjEtdf1q8luQWFTF7h+sIgH8/fhr+PD1cOalWp/Rhj+McZHWjeoA4PTV5Lbn6hiyKsvI/nb+NwbgF3lKHVDByf5apB0WxOyWThln1uje1gVi6/rEnmge/WMOT5WcS+NJvHflhPXHI65/ZoxtsTerPi0dP54fbT+McZHRnQppHXJGYA4SGBnN65MZNXJJGTX1Blx80rKOTF3+Pp2DiUC3tX7KGVn68PwzpEMGtjqubgcnplWgLhIQGV/n1QkpGdGnMkr4CFW937f0pqtl0Hj/DyHxsZ2CaMM7tUrHR+aWI7RrA19TDb96mKa3XnPX8lpcb6qxhI9U7OAM7t3pR1u9JJdGEJ6/g9GaRl5jKkffm6NBZp3qAOl/VryTfLdrJzf9VXIZy+YS91/B1zL5WkY5NQerVs4PJJfw9l5TFpWRLn9mhGZGjlB+kHB/jx1PldSEjJ5P053jFFQXp2Hh8vSGRMlyZ0LEer6jndm9Iw2N9tZfWz8wq47pOl9HpqGrf/bwW/rEmmS7N6PHV+V2b/cwRz74vl2Qu7cXa3puUeS1XVLuvXkgNZeUzbUHWl0r9csoPEfVncf1ZHfCtRKGdkTCRpmTms2605uBZv3ce8zWncMrxtheYzO5UBrcMIDvBlZpwq4knFbEnN5JJ3FpBfaHnyvK4u79VQVMVVJfWrPyVn4nYbkjPwMZTr5tJbne3sPvTzGte1ns3b7PhFOqQSY7Jui22LjzFV3npmrWV63F6Gtg8/aVefy/u1ZHNKJsu3H3DZsb9cuoMjeQVcP6S1y/Y5MqYxY7s15fWZm12agFfUp/MTycjO546RZWs1KxLk78tl/VsybcNedrlh+oenft7AzPgUbhnelu9uHcTKx07n/av6cuXAVkSH161WY0uHtAuneYM6fF1Fc55l5uTz+owEBrQOO3ozVVHDO0RgDMxUmXdemb6JiNBArhjo+lYzcPyfGtIuXJN/S4Ws332I8e8uJCe/kK9uGuiW+6Ho8Lq0Dq+rkvo1gJIzcbu45HRah9etEf30mzWoQ99WDfnZhRNSz01Io31kSKVKNDetX4e/DWjJtyuSqrRLw/rd6SQfymZ055K7NBY5p0dTQgL9+HKJa26A8woK+WR+Iqe1a0TnZq5tkX3s3M4E+vrwyPfrPHoTlpmTz0fztzEyJrJCc+BMcBYu+GLRdpfG9cOqXUxcvIObh7Xh/jEx9GkVhp9v9f1T4uNjGN+3BXMT0qqk5fmDOVtJy8zlwbM7VTqJbRQSSM8WDWr9fGcLtqSxaOt+bhvR1q1/Z0bGRLLr4BE27s1w+b6ttTw7NY53Zm8hr8B7ulVL5S1L3M9l7y8i0M+HSbcMokuzis9pdiojOkawcMs+juRWXTdtcb3q+xdVqo245PQa0aWxyDndmxK/J4PNKZX/A52dV8CSbftdUl3p1hFt8fMxvFGFrWcz4lIwxnHTcjLBAX6c17MZv6zdzaEjeZU+7tS1yexJz3Zpq1mRxvWCuO+sGOZtTuP7Vbtcvv+ymrhoOwez8vh7OVvNikQ1DGZ0p8Z8tWQH2Xmu+UO9JTWThyavpU+rhpWem8ebXNI3CmPgm2XubT1Lycjmg7lbObtbE3q2aOCSfY7sGMnqpEOkZHjHZPRVzVrLq9MSaFwvkMv7u7eSYqzz95w7Wipnxqfw3pytPP9bPOPenM96dVWtEeZsSuXKj5YQHhLIN7cOLlNRp8qI7RhJTn4hizQ2slpTciZulZ6dR9KBIzUqOTurW1OMwSWtZ8sSD5CTX8hQFyRnjesFMWFAK6as3FVlXfKmx+2ld8uGhIecep6Wy/u1JDuvkB8rmfBYa/lo3jbaRNRlRIfKdQsrzYT+LenVsgFP/RzHgcO5bjnGyRzJLeCDuVsZ2t5R3bCirhkczYGsPJdcq9l5Bdw+cQUBfj68+bde+Ffj1rLjNWtQh+EdIpi0LIkCNxbXeGPGZnLzC/nXmTEu22dRwlBbx5nM37yPJYn7ub2CFVvLo3G9ILo1r+/ycWf5BYU8MzWONuF1eXtCb1Iychj35nxe/mNjlRaqEdf6dW0y13+6lOjwuky6eVCVVFPu3zqMOv6+zFbXxmqt5vx1Fa8Un+xoXepcg5KzxvWC6B8dxs9rkivd7W3u5lT8fQ0DWpdcTKO8bhnRBn9fw+szE1yyv5NJPnSEtbsOMapT2RKkrs3r0blpPb5cUrnCIEsTD7Am6RDXD2ldoeqWZeHjY3j2wm6kH8nj2V/j3HKMk/lyyQ7SMnP5+8j2ldrPoLaNaBcZwqcLEit9rT7x43ri92Tw8qU9PTrhubtc1q8Fe9KzmbPJPUnOtrTDfLlkB5f3b0nr8Lou22+XZvVoXC/QLV0brbXMS0jjYFbVP6AoC2str0zfRNP6QVzar2omEh8ZE8mKHQfY78KHNl8u3cmW1MM8cFYMZ3dryvR7hzGuZ3Nen7mZc9+Yx6qdB112LKkak5bt5Pb/raBb8/p8deNAl0w0XRZB/r6c1q4RszamamxkNabkTNyqJlVqLO6cHs3YnJJZ6bEH8xLS6N2yocvm5IkMDeLKga34fuUutqRmumSfpZnhfHpcWgn94xljuLx/CzYkp7NuV3qFj/vh3K00CPbnwl7unTcvpkk9bhjahknLkqq0i0h2XgHvzdnCgNZh9G9dufnWjDFcPagVa3cdqtQN3pSVSXy1dCe3jWhb6SIW3mpkTGPCQwL4cskOl++7aDxRgJ8Pd46qXMJ9PGMMI2MimZuQ5vIpIL5YvIMrPlpM/2dmcPdXK1m4ZZ9X3fDNSUhj+fYD3DGyncvmizqVUZ0iKbTw5ybXJMMZ2Xm8Om0T/VuHcbpz7G6D4AD+O74HH1/Tj4zsfC58ez7PTo1zWfdkca//m7eN+75dw2ntwvnihgHUD/av0uOP6BjJjv1ZbPWColZSMUrOxK3iktNpGOxP43pV89SoqpzVtQk+Bn5eXfHuYvsyc1i/O90lXRqLu3l4WwL9fHljhntbz6bH7aVVo2DaRZa9D/24Xs0J8vfhy6UVuwHevu8w0+L2csWAVtQJcP/N2F2j2tMirA4PTVlbZd2LvlmexN70HJfdxF/QO4qQQD8+W1ixwiCbUzJ4aPI6+keHce/pHVwSkzcK8PPhot5RzIhPcfn4rc8XbeePDXu5Y2Q7tzxBj+0YSWZOPssS97tsnynp2bzwWzz9ohtyWb8WzIhP4fIPFhH70mzemb2F1Iwclx2rIqy1vDxtE80b1OGSPlXTagbQtVl9IkIDjz6cqqx3Zm9h3+FcHhl7YoGY2JhIfr9nGJf2a8l7c7Zy1mtzWerCn3Ft9sWi7dz55UrmJaS5bJ5Aay2vTU/g3z9vYEyXJnx4dV+3TOtwKiM6Oqblqe2FgqozJWfiVnHJ6cQ0qVetSmuXRXhIIIPbhvPzmt0VfpI83zlBcEXnNytNeEggVw1uxQ+rd7ukaElJDufks2DLPkZ3alyun229IH/GdmvGj6t2czgnv9zH/Xh+In4+hqvcMMlsSeoE+PLUuK5sTT3Mu7O3uv14ufmFvDt7C71aNmBwKfPGlVdIoB8X94ni5zW7y31DfSS3gNsnriQ4wJfXL+9VrasylsX4fi0oKLR8t9x1hWCWb9/Pv3/awKiYSG4Z1tZl+y3utHbhBPj6uLRQxb9/3kBOfiHPX9Sdf4/rypKHRvPy+B5Ehgbx/G/xDHp2Bjd/voxZG1PcOk6vNLM3prJ650H+PrJdlU5s7uNjGNkxkj83pVa6quKug0f4aN42LujVnO5RDUrcpl6QP89e2I2JNwwgr6CQ8e8t5Ikf11fo96dAYaHl6V828Mj36/ht/R6u+Ggxo1/+kw/nbuVQVsWLVVlr+c8vcbwyfRMX94nizb/1qrLW3ONFNQymQ+OQWjsOtSao2X9pxaMKCi0b92bUuC6NRcZ2b0rivizW765YF715CanUr+NPtwqUST+Vm4e1Jdjfl//+scnl+waOdqEaXcYujcVd3r8FmTn5/FLOIhWHjuQxadlOx6TT9So/6XRZjegYybk9mvHWrM1u7yo6ZWUSuw4e4c6R7V36QOPKQa3IK7B8Vc4ue4/9sI5NKRm8cmnPSk31UF20jQihf3QYXy/d4ZLueykZ2dz6xQqaN6zDy5f2dNsYybqBfgxoE8ZMFxUBmL0xhZ/XJHP7iHa0cVaXqxPgy4W9o5h0yyBm/GM41w9pzbLEA1z78VKGPj+TV6ZtIumA+6cigL9azVqE1eGiPu7t3lyS2JhIMrLzKz1v40u/bwQoU+XT09qF8/vdw7h6UDSfLEjkzFfnMH9zWqWOX9tk5xXw969W8sHcbVw9qBWrHzuDVy/tScO6AfznlzgGPDud+75dzdqk8lXKLCi03P/dGj6at41rBkfzwkXdPf4gK7ZjJIu37VMSX02d8uoxxrQwxswyxsQZY9YbY+46bv0/jTHWGOPavllS7SXuO0x2XiGdmlb/yadLMqZLE/x8TIUq4RUNtB/cthG+brhhC6sbwA1D2/Druj2sSTro8v1Pj9tLvSA/+kaXv5Jgn1YNaRcZUu6ujV8t2UFWrmsnnS6rR8/pRJC/Dw9PWeu2MTf5BYW8NWsL3ZrXP9otxVXaRoQwtH04ExfvKPPT/m+XJ/HN8iTuiG3HsA6ujcebXda/BYn7sli8rXLdx/IKCrlj4krSs/N494o+1K/j3nEnI2Mi2Zp6uNLzHB7JLeDRH9bRJqIut4xoU+I2bSNCePDsTix8cBTvTOhNu8ahvD4zgaEvzOLq/1vCr2uTXT7+rbjpcSms3XWIv49s75GqoUPaV76lck3SQaas3MX1Q1qXuYpf3UA/njivC5NuHoS/rw8TPlzMg5PXkp5d+elJarpDWXlc9X9L+GVNMg+dHcMT53WhToAv5/dqzne3DuaXO4dwQa8ofl6TzLlvzmPcm/P4ZtnOU47zy8kv4O9frmDSsiTuGtWex8/t7LaHMOUxomMkeQVWCXw1VZbfavnAP6y1nYCBwO3GmM7gSNyA0wHXj6CWaq+mFgMp0rBuAKe1q1jXxi2ph9l9KNsl85uV5oahrWkY7M+LzqezrlJQaJkZn0JsTGSFboyMMVzWrwUrdxxk456ydbvMKyjkkwWJDG7byK0TeJYmMjSIB87qxKKt+/l2eZJbjvHTmt3s2J/FHSPbuaUb8NWDotmTns20DXtPue2mvRk88v1aBrYJ4+7RNXecWUnO6tqU0CA/vl5auTnPnpkax5LE/Tx/Ufcq+R040kVzcL0xM4Gd+4/w9PndTtktK8DPh7O6NeWz6/oz975Y/j6yPZv2ZnDrxBUMfm4Gz06Nc/n4PWstr0zbRKtGwVzYq7lL911WIc6Wyhlxp/6/VJKiLnCN6gZw64jyd3Xt3zqMX+8ays3D2vD10h2c+cocZlWj0ukFhZZ1uw7x/pwt3DZxOV8u2eGycV8lSTqQxUXvLmDVjoO8fnkvbhrW9oTfsV2a1efZC7ux6KFRPHleFw7nFvCvb9cw4JkZPP3LhhKnp8nKzefGz5Yzde0eHhnbiXtO7+A1Qzj6RjckJNCPWeraWC2d8s7KWptsrV3hfJ0BxAFFvxFfAe4DvKd8k3iNuOR0/HwM7Ru7d9JFTzqne1OSDhxhdTm7QcxLcPzCHNrOfS0SoUH+3B7bjrkJaSxw4dOzlc4y0hXp0ljkwt5RBPj68FUZW8+mrk0m+ZB7Jp0uq8v6taBvq4Y8MzXOpWW0wXGz8ubMzcQ0CS1z9cvyio2JJKphHT5dkHjS7Q7n5HPbxBWEBPrz+mW93NKy683qBPhyfs/mTF2bXOExKD+s2sXH8xO59rRoxvWsmgSiVaO6tImoW6nkbNPeDN6fs5WLekcxqJxjHqMaBnPv6R2Yd/9IPr62H31aNeSjeds4/835Rx/UucLv6/eyITmdu0a192jXsVExkWxJPVyhOSWnbdjLkm37ufv0DoQGVaxFNcjflwfP7sTk204jJNCPaz9eyn9+3lChfbmbtZaEvRl8uiCRmz9fRu+npnHOG/N4Zmo8S7Yd4MHJa7n43QUuvU6KrNt1iAveXkBKejafXd+f83o0O+n29YL8uXpwNNPuGcaXNw5kSLtwPp6fyIiXZnPlR4v5Y/0e8gsKOXQkj6s+WsK8hFReuKg7NwwtuZXZU/x9fRjaPpzZG1O8qsKqlE25frMZY6KBXsBiY8x5wC5r7Wp3BCbVX1xyBm0jQjw2KLYqnNGlCQG+Pvy8ene53jdvcxotw4Jp2SjYTZE5XDGwFU3rB/H87xtd9gt6elwKfj6G4ZXoehdWN4AzujRmyspdp+w2cnTS6fC6Hi3j7uNjeObCbmTm5PP0L66d++zXdclsST3MHSPbua1LjK+P4cqBrVi8bT/xe0q+CbLW8uj369iSmslrl/Ws0rF93uTSfi3IyS/k+wpMmB6/J50HvltL/+gwHjq7kxuiK93IjpEs3rq/QuNMCgstD01eS2iQHw+PrXjcvj6G2I6RvHdlX3644zQKLVzy7kKXTIpbWGh5dfom2oTXPeVNtruNjHE8RClvMpxXUMhzv8bTLjKEy10wN1vPFg34+c4hXNq3BR/O28bKHZUbB+cK1lp27MviqyU7uPPLlfR7eganvzKHx39cz4bkdMZ0acJrl/VkyUOjWPrwKP57SQ8S92U5E7Y4snJdM05qzqZULn1vIf4+hm9vHczANmV/4GCMYVDbRrw1oTcLHhjJvad3IGFvJjd9vpyhL8ziwrfnszrpIG9c3pvxVTTHXnnFdowk+VB2paf8kapX5uTMGBMCfAfcjaOr48PAY2V4303GmGXGmGWpqWperU3iktNr7HizIvXr+DOsQzi/rE0uc7eMvIJCFm3d79YujUWC/H25a1R7Vu88yB9l6M5WFtPj9jKwTSPqVfCJb5HL+7fkYFYev6/fc9Ltlm13TDp9nRsnnS6rDo1DuXlYW75bkeSy1shCZ6tZ24i6nNW1qUv2WZrxfVsQ6OfDpwtKLqv/zbIkJq/cxZ0j23Nau9o7jLhr8/p0bV6PL5eUrzDIoSN53Pz5ckKD/HhzQq8qHw81MiaS3IJC5lXg2py0bCfLth/gwbM7EVY3wCXxdGlWn+9vP42WYcFc/+kyPl9Usekcivy6bg/xezK4a7RnW80AWjYKpn1kSLmTs4mLtrM17TAPnR3jss8Q6OfLo+d2JjwkgGemxnmkpWTPoWymrEziX9+sZsjzsxj24iwemLyWRVv3MaRdI164qDtz74tl7n0jef7i7ozr2ZzIekEYY7ioTxQz7h3OJX2ieH/OVk5/eU6Zul+fzDfLdnLdJ0tp2aguU24/jQ6NK34vElkviDtHtWfe/bG8e0Uf2kWGkJKewwdX9WVsd/f+zq6M4UdL6uveu7op028GY4w/jsRsorV2MtAWaA2sNsYkAlHACmNMk+Pfa61931rb11rbNyKi9gwqr+0OZuWSfCi7xo43K25s96YkH8pm5c6yPbFctfMgmTn5DKuC5Azg4j5RtAmvy0u/b6x0yettaYfZnJLJqE6Vb8Ea1KYRLcOCTznpb9Gk0xf1rvqqbCW5Y2Q7ohsF8/D36yo9KWx+QSETF28nfk8Gd4xs5/YuhA3rBnB+z+Z8v3LXCV324vek8+gP6zitXSOXT5RcHV3aryXxezJYu6tsXZYLCy33fr2KXQeO8M4VvYkMrfpWx77RYY5xJuVMGNIyc3j213j6tw7jEhdXP2xSP4hvbhnE8A4RPPr9Ov7z84YK/R4qcLaatYsM4Zzunm01KzIyxlERL7OMLZWHjuTx2owEBrdt5PJeACGBftw9ugNLEw+47EFcWWzfd5gxr85h4LMzuOfr1UyL20v3qPo8Na4L0+8dzuKHRvHqZb0Y368FLcJK7ynSsG4Az13UnW9vGURIoB83fraMGz9bxq6DR8oVj7WW12ck8K9v1zCwTSMm3TyQxi7qAeDn68OYrk34/PoBrHniDEZ4sCdHWTSuF0SXZvWq1XhEcShLtUYDfATEWWtfBrDWrrXWRlpro6210UAS0Ntae/JH4FJrbKjhxUCKG92pMQF+PvxUxgmp5yak4WNgUNuqSc78fH34xxkdSUjJ5PuVlZu/qWgAfGXGmxXx8TFc2q8Fi7buZ1sp4za27zvMHxv2MmFAyyqZdLosgvx9+c/53diWdpi3Z20u9/uttaxJOsiTP61n4LMzePSH9XRqWo9zq+iG88pBrTiSV8A3y/8qeJHpHGdWr44/r15a+8aZleS8Hs0I8vfhqzIWBnlj5mZmxKfw2Lmd6dMqzM3RlSzAzzHOZFY5x5k8/YujK9kzF3R1S0GDuoF+fHBVX64ZHM2H87Zx6xfLy9117Ze1ySSkZHLXqPZec32OjHFUxCsaQ3wqb8/azMEjeTxcwoTTrnBZvxa0jajLc7/GV3oOtrKw1vLwlHXsOnCER8Z24pc7h7DikdN554o+XDkomnaRIeX+nH2jw/j5ziE8cFYMcxNSOf3lP/lgztYyfZ78gkIenLyWl6dt4sLezfm/a/pVeEzfqXhL4Y9Tie0YyfLtBzh0RBU9q5OytJydBlwJjDTGrHJ+ne3muKSai0t29HGuDclZaJA/sR0jmLo2uUxPhOclpNI9qoHbS2sXd1bXJnRtXo9Xpm8iJ7/irT3TNuwlpknoSZ+AlsclfaLw9TGlFgb5a9LpaJccz1WGtA/ngl7NeefPLWWe6Hvn/izenJnA6Jf/5Lw35zNx0Q76RYfx3pV9+P72wVXWTatr8/r0bdWQzxdtp7DQOm+w1pKYdpjXL+tFRGhglcTh7erX8efsbk35cdXuUyYSszam8OqMTVzYqzlXDqyaCdJLMzImkr3pOWWef3H+5jSmrNzFLcPb0i7Sfd3QfX0MT5zXhcfP7cz0uL1c9v4iUtLLVsmxoNDy2vRNdGgcwthu3tONrE+rhtQL8mNG3KlbJnbuz+Lj+Ylc1DvKbRVn/Xx9ePCsTmxLO3zKHgmu8OPq3czbnMZ9Yzpyw9A2dGlW3yVdz/19fbhleFum3TOcgW0a8fTUOM59Yx4rTjKe7nBOPjd8toyvlu7k7yPb8d9LelTp5OTeKjYmgoJCx9Q9Un2UpVrjPGutsdZ2t9b2dH5NPW6baGutfvJyVFxyOuEhgbXmRu+c7s1IychhaeLJ50ZKz85jddIhhlZRl8YiPj6Gf50ZQ9KBI3y5uGJ/tA9m5bJs+wGXtJoViawXxMiYSL5bnnTCvEhHJ53u3sxl3VJc6eGxnagb6MdDk9eVOt7wYFYuExdv55J3FzD0hVm89McmGoUE8tyF3Vj68GjeuaIPZ3ZpUuVFc64aHM32fVn8mZDKl0t28sOq3dwzukO5K/TVdJf1a3nKCdN37Mviri9XEtOkHk9f0M3jT9SLulqVpWtjdl4Bj3y/jlaNgrk9tp27QwPg2tNa88FVfdmcksn5b80vtThNcT+t3s2W1MPcM7qDx8edFufn68OIjpHM2phyyjHHL/y+ER8f+OcZp55wujJGdYpkYJswXp2e4Nb5zw4dyeOpn+PoEVWfvw1wzwOJFmHBfHR1X969og8Hs/K46J0FPDRl7QldslMysrn0/YXMTUjj2Qu78Y8zOnr8/6G36NmiIQ2C/dW1sZrRYwVxi9pQDKS4UZ0iCfL34ec1J6/auHDLPgoKLUM8UGxhWPtwBrQO481ZmytUzW32xlQKCi2jO7u21Pvl/VuQlpnLzPhjx0l8vdQx6fR1HiyffzLhIYE8dFYnliTuP6aLYE5+Ab+tS+bmz5fR/+kZPDxlHQey8vjXmR2Zd38sk24exGX9W1I/uOpaTo83pksTIkIDefG3jTzx03qGtg+vspvz6qRfdEPaRNQtdc6zI7kF3PzFcowxvHdFH6/oehsRGkiPqPrMLMPN2Nuzt7At7TD/Ob8rQf5VF/uoTo2ZdPMgCqzl4ncW8uem0rsF5hcU8tqMBGKahHJmlxOGtXvcqE6RpGXmsuYkYxNX7jjAT6t3c9PQNjSp794HTcYYHj67M/sP5/Lu7C1uO86Lv8ez/3AOT1/Qza3dTI0xjOnahOn/GM51p7XmqyU7GPXybL5fuQtrLVtSM7nw7QVsSTnMB1f14fL+Ld0WS3Xk62MY1j6C2RtT3TqXnLiWkjNxubyCQhL2ZtaKLo1FggP8GBXTmF/XOuZAKc3chFSCA3zp1bJhFUbnYIzhvjExpGXm8vH8beV+/7S4vUSEBtK9uWu75AzvEEnT+kF8ueSvG+C8gkI+mZ/IoDaN6Ori47nSJX2j6N86jGemxjMjbi8PTl5Dv/9M55YvVrBix0GuGtSKn/8+hGn3DOP22HZENXTv1AllFeDnw9/6t2RDcjoNg/155dKeXtUi4S2KJkxftv3ACd1Xi7qDxu9J59XLerp9WozyiI2JZNXOg+zLzCl1m80pmbwzezPjejZjaPuqL9bVtbmjkmOLsGCu+2QpExeXXMnx+1W72ZZ2mHtO965WsyLDO0TgY2BmKRNSW2t5+pc4wkMCuXl4+SecrohuUfUZ17MZH83bxu5yFtQoi5U7DjBx8Q6uGdy6yn4/hwT68eg5nfnxjiE0bxjM3V+v4rL3F3HROwvIzivg65sHHp3eQI4VGxNBWmbZuzqL5yk5E5fbmnqY3ILCWtVyBo4JqfcdzmXxttK7Ns5LSGNgm0Ye6wvfp1VDRndqzHtztnIwq+wTKefmF/LnxlRGxUS6/AbJ18dwSd8WzElIJelAFuAomb3bw5NOl4Uxhmcu6EZWbj7Xf7qMH1btZnSnxnx2XX8WPjCSR87pTNfm9b2yi82Vg1oxvEMEb/2tN+EhtaP7cUVc2DsKPx/DV0uObT37bOF2Jq/cxT2jO3h0/r2SjIyJxFpKbZEqSizr+PvyyNjOVRzdX5rWr8M3twxiWPtwHp6yjmemxh3zdD+voJDXZyTQpVk9znBxi72rNAgOoG+rMGaU0o30t3V7WLb9AP84owN1A/2qLK5/ntERC7z0x0aX7je/oJCHp6yjcWgQ957RwaX7Louuzesz+dbBPHV+V+fDpQAm33oa3aMaVHks1cWw9hEYg7o2ViNKzsTl4mpRpcbiYmMiqRvgW2rXxp37s0jcl+WRLo3F/evMjmTm5PPOn2Xv8lJULtqV482KG9/XUb570rIkx6TTc7fSOrwuI2O866a3JO0iQ3j/yr68dllPlj0ympcv7cmwDhEen4fpVMJDAvn0uv70jfZMZcHqIjwkkNM7N2byyl1Hi+ksS9zPUz9vYHSnSO7wwu6gXZvVJzwksNQ5uL5bsYvF2/bzwFmdPD4uOMRZyfGqQa14f85Wbpu4giO5jvM8ZcUuduzP4p7RHbzyAUeR2JhI1u9OZ8+hYwuc5OYX8txv8XRsHMr4vlU7UXGLsGCuHRzNlJW7WFfG6SDK4pMFiWxITufxczsTUoXJZnG+PoYrB7ZiwQMj+fWuoV7Vau2NGoUE0iOqgZKzasS77x6kWorbk06Arw9tI0I8HUqVCvL3ZXTnxvy6bk+JZX+LJoYd1sGzyVnHJqGc37M5n8xPPOFmojQz4lII8vdx28TEUQ2DGdY+gm+W7WTJtv2sTjrEdadFe2U3ppLExkQyrmdzggM8c7Mi7nVpvxbsP5zL9A0ppGRkc9vEFUQ1rMN/x3tnd1AfH0NsxwjmbEo94XfR/sO5PP3LBvq0ashl/ao2YSiNn68PT57XhcfO6czvG/Zw2fsL2X3wCK/PTKB7VH2XzKvoTkXxHX/z+/mi7Wzfl8VDYzt5pPz/bbHtqF/Hn2d/dc3E1LsPHuHlaZsYGRPJmK6eH/8XGuRfpWMlq7MRHSNYtfMg+w+XvceMeI6SM3G5uOQM2kWG4O/lLQfucE73ZhzMymP+5hOLl85LSKNJvSCvSFrvGd2BgkLL6zMTTrmttZZpG/YypF2EWwseXNavBcmHsrl30mrq1/HnIhdPhitSUUPbR9CsfhATF2/njokrycjO590r+1TpdBjlNTImkvTsfJZvP7b8+LNT48jIzufpC7p6VWJpjOG6Ia1574o+bNqbyeiX/yTpwBHuOd27W80A2keGENWwzjEl9Q9m5fL6jASGtg9neIeqH9MHjukg7hzZnvmb9zH7JEVXyurJn9ZTaC1PntfF638mcqzYjo6uznNccB2I+9W+u2dxO0elxtrVpbHIsA7hhAb68fNxpbcLCi3zt6QxpH24V/xRa9komL8NaMmkpTtJLGUC6CLxezLYdfAIo9389HpUp8aEhwSw6+ARJgxoqVYo8RpF4yIXbNnHksT9PH9xd2KaePfvuCHtw/H3NceU1F+0dR/fLE/ihqFtvDb+M7o0YdLNgwgJ9KN/dBgjPJTYlIcxhlExkczfnEZ2nqNL5hszN5OR7Zhw2pOuGNiKVo2CeXZq3EmLVZ3K9A17+X39Xu4c1d5l81xK1enWvD6N6gYwvZTCNeJdlJyJS6Vl5pCakVPrioEUCfTz5fQujfl9/Z5jJntev/sQB7Pyqnx+s5O5Y2Q7/H19eHnappNuN32D45f5SDcnZwF+PlzWryWBfj5eN+m0yPh+Lagb4MuNQ1tzXo9mng7nlEKD/OkXHXZ03FlOfgEPT1lLVMM63DWqvYejO7luUfWZc18sn17X3yseZpXFyE6NOZJXwMKt+9i+7zCfLUxkfN8WHk+CA/x8uH9MDJv2ZvLt8qQK7SMrN5/Hf1xPh8Yh3Di0jYsjlKrg42M4r2czpq5NZm2S68YginsoOROXKioG0rmWtpwBnNu9GRnZ+cxL+Ktr41zna3eN2aqIyNAgrj0tmh9X72b97tJ/WU+P20vPFg2IDHX/RNB3jW7PrH+OcPtcQCLl1bxBHRY/PJqHPVjdsLxGxkSSkJLJzv1ZvPfnVrakHuap87t6xXxspxLk71st4iwyoHUYwQG+zIxL4fnf4vH39eHe06u+mmFJzurahN4tG/DytE0VmuPytRkJ7Dp4hP+c361WDleoKe4e3YFGIYE8OGVNpVpRxf30v0xcqrZWaizutHbh1K/jf0zXxnkJaXRqWs/rSpbfPKwt9YL8eOn3ksstp6RnszrpEKdXURlrf18fmjWoUyXHEikvT1Wnq6iiaqcfz0/kzVmbGdutqdeV/a8pgvx9GdIunO9X7mLq2j3cPKwtkfW84yGTMYaHx3YiJSOHD+ZuLdd74/ek89HcbYx3zuko1Vf9Ov48cW4X1u1K55MFiZ4OR05CyZm4VFxyBk3qBdGwboCnQ/GYAD8fxnRpwrQNe8nOKyArN59l2/d7VZfGIvWD/bllRFtmbUxlaeKJ87MVzd3jrhL6IuI+bSJCiG4UzP/N30agrw+PnVt9Wv2qo5ExkWTk5NO4XiA3DvOuORr7tArjrK5NeH/OVlLSy1alt7DQ8siUdYQG+fHgWZ4dOyeucXa3JoyKieS/f2xi5/4sT4cjpVByJi7lKAZSO8ebFXdOj6Zk5uQze2Mqi7ftJ6/Aenx+s9JcO7g1kaGBvPBb/Anllqdv2EtUwzp0aOz5CpMiUn6xztazf43pSGMvacmpqUZ1akz9Ov48dHYnryxodP+YGHLzC3ll+snHGReZtGwny7Yf4KGzO9XqB641iTGGf5/fFWPgsR/WuWSKBXE9JWfiMjn5BWxOySSmFndpLDKoTSPC6gbw85rdzEtII8DPx2u7hNQJ8OXvo9qzNPEAszf+VWY3KzefeZvTGN2pcbUZlC8ix7p+SGseOCuGCQNaeTqUGi8iNJBVj53OuJ7NPR1KiaLD63LFwFZ8vXQnm/ZmnHTbfZk5PPtrPP1bh3GxpjWpUZo3qMM/zujIrI2p/LI2+dRvkCqn5ExcZnNKJvmFtlaPNyvi5+vDmK5NmBGXwsz4FPpHh3n1ZJmX9m1By7BgXvh9I4WFjidp8xLSyMkvrLLxZiLielENg7lleFuPTIJcG3n7g6w7R7WnbqAfz/0af9LtnpkaT1ZuPs9c0NXrP5OU3zWDo+nWvD5P/LiBQ1l5ng5HjqPkTFwmLtnxJK6zujUCcE73phzJK2Bb2mGGeOF4s+IC/ByVxeKS0/lpzW4AZsSlEBrk57UtfiIiUj5hdQO4PbYdM+NTWLA5rcRtFm7Zx3crkrhpWBvaRerveU3k62N49sJuHMjK5bnfTp6oS9VTciYuE5ecTqCfD9GN6no6FK8woHUjIkId1Rm9dbxZcef1aEZMk1BenraJnPwCZsTvZXiHCJVOFhGpQa4ZHE3zBnV4emrc0Z4SRXLyC3j4+7W0CKvDHbHePR+eVE7X5vW57rRovlyygyXbTiwIJp6juy5xmbjkdDo2CcVPN/OA48nURb2jaBFWp1rM++bjY/jXmR3Zvi+Lh6esIy0zV10aRURqmCB/X/51ZkfW707n+1W7jln3wZytbE09zFPjqsd8eFI595zegeYN6vDQlLXk5Bd4Ohxx0l20uIS11lGpsYn3JyFV6V9ndmTaPcPxqSbjPUbGRNKnVUO+XZ6Er49hRAfNiSQiUtOc16MZXZvX46XfN5Kd57gp377vMG/MdMyHN0Lz4dUKwQF+/OeCrmxOyeTd2eWbA0/cR8mZuERKRg4HsvJURv84vj7GqwuBHM8Yw31ndgSgf3QY9YP9PRyRiIi4mo+P4aGzO7H7UDYfz0/EWssj36/DX/Ph1TqxHSM5p3tT3pq1mS2pmZ4OR1ByJi6yITkdQJUaa4ABbRrxwFkx3DVa4w1ERGqqwW3DGRUTyduzNvP5ou3MTUjjn2d00Hx4tdBj53YmyN+Hhyav1dxnXkDJmbhEnDM50xxnNcMtw9sysE0jT4chIiJu9MBZMRzOzeexH9bTrXl9rhwU7emQxAMiQ4N48OxOLN62n2+WJXk6nFpPyZm4RFxyBs0b1KF+HXWDExERqQ7aNw7l8v4t8THw9AVdNR9eLXZp3xb0jw7j6alxpGXmeDqcWk3JmbhEXHK6ujSKiIhUM0+e14XZ/4yle1QDT4ciHuTjY3jmwq5k5ebz1M8bPB1OrabkTCotO6+AramZKgYiIiJSzfj5+tCyUbCnwxAv0C4ylNtGtOOHVbv5c1Oqp8OptZScSaVt2ptBoVUxEBEREZHq7LbYtrSJqMsj36/lSK7mPvMEJWdSaXGq1CgiIiJS7QX6+fLMBd3Yuf8Ir87Y5OlwaiUlZ1JpcckZBAf40ipM3SJEREREqrOBbRpxad8WfDh3G+t3H/J0OLWOkjOptA3J6XRsEoqPqjyJiIiIVHsPnh1Dw2B/Hpq8loJCzX1WlZScSaVYa1WpUURERKQGaRAcwKPndGZ10iE+W5jo6XBqFSVnUim7Dh4hIztfyZmIiIhIDXJej2YM6xDBS79vZPfBI54Op9ZQclbL7NyfxdX/t4QP5mx1yf7ikzMA6Kwy+iIiIiI1hjGGp8/vSoG1PPbDeqxV98aqoOSsFvllTTJnvzaXPzel8txv8S4Z5FlUqbFjE7WciYiIiNQkLcKCuWd0B9bvPkRaZq6nw6kVlJzVAtl5BTw0ZS23/28FbSND+PnvQwirG8B9364hv6CwUvuO25NOq0bBhAT6uShaEREREfEW1w9pzbR7hxMRGujpUGoFJWc1XMLeDMa9OZ//Ld7BLcPb8s0tg+javD5PjevC+t3pfDB3W6X2H5ecQSe1momIiIjUSH6+PnoIX4WUnNVQ1lq+XrqDc9+cx77DOXx2XX8eOCsGf1/Hj3xM16aM6dKEV6dvYmtqZoWOkZWbT+K+wyoGIiIiIiLiAkrOaqCM7Dzu/GoV93+3lr6twph611CGdYg4Ybt/j+tCoJ8PD0xeS2EF5rCI35OBtRCjYiAiIiIiIpVW65OzLamZNWr289U7DzL29XlMXZvMv87syGfX9ScyNKjEbSPrBfHIOZ1Zsm0/Xy7dUe5jFRUD6ayWMxERERGRSqvVyVlhoeX2iSu4/pNlpKRnezqcSikstHwwZysXvbOAgkLLpJsHcntsO3x8zEnfd0mfKIa0C+fZqfEkHyrfHBZxyemEBvoR1bBOZUIXERERERFqeXLm42N4eXxPDh3J48bPl5OdV+DpkCpkX2YO13+6lKenxjGqUyS/3DmEPq3CyvReYwzPXNCNgkLLI1PWlWsOi7jkDGKahmLMyRNAERERERE5tVqdnAF0blaPVy7tyeqdB7n/uzXVboK9BVvSOOu1uczfso+nxnXh3Sv60CA4oFz7aNkomH+c0YEZ8Sn8tCa5TO8pLLTEJ6erGIiIiIiIiIucMjkzxrQwxswyxsQZY9YbY+5yLn/RGBNvjFljjJlijGng9mjdZEzXJvzrzI78sGo3b8/e4ulwyiS/oJCXp21iwoeLCQnyY8ptg7lyUHSFW7GuPa01PVo04Ikf17P/8KknGdx5IIvDuQVKzkREREREXKQsLWf5wD+stZ2AgcDtxpjOwDSgq7W2O7AJeNB9YbrfbSPaMq5nM178fSO/r9/j6XBO6sDhXP724WJen5HARb2j+OmOIXRpVr9S+/T1MbxwUXcysvN46ucNp9y+qBiIkjMREREREdc4ZXJmrU221q5wvs4A4oDm1to/rLX5zs0WAVHuC9P9jDE8f1F3erRowD1fr2LD7nRPh1SilPRsLn1/Iat2HuSVS3vw0iU9qOuiiQE7NgnlthHtmLJyF7M2ppx027jkDHwMdGysMvoiIiIiIq5QrjFnxphooBew+LhV1wG/uigmjwny9+WDK/tQL8ifGz9bRmpGjqdDOkbSgSzGv7eQpANH+OSaflzQy/X58G2xbWkfGcLDk9eSmZNf6nZxyelEh9elToCvy2MQEREREamNypycGWNCgO+Au6216cWWP4yj6+PEUt53kzFmmTFmWWpqamXjdbvIekF8cFVf9h3O4ZYvlpOT7x0VHLemZnLJuwvZfziXL24YwOB24W45TqCfL89f3J3k9Gxe+C2+1O3i9qgYiIiIiIiIK5UpOTPG+ONIzCZaaycXW341cA4wwZZS5tBa+761tq+1tm9ERIQrYna7blH1+e8lPVm+/QAPTS5feXl32LA7nfHvLSQ3v5AvbxpI75YN3Xq83i0bcu3g1ny+aDtLE/efsD4jO4+d+49o8mkRERERERcqS7VGA3wExFlrXy62fAxwP3CetTbLfSF6xtjuTbl7dHu+W5HEB3O3eiyOFTsOcNn7C/H39WHSLYMqXfijrP55ZgeaN6jD/d+tOWH+t/g9GQDENNF4MxERERERVylLy9lpwJXASGPMKufX2cCbQCgwzbnsXXcG6gl3jmzP2G5NefbXeGbE7a3y4y/YnMYVHy6mYd0AJt08iLYRIVV27OAAP569sBtbUw/zxsyEY9apUqOIiIiIiOudssyftXYeUNLkWVNdH4538fExvHRJD3bsz+LOL1cy+bbT6FhFrUUz4vZy68QVRDcK5ovrBxBZL6hKjlvc0PYRXNwnivf+3MrZ3ZoebbWLS06nfh1/mtav+phERERERGqqclVrrI3qBPjywVV9qRvoxw2fLS3TBM2V9dPq3dz8+XJimoTy9U2DPJKYFXlkbCcaBAdw/3dryC8oBGBDcgadmoZWeMJrERERERE5kZKzMmhSP4j3r+pLSrqjgmNufqHbjvXVkh3c+dVKerdsyMQbBtCwboDbjlUWDYID+Pe4Lqzblc5H87ZRUGjZqEqNIiIiIiIup+SsjHq2aMALF3dnybb9PPaDeyo4fjRvGw9MXsuw9hF8el1/QoP8XX6MijiraxPO7NKYl6dtYvbGFLLzCpWciYiIiIi4mJKzchjXszl3xLbjq6U7+Xh+osv2a63ltekJPPXzBs7q2oQPrurrVZM7G2P497iuBPj5cPfXqwBURl9ERERExMWUnJXTvad34MwujfnPLxuYvTGl0vuz1vLsr/G8Mn0TF/eJ4o3LexHg530/lsb1gnhkbCcysvPx9TG0i6y6ypEiIiIiIrWB92UBXs7Hx/Dy+J50bFKPv/9vJZtTMiu8r4JCy0NT1vH+nK1cPagVL1zUHT9f7/2RjO/bgmEdIugeVZ8gf+9p2RMRERERqQmMO8ZOlaZv37522bJlVXY8d9p18Ajj3pxHZk4+YcEB1AnwpU6AL8H+fgQF+BLs71ts2V+v6/j7EhzgS5C/L9M27OXnNcncHtuWf57RsVpUP8wrKKSg0Co5ExERERGpAGPMcmtt35LWnXKeMylZ8wZ1+OKGAXy5eAeHcws4klfAkVzH16Ejeew5dOSYZVl5BZSUB983piO3jWhX9R+ggvx9fVBeJiIiIiLiekrOKiGmST2eHNe1TNtaa8nJLzyaqB3JLSDQz4cWYcFujlJERERERKoDJWdVxBhDkL+jO2NDTwcjIiIiIiJex3urT4iIiIiIiNQiSs5ERERERES8gJIzERERERERL6DkTERERERExAsoORMREREREfECSs5ERERERES8gJIzERERERERL6DkTERERERExAsoORMREREREfECSs5ERERERES8gLHWVt3BjEkFtlfZAcsuHEjzdBC1hM511dL5rjo611VH57pq6XxXHZ3rqqNzXXV0rk/UylobUdKKKk3OvJUxZpm1tq+n46gNdK6rls531dG5rjo611VL57vq6FxXHZ3rqqNzXT7q1igiIiIiIuIFlJyJiIiIiIh4ASVnDu97OoBaROe6aul8Vx2d66qjc121dL6rjs511dG5rjo61+WgMWciIiIiIiJeQC1nIiIiIiIiXqDaJWfGmDHGmI3GmM3GmAeKLf/aGLPK+ZVojFlVwnt7GmMWGmPWG2PWGGMuLbautTFmsTEmwbmvgFKOf7VzmwRjzNXlfX914slzbYxpZYxZ7jzGemPMLeV5f3XjxnN9h3Of1hgTfpLj15rrGjx7vnVtH11e2XM90bnfdcaY/zPG+Jdy/FpzbXvyXNe26xrcer4/Msasdi7/1hgTUsrxdW1Xwbmubdf2Sc51T2PMIud5WGaM6V/K+yt1Xdam67pU1tpq8wX4AluANkAAsBroXMJ2/wUeK2F5B6C983UzIBlo4Px+EnCZ8/W7wK0lvD8M2Or8t6HzdcOyvr86fXnBuQ4AAp2vQ4BEoJnOdbnPdS8g2nn+wks5fq25rr3kfOvads25Phswzq8vS/k9UmuubS8417Xmuq6C812v2HYvAw+U8H5d21V3rmvNtX2ycw38AZzlfH02MNvV12Vtuq5P9lXdWs76A5uttVuttbnAV8C44hsYYwwwHscfkGNYazdZaxOcr3cDKUCE8z0jgW+dm34KnF/C8c8Epllr91trDwDTgDHleH914tFzba3NtdbmOL8NxNnKq3Nd9nPt/H6ltTbxFMevTdc1ePh869p22bmeap2AJUBUCcevTde2R891Lbuuwb3nO73Y++sAJRUH0LVdjDvPdS27tk92ri1Qz/m6PrC7hPdX9rqsTdd1qapbctYc2Fns+yTnsuKGAnuL/iOWxtkcG4DjCUEj4KC1Nv/4/Rpj+hpjPjzF8Ut9fzXm6XONMaaFMWaNM47nnb9Uda5P4rhzfbLtaut1DZ4/37q2j1Wpc20cXeyuBH5zfl9br21Pn+vadF2Dm8+3MeZjYA8QA7zhXKZr26Gqz3VturZPdq7vBl40xuwEXgIeLMf7dZ9dDtUtOTMlLDv+KcfllPDk5JidGNMU+By41lpbeLL9WmuXWWtvOMXxyxJXdePpc421dqe1tjvQDrjaGNO4jHFVN+4616Wqxdc1eP5869o+VmXP9dvAHGvtXKjV17anz3Vtuq7BzefbWnstji54ccClzmW6tv9Slee6Nl3bJ/tMtwL3WGtbAPcAH5Xj/brPLofqlpwlAS2KfR9FsWZVY4wfcCHwdWk7MMbUA34BHrHWLnIuTgMaON9/wn7LcPyyvr868fS5Psr5hGo9jidjOtclKOVcV/b4NfFcg+fP91G6tit3ro0xj+PonnRvOY+vc12CSp7ro2rBdQ1V8HvEWlvgfP9F5Th+TTzfnj7Xxber6df2yc711cBk5+tvcHSBLOv7dZ9dHtYLBr6V9QvwwzE4sDV/DVTsUmz9GODPk7w/AJgB3F3Cum84dqDhbSVsEwZswzFIsaHzdVhZ31+dvrzgXEcBdZyvGwKbgG461+U718W2SeTkBUFqxXXtJedb17YLzjVwA7Cg6FyW8v5ac217wbmuNde1O883jhaCdsVevwS8VML7dW1X3bmuNdf2yc41jpbFEc7Xo4Dlrr4ua9N1fdKfg6cDqMCFc7bzP8YW4OHj1n0C3HKS914B5AGrin31dK5rg2Og82bnBVBUmacv8GGxfVzn3GYzjqZxTvb+6vzlyXMNnA6scf5iWAPcpHNdoXN9J44nUfk4njIVnd9ae117+nzr2nbZuc537rNo+WO1/dr25Lmubde1u843jh5N84G1wDpgIs6Kgrq2PXOua9u1Xdq5BoYAy53nYTHQp5T3l+u6rM3XdWlfxvmBRURERERExIOq25gzERERERGRGknJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4ASVnIiIiIiIiXkDJmYiIiIiIiBdQciYiIiIiIuIFlJyJiIiIiIh4gf8Hq3S1+eoQaPQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACRHklEQVR4nOzdd3ib5fXw8e8tyXvPxCPxyI7jxJmEBEgCtGWWVUbLpowyuvt29wcdtHTT0gKl0JYWWsouu1CSsLK3s4fteCbeS7YlS7rfPyQZJfH2o2H7fK7LF7YsPbr9oNg6zzn3OUprjRBCCCGEEEKI4DIFewFCCCGEEEIIISQ4E0IIIYQQQoiQIMGZEEIIIYQQQoQACc6EEEIIIYQQIgRIcCaEEEIIIYQQIUCCMyGEEEIIIYQIARKcCSGEEEIIIUQIkOBMCCFGKaVUu8+HSynV6fP1tcFe33AopcqUUucGex39UUqtVUrd6sfjP6aUOuD5f3pTP/dbrZTSSimLz233KKW2KKVsSqm/9fKYc5RS+5VSHUqpNUqpHJ/vKaXUz5VSDZ6PXyillNE/nxBCiL5JcCaEEKOU1jrW+wGUAxf73PZ0sNd3Mt8gYjQ/RwDsBO4CtvV1B0/w3dvPWg38BPhLL49JBV4EfgAkA1uAf/vc5XbgUmAeMBe4CLhjOD+AEEKI4ZHgTAghxhillEkp9W2l1BFPBuRZpVSy53u5nmzLzUqpCqVUk1LqC0qpxUqpXUqpZqXUH3yOdZNS6iOl1ENKqRZP1uUcn+8nKKWeUErVKKWqlFI/UUqZT3rsb5VSjcB9SqkpnoxPg1KqXin1tFIq0XP/fwCTgVc92b9vKqVWKqUqT/r5erJrSqn7lFLPK6WeUkq1AjcNsKapSqn3PD9LvVLKNzjxfY5IzzEbPOdks1JqglLqfuBM4A+eNf7Bc/+ZSql3lFKNnqzXVT7H+ptS6lHP99s8z5/T2/MCaK3/qLV+F+jqY20JwL3AN3t57Ita65eBhl4eejmwR2v9nNa6C7gPmKeUmun5/o3Ar7XWlVrrKuDXwE19rVMIIYTxJDgTQoix50u4MyArgEygCfjjSfc5DZgGXA08CHwPOBcoAK5SSq046b4lQCruoOBFb7AHPAk4gKnAfOCTwK29PDYduB9QwM8865oFTMIdJKC1vp4TM4C/GOTPewnwPJAIPD3Amn4MvA0kAdnAQ30c80YgwbO+FOALQKfW+nvAB8A9njXeo5SKAd4B/un5OT8LPKyUKvA53rWe504FdnjWOVw/BR4Bjg3xcQW4s3IAaK2twBHP7ad83/O5788ghBDCzyQ4E0KIsecO4HueDIgNd/DzmZNK/n6ste7SWr8NWIF/aa1rPRmTD3AHNV61wINa626t9b+BA8CFSqkJwPnAV7TWVq11LfBb4Bqfx1ZrrR/SWju01p1a68Na63e01jatdR3wG9xB5Eis11q/rLV2AfEDrKkbyAEyPT//h30csxt3UDZVa+3UWm/VWrf2cd+LgDKt9V89P+c24AXgMz73eV1r/b7n/8f3gNOVUpOG+oMqpRYBy+k7qOxPLNBy0m0tQFwf328BYmXfmRBCBM5YqM0XQghxohzgJaWUy+c2JzDB5+vjPp939vJ1rM/XVVpr7fP1UdyZrxwgDKjxef9uAip87uv7OUqpdOD3uEsD4zz3bxrUT9U33+cYaE3fxJ3B2qSUasJdxnfK/izgH7izZs94yi6fwh3wdvdy3xzgNKVUs89tFs8xTlmj1rrdU+aZedLa+6WUMgEPA1/WWjuGETO14w5efcUDbX18Px5oP+n/vRBCCD+SzJkQQow9FcD5WutEn49IT1ZsOLJOyp5Mxt14ogKwAak+zxOvtfYthTv5jf3PPLfN1VrHA9fhLnXs6/5WINr7hWfvWNpJ9/F9TL9r0lof01rfprXOxJ1hfFgpNfXkH9iTJfyh1no2sAx3duyGPtZYAbx30vmO1Vrf6XOfniyZUioWd0OO6pOfdwDxwCLg30qpY8Bmz+2VSqkzB/H4PbibfXjXEQNM8dx+yvc9n+9BCCFEwEhwJoQQY8+jwP3ephNKqTSl1CUjOF468CWlVJhS6krce8Xe0FrX4N6/9WulVLynEcmUk/arnSwOd4amWSmVBfy/k75/HMj3+fogEKmUulApFQZ8H4jo6+ADrUkpdaVSKttz9ybcgZbz5OMopVYppQo9wWAr7jJH7/1OXuNrwHSl1PWecxTmabAyy+c+FyilzlBKhePO3G3UWveaNVNKhSulInEHrWGe5iQm3GWGmUCR5+MCz0MWAhs9j7V4HmsGzJ7HeqtkXgLmKKWu8Nzn/4BdWuv9nu//HfiaUipLKZUJfB34W68nWgghhF9IcCaEEGPP74BXgLeVUm3ABtyNOYZrI+7mIfW4m3p8Rmvt7QZ4AxAO7MUd7DwPZPRzrB8CC3AHGq/jbu3u62fA9z0dEr+htW7B3Vb+caAKdyatkv71t6bFwEalVDvuc/RlrXVpL8eY6HlcK7APeA93aSO4z+9nlLvT5e+11m24m45cgzsbdgz4OScGkf/E3UylEXcw1d8curdxl5YuAx7zfH6Wdjvm/QDqPPc/rrW2ez7/vuf+38adlez03IZnj98VuP8fNuF+TfjuD/wT8CpQDOzG/f/nT/2sUwghhMGUlJILIYToi3IPQb5Va31GsNcyWin3MOhKrfX3g70WIYQQoU0yZ0IIIYQQQggRAiQ4E0IIIYQQQogQIGWNQgghhBBCCBECJHMmhBBCCCGEECFAgjMhhBBCCCGECAGWge9inNTUVJ2bmxvIpxRCCCGEEEKIkLF169Z6rXVab98LaHCWm5vLli1bAvmUQgghhBBCCBEylFJH+/qelDUKIYQQQgghRAiQ4EwIIYQQQgghQoAEZ0IIIYQQQggRAgK650wIIYQQQohQ0d3dTWVlJV1dXcFeihiDIiMjyc7OJiwsbNCPkeBMCCGEEEKMS5WVlcTFxZGbm4tSKtjLEWOI1pqGhgYqKyvJy8sb9OOkrFEIIYQQQoxLXV1dpKSkSGAmDKeUIiUlZchZWQnOhBBCCCHEuCWBmfCX4by2JDgTQgghhBAiSO6//34KCgqYO3cuRUVFbNy4EYBbb72VvXv3GvIcubm51NfX93ufn/70p0M+7t/+9jfuueeeE27761//SlFREUVFRYSHh1NYWEhRURHf/va3h3z8QHjwwQfp6OgI9jJ6yJ4zIYQQQgghgmD9+vW89tprbNu2jYiICOrr67Hb7QA8/vjjAV3LT3/6U7773e+O+Dg333wzN998M+AOCtesWUNqauqIjztcWmu01phMveekHnzwQa677jqio6MHfUyHw4HF4p8wSjJnYsxqtzl472BdsJchhBBCCNGrmpoaUlNTiYiIACA1NZXMzEwAVq5cyZYtWwCIjY3lW9/6FgsXLuTcc89l06ZNrFy5kvz8fF555RXg1CzWRRddxNq1a095zksvvZSFCxdSUFDAY489BsC3v/1tOjs7KSoq4tprrwXgqaeeYsmSJRQVFXHHHXfgdDoBd2Zs+vTprFixgo8++mjQP+svf/lLFi9ezNy5c7n33nsBKCsrY+bMmdx6663MmTOHa6+9lv/9738sX76cadOmsWnTJgDuu+8+rr/+es4++2ymTZvGn//85wGPO2vWLO666y4WLFhARUUFd955J4sWLaKgoKDnfr///e+prq5m1apVrFq1qudcez3//PPcdNNNANx000187WtfY9WqVXzrW9/iyJEjnHfeeSxcuJAzzzyT/fv3D/pc9MsbTfb1AUwC1gD7gD3Al32+90XggOf2Xwx0rIULF2ohAqGr26GvenSdzvnWa/rQ8bZgL0cIIYQQIWjv3r1Bff62tjY9b948PW3aNH3nnXfqtWvX9nxvxYoVevPmzVprrQH9xhtvaK21vvTSS/UnPvEJbbfb9Y4dO/S8efO01lr/9a9/1XfffXfP4y+88EK9Zs0arbXWOTk5uq6uTmutdUNDg9Za646ODl1QUKDr6+u11lrHxMT0PHbv3r36oosu0na7XWut9Z133qmffPJJXV1drSdNmqRra2u1zWbTy5YtO+E5T+Z93v/+97/6tttu0y6XSzudTn3hhRfq9957T5eWlmqz2ax37dqlnU6nXrBggb755pu1y+XSL7/8sr7kkku01lrfe++9eu7cubqjo0PX1dXp7OxsXVVV1e9xlVJ6/fr1PWvx/twOh0OvWLFC79y585Rzc/J5eO655/SNN96otdb6xhtv1BdeeKF2OBxaa63PPvtsffDgQa211hs2bNCrVq3q9Rz09hoDtug+4qXB5OMcwNe11tuUUnHAVqXUO8AE4BJgrtbappRKNyZcFGJkXC7N15/dycbSRgDWlzQwNT12gEcJIYQQYjz74at72FvdaugxZ2fGc+/FBX1+PzY2lq1bt/LBBx+wZs0arr76ah544IGebI1XeHg45513HgCFhYVEREQQFhZGYWEhZWVlQ1rT73//e1566SUAKioqOHToECkpKSfc591332Xr1q0sXrwYgM7OTtLT09m4cSMrV64kLS0NgKuvvpqDBw8O+Jxvv/02b7/9NvPnzwegvb2dQ4cOMXnyZPLy8igsLASgoKCAc845B6XUKT/bJZdcQlRUFFFRUaxatYpNmzbx4Ycf9nncnJwcli5d2vP4Z599lsceewyHw0FNTQ179+5l7ty5Qzp3V155JWazmfb2dtatW8eVV17Z8z2bzTakY/VlwOBMa10D1Hg+b1NK7QOygNuAB7TWNs/3ag1ZkRAj9MBb+3ltVw3fPn8mf/uojI0lDVy/NCfYyxJCCCGEOIXZbGblypWsXLmSwsJCnnzyyVOCs7CwsJ7OfyaTqacM0mQy4XA4ALBYLLhcrp7H9NbCfe3atfzvf/9j/fr1REdHs3Llyl7vp7Xmxhtv5Gc/+9kJt7/88svD6kCoteY73/kOd9xxxwm3l5WV9fws/f1scGrnQ6VUv8eNiYnp+bq0tJRf/epXbN68maSkJG666aY+W9z7Ps/J9/Ee0+VykZiYyI4dOwb60YdsSDvZlFK5wHxgI/BL4Eyl1P1AF/ANrfVmw1coxBD89aNSHnu/hBtPz+GOs/LZV9PKR4cb0FpLq1whhBBC9Km/DJe/HDhwAJPJxLRp0wDYsWMHOTnDu6Ccm5vLww8/jMvloqqqqme/lq+WlhaSkpKIjo5m//79bNiwoed7YWFhdHd3ExYWxjnnnMMll1zCV7/6VdLT02lsbKStrY3TTjuNL3/5yzQ0NBAfH89zzz3HvHnzBlzbpz71KX7wgx9w7bXXEhsbS1VVFWFhYUP6+f7zn//wne98B6vVytq1a3nggQeIiooa1HFbW1uJiYkhISGB48eP8+abb7Jy5UoA4uLiaGtr62laMmHCBPbt28eMGTN46aWXiIuLO+V48fHx5OXl8dxzz3HllVeitWbXrl2DOhcDGXRwppSKBV4AvqK1blVKWYAkYCmwGHhWKZXvqaP0fdztwO0AkydPHvGChejLm8U1/Oi1vXyqYAL/d3EBSimW5qfwnx3VlNRbmZImpY1CCCGECB3t7e188YtfpLm5GYvFwtSpU3uadAzV8uXLe0oE58yZw4IFC065z3nnncejjz7K3LlzmTFjxgllf7fffjtz585lwYIFPP300/zkJz/hk5/8JC6Xi7CwMP74xz+ydOlS7rvvPk4//XQyMjJYsGBBT6OQ/nzyk59k3759nH766YC7nPOpp57CbDYP+udbsmQJF154IeXl5fzgBz8gMzOTzMzMQR133rx5zJ8/n4KCAvLz81m+fPkJP/f5559PRkYGa9as4YEHHuCiiy5i0qRJzJkzh/b29l7X8/TTT3PnnXfyk5/8hO7ubq655hpDgjN1UizV+52UCgNeA/6rtf6N57a3cJc1rvV8fQRYqrXusz3eokWLtLfrjBBG2lzWyLWPb2ROZjz/vG0pkWHuf5Qlde2c/ev3+OllhXzuNLk4IIQQQoiP7du3j1mzZgV7GWIA9913H7GxsXzjG98I9lKGrLfXmFJqq9Z6UW/3H7CVvnLXgj0B7PMGZh4vA2d77jMdCAf6n24nhB8crm3n1ie3kJ0YxRM3Lu4JzADyUmNIj4tgQ0lDEFcohBBCCCHEwAZT1rgcuB4oVkrt8Nz2XeAvwF+UUrsBO3DjySWNQvhbbVsXN/5lE2FmxZO3LCEpJvyE7yulOC0/hY2lsu9MCCGEEGI0uu+++4K9hIAZTLfGD4G+3tFeZ+xyhBi8dpuDm/+6maYOO8/cvpRJyb1Pdl+an8yrO6spa+ggLzWm1/sIIYQQQggRbAOWNQoRirqdLu56ehv7j7Xxx2sXMDc7sc/7npbnnt2xUUobhRBCCCFECJPgTIw6Wmu++2Ix7x+s46eXzWHVjP7nn09JiyE1VvadCSGEEEKI0CbBmRh1fvu/Qzy3tZIvnzONqxcP3IHRve8smY2ljci2SCGEEEIIEaokOBOjyjObyvn9u4e4alE2Xzl32qAftzQvmZqWLioaO/24OiGEEEKIoTGbzRQVFTFnzhyuvPJKOjo6hn2sm266ieeffx6AW2+9lb179/Z537Vr17Ju3bqerx999FH+/ve/D/u5vcrKypgzZ84Jt91333386le/GtJxjFrPaDPoIdRCBNua/bV87+XdrJiexv2XFQ6p8+LSfPe+sw0lDUxO6b1xiBBCCCFEoEVFRbFjxw4Arr32Wh599FG+9rWv9Xzf6XQOaViz1+OPP97v99euXUtsbCzLli0D4Atf+MKQn8NfHA5HSK0nkCRzJkaFXZXN3PX0NmZlxPHwtQsIMw/tpTs1PZaUmHA2lMq+MyGEEEIMwy9+AWvWnHjbmjXu2w1y5plncvjwYdauXcuqVav43Oc+R2FhIU6nk//3//4fixcvZu7cufzpT38C3Pvw77nnHmbPns2FF15IbW1tz7FWrlzJli1bAHjrrbdYsGAB8+bN45xzzqGsrIxHH32U3/72txQVFfHBBx+ckN3asWMHS5cuZe7cuVx22WU0NTX1HPNb3/oWS5YsYfr06XzwwQdD/hn7O/Z3v/tdVqxYwe9+97ue9VRXV1NUVNTzYTabOXr0KEePHuWcc85h7ty5nHPOOZSXlwPu7OGXvvQlli1bRn5+fk8mcbSQ4EyEvPKGDm7522ZSYsP5y02LiYkYesK3Z99ZSaMfViiEEEKIMW/xYrjqqo8DtDVr3F8vXmzI4R0OB2+++SaFhYUAbNq0ifvvv5+9e/fyxBNPkJCQwObNm9m8eTN//vOfKS0t5aWXXuLAgQMUFxfz5z//+YQyRa+6ujpuu+02XnjhBXbu3Mlzzz1Hbm4uX/jCF/jqV7/Kjh07OPPMM094zA033MDPf/5zdu3aRWFhIT/84Q9PWOemTZt48MEHT7jd15EjR04IqB599NFBHbu5uZn33nuPr3/96z23ZWZmsmPHDnbs2MFtt93GFVdcQU5ODvfccw833HADu3bt4tprr+VLX/pSz2Nqamr48MMPee211/j2t789xP8TwSVljSKktXR0c+NfN+FwaZ68ZQnpcZHDPtZpeSm8UXyMisaOPmeiCSGEEGKc+spXwFNe2KfMTPjUpyAjA2pqYNYs+OEP3R+9KSqCBx/s95CdnZ0UFRUB7szZ5z//edatW8eSJUvIy8sD4O2332bXrl09WaCWlhYOHTrE+++/z2c/+1nMZjOZmZmcffbZpxx/w4YNnHXWWT3HSk5O7nc9LS0tNDc3s2LFCgBuvPFGrrzyyp7vX3755QAsXLiQsrKyXo8xZcqUnlJN+HiI9EDHvvrqq/tc10cffcTjjz/ek61bv349L774IgDXX3893/zmN3vue+mll2IymZg9ezbHjx/v9+cNNRKciZD2zOZySuutPHvH6UxJix3RsXz3nUlwJoQQQoghS0pyB2bl5TB5svvrEfLdc+YrJiam53OtNQ899BCf+tSnTrjPG2+8MeAefK31kPbpDyQiIgJwNzJxOByGHRdO/Jl91dTU8PnPf55XXnmF2Nje3w/6/ozeNQKjrlO3lDWKkPbarhrmZSewJK//qzyDMS09lqToMDaWSmmjEEIIIU7y4IOwdm3/H/feCx0d8IMfuP97773933+ArNlgfepTn+KRRx6hu7sbgIMHD2K1WjnrrLN45plncDqd1NTUsObkPXHA6aefznvvvUdpaSkAjY3u90FxcXG0tbWdcv+EhASSkpJ6MlT/+Mc/ejJdIzWcY3d3d3PVVVfx85//nOnTp/fcvmzZMp555hkAnn76ac444wxD1hhskjkTIau03kpxVQvfu2CWIcczmRSn5aWwUZqCCCGEEGKovHvMnn0WVq1yf/h+7Ue33norZWVlLFiwAK01aWlpvPzyy1x22WWsXr2awsJCpk+f3mugk5aWxmOPPcbll1+Oy+UiPT2dd955h4svvpjPfOYz/Oc//+Ghhx464TFPPvkkX/jCF+jo6CA/P5+//vWvhv0sQz32unXr2Lx5M/feey/33nsv4M4Y/v73v+eWW27hl7/8JWlpaYauMZhUIFN9ixYt0t6uMUIM5KF3D/Hrdw6y7ttnk5kYZcgx//pRKT98dS8ffftssgw6phBCCCFGp3379jFr1iAvAv/iF+7mH76B2Jo1sHkz+Ox3EsJXb68xpdRWrfWi3u4vmTMRsl7bVcPi3CTDAjNwNwUB2FjSwOULsg07rhBCCCHGuN4CMG8GTQiDyJ4zEZIOHGvjwPE2Lp6XaehxZ06MIyEqjA0lUtoohBBCCCFCiwRnIiS9tqsak4Lz52QYelyTSbEkL1maggghhBBCiJAjwZkIOVprXttVw+lTUkiLixj4AUO0ND+Fow0d1LR0Gn5sIYQQQowuo63Vuhg9hvPakuBMhJw91a2U1lu5eK6xJY1ep3na8m8skeyZEEIIMZ5FRkbS0NAgAZownNaahoYGIiMjh/Q4aQgiQs6rO6uxmBTnzZnol+PPyognPtLCxtIGLp2f5ZfnEEIIIUToy87OprKykrq6umAvRYxBkZGRZGcPrQGdBGcipHhLGs+clkpidLhfnsPs2Xe2QTJnQgghxLgWFhZGXl5esJchRA8paxQhZVt5M1XNnYZ3aTzZ0vwUSuutHG/t8uvzCCGEEEIIMVgSnImQ8urOasItJj4xe4Jfn8c770xa6gshhBBCiFAhwZkIGU6X5o3iGlbNSCMuMsyvzzU7M564CIu01BdCCCGEECFDgjMRMjaVNlLbZvN7SSO4950tzkuWzJkQQgghhAgZEpyJkPHqrmqiwsycPTM9IM93Wl4yJXVWattk35kQQgghhAg+Cc5ESOh2unhr9zHOnT2B6PDANBFdmu/ed7ZJShuFEEIIIUQIkOBMhIR1RxpotNq5eG5GwJ6zIDOe2AiLlDYKIYQQQoiQIMGZCAmv7qwmLsLCihlpAXtOi9nEotwkNobQvLPfv3uIm/66KdjLEEIIIYQQQSDBmQg6m8PJf/cc45MFE4mwmAP63KflpXCotp36dltAn7cv6480sPZAHc0d9mAvRQghhBB+0O10sVGqdkQfJDgTQff+wXrauhxcPC9wJY1eS/OTgdDZd1bV3AnAlrKmIK9ECCGEEP7w9/VHufqxDRw41hbspYgQJMGZCLpXd1aTFB3G8qmpAX/uOVkJRIebQ2LfmculqWlxB2ebj4ZGsCiEEEIIY722qxqAzWXyt16cSoIzEVSddif/23ec8+ZkEGYO/MsxzGxiYU5o7DurbbPR7dSAZM6EEEKIsai6uZPt5c0AbDsqf+vFqSQ4E0G1en8tHXZnUEoavZbmp3DgeBuN1uDu86pq7gBg+oRYdlU209XtDOp6hBBirCirt/KP9WXBXoYQvLn7GAAzJ8axtVyCM3EqCc5EUL26s5q0uAhOy0sJ2ho+3ncW3NLGqmb3MOxLirLodmp2VjQHdT1CCDFW/PDVPfzgP3toCvJFOCHeLK5h5sQ4Ll+QxdGGDuraQqMhmQgdEpyJoGnr6mb1gVouLMzAbFJBW0dhViJRYWY2BLm0sarJvd/skqJMALZIuYMQQozY4dp21hyoA6CswRrk1Yjx7FhLF1uONnFhYQYLc5IA2CbZM3ESCc5E0Pxv33HsDldQSxoBwi3ufWfBbgpS1dxBQlQY2UnRTJ8QGzIdJIUQYjT7y0elPZ8fbegI4krEePfW7hoAzi/MoCAzgXCzSfadiVNIcCaC5tWdNWQlRjF/UlKwl8LS/GQOHG8L6nyxqqZOshKjAFiUm8y2o004XTpo6xFCiNGu0Wrnha2VXD4/C6UkcyaC643iY8yYEMfU9Fgiw8zMyYpnqwRn4iQSnImgaO6w8/7BOi6cm4EpiCWNXqflp6A1bAxitqqquZOsJHdwtjg3iTabQ2agCCHECDy94Sg2h4s7V04hMyGKsnoJzkRw1LZ2sfloI+cXTuy5bWFOEruqWrA5pAGY+JgEZyIo/rvnGA6X5uK5mcFeCgBzsxOIDDMFraW+1vqEzNniXHeTEpmBIoQQw2NzOHly/VFWzkhj2oQ4clKiKZOyRhEkb+05htZwYeHHWzkW5iRhd7jYU90axJWJUCPBmQiKV3fWkJsSzZys+GAvBYAIi5kFk5PYGKSOjS2d3VjtTrI9mbOsxCgyEiIlOBNCiGF6ZUc19e02bj0jH4Dc1BiOSlmjCJLXd9UwNT2WaRPiem5bMNnTFERKG4UPCc5EwNW12Vh3pJ6L5maiVPBLGr1Oy0thb00rLR3dAX/uSk+nRm/mTCnFotxkNpc1orXsOxvvOuwO/rOjSl4LQgyS1ponPixl5sQ4lk91j2rJTYmmqaM7KL/jxfhW12ZjU1kjFxSe2AAtPT6SSclRsu9MnECCMxFwb+2uwaXh4nmhUdLotTQ/Ga2DU0pY1ewJzjyZM4AluUkcb7X1BG5i/HpuSyVffmaHlL4IMUgfHW5g/7E2bjkjr+ciYE5KDCBNQUTgeUsaL/DZb+a1cHISW442ycU30UOCMxFwr+6sYfqEWGZMjBv4zgE0b1Ii4RZTUFrqV52UOQN3x0aQfWfi4zk4eyU4E2JQHv+whNTYiJ65kQC5EpyJIHmzuIb8tBhmTDj1fc/CnCTq2uRCrPiYBGcioGpaOtlU1shFIdIIxFdkmJkFkxOD0rGxqrmTyDATyTHhPbdNnxBHXKSFzWVS7jDe7ahoBmBPdUtwFyLEKHC4to21B+q44fQcIizmnttzUqIBmXUmAqu+3caGkgYumJPR61aOBTKMWpxEgjMRUK/vcg9gvGhucAdP9+W0vBT2VLfQ2hXYPQneTo2+v7jNJsWinCTJnI1zDe22njeTe2skcybEQJ74sIwIi4lrT5t8wu2RYWYyEiKlnb4IqLf3HMelOWW/mdeMCXHEhJtl35noIcGZCKhXd9UwJyue/LTYYC+lV0vzU3Bp2BLggMg94yz6lNsX5SZzuLadRmvwhmOL4PJmzWZOjGNfTRsuGUzeL7vDhcPpCvYyRJA0tNt4cVslly/IJiU24pTvu9vpS3AmAueN4hryUmOYldH7Vg6L2UTR5EQJzkSPAYMzpdQkpdQapdQ+pdQepdSXPbffp5SqUkrt8Hxc4P/litGsvKGDnRXNITPbrDfzJycSbg78vLOq5s4T9pt5eeedyS/t8WtHRTNmk+KaxZNotzkob5SSrL5YbQ4u/eNHfPFf24O9FBEkT28sx+Zw8fkzcnv9fl5qjJQ1ioBptNpZX9LA+XMm9tudeuHkJPbVtGK1OQK4OhGqBpM5cwBf11rPApYCdyulZnu+91utdZHn4w2/rVKMCa8VVwNwYYiWNIK77KVocmJAm4J02B00Wu09M858zc1OINxsktLGcWx7eTMzJ8axMMcdqEtpY++01vy/53eyt6aVjaUygmI86up28vf1ZayakcbU9N6zFDkpMTRY7QEvXRfj09t7juF06T5LGr0W5CTh0rDTUykhxrcBgzOtdY3Wepvn8zZgH5Dl74WJsefVnTUsmJxIdi/le6FkaV4yu6tbaQvQH+/q5lM7NXpFhpmZm50gwdk45XJpdlY0M39yItMmxGI2KenY2IeH1x7hjeJjFGTG02i1c7zVFuwliQB7ZWc19e12bj0zv8/75HqbgtRL9kz43xu7jzE5OZqCzPh+7zffM4xaqmQEDHHPmVIqF5gPbPTcdI9SapdS6i9KqSSjFyfGjsO1beyraQ252Wa9OS0/BadLsyVAvyR7BlD3kjkD976z3VUtdNqdAVmPCB1H6tppszmYPymJyDAz09JjpWNjL1bvP86v3j7ApUWZ3PfpAkA6W443Wmue+MA9dHrZlJQ+7yezzkSgNHfYWXe4ngsKe+/S6CshKozpE2LZKh0bBUMIzpRSscALwFe01q3AI8AUoAioAX7dx+NuV0ptUUptqaurG/mKxaj06s4alOq7W1EoWTA5iTCzCti+s6p+MmcAS/KS6HbqnsYQYvzYXt4MQNHkRABmZ8RLWeNJjtS18+V/7aAgM54HrpjLrIx4lEIGdo8zHx6u58DxNm49M7/fN8Ift9OX4Ez419t7j+Nw6V4HT/dmYU4S2442SdMnMbjgTCkVhjswe1pr/SKA1vq41tqptXYBfwaW9PZYrfVjWutFWutFaWlpRq1bjCJaa17bVc1peclMiI8M9nIGFBVuZl524PadVTV1YjGpPs/NwsnuvUaB7iApgm97RRMJUWHkea72z86M53irjfp2KdkDaO3q5ra/byHcYuJP1y8iMsxMbISF3JQYyZyNM49/UEpqbAQXz+v/AmB0uIUJ8RGUSlmj8LM3imvIToqiMCthUPdfMDmJ1i4HR+ra/bwyEeoG061RAU8A+7TWv/G53fc34GXAbuOXJ8aCw7XtHKmzhuTg6b6clp9McVULXd3+LyWsau5kYkIkZlPvV3sTosOYMSGOzVKLPu5sL2+maFIiJs9rY3aGe9/CPsme4XJpvvbvHZQ3dPDwtQtOyDzPzoiXzNk4cuh4G+8drOPGk4ZO9yUnJUYyZ8KvWjq6+WiQJY1eC3Nk35lwG0zmbDlwPXD2SW3zf6GUKlZK7QJWAV/150LF6OVtWzzYq0ehYMbEeJwuHZB9Cd4B1P1ZnOcud3BKucO40W5zcPB4G0WTEntum+3ZVC6BBzz4v4P8b18t/3fxbE7LP3GP0ezMeCqbOmnplI5848FfPip1D51emjOo++elxFAm7fSFH72z7zjdzoG7NPrKS40hKTpMgjMxqG6NH2qtldZ6rm/bfK319VrrQs/tn9Za1wRiwWL08Q5QTo4JD/JKBi8/1V1GVloXgOCsubPPZiBei3OTabc5JGMyjuyqbMal3bP3vBKjw8lKjBr3HRvf2l3D71cf5upFk7i+lzfk3s5oo+E82RxOrnlsPW/tPhbspYxKDe02XthWxRULswf9NyYnNZr6dhvtMlNK+MkbxTVkJUYxL3vwF6WVUizMSZKmIGJo3RqFGI4GT3CWEjt6grM8T3BWUu/f4Kzb6eJ4axfZA2TOFuXKvrPxpqcZiE/mDGDWOG8KcuBYG197difzJyfyo0sLei0ZKsh0vyEaDfvOXtpWxYaSRt7eK8HZcDy1oRy7w8Uty/MG/Zhcb8dGP/9+F+NTa1c3HxyqG3DwdG8W5CRRUmftuagtxicJzoTfNVptRIaZiA63BHspgxYTYWFifKTfN+Yea+nCpftuo++VlRhFVmIUm8vkihqAw+ni83/bzCNrj4zZzlY7KprJT40hMfrEixoFmfGU1LWPy9EKzR12bvv7FmIjLDx63cI+9xelxUWQHhcR8pkzp0vzp/dLANhf0xbk1Yw+Xd1O/rGhjLNnpjM1PXbQj/u4Y6OUNgrj/W+vu6Tx/GF0p17omXe2XbJn45oEZ8LvGqx2UmIigr2MIctPi6HEz2WNPTPOEgcezL0oN4nNZY1oPTaDkaE4VNvOu/tr+flb+7n9H1vH3N4irbW7GYhPSaPX7Mx4XBr2HwvtwMNoDqeLL/5rO8daunj0+oUDdn6dnRn6Gca39xyjtN5KfloMh2vbcThdwV7SqPLKDs/Q6TMGnzUDn8yZNAURfvBG8TEyEiKZf1LVw2DMzU7EYlKy72yck+BM+F2j1T6q9pt5uYOzdr8GQz0zzgbInIG7tLG2zUZFY6ff1jNaFFe5y9VuPSOPtQdq+fQfPhxT+/Eqmzqpb7cx33MV1Ze3Y2OoBx5G+8V/D/DBoXp+fGkBC3o5LycryIznUG17QDquDofWmkffO0JuSjR3rpiC3emiVMrsBk1rzeMfljArI57T+xk63ZuYCAtpcRHSsVEYrq2rm/cP1XHenIk9XXaHIircTEFmvARn45wEZ8LvRm1wlhpLa5fDr7XfVZ7MWUbCwPPflnj2nW2SfWfsrmohNsLCdy+YxTO3L6Wr28llD3/EC1srg700Q3gHjvd25TU7KYr4SEvIl+wZ6T87qnjs/RJuOD2HqxdPHtRjCjITcLo0B4+HZrng+iMN7Kxs4fazpvR04dx/LDTXGoo+OFTPwePt3HpG3pD39QDkpkRTJrPOhMFW76/F7nBx4TBKGr0W5CSxs7KZbsmkj1sSnAm/a2i3kzIKg7O8NP83Balq7iAtLoLIsIFn80xLjyU+0iJNQXBnzmZnxmMyKRblJvPaF8+kaFIiX39uJ99/uRibIzSzJYO1vbyZyDATMybGnfI9pRSzM8fPHK/dVS188/ldLMlL5gcXzR704wpCfOzAI+8dITU2gssXZDE1PRazSY27UtWRePzDUtLjIrh43vDmZ+amxEhZozDc67tqmBAfMajsfl8W5iTR1e0aU9UgYmgkOBN+N1ozZ1NS3RvMS/zYFKSqeeAZZ17eQGRziAVnaw7UciCAV/wdTvcfrTmZH7coTouL4KnPn8YdZ+Xz1IZyrvrThp6S0dFoe0UTc7MSCTP3/it6dkYC+4+1jvm5d/XtNu74x1ZSYsJ5+NoFfZ6P3kxKiiY2IjQzjLurWvjgUD23nJFLZJiZCIuZ/NSYgP47Gs0OHm/j/YN13Lgsl3DL8N7G5KbGUNtmo8Mu7fSFMdptDtYerOP8ORnDKmn0kmHUQoIz4Veddied3U6SR1Ebfa+spCjCLSa/NgWpahp4xpmvxbnJHKmz0tBu89uahkJrzVf/vYNf/nd/wJ7zSJ2Vrm4XhdnxJ9xuMZv4zgWzePS6BRypbeei33/Ah4fqA7Yuo9gcTvZUt/baDMRrdmY8Xd1je49St9PF3U9vo77dxp+uX0Rq7NCaCplMitkZ8SHZTv/R944QF2HhOp8ZbTMz4tknHRsH5S8flhIZZuJzSwZX4tobb8dGKW0URvGWNJ4/Z+KIjpOREEVmQqQEZ+OYBGfCrxqs7iBiNJY1mk2K3JRojvgpOHO5NNXNA88487U4131FbUuI/NJu6uimuaObHRXNAesi6W0GUpjV+3DP8+Zk8J97lpMWF8ENf9nIH9ccHlXt9vfVtGF3uPrt9PVxyV7oBR5G+clre9lY2sjPr5hL4RAGufqanekOeEIpw3i0wcobxTV8bulk4iPDem6fOTGOquZOWrvGVudRo9W323hxexVXLMgmaQR/V7wdG6UpiDDKm8U1pMVF9MwlHYkFOUlsC5G/8yLwJDgTfuVtppE8Clvpg7spSEm9f8oa69tt2J2uIWXOCrMTCLeYQmbfmTdzU99u7xkL4G+7q1qIDjeTl9r3XKMpabG8fPdyLpqbyS//e4Db/7Fl1LTb98636a1To9eUtFjCzaYx0bHR5dLUtdnYWdHMW7treOLDUr71/C6eXH+U287M49L5WcM+dkFmPJ3dzpDKMP75gxIsJhOfP2lo8kzP/sKDUtrYr6c2HHUPnR5i+/yT9WTOZNaZMECH3cGaA7WcP2ci5hGUNHotzEmiuqWL6lFcni+Gb/RMBRajUkNPcDb6Mmfgbqf/v33HcThdWIaw32UwKr1t9IeQOYuwmCnKTmRTiAyjLvN507uzsplJyQPPaxup3VUtzM6IH/APYHS4hd9dU8TCnCR+/NpeLn7oQx69bmFPZ7xQtaOimYnxkUzsp4NnuMXEtAmxIbmf6mTtNgfVzZ2ejy5qWjqp8nxd09JFTXMX9pO6kkWFmfn0vEy+dd7MET13gWdf4p7qliENKfaXujYbz26p5IqFWaSfNKfN2/xl/7E2Q668j0Vd3U7+sf4o58xMZ0rayP5/xkWGkRobLpkzYYg1++vo6nZx/pzhd2n05d13tq28icwhvEcQY4MEZ8KvGtvdwdloLGsEyEuNweHSVDR1kpcaY+ixvW30h5I5A/cw6sfeL6HD7iA6PLj/hEvrrZhNCotJsaO8mYvmDq9z2mA5XZo91a1cvXjSoO6vlOLGZbnMyUrgrqe3ctnDH3H/ZYV8ZmG2X9c5EtvLm5nfz34zr4LMeN7dV4vWelitxP2pod3Gz9/az1u7j9HadWLDBZOCifGRZCZGMTc7kfPmRJKZEEVmYhSZie7PE6PDDPmZpqbHEmZW7K1p5ZKi4WfgjPK3daV0O13cdmb+Kd/LSowiLsIiHRv78dbuYzRY7Xx+hFkzr5yUmJDKqorR643iGlJjw1mSZ8yFlVkZ8USGmdh6tMnvf1dF6JHgTPhVT1njKGwIApCf9nHHRsODs2FkzsDdFOThtUfYUdHMsimphq5pqEobrGQnRZEaG8HOyma/P19JXTud3c4+95v1ZWFOEq998Uy++K9tfOO5nWwrb+K+iwuG3enNXxrabZQ3dnDd0oEbHczOiOfZLZXUttmYED/wnLxAcLk0z2yu4Odv7cdqc3DpfHeb+IyESLIS3QFYelyE4VnovoRbTEyfEBcSGca2rm7+sf4o5xVM7Pm94kspxYyJcdKxsR/rjtSTGB3G0vyhDZ3uS05KNOsONxhyLDF+ddqdrN5fy+ULsgwpaQQIM5uYl50o+87GqdB6ZyLGnAarnTCzIi5idF4HmOKddeaHpiBVTZ3ER1qI82kKMBgLcpJQCjaXBv+XdmmdldyUGOZlJ1Jc1eL3oZm7PQ0w5gwxOAOfdvsr8vnnxnL+vaXC6OWNWM/w6UHMyJntKdkLhcAD3KWDVzy6ju++VMzMiXG8+eUz+dWV8/jCiilcUpTFotxkMhOjAhaYeRV4ZsIFqmFNX/61qZzWLgdfWDGlz/vMzIhj/7G2oK81VG0pa2JRTtKI2pT7ykuJ4VhrF5320T0XUQTX2gO1dHY7RzR4ujcLc5LYU90qr89xSIIz4VeNVhtJ0eEhV3Y1WInR4STHhPulKUhVcydZSUPfo5UQFcaMCXFsORrcpiBaa8oarOSlxlA0OZGubpffr/oXV7YSGWbqCZqHymI28Z3zZ5GTEs2a/bUGr27ktpc3YzapE2a49WVWhnuPUrCbgrR1dfPDV/dw8UMfUt7Qwa+vnMczty9l2oRTB2gHQ0FmAo1WO8dau4K2BpvDyRMflrJsSgrz+unCOWNiPG1dDqpbgrfWUNXQbqOk3mrofrwcTzVEeaM0BRHD93pxDckxxpU0ei3MScLh0uwKQFWKCC0SnAm/Gq0DqH3lp8b4LXM21JJGr8W5yWw72oTDz5mq/rgHuDrdwVl2IoDfSxu9zUBGmn1ZMT2N9Uca6OoOrSuS2yuamJURR1S4ecD7xkWGkZMSHbR2+lprXttVzbm/eY+/rSvjs0sms/rrK7liYXZIXYzxNoAJZobxP9urOd5q6zdrBjDL2xRkDHThNJp3fMiinIGzyoOV6+nYKPvOxHB1dbtLGj9VMNHwqoAFngqKreXBr5IRgSXBmfCrBqudlFG638wrLzWGEoP/eGutqWruJHuIzUC8FuclY7U7gzq01vuGJi81hknJUSTHhLOjvNlvz+dyafZUtwyrpPFkK6an0dntZEuIdL0Ed7OTnRUtzJ80+DefszPigxJ0lNVbueEvm7jnn9tJjY3gxTuXcf9lhSRED61ENxBmZcSjFOwJUnDmcmkeff8IBZnxnDmt/z2i0306NooTbSlrJNxiGvbMu97kyKwzMUJrD9TRYXdyQeHIBk/3JikmnClpMbLvbByS4Ez4lTtzNjpnnHnlp8VS12ajzcDhsK2dDtptjhFkztxv4DcHcd5ZmU9wppSiaFKiXzNnpQ1WrHanIcHZ0vwUws0m3j9UZ8DKjHGkrp12m4OifsreTjY7I56yhg7abY6B72yArm4nv33nIJ988H12lDdz38WzeeWeMwa1Ry5YYiMs5KbEBC3D+Pbe45TUWfnCiikDZhTjI8PISoyS4KwXm8uamJedQIRl4KzyYCVEhZEcEy6zzsSwvbm7hiQDm9ScbGFOEluPNsk+1HFGgjPhV43t9lHbRt8r3w9NQSqb3W8GhtpG3ysjIYqsxKig7jsrrbcSbjb1zGCZl53Iodp2Q4NYX7ur3G+uh9qpsTcxERYW5yXx3oHQCc4+Hj6dOOjHFGS5S/b2BaAM7v2DdZz34Pv87t1DnFcwkXe/voKblucZ1p3Mn2Z7moIEmtaaR947wuTkaM6fM7gr6zMnxnFA2umfoNPuZE91CwtzjJ//lpMSfcK8RiEGq6vbybv7avnk7ImE+anR0cKcJJo6uqX0dpyR4Ez4jc3hpM3mGPV7zno6NhrYFKRnxtkIhksuyUtmU2nwrqiV1luZnBLd8+a8aHIiWkNxpX8yFMWVLURYTEwzaJjwiulpHDjeRk1LpyHHG6kdFc0kRIUNaWTD7Az/d2w81tLF3f/cxg1/2YRJKZ76/Gn8/rPzTxmiHMoKMuOpbOqkpcM/Fw76sqGkkZ0Vzdx+Vv6g96PMzIjjSJ0VmyO09kMG087KZrqduqdiwEi5KTFS1iiG5b97jtFuc3DBXGO7NPryDqPeKqWN44oEZ8JvmqzuN0KjPTibnByD2aQMzZz1zDgbZuYM3MOo69ttHA1SSU5pvbuNvtc8z16QHX4qbdxd3cJMA5qBeK2Yng64M0KhYHt5M0WTEofUTGNCfATJMeF+C84+OlzPub95j3f2Hudrn5jOm185kzMG2DcVimZneJqCBLjRxqPvHSE1NnxIQ89nTIzH6dIcqZWAwWuLp3x7oYHNQLxyU2KobukKueZAIrS5XJqH1xxhanosZ0713+/E/NRYEqLC2CZNQcYVCc6E3zRYbQCjvqwx3GJiUlKUoU1Bqpo6iQwzjejcLPa0lA7GvjOXS3O0saOn5BPcYwfyUmP80hTE5dLsqWql0FPGZ4TpE2KZGB/JeyEQnLXbHBw43jakkkZwDy6enRHvt6DjkbVHSIgK452vnsWXzplm6H6fQCrwjCYI5L6zvdWtvHewjpuX5xEZNvjz1tOxUUobe2w52sT0CbEkRhv/tyQ31d2xsULa6YsheGffcQ4cb+PuVVMMm7vXG5NJsWByomTOxhkJzoTfNFrtwOjPnIGnY6PBmbPMxKgRtRyfmhZLYnRYUIKz6pZO7A7XCZkzwG9NQY42dtBmcxiy38xLKcVZ01P54FB9UEcSAOyqbEbrwQ2fPllBZjwHjrUZPgC8od3GuiP1XDY/q6er3WiVFhdBelxEQDtbPvreEWIjLFy3NGdIj8tNjSHcbPL7zMDRwunSbD3a5Jf9ZvBxx0bZ0yMGS2vNH1YfJiclmovnZvr9+RbmJHHweDstnYEtyxbBI8GZ8BtvcDbaW+mDu2NjaX07Lpcx+7uqmoc/48zLZFIsykkKSjt47xsZ71Vnr3nZCRxvtRm+j8vbDKRgEMOZh2LF9HTauhzsqGg29LhDtd2TbfTOixuK2Znx2J0ujtQZOyj9rT3HcGm40I/7KQKpIIBNQSoaO3htVzWfO20yCVFDGy8QZjYxNT2WfRKcAXDweBttXQ6/7DcDyOtppy+ZMzE47x2so7iqhbtWTjF8tllvFnjKebdLaeO4IcGZ8JuGdm/mbHS30gd3x8aubhc1rV2GHK+qafgzznwtyk2mpN5KfbvNgFUNnre7WX7qic05ijyZH6NLG3dXtRBuNjF9Qpyhxz1jaiomFfx9Z9vLm8lPixnWnLCe/VQGBx6v76ohPy2GmRONPefBMjsznsN17QHZW/TnD0owmxS3LM8b1uOlY+PHvPvNvGXcRkuIDiMxOowyPzUFeXFbJT96da+0Qh8jtNY8tPowWYlRXDZ/8HtJR2JediJmk5J5Z+OIBGfCbxqtdkwKEod45TgUeYOQEgOyE512Jw1W+4gzZ/DxG5YtAS5tLKm3EhVmZkL8iYH3rIw4ws0mw5uCFFe1MDMjjnCLsb+yEqLDmD85Kaj7zrTW7KhoGtLwaV/5abFEhpkMzQrVtdnYUNLARYUZIyq9DSUFmQk4XZqDx/2bkapvt/HvzRVcPj+biQnD62g5MyOO4602mjzVB+PZlqNNpMdFGHIxqy85KTF+C86e+LCUv3xUynNbK/1yfBFY60sa2Hq0iS+syDf871FfYiIszMqIY6tkzsYNCc6E3zRY7SRFh/t1s2ygeNvpG7EvwYhOjV5zsuKJsJjYHODSxrJ6K7me4dO+IixmZmXGG5o501qzu6rFkOHTvVkxPY1dVS00BDj76FXZ1El9u52iITYD8TKbFDMmxhuaOXtrd42npNH/+ykCpSDTnWH0d2njk+vKsDtd3L4if9jHmDHRvVYZRg1byppYnJvs14sEuSnRlNUbX9bY3GFnb00r4WYTP3p1L5VNUjo52j307mHS4iK4ctGkgD7vwslJ7ChvDvr+aBEYEpwJv2m02sZEMxBwNxSICTcb0hSkJzhLjB7gngOLsJiZNykx4JmzsoYO8lJ7X//8SYkUV7XgNGh/XkVjJ61dDuYYvN/Ma8X0NLSGDw/X++X4A9nu2e82f1LisI/h7dhoVOnUa7tqmJoey/QJxsyUCwWTkqKJi7D4tWNju83B39cf5ZOzJzAlbfjnTjo2ulU3d1LV3MkiP+0383K30+80fLbchpJGtIaff6YQrTXffH6XYfuWReBtKWtkfUkDd5yVP6QOrEZYkJOE1e7kgJ8z/yI0SHAm/KbRah8zwZlSivy0WEOaLvQMoDaoTGdJbjK7q1ux2hyGHG8g3U4X5Y0dfQ5LnjcpgQ67k0O1xvwRKfY0AzGyU6OvOVkJJEWH8d6B4JQ2bi9vIjLMNKK9XQWZ8bR0dlPdMvI9kbWtXWwqa+TCMVTSCO4GOrMy/NsU5JlN5bR0dvOFFVNGdJy0uAiSosPGfcfGLZ49Nov81KnRKzc1Gq3dF4KMtKGkgagwMxcWZvK9C2ez7kgDT208auhziMD5w5rDJMeE87nTJgf8ub0z/mTf2fggwZnwmwarfUx0avTKTzOmnX5Vcwdmk2JCnDGNUhblJuF06YB1HKxs6sTp0qe00fcqmmRsU5DiqhbCzIrpE/2TxTGbFGdOS+P9Q3VBuaq9o6KZuVmJI+r6Ndtbslc18qzQm7uPoTVcNEa6NPqanRnP/po2w7K6vuwOF49/UMrS/ORhjUTwpZRi5sT4cd+xcUtZI9HhZmZl+LcpjbedfpnB7fTXHalnUW4S4RYTn10yibOmp/GzN/ZL2/5RaFdlM2sP1PH5M/KIDrcE/PmzEqOYEB8h887GCQnOhN+MpcwZuJuCVLd0jrjbW1VTJxPjIw1rwbsgJwmlAjeMurTenT3sK3OWmxJNQlSYYfPO9lS3MH1CnF8HIK+YnkZ9u91vw5z7YnM42VPVOuTh0yebOTEOpTBk/a/vqmHGhDimGdwZMxQUZMbT2e30y5vj/+yo4lhr14izZl4zJsZx8FjbuC6D21zWxILJSX5vV+5tp29kU5D6dhsHj7ezbEoq4A64f3HFXMLMim88t9MvFwiE//xh9WHiIy3ccPrQ5hYaRSnFwpwkaQoyTkhwJvzC4XTR3NE9Jtroe+WnxaD1yJuCVDV3GlbSCBAfGcasifEBDM7cm9r7Cs6UUsyblNgzu2sktNYUV7X4raTR68zp7jdQge7auLe6FbvTNeLgLDrcQl5qzIibghxr6WLz0cYxM9vsZN45eUbvO9Na89j7JczKiGfF9DRDjjkrI47ObifljeOziURrVzf7j7X6fb8ZQGJ0GPGRFkNnnW0oaQDg9CkpPbdNTIjkh5cUsPVoE098WGLYcwn/2n+slbf3Hufm5XnERQav+/SCyUlUNHZSa9BIHxG6JDgTftHU4Z5knzKWMmcGdWysauok24A2+r4W5yaxvbyZ7gB0ciqrtxIXaek3K1qUncDB42102Ee2D66yqZPmjm6/dWr0So+LpCAzPuDBmbcUdaRlcOAOPEa6n+rN3TVoDRcUjs3gbGp6LOFmk+Ez4TaXNXGotp2bl+catk8vEB0bN5Q00NLZ7bfjj8T28ma09v9+M3BfUMpNNbad/vojDcRGWJjjKTn2urQoi08VTOBX/z3o97EOwhh/WH2YmHAzNy/PDeo6evadSfZszJPgTPhFo9U7gHrsBGfeTNFIZp11O10ca+0yNHMG7mHUHXYn+wJQlldabyW/lzb6voomJ+LSUFw5sgyFN8Ph78wZuEsbtx1torUrcG9Wt5c3k5EQyYT44c3D8jU7I56q5k5aOoa//td31TBzYhxT08dOl0Zf4RYT0ybEGl6++szmcuIiLIbu05s+IRal/NexcVt5E9c8toHlD6zm52/tD/gg+4FsKWvEbFLDHjExVEbPOlt/pIElecmnlGQqpbj/skJiIy18/dmdAbmgJobvSF07rxfXcMOyXBKjg/t+piAzgXCLSfadjQMSnAm/aLC6/9CPpcxZdLiFjITIETUFOdbShUtjyABqX95h1JtK/V/aWOqZcdafedmJACNuUlJc1YLFpJgxgk6Gg7ViehoOl2bd4Qa/P5fX9oqmEZc0enmbggw38Khp6WTL0aYx2QjEV0Gmu2OjUWMHWjq7eaO4hk8XZRraKCA63EJOcrTfOjb+b+9xzCbFWdNTefS9Iyx/YDX3vbKH6mZjOxYO1+ayRmZnxBMbEZjmC3kp0VQ1dWJ3jDxYOt7aRUm9lWU+JY2+UmMjuP/SORRXtfDwmiMjfj7hP39cc5gIi4nPn5EX7KUQbjExLzuhp4upGLskOBN+0ZM5G0PdGsFd2nhkBGWNRg6g9jUxIZJJyVF+33fW1e2kuqWzz06NXimxEUxKjhpxU5DiqlamTYgLyEyZBTlJxEZYAlbaWN9uo6Kxk/mTjNlTMztjZMHZG8XHgLFb0uhVkJlAo9XOMYP2bbyys5qubhfXLDa+vfbMifF+K2tcvb+WxblJPHztQv73tRVcPC+TpzYcZcUv1/Ct53cZ3rlwKLqdLnZUNPeUcQVCTkoMLo0hg6LXH3Ff4Fma33twBnB+YQaXFGXy0OpD7Dagy6owXnlDB//ZUc3nluSQGhsa++cX5CSxu6plxI3JRGiT4Ez4xVgsawR3x8aSuvZhX3XvmXFmcOYMYOHkJHZW+PePfHljB1p/vP+uP0WTkkbUTl9rze6qFgqz4ge+swHCzCaWTUnh/YN1hmVV+uM9N0aVbaXFRZAeFzHsZhev7apmdkY8+SMYnjwaFPSMHTCmXPDfm8uZnRHPHD+8TmdMjKOswUqn3dg3YlXNnew/1sY5MycAMCUtll9dOY+1/28ln10ymZd2VHH2r9fyxX9tD8og7D3VrXR1u3oqAgIhNzUaMKZj47oj9SREhfVcMOnLDz9dQHJMOF97dofhA7DFyD3y3hHMSnHHivxgL6XHwslJdDu1BPRjnARnwi8a2t3BWVKQa7SNlp8WQ1uXgwZP8DlU3sxZph+Cs8LsRI61dvm1k5O3GcpAmTOAedkJVLcMfz01LV00Wu1+bwbia8WMNKqaOw0ZNj6Q7RVNWEyKOZnG/XyzM+OH1eyisqmD7eXNY7ZLo6+ZGfGGjR3YXdXC7qpWrlkyyS8Du2dlxKE1hjeOWL2/FoCzZ6WfcHt2UjQ/umQOH35rFbedlc/qfcc578EPuPXJLWwPYBOCLZ4KgEB0avTK7Zl1ZkDmrKSBpfnJmEz9vyYSo8P5+RVzOXi8nd++c2jEzzueGVGO6qu6uZPnt1Zw1eJsQ/YEG2WBJ5ss+87GNgnOhF80Wu0kRIUR5uf5NIHmzSoMd99ZVVMnqbERfinTm5vtfpNf7Mcraj3B2QB7zoCevVTD3Xfm/TkCGZydNc3dBv29g/V+f64dFc3MyognKty418LsjHgO17YP+Sr8m56SxgvHeEkjQGyEhdyUGEPa6T+zuZwIi4lL5mUZsLJTeTs2Gr3vbPW+4+SmRJPfx7/j9LhIvnP+LD769tl85dxpbC5r5LKH13Ht4xtYd6Te75nlzWWNTE6ODuib4uSYcOIiLBwdYeasorGDisZOTu+npNHXqpnpXLN4Eo+9f0TecA/TtvIm5v3wbb75/E7Dyv0ee78ErTFsbqFRUmMjyE2JltfKGDe23jmLkNFotY+pZiBe+SPs2Gj0jDNfBZnxmBTsHGGHxP6U1VtJiQknIWrgWS8FmQlYTGrYwdnuqhbMJjVgaZCRJiVHMyUtxu/7zpwuzc6KFoomJRp63ILMBBwuzaHjQ3t9vlZcw5ys+EEF3WPBbE9TkJHotDv5z/ZqLizMICHaP7OPJidHExVmZp+BpYUddgcfHWlg1cz0AbN9idHhfOXc6Xz07bP57gUzOXi8nc/9eSNXPLKONQdqDVuTL601W482sSiA+83A3UUxJzWashHOOlvfM98sddCP+d6Fs8hIiOIbz+00vIR1rGvp6OaL/9xOuMXEs1squeKRdVSMcDZgbVsX/9pUzuULsshOijZopcZZkJPEtvKmgJTfi+CQ4Ez4RYPVNub2m4G7HDHcYqJkmJvlq5qNn3HmFR1uYVp6HMUjbMLRn5J6a5/Dp08WGWZmZkbcsJuC7K5qYVp6bECagfhaMT2djSUNft1wfbi2nXabw7BOjV49HRuHEHhUNHaws6KZCwszDV1LKCvIjKeyaWRjB94orqHN5uDqxZMMXNmJzCbF9AmxhmbO1h1uwO5w9ew3G4zYCAu3nzWFD765ih9fUsDxVhs3/3Uza/YbH6CVNXRQ325nUQD3m3kZ0U5/w5EGUmLCmT5h8Hs34yLD+OWVcymtt/Lzt/aP6PmNUFZvHdHImEDRWvP/nt9JbVsXT96yhCduXERFYwcXPfThiF6bj39QSrfTxV0rpxq4WuOsmJ5Gfbudl7ZXBXspwk8kOBN+0Wi1j8ngzGxS5KXEDOsPl8ul/Zo5AyjMTqC4qsVvV9TKBtFG31fRpER2VbTgcg1tPVpriqtaKTBwP9ZgrZiRhs3hYkOJ/1rq76hwl6QYMXzaV05yNDHh5iHtp3qjuAZgzLfQ9+V9Xe2pGX6W+d+bK8hLjWFJnn+DCG/HRqP+Ta8+UEtMuHlY644MM3P96bms+cZKMhIieeLDUkPW5MvbcXZxAPebeeWlxFDZ1Dns2WNaa/d+sykpQ96DuGxKKjcty+Vv68pYd8T/ZdV90Vpz1Z/Wc/av3+Pc37zHL97az86K5iH/Dg+Ev60r4+29x/nWeTMpmpTIObMm8NoXzyQzMYpbntzMb945iHOI62602nlqw1E+PS8zZCsJLp6bycKcJH7y+r6e5mtibJHgTPhFo9VOyhhro++VnxYzrD1n9VYbdofLL50aveZmJ1DfbqemxfimIFabg9o226AzZ+Ced9Zmc1BSP7Rg9nirjfp2W8A6Nfo6LS+ZCIvJr6WN28ubSYwOIzfF2JIZk0kxKyN+SPupXi+uYV52ApOSQ698x196xg4Ms7TxcG07m8oauXqxfxqB+JoxMY5Gq506A4ZEa61Zva+Ws6anEW4Z/p//cIuJ65bm8OHheg7XGrsfbmtZEwlRYUwJQtfQnJRonC7d01V3qMoaOqhp6Rr0frOTfeu8meSlxvD/nttFW9fws7ojUd7YQW2bjQsKJzIhPoI/vV/CJX/8iGUPrOYHL+/mw0P1ITE4e1dlMz99Yx/nzko/YQbZ5JRoXrprGZfPz+b37x7ilr9tpmkIAcxfPiylw+7k7lWhmTUD9+/5n15WSGtnNz99Y1+wlyP8QIIzYTiXS9PU0T0mM2fgDs7KGzuG/AfKn230vQo9zTN2+WHfmbcZyFCCM2/Z3vYhttT3NgMpzA585iwyzMxp+Sl+D86KJiX65Y397Mx49tW0DepKd3lDB7sqW8ZFl0Zf3rEDww3Ont1SgcWkuGJBtsErO9XMDPcA9v01Iw+C9ta0cqy1i7Nnpg985wFcvXgS4WYTf19/dMTH8rX5aCOLcpIG7HToD95MSekwSxu9881O72P49ECiws386sq51LR0cv/rwXnTvc3TlfOeVdN4+talbP3+ufzmqnnMm5TAc1sruO6JjSz88Tt89d87eLO4BqvNEfA1tnZ1c88/t5MWG8Gvrpx3yu/RyDD3ebz/sjmsP9LARQ99SPEg/ia2dHbz5Loyzp8zkWkT4vy1fEPMmBjH7Wfl8/zWyqBmWoV/SHAmDNfS2Y3TpUmOCY2hjUbLS43F4dJD3nTsrwHUvmZlxGMxKYqrmg0/tncvxmDa6Hvlp8YSF2EZclOQ3VUtmJT75wmGFdPTKKmzjnhjeW/abQ4O1rYZNnz6ZLMz4mm3OagYxDDd1z0ljWN98HRvCobZFMTucPHC1krOnTWBtDj//46baWDHxtX73PtwVs4YeXCWGhvBRfMyeGFrpWFZnoZ2GyV11qDsN4OPf7cdHeae4vUlDUyIj+izC+ZgLMxJ5vazpvDM5gq/7OkbyPbyZqLDzcyY6A5OEqPDuXxBNn+6fhHbf/BJHrt+IZ8smMiaA7Xc+fQ2Fvz4HW59cjPPbq6gwYDs7kC01nznxWKqmjt56HPzSexjXI9SimtPy+HZL5yO1porHl3HM5vK+z3239eV0WZzcM/ZoZs18/Wlc6aRkxLN91/aLUOpx5gBgzOl1CSl1Bql1D6l1B6l1JdP+v43lFJaKTX41kRiTPPOABuL3Rrh4wHMQy1t7Mmc+TE4iwwzM31CnH8yZ3XeNvqDL38zmRRzJyUMuSnI7qoWpqTFEh1uGdLjjLJiurul/vuHjM+e7apoRmvjhk+fzLufajBZodeLqymalBiSHcn8rSAzgcN17UN+U/PuvuM0WO1cvcR/jUB8JceEkx4XYUjHxnf31zJvUqJhQeVNy3Kx2p08v7XSkONt8bQHD8Z+M4DU2HBiws3D6tiotWb9kQZOzx/6frOTffUT05g+IZZvvbCL5o7A7inaXt7MvOxEzL1kLqPCzXyyYCK/unIeW753Lv+6bSmfXTKZfTVtfPOFXSy+/39c9af1rDvsv0zO0xvLeX1XDd/45AwW5gwcxBdNSuS1L53Jktxkvv1icZ/t9tttDp74qJRzZqYHZa/zcESGmfnJpXMoqbfy8NojwV6OMNBgMmcO4Ota61nAUuBupdRscAduwCeA/i9HiHHFu0F1rJY1Tkn1zDob4j6qquZO4iItxEf6p+2211w/NQUpbbAyMT5yyAFT0aRE9te0DelNcHFVS0+JZjBMSYshKzGK9w4YH5xt92QRi7ITDT82wLQJsZhNasCsUFm9ld1VreOqEYiv2ZnxOF16yAOen9lcQUZCZM9MvECYMTFuxJmz+nYbOyubOceAkkavudmJzJ+cyN/XHzWkYcTWo02Em00BnW3oSylFTkrMsGadHa5tp77dNuySRl8RFjO/uaqIRqudn70RuO6NnXYn+2paB9VF1mI2cfqUFO77dAEffmsVr33xDO5ZNZVjLV1c/5dN/GODseWu4L7g9KPX9rJiehp3nJU/6Mclx4Tz5C1LuGfVVJ7dUslnHj213f7TG47S3NE9arJmXmdOS+PSokweWXvY8P2fIngGDM601jVa622ez9uAfYB34uZvgW8CodfGRwRNo9Vd2jBWg7OE6DBSYsKHlTnz534zr8LsBJo7uqloHN6m9r6U1luHlDXzmpediMOlB92kora1i9o2W9DeoIH7TdqKGWmsO+JuO26k7eVNTEmL8dtsrMgwM1PTYgfs2OgtaTx/HJY0grusERhSaWNlUwfvH6rjykWTes0s+MusjHgO1bbjGEEjhrUH6tAaQ/ab+brx9FxK6618YEC2ZHNZI3OzEwI+PsNX7jBnnXnnmy0bwnyz/szJSuCSoize2nMsYJ0Sd1e34HDpIXeRVUoxJyuBr31yBm98+UxWTE/jBy/v5r5X9ozoNevLanNwzz+3kRQdxm+umjfkPYlmk+Ibn5rB4zcs4miDp92+Z1Zfp93Jnz8o4cxpqYZ30A2E7180m+hwC999cXdIdtUUQzekPWdKqVxgPrBRKfVpoEprvdMfCxOjV09Z4xjt1giejo1D3JdQ1dxJth9LGr3meTIyuwzed1ZWbyUvdegd1LyDlgfbFGS3J4gLZnAG7tLGdpujZ4O8EbTW7KhopshP+828ZmfGD1jW+NquGhZMTgzIBYNQNCkpmrgIy5A6Wz63xV2+d9Ui/zcC8TVjQhx2h2tEM7hW7z/OhPiInqDUKBcUZpAaG8GT68pGdJyubie7q1qCtt/MKzclhorGjiEHFesON5CVGGVo19PTp6TQ0tnNwQBlRLYd9Y74SBz2MWIjLPz5hkV8/ow8/raujFv/vmXEexK11nz/5d2UNVj53TXzSYkdflnuubMn8Oo9Z5CREMktf9vMb985yD83lVPfbueeEO7Q2J/U2Ai+e8FMNpU18tzWimAvRxhg0MGZUioWeAH4Cu5Sx+8B/zeIx92ulNqilNpSV+e/7mcidDS2j+2yRnA3ugjVzNn0CXGEm02D6k41WM0ddpo6uskbRuYsPT6SzITIQTcFKa5sRSkMfxM5VMumpGAxKUO7NlY2dVLfbjd8+PTJCjLjOdba1ecG/SN17eyraeXCueNn8PTJTCbFrCE0BXG6NM9tqeDMaWkB36PX07FxmKWNdoeL9w/Wc/bMdMM7hIZbTHzutMmsOVA7rHJAr50VzXQ7NYtygpu5yE2JweHSVDcPfhyJy6XZUNpgSEmjryWeQHVzaaOhx+3L9vJmJidHkzqC4AfcWaofXDSbn15WyIeH6rnikVPLCIfiua2VvLS9iq+cO52lwxxT4Cs3NYaX7lrOZfOz+N27h/jJ63tZkpfMaQYcO1iuWjSJJXnJ/PSN/dQHoDGL8K9BBWdKqTDcgdnTWusXgSlAHrBTKVUGZAPblFITT36s1voxrfUirfWitLTA1eiL4Gmw2omNsBBhCV5pir/lpcVQ326jdZBXBFs6u2mzOfzaDMQr3GJiVoaxTUE+bqM/vNlDRZMTB90UpLiqhfzUGGIigtMMxCsuMowFOUmG7jvzZuH8HZz1zPHqo7TxjV3eLo2n/MoeV2ZnxLO/pm1Qg2o/OFRHdUsX1ywOTCMQX1PT3fsIh9tOf3NZI+02B2fPnGDwytyuPW0yZqVG1Fbf2wxkYZCDsxzP7MGhZCn3H2ujuaObZQYHZ5OSo5gQH8GmMuOy933RWrOtvMnQ302fO20yT96yhGMtXVz6x4/YenToQebB42383392s2xKiqGzx6LCzfz6ynn85NI5pMSE8/VPTDfs2MGglHv2WYfdwU9e2xvs5YgRGky3RgU8AezTWv8GQGtdrLVO11rnaq1zgUpggdb6mF9XK0aFRqt9TGfNgJ5WyYPNnn084ywwV9wLsxPYXdViWP25943KcDJn4C5trGjsHFSr5T3VLUEvafRaMT2NvTWt1LYZM9R7R0UzUWFmZvh5hs7szP6HLL9eXMOinCQyEsZnSaNXQWY8nd3OnosP/XlmUwXJMeGcO8s/AU5/Iixm8lNjhp05e3dfLeEWE8un+iczMCE+kvMLM3h2SwUd9uHNvdpc1si09FiSgvy3wzvrbCjBmXe/mdGZM6UUi3OT2VzaaHiDp5PVtLj3+s73lKEbZfnUVF66ezlxkRY++9hGXt5eNejHdtqd3P30NmIjLDx4TZHh+zyVUly3NIct3//EqM6aeU1Nj+XOlVN5eUc1H/ih07AInMFkzpYD1wNnK6V2eD4u8PO6xCg2LoKzNE/HxrrBdWwMxIwzX3OzEmmzOUa0R8VXaZ0Vk2LY+ym8++AGyp7Vt9uoaekKaqdGX96W+h8cNKY19PbyZgqzE7CY/TtiMjE6nKzEqF4zZ4dr29h/rG3cdmn05W2ZPdC+s7o2G//bd5wrFmQRbgnOeNAZE+PYP8x2+msO1LJsSopfR1PceHoObV0OXhrCm28vl0uz9WgTi4LUQt9XelwEUWFmyuoHX4a3/kg9uSnRfrnYsSQvmWOtXVQ2Gdvg6WTerP4CP2Qup6TF8tJdy5k/OZGv/HsHv3n7wKAuHN77ym4O17Xz4NXzSY+LNHxdY9FdK6eQnxrD917aTaddZp+NVoPp1vih1lppredqrYs8H2+cdJ9crbWMKBeAu6xxrM4485qcHI3ZpIaQOXP/oQ9U84XCbPebzuIqY0obSxs6yEqKGnapamF2AiYFOwZoCuJdb6hkzmZnxJMaG2HIvjObw8ne6sG1qTbCrIze91O9vusYSo3fLo2+pk2IJdxsGrB5yovbKnG4NFcHoaTRa1ZGPJVNnUNurlBS105pvdXQFvq9WZiTREFmPE+uKxtyludgbRttXQ4WDWJulb+52+lHD3r/nNOl2VjaaHjWzGuxZ9/ZRj/vO9te3kyExdQz9NxoSTHh/OPzp3HVomx+v/owX3xme7/jVV7aXsmzWyq5Z9VUzpgmY3QHKzLMzP2XFVLe2MFDqw8FezlimIJzCVCMaY1W25jPnIVbTExOjh5UORS4M2cRFhOpAepgOS09lgiLybB9Z2X1VnJTYob9+OhwC9MnxPXM+OrLHk9wNjvIzUC8TCbFWdNT+eBQ3aD2JfXnlR3V2J0u5vu5U6PX7Mx4SuraT7l6+npxNYtzk5kQL1eiw8wmpk+M7bcpiNaaf2+uYHFuElPT/VuO2h9vKexQ57Kt3u9uF77Kz8GZUoobl+Vy8Hh7T5nfYG0u8w6fDn5wBu6mIKWDDM72VLfQ1uXgdINa6J9sxoQ44iMtfm8Ksr28icKsBL9mhsMtJn5+xVy+c/5M3iiu4erHNlDbemrJeEldO997aTdLcpP58jnT/Laeser0KSl8ZmE2j71fMuxs+6j3i1/AmjUn3rZmjfv2UUCCM2EorbW7rHEMt9H3ykuN4cgQyhqzEqMM75TWF4vZREFmPLsG2YSjP1prSuutPfvshmv+5ER2VjT3e1W9uKqFvNQYvw/qHooV09No6ugedhbS4XTxwJv7+X/P76JoUiJnTQ/MVeDZGfG4NBzweTN/8HgbB4+3S0mjj9kZ8eytae3zdbm5rImSeitXL54c4JWdaLgdG9/dV8uMCXEB6TD56XmZJEWH8fd1Q2sMsqWskfS4CCYlh8YeyNxUdzv9wVyQWXfEHYguzfdPYGkyefadlfkvOLM5nOwOUFZfKcUdK6bw6HULOXisjUv/+NEJmeuubid3/3M7ERYTv/tskd9LwMeq710wi/ioML77YvH4nH22eDFcdRX84x9gt7sDs6uuct8+CsirXhiqzeag26nHfFkjuJuClDVYB/WLr6qpM2D7zbzmZieyu6p1xBmf+nY77TZHz0b54SqalEhrl6PfbOPuqtaQKWn0OnNaGkoxrK6NDe02bvzrJh597wifO20y/75jqV/3/fj6eMjyx0Hl67tqUArOmzO+uzT6KshMoNFq51gvV/ABntlUTlyEJeidLbMSo4iLsAypY2NrVzebyxo5e5Z/s2ZekWFmrl48mbf3HuvZZzsYW8rc+80CdfFqILkp0XQ7NdWD+BnWH2lganqsX/dELc5LpqTeSl2bf1qk76tpw+5wBXQA86cKJvLcF07HpeEzj67jf3uPA/CT1/eyr6aV31xVNO4bFo1EUkw4379wFtvKm/nnpvJgLyfwVq2Cf/0Lbr4Z5sxxB2bPPuu+fRSQ4EwY6uMZZyObkzIa5KfF0tXtorpl4D/g3sxZIM3NTqCz2zno7F5fPm6jP7LgbJ6nC1hfTUEarXaqmjspzAqNkkav5Jhw5mYl8N7B2iE9bmdFMxc/9CGby5r4xWfm8tPLCgM6XiI7KYq4SEvPVWmtNa8X13BaXrJsrvfRE8RWnVr+09LZzevFNXy6KDNgQXVflFLMmBjHgSFkzj44WI/Dpf2+38zXdUvdGcanNgwue1bd3ElVc2dI7DfzyvGUcB9t6L8pSLfTxeayRsNb6J/MW+65xU/ZM+/w6QUBDM7Avbf4P/csZ2p6LLf9YwtfeWY7T20o546z8v1ehjseXDY/i+VTU/j5W/t7LR8d8yorwemEQ4fgzjtHTWAGEpwJgzVY3cHZuMicpQ2unX5Xt5P6dntQgjNgxPvOygwKzqalxxEdbu6zKchubzOQzNDKnIG7tHFHRTMtHYNrxvDMpnKufHQ9Sile+MIyrloU+EYSSqmekj1wlzcerm0f14OnezMzIx6l6HXf2Ss7qrA5XFwT5JJGrxkT49h3rO8SzJO9u/84idFhAc2IZCdF84nZE3hmU3m/DR+8vPPNQmW/GUCuZ2TIQPvOdlU202F3crqf27AXZiUQGWbyW1OQ7RXNZCREMjEh8BdtJsRH8u/bT+f8ORN5eUc18ycn8o1PzQj4OsYipRQ/ubQQm8PFD18dZ7PPurvhO98BiwW+/3145JFT96CFMAnOhKGarN7M2fgJzgZqChLoNvpeeamxxISbKR7hvrPSBisWkxpxcGk2KQqzEtjRR1MQ756ughArawRYMSMNl4YPD/fflNbmcPKdF3fx7ReLWZKXzKtfPKOnc2YwFGQm9AxZfn1XDSYF5xVISaOv2AgLuSkxvbbTf2ZzBQWZ8UH9f+hrZkY8bV0OaloGvgrudGnWHqhj1Yx0w+dDDeTGZbk0dXTz6s7qAe+7payR6HAzszKC12zlZBPiIokMM3F0gN/t6z37zfw9IyvcYmL+pCS/7TvbbvDw6aGKCjfzh88u4A+fm8+fb1hEmOwzM0xeagxfOnsqrxfXsHr/8WAvJ3C+8x04dgx+9CP48Y/dJY1XXTVqAjT5FyAM1TiOgrO02AjiIiwDzjr7eAB1YIMzs0lRkJXArhG20y+tszI5JdqQjdlFkxPZW9OKzXHqFfXdVS3kpESTEBU6zUC85mUnEh9p6be0sbq5k6seXc+/NlVw18opPHnLkqD/O5jtM2T59V01LM1PIS1u7JccD9XszPhTZsLtrmphT3Ur1wSxff7JZk70NgUZuAPbjopmGq32oJSHnZ6fwvQJsTy5fuC2+lvK3IFBKDV+MJkUOckxlA1Q1ri+pIFZGfEB+Xe+OC+ZfTWtQx6lMJDaNvcMtUB1ke2LyaS4aG4mqbHy+8lot581hWnpsfzg5T3DHhI/qths8MQTMHMmfPvb7ttWrXIHaJs3B3dtgxQ6vw3FmNBT1jgOujUqpchLi6EkRDNnAHOzEthb3Uq30zXsY5Q1WMkbQRt9X/MnJdLt1L3Oldpd3RKSJY3g7n555rQ03jtY1+ubzXWH67nooQ85Umfl0esW8s3zZgY8W9Gb2Rnu/VQvbKukpN7KhdKlsVcFme4ZYr5lq//aVE6ExcSni7KCuLITzZg4+I6Nq/cfx2xSrJiW5u9lnUIpxQ2n57K7qrVnuHFvWru62X+sNaT2m3nlpERT1k9Zo83hZEtZk99LGr2W5Cbj0rD1aN/nczi2e8rMF+QkGnpcETrCLSZ+enkhVc2d/Padg8Fejv/95S/Q3Ay/+x34NhlatQq++c2gLWsoJDgThmq02ogMMwV983yg5KfGDLjnrKqpE7NJMTEIc6UKsxOwOVwcOj68piAul7uN/kj3m3n1NAU5qbSxucNORWNnyHVq9LViehrHW20ntKbXWvPoe0e47omNJMeE8597lodUJ8Sp6bGEmRV//agUs0lJSWMfCjwXBfbUuLPMHXYHr+yo5sLCjJDK5MZHhpGVGDWojo2r99exKCeJhOjgrP+y+VnERVr4Wz9t9beXN+PSobXfzCsvNYbyhr7b6W8vb8bmcPlt+PTJ5k9OxGxShpc2bi9vJsysev4NiLFpcW4yn10yib98VNazv3tM6uqC+++H5cvhE58I9mqGTYIzYagGq52UcdCp0Ss/LZaq5s5TBv36qmruZGJ8ZFDKduZlJwIMe97ZsdYubA7XiNvoe2UkRDEhPuKUfWe7PZ3yCkM4ODtrujsD4W2p325zcNfT23jgzf2cN2ciL9+9nClpscFc4inCLSamT4ijq9vFsikppEjJUK+8GUZvRveN4mO02RxcHUIljV4zB9Gxsbq5k301rZwToBb6vYmJsHDVokm8WVzTZ6e4rWWNmJS73DnU5KTEYHe6+hyxsP5IAyYFS/ICE1jGRFiYkxnP5lKjM2dNzM6IJzIscJ1kRXB8+7xZJEWH850Xi3vdWjAmPPYYVFW595mFyGiO4ZDgTBiq0WoP+j6bQBpMU5CqpsC30ffKSYkmLtIy7H1nRnVq9DUvO/HU4MzTjGFOiLXR9zUxIZKZE+N472Adh2vbufSPH/HfPcf47gUz+ePnFhAbEZrZYm/gcWGhlDT2JS0ugvS4iJ7g7N+by8lPjQnYG++hmDExjiN17dgdfZcqr97v3ht59swJgVpWr65fmoNTa57e2Pucpc1lTczOjA/Jfzu5Ke6OjX01BVl/pIE5WQkBzawuyUtmR0XzoLpgDobD6WJXZUtAu3mK4EmIDuMnl86huKqF/3t5z6C7vo4aHR3ws5/BypWjqm1+byQ4E4Yad8FZqjtT0m9w1hz4AdReSinmZidQPMx2+iV+CM6KJidS1tBBc4e957biqhayk6JIjA7t185Z09PYXNbIpX/8iEarnac+fxq3nzUlZIbn9ub0KSnER1r4pJQ09qsgM5491a0crm1nc1kTVy+eFJL/X2dmxONw6X7nF67eX8vk5GimpBn373Y4clNjWDk9jX9uKj8lmOx2uthe0RSS+80Acjy/83prp99pd7K9InD7zbwW5yZj9wRURjhwvI3ObmdQOzWKwDpvzkTuWTWVf2+p4Ml1ZcFejrEeffTjDo2jnARnwlAN7fZxMePMyzsPp6+OjQ5PWUywMmcAhVmJ7D/We4fEgZTVW4mwmAzdL1fkKbX0zZ7trmoJ6ZJGr1Uz0ul2aqakx/LaF89g2dTUYC9pQJfNz2Lz988dVxdNhqMgM4HDde38fX0ZFpPi8gXZwV5Srwbq2Nhpd/LR4XrOnpkeEsHljctyqWuz8ebumhNu31PdSle3i0W5oZm1yYiPJNxi6nUQ9dajTXQ7NUsDtN/My7s3z6h9Z9u8zUAkczaufO0T0zl31gR+/Po+PhpgPMyo0d4ODzzg3md25pnBXs2ISXAmDDXeMmfR4RYyEyL77Nh4rLULp0sHLXMG7mHU3U494D6V3nibgZgM7DxYmJ2AUrCzwn31t6Wzm6MNHSHdDMTr9CkpvHDn6Tx7x1IygxhwD4VSigiL7CcZSEFmPE6XuwTv3FkTQnbkQF5qDOFmU58dG9cdqcfmcAV1v5mvs6alkZcaw99Oukq/xRNghGrmzN1OP7qntNvX+pJ6LCYV8EYmSTHhTEuPZZNBw6i3lzeRGhtOdhD/PonAM5kUv716HvmpMdz9z20cHWDY+qjwxz9CXR388IfBXokhJDgThum0O+nsdpI8Dtro+8pPi+0zcxasGWe+vBmp4ZTClDZYyTWojb5XXGQY09Jj2VHh3ti+p2e/WegHZwALc5Il2BmDZme69+Y5XZqrl4ReIxCvMLOJKemxfXZsXL2/lphwc8jslzOZFNcvzWF7efMJjYm2lDUxKTmKiQmB72I7WDkpMb1mztYdaWBudkJQ9sotzktm69GmPrtIDsWO8maKJiWFRIZVBFZcZBiP37gIreG2v2+h3TaK55+1tsIvfgHnnw+nnx7s1RhCgjNhmAarDWBclTWCuylISZ211821wZxx5pWdFEVSdNiQ9505nC4qGjvI88O+FW9TEK11T1vf0VDWKMauSUnRxEW4M+FnBWE22FDM6qNjo9aa1ftrOXNaWkhdQPjMomyiw8086Wmrr7Vmy9FGFodo1swrL9U968zlEwi12xzsqmwJWAv9ky3JTabd5mBfzcCDyPvTZLVTUm+V+WbjWE5KDA9fu4AjdVa++u8dJ7zOR5Xf/x4aG8fEXjMvCc6EYRo9A6iTx1ErfXDPOmuzOahvt5/yvVDInCmlKMxOHHLHxqrmTrqd2rAB1L6KJifS1NFNRWMnxVWtZCVGjatyWBF6TCbFNz41g/+7uCAkBoj3Z8bEOI61dp3QVAdgX00bNS1dnB0iJY1e8ZFhXLEgm1d3VdPQbuNoQwf17XYWhuh+M6+clBhsDhfH2z5up7+5rBGnS7NsSnD2m3ozoiMtbfTu+Z0/KbT/Hwj/Wj41le9fOIt39h7nt/8bhQOqm5vh17+GT38aFi0K9moMI8GZMExDT3A2vt5k53tmW/VW2ljV3ElqbHjQZ8jMy07g4PG2fuexnczbgdKoGWcnricRgO0VTeypagnpFvpi/LhxWW5IDRHvy0zPeIST952t3n8cgJUzQi/zd+OyHOwOF89sruhpaBGKw6d9eUu6y+o/Lm1cf6SBcLOJhTnBCWoyE6PISowacVOQ7eVNmJR7T7IY325alsvViybx0OrDvLarOtjLGZoHH3QHaGNkr5mXBGfCMI2ezNF4K2v0tpnvrSlIVXPwZpz5KsxKwOnS7B1CKUypH9roe82cGEdkmImPDtdTUm9lTqa8QRBisHo6Np707/nd/bXMy04gPS709nFNTY/jjKmpPLXhKBtKGkmICmNqiA1tP1mOZ9ZZmU/DhPVHGiianBjUC25L8pLZXNY4ojlV2yuamTExnpgQnDEnAkspxY8uLWBhThLfeG5nz1aDkNfYCL/9LVxxBRQVBXs1hpLgTBimp6xxnDUEyUqMIsJi6j1z1hS8GWe+5noyVcU+G/IHUlZvJTbCQqof/n9azCYKsxJ4dae7vfYcuXorxKClx0WQFB3GgeMfZ84a2m3sqGgO+uDp/txweg41LV38Z0cVC3OSDO0C6w+ZiVGEm009wVlLRzd7qlsCPt/sZItzk6lvt/c7X7M/LpdmR3kzC2S+mfCIsJh59LqFJEWHc/vft1Dfbgv2kgb2619DWxvcd1+wV2I4Cc6EYRqsdsLMirhxdiXOZFLkpbqbgvjSWodM5mxCfARpcRFD2ndW4mmj769OXvOyE+nsdpdZSuZMiMFTSjFjYhz7fDo2rj1Qh9aETAv93pwzawLZSVE4XDpk55v5MpsUk5KjOOopa9xY2oBLw7IgNQPxWpLnPnfDLW08UtdOm83BfJlvJnykxUXw2PWLaLDaufOpracMjg8p9fXwu9/B1VfDnDnBXo3hJDgThmm02kiOCR+XbXnz02JOKWusb7djc7hCIjhTSjE3K2FIHRvLGqx+2W/mVeS5ajsxPjJkZ0oJEapmTozn4PG2ng5rq/fXMiE+goLM0N2/afa01Qd318HRIDclpidztr6kgQiLqed3V7BMSYslOSacjcNsCrKt3D3GZL5kzsRJCrMT+OWV89hc1sS9r+weUemsX/3iF9DZCffeG+yV+IUEZ8Iw7gHU4/NNdn5qLOWNHXQ7P77S9HEb/ehgLesEhdkJHK5rxzqIeSY2h5Oqpk7yUvy3dm9TkNEy30yIUDJzYhwddicVTR3YHS7eP1jHqhnpIX9x7ObleTxx46KgNdQYqtxU96wzrTXrjzSwKDcp6GMKlFIszk0aduZse3kzCVFhfunEK0a/T8/L5K6VU/jXpgr+seFosJdzquPH4Q9/gM99DmbODPZq/EKCM2GYBqt93DUD8cpLjcHp0pQ3ftzVKxTa6Puam52A1rCneuCmIBWNHbg0fplx5pWdFMWK6WlcODf0u+MJEWp8OzZuKWukzebg7JmhW9LoFW4xcc6sCSEfRHrlpkTT2e1kX00b+4+1Ba2F/skW5yZT0djJsZauge98ku3lzcyfnBjye/5E8HzjkzM4Z2Y6P3x1L+uO1Ad7OSf6+c/Bbof/+79gr8RvJDgThnFnzsZncJbvCWJ8951VNbsDtVBoCAJQmJUIwK5BNAUp9eyxyPXjlVWlFE/esoTL5mf77TmEGKumT4hFKdhf08bq/bWEW0wsnxoagcNYkuP5HfjslgoAlga5GYhXz7yzIWbP2rq6OVjbJvPNxptf/ALWrDnxtjVr3Lf3wmRSPHhNEXmpMdz99DYqfC48B1V1NTzyCNxwA0ybFuzV+I0EZ8Iwje3jOTg7ddZZVVMncREWEqLCgrWsE6TFRZCZEMmuQew7K613/xz+aKMvhBi56HALOcnRHDjeyur9tZyenyJt0f3Ae4HqxW2VRIebQ2Yu2OyMeGLCzWwe4r6znRUtaC37zcadxYvhqqvgjTdg7Vp3YHbVVe7b+xAXGcbjNyzCpeG2v28Z1JYIv/vZz8DhgB/8INgr8SsJzoQhbA4nbTbHuC1rTIgKIzU2/KTMWWi00fdVmJ1A8SA6NpbWd5AUHUZi9Pj8/ynEaDBjYhwfHHLPCgzlLo2jWWZiJGFmRWuXgyV5yYSZQ+Ntk8VsYkFOEpuGGJxt9zQDmTcp0Q+rEiFr1Sp49ln3TLBzz4XLL3d/vWpVvw/LTY3hD5+bz8HjbXzt2R09DYiCoqICHnsMbrkF8vKCt44ACI3fMmLUa7J2A+Nvxpmv/NTYE+bOVDaFRht9X3OzEymtt9LS2d3v/co8bfSFEKFr5sR42rrcV7NXzZDgzB8sZhOTPE2dgj3f7GRLcpM5cLyN5g77oB+zvaKZaemxIVPRIQJo1Sq4+25wOt17tnJzB/WwM6el8b0LZ/PfPcd58N1D/l1jf+6/H7SG730veGsIEAnOhCEarO6BheM1cwbedvo+ZY2hmDnzdEbcM0D2rLTev230hRAjN3NiHODefzYpOTS6wo5FOZ6utacHeb7ZyRZ79p1tKWsa1P211mwvb5KSxvFqzRp48km46y53G/pVq6BlcON1blmey5ULs3l1ZzUd9iCUN5aVwRNPwG23weTJgX/+AJPgTBii0eq+cjdeW+mDe39Wfbudls5uWru6aetyhFzmzBuc9TeMusPu4Fhrl7RZFiLEeTs2rhoFXRpHs8KsBNLjIijIDI39Zl5FkxIJM6tBt9Q/2tBBU0e3DJ8ej7x7zJ59Fv74R/jVr+DoUXeJo2PgYEspxU8um8PLdy0nOjxAe1t9m5j85CdgNsOKFX02MRlLJDgThvg4OBu/pRK+TUF62uiHWOYsKSacSclR/Q6jLvN0avRnG30hxMjlpkTziyvmcvuZ+cFeyph2z9nTePurZ2EOsdbzkWFm5mYnDrpjowyfHsc2bz5xj9nXvgbf+AZs2QJf/rK7XHAAERYzCdEBfI/nbWLy1FPwt7/BhRe6yzL7aWIyVkhrJ2GIhnbJnPm20/fW84da5gxgblYiu6qa+/x+WYN735w/2+gLIUZOKcVViycFexljXrjFRLglNEv2F+cm8/gHJXTanUSF9z8ce3t5M7ERFqalxwVodSJkfPObp972y1+CUu7/zpgBX/pS4NfVn/x8uO46uPlm9zrXroXnnx+wiclYIJkzYYhGqx2TgsRxvMl4cnI0FpOipL6dqubQzJyBu2NjRWMnTdbeN5F7m5pIQxAhhAhtp+Ul43Dpni6M/dle0cS8SQkhlwEUQfTAA3DppfDVr8Lrrwd3LXY7rF7tzugVFLgbljz4IMTEuEsv7757XARmIMGZMEiD1U5SdDimcfxLP8xsYnJyNKX1VqqaOwm3mEgNwUyid05PX/vOSuutpMdFyMwkIYQIcQtyklBq4GHUnXYn+2pk+LQ4icnkLhssKoJrroFdu4w9/kDDr73t8S+7DFJS4Jxz4KGHIDMTfvMbdzljWJh7rtkjj5x6rDFKgjNhiEarbdwOoPaVnxZDSZ2VKk8b/VAMVud4moIUVzb3+v0y6dQohBCjQkJUGDMnxg/YFGRXZTNOl5b9ZuJUMTHwyisQHw8XXQTHjhl3bO++MW9Q9c477kBs2zYoLHR3XrzjDvfX110H//kPNDS471dU5M6iPfss/OhH7v/6HmsMk+BMGKLRapfgDHcpYGm9lYqmjpDcbwYQHxlGfmoMu/poClJabyVfgjMhhBgVluQmse1oM91OV5/32V7RDLg7PApxiqwsePVVd2B0ySXuVvtGWLUK/v1vd+nkrFnwqU+52/e/+CKkp7u7Ru7Z426V/8gj8OlPQ6y7udopTUy8g7Q3bzZmbSFMgjNhiAarnZRxPIDaKz8tFpvDxd7q1pANzsC976y4l7LG1q5uGqx2yZwJIcQosTgvmc5uJ3uqW/u8z/byJnJTokmJDb1SexEiFiyAf/7THfzceCO4+g72B+3dd+E734HWVti/H+bPh5decgeB774LX/86zJ7tbvhxsm9+89Q9ZqtW9d7cZIyR4EwYQjJnbt6Mk8OlQ7IZiFdhVgI1LV3UtnWdcHuZNAMRQohRZUmuexj1ptKGXr+vtWZbebPMNxMDu+QS936w556D//u/4R9n82b3DLVzz3VnxWJj4Xvfg/JySEiAOOkY2h8JzsSIOZwumju6x3UbfS/vrDMIzTb6XnOzEwHYfVL2TDo1CiHE6JIeH0luSjSbSnvv2Fjd0kVdm032m4nB+frX4dZb4f774e9/H9pj9+2DK66AJUvczUXuvtudgXvlFfcg6XG0b2wkJDgTI9bU0Q1AimTOSI0NJy7S3eUwlDNnBZnxKMUp+85K660o5R4LIIQQYnRYnJvMlqONuFynDhPedtQzfFo6NYrBUAoefhjOPtsdpH3wwcCPKS+HW26BOXPczTx++EM4csTd8GOc7hsbCQnOxIg1Wr0DqCU4U0r1lDaGcuYsJsLC1LRYinsJzjIToogM63+YqRBCiNCxOC+Z5o5uDte1n/K97eXNRIaZmJkhpWRikMLC3AOf8/Lc3RUPH+79frW18JWvwLRp7v1qX/0qlJS4SyLj4sb1vrGRkOBMjFiD1QZI5swrPy0Wk4KJCZHBXkq/5mYnsrOyBa0/vtJaVm+VkkYhhBhlPt53dmpL/e0VTczNSiTMLG/5xBAkJbkHU3d0uLNoTT5ls6+95t5PNmWKey7ZDTfAoUPu7oupqcFb8xgh/1LFiPVkzqRbIwDXLZ3M//vUzJD/Qzg3O4H6dhvHWt1NQbTWlEpwJoQQo05OSjTpcRGnzDuzOZzsqWqV/WZieKZOhZ/+1D0s+pxzoK0N7rrL3fL+3Xfh/PNh7174859h0qRgr3bMsAR7AWL0k7LGEy3MSWZhTnKwlzGgwmz3MOpdlS1kJETRaLXT2uWQNvpCCDHKKKVYnJfMptJGtNYoT2vyPdWt2J0uCc7E8H3lK+7B1D//OSQng8MBixbBo4/CwoXBXt2YFNqX9sWo0NDuDs6SoiU4G01mZ8RjNqmefWdlDe5OjTKAWgghRp8lucnUtHRR2fTxAOHt5c0A0kZfjMwDD7j3ijkccP317oYeEpj5zYDBmVJqklJqjVJqn1Jqj1Lqy57bf6yU2qWU2qGUelsplen/5YpQ1Gi1kxAVFvJlfOJEkWFmpk+IY5ennX5JnTs4k8yZEEKMPos9+858Sxu3lzeRlRjFhPjQ3gMtQtyaNVBcDD/4Abz5prTC97PBvJt2AF/XWs8ClgJ3K6VmA7/UWs/VWhcBrwEjmFYnRrNGq12agYxSc7MSKK5sRmtNWYMVs0mRHcIjAIQQQvRuxsQ44iItJwVnzRRJSaMYiTVr3LPJnn0WfvQjmVUWAAMGZ1rrGq31Ns/nbcA+IEtr3epztxjg1OEaYlxosNpkv9koVZidQFNHN5VNnZTVdzA5OVoyoEIIMQqZTYpFOUk9HRtrW7uoau5k/qTE4C5MjG6bN8ussgAbUkMQpVQuMB/Y6Pn6fuAGoAVY1fcjxVjWaLWTmyKlcKPRXE9TkOKqFkrqreSmyPBpIYQYrZbkpbDmQB317Ta2efabLciR/WZiBHqbSbZq1anzy4RhBn2JXCkVC7wAfMWbNdNaf09rPQl4Grinj8fdrpTaopTaUldXZ8SaRYhptNpJkTb6o9KMiXGEm03srGj2zDiLDfaShBBCDNOSPHcgtqWske0VTYSbTRRkxgd5VUKIoRhUcKaUCsMdmD2ttX6xl7v8E7iit8dqrR/TWi/SWi9KS0sb/kpFSHK5NE0d3VLWOEpFWMzMzIjjnX3H6ex2kpcqmTMhhBitCrMSibCY2FTaxPbyZmZnxhNhMQd7WUKIIRhMt0YFPAHs01r/xuf2aT53+zSw3/jliVDX0tmN06VJjokI9lLEMBVmJUinRiGEGAPCLSaKJiWyvqSBXZXNMt9MiFFoMJmz5cD1wNmetvk7lFIXAA8opXYrpXYBnwS+7M+FitDU4BlALd0aRy/vvjOAPAnOhBBiVFuSl8y+mla6ul0skPlmQow6AzYE0Vp/CKhevvWG8csRo02jJziTssbRqzArEXBfcc1MkDb6Qggxmi3JS+75XDJnQow+Q+rWKMTJGq02QIKz0WzahFgiLCZyUqIxmXq7DiOEEGK0WDA5CbNJkRwTTlaiXHATYrSR4EyMSE9Zo3RrHLXCzCbOmp7GhHjZNyiEEKNdTISF0/NTmJgQibttgBBiNJHgTIxIY7uUNY4Ff75hUbCXIIQQwiB/u3mxBGZCjFISnIkRabDaiY2wSKteIYQQIkRYzIMeYyuECDHyr1eMSKPVLlkzIYQQQgghDCDBmRgRCc6EEEIIIYQwhgRnYkQarHaZcSaEEEIIIYQBJDgTI9JotUnmTAghhBBCCANIcCaGTWvtLmuUNvpCCCGEEEKMmARnYtjabA66nVrKGoUQQgghhDCABGdi2D6ecSbDi4UQQgghhBgpCc7EsDVY3cGZZM6EEEIIIYQYOQnOxLA1Wr2ZMwnOhBBCCCGEGCkJzsSwNVptgARnQgghhBBCGEGCMzFsPWWN0q1RCCGEEEKIEZPgTAxbY7udyDAT0eGWYC9FCCGEEEKIUU+CMzFsjVY7KdKpUQghhBBCCENIcCaGrcFql/1mQgghhBBCGESCMzFsjRKcCSGEEEIIYRgJzsYRrTWv7KymydPIY6TcZY0SnAkhhBBCCGEECc7Gkdd21fClf23n8Q9LDDleg9UmmTMhhBBCCCEMIsHZONHW1c2PX9sLwJr9dSM+XofdQVe3i2Rpoy+EEEIIIYQhJDgbJx783yHq2m1cUDiRvTWtHGvpGtHxGto9M84kcyaEEEIIIYQhJDgbB/Yfa+Vv68q4ZvFkvnTONADeO1g7omM2evatJUsrfSGEEEIIIQwhwdkY53Jpvv/SbhKiwvjmp2YwY0IcGQmRIy5t/Dg4k8yZEEIIIYQQRpDgbIx7YVslW4428e3zZpIUE45SipUz0vnwcD12h2vYx22wSlmjEEIIIYQQRpLgbAxr7rDzwJv7WZiTxGcWZvfcfvbMdNptDraUNQ772I1WG4A0BBFCCCGEEMIgEpyNYb/87wGaOuz8+JI5mEyq5/ZlU1IIN5tYc2D4+84ard2EmRVxERYjliqEEEIIIcS4J8HZGLWzopl/birnpmV5zM6MP+F7MREWTstPZs2B4e87a/TMOFNKDXxnIYQQQgghxIAkOBuDnC7N91/eTVpsBF/9xLRe77NyRjqHa9upaOwY1nM0Wu3SqVEIIYQQQggDSXA2Bv1zUznFVS18/6LZxEWG9XqfVTPSAFg7zNLGBqtdmoEIIYQQQghhIAnOxpj6dhu/fGs/y6akcPHcjD7vl58WS25K9LBLG92ZMwnOhBBCCCGEMIoEZ2PMz97YT2e3kx9dMmfA/WArZ6Sz7kg9Xd3OIT9PY7sEZ0IIIYQQQhhJgjOg0z704CQUbSpt5IVtldx2Zj5T02MHvP+qmel0dbtYX9IwpOexOZy02RxS1iiEEEIIIYSBxn1wduNfNvGVf28P9jJGrNvp4gcv7yYrMYp7zp46qMeclpdMZJiJtfuHtu+sydoNyIwzIYQQQgghjDTug7Np6bGs3l9Lk9Ue7KWMyN8+KuPA8TbuvXg20eGDmz0WGWZm+ZRU1hyoQ2s96Odq8AyglsyZEEIIIYQQxhn3wdnlC7Lpdmpe2Vkd7KUMW01LJw/+7yBnz0znE7MnDOmxq2amU97YQUm9ddCPafQEstJKXwghhBBCCOOM++BsdmY8szLieWFbZbCXMmw/eW0fDpfmvosLhjwUeqWnpf6aIZQ2fhycSeZMCCGEEEIIo4z74AzgigVZ7Kps4dDxtmAvZcjeP1jH68U13L1qKpNToof8+OykaKZPiGXNEOadNbS7gzMpaxRCCCGEEMI4EpwBlxRlYTYpnh9l2TObw8m9r+whLzWG28/KH/ZxVs1IZ1NpI+02x6Du32i1YzYpEqJ6H3AthBBCCCGEGDoJzoC0uAhWTk/j5e1VOF2Db4wRbI+9V0JpvZUffrqAyDDzsI+zckY63U7NR4frB3X/BqudpOgwTKahlVAKIYQQQggh+ibBmccVC7M53mobdIASbBWNHfxhzWEuLMzgrOlpIzrWotwk4iIsrB1kaWOj1Sb7zYQQQgghhDCYBGce58xKJyEqbFQ0BtFac+8rezCbFN+/aNaIjxdmNnHm9FTW7B9cS/1Gq12CMyGEEEIIIQwmwZlHhMXMxfMy+O+eY7R1dQd7Of16Z+9xVu+v5SvnTiMjIcqQY66ckc6x1i721QzcFKXBaidF2ugLIYQQQghhKAnOfFy+IJuubhdvFNcEeyl9sjtc/PDVvUyfEMvNy/MMO+5KT2nkYLo2SuZMCCGEEEII4w0YnCmlJiml1iil9iml9iilvuy5/ZdKqf1KqV1KqZeUUol+X62fzZ+USH5qDC9srQr2Uvr00vZKqpo7+e4FswgzGxdbp8dHMicrfsB9Zw6ni+aObpIkOBNCCCGEEMJQg3l37wC+rrWeBSwF7lZKzQbeAeZorecCB4Hv+G+ZgaGU4oqF2Wwqa6S8oSPYyzmF06X503slFGTGs2KETUB6s2pGOluPNtHS0XdZZ5PnezLjTAghhBBCCGMNGJxprWu01ts8n7cB+4AsrfXbWmvvYKwNQLb/lhk4l83PQilCsjHIf/cco6Teyl0rp6KU8W3sV81Mx6Xh/UN1fd6n0eoeQC1ljUIIIYQQQhhrSHVxSqlcYD6w8aRv3QK8adCagiozMYplU1J4cXvloDoXBorWmofXHiY/NYbz5kz0y3PMy04kKTqs331nDVYbIJkzIYQQQgghjDbo4EwpFQu8AHxFa93qc/v3cJc+Pt3H425XSm1RSm2pq+s7IxNKrliQTUVjJ5vLmoK9lB4fHKpnd1Urd6zIx+yn4c9mk2LF9DTeO1CHq49h3D2Zs1gJzoQQQgghhDDSoIIzpVQY7sDsaa31iz633whcBFyr+0gzaa0f01ov0lovSkszfp+UP5w3ZyIx4WZe2Bo6pY0Prz3MhPgILp2f5dfnWTUznQarnV1VLb1+X8oahRBCCCGE8I/BdGtUwBPAPq31b3xuPw/4FvBprXXodc8YgehwC+cXZvB6cQ2ddmewl8O28iY2lDRy25n5RFjMfn2us6alYVKwZn/vpY0N7e7gLClagjMhhBBCCCGMNJjM2XLgeuBspdQOz8cFwB+AOOAdz22P+nOhgXb5gizabQ7e3nss2Evh4TVHSIwO47NLJvv9uZJiwpk/OanPlvqNVjsJUWGGtvEXQgghhBBCgGWgO2itPwR62+T0hvHLCR1L81LISozi+a2VXFLk31LC/hw41sb/9h3ny+dMIyZiwP9dhlg1I41fvX2QujYbaXERJ3yv0WqXZiBCCCGEEEL4gaQ/+mAyKS5fkMVHh+s51tIVtHX86b0jRIebuWlZbsCec+WMdADeO3hqA5cGq032mwkhhBBCCOEHEpz14/IF2bg0vLS9KijPX9HYwX92VvPZJZNJCmBAVJAZT3pcRK8t9RutdgnOhBBCCCGE8AMJzvqRlxrDwpwkXtwWnJlnf/6gBJOCW8/MC+jzKqVYOSON9w/W4XC6Tvheo9VOirTRF0IIIYQQwnASnA3gigXZHKptp7iP1vL+Utdm49+bK7h8fjYZCVEBfW6AVTPSaetysK28uec2l0vT1NEtmTMhhBBCCCH8QIKzAVw4N4NwiyngM8/++lEpdqeLO1bkB/R5vc6YlorFpE4obWzp7Mbp0iTHRPTzSCGEEEIIIcRwSHA2gISoMD45ewKv7KzG7nAN/AADtHZ184/1R7lgTgb5abEBec6TxUWGsTg3+YR5Zw2eAdTSrVEIIYQQQgjjSXA2CFcszKapo5vVfQxmNtpTG47SZnNw58opAXm+vqyamcb+Y21UN3cC7v1mgJQ1CiGEEEII4QcSnA3CmVNTSYuL4IVt/i9t7Op28pcPSzlzWipzshL8/nz9WeVpqb/2gLulfqPVBkhwJoQQQgghhD9IcDYIFrOJS4syWbO/loZ2m1+f67ktFdS327lr5VS/Ps9gTE2PJSsxqmffWU9Zo3RrFEIIIYQQwnASnA3SFQuzcbg0r+ys9ttzOJwu/vR+CfMnJ7I0P9lvzzNYSinOnpnOR4frsTmcNLZLWaMQQgghhBD+IsHZIM2cGE9BZrxfSxtf21VDZVMnd62cilLKb88zFKtmptFhd7K5tIkGq53YCAsRFnOwlyWEEEIIIcSYI8HZEFyxIJvdVa0cONZm+LFdLs0ja48wfUIs58xMN/z4w3V6firhFhOr99fSaLVL1kwIIYQQQgg/keBsCC4pysRiUrzoh+zZ6v21HDjexp0rp2AyhUbWDCAq3Mzp+SmsPSDBmRBCCCGEEP4kwdkQpMRGsHJGOi9tr8LhNG7mmdaah9ceJjspiovnZhp2XKOsmpFGSb2V3dUtMuNMCCGEEEIIP5HgbIg+szCL2jYbHx6uN+yYG0sb2VbezB1n5WMxh97/klWeMsvmjm7JnAkhhBBCCOEnoRcJhLhVM9NJiArjhW1Vhh3z4bVHSI0N58pFkww7ppFyUmLIT4sBIFna6AshhBBCCOEXEpwNUYTFzKfnZfL2nmO0dnWP+Hi7q1p4/2Adt5yRR2RY6HZB9A6klrJGIYQQQggh/EOCs2G4YmE2NoeL13fVjPhYj7x3hLgIC9ctzTFgZf7jDc5SYyOCvBIhhBBCCCHGJgnOhmFedgJT0mJ4YevIujaW1lt5s7iG607PIT4yzKDV+ceyKSk8cHkhnyyYGOylCCGEEEIIMSZJcDYMSimuWJjNlqNNHG2wDvs4f3rvCGFmE7cszzNwdf5hMimuWTKZ2AhLsJcihBBCCCHEmCTvtIfpsvlZ/PK/B/jasztZMDmRtLgI0uIiSI11/zctNoKk6PA+Z5Yda+nihW2VXLN4MmlxUioohBBCCCHEeCfB2TBlJETx+eV5/HfvMf6x4Shd3afOPTObFCkx4ScGbZ7Ptx1twqXh9rPyg7B6IYQQQgghRKiR4GwEvn/RbL5/0Wy01rTbHNS326lrs3k+uj7+ut1GfbuNg8fbqGuz4XBpAK5YkM2k5Ogg/xRCCCGEEEKIUCDBmQGUUsRFhhEXGUZeaky/93W5NC2d3TRYbWQnSWAmhBBCCCGEcJPgLMBMJkVSTDhJMi9MCCGEEEII4UO6NQohhBBCCCFECJDgTAghhBBCCCFCgARnQgghhBBCCBECJDgTQgghhBBCiBAgwZkQQgghhBBChAAJzoQQQgghhBAiBEhwJoQQQgghhBAhQIIzIYQQQgghhAgBEpwJIYQQQgghRAiQ4EwIIYQQQgghQoDSWgfuyZSqA44G7AkHLxWoD/YixgE5z/4n5zgw5Dz7n5zjwJDz7H9yjgNDzrP/yTk2To7WOq23bwQ0OAtVSqktWutFwV7HWCfn2f/kHAeGnGf/k3McGHKe/U/OcWDIefY/OceBIWWNQgghhBBCCBECJDgTQgghhBBCiBAgwZnbY8FewDgh59n/5BwHhpxn/5NzHBhynv1PznFgyHn2PznHASB7zoQQQgghhBAiBEjmTAghhBBCCCFCwKgLzpRS5ymlDiilDiulvu1z+7+VUjs8H2VKqR29PLZIKbVeKbVHKbVLKXW1z/fylFIblVKHPMcK7+P5b/Tc55BS6sahPn40COY5VkrlKKW2ep5jj1LqC0N5/Gjix/N8j+eYWimV2s/zy2vZj+dYXsuGnOenPcfdrZT6i1IqrI/nl9eyH8+xvJYNOc9PKKV2em5/XikV28fzy2vZj+dYXss953CD5xxsUUot6ePxI3otjofXst9orUfNB2AGjgD5QDiwE5jdy/1+DfxfL7dPB6Z5Ps8EaoBEz9fPAtd4Pn8UuLOXxycDJZ7/Jnk+Txrs40fDRwic43AgwvN5LFAGZI6lcxyA8zwfyPWcu9Q+nl9ey/4/x/JaHvl5vgBQno9/9fE7Q17L/j/H8loe+XmO97nfb4Bvy2s5KOd43L+WgbeB8z2fXwCsNfq1OB5ey/78GG2ZsyXAYa11idbaDjwDXOJ7B6WUAq7C/UfmBFrrg1rrQ57Pq4FaIM3zmLOB5z13fRK4tJfn/xTwjta6UWvdBLwDnDeEx48GQT3HWmu71trm+TICT3Z3jJ1j8NN59ny9XWtdNsDzy2sZ/55jeS1/bATn+Q3tAWwCsnt5fnkt499zLK/lj43gPLf6PD4K6G3Dv7yW8e85ltcy4D4v8Z7PE4DqXh4/0tfieHgt+81oC86ygAqfrys9t/k6Ezju/cfbF08aNxz3lYUUoFlr7Tj5uEqpRUqpxwd4/j4fPwoF+xyjlJqklNrlWcfPPb+Ax9I5Bv+d5/7uJ6/lwJ5jeS1/bETnWblL7a4H3vJ8La/lwJ5jeS1/bNjnWSn1V+AYMBN4yHObvJYDe47ltQxfAX6plKoAfgV8ZwiPl/fLATDagjPVy20nXxn5LL1cbTnhIEplAP8AbtZau/o7rtZ6i9b61gGefzDrGi2CfY7RWldorf9/O3fPGkUUhmH4PhAEGzFpbJJCSSeKoKWFIIJYamEjBEVELcTYKvoHUlsp2FhIwM7SQkXRIiBRESSihaX/wMixOGc3o2aX/ch87Ox9wcBkZ96Z8OTNsmdmzh4GFoGlEMK+AX+vSVJWzj3Zy0C1GdvLW8bN+T7wMsb4CuzlrMqM7eUtI+ccY7xIehTvM3A+v2YvV5uxvQzXgOUY4wKwDDwcot7PyxWYtMHZD2Ch8PM8hduxIYQZ4CzwpNcBQgh7gGfAnRjj2/zyT2Bvrv/vuAOcf9D6SVB3xl35atYn0lW0NmUM5eU87vnblHPdGXfZy6PnHEK4R3ps6daQ529TznVn3GUvj/eeEWP8nevPDXH+NuVcd8bF/aa1l5eAp3l9lfQI5KD1fl6uQmzAxLdBF2CGNKlwP1sTHA8Wtp8GXvSp3wU8B25us22VvycoXt9mnzngG2ly42xenxu0fhKWBmQ8D+zO67PAF+BQmzIuO+fCPt/p/4Ug9nK5GdvLY+YMXAbedHLsUW8vl5+xvTxGzqS7BYuF9RVgZZt6e7n8jKe+l0l3FU/k9ZPA2k734jT0cql/v7p/gREa7kz+Z/oK3P5n2yPgap/aC8Av4H1hOZK3HSBNht7IjdP5Np9jwIPCMS7lfTZIt9PpVz+JS50ZA6eA9fxGsg5caWPGJed8g3TVapN0RaqTrb1cYcb28o7kvJmP2Xn9rr1cfcb28ng5k55Seg18AD4Cj8nfLGgvV5uxvRwBjgNrOYN3wNEe9UP14jT2cllLyEFJkiRJkmo0aXPOJEmSJKmVHJxJkiRJUgM4OJMkSZKkBnBwJkmSJEkN4OBMkiRJkhrAwZkkSZIkNYCDM0mSJElqAAdnkiRJktQAfwD3j02s5JtBAAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAE/CAYAAAAOkIE9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACILUlEQVR4nO3dd3gc1dXA4d/dVe+92bJkNVtyk7uxATeK6b0khBYIIUCALz2kQEhPSCgJCRBaKAkthBYDNmAb3HuVZctFtnq1Vr3t3u+P3RWyrbKStkk67/PosbQ7O3M1Hkl75p57jtJaI4QQQgghhBBi+DF4egBCCCGEEEIIIQZHAjohhBBCCCGEGKYkoBNCCCGEEEKIYUoCOiGEEEIIIYQYpiSgE0IIIYQQQohhSgI6IYQQQgghhBimJKATQgghhBBCiGFKAjohhBimlFKN3T4sSqmWbl/f4OnxDYZSqlApdY6nx9EXpdRqpdTtLtz/M0qpA7b/01v62O4zpZRWSvn08FymUqpVKfXKKY8vVUrlK6WalVKrlFIp3Z5TSqnfK6VqbB9/UEopp35zQgghnE4COiGEGKa01iH2D+A4cEm3x1719PhO1VPgMRyP4Qa7gLuA7b1tYAvY+/penwS2nPKaGOBt4GdAFLAVeL3bJncAlwPTgKnAxcA3Bzx6IYQQbiUBnRBCjDBKKYNS6kdKqcO2mZY3lFJRtudSbbM6tyqlipRSJ5RSdyqlZiuldiul6pRSf+22r1uUUuuUUn9RSplssztLuz0frpR6TilVppQqUUr9SillPOW1jyqlaoGHlFLptpmlGqVUtVLqVaVUhG37l4FxwPu2WcYfKKUWKaWKT/n+umbxlFIPKaXeUkq9opSqB27pZ0wZSqk1tu+lWinVPaDpfowA2z5rbOdki1IqXin1a+As4K+2Mf7Vtv1EpdRKpVStbXbt2m77elEp9ZTt+Qbb8VN6Oi6A1vpJrfWnQGsvYwsHHgR+0Mvz1wN1wKenPHUlsE9r/abWuhV4CJimlJpoe/5m4E9a62KtdQnwJ+CW3sYphBDCO0hAJ4QQI8+9WGdaFgJJwAmsMzbdzQUygeuAx4CfAOcAk4BrlVILT9n2CBCDNZB42x4gAv8EOoEMYDpwHnB7D6+NA34NKOC3tnFlA8lYAwu01jdy8kzjHxz8fi8D3gIigFf7GdMvgRVAJDAW+Esv+7wZCLeNLxq4E2jRWv8E+AK4xzbGe5RSwcBK4F+27/MrwN+UUpO67e8G27FjgJ22cQ7Wb4C/A+WnPqGUCgMeBr7bw+smYZ39A0Br3QQctj1+2vO2z7t/D0IIIbyQBHRCCDHyfBP4iW2mpQ1rwHT1KemIv9Rat2qtVwBNwL+11pW2mZkvsAZCdpXAY1rrDq3168AB4CKlVDxwAXC/1rpJa10JPApc3+21pVrrv2itO7XWLVrrQ1rrlVrrNq11FfBnrIHnUGzQWr+jtbYAYf2MqQNIAZJs3//aXvbZgTWQy9Bam7XW27TW9b1sezFQqLV+wfZ9bgf+A1zdbZv/aa0/t/1//AQ4QymVPNBvVCk1C1hA74HoL4HntNZFPTwXAphOecwEhPbyvAkIkXV0Qgjh3UbCWgMhhBAnSwH+q5SydHvMDMR3+7qi2+ctPXwd0u3rEq217vb1MawzbCmAL1DW7T2/AegeTJwUWCil4oAnsKYthtq2P+HQd9W77sfob0w/wBr0bFZKncCaYvh8D/t8Gevs3Gu2lNBXsAbJHT1smwLMVUrVdXvMx7aP08aotW60paAmnTL2PimlDMDfgPu01p2nxllKqVyss6zTT381AI1YA97uwoCGXp4PAxpP+b8XQgjhZSSgE0KIkacI+LrWet2pTyilUgexvzFKKdXtjf044D3bcdqAGK11Zy+vPTUY+K3tsala6xql1OXAX/vYvgkI6jZ+IxDbxzH6HJPWuhz4hm1fZwKfKKU+11ofOmW7DuAXwC9s52w51pnJ53oYYxGwRmt97qnH66ZrNk4pFYK1KElpH9v3JAyYBbxuC+aMtseLlVLXADOBVOC47fkQwKiUytFazwD2YU0ltY8jGEi3PY7t32nAZtvX07o9J4QQwktJyqUQQow8TwG/thfeUErFKqUuG8L+4oB7lVK+tsAhG1iutS7Duh7tT0qpMGUtxpJ+yvq7U4VinQmqU0qNAb5/yvMVQFq3rw8CAUqpi5RSvsBPAf/edt7fmJRS1yilxto2P4E1ODOfuh+l1GKl1BRbAFmPNQXTvt2pY/wAyFJK3Wg7R77KWmQmu9s2FyqlzlRK+WGdIdzUS1okSik/pVQA1vWGvrYCLQasKZBJQK7t40LbS2YCm4BnsAZo9uefAv4HnG/b7r/AZKXUVbb9/xzYrbXOtz3/EvAdpdQYpVQS1nV4L/Y0RiGEEN5DAjohhBh5Hsc6g7ZCKdUAbMRanGSwNmEtoFKNtbDJ1VrrGttzNwF+QB7WAOktILGPff0CmIE1OPkf1jL63f0W+KmtsuT3tNYmrCX8nwVKsM7YFdO3vsY0G9iklGrEeo7u01of7WEfCbbX1QP7gTVY0y7Ben6vVtYKoU9orRuwFl65HuusWznwe04OPP+FtaBMLdYArK8+gSuwpr3OxxqktQBna6ty+wdQZdu+QmvdrrVuPuX5RqDVtlYR279XYf0/PIH1mui+3vFp4H1gD7AX6//P032MUwghhBdQkhovhBCiN8ra2Pp2rfWZnh7LcKWUehEo1lr/1NNjEUIIMfLIDJ0QQgghhBBCDFMS0AkhhBBCCCHEMCUpl0IIIYQQQggxTMkMnRBCCCGEEEIMUxLQCSGEEEIIIcQw5dbG4jExMTo1NdWdhxRCCCGEEEIIr7Ft27ZqrXWss/bn1oAuNTWVrVu3uvOQQgghhBBCCOE1lFLHnLk/SbkUQgghhBBCiGFKAjohhBBCCCGEGKYkoBNCCCGEEEKIYUoCOiGEEEIIIYQYpiSgE0IIIYQQQohhSgI6IYQQQgghhBimJKATQgghhBBCiGFKAjohhBBCCCGEGKYkoBNCCCGEEEKIYarfgE4playUWqWU2q+U2qeUuq/bc99WSh2wPf4H1w5VCMcUVjdxqLLR08MQQgghhBDC5Xwc2KYT+K7WertSKhTYppRaCcQDlwFTtdZtSqk4Vw5UCEd8tLeM+1/fSVxoAJ//YLGnhyOEEEIIIYRL9TtDp7Uu01pvt33eAOwHxgDfAn6ntW6zPVfpyoEK0RetNX9ffZg7X9mOr9HA8dpmimqbPT0sIYQQQgghXGpAa+iUUqnAdGATkAWcpZTapJRao5Sa7YLxCdGv9k4LP/zPbn7/UT4XT03kX7fPA2D94WoPj0wIIYQQQgjXciTlEgClVAjwH+B+rXW9UsoHiATmAbOBN5RSaVprfcrr7gDuABg3bpzTBi4EQF1zO996ZTsbjtRw75IM7j8nC6UgJsSf9YdruG62XHNCCCGEEGLkciigU0r5Yg3mXtVav217uBh42xbAbVZKWYAYoKr7a7XWzwDPAMyaNeukYE+IoTha3cRtL26h+EQLj143jSumj+16bn56NOsP16C1RinlwVEKIYQQQgjhOo5UuVTAc8B+rfWfuz31DrDEtk0W4AdIjptwi41Harjib+s40dzOq9+Ye1IwB9aArqqhjcNVUu1SCCGEEEKMXI6soVsA3AgsUUrttH1cCDwPpCml9gKvATefmm4phCu8ta2YG5/bRHSwH+/cvYDZqVGnbTM/PQaA9Ydr3D08IYQQQggh3KbflEut9Vqgt5y1rzl3OEL0zmLRPLLiAH9bfZgFGdH87YaZhAf69rhtclQgYyICWX+ohpvOSHXvQIUQQgghhHATh4uiCOFJLe1mvvvmTpbvKecrc8bx8GWT8DX2PsGslGJ+ejQr8iqwWDQGg6yjE0IIIYQQI8+A2hYI4QmVDa1c/8wGPtxbzk8vyuY3V0zuM5izW5ARg6mlg7yyejeMUgghhBBCCPeTGTrh1faX1XPbi1s40dzBMzfO4tyceIdfe0Z6NAAbDtcweUy4q4YohBBCCCGEx8gMnfBan+VXcPXf12PR8OadZwwomAOIDwsgPTZYGowLIYQQQogRSwI64ZU2HK7h9n9uZXxsMO/cvWDQM2zz02PYfLSWDrPFySMUQgghhBDC8ySgE17pr6sKiA31541vnkFCeMCg9zM/PZqmdjO7i01OHJ0QQgghhBDeQQI64XX2lphYd6iGWxeMJ8hvaMs856XZ19FJ2qUQQgghhBh5JKATXueZz48Q4u/DV+eOG/K+IoP9yEkMkwbjQgghhBBiRJKATniV4hPN/G9PGdfPTiYsoOem4QM1Pz2arcdO0Nphdsr+hBBCCCGE8BYS0Amv8vzaQhTw9TPHO22f8zOiae+0sP34CaftUwghhBBCCG8gAZ3wGqbmDl7bcpxLpiWRFBHotP3OTo3CaFBskLRLIYQQQggxwkhAJ7zGK5uO0dxu5htnpTl1v6EBvkwdGy7r6IQQQgghxIgjAZ3wCm2dZl5cX8hZmTHkJIU5ff/z06PZVVRHY1un0/cthBBCCCGEp0hAJ7zCuztKqWpo446znTs7Zzc/PYZOi2ZLYa1L9i+EED2xWDS/Wb6fvNJ6Tw9FCOEC246dYMpDH3OostHTQxGjmAR0wuMsFs0zXxwhJzGMMzNiXHKMmSmR+BkNso5OCOFWR2uaeObzI/xne7GnhyKEcIF/fH6EhtZOPtpb5umhiFFMAjrhcasOVHKospE7zk5DKeWSYwT4GpmREsF6aTAuhHCjncfrACiQu/dCjDgldS2syCsHYPWBKg+PRoxmEtAJj3v68yMkhQdw0dRElx5nfnoM+0rrqWtud+lxhBDCbldxHQAFFQ2eHYgQwun+tekYAFdOH8P24ycwNXd4eERitJKATnjUzqI6Nh+t5etnjsfX6NrLcX56NFrDxiOyjk54r/zyejrMFk8PQzjJrqI6AMpMrTS0yps9IUaK1g4z/95cxDnZ8Xx17jgsGr44JLN0wjMkoBMe9Y/PjxAa4MP1c8a5/FhTx0YQ5Gdkg6RdCi9VVNvMhY9/wWtbijw9FOEEbZ1m8srqSY8NBiTtUoiRZPmeMmqb2rl5fiq5yRGEBfhI2qXwGAnohMccr2nmw71l3DA3hRB/H5cfz8/HwOzUKK/rR/eL9/fx6MqDnh6G8ALrD1dj0bDpiHddo2Jw8krr6TBrrpmVDMChCgnohBgp/rnhGOmxwcxPj8bHaOCsrFjWHKzCYtGeHpoYhSSgEx7z7NojGA2KWxekuu2Y89OjKahspLKh1W3H7IvFonlrazEvbzwmfwREVzrwtmMnPDwS4Qz2dMuLpybi72PgoKyjE2JE2FlUx66iOm6en9pVzG1RVixVDW3klUmLEuF+EtAJj6htaueNrUVcnjuG+LAAtx13frq1LYK3tC8orGmioa2T2qZ29pSYPD0c4UFaazYeqcHXqCgztVJa1+LpIYkh2lVsIi7UnzERgaTHhkjKpQu0dph5eeMx2jrNnh6KGEVe2lBIiL8PV84Y2/XYwgmxAKw5KGmXwv0koBMe8crGY7R2WPiGixqJ9yYnKYywAB+vCeh2F38ZxMkfgdHteG0zZaZWrpxufYMgs3TD366iOqYlR6CUIjM+RCpdusCjKw/ys3f2siq/0tNDEaNETWMbH+wq46oZY05aLhIXGsCkpDBWH5BrUbifBHTC7Vo7zPxzfSGLJ8SSFR/q1mMbDYp5adFes45ud7GJAF8Dk5LCJKAb5Tba1s3demYqgb5GCeiGOVNzB0eqm8hNjgAgKz6UUql06VT7Sk08u/YoYF2vKIQ7vLaliHazhRvPSD3tuUUTYtl+vA5Ti/ycC/eSgE643X+2F1PT1M4dZ6d75Pjz06M5XttMUW2zR47f3Z6SOiYlhbN0Yhw7jp+QHnmj2MYjtcSE+DEhPpTc5Ai2H5eAbjiz95+zB3SZcSEAHJK0S6cwWzQ/fnsPkUG+jI0MlHVLwi06zRZe3XiMMzNiyLD9THe3aEIcZotmbYFU0xbuJQGdcCuzRfPsF0eZOjaceWlRHhnD/AzvWEdntmj2ltQzZUw4CyfEYtGw9pD8ERiN7Ovn5qZFo5RiZkok+0rraW7v9PTQxCDtKqpDKZgyNhyATFs2gqyjc46XNhSyu9jEzy+ZxIxxkewvk3RW4Xqf7K+g1NTKTWek9Pj89K72BZJ2KdxLAjrhVivzKjha3cQdZ6d1VYZyt8y4EGJC/Fjv4X50hyobaekwMy05nGljrX8E1kgPm1HJvn5uXlo0ADNTIjFbNLuKpFDOcLWruI702BDCAnwBGBcVhJ+PQdbROUFpXQuPfHyAhVmxXDI1kZykMErqWiTDQbjcP9cfY0xEIEuz43t83sdo4KxMa/sCraVytXAfCeiEW/3jiyOMjQxk2aQEj41BKcUZ6TGsP1zj0V+4u20pWVPGRJzUw0b+CIw+9vVzZ9hmraePiwCQtMthSmvNzqI6po2N6HrMaFBS6dIJtNb8/N19mLXmV5dPRilFdmIYgKRdCpc6WNHAhiM1fG1eCkZD7zekF06IpVLaFwg3k4BOuM22Y7VsO3aC288cj4/Rs5fe/PRoKhvaOFzV5LEx7CkxEexnJC0mGICFWdY/ApI6NPrY18+lx1rXZEQE+ZERFyKFUYapkroWqhvbyU0OP+nxrPgQCqS5+JB8vK+cT/ZX8H/nZJEcFQRAji2gk9+dwpVe2lCIn4+B62Yn97ndoixr+4LVknEj3EgCOuE2T685QkSQL9f288vQHeanW1PbNngw7XJ3sYnJY8Ix2O70LcwaHj1sqhvbaGmXnk/Ocur6ObtZKZFsP35CGs4PQ/ZU2Wm2gih2mXEhlNS10NgmayMHo761gwff20d2YhhfP3N81+Oxof7EhvpLpUvhMvWtHby9vYRLpyURFezX57ZxYQHkJIbJEgrhVhLQCbc4UtXIyv0V3DgvhSA/n/5f4GLjooIYExHosfYFHWYLeWX1TB375R38+LAAJiaEsuag9y6m1lpz+ZPr+NX/8jw9lBHj1PVzdjNSIqmzlb4Xw8uu4jr8fAxMTAg76XF7YRSpdDk4j3x8gMqGNn535RR8T8nyyE4MY7+kuAkX+c+2YprbzdzcQ6uCniyaEMu24yekfYFwm34DOqVUslJqlVJqv1Jqn1LqPtvjDymlSpRSO20fF7p+uGK4enbtUXyNBm5y8Jehq1nX0UWz4UiNR2ZADpQ30N5pYWq3NTZgLXm8tfCE197Br2poo/hEi9fPIg4np66fs5uZEglYU5XF8LLzeB2TksLw8zn5T6y9dcFBKYwyYNuPn+Dljce4+YzU02Y+wZp2WVBp/b0qhDNZLJqXNxxj+riIrqq1/bG3L1gvlauFmzgyQ9cJfFdrnQ3MA+5WSuXYnntUa51r+1juslGKYa26sY23thVz1YwxxIb6e3o4XeanR1PX3MH+cvff1d1TYk3JmnrKH4eFWbF0WjTrvPSPwD5bSlPxiRaKT3i+j99IcOr6Obu0mGAignxlHd0w02m2sKfEdFJBFDt7pUuZoRuYDrOFH/9nDwlhAXzv/Ak9bpOdGEqHWcu5FU639lA1R6qbuGV+qsOvmTEugtAAH1lHJ9ym34BOa12mtd5u+7wB2A+McfXAxMjx0vpCOswWbj8rzdNDOckZXevo3J92ubvYRFiAD+Nsi/rtZqZEEuxn9NoZsO5VuzYdkZmjoept/RxYZ5FnjouUgO4UO46f4JYXNvP+rlJPD6VHBbZ2JLk9zCL5GA2kxQTLDN0A/eOLIxyoaOAXl04ixL/nlP1JSfbCKJJ2KZzrpQ2FxIT4c8HkRIdfY21fECOVq4XbDGgNnVIqFZgObLI9dI9SardS6nmlVGQvr7lDKbVVKbW1qso736QK12lu7+Sljcc4Jzv+tBkIT0sMDyQtJtgj6+j2lNQxdWzEaW/i/XwMzM+IYc0B7/wjsK/UxNjIQCKCfLtSBcXg9bZ+zm5GSiSHq5o40ST9tSrrW/nuG7u44m/rWX2gihfWHfX0kHq0q6gOoMeADiArPlQqXQ7AsZomHv+kgPMnxXNeH+1uxseEEOBrkFLxwqmKapv5NL+Sr85JPi2Fuj+LsuIor28lv1xu4AjXc/jqVEqFAP8B7tda1wN/B9KBXKAM+FNPr9NaP6O1nqW1nhUbGzv0EYth5c2txdQ1d/DNs71rds7ujPRoNh2pocPsvnUXrR1mDpQ39JqLv2hCLCV1LR5tqdCbvNJ6powJZ05qFJuOygzdUPW2fs5ulm0d3Y6i0TtL195p4ek1h1n8yGre21XCnQvT+cZZ49lRVEetFwa6O4vqCA/0JSU6qMfn7ZUum7x0naw30Vrz03f24ms08ItLJ/e5rdGgmBAfKjN0wqle2XgMg1J8dW7KgF+7cIK0LxDu41BAp5TyxRrMvaq1fhtAa12htTZrrS3AP4A5rhumGK5eXF/I9HERXQUevM389Bia2s1da9rcIb+8gQ6zZlovAd3ZmfY/At5V7bKxrZPCmmZyEsOYlxbN8dpmSupaPD2sYc26fs6/19nrqWMj8DGoUZt2uSq/kmWPfc5vP8xnXlo0K/5vIT+6YCIXT01Ca/jcC1OTdxbVMS359Nl3O6l06bh3d5byRUE1P1g2gYTwgH63z0kKI6+s3iuzG8Tw09Ju5rUtRSyblODQ9Xeq+LAAshPDvO5vuRiZHKlyqYDngP1a6z93e7x7MvEVwF7nD08MZy3tZo5WN3FOdnyvb248bZ5tZsSd6+j2FNcBMKWHogkAyVFBpMcGe906Ovud70ljwphrO2+b3JR22d5pGXG97+zr5+alRfX68xHoZ2RSUhhbC0dXQHe0uomvv7iFW1/cAsALt87muVtmMz4mGIApY8KJCfHjs3zveqPU3N7JwYoGcvuohJcVL5UuHXGiqZ2HP8gjNzmCGxycHclJDKOuuYMyU6uLRydGg/d3lWJq6eCmMwY+O2e3aEIs246doKFV2hcI13Jkhm4BcCOw5JQWBX9QSu1RSu0GFgP/58qBiuGnvN76RzVxEHe23CU6xJ+JCaGsd2OD8d3FJqKD/Ujq47wszIpj09Farwpi7E17cxLDyU4IIzzQ122FUR7+YB8zf7WSv3xa4FXnZCj6Wz9nNyMlkl3FdW5NC/aUxrZOfvdhPuc9uobNR2t54MKJfHT/2SyeEHfSdgaDYmFWHGsOVmH2osbre0vqsWjIHRfR6zbjooLwM0qly/78Zvl+6ls6+O2VUzAaHLshmJ0ohVGEc2iteXF9IRMTQpkzvueUeEcs8vLK1WLkcKTK5VqttdJaT+3eokBrfaPWeort8Uu11mXuGLAYPspM1nS8waQquNP89Bi2Fp6gtcM9gcKeEhNTxob3OWu5aEIs7Z0WNh71nsIj+0qtgWh8mD8Gg2LO+Ci3jM9i0Xy4p5wAXyN/WnmQJX9azTs7SjzSP9CZ7Ovn+gvoZqZE0tphGdFvUi0Wzdvbi1nyyGqeWnOYy3LH8Nn3FnLH2em9FiJYPDEWU0sHO71ofaF9LKf2l+zOx2ggLVYqXfZlw+Ea3txWzO1npXUFaY6YaNvWfvNJiMHafvwEeWX13HRG6pAyjGakRBLqL+0LhOsNrGSPEANQbrLP0AV6eCR9m58eTVunhR3H61x+LHtK1tQxfTcnnTM+igBfA2u86I9AXlk9OUlhXX/c5o6P4lhNc1fg7ip7SkzUNLXz4CU5vPHNM4gN9ef+13dyxd/WsaVw+BZm+XL9XHCf233ZYNx7Ahdn2l1cx9VPrec7b+wiMTyA/941n0eumUZcaN83gs7KjMVoUF6VdrmryFoFNiak736bmfGhFMgMXY9aO8z85L97GBcVxH1LMwf02hB/H1KigzzSW1SMLC+uP0ZogA+XT08a0n58jQbOzIxhtZdWrhYjhwR0wmXs6xgSwrx7hm5OWhQGBRvckHaZV2pNyerrDj5AgK+ReWnRXrOOrsNs4WB5IzlJX94tt88suTrtctWBSpSyFouZMz6Kd+5awJ+vnUZFfRvXPLWBu1/dzvGa4dXk3JH1c3aJ4YGMiQgccQHdsZomfvjWbi57ch3Ha1v449VT+e9dC5g+zrECSuGBvsxMiWRVvnf8jMCXBVH6kxUXQvEJqXTZk7+tOsSR6iZ+fcVkAv2MA359TmKYzNCJIamsb+XDPWVcOyuZIL+e+x4OxKIJsZTXt3JAZuWFC0lAJ1ym3NRKRJDvoP4ou1NYgC9Txka4pR/d7mJrNc3eWhZ0tzArlqPVTRyr8Xz7gkOVjbSbLeR0S3/KTgwjLMDH5f3oVh2oYnpyBJHBfoB1/dSVM8by2fcW8n/nZPFZfiXn/HkNv12+n/phsvDc0fVzdjNSItk+zAO6TrOFTUdq+O3y/Zzz5zUs/ONq/rO9mG+clcaq7y3kmlnJGBxcK2W3eEIceWX1XdkAnlTV0EZJXQvTHQjoMm2FUQ5XySxddwUVDfx9zWEuz03irMzBtTnKSQyjsKaZRgmWxSD9a/NxOi2aG+cNvhhKdwuzrGuAJe1SuJIEdMJlykytXj87Z7cgPZqdRXUuv2O+p8REfJg/8Q6cl0W2QhDeUJp9n+2O96RuM3RGg2LO+GiXBnQ1jW3sLq47rSgGQJCfD/edk8nq7y/i0twknvniCIv+uJqXNx6j08sLiDi6fs5u5rgISk2tlA6zNhF1ze28u7OEe/+9gxm/XMl1z2zk+XVHSQwP4MFLclj9/UU8cGE2oQG+g9r/kon2N0qeT7u0NxR3ZIbO3rrgoDQY72KxaB747x6C/X346cU5g96Pfc3dAUm7FIPQ3mnh1U3HWTQhltSYvtPhHZUQHsDEhFCv+D0lRi4J6ITLlNe3eHWFy+7mp8fQadEuX5O1u7iOKWMiHNo2NTqIcVFBXpF2mVdaT4CvgfExJ/dLm5cWRWFNs8tmSD4vqELrL4PbnsSHBfDINdN4/54zyYwL4Wfv7OWCx7/w6j+ejq6fs5uZYq2y5u1pl1prDlU28PSaw1z79AZm/uoT7nttJ+sOVXPepAT+fsMMdvz8PF6+bS63LhjP2Miem287Kis+hKTwAFZ5wf/1ruI6jAZ10k2P3qTYKl0WVEoKlt3rW4vYUniCBy7I7ncNYl/saeGSdikG4+N95VQ1tHHzGalO3e+iCXFsLZT2BcJ1hp4cLEQvyk2tDgcvnjYzJRI/o4ENh2v6DB6GoqG1gyPVTVyeO8ah7ZVSLMyK5T/bi2nrNOPv47nU1X2lJiYmhJ1WPrxrHd3RGi5z8PsaiFX5VcSE+Dv0JnnymHBeu2MeK/Iq+O3y/dzywhYWZsXyk4uyybLNiHiDgayfs5uYGEqgr5Ftx05wybShLdJ3tvZOC5uP1vJpfgWf7q/keK11PWN2Yhh3LUpnycQ4po2NGHA6pSOUUiyaGMe7O0o8/jOys6iOrPhQh9bc2CtdFsgMHWCdnXt05UHmpEZxzayxQ9pXYngA4YG+5JVJsCwG7qUNhYyLCmJh1uBSfnuzaEIsT605zLpDNSybnODUfQsBMkMnXKSt00x1Y/uwmaEL9DMyfZxr19HtLalHa8fWz9ktzIqlud3s0cbSWmvyyup7DKqyE8MIddE6OrNFs+ZgFYsmxDocDCilOH9SAiv+byE/vSibHcdPsOyxz/nfbu/pqjLQ9XNgrZQ2LTmc7ce9Z4buaHUTD723j5m/XMnXntvEvzYdJyMuhF9dPpn1P1rCh/edxXfPm8D0cZEuCebslkyIo8kLfkZ2FdWR60C6pV1GXIjM0NnsKTFR2dDGV+YmD6lEPFh/B+QkhpE3gtt8CNfYV2piS+EJbjojxem/s2amRBLi78Oag57PJhAjk8zQCZeoMLUB3t+Drrv56TE89ulBTM0dhAcNbk1PX/aU1AEwpZ+WBd2dkR6Nn9HAmoNVLMiIcfqYHFF8ooWG1s6TKlzaGQ2KOalRLql0ubPoBKaWjh7Xz/XHz8fA7WelcdWMsVz19/W8tKGQi6YmOn2MgzHQ9XN2s1Ki+PuawzS3dzql8tpgWCyaLw5V8+K6o6w6UIWvUXHhlEQumZrEgowYjxRAmp8RjZ+PgVX5lR77GTla3UR9aye5yY7/bGfFh/LB7jKP/n96i8/yrZVs7cUjhionKYxXNx3DbNEONyUX4uUNxwjwNXDNzGSn79vXaGBBRnRX+4Kh3rgQ4lQyQydcwt6bLMnLe9B1Nz8jGq1hg4uKfOwuNjEmIpDoAawPCfb3Yfb4SI/2o/uyIErPb1bnpUVzpLqJinrnrqNblV+F0aA4M3Pwb9Ijg/24eGoiWwprqW5sc+LoBm+g6+fsZqZEYrborkqp7tTY1slLGwo559E13Pz8ZvaU1HP/OZms+9ESHr9+OufkxHusmm2Qnw/z0qL5zIPr6HYV1wGOFUSxy4yzVbqs9HwVW09bdaCS6ckRRNkq2Q5VdmIYrR0WjlbLuRWOKalr4e0dJVwxfaxLbuiCdR1dmalViiEJl5CATrhEue3N/XCaoZs2NoLQAB9W5lW4ZP+7i01MHUC6pd3CrFgOVDR4rMJhXqkJg4IJvaxDs880OTvtcvXBSmaOiyQ8cGh/XJdNTsSicdn/60AMZv2c3fRxEYB7C6MUVjfx8Pt5nPGbT/n5u/sIDfDlsetyWf+jJdx/Tla/zb/dZfGEWI5Uea7Fx64iE0F+RjLjHF+r+WWly9GddllZ38ruYhNLs+Odtk97exVJuxSO+tOKAwDcsyTDZcdYNMG6Ls+bC3aJ4UsCOuESXU3Fh1FA5+djYNmkBFbsK6e1w+zUfdc1t3O8trnfhuI9sacheap9QV5ZPemxIb3OwOQkhRHq78Omo85Lu6ysb2VvST2LJg59YXp2YijjooL4aG+5E0Y2NINZP2cXEeRHRlyIywM6rTVfFFRx24tbWPyn1by8sZCl2XH89675vHv3Ai6fPgY/H+/602FPy12V75k3SjuL6pgyJnxA6X0p0UH4GhUHR/k6OntvrsGkVvcmIy4EX6NivwR0wgF5pfX8d0cJt85PZUyE67KKEsMDmRAfKv3ohEt4119lMWKUm1oJDfAhxH94rQ25ZFoSDW2dTv+Fu6fEmiY3mBm6rPgQEsMDPNa+YF9pfY/r5+yMBsXs8VFOnaFbfdB5b/KUUiybnMD6w9WYWjxbMnqw6+fsZo6LZPvxE1gs2pnDAqCprZOXNx7j3Ec/58bnNrOruI57l2Sy7odLeOz66UwfF+n0YzpLakwwaTHBrPLAG6W2TjN5pfUDKogC1jU1aTEhHBrl6Vef5VeSGB5AdqLzKtH6+RjIiAuV1gXCIb//KJ+wAF/uWuS62Tm7RRNi2XqsVhrfC6eTgE64RJlp+PSg625+ejTRwX68v7vUqfu1r3ua3Ms6tL7Y2xesLaimw80Ns2ub2ikztfbbNmBeWhRHqpqodNI6utUHKkkIszZjdYZlkxPoMGs+y/ds2uVg18/ZzUyJpK7Z2v7CmZ5fe5R5v/2Un72zlyA/I49eN411P1rC/52bRVzY8Pg5XjQhjg1Hamhpd+7sen/yyxpoN1sGtH7OLjM+ZFTP0LV1mvmioIrFE+OcXiRCKl0KR6w7VM2ag1XcszjDZWvnuls4IZYOs2bdoWqXH0uMLhLQCZcoN7WSMIwKotj5GA1cOCWRT/dX0OTEO2h7ik2kRgcN+g/GwqxYGto62XG8zmljcoT9DndOYt+B6Nzx9n50Q0+77DBb+OJgNYsmxDrtTV7u2Ajiw/w9mnY5lPVzdjNTrbNk252YdllY3cSvl+9n6thw3ralVV4xfaxHe7oNxpKJcbR3Wlh/2L1vlAZTEMUuMy6U4hMtNLePzrv1W46eoKndzBIX9P7MTgylqqGNqgbvKIYkvI/Fovnth/sZExHIjWekuOWYs1KiCPYzStqlcDoJ6IRLlJlaSRwmd/ZPdcm0JFo7LHyy33mzObuL65gyiPVzdvMzYjAalNt72OSVWWcW+0q5BJiUFEaIv3P60W0/doKGtk6nNng3GBTLJiWw5mCVx948D2X9nF1aTDARQb5OXUf3t9WH8DEoHr0ulxnjIodtOe3Z4yMJ8jOyys0FB3YW1REb6k/SIDISsuJD0Hr0Vrr8LL8SPx8D8zMG/zPRG/vvLFlHJ3rz/u5S9pbU893zsgjwdc8NLD8fAwsyYlhzoBKtnZ86L0YvCeiE03WYLVQ1tg2rgijdzUqJJCEsgPd3OacZdVVDG6WmVqYNYv2cXXigLzPHRbp9Hd2+0noSwwP6LSfuYzQwOzXSKQGdvb/ZAie/yTt/cgKtHRaPtYAY6vo5sKbfzhwXydZjzilAU1TbzNvbS/jq3HFeU7FysPx9jCzIiGFVfpVb3yjtLKpj2tiIQQXCmfHW1gWjtcH4Z/kVzE+PdkkfPnulS1cFdMdrmt2e3iucp63TzCMrDpCdGMbluWPceuxFE+IoNbVSUDm6188K55KATjhdZUMbWjMs19CBdTbn4qmJrDlYial56EU09toKogykoXhPFk6IZW9JvVtTiPJK6/tdP2c3Ny2aw1VNQx7f6gOVzE6NIjTAuesZ5qRGERnky4ceSrsc6vo5uxkpkRyuauJEU/uQx/S31YcxKMU3z04f8r68wZKJcZTUtbjtjZKppYMjVU0DaijeXUp0sLXS5SgsjHKkqpHCmmaWTHR+uiVYq8ImhQe4ZB1dfWsH5z/2Odc+vYGGVs8WWhKD88rG4xTVtvDjCyZicHPzeWlfIFxBAjrhdOW2puLDdYYOrGmXHWbNx3lDf/O/u9iEUjBpqAFdlvWPgLvaF7S0mzlc1dh1p7s/9pmnTUcHP0tXWtdCfnlD1x88Z/IxGjgvJ4HP8itp63TvnXVnrJ+zm5liXUe3o2hoaZcldS28ta2I62YnD+uf1e7s14272hfssRU7Gsz6ObBWuhwfE8yhUThD95nt/8iZ7QpOlZMU5pIZuk/3V9DSYWZPiYnb/7nV6W1uhGvVt3bw188KODMjhrOznP+3pj9JEYFkxYfIOjrhVBLQCaez96BLHIZFUeymjg1nXFQQ7+8aerXLPSV1pMeGDLmFQ05iGDEhfm5LuzxQ0YBFQ46DlTknJ4UR7GccUtqlK3pSdbdscgKNbZ2sP+TcJuj9ccb6ObtpYyPwMaghr6N7avVhAO5cNDJm58D6Oyc7MawrWHC1nbagejD9Je0y40NH5QzdZ/mVZMWHkBwV5LJjZCeGcbiqyekB1/I95SSGB/DYdblsLqzlnn9td3sFYjF4T60+zInmDn50wUSPjWHRhDi2FEr7AuE8EtAJpysfhk3FT6WU4pJpiaw/XEN14+BTCLXW7Co2MXWIs3NgTQU9OyuWLwqqMLugD9mp9pVaZx8cTbn0MRqYlRrFpiODX9+1+kAlYyICyYgLGfQ++jI/I5pQfx8+3Ouc9ZGOcsb6ObtAPyOTksKGFNCVm1p5fUsRV89MdmkjXU9YPCGWrcdOUO+GVLidRSbSYoMJDxx8enBmXAhFJ0bXeqyG1g42H61lsYvSLe1yEsMwWzQHK5w3A9rY1smag1Usm5zA5dPH8PBlk/lkfyU/fGu3S/pDCucqM7Xw3NqjXJ6bxGQn/F0erEVZ1vYF66V9gXASCeiE05WZWgnyMxIWMLyaip/qkmlJmC2aD/cM/s1/Rb21bPZgGor3ZGFWLCeaO7oalbtSXmk9oQE+jI10/A3/vLRoCiobBxUEt3WaWXeomsUTndeu4FT+PkaWZMexMq+CTjfeUXfW+jm7GSmR7CoyDXpW4Kk1h7FozV0jaHbObvHEOMwWzRcHXftGSWvNzqI6cocwOweQFR9qrXRZ5dxZuv/tLuP5tUe9Mh1wbUE1nRbtknYF3WW7oDDKZ/mVtHdauHBKIgA3zkvhe+dl8faOEh7+IE8qF3q5R1ceRGv47nkTPDqOWam29gVuLnQmRi4J6ITTWXvQBQzb8ud2ExPCyIoPGVK1y922HlVDaVnQ3VmZsSjlnsXUeWX15CSGDej/cV5aFMCgZum2Flp7UrlyTQ3AskkJnGi2zhC4gzPXz9nNTImkpcM8qDeqlQ2t/Hvzca6cMcal6W6eMj05gvBAX5e3LygztVLd2Dbo9XN2mXHOr3TZ1mnmx2/v5uEP8lj6pzW8t6vUqwKNT/MrCQvw6VoP6irjooII9jN29dN0huW7y4gL9WfmuC/HfvfiDG4/czwvri/ksU8KnHYs4VwHKxp4a1sxN56R4vHffdZ2HTGsOeDeqrxi5JKATjhdmall2Fa4PNUlU5PYXFhLma3Qy0DtKTFhNCiHC4v0JyrYj6ljI1y+js5s0eSXNTDJwfVzdpPHhBPkZxxUYZRV+ZX4GQ2cke78nlTdLZwQS4CvgY/2uafa5bEa562fs7O/ER5M2uU/Pj9Cp0Vz9+IMp43Hm/gYDZydFcvqA1UuTYHbWVQHQO4QA7rUmGB8DM6tdLkqv4r61k7uW5pJeKAv9/57B1f8bT1bC91zE6MvFotm9YFKFk6Iw8fo2rcgBoMiOzGM/WXOCZab2jpZdaCSZZMTTqqMqJTiJxdlc83MsTz+aQHPrz3qlOMJ5/r9h/kE+/twj5f87ls0IZaSuhYOSfsC4QQS0AmnKze1khA2MtblXDwtCbCmLw3GrmITmXEhBPo5r2npoqxYdhXVOaVsfW+OVjfR0mHut6H4qXxt6+gGUxhl1YFK5qZFuaQnVXdBfj4szIrl433lblnz4sz1c3aJ4YEkhQcMOKCrbmzjlY3HuWxaEinRzkn/9EZLJsZS3djG3lLXpSbvKqrDz2hgYmLokPZjr3RZ4MSA7t2dJcSE+PHtJRm8/+0z+ePVUykztXD1Uxv41ivbOFbjuUbme0pMVDe2s2Sie6oLZieGkVdW75Sf9dUHqmjrlm7ZnVKK3145hWWTEnj4gzz+s614yMcTzrPxSA2f5ldy16IMIvvpq+oui2zZKFLtUjiDBHTCqcwWTUVD24iZoRsfE8yUMeGDqnaptWZPcZ3T1s/ZLZwQi0XDWhcuprYXRBnMzOK8tCgOVjRSM4B1dEW1zRyuanJ5uqXdBZMTqahvY4dtlsWVNh6pcer6ObsZKZFsH2BA9+wXR2ntNHP3Eu+4Q+0qZ9tSk1flu+6N0s6iOrKTwvD3GfrNmqz4UKelXJpaOvg0v5KLpybhYzRgNCiumZXMqu8t4jvnZrHmYBXn/HkNv/wgj7pm190U6s2n+ZUYFCzMcs/Pek5SGI1tnRSfGFyWRXfL95YRE+LH7NSoHp/3MRp4/Cu5LMiI5gf/2c0KN2UBiL5prfnth/kkhgdw64JUTw+ny5iIQDLjQtxWlVeMbBLQCaeqamjDbNHDusLlqS6ZlsiuYtOA72oXn2jhRHPHkEqa92TaWOsaIVfe1csrq8fPaBhUtcm5460zUQNZo2ZfE+jqqnd2iyfG4WtUfOziN1zW9XO1Tl0/ZzcrJZJSUyuldY69Ua1tauelDYVcMjWJ9FjXVBH1FtEh/kwbG+GydXRmi2ZPiYlcJ92syYwP4Xhts1MKmHy0t4z2TguXTx9z0uNBfj7cuzST1d9bxFUzxvLCuqMs/ONqnlt7lPZO9xUIWpVfyfRxkUS5aZbEXhhlqA3GW9rNrMqv5PxJCRj7aETt72PkmRtnMWVMOPf8ewfrD0sVQ09bvqecXUV1/N+5WQT4Oi9bxhkumZbEhiM1XevthRgsCeiEU9nXmo2UGTqAi6Za0y4/GGDapb0SpbNn6IwGxVmZMaw56Lo1Qnml9WTGh+DnM/BfEVPHhhPoO7B+dKsOVJESHcT4GPekAYYH+jI/PYYP95a5dEH6sZpmyuudu37ObmaKdZZg+3HHZumeX3uUlg4z94zw2Tm7JRPj2FVcN6CZYkcVVDbQ3G4md1yEU/aXGWetdOmMtTTv7CglNTqIab383okLC+B3V01l+X1nMXVsOL/8II9zH13Dh3tc+7MAUFnfyp4SE0vcdOMGYEJ8KAY19IBuzcFKmtvNPaZbnirY34cXbplNanQQ3/jnVna5IRNgJCk+0cydL2/jnR0lQ/4b195p4Q8f5zMhPpSrZox10gid59YFqUQG+fLHjw94eihimJOATjhV+QhoKn6qMRGBzEqJ5L2dA0u73F1swteomJAwtDU2PVk0IY7qxjb2lzuvepud1pq80nqH+8+dyrqOLpKNDla6bO0ws/5wtdvSLe0umJxAUW3LkN/o9cUV6+fsJiaGEuhrZGth/wGdqbmDF9cXcuHkRLLinX89eqPFE+LQGpcUELK/QZ/mpNn3rHjrjOlQA7oyUwsbj9Zw+fQx/c4IT0wI4+Xb5vLirbPx9zHwrVe3c+3TG7qKvbiCfcbUnQFdoJ+RtNiQIbcuWL6nnMggX+aO7znd8lSRwX68fNtcokL8uOWFzRQ4sRfeSFbZ0MrXnt3ER/vKuf/1nVzx9/VsOzb4Yj7/3nycYzXN/OiCiX3OrHpKaIAvdy/O4IuCaulJJ4ZEAjrhVGVdAd3ImaEDa1rEgYoGDpQ7/kd5d3EdExOcs8bmVGdnxgCuebNaUd9GTVP7kCpzzkuL5kBFA7UOFG7ZeKSG1g4Liya4p0iC3bk58RgUfLzXdWmXrlo/B9bAeVpyuEMzdC+sP0pjW+eomZ0DmJQURkyIv0vWp+wsMhEW4EOqkwrLpETbK10O7U3/eztL0Rouzx3T/8Y2iybEsfzes/jtlVM4Wt3M5U+u49v/3oGp2fmN2T/LryQxPICJLrjJ1ZfsxLAhtS5o7TDz6f4Kzp+UMKDKnPFhAbxy21x8jAZufG4zRbXNgx7DaFDX3M6Nz26msqGNt+48g0eumUa5qYWr/r6Bu/+1fcDnr6G1gyc+LWBeWpTb/74MxNfmpZAYHsDvPz4gLQzEoElAJ5yqvL4Vfx8DEUG+nh6KU104JRGDgg92OzZLZ7GtsXF2uqVdXFgAOYlhLllHl1dmTRWdNGbwY7f3o9vsQPuC1QeqCPA1uGQWqy/RIf7MGR/Fhy4K6Fy5fs5uZkok+0rraW7v7HWb+tYOnl97lPMnxXetJxoNDAbF4gmxfH6wyulN5HcV1TEtOeKk0vVD4edjq3Q5xBm6d3aWkpscQeoAU5d9jAa+Mmccq7+/iG8vyeDDPWX87qP9QxrLqdo6zawtqGbJxDi39yjNSQyjpK5l0EHqFwXVNDmYbnmqlOhgXr5tDs3tndz43CaqGpyfAjwSNLZ1cvMLWzha3cQ/bprFrNQorp45llXfW8S9SzP5dH8FS/+8ht9/lE9Dq2P/j//4/Ag1Te38+IJsr+6LG+Br5P5zMtlVVMeKvApPD0cMU/3WB1dKJQMvAQmABXhGa/14t+e/B/wRiNVay3zxKFdmaiVxBDQVP1VsqD/z02N4f1cp3zk3q9/v71htMw2tnS4L6MBa7fIfnx+hvrWDsADnBdD7Sqx3sodyF33KmAjbOrpalk3u+03Q6gOVzE+P8chi9WWTEnjo/TwOVTYOqgBMX1y5fs5uZkokZotmd7Gp1+O8tL6Q+tZOvr0k02Xj8FaLJ8bx5rZidhTV9VqZcKBa2s0cqGjgrux0p+zPLjM+ZEizSAfKG9hfVs9Dl+QMeh8h/j5897wJNLWZeXH9UW46I9VpNwE2H62lqd3s1nRLu2xba4n95fWD+nn8cE8Z4YG+g+6ROTEhjBduncPXnt3ETc9v5rU75hEe6L6bnlpr3txWTFldK2at0VpjtmgsGixdn2sstsfMXZ9rzBaICfHj7iUZTv07011rh5nb/7mFvSUmnvraTBZkxHQ9F+Tnw3fOzeIrc5L5w0cH+Pvqw7y5tYjvnjeBa2cl95pGWVnfyj++OMrFUxOZNsReke5w1YyxPP35ER75+ADnZMd7ZXqo8G6OzNB1At/VWmcD84C7lVI50BXsnQscd90QxXBSbmoZURUuu7tkWiKFNc3sLen/TZe9YtWUMREuG8+irFg6LZo1Tp6lyyurJzU6iNAh/PH28zEwMyWy38IoR6ubKKxp9lg6zPmTEwBcUu3Slevn7GaM67vBeGNbJ8+uPcrSiXFMHsKM63B1ZmYMPgbl1LTLvaUmzBbttPVzdplxoRwbQqXLd3aWYDSort6ZQ3Hf0kzCAn359f/2Oy0F7LP8Svx9DMxPj+l/Yyez99McTMDc1mlm5f4KzsuJx3cIjdBnpkTyzE0zOVTZwG0vbnFrZdH9ZQ384K3dPPrJQZ74tIAnVx3iH18c4fl1R3l5wzFe23yct7YV887OUv63p4wV+8r5LL+Szw9Ws/FIDc+uPcplf103oCUHjmrvtHDXq9vZdLSWP187jXNz4nvcLjE8kEevy+WduxeQGh3Mj9/ew0VPfMG6XtadPfpJAZ0WC98/f4LTx+wKPkYD3ztvAgWVjfx3R4mnhyOGoX5n6LTWZUCZ7fMGpdR+YAyQBzwK/AB415WDFMNHmanVaXfCvc35kxL46Tt7eX93KVP6mXnbU2zC38dAZrzrysPPSo1iTEQgr28p4hInvImz21daz+QxQ78rPy8tikdWHOREU3uvjVxX2d5oL3JTT6pTJYYHkpscwUd7y7l7sXPXl7ly/ZxdRJAfGXEhvfaje3nDMeqaO/j20tE3OwcQFuDLrNRIVuVX8sNlE52yT3tBlKnJzg2QM+ND0BoOVzUyKWlg+7ZYNO/tLOWszBhiQvyHPJbwIF/uW5rJL97PY9WBSpZM7PlNtqO01nyWX8n89GgC/dw/Ex8XGkBMiP+gCqOsO1RNQ2vnoNItT3VWZiy/uWIK339rN18UVLE0e2jn1VEr8ypQCjY9sJTYEP8BZ9BsPlrL3f/azuVPruO3V045rSXGYJktmv97Yyef5Vfy6ysmc5kDaz9zkyN4884zWL6nnN9+uJ8bnt3EOdlxPHBhNmmxXxYXemNrETfOSyHFSetc3eGCyQlMGRPOoysPcsm0RJesvxcj14BuNymlUoHpwCal1KVAidZ6lysGJoYfi0VTUd86YmfoIoL8ODszlg92lfZbSnl3sYmcpLAh3dHtj9GguH52MmsPVVNYPbAeeb2pb+3geG3zgN9Q9sQ+M7Wpj350qw5Ukh4bzLjooCEfb7CWTU5gT4mJ4hPOK1jgjvVzdjPHRbLt+InTrsnm9k7+8cURFmbFkjsMUo5cZfGEOPLLGxzu19efnUV1jIkIJC7Uub/n7NVHCyoGvo5uS2EtJXUtAyqG0p+vzUshLSaYX/9vPx1DXIN4pLqJYzXNHkm3tMtODB1URdvle8oJDfA5KQ1wKC7LHUNogI/Le2B2t3J/OTPGRRIXOrjlEHPGR/G/b5/JlDHh3P/6Tn7+7t4hzzBqrXng7T38b3cZD1w4kRvmpjj8WqUUF01N5JPvLOSHyyay8Ugt5z36Ob94fx91ze384aN8An2NfHuYFYFSSvGDZRMoqWvhX5sk8U0MjMPvNpVSIcB/gPuxpmH+BPi5A6+7Qym1VSm1tarKdY2QhefVNLXTYdYjrsJld5dMS6LU1NpnZUGzRbO31OT0lKyeXDfbuobg35ud88t/vy0laSgVLu2mjo0gwNfQa9plc3snm47Wur1dwamWTbKmXX7kxOIo7lg/ZzczJZK65g6OnBLUv7rxOLVN7dw7Smfn7OxBhLMKCO0sqnNJgJxqq3RZUDnwtLZ3dpYS6GvsNV1tMHyNBh64MJvDVU1DfnNpn4lf7MGALicpjIKKxgEFp+2dFlbsK+fcnPhB9eTsiZ+PgSUT4/hkf6XTi/X0pLSuhb0l9UO+NuLCAnj1G3O5/czxvLThGNc9s6Gr7+xAaa355Qf7eX1rEfcuyeCOswe3HjXA18i3FqWz6nuLuGZWMv9cX8hZf1jFirwK7lyYRrQTZqvd7cyMGM5Ii+avnx2isa33YldCnMqh31BKKV+swdyrWuu3gXRgPLBLKVUIjAW2K6USTn2t1voZrfUsrfWs2FjvLRsrhs7egy4hbOQGdOfkxOPvY+C9Xb1XuzxS1Uhzu5kpblizFBcWwHk58byxtYi2zsGtvenOfgd7sD3ourOvo+tthm7D4RraOy0s8nBAlxoTzMSEUKfeMXfH+jm7GSnWdXTd0y5bO8w8/fkRzsyIYabt+dEqIy6EMRGBXT3QhqK6sY3iEy1Mc3K6JVh/XlJjgjk4wBm6tk4zy/eUcf6keIL9+11FMSBLs+NYkBHNY58cHFIbg8/yK5kQH8rYSM/NxOckhtFutnC4yvHzu+FIDfWtnVzYT2GngTovJ4HapvZe174600pb1URnBPu+RgM/vTiHJ786g4PlDVz0xNpe17D15bFPCnh+3VFumZ/K/52bNeRxxYb689srp7D8vrPITY4gIy6Er585fsj79QT7LF1NUzvPrz3q6eGIYaTfgE5Z5+efA/Zrrf8MoLXeo7WO01qnaq1TgWJghtbafTkEwuvY79aNpKbipwrx9+Gc7HiW7ynr9e7q7mJr2X9XVrjs7qtzx3GiucMpM0z7SuuJCfEjNtQ5dzbnjY8mv7yeuubT+9GtOlBJkJ+R2eM9H3Asm5zA1mMnqGxoHfK+tNaszKtw+fo5u7SYYCKCfE96c/jvzcepbmwb9bNzYH2DtGRiHOsOVQ/5poe92JGrZt8z40IG3Fx89YEqTC0dXOakdU3dKaX4yYU51LV08JfPCga1j/rWDjYfrfXo7Bx8mXUwkMIoH+4pI8TfhzMznVvIZdGEWPx8DHy8z/Ul6lfmVZAeG0x6rPPWc180NZF37zmTqGA/bnxuE0+uOtTvMgS7Z784wuOfFnDNzLH8/OIcp6akT0wI4+Xb5vLJdxYS5OfcmxvuNH1cJOflxPOPz4841MtVCHBshm4BcCOwRCm10/ZxoYvHJYah8nrbDN0ITrkEa7XL6sZ2Nh7peeZpd3EdQX7GrgXarrYgPYaU6CBe3Tj0tMu80npyksKd9kd2blo0Wp++jk5rzar8KhZkxHjFwu8LJieiNawY4hssrTW/+yifT/Mr+dq8cW5p32EwqK51dGCdnXtqzWHmpUUxZ/zILFA0UIsnxtLcbmZzH+s5HbGzyIRB4bKKoZnxoRyraRpQpct3d5YQHezHWU5a43WqnKQwrp2ZzD83FA5qre7agmo6Ldqj6+cAxscE4+9jcLgwSofZwsf7ylmaHef0lirB/j6clRHDx/vKXdpI2tTSwcYjNZybc1ry1JBlxIXw7t0LuHBKIn/8+AB3vLwNU0vfs7j/3nycX/1vPxdNSeR3V011Wh/Hkeh750+gqb2Tv68+5OmhiGGi34BOa71Wa6201lO11rm2j+WnbJMqPehEmakVX6MiupeKhiPFoglxhPj78H4vaZe7S0xMTgp3Wx8Zg0Hx1Tnj2FxYy8GKwZeVbu+0UFDZ4JT1c3bTksPx9zGw6ZTg91BlIyV1LR5fP2eXFR/C+JjgIadd/vWzQzy95gg3zB3HfW6cHZuREsmhykbqmtt5c2sRFfVt3DsK+8715oy0GPx9DENuX7CzqI6s+FCnpzbaZcWHYNFwpMqxwKm+tYNP9ldyybQkfFxYgOm752fhazTw2w8H3mz8s/xKwgN9mTEuwvkDGwAfo4EJCY4XRtl0pJYTzR1c4OR0S7vzJyVQUtfCviH0HuzP6gOVdFq0U9dWdhfs78NfvjKdBy/JYfWBSi7969peA+b3dpXywH/3sGhCLI9elyt91vqRFR/KFdPH8s8Nxwa9VlGMLq77CyBGnXJTK/FhASP+rluAr5HzcuL5cG/ZaZW+OswW8krr3ZZuaXf1zLH4GQ1DKl5QUNlAh1k7Zf2cnb+Pscd+dPYCFZ7qP3cqpRTLJiew4XBNj+mhjnj2iyP8aeVBrpw+hl9eNtkts3N29nVyG4/U8rfVh5mVEjnoJsgjUaCfkTPSo4dUGEVrzS4XFUSxy4yzVbp0sDDKR3vKae+0cFmu89qW9CQuNIC7FqXz8b6KfntLdmexaFYfqGRhVqxLA05H5SSGkVda79Cs2PK9ZQT5GV32O2ppdhwGBStcWO3Snvo93YXXrFKKWxeM57U75tHaYeaKv63j7e3FJ23zSV4F33l9J7NTo/j7DTOdVmBmpLv/nEzQ8Pgng0t3FqOL/FQJpykztYzoCpfdXTItifrWTr4oOPkNYkFFI22dln771DlbdIg/F0xJ4D/bi2lpH9w6Ifud4hwnBnRgLQyyv7z+pKIKqw5YiyQkRXjPestlkxLotGg+2T/wWZx/bbKmEl0wOYE/XO3+VKJpYyMwGhS/Xp5HmamVe5dmujWgHA4WT4jjaHUTRwfZ4uNYTTOmlg6mufDN8fiYYIwG5XDrgnd2lpASHeSWthS3n5VGUngAv/pfnsPrpXaXmKhubPd4uqVdTlIYJ5o7qKhv63M7s0Xz8d5ylkx0frqlXXSIP7NSo1iR55p1dG2dZlYfqOKc7Di3/D6alRrFB9+2FiX5zhu7+Ml/99DWaWb9oWru+td2cpLCeO7mWR7pQzhcJUcF8dW543hzWzFHBlDMR4xOEtAJpyk3tZIwgguidLcgI4aIIN/T0i73lNQB1pL97vbVOeNoaO3k/d29V+DsS15pPUF+RlKd3Ih17vgotIbNhda0y4bWDrYU1rJoonfMztlNHRtOUngAH+0tG9Dr3tlRwk/esaYSPX79dI/MRAT6GZmUFEZRbQu5yRGc5eQiDiOBPb131SDTLne5uCAK2CpdRgc5lDpdbmplw5EaLs8d45bgPcDXyA8vmMjeknre3lHi0Gs+y6/EoGBhlnf8rGfbC6OUmfrcbvPRWmqa2p3STLwv509KIL+8gWM1zukj2t3GI7U0tnVy3iT3NC8Ha7XJV26byzcXpvHqpuNc+bf13P7SVlKjg/jnrXMIDfB121hGinuWZODvY+BPKw96eijCy0lAJ5xCa02ZqXXUzND5+Ri4YHICK/MqTpoR21VsIjTAh5Qo95fnnjM+ioy4EF4dZNplXmk9ExNCnb62YVpyBP4+X/ajW3eohg6z9pr1c3ZKKc6fnMDnBdUO9//5aG85331zF3PHR/HU1zybSjRjnDXt8j6ZnevRuOgg0mODe21fYLFoTjS1c7iqkS2FtXy8r5x/bz7Ok6sO8csP8nh6zRECfY1kxbu22FFWfKhDlS7f21WC1nC5C6pb9ubSaUnkJkfwx4/zaW7v/2fks/wKZoyLJNJL1lVPTLCmtO4v6ztgXr6njABfg8tTws+zrW1zRZPxlXnlBPkZmZ/u3ps7PkYDP74gm6e+NpNjNc1dQZ63XAPDTUyIP7efOZ7/7S5jb0nfNyLE6DZ867oKr1LX3EFbp2VE96A71SVTk/j35iI+y6/koqnWO7l7ik1MGRPukXWESilumDuOX7yfx94S04Aq8Vksmryyeq5wwZvDAF8jM8Z9uY5u9YFKQv19vLI/2rJJCbywrpDVByq5eGrf65JWH6jk2//eztSx4Tx782yXpWY56tYFqYyNDPSadYneaPGEOF7acIwH/ruH2sZ2apvbqW1q50RTOyea2+ktkzDYz0hksB9fmzfO5TOwmXEhfLyvnNYOc5/X1Ds7SpmWHMH4GNe3xrBTSvGzi7O56u8beHrNkT57iFXWt7K3pJ7vnz/BbePrT2iAL+OigvpsXWC2aD7aV87iCXEuL32fHBVETmIYH++rGHRz7Z5orfkkr5KzM2M99ntp2eQEZqdG4udjkJm5Ibr97DRe3niMP3x8gJe+PsfTwxFeSgI64RSlXT3oRk9ANzctmthQf97fVcpFUxNp6zSTX17PbWemeWxMV04fy+8/yudfm4/zmyumOPy64hMtNLZ1On39nN3ctCge/7QAU3MHqw9UcWZmDL5eUCThVLNSo4gJ8ePDveV9BnQbj9TwzZe3kRkXyou3zCHERVUPByIlOpjbz/LctTccXJqbxL83H2fFvnIig/yICvYjMy6EqGC/0z4ig/yIDrH+6843xZnxoVg0HK1u6koRPNXBigbyyup58JIct43LbmZKFBdPTeTpzw/zlTnjem1TY58JXZrtXTPxOYlhfVa63HbsBFUNbVzg4nRLu/MnJfDYpwepbGglLtQ5fz/3lJgor291WXVLR0WHOKef6WgXFuDLXYsy+PXy/Ww4XCMFr0SPPP8uRIwI5abR0YOuO6NBcdGURP61+TgNrR0crW6iw6zdXuGyu/AgXy6emsS7O0p44MJshwONfaXWVA5nVrjsbl5aNI99UsDLGwspr2/1unRLO6NBcW5OAu/uLOl1hmRnUR23vbiF5KggXr5tDuFBcvd5uJg6NoJ9Dy/z9DD6lGlL6TxY0dBrQPfOjhKMBtXvLLKr/HDZRFbkVfCHj/P587W5PW7z6f5KksIDmBAf6t7B9SMnKYyP88ppauvssf3E8j1l+PsY3FbI5fzJ8Tz6yUE+yavkq3PHOWWfK/ZVYDQorylGI4buxjNSeH7dUf7wcT5vf2u+pNWL03jfLXIxLJXZAjpvqlroDpdMS6K908LKvAp2FVuDoikuajrsqBvmjqOp3cw7DhYuAMgrq8doUGS56M1XbnIEfj4Gnl5zBICFXpwWuGxyAs3tZr4oOL21Zl5pPTc9t4noEOu6ELkDLZzNXumyt3V0Fovm3Z2lnJkRQ2yoZ66/5KggbjtzPG9vL2G3rVhMd22dZtYeqmbxxDive+OZnRiG1pBffvo6OotF89HechZmxbpt1n1CfCgp0UFOXUe3Mq+C2anes3ZRDF2Ar5H7lmay43gdK11UGVUMbxLQCacoN7ViNChiRtkb3BnjIhgTEcj7u0rZU1xHZJAvYyM9G9TmJkeQkxjGq5uOO9RvCawtC9Jjg12WWhbga2R6cgQNbZ1MSgoj3ovXWp6RFk1YgA8f7T35DdahykZufG4Twf4+vHr73FE1Gy3cx9/HSEoflS63HjtBSV0Ll0/3zOyc3V2L0okO9uNXH+w/7ffM5qO1NLebvS7dEr5sy9JTA+wdRScor291eXXL7pRSnJcTz/rD1dS3dvT/gn4cr2nmQEUD5+YkOGF0wptcPXMsaTHBPLLiAGYHW4eI0UMCOuEUZaZW4kP9nV4h0dsppbh4WiJfFFSz/nANU8dGePyOtFKKG+aNY39ZPTuL6hx6TV5pPZOSXDuzOC/Nmvfv7UU7/HwMnJMdzyf7K+gwWxvHF9U287VnN6EUvHL7XJI9UMVUjB5ZcaEU9DJD987OEgJ9jZzn4TfsoQG+fOe8LDbbKoJ29+n+Svx9DJyR5n3tM5LCAwgL8OlxHd3yPeX4GQ0scXMgev6kBDrMetAtNbpbkWf9vzjPw+vnhPP5GA1897wJHKxoHFAGjhgdJKATTlFe3zJqZywumZpEp0VTfKLFo+vnurssdwzBfkaHWhjUNLZRXt9KTi/rdZxlaXYcvkbFBZPdd/d7sJZNTsDU0sHGIzWUm1r56rMbaekw8/Jtc0mPdW3ZeiEy40M4VtNMW6f5pMfbOy38b3cZ502K73H9l7tdNyuZCfGh/GZ5ftdYtdasOlDJ/PRor2wirZQiJynstBk6rTUf7injrMwYwtxclXHGuEhiQvyd0mR8RV4FExNC5abTCHXB5ASmjAnn0U8Onvb7QYxuEtAJp7D2oBtd6+fsJiWFkWYrHe7p9XN2If4+XDZ9DO/vKsXU3Hcaj/1OtasKothNHRvBnofOH1A7BU85OyuWQF8j/958nBue3ciJpg5e+vqcXotUCOFMmfGhmC2ao9UnN5xefaASU0sHl+e6r/dcX3yMBn5yUTbHa5t5af0xAI5UN3Gsppkl2d47Q5STGE5+WcNJaWu7ik2UmlrdVt2yO4NBcW5OPKvzK2ntGPyb9NqmdrYW1nq8uqVwHYNB8f3zJ1B8ooV/D7LnrBiZJKATQ6a1ptzUOmpn6JRSXJY7BoOyNtH2Fl+dM462Tgv/2V7c53b7bD2ZXNWyoDtP92pzVICvkcUTY1m+p5ySuhaeu3mWV/3fipEtM85e6fLktMt3d5YSFezHmZnek8p4dlYsiyfE8sRnBdQ0tvHZfmvaoDdXWMxODKWlw0xhzZcB84d7yvA1Ks71UCB6/qR4mtrNrD98ejEmR32WX4lF4/F0XOFaZ2XGMC8tir+uOkRTW6enhyO8hAR0YsjqWztpbjePqh50p7pzURrv3L3Aq4p9TB4TTm5yBK9uOtZncZS80nrGRAQSESQV0bq7bvY4wgN9efrGWcxNk74/wn3SYq2VLgu6FUapb+3gk/0VXDI10et6OP7komya2808/mkBn+VXMiE+lDFeXPH41MIoWmuW7y1jQUaMx9qQnJEeTYi/Dx/vHXza5cq8chLDA5g8RjIJRjKlFD9YNpHqxnbe3Frk+Av/8AdYterkx1atsj4uhj3v+qsghqXR2IPuVP4+RqaOjfD0ME5zw9xxHK5qYvPR2l632VdqklTCHizMimXHz85lYZZ3F3ERI4+90mVBtxm6j/aW09Zp4bLp3pFu2V1GXCg3zB3Hq5uOs6Ww1u1FRQYqIy4EH4Miz5adsLeknqLaFi704Ppefx8jiyfG8cn+ikFVMGztMPP5wWrOyY73eGEu4XozxkUSH+bP7hKT4y+aPRuuvdYaxJWUWP+99lrr495IAtABkYBODFmZqQVgVM/QeauLpyYRGuDTa3GU5vZOjlQ3uXz93HBlGGVVW4X3yIwL4WDllzN07+4sISU6iOlemvp7/zlZBPkZ6bRor063BGvwlBEX0jVDt3xvGUbbOjZPOn9SPDVN7Ww7dmLAr11bUE1Lh9nj34Nwn8y4UA73Ug23R4sXwxtvwKWXQmoqXHWV9evFi102xiGxB6CffQbNzd4fgHqYBHRiyL6cofPeFJvRKtDPyFUzxvLh3jKqG9tOez6/vAGt3bN+TgjhuKz40K5Kl+WmVtYfruGy3DFeO/sSFezHAxdmM21suNcGnd3lJIWRV1bfVd1yfnq0xxtxL5oQh5/RMKgm4yvzKgj19+lqDyNGvoy4EA5VNjrcbxawBm/f+AZ0doLRCHPmuG6AQ7V4Mfz733DhhRARAVde6d0BqIdJQCeGrMzUilIQFzq6mooPFzfMHUeHWfPWttOLo9hTjmSGTgjvkhEX0lXp8v1dpWgNl+d6tpl4f74yZxzv3nMmPl62xq8nOYlhVNS3se5QDYU1zV7RTiXE34cFGdF8vK98QG/SzRbNp/kVLJwQi5+P95974RzpcSE0tZsps91Ud8iqVfDyy/C1r0F1tXWWzlt1dMDTT0Nbm/Xz1laI8+7Zf0+Sn3wxZOWmVmJD/L1uob6wyowPZc74KP69+TiWU9Zm7CutJzzQ16sLGAgxGmXFhwJQUNHIOztLmDY2nDTpgeg09r6bf1p5AIOypjt6g/MnJVB8oqXHxue92Vl0gurGds6bJNUtR5MM2++DQ46mXdpTFt94wxrU3XgjfPwx/PjHLhzlILW3w/XXw1tvQXAwfPvb1scWLoTCQk+PzivJO3AxZGX1rbJ+zsvdMHccx2qaWXdKSey8snpyEsO8No1LiNFqfEwwBgXL95Sxr7Sey7yk99xIYS8EteN4HfPSookO8Y4Mk3Ny4jEo+Hif49UuV+RV4GtULJogBZxGk4y4AQZ0W7acnLL4wgswdSr86U+Qn++iUQ5Ce7s18Hz7bWsw9/778MQT8I9/QG0tnHkmVFZ6epReRwI6MWTlppZRXeFyOFg2OYGoYD9e3fhlcZROs4X8snpZPyeEFwrwNZIaHcyHe8sxKLh4mudTAkeSyGC/rhuRnmgm3puYEH9mpUSxYgDr6Fbuq2BeWjRhAZ5puSA8IybEj4ggXw5VORjQ/eAHJ68/Mxrhww8hPNwaQLW0uGagA9HWBldfDe++C5ddZg3m7GP++tfh8cehogIuuADqHZ/FHg0koBNDVmZqJVEKong1fx8j18wcy8r9FVTUW/Ptj1Y30dZpkfVzQngp+x34MzNjiQuVm2bOZs1O8J50S7vzJsWTX97A8Zrmfrc9VNnIkeomqW45CimlyIgNcXyGridJSdb0yz174P77nTa2QWlrs67pe/99ePJJeOed0wugfPvb1mBv925rwNc6gPWDI5wEdGJIGts6aWjtlBm6YeArc8Zhtmhe32JtRLrPVhBFZuiE8E72dXTeXgxluPr6meN54IJsrwuWz7ethXOk2uXKPGtq5jnZEtCNRvZKl0OybBn86EfwzDPw2mvOGdhAtbbCFVfA//4HTz0Fd93V+7YXXggvvgirV8NXv2qt2CkkoBNDY29ZIGvovF9qTDBnZcbw2ubjmC2avLJ6/HwMpEuhBSG80jk58ZyVGdP1Bl8414KMGL5xdpqnh3Ga5KggshPDHAzoypkyJpwkKWw1KmXEhVDb1E5tU/vQdvTwwzB/vrWlQUGBcwbnqJYWuPxya/rnM8/AN7/Z/2tuuMGafvnf/8Kdd8JAWjeMUBLQiSGxNxVPCJOAbjj46pxxlJpaWX2gkn2lJibEh0p1UiG8VG5yBC/fNpdgfx9PD0W42fmT4tl2/ARVDaf3D7WrbGhlR1GdpFuOYukDLYzSG19f6+ycnx9cd537Uhmbm62pkytWwHPPWQNKR917L/z0p9bXeWOlTjeTd3JiSMq6Zujk7uBwcE5OPLGh/ryy8Rh5pfWyfk4IIbzQeTkJaA2f7O+92uWn+yvRGgnoRrFMZwV0AMnJ1lTGHTvg+98f+v7609wMl1wCn3wCzz9vLXoyUA8/bJ2h+/3vrdU6RzEJ6MSQ2FMu48O9o+Sz6Juv0cD1s5NZdaCKE80dsn5OCCG8UHZiKMlRgX2mXa7Mq2BsZCATE0LdODLhTZLCAwn0NVJQ2eCcHV5yCXznO/DXv8J//uOcffakqQkuusjaG+/FF+GWWwa3H6WsY732Wvje96z7GqUkoBNDUmZqJSbED38fo6eHIhx0/ZxxGGxt52SGTgghvI9SivNzElh/qIaG1o7Tnm9q62TtoWrOzYmXPqKjmMGgSI8Lds4Mnd1vfwtz5sBtt8GRI87br11jo7WwyeefWyts3nTT0PZnNMJLL8E558Dtt8N77zlnnMOMBHRiSKQH3fAzJiKQRRPiUAomJEhAJ4QQ3uj8yQm0my2sOlB12nNfFFTR3mnhvBwpmDPaZcSGcNiZAZ2f35fVLq+/3troeyj+8AfrTBxAQ4O1h9wXX1jX6t1ww9D2befvby2QMnOmdbZuzRrn7HcYkYBODEmZqZWEMFk/N9w8eEkOT1w/nRAptiCEEF5pxrhIooP9eky7XJFXQUSQL7NTIz0wMuFNMuNDKTW10tTmxPL948db17Vt2WJtaTAUs2dbg6wPPrAGc+vXQ0jIwAqgOCIkxNr2YPx4uPRS61rAUUQCOjEk5fWt0rJgGEqJDuaSadLbSgghvJXRoDg3J57V+ZW0dZq7Hu80W/gsv5IlE+LwkSrFo5699dDhKifO0gFceSXccw88+ujQ0hinToU77rD2mVu/HoKDrc3BT20a7gwxMdaKmUrBkiVw6NCXz61aZZ0tHKH6/U2glEpWSq1SSu1XSu1TSt1ne/yXSqndSqmdSqkVSil5dzjKtLSbqWvukJRLIYQQwgXOn5RAU7uZ9Ydquh7bUniCuuYOqW4pAGsvOoCCCicHdACPPAIzZliLlhw/7thrtIbdu61r8RYsgLg4+M1vrKmcWsP997smmLNLTrb2qDOZ4MwzobTUGsxde611tnCEcuTWTifwXa11NjAPuFsplQP8UWs9VWudC3wA/Nx1wxTeqLxemooLIYQQrjI/I5oQf5+T0i5X5lXg52Pg7KxYD45MeIuU6CB8DIpDzp6hA+vatNdft1alvPBC6OhWoKf7jFdzszWl8s47ISUFpk2DBx6w9rP76U/hySchKAh+9jP4+9+/XFPnKjffbD1mRQWcfbY1mHvjDdcGkh7Wb0CntS7TWm+3fd4A7AfGaK3ru20WDEib9lGmq6m4BHRCCCGE0/n7GFk0IZaVeRWYLRqtNSv3l3NmRow0nBeAtR1RaoyTK112l5EBP/wh7Nv3ZUXKVavg6quhpMQa6EVHW1sevPoqzJoFzz5rfW7bNli0CB580BpQPfyw9d9rr3V9UPetb1nHe/iw9fMRHMwBDOi3gVIqFZgObLJ9/WvgJsAEjOwzJU5TLk3FhRBCCJc6b1ICH+wuY/vxE4QG+FBU28JdizI8PSzhRTLjQjhQ7qRedD15+GFrkZHXXoMDB6wplWYzPPGENeD75jetfeXOPts6q9fdli0nz44tXmz9essW1wZZq1bB8uVfzgouXjyigzqHAzqlVAjwH+B+++yc1vonwE+UUj8G7gEe7OF1dwB3AIwbN84ZYxZeoswW0CWEyQydEEII4QqLJ8TiZzTw8d5ywgJ9UQqWZsd5eljCi2TEhfDxvnLaOs2u6wv8xhvWCpI7dkBqKtx7rzWIy8rq+3U/+MHpj7k6uLKvmbMHkosXj/i0S4fKIymlfLEGc69qrd/uYZN/AVf19Fqt9TNa61la61mxsZLvPZKUm1qJCPIl0E+aigshhBCuEBrgy/yMaD7OK2dlXgW5yRHEhcqNVPGljLgQLBoKq5tdd5CNG62zcj/8obU5eG5u/8Gcp/Q1KzhCOVLlUgHPAfu11n/u9nhmt80uBfKdPzzhzaw96OSPihBCCOFK509KoKi2hT0lJqluKU5jb13gsnV03We8fvc7962DG6wf/OD0mbjFi3ueLRwhHJmhWwDcCCyxtSjYqZS6EPidUmqvUmo3cB5wnysHKrxPeX2LVLgUQgghXOyc7HiUsn5+Xk6CZwcjvE56bAhKuTCgG4UzXsNNv2votNZrAdXDU8udPxwxnJSbWpkyJsLTwxBCCCFGtNhQf+akRlHT1N7Vd0wIu0A/I2MjAymodFFhFE+sgxMDIjVvxaC0dZqpbmyXGTohhBDCDf7y1el0mqVDlOhZRmyI62bohNdzqCiKEKeqrG8DpAedEEII4Q5xoQEkRUibINGzjLgQjlQ3YbZI0D8aSUAnBqW0ztpUXGbohBBCCCE8KyMuhPZOC8UnXFjpUngtCejEoJTX25uKS0AnhBBCCOFJGXGhgAsLowivJgGdGJSupuLhkv4hhBBCCOFJ9mI5BRLQjUoS0IlBKTe1EhrgQ4i/1NURQgghhPCk8EBfYkP9ZYZulJKATgxKmUl60AkhhBBCeAupdDl6SUAnBqXc1CrplkIIIYQQXiIzPoTDlY1oLZUuRxsJ6MSglJlaSQyTGTohhBBCCG+QERdCQ1snFbbWUmL0kIBODFiH2UJVY5v0oBNCCCGE8BIZsdbCKJJ2OfpIQCcGrLKhDa2lZYEQQgghhLewV7o8VNng4ZEId5OATgxYucnaVFxm6IQQQgghvENsqD+hAT4cqpIZutFGArpRpNNsccp+7D3oEqUoihBCCCGEV1BKkRknlS5HIwnoRomP9paR+/BKthTWDnlf5V1NxWWGTgghhBDCW2RIQDcqSUA3CuSX1/OdN3bR2NbJi+sLh7y/MlMrQX5GwgKkqbgQQgghhLfIiAuhurGduuZ2Tw9FuJEEdCPciaZ2vvHSVkL8fbhkWhIr91VwomloP+TWHnQBKKWcNEohhBBCCDFUXxZGkVm60UQCuhGs02zh7n9tp8LUxtM3zuTuxem0my38d0fJkPZbZmqRCpdCCCGEEF4mMy4UkIButJGAbgT7zfJ81h+u4ddXTGb6uEgmJoQxLTmC17cUobUe9H7LTa0khElBFCGEEEIIbzImIpAAXwMFEtCNKhLQjVBvbSvm+XVHuXVBKtfMSu56/LpZyRyoaGBXsWlQ+zVbNBUNbTJDJ4QQQgjhZQwGRVqMFEYZbSSgG4F2HD/BA//dw/z0aH5yYfZJz10yLZFAXyOvbyka1L6rG9swW7RUuBRCCCGE8EJS6XL0kYBuhKmsb+XOV7YRH+bPk1+dgY/x5P/i0ABfLpqayPu7Smlu7xzw/r/sQScBnRBCCCGEt8mIC6GkrmVQ7/PE8CQB3QjS1mnmm69so76lk2dunEVksF+P2103O5nGtk7+t7tswMcoq2sBpAedEEIIIYQ3yrRVujxS1eThkQh3kYBuhNBa87N39rLjeB1/vnYa2YlhvW47KyWStNhg3tg68LTLL2fopCiKEEIIIYS3sbcuKKhs8PBIhLuM6oBOa83agmo+3lfu6aEM2UsbjvHG1mK+vSSDC6Yk9rmtUorrZiWzpfDEgHOsy+tb8fMxEBnkO5ThCiGEEEIIF0iJDsZoULKObhQZ1QEdwBOfFvDgu/to6zR7eiiDtv5wNQ9/kMc52XH83zlZDr3myhlj8TEo3hzgLF2ZqZVEaSouhBBCCOGV/HwMpEQHSUA3iozqgE4pxX3nZFJe38obW4s9PZxBKapt5u5XtzM+JphHr8vFYHAs0IoN9WfJxDj+s72YDrPF4eOVS1NxIYQQQgivlhErlS5Hk1Ed0AHMT49mZkokf191aNjN0jW3d3LHy9swWzT/uGkWoQEDS4O8fk4y1Y3tfLq/0uHXWGfoZP2cEEIIIYS3yowPobCmmfZOx2/ai+Fr1Ad0SinuW5pJqamVt7YNn1k6rTXff3M3B8rreeIr0xkfEzzgfZydGUt8mL/DxVEsFk1FfatUuBRCCCGE8GIZcSGYLZpjNVLpcjQY9QEdwFmZMeQmR/C3VYeHzZ2Mv60+zP/2lPHDZRNZNCFuUPvwMRq4euZYVh+opNxWvbIvNU3tdJi1pFwKIYQQQnixjNhQAEm7HCUkoOPLtXQldS28vd37Z+k+y6/gkRUHuHRaEnecnTakfV07KxmLhre29T9LZw/6EsIkoBNCCCGE8FbpcdbMLQnoRgcJ6GwWZcUybWw4T64+NKAiIe52qLKR+/69k0lJYfz+qqlDrjaZEh3MGWnRvLG1GItF97ltmcnaVFzW0AkhhBBCeK8gPx/GRARyqEoCutGg34BOKZWslFqllNqvlNqnlLrP9vgflVL5SqndSqn/KqUiXD5aF1JKce/STIpqW/jvjhJPD6dHbZ1mvvXKNvx9DTx94ywC/YxO2e91s5M5XtvMxiM1fW5XXm+boZOUSyGEEEIIr5YRF0JBhQR0o4EjM3SdwHe11tnAPOBupVQOsBKYrLWeChwEfuy6YbrHkolxTB4TxpOrDtHphbN0f199mILKRh65ZhpjIpw3S7ZscgKhAT683k9xlDJTK75GRXSwn9OOLYQQQgghnC8jLoQj1Y39ZmCJ4a/fgE5rXaa13m77vAHYD4zRWq/QWnfaNtsIjHXdMN1DKcW9SzI5VtPMuztLPT2ckxyqbORvqw5z6bSkQRdB6U2Ar5Erpo/hw73lmJo7et2u3NRKfFiAw73uhBBCCCGEZ2TEhdDaYaGkrsXTQxEuNqA1dEqpVGA6sOmUp74OfOikMXnUuTnx5CSG8VcvmqWzWDQP/HcPAb4GfnZxjkuOce2sZNo7Lbyzs/d00zJpKi6EEEIIMSxkxIUAUhhlNHA4oFNKhQD/Ae7XWtd3e/wnWNMyX+3ldXcopbYqpbZWVVUNdbwuZ19Ld7S6iQ92l3l6OAC8ua2IzUdreeDCbGJD/V1yjMljwpmUFMbrW3pPuyw3tZIgBVGEEEIIIbxeRqw1oCuobPDwSISrORTQKaV8sQZzr2qt3+72+M3AxcANWuseE3S11s9orWdprWfFxsY6Y8wud15OPBMTQnniswLMHs47rmpo4zfL85kzPoprZyW79FjXz04mr6yevSWm057TWlNmapUZOiGEEEKIYSAy2I+YED+ZoRsFHKlyqYDngP1a6z93e3wZ8EPgUq11s+uG6H4Gg3WW7khVEx/s9uxaul9+kEdLu5nfXDHF5WvXLs0dg7+Pgde2HD/tubrmDto6LdKDTgghhBBimEiPDZGAbhRwZIZuAXAjsEQptdP2cSHwVyAUWGl77ClXDtTdlk1KICs+hL98dshj1YFWH6jkvV2lfGtRelcetCuFB/pyweQE3t1ZSmuH+aTnymxNxWWGTgghhBBieMiIswZ0vSTSiRHCkSqXa7XWSms9VWuda/tYrrXO0Fond3vsTncM2F0MBsW3l2RyqLKR5Xvdv5aupd3Mz97dS1psMHctTnfbca+bPY6G1k4+POV7Lq+3VkiSHnRCCCGEEMNDZlwI9a2dVDW2eXoowoUGVOVytLlwSiIZcSH85VP3z9I99ulBimpb+O0VU/D3cU4DcUfMS4siJTqI1zafXByltM4+QydFUYQQQgghhoOMuFAADkmD8RFNAro+GA2Kby/J4EBFAx/vK3fbcfeVmnj2i6NcNyuZuWnRbjsuWKt8XjsrmU1Haymsbup6vNzUitGgXFZlUwghhBBCOFdX64IqCehGMgno+nHx1CTSYoN5/NMCt8zSmS2aB97eQ2SQLz++cKLLj9eTq2eOxaDgja1fztKVmVqJC/XHKE3FhRBCCCGGhfgwf0L8faQwyggnAV0/7LN0+eUNrNxf4fLjvbyhkF3FJn52cQ4RQX4uP15P4sMCWDwhjre2FXc1Vy+vb5H1c0IIIYQQw4hSivQ4qXQ50klA54BLpiaRGh3EE58WuLRKUGldC3/8+ABnZ8Vy6bQklx3HEdfOTqayoY3VB6zN4MtMrSTJ+jkhhBBCiGElMy6EAgnoRjQJ6BzgYzRwz5JM9pXW8+n+Spcd58H39mHWml9fPhlr+z/PWTIxjpgQf17fWoTWmnJTq8zQCSGEEEIMMxlxIVQ1tGFq6fD0UISLSEDnoMtzkxgXFcTjLpql+2hvOSvzKvi/c7JIjgpy+v4Hytdo4KqZY/gsv5LDVY00t5ulB50QQgghxDCTEWsrjCKzdCOWBHQO8jEauGdxBntKTKw64NxZuobWDh58by/ZiWF8/czxTt33UFw7KxmzRfPkqsOA9KATQgghhBhu7JUuD0tAN2JJQDcAV8wYw9jIQB7/9JBTZ+n++PEBKhva+N2VU/A1es9/SXpsCHNSo3h3ZwmAzNAJIYQQQgwzyVFB+PkYKKhs8PRQhIt4T/QwDPgaDdy9OINdRXWsOVjllH1uP36Clzce4+YzUpmWHOGUfTrTtbOTsXdrSJCiKEIIIYQQw4rRoEiLCZaUyxFMAroBumrGWMZEBDplLV2H2cIDb+8hISyA750/wUkjdK4LpyQQ4u+DUhAnTcWFEEIIIYadjLgQaS4+gklAN0B+PgbuWpzOjuN1rD1UPaR9/eOLI+SXN/DwZZMJ8fdx0gidK8jPh+tnJ5MVF+pV6aBCCCGEEMIxGXEhFJ9oobXD7OmhCBeQd+iDcPXMsSSGB/D4J4OfpTtW08TjnxSwbFIC5+bEO3mEzvXjC7P54N4zPT0MIYQQQggxCBlxIWgNh2WWbkTyzmkhL+fvY+SuRen87N19XPbkOqKC/YgI9CUiyI+wQF/b576Ed/3r1/W1r9GA1pqfvrMXX6OBhy6d5Olvp19Gg8KIZ/viCSGEEEKIwcmMCwWsrQsmJYV7eDTC2SSgG6RrZydTWNPMwYoGapvaOVLVhKmlg/rWDvqatAv2MxIS4ENFfRu/vGyStAIQQgghhBAulRoThEFJL7qRSgK6QfL3MfKzi3NOe9xs0TS0dlDX3IGppYO6lg7qmtsxtXRgarZ/3UFSRAA3zE3xwMiFEEIIIcRo4u9jJCVaKl2OVBLQOZnRoIgI8iMiyM/TQxFCCCGEEAKw9heWgG5kkqIoQgghhBBCjHCZ8SEcrW6iw2zx9FCEk0lAJ4QQQgghxAiXERtCp0VzrKbZ00MRTiYBnRBCCCGEECNcRlwIIIVRRiIJ6IQQQgghhBjh0m0BnfSiG3kkoBNCCCGEEGKEC/H3ITE8QGboRiAJ6IQQQgghhBgFMuJCKKhs8PQwhJNJQCeEEEIIIcQokBEXwuHKJiwW7emhCCeSgE4IIYQQQohRIDMulJYOM8drpdLlSCIBnRBCCCGEEKPA7NRIADYeqfHwSIQzSUAnhBBCCCHEKJARF0JcqD/rDktAN5JIQCeEEEIIIcQooJRifno0Gw5Xo7WsoxspJKATQgghhBBilJifEUN1YzsHKqTa5UghAZ0QQgghhBCjxIKMGADWHZK0y5FCAjohhBBCCCFGiTERgaRGB7H+ULWnhyKcpN+ATimVrJRapZTar5Tap5S6z/b4NbavLUqpWa4fqhBCCCGEEGKo5mfEsPFIDR1mi6eHIpzAkRm6TuC7WutsYB5wt1IqB9gLXAl87sLxCSGEEEIIIZzozIwYmtrN7C6u8/RQhBP0G9Bprcu01tttnzcA+4ExWuv9WusDrh6gEEIIIYQQwnnOSItGKVlHN1IMaA2dUioVmA5sGsBr7lBKbVVKba2qqhrg8IQQQgghhBDOFBnsR05iGOtkHd2I4HBAp5QKAf4D3K+1rnf0dVrrZ7TWs7TWs2JjYwczRiGEEEIIIYQTLciIYcfxOlrazZ4eihgihwI6pZQv1mDuVa31264dkhBCCCGEEMKV5qdH0262sKWw1tNDEUPkSJVLBTwH7Nda/9n1QxJCCCGEEEK40pzxUfgaFesOS9rlcOfjwDYLgBuBPUqpnbbHHgD8gb8AscD/lFI7tdbnu2SUQgghhBBCCKcJ8vNhenIk66UwyrDXb0CntV4LqF6e/q9zhyOEEEIIIYRwh/kZ0Tz+aQF1ze1EBPl5ejhikAZU5VIIIYQQQggxMizIiEFr2HhEZumGMwnohBBCCCGEGIWmjY0gyM8o/eiGOQnohBBCCCGEGIX8fAzMGR8lhVGGOQnohBBCCCGEGKUWpMdwpKqJclOrp4ciBkkCOiGEEEIIIUap+RnRAKw7JLN0w5UEdEIIIYQQQoxS2QlhRAX7SdrlMCYBnRBCCCGEEKOUwaA4Iy2a9Ydq0Fp7ejhiECSgE0IIIYQQYhSbnxFNeX0rR6qbPD0UMQgS0AkhhBBCCDGKLUiPAWC9rKMbliSgE0IIIYQQYhRLiQ5iTESg9KMbpiSgE0IIIYQQYhRTSjE/PZoNR2owW2Qd3XAjAZ0QQgghhBCj3IKMGEwtHeSV1nt6KGKAJKATQgghhBBilJufbutHJ+0Lhh0J6IQQQgghhBjl4sICyIwLkQbjw5AEdEIIIYQQQggWZMSwpbCWtk6zp4ciBsDH0wPo6OiguLiY1tZWTw9FjDABAQGMHTsWX19fTw9FCCGEEMLrzU+P5sX1hWw/VscZthRM4f08HtAVFxcTGhpKamoqSilPD0eMEFprampqKC4uZvz48Z4ejhBCCCGE15ubFo1BwfrD1RLQDSMeT7lsbW0lOjpagjnhVEopoqOjZeZXCCGEEMJB4YG+TB0bIevohhmPB3SABHPCJeS6EkIIIYQYmAUZ0ewqNtHQ2uHpoQgHeUVA52m//vWvmTRpElOnTiU3N5dNmzYBcPvtt5OXl+eUY6SmplJd3ffdjt/85jcD3u+LL77IPffcc9JjL7zwArm5ueTm5uLn58eUKVPIzc3lRz/60YD37w6PPfYYzc3Nnh6GEEIIIcSotyA9BrNFs/loraeHIhzk8TV0nrZhwwY++OADtm/fjr+/P9XV1bS3twPw7LPPunUsv/nNb3jggQeGvJ9bb72VW2+9FbAGkqtWrSImJmbI+x0srTVaawyGnu8fPPbYY3zta18jKCjI4X12dnbi4zPqL18hhBBCCKeakRKJv4+BdYdqWJod7+nhCAeM+hm6srIyYmJi8Pf3ByAmJoakpCQAFi1axNatWwEICQnhhz/8ITNnzuScc85h8+bNLFq0iLS0NN577z3g9Nmyiy++mNWrV592zMsvv5yZM2cyadIknnnmGQB+9KMf0dLSQm5uLjfccAMAr7zyCnPmzCE3N5dvfvObmM3WErIvvPACWVlZLFy4kHXr1jn8vf7xj39k9uzZTJ06lQcffBCAwsJCJk6cyO23387kyZO54YYb+OSTT1iwYAGZmZls3rwZgIceeogbb7yRJUuWkJmZyT/+8Y9+95udnc1dd93FjBkzKCoq4lvf+hazZs1i0qRJXds98cQTlJaWsnjxYhYvXtx1ru3eeustbrnlFgBuueUWvvOd77B48WJ++MMfcvjwYZYtW8bMmTM566yzyM/Pd/hcCCGEEEKI0wX4GpmVGsl6aTA+bHjVFMcv3t9HXmm9U/eZkxTGg5dM6vX58847j4cffpisrCzOOeccrrvuOhYuXHjadk1NTSxatIjf//73XHHFFfz0pz9l5cqV5OXlcfPNN3PppZc6PKbnn3+eqKgoWlpamD17NldddRW/+93v+Otf/8rOnTsB2L9/P6+//jrr1q3D19eXu+66i1dffZVzzz2XBx98kG3bthEeHs7ixYuZPn16v8dcsWIFBQUFbN68Ga01l156KZ9//jnjxo3j0KFDvPnmmzzzzDPMnj2bf/3rX6xdu5b33nuP3/zmN7zzzjsA7N69m40bN9LU1MT06dO56KKL2Lt3b6/7PXDgAC+88AJ/+9vfAGtqa1RUFGazmaVLl7J7927uvfde/vznPzs8i3jw4EE++eQTjEYjS5cu5amnniIzM5NNmzZx11138dlnnzn8/yCEEEIIIU43Pz2GP358gOrGNmJC/D09HNEPrwroPCEkJIRt27bxxRdfsGrVKq677jp+97vfdc0K2fn5+bFs2TIApkyZgr+/P76+vkyZMoXCwsIBHfOJJ57gv//9LwBFRUUUFBQQHX1yadhPP/2Ubdu2MXv2bABaWlqIi4tj06ZNLFq0iNjYWACuu+46Dh482O8xV6xYwYoVK7qCv8bGRgoKChg3bhzjx49nypQpAEyaNImlS5eilDrte7vssssIDAwkMDCQxYsXs3nzZtauXdvrflNSUpg3b17X69944w2eeeYZOjs7KSsrIy8vj6lTpw7o3F1zzTUYjUYaGxtZv34911xzTddzbW1tA9qXEEIIIYQ43YIMa0C3/nANl05L8vRwRD+8KqDraybNlYxGI4sWLWLRokVMmTKFf/7zn6cFdL6+vl1VEw0GQ1eKpsFgoLOzEwAfHx8sFkvXa3oqmb969Wo++eQTNmzYQFBQEIsWLepxO601N998M7/97W9Pevydd94ZVPVGrTU//vGP+eY3v3nS44WFhV3fS1/fG5xeNVIp1ed+g4ODu74+evQojzzyCFu2bCEyMpJbbrml15YC3Y9z6jb2fVosFiIiIrpmNIUQQgghhHNMGRNOaIAP6w9VS0A3DIz6NXQHDhygoKCg6+udO3eSkpIyqH2lpqayc+dOLBYLRUVFXevPujOZTERGRhIUFER+fj4bN27ses7X15eODmuJ2KVLl/LWW29RWVkJQG1tLceOHWPu3LmsXr2ampoaOjo6ePPNNx0a2/nnn8/zzz9PY2MjACUlJV37dtS7775La2srNTU1rF69mtmzZzu83/r6eoKDgwkPD6eiooIPP/yw67nQ0FAaGhq6vo6Pj2f//v1YLJaumcxThYWFMX78+K7vX2vNrl27BvT9CCGEEEKI0xkNinlp0ayTdXTDglfN0HlCY2Mj3/72t6mrq8PHx4eMjIyuQiUDtWDBgq70xcmTJzNjxozTtlm2bBlPPfUUU6dOZcKECSelJN5xxx1MnTqVGTNm8Oqrr/KrX/2K8847D4vFgq+vL08++STz5s3joYce4owzziAxMZEZM2Z0FUvpy3nnncf+/fs544wzAGuq6SuvvILRaHT4+5szZw4XXXQRx48f52c/+xlJSUkkJSU5tN9p06Yxffp0Jk2aRFpaGgsWLDjp+77gggtITExk1apV/O53v+Piiy8mOTmZyZMndwWLp3r11Vf51re+xa9+9Ss6Ojq4/vrrmTZtmsPfjxBCCCGE6NmC9GhW5lVQVNtMcpTjlciF+ymttdsONmvWLG2vGmm3f/9+srOz3TYGMTgPPfQQISEhfO973/P0UAZEri8hhBBCiIErqGjg3Ec/53dXTuH6OeM8PZwRRSm1TWs9y1n7G/Upl0IIIYQQQoiTZcSFEBfqz7rDNZ4eiujHqE+5FI556KGHPD0EIYQQQgjhJkop5qdHs/ZQNVrrQRXlE+7R7wydUipZKbVKKbVfKbVPKXWf7fEopdRKpVSB7d9I1w9XCCGEEEII4Q7zM2KobmznQEVD/xsLj3Ek5bIT+K7WOhuYB9ytlMoBfgR8qrXOBD61fS2EEEIIIYQYARZkxACw7pCkXXqzfgM6rXWZ1nq77fMGYD8wBrgM+Kdts38Cl7tojEIIIYQQQgg3GxMRSGp0EOsPSfsCbzagoihKqVRgOrAJiNdal4E16APinD46IYQQQgghhMfMz4hh09FaOs0WTw9F9MLhgE4pFQL8B7hfa10/gNfdoZTaqpTaWlVVNZgxupzRaCQ3N5fJkydzzTXX0NzcPOh93XLLLbz11lsA3H777eTl5fW67erVq1m/fn3X10899RQvvfTSoI9tV1hYyOTJk0967KGHHuKRRx4Z0H6cNR4hhBBCCDE8LUiPobGtk13FJk8PRfTCoYBOKeWLNZh7VWv9tu3hCqVUou35RKCyp9dqrZ/RWs/SWs+KjY0d2mj/8AdYterkx1atsj4+BIGBgezcuZO9e/fi5+fHU089ddLzjjTu7smzzz5LTk5Or8+fGtDdeeed3HTTTYM6lrN1dnZ61XiEEEIIIYT7nZEeDcA6Sbv0Wo5UuVTAc8B+rfWfuz31HnCz7fObgXedP7xTzJ4N1177ZVC3apX169mznXaIs846i0OHDrF69WoWL17MV7/6VaZMmYLZbOb73/8+s2fPZurUqTz99NMAaK255557yMnJ4aKLLqKy8su4dtGiRdgbqX/00UfMmDGDadOmsXTpUgoLC3nqqad49NFHyc3N5YsvvjhpFm3nzp3MmzePqVOncsUVV3DixImuff7whz9kzpw5ZGVl8cUXXwz4e+xr3w888AALFy7k8ccf7xpPaWkpubm5XR9Go5Fjx45x7Ngxli5dytSpU1m6dCnHjx8HrLOU9957L/PnzyctLa1rxlIIIYQQQgwvUcF+5CSGSUDnxRzpQ7cAuBHYo5TaaXvsAeB3wBtKqduA48A1Qx7N/ffDzp19b5OUBOefD4mJUFYG2dnwi19YP3qSmwuPPebQ4Ts7O/nwww9ZtmwZAJs3b2bv3r2MHz+eZ555hvDwcLZs2UJbWxsLFizgvPPOY8eOHRw4cIA9e/ZQUVFBTk4OX//610/ab1VVFd/4xjf4/PPPGT9+PLW1tURFRXHnnXcSEhLC9773PQA+/fTTrtfcdNNN/OUvf2HhwoX8/Oc/5xe/+AWP2b6Pzs5ONm/ezPLly/nFL37BJ598ctr3cvjwYXJzc7u+Li8v7zpOX/uuq6tjzZo1wJe955KSkthp+3958sknWbNmDSkpKVxyySXcdNNN3HzzzTz//PPce++9vPPOOwCUlZWxdu1a8vPzufTSS7n66qsd+j8QQgghhBDeZUFGNP9cf4yWdjOBfkZPD0ecot+ATmu9Fuitk+BS5w7HAZGR1mDu+HEYN8769RC1tLR0BT9nnXUWt912G+vXr2fOnDmMHz8egBUrVrB79+6u2SaTyURBQQGff/45X/nKVzAajSQlJbFkyZLT9r9x40bOPvvsrn1FRUX1OR6TyURdXR0LFy4E4Oabb+aaa76Ml6+88koAZs6cSWFhYY/7SE9P7wrC4MvgrL99X3fddb2Oa926dTz77LNds4IbNmzg7betGbg33ngjP/jBD7q2vfzyyzEYDOTk5FBRUdHn9yuEEEIIIbzX/IwY/vHFUbYU1nJ21hCXUAmnc2SGzn0cmUmzp1n+7Gfw97/Dgw/C4sVDOqx9Dd2pgoODuz7XWvOXv/yF888//6Rtli9fjjUrtXda6363GQh/f3/AWsyls7PTafuFk7/n7srKyrjtttt47733CAkJ6XGb7t+jfYxg/f6FEEIIIcTwNCc1Ch+DYt3hagnovNCA2hZ4nD2Ye+MNePhh67/d19S50Pnnn8/f//53Ojo6ADh48CBNTU2cffbZvPbaa5jNZsrKyljVw1jOOOMM1qxZw9GjRwGora0FIDQ0lIaGhtO2Dw8PJzIysmsm7OWXX+6aURuqwey7o6ODa6+9lt///vdkZWV1PT5//nxee+01AF599VXOPPNMp4xRCCGEEEJ4j2B/H6aPi2C9NBj3St41Q9efLVusQZx9Rm7xYuvXW7YMeZauP7fffjuFhYXMmDEDrTWxsbG88847XHHFFXz22WdMmTKFrKysHoOj2NhYnnnmGa688kosFgtxcXGsXLmSSy65hKuvvpp3332Xv/zlLye95p///Cd33nknzc3NpKWl8cILLzjtexnovtevX8+WLVt48MEHefDBBwHrzOQTTzzB17/+df74xz8SGxvr1DEKIYQQQgjv8avLpxAZ7OvpYYgeKHemw82aNUvbqz7a7d+/n+zsbLeNQYwucn0JIYQQQghvopTaprWe5az9Da+USyGEEEIIIYQQXSSgE0IIIYQQQohhSgI6IYQQQgghhBimvCKgk7L2whXkuhJCCCGEECOdxwO6gIAAampq5M23cCqtNTU1NQQEBHh6KEIIIYQQQriMx9sWjB07luLiYqqqqjw9FDHCBAQEMHbsWE8PQwghhBBCCJfxeEDn6+vL+PHjPT0MIYQQQgghhBh2PJ5yKYQQQgghhBBicCSgE0IIIYQQQohhSgI6IYQQQgghhBimlDurSyqlqoBjbjug42KAak8PYgST8+tacn5dR86ta8n5dS05v64l59e15Py6jpxb13Lk/KZorWOddUC3BnTeSim1VWs9y9PjGKnk/LqWnF/XkXPrWnJ+XUvOr2vJ+XUtOb+uI+fWtTxxfiXlUgghhBBCCCGGKQnohBBCCCGEEGKYkoDO6hlPD2CEk/PrWnJ+XUfOrWvJ+XUtOb+uJefXteT8uo6cW9dy+/mVNXRCCCGEEEIIMUzJDJ0QQgghhBBCDFPDLqBTSi1TSh1QSh1SSv2o2+OvK6V22j4KlVI7e3htrlJqg1Jqn1Jqt1Lqum7PjVdKbVJKFdj25dfL8W+2bVOglLp5oK/3Zp48t0qpFKXUNtsx9iml7hzI64cDF57fe2z71EqpmD6OP2KvXfDs+ZXrd0jn91XbfvcqpZ5XSvn2cny5fl10fkf69evCc/ucUmqX7fG3lFIhvRxfrl0Xnd+Rfu1Cn+c3Vym10fa9b1VKzenl9UO6/kbx9evy8+vU61drPWw+ACNwGEgD/IBdQE4P2/0J+HkPj2cBmbbPk4AyIML29RvA9bbPnwK+1cPro4Ajtn8jbZ9HOvp6b/7wgnPrB/jbPg8BCoGkkXBu3XB+pwOptnMW08vxR+y16yXnV67fwZ/fCwFl+/h3L78f5Pp17fkdsdevi89tWLft/gz8SK5dt5/fEXvt9nd+gRXABbbPLwRWO/v6G83Xr5vOr9Ou3+E2QzcHOKS1PqK1bgdeAy7rvoFSSgHXYv3DdRKt9UGtdYHt81KgEoi1vWYJ8JZt038Cl/dw/POBlVrrWq31CWAlsGwAr/dmHj23Wut2rXWb7Ut/bLPHI+TcgovOr+3rHVrrwn6OP5KvXfDw+ZXrd0jnd7m2ATYDY3s4vly/Ljy/I/z6deW5re/2+kCgp6IEcu268PyO8GsX+j6/GgizfR4OlPbw+qFef6P5+nX5+XXm9TvcAroxQFG3r4ttj3V3FlBh/wXRG9vUqR/WyDwaqNNad566X6XULKXUs/0cv9fXDyOePrcopZKVUrtt4/i97Zf7SDi34Lrz29d2o+XaBc+fX7l+h3h+lTUV8EbgI9vXcv2ezJXndyRfvy49t0qpF4ByYCLwF9tjcu2ezJXndyRfu9D3+b0f+KNSqgh4BPjxAF4v73utPH1+nXb9DreATvXw2Kl3bL5CD3eBTtqJUonAy8CtWmtLX/vVWm/VWt/ez/EdGZe38/S5RWtdpLWeCmQANyul4h0c13DgqvPbq1F07YLnz69cv0M/v38DPtdafwFy/eLe8zuSr1+Xnlut9a1YUwX3A9fZHpNr92SuPL8j+dqFvr+PbwH/p7VOBv4PeG4Ar5f3vVaePr9Ou36HW0BXDCR3+3os3aZAlVI+wJXA673tQCkVBvwP+KnWeqPt4Wogwvb60/brwPEdfb038/S57WK7O7EP6129kXBuwXXnd6jHl/P75TZDOb9d5PrtWV/nVyn1INY0q+8M8Phyfr/cZijnt8sIvH5d/rtBa222vf6qARx/JJxb8Pz57b7dSLt2oe/zezPwtu3zN7GmDzr6ennfa+Xp89tlyNev9oJFiY5+AD5YFxyO58vFi5O6Pb8MWNPH6/2AT4H7e3juTU5efHhXD9tEAUexLnyMtH0e5ejrvfnDC87tWCDQ9nkkcBCYMhLOravPb7dtCum7KMqIvHa95PzK9Tv43w+3A+vt56+X18v169rzO2KvX1edW6x30DO6ff4I8Ihcu24/vyP22u3v/GKdtVxk+3wpsM3Z199ovn7ddH6ddv16/GQO4uRfaPuGDwM/OeW5F4E7+3jt14AOYGe3j1zbc2lYF4wfsp1Ee9WZWcCz3fbxdds2h7CmBtDX64fThyfPLXAusNv2w7QbuGMknVsXn997sd4l6sR6B8d+TkfNtevp8yvX75DOb6dtn/bHfy7Xr3vP70i/fl1xbrFmOK0D9gB7gVexVWWUa9d953ekX7t9nV/gTGCb7XvfBMzs5fUDuv7k+nXf+XXm9atsLxJCCCGEEEIIMcwMtzV0QgghhBBCCCFsJKATQgghhBBCiGFKAjohhBBCCCGEGKYkoBNCCCGEEEKIYUoCOiGEEEIIIYQYpiSgE0IIIYQQQohhSgI6IYQQQgghhBimJKATQgghhBBCiGHq/wG2Bfjh2TR51AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB7E0lEQVR4nO3dd3zV1f3H8dfJ3iGbFTLYe+8N7i0quFfRautPbWuttnW1tVq1raPWvUfdeyIIyp6yN0kgkAAZZO/c7++PexMDBLLuzb1J3s/HIw+Se7/j3MOX8P18P+d8jrEsCxEREREREXEvL3c3QERERERERBSciYiIiIiIeAQFZyIiIiIiIh5AwZmIiIiIiIgHUHAmIiIiIiLiARSciYiIiIiIeAAFZyIiIiIiIh5AwZmISBtljCmq82UzxpTW+fkKd7evOYwxacaYU9zdjpMxxiwyxsx14fGfN8bscPydXnuS7b43xljGGJ86rxUd81VtjHmqzvszjTHbjTElxpiFxpiEOu8ZY8w/jDE5jq9HjDHGVZ9TRESOp+BMRKSNsiwrpOYL2AecW+e1t9zdvmPVDSLa8jlawQbgV8C6E23gCL6P+6zHXBNxQCnwvmOfaOAj4B4gElgDvFtn9xuBC4ChwBDgHOCXLf84IiLSWArORETaGWOMlzHmLmPMHkcG5D1jTKTjvURHtuU6Y0y6MeaIMeYmY8xoY8xGY0yeMeY/dY51rTFmqTHmKWNMviPrMrPO++HGmJeMMZnGmAPGmL8ZY7yP2fffxphc4H5jTE9HxifHGJNtjHnLGNPJsf0bQA/gc0fW505jzDRjzP5jPl9tds0Yc78x5gNjzJvGmALg2gba1MsY84Pjs2QbY+oGJ3XPEeA4Zo6jT1YbY+KMMQ8Ck4H/ONr4H8f2/Ywx3xljch1Zr9l1jvWqMeZZx/uFjvMn1HdeAMuynrYsawFQdoK2hQP3AXee6BgOFwOHgcWOn2cBWyzLet+yrDLgfmCoMaaf4/1rgH9alrXfsqwDwD+Baxs4h4iIOJGCMxGR9udW7BmQqUBX4Ajw9DHbjAV6A3OAx4E/AacAA4HZxpipx2ybAkRjDwo+qgn2gNeAKqAXMBw4DZhbz76xwIOAAR5ytKs/EI89SMCyrKs4OgP4SCM/7/nAB0An4K0G2vRXYB4QAXQHnqJ+1wDhjvZFATcBpZZl/Ql7sHOLo423GGOCge+Atx2f8zLgv8aYgXWOd4Xj3NHAekc7m+vvwDPAwQa2uwZ43bIsy/HzQOxZOQAsyyoG9jheP+59x/d1P4OIiLiYgjMRkfbnl8CfHBmQcuzBz8XHDPn7q2VZZZZlzQOKgf9ZlnXYkTFZjD2oqXEYeNyyrErLst4FdgBnG2PigDOB2y3LKrYs6zDwb+DSOvtmWJb1lGVZVZZllVqWtduyrO8syyq3LCsL+Bf2ILIllluW9YllWTYgrIE2VQIJQFfH519ygmNWYg/KelmWVW1Z1lrLsgpOsO05QJplWa84Puc64EPsmasaX1qW9aPj7+NPwHhjTHxTP6gxZhQwkRMHlTXb9cDer6/VeTkEyD9m03wg9ATv5wMhmncmItJ62sPYfBEROVoC8LExxlbntWrsc5BqHKrzfWk9P4fU+flAnewLwF7sma8EwBfIrHP/7gWk19m27vcYY2KBJ7EPDQx1bH+kUZ/qxOqeo6E23Yk9g7XKGHME+zC+l+s55hvYs2bvOIZdvok94K2sZ9sEYKwxJq/Oaz6OYxzXRsuyihzDPLse0/aTMsZ4Af8FbrMsq6qBmOlqYIllWal1XivCHrzWFQYUnuD9MKDomL97ERFxIWXORETan3TgTMuyOtX5CnBkxZqj2zHZkx5AhuM85UB0nfOEWZZVdyjcsTf2DzleG2JZVhhwJfahjifavhgIqvnBMXcs5pht6u5z0jZZlnXQsqwbLMvqij3D+F9jTK9jP7AjS/iAZVkDgAnYs2NXn6CN6cAPx/R3iGVZN9fZpjZLZowJwV6QI+PY8zYgDBgFvGuMOQisdry+3xgz+Zhtr+borBnAFuzFPmraEQz0dLx+3PuO77cgIiKtRsGZiEj78yzwYE3RCWNMjDHm/BYcLxa41Rjja4y5BPtcsa8sy8rEPn/rn8aYMEchkp7HzFc7Vij2DE2eMaYb8Ptj3j8EJNf5eScQYIw52xjjC/wZ8D/RwRtqkzHmEmNMd8fmR7AHWtXHHscYM90YM9gRDBZgH+ZYs92xbfwC6GOMucrRR76OAiv962xzljFmkjHGD3vmbqVlWfVmzYwxfsaYAOxBq6+jOIkX9mGGXYFhjq+zHLuMBFbW2X8C0A1HlcY6PgYGGWMuchz/XmCjZVnbHe+/DvzWGNPNGNMV+B3wan1tFBER11BwJiLS/jwBfAbMM8YUAiuwF+ZorpXYi4dkYy/qcbFlWTmO964G/ICt2IOdD4AuJznWA8AI7IHGl9hLu9f1EPBnR4XEOyzLysdeVv5F4AD2TNp+Tu5kbRoNrDTGFGHvo9uOGfpXo7NjvwJgG/AD9qGNYO/fi4290uWTlmUVYi86cin2bNhB4B8cHUS+jb2YSi72YOpk69DNwz60dALwvOP7KZbdwZovIMux/SHLsirq7H8N8JGjXbUcc/wuwv53eAT7NVF3fuBzwOfAJmAz9r+f507SThERcTKjoeQiInIixr4I8lzLsia5uy1tlTHmVWC/ZVl/dndbRETEsylzJiIiIiIi4gEUnImIiIiIiHgADWsUERERERHxAMqciYiIiIiIeAAFZyIiIiIiIh7ApzVPFh0dbSUmJrbmKUVERERERDzG2rVrsy3LiqnvvVYNzhITE1mzZk1rnlJERERERMRjGGP2nug9DWsUERERERHxAArOREREREREPICCMxEREREREQ/QqnPO6lNZWcn+/fspKytzd1OknQkICKB79+74+vq6uykiIiIiIg1ye3C2f/9+QkNDSUxMxBjj7uZIO2FZFjk5Oezfv5+kpCR3N0dEREREpEFuH9ZYVlZGVFSUAjNxKmMMUVFRysiKiIiISJvh9uAMUGAmLqHrSkRERETaEo8IztztwQcfZODAgQwZMoRhw4axcuVKAObOncvWrVudco7ExESys7NPus3f//73Jh/31Vdf5ZZbbjnqtVdeeYVhw4YxbNgw/Pz8GDx4MMOGDeOuu+5q8vFbw+OPP05JSYm7myEiIiIi4lZun3PmbsuXL+eLL75g3bp1+Pv7k52dTUVFBQAvvvhiq7bl73//O3/84x9bfJzrrruO6667DrAHhQsXLiQ6OrrFx20uy7KwLAsvr/qfBTz++ONceeWVBAUFNfqYVVVV+Ph0+MtXRERERNqRDp85y8zMJDo6Gn9/fwCio6Pp2rUrANOmTWPNmjUAhISE8Ic//IGRI0dyyimnsGrVKqZNm0ZycjKfffYZcHwW65xzzmHRokXHnfOCCy5g5MiRDBw4kOeffx6Au+66i9LSUoYNG8YVV1wBwJtvvsmYMWMYNmwYv/zlL6murgbsmbE+ffowdepUli5d2ujP+uijjzJ69GiGDBnCfffdB0BaWhr9+vVj7ty5DBo0iCuuuIL58+czceJEevfuzapVqwC4//77ueqqq5gxYwa9e/fmhRdeaPC4/fv351e/+hUjRowgPT2dm2++mVGjRjFw4MDa7Z588kkyMjKYPn0606dPr+3rGh988AHXXnstANdeey2//e1vmT59On/4wx/Ys2cPZ5xxBiNHjmTy5Mls37690X0hIiIiIk3zwdr9rNt3xN3NaNc6fHB22mmnkZ6eTp8+ffjVr37FDz/8UO92xcXFTJs2jbVr1xIaGsqf//xnvvvuOz7++GPuvffeJp3z5ZdfZu3ataxZs4Ynn3ySnJwcHn74YQIDA1m/fj1vvfUW27Zt491332Xp0qWsX78eb29v3nrrLTIzM7nvvvtYunQp3333XaOHXc6bN49du3axatUq1q9fz9q1a/nxxx8B2L17N7fddhsbN25k+/btvP322yxZsoTHHnvsqKGWGzdu5Msvv2T58uX85S9/ISMj46TH3bFjB1dffTU//fQTCQkJPPjgg6xZs4aNGzfyww8/sHHjRm699Va6du3KwoULWbhwYYOfY+fOncyfP59//vOf3HjjjTz11FOsXbuWxx57jF/96ldN+nsQERERkcaptlnc++lmPluf4e6mtGseNS7sgc+3sDWjwKnHHNA1jPvOHXjC90NCQli7di2LFy9m4cKFzJkzh4cffrg2W1PDz8+PM844A4DBgwfj7++Pr68vgwcPJi0trUltevLJJ/n4448BSE9PZ9euXURFRR21zYIFC1i7di2jR48GoLS0lNjYWFauXMm0adOIiYkBYM6cOezcubPBc86bN4958+YxfPhwAIqKiti1axc9evQgKSmJwYMHAzBw4EBmzpyJMea4z3b++ecTGBhIYGAg06dPZ9WqVSxZsuSEx01ISGDcuHG1+7/33ns8//zzVFVVkZmZydatWxkyZEiT+u6SSy7B29uboqIili1bxiWXXFL7Xnl5eZOOJSIiIiKNk5ZTTElFNQO6hrm7Ke2aRwVn7uLt7c20adOYNm0agwcP5rXXXjsuOPP19a2t/ufl5VU7DNLLy4uqqioAfHx8sNlstfvUV8Z90aJFzJ8/n+XLlxMUFMS0adPq3c6yLK655hoeeuiho17/5JNPmlWF0LIs7r77bn75y18e9XpaWlrtZznZZ4Pjqx8aY0563ODg4NqfU1NTeeyxx1i9ejURERFce+21JyxzX/c8x25Tc0ybzUanTp1Yv359Qx9dRERERFqoJoEyUMGZS3lUcHayDJer7NixAy8vL3r37g3A+vXrSUhIaNaxEhMT+e9//4vNZuPAgQO187Xqys/PJyIigqCgILZv386KFStq3/P19aWyshJfX19mzpzJ+eefz29+8xtiY2PJzc2lsLCQsWPHctttt5GTk0NYWBjvv/8+Q4cObbBtp59+Ovfccw9XXHEFISEhHDhwAF9f3yZ9vk8//ZS7776b4uJiFi1aVDsUszHHLSgoIDg4mPDwcA4dOsTXX3/NtGnTAAgNDaWwsLC2aElcXBzbtm2jb9++fPzxx4SGhh53vLCwMJKSknj//fe55JJLsCyLjRs3NqovRERERKRptmQU4Ott6B17/H2ZOI9HBWfuUFRUxP/93/+Rl5eHj48PvXr1qi3S0VQTJ06sHSI4aNAgRowYcdw2Z5xxBs8++yxDhgyhb9++Rw37u/HGGxkyZAgjRozgrbfe4m9/+xunnXYaNpsNX19fnn76acaNG8f999/P+PHj6dKlCyNGjKgtFHIyp512Gtu2bWP8+PGAfTjnm2++ibe3d6M/35gxYzj77LPZt28f99xzD127dqVr166NOu7QoUMZPnw4AwcOJDk5mYkTJx71uc8880y6dOnCwoULefjhhznnnHOIj49n0KBBFBUV1duet956i5tvvpm//e1vVFZWcumllyo4ExEREXGBLRn59IkLxc+nw5escCljWdbJNzAmHngd6AzYgOcty3rCGDMMeBYIAKqAX1mWdXyqqI5Ro0ZZNdUPa2zbto3+/fs3+wNI67j//vsJCQnhjjvucHdTmkTXl4iIiEjLWJbFqL/NZ0a/WB69RA/CW8oYs9ayrFH1vdeYzFkV8DvLstYZY0KBtcaY74BHgAcsy/raGHOW4+dpzmq0iIiIiIi436GCcnKKKzTfrBU0GJxZlpUJZDq+LzTGbAO6ARZQ8zcUDqiuZjt2//33u7sJIiIiIuIGWzLyARjYLdzNLWn/mjTnzBiTCAwHVgK3A98aYx7Dvl7aBGc3TkRERERE3GtrRgHGQP8uypy5WqNn9BljQoAPgdstyyoAbgZ+Y1lWPPAb4KUT7HejMWaNMWZNVlaWM9osIiIiIiKtZEtGAYlRwYT4d/hagi7XqODMGOOLPTB7y7KsjxwvXwPUfP8+MKa+fS3Let6yrFGWZY2qWThZRERERETahi2Z+QxQ1qxVNBicGfuKwC8B2yzL+ledtzKAqY7vZwC7nN88ERERERFxl/zSStJzSxmgYiCtojGZs4nAVcAMY8x6x9dZwA3AP40xG4C/Aze6sJ0u5e3tzbBhwxg0aBCXXHIJJSUlzT7WtddeywcffADA3Llz2bp16wm3XbRoEcuWLav9+dlnn+X1119v9rlrpKWlMWjQoKNeu//++3nssceadBxntUdERERE2qatGQUAqtTYShpTrXEJYE7w9kjnNsc9AgMDWb9+PQBXXHEFzz77LL/97W9r36+urm7SYs01XnzxxZO+v2jRIkJCQpgwwV5L5aabbmryOVylqqrKo9ojIiIiIq1va2ZNcKZKja2hbS3x/cgjsHDh0a8tXGh/3UkmT57M7t27WbRoEdOnT+fyyy9n8ODBVFdX8/vf/57Ro0czZMgQnnvuOcC+KN8tt9zCgAEDOPvsszl8+HDtsaZNm0bNotvffPMNI0aMYOjQocycOZO0tDSeffZZ/v3vfzNs2DAWL158VHZr/fr1jBs3jiFDhnDhhRdy5MiR2mP+4Q9/YMyYMfTp04fFixc3+TOe7Nh//OMfmTp1Kk888URtezIyMhg2bFjtl7e3N3v37mXv3r3MnDmTIUOGMHPmTPbt2wfYs4e33norEyZMIDk5uTaTKCIiIiJty5aMfGJD/YkJ9Xd3UzqEthWcjR4Ns2f/HKAtXGj/efRopxy+qqqKr7/+msGDBwOwatUqHnzwQbZu3cpLL71EeHg4q1evZvXq1bzwwgukpqby8ccfs2PHDjZt2sQLL7xw1DDFGllZWdxwww18+OGHbNiwgffff5/ExERuuukmfvOb37B+/XomT5581D5XX301//jHP9i4cSODBw/mgQceOKqdq1at4vHHHz/q9br27NlzVED17LPPNurYeXl5/PDDD/zud7+rfa1r166sX7+e9evXc8MNN3DRRReRkJDALbfcwtVXX83GjRu54ooruPXWW2v3yczMZMmSJXzxxRfcddddTfybEBERERFPsDWjQPPNWpFn1cO8/XZwDC88oa5d4fTToUsXyMyE/v3hgQfsX/UZNgwef/ykhywtLWXYsGGAPXP2i1/8gmXLljFmzBiSkpIAmDdvHhs3bqzNAuXn57Nr1y5+/PFHLrvsMry9venatSszZsw47vgrVqxgypQptceKjIw8aXvy8/PJy8tj6lR7vZVrrrmGSy65pPb9WbNmATBy5EjS0tLqPUbPnj1rh2rCz4tIN3TsOXPmnLBdS5cu5cUXX6zN1i1fvpyPPrIX7Lzqqqu48847a7e94IIL8PLyYsCAARw6dOikn1dEREREPE9ZZTW7Dhcxs3+su5vSYXhWcNYYERH2wGzfPujRw/5zC9Wdc1ZXcHBw7feWZfHUU09x+umnH7XNV199hb2g5YlZltXgNk3h729PK3t7e1NVVeW048LRn7muzMxMfvGLX/DZZ58REhJS7zZ1P2NNG8H++UVERESkbdl5qJBqm6X5Zq3Is4KzBjJcwM9DGe+5B555Bu67D6ZPd3nTTj/9dJ555hlmzJiBr68vO3fupFu3bkyZMoXnnnuOq6++msOHD7Nw4UIuv/zyo/YdP348v/71r0lNTSUpKYnc3FwiIyMJDQ2loKDguHOFh4cTERHB4sWLmTx5Mm+88UZtpqulmnPsyspKZs+ezT/+8Q/69OlT+/qECRN45513uOqqq3jrrbeYNGmSU9ooIiIiIu6nSo2tz7OCs4bUBGbvvWcPyKZPP/pnF5o7dy5paWmMGDECy7KIiYnhk08+4cILL+T7779n8ODB9OnTp95AJyYmhueff55Zs2Zhs9mIjY3lu+++49xzz+Xiiy/m008/5amnnjpqn9dee42bbrqJkpISkpOTeeWVV5z2WZp67GXLlrF69Wruu+8+7rvvPsCeMXzyySe5/vrrefTRR4mJiXFqG0VERETEvbZkFBDq70N8RJC7m9JhmNYccjZq1CirpnphjW3bttG/f//GHeCRR+zFP+oGYgsXwurVUGe+k0iNJl1fIiIiIlJr1n+X4uPlxXs3jXd3U9oVY8xay7JG1fde28qc1ReA1WTQRERERETEKaptFtsyC5kzOt7dTelQ2lYpfRERERERcbnU7GJKK6s136yVKTgTEREREZGjbM2sKQaiSo2tySOCM5VaF1fQdSUiIiLSPFsy8vHz9qJXbP1LKIlruD04CwgIICcnRzfS4lSWZZGTk0NAQIC7myIiIiLS5mzNKKB3XAh+Pm4PFzoUtxcE6d69O/v37ycrK8vdTZF2JiAggO7du7u7GSIiIiJtimVZbMko4JT+se5uSofj9uDM19eXpKQkdzdDRERERESAgwVl5BZXaL6ZGyhPKSIiIiIitbZm1BQDUaXG1qbgTEREREREam3JKMAY6NdFwVlrU3AmIiIiIiK1tmTkkxgVTIi/22dAdTgKzkREREREpNaWjAIGaEijWyg4ExERERERAPJLKtl/pFTzzdxEwZmIiIiIiACwNbOmGIgqNbqDgjMREREREQHs880ABqgYiFsoOBMREREREcBeRj821J+YUH93N6VDUnAmIiIiIiKAvRiI5pu5j4IzERERERGhrLKa3VlFmm/mRgrORERERESEHQcLqbZZypy5kYIzERERERFRpUYPoOBMRERERETYkpFPqL8P3SMC3d2UDkvBmYiIiIiIsCWjgP5dw/DyMu5uSoel4ExEREREpIOrtllszyzUfDM3U3AmIiIiItLBpWYXUVpZrflmbqbgTERERESkg9uSUVMMRJkzd1JwJiIiIiLSwW3NKMDP24tesSHubkqHpuBMRERERKSD25JRQJ/OIfh6KzxwJ/W+iIiIiEgHZlkWWzLyGdhF883cTcGZiIiIiEgHlplfxpGSSgZ203wzd1NwJiIiIiLSgW1VMRCPoeBMRERERKQD25JRgDHQr7OCM3dTcCYiIiIi0oFtycgnKSqYYH8fdzelw1NwJiIiIiLSgW3JKGCAhjR6BAVnIiIiIiIdVF5JBQfyShnYVZUaPYGCMxERERGRDmprpoqBeBIFZyIiIiIiHVRNpUYNa/QMCs5ERERERDqoLRkFxIX5Ex3i7+6mCArOREREREQ6rC0Z+Zpv5kEUnImIiIiIdEBlldXsySrWfDMPouBMRERERKQD2nGwkGqbpeDMgyg4ExERERHpgLbUFAPpomGNnkLBmYiIiIhIB7QlI5/QAB/iIwPd3RRxUHAmIiIiItIBbckoYECXMIwx7m6KODQYnBlj4o0xC40x24wxW4wxt9V57/+MMTscrz/i2qaKiIiIiIgzVNssth8sUKVGD+PTiG2qgN9ZlrXOGBMKrDXGfAfEAecDQyzLKjfGxLqyoSIns2jHYR78chsXDO/Gr6f3cndzRERERDxaSlYRZZU2FQPxMA1mzizLyrQsa53j+0JgG9ANuBl42LKscsd7h13ZUJH6ZBWWc+v/fuLaV1azJ6uIFxenUF5V7e5miYiIiHi0rZmOYiAKzjxKk+acGWMSgeHASqAPMNkYs9IY84MxZrQL2idSL8uyeG91Oqf86we+3pzJbTN78/xVozhSUsl3Ww+5u3kiIiIiHm1LRgF+Pl70ig1xd1OkjsYMawTAGBMCfAjcbllWgTHGB4gAxgGjgfeMMcmWZVnH7HcjcCNAjx49nNZw6bhSsor448ebWJGSy+jECB6aNZhesaHYbBbdOgXy7up0zhnS1d3NFBEREfFYWzLy6RsXiq+36gN6kkb9bRhjfLEHZm9ZlvWR4+X9wEeW3SrABkQfu69lWc9bljXKsqxRMTExzmq3dEAVVTaeWrCLM55YzJaMAh6aNZh3bxxPr9hQALy8DLNHxbN4VzbpuSVubq2IiIiIZ7Isiy0ZBZpv5oEaU63RAC8B2yzL+ledtz4BZji26QP4AdkuaKMIa/fmcvaTi/nndzs5dUAcC347lcvG9MDL6+jSr5eM6o6XgffWpLuppSIiIiKeLSO/jLySSgVnHqgxwxonAlcBm4wx6x2v/RF4GXjZGLMZqACuOXZIo0hLFZRV8sg323lzxT66hgfw0jWjmNk/7oTbd+0UyNQ+Mby3Jp3bZvbGR6l6ERERkaNszVAxEE/VYHBmWdYS4EQr013p3OaI2FmWxbdbDnLvp1vILirnF5OS+O2pfQj2b/h5wqVjevDLN9byw86skwZyIiIiIh3Rlox8jIF+nRWceZpGFwQRaS2Z+aXc++kWvtt6iAFdwnjxmlEM6d6p0fvP6BdLdIg/76xOV3AmIiIicowtGQUkRQc36qG3tC79jYhH2ZKRz5znVlBls/HHs/px/cSkJg9N9PX24uKR3XlhcQqHC8qIDQtwUWtFRERE2p6tGQWMSIhwdzOkHpqQIx6j2mbxx482EeDrzbzbp3LjlJ7NnjM2Z3Q81TaL99fud3IrRURERNquI8UVHMgrVTEQD6XgTDzG2yv3smF/PveeO4AeUUEtOlZSdDDjkiN5b006Npvq1IiIiIgAbDvoKAbSRcGZJ1JwJh7hcGEZj3yzg0m9ojl3SBenHPPS0T3Ym1PCipQcpxxPREREpK1LySoGoHdciJtbIvVRcCYe4W9fbKO82sZfLxiEfWm9ljtjUGfCA315Z7XWPBMREREBSM0uJsDXi7hQzcn3RArOxO0W78risw0Z/GpaT5Kig5123ABfby4c3o1vNh/kSHGF044r4gy5xRWkZBW5uxkiItLBpGYXkxgVjJeXcx6Gi3MpOBO3Kqus5p5PNpMUHcxNU3s6/fhzRsdTUW3j458OOP3YIi3x5082Mfu55ZoTKSIirSotu5jkGOc9DBfnUnAmbvXMoj2k5ZTw1/MHEeDr7fTj9+8SxtD4Try7Oh3L0k2weIayymoW7cgiu6iCrZkF7m6OiIh0EJXVNvblljh1pJI4l4IzcZuUrCKeWbSH84d1ZVLvaJed59LR8ew4VMhP6XkuO4dIU6xIyaGkohqAxbuy3dwaERGp8en6A7y9cp+7m+Ey+4+UUmWzSIxScOapFJyJW1iWxT2fbsbf14s/nd3fpec6d2hXgvy8eXeVCoOIZ5i/7RBBft4kRwezdLeCM5H6HMwvY0tGvrubIR3IrkOF/P79jTzw+RbySyvd3RyXSM22z3XWsEbPpeBM3OKzDRks3Z3DnWf0I9bF1YJC/H04d0hXPt+YQVF5lUvP1Vif/HSAH3dmubsZ4gaWZbFg22Em945mWt9YVqXlUlZZ7e5miXiUovIqLnthBVe/tErzMqVVVNssfv/BRny8DeVVNj7fkOHuJrlEanYJAEnRKqPvqRScSavLL6nkr19sZWh8Jy4f06NVzjlnTDwlFdUe8cu2qtrGnz/ZzJ0fbKSiyubu5kgr25JRQGZ+GTP7xzG5dzQVVTbWpB1xd7NEPMq9n24mNbuYnOIK9qiqqbSCV5amsj49j79fOJh+nUN5b037HG2Tml1EeKAvEUG+7m6KnICCM2l1j87bTm5xBQ9eMAjvVirjOjy+E33jQj1izbPNGQUUlVdxsKCMLza6P1iU1rVg22GMgRn9YhmTFImvt2HxbmVRRWp8uHY/H607wKwR3QBYlZbr5hZJe5eWXcxj83Yws18s5w/rypzR8Wzcn8+2dliwKTW7mMToYKetKSvOp+BMWtVP+47w1sp9XDshiUHdwlvtvMYY5oyOZ0N6ntt/2S7fkwNAfGQgz/+YoiqSHcyC7YcYHt+J6BB/gv19GN4jQvPORBz2ZBVxz6ebGZsUySMXDSEm1J/VqQrOxHVsNou7PtqIr5cXD144GGMMFwzrhp+3F+96wANdZ0vNKiZZlRo9moIzaTVV1Tb+9PFm4kID+O1pfVr9/BcO94xftsv2ZNM7NoRbZ/Rm+8FClujGvMM4VFDGxv35zOwfV/vapF7RbMkoIFcLpUsHV1ZZzf+9/RP+Pl48celwfLy9GJMYySoFZ+JCb6/ax4qUXP50dn86h9vnwEcE+3HawDg+WX+A8qr2Mye4rLKajPwyldH3cArOpNW8tnwvWzMLuO/cAYT4+7T6+SOC/ThjUGc+WrffbQUYauYXTegZxXnDuhIb6s/zP6a4pS3S+hZsOwzAqQPqBGe9o7Ese9Au0pE9/PV2tmYW8M/ZQ2tvkkcnRpCRX8b+IyVubp20RwfySnnoq21M7BXFnNHxR703Z3Q8eSWVzNtyyE2tc760nGIABWceTsGZtIrM/FL+NW8H0/rGcMagzm5rx6Wj4ykoq+KbzQfdcv6N+/MoraxmfM8o/H28uXZiIot3Zbt9qKW0jgXbDhEfGUjv2J+rZA3pFk5ogA9LtN6ZdGDzthzk1WVp/GJSEjP6/fzwYkxSFACrNe9MnMyyLP740SYs4OFZQ46bgzWxZzTdOgW2q8IgqVkKztoCBWfSKv7y+VaqbBZ/OW+QWyehjkuOIiEqiHdWu2eByWV7cjAGxjpuOK4Yk0CQnzcvLFb2rL0rrahmye5sZvaLO+rfgI+3F+OTo1i8K1vzD6VDOpBXyu8/2MjgbuHceUbfo97r2zmU0AAfVqWqoqk414frDvDDzizuPL0v8ZFBx73v5WW4ZFR3luzObjeZ25Rse3CWqODMoyk4E5f7fvshvt58kFtn9qZH1PG/AFuTl5dh9qh4VqTkkur4JdWalu/JoX/nMCKC/QAID/Jlzuh4PlufQWZ+aau3R1rPkt3ZlFfZjhrSWGNS72gO5JWyN6d93AB0NJ9tyODbLe7Jxrd1VdU2bvvfT1RV23jqsuH4+3gf9b63l2FUQoQyZ+JUhwvK+MvnWxiVEMHV4xNPuN3FI7sD8P6a/a3UMtdKyy4mNtTfLVNLpPEUnIlLlVZUc++nW+gVG8INk5Pd3RwALhnZHW8v0+qFQcoqq1m77wjje0Yd9fr1E5OwWRavLktr1fY01uPzd/Lkgl3ubkabt2DbIUL9fRidGHnce5N6RQOoOIzDT/uOMPvZ5Ty9cLe7m9KglKwifvfeeh78cpu7m9ImPbFgF2v2HuHvswaf8Gn+6KRIdh8uUtEccQrLsrjn082UV9l45OIheJ1kSZ/uEUFM6hXNB2v3U90OFkNPzS7WkMY2QMGZuNRT3+9i/5FS/nbBIPx8PONyiw0LYEa/WD5Yu5/K6tZbBPqnfXlUVNkYn3x0cBYfGcRZg7vw9op9FJZVtlp7GsNms3hlaRov/JjSqn3V3thsFvO3HWZK35h6/x0kRQfTNTygw887yy+p5I8fb2LWM8tYlZbLq8vSsHnwDZFlWTzw+VYqqy325ZawT5nPJlm2O5v/LNzN7FHdOX9YtxNuN8bxQEPZM3GGrzYd5Nsth/jNqX1IjglpcPvZo+I5kFfaLpY8UXDWNnjG3bK0SzsPFfL8jylcNKI7444JSNzt0tHxZBeV11bPaw3L92TjZWBM8vGZkxunJFNYXuX2Mv/H2nawgPzSSgrLq3Rj1AIbD+STXVTOqf2PH9II9nX4JvWOZtme7HbxdLapLMvig7X7mfHPRby7Op3rJybx1wsGkVVYzsYD+e5u3gnN33aYH3ZmcdmYHoAyn02RXVTObe+uJzk6mPvPG3jSbQd3D8fPx0sl9aXFcosruPfTzQzpHs7cSUmN2ue0gXF0CvLl3TZeGCS/tJKc4goFZ22AgjNxCcuy+PPHmwn29+GPZ/Vzd3OOM7VPDHFh/rzbioVBlqfkMLhbOGEBvse9N6R7J8YmRfLK0jSPylCtTLHfDPl4mVYNZNubBdsO4e1lmNY35oTbTOwVTUFZFZs8OBhxhZ2HCpnz/ArueH8DCVFBfH7LJO45ZwDnDumCt5dh/lbPLGNdVlnNX77YQu/YEP5y/kA6hwW0iyfrrcFms/jdexvIL63kP5ePIMjv5PNf/H28GRbfSQ+IpMUe+HwLBWWVPHLxEHy8G3cL7O/jzQXDuvHdlkMcacNDa9OyVamxrVBwJi7x8U8HWJWWy91n9iMqxN/dzTmOj7cXs0fF88POLDLyXF+Io6SiivXpeYzreeIM4o1TkjmQV8pXmzJd3p7GWpGSQ4/IICb0iub77QrOmuu7rYcYmRBBpyC/E24z0THvrKPc4JdUVPHQ19s464nF7DxUyMOzBvPBTRMY0DUMgE5BfoxKiGD+Ns8Mzp7/MYX03FIeOG8gvt5eTOwVzdI92R49DNNTvLgkhR92ZnHPOQPo3yWsUfuMTYpkS0YBxeVVLm6dtFfztx7i0/UZ/Hp6L/p1btx1V2PO6Hgqqm18sv6Ai1rnejVF0JJjFJx5OgVn4hLfbD5Ij8ggZo+Kb3hjN5k9Kh6b1TpVmNakHaGy2mJCz+gTbjO9byw9Y4J5YXGKR5RUt9ksVqbmMi45kpn9YknNLiYlq6hVzl1VbfOIPnCG/UdK2H6w8IRDGmtEh/jTv0sYi3dltVLL3GfeloOc+q8fee6HFC4c3o0Fv53KpWN6HDcx/9QBcWw/WEh6rmfN5UrPLeHphbs5e0gXJjiC6km9o8grqWSr1iw8qfXpeTzyzQ7OHNSZK8f2aPR+oxMjqbZZrNunkvrSdPmllfzpk0306xzKr6b1avL+/buEMaR7OO+uTm+z/zelZBfjZah32QDxLArOxCVSs4vp2zn0pFWQ3C0+0l6F6b016S6f57M8JQcfR0noE/HyMtwwOZnNBwpYnpLj0vY0xvaDheSXVjIuOYoZ/WIBWmVoY35pJaMfnM/ZTy7h/TXplFVWu/ycrlSTcZzZP7bBbSf3jmbd3jxKKtpndiA9t4S5r63mxjfWEuLvw/s3jefRS4aeMLs+0xHQLvCw7NmDX27Dyxj+dFb/2tcm9lTFzYYUlFXyf/9bR1xYQL2L/p7MiIQIvAys1rwzaYaHvtpGVmE5j1w8pNnFyWaPimf7wcI2O/Q8NbuYbhGBxy1XIZ5HwZk4XbXNYm9OSZtInV86xl6FydU3VMv35DA0vhPBDawtcsHwbkSH+PHCj+5flHplqj1AHJscRXxkEH3jQlmw3fU3yfO2HORISSVF5VX8/oONTHz4e/41bweHC8pcfm5X+G7rIZKjgxtVFWxir2gqqm3trvBBRZWNpxfu5tR//8CyPTn88ax+fHHrpHqXFagrKTqYnjHBLPCgIbU/7szimy0HuWVGL7p2Cqx9PTYsgD5xIR2+4uaJWJbF3R9tIiOvjCcvG0540PFzb08mxN+HgV3DWaV5Z9JEi3dl8c7qdG6c0pMh3Ts1+zjnDetKgK+XxxXuaqy07GKSohv+f0jcT8GZOF1GXikV1TaS28Ck01MHxBER5OvSwiCFZZVsOpDPhJPMN6sR4OvNNeMTWbgji52HCl3WpsZYkZJDfGQg3Rw3oDP6x7I67Qj5pa4t9//Fxky6RwSy6I5pvDV3LMN7dOKphbuZ+I/v+c2769m4P8+l53emovIqVqbkcko9C0/XZ0xiJH7eXu1m3pllWSzbnc1ZTy7m0W93MLVPDPN/O5Ubp/TEt5GT8U8ZEMeKlBwKPGCZiYoqG/d/voXEqCDmTj6+0tukXjGsSstt89leV3hndTpfbszkd6f1YeRJRhCczOjEyNolSUQao7i8irs+3ERyTDC3n9K7RccKC/DlrEFd+Gx9BqUVbevfuGVZpGYXt4n7MlFwJi6QUlsRyPOf0Pj7eDNrRHe+23rIZQucrk7LpdpmHbe+2YlcOS6BAF8vXlzsvuxZ7XyzpJ/bfEr/WKptFj/sdN2cqCPFFSzdnc3ZQ7rg5WWY2CuaF68ZzcLfTeOKsQl8t/UQ5/1nKRc9s4wvNmZQ5UGVLeuzeGcWFdU2ZvZreEgjQKCfNyMTIljchrMvhWWVfLP5IHd/ZM96Xv7iSsoqq3n52lE8d9Woo7JNjXFq/zgqqy1+dOF111ivLkslJauY+84dWO/QoEm9o6iosrF2r+ZF1bXzUCH3f7aFSb2iuWlKz2YfZ0xSBOVVtjY7rExa36Pf7iAjv5RHLhpCgG/Lh/PNHh1PYXkVX2/2nMJdjZFVVE5ReRWJUZpv1hYoOBOnS3UUjWgr5VovHtmdymqLLzZmuOT4y/fk4OftxYhGPi2OCPZj9qh4Pvkpw21D+XYeLiSvpJKxdQLKYfERRAb78b0L5/98u+UgVTaLc4d0Per1RMdaSMvvnsG95wwgu6icW97+iSmPLOSZRXvIK/HM8sbfbTtEeKBvkzIFk3pHs/1gIVmF5S5smfNYlsXWjAKeWbSHOc8tZ/hfvuOmN9fy+YZMBncP56FZg/nuN1OZ0a9x2cNjDe9hv+7cXVL/UEEZT8zfxcx+sUw/QbA9JikKHy+jeWd1VNssbv3fT4QG+PCvOUNbNA95lGMYbHsb9iuusdqxkP014xNrr52WGpsUSUJUUJsb2pia5Xho3ojh9eJ+Cs7E6VKziwn19yE65MRlwz1J/y5h9O8SxofrXFMid9meHEYkdGrSU7tfTEqi0mbjteVpLmlTQ1bsccw3S/r5P7SadboW7cxyWcbqi42ZJEYFMbBr/WWOQwN8uX5SEt//bhovXD2KxOhg/vHNdsY9tIC7P9rELjcPBa2r2maxaEcWM/rFNno9HYBJjup/y/Z47g1+fmklX27M5M4PNjDuoQWc9eRi/vHNdgrKqpg7OZl3bhzHuntO5bmrRnHZmB4E+jX/ibW3l2F631gW7nDdddcYD321jcpqi3vPHXDCbUL8fRjeo5PmndXx484sth8s5J5zBhAbGtCiY0WH+JMcE6z1zqRBpRXV/OGDjXSPCOT3p/d12nGNMcweFc/K1NzadcPagrQcRxn9NvLQvKNTcCZOl5JdTFJMcJMqcbnbRSO6sSE9j92HnVsqPq+kgq2ZBYxPPnEJ/fokRAVzxsDOvLlin1vW9VmRkkv3iMDjSu7O7BdHXkkl6/blOf2c2UXlLNuTzTlDujZ47Xh7GU4dEMfbN4zjm9snc8Gwbny0bj+n/vtH7v10s9Pb1hw/7TtCbnFFo6o01jWoWzjhgb4edYNvs1lsPpDPf77fxSXPLmPEX7/j12+v4+vNBxmVEMkjFw1h5R9n8vVtk7nrzH6MS45qdkW0+pw6IJb80krWuGm44KrUXD5Zn8EvpyaTEHXym5tJvWLYnJHfpherdabXl6cRG+rPWYO7OOV4Y5MiWZOWq/Xk5KT+/tU2UrKLeeSiIQ0W4mqqi0Z0x8vAe2vaTvYsJbsYP2+vJg8rF/dQcCZOl5pd3GaGNNY4b1hXvL0MH61z7ppnK1NzsSwY34hiIMe6YUoy+aWVvN/K/wHYbBar0nIZm3R8myf3icbHy7ikauM3mw9is+DsIU27ievXOYyHLxrC8rtnctGI7ry+fC+7D7s/g/bdtkP4eBmm9Ilp0n7eXoYJPaNYsjvbbevplFRUsWxPNv/5fhfXvrKKYX+ZxzlPLeGxeTspq7Rx89SefHDTeH6651SevmIEs0fHExfWsqzIyUzuHYOft5dbhjZWVdu499PNdOsU2Kj1kSb1jsKy8IjlMNxtX04Ji3ZmcdmYHo0uANOQ0YmRFJRVscODsuTiWb7ffog3VuzlhslJtesQOlPn8ACm9Y3lg7X7PX7ec43UrGJ6RAXh7cHLG8nPFJyJU5VVVnMgr7TNBWexoQFM6R3Nxz8dcOoT2eV7cgjw9WJYfKcm7zuiRwSjEiJ4aWlqq/4HsOtwEbnFFYxLPn6MfliAL2OTI/neBeudfbExg54xwfTrHNqs/SOD/fjjWf3w9/HipSWpTm5d0y3YdphxyVGEBTStZDjY551l5pfVFtdxtYP5ZXyxMYMHPt/Cef9ZwuD753H5Cyt5bN5ODhwp5ewhXfjX7KGs/tMpfP5/k7jj9L6MSoxs0nDNlgj292F8zyjmbzvU6gHr26v2sf1gIX86u3+jhmcO6d6JEH8fzTsD3lq5Fy9juGxM4xebbkjN8gsa2ij1yS4q584PNtKvcyh3OHE447Fmj4rncGG5SwtkOVNbfGjekSk4E6fam1OCZbWdYiB1zRrRncz8MlY48Yn38j05jE6MbPYQrxumJJOeW8q3W1ovY1Dz+cedoLrkjH5x7DpcxL6cEqed83BBGStTcxs1pPFkokL8uWhkdz5cd8CtBTXSsovZfbioyUMaa9TMO3PF0MZqm8WWjHxeX57Grf/7iYkPf8+4hxZwy9s/8b9V+wjy8+bmqT155drRbLj3NL777VQemjWEWSO6ExNa/2LRreGUAXGk5ZSwJ6v15nnkFJXz2Lc7mNgrijMHdW7UPr7eXoxLjmw3yyE0V1llNe+uSef0gXF0DndeVrV7RCBdwgNUFESOY1kWf/hgIwVlVTxx6XCXLrY8s38s0SF+baIwSLXNYm9uieabtSEKzsSpUrPtc7aS20AZ/WOdOiCOUH8fpxUGyS4qZ8ehwhMGOY1xSv84kqKDef7HPa2WMViZmkO3TsfPN6tRUxbemUMbv9qUiWXBOU0c0lifX0xKoqLKxhsr9jqhZc0z31HR8pT+zatQmBAVTHxkoFOzLzWLAA+5/1vOfnIJ9366hZWpOQyL78S95wzgs1smsun+03nnxvHccXpfpveLbfJCwa50iiPQne/CaqHHevTbHZRUVHP/uQOb9NBgYq9o9uaUkJ7rvAcYbc0XGzPJK6nkynEJTj2uMYbRiZGsTst127Bf8Uxvr9rHgu2HueuMfvRt5giMxvL19mLWiO58v/2wx1fWzcgrpaLK1iYfmndUCs7EqWrXOItpe78EAny9OXtIF77enOmUIhw1GajGLD59It5ehl9MSmLD/nxWp7m+GIJlWaxIyWVsPUMaayRGB9MzJpjvtztvaOOXmzLpGxdK77iW/4faMyaEU/rH8uaKvW5bDHjBtsP0jQs9YYDbGJN6RbNiT47ThrR+tiGD/63ax8z+cTxx6TCW/GE6K+6eydNXjOD6SUkM6d7JafOCXKFLeCADu4a12ryzDel5vLsmnesmJjb5upzc25H57MDZszeWp9ErNqTR6zs2xeikSA4VlLOvAwe/crQ9WUX89YutTO4dzbUTElvlnLNHxVNls5w+V93ZUh33ZYkKztoMz/2fWNqk1KxiYkP9CXFydaTWctHI7pRUVPPtloMtPtbyPTmE+PswuFt4y9o0ojuRwX48/6PrF6X+eb7ZyW+oZvaPY0VKDoVllS0+Z2Z+KavTjjgla1Zj7uRkcosr+NAN/2nml1SyKi232UMaa0zqFUNheRUb9rd8wd3Cskoe/HIbQ7qH8+85wzh/WDe6RwS1qYqqYM9Ertt3hJwi1z6pttks7v1sC9Eh/tw6s3eT9+8ZE0JcmH+HDc42pOexYX8+V41LcMk1NsaF651lFZa77aGONE9ltY3b31lPoK83j13SsrX0mqJXbAgjEyJ4b026R2dxa4IzDWtsOxSciVO19UmnoxIiiI8M5CMnDG1cnpLD6MSIFhdNCPTz5qpxCczfdog9Wc4t9X+slTXzzeqp1FjXjH6xVFZbTpkT9eXGTADOGdq1gS0bb2xSJIO7hfPS4tRWL7m9aOdhqm0WM5s5pLHGhJ5RGOOceWdPfb+bw4Xl/OX8QW26WtepA+KwWbBwh2sn4X+wdj8b0vO4+8x+hDajoIsxhom9olm2O7tDlnx/Y8Vegvy8mTWim0uO3zs2hE5Bvk4vClJcXsXpj//Ihf9d5rEL28vxHp+/k00H8nlo1hCXVo2tz5xR8ezJKmbdPvcs89EYqdnFBPt5u3XOsDSNgjNxqtTsYpLb4JDGGsYYZg3vztI92WTmlzb7OIcKykjJKmZCT+eU8b1qfAL+Pl68uNi1VQhXpOTSNTyA+MiTr4UyKiGCsAAfFjhhaOMXGzMZ2DXMqUG9MYYbpiSTkl3slDY2xYJth4kO8WtWhc66IoL9GNQ1nCW7WxaI7DpUyMtLUpkzKr7FbXK3gV3D6BwW4NKhjfkllfzjm+2MSojgwuHNDy4m9YrmSEklWzMLnNg6z3ekuILPN2Rw4fBuzQpsG8PLyzAqIdLpQ73fW5NObnEFuw4VcuVLK8kvafnIAHGtVam5/HfRHuaMiueMRhbtcaazh3QhyM/bowuDpGYXkxjdttae7egUnInT5JdUklNc0aYzZwCzRnTDsuDjn5qfPVu+x56Bas76ZvWJrq1CuJ9sFw3psiyLlak5jEuOavCXuI+3F9P6xrJwuz1L1FzpuSWsT89r8tpmjXHWoM506xTIC4tdPxy0RmW1jUU7DjO9b6xTMlQTe0Xz0748ipo5B9KyLO7/fAtBft7ceYbrykq3FmMMM/vH8uOuLJcNPfv3/J0cKanggfObVgTkWLUVN100tPHLjZmsT8/zuOFU769Np7zKxlXjnVsI5FhjkiJIzS7mcGGZU45XbbN4eWkqIxMieOHqUew8WMTVL6+kwAlDt8U1Csoq+c276+kRGcS95w5wSxuC/X04Z0gXvtiY2ezf067W1kc0dUQKzsRpUnMcxUDaYKXGuhKighmdGMFH6w40+8Zn+Z4cwgJ86N8lzGnt+sWkJCqrbby+3DVVCPdkFZFdVHHSYiB1zewfS05xBRv25zX7nF9tcgxpHOy8IY01fLy9uG5iIqtSc9nYgjY2xeq0XArKqlo8pLHG5N7RVNms2uGmTfXVpoMs3Z3DHaf3JSqkfQxpOWVAHCUV1U5d8qLGtswCXl+exuVjezCwa8vmisaGBdAnLsQlJfXX7s3l12+v44Knl3LmE4t5fXka+aXuDyJsNos3V+xjTGIk/To773dffWrWO1vjpOzZt1sOkp5byg2Tk5jeL5b/XjGCrZkFXPPyKqfMrRXnu+/TLRwsKOPfc4YR7MZ57nNGx1NSUc2XGzPc1oYTqaiysf+Iyui3NQrOxGlqyui3hyc0s0Z0Z/fhIjYdaF4xhmUp2YxLjnLq/B57FcI43lie5pKswfIU+/yNxpb+n9onBm8v06IFqb/YmMnQ7uH0iGp+VcOTmTM6nlB/H15w8XDQGgu2HcbPx6u2Wl9LjUyIwN/Hq1nZl5KKKv725VYGdAnjirGuzWK0pvHJUQT5eTu9pL5lWdz32RbCA3254zTnZBkn9opmVWqu0/+9Pv9jCuGBvvzl/IF4exnu/XQLY/8+n9+9t4E1biwx/8OuLPbllrg8awYwqFs4gb7eTisK8sLiFBKigjh1gH1o3CkD4njqshFs2p/Pta+s9tisSEf12YYMPv7pAP83oxcjekS4tS0jekTQMybYI4c27sstwWa1zQraHZmCM3Ga1KxivAz0aEH5cE9x1uAu+Pl4NaswyP4jJaTnljptSGNd109M4khJJV84img404qUHLqEBzT6769TkB8jEyKafZOcll3MpgP5nDPE+VmzGqEBvlw6Jp6vNmVyIK/5cwgbw7Is5m87xISeUU57ihvg682YpMhmFQV5euFuMvPLam/g24sAX2+m9I5h/tbDTg1CPl2fwarUXO44vS+dgvyccsxJvaIpr7Kxbq/z5kalZRczb+shrhqXwNXjE/ny1sl8fsskZo3ozjebM7n42eWc9u8feXlJaqsXtXhz+V6iQ/w5faDr5/74ensxvEcnpxQFWbs3l5/25XH9xKSj/q2cMagzT142nPXpeVz/ympKKhSgNUdVtY2/frGVuz7c6JS1/zLySvnzx5sY3qMTt0zv5YQWtowxhjmj41m3L4/dhwvd3Zyj1JbRj1Jw1pYoOBOn2ZNdTHxkEH4+bf+yCg/05dQBcXy2IYOKqqatM+Xs+WZ1jUuOpFdsiNMXWLYsi5UpuYxNimzSPJtT+sey/WBhswKfLx1DGs9ywXyzuq6dmATAK0tcmz3bk1XE3pwSpw1prDGxVzS7DhdxqKDxc2tSs4t54cdUZo3oxqjExg1TbUtm9o/lYEEZWzKcU2yjoKySB7/axtDu4Vw6uodTjgkwNjkKHy/DYicObXxpSSq+Xl5cPeHn7NTg7uH8/cLBrPrTKfzjosEE+fvwly+2MubvC7j9nZ9YkZLj8mxaem4J3+84zOVj4lvt/4DRiZFszSxo8bywF35MJTzQl0tGdT/uvbMGd+Hfc4axZm8uv3h1DaUV7aPMfmtlV8sqq7npzXW8tCSVD9ftZ/pji/jTx5uaXXDLZrP47XvrqbZZPD5nWIurITvLrBHd8fEyHpc9a08jmjoSz7iqpV1IzWpfk04vGtGN3OIKFu1o2rC95XtyiAr2o09syxdUPpYxhivH9mBDeh6bnLD+VY09WcVkF5U3ekhjjRn97IFIcxak/mJjJiN6dKJbp5NXhmypbp0COWdIF95Zne7Syf3zHcM7T2nh+mbHqi0s0cjsmWVZ3P/ZFvx8vLjrzH5ObYunmNEvFmNw2tDGf3+3k+yicv56gXOXGgjx92F4j05Om3eWW1zB+2vTuXB4N2JDjy8ZHuzvw5zRPfj01xP56tbJXDo6ngXbD3Pp8yuY+a8feP7HPS5bI+7NlXvxMobLxjovuG3I2KRILAvWtiAzuTenmG+3HuSKsT0I8qs/433e0K78a/YwVqTmcMPra9rsOmg2m8X8rYeY/dxyRj843ynLdJxMQVklV7+8igXbD/HX8wey+M4ZXDamB++tSWfqo4t44PMtZBU27Xp8YXEKK1Jyue+8gSR4UDYoOsSfmf1j+WjdgSY/0HWl1OxiIoP9nDYaQFqHgjNxCsuy7GX023gxkLqm9I4hOsSvSUMbLctieYq94qGrFsKcNbI7gb7evOnE7FlNcYWmBmc9Y4JJiApiQRNvkvdkFbEts8ClQxrrumFyMkXlVbyzap/LzjF/6yEGdg2jS7hzg80BXcKIDPZr9A3+d1sP8cPOLG4/pXe9N/DtQVSIPyN7NH9IbV1bMwp4bVkal4/pwZDunVreuGNM7BXNpgP5Thli+OaKvZRV2pg7OanBbQd0DeMv5w9i1R9P4bFLhhIZ5Mffv9rOuIcW8Lcvtjo1c1JWWc17q9M5tX+c06//kxneIwIfL8PqFsw7e3lJKj5ehmsmJJ50uwuGd+PRi4eydE82v3xjbZsK0Moqq3l75T5O+fcPzH19DftzSwgL9OXql1fy/I97XJJFyyos59LnVrBu7xGeuHQ4V41PpHN4AH+9YBDf/24aFwzryuvL9zLlkYU8/PV2jhQ3/O9j84F8Hpu3gzMHdeaSkcdnOd3tqnGJ5BRX8MyiPe5uSi1VamybGgzOjDHxxpiFxphtxpgtxpjbjnn/DmOMZYxxzgx4aZMOFZRTWlndriad+nh7cf6wbizYfqjRN1Z7c0rIzC9jnAuGNNYIC/DlguFd+XTDAaetw7MyNZe4MH8SmliYwxjDzH5xLNuT06T5GF9syMQY+5Ch1jCoWzjjkiN5ZWkaldXOf6qZW1zBun1HnD6kEexrOk3oGcWS3dkN3kSVVVbzly+20icupMGbzbZuZv84Nh8oaNF6hDabxb2fbqZTkB+/P901Sw1M6hWNZf083Lm5yiqreW1ZGjP6xdI7rvFZ+UA/by4e2Z0Pbp7AvN9M4byh3XhxSSrP/ei8JSa+3JjJkZLKVikEUlegnzeDuoU3e95ZXkkF763Zz3lDuzVq8eKLR3bn4VmD+WFnFr96ax3lVZ4doOUUlfP4/J1MfPh7/vjxJoL8vHni0mH8cOd0PrtlEqcP7Mzfv9rO//3vJ6fOp0vPLeGSZ5eRml3MS9eO5ryhRz+Ei48M4pGLhzL/t1M5fWAcz/24h8mPLORf3+084eiGsspqbn93PZHBfvz9wsEeuWbXpN7RnDe0K/9ZuIttHrK+YWp2seabtUGNyZxVAb+zLKs/MA74tTFmANgDN+BUwHWPo6VNSHGMa25v5VpnjehGZbXF540swLHckYGa4MLgDODKcQmUVdr4cN3+Fh/LsixWpDRufbP6zOwfS0WVjaW7G3/z+eWmDEYnRNI5vPUyOzdMTiYzv6y2fL8zLdx+GJsFp7ogOAN7Sf3DheXsOlx00u2eWbSH/UdKeeC8Qfh6yFwMVzl1gH346IIWVAv9cN1+1uw9wl1n9HPZsJ+h8Z0I8fdp8byzj386QE5xBTdMTm72MfrEhfLYJUM4e0gX/vHNdr7f7pxhoW+s2EvPmGCX/96rz5ikSDak5zcrk/X2qn2UVlY3KhNZY87oHjx44SC+336YX7/1k0cNYauRklXEHz/exISHv+fx+bsYFt+J/90wjs9vmcT5w7rh6+1FiL8P/71iBHee0ZcvN2Uy67/L2OtYDqclth8s4KJnlnGkpJK3bhjL1D4xJ9w2KTqYxy8dzre3T2Fy72ieXLCLyf9YyNMLd1N8THXMh77axu7DRTx2yVAigj13iN795w0kPNCX33+wwSUPApuiuLyKQwXlJLejh+YdRYP/e1uWlWlZ1jrH94XANqCb4+1/A3cCnrUKprS6mopA7S19PqBLGP06h/Lh2sYFQcv25BAb6u/yIHVg13CG9+jEmyv3tnhISkp2MVmFTZ9vVmN0YiSh/j6NHtq481AhOw8Vcc7Q1sma1ZjeN5bkmGBeWJzi9GE887cdIi7Mn0HdXLO200THvLPFJ5kjsi+nhGd+2MO5Q7u6pBiNp+kZE0JiVFCzhzbml1Ty8NfbGdGjExe7cIiUr7cX45IjWzTvzGazeGFxCoMdGeCWMMbw2MVDGdg1jFv/t55dh1pWXW7T/nzWp+dx1bgEt2QzRidGUlFtY2MT5+BWVNl4bVkak3pFN3k9yivGJvCX8wcyf9shbv3fT26/CQf7Q7ZVqbnc8PoaZv7rBz5Yu58Lh3dj/m+n8NK1oxnf8/iHb8YYfjWtF69eN4bM/DLOfWpJk+dY17V2by6zn12OMfD+TeMbXeK+T1woz1w5ki/+bxIjEyJ49NsdTHlkIS8uTqGsspqFOw7z2vK9XD8xicm9TxzseYLIYD/+ev4gNh8o4HknZqebo73el3UETXq0aoxJBIYDK40x5wEHLMva4IqGSduSmlVMgK8XnRsxNKQtMcZw0YjurE/PY0/WybMWlmWxfE9Ovf8JusJV4xJIySpu8XCplY71zcYmNe+mz8/Hiyl9Yvh++2FstoaDni82ZOBl7GWqW5OXl+GGyclsPlBQm+F0hvKqan7cmcWMfnEu+3vvHhFEUnTwSW/w//LFVny8DH88q30WATmWMYZT+sexbHfOcU/ZG+OxeTs4UlLBXy8Y5LL5oTUm9opmb05Js8uIf7/9MClZxdwwJdkp11ignzfPXzWKAF9v5r6+plHzfU7kjRVpBPl5M8tNc4BGJdgDgKYObfx8QwaHCsqblDWr6+rxidx7zgC+2XKQ299ZT5WbArSqahtfbMzggv8uY/Zzy1mTlsv/Te/F0j/M4OGLhtCrEYWppvaJ4fNbJtG1UyDXvbqapxfubvIDrIXbD3PFiyuJCvHng5sm0KcJQ29rDOoWzsvXjubDmyfQv0sYf/tyG1MfXcgd722gb1wod57hmqHHznbm4C6cPbgLT8zfxc4WPvxoibQcBWdtVaODM2NMCPAhcDv2oY5/Au5txH43GmPWGGPWZGVlNbed4uFqxjW7+ibHHc4f1hUvAx83UBhkT1YR2UXlrTa056zBXYgI8m1xWf0VKfZsX0t+gc/oF8vhwvIGS5tblsUXmzIZmxTllmIVFw7vRlSwHy86cVHqlSm5FFdU1w6zc5WJvaJYkZJT7zCqhdsP25/iz+zdqgUZ3G1m/zgqqm0s3tW0/1s27c/nzZV7uXp8IgO7hruodT+rqbjZ3OzZ84tT6NYpkLOc+ECja6dAnr96JJl5Zfz67XXNyv7klVTw6foMLhjejbAAX6e1rSkigv3oExfCyiYUBbEseyayT1zISYfdNeT6SUn86az+fLkpk9++t4HqRjyccqbPN2Qw7bFF3PL2T+Q7HjQsu2smvz2tLzGh/k06Vo+oID761QTOGdKVR7/dwc1vrmv0wtuf/HSAG15fQ6/YEN6/aTzxLVzrdGRCBG/OHcv/bhhHj8ggSiurefzSYQT4erfouK3pgfMHEhLgw+/f3+C2wD01S2uctVWNCs6MMb7YA7O3LMv6COgJJAEbjDFpQHdgnTHmuP85LMt63rKsUZZljYqJ8ex0tDRfanZxux3XHBsWwOTeMXz804GTZoaW1axvltw6tXECfL2ZPSqeeVsPcTC/8Wtg1dXS+WY1pvWNaVRp822ZhaRkFbf6kMYaAb7eXDU+ge+3H3baYqHztx0iwNeLCT1d+/c+qVcMJRXVrE/PO+r18qpqHvh8C8kxwVw/sXlZgLZqVGIE4YG+tcsYNIbNZvHnTzcTFezPb0/r48LW/axXbAhxYf4saUZwtiE9j1WpuVw/KcnpazqN6BHB32cNZtmeHP76xdYm7//B2v2UV9m4alzrFgI51pikSNbtPdLo4Gjp7hy2Hyxk7qSWZyJvmJLMH87ox2cbMrjrw40tOlZTHCoo43fvbyAswJfnrhrJgt9N46pxCQT6NT+ACfLz4clLh/Hns/szb+tBLnx6KSkNjBh5ZWkqt7+7nlGJEfzvhnFEhzQtKDyZ8T2jeO+X41l3z6lNHnrqbtEh/vzl/IFs2J/PC058GNgUqdnFdAkPaNE1Ie7RmGqNBngJ2GZZ1r8ALMvaZFlWrGVZiZZlJQL7gRGWZR10aWvFI1VW29iXW9KuU+ezRnTjQF4pK1JPPBxu+Z4cunUKJD6y9TIXl4/tgc2yeGd182rypOWUcLiwnLEtnMcSFeLPiB4RDa539sXGDLy9DGcOck9wBvbhoP4+XrzkhEWp07KL+WbzQSb1inH5U93xPaPwMrDkmCzRi4tTScsp4f5zB7aLBeCbwtfbi+l97UNqG3tj/u6adDak5/Gns/u1WrbHGMPEXtEs25PTqKG/db2wOIXQAB/mjI53SdsuHtmdGyYn8fryvby1svFZeJvN4o0VexmdGOH2G+fRiZEUlVc1ukLeC4tTiA7x5/zhzlnK4+ZpPblpak/eX7uftXubX9a/KV74MYVqm8WzV47k9IGdnbY+nzGGuZOTeeMXY8kuKuf8/yytdz6xZVn8a94OHvh8K6cPjOPV68YQ6oJ/T8aYNpUxq+vswV04Y2Bn/v3dTqc9DGyKFJXRb7Ma8z/5ROAqYIYxZr3j6ywXt0vakPTcEqpsFkntaI2zY50+sDOh/j4nXPPMZrNnoFprvlmNhKhgpvaJ4X+r9jVrWFJz1zerz4x+sWw6kM+hgvqzeJZl8cXGTCb0jCLSjdW2okL8mTWiOx+uO0B2MxfktSyLN1fs5cwnFlNWWc0vpza/gl5jhQf6MqR7p6OyLwfySnnq+12cMbAzU1owPKstO2VAHLnFFfy0r+GFiHOLK/jHN9sZkxTJBcO6Nbi9M03qFU1ucQVbm1BiOz23hK82ZXL52B6E+Ne/QLIz3HVmf6b1jeG+T7fU/k5oyOLd2ezNKeFKN2fNwJ45A1jViKGNOw8V8sPOLK4Zn4C/j/Nu+m+d2YuoYD8en7/Lacc8kdziCt5auY/zh3alRxOXP2msib2i+fz/JtEjKohfvLaGJ+bvqn2wUG2z+PMnm3ny+93MGRXP05ePaLMBlCsZY/jrBYMI8vfmjvc3tvqw17QcBWdtVWOqNS6xLMtYljXEsqxhjq+vjtkm0bIs1y41Lx6rI1QECvD15qzBXfh6U2a968FsP1jIkZJKxjshyGmqK8cmcKignPlbm161bkVKDjFOqi45s799ztWJsmebDxSwL7eEc4a4L2tWY+7kJCqqbLyxvOnz9Q7ml3HNK6v58yebGZUYwbzfTGV0Yssyj401qVc0G/bn164F9OCX9qFofz6nf6uc3xNN6RODj5fhu0ZUbXzkm+0UllXx1/MHtXplwYnNmHf28tJUvIzhugmuHa7q7WV48rLhJEQFcfObaxtVuOSN5WlEh/i5NQteo0t4IN0jAhtVFOTFxSkE+Ho5PagM8vPhxinJLN6Vzdq9DT8oaImXl6RSVlXNr6b3dOl5ukcE8eHNE5g1vBv/nr+TG99YS05RObe+8xNvrdzHTVN78vBFg50+3LY9iQn154HzBrI+PY+XlrRe9cYjxRXklVS26/uy9kz/oqTFaoKznu10zlmNWSO6UVxRzbwtx98E1lT/c0cJ8+n9YunWKZA3mzAkCezZn5UpuYxNinTKjWrfuFC6dQo84bpTX2zMwMfLcPrA1q3SWJ+eMSGc0j+WN1bsbdL6SJ+uP8Bp//6BVak5/PX8gbx+/ZhWXattUu9oqm0WK/bksGRXNl9tOsivp/Wie4Rrnp63BWEBvoxLjmpwvbN1+47wzup0rp+YSN/OTa8k11JxYQH0jg1p9Lyz/JJK3l2dznnDurbKNRYW4MuL14zGZsHc19actBhEem4JC7Yf5tLRPTxmKO2YxEhWp+WetMrg4cIyPvkpg4tHdnfJWllXjU8gMtiPJxa4LnuWX1rJa8vSOGtQl0ZVYmypAF9v/jl7KPefO4CFOw4z/uHv+XJjJn88qx93ndnPIxeD9jTnDe3KqQPi+Oe8nQ1WfXaWlA7w0Lw984zfqtKmpWQXExHk67JFXD3F6MRIukcE1rvw8/I9OSRGBdG1U+tXyvP2Mlw+tgdLd+ewu4FFiuvam1PCwYIypwxpBPsQjpn9Y1m6O/u4gKdmSOPk3tEec53MnZxMbnFFoxbyPlJcwS1vr+O2d9bTMzaEr2+bwlXjE1v9xmR4j04E+nqzcEcW9322mYSoIG6Y4vohlZ7ulP6x7D5cVPug6FjVNot7P91MXJg/t53SOkVA6jOxVzSrUnMb9UDgrVV7KamobtGi002VFB3M05ePYHdWEb95d/0J58e9vWofBvucV08xOimS7KKKE14DAG8s30ulzcYvJrmmT4P8fPjllGR+3JnlsuzZ68vSKCyvcnnWrC5jDNdOTOKtuWPpFRPCoxcP4cYprXf+ts4Yw4MXDCLA15s7P2id4Y0dYURTe6bgTFosNatjjGv28jLMGt6NJbuzj6qOWG2zWJma49aFf2ePisfX2zRpQr8z55vVmNEvltLK6uPWXvspPY8DeaWcM8Q5E/CdYWxSJIO7hfPS4tSTFmlYuOMwpz/+I99uOcjvT+/L+78c77br3d/Hm7HJkbyzeh97soq579wBmuuBvaQ+cMKF0N9euZfNBwr489kDXDp3qyGTe0dTXmVjXQM37uVV1by6NI3JvZu+QHJLTeodzZ/P7s93Ww/xz+92HPd+WWU1765O55T+cW55GHUiNUOLTzS0sbSimjdX7OWU/nEu/ffryuxZcXkVLy1NZWa/2FZZAuJY45Kj+Oq2yVwyyjXFadqz2LAA7jt3AGv3HuHVZWkuP19adjHeXqbFyxqIeyg4kxZLzS5u18VA6po1ojuWBZ+s/7kwyJaMfArLqpwa5DRVTKg/Zw7qwgdr99c7J64+K1NziQ7xd+pw1HHJUQT5ebNg+9E3yV9uzMTP24tTB8Y57VwtZa9KlkRKdnG98+SKy6u4+6NNXPfKaiKC/Pjk1xP59fRebp9fMalXNJZlzxbN6Oc5/elO8ZFB9OscWu9SDtlF5Tz67Q4m9opy+3zHsclReHuZBoc2frY+g8OF5dzopqzotRMSuXR0PE8v3MOn648ugvT15kxyiyu4enyiW9p2Ij1jgokK9jvhemcfrNvPkZJKl2cia+ae/bgzi3WNKFLTFG+v3EdeSSW/ntHLqceV1nHh8G7M7BfLo99uJ+0kGV5nSM0uJj4iEF/NB2yT9LcmLVJcXsXBgrJ2u8bZsRKjgxmZEMGHa/fXzm2oyRK5M3MGcOW4BArLqvh8Q0aD29asbzY22TnzzWoE+HozqVc03287XNs/NpvFlxszmdInxm0L1Z7IWYO70DU8gBcWHz1Re3VaLmc+sZh3Vu/jl1OS+fSWiW55Ul2fs4d0YWqfGO47d6C7m+JRTukfx+q0I+SVVBz1+kNfbae0spoHzmv9IiDHCvH3YXh8p5MWBalZILlf59DaxatbmzGGv5w/iDGJkdz5wUY27s+rfe/15XtJjg5mgpt/3x3LGMNox7yzY9lsFi8vSWVo93BGJ0a4vC1XjXNkz5xYubGssprnF6cwqVc0I3q4/jOI8xljePDCwfh6e3HnBxubvKxGU6iMftum4ExaJC2n441rnjWiG7sOF7Elw14Se9meHHrFhhAb2nqFIeozOjGCvnGhvLFi70knxQPsyy0hM995883qOqV/HBn5ZWzLtK/rsnbfEQ4WlHGumxaePhlfby+un5TEytRcNu7Po7yqmoe+3sbs55ZjYfHujeO5+6z+HjV0sEt4IK9dP0bDVY5xyoA4qm0Wi3b8vA7c6rRcPly3n7mTk+kV6xnZ/Ym9otl4IJ/8ksp63/9hZxY7DxVx45SWL5DcEn4+Xjxz5QiiQ/y58fW1HC4oY/OBfH7al8eV4xLwctK6Ws40OimS9NzSo4adg32h+NTsYuZObp0+Dfb34YbJyfywM6tRSzw0xntr0skqLOcWZc3atM7hAdx7zgBWpeXy+vI0l5zDsizSOtCIpvZIwZm0SEecdHrO4K74+Xjxwdr9VFbbWJ2W65YS+scyxnDl+AQ2Hyhgw/78k267MsX+dHlckvNLwE/rZ19v63vH0MYvNmTg7+NVOy/I08wZHU+ovw8Pf72d8/+zlOd+SOHS0fF8fduU2vWTxPMN6RZOTKh/bUn9qmob93yyma7hAfyfB93QTu5tH5a6bE/92bMXFqfQOSzAI+ZnRoX48+I1oygoq+SGN9by0pJUAn29uWhkd3c3rV5jHPPOVh2TPXtxcSrdOgVy5qDWqxR79fgEIoJ8nTL3rKLKxrOL9jAqIYKx+p3U5l08sjvT+sbwj292sDfH+cMbDxWUU1pZTVIHGdHUHik4kxZJzbL/YkmM6ji/BMKDfDm1fxyfbchg3d4jlFRUe8wQnwuHdyPYz7vB9btWpOQQFeznkmxCbGgAQ7uHM3/bYaptFl9tPsj0vrFuLcRwMqEBvlw6Jp5le3LIKa7g5WtH8dCsIR7bXqmfl5dhZr9YftyRRUWVjdeW72X7wULuPXcAQX6e83c5NL4TwX7e9c4725KRz9LdOVw3MdFjStT37xLGv2YPY0N6Hh//dIALhnclPNCzhifX6N8llGA/b1bXmXe2IT2PVWm5XDcxsVXniwb7+3DjlJ4s2tHy7NknPx0gI7+MW2b0cvvQXGk5Ywx/v3AwPl6GP3zo/OGNKdn2qs1JHei+rL3xjN/+0malZhfTNTyAQD/PGfbVGmaN6EZucQX/+GY7YJ/o7wlC/H24cEQ3vtiYwZHiinq3qZlvNi45ymX/0c/sH8eG/Xl8vTmTrMJyzvHAIY113TK9N3ef2Y9vb5+iIhtt2Cn94ygsr+KLjRn8+7udTO0T4xHr6tXl6+3FuOSoeuedvbg4lRB/Hy7zoBL1AGcM6szvT++Lv4+XxxUCqcvH24sRCRFHzTt7cUkqof4+zBnd+hUGnZE9q6q28d9FuxncLZypfWKc2Dpxp66dAvnT2f1ZkZLbpCrLjVE7okmZszZLwZm0yJ7s4g75C2BKnxiigv1Yty+Pfp1DiXTBgqbNdeW4BMqrbHywtv71u/YfKSUjv4yxya4bHjOjXyyWBQ98vpVAX29m9It12bmcITzIl19O7elRf4/SdBN7RePv48VdH22iotrGA+cN9MhMw8Re0aTllJCeW1L7WkZeKZ9vyODS0fEeVzgH4NfTe/HTvae2emn/phqTGMmOQ4Xkl1RyIK+UrzZlcumYeELd0KfB/j7cMCWZRTuyWJ+e16xjfLkpk7ScEmXN2qE5o+OZ3Duah77eftTvgpZKzSrG38eLLmHunQcvzafgTJrNsixSs4pI7oCTTn29vThvmH1OyISe7qmodiL9OocxOjGCN1furXe4xHIXrG92rIFdw+gcFkBWYTkz+8d61LAyab8C/byZ3DuaiiobN03tSaKHzoWd1Nv+O6Nu9uzVZWlYwHWTktzUqoa1hX/Ho5MisSxYszeXV5akAnDtRPf16dXjE+3Zs/k7m7yvzWbxn+930ycuhFM9dM6uNJ8xhocvGoKXMdz10cYGC3k1VlqOvVKjJxbtkcZRcCbNlltcQUFZVYcqBlLXnNH2hZ9P6e95WaErxyWwN6ek3nktK1JyiAz2o7cLq9cZY5jh6Bd3ry0lHcvV4xM5pX8sv5rW091NOaHesSHEhvrX/vssKKvk7ZX7OHtwF7p50MLObdGw+E74eXuxYPth3lmd7vY+DfH3Ye7kZBY2I3s2b+shdh0u4tfTe+lGu53q1imQu8/qx9LdObx/gtEuTZWSXdyh6gC0RwrOpNk6+rjmfp3D2HDfaUxw01pEJ3PGoM5EBfvxxorjx7KvTMllbJJz1zerz1XjEjhvaFem9fW84FXaryl9YnjxmtEetfzBsYwxTOoVzbI9OdhsFu+uSqeovMrlCyR3BAG+3gzpHs7/Vu3zmD69ZkIinZqYPbMsi/8s3EVSdLBHVO4U17l8TA+GdA/n2UV7WlwcpKraxr6ckg57X9ZeKDiTZktxBGfJHTRzBp47zMffx5s5o+NZsO0QGXmlta+n55ZwIK/UpUMaa/TvEsaTlw336JtkEXeZ2Cua3OIKNh3I5+WlqYxPjmJwd89Y6LytqxnaODYp0iP6NMSx7tnCHVlsaGT2bNHOLDYfKODmaT3xVtasXTPGMHdyMinZxXy//XCLjrX/SClVNqvDjmhqLxScSbOlZhfj6200DMdDXT62Bxbwv1X7al9b0QrzzUSkYRMdGfd7Pt1MZn4ZN05xf4anvZjs6NubpnrO0Nba7FkjKjdaln2uWbdOgVw4vFsrtE7c7cxBnekaHsCLS1JadJzUHD00bw8UnEmzpWYV0yMyqFXXjpHG6x4RxIy+sfxvVToVVTYAVqbmEhHk69L5ZiLSsM7hAfSODWHj/nx6x4aoTLoTTegVzQ+/n8Z0D6oSW5M9+3774QazZytSclm79wg3TU3GV/+/dgi+3l5cNzGJFSm5bD6Q3+zj1K49q+CsTdO/emm21Oxikjpgpca25MrxCWQXlTNv60HAnjkbmxSlyeUiHqAme3bD5GT9m3SyBA8siHD1+AQ6BfnyZAPZs/8s3EVMqD+XjGr9tdnEfeaMiSfE34cXFzc/e5aaXUxogA9RWhamTVNwJs1is1mk5hSTrEmnHm1q7xjiIwN5Y/le9h8pYf+RUsa5cH0zEWm8y8f2YM6oeM4froIPHUFogC83TE5mwfbDbNyfV+82a/ceYenuHH45JVnzdTuYsABf5oyO54uNmWTmlza8Qz1Ss4tJjg7WmnhtnIIzaZaM/FIqqmyadOrhvLwMV4xNYGVqbm3lxrGabybiEfrEhfKPi4fg76Ob8I7i6vEJhAf68sT8+rNnTy/cTUSQL5eP7dHKLRNPcO2ERGyWxavL0pq1v31Ek+7L2joFZ9IstWX09UvA480eFY+fjxcv/JhCpyBf+saFurtJIiIdkj17lsSC7YfZtP/ouUWbD+Tz/fbD/GJSksdWAhbXio8M4sxBXXh75T6Ky6uatG9ZZTUZ+aWab9YOKDiTZklxTDrVsEbPFxnsx9mDu2BzlJbW3BYREfe5ZkKiPXu24Oh1z/67aDehAT5cPSHRPQ0TjzB3chKFZVW8tya9SfvtzSnBsvTQvD1QcCbNkppdTIi/DzEh/u5uijTCleMSAJjQ0/MWzBYR6UhCA3yZOymJ+dt+zp7tOlTI15sPcu2ERMICfN3cQnGn4T0iGJkQwctLU6luwqLUqdlFACSrUFubp+BMmiXFMa5Zk07bhpEJEXxw03guHaPqXyIi7nbNxJrsmX3u2X8X7SHQ15vrJia5uWXiCW6YnER6binfOSotN0ZqdgkAidFBrmqWtBIFZ9IsqdlFSp23MaMSI1V4QETEA4TVZs8O8eXGTD5df4ArxvYgUiXQBTh1QGfiIwN5YXFqo/dJzS4iOsSfUGVe2zwFZ9Jk5VXV7D9SquBMRESkma6ZmEhYgA+3vfMTPt5e3DA52d1NEg/h7WW4fmISa/ceYd2+I43ap6aMvrR9Cs6kyfY5Jp2qGIiIiEjzhAX4MndyMlU2i0tHxxMbFuDuJokHmT0qntAAH15qZPZMZfTbD9VqlSZLURl9ERGRFrt+UhL5pZXcNLWnu5siHibY34fLx/bghR9TSM8tIT7yxHPJCsoqyS6qIEkPzdsFZc6kyWrWONNaGiIiIs0X4u/DPecMICZUlY/leNdOSMTLmAYXpU6ruS+L0n1Ze6DgTJosNauY6BB/lfsVERERcZEu4YGcM6QL765Op6Cs8oTb1Tw013ST9kHBmTSZJp2KiIiIuN7cyckUlVfx7qoTL0qdklWMMdDjJEMfpe1QcCZNlqJJpyIiIiIuN6hbOOOSI3llaSqV1bZ6t0nLKaZbp0ACfLVcTnug4EyaxD7ptFypcxEREZFWMHdSMhn5ZXy9uf5FqVWpsX1RcCZNkpqlSo0iIiIirWVGv1iSo4N5cXEKlmUd9Z5lWaRmKThrTxScSZNo0qmIiIhI6/HyMlw/KYmN+/NZnXb0otTZRRUUllcpOGtHFJxJk6RkF+NlOOl6GyIiIiLiPBeN6E5EkC8vLk456vW0HI1oam8UnEmTpGYX0z0iCH8fTToVERERaQ2Bft5cOS6B77Ydqh3FBJpu0h4pOOsAyiqrWZmSc9w45eZIzS7SLwARERGRVnbV+AR8vbx4ZWlq7Wsp2cX4ehu6dQp0Y8vEmRSctXP5JZVc9dJK5jy/gq821V/lp7E06VRERETEPWJDAzh/WFfeX7OfvJIKwP7QvEdkED7euqVvL/Q32Y4dKihj9nPLWZ+eR+ewAP753Q6qTrBGRmNkFZZTXFGtYiAiIiIibvCLyUmUVlbz1sp9AKRll5AUHeLmVokzKThrp1Kyipj132XsP1LCq9eN4YHzB5KSVcyH6/Y3/5jZGtcsIiIi4i79OocxuXc0ry1Lo6yymtScYpKiVaStPVFw1g5tSM/j4meXU1ZZzTs3jmdir2hOGxDHsPhOPD5/F2WV1c06bqqCMxERERG3mjs5mcOF5bzwYwoVVTZlztoZBWftzOJdWVz2wgqC/Lz54OYJDO4eDoAxhjtP70tmfhlvrtjbrGOnZhfj7+NF13BNOhURERFxhym9o+kTF8LTi3YDemje3ig4a0c+25DB9a+upkdkEB/dPOG4f6wTekUzqVc0Ty/cTWFZZZOPn5Jlr9To5WWc1WQRERERaQJjDHMnJVNWaa8joFoA7YuCs3bi1aWp3PbOTwzvEcG7vxxPbFhAvdv9/vS+HCmp5MXFqfW+fzIp2arUKCIiIuJu5w3rSnSIH0F+3sSG+ru7OeJEHTo4syyLZxbt4dkf9ri7Kc1mWRaPfbuD+z/fyqn943j9+jGEB/qecPuh8Z04Y2BnXlycQk5ReaPPU1VtY19OiYIzERERETcL8PXmnnMGcMPkZIzRiKb2pEMHZ8YYtmUW8M95O9iaUeDu5jRZVbWNP368if8s3M2lo+P57xUjCPD1bnC/O07vQ2llNf9d1PigdP+RUqpsloIzEREREQ9w/rBu/ObUPu5uhjhZhw7OAB44byDhgX7c8f4GKqqavwZYayurrOZXb63jf6vSuWV6Lx6aNbjRCxD2ig3lohHdeWPFXjLyShu1T02lRo1rFhERERFxjQ4fnEUE+/H3CwexNbOApxfudndzGiW/tJKrX17FvK2HuP/cAdxxet8mp7RvP7UPWPDE/F2N2v7nNc5UrlVERERExBU6fHAGcNrAzlw4vBtPL9zN5gP57m7OSR0uKGPOc8v5ad8RnrxsONdOTGrWcbp1CuSKcT14f206e7KKGtw+NbuI8EBfIoJOPJ9NRERERESar8HgzBgTb4xZaIzZZozZYoy5zfH6o8aY7caYjcaYj40xnVzeWhe679wBRAZ79vDGtOxiLnp2GftyS3j52tGcN7Rri4736+m9CPD15l/zdja4baqjUqMmnYqIiIiIuEZjMmdVwO8sy+oPjAN+bYwZAHwHDLIsawiwE7jbdc10vU5Bfjw0azDbDxby1PeNG+rXmg4XlnHFiyspLq/mfzeMY3LvmBYfMzrEn7mTkvhyUyab9p88Y5iaVUyyioGIiIiIiLhMg8GZZVmZlmWtc3xfCGwDulmWNc+yrCrHZiuA7q5rZuuY2T+Oi0Z057+L9jQYrLSm0opqbnh9LbnFFbx23RiGxndy2rHnTkmmU5Avj3y7/aTnz8gvUzEQEREREREXatKcM2NMIjAcWHnMW9cDXzupTW5177kDiA7x43fvr6e8qtrdzcFms/jte+vZuD+PJy4dxuDu4U49fliAL7+a1pPFu7JZvien3m3SclQMRERERETE1RodnBljQoAPgdstyyqo8/qfsA99fOsE+91ojFljjFmTlZXV0va6XHigLw9fNISdh4oaXcnQlR75dgdfbz7In87qz2kDO7vkHFePT6RzWACPfLsdy7KOez8lqyY4U+ZMRERERMRVGhWcGWN8sQdmb1mW9VGd168BzgGusOq7qwcsy3resqxRlmWNiolp+Typ1jC9byyzR3Xn2R/2sCE9z23teHf1Pp79YQ9XjO3BLyY1rypjYwT4enPrzN78tC+P+dsOH/d+ara9mmNidJDL2iAiIiIi0tE1plqjAV4CtlmW9a86r58B/AE4z7KsEtc10T3+fM4A4sIC+N37GyirbP3hjUt3Z/OnjzczuXc095830OVVEi8Z1Z2k6GAe+3YH1baj4+yU7GK6hAcQ5Ofj0jaIiIiIiHRkjcmcTQSuAmYYY9Y7vs4C/gOEAt85XnvWlQ1tbWEB9uGNuw8X8e/5DZead6bdhwu56c21JMcE8/QVI/D1dv1ydL7eXvz21D7sOFTIZxsOHPVeTRl9ERERERFxncZUa1xiWZaxLGuIZVnDHF9fWZbVy7Ks+Dqv3dQaDW5NU/vEcNmYeF74MYV1+460yjlzisq57tXV+Pt48/K1owkLaL1Fn88e3IUBXcL413c7j1rrTcGZiIiIiIjruT4l08b98az+dAkP5I5WGN5YVlnNjW+s5XBBOS9eM4ruEa07x8vLy/D7M/qSnlvKu6v3AXCkuIK8kkoFZyIiIiIiLqbgrAGhAb7846IhpGQV8895O1x2HpvN4vcfbGTt3iP8e84whjlxLbOmmNYnhjGJkTz5/W5KKqpIybZXatQaZyIiIiIirqXgrBEm9Y7mirE9eHFJKmvScl1yjsfn7+TzDRn84Yx+nDW4i0vO0RjGGO48oy9ZheW8uiyN1GytcSYiIiIi0hoUnDXS3Wf1p1unQH7/wUZKK5w7vPHDtft58vvdzBkVz01Tk5167OYYlRjJjH6xPLtoD+vTj+DjZYiPCHR3s0RERERE2jUFZ40U4u/DIxcPITW7mEe/dd7wxhUpOdz10UYm9IzibxcOcnnJ/Ma647S+FJRV8b9V6fSICsKnFSpGioiIiIh0ZLrjboIJPaO5enwCryxLZVVqy4c3pmQV8cs31tIjMohnrhjZKiXzG2tA1zDOG9qVaptFsoqBiIiIiIi4nOdEA23EH87oR3xEEL//YAMlFVXNPs6R4gquf3U1Pl6GV64dQ3hQ65XMb6zfntoHHy9D77hQdzdFRERERKTdU3DWRMH+Pjx68RD25pTwl8+3sv1gAem5JRwprjhqbbCTKa+q5pdvrCUjv4znrx5Jj6jWLZnfWInRwXz+f5O4aWpPdzdFRERERKTd83F3A9qisclRXDcxkVeWpvHO6vSj3vPz9iLY35uQAB+C/XwI8fch2L/mT29C/H3ZnVXEqrRcnrxsOCMTIt30KRqnf5cwdzdBRERERKRDUHDWTPecPYBTB8RxpLiS4vIqisqr7H9W2P8sLq+ufS2vpIL9R0ocP1dTUW3j7jP7cd7Qru7+GCIiIiIi4iEUnDWTl5dhQs/oZu1rWZbHVGUUERERERHPoDlnbqDATEREREREjqXgTERERERExAMoOBMREREREfEACs5EREREREQ8gIIzERERERERD6DgTERERERExAMoOBMREREREfEACs5EREREREQ8gIIzERERERERD6DgTERERERExAMoOBMREREREfEACs5EREREREQ8gIIzERERERERD6DgTERERERExAMoOBMREREREfEACs5EREREREQ8gIIzERERERERD6DgTERERERExAMoOBMREREREfEACs5EREREREQ8gIIzERERERERD6DgTERERERExAMoOBMREREREfEACs5EREREREQ8gIIzERERERERD6DgTERERERExAMoOBMRERERae8eeQQWLjz6tYUL7a+Lx1BwJiIiIiLS3o0eDbNnw3ffQXm5PTCbPdv+ekMU2LUaH3c3QEREREREXGz6dHjvPbjwQsjPB2Ogd2946in45BOIj//5q0cP6NIFvL3t+9YEdu+9Zz9OTWD33ntu/UjtkYIzEREREZGOYPp0uPJKePppGDYMYmNhxw6YPx8KC4/e1tsbunb9OWCbMQPOPRfmzoW33vo5UBOnUnAmIiIiItIRLFwI774L99wDzzwD//znzwFWfj7s2wfp6cd/rV1r/7O8HJ54Aq69VoGZiyg4ExERERFp7+oORZw+3f5V9+fwcBg82P5Vn++/h4svtn//6qv2bNpf/tJqze8oVBBERERERKS9W7366KGINXPQVq9ueN+FC2HOHPjwQ9i5EwYNgr/+1T7E0bJc2+4ORpkzEREREZH27s47j3+tJoPWkGMDu9Wr4eyz4aWX7MHZs8+Cr69z29tBKXMmIiIiIiInduedRwdxAQH2IiL33AMvvwxnngl5eW5rXnui4ExERERERJrGGPucs1dfhR9/hIkTIS3N3a1q8xSciYiIiIhI81xzDXz7LWRkwNixsGqVu1vUpjUYnBlj4o0xC40x24wxW4wxtzlejzTGfGeM2eX4M8L1zRUREREREY8yfTosXw7BwTB1Knz0kbtb1GY1JnNWBfzOsqz+wDjg18aYAcBdwALLsnoDCxw/i4iIiIhIR9OvH6xcCcOH20vuP/aYKjk2Q4PBmWVZmZZlrXN8XwhsA7oB5wOvOTZ7DbjARW0UERERERFPFxMDCxbYg7Pf/x5uvhmqqtzdqjalSXPOjDGJwHBgJRBnWVYm2AM4INbprRMRERERkbYjMBDeeQfuvhueew7Gj4eCgp/fX7gQHnnEfe3zcI0OzowxIcCHwO2WZRU0tH2d/W40xqwxxqzJyspqThtFRERERKSt8PKCv/8d7rgD1qyBYcNg3z57YDZ7Nowe3fAxHnnEvn1dHSCwa9Qi1MYYX+yB2VuWZdXM8DtkjOliWVamMaYLcLi+fS3Leh54HmDUqFEaeCoiIiIi0hE8+ijExdnXSUtIsAdtffrAf/8Ln38O8fH2rx497H/Gxdm3AXsAN3v2z4tf1wR2773n3s/kYg0GZ8YYA7wEbLMs61913voMuAZ42PHnpy5poYiIiIiItE133AGpqfaAbPBg+7y0TZvgq6+gpOTobX19oVu3n4O1U0+F886D66+Ht9/+OVBrxxqTOZsIXAVsMsasd7z2R+xB2XvGmF8A+4BLXNJCERERERFpmxYutAdV99wDzzwD//63PcCyLDhyxD7cMT3956+an5cuhf377QVFnnzSHqzt3AlDh0JkpLs/lcsYqxVLXI4aNcpas2ZNq51PRERERETcpO5QxGOHJjYmA7ZgAVxyiT0gW7wYqqvt2bUzz4TLL4dzz4WgINd/Diczxqy1LGtUfe81qVqjiIiIiIhIo6xefXQgNn26/efVqxved+FCuPRS+PBD+/fz5kGnTnD++fb9L73UPkftmmvs79WU7G/jhUQUnImIiIiIiPPdeefxGbLp0+2vN+TYwG7GDPjoI3uhkPR0e1Zt9mz45BM4/XTo3h1uvx1CQ+2v1wRoTakQ6QE0rFFERERERNqmsjL48kt46y37nxUV9qIiR47AddfBu+96XCERDWsUEREREZH2JyAALrrInlU7dAhefNFerr+kBJ5+Gm6+2aMCs4Y0ap0zERERERERj9apE/ziF5CcDBs22OelPfOMPThrIwGaMmciIiIiItI+1Mwx++ADe+bsvfeOnoPm4RSciYiIiIhI+9CSCpEeQAVBREREREREWokKgoiIiIiIiHg4BWciIiIiIiIeQMGZiIiIiIiIB1BwJiIiIiIi4gEUnImIiIiIiHgABWciIiIiIiIeQMGZiIiIiIiIB1BwJiIiIiIi4gFadRFqY0wWsLfVTth40UC2uxvRDqlfXUP96hrqV9dR37qG+tU11K+uoX51DfWra7i6XxMsy4qp741WDc48lTFmzYlW6ZbmU7+6hvrVNdSvrqO+dQ31q2uoX11D/eoa6lfXcGe/alijiIiIiIiIB1BwJiIiIiIi4gEUnNk97+4GtFPqV9dQv7qG+tV11LeuoX51DfWra6hfXUP96hpu61fNORMREREREfEAypyJiIiIiIh4gDYXnBljzjDG7DDG7DbG3FXn9XeNMesdX2nGmPX17DvMGLPcGLPFGLPRGDOnzntJxpiVxphdjmP5neD81zi22WWMuaap+3sqd/arMSbBGLPWcY4txpibmrK/J3Nhv97iOKZljIk+yfl1vR6/b4v6Vddrs/r1LcdxNxtjXjbG+J7g/Lpej9+3Rf3anq9XcGnfvmSM2eB4/QNjTMgJzq9r9vh9W9Sv7fmaPUm/DjPGrHB85jXGmDEn2L9F11sHvF5d3q8uuV4ty2ozX4A3sAdIBvyADcCAerb7J3BvPa/3AXo7vu8KZAKdHD+/B1zq+P5Z4OZ69o8EUhx/Rji+j2js/p765QH96gf4O74PAdKArurXk/brcCDR0VfRJzi/rlfX9Kuu16b361mAcXz97wS/B3S9uqZf2+X12gp9G1Znu38Bd+mabbV+bZfX7Mn6FZgHnOn4/ixgkbOvt454vbZSvzr9em1rmbMxwG7LslIsy6oA3gHOr7uBMcYAs7H/R3UUy7J2Wpa1y/F9BnAYiHHsMwP4wLHpa8AF9Zz/dOA7y7JyLcs6AnwHnNGE/T2VW/vVsqwKy7LKHT/648joql/r71fHzz9ZlpXWwPl1vbqgX3W9Nqtfv7IcgFVA93rOr+vVBf3ajq9XcG3fFtTZPxCob4K+rlkX9Gs7vmZP1q8WEOb4PhzIqGf/ll5vHfF6dXm/uuJ6bWvBWTcgvc7P+x2v1TUZOFTzi+FEHKlNP+zRdhSQZ1lW1bHHNcaMMsa82MD5T7h/G+HufsUYE2+M2ehoxz8cv9DVrw7H9OvJttP1aufKftX12sx+NfZhd1cB3zh+1vVq58p+ba/XK7i4b40xrwAHgX7AU47XdM3aubJf2+s1e7J+vR141BiTDjwG3N2E/XUP695+dfr12taCM1PPa8c+dbmMep7kHHUQY7oAbwDXWZZlO9lxLctaY1nW3AbO35h2eTJ39yuWZaVbljUE6AVcY4yJa2S7PJmr+vWEdL3WcmW/6no92UFO3q//BX60LGsx6Hqtw5X92l6vV3Bx31qWdR32YXnbgDmO13TN2rmyX9vrNXuy9t8M/MayrHjgN8BLTdhf97DHa81+dfr12taCs/1AfJ2fu1MnRWmM8QFmAe+e6ADGmDDgS+DPlmWtcLycDXRy7H/ccRtx/sbu76nc3a+1HE8btmB/Kqd+rb9fW3p+9WvL+rWWrtejnaxfjTH3YR/a9Nsmnl/92rJ+rdXOrldohd8FlmVVO/a/qAnnb+t96+5+rbtde7pmT9av1wAfOb5/H/tQvcbur3tY9/ZrLaddr5YHTOZr7Bfgg32iXhI/T/obWOf9M4AfTrK/H7AAuL2e997n6El7v6pnm0ggFfuEwQjH95GN3d9TvzygX7sDgY7vI4CdwGD164n7tc42aZy8IIiuV+f3q67XJvYrMBdYVtNvul5btV/b5fXqyr7F/sS7V53vHwMe0zXbav3aLq/Zk/Ur9iziNMf3M4G1zr7eOuL12kr96vTr1e2d2oy/hLMcH3wP8Kdj3nsVuOkk+14JVALr63wNc7yXjH1C9W5HZ9ZUXhkFvFjnGNc7ttmNPVXPyfZvK1/u7FfgVGCj4x/URuBG9WuD/Xor9qc9VdifxNT0pa5XF/errtdm9WuV45g1r9+r67V1+rU9X6+u6lvso4qWApuAzcBbOKoM6pp1fb+252v2RP0KTALWOj7zSmDkCfZv0vXW0a/X1uhXV1yvxrGziIiIiIiIuFFbm3MmIiIiIiLSLik4ExERERER8QAKzkRERERERDyAgjMREREREREPoOBMRERERETEAyg4ExERERER8QAKzkRERERERDyAgjMREREREREP8P/uhFxSxUvFlAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACG5ElEQVR4nO3dd3gc1fXw8e9d9d67ZMmy3C25yd1gG5sSSiD03kIPbwjpCSGQ/FJJIyQBQiD0xHQIJQEDtsFdsnGXLVvNVu+9a+/7x+6KtayykrZJOp/n0WNpd3bmajSW5uw951yltUYIIYQQQgghhGsZXD0AIYQQQgghhBASnAkhhBBCCCGEW5DgTAghhBBCCCHcgARnQgghhBBCCOEGJDgTQgghhBBCCDcgwZkQQgghhBBCuAEJzoQQQgghhBDCDUhwJoQQY5RSqtnqw6iUarP6+jpXj28klFKFSql1rh7HYJRSm5RStzlw/08ppY6af6Y393nuZqVUT5+f/Wqr58OVUm8ppVqUUkVKqWv7vH6tUuqIUqpVKbVRKZVs9ZxSSv1WKVVj/nhEKaUc9X0KIYQ4nQRnQggxRmmtAy0fwAngIqvHXnb1+PpSSnmOh2M4wT7gHmDPAM9vt/7Za603WT33N6ATiAGuA55QSs0GUEpFAm8CDwLhQDbwitVr7wAuAeYCGcCFwJ12+p6EEELYQIIzIYQYZ5RSBqXUD5VSeeYZkFeVUuHm51KUUlopdYtS6qRSqk4pdZdSapFSar9Sql4p9Verfd2slNqqlPqLUqrBPOuy1ur5EKXUM0qpMqVUiVLqF0opjz6v/ZNSqhZ4WCk1RSn1qXlc1Uqpl5VSoebtXwQmAe+aZ4S+r5RarZQq7vP99c6uKaUeVkq9rpR6SSnVCNw8xJjSlFKbzd9LtVLKOjixPoaveZ815nOSpZSKUUr9EjgD+Kt5jH81bz9DKbVBKVVrnvW60mpfzymlnjQ/32Q+fnJ/xwXQWv9Na/0J0G77Tx2UUgHAZcCDWutmrfUW4D/ADeZNLgUOaa1f01q3Aw8Dc5VSM8zP3wT8QWtdrLUuAf4A3DycMQghhBgdCc6EEGL8+SamGZBVQDxQh2lGxdoSYCpwFfAo8ACwDpgNXKmUWtVn23wgEngIeNMS7AHPA91AGjAfOAe4rZ/XRgO/BBTwa/O4ZgJJmIIEtNY3cOoM4CM2fr8XA68DocDLQ4zp/4CPgDAgEfjLAPu8CQgxjy8CuAto01o/AHwO3Gse473moGgD8C/z93kN8LhlxsrsOvOxI4G95nGO1HxzYJmrlHrQarZwGtCjtc612nYfpp8p5n/3WZ7QWrcAeQM93+e1QgghnECCMyGEGH/uBB4wz4B0YAp+Lu+T8vd/Wut2rfVHQAvwb611pXnG5HNMQY1FJfCo1rpLa/0KcBS4QCkVA3wF+JbWukVrXQn8Cbja6rWlWuu/aK27tdZtWuvjWusNWusOrXUV8EdMQeRobNdav621NgLBQ4ypC0gG4s3f/5YB9tmFKShL01r3aK13a60bB9j2QqBQa/2s+fvcA7wBXG61zfta68/MP48HgGVKqaQRfK+fAXMwBYGXYQoEv2d+LhBo6LN9AxA0wucbgECpOxNCCOcZD7n5QgghTpUMvKWUMlo91oOpDsmiwurztn6+DrT6ukRrra2+LsI085UMeAFlVvfvBuCk1bbWn6OUigYew5QaGGTevs6m72pg1scYakzfxzSDtUspVYcpje+f/ezzRUyzZuvNaZcvYQp4u/rZNhlYopSqt3rM07yP08aotW42p3nG9xn7kLTW+VZfHlBK/RxTcPZroBlTcGotGGgyfz7c54OB5j4/eyGEEA4kM2dCCDH+nAS+orUOtfrwNc+KjURCn9mTSUCp+TgdQKTVcYK11tapcH1v7H9tfixDax0MXI8p1XGg7VsAf8sX5tqxqD7bWL9m0DFprcu11rdrreMxzTA+rpRK6/sNm2cJf6a1ngUsxzQ7duMAYzwJbO5zvgO11ndbbdM7S6aUCsTUkKO073FHQPPl+csFPJVSU62enwscMn9+yPy1ZRwBwJSBnu/zWiGEEE4gwZkQQow/TwK/tDSdUEpFKaUuHsX+ooFvKqW8lFJXYKoV+0BrXYapfusPSqlgcyOSKX3q1foKwjRDU6+USuDLlDyLCiDV6utcwFcpdYFSygv4CeAz0M6HGpNS6gqlVKJ58zpMwU1P3/0opdYopdLNwWAjpjRHy3Z9x/geME0pdYP5HHkpU4OVmVbbnK+UWqmU8sY0c7dTa93vrJlSylsp5Ysp6PIyNycxmJ/7ijmdFHMjjweBd8zfewumbow/V0oFKKVWYKrHs8zgvQXMUUpdZt7/T4H9Wusj5udfAL6tlEpQSsUD3wGeG+hcCyGEsD8JzoQQYvz5M6YufR8ppZqAHZgac4zUTkzNQ6oxNfW4XGtdY37uRsAbOIwp2HkdiBtkXz8DFmCqZ3ofUzBh7dfAT8wdEr+rtW7A1Fb+aaAE00xaMYMbbEyLgJ1KqWZM5+g+rXVBP/uINb+uEcgBNmNKbQTT+b1cmTpdPqa1bsLUdORqTLNh5cBvOTWI/BemZiq1wEJMDUIG8hGm1NLlwFPmz880P7cW2K+UagE+wHT+fmX12nsAP0x1gv8G7tZaHwIw1/hdhulnWIfpmrCuD/w78C5wADiI6efz90HGKYQQws6UpJILIYQYiDItgnyb1nqlq8cyVimlngOKtdY/cfVYhBBCuDeZORNCCCGEEEIINyDBmRBCCCGEEEK4AUlrFEIIIYQQQgg3IDNnQgghhBBCCOEGJDgTQgghhBBCCDfg6cyDRUZG6pSUFGceUgghhBBCCCHcxu7du6u11lH9PefU4CwlJYXs7GxnHlIIIYQQQggh3IZSqmig5yStUQghhBBCCCHcgARnQgghhBBCCOEGJDgTQgghhBBCCDfg1Jqz/nR1dVFcXEx7e7urhyLGGV9fXxITE/Hy8nL1UIQQQgghhBiSy4Oz4uJigoKCSElJQSnl6uGIcUJrTU1NDcXFxUyePNnVwxFCCCGEEGJILk9rbG9vJyIiQgIzYVdKKSIiImRGVgghhBBCjBkuD84ACcyEQ8h1JYQQQgghxpIhgzOlVJJSaqNSKkcpdUgpdZ/58XlKqR1Kqb1KqWyl1GLHD9cxfvnLXzJ79mwyMjKYN28eO3fuBOC2227j8OHDdjlGSkoK1dXVg27zq1/9atj7fe6557j33ntPeezZZ59l3rx5zJs3D29vb9LT05k3bx4//OEPh71/Z3j00UdpbW119TCEEEIIIYS9PfIIbNx46mMbN5oeF6expeasG/iO1nqPUioI2K2U2gA8AvxMa/1fpdT55q9XO26ojrF9+3bee+899uzZg4+PD9XV1XR2dgLw9NNPO3Usv/rVr/jxj3886v3ccsst3HLLLYApKNy4cSORkZGj3u9Iaa3RWmMw9P9ewKOPPsr111+Pv7+/zfvs7u7G09PlJZNCCCGEEGIwixbBlVfCq6/CmjWmwMzytTjNkDNnWusyrfUe8+dNQA6QAGgg2LxZCFDqqEE6UllZGZGRkfj4+AAQGRlJfHw8AKtXryY7OxuAwMBAfvCDH7Bw4ULWrVvHrl27WL16NampqfznP/8BTp/FuvDCC9m0adNpx7zkkktYuHAhs2fP5qmnngLghz/8IW1tbcybN4/rrrsOgJdeeonFixczb9487rzzTnp6egDTzNi0adNYtWoVW7dutfl7/d3vfseiRYvIyMjgoYceAqCwsJAZM2Zw2223MWfOHK677jo+/vhjVqxYwdSpU9m1axcADz/8MDfccANnnXUWU6dO5R//+MeQ+505cyb33HMPCxYs4OTJk9x9991kZmYye/bs3u0ee+wxSktLWbNmDWvWrOk91xavv/46N998MwA333wz3/72t1mzZg0/+MEPyMvL47zzzmPhwoWcccYZHDlyxOZzIYQQQgghnGDNGlMg9rWvwfe/f2qgJk5nmdWw5QNIAU5gCspmmj8/CZQAyUO9fuHChbqvw4cPn/aYMzU1Nem5c+fqqVOn6rvvvltv2rSp97lVq1bprKwsrbXWgP7ggw+01lpfcskl+uyzz9adnZ167969eu7cuVprrZ999ln9jW98o/f1F1xwgd64caPWWuvk5GRdVVWltda6pqZGa611a2urnj17tq6urtZaax0QEND72sOHD+sLL7xQd3Z2aq21vvvuu/Xzzz+vS0tLdVJSkq6srNQdHR16+fLlpxyzL8txP/zwQ3377bdro9Goe3p69AUXXKA3b96sCwoKtIeHh96/f7/u6enRCxYs0Lfccos2Go367bff1hdffLHWWuuHHnpIZ2Rk6NbWVl1VVaUTExN1SUnJoPtVSunt27f3jsXyfXd3d+tVq1bpffv2nXZu+p6H1157Td90001aa61vuukmfcEFF+ju7m6ttdZnnXWWzs3N1VprvWPHDr1mzZrTvn9XX19CCCGEEBNeTo7WYPp48EFXj8blgGw9QLxkc16YUioQeAP4lta6USn1C+B+rfUbSqkrgWeAdf287g7gDoBJkyYNeoyfvXuIw6WNtg7JJrPig3nootkDPh8YGMju3bv5/PPP2bhxI1dddRW/+c1vemdrLLy9vTnvvPMASE9Px8fHBy8vL9LT0yksLBzWmB577DHeeustAE6ePMmxY8eIiIg4ZZtPPvmE3bt3s2jRIgDa2tqIjo5m586drF69mqioKACuuuoqcnNzhzzmRx99xEcffcT8+fMBaG5u5tixY0yaNInJkyeTnp4OwOzZs1m7di1KqdO+t4svvhg/Pz/8/PxYs2YNu3btYsuWLQPuNzk5maVLl/a+/tVXX+Wpp56iu7ubsrIyDh8+TEZGxrDO3RVXXIGHhwfNzc1s27aNK664ove5jo6OYe1LCCGEEEI4wQMPmP719obHHzfNmsnMWb9sCs6UUl6YArOXtdZvmh++CbjP/PlrQL8FWlrrp4CnADIzM/WoRusgHh4erF69mtWrV5Oens7zzz9/WnDm5eXV2/3PYDD0pkEaDAa6u7sB8PT0xGg09r6mvzbumzZt4uOPP2b79u34+/uzevXqfrfTWnPTTTfx61//+pTH33777RF1IdRa86Mf/Yg777zzlMcLCwt7v5fBvjc4vfuhUmrQ/QYEBPR+XVBQwO9//3uysrIICwvj5ptvHrDNvfVx+m5j2afRaCQ0NJS9e/cO9a0LIYQQQghX+eADeOstSEmBwkK46SZJbRzEkMGZMt0pPwPkaK3/aPVUKbAK2AScBRwb7WAGm+FylKNHj2IwGJg6dSoAe/fuJTk5eUT7SklJ4fHHH8doNFJSUtJbr2WtoaGBsLAw/P39OXLkCDt27Oh9zsvLi66uLry8vFi7di0XX3wx999/P9HR0dTW1tLU1MSSJUu47777qKmpITg4mNdee425c+cOObZzzz2XBx98kOuuu47AwEBKSkrw8vIa1vf3zjvv8KMf/YiWlhY2bdrEb37zG/z8/Gzab2NjIwEBAYSEhFBRUcF///tfVq9eDUBQUBBNTU29TUtiYmLIyclh+vTpvPXWWwQFBZ22v+DgYCZPnsxrr73GFVdcgdaa/fv323QuhBBCCCGEk/zzn6aExhdegHvugc2bTYFZVpYEZ/2wZeZsBXADcEAptdf82I+B24E/K6U8gXbMqYtjTXNzM//v//0/6uvr8fT0JC0trbdJx3CtWLGiN0Vwzpw5LFiw4LRtzjvvPJ588kkyMjKYPn36KWl/d9xxBxkZGSxYsICXX36ZX/ziF5xzzjkYjUa8vLz429/+xtKlS3n44YdZtmwZcXFxLFiwoLdRyGDOOecccnJyWLZsGWBK53zppZfw8PCw+ftbvHgxF1xwASdOnODBBx8kPj6e+Ph4m/Y7d+5c5s+fz+zZs0lNTWXFihWnfN9f+cpXiIuLY+PGjfzmN7/hwgsvJCkpiTlz5tDc3NzveF5++WXuvvtufvGLX9DV1cXVV18twZkQQgghhDspLITZs2HlSrjzTvh//w+Cg03NQcRplKkmzTkyMzO1pfuhRU5ODjNnznTaGMTIPPzwwwQGBvLd737X1UMZFrm+hBBCCCFcJCsLFi+Gv/4VvvENqK+H+Hi4/noY4WTIeKCU2q21zuzvuSFb6QshhBBCCCHEsD3+OAQEwA03mL4ODYWrr4Z//Qsa7dsEcLyQ4EzY5OGHHx5zs2ZCCCGEEMJFamth/XrTLFlw8JeP33kntLSYAjRxGgnOhBBCCCGEEPb1/PPQ3g53333q44sXw9y58OSTpkYh4hQSnAkhhBBCCCHsx2iEJ56AZctMgZg1peCuu2DfPuins/lEJ8GZEEIIIYQQwn4+/RSOHTO1zu/PtdeaatH+/nfnjmsMkOBMCCGEEEIIYT9PPAEREXD55f0/HxxsCtDWrzd1cBS9JDgDPDw8mDdvHnPmzOGKK66gtbV1xPu6+eabef311wG47bbbOHz48IDbbtq0iW3btvV+/eSTT/LCCy+M+NgWhYWFzJkz55THHn74YX7/+98Paz/2Go8QQgghhJggSkrgnXfg1lvB13fg7e68E9ra4KWXnDe2MUCCM8DPz4+9e/dy8OBBvL29efLJJ0953pZFnvvz9NNPM2vWrAGf7xuc3XXXXdx4440jOpa9dXd3u9V4hBBCCCHEGPD009DTYwq+BrNwoenj73+XxiBWxlZw9sgjsHHjqY9t3Gh63E7OOOMMjh8/zqZNm1izZg3XXnst6enp9PT08L3vfY9FixaRkZHB3805slpr7r33XmbNmsUFF1xAZWVl775Wr16NZdHt//3vfyxYsIC5c+eydu1aCgsLefLJJ/nTn/7EvHnz+Pzzz0+Z3dq7dy9Lly4lIyODr33ta9TV1fXu8wc/+AGLFy9m2rRpfP7558P+Hgfb949//GNWrVrFn//8597xlJaWMm/evN4PDw8PioqKKCoqYu3atWRkZLB27VpOnDgBmGYPv/nNb7J8+XJSU1N7ZxKFEEIIIcQ41tVlWlz6vPNgypSht7/zTjh4ELZvd/zYxoixFZwtWgRXXvllgLZxo+nrRYvssvvu7m7++9//kp6eDsCuXbv45S9/yeHDh3nmmWcICQkhKyuLrKws/vGPf1BQUMBbb73F0aNHOXDgAP/4xz9OmQmzqKqq4vbbb+eNN95g3759vPbaa6SkpHDXXXdx//33s3fvXs4444xTXnPjjTfy29/+lv3795Oens7PfvazU8a5a9cuHn300VMet5aXl3dKQGU9GzjYvuvr69m8eTPf+c53eh+Lj49n79697N27l9tvv53LLruM5ORk7r33Xm688Ub279/Pddddxze/+c3e15SVlbFlyxbee+89fvjDHw7zJyGEEEIIIcacd9+F0tLT2+cP5JprIChIGoNY8XT1AE7xrW/B3r2DbxMfD+eeC3FxUFYGM2fCz35m+ujPvHnw6KOD7rKtrY158+YBppmzr3/962zbto3FixczefJkAD766CP279/fOwvU0NDAsWPH+Oyzz7jmmmvw8PAgPj6es84667T979ixgzPPPLN3X+Hh4YOOp6Ghgfr6elatWgXATTfdxBVXXNH7/KWXXgrAwoULKSws7HcfU6ZMYa/VuXz44Ydt2vdVV1014Li2bt3K008/3Ttbt337dt58800AbrjhBr7//e/3bnvJJZdgMBiYNWsWFRUVg36/QgghhBBiHHjiCUhKggsusG37wEC47jp47jnT/XpYmCNHNya4V3Bmi7AwU2B24gRMmmSXH6Kl5qyvgICA3s+11vzlL3/h3HPPPWWbDz74AKXUoPvXWg+5zXD4+PgApkYm3d3ddtsvnPo9WysrK+PrX/86//nPfwgMDOx3G+vv0TJGMH3/QgghhBBiHMvNhY8/hl/8Ajw8bH/dnXeaFqR+4QW47z7HjW+McK+0xkcfhU2bBv946CFobYUHHzT9+9BDg28/xKyZrc4991yeeOIJurq6AMjNzaWlpYUzzzyT9evX09PTQ1lZGRv71sQBy5YtY/PmzRQUFABQW1sLQFBQEE1NTadtHxISQlhYWO8M1Ysvvtg70zVaI9l3V1cXV155Jb/97W+ZNm1a7+PLly9n/fr1ALz88susXLnSLmMUQgghhBBjzJNPgqcnfP3rw3vdvHmweLE0BjEbWzNnlhqzV1+FNWtMH9ZfO9Btt91GYWEhCxYsQGtNVFQUb7/9Nl/72tf49NNPSU9PZ9q0af0GOlFRUTz11FNceumlGI1GoqOj2bBhAxdddBGXX34577zzDn/5y19Oec3zzz/PXXfdRWtrK6mpqTz77LN2+16Gu+9t27aRlZXFQw89xEMPPQSYZgwfe+wxbr31Vn73u98RFRVl1zEKIYQQQogxoq3NlJp46aUQGzv81995pymo27IF+vRhmGiUM1POMjMztaV7oUVOTg4zZ860bQePPGJq/mEdiG3cCFlZYFXvJITFsK4vIYQQQggxfM89B7fcYrovX716+K9vaTH1lbjoogmx7plSarfWOrO/59wrrXEo3//+6TNka9ZIYCaEEEIIIYSrPPGEqUnfSMtwAgLghhvgtdegutq+YxtjxlZwJoQQQgghhHAfu3fDrl2m9vmjaYB3553Q2QnPP2+/sY1BEpwJIYQQQgghRuaJJ8DfH268cXT7SU+HZctMi1hP4MYgbhGcSat14QhyXQkhhBBCOFB9PfzrX3DttRASMvr93XmnqSX/pk2j39cY5fLgzNfXl5qaGrmRFnaltaampgZfX19XD0UIIYQQYnx64QVTp8a777bP/q68EkJDTW31JyiXt9JPTEykuLiYqqoqVw9FjDO+vr4kJia6ehhCCCGEEOOP1qaUxiVLYMEC++zTz8+UHvnEE1BZCdHR9tnvGOLy4MzLy4vJkye7ehhCCCGEEEIIW23aBEeOmNro29Odd8Jjj5n2OwE7srs8rVEIIYQQQggxxjzxBISFmVIR7WnWLNNC1E89BUbj8F//yCOm9dasbdxoenwMkOBMCCGEEEIIYbuyMnjrLbj1VlMqor3deSfk5cGnnw7/tYsWmQLGTz811cNt3Gj6etEi+4/TASQ4E0IIIYQQQtjumWegu9sURDnCZZdBRMTwG4NoDYGBsG4dnH02rFxpCsxefRXWrHHMWO3M5TVnQgghhBBCiDGiu9sUNJ19Nkyd6phj+PrCTTeZas/KyyE2duBte3pg61Z4803Tx8mT4OkJKSmwZw88+OCYCcxAZs6EEEIIIYQQQ7HUcr3/PhQXm9rnO7KWy2AwBYLPPvvlY5bjdXXBRx/BXXdBQgKsWgVPPgnz58Pzz8Prr0Njoykwe+KJ02vQ3JgEZ0IIIYQQQojBWWq5fvELU0AUFOTYWq7zzwcvL/jzn02NQT78EC65BD75xNRi/9xz4aWXTIHZ+vVQVQXvvANJSXDbbaZUxp//3PTvlVeOmQBNgjMhhBBCCCHE4NasMc1aZWdDWhpcc41ja7nWrIEf/AAqKmDKFDjvPNNs2K5d8NWvwttvmwKyV16Bq64yBYsAWVmnjmvNGtPXWVmOGaedKa314BsolQS8AMQCRuAprfWflVKvANPNm4UC9VrreYPtKzMzU2dnZ492zEIIIYQQQghnu/hi+N//oLPTlDL485879ngdHaZZssZG00LXv/qVKdjy9nbscR1MKbVba53Z33O2zJx1A9/RWs8ElgLfUErN0lpfpbWeZw7I3gDetNuIhRBCCCGEEO5jyxb4z39MzTacVcu1bZspEHvgAThxwvT5GA/MhjJkcKa1LtNa7zF/3gTkAAmW55VSCrgS+LejBimEEEIIIYRwEa1NzTcMBnjtNefUclnWJ3v1VVOd2xirHRupYdWcKaVSgPnATquHzwAqtNbH7DguIYQQQgghhDt49104dAi+9S1Tow5wfC3XGK8dG6kha856N1QqENgM/FJr/abV408Ax7XWfxjgdXcAdwBMmjRpYVFR0agHLYQQQgghhHCCnh7IyDC1tT90yJTWKEZlsJozm86uUsoLU13Zy30CM0/gUmDhQK/VWj8FPAWmhiDDGLcQQgghhBDClV54AQ4fNq0dJoGZww2Z1miuKXsGyNFa/7HP0+uAI1rrYkcMTgghhBBCCOEibW3w05/C4sVw6aWuHs2EYEv4uwK4ATiglNprfuzHWusPgKuRRiBCCCGEEEKMP3/7GxQXw4svglKuHs2EMGRwprXeAvT709Ba32zvAQkhhBBCCCFcrL7etK7YeefB6tWuHs2EMaxujUIIIYQQQogJ4Le/NQVov/mNq0cyoUhwJoQQQgghhPhSSQk8+ihcdx3Mnevq0UwoEpwJIYQQQgghvvTww6YW+j//uatHMuFIcCaEEEIIIYQwOXIE/vlPuOcemDzZ1aOZcCQ4E0IIIYQQQpj8+McQEAAPPODqkUxIEpwJIYQQQgghYMcOeOst+N73ICrK1aOZkCQ4E0IIIYQQYqLTGr7/fYiJgfvvd/VoJixbFqEWQgghhBBCjGcffACff25aeDow0NWjmbBk5kwIIYQQQoiJrKcHfvQjSEuD22939WgmNJk5E0IIIYQQYiJ7+WU4cADWrwcvL1ePZkKTmTMhhBBCCCEmqvZ2ePBBWLgQrrjC1aOZ8GTmTAghhBBCiInqiSfgxAl45hkwyLyNq8lPQAghhBBCiImooQF+8Qs4+2xYt87VoxFIcCaEEEIIIcTE9LvfQW0t/OY3rh6JMJPgTAghhBBCiInikUdg40YoK4M//hGuvto0g/bII64emUBqzoQQQgghhJg4Fi2CK6+EZcugqwsuuMD09auvunpkApk5E0IIIYQQYuJYswb+8Ad4912YNw/uv98UmK1Z4+qRCSQ4E0IIIYQQYmI54wyYPRuys+HuuyUwcyMSnAkhhBBCCDGRFBZCRYVpfbMnnjDVoAm3IMGZEEIIIYQQE8XGjV/WmP3856Z/r7xSAjQ3IcGZEEIIIYQQE0VW1qk1ZmvWmL7OynLtuAQASmvttINlZmbq7Oxspx1PCCGEEEIIIdyJUmq31jqzv+dk5kwIIYQQQggh3IAEZ0IIIYQQQgjhBiQ4E0IIIYQQQgg3IMGZEEIIIYQQQrgBCc6EEEIIIYQQwg1IcCaEEEIIIYQQbkCCMyGEEEIIIYRwA0MGZ0qpJKXURqVUjlLqkFLqPqvn/p9S6qj58UccO1QhTtfW2cNjnxyjsLrF1UMRQgghhBBiVDxt2KYb+I7Weo9SKgjYrZTaAMQAFwMZWusOpVS0IwcqRF+Vje3c9kI2+4sbqGhs55dfS3f1kIQQQgghhBixIYMzrXUZUGb+vEkplQMkALcDv9Fad5ifq3TkQIWwdri0kduez6K+rYvJkQHsyK9x9ZCEEEIIIYQYlWHVnCmlUoD5wE5gGnCGUmqnUmqzUmrRAK+5QymVrZTKrqqqGvWAhfj0SAVXPLkNo4ZX71zG1YuSyKtqobKp3dVDE0IIIYQQYsRsDs6UUoHAG8C3tNaNmGbdwoClwPeAV5VSqu/rtNZPaa0ztdaZUVFRdhq2mIi01jy7tYDbns9mclQA79y7gjkJISxNjQBgV0Gti0cohBBCCCHEyNkUnCmlvDAFZi9rrd80P1wMvKlNdgFGINIxwxQTXXePkZ++c4ifvXuYdTNjePXOZcQE+wIwOz6YQB9PSW0UQgghhBBj2pA1Z+bZsGeAHK31H62eehs4C9iklJoGeAPVjhikmNga27u4919f8FluFXeemcoPzpuBwfDlJK2nh4FFKWHsyJeZMyGEEEIIMXbZ0q1xBXADcEAptdf82I+BfwL/VEodBDqBm7TW2iGjFBPWydpWvv58FvlVLfzm0nSuXjyp3+2Wpkaw8b9HqGrqICrIx8mjFEIIIYQQYvRs6da4BTitlszsevsOR4gv7TlRxx0vZNPRbeT5WxezIm3grFlL3dnOghouzIh31hCFEEIIIYSwm2F1axTCWd7dV8rVT+3A39uTt+5ZMWhgBlJ3JoQQQgghxj5b0hqFcBqtNX/59Dh/3JDLopQw/n5DJuEB3kO+ztPDQKbUnQkhhBBCiDFMZs6E2+jo7uHbr+7jjxty+dr8BF66bYlNgZnF0tQIjlc2U9XU4cBRCiGEEEII4RgSnAm30NHdww3P7OKtL0r49tnT+OOVc/Hx9BjWPqzrzoQQQgghhBhrJDgTbuHtL0rYVVDLI5dl8M21U+lnPfMhzYkPJsDbQ+rOhBBCCCHEmCTBmXA5o1Hz1Gf5zIoL5orMxBHvx9PDwKLJ4VJ3JoQQQgghxiQJzoTLfXqkkryqFu5clTqiGTNrlrqz6mapOxNCCCGEEGOLBGfC5f7+WR4JoX6cnx436n311p3J7JkQQgghhBhjJDgTLrXnRB1ZhXXcunIyXh6jvxyl7kwIIYQQQoxVEpwJl3pqcz4hfl5cvSjJLvv7su5MgjMhhBBCCDG2SHAmXCa/qpkPD5dz/dJJBPjYbz30JZMjOCZ1Z0IIIYQQYoyR4Ey4zNNbCvAyGLhpeYpd97s0NRyQujMhhBBCCDG2SHAmXKKqqYPXdxdz2cIEooN87brvOQkhUncmhBBCCCHGHAnOhEu8sL2Qrh4jt52Ravd9e3kYyEyRujMhhBBCCDG2SHAmnK61s5sXdxSxbmYMU6ICHXKMpalSdybcx9VPbefFHUWuHoYQQggh3JwEZ8LpXs06SX1rF3etsv+smYXUnQl30dDWxY78Wj46VO7qoQghhBDCzUlwJpyqu8fI01sKWJgcxsLkcIcdxx3rzopqWiiqaXH1MISTFVabfub7ixvQWrt4NEIIIYRwZxKcCaf64GA5xXVt3Hmm42bN4Mu6s50F7hOc3f/KXu58cberhyGcLL+6GTDNoJ2obXXxaIQQQgjhziQ4E06jteapz/JIjQpg3cwYhx9vaWoEuRXuUXdmNGpyypo4Ut7UO5MiJoaCqi9/3vuLG1w4EiHcx0/fOcgtz+5y9TDEBHC8spk9J+pcPQwhbCbBmXCabXk1HCxp5PYzUjEYlMOPt8Rcd7arwPV1ZyX1bbR19QDwodQeTSj51S3Eh/ji42lgf3G9q4cjhMvVNHewftdJth6voavH6OrhiHHMaNTc/dJubns+mx6jpJWLsUGCM+E0f/8sn8hAH742P8Epx0tPCMHfTerOjlU2AeDn5SHB2QSTX9XC1JggZsUHy8yZEMCr2cV09hjp7DGSXyWZBMJxNuRUcKyymdqWTnYXyeyZGBskOBNOcbi0kc9yq7hlRQq+Xh5OOaY7rXeWW2GqO7puyST2nKinsrHdxSMSzqC1pqC6hdSoADISQjhY0iDv3ooJrceo+deuIuJDfAE4Ut7o4hGJ8UprzeOb8kgI9cPLQ/FxToWrhySETSQ4E07xj8/z8ff24PolyU497tLUcLeoO8utaCI6yIcrFyUB8NFh+SMxEVQ0dtDW1UNqZADpiaG0dPZQYG4QIsRE9FluFSdr2/j+eTPw8lDklDW5ekhinNqeV8O+k/XcvXoKy6ZEsuFwhXTMFWOCBGfC4Urq23h3XylXL5pEiL+XU4+9NDUCcH3d2bGKZqbFBDE1OpDJkQGS2jhBWDo1To4MZG5iCCBNQcTE9uKOIqKCfDg/PY606CByymTmTDjG45vyiAry4fKFiZw9M5qC6hbyJI1WjAESnAmH++eWAjRw68oUpx/bHerOjEbN8cpmpsYEopTinNkxbM+roaG1y2VjEs5hqaeZHBVAalQg/t4eEpyJCetkbSsbj1ZyzaIkvD0NzIwLkrRG4RD7i+vZcrya21ZOxtfLg3WzTB2iN0jWihgDJDgTDtXQ1sX6XSe4KCOOxDB/px/fHerOiutMnRqnxQQBcN7sWLqNmk+Pyh+J8a6gugVfLwNxwb54GBRz4kOkY6OYsP616wQKuHrxJABmxgZT0dhBbUunawcmxp3HN+YR7OvJdUtNpRRxIX7MSQiWujMxJkhwJhzq5Z1FtHT2cMeZU1w2BkvdWY2L6s5yK0w1FdNiAgGYmxhKTLAPHx6UPxLjXUF1CykRAb1LR2QkhnCotJFuaR8+pnR09/DMlgLaOntcPZQxq6O7h1eyTrJuZgzxoX4AzIgzvWF1RFIbhR0dr2ziw8Pl3LQ8hUAfz97Hz54Zy54TdVQ1uX7tUyEGI8GZcJiO7h6e3VrIGVMjmRUf7LJxuLruLNfcRj8t2nQjYjAozpkVy+bcKtq75GZvPLN0arRITwyho9vY271TjA2vZhfzf+8d5oMDZa4eypj1v4Pl1LZ0cv3SL5tCzYwz/V3IKZemIMJ+ntiUj4+ngZuXp5zy+LpZ0WgNG49UumZgQthIgjPhMG9/UUJVUwd3unDWDFxfd3asopmYYB9C/L5shnLu7Fjaunr4LLfKJWMSjtfZbeREbSupkYG9j2UkhgJwoKTeNYMSw2Y0ap7dWgAgKamj8OL2IlIi/FmZFtn7WGSgD5GBPjJzJuympL6Nd/aWcPWiSUQE+pzy3Ky4YBJC/aRbsnB7QwZnSqkkpdRGpVSOUuqQUuo+8+MPK6VKlFJ7zR/nO364YqwwGjVPfZbPrLhgVqRFuHQsXh4GFiaHsSPfNTNnxyqbeuvNLJakhhPi58X/pGvjuHWyrpUeo2Zy5JczZykR/gT5erJPmoKMGZ8dqyK/qgVvT4P83EYop6yR7KI6rl+a3JviazEzLogcaQoi7OQfn+UDcPuZqac9p5Ri3cxothyvkhRl4dZsmTnrBr6jtZ4JLAW+oZSaZX7uT1rreeaPDxw2SjHmfHKkkryqFu5clYpSaugXONjS1AiOVjQ5ve6st1Nj9KnBmZeHgbUzovkkp5IuqT8alwqsOjVaKKXISAzhgNzk9zK6+aLc/9xaSFSQD9cunsThskY6u+X/63C9tKMIH08Dly9MPO25mXHB5FY0Sx2mGLWa5g7WZ53ga/MTSDDXNfZ19qxY2ruMbDle7eTRCWG7IYMzrXWZ1nqP+fMmIAdIcPTAxNj21Gd5JIT6cX56nKuHAriu7uxkXSvtXcbeZiDWzpkdS0Nbl8vXYBOOYVnjLNVq5gwgPSGUI+WNdHRP7HduWzu7+ca/9rDyt5+6be3l8comPsut4oalySxMDqOz29jb4EfYpqm9i7e+KOGiufGE+nuf9vyM2CA6u40U1sj6U2J0nt1aSEe3kbtWD1xKsXhyOEE+nmw4LFkrwn0Nq+ZMKZUCzAd2mh+6Vym1Xyn1T6VU2ACvuUMpla2Uyq6qkvqaiWB3UR1ZhXV8feVkvDzco6wxIzEEPy/n151ZGj9M7ZPWCLBqWhS+XgZZkHqcKqhuITzA+7Qb0rmJIXT1aI6UTdyb/LKGNq54cjvv7y+jtKGdAyXuOZP47NZCvD0NXLtkEhmyiPiIvP1FCa2dPdxg1QjE2oxYU1OQwxP4/4MYvab2Lp7fXsh5s2OZEnX6m6EW3p4GVpuzVnrcfNZeTFw23zkrpQKBN4Bvaa0bgSeAKcA8oAz4Q3+v01o/pbXO1FpnRkVFjX7Ewu099VkeIX5eXLUoydVD6WVa78z5dWeWd9mn9jNz5uftwappUXx0qMLtU7vE8OVXtZxSb2aRbrnJd9OAxNG+OFHHV/+6laKaVn5/xVwAsgvrXDyq09W3dvLGnmIumRdPZKAPk8L9CfX3kqYgw6C15sUdRaQnhDA3KbTfbaZEB+BpUNIURIzKyztP0NTezT2r04bcdt3MaGpaOtl70v1+7wgBNgZnSikvTIHZy1rrNwG01hVa6x6ttRH4B7DYccMUY0VJfRsfHa7ghqXJBFitL+IOXFF3dqyiibgQX4J9vfp9/tzZsZQ3trNPbvjGnYLq/oOzhFA/wgO8OTABf+bv7C3hqqd24Otl4M17lnP5wkRSIwPYXeR+qb3rs07S3mXklhWTAVO9YHpCiDQFGYZdBbXkVjQPOGsG4OPpQVp0IEeknb4YofauHp7+vIAzpkb2vvk1mNXTo/E0KDYclpb6wj3Z0q1RAc8AOVrrP1o9bl1M9DXgoP2HJ8aa3PImtIY1M6JdPZTTuKLuLLeiud+URou1M2LwNCg+PCStfceTpvYuKps6TlnjzMLSFGQipccZjZrff3iU+9bvZV5SKO98Y2VvB9OFyWHsLqpDa/eZPe7qMfL8tkKWpUb0rsUFpgXkcyuapNObjV7aeYJgX08umhs/6HYzYoNk5kyM2Gu7i6lu7uDuQWrNrIX4ebEkNVzqzoTbsmXmbAVwA3BWn7b5jyilDiil9gNrgPsdOVAxNpQ2tAEQH+rr4pGcztl1Zz1GTV5VM9OiB85/D/H3YmlqBB8dKnebm9Pciib+tvG408bTY9R8klMxrm54C6tbgdObgVhkJIRMmJv81s5u7nl5D3/deJyrMpN46etLCA/4sg4vMyWMutYu8qrcpyHEh4fKKWto59aVk095PCMxhB6j5nDZxAmsR6qyqZ3/HSzj8oVJ+Hl7DLrtjLhgShvaqW/tdNLoxHjR3WPkqc/ymJcUyrJU25ftOXtmDHlVLeRXNTtwdEKMjC3dGrdorZXWOsO6bb7W+gatdbr58a9qrcucMWDh3sob2jEoiOqz+KM7cHbd2YnaVjq6jaetcdbXubNjyK9u4Xile/yR+Mdn+fzuw6MUVDvnZvk/+0r4+vPZrPn9Jl7fXTwuirQtnRonR/YfmGckhmLUcKh0fN/kl9abGn98dLicn1wwk99clo6356l/dhYmhwO4VWrjs1sLmRTuz1l9MgAsdVP7To7vn5s9vJp1kq4ezXVLJw25rWV2UlIbxXC9t7+Mk7VtfGNN2rCW7Vk3KwaAj3Mka0W4H/dopSfGjbKGdmKCffF0ky6NfVnqzmpbHP8O7bFBmoFYO2d2LIBbdG3UWrPVvP7L1jznzDB+fqyaED8vYoJ9+O5r+7joL1vYcmxsr0FTUN2CUpAc4d/v8+kToPOfdeOPZ25exG1n9L/m4ZSoAML8vchyk6Yge0/Ws7uojpuXp+DRZ8HkmGBfooN83La7pLvoMWr+tfMEK9IiBu2cZzEz1vQGlqQ2iuEwGjVPbMpjWkwga4dZSpEY5s/MuGA+lroz4Ybc8w5ajFllDW3EhrhfSqPF0lTTu/S7ChwfeBwzz4SlDZLWCKYbvvmTQt2i7qywppXShnYAtjlhkU5LMLhyaiRv3bOCx66ZT0NbF9c/s5Obn93F0TH6Tnp+VQsJoX74evWfzhUT7EtM8Pi9ybc0/vD39uCte5azZvrAN05KKRYmh7O7yD2Cs2e3FhDo48kVmacvmAymWU9p4DO4T49UUtrQPmgjEGtRQT6EB3iTI+30xTB8eqSSoxVN3L16CgaD7bNmFmfPiiG7qNYpb9YKMRwSnAm7KmtoJz7Ez9XDGFB6Qqi57szxKVS5FU3Eh/gSNECnRmvnzo7lQEkDxXWtDh/XYLaYA7LFKeFsz69xeIv/vKoWKho7WJkWicGg+OrceD75zip+fP4M9hTV8ZU/f8YP39hPZWO7Q8dhbwN1arQ2Hm/yrRt/zE8K5e1vrBi0IY5FZkoYBdUtVDuxk2p/KhrbeX9/GVdkJg74/3ZuYgj5VS00tnc5eXRjx4s7iogJ9mHdzBibtldKMTMuiCPlMnMmbKO15vFNx0kM8+OijMEbzgzk7JkxGLUpyBPCnUhwJuxGa01Zfbtbz5x5e1rqzhw/czZUp0Zr55pTGz9y8ezZ1mPVJIT6ce2SSdS3dnHYwWlGlhTKFVMiex/z9fLgjjOnsPl7a7h5+WTe2FPM6t9v4tGPc2nt7HboeOxBa01BdcuAzUAsMhJMN/lN4+Qmv7Wzm7tf3s1fNx7n6kVJvNin8cdgMpPDAFw+e/bi9iJ6tObm5SkDbpNhrjs7OI5TUkejqKaFz3KruGbxpGGlt8+IDeZoRdO4qDkVjrezoJY9J+q588zUEZdRzEkIJjbYV7o2CrcjwZmwm8a2btq6eohz4+AMTHVnR8odW3fW26lxiHozi8mRAUyLCXRp3VmPUbMtr5oVaREsn2LqerXVwamNW49XkxTux6R+arPCArz56UWz+Pjbq1gzPZpHPz7G6t9tYv2uE259A1fV1EFzR/eQM2eWurODJWNztqC9q4fiulb2nqxnw+EKLn9iOxsOV/DghbP49aWnN/4YzJyEELw9DC4Nztq7enh5ZxHrZsaQHDHwzy4jwfRzk/XO+vfyzhN4GBTXLB66EYi1GbFBtHcZKaxxn66dwn39beNxIgO9uSIzacT7UEqxblY0n+VW0941/jvnirHDvVYJFmNaWaOpjX6cG6c1wql1Z+fNiRti65Epqmmhs9to88wZmGbP/rbxODXNHUS4oNvlwZIGGtu7WZEWSXSwL1OjA9maV8Odq2xbO2a4unuMbM+v4YL0wX8GyREB/O26BdxaVMevPsjhh28e4Nmthfzo/BmsmhY1rA5dzpBv7nKZOkQjhIzEUAD2F9ezbIrtLaAdqbPbyInaFqqbO6lp7qS6uYOa5g6qmjupae4wfd3SSXVTBy19lgEI8vHkmZsXDVpfNhBfLw/SE0PILnRdx8Z39pZQ19rFLStSBt0uLMCbpHA/DpTUO2VcY0l7Vw+vZp/knFkxxAQP70263o6NZU02NRERE9eB4gY+P1bND86bMWBdr63OnhXLSztOsC2vmrNm2JaGK4SjSXAm7Kas3lQX5M5pjXBq3ZmjgrPcClMzkKHa6Fs7d3Ysf/n0OJ/kVHLlopG/GzhSlnqz5eYUwxVpkazPOkFHdw8+nqP7A9ifg6WNNJmDQVssTA7j9buW8b+D5fzmf0e4+dkszpgayWNXzyfMxvQ5Z7AsQTDUzFl4gDeJYX7sd4OmIFVNHby8s4iXdpw4re7LoExjjQjwITLIm7lhoUQG+hAR6E2U+d/IQB9SIgMI8Ru6vnIgmSlh/HNLAe1dPaO+4RourTX/3FLIjNggm9ZKykgMZe+JescPbIx5f38Z9a1dNjcCsZYWHYiHQXGkvJELMhzze1mMD09sPk6QryfX27BMw1CWpoYT6OPJhsOVEpwJtyHBmbCbMnOXP3dcgNqaM+rOetvoD9Gp0drs+GASQv348FC5S4KzrcermREbRFSQadZu+ZQInttWyBcn6lk6jMU9h3M8y3FspZTiK+lxrJ0Zw0s7ivjlBzk8+nEuP7t4jt3HN1IF1S14exqIDx16BjkjMYQDLkyPO1jSwD+3FvDevjI6e4ysmR7FRXPjiQn27Q26wvy9T2sp7wiZyeH8fXM++4sbWDw53OHHs7Ytr4ajFU08cnmGTTOxcxNDeH9/mctmud3VizuKSI0KGNFMsK+XB6mRAeRIO30xiLyqZv57sJx7Vk+xqdnWUHw8PVg1LYqPcyr4pXHOiLo+CmFvEpwJuylraHPbBaj7Wpoawe8+PEptS6fNTQuGI7eymYRQPwJ8bP8vppTi3NmxvLSjiOaObgKH8drRauvsIbuwjhuXffmO99IpERiUqaW+o4KzGbFBI7q59fY0cOvKyRyvauZfu05w2xmpJIX3v6aYs+VXNTM5IsCmgCYjMZQPDpRT19LptNm/7h4jHx2u4NmtBWQV1hHg7cE1i5O4aXnKkKmYjrTQ3BQku6jW6cHZs1sLiAjw5qtzbev69mVKagNrhrm+0nh1sKSBvSfr+emFs0acajwzLtjlTWGEe/v75jy8PQzcsmKy3fa5blY07x8oY39JA/PMDX/GmuaObrq6jcN+nZenwan3GsI28hMRduPuC1Bbc3Td2bGKJpubgVg7d3YM/9xawKajlVw4wvbAI5FdVEtnj5EVU79MMQz29SIjMZSteTV8287Ha+/qIbuojhtHkP5k7b61U3ljdzF/2pDLH6+aZ5/BjVJ+dQvTom1LZ7U0lzhQ0sCZ06IcOSzqWztZn3WSF7cXUVLfRlK4Hz+5YCZXLkoi2A7vQI9WeIA3qVEB7HbyYtSF1S18cqSS/7cmzeZ0yjkJISgF+4rrJTgze2lHEb5eBi5b2P/6cLaYERfEf/aV0tje5RbXpHAvZQ1tvPVFCdcunkSkHd8EXjM9Gg+DYsPh8jEZnGUX1nLF37ejR9AnSyl44+7lLJgUZv+BiRGT4EzYTXmDe7fRt2apO9ueZ//grLvHSH5VC6tGcLOdmRJORIA3Hx6qcGpwtuV4NV4eisUpp85YrEiL4O+b8+0+k5ddWEdnt9HmerOBxAT7csuKyfz9szzuWJXKjNhgO41wZLp7jJyoae1dGmEos83B2f7ieocFZ8cqmnh2WyFv7SmhrauHZakRPHTRLNbOjHFKuuJwZCaH8dHhCoxG7bT0oue2FeJpUFw/jDcKAn08SYsKdGlKqjtpaOvi7b0lXDIvYVR1hzNjv2wK4uzZU+H+/r45H63h9jNT7brfUH9vFqWE8fHhSr537gy77tsZNh6txKAUP7lwJsP5rdlt1Pzi/Ry259VIcOZmJDgTdlPa0MaMWNsbYLiSt6eBxZPD2Zpn/7qzotpWOnuG16nRwsOgWDczhvcPlDmsEUd/th6vZv6ksNPSMFdMieRvG/PYVVBj12LprXnVeBqUXW7A7l41hX/tLOL3Hx7l6ZsW2WF0I1dc10a3UQ/ZDMQixM+L1MgA9tv5Jt9o1GzKreTZrYV8fqwaH08Dl8xL4OYVKb1d8dxRZnI4r2YXk1/dTJqNs4+j0djexWvZJ7kwI57oYXYXTE8M4bPcarTWbtcx1Nne3FNMe5dxWAFuf3o7NpY3SnAmTnG0vImXdhRx+cJEEsPsn8J+9qxY/u+9w5yoae13aRd3llVYx5z44BGler6wvYiDbtCUSpzK/fPPxJigtaa8od3t2+hbW5kWyfHKZsoa2uy635E0A7F23pxYmju62eaAwLE/dS2dHCptZGU/s1gLksPw8TSw9bh9x2IKBkOHVZM3kBB/L+5cNYWPcypd2oodIL/a1KVzSpRtwRmYbvIP2PmP4zfXf8Gtz2WTW9HE986dzvYfreW3l2e4dWAGpo6NYLrZcIZXs07S0tnDrSO4qZmbGEp1c0dvI6SJSmvNizuKmJcUyhzzTPBIxQT7EOrvRU5Zk51GJ8YDo1HzwFsHCPL15PvnOWZm6+yZpjcfN+RUOGT/jtLR3cO+k/UsShnZmxnpCfb/+yNGT4IzYReNbd20drr/AtTWLCl19g48LG3000YYnC1PiyDQx5MPDzpnQert+TVoTb8phr5eHmSmhNl1MeqG1i4OlDSMOqXR2i0rUogK8uG3/zuCHknivZ3kV1na6Nv+s09PCKGsoZ3KJvvc5OdVNfPe/jJuWZHClh+cxTfWpDmk6Y0jTI4MICLAm2wnBGc9Rs3z2wtZlBLWuyD4cGQkfpmSOpFtz6shv6pl1LNmYGqKNCM2SDo2ilO8mn2S7KI6fnT+TIf9LpsU4c/0mCA2HHbO3117OVjSQEe3kcyRBmeJIRTXtVHX0mnnkYnRkOBM2MVYWYDa2ozYICICvO0aeADkVjSRGDa8To3WfDw9WD09ig2HK+gxOj7Q2HK8mkAfT+YOcIO6fEokR8qbTlv/aqS251cPGAyOlL+3J99cO5Wswjo2Ha2y236Hq6C6hRA/L8L8ba+7mWsuQLdX/dIL2wrx9jBwz+o0vMZAcx5rSikWJIexu8jxM6Af51RwsrZtxF3fZsYF42lQ7JvgdWcv7zxBqL8XF9ppbbIZscEcLW/C6ITffcL9VTd38Ov/HmHx5HCuGEWzGVusmxVNVmEd9a1jJ1CxZBlYsg6GK92qKZVwH2PrL7dwW5bUnrHSEATAYFAsT4tky/Fqu862HKtoHtbi0/05d3YsNS2dTmkrvdXcKn+gLpuWIMpeaZZbj9cQ4O1h965YVy9KIjnCn0c+POqyG7v8qhZSowKGVYM0Ky4Yg8IudWdN7V28vruYC+fG9a5XN9ZkJodRWNNKVZN93gwYyD+3FJAQ6sc5s0ZWS+nr5cGMuKAJ3RSkvrWTDYcr+Nr8BLstHD4rLpi2rh5O1LbaZX8W5Q3trN91QoK+MeZX7+fQ2tnNr742x+G1nWfPiqXHqNl4tNKhx7GnrIJaUqMCRty9ck68BGfuSIIzYRdl9abgbCylNQKckRZJVVMHxyqb7bK/rh4j+dXNTB1BG31rq6dH4e1h4MNDjk2xOFnbSlFNKyvTBl7HLD0hhCBfT7bZaYZx6/FqFk8Ot/usjpeHgW+fPY2cskbe3V9q133bqqC6xeZmIBYBPp6kRQfaJT3u9d3FtHT2cPPylFHvy1Us7wA78o2JQ6UN7Cyo5ablyaNa+iM9IZT9xfUuTaV1pXf3mxYvv2yB/WY0ZsSZ3tiyd2rj7z48yg/fPMADbx+QAG2M2Ha8mje/KOHOM6c4pUFQRkII0UE+fHx4bARnRqMmu6iORckjb54T4u/FpHB/aQriZiQ4E3ZRbl6AOnqMvVtvWdfr82P2CTyKalro6tE2r3M1kCBfL1akRfDhoXKH3vhZUjpXTh04xdDDoFiWGsHWvNGfo9L6NvKrW+ya0mjtoox4ZsYF84ePcukcwYKco9HS0U15YzupwwzOwLSo8YGShlH9rI1GzfPbClkwKbR3keSxaE5CCN6eBoemNj67tRA/Lw+uypw0qv3MTQyhsb2bwhr7zvKMFW/sLmZGbBCz4+3XaGZaTBAGBTnl9msK0tltZMPhcqKCfPj3rpM8/O6hCRtQjxUd3T385O2DJEf4c+9ZaU45psGgWDszhk1HK+no7nHKMUfjeFUzDW1dI05ptHBEUyoxOhKcCbsobWgnOmhsLEBtLSHUj8mRAXarO7M0AxltWiOYujYW17Vx2IHF8VuOVxMT7MOUqMFn+lakRXKyto2To0w1spxnRwVnBoPi++dO50RtK69kn3TIMQZSWDP8ZiAWGYkhVDd3UjqKzn+bc6sorGnl5hHWULkLH08P5iaGOKxjY1VTB//ZW8rlCxMJGUZtYH8sQfBEbAqSV9XM3pP1XLogwa7pZr5eHkyODOCIHX/vbT1eTWN7N7+9LJ3bz5jMC9uL+OX7ORKgubEnNuWRX93C/108x24ps7Y4Z1YMLZ097Mh3bedfW+wqMI1xtMtOpCdIUxB3M7bupIXbKm9oJy50bKU0WqxIi2BHfg1dPaOfacmtaEKpkXdqtLZuZgwGhcO6NhqNmm15NayYEjnkzdUKc9rjaIPYbXk1RAR4M90OwetAVk+PYnFKOI99cozWzm6HHacvS6fG1GG00bfoLcoexU3+c9sKiQ7y4StzbFsA250tTA7nUGkD7V32f/f6XztP0Nlj5OYVKaPe17SYQHy9DOw7OfHedX5zTzEGBZfMS7D7vmfEBXPEjjNn7+0vI8jXk5VpUfz4/JncvDyFp7cU8MiHRyVAc0P5Vc08vjGPi+bGc+a0KKcee9mUCPy9PcZE18bswlqignyYFD66ddmkKYj7keBM2EVZQ9uYqzezWJkWRWtnD3tP1o96X8cqm0kK88fPe/Tv9EUE+pCZEs6Hhxyz7kpOeSO1LZ02zWJNiQokOsiHLaMIzrTWbDlezfK0SAwGxxV2K6X4/nnTqWrq4NmthQ47Tl8F1abgLCVi+MGZpfPfSJuC5FU1szm3iuuXJo+5Do39yUwOo6tHs88O/yetdXT38OKOIlZPjxpyttgWnh4GZseHTLiZM6NR89aeEs6YGjXsxbttMTM2iBO1rTS1d416X5aUxrNnxeDtaUApxUMXzeLaJZN4YlMej358zA4jFvaiteYnbx/Ex8vAgxfOdPrxfb08OHNqFB8frnT7wD2rsI5FKWGjnrmWpiDuZ+z/FRcup7WmrKGd2OCx00bf2rLUCAwKttih7uxYRRPTRtkMxNq5s2M5WtFEofnG356Gk2KolGJFWiTb82pGXEx/vLKZqqYOVkwZuPmIvWSmhLNuZjRPbs5zWlvkguoW4kN8RxSY+3p5MD02aMTB2Yvbi/D2MHDN4tHVULmLhcmmGopsOzcFeX9/GdXNHSNun9+f9IQQDpU20m2HmXeL7h4j331tH89uLXDKchrDtSO/htKGdi5zUGtzy2LpuRWjnz2zpDRekP5lq3+lFL+4eA5XLEzkz58c428bj4/6OMI+3t5bwra8Gr5/3gyig1zzhu+6WTGUN7ZzsMR919srrW+jpL5txItPWwvx9yI5QpqCuBMJzsSoNbabFqCOH6NpjSH+XqQnho5qVghMnRoLqluYaseUPUubb0d0bdxyvIa06ECblz9YPiWCmpZOjo7whmmLg+vN+vruudNp7ujmyc35TjlefnULk0eQ0miRkTiyzn9N7V28ln2SCzPGbvv8vsICvJkSFWD3jo3PbyskNSqAM+x4Dc5NCqGtq4fjVfbp+Aqm+sHXdxfzs3cPc+njWzlU6l43Ta/vKSbIx3PEyxAMZYY5OMspG31w9v6BMoJ8PE9remQwKH5zWQaXzIvndx8e5R+fOef3hBhYfWsnv3gvh3lJoVznwjeazpoRjUHh1qmNWYWmejN7BGdgasRkj+VchH1IcCZGrazBtAD1WFrjrK+VaRHsPVk/qjSawmpTp8apdqg3s0gK92d2fDDv7S+za4pFR3cPuwpqWDmMm1RLUDXSurOtx2uYFO5P0ijz4201IzaYr81L4NmtBZSPotGGLbTW5Fc1kzqCZiAWGebOf8Nd38nSPv+mMdw+vz+LUsLJLqy1W9vzL07Usa+4gZuWpdg1rba3KYgd687+vesEUUE+PHrVPErq2/jqX7fy6w9yaOt0fQe5lo5u/newnAsy4hzWqCE+xJdgX89Rt9Pv7Dby0SFTSqOP5+lj9TAofn/FXC5Ij+OXH+Tw3NaCUR1PjM5v/3eE+rYufvW1dIemvg8lPMCbzORwNuS4b0v97MI6Arw9mBFrnzeD0xNCKKmXpiDuQoIzMWqWBajjQsZmWiOYAo8eo2bnKDo02bNTo7WrFyVxoKSBrcftswg0wJ6ietq7jMOaxYoP9SM1MmBEi1F39xjZmV/jtFkzi/vPnoZRax771LF1JTUtnTS1dw97jTNrlqLsfcN499Jo1LywvYj5k0KZa+dFvV1tYXIYje3ddpuRen5bIYE+nnZPxZscEUCQjyf77FR3Vt7QzqdHKrliYSKXzE/g42+v4oqFifz9s3zOeXQzm3Or7HKckfrfwXJaO3u41I5rm/WllLJLU5CteaaUxvOtUhr78vQw8OjV8zhnVgwPv3uYl3cWjeqYruTM9u/tXT1877V9/OWTY3Y5bnZhLf/edZJbV6Qwy45LM4zU2bNiyClrHHWHYkfJKqxlQXKY3TpkS1MQ9yLBmRi1sboAtbWFyWH4ehlGldpo6dRoj0YD1q5clERssC9//iTXbrNn2/Kq8TAolqQOLyVieVoEO0fQ2XJ/SQNNHd29XR+dJSncn2sXT+KVrJO9DTscwbLv0aQ1To8NwtvTMKyOjZuPVVFQ3TKmF50eSKY5XSfbDi31K5vaef9AGZcvTCTQx3PU+7NmMCjSE+2XEvRq9kmMGq5eZErrCvX35jeXZfDKHUvx8jBw0z93cd/6L6hu7rDL8YbrzS+KmRTuz6JRrq00lJmxQRwtbxrVzOkH+00pjWdMG/xNIS8PA3+9dgFnzYjmgbcO8qqTl+EYiYa2LrYer+bxTce568XdLP/1J8x48H/8cUOuw4/dY9R8+9W9vLa7mD9syOUrf/6cHfkjf/Owq8fIA28dJD7El2+tm2bHkY7cOnPK7ic5jmnINRoNrV0crWiyW0ojSFMQdyPBmRi1sboAtTUfTw8WT44YVXB2rLKJSeH26dRozcfTg7tXTyGrsI7tI5i16s+W49XMTQwh2Hd46zytmBJJS2fPsLvTbTU3W1k+xbkzZwD3njUVH08Df/joqMOOkW+e3ZkyirRGLw8Ds+KChzVz9nxv+/yBZwbGqpQIfyICvMm2w2LU/955kq4ezY3Lku0wstNlJIZypLxx1DMIPUbNK1knWZkWyaSIU9N/l6RG8N/7zuC+tVP54EAZa/+wmVezTjq1o1xpfRvb8mrsvrZZf2bEBdPc0U1xXduIXt/ZbeSjwxUDpjT25e1p4PHrFnDG1Eh+8MZ+3v6iZETHdYS2zh6yC2t5ZksB963/grN+v4m5P/uI657eySP/O0pOeSMLU8JZOyOGxz45xlOf5TlsLFpr/u+9w3xwoJwHzp/Js7csorPbyNVP7eB7r+0bUVrc058XcLSiiZ9dPIcAO795MlKTIwNIiw5kgxsGZ3tO1KE1o1582pqlKcgBqTtzC+7xv0CMaWVjdAHqvlamRfCrD45Q3tA+ovq53IpmpkY7Zv2uqxYl8fim4zz6yTGWjzI1sLG9i30n67l3TdqwX7tsSgRKwZZjNSxMtv1du6151cyKCyY8wHvYxxytqCAfvr5yMn/59Dh3rWpgjjl9w57yq1vw8lAkhI0utTcjMYQ3dhfTY9R4DFFzkV/VzKajVdy/bhrenmP7/15/lFIsTA4bdVOQzm4jL+8s4sxpUaTaeVbbIiMxhK4ezZGyplGll35+rIqS+jZ+fH7/LcR9PD24/+xpXDQ3jh+9eYDvv7GfN78o5pdfS7f7jH1/3vqiBK3h0vmOS2m0sHRszClvPC1QtcXWvGoa2roGTWnsy9fLg6duyOTW57L49qt78fIwcEGG89/4OF7ZxM6CWvafbGBfcT3HKpt7u3bGBPuQkRjKpQsSyEgMJSMxhFB/0+/VHqPmm+u/4FcfHCHY14urHdBU48nN+Ty3rZCvr5zM7WemArDh/lX8+ZNjPP15Pp8cqeQnF8zka/NtC+BP1rby509yOXtWDGc7qMHMSH1lTix/23icopoWkkewRIqj7CqsxdOgmJ9k39nrOQkh7D1Rb9d9ipEZ8i+6UipJKbVRKZWjlDqklLqvz/PfVUpppZTz3xIXbqFshMGMuxlNw4vObiOF1S12baNvzdfLg7tWTWFXQe2oZ8925NVg1CPrmhjq783s+GC25tl+jto6e9hTVH9atzRnuv3MVEL9vfjdh46ZPSuoMv3xHiqgGkpGYigtnT0UVA9dZ/XC9iK8PBTXLhkf7fP7syglnKKaViqbRt7Q5X+Hyqls6uDm5Y6ZNQNTcAaMer2z9btOEhHgPeRNalp0EK/csYxfX5rOodJGvvLo5zz2yTE6u+3Xzr8vrTVv7ClmcUr4iIKl4ZoWE4hScGSEHRttTWnsy8/bg2duzmRhchjfXP+FQzrlDuZgSQPnPvo5D7x1kA8PlxMd7Ms9q6fw1A0L2fnjtez88Tr+cWMm9541lTOnRfUGZmBqcPKnK+exaloUP3rrAO/vL7Pr2N7cU8xv/3eEi+bG84DVGwh+3h788CszeO+bK0mO8Ofbr+7juqd39mYUDERrzU/fOYhBKX721dl2Has93LA0GU+DgafcrJNndmEtcxJC7J6lI01B3Ictb7d2A9/RWs8ElgLfUErNAlPgBpwNnHDcEIW7K2toG7Nt9K3NjA0mIsB7RMFZYU0L3UZt92Yg1q5ZPImoIB/+/Mnoagq2Hq/Gz8uD+ZNG9q7biimRfHGijtbObpu2zyqspbPHyHInrG82kGBfL76xOo3NuVV2Sw21VlDdMqpmIBaWm/x9Q3T+a2rv4vXdxVyYET9u2uf3Z6E5bWf3KOrOnt9WSHKEP6unRdtrWKdJCPUjIsB7WCmpfVU2tfNxTgWXL0y0aSbUYFBcs3gSn3xnFefMjuGPG3I5/7HPe1ts29u+4gbyq1q4dEGCQ/bfl7+3JykRASPq2NjVY0ppXGdjSmN/x372lsVkJIZw77/28OkR56W2vX+gDAV8/O0z+eLBs3nh1sV855zpnDM7lhgbFvz29jTw5PULyUwO41uvfMGmo/bpOPhZbhXff30/y1Ij+P0VGf12U5wRG8wbdy3nF5fM4UBJA+f92fSmwUDpvv89WM7Go1V8++xpxIe6X0Ox6GBfLl2QwGu7i6lqck2NZ1/tXT3sO9ngkJpPaQriPob8C6C1LtNa7zF/3gTkAJbfzn8Cvg+43yqZwinG+gLU1gwGxfK0SLYcrx52HYdlsdSpDpo5gy9nz3bk17JzFMXXW45XsyQ1fMSpcCvSIunq0WTZeMO8Na8aLw/F4sn2K14eiRuWJRMb7MsjHx6xa51Oj1FTVNNK6iiagVhMiQrE39tjyD+Ob+wuprmje1w2ArE2Jz4EH0/DiBejPljSwO6iOm5YmuzQ1txKKTISQ0Y1c/b67mK6jZqrFiUN63XRQb789doF/PPmTNo6e7jiye0864CW8G/sLsbH08D5TkzzmxkXxJHy4QdnW48PP6Wxr0AfT567ZTEzYoO566U9o5q9HY5PcipYlBJOWnTQiOv6/Lw9ePqmRUyNDuKul3aPOmA/WNLA3S/tJi06kL/fuHDQgNdgUFy/NJlPvr2Kc2aZ3zT48+en/c1qau/iZ+8eYlZcsFv/HrvjzFS6eow8t809llk4UNJAZ4/Rrs1ALKQpiPsY1t2ZUioFmA/sVEp9FSjRWu9zxMDE2GBZgHosd2q0tjItgsqmDo5VDq99d25FMwYHdGrs67olk4gM9OHPn4ysNXxZQxt5VS3DWt+sr0Up4Xh7GNhm4wzj1uPVzJ8Uhr+3a0tcfb08+Na6qXxxop4Nh+33TnhJXRudPUZS7TBz5mFQzIkf/CZ/PLfP78vb08DcxNARB2fPbSvEz8uDKzKHF/CMREZiKMcrm2npsG1G2ZrRqFm/6yRLU8NHXBd31owYPrr/TNZMj+LX/z1i1+6kHd09vLu/lHNmxw67idBozIgNpqi2ddjn9IMDZQT6eHLGKFOpQ/y8+MOVc83rpTl+9uxkbSu5Fc2snTn6Wd4QPy9e+Ppi4kP8uPW5rBEvZH6ippWbn91FqL83z9+62Oaff3Sw6U2DZ29ZREe3kaue2sH3X/+yYcgfPsqlsqmDX12a7tb16qlRgZw7K5YXtxfRPIL/2/ZmCbQzHRCcSVMQ92Hz/wilVCDwBvAtTKmODwA/teF1dyilspVS2VVVrl2fRdifZXHfuHGQ1ghf1mFtOTa81MZjFU0kRwQ4bFFWC9PsWSrb8mpG9G6oZa200aw35uftwfxJoTbVndW1dHKotJEVLujS2J/LFyaSGhnA7z482ltgP1r55vqwyaPo1GgtPTGEQ6WNAy5X8NmxKvLHafv8/ixMCeNQScOwF2Cuae7gP/tKuXRBAiF+jg8oMhJDMGo4VDr8mZ7t+TWcqG3lmlE2cAjw8eQ3l2Xg42ngx28esNsM8cYjldS3dnGZk1IaLWbEBqE1HK2wve6sN6VxZrRdfh9PjQ5kcmSAU2rPPjZ3Blw30z6NMSIDfXjxtiUE+Xhy4zO7hqwB66umuYMb/7mTbqPm+VsX25RW2dea6dFsuH8Vd62awht7Slj7x838+eNjvLC9kOuXJDNvDLzBdNfqKTS2d/Pvna6v4MkqqCUtOtBhzbXmJITIzJkbsCk4U0p5YQrMXtZavwlMASYD+5RShUAisEcpFdv3tVrrp7TWmVrrzKioKPuNXLiF0gZTm+PxMnOWGOZPSoT/sOvOciuamBrt+G5pANctSSYy0Js/fzz82bOtx6uJDPRm+ihr41akRXKotHHIwuHt+TVoDSunuq7ezJqnh4HvnjudY5XNvH/APsXyvWuc2WHmDEw3+R3dRo5V9H8j9dy2QqLGafv8/mQmh9Ft1MNe5Hl91kk6u43c5KQgNiMxFBhZU5B/7TpBqL8X584+7U/osMUE+/LDr8xge34Nr+0uHvX+AN7YU0JUkM+oZtxHwtKxcThNQbbl1VDfOrqURmtKKc6ZHcP2vBoa2rrsss+BfJJTSVp0ICl2+l0CpnrIl25bAsD1T++kpN62pQlaO7u59bksyhraeeamTNJG8fett2HI/zM1DPnTx7lEBPrwvfOmj3ifzjQvKZSlqeE8s6XAoU13hmI0arKL6hy6xqA0BXEPtnRrVMAzQI7W+o8AWusDWutorXWK1joFKAYWaK2d29ZIuFzvzFnI2K85s1g5NZIdw1houaO7h8KaVofWm1nz8/bgjjNT2XK8mt3DWANKa82W49UsnxI56vqbFWkRaG0Kvgaz9Xg1Ad4evTeu7uC82bEkhfvxSpZ93gXNr2ohyNeTyED7vJM52E1+QXULm45Wcf2S5HHZPr8/C5PNTUGGkdrY3WPk5R1FLJ8S4dAmPdaignyID/EddlOQmuYOPjpUzqXzE+02837NokksTgnnl+/njLqRQU1zBxuPVPK1+QlOTz9LDPMj0MdzWHVnH+w3pTSeOc1+bwafMyuWbqO2W3ON/jS1d7GzoMYuKY19pUYF8sLXF9PU0c0NT+8ccgHzrh4j33h5DwdKGvjrtQuGtWzKYGbGmRqGPHrVPJ6+MdOpKbKjddeqKZQ3tvP2Xtetf5db2URTezeZdvp59CdDmoK4BVt+064AbgDOUkrtNX+c7+BxiTGirH7sL0Dd18o000LL+07W27R9QXULPQ7u1NjX9UuTiQjw5tFhzJ4dq2ymqqmDFWmjn8XKSAwlwNtjyBnGrcerWZoagZcb1RQYDIrLFiSyLa+G4rrWUe+voLqF1MgAuy3KmxzuT5CvJ/v7+eP4/LZCvDwU1yxxfA2Vuwj192ZqdOCw0ng3HK6gtKHdabNmFhmJocOeOXtjTzFdPZprFtvvZ2owKH51aTptnT38/L3Do9rXu/tK6TZqp3VptKaUYkZskM0dG7t6jHx4uNxuKY0W85NCiQ7ycWhq42e51XT1aLulNPY1Oz6EZ29eRGlDGzc+s2vAWUCtNQ+8dYCNR6v4xSXpdl97zGBQXDI/YczVy66aFsXMuGD+vjkPo51S4ocrq8D0O9CRzbVmS3DmFmzp1rhFa6201hla63nmjw/6bJOitR5+/3Ex5o2XBaitLUuNRCn43Ma6s1xz+pmjFqDuj7+3J7efmcrnx6ptnlGw1NGNpt7MwsvDwJLUCLYN0pa+uK6VwprWUS+a7QiXLUhEa3hzz+jfBbVXG30Lg0GRnhByWlF2c0d3b/v86KDxkUZsq8yUMPYU1dl8U/TctkISQv0cdqM7kIykEIpqWmlotS39TWtTI5DM5DCm2vnNnbToQL6xJo1395Wy8cjIZ3ze2FPC7PhgZsQG23F0tpsRF8SRsiab6ufsndJoYTAozp4Vw6ajVbR3Da/20Vaf5FQQ5u/FghEucWKLzJRwnrx+Iccqm7jt+ax+6zj/tCGXV7OL+ebaqeN6DcXhUkpx16pU8qpaemsDnS2rsI6YYB8SwxyXqRTiJ01B3MH4uaMWLlHeOD4WoLYW4u9FRkKIzXVnxyqaMCjs0kp9OG5Ymkx4gLfNnRu35VWTEuFPYph9FpBdPiWCguoWSgeoYdhmbj7i7DoVWySF+7MsNYLXdxeP6l3Qts4eSurbRtxhbyAZiaEcKW88ZX0gS/t8Z88GuYOFyeE0tnfb1EU1p6yRnQW13LAsedSLgg/XXEtKakm9TdvvLKglv7pl1I1ABnLX6lTSogP5ydsHR9RFMreiiQMlDVy2INEBo7PNzLhgmjq6baqVckRKo8U5s2Np7ewZ0TqYQ+kxajYerWTN9GiHX7Orp0fz6FXz2V1Ux10v7T6lhurlnUU89ulxrl6UxP3rpjp0HGPRBelxJIX78eTmPLsux2Kr7MJaMlPC7ZalMRBpCuJ6EpyJUSmtbxs3zUCsrUiL5IuT9TS1D/0OeG5FEylO6NTYV4CPJ7edMZnPcqv44sTgs2ddPUZ25NfaZdbMYqW5TfVANytb86qJDPRhmpNq8YbrisxETtS2jmoNoMIa+zYDschIDKGrR/c2QjAaNc9vK2ReUuiY6G5mb5nmurNsG2osX9heiI+ngauc0D6/rznmlKD9Nr7rvH7XCYJ8Pe0+02Ph4+nBby5Np6S+jT98NPzF69/YU4ynQfHVefEOGJ1tLDN2OUM0BbGkNK61c0qjxbLUCIJ8PR2S2rjnRB11rV2sddJM7wUZcfz60nQ251Zx/6t76TFqPjxUzoNvH2TtjGh+cckchwcAY5Gnh4Hbz0hlz4l6m9f5tJfiulZKG9pZ7IAW+n1lmJuC1EpTEJeR4EyMmGUB6vHUDMRi5dRIeoyaXQVD3wweq2x2WjOQvm5clkKov9eQs2f7i+tp7ui26yzW9JggIgO9+01t1Fqz9XgNK9Ii3PaP/FfmxBHo4zmqjnb27tRokW65yTe/e/n58Wryq1u4ZUWKXY8zViRH+BMZ6M3uIW6I6ls7eeuLEi6Zl0CYg1pNDybEz4vJkQE21avWt3bywcFyLp2fgJ+3497YyUwJ5/qlk3huW4HNdbRgms15+4sSVk+PIjLQdTXF02NN6Z5Hhqg72+6glEYLb08DZ82I5uOcSrptbBZlq48PV+DloThzmvOyDK5aNIkHzp/J+/vLuPPFbL757y/ISAzlL9fOH1dlCvZ2xcIkwgO8eXJznlOPm23+3ZfpwE6NFulSd+Zy8j9QjNh4W4Da2oJJYfh6GYasO+vo7qGoptWpzUCsBfp4cvsZqWw6WsXeQW68thyrQSlYNsV+Le2VUiybEsnW49WnpXjkVjRT3dzhNuub9cfP24MLM+L44EDZiFK+wHHBWWKYH+EB3uw3/0yf21owodrn96WUIjM5fMjFqF/NPkl7l/Pa5/cnIzHEppmzN/eU0Nlt5GoHpTRa+/55M4gK8uEHb+y3uQvt1uPVVDR2cKkLUxrB9DsuOcKfI+WDz5x9cKCMAG8PVjkgpdHinFmx1LZ0DqtzqC0+zqlgyeQIgpzcvfD2M1O5d00aH+dUkhDqxz9vXoS/t6dTxzDW+Hl7cPPyFD49UsnRIa5Je8oqrCXIx9MptZ+WpiAHJThzGQnOxIiNtwWorfl6ebAoJXzI+oL8KlOnRnsX8w/HjcuSCfX34rFBZs+2Hq8mPSGEUH/7ziasmBJBZVMHx/vUAm0xn7fldugM6UiXL0yktbNnxGue5VU1ExvsS4CPfW9olDI3BSlpoKC6hY1Hq7huyaQJ0z6/P5kpYZyobaWysb3f53uMmhe2F7E4JZxZ8a5pXgGmesHyxvYBxwmmmeV/7zrBvKTQ3rW8HCnY14ufXzyHI+VN/OPzfJte88aeYoJ9PR3S2n24ZsQGkTNIO/2uHiMfHipn7cwYh6aXr54ehbengQ8P2a8hRGF1C3lVLS47z985Zxp/u3YB/7p9qcMWNh5vblyWjL+3B3934uxZVmEtC5LDnFJHK01BXG/i/qUXo1Y2zhag7mtlWiTHKpupGOQmK7fC9M6ZK+uqgny9uG3lZD49UtlvG++Wjm72nKiza72ZhWWffYPYbcft23zEURYmh5EaGcDrI0xttHenRmtzE0PIrWji75vz8PJQE75z2sLeurP+Zy0+PVJJcV2byxumzE0cuu5sd1Edxyqb7do+fyjnzo7lvNmx/PnjYxSaZ3wH0tTexYeHyrlobjw+ns6tpe3PjNhgCqtb+u0uCLAjv4Y6B6Y0WgT4eHJGWiQfHiq3W0MIS+c/Z3cWtVBKcUFG3Lhr7OVIof7eXL1oEv/ZV2rzot6jUd/aSW5Fs0MXn+4rXZqCuJQEZ2LEyswzZ7HjsOYMBg48rB2raMbDoBx2g26rm5anEOLX/+zZroJauo3aIV0Tk8L9SQr3Y6tV3Zmp+UiNW7bQ70spxWULE9lVUEtRzeA3rP0pqG5hsoO6dKYnhmLUsD7rJBekx0249vl9zY4PwcfT0Ft70dfz2wqJDfblnNmuucm1mBUfjEH1v4i4xb93nSTQx5MLM5zbaONnF8/G28PAj986MGhw8d8D5bR3GblsoWtTGi1mxgVj1F++GdaXJaVx9XTHpTRanDM7hpL6Ng7buPbaUD7JqWRaTCBJ4e79RpY41W1nTAbgaRtnokfDkkab6YRmIBbp0hTEpSQ4EyNW1tA+7hagtjYrLpjwAO/eFL3+mDo1+rv83eUgXy++vnIyH+dUnpYnvuV4NT6eht6ZB3tbMSWSHfk1vUXy+4vraensccsW+v25dEECBsWwZ8/qWjqpb+0i1UGBeYZ5Bgbg5hWTHXKMscTb08DcpFB299Ox8XhlE1uOV3P90kkuX/Dc39uTaTFB7Btg5qyhrYv3D5Ty1Xnxdk+HHUpMsC8/+MoMtuXVDHq9v7GnmMmRAcx3k86gM+PMTUH6SW3s6jHyv4PlnOXglEaLdTNjMCjsktrY0NZFVmGt07o0CvuJD/Xjq/PiWb/rJHUODmB2Fdbi5aGc2qlXmoK4lgRnYsTK6tuICvJx+c2QoxgMiuVTIthy7PSGFxbHKpuduvj0YG5ekUKwr+dpnRu3Hq9mUUq4w25cVqRF0tTezcFS041Tb/ORVPeuN7OIC/Fj5dQo3hjmmmf51aY6O0etbxcT7EtciC9zJ2j7/P4sSgnjUGnjaeltz28rwtvD4JTmGrYwNQWp7/f3xjt7S2jvMnKti8Z67eJJLEoJ45cf5FDd3HHa8ydrW9lZUMtlCxLcptNqUpg/Ad4e/bbTt6Q0XuDglEaLiEAfMlPC+cgOLfU351bRbdSsc4O6PjF8d62aQltXDy9sL3LocbIL60hPCHHqcj3SFMS1xuddtXCK8sbx2Ubf2sq0yH4bXgC0d/VQVNPiNut4Bft6cevKyWw4XMGhUtMv1Mqmdo6UNzmk3sxiubkDpCX9c2teNbPjg13SynykrliYSGlDe7/LAgwkv8rSqdFxP/+nb8rkb9fOd9j+x5rM5HC6jfqUzqSN7V28saeYC+fGubTlu7WMxFDqWrsorju1HkVrzb92nmBOQnDvmmjOZjAofn1pOq0dPfz83cOnPf/WFyUAXDI/wdlDG5DBoJgeG0ROP6mEzkxptDhnVgxHyptGlApt7ZOcCsIDvJmX5LxaImE/02KCWDsjmue3Fw5YDzla7V097C+uZ5ETUxpBmoK4mgRnYsTG6wLU1ixBTX+pjXlVzRg1Lu3U2NctKyYT5OvZW3u23RxsODLFMCLQhxmxQWzLq6a1s5svTtS5dQv9/pw9K4ZgX09e233S5tcUVLfgaVAkhjnuDYrZ8SFu31TFmRZMMjcFsVo4/I3dxbR29nCzixuBWJubGAqc3hRkX3EDR8qbuMbFM3xp0UHcs2YK/9lXysajlb2Pa615c08xy1Ij3O66mxEXzJHyplNmI7t7jHx4qMJpKY0W586OBeCjUaQ2dvcY2XS0ijXTo53SgU84xl2rp1Db0smr2bb/7RiOfSfr6erRTg/OQJqCuJIEZ2JELAtQj/cOT0nh/qRE+PfbFMQym+aqNc76E+LnxS0rJvPhoQpyyhrZcqyaUH8vh7cWX5EWSVZhHZ8fq6arRzt0ps4RfL08+Oq8eP53sJyGti6bXpNf1cKkCP9xm9brjkL8vZgWE9jbsdFobp8/f1IoGeaAyB1Mjw3C28NwWlOQf+88gZ+XB1+d69xGIP25e/UU0qID+clbB3vX+dtzoo7Cmla3aQRibWZsEA1tXb2NqAB25NdS29LJBemxTh1LUrg/s+KC+XAUqY3ZRXU0tHVJSuMYtyglnIXJYfzj83y7L04OX3andVTN+GCkKYjryF2FGJGmDtMC1PHjPK0RTIHHjvza0xZvza1owtMNOjX29fUVkwnyMc2ebT1ezfIpEQ5/Z3ZFWgSd3Ub+8ukxvD0MLnmXb7SuWJhER7eR9/fbtuZZQXWLw5qBiIEtTA5nz4k6jEbNZ8eqKKhu4aZlKa4e1im8PQ3MjAtin1Vw1tTexbv7S/nq3HinLzbcHx9PD359aTol9W38cUMuAK/vLsHPy4Pz5jg32LGFZT0466Yg7x8ow9/bg9XTnR/gnDM7ht0n6qhqOr1uzxaf5FTg7WHgDAcumi2c465VUyiuaxvxepmDySqsZWp0oEvKBKQpiOtIcCZGpKze0kZ/fM+cgSklsLmjm31WdS4AuRXNpEQGuN3CwCH+Xty8IoX/HiyntKGd5U5IMVw8OQJPg+JgSSMLkkPx83b92kjDlZEYwrSYQJtSG41GTUGN49Y4EwPLTA6jqb2b3Momnt9WSGSgj8PXtxqJjMRQDpY09jaZ+c++Ulo7e7jaiWubDWVRSjjXLZnEs1sLyCqs5b39pXxlTiyBTu4iaYtpsaYMBUtTkG7zwtNnzYh2akqjxbmzY9H6y3XKhuuTnEqWTolwy3MthmftjGimRgfyxKY8u61/B9Bj1OwurGPRZNe82SlNQVzHve4qxZhhWYA6PnT8B2fLpkSg1Ol1Z8cqmtymGUhfX185ufePvjNa2gf6eDLX3FFwrNWbWSiluHxhIl+cqOd4Zf/rKVmUNrTR2W10aDMQ0T/LrOwbu4vZlFvFtUsmud0bJGAK9ps7unu7eq7fdZIZsUFu13nzB1+ZQVSQD7c8m0VTezeXLnC/lEYwNTxKDPPrbQqys8CS0uiawHxGbBCTwv1HlNqYX9VMfnWLpDSOEwaD4o4zUzlS3sSm3Cq77fdoeRNNHd1OXXzaWoifFynSFMQl3O8vmhgTxvsC1NZC/b1JTwg5pe6svauHotpWt2mj31eovzffWjeVlWmRJEc4p7B/hblr41hYfHogl8xPwMOgeH13yaDbWTo1OqqNvhhYUrgfUUE+PLOlAA+luG6Je7TP78vyZsX+4gYOljRwoKSBaxZPcpv29BbBvl787KtzaO7oJi7El2VT3HcJjBmxpqYgAO/tL8PPyzUpjWB6M+fc2TFsO15DU7ttdaoWn+SYmrCcNUOCs/Hi4nkJxIX48uSmPLvtM8vc+MiVZQJzpCmIS0hwJkakrKEdNY4XoO5rZVokX5yop9lcOH+8shmt3asZSF+3nZHKS7ctcdrN4A3LUvjJBTPdZuHakYgO8mXN9Cje3FM8aHF3QbU5OJO0RqdTSpGZHIZRw1fS44gJds/Z+ylRgfh7e7C/uIF/7zqBj6fBrdrTWztvTiz3rJ7C986d7tadA2fFBZFf1UxLR7cppXFmtEtTqM+ZHUunuevicGzIqWBGbJDbdcQUI+ftaeDrKyezs6CWL07U2WWfWYW1xIX4khDqujfBpSmIa0hwJkakvKGN6HG8AHVfK9Mi6TZqduabWtMfM6e9uWtaoytEBflw2xmpGNz45s4Wly9MpLKpg8+Pnd6h06KguoUAbw+iJsibE+5msbkG4+blyS4eycA8DIo58SHsyK/hnb2lXJARR4if6xuBDOT7581w25RGixlxwRg1vLSjyKUpjRYLJoURGeg9rNTG+tZOdhfVsW5mjANHJlzhmsWTCPHz4snNo58901qTVVhLZkq4S2fbpSmIa0yMO2thd6Y2+uM/pdFiQXIYPp6G3rqz3IpmPA2KFJk5GXfOmhFDeIA3r+8uHnCb/OoWUqMC3S5FbaK4ZvEkXr1zGQuT3bsraEZiCEfKm2ju6OZaF69tNh7MMDcFeXJzHn5eHqxxUUqjhYdBcfasGDYdraKj27ZFiDcdraLHqFkr9WbjToCPJzcuS+ajwxXkVTWPal/FdW1UNHaw2EX1ZhbSFMQ1JDgTI1LW0E78BOjUaOHr5cHiyeG9dWfHKpqYHBkwYWYOJxJvTwMXz4tnw+EK6lv7T+XIr2qWTo0uZPn/6O4yzCm+adGBLlmnaLxJjgjAz8uDutYul6c0WpwzK5bmjm625dXYtP3HORVEBvr0LlQuxpeblqfg7WHgqc35o9qPpd4s08XL0liagvRds1E4ltxZimHTWlNW3zYh2uhbW5kWSW5FM5WN7eRWNLt1vZkYnSsWJtHZY+SdvaWnPdfe1UNJfZsEZ2JICyaFYlBw/RL3awQyFnkYVG9LfVenNFosTzO1w//IhtTGrh4jm3OrOGtG1JhP/xb9iwz04apFSby+p5h/7zox4v1kFdYR5OvpFvcZcxJCOFjSOPSGwm4kOBPD1tTRTUtnD3ETLDhbYe5C+HFOJSfrWpkq9Wbj1qz4YGbFBfe75tmJ2la0lk6NYmiJYf588p3V3Ohmi2SPZRkJIQR4uz6l0cLH04PV06PYcLiCHuPga1xlFdTS1N7NWqk3G9e+d+50VqZF8qM3D/CL9w4PeV30J6uwlszkMLdo0CNNQZxPgjMxbOXmNvpxE6jmDGBWXDBh/l68sL3Q7Ts1itG7IjORgyWNvesqWeSbawlSZY0zYYPJkQEyS2JH3zlnGu/cu8ItUhotzpkdS3VzJ3uG6NL3cU4l3p4Gzpg6dpcbEUML8vXimZsyuXl5Ck9vKeCOF7J7Oz3boralk+OVzS5PabRIT5SmIM4mwZkYttJ60wLUE23mzGBQLE+L7F1nRzo1jm8Xz0vAy0Od1hgk39xGPyVS2mAL4Wyh/t6kudn6kmumR+HtYRg0tVFrzSdHKlg+JQJ/b08njk64gqeHgYe/Opv/u3g2m3KruPyJbZSY752GsrvIFOS7cn0za3MsHRul7sxpJDgTw9Y7c+bCtTdcZaU5tdHLQ5EcIWlt41l4gDdrZ8Tw9hcldFmteVZQ1UJUkA9Bvu7bFl0I4TxBvl4sT4vgw0MVaN1/ClteVTNFNa2S0jjB3LAshX/evIiSujYu/utWm9ZAyyqsxdvDQIZ5xsrVgn1NTUFk5sx5JDgTw1Y6wRagtmYJzlIjA6VT4wRwRWYiNS2dbDxS2ftYQXWLLD4thDjFObNiOVHb2ptZ0dfHOabfIWtnuEetnHCeVdOiePOe5fh5G7j6qR28t//0RlPWsgpryUgMwdfLfVJ3pSmIc8ndpRi2ibYAtbWkcH9mxAYxz9wiW4xvq6ZFERXkw2tWqY2mNc4kOBNCfOnsWTEoBR8dquj3+U9yKpgVF0z8BMw4ETA1Joi371lBRmII9/7rCx775Fi/s6xtnT0cLGlwm3ozC2kK4lwT7+5ajNpEW4C6r1fvWsbPLp7t6mEIJ/D0MHDp/AQ2HqmkurmD+tZOals6pY2+EOIUUUE+LJwUxof91J3VtXSyu6iOdbLw9IQWEejDS7ct4dL5CfxxQy73v7KX9q5TFy/fe7Kerh7N4snutS6iNAVxLgnOxLCVNbQTFzyxmoFYC/b1cqt0A+FYly9MpNuoefuLEgrMzUAmS6dGIUQf58yO4XBZIydrW095fOPRSowaqTcT+Hh68Icr5/K9c6fz9t5Srv3HDqqbO3qfzzYvPr1wknvNnElTEOcaMjhTSiUppTYqpXKUUoeUUveZH/8/pdR+pdRepdRHSql4xw9XuIPyhnbiQiducCYmlqkxQcxNCuW17GLyq0zBmaQ1CiH6Ond2LAAfHT41tfHjnAqig3xIT3CPBg/CtZRSfGNNGo9ft4DDZY1c8retHDXXKmYV1TE9JogQf/dqOCVNQZzLlpmzbuA7WuuZwFLgG0qpWcDvtNYZWut5wHvATx03TOEuGtu7aO7onnBt9MXEdsXCRI5WNPHu/lI8DIqkMGmjL4Q4VXJEADNig05JbezsNvJZbjVrZ0bLenfiFOenx/HKHcvo6DZy2RPb+PRIBXuK6ljkZimNFtIUxHmGDM601mVa6z3mz5uAHCBBa239EwoAhr8EuhhzJuoC1GJiuygjHm9PA5uOVpEU5oe3p2SECyFOd86sGLILa6kxp6rtLKihuaObtTMkpVGcbm5SKO98YwWTwv259TnTYtXusr5ZXxmJpqYgNVZpmMIxhnWHoZRKAeYDO81f/1IpdRK4Dpk5mxDKeoMzmTkTE0eIv1dvypI0AxFCDOSc2bEYtSmVEeCTnEp8PA2sMC/DIkRf8aF+vHbXMtbNjMHXy8CSyRGuHlK/euvOJLXR4WwOzpRSgcAbwLcss2Za6we01knAy8C9A7zuDqVUtlIqu6qqyh5jFi5UZl7hPlaCMzHBXLEwEYDUKGkGIoTo3+z4YBJC/fjIvCD1xzkVrEyLxM9bmkiJgQX4ePKPGxey80fr3Pb+yhKcHZTgzOFsCs6UUl6YArOXtdZv9rPJv4DL+nut1voprXWm1jozKipq5CMVbqHMvAB1zATu1igmphVpkVy3ZBIXzZXeR0KI/imlOHd2LJ8fr+aLk/UU17VJl0ZhE6WU2zUCsSZNQZzHlm6NCngGyNFa/9Hq8alWm30VOGL/4Ql3U9bQRlTgxFyAWkxsHgbFL7+WLguQCyEGdc7sGDq7jTz8n0MArJX1zcQ4kZ4YKk1BnMDThm1WADcAB5RSe82P/Rj4ulJqOmAEioC7HDJC4VbKGtqJC5VmIEIIIUR/FqWEEx7gzf7iBtITQiTTRIwb6QnBvLuvlJrmDiICfVw9nHFryOBMa70F6K//6wf2H45wd2UN7aRJzY0QQgjRLw+DYt3MaF7NLpZZMzGuWDcFWT1drm1Hkdw0MSzlDe1uW6wqhBBCuINL5iXg5aE4Pz3O1UMRwm6kKYhz2JLWKAQATeYFqONDJTgTQgghBrI8LZL9D50rXRrFuBLs68XkyABpCuJgMnMmbGZZ4yxWFqAWQgghBiWBmRiP5iSEcKBYgjNHkuBM2MwSnMVLWqMQQgghxISTnhBMaUM7Nc0drh7KuCXBmbCZLEAthBBCCDFxWTcFEY4hwZmwmSxALYQQQggxcc1JCCEp3I/Wzh5XD2XckoYgwmblDe2yALUQQgghxAQV7OvF598/y9XDGNfkLlvYrLShjThJaRRCCCGEEMIhJDgTNitvaCdOOjUKIYQQQgjhEBKcCZuVyQLUQgghhBBCOIwEZ8ImlgWoJa1RCCGEEEIIx5DgTNik3LzGWVyopDUKIYQQQgjhCBKcjXNHy5v47f+O0NltHNV+Si3BmcycCSGEEEII4RDSSn8cq2rq4JZnd1Ha0M6suGAumhs/4n2VN5gWoJbgTAghhBBCCMeQmbNxqqO7h7tf2k1tayeRgd6szzoxqv2V1ssC1EIIIYQQQjiSBGfjkNaan759iOyiOn53+VxuWJrC1uM1nKhpHfE+ZQFqIYQQQgghHEvutMeh57cV8kr2Sb6xZgoXzY3nykWJGBS8kj3y2bOyxnZJaRRCCCGEEMKBJDgbZ7Yer+b/3s9h3cxovnP2dADiQvxYPT2a17KL6e4ZWWOQsvo2WeNMCCGEEEIIB5LgbBwpqmnhG//aQ2pkAH+6ah4Gg+p97upFSVQ2dfDpkcoR7bu8oZ24EGmjL4QQQgghhKNIcDZONHd0c/sL2WgNT9+USZCv1ynPnzUjmuggH9ZnnRz2vpvau2iSBaiFEEIIIYRwKAnOxgGjUXP/K3vJq2rh8esWkBwRcNo2nh4GLl+YyKajlZSZ2+LbShagFkIIIYQQwvEkOBsH/vRxLhsOV/CTC2ayIi1ywO2uWpSEUcOrWcXD2n+ZLEAthBBCCCGEw03o4Exrzbv7Snlj9/CCFXfy3v5S/vLpca7KTOLm5SmDbpscEcCKtAhezT5Jj1HbfAzLTFusrHEmhBBCCCGEw0zo4EwpxavZJ/nlBzm0dna7ejjDdrCkge++to+FyWH8/JLZKKWGfM3ViyZRUt/G58eqbD5OWYMsQC2EEEIIIYSjTejgDOBb66ZS29LJi9uLXD2UYalq6uCOF7IJ8/fmyesX4uPpYdPrzpkdQ5i/F68MozFIWX07kYE+eHtO+MtFCCGEEEIIh5nwd9sLk8M5Y2okT32WP2Zmzzq7jdz90m5qWzv5x42ZRAX52PxaH08PLluQyIbDFVQ1ddj0mrLGduKl3kwIIYQQQgiHmvDBGcB9a6dS09LJSzvcf/ZMa81P3zlIdlEdv7t8LnMSQoa9j6sXJ9Ft1Lyxx7ZaO1mAWgghhBBCCMeT4AzITDHNnv19s/vPnr2wvYj1WSf5xpopXDQ3fkT7SIsOYlFKGK9knUTroRuDyALUQgghhBBCOJ4EZ2ZjYfZs2/Fqfv7eYdbNjOY7Z08f1b6uXjSJguoWduTXDrqdLEAthBBCCCGEcwwZnCmlkpRSG5VSOUqpQ0qp+8yP/04pdUQptV8p9ZZSKtTho3Ugd589O1HTyj3/2kNqZAB/umoeBsPQnRkHc356HEG+nqzPOjHodpYFqCWtUQghhBBCCMeyZeasG/iO1nomsBT4hlJqFrABmKO1zgBygR85bpjO4a6zZ0aj5ruv76PHqHn6pkyCfL1GvU8/bw++Nj+B/x4sp761c8DtLAtQx4dKWqMQQgghhBCONGRwprUu01rvMX/eBOQACVrrj7TWlimmHUCi44bpHJkp4axMc7/Oja9kn2RXQS0PnD+T5IgAu+336kWT6Ow28uaekgG3kQWohRBCCCGEcI5h1ZwppVKA+cDOPk/dCvzXTmNyqfvWTaW6uZOXdwye7ucslY3t/OqDHJZMDueqRUl23fes+GDmJoawPuvEgI1BZAFqIYQQQgghnMPm4EwpFQi8AXxLa91o9fgDmFIfXx7gdXcopbKVUtlVVVWjHa/DLTLPnv39szy3mD372buH6eg28utL01FqdHVm/bl68SRyK5r54mR9v8+XN8gC1EIIIYQQQjiDTXfcSikvTIHZy1rrN60evwm4ELhODzD1orV+SmudqbXOjIqKsseYHc5dZs8+PlzB+wfK+OZZaaRGBTrkGBfNjcff24P1u/r/Xksb2qVToxBCCCGEEE5gS7dGBTwD5Git/2j1+HnAD4Cvaq1bHTdE57OePWvr7HHJGJrau3jwnYNMjwnijjOnOOw4gT6eXJQRz7v7ymhq7zrt+fKGNgnOhBBCCCGEcAJbZs5WADcAZyml9po/zgf+CgQBG8yPPenIgTpb7+zZTtd0bvz9h0cpb2znN5elOzyl8OrFSbR19fCffaWnPVdWLwtQCyGEEEII4QyeQ22gtd4C9Ffs9IH9h+M+FqWEsyItgic353HdkmT8vD2cduw9J+p4YUcRNy1LYf6kMIcfb15SKDNig1i/6yTXLUnufdyyALWscSaEEEIIIYTjSZeHQdy3dprTZ886u4386I0DxAb78t1zpzvlmEoprl6UxIGSBg6WNPQ+XtFoWuNM0hqFEEIIIYRwPAnOBrF48pezZ86qPXvqszyOVjTxfxfPIdBnyIlNu/na/ER8PA2sz/qyMUhpvSU4k7RGIYQQQgghHE2CsyE4c/Ysv6qZxz49zgXpcaybFePw41kL8ffi/PQ43vmitHcJgfIGmTkTQgghhBDCWSQ4G8LiyeEsnxLBk5vzHTp7ZjRqfvTmAXw9DTz01VkOO85grl6URFNHN+/vLwOgtKFNFqAWQgghhBDCSSQ4s8F9a6dS3dzh0Nmz13afZGdBLT8+fybRQa4JhhZPDic1KoBXsk4CsgC1EEIIIYQQziR33TZYkhrh0NmzyqZ2fvl+Dksmh3PVoiS7799WlsYg2UV1HKtookwWoBZCCCGEEMJpJDizkSNnz3727mHau438+tJ0TGt+u85lCxLx8lCszzpJWUMbsZLSKIQQQgghhFNIcGYjR82efZJTwfv7y/h/a9JIjQq0235HKiLQh3NmxfLmnmJK69uJD5VOjUIIIYQQQjiDBGfDYJk9+9euE0NvbIPmjm5+8vZBpscEceeqKXbZpz1cvTiJutYummUBaiGEEEIIIZxGgrNhWJIawbJU07pn7V2jnz37/YdHKW9s59eXpbtV040VUyJJCjfNmEnNmRBCCCGEEM7hPhHBGHHfuqlUNXXw8s7RzZ59caKO57cXcuPSZBZMCrPT6OzDYFBclWlqTCILUAshhBBCCOEcnq4ewFiz1Gr27Lolk/D18hj2Prp6jPzozQPEBvvyvfNmOGCUo3fT8hS8PQ0smBTq6qEIIYQQQggxIcjM2QhYZs8e++QYOWWNlNa30drZjdbaptc/9Vk+R8qb+L+L5xDo457xcZCvF3ecOQVPD7lEhBBCCCGEcAb3jAzc3NLUCM6YGsnjm/J4fFNe7+PeHgaC/bwI9fci1M+LED8vQvxN/4b6eRPq74WPp4E/f3KMC9LjWDcrxoXfhRBCCCGEEMKdSHA2Qv+4MZM9RXU0tHXR0NZFfVsX9a1d5q87qW/toryxnSPlTTS0mTofWoT5e/HQRbNcOHohhBBCCCGEu5HgbIR8vTxYnhZp8/ZdPUYazUFcZKAPIX5eDhydEEIIIYQQYqyR4MxJvDwMRAT6EBHo4+qhCCGEEEIIIdyQdHsQQgghhBBCCDcgwZkQQgghhBBCuAEJzoQQQgghhBDCDUhwJoQQQgghhBBuQIIzIYQQQgghhHADEpwJIYQQQgghhBuQ4EwIIYQQQggh3IAEZ0IIIYQQQgjhBiQ4E0IIIYQQQgg3IMGZEEIIIYQQQrgBpbV23sGUqgKKnHZA20UC1a4exDgj59S+5Hzan5xT+5LzaX9yTu1Lzqf9yTm1Lzmf9ueu5zRZax3V3xNODc7clVIqW2ud6epxjCdyTu1Lzqf9yTm1Lzmf9ifn1L7kfNqfnFP7kvNpf2PxnEpaoxBCCCGEEEK4AQnOhBBCCCGEEMINSHBm8pSrBzAOyTm1Lzmf9ifn1L7kfNqfnFP7kvNpf3JO7UvOp/2NuXMqNWdCCCGEEEII4QZk5kwIIYQQQggh3MCYC86UUucppY4qpY4rpX5o9fgrSqm95o9CpdTefl47Tym1XSl1SCm1Xyl1ldVzk5VSO5VSx8z78h7g+DeZtzmmlLppuK93N648n0qpZKXUbvMxDiml7hrO692VA8/pveZ9aqVU5CDHl2v0y21GdT7lGh32OX3ZvN+DSql/KqW8Bji+XKNfbjOq8ynX6LDP6TNKqX3mx19XSgUOcPxxdY2Ca8/peLxOBzmf85RSO8zfa7ZSavEArx/VNTbBrlGHn1O3uka11mPmA/AA8oBUwBvYB8zqZ7s/AD/t5/FpwFTz5/FAGRBq/vpV4Grz508Cd/fz+nAg3/xvmPnzMFtf724fbnA+vQEf8+eBQCEQP1bPpxPO6XwgxXyeIgc4vlyj9j2fco0O75yeDyjzx78H+H8v16h9z6dco8M7p8FW2/0R+OF4v0bd5JyOq+t0sPMJfAR8xfz5+cAme19jE+0addI5dZtrdKzNnC0Gjmut87XWncB64GLrDZRSCrgS0x+yU2itc7XWx8yflwKVQJT5NWcBr5s3fR64pJ/jnwts0FrXaq3rgA3AecN4vbtx6fnUWndqrTvMX/pgnskdw+cTHHROzV9/obUuHOL4co1aGe35lGt02Of0A20G7AIS+zm+XKNWRns+5Rod9jlttHq9H9Bf4f14u0bBxed0HF6ng51PDQSbPw8BSvt5/WivsYl2jTr8nLrTNTrWgrME4KTV18Xmx6ydAVRYfokMxDwl6o0pSo8A6rXW3X33q5TKVEo9PcTxB3y9m3P1+UQplaSU2m8ex2/Nv/TH6vkEx53TwbaTa9Rx51Ou0UEMdE6VKf3uBuB/5q/lGnXc+ZRrdBD9nVOl1LNAOTAD+Iv5sfF8jYLrz+l4u04HO5/fAn6nlDoJ/B740TBeP1HvR8H159RtrtGxFpypfh7r+w7NNfTzrs8pO1EqDngRuEVrbRxsv1rrbK31bUMc35ZxuSNXn0+01ie11hlAGnCTUirGxnG5K0ed0wHJNerQ8ynX6EA7GfycPg58prX+HOQaxbHnU67RgXYywDnVWt+CKTUvB7jK/Nh4vkbB9ed0vF2ng437buB+rXUScD/wzDBeP1HvR8H159RtrtGxFpwVA0lWXydiNbWplPIELgVeGWgHSqlg4H3gJ1rrHeaHq4FQ8+tP268Nx7f19e7G1eezl/ndiUOY3rkbq+cTHHdOR3v8sXpOXX0+e8k1+qXBzqlS6iFM6U7fHubxx+o5dfX57CXX6JeG+n+vte4xv/6yYRxfzunIz6n1duPhOh3sfN4EvGn+/DVM6Xq2vn6i3o+C689pL5dfo9oNigBt/QA8MRX4TebLYsHZVs+fB2we5PXewCfAt/p57jVOLfa7p59twoECTIWGYebPw219vbt9uMH5TAT8zJ+HAblA+lg9n44+p1bbFDJ4QxC5Ru13PuUaHcY5BW4DtlnOmVyjTjmfco3aeE4xvQOeZvX574Hfj/dr1E3O6bi6Tgc7n5hmD1ebP18L7Lb3NTbRrlEnnVO3uUZd/sMYwQ/vfPMJywMe6PPcc8Bdg7z2eqAL2Gv1Mc/8XCqmguvj5h+CpWNLJvC01T5uNW9zHNO0PoO93t0/XHk+gbOB/eb/gPuBO8b6+XTwOf0mpneGujG9a2M5j3KNOuh8yjU67HPabd6n5fGfyjXq2PMp16jt5xRTttBW4ABwEHgZc6fB8X6NuvqcjsfrdKDzCawEdpu/153AwgFeP6xrbCJfo844p+50jSrzQYUQQgghhBBCuNBYqzkTQgghhBBCiHFJgjMhhBBCCCGEcAMSnAkhhBBCCCGEG5DgTAghhBBCCCHcgARnQgghhBBCCOEGJDgTQgghhBBCCDcgwZkQQgghhBBCuAEJzoQQQgghhBDCDfx/1XO8ou0BNp0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACYFUlEQVR4nOzdd3ib1dk/8O/R8JI1vPeO49iOnekkjJCE0EDLLmW0lNFCKQW6W+jb/trSvh2U0hZKB1BGKdAXKKVQZsJIIECWE0ISx44T770kS5Zk7fP749GjOI6HxqNh+/5cFxfEkh8dJ8bR/dznfG/GOQchhBBCCCGEkOiSRXsBhBBCCCGEEEKoOCOEEEIIIYSQmEDFGSGEEEIIIYTEACrOCCGEEEIIISQGUHFGCCGEEEIIITGAijNCCCGEEEIIiQFUnBFCCCGEEEJIDKDijBBC5ijGmHnCPx7G2PiEX18b7fUFgzHWzhg7L9rrmAljbAdj7OYwXv8Rxtgx75/pjZMeu5Ex5p70Z79xwuNPM8b6GGMmxljz5HUyxjYzxpoYY1bG2HbGWNGExxhj7DeMsRHvP/cyxli4vk5CCCGno+KMEELmKM55svgPgE4AF0/42DPRXt9kjDHFfHiNCPgEwG0ADkzz+K6Jf/ac8x0THvs1gGLOuQbAJQB+wRhbBQCMsXQALwL4MYBUAPUAnpvwubcAuAzAMgC1AC4C8FWpvihCCCGzo+KMEELmGcaYjDH2A8ZYi7cD8jxjLNX7WDFjjDPGvsQY62KMGRhjtzLG6hhjhxhjo4yxP0241o2MsQ8ZYw8yxozersvmCY9rGWOPebs1PYyxXzDG5JM+9w+MMT2AuxljZYyxd73rGmaMPcMY03mf/xSAQgCveDtCdzLGNjLGuid9fb7uGmPsbsbYC96OkQnAjbOsaRFj7D3v1zLMGJtYnEx8jQTvNUe8vyf7GGNZjLFfAlgP4E/eNf7J+/wljLG3GGN6b9frqgnX+jtj7CHv42Pe1y+a6nUBgHP+Z875OwBs/v+p+z63gXNuF3/p/afM++vPAmjgnP+Lc24DcDeAZYyxJd7HbwDwO855N+e8B8DvANwY6BoIIYQEj4ozQgiZf74BoQOyAUAuAAOAP096zloA5QCuBnA/gB8BOA9ANYCrGGMbJj23FUA6gJ8CeFEs9gA8CcAFYBGAFQC2ALh5is/NBPBLAAxCdycXQCWAAghFAjjn1+HUDuC9fn69lwJ4AYAOwDOzrOl/AWwDkAIgH8CD01zzBgBa7/rSANwKYJxz/iMAOwHc4V3jHYwxFYC3APzT+3V+HsBfGGPVE653rfe10wEc9K4zWCu8hWUzY+zHk7uFjLG/MMasAJoA9AF43ftQNYSuHACAc24B0OL9+GmPe/974tdACCEkzKg4I4SQ+eerAH7k7YDYIRQ/n5v0Jv5/Oec2zvk2ABYA/8c5H/R2THZCKGpEgwDu55w7OefPATgG4ELGWBaATwP4FufcwjkfBPAHANdM+NxezvmDnHMX53ycc36Cc/4W59zOOR8C8HsIRWQodnHOX+KcewBoZlmTE0ARgFzv1//BNNd0QijKFnHO3Zzz/Zxz0zTPvQhAO+f8Ce/XeQDAvwF8bsJzXuOcv+/98/gRgDMYYwVBfK3vA1gKoQi8AkIh+P2JT+Cc3wZADaHD9yIAsZOWDMA46XpG73OnetwIIJnOnRFCSORQcUYIIfNPEYD/eLfjjQJoBOAGkDXhOQMT/nt8il8nT/h1D+ecT/h1B4TOVxEAJYC+Ca/1MITCQdQ1cWGMsUzG2LPe7YYmAE9D6CaFYuJrzLamOyF07/YyxhoYY1+e5ppPAdgK4FnGWK83HEM5zXOLAKwVX8/7mtcCyJ5qjZxzMwA9hN/DgHDOWznnbZxzD+f8MICf49QiUHye21t45gP4mvfDZgjF60QaAGPTPK4BYJ70Z08IISSMqDgjhJD5pwvApznnugn/JHi7YsHIm9Q9KQTQ630dO4D0Ca+j4ZxP3Ao3+Y39r70fq/WGVnwRQrE03fMtAJLEX3jPjmVMes7Ez5lxTZzzfs75VzjnuRA6jH9hjC2a/AV7u4Q/45xXATgTQnfs+mnW2AXgvUm/38mc869NeI6vS8YYS4YQyNE7+XWDwHHq799kCpw8c9YAIexDXIfK+1jDVI97/7sBhBBCIoaKM0IImX8eAvBLMXSCMZbBGLs0hOtlAvgGY0zJGLsSwlmx1znnfRDOb/2OMaZhQhBJ2aTzapOpIXRoRhljeZi0JQ9CB690wq+bASQwxi70dq7+H4D46S4+25oYY1cyxvK9TzdAKG7ck6/DGNvEGKvxFoMmCNscxedNXuOrABYzxq7z/h4pmRCwUjnhOZ9hjJ3NGIuDcPZsD+f8lK7ihNeOY4wlQCi6lN5wEpn3sU97t5PCG+TxYwAve3+dyRi7hjGWzBiTM8bOh7Dt8V3vpf8DYClj7Arv9X8C4BDnvMn7+D8AfIcxlscYywXwXQB/n+73mhBCiPSoOCOEkPnnAQD/BbCNMTYGYDeEYI5g7YEQHjIMIdTjc5zzEe9j1wOIA3AUQrHzAoCcGa71MwArIZxneg3CmaiJfg3g/3m3B36Pc26EECv/KIAeCJ20bsxspjXVAdjDGDND+D36Jue8bYprZHs/zwRhW+h7ELZgAsLv7+eYkHT5R875GITQkWsgdMP6AfwGpxaR/4QQpqIHsArCtsfpbIOwtfRMAI94//sc72ObARxijFkgBH28COBX3sc4hC2M3d6v+z4IZ+9eBgDvGb8rIPwZGiB8T0w8H/gwgFcAHAZwBMKfz8MzrJMQQojEGG0lJ4QQMh0mDEG+mXN+drTXMlcxxv4OoJtz/v+ivRZCCCGxjTpnhBBCCCGEEBIDqDgjhBBCCCGEkBhA2xoJIYQQQgghJAZQ54wQQgghhBBCYgAVZ4QQQgghhBASAxSRfLH09HReXFwcyZckhBBCCCGEkJixf//+Yc55xlSPRbQ4Ky4uRn19fSRfkhBCCCGEEEJiBmOsY7rHaFsjIYQQQgghhMQAKs4IIYQQQgghJAZQcUYIIYQQQgghMYCKM0IIIYQQQgiJAVScEUIIIYQQQkgMoOKMEEIIIYQQQmIAFWeEEEIIIYQQEgOoOCOEEEIIIYSQGEDFGSGEEEIIIYTEACrOyJzEOcf7zUMYszmjvRRCCCGEEEIkMWtxxhgrYIxtZ4w1MsYaGGPfnPDY1xljx7wfvze8SyXkpCc+bMf1j+/FP/d0RnsphBBCCCGESELhx3NcAL7LOT/AGFMD2M8YewtAFoBLAdRyzu2MscxwLpQQ0btNA/jFa0cBAJ90j0Z3MYQQQgghhEhk1uKMc94HoM/732OMsUYAeQC+AuAezrnd+9hgOBdKCAA09pnw9X9+jKpcDbLUCTjUbYz2kgghhBBCCJFEQGfOGGPFAFYA2ANgMYD1jLE9jLH3GGN103zOLYyxesZY/dDQUMgLJgvX4JgNNz9ZD3WCEo/dUIc1JanoNozDYHFEe2mEEEIIIYSEzO/ijDGWDODfAL7FOTdB6LqlAFgH4PsAnmeMscmfxzl/hHO+mnO+OiMjQ6Jlk4XG5nTjln/sh97iwKM3rEaWJgE1+VoAwOEe6p4RQgghhJC5z6/ijDGmhFCYPcM5f9H74W4AL3LBXgAeAOnhWSZZyDweju/+6xN80j2K+69ZjqV5QlEm/puKM0IIIYQQMh/4k9bIADwGoJFz/vsJD70E4FzvcxYDiAMwHIY1kgXu/reb8dqhPvzggiU4vzrb93FNghKl6SocolAQQgghhBAyD/iT1ngWgOsAHGaMHfR+7IcAHgfwOGPsCAAHgBs45zwsqyQL1ksf9+CP757AVavzccs5pac9XpOvxb42fRRWRgghhBBCiLT8SWv8AMBpZ8m8vijtcgg5qb5djztfOIR1pan4xWU1mOJII2rytHj5YC+GxuzIUMdHYZWEEEIIIYRII6C0RkIipXPEilue2o+8lEQ89MVViFNM/a1am68DAByhc2eEEEIIIWSOo+KMxByTzYmbntwHt4fjsRtWQ5cUN+1zq3M1YAw074wQQgghhMx5VJyRmOJye3D7MwfQNmzBX7+4EqUZyTM+XxWvwKKMZBzuGY3MAgkhhBBCCAkTKs5ITPn5q0ex8/gwfnn5UpxZ5t9khpp8LXXOCCGEEELInEfFGYkZf/+wDf/Y1YGvnlOKq+sK/f682jwtBsfsGDDZwrg6QgghhBBCwouKMxITth8bxM9fPYotVVm464IlAX1uTb4wjJq6Z4QQQgghC9y99wLbt5/6se3bhY/PAVSckag71j+Gr//zY1TmaHD/Ncshk003uWFqVTlayBhwmIZRE0IIIYQsbHV1wFVXAU8+CdhsQmF21VXCx+cAf4ZQExI2nHN87Zn9UMXL8egNq5EUF/i3ZGKcHIuz1DhEcfqEEEIIIQvbpk3As88CW7YAv/wlYDAAzz8vfHwOoM4ZiaqGXhNahyz47qcqkKNNDPo6NXlaHO42gnMu4eoIIYQQQsicY7cDHg9w/Djwta/NmcIMoOKMRNm2owOQMWBzZWZI16nN12LE4kCfkUJBCCGEEEIWtJ/9DJDJgB/+EPjrX08/gxbDqDgjUbWtoR+ri1ORlhwf0nVq8nUAKBSEEEIIIWRBe+opYO9e4LrrhG2Nzz8vnDmbIwUaFWckarr0VjT1j2FLVVbI11qSrYZCxmgYNSGEEELIQvbww4BcDtxzj/DrTZuEAm3fvuiuy08UCEKiZtvRAQDApyQozhKUclRkq6lzRgghhBCyUJnNwOHDwNVXA9nZJz++adOcOXdGnTMSNdsa+rEkW42iNJUk16vN1+JwD4WCEEIIIYQsSE89BZhMwNe/Hu2VBI2KMxIVeosD+9r1kmxpFNXk6TBqdaLbMC7ZNQkhhBBCyBzAOfCnPwGrVgFr10Z7NUGj4oxExTuNA/Bw4FNV2bM/2U+1+VoAFApCCCGEELLgvPsucPSo0DVjLNqrCRoVZyQq3jo6gBxtApbmaSS75uIsNeLkMhyiUBBCCCGEkIXlwQeB9HThvNkcRsUZibhxhxvvHx/ClqosMAnvbMQpZKjMUeMwdc4IIYQQQhaO9nbglVeAW24BEhKivZqQUHFGIm7n8SHYnB5JtzSKluYJoSAeD4WCkMjzeDh+/UYjTgyao70UQgghZOH461+FrYy33hrtlYSMijMScW8dHYA6QYG1pamSX7s2X4sxmwsdeqvk1yZkNp16Kx5+rxUvH+yJ9lIIIYSQhWF8HHj0UeCyy4CCgmivJmRUnJGIcrk9eLtxAJuXZEIpl/7bryZPBwA41D0q+bUJmU3LkNAxax+hmwOEEEJIRPzzn4BeP6fj8yei4oxE1P4OAwxWZ1i2NAJAeVYy4hUyOndGoqJ1yAIA6BixRHklhBBCyAIgxucvXQqcc060VyMJRbQXQBaWbUcHECeXYUNFRliur5TLUJWrweEeKs5I5Imds7ZhCzjnkgbeEEIIIWSSDz8EDh4EHn54TsfnT0SdMxIxnHO8dXQAZy1KQ3J8+O4L1OZpcYRCQUgUiMXZmM2FUaszyqshhBBCYsC99wLbt5/6se3bhY+H6sEHAZ0OuPba0K8VI6g4IxFzbGAMnXortlSHZ0ujqCZfB4vDjdZh2lpGIqt1yIIMdTwAoJ22NhJCCCFAXR1w1VUnC7Tt24Vf19WFdt2eHuDf/wZuuglQqUJfZ4yg4oxEzLaGATAGbK7MDOvr1OZrAQCHaRg1iSCDxYERiwPnVgjf3x0UCkIIIWFhsbuivQQSiE2bgOefB664AjjvPKEwe/554eOhePhhwOMBbrtNmnXGCCrOSMS8dXQAKwp0yFSHdzhgWUYyEpVyHIqBUJB+ow317fpoL4NEQOuwsKVxY0UGGKPO2VwzYrbjb++3gnPaDk1ILDvSY8Syn23D7taRaC+FBGLTJkCjAd55B8jODj28w24XirMLLwRKS6VZY4yg4oxERO/oOA73GMO+pREA5DKGpXmamEhs/OO7x3HdY3vhcnuivRQSZi3epMbKHA1ytYnUOZtjnq/vxi9fpwHihMS6f+xqh8vDsauFirM55fHHgY4OIDcXOHIE+PSnAbc7+Ov961/A4OC8ic+fiIozEhFvHR0AAHyqKisir1eTp0NDrynqRVHbkAXjTjr/thC0DJkRJ5chPyURxelJ1DmbYxp6hZs53aPjUV4JIWQ6xnEn/vtJLwChg0bmiO3bgdtvB5RK4NAh4MYbgbfeAi66SNiWGIwHHwQqKoRtkvMMFWckIt46OoCyDBXKMpIj8nq1+VqMO92+bka0dOqF7on4xo/MXy2DFhSlJUEhl6EoTYV2KsjnlKO9JgBAj4GKM0Ji1X8OdMPm9KAyh0bmzCnvvy/MI7v+eiAtDXjiCeC664A33wRuvTXwAm3vXuGf228HZPOvlJl/XxGJOUarE7tbRyKypVFU4w0FOdQ9GrHXnMzh8qDXKLzRa+gxRW0dJDJah82+mw/FaUkwWJ0wUpz+nGCxu9Dm7XT2UOeMkJjEOcfTezqxrECHK1flY3DMjkGTLdrLIv5Qq4UzYhO3ID75JPDDHwJ/+xtwxx1C8eavP/0JSE4GbrhB+rXGACrOSNhtPzYIl4dHbEsjAJSkqZAcr4jqnbVug9X3s6ahl4qz+czp9qBzxIqyTCHKtyhN+HeHnrpnc0FTv8n3/yp1zgiJTXvb9DgxaMa1awt9N2CpezYHuN1CMbV+PbBs2cmPMwb84hfAnXcCf/0r8M1v+legDQ4Czz0nbI3UaMK27GgK3yRgQry2He1Hhjoey/N1EXtNmYyhOlcT1cTGDu+WxsVZyWjoNYJzDjZPpteTU3XqrXB5OErTxc6ZUJy1j1hRG8HvexIc8eZJUVoSdc4IiVHP7OmEOkGBi2tz4eEcjAnF2ebKyN34JUF4/XWgrQ34zW9Of4wx4J57AJcL+P3vAblc+PdM75UeeQRwOIQtjfMUdc5IWNmcbrx3bAifqsqCTBbZwqQ2X4ujfSY4oxQK0uUtzj69NAcmmwvddEd+3mrxJvyVZQrFWWFqEgCgg86dzQkNPSakJCmxqigFvVScERJzhs12vHGkD1eszEdinByqeAXKMpIpFGQuePBBIC8PuOyyqR9nDLjvPuAb3wDuv1/opE3XQXM6hS7bpz4FLFkSrhVHHRVnJKx2tYzA4nBjSwS3NIpq8nVwuDxoHhiL+GsDwhDiBKUMGyoyANDWxvlMDJ4pzRA6ZolxcmRrEtBOcfpzQkOfEdW5WuTrEjFgskXthg4hZGov7O+G081x7dpC38dq8rQxMc+UzKCpSUhl/NrXhKTG6TAmFGa33SYUaj/84dQF2ksvAb298zI+fyIqzkhYbTvaj+R4Bc4oS4v4a9fmefekR+mHd8eIFYWpSajM1kDGgKOU2DhvtQ6ZkaGOhybh5F8+RWlJ6KA4/ZjndHvQ3G9Gda4GeSmJ8HBheDwhJDZ4PBz/3NOJNSWpKM9S+z5ek6elUJBY96c/AXFxwFe+MvtzGRO6bF/9qrDV8ac/Pf05Dz4IlJQAn/mM9GuNIVSckbDxeDjeOjqIDRUZiFfII/76RWlJUCdELxSkS29FYaoKiXFylGUkU+dsHmsZMqPM2zUTFaepqHM2B5wYNMPh9qAqV4M8nbAdlbYgExI7PjgxjE699ZSuGQAKBYl1RqOQyPj5zwOZmf59jkwG/OUvwE03Af/7v8DPf37ysU8+AXbuFLpr8si/p4wkKs5I2HzcNYphsz0qWxoBgDGG2nxtVH5wc87RqbeiKE14s1edq6HibJ7inKNlyHLaDL+i9CQMm+0w211RWhnxh/j/pdg5AyhOn5BY8vTuDqSp4nDB0lPH8VTlaHyhICQG/f3vgNkc+BZEmUwI/bjxRqF7dvPNwscffBBITATKy4F775V6tTGFijMSNtuO9kMhY9hY4ecdkzCoydOhsc8Eu8sd0dcdMtsx7nT7giGqc7XoN9kwYrZHdB0k/PQWB4zjTpROKs5KxDh92toY0xp6jUhUylGSnowcbQIAitMnJFb0GcfxTtMgrlxdcNoOHAoFiWEej7Cl8YwzgFWrAv98mQx49FHgvPOAxx4DvvhF4JlngHPPFYq1ujrp1xxDqDgjYfNWwwDOKEuDNnGGQ6BhVpuvhdPN0dxvjujrdnq3sxVO6JwBFAoyH4lhIJO3NYqzztqHaWtjLDvaa8KSHDXkMoYEpRzpyfHoGaU/M0JiwXP7uuD2cHxhTeGUj9fkRWd3DJnF1q3AiROhBXfI5cAbbwCbNgmFmc0GfPQR8PzzwsfmMSrOSFicGDSjddgStS2NohpvKMihntGIvm6HWJx5O2dVVJzNWy1D3hj9ydsavYV5O3XOYhbnHEf7TKjKOTnINC8lkbY1EhIDXG4Pnt3bhXMWZ/hudE62NE+LAZMdg2MUChJTHnwQyM4GrrgitOsoFMC2bcCKFcKv77hj3hdmABVnJEy2He0HAJwX5eIsPyURKUnKiCc2duqtYEx4fQDQJcUhT5eIBkpsnHdah8yIV8iQq0s85eOqeAUy1PG0rTGGdenHMWZzoTpX6/tYvi6RtjUSEgPebRpEv8l2WhDIROINWNraGEOOHxc6XrfeKiQ1hmrnTqCrC/jxj4UZZ9u3h37NGEfFGQmLbQ0DqM3XIkebOPuTw4gxhpp8XcRnoXTqrcjVJp6yR746V4Oj1Dmbd1qGLChJV0E+xZD14rQkSmyMYeLNEnHbMSB0znqNNng80wxBJbOyu9z46MRwtJdB5rhn9nQiSxOPzUumP7denSuEgtC8sxjy5z8LM82++tXQr7V9O3DVVcJWxp//XPj3VVfN+wKNijMiuUGTDQe7RqO+pVFUm6dF88AYbM7IhYJ06q0oSD21MK3O1aJtxAILpffNK0KMfvKUjxWlqahzFsOO9pkglzFUZJ+cnZSnS4TD5cGwhcJ7gnXf1mP4wqN76HufBK1zxIr3jw/hmrpCKOTTv1VVxStQmq6izlmsGBsDHn9cKKCys2d//mz27Tv1jNmmTcKv9+0L/doxjIozIrm3GgcAAFuqJfgfUwJL87RweTga+yLXteoYsaIo9dSAiOpcDThHRNdBwsvucqNLbz0tDERUnJaEAZMdVgcV5LGoodeEsgwVEpQnO9x53u2ptLUxOD2j43hyVwcA4ewxIcH4v32dYACuWVMw63Nr83UUChIr/vEPoUALJQhkojvvPP2M2aZNwsfnsVmLM8ZYAWNsO2OskTHWwBj7pvfjdzPGehhjB73/zO9x3cRv2xoGUJSWhPLMqbsJkVYb4UGVFrsLw2b7aQeYq/NiNxSkfdgCp9sT7WXMOR0jVng4UDbN97qY2Nipp62Nsaih13jKeTMANOssRPe/1QzOhS2hbcPUOSOBs7vceH5fFzZXZvl1NIJCQWIE50J8fl0dsHZttFczp/nTOXMB+C7nvBLAOgC3M8aqvI/9gXO+3PvP62FbJZkzxmxO7GoZwZaqLDB2+hmcaMjRJiA9OS5ie9K7DKcmNYqyNQlIVcXFXCiI3uLAlj+8j+f2dUV7KXNOqzepsTR96uKsmOL04fZwPPFhGz7uNER7KacYNtsxYLKfct4MmFCcUecsYM0DY/j3gW7ccEYxtIlKSiolQdnaMIARiwNfXFfk1/MpFCRGvP020NQkXddsAZu1OOOc93HOD3j/ewxAI4C8cC+MzE3vNQ/B4fbEzJZGwBsKkqeNWGKjGKNfNKlzxhhDda4m5jpnDb1GONyemCsa5wJxxlnpNNsai9KF74GFevbGbHfhln/U42evHMWft7dEezmnEP8/rJpUnGkSlFDHK6hzFoR73zwGVZwCt29ahOJ01YK+KUGC98zuDhSkJmL9onS/ni+Gghzujq2/WxecBx8EMjOF82YkJAGdOWOMFQNYAWCP90N3MMYOMcYeZ4ylSL04MvdsaxhAmioOKwtj69uhJl+H44NjETn706WfunMGCG8EmwfG4HDFzhZC8QwcnQ8JXMugGTnaBKjiFVM+rklQIk0VtyATG/uM47jyoV3Y0TyEPF0imgfGor2kU4jJqdU52tMey0uhOP1A1bfr8XbjAG7dWIYUVRxK0pJoWyMJ2InBMexp0+MLa4ogmyIBdypiKAidO4ui1lbg1VeBW24B4uOjvZo5z+/ijDGWDODfAL7FOTcB+CuAMgDLAfQB+N00n3cLY6yeMVY/NDQU+opJzHK4PNjeNIjNlZlTxopHU22eFh6OiETZd4xYoUlQQJd0+nyP6lwtnG6O44Ox80a1sU9YCxVngWsZtkzbNRMVpSWhfYG9ST3cbcSlf/oQXXorHrthNa6pK0Cn3hpTSaUNvUbk6RKhTVKe9liejgZRB4JzjnveaEKGOh5fOqsYAFCcrkKvcTyiKblk7ntmTyeUcoYrV+cH9Hk1eVra1hhNf/4zIJcLs81IyPwqzhhjSgiF2TOc8xcBgHM+wDl3c849AP4GYM1Un8s5f4RzvppzvjojI0OqdZMYtKdtBGN2F7ZUxc6WRlFNBENBOvTW08JAROL5llja2ih2zgxWJ/QWR5RXM3dwztE6OH2Mvqh4gcXpb23ox1UP74JSLsO/v3YmNlZk+qLqY6l7drTXdNp5MxF1zgLzTuMg6jsM+ObmciTFCV3kknQVOKcwHOK/cYcb/97fjQuW5iA9ObDuy9I8LfpNNgoFiQaLRYjPv+IKII9OPUnBn7RGBuAxAI2c899P+HjOhKddDuCI9Msjc8m2hgEkKuU4u9y/feKRlKVJQJYmPiLnzrr0p8foi4rTVEiKk8fMMGq7y40Tg2bfm1TqnvlvaMyOMbsLpemzdc5U6DXa5n0HgXOOR95vwa1P70dFthov3X6Wryhbki18fx3rj43izGJ3oW3EclpSoyhPl4gxuwsmmzPCK5t73B6Oe7c2oSRdhavrTsael3j/v6CtjcRfrx7qhcnmwrVrCwP+XAoFCcK9954+zHn7duHjgXj6aWB0lIJAJORP5+wsANcBOHdSbP69jLHDjLFDADYB+HY4F0pi35FeI5YX6E6ZGRRLavJ0OBTmH9xuD0e3YfrOmVzGsCRbHTPhGy2DFrg8HBfV5gKg4iwQYhjIdDH6omJvKEjXPO4gON0e/PA/h/Gr15vwmaU5ePaWdchQn7zznZ+SiKQ4OY7FSOesqd8EzjFj5wygxEZ/vHigG80DZnxvSwWUE4YFF6eLSaVUnBH/PL2nE2UZKqwtSQ34c6vztBQKEqi6OiG8QyzQtm8Xfl1X5/81OBeCQFasAM48MzzrXID8SWv8gHPOOOe1E2PzOefXcc5rvB+/hHPeF4kFk9g1anUiXR27B0Fr87VoGTLDHMZzL33GcTjdfMowEFF1rhaNfWPweHjY1uEvcUvjeZWZSFTKqTgLQIs3Rn+2bY3irLP5GgpiHHfixif24v/2duGOTYvw4OdXnHaDRiZjKM9Sx0znbLqkRhENovaPzenGH95qRm2+Fp+pOXU7uxiGQ50z4o8jPUZ80jWKa9cWBTWGJ5lCQQK3aZPQ9broIuGs2FVXAc8/f/rQ55ns2AE0NAhdsxgZnzQfBJTWSMhM9BYHUqc4XB8ravK14BxoCOMP704xRn/G4kwDs90VE2cxGvtMiFfIUJKuQmmGyldwkNm1DJmRqJQjW5Mw4/OK0+ZvnH7niBWf/cuH2Numx31XLsP3zq+YNmFtSSwVZz0mpCQpkaOd+s+OBlH75+ndHeg12nDXBUumfENdnK6i4oz45Zk9nUhQynDFysCCQCaiUJAgqNWA1Qo8/DDgcgEvvwy8+y7g9HNL94MPAmlpwDXXhHedCwwVZ0QSLrcHJptzyoTCWCHuSQ/nnbUOb8FVMEvnDIiNUJDGfhMqstVQyGUoy0iOSOdszObE8/VdsLvm9hms1iEhqXG2uGddUty8HMhb367HZX/5EMNmB566aS0+t2rmN1WLs9UYsTgwbLZHaIXTa+gzojpXO+0d+nRVPOIUMirOZmCyOfGn7SewvjwdZ00zj6o4TTXvvu+J9MZsTrx8sAcX1+ZOmZ7qLzEUZGgs+j9j5gy7HUhNBS68UCjS/vIXYPNmYV7ZF78odNJM07xX6egQirlbbgESEyO77nmOijMiCeO4E5wDqarYLc7Sk+ORp0vEoTCGgnTqrVDKGXJ10/+gWpydDIWMRf3cGeccjX1jqPSGNSzKTEbP6HjYZ8H9395O3PnCIVz18G70zuE3vy1Dsyc1iorTknzDyeeDlw/24At/2wNtohL/ue1MrCtNm/VzlnjDQaLdPXO6PWjuN0973gwQtmHm6SixcSYPv9eCUasTd12wZNrnlGaoMGCyR2S+JJm7XjrYC6vDjWvXFYV0HQoFCZB4xuyFF4QZZW++CWg0wM9+Blx6qfDrq68G0tOBCy4QCrcf/ejkGbW//EXYyrhsWeAhImRGVJwRSRisQgS7Loa3NQLA0jxNWDtnnSNW5KckzTjnLV4hx6LM5Kh3zgbH7NBbHKjMEd40L/IGW7QOhfdOd2PfGNTxCrQMmnHRgx/gwxPDYX29cLA53egZHZ91xpmoOH1+dBA457j/7WZ889mDWF6ow4tfOxOlfhaoYnJjU5SLsxODZjjcnmnPm4lydQnonsM3D8Jp0GTDYx+04eJluViaN3XiJSB0zgCgfXj+3Jgg0uKc45ndHajO1WBZ/vTfS/7whYJQceaffftOPWO2aRPwr38BCQnA3/8ODAwA778PfPObwpDp228HfvUrYMsW4EtfAh59VAgBueOOwEJEyKyoOCOSMFiF/cmx3DkDgNp8HdqGLTCOhyciu1NvnXFLo6g6Vxv14kwMA6nMOdk5AxD2c2eNfSasLk7By3echTRVHK57bA/+uqMFnEc/IMVfbcMWcD57GIioKE2FHsM4HC5PmFcWHpxzvN88hOsf34v73z6OK1bm4+mb1iIlgP/f05PjkaaKQ3OUizPx/7uZOmcAqHM2gwfeOQ6Xm+N7WxbP+DwxqZTOnZHpHOgcRVP/WNBBIBMlxytQkq4K6+6YSDjWP4Z+YwTmtd155+nhH5s2CR8HhKHS69cDv/0tcOwYcPQocM89wOLFQvGm1wOHDgUeIkJmRcUZkYQ4vDglhs+cASe3PYQrFKRjxDJjGIioOleDYbMdg6boDcxs7BPeJC/xFmdFaUmQsfDG6TtcHrQMmVGRrUFZRjJeuv0sfKYmB795swlffWr/nJkr5W9So6g4LQkeDnQZ5lYHwWx34R+72nHe79/D9Y/vRWOfCT++qAr3XVmLOEXgf31UZKvRFOU4/YZeIxKVcpSkz/xnl6dLwrDZPu/n0wWqdciMZ/d14QtrC31JpNPxdc7mQdeYhMczezqQHK/AJctzJbnefAgFufXp/fj5qw3RXsapGAMqK4G77hLSGb/tnZ71jW9QYRYGVJwRSYx6tzUGcic9GsQtOEfCcN5r1OqAyeaaMUZfJN61j2b3rLHPhDxdIrSJwlbUeIUcRWmqsBZnrcNmON3ct5VSFa/Ag59fgR9fVIV3mgZx6Z8+jPqZJH+IWz9LZhlALRLfxM6VxMa2YQt+9koDzvjVO/jJyw1IjlfgD1cvw4c/OBc3nV0S9B3uimw1jg9Ed4xEQ68JS3LUM249Bk4mNvZF4g72HPK7bc2IV8jw9XPLZ32uKl6BTHU8dc7IlMZsTrx6qA+XLs9FcrxCkmvWzPFQEI93VmpMb83cvh146ingxz8G/vrX0wdZk5BRcUYkobd4tzXGeOcsVRWHPF0iDvdIXxSJ0fjTDaCeqMpXnEXvB3Bjn8lXJInKMpLDuq2xSezWZZ/cUsYYw01nl+D/vrIOZrsLl/35Q7x8sCdsa5BCy5AZebpEJMb5N3BdjNOP5bM3Hg/H9mODuPGJvdh03w48vbsDmysz8Z/bzsTLd5yNy1fkI14R2oD5JdlqWB3uqHUQOedo7DXNuqURoFlnU/mkaxSvHe7DzWeXnDJkfCYl6SoaRE2mtP3YEBwuDy5bkSfZNed6KMiIxQGnm6NLP46xWNxJIoaIPP888POfC/+eOMiaSIKKMyKJUasD8QqZ329Wo2lpniYs2xrFNL4iP4ozdYISRWlJUeuc2ZxutA5bfOfNRIsyk9E2bIHLHZ6zUY39JijlbMogjTUlqXjt62djaZ4G33z2IO7+b0PMntFqGTKjLNO/LY2AcFNAHa+Iyc7ZmM2JJz5sw+bfv4cvPbEPDb0mfOu8cnz4g3Nx/zUrsKIwRbLXWpwV3cTGLv04xuwuVOXMHjyQ75t1FrsFdSRxzvGbN5uQqorDV84p9fvzSuZJGA6R3taGfqQnx2GlhD9j5nooyMSzZtEOT5rSVCEizz8vfJxIRpo+Mlnw9BZHzIeBiJbmarG1YQBjNifUCdKlS4qds4KU2YszQNjaeCQMHTx/HB8ww+3hpxVnZRkqON0cnXqr3yl8gTjWP4ZFmWoo5VPfF8rUJOCfX1mHX7/ehMc/bMORHiP+fO1KZM0y6DmSOOdoHbJgdVGq35/DGENRehLaYyhOv2XIjH981I4X9nfD4nBjeYEOD1yzHJ9emhPUeTJ/TCzOtlRnh+U1ZiJ2qv3pnGVrEyBj1DkT7Tw+jI9aRvCTi6oC+rlZnK7CsNkBk80JjYQ/b8ncZnO6saNpEJcsz511i3EgxFCQuVqc9RlP/rxp7DOhrtj/v2ciQgwLmWjTJjp3JjHqnBFJGKyOmB5APdHS/PAMge4csSI9OR4qP/fOV+dq0am3RiUEY3JSo0hMbAzXubOmvjFUZqtnfI5SLsNPLq7CHz+/Ag29Jlz4xw+wp3UkLOsJRr/JBqvDHVDnDBDOncVC52zYbMc3n/0Ym3/3Hv65txNbqrPx0u1n4aXbz8Kly/PCVpgBwhmkwtSkqIWCNPSaIJcxX6z/TJRyGbI0FKcPCFtef/NmE/JTEnHtusKAPvdknH70v/dJ7PioZRgWhzssN2nmcihIvzckLE4u8/09TRYeKs6IJAxWJ1JVc+Ou6NLc8OxJ79Bb/NrSKBLPnR2NwtbGxn4TEpXy05Ily3xx+tK/kTJYHOg32bAkZ/Y3xgBwybJcvHzHWdAkKPCFR/fg0Z2tMRG33zIo/N6U+RkGIipOS0K3YRzOMG0ZnQ3nHM/t68Tm372HNw734/ZNZfjoB5vxh6uXY3mBLmLrWJyljlqc/tE+ExZlJCNB6d/2a4rTF7x6uA8NvSZ8d8vigM8diluYKRSETLT1yACS4xU4s2z2AfaBqsnTos84N0NB+ow2KOUMK4t0ONoXg9saSURQcUYkYbDMnc5Zhjoe2ZoEyYuzLv24X0mNomgmNjb2mVCRrYZs0nYSTYISWZr4sHTOxP3zE8NAZrM4S42X7zgL51Vm4hevNeKufx+SfF2Bah32xugH0TlzeTh6o9CJaRky45pHduOufx9GRZYar3/zbHz//CV+hzpIaUm2Gq3DFthdkY+ob+g1zjp8eqJcXSJ6FnjnzOHy4L6tx7AkW41LlwUe3FCYmgTGYjsMh0SW28PxduMANi3JDDlkaCpL53AoSL/RhixNAqpytDjWb4I7ism2JHqoOCOSMFgdMZ/UONHSPC2OSFgU2V1u9BoDK84y1QnIUMdHPLGRc47GvrHTtjSKyjKScSIMiY1N/cLvt7+dM5E6QYmHvrgK159RhOfru6M6Gw4AWgbNSPZGhAdCjN2P5Lkzh8uDP75zHJ++fyca+0y457M1ePaWdViUGdifgZQqstVwe7ivAxkpw2Y7Bkx2v86bifJSEtFvtC3oN0jP7utEp96Kuy5YctrNHH8kKOXI1SZSKAjxqW/XY8TiwPnVWWG5vvj/+Fw8d9ZnHEeONgGVOWrYnB76/2aBouKMhMzt4Rgdd8b8jLOJluZp0DJkhsXukuR63YZxcI6AijNA+Esk0tsa+4w2GMedqJqmSFqUmYyWQbPkWwib+saQqopDRnLg3RrGGK6pE8667GgeknRdgWoZsqA0QxXwrC9xy2ukzp3ta9fjM3/cid+/1Ywt1Vl4+7sbcM2awqDeYEtpife8V3OEz52JHepAOmd5ukS4PBwDUb4hEC1Whwt/fOc41pSkYmNFRtDXKU5PQittayReWxsGEKeQYWNFZliur05QonSOhoL0G23I1ib6bp7SubOFiYozEjLTuBOcAylJc+PMGSDsSedcuh98YlJjIGfOAKE4Oz5ohs0ZuS1e04WBiBZlJsNsd2FQ4v36Tf0mLMlWBz3AuDJHjSxNPN47Ft3irHXIjLIgkiwzkuORFCcP+/Yu47gTP/zPYVz50C6MO9x44sY6/OkLK5Gpjo3Ey+J0FZRyFvGYaPEmSLUfMfoicRB1NLaixoIPjg9j2OzAN84tD/r/W0AIBaFAEAIIOze2NvTj7EXpkg2ensrSORgKwjlHn9GGHG0CyrOSoZAxKs4WKCrOSMj0VgcAzJkofeDknnSp7qx1jvg/gHqi6lwt3B4e0S6C+MN+yXTFWYb0iY1uD8exgbGAzptNxhjDhsUZ2Hl8KGxz2GZjdbjQa7ShbIo5bbNhjKEoLXwznzjneO1QH877/Xt4dm8nbj67BNu+fQ42LQnP3elgKeUylGUk41h/ZN90NPQakZ+SCG0AN5HyxUHUC7Q4299hgFLOsLo4tDlUJekqGMedMFgcEq2MzFUNvSb0jI6HbUujqDZfCAUZNs+dUJBRqxN2lwfZmgTEK+Qoy0hGI4WCLEhUnJGQiX/hzpVAEADI0gjnvaSaM9aptyJRKQ94y140QkEa+8ZQmJo07V3LsjDE6XeMWGBzegI+bzbZhsWZMNlcONg1Ks3CAtTqTbEMdgZccVpSWIqzntFx3PxkPW7/5wFkaeLx8u1n4/9dVOX3WIdIW5Ktjvgg6qO9JlRNc0NiOmLnrHuBJjbu7zBgaZ7W73TL6YjnLdvo/MyCt62hHzIGnFcZ3uJM6huwkdDnHUCdoxV2OVTmqKOS5kyij4ozEjKDVZjTNZcCQQBgaa5Gsm0PHSNWbypZYFt/ClKSoI5XRDQUpNG7vXA6mep4qOMVaJEwFETcwlYZQucMAM4uT4dcxrAjSlsbxd+TYLY1AkJiY5feKlnAhMfD8dgHbfjU79/DRy0j+H8XVuKl285CTb7/W/eiYXG2Gr1GW8Rm/FnsLrSNWFCdG9jvS1KcAilJygXZObO73DjUY8TqotC6ZoCwlRWgWWdEOG+2ujgVaUGcPQ6EeOPzSPfcKc76TcLPmWxvcVaVq0G/yUYd5wWIijMSspOds7lz5gwQzp0dHxzDuCP0816degsKAgwDAQCZjKEyVxOxztm4w432Ycu0580AYftdWWaypJ2zpv4xyBhQnhVcUSPSJiqxslCHHc2DEq0sMC1DFshY4GcLRcVpSXC6pYvTf66+C//76lGsKUnFtm+fg5vXl0Ihj/0f675QkAh1zxr7TOAcASU1ivJSFuassyM9RjhcHqwqSg35WgUpSZAxmnW20LUPW3BsYAznh2Hw9GRzMRTkZOdM6NhTKMjCFft/i5OYZ5iDZ84AoDpPCw8XOkmh4JyjU28N+g17da4GTX1jEYnrPjYwBg+fPgxEVJYhcXHWZ0JJuirk7VEAsLEiE0d6TBgci3yCXuuQGfkpSUF/HUVpQgehQ6I4/VcP9aI0Q4UnbqwL6uZAtFR4O6iRCgU56n1zU50XRHG2QGed7e8wAABWSdA5i1PIkJ+SRMXZAre1oR8AsKUqvFsaRUvztHOqOOs32iCXMd/8SfHv6aNUnC04VJyRkOmtDsQpZEiKk36YZDjVePekN4T4w3tozA6b0xNCcabFuNONtmHpZ4tNJt6Bm+3szaLMZAyO2SXbdtbUPzZtAEmgNiwWIr13Ng9Lcr1AtAxZggoDERWnC98jUpw7G7U6sLtVj/Ors0NK0ouGXG0C1PGKiAXhNPSYkJKkRLYm8MTKPF0Segzjko+WiHX17QYUpSVJNqi8JD18YThkbtja0I/qXE3EbiTV5M2tUJA+ow2Z6njIveNO0pPjkaGOp1CQBYiKMxKyUYsTKUnKOfcGMUebgFRVXMh31sQY/WD/wolkKEhjnwnJ8Qrke4MOprPIGwrSIkH3zGx3oVNvReUM59wCUZWjQXpyfMTnnXk8HG3DwcXoi7LUCUhQyiSZdfZ24yDcHo4LIrBFSGqMMSzOVkesc9bQZ0R1rjaon1G5ugSMO92+s7ULAecc+zsMknTNRCXpKrQPWxdckUsEgyYbDnSORmRLo2iuhYIIM85OvYFUmaOhbY0LEBVnJGR6qwMpcywMBBDeIAqzUEL7wSduUSsKsjhblJmMOIUsYsXZkmz1rIOIF0mY2Cim8oUSoz+RTHYyUj8SW0FFvcZx2JyeoJMaAWHtRakqtEuwrXFrQz9ytAmojfHwj+lUeBMbw/1m3en2oLnfHNR5MwC+GxkL6dxZx4gVIxaHpMVZcVoSzHYXhs0UbrAQbTs6AAARLc7EbcxzJRSkzzjuS2oUVeaocWLQDGeUxseQ6KDijITMYJmbxRkgJDY2D4yFNAS6Q28FYydjtwOllMtQkaUOe2Ij5xxNfWN+xdkXpCQiTi7DCQkSG5u8Z/oqJOqcAcDGigyMWp0RjdRv8cboh7KtERDCRELtnFkdLrzfPIQtVVlzrmMtWpKthnHcKfmw88lODJrhcHtQFWRxlqcTbrospHNn9d7zZqslCAMRiYmN4Th39tqhPvxjV7vk1yXS2drQj+K0JCwOMRQqEJo5FAoiDqDO1pz6PqIqRwOH2yNpejKJfVSckZAZrI45FwYiqsnTwhXiEOguvRW52kTEK4I/c1ftTWwMZxeh2zCOMbtr1jAQAFDIZShOT5JkW2NT35hfWykDsb48HTIGvBfBrY3i70UonTNAeJPaMWKFJ4Su3/vNQ7C7PBG9Cy21xVlCsR7urY1iRzrYzpl402UhFWf7O/RQJyhQnindG+mSMMbpP/BOM3763wbUt+slvzYJnXHciV0tIzh/aeTPxwq7Y2K/OBuzu2B1uKfonFFi40JExRkJmcHqnHMx+iIp9qR3jFhQGOIB5+pcDUatTvQaw5dAKP5w96c4A4StjWK3KBRN3rlqUv6lrEuKw4rCFLx3LHKR+q3DZmgSFEhPDu1GRFFaEuwuD/pNwf9Zv3mkH7okJdaUSNfZiDQxTv9YiGmps2noNSJRKUdJenCFRkqSEolK+YLa1ri/w4CVhSmzbn8ORJ4uEUo5k3wQ9ajVgeYBMzgHfvDiYdhdoY9GIdLa3jQIl4dH5WZSTZ4WvUYbRmI8FKTf+3d/1qTirDRdhTiFjEJBFhgqzkhIPB6O0TncOctPSYQ2URnSnbVO/XjIxVlVrjTJkTNp7BsDY5hxAPVEizKS0TFiCenNDufcm9Qo3ZZG0YbFGTjUY4zYX7otgxaUZSaHXGQWe+P0g02uc7g8eKdpEOdVZs2JmWbT0SXFIUsTH5HO2ZIctS8BLVCMMWHW2ag04w9indHqRPOAWZLh0xMp5DIUpCZJ3jk70ClswfzaxjKcGDTjz9tbJL0+Cd3Whn5kquOxPF8X8deeK6EgJ2ecnVqcKeQyLM5Kps7ZAjN3/2YnMcFkc8LDMWfPnAmhIJqgQ0EsdheGzXYUBhmjL6rMUYOx8CY2NvaZUJymQlKcwq/nl2Umw8OB9uHg35T2Gm0Ys7kkCwOZaGNFBjgH3j8ema2NLUNmlAbZfZlIHLkQ7Kyz3a0jGLO55vSWRtHiLHVY4/Q552jsNQW9pVG0kGadicXOqmJpizMAKElTSX7mbF+7AQoZwzfOLcflK/Lw1x0nfCFEJPpsTjd2HBvCluosSTux/hJDQQ7HeChIv1H4+TLVuI/KbEpsXGioOCMhEeOlU1Rzc1sjINxZO9Y/Bocr8DQkMUY/1M5ZUpwCpemq8BZn/SZUBtDBEiPjQzmI3OTbSil952xprhbpyXHYcSz8xdmYTQiuKMsMLQwEAHK0QthKsJ2zrQ39SIqTY315eshribYl2WocHzCHLXWzSy+cs6zODS3RMi8lccFsa9zfYYBcxrC8QCf5tYu9s85COW852f52A5bmaZEYJ8ePL6qCOkGJu/59KKJJrmR6O48PY9zpjtrNJE2CEiVzIBSk3yjsAMmaqjjL0WDY7MDgWPiOPZDYQsUZCYneIsQiz9XOGSC8yXe4PUHdwReLs2AHUE9UnavF0TAlNprtLnSMWFEZQAerLCMZjIUWpy9uWRPDH6QkkzGcU56B95vDH6nf6ktqDL1zJpcxFKQmoiOIjqTHw7Ht6AA2VmQgQTm3hr5PpSJbA7vLE7bhxGIC6mxD12eTp0uEweqE1eGSYlkxrb5Dj6ocjd8d9kAUp6tgc3owINGbTLvLjYPdo74tmKmqOPz04ioc7Bql9MYYsbWhH5oEBdaVpkVtDXMhFKTfNI705HjEKU5/W34yFIQ6wgsFFWckJIZ5UJzVePekB/PDu9M34yz0jkp1rga9Rpvv91RKvlljAbxJTYyTI0+XGFJx1thnQkFqItQJ4emsbqjIgMHqDPtd0dZh4fcg1Bh9UXGaKqiC5OMuA4bG7PNiSyNw8vxjc5i2oTX0miCXsZDHOOTppJ919n97O/HrNxpjan6R0+3Bwa5RSeebTVQqcZz+kR4THC4PVhefDMa5ZFkuNlZk4Ldbj6HbsDDOCcYql9uDdxoHsLkyC8oono+tydPEfChIn9F22nkzkXhz6WgEZqGS2EDFGQmJwSoUEnM1EAQQtiSq4xU4EkTXqlNvhSZBAa0EaZXi1qtwbG1sDHJ7YVlGcsids3CcNxOtL88AY8COMKc2tgxaIJcxFEpQhAMn4/QDHZ2wtWEASjnDpiWZkqwj2hZlJkPGwhen39BrxKKM5JC7jGKcfreE587+9O4JPPxeK7729P6Q5ixK6WivCTanJ2zFWbEvTl+aokmMzp+4XsYYfnl5DQDgh/85EvYh52R6e9v1MFidOL86K6rrmAuhIP1GG7KnKc60SUrkahPo3NkCQsUZCYlYnM3VKH1A2B5XnafB4SBCQTr0VhSlSfOGXRySG45h1I19JmgSFL4OgL8WZSajddgc1BkRm9ON1iEzKiUcPj1ZqioOy/J1YT931jJkRlFq0pRbToJRnJaEcacbQwEMYOacY2tDP84sS4cmTJ3ISEtQylGcpgpbgMPRvtDDQICTnbNeiYqzboMVPaPjWFeaineaBnH943thsjkluXYo9ovDp8MQBgIAOZoExCtkaBuWZqBufYcBJekqZKjjT/l4ni4Rd55fgfebh/DywV5JXosEblvDAOIVMpyzOCOq61gawu6YSJmpcwYI7w+oOFs4qDgjITFYnVDKGZLjpT+fEElLc7Vo7DMFvMWoU4IZZ6JUVRxytAlh65wtydEEHAO/KDMZNqcnqKS6E4NmeLhwriicNlZk4JPuUd/5x3BoHbKgVKItjQB8BX17AImNTf1j6BixzpstjaKKbDWOhSGxcdhsx4DJ7rvpEYosTQIUMibZtsY9rULH56cXV+OBa1bgQIcBn39kN4ajvO1qf4cBebpE5GilGxg/kUzGUJSWhDYJOmecc9S366ft8l13RjFWFOrws1caYno723zFOce2hn6cszgjLOcXAxHroSBWhwvGcee0nTNAOHfWOmyJmS47CS8qzkhIDBYHUpLiJB0wHA01+Vo4XJ6AtvC5PRzdhvGQY/Qnqs7VSN4583iEWWPBhCIsyhQCME4Ekdgo3uULx4yziTZWZIJzYGeYIvXdHo62YYskYSCiYGadbW3oB2PAp6qiu0VIaouz1Ggfkf5Nh3iTQ4riTC5jyNYmSBanv7t1BLokJSqy1LhkWS4evWE1WobMuPKhXejSR+ecFOcc9R16rAzTlkZRsOctJ2sZssBgdaJumi6fXMbwmytqYba78L+vHg359UhgDvcY0Wu0xczNJCEUJDY7T/3TzDibqDJHA7eH4/iANF1nEtuoOCMhMVgdczoMRBTMtofe0XG4PBxFEnXOAGEYdeuwRdJUuE69FVaHO6g4e1+cfhDnzpr6xxCvkPkKkXCpzdMiVRWH98K0tbHbYIXD7ZG0c5arEzoxgQzk3dowgFWFKadt4ZrrlmSrwTkkf9Mh3uSozgktRl+Up5MuTn9Pmx5rilN9c582VmTimZvXYsRsx5UP7cLxMM5+m07P6DgGTHbJh09PVpKhQueINeSE1f0d4nmz1GmfszhLjds2LsJLB3uxPcznUueLZ/d24rdbm0L+89na0A+5jOG8ytg4H1uTp0HP6HhMdlHF4ixbM33H+mRiY2wWmERaVJyRkBgszjk940xUkqaCKk4eUHEm1YyziapzNeBc2shcXwcriO2Fqao4pKrigpp11tRvQkW2GvIwDx6VyRjWl6fjveYhSecniaSM0Rcp5DIUpCb5PYi6c8SKxj4TLlgaG3ehpSQmKTb1S/um42ivCfkpiZKE9QDeWWcSdM56R8fRqbdi7aRo8VVFqXjuq2fAzTmufHgXDnaNhvxagRDPm4UrDERUkqaCw+0J+fzevnYDUpKUsyao3rapDOWZyfjRi4dhts//UQih6DZY8ZP/NuDP21vw7ecOhpQk+uaRfqwtSYUuRm7exnIoSJ8fnbOi1CQkxclxlIqzBYGKMxIS/TzpnMlkDNW5WhwJ4LyXrziTeFsjAEnnnTX2j0HGEHSc+KIgExuP9Y/5otLDbWNFBkYsjqASN2cjFqZSFmeAMBvP3+1dWxv6ASBmtghJqShNhXiFLKg5gzM52itNGIgoX5eIAZMt5Oj7PW0jAIC1Jad3fCpzNPj3rWdCk6DEF/62Gx8cHw7ptQJR325AUpw87P/PFksUp7+/w4BVRamzbqmPV8hxzxW16DPZcN/WYyG95nz3+23NAIBbzinFfz/pxR3/PACHK/Dv9xODZrQMWWLq51Ush4L0m7ydsxmKM5l3JAh1zhYGKs5ISEatDqTM4Rj9iarzNDjaa/J7O0fHiBVKOZP08HyeLhHaRKWkoSCNfSaUpKuCjhMvywy8OBsas2PY7AhrjP5E5/gi9aXf2tgyZEZKklLy7/PiNP/j9Lc29KMyR4MCCbu0sUIuYyjPSpY0Tt9id6FtxIIqibY0AkLnzMNPbkEK1p5WPTQJCt82pckK05Lwwq1noDA1CV/++z68cbgvpNfz1/4OA1YU6qAI8zyqkvTAz1tONjRmR9uwZdrzZpOtKkrB9euK8OSudl+HkJzqSI8R/znYgy+fVYIffqYSP7moClsbBnBrEKMexJtJW6IcoT+RJkGJ4rSkGO2cjSMlSTnr39GVOUJiI42HmP+oOCNB45zDYHUiZQ7H6E9Uk6fFuDf+3R9deivyU5Ik3bbHGPOGgkhbnE33RtAfZRkqGKzOgPbqi1vUwh0GIkpLjkdtnhbvNYejOJM2DERUlJYEs92FkVlSJofG7NjfaYj6rKBwqsjSSBqnL7yBgaSdszydUBh3h3jubHfrCNaUpM74cyNTk4DnbjkDNfla3P7PA3h2b2dIrzkbs92Fpn7TjOe3pJKpjkdSnDykzlkwkf/fv2AJcjQJ+MG/DwXVDZrvfvNmE3SJSnxtYxkA4Mtnl+CXly/Fu02DuPnJ+oDOQW9r6MeyfG3YUj+DFauhIMKMs9l/rypzNDDZXOgN8QYRiX1UnJGgmWwuuD18XmxrBALfk96hly5Gf6LqXOGNaqjbpwDAZHOi2zAeUnEmJja2DPn/ZqrJe2YuUp0zANhQkYmPOw0YtUobqd86ZA5LcSYGpXTM0kF46+gAOMe8PG8mWpKtxuCYHQaJxiGI5zKq86T7/svVCVuOQjl31m+0oX3EinWTzptNRZukxFM3rcH68gz84MXDeOi9lqBfdzYfdxrg4Qh7GAgg3IAqTlMFFIYzWX27HnEKme9ntj+S4xX45eU1OD5oxl92nAj6teej95uHsPP4ML5+bjm0iSdvtl67tgj3XbkMH7UM48bH92HMj1l8fcZxfNJtxJYY2tIoqs3Xomd0HINjsVXczDbjTFTlvdnZGIZxOyS2UHFGgia+kUqdJ9sayzKSkaCU+XVnjXOOjhFrmIozLRzuwGL9pyMWScHE6It8cfoBrKex34QsTXxEvzc2LM6AhwM7JTynY7Q6MWx2SJrUKBLP3rTPMvPpzYZ+FKUloSIrMl3IaFjsPeck1byzhh4TUlVxyNbM/obHX7kSDKI+ed5s9uIMAJLiFPjb9atxybJc3PNGE379emNYtjTt7zCAMWB5oU7ya0+lJF0V0Iy/yeo7DFiWr0W8IrCt2puWZOLS5bn48/YTUUnEDNSgyYafvdKATz+wM2wjFtwejl+93ojC1CR8cV3RaY9/blU+HrhmBfZ3GnDdY3thHJ+5QNvWMAAgNs/HbqwQkiP/vb8nyis5ldA5m/1nlTgzlM6dzX9UnJGgGbwdivnSOZPLGKpyNH4dGDaOOzFmc6FIwjAQ0clQkNB/AEsxayxXm4hEpTyg4qypbyzsw6cnW16ggy5JKem5s5bh8ISBAML5QrmMzdg5M9mc2NUyjPOrs+f8LMGZiCEUUm1tbOgzoiqIoeszSVDKkZ4cH1Kc/u5WPdTxioBmr8UpZLj/6uW4bl0RHn6/FT/49+GQY84n299hQEWWGpqEyGxRL05PQqfeGtTugHGHG0d6jFhdHNwWzJ9cVIXkeAXu+vchyX8fpSIWZevv3Y5/7OpA27AZ337uIFwS7KaY7D8f96CpfwzfP78CcYqp3xJevCwXf7l2JRp6jfjC33ZDP0OHe2tDP8oyVL6berFkcZYaZ5al4ald7WH5vQyGzenGiMWBHD9uJCXHK1CUloRGiZNtSeyh4owEzVeczZPOGSCcO2voNc4ayS5GoIcjoKHU28GT4txZY58JuiRlSB0EmYyhNEPld5y+09v1q4xQUqNILmNYX54haaS+ON+tLAxvNOIUMuTpEmfsIGxvGoTTzef1eTNAOIekS1JKEgridHvQ3G+W9LyZKNQ4/T2tI6ib5bzZVGQyhp9fWo1vnLsIz9V34Z43GoNew2RuD8fHnaMBnd8KVXGaCm4PD+r83ifdo3B5eNBbMNOS4/Hji6pwoHMUT+/uCOoa4TI4ZsP/vnrUV5RdsiwX27+7Efd8thb1HQb8ZYe0W1ttTjd+t+0YluVrcWFNzozPPb86G3+7fjVODJpxzSO7ptwaaLA4sKdNH5NdM9ENZxaj12jD240D0V4KAGDQJJzl9qdzBgCV2RpJR+2Q2DRrccYYK2CMbWeMNTLGGhhj35z0+PcYY5wxlh6+ZZJYpLcI2xvmSyAIAFTnaWFxuNE2yzkgMUY/HJ0zsYO38/hQyHf3GvvHUJkdegdhUQCJjW3DFjjcnoiFgUy0cXEGhs12yWbBtA5boJQzFKSE52B7UVrSjJ2zrQ39yFDHY0VB5N44RwNjDIuz1JLE6R/uMcLh9gTUnfJXvi744mzQZEPrsGXKCH1/MMbwnS0V+OzKPDy9u1Oys5XH+sdgtrvCPt9sInGbcDDnzurbxeHTwa/38hV5OGdxBu59s0mS2XWhGhqz4xevHsU5927H3z9qx8XLcvHOdzbgt1cuQ2FaEi5bkYfLlufigXeOS5o2+cSH7egz2vA/n6n0DUSfycaKTDxxYx269OO45uHd6DOe+nv3TtMg3B4e08XZeZVZyNMl4okP26O9FADw/R76G55SmaNB+4gFFprZN6/50zlzAfgu57wSwDoAtzPGqgChcAPwKQDhjZIiMWl0nnbOgNlnoYRjAPVEN68vxfFBM54K4c6u28NxrD+0pEbRooxk9IyO+5XYFcrQ61CdszgDACRLbWwZNKMoTRW2ePHiNBXahi1TniOyOd3Y3jSELVVZfr1xmuuWZKvR3D8W8pmqv2w/AXWCAhsXZ0q0spPEzlkwndk9bUJR4U8YyEy+ek4Zxp1uPLNHmr9293cI61odgaRGkRiGE0xiY32HAeWZySENN2aM4ZeXLYWHAw++czzo64Rq2GzHL187ivX3vovHP2zDhTVCUXbflct8Z1JFP79sKXK0CfjWcx/7FcwxG73Fgb9sP4HzKjMD+p48c1E6nrppDQbH7Ljq4V2nnIXb2tCPHG0CavOlG2EhNbmM4fozirCnTR8TZ7f8mXE2UWWOGpxD0tEjJPbM+o6Dc97HOT/g/e8xAI0A8rwP/wHAnQBic+M2CSu9xQGFjEEdr4j2UiSzKDMZcQrZrMVZx4gF6cnxSIoLz9f+6aXZ2LA4A7/b1hz0XKX2EQtsTg8qJehgiecHWv1IbGzqH4NCxsJyTms2Gep4LM3TYMexQUmu1zJkRlkYwkBERWlJMNlcGLWe/mZr5/FhjDvdMX0XWkoV2WqM2V0hdTIOdBrwduMgvnpOKbRh6Ojn6RLhcHkwbPF/rIRod+sIkuMVIW+3rMhW45zFGfj7R+2wuwKbPzWV+g4DMtXxyA9Td3gqqao4qBMUAc8683g49ncYgj5vNlFBahLOWpSOvd6iOZKGzXb86vVGrP/Ndjz2QRs+szQH73x3I3531elFmUiToMT9Vy9Hj2EcP/1vQ8hrePDd47A4XLjrgiUBf+7q4lQ8c/NamMZduPrhXWgbtsDqcOH95qE5cT726roCJChlePKj9mgvBX3GQIszCgVZCAK6HcwYKwawAsAextglAHo455+EY2Ek9hmsTuiS4mL+B3EglHIZKnM0s8bpd+qtYdnSKGJMOGPidHvwv68eDeoa4g9vKTpnZb44/dm3Nh7rH/MVudGwcXEmDnSOzpoqNhun24NOvRWlYSwyxQ7CVG9Stzb0Q52gCLnTMleIoSChbG383bZjSFPF4UtnlUi1rFPkeRMbgwkF2dOmx+riFEm6sF9ZX4KhMTtePtgb8rX2dxiwqigloj/HGWMoSVcF3DlrHhzDmM0lWeT/ikIdWoctko1wmM2I2Y5fe4uyR3e24oKl2Xj7Oxvw+6uX+4Zzz2R1cSruOLccLx7owX8/Cf7PvmPEgqd3d+DqugKUB5kCu6xAh//7yjrYXB5c9fAuPP5BG+wuT0wNnp6OLikOl6/Iw0sHeyL2Zz+dfqMN6ngFkv28yZ2fkgh1goKKs3nO778lGGPJAP4N4FsQtjr+CMBP/Pi8Wxhj9Yyx+qEh6QfEkugxWBxIVc2f82aipbkaNPSYZty61BmmGP2JitJU+Pq5i/Da4b6gOkGNfSbIZUyS1KziNBXkMubXubOmPpPvjXY0bKzIgNvD8eGJ0CL1u/RWON08rB3A4nThe6hjUiiIy+3B240DOK8yK2pFbqSJbxKD3a7z0YlhfHhiBLdtWgRVmLr5ed7uUqDdvaExO04Mmv2O0J/N2YvSsSRbjcd2toW0DXTAZEO3YTyi581E4pbeQOxrF85b1UnQOQOAlYXC132wa1SS682kzziOjfftwCM7W3F+dRbe+s4G/OHq5QHf/PnGuYuwolCHH/3nMLoNwcXr/3brMShkMnzrvMVBfb6oKleD525ZBwC4b1szUpKUWCPRn0243XBmMWxOD56r74rqOvqM4353zQDhxkZljoaKs3nOr7/1GWNKCIXZM5zzFwGUASgB8AljrB1APoADjLHT9t9wzh/hnK/mnK/OyMiQbuUk6gxWR0j7/mNVTZ4WY3aX71zZZHaXG30mW9iLMwD4yjmlKM1Q4ScvN8DmDGwLU2PfGMoyVEhQBjYLaCpxChmKUpNmLc6MVid6jTYskaBbF6zlBTpoEhQhb20Uh26HY8aZKD8lCYyd3jnb26bHqNU571MaJ9IkKJGnSwwqTp9zjt9uO4YcbQKuXVsYhtUJfMVZgJ0zcevc2lJp3rgyxnDz+lIcGxjD+yHM9av3FjtSbBMMVEm6Cr2j4wFtzdzfrkeGOh4FqdJswazN10LGhCHc4fbesSGM2Vz411fPwP3XrAj6po9CLsMDV68A58B3nvsk4HEAB7tG8eqhPnxlfQmyJJgDWJ6lxvNfPQOFqUn47Mr8sJ3PldqSbA3WlabiqV0dUY3V93fG2URVORo09Y9JlkpMYo8/aY0MwGMAGjnnvwcAzvlhznkm57yYc14MoBvASs55f1hXS2KKwepA6jwszpaKoSC9U29t7DaMg/PwJDVOFq+Q4xeXLUWn3oo/bz8R0Oc29UkTBiIq8yOxsalfDAOJXudMIZdh/WIhUj+UrkKrdwtnWXr4OmcJSjlytYmndc62NvQjXiHzBZwsFBXZ6qCKs3ebBvFx5yi+fm65JDcjpqNJUEIdrwh4EPWethEkxcl9gUNSuGRZLjLV8Xh0Z2vQ19jfYUC8QhbSkPpglaSr4OEIaLjyvnYD6oql24KpildgSbYGBzpHJbneTOo7DEhVxUnSpSxMS8LPL63G3nY9/rrD/78XOOf49euNSE+Owy0bykJeh6gkXYUd39uIH32mUrJrRsKNZxajZ3QcbzdKc0Y5GH1GG3ICLM4qc9SwOtzT3kAmc58/tzjOAnAdgHMZYwe9/3wmzOsic4De4kTKPNzWuDhLDaWcTXvurHMkvEmNk51Zlo7PrsjDQ++1+B1nP2p1oNdok7Y4y0hG+4hlxruM4pY0KV83GBsWZ2DAZA9pHkzLkBnpyfFhCZaYqDg96ZTOGecc244O4JzFGWELnIlVi7PUaBkyBzSc2OPhuG9bM4rSknDl6vwwrk4QzKyz3a0jWFWUAqWEXYU4hQw3nFmMnceHg97itL9Dj2UFuqhsnRWDL9qG/XuD2WccR8/ouOSpkisKdTjYNRr2gdT17XqslvBs3+Ur8nDxslz84e3jfm/LfLdpEHva9PjmeYv9PuPkL5mMzblUWTFWP1rBIE63B0NmO7L9jNEXUSjI/OdPWuMHnHPGOa/lnC/3/vP6pOcUc85DO+BB5hTOOUatDqTMw85ZnEKGimw1Gnqm/sHni9GPQOdM9MMLK5GolOPHLx3xqxskFiVSFkmLMpPhdPMZ79Y19QtDrzPV8ZK9bjA2ejtOO5qDuyPKOcfxQXNYtzSKitJUp3TODnUb0We04YIFktI40ZJsNZxuHtBZpNcO96Gxz4Rvn7dY0uJnOnm6xICGJ4+Y7WgeMIcl2OXatYVIVMrx6M62gD933OFGQ69JsnCNQJX44vT9u+F0cgumtOtdWZgCs93l942vYAyN2dE+YpV07Ywx/OKypcjWJOCbz34M8yxzr1xuD379RhNK01W4pq5AsnXMZQq5DF9cV4RdrSO+XR+RNDRmB+cIuHO2OEsNGaPibD6bG5uDScwZs7vg8vB5WZwBwrmzwz3GKQuhjhErEpVyZCRHrgBJT47HXZ9egl2tI3jpYM+szz+Z1Cjd9kIxWGSmNzGNfWNYkq2OeoJnpiYBVTkavHcs8BCiA50GfOFve/Bx56gvMCCcitOSoLc4fOmSbzb0Qy5j2Fwp/ZyuWFeRHVgoiMvtwR/easbirGRcvCw3nEvzCbRzttc330z6c126pDhctTof//2kBwOmwEZufNI9CpeHRyUMBAC0SUqkJCn97pzVt+uRFCeXfAvmikIdAOH/+3DxzZKT+GyfNlGJP1y9HF16K342S7z+v/Z348SgGXdesCQiNzHmimvqChCvkOHJj4KfKRqsQGP0RQlKOUozknE0hJ0hJLbR/6EkKKMW4Y3kfBpAPVF1rhbGceeUd8g79UJSY6QLkM/XFWJFoQ6/eLURxinmYk3U2GdCenIcMtWhH/gWifO+WqaZdebxcBzrH4vK8OmpbKzIwP4Og98DW5sHxvCVf9Tjs3/5CM0DY/jpxVX49qfKw7xKoXMGnNwuu7WhH+tKU+dl2M5syjKSoZAxNPtZnL34cQ9ahy347pYKyCO0pSpPl4gxmwsmP7+v9rTpkaCUoSZPF5b1fPnsErg9POCtWfs7hGIkWsUZIJxVavezS1rfYcDyAp3kgRMl6SrokpRhDQWpbxfO9i3NlX4485qSVNy2cRH+tb8brx3qm/I5VocLv3+rGauLUhZUyJA/UlRxuGx5Hv7zcfesf69KTZxhGmjnDAAlNs5zVJyRoOitwmyQ+RilD8B3cH+qYdSdektEtzSKZDKGX15Wg9FxJ36ztWnG5zb2myQvktQJSmRp4qftnHXqrRh3uiXt1oViY0UmXH5E6nfprfjO8wdx/v3vY3fLCL77qcV4/85N+NJZJYhXhC9cQiTOOmsbseDE4BhahywLZvD0ZHEKGUrSVX51zuwuNx54+ziW5WuxpSpybzgDTWzc3TqC1UWpYTvXVZSmwvnV2XhmTyesjpm3tk1U367HoszkqN4EKE5X+TWI2mx3obHPFJZUScYYVhTowhoKsq/DENazfd88rxzLCnT4nxcPTRlW8+jONgyN2fE/n6mM+q6GWHQyVr8zoq/bZxT+rHI0gaePVuao0TM6HvI8TxKbqDgjQTF4i7P5ene/IlsNhYydltjIOfd1zqKhKleDG88sxv/t7Zx2G47L7UHzgDksRdKizGScmGYQ9cmkxtjonK0o1EEdr8COabY2Do3Z8dOXj+Dc3+3Aa4f6cMv6Urx/5yZ8fXN52OZkTUX8XuoYtmBrwwAAYEvVwizOAG9i48Dsd4Sf3duFntFxfHdLRUTfcAYyiNpgcaCpfwxrS8IbVX/z+lIYx534V323X8/3eLgwfDoC23ZnUpKmQp/RhnHHzHH6H3ca4OEI2/m4lYUpODFoDssb3XGHGw09xrCe7VPKZXjg6uVwezi+/dzBU8JNhsbsePi9Fnx6aXZUu6SxrCpXgzUlqfjHro6wB8NM1G+0IVEphyYx8L9vxPPkTdQ9m5eoOCNBMVi8nbN5WpwlKOUoz1Lj8KRQkKExO2xOT0Ri9Kfz7U8tRpY6AT/6z5EpkxPbhi1wuDxhSUxclJGMlkHzlGfxmvrHwJhwWDkWKOUynF2ejh3HTo3UN447cd/WYzjn3u14ek8nPreqAO99fxP+5zOVUdmmmxgnR7YmAe0jVrx5pB/LC3QBn0GYT5Zkq9GlH4dlhoADq8OFB989gbUlqVhfnh7B1QU2iHpvu/e8WZn0YSATrSpKwcpCHR77oM2vN5ctQ2aYbC6skjhcI1BiYuNs3bN97QbI2MnzYVJbWRS+YdQHu4SzfVINzp5OcboKd19SjT1tejz8fovv4w+80wy7y4Pvn18R1tef6248sxjdhnG80zgQsdfsMwkx+sHcXKqixMZ5jYozEhS9tzibr4EgAFCTp0HDpFCQDm9SYUGUOmcAkByvwN2XVKGxz4S/T3HO5KgvDET64qwsMxlmuwuDY/bTHmvqG0NJmgqJceHfCuivjRUZ6DfZ0DxgxrjDjYfea8E5927Hn7afwHlVWXj7Oxvw68/WRL0YKkpLwp62ERzuMS7YLY0isbhvHph+a+OTH3Vg2GzH98+PbNcMANJV8YhTyPwqzna3jiBeIUNtvvRnjSb7yvpSdOqteOvo7ONG673nzaKV1CgqEYuzWc6d7e/QY0m2BuqE8Gyjr83XgoVpGHW9t0CPRLjQ51bl48KaHPx+WzMOdY+iZciM/9vbhS+sLURpkEOvF4otVVnI0SbgyV3tEXvNYAZQizLV8UhVxYU0LobELirOSFBGrU7IZQzqhPk7h2lpnhYjFocvUQk4GdpQFMXiDADOr87GpooM/OGtZt++dVFj3xiUcoayMPxlvChj+sTGpn4TlsTIeTPRhsVC4uE9bzRiw2+34543mrCiUIdXv342Hvz8Ct+bw2grTlP5wmcW+oF9cVvsdMOoTTYnHnqvBRsrMsJyBmk2MhlDrjbBr+JsT6seq4pSInJ2cUt1NgpTk/A3P2L169uFgcjR/v73zTqboXPmcnvwceco6sLY5VMnKFGRpQ7LubP6DgMqstRhn5cICOfnfnV5DTLU8fjmswfxi1ePIlEpxzc2hz/YaK4TY/U/PDEy440hKYVSnDHGUJmj9t2MJfMLFWckKHqrA7pE5ZwbOhmIpVOEgnTorWAMyE+JbnHGGMPPL10Kl4fj568cPeWxxj4TFmWqw3L4fLo4fYvdhQ69NWbOm4mytQmozNFg+7EhFKQm4blb1uHvX1rj+7ONFeKb1MVZyQv+Dnd+SiKS4uQ4Ns0bpEd3tsE47sT3tkRvm1ZeSuKsZ86MVica+01YWxLeLY0iuYzhy2cVY3+HwZfEOJ0DnQasLJRuIHKwkuMVyFDHz9g5a+wbg9XhxqowF+IrCnU42GmAR8IzR24Px4EOg+Sz2WaiTRLi9dtHLNh+bAi3bihFegTHvsxln19TiDiFLCJDqd0ejgHvtsZgVWZrcGxgbMrjDWRuo+KMBGXU6pi3MfqiymwNZOzU4qxzxIJcbWLYUrcCUZCahG9sLscbR/rxbtPJffKNfSZUZoeng5Whjoc6QXFacdY8MAbOhfNCseYPVy/D0zetxQu3noG1YRgELIVi7xnGhb6lERA6U+VZ6ik7ZyNmOx7b2YrP1GRHtcDO080+62xvux6cA2vDMN9sOleuLoAmQYFHd7ZO+5xhsx1tw5aIFgwzKUlToX2GWWf7vNsCw9k5A4AVhSkw2Vxo9XMotj+aB8YwZndF/Pd6XWkavrelAkvzNPjy2SURfe25LFUVh0uX5eLFAz1hj9UfMdvh8nBkawNPahRV5WrgcHnQ5uc4CjJ3RP8dJpmT9BbHvA0DESXGyVGeqcaR3pPbBqKZ1DiVr6wvxaLMZPzk5QaMO9wYMdsxOGYPy3kzQOjYlWUko2VSYqMYfR5rnTNAWNPZ5elR7xLMZFVxClYU6nDFyvxoLyUmLJmmOHvovRaMO934zqcWR2FVJ+XpkrzhQNOnDO5pHUGcQoblBbqIrUsVr8C164qwtaHftwV7sv0xct5MVJyehNYZ3lzu7zAgT5eInBDexPpjpW8Y9ahk1xTPm60uivz229s3LcKrX1+PpLj5e/QgHG44sxjjTjf+tb8rrK8jHpfI0YTQOfP+PU9bG+cfKs5IUAwWJ3QR2EMfbdV5Ghye2DnTW6Oa1DhZnEKGX1y2FN2Gcfxp+3Hf4eBwFWeAN05/Uuesqc8EVZwc+SnhfQM1X2WqE/Cf287ybW9c6Cqy1RixODA0IXim32jDP3Z14PIV+ViUGd0OrZjYOPE86mS720awokCHBGVkA3JuPLMYchnD4x9OffbsQIcBcXJZzGztLU5XYdhsn3JYPOcc+9r1Eek8laYnQ5OgkDQUZF+7AVmaePq5OIcszdOirjgFT+5qD2usvvizI5QwqrKMZCjljEJB5iEqzkhQDFYHUuf5tkZAGEY9NGbHgMkGi92FYbMjqkmNU1lXmoYrVubjkfdb8convQAQ1kHQizKTMThmh2nCm6nG/jFUZKvn9RlEEjni9tiJB/MffPc4PJzjW+dFP9xgtllnJpsTR3tNWBeFbbRZmgRcvCwXz9d3Tbk1q77DgKV5mogXjdMp9d6Q6Jii09dtGMfgmD0iXT6ZjGF5YQoOdIxKds39HQasLk6N6a49Od2NZ5agSz+O7U2DYXuNfnEAdQjFWZxChkWZaorTn4eoOCMB45zDYHXM2wHUE00MBen0xujHUudM9MPPLEFSnALP1XchUx2PtDAeAJ+c2Mg5R1OfCUvC2K0jC8tib3EmbpftHLHiuX1duLquICZujuT7Zp1NvXWwvl0PT4TPm030lfWlsDrceGZvxykftzndONxtjErK5XR8iY1TbG0Uz5tFar0rC3VoHhybsosXqN7RcfSMjsfM9lHivy3VWcjWJEw5qkYqfSYb4uSykG9yV+ZQcTYfUXFGAmZxuOF0c6Sq5v+2xqocDRgDDvcYfXd2Y+nMmSgtOR4/+PQSAOHd0ggIs84AoMVbnPUZbTDZXGELISELT3pyPNKT43CsX3jTcf87zZDLGL5+bvS7ZoCwFUnGpu+c7W7VI04ui8hsq6lU5miwvjwdT37UDofrZJJbQ68RDrcnauuaSlHq9LPO6jsMUMcrIjbYfkVhCjgHPukyzv7kWYiz5MI9fJpITymX4YvrCvHBiWGcGAzPlsF+ow1Z2viQu6pVORoMjtkxYj599iiZu6g4IwEzeAdQL4TOmSpegdJ0FY70mNAlds5SY/Nc0NWrC3DlqnxcsSq8oRIFKYmIk8twwhsKIgY3UOeMSKkiW41jA2YcHxjDfz7uwQ1nFiMrhMPzUlLKZcjSJKB7msTGPa0jWB6F82YT3by+FAMmu2+rMyDMNwOAVTHUzUmMkyNHmzBl56y+XY+VRSmQR2i7tBjeIsW5s/p2PVRx8phMsCWzOxmr3zH7k4PQZ7QhRxP6WUTxZiydO5tfqDgjATNYheJsvqc1imrytDjSY0SH3gJtojIiw0SDIZMx/PbKZbhkWW5YX0chl6EkXeXrnDV6uxsV9CaESGhxlhrHB8Zw37ZjUMUpcOuGsmgv6RR5ukT0TlGcjdmcONxjjNqWRtE55emoyFLjbztbwbkQbFDfYUBxWhIy1LE196o4TXXaIOpRqwPNA+aIbgvUJiqxKDMZByQpzgxYUZgChZzeZs1FacnxuLg2F/8+0H3K+WqphDKAeqKTxRltbZxP6KcGCZje2zmb73POREvztOg32XCgYzQmtzRGw6LMZLQMCW+mmvrGkKdLhCYhNotWMjctyVbD6nBja8MAbjq7JOYCiHKnmXVW32GAhyMqYSATMcZw0/oSNPWP4cMTI+BcGIi8Moa6ZqKSDNVp2xrFAinS5+NWFurwcdeor6ANhsnmRFO/KWZmyZHg3HhmMawON/5V3y3pdTnn6DeGNoBalKqKQ5YmnoqzeYaKMxIwsXOWEqMdJKmJoSBH+0wojMEwkGgoy1ChY8QCu8uNpn5TWNMhycJU4Z2Zp0tS4ub1sTdINy8lEX2jttPitne3jkApZzFxruvS5bnIUMfjbztb0T5ixYjFEZWZW7MpSVPBYHWeki65r90AhYxFdE4cIJw7G7U6Qxrs+3HnKDw8OvPNiHRq8rVYVZSCf+xqh0fCWH29xQGH2yNJ5wwQumc062x+oeKMBMxgEf4CjbU72eFSlXvyLBV1zgRlmcnwcKC534yWIQttaSSSq8hSQ5ekxLc2l0Mdg13ZPF0iXB6OwbFTZ53tadVjWb4OiXHRj6qPV8hxwxlFeK95CP+3txMAYrKb40tsnLC1cX+7AdV52oj/PopF9cchDKPe366HXMaw3DvYmsxdN55ZjI4RK3Y0Sxer7xtALWFx1jJkPiX8h8xtVJyRgBmsDsgYFsw2Nk2CEiXeNw9FVJwBELY1AsCbDX1weziWZFMYCJFWYpwc+350Hm48K/a6ZsDJQdQTExstdldMnDeb6Nq1RUhQyvC3na3QJCh8ozBiSUm68HO1bVg4x2p3uXGwezQqMfTlmclQxytCOne2r92Ayhw1kuMVEq6MRMMFS7ORpYnHEx+2S3bNft8AammGk1fmaOB0c994GzL3UXFGAibOOFtIA4ervd0z2tYoKE1PBmPAa4f6AIR36DVZuJQxHKaQLw6innDurL7DALeHY21JdM+bTZSiisOVqwrAObCyKCUmf24XpCZBxoC2YSER90iPCQ6XB3VR6PLJZAzLCnRBd86cbg8Odo3SlsZ5QimX4arVBfjgxPCUQ92D0W+StnNW5f37l7Y2zh+x+zcfiVkGixO6BXLeTCSeexA7aAtdYpwcebpEtI9YEaeQoTiNfl/IwiJ2zrondM72tI5AIWMxFVUPADedXQK5jOGMKIeUTCdeIUdeSqIvFKTeO3x6VZQKnJWFOjT1m2CxuwL+3KO9Jow73TG5fZQE58yydHAO1HfoJblev9EGuYwhPVma1NTiNBXiFTIKBZlHqOdOAmawOhZMjL7o2rVFqMhWI0eibQjzwaLMZHQbxrE4K5niosmCkxSnQEqS8pTO2e7WEdTka6GKse1sxekqvPXtc3wFZSwqTlOh3XvmLNqR/ysKU+DhwKFuI84oC6ygFYdPU+ds/lhRqINSzrC3XY/NlVkhX6/PaEOWOl6y+X0KuQwV2WoqzuYRekdFAqa3OBZMjL4oMU6O9eUZ0V5GTBHPrtB5M7JQ5aUk+s6cWR0uHOo2Rj1CfzqlGcmIV0Q/pGQ6JekqtA1bwDnH/g5D1LpmwMmdEsGcO6tv16MgNVGyJD4SfQlKOWrzddjXJlHnzDQu+fdHVY4GjX2mkEZAkNhBxRkJmMHqWDAx+mR6YijIEkpqJAvUxEHUBzpG4fJwrC2hjkkwitNUGLO5sK/dAL3FEZXzZqIUVRxK01X4OMDijHOOfe0G6prNQ3XFqTjUbcS4wx3ytfqMNsl34VTmaGCwOjFgskt6XRIdVJyRgHDOYbA6F1znjJxuWYEOMoaYO19DSKSIg6g559jdOgK5jEV8aPJ8UZIhnFt9YX8XgOhH/q8oTMHHnYENo+7UWzFstkd97UR6a0pS4PJwfNwVfIoncHIAtdSds8ocYQcLbW2cH6g4IwGxOtxwuDxIWWBnzsjpKnM0OPDjT2FFDAzbJSQa8nSJsDrcGLU6sadtBEvztBSfHqQSb6jQa4f6kJKkRFmUI/9XFOowYnGgU2/1+3P2tdN5s/lqVVEqGAP2tYVWnJlsLlgdbsmSGkVLvImNDb1GSa9LooOKMxIQg9UBAAsuEIRMTUffB2QBy/cGbLQMmXGwaxTraEtj0PJTEqGQMVgcbu8b4ehG/gczjHp/hx6aBAXKM2NvlhwJjTZRiSXZGuxrD+3c2ckZZ9IWZ5oEJcozk7G/I7TikcQGKs5IQAwWYc7HQovSJ4SQyfJ0wtzDVw/1wenmMRsGMhco5DIUpAq/n7GwLXBxVjKS4uQBhYLsazdgVYzOkiOhW1Ocgv0dBjjdnqCv0WcUzqhK3TkDgNXFqajvMMDjoVCQuY6KMxIQX+eMzpwRQhY4MZr+5YM9kLHYKCrmsuI0oTiLZhiISCGXYVm+/8OoDRYHTgya6czhPFZXkopxpxsNvcGf6zrZOZN+rMXqohSM2VxoHhyT/Noksqg4IwERizMKBCGELHQpSUokKuUwWJ1YmqeFOoF2FISiIlsDVZwcS/O00V4KAOHcWWOfya+EPnE7WR0VZ/PWGu+fbSiR+n1GGxgDMsMww0/83hPPPpK5i4ozEhC9xVuc0VkjQsgCxxjzdc8oQj90t28qw3+/fnbMzGNbWSgk9B3umT1kYV+HHko5Q21+bBSWRHqZmgQUpyVhTwjFWb/RhozkeCjl0r/9LkhNRKY6HvUhnosj0UfFGQmIweoEY8LhWEIIWejydGJxRufNQqVOiH5K40TLC3UA/BtGvb/dgJo8LRKUsVFYkvCoK05FfYc+6HNdfSZbWM6bAcLNorriVNRT52zOo+KMBMRgcUCbqIScDjwTQgjyUxLBmHAehcwv6cnxKEpLmnUYtc3pxqFuI503WwDqSlIxanXixJA5qM/vN45LntQ40eriFPSMjqN3dDxsr0HCj4ozEhCD1UEx+oQQ4vXls0tw/9XLaTfBPLWyMAUHZhlGfaTHCIfbg9VF0Q8yIeElnjvbG+TWxj6jDdma8BVn4rmzeorUn9OoOCMBMVgdFKNPCCFeZRnJuHR5XrSXQcJkRaEOQ2N29MzQiRADGFZRcTbvFaUlIVMdH1RxZra7MGZzhSWpUbQkWw1VnJzOnc1xVJyRgBgsTorRJ4QQsiCIw6gPzBCpv79Dj9IMFdKSpU/gI7GFMYa6klTsa9fP2E2dihijH64zZ4AwAmJlUQolNs5xVJyRgBisDkpqJIQQsiBUZKuRoJThwDTbxDwejvoOA21pXEDWFKeiz2hDtyGwc10nZ5yFrzgDgNVFqWjqN8Fkc4b1dUj4UHFGAqK3OGjGGSGEkAVBKZehNl+Hj7tGp3y8ZciMUauTwkAWkDUl4jyxwLYO9hmFYi6cnTNACAXhHNPeUCCxj4oz4rdxhxt2l4c6Z4QQQhaMFYU6HO01wuY8fRh1PQ2fXnAqstTQJCgCPncmds6ywhgIAgDLC3SQyxhF6s9hVJwRv+mt4gBqCgQhhBCyMKwsTIHTzdHQe/ow6n3teqSp4lCclhSFlZFokMkYVhenYm+gnTOTDamquLDPwlPFK1Cdqwm4s0diBxVnxG8Gi7c4o22NhBBCFogV4jDqjtHTHtvfYcDq4hQwRrM/F5K64lS0DlkwbLb7/Tn9YY7Rn2h1USoOdo3C4fJE5PWItKg4I34z+DpnVJwRQghZGDLVCchPScTHXaduExscs6FjxIrVRbSlcaERz50FElnfZ7SF/byZqK44BXaXZ8puL4l9VJwRvxmsQvJPqoq2NRJCCFk4VhSmnNY52+8907O6mJIaF5qaPC0SlDLsCeDc2YDJFvakRtEq7/cknTubm6g4I37zbWukzhkhhJAFZGWhDv0mmy9xDxCGT8crZKjO1UZxZSQa4hQyLC/Q+X2uy+Z0Q29xRKxzlqlOQHFaEp07m6NmLc4YYwWMse2MsUbGWANj7Jvej/8vY+wQY+wgY2wbYyw3/Msl0aT3FmfaROqcEUIIWThWiMOoJ3TP6jv0WF6gQ5yC7nMvRGuKU3G014QxP+aJDZjEGWeJ4V6Wz+riVNR3GAIelk2iz5+fKC4A3+WcVwJYB+B2xlgVgN9yzms558sBvArgJ+FbJokFo1YHtIlKKOT0FxEhhJCFoypHgziFDB93CtvErA4XGnpNFKG/gK0pSYOHAwc6R2d9bp83Rj9SnTNAOHemtzjQOmyJ2GsSacz6Lptz3sc5P+D97zEAjQDyOOemCU9TAaDSfJ7TW50Uo08IIWTBiVPIUJOnxQFvcXawcxRuD/ed7SELz4pCYZ7Y3raRWZ8rzjiL1JkzAFhVFHhoCYkNAbVAGGPFAFYA2OP99S8ZY10ArgV1zua9UauDYvQJIYQsSCsLdTjSa4Ld5UZ9hwGMCTPQyMKkildgaa4G+9pmD90QO2eRitIHgLIMFVKSlNhHoSBzjt/FGWMsGcC/AXxL7Jpxzn/EOS8A8AyAO6b5vFsYY/WMsfqhoSEp1kyiRG9xUBgIIYSQBWllYQocLg+O9pqwr12Piiw1ncFe4OqKU3GwexR2l3vG5/Ubx6FJUEAVr4jQygDGhGHZ1Dmbe/wqzhhjSgiF2TOc8xeneMo/AVwx1edyzh/hnK/mnK/OyMgIfqUk6katTirOCCGELEhiKEh9uwEfd45ShD7BmpJUOFweHOqeeZ6YMOMscmEgorriFLSPWDE05v+wbBJ9/qQ1MgCPAWjknP9+wsfLJzztEgBN0i+PxBK9xUEzzgghhCxI2doE5GoT8Oy+TpjtLho+TXyBMHtnmXfWH8EZZxOt9q5vfwd1z+YSfzpnZwG4DsC53tj8g4yxzwC4hzF2hDF2CMAWAN8M50JJdNmcbow73dBR54wQQsgCtaIwBS1DQvoddc5IiioO5ZnJsxZnQucs8sXZ0lwt4hUyOnc2x8y6+ZVz/gEANsVDr0u/HBKrDFZhxlkqBYIQQghZoFYU6vDa4T7kaBOQp4v8NjUSe+pKUvHKwV64PRxy2elvlx0uD4bN9qh0zsRh2XTubG6hgVXEL+IAaorSJ4QQslCJ585WFaVAOPVBFrq1JakYs7vQ2Gea8vHBMRs4j2xS40R1xak40muC1eGKyuuTwFFxRvwyanUCAAWCEEIIWbCW5mmwJFuNC2tyor0UEiNmO3cWjRlnE60uToHbw3HQj2HZJDZQcUb84uuc0bZGQgghC1S8Qo43v3UOPk3FGfHK1SUiT5eIfdNsHRRnnEUjrREAVhalgDHQubM5hIoz4pdRq7itkYozQgghhBDRmpJU7GvXg3N+2mPR7pxpEpSoyFKjnhIb5wwqzohf9BZhW6OOzpwRQgghhPisKUnFsNmBtmHLaY/1GW1IipNDkxC5AdST1RWn4kCHAS63J2prIP6j4oz4xWB1QJ2ggFJO3zKEEEIIIaKZzp31m8aRrU2IaoDM6uIUWBxuNPWPRW0NxH/0Tpv4xWB1UIw+IYQQQsgkZRkqpKnisHeKc2fRmnE2kVg8UqT+3EDFGfGL3uKgAdSEEEIIIZMwxlBXnDplKEi/0YZsTXRn4vlCSzooFGQuoOKM+GXU6kQqnTcjhBBCCDlNXUkquvTj6DOO+z7mcnswOGaPeucMELY21k8TWkJiCxVnxC96i4OSGgkhhBBCprBminNnw2YH3B4etaTGiVYXp2LAZEe3YXz2J5OoouKM+GXU6qAZZ4QQQgghU6jMUUMVJz9la6PYRYuFzlldcQoATDuPjcQOKs7IrGxONywONwWCEEIIIYRMQSGXYVVxKva1nTzXFe0ZZxMtzlRDnaCgYdRzABVnZFajVppxRgghhBAykzXFKTg2MIZRqwMA0G8SirMcbXQDQQBAJmNYVZRCiY1zABVnZFYG7w+ZVDpzRgghhBAyJTGyXuxO9RttiFPIkBIjN7frilNxfNAMg8UR7aWQGVBxRmYl/k9MUfqEEEIIIVNbVqBDnFzmO9clzjiL5gDqiVYXCefO9lOkfkyj4ozMyuDd1khnzgghhBBCppaglGNZgdaX2CjMOIv+eTPRsgIdlHKGfR20tTGWUXFGZqX3bmuMlbY8IYQQQkgsqitOxZEeI6wOF/pM4zGR1ChKUMpRk6fFfgoFiWlUnJFZjdK2RkIIIYSQWdWVpMLl4TjQMYoBox3ZMRAGMlFdcSoOdRthc7qjvRQyDSrOyKz0VgfU8QrEKejbhRBCCCFkOquKUsAY8GZDHxxuT0x1zgBhGLXD7cHhHmO0l0KmQe+257Fhsx0v7O8G5zyk6xgsDuhUtKWREEIIIWQmmgQlqnI0eP1wP4DYmHE20aoiGkYd66g4m8d+8vIRfO9fn6Cpfyyk6xisTorRJ4QQQgjxQ11xKvTeIyGxFAgCCOFuZRkq1NO5s5hFxdk8tbdN77tr88Hx4ZCuZbA66LwZIYQQQogf1pSk+v471rY1AkLxWN+uh8cT2s4qEh5UnM1DHg/HL147imxNAorTkvD+8aGQrmewOihGnxBCCCHED+IwaoWMIS05PsqrOd3q4lSYbC4cHzRHeylkClSczUMvf9KDQ91G3HlBBTYtycTeNn1IqTwGixM6itEnhBBCCJlVhjoepekqZGkSIJfFxgDqieqK6dxZLKPibJ4Zd7hx75vHUJOnxWXL83BOeQbsLk/Qe4sdLg/MdhedOSOEEEII8dNN60twTV1BtJcxpcLUJGSo41FPxVlMUkR7AURaj+5sRZ/RhvuvXg6ZjGFtaSqUcoadx4dwdnl6wNcbFQdQ07ZGQgghhBC/XLu2KNpLmBZjDHXFKajvoFCQWESds3lk0GTDX99rwQXV2VhbmgYASIpTYFVRCt4PMhRELxZn1DkjhBBCCJkXVhelotswjj7jeLSXQiah4mwe+d22ZjjdHvzg00tO+fj68gw09pkwNGYP+JoGixMAkEJzzgghhBBC5gUxtIQi9WMPFWfzxNFeE57f34UbzyxGcbrqlMfWe7czfngi8O6ZgTpnhBBCCCHzSmWOGklxcjp3FoOoOJsHOBei83WJStxxbvlpj1fnapGSpAwqUl8szihKnxBCCCFkflDIZVhRqMM+6pzFHCrO5oF3mwbxUcsIvnXeYmgTT99+KJcxnLUoHR8cHwbngQ0cNHgn3FOUPiGEEELI/LG6KBVN/SaYbM5oL4VMQMXZHOd0e/DL1xtRmqHCF9YWTvu89eXpGByzo3kgsIGDBqsTqjg54hXyUJdKCCGEEEJiRF1xKjwc2NUyEu2lkAmoOJvj/rmnE61DFvzoM5VQyqf/4zy7PAMAsDPArY0Gi4Ni9AkhhBBC5pk1JanI0yXiofdaAt5ZRcJnwRdnnHNY7K5oLyMoRqsT97/djLMWpeHcJZkzPjdPl4iyDBV2Bhipr7c6KAyEEEIIIWSeiVPI8LWNZfi4czTg94ckfBZ8cXbdY3vxrecORnsZQfnT9uMYHXfiR5+pAmNs1uevL8/AnrYR2Jxuv1/DYHVS54wQQgghZB66cnU+crQJeOCd49Q9ixELvjiryFbjvWNDMI7PrcOQ7cMW/P2jdly1qgBVuRq/Pmd9eTpsTg8OBDAR3mBxIIXCQAghhBBC5p14hRy3bVqE/R0GfHiCzp7FggVfnF28LBcOtwfbGvqjvZSA3PNGE5RyGb67ZbHfn7O2NA0KGcP7AbSuDbStkRBCCCFk3rrK2z27/+1m6p7FgAVfnC3L16IgNRGvHOqL9lL8tqd1BG829ONrG8qQqUnw+/OS4xVYWZTidyiI0+3BmM1FxRkhhBBCyDwVr5DjaxvLUN9hwEeU3Bh1C744Y4zh4tpcfHhiGCNme7SXMyuPh+MXrzUiR5uAm9eXBvz555Sno6HX5NfXOmoVtnqmqmhbIyGEEELIfHXV6gJkaeLxwNt09izaFnxxBghbG90ejjeOxP7WxpcO9uBwjxF3XlCBxLjAZ4+JkfofnJh9a6PBKgygpkAQQgghhJD5K0Epx20bF2Fvux67Wql7Fk1UnAFYkq3GosxkvPJJb7SXMqNxhxv3vnkMtflaXLosL6hr1ORpoU1U+hWZqrd4izPa1kgIIYQQMq9dXSd0z+5/+3i0l7KgUXGGk1sb97br0W+0RXs50/rbzlb0m2z48UVVkMlmj86filzGcPaidHxwfHjWtvWolYozQgghhJCFIEEpx60byrC3TY9ddPYsaqg487poWQ44B147HJvBIAMmG/66owWfqclGXXFqSNc6uzwd/SYbTgyaZ3ye3iKcOUuhM2eEEEIIIfPe59cUIkMdjwfeaY72UhYsKs68yjKSUZ2ridmtjb/bdgxuD8ddFywJ+VpnL0oHgFkj9Q3UOSOEEEIIWTASlHJ8bUMZdrfqsZvOnkUFFWcTXLwsFwe7RtGlt0Z7Kac41j+Gf+3vxo1nFaMoTRXy9QpSk1CarsIHs0TqGywOJCrlSFAGHjxCCCGEEELmni+s9XbP6OxZVMxanDHGChhj2xljjYyxBsbYN70f/y1jrIkxdogx9h/GmC7sqw2zC2tyAACvHIqt7tljH7QiQSHHbRvLJLvm2eXp2N2qh93lnvY5BqsTqZTUSAghhBCyYCQo5fjqOaXY1TqCvW36aC9nwfGnc+YC8F3OeSWAdQBuZ4xVAXgLwFLOeS2AZgD/E75lRkZBahJWFurw6iexc+5s2GzHSwd7ccWqPOgk3F64vjwD40439ncYpn2Oweqg82aEEEIIIQvMtWuLkJ5MZ8+iYdbijHPexzk/4P3vMQCNAPI459s45y7v03YDyA/fMiPnotpcHO0zzRqWESn/3NMJh8uDG88skfS660pToZAxfDDDuTO9xUHnzQghhBBCFpjEOKF79uGJEexrp+5ZJAV05owxVgxgBYA9kx76MoA3JFpTVF1YmwPGgFdjYGuj3eXGU7s7sLEiA4sykyW9tjpBiRWFuhnnnY1aqTgjhBBCCFmIrl1XiPTkODp7FmF+F2eMsWQA/wbwLc65acLHfwRh6+Mz03zeLYyxesZY/dDQzAEUsSBLk4C1Jal45ZPeWeeAhdtrh/owNGbHl8+StmsmWl+egSO9Rt+w6cmEzhltaySEEEIIWWiS4hS45ZxSfHBiGPs7qHsWKX4VZ4wxJYTC7BnO+YsTPn4DgIsAXMunqWQ4549wzldzzldnZGRIseawu3hZLlqGLGjsG4vaGjjneOyDNizKTMb68vSwvMbZ5engHPjwxOndM5fbA5PNhRQKBCGEEEIIWZC+uK4Iaao43E/ds4hRzPYExhgD8BiARs757yd8/AIAdwHYwDmPrez5EH16aQ5+8nIDXjnUi6pcTVTWsK/dgIZeE351eQ2EPwLp1eZpoUlQYOfxIVy8LPeUx0bHvQOoaVsjITHN6XSiu7sbNpst2ksh81BCQgLy8/OhVNIuCkIWoqQ4Bb5yTinueaMJBzoNWFmYEu0lzXuzFmcAzgJwHYDDjLGD3o/9EMAfAcQDeMtbPOzmnN8ajkVGWqoqDmcvSscrn/TizvMrwlYczeTxD9qgS1Li8hV5YXsNhVyGsxal44Pjw+Ccn/J1jooDqKlzRkhM6+7uhlqtRnFxcVR+VpH5i3OOkZERdHd3o6QkPNvrCSGx77p1RXjk/VY88PZxPPnlNdFezrznT1rjB5xzxjmv5Zwv9/7zOud8Eee8YMLH5kVhJrp4WS66DeM42DUa8dfu0lux7Wg/vrCmEIlx4R0AfXZ5OnqNNrQMWU75uN4idM5SqXNGSEyz2WxIS0ujwoxIjjGGtLQ06soSssCp4hX4yvpSvNc8hI87px/BRKQRUFrjQrKlOgtxchleicLMsyc/aoeMMVx3RlHYX+uccuEc4M7jp4a1iCEhOgoEISTmUWFGwoW+twghAHD9GUVISVLigXfo7Fm4UXE2DU2CEhsrMvDqoV64PZFLbTTbXXhuXxc+U5ODHG1i2F+vIDUJxWlJp807E7c1ptK2RkLILH75y1+iuroatbW1WL58OfbsEaat3HzzzTh69Kgkr1FcXIzh4elHfwDAr371q4Cv+/e//x133HHHKR974oknsHz5cixfvhxxcXGoqanB8uXL8YMf/CDg60fC/fffD6t1Xh39JoTEGFW8AjevL8WOY0NR2VW2kFBxNoOLl+VicMwe0eF7/6rvwpjdhS+fHbn9/WeXp2NX6wgcLo/vY3rxzBltaySEzGDXrl149dVXceDAARw6dAhvv/02CgoKAACPPvooqqqqIraWYIqzqXzpS1/CwYMHcfDgQeTm5mL79u04ePAg7rnnHkmuHyjOOTwez7SPB1OcuVyuUJdFCFlgbjizGLokJf5I3bOwouJsBpsrM5GolOOVTyIzkNrt4fj7R+1YWajD8gJdRF4TEOadWR1uHJiwj3jU6kSCUhb2M2+EkLmtr68P6enpiI+PBwCkp6cjN1dIf924cSPq6+sBAMnJybjrrruwatUqnHfeedi7dy82btyI0tJS/Pe//wVwehfroosuwo4dO057zcsuuwyrVq1CdXU1HnnkEQDAD37wA4yPj2P58uW49tprAQBPP/001qxZg+XLl+OrX/0q3G43AKEztnjxYmzYsAEffvih31/rb3/7W9TV1aG2thY//elPAQDt7e1YsmQJbr75ZixduhTXXnst3n77bZx11lkoLy/H3r17AQB33303rrvuOpx77rkoLy/H3/72t1mvW1lZidtuuw0rV65EV1cXvva1r2H16tWorq72Pe+Pf/wjent7sWnTJmzatMn3ey164YUXcOONNwIAbrzxRnznO9/Bpk2bcNddd6GlpQUXXHABVq1ahfXr16Opqcnv3wtCyMKT7D179m7TID6h7lnY+JPWuGAlxSlwXlUW3jjSj7svqYZSHt5a9t2mQXSMWPH98yvC+jqTnVGWBrmM4YPjw1hXmgZAHEBNXTNC5pKfvdKAo70mSa9ZlavBTy+unvbxLVu24Oc//zkWL16M8847D1dffTU2bNhw2vMsFgs2btyI3/zmN7j88svx//7f/8Nbb72Fo0eP4oYbbsAll1zi95oef/xxpKamYnx8HHV1dbjiiitwzz334E9/+hMOHjwIAGhsbMRzzz2HDz/8EEqlErfddhueeeYZfOpTn8JPf/pT7N+/H1qtFps2bcKKFStmfc1t27bh+PHj2Lt3LzjnuOSSS/D++++jsLAQJ06cwL/+9S888sgjqKurwz//+U988MEH+O9//4tf/epXeOmllwAAhw4dwu7du2GxWLBixQpceOGFOHLkyLTXPXbsGJ544gn85S9/ASBsH01NTYXb7cbmzZtx6NAhfOMb38Dvf/97bN++Henps8/EbG5uxttvvw25XI7NmzfjoYceQnl5Ofbs2YPbbrsN7777rt9/DoSQhef6M4Tkxj++cxyP3VgX7eXMS1SczeLi2hy88kkvPmoZwYbF4R2i/fgHbcjVJuCC6uywvs5kmgQllhfosPP4EL7nLQxHrVScEUJml5ycjP3792Pnzp3Yvn07rr76atxzzz2+bo0oLi4OF1xwAQCgpqYG8fHxUCqVqKmpQXt7e0Cv+cc//hH/+c9/AABdXV04fvw40tLSTnnOO++8g/3796OuTnjzMD4+jszMTOzZswcbN25ERobw8/zqq69Gc3PzrK+5bds2bNu2zVfImc1mHD9+HIWFhSgpKUFNTQ0AoLq6Gps3bwZj7LSv7dJLL0ViYiISExOxadMm7N27Fx988MG01y0qKsK6det8n//888/jkUcegcvlQl9fH44ePYra2tqAfu+uvPJKyOVymM1mfPTRR7jyyit9j9nt9oCuRQhZeNQJStx8dgl+91YzjvQYsTRPG+0lzTtUnM1iQ0UG1AkKvPJJb1iLs6O9JuxqHcH/fHoJFGHu0E1lfXk6HnjnOAwWB1JUcdBbHBQGQsgcM1OHK5zkcjk2btyIjRs3oqamBk8++eRpxZlSqfQl/8lkMt82SJlM5jv/pFAoTjlbNVWE+44dO/D2229j165dSEpKwsaNG6d8HuccN9xwA37961+f8vGXXnopqARCzjn+53/+B1/96ldP+Xh7e7vva5npawNOTz5kjM14XZVK5ft1W1sb7rvvPuzbtw8pKSm48cYbp424n/g6k58jXtPj8UCn0/k6jYQQ4q8bzypGri4RS7LV0V7KvERnzmYRr5Dj/OpsbG3oh93lDtvrPPFhGxKVclxTVxi215jJ+vIMcA581DICADBYnRSjTwiZ1bFjx3D8+MnD4QcPHkRRUXBjQIqLi3Hw4EF4PB50dXX5zmtNZDQakZKSgqSkJDQ1NWH37t2+x5RKJZxOYUbj5s2b8cILL2BwcBAAoNfr0dHRgbVr12LHjh0YGRmB0+nEv/71L7/Wdv755+Pxxx+H2WwGAPT09Piu7a+XX34ZNpsNIyMj2LFjB+rq6vy+rslkgkqlglarxcDAAN544w3fY2q1GmNjY75fZ2VlobGxER6Px9dhnEyj0aCkpMT39XPO8cknnwT09RBCFiZ1ghJXrMqPSjNhIaDOmR8uqs3BC/u78X7zMD5VlSX59YfNdrx8sBdX1xVAG6WCaFm+FuoEBXYeH8KFtTkwWKlzRgiZndlsxte//nWMjo5CoVBg0aJFvpCOQJ111lm+LYJLly7FypUrT3vOBRdcgIceegi1tbWoqKg4ZdvfLbfcgtraWqxcuRLPPPMMfvGLX2DLli3weDxQKpX485//jHXr1uHuu+/GGWecgZycHKxcudIXFDKTLVu2oLGxEWeccQYAYTvn008/Dbnc/9CkNWvW4MILL0RnZyd+/OMfIzc3F7m5uX5dd9myZVixYgWqq6tRWlqKs84665Sv+9Of/jRycnKwfft23HPPPbjoootQUFCApUuX+gq/yZ555hl87Wtfwy9+8Qs4nU5cc801WLZsmd9fDyGEEOkxziM3w2v16tVcTO6aS5xuD9b88m2sL8/AHz8/+8HxQD3w9nH84e1mvPPdDSjLSJ79E8Lkq0/V40iPCe/fuQmLfvQ6vn5uOb7zqcVRWw8hZHaNjY2orKyM9jLILO6++24kJyfje9/7XrSXEjD6HiOEEGkxxvZzzldP9Rj1I/2glMvw6ZocvHV0AFaHtLNh7C43ntrdgU0VGVEtzADg7PIM9IyO42CXAZwDqbStkRBCCCGEkIihbY1+urg2F//c04l3mwZxUW2uZNd99ZM+DJvtER06PZ1zyoUY5v8eFOa6pdC2RkIIkcTdd98d7SUQQgiZA6hz5qc1JanIVMdLOpCac47HP2xDeWYyzl40+3yacCtKU6EwNQmvHe4DAIrSJ4QQQgghJIKoOPOTXMZwYW0Oth8bgsnmlOSae9v0aOg14ctnlwQV7RwOZ5enY9jsAAAKBCGEEEIIISSCqDgLwMXLcuFwefBWw4Ak13v8wzakJClx+Yo8Sa4nBXFrIwCK0ieEEEIIISSCqDgLwIoCHfJ0iXjlUOhbGztHrNh2dABfWFuIBKX/UczhdkZZOmTeJh51zgghhBBCCIkcKs4CwBjDxcty8cHxYegtjpCu9eSudsgZw3XriqVZnES0iUosK9AhTiFDYgwVjYSQ2CWXy7F8+XIsXboUV155JaxWa9DXuvHGG/HCCy8AAG6++WYcPXp02ufu2LEDH330ke/XDz30EP7xj38E/dqi9vZ2LF269JSP3X333bjvvvsCuo5U6yGEELJwUHEWoIuX5cDl4XjzSH/Q1xizOfHcvi5cWJuDbG2ChKuTxo1nFuOKlfkxcw6OECKRe+8Ftm8/9WPbtwsfD0FiYiIOHjyII0eOIC4uDg899NApj/sz5Hkqjz76KKqqqqZ9fHJxduutt+L6668P6rWk5nK5Ymo9hBBC5gYqzgJUlaNBaYYqpNTGF/Z3w2x34UtnRT8+fyqXLs/Drz9bE+1lEEKkVlcHXHXVyQJt+3bh13V1kr3E+vXrceLECezYsQObNm3CF77wBdTU1MDtduP73/8+6urqUFtbi4cffhiAkFp7xx13oKqqChdeeCEGBwd919q4cSPq6+sBAG+++SZWrlyJZcuWYfPmzWhvb8dDDz2EP/zhD1i+fDl27tx5Snfr4MGDWLduHWpra3H55ZfDYDD4rnnXXXdhzZo1WLx4MXbu3Bnw1zjTtX/4wx9iw4YNeOCBB3zr6e3txfLly33/yOVydHR0oKOjA5s3b0ZtbS02b96Mzs5OAEL38Bvf+AbOPPNMlJaW+jqJhBBC5j+acxYgxhgurs3FH989jkGTDZmawDpfbg/H3z9qx6qiFCwv0IVnkYSQhelb3wIOHpz5Obm5wPnnAzk5QF8fUFkJ/Oxnwj9TWb4cuP9+v17e5XLhjTfewAUXXAAA2Lt3L44cOYKSkhI88sgj0Gq12LdvH+x2O8466yxs2bIFH3/8MY4dO4bDhw9jYGAAVVVV+PKXv3zKdYeGhvCVr3wF77//PkpKSqDX65Gamopbb70VycnJ+N73vgcAeOedd3yfc/311+PBBx/Ehg0b8JOf/AQ/+9nPcL/363C5XNi7dy9ef/11/OxnP8Pbb7992tfS0tKC5cuX+37d39/ve52Zrj06Oor33nsPwMnZZrm5uTjo/XP585//jPfeew9FRUW4+OKLcf311+OGG27A448/jm984xt46aWXAAB9fX344IMP0NTUhEsuuQSf+9zn/PozIIQQMrdRcRaEi5fl4IF3juNbzx3EsgIdstTxyNQkIEsTj0x1AjLU8dOGfLzbNIiOESvuPH9JhFdNCCEAUlKEwqyzEygsFH4dovHxcV8hs379etx000346KOPsGbNGpSUCDsEtm3bhkOHDvm6QEajEcePH8f777+Pz3/+85DL5cjNzcW555572vV3796Nc845x3et1NTUGddjNBoxOjqKDRs2AABuuOEGXHnllb7HP/vZzwIAVq1ahfb29imvUVZW5iuogJOF1mzXvvrqq6dd14cffohHH33U163btWsXXnzxRQDAddddhzvvvNP33MsuuwwymQxVVVUYGJAmIZgQQkjso+IsCIsy1fjcqnx8dGIY+9r1cLr5ac/RJSmRqY5HlkYo1rI0CchSx+M/H/cgV5uA86uzorByQsi85k+HS9zK+OMfA3/9K/DTnwKbNoX0suKZs8lUKpXvvznnePDBB3H++eef8pzXX3991vOtnHNJz8DGx8cDEIJMXC6XZNcFTv2aJ+rr68NNN92E//73v0hOTp7yORO/RnGNgPD1E0IIWRioOAvSfVcuAwB4PBwGqwMDJjsGx2wY9P57wGTHgMmGwTE7WgbNGDLbfUXc/7uwEgo5HfcjhESYWJg9/7xQkG3adOqvw+j888/HX//6V5x77rlQKpVobm5GXl4ezjnnHDz88MO4/vrrMTg4iO3bt+MLX/jCKZ97xhln4Pbbb0dbW9sp2xrVajVMJtNpr6XVapGSkoKdO3di/fr1eOqpp3ydrlAFc22n04mrrroKv/nNb7B48WLfx88880w8++yzuO666/DMM8/g7LPPlmSNhBBC5i4qzkIkkzGkJccjLTkeVdBM+zyxiDNYnShJn/rOKiGEhNW+facWYps2Cb/ety/sxdnNN9+M9vZ2rFy5EpxzZGRk4KWXXsLll1+Od999FzU1Nfj/7dxtiFxXHcfx71+7cTUi9mHXp/VhVw2NYC2y1iIVtAhqIURD1D5Qi9EX8a1WGhG6L8QXGn2ToEgoxhXERouSgLUQRKi4Td0Ia1tNbGKpdbE06dpaNGBb9++LOUvHZdbspjsz5+58P3CYu+feM/fM5bfDPXPvPVu2bOk40BkZGeHAgQPs2LGDxcVFRkdHOXr0KNu2bWPnzp0cPnyY/fv3/0+b6elpdu/ezblz55iYmODgwYPr9lnW+t4zMzPMzs4yNTXF1NQU0LpiuG/fPnbt2sXevXsZGRlZ1z5Kkpopenm7xOTkZC7NvCVJevFOnDjB1q1b+90NbWBmTJLWV0T8LjMnO63z3jpJkiRJqoCDM0mSJEmqgIMzSZIkSaqAgzNJajinWle3mC1J6i0HZ5LUYMPDwywsLHgSrXWXmSwsLDA8PNzvrkjSwHAqfUlqsLGxMebn5zl79my/u6INaHh4mLGxsX53Q5IGhoMzSWqwoaEhxsfH+90NSZK0DrytUZIkSZIq4OBMkiRJkirg4EySJEmSKhC9nOErIs4Cf+nZDlfvMuDJfndCWsZcqkbmUjUyl6qRudRK3pyZI51W9HRwVquIOJ6Zk/3uh9TOXKpG5lI1MpeqkbnUhfC2RkmSJEmqgIMzSZIkSaqAg7OWA/3ugNSBuVSNzKVqZC5VI3OpNfOZM0mSJEmqgFfOJEmSJKkCjRqcRcRHIuJPEXE6Iva01R+KiLlSHo2IuRXaXxIRRyPiVHm9uNTf1NZ+LiIWI+LKDu1/WPb/UER8LyKGSn1ExL7Srwci4t3dOQKqVcXZvDwi7ouIf0fErd359KpVxbm8qXxXPhARMxHxru4cAdWo4lxuL5mci4jjEXFNd46AatTFXA5FxHREPBgRJyLiyyu0H4+I+0v7QxGxqdR7jjloMrMRBXgp8GdgAtgE/B54R4ftvgXcvsJ7fAPYU5b3AF/vsM07gUdWaH8dEKX8CPh8W/0vSv3VwP39Pl6W3pXKszkKvAf4GnBrv4+VpXel8ly+D7i4LH/U78zBKZXn8pW88LjHFcDJfh8vS29KN3MJ3AjcWZZfATwKvKVD+x8D15fl73qOObilSVfOrgJOZ+YjmfkscCewvX2DiAjgk7S+bDvZDkyX5WngYx22uWGl9pl5dxbAb4Gxtvf9QVl1DHh1RLxu1Z9MTVdtNjPzTGbOAs+t6RNpI6g5lzOZ+VTZ7BgvfJdq46s5l/8sdQCbAR/KHxzdzGUCmyPiIuDlwLPAMx3e+1rgrg7tPcccME0anL0B+Gvb3/Olrt37gScy89QK7/GazHwcoLyOdtjmU6z8jwe0LlEDNwP3rKFv2rhqzqYGV1Ny+VlavwprMFSdy4j4eEScBH4O7Pp/7bWhdDOXdwH/Ah4HHgO+mZl/X9b2UuDpzHy+w/49xxwwTRqcRYe65b9qrfhL2ap2EPFe4FxmPnSeTb8D3JuZv15D37Rx1ZxNDa7qcxkRH6Q1OLvtQvugxqk6l5n5s8y8nNZVi69eaB/UON3M5VXAf4DXA+PAFyNiYg379xxzwDRpcDYPvLHt7zHgb0t/lMvFO4BDbXUHywOcd5eqJ5YuBZfXM8v2cT3n/6VtChgBvrDavmnDqzmbGlxV5zIirgDuALZn5sIaPpearepcLsnMe4G3RsRlq/lQarxu5vJG4J7MfC4zzwC/ASaX7f9JWrcrXtRh/55jDpgmDc5mgbeX2Ww20fryPdK2/kO0Ht6dX6rIzM9k5pWZeV2pOgLcUpZvAQ4vbRsRLwE+Qes+444i4nPAh4EbMnOxbdUR4NNlRp2rgX8sXdrWQKg5mxpc1eYyIt4E/BS4OTMffhGfUc1Tcy7fVp79ocyItwnwh4PB0M1cPgZcW84RN9Oa1ONk+87Ls46/AnZ2aO855qBZy+wh/S60Zqx5mNaMOl9Ztu77wO7ztL8U+CVwqrxe0rbuA8Cx87R/vux7rpTbS30A3y7rHgQm+32sLL0tFWfztbR+dXsGeLosv6rfx8vSm1JxLu8AnmqrP97vY2XpXak4l7cBfyh19wHX9PtYWXpXupVLWrOA/qRk64/Al1ZoP0FrgprTZfuXlXrPMQesLE0ZK0mSJEnqoybd1ihJkiRJG5aDM0mSJEmqgIMzSZIkSaqAgzNJkiRJqoCDM0mSJEmqgIMzSZIkSaqAgzNJkiRJqoCDM0mSJEmqwH8BroFlCoUyUskAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACOb0lEQVR4nOzdd3ib1fnw8e+RvPeOZzyynMRJnNiZEJIQyqZAIUDLboFCS1soHXS9pevX3VLooLSUUkbZexRICCNk7+Vsj3jEe8jbks77hyTHSTwkW8v2/bkuXzgaz3NsC/u5de6htNYIIYQQQgghhPAtg68XIIQQQgghhBBCgjMhhBBCCCGE8AsSnAkhhBBCCCGEH5DgTAghhBBCCCH8gARnQgghhBBCCOEHJDgTQgghhBBCCD8gwZkQQgghhBBC+AEJzoQQYpRSSrX2+bAqpTr6/Pt6X69vOJRSJUqp83y9jsEopT5USt3mweM/qpQ6aP+Z3nLafbcopSyn/eyXn/aY65RSRUqpNqXUUaXU0j73rVRKHVBKtSul1iqlMvvcp5RSv1ZK1ds/fqOUUp76OoUQQpxJgjMhhBiltNYRjg+gDLisz21P+3p9p1NKBYyFc3jBLuArwPYB7t/Q92evtf7QcYdS6jPAr4FbgUjgHOCY/b4E4GXgR0AcsBV4rs9x7wCuAOYAs4FLgS+77asSQggxJAnOhBBijFFKGZRS99t3TeqVUs8rpeLs92UppbRS6lal1HGlVKNS6k6l1Hyl1G6lVJNS6s99jnWLUupTpdTDSqlm+67Lyj73RyulHlNKVSmlKpRSP1dKGU977h+VUg3AA0qpSUqpD+zrqlNKPa2UirE//klgIvCGfUfoO0qp5Uqp8tO+vt7dNaXUA0qpF5VSTymlWoBbhljTZKXUR/avpU4p1Tc46XuOEPsx6+3fky1KqQlKqV8AS4E/29f4Z/vjc5VS7yulGuy7Xtf0Oda/lVKP2O832c+f2d95AbTWf9FarwE6nf+p9/oJ8FOt9UattVVrXaG1rrDf9zlgn9b6Ba11J/AAMEcplWu//2bg91rrcvtzfg/cMow1CCGEGCYJzoQQYuz5OrYdkGVAKtAI/OW0xywEpgDXAg8CPwDOA2YC1yillp322GNAAvBj4GVHsAc8AZiBycBc4Hzgtn6emwT8AlDAL+3rmg5kYAsS0FrfyKk7gL9x8uu9HHgRiAGeHmJNPwPeA2KBdODhAY55MxBtX188cCfQobX+AfAJcLd9jXcrpcKB94Fn7F/n54G/KqVm9jne9fZzJwA77escrrn2wPKQUupHjt1CewBaCCQqpY4opcqVUn9WSoXanzcT264cAFrrNuCo/fYz7rd/3vdrEEII4WESnAkhxNjzZeAH9h2QLmzBz9Wnpfz9TGvdqbV+D2gD/qu1rrHvmHyCLahxqAEe1Fr3aK2fAw4ClyilJgAXAfdordu01jXAH4Hr+jy3Umv9sNbarLXu0Fof0Vq/r7Xu0lrXAn/AFkSOxAat9ataaysQNcSaeoBMINX+9a8b4Jg92IKyyVpri9Z6m9a6ZYDHXgqUaK0ft3+d24GXgKv7POYtrfXH9p/HD4DFSqmMYXytHwN52ILAq7AFgt+23zcBCLSfdymQj+3n+EP7/RFA82nHa8aW/tjf/c1AhNSdCSGE90hwJoQQY08m8Io9Ha8JKAIs2C7eHar7fN7Rz78j+vy7Qmut+/y7FNvOVya2YKCqz7n+ji1wcDjed2FKqSSl1LP2dMMW4Clsu0kj0fccQ63pO9h27zYrpfYppb44wDGfBN4FnlVKVdqbYwQO8NhMYKHjfPZzXg8k97dGrXUr0IDte+gSrfUxrXWxPWVxD/BTTgaBHfb/Pqy1rtJa12ELfi+2396KLXjtKwowDXB/FNB62s9eCCGEB0lwJoQQY89x4CKtdUyfj5A+tUeuSjtt92QiUGk/TxeQ0Oc8UVrrvqlwp1/Y/9J+22ytdRRwA7ZgaaDHtwFhjn/YU/cST3tM3+cMuiat9Qmt9e1a61RsO4x/VUpNPv0Ltu8S/kRrPQNYgm137KYB1ngc+Oi073eE1vquPo/p3SVTSkVga8hRefp5h0Fj//5prRuB8n7W57APW7MPxzrCgUn228+43/75PoQQQniNBGdCCDH2PAL8wtF0QimVqJS6fATHSwK+rpQKVEqtwlYr9rbWugpb/dbvlVJRytaIZNJp9Wqni8S2Q9OklErjZEqeQzWQ0+ffh4AQpdQl9p2rHwLBAx18qDUppVYppdLtD2/EFshYTj+OUmqFUmqWPRhswZbm6Hjc6Wt8E5iqlLrR/j0KVLYGK9P7POZipdTZSqkgbLVnm7TWp+wq9jl3kFIqBFvQFWhvTmKw33eRPZ0UeyOPHwGv9Xn648DX7DuUscA99vUBvALkKaWush///wG7tdYH7Pf/B/imUipNKZUK3Af8u781CiGE8AwJzoQQYuz5E/A68J5SygRsxNaYY7g2YWseUoetqcfVWut6+303AUHAfmzBzotAyiDH+gkwD1s901vYWrv39Uvgh/b0wG9prZuxtZX/J1CBbSetnMENtqb5wCalVCu279E3tNbF/Rwj2f68FmxpoR9hS8EE2/f3amXrdPmQ1tqErenIddh2w05ga2ffN4h8BlszlQagAFva40Dew5aiuAR41P75Ofb7VgK7lVJtwNvYvn//1+e5PwO2YAtqi4Ad2H5m2Gv8rrL/uxHba6JvfeDfgTeAPcBebD+fvw+yTiGEEG6mJJVcCCHEQJRtCPJtWuuzfb2W0Uop9W+gXGv9w6EeK4QQYnyTnTMhhBBCCCGE8AMSnAkhhBBCCCGEH5C0RiGEEEIIIYTwA7JzJoQQQgghhBB+QIIzIYQQQgghhPADAd48WUJCgs7KyvLmKYUQQgghhBDCb2zbtq1Oa53Y331eDc6ysrLYunWrN08phBBCCCGEEH5DKVU60H2S1iiEEEIIIYQQfkCCMyGEEEIIIYTwAxKcCSGEEEIIIYQf8GrNmRBCCCGEEP6ip6eH8vJyOjs7fb0UMQaFhISQnp5OYGCg08+R4EwIIYQQQoxL5eXlREZGkpWVhVLK18sRY4jWmvr6esrLy8nOznb6eZLWKIQQQgghxqXOzk7i4+MlMBNup5QiPj7e5V1ZCc6EEEIIIcS4JYGZ8JThvLYkOBNCCCGEEMJHfvGLXzBz5kxmz55Nfn4+mzZtAuC2225j//79bjlHVlYWdXV1gz7m//7v/1w+7r///W/uvvvuU257/PHHyc/PJz8/n6CgIGbNmkV+fj7333+/y8f3hgcffJD29nZfL6OX1JwJIYQQQgjhAxs2bODNN99k+/btBAcHU1dXR3d3NwD//Oc/vbqW//u//+P73//+iI9z6623cuuttwK2oHDt2rUkJCSM+LjDpbVGa43B0P+e1IMPPsgNN9xAWFiY08c0m80EBHgmjBpy50wplaGUWquUKlJK7VNKfaPPfV9TSh203/4bj6xQiD601qw/Wkdnj8XXSxFCCCGEGJGqqioSEhIIDg4GICEhgdTUVACWL1/O1q1bAYiIiOC73/0uBQUFnHfeeWzevJnly5eTk5PD66+/Dpy5i3XppZfy4YcfnnHOK664goKCAmbOnMmjjz4KwP33309HRwf5+flcf/31ADz11FMsWLCA/Px8vvzlL2Ox2K69Hn/8caZOncqyZcv49NNPnf5af/vb3zJ//nxmz57Nj3/8YwBKSkrIzc3ltttuIy8vj+uvv57Vq1dz1llnMWXKFDZv3gzAAw88wI033si5557LlClT+Mc//jHkcadPn85XvvIV5s2bx/Hjx7nrrrsoLCxk5syZvY976KGHqKysZMWKFaxYsaL3e+3w4osvcssttwBwyy238M1vfpMVK1bw3e9+l6NHj3LhhRdSUFDA0qVLOXDggNPfi0E5osmBPoAUYJ7980jgEDADWAGsBoLt9yUNdayCggItxHBZrVb9szf26czvvqn/+P5BXy9HCCGEEKPc/v37fXp+k8mk58yZo6dMmaLvuusu/eGHH/bet2zZMr1lyxattdaAfvvtt7XWWl9xxRX6M5/5jO7u7tY7d+7Uc+bM0Vpr/fjjj+uvfvWrvc+/5JJL9Nq1a7XWWmdmZura2lqttdb19fVaa63b29v1zJkzdV1dndZa6/Dw8N7n7t+/X1966aW6u7tba631XXfdpZ944gldWVmpMzIydE1Nje7q6tJLliw55Zync5z33Xff1bfffru2Wq3aYrHoSy65RH/00Ue6uLhYG41GvXv3bm2xWPS8efP0rbfeqq1Wq3711Vf15ZdfrrXW+sc//rGePXu2bm9v17W1tTo9PV1XVFQMelyllN6wYUPvWhxft9ls1suWLdO7du0643tz+vfhhRde0DfffLPWWuubb75ZX3LJJdpsNmuttT733HP1oUOHtNZab9y4Ua9YsaLf70F/rzFgqx4gXhpyP05rXQVU2T83KaWKgDTgduBXWusu+3017gkXhTiTxar5wSt7eHbLcYICDHx6pI57zpvq62UJIYQQYoz4yRv72F/Z4tZjzkiN4seXzRzw/oiICLZt28Ynn3zC2rVrufbaa/nVr37Vu1vjEBQUxIUXXgjArFmzCA4OJjAwkFmzZlFSUuLSmh566CFeeeUVAI4fP87hw4eJj48/5TFr1qxh27ZtzJ8/H4COjg6SkpLYtGkTy5cvJzExEYBrr72WQ4cODXnO9957j/fee4+5c+cC0NrayuHDh5k4cSLZ2dnMmjULgJkzZ7Jy5UqUUmd8bZdffjmhoaGEhoayYsUKNm/ezLp16wY8bmZmJosWLep9/vPPP8+jjz6K2WymqqqK/fv3M3v2bJe+d6tWrcJoNNLa2sr69etZtWpV731dXV0uHWsgLiVLKqWygLnAJuC3wFKl1C+ATuBbWustblmVEH30WKzc+9xO3txdxdfOnUy3xcq/1hXT0W0hNMjo6+UJIYQQQgyb0Whk+fLlLF++nFmzZvHEE0+cEZwFBgb2dv4zGAy9aZAGgwGz2QxAQEAAVqu19zn9tXD/8MMPWb16NRs2bCAsLIzly5f3+zitNTfffDO//OUvT7n91VdfHVYHQq013/ve9/jyl798yu0lJSW9X8tgXxuc2flQKTXoccPDw3v/XVxczO9+9zu2bNlCbGwst9xyy4At7vue5/THOI5ptVqJiYlh586dQ33pLnM6OFNKRQAvAfdorVuUUgFALLAImA88r5TKsW/V9X3eHcAdABMnTnTbwsX40Nlj4StPb+eDAzV876JcvrxsEh8erOHvHx1ja2kDS6ck+nqJQgghhBgDBtvh8pSDBw9iMBiYMmUKADt37iQzM3NYx8rKyuKvf/0rVquVioqK3nqtvpqbm4mNjSUsLIwDBw6wcePG3vsCAwPp6ekhMDCQlStXcvnll3PvvfeSlJREQ0MDJpOJhQsX8o1vfIP6+nqioqJ44YUXmDNnzpBru+CCC/jRj37E9ddfT0REBBUVFQQGBrr09b322mt873vfo62tjQ8//JBf/epXhIaGOnXclpYWwsPDiY6Oprq6mnfeeYfly5cDEBkZiclk6m1aMmHCBIqKipg2bRqvvPIKkZGRZxwvKiqK7OxsXnjhBVatWoXWmt27dzv1vRiKU8GZUioQW2D2tNb6ZfvN5cDL9mBss1LKCiQAtX2fq7V+FHgUoLCw8JTATYjBtHaZue2JLWwqbuAXV+Zx/ULbL6v5WXEEGBQbjtZLcCaEEEKIUau1tZWvfe1rNDU1ERAQwOTJk3ubdLjqrLPO6k0RzMvLY968eWc85sILL+SRRx5h9uzZTJs27ZS0vzvuuIPZs2czb948nn76aX7+859z/vnnY7VaCQwM5C9/+QuLFi3igQceYPHixaSkpDBv3rzeRiGDOf/88ykqKmLx4sWALZ3zqaeewmh0PgNqwYIFXHLJJZSVlfGjH/2I1NRUUlNTnTrunDlzmDt3LjNnziQnJ4ezzjrrlK/7oosuIiUlhbVr1/KrX/2KSy+9lIyMDPLy8mhtbe13PU8//TR33XUXP//5z+np6eG6665zS3CmTtvoOvMBtr29J4AGrfU9fW6/E0jVWv8/pdRUYA0w8fSds74KCwu1o+uMEINpau/m5se3sLeimT9cM4fL89NOuf+qv63HqjWvfOWsAY4ghBBCCDG4oqIipk+f7utliCE88MADRERE8K1vfcvXS3FZf68xpdQ2rXVhf493Zgj1WcCNwLlKqZ32j4uBfwE5Sqm9wLPAzYMFZkI4q8bUybV/30hRZQt/u37eGYEZwOKceHaXN9PaZe7nCEIIIYQQQow+znRrXAcMVPl3g3uXI8a78sZ2bvjnJmpMXTx+63zOmtz/0MLFk+L589ojbClpYMW0JC+vUgghhBBCeMsDDzzg6yV4jTM7Z0J4xdHaVq55ZAMNbd08+aWFAwZmAAWZsQQZDWw8Wu/FFQohhBBCCOE5LrXSF8JT9le2cONjmwD47x2LmJkaPejjQwKN5E+MYcMxCc6EEEIIIcTYIDtnwue2lTZy3aMbCAow8Pydi4cMzBwW58Szt6KZ5o4eD69QCCGEEEIIz5PgTPjUp0fquPGxTcSFB/HCnYuZlBjh9HMXT4rHqmFzcYMHVyiEEEIIIYR3SHAmfOajQ7Xc+vgWMmLDeP7OxaTHhrn0/LkTYwgOMLBB6s6EEEIIMUoZjUby8/PJy8tj1apVtLe3D/tYt9xyCy+++CIAt912G/v37x/wsR9++CHr16/v/fcjjzzCf/7zn2Gf26GkpIS8vLxTbnvggQf43e9+59Jx3LWe0UZqzoRPaK35v7eKyIgL5bkvLyImLMjlYwQHGCnIjJW6MyGEEEKMWqGhoezcuROA66+/nkceeYRvfvObvfdbLBaXhjU7/POf/xz0/g8//JCIiAiWLFkCwJ133unyOTzFbDb71Xq8SXbOhE/sPN7EwWoTty3NGVZg5rA4J56iqhYa27rduDohhBBCiNP85jewdu2pt61da7vdTZYuXcqRI0f48MMPWbFiBV/4wheYNWsWFouFb3/728yfP5/Zs2fz97//HbC92X333XczY8YMLrnkEmpqanqPtXz5crZu3QrA//73P+bNm8ecOXNYuXIlJSUlPPLII/zxj38kPz+fTz755JTdrZ07d7Jo0SJmz57NlVdeSWNjY+8xv/vd77JgwQKmTp3KJ5984vLXONixv//977Ns2TL+9Kc/9a6nsrKS/Pz83g+j0UhpaSmlpaWsXLmS2bNns3LlSsrKygDb7uHXv/51lixZQk5OTu9O4mghwZnwiee2HCcsyMhlc1JHdJzFk+IB2FQsu2dCCCGE8KD58+Gaa04GaGvX2v49f75bDm82m3nnnXeYNWsWAJs3b+YXv/gF+/fv57HHHiM6OpotW7awZcsW/vGPf1BcXMwrr7zCwYMH2bNnD//4xz9OSVN0qK2t5fbbb+ell15i165dvPDCC2RlZXHnnXdy7733snPnTpYuXXrKc2666SZ+/etfs3v3bmbNmsVPfvKTU9a5efNmHnzwwVNu7+vo0aOnBFSPPPKIU8duamrio48+4r777uu9LTU1lZ07d7Jz505uv/12rrrqKjIzM7n77ru56aab2L17N9dffz1f//rXe59TVVXFunXrePPNN7n//vtd/En4lqQ1Cq9r7TLz+q5KLp2dQkTwyF6Cs9NjCAsysuFoPRfmpbhphUIIIYQYd+65B+zphQNKTYULLoCUFKiqgunT4Sc/sX30Jz8fHnxw0EN2dHSQn58P2HbOvvSlL7F+/XoWLFhAdnY2AO+99x67d+/u3QVqbm7m8OHDfPzxx3z+85/HaDSSmprKueeee8bxN27cyDnnnNN7rLi4uEHX09zcTFNTE8uWLQPg5ptvZtWqVb33f+5znwOgoKCAkpKSfo8xadKk3lRNODlEeqhjX3vttQOu69NPP+Wf//xn727dhg0bePnllwG48cYb+c53vtP72CuuuAKDwcCMGTOorq4e9Ov1NxKcCa97a3cl7d0Wrp0/ccTHCgowUJgVJ3VnQgghhPC82FhbYFZWBhMn2v49Qn1rzvoKDw/v/VxrzcMPP8wFF1xwymPefvttlFKDHl9rPeRjXBEcHAzYGpmYzWa3HRdO/Zr7qqqq4ktf+hKvv/46ERH9d/bu+zU61gi2r380kbRG4XXPbjnOlKQI5k2MccvxFufEc6i6lbrWLrccTwghhBDj0IMPwocfDv7x4x9Dezv86Ee2//74x4M/fohdM2ddcMEF/O1vf6Onxzbb9dChQ7S1tXHOOefw7LPPYrFYqKqqYu3pNXHA4sWL+eijjyguLgagocE2gigyMhKTyXTG46Ojo4mNje3doXryySd7d7pGajjH7unp4ZprruHXv/41U6dO7b19yZIlPPvsswA8/fTTnH322W5Zo6/JzpnwqoMnTOwoa+KHl0x327s4jrqzjcfquXT2yGrYhBBCCCH65agxe/55WLHC9tH33x502223UVJSwrx589Bak5iYyKuvvsqVV17JBx98wKxZs5g6dWq/gU5iYiKPPvoon/vc57BarSQlJfH+++9z2WWXcfXVV/Paa6/x8MMPn/KcJ554gjvvvJP29nZycnJ4/PHH3fa1uHrs9evXs2XLFn784x/z4x//GLDtGD700EN88Ytf5Le//S2JiYluXaMvKW9u9RUWFmpH1xgxPv30jf08ubGEjd9bSXxE8NBPcILZYiX/p+9zeX4qv7hylluOKYQQQoixr6ioiOnTpzv34N/8xtb8o28gtnYtbNkCfeqdhOirv9eYUmqb1rqwv8fLzpnwmi6zhZd3lHP+jGS3BWYAAUYDC7LjZBi18CqtNX98/xDnz0wmLy3a18sRQgjhaf0FYI4dNCHcRGrOhNe8t6+apvYerp2f4fZjL86J51hdG9UtnW4/thD9qW7p4qEPjvDfzWW+XooQQgghxggJzoTXPL/1OGkxoZw9OcHtx3bUncnumfCWvRXNgK2OUgghhBDCHSQ4E15xvKGdTw7XcU1hBgaD+9q5OkxPiSIqJECCM+E1+ypbAFtwNtra9AohhD+paOrgm8/vpLXLvW3ZnSW/w4WnDOe1JcGZ8IoXth5HKVhVmO6R4xsNioU58TLvTHjN3krbzpmpy0xFU4ePVyOEEKPXIx8e5eXtFXx0sNbr5w4JCaG+vl4CNOF2Wmvq6+sJCQlx6XnSEER4nMWqeX5rOcumJpIaE+qx8yzOief9/dVUNHWQ5sHzCAGwr6KZtJhQKpo6OHjCRHpsmK+XJIQQo05LZw8vbS8HYFNxPZfMTvHq+dPT0ykvL6e21vuBoRj7QkJCSE93bWNCgjPhcR8fquVESycPfHaGR8+zZPLJurOrCzyzQ+esyqYOjwaiwrca2rqpbO7ka+dO5uEPjnDghImV0yf4ellCCDHqvLStnPZuC2kxoWw61uD18wcGBpKdne318woxEElrFB737JYyEiKCODfXsxevU5MiiQsP8nnd2fojdSz51Qe9DSPE2LPPntK4KCeetJhQDkhTECGEcJnVqnlyQyn5GTF8YeFEDlabaGjr9vWyhPApCc6ER9WYOllTVMNV89IJCvDsy81gUCzKiWPjMd/mju8sbwJg3ZE6n61BeNbeClszkJmpUeQmR3LwRIuPVySEEKPPuiN1HKtr45YlWSzKiQNgc7H3d8+E8CcSnAmPenl7BWar5hoPzDbrz+KceCqaOjje4LsGDYfsuyjyB2bs2lvZTHpsKDFhQUxLjuRYbRvdZquvlyWEEKPKfzaUkBARxEWzkpmVFkNIoIGN0thLjHMSnAmP0Vrz3JbjLMiKY1JihFfO2Tvv7Jjvdq0OVbcCsKWkAYtVuj+NRfsrW5iZGgXAtORIzFbN0dpWH69KCCFGj7L6dtYcqOHzCyYSHGAkKMBAQWYsm+SNTTHOSXAmPGZzcQPFdW1c66VdM4BJiREkRgaz3kd1Zxar5khtKxOigjF1mmVA8Rhk6uyhuK6NvNRowDZjD+CApDYKIYTTntpUikEpvrBwYu9tC7PjOXCiheb2Hh+uTAjfkuBMeMxzW44TGRzAxbO81xZXKcWinHg2HPVN3VlpvS297fMLbH9stpTIO4BjzX778Om8NFtwlp0QTqBRSVMQIYRwUke3hee2HOfCmcmkRJ/sbLwwOw6tYbP87RTjmARnwiOaO3p4a08Vn81PJTTI6NVzL86Jp8bUxbG6Nq+eF06mNK6YlkRqdIj8gRmD9lWebAYCEGg0MCkxQnZJhRDCSa/vqqC5o4ebFmeecvucjBiCAgxskrozMY5JcCY84vVdlXSZrVw3f+LQD3az3rozH6Q2Hqq2XaBPTopgQXYcm4sbfNo5Urjf3spmEiODSYoK6b1tekqUBGdCCOEErTX/Xl9KbnIkC7LjTrkvJNDI3IwYqTsT45oEZ8IjnttSxoyUKPLSorx+7qz4MJKjQtjgg3feDlWbyIgLJTw4gPnZcdSauiitb/f6OoTn7KtoIS/11Nf1tORIqpo7pU5CCCGGsLW0kaKqFm5anIVS6oz7F+bEs6+ymZZO+X0qxicJzoTb7a1oZm9FC9ctyOj3F6+nKaVYPCmeTT6Yd3a4upWpSZEALMiSmS1jTWePhSO1rcy0NwNxmJZs+5lLUxAhhBjcE+tLiAoJ4Iq5qf3evyg7DquGbSWNXl6ZEP5BgjPhds9tOU5wgIHL56T5bA2Lc+Kpa+3mcI332pv3WKwcq2tlygTbhfrkpAjiwoOk7mwMOXDChMWqz9gRzrUHZwerJbVRCCEGUt3Syf/2nuCawgzCggL6fczcibEEGhUbi6XuTIxPEpwJt+rotvDqzgounpVCdFigz9bhi7qzkro2eiyaacm2mW5KKQozY6Vj4xiyt6IZ4Iyds+SoEKJDA6VjoxBCDOLpTWVYtOaGRZkDPiY0yMic9Bg2HZO/nWJ8kuBMuNU7e6swdZq9OtusPxlxYaTHhno1OHPsmkyxpzUCLMiOo7S+neqWTq+tQ3jOvsoWokMDSY8NPeV2pRTTkiM5UDV+0xq11vxv7wma2rt9vZQBdXRbeGpjqQyHF8IHus1WntlUxvKpiWQlhA/62IU5ceypaKaty+yl1QnhP4YMzpRSGUqptUqpIqXUPqXUN+y3P6CUqlBK7bR/XOz55Qp/9+yW42TFh7HwtA5MvrA4J56NxfVYvXQhdqi6FYOypTM6ODpRSd3Z2LCvspmZqVH91lLmJkdyqLp13HbnfGFbOXc+tY0nN5T6eikDemHbcX746l5p0y2ED7yzt4q61i5uXpI15GMX5cRjsWq2lkrdmRh/nNk5MwP3aa2nA4uAryqlZtjv+6PWOt/+8bbHVilGhWO1rWwubuDa+RN90gjkdIsnxdPU3kORl5o0HK42kRkfTkjgybluM1KiCA8y+l1w1m22Ut/a5etljCo9FisHqky9w6dPNy05ktYuM+WNHV5eme+V1LXxk9f3ASfnwPmj1UU1AJJ+KoQP/GdDKVnxYZwzJXHIxxZkxhJgUPJGihiXhgzOtNZVWuvt9s9NQBHgu04Pwm89t/U4RoPiqgL/eHl4u+7sYLWJKX12zQACjAbm+WHd2V/WHuG8P3yE2WL19VJGjcPVrXRbrL3Dp0+Xm2y7fbzNO+uxWLnnuZ0YDbYay/1+mtpp6uxhw9E6QLpqCuFteyua2VbayI2LszAYhn7zNiwogFnp0TLvTIxLLtWcKaWygLnAJvtNdyuldiul/qWUinX34sTo0WOx8tK2clbmJpEUGTL0E7wgJTqUrPgwNnrhnbcus4XS+vbelup9LciK42C1ya9qcdYdqaOxvYcjtd7rZjna7avsvxmIw3htp//wmsPsPN7E/31uFitykyhraPfL+USfHK6jx6KJCQscdwG0uzW2ddPc4X8/Y+G/nlhfQmigkasL0p1+zsLseHaXN9HRbfHgyoTwP04HZ0qpCOAl4B6tdQvwN2ASkA9UAb8f4Hl3KKW2KqW21tbWjnzFwi+tKaqhrrWb6xb4thHI6RZPimdTcYPHGwAcq23DYtW9bfT7mp8dh9aw1U9mtnT2WNhTbgs0HP8VQ9tX2UJYkJHsAQrZI4IDSI8NHVcpc1tKGvjz2iNcNS+dS2enMsO+q1jkh6mNq/dXExsWyBX5aRysNklTkGF6dUcFZ//6A7753E5fL0WMEo1t3by2q5LPzUsjOtT5Ls4Lc+LosWi2l/nH304hvMWp4EwpFYgtMHtaa/0ygNa6Wmtt0VpbgX8AC/p7rtb6Ua11oda6MDFx6DxjMTo9t6WM5KgQp3LJvWlRTjymTnPvroenHLJ3apw6IeKM+/IzYggyGvwmtXFfZTPd9nRGR2t4MbS9Fc3MSInCOEhKTm5y5LjZlWnp7OGeZ3eSHhvGA5+1lSHPTLEFZ/6W2mi2WPngYA0rcpOYkRpFZ4+VsoZ2Xy9rVGnrMnPf87u457md9Fg0W0oaxm3zG+Ga57Yep9ts5abFWS49rzAzFoNC6s7EuONMt0YFPAYUaa3/0Of2lD4PuxLY6/7lidGguqWTjw7VcnVBOgFG/5rOsDjHO3Vnh6pNBBgUOQlnBmchgUZm+1HuvGMHb1JiOHskOHOK1arZX9UyYL2ZQ25yFMfq2ugyj/00nB+/to8TLZ388dp8IkNs74YnRgaTEBHEfj/bOdtW2khTew+fmT6hd2D4eB574Kq9Fc1c9vA6XtlRztdXTuFHl06npXN8Nr8RrrFYNU9uKGVRTly/af+DiQwJJC8tmo1+8rdTCG9x5kr6LOBG4NzT2ub/Rim1Rym1G1gB3OvJhQr/tb+qBauG5dP8a9cMICkqhEmJ4Wzw8DtvB0+0kpUQTlBA//9LLciOY29FM+3dvp/ZsrW0kaz4MJZNTWJ/VYs0BXFCcX0b7d0WZg7QqdFhWnIkFqvmSM3YruV7bWcFr+yo4GvnTqYg82S5sVKK6SlRftexcXVRNUFGA0unJjIlKRKDko6NztBa89i6Yj731/W0d1t45vZFfPMzU5mTEQPIzrsY2pqiaiqaOrjFifb5/VmYHcfO40109oz9N7yEcHCmW+M6rbXSWs/u2zZfa32j1nqW/fbPaq2rvLFg4X9qW2wt2SdE+UcjkNMtnhTPluIGejwYhByuMTGtn3ozh/nZcZitmp1lTR5bgzO01mwvbaQgM45Z6bb0LmkKMjTHRWjeAM1AHBy7MmM5tfF4Qzs/fGUv8ybGcPeKyWfcPzM1msM1JrrN/hH0a615f381iyfFExEcQGiQkaz48DH9M3KH+tYuvvTEVn725n7OmZrIO99YyiJ7JsLUCZEEGBR7PZwuLka//2woJSU6hPOmTxjW8xdmx9NttrLzeJN7FyaEH/OvHDQxKtXa52UlRgb7eCX9WzIpgbZui8dS+Dq6LZQ1tDOln3ozh4LMWJTC56mNJfXt1Ld1U5gVy6y0GMDzTUFaOnv45yfHaGjzn26Vrtpf2UKQ0TDozxiw7Z4aDWP2wt9i1dz3/C408OC1c/tNY56RGkWPxX92D4/WtlFS3855M05eHOamRI67rpquWH+kjov+9AnrjtTxk8/O5B83FRAbHtR7f0igkSkTItlbId9DMbAjNSbWHanjhkWZwy55mJ8dZ/vbeUxSG8X4IcGZGLGalk4iQwJOGb7sTxZ5uO7sSE0rWtveTR5IVEggM1KifN4UZKv9/AWZseQkhBMeZPR4atLzW47z87eKWPn7D3l+6/FR2URgb2Uz05IjCRziAiPQaGByUgRFYzQ4e+Sjo2wuaeCnl89kYnxYv4+Z4WdNQVYXVQNw3vSk3tumTYiitKHdL9KM/UmPxcpv3z3A9Y9tIjIkgFe/chY3L8nCVnp+qrzUKPZWNI/K/5+Fd/xnQylBRgPXzh9+F+fo0ECmJ0exqViagojxQ4IzMWK1rV0k+emuGUBceBC5yZEem3d2slPj4MXO87Pi2F7W6NN0r22ljUSFBDA5MQKDQTEzNdrjTUF2lDWRFBnM5KQIvvPibq57dKPf7Ko4Q2vN3ooW8tIGbwbiYOvY6B+BiTvtPN7EH98/xGVzUrly7sCD5rMTwgkNNHq8Q6qzVu+vJi8tipTo0N7bclMi0RoOVY+e16GnHW9o59q/b+Ava49yTUEGb3zt7N7RCP3JS4umvq2bantauxB9mTp7eGlbOZfOSSEhYmTXBwtzbH87x0OjJSFAgjPhBjUtXX6b0uiwKCeeLSUNHgmMDtWYCDIayBpgJ8FhYXYcnT1Wn9ZpbC1tpCAzFoO9HXxeWrTHm4JsK21kUU48z92xmF9fNYsDJ0xc9KeP+f17B0dFkXdFUwfNHT0DDp8+3bTkSKpbuvxq6PhItXWZuefZHSRFBvPzK/L63UlxMBoUuSmRftGxsb61i21ljWfUu5ysDfT9Gv3BW7uruPihTzhc3cpDn5/Lr6+eTVhQwKDPcbxZIU1BRH9e3l5BW7eFm11sn9+fhdnxdPZY2T1K53JqrWWHWbhEgjMxYradM/9sBuKwKMfxy73J7cc+dMJETmL4kDn1hVlxAGzxUd1ZU3s3R2paT+mu52gKcrS2zSPnrGzq4ERLZ29AeO38iay5bxmXzU7l4Q+OcOGDH7PucJ1Hzu0ujrqaodroOzjaRY+lboA/fWM/pQ3t/OHafKeGyM5IiWJ/VYvPL0jWHqxFa84IzjJiwwgLMlJUNXZ+RsPRZbbwvZd389VntjMpMYK3vr6Uz85Jdeq501OiUAppCiLOoLXmiQ0lzMmI6e3sORILs21/O0fjvDOtNef+/iP++Umxr5ciRhEJzsSIaK1Hxc7ZAscvdw8ERoeqW4dMaQRbw5SchHA2+yg4215mm29WkBnXe9sse2t4T6U2biu1nXPexJMBYUJEMH+4Np+nb1uIUoobHtvEN57dQa3JP9Oj9lU2YzTYWsQ7w/G4sTJH6397q3hu63HuWjapt35zKDNSozD5wRys1furSY4KOSOwNhgUUyeMn4HhA3l5ewX/3XycLy/L4YU7Fw9YR9ifsKAAJiVGSFMQcYZ1R+o4VtvGzYsz3XK8WHtpgq8bag1HfVs3xXVtvG+vfRXCGRKciRFp67bQ0WPx65oz8FzdWWuXmYqmDqYO0cXPYUF2HFtKGrBavb+jsLWkkQCDIr/PO5nZCRGEebApyPayRkIDjeSmnBm8njU5gXe+sZSvr5zCO3tOsPL3H/LMpjKffG8Gs7eimcmJEU43vEmKDCYmLJCD1aP/wv9Ecyf3v7yH2enR3HPeVKef52gK4st5Z509Fj4+XMt5M5L6TcPMTbZ1bPT17p4vrT9az4SoYO6/MHfIZjf9yUuN8pvaQuE/nlhfSnx4EJfMTnHbMRdmx7GttNGjI3E8oaTOlpWy63iT34wXEf5PgjMxIjUtnYD/ttHvyxO/3A/bL8CnOLFzBramIC2dZp9cuG8rbWRmahShQSeDDKNBMTM1ymM7Z9tLG5mdHj3ghV9IoJFvfmYqb39jKdNTovj+K3tY9fcNftXmfF9li9MpjWAbxDxtQuSoT2u0WjX3vbCTrh4rD16bP+CA9f7kJkdhUL7t2LjhWD3t3ZYB5yvlJkfS2N7jtzu2nqa1ZtOxehZmxw9aQziYvLRoqpo7qWsdn99DcabjDe2sOVDN5xdMJDjAfR2cF+bE0+7BkTieUlLfDkCX2SpvZAinSXAmRqTGfmHj7zVn4Jlf7oft3d4GG0DdlyO90tst9XssVnaVNzGvT72ZQ15aNPsrW7C4eceqs8fCvsqWU2rcBjI5KYJn71jE71bN4VhtK5c+tI5fvXOAjm7fNgypaemkxtTFzDTnmoE45CZHcuiEyS92AXss1mHtDj22rphPj9Tz/y6bQU6iczvDDqFBRnISI3zaFGT1/mrCg4wsntR/Kua0ZHv66SgPooerpL6dGlMXC3Pihn7wABxNcny5Qyr8y1ObSjEoxRcWTnTrcXtLE0bZvLPS+jYc73040vyFGMrg7ZiEGILjXefRsHPm+OW+8Vj9KTVQI3Gw2kRwgIGMOOdqNdJjQ0mJDmFzcQM3uaGLlbP2VbbQ2WOlMPPMC7FZadE83lPC0Vrnauectbu8GbNVO/29VkpxdUE65+Ym8cu3i3jko6McqWnlnzcXum1NrnJcdOa5sHMGkJsSRVu3hfLGDpfqeNzpcLWJv354lNd3VaK1Jjw4gMjgAMKDA4gICSAiuM9HyKmfaw2/efcA58+YwHXDnFE0IyXKZxcjWmtWF1VzztTEAd+9z+1t3NLCOVMTvbk8v+BorrAw27k6wv44Wu3vrWhm2Tj8HopTdfZYeG7Lcc6fMYHUmNChn+CChAjbOJZNxfXctXySW4/tScV1bWTEhqHRbC1p5Lalvl6RGA0kOBMjcnLnzP+Ds4SIYKYkRbDpWANfWe6eYx6qNjFlQgRGg3NpQUop5mfFsfFYPVrrYacTucoxfLow68xAqbcpSHmzW4MzRwOS/nbrBhMXHsRvV80hPiKYRz8+So2p02c7s440lMHmPfVnWp8Lf28HZ3srmvnzB0d4d/8JQgONXL9wItGhgZg6zbR1mWnt83GiufOUf/fdYEuJDuFXV80e9mt0RmoUr++qpLGtm9jwIDd9dc7ZW9FCdUvXgCmNYGsyMCEqeNzunG0qbiAhIphJieHDPkZ0aCCZ8WGSriUAeH1nJU3tPdy8JMsjx1+YHcdrOysxW6xDdkf2F6X17WTGh5EQEcwnh2u9+ndfjF4SnIkRqTV1EWhUxIQN3V7bHyzMieOV7RVu++V+uLqVJQOkTQ1kQXYcr++qpKyhncz44V8YuWJ7WSPpsaFMiDozyMlJtDUF2VPRzFUF6W4757bSRrITwokb5oX51QVpPPLRUd7YVcWXzs5227pcsbeihaz4MCJDXHt9O4LcgydMnD8z2RNLO8PWkgb+vPYIHx6sJTIkgK+tmMytZ2U7HRhprWnvttDWZcbUZSY5KoTw4OH/iXDU6RVVtbBkcsKwjzMc7xdVY1CwIjdp0MdNS47iwDhsp3+y3ixuxBeKeV4YZC/8n9aaf68vYdqEyN7W9+62MCeepzeVsb+qhdnpMR45hztprSmpb+OKjDRyUyJ5ZUcFpfXtZCV45+++GL1Gx1sPwm/VmDpJjAgeNe8ELcqJp63bwl431Eg0d/RwoqXT6WYgDp5s698frW3pFAPVfhkNihkp7m0KorVme2njiNJHJydFkpcWxWs7K9y2LlftrWx2ud4MICI4gIlxYRzwcOMXrTXrDtdx3aMbuPqRDewub+bbF0zj0/vP5ZvnT3Npx0opRXhwAElRIUxKjBhRYAYnRwr4oinI6v3VFGbGDfnGwPTkSI7Utnp0CLs/Km/soLK5c0T1Zg4z06Ioa2inub3HDSsTo9X2skb2V7Vw05JMj10PLBpldWeN7T2YOs1kJYT3lhRslboz4QQJzsSI1Jq6SOxnN8ZfLXDjMEtHp8Zpya41S5icGEFMWKDXhlGXN3ZQY+qicJD0Qnc3BSlraKe+rZt5mTEjOs4V+WnsLm/maG2rW9bliub2HsobO1zq1NjXtORIj80601qzen81V/x1PTc8toniujZ+dOkM1n13BV9dMZkoF3f6PCEhIpgJUcFebxZR0dTB/qoWzpsx+K4Z2H5G3WYrJfWeGcLurxxvDC1www5HnqMpSJXsno1n/15fSmRIAFfkp3nsHElRIWQnhLOpeHQMoy62t9HPig9jSlIEUSEBbCsdHYGl8C0JzsSI1Jq6SIzw/3ozh6TIEHISw92ya+Vohz8lybWdM4PBVnfmrY6NW+1/DAr6aQbiMCstmo4ei9uCIEcjCGc6NQ7msjmpKAWv7fD+7pmjjsZx8emq3ORISurb6exxX8dJi1Xzxq5KLvrTJ9z2n600tHXxiyvz+Pg7K/jS2dmEBflXpvrM1Givd2xcYx/2Oli9mUNusiP1cnylNm46Vk9MWCBTXfzd1R/Hmxf7ZBj1uFXT0sk7e6q4pjBjxDvuQ1mYHcem4ga3dxf2hFL7mz6Z8eEYDIp5mbFsLZGdMzE0Cc7EiNSaukiKGj3BGdhSG7e44Zf74epWwoKMpA2jK9WCrDhbK2v7nDhP2lbaSERwQG+Tiv7MSj/ZFMQdtpfZzulq4Hq6CVEhnDUpgVd3Vnp9WPBee3A2kp0zi1VzpMY9Ae8HB6r5zB8+4mv/3UGPxcofrpnD2vuWc/3CTLfOE3KnGSlRHKltdWuAOpTVRTXkJIY71f5/UlI4RoPi4DhrCrKpuIEFWXEYnGxkNJj4iGBSo0N6/38R488zm8swWzU3Lsr0+LkW5sRh6jRT5MMZis4qqW/HoCAjznaNUJgZy+GaVprau328MuHvJDgTw9ZjsVLf1j2qds7A9s6bqcs84nf0bZ0aI4d1geNIJ9rshd2zrSWNzJ0YM2hHyUmJEYQGGt1Wd7attGnIczrr8vxUyhra2XG8aeQLc8HeihZSo0OIH+br27Er444L/9YuM1//706Ugr9eP4/37l3G5+al+33HshmpUVisunceoKeZOnvYcLTOqV0zgOAAI5MSw/1q6LmnVTV3UNbQzsKc4bfQP93MNGkKMl51m608vamM5dMSvdLowjH6wVs12yNRWt9Gakxo75tnhVm2v/sy70wMxb//sgu/Vt9qe/dnNO6cASPOWz9UbWJqkmv1Zg4zU6MICzKy2cN/YFo6ezhYbRoyvdBoUMxMjWKvGy6wWrvMHDzRwlw3zZK7MC+Z4AADr3o5tXFfZTMzhpnSCLY6g6AAg1su/F/ZUUFrl5nfrprDxbNS3BL0esMMe1MQb7Va/+RwHT0W7XRwBvaOjeNo58zRTMGdHfXyUqMprmujtcvstmOK0eF/+05Qa+riZi/N7UyNCWViXJhb6sY9raSujaw+HZnnpMcQYFDSFEQMSYIzMWw1JltK3mjbOZtgLyreOIJf7g1t3dS1dg+aKjiYAKOBeRNjPR6c7ShrQmv6HT59ury0aPa5oSnIruNNWPXI680cIkMCOW/6BN7cXUWPl7rqtXWZOVbXRl7a8FIawfYznpIUMeILf601T20oZWZqFHMzYkZ0LG+bGBdGRHCA1zo2rt5fTWxYIPMmxjj9nNzkSMobOzB1jo9ug5uK64kMCejtpukOeWlRaI1HUs2O1JhYvb/a7ccV7vGf9SVkxod5dQj5wuw4Npc0YPXzurMS+4wzh9AgIzPTotkmdWdiCBKciWGrdQygHkXdGh0WZsexeQR1Z4cczUBGMLR5QXYcB6tNHm1Bva20EYOCfCcuVh1NQY6NsCnIdvu7gvluDCSumJtGQ1s36w7Xue2YgymqakHr4TcDcZiWHDnitMbNxQ0crDZx02LPtaj2FINBMT0l0itNQcwWKx8crGFFbpJL6Z659jdYDnl47IG/2HTMVm/mzt3XPPu4CXfsvJ/uF28V8eWntvU2VxD+Y29FM1tLG7lxUaZb6hedtTAnnqb2Hg7V+O//s03t3TR39JB9WqpnYWYsu8qb6DaPr/EdwjUSnIlhq7EHZ4mRo2vnDGxFxS2d5mGnnDku5KZOGF5aI8D8rDi0PtlN0RO2lTaQmxxFhBMdtHqbgozwAmtbWSNTJ0QQHeq+du7LpiYSExbIq16aeeZo/z5zBDtnANOTo6gxddHQNvwC8P9sLCUqJIDPzvFci2pPmpESRVFVi8ff5d5W2khTew+fcSGlEejd/R4PqY01LZ0cq2tzy3yzvpIig0mICGavmzs2tneb+fRoPRar5s8fHHHrscXIPbmhlNBAI6sKMrx63oWjYN6Zo41+ZvyZwVmX2SoNdMSgJDgTw+bYOUuIcH7Qrb9wFBVvHOYv90PVJiJDAkgewa7h3IkxBBqVx5qCmC1WdpQ1UZjlXHqhO5qCWK2aHWVNIxo+3Z+gAAMXz0rhvX3VtHmhrmVvRTPx4UEj+vlC3wv/4V201rR08u7eE6wqzCA0yD87Mg5lRmoUbd0WShvaPXqe1UXVBBkNLHUxvSotJpTI4AAOjIN2+ifnm7mvGQjYBpjnpUW5vbZw/ZF6us1W5qRH8/KOCtk98yONbd28urOCK+amER3m3bmKGXFhpMWE+vW8s9J62++7rD5pjQAF9r/HktooBiPBmRi2GlMnMWGBftvGezAjLSo+dKKVqRMiR5RmFhJoZHZ6jMfqzg6cMNHebXG69stoUMwYYVOQY3WtNHf0MM9N9WZ9XZGfRkePhff2n3D7sU+3t7KFmWnRI04jdKTMDTe18b+bj2O2am7wQotqT5lpTw31ZGqj1pr391ezeFK8U7vEfSml3JJ+OhpsLm4gPMhI3jDHQwwmLzWawzXuHZuw5kANEcEB/PWGAgIMiodl98xvPL/1OF1mKzcv8c3vJkdpgrdHrDirpL4NpWyBZF9JkSFkxod5bc6pGJ0kOBPDVtPSRdIoTGl0GG5RsdaaQzWmEaU0OszPimNPeTMd3e6fAzWcQdCzRtgUZHtpk8vndFZhZixpMaG8uqPS7cfuq8ts4XC1adjzzfpKjAwmNixwWBf+PRYrz2wuZemUhDPqFkaTyUkRBBgU+6s8l8ZztLaNkvp2zpvhWkqjQ25KJEUnWvz2Qs9dNhXXU5AV55ERDHlptrEJ7koP1VrzwYFqzpmaQFpMKDcsyuSVHRWU1Mnuma9ZrJonN5ayMDuud2SIty3MiaOutZujI6yR9pTS+nZSo0MJCTzzzeuCzFi2lTaO+d83YvgkOBPDVtvaNSrrzRwW2YuKD7rYCKC2tYum9h6mjqAZiMPC7DjMVs2O4+5Pcdha2khyVIhLQ7Lz0qJp7x5+U5BtpY3EhAWS44FgwmBQXJ6fyrojddS1drn9+A6HTrRituoRNwMB265M7jBbta/eX011Sxc3ealFtaeEBBqZnBTh0Z2z1UW2bn7nTU8a1vOnJUdh6jRT1ey+ofBtXWZue2IL//60GLOXuowOpqGtm0PVrW5tod+XY4fUXU1B9lW2UN3Sxbm5toD7y8tyCDAo/rxWds98be2BGsobO7h5SZbP1jDS0gRPK65rO6VTY1+FmXHUt3VTUu/ZVG8xeklwJobNtnM2+jo1OjiK4l1NbTx0wha4uCM4m5cZi1J4JLVxW0kDBVmxLqXmzUobWVOQ7WWNzJvo2jldccXcNCxWzZu7PLd75ijUHkkb/b6mJUdyqNrk8g7tkxtLSYsJ5dzc4QUc/mRGSlRvkxVPWL2/mry0KFKinX8joq/cEdYG9rumompWF9XwwBv7ufThdT5PY9psr89Z5OZmIA7psaFEhwa6re7sgwM1KAXLp9lqCJMiQ2T3zE88saGElOgQzh/mTrU7ZMaHMSEq2G+HUZfWt53RDMTBUQe+VVIbxQAkOBPDorWmtnV0pzWmxzqKil37BXmyU+PIg7Po0ECmJ0e5/cKtsqmDyuZOClxszDEpMZyQQMOwgrPm9h4O17S6NGPKVVMnRDI9JYpXdnouONtX2UxkcAAZsf2/6+mq3ORI2rstHG90/l3SIzUm1h+t5wsLJ46agdODmZFq61rpaCLkTvWtXWwva3Rp8PTpPNGx8b191SREBPOXL8yjuaOHVY9s4JvP7/TI98AZG481EBJoYFZajEeO72gK4q6OjWsO1JCfEUNCnzmaX16WQ6BRas986UhNK58cruP6hRM9kh7rLKUUC7Pj2Xis3u/SA5vbe2hs7yE7of+/IZMTI4gKCegtPRDidBKciWFp6TDTbbaO6rRGsKU2bnKxqPhwjYnYsEC3dalckB3H9tImtw5YdvzSd7ZTo0OA0cCMlOE1BXGkZnqiGUhfV85NZdfxpt5Wxe62t6KFGalRbpvbM5wL/6c2lhFkNHDtfO+2qPaUGfb6PU8MKV57sBarZkTBWVRIIGkxoW5rCtLZY+HDgzV8ZsYELpmdwpr7lnHX8km8sauSc3/3IY/7INVxU3EDBZmxBAV47s9+Xmo0B0+YRjzDqdbUxa7jTaw8bdc4KTKEGxZm8upO2T1zlbsatTy1sZQgo4HrFkx0y/FGYmFOHLWmLo/9LRiu0ob+2+g7GAyKgsxYtkpwJgYgwZkYltpWW23GaA/OFubE0dDWzeEa52usDp4wMWWEnRr7mp8VR0ePxa0DXLeVNhIaaGR6iuupecNtCrLdPvB6TnqMy+d0xWfnpKEUvOaBmWdmi5WiqpbeobruYOvqidOt2tu6zLy0rZyLZyWfsmswms2wvw73eyA4W72/mpTokBE3cMlNjnRbO/1Pj9TR1m3hgpm2gDEsKIDvXpjL/+45h/yJMfzEy6mOze09HDjR0lun4ykz06Lptlg5PMLhwGsP1gD01pv1dYfsnrlsb0Uz8372Pl95ehutIxhF0tpl5sVt5VwyO8Uvfjc5Xs/+ltroCBazBgjOAAqz4jhS00rjCGZgirFLgjMxLDUto3cAdV+LHL/cnaw701pzuLqVaW5IaXSYn23baXLnhdrW0gbyM2IIHEbaiaMpSHGda01Btpc1MT0linAXW5m7Kjk6hEXZ8by2s9Lt6SxHa9voMlvd0qnRITw4gIlxYRysdi4weXVnBaYuMzeO8kYgfcWEBZEWE+r2urPOHgsfH65l5fSkEb9ZMi05kqO1rSPe9QF4d98JIoMDWDIp4ZTbJyVG8J8vLuCRG+bR4sVUx80lDWht26X3JEfN6r4RpjZ+UFRDSnQI01PO/D3r2D17ZUe53+2Y+CNTZw93P7OdoAAD7+6r5vI/r+PIMIPnl7eX09pl9mkjkL4mJYaTEBE87JE4nuKYcTZQQxCwdR8GJLVR9EuCMzEstfZueaO5IQhARlwoqdEhTnd8qmruxNRldksbfYekyBCyE8Ld1hSkrctMUZVp2O3sZ6W73hTEYtXssDcD8YYr5qZSXNfGrnL3tmff19sMxH07ZwDTJkQ6ldaotebJDaXMSInyaO2eL8xIjWK/m4cUbzhWT3u3ZUQpjQ65KVGYrXrErbnNFivv769mRW5SvymESikuzEth9X3L+OoK76Q6bjpWT1CAgfyMGI8c3yEzLoyI4IDepjrD0WW28MnhWs7NHTjg/vKySQQFGHj4g8PDPs94oLXmey/v4XhjB/+4qZCnvrSQ5o4eLv/zp7y9p8rlYz2xvoQ56dEefx05SynF0ikJrD1YS5fZ/eNohqukvo2U6JB+2+g7zMmIIdCoJLVR9EuCMzEsY2XnTCnFwpx4NhU7V1TsaAYyxY07ZwALsuLYUtLocke//uw63oTFqilwsd7MYXJihK0pSLnz734fPGGizYWB1yN1YV4KQQEGXt3h3tTGvRUthAQa3D4KIDc5kpK6tiHrPraWNnLghImbFmd6rOOlr8xIieJYXRvt3cNPqzrd6v3VhAcZWTxp5Ol6Ix0Y7rClpJHG9h4uzEse9HFhQQF8+4Jc3vVCquPmEttO+mAXi+5gcMMg+83FDbR1W1g5yFiExMhgblyUyas7KmT3bBDPbC7jzd1VfPMzU5mfFcfiSfG88bWzmZocyVee3s4v3y5y+g2B9UfrOVrb5nejPa6Ym0ZzRw9rimp8vZReJYO00XcICTQyMzWabaX+lZIp/IMEZ2JYalu7CA4wEBXi2RQ2b1iY7RhmOfQf+cPV7muj39f87DiaO3o4NMJaDaD3nbjh7mINpynI9rKRndNV0aGBrMxN4s3dlW7dbdhb2cz0lCi3dyHLTYnCqk++fgbynw2lRIYE8Nn8VLee3x/MSI1C65EHPw5aa1YXVXPO1ESCA0YedGQnhBNoVBSNsJ3+u/tOEBRgYNnURKcen9Mn1dHUaWbVIxv44at73Jaya+rsYW9FM4s8nNLokJcazf6q4Q+yX1NUQ0ig4YyU0NPdcY7sng1mX2UzP3ljP+dMTeSuZZN6b0+JDuXZOxZx46JM/v7xMW54bJNTcyOfWF9CXHgQl8xO8eSyXXb25AQmRAXz0rZyXy+lV2l9+6D1Zg6FmbHsKm/2q10/4R8kOBPDUtPSSWJk8Jh4d39RjmOY5dB56werTSREBBMX7p5OjQ4LsmwXTlvckNq4tbSRqRMiiA4NHPYxbE1Bmp3eydte2khCRDAZccObMzUcl+enUdfazadH3VNvYLVqiipb3Fpv5jDNiTlaNaZO/re3ilUFGYQFjf43PU7n+L66q+5sb4VtSLE7UhoBAo0GJidFjih41Frz/v5qzpmS4FLtpSPV8f1vnsMNiyby1MYyNrjpdb21tBGrhoU5nm0G4pCXFkVnj3VYg+y11qw5UM1ZkxKG3OXru3s2nHONZa1dZu5+ZgexYYH88Zo5Z3SeDQ4w8rMr8vj9qjnsKGvi0ofW9b7B1p/yxnZWF1Xz+QUZHt99dZXRoLhibhofHqr12ZiKvlo6e6hv6ybLieyLwqw4us1Wt42fEGPHkMGZUipDKbVWKVWklNqnlPrGafd/SymllVKDv80lxpTRPuOsL1eGWR6uNjEt2X31Zg4ZcaEkR4WwcYTBmdWq2VHaSEHmyN4lz0uLpq3bwjEnU4Zsw6djvBqsr8hNJCokgNfclNpY1tCOqctMXqp7683A1rUrOMAw6IX/c5uP02PR3LDI9y2qPSEtJpSokAC3dWx8v6gag4IVbhzSnZs8suBsb0ULFU0dnD9z8JTGgYQFBfDDS2aQFBnMn9a4Z0do07EGAo3Ka7vajnrN4dSdHa1t5XhDB+cOktLYl6P27M/SubGX1prvv7yH0vo2HrpuLvGDdFW8qiCdl7+yhMAAxbV/38CTG0v73bF9amMZANcvzPTYukfi6nnpWKzaIx18XVVmbwaSNURaI9BbBiCpjeJ0zuycmYH7tNbTgUXAV5VSM8AWuAGfAco8t0Thj2paukZ9vZmDY5jlpiGGWVqtmsM1rUxJcm9Ko2MNn5kxgXf2VLH+aN2wj3OoxoSpy9zbCWq4HE1BnEltrGvtoqS+3Wv1Zg7BAUYumZ3C//adcEsd014PNQMB27u7UydEcrC6/wt/s8XKM5vLWDolgZxE9wf//kApZW8KMvLgTGvNu3tPUJgZ59Zd7NzkSKqaO2lu7xnW89/ddwKDGtnMtZBAI3cum8Sm4ga3dKHbVFzP7PQYQoO8s+ORk2AbZD+c3QBH3dC5TgbcCRHB3LQ4i1d3yu6Zw383H+f1XZXcd/40p3ZLZ6ZG8+bdSzl7cgI/enUv33ph9ym1sZ09Fp7bUsb5M5JJjfFeZoQrpkyIZHZ6NC9t931w5qiBHGjGWV+JkcFkxYexpUSagohTDRmcaa2rtNbb7Z+bgCIgzX73H4HvAP41nl14nG3nbHR3auxrUU48NUMMs6xo6qC92+L2ejOH+y/KJScxgq//dwcnmjuHdYytJcMbPn263qYgTgRnO8qaAM8Pn+7P5flptHdbeH9/9YiPta+yhQCDYoobO3H2NS05kqIB5mitLqqhqrmTGxf55zvT7jIjJZoDJ4Zfj+Tw0aFaDlab+Ny8tKEf7AJn0k8H8+6+EyzIHnnA+PkFE0mICB7xLK/2bjN7yptZ6KV6M7DVrE4f5iD7NQdqmJ4SRUq080HAHefk2GvPfLd7dqy2lf/tPcHq/dWsPVDDx4dq+fRIHRuP1bOlpIHtZY3sLm9ib0UzB060cLjaxLHaVqpbhvd7fiD7K1t44I19LJ2ScEqd2VCiwwJ57Ob5fGPlFF7aXs7n/rq+dwfojV2VNLb3cNMS//7ddNW8dIqqWtzy5s9IlNY7grOhd84ACjLj2F7a6PaxMGJ0c6mwQSmVBcwFNimlPgtUaK13jYW6I+G8LrOFpvaeMbNzBrZh1GAbZjnQzoWjU6Mn0hrBNg/rkRvm8dk/f8pXn9nOs3cscnlO2bbSRhIigpgY59wfhoE4LrD2ONGqfltpI4FG1TvjyJsWZMWRGh3CazsruTx/ZBfqeyuamToh0i3NJfqTmxzJi9vKqW/tOiPV6MmNJaRGhzi9YzBazUy11SMV17UyeZg70Fpr/rTmMGkxoXxuXrpb1+cY2n7ghMnlGq2jta0crmnlCwtnjHgdoUFG7jgnm/97+wDbShuHvSu9rbQRs1V7fL7Z6fJSo3l1RwVWqz6j3mkgTe3dbCttdCmogJO7Z//85Bh3nzuZSV7eedZac8M/N1E5zDfUVhWk86PLZhAVMvwaYXDUmW0nJjSQP16b7/T33cFgUNz7manMyYjmnmd3ctmf1/Hgdfk8saGEqRMiWOylmsXh+uycVH7+1n5e2l7OjNSR/z84XCX17UyICna6brgwK5aXtttm9o3VrAnhOqeDM6VUBPAScA+2VMcfAOc78bw7gDsAJk4cm7UU401dq22i/VipOQNbKk5CRDAbj9Xz+QX9v04dKWnDvah0xuSkSH591Wy+9t8d/PLtA/y/y1z7I+O4kHPHGyaz0qJ5aVv5kBdY28samZEa7ZNCcYNBcVl+Ko99Utxv0OMsrTX7Kls4z8lal+GY1qdV+5LJJ9d5pKaVT4/U8+0Lprm9S6S/mdGnKchw/z9ad6SOHWVN/OLKvH7niI1EUmQwMWGBTs2kO927+04ADLve7HTXL8zkkY+O8fAHh/n3rQuGdYxNxxowGhSFWV4OztKieHJjKWUN7U41RgDbbqjFqp2uN+vrjnNyeHJDKX/+4Ah/vDbf5eePxN6KFiqbO/nOhdNYOjkRs9WKVWvMFo1FayzWMz/MVo3V/jvnn58c49Mjdfz66tksneJch8/Taa35wSt7KKlv45nbF5EwzN+DAOfmTuCNr53NnU9t59bHtwDw8yvy/L75V2x4EOfmJvHazgruvyjX5Tc23aW0vs2plEYHRwnC1tJGCc5EL6devUqpQGyB2dNa65eBSUA2sEspVQKkA9uVUmf8VdJaP6q1LtRaFyYmDu8Xj/AvNfZUjKSosROcKaVYlBPHpmMNA6YXHK5uJTkqZERdEJ1x2ZxUblmSxb8+Leat3c4PCq0xdVLW0E7hCJuBODjTFKTHYmV3eRMFXmo20J8r56ZhtmrecnGoal8nWjppaOtmpgeagTjkJp/clenrqY2lBBoV1xRmeOzc/mJSYgRBRsOwm4JorfnT6sOkRIdwdYF7d83A9nvANjDc9fW9u6+a2enRpLmpLic8OIDblmbz4cFadh1vGtYxNhc3kJcaRYQLnSPdwfH/kStNQT44UEN8eBBz0mNcPp9t9yyT13ZWjHiIuKtWF1WjFFxbmMGs9GjmToylIDOOhTnxLJmUwNIpiSyflsTK6RM4f2YyF81K4bI5qVyen8b3L57Oy185i9AgIzc+tpkfvLKHti7X62ef23Kc13ZWcu95U3u7D49EZnw4L9+1hKsL0slOCOfKue5NH/aUq+alU9fazceHan22huK6dqeagThMSowgJiyQbVJ3JvpwplujAh4DirTWfwDQWu/RWidprbO01llAOTBPa33Co6sVfqHG3q42MWLs1JyBrdX0iRZbgNOfQ9UmpiZ7btesr+9fPJ15E2P4zou7OFLj3MWG45f7cIdPn86RpjhY7UhRVQudPVbmZca45ZzDkZscRW5y5IgGUjuaF+Slub+NvkNiZDDx4UGnXPi3d5t5aVs5F89KGVNpwgMJCjAwZULEsOtCNhytZ2tpI19ZPslj6afTU6I4dMLk0kD4E82d7DrexAVu2jVzuGlxFjFhgcOa5dXZY2Hn8SavtdDva+qESAKNyummIGaLlQ8P1rJ8WhJGF9PxHG4/J4fgACMPu6nLpbNWF1VTMDF22Lv2+RkxvPX1pdy+NJtnNpdx4Z8+dmqsi8OBEy38+HVbndlXVkwe1hr6Expk5Her5rD2W8tdGgvhS8unJREXHsRL230z86y1y0xda5fTu8Vgy/4omBjLVunYKPpwZufsLOBG4Fyl1E77x8UeXpfwY45ZImNp5wzoHdLa3x9Gi1VzpKaVqUneSTsICjDwl+vnERJo5K6ntjn1buq20kaCAgxum9M1JSmC4IDBm4Jssw+89nanxtNdnp/G9rKm3iJ2V9SYOnllRzlKnaw58pRpp7Vqf3VHJaYuMzct9u9ie3eaae/YOJwC+AfXHGZCVDCrPLjLOC05krZuCxVNHU4/5739tvclL5jpnplrDhHBAXzxrGxWF9W43GBjR1kT3RarV5uBOAQFGJiWHMk+J3fOtpc10dzRw8oRpBU7ds9e31Xp9BtaI1XZ1MG+yhZWjnDWXkigkR9cMoPnv7wYg1Jc9+hGfvLGPjq6Bx9O3NZl5itPbycqNJA/XJM/7MB2rAgKMPDZOams3l9DU3u318/vaAbizADqvgqyYjla20ZDm/fXLPyTM90a12mtldZ6ttY63/7x9mmPydJaD7//txhVakxdKAXxbh7E7GuTkyKIDw9i07Ez38Eqa2iny2z1WKfG/qREh/LQ5+dytLaV7728Z8iL2a2ljcxJj3bbjkJvU5BBLgq3lzWREh3iUnc1T/hsfiqA03NutNZsK23kG8/u4KxffcDbe07w+QUTPT78eVpyJIeqW7FaNVpr/rOhhOkpUV6bQeUPZqREUd/W3bsD76yNx+rZXNzAXcsmebS+Mde+O17kQurlu/tOkJMY7pF61JuXZBEZEuDyLK9NxfUohdfrzRzyUqPZW9HsVBC+5kA1AQbF0ikjG5fq2D378zB2GodjzQFb6//PzHBPrer8rDje+cZSbl6cyeOflnDxQ5/0vgF2Oq01P3x1LyV1bfzpuvxxsfPujKvmpdNtsfKmCyUB7lJSZ3tz0NlOjQ6OUoSBftZi/Bnb1efCI2pNXcSHB4255gVKKRbmxLGp+My6M0enRm+lNTqcNTmB+86fxuu7KnlyY+mAj+vssbCvsnnEw6dPNystmv2VLQOmeG0vbfRJC/3TpcWEsjA7jld2Vgx6MdjZY+H5rce57M/ruOpv6/mgqIYbFmXywX3L+L8rZ3l8ndOTo+josVDW0M620kYOnDBx0+JMvy+2d6cZ9nokV1Mb/7T6MImRwVw3QMMed3G8AePsMOqm9m42Hmtwe0qjQ3RoILeelc3/9p1wqRZu07EGZqREebxGdiAz06JpbO9xagfyg6IaFubEETnCjoUJEcHctMR7u2er91eTFR/m1g6RYUEB/OTyPJ65fSHdZiurHlnPL98pOmX2GMALW8t5ZUcF31g5lSWTRhbUjiV5aVFMnRDhk9TGkmHunM1OjybQqCS1UfQaW1fXwitqTZ0j6gblzxZmx1PR1EF546kXFIfsF2pTvJTW2NddyyaxMjeJn725n+1l/b+ztut4Ez0W7fb0wllp0bR2mSmuP7MpyInmTiqaOnzaDKSvK+amcay2rd86l+MN7fzynSIW/XIN33lxN91mKz+/Io+N31/Jjy+b6bUuWX3naD25sZTIkAAut+/6jRfTU2zfA1eagmwubmDDsXru9PCuGdgacWTGhzndsXF1UQ0Wq/ZYcAbwxbOyiAgOcHqWV5fZwvayRhZm+679eZ49vXqourOy+nYO17Rybq57UkLvWGqvPfPw7llrl5kNR+tZOX2CR95cWTIpgXfvPYdr50/k7x8d47KH17G7vAmwvXHw/17fy1mT47n7XPfVmY0FSimumpfOjrImrzeHKa1vIzEy2OUavZBAI3lp0dIURPSS4Ey4rNbURVLU2GoG4uDodHV63dmhmlbSY0N9UhhtMCj+cE0+ydEhfPXp7dS3npkOtq3MM7VfeYM0BXEEiv6wcwZwcV4KQUYDr9pTG61WzSeHa7ntia2c89u1/POTYpZMiue/ty/i3XvO4YZFmV7/eU6dEIlS8OmRet7eU8XVBekeT6X0N5EhgWTGhzldjwTw0JrDJEQE8wUP75o5uNKx8d19J0iOCmG2B+f8xYQFcdPiTN7eU8WRmqGDxt3lzXSZrV6fb9bX9JQojAY15M/5gwO2AfIr3TTjL95Lu2frDtfSbbFy3gjrzQYTERzALz83iye+uABTp5kr/7qe3757gK88vY3IkEAevHbuuK8z68+Vc9MwKHjZy7tnJfWudWrsa35WHLsrmukyD15nKMYHCc6Ey2pMXSSO0Z2zKUkRxIYFsqn41PSCQydMXq03O110WCB/u76A+rZu7nluJ5bT0gy3lTSSkxhOnJvrAKdMiCAowNDvMOrtpY0EBxiY4eEmGs6KDgtk+bREXt9Vyb8/Lea8P37EjY9tZufxRu5eMZl1313BX68vYPGkeJ+lEYYGGcmMC+OZzWX0WDQ3LBo/jUD6mpES5XRa47bSBtYdqePL5+QQGuSdWXq5yZEU17WdkUp2uvZuMx8fquWCmRNcHvrrqtuW5hAaaHSq9myT/c0lXwZnIYFGJidGDNnIZM2BGnISw13qcDcU2+6ZgX99Wuy2Y57u/f01RIcGUuim7riDWTY1kXfvPYcr8tP4y9qjHKtr40/XSp3ZQJKiQlg6JZFXtle41HV1pErqXJtx1ldBZizdZqvLjX/E2CTBmXCJ1aqpa+0ac50aHQwGxYLsuFN2znosVo7VtTJlgm8HROalRfOzy2fyyeE6/rT6UO/tVqtmW1lj7zBLdwocpCnItrJGZqdHu30Q8EhcOTeNWlMXD7yxn+jQQB68Np9P7z+X+86f5vOmJQ65yVFYrJqzJye4tVZlNJmREkVJfTutTnQhfWjNEeLDg7h+kXd2zQByU6Kwaobcefn4UC1dZqtHUxod4sKDuHGRbUeoeJDZgwCbihuYNiHS7W/WuGpmWhR7BwnCW7vMbDrW4LZdM4f4iGAuykvhjV2VQwbYw2GxatYerGH5tESvDTuODg3k99fM4YkvLuBv1xewZLLUmQ3mqoJ0Kps72eDCWIKRaO82U2PqInuYbzI4sl62SGqjQIIz4aKmjh56LHrM7pyBLbWxvLGjt5C9tL6NHotmmg93zhyunT+RVQXpPPTBkd50oGN1rTS193isnf2stCj2ndYUpLPHwt6KZr9JaXT4zIwJPHDZDF6/+yxe+cpZXDE3zWPzsIbLUXd24zhqn3+6GfZ6pKE6Iu483sRHh2q5/Zwcr6Z/nqwNHDyF8N191cSEBXpth+q2pTm2MRtrB94967FY2VbayMIc3+2aOeSlRlNr6qKmpbPf+9cdrqPbYnVbvVlfqwrSMXWaeXef+8ev7ihrpKGt26MpjQNZNjWRC/M8/2bAaHf+jAlEhgTw0jbvpDaW1g+vU6NDQkQw2QnhbJXgTCDBmXDRWJ1x1pejiN6RGnTwhO3dc1+mNfb1syvymJ4Sxb3P7eK4vesf4PZOjQ6z02Jo7TL3dqIC2FfZTI9F+10L+ACjgVvOymZ2eoyvlzKgq+al87VzJ7t9t2A0melkx8aH1hwmNiyQG72c/pkVH05wgIEDgwSPPRYra4qqWZk7wWudaxMjg/nCgkxe2VEx4Ey/vRXNtHdbfNoMxKG3ZnWAurMPDlQTGRLgkdTARTnxpMeG8sJW91+cv19ka/2/bFqi248t3CMk0Mils1N4Z+8Jp3boR2q4M876KsiMZXtZ47BmQIqxRYIz4ZIak+0d0LG8c5abHEl0aGBvauOhahNK4TcpaCGBRh65YR5WrfnK09tZf7SemLBAJiW6r2ajL8cFVt/URkdA6G/B2WgwMT6M+86fNuZGUbhiQlQwceFBgwZnu8ub+OBADbctzfF64xajQTF1QiQHqwfeOdt4rJ6WTrPbB08P5cvLcjAaFH/9sP/dM0e9rC/rzRxmDNKx0WrVrD1Yy7KpnkkNNBhsXfs+PVrn0kBxZ6yxt/6PGmHrf+FZV81Lp6PHwjt7PD/zrHiYM876KsyMpaGtm2NDpC2LsW/8Xh2IYTm5czY2uzXCybozx0XO4RoTmXFhXmtG4IzM+HD+cE0+eyqaeW1nJQUTYz3W5KK/piDbS5uYGBcmBeliWJRStqYgg+xMPbTmCNGhgdzko/TP3ORIiqoGDs7+t/cEoYFGzpnq3d2TCVEhfH5+Bi9tL6e88czds03H6pmUGO4X/29GBAeQkxDeb5ODvZXN1Jq6WDndczvIVxekozVuTW0rrmvjSE2rT1IahWsKMmPJig/zysyz0vo2EiKCRjSrzzEwXlrqCwnOhEtq7MGZP/zh96SF2XGU1rdT1dzBwRMmpvhJSmNfn5kxgbuWTwKgwIMdw05vCqK1rQGJp2rcxPgwMzWKgydM9FisZ9y3t6KZ1UXV3HZ29ogHEw/XtORI6lq7+h1dYbVq3t9fzbKpiR6fu9afLy+z/X//yEdHT7ndYtVsLWlkYY7vUxodZqZFs6+fHdI1RTUYFCyb6rngLCMujMU58by4rdxtXfvWFNlqfSU4839KKT43L52Nxxo43tB/GrC7lNQPv1Ojw6TEcGLDAmUYtZDgTLim1tRFWJCRCB/M+/Imx7yzTw7VUVLf7hfNQPpz32em8rPLZ3LdfM92suvbFKS8sYNaUxfzJsZ49JxibJuRGkW3xdrvoNiHPzhMVEgAN5+V5f2F2eUm21LyDvbTFGTH8SZqTF1ckOebC/TUmFBWFWbw/JZyqppPpuztr2zB1GVmoR+kNDrkpUZR0dRBQ1v3Kbd/cKCGeRNjPd5RclVhOmUN7Wwucc8F7+qiaqZNiCQjbvjpa8J7rpybBsArOyo8ep7S+vYRpTSCLZgsyIxla6nsnI13EpwJl9SYukga47tmYBugGhkSwH+3lGGxap+30R9IgNHAjYuzPH6BMysturcpiL8Nnxajk2M+3ul1Z0VVLby7r5ovnp3t05qe3BTbGzJF/QRn7+07QYBBeaTLoLPuWjYJq9b8/aNjvbdtKrbVyfpDMxAHR81q32HU1S2d7Klo5lwPpjQ6XJSXQkRwAC+6IbWxub2HLSWNnDdj/DbzGW0y4sJYlBPHy9vLPdZoo6PbQlVzJ9kj3DkDW2OvY7Vt/e7Yi/FDgjPhkpqWzjGf0gi2hgALsuLYUdYE+E+nRl/p2xRke2kjYUFGv91NFKNDdoKtI+LpwdnDHxwmMjiAW5dk+2hlNgkRwSREBHHwxKnr01rz7r4TLJ4UT3So74LHjLgwrpqXzn83l/W2qt94rIHM+DCSo/2nJnhmP01B1h6oAWClF4Lb0CBb176391TRNsKufR8eqsFi1ayUlMZR5ap56ZTUn+xs7G5l9pTJTDcMUnd0LvXUWsXoIMGZcEltaxdJkf7zh9+THKmNRoMix0OdEEeLqRMiCQowsLeimW1ljeRnxIzrboNi5AKMBnJTok6pRzp4wsTbe05w61lZRIf5vhNebnLUGbPODlW3UlLf7pXB00P5yopJmK2aRz8+htWq2VLS4FcpjQAxYUGkx4ae0k5/zYEa0mJCmeqljIRVhem0d1t4a4Rd+97fX01CRBD5fjyqQ5zpolkphAYaPdYYpKS3jf7IU11npUUTZDRIcDbOydWVcEltS9e42DkDeoe4ZsWH+d0gY28LNBqYnhzJ5uIGiqpM0kJfuIWjY6Mj3ejhDw4TERzAF8/27a6Zw7TkSA5Vm7D0aSbx7r4TKGUbcutrmfHhXJ6fylObStlwrJ7mjh6/Sml0yEuNZp+9oVBnj4V1h+tYOT3JYx1mTzdvYiw5ieG8OIKZZ91mKx8drGVl7gQMBu+sW7hHRHAAF+Ul8+auKjp7LG4/fom99f1IG4KAbVTOrPRoqTsb5yQ4E07r6LZg6jKPm+BsRkoUkcEBvY0Bxru8tGh2lTdjsWrp1CjcYkZqFM0dPVQ2d3K42sRbe6q4eUkmMWGeraF0Vm5yJJ091t4Bs2ALzuZmxPjNOJGvrphMt9nKt17YBZx8U8mf5KVFUVLfTktnDxuP1dPRY+FcLw5hV0pxdUE6m0saei+kXbWlpAFTl9mjrf+F53xuXjqmLjPv7a92+7FL6tuJCw9yW5pzYWYse8qbPRJIitFBgjPhtNpx0kbfIcBo4LFb5vOdC6f5eil+YZa97gxgrnRqFG7QtynIn9ceITTQyJfOzvHxqk46vWPj8YZ29lW2+EVKo8OkxAgunZ1KVXMnaTGhpMf6XxdBR83q/soWPjhQQ2igsTdt3FuumpeOQTHsxiDv768mOMDA2VMS3Lwy4Q2LJ8WTEh3i1pl3DqX1bSPu1NhXQWYs3RZrv/MBxfggwZlwWm2rreh8PHRrdFiQHeeWVIWxwHGBNSkx3G92NsToNj0lEqXgjV2VvLGrkpu80HnUFVMmRGBQ9NadvbvvBIBfBWcAd587GaX8c9cMYGaq7XfH3opm1hTVcPaUBK/Ph5sQFcI5UxN5aXv5KWmqztBas7qomrMnJxAWNLbHyIxVRoPiyrlpfHK4treBjruU1reT5cbrBEdmyhYZRj1uSXAmnFbTMr52zsSppk6IJCTQQGGmf14AitEnLCiA7IRwXt9VSXCAkduX+ketmUNIoJGshHAO2Ds2vrfPNuMqyw1d2dxp6oRIHr2xkHvPm+rrpfQrMTKY5KgQXt5eQUVTByu9mNLY16qCDKqaO/n0SJ1LzztU3Up5Y4d0aRzlripIx6rh1Z3um3nW2WOhsrnDrcFZfEQwOQnhbJNh1OOWBGfCabX2uRvjpVujOFVQgIFnbl/EfRf45wWgGJ0cqY03Ls4kPsL/3vjJTY7k4AkTda1dbClt4II8/9o1c/jMjAl+PRg5L83W/AVghY+Cs5XTk4gODeQFF1PbVhdV9z5fjF6TEiPIz4jhpW0Vbpt5dryhHa0hK8G9/+8VZsWyrbTRY7PZhH+T4Ew4raalC4PCr9KOhHfNmxgrwblwq4U58USFBHD7Uv+pNesrNzmK0oZ2Xt9ZidZwwUzZPRkOR2rjrLRoJviomUpIoJHL81N5d98Jmtt7nH7e6qJq5qT7bt3Cfa4qSOdgtemUER4jUVJvn3Hm5vKHwqw4Gtt7OFzT6tbjitFBgjPhtFpTFwkRwRiljbAQwk1uWDiRTd8/z2/TpaclR6I1PPrxMdJjQ3t3+oRrHDWr3uzS2J9VBRl0m628vrvSqcfXmDrZebxJUhrHiMtmpxBkNAy7MczpSt0446yvJZNsDXPWHXYtBVeMDRKcCafVmDr99gJKCDE6KaUIDfLfOYLT7R0bT7R0csHMZK/N5hprFuXEccmsFFYVpvt0HXlpUeQmR/Li1uNOPX7tgRq0hvMkOBsTYsKCOG9GEq/vqqTbbB3x8Yrr2ogJC3R7k6z02DCyE8JZ52J9pBgbJDgTTqtt7RpXnRqFECI9NpQwe/Dob10aR5PIkED+cv08n7f6d8w821XezKFq05CPX11UQ2p0CNNTIr2wOuENV81Lp6Gtm7UHa0Z8rNL6do91dD57cgIbj9W7JYgUo4sEZ8JpNS1dsnMmhBhXDAbFtORI4sODZPj6GHHl3DQCDIoXhtg96+yx8MnhWs6bMUF2TMeQZVMTmRAVzH83l434WCX1bW5PaXQ4e0oC7d0WdpRJS/3xRoIz4RSLVVPf1i3NIIQQ484PLp7Og9flS73tGBEfEcy5uUm8sqOCHsvAuxKfHqmjs8cqKY1jTIDRwLWFGXx0qJbjDe3DPk6X2UJlk3vb6Pe1eFI8RoOS1MZxSIIz4ZSGtm4sVk1SlOycCSHGl8KsOJZOSfT1MoQbrSrMoK61m48O1g74mNVFNYQHGf12uLcYvmsXTEQBz21xrvawP8cbOrB6oI2+Q1RIIHPSo/lEmoKMOxKcCafUmuwDqP1wDpEQQgjhiuXTEkmICOKFbf1fnFutmjVF1SyblkhwgP82rBHDkxYTyvJpSTy39figu6eDcXRq9FTNGcDZUxLZXd7k0ugHMfpJcCacUmPqBJCdMyGEEKNeoNHAlXPTWFNUQ31r1xn376lopsbUJSmNY9gXFkyk1tTFGvuQcVc5Zpx5Kq0RYOmUBKwaNhyT3bPxRIIz4ZSa3p0zqTkTQggx+q0qzMBs1by688yZZ2uKqjEoWDHNt3PZhOcsn5ZISnQIT28aXmOQkro2okICiA0LdPPKTsrPiCE8yCipjeOMBGfCKb1pjdKtUQghxBgwdUIkc9KjeWHrcbTWp9z3flENhZlxxIa7d36V8B8BRgPXzs/gk8N1lNW73hikpL6NrIRwj3byDDQaWJQTz6fSFGRckeBMOKXW1EVkcIBfD4sVQgghXHF1YQYHTpjYV9nSe1tFUwdFVS2cN0N2zca6a+dnYFDw3y2u7555csZZX2dPSaCkvn1EnSXF6CLBmXBKramLRKk3E0IIMYZ8dnYqQQGGU2aeOWqQVkq92ZiXEh3KubkTeGHrcZeGPXebrZQ3tpPtoRlnfS2dkgAgLfXHkSGDM6VUhlJqrVKqSCm1Tyn1DfvtP1NK7VZK7VRKvaeUSvX8coWv1Jg6pVOjEEKIMSU6LJALZibz2q5KuswWAN7fX01OQjiTEiN8vDrhDdcvnEhdazfv73e+MUh5YztW7dlOjQ6TEiNIjgphndSdjRvO7JyZgfu01tOBRcBXlVIzgN9qrWdrrfOBN4H/57llCl+rNXWRFCXNQIQQQowtqwrSaWrvYfX+GkydPWw8Vs/K6ZLSOF6cMzWRtJhQntlc6vRzSh2dGj0046wvpRRnT0ng06N1WKx66CeIUW/I4ExrXaW13m7/3AQUAWla65Y+DwsH5BUzhtWYumTnTAghxJhz1uQEUqJDeGHbcT45XEePRUsL/XHEaFBcNz+DT4/UU1zX5tRzSrww46yvpVMSaGrvYV9ls1fOJ3zLpZozpVQWMBfYZP/3L5RSx4HrkZ2zMauty0x7t0VmnAkhhBhzjAbFVfPS+fhQLc9sKiMmLJCCzFhfL0t40TXzMzAaFP/d7FxjkJK6NiKDA4j3UjfPsybb6s6kpf744HRwppSKAF4C7nHsmmmtf6C1zgCeBu4e4Hl3KKW2KqW21tbWumPNwstOzjiT4EwIIcTYc3VBOlZta7qwYloSAUbplzaeTIgK4bzpSby4rby39nAwJfXtZCaEebSNfl8JEcFMT4mSurNxwqnfPkqpQGyB2dNa65f7ecgzwFX9PVdr/ajWulBrXZiYmDj8lQqfccw4k50zIYQQY1FWQjgLsuIAJKVxnPrCwkwa2rr5394TQz62tL7NaymNDmdPjmdbaSMd3UMHj2J0c6ZbowIeA4q01n/oc/uUPg/7LHDA/csT/qDG1AlAUqQ0BBFCCDE2fWlpNtkJ4ZwzNcHXSxE+sHRyAhlxoTyzafDUxh6LlfLGDrK9HZxNSaTbYmVTcb1Xzyu8z5mds7OAG4Fz7W3zdyqlLgZ+pZTaq5TaDZwPfMOTCxW+49g5S4yUnTMhhBBj0wUzk1n7reVEhgT6einCBwwGxXXzJ7KpuIEjNa0DPq6isQOzVZPphRlnfS3IiiPIaJDUxnHAmW6N67TWytE23/7xttb6Kq11nv32y7TWFd5YsPC+GlMXgUZFTKj8wRJCCCHE2LSqMJ2AIRqDODo1ZiV4d+csNMhIYVasDKMeB6TiVQyp1tRFQkQwBoN3Cl+FEEIIIbwtKTKE82dO4KXt5XT29F/b5Zhx5u2dM4CzpyRw4ISpN6NJjE0SnIkh1Zi6SJKURiGEEEKMcV9YkElTew/v7K3q9/6S+jbCg4w+6WC9dLKtsd6nsns2pklwJoZU09Ip9WZCCCGEGPOWTIonKz5swMYgJXW2To3eaqPf18zUKGLDAmXe2RgnwZkYUl1rF4nSqVEIIYQQY5zBoPj8golsKWnkULXpjPtL69vJSvB+SiPY1rZkcgLrjtSitfbJGoTnSXAmBmW2WKlv65adMyGEEEKMC1cXpBNkNJyxe2a2WDne2E6Wl9vo97V0cgLVLV2DdpQUo5sEZ2JQ9W3daI3UnAkhhBBiXIiPCOaCvGRePq0xSGVTJz0W7dPg7KzJtjl8kto4dklwJgZV0yIzzoQQQggxvnxhwURaOs28uftkYxBHG31fdGp0yIgLIys+TFrqj2ESnIlB1bZ2ArJzJoQQQojxY1FOHDmJ4TyzqbT3tlIfzTg73dlTEth4rJ5us9Wn6xCeIcGZGJTsnAkhhBBivFFK8YUFE9le1sSBEy0AlNS3Expo9Pkb1mdPTqS928KOskafrkN4hgRnYlCOQYcSnAkhhBBiPLlqXjpBAScbg9ja6If5pI1+X4snxWNQSGrjGCXBmRhUjamL6NBAggOMvl6KEEIIIYTXxIYHcXFeMq9sr6C920xJfZtPm4E4RIcGMicjRoKzMUqCMzGoWlOXz7fvhRBCCCF84QsLMzF1mXl9ZyXHGzp8Xm/msHRyAruON9Hc0ePrpQg3k+BMDKrG1ElSlARnQgghhBh/5mfFMjkpgoc/OEK3xUqWDzs19nX2lESsGjYcrff1UoSbSXAmBlXb2kVihARnQgghhBh/HI1BKpo6AMj0g7RGgLkTYwgPMrLuSK2vlyLcTIKzMWr9kTpu/tdmOrotQz94AFpralq6SIoKcePKhBBCCCFGj6vmpRMcYLtkzkrwj52zQKOBhTnxrJNh1GOOBGdjUH1rF19/dicfHaplzYHqYR/H1GWmy2yVnTMhhBBCjFvRYYF8dk4qUSEBTIj0nzesz56cQEl9O8cb2n29FOFGEpyNMVprvvvSHlo6e4gJC+TNXVVDP2kAjhlnUnMmhBBCiPHsgc/O5NWvnoXB4Ns2+n0tnZIASEv9sUaCszHmv5uPs7qomu9emMsV+WmsPViDqXN4nXxqTJ0AsnMmhBBCiHEtPDiAnMQIXy/jFJOTIpgQFSypjWOMBGdjyLHaVn725n7OnpzArUuyuHR2Cl1mK6uLhpfa6BhALTtnQgghhBD+RSnF2ZMT+fRoHRar9vVyhJtIcDZG9Fis3PvcToIDDfz+mjkYDIp5E2NJjQ4ZdmqjIzhLjPCf/GohhBBCCGGzdEoCTe097Kts9vVShJtIcDZG/Gn1YXaVN/PLK2cxwd5d0WBQXDI7hY8P19Lc7npqY62pi6AAA1GhAe5erhBCCCGEGKGzJtvqzj6R1MYxQ4KzMWBLSQN//fAIqwrSuWhWyin3XTo7lR6L5t19J1w+bo3JNuNMKf8pfhVCCCGEEDaJkcHkJkdK3dkYIsHZKNfS2cO9z+0kPTaMH3925hn3z06PZmJcGG/srnT52LWmLqk3E0IIIYTwY0unJLCttHFEs22F/5DgbJR74LV9VDV38sdr84kIPjP9UCnFpbNTWH+0nvrWLpeOXWPqlE6NQgghhBB+7OwpiXRbrGwuafD1UoQbSHA2ir2xq5KXd1Rw94rJFGTGDvi4S2enYrFq3tnrWmqj7JwJIYQQQvi3BVlxBBkNrDtc6+ulCDcY98HZmqJq3to9/EHNvlLZ1MEPXtlDfkYMXzt38qCPnZ4SSU5iOG+6kNrYbbbS2N4jnRqFEEIIIfxYaJCRgsxYaQoyRoz74OyxdcX84q39mC1WXy/FaVar5r7nd2G2ah68Np8A4+A/RqUUl81OZVNxAzUtnU6do65VZpwJIYQQQowGZ09J4MAJU+8YJDF6jfvg7JYlWVQ2d/L+/uENavaFf647xoZj9Txw2UyyEsKdes5lc1LQGt7a49wuYY1jAHWkBGdCCCGEEP5s6RRbS/1Pj8ju2Wg37oOzldMnkBEXyuPrS3y9FKfsq2zmt+8e5IKZE1hVmO708yYnRZKbHMmbTqZw9g6gluBMCCGEEMKvzUyNJiYsUFIbx4BxH5wZDYqbF2exubjB76erd/ZYuOfZncSGBfHLz812ef7YZXNS2VbaSGVTx5CPrTHZ0h+TIqXmTAghhBDCnxkNioXZcWyRjo2j3rgPzgBWFWYQGmjk35+W+Hopg/rVOwc4XNPK71bNIS48yOXnXzrbNqDamQYotaYulIL4CNfPI4QQQgghvKswM46yhvbeN9jF6CTBGRAdGshVBWm8tqvS5Vlg3vLhwRr+vb6EW8/K4pypicM6RmZ8OLPSop0aSF1j6iIuLIjAIZqNCCGEEEII35tnH6u0vbTRxysRIyFX3na3LMmi22zl2S3Hfb2UM9S3dvHtF3czdUIE370wd0THumxOCrvLmymtbxv0cbWmLqk3E0IIIYQYJfLSoggKMLC1RIKz0WzI4EwplaGUWquUKlJK7VNKfcN++2+VUgeUUruVUq8opWI8vloPmpwUydIpCTy5oZQeP2qrr7Xmey/vobm9hz9dN5eQQOOIjnfJ7FSAIRuD1EhwJoQQQggxagQHGJmdFs22MgnORjNnds7MwH1a6+nAIuCrSqkZwPtAntZ6NnAI+J7nlukdt56VxYmWTv6394Svl9Lr48N1vLe/mm+eP5XpKVEjPl5aTCjzJsbwxq7BUxtrWzolOBNCCCGEGEUKsmLZW9FMZ4/F10sRwzRkcKa1rtJab7d/bgKKgDSt9Xtaa7P9YRsB5/u6+6nlU5PIjA/j337SVt9i1fzy7SImxoXxxbOy3XbcS2encuCEiSM1rf3er7WmtrVLOjUKIYQQQowihZlx9Fg0eyr8uwO5GJhLNWdKqSxgLrDptLu+CLzjpjX5jMHeVn9baSO7y5t8vRxe3l7OgRMmvnPhNIIC3FceeMnsFJSCNwdoDNLU3kOPRcvOmRBCCCHEKDJvYgyA1J2NYk5f8SulIoCXgHu01i19bv8BttTHpwd43h1Kqa1Kqa21tbUjXa/HXV2YTniQ0ee7Zx3dFn7/3iHmZMRwyawUtx57QlQIC7LieGNXJVrrM+6vtXesTJLgTAghhBBi1IiPCCYnIZxt0rFx1HIqOFNKBWILzJ7WWr/c5/abgUuB63V/V/mA1vpRrXWh1rowMXF4LeC9KSokkFWFGby5q4pak+/a6v/r02JOtHTy/YtyXR427YxL56RytLaNAydMZ9xX02L7umXnTAghhBBidJmXGcv2ssZ+34AX/s+Zbo0KeAwo0lr/oc/tFwLfBT6rtW733BK976bFmXRbrDyzqcwn569v7eJvHx7lvOkTWJgT75FzXJSXjNGg+k1trG21DS+UnTMhhBBCiNGlMDOWhrZuiusGH5sk/JMzO2dnATcC5yqldto/Lgb+DEQC79tve8STC/WmnMQIlk9L5KlNpXSbvd9W/+EPjtDRY+H+i6Z57BwJEcEsmRTPG7uqznhnxbFzlhQlDUGEEEIIIUaTAvsw6q2S2jgqOdOtcZ3WWmmtZ2ut8+0fb2utJ2utM/rcdqc3FuwttyzJotbUxTt7B58H5m4ldW08tbGUa+dnMDkp0qPnunR2CmUN7Wd09Kk1dREaaCQ8aGQz1YQQQgghhHdNSowgOjSQbdIUZFRyXwvAMeacKYnkJIbzr09LvHre37x7gKAAA/ecN8Xj57pgZjKBRnXGQOoaUxdJUcEeqXUTQgghhBCeYzAo5k2MkWHUo5QEZwMwGBS3LMli1/Emdnjpxb29rJG395zgjnNyvDJjLCYsiKVTEnlzVyVW68nUxlpTF4kRUm8mhBBCCDEaFWbFcaSmlab2bl8vRbhIgrNBfG5eOpHBAV5pq6+1beB0YmQwty/N8fj5HC6dnUJlcyc7jp8MQGtMnSRFSXAmhBBCCDEazZtoqzvbPtgGw29+A2vXnnrb2rW224XPSHA2iIjgAFYVZvDW7iqqWzo9eq739lezpaSRe8+bSnhwgEfP1ddnZkwgKMDAG7tOpjbKzpkQQgghxOiVnxFDgEENPox6/ny45hp49lnQ2haYXXON7XbhMxKcDeHmJZlYtObpjaUeO0ePxcqv3znA5KQIrilM99h5+hMZEsiKaYm8vacKi1XT2WOhpdMsnRqFEEIIIUap0CAjM1OjBh9GvWIF/PCH8PnPwxe+YAvMnn/edrvwGQnOhpAZH87K3CSe3lRGl9nikXM8u+U4x+rauP/CXAKM3v+RXDo7lRpTF5uLG3oHb8vOmRBCCCHE6DUvM5Zd5U30WAYZC/WVr0BMjG337M47JTDzAxKcOeGWJdnUt3Xz5i73t9Vv7TLzp9WHWJAdx8rpSW4/vjNWTk8iNNDIm7srqXEEZ1JzJoQQQggxahVmxtHZY2V/ZcvAD1q3Dsxm2+cPPXRmDZrwOgnOnHDW5HgmJ0Xw7/UlZwxsHqlHPzpKXWs33794us9a14cFBbByehLv7D1BVXMHIDtnQgghhBCj2ZDDqB01Zi+9BBMnQmqq7d8SoPmUBGdOUMrWVn9PRfPgubsuqm7p5B+fFHPp7BTyM2LcdtzhuHR2Kg1t3by2sxJAujUKIYQQQoxiydEhpMWEsn2ga9ctW2w1ZuefD9//Phw4AN/+tu124TMSnDnpc/PSiAoJ4HE3ttV/cPUhzFYr37kg123HHK7l0xKJCA5gdVE1BgXx4RKcCSGEEEKMZgWZsWwtbeg/8+s73zlZY3brrZCRAa+9ZgvQhM9IcOaksKAArlswkf/1Sf0biUPVJp7bcpwbF2UxMT7MDSscmZBAI+fPmIDWEB8RjNHgmxRLIYQQQgjhHoVZsVS3dFHeOMS1a1AQfO97sH49rFnjncWJfklw5oIbF2WiteYpN7TV//U7BwgPDuBr5052w8rc49I5KYDUmwkhhBBCjAVODaN2+OIXIS0NfvIT29wz4RMSnLkgIy6M86ZP4JlNZXT2DL+t/oaj9aw5UMNXV0wmNjzIjSscmbMnJxIdGsgEqTcTQgghhBj1cpMjCQ8yDj6M2iE4GO6/39bB8cMPPb420T8Jzlx061nZNLb38Lq9cYarrFbNL98pIjU6hFuWZLl3cSMUFGDgbzfM477zp/l6KUIIIYQQYoQCjAbmTox1vqHdbbfZujb+5CeeXZgYkARnLlqUE0duciSPD7Ot/hu7K9ld3sx9508jJNDogRWOzJJJCeSlRft6GUIIIYQQwg3mZcZy4EQLrV3moR8cEgLf/S589JHtQ3hdgK8XMNo42urf//Iezv/jxyREBBMXEURcWBCx4UHEh/f5b1gQ8RG2/wYFGOgyW/jtuweZnhLFlXPTfP2lCCGEEEKIMa4wMxarhp1lTZw9JWHoJ9x+O/zyl7bdsw8+8PwCxSkkOBuGK+amcai6leON7TS2dVNU1UJDWzdN7T0DPicyOIDQICM1pi6e/NIsDNINUQghhBBCeFj+xBiUgq2lDc4FZ6Ghtt2ze++FTz6BpUs9v0jRS4KzYQgJNPL/Lptxxu1mi5Wmjh4a27ppcHy0d9PQavtvY1s3GXFhLJ2S6INVCyGEEEKI8SYqJJBpEyKdrzsDuOMO+NWvbLtnq1d7bnHiDBKcuVGA0UBCRDAJ0opeCCGEEEL4iYLMWF7bWYnFqp2bZRsWZhtG/a1vwaefwllneX6RApCGIEIIIYQQQoxphVmxtHaZOVRtcv5Jd94JiYnw0596bmHiDBKcCSGEEEIIMYYVTIwDYKsrqY3h4bbds/feg40bPbQycToJzoQQQgghhBjDMuJCSYwMZltJg2tPvOsuSEiQuWdeJMGZEEIIIYQQY5hSisLMWLaVubBzBhARAffdB//7H2ze7JnFiVNIcCaEEEIIIcQYV5AZy/GGDmpaOl174le/CnFxUnvmJRKcCSGEEEIIMcYVZMYCuNZSHyAy0rZ79tZbsHWrB1Ym+pLgTAghhBBCiDFuZmo0wQEG15qCONx9N8TGyu6ZF0hwJoQQQgghxBgXFGBgTnqM6ztnAFFR8M1vwhtvwPbt7l+c6CXBmRBCCCGEEOPAvMxY9lU209ljcf3JX/saxMTI7pmHSXAmhBBCCCHEOFCYGUuPRbO7vNn1J0dHwz33wGuvwc6d7l6asJPgTAghhBBCiHFgnr0pyNZSF+ed9RUeDj/72cl/r10Lv/nNCFcmHCQ4E0IIIYQQYhyICw8iJzGc7cOpOwM45xzQGl5+GXbvtgVm11wD8+e7d6HjmARnQgghhBBCjBOFmbFsK21Ea+36k1esgP/+F5SCyy+Hq6+G55+33S7cQoIzIYQQQgghxomCzFga23s4Wts2vAN89rNw/vlQUgINDfDnP8NHH9l21MSISXAmhBBCCCHEOFGQGQcw/NTGtWth2zb4+tchNBTefx+WL4f8fHjsMejocNtax6MhgzOlVIZSaq1SqkgptU8p9Q377avs/7YqpQo9v1QhhBBCCCHESOQkhBMTFji8piCOGrPnn4c//QneeguCg+Fb37Ldf9ttkJ4O3/seHD/u3oWPE87snJmB+7TW04FFwFeVUjOAvcDngI89uD4hhBBCCCGEmxgMioKJscMbRr1ly6k1ZitW2P6dmGhrr//hh7ZdtN/8BrKzYdUq+OQT+PWvbYFdX57q8vib33jvXB4wZHCmta7SWm+3f24CioA0rXWR1vqgpxcohBBCCCGEcJ95mbEcrW2jsa3btSd+5ztnNv9YscJ2u1KwbBm89BIcOwb33Qdr1tg6PP7jH7ZatXfftT3Hk10e58+3HfvZZ8FsHnUdJV2qOVNKZQFzgU0eWY0QQgghhBDCowrt8862lw2z7mwomZm23bLycnj0UVttWmsrXHQRfOELJ1MjPdHlccUKePJJuOEGyMvz7Lk8wOngTCkVAbwE3KO1bnHheXcopbYqpbbW1tYOZ41CCCGEEEIIN5mdHkOAQbF1uE1BnBUWBrffbpuJ9sEHkJBga8V/002eDZbWrAGLBQ4ehLvuGjWBGTgZnCmlArEFZk9rrV925QRa60e11oVa68LExMThrFEIIYQQQgjhJqFBRmamRQ+v7mw4lLL912wGo9HWfv+DDzxzrvXr4Xe/g5AQ+NGP4G9/O7MGzY85061RAY8BRVrrP3h+SUIIIYQQQghPKsyMZdfxJrrNVs+fzFH39dJL8KtfQXc3XHGF+4Om9nbbeQwGePFF+OlPbSmN11wzagI0Z3bOzgJuBM5VSu20f1yslLpSKVUOLAbeUkq969GVCiGEEEIIIdyiIDOWLrOVfZXNnj9Z3y6P994LZ58NViusXu3e83z/+1BRAb/9LVxyie02R0fJLVvcey4PCRjqAVrrdYAa4O5X3LscIYQQQgghhKcV2JuCbCttZO7EWM+e7DvfOfm50Qj//jfMmQNbt4LWJ9MeR+Kjj2yz1+6+G775zVPvW7Fi1NSdudStUQghhBBCCDH6TYgKIT021Ht1Z31NmmSrC3vvPXjkkZEfr7UVbr3Vdtxf/Wrkx/MhCc6EEEIIIYQYhwozY9la2ojW2vsn//KX4fzz4VvfgqNHR3as734XSkrg8cchPNwty/MVCc6EEEIIIYQYhwoyY6k1dVHe2OH9kysFjz0GgYFw88221vfDsWYN/PWvcM89sHSpW5foCxKcCSGEEEIIMQ4tnhQPwIvbyn2zgPR0W1v9Tz+FP/7R9ee3tMAXvwhTp8LPf+7+9fmABGdCCCGEEEKMQ5OTIrlkdgqPfnyME82dvlnE9dfDlVfCD34A+/a59txvfQvKy20NRsLCPLI8b5PgTAghhBBCiHHq/gtzsVg1v333oG8WoBT8/e8QHQ033QQ9Pc4979134R//sAVoixd7do1eJMGZEEIIIYQQ41RGXBi3np3FS9vL2VPuhZln/UlMhEcfhe3b4Re/GPrxTU3wpS/B9Onwk594fHneJMGZEEIIIYQQ49hXV0wmPjyIn7213zedGwGuuAJuvNFWO7Z16+CP/eY34cQJeOIJCAnxyvK8RYIzIYQQQgghxrGokEDu/cxUNhc38O6+at8t5KGHIDnZlt7YMUAHyTfftLXM/+53Yf58767PCyQ4E0IIIYQQYpy7bn4GUydE8Mt3iug2W32ziJgY+Ne/oKgIfvSjM+9vaIA77oBZs+D//T+vL88bJDgTQgghhBBinAswGvjBJTMorW/nPxtKfLeQ88+Hu+6CP/wBPv741Pu+8Q2orbV1ZwwO9snyPE2CMyGEEEIIIQTLpiaybGoif1pzmIa2bt8t5De/gZwcuOUWMJlst736Kjz1lK3l/rx5vlubh0lwJoQQQgghhADgB5dMp73bwp9WH/LdIiIi4DOfgeJi+Pa3oa4OvvxlmDRpzO6YOUhwJoQQQgghhABg6oRIPr8gg6c2lXGkptV3C7nmGggNtc1Au+ACqK+31ZwtWuS7NXmBBGdCCCGEEEKIXvecN5WwQCO/fLvId4tYsQJeeQWMRtv8s+BgeOkl2+1jmARnQgghhBBCiF4JEcF89dzJrDlQw7rDdb5byAUX2NIZAe69d8wHZiDBmRBCCCGEEOI0tyzJIiMulJ+/tR+L1UeDqdeuheeft7XV//vfbf8e4yQ4E0IIIYQQQpwiJNDI/RdO58AJE89vPe79Baxda6s7e/55+OlPbf+95poxH6BJcCaEEEIIIYQ4w8WzkinMjOX37x2ktcvs3ZNv2WILyBypjCtW2P69ZYt31+FlSmvvbVMWFhbqrVu3eu18QgghhBBCiOHbebyJK/7yKV9dMYlvX5Dr6+WMCUqpbVrrwv7uk50zIYQQQgghRL/yM2K4Ij+Vf3xSTHlju6+XM+ZJcCaEEEIIIYQY0LcvzEUBv/nfQV8vZcyT4EwIIYQQQggxoLSYUO44J4fXd1WyvazR18sZ0yQ4E0IIIYQQQgzqzmWTSIwM5udv7sebPSvGGwnOhBBCCCGEEIMKDw7gW+dPZXtZE2/urvL1csYsCc6EEEIIIYQQQ7q6IIPpKVH86p0DdPZYfL2cMUmCMyGEEEIIIcSQjAbFDy+ZTkVTB//6tNjXyxmTJDgTQgghhBBCOOWsyQmcNz2Jf35SLLtnHhDg6wUIIYQQQgghRo8fXzYTrSEk0OjrpYw5EpwJIYQQQgghnJYRF+brJYxZktYohBBCCCGEEH5AgjMhhBBCCCGE8AMSnAkhhBBCCCGEHxgyOFNKZSil1iqlipRS+5RS37DfHqeUel8pddj+31jPL1cIIYQQQgghxiZnds7MwH1a6+nAIuCrSqkZwP3AGq31FGCN/d9CCCGEEEIIIYZhyOBMa12ltd5u/9wEFAFpwOXAE/aHPQFc4aE1CiGEEEIIIcSY51LNmVIqC5gLbAImaK2rwBbAAUluX50QQgghhBBCjBNOB2dKqQjgJeAerXWLC8+7Qym1VSm1tba2djhrFEIIIYQQQogxz6ngTCkViC0we1pr/bL95mqlVIr9/hSgpr/naq0f1VoXaq0LExMT3bFmIYQQQgghhBhznOnWqIDHgCKt9R/63PU6cLP985uB19y/PCGEEEIIIYQYH5TWevAHKHU28AmwB7Dab/4+trqz54GJQBmwSmvdMMSxaoHSEa7ZExKAOl8vQgjktSj8h7wWhb+Q16LwF/JaFO6SqbXuN6VwyOBsPFBKbdVaF/p6HULIa1H4C3ktCn8hr0XhL+S1KLzBpW6NQgghhBBCCCE8Q4IzIYQQQgghhPADEpzZPOrrBQhhJ69F4S/ktSj8hbwWhb+Q16LwOKk5E0IIIYQQQgg/IDtnQgghhBBCCOEHRlVwppS6UCl1UCl1RCl1f5/bn1NK7bR/lCildg7w/Dil1PtKqcP2/8bab7++z/N3KqWsSqn8fp7/tP38e5VS/7IP50bZPGRf126l1DzPfAeEP/Hj12OuUmqDUqpLKfUtz3z1wp/48WvxevvvxN1KqfVKqTme+Q4If+HHr8XL7a/DnUqprfYxQWIM8+BrMVAp9YRSao9Sqkgp9b0Bnp+tlNpkf/5zSqkg++1yzSgGp7UeFR+AETgK5ABBwC5gRj+P+z3w/wY4xm+A++2f3w/8up/HzAKODfD8iwFl//gvcFef29+x374I2OTr75d8ePbDz1+PScB84BfAt3z9vZIPz374+WtxCRBr//wi+d04tj/8/LUYwclSjtnAAV9/v+TDcx+efC0CXwCetX8eBpQAWf08/3ngOvvnj8g1o3w4+zGads4WAEe01se01t3As8DlfR+glFLANdh+IffncuAJ++dPAFf085jPD/R8rfXb2g7YDKT3Oe5/7HdtBGKUUilOf2ViNPLb16PWukZrvQXocekrEqOVP78W12utG+0P28jJ35libPLn12Kr/TaAcEAK7sc2T74WNRCulAoAQoFuoKWfY58LvNjP8+WaUQxqNAVnacDxPv8ut9/2/9u5n9AorjiA499Xij0UPKj9g6hQ/4An6SHUHlqwIgi9lBalVoih1YNnpeQgtIdee21PAb0WRTFgyaUULKVCexCqJRhPIRgS2hqFejH662HewrJsNtnIsG823w/8mN038/Jmht+G9+bPa/c+sBARMyv8jTciYh4gL1/vss2nrPxDBapb2sAoMNXHvmm4lJyP2liakounqa4Wa3gVnYsppY9TStPADeCLXvXVeHXm4hXgP2AemAW+jYh/O+puBZYiYrlL+/YZ1VOTBmepS1nnla8Vr6atqYGUDgJPIuLOKpt+D9yMiF/62DcNl5LzURtL8bmYUvqAanA2vt59UCMUnYsRcS0i9lPdwfhmvfugRqgzF98BngHbgbeA8yml3X20b59RPTVpcDYH7Gz7vgN40PqSby9/AvzQVnYxv/D5Yy5aaN06zsvFjjZOsPrVuK+B14Bza903DaWS81EbS9G5mFI6AEwAH0XEP30cl5qn6FxsiYibwJ6U0ra1HJQaqc5cPAlMRcTTiFgEfgVGOtr/m+pxxZe7tG+fUT01aXD2O7Avz36zieof9GTb+iNUL/jOtQoi4vOIeDsiPsxFk8BY/jwGXG9tm1J6CThO9VxyVymlM8BR4LOIeN62ahI4lWfgeRd41LoVrqFVcj5qYyk2F1NKu4CrwGhE3HuBY1QzlJyLe/N7QOTZ8TYBXiwYXnXm4ixwOPf5XqWa1GO6vfH8fuPPwLEu9e0zqrd+Zg8ZdFDNcHOPagaeCx3rLgFnV6m/FfgJmMnLLW3rDgG3Vqm/nNu+neOrXJ6A7/K6P4GRQZ8ro/4oOB/fpLoy9xhYyp83D/p8GfVFwbk4ATxsK/9j0OfKqDcKzsVx4G4u+w14b9Dnyqg36spFqpk/L+d8+gv4coX6u6kmpbmft38ll9tnNHpGa1pZSZIkSdIANemxRkmSJEkaWg7OJEmSJKkADs4kSZIkqQAOziRJkiSpAA7OJEmSJKkADs4kSZIkqQAOziRJkiSpAA7OJEmSJKkA/wPKi4QlC7cK3wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACIiUlEQVR4nO3ddXib19kG8PtIMrNlZkwcJ3bsMDfQlZmZV1q3dtgOunbcwdd17daV1rVd05Vpha1toGmY7KAdMDPLkmWQJZ3vD0mukxhkWejcv+vyFUfwvseOYut5zwNCSgkiIiIiIiLyLIWnF0BEREREREQMzoiIiIiIiLwCgzMiIiIiIiIvwOCMiIiIiIjICzA4IyIiIiIi8gIMzoiIiIiIiLwAgzMiIiIiIiIvwOCMiMhHCSF6hn2YhRB9w/5+vafX5wghRLUQ4kxPr2MsQoiNQog7XHj854QQR6z/precdN8tQgjTSf/2K4fdP0MIsV4I0S2EOC6EuPSk568RQpQLIXqFEBuEEOnD7hNCiN8LITqsH38QQghXfZ1ERHQqBmdERD5KShlq+wBQC+DCYbet9fT6TiaEUE2Fc7jBPgD3Atg7yv3bhv/bSyk3AkNf+wcAPgIQDeBOAK8KIaZZ748B8C6Ah6337wbwxrDj3gngEgCzARQCuADAXU79yoiIaEwMzoiIphghhEII8ZAQosK6A/KmECLael+GEEIKIW4VQtQJIbqEEHcLIeYLIfYLITRCiL8OO9YtQogtQoinrLsx5UKINcPujxBC/EMI0SSEaBBC/FoIoTzpuX8WQnQCeFQIkW3d2ekQQrQLIdYKISKtj/8XgDQA/7HuCP1ICLFSCFF/0tc3tLsmhHhUCPG2EOJVIYQWwC3jrClHCPGl9WtpF0IMD06GnyPQeswO6/dklxAiXgjxGwDLAfzVusa/Wh+fJ4T4XAjRad31umrYsV4SQjxjvV9nPX/6SOcFACnl36SU6wD02/+vDgDIA5AE4M9SSpOUcj2ALQButN5/GYBDUsq3pJT9AB4FMFsIkWe9/2YA/yelrJdSNgD4PwC3THANREQ0CQzOiIimnu/AsgNyBixv1rsA/O2kxywEkAvgagBPAPgpgDMBzARwlRDijJMeWwkgBsAjAN61BXsAXgZgBJADoBjAWQDuGOG5cQB+A0AA+J11XTMApMISJEBKeSNO3AH8g51f78UA3gYQCWDtOGv6FYDPAEQBSAHw1CjHvBlAhHV9agB3A+iTUv4UwFcA7rOu8T4hRAiAzwG8Zv06rwXwtBBi5rDjXW89dwyAUus6HVVsDSyPCiEeHrZbOFIKogAwy/r5TFh25QAAUko9gArr7afcb/18+NdAREQuxuCMiGjquQvAT607IAOwBD9XnJTy9yspZb+U8jMAegD/llK2WndMvoIlqLFpBfCElHJQSvkGgCMAzhdCxAM4F8ADUkq9lLIVwJ8BXDPsuY1SyqeklEYpZZ+U8riU8nMp5YCUsg3A47AEkZOxTUr5vpTSDCB8nDUNAkgHkGT9+jePcsxBWIKyHOsu1B4ppXaUx14AoFpK+U/r17kXwDsArhj2mI+llJus/x4/BbBYCJHqwNe6CZZgKw7A5bAEgj+03lcOy7/VD4UQfkKIs2D53gZb7w8F0H3S8boBhI1yfzeAUNadERG5D4MzIqKpJx3Ae9Z0PA2AMgAmAPHDHtMy7PO+Ef4eOuzvDVJKOezvNbDsfKUD8APQNOxcz8ISONjUDV+YECJOCPG6Nd1QC+BVWHaTJmP4OcZb049g2U3aKYQ4JIS4bZRj/gvA/wC8LoRotDbH8BvlsekAFtrOZz3n9QASRlqjlLIHQCcs38MJkVJWSimrpJRmKeUBAL+ENQiUUg7CsmN6PoBmAN8H8CYAW1poDyzB63DhAHSj3B8OoOekf3siInIhBmdERFNPHYBzpZSRwz4Crbtijkg+afckDUCj9TwDAGKGnSdcSjk8Fe7kN/a/s95WKKUMB3ADTkzHO/nxeny98wNr7VjsSY8Z/pwx1ySlbJZSflNKmQTLDuPTQoick79g6y7hL6SU+QCWwLI7dtMoa6wD8OVJ3+9QKeU9wx4ztEsmhAiFpSFH48nndYDEsO+flHK/lPIMKaVaSnk2gCwAO613H4Kl2YdtHSEAsq23n3K/9fNDICIit2FwRkQ09TwD4De2phNCiFghxMWTOF4cgO9YU+WuhKVW7BMpZRMs9Vv/J4QIF5ZGJNkn1audLAyWHRqNECIZX6fk2bTAElDYHAUQKIQ437pz9TMAAaMdfLw1CSGuFEKkWB/eBUtwYzr5OEKIVUKIAmswqIUlzdH2uJPX+BGAaUKIG63fIz9habAyY9hjzhNCLBNC+MNSe7ZDSnnCruKwc/sLIQJhCbr8rM1JFNb7zrWmk8LayONhWDo02p5baH18sBDiBwASAbxkvfs9ALOEEJdbj/9zAPullOXW+18B8D0hRLIQIgmWnTfbc4mIyA0YnBERTT1/AfAhgM+EEDoA22FpzOGoHbA0D2mHpanHFVLKDut9NwHwB3AYlmDnbVgCgtH8AsAcWOqZPoaltftwvwPwM2t64A+klN2wtJV/AUADLDtp9RjbWGuaD2CHEKIHlu/R/VLKqhGOkWB9nhaWtNAvYUnBBCzf3yuEpdPlk1JKHSxNR66BZTesGcDvcWIQ+RoszVQ6AcyFJe1xNJ/Bklq6BMBz1s9XWO9bA2C/EEIP4BNYvn+/HfbcGwE0wVJ7tgbAN6x1brDW+F0Oy79hFyyvieH1gc8C+A+AAwAOwvLv8+wY6yQiIicTTCUnIqLRCMsQ5DuklMs8vRZfJYR4CUC9lPJnnl4LERF5N+6cEREREREReQEGZ0RERERERF6AaY1ERERERERegDtnREREREREXoDBGRERERERkRdQufNkMTExMiMjw52nJCIiIiIi8hp79uxpl1LGjnSfW4OzjIwM7N69252nJCIiIiIi8hpCiJrR7mNaIxERERERkRdgcEZEREREROQFGJwRERERERF5AQZnREREREREXoDBGRERERERkRdgcEZEREREROQFGJwRERERERF5AQZnREREREREXoDBGRERERERkRcYNzgTQqQKITYIIcqEEIeEEPcPu+/bQogj1tv/4Nql0uluT00nunsHPb0MIiIiIiKXUNnxGCOA70sp9wohwgDsEUJ8DiAewMUACqWUA0KIOFculE5fUkr8+YtjeHLdMVy7IA2/u6zA00siIiIiInK6cYMzKWUTgCbr5zohRBmAZADfBPCYlHLAel+rKxdKpyejyYyfvX8Qr++qQ4i/EpuOtkFKCSGEp5dGRERERORUE6o5E0JkACgGsAPANADLhRA7hBBfCiHmu2B9dBrrM5hw17/24PVddbhvVQ4ePDcPDZo+1HT0enppREREREROZ09aIwBACBEK4B0AD0gptUIIFYAoAIsAzAfwphAiS0opT3renQDuBIC0tDSnLZymtk69Abe/vAuldRr86pJZuHFROqra9QCAr463IyMmxMMrJCIiIiJyLrt2zoQQfrAEZmullO9ab64H8K602AnADCDm5OdKKZ+TUs6TUs6LjY111rppCqvr7MUVf9+KQ41a/P36ubhxUToAIEMdjOTIIGw+1ubhFRIREREROZ893RoFgH8AKJNSPj7srvcBrLY+ZhoAfwDtLlgjnUYONnTjsr9vRXvPANbesRDnzEoYuk8IgWU5Mdha0QGTWY5xFCIiIiIi32PPztlSADcCWC2EKLV+nAfgRQBZQoiDAF4HcPPJKY1EE7H5WDuueW47/BQC79yzBPMzok95zLLcGOj6jdhfr3H/AomIiIiIXMiebo2bAYzWGu8G5y6HTlcflDbgB2/tQ1ZMKF66bT4SI4JGfNySbDUASyBXnBblziUSEREREbnUhLo1ErnC85sqcf/rpZiTFoU37148amAGAOrQAMxMCsfm48ygJSIiIqKphcEZeYzZLPGrjw7jN5+U4fyCRLx82wJEBPmN+7xluTHYW9sF/YDRDaskIiIiInIPBmfkEQNGE+5/oxT/2FyFW5Zk4KlrixHop7TructyYjBokthZ3eniVRIRERERuQ+DM3K7XoMRt7y4C//Z14iHzs3DIxfmQ6EYrazxVPMzouGvUmDzMaY2EhEREdHUYfcQaiJn+de2Gmyr7MD/XTkbl89NmfDzA/2UWJARzeCMiIiIiKYU7pyRW5nNEmt31GJBRrRDgZnN0pwYHGnRoVXX78TVERERERF5DoMzcqtNx9pQ29mL6xelTeo4y3NjAABb2LWRiIiIiKYIBmfkVq9ur0VMqD/OmZUwqePkJ4YjKtgPXzG1kYiIiIimCAZn5DYNmj6sL2/BVfNSEaCyrzPjaBQKgSU5MdhyvB1SSietkIiIiIjIcxickdv8e0ctJIDrFk4updFmeU4MWrQDON7a45TjEREREZF9jCazp5cwJTE4I7cwGM14fVcdVk+PQ0pUsFOOuTTHUne2mXVnRERERG517l++wqMfHvL0MqYcBmfkFv871Iz2ngHcsCjdacdMjQ5GhjqYLfXJLXoNRvQZTJ5eBhERkcd19w7iWGsPYsMCPL2UKYfBGbnFq9trkBodhBXTYp163GW5Mdhe2YFBbq2Ti931rz144I0STy+DiIjI4/bVawAARamRHl3HVMTgjFzuaIsOO6o6cd2CdCgVwqnHXpYTA73BhNI6jVOPSzSc0WTGzqpO7KruYgMaIiI67ZXWaSAEUJgS4emlTDkMzsjl1m6vgb9SgavmOT50ejSLs2OgEGBLfXKpoy09GDCa0ak3oFU34OnlEBH5BLOZF7OmqtI6DXJiQxEW6OfppUw5DM7IpfQDRry7twHnFSRAHer8vOSIID8UpkRi87E2px+byOZAg2bo88ONWs8thIjIR2j7B7Hgt1/gzd11nl4KOZmUEqV1GqY0ugiDM3KpD0oboRswOrURyMmW5cRgX303tP2DLjsHnd721Xcj2N8ym+9wE4MzIqLxfLK/Ce09BvzvYLOnl0JOVtfZh069AUVpkZ5eypTE4IxcRkqJV7fXIC8hDHPTo1x2nmW5MTCZJbZXdLjsHPboM5g482OKOlDfjeK0SKRGBzE4IyKyw7slDQCAHVWd/N04xZTUdQFgMxBXYXBGLlNSp8HhJi1uWJQOIZzbCGS44rRIBPkpPT7v7Lwnv8IfPzvi0TWQ8w0YTShv1qIgORL5ieEoY1ojEdGY6jp7sbOqEzOTwtEzYMSBhm5PL4mcqLROgyA/JabHh3l6KVMSgzNymVe31SDEX4lLipNdep4AlRILs6I9Gpy16QZQ1a7HF4dbPLYGco3yJh0GTRKzUyKQnxiBqg499ANGTy+LiMhrvWfdNfvdZQUAgG2Vns1sIecqrdOgIDkCKiXDCFfgd5VcoktvwEcHmnDZnBSEBqhcfr5lOTGobNOjUdPn8nONpLzZsptS0aZHq7bfI2sg19hvveJbkBKBGYlhkBIob9Z5eFVERN5JSon3ShqwKCsahSmRyEsIwzYPlx2Q8xiMZhxq1LLezIUYnJFLvLWnDgaj2aWNQIZblhsDAB7bPTsy7M369qpOj6yBXGN/nQbqEH8kRwYhPykcAFDGujOv9vH+JtR19np6GUSnpZI6Dara9bis2DI+Z3G2GruqOzFgNHl4ZeQMZU1aGIxmzE6J9PRSpiwGZ+R0ZrPE2h21WJARjekJ7slHnh4fhtiwAGz20LyzsiYdYkL9ERag4hXCKeZAQzcKUiIghEByZBDCA1VsCuLFuvsGcd+/9+L5ryo9vRSi09K7e+sRoFLg3IIEAMDiLDX6B80ordV4dmHkFKV1GgDgzpkLMTgjp/vqeDtqOnpx/aI0t51TCIFlOTHYcrzdI0Mvy5u1mJEYjgWZ0djO3Popo9dgxNEWHQqTIwBYXmf5SeGcdebF9tVpICVwvLXH00shOu0MGE34aH8Tzp6ZMDSceGGWGgoBbOWFyylhX50GsWEBSIoI9PRSpiwGZ+R0/9pWA3WIP86ZleDW8y7NiUGH3uD2eiCjyYxjrT3ISwjD4mw1qtr1aO5m3dlUcLhRC7MECoelb8xIDEd5sxYmD1wEoPGVWK/OMzgjcr8N5W3Q9A7i0jlfNwKLCPLDrOQIZpVMEbbh067swn26Y3BGTtWg6cP68hZcPT8VASqlW8+9LMdWd9bm1vNWd+hhMJqRlxCORVlqAODu2RSxv97SDKQwJWLotvzEcPQPmlHdoffUsmgMtvk7rboBDqYncrN399YjJjQAy62/j20WZ6tRUteFPgPrznxZd+8gKtv1nG/mYgzOyKle31kLCeDaBe5LabRJiAhEblwovnJz3VlZk2WnLi8xDDMSwxEeyLqzqWJ/vQYJ4YGIC/86fcPWFISpjd5HSomSWg3iwgIAcPeMyJ269AZsONKKS4qSTmmxviQ7BoMmid01bJjly0rrNQCAYgZnLsXgjJzGYDTj3zvrsHp6HFKjgz2yhqU5MdhV3Yn+QfddnStv1kKpEMiJC4VSIbAwS82ZLlPEfmszkOFy48LgpxRsCuKFqtr16O4bxGVzLF3iGJwRuc9H+xsxaJInpDTazM+IgkohWHfm40prNRACp/xeJOdicEZO89nhZrT3DLitff5IlufGoH/QjL01XW4755FmHbJiQobSOBdnqVHb2YsGD81cI+fQ9g+isk0/1AzExl+lQHZsKHfOvJCt3uyi2UnwVypQweCMyG3eLWlAXkIY8hPDT7kv2F+F4rRIBmc+rrSuC7lxoUPNXsg1GJyR07y6vQYpUUFYMS3WY2tYmKWGSiHcOu+srEmHvGG/jIbqzvhLyKcdtA6fLhwhfSM/KZyzzrxQSV0XwgJUyEsIQ2ZMCHfOiNyksq0HJbUaXDYnedRGEYuz1DhQr2EtqI+SUg41AyHXGjc4E0KkCiE2CCHKhBCHhBD3W29/VAjRIIQotX6c5/rlkrc61qLD9spOXL8wHUqF5zr4hAZYrs65KzjT9g+iQdOHvGHz3PISwhAV7MfURh93wNoMpCD51PSN/MRwtOoG0KYbcPeyPE5KiX9tr/HKIc8ltRrMTo2EwppmfLyNwRmRO7xX0gCFAC4uOjWl0WZxdgzMEthZybozX1Tb2Yuu3kEUpUZ5eilTnj07Z0YA35dSzgCwCMC3hBD51vv+LKUssn584rJVktdbu6MW/koFrpqX4umlYFlOLA40dKNLb3D5uY5Y2/bPSPw6OFMoBBZmqr2uKUivwQiD0ezpZfiM/fXdSIkKQnSI/yn32ZqCnI67Z89uqsTD7x/Ei1uqPL2UE/QajChv1qHYOhg1OzYEdZ29bq0/JTodmc0S75U0YGlODOLDR599VZwWiQCVgqmNPmpo+DR3zlxu3OBMStkkpdxr/VwHoAzA6JdG6LSjHzDinT31OLcgAerQAE8vB8ty1ZASbtm5ss1Um55wYo794mw1GjR9XrW7cNnTW/Grjw57ehk+Y3+DBrOHzTcbzlZTcboFZ1uPt+MP/y0H8HV9l7c4UN8Nk1l+HZzFhcIswZEHE9RnMOG+1/bizd11nl4K+Yhd1Z2o7+rD5XPGvjgb6KfEvIwoZpX4qJJaDYL8lJgWH+rppUx5E6o5E0JkACgGsMN6031CiP1CiBeFENznPE19uK8RugEjbvRgI5DhZqdEIixA5ZaW+uVNWoQFqpAUceLVQlvdmbf8EmrU9KG8WYctFe4dM+CrOvUG1HX2jdqRKjLYH0kRgadVx8ZGTR/u+3cJsmJDccOiNBxu1GLA6D27UiXWq7q2gDonzvIGgnVn9jMYzbhn7R58tL8J7+yp9/RyyEe8u7cBIf5KnDUzftzHLsmOQVmTFp1uyGwh5yqt06AgOeKUMQnkfHZ/h4UQoQDeAfCAlFIL4O8AsgEUAWgC8H+jPO9OIcRuIcTutjb3Dgcm15NS4l/bapCXEIa56d4Rn6uUCizKVrtlGHV5sw4zEsJPKYCeFh8KdYi/1zQF2VVtyfGvbLO0GqexHWg4dfj0yfKTwk+bjo0DRhPuWbsXBqMZz9wwF8tyYmAwmXGwwXu+/pLaLqSrg4d277NjQyEEgzN7GU1mPPBGCTYeaUNmTAgON2phNktPL4u8XP+gCZ8caMI5sxIR7K8a9/GLs60Ns7zkwiXZZ8BowuFGLYqsmQnkWnYFZ0IIP1gCs7VSyncBQErZIqU0SSnNAJ4HsGCk50opn5NSzpNSzouN9VwXP3KNkjoNDjdpccOi9FE7NHnCspwY1HX2obbDdWmFUkocadYhb1i9mY0QAous886k9PwbnB1VXxdg27oQ0ugOWAdtzhqhGYhNfmI4Ktp6Touapl/+5zD21WnwpysLkRMXiuI0y4WYklr3jawYi2349PDBqIF+SqREBTE4s4PZLPHjdw/gkwPN+Ol5M3DXiizoBoyo6/KetGzyTp8fboFuwIjLR5htNpLC5AiEBqiwlVkcPqWsSQeDycx6Mzexp1ujAPAPAGVSyseH3Z447GGXAjjo/OWRt3t7Tz1C/JW4pNi7yhCX5cYAAL5y4e5ZfVcfegaMmJ5wanAGAIuy1Wjq7keNCwNEe+2s6hyqxbEV9dLo9tV3IysmBOFjzHKZkRgOswSOtujcuDL3e2t3HdbuqMXdZ2TjnFmWH/vx4YFIjgwaSiX0tKbufrTqBoaCRpuc2FAGZ+OQUuKXHx3GW3vq8Z01ufjmiizMTLJclPCmnVHyTu/urUdSROBQKv94VEoF5mdEsSmIj9nHZiBuZc/O2VIANwJYfVLb/D8IIQ4IIfYDWAXgu65cKHmnqjY9ZiSGIzRg/HQGd8qKCUFSRCC2uLClvq0ZSF7CqQM3AWBxVjQAz6dvdPQM4HhrD76RH4+smJChH7I0ugP13WOmNAJfd2ycyqmNBxu68bP3D2JJtho/OGvaCfcVpUWixI3D3sdia05SfFLKTU5cKCrb9TAxPW9Uf/78KF7aWo3blmbiu2fmAgCmJYRCpRA41Mhddhpdm24Am4614+LiZCgmMEJnSXYMKtv0aO7ud+HqyJlK6zSICwtAYsTo3TjJeezp1rhZSimklIXD2+ZLKW+UUhZYb79IStnkjgWTd2nR9Y/ZOtdThBBYmhODLcc7XPbGrNzaDGK0nbPs2FDEhgV4vCnIrmrLG+iFmdEoTInAPmvKHo2sVduPZm0/Ckbp1GiTGhWM0ADVlG0Kouk14J61exAd4o8nry0+pQh8TloUGrv7veINVkltFwJUilMulOTEhcJgNKOe6XkjevbLCjy5/jiunpeKhy+YMZSaHqBSIjc+DAen8IUHmrwP9zXCZJa4bIKZM7a6s22VTG30Fbbh095UvjKVseUKTUqrdgCxYZ5vnz+SZbkx6O4bdFmNVXmzDmnRwaPuGg7VnVV4tu5sZ1UnAlQKFCRHYnZqJFq0Ay59Q93c3Y95v/4CP3p7H9p7fG9I837r8OnZ4+ycKRQCMxLDpuTOmdkscf/rpWju7sfT189BzAgjMr5Ok/X87lmJtYuYv+rEX2ns2Di6tTtq8LtPy3F+YSJ+e1nBKW+6ZiWF41BDt1fUzJJ3endvPQpTIpAbP/IFytHkJ4YjIsjP62aB0sg0vQZUtevZDMSNGJyRw3oGjOgZMHrlzhkALM2x1J1tdlFqY3mzdtRdM5vFWWq06gZQ2e65WUs7qzswJy0K/ioFZlvzxV1Zd/bVsTa09wzg7T31WPWnjXhxcxWMJt8Zfr2/oRsK8XXa4lhmJIajvFk35bra/WXdMXx5tA2PXDjzlDoum5lJ4fBXKrDXw/PODEYzDjR0n5LSCAA5sZb/nwzOTvR+SQN+9v5BrM6Lw5+vKoJyhJS0mUnh6NAb0KL1vQss5HpHmnU41KjFpQ7UmysUAouz1Kw78xEcPu1+DM7IYa1ay+5LfLh37pzFhAZgRmI4Nrtg3ln/oAlV7XrMGCc4W+ThujNt/yAON2qxINOyjvzEcKgUwqWpjburuxAZ7IfPvrsCRamR+OVHh3Hek1/5THeu/fUa5MaF2dUWOj8xHD1TrKvd+vIW/GXdMVwxNwXXL0wb9XEBKiVmJod7vGNjWZMWBqN5xCAyItgPMaEBDM6G+exQM77/1j4szIzG09fPOWW30cbWqZR1ZzSSd0vqoVIIXDg7yaHnL8lRo76rD3WdU+dn51RVWqeBEEDhOKn+5DwMzshhtiuq3rpzBgDLctTYU9OFPoNz250fa+mBWQJ5iWPvrmTGhCA+PMBj6Rt7arpglpZ6M8DSXnxGYjj2uzA421XdiXnpUciJC8Mrty3AszfORa/BhOue34Fvrd2LBk2fy849WVJKu5qB2Ey1piA1HXo88Hop8hPD8etLZo1bX1CcGoX99d0Y9ODOqC04HGnnDACyY0NQ0cbgDAA2H2vHfa+VYFZyBF64eT4C/ZSjPnZGYjiEYMdGOpXJLPF+SQNWTo8dMeXZHkusdWe+ctHudFZap8G0uDCva/w2lTE4I4e16rx75wwAlliH5e5xcle5smbLG5a8cXbOhLCkb2yv7PRI7cbOqk6oFOKEXYXZqRHYX9ftklS8NmsK5/wMSzAohMDZMxPwxffOwANn5uKLshas+b+N+Ov6Y145H6xB04cOvcHu4GxafBgUwrJ74+v6DCbc/epeCCHwzA1zx3zjblOcFokBo9mjX39JnQYJ4YFIjAga8f6cOEs7/dO9dmpPTSe++cpuZMWG4OVb54/7RiskQIXMmBDunNEptlV0oEU7gEuLUxw+hq1hFlMbvZuUEvvqNJidat/vRHIOBmfksBZrWmOcF++cLciIhkohsMXJV+eONOsQ6KdAujpk3Mcuzlaj3drO3t12VnWiICUCQf5fv9EuTImEbsDokjq4PTWWYdfzrTt1NoF+Sjxw5jR88b0zsHJaHP702VGc9edN+OJwi1e9aT5gbQZib/pGoJ8S2bGhPt+xUUqJn753AOXNWjxxTRHS1MF2PW9Oum0YtcaFqxtbSa1m1F0zwBKcafuNaPPB5jTOcqixG7f8cxfiwwPwyu0LEBnsb9fzZiZF4NAU2RUm53l3bz3CAlVYMyPO4WPYLlxu9XDDLBpbTUcvunoHUZQ6cu0xuQaDM3JYq3YAQX5KhHnxVndIgArFaZHY6uSmIOXNWkyLDxuxkP5ktuGc7q476zOYsL9eM1RvZmMr6nXFvLOdVV0I9FNgVtLIV9lSo4PxzI1z8ertC+GnFLjjld249aVdqPSStLN99d3wUwrkJdrffSw/Kdzn0xpf3VGLd0sa8MCaaVg13f43XEkRgYgLC/BY3Vl7zwBqO3vHDc6A07cpyPHWHtz0j50IC1Dh1TsWIi7M/otpM5PC0aDpQ5fe4MIVki/RDxjx6cFmXFCYZNfu+liWZKvRphtg2rEXYzMQz2BwRg5r0Q0gPjzA6+deLM6OwYGGbnT3DTrtmOVNunFTGm3SooORFBHo9nlnJXVdGDTJoXozm+zYUIT4K13SFGRXdSeKUiNHbTJgsyw3Bv99YAV+dv4M7K7uwtlPbMJjn5ZDP2B0+pom4kCDBtMTwhCgsv9NR35iOBq7+6Hp9ewb2AGjCS3afuj6Byc0229vbRd++Z9DWDU9Ft9enTOhcwohUJwW6bGOjaVDw6dHv6prC84qTsPgrFNvwA0v7IAQwKt3LERKlH07oja2iyzcPSOb/x1qRt+gCZfPmXiXxpMtybZ0VGZLfe9VWqdBkJ8S0+JDPb2U04r3bnmQ12vR9k/oKqynLM1W48l1x7C9sgNnz0yY9PHadAPo0BtOGXg7GiEEFmWrsfFIG8xmCYUdu23OsLOqE0IAc9NPDM6UCoGClAin75z1DBhxqLEb962y7w2+n1KBO5Zn4aKiJDz2aTme+bICNR16/P2GuU5dl72klNhf3z3h7mMzrE1hDjdph95suFNHzwBe3laDf22rRlfv1xcggvyUCAlQIthfhWB/JUIDVAgOUCHE33JbaIASwQEqvLe3AYkRQXji6mKHXptz0qLwv0MtaO8ZcLg5gKNK6rqgVIhRd2oBICE8EKEBqtNy5+y/B5vRrO3HO/csQVbsxN9czbQ2vDnU2I1lue5/bZP3eXdvA9KigzE3ffJpbqnRQUiODMLWig7cuDhj8osjpyup06AgJQIqJfdy3InBGTmsVds/1G7ZmxWnRSHIT4ltFc4JzsrtbAYy3OIsNd7d24CjrTq7g7rJ2lnViRkJlmGfJ5udGol/bq7GgNE0oV2isZTUWjpDzsuIHv/Bw8SFBeLxq4oQExqAf2yuQqvOM0F/dUcvdP1GFE7wNT0UnDW6Nziratfjha8q8faeegwYzThzRjzOmB6LfoMJeoMR+gEj9AYTeq1/6geM6O4bRJOmb+g+/YAREUF++Mct8xARfOrrxB62XavSWg3OzI935pc4rpJaDWYkhp1QU3kyIQSyY0Nw/DRMndpwpBXJkUGY4+Dw2KgQfyRHBuEgd84IQFN3H7ZUtOM7q3OdkjEjhMCSbDU+L2tx64XLyXrs03LsqenEW3cv8fRSXGrAaEJZoxa3Ls3w9FJOOwzOyCFSSrRoB7BmhvfvnPmrFJifGY0tTqo7K2/SAcC4A6iHG6o7q+hwS3BmMJqxt7YL18wfeU5VUUokDCYzypt0Q4OpJ2tXVScU4usmERN11bwUPLepEh+UNOKbK7KcsqaJsI0XmOgsl9iwAMSFBbitKciemi48v6kS/zvcDD+FApfNScYdy7OG0vcmSko5qTdaBckRUCkESuq63BqcmcyWLmKXzRm/Y1x2XKjT/v/7igGjCVuOt+OyOcmT+vfNTwpnx0YCAHxQ2ggpgcuckNJosyRHjbf21KOsWYuZY+yAe5N1ZS041tqDpu6+UbvETgVlTToYTGbWm3kA9ynJIboBI/oGTV7dRn+4pdlqHGvtGRqcPRllzVrEhQVAPYEUrtToYKREBbmt7uxgYzf6B82n1JvZ2AIyZ9ad7aruwsykCIdnoeTEhaEoNRJv76n3SPeu/fXdCFApkOtAbr2rm4KYzRKfHWrGFX/fisv/vhXbKjtw78psbH5oFR67vNDhwAzApK+AB/lbZuftrdFM6jgTdaxVB73BNGYzEJucuFC0aAeg7Xde3am321XVhV6DaUINXkYyKykCVe16j9eDkmdJKfHu3nrMTY+yq0uxvRZn+Vbdma5/cGgXfvOxqX3Bp9Ta6KnIwZ13chyDM3KILcjx5gHUw9nSzZwxU+VIs27c4dMjWZylxo6qTpfMFzvZzqqRW9rbJEYEIiY0YKgT02QZjGaU1HVhXsbk6hCumJuCIy06jwy+PVDfjfykcPg5kFs/IzEcFW09MBidO4y5f9CEf++sxZl//hJ3/msPmrr78ciF+dj60Gr88Ow8r6n5LE6LxL56zYQakUxWiR3NQGxyYk+/piAbjrTCX6XAYuuwX0fNTAqHlFNjlh857lCjFkdbepy6awYACRGByIoJ8Zl5Z/vru2G7dvjVVA/O6jSIDw+Y0ruD3orBGTmkRWuZGeQtbw7Hk59kqb2abGqT0WTGsZaeCdWb2SzOVkPTOzg0wNqVdlZ1Ijs2ZNQGDUIIFKU6rymIbaduwQTrzU524ewk+KsUeHtPnVPWZS+TWeJgYzdmTzCl0SY/MRyDJoljrTqnrEfTa8BT645h2e/X48fvHkCwvxJPXluML3+4ErcuzUSIl42vKE6LRK/BhKMtzvn67VFS24XIYD9k2DGT7XRsp7/hSCsWZakR7D+514qtrpgdG09vj39+FKEBKlxQMLGGSfZYnK3GzqpOGE3OvbjlCrYLmmfOiMPm4+1uudjqKaV1GqY0egiDM3JIq862c+YbaY1KhXMGXla162EwmR0Kzr6ed9bp8PntYTJL7KruxILMsa+Yz06JREWb3impXrurLV/TRJuBnCwiyA9nz0zAB/saMWA0TXpd9qpo60GvwYQCBxvc5Cd93RRksjr1Bqz+vy/xf58fxazkCLx2x0L8575luGh2ktd2zJpj3b3a68Z5Z6V1GhSnRtqVlpkWHQw/pUBFm/MHr3ujmg49Ktv0WD09dtLHig8PgDrEHwcbWHd2utpwpBXry1tx/5pchxsHjWVJdgx6Bow44AOvsZJaDbJiQ3B+YSI69Qa31Rq7W5fegOqOXg6f9hDv/E1PXm9o58xH0hoBYGmOGg2aPtR29jp8jLJmy86AI009kiKDkK4OdnlufXmzFrp+46j1Zja2urOD9ZP/hbizqguZMSGIDZt8sH7F3BRoegexrqx10sey137r92B2qmPBWYY6BEF+Sqf8ol67vQadegPevnsxXrp1AZbkxHj9LMG06GBEh/gPpRq6mrZ/EMdae+xKaQQAlVKBDHXIabNztqHc8n9n5STrzQDLLvvM5AjunJ2mDEYzfvWfw8iKDcHNSzJcco5FWZbfVd6e2iilHNpNWppjKZWYqqmNpdZ6dO6ceQaDM3JIi7YfIdbZSb5iifWH6Zbjjv8CONKshUohkB3nWEG0pe6sw6W1ObZ6swXjBGeFKZZApHSSTUHMZondNZ2YP8l6M5tlOTFICA/E23vqnXI8e+yv1yDEX4nMGMcaaygVAtMTwiZdl2MwmvHK9hqcMS120ruQ7iSEQHFqJErctHO2v85S92FPMxCbnLhQVJwm7fQ3HGlDVkwIMmKc07hhZlI4jrbo3LqbTd7hpa1VqGzX4+EL8uGvcs1bRnVoAPISwry+KUiDpg/tPQMoTo1EXFgg8hLC8NWxNk8vyyVKazUQAihI8Y0OmlMNgzNySKt2wGeagdhkxYQgPjwAWyocv9JV3qRDVmyIw7PBFmeroes3urSz386qTqREBSEpcuwi3shgf2TGhEy67ux4Ww80vYOY76RgQqkQuGxOMr482uaU7pr22F/fjZnJEVBOYs6OrWPjZNJmPz7QiDbdAG5blunwMTxlTnoUKtr00PQaXH6uktouCIEJjYHIiQtFTYd+ygcYfQYTtlV2OGXXzGZWUgSMZoljLc4PbrdXdqB/cGr/m/iqVl0/nlx3HKvz4ibd9XM8S7JjsKu606v/f9rqzWypfiumxWJ3dRd6DVOvk2lpnQbT4sJ86gL8VMLgjBzSou1HnI/Um9kIIbA0OwbbKjocLuItb57cEOmv685cc4VQSomdVZ3j7prZFKZEYF/d5NIad1nrzZwVnAHA5XNTYDJLvF/a4LRjjmbQZMbhJi1mT/IKYX5iOLT9RjRo+hx6vpQS/9hchZy4UKzIdd8wa2cptgZKzuoAOpaSOg1yYkMRHmh//UtOXCjMEqhudzyt2Rdsq2yHwWjGqrzJ15vZzLTWVDq77mxrRTuueW47vvtG6ZRurOCr/vjfIxgwmvDwBfkuP9fibDUGjGa3pUY7orRWgwCVAnmJlprz5bkxMJjM2FHl2jpyd5NSYl89m4F4EoMzckiLrt/nds4AS2pjp96AIw50levuG0SDpm/oB7Mj4sMtbYNdNe+sok2PDr1h3Hozm9kpkWjW9qO52/Edql1VnYgNC0C6HV3z7JUdG4o5aZF4a7frZ54dadbBYDSjwMFOjTa2piBlTY51LNxV3YWDDVrctjTT62vMRlKYGgmFgMvfXEkpUVLbNaGURsDymgKmfsfGDeVtCPJT2n2Bxh5p0cEIC1A5ve7si8OW2rhPDzbjT58dceqxaXJK6zR4a089bluWiUwnpceOZUFmNBTCu+vOSus0mJUcMTRuZX5GNPxViik376y6oxea3kHON/MgBmc0YVJKtPhgWiNgaQoCwKGW+rY24TMmsXMGAItc2DZ4aL6ZnbtYzhhGvau6Cwsyop0eUFwxNxXHWnuGmnW4iq1D2GR3zvISwiCE4x0bX9xchchgP1xa7Nw5Qu4SGqDCtPgwl3dsrOnoRVfvoN3NQGyyY0MhxNQOzqSUWF/eiqU5MQ6nXo9EoRCYkRSOg43O+78opcS68hasnB6Laxek4emNFXhrt3tHaNDIzGaJRz88hNiwAHx7da5bzhkR5IeC5Ahs99LgbNBkxoGG7hN2kwL9lFiYGT3l6s5K66zDp7lz5jEMzmjCuvsGYTCaEeeEznzulhgR5PDAy3Jrs4fpDrTRH25xlho9A0YcdEHd2c6qDsSEBth9pXNmUjhUCuFw3VmDpg8Nmr5JD58eyQWzExGgUri8Mcj+eg3CA1VIi57czl+wvwqZ6hAcbpr4G9i6zl58drgZ1y1IQ5C/895Uu1txWhRK6zQuTVErcfCNQ5C/EsmRQTjuxKYgml4Dfv3RYdR3eUeq5PHWHjRo+rA6z/n1QbOSIlDWpHVaM6OKNj1qOnqxZkY8fnnxTCzLicFP3jvgspRvst97JQ0ordPgwXPy3FpztDg7BiV13lnDdaRZhwGj+ZSfO8tzY3C0pWdS2SfeprRWg2B/JabFT+69DjmOwRlNWKvO0kbfF3fOAEtu+47KDgxOcOeqrFmH8EAVEiMm93W7qu5MSokdVZ1YmGn/LlagnxJ5iWEO707tdkG9mU14oB/OmZWAD/c1urRhwP76bhSm2DcvazwzksIdaqf/8tZqKITATYszJr0GTypOi4Su34jKdtftTpVM4o1DTlyoU3fO3tnbgBc2V+Gyp7e6tMmPvTYcsbXQd169mc3MpHD0D5pR6aTgdl1ZCwBgTV4c/JQK/O36OUiLDsbdr+5BVfvpMY/OG/UMGPHYf8sxOzUSl7l5F39JthqDJond1e6bl2ivkqFmIJEn3L481/J/bSrtnpXWaVAwyQZZNDkMzmjCWrS2AdS+GZwtzYmB3mDC/gmm8pU3aZGXGD7pN/GxYQHIiQt1etvg+q4+NHX3T7jWZHZKJPbVO7bbsbOqE6EBKsxInFyq52iumJuC7j7XzTzrHzThSLNuaKzAZOUnhqOus29Cg717Box4Y1cdzi9MRMIkA39PGxpGXaNx2TlKajWYnRLp0BuHnNhQVLb1OG33Z11ZC5Ijg6BUCFz17DZsdSBd2pk2lLchLyFs3E6tjphlHdDurLqzdWWtyE8MH1prRJAfXrxlPgSA21/a5Zaun3Sqp9YfQ5tuAL+4aCYUbn5zPi8jCn5K4ZV1Z6W1GsSE+iMl6sT/W3kJYYgJDZgy884GjCYcbtKy3szDGJzRhA0NoPbBtEbAklYoBLB1AvPOzGaJoy09mDHJlMbha9hV3Tnh3bux2Dvf7GSzUyy7HVUdE79avbu6C3PSo1x2hW1JdgwSIwLx1h7X1KKUNWlhNEunBmeAZeSCvd7aXQfdgBG3LvW99vkny4oJQXigaij10Nn6DCaUNWkn3AzEJjsuFANGMxq6HOuoOZy2fxA7qzpx4ewkvHPPEiRFBuLmf+7EB27oMDoSXf8gdlV3OrWF/nDZsSEIUCmc0rFR02vA7ppOrJlx4lrT1SF47qZ5qO/qwz2v7oXB6Py6XBpdVbseL26uwhVzUzxSbxTsr0JxahS2TWLcjauU1nWhKPXUDAshBJbnxmDL8fYp0XH0cKMWgyY51H2XPIPBGU2YbefM11rp20SF+CM/MXxC884aNH3oGTBi+iSbgdgszlaj12ByarOLXdWdCA9UYfoE072GmoJMsO5M02vpernABfVmNraZZ5uOtg297pzJ1gykcJKdGm1sHRsP29k4wWSWeGlrNeamR02J4muFQqAoLcplHRsPNnbDaJYTbgZikxNn7djY5lhHzeE2HW2D0SyxZkYckiKD8NbdS1CcFoX7Xy/F85sqJ338idpyvB1Gs8QqF6Q0AoBKqUBeYrhTds42HmmDWQJrZsSfct/8jGj87rICbKvswMPvH3R5t1Zf1tzdj8ue3oLnN1U65fv0q48OI0ClxI/Ome6E1TlmUbYaBxq6J5R94GrdfYOoaNOP+jN6eW4MOvQGh1Lavc3Js9zIMxic0YS1avsRFqhCsL/vDidckq3G3hoN+gz21TKVWX/oTqaN/nC2VvfOrDuzzTebaCpKTlwogv2VEw7ObHUB81xQbzbcFXNTYZaWInVn21fXjZhQ/0nXEdrEhQVAHeJv9y/pdWUtqOnoxW1TYNfMZk5aJI606KBzwZurktrJdRHLsbbTr2idfE3T+rJWRAb7DaVyRgT54ZXbFuD8gkT85pMy/PI/h916JX19eSvCAlWYk+66N1Uzk8JxqLF70oHAuvJWxIQGoDB55B3ry+em4L5VOXhjdx2e/8r9ga4vMBjNuHftHpTUafCbT8pw17/2oLvP8f9zG460Yn15K769OgdxYZ5Lr16SrYZZAjsrvWd2mK0EYrSh98tyLHMpp0JqY2mdBgnhgT6fYu/rGJzRhPlqG/3hluRYhkfurrHvF0B5s+VK+0R3pUajDg3A9PgwpwVnrbp+VLbrHZptpFQIFCRHoHSCu3i7ajrhpxQu3/HJjAnBvPQovL3H+TPPDjRYCp+dNQZACIH8pHC7Z529uKUKyZFBOHvmqTsIvqo4LQpSwiUjEEpqNUiNDkKsgynVUSH+UIf4T7opiMksseFIK1ZNjzshpTfQT4mnri3GLUsy8OKWKnz79RKXNrOxkVJiw5E2rMiNHZrB5AqzkiKg7TeifhJpoYMmMzYeacXqvNgxLyR97xvTcH5BIn73aTn+d6jZ4fN5Qpfe4PKdn998fBh7azV46tpiPHxBPtaXt+LCpzY7lHZqMJrxq/8cRmZMiMfTq4vTIhGgUnhV3VmpNRNgtAyLuPBA5CWETYmmIKV1GsxOdU6aPzmOwRlNmGUAtW+mNNosyIiGSiGwxc66syPNOqSrgxHixLbCi7PV2F3d5ZS6il1Vlh2FBZlqh55flBqJskbthNayq6oThSmRCPRzfev3K+am4HhrD/Y58Q2/fsCI4609TktptJmRGI4jLbpx6wkPNXZje2Unbl6SDpUL31C7W5H1+1nignlnJbUaFE8y3SY7LnTS7fRLarvQ1Tt4Ss0UYEntfOTCfPzkvDx8vL8JN7+4c1I7GvY41KhFm24Aq1zQQn+4mda03cnUne2q7oSu3zhiSuNwCoXA/101G4UpkXjg9VKn1Lq5w+eHW3DGHzfg/Ce/QqsLUrEB4L2Sery8rQZ3LMvEBYVJuH1ZJt64axEGTWZc9veteG1H7YQuZL28tRqV7Xr8/IJ8+Ks8+7MoQGUZoL6+vMVrarhK6zTIjg1BRJDfqI9ZnhuD3dVddmfjeKNOvQE1Hb1MafQCU+cdAblNq3YA8R5Me3CGkAAVitMi7S48LmvWOm3XzGZRlhp9g6ZJDYC22VnVgWB/5dCbp4manRoJg8mM8mb70vH6B0040NDtkvlmIzm/MBGBfgqnDqk91KiFWcJpzUBs8hPDYTCaUdk2durcP7dUI9hfiavnpTn1/J4WEeyHnLhQ7HVy3VlTdx+atf0ONwOxsbXTn8wu7BdlrVApBFZMG7m+SwiBO1dk4y/XFGFvbReuemYbmron34RkNButLfTPGGU9zjI9IQxKhZhU3dn6slb4KxVDqWBjCfRT4vmb5iI6xB+3v7zLq2dJGU1m/O7TMnzzld1IjgpGR48BN/5jJ7p7nRuYlzVp8eN3D2BBZjQePDdv6Pa56dH46NvLsDAzGj957wC+/+Y+u+aFter68Zd1x7BqeqzLg3t7XTYnGdUdvROqC3cVKSVK6zTjBizLc2NhMJmxo8p7dvwmat8o4wLI/Ric0YRIKdGq60ecj6c1ApZOgAcause9qt0/aEJ1ux55Tm4XvygrGkIA252QvrGjqhNz06McTmmyBSj21p2V1mkwaJJY4OJ6M5uwQD+cOyvRqTPPbHUEBc4OzmxNQcYYRt2q68eHpY24Ym4KIoJHvxrrq4pTI1FS2+XUNFRbkxFHm4HY5MSGortvEO09jrdqX1/eggWZ0QgPHPvf7uKiZLx06wI0aPpw2dNbcbRl8o1IRrLhSBsKUyIcTve0V6CfErlxoThoZ8Obkawrb8XibLXdWQhxYYF44eZ56Ok34vaXd3nlgOJWbT+ue2EHnv2yEtcvTMN79y7B8zfNQ1W7Hre+tNNpa+7uG8Tdr+5BRJAf/nbdnFN+3qtDA/DSrQvwwJm5eK+0AZf8bQsqxtkl/uN/j2DAaMLDF+Q7ZY3OcF5BImJC/fHy1hpPLwX1XX3o0BvGbS2/IDMa/iqFT9edldRpoBDOv2BJEzfuOzkhRKoQYoMQokwIcUgIcf9J9/9ACCGFEONfBiOf19U7iEGT9Pm0RuDrwuPx6r6OtfTALOG0Nvo2kcH+yEsIx7ZJ1p193TXR8UApOTIIMaH+KK2z703XLmvb/nnp7gnOAEtqo67fiM8PtzjlePvru5EYEej04vesmBD4qxRj1p2t3V4Lg8ns8foOVylOi0JX7yBqOnqddsyS2i74qxRD4wocNdSx0cG6s7rOXhxt6cFqO3cZlubE4I27FsFolrji71uHRl44S5fegJLaLpe10D9ZfpLjHRsr23pQ1a4fMR10LDMSw/HUdcUoa9LigddLvSbdDQC2VrTjvCc340B9N564ugi/ubQAgX5KLM2JwZPXFqG0ToO7/rVn0unrZrPE994oRUNXH56+fs6ogbhSIfDAmdPwym0L0N5jwEVPbcZ/9jWO+NjSOg3e2lOPW5dmIsvaLMcbBKiUuHZBGtaVt6Cu03k/QxxhGz49Xmv5QD8lFmZG+3TdWWmdBtPiw5xavkGOsecyuxHA96WUMwAsAvAtIUQ+YAncAHwDQK3rlkjeZKiNvo+nNQKWN5BBfspxB8eWNds6NTp/0PIZ02KxvbJjUj/Qd1d3QcqJzzcbTggxNIzaHjurOzE9Psytuz6Ls9RIigjE23vqnXK8Aw3dKBilW9xkqJQKTI8Pw+FR3sD2D5qwdkcN1uTFITMmxOnn9wZz0iMBAHudWHdWWqfBrKTwSdfEfN1O37HgbF2Z5eLAmePUTA03MykC796zBLFhAbjhHzvwyYEmh849kk3HLG3pXdVC/2SzkiLQphtwqJ7KNkze3sB2uNV58fjZ+fn47HALfv/f8gk/39nMZom/rj+GG17YgYggFT68bykuKU4+4THnzErEY5cV4qtj7fjum6WTGn7+tw3Hsa68FQ9fkI+5dlwUW54bi4+/swzTE8Lw7X+X4JEPDmLA+HXWgdks8eiHhxATGoBvr85xeF2uct3CNCiEwKvbPbt7VlqrQYBKgel2XJxdlhODoy09Lhn74mpSSuyr0zCl0UuM+1tOStkkpdxr/VwHoAyA7SfQnwH8CID3XMYil7L90JkKO2f+KgXmZ0ZjyzhpheVNOgT6KZAWHez0NXx7dQ5y48Jw32slqG53rL33zupO+CsVo7b5tdfs1EhUtPWM2wLdaDJjb00X5me6t2hYoRC4fG4KvjrWNunak+6+QVS16yf9PRtNfmI4DjdpR0zr+8++RrT3GHDbsqm5awYAuXFhCPFXOm3e2aDJjP313ZNOaQSAxIhAhPgrUeHgztm68lZkxYYgY4KBdWp0MN65ZwkKkiPwrdf24h0nXWTYUN6K6BB/pze2GY2trtWR3bMvylqQlxCGlCjHfpbeujQDNyxKw7ObKp32/XNEl96A217ehT99dhQXFCbhw/uWIXeUmuSr5qcONYd5+APH5rZ9ebQNj39xFJcUJeGmxel2Py8xIghv3LUYty/LxMvbanDVs9tR32XZiXqvpAGldRo8eM50hI2TnusJiRFBOGdmAl7fVefRJhuldV0oSI6wq2Rgea7lAokvpjZWd/Siu2+QwZmXmNAlSCFEBoBiADuEEBcBaJBS7nPFwsg7tWoHAMDnW+nbLM1W43hrz5hXgcutzUCUE5wfZo+QABWev2kehAC++cpuh2ZD7ajqRFHq5Lsmzk6NhJRfD2YeTXmzDnqDCfPdVG823BVzU2CWwLslk3tjZuv85oqdM8CS+tWpN6BVN3DC7VJK/GNzFfISwrAk27HOmr5AqRCYnRqJkjrn7JyVN+kwYDRPuhkIYNklzrY2BZmongEjtld2YI2DjRMig/2x9o6FWJgZjZ9/cHDSKVsms8SXR9twxrRYl/x8Gkm+gx0bu3sHsbuma8IpjcMJIfDohTNRkBzhsflnJbVduOCpzdh6vAO/umQW/nJN0bhpYHeuyMa9K7Px2o5a/PF/RyZ0vrrOXtz/egmmx4fht5cVTHjsh59SgYcvyMffr5+DytYeXPDUZny8vwmP/bccs1MjcfmclAkdz51uWpyO7r5BfLjP+TMu7WEwmnGwUWt3wJKXEIaY0ACfTG0st87mnJnEejNvYHdwJoQIBfAOgAdgSXX8KYCf2/G8O4UQu4UQu9vafO8FSyey7Zy5uvDcXZZaO4aNNlNFSonyZh3yEpyf0miTpg7G09fNQWW7Ht99Y9+E6in0A0YcbOh2yi7W7KGmIGO/6bLVzHgiOEtXh2BBRvSkZ57ZZnC5qvB5hjUF9uTUxm2VHShv1uG2pZlOm63mreakRaGsSeeUZgi2IM9ZV3WzYx0LzjYfa8OgSY7bBn4sgX5K/OnK2QCAh97dP6nX8b56Dbp6B93aZS8s0A8Z6uAJ75xtPNoKk3ly3zvAkjZ80ewklDfrhnaB3EFKiZe3VuOqZ7dBCODtexbjxkXpdv8//uHZ03HdwjQ8vbECz2+yL7DsHzThnrV7YDJLPHPDXAT7O14LdG5BIj789jIkhAfiW6/tRZtuAI9emD/mrDlPW5AZjbyEMLy8tcbpMy7tUd5sGS8zXjMQG4VCYHluDDYfa/equkh72BrHZMVOzVR7X2NXcCaE8IMlMFsrpXwXQDaATAD7hBDVAFIA7BVCJJz8XCnlc1LKeVLKebGx7smJJ9dp0fUjMtjPLbOt3GFGYjgigvywZZS6s7aeAXTqDchLdG4zkJMtyYnBw+fPwBdlLfjzF0ftft7e2i6YzNLh+WbDRQb7I0MdPG7Hxt01nUiODEJSZNCkz+mIK+amoLJNP1So7Yj99RqkRQcjMtjfeQsbxvZ6Odx04hvYFzdXIzrEHxcVJbnkvN6kOC0SJrPEASfMpiup1SA2LADJTnrN5cSFolnbP+Gd6i/KWhEeqMLc9MldDEmJCsaPz5uBLcc78O+djo+H2FjeCoUAVuS6tx/XzOSICXdsXF/eCnWIP2Y7If3Stvtmq2FztZ4BI+77dwke+fAQVuTG4uNvL59wGqkQAr+6eBbOL0zEbz4pw5u7xv53l1Li4fcP4mCDFn++qmjCabQjyYwJwfvfWorblmbiu2dOc0qasCsJIXDzkgwcbtJiT43z5yaOx5HW8styYtChNwzVqvuKijY9kiIC2QzES9jTrVEA+AeAMinl4wAgpTwgpYyTUmZIKTMA1AOYI6VsdulqyeOmwoyz4ZQKgcVZamyt6Bjxyly5teOePcXAk3XzkgxcNS8FT60/jo/329cwYGdVJxQCk36zaFM4TlMQKSV2VnVNqvnIZJ1XmIggP+WkGoPsr+92egv94cID/ZAWHXzCzll1ux7ryltww8K0KXNxYyy2NzSTCaJtSmq7UJwa6bTdxmxrZ7rxZtENZzZLbChvxcrpcQ6PrBjuugVpWJKtxm8/KUODxrEZaBuOtGFOWpTLLjKMZmZSOOq7+uye4WU0mbHxSBtW5cU5Jf0yKzYUWTEh+KLMOZ1bx3KkWYeL/roZnx5owoPn5OH5m+Y53AhJqRD481VFWJ4bg4fe3Y//Hhz95/zru+rw1p56fHt1Ds7Mn9xu43CBfkr8/MJ83H9mrtOO6UoXFyUhPFCFl7ZWu/3cJXUaxIRO7KLQcuuFEl+rO6to60F2nPd07Dzd2fMbZimAGwGsFkKUWj/Oc/G6yEu16AYQNwWagQy3NEeNBk3fiG2/bUOZXZnWaCOEwK8umYU5aZH4wVv7cMiOK9M7qzoxKzkCoU662jU7NRJN3f2jdpuq7uhFe8+A24ZPjyQ0QIVzCxLwHwdmnpU1afHw+wfRoOkbSuN0lfzEcJQN2zl7aWs1VAqBGxbZX9Dvy9ShAchQB2PvJK94d+oNqO7odepVfkfa6ZfWa9ChN0yqZmo4hULg95cXwiwlHnpn4umNrbp+HGjo9sjg4FnWuhR7fkYBwJ6aLnT3DeJMJ33vAMvu2Y7KTvQMuG7uWYu2H5c+vQW6fiNe++Yi3LMye9JpgP4qBZ69cS6KUiPxnX+Xjpi1sa9Og0c+OITluTF44Mxpkzqfrwv2V+Gqean478Fmt3dBLLV2L5zIRaG48EDkJYT5VN2ZlBIVrT1DF63I8+zp1rhZSimklIVSyiLrxycnPSZDSulblwnIIa3a/inTDMRmyRh1Z+XNOsSHByA6xD1XpgNUSjxzw1xEBPnhzlf2oKNnYNTHDhhNKKnTOHUQdFHq2MOod1Vb6s3cNXx6NLaZZ/87NP5mfa/BiDd31+HSp7fg3L98hTd21+HS4mRcsyDNpWuckRiOqg499ANGdPcN4s3ddbhwdtKUGOBur+K0KJTUaSZVL1JqrTdzRjMQm3R1MFQKMaF2+uvLWqFUCJwxzXnp+anRwXjo3Dx8dawdb+6eWHrjxiOWN38r3dRCf7iJdmxcV94Kf6UCy3Kdt9Y1M+JhMJnx1VHXvQn+eH8Teg0mvHbHQizKcl4Dn2B/Ff55ywJkxYbgm6/sRumwn7edegPueXUPYsMC8OQ1xW5r9OLNblycDpOUeG2H+6Y2dfcOorJN79DPneW5MdhV1eXRLpMT0aIdgN5gQjbrzbzG5HMz6LRhNku06gYQN0WagdhkxYQgITwQWypOvb5Q3uTaZiAjiQsPxLM3zkVbzwDuXbsXg6aRh5fur++GwWh2aorhzKQIKBVi1NTGXVWdiAr2G9p58JRFmWokRwaNmdpY1qTFzz84iIW/WYcfvb0f2r5BPHxBPnb8eA3+fHURwl3cPjo/KRxSWgL8t3bXoddgwm1TdOj0aIrTItGmG3A4bQ+w1JsphHObt/gpFciICZnQztkXZS2Ym+78FMIbFqZjYWY0fv1RGZq67f8+bTzSiriwgEkP5XaEOjQAiRGBdtedfVHWgoVZ0U7b4QeAeelRiAjywxcurDv7+EAT8hPDR22TPxkRwX545bYFiAkNwC3/3IljLTqYzBLf+XcJ2vUGPHPDXES56aKgt0tXh2DV9Di8trN20sO87WX7HehIE6JlubEwmMzYWe3cgfOuYmsGwp0z78HgjOzWoTfAZJZTbudMCIEl2Wpsq+g4ocPSoMmM4609yHNDvdnJZqdG4veXF2BHVSd++Z/DIz7GFV0TA/2UyEsIG+pmeLJd1Z2Ymx7t8U6Dtplnm4+3n/CG1rZLdsnfLLtkr++qw5n58XjzrsX44ntn4PZlmW57wzO85fg/t1RjQWY0Zrmodb+3mmNNRdw7iXlnJbUa5CWET6pT3UhyYkPtnnXWoOlDebPOqWl5NgqFwB+uKITRLPHjdw/Ytcs4aDLjq6PtWDU9zmP/F2cmhdu1c1bVrkdlm35CQ7vtoVIqsHJ6LDYcaZ3UcOfRNGr6sKemC+cXJjr92DZx4YF49faF8FMqcOM/duJn7x/A5uPt+PXFs1xaE+uLblqcjjbdAD4do07PmUrrNBAOXhRakBENf5XCpbu6zjQUnLHmzGswOCO7TaUB1CdbkhODTr0B5c26oduq2vUwmMwu79Q4mkuLU3Dniiz8a3vNiOkcO6o6MT0+zOnBxuzUSOyr05zSCrhV14/qjl4scPPw6dFcMScFUgLv7m0YqiWz7ZL1DBhP2CVbkOn+gDIpIhARQX54blMlGjR9uH0KD50ezfSEMAT6KVBS61jdmcksUVqncWpKo01OXChqOnvtuhK/3tp4YnWecwMMm3R1CH50znRsPNKGd/aOP9NpT00XdANGj9Sb2cxMikBlW8+4oxLWDX3vnL/WNTPi0ak3DKW+OtMnByxBwHkFrgvOAMsolX/dvgC9BiP+vbMO1y5IxVXzU116Tl+0IjcWmTEheNlNjUFK6zTIiQ11aEB3kL8SCzKifaYpSEVrD0IDVFMuK8qXMTgju7XqLMHZVKyZWZpjqSfYOiy10RaouTutcbgHz8nDGdNi8fMPDg7tlAGW7md7qjtd0jVxdkoEtP1GVHec2Mlud7XlDZAn5puNJE0djIWZ0Xjii6NDtWS2XbLPv7vCrbtkIxFCYEZiGBo0fUiNDnL6zoEv8FMqUJgciRIHd86ONOvQM2B0ScvvnLhQmMzylNf5SNaVtyJDHezSmoybF2dgQUY0fvGfQ2juHrvxwYYjrfBTiqGfW54wMykcZgmUNenGfNz68lZMjw9DanSw09dwxrRYqBTCJamNHx9owsykcGQ6oYX9ePISwvHqHQtx54osPHLhTJefzxcpFAI3LkrH3lqNU8ZzjEVKOdQMxFHLc2NwpEXn9iYmjqho0yM7NsTjGTH0NQZnZLcWraU5xVRLawSAxIggZMWEnNAUpLxJC5VCeDQPW6kQePKaYqRGB+OeV/cM1e4cbtJCbzC5Jjiz/kI6ue5sZ1UnAv0UmJnkPek296zMRkFyBB6+IB87f+K5XbLR5Cdavle3LMk8bQv7i9Mjcaixe0KdNaWU+KC0ATf+Ywf8lQosynL+69zejo29BiO2VnRgdV68S19XCoXA768ohMFoxk/fGzu9cWN5G+ZnRDt0Vd9ZbCm6h8eoO9P2D2JnVSdWuyAdFAAigvwwPyN6aHfOWeq7elFSq3FpSuPJClMi8ZPzZpwWYzYcdcW8FAT7K/HKtmqXnqeusw+deoPdw6dHstza/MYXds8q2tip0dswOCO7tVqDs9jQqbn1vSRHjR2VHUMNOMqbdciODYW/yrP/TSKC/fD8TfNgMJpx5yu70WcwDe2iuSI4y40LQ7C/EvvqTnzTtau6E8WpUR7/fgy3cnoc3r13KW5flun2WU/2+EZ+POakReKqeSmeXorHFKdGYdAk7e7s16Dpw+0v78b9r5ciJSoIH9y3FClRzt91ybLugo0XnG0+1g6D0eySerOTZcaE4IdnT8e68la8XzpyemODpg9HWnRYNd1zKY0AkBgRiKhgPxxsGP3f9csjbTCapUu/d2tmxOFoSw/qOk8dheKoTw9YusCe7+KURpqY8EA/XDYnGR/sa0Sn3uCy85RY02Qns3OWlxCGmFB/bPbylvo9A0Y0dfez3szLeM+7LPJ6Lbp+qEP8verNuTMtyY6B3mDCfuuOUXmT1mP1ZifLiQvFE9cU4XCTFj96Zz+2V3YiQx3skl1MpUJgVnLECe2ddf2DKGvSYr4Hh0/7osXZarx771KP7nB42hzr1efx6s5MZomXt1bjrMe/xLaKDvzs/Bl4996lmOGiboTB/iokRwaNG5ytK2tFWIAK89yUznvr0kzMTY/Cox8eRusIKVEbyi0pfKvy3N9CfzghLD8nDjWNvnO2vrwV0SH+KEp1XZ2qLV3YmQOpPzrQhILkCKSr2Vrc29y0OAMGoxlv7JrY6ImJKK3TIMhPiemT6NKpUAgsy4nB5uPtp9Rve5OqNktaN9voe5ep+S6bXKJV2z8l681sFmepIQSw5XgHuvsG0djd79F6s5OtmRGPH5w1Hf/Z14h15S0u2TWzKUqNxOEm7VCzhL21GpglMN+Dw6fJN8WFByI5MmjMurOjLTpc+cxWPPLhIcxJj8Jn312BO5ZnuTwVNDsudMzgzGyWWH+kFSumx7rtopTS2r2xf9CEn75/8JT0xo1HWpESFeQVaUj5SeE40qwbsamK0WTGhiOtWDk91qX/jhkxIciODcE6J9Wd1XX2Yl+de1MayX7T4sOwOEuNV7fXuKRLJ2AJzgqSI6BSTu7//PLcWLT3GFDWbF/WgCdUtrONvjdicEZ2a9FOvRlnw0WF+CM/MRxbjrfjiK0ZiJfsnNncuzIbFxQmQkrXNuaYnRIJg9E89H3YVdUJpUIMtUYnmojitMgRd84GjCb8+fOjOP/Jr1DVrsefr56NV25b4JLmESPJiQ1FZXvPqFe2DzR0o003gDVu7oqYHRuK7581DZ8fbsGH+xqHbu8fNGHL8Q6PttAfblZSBAZNEsdaT20KUlKngaZ30C2NcM6cEY8dVR3Q9Q9O+li2Lo1MafReNy/JQIOmz6m7pTYGoxmHGrWTqjezWZ4bA8C7684qWnugVAikqd3zM5fsw+CM7Nai7Z+SbfSHW5oTg5JazdAbSU/MOBuLEAJ/vGI2Hr0wHxcUJrnsPLbZLqXWFM9d1Z2YmRSOECcOkaXTR3FaFBq7+0/oQrinphPnP7kZf1l3DOcVJOKL752BS4tT3Bp05MSFon/QPOqQ7HXlrVAIS22ju92+LAvFaZF45MNDaNNZ6n13VnWib9Dk8ZRGm5nWWX6HRqg7+6KsBX5KMfQG1ZXWzIjHoEli09HJvwn++EATZqdEuO0CAU3cmTPikBQR6JLGIGXWjJHJ1JvZxIUHYnp8GDZ7c3DWpkdqVBACVGxE400YnJFdjCYz2nsGpmSnxuEWZ6thMJnx2s5aRAT5IcELv94gfyVuWZqJIH/X/TBNiQqCOsQf++o0GDCaUFqnwbx01puRY4bXnen6B/HzDw7iime2oc9gwj9vnY+/XFMMtQcaDQ11bGwbObVxfXkL5qRFIdoDIxmUCoE/XlGIXoMJD1vTGzccaUWASoHFWa4PeOyRoQ5BiL8Sh0bo2LiurBULM9VuqbeckxaJyGC/SXdtrO3oxf76bqY0ejmVUoHrF6Vjy/EOHB9h13YybLXWzgjOAMvu2c7qTvQZ7O9W607s1OidGJyRXTr0Bpjl1JxxNtyCjGioFAI1Hb3ISwjzitQhTxBCDA2jPtjQjQGj2WuGT5PvyU8Kh79SgVd31OCsP2/Cv7bX4JYlGfjsuys82nXQFpxVjFB31tzdj4MNWqzx4Hy6nLgwfPfMafjvoWZ8fKAJG4+0YXG22qUXZiZCoRDITwrHwZM6cdZ06HG8tQdr3NDhErC8WV81PQ4bjrROqg7pYzcNnqbJu2Z+KvxVCry8tcapxy2t0yA2LACJEc55r7N8WiwMRjN2VneO/2A3M5klKtv17NTohRickV1sgxTjp3DNGQCEBKhQbL3K76oucb5idkokjrf1YOMRSytgd3Wro6knQKXEzORwbDnegfBAP7x7zxI8cuFMj6fJRof4IzrEf8SmIOutXRHdFWCM5pvLMzE7JQI/fucAqtr1Hm+hf7KZSREoa9KeEBTZmnOsyXNfYLtmRhy6egexd5yuoGP5+EAjilIjXTK6gZxLHRqACwuT8M7eemidUGtoYxs+7awLswsyouGvUuCro97XUr+hqw8Go5mdGr0QgzOyS+sUHkB9siXZlpSh6V5Wb+Zus1MjICWwdkctsmJCEDNF59uRe/zo7Dw8emE+/vPtZSj2osYyObEjd2xcV9aC1Ogg5Hr4qrJKqcAfr5yNAWtHRO8LzsLRazChql0/dNv68lbkxoW6tcnAimmxUCmEw00iajr0ONigxQVMafQZNy9JR6/BhHf31DvleJpeA6ra9U5LaQQsZQjzM6Kw+bj31Z1VtLFTo7dicEZ2adFZd85Og+Ds7JkJCAtQubRVvS+YnRIJAOjUG1zaGZJOD4uz1bhlaabXzUnMjgvF8baeE1rW9xlM2Hy8HWvy4r0itXlafBh+fmE+Lpqd5HVd1WYmWZoH2erOdP2D2FHVgdVu3nEMD/TDwqxoh1vq21Iaz2VKo88oTIlEcVokXtlW45RZYrZ6s2InBmeApaV+ebNuxLmFnsTgzHt5129J8lot2gEIAcSEur8w3t3yk8Jx4Bdnn/Y/sKJC/JFufSPI4dM0VeXEhULTO4gOvWHotq0V7Rgwmj2e0jjcDYvS8eS1xZ5exily40Phr1TgkLXubNPRdgyapFta6J9sTV48jrf2oKZDP/6DT/Lx/iYUp0UiOTLIBSsjV7l5cQYq2/VO2ZkqrdNACKDA2q3YWby1pX5FWw+iQ/wR5YGGRzQ2Bmdkl1ZtP9QhAZMeyki+pdC6e8bh0zRV2eothqc2ritvRYi/8rTfPbeHn1KB6QlhQztn68pbEBns55GZiLaA8IsJ7p5VtetxqFHL2WY+6LyCRMSEBjilrX5pnQa5caFO7zA6IyEcMaH++OqYd9WdVbTqWW/mpfhOm+xyOsw4o1NdPS8V18xPRRpn/tAUNdRO3xqcSSmxvqwVK6bFcvaPnWYlh+Ngg6UpyMYjbVg1PQ5KhfvTQdPUwciNC51wS/1P2KXRZ/mrFLhuQSrWlbeitqPX4eNIKbHP2gzE2RQKgaU5Mdh8vMMp6ZfOwjb63ovBGdmlRTv1Z5zRqZblxuCxywu9ou6GyBWSIoIQ5KccCs4ONWrRrO3H6jzvSWn0dvlJEejuG8RH+xvRqTd4NB10zYx47KzqnFAHv4/2N2FuehSSmNLok65bmA6lEHh1h+Nt9Ws6etHVO4iiVNfs+C7PjUV7zwDKm507l81RXXoDOvQGBmdeisEZ2aVVx50zIpp6FAqB7LiQoeL4dWWtEAJYxeDMbrOSLGNHnlp/HCqFwIppsR5by5kz4mA0S3x5xL4Usoq2HpQ1MaXRlyVEBOLsWQl4Y1cdOnoGHDqGs4dPn2xpjhqApZ7VG1S2W5uBxDGt0RsxOKNxDZrM6NAbEBfGnTMimnpyYkOHBlGvL29BUWokR0dMQF5COBTCkhq6IDMa4U6u2ZmI4rQoRIf4253a+Ml+pjROBXevyEb/oAlXPLPNoYYwpXUaBPkpMS3eNTtJiRFByFAHY3tlh0uOP1EVrZbvEXfOvBODMxpXe88ApDw92ugT0eknJy4Ujd39qG7XY199N9Zw12xCgvyVQ7V7azzQpXE4pUJg5fRYbDjSBqPJPO7jPz7QhPkZUUiI4O83X1aQEoHXvrkQml4DLnt669BOmL1K6jQoSIlwadOzxdkx2FHZadfr0tUq2nrgr1Rw4LqXYnBG42oZGkDNK8lENPXYAovnv6oE4PkAwxfZ5p15Q2B75ox4dPcNYk9N15iPO96qQ3mzjimNU8Tc9Gi8c88ShASocM1z2/D5Yft2TweMJpQ1ap0+3+xki7PV0A0Yh8ZOeFJFWw8yY0I80riHxsfgjMbVoj19BlAT0enHFpy9vaceSRGByEsI8/CKfM8Ni9Lw7dU5yIjxfA3L8twY+CkF1pWP3VL/4/3NEIKDp6eSrNhQvHvvEkyPD8Nd/9qNf9nRYv9woxYGk9ll9WY2i7Isozm2eUFqY2WbnvVmXozBGY3LNtU+jjtnRDQFpatDoFII6+DpeHYndcDc9Gh8/6zpnl4GACAs0A+LstT4Ypy6s48PNGJ+RjQvPE4xMaEB+Pedi7Bqehwe/uAQHvu0fMwW9kPNQNIiXbquuLBA5MaFYmuFZ4Mzg9GMms5e1pt5MQZnNK4W7QAUAlCHMDgjoqnHT6lAutpSe7Hag23gyXnW5MWhsk2PqvaRm0McbdHhaEsPLijkrtlUFOyvwrM3zsX1C9PwzJcVeOCNUgwYTSM+trROg/jwACRGuH6UwuJsNXZXd2LQg3VntZ16mMwSWRxA7bUYnNG4WrT9iA0LYG4yEU1ZuXFhCPJTYnGW2tNLISew1Q2O1rXx4/1NEAI4Z1aCO5dFbqRSKvDrS2bhR+dMx4f7GnHzizvR3Xfq/LtSFw2fHsmSbDV6DSbsr9e45XwjOc5OjV6PwRmNq0XHAdRENLV9/6xpeObGuQj0U3p6KeQEqdHBmB4fNmpq4ycHmrAwM5ojYqY4IQTuXZmDJ64uwp6aLlzx961o0PQN3d+pN6Cmo9dlw6dPtjBTDSGArcc9l9pom+mYxeDMazE4o3G1avv5C4yIprTc+DCc4cHhyeR8a2bEYVd1F7p7T9wtOdqiw7HWHnZpPI1cUpyMl29dgObuflz6ty041NgNANjn4uHTJ4sK8UdeQrhHm4JUtPUgITwQoQEqj62BxsbgjMbVqhtgG30iIvIpa2bEw2SW2Hj0xK6NH+1vgkIAZzOl8bSyJCcGb9+zBEqFwFXPbMOmo20oqdNAIYDClAj3rSNbjT01XegfHLkGztUq2KnR640bnAkhUoUQG4QQZUKIQ0KI+623/0oIsV8IUSqE+EwIkeT65ZK7DRhN6NQbmNZIREQ+pSg1EuoQf6wr+zo4k1Li4/2NWJipZkbIaWh6Qhjeu3cpUqODcdtLu/DW7jpMiw9DiBt3kRZnqTFgNKOkVuO2c9pIKVHZ2sN6My9nz86ZEcD3pZQzACwC8C0hRD6AP0opC6WURQA+AvBz1y2TPKVNxwHURETke5QKgVV5cdh4pHWoO96RFh0q2vQ4n10aT1sJEYF46+7FWJSlRlN3v9tSGm0WZEVDITwz76xNNwDdgJHBmZcbNziTUjZJKfdaP9cBKAOQLKUcPuI8BMDoQyTIZ7VoLcFZHHfOiIjIx5w5Iw7afiN2V3cBsHRpVLBL42kvLNAPL94yHz89bwbuOiPbrecOD/RDQXIEtlW0u/W8AHDc2gyEwZl3m1DNmRAiA0AxgB3Wv/9GCFEH4Hpw52xKGhpAHcadMyIi8i3Lc2Phr1RgXVmLNaWxCYuz1YgJ5e+0052/SoFvrshCZoz7668WZatRWqdBn8G9dWcVbdY2+qw582p2B2dCiFAA7wB4wLZrJqX8qZQyFcBaAPeN8rw7hRC7hRC729ranLFmcqMWa3DGmjMiIvI1IQEqLMpWY115K8qadKhs1+P8ApbIk2ctzlJj0CSxu6bTreetaO1BsL8SCXxP59XsCs6EEH6wBGZrpZTvjvCQ1wBcPtJzpZTPSSnnSSnnxcayTbGvadENQKUQiA729/RSiIiIJuzMGXGoatfjqfXHoFQInD0z3tNLotPc/IxoqBQCWyvcW3dW0WZpBiKEcOt5aWLs6dYoAPwDQJmU8vFht+cOe9hFAMqdvzzytFbtAOLCAqBQ8D8yERH5ntV5cQCATw82Y0m2GmqmNJKHhQSoMDs1EtvcHJxVtumRHcuURm9nz87ZUgA3AlhtbZtfKoQ4D8BjQoiDQoj9AM4CcL8rF0qe0arrZzMQIiLyWSlRwchLCAMADp4mr7EkW40DDd3Q9Q+O/2An6DUY0aDpYzMQHzDuYAcp5WYAI22bfOL85ZC3adH2e6RYloiIyFnOnZWI6g49zprJLo3kHRZnqfHU+uPYVd2J1XmuT7WtHGoGwuDM202oWyOdflq0A2wGQkREPu2eldlY9/2ViA5h/TR5hznpUfBXKtyW2ljBNvo+g8EZjap/0ITuvkEGZ0RE5NP8VQokRwZ5ehlEQwL9lJiTHum2piCVbXooBJCuDnbL+chxDM5oVK3WAdSxnHFGRERE5FSLs2JwuEkLTa/B5eeqaOtBSlQwAv2ULj8XTQ6DMxpVi44zzoiIiIhcYXG2GlICO6pcP++sgp0afQaDMxrV1wOouXNGRERE5ExFqZEI9HN93ZnZLFFpnXFG3o/BGY3KltYYH8adMyIiIiJn8lcpMD8j2uXBWYOmDwNGMzs1+ggGZzSqFl0//JUKRAb7eXopRERERFPOoiw1jrTo0N4z4LJzsFOjb2FwRqNq1Q4gLjwAQow05o6IiIiIJmNJthoAsL3SdbtnFbYZZ6w58wkMzmhULdp+NgMhIiIicpGC5AiEBqhcmtpY0daDyGA/zvnzEQzOaFSW4IzNQIiIiIhcQaVUYEGma+vOKlotzUCYCeUbGJzRqFq1A4hjMxAiIiIil1mcpUZlu36oS7azsY2+b2FwRiPqNRihGzAijjtnRERERC6z2Fp35ords+7eQbT3DLAZiA9hcDZFmc1yUs9nG30iIiIi15uRGI6IID9srWh3+rEr2tmp0dcwOJuC3thVi0W/W4cGTZ/Dx/h6ADWDMyIiIiJXUSoEFmZGY5sLOjZWtFqDM8448xkMzqaYw41aPPzBIbTqBvDe3nqHj9Ois+6cMa2RiIiIyKUWZ6tR19mHus5epx63ok0PP6VAalSQU49LrsPgbArpGTDivtf2IjLID7OSw/FeSQOkdCy9sdW6cxbHnTMiIiIil1qSHQMATt89q2jrQYY6BCol3/L7Cv5LTRFSSvzsvQOo7tDjyWuLcf3CdFS06XGwQevQ8Vq0/Qj0UyA8UOXklRIRERHRcNPiQ6EO8cd2JzcFqWjrYb2Zj2FwNkW8tbse75c24v4107AoS43zZiXCX6nAeyUNDh2vRTuA+PBAzsQgIiIicjEhBBZlqbG1osPhrKeTDZrMqO3oRXYc2+j7EgZnU8DRFh1+/uFBLMlW477VOQCAiGA/rM6Lw4f7GmE0mSd8zBZtP+LCWG9GRERE5A6Ls9Vo1vajusM5dWe1nb0wmiWyYrhz5ksYnPm4XoMR31q7F6EBKjxxTRGUiq93ui4pTkZ7zwC2OLBF3qobYL0ZERERkZvY5p05q6U+OzX6JgZnPu7RDw/heFsPnri6GHEnzSRblReL8EAV3ncgtbFV288ZZ0RERERukhUTgvjwAKcNo65o01uOG8u0Rl/C4MyHvVdSjzd31+NbK3OwLDfmlPsDVEqcX5iE/x5shn7AaPdxewaM0BtMbKNPRERE5CZCCCzOUmN7pXPqziraehAXFoDwQD8nrI7chcGZj6po68FP3zuIBRnReODM3FEfd2lxMvoGTfj8cIvdx+YAaiIiIiL3W5ytRnuPAcesKYmTwU6Nvum0D86+ONyCj/Y3enoZE9I/aMK31u5FgEqBv1xbNObsinnpUUiODJpQ18aWoRln3DkjIiIicpeheWeTTG2UUqKitYedGn3QaR+cvbilCr/+qAwG48Q7GnrKrz46jPJmHR6/qgiJEWNPfFcoBC4pTsJXx9rQphuw6/itWsvjuHNGRERE5D6p0cFIjgyadHDW3mOAtt/InTMfdNoHZ99ckYVmbb/P7J59tL8Ra3fU4q4VWViVF2fXcy4pSoZZAv/ZZ9/XyLRGIiIiIs9YnK3G9qoOmM2O151VtFk7NTI48zmnfXC2clospseH4blNlU4b+ucqNR16PPTOARSnReIHZ0+3+3m58WGYlRyO90vtS21s0Q4g2F+J0ACVo0slIiIiIgcsyVZD0zuIsmatw8cYCs7YRt/nnPbBmRACdyzPRHmzDpuPO2euhCsMGE2477USKATw1LXF8BujzmwklxQlY399N47bUWDaouvnrhkRERGRB9jmnU0mtbGiVY8gPyUS+X7O55z2wRkAXFSUhLiwADy3qdLTSxnV7z4px4GGbvzxytlIiQqe8PMvmp0EhQA+sGP3rE07gLgwNgMhIiIicrfEiCBkqIMnF5y19SArNgQKhXDiysgdGJzBMg/slqUZ+OpYOw43Or6F7Cr/O9SMl7ZW49alGTh7ZoJDx4gLD8TSnBi8V9Iwbg4zd86IiIiIPGdxdgx2VnXCaHKsYR3b6PsuBmdW1y9IR7C/Ei985V27Z3WdvfjhW/tQkByBh87Nm9SxLi1ORn1XH/bUdo36GCklWrT9HEBNRERE5CGLs9XQDRhx0IFNgz6DCQ2aPgZnPmrc4EwIkSqE2CCEKBNCHBJC3G+9/Y9CiHIhxH4hxHtCiEiXr9aFIoL9cM38NHy4rxFN3X2eXg4AS6D0w7f3QUrgr9cVI0ClnNTxzp6ZgCA/5Zgzz7T9RvQPmrlzRkREROQhi7MsdWev7ajB4AR3z6ra9ZASnHHmo+zZOTMC+L6UcgaARQC+JYTIB/A5gFlSykIARwH82HXLdI9bl2ZAAvjnlmpPLwUA8OnBZmyv7MSPzs1Dunry/8FCAlQ4e2Y8Pt7fhAGjacTHtA4NoGZwRkREROQJsWEBuG5hGt7cXY8Ln9qMA/Xddj+XbfR927jBmZSySUq51/q5DkAZgGQp5WdSSqP1YdsBpLhume6RGh2M8woS8dqOWmj7Bz26lv5BE37zcRnyEsJw3YI0px33kuJkdPcNYuORthHvb7ENoGZDECIiIiKP+e2lBXjuxrno6jXg4r9txu8+LUP/4MgX14eraOuBEEBmDHfOfNGEas6EEBkAigHsOOmu2wB86qQ1edQ3l2eiZ8CIN3bWeXQdz2+qRIOmDz+/MB9KJ3baWZYTg5hQf7w/SmpjC3fOiIiIiLzCWTMT8Nl3z8DV81Px7JeVOOeJTdheOXYXx8o2PZIjgxDoN7lyGPIMu4MzIUQogHcAPCCl1A67/aewpD6uHeV5dwohdgshdre1jbxb400KUyKxKCsaL26pmnCOr7M0dffh6Y0VOHdWApZkxzj12CqlAhfOTsK6slZ09526O9iiswZn3DkjIiIi8riIID/87rJCvHbHQpglcM1z2/GT9w6MmuXFTo2+za7gTAjhB0tgtlZK+e6w228GcAGA66WUI/Znl1I+J6WcJ6WcFxsb64w1u9xdK7LR1N2Pj/Y3euT8v/+0HCYp8ZPzZrjk+JcWJ8NgMuPTA02n3NeqHUBYgAohASqXnJuIiIiIJm5JTgz+98AKfHN5Jl7fWYuzHt+EdWUtJzzGbJaobNMzOPNh9nRrFAD+AaBMSvn4sNvPAfAggIuklL2uW6L7nTEtFrlxoXhuUxVGiTldZk9NJ94vbcRdK7KQGj3xYdP2KEiOQFZsyIhdG1t1/YhjG30iIiIirxPkr8RPz8/He/cuRWSwH25/eTe+8+8SdPRYegY0afvRN2hip0YfZs/O2VIANwJYLYQotX6cB+CvAMIAfG697RlXLtSdFAqBby7PQlmTFluOOz6dfaLMZolHPzyMhPBA3LMy22XnEULg0qJk7KjqRIPmxLEBLdoBttEnIiIi8mKzUyPx4X3L8N0zp+HTg0048/Ev8UFpA463slOjr7OnW+NmKaWQUhZKKYusH59IKXOklKnDbrvbHQt2l4uLkxAbFoDn3DiU+u299TjQ0I2Hzs1DsL9r0wovLkoGAHxQeuLumWUANYMzIiIiIm/mr1Lg/jNz8fF3liNdHYL7Xy/Fg2/vB8DgzJdNqFvj6SRApcQtSzKw6WgbypomPp19onT9g/jDf49gTlokLi5Kcvn50tTBmJcehff2Ngylbkop0aodYFojERERkY+YFh+Gd+5ZgocvyEd33yDUIf6ICfX39LLIQQzOxnD9wjQE+yvxvBt2z/664TjaewbwyIUzYSnzc71LipNxrLUHh63Bp6Z3EAaTGfFh3DkjIiIi8hVKhcDtyzKx7vtn4N93LnLbe0lyPgZnY4gM9sdV81LxYWkjmrr7xn+Cg6ra9XhxcxWumJuC2amRLjvPyc4vSISfUgzNPBtqo8+dMyIiIiKfkxQZhGnxYZ5eBk0Cg7Nx3L4sE2Yp8dLWaped4zcfl8FfqcCPzp7usnOMJCrEHyunx+GD0kaYzJaURgCsOSMiIiIi8gAGZ+NIjQ7GuQWJeG17LXSjDPubjE1H2/BFWQvuW52LOA8ERZcWJ6NVN4BtFR1o0Vp2zpjWSERERETkfgzO7HDXiizoBox4Y1edU487aDLjVx8dRro6GLcty3Dqse21Oi8OYQEqvFfSgFadZeeMaY1ERERERO7H4MwOhSmRWJgZjRc3V2HQZHbacddur8Gx1h789LwZCFApnXbciQj0U+K8gkT892ATqtv1iAjyQ6CfZ9ZCRERERHQ6Y3BmpztXZKGxux+fHGhyyvE69QY8/vlRLM+NwTfy451yTEddUpwMvcGEj/Y3IZ67ZkREREREHsHgzE6rpschOzYEz35ZOTQXbDIe//wI9AYTHr4g3+PtThdmRiMxIhB9gyY2AyEiIiIi8hAGZ3ZSKATuXJGFw01abK3omNSxypq0eG1HLW5clO4V7U4VCoGLi5IBAHFsBkJERERE5BEMzibg4qJkxIQG4LlNjg+lllLil/85jPAgPzxwZq4TVzc5lxZbgjOmNRIREREReQaDswkI9FPiliXp+PJoG8qbtQ4d43+HmrGtsgPf/8Y0RAb7O3mFjpueEIY/XF6IaxekeXopRERERESnJQZnE3T9wnQE+Snx3KaJ1571D5rw64/LMD0+zCuDoKvmpyI1OtjTyyAiIiIiOi2pPL0AXxMV4o+r5qXg5W01+GhfEyKD/RAd4o/IYD9EBfsjKsQfUbbPg/0RFfL15++VNKC+qw9r71gIlZJxMRERERERfY3BmQMePDcPaeoQtOr60aU3oKt3EJpeA4626KDpHYSmbxAm88i7amfPjMfSnBg3r5iIiIiIiLwdgzMHBPurcPuyzFHvN5sldP1GdPUavv7QD0LXP4jzC5PcuFIiIiIiIvIVDM5cQKEQiAj2Q0SwHzIQ4unlEBERERGRD2DhExERERERkRdgcEZEREREROQFGJwRERERERF5AQZnREREREREXoDBGRERERERkRdgcEZEREREROQFGJwRERERERF5AQZnREREREREXoDBGRERERERkRdgcEZEREREROQFGJwRERERERF5AQZnREREREREXoDBGRERERERkRcYNzgTQqQKITYIIcqEEIeEEPdbb7/S+nezEGKe65dKREREREQ0danseIwRwPellHuFEGEA9gghPgdwEMBlAJ515QKJiIiIiIhOB+MGZ1LKJgBN1s91QogyAMlSys8BQAjh2hUSERERERGdBiZUcyaEyABQDGCHS1ZDRERERER0mrI7OBNChAJ4B8ADUkrtBJ53pxBitxBid1tbmyNrJCIiIiIimvLsCs6EEH6wBGZrpZTvTuQEUsrnpJTzpJTzYmNjHVkjERERERHRlGdPt0YB4B8AyqSUj7t+SURERERERKcfe7o1LgVwI4ADQohS620/ARAA4CkAsQA+FkKUSinPdskqiYiIiIiIpjh7ujVuBjBaS8b3nLscIiIiIiKi09OEujUSERERERGRazA4IyIiIiIi8gIMzoiIiIiIiLwAgzMiIiIiIiIvwOCMiIiIiIjICzA4IyIiIiIi8gIMzoiIiIiIiLwAgzMiIiIiIiIvwOCMiIiIiIjICzA4IyIiIiIi8gIMzoiIiIiIiLwAgzMiIiIiIiIvwOCMiIiIiIjICzA4IyIiIiIi8gIMzoiIiIiIiLwAgzMiIiIiIiIvwOCMiIiIiIjIC6g8vYDBwUHU19ejv7/f00uhKSYwMBApKSnw8/Pz9FKIiIiIiMbl8eCsvr4eYWFhyMjIgBDC08uhKUJKiY6ODtTX1yMzM9PTyyEiIiIiGpfH0xr7+/uhVqsZmJFTCSGgVqu5I0tEREREPsPjwRkABmbkEnxdEREREZEv8YrgzNN+85vfYObMmSgsLERRURF27NgBALjjjjtw+PBhp5wjIyMD7e3tYz7mt7/97YSP+9JLL+G+++474bZ//vOfKCoqQlFREfz9/VFQUICioiI89NBDEz6+OzzxxBPo7e319DKIiIiIiDzK4zVnnrZt2zZ89NFH2Lt3LwICAtDe3g6DwQAAeOGFF9y6lt/+9rf4yU9+Munj3Hrrrbj11lsBWILCDRs2ICYmZtLHdZSUElJKKBQjXwt44okncMMNNyA4ONjuYxqNRqhUp/3Ll4iIiIimkNN+56ypqQkxMTEICAgAAMTExCApKQkAsHLlSuzevRsAEBoaigcffBBz587FmWeeiZ07d2LlypXIysrChx9+CODUXawLLrgAGzduPOWcl1xyCebOnYuZM2fiueeeAwA89NBD6OvrQ1FREa6//noAwKuvvooFCxagqKgId911F0wmEwDLzti0adNwxhlnYMuWLXZ/rX/84x8xf/58FBYW4pFHHgEAVFdXIy8vD3fccQdmzZqF66+/Hl988QWWLl2K3Nxc7Ny5EwDw6KOP4sYbb8Tq1auRm5uL559/ftzjzpgxA/feey/mzJmDuro63HPPPZg3bx5mzpw59Lgnn3wSjY2NWLVqFVatWjX0vbZ5++23ccsttwAAbrnlFnzve9/DqlWr8OCDD6KiogLnnHMO5s6di+XLl6O8vNzu7wURERERkbfxqq2HX/znEA43ap16zPykcDxy4cxR7z/rrLPwy1/+EtOmTcOZZ56Jq6++GmecccYpj9Pr9Vi5ciV+//vf49JLL8XPfvYzfP755zh8+DBuvvlmXHTRRXav6cUXX0R0dDT6+vowf/58XH755Xjsscfw17/+FaWlpQCAsrIyvPHGG9iyZQv8/Pxw7733Yu3atfjGN76BRx55BHv27EFERARWrVqF4uLicc/52Wef4dixY9i5cyeklLjooouwadMmpKWl4fjx43jrrbfw3HPPYf78+XjttdewefNmfPjhh/jtb3+L999/HwCwf/9+bN++HXq9HsXFxTj//PNx8ODBUY975MgR/POf/8TTTz8NwJI+Gh0dDZPJhDVr1mD//v34zne+g8cff9zu3b2jR4/iiy++gFKpxJo1a/DMM88gNzcXO3bswL333ov169fb/e9ARERERORNvCo484TQ0FDs2bMHX331FTZs2ICrr74ajz322NBujY2/vz/OOeccAEBBQQECAgLg5+eHgoICVFdXT+icTz75JN577z0AQF1dHY4dOwa1Wn3CY9atW4c9e/Zg/vz5AIC+vj7ExcVhx44dWLlyJWJjYwEAV199NY4ePTruOT/77DN89tlnQ4FcT08Pjh07hrS0NGRmZqKgoAAAMHPmTKxZswZCiFO+tosvvhhBQUEICgrCqlWrsHPnTmzevHnU46anp2PRokVDz3/zzTfx3HPPwWg0oqmpCYcPH0ZhYeGEvndXXnkllEolenp6sHXrVlx55ZVD9w0MDEzoWERERERE3sSrgrOxdrhcSalUYuXKlVi5ciUKCgrw8ssvnxKc+fn5DXX/UygUQ2mQCoUCRqMRAKBSqWA2m4eeM1Ib940bN+KLL77Atm3bEBwcjJUrV474OCklbr75Zvzud7874fb333/foS6EUkr8+Mc/xl133XXC7dXV1UNfy1hfG3Bq90MhxJjHDQkJGfp7VVUV/vSnP2HXrl2IiorCLbfcMmqb++HnOfkxtmOazWZERkYO7TQSEREREfm6077m7MiRIzh27NjQ30tLS5Genu7QsTIyMlBaWgqz2Yy6urqheq3huru7ERUVheDgYJSXl2P79u1D9/n5+WFwcBAAsGbNGrz99ttobW0FAHR2dqKmpgYLFy7Exo0b0dHRgcHBQbz11lt2re3ss8/Giy++iJ6eHgBAQ0PD0LHt9cEHH6C/vx8dHR3YuHEj5s+fb/dxtVotQkJCEBERgZaWFnz66adD94WFhUGn0w39PT4+HmVlZTCbzUM7jCcLDw9HZmbm0NcvpcS+ffsm9PUQEREREXkTr9o584Senh58+9vfhkajgUqlQk5OzlCTjolaunTpUIrgrFmzMGfOnFMec8455+CZZ55BYWEhpk+ffkLa35133onCwkLMmTMHa9euxa9//WucddZZMJvN8PPzw9/+9jcsWrQIjz76KBYvXozExETMmTNnqFHIWM466yyUlZVh8eLFACzpnK+++iqUSqXdX9+CBQtw/vnno7a2Fg8//DCSkpKQlJRk13Fnz56N4uJizJw5E1lZWVi6dOkJX/e5556LxMREbNiwAY899hguuOACpKamYtasWUOB38nWrl2Le+65B7/+9a8xODiIa665BrNnz7b76yEiIiIi8iZCSum2k82bN0/auh/alJWVYcaMGW5bAznm0UcfRWhoKH7wgx94eikTwtcXERER0Sj+8Adg/nzA2jEbALBhA7BrF/CjH3luXVOcEGKPlHLeSPed9mmNRERERESnpfnzgauusgRkgOXPq66y3O4N/vCHr9dms2GD5fYpatzgTAiRKoTYIIQoE0IcEkLcb709WgjxuRDimPXPKNcvlzzl0Ucf9bldMyIiIiIaw6pVwCuvABdcAHz3u5bA7M03T9xJ8yRb8PjZZ5a/e1vw6AL27JwZAXxfSjkDwCIA3xJC5AN4CMA6KWUugHXWvxMRERERka8QAujtBZ54AoiLA5RKwI1lT6MaGACamoCkJODss4HiYuDKK70reHSBcYMzKWWTlHKv9XMdgDIAyQAuBvCy9WEvA7jERWskIiIiIiJXCAgAoqKAhQuBsjLgjDOA2bOBZ58FRmnK5lLHj1vq3VJSgOuvB/R6oKAAKC21BJIxMe5fkxtNqOZMCJEBoBjADgDxUsomwBLAAYgb5Tl3CiF2CyF2t7W1TXK5RERERETkFLY0wXfeAbZvBz7+GAgNteyk3X23JUB64AHg6FHXrmNw0LKGb3wDyM0FHn/cEiR+9pklSGxqsgRqHR3A3LnAM894x+6eC9gdnAkhQgG8A+ABKaXW3udJKZ+TUs6TUs6LjY11ZI1ERERERORsu3admCZ47rnAhx8C3/wmsGULcN55wNNPA9OnA2edZbnvsccm3qRjtMYeP/4x8LOfAWlpwBVXWILAX/0KqK0F3n4bUKmAa66xrPHVVwHbfN977rEElRqN074V3sKu4EwI4QdLYLZWSvmu9eYWIUSi9f5EABObaOxFlEolioqKMGvWLFx55ZXo7e11+Fi33HIL3n77bQDAHXfcgcOHD4/62I0bN2Lr1q1Df3/mmWfwyiuvOHxum+rqasyaNeuE2x599FH86U9/mtBxnLUeIiIiIvJCP/rRqfVbq1YBDz4ILFkCvPaaJVD61a+Aw4eBiy+21KZdeCHw3nuWx9vTpGN4V0iTCfjNb4BzzrEEer/7HTBvHvDRR0BlpSVYS0qyPO/k4PHyy4FPP7UEje+/DxQVWXb8ppBxh1ALIQSAfwAok1I+PuyuDwHcDOAx658fuGSFw7loFkNQUBBKS0sBANdffz2eeeYZfO973xu632QyTWhYs80LL7ww5v0bN25EaGgolixZAgC4++67J3wOVzEajV61HiIiIiLygIQES8D00EPABx8Af/ub5f33ZZdZ6r+6uoCMDOD737c0E1EoLB/DP1coLLtjZ58NBAUBWi0QHQ1861vAHXdY7hvJSO/v16yxfGzfDlx7LbB8uSXY+8EPLOfxcfZ8BUsB3AhgtRCi1PpxHixB2TeEEMcAfMP6d9dywyyG5cuX4/jx49i4cSNWrVqF6667DgUFBTCZTPjhD3+I+fPno7CwEM8++ywAQEqJ++67D/n5+Tj//PPR2vr1BuLKlSthG7r93//+F3PmzMHs2bOxZs0aVFdX45lnnsGf//xnFBUV4auvvjphd6u0tBSLFi1CYWEhLr30UnR1dQ0d88EHH8SCBQswbdo0fPXVVxP+Gsc69k9+8hOcccYZ+Mtf/jK0nsbGRhQVFQ19KJVK1NTUoKamBmvWrEFhYSHWrFmD2tpaAJbdw+985ztYsmQJsrKyhnYSiYiIiMhHqVSWnav164GDB4EFC4D2diAnB5g5E0hOtnR7jIoCwsKAwMCvOz8ODloaj8TFWQKzK64AmpuBX/5y9MBsPIsWASUlwCWXWHb6zj0XaGlx6pfsCePunEkpNwMQo9y9xqmreeABSyeWsdjaaSYmWooDZ8wAfvELy8dIioos2692MBqN+PTTT3HOOecAAHbu3ImDBw8iMzMTzz33HCIiIrBr1y4MDAxg6dKlOOuss1BSUoIjR47gwIEDaGlpQX5+Pm677bYTjtvW1oZvfvOb2LRpEzIzM9HZ2Yno6GjcfffdCA0NHZoftm7duqHn3HTTTXjqqadwxhln4Oc//zl+8Ytf4Anr12E0GrFz50588skn+MUvfoEvvvjilK+loqICRUVFQ39vbm4eOs9Yx9ZoNPjyyy8BWFIhLd/ypKGdxb/97W/48ssvkZ6ejgsvvBA33XQTbr75Zrz44ov4zne+g/fffx8A0NTUhM2bN6O8vBwXXXQRrrjiCrv+DYiIiIjIy7W2WlIQH34Y+PvfLe/hx2tvb9tUsT1n8+bJt8SPjLSkPT7/PHD//Zb3/RdcAFx3ndMz7dzF9/b+oqIsgVltreXPqMnPvu7r60NRURHmzZuHtLQ03H777QCABQsWIDMzEwDw2Wef4ZVXXkFRUREWLlyIjo4OHDt2DJs2bcK1114LpVKJpKQkrF69+pTjb9++HStWrBg6VnR09Jjr6e7uhkajwRlnnAEAuPnmm7Fp06ah+y+77DIAwNy5c1FdXT3iMbKzs1FaWjr0YUtRHO/YV1999ajr2rJlC1544QW8+OKLAIBt27bhuuuuAwDceOON2Lx589BjL7nkEigUCuTn56NlClzFICIiIiJ8HWS9+aZl5+vNN0/MbHPWc+wlBHDnnZbgKzoaeOEF4PzzAdvmhY8Nrh5358yt7NnhOjnqfuSRSUfdw2vOhgsJCRn6XEqJp556CmefffYJj/nkk09gKcsbnZRy3MdMREBAAABLIxOj0ei04wInfs3DNTU14fbbb8eHH36I0NDQER8z/Gu0rRGwfP1ERERENAWc3KRj1SrL33ftGv09uSPPmahZsyzHu/9+S4B27rnAvfdampr40OBq39o5c2XUPY6zzz4bf//73zE4OAgAOHr0KPR6PVasWIHXX38dJpMJTU1N2DDCWhYvXowvv/wSVVVVAIDOzk4AQFhYGHQ63SmPj4iIQFRU1FA92b/+9a+hna7JcuTYg4ODuOqqq/D73/8e06ZNG7p9yZIleP311wEAa9euxbJly5yyRiIiIiLyUqN1eBwrZdCR5zgiONiS4vjvf1uagzz5pKXtvo8EZoC37ZyNxx1R9yjuuOMOVFdXY86cOZBSIjY2Fu+//z4uvfRSrF+/HgUFBZg2bdqIgU5sbCyee+45XHbZZTCbzYiLi8Pnn3+OCy+8EFdccQU++OADPPXUUyc85+WXX8bdd9+N3t5eZGVl4Z///KfTvpaJHnvr1q3YtWsXHnnkETzyyCMALDuGTz75JG677Tb88Y9/RGxsrFPXSERERETkkPh4ICTEMkj773+3xAk+EqAJd6aczZs3T9q6F9qUlZVhxowZblsDnV74+iIiIiI6jQzPtFu16tS/ewEhxB4p5byR7vOttEYiIiIiIqLRjJVp5wN8K62RiIiIiIhoNCPVsflQWiN3zoiIiIiIiLyAVwRnbLVOrsDXFRERERH5Eo8HZ4GBgejo6OAbaXIqKSU6OjoQGBjo6aUQEREREdnF4zVnKSkpqK+vR1tbm6eXQlNMYGAgUlJSPL0MIiIiIiK7eDw48/PzQ2ZmpqeXQURERERE5FEeT2skIiIiIiIiBmdERERERERegcEZERERERGRFxDu7JIohGgDUOO2E9ovBkC7pxdBpy2+/siT+PojT+NrkDyJrz/yhHQpZexId7g1OPNWQojdUsp5nl4HnZ74+iNP4uuPPI2vQfIkvv7I2zCtkYiIiIiIyAswOCMiIiIiIvICDM4snvP0Aui0xtcfeRJff+RpfA2SJ/H1R16FNWdERERERERegDtnREREREREXsCngjMhxDlCiCNCiONCiIeG3f6GEKLU+lEthCgd5fnRQojPhRDHrH9GWW+/ftjzS4UQZiFE0QjPX2s9/0EhxItCCD/r7UII8aR1XfuFEHNc8x0gT/Pi12CeEGKbEGJACPED13z15Gle/Pq73vqzb78QYqsQYrZrvgPkSV78+rvY+torFULsFkIsc813gDzJha8/PyHEy0KIA0KIMiHEj0d5fqYQYof1+W8IIfytt/M9IDmXlNInPgAoAVQAyALgD2AfgPwRHvd/AH4+yjH+AOAh6+cPAfj9CI8pAFA5yvPPAyCsH/8GcM+w2z+13r4IwA5Pf7/44fwPL38NxgGYD+A3AH7g6e8VP5z/4eWvvyUAoqyfn8ufgVPvw8tff6H4ukyjEEC5p79f/HDuhytffwCuA/C69fNgANUAMkZ4/psArrF+/gzfA/LDVR++tHO2AMBxKWWllNIA4HUAFw9/gBBCALgKlh/aI7kYwMvWz18GcMkIj7l2tOdLKT+RVgB2AkgZdtxXrHdtBxAphEi0+ysjX+G1r0EpZauUcheAwQl9ReRLvPn1t1VK2WV92HZ8/bORpg5vfv31WG8DgBAALKafelz5+pMAQoQQKgBBAAwAtCMcezWAt0d4Pt8DklP5UnCWDKBu2N/rrbcNtxxAi5Ty2CjHiJdSNgGA9c+4ER5zNUb/jw3AsgUO4EYA/53A2sj3efNrkKY+X3n93Q7LVWSaWrz69SeEuFQIUQ7gYwC3jfV88kmufP29DUAPoAlALYA/SSk7T3quGoBGSmkc4fx8D0hO5UvBmRjhtpOvjo16xc2uEwixEECvlPLgOA99GsAmKeVXE1gb+T5vfg3S1Of1rz8hxCpYgrMHHV0DeS2vfv1JKd+TUubBspvxK0fXQF7Lla+/BQBMAJIAZAL4vhAiawLn53tAcipfCs7qAaQO+3sKgEbbX6zb0ZcBeGPYbf+0Foh+Yr2pxbbVbP2z9aRzXIPxr9g9AiAWwPfsXRtNGd78GqSpz6tff0KIQgAvALhYStkxga+LfINXv/5spJSbAGQLIWLs+aLIZ7jy9XcdgP9KKQellK0AtgCYd9L522FJV1SNcH6+BySn8qXgbBeAXGu3HH9Yfoh/OOz+M2EpAq633SClvFVKWSSlPM9604cAbrZ+fjOAD2yPFUIoAFwJSx7ziIQQdwA4G8C1UkrzsLs+BHCTtWPPIgDdtq1zmlK8+TVIU5/Xvv6EEGkA3gVwo5Ty6CS+RvJe3vz6y7HWBMHaKc8fAC8QTC2ufP3VAlhtfQ8XAktTj/LhJ7fWNG4AcMUIz+d7QHKuiXQP8fQHLB1xjsLSseenJ933EoC7x3m+GsA6AMesf0YPu28lgO3jPN9oPXep9ePn1tsFgL9Z7zsAYJ6nv1f8cM2HF78GE2C5eqcFoLF+Hu7p7xc/nPvhxa+/FwB0Dbt9t6e/V/xw/ocXv/4eBHDIets2AMs8/b3ih/M/XPX6g6Xb51vW19BhAD8c5flZsDSiOW59fID1dr4H5IdTP2ytZ4mIiIiIiMiDfCmtkYiIiIiIaMpicEZEREREROQFGJwRERERERF5AQZnREREREREXoDBGRERERERkRdgcEZEREREROQFGJwRERERERF5AQZnREREREREXuD/AeSvcva9M+KZAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3EAAAE/CAYAAADouUp5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACPuklEQVR4nOzdd3zdVf348de5N3vvpBnNaJvudC9KoaUsZSqCCDJU3CgofsWFoOIAURF+KiIgKEXZgrJHS2mhe6S76chOs/e+957fH/feNG0z7h7J+/l45EF6x+dzklySz/ue91Baa4QQQgghhBBCBAeDvxcghBBCCCGEEMJxEsQJIYQQQgghRBCRIE4IIYQQQgghgogEcUIIIYQQQggRRCSIE0IIIYQQQoggIkGcEEIIIYQQQgQRCeKEEEIIIYQQIohIECeEEEFKKdUx6MOilOoe9O/r/b0+VyilSpVS5/t7HSNRSq1TSt3ixeM/qpQ6ZPuZ3jzE/QVKqf8ppdqVUg1Kqfttt4crpR5XSpXZ7tuplPrEac9drZQ6qJTqUkqtVUrlDrpPKaXuU0o12j7uV0opb32dQgghXCdBnBBCBCmtdYz9AygHLht02xp/r+90SqmQsXAOH9gNfAPYcfodSqkw4B3gfSADyAaett0dAlQA5wLxwF3Ac0qpPNtzU4CXbLcnAduAZwcd/ivAlcAcoAi4FPiqJ78wIYQQniFBnBBCjDFKKYNS6gdKqaO2HZXnlFJJtvvylFJaKfUFpVSFUqpZKfU1pdQipVSxUqpFKfX/Bh3rZqXURqXUw0qpVtsuzupB98fbdn9qlFJVSql7lVLG0577B6VUE3CPUmqSUup927oalFJrlFIJtsf/E5gI/Ne2m/h9pdRKpVTlaV/fwG6dUuoepdQLSqmnlVJtwM2jrGmyUuoD29fSoJQaHMQMPkeE7ZiNtu/JVqVUulLql8AK4P/Z1vj/bI+fppR6RynVZNtFu2bQsZ5USj1iu7/ddv7coc4LoLX+k9b6PaBniLtvBqq11r/XWndqrXu01sW253Vqre/RWpdqrS1a6/8Bx4EFtud+GtintX5ea90D3APMUUpNs91/E/A7rXWl1roK+J3tfEIIIQKMBHFCCDH2fBvrjsq5QCbQDPzptMcsAaYAnwUeBH4MnA/MBK5RSp172mOPASnA3cBL9qAQeAowAZOBecCFwC1DPDcN+CWggF/b1jUdyMEaTKC1voFTdxTvd/DrvQJ4AUgA1oyypl8AbwOJWHexHh7mmDdh3c3KAZKBrwHdWusfAx8Ct9rWeKtSKhrr7tgztq/zc8CflVIzBx3vetu5U4BdtnW6YilQqpR6wxaErlNKzR7qgUqpdKAQ2Ge7aSbWXT7AGvQBR223n3G/7fPBX4MQQogAIUGcEEKMPV8FfmzbUenFGiR95rRUw1/YdnHeBjqBf2mt62w7MB9iDX7s6oAHtdb9WutngUPAJbYg4RPA7bZdoDrgD8C1g55brbV+WGtt0lp3a62PaK3f0Vr3aq3rgd9jDTbd8bHW+j9aawsQN8qa+oFcINP29W8Y5pj9WIO3yVprs9Z6u9a6bZjHXgqUaq3/bvs6dwAvAp8Z9JjXtNbrbT+PHwPLlFI5Lnyt2bav5SGsgfBrwCu2NMsBSqlQbAGt1vqg7eYYoPW047UCscPc3wrESF2cEEIEnrFQOyCEEOJUucDLSinLoNvMQPqgf9cO+rx7iH/HDPp3ldZaD/p3GdYAIhcIBWoGXecbsNZl2Q3+HKVUGtYAZAXW4MGAdafQHYPPMdqavo91R2yLUqoZa/rgE0Mc859Yd+H+bUv3fBprYNw/xGNzgSVKqZZBt4XYjnHGGrXWHbb00szT1u6IbmCD1voNAKXUA8BPsO5q7rbdZrCduw+4ddBzO7AGuYPFAe3D3B8HdJz2sxdCCBEAZCdOCCHGngrgE1rrhEEfEbZdNldknbYbMxGotp2nF0gZdJ44rfXgFLzTA4Bf224r0lrHAZ/HmmI53OM7gSj7P2y1bamnPWbwc0Zck9b6hNb6y1rrTKw7ln9WSk0+/Qu27Tr+TGs9AzgL627bjcOssQL44LTvd4zW+uuDHjOw66aUisHaWKT69PM6oHiI8w+w/ZwexxqwX3Va0LkPa9MS+2OjgUmcTLc85X7b5/sQQggRcCSIE0KIsecR4Jf25hlKqVSl1BVuHC8N+LZSKlQpdTXWXZ/XtdY1WOvLfqeUirM1VJl0Wj3d6WKx7vi0KKWygP877f5aoGDQvw8DEUqpS2wpgj8Bwoc7+GhrUkpdrZTKtj28GWtAZD79OEqpVUqp2bagsQ1reqX9caev8X9AoVLqBtv3KFRZG8VMH/SYTyqlzralPf4C2Ky1HnIXTikVppSKwBrchtqarNj/Xj8NLFVKnW9b2+1AA3DAdv9fsP58LtNad5926JeBWUqpq2zH/ylQPCjd8h/Ad5VSWUqpTOAO4Mmh1iiEEMK/JIgTQoix54/Aq8DbSql2YBPWBiOu2oy1CUoD1uYkn9FaN9ruuxEIA/ZjDYpeACaMcKyfAfOx1lu9hrXl/WC/Bn5i6wj5Pa11K9Z2+48BVVh35ioZ2UhrWgRsVkp1YP0e3aa1Pj7EMTJsz2vDGiB9wMlW/n/EWmPYrJR6SGvdjrV5yrVYd9dOAPdxarD5DNamME1Yu0WONMfvbaxpk2cBj9o+PwdAa30I6+7lI7av7Qrgcq11ny1o/yowFzihTpsZaKtBvArrz7AZ62ticP3iX4H/AnuAvVh/Pn8dYZ1CCCH8REmquxBCiOEo67DpW7TWZ/t7LcFKKfUkUKm1/om/1yKEEGJskJ04IYQQQgghhAgiEsQJIYQQQgghRBCRdEohhBBCCCGECCKyEyeEEEIIIYQQQUSCOCGEEEIIIYQIIiG+PFlKSorOy8vz5SmFEEIIIYQQImBs3769QWud6s4xfBrE5eXlsW3bNl+eUgghhBBCCCEChlKqzN1jSDqlEEIIIYQQQgQRCeKEEEIIIYQQIohIECeEEEIIIYQQQcSnNXFD6e/vp7Kykp6eHn8vRYwxERERZGdnExoa6u+lCCGEEEII4TF+D+IqKyuJjY0lLy8PpZS/lyPGCK01jY2NVFZWkp+f7+/lCCGEEEII4TF+T6fs6ekhOTlZAjjhUUopkpOTZYdXCCGEEEKMOX4P4gAJ4IRXyOtKCCGEEEKMRQERxPnbL3/5S2bOnElRURFz585l8+bNANxyyy3s37/fI+fIy8ujoaFhxMf86le/cvq4Tz75JLfeeuspt/39739n7ty5zJ07l7CwMGbPns3cuXP5wQ9+4PTxfeHBBx+kq6vL38sQQgghhBAiKPi9Js7fPv74Y/73v/+xY8cOwsPDaWhooK+vD4DHHnvMp2v51a9+xY9+9CO3j/OFL3yBL3zhC4A1eFy7di0pKSluH9dVWmu01hgMQ79n8OCDD/L5z3+eqKgoh49pMpkICRn3L18hhBBCCDEOjfuduJqaGlJSUggPDwcgJSWFzMxMAFauXMm2bdsAiImJ4c4772TBggWcf/75bNmyhZUrV1JQUMCrr74KnLkrdumll7Ju3bozznnllVeyYMECZs6cyaOPPgrAD37wA7q7u5k7dy7XX389AE8//TSLFy9m7ty5fPWrX8VsNgPWnbbCwkLOPfdcNm7c6PDX+tvf/pZFixZRVFTE3XffDUBpaSnTpk3jlltuYdasWVx//fW8++67LF++nClTprBlyxYA7rnnHm644QbOO+88pkyZwt/+9rdRjzt9+nS+8Y1vMH/+fCoqKvj617/OwoULmTlz5sDjHnroIaqrq1m1ahWrVq0a+F7bvfDCC9x8880A3HzzzXz3u99l1apV3HnnnRw9epSLL76YBQsWsGLFCg4ePOjw90IIIYQQQrjObNH89YOjdPWZ/L2UcWncB3EXXnghFRUVFBYW8o1vfIMPPvhgyMd1dnaycuVKtm/fTmxsLD/5yU945513ePnll/npT3/q1DmfeOIJtm/fzrZt23jooYdobGzkN7/5DZGRkezatYs1a9Zw4MABnn32WTZu3MiuXbswGo2sWbOGmpoa7r77bjZu3Mg777zjcLrn22+/TUlJCVu2bGHXrl1s376d9evXA3DkyBFuu+02iouLOXjwIM888wwbNmzggQceOCXFs7i4mNdee42PP/6Yn//851RXV4943EOHDnHjjTeyc+dOcnNz+eUvf8m2bdsoLi7mgw8+oLi4mG9/+9tkZmaydu1a1q5dO+rXcfjwYd59911+97vf8ZWvfIWHH36Y7du388ADD/CNb3zDqZ+DEEIIIYRwzcPvl/DrNw7y/sE6fy9lXAqofLSf/Xcf+6vbPHrMGZlx3H3ZzGHvj4mJYfv27Xz44YesXbuWz372s/zmN78Z2P2xCwsL4+KLLwZg9uzZhIeHExoayuzZsyktLXVqTQ899BAvv/wyABUVFZSUlJCcnHzKY9577z22b9/OokWLAOju7iYtLY3NmzezcuVKUlNTAfjsZz/L4cOHRz3n22+/zdtvv828efMA6OjooKSkhIkTJ5Kfn8/s2bMBmDlzJqtXr0YpdcbXdsUVVxAZGUlkZCSrVq1iy5YtbNiwYdjj5ubmsnTp0oHnP/fcczz66KOYTCZqamrYv38/RUVFTn3vrr76aoxGIx0dHXz00UdcffXVA/f19vY6dSwhhBBCCOG8Tccaeei9Ej41L4tLZk/w93LGpYAK4vzFaDSycuVKVq5cyezZs3nqqafOCOJCQ0MHuh0aDIaB9EuDwYDJZN1GDgkJwWKxDDxnqPb269at49133+Xjjz8mKiqKlStXDvk4rTU33XQTv/71r0+5/T//+Y9LXRe11vzwhz/kq1/96im3l5aWDnwtI31tcGa3R6XUiMeNjo4e+Pfx48d54IEH2Lp1K4mJidx8883Dtv8ffJ7TH2M/psViISEhgV27do32pQshhBBCCA9p6uzjtn/vJDc5ml9cOUu6gftJQAVxI+2YecuhQ4cwGAxMmTIFgF27dpGbm+vSsfLy8vjzn/+MxWKhqqpqoJ5ssNbWVhITE4mKiuLgwYNs2rRp4L7Q0FD6+/sJDQ1l9erVXHHFFXznO98hLS2NpqYm2tvbWbJkCbfddhuNjY3ExcXx/PPPM2fOnFHXdtFFF3HXXXdx/fXXExMTQ1VVFaGhoU59fa+88go//OEP6ezsZN26dQMpoI4ct62tjejoaOLj46mtreWNN95g5cqVAMTGxtLe3j7QfCU9PZ0DBw4wdepUXn75ZWJjY884XlxcHPn5+Tz//PNcffXVaK0pLi526HshhBBCCCGcp7Xme8/vprmzn8dvWkRMeECFEuPKuP/Od3R08K1vfYuWlhZCQkKYPHnyQLMRZy1fvnwgNXHWrFnMnz//jMdcfPHFPPLIIxQVFTF16tRT0g2/8pWvUFRUxPz581mzZg333nsvF154IRaLhdDQUP70pz+xdOlS7rnnHpYtW8aECROYP3/+QMOTkVx44YUcOHCAZcuWAdY00qeffhqj0ejw17d48WIuueQSysvLueuuu8jMzCQzM9Oh486ZM4d58+Yxc+ZMCgoKWL58+Slf9yc+8QkmTJjA2rVr+c1vfsOll15KTk4Os2bNoqOjY8j1rFmzhq9//evce++99Pf3c+2110oQJ4QQQgjhJU9sLOX9g3Xcc9kMZmXF+3s545rSWvvsZAsXLtT2bo92Bw4cYPr06T5bg3DNPffcQ0xMDN/73vf8vRSnyOtLCCGEEMJ9xZUtXPWXjzi3MI2/3bhA0ijdoJTarrVe6M4xxn13SiGEEEIIIcTw2nv6+da/dpISE85vP1MkAVwAGPfplMIx99xzj7+XIIQQQgghfExrzY9f3ktFUxfPfnUZidFh/l6SQHbihBBCCCGEEMN4flslr+6u5jvnF7IoL8nfyxE2EsQJIYQQQgghznCkrp2fvrqXsyYl841Vk/29HDGIBHFCCCGEEEKIU/T0m/nmmp1Eh4Xw4GfnYjRIHVwgkZo4IYQQQgghxCl+8b/9HKpt58kvLCItLsLfyxGnkZ04wGg0MnfuXGbNmsXVV19NV1eXy8e6+eabeeGFFwC45ZZb2L9//7CPXbduHR999NHAvx955BH+8Y9/uHxuu9LSUmbNmnXKbffccw8PPPCAU8fx1HqEEEIIIUTweK24hjWby/nqOQWsnJrm7+WIIYy6E6eUygH+AWQAFuBRrfUflVLPAlNtD0sAWrTWc720Tq+KjIxk165dAFx//fU88sgjfPe73x2432w2OzUU2+6xxx4b8f5169YRExPDWWedBcDXvvY1p8/hLSaTKaDWI4QQQgghvK+iqYsfvFTM3JwEvnfR1NGfIPzCkZ04E3CH1no6sBT4plJqhtb6s1rrubbA7UXgJS+u0+r++2Ht2lNvW7vWeruHrFixgiNHjrBu3TpWrVrFddddx+zZszGbzfzf//0fixYtoqioiL/+9a+Ate3qrbfeyowZM7jkkkuoq6sbONbKlSuxDzd/8803mT9/PnPmzGH16tWUlpbyyCOP8Ic//IG5c+fy4YcfnrJbtmvXLpYuXUpRURGf+tSnaG5uHjjmnXfeyeLFiyksLOTDDz90+msc6dg/+tGPOPfcc/njH/84sJ7q6mrmzp078GE0GikrK6OsrIzVq1dTVFTE6tWrKS8vB6y7kd/+9rc566yzKCgoGNiZFEIIIYQQgavfbOFb/9oJwMOfm0eoUZL2AtWoPxmtdY3Weoft83bgAJBlv19Zp/1dA/zLW4scsGgRXHPNyUBu7Vrrvxct8sjhTSYTb7zxBrNnzwZgy5Yt/PKXv2T//v08/vjjxMfHs3XrVrZu3crf/vY3jh8/zssvv8yhQ4fYs2cPf/vb305Jj7Srr6/ny1/+Mi+++CK7d+/m+eefJy8vj6997Wt85zvfYdeuXaxYseKU59x4443cd999FBcXM3v2bH72s5+dss4tW7bw4IMPnnL7YEePHj0l8HrkkUccOnZLSwsffPABd9xxx8BtmZmZ7Nq1i127dvHlL3+Zq666itzcXG699VZuvPFGiouLuf766/n2t7898Jyamho2bNjA//73P37wgx84+ZMQQgghhBC+9sDbh9hV0cJvPl1ETlKUv5cjRuBUYxOlVB4wD9g86OYVQK3WusTt1dx+O9jSGoeVmQkXXQQTJkBNDUyfDj/7mfVjKHPnwoMPjnjI7u5u5s6dC1h34r70pS/x0UcfsXjxYvLz8wF4++23KS4uHthVam1tpaSkhPXr1/O5z30Oo9FIZmYm55133hnH37RpE+ecc87AsZKSRp6x0draSktLC+eeey4AN910E1dfffXA/Z/+9KcBWLBgAaWlpUMeY9KkSQMponByWPdox/7sZz877Lo2btzIY489NrD79/HHH/PSS9YN2BtuuIHvf//7A4+98sorMRgMzJgxg9ra2hG/XiGEEEII4V8fHK7nrx8c47olE7mkaIK/lyNG4XAQp5SKwZo2ebvWum3QXZ9jhF04pdRXgK8ATJw40cVlDpKYaA3gysth4kTrv900uCZusOjo6IHPtdY8/PDDXHTRRac85vXXX8e6GTk8rfWoj3FGeHg4YG3IYjKZPHZcOPVrHqympoYvfelLvPrqq8TExAz5mMFfo32NYP36hRBCCCFEYGro6OW7z+5ianosP710hr+XIxzgUKKrUioUawC3Rmv90qDbQ4BPA88O91yt9aNa64Va64Wpqakjn+jBB2HdupE/7r4burrgrrus/7377pEfP8ounKMuuugi/vKXv9Df3w/A4cOH6ezs5JxzzuHf//43ZrOZmpoa1p5eswcsW7aMDz74gOPHjwPQ1NQEQGxsLO3t7Wc8Pj4+nsTExIEdr3/+858DO2fucuXY/f39XHPNNdx3330UFhYO3H7WWWfx73//G4A1a9Zw9tlne2SNQgghhBDCd9Ydqqexs4/7PlNERKjzzfyE7znSnVIBjwMHtNa/P+3u84GDWutKbyzuDPYauOeeg1WrrB+D/+1Ft9xyC6WlpcyfPx+tNampqfznP//hU5/6FO+//z6zZ8+msLBwyIAoNTWVRx99lE9/+tNYLBbS0tJ45513uOyyy/jMZz7DK6+8wsMPP3zKc5566im+9rWv0dXVRUFBAX//+9899rU4e+yPPvqIrVu3cvfdd3P33XcD1h3Ihx56iC9+8Yv89re/JTU11aNrFEIIIYQQvlHR1IVSMH1CrL+XIhykRkt1U0qdDXwI7ME6YgDgR1rr15VSTwKbtNaPDPf8wRYuXKjt3RrtDhw4wPTp0x1b7f33W5uYDA7Y1q6FrVthUD2WEHZOvb6EEEIIIcah7z63i4+PNvLxD1f7eynjglJqu9Z6oTvHGHUnTmu9ARiyoEtrfbM7J3faUIGafUdOCCGEEEII4bTK5m6yEyP9vQzhBBn+IIQQQgghxDhW2dRFTqKMFAgmEsQJIYQQQggxTvWZLJxo65GduCATEEGctKAX3iCvKyGEEEKIkdW0dmPRkC3DvYOK34O4iIgIGhsb5YJbeJTWmsbGRiIiIvy9FCGEEEKIgFXR1A0g6ZRBxuFh396SnZ1NZWUl9fX1/l6KGGMiIiLIzs729zKEEEIIIQJWZXMXgKRTBhm/B3GhoaHk5+f7exlCCCGEEEKMOxXNXRgNignxkr0UTPyeTimEEEIIIYTwj8rmbibERxBilLAgmMhPSwghhBBCiHGqQsYLBCUJ4oQQQgghhBinKpq7yUmSerhgI0GcEEIIIYQQ41BPv5n69l6yZScu6EgQJ4QQQgghxDhU2WwbLyA7cUFHgjghhBBCCCHGoZPjBQJ0J+7++2Ht2lNvW7vWersnnxOEJIgTQgghhBBiHKpoDvBB34sWwTXXwPvvg9bWYOyaa6y3j/YceyDnyHOCkN/nxAkhhBBCCCF8r7KpizCjgbTYcH8vZWirVsGaNXDhhWA2W2+LiIDPfAbCwk5+hIef+u+cHLjoIjjnHNi9G557znqsMUSCOCGEEEIIIcahyuZushIjMRiUv5cyvI6OkwHcWWfBkiXQ1zfyR2QkpKTAe+/BXXeNuQAOJIgTQgghhBBiXKpo7iI7McCbmtx3HxgM8MMfwl//CvfeO3pQZk+hvOsu+MtfrI8fY4Gc1MQJIYQQQggxDlU0dZGTFKD1cADPPgtbtsB111mDt+eeO7XebSj2AO655+DnP3fsOUFIgjghhBBCCCHGmY5eE81d/YG9E/f449b//vzn1v+uWmUNyrZuHf45W7eeWgPnyHOCkKRTCiGEEEIIMc7YxwsEbGdKsxkOHYILLoD8/JO3j5Ya+f3vn3mbpFMKIYQQQgghgl1lk3W8QMDuxL33HpSXwy23+HslAUmCOCGEEEIIIcaZCvtOXKDWxD32GCQnwxVX+HslAUmCOCGEEEIIIcaZiqZuIkONJEeH+XspZ6qvh//8B2680ToDTpxBgjghhBBCCCHGmUrbeAGlAnBG3D//Cf398KUv+XslAUuCOCGEEEIIIcaZiubuwEyl1Br+9jdYtgxmzvT3agKWBHFCCCGEEEKMM5WBOuj7o4/g4EFpaDIKCeKEEEIIIYQYR1q7+mnvMQXmeIHHHoOYGOuAbjEsCeKEEEIIIYQYR052pgywnbjWVutg7s99zhrIiWFJECeEEEIIIcQ4Yh/0nR1oO3H//jd0dcGXv+zvlQQ8CeKEEEIIIYQYRypsg74DLp3yscegqAgWLvT3SgKeBHFCCCGEEEKMI5XNXcSGhxAXGeLvpZy0axds22ZtaBKIYw8CjARxQgghhBBCjCMVzd1kJ0UF1oy4xx+3Dva+/np/ryQoSBAnhBBCCCHEOFLR1EVOII0X6O6Gp5+Gq66CpCR/ryYoSBAnhBBCCCHEOKG1prK5O7Camrz0ErS0yGw4J4waxCmlcpRSa5VSB5RS+5RStw2671tKqUO22+/37lLFePVacQ1bS5v8vQwhhBBCiKDX2NlHd785sMYLPPYYTJoE557r75UEDUeqGU3AHVrrHUqpWGC7UuodIB24AijSWvcqpdK8uVAxPj38Xgm/e+cws7Li+N+3Vvh7OUIIIYQQQa2y2dqZMmB24kpKYN06+NWvwCBJgo4aNYjTWtcANbbP25VSB4As4MvAb7TWvbb76ry5UDG+aK154O1D/GntUVJjw9lX3UZrdz/xkaH+XpoQQgghRNCqaAqwQd+PPw5GI9x8s79XElScCneVUnnAPGAzUAisUEptVkp9oJRa5IX1iXFIa829rx3gT2uPcu2iHP547Vy0hq3HJaVSCCGEEMIdFYE06Lu/H558Ei69FCZM8PdqgorDQZxSKgZ4Ebhda92GdRcvEVgK/B/wnBqiT6lS6itKqW1KqW319fUeWrYYqywWzV2v7OXxDce5aVkuv/rUbOZPTCQsxMDm443+Xp4QQgghRFCrbO4mMSqUmPAAmBH32mtQWysNTVzgUBCnlArFGsCt0Vq/ZLu5EnhJW20BLEDK6c/VWj+qtV6otV6YmprqqXWLMchs0dz5YjFPbyrnq+cUcM/lMzEYFBGhRublJLDpmOzECSGEEEK4o6Kpi5ykANiFA2tDk8xMuPhif68k6DjSnVIBjwMHtNa/H3TXf4DzbI8pBMKABi+sUYwDJrOF7z63i+e3V3Lb6in84BPTThlAubQgmX3VrbT19PtxlUIIIYQQwa2quZvsQJgRV1kJb7wBX/gChATArmCQcWQnbjlwA3CeUmqX7eOTwBNAgVJqL/Bv4CattfbiWsUY1WeycOszO3llVzXfv3gq37mgkNMzc5cUJGHRsE1GDQghhBBCuMRisc6IywmEergnnwSLBb74RX+vJCg50p1yA3BGrZvN5z27HDHe9PSb+caaHbx/sI67Lp3Bl87OH/Jx8ycmEmY0sOlYE+dNS/fxKoUQQgghgl9dey99ZgvZ/k6ntFisXSlXr4aCAv+uJUjJMAbhN119Jm55ahvvH6zj3itnDRvAAUSEGpk7MYHNx6S5iRBCCCGEKyoHOlP6OZ3y/fehtFQamrhBgjjhFx29Jm5+YisfHW3ggavn8PmluaM+Z2l+EnuqWmmXujghhBBCCKfZxwv4PZ3ysccgKQmuvNK/6whiEsQJn2vt7ueGxzezvbyZP147j88syHboeUsLkm11cc1eXqEQQgghxNhT2dQN+Gkn7v77Ye1aaGiAl1+GG26Ajz+23i6cJkGc8Knmzj6uf2wTe6ta+dN187lsTqbDz503MZFQo2KTzIsTQgghhHBaRXMXqbHhRIQafX/yRYvgmmvg7ruhrw+Kiqz/XrTI92sZA6Sfp/AZrTU3P7mVw7UdPHrDQlZNS3Pq+ZFhRubKvDghhBBCCJdUNHWT4696uFWr4Nln4cILISsL7rwTnnvOertwmuzECZ/ZXtbM7ooW7rlsptMBnN3SgmT2VrXS0Wvy8OqEEEIIIca2ypYusv1ZD9fdDWYzVFXB178uAZwbJIgTPvPctgqiw4xcMdfxFMrTLclPxmzRMi9OCCGEEMIJJrOF6pYecpL8tBNnscC3vw0GA/zoR/CXv1hr5IRLJIgTPtHZa+K14houKZpAdLjrWbzzcxOsdXGSUimEEEII4bATbT2YLdp/nSnvuguOHbMGcL/8pTWV8pprJJBzkQRxwide31NDZ5+ZaxbmuHWcqLAQirIT2CzNTYQQQgghHFYx0JnSD0FcXx888ghMmgQ/+5n1tlWrrIHc1q2+X88YII1NhE88v62SgpRoFuQmun2spQVJPPLBMTp7TW7t6gkhhBBCjBcDM+L8kU75+OPQ1ARPP21Np7RbtUrq4lwkO3HC6443dLKltInPLMxGKeX28ZYWWOvitpfJvDghhBBCCEdUNnejFEyI93EQ19kJP/85rFgBF1/s23OPYRLECa97YXsFBgVXzXdsqPdoFuQmEmJQbDomKZVCCCGEEI6obOpiQlwEYSE+vvx/+GE4cQJ+/WvwwJv5wkqCOOFVZovmxe1VnFuYSnpchEeOaa2Li5cgTniN1lrGWAghhBhTKpu7yU7ycT1cczPcdx9ceiksX+7bc49xEsQJr/qwpJ4TbT1uNzQ53ZKCZIorW+nqkwtt4Xnv7K9lwS/eoa6tx99LEUIIITyiormLbF8P+r7vPmhttXajFB4lQZzwque3VZIUHcbq6ekePe7SgmRMUhcnvGTTsSZ6TRb2Vrf6eylCCCGE23pNZk609fh2vEB1NTz0EFx3HRQV+e6844QEccJrmjv7eGd/LVfMzfR4/vXC3ESMBsVmmRcnvGCfLXg7dKLDzysRQggh3FfT0oPW+HYn7he/gP5+a1MT4XESxAmveWVXFX1mC1cv8GwqJUB0eAizs6QuTnie1pr9NW0AHK5t9/NqhBBCCPedHC/go524I0fgscfgK1+BggLfnHOckSBOeM1z2yqZlRXHjMw4rxx/aUEyuytb6O4ze+X4YnyqbO6mvcdaa3nwhARxQgghgp990LfPgrif/hTCwuAnP/HN+cYhCeKEV+ytamV/TZvHG5oMtqQgiX6zZke51MUJz9lXbd2FW5KfxNG6Dkxmi59XJIQQQrinsrmLEIMiw0Odwke0axf8619w220wYYL3zzdOSRAnvOKF7ZWEhRi4fE6m185hr4vzZ0rl/uo2fvKfPZgt2m9rEJ61v7oVg4LL5mTSZ7ZQ2tjl7yUJIUTAWHuwjrN+/R6tXf3+XopwQkVzN5kJkRgNPpjT9uMfQ2IifP/73j/XOCZBnPC4nn4zL++s4sIZ6SREhXntPLERoczKivdrc5NXdlXx9KZyDthqqETw21/TxqTUGObmJABSFyfGnj2VrWwrlaZQwjXPbq2gurWHj6UmPahU+mq8wIcfwuuvw513QkKC9883jkkQJzzu3QO1tHb3ezWV0m5pfhK7KvxXF1dSZ+1eKBdEY8e+6jZmZMYxOS0Gg4JDUhcnxhCzRfP1Ndu588Vify9FBKHuPjPrDtcBsPm4BHHBpKKp2/vjBbSGH/7QmkL5rW9591xCgjjhec9vqyQzPoLlk1O8fq6lBcn0mS3s9FNdnH2XZqvMqxsTmjr7qGntYWZmHBGhRvKSoyWIE2PKO/trqWzupqyxS+o9hdPWl9TT028hLiJERvwEke4+Mw0dveQkeXkn7rXXYONGa1OTKB/OoxunJIgTHlXd0s36knquWpDtk7zrhXmJGBRsOu77PyZdfSYqm63dnraVNqG11MUFu/22piYzJsQDUJgeK+mUAcpktlDW2OnvZQSdv288DoDJoqmw/f4SwlFv7TtBXEQINy7L48CJNqmLCxJVLdba7mxv7sRZLPCjH8GkSfClL3nvPGKABHHCo17aUYnW8JkF2T45n70uzh/NTY7YUinPnpxCbVvvQEAngpd9yPdM21iMwoxYShs76emXMRaB5tltFZz/+w9o6uzz91KCxr7qVjYfb+LimRkAHKuXYfbCcf1mC+8dqOP86eksn5yC1rBVSgmCwsnxAl7cifvXv2DPHrj3XggN9d55xAAJ4oTHaK15fnslS/KTyE2O9tl5lxYks6u8xecX2iW11gugzy2eCMgfs7Fgf00bmfERJEZbG/JMTY/Fok8G7CJwbD3eRL9Zy06pE57cWEpkqJEffnIaAMfqZSdTOG7L8SZau/u5cGYG8yYmEGY0SF1ckKi0D/r21k5cX581hXLuXLjmGu+cQ5xBgjjhMVuON1HW2OWThiaDLclPstXFtfj0vCV1HYQaFRfMSCc2IoStpVIXF+zsTU3spmbEAtLcJBAVV1l3TY/KbpJDGjp6eWVXNVctyCI3OZrEqFCONcj3TjjurX0niAg1cG5hKhGhRubmJLDZD6UMwnkVzd2EhRhIiQn3zgkeewyOHYNf/QoMElr4inynhcc8t62SmPAQPjE7w6fnXZiXZK2L83FKZUltOwUpMYSFGFiYmygdKoNcd5+ZY/UdzMiMH7gtLzmKMKNBdnsCTHtPP8cbrLtIR+tkN8kRz2wup89s4eaz8gEoSI2RnTjhMItF8/a+Ws6ZkkpkmBGAJQVJ7K1qpb1H6uICXUWTdbyAwZO9Cu6/H9auhc5O+MUvYMUKCA+33i58QoI44REdvSZe31PDpUUTiAoL8em54yNDmZEZ5/O0jpK6DianxwDWQLKkroNmqc8JWgdPtGHRMGPCyZ24EKOBSWkxHJIgLqDsq25DazAo2YlzRJ/Jwj83lXFuYSqT06y/swpSojnWIEGccExxVSsn2nq4aObJN2mX5Cdj0bBNujMHvMrmbs83NVm0yJo6edttcOIEXH01fPaz1tuFT0gQJzziteJquvvNXO3jVEq7pfnJ7PBhXVx3n5mK5i4K06zpdovykgDYLn/MgtZ+28D2mYPSKQGmpsdwWNIpA8qeSmsq5VmTUiSIc8Bre6qpb+/lC8vzBm4rSI2hvr1XdlGEQ97adwKjQbF6etrAbfNzEwgxKBk1EAQqmrvI8fSg71Wr4IknrB9TpsDPfw7PPWe9XfiEBHHCI57bVsmk1GjmT0zwy/mXFiTTZ7Kwq6LFJ+c7Wt+B1jDFthNXlB1PmNHA1jL5Yxas9lW3ERcRQvZpf+imZsRR3dpDa7dc7AaK4qpWshIiWZSXRFVLN9190j10OFpr/r6xlEmp0ZwzJXXg9vwUa/MpSakUo9Fa89beEywtSCIhKmzg9qiwEIqy46W5SYBr7+mnpaufnCQvNDUpLbUO+C4pga9/XQI4H5MgTrjtaH0H28uauXphDkp5fzbcUBblJ6EUPntHsKTOujNTaAviIkKNzM6OZ5s0Nwla+21NTU5/DU/NsP6MSySlMmDsqWyhKDueSWnRaM1AfZw4047yZoorW7l5ef4p9TCTUq1BnHzvxGiO1HVwrKFzYDTFYEsKktlT2UpXn8kPKxOOsI8/Ov0NSrdpDQ8+CCEhcNdd8Je/WGvkhM9IECfc9vy2SowGxafnZfltDfGRocyYEOez5iaHazsIMahTRikszEukuNL3ow6E+8wWzcETbQNDvgcrTLd1qJQgLiC0dvVT2tjFrKx4JqVaA2xJqRzeExtLiYsI4ar5p/5+npgchUHJrDgxurf2nQDgghlDBHH5SZgsWkoJAlhFk5fGC/z1r9aOlLfeejKV8pprJJDzoVGDOKVUjlJqrVLqgFJqn1LqNtvt9yilqpRSu2wfn/T+ckWgMZktvLijkpWFqaTFRfh1LUvyk9lR3kyvyftBVEltB/kp0YQaT/4vtCg3iX6zpthWryOCx/GGDnr6LWfUwwFkJUQSHWYcd3VxJrOFm57Ywk9f2evvpZxir20ge1F2PPkp0ShpbjKs6pZu3tx7gmsXTzyj4VR4iJGcpCiOyk6cGMVb+2qZm5NARvyZf+MX5iVhlLq4gOa1nbgnn4SwMLjnHuu/V62yBnJbt3r2PGJYjuzEmYA7tNbTgaXAN5VSM2z3/UFrPdf28brXVikC1vqSeurbe/3W0GSwpQVJ9Jos7K7wfhB1pK59YIfGbkFuIhA4Q7+7+8x85i8fsUXm+IxqX7WtqUnWmUGcUorCjNhxtxP34LslfHC4ntf31KC19vdyBuyxzYebnRVPRKiR7MRIjkpd15D+8XEZWmtuXJY75P35KdFSEydGVNXSzZ6q1lO6Ug4WEx7CLD90hxaOq2juIirMSFJ02OgPdlRnJ+zfD9deC/GDMlhWrYLvf99z5xEjGjWI01rXaK132D5vBw4A/subEwHlua2VJEeHcd60tNEf7GWLbXVx3k6p7Ok3U9bUNdCq2y4xOowpaTEBMy9uZ3kz28qaB1JhxPD2VbcRFmIYSM873bSMWA6daA+oYMabPiyp50/rjpAZH0FDRx9ljV3+XtKAPZWtTEyKGmiwMCk1hqN1shN3uu4+M//aUs5FMzOGbS1ekBLD8YYOLJbx8boWznvb9vfjopnpwz5mSUEyuytapZQgQFU2d5OTGOXZngUvvADt7fClL3numMJpTtXEKaXygHnAZttNtyqlipVSTyilEod5zleUUtuUUtvq6+vdW60IKI0dvbx7oJYr52URFuL/8sqEqDCmZXj/HUF7Z8rTd+LAmlqyraw5IC6KdpRbaxT2Vkl652j2V7cxNT32lPTYwQrTY2nu6qe+o9fHK/O9uvYevvPsLianxvDnzy8AAmt0RnFVC7OzT77zOyk1hmMSiJzhpZ2VtHb384Xl+cM+piA1mp5+Cyfaeny4MhFM3tp3gilpMRQM8wYXWOvi+swWdpa3+G5hwmH2Qd8e9dhj1rECK1Z49rjCKQ5feSulYoAXgdu11m3AX4BJwFygBvjdUM/TWj+qtV6otV6Ympo61ENEkPrPrmpMFs01AZBKabe0IIntZc30mSxeO0dJrfVdf/t4gcEW5SXS3mPicJ3/U+/sF977q9vkAncEWmv2VbeeMuT7dFNtAfvhE2N7x8ds0dz+71109Jr40/XzKcqKJzYiJGCG+TZ39lHR1E1R1qlBXE+/herWbj+uLLBorXlyYykzM+NYlDfk+6uANYgDGTMghtbU2ceW403DplLaLcyzdYeWlMqAo7W27sR5crzAoUOwYQPccgv4qSO5sHIoiFNKhWIN4NZorV8C0FrXaq3NWmsL8DdgsfeWKQKN1prnt1UwJzueqRln7kj5y5L8ZHr6LRRXtnjtHCV17YQYFHmDOlPa2Yd+b/XzqAGLRbOzooXoMCPtvSYqmgMnHS7QnGjrobmrf8h6OLvCjPHRofLPa4/w0dFGfn75LArTYzEYFPMnJrIjQIK4gXq4U3birP8fSl3cSRuONFBS18EXl+ePmEJlTx8+1jC235wQrnn3QC0WzahBnL07tDQ3CTyt3f109Jo8uxP3+ONgNMKNN3rumMIljnSnVMDjwAGt9e8H3T5h0MM+BQRWCzPhVa3d/Rw80c7FsyaM/mAfWpJvDaK8WRdXUttBXkr0kCmk2YmRpMeF+70u7lhDJy1d/Vy1IBuAvVVtfl1PINtn+96MtBOXEhNOSkwYh06M3e/jluNN/OHdw1w5N5OrF2YP3L4wN5HDde0BMezcHsTNGrwTZ6tNlbq4k/6+sZSUmHAunTPy7+e02HCiw4yyEyeG9NbeE2QlRDJrhDe47HzZHVo4rqLJ3pnSQztx/f3w1FNw2WWQMXJwL7zPkZ245cANwHmnjRO4Xym1RylVDKwCvuPNhYrAUt9urQ3K8nSetZsSo8OYlhHLJi++I1hS18GUtKHrA5RS1ro4P+/E2evhPrsoh1CjGmjLLs60v6YNpWD6CEEcWOviDtWOzUChqbOPb/9rJ7nJ0dz7qdmn7N4syE1Ea2ujHH/bU9lKfko0cRGhA7clR4cRHxkqYwZsjtV38P7BOq5fMpHwEOOIj1VKkZ8azTEZMyBO09Fr4sMjDVw4M92hhhhLbN2hZcROYKm0ZeHkJHnoWu1//4O6OmloEiAc6U65QWuttNZFg8cJaK1v0FrPtt1+uda6xhcLFoHBHsSlxoT7eSVnWlqQ7LW6uJ5+M2WNnUwZoqmJ3aLcRKpauqlu8V+Nzs7yZuIiQpieEUdheqzXm5scb+ikyo9frzv2VbeSnxxNdHjIiI8rTI+lpLZ9zNUXWiya7z2/m6auPv7fdfOIOe37MCcnAaNBBURK5Z6qVmZnnTqQXSnFpNRoCeJsnvqolDCjgeuXTnTo8QUpMTLwW5zhg0P19Jkso6ZS2i22lRJs9nJ3aOEceymFx3biHnsMMjPh4os9czzhFv+3FBRByd6lLzU2EIO4JLr7zeypavH4sY83dGLRDLsTB9Yib8CvzSC2lzUzb2IiBoNiVmY8+6rbvNoe//OPbea8B9bxp7VH6Dd7r6mMN+yvaWP6EEO+Tzc1I5auPnPQBqvDeXzDcd4/WMdPLpnOzMz4M+6PDg9h+oRYvzc3aejopaqlm6LsM9c4KTVGauKwprk/v72SS+dMIC32zMHMQylIjaaqpVvaw4tTvLXvBEnRYQN13qOxZ8FslrmkAaWiqZu4iBDiI0NHf/BoKivhzTfhC1+AkJHf9BS+IUGccMnATlwABnGL85MBvJJSedjW2GKozpR20zJiiQkP8VtdXFtPPyV1HcyfaO1KNysrjqbOPmpavdNGvKa1m6qWbtLiwvntW4e47OEN7Kpo8cq5PK21u5+Kpm5mOhjEARw6MXaam+wsb+a+Nw9y8cwMblg69EBogIW5SeyqaMHkxwB98JDv001Ki6G+vTcg6vb86fltFXT1mfniCGMFTpefEo3WUNooQbCw6jNZWHuwjvOnp2E0ON59cEm+tTt0sL2RN5ZVNnd5bhfuySfBYoEvftEzxxNukyBOuKS+vZewEANxEYH3bkxSdBhT02O90tzkSF0HRoMiP+XMzpR2IUYD8yYm+K1D5a7yFrS21jIBzLRd9HorpXJHWQsA/+9z8/nrDQto7urj03/eyM/+u4/OXpNXzukp+6tHb2piZ999HSsdKlu7+rn1mZ1kxEdw32eKRqx7mZ+bSFefmYN+DGD3VLai1MnX82ADXRbHcVqg2aJ58qNSFuUlntL4ZTQnv3cSxAmrj4420N5rcjiV0m5JQTJdfeaBN1yCyY7yZmrH4LzEiuZuz9TDWSzwxBNw3nlQUOD+8YRHSBAnXFLf3ktqTLhDBc/+sMQ2L87TOweHa9vJTY4atWHAorwkDp5oo63H9zsD28uaUQrm5Fgv5KZnxGFQsLfaO50Vd5Y3Ex5iYPqEOC6amcE73z2X65ZM5O8bS7nwD+tZe7DOK+f1hP011u/JUGmEp4uNCCUrIXJM7MRprbnzxWJq23p4+HPzRk21sb8h4M+h38WVrRSkRJ9RswcyZgCs7eArm7ud2oUDBt6QOi7NTYTNW/tqiQ4zsnxyilPPW5xvr4sLrpRKrTU3P7GF+9446O+leJR1RlwXOZ7YiVu7Fo4fl4YmAUaCOOGS+o7egEyltFucn0RXn5l9Hg5cRupMOdjCPGtHP380g9hR3szU9FhibR38IsOMTE6LYZ+X3h3dWdHC7Kz4gZELcRGh3HvlbF742jIiw4x84cmtfOtfO2mw1VEGkn3VraTGhjv8Wp6aETuQUhvM/rmpjDf3neDOi6cxb+Lww6DtshIimRAf4de6uD1VLRRlJwx5X05SFKFGNa6bm/x943GyEiK5YEa6U8+LDg8hIy5iXH/vxElmi+ad/bWsnJpGROjIb1aeLiUmnEmp0UE39Lups4+2HpPf6349raGjj55+i2dmxD32GCQmwqc/7f6xhMdIECdcUt8e4EGcrRh7iweLrHtNZsoauygcoTOl3dycBEIMyuejBiwWza7yFubnnnphbm9u4ml9Jgt7qlqZNzHhjPsW5iXx2rfP5vbzp/Dm3hrO//0HPL+twqsNVpy1v7rNoXo4u8L0WI7WdwR1zcfeqlbu/d8BzpuWxpfOdnzXZn6u/4Z+17X1UNvWO2Q9HECo0UBucvS4nRW3r7qVTceauHFZLiFG5/+sF6RGSzqlAKyZFQ0dvVw407k3A+yWFCSzrdTzWTDeVN7UNfBfe73/WFAxMF7AzZ24xkZ46SX4/OchwrGGScI3JIgTLgn0IC4tLoL8lGiPdso63tCJ2aKZ7MBOXFRYCDOz4tnq4+YmJXUdtPeaBpqa2M3MiudEW4/H/0AdqGmjz2QZdjcnPMTI7ecX8sZtK5icGsP/vVDM5x/fTFkANFHoNZk5UtfhUD2c3bSMWPrNOmhTzzp6Tdz6zA6SosN44Oo5GJxoWrDQNjqjptX33TntNTZDdaa0G89jBp7cWEpkqJFrFzk2VuB0+SnRHKvvCKg3WIR/vLn3BGFGA+dNS3Pp+Uvyk+joNQ2kqgcDexAHJ2esjgWVzR4a9L1mDfT1SSplAJIgTjit32yhqasvIGfEDbY4L4mtpU0em+tVYhv07MhOHFjnxe2qaPHKvLrh2P8ALThtJ86+27TPw0O/7ecbaidusMlpsTz31WXce+UsiitaufAP6/nLuqN+3dEqqe3AZNEO1cPZ2X/2wVgXp7XmRy/tobypi4c+N4+k6DCnnu/PurjiylYMCmaMsGs6KTWGssauoN4ldUVDRy+v7K7mqgVZxEe51ka8IDWGth4TTZ19Hl6dCCZaa97af4KzJicPpOM7a2mBtTt0MNXFlTdag7hQY2DMw/SUiib7jDg30im1tqZSLlwIc+Z4aGXCUwKvtaAIeE2dfWgdmOMFBlucn8Sz2yo4XNfOtAzHd1uGU1LbjkExYmfKwRbmJfHYhuPsrW49Y2fMW7aXNZMUHUZe8qnvvM0YCOLaWDnVtXdYh7KzvIUJ8RFMiB/9j4TBoPj80lzOn57OT1/Zy31vHmRvVSt/un6+x9bjDHtA60w6ZUFqNEaD8ltdXFefiac3lfH3jaV09JqICQ8h2vYRE24kKizEdpvReluY/X4jFU3dvLq7mu9dWDjQgMAZ0yfEERlqZFtpM5cWZXrhqxvenqpWpqTFEhU2/J+sSakxmCya8qaugY6L48Ezm8vpM1m4+SznGpoMVmBrDHOsoZPkAH9zTnjPgZp2Kpq6+cbKyS4fIz0ugrzkKDYfb+TL5wRHF8Pypi7S48LJSoj0a/MmT6ts7iY5OozoIZpBOWzbNtizB/7yF88tTHiMBHHCaYE8I24w+4XqluNNngni6jrITY52uNh7YZ41cNtW2uSzIG5HeTPzchLO6BoaFxFKXnKUx8cM7KxoHnUX7nQZ8RE8euNCfv7f/Tz50XG/pebur24jJjyEiU7UC0SEGslLjvL5TlxHr4l/fFzKYx8ep6mzj+WTk5mSFktHr4muPhMdvWY6e000dnTR0Wuis9dEZ5/5jF3gFVNS+LqLF2ihRgNzcuJ9nm6ktaa4spWVU1NHfNwkW5rz0bqOcRPEaa15fnsFK6akOJTmPZxJKSdHNDg63FmMPW/tO4FScP501+rh7JbkJ/PG3hrMFu3UnDl/KW/qYmJSFHNzEnjq4zL6TJaBRl3BzDojzs2mJo8/DpGR8LnPeWZRwqMkiBNOq+8IjiAuO9HaUW/z8SZuXJbn9vEc7UxplxITTkFKNFtLm/nKOW6fflTNnX0cq+/kqvnZQ94/Myue4soWj52vvr2XiqZublya59LzP7sohyc2Huf1PTXcdJZrx3DHvuo2pk+IdaouDGBaRhx7PZyWOpy2nn6e2ljK4xuP09LVz8qpqXzrvClnpMsOp89ksQV5Jrr7zBSkxrh1UbUwN4m/fHCUrj7TiLtinnSirYeGjuGbmtgVjMMxA2WNXVQ0dfPlFe7teGQlRhJmNEhzk3HurX0nWJib6Pbf9iUF1iyYgyfanEpX95fypi7OmpTC/ImJ/O3D4+yrbnWoa2+gq2jqGnKupsM6O+GZZ+DqqyE+8H+O41Hwv9UgfG5gJy7A026UUizOT2LL8Sa3C/b7TBZKGzqZku7cu90L8xLZVur++R2xs8K6QzLcrt+szHgqmrpp7fLM7LqdDtbDDWdqRixT02N5dXe1R9bjDItFc6CmzammJnaF6bGUN3XR1ee9QeYtXX38/p3DLP/N+/zuncMszE3ilW8u58kvLHY4gAMICzGQEBVGdmIUU9Jj3X5XfEFuImaLZneF74b57qm0nmv2CE1NwLrbnB4XPq6am3x4pAGAFVNG3qUcjdGgyE2OGlcBsDhVeWMXB0+0Oz3geyhLgqgurqffzIm2HiYmRQ10dR4LKZUWi6aqpdu9GXHPPw/t7XDLLZ5bmPAoCeKE04IlnRKsKZX17b2UNXaN/uARlDZ2YrJoh5ua2C3MS6K5q98nF0c7ylowGtTAkO/TzcrybHOTnRUthBoVs9x4p+/yuZlsL2seKMD2lbKmLjr7zC69Szw1Iwat4YgX2tk3dfbx27cOcvZ9a3novRKWT0rhf986m8duWsicnASPn89Z9jcIfJlSuaeqFaNBORRwT0qNGVdB3IaSerISIs+ogXVFQWo0xxvGz/dOnOqtfScAPBLEZSVEkp0Y6dERP95S1dKN1jAxOZL0uAiyEyPHRIfK2vYe+s3avXTKxx+HwkI4+2zPLUx4lARxwmn17b3ERoQ4PQjUH5bke2ZenL0zpbN1J/b6km0+GDWwvayZ6ROGb/5gD1g8lQq4s7yZGRPi3HodXD7H2iDjv8W+3Y2zB7IjdTscjjc6VNa39/Lr1w9w9n3v8+d1Rzl3aipv3r6CR25Y4FaQ7GnxUaFMSYvxyevZrriylcL0WIdeZ5NSYzhaNz5a5ZvMFj462siKKSln1MC6oiA1hvKmrqCa7yU85619J5g+Ic79mWI2S/KT2eKjLBR32McL2GujF+Qmsr2sOeDXPRr7eAGXf54HD8KGDdaxAh74/SK8Q4I44bT6jsCeETfYpNQYkqLD3J4Xd9jWmdLZhgl5yVGkxISx1ctDv01mC7srW0ZsoJIUHUZWQqRHhn6bzBaKK92vG8hJimLexARe3eXbIG5/dRshBuV0eixAbnI04SEGj3SoNFs0v3njICvuf5+/fXiMC2ek8853zuFP1833SDMeb1iYl8iO8haPje4YidaaPVWtFDkYyE5Kjaatx0RDx9hvlb+7spX2HhNnT0nxyPEKUqLpN2sqmn0/B1D4V117D9vLm7nYA7twdksKkmjq7KPECxkLnmQfLzAxyVpTO39iIrVtvVS39vhzWW5ze7zAE09ASAjceKMHVyU8TYI44bT69t6Ar4ezU0qxOC+JLaWNbh3nSF0HE5OinN51UkqxMDeJbWXe3bk4VNtOV5951HqpmZlxHulQebi2g64+s8v1cINdPieTgyfaKfFh2/591W1MToshPMT5XUSjLfg76IGduPcP1vHIB0e5YEYG7373XB68dh6T05xL2fW1+RMTae3u90naYlVLN02dfaPWw9kNdKgcBymVG0oaUAqWT/JQEGcfMzAOvnfiVO/sr0VruGiWe10pB1uab6+Lc+9vr7eVN3URGWokJcY6N9Of8zA9yb4Tl5XgQhDX3w9PPQWXXgoZngvshedJECec1uCnlvCuWpyfREVTN9Utrr/DfLi23eWL64V5iZQ1dlHX5r139uwDSkcbZTArK55jDZ109rrXlGNgyHeO+x28LimagEHh0wYn+2vc65pWmB7rkZ24NZvLSI8L5w/XzKEgSNri+/IiZ6CpicM7ceMoiDtSz+yseBKdHNo+nALbmIHjDdLcZLx5a18tuclRTHWy5nskOUnW7tCbArwuzj5ewJ6SPC0jlshQY9AP/a5s7iItNty1cof//Q/q6qShSRCQIE44zV9zvVxlnxe31cU6nn6zheMNnRS6kHoHg+rivPhHYUd5C6mx4aOmTszMjENrOFDjXkrlzvIWUmLCyElycwYNkBYbwbJJyby6u9ondQh17T3Ut/c6NeT7dFPTY6lt66Wly/W0vYqmLj44XM+1iyYSYgyeX8X5KdEkRYd59fVsV1zVSqhRMW2CYxeXGXERRIUZOVo3tgOR9p5+dpS3cPZkz+zCASRGh5EYFerRJky9JvNAupoITG09/Xx8tIGLZmZ4pLbSTinFkvwkNh8L7Lq4iqauU+rGQowG5uYkBH1zk8rmbtdTKR97DLKy4KKLPLso4XHBc+UgAkJ3n5n2XlNQBXHTJ8QRGx7icl1cma0zpSv1U2BtnhEZanQ5iHTEjvJm5k88c8j36exNMtxNqdxZ0czcnESP/dG/fE4mZY1dFFd6v3X9fltNoCtNTewKM6xBxeFa13d8/rWlHAVcuzjH5WP4g1KK+RMTffJO9d6qVqZmxDqc9mowKApSo8f8TtymY02YLdpj9XB2BakxHk2nfOzD46z63TqPpHAL73jvQC39Zs1FMz2XSmm3pCCZho5ejgXo7q7WmvKmLnJP6+46PzeBfdVtXh0j423WIM6FpiaVlfDmm3DzzdaaOBHQJIgTTmnoCI4ZcYMZDYoFeYkud6i0X6hPcTGdMtRoYN7EBLZ5qblJQ4d1hMJoqZQAabHhpMSEs9eN5iYtXdah4p6oh7O7eOYEQo3KJymV+zwQxE3LsHeodO372Gey8Ny2ClZPT2dCvPu7mb62MC+RYw2dNNp+H3iD1priylZmZyU49bzxMGZgQ0k9kaFGp2YGOiI/JdqjF9zvHqjFbNH88KU90vUyALV29XP/m4coSIn2SGr86ezdoQN1XlxDRx9dfeaBzpR29nmYvnhT0RvMFk11ixM7cfffD2vXWj9/8kmwWGD6dOvtIqBJECecUmebEZcSRDtxYE2pPFLX4dJFZ0ltB8qFzpSDLcxLYl91Kx1u1qINxb4j4sgFnVKKWVnuNTfZWdECuD7keyjxUaGsnJrGf3dXY/Zy18P9NW3kJEUSFxHq8jEy4iKIjQjhkIt1cW/vP0FDRx/XL5no8hr8yf5a21He4rVzVDR109rdT5GDTU3sJqXGUNXSTXef2Usr878PjzSwpCDJpcY8IylIjaa+vZf2nn63j9Xa1c/uihaKsuPZU9XKkx+Vur9A4TFaa374cjH17b08eO1cDAbPt5HPT4kmNTaczccDs7nJ6eMF7OwBbbA2N6lt68Fk0Y7vxC1aBNdcA++9Z50NN28e3H679XYR0CSIE04ZGPQdRDtxcPIdQVda/R+uaycnMYrIMNcvmBblJWLRsMsLF73by5udGro9KzOekroOevpdu8jdWd6CQcGc7ASXnj+cy+dkUtfe6/U/+Pur25g5wb3Za0oppqbHcviEazs+azaVk50YyTlTUt1ah7/Mzoon1Ki82nW1uKpl4FzOmJRqHcY+Vht0VLV0c6y+06P1cHaebG6y8WgDFg0/vXQG501L43dvHx5oey7877ltFby+5wTfu2gqRR7+XW4X6HVx9tfj6bPUEqPDmJQazc4grYuzd6Z0eCdu1Sp47jm46iooLYUjR6z/XrXKe4sUHiFBnHBKvW0nKy3IduJmZyUQHmJwKaXySG2Hy01N7OZNTMSgXG+uMpKdZS3MyIx3uAvVrKw4zBbt8rDqneXNTM2IIzrcs/ny509PJyrMyH+9mFLZ0WvieEOnW6mUdoUZsRyqbXf64uRIXQcfH2vkuiUTvfLuty9EhBqZlRXv1bq4PZWthIUYBoarO2pSmrVVvqdSKrv7zNzz6j6X07E9bUNJPQArvPAGwKSBMQPuB3HrD9cTGxHC3JwEfn7FTJSCu17ZG5AX8+PN0foO7nl1P2dNSuYrKwq8eq4lBcmcaOsZ2PUKJGWNXSg1dLAzf2LwDv2ubHZhRtyqVXDttdbPb71VArggIUGccEp9ey9KWQdHB5OwEAPzJyY6PS/OZLZwrKHD7dldMeEhzMiM8/jORb9tyPcCJ4Zu21vr7612PqXSYtHsqmjxaCqlXWSYkQtmpPP6nhP0mbxTP3PQ1pXTnc6UdtMyYmnt7h9IMXbUv7aUE2pUXL0guBqanG5hbiK7K1u99rMqrmxlekYsYSHO/ZnKS45GKc8FcW/vP8GTH5VyzV8/5q7/7PVKSrQzPixpIC023O03loYyMTkKg3J/VpzWmvWH61k+KYUQo4HsxCjuuHAq6w7V89/iGg+tVriiz2Thtn/vJDzUwO+v8U4a5WBLA7gurrypi4y4iCHfAF2Qm0hzV39Q7ujbd+IynZkRt3YtvPgi3HUX/O1vJ2vkRECTIE44pb69l+TosKBqiW63OD+J/dVttDlR71Ha2EW/WTMlzf0LpoW5Sewsb6HfgwX++6vb6DVZmJ+b4PBzshMjiY8MHWjw4YxjDR2095iYl+P4+Zxx+ZxMWrv7+dC22+Bp9q/ZnRlxdvYdImeGfvf0m3lheyUXzcwIqg6vQ1mQm0ifyeLSmwGjsVg0e6tbHR7yPVhEqJGcxCiPtcp/90AdKTFhfGF5Hk9vLuOiP6zng8PeeX2OxmLRbDzSwNlTUjzaDt4uPMRIdmIUR928cD1a30F1aw/nFJ7cLbz5rDyKsuP5+X/3uTWaQ7jnd28fYm9VG/ddVURGfITXzzc5LYbk6DA2BWBd3OnjBQYL5qHfTs+IW7vWWhP33HPw859b/3vNNRLIBYHguxIXflXf3ktKkNXD2S3JT8KinfulfKTOeoHubErXUBblJdHVZ3Z7Rttg9lk2znSpszc32edCc5MdZS2ANT3UG1ZMSSU+MtRrXSr3V7eRFB1Gepz7r2H7a+KwE0Hca8U1tHb3c12QNjQZbL69uYkXLnLKmrpo7zFR5GRnSrtJqdEcrXN/J67fbGHdoTrOm5bG3ZfN5IWvLSMi1MBNT2zhjud2+zwY2VfdRnNXPys8PFpgsILUaI67GQB/cLgBgHMKT67TaFD8+tOzae7q59evH3Tr+MI1G0oa+Ov6Y1y/ZCIXzczwyTmVUiy21cUFGvug76FMSo0hLiLEq82bvMXpGXFbt55aA2evkdu61TsLFB4jQZxwSn1HcA36HmzexERCDMqp2pYS23gBe52NOxbmWS96XWmuMpwd5S1MiI9wuk39rMx4Dpxod3pXcGdFM3ERIRSkuP/9GEpYiIFPzs7gnf21XpnRs6+mlZmZcR7ZxUiKDiM1NtypDpVrNpdRkBLNsoJkt8/vb2mxEUxMivLK6IziyhYAl3biwHoBdqyhA4ubnU63Hm+ivcfE+dOtM7QW5Cbx2rdXcOuqyfxnVxXn/349b+zxXXrgh0esO4DLvdDUxK4gJYbjDZ1ufe/WH66nIDX6jO54MzPjuWVFPs9uq+Djo4G3MzOWNXb08t3ndjE5LYafXDLDp+denJ9EVUv3QK1WIOjpN3OirWfYIM5gUMzz0TxMT3N6Rtz3v39mDdyqVdbbRUCTIE44paE9eIO4yDAjs7PjnQriDtd1kJMUSVSY+0080uPsF72ee0dyR1mzQ/PhTjcjM44+k4UjTu5W7CxvsTZp8WIdxeVzsujqM/PugTqPHrffbOHwiQ5mTHC/Hs5uWkYshx0M4vZXt7GjvIXrlkz0SiqcPyzMTWR7ueeL//dUthIeYnA5jXlSWgw9/RaqW7vdWse7B+oICzGcMlQ7ItTI9y6ayqu3Lic9Lpyvr9nB15/eTl17j1vncsSGkgamZcSSFuu9NLiC1Gi6bRe4rujpN7P5eOOwnVdvX11ITlIkP355j8sdcseDH7xYzBef3Eqtiz+HwbTW3PliMS1d/Tx07Ty3Oi27Ykm+9U2rQNqNsweUpw/6HmxBbiKH69pp7XZ/5Iav2GfE5SQF3/xR4TwJ4oTDtNbUB3EQB9Z3BIsrWxyeIVVS2+7ykO+hLMxLZGupZy56T7T2UNXSPZDW5gz7OAJn5sV19Jo4VNvulaYmgy3OTyI9LpxXd3k2pfJIXQd9ZotHOlPaFaZbgzhHZts9s6WMsBADn1mQ7bHz+9v83ETq23upaHIvWDpdcZV1x9TV2lv7TEd36uK01rx7oJazJ6cM+SbOzMx4Xvnmcr5/8VTeO1jHBb9fzwvbK73Wza67z8y20mavplICA7vsrnao3FraRE+/hXMLhw7iIsOM/PLK2Rxr6OTPa4+4vM6xbN2hOv69tYK1h+q4+MH1vHeg1q3jPb2pjHcP1PGDT0zz6O8/R03LiCU+MjSg5sWVDzNeYLAFuYloDbtss1GDwQlnZ8SJoCZBnHBYW7eJPrMl6GbEDbYkP4l+s2ZnxegpEiazhWP1nR5pamK3KC+Jho5eyhrdTyux18PNdyGoyk+OJjrM6FRzk90VLWjtvXo4O6NBcWlRJh8crqO1y3PvgO6v9lxnSrup6bH09FtGnX/V2WviPzurubRoAglRwdXZdST2FOHt5Z57h91s0eyranV6Ptxg9lb57tTFHanroLypi9XT04Z9TIjRwDdWTuaN21ZQmB7D957fzU1/3+qVtLHNxxvpM1s428uzBQtsAfCxBte+d+sP1xNmNLCkIGnYx5xTmMqn5mXxlw+OOryTPV70mSz8/H/7yU+J5vVvryAjPpIvPbWNn/13H70m53cuD51o597XDrByaipfWJ7n+QU7wGBQLMpLYnOAjOkAKG8cetD3YHNyEjAo79T9ektlkwvjBUTQkiBOOKy+w5rWEcw7cQtyk1AKh1Iqy5u66DNbmOKBpiZ2iwbq4tz/Y7ajrJmwEINLnRYNBsWMzDinduLsg0/nemkw7GCXz8mk36x5c5/n6o32VbcREWogP8VzQXlhhvW1MVpd3Ku7q+noNXH9klyPnTsQTEmLJTY8xKN1cccbOujsMzPbjddZUnQYCVGhbo0ZeMe2+7F6Wvqoj52UGsOzX1nGz6+YybbSJi76w3r+8XGp2zV5g20oaSDMaGBx3vDBkSekx4UTHWZ0eSdu/eEGFuUnjpqC/pNLphMdHsIPX9rj0e9TsHvqo1KO1Xfy00tnMH1CHC9/4yxuPiuPv28s5dN//sip8Q89/Wa+/a+dxEaE8NvPzPFrGvfSgiTKGruocTPF2VPKmrqICjOSPMK4pJjwEKZmxA28YRoMTg76lp248UCCOOEw+zysYA7i4iNDmZ4R51AQVWJ7F9+TO3GTUmNIjAr1yEXvjvJmirLinZ6jZTczM579NW0OpQKCtR5uUmo08VGhLp3PGUXZ8eQmR3m0S+W+6lamZcRh9GA9n/21MVKHSq01T28qY1pGrEu7poHMaFDMnZjg0Tbce2xvLBS52NQErB3xJqXGuBXEvXegjtlZ8Q63YTcYFDcuy+Pt75zD/NxEfvrKPv66/pjL5z/dhiPW4Mjb9UxKKfJToznmwpiBE609HKptH7YebrDkmHB+cskMtpc188yWcleWOubUtffwx/dKOG9aGqumWXeAI0KN3HP5TP5240KqWrq59OENvLi90qHj/eaNgxyqbeeBq+f4/e/26unpGBT8fWOpX9dhV2HrTDlaYLsgN4Gd5S0O/530t5Mz4rw/PkL436hXf0qpHKXUWqXUAaXUPqXUbafd/z2llFZKeTdRX/hdvS2ISwviIA6sNVfby5pHHVJcYttdmezBIE4pxYLcJLa6OfS712Rmb1WbS/VwdrOy4unqMzs0zFRrzc6KFpeaqLhCKcXlczL5+GgjdR4q7N9f0+bRVEqA6PAQJiZFcXCEnbjiylb2Vbdx/dLcMdPQZLCFuUkcqm13av7iSIorW4kMNQ7UtblqUmq0yzVxDR297ChvHjGVcjjZiVH844uLWTU1lb+uP+qR4eB1bT0cPNHO2ZO9m0ppV5AS49LA7/W2+Y7nDFMPd7qr5mexfHIy971xkBOt3m8ME+jue+MQvSYzd116ZvfIC2ak88ZtK5iVFc8dz+/mO8/uGvG19f7BWp78qJQvLM9j5VTnX8eelp8SzafmZfPkR6UBsRs30niBwRbkJtLRawqatN/K5i7S48IJD/Ft8xrhH468hW8C7tBaTweWAt9USs0Aa4AHXADI22jjgD2IS40J7nd4luQn0dM/+pDikroOshIiiQ53vzPlYIvyEjlW30lVi+t/yPZWtdFntrgVVM3KsgY0+xwY1lze1EVTZ5/X6+EGu2JuJhYN/yt2P6Wysrmb9h6TR4Z8n64wPXbEnbg1m8uICjNy5dxMj587EAwU/3tontKeylZmZbm/YzopNYb69l6XOsutPViH1gyMFnCWUorbzy+kpaufpz4qdekYg204Yp275u2mJnb5KdFUtXQ73T1y/eF6UmPDmZbhWAq6UopfXjmbPrOFe17d58pSx4wd5c28uKOSL51dQP4wI1wmxEfyry8v5TvnF/LKrioufehD9lSe+fu7rq2H7z1fzLSMWO68eJq3l+6w28+fgtaah94r8es6tNaOB3ETrenLwZJS6fR4ARHURg3itNY1Wusdts/bgQNAlu3uPwDfB4Jjn1m4pb6jlzCjgbhIzwY1vrYo3/pLebS6uMO1HUxJ99wunN3FszKIDDVyx3O7MDk5p83OXp82PzfB5XVMTo0hPMTgUHMT+x8wb3emHGxyWizTJ8R5JKXS/jV6ozPb1AzrXK2hmg60dvfz6u5qrpibRWyE99NQ/WHuRGvx/zYPpFSazBb2Vbcx28Uh34PZd/Jc2VF670AdE+Ij3Nq5nZOTwKqpqTz24TG3d+M2lDSQFB3m0fEYIylIjUZrnGrAZLZoNhxpYMWUFKd2nPNSornt/Cm8ue8Eb+074cpyvUJrTWeviZrWbg7XtrOttIn3D9byWnGNRxsuAVgsmnte3UdabDi3njd5xMcaDYrbzp/Cv768lF6ThU//ZSOPfXhsoK7QYtHc8fxuOntNPPy5eUSEBs6OTE5SFNcvyeW5bZUu/X/pKfXtvfT0W5g4wngBu5ykSFJiwjyaMu5NlS1d0tRkHHHqalwplQfMAzYrpS4HqrTWu8diipA4k328QLD/vFNiwpmUGs2W40187dxJQz7GbNEcre/wyjvfucnR3HvlLO54fjd/fK+EOy6c6vQxtpc1k50Y6da8qBCjgWkTHGtusrO8hagwI4UebPLiiMvnZHLfmwcpb+xy6A/ucPZXt2JQOLxD4IzC9FhMFs3xhk6mZZx6kf3yjkp6+i1cv2Six88bKGLCQ5iWEeeRDm5H6zvp7je7VQ9nNynt5JgBZ3aQe/rNrC+p59Pzs9z+XXfb+YVc+aeN/OPjUr6xcuSL8+FobQ2Olk9O8ep8xsEGB8BTHfx/Zk9VKy1d/cOOFhjJl1cU8Oquau5+ZR9nTUr2yRseFovmz+uOUNbYRVtPP+09Jtp6+mnrNtHe009bj2nYOqjpE+J47qtLPbbOF7ZXUlzZyoOfnUuMg5kfSwqSef3bK/j+i8Xc+9oBNh5p4LdXz+E/O6v4sKSBe6+c5dGmXJ7yzVWTeW5bBb9/5zD/77r5flmDfbyAIztxSinmB8nQb5PZQk1LD9lzJIgbLxzuiKCUigFeBG7HmmL5Y+CnDjzvK0qpbUqpbfX19a6uUwSA+vZeUoK8Hs5ucX4SW0ubhv0jXdHURZ/J4tF6uMGuWpDNNQuz+X9rj7D+sHP/X2it2VHezAI36uHsZto6VI4222pneQtzshM82hTEEZfNmQDAf4vd243bX9PGpNQYr7wrbQ/cDp2WUqm1Zs3mcubkJAzM5RurFuYlsrO82e3i/+LKFgCPfL9yEiMJNSqnm5tsOtZIV5+Z1S6mUg42NyeBlVNT+dv6Y3S6uBt3uLaDuvZeVkz2Xdm5PZ3PmeYm6w/XoxSc7cI6Q40Gfv3p2dS29/DAW4ecfr4rdpQ388Dbh1l7qJ7SBuvv+7TYCOZPTODSoky+dm4BP/zENH71qdn8v+vm8Y8vLuY/31zOw5+bR0ltO19/eseoddWOaO3u5743D7IgN5ErnEy5TowO49EbFvDzK2ay8Wgjn/jjh9z35kEumJEesG8cpcaG86Wz8/lfcY1T3ZE9yZkgDqwp46WNXTR09HpzWW6rbe+VGXHjjENBnFIqFGsAt0Zr/RIwCcgHdiulSoFsYIdSKuP052qtH9VaL9RaL0xN9U1RtvCO+vbeoJ4RN9ji/CTae0wcPDF0KqG9iNmbO08/u3wWhWmx3P7sLqeK+qtauqlt6/VIk5FZmfG09ZgGOloNpbvPzIGaNrdSN12VnRjFgtxEtwd/76v2fFMTu/yUaEIM6owgbmtpMyV1HQF7MeVJC3IT6ewzD/v/k6P2VrUSHWYcGDjtjhCjgbzkaKdnxb17oJaoMCPLCpLdXgPAbaun0NzVzz8+LnPp+R/amoWc7aN6OLA27EmPC3cqAP6wpJ5ZmfEku/g3Yt7ERG5alsc/NpX5pP7o/YN1GA2K9+44l7e+cw4vfP0snrh5EQ9eO49fXDmL/7toGl89dxLXLZnIpUWZnFOYytycBC6bk8mvPz2bDUcauPPFYreHu//x3RKauvr42eUzXdr5VcraFfU/31hOXEQIqTHh3HdVUUBnzHz5nAISokJ54G3fBOynK2/qQinIcjDt0P6G6U4P1f16i8yIG38c6U6pgMeBA1rr3wNorfdordO01nla6zygEpivtQ6chHbhcQ0dvX5vU+wpi/OtF2jD1cXZxwt4aycOIDLMyJ+un09Pv5lv/WuHw/VxO2x/SDyxE2dvbjLSO6J7q1sxWTTzcnzX1GSwy+dkcqi2/YwgyVFNnX3UtPZ4pR4OICzEQEFq9Bndy9ZsLiM2IoTLisZmQ5PB7K9Fd1OOiqtamZUV77G0QWfHDGitee9AHSumpHhs13bexETOLUzlbx+6thv3YUkDBanRZCb49sKsICXGoc61AG09/ewob+GcQvcCze9dNJWMuAh++OIe+l2sF3bU2kP1LMxNJD7S+ZTIqxfmcMcFhby8s4r73dg5LKlt56mPS7l20US3d59nZMbx1u3n8O4d55I0wuyzQBAXEcrXz53EukP1bD7W6PPzlzd1MSEuwuEOjrOy4gk1qoCvi5MZceOPIztxy4EbgPOUUrtsH5/08rpEgDGZLTR29o2ZIC4rIZKshMhhg7gjdR1kxkc4XJ/gqslpMfz607PZWmpN7XHEjrJmIkONHqnvKkyPJcSgRuzUab8wn+unGWefnD0Bg4JXd1e59Pz9tqYm3uhMaVeYHnvKwO/Gjl7e2HOCq+Zne32uVyDISogkPS7creYm/WYL+6vbPFIPZzcpLZqyxi6HA4J91W3UtPZ4JJVysNvOn0JTZx//3OTcblyvyczm440OzV3ztILUaI7Vdzq00/TRkUbMFu32OmPCQ/jRJ6dzqLadjbaOnN5worWHAzVtA7PYXHHreZO5bslE/rLuKP/8uNTp52utuee/+4gOM/K9CwtdXsdgIUbDqEPWA8VNZ+WRHhfO/W8dcns301nO1lhHhBqZmRkf8HVxMiNu/HGkO+UGrbXSWhdprefaPl4/7TF5Wmvv/cYVftfU2YfWwT3o+3RL8pPYcrxpyD8gh2vbfVYUfsXcLD63eCKPfHCU9w/Wjvr4HeXNFGXHE2J0bcj3YBGhRqakx7K3avg0uJ3lLUxMiiLFT6m0qbHhLJ+cwqu7q536Y2+xaN4/WMvv3rG+U+7Nzn7TMmKpaOoe2Gl5YXslfeax3dBkMKUUC3OT3HqnuqS2g16ThdnZCR5b16TUGEwWPVADM5r3DtShFJznxsX9UOZPTOScwlQeXX+Mrj7Hd+O2lzXT029xqc7MXQWpMbR299PU2TfqY9eX1BMTHuLW3Eq7C2akExVm5J39o/8udNW6Q3UArHJjfppSip9fPpPzp6fx01f3Od1Z8619tWw80sh3Lyh0OQU1mEWEGvn26ilsL2vm/YN1Pj23o+MFBluQm8juyhaP1EF6i8yIG3/cvwoU40LdwIy4sfPHZnF+Eo2dfWcU75stmiN1HUzxYirl6e6+bAYzJsTx3ed2jzg/rqffzP7qNo+kUtrNGqG5ib2Jii9HCwzl8jmZVDR1s7OiZdTHtvf08/eNxznvd+v44pPbqG7p5t4rZ5HoxRQje+3k4dp2LBbNM1vKWZyfFJDd4bxlfm4ilc3d1Lo4nH1PVQsARR5sAmPvsuhoXdy7B2qZl5PglTcsbltt241zojbuw5IGQgyKpZM8U5/njIJUx5qbaK1Zf7ieZZOSCfXQG0vnFqbyzv7agbb5nvb+wTqyEiIpdHOETIjRwMOfm8+c7AS+/a+dbC8beWyNXU+/mXtf28/U9Fg+vzTXrTUEs2sW5pCXHMVv3zrktZ/16br7zNS197oUxPWaLByoca/u15tkRtz4I0GccEi9rSvTWNqJWzzMvLjK5i56TRafttOPCDXy5+vnYzJrbn1m+K5nxZXW+jRPNDWxm5UVT2NnH7VtZ3beqmntoa7dM01U3HHRrAzCQgwjNjg53tDJPa/uY9mv3+dn/91PUnQYD39uHhvuPM/rF0r2NuyHa9vZeLSBssaucbMLZ7fQ9saCq7txxZWtxEaEkOvGKInT2QORIw7UxdW29bCnqpXzZ3g2ldJuQW4iK6akOLUbt6GkgXkTE7ye1j0Ue3OZ0eZ5HW/opLK5m3NcGC0wnAtmpFPX3stuW7dST+o1mdl4pIGVU1M90vwjMszI4zctZEJ8BF96aptDNZh//eAYlc3d3H35DI9kVASrUKOB71xQyMET7W53IHZUZbN1Vz7HySDO/jcwkOviZEbc+DN+f3sIp9TbduLSxlAQl58STUpM+BlBXEmtramJFwZ9jyQvJZr7ripiZ3kL9795cMjH2P+AeCJtyc7e3GTfEHVx/hjyPZS4iFBWTU3ltT01p7Sxt+8CfOHvW1j1wDrWbC7jghnpvPLN5bz0jeVcNifTI7sDo8lJjCIi1MChEx2s2VROUnQYF886o1nvmDYjM46IUAPbSl27yNlT1crsrHiPdtWLjQi1dlmsG71Bx3sHrCld53u4Hm6w28+fQmNnH087UBvX3NnH3upWVvihHg6szRHCjIZRd+LsI1LO9eA6z5uWhtGgvJJSua20mc4+s1uplKdLjgnnqS8uJsSguOmJLdS1D78bXdncxZ/XHeGS2RM4a5Lv02QDzWVFmUyfEMfv3zns9WY2cHKAfW6ycx1wM+IjyEqIZLsPOqe6YmBGnARx44oEccIh9iDOX3VR3qCUYnF+4plBnA86Uw7nkqIJ3Lgsl8c2HOftIWosdpQ3k58S7dHuY9MnxKEUQ9bF7SxvITzEcMYQa3+4fE4W9e29bDrWSGeviX9uKuP833/AjU9sYU9VK7etnsLGH5zHHz47lzk5CT5dm8GgKEyPZeORBt45UMvVC7LHXV1CqNFAUXaCSxc5fSYLB2vame3BpiZ2jnaofPdALTlJkV5No16Qm+TwbtzGow1o7dvRAoMZDYrc5CiO1Y8SxJU0kJcc5VSjiNEkRIWxOC+Jt70QxL1/sI6wEANnTfZsimpucjSP37SIxo4+vvjkVjqG6UT669cPohT88JPTPHr+YGUwKP7vokLKGrt4dmuF18/n7Iy4webnJrIzQHfiZEbc+CRBnHBIfXsvseEhY67T3uK8JKpaugdSLMDa9nlCfARxEc63nvaEH18yndlZ8Xzv+d1UDGrIoLVmR5nn69OiwkKYlBozZIfKneXNzM6KJyzE/78qVk9PIzrMyN2v7mPpr9/jrv/sJSoshN9fM4eNPziP71xQSFqs/7pyTbV1qDRbNJ9bPL5SKe0W5iayr6qV7j6zU887XNtOn9lCUVaCx9dkD+JGaorT1Wdi45EGzp+e7vX5WretnkJDRx9rNpWP+LgPDzcQGxHi0RpBZ1k7VA4fAPeazHx8tNGjqZR2F85M50hdx6jpnM5ae6iOpQXJXuniOCcngT9fP58DNe18Y82OM3aWPjrSwGt7avj6uZPlYnuQVVPTWJibyEPvlTj9u8NZ5U1dxISHkBjl/N/3BRMTqG7toXqEunV/kRlx45P/r8xEUKgfQzPiBhtqXlxJXYdfduHswkOM/Om6+Wjgm8/soNdk/aNW3tRFY2efR5ua2M3MjGPfabPiek1m9la3+T2V0i4i1MhlczI53tDJuYWpvPj1Zbx663I+PT8wdr3sdXErpqSQ54Fh1cFoQW4iJoum2IFaJq019e29bDnexL+2WAMaT44XsJuUGk17j2mgrncoG0oa6DVZvJpKabcwL4mzJ6fw1/VHh71g1Vqz4UgDZ01K9mvNVH5KDOVNXcPOsNxe2kx3v9krIxAusNUmejKlsqyxk2P1naya6r0U1VXT0vjVp2ax/nA9P3xpz8CbByazhXv+u4/sxEi+em6B184fjJRS3PmJadS19/LkR6VePVdFUxc5SVEuvVljL2PwxTB6Z8mMuPFJgjjhkPr2XlLGYBA3NSOWuIiQgSDOMtCZ0r9dBScmR/Hbz8yhuLKVX79urY+z/+HwRpORWZnxVLf20DjoQvdATTt9Jovfm5oM9rMrZrLjJxfw/66bz4LcJK/vmjjDPqx3PHebGyj+H3SR09rdz+6KFv6zs4rfv3OYb/9rJ5c9vIHZ97zNol++yzV//Zg1m8spSI32yrvIk9LsHSqHTwt870AdsREhA82OvO228227cZuHro073tBJVUu33+rh7ApSo+k364ELxNN9UFJPqFGxzAvdM7MTo5gxIc6jQdzag+6PFnDEZxdN5Pbzp/DC9kr+8I51/ufTm8o4XNvBTy6Z4bFB8mPJorwkVk1N5ZEPjtLa3e+185Q1dZHrQiolWEsPIkINAdncRGbEjU/BMRVS+F1Dey/TM/1fF+VpRoNiUV7SQBBX1dJNd7/Z7dbTnnDxrAy+uDyfJzYeZ3G+dQZXTHiIV7pmzhxobtI2kBplH2w6L4CCuPAQY0Dsug1lSX4Sb9y2gulenEcX6BKjw5iUGs2aTeW8f6CO4w2dNA6aM6aUNd0nPyWG+RMTyE+JJj81hvzkaLISI70SlA+MGajvGDLYsFg07x2s49zCVJ80wQHrBevyyck88sExrl+Se0aa+ocl1rGrK/xUD2c3aWDMQMeQu8vrDzcwf2Ii0V7qnnnhzHT++F4J9e2eyQRZe6iegpRon+yU37Z6Cidae3jo/SOEhxr56wdHOXtyChfN9P5ub7D63kVTueShDTy6/ij/d5HnawYtFk1FU5fLcyBDjQbmZCewo7zFswvzAJkRNz5JECccUt/eyzljqKnJYIvzk3jvYB117T2U1LUDMCUAgjiAH3xiGtvLm7nzhWLiIkOZm5OA0eD5C92ZmdZdpL3VrQNB3M6KFibER5ARL+/sOUIpNa4DOLsr52bx9OYyDAbFBTPSrYGa7SMnKcrnuxAZcRFEhRmHbW6yu7KFho7egfQ9X7ltdSHX/PVjntlSzpfOzj/lvg9LGshJinS6g56nFaRYfw8eq+/kvNOuqevaezhQ08b/XTTVa+e/cEYGD75bwnsHarnWzTrT7j4zHx9r5PNLfLNTrpTi3itnUdvWw2/fOoTRoLj7shkBlT0QaGZmxnPZnEye2FDKTWflebzGub6jl16TxenxAoMtyE3k0fXH6Ok3B9SOqsyIG58knVKMqrvPTHuvaUzWxMHJeXFbjzdz2D5ewM/plHZhIQb+dN08DAZFVUs3871UnxYfGcrEpCj2DepQuTMAhnyL4POt1VPY/KPzee6ry/jNVUV89dxJXDgzgynpsX656DEYFAWp0RwdpsviuwdqMRoUKwu9m2J3usX5SZw1KZlHPjhKT//J2rh+s4VNxxo5e7J/UynBurOaGBU65Pfuw8PW3cJzvdDUxG76hFiyEiI9klL50dEG+kwWVk3z3fc1xGjgT9fPZ9XUVL57QSFTfDh7NFh994JC+swW/vT+EY8f253OlHbzJ9rrfs9sBOZPMiNufJIgToyqYQwO+h5sVlY8kaFGtpY2UVLbQXpcOPGR/ulMOZTsxCh+d/UcQgyKFV68YJqVFTfQobKuvYfK5u6AqocTwlWTUmM4Wjf0Ttx7B+pYlJdIvAvd6tx12+op1Lf38szmk50qd1e00NFr4hw/p1La5acM3aFyfUk9ydFhzPDi7rNSigtnpvPhkQY6h2nZ76i1h+qICjP6rO7RLioshL9/YTHfXDXZp+cNVvkp0VyzMIdntpSf0p3ZEwZmxLkTxOUG3tBvmRE3fkkQJ0ZV1z62g7hQo4EFuYlsPt7Ekbp2vzc1Gcr5M9LZ+7OLWJTnvQuQmZnxlDV20dbTz05bzr/sxImxYFJqjLXe9bRukBVNXRw80e6TrpRDWVKQzLKCZP4yaDdufUkDBkXADIIuSI3h+GkDvy0WzYclDayYkoLBC+ndg10wI50+k4UPS+pdPobWmrUH61k+OUVqhoLAbaunYFCKP7x72KPHLW/qwqAgM8H1YCcpOoyClOiA6lApM+LGLwnixKjsg75Tx2hNHFgbDRw80cbBE+0BUw93Om+notm7K+6vbmNneQuhRjVQKydEMLM3NznWcOqO0nsHrGl6q/0UxIG1U2V9e+/AmIUNJfXMzk7wy87gUApSo6lr76W952THwP01bTR19nllPtzpFuclER8Zytv7XE+pPFLXQVVLt9e7UgrPyIiP4Kaz8nh5ZxWHTrR77LgVTV1MiI90e+7p/NxEdpQ1jzh70pdkRtz4JUGcGJU9nTJtjO7EgbU+RWvoNVkCcifOF2bauo/urWplZ3kzMybEBVThthCumpRmbRByem3XewfrmJRqbbriL0sLkllakMRf1h2lvr2X3ZWtrJgcGLtwcLK5yeDduA8OW3fFfDECIcRoYPX0NN47WHfG8GxHvW8fLeDDejjhnq+fO4mYsBAeePuQx45Z3tTlVj2c3fyJiTR29g2kZ/qbzIgbvySIE6Oqb+9FKWsawVg1b2ICoUZrWlAgjBfwh5SYcDLiIthd2UpxZWtAjRYQwh15ydEYFKfUxbX39LPpWKPfUikHu211IXXtvXzn2V2YLdrvowUGK7CPGRgUAK8/XM+MCXE+S7G/cEY6rd39bC1tcun5aw/VMS0jlgnxslMRLBKjw/jyOQW8s7+W4soWjxyzrLGL3GT3A50FAVYXJzPixi8J4sSo6jt6SY4OI8RHM5T8ISLUyJzsBAAmp43PIA6szU3e2X+C7n6z1MOJMSMi1EhOUtQpYwbWH26g36w538ejBYaybFIyS/KT2HCkgagwY0C9gZKbHIVBwTHbTlxHr4ntZc0+SaW0O6cwlfAQg0splW09/WwrbWaVi7PBhP98YXkeoUbFa8U1bh+rq89EQ0evW+MF7KakxRAbHhIwdXEyI278GrtX5cJj6tt7SRnD9XB2V8zNZFlBMglRY3fHcTQzM+Pp6bemLElnSjGWTEqNOSWd8t0DtSRGhQbM6/y286cA1vRKd2t2PCk8xEh2YtRAh8qPjzZismjOKfTdbmFUWAhnT07hnf21TtchbShpwGTRUg8XhGIjQlmUl8TaQ3VuH6uiybpb5Yl0SoNBMS83MaB24iSVcnwKnL8UImDVt/eO2c6Ug92wLI9/fWWpv5fhV/bmJikxYVIkLcaUSanWVvkWi8ZktrD2UB2rpqVh9HJ3RUctK0jm9vOn8NVzCvy9lDMUpEYPpFOuP1xPVJiRhbm+bdV/4cx0qlq62V/TNvqDB1l7sI64iBCvzdgU3rVqahqHazuobHav/swTM+IGmz8xgUO17ac0/PGXypYucuTv9bgkQZwY1XgJ4oQ1nRJgbk4iSgXGxa0QnjApNYZek4Wqlm62lzXT0tUfEPVwdkopbj+/kCUFyf5eyhkKUqxjBiwWzfqSepb5Ybdw9fR0lMKplEqLRbPucD3nFKaO6XKAsczejGbdIddHTACUNVrfhPBETRxY6+K0hl0VLR45nqtOzoiTnbjxSH6riRFpranvkCBuvMiIi+DCGel8al6Wv5cihEdNstW6Hq3v4L2DdYQaVUA1EAlk+anRdPeb2Xy8ibLGLp/Ww9mlxISzYGIi7+x3PIjbV91GfXuvpFIGsUmpMWQnRrLOzZTKiqYuYiNCiI/0zOiOuTkJKAU7ylo8cjxXnZwRJztx45EEcWJEbT0m+kyWMT0jTpyklOLRGxdySdEEfy9FCI+yz4o7Wt/JuwdqWVqQTGxEYMxiC3STbCMYnvqoFMAvQRxYUyr317RR0eRYat3aQ3UoBedOldECwUopxaqpaWw80kivyezycezjBTyVYRIbEcrU9Fi2+7m5ScXAjDjZiRuPJIgTIxoY9C07cUKIIJYUHUZiVCjv7q/lWH1nQKVSBroCWwD89v4TZCdGkuehlDRnXTAjA7A2pXHE2kN1FGUnjIvGXGPZqmmpdPeb2XLctRET4LkZcYPNyU6guLLFr0O/T86Ik5248UiCODEiCeKEEGPFpNQYPj7WCMDq6ZJi56j0uHCiwoxYtHUXzl/1svkp0UxJi3GoLq6xo5ddFS2skl24oLesIIWwEANrD7pWF2exaCqau5no4Tcf5uQk0NLVP9D50h8qm7tQCibIjLhxSYI4MaL6DmsQlyZBnBAiyNlTKqdlxEr6kROUUuTbUirPmeLfoOjCmelsKW2ipatvxMetL6lHa6QebgyIDDOyrCDZ5bq42vYe+kwWj+/EFWVbuznv9tAwcldUNneTHhshM+LGKQnixIgGduJi5F0eIURwm5RmDUQuCIAB38GmIDUGo0Fx1mT/ds+8YEYGZovm/YMjX9CvPVhPSkwYs21jU0RwWzk1lWMNnZQ2dI7+4NOUN3p2vIDd1IxYwkMM7PZjh8rK5i5JpRzHJIgTI6pv7yXMaCAuMsTfSxFCCLfMyU7AoODiWRn+XkrQ+eo5Bdx/VRFxfm4GU5QVT3pc+IgplWaL5oPD9ZxbmIYhQOYACvfYd1Rd2Y3z9Iw4u1CjgRmZcRRXtnr0uM6wDvqWIG68kiBOjMg+I05mhgkhgt2SgmS2/eQCZmbK7oyzZmXFc9WCbH8vA4NBcf70dNaX1NPTP3S3wp3lzbR29w/MGBPBLy8lmvyUaNa6MC+uvKkLo0GRmeD5YGdOdgJ7qloxmS0eP/ZoTGYLNa0yI248kyBOjKi+o5cUqYcTQowRSdFh/l6CcNOFMzPo6jOz8UjDkPevPVSH0aBY4ef6PeFZK6em8vGxRrr7nBs1UN7URWZCBKFeGPg+Jyee7n4zR+o7PH7s0Zxo68EsM+LGNQnixIjq23tlRpwQQoiAsawgmdjwkGEHf689WM+C3ESPDXYWgWHV1DT6TBY22TrMOsob4wXsirITACiu8H1K5cnxArITN15JECdGZE+nFEIIIQJBWIiBc6em8u6BWsyWU2d0nWjtYX9Nm3SlHIMW5ycRGWpkrZN1cRVeDOLyk6OJDQ/xS4dKmREnJIgTwzJbNE2dEsQJIYQILBfOzKCho4+d5c2n3G5vfHHeNAnixpqIUCPLJyfz/sE6hwdsd/SaaOjoI8dLQZzBoCjKifdLcxOZESckiBPDauzsxaJl0LcQQojAsnJqKqFGdUZK5dpDdWTGR1CYHuOnlQlvWjk1jcrmbo7WOzZqoMLWmTI3KdprayrKTuBATduwjXa8RWbECQnixLBOzoiTIE4IIUTgiIsIZWlBMm/vrx3Ylek1mdlQ0sDKaWnSUXmMWjnV2qzG0VED3hovMNic7HhMFs2BmjavnWMoMiNOjBrEKaVylFJrlVIHlFL7lFK32W7/hVKqWCm1Syn1tlIq0/vLFb40EMTFSjc3IYQQgeXCmRkcb+jkqK0z4LbSZjr7zFIPN4ZlJ0YxJS3G4bq4Cl8EcTkJAD5PqZQZccKRnTgTcIfWejqwFPimUmoG8FutdZHWei7wP+Cn3lum8IeTO3GSby2EECKwXDA9HYC3bIO/1x6sI8xoYPnkZH8uS3jZqmlpbDneREevadTHljV2ERcRQnyU9zqVZsRFkBobzu6KFq+d43QyI06AA0Gc1rpGa73D9nk7cADI0loP3jeOBhyrMhVBo77DGsSlyE6cEEKIAJMRH8Gc7HjettXFvX+ojiUFSUSFhfh5ZcKbVk5Npd+sh50TOFh5Uxe5yd6rhwNQSjEnO96nHSplRpwAJ2vilFJ5wDxgs+3fv1RKVQDXIztxY059ey8x4SHyB1EIIURAunBmBrsrWtha2sSx+k5JpRwHFuYmERMewrpD9aM+1pvjBQYryk7gWEMnbT39Xj8XyIw4YeVwEKeUigFeBG6378JprX+stc4B1gC3DvO8ryiltimlttXXj/4/nAgcMiNOCCFEILtghjWl8q7/7AVktMB4EBZi4OzJKaw7NPKoAbNFU9nc7bXxAoPNyUlAa9jro7o4mREnwMEgTikVijWAW6O1fmmIhzwDXDXUc7XWj2qtF2qtF6amprq+UuFz9e290plSCCFEwJqSFkNechQHT7STnxJNXop3U+dEYFg1LZWa1h4O1bYP+5gTbT30mS2+2YnLigdgt8+COJkRJxzrTqmAx4EDWuvfD7p9yqCHXQ4c9PzyhD/Vd8hOnBBCiMCllBrYjbO3nxdj30pb2uzag8NneJU32mbEJXs/iEuMDmNiUhTFPqqLkxlxAhzbiVsO3ACcZxsnsEsp9UngN0qpvUqpYuBC4DZvLlT4nqRTCiGECHSXzcnEaFB8cvYEfy9F+Eh6XAQzJsSNOGrAF+MFBpuTk+CzMQMyI04AjNqxQmu9ARhqaubrnl+OCBQ9/Wbae0wSxAkhhAhoRdkJ7PrpBcRGeK+NvAg8K6em8tf1x2jt7ic+8syffXlTF0aDYkK8b1IO52TH89/d1T55A7yyuZuFuYlePYcIfE51pxTjx8kZcRLECSGECGwSwI0/q6alYbZoNpQMPWqgrKmLrIRIQoy+udQtyk4A8HpKpcyIE3YSxIkh2WfEyU6cEEIIIQLNvJwE4iJChk2ptM6I812gMysrDoPyfnMTmREn7CSIE0Ma2ImTIE4IIYQQASbEaOCcwlTWHarHYjlz1EBFU5dPxgvYRYWFUJgey+6KFq+eR2bECTsJ4sSQJIgTQgghRCBbNTWNho5e9te0nXJ7e08/TZ19PmtqYleUHU9xZcuI8+vcJTPihJ0EcWJI9e29KAVJ0WH+XooQQgghxBnOtY2VWHvw1JTKch93prQryk6guat/INDyBpkRJ+wkiBNDqu/oJSkqjFAfFQQLIYQQQjgjJSacOdnxZ9TF+Xq8gN0cW3OT3V5sbiIz4oSdXKGLIcmMOCGEEEIEupVT09hZ0UJTZ9/AbQM7cT5sbAIwNSOWsBCDV+viZEacsJMgTgxJgjghhBBCBLpV09LQGj4sqR+4rbypi4SoUOJ8PHoiLMTAjAlxXu1QWdnc7dOGLSJwSRAnhlTf3isz4oQQQggR0Iqy4kmKDjulLq6sscvnqZR2c7Lj2VvVinmIjpnuOjkjTnbihARxYghaa+o7ZCdOCCGEEIHNYFCcW5jKB4frBwKniiY/BnE5CXT1mTlS1+HxY8uMODGYBHHiDG09JvpMFgnihBBCCBHwVk5Npbmrn92VLZgtmsrmbr8FcUVebG4iM+LEYBLEiTPIjDghhBBCBItzpqRiULDuUD01rd2YLNpvQVxBSjSx4SEUeyGIs3fdlJ04ARLEiSEMBHFSEyeEEEKIAJcYHca8iYmsO1RHeaN/xgvYGQyKWVnxFHuhuUllc7d1Rly8BHFCgjgxhPoO2YkTQgghRPBYNTWV4spWdpQ3A74fLzDYnJwEDtS00Wsye/S4lc3dZMRFEBYil+9Cgrgx50hdOzf/fcvAbporJJ1SCCGEEMFk5dQ0AJ7ZXE6IQfl1t2pOdjz9Zs2BmnaPHldmxInBJIgbQ/pMFm779y7WHarnlV1VLh+nvr2XUKMiPtK381WEEEIIIVwxMzOOtNhwqm0t+I0G5be1FOUkAHi8Lq6yuVuamogBEsSNIQ+9V8K+6jYSo0L5X3GNy8dp6LDOiFPKf78AhRBCCCEcpZR11ADg92HYmfERpMSEsauixWPHNJktnGiTGXHiJAnixogd5c38ed0Rrl6QzS0rCthV0UJVS7dLx6pvlxlxQgghhAguq6ZZUypz/VgPB9aAck52gkebm9S0yow4cSoJ4saArj4T3312FxPiI/npZTO4ZPYEAN7Y49punARxQgghhAg2Z09JIS4ihNlZ8f5eCkXZCRyt76Cj1+SR48mMOHE6CeLGgF+/fpCypi5+d80cYiNCyUuJZmZmnMsplfUdEsQJIYQQIrjERYSy+Ufnc83CHH8vhaKceLSGPR7ajatslhlx4lQSxAW5Dw7X889NZdxydj5LC5IHbv/k7AkupVSaLZpGW02cEEIIIUQwiQwzBkRN/5zsBAB2e6i5icyIE6eTIC6ItXT18f0XdlOYHsMdF0495T5XUyqbOvuwaBkvIIQQQgjhqqToMHKSIj3WoVJmxInTySshiN31yj4aO/r4/TVziQg1nnKfqymVMiNOCCGEEMJ9RdkJ7K7wXDqlpFKKwSSIC1Kv7q7mv7uruf38KcwapoDXlZTK+g4J4oQQQggh3DUnO56qlm4abNdW7pAZceJ0EsQFoROtPdz1n73Mm5jA186dNOzjXEmpHNiJi4lwb5FCCCGEEOOYvS7O3ZRKmREnhjLug7g1m8t4elOZv5fhMK0133+xmD6Thd9fM5cQ4/A/QntK5WsuBHEpsWFur1UIIYQQYryalRWPQeF2SqXMiBNDGfdB3NqDdTz47mF6TWZ/L8UhT28uZ/3hen50yXTyU6JHffwnZ09gZ7njKZX17b3EhIcQFRbi7lKFEEIIIcat6PAQJqfFuN2hUmbEiaGM+yDuxmV5NHT08caeE/5eyqiON3Tyq9cOcE5hKp9fMtGh5zibUikz4oQQQgghPGNOdgLFla1orV0+hsyIE0MZ90Hc2ZNTKEiJ5qmPS/29lBGZzBa++9wuwkIM3H9VkcMzUJxNqaxv75EZcUIIIYQQHlCUk0BTZ9/AbporZEacGMq4D+IMBsXnl+ays7yFPZWeaQPrDX9df4yd5S384spZZMQ713TEmZTK+nbZiRNCCCGE8IQ52dYO4sVuXGPKjDgxFHk1AFctyCYqzMg/AnQ3bm9VK3945zCXFk3g8jmZTj/fmZRKCeKEEEIIITxjWkYcYUaDW3VxMiNODEWCOCA+MpRPzcvi1d3VNHf2+Xs5p+jpN/Pd53aRFB3GvVfOcukYjqZU9vSbaesxSRAnhBBCCOEBYSEGpmfGsbuixeVjyIw4MRQJ4mxuXJZHr8nCc9sq/L2UU/zu7UMcru3g/s8UkRDlett/R1Iq7cMopSZOCCGEEMIz5mTHs7eqFbPF+eYmMiNODGfUIE4plaOUWquUOqCU2qeUus12+2+VUgeVUsVKqZeVUgleX60XTc2IZUl+Ev/cVObS/2TesK20icc2HOfzSyeycmqaW8dyJKVyYNC37MQJIYQQQnhEUXYCnX1mjtZ3OP1cmREnhuPITpwJuENrPR1YCnxTKTUDeAeYpbUuAg4DP/TeMn3jprPyqGzuZu3BOn8vBa01v3jtABlxEfzok9PdPp4jKZUSxAkhhBBCeJa9uYkrKZUyI04MZ9QgTmtdo7XeYfu8HTgAZGmt39Zam2wP2wRke2+ZvnHBjHQy4iICYtzAW/tOsLuihe+cX+ixwdujpVTWd0gQJ4QQQgjhSQWpMcSEh7jUoVJmxInhOFUTp5TKA+YBm0+764vAGx5ak9+EGg1ct2QiH5Y0cMyFLW9PMZkt3P/WISanxfDp+VkeO+5oKZX17b0oBUnRrtfeCSGEEEKIk4wGxaysOIqd6FCptWZ/dRtv7D0hM+LEkBwO4pRSMcCLwO1a67ZBt/8Ya8rlmmGe9xWl1Dal1Lb6+np31+t11y7OIdSo+OemMr+t4fntlRyr7+T/LppKiNFzvWdGS6msb+8lKSqMUA+eUwghhBBivJuTncD+mjZ6TeYRH3ekroMH3z3M+b//gE8+9CEfHK7nqvnZMiNOnMGhPD2lVCjWAG6N1vqlQbffBFwKrNZaD9kNRGv9KPAowMKFCwOjY8gI0mIj+OTsCbywrZLvXTiV6HDPpDI6qrvPzIPvHmb+xAQunJHu8eN/cvYEfvvWIapauslKOPVdHZkRJ4QQQgjheXNyEug3aw7WtDMnJ+GU+yqauvhvcTX/3V3DgZo2lIIl+Ul88ex8Lp6ZQbJ0DRdDGDVCUUop4HHggNb694Nuvxi4EzhXa93lvSX63o3L8nhlVzUv76zi80tzfXruJz8qpbatl4c/Nx/rt96zLrEFcW/sqeGWFQWn3FffIUGcEEIIIYSnFdmamxRXtjAnJ4Ga1m5eK67hv8U1Aw1P5k9M4O7LZvDJ2RNIj4vw42pFMHBkm2k5cAOwRym1y3bbj4CHgHDgHVuwsUlr/TVvLNLX5k9MYGZmHP/8uIzrl0z0SjA1lJauPv6y7gjnTUtjcX6SV84xOKXyjCCuvZf85GivnFcIIYQQYrzKSogkOTqM57ZV8t/dNWwpbQJgVlYcP/jENC6ZPYGcJOlAKRw3ahCntd4ADBXFvO755QQGpRQ3Lcvj+y8Ws/l4E0sLkn1y3r+sO0p7r4nvXzzVq+exp1RWt3STaUup1FpLOqUQQgghhBcopViYl8hb+2qZkhbDdy8o5NKiCRSkxvh7aSJISZXkMC6fm0lCVCj/8NG4gZrWbp78qJRPzctiWkacV89l71L5+qAGJ+29JnpNFgnihBBCCCG84DefLuK9O87lne+ey7dXT5EATrhFgrhhRIQauWZhDm/tq+VEa4/Xz/fgOyVoDd+9oNDr58pLiWbGhFO7VMqgbyGEEEII70mMDmOSBG7CQySIG8Hnl+Ri0ZpnNnt33MCRunae317B55fmkp3om3zoS4qsg7+rbYO/7UFcinRAEkIIIYQQIqBJEDeCiclRnDc1jWe2lI8618Md9795iKiwEG49b7LXznG601MqZSdOCCGEEEKI4CBB3ChuPCuPho4+3tx7wivH317WzNv7a/nKOQUkRYd55RxDOT2lciCIk504IYQQQgghApoEcaNYMTmFvOQo/vGx51Mqtdbc9+ZBUmLC+dLZ+R4//mgGp1TWd/QSalTER4b6fB1CCCGEEEIIx0kQNwqDQXHDsjy2lzWzt6rVo8ded6ieLcebuG31ZKLDHRnZ51mDUyrr23tJiQnHYPDNTDwhhBBCCCGEaySIc8BnFmQTGWr06LgBs8W6C5ebHMW1iyd67LjOGJxSKTPihBBCCCGECA4SxDkgPjKUT83P4pVd1TR39nnkmK/squLgiXbuuHAqoUb//RjsKZX7a9qkHk4IIYQQQoggIEGcg25clkuvycLz2yvcPlavyczv3j7MzMw4LrWlNPqLPaVSduKEEEIIIYQIDhLEOWhaRhyL85P456YyzBbt1rHWbCqnqqWbH3ximt9r0OwplSDjBYQQQgghhAgGEsQ54aZleVQ0dbPuUJ3Lx2jv6ef/rT3C8snJrJiS6sHVue6SIutunARxQgghhBBCBD4J4pxw4cx00uPCecqNcQN/W3+Mps4+7rx4mgdX5p7L52QSGxEysCMnhBBCCCGECFwSxDkh1GjgusW5rD9cz/GGTqefX9/ey2MbjnPJ7AkUZSd4foEuykmKovjuC1mYl+TvpQghhBBCCCFGIUGckz63JIdQo+J3bx/iw5J69lW3cqK1hz6TZdTnPvx+Cb0mC3dcWOiDlTpHKZkPJ4QQQgghRDDw/YTpIJcWG8FlczJ5aUcV/yuuOeW+2PAQkmLCSIwKIzk6jKToMJJirJ9HhoXwzOZyrl2UQ0FqjJ9WL4QQQgghhAh2EsS54P6rivjGysk0dfbR1NlLY2cfTR191v929tHc1UdNaw/7qtto6uyjz2zdpYsOM3Lb6il+Xr0QQgghhBAimEkQ54IQo4HJaY7tpmmt6eg10dTZR0SokbS4CC+vTgghhBBCCDGWSRDnZUopYiNCiY0I9fdShBBCCCGEEGOANDYRQgghhBBCiCAiQZwQQgghhBBCBBEJ4oQQQgghhBAiiEgQJ4QQQgghhBBBRII4IYQQQgghhAgiEsQJIYQQQgghRBCRIE4IIYQQQgghgogEcUIIIYQQQggRRCSIE0IIIYQQQoggIkGcEEIIIYQQQgQRpbX23cmUqgfKfHZCx6UADf5ehBhX5DUn/EFed8LX5DUn/EFed8LXnH3N5WqtU905oU+DuECllNqmtV7o73WI8UNec8If5HUnfE1ec8If5HUnfM0frzlJpxRCCCGEEEKIICJBnBBCCCGEEEIEEQnirB719wLEuCOvOeEP8roTviavOeEP8roTvubz15zUxAkhhBBCCCFEEJGdOCGEEEIIIYQIIkEVxCmlLlZKHVJKHVFK/WDQ7c8qpXbZPkqVUruGeX6SUuodpVSJ7b+JttuvH/T8XUopi1Jq7hDPX2M7/16l1BNKqVDb7Uop9ZBtXcVKqfne+Q4Ifwjg1900pdTHSqlepdT3vPPVC38I4Nfc9bbfccVKqY+UUnO88x0Q/hDAr7srbK+5XUqpbUqps73zHRC+5sXXXKhS6iml1B6l1AGl1A+HeX6+Umqz7fnPKqXCbLfLdd0YFsCvO+eu67TWQfEBGIGjQAEQBuwGZgzxuN8BPx3mGPcDP7B9/gPgviEeMxs4NszzPwko28e/gK8Puv0N2+1Lgc3+/n7Jx7h43aUBi4BfAt/z9/dKPsbFa+4sINH2+Sfkd93Y+Qjw110MJ8s/ioCD/v5+yUdgv+aA64B/2z6PAkqBvCGe/xxwre3zR+S6bux/BPjrzqnrumDaiVsMHNFaH9Na9wH/Bq4Y/ACllAKuwfrLfyhXAE/ZPn8KuHKIx3xuuOdrrV/XNsAWIHvQcf9hu2sTkKCUmuDwVyYCWcC+7rTWdVrrrUC/U1+RCHSB/Jr7SGvdbHvYJk7+DhTBL5Bfdx222wCiASnmHxu8+ZrTQLRSKgSIBPqAtiGOfR7wwhDPl+u6sStgX3fOXtcFUxCXBVQM+nel7bbBVgC1WuuSYY6RrrWuAbD9N22Ix3yW4X9ogHW7FLgBeNOJtYngFMivOzE2Bctr7ktY36kWY0NAv+6UUp9SSh0EXgO+ONLzRdDw5mvuBaATqAHKgQe01k2nPTcZaNFam4Y4v1zXjV2B/LpzSjAFcWqI205/N27Yd/gcOoFSS4AurfXeUR76Z2C91vpDJ9YmglMgv+7E2BTwrzml1CqsQdydrq5BBJyAft1prV/WWk/D+o71L1xdgwgo3nzNLQbMQCaQD9yhlCpw4vxyXTd2BfLrzinBFMRVAjmD/p0NVNv/Ydu6/DTw7KDb/m4rTnzddlOtfTvc9t+6085xLaO/Q3g3kAp819G1iaAWyK87MTYF9GtO/f927pg1iiAK4Ph/RGIhWBgLKwuNrVikSGEhIgg2NlooaBAs/AKSIuC3SJfCXhC8ykYEQRS0EESRaCWpRFHTRvIsZhaWcJIcJtzM+v/B45aZG5YdHtzM3u5L6QywClyJiO8TXJfqVnXedSLiOXAqpXRsNxelqu1nzt0AnkTEZkR8BV4A89vO/438mOTBMed3XTdcNefdRFraxL0GTpeKLjPkH4NRr/8i+WXn9a4hIm5HxNmIuFyaRsBiOV4EHnffTSkdAK6Rn40dK6V0B7gEXI+IrV7XCLhVqhktAL+6v1nVvJrzTsNUbc6llE4Aj4CbEbH2D9eo+tScd3PlPRJSrhI4A3gDoX37mXNfgAtlXXaYXJzkY//k5T3LZ8DVMeNd1w1XzXk3maigUsxug1wtaI1cVWZ5W98D4O4O42eBp8Cn8nm013ceeLXD+N/l3G9L3C/tCVgpfe+A+WnPlbF3UXHeHSffUdoAfpbjI9OeL2PQObcK/Oi1v5n2XBl7FxXn3RLwvrS9BM5Ne66MunOOXNH0YcmbD8C9v4w/SS6i87l8/1Bpd1034Kg47yZa13UleyVJkiRJDWjpcUpJkiRJ+u+5iZMkSZKkhriJkyRJkqSGuImTJEmSpIa4iZMkSZKkhriJkyRJkqSGuImTJEmSpIa4iZMkSZKkhvwBoHU3dBiIpXMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB0OUlEQVR4nO3dd1xUV/rH8c+hI1UFK6CCaGyIvcWoMTF909umaHqvm92U3WySXza72WRTNptqet1U05sp1tgL9g4WsICFJh3O748ZXFSQNsMM8H2/XvMS7ty595nhCvPMOed5jLUWERERERER8SwfTwcgIiIiIiIiSs5ERERERES8gpIzERERERERL6DkTERERERExAsoORMREREREfECSs5ERERERES8gJIzERERERERL6DkTESkmTLG5Fe5VRhjCqt8f5mn42sIY8xWY8xJno7jWIwxM40x17rx+FONMRucP9Mp1dwfb4z5xhiTZ4zZa4x54ojYiqpcBxuOeOxEY8x6Y0yBMWaGMaZblfuMMeafxph9ztsTxhjjrucpIiJHU3ImItJMWWtDK2/AduCsKtve93R8RzLG+LWEczSBFcDNwLIj7zDGBAA/Ab8CnYAY4L0jdru1ynXQu8pjo4BpwINAO2AJ8FGVx10PnAMMBJKAM4EbXPOURESkLpSciYi0MMYYH2PMfcaYLc4RkI+NMe2c93U3xlhjzFXGmB3GmAPGmBuNMcOMMSuNMdnGmOerHGuKMeY3Y8x/jDE5zlGXiVXujzDGvG6M2WWMyTDG/M0Y43vEY58xxuwHHjbGJBhjfnXGtdcY874xJtK5/7tAHPC1c9TnT8aY8caY9COe36HRNWPMw8aYT40x7xljcoEptcTU0xgzy/lc9hpjqiYnVc8R5DzmPudrstgY09EY8xgwFnjeGePzzv2PM8b8ZIzZ7xz1uqjKsd4yxrzsvD/Pef5u1Z0XwFr7grX2F6ComrunADuttU9baw9aa4ustStrOtYRzgPWWGs/sdYWAQ8DA40xxznvnww8Za1Nt9ZmAE85zyciIk1EyZmISMtzO44RkHFAF+AA8MIR+4wAEoGLgWeBPwMnAf2Ai4wx447YNxWIAh4CplUme8DbQBnQExgETAKureaxHYDHAAP8wxlXHyAWR5KAtfYKDh8BfIK6ORv4FIgE3q8lpkeB6UBbHKNO/6nhmJOBCGd87YEbgUJr7Z+BOfxvdOpWY0wIjtGsD5zP81LgRWNMvyrHu8x57iggxRlnQ4wEthpjvncmlzONMQOO2Ocfzvt+M8aMr7K9H45ROQCstQeBLc7tR93v/LrqcxARETdTciYi0vLcAPzZOQJSjCP5ueCIKX+POkddpgMHgf9aazOdIyZzcCQ1lTKBZ621pdbaj4ANwBnGmI7AacCdzlGcTOAZ4JIqj91prf2PtbbMWltord1srf3JWltsrc0CnsaRRDbGfGvtF9baCiC8lphKgW5AF+fzn1vDMUtxJGU9rbXl1tql1trcGvY9E9hqrX3T+TyXAZ8BF1TZ51tr7Wznz+PPwChjTGwDnmuM87k8hyPB/Rb40jndEeBeIB7oCkzFMQqZ4LwvFMg54ng5QFgN9+cAoVp3JiLSdJSciYi0PN2Az53T8bKBdUA50LHKPnuqfF1YzfehVb7PsNbaKt9vw5EYdAP8gV1VzvUKjtGjSjuqBmaM6WCM+dA53TAXx3qpqPo/xcNUPUdtMf0Jx+jdImPMGmPM1TUc813gR+BDY8xOZ3EM/xr27QaMqDyf85yX4VgTdlSM1tp8YD+O17C+CoG51trvrbUlwL9wJJF9nMdeaK3Ncya/bwO/Aac7H5uPI3mtKhzIq+H+cCD/iJ+9iIi4kZIzEZGWZwdwmrU2ssotyDkq1hBdjxg9iQN2Os9TDERVOU+4tbbqVLgj39j/w7ktyVobDlyOI1mqaf+DQJvKb5xrx6KP2KfqY44Zk7V2t7X2OmttFxwjjC8aY3oe+YSdo4SPWGv7AqNxjI5dWUOMO4BZR7zeodbam6rsc2iUzBgTiqMgx84jz1sHK6s5/7FY/vf6rsFR7KMyjhAgwbn9qPudX69BRESajJIzEZGW52XgscqiE8aYaGPM2Y04XgfgdmOMvzHmQhyjNN9Za3fhWL/1lDEm3DgKkSQcsV7tSGE4RmiyjTFdgT8ecf8eHNPyKm0EgowxZzhHrv4CBNZ08NpiMsZcaIyJce5+AEfyUn7kcYwxE4wxA5zJYC6OaY6V+x0Z4zdAL2PMFc7XyN84Cqz0qbLP6caY453TDx8FFlprDxtVrHLuAGNMEI6kyt9ZnKTy7/V7wEhjzEnO2O4E9gLrjDGRxphTnPv7GUc7hRNwjAACfA70N8ac7zz+X4GV1tr1zvvfAe42xnQ1xnQB/gC8VdNrLSIirqfkTESk5fk38BUw3RiTByzAUZijoRbiKB6yF0dRjwustfuc910JBABrcSQ7nwKdj3GsR4DBONYzfYujtHtV/wD+4pweeI+1NgdHWfnXgAwcI2npHNuxYhoGLDTG5ON4je6w1qZVc4xOzsfl4pgWOov/laz/N441fAeMMc9Za/NwFB25BMdo2G7gnxyeRH6Ao5jKfmAIjmmPNZmOY/riaBzrxgpxJFlYazfgGG182fnczgZ+55zi6A/8DcjC8bO6DTjH+Rica/zOx/EzPIDjmqi6PvAV4GtgFbAax8/nlWPEKSIiLmY0lVxERGpiHE2Qr7XWHu/pWJorY8xbQLq19i+ejkVERLybRs5ERERERES8gJIzERERERERL6BpjSIiIiIiIl5AI2ciIiIiIiJeQMmZiIiIiIiIF/BrypNFRUXZ7t27N+UpRUREREREvMbSpUv3Wmujq7uvSZOz7t27s2TJkqY8pYiIiIiIiNcwxmyr6T5NaxQREREREfECSs5ERERERES8gJIzERERERERL9Cka86qU1paSnp6OkVFRZ4ORVqYoKAgYmJi8Pf393QoIiIiIiK18nhylp6eTlhYGN27d8cY4+lwpIWw1rJv3z7S09Pp0aOHp8MREREREamVx6c1FhUV0b59eyVm4lLGGNq3b68RWRERERFpNjyenAFKzMQtdF2JiIiISHPiFcmZpz322GP069ePpKQkkpOTWbhwIQDXXnsta9eudck5unfvzt69e4+5z9///vd6H/ett97i1ltvPWzbm2++SXJyMsnJyQQEBDBgwACSk5O577776n38pvDss89SUFDg6TBERERExJs88QTMmHH4thkzHNtbqFafnM2fP59vvvmGZcuWsXLlSn7++WdiY2MBeO211+jbt2+TxdKQ5Kw6V111FSkpKaSkpNClSxdmzJhBSkoKjz/+uEuOX1/WWioqKmq8vyHJWVlZWWPDEhERERFvNmwYXHTR/xK0GTMc3w8b5tm43KjW5MwYE2SMWWSMWWGMWWOMecS5vZ0x5idjzCbnv23dH67r7dq1i6ioKAIDAwGIioqiS5cuAIwfP54lS5YAEBoayr333suQIUM46aSTWLRoEePHjyc+Pp6vvvoKOHoU68wzz2TmzJlHnfOcc85hyJAh9OvXj6lTpwJw3333UVhYSHJyMpdddhkA7733HsOHDyc5OZkbbriB8vJywDEy1qtXL8aNG8dvv/1W5+f65JNPMmzYMJKSknjooYcA2Lp1K8cddxzXXnst/fv357LLLuPnn39mzJgxJCYmsmjRIgAefvhhrrjiCk488UQSExN59dVXaz1unz59uPnmmxk8eDA7duzgpptuYujQofTr1+/Qfs899xw7d+5kwoQJTJgw4dBrXenTTz9lypQpAEyZMoW7776bCRMmcO+997JlyxZOPfVUhgwZwtixY1m/fn2dXwsRERER8XITJsDHH8P558PNNzsSs48/dmxvqay1x7wBBgh1fu0PLARGAk8A9zm33wf8s7ZjDRkyxB5p7dq1R21rSnl5eXbgwIE2MTHR3nTTTXbmzJmH7hs3bpxdvHixtdZawH733XfWWmvPOecce/LJJ9uSkhKbkpJiBw4caK219s0337S33HLLocefccYZdsaMGdZaa7t162azsrKstdbu27fPWmttQUGB7devn927d6+11tqQkJBDj127dq0988wzbUlJibXW2ptuusm+/fbbdufOnTY2NtZmZmba4uJiO3r06MPOeaTK8/7444/2uuuusxUVFba8vNyeccYZdtasWTYtLc36+vralStX2vLycjt48GB71VVX2YqKCvvFF1/Ys88+21pr7UMPPWSTkpJsQUGBzcrKsjExMTYjI+OYxzXG2Pnz5x+KpfJ5l5WV2XHjxtkVK1Yc9doc+Tp88skndvLkydZaaydPnmzPOOMMW1ZWZq219sQTT7QbN2601lq7YMECO2HChKOev6evLxERERFpoJISa//8Z2vBcbv3Xk9H5BLAEltDvlRrKX3nAfKd3/o7bxY4Gxjv3P42MBO4tzGJ4iNfr2HtztzGHOIofbuE89BZ/Wq8PzQ0lKVLlzJnzhxmzJjBxRdfzOOPP35otKZSQEAAp556KgADBgwgMDAQf39/BgwYwNatW+sV03PPPcfnn38OwI4dO9i0aRPt27c/bJ9ffvmFpUuXMsw5bFtYWEiHDh1YuHAh48ePJzo6GoCLL76YjRs31nrO6dOnM336dAYNGgRAfn4+mzZtIi4ujh49ejBgwAAA+vXrx8SJEzHGHPXczj77bIKDgwkODmbChAksWrSIuXPn1njcbt26MXLkyEOP//jjj5k6dSplZWXs2rWLtWvXkpSUVK/X7sILL8TX15f8/HzmzZvHhRdeeOi+4uLieh1LRERERLzU+vVw+eWwdCkEBEBJCfznP3DKKS165KxOfc6MMb7AUqAn8IK1dqExpqO1dheAtXaXMaaDG+N0K19fX8aPH8/48eMZMGAAb7/99lHJmb+//6Hqfz4+PoemQfr4+Bxa/+Tn53fY2qrqyrjPnDmTn3/+mfnz59OmTRvGjx9f7X7WWiZPnsw//vGPw7Z/8cUXDapCaK3l/vvv54Ybbjhs+9atWw89l2M9Nzi6+qEx5pjHDQkJOfR9Wloa//rXv1i8eDFt27ZlypQpNZa5r3qeI/epPGZFRQWRkZGkpKTU9tRFREREpLmwFl54Af74R0dSFh4OX3wBL70EX30FF1wAn37aYhO0OiVn1tpyINkYEwl8bozpX9cTGGOuB64HiIuLO+a+xxrhcpcNGzbg4+NDYmIiACkpKXTr1q1Bx+revTsvvvgiFRUVZGRkHFqvVVVOTg5t27alTZs2rF+/ngULFhy6z9/fn9LSUvz9/Zk4cSJnn302d911Fx06dGD//v3k5eUxYsQI7rjjDvbt20d4eDiffPIJAwcOrDW2U045hQcffJDLLruM0NBQMjIy8Pf3r9fz+/LLL7n//vs5ePAgM2fO5PHHHyc4OLhOx83NzSUkJISIiAj27NnD999/z/jx4wEICwsjLy+PqKgoADp27Mi6devo3bs3n3/+OWFhYUcdLzw8nB49evDJJ59w4YUXYq1l5cqVdXotRERERMQL7dwJV18NP/4Ip50GgwfDxImORCwuzpGkjRgBixe37uSskrU22xgzEzgV2GOM6ewcNesMZNbwmKnAVIChQ4faRsbrcvn5+dx2221kZ2fj5+dHz549DxXpqK8xY8YcmiLYv39/Bg8efNQ+p556Ki+//DJJSUn07t37sGl/119/PUlJSQwePJj333+fv/3tb0yaNImKigr8/f154YUXGDlyJA8//DCjRo2ic+fODB48+FChkGOZNGkS69atY9SoUYBjOud7772Hr69vnZ/f8OHDOeOMM9i+fTsPPvggXbp0oUuXLnU67sCBAxk0aBD9+vUjPj6eMWPGHPa8TzvtNDp37syMGTN4/PHHOfPMM4mNjaV///7k5+dTnffff5+bbrqJv/3tb5SWlnLJJZcoORMRERFpjj79FG64AQoL4cUX4cYboeqsrYQEuO02eOYZ8FAF8qZgHEvKjrGDMdFAqTMxCwamA/8ExgH7rLWPG2PuA9pZa/90rGMNHTrUVlY/rLRu3Tr69OnTmOcgTeDhhx8mNDSUe+65x9Oh1IuuLxEREREvlpMDt98O77zjKJH/3nvQq1f1++7fDz17wvDh8MMPTRunCxljllprh1Z3X136nHUGZhhjVgKLgZ+std8AjwMnG2M2ASc7vxcRERERETlcdQ2ln30WuneH99+Hhx6C336rOTEDaNcOHnzQMe3xxx/dGa3H1Dpy5koaOZOmputLRERExAtUNpD++GMYPRomT4aPPoIuXWDaNMdasrooLoa+fSEkBJYvh3os0fEWjR05ExERERERabiqDaW7dXMkZmeeCRs31j0xAwgMdKw5W7UK3nrLbeF6ipIzERERERFxv4EDoaIC9uyBiy+Gr792jIDV1wUXwMiRjimONRSOa66UnImIiIiIiHtZC2ed5SgAcs018MsvR69Bqytj4KmnYNcux78tiJIzERERERFxr1tugXnz4NZb4bXXHFMcL7qo4Qna6NGOEbQnnnAkaS2EkjPA19eX5ORk+vfvz4UXXkhBQUGDjzVlyhQ+/fRTAK699lrWrl1b474zZ85k3rx5h75/+eWXeeeddxp87kpbt26lf//D+4Q//PDD/Otf/6rXcVwVj4iIiIi0YgsWwCuvwPHHw3PPObZVrkFbvLjhx/3HP6C0FP76V9fE6QXq1YS6pQoODiYlJQWAyy67jJdffpm777770P3l5eX1atZc6bXXXjvm/TNnziQ0NJTRo0cDcOONN9b7HO5SVlbmVfGIiIiISDO0f79jfVm3bo41ZlUbS0+Y4Lg1VM+ejhG5555z9EobMKDx8XpY8xo5q64/wowZju0uMnbsWDZv3szMmTOZMGECv//97xkwYADl5eX88Y9/ZNiwYSQlJfHKK68AYK3l1ltvpW/fvpxxxhlkZmYeOtb48eOpbB3www8/MHjwYAYOHMjEiRPZunUrL7/8Ms888wzJycnMmTPnsNGtlJQURo4cSVJSEueeey4HDhw4dMx7772X4cOH06tXL+bMmVPv53isYz/wwAOMGzeOf//734fi2blzJ8nJyYduvr6+bNu2jW3btjFx4kSSkpKYOHEi27dvBxyjh7fffjujR48mPj7+0EiiiIiIiLQi1sKUKY5phx9/DJGRrj/Hgw9CeDj86U+uP7YHNK/kbNiww+emVvZLGDbMJYcvKyvj+++/Z4Az6160aBGPPfYYa9eu5fXXXyciIoLFixezePFiXn31VdLS0vj888/ZsGEDq1at4tVXXz1smmKlrKwsrrvuOj777DNWrFjBJ598Qvfu3bnxxhu56667SElJYezYsYc95sorr+Sf//wnK1euZMCAATzyyCOHxblo0SKeffbZw7ZXtWXLlsMSqpdffrlOx87OzmbWrFn84Q9/OLStS5cupKSkkJKSwnXXXcf5559Pt27duPXWW7nyyitZuXIll112Gbfffvuhx+zatYu5c+fyzTffcN9999XzJyEiIiIizd4zzzhGy556CoZW29ar8SobU//wA0yf7p5zNCHvmtZ4553gnF5Yoy5d4JRToHNnRxbepw888ojjVp3kZEf38WMoLCwkOTkZcIycXXPNNcybN4/hw4fTo0cPAKZPn87KlSsPjQLl5OSwadMmZs+ezaWXXoqvry9dunThxBNPPOr4CxYs4IQTTjh0rHbt2h0znpycHLKzsxk3bhwAkydP5sILLzx0/3nnnQfAkCFD2Lp1a7XHSEhIODRVExxrzupy7IsvvrjGuH777Tdee+21Q6N18+fPZ9q0aQBcccUV/KnKJxbnnHMOPj4+9O3blz179hzz+YqIiIhIC7NgAdx7L5x3nqMIiDvdcgs8/zz88Y8wcWKzbExdybuSs7po29aRmG3fDnFxju8bqeqas6pCqvRdsNbyn//8h1NOOeWwfb777jtM1bmz1bDW1rpPfQQGBgKOQiZlZWUuOy4c/pyr2rVrF9dccw1fffUVoaGh1e5T9TlWxgiO5y8iIiIircT+/Y7ZbbGx8Prrh68zc4fKxtQXXwxvvw1XX+3e87mRd01rfPZZmDnz2LeHHoKCAsfwZUGB4/tj7V/LqFldnXLKKbz00kuUlpYCsHHjRg4ePMgJJ5zAhx9+SHl5Obt27WJGNeVAR40axaxZs0hLSwNg//79AISFhZGXl3fU/hEREbRt2/bQCNW77757aKSrsRpy7NLSUi666CL++c9/0qtXr0PbR48ezYcffgjA+++/z/HHH++SGEVERESkmbIWJk+G3bvdt86sOhdeCCNGwF/+AgcPNs053aB5jZxVrjH7+OP/VXep+r0bXXvttWzdupXBgwdjrSU6OpovvviCc889l19//ZUBAwbQq1evahOd6Ohopk6dynnnnUdFRQUdOnTgp59+4qyzzuKCCy7gyy+/5D//+c9hj3n77be58cYbKSgoID4+njfffNNlz6W+x543bx6LFy/moYce4qGHHgIcI4bPPfccV199NU8++STR0dEujVFEREREmqGnn4ZvvnFUUHTXOrPqVDamPv54x7/NtLy+acopZ0OHDrWV1QsrrVu3jj59+tTtAE884Sj+UTURmzHD0R+hhVRoEdeq1/UlIiIiIg03fz6ccAKcfTZ88on7pzNW54ILHMVBNm1yLIXyQsaYpdbaajNX75rWWJs//enoEbIJE5SYiYiIiIh4UmU/s7i4pllnVpP4eCgsdCx9quTi1lvu1LySMxERERER8S4VFY51Znv2OJYbRUR4LpbTTnMUCHntNVi92uWtt9xNyZmIiIiIiDRc5Tqzp56CIUM8G8uECfDBB46vzzuvyepTuIpXJGcqtS7uoOtKRERExA2eeMIxIgUwbx7cd59jrZm3VEk85xxHUrZpE9x0U7NJzMALkrOgoCD27dunN9LiUtZa9u3bR1BQkKdDEREREWlZhg1zJD9ffAGXXAIdOsCaNTB8uKcjc5gxA375xdF666WX/pdINgMeL6UfExNDeno6WVlZng5FWpigoCBiYmI8HYaIiIhIyzJhAjzyiKMyorUQHg7TpnnHCJUHW2+5gseTM39/f3r06OHpMEREREREpDalpfDoo/D3v0NICOTmwm23eU/is3jx4YnYhAmO7xcv9p4Yj8Hjfc5ERERERKQZWL8eLr8cli6FSZMc/958s2PqYDMZmfIGLafPmYiIiIiINK2KCvjPf2DQINi6FR5+GJYtczSa/r//cyRmF13UrNZ2eSslZyIiIiIiUr2MDDj1VLj9djjxRFi1CoKDa546KI2iaY0iIiIiInK0Dz90lKIvKYFnnoHrrgNjPB1Vs6dpjSIiIiIicrSqPcsqffUVJCfDpZfCccfBihVw/fVKzJqAkjMRERERkdaqsmdZZYL25JNw7rmO6Yt/+xvMmQM9e3o2xlbE46X0RURERETEQyrXi110EfTo4Vg3Fhfn6Fs2ZIino2t1lJyJiIiIiLRmEyZAv34waxYMHw4zZzqKfkiT07RGEREREZHWbMYMWLMGrrwSUlNhwQJPR9Rq1ZqcGWNijTEzjDHrjDFrjDF3OLcnG2MWGGNSjDFLjDHD3R+uiIiIiIi4zIwZjimNH38Mb7+tnmUeVpeRszLgD9baPsBI4BZjTF/gCeARa20y8Ffn9yIiIiIi0lwsXqyeZV6k1jVn1tpdwC7n13nGmHVAV8AC4c7dIoCd7gpSRERERETc4E9/OnrbhAn/S9akSdWrIIgxpjswCFgI3An8aIz5F44RuNGuDk5ERERERKS1qHNBEGNMKPAZcKe1Nhe4CbjLWhsL3AW8XsPjrneuSVuSlZXliphFRERERERaHGOtrX0nY/yBb4AfrbVPO7flAJHWWmuMMUCOtTb8WMcZOnSoXbJkiQvCFhERERERaX6MMUuttUOru68u1RoNjlGxdZWJmdNOYJzz6xOBTY0NVEREREREpLWqy5qzMcAVwCpjTIpz2wPAdcC/jTF+QBFwvVsiFBERERERaQXqUq1xLmBquHuIa8MRERERERFpnepcEERERERERETcR8mZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF6g1OTPGxBpjZhhj1hlj1hhj7qhy323GmA3O7U+4N1QREREREZGWy68O+5QBf7DWLjPGhAFLjTE/AR2Bs4Eka22xMaaDOwOV1sVay2+b91FYWs7JfTt6OhwREREREberNTmz1u4Cdjm/zjPGrAO6AtcBj1tri533ZbozUGkdisvK+SplJ6/PTWP97jx8DPx45wkkdgzzdGgiIiIiIm5VrzVnxpjuwCBgIdALGGuMWWiMmWWMGVbDY643xiwxxizJyspqdMDSMmUXlPDCjM0c/88Z/PHTlVgLj57Tn5AAP574cYOnwxMRERERcbu6TGsEwBgTCnwG3GmtzTXG+AFtgZHAMOBjY0y8tdZWfZy1diowFWDo0KEWkSq27j3IG7+l8cmSdApLyxmbGMVTFw5kbGIUxhiyD5bw1E8bWbptP0O6tfN0uCIiIiIiblOn5MwY448jMXvfWjvNuTkdmOZMxhYZYyqAKEDDY3JM1lqWbDvAq7NT+WndHvx8DGcnd+XasT04rlP4YfteM7YHb8/fxj+/38BHN4zEGOOhqEVERERE3KvW5Mw43g2/Dqyz1j5d5a4vgBOBmcaYXkAAsNcdQUrLUFZewferd/Pa3DRW7Mgmso0/t4zvyZWjutEhPKjax7QJ8OOOiT158Ms1zNiQyYnHqTiIiIiIiLRMdRk5GwNcAawyxqQ4tz0AvAG8YYxZDZQAk4+c0ihSaf6WfdzzyQoysgvp3r4Nj57dj/OHxNAmoPZL8JLhcbw2N40nftjAuF4d8PXR6JmIiIiItDx1qdY4F6jp3fDlrg1HWqLUrHxueHcJUaGBvHLFEE7q07FeCZa/rw9/mNSb2/+7nC9TMjhvcIwboxURERER8Yx6VWsUqa+cwlKufWcJfr4+vH31cE7p16lBI19nDuhMvy7hPDV9I8Vl5W6IVERERETEs5SciduUV1hu/+9ytu8r4MXLBhPbrk2Dj+XjY7j31OPIyC7k/QXbXRiliEjLUlFh2ZyZ5+kwRESkAZScidv884f1zNqYxSNn92NkfPtGH29sYhSjE9rz/IzN5BeXuSBCEYe3fkvjm5U7PR2GiEv87dt1nPT0bOZtUY0uEZHmRsmZuMWnS9OZOjuVK0Z247IR3VxyTGMco2f7D5bw6uxUlxxTJCuvmMe+W8ffvllHeYVqGknz9sbcNN74LQ2AGeszPRyNiIjUl5Izcbll2w/wwLRVjIpvz1/P6uvSYw+MjeT0AZ14bU4qe/OLXXpsaZ0+XrKD0nLL7twiftuskQZvk7b3IEu3HfB0GM3CD6t38+i3azmlX0dGxbdnziZdz1J3KTuy+cPHKygo0cwUEU9SciYutSunkBveXUrHiEBevGww/r6uv8TumdSborIKnv91s8uPXVePfbuWL5ZneOz84hrlFZYPFm5nWPe2RAT789mydE+HJFVYa7n5/WVc9eYiSssrPB2OV1u2/QB3fLic5NhInr14EON7R7N+dx6ZuUWeDk2agfziMm79YBmfLUvnrXlbPR2OSKum5Excpqi0nOvfWUpBcRmvTx5G25AAt5wnPjqUi4bG8v7CbWzfV+CWcxzLtn0HeXVOGg9/vUZr35q5WRszycgu5KoxPThrYGd+XLObvKJST4clTrM2ZrFuVy65RWUsStvv6XC81rZ9B7n27SV0igjitSuHEhzgy9jEaACNnkmdPPbtWjKyCzmuUxivzEolV78HRTxGyZm4hLWWP326ktU7c/j3JYPo1THMree7Y2IiPsbw9E8b3Hqe6nyZ4igckV1Qytv6hLFZe3/BdqLDAjm5b0fOHxxDUWkF363a5emwxOnlWVvoGB5IkL8P09fs9nQ4Xmn/wRKmvLkYay1vThlG+9BAAI7rFEZUaCCzN2V5OELxdjM2ZPLfRTu4/oR4/nXhQHIKS3ltTpqnwxJptZSciUu8OHMLX63YyT2TenNS345uP1+niCCuGtODL1fsZO3OXLefr5K1li9SMhjeox0nHteBqbNTNdLSTKUfKODXDZlcMiwWf18fkmMjiY8O4bOlmq7qDZZvP8CC1P1cNzaeExKjmb52D9aqYEtVRaXlXPfOEjKyC3lt8lDio0MP3efjYxibGMXcTXupUKEbqUF2QQn3frqSXh1DufvkXvTvGsFp/Tvxxtw09h8s8XR4Iq2SkjNptJ/W7uFf0zdw1sAu3Dw+ocnOe9O4BMIC/Xjix/VNds5VGTmkZh3k3EFdufOkRHIKS3nrt61Ndn5xnQ8X7cAAlwyPAxzVQC8YEsOirfvZtu+gZ4MTXp61hYhgfy4ZHscp/TqxK6eIVRk5ng7La1RUWO7+OIVl2w/w7MXJDOnW7qh9xiZGse9gCWt3Nd0HWNK8PPTVGvYfLOHpi5IJ9PMF4O6Te3GwpIxXZm3xcHQirZOSM2mUjXvyuPPD5fTvEsET5ydhjGmyc0e08efmCT2ZuSGLBan7muScXyzfSYCvD6f370xSTCQn9enIq3NSySnU6FlzUlJWwYeLd3DicR3oGhl8aPu5g7piDHy2TKNnnrQ5M5/pa/dw5ahuhAb6ceJxHfD1MUxfs8fToXmNf3y/ju9W7ebPp/fh9AGdq93n+MQoQOvOpHrfrdrFlyk7ue3ERPp3jTi0PbFjGOckd+Xt+VtVUEbEA5ScSYMdOFjCtW8voU2gH1OvHEJwgG+TxzBldHc6hQfx+Pfr3T7lqbzC8vXKnYzvHU1EG38A7jwpkdyiMt78TfPzm5Ppa3ezN7+Yy0Ye3oOvc0Qwx/eMYtqy9FY1FSynoJQZ6zO9Ztrg1NlbCPTzYcro7gC0DQlgePd2TF+rdWcAb8/byqtz0pgyujvXHN+jxv06hAXRp3M4c7TuTI6QlVfMX75YTVJMBDdPOHrGy50nJVJabnlhhueqIou0VkrOpEFKyyu4+f1l7M4p4pUrhtA5Irj2B7lBkL8vd56USMqObH5086fq87bsJSuvmHMGdT20rX/XCCb17cjrc9O8YvRs4548hv7tJ5ZsVWW7Y3l/wXZi2gZzgrOiXVXnD44h/UAhi1rBa2it5fPl6Zz41EyuemsxMzd4/k38rpxCPl+ewUVDYw8VtwCY1K8jG/fkk7a3dU85nb5mN498vYaT+3bkwTP71jpb4YTEKJZsPaDeVXKItZYHPl9FfnEZT104sNqWN93ah3DR0Bg+WLSd9ANNXxVZpDVTciYN8ug3a5mfuo9/nDeAwXFtPRrLBUNiSIgO4ckf11Pmxl5Iny/PIMw5xaqqO0/qRV5RGa/P9fzo2X9+3cze/BKmzk71dChea3NmPvNT9/H7EXH4+hz9xvaUfp0IDfTj06Utu+fZlqx8fv/qQu76aAWx7doQFRrIuwu2eTos3pibRoWF68bGH7b9ZGehodZctTFlRza3f7icATGRPHfJoGqv3yONTYympLyChWpFIE7TlmXw09o9/HFSbxKPUVn5thMTMRj+84tGz0SakpIzqbeZGzJ5Z/42rj8hnvOHxHg6HPx8ffjjKb3ZknXQbU2EC0vK+XH1bk4b0Ikg/8Onb/btEs6p/Trx5tw0sgs8V90qNSufb1bupH1IAD+v20NGdqHHYvFmHyzcjr+v4aKhsdXeHxzgyxkDOvP9ql0tcrShqLScp6dv4LRn57BmZw6PndufaTeN5vcj4pixIZMd+z33KXlOQSkfLNzOmUmdiW3X5rD7Ytq2oX/XcKavbZ3rzrbvK+CatxYTHRbI65OH1nka+dDubQn082HORq07E9iZXcjDX69hePd2XH2MKbEAXSKDuWxkHJ8uS2/1I9YiTUnJmdTbvC37CPDz4Z5JvT0dyiGn9OtEcmwkz/y0iaLScpcf/+d1ezhYUs45yV2rvf+OkxLJKy7zaG+Yl2ZuIcDXhzemDAPgfTeOguzOKeK5XzYxf8s+St04WulqhSXlfLp0B6f270xUlSlzRzp/SAwHS8r5YXXLGqWZvTGLU56dzXO/buaMpM788ofxXDaiGz4+hkuHx+JjDO8v3O6x+N5dsJWDJeXcOK76qq+T+nZi2fYDZOa1riIFBw6WMOWtRZRby1tXDT/mtXukIH9fRsS317ozwVrLvZ+tpLzC8uSFSXUaeb15fE8CfH149ueNTRChiICSM2mAlenZ9OkcToCf91w+xhjuPfU4ducWuaUx9JcpGXQKD2JEfPtq7+/TOZzTB3Tizd/SOOCB3jA79hfw+fIMLh0ex8DYSCb26chHi3dQXOb6RBXgnz+s5+mfNnLpqwsY/OhP3PrBMqYtS/f6vjjfrNxJblEZl4+IO+Z+w7q3Ja5dG7eNxDa1zNwibv1gGVe+sQhfY/jg2hE8c3Ey0WH/e5PfOSKYk/t05OMlO9zyAUdtikrLefO3rYzvHU2fzuHV7jOpX0eshV/WZTZxdJ5TWl7B9e8uIf1AIa9eOZSEKr3M6uqExCg2ZeazK0ej6a3Zewu3M2fTXh44vQ/d2ofU6THRYYFMGdOdr1bsZMPuPDdHKCKg5EzqqaLCsjojl6QqZXe9xaiE9ozrFc2LM7eQ68LG0PsPljBzQxa/S+5yzE8a75jYi4LScl6d0/TrvV6ZvQVj4IZxjnU6k0d1Z9/BEr5btcvl59qxv4CvVuzk8pFxvHz5EE7v35mFafu5++MVDPnbT5z/0jxemLGZdbtyvab6X6X3Fm4nsUMow3sc3ROqKmMM5w3uyrwt+5r19NDyCss787cy8alZTF+7h7tP7sX3d45ldM+oave/YlQ39rvpuqnNJ0t2sO9gCTfVMGoG0LtjGHHt2rSqdWcfL9nB4q0HeOL8JIZ1P/Z1W5OxzsI3Kqnfem3de5C/f7uOsYlRXFbLh1NHuuGEeEID/Hj6pw1uis49FqTuY3UL6o24dmcuK9Oz2bQnjx37C9ibX8zB4jLKW1Fl4dbCz9MBSPOydd9B8ovLGOCFyRnAH0/pzZn/mctrc9K4++ReLjnmt6t2UVZhOTu5yzH3690pjDMGdObteVu5dmw87UICXHL+2uzJLeLjJelcMCTmUNXMMT3bEx8dwtvztnHuINeuC5w6OxUfA7dM6EnniGBO7d/JkbTvzOGXdZn8uj6TJ3/cwJM/bqBLRBAn9unAxOM6Miqh/VHr9ZrS6owcVuzI5uGzaq9wB46qjc/+vInPl6Vz64mJTRCha63OyOGBz1exMj2HsYlRPHp2f7pHHfvT8tEJjuvm3QXbOG9w060nLSuvYOqcVAbFRR4zcTbGMKlvR96Zv428olLCgvybLEZPKC4r5/lfNzM4LrLW3z/H0qtjKB3CApmzaW+Nay2l5SqvsNzzyQr8fA1PXFD/fqSRbQK4dmw8z/y8kZXp2STFRLonUBeqqLDc+sEygvx9mXHP+GorUjYnS7cd4PyX5tV4f4CvD0H+PgQH+BLs70uQvy/BAb50CAvkmYuTaROgt/vNiX5aUi+rnJ9CDYjxzuSsf9cITuvfidfnpDJldHeXJEhfLs8gsUMofWuYalXVHRMT+XbVLqbOTuW+045r9Lnr4tXZqZSVVxy2TscYw5Uju/Hw12td+sc0K6+Yj5fs4LxBMYe1T/DxMSTFRJIUE8ldJ/ciM7eIGRsy+WVdJtOWZfDegu0E+Tuadz9+fpJHpsS+v3Abwf6+nFfHIjax7dowokc7PluWwS0TejZpg/XcolKWb89m6bYDrErPptyCv4/B39cHfz8f/H0NAb4+ju99ffD3O/z77fsL+GjxdtqHBvLcpYM4K6lzneI3xnDFyG488vVaVmfkHNaY1p2+XbWLHfsL+csZtSfOp/TvxGtz05i1MYszkxqesDQHHy7awa6cIv514cBGXX/GGMYmRvPr+j2UV9g6rTWSluP1uaks2XaAZy4e2OC2N1cf35235qXx1PSNvH31cBdH6HqrMnLYm++YZv9lyk4u8ILiZY0xd9NejIEXfz+YcmspLCmnqLScwtJyCksqKCx1fl/i3FZaTlZeMT+u2UPKjmxGJ1Q/W0K8k5IzqZeV6TkE+vmQ2KH+6x6ayt0n9+KHNbt5aeZm/nxG30Yda8f+ApZsO8AfT+ldpzdHiR3DOCupi3P0rEe9Fu43xP6DJby/cDtnJ3c9ag3BeUNieOLHDbwzfxv/ujDSJed747c0SsorDk2frEmH8CAuHhbHxcPiKC4rZ2Hqfn5Ys5sPFm6nfWhAo38u9ZVbVMoXy3fyu4FdCK/HaMv5Q2L406crWbY9myHd3NMywlrL9v0FLNl6gKXbD7Bs2wE27MnDWvAxkNghjOAAX0rLK5w3S0mZ4+uyCktpWQUl5Y5b5SxSHwOXj+zGHyb1JiK4fqNL5w2O4YkfNvDegm08fn6SG57x4ay1vDwrlYToEE7u07HW/QfHtaV9SADT1+xp0clZUWk5L8zYzIge7RidUP1a1/o4oVcUny1LZ83OnGYx8iGusXFPHv/6cSOn9OtYY0GruggL8ufGcQn84/v1LN66v8FTbJvKr+szMQZ6RIXw4ozNnDuoa7P+UGJh2j76dArntAGd6/yYndmFjH78V1KzDio5a2aUnEm9rMrIoW+XcPy8eIpAYscwzh3UlXfmb+PasfF0DA9q8LG+TMkAqNeUotsnJvLNyp1MnZ3KA6f3afC56+KNuWkUlZVz8/ij1+mEB/lz7qCufLI0nT+f3oe2jRxFzC0q5b352zi9f2fi61GUINDPlxN6RXNCr2j8fAyvzkljeI/2h/pWNYUvlmdQWFrO5SO71etxpw/ozENfruGzZekuS86KSstZszOHpdsOsGTrAZZtP3DoE96wQD8GdWvLaf07M7R7WwbGRhIaWPdf0+UV9lD1zIZOIY0I9uecQV34fHkG95/ep97JXX3N2pjFul25PHFBEj51ePPk62M4qU9Hvlu1i5KyCq8qTORK7y3YRmZeMf+5dJBLRm3HONcZztm0V8lZK1FaXsHdH6cQFuTHY+cOaPR1dOWo7rw2N40nf9zAR9ePbNLZBPU1c0Mmg2IjuW5sPDe9v4xvV+3idwOb54c5JWUVLNt+gEuH12+tYKfwINoE+JKapTYIzU3L/KsmblFRYVmTkeOVxUCOdOfEXpRXWP7z66YGH8NayxcpOxnWvS0xbdvU/gCnnh1C+d3ALrwzfytZecUNPn9tcgpLeXveVk7t16nGRqJXjupOSVkFHy3Z0ejzvTt/G3nFZdxUTSJYVw+c3of+XcO555MVpB9omn5a1lreW7CNpJiIek/HDQ3047T+nfh6xc5GVzDMLSrlqjcXkfTwdM5/aT5//249G/fkcUKvaB47tz8/3nkCKQ9N4p2rh3PHSYmM6RlVr8QMHIlLkHO9QWNcPrIbRaUVfNYEjbhfnrWFTuFB9fpUf1K/juQVl7EgdZ8bI/OcgpIyXp61heN7RtVYIba+okID6dclnNkbVVK/tXhhxmZWZ+Ty2Ln9XTKLIzjAl1sn9GRR2n7mbvbe4jJZecWsSM/hxOM6cEq/TvTsEMoLv26mopkWzliVkU1RaQUjailkdSQfH0OPqBC2ZOW7KTJxFyVnUmepew9ysKS8ydahNEZc+zZcPCyWDxftYPu+hiUBa3bmsjkzn3MG1X8qyO0TEykpq+CVWVsadO66eHf+VvKKy7hlQs8a9+ndKYwRPdrx3oJtjaro5ChznsYJvaIb9fMP8vflhd8Pdi7WXk5Jmft7pC3ZdoCNe/K5fET9Rs0qnT8khryiMn5qRPPjkrIKbnpvKXM27eXKUd145YohLPnLScz84wSeviiZy0Z0o3enMK+ZdtOvSwSD4yJ5b8E2t76hWb79AAtS93Pt2B71GgEb0zOKNgG+/NhCqza+M38be/NLuMtFRY0qjU2MZtn2A+QXu6a5elZeMV+mZHhdVVaBb1fu4vlfHdP5Tu1f96lwtblkeCxdI4P51/SNXvtzn+X8AGJ87w74+BhundCTDXvy+Gld82xgvzBtPwDDe9T/g5qE6FBS9yo5a26UnEmdrcrIBmg2U2JuOzERXx/Ds780rHnmlykZ+PsazqjHHO9K8dGhnDOoK+8t3OaWhrkFJWW8PjeNCb1rT5Ymj+5O+oFCZqxveG+oj5fsYG9+SbXTJ+urW/sQHj8/iZQd2Tz54/pGH6827y3YRliQH2cObNgblFHx7ekSEdTgnmfWWu6btpLfNu/jn+cn8Zcz+3JKv05uX4/YWFeM6kbq3oPM2+K+0amXZ20hItifS+o5XSfI35fxvaP5ae2eZvtpeE3yi8t4ZdYWxveOdvk6xxN6RVFablnoohHH+6et4o4PU3j0m3Ve+0a9tSksKef+aSu55YNl9O8awcNn9XPp8QP9fLl9Yk9W7MjmZy/tNzhjfSYdwhwjxQBnJnWmW/s2PP/r5mZ5nS5M3U+vjqENKnAWHx1C+oFCj/SulIZTciZ1tjI9hyB/HxKi69a80tM6RQRx5ahufLE8g82Z9WueWV5h+TJlJ+N6dSCyTcPWat1+YiKl5ZaXZ7q+79kHC7dzoKC0TiXeT+7bkY7hgbyzYFuDzlVaXsErs1IZHBdZ72kVNTkjqTNXjurGq3PSGjUiVZt9+cV8v2o35w+OaXApYR8fw7mDuzJ7YxaZufVPtJ/9eRPTlmVw98m9OL8ZVQw7rX9n2oUE8O6CrW45/ubMfKav3cOVo7rVe/omwKS+ncjMK2ZFerbrg/Ogt35L40BBKXed5NpRM4Ah3doS7O/rkn5nK9Oz+XndHhKiQ3jjtzT++cOGZvnGtyVZtyuXs56fy4eLd3DT+AQ+uXEUEW1cv2b0/MExdG/fhqemb/C6D0dKyyuYvTGLCb07HFoT5+frw83jE1iVkXNoVK25KCuvYMnW/bX25qxJQnQo1jraIEnzoeRM6mx1Rg79ukR4dTGQI900vifB/r48/VP9Rs8WpO4jM6+YcwY1fAFx96gQznWOnu1pwJv6mhSVlvPK7FRGJ7Sv0yfr/r4+/H54N2ZvzCK1AXPPv16xk4zsQm4e79py8k2x/uyTpemUlFdw+cj6jcwc6fzBMVRY+Hx5Rr0e9/GSHfz7l01cNDSG206sefqpNwry9+XiYbH8tHYPu3Jc34h76uwtBPr5MGV09wY9fkLvDvj5GKa7KLl/YcZm7voohX/+sJ63523lh9W7WbEjmz25RU3W5DWnsJSps1M5qU9HBsZGuvz4gX6+jIxvx+xNjX+D+vRPG4ls488Xt4zhshFxvDxrC//+peFrfKXhrLW8PW8rZ7/wGzmFpbx79QjuPfU4t/X28vP14a6Te7F+dx7feqBh/bEs3XaAvOIyJhzX4bDt5w6KoWtkMP9pZqNna3flcrCknBENmNIIjpEzgC2ZSs6ak+bzLls8qrzCsjoj12ubT9ekXUgA1xzfg+9W7Wa1s0dbXXyxPIPQQD9OqkNp72O57cSelFdYXprpurVnnyxNJyuvmFuPsdbsSJeOiMXf1/Degu31OleFM/bjOoVx4hF/7BrL3evPKiosHyzczoge7ejZofqCKXUVHx3K4LhIPluWXuc/7LM3ZvHAtFWMTYxySaU0T/j98Dgs8N+F9btuarMrp5DPl2dw0dBY2jdwemdEG39Gxrd3ybqzn9bu4ckfNzB7YxavzUnloa/WcON7Szn7hd8Y8fdf6PWX7xn5918454XfuPHdpTz81RpenrWFL1MyyCksbfT5K70+N43cojLuOtl9Tc/HJkaTmnWwUR+ILN12gJkbsrjhhATCgvx59Oz+XDDE0bT9xZmbXRhty2OtZVV6DtkFJS453v6DJVz3zhIe+moNYxLa88MdYzk+0f1l089K6kLvjmE88/NGysrdv3a4rmasz8Tf1xz1GgT4+XDjuHiWbnOsc20uFjpjbeislfgoR2XlhnwwK56j5EzqJDUrn8LS8maXnAFce0I8EcH+/Gv6hjrtX1Razg+rd3Nq/06NrnrXrX0I5w/uygeLtrM7p/GjZ6XlFbw8cwuD4yIZVY/eRx3Cgji1f2c+WbqDgpK6FwP4ed0eNmXmc9P4hDqVOa8vd64/m7N5L9v3F9S7fH5Nzh8Sw8Y9+azOyK1137U7c7n5/WX07BDKi5cNdtsn2O4W264NJ/buwH8X73Bp8vzG3DQqLFw39tj98mozqV9HUrMOsjmz4W88sgtKeODzVRzXKYz5909kw6OnsfjPJ/HNbcfz2pVDefSc/tw0LoHjEx3VMzdn5fPZ0nQe/349d3yYwsWvzHdJgpZdUMIbc9M4rX8n+nVx3+/ZE3o53rTObcTUxmd+2kj7kAAmj3b83/LxMfzz/CR+N7ALT/ywgdfnprkk1pZmS1Y+V7y+iLOen8vwx37h5veXMmN9ZoOTm3lb9nLav2cze+Ne/npmX96YMqzBH3bUl4+P4a6Te5GadbDeMwrcacaGTIb3aFftVOkLh8YSHRbI8zOazwjvwrR99IgKoUMDWwIFB/jSNTJYFRubmVrfMRhjYo0xM4wx64wxa4wxdxxx/z3GGGuMUYe7FmxlumPUKamepci9QbizeebMDVks2Vr7J2a/rMskr7isUQ07q7rtxEQqKqxLPlH+YnkGGdmF3Hpi/acYTh7VjbyiMr5YvrNO+1treWHmFuLatWlQUZS6ctf6s/cWbCMqNIBT+nVyyfHOTOpCgJ9PrYVBduUUcvVbiwkL8uOtq4YTVo+m197o8lHdyMordlllxJyCUj5YuJ0zkzoT267uLSqqU9krb/rahsf2f9+sZf/BEv514UAC/Hzw8TFEhwXSv2sEJ/XtyBUju3HPKb3514UDee/aEfx89zhWPXIKqx85hZcvH8KWrHyue3tJoxfcT52dysGSMu50w1qzqhKiQ+kcEdTgdWcLU/cxd/NebhqfcNg6Tl8fw9MXDeS0/p149Ju1vNvANa4tUWFJOU/+uJ5Tn53NivRs7j/tOC4bGceC1P1c9dZiRj3+K//4bh0b99RtbXRZeQVPTd/AZa8tJCTAj2k3j+bq43s0+ej8Kf06MqBrBM/+vMmlI8gNlX6ggI178pnQu/pZHkH+vtxwQjy/bd7H0m0Hmji6+quosCxK29/otd7x0SGk7tW0xuakLh/nlgF/sNb2AUYCtxhj+oIjcQNOBlw750W8zqqMHNoE+Nar+bA3mTy6G1GhgTzxY+2L1r9IyaBDWGC9RqaOJbZdGy4cGsOHi3awM7vha3fKKywvztxC387hNf7xOZYh3drSp3M478zfWqepefO37GPFjmyuPyHe7esMXb3+bFdOIb+s28NFQ2Nd1qQ4Itifk/t25MuUjBpHkRy9zBaTX1zGG1OG0Smi4Q3QvcW4xGhi2wW77M32uwu2crCknBvHNb7yZ+eIYAbGRDB9TcOS+l/W7WHasgxuGZ9Q7xYRoYF+nNq/E09flMzibfu59YPlDR4B2ZdfzFvztnJmUhd6d2rcFNzaGGMYmxjF3M17672WzlrL0z9tJDoskMuqaU3h5+vDvy8ZxEl9OvDgF6v5eHHj+ys2Z9Zapq/ZzUlPz+KFGVs4K6kLv/5hPDeMS+Chs/qx4P6JvHLFEJJjI3l9bhqTnpnN2c/P5d35W2uc9rhjfwEXvTKf//y6mQuHxPD1bcd7rL2NMYaHf9eXPblF3P7f5U22NrMmMzY41lIeud6sqt+PiKNtG3+eb0QP1KayfnceuUVlDS4GUikhOpQtmfnNaq1da1fruxZr7S5r7TLn13nAOqBySOEZ4E+AfuIt3KqMHPp1CfeaPkz11SbAj1snJLAobf8xPzHOLihh5oZMfjewi0ufa2Uvsotemc+v6xv2RvK7VbtI23uwQaNm4PhDOnlUN9bvzmPx1to/NXxx5haiwwK5oAkqDLp6/dl/F+3AApfWs0R7bS4YEsOBglJ+raYtQWl5Bbe8v4zNmfm8dPlg+nQOd+m5PcXHx3D5iG4sStvPht31q3p6JEe/vK2M7x3tstdnUr9OpDgLd9RHTkHpoemMdal6WpOzBnbh/37Xj5/X7eG+aasa9AboldmpFJWWc8dE9601q2psYjQ5haWsrGely/lb9rEwbT+3jE8gOKD6Kd8Bfj68cNlgTugVzb3TVvJlivdMeSsuK2dPbhHrduUyb/Nevlm5k3fnb+XfP2/i4a/WcMeHy3n6p42s25Xb6Dey2/cVcM3bS7j+3aWEBPry0fUjefriZKLD/jftMMDPh1P6deLVK4ey4IGJPHhmX4rLKnjwyzUMf+wXbnl/2WHTHr9duYvTn5vDpj35PHfpIJ64YCAhDah06kpDurXj/87uz6yNWTzxg/tboxzLjPWZdGvfhviomitKtwnw49qx8czYkFWvdeiesCjN0fKisY3oE6JDOFhSTmZesSvCkiZQr//VxpjuwCBgoTHmd0CGtXZFc1zoLnVXVl7Bmp05/H64a9bueMqlI+J4dU4a/5q+gbGJUdUmON+t2k1puW1Q4+ljiWnbhveuHcH901Zy9VtLOLVfJx76XV86RwTX6fEVFZYXZmymZ4dQTm3ENL2zk7vy9+/W8c78rcf8NG5lejZzN+/lvtOOa/S6u7qqXH92ywfLePLH9fz5jL4NOk5peQUfLtrO+F7RjZ42d6SxPaOIDgvks2XpnNr/fz8Hay0PTFvFnE17efKCJMYmRrv0vJ524dBYnvppI+8t2Maj5/Rv0DGstfzn103sO1jCTS4YNas0qW9HnvxxA9PX7uGKeqwvfPTbtezNL+G1K4c1enT1ilHd2XewhGd/3kS7kAAeOL1PnR+bmVfEO/O3ck5yV3p2aJqZCWN6RmEMzNm0l0FxdeulZq3lqZ820jkiqNa+dIF+vrxy+RCufmsxd3+8An9fH05349To6nyyZAffrtrFgYMl7C8o4cDB0mM23w4L8iMi2J+vV+zkuV820b19G07t35nT+nciKSaizh+IFZWWM3V2Ki/M2Iyvj+GB04/jqjE9al13GhUayDXH9+Ca43uwZmcOny5N58uUnXy7ahfRzp5dMzdkMSgukucuGeTy322N8fsRcazblcsrs1M5rnMY5w5q+pYhRaXlzNuyl0uGxdX6s7piVDdembWF53/dzMtXDGmiCOtvYdp+YtoG0zWybu8TalI542lLZj4dG7h2TZpWnZMzY0wo8BlwJ46pjn8GJtXhcdcD1wPExbn2U2xpGpuz8ikqrWBATPMeCQj08+WOiYn86bOVTF+7p9q1SF8sz6Bnh9BDzStdaXiPdnx/xwm8OieV537ZxJynsrjr5F5MGd291mmDv6zPZP3uPJ65eGCjCnMEB/hy4dBY3p63lczcohoXGb84YwvhQX5cNqJp/8+ekdSZhWmO9WfDe7Q/tKaoPn5eu4fMvGL+4aJCIFX5+fpw7qCuvDE3jX35xYcW3z/3y2Y+WZrOHRMTuXBorMvP62ntQgI4K6kL05alc+9px9W7L1lRaTkPTFvFtOUZnJPcpdHTdKrq2SGUHlEhTF+zu87J2Yz1mXy6NJ1bJ/RkgIvW0d4xMZEDB0uYOjuV9iEB3FDHBPSlmVsoLbfc3kSjZuD4eQ7oGsGcTVl1Pu/sTXtZuu0Afzunf50+sAkO8OW1yUOZ/MYibv/vcvx9fRr0/7khVmfkcO9nK4lt14Zu7UPoERVC25AA2rUJcPwbEkDbNs5/Q/yJDA44lKDvzS9m+po9fL96F6/NSeXlWVvoGhnMKf06cdqATgyJa1vj7+BZG7N46MvVbN1XwBkDOvOXM/vU+QO4qvp1iaBflwjuP60PMzY4rtUFqfu4eXwCd53cyysLDP31rL5syszj3s9W0SMqlGQ3tII4lvmp+ygqrTjmlMZK4UH+TBnTg+d+2cTGPXn06ujeqcQNYa1jvdm43o3/oC+hMjnbe5DRPVUeojmo019YY4w/jsTsfWvtNGPMAKAHUDlqFgMsM8YMt9YetjLbWjsVmAowdOhQTX9shlY5i4EM6Brp2UBc4LzBXXl51haenr6Rk/p0PGzqYvqBAhZt3c89k3q5bWF1gJ8Pt0zoyVlJXXjoq9X87dt1fLYsg8fO7c/gGj7Bttby/K+biGvXhrOSGt53rdIVI7vx+tw0Pli0vdriA5sz8/lx7W5uGd/TI8UsHji9D8u2H+CeT1bw7e3HE9O25k+IDxaXsWZnLivTs1mdkcOqjBxS9x6ka2Qw4xuwLq8uzh8cw9TZqXy1YidXjenBp0vTeebnjZw/OIY7T2q6N9hN7YpR3fhsWTqfL8+o1wjV7pwibnh3CSvSc7j75F7c1sBpuTUxxjCpX0den5NGTmEpEcHHvmZzCku5f9oqenUM5baJrus9Z4zhobP6sb+glH98v562IQFcVEuiviunkPcXbuf8wV3pfoypWO4wNjGKl2elkldUWuv/c2stT0/fQNfI4FqfU1UhgX68edUwLn99Ebe8v4ypVw5x2//LSmXlFdw/bRXtQwP56tbja70ejhQVGsjvR8Tx+xFxZBeU8NPaPfywejfvLdjGG7+lER0WyCn9OnJa/86M6NEOP18fduUU8ug3a/lu1W56RIXwztXDOaFX499UV057dFVRI3fy9/XhxcuG8Lvn53LDu0v4+tbjG1xhsCFmrM8k2N+3zsUzrhrdndfnOEY4/33JIDdHV39bsvLZd7CEkQ3sb1ZVx/BAQgJ82dKIqrbStOpSrdEArwPrrLVPA1hrV1lrO1hru1truwPpwOAjEzNpGVZl5BAS4HvMedzNhZ+vD3ee3IsNe/L4esXhVQu/cn5/touqNB5LXPs2vDFlGC9fPpgDB0s4/6V53D9tVbWLwOds2suK9BxuGp/gksIc3aNCGNcrmg8Wbqe0mgIGL89yNAe+akz3Rp+rIWpaf3awuIxFaft5fW4ad364nIlPzaT/wz9y0Svz+du361iQup8eUaHcObEX7107wm3rI3t3CmNA1wg+XZrOb5v3ct9nKzm+ZxT/OK959jKrq4ExEQzoGsF787fVeT3O0m0HOOv5uWzOzGfqFUO4fWKiW16jSX07UVZhmbnh6LWAR3rs27Vk5RfzrwsHEujn2im7Pj6Gpy4cyNjEKO77bCXTa6lw+eKMLVRUWG5rxJq3hhqbGE15hWX+ln217vvr+kxWpOdw+8Se9Z4CGhbkzztXDSexYyg3vLuUeZsbXsK/Lt6Zv41VGTk8dFbfeidmR4psE8CFQ2N5fcowlj54Ev++JJmh3dry6dJ0LnttIcMe+5lb3l/GxKdm8cu6TO6Z1Isf7hzrksSsOWoXEsBrk4eSV1TG9e8ubXQF07qy1vLr+kzG9Gxf52n4bUMCuHxUN75esZM0L6xkWNmLzRWzDIwxxEeHqmJjM1KX37JjgCuAE40xKc7b6W6OS7zIqowc+nWNcEufK084c0BnjuvkaJ5ZmZxYa/lieQZDurVtsrn8xhhO7d+Zn/8wjmvG9ODjJTuY+NQsPlt6eKPj52dsplN4EOcNdl3SOHl0NzKrKY+ekV3IF8szuGRYXJP1y6lO1f5nl0ydf1gi9ug3aw9LxN6YMpRFf57Iggcm8trkodxxUiI93PxBwvmDu7JmZy7Xvr3E0cvs8sEuqwrprYwxXDGyGxv25LEorfaWFB8v2cGlUxfQJsCXz28ZwyQ3fvo/KDaSqNBAptfSimHGhkw+XpLODSfEkxQT6ZZYAvx8ePnyISTFRHLrf5ezILX65Cf9QAEfLt7ORcNiPbJ+aHBcW0ICfGstqV9ZoTGuXRvOG9ywtUQRbfx595oRdG8fwjVvL2FxHVqaNMTO7EKemr6BCb2jXd7+IyzIn7OTu/LS5UNY/uAkXr7cUfRk3pa9jE6I4ue7x3HriYkuT/ibm+M6hfP0Rcmk7Mjmgc8bViCnvrZk5ZN+oLDeo7LXHh+Pv68PL3lh4/SFafvpGB5It/au+d0QHx2ikbNmpC7VGudaa421Nslam+y8fXfEPt2tte79OEw8orS8grU7c0lqhs2na+LjY7hnUm+27Svg06WOnlXrduWxcU++ywuB1EVooB9/ObMvX996PHHt2/CHT1Zw6asL2JzpeBO8KG0/N4yLd+kf/XG9OhDbLph35h1eHv3V2akAXHdC45oDu8IZSZ254YR4ducU0SMqpMZE7MTjOtIhrGkXOf8uuSv+vobwYD/emDKM8Gbey6yuzhrYhfAgv2OW1S8rr+Dhr9bwp09XMrxHO768ZYzb13T4+BhO7tuRmesza/y0PreolPs/W0Vih1DucPP005BAP96cMoy4dm247u0lrNl5dFW4F2ZsxmC4dYLrplbWR4CfD6MS2jNnU9Yx9/txzR7W7Mzl9omJjVrr1C4kgPeuHUHnyCCufnOxy5viWmv565drqLDwf2f3d+sodnCAL6f278y/LxnE8r9O4rXJQ72qQIenndq/E3ed1ItpyzKapCF5ZfXcuqw3qyo6LJBLh8cxbVmGS1q4uIpjvdk+RvRo77LrOCE6lJ05hRSWNM1opjROy/6oVxpt0558issqXLZo3ltM7NOB5NhInvtlE0Wl5XyZkoGfj3Frs+Xa9O0Szmc3jubv5w5g3a48Tvv3HO7+OIX2IQFcMsy1hTl8K8ujb93P+t25gKPX0oeLt3N2ctdGV4dylftP78O8+yfy2uRhHkvEqtMuJID3rhnBpzeOpouXvFZNobKgzA+rd5OZd3Tp+gMHS7jyjUW8NW8rV4/pwVtXDSOyTUCTxDapX0cOlpTXOE3vsW/WkZlX5JbpjNVpGxLAO1cPJyzIj8lvLGbbvv9NKdq+r4BPlqTz+xFxHr1+xiZGs3VfAdv3Vf/GtKLC8uzPG4mPCuGc5Mavd40OC+Sdq4fj7+fD9e8sIa/IdY2Lf1yzm5/X7eGukxOVKHmB207syWn9O/H379Yxa+OxPwBorBnrs+jdMaxBf7duGBePMY7p/N5i274C9uQWu7RwUnx0CNbilVM45WhKzuSYKvuADGhBI2fgmKL1x1N6syuniPcWbOOrFTsZ1yuadiFN80ayJj4+ht+PiOOXP4zjrIFdSD9QyI3jau4p1BgXDY0l0M+Hd+Y7RkHemreV4rIKbhrv+VGz5mBEfPtW+Sbw8pHdKKuwfLTo8AbD63fn8rsX5rJk6wGevCCJv57V1+3Ny6sandCe0EA/pq89ep3XrI1ZfLRkBzeMS2BgE1aR6xIZzDvXjKC8ooLLX19IprMX23O/bsLXx3DzeNe1FGiIsYmOym1zNlf/5vm71btYvzuPO05KdNnPMqZtG174/WC27ivgro9WUOGCxsW5RaU89NUa+nYO5+oxPVwQpTSWj4/hqYsG0rtTOLd+sIxUF4+UVsotKmXx1v31HjWr1DkimAuGxPLx4vR690p0l8pp4yPjXZecVVZsTN2rqY3NgZIzOaaVGdmEBfrRvX3zLwZypDE9oxid0J4nftjArpwij0xprElUaCBPX5TM/PtP5Nqx7nmz0TYkgN8N7MLnyzLYmV3I2/O2MqlvR3p28L6ywuI9ekSFMDYxig8WbT/UHPeH1bs578V5FJdW8OENIz3STiDQz5fxvaP5ae0eyqu84c8tKuW+z1bSs0NokzV5rqpnh1DevGo4+/Ido4opO7KZtiydK0Z2a9JqdtXpERVC18hg5mw8elVCeYXl2Z83kdghlDNdUCW2qlEJ7XnwjD78vG4Pz/26qdHH+9ePG8jKK+Yf5w1o0g8E5NjaBPjx6pVD8Pf14dp3lpDrwpHSSr9t2ktZheXEBiZnADeNS6DcWqY6p/V72oK0fbQPCTiUULlCj6gQjIEtmRo5aw70W0yOaVVGLv26hreYYiBHuueU3pSUVxAS4MtJfZqmB099dI4Iduvaicmju1NYWs6UNxeRW1TGzeM9s/5FmpcrRnZjV04RP6/bw7M/b+TG95aS2DGMr287vsaWEE1hUr9O7M0vYfn2A4e2/eO7dezJLeLJC5KarKH6kZJjI5l6xVC2ZOVz4cvzCPTz5UYPj5qBYwbBCb2i+G3L3kOJdqWvV+xkc2Y+d57Uyy2VTyeP7s75g2N49udNtVa1PJZl2w/w7oJtXDmqe5OOikrdxLRtw0uXDWb7vgJu/+/ywz44cYVf12cSHuTH4LjIBh8jrn0bzknuyvsLt7Evv9h1wTXQwtT9DO/RzqV/+4P8fekSEayRs2ZCyZnUqKSsgnW7ct1W1cwbDI5ry5WjunHdCfFumTro7fp3jWBQXCQb9+Qzpmd7vbmROjnxuA50iQjizo9SePbnTZw3uCsfXT+Sjh4eCRrfOxp/X3OoauPsjVn8d9EOrjshnkEeTBoBjk+M4tmLB1FWYblqTHeiPFgNtaqxidHkFZWxIj370Lay8gr+/csmjusUxmn93VNl0xjDY+f2Z2BMBHd9lMLmzLx6H6O0vIIHpq2iU3gQ95zS2w1RiiuMiG/PI2f3Y+aGLJ74cb3LjltRYZm5MYsTekU3esT05gkJFJdVNEkBk2NJP1BARnZhnfu11UdCh1CXF+IR91ByJjXauCePkrKKFrfe7Ej/d3b/apsxtxaVazRu8VDVOGl+/Hx9mDKmOyVlFfzljD48deFAj41KVRUe5M+ohCh+XLObvCJHs+mE6BDu8pL/32ckdWbuvSdyzyTvSSRGJ7THx8DsKlMbP1+eQdreg9x1ci+3zpoI8vfl5SuGEBzgy3XvLCWnsH7T3l6bk8b63Xk88rt+hAb6uSlKcYXLRnTj8pFxvDIrlS+WZ7jkmGt25pKVV8wEFzQ2T4gO5YwBnXln/jZyClw//bKuKtebDXdB8+kjxUeFkJp1sEnaG0jjKDmTGrXUYiByuDOTOjP33gmMTojydCjSjFw3Np7Ffz6Ja8fGe1Xz7VP6dWTbvgJuem8Zu3IKedJLEsdKXSODvWqaeGSbAJJiIg+V1C8tr+C5XzfRv2s4k/q6f6p354hgXrp8CDv2F3Dnh3Wf9rZ9XwH//mUjp/Tr6NYeeuI6D53VjxE92vGnz1ayYkd2o4/36/pMjIFxvV3T9PuWCT3JLy7jrXlbXXK8hliYup/wID+O6+T6td8JHUIpKClnt5cUPpGaKTmTGq3MyCEsyM9lTRDFOxljiGmrn7HUjzHGo43Ka3Kyc+3o3M17uXZsvEfXwDUXJyRGkbIjm5zCUj5dms6O/YXcfXKvJku6h3Vvx0O/68eMDVk889PGWve31vLnL1bh5+PDw7/r1wQRiiv4+/rw4mWD6RAWyA3vLm30+q4ZGzJJiol02RThPp3DmXhcB96Zv7XGfonutmirY72ZOz7ASYhyFHZLzVJREG+n5ExqtCo9h6SYCK/6VFxE5Fg6hAcxvEc74qNDuPtk75jO6O3G9oqmwsLMDZk8/+tmkmMjXTJVrD4uHxHHJcNieX7GZr5fteuY+361YidzNu3lnkm96BzRevoMtgTtQwN55Yoh7C8o4c6PUhpcIGRffjEr0rM50cXX6XUnxLPvYAnTlrlm6mV9ZOYWkbb3ICPcMKURHCNngNadNQNKzqRaxWXlrN+dS39NaRSRZubVK4fy+c1jvGo6ozdLjo0kNNCPR79ZR0Z2046aVTLG8MjZ/RgUF8kfPlnBht3VFwjJLijh0W/WMjA2kitGdW/SGMU1+nWJ4P9+1485m/by3C8Na6Uwa2MW1tKoEvrVGdGjHUkxEbw2J9UlPfjqY6FzvdkIF/Y3q6pDWCAhAb4aOWsGlJxJtTbuzqe03JLUNdLToYiI1EtEsD8Rwf6eDqPZ8Pf1YVRCe/bmFzO0W9tDzambWqCfLy9fPoTQQD+ue2cJ2QUlR+3z+PfrOVBQyj/OHeCWEv/SNC4eFsv5g2N47tdNzN5YfRP0Y/l1fSZRoYH06xLu0riMMVw3Np7UvQf5ZX2mS49dm4Vp+wgN9KNvZ9c+p0rGGFVsbCaUnEm1VqkYiIhIq1E5jfHuSU0/alZVx/AgXrp8CLtyCrntiL5Yi9L28+HiHVx7fA/6uvhNuTQtYwx/O6c/vTqEcedHKezKKazzY8vKK5i9MYsJvaPdsjbrtP6d6BoZzKtN3JR6Yep+hnRr69ZG6pUVG8W7KTmTaq3KyCYi2J/YdprPLyLS0l00NIZvbjveK6q2DunWlkfP7s+cTXt58scNgGOq/f3TVhLTNpg7Tkr0cITiCsEBvrx4+WCKS8u55f1llB7RCL0my7Znk1tUxgQXT2ms5OfrwzXH92DR1v2HNbR3p335xWzKzGe4G/qbVZUQHUpGdiEFJWVuPY80jpIzqdZKFQMREWk1/Hx9vGqN8SXD47h8ZBwvz9rC1yt28vLMVLZkHeRv5/SnTYB6mrUUCdGh/POCJJZtz+bx7+vWoPrX9Zn4+RiOd+P024uGxRIe5Mdrc5qmKfXirY71ZiPdtN6sUny0oyhI2l6NnnkzJWdylKLScjbuyfOqP9QiItK6/PXMfgzr3pY/frqCF2Zs5qyBXRjfxFUkxf3OTOrClNHdeX1uGj+sPnalTnBUFR3avS3hQe5bVxoa6MdlI7vx/epdbN9X4LbzVFqYtp8gfx8GuHmdf0IHRzn9LZra6NWUnMlRNuzOcxYDUXImIiKeEeDnw4uXDSEyOIAgfx8ePLOPp0MSN3ng9D4MjI3kj5+sZOsxRnUysgtZvzvP5VUaqzNldHd8fQxv/Ob+0bOFqfsZHNeWAD/3vi3v3j4EYyBVRUG8mpIzOUplMRCNnImIiCdFhwXy5a1j+OKWMXQIC/J0OOImAX4+vPD7Qfj6Gm56f1mNTaBnbnBUUGyKPnwdw4M4O7krHy3eUW3lUFfJKShl3e5ct/U3qyrI35eYtsEaOfNySs7kKKvSc2jbxp+YtioGIiIintUxPOjQWhlpuWLatuGZi5NZtyuXh75cU+0+M9ZnEtM2mJ4dmuZ6uG5sPIWl5by/cLvbzrFk236sxe3FQCrFR4Vq5MzLKTmTo6zMyGFATKSKgYiIiEiTmdC7A7dO6MlHS3bwyZIdh91XVFrOb5v3ceJxHZrs/UnvTmGM6xXNm79tpbis+tG8xlqYtp8AXx8GxUW65fhHSogOJTXrYJM32Za6U3ImhykqLWfTnjwGdFUPGREREWlad53ci1Hx7Xnwy9Ws3517aPvCtP0UlpY3yZTGqq4/IZ69+cV8uXynW46/MHUfybGRBPn7uuX4R4qPDqGwtJzduUVNcj6pPyVncph1u3Ipq7BurxgkIiIiciRfH8O/L00mPMifm95bRl5RKeCY0hjo58OoBPevzapqdEJ7+nYOZ+qcVJePNuUXl7F6Z26TTWkEx8gZwBZNbfRaSs5aGGsb94tjtbMYSFKMioGIiIhI0+sQFsR/Lh3E9v0F3PfZKqy1/Lo+k9EJ7ZtshKmSMYbrT4hnc2Y+szZmufTYS7cdoLzCMsLN/c2qSoh2lNNPVVEQr6XkrIUor7BMnb2F5P/7iW9X1t4npCYr03NoHxJA5whVxRIRERHPGBHfnj+e0ptvV+3ika/Xsn1/QZOU0K/OGUmd6RwRxNTZqS497qK0ffj6GAbHtXXpcY8lOiyQsEA/jZx5MSVnLUBqVj4XvjyPv3+3Hmst9322kh37G9Y0cVVGDgNiIlQMRERERDzq+rHxnNSnI2/N2wrgsSbk/r4+XDWmO/NT97EqPcdlx12Yup8BXSMICfRz2TFrY4whPjpEI2deTMlZM1ZRYXljbhqnPzeHzZn5PHtxMt/ePhaAuz5Koay8ol7HKywpZ1NmPgPU30xEREQ8zMfH8NSFA4ltF8xxncKIbdfGY7FcMjyO0EA/Xp3jmtGzwpJyVqRnN+mUxkoJ0aEaOfNiSs6aqe37Crjk1QX83zdrGRXfnp/uHsc5g7oS264Nfzu3P0u2HeD5GZvrdcy1u3Ipr7BKzkRERMQrRLTxZ9pNY3jrquEejSM8yJ9Lh8fy7apdZGQXNvp4y3ccoLTcMqIJi4FUio8OYVdOEQeLy5r83FK7Vp+clZVXuK13hTtUVFjenb+VU/89m3U7c3nygiTemDKMjuH/WyN2dnJXzhvUled+2cSSrfvrfOxV6dkAJMVEujhqERERkYaJDgukkxeshb9qTA8M8ObctEYfa2HqfoyBod09M3IGkLZXUxu9UatOzqy13PT+Mu78MIXyZtCML/1AAVe8sZAHv1zDkG5t+fGuE7hwaGy168MeObsfMW3bcMeHKeQUltbp+KsycokKDaRjeKCrQxcRERFp1rpEBnNmUmf+u2h7nd9b1WRh2j76dg4nPMjfRdHVXbzK6Xu1Vp2cGWMYGd+e71fv5qGvVje6DL27WGv576LtnPrsHFK2Z/OP8wbwztXD6RIZXONjwoL8efaSZHbnFvGXL+r23FZlZJOkYiAiIiIi1bp2bDwHS8r5cNH2Bh+juKyc5duzGdGjaXu2VerWvg0+BraoKIhXqjU5M8bEGmNmGGPWGWPWGGPucG5/0hiz3hiz0hjzuTEm0u3RusE1x/fgxnEJvLdgO//5tX5rtJrCrpxCJr+5mPunrWJA1wh+uPMELh0eV6cEanBcW+46KZGvV+xk2rKMY+5bUFLGZhUDEREREalR/64RjOnZnjd/20pJWf0Kr1VamZ5DcVmFR4qBAAT5+xLTtg2pGjnzSnUZOSsD/mCt7QOMBG4xxvQFfgL6W2uTgI3A/e4L073uPbU35w+O4emfNvLBwoZ/EuJqny1NZ9Izs1mctp//O7sf7187ot6Vim4a35PhPdrx1y9Xs/UYc4vX7sylwqLkTEREROQYrhsbz+7cIr5ZubNBj1+U5qgHMMwD680qJUSHaOTMS9WanFlrd1lrlzm/zgPWAV2ttdOttZVlXhYAMe4L072MMTx+/gAm9I7mL1+s4ofVuz0aT3mF5f++XssfPllBn07h/HDnWK4c1R0fn/pPN/T1MTx7cTK+PoY7PkqhtIby+iudfTsGxCg5ExEREanJuF7R9O4YxtTZqQ1aErMgdR+9O4bRLiTADdHVTXx0KGl786loBjUXWpt6rTkzxnQHBgELj7jrauB7F8XkEf6+Prxw2WAGxkZy+4fLWZi6zyNxFJaUc9N7S3njtzSuGtOd/14/km7tQxp1zC6RwTx+fhIrdmTz7M8bq91ndUYOHcICD6v6KCIiIiKHM8Zw7dgerN+dx9zNe+v0mOKyctbvzuWblTtZuu0Awz1QQr+qhOhQikor2JnT+LYA4lp1bklujAkFPgPutNbmVtn+ZxxTH9+v4XHXA9cDxMXFNSpYd2sT4Mcbk4dxwcvzuPadJXx8wyj6dA5vsvNn5RVz7duLWZmRw0Nn9eWqMT1cduzTB3Tm4qGxvDhzC8f3jGZUwuGLUFdm5JCkUTMRERGRWv0uuQtP/riBqbNTGZsYfWh7fnEZWzLz2ZyZzybnv1uy8tm27yCVg1R+PoZJ/Tp6KHKH+GjHB/+pWQeJaeu55t5ytDolZ8YYfxyJ2fvW2mlVtk8GzgQm2hrGda21U4GpAEOHDvX6sdO2IQG8c80Izn9xHpPfWMRnN41uko70mzPzmPLmYvbmF/PK5UOY1K+Ty8/x17P6smjrfu7+OIXv7xhLZBvHcPrB4jK2ZOVzVlIXl59TREREpKUJ9PNlypjuPPHDBu6ftor0AwVsycxnZ07RoX38fQ3d24fQp3MYZyV1JqFDKIkdwoiPDiHI39eD0f+v19mWrHxO6BVdy97SlGpNzoyjLODrwDpr7dNVtp8K3AuMs9YWuC/Eptc1Mph3rhnOBS85ErRPbhxF+1D39f6av2UfN7y7hAA/Xz66fhQDYyPdcp6QQD+eu2QQ5730G/d9toqXLh+MMYY1O3OxFgbENN0ooYiIiEhzdtnwbrw6O5UvlmeQ0CGEEfHt6dkhlIToUBI7hhLXrg3+vt7ZtSoqNICwID9SVRTE69Rl5GwMcAWwyhiT4tz2APAcEAj85CzrvsBae6M7gvSEXh3DeGPKMC57bSFXv7WYD64bSUhgnWeB1tm0Zenc+9lKurUP4c0pw9w+SjcgJoJ7JvXmH9+v56PFO7hkeBwr07MBR3lYEREREaldRBt/Fj5wEn4+pkFF2zzJGEN8dKgaUXuhulRrnGutNdbaJGttsvP2nbW2p7U2tsq2FpOYVRravR0v/H4wq3fmctP7yxrcz6I61lr+/fMm7v54BcO6t2uy6ZPgKAE7pmd7Hvl6LVuy8lmdkUPniCA6hKkYiIiIiEhdBfj5NLvErFJCdIhGzryQd461epGT+nbk7+f2Z/bGLO79bKVLSo6WlFVwzycreebnjZw/OIa3rhpORLC/C6KtGx8fw1MXJhPk78Pt/13O8h3ZGjUTERERaUUSokPZnVtEfnFZ7TtLk1FyVgcXD4vjj6f05vPlGfzj+3WNOlZOYSlT3lzEZ8vSueukXvzrwiQC/Jr+x9ApIoh/np/Emp25bNtXQJKSMxEREZFWI8FZsTFNo2deRclZHd08PoEpo7vz6pw0ps7e0qBj7NhfwAUvzWPx1v08deFA7jgpEed6PY+Y1K8Tl41wtDdQ82kRERGR1iO+SsVG8R6ur3DRQhlj+OuZfcnKL+bv361nxY4cItr4E+TnS3CAD8H+vgQ5b5VfBwf4HNqWW1jKPZ+spLisnLevHs7ohChPPyUAHjyzL8N7tDusR4eIiIiItGzd2rfBx0CqkjOvouSsHnx8DE9fNJAAXx+WbNtPYUkFxaXlFJSWU16HtWhdI4P573UjSOwY1gTR1k2Qvy9nJ3f1dBgiIiIi0oQC/XyJbdeGLZrW6FWUnNVToJ8vz1ycfNT20vIKCkvLKSotp6jE8XVhaTmFJeUUlZVTXFrByPh2hxo/i4iIiIh4UoLK6XsdJWcu4u/rg7+vD+FBTVd1UURERESkoeKjQvht814qKmyzbQnQ0qggiIiIiIhIK5TQIZTisgoysgs9HYo4KTkTEREREWmF4qMc5fQ1tdF7KDkTEREREWmFEjo4yumnqiiI11ByJiIiIiLSCrUPCSA8yI/UvRo58xZKzkREREREWiFjDAkdQtmSqZEzb6HkTERERESklYqPCtXImRdRciYiIiIi0koldAhhT24xeUWlng5FUHImIiIiItJqxUc5ioKk7dXURm+g5ExEREREpJXq2UHl9L2JkjMRERERkVYqrl0Ivj5G5fS9hJIzEREREZFWKsDPh7h2bTRy5iWUnImIiIiItGLxUSEaOfMSSs5ERERERFqxhA6hpO49SHmF9XQorZ6SMxERERGRViw+KoSSsgp2Zhd6OpRWT8mZiIiIiEgrltDBUU5/s9adeZySMxERERGRViw+ylFOX+vOPE/JmYiIiIhIK9YuJIDINv6q2OgFlJyJiIiIiLRixhhnxUYlZ56m5ExEREREpJVLiA5li6Y1epySMxERERGRVi6hQyhZecXkFJR6OpRWTcmZiIiIiEgr179LBAAr0rM9G0grp+RMRERERKSVS4qNwBhI2ZHt6VBatVqTM2NMrDFmhjFmnTFmjTHmDuf2dsaYn4wxm5z/tnV/uCIiIiIi4mrhQf4kRIcqOfOwuoyclQF/sNb2AUYCtxhj+gL3Ab9YaxOBX5zfi4iIiIhIMzQoNpLl2w9grfV0KK1WrcmZtXaXtXaZ8+s8YB3QFTgbeNu529vAOW6KUURERERE3Cw5LpIDBaVs31/g6VBarXqtOTPGdAcGAQuBjtbaXeBI4IAOLo9ORERERESaRHJsJKB1Z55U5+TMGBMKfAbcaa3NrcfjrjfGLDHGLMnKympIjCIiIiIi4ma9O4YR7O/L8u3Zng6l1apTcmaM8ceRmL1vrZ3m3LzHGNPZeX9nILO6x1prp1prh1prh0ZHR7siZhERERERcTE/Xx8GdI3QyJkH1aVaowFeB9ZZa5+uctdXwGTn15OBL10fnoiIiIiINJVBcZGs3ZlLcVm5p0NpleoycjYGuAI40RiT4rydDjwOnGyM2QSc7PxeRERERESaqeTYSErKK1i7s86rmMSF/GrbwVo7FzA13D3RteGIiIiIiIinJMdFAo6iIIPi1Ma4qdWrWqOIiIiIiLRcnSOC6RgeqHVnHqLkTEREREREDkmOjVRy5iFKzkRERERE5JBBcW3Ztq+A/QdLPB1Kq6PkTEREREREDvlfM+oDng2kFVJyJiIiIiIihwzoGoGPgRQ1o25ySs5EREREROSQkEA/enUMY7nWnTU5JWciIiIiInKYQXGRrNiRTUWF9XQorYqSMxEREREROcyg2LbkFpWRtu+gp0NpVZSciYiIiIjIYSqbUS/XurMmpeRMREREREQOkxAdSmignyo2NjElZyIiIiIichhfH0NSTISaUTcxJWciIiIiInKUQXGRrN+VR1FpuadDaTWUnImIiIiIyFGSY9tSVmFZnZHj6VBaDSVnIiIiIiJylOTYSEBFQZqSkjMRERERETlKdFggXSODte6sCSk5ExERERGRaiXHRSo5a0JKzkREREREpFqDYiPJyC4kM6/I06G0CkrORERERESkWoOczahTtO6sSSg5ExERERGRavXrEoGfj9HUxiai5ExERERERKoV5O9Ln87hqtjYRJSciYiIiIhIjZJjI1mZnk15hfV0KC2ekjMREREREanRoLhIDpaUszkz39OhtHhKzkREREREpEaVzahTdhzwbCCtgJIzERERERGpUY+oECKC/VUUpAkoORMRERERkRoZYxgYG6miIE1AyZmIiIiIiBxTcmwkG/fkcbC4zNOhtGhKzkRERERE5JgGxUVSYWFleo6nQ2nRlJyJiIiIiMgxJcdEAmjdmZspORMRERERkWNqGxJA9/ZtVLHRzWpNzowxbxhjMo0xq6tsSzbGLDDGpBhjlhhjhrs3TBERERER8aRkZ1EQa9WM2l3qMnL2FnDqEdueAB6x1iYDf3V+LyIiIiIiLVRybCSZecXsyinydCgtVq3JmbV2NrD/yM1AuPPrCGCni+MSEREREREvMiiuLaB1Z+7U0DVndwJPGmN2AP8C7ndZRCIiIiIi4nX6dA4nwM9HyZkbNTQ5uwm4y1obC9wFvF7TjsaY653r0pZkZWU18HQiIiIiIuJJAX4+9OsSToqaUbtNQ5OzycA059efADUWBLHWTrXWDrXWDo2Ojm7g6URERERExNOSYyNZmZFNaXmFp0NpkRqanO0Exjm/PhHY5JpwRERERETEWyXHRlJUWsGG3XmeDqVF8qttB2PMf4HxQJQxJh14CLgO+Lcxxg8oAq53Z5AiIiIiIuJ5g6sUBenfNcLD0bQ8tSZn1tpLa7hriItjERERERERLxbTNpj2IQGk7Mjm8pHdPB1Oi9PQaY0iIiIiItLKGGNIjo1UxUY3UXImIiIiIiJ1lhwbyebMfHIKSz0dSouj5ExEREREROosOS4SgJXp2R6NoyVSciYiIiIiInU2MDYSY1C/MzdQciYiIiIiInUWHuRPQnSo1p25gZIzERERERGpl8qiINZaT4fSoig5ExERERGRekmOjWTfwRLSDxR6OpQWRcmZiIiIiIjUS3JsJADLth/wbCAtjJIzERERERGpl+M6hRHk76N1Zy6m5ExEREREROrFz9eHpK5qRu1qSs5ERERERKTekuMiWbMzl5KyCk+H0mL4eToAERERERFpfq4c1Y1LhsXi72s8HUqLoeRMRERERETqLaZtG0+H0OJoWqOIiIiIiIgXUHImIiIiIiLiBZSciYiIiIiIeAElZyIiIiIiIl5AyZmIiIiIiIgXUHImIiIiIiLiBZSciYiIiIiIeAElZyIiIiIiIl5AyZmIiIiIiIgXUHImIiIiIiLiBYy1tulOZkwWsK3JTlh3UcBeTwchrYKuNWkqutakKeg6k6aia02aSlNca92stdHV3dGkyZm3MsYssdYO9XQc0vLpWpOmomtNmoKuM2kqutakqXj6WtO0RhERERERES+g5ExERERERMQLKDlzmOrpAKTV0LUmTUXXmjQFXWfSVHStSVPx6LWmNWciIiIiIiJeQCNnIiIiIiIiXqBZJWfGmFONMRuMMZuNMfdV2f6RMSbFedtqjEmp4fHtjDE/GWM2Of9t69x+WZXHpxhjKowxydU8/n3n+VcbY94wxvg7txtjzHPOuFYaYwa75xWQpuLF19pxxpj5xphiY8w97nn20pS8+Fq7zPn7bKUxZp4xZqB7XgFpKl58rZ3tvM5SjDFLjDHHu+cVkKbixmvN3xjztjFmlTFmnTHm/hoe38MYs9D5+I+MMQHO7Xq/1oJ48XXWuPdq1tpmcQN8gS1APBAArAD6VrPfU8BfazjGE8B9zq/vA/5ZzT4DgNQaHn86YJy3/wI3Vdn+vXP7SGChp18v3VrstdYBGAY8Btzj6ddKtxZ9rY0G2jq/Pk2/15r3zcuvtVD+t8wiCVjv6ddLN++81oDfAx86v24DbAW6V/P4j4FLnF+/rPdrLe/m5ddZo96rNaeRs+HAZmttqrW2BPgQOLvqDsYYA1yE45d+dc4G3nZ+/TZwTjX7XFrT462131knYBEQU+W47zjvWgBEGmM61/mZibfx2mvNWptprV0MlNbrGYm38uZrbZ619oBztwX87/edNE/efK3lO7cBhABaDN+8ufNas0CIMcYPCAZKgNxqjn0i8Gk1j9f7tZbDa6+zxr5Xa07JWVdgR5Xv053bqhoL7LHWbqrhGB2ttbsAnP92qGafi6n5hwg4hjuBK4Af6hGbNB/efK1Jy9JcrrVrcHzaLM2XV19rxphzjTHrgW+Bq4/1ePF67rzWPgUOAruA7cC/rLX7j3hseyDbWltWzfn1fq3l8ObrrFGaU3Jmqtl25KdrNX5iV6cTGDMCKLDWrq5l1xeB2dbaOfWITZoPb77WpGXx+mvNGDMBR3J2b0NjEK/g1deatfZza+1xOD55frShMYhXcOe1NhwoB7oAPYA/GGPi63F+vV9rObz5OmuU5pScpQOxVb6PAXZWfuMcejwP+KjKtjediwG/c27aUzl87fw384hzXELtn/g9BEQDd9c1Nml2vPlak5bFq681Y0wS8BpwtrV2Xz2el3gfr77WKllrZwMJxpioujwp8UruvNZ+D/xgrS211mYCvwFDjzj/XhzTFf2qOb/er7Uc3nydNUpzSs4WA4nOyigBOP4IfFXl/pNwLCJOr9xgrb3KWptsrT3duekrYLLz68nAl5X7GmN8gAtxzFmtljHmWuAU4FJrbUWVu74CrnRWARoJ5FQOk0qz5M3XmrQsXnutGWPigGnAFdbajY14juIdvPla6+lcv4FxVM8LAPRhQPPlzmttO3Ci8/1WCI6iHuurnty5fnEGcEE1j9f7tZbDm6+zxrFeUHGlrjccVXY24qjO8ucj7nsLuLGWx7cHfgE2Of9tV+W+8cCCWh5f5jx3ivP2V+d2A7zgvG8VMNTTr5VuLfZa64Tj06JcINv5dbinXy/dWuS19hpwoMr2JZ5+rXRrsdfavcAa57b5wPGefq10885rDUdlz0+c18ta4I81PD4eR9GZzc79A53b9X6tBd28+Dpr1Hu1ytK1IiIiIiIi4kHNaVqjiIiIiIhIi6XkTERERERExAsoORMREREREfECSs5ERERERES8gJIzERERERERL6DkTERERERExAsoORMREREREfECSs5ERERERES8wP8DwCm3U+wG+J0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACG4UlEQVR4nO3dd3yb1fX48c/13nsksR2P7O0kziIhi4SwVxmllD0KhR8thVJa2kK/3dBSSlvKLDMto0ALlJEEMsmysx1ne8R77y3p/v6QZJzEQ7K17Jz36+VXbOkZV/YTW+e555yrtNYIIYQQQgghhHAvL3cPQAghhBBCCCGEBGdCCCGEEEII4REkOBNCCCGEEEIIDyDBmRBCCCGEEEJ4AAnOhBBCCCGEEMIDSHAmhBBCCCGEEB5AgjMhhBBCCCGE8AASnAkhxBCllGrq9mFSSrV2+/oGd49vIJRS+UqpFe4eR1+UUhuUUnc48fgvKKWOWH6mt/TwfJpS6mOlVKNSqkop9US351KUUp8opWqVUmVKqb8qpXy6PX+eUuqwUqpFKbVeKZXc7TmllPq9Uqra8vGEUko563UKIYQ4kwRnQggxRGmtQ6wfwEng0m6PrXb3+E7XPUgYyudwgX3Ad4Hdpz+hlPID1gJfAiOARODNbps8C1QAI4F0YInlWCilYoD3gZ8BUUAW8Ha3fe8CrgBmANOBS4DvOOpFCSGE6J8EZ0IIMcwopbyUUo8opU5YZkDeUUpFWZ5LUUpppdStSqlCywzL3UqpOUqp/UqpOqXUX7sd6xal1FdKqb8opeotsy7ndXs+XCn1slKqVClVrJT6lVLK+7R9/6SUqgEeV0qNUUp9aRlXlVJqtVIqwrL9G8Bo4CPL7N/DSqmlSqmi015f1+yaUupxpdS/lVJvKqUagFv6GdNYpdRGy2upUkp1D066nyPAcsxqy/ckUykVr5T6NXAu8FfLGP9q2X6iUmqtUqrGMut1bbdjvaqUes7yfKPl/Mk9nRdAa/03rfUXQFsPT98ClGitn9JaN2ut27TW+7s9nwq8Y3m8DPgMmGJ57irgoNb6Xa11G/A4MEMpNdHy/M3AH7XWRVrrYuCPlvMJIYRwEQnOhBBi+Lkf8wzIEmAUUAv87bRt5gHjgOuAp4FHgRWY38hfq5Ractq2uUAM8BjwvjXYA14DDMBYYCZwPnBHD/vGAb8GFPBby7gmAUmYgwS01jdy6gzgE9jmcuDfQASwup8x/RJYA0RinnX6Sy/HvBkIt4wvGrgbaNVaPwpsBu6zjPE+pVQw5tmsf1pe5/XAs0qpKd2Od4Pl3DHAXss4B2I+kK+U+tQSXG5QSk3r9vyfgW8qpYKUUgnAhZgDNDD/bPdZN9RaNwMn+Dp4O+V5y+fdX4MQQggnk+BMCCGGn+8Aj1pmQNoxBz9Xn5by90vL7MoaoBn4l9a6wjJjshlzUGNVATytte7UWr8NHAEuVkrFY37z/33LLE4F8Cfgm932LdFa/0VrbdBat2qtj2ut12qt27XWlcBTmIPIwdimtf6P1toEhPUzpk4gGRhlef1bejlmJ+agbKzW2qi13qW1buhl20uAfK31K5bXuRt4D7i62zb/01pvsvw8HgUWKKWSBvBaEy2v5RnMAe7/gP9a0h0BNmIOqBqAIsypi/+xPBcC1J92vHogtJfn64EQqTsTQgjXkeBMCCGGn2TgA0s6Xh1wCDAC8d22Ke/2eWsPX4d0+7pYa627fV2AOTBIBnyB0m7neh7z7JFVYfeBKaXilFJvWdINGzDXS8XY/xJP0f0c/Y3pYcyzdzuVUgeVUrf1csw3gM+Bt5RSJZbmGL69bJsMzLOez3LOGzDXhJ0xRq11E1CD+Xtor1Zgi9b6U611B/AHzEHkJKWUl2XM7wPBmL+vkcDvLfs2YQ5euwsDGnt5PgxoOu1nL4QQwokkOBNCiOGnELhQax3R7SPAMis2EAmnzZ6MBkos52kHYrqdJ0xr3T0V7vQ39r+1PDZdax0GfBtzsNTb9s1AkPULS+1Y7GnbdN+nzzFprcu01ndqrUdhnmF8Vik19vQXbJkl/IXWejJwDubZsZt6GWMhsPG073eI1vqebtt0zZIppUIwN+QoOf28Ntjfw/mtoizn+atlZrIaeAW4yPL8QczNPqzjCAbGWB4/43nL5wcRQgjhMhKcCSHE8PMc8Gtr0wmlVKxS6vJBHC8OuF8p5auUugZzrdgnWutSzPVbf1RKhSlzI5Ixp9WrnS4U8wxNnaUm6oenPV8OpHX7+igQoJS62DJz9VPAv7eD9zcmpdQ1SqlEy+a1mAMd4+nHUUotU0pNswSDDZjTHK3bnT7Gj4HxSqkbLd8jX2VusDKp2zYXKaUWWdIPfwns0FqfMqvY7dx+SqkAzEGrr6U5ifXv9ZvAfKXUCsvYvg9UAYe01lVAHnCPUsrH0mjlZr6uI/sAmKqU+obl+D8H9mutD1uefx34gVIqQSk1CngQeLWXb7UQQggnkOBMCCGGnz8DHwJrlFKNwHbMjTkGagfm5iFVmJt6XG2ZlQHzbJIfkIM52Pk35jbuvfkFMAtzPdP/MKfgdfdb4KeW9MCHtNb1mFvBvwQUY55JK6JvfY1pDrBDKdWE+Xv0Pa11Xg/HGGHZrwFzWuhGvm5Z/2fMNXy1SqlntNaNmJuOfBPzbFgZ5lTC7kHkPzE3U6kBZmNOe+zNGszpi+cAL1g+XwygtT6CebbxOctruxy4zJLiCOaOjBcAlcBxzI1RHrDsWwl8A/PPsBbzNdG9PvB54CPgAJCN+efzfB/jFEII4WBKUsmFEEL0RpkXQb5Da73I3WMZqpRSrwJFWuufunssQgghPJvMnAkhhBBCCCGEB5DgTAghhBBCCCE8gKQ1CiGEEEIIIYQHkJkzIYQQQgghhPAAEpwJIYQQQgghhAfwceXJYmJidEpKiitPKYQQQgghhBAeY9euXVVa69iennNpcJaSkkJWVpYrTymEEEIIIYQQHkMpVdDbc5LWKIQQQgghhBAeQIIzIYQQQgghhPAAEpwJIYQQQgghhAdwac2ZEEIIIYQQnqKzs5OioiLa2trcPRQxDAUEBJCYmIivr6/N+0hwJoQQQgghzkpFRUWEhoaSkpKCUsrdwxHDiNaa6upqioqKSE1NtXk/SWsUQgghhBBnpba2NqKjoyUwEw6nlCI6OtruWVkJzoQQQgghxFlLAjPhLAO5tiQ4E0IIIYQQwk1+/etfM2XKFKZPn056ejo7duwA4I477iAnJ8ch50hJSaGqqqrPbX7zm9/YfdxXX32V++6775THXnnlFdLT00lPT8fPz49p06aRnp7OI488YvfxXeHpp5+mpaXF3cPo0m/NmVIqCXgdGAGYgBe01n+2PPf/gPsAA/A/rfXDThyrEEIIIYQQw8a2bdv4+OOP2b17N/7+/lRVVdHR0QHASy+95NKx/OY3v+EnP/nJoI9z6623cuuttwLmoHD9+vXExMQM+rgDpbVGa42XV89zUk8//TTf/va3CQoKsvmYBoMBHx/ntO6wZebMADyotZ4EzAfuVUpNVkotAy4HpmutpwB/cMoIxVmntcPI5mOVaK3dPRQhhBBCCKcpLS0lJiYGf39/AGJiYhg1ahQAS5cuJSsrC4CQkBB+9KMfMXv2bFasWMHOnTtZunQpaWlpfPjhh8CZs1iXXHIJGzZsOOOcV1xxBbNnz2bKlCm88MILADzyyCO0traSnp7ODTfcAMCbb77J3LlzSU9P5zvf+Q5GoxEwz4yNHz+eJUuW8NVXX9n8Wp988knmzJnD9OnTeeyxxwDIz89n4sSJ3HHHHUydOpUbbriBdevWsXDhQsaNG8fOnTsBePzxx7nxxhtZvnw548aN48UXX+z3uJMmTeK73/0us2bNorCwkHvuuYeMjAymTJnStd0zzzxDSUkJy5YtY9myZV3fa6t///vf3HLLLQDccsst/OAHP2DZsmX86Ec/4sSJE1xwwQXMnj2bc889l8OHD9v8veiTNZq09QP4L7ASeAdYYc++s2fP1kL05URFoz7/qY06+Ucf6w1HKtw9HCGEEEIMYzk5OW49f2Njo54xY4YeN26cvueee/SGDRu6nluyZInOzMzUWmsN6E8++URrrfUVV1yhV65cqTs6OvTevXv1jBkztNZav/LKK/ree+/t2v/iiy/W69ev11prnZycrCsrK7XWWldXV2uttW5padFTpkzRVVVVWmutg4ODu/bNycnRl1xyie7o6NBaa33PPffo1157TZeUlOikpCRdUVGh29vb9TnnnHPKOU9nPe/nn3+u77zzTm0ymbTRaNQXX3yx3rhxo87Ly9Pe3t56//792mg06lmzZulbb71Vm0wm/Z///EdffvnlWmutH3vsMT19+nTd0tKiKysrdWJioi4uLu7zuEopvW3btq6xWF+3wWDQS5Ys0fv27Tvje3P69+Hdd9/VN998s9Za65tvvllffPHF2mAwaK21Xr58uT569KjWWuvt27frZcuW9fg96OkaA7J0L/GSXfNxSqkUYCawA3gSOFcp9WugDXhIa53pmJBRnI0+yy7loXf34+utCPT1Zs3BMpaMj3X3sIQQQghxFvjFRwfJKWlw6DEnjwrjsUun9Pp8SEgIu3btYvPmzaxfv57rrruO3/3ud12zNVZ+fn5ccMEFAEybNg1/f398fX2ZNm0a+fn5do3pmWee4YMPPgCgsLCQY8eOER0dfco2X3zxBbt27WLOnDkAtLa2EhcXx44dO1i6dCmxseb3Z9dddx1Hjx7t95xr1qxhzZo1zJw5E4CmpiaOHTvG6NGjSU1NZdq0aQBMmTKF8847D6XUGa/t8ssvJzAwkMDAQJYtW8bOnTvZsmVLr8dNTk5m/vz5Xfu/8847vPDCCxgMBkpLS8nJyWH69Ol2fe+uueYavL29aWpqYuvWrVxzzTVdz7W3t9t1rN7YHJwppUKA94Dva60blFI+QCTmVMc5wDtKqTRLNNh9v7uAuwBGjx7tkEGL4aXTaOKJzw7z4uY8ZiRF8OwNs/jVxzmszSnnl5dPxctLuigJIYQQYnjy9vZm6dKlLF26lGnTpvHaa6+dEZz5+vp2df7z8vLqSoP08vLCYDAA4OPjg8lk6tqnpxbuGzZsYN26dWzbto2goCCWLl3a43Zaa26++WZ++9vfnvL4f/7znwF1INRa8+Mf/5jvfOc7pzyen5/f9Vr6em1wZudDpVSfxw0ODu76Oi8vjz/84Q9kZmYSGRnJLbfc0muL++7nOX0b6zFNJhMRERHs3bu3v5duN5uCM6WUL+bAbLXW+n3Lw0XA+5ZgbKdSygTEAJXd99VavwC8AJCRkSFFROIUFQ1t3PfPPezMr+HG+cn89JJJ+Pt4c/6UeD7NLmN/cT3pSRHuHqYQQgghhrm+Zric5ciRI3h5eTFu3DgA9u7dS3Jy8oCOlZKSwrPPPovJZKK4uLirXqu7+vp6IiMjCQoK4vDhw2zfvr3rOV9fXzo7O/H19eW8887j8ssv54EHHiAuLo6amhoaGxuZN28e3/ve96iuriYsLIx3332XGTNm9Du2VatW8bOf/YwbbriBkJAQiouL8fX1tev1/fe//+XHP/4xzc3NbNiwgd/97ncEBgbadNyGhgaCg4MJDw+nvLycTz/9lKVLlwIQGhpKY2NjV9OS+Ph4Dh06xIQJE/jggw8IDQ0943hhYWGkpqby7rvvcs0116C1Zv/+/TZ9L/pjS7dGBbwMHNJaP9Xtqf8Ay4ENSqnxgB/Qd49OIbrZnlvNff/cQ3O7gaevS+eKmQldzy2bEIe3l2LNwTIJzoQQQggxLDU1NfH//t//o66uDh8fH8aOHdvVpMNeCxcu7EoRnDp1KrNmzTpjmwsuuIDnnnuO6dOnM2HChFPS/u666y6mT5/OrFmzWL16Nb/61a84//zzMZlM+Pr68re//Y358+fz+OOPs2DBAkaOHMmsWbO6GoX05fzzz+fQoUMsWLAAMKdzvvnmm3h7e9v8+ubOncvFF1/MyZMn+dnPfsaoUaMYNWqUTcedMWMGM2fOZMqUKaSlpbFw4cJTXveFF17IyJEjWb9+Pb/73e+45JJLSEpKYurUqTQ1NfU4ntWrV3PPPffwq1/9is7OTr75zW86JDhTp2UhnrmBUouAzcABzK30AX4CrAP+AaQDHZhrzr7s61gZGRna2nVGnL201rywKZcnPj9CclQQf//2bCaMOPOuxLde3E5lYztrf7DEDaMUQgghxHB36NAhJk2a5O5hiH48/vjjhISE8NBDD7l7KHbr6RpTSu3SWmf0tH2/M2da6y1Ab8ml37Z7hOKs1tDWyQ/f3cfnB8u5aNoIfv+N6YQG9DytvXJyPL/4KIe8qmZSY4J73EYIIYQQQojhwjmrpwnRg0OlDdzz5i4Ka1v56cWTuH1Rap9FpdbgbG1OGXctHuPCkQohhBBCCE/x+OOPu3sILmPLItRCDNr7u4u48tmvaOkw8tZd87nj3LR+u/0kRgYxeWQYaw6Wu2iUQgghhBBCuI8EZ8LpHv/wID94Zx/pSRF8fP8i5qRE2bzvysnx7DpZS1WTY9aOEEIIIYQQwlNJcCacKjO/hle35vPt+aN58/Z5xIUG2LX/+VPi0Rq+OCSzZ0IIIYQQYniT4Ew41d/WHycq2I9HL5qMj7f9l9vkkWEkRASyNkeCMyGEEEIIMbxJcCacJru4ng1HKrl9USqBfravY9GdUoqVk+PZfKyKlg5D/zsIIYQQQgwh3t7epKenM3XqVK655hpaWloGfKxbbrmFf//73wDccccd5OTk9Lrthg0b2Lp1a9fXzz33HK+//vqAz22Vn5/P1KlTT3ns8ccf5w9/+INdx3HUeIYaCc6E0/x9wwlC/X349vyBrXRvdf7keNoNJjYdlTXOhRBCCDG8BAYGsnfvXrKzs/Hz8+O555475XlbFnnuyUsvvcTkyZN7ff704Ozuu+/mpptuGtC5HM1gMHjUeFxJgjPhFCcqm/gku5QbFyQTHtjzOma2mpMaRXigL2tyyhw0OiGEEEIIOz3xBKxff+pj69ebH3eQc889l+PHj7NhwwaWLVvGt771LaZNm4bRaOSHP/whc+bMYfr06Tz//PMAaK257777mDx5MhdffDEVFRVdx1q6dClZWVkAfPbZZ8yaNYsZM2Zw3nnnkZ+fz3PPPcef/vQn0tPT2bx58ymzW3v37mX+/PlMnz6dK6+8ktra2q5j/uhHP2Lu3LmMHz+ezZs32/0a+zr2T37yE5YsWcKf//znrvGUlJSQnp7e9eHt7U1BQQEFBQWcd955TJ8+nfPOO4+TJ08C5tnD+++/n3POOYe0tLSumcShQoIz4RTPbTiBn7cXty1KHfSxfL29WD4xji8PV2AwmhwwOiGEEEIIO82ZA9de+3WAtn69+es5cxxyeIPBwKeffsq0adMA2LlzJ7/+9a/Jycnh5ZdfJjw8nMzMTDIzM3nxxRfJy8vjgw8+4MiRIxw4cIAXX3zxlJkwq8rKSu68807ee+899u3bx7vvvktKSgp33303DzzwAHv37uXcc889ZZ+bbrqJ3//+9+zfv59p06bxi1/84pRx7ty5k6effvqUx7s7ceLEKQFV99nAvo5dV1fHxo0befDBB7seGzVqFHv37mXv3r3ceeedfOMb3yA5OZn77ruPm266if3793PDDTdw//33d+1TWlrKli1b+Pjjj3nkkUfs/Em4lyxCLRyuuK6VD/YU8+35ycSE+DvkmOdPjueDPcVk5teyYEy0Q44pzk6tHUa+//YefrByAhNGhLp7OEII4XRa637XFhXA978Pe/f2vc2oUbBqFYwcCaWlMGkS/OIX5o+epKfD00/3ecjW1lbS09MB88zZ7bffztatW5k7dy6pqeab3GvWrGH//v1ds0D19fUcO3aMTZs2cf311+Pt7c2oUaNYvnz5Gcffvn07ixcv7jpWVFTfSxrV19dTV1fHkiVLALj55pu55pprup6/6qqrAJg9ezb5+fk9HmPMmDHs7fa9tC4i3d+xr7vuul7H9dVXX/HSSy91zdZt27aN999/H4Abb7yRhx9+uGvbK664Ai8vLyZPnkx5+dBqKifBmXC4FzflAnDn4jSHHXPx+Fj8fLxYm1MuwZkYlJ35NXx+sJyxcSH8cMREdw9HCCGcqryhjUv+soVfXDaFi6aNdPdwhr7ISHNgdvIkjB5t/nqQrDVnpwsODu76XGvNX/7yF1atWnXKNp988km/gbejg3N/f/ONd29vbwwGxzZr6/6auystLeX222/nww8/JCQkpMdtur9G6xjB/PqHEklrFA5V1dTOv3ae5MqZCSREBDrsuMH+PiwaG8PaQ2VD7j+Z8CxZ+TUA7C2sc+9AhBDCBZ5ed5TKxnY+2lfi7qF4vqefhg0b+v547DFoaYGf/cz872OP9b19P7Nmtlq1ahV///vf6ezsBODo0aM0NzezePFi3nrrLYxGI6Wlpaw/vSYOWLBgARs3biQvLw+Amhrz38HQ0FAaGxvP2D48PJzIyMiuGao33nija6ZrsAZy7M7OTq699lp+//vfM378+K7HzznnHN566y0AVq9ezaJFixwyRneTmTPhUP/YkkeH0cTdS8c4/NgrJ8fz5eEKDpc1MmlkmMOPL84OO/PMf5T2FdZjNGm8vSTVRwgxPB2vaOLtzEL8fbzYcrwKg9E0oDVHhYW1xuydd2DZMvNH96+d6I477iA/P59Zs2ahtSY2Npb//Oc/XHnllXz55ZdMmzaN8ePH9xjoxMbG8sILL3DVVVdhMpmIi4tj7dq1XHrppVx99dX897//5S9/+csp+7z22mvcfffdtLS0kJaWxiuvvOKw12Lvsbdu3UpmZiaPPfYYjz32GGCeMXzmmWe47bbbePLJJ4mNjXXoGN1JuXIWIiMjQ1u7xojhp761k0W/+5LF42P52w2zHH78isY25v3mCx5YMZ77zxvn8OOL4a/dYGT642sIC/SlsrGdNQ8sZny81J0JIYanu17PYuuJah65cCI//U82/757ARkpfdcbnW0OHTrEpEmTbNv4iSfMzT+6B2Lr10NmJnSrdxKiu56uMaXULq11Rk/by+0T4TBvbi+gsd3APU6YNQOICw1gZlKE21rql9a3cu1z2yipa3XL+cXgZRc30G4wccs5KQDsPVnn1vEIIYSz7CqoYU1OOXcvSePSGaPw9lJsPFrp7mENbQ8/fOYM2bJlEpgJh5LgTDhEa4eRl7fksXRCLFMTwp12nvOnjCC7uMEtAdKXhyvYmV8jeftDWKal3uzajCTCAnzYI3VnQohhSGvNbz85TFyoP7ctSiU80Jf0pAg2SXAmhMeT4Ew4xFuZJ6lp7uDeZWOdep6Vk+MBWJvj+rao+wvrAXOQJoamzLwa0mKCiQ31Z0ZSBHtO1rp7SEII4XDrDlWQVVDL91eMJ8jP3F5gyfhY9hfXU93U7ubRCSH6IsGZGLQOg4kXNuUyNyWKOU7OZR8TG8KY2GC3BGf7iuoAyCqopb610+XnF4NjMmmyCmq7rtGZoyM5Wt5Ic7tj2wALIYQ7GYwmfv/ZYdJig7k2I7Hr8SXjY9EathyvcuPoPJN0gRbOMpBrS4IzMWj/2VNMaX0b313mnFqz062cPILtudUuDZBaO4wcq2jinDHRGE2azcckNWSoOVbRRH1rJ3NSLcFZUgQmDQeK6908MiGEcJz3dhdxvKKJh1dNPKUz49SEcCKDfKXu7DQBAQFUV1dLgCYcTmtNdXU1AQEBdu0nrfTFoBhNmr9vPMGUUWEsGR/rknOePyWe5zaeYMORCi5PT3DJOQ+WmNuu37QghZzSBr48XMEl00e55NzCMXZa6s3mWmbOZiRFAOb1zuanycLmQoihr7XDyFNrjzJrdASrpsSf8py3l+LccbFsOlqFyaTxkmVEAEhMTKSoqIjKSglaheMFBASQmJjY/4bdSHAmBuXT7FLyqpp59oZZDl19vi/piRHEhvqz5mC5y4KzfUXm2ZWZoyNYMj6WjUcq5Y/bEJOVX0NcqD9JUebF0aOC/UiODpK6MyHEsPHK1jzKG9r5y/U9/01ePD6WD/eVcKisgSmjnNe8ayjx9fUlNTXV3cMQooukNYoB01rzt/UnSIsNZtWUES47r5eXYsWkeDYcqaDdYHTJOfcX1REf5k98WADLJ8ZR3dzRVYMmhobMvBrmpEad8oZlZlIEe6VjoxBiGKht7uDvG06wYlIcc1N7rv9ePC4GQFIbhfBgEpyJAdtwpJJDpQ3cs2QM3i6eQTp/cjzNHUa2nqh2yfn2F9UzPTECMBdVeylYL10bh4yi2hZK6tu6Uhqt0pMiKG9op7Re1q4TQgxtf1t/nOZ2Aw9fMLHXbeLCApg0MoyNRyQ4E8JTSXAmBkRrzV/XHychIpArZromtbC7BWOiCfbzdknXxvrWTvKqmpmRaE4BiQjyY9boSL48IsHZUGFd3ywjJfKUx9NHm7/eI4tRCyGGsKLaFl7fVsDVsxMZHx/a57ZLxseyq6CWJulUK4RH6jc4U0olKaXWK6UOKaUOKqW+Z3n8caVUsVJqr+XjIucPV3iKnXk17Cqo5TtL0vD1dn2MH+DrzZIJsazNKcdkcm6HpWxLNz/rzBnAsolxZBc3UNHQ5tRzC8fIzK8l1N+HiSPCTnl88sgw/Hy8JLVRDDlHyhrZIDeIhMVTa46iFDywcny/2y4ZH4vBpNkqLfWF8Ei2vKs2AA9qrScB84F7lVKTLc/9SWudbvn4xGmjFB7nbxtOEBPix7UZSW4bw/mTR1DZ2O702i/r8acnfl08vXxiHADrPeDNkdaajUcrMTo5SB3KMvNqmJ0SeUb6rZ+PF1NGhbH3LJk5a+s0cufrWfzgnb3uHooYhK+OV3Hls19x1+u7XFZ3KzxXTkkDH+wt5taFqYwMD+x3+9nJkQT7ebNJloQRwiP1G5xprUu11rstnzcChwDX57EJj3GgqJ5NRyu5fVEaAb7ebhvHsglxeHsp1jg5tXF/YT3J0UFEBPl1PTZxRCgjwwP40gPqzjYfq+Lmf+zk0+xSdw/FI9U2d3CsoqnXBdLTkyLYX1yHwWhy8chcq9No4r5/7mZtTjkf7y+VN/VD1OcHy7j1lUy8laLDaOJwaaO7hyTc7PefHSYswJd7lti21qifjxcLxsSw8WilrO0lHGJtTjlHy+V3kaPYlY+mlEoBZgI7LA/dp5Tar5T6h1Iqsvc9xXDy7IbjhAb48O35o906jvAgX+anRTm97mx/Ud0pKY0ASimWTYxjy7Eqt7/J3WAp7N7mouYoQ01WgblVfl/BWVunicNlw/cPi9GkefCdfaw7VMGqKfF0GEzsL5LFt4ea93cX8d3Vu5k8Koy3v7MAQLrGnuW2Hq9i49FK7ls2lvAgX5v3WzI+hsKaVvKrW5w4OnE2MJk0D727j5c357l7KMOGzcGZUioEeA/4vta6Afg7MAZIB0qBP/ay311KqSylVJYs8Df0Ha9o5LODZdxyTgqhAbb/IXCWlZPiOV7RRG5lk1OOX9nYTkl9W1czkO6WT4ijucNIZp5718naeNQ8e7czr8at4/BUmfk1+Hl7nZKW2t0sS1OQ4Vp3prXmp//J5sN9JTx8wQR+d9V0QK6XoebVr/L4wTv7mJ8Wxeo75jFpZCixof7sK5Qg+2xlMml+99lhEiICuXFBsl37LhlvTs3f6AGp+WJoO1HZRH1rJ7NTZI7GUWwKzpRSvpgDs9Va6/cBtNblWmuj1toEvAjM7WlfrfULWusMrXVGbGyso8Yt3OTVrfn4+3hxyzkp7h4KACst66s5a/Zsf1e9WcQZz50zNho/Hy+3pjYW1bZworKZUeEBHKtoorqp3W1j8VQ782qYnhjeawpuYmQg0cF+wzI401rz208P86+dJ/nu0jF8d+lYIoP9GB8fIsHZEKG15pkvjvH4RzmcPzmel2+eQ7C/D0opZiSGy8zZWeyT7FL2F9Xzg5Xj7S4xGB0dREp0kKx3JgYtM7/v7BRhP1u6NSrgZeCQ1vqpbo+P7LbZlUC244cnPM2RskZmJEYQHeLv7qEAkBARyJRRYU4LzvYV1eOlYGpC2BnPBfn5sCAt2q1NQTYdNXfb+v4Kc4cua8t4YdbaYSS7uJ45vSzICuYU1fSkCPacdO8MqDP89cvjvLApl5sWJPPDVRO6Hp+TEsXuglqPaiJTWNNCTkmDu4fhUbTW/Op/h3hq7VGumpXAszfMOuVN+IzECE5UNtHQ1unGUQp36DCYePLzI0wcETrg5WyWjI9le24NbZ1SfyoGLqughuhgP1Kig9w9lGHDlpmzhcCNwPLT2uY/oZQ6oJTaDywDHnDmQIVnKKlrY1RE/92gXOn8ySPYdbKWykbHzxrtL6pjXFwoQX4+PT6/fGIceVXN5FU1O/zctth4tKJrrbkAXy92OHE2ZP3hCj7LLnX60gWOtKewFoNJn7H49Olmjo7gRGUz9a3D503uP7bk8ce1R7lqZgKPXzoF8302s7mpUTS2GzhU6hnBUHFdK1f9fSt3vJYpDQosDEYTD/97Py9vyeOWc1L4w9Uz8Dlt2ZIZSRFoDdlSP3jWeSvzJAXVLfzowolndKG11ZIJsbR2GsnKH343poTr7CqoJSMl8pS/MWJwbOnWuEVrrbTW07u3zdda36i1nmZ5/DKttbSKG+aMJk1ZQxujIgLcPZRTrJwcj9bw5WHHzp5prdlfVN9rrRJ83VLfHamNnUYTXx2vZvH4GPx8vJidHMmOXOcEZ51GE/f/aw93v7mbi57ZzOcHy4bEm+jMvFqUglnJfefCpyeZn98/TFLE3skq5P8+zmHVlHieuHo6Xqe9ebOmn3hCamNjWye3v5rZVd9ZIA0KaDcY+X//2sO7u4r43nnjeOzSyWf8DOHr5T32SXB2VmlqN/DndceYnxbF0vEDLxeZnxaNn7eXtNQXA1bRaP6dnZEsKY2O5PrVg8WQVdHYhtGkPW7mbNLIUBIjA1lz0LHBWVFtKzXNHUxPiuh1m6SoIMbGhbDeDcHZnpN1NLUbWGL54zw3JZpDZQ1Omf3ZV1hHY7uB6+eOpt1g4jtv7OLSv27hy8PlHh2kZRXUMCE+lPDAvpvXTE8KRymGxXpn/9tfyiPv7efccTE8c/3MM2ZbAEZFBJIYGej2NFiD0cT/+9cejlU08fil5uUzt+ee3V1HWzoM3PFaFp9ml/HzSybzwMrxvd6RjggypxLtG4b1kqJ3L27Kpbq5g0cunDSo2YogPx/mpEay8YgEZ2JgdllmXTOkGYhDSXAmbFZS1wrgccGZUoqVk+PZcryKlg6Dw45rbTXeU6fG7pZPjGNHXjVN7Y47ty02Hq3A20txztgYwJyqpjXsKnD8G+5Nx6rwUvDIBRNZ+8Binrx6OvWtndz2ahZXPruVTR64Xo7BaGJ3QS1z+6g3swoL8GVMbAh7hvib3PVHKvj+23uYNTqS52+cjb9P700C5qZGsTOvxm0/N601//dxDhuOVPKrK6Zy8zkpxIT4n9XBWX1LJze+vJOvjlfx5NXTuW1Rar/7zEiKkKYgZ5GmdgP/+CqPC6aMIL2PG4e2WjwuliPljZTVtw1+cOKsk5lfi7+PF1NG9f0+SdhHgjNhs+I68y/vBA8LzgBWTIqn3WBiy7Eqhx1zf1Edft5eTBxxZjOQ7pZNiKPTqB16bltsPFrJ7NGRhFmWNJg5OgI/by+npDZuOlrJjKQIwoN88fH24pqMJL58cCm/vWoaFQ1t3PSPnVz7/Da2nnDt96AvOaUNNHcYbe4gNTMpgr2FdR4XZNpqR241d7+xi/Hxobx8y5xe6ySt5qZEUd3cQa6b6iVf+Sqf17cVcNfiNK6fOxqlFPPTotie676A0Z0qG9u57oVtHCiq59kbZnFNRpJN+81IjKC0vo3yBnlzfTZ4a+dJGtsM3LPUtgWn+7NkgjnzYpN0bRQDsKughvSkCPx8JJxwJPluCptZZ85GhntWzRmYZwFCA3z44pDj0gv3FdUxaWRov790MlIiCQ3wcWlqY2VjO9nFDSweH9P1WICvNzOSwh3eFKSupYP9RXWcO+7U2gZfby+unzua9T9cyi8vn8LJmha+9eIOrn9hu9vT5cD+9r7poyOoae6gsKbVmcNyiv1Fddz+WhaJkYG8ftvcftM4ga4Olu6oO1uXU84v/2euiXvkgoldjy8YE01ZQ9tZtzBubXMH1zy3lYLqFv5xyxwumDqy/50sZlhmTyS1cfjrNJp4eUse81Kjun7ugzUhPpT4MH9pqS/s1tJhILukQVIanUCCM2GzkrpWwgJ8PGLx6dP5enuxZHwsXxyucEg3QZNJk13c0OP6Zj2de/G4WNYfqXDZHf8tx81/SK0LiVrNTY0iu7ieZgemWG49UY1Jw5JugWB3/j7e3LgghY0/XMbPL5nMsYomrnluGze+vIPdbmxPn5lXQ1JUICNsvJlgTRHaU+i+Mbd1GmnrNNp1HR0pa+Smf+wkIsiX1XfMt3mZi7SYYGJC/Mh0cXCWXVzP/W/tYVpCOE9fN/OURhfz06KBs6/u7D97i8mvbuGVW+ewaFzP/896M2VUGD5eqisNWwxfH+0robS+jbuXOGbWDMxlAYvHxbLleBUGo8lhxxXD397COowmLc1AnKDvvBchuimpa/W4erPuVkyK5+P9pewrqmPm6MHdycmtaqKp3dBnp8bulk2M438HSjlY0sDUBOfnXm88Ukl0sB9TRp2acjkvNZq/rT/B7pO1Z8x0DdTmY5WE+vswo59ANcDXm9sWpXL93NG8ub2Av288wVXPbuXlmzM4b1K8Q8ZiK601mfk1XSk7tpgQH0qgrzd7TtZxefrA1g0aCJNJ89WJKt7KLGTNwTI6jRqlIMDHm0A/bwJ9vQnw9er2uflf69dfHK7Az9uL1XfMszkQBfObsjkpUex04SxnWX0bt7+WSUSgLy/dlEGg36k1cWkxwcSGmuvOrp872mXjcrdPs8uYEB/aFZzaI8DXmwkjQqXubJjTWvPCplzGx4ew1I7fa7ZYPD6Wd3cVsa+ontn9dLYVwior39INeZDvt8SZJDgTNiuua/PIejOrpRNi8fZSfHGoYtDB2b5CSzMQG1NHlk6IRSlzS31nB2cmk2bTsSqWjI89o732rORIvL0UO/NqHBKcaa3ZdLSKc8ZG99j1ryeBft7cuTiNb80bzYV/3sxzG0+4PDjLrWqmurnD5pRGAB9vL6YlhrPXRelhpfWtvJtVxNuZhRTXtRIR5MsN85KJDwug1TKD1tphpLXT/NFm+byp3UBlY7v5+U4j4YG+PHvDLJKjg+0ew9zUKD7NLnPJjZfmdgO3v5ZJc7uRd+9eQFzYmYGkue4smu251Witz4p1cyob28nMr+H/LR834GPMSIrg430lmEy6x5b7YujbdKyKw2WN/OGaGQ7/f7FobAxeylx35unBWUldK89uOM5PL558yoLswvWyCmoZHxdKeJDnZVMNdRKcCZuV1LWS4cG/uCOC/MhIjmTdoXIeWjVhUMfaX1RHkJ83Y2JDbNo+JsSf6YkRfHm4gvvPG/ibLFscLGmgprnjlHozqxB/H6aOCnNYU5DcqmaK61oHVHwe7O/Dzeek8MuPczhQVM80G2chHSHLMhtkT3AG5qYgr3yVT7vB2Genw4HqNJr44lAFb2eeZOPRSkza/MbokQsncv6UeKecsy/W709mfo1TZwuNJs333trDodIGXr5lDpNG9t5kZ35aFB/tKyG/uoXUGPsDzqFmTU4ZWsOFU0cM+BjpiRH8c8dJ8qubSbPxd5YYWp7feIIRYQFcNmOUw48dGezHjKQINh6t5IGV4x1+fEd6b1cRb24/ycIxMVw4zfbaTE/0p7VHeTuzkJ9dMpmLpo0YUjejjCbN7oJaLk93/PUopOZM2Kip3UB9a6dHpzWCObXxcFkjRbWDayiwr6ieqQnheNtxF3r5hDj2FdVR3dQ+qHP3Z+NRc+OR3mbG5qVFs7ewjrZO46DPtfmotbZtYLNw12QkEuznzStf5Q16LPbYmVdLVLAfY2Lte3OfnhRBh9FETkmDQ8eTW9nEbz89xILffsHdb+4ip7SBe5eNZfPDy3jzjnlcOmOUywMzgEkjwwj193F4E5nT/fp/h1h3qIJfXDaFZRPi+tzWmtq37cTZUXf2WXYZKdFBTBwROuBjTE8y3/iQurPh6UBRPVtPVHPrwhSndcVbPC6WfUV11DZ3OOX4jrI9z/x7Ye0hx65r6g7bcqspa2jj3n/u5s7Xs7qarg0FR8oaaWo3SDMQJ5HgTNiktGuNM8/r1Njdisnm9LnBdG3sMJjIKW3od32z0y2fGIfWsMHJC3puPFrJtIRwYnpp/DA3JYoOo8kh3ds2H6siJTqIpKigAe0fFuDLNRlJfLS/hAoXtvrOzK8hIznS7juR1nRYR6Q2tnUaeX93Edc+v43lf9zIS5vzmDU6kn/cksFXP1rOg+dPGPD31VG8vRSzUyKd2hTkjW35/OOrPG5dmMKNC1L63T4tJpi40LNjvbO6lg62najmgqkjB3XXfFxcKEF+3i5LyRWu9fymE4T6+3D9POfVYS6ZEIvWsOW45yyHcroOg4ldBeaGTesPV2B0QPMvd8qtbOIbsxJ59KJJbDlexcqnNvL6tnyHNDVzNut6qtIMxDkkOBM2KbYEZ55ccwaQGhNMWmww6wZxV+1oeSMdBpNNnRq7mzIqjJgQf7484ryW+g1tnew+WddjSqPVnJQolGLQsyEdBhPbcqsHXbt2yzkpGEyaN3ecHNRxbFXe0MbJmhabFp8+3YjwAEaEBQz6Ta7Wmpv/sZMfvLOPioY2fnTBRLb9eDkv3JTB8onxNtfvucKclCiOVTRR44Q75uuPVPDYhwdZMSmOn1482aZ9Tq87G87WHarAYNKDSmkEc5A9NSFcmoIMQ4U1LXxyoJRvzRvdtaalM8xIjCA80NejW+rvL6qjrdPEZTNGUdvS6dZuwINV39pJVVMH4+NDuHNxGmsfWMKs5Eh+/t+DXP3cVo6WN7p7iH3KzK8lPsyfxEjPfk84VHnOOwTh0UosC1B7elojmFMbt+dW09jWOaD9rW9w+utOeDovL8WyCbFsOlpJp5NaEm89XoXRpM9ood9deJAvE0eEDXr9ql0FtbR0GFk8wJRGq5SYYM6bGMc/dxQ4JNWyP5kDrDezSk+KYM/JukGNYePRSnbk1fCTiyay/qGl3LN0DHGhnjnrPC/167ozRzpU2sB9q3czcUQYf/7mTLtShOenRVPR2E6emxbIdpXPsktJiAi0uStsX9KTIjhY0kCHQdqhDycvb8nD20tx68JUp57H20uxaFwMm45WeuxNEets+g9XTcDXW7EuZ+imNuZWNgF01YgmRQXx+m1z+dN1M8iraubiZzbz1JojLvmbORC7CmrJSIkaUnVyQ4kEZ8ImJXWteHsp4kJtW0PJnVZMiqfTqNl8bGDpGfsL64kM8iUpyv5AdPnEOBrbDF2pF4628ai5rf3M0RF9bjcvNYpdBbWDChI3H6vEx0sxP23waQu3LkylqqmDj/aVDPpY/cnMqyHIz/uMZQZsNXN0BCdrWgZcO6i15k9rj5IYGcgt56R6/B+vaYnh+Pl4OTS1saqpndtfzSQkwIeXb8kg2N++3lPWa267gxrbeKKmdgObjlWxaopjGgFMTwynw2DiSJln33EXtqtt7uDtzEIuT0+wa5mMgVoyLpaKxnYOe+g1tD23hokjQkmKCmJ+WvSQrjvLrTTfeErrVhetlOLKmYl88eBSLp0+ime+PM5Fz2we9I1WRyupa6XYwxvEDXUSnAmblNS1MiIswKPSsXoza3QEEUG+A76rtq+ojmmJEQN6w7RoXAy+3or1hx2f2qi1ZuORShaOjcG3n5/D3NQoWjuNHCgeeIOAzceqmDU60iGLjp8zJpoJ8aG88lW+0+/KZubXMnN0xICvVeti1ANNEfvycAX7iur5f8vHOq1435H8fbxJT4pw6Hpnr36VT1lDGy/fPIeR4fbf5Ei11J1tG8Z1Z18erqDDYOLCaYNLabSyzvQ7MrWxrqWD+/65m8KawTVYEgPzxvYCWjuN3LU4zSXns2ZJbPLA1EZrvZm1YdDKyfHkVjZzwjIDNdScqGzCx0sxuoe646hgP566Lp3Xb5tLp9HEtc9v48fvH6C+dWDZQI6WZbn5PNDsFNE/z3/nIDxCcV2rxzcDsfLx9mLZhDjWH7G/YLi1w8ixiia7m4FYhQb4Miclii+dEJydqGyipL7NpjRDa73VQO+4VTe1k11Sz7njeq9ts4dSilsXppBT2uDUzoANbZ0cKmsY1B+NaYnmLp0DSW3UWvOndUcZHRXEVbMSBzwGV5uXGsXBkgaa2g2DPpbBaOLdXYUsGR874DX/lFIsGDO8684+yy4lJsTfYQu4JkYGEh3s55BGQFYf7ivh4/2l/OKjHIcdU9imrdPIa1vzWT4xjvHxA+/kaY8R4QFMHBHqkXVnB4rraO00ds2qL59oTu3/YojOnuVWNjM6OqjPG62Lx8fy+fcXc+e5qbydeZKVT23ks+xSF46yZ1n55uyUwXSYFX2T4EzYpKTe+YvUOtKKSfEDKhg+WFKP0aTtbgbS3fKJcRyraHL43WZrF8i+moFYxYT4MyY2eMDB2ZbjVWjNoOvNurtiZgKRQb5Obau/q6AWrc0dKwcqyM+H8fGhA2oKsjannOziBu4/b1y/s5ueZE5KVNe6NYO14Ugl5Q3tfHPu4DrLzU+LprKxndxhWHfW2mFk/eFKVk2Jt6sWry9KKWYkRTh05uyTA6V4KVh3qJyvPLiL33D0711FVDd3uGzWzGrx+Fgy82todsCNGkeypjjPTTXPnCVGBjFpZBjrcpzXgMuZcquaSIvpf03CID8fHr14Mv+9dxGxof7c/eZu3tiW7/wB9iFrkNkpon/ynRX9Mpo0ZfVtQyo4Wzw+ZkAFw/ss6wQNdOYMYJnljt56B3dt3Hi0krFxISRG2tZ+fW5qNJl5NQNqN7z5WBURQb4DnvnoSYCvN9+aN5o1OeVOS5PKyq/Bx0uR3k9NXn9mjo5gb2GdXS2NTSbNn9YdIzUmmCuG2MKcs5Ij8fZSDmkK8lZmITEh/l13tgfKmr7kyJb6uZVNXPf8Nt7aeRKDk5r22GLj0UpaO41cONWxi+hOTwznWEWTQ2ZAKxvb2ZlXw53nppEYGcgvP84Z8q3LhwqjSfPS5lxmJIZ3NexxlSXjY+k0ao9bymJ7bjUT4kOJCvbremzlpDiyCmo8fm220xlNmvyqFrvW4ZyWGM5/711IcnQQW924BmRjWyeHyxqkhb6TSXAm+lXV1E6nUQ+p4Cw0wJd5qdF2t9TfX1THiLAA4sIGnsKZFhNMcnSQQ1MbWzuM7MirsWsx6PlpUTS2GzhUat+CylprNh8z17Y56q6+1Y3zU/BWite25jv0uFaZebVMSQgnyM++BhSnS0+KoLHNYNeszecHyzhU2sD9540dcncUQ/x9mDJq8B0+yxvaWH+kgqtnJw565jAlOoj4MH+HNgV5aUseO/JqeOT9A6z80yY+3FfiljWFPssuJSLIl3kOaLbT3YykCLSG7EHUmlqtySnDpM0z3j++cBKHyxp5J6vQAaMU/VmbU0Z+dQvfWTLG5Q2FMlIiCfT19qjUxk6jiaz82jOaU62YHI9JO/5GqLMV1bbQYTQxJrb/mbPufLy9GBsb4tYutntO1mHSyOLTTja03kEIt/h6jbOhUXNmtWJSHCcqm+36Rba/qH7Qba2VUiybEMe2E9W0djimDe6OvGo6DCa70gytdVf21ngdLW+ivKGdxQ6qN+tuRHgAF00byduZhQ65u99du8HI3qI65jrgj8ZMS1OQPTamxZpMmqfXHSMtNpjLZiQM+vzuMDclij2FdbQbBn7N/ntXEUaT5ro5SYMej3W9s20nHFN31txu4MO9JXxjViIv3ZSBv48X9/9rDxf/ZQtfHi53WW1bh8HEF4cqWDkp3uGpr11NQRxQd/bpgTJSY4KZOCKUi6aNYE5KJH/4/AgNA1yiRNhGa81zG3NJjg5i1RTHNIuxh7+PNwvGRHtUU5D9RfW0dhqZZ5lNt5o6Kpz4MP9BrWvqDj11arRVSkwwBdUtbqvFzcqvwUvBTAfVyoqeSXAm+lViCc6G0swZwHmT4gHbC4brWzvJq2pmhuWN+WAsnxhHu8HE1hOOqdPYeLQSfx8vu1JcRkUEkhQVyM48+1IgNh8z/1Ee7OLTvbl1YQqN7Qbe21Xk0OMeKKqnw2AiwwEdpMbEhhDq72Nz3dkn2aUcKW/k+yvGO3y20VXmpEbRYTBxoGhgsy4mk+btzELmp0WRGmP/m46ezE+LpqqpnROVg79T/L/9pTS1G7h+bhIrJsfzyf3n8udvptPSYeC2V7O4+rltLknl+upEFY3tBod1aewuKtiP0VFBg647q2nuYFtuNRdONbf5V0rx80umUNPSwd/WH3fMYEWPMvNr2VtYxx2LUt32u2TxuBjyq1vI95B6zx2Wv2FzT/v75+WlOG9SPBuPVA7qppKrnThtjTN7pEQH0dpppKJxYEu9DFZWQS2TRoYRYufyKMI+EpyJfg3V4CwpKogJ8aE231Wzvil1xIKw89KiCPLzdlhq48ajlcxPiybA19u+caRGszOvxq67bJuOVTE2LsRpP++ZoyOZOTqCV7fmOzSlbOcgF5/uzsvL3FzBluDMaJk1GxcXwsXTHFtD5EoDnWm12p5bzcmaFr45Z3CNQLpb4MC6s3/uPMm4uBBmW9bm8fJSXJ6ewLofLOE3V06juLaVb76wnRtf3sF+BzbVON1nB8oI8fdh4VjHz0yD+ffXvsLBpTWuzSnDaNJc1O16npYYzlUzE3llSz4nq6W1fm8Ka1oGVc/4/MYTRAX7cfXswc8+D9SSCeZ60U3HPGP2bHtuDePjQ4gJOXOd1ZWT4mnuMA6pNRFPVDYTEeR7Sv2crVIsN77ckdrYaTSxt7BOWui7gIS+ol8ldW2E+vsQ5oD1rlxtxeQ4ntuYS31LJ+FBfY/ferd5ekLEoM/r7+PNwrExrD9cgdZ6UHUDhTUt5FY2c8O8ZLv3nZsaxb93FXGsosmmdsxtnUZ25FbzrXmOe4Pdk1sXpnL/v/aw4WgFyyfGO+SYmXk1jI0LGdAfvJ6kJ0Xw940naO0wEujXe1D88f4Sjlc08bdvzRqys2ZgnnUZFxcy4KYgb2UWEhbgwwVTHTcjlBwdxIiwALbnVvPt+fZf/1aHyxrYW1jHzy6ZfMb/RV9vL741bzRXzUrgze0F/G39cS7761dcMGUED54/nnEObGNuMJpYk1PG8olx+PvYd6PFVulJEXy8v5TKxnZiQ898M2uLTw6UMToq6IyF3B++YAKfHCjlt58e4u/fnu2I4Q5IVVM733xhO60dRvx9vQjw8SbA14sAX28CfL3x97F+7oW/j3fX56kxwVw2Y5TT6rhW7yjg0Q+yGR8fws8umWx39sGx8ka+OFzB91eM6/N3jrOlRAcxOiqITUcruWlBitvGAdZ6sxqunt3z0iQLxkQT6OvNupxyu2qy3Sm3ssnuejOrlGhzcFZQ3dzVNMlVDpU20NJh7LrBJZxHZs5Ev8xrnA2tWTOr8ybFYzRpNhztfwZrf1EdKdFB/QZxtlo+MY6S+jaOlDcO6jjWu5cD+cMz39J22NbZkMz8GtoNJhY7KaXR6sKpIxgRFsArX+U75HgmkyaroJY5DixSTk+KwGjSfS7kbTCa+PO6Y0wcEcqFDgxK3GVOahS78mvt7spX29zBZ9llXDkzwe7Z3b6Y686i2J5r3+zv6d7aWYiftxdXzey9HjDA15s7zk1j08PLeGDFeLYcr2LV05v4wTt7HdZddGdeDbUtnU69Vqxp2QOd/atv6eSr41VcOG3EGUFMfFgA9ywdw6fZZexwYze/zw+WcbyiiZmjI5g0MoxREQEE+fnQYTBR0djG8YomsgpqWHeogvd2F/GPLXk8ve4Y33trL7/4KMcpTWDezjzJox9kMy81irZOEze+vJM7Xsuya4bjxc25BPh6uT0gUkqxeHwMW09Uuz1dMLu4npYOI/NSew5EAny9OXdcDOsOua5udLByq5pJG2Dq96iIQHy9FXlVrp+9zso312BLMxDn63fmTCmVBLwOjABMwAta6z93e/4h4EkgVmstC6EMQyVDaAHq06UnRhAT4se6QxVcnt53o4b9RfUOna5fZkkN+fJwBRNHhPWzde82HqkkISLQrra7VklRgYwIC2BnXg032jDzsPlYFX7eXg7vInc6X28vblyQzJOfH+FoeeOgF1k9Ut5IY5vBoT8/azv+vYW1Z9Q6WH24r4Tcqmae+/YsvIbwrJnVvNQo/rnjJIdKG+xaRuGDPcV0GE2DXtusJ/PTovnP3hJOVDYxNs7+66St08j7u4u4cNoIIm2YVQ0N8OV7K8Zx04Jkntt4gle35rPpaCVrHlgy6FnZT7PLCPD1YskE5938mDIqDG8vxb7Cuq66W3usPVSOwaS5qJc2/3eem8ZbO0/yy//l8OG9i9xy3X9xqIKkqED+cv1Mm2fBjCbN7z87zAubcmnpMPDbq6Y7bKb73axCHnn/AEvGx/L8jbNRCv6xJZ+/fnmM8/+0kVsXpnLf8rF9Zp+UN7TxwZ5irp872mGz/4Nx/uQRvLn9JJ9ll/X7t9OZrOmKff1NWjE5njU55Rwsse/3ljs0tHVS2dg+oHozAG8vRVJUEAXVrk9rzCqoISEikJHhQ/Nm/VBiy8yZAXhQaz0JmA/cq5SaDF2B20rgpPOGKNytZAjPnHl5KZZPjGPDkQo6+6gDqGhso7S+zSH1ZlYjwgOYPDKMtTkDv6PXaTSx9UQ1SybEDigVRynF3NQoduTa1vFu09FKMlIiB92K3hbfmjsafx8vh8yeZTqw3swqJsSfpKjAXuvODEYTz3xxjMkjwzh/8tCfNYOvv3/2pDZqbW4EMiMxnEkjB34TojfW1J1tA6wp+eRAKQ1tBrtr4SKD/fjxRZP44LsLqWvp5Fcf5wzo/FYmk+bzg2UsHR/n1P9fQX4+jIsLYe8AG7t8eqCUhIjAXn8XBvp586MLJ5Jd3MB7ux3b1McWLR0GthyvYsWkeLt+J3p7KX584US+d9443skq4oG39/b5N8FWH+wp4uH39rNobAzP3zjbklbpzT1Lx7D+h0u5Ij2BFzfnsvwPG3hr58leZ6Vf+Sofo0lzxyLXLjrdm0VjY0iJDuL1bQVuHcf23GrGxfVcb2a1fGIcSpmDdk9n7dQ4kJutVqnRwS6vOdNak5Xv2OwU0bt+gzOtdanWerfl80bgEGC9jfIn4GFgaMwlC7u1dhipbekcssEZmFMbG9sMZPaR2rffUkDviE6N3V01K4E9J+t4au3RAe2/u6CWpnbDoNIM56VFUdHYTkE/RfwVDW0cLmt0WpfG00UG+3HVrATe31006EVEd+bVMDI8gMRIx16n6UmR7DlZ1+NzH+wpJr+6hQdWjh8Ws2ZgTplJiAi0a72zvYV1HClv5DoHNgLpLjk6iJHhAQNuCvLWzkJSY4LPWCPJVpNHhfHdpWN4f08xGwaxntLuk7VUNLY7pUvj6dKTIthfVGf3TaGGtk42H6vq6tLYm8tmjGLm6Aie+PwIzQ5eEqM/m49V0WEwsXIAs4JKKR5YOZ5HLpzIh/tK+O7q3YNK2/twXwkPvrOP+anRvHBjxhkpvXGhATx5zQz+e+9CUqKDeeT9A1z6ly1npIQ2tnWyekcBF04byejooAGPx5G8vBQ3LkhhV0GtQ9bNGwiDpd6sv0yOmBB/Zo2OHBIt9XMH0anRKjna9e30C2taqWhsZ7Y0A3EJu2rOlFIpwExgh1LqMqBYa73PGQMTnqGk3rrG2dANzs4dF4Ofjxfr+rirtr+oDi/FGQXwg3X7olS+OSeJv3x5nOc3nrB7/41HK/HxUpwzduCFv9b2+/294d58zJyVfK4T1jfrzS3npNJuMPGvzIFPvmutycyvISMlyuGF/jOTIiitb6O8oe2UxzuNJp758hjTEsJZMSnOoed0t3mpUWTm217j9XZmIYG+3lw6wzmdKq3rndk6+9vd8YpGdubX8M05SYO6Nu5dPpaxcSE8+kH2gIORz7LL8PP2YvlE518vM5IiqGvp5KSdtXJfHqqgw2jiwn66jiql+Nklk6lsbOfvG+z/vTYY63LKCQ3wYY4dy4qc7u4lY/jFZVNYm1POna/vGtB6lP/bX8oDb+8lIyWKl2/J6LOBx/TECN69ewHPXD+TupYOrnthO99dvaurlvGtnYU0thn4zmLPmDWzunp2IoG+3ry+Ld8t588uaaC5w2hT44sVk+I5UFxPqeU9i6fKrWzG20sxOmrgQXhqjOvb6WcVWLNTZObMFWwOzpRSIcB7wPcxpzo+Cvzchv3uUkplKaWyKis9oy2rsJ21jf7I8KFZcwbmNJ+FY6L7LBjeV1TP+PhQh6cbKaX49ZXTuGT6SH776WFW77AvRWTj0UpmJUcOqlPmmNgQooP92N7Pemebj1USE+LHZCekpvVmwohQFo2N4fWtBQNOMSqqbaW8od0hi0+fzlp3dvrs2Xu7iiisaeWBleOc1vnNXeakRlHV1EGuDWkzTe0GPtxXwqUzRhLqxG6u89PMY7KuD2Srt3YW4uut+EYvnd5s5e/jze+/MY2S+lb+sOaI3ftrrfk0u4xF42Kc+n2ysi5Gbes6fVafHChlRFhA1yLsfZk1OpLL00fx4uZcimpd05zAaNJ8ebiCpRPiBr2A983npPDEN6az+VglN7+ykyY7gu7Psku5/609zEyK4JVb5tj0d0MpxWUzRvHFg0t5YMV4vjxcwXlPbeQPnx/hH1/lsSAtmumWn5unCA/05cpZCfx3b8mgsxsGwjpb3lszkO5WTjbf9PD01MYTlU2MjgrCz2fg12+ypWOjK9ehy8yvJTTAh/EDqPsV9rPp6lBK+WIOzFZrrd8HxgCpwD6lVD6QCOxWSp2Rr6G1fkFrnaG1zoiNHRptTsXXhuoaZ6c7b1I8J2taOF5x5ps7rTX7i+ocWm/WnbeX4k/XpbN8Yhw//U82/91bbNN+lY3tHCxpGHR7YGvdWV8zZyaTZsvxKhaNjXF5it6tC1Moa2jjs+yyAe1vfV2DuZPem8kjw/D1VuwprO16rMNg4i9fHmdGUkRX05fhxNr8pK80YKuP95XQ0mF0WkqjVVfd2QnbUxvbDUbe213Eysnxfdar2Gp2chQ3zk/m1a357D5Z2/8O3WQXN1Bc18oFU1xTmzg+PoQAXy+71jtrajew4WglF0wdYfPvgIcvmAjA7z+zP2AdiL2FdVQ3dzhstvraOUk8fV06uwpq+fZLO6hv6ex3n7U55dz3zz1MTwzn1dvmEmznYryBft58b8U4vnxwKRdOHcFf1x+ntL6Nu5Z41qyZ1U0Lkmk3mHgnq9Dl596eW82Y2GCbloQYExtCcnSQx6c25lY2D6reDCDV0ukx34VNQXYV1DBrdOSwSeH3dP0GZ8p8W/hl4JDW+ikArfUBrXWc1jpFa50CFAGztNYDe3clPFZxXRtKmZtbDGXnWf6Y95TaWFTbSm1Lp1PvWvp6e/HsDbOYlxrFD97Zx5qD/f9X2TyIFvqnm5saRVFtK8V1Pad85JQ2UNXU4bJ6s+6WTYgjJTqIf3yVZ/e+Wmu+OlFFmJPu6AX4ejN5ZBh7u82cvburkOK6Vn6wcvywmzUDSIsJJibEr2tR7768lVnIuLgQZllmGJ1ldJS17sz2WrjPD5ZT29LJ9Q7sIPnwBRMZGRbAI+/tp8Ng+0zvp9mleHspVk52zJp+/fHx9mLqqPCutRttsf5wBR0G0ykLT/cnISKQ7yxO46N9JewqcP4iwOsOlePjpVg63nE3RS5PT+DZG2aRU9LA9S9up7qp91SxLw+X893Vu5gyKozXbptLiJ2BWXejIgL58zdn8t495/DYpZNZ6qFrdE0cEca81Cje2F5g9xIbg2GuN6u1eS0vpRQrJsWz9Xi1y+sgbWU0afKqmwdVbwZft9PPd9Fi8HUtHRwtb5KURheyZeZsIXAjsFwptdfycZGTxyU8REldK/GhAYNOIXG3keGBTE0I6/GumvUNzAwnp5QE+Hrz0s1zmJoQzn3/3MNXx/teeWLjUcelGc7tqjvreebBHfVmVl5eilvOSWHPyTr22DAjobXmcFkDT35+mCVPbuD93cUsmRDntDt6M0dHcqC4HoPRRLvByF+/PM6s0REsdsP3yhWUUmQk9z3TCl8v7HzdIOu5bB3T/LRotttRd/bWzpMkRQWycIzjfk4h/j786sqpHC1vsrnWSmvNZ9llzE+LsqmVv6PMSIrgYEm9zenCn2aXEhvqb/cCs99ZMob4MH/+7+NDTlk/rLt1OeXMTY1y2FqUVqumjODFmzM4UdnEdS9sP6PGFMy/j+9+YzcTR4Tx+u3zBpVq3t3s5EhuXZjq0Td6bj4nhaLaVtYfdl3K4MGSBpraDXYttLxiUjwdRlPXjU1PU1LXSofBNOA1zqys7fRdldZozRSYnSzNQFzFlm6NW7TWSms9XWudbvn45LRtUmSNs+FpKK9xdrrzJsaz+2TtGXdG9xfV4+ftxYQRzs+lDvH34bVb55AaE8ydr2exq6DnYMRo0mw6WsnicbEOCTomjggjLMCn1zfcm49VMnFEKHFh7vlZX52RRKi/T59t9fOrmvnLF8c4/0+buODpzTy3MZeUmGCevHo6v//GNKeNLT0pgpYOI0fLm3g7s5DS+jZ+sHKCR7+ZGizrTGtJLzOt0G1h51mDq+ey1YK0aKqbO3pMTT5dflUzW09Uc11GksOD9uUT47lsxij+uv4Yx2xYYP5oeRO5Vc1c0Mu6Yc4yIymCtk4TR20YY0uHgfWHK7lgygi71/4K9vfhh6smsq+wjg/3lQx0uP0qqG7mWEUTKwbQpdEWS8bH8tptcymta+Xa57edUke35VgVd76exdi4EN64fS7hgc6vG/QkKyfHMyIsgNdc2Bikq97Mji6rGSmRhAf69tn8y52OW2pmx8QNbuYMzO30XTVzlpVfi4+XIt3B3axF74b2dIhwuqG8xtnpVk6OR2tYf+TUu2r7CuuYNCpsUAW69ogI8uON2+cSG+rPra/sJKek4YxtsovrqW3pZLGDUl28vRRzUqLY0UNaWEuHgaz8WoedayBC/H24dk4Snxwopaz+67vWJXWtvLgpl0v/soWlf9jAH9ceJTLIj19eMZUdPzmP12+byzUZSU5dN8r6B2lHXjV/W3+cuSlRLBxE98yhoKvurJfUxrZOIx/sKeb8KfEuWzDXegfdlpb6b2UW4u2luCYjySljeezSyYT4+/Cj9/b3O1v0aXYpSsGqKa5JabSaYamhtaXubOORSlo7jQNu83/VzASmJYTzu08P09LhnJQy6xtuZwVnYL7G3rhjHrXNHVz73DbyqprZeqKKO17PJC0mmDfvmEdEkPsXiHY1X28vbpg3ms3HquxuyjNQO/JqSIsNJi7U9huGvt5eLJsQy5eHK1yagmkr6xpng505A2s7/WaXtNPPyq9lSkJ4nx1JhWNJcCZ6ZTJpSurbhnQb/e6mjApjRFgA63K+Tm00mjTZxfVdb2RcJS4sgDdvn0ewvw83/WNH19onVpuOVqKUY9MM56ZGkVvVTEXjqSk7O3Jr6DCa3JLS2N3NC1Iwas3fNxznjW35XPPcVs753Zf8+pNDKAU/vXgS2368nHfuXsCN85Md0uTBFsnRQUQG+fL0umOUN7TzwDCtNetu0sgwQvx7n2n9/GAZ9a2ddi/sPBhJUYGMCg9gWz/BWafRxL93FbF8YhzxTpoJjg7x5+eXTmb3yTre2N53B9bPssvISI60602mI4yOCiIiyJd9NnRs/CS7jOhgP+YOcA0jLy9za/2yhjZe2JQ7oGP0Z11OOePjQ5y+Dtis0ZH88875tBlMXPPcNm5/NYvRUUGsvmOey25EeKJvzh2Nr7fiDRcsSm0wmsjMq7ErpdFqxeR4apo7bEqRd7XcyibCA30dch2lxgTR0mGk0snt9NsNRvYV1THHznRnMTgSnIleVTd30GEwDZuZM6UUyyfFsflYZdfCo7mVTTR3GN3SwjgpKog375iH1vDtl3ackkaz8Wgl0xLCiXZgADLP8ocuM+/UP1qbjlXi7+PFHDcvLjk6OoiVk+J5bVsBP/vvQepbO3no/PFseGgpH963iDvOTWNkuOuvRaXM6Rz1rZ3MT4tiwZjhPWsG5pnW2cmRvQZnb2cWkhQVyDku/F58XXfW9xpsXxwqp6qpnevnOmfWzOqK9AQWj4/lic8O99poJ6+qmcNljS5PaQTz92tGYkS/TUHaOo18eaic86eMwGcQtcVzU6O4eNpInt+Y6/C1pupbOtmZX+PUWbPupiaE8/Zd8/FSMCoigNV3zHfo7+KhKDbUn4unjeS9XUV2LTswEDmlDTTaWW9mtXh8LL7eirUe2LXxRGUTabHBDrm5Z22nn+fkurPs4gbaDSYypBmIS0lwJno1XNrod7dyUjzNHcaurm/7iswpP66eObMaExvC67fPpbHdwLdf2kFFYxv1rZ3sKaxzSJfG7qaMCiPIz5sdpzUF2Xysinlp0QT4uj9l4dGLJ/HwBRP4/PuLWfPAEu5bPo4UB6SADNas0eY/TA+sGO/mkbjO3NQojlU0nbG+UUG18+q5+jM/LZqa5g6O9VF39s+dhYwMD2CJAzv69UQpxW+unIoGfvrBgR4DRuvyEK5OabSakRTB0fLGPlMNNx2tpLnDyEUDTGns7pELJ2I0aZ50cGv9DUfNaWorXNTtEmBcfCjrH1rK/+4/16ZW7meDm85JobHdwAd7bFsOZqCs6ffzB7A8SliAL/NSo0/JkPEU5jb6g683A9e107d2YZVmIK4lwZno1dfB2fBoCAKwYEw0gb7eXb+49xfVEeznPejWtoMxZVQ4r946h/KGdm56eSefHCjFaNIOrwHz9fY6YzakpK6V4xVNHtN5MDk6mO8uHeuS5iz2uHlhCq/dNrdr9vFs0Fvd2duZhXgpuHq2c2ememKdteyt7qywpoXNxyq5NiPJ7sYWA5EYGcQPV01g/ZHKHpthfJZdyvTEcBIjnZuK15sZieGYtPnud28+zS4jIsh3QLMUp0uKCuLWRSl8sLfYobVJ6w5VEBPiR7qLMxyC/X084qaVp5iZFMG0hHBe35rv1Fqn7bnVpMUED7hB1YpJcZyobD6jXMCdGts6qWhsJ22Qa5xZjQwPcEk7/cz8WlKig+QGhYtJcCZ6ZU3VGS41Z2BuZ79oXAxfHCpHa82+onqmJoS75I1cX2YnR/HiTRnkVjbz6AcHCA3wYaYTOiPNS43icFkjdS3m2RBry2F3rG82lIQF+Dp8JtPTTU8Mx8/H65Rg3mA08e6uIpZNiHPL2oeJkYEkRAT2Gpy9a1ko99o5rgscb1qQQnpSBL/4KIeabrOMxXWt7Cuq54Kprll4uifWdO3e6s7aDUbW5ZRz/uR4hy2Xcue5afh5e/HCRsfUnnUYTGw4UsHyic5bLkPYRinFTQuSOVbR1G/t50AZTZqdeTWDuhF2niX99QsP6tpoTT9Mi3HMjWAfby+nt9PXWrOroJYMN5c8nI0kOBO9KqlrI8jPe9i1DV45KZ6S+jb2F9VzqKSBGR7SHnbRuBj+8q2ZKKVYPC52UPUfvZmbav6DZ33DvelYFfFh/oyPd9/MofBM/j7epCdFnDJztv5IJZWN7VznwuCnO6UU89Ki2J5bc0aXRIPRxDtZRSwZH+vSG0reXoonrp5OY1snv/w4p+txa0rjhW6oN7OKDfUnISKQvb3UnW05VkVju4EL7Vh4uj8xIf5ck5HIB3uKe1wvzF6Z+TU0thlcVm8m+nbpjFFEBvny+lbnNAY51FVvNvCAICkqiIkjQntc19RdrDPJY+Mcl6af4uR2+rlVzdQ0d5AhzUBcToIz0StrG/3h1plu2cQ4lIK/rT9Oh9HEdDfVm/Vk1ZQR/O/+RfzyiqlOOX732RCjSfPV8SrOHRc77H7GwjHmpkSRXdJAs6UBwFs7TxIX6s/yic6t5+pLb3VnG45UUtbQxvVzXddB0mp8fCjfXTqWD/YUs+GI+W79Z9mlTBwR2lUb4i7pSRHs7yU4++RAGWEBPg5dqBvgrnPHYDCZ+MeWvEEfa21OOf4+XizykNTrs12ArzfXzRnNmpyyXhvhDEbX+mapg0uzXTk5nqyC2jNqZt0lt7IZby/F6CjHBmfObKe/K9/cPExmzlxPgjPRq5L64bPGWXexof7MSIxgjaXubIYbOjX2ZeKIMKe1bA7w9WZmUgQ78mrILq6nrqXT7S30heeakxqF0aTZfbKWsvo21h+p4OrZiU6Z1bXVgl7WO3sr8ySxbgwcv7tsDGPjQnj0g2zyqprJKqh1a0qj1fTEcAprWqluOrXldofBxNqcMlZOHuHwNR5HRwdx0bSRrN5xkvrWzgEfR2vNF4fLWTQ2xqlrGQr73DDPfAPknzscP3u2Pbea1JjgQadNr5gUj9Gk2XDUM1IbcyubSYoMdOj/tRQnt9PPzK8hMsiXMQ6qkxO2k+BM9KqkrpWEYdQMpLuVlq5fkUG+JEYOvwC0L/NSozhYUs8nB8yL4y4aK8GZ6Nns5Ei8FGTm1fDvXYWYNFzrpIWdbZUUFXRG3VlZfRtfHq7gmtmJDqudspe/jze//8Z0SupbuekfO9DavSmNVta07f1Fpy5GvfVEFQ1tBod0aezJ3UvG0NRuYPUg3sAfLW+isKa1q4ZIeIakqCDOmxTPv3YW0tZpdNhxu+rNBtCl8XTTEsKJC/VnXY5nBGfmNvqOLR9IcXI7/V0FtcxOjpTMGjeQ4Ez0qK3TSFVTB6PcsK6UK5w3yXx3fXpixFn3i2duajQmDa9vK2DqKMeupSaGlxB/H6aMCmd7Xg1vZxWyIC3aI5Y2mJ8WzY68r+vO3skyB46uXBS7J7OTI7l5QQqFNa2kxQR7RC3ntIRwvBTsPa0pyKcHygjx93FauuDUhHDOHRfDP7bkD/gNvLVmyPr7WniOmxekUNPcwScHSh12zEOlDTS0DWx9s9N5eSnOmxTHxqNfr2vqLiaTJq+q2eEzUNbgrMAJdWfVTe3kVjVLSqObSHAmelRaby7kHo5pjQAT4kNZMSmey2aMcvdQXG5WcgQ+XorWTqOkNIp+zU2NYmdeDYU1rXzTyQs722p+WhQ1zR0crWjEZNK8nVnIorExjI52T8v67h5aNYHx8SF8c26SR9z4Cfb3YVxc6Cl1Z51GE5/nlLFiUhz+Ps5rFX/3kjFUNbXz/u6BrYu1NqecGYnhxA+wpbpwnoVjo0mLDea1bY5LbeyqNxtEM5DuVkyKp6nd0LVumrsU17XSbjA5fOZsVIS5nX6eE9Y6yyqw1JtJMxC3kOBM9Gg4LkDdnVKKl27O4BuzE909FJcL8vNhmqUJirTQF/2ZY7lzGh7oy6op7q+hArrurG8/Uc3m41UU13lO4Bji78OaB5Zw1+Ix7h5Kl+mJ4ewrqu9qHLAjt4a6lk6HdmnsyTljopmWEM4Lm05gNNnXtKCisY29hXXSpdFDKaW4eUEK+wrrzpiVHagdeTWkRAcx0kEZOwvHxhDg6+X2ro25XW30HTtzZm2nX+CE4GxXQS1+Pl5d7xWEa0lwJno0HNc4E19bNiGOmBA/ZstdMdGPOSmReHsprpqV4DEL8n5dd1bDv3acJDrYj/Mne0bg6IlmJEVQ09xBUa359/on2aUE+Xk7fe0+pRR3LxlDfnULnx8ss2vf9YfNtUIrJktw5qmumpVAsJ83r2/LH/SxTF31ZoNPabQK8PXm3HGxfHGowqmLZvfnhKWz7Jg4x6c5p0QHk1fl+LTGzPwapieEO3VmXfROgjPRo5K6VpSC+HCpRxqOvrt0DF8+tNThXdrE8BMd4s/795zDD1dNcPdQTjE/LZqvjlex7lA535idKNdyH9ItTUH2FtZhNGk+zy5j+cQ4lwTbF0wdQUp0EM9tPGHXG+S1ORUkRAQycUSoE0cnBiM0wJdvzE7k432lZ3QDtdehsgbqWzuZP8axNU4rJ8VTXNfKodJGhx7XHrlVTYQF+BDthC7Mzmin39ZpJLu4XurN3Ej+mokeldS1EhviL3dNhikfby/CAobX4uLCeWYkRXhcK/MFY6JpbDdgMGm3LYo9VEwYEYqfjxf7i+rYmVdDdXMHFzk5pdHK20tx5+I09hfVs+1Edf87AK0dRrYcr2TFpDiPqNsTvbtpQTIdRhNvZxUO6jjWujBHzpzB1+uaujO1MbeymbTYEKdcy85op7+vsI5Oo5Z6MzeS4Ez0qKSubdjWmwkhhj5ru+15qVGMcXCh/XDj6+3FlFFh7Cus59PsUgJ8vVg6wXX1pt+YlUhMiD9/33jCpu2/Ol5FW6dJUhqHgLFxoSwcG83q7ScxGE0DPs723GpGRwU5/H1HbKg/M5MiWJvj7uDMOV1urR0b8x3YsdHaDETKHtxHgjPRI/MaZxKcCSE8U1JUEPctG8vDF0x091CGhBmJERworufT7DKWTYhz6UxogK83ty5MYfOxKrKL6/vd/ovD5YT4+zh8FkU4x00LUiiua+WLwwNbU8xk0uzMr2G+g7o0nm7VlBEcKK6nsMbxtVn9aWo3UNbQ5rQbSF3BmQPXOttVUMuY2GAinZCGKWwjwZk4g9aa4rpWRg3TBaiFEMPDQ6smyN1dG6UnRdDaaU5/cnaXxp58e34yIf4+PL8pt8/tTCbNukMVLJkQK3WEQ8R5E+NIiAgccGOQI+WN1LV0OmR9s55YU3g/zXbcmmy2yqs0B02OXuPMytHt9E0mze6TtWQkS72ZO8lvPnGGmuYO2g0mSWsUQohhYoalKYifjxfLJ7p+UefwQF++NW80/9tfwsk+UrD2F9dT2djOCll4esjw8fbihvmj+ep4Nccr7G+88fX6Zs4JzpKigpiWEM7/DtjXMdQRcqvMnRodvcaZlY+3F0mRjmunn1vVRF1LJ7NT5KaXO0lwJs4w3BegFkKIs01KdBBRwX4sHR9LiL97mrvctjAVby/Fi5t7nz1bl1OOt5di2QQJzoaS6zKS8PPx4onPjlBmeQ9hq+251SRFBTq1lOKiaSPZV1hHUa1rUxtPVDThpSA5Oshp50iJcVw7/V1Sb+YRJDgTZ5A1zoQQYnhRSrH6jnn86sqpbhvDiPAArpyZwDtZhVT10np93aFyMpIjiQiSepehJDrEnzvPTWVNTjnn/O4Lbn1lJ58eKKXD0HeTEJNJsyOvhvlOri+8aJp5HcTPsl07e3aiqpmkqCCndr5Ojg5yWDv9XQW1RAb5OnzBbGEfCc7EGUoswZnMnAkhxPAxaWQYcaHurSW+a/EY2g0mXtuaf8ZzhTUtHC5rZKV0aRySfrhqIht/uJTvLh3LodJG7lm9m/m//YL/+yiHI2U9pzserTDXmzkrpdEqOTqYKaPC+N8B19ad5VY2Oz3QSY0Jdlg7/ayCWmYnR8oSFm4mwZk4Q0ldKwG+XkQGyTpYQgghHGdsXAgrJ8fz+rYCmtsNpzz3hWUtqvMmSXA2VCVHB/PQqgl89chyXr11DvPTonhjez6rnt7E5X/dwuodBTS0dXZtv92y9p11aQxnumjaSPacrOu6Ae1sJpMmr6rJafVmVskOaqdf09xBbmUzsySl0e36Dc6UUklKqfVKqUNKqYNKqe9ZHv+lUmq/UmqvUmqNUmqU84crXMG6xpncORFCCOFody8ZQ31rJ//aefKUx9cdqmBMbDCpklI15Hl7KZZOiOPZG2az4ycr+Pklk2k3mHj0g2zm/nodD7y9l20nqtmWW01iZCBJUc6rybL6umuja1IbS+pbaes0OX0dxlQHtdPfba03Gy3BmbvZMnNmAB7UWk8C5gP3KqUmA09qradrrdOBj4GfO2+YwpWK61oZFS4pjUIIIRxvdnIkc1OieHlLHp2WhYsb2jrZkVctC08PQ1HBfty2KJVPv3cuH963kKtnJ7LuUDnXv7idzw+WO62F/ulSY4KZNDKMT1yU2phraaPvrAWorUZFBODjpcgfZMfGXSdr8fFSXZ1dhfv0G5xprUu11rstnzcCh4AErXVDt82CgcFXIgqPUCJrnAkhhHCiu5emUVrfxod7SwDYdLSSTqNmpaQ0DltKKaYnRvCrK6ax8ycrePq6dC6YMoLr54522RgunjaCXQW1lNY7P7Uxt9LaRt+5wZmPtxejo4IGH5wV1DIlIZwAX+c1LxG2savmTCmVAswEdli+/rVSqhC4gV5mzpRSdymlspRSWZWVlYMcrnC2doORisZ2aQYihBDCaZZNiGNCfCjPbzphXng6p5yoYD9mSkrVWSHQz5srZibw3I2zXdq23boAuyu6Np6obCY0wIfYEH+nnys5Ooj8QbTT7zCY2FdYR4bUm3kEm4MzpVQI8B7wfeusmdb6Ua11ErAauK+n/bTWL2itM7TWGbGxsY4Ys3Ci8npztx8JzoQQQjiLUorvLEnjaHkTaw+V8+XhCpZNiMPbS2qdhfOMiQ1h4ohQl6Q25lqagbiifj8lJpj8QbTTzyltoN1gkvXNPIRNwZlSyhdzYLZaa/1+D5v8E/iGIwcm3EPWOBNCCOEKl84YRUJEII9+cICGNgMrJ8vC08L5Lpw6kqyCWsob7Fss2165lc2McVFzm652+r2sH9gfWXzas9jSrVEBLwOHtNZPdXt8XLfNLgMOO354wtVkjTMhhBCu4Ovtxe2LUqlq6sDP24tzx0l2jXC+i6ePQGvnpjY2txsorW9zer2ZVVc7/QGmNu4qqCExMpD4MOk34AlsmTlbCNwILLe0zd+rlLoI+J1SKlsptR84H/ieMwcqXMManI0Ml/+gQgghnOubc5OIDPJl0bgYgv193D0ccRYYGxfK+PgQpy5InWdpa+/sNvpWXe30B9AURGvNLsvi08Iz9PubUGu9BegpYfYTxw9HuFtJfSsxIX7SrUcIIYTTBfn58P53FxLsL39zhOtcOHUkz3x5jIqGNuKcMFt0oqtTo2uCs652+gNY66yotpXyhnZpBuJB7OrWKIa/YssC1EIIIYQrpMYEExcq2RrCdS6ePhKt4fODzkltzK1sRilzF0VXsLbTL6i2P61x90lzvdksCc48hgRn4hQlsgC1EEIIIYax8fGhjI1zXmpjblUzSZFBLs1CSo4O6kqntMeuglqC/byZEB/qhFGJgZDgTHTRWlsWoJbgTAghhBDD10VTR7Azr4bKxoF1OOzLiYomlzUDsRpoO/2s/Fpmjo7Ex1tCAk8hPwnRpb61k5YOI6MiJL1ECCGEEMPXRdNHYnJCaqPJpMmraiYtxjX1ZlYp0fa3029qN3C4rEFSGj2MBGeii6xxJoQQQoizwYT4UNJigx2+IHVZQxutnUa3zJyBfe30956sw6RlfTNPI8GZ6FJSZ16QUdIahRBCCDGcKaW4aOpItudWUz3AxZt7Yu3U6Ko2+lYpluYj9rTT31VQi1Iwc3SEk0YlBkKCM9FFFqAWQgghxNniomnW1MZyhx0zt9K6xplrZ84SIgLtbqe/62QtE+JDCQvwdeLIhL0kOBNdSupa8fPxIjrYz91DEUIIIYRwqkkjQ0mJDnJoamNuZRMh/j7Ehvo77Ji28PH2IsmOdvpGk2aPLD7tkSQ4G0Y6jaZB7V9c18qo8AC8vHpac1wIIYQQYvhQSnHRtJFsy62mprnDIcfMrWpmTGwwSrn+vVSKHe30j1U00thukODMA0lwNkxkF9cz59freH1b/oCPIW30hRBCCHE2uWjaSIwmzRoHdW00t9F3bb2ZVXJ0MAU2ttPPyjcvPi3BmeeR4GwYKK1v5fbXMqlr6eT5jbkYTfatcWFVUtcmwZkQQgghzhpTRoUxOirIIQtSt3QYKKlvIy3GtfVmVqkxwTTb2E5/d0EtMSH+jI4KcsHIhD0kOBvimtoN3PZqFs3tRh5YMZ7iula+PFxh93E6jSbKGyU4E0IIIcTZw5rauPVENbWDTG20phS6a+bM2k7flrqzXSdrmZ0c4Zb0S9E3Cc6GMIPRxL2rd3O0vJFnb5jFvcvGEB/mzxvbC+w+Vll9G1pDgixALYQQQoizyMWW1Ma1OYPr2njC2qkxzj0zZ9Z2+v3VnVU2tlNQ3SIpjR5KgrMhSmvNYx8eZOPRSn51xVQWj4/Fx9uLb81NZtPRSpsLQq1K62WNMyGEEEKcfaYmhJEYGTjo1MbcyiaUgpRo9wRn1nb6Bf2sdbarwFpvFuWKYQk7SXA2RL20OY/VO05y95IxXD93dNfj189NwsdLsdrO2TNZ40wIIYQQZyOlFBdPG8lXx6uob+kc8HFyK5tJiAgkwNfbgaOznbWdfn5V32mNu0/W4ufjxdSEMBeNTNhDgrMh6LPsUn7z6SEunjaSh1dNOOW5uLAALpg6gneyCmntMNp8zGJrcBYuwZkQQgghzi4XTRuJwaRZkzPwro25VU2McVO9mVVKdBD5/cycZeXXMD0hHH8f9wSRom8SnA0xewvr+P7be0lPiuCP187ocU2yG+cn09Bm4MN9xTYft6SulahgPwL95D+qEEIIIc4u0xPDSYgIHPCC1FprciubSYt1T0qjVXJ0MPlVvbfTb+s0kl3cIPVmHuysD8525tXw5eHBFYC6SmFNC3e8lklsqD8v3pTR67T53NQoJsSH8vq2ApvWugDrGmfSDEQIIYQQZx9z18YRbDleRX2r/amNZQ1ttHQY3dap0craTr+qqefOk9nF9XQYTcyS4MxjndXBmdaa3316iEc/yKat0/YUQHeob+3k1lcz6TCYeOWWucSE+Pe6rVKKGxckc7CkgT2FdTYdv6SuTVIahRBCCHHWumjaSDqNmnUD6NqYa+3U6KY1zqySLR0be0tt/LoZiARnnuqsDs6UUvxw1URK69t4cwDt512lw2Dinjd3UVDdzPM3ZjA2rv+7MlfMTCDE34c3ttn2uswzZxKcCSGEEOLslJ4UwajwgAGlNuZWNgEwxob3aM6UagkOe+vavauglpTooD5v8gv3OquDM4AFY6I5d1wMf1t/nMa2gXfocRatNY9+cICtJ6r53VXTWTAm2qb9Qvx9+MasBP63v5TqflaKb2jrpLHdQIIEZ0IIIYQ4SymluHDaSDYfq6LBzveEJyqbCfbzJi7UvUFPX+30tdbsKqiVlEYPd9YHZwA/XDWB2pZOXt6S5+6hnOFv64/z7q4i7j9vHN+YnWjXvt+en0yH0cTbWYV9bmdtoz9Sas6EEEIIcRa7aNoIOowmfvvJITLza+gwmGza70RlE2mxISh1ZqM2V+qrnX5BdQvVzR1kyPpmHs3H3QPwBNMTI7hw6ghe2pzHTQtSiAr2c/eQAPjv3mL+sOYoV85M4IEV4+zef1x8KAvSolm9/STfWTwG7x46O4KscSaEEEIIATAzKZIVk+J5K7OQf+0sJNDXm4yUSOanRXPOmGimJYTj433m3EZuZTNzUjxjRiq5l3b6WVJvNiT0G5wppZKA14ERgAl4QWv9Z6XUk8ClQAdwArhVa13nxLE61YPnj+fzg2X8fcNxHr14sruHQ2Z+DT98dz9zU6P43TemDfhOzE0Lkrln9W7WH65gxeT4HrcprmsDkLRGIYQQQpzVvLwUL92cQV1LB9tza9ieW822E9U8+fkRwFw2MiclkgVjolmQFsPkUWF0GEwU17VyXWySm0dvlhIdTGZeDVrrU94/7iqoJTTAh3FurosTfbNl5swAPKi13q2UCgV2KaXWAmuBH2utDUqp3wM/Bn7kxLE61di4UK6alchr2wq4bVEqI93YubC+pZP7/rmbhMhAXrhx9qAWCVwxOZ74MH9e317Qa3BWUteKr7ciVopDhRBCCCGICPLjgqkjuGDqCACqmtrZkVvD1hNVbMutZv2RSgDCAnyYPCoMwO1rnFmlRAd1tdOP7VYDt7ugllmjI3tcI1d4jn5rzrTWpVrr3ZbPG4FDQILWeo3W2mDZbDtgX0GUB/reeePQWvPMF8fdOo7/+ziHqqYO/vzNdCKCBpdi6evtxbfmJrPpaCX5vXTuKalrZUR4gPxnFUIIIYToQUyIPxdPH8mvr5zGlw8uZcdPzuPP30znomkjKa1vw8/bixmJEe4eJgAplo6N3VMb61s7OVrRKCmNQ4BdDUGUUinATGDHaU/dBnzqoDG5TVJUEDfMS+adrMJeW5A62xeHynlvdxH3LBnDdAf9J79+bhI+XqrX5QJK6lpljTMhhBBCCBvFhwVweXoCv/vGdDb+cBk5/7eKpKggdw8LMKc1AqfclN9zshatIUOCM49nc3CmlAoB3gO+r7Vu6Pb4o5hTH1f3st9dSqkspVRWZWXlYMfrdPcuG4uftxdPrT3q8nPXt3Ty4/cPMCE+lP933liHHTcuLIBVU0fw7q4iWjvOXGy7pK5N6s2EEEIIIQaopyYh7pIYaW6n333mbHdBLV4KZiRFuG9gwiY2XUlKKV/MgdlqrfX73R6/GbgEuEFrrXvaV2v9gtY6Q2udERsb64gxO1VsqD+3LUrho30l5JQ09L+DA/3io4NUN3fwx2tnDKrOrCc3zU+mvrWTj/aVnPK4wWiirKFNOjUKIYQQQgwDXe30q79up59VUMukkWEE+0ujdk/Xb3CmzG1eXgYOaa2f6vb4BZgbgFymtT5zMYUh7K7FYwgL8OEPa4647Jxrc8p5f08x9y4dw9SEcIcff25qFOPjQ3h9ez7d4+iKxnaMJi3BmRBCCCHEMJEcHdSV1mgwmthbWCcpjUOELTNnC4EbgeVKqb2Wj4uAvwKhwFrLY885c6CuFB7oy91Lx/Dl4Qqy8mucfr7a5g5+8sEBJo4I5b7l9q9nZgulFDcuSCG7uIG9hXVdj3+9xpksQC2EEEIIMRykRAdTUN2C1prDZY20dBiZJcHZkGBLt8YtWmultZ6utU63fHyitR6rtU7q9tjdrhiwq9x6Tiqxof488dkResnYdJjHPzpIrSWd0c/HeTnLV85MIMTfhze2fd0YpNgSnEnNmRBCCCHE8JASHURTu4Gqpg52WRafzkiJcvOohC08p3rRwwT6eXP/8rHszK9h41HnNTL5LLuM/+4t4b7lY5kyyvHpjN2F+Ptw1awEPt5fSnVTO2BuBgIwUoIzIYQQQohhwdpOv6C6mV0FtYwIC2BUuGRJDQUSnPXhujmjSYoK5MnPj2AyOX72rKa5g5/+5wCTR4Zx7zLHdWfsy43zk+kwmngnqwgwpzWGB/oSIgWiQgghhBDDgrWdfl6VOTibnRyJuY2E8HQSnPXBz8eLB1aM52BJA59mlzn8+I99eJD61k7+eO0MfF3UgnVcfCjz06J4c3sBRpM2r3Ems2ZCCCGEEMOGtZ3+9twaiutaZfHpIUSCs35cnp7A+PgQ/rj2CAajyWHH/fRAKR/tK+H+5eOYNDLMYce1xU0LUiiua2XDkQqK61pJkGYgQgghhBDDho+3F4mRgXyaXQogwdkQIsFZP7y9FA+eP4Hcymbe313skGNWN7Xz0/9kMzUhjLuXjnHIMe2xcnI88WH+vL6tQGbOhBBCCCGGoZSYYFo6jAT4ejF5lGsnAsTASXBmg/MnxzMjKYKn1x2lrdM46OP9/L8HaWjr5I/XpLssnbE7X28vrp87mo1HK2loM0hwJoQQQggxzFjrzmYkRrjl/aYYGPlJ2UApxcOrJlBS38bqHScHdayP95fwvwOlfH/FeCaMCHXQCO13/dzR+HiZC0MlOBNCCCGEGF5SooMASWkcaiQ4s9HCsTEsHBvNs+uP09RuGNAxqpra+fl/DzIjMZzvLE5z8AjtEx8WwKopIwCk5kwIIYQQYpgZG2eeBJiTKuubDSUSnNnhofMnUN3cwT+25Nm9r9aan/0nm6Y2A3+4ZgY+HjC9fO+ysSwaG8OEEZKHLIQQQggxnCwcG83rt81l6fhYdw9F2EEWt7LDzNGRnD85nhc35ZKREklMiD/hgb6EBfgS4OvV5/oRH+0v5dPsMn50wUTGxbsvnbG7yaPCePOOee4ehhBCCCGEcDClFIslMBtyJDiz00OrJnDJM1v41os7Tnncz9uLsEBfwgN9LP/6dgVu4YG+rN5RQHpSBHeem+qmkQshhBBCCCE8mQRndhofH8qXDy0hr6qZ+tbOro+GVoPl304a2jqpae7o2qahtZPIID+PSWcUQgghhBBCeB4JzgYgMTKIxMggm7fXWmPS5jXThBBCCCGEEKInEpy5gFIKb4nLhBBCCCGEEH2QHDshhBBCCCGE8AASnAkhhBBCCCGEB5DgTAghhBBCCCE8gARnQgghhBBCCOEBJDgTQgghhBBCCA8gwZkQQgghhBBCeAAJzoQQQgghhBDCA0hwJoQQQgghhBAeQIIzIYQQQgghhPAA/QZnSqkkpdR6pdQhpdRBpdT3LI9fY/napJTKcP5QhRBCCCGEEGL48rFhGwPwoNZ6t1IqFNillFoLZANXAc87c4BCCCGEEEIIcTboNzjTWpcCpZbPG5VSh4AErfVaAKWUc0cohBBCCCGEEGcBu2rOlFIpwExgh1NGI4QQQgghhBBnKZuDM6VUCPAe8H2tdYMd+92llMpSSmVVVlYOZIxCCCGEEEIIMezZFJwppXwxB2artdbv23MCrfULWusMrXVGbGzsQMYohBBCCCGEEMOeLd0aFfAycEhr/ZTzhySEEEIIIYQQZx9bujUuBG4EDiil9loe+wngD/wFiAX+p5Taq7Ve5ZRRCiGEEEIIIcQwZ0u3xi1Aby0ZP3DscIQQQgghhBDi7GRXt0YhhBBCCCGEEM4hwZkQQgghhBBCeAAJzoQQQgghhBDCA0hwJoQQQgghhBAeQIIzIYQQQgghhPAAEpwJIYQQQgghhAeQ4EwIIYQQQgghPIAEZ0IIIYQQQgjhASQ4E0IIIYQQQggPIMGZEEIIIYQQQngACc6EEEIIIYQQwgNIcCaEEEIIIYQQHkCCMyGEEEIIIYTwABKcCSGEEEIIIYQHkOBMCCGEEEIIITyABGdCCCGEEEII4QEkOBNCCCGEEEIIDyDBmRBCCCGEEEJ4AAnOhBBCCCGEEMIDSHAmhBBCCCGEEB5AgjMhhBBCCCGE8AASnAkhhBBCCCGEB5DgTAghhBBCCCE8gARnQgghhBBCCOEB+g3OlFJJSqn1SqlDSqmDSqnvWR6PUkqtVUods/wb6fzhCiGEEEIIIcTwZMvMmQF4UGs9CZgP3KuUmgw8AnyhtR4HfGH5WgghhBBCCCHEAPQbnGmtS7XWuy2fNwKHgATgcuA1y2avAVc4aYxCCCGEEEIIMezZVXOmlEoBZgI7gHitdSmYAzggzuGjE0IIIYQQQoizhM3BmVIqBHgP+L7WusGO/e5SSmUppbIqKysHMkYhhBBCCCGE6N8TT8D69ac+tn69+fEhwKbgTCnlizkwW621ft/ycLlSaqTl+ZFARU/7aq1f0FpnaK0zYmNjHTFmIYQQQgghhDjTnDlw7bVfB2jr15u/njPHveOykS3dGhXwMnBIa/1Ut6c+BG62fH4z8F/HD08IIYQQQgghbLRsGbzzDlx6KVx3nTkwe+cd8+NDgC0zZwuBG4HlSqm9lo+LgN8BK5VSx4CVlq+FEEIIIYQQwn2mToW2NnNQds89QyYwA/DpbwOt9RZA9fL0eY4djhBCCCGEEEIMwsMPg9FoDsz+/ndzcDZEAjS7ujUKIYQQQgghhMf6/HN47TWYNw+efdY8e9a9Bs3DSXAmhBBCCCGEGB5efBG0ht/8xvy1tQYtM9O947JRv2mNQgghhBBCCOHxTCbIyYH09FPTGIdQWqMEZ0IIIYQQQoih77PP4NAheOMNUL21zPBsktYohBBCCCGEGPr+8AdISDC30B+iJDgTQgghhBBCDG179pibfnzve+Dr6+7RDJgEZ0IIIYQQQoih7Y9/hJAQuPNOd49kUCQ4E0IIIYQQQgxdRUXw9ttwxx0QEeHu0QyKBGdCCCGEEEKIoeuZZ8ydGr/3PXePZNAkOBNCCCGEEEIMTY2N8MILcPXVkJLi7tEMmgRnQgghhBBCiKHp5Zehvh4efNDdI3EICc6EEEIIIYQQQ4/BAE8/DYsWwdy57h6NQ8gi1EIIIYQQQoih5733oKDAHKANEzJzJoQQQgghxNnsiSfMa4R1t369+XFPpbW5ff64cXDppe4ejcNIcCaEEEIIIcTZbM4cuPZac0DW0mL+99przY97qi1bIDMTHngAvL3dPRqHkbRGIYQQQgghzmbLlsE778All5gXcjaZzF8vW+bukfXuj3+E6Gi4+WZ3j8ShZOZMCCGEEEKIs92yZeb0wIoKmDTJswOzY8fgww/hnnsgKMjdo3EoCc6EEEIIIYQ4261fD198AdOmwebN8Pzz7h5R7/70J/D1hXvvdfdIHE6CMyGEEEIIIc5m1hqzd96BjRshKsoc+KxZ4+6Rnam6Gl59Fb79bRgxwt2jcTgJzoQQQgghhDibZWZ+XWMWGWkOfoxGz+zW+Pe/Q2sr/OAH7h6JUyittctOlpGRobOyslx2PiGEEEIIIcQA3HQT/POfsHMnzJrl7tGYtbVBcrJ5PJ9+6u7RDJhSapfWOqOn52TmTAghhBBCCHGqP/8Z4uLgllugo8PdozFbvdrcsOShh9w9EqeR4EwIIYQQQghxqshIc1OQAwfgV79y92jMi04/9RTMmAHLl7t7NE7Tb3CmlPqHUqpCKZXd7bEZSqltSqkDSqmPlFJhzh2mEEIIIYQQwqUuvRRuvBF+8xvYvdv153/iCXOzEoDPPoOcHLjwQnjySdePxUVsmTl7FbjgtMdeAh7RWk8DPgB+6OBxCSGEEEIIIdzNnemNc+aYu0iuX//1otMvvWR+fJjqNzjTWm8Cak57eAKwyfL5WuAbDh6XEEIIIYQQwt3cmd64bJm5i+RVV5nXYGtr+7qr5DA10JqzbOAyy+fXAEmOGY4QQgghhBDCo7gzvXHpUnOACHDPPcM6MIOBB2e3AfcqpXYBoUCvc5xKqbuUUllKqazKysoBnk4IIYQQQgjhNu5Kb3zoIcjLM9eavfrq1zVow9SAgjOt9WGt9fla69nAv4ATfWz7gtY6Q2udERsbO9BxCiGEEEIIIdzFHemNb70Ff/oTpKfDxx+bUxqtNWjD1ICCM6VUnOVfL+CnwHOOHJQQQgghhBDCw7gyvVFr+PnPwd8f3n8fvLy+rkHLzHTuud3Illb6/wK2AROUUkVKqduB65VSR4HDQAnwinOHKYQQQgghhHA7V6U3vvQSHDtmXtssNfXrx5ctg4cfdt553UxprV12soyMDJ2VleWy8wkhhBBCCCEc7KOP4LLL4Gc/g//7P8cf/+RJmDrV3DJ/7VrzrNkwopTapbXO6Om54fVKhRBCCCGEEM516aUwaxb8+tenpjeuX29eOHowtIY77gCTyTx7NswCs/6cXa9WCCGEEEIIMXiPPWb+9+qrzemN69ebm3UMdoHoF180z5Y9+eSp6YxnCQnOhBBCCCGEEPa57DJzSmNeHsyfbw7MBrtAdEEBPPggLF8O3/mO48Y6hEhwJoQQQgghhLDfo4/CwoWwZw+EhcHMmQM/ltZw553mf19++axLZ7Q6O1+1EEIIIYQQYnDWr4cjR+CSSyA3F6ZPh+PHB3as7umMKSkOHeZQIsGZEEIIIYQQwj7WGrN33jF3b/zTn6CoyDx7Zu8i0ZLO2EWCMyGEEEIIIYR9MjNPrTH7/vfhjTcgKAjOPx+ef96241i7M8JZnc5odXa/eiGEEEIIIYT9Hn74zOYfN9xgXjh65Uq4+2743vfAYOj7OC++COvWnfXpjFYSnAkhhBBCCCEcIyzMnOb4wAPwzDPmerS6up637Z7OeNddLh2mp5LgTAghhBBCCOE43t7w1FPmRaS/+AIWLDizUYikM/ZIvgtCCCGEEEIIx7v9dnPKYmUlzJtnbvZhbRZiTWe84w5z7ZoAJDgTQgghhBBCOMuSJbBzJ4wYYZ5Ju+wy+Ne/zOmMM2fCm2/CnDnuHqXHkOBMCCGEEEII4TxpabB1K6xaBU1N8O1vQ3u7uease8dHIcGZEEIIIYQQwsnCw79uFGIyQWcn3HuvBGankeBMCCGEEEII4Xze3nDppRAVBT/7Gfz97/YvWD3MSXAmhBBCCCGEcL716+Haa+Hf/4b/+z9zSuO110qA1o0EZ0IIIYQQQgjny8w8tcZs2TLz15mZ7h2XB1Faa5edLCMjQ2dlZbnsfEIIIYQQQgjhSZRSu7TWGT09JzNnQgghhBBCCOEBJDgTQgghhBBCCA8gwZkQQgghhBBCeAAJzoQQQgghhBDCA0hwJoQQQgghhBAeQIIzIYQQQgghhPAAEpwJIYQQQgghhAeQ4EwIIYQQQgghPIBLF6FWSlUCBS47oe1igCp3D0IMW3J9CWeS60s4m1xjwpnk+hLO5KnXV7LWOranJ1wanHkqpVRWb6t0CzFYcn0JZ5LrSzibXGPCmeT6Es40FK8vSWsUQgghhBBCCA8gwZkQQgghhBBCeAAJzsxecPcAxLAm15dwJrm+hLPJNSacSa4v4UxD7vqSmjMhhBBCCCGE8AAycyaEEEIIIYQQHmBIBWdKqQuUUkeUUseVUo90e/xtpdRey0e+UmpvL/tHKaXWKqWOWf6NtDx+Q7f99yqlTEqp9B72X205f7ZS6h9KKV/L40op9YxlXPuVUrOc8x0QzubB19hEpdQ2pVS7Uuoh57x64WwefH3dYPndtV8ptVUpNcM53wHhTB58fV1uubb2KqWylFKLnPMdEM7kxOvLVyn1mlLqgFLqkFLqx73sn6qU2mHZ/22llJ/lcXkPNgx48PXl+vdfWush8QF4AyeANMAP2AdM7mG7PwI/7+UYTwCPWD5/BPh9D9tMA3J72f8iQFk+/gXc0+3xTy2Pzwd2uPv7JR/D7hqLA+YAvwYecvf3Sj6G3fV1DhBp+fxC+R029D48/PoK4esyiunAYXd/v+TDc64v4FvAW5bPg4B8IKWH/d8Bvmn5/Dl5DzZ8Pjz8+nL5+6+hNHM2Fziutc7VWncAbwGXd99AKaWAazH/UejJ5cBrls9fA67oYZvre9tfa/2JtgB2Aondjvu65antQIRSaqTNr0x4Co+9xrTWFVrrTKDTrlckPIknX19btda1ls228/XvNjF0ePL11WR5DCAYkGL3oceZ15cGgpVSPkAg0AE09HDs5cC/e9hf3oMNfR57fbnj/ddQCs4SgMJuXxdZHuvuXKBca32sl2PEa61LASz/xvWwzXX0/oMHzFOkwI3AZ3aMTXg+T77GxNA3VK6v2zHfhRZDi0dfX0qpK5VSh4H/Abf1tb/wSM68vv4NNAOlwEngD1rrmtP2jQbqtNaGHs4v78GGPk++vlxuKAVnqofHTr/71usdPZtOoNQ8oEVrnd3Pps8Cm7TWm+0Ym/B8nnyNiaHP468vpdQyzMHZjwY6BuE2Hn19aa0/0FpPxHw3+pcDHYNwG2deX3MBIzAKSAUeVEql2XF+eQ829Hny9eVyQyk4KwKSun2dCJRYv7BMV14FvN3tsVcsBYSfWB4qt051W/6tOO0c36T/O4KPAbHAD2wdmxgyPPkaE0OfR19fSqnpwEvA5Vrrajtel/AMHn19WWmtNwFjlFIxtrwo4TGceX19C/hMa92pta4AvgIyTjt/FeZ0RZ8ezi/vwYY+T76+XG4oBWeZwDhLNxU/zH8kPuz2/ArMRcZF1ge01rdqrdO11hdZHvoQuNny+c3Af63bKqW8gGsw57n2SCl1B7AKuF5rber21IfATZaOQfOBeuvUqhhSPPkaE0Ofx15fSqnRwPvAjVrro4N4jcJ9PPn6Gmup6UCZO+n5AXIDYGhx5vV1ElhueQ8VjLmpx+HuJ7fULK4Hru5hf3kPNvR58vXletoDurTY+oG5I89RzB1dHj3tuVeBu/vZPxr4Ajhm+Teq23NLge397G+wnHuv5ePnlscV8DfLcweADHd/r+Rj2F1jIzDfWWoA6iyfh7n7+yUfw+b6egmo7fZ4lru/V/IxrK6vHwEHLY9tAxa5+3slH55zfWHu5vmu5RrJAX7Yy/5pmBvNHLds7295XN6DDYMPD76+XP7+y9raVgghhBBCCCGEGw2ltEYhhBBCCCGEGLYkOBNCCCGEEEIIDyDBmRBCCCGEEEJ4AAnOhBBCCCGEEMIDSHAmhBBCCCGEEB5AgjMhhBBCCCGE8AASnAkhhBBCCCGEB5DgTAghhBBCCCE8wP8HGMIq5OOQXxwAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACLZklEQVR4nO3dd1gc1/Xw8e/dpfeOqJIQKiCBuqxqSbbl3nvi3pM4v/TiVDtv4jg9TneLSxwnjnuvsiVZvdmogVBBSPReRd3d+/6xuxghyi5sA87neXiEdmdn7sIAc+aee47SWiOEEEIIIYQQwrsM3h6AEEIIIYQQQggJzoQQQgghhBDCJ0hwJoQQQgghhBA+QIIzIYQQQgghhPABEpwJIYQQQgghhA+Q4EwIIYQQQgghfIAEZ0IIIYQQQgjhAyQ4E0KIUUop1drrw6KUau/1/xu8Pb7hUEoVK6XO8fY4BqOUWq+UutON+39MKVVo+57e2ue5R/p83zuVUi29nv+qUmqX7fGn+9n32Uqpg0qpNqXUOqXUxF7PKaXUr5VSdbaP3yillLvepxBCiNNJcCaEEKOU1jrM/gGcAC7p9dhz3h5fX0opv7FwDA/YA3wF+LTvE1rrL/X5vv8XeLHXJuXAL4An+75WKRUHvAL8BIgBdgH/67XJ3cDlwGwgF7gYuMcF70cIIYSDJDgTQogxRillUErdp5Q6apsBeUEpFWN7bpJSSiulblNKlSilGpRSX1JKLVRK7VVKNSql/tprX7cqpTYrpf6ilGqyzbqc3ev5SKXUP5VSFUqpMqXUL5RSxj6v/aNSqh54QCk1RSn1sW1ctUqp55RSUbbtnwXSgTdts0LfU0qtUkqV9nl/PbNrSqkHlFIvKaX+rZRqBm4dYkyZSqkNtvdSq5TqHZz0PkaQbZ91tq/JTqVUolLqQWAF8FfbGP9q236GUupDpVS9bdbr2l77eto24/WhUqrFdvyJ/R0XQGv9N631R0DHEN/nUOAq4Jler31Fa/0aUNfPS64EDmitX9RadwAPALOVUjNsz98C/F5rXaq1LgN+D9w62BiEEEK4lgRnQggx9nwN6wzISiAZaAD+1mebM4CpwHXAw8CPgHOAmcC1SqmVfbYtAuKA+4FX7MEe1sDABGQCc4FzgTv7eW0C8CCggIds48oC0rAGCWitb+LUGcDfOPh+LwNeAqKA54YY08+BD4BoIBX4ywD7vAWItI0vFvgS0K61/hGwEfiqbYxftQVJHwL/sb3PLwB/V0rN7LW/G2zHjgPybOMcqauAGuATB7efiXVWDgCt9UngqO3x0563fd77PQghhHAzCc6EEGLsuQf4kW0GpBNr8HN1n5S/n2utO7TWHwAngf9qrattMyYbsQY1dtXAw1rrbq31/4BC4CKlVCJwAfANrfVJrXU18Efg+l6vLdda/0VrbdJat2utj2itP9Rad2qta4A/YA0iR2Kr1vo1rbUFiBhiTN3ARCDZ9v43DbDPbqxBWabW2qy13q21bh5g24uBYq31U7b3+SnwMnB1r23e1lp/Yvt+/AhYopRKG8mbxhpA/ktrrR3cPgxo6vNYExA+wPNNQJisOxNCCM8ZC7n5QgghTjUReFUpZen1mBlI7PX/ql6ft/fz/7Be/y/rEwAcxzrzNRHwByp6Xb8bgJJe2/b+HKVUAvBnrKmB4bbtGxx6VwPrfYyhxvQ9rDNYO5RSDVjT+E5bnwU8i3XW7Hlb2uW/sQa83f1sOxE4QynV2OsxP9s+Thuj1rrVluaZ3GfsDrMFdiuBu5x4WSvW4LW3CKBlgOcjgFYngj8hhBAjJDNnQggx9pQAF2ito3p9BNlmxYYjpc/sSTrWwhMlQCcQ1+s4EVrr3qlwfS/sH7I9lqu1jgBuxJrqOND2J4EQ+39sa8fi+2zT+zWDjklrXam1vktrnYx1hvHvSqnMvm/YNkv4M611NrAU6+zYzQOMsQTY0OfrHaa1/nKvbXpmyZRSYVgLcpT3Pa4Tbga2aK2LnHjNAazFPuzjCAWm2B4/7Xnb5wcQQgjhMRKcCSHE2PMI8KC96IRSKl4pddkI9pcAfE0p5a+UugbrWrF3tNYVWNdv/V4pFWErRDKlz3q1vsKxztA0KqVSgO/2eb4KyOj1/0NAkFLqIqWUP/BjIHCgnQ81JqXUNUqpVNvmDVgDLXPf/SilViulcmzBYDPWNEf7dn3H+BYwTSl1k+1r5G8rsJLVa5sLlVLLlVIBWGfutmut+501U0oFKKWCsAat/rbiJH3/Xt8MPN3Pa/1srzUCRttr7VkyrwKzlFJX2bb5KbBXa33Q9vy/gG8ppVKUUsnAt/s7hhBCCPeR4EwIIcaePwFvAB8oaw+sbVgLcwzXdqzFQ2qxFvW4WmttrwZ4MxAA5GMNdl4CkgbZ18+AeVjXM72NtbR7bw8BP7ZVSPyO1roJa1n5J4AyrDNppQxusDEtBLYrpVqxfo2+rrU+1s8+Jthe1wwUABuwpjaC9et7tbJWuvyz1roFa9GR67HOhlUCv+bUIPI/WIup1APzsRYIGcgHWFNLlwKP2T4/0/6kUmoJ1mImL/bz2h/btr8P66xku+0xbGv8rsL6PWzAek70Xh/4KPAmsA/Yj/X78+gg4xRCCOFiSlLJhRBCDERZmyDfqbVe7u2xjFbK2gy6VGv9Y2+PRQghhG+TmTMhhBBCCCGE8AESnAkhhBBCCCGED5C0RiGEEEIIIYTwATJzJoQQQgghhBA+QIIzIYQQQgghhPABfkNv4jpxcXF60qRJnjykEEIIIYQQQviM3bt312qt4/t7zqPB2aRJk9i1a5cnDymEEEIIIYQQPkMpdXyg5yStUQghhBBCCCF8gARnQgghhBBCCOEDJDgTQgghhBBCCB/g0TVnQgghhBBC+Iru7m5KS0vp6Ojw9lDEGBQUFERqair+/v4Ov0aCMyGEEEIIMS6VlpYSHh7OpEmTUEp5ezhiDNFaU1dXR2lpKZMnT3b4dZLWKIQQQgghxqWOjg5iY2MlMBMup5QiNjbW6VlZCc6EEEIIIcS4JYGZcJfhnFsSnAkhhBBCCOElDz74IDNnziQ3N5c5c+awfft2AO68807y8/NdcoxJkyZRW1s76Da//OUvnd7v008/zVe/+tVTHnvqqaeYM2cOc+bMISAggJycHObMmcN9993n9P494eGHH6atrc3bw+gha86EEEIIIYTwgq1bt/LWW2/x6aefEhgYSG1tLV1dXQA88cQTHh3LL3/5S374wx+OeD+33XYbt912G2ANCtetW0dcXNyI9ztcWmu01hgM/c9JPfzww9x4442EhIQ4vE+TyYSfn3vCqCFnzpRSaUqpdUqpAqXUAaXU13s9939KqULb479xywjFuLKruJ6mtm5vD0MIIYQQwu0qKiqIi4sjMDAQgLi4OJKTkwFYtWoVu3btAiAsLIzvf//7zJ8/n3POOYcdO3awatUqMjIyeOONN4DTZ7Euvvhi1q9ff9oxL7/8cubPn8/MmTN57LHHALjvvvtob29nzpw53HDDDQD8+9//ZtGiRcyZM4d77rkHs9kMWGfGpk2bxsqVK9m8ebPD7/W3v/0tCxcuJDc3l/vvvx+A4uJiZsyYwZ133smsWbO44YYbWLt2LcuWLWPq1Kns2LEDgAceeICbbrqJs846i6lTp/L4448Pud+srCy+8pWvMG/ePEpKSvjyl7/MggULmDlzZs92f/7znykvL2f16tWsXr2652tt99JLL3HrrbcCcOutt/Ktb32L1atX8/3vf5+jR49y/vnnM3/+fFasWMHBgwcd/loMyh5NDvQBJAHzbJ+HA4eAbGA1sBYItD2XMNS+5s+fr4Xoj9ls0b98J19P/P5b+r6X93p7OEIIIYQYB/Lz8716/JaWFj179mw9depU/eUvf1mvX7++57mVK1fqnTt3aq21BvQ777yjtdb68ssv12vWrNFdXV06Ly9Pz549W2ut9VNPPaXvvffentdfdNFFet26dVprrSdOnKhramq01lrX1dVprbVua2vTM2fO1LW1tVprrUNDQ3tem5+fry+++GLd1dWltdb6y1/+sn7mmWd0eXm5TktL09XV1bqzs1MvXbr0lGP2ZT/u+++/r++66y5tsVi02WzWF110kd6wYYM+duyYNhqNeu/evdpsNut58+bp2267TVssFv3aa6/pyy67TGut9f33369zc3N1W1ubrqmp0ampqbqsrGzQ/Sql9NatW3vGYn/fJpNJr1y5Uu/Zs+e0r03fr8OLL76ob7nlFq211rfccou+6KKLtMlk0lprfdZZZ+lDhw5prbXetm2bXr16db9fg/7OMWCXHiBeGnI+TmtdAVTYPm9RShUAKcBdwK+01p2256pdEy6K8aa9y8y3Xsjj3f2VRAb7s6GwGq21LNAVQgghhMf87M0D5Jc3u3Sf2ckR3H/JzAGfDwsLY/fu3WzcuJF169Zx3XXX8atf/apntsYuICCA888/H4CcnBwCAwPx9/cnJyeH4uJip8b05z//mVdffRWAkpISDh8+TGxs7CnbfPTRR+zevZuFCxcC0N7eTkJCAtu3b2fVqlXEx8cDcN1113Ho0KEhj/nBBx/wwQcfMHfuXABaW1s5fPgw6enpTJ48mZycHABmzpzJ2WefjVLqtPd22WWXERwcTHBwMKtXr2bHjh1s2rRpwP1OnDiRxYsX97z+hRde4LHHHsNkMlFRUUF+fj65ublOfe2uueYajEYjra2tbNmyhWuuuabnuc7OTqf2NRCnkiWVUpOAucB24LfACqXUg0AH8B2t9c5+XnM3cDdAenr6SMcrxpjqlg7u+tdu9pY28uOLsggN9OMHr+zjSHUrUxPDvT08IYQQQgi3MhqNrFq1ilWrVpGTk8MzzzxzWnDm7+/fc9PaYDD0pEEaDAZMJhMAfn5+WCyWntf0V8J9/fr1rF27lq1btxISEsKqVav63U5rzS233MJDDz10yuOvvfbasG6ea635wQ9+wD333HPK48XFxT3vZbD3BqdXPlRKDbrf0NDQnv8fO3aM3/3ud+zcuZPo6GhuvfXWAUvc9z5O323s+7RYLERFRZGXlzfUW3eaw8GZUioMeBn4hta6WSnlB0QDi4GFwAtKqQzbVF0PrfVjwGMACxYs0AhhU1jZwu1P76T+ZBeP3jifc2dOoLyxHYANh2okOBNCCCGExww2w+UuhYWFGAwGpk6dCkBeXh4TJ04c1r4mTZrE3//+dywWC2VlZT3rtXpramoiOjqakJAQDh48yLZt23qe8/f3p7u7G39/f84++2wuu+wyvvnNb5KQkEB9fT0tLS2cccYZfP3rX6euro6IiAhefPFFZs+ePeTYzjvvPH7yk59www03EBYWRllZGf7+/k69v9dff50f/OAHnDx5kvXr1/OrX/2K4OBgh/bb3NxMaGgokZGRVFVV8e6777Jq1SoAwsPDaWlp6SlakpiYSEFBAdOnT+fVV18lPPz069GIiAgmT57Miy++yDXXXIPWmr179zr0tRiKQ8GZUsofa2D2nNb6FdvDpcArtmBsh1LKAsQBNSMelRjzPjlUw73PfUpwgJEX7llCTmokAMlRwUxNCGPDoRruXJHh5VEKIYQQQrhPa2sr//d//0djYyN+fn5kZmb2FOlw1rJly3pSBGfNmsW8efNO2+b888/nkUceITc3l+nTp5+S9nf33XeTm5vLvHnzeO655/jFL37Bueeei8Viwd/fn7/97W8sXryYBx54gCVLlpCUlMS8efN6CoUM5txzz6WgoIAlS5YA1nTOf//73xiNRoff36JFi7jooos4ceIEP/nJT0hOTiY5Odmh/c6ePZu5c+cyc+ZMMjIyWLZs2Snv+4ILLiApKYl169bxq1/9iosvvpi0tDRmzZpFa2trv+N57rnn+PKXv8wvfvELuru7uf76610SnKk+E12nb2Cd23sGqNdaf6PX418CkrXWP1VKTQM+AtL7zpz1tmDBAm2vOiPGr+e2H+enrx9gakIYT966kOSo4FOe/8Vb+fxr23H2/PRcggMc/6EVQgghhHBGQUEBWVlZ3h6GGMIDDzxAWFgY3/nOd7w9FKf1d44ppXZrrRf0t70jTaiXATcBZyml8mwfFwJPAhlKqf3A88AtgwVmQpgtmgffzudHr+7nzKlxvPTlpacFZgArp8fTZbKw7VidF0YphBBCCCGEdzhSrXETMNDKvxtdOxwxVrV1mfjG83l8kF/FLUsm8pOLs/Ez9n9vYOGkGIL8DWworGH19AQPj1QIIYQQQviSBx54wNtD8Bj3tLYWopfq5g7ueGYX+8ubuP+SbG5bNnnQ7YP8jSzOiOWTQ7J8UQghhBBCjB+OpDUKMWwFFc1c/rfNHK1p5fGbFgwZmNmtnBZPUe1JTtS1uXmEQgghhBBC+AYJzoTb7Clp5Op/bMGsNS/cs4RzshMdfu3KadbmhhsOy+yZEEIIIYQYHyQ4E27z8NpDBAcYee3eZcxKiXTqtZPjQkmLCZbURiGEEEIIMW5IcCbcoqimlXWFNdy4eCJJkadXZByKUoozp8az5UgtXSbL0C8QQgghhBiFjEYjc+bMYdasWVxzzTW0tQ1/Scett97KSy+9BMCdd95Jfn7+gNuuX7+eLVu29Pz/kUce4V//+tewj21XXFzMrFmzTnnsgQce4He/+51T+3HVeEYbCc6EW/xr63H8jYobzhhel3uwpjae7DKz+3iDC0cmhBBCCOE7goODycvLY//+/QQEBPDII4+c8rwjTZ7788QTT5CdnT3g832Dsy996UvcfPPNwzqWq5lMJp8ajydJcCZcrqWjmxd3lXBJbjLx4YHD3s/SzDj8DIoNktoohBBCCG/7zW9g3bpTH1u3zvq4i6xYsYIjR46wfv16Vq9ezRe/+EVycnIwm81897vfZeHCheTm5vLoo48CoLXmq1/9KtnZ2Vx00UVUV1f37GvVqlXs2rULgPfee4958+Yxe/Zszj77bIqLi3nkkUf44x//yJw5c9i4ceMps1t5eXksXryY3NxcrrjiChoaGnr2+f3vf59FixYxbdo0Nm7c6PR7HGzfP/zhD1m5ciV/+tOfesZTXl7OnDlzej6MRiPHjx/n+PHjnH322eTm5nL22Wdz4sQJwDp7+LWvfY2lS5eSkZHRM5M4WkhwJlzupd2lnOwyc8vSSSPaT1igHwsmRcu6MyGEEEJ438KFcO21nwdo69ZZ/79woUt2bzKZePfdd8nJyQFgx44dPPjgg+Tn5/PPf/6TyMhIdu7cyc6dO3n88cc5duwYr776KoWFhezbt4/HH3/8lJkwu5qaGu666y5efvll9uzZw4svvsikSZP40pe+xDe/+U3y8vJYsWLFKa+5+eab+fWvf83evXvJycnhZz/72Snj3LFjBw8//PApj/d29OjRUwKq3rOBg+27sbGRDRs28O1vf7vnseTkZPLy8sjLy+Ouu+7iqquuYuLEiXz1q1/l5ptvZu/evdxwww187Wtf63lNRUUFmzZt4q233uK+++5z8jvhXdLnTLiUxaJ5Zksx89KjmJ0WNeL9rZyWwK/fO0h1cwcJEUEjH6AQQgghRH++8Q3Iyxt8m+RkOO88SEqCigrIyoKf/cz60Z85c+DhhwfdZXt7O3PmzAGsM2d33HEHW7ZsYdGiRUyebG1B9MEHH7B3796eWaCmpiYOHz7MJ598whe+8AWMRiPJycmcddZZp+1/27ZtnHnmmT37iomJGXQ8TU1NNDY2snLlSgBuueUWrrnmmp7nr7zySgDmz59PcXFxv/uYMmUKeb2+lvYm0kPt+7rrrhtwXJs3b+aJJ57oma3bunUrr7zyCgA33XQT3/ve93q2vfzyyzEYDGRnZ1NVVTXo+/U1EpwJl1p/qJriuja+de50l+zvzGlx/Po9+ORwLVfPT3XJPsX4orXms5JG5qVHe3soQgghRrvoaGtgduIEpKdb/z9C9jVnfYWGhvZ8rrXmL3/5C+edd94p27zzzjsopQbdv9Z6yG2cERhoXbJiNBoxmUwu2y+c+p57q6io4I477uCNN94gLCys3216v0f7GMH6/kcTSWsULvXU5mISIwK5YNYEl+wvOymC+PBAWXcmhm1dYTVX/n0LO4vrvT0UIYQQvuzhh2H9+sE/7r8f2trgJz+x/nv//YNvP8SsmaPOO+88/vGPf9Dd3Q3AoUOHOHnyJGeeeSbPP/88ZrOZiooK1vVdEwcsWbKEDRs2cOzYMQDq661/D8PDw2lpaTlt+8jISKKjo3tmqJ599tmema6RGs6+u7u7ufbaa/n1r3/NtGnTeh5funQpzz//PADPPfccy5cvd8kYvU1mzoTLHKluYePhWr5z7jT8ja6J++0l9T86WIXZojEaXHfnR4wPO4utC43zTjSycNLgqRxCCCHEgOxrzF54AVavtn70/r8b3XnnnRQXFzNv3jy01sTHx/Paa69xxRVX8PHHH5OTk8O0adP6DXTi4+N57LHHuPLKK7FYLCQkJPDhhx9yySWXcPXVV/P666/zl7/85ZTXPPPMM3zpS1+ira2NjIwMnnrqKZe9F2f3vWXLFnbu3Mn999/P/fffD1hnDP/85z9z++2389vf/pb4+HiXjtGblCen+hYsWKDtVWPE2POT1/bzv10lbL3vLGLDhl+lsa839pTztf9+xmv3LmOOC9axifHlC49tY2tRHZfNSeZP18/19nCEEEL4kIKCArKyshzb+De/sRb/6B2IrVsHO3dCr/VOQvTW3zmmlNqttV7Q3/YycyZcoqm9m5c/LeXS2ckuDcwAVmTGoRRsKKyR4Ew4xWzR7CtrAmC/7V8hhBBiWPoLwOwzaEK4iKw5Ey7x4q4S2rrM3DrC8vn9iQ4NIDc1ig2HqofeWIhejta00tppYmJsCEW1JznZ6dqFy0IIIYQQriTBmRgxs0XzzNZiFk2KYVZKpFuOsXJaPHkljTS2dbll/4N55dNSbnxi+6ir9iOs68wAbjgjHa3hYGWzdwckhBBCCDEICc7EiH18sJqS+nZuXTbJbcdYOS0ei4ZNR2rddoyBvLe/kk1HajlS3erxY4uR+aykkfAgPy7OTQZgf5kEZ0KIsePD/Cou+NNGyQoYIbn5KtxlOOeWBGdixJ7afIykyCDOzU502zFmp0YSGezPJ14oqZ9fYb2g90ZgKEYmr6SROWlRJEUGERcWIOvOhBBjhtaa339QSEFFs1f+No4VQUFB1NXVSYAmXE5rTV1dHUFBQU69TgqCiBEprGxhy9E6vnf+dPxcVD6/P35GA8sz49hwqMblzRQH09TeTWlDOwCbj9Ry27LJHjmuGLm2LhOHqlo4J2sKSilmJkeyv1xmzoQQY8PGw7UcrLT2qPowv4oLcpK8PKLRKTU1ldLSUmpqJMAVrhcUFERqaqpTr5HgTIzI01uKCfQz8IWF6W4/1spp8by9r4LCqhZmTIhw+/EACmyzZukxIWwrqsdktrg1CBWus7+sGbNF91T4nJUSwaMbiujoNhPkb/Tu4IQQYoQe+6SIxIhAFk6K4ePCavn7NEz+/v5Mniw3XoXvkJ9iMWyNbV28+lkpV8xNITo0wO3HO3NaPGAtqe8p+baZljuWT6a108SeUkmLGy3ySqzNp2fbg7PkSEwWzaGqFi+OSgghRu5AeRObjtRy69LJXJSTRGNbNzuLG7w9LCGEC0hwJobt+Z0ldHRbuMUN5fP7MyEyiBkTwtngwdz6/Ipm4sICuXR2MkpZUxvF6JBX0khqdDBxtr579kqiUhTEu3Ycq+d7L+2R9R1CjMATG48RGmDki2ekc+a0eAL8DHyYX+XtYQkhXECCMzEsJrOFZ7ceZ3FGDFlJnkkxBGtq467iBo9VpiqoaCY7OYLo0ABmJUdKUZBRJO9E4ylNy1Ojg4kI8mN/ucx+etOTm47xwq7SnrWcQgjnlDe28+aecq5flE5ksD+hgX4smxLLhwWVctNDiDFAgjMxLGsLqihrbOfWpZ7N0z5zWjxdZgvbiurcfqwuk4XDVa1kJYUDsDQzls9ONNDWJSWLfV11cwflTR2nBGdKKWalRHJAKjZ6TZfJ0nODw14FVQjhnKc2H0MDt/VqX7MmewIl9e09BUKEEKOXBGdiWJ7aXExKVDBr3Fg+vz8LJkUT7G/0SGrj0ZpWuswWsm0zg8sz4+g2a3Ycq3f7scXI5JU0AjA3PeqUx2cmR1BQ2UK32eL5QQl2Ha+n1TbrXSDBmRBOa+7o5r87Srg4N4nU6JCex8/JTkApJLVRiDFAgjPhtPzyZrYfq+eWpRMxGjxT0t4u0M/I0imxHgnO7MVAZiZbg7OFk2II8DPIurNRIK+kET+DtXx+b7NSIukyWaShuJdsKKzB36hIjgyS4EyIYXh+xwlaO03ctSLjlMcTwoOYkxYlwZkQY8CQwZlSKk0ptU4pVaCUOqCU+rrt8QeUUmVKqTzbx4XuH67wBU9vOUawv5HrFri/fH5/Vk6P53hdG8W1J916nPyKZoL8DUyOCwMgyN/IgonRbDri/pRKMTJ5JY3MSAo/rWS+PVgbL82oG9u66DL5zizhusJqFk2OYW56NAUVkn4lhDO6TBae3FTM0imxPQWOeluTnci+siYqmmQ9pxCjmSMzZybg21rrLGAxcK9SKtv23B+11nNsH++4bZTCZ9Sf7OK1vHKumJdCZIi/V8Zw5lRrSf1PDrt39iy/vJnpEyJOmR1clhlHQUUzda2dbj22I94/UCnr3/phtmj2ljadst7MbnJcKCEBRg6Mg2bUR6pbWfnb9Tz0boG3hwJAaUMbh6paWT09gaykcE7Ut9HS0e3tYfm0PSWNrDtY7e1hCB/x1t5yKps7uPvMjH6fP9e2zGCtzJ4JMaoNGZxprSu01p/aPm8BCoAUdw9M+Kb/7jhBl8nCrR4qn9+fSXGhTIwNcWu/M601+RXNPevN7JZlxgGw5ah3Z8/2lzVxz7O7+e+OEq+OwxcdrWmltdPEnLTo054zGhTZSREcGOMVG+tPdnH70ztpau9mq5fPVbv1tp/XVdMTyLalCkvxgoF9dqKBLzy+jW++kCcV+ARaax77pIjpieGstPX87GtKfBiT40L5QIIzIUY1p9acKaUmAXOB7baHvqqU2quUelIpdfqVkBhTus0W/r3tOMsyY5mWGO7VsaycFs+Wo3V0msxu2X9FUwdN7d1kJ536PnNSIgkP8vP6ujP7BfenJ6TpaF/2YiD9zZyBdd3ZgfJmLJaxecHbaTJzz7O7qGzu4OwZCRyqavFY64nBrC+sJi0mmCnxoT3tN2TdWf8OVbVw61M76TRZaGzrlrYDgo2HazlY2cKdKyajVP9rvZVSrMlOZFtRHc0yKy3EqOVwcKaUCgNeBr6htW4G/gFMAeYAFcDvB3jd3UqpXUqpXTU1nmseLFzv/QOVVDR1cJuHy+f3Z+W0eNq7zewqdk9wYi8GYr/Db2c0KJZkxLL5qJeDM1srgbwTjV4dhy/KK2kkPMiPjLjQfp+fmRxBW5eZY3XuXbPoDVprfvDyPnYWN/D7a2Zz4+KJWDTsLfXuTGFHt5nNR+pYPT0BpRQTIoKICvGX4KwfJfVt3PTP7QT6Gfjz9XMB73//hPc9vrGIhPBALp2TPOh252Yn0m3WPTPVQojRx6HgTCnljzUwe05r/QqA1rpKa23WWluAx4FF/b1Wa/2Y1nqB1npBfHz/U/FidPjXluOkx4SwekaCt4fC4oxYAowGt1VtzK9oRimYPuH0BtvLp8ZRUt/Oibo2txx7KCazhR3H6gn2N1LW2E5Vc4dXxuGr8k40Mjs1CsMAlUTtC+nHYlGQv607wiuflfGtNdO4ZHZyz+zhZyXenWHdcaye9m4zq6dbf3copciaEEG+FAU5RXVLBzf+czsd3RaeveMMzslOIMBoYG9Zo7eHJrwov7yZjYdruW3ZZAL9jINuOzc9mtjQAKnaKMQo5ki1RgX8EyjQWv+h1+NJvTa7Atjv+uEJX6G1Jq+0kXOzEz1ePr8/oYF+LJgUzSfuCs7Km5kUG0pYoN9pz9nXnW3yUmrjgfJmWjtNfGGRtVrmZ5La2KO9y0xhVcuAKY0AmQlhBPgZxlxRkLf2lvO7Dw5xxdwU/u+sTACiQwOYHBfq9RnWdYXVBPoZWJwR2/NYVlIEhZXNmMdoeqmzmtq7ueXJnVQ3d/LUbQuZPiGcQD8jM5LC2SczZ+Pa4xuLCA0w8sUzhq6QbDQozs5KYP3Bap+q1CqEcJwjM2fLgJuAs/qUzf+NUmqfUmovsBr4pjsHKryroa2bLpOFpKhgbw+lx8pp8RysbKGyyfUzR/0VA7HLiAslKTLIa+vO7CmNty+fRIDRwGduvPAebYUI9pU1YbboQYMzf6OBrAnhY2rm7LMTDXz7hT0smBjNr67KOWVNypy0KD4rafTq93J9YQ2LM2IJDvj8rn9WUjgd3RaOubklxmjQ3mXmjqd3cqS6hcduns+89M+XcOekRLKvrGnMrpEUgytvbOfNPeVctzCdyGDHKiSvyZ5AS6eJ7cd8oxiQEMI5jlRr3KS1Vlrr3N5l87XWN2mtc2yPX6q1rvDEgIV32AOgCRFBXh7J51ZOt5XUd/HsWUtHNyfq205bb2anlGLplDi2HK31ygXT1qN1ZCaEkRodwsyUCLcVBSltaGPm/e/zled2U1LvnRROZ+XZ0vfmpEcNut3MlEj2lzWNuuCzP6UNbdz1r90kRgTx6E3zT0t7mpseRU1LJ2WN3ikqcaz2JMdqT7J6+qlp7VIUxKrLZOHLz+1m94kGHr5uLiumnvp1yk2NpKXDxPFR8jMoXOvpLcVorDfjHLU8M44gf4OkNgoxSjlVrVGMX/Z1TRMiA708ks9NTwwnMSLQ5evO7OW9B5o5A1g+NZaGtm7yPXxh2W22sLO4niW29LC5adHsLW2i2+z69JVPDtXS1mVmbUE1Z/9+Aw+9W+DzFcD2lDSRGh1MXNjg5+nM5AiaO0yjvgpeS0c3dz6zi06TmSdvXUBsP+97rq2lgL2KpaetL7T26Vo1/dS1qlMTw/AzqHEdnJktmm+/uIf1hTX88oocLspNOm2bnJQowDorLMaX5o5u/rP9BBflJJEaHeLw64IDjKyYGs+H+VVj4gaUEOONBGfCIZU9wZnvpDUqpThzajwbD9dgcmFwYq/UmDVIcLZsinXdmadTG/eWNtHWZWbJFFtwlh5Fp8nCQTcUVthWVEdCeCCffHc1l8xO5tENRaz+7Xr+ve24S7/erpRX0sjsQVIa7WYlj/6iICazha/99zMOV7fyjxvmk5nQf3uLGUnhBPq5N/11MOsKa8iIC2VSn+qZgX5GMhPCxm1wprXm/jf28+aecr5//oyeNaR9TU0MI9DPwL7SRs8OUHjd8ztO0NppGrDp9GDOzU6koqmD/WXj8+dLiNFMgjPhkMqmDpSChHDfmTkDOHNaPM0dJva68CI7v7yZmNAAEiMGfq8JEUFMTQhjs4cb/G6zrTc7Y3IMAPMmWmdFXJ3aqLVm+7E6zsiIZUJkEL+/djZvfnU5UxLC+PFr+7nwzxvdVilzuKpbOihrbGeuA8HZ9AnhGA2K/aO4GfUv3i5gXWEN/++ymSyfGjfgdv5GAzkpkV6ZOWvvMrOtqO60WTO7rKQICsZpxcY/fHiIf287wT0rM/jyqikDbudvNJCVFCHl9MeZLpOFJzcVs3RKbE+FWWecnZWIQcGH+ZVuGJ0YSEl9W8/faSGGS4Iz4ZCq5g5iQwPxN/rWKbMsMw6lYNNh181g2YuBDNTos/exdxxzXyPs/mwrqmN6YnhP+lpyZBAJ4YEur9hYXNdGVXMnizNieh7LSY3kf3cv5pEb59NpsnDLkzu45ckdHK7yjYtre0XCwYqB2AX5G5maEDZq7yo/u7WYp7cUc8fyydxwxsQht5+bHsW+siaPV2/bWlRLl8nC6hn9t1HJSgqnsrmDhpNdHh2Xtz2xsYi/fHyE6xemcd/5M4bcPjfVukZSioKMH2/vK6eyuYO7hjFrBhATGsCCiTF8IOvOPOrX7x3k+se28cAbB9yy3ECMD751pS18VmVzh0+tN7OLCQ0gJyWSjYddM4vTbbZQWNUyYDGQ3pZnxtHRbeHT440uOfZQukwWdhU39KQ0gjW1c266tRqfK23vmaGLPeVxpRTnz5rAB988kx9flMWnJxo4/08b+fFr+6hr7XTpGJyVV9KIn0E5fJd5VkokB8pHX1GQDYdqeODNfM7JSuCHF2Y59Jo5adF0mSweTyFcd7CGYH8jiybH9Pv8eCwK8tLuUn7xdgEX5kzgwStyhrwJBNaKjSe7zBRJZctxQWvNoxuKmJYYxqppw+8PuyY7kYOVLaOmoNNYcLyujfBAP57eUswXH99GtfQhFcMgwZlwSGVTh09VauxtxdQ4Pj3RSIsLilUU1Zyky2QZtBiI3RkZMRgNymPrzvaUNtLebT6lVxRYm44er2tzaXC0raiOuLBApsSH9vt8oJ+RO1dksOG7q7nxjHT+u6OEVb9dz6Mbjnp0JrG3PaWNzEgKJ8h/8CatdrOSI6ht7aK6xTtBpdba6cDwUFULX33uU6YlhvOn6+c63HNwrq16pSdTG7XWrCusZllm3ICNc+3BmacL63jL+wcq+f7Le1kxNY4/XjfH4e9fbmoUAPukGfW4sOlILQcrW7hrRYZDwftA1mQnAoyKqo3/23mCy/62edTPDpc0tHHZ3GT+dP0c9pc1c9FfNrGruN7bwxKjzOkddoXoR1VzB/MnRg+9oResmBrP39YdZevROs6dOWFE+8qvsK7rcGTmLDzIn9mpkWw+Wst3mD6i4zpi29E6lPp8vZmdvSfSZycaOcf2x3gkrOvN6jkjI2bIC4OY0AB+dtksbloykV++c5CH3j3IpiO1PHvHGSMehzMsFs3ekiYunZPs8GvsM2z7y5pI9OCNh7rWTv674wTPbT9BdUsnwf5GggOMhAQYCfa3/hsS4NfzmPVxP0ICjLz6WRnBAUb+ecsCQvtpkD6QpMggEiOs6a+3LJ3kvjfXy9GaVkob2gddTxUXFkh8eOC4CM6qWzr4v/9+Rk5KJI/ceHrLg8FMiQ8l2N/I3tImrpib6sZRCl/w2CdFJIQHOvX7rD+T4kKZlhjGh/lV3L58sotG5x4fHKhiT0kjBZXNzEx2fo2dL2jp6KaxrZu06BAum5PC9Anh3PPsbq5/bBs/viiLW5ZOGlGwLcYPCc7EkDq6zTS0dfvszNm89GhCAoxsPFw74uCsoKKFAD8DGXH9zxj1tTwzjr+uO0JzRzcRQY41CB2urUV1zJgQQXRowCmP56REYjQoPitpcElwdqK+jYqmDhYPkIrWn8yEcJ68dSF//ugwf/jwEIeqWpiW2H/1QHc4WtNKS6fJofVmdllJESgF+8uaOTtr5F+3oewva+KZLcW8vqecLpOFFVPjuGpeKm1dZtq7TbR1ma2fd5lp6zJR29rZ6zETbd1mooL9eeb2RSQ72QxeKdXTjNpT1h20phoPVAzELnucFAVZm19Nl8nCr6/KdSqwBvAzGpiZHME+KQoy5uWXN7PxcC3fO3+6UwH8QNZkJ/LIhiIa27qICgkY+gVeYm8VsflI7agNzkrqra1Z0mKsbQ9mTIjgja8u51v/y+OBN/PJK2nkoStzCQ4Y+fdVjG0SnIkhVTdb074SI30zOAvwM7A4I9Yl687yy5uZnhiOn4OFT5ZlxvHnj4+wzQWzdoPpNJnZfbyh3+IPwQFGspLCXVYqfXuRNQWjb/qkI244I52/fHyY53eU8NNLsl0yHkfYg465QzSf7i000I+MuFC3Vmw0mS18kF/F05uL2VFcT7C/kWsXpHLLkklMdTJ4taZBgsHBVLi+5qZH8/6BKupPdhET6v6LtHWF1UxPDCdliEAyKymCLUeL6DJZCPAbu5n2awuqSI8JYVpi2LBen5MayfM7SjCZLQ7/fhKjzxMbiwgNMDpU6McRa7In8Ld1R/n4YDVXzvPNWdfq5o6e9PJNR+q4+8yBZ9t9WUmDdW1fWq+edJHB/jx+8wL+uu4If1x7iIOVLTx603wmxjp2A1iMT/IbXgypp8eZj86cgXXdWXFd24gWPmuteyo1OmpuejTB/ka2uLmk/mcnGuk0WU4pBtLbvPRo9pQ0YnZBvv62Y3XEhgaQmeD8RWRsWCDnZk/glc9KPbr2LK+kkfAgPzLinBvzrJRIDrih11nDyS7+vv4IZ/5mHV957lMqmtv58UVZbPvh2fzi8hynAzOwzn4NNzADeloM5JW4trJnf1o6utlZXM+qAao09paVFE63WXO0ptXt4/KWti4Tm47Uck5W4rDTmnJTI2nvNnO0RoqCjFWHqlp4La+MLyxKJzLYNZkYuSmRJIQH+vS6M/us2czkCI9XQHYl+/VHWsypN6QMBsXXzp7Kk7cupKKpg0v+somPD/ru90N4nwRnYkifN6D25eDMehG4cQQl9auaO6k/2eXQejO7AD8DiybHsMnNRUG2FVnXmy2a1H+q4dz0KE52mTnkgrL224scW282kOsXpdHY1s37Bzz3xyfvRCOzU6OcDl5mJUdS3tThsmIqBRXN3PfyXhY/9BG/ea+QSXGhPHbTfNZ/ZzV3rshw2QXXcOSk2tJfPdCMevOROrrNmtVDpDQCPTdDxnLFxo2HrS0Fzske+usxkJyUKAD2SjPqMeuX7xQQFujHvaszXbZPg0FxTnYiGw7V0NHtm0HPvrImlIK7z8zwaAVkVyttaCcs0G/A3/Orpyfw5leXkxodwu1P7+KPHx4a9QVQhHtIcCaGVNVkDc48WTTBWVPiQ0mODBpRaqMzxUB6W54Zx5HqViqb3Fcyd+vROmYmRxAZ0v8v/blpnxcFGYmS+jbKGttPK6HvjGVT4kiNDuZ/O0+MaCyOau8yU1jV4tR6M7uZtu/1gfKRBQbVzR184bFtXPCnjbyWV8aV81J5/xtn8p+7FnPuzAkOV+Vzp5AAP6YnhnukYuP6wmrCA/0cKiI0OS6UAD8D+SP8HviytflVRAT5sXCAmyuOyIgLJTTA2DPLIMaWDYdqWF9Yw9fOnnrauuKRWpOdSFuXma1uzvAYrv1lTUyJD2P1jASPVkB2tZL6NlKjgwe9sZkeG8IrX1nKVfNS+dNHh7njmZ00tY280rQYWyQ4E0OqbO4g2N9IRJDvLlFUSrFiajybj9RiGmbjR/vF4YwJzqWcLc20BjLu+oPS0W3msxONLBlkDdjE2BBiQgP4dITNqLfZ+psNZ72ZncGguG5BGpuP1HG8zv0pWPvLmzBbNLOHFZxF9uxjJP788WF2H2/gvgtmsO0HZ/PQlTlMd/I88oS56VHknWh0691arTXrC2tYMS3Ooab1fkYD0xPDKagcm8GZ2aL5+GA1q2ckOPT1GIjB1sNvrxQFGXNMZgsPvp3PxNgQblrimrVmvS2dEktogNFnG1LvK2siJyWSCFsFZHdnorhLaUN7TzGQwQT5G/ndNbn8/PJZbDpSyyV/3ST90MQpJDgTQ6ps6mBCZJDPl4BdMS2O5g4Te4d5Z7mgooX0mBDCnay6mDUhgpjQADYfdc8flE+PN9BlHni9GdiaUadF8dkIg7Ptx+qJDvFn6jDWm/V2zYI0DAr+t7NkRPtxRJ5ttnA4M2eRIf6kxQRzoGz4gUFdaycv7irlirkpfGnlFJ+uiDYnLYqWTpNb13cdrGyhsrljyCqNvdkrNo62huCOyCtpoO5kl0sqguamRlJQ0Uz3MG9ACd/0wq5SDlW18oMLZrikQmNfgX5GVk1PYG1Blc+l0VU3d1DV3NnT2mR5Zhx7Sxtpah9ds0laa0oa2k4pBjIYpRQ3LZ7I07ct4kR9G2sLqt08QjGaSHAmhlTZ3EFiRKC3hzGkZVPiUAo2HhpekORsMRA7g0GxdEosm4/UuuXicltRHQbFkClRc9OjOFpzckQpEtuK6lg0OWZEhSfAuj5x9fQEXtxdOuyZTEfllTSSEhVMfPjwztFZyZEjmjn719bjdJos3HWmb/cRAmsBG8CtJfXXFVovMlZNG7oYiF1WUjj1J73XENyd1hZU42dQrHTi6zGQnNQoOk0WDle5Lrhu6zJxstPksv0J57R0dPOHDwtZNCmG89xY8XdNdiI1LZ3k+diaRXuabo49OJsaj0V/nsUxWtSf7KKty3xaMZChLM6Ixc+geio9CgESnAkHVDZ1+HSlRrvo0AByUiKHte6stdNEcd1Jp9eb2S3LjKOqudMtMxJbi+rISYkcckavpxn1MKvxlTa0UdrQPqKUxt6uX5ROTUsnHx907x3BvJJG5jhRQr+vWSmRHK9rG9ad2vYuM//aWsw5WQlkJvheGmNfGXGhRAT5ubUoyPqDNcxMjiDBid8ZWbabImOxGfXa/CrOyIhxSTGYXNsF7L6yxhHvy+4bz+ex8rfrOFI9dqtl+rJ/rD9KbWsXP744y63ZKaunW9dz+VrVRnsxEPv63zlpUYQEGEfdurOSBluPMwdnzuyMBkVKdPCIKk2LsUeCMzEoi0VT3dLhsz3O+loxNY7PShpp6XDuQruwshmtGdbMGVhTMcBapc6V2rvM5JU0sniQlEa73LQolBp+URB7f7ORFAPpbfX0eBLCA3nejamN1S0dlDW295SJHw77RcFwClK8tLuEhrbuUdOXx2BQzHZB+utAmtq62X2iwaEqjb3NGKMVG4trT3K4upVzXNTkfGJsCOFBfi5bd9bU3s3HB6upbe3ihie2eWSNqPhcaUMbT2w6xpVzU8hNjXLrsSJD/DljcozPBWf7y5qsxW5sjdkD/Ayc4YEKyK72eRl954IzsAZ09uBOCJDgTAyhvq2LbrMmaRTMnIG1pL7Zop2uSmW/MB/uzFlaTAjpMSEu/4Oy63g93WY9aDEQu7BAazW+4aasbT9WR2Swv9MFUQbiZzRwzYJU1hdWU9Hknj88e0qsF6nDKQZiZy8KcsDJ1EazRfPEpmPMSYti4aShqxL6irnp0RyqanFLKtvGIzWYLZrVDvQ36y0y2J+UqOAxV7FxbYH1QthVwZlSipyUSJdVbFx3sBqTRfPQlTl0mix88fHtlEp6lcf85r1CDAq+c950jxxvTXYiR6pbOVbrO0G4vRhIb8sy4yiqOUl54+gJWOxpianRzqU1grUvmsycid4kOBODspeH9+UeZ73NS48mJMDodL+z/IpmokL8SRrB+1yWGce2o3UuXWO1ragOo0E5XIJ7bno0n51oGNai7+3H6l2y3qy36xakY9Hw4q5Sl+2zt7ySBowGxazkyKE3HkB8eCATIoKcLqf//oFKjte1cc+ZGT5fLKe3uelRWDRuqfq37mANUSH+zElzPljNSopw2czZ5iO1fOfFPV5vbL22oIoZE8KHdTd9IDm2oiCuaNT73v5KEsIDuW5BGv++4wyaO7q54Yntbm0LIqw+PdHAG3vKuXtFBslRzl/QD8eabOtNgg/zKz1yvKFUt5xaDMRu+VR7JsromT0rqW8nJjSgZwbQGWkxIdSf7JK1n6KHBGdiUFXNvt/jrLcAPwNLMmKdXneWX9FCdlLEiC6yl2XG0tI5/GqR/dl6tI7c1EiHf+HPTY+ipcNEUa1zF6UVTe0cr2tz2Xozu/TYEJZnxvG/nSVuqRKWV9LIjAnhBAeMrMLZrJQI9jvxfdNa8+gnRUyKDeFcNy7id4c5tvSp4a5NHIjFotlwqJozp8YPq69bdlI4x2pPuqRR7sNrD/HS7lLO++Mn/OzNAzS2dY14n85qbOtiZ3GDy2bN7HJToug2aw5VjizwbO8ys+FQDefNnNBTpv+Z2xdR29LJDU9so9ZFjdnF6bTW/OKtfOLDA7lnpedSolOjQ8hOivCZ1Mb9fYqB2E1PDCcuLGBUBWelDW2kDWPWDD5fpyZFQYSdBGdiUJXNo2vmDKzrzorr2jhR59gvOpPZwsGK5p6iBMO1dIr1bt8WF/1BOdlpYm9pk0MpjXbzbIUxPnVy3dnn682G3yR3INctTKOssd3lKZ8Wi2ZvSdOwSuj3NTM5kqM1rbR1OXbncsexevaUNHLHigyfaDDtjOjQACbHhfa0IHCV/eVN1LZ2OZ3SaJedHIFFQ2Fly4jGUdbYzs7iBm5fNplrF6bxzJZiVv1uPc9sKfZoCfr1hdYUz3OyXRycpVovZPeOsCjIJ4draO82n1IhcF56NE/eupCyxnZufGI7DSc9H9SOB2/treDTE41899zpw5ppGYk12YnsPt7gE8H3vtJmazGQPsGZUoplmXFsOlI3atprlDa0kzrMGXL7zHpJ/ehJ4xTuJcGZGFRVUwcGBfFhvl9K326FrWT1xiOOzZ4V152k02QZdjEQu5jQAGYmR7gsCNlZXI/Jogftb9ZXRlzYsKrxbSuqIyLIb8QBan/OnZlIdIg/z+884dL9FtW20tJpcklwNislEou29rpzxKOfFBETGsA181NHfGxvmJsWxWcljS698Fl3sAal4MypwwvOslxUFOTNPeUA3LJ0Ir+8Ioe3v7aCmckR3P/GAS7400bWF3qmn9CHBVXEhwf2VFh0ldToYKJC/Nk3wrTU9w9UEhnszxkZp96QOSMjliduXkhR7UlufnLHqOs35U5HqltHvH62o9vMr949SFZSBFd54ffHmuxELBo+9oG+WvvKmpgcF0pYPwHqssw4als7OeTCthHuYrFoyhrana7UaGefcTsh686EjQRnYlCVzR3EhQXiZxw9p0pGXCjJkUFscnDd2YERFgPpbVlmHJ8eb6S9a+SpWVuL6vA3KuZPdHz9jsGgmGNbd+YM+3ozd8wCBfoZuXJeKh/mV7n0bu1nI2g+3Ze9YqMjRUEOV7Xw8cFqbl4ykSB/1zeM9YS56VHUtHRS5sIF9+sKq5mdGkXsMG/kpEWHEBpgHHFw9kZeObPTopgYGwpYg75/33EGj9+8AJPZwq1P7eTWp3ZwpHpkM3SD6TJZ2FBYw9kzEly6hhM+LwoykjWD3WYLa/OrODsrAf9+frcvnxrHIzfO42BlM7c9tYNWWQtDaUMbl/11E+f8fgOvfDr8NbRPbS6mrLGdH1+U5ZVZ95nJEUyMDeGl3e5ZB+yM/f0UA7FbZquAPBqqNla1dNBltjjd48wuJjSA0ACjFAURPUbPFbfwisrmzlGV0gjWi5cVU+PZfKTWoeIc+RXNBBgNTIkPG/Gxl2XG0WW2sLO4fsT72lZUz+zUKEICnEt7mZsWRWFVi8MXVFXNHRyrPeny9Wa9fWFRGt1mPaKLmr7yShoJD/RzyfctKTKImNAAh9adPfZJEUH+Bm5eMmnEx/UWe8GOPBc1o65r7WRPaaPTJfR7MxgUM5IiRtTr7Eh1C/kVzVw2O/mUx5VSrMlO5INvruTHF2Wx+3gD5z28kQfeOOCW1L3tx+po7TS5fL2ZXW5qJIeqWoa9Pm97UT3NHSbOH2S95FkzEvnLF+ayp7SJO57e6ZIbTqOV1prvv7wXsLZ9+NYLe/jG85853bKltrWTv607wjlZCT3Bh6cppbhp8UR2FNd7tTpqTUsnlc0dAwZnKVHBZMSFjop1Z/Z0xOHOnCmlSIsJkUqpoocEZ2JQVU0do6YYSG8rpsXR3OFYcY788mamJoYR4DfyH4eFk6IJMBpG/AelpaOb/WVNTqU02s2bGI3WsNfBC+9tRda2A67qb9afzIRwFkyM5vmdJS5LpcsraSQ3LdIlMxNKKWYmR7C/bPCLlarmDl7LK+Oa+WnEhAaM+LjeMiMpnEA/g8uaUX9yuAatGfZ6M7uspHAOVrQM+xx5I68cg4KLc5P6fT7Az8CdKzLY8N3VfHFROv/aal2P9uSmYy5dj/ZRQTVB/ga3XYDnpERhsuhhzzK+d6CCYH8jZ04b/Pt1/qwk/nDtbHYU13P3s7tcUqzFEaUNbVz1jy3c8+wufvPeQV75tJS9pY1em8F7bvsJNh+p40cXZfO/uxfzzXOm8caeci768yanshT++OEhOrrN/ODCLDeOdmjXzE8jyN/As9uKvTYG+42wvpUae1uWGce2ojqPrhUdjpH0OLNLjQ6RNWeihwRnYlCVzR1MGIXB2bIpcSgFGw8NHSQVVDSPeL2ZXUiAH/MmRo04FWNncT1mi2P9zfqyV+P71MGLhm1F9YQH+rkkrXMw1y1Mo6jmJDuLR14lsL3LzMHKFpekNNrNSrHORgxWovypzcWYLZo7V0x22XG9wd9oIDc10mXNqNcX1hAXFjCilgZgTUFs6TRROoyGrFprXt9TzpIpsSQM8TsrJjSAn18+i3e/fia5qZH8v7fyOe/hTzhUNfJUR601H+ZXsTwzfsRVRAdiLwoynH5nFovmgwNVrJoe71Ba7mVzUvjNVblsPFzLvc99SpfJ/RfKb+wpZ/fxBg5Xt/LYJ0V864U9XPrXzcy6/32WPPQRNz6xnQfeOMCzW4vZcrSW6pYOtxWOKKlv45fvFLBiahxfWJSGn9HA18+Zyv/uWYLZornmka38ff2RIavRHqpq4b87TnDj4okume0ficgQf66Ym8Krn5V5pZIpfH7uzhzk786yzDjauswum+F3l5KGNpSC5KjhXyulxQRzor5t1BRAEe41ZHCmlEpTSq1TShUopQ4opb7e5/nvKKW0Uso7c/TCbTq6zTS1d4+6tEawVqTLTYkcsqR+dUsHta1dLi2EsWxKHAfKm6kfQbrU1qN1BBgNzHNivZldZIg/U+JDHZ4V2X6sjoVuWm/W20W5SYQH+vH8jpEXBtlf3oTZoofVT2sgs5IjMVkGLlHe2mniue3HOX/WhJ71TKPZnLQo9pc3j/hi22zRbDhUw8ppI19fZf85HE5q497SJo7XtXHZ7BSHXzN9Qjj/un0RT926kKa2br7/8t4RXxwdrGyhrLGdNdnDT/EcSlJkEHFhAcMqCvJZSSPVLZ2nVGkcyjUL0vj55bP46GA1X3/+M5f2cuzP+sIaspMi+Pjbq8j/f+ez9ltn8siN8/nuedNZkhFLc0c3L+4q4SevH+CLj29n0YMfkfuzD3jonQKXXtxaLJrvvrQHg1L86qrcU1qtLJwUwztfW8F5Myfwm/cKufGf23taz/TnwbcLCAv04+tnT3XZ+EbipsWT6Oi2uK0H5VD2lTWRERdKeJD/gNssyYjFoHB4/bi3lNS3kxgeRKDf8G/GpMeE0N5tpk4qpAocmzkzAd/WWmcBi4F7lVLZYA3cgDWAa8uwCZ9gb0Q6GtMaAVZMjeezkkaaB1kXkO/CYiB2y2wNNNcWDL+XzLaieuakRw274MTc9GiHqvFVt3RQVHPSLSX0+woJ8OOyucm8va+CpraRVYDbY7uTOjvNdZXwZqVYz4H9AxQFeX7HCVo6TNx9puf6ErnT3PRoukyWERfgyCtppLGte8QpjQAzJoSj1PAqNr6eV06A0cB5s5zrO6eUYvWMBO67YAafnWjk9bxyp4/d29r8KpSyrtlyF3tRkOHMnH1woBJ/o/U9O+OmxRP58UVZvLu/ku+8uAezG/oWAjR3dPPp8QZWTreeTwF+BjITwjl/1gTuXZ3JH66bwxtfXc7+n53H1h+cxbN3LOKBS7JZNiWORz8p4q8fH3HZWJ7ddpxtRfX85OIsUvppFB0Z4s9fvziXX1+Vw2cnGjn/4U9Y208PsfWF1Ww4VMPXzp5KtI+kQ2cnR7BoUgzPbjvutu/lYPaXNQ2a0gjWr29OapTPrzsraWgbdjEQu55eZ1IUROBAcKa1rtBaf2r7vAUoAOy3Jv8IfA+QedgxqKfH2agNzuIwWzRbj9YNuI39Dr0rZ85yUyKZlRLBz944MKyLzKb2bg6UO9ffrK956dHUn+zi+BC93uz9zdxZDKS36xem02my8PqeshHt57OSRlKigkkId925mR4TQniQX79FQbrNFp7cdIwzJse4NJXSm+baeuKNNLVxfWE1RoNiRebIg7OQAD8mx4Y6/XNjtmje2lvOqunxRAYPfCd+MFfNSyU3NZKH3i3g5AjWNq0tqGJOWhTx4e5tP5KTGsWhqhanCnVorXnvQCVLpsQN6+t054oMvr1mGq/llfNhfqXTr3fEliO1mCyaVUOsh1NKkRQZzIqp8dy6bDL/uHEeV85L4fcfHuLFXSUjHsfxupP86t2DrJwWz7UL0gYdx3UL03nz/5aTFBnMnf/axf2v7+9Zn2cyW/jlOwVMjA3hpiUTRzwuV7p56URO1Lex4ZBny+rXtnZS0TRwMZDelmfG8llJo9PFVzxpJGX07Xp6nQ0jpVuMPU6tOVNKTQLmAtuVUpcCZVrrPe4YmPC+qp4G1KOnx1lvc9OjCQkwDpoSkV/eTGp08LAv6PrjZzTwxM0LCQvy446nd1LdMnCqS392HKvHohlWMRC7ngvvksEvvLcfqyMs0G/QvH9XmmULXP+7Y2SFQfJONLo8SLIXBTnQTwWzt/aWU97UwT0rM1x6TG9KigwmMSJwxOs5Pj5Yzfz0aCJDXPMzlJUU4XC/ObvtRXVUt3Ry6ZzkoTcegMGguP+SmVQ1d/LIhqPD2kdVcwd7SpvcVqWxt1xbb778CsdnzwqrWjhe1zZolcahfHnVFKJC/Hn/wPAzAwazvrCG8EA/p1O6lVL86spclmfG8YNX9rHhkGN9LvtjsWi+++Je/IyKX12Vc0o640AyE8J49d6l3LF8Ms9sPc7lf9vM4aoW/rerhENVrfzgghkjSntzh/NmTiAxIpBnthz36HH3OVAMxG5ZpvUm645jI6+A7A7dZgsVTcNvQG1nn3mTmTMBTgRnSqkw4GXgG1hTHX8E/NSB192tlNqllNpVUzP8X5bC80Z7WmOAn4ElGbGDrjvLd2ExkN4mRAbxz1sW0tDWzV3P7HLq7vbWo3UE+hl6AqzhmJYYTmiAcch1Z9uK6lkwKdqjfeyuW5hOQUXzsPs02ftzuWMGa1ZyJAUVzaesqdFa8+iGIqYmhLFqmvvWEXnD3DRr+utwvbe/kgPlzVw0QHXE4chKCudEfZtTd8rf2FNOaICRs0eYSjh/YjSXz0nm0U+KhnWR9JGtsa8ngrMcW1EQZ36O3ttfiVLWRsTD5Wc0cNaMBD4+WO3yKnpaW9cvLsuM67f/2lAC/Az848Z5TE0M5yv/3u1Qa4z+PL2lmB3F9fz04mySIh1PVwv0M/KTi7N56raF1LR0cvFfNvHrdw+yaFKMU2v8PMXfaOCGMyay4VANx2pPeuy4+23n7MyUof/2zkuPJsjf4LP9zsob27HozxtJD1dIgB9xYQESnAnAweBMKeWPNTB7Tmv9CjAFmAzsUUoVA6nAp0qp0377aK0f01ov0FoviI8fedqL8JyKpg5CA4yDLtj1dSumxlFc18aJftL72rpMHKs96bYqhbNSIvnzF+ayt6yJb72QN2Q1L7ttRXXMnxg9orusRoNidlrUoBUba1s7OVLd6tYS+v25bE4ywf5Gnt85vNQj+0zPnBEErwOZlRJJp8nC0ZrPL1Q2Hq7lYGULd52Z4fKGwt42Nz2K43Vt1A2jOXhLRzf3v7GfrKQIvnhGusvGZE8xPljp2OxZp8nMO/sqOHfmBJdUR/z+BTMwKsVD7xY4/dq1BVWkxQQzLdH91fgSI4JIjAh0qijI+weqWDAxesQpl+dmJ9LU3u2Sfo69HapqpaKpg1XTh3+tEB7kz9O3LSQy2J/bnt7p9MVuUU0rv3n/IGfNSODq+anDGsPq6Qm8+40VLJocQ1uXmR9fnOXQ7Js3XL8oDX+j4tmtnps921fWxOS4UCIcuLYI8jeycFKMzxYF6elxNsKZM7CV05deZwLHqjUq4J9Agdb6DwBa631a6wSt9SSt9SSgFJintXZPErrwiqrmDhJHYaXG3lbY1i1sPHL67FlhZQtau3a9WV9rshP50YXWRfS//aBwyO0b27ooqGx2yRqwuelRFFQMvCbl8/Vm7i8G0ltEkD8X5SbxRl7ZsNb27ClpxGhQIy7b3p+eoiC97rg/9kkRCeGBXDaClDlfZZ993FPa6PRrf/t+IdUtnTx0Zc6wZjkGYv95dHTd2SeHamnuMI0opbG3pMhgvrJqCu/sqxx0vWpfbV0mNh2p5ZysRI9diOekRDrUyxHgRF0bBRXNLpnBWTE1ngA/Ax/2U/xiJNYXWmceV44gOANr4Pr07Yvo7DZz61M7HC4Xb7ZovvvSXgKMBh660rF0xoEkhAfxzG2L2PGjc8i1tTfxRQnhQVyYk8SLu0tGtNbSGY4UA+lteWYch6tbB62G6S32YMoVwVlaTAgnZOZM4NjM2TLgJuAspVSe7eNCN49L+IDK5g6SRnlwlhEXSkpUcL/9zuzFQNyR1tjbHcsnc8MZ6fxj/VFeGGK2aFtRPXqE683s5qZFY7boASu6bT9WR0iA0ak/kq5y/cI0TnaZeXtvhcOvOVTVwoNv5/PstuNkJYW7pYfU5Lgwgv2NPRUb95c1selILbctm+xz60VcISc1EqNBOd2M+tMTDTy77Ti3LJnk8vTSpMggIoP9HQ7OXs8rIzrEn+UubPh815kZpEQF87M3DzhcyW7T4Vq6TBbWeCCl0S4nJYqjNa0ONWd+/4D13qkrgrPQQD+WZ8bxYX6VS0vXbzhUw/TEcKdSCQcyLTGcx25eQEl9O3f9y7EG2k9tPsbu4w387LKZLknnNxjUqGhWf/OSSbR0mHgtb2SFmhxR19pJeVMHuU783bE3c/fFqo0l9W34GZRLCqelxwRT3tjh9lYVwvc5Uq1xk9Zaaa1ztdZzbB/v9Nlmktba935qxIhUNXWM2vVmdkopVkyNY/PR2tN+4eWXNxMe5EfqCHPFHRnDA5fOZMXUOH746j62HB34R2VbUR3B/kZmu+BOq33N2kCpjduK6lgwKcalsx6Omj8xmsyEMP67c/AuHM0d3Ty3/TiX/W0z5/7xE57aXMzijBh+c9Vst4zLaFBkJYVzoMwaGDy+sYjQAKNL0/Z8SUiAHzMmhDsVnHWbLfzg5X1MiAjiO+dNd/mYlFJkJ0WQ70BRkJOdJtYWVHFRbpJLz+MgfyM/uiiLg5UtPD/EOWq3tqCK8CA/FnqgLYVdbmokWsMBB2bP3jtQSXZShEvu8IM1tbG0od3h9NOhtHaa2FlcP6KUxr4WZ8Tyh+tms7O4gW/+b/DU8iPVrfz2/ULOyUrk8jmO98obC+alRzErJYJnthS7vQmyM8VA7LKTIogO8ffJdWclDe0kRwW7pE9oWnQIZoumosn3ZgiFZ3n+qkyMChaLprqlc9SW0e9t+dQ4WjpMp6X/2IuBeCIFyd9o4G83zGNyXChfenY3R2v6b3RsDZiiCfAb+Y9mbFggE2ND+i2VXn+yi0NVrR7pb9YfpRTXL0zjsxONFPa5uLNYNFuO1vLN/+Wx6MG1/OjV/bR3mfjxRVls++HZPHrTAretEwTrRcOB8iZK6tt4a28FX1iU7tJqnr5mTloUe0oaHV4T+fjGIgqrWvh/l80iLNDPLWPKSoqgsLJ5yFmrD/Or6Oi2cKkTjacddcGsCZwxOYbfvV84ZF8+s0XzUUE1q6cnePRmh/0Cd6h+Z9XNHXx6ooHznewBN5izsxJRCpelNm45Uku3WY84pbGvi3OTe/qz/eLt/tcRmi2a77y4h+AAI7+8cpbPrg9zF6UUNy+ZxKGqVrYVubcqoj1l3JFiIHYGg2JpZhybj9S6PXh0Vkn9yHuc2X1eTl9SG8c7Cc5Ev2pPdmKyaCaM8rRGgGVT4lCKU1IbzRbNwYoWt17k9xUR5M+Tty4kwM/A7U/vpP7kqesg6lo7OVjZ4tKeY3PTovj0xOnNqHccs66l8fR6s96unJdKgNHQMzNR1tjOnz86zMrfreOLj29nbX4VV81L5fV7l/H+N87kzhUZxIW5v63DrORITnaZ+enr+1HA7csnu/2Y3jQ3PZqWTtOANwx6O153kj+tPcz5MyeMqOLfULKSwunotgxZQe6NPeUkRwaxwMmy645QSvHTS7Jpau/mTx8dHnTbvJJG6k52cY4bvyb9iQ8PJDkyaMiKjR/kV6G1a1Iaex97blqUy4KzDYdqCA0wsmCi638n3bF8Mrctm8STm4/xxMai055/fGMReSWN/OzSmS7tnTiaXDo7magQf/61tditx3GmGEhvyzPjqGrudOj3lCeVuqDHmZ00ohZ2EpyJflU1Wau3jfa0RoDo0AByUyJPKalfXHeS9m6z29eb9ZUWE8JjNy+goqmDe57dRafp83UQ24+5viH0vInRPaXne9tWVE+wv5GclCiXHctZMaEBnDszkZd3l3LTP7ez/Ncf84cPD5EWHcLD181hx4/O4cErcpidFuXRO9n2O7rrCmu4ZHYyyVHuTXv1ts+bUTcOup3Wmh+9up8Ao4EHLp3p1jE5UhSk4WQXnxyq4ZI5yW6rojkzOZLrF6Xzr63FHKkeOH1vbUEVfgbFyiEaJ7tDTmrkkDNn7x+oZHJcqMurSK7JnsC+siYqmkbWOFdrzfrCGpZmxrkka6AvpRQ/uSibC3Mm8Iu3C3hzT3nPc4erWvjDh4c4b2Yil84ee0V/HBXkb+S6hWl8kF9FeaP7GiHvL2se1jpn+5pSX6ra2N5lpra102WpwklRQRgNqqcCpBi/JDgT/aq0N6AeA8EZWKuLfVbSSLOtd1K+rdGwJ2fO7OalR/P7a6zrIO57eV/PrNbWo9YCHbmprivQMTfNOqPQ98LbXq7fHRdCzrhx8USaO0wU1Zzka2dNZeP3VvOfuxZz+dwUtxT8cMTUhHACbKlpd60YO02nBzI5NpSIIL8h+529+lkZm47U8r0LZrh9Rn1qYhh+BjVocPbO/gpMFu32C+pvr5lGcICR//dWwYApVWvzq1g0OcYr6a+5qVEcqz3Z87utr6a2brYerePcma6vImmfPV07wtmzozWtlDW2u3S9WV8Gg+IP185h4aRovv3CHrYV1WEyW/jOi3sIDTDyi8tHVp1xLLjxjIlYtOY/2x1bZ+msulbrjcIcJ1Ia7dJiQkiPCWHTEccrqLpbqS390FXr1v2NBpIigyStUUhwJvrXE5yNgbRGsPY7M1t0T2nsgopm/AyKzAT39yPqzyWzk/nOudN49bMy/vLxEcAaMC10cYGOGUnhBPkbTgnOGk522dInvZfSaLc4I5ZN31/Nxu+t5ptrprnsDuRIBPgZmD8xmnOyEr0SvHuawaCYkx7d79pEu/qTXfz8rXzmpUdxwyL3F0cJ9DMyJT5s0ODs9bxyMhPC3D77HRsWyDfOmcYnh2pYZyv13ltx7UkOV7d6pPF0f3JssxADNVz+uLAKk0VzvhuaIGcmhJERF8oHIwzO1hdasxrcPfMY5G/k8ZsXkBYTzN3/2sVPXt/PntImfn75rBH3fhsL0mJCOHtGIv/dceKUrA5XGU4xkN6WZcb1BNW+wJVl9O3SokMkrVFIcCb6V9XUgdGgPLLGxxPmpkcTGmDsSW3Mr2gmMyHMq+XR712dyZXzUvjDh4d4ctMxDle3ujSlEax34nJTovis5PML7x22xrFnuPhYw5UaHeJzzZ2fvn0hf79hnreH4TFz06I4VNUyYJ+jB98uoKXDxENX5nrse5WVFE7BABUbyxvb2Vlcz6Wzkz0y23HzkolMiQ/l528V0GU69cJwbYE1MPF2cDZQM+r39leSGBHokgqw/VmTnci2oroBZ+4cseFQDZkJYaS6aO3OYKJCAnj6tkUE+hv5744SLspJ4uLc8ZvO2NctSydSd7KLd/Y53ubEUftHGJwtz4yjtdPEHicar7uTPf3QlRWf02KCOSFpjeOeBGeiX5XNHcSHBbqkPKwvCPAzsGRKLBtt+er55c1enxVRSvHQlTksmhzD/3srH3BNf7O+5qZHcaCsuedO6LaiOoL8DS5NnxxrAv2MXk/59KQ56VFYNP0Wlth8pJaXPy3lnpUZTJ8Q7rExZSdHUNnccVrhHIC39pajNR5bI+RvNPCTi7M5VnuSZ7YUn/Lc2oIqpieGkx7rnVnf6NAA0mKC+21G3d5lZsOhGs6bOcFtQfWa7ES6zZoNhTVDb9yPti4T24vqWeXB9XppMSE8c9sirpqXyv+7zL3rJ0ebZVPiyIgP5Zktx12+731lTUyKDXG6GIjdkimxKOU7/c5K6tsI8jcQ78Kb2OkxIdS2dtLe5fqZSzF6jJ+rD+GUquYOEsdISqPd8sw4jte18emJBqpbOj1eDKQ/gX5GHr1xPpNiQwgP8mOWGwLGuelRdJktHLCts9teVM+89Ogx2VRZDM8c26xK7xlWgI5uMz96dR+TYkP4v7OmenRMgxUFeWNPObNTI5kUF+qx8ayansBZMxL480eHqWmxFkxqautmZ3ED52QneGwc/clNiep35mzDoRo6ui0urdLY19z0aGJDA4ZdtXHr0Tq6zBaXl9AfSnZyBL+/djaxYyQ7xFUMBsXNiyeSV9LIniHWoTpruMVA7GJCA5iZHOEz/c5KGtpIjQ5x6ey9PUWyVNadjWsSnIl+VTZ1MCFibP3RWmG7M/vYBmspZW/PnNlFhwbwwpeW8N+7FuPnhh5Jc9M/LwrS1NZNQWWzy9MnxegWHRpARlzoaYVj/vLxYYrr2njwihyC/D0bzA8UnB2taWV/WTOXeqFR8I8vyqK928zvPygEYP2haswW7bWURruc1EhO1LfR2HbqLOMHByqJCvFnkRv7GRoNirOzElhXWE33MNYCbThUQ7C/0a1jFM65an4qoQFG/rXVdbNn9Se7bMVARpaxsSwzjs9ONAyYgu1JJfXtpLkwpRHoSe2VoiDjmwRnol+VzR1jplKjXUZcKClRwbyfXwngEzNndgnhQSO6oziYxIggUqKC+fREAzuK69EarzWfFr5rTloUeSWf98QrrGzh0Q1FXDUvlWW2MtaeFBcWSHx4IPl9grM38spRCi7OTfL4mDLiw7ht2ST+t6uE/WVNfJhfRVyY+9ZzOSq3n2bU3WYLawuqOHtGotsbY6/JnkBLhzU90Rk9JfSnxMpMvg8JD/LnqvmpvLm3nLrWTpfs035ujjQ4W54ZR7dZ96yd9qbShjaXF7FKt+3vRJ0EZ+OZBGfiNG1dJlo6TGMurVEpxYqpcWgNyZFBRIUEeHtIHjMnPYq8E41sL6oj0M/A7LQobw9J+Ji56VE9PfEsFs0PXtlLeJAfP7ooy2tjykqKOKUoiNaaN/aUsyQj1ms9GP/v7KnEhARw/xsH2FBYw9kzErxe0Gam7YK395pBa5EOE+fPcl9Ko93yzDiC/A18aLvx5ahjtSc5Ud/m8ZRGMbSbl0yky2Th+Z0lLtmfvRjIzBEGZwsnxRDgZ2Czl/udNbV309xhclkDaru4sACC/Y2UNEhRkB6/+Q2sW3fqY+vWWR8foyQ4E6epbBpbPc56WzHVehHgKymNnjIvPZqyxnbe2VfB3PQoj6eoCd9nT3/NK2nkuR0n+PREIz+5OJuYUO/dxMhKCudIdUtPhcT9Zc0cqz3p1WbBEUH+fPe86ew+3kBLp4lzsr2b0ggQGezP5LjQU9advbe/kpAAIyumun/WMzjAyIqp8XyYXzVgL7j+bDhkLSKyapp31+yJ02UmhLMsM5bnth13Sen6faVNTIwNGXEvwCB/IwsmRnt93Zm93H1ajGvTGpVSpEYHSzn93hYuhGuvtQZkWlv/vfZa6+NjlARn4jRjrQF1b8syYwkwGryehuRpc9OjAChv6uCMybLeTJxu+oRwAv0MvLe/kt+8e5BlmbFcMdfz67p6y06KoNusOVrTCsDreWX4GxUXzPJ8SmNv1yxIY2ZyBEH+BpZ7IeWzP7NSIntSxywWzQf5VayaHu+xGzFrshMpb+roKTzkiPWFNWTEhXqt0qUY3M1LJlHe1MHagtP7+zlrX1mTy1L3l2XGcbCypacwjzd83oDa9eduWkyIzJz1tmIFfP3rcN55EBgIl18OL7wAq1d7e2RuI8GZOE2VLTgba2mNYO1x887Xl3PnigxvD8WjZiZHEGBbdyLFQER//I3W9gpv7a2gy2zhwctzPNJDbDDZvYqCmC2aN/eWs2p6ApEhI7v7PlJGg+KRG+fzzG2LCA7wjVno3JRIyhrbqW3t5LOSBmpaOt1apbGvs2ckYFA4XLWxo9vMtqI6zvRgCX3hnLNnJJASFcy/thaPaD8NLioGYme/IbLlqPdmz+w9zlyd1gjWdWcl9W1OzUKPSeXl8P/+H0yeDD/5CQQFQXc3tLRAXZ23R+dWEpyJ01Q2We9GjcWZM7Cma/jKBZWnBPoZmZliDdDss2hC9GVPbfza2VM9WqZ+IJPjQgnwM5Bf3syOY/VUNXd6NaWxt7SYEJ9p5A7Wio1gnaF4/0AV/kbF6hmeSxeMDQtk/sRoh4OzbUV1dJosrJL1Zj7Lz2jghsXpbDlax+Gq/hvCO8JVxUDsZqVEEhHk59V+ZyUNbYQH+bnlRlFqdDCtnSYa24bf2H3Uslhg7Vq4+mpIT4f774fsbGuQFhgI3/seGI1w3XXw/PPeHq3bSHAmTlPZ1E54kB+hgX7eHopwoTuXZ/D1c6bKejMxoGsXpHH3mRncfaZvzCz7GQ1MTwynoLKZN/aUExJg9HrZel81MzkCpWBvSRPv7a9k6ZS4YTf7Ha412YnkVzQ71KNpfWENgX4Gmcn3cdctSCPAzzCisvr24GxWsmuCM6NBsXRKHJsO13ptdqmkvs0ts2bwea+zMVtOv78CH6+/DhdfDDNmwJo1sH49fOtbcPgw3Hcf/PnP1lTGX//auq3RCF/8Ivz73155C+4mwZk4zVgsoy/gotwk7l2d6e1hCB+WmRDGDy/McnvpdWdkJYVzoLyZd/ZVcG524rib9XZUeJA/GXGhvPpZKSfq2zxSpbGvNdnWY651YPZsw6EaFmfEys0iHxcbFsglucm8/GnpsMu77y9rIj0mxKWzTMumxlHe1EGxl0rOlzS0u7wYiJ096DsxVouC2At8fPwxbNtmXUt2+eXw9tsQHw/PPgulpdYgLjMTdu48dY3ZhRfCa69BRgbcfDM89ZQ3341b+M5fYOEzKps7mTAG15sJIUafrKQIGtu6aWrv5jIvNJ4eTXJToyiua0MpvDLDODkulMyEMD4sGDw4O153kmO1JyWlcZT4xjlT8TMovvrfT+k0mZ1+/b6yJpelNNrZ151tOlzj0v06Qmtt7XHmtpkza9BnX9c25qxebZ3xuuACWLIEPvgALr0U9uyBzZvhxhut68vsvve904t/XHgh7NtnnWW7/XZ47DHPvgc3k+BMnKaqqcNrPYSEEKK3LFtRkOgQf5Z7oCz8aGa/AF44MYb48ECvjGFNdiLbi+ppGmS9TE8J/elSQn80SIsJ4bfXzGZvaRMPvXPQqdc2nOyitKHdZZUa7SbFhpAcGcTmI54vDFHb2kVHt8XlDajtwoP8iQ7xH7tpjWYzPP44dHVZ//+971lTFXNzndtPcLD1dRdeCPfcA3/7m+vH6iUSnIlTmC2amtZOSWsUQviErKQIDAouzEnyqXRLXzQ7zXoBfO5M763LW5OdiMmiWVc4cPn19YU1TIwNYbIPFJ0Rjjlv5gRuXzaZp7cU897+Codft7/ctcVA7JRSLM2MY2tRHWaLZ9ed2YMmd6U1WvcdMjZ7nWkN994LL78MoaHWKoxPPnn6GjRHBQXBK69YZ96++lV4+GGXDtdb5C+dOEVtaydmix6TZfSFEKNPZLA//77jDL573nRvD8XnzUuP5o/XzebGxRO9NoY5qVHEhwcOWLWxo9vM1qN1rJQS+qPOfRfMYHZqJN99aa/D6896ioGkRLh8PMsz42hq7ybfid56rmAPmtzR48wuLXqMBmcPPACPPmqd9XrzTWsVxhde+LzJ9HAEBsKLL8KVV8I3vwm//a1Lh+wNEpyJU1Q2jd0G1EKI0WlpZhxRIQHeHobPU0pxxdxUrxbZMBgU52QlsL6wut/1STuL62nvNst6s1EowM/AX784DwUOrz/bX9ZEWkywW35+l06xVvrc7OF+Z6W2BtGp0e6dOStrbPf4rGC/lRTXrbM+PlJ//7s1GFuwAN566/N1ZKtXWwO0nTuHv++AAGtp/WuvtaZJ/vKXIx+vF0lwJk5R2SzBmRBCiOE7N3sCJ7usM2R9rS+sIUBK6I9azq4/c0cxELuEiCCmJoR5vN9ZSX0bcWEBhAS4r91QWkww3WZNle2azGPslRTtAdq6ddb/L1w4sv2+8II17fDSS2HrVjjrrFOfX73aGlSNhL8/PPcc3HAD/OhHcOut1jRKO1cFmR4gwZk4hf0XQWKkdxaTCyGEGN2WTIklJMDYb2rj+sJqzpgc49YLW+Fejq4/a2zroqTe9cVAeluWGcfO4vphVZEcrpKGNremNMLn5fQ9ntpon8W69FJroY1rrz21jP1wrF1rrcC4bJl1dsvPjT/7fn7wzDPW8vzPPAM33WQN0FwVZHqIBGfiFJVNHfgZFHGhEpwJIYRwXpC/kZXT4llbUIWlV1pWSX0bR2tOynqzMcCR9Wf7y6xrwdw1cwbW4Kyj28Knxxvddoy+Surb3Vap0c6+f6/0Olu1CpKS4N13rc2eRxJM7doFV1xhbS795pvWtWbuZjTCO+9Yg8vnnoPly10TZHqQBGfiFJXNHSSEB2IwKG8PRQghxCi1JjuRqubOnoIQICX0xxL7+jMYeP1ZTzGQZPcFZ2dkxGBQsMVD687MFk15YztpblxvBpASFYxS1mbXHrd+PTQ0wFVXQU0NnHkmfPGLUFbm3H4OHbIGSHFx8N57EBXljtH2z2CwBoMLFsCWLfDlL4+awAwcCM6UUmlKqXVKqQKl1AGl1Ndtj/9cKbVXKZWnlPpAKZXs/uEKd6tq7pBKjUIIIUbkrBkJGA3qlNTG9YU1pEQFMyVeSuiPBWkxIfz26oHXn+0vayI1OpjoUPcV84kI8ic3Ncpj684qmzswWbTbZ84C/AwkRQRR6umZM3v63wsvwEsvWQt3hIRYP58+HR56CDo7h95PeTmce6718w8+gGQvhAgbNkBxsbVc/z/+MfxqkF7gyMyZCfi21joLWAzcq5TKBn6rtc7VWs8B3gJ+6r5hCk+pbOqQYiBCCCFGJCokgIWTonuCsy6ThS1Ha1k1PR6lJDNjrDh/1gRuWzap3/Vn7iwG0tuyzFj2lDbR0jFw43NX+byMvvvT81JjQjzfiHrnzlPT/y64wBqgfetbsGYN/PCHMHOm9bGBNDbC+edDXZ01NXLqVI8M/RS9g0xXlOv3sCGDM611hdb6U9vnLUABkKK17t1YIhTwcL1P4Q5VzZ0kSnAmhBBihNZkT6CwqoUTdW3sKq6nrcssKY1j0A8uyOpZf2YPXpraujlR3+bWYiB2yzLjMFs024vq3X4s+/tLc3NBEID0mBDPrzn73vdOT/9bvRp+9St49VV4/31rVcRLLoGLLrKmLvbW3m59rrAQXnsN5s/32NBP0TfIdEW5fg9yas2ZUmoSMBfYbvv/g0qpEuAGZOZs1GvtNNHaaWKCpDUKIYQYoXOzEwH4IL+S9Ydq8DcqlkyREvpjzSnrz/7zKV0mS896M0/MnM1LjybQz+CRfmclDe0oBclR7p85S4sOoaq5k45uz1WiHNK558KePfC738HGjZCVBV/4ArS0gMkE110HmzbBNdfA2Wd7b5wDBZkjLdfvIQ4HZ0qpMOBl4Bv2WTOt9Y+01mnAc8BXB3jd3UqpXUqpXTU1Na4Ys3ATewPqJAnOhBBCjFBaTAgzJoTzYX4VGwprWDgphrBAKaE/FtnXn+0pbeKhdws8GpwF+RtZOCmGLUdO76vnaqX1bSRFBBHg5/56emkx1gCwrNELRUEGExAA3/62ddZszRprefxJk6zl9998E8LC4I47vD3KUc2hs0sp5Y81MHtOa/1KP5v8B7iqv9dqrR/TWi/QWi+Ij5fyub6sp8eZpDUKIYRwgTXZiewsrqewqoVV0+UaYCyzrz97anMxz20/7vZiIL0ty4yjsKqF6hb3Nm0uaWgj1c3FQOzsRUc83uvMURMmWKsw/vWv0NxsXV8WEgJvvDGqKiP6IkeqNSrgn0CB1voPvR7vvcLvUmDoVvHCp9lnzqQgiBBCCFdYk52IvdXZymmy3myss68/K21o98ismd2yTGu67Naj7p09K6lv98h6M7CuObMe00eDM7t774X77rN+/q1vSWDmAo7MnC0DbgLOspXNz1NKXQj8Sim1Xym1FzgX+Lo7Byrcr9I2cyZrzoQQQrhCTkokEyKCSIoMYlpimLeHI9zMvv4sLiyAZZlxHjvuzORIIoL83FpSv9Nkpqqloyfd0N3iwwIJ8DN4p9eZM9atg0cesZasf+SRUVMR0ZcNmfyttd4E9Ff39h3XD0d4U2VTB5HB/gT5G709FCGEEGOAUooHr5iF1kgJ/XEiLSaEbT84Gz+j+9dl2RkN1mIzm4/UobV2y7lW3tiB1p6p1AhgMChSo4N9e+asd8n61autH73/L4bFcz85wudVNkuPMyGEEK51dlYi59gqN4rxwZOBmd3yzDjKGtvdVn7ekz3O7NKiR15Ov8tk4enNx9xT9XGUl6z3VVI2SfSoau4gUVIahRBCCDHKLLWlUW46UsvE2FCX79/eEDrNQwVBwLru7LMTDSPax7v7K3jgzXwSI4K4ICfJRSOz6a80vX0GTQybzJyJHpVNHUyICPT2MIQQQgghnJIRF8qEiCC3ldQvqW/H36g8WtE6LSaY5g4TTe3dw97HO/sqADzf0FoMmwRnAgCT2UJta6ekNQohhBBi1FFKsTQzli1Ha7HYS4S6UElDGylRwRgNnls7aV/fNtx1Zyc7TawvtPYYts/8Cd8nwZkAoKa1E4tG0hqFEEIIMSotz4yjoa2bgspml++7tL7NoymNMPJeZx8frKbTZCHQz0Cpr1d9FD0kOBOA9DgTQgghxOhmL9/vjpL6JQ3tpHqoUqNdT3A2zFmvd/dXEBcWyKrp8b5d9VGcQoIzAViLgQAezaUWQgghhHCVxIggpsSHstnF685OdpqoP9nlsR5ndpHB/kQE+VFS7/ysV1uXiY8PVnPBrAlMjA2ltKEdrV2f7ilcT4IzAfSaOZO0RiGEEEKMUssy49hxrJ4uk8Vl+7SnBHp65gyss2fDmTlbX1hDR7eFC3ImkBYdTKfJQk1LpxtGKFxNgjMBQGVzJ/5GRUxIgLeHIoQQQggxLMsy42jvNpNX0uiyfdpTAtM82OPMLj1meL3O3tlXQWxoAIsmxZA6wvRI4VkSnAnAmtaYEB6EwYNViIQQQgghXGlxRiwGZe135ire6HFmlxYTQmlDu1MVKDu6zXx8sJrzZk3Az2joVfVRioKMBhKcCcCa1pgkKY1CCCGEGMUig/3JSYlkiyuDs/p2gv2NxIZ6PrsoLTqYLpOFmlbHUxLXF9bQ1mXmwlnWptOpthk/KQoyOkhwNgZ0my187b+f8a+txcPeR1Vzh5TRF0IIIcSotzQzjrySRk52mlyyv5KGNtJiglHK89lFqcMop//u/gqiQ/xZnBEDQJC/kYTwQElrHCUkOBsDfvlOAW/sKefhtYeHtQBWa01lc4eU0RdCCCHEqLc8Mw6TRbPjWL1L9ldS39aTGuhp6bbgzNF1Zx3dZj4qqOa8mdaURru0mBBJaxwlJDgb5d7YU85Tm4uZlx5F/cku1hVWO72Plk4TbV1mCc6EEEIIMerNnxhNgJ/BJevOtNaUNrR7Zb0ZQEqUPSXRscBq4+FaWjtNXJCTdMrjadHBMnM2SkhwNoodqmrh+y/tZeGkaP5z12LiwgJ5aXep0/upspXRl7RGIYQQQox2Qf5GFkyMdkkz6sa2blo7TT3rtjwtyN9IYoTjKYnv7qsgMtifpVNiT3k8NTqEiqYOTGbXtRgQ7iHB2SjV0tHNl57dTWigH3/74jyC/I1cOS+FdQerqXVi0ShApa0BtcycCSGEEGIsWJYZx8HKFqevifryZo8zu7ToEIfWnHWazHyYX8W52Yn4G0+9xE+LCcZs0VTYbsgL3yXB2Siktea7L+7leH0bf/viXBJsQdXV81MxWTSv55U7tT/7D6oEZ0IIIYQYC5ZlxgGw9WjdiPbzeRl978ycgXXdmSPB2eYjtbR0mriwT0oj0KucvqQ2+joJzkahxzcW8d6BSu47fwZnZHw+bT0tMZzZqZG8uKsErR3vh2FPa0yICHT5WIUQQgghPC0nJZLwID+2HB1ZamNPA2ovrTkDa8XGiuaOIYu+vbOvkvAgv57AtLc0aUQ9akhwNspsPVrHr949yIU5E7hzxeTTnr96fioHK1s4UN7s8D4rmzuIDvEnyN/oyqEKIYQQQniF0aBYnBE74qIgJQ1tRAb7ExHk76KROS8tOhitobxx4KIgXSYLHxyoZE12IgF+p1/eJ0UGYTQoqdg4CkhwNopUNnXwf//9lMlxofzm6tn99tu4ZHYyAUaDU4VBqpo7SJSURiGEEEKMIcsz4yipbx9RKl9JfbtXUxrh81mvwcrpbzlaS3OHqafxdF9+RgNJkUGUysyZzxvXwZnWms1HavngQKW3hzKkLpOFe//zKW1dZh69aT5hgX79bhcVEsCamYm8nlfmcM+zyuYOJkilRiGEEEKMIcsyrUs/RlK1saTBez3O7NIdSEl8d18lYYF+LJ96ekqjXVp0CCUNMnPm68Z1cKaU4uG1h3jgjQPDat7sSb98p4Ddxxv4zdW5ZCaED7rt1fNTaWjr5uODVQ7tu7KpU4qBCCGEEGJMmRIfRkJ4IJuHWRTEYvFujzO7xIgg/I0DpyR2my28n1/JOVkJgy5RSYsJloIgo8C4Ds4AvrI6k/KmDl7LK/P2UAb0el4ZT28p5vZlk7k4N3nI7VdkxpEQ7ljPs26zhbqTnZLWKIQQQogxRSnFssw4thypxWJxvFCaXU1rJ10mi9d6nNkZDYqUqIGbSG8rqqOxrfu0xtN9pUWHUN3SSUe32R3DFC4y7oOzVdPiyU6K4JENRzEP4wfX3QorW7jv5X0snBTNDy6c4dBr/IwGrpyXyrrCGmpaBu/vUd3SidZIWqMQQgghxpxlmXHUneyisKrF6dfa12d5O60RrOvOBpr1emdfJaEBRlZOix9yH/B57zbhm8Z9cKaU4iurp1BUc5L3fWztWUtHN1/+927CgqyNpvs2FBzM1fNTMFs0rw8xI1gpPc6EEEIIMUaNZN2ZPY3Q2wVBrGPoPzgzmS28f6CSs7ISh6y6bX8fUk7ft4374AzggllJTI4L5W/rjjjVH8ydTm00Pa+n0bSjMhPCmZMWxYu7Sgd9T1XN1uBM0hqFEEIIMdYkRQaTERfKlmGsO7MHQ6m+MHMWHUJDWzetnaZTHt9xrJ76k11cOGuCQ/sAKJV1Zz5NgjOsubxfWpnBgfJmPjk8sn4YrvLYJ9ZG0z+4YAaLJscMax9Xz0+lsKqF/WUD9zyzz5wlSVqjEEIIIcagpZmxbC+qo9vsXPG3koY24sMDfaIPbM+sV5/A6p39FQT7G1k1PWHIfcSHBxLoZ5CKjT5uyOBMKZWmlFqnlCpQSh1QSn3d9vhvlVIHlVJ7lVKvKqWi3D5aN7pibipJkUH8bd0Rbw+F3ccb+PV71kbTdyw/vdG0oy6ZnUyAn4GXdpcMuE1VcwcBfgaiQrzXXFEIIYQQwl2WZ8ZxssvMnpJGp15XUt9OmpeLgdil99PrzGzRvLe/irNmJBAcMHQAqZQiNVoqNvo6R2bOTMC3tdZZwGLgXqVUNvAhMEtrnQscAn7gvmG6X4CfgbtWZLDjWD27iuu9Ng6T2cKPXt1HUmTwgI2mHRUZ7M95Myfw+p5yOk39V+apbO5gQkTQiI4jhBBCCOGrFmfEohRsPuJcamNJQ5vXy+jb2VMSewdWO4vrqW3t5IKcoVMa7VKjQ2TNmY/rv5NxL1rrCqDC9nmLUqoASNFaf9Brs23A1e4ZoudcvyiNv3x8mL+vP8qTtw4vlXCkntl6nIOVLTxy48CNpp1x9fxU3txTzkcF1VzYT4nVyqYOKQYihBBCiDErKiSAWcmRvPpZKZ0mM35GA/4GZf3XqPA3GvAzKvwN1n/tz1c0dfhEpUaAqBB/wgL9Tqm0+O6+CgL9DKx2IKXRLi0mmDwnZxCFZzl19a+UmgTMBbb3eep24H8DvOZu4G6A9PR050foQSEBfty+bDK///AQ+eXNZCdHePT4Vc0d/PHDQ6yaHs95MxNdss/lmXFMiAjipd2l/QZnVc0d5KRGueRYQgghhBC+6Kp5Kfzm/UIe31hEt9nx4m9TE8PcOCrH9U1JtFg07+6vZPX0BEKduJmfFh1CU3s3zR3dRATJkhZf5PB3UykVBrwMfENr3dzr8R9hTX18rr/Xaa0fAx4DWLBggW+UQhzEzUsm8ciGo/xjw1H+8oW5Hj32g28X0GW28LNLZ7oszdBoUFw5L4VHPymiurnjlKqPWmsqmztYExHokmMJIYQQQviiW5dN5tZl1nX8WmvMFk23WdNtsWAya0xmC90WTbfJgsliodusUQqmJYR7eeSfS48J4VjtSQB2n2igusW5lEb4vNdZSX0bM5MjXT5GMXIOVWtUSvljDcye01q/0uvxW4CLgRu0r9SgH6HIEH9uXDKRt/eWU2z7AfCELUdqeWNPOV9aOYWJsaEu3fdV81MxWzSvfnZqz7PmdhMd3RYpoy+EEEKIcUMpa+picICRiCB/YkIDSIgIIiUqmElxoWQmhJOVFMGMCREYDL6zJj8tJoTShna01ry9t4IAPwNnZzmXafX52jWp2OirHKnWqIB/AgVa6z/0evx84PvApVrrMbWy8I7lk/EzGnj0k6MeOV6XycJPXt9PWkwwX1k1xeX7nxIfxrz0KF7afWrPs0pbj7MJUkZfCCGEEMKnpUUH095tpqa1k/f2V7JyWrzT9QnsJflLpSiIz3Jk5mwZcBNwllIqz/ZxIfBXIBz40PbYI+4cqCclhAdx7YJUXtpd2tMHzJ2e3HyMozUn+dmlM93WS+OaBWkcrm5lb2lTz2MVTda7JlIQRAghhBDCt9lTEt/IK6eyuYMLnUxpBGsl7/A+hUWEbxkyONNab9JaK611rtZ6ju3jHa11ptY6rddjX/LEgD3lnjOnYNHwxMYitx6nvLGdP609zJrsRM6a4ZoiIP25KDeJQD8DL+0u7XmsyjZzJmmNQgghhBC+zd7r7MlNxwgwOp/SCLbCIjEh0uvMhzm05mw8SosJ4dLZyfxnxwkaTna57Tg/fysfjeb+S7LddgyAiCB/zp81gdfzyujotvY8q2zqBCQ4E0IIIYTwdam29WLlTR2smBo37GqLadHB0uvMh0lwNogvr5pCW5eZp7cUu2X/Gw7V8O7+Sv7vrKk9P3DudPX8VJo7TKwtqAKsa85iQwMI8JPTQAghhBDClwUHGIkLs1bYvqCf9kiOSosJoaS+nTFSy2/MkavyQUxLDGdNdiJPbymmtdPk0n13dJu5//X9ZMSFcueKyS7d90CWTokjOTKoJ7WxqrlDZs2EEEIIIUaJ9Jhg/I2KNcNIabSzFxapc2NmmBg+Cc6G8JVVU2hq7+Y/24+7dL+PfVJEcV0bP7tsJoF+7ikC0pe151kqnxyqobKpg8qmDqnUKIQQQggxSlw5L5V7zpxCZMjwG0j37nUmfI8EZ0OYmx7N0imxPLHxWM9arZEqqW/jb+uOcFFOEiumxrtkn466an4qFg2vflYmM2dCCCGEEKPIjYsn8p3zpo9oHz3BmVRs9EkSnDng3tWZVLd08vKnpUNv7IAH3jiA0aD48cVZLtmfMybHhbJwUjT/23mCupNdUkZfCCGEEGIcSYmy9jqTmTPfJMGZA5ZOiWV2WhSPbijCZLaMaF8f5lfx0cFqvnHOVJIig100QudcPT+V4jrrD2SSpDUKIYQQQowboYF+xIYGSCNqHyXBmQOUUnxl1RRO1Lfx9r6KYe+nvcvMA28cYFpiGLct80wRkP5cmJNEkL/1W58owZkQQgghxLiSaqvYKHyPBGcOWpOVyNSEMP6+7igWy/BKj/5t3RHKGtv5f5fNwt/ovS99eJA/F8yylmCVtEYhhBBCiPFFep35LgnOHGQwKL68agqFVS18fLDa6dcX1bTy2CdFXD4nmcUZsW4YoXO+vGoKl81JZnJcqLeHIoQQQgghPCgtJoTyxnbMw5xwEO4jwZkTLpmdTGp0MH9dd4T6k10On9Baa+5/4wCBfgZ+eJHni4D0Z1piOH+6fq40oBZCCCGEGGfSokPoNmsqmzu8PRTRh5+3BzCa+BsN3LNyCj95bT/zfv4hABFBfkSHBhAV7E9USABRIf5EhwQQGexPdIj1sYqmDjYeruX+S7JJCJc0QiGEEEII4T1pMZ9XbLRXbxS+QYIzJ914RjoTIoIobWijsa2bxrYuGtu7abB9fqz2JI1tXTR3mE55XXZSBDctnuilUQshhBBCCGGVFm3tdVYqvc58jgRnTlJKsSY7ccjtTGYLTe3dNLZbg7aMuDD8vFgERAghhBBCCIDkqGCUkl5nvkiCMzfxMxqIDQskNizQ20MRQgghhBCiR4CfgaSIIKnY6INkKkcIIYQQQohxJjUmhFLpdeZzJDgTQgghhBBinEmLDpGZMx8kwZkQQgghhBDjTFpMMJXNHXSazN4eiuhFgjMhhBBCCCHGmbToELSG8kbpdeZLJDgTQgghhBBinEmN/rzXmfAdEpwJIYQQQggxzqTFWHudyboz3yLBmRBCCCGEEONMYkQQ/kZFiVRs9CkSnAkhhBBCCDHOGA2KlKhgmTnzMRKcCSGEEEIIMQ6lxYRQKmvOfIoEZ0IIIYQQQoxDqdEhlDRIWqMvkeBMCCGEEEKIcSgtJpj6k12c7DR5eyjCZsjgTCmVppRap5QqUEodUEp93fb4Nbb/W5RSC9w/VCGEEEIIIYSrpEVLxUZf48jMmQn4ttY6C1gM3KuUygb2A1cCn7hxfEIIIYQQQgg3sJfTL5WKjT7Db6gNtNYVQIXt8xalVAGQorX+EEAp5d4RCiGEEEIIIVwuzd6IWmbOfIZTa86UUpOAucB2t4xGCCGEEEII4RExoQGEBBil15kPcTg4U0qFAS8D39BaNzvxuruVUruUUrtqamqGM0YhhBBCCCGEiymlSIsOkZkzH+JQcKaU8scamD2ntX7FmQNorR/TWi/QWi+Ij48fzhiFEEIIIYQQbpAWE0yJ9DrzGY5Ua1TAP4ECrfUf3D8kIYQQQgghhCekRodQ2tCO1trbQxE4NnO2DLgJOEsplWf7uFApdYVSqhRYArytlHrfrSMVQgghhBBCuFRqdDCtnSYa27q9PRSBY9UaNwEDlWR81bXDEUIIIYQQQniKvZx+SUMb0aEBXh6NcKpaoxBCCCGEEGLs6GlELRUbfYIEZ0IIIYQQQoxTaTHS68yXSHAmhBBCCCHEOBUe5E9UiL9UbPQREpwJIYQQQggxjll7nUlaoy+Q4EwIIYQQQohxLC0mmFKZOfMJEpwJIYQQQggxjqXZep1ZLNLrzNskOBNCCCGEEGIcS40Joctsoaa109tDGfckOBNCCCGEEGIcS4u2VWyU1Eavk+BMCCGEEEKIcax3I2rhXRKcCSGEEEIIMY6lRNlnzqRio7dJcCaEEEIIIcQ4FuRvJCE8UNIafYAEZ0IIIYQQQoxzaTEhktboAyQ4E0IIIYQQYpxLiw6WtEYfIMGZEEIIIYQQ41xaTAgVTe10my3eHsq4JsGZEEIIIYQQ41xadAgWDRWNHd4eyrgmwZkQQgghhBDjXGqMrWKjrDvzKgnOhBBCCCGEGOfSom29zqRio1dJcCaEEEIIIcQ4lxQZhNGgZObMyyQ4E0IIIYQQYpzzMxpIjgqSio1eJsGZEEIIIYQQgrRo6XXmbRKcCSGEEEIIIazBmcyceZUEZ0IIIYQQQgjSYoKpbe2ko9vs7aGMWxKcCSGEEEIIIUiLsVZsLJXURq+R4EwIIYQQQghBak85fUlt9BYJzoQQQgghhBCkRUsjam+T4EwIIYQQQghBfHgggX4GaUTtRUMGZ0qpNKXUOqVUgVLqgFLq67bHY5RSHyqlDtv+jXb/cIUQQgghhBDuoJQiNTpY0hq9yJGZMxPwba11FrAYuFcplQ3cB3yktZ4KfGT7vxBCCCGEEGKUmjEhgt0nGjBbtLeHMi4NGZxprSu01p/aPm8BCoAU4DLgGdtmzwCXu2mMQgghhBBCCA+4MCeJmpZOth+r8/ZQxiWn1pwppSYBc4HtQKLWugKsARyQ4PLRCSGEEEIIITzmrBkJhAQYeXNPhbeHMi45HJwppcKAl4FvaK2bnXjd3UqpXUqpXTU1NcMZoxBCCCGEEMIDggOMrMlO5N39FXSbLd4ezrjjUHCmlPLHGpg9p7V+xfZwlVIqyfZ8ElDd32u11o9prRdorRfEx8e7YsxCCCGEEEIIN7kkN5nGtm42Han19lDGHUeqNSrgn0CB1voPvZ56A7jF9vktwOuuH54QQgghhBDCk1ZMiyMiyI8395R7eyjjjiMzZ8uAm4CzlFJ5to8LgV8Ba5RSh4E1tv8LIYQQQgghRrFAPyPnz5rABweq6Og2e3s444rfUBtorTcBaoCnz3btcIQQQgghhBDedsnsZF7YVcr6whrOnzXB28MZN5yq1iiEEEIIIYQY+5ZkxBIbGsCbeyW10ZMkOBNCCCGEEEKcws9o4MKcJD4qqOJkp8nbwxk3JDgTQgghhBBCnOaS2cl0dFtYW1Dl7aGMGxKcCSGEEEIIIU6zYGI0EyKCpCG1B0lwJoQQQgghhDiNwaC4ODeJDYeqaWrr9vZwxgUJzoQQQgghhBD9umR2Mt1mzfsHKr09lHFBgjMhhBBCCCFEv3JTI0mPCZGqjR4iwZkQQgghhBCiX0opLpmdxOYjtdS2dnp7OGOeBGdCCCGEEEKIAV0yOxmLhnf3SWEQd5PgTAghhBBCCDGg6YnhTE0Ik6qNHiDBmRBCCCGEEGJASikunZ3MjuJ6KpravT2cMU2CMyGEEEIIIcSgLp6dDMDbe2X2zJ0kOBNCCCGEEEIManJcKDkpkby5R6o2upMEZ0IIIYQQQoghXTI7iT2lTRyvO+ntoYxZEpwJIYQQQgghhnRRrjW18S1JbXQbCc6EEEIIIYQQQ0qJCmbBxGhJbXQjCc6EEEIIIYQQDrlkdjIHK1s4VNXi7aGMSRKcCSGEEEIIIRxyQc4EDAqZPXMTCc6EEEIIIYQQDkkID2LJlFje3FOO1trbwxlzJDgTQgghhBBCOOyS3GSK69rYX9bs7aGMORKcCSGEEEIIIRx2/qwJ+BkUb+6V1EZXk+BMCCGEEEII4bCokADOnBbPW3vKsVgktdGVJDgTQgghhBBCOOWS2UmUN3Xw6YkGbw9lTJHgTAghhBBCCOGUc7ISCfQzSNVGF5PgTAghhBBCCOGU8CB/zpqRwNv7KjCZLd4ezpghwZkQQgghhBDCaZfMTqa2tYvtx+q9PZQxQ4IzIYQQQgghhNNWT08gNMAoqY0uNGRwppR6UilVrZTa3+ux2UqprUqpfUqpN5VSEe4dphBCCCGEEMKXBAcYWZOdyLv7K+kySWqjKzgyc/Y0cH6fx54A7tNa5wCvAt918biEEEIIIYQQPu6S2ck0tXez+Witt4cyJgwZnGmtPwH6JpJOBz6xff4hcJWLxyWEEEIIIYTwcSumxvPil5awcmq8t4cyJgx3zdl+4FLb59cAaQNtqJS6Wym1Sym1q6amZpiHE0IIIYQQQviaAD8DCyfFYDAobw9lTBhucHY7cK9SajcQDnQNtKHW+jGt9QKt9YL4eImohRBCCCGEEKI/fsN5kdb6IHAugFJqGnCRKwclhBBCCCGEEOPNsGbOlFIJtn8NwI+BR1w5KCGEEEIIIYQYbxwppf9fYCswXSlVqpS6A/iCUuoQcBAoB55y7zCFEEIIIYQQYmwbMq1Ra/2FAZ76k4vHIoQQQgghhBDj1nALggghhBBCCCGEcCEJzoQQQgghhBDCB0hwJoQQQgghhBA+QIIzIYQQQgghhPABEpwJIYQQQgghhA9QWmvPHUypGuC4xw7ouDig1tuDEGOOnFfC1eScEu4g55VwBzmvhKuNpXNqotY6vr8nPBqc+Sql1C6t9QJvj0OMLXJeCVeTc0q4g5xXwh3kvBKuNl7OKUlrFEIIIYQQQggfIMGZEEIIIYQQQvgACc6sHvP2AMSYJOeVcDU5p4Q7yHkl3EHOK+Fq4+KckjVnQgghhBBCCOEDZOZMCCGEEEIIIXzAqArOlFLnK6UKlVJHlFL39Xr8f0qpPNtHsVIqb4DXxyilPlRKHbb9G217/IZer89TSlmUUnP6ef1ztuPvV0o9qZTytz2ulFJ/to1rr1Jqnnu+AsIdfPi8mqGU2qqU6lRKfcc97164iw+fVzfYfk/tVUptUUrNds9XQLiDD59Xl9nOqTyl1C6l1HL3fAWEq7nxnPJXSj2jlNqnlCpQSv1ggNdPVkptt73+f0qpANvjcm01ivnweeX711Za61HxARiBo0AGEADsAbL72e73wE8H2MdvgPtsn98H/LqfbXKAogFefyGgbB//Bb7c6/F3bY8vBrZ7++slH2PivEoAFgIPAt/x9tdKPsbMebUUiLZ9foH8vho9Hz5+XoXx+VKJXOCgt79e8uHdcwr4IvC87fMQoBiY1M/rXwCut33+iFxbjf4PHz+vfP7aajTNnC0Cjmiti7TWXcDzwGW9N1BKKeBarH8w+nMZ8Izt82eAy/vZ5gsDvV5r/Y62AXYAqb32+y/bU9uAKKVUksPvTHiTz55XWutqrfVOoNupdyR8gS+fV1u01g22zbbx+e8x4ft8+bxqtT0GEArIgvbRwZ3nlAZClVJ+QDDQBTT3s++zgJf6eb1cW41ePntejYZrq9EUnKUAJb3+X2p7rLcVQJXW+vAA+0jUWlcA2P5N6Geb6xj4RAGsU6rATcB7ToxN+CZfPq/E6DVazqs7sN6ZFqODT59XSqkrlFIHgbeB2wd7vfAZ7jynXgJOAhXACeB3Wuv6Pq+NBRq11qZ+ji/XVqOXL59XPm80BWeqn8f63pkb8G6fQwdQ6gygTWu9f4hN/w58orXe6MTYhG/y5fNKjF4+f14ppVZjDc6+P9wxCI/z6fNKa/2q1noG1jvUPx/uGIRHufOcWgSYgWRgMvBtpVSGE8eXa6vRy5fPK583moKzUiCt1/9TgXL7f2zTm1cC/+v12FO2BYfv2B6qsk+J2/6t7nOM6xn6buH9QDzwLUfHJnyaL59XYvTy6fNKKZULPAFcprWuc+J9Ce/y6fPKTmv9CTBFKRXnyJsSXuXOc+qLwHta626tdTWwGVjQ5/i1WNMV/fo5vlxbjV6+fF75vNEUnO0EptqqrwRg/QPyRq/nz8G6ALnU/oDW+jat9Ryt9YW2h94AbrF9fgvwun1bpZQBuAZrXmy/lFJ3AucBX9BaW3o99QZws62y0GKgyT4VK3yeL59XYvTy2fNKKZUOvALcpLU+NIL3KDzPl8+rTNs6D5S1ql4AIIG/73PnOXUCOMt2bRSKtajHwd4Ht61TXAdc3c/r5dpq9PLl88r3aR+oSuLoB9bKPYewVoD5UZ/nnga+NMTrY4GPgMO2f2N6PbcK2DbE6022Y+fZPn5qe1wBf7M9tw9Y4O2vlXyMifNqAta7T81Ao+3zCG9/veRj1J9XTwANvR7f5e2vlXyMifPq+8AB22NbgeXe/lrJh3fPKawVPF+0nRf5wHcHeH0G1uIyR2zbB9oel2urUfzhw+eVz19b2cveCiGEEEIIIYTwotGU1iiEEEIIIYQQY5YEZ0IIIYQQQgjhAyQ4E0IIIYQQQggfIMGZEEIIIYQQQvgACc6EEEIIIYQQwgdIcCaEEEIIIYQQPkCCMyGEEEIIIYTwARKcCSGEEEIIIYQP+P9olCfjjyDc5AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACKTElEQVR4nO3dd3hb5fXA8e8r773txLFjx46dbWcvssMq0ELLLmUUKKVAgdIWukvXr4vSlg72JkDZUKCskL0HGSROYjvxih3Ley9J7+8PScZJPCRby875PI+f2Fe6V6+ca/ue+573HKW1RgghhBBCCCGEdxm8PQAhhBBCCCGEEBKcCSGEEEIIIYRPkOBMCCGEEEIIIXyABGdCCCGEEEII4QMkOBNCCCGEEEIIHyDBmRBCCCGEEEL4AAnOhBBCCCGEEMIHSHAmhBDDlFKquceHRSnV1uPra7w9vsFQShUppc729jj6o5Raq5S62Y3Hf0wpddj2f3rDKY89csr/e4dSqqmXY2QppdqVUi+csn2lUuqQUqpVKbVGKZXW4zGllPqjUqrG9vEnpZRy1/sUQghxOgnOhBBimNJah9s/gBLgyz22rfL2+E6llPIfCa/hAXuB24Ddpz6gtb71lP/3l4BXeznGv4AdPTcopeKBN4CfA7HATuA/PZ5yC3AJkAvkABcB3x7qmxFCCOE4Cc6EEGKEUUoZlFI/UkoV2mZAXlFKxdoeS1dKaaXUN5VSpUqpOqXUrUqpOUqpfUqpeqXUP3sc6wal1Cal1D+UUg22WZeVPR6PUko9qZSqUEodV0r9Vinld8q+f1VK1QL3K6UylVKf2sZVrZRapZSKtj3/eWAs8F/brNC9SqllSqmyU95f9+yaUup+pdRrSqkXlFKNwA0DjGm8Umqd7b1UK6V6Bic9XyPYdswa2/dkh1IqSSn1O2Ax8E/bGP9pe/5EpdTHSqla26zXFT2O9YxtxutjpVST7fXTentdAK31v7TWq4H2Af6fw4BLgWdP2X4VUA+sPmWXrwEHtNavaq3bgfuBXKXURNvj1wN/0VqXaa2PA38BbuhvDEIIIVxLgjMhhBh57sQ6A7IUSAbqsM6k9DQPyAKuBP4G/BQ4G5gCXKGUWnrKc48C8cAvgTfswR7WwMAEjAdmAOcCN/eybyLwO0ABv7eNaxKQijVIQGt9LSfPAP7Jwfd7MfAaEA2sGmBMvwE+AmKAFOAffRzzeiDKNr444FagTWv9U2ADcIdtjHfYgqSPgRdt7/Nq4N9KqSk9jneN7bXjgT22cQ7VpUAVsN6+QSkVCfwa+H4vz5+CdVYOAK11C1Bo237a47bPe74HIYQQbibBmRBCjDzfBn5qmwHpwBr8XHZKyt9vtNbtWuuPgBbgJa210TZjsgFrUGNnBP6mte7SWv8HOAxcqJRKAr4E3K21btFaG4G/Alf12Ldca/0PrbVJa92mtS7QWn+ste7QWlcBD2INIodii9b6La21BYgcYExdQBqQbHv/G/s4ZhfWoGy81tqstd6ltW7s47kXAUVa66dt73M38DpwWY/nvKe1Xm/7//gpsEAplTqUN401gHxOa617bPsN8KTWurSX54cDDadsawAi+ni8AQiXdWdCCOE5IyE3XwghxMnSgDeVUpYe28xAUo+vK3t83tbL1+E9vj5+SgBQjHXmKw0IACp6XL8bgJ6BwUlBglIqEXgIa2pghO35dQ69q771fI2BxnQv1gBmu1KqDmsa31O9HPN5rLNmL9vSLl/AGvB29fLcNGCeUqq+xzZ/2zFOG6PWutmW5pl8ytgdZgvslgLf6rFtOtbZzxl97NaMNXjtKRJo6uPxSKD5lP97IYQQbiTBmRBCjDylwI1a602nPqCUSh/E8cYopVSPi/SxwDu21+kA4rXWpj72PfXC/ve2bTla6xql1CXAP/t5fgsQ2mP8fkBCP6/R75i01iewBTRKqUXAJ0qp9VrrglOe1wX8CviV7Xv2PtYZwyd7GWMpsE5rfc6pr9dD9yyZUioca0GO8n6eP5DrgM1a66M9ti0D0oESW2AaDvgppSZrrWcCB7DOttnHEQZk2rZj+zcX2G77OrfHY0IIITxA0hqFEGLkeQT4nb3ohFIqQSl18RCOlwjcqZQKUEpdjnWt2Pta6wqs67f+opSKtBUiyTxlvdqpIrDO0NQrpcYAPzzl8Uogo8fXR4BgpdSFSqkA4GdAUF8HH2hMSqnLlVIptqfXYQ20zKceRym1XCk1zRYMNmJNc7Q/79QxvgtkK6WutX2PApS1wMqkHs+5QCm1SCkViHXmblsfqYcopQKVUsFY1+cF2IqTnPr3+jrgmVO2PYY12Jpu+3gEeA84z/b4m8BUpdSltuP/AtintT5ke/w54B6l1BilVDLWdWunvoYQQgg3kuBMCCFGnr9jndn6SFl7YG3FWphjsLZhLR5SjbWox2Va6xrbY9cBgcBBrMHOa8Dofo71K2Am1vVM72Et7d7T74Gf2Sok/kBr3YC1rPwTwHGsM2ll9K+/Mc0BtimlmrF+j+7SWh/r5RijbPs1AnnAOqypjWD9/l6mrJUuH9JaN2EtOnIV1tmwE8AfOTmIfBFrMZVaYBbWAiF9+QhraulCrAFXG7DE/qBSagHWYiYnldDXWrdqrU/YP7AGwe22tX3Y/r0U6/9hHdZzouf6wEeB/wL7gc+x/v882s84hRBCuJiSVHIhhBB9UdYmyDdrrRd5eyzDlVLqGaBMa/0zb49FCCGEb5OZMyGEEEIIIYTwARKcCSGEEEIIIYQPkLRGIYQQQgghhPABMnMmhBBCCCGEED5AgjMhhBBCCCGE8AEebUIdHx+v09PTPfmSQgghhBBCCOEzdu3aVa21TujtMY8GZ+np6ezcudOTLymEEEIIIYQQPkMpVdzXY5LWKIQQQgghhBA+QIIzIYQQQgghhPABEpwJIYQQQgghhA/w6Jqz3nR1dVFWVkZ7e7u3hyJGmODgYFJSUggICPD2UIQQQgghhBiQ14OzsrIyIiIiSE9PRynl7eGIEUJrTU1NDWVlZYwbN87bwxFCCCGEEGJAXk9rbG9vJy4uTgIz4VJKKeLi4mRGVgghhBBCDBteD84ACcyEW8h5JYQQQgghhhOfCM687Xe/+x1TpkwhJyeH6dOns23bNgBuvvlmDh486JLXSE9Pp7q6ut/n/N///Z/Tx33mmWe44447Ttr29NNPM336dKZPn05gYCDTpk1j+vTp/OhHP3L6+J7wt7/9jdbWVm8PQwghhBBCCK/y+pozb9uyZQvvvvsuu3fvJigoiOrqajo7OwF44oknPDqW//u//+MnP/nJkI/zzW9+k29+85uANShcs2YN8fHxQz7uYGmt0VpjMPR+L+Bvf/sb3/jGNwgNDXX4mCaTCX//M/70FUIIIYQQI8gZP3NWUVFBfHw8QUFBAMTHx5OcnAzAsmXL2LlzJwDh4eHcd999zJo1i7PPPpvt27ezbNkyMjIyeOedd4DTZ7Euuugi1q5de9prXnLJJcyaNYspU6bw2GOPAfCjH/2ItrY2pk+fzjXXXAPACy+8wNy5c5k+fTrf/va3MZvNgHVmLDs7m6VLl7Jp0yaH3+uf//xn5syZQ05ODr/85S8BKCoqYuLEidx8881MnTqVa665hk8++YSzzjqLrKwstm/fDsD999/Ptddey4oVK8jKyuLxxx8f8LiTJk3itttuY+bMmZSWlvKd73yH2bNnM2XKlO7nPfTQQ5SXl7N8+XKWL1/e/b22e+2117jhhhsAuOGGG7jnnntYvnw59913H4WFhZx//vnMmjWLxYsXc+jQIYe/F0IIIYQQwjU25Ffx4YET3h7GiHDGB2fnnnsupaWlZGdnc9ttt7Fu3bpen9fS0sKyZcvYtWsXERER/OxnP+Pjjz/mzTff5Be/+IVTr/nUU0+xa9cudu7cyUMPPURNTQ1/+MMfCAkJYc+ePaxatYq8vDz+85//sGnTJvbs2YOfnx+rVq2ioqKCX/7yl2zatImPP/7Y4bTLjz76iPz8fLZv386ePXvYtWsX69evB6CgoIC77rqLffv2cejQIV588UU2btzIAw88cFKq5b59+3jvvffYsmULv/71rykvL+/3uIcPH+a6667js88+Iy0tjd/97nfs3LmTffv2sW7dOvbt28edd95JcnIya9asYc2aNQO+jyNHjvDJJ5/wl7/8hVtuuYV//OMf7Nq1iwceeIDbbrvNqf8HIYQQQggxdI+tP8qDHx3x9jBGhAHzwpRSqcBzwCjAAjymtf67Uuo/wATb06KBeq319KEM5lf/PcDB8sahHOI0k5Mj+eWXp/T5eHh4OLt27WLDhg2sWbOGK6+8kj/84Q/dszV2gYGBnH/++QBMmzaNoKAgAgICmDZtGkVFRU6N6aGHHuLNN98EoLS0lPz8fOLi4k56zurVq9m1axdz5swBoK2tjcTERLZt28ayZctISEgA4Morr+TIkYF/GD766CM++ugjZsyYAUBzczP5+fmMHTuWcePGMW3aNACmTJnCypUrUUqd9t4uvvhiQkJCCAkJYfny5Wzfvp2NGzf2edy0tDTmz5/fvf8rr7zCY489hslkoqKigoMHD5KTk+PU9+7yyy/Hz8+P5uZmNm/ezOWXX979WEdHh1PHEkIIIYQQQ9NhMrOjqJar5oz19lBGBEcW7ZiA72utdyulIoBdSqmPtdZX2p+glPoL0OCuQbqbn58fy5YtY9myZUybNo1nn332tOAsICCgu/qfwWDoToM0GAyYTCYA/P39sVgs3fv0VsZ97dq1fPLJJ2zZsoXQ0FCWLVvW6/O01lx//fX8/ve/P2n7W2+9NagqhFprfvzjH/Ptb3/7pO1FRUXd76W/9wanVz9USvV73LCwsO6vjx07xgMPPMCOHTuIiYnhhhtu6LPMfc/XOfU59mNaLBaio6PZs2fPQG9dCCGEEEK4yd7SBtq7LCzIjBv4yWJAAwZnWusKoML2eZNSKg8YAxwEUNYr6SuAFUMdTH8zXO5y+PBhDAYDWVlZAOzZs4e0tLRBHSs9PZ1///vfWCwWjh8/3r1eq6eGhgZiYmIIDQ3l0KFDbN26tfuxgIAAurq6CAgIYOXKlVx88cV873vfIzExkdraWpqampg3bx533XUXNTU1REZG8uqrr5Kbmzvg2M477zx+/vOfc8011xAeHs7x48cJCAhw6v29/fbb/PjHP6alpYW1a9d2p2I6ctzGxkbCwsKIioqisrKS//3vfyxbtgyAiIgImpqauouWJCUlkZeXx4QJE3jzzTeJiIg47XiRkZGMGzeOV199lcsvvxytNfv27XPoeyGEEEIIIVxjc2E1SsH8cRKcuYJT5e6UUunADGBbj82LgUqtdb4Lx+Uxzc3NfPe736W+vh5/f3/Gjx/fXaTDWWeddVZ3iuDUqVOZOXPmac85//zzeeSRR8jJyWHChAknpf3dcsst5OTkMHPmTFatWsVvf/tbzj33XCwWCwEBAfzrX/9i/vz53H///SxYsIDRo0czc+bM7kIh/Tn33HPJy8tjwYIFgDWd84UXXsDPz8/h9zd37lwuvPBCSkpK+PnPf05ycjLJyckOHTc3N5cZM2YwZcoUMjIyOOuss05631/60pcYPXo0a9as4Q9/+AMXXXQRqampTJ06lebm5l7Hs2rVKr7zne/w29/+lq6uLq666ioJzoQQQgghPGhLYQ1Tk6OICnXupr/ondJaO/ZEpcKBdcDvtNZv9Nj+MFCgtf5LH/vdAtwCMHbs2FnFxcUnPZ6Xl8ekSZMGN3rhMffffz/h4eH84Ac/8PZQnCLnlxBCCCGEe7R3mcm5/yNuOCudn1wg11uOUkrt0lrP7u0xh6o1KqUCgNeBVacEZv7A14D/9LWv1voxrfVsrfVsexELIYQQQgghxPC2q7iOTrOsN3MlR6o1KuBJIE9r/eApD58NHNJal7ljcMJ33H///d4eghBCCCGE8CGbC6vxMyjmpMd6eygjhiMzZ2cB1wIrlFJ7bB8X2B67CnjJbaMTQgghhBBC+KTNhTXkpkQRHuRUGQvRD0eqNW4Eeq3drrW+wdUDEkIIIYQQQvi25g4T+8oauHVphreHMqI4tOZMCCGEEEIIIex2HKvFbNEszIz39lBGFAnOhBBCCCGEEE7ZcrSGQD8Ds9JivD2UEUWCM8DPz4/p06czdepULr/8clpbWwd9rBtuuIHXXnsNgJtvvpmDBw/2+dy1a9eyefPm7q8feeQRnnvuuUG/tl1RURFTp049adv999/PAw884NRxXDUeIYQQQggxsmwurGbG2GiCAxzvmSsGJqv3gJCQEPbs2QPANddcwyOPPMI999zT/bjZbHaqWbPdE0880e/ja9euJTw8nIULFwJw6623Ov0a7mIymXxqPEIIIYQQwjc0tHZxoLyRu1ZmeXsoI87wmjn7059gzZqTt61ZY93uIosXL6agoIC1a9eyfPlyvv71rzNt2jTMZjM//OEPmTNnDjk5OTz66KMAaK254447mDx5MhdeeCFGo7H7WMuWLWPnzp0AfPDBB8ycOZPc3FxWrlxJUVERjzzyCH/961+ZPn06GzZsOGl2a8+ePcyfP5+cnBy++tWvUldX133M++67j7lz55Kdnc2GDRucfo/9HfsnP/kJS5cu5e9//3v3eMrLy5k+fXr3h5+fH8XFxRQXF7Ny5UpycnJYuXIlJSUlgHX28M4772ThwoVkZGR0zyQKIYQQQojhb+uxGrRG1pu5wfAKzubMgSuu+CJAW7PG+vWcOS45vMlk4n//+x/Tpk0DYPv27fzud7/j4MGDPPnkk0RFRbFjxw527NjB448/zrFjx3jzzTc5fPgw+/fv5/HHHz8pTdGuqqqKb33rW7z++uvs3buXV199lfT0dG699Va+973vsWfPHhYvXnzSPtdddx1//OMf2bdvH9OmTeNXv/rVSePcvn07f/vb307a3lNhYeFJAdUjjzzi0LHr6+tZt24d3//+97u3JScns2fPHvbs2cO3vvUtLr30UtLS0rjjjju47rrr2LdvH9dccw133nln9z4VFRVs3LiRd999lx/96EdO/k8IIYQQQghftaWwhuAAA7mpUd4eyojjW2mNd98NtvTCPiUnw3nnwejRUFEBkybBr35l/ejN9Onwt7/1e8i2tjamT58OWGfObrrpJjZv3szcuXMZN24cAB999BH79u3rngVqaGggPz+f9evXc/XVV+Pn50dycjIrVqw47fhbt25lyZIl3ceKje2/UV9DQwP19fUsXboUgOuvv57LL7+8+/Gvfe1rAMyaNYuioqJej5GZmdmdqglfNJEe6NhXXnlln+PatGkTTzzxRPds3ZYtW3jjjTcAuPbaa7n33nu7n3vJJZdgMBiYPHkylZWV/b5fIYQQQggxfGwprGFOeixB/rLezNV8KzhzREyMNTArKYGxY61fD1HPNWc9hYWFdX+uteYf//gH55133knPef/991Gq1zZwJ+070HOcERQUBFgLmZhMJpcdF05+zz1VVFRw00038c477xAeHt7rc3q+R/sYwfr+hRBCCCHE8Ffd3MHhyiYunpHs7aGMSL4VnA0wwwV8kcr485/Dww/DL38Jy5e7fWjnnXceDz/8MCtWrCAgIIAjR44wZswYlixZwqOPPsp1112H0WhkzZo1fP3rXz9p3wULFnD77bdz7Ngxxo0bR21tLbGxsURERNDY2Hjaa0VFRRETE8OGDRtYvHgxzz//fPdM11AN5thdXV1cccUV/PGPfyQ7O7t7+8KFC3n55Ze59tprWbVqFYsWLXLJGIUQQgghhG/aerQGgAUZcV4eycjkW8HZQOyB2SuvWAOy5ctP/tqNbr75ZoqKipg5cyZaaxISEnjrrbf46le/yqeffsq0adPIzs7uNdBJSEjgscce42tf+xoWi4XExEQ+/vhjvvzlL3PZZZfx9ttv849//OOkfZ599lluvfVWWltbycjI4Omnn3bZe3H22Js3b2bHjh388pe/5Je//CVgnTF86KGHuPHGG/nzn/9MQkKCS8cohBBCCCF8z+bCGsKD/Jk2RtabuYPyZMrZ7Nmztb16oV1eXh6TJk1y7AB/+pO1+EfPQGzNGtixA3qsdxLCzqnzSwghhBBC9GvFA2tJjw/jqRtcU5DvTKSU2qW1nt3bY8Nr5qy3AMw+gyaEEEIIIYRwmxMN7RytbuHr88Z6eygj1vAqpS+EEEIIIYTwii1HqwGYL+vN3EaCMyGEEEIIIcSANhfUEBUSwOTRkd4eyojlE8GZlFoX7iDnlRBCCCGE62w5WsP8jFgMBte1iBIn83pwFhwcTE1NjVxIC5fSWlNTU0NwcLC3hyKEEEIIMeyV1rZSVtfGwsx4bw9lRPN6QZCUlBTKysqoqqry9lDECBMcHExKSoq3hyGEEEIIMextKbT1N8uU9Wbu5PXgLCAggHHjxnl7GEIIIYQQQog+bC6sJj48kKzEcG8PZUTzelqjEEIIIYQQwndprdlcWMOCzHiUkvVm7iTBmRBCCCGEEKJPR6tbMDZ1sEBK6LudBGdCCCGEEEKIPm22rTdbKOvN3E6CMyGEEEIIIUSfthbWMDoqmLS4UG8PZcST4EwIIYQQQgjRK4tFs+VoDQsy42S9mQcMGJwppVKVUmuUUnlKqQNKqbt6PPZdpdRh2/Y/uXeoQgghhBBCCE86YmyitqVT1pt5iCOl9E3A97XWu5VSEcAupdTHQBJwMZCjte5QSiW6c6BiZDtY3khlUzvLJ8hpJIQQQgjhKzYXSH8zTxowONNaVwAVts+blFJ5wBjgW8AftNYdtseM7hyoGLn+s6OEn791AIvW7P7FOUQGB3h7SEIIIYQQAthytIaxsaGkxMh6M09was2ZUiodmAFsA7KBxUqpbUqpdUqpOW4YnxjBOk0Wfvrmfu57fT8ZCWGYLJp1h6u8PSwhhBBCCAGYLZqtR2ukSqMHORycKaXCgdeBu7XWjVhn3WKA+cAPgVdUL6sElVK3KKV2KqV2VlXJhbewqmxs5+rHt7JqWwm3Ls3knTsWERsWyOq8Sm8PTQghhBBCAAfKG2hqN0lKowc5suYMpVQA1sBsldb6DdvmMuANrbUGtiulLEA8cFIEprV+DHgMYPbs2dpVAxfD186iWr6zajctHSb++fUZXJSTDMCyCQmszjNiMlvw95NCokIIIYQQ3rTF1t9MioF4jiPVGhXwJJCntX6wx0NvAStsz8kGAoFqN4xRjBBaa57fWszVj28lNNCPN287qzswAzh7UhINbV3sKq7z4iiFEEIIIQRYm0+PTwwnMTLY20M5Yzgyc3YWcC2wXym1x7btJ8BTwFNKqc+BTuB62yyaEKdp7zLzi7c/55WdZSyfkMDfrpxBVOjJhT+WZCcQ6Gfgk7xK5skdGiGEEEIIr+kyW9hRVMulM1O8PZQziiPVGjcCfXWc+4ZrhyNGovL6Nr7zwi72ljVw54rx3H12NgbD6adUeJA/8zJiWZ1n5KcXTvbCSIUQQgghBMC+snpaO81SDMTDZGGPcKutR2v48j82UljVwqPXzuKecyf0GpjZnT0piaPVLRytavbgKIUQQgghRE/29WaSzeRZEpwJt9Ba89TGY1zzxDaiQgN46/azOG/KqAH3WznJ2oR6dZ60zRNCCCGE8JbNhTVMGh1JbFigt4dyRpHgTLjFL985wK/fPcjKiYm8fftZjE8Md2i/lJhQJo6K4GMpqS+EEEII4RXtXWZ2FddJlUYvkOBMuNyRyiae21LMN+aP5ZFvzCIiOGDgnXo4e1ISu4rrqG/tdNMIhRBCCCFEXz4rqafDZJH1Zl4gwZlwucfWHyU4wMA95/S/vqwvKyclYrZo1h6WpuVCCCGEEJ625WgNBgVzM2K9PZQzjgRnwqUqGtp4e89xrpydOugc5dyUaOLDgyS1UQghhBDCC7YUVjNtTBSRTmY/iaGT4Ey41FMbj2HRcPPijEEfw2BQrJyYyPrDVXSaLC4cnRBCCCGE6I/Wmv3HG5iZFuPtoZyRJDgTLtPQ2sWL20q4KGc0qbGhQzrWykmJNHWY2FFU66LRCSGEEEKIgTS2mWjvsjAmOsTbQzkjSXAmXOaFbcW0dJq5ZcngZ83sFmXFE+hv4BNJbRRCCCGE8BhjUzsAiZHBXh7JmUmCM+ES7V1mnt50jCXZCUxJjhry8UID/Vk0Pp5P8irRWrtghOJMcaC8gbP+8Cnl9W3eHsoZrbnDxKUPb2Zvab23hyKEEMIJlY0dACRGBHl5JGcmCc6ES7y+u4zq5k5udcGsmd3KSYmU1raRb2x22THFyPfxwUqO17exubDG20M5o+0urmNXcZ1UXRVCiGHGPnOWJDNnXiHBmRgys0Xz+Pqj5KREscCF/TBWTkwCkNRG4ZRdxXUAMmPjZfbvf2GV3FwRQojhRGbOvEuCMzFkHx44QVFNK7cuzUQp5/ua9WVUVDBTx0SyOs/osmOKkc1s0XxWUg/AvrJ6r47lTLfX9v2X4EwIIYaXysZ2woP8CQvy9/ZQzkgSnIkh0Vrz6LpC0uNCOW/KKJcf/+xJSewuqaO6ucPlx3aErHcbXg6daKS5w8SY6BAOVjTSYTJ7e0hnJK01e0obADha1YLFIj9HQjjrlR2lXPjQBmkpIzyuqqmDxEiZNfMWCc7EkGw5WsPesga+tSQDP4PrZs3szp6UhNaw5pDnZ8+++9JnfPelzzz+umLw7CmNNyxMp8usyato8vKIzkzlDe1UN3cwaXQkbV1mKhrbvT0kIYaVqqYOfvPuQQ6UN0pLGeFxlY3tktLoRRKciSF5ZN1R4sMDuXRmiluOPyU5klGRwR5PbdRas+6wkY8OVtLWKbMvw8XOojqSIoO4IGc0IOvOvMX+fb905hgACqWojxBO+dMHh2g3mQn0k5YywvMqm9qlGIgXSXAmBu1geSPrj1TxzbPGERzg55bXUEqxYlIi6/OraO/yXJBUUttKY7uJTpOFrUel6t9wsau4jtlpsSRHBRMfHtS97kl41t7SegL9DFxoC5Jl3ZkQjttdUseru8q4cdE4Fo6PY3WeUVLshcdorTE2dkhw5kUSnIlBe3R9IWGBfnxjXppbX+ecSUm0dpo9GiTtP97Q/fnaw1KQZDioaGjjeH0bs9JiUEoxPTVKZs68ZE9pPZNts95RIQESnAnhILNF88u3D5AUGcR3V2SxclISJbWtFFa1eHto4gzR2Gaiw2SRtEYvkuBMDEppbSvv7qvg6rljiQoNcOtrLciMIyTAz6OpjfvLGgj0M7A4K561R6RP03Cws8i63mx2egwAuSnRFFa10Nje5c1hnXHMFs3+4w1MT41GKUVmQhiFRrmwFMIRr+wsZf/xBn5ywSTCg/xZMTERgNWS2ig8xN7jLFFmzrxGgjMxKE9uPIZBwU2Lx7n9tYID/FiUFc/qvEqPpXbsP97ApNERnDM5ieKaVo5Vy8Wlr9tVXEdIgB+TRkcCkJMaDVgDbeE5BcZmWjvN5KREAZCZEC4zZ0I4oL61kz99cIi56bF8JTcZgDHRIUwcFcFqLxTFEmcme4+zJJk58xoJzoTTals6eXlHCRdPH8PoqBCPvObZkxIpb2j3SPU9ra13/qeOiWJZtvWupaQ2+r6dxbVMT40mwM/6ay3XFhzIujPPsqeS5tqC48zEcIxNHTKDKcQAHvz4CA1tXdz/lSkn9Qw9e1ISu4rrqG/t9OLoxJmislFmzrxNgjPhtOe2FNHeZeHbSzI89porJiahFB6pWlVc00pTu4mclCjGxoWSER/G2sOS2ujLWjpM5FU0dac0AkSHBpIeFyrrzjxsT1k9EcH+jIsLA6wzZyAVG4Xoz8HyRl7YWsy189OYnBx50mMrJiVitmjWSYq98ABjk3XmTNaceY8EZ8IprZ0mnt1cxNmTEslKivDY6yZEBJGbEu2RvPt9tmIgU8dYZ16WTkhg69Eaj1aLFM7ZU1qP2aKZlRZz0vbc1Gj2lkpaoyftLa0nNyUag63vYWaCNUiTggZC9E5rzf3vHCA6NJB7zplw2uO5KdHEhQV6vKWMODNVNrYTHuRPWJC/t4dyxpLgTDjl1Z1l1LV2cevSTI+/9tmTEtlb1oDRzQ1tPz/eQKC/gWxb8LlsQiIdJgtbpKS+z9pZVIdSMPOU4CwnJZoTje3daRrCvdq7zBw60URualT3trGxoQT4KVl3JkQf3tlbzvaiWu49b0KvBbb8DIrlExNZe9iIyWzxwgjFmcTY1E5ipMyaedOAwZlSKlUptUYplaeUOqCUusu2/X6l1HGl1B7bxwXuH67wJpPZwuMbjjIrLYbZ6bEef/2Vk5IA+NTNC6P3ldUzaXRk99qleeNiCQ4wsE5SG33WzuJaJiRFEBl88oXNdFuQcCakNq49bOREg3eD0APlDZgtmtyU6O5t/n4G0uPCJK1RiF40d5j4v/fzyEmJ4orZqX0+b+XERBrbTewqrvPg6MSZyNjYQVKErDfzJkdmzkzA97XWk4D5wO1Kqcm2x/6qtZ5u+3jfbaMUPuG9/RWU1bV5ZdYMYOKoCMZEh7h13ZnFojlwvJGcMV/c+Q8O8GNBRpxPFAV5ZtMx9pwBgYYzzBbNZyX1p6U0AkxJjsLPoEZ8UZAXthZzw9M7+O17B706jj22FNLptmIgdlKxUYje/ePTfCobO/jVV6Z0pwL3ZlFWPAF+Sqo2CrerlJkzrxswONNaV2itd9s+bwLygDHuHpjwLVprHll3lPGJ4ay09V3xNKUUZ09KZGNBtdvWfxXVtNDUYWJaj+AMrKmNRTWtFHmxpH5Ncwf3//cgj6wt9NoYfNHhE000d5hOKgZiFxzgx8RRESN63dkHn5/gF29/ToCfYmNBNWaLZ9pN9GZvaT2jo4JPq/KVmRhGcU0rXZKSJUS3wqpmntp4jMtnpTBj7Om/v3qKCA5gfkac9DsTbqW1prKxgySp1OhVTq05U0qlAzOAbbZNdyil9imlnlJK9fqbRSl1i1Jqp1JqZ1WVpIUNV+vzq8mraOSWJRn93t1zt5WTkmjvsrCpoNotx99vKwYyLeXk4GxpdgKAV6tlbSq0rnnbUVTrsX5vw8Gu4loAZqf1nmqbkxLNvrJ6LF4MWtxl29Ea7nz5M3JTo/ntJVOpb+3qPoe9YW9Z/UkpjXaZCeGYLJqS2lbPD0oIH6S15lf/PUiwvx/3nj/RoX1WTEyksKrFqzcJxcjW2Gai02SRSo1e5nBwppQKB14H7tZaNwIPA5nAdKAC+Etv+2mtH9Naz9Zaz05ISBj6iIVXPLqukKTIIC6Z7t1J03kZsYQH+fOJm6pW7S9rIMjfQFZi+Enb0+PDSI8L9Wpq4wZbYFjT0ilNsXvYWVxHYkQQKTG999ybnhpFY7uJopqR9T07dKKRm5/bSWpMCE9dP4dzJo9CKVjvpRsIdS2dFNe0dvc360nK6Qtxso8PVrL+SBXfOyebBAcvhFdOtK67ltRG4S6VTdLjzBc4FJwppQKwBmartNZvAGitK7XWZq21BXgcmOu+YQpvKq9vY3NhDdcvTCfQ37sFPoP8/ViSHc/qvEq3zITsP97A5ORI/P1Of5/LJiSyxUsl9bXWbMivZuIoawXJHUW1Hh+Dr9pZVMfs9JiTmrb2ZA8WRtK6s+P1bdzw1A5CA/149sa5xIQFEhsWyLQxUV4Lzuzf356VGu0ypJy+EN3au8z8+t2DZCeFc+2CNIf3GxsXSlZiOJ8ektRG4R7GRmuPsySZOfMqR6o1KuBJIE9r/WCP7aN7PO2rwOeuH57wBaW2VKRT12F5y8qJSRibOvi83LXpWxaL5kB5Y5/vc+mEBNq7LGw75vnAqMDYzInGdq5fmE5sWCA7iqRiF8CJhnaO17cxq4+URoCsxAhCA/1GzLqzupZOrntyGy2dJp69cS4pMaHdjy3JSuCz0noa27s8Pq69pQ0o1fvviYjgAJIigyiQmbNuFovms5I6HvzoML//X56kKp9BHl13lLK6Nu7/ypTuqsCOWjEpkW1Ha2nyws+4GPnsbWdkzZl3OfJb4SzgWmDFKWXz/6SU2q+U2gcsB77nzoEK76mwleceHdV72pinLZ+YiEHh8tTGYzUtNHeYuptPn2pBRhxB/gavpDZuyLeusVucFc/stBi3zZwdLG/kuqe288HnJ4bFxeLO7vVmfS+m9zMopiZHjYiZs7ZOMzc+u4PSujaeuG42E0dFnvT4kuwEzBbNZjetyezP3rJ6xieEExF8ep8mkIqNAA1tXby7r5x7XtnDnN99wlf/vZmHPi3ovlgXI19pbSv/XlvAhTmjWZgZ7/T+KycmYbJo1h/x/M+4GPm+SGuUmTNvGrD9t9Z6I9BbvpCUzj9DlDdYLxqSo33jTkpsWCCz0mL45GAl95yT7bLj7i+zzqzkpPQenAUH+DE/I87a7+zLLntZh2zIryIjPoyUmFDmpMfy0cFKjI3tLs8L/8+OEtYfqWL9kSpyU6L4wXkTWDQ+vs+UQW/bWVRHSIAfk5Mj+31ebmoUz24pptNk8Xpq7mCZzBbueHE3e0rrefiamczLiDvtOTPGRhMe5M+6I9WcP3V0L0dxD601+8rqWTah70qumQnhvLXnOFprnz2fXE1rTWFVM58eMvLpISM7i+owWTTRoQEszU5gxcREYsMCufbJ7ewtqyc1NnTgg4ph7Xfv5WFQip9eMGlQ+88cG010aACrD1VyYY7nfsbFmcHY2EFEkD+hgQOGB8KN5LsvBlRR305USIBP/bCunJTEH/53iPL6NpKjXTOjt/94A8EBBsYnhPf5nGUTEvjVfw9SUtPK2DjPXEh1mMxsPVrLFbNTAJgzzprCt6OozuV/nDcWVLNofDwXT0/mb5/kc+2T25mfEcsPz5vYax8xb9tdUkduatSAqUG5qdF0bjjG4RNNp1XiHA601vzkzf2sPmTkN5dM7TPwCvAzsDAzjvVHqjwaBB2vb6O6ubPXYiB2mQlhNLWbqGruIHEENzjtMJnZUljDmkNGPj1spLTWenNr4qgIblmSwYqJiUxPje5e19ppshDoZ2BvaT0X5SR7c+jCzTbkV/HBgRP88LwJg/675e9nYFl2AmsPV2G2aPy8WD1ZjDzGpnYSZNbM64bnLWThURUNbYyO8q2LKXuvtTUuTDHcX9bA5NG9FwOxs88MrD3iudTG3cX1tHWZWZRlrXY6JTmSkAA/l6c2VjS0UVjVwtLsBC6fncqnP1jKr74yhQJjC5c+vJmbn91BXkWjS19zKFo7TRwob+yzhH5P9vLue4ZpauNfPjrCKzvLuHPFeK6d338BgSXZCRyvb+OoByt62tfzTe+ljL7d+ERrMZtC48guCnLXS3u44ekd/GdnKdmJEfz2kqls+tEKPrh7CfeeP5HZ6bEn/Y4J9DcwOTmSvWUjY02k6J3Wmv97/xBpcaHcvHjckI61YlIStS2d7Cn1/bXHpbWt/Pbdg9LjcJiobOwgaQTfPBsuJDgTAyqvb3fZ7JSrjE8MJyUmhE9dtO7MbNF8Xt4wYNGT9LhQxsaGWlMbPWRDfhX+BsX8DGsQEuBnYMbYaJcHZ5sKrH3UzhpvXQcR5O/H9QvTWX/vMn543gS2H6vlgoc2cNfLn/lEn509pfWYLZpZvTSfPlVKTAixYYHsK613/8Bc7LktRfxzTQFXzUnlew6k8dp78nmyauPesnoC/Q1MsFUT7U1mor1i48hdd9bQ1sXHeZVcPXcse35xLk/eMIdvzE9jzAC/P3NTovj8eINXG4gL91p3pIq8ika+uyKLIH+/IR1raVYCfgbFaje1lHGld/aW88TGY8O6wvChE43M+79PeGbTsWGxFnsojE3tJMnMmddJcCYGVO6DM2dKKVZOTGRTYbVLStsfq26mtdPMtH7u/Ntfd9mEBDYXeq6k/ob8amaOjTmp0MKc9FjyKhpdWrFrY34VcWGB3eX67UID/bl9+Xg23LuC25Zl8tGBSlY+uI4fv7GfigbvFTHYVVSHUjBz7MDBmVKK3JThVxTk/f0V/PKdA5w9KYnfXjLVoTTF1NhQxsWHeTQ421Naz5TkyH7X842KDCY00G9EB2frjlhTzS6bNYbgAMcvwHNTo2ntNEs1yxHs0XVHGR0VzFdyh566GhUawJz0GD4dBv3O7Oe0vajVcLTjWC2VjR3c/9+DfOu5XdS1dHp7SG6htaaysUN6nPkACc5Ev9o6zdS3dvnczBlYqza2d1nYcrRmyMfaZ0spcqRdwLIJCbR1mT1yJ7C2pZPPyxtYlHVyVa856bFYNOwqdk1ai9aajQU1nDU+HkMfaxiiQgP44XkTWXfvMq6dn8Zru0pZ+ue1/Pbdg17p/bazuI7sxAiiQnqvDniq3NRo8o3NNHeY3Dyy0x2vb+PdfeV8fLCSjfnV7Cqu5WB5I8eqWzjR0E5DWxedJstJd2W3FNZw98t7mDk2hn9cPaPfdNtTLcmKZ+vRWjpM7v9/MZkt7C9r6E4d7YtSylax0fuzru6yOq+S2LBApqc6tz4zx/a92zsMZ3bFwPaW1rPlaA03LRrnsoJEKycmcehEE2V1rS45nrvkG5sAawbIcFVU00pwgIGfXzSZ9Ueq+NLfN7DVBdcdvsb+dyhRepx5ne9UeBA+ydcqNfY0PyOOkAA/1hwysryfKnGO2H+8gZAAPzJtzXL7syAjnkB/A2sPV7HYtg7MXTYVVKO1tYR+TzPGRuNnUOwsquu3Qp6jjlQ2U93cwaLxA5d2TowI5v6vTOGmReN4aHU+T2w8RliQv0Mpd65isWh2l9TxZSfuQuemRKO1dW3hgszTKx26WpfZwqeHjLy0vYR1R6pwJBvGz6AIDfAjONCPhrYuxsaF8uT1swkJdC4Nakl2As9uKWZnUV13mqq7FFQ109ZlZno/xUDsMhPCRmyPPpPZwtrDVZw9KcnpIg0Z8WFEBPmzt6yeK+akummEwlseXV9IRLA/V80d67JjrpiUyO/ez+PTQ0auW5DusuO6ksWiKTS2EORv4PPjjdQ0dxAXPvwu/ItrWkmLDeOmReOYNy6W7770GV9/fCt3rMjizhXjnbpx5suMTbYG1DJz5nUSnIl+VdT7Vo+znoID/DhrfByfHjLyq68MrTLd/rIGJif3XwzELiTQj3njYll72MjPL5o86Nd0xIb8KiKD/bvvrNuFBfkzNTmS7S6avbPf1Twry/EL+dTYUP58eS41LZ28uL2E25eP91iZ+iPGJpraTf32NzuVvUXCvrJ6twZnpbWtvLyjhFd3lmFs6iApMojvLh/PuVNGAdDWZaa100xbp5l2++dd9s9NtHVaaOsy42eA25aNJzo00OkxzM+II8BPsf5IlduDM/tsT3+VGu2s5fTLaes0Ox1w+rpdxXU0tHVx9iTnb5YYDIppwzDtVgysqLqF/31+gu8szSQ8yHWXXJkJ4YyLD2N1nu8GZ+UNbbR1mblqTiov7yhlY0E1F08f4+1hOa2ktoX0OOuN26ljonj3u4v4xdsHeGh1PlsKq/nbVTMGXFc6HNgbUMvMmfdJcCb61T1z5oPBGVhTGz/JM5JvbCY7qe9iBP0xWzQHyhu50ok71ssmJPKbdw9SWtvqtt5EWms25FezKCu+1zvxs9NjeWFrMR0m85AXmG8qqGZcfNig/sBctyCNG57ewf8+r/DYH96dttkXRyo12sWFB5EaG+KWC+Aus4VPDlby4vYSNhZUo4DlExK5au5Ylk9I8Pid1bAgf2anxbLuSBU/HmQ/JUftKW0gMtifdAdaS2QmWttUFFY199nsfbhafchIgJ86LQXZUbmp0Ty+/ijtXWan1qsJ3/b4hqME+Bm44ax0lx97xcREnt9STEuHiTAXBn6ukm9bb3bJjDF8cOAEG/KHX3BmsWiKa1q7Cy2B9ffrX67IZXFWPD9763Mu+PsG/nhpDudPHeXFkQ6dsVFmznzFyJiLFW5jnzlLivLNOykrbCX1h7IwutCWluXIejO7ZROsv6jXurHoQmFVCxUN7Swa33vq5Jz0WDpMFj4/PrQS3J0mC9uO1TqU0tibJVkJjIsP47ktxUMahzN2FdeREGENtpyRmxLdXfbdFYqqW/jD/w6x4Per+c6q3RQYm7lrZRYb71vBkzfM4ZzJSV5LeVmSncChE00YbXdD3WVvaT25qdEOzVxnJnwRnI00n+RVMj8j7qTCPc7ITYnCZNE+1a5CDE1VUwev7irj0pkpbuntt3JiIp1mCxsLfLPYRqEtOMtOiuCs8fFsyK8adtUOjU0ddJgsjI07fcnDJTPG8N6di0iLC+XWF3bxs7f2e2X9tatUNtlmzqRao9dJcCb6VdHQRnx40JBnZtxldFQIk0ZHDik4228rBpLjRHPijPgwUmNDWOfCPmunsqcanrrezG62rYT89mNDW8Ozp7Se1k7zoNPfDAbFtfPT2FVcN+RA0VE7i2uZnRbjdCprbko0x+vbqLLl1g/69YtqueaJrSx7YC2PbzjKjLExPH3DHDbet4K7z872iQI6S7Kt/5/r3Vglra3TzOHKJofWmwGkxYViUIy4oiDHqls4WtXS3X9xMOxpoVIUZOR4dnMRXWYL3xpiX7O+zBkXS0SQv8tayrhagbGZuLBAYsMCWZIVT2VjR/ds2nBRVGP9XdVXZkBaXBiv3bqQW5Zk8MLWEi751ybyK5s8OUSXMTZ2EBHkT2ig783CnmkkOBP9Km9o98liID2tmJhgXe/ROriy8vuPNxAa6EeG7a6+I5RSLMtOZHNhjdsq4m3It6Ya9pU2GR8eREZCGDuHuO5sY34VBgULMga/DuvSWSmEBvrx7OaiIY3FEcbGdkpr25jlxHozO/sF8L4hpDa2dZr59vO7KDA28/1zstl03woev242yycmOl0Iwp0mjYokPjzIrSX1D5Rbe3MNVKnRLjjAj9TY0BE3c7Y6rxKAlZOSBn2MUZHBJEQEdVeOFcNbS4eJ57YUcf6UUU79bXFGgJ+BJRMSWH3IiMUHe+TlG5u7U5kXZXm+/6IrlNRYq2GmxfZdLCzQ38BPLpjEM9+cQ3VzB1/+50Ze3FYyDGcJ22XWzEdIcCb6VV7vez3OTrViYiJmi2b9IEv17j/ewJTkSKcvrJdmJ9DaaWbHEGeuetNpsrD1aM2AqYZz02PZWVw3pD/MGwuqmZYSTVTo4NKxAKJCAvjqjDG8vbfc7T1gdtraB8xOd3y9md3UMZEY1NBmJ1ZtK6ampZN/XzOT767MYpSP/nwYDIolWfFsLKh224XbHtv3MSfV8VnnzITw7nSnkWJ1npHspPAhrT+19uKLZo8UBRkRXtpeQmO7iVuWZLj1dVZOTKS6uYP9HspacJTWmgJjM+NtwdmY6BAyE8KGXb+z4toW/A3KoZvUyyYk8v5di5mTHstP3tzP67uPe2CErlPZ2OGW9FvhPAnORJ+01lTUt/lkpcaepqfGEBMawJpBpDaazBYOlDcMqjjBwvFxBPoZWHfE9Sklu0vqaO0095nSaDc7PZaGti6OGAeXRtHY3sXesgYWu6Ci33UL0uk0WfjPztIhH6s/O4vqCA4wMCU50ul9QwP9yU6KYM8gZyfau8w8uv4oZ42PY5YTxUi8ZUl2QnevPHfYW9bAmOgQp/6gj08M51h1C2YfvNM/GA1tXewoqh3SrJldbkoUR6taaHRhc3mA+tbOEfP9Hg66zBae3HiMeeNimTHW+Rl+ZyybkIhBWQvS+JKq5g4a2rrISvxi1nBxVgLbjtUMq3VZRTWtpMSEOLx2ODEimGe/OZfo0AA+KxlebUMqG9tJkpkznyDBmehTY7uJlk6zz5eI9TMolk1IZM1ho9MXIIVVLbR3WZxab2YXGujP3HGxrD3s+jSNDflV+BnUgCXf59pmjwbbO2prYQ1mi3ZJufUJoyJYkBHH81uK3XohuKu4ltyUaAIGWWgjNyWafWX1g0o5eXl7CVVNHdy5ImtQr+1p9sqB7kol2lta7/TPTmZCGB0mC+X1bW4Zk6etP1KFyaIHVUL/VDm2tNv9Lkxt7DJbOPev67nqsS20dQ6fi+Lh7L97y6loaOfWZZluf63YsEBmjo3h00OVbn8tZxTYZsfH9wjOlmTH095lYVfx8AlaSmpaey0G0h+DQZEWF0ZxjW83CO9Ja21r/SIzZ75AgjPRpwpbGf3RPr7mDKwl9etau7rTrBxlX3vkTKXGnpZNSCDf2MxxF19obsivZkZq9ICV31JjQ0iKDGLHscGtO9tUUE1IgB8z06IHtf+prl+YxvH6tu41OK7W1mnmQHljdzGUwchNjaa+tYuSWuf+cLZ3mXl4XSHzxsUybwjr8zwpPjyIqWMiWX/E9alEtS2dlNS2OtTfrCd7xcaCEbLubHVeJbFhgUxPHfoMSa4t0HVlu4fPSuoxNnWwo6iO21/cTZfZ4rJji9NprXl03VEmJEWwLLv3SruutmJSIp8fb+REg3srszrDnrqclfhFi5t542z9Fwe5BMHTtNYU1bSQNoh05fS40O5iIsNBQ1sXnSYLCdLjzCdIcCb65MsNqE+1NCsBP4NyOrXx8+MNhAX6MS5+cAu2u0vqu7BqY11LJ/uPN7A4a+A/7EopZqfHDrooyMaCauaOi3VZNc6zJyWRHBXstrL6e0rrMVm0U/3NTpVrWx/lbCD/6q4yKhs7uGvl8Jg1s1uSlcDukjqaXJwqZw8gHC0GYtddTt8F686aO0wcq/beBZDJbGHN4SqWTUhwSTGY6NBA0uJCXVqxce1hI34GxY+/NJFPDxm597V9Plk8YqRYe7iKw5VNfHtphtPVZAfrbFtK7VCqFrtavrGZ8CD/k9LkwoL8mZUWwwY33Cxyh/rWLpraTaQ50MPxVGlxYZTXt7mtYJirGZukx5kvkeBM9Km7AfUwmDmLCg1g1tgYp/847TvewJTkqEFfWGUmhDMmOsSlqY2bCqvRGhZnO5ZqODc9lvKGdsrqnJsJqmhoo7CqZdD9zXrj72fgmvlpbCyopmCQ6+D6s6vYGoTOHMI6juykCIL8DU71O+s0WXh4TQGz02IGTDX1NUuyEzBZNJsLa1x63L2l9SgF05xMa4yxldZ2RTn9X//3ACv/spZ/ry3wSmW0XcV1NLR1dV8cu4I17dZ1aY3rjlQxKy2Gby/N5IfnTeDNz47z63cPDrtKcsPFI+sKSY4K5su5yR57zazEcFJiQnwqtbHAVqnx1AB1cVYCBysah9zOxBOKbdkVaU6mNYJ15syioaxueKRvV9r6YUpw5hskOBN9qqhvx8+ghk31nuUTEzlY4Xhqh8ls4WB5o9MXlz0ppVg2IYHNBdV0mlyTLrThSDURwf7kOJhqaU/x2+Hk7NlGW9UsV6w36+mqOakE+hncMnu2s7iO7KTwIVWWDPAzMHVMlFPl9F/fXUZ5QzvfXZnlsbvhrjJzbAxhgX4uX3e2t7SerMRwwoOc74mTmRA25JmzLrOFDz4/QXiQP3/64DC3vrDL5bODA/n0kJEAPzVg4R5n5KREUdHQ7pLm4camdg6UN7LUll5327JMblo0jmc2F/GPTwuGfHxxss9K6th2rJabFmcMek3sYCilWDkxkY0F1T5TbCPf2HxSMRC7JbaMkE0+2ji7p2JbWuLgZs6s+5QMk3VnlY3WYDlR0hp9ggRnok/lDW0kRQT5VO+m/qy0Lch3dPYs39hMh8ky6PVmdssmJNLSaR5yvzGw5rhvLKjmrMx4h6tDTRwVSUSQv9NFQTYVVBMXFsjEUREDP9kJceFBXJQ7mtd3lbn0Ytli0ewurnNJlcTclGg+L29waP1Nl9nCv9YUkJsazRIXXoR7SqC/gQWZ8azPr3LZbInWmr1lDU6nNNplJoQPudfZtqO1NLab+NNlufzswkl8kmfk4n9tcsuMbV8+yatk3ri4AdeGOsPe0HuvC2bP1tlm9O3p10opfnrBJL42cwwPfnyE57cUDfk1xBceXXeUqJAArpqT6vHXXjkpifYuC5sLvR/0NLR1UdXUcVIxELspyZHEhAYMi3Vn9oIeYwex5sw+2zZc1p0Zm6w3g6TPmW+Q4Ez0qby+jdE+Xqmxp6xEa4qho8GZvS/MUGbOABZkWhc5r3XBzMTR6haO17c5nNII1mqVs9JjnCoKYg0CazhrfDwGNwTfNyxMp6XTzOu7ylx2zHxjM43tJmYPovn0qXJTo2jvsnCkcuAL+bc+O05ZXRt3rRw/7GbN7JZmx1Na20aRi+7iltW1UdvS6XQxELvMhHBqWjqH1BPvwwMnCA4wsDQ7gZsXZ7Dq5nk0tnVx8T838b/9FYM+rqOKqlsorGrpvinkKvY066E0Srdbd6SKhIggJo/+ou2EwaD446U5nD0pkV+8c4B39pYP+XUEHK1q5sODJ7huQRphg5hNHqp5GbGEBvqxOs/7684KuouBnB6cGQyKRVkJbMiv9vnU2uKaVkZFBhMc4Pya7LiwQMKD/IdNxUZjYwcRQf6EBnr+3BWnk+BM9Kmiod3nG1D3pJRixcRENjmY2rG/rIHwIH/GDSKfvKfwIH/mpMe6pCjIBluAt8SBYiA9zUmPJd/Y7PDF7pHKZqqbO1y63qynnJRopqdG89yWYpcVH9hpW282lEqNdvYZn4HWnZlss2ZTx0SyfIJrL8I9aYktrc1VqY32YirTBxucJVp/5o5WD272zGLRfHTwBEuyEggJtF44zc+I47/fXUT2qAi+s2o3v38/D5MbKxN+YqtI6sr1ZgAhgX7WXnxDLApiMlvYkF/N0uyE024qBPgZ+OfXZzInPZZ7/rPHpQWNhqvq5g7+taZg0JV3H99wlAA/A9cvTHftwBwU5O/H4qx4Pj1k9HrQY5+97m3mDGBxVjxVTR0cduDmmDeV1LYwdhApjWC9HkkbRhUbKxvbZdbMh0hwJnqltaaioZ3kYTRzBrBiYiJtXWa2OTCLtP94A1OSI10yc7RsQgJHKpuH3LtpY0E1aXGhpDqZRjHH1u9sp4P9YzbYUkrOcmOa3vUL0zha3cImF6XZ7CqqIz48aFApJqdKiwslKiRgwNmJ/+4rp6imlTtXDL+1Zj2lxYWRFhfqsuBsb2k9gf4GJgwyJfaLio2Du3DZW1ZPZWMH500ZddL20VEhvHzLfL4xfyyPrj/KdU9tp6bZPYUHPj1kJDsp3OmfVUfkpkSxr6xhSBfZe8saaGjr6k5pPFVwgB9PXD+b7KQIvvPC7u5iO75qV3Fd9xogV2to6+LaJ7fz5w8Ps+KBtfz5w0M0d5gc3t/Y1M7ru45z+awU4sO9d4G7clISFQ3tLi0oMxgFxmYC/Q2kxPT+s2Ffo+nrVRuLalpJH2RwBpA+jHqdSY8z3yLBmehVTUsnnSYLycNo5gysKYbBAYYBS+p3mS0crGgc8nozu2W2WZV1Q7j47TRZ2FJYM6jiAjkpUQT6GRwuCrKpoJqM+DC3Nhi/YNpo4sMDeXZzkUuOt7O4jtlpMS4JkpRS5KZG9zs7YbZo/vFpAZNGR3LOZNfOjnjDkqwENhfWuKS0896yeqYmRw666EFKTCiB/oZBrzv78EAl/gbVa0phkL8fv71kGn++LIedxXVc9I+NQ56FOlVjexfbj9WyYqJ7zovc1Gga2rqGdGG37rARg6Lf2fHI4ACevXEuSZFBfPPpHRw60Tjo13OXhrYu7n1tL5c+vJmv/HOTS9I9e2rtNHHjMzsoMDbxwOW5nD91FP9aU8iyP6/lpe0lmB2Y+X9mUxEmi4VvLc5w6dicde7kJCKC/Xnw4yNeHUeBsZnMhPA+16uPjgohKzHcp9edtXaaqGrqGFSlRru0uFDK6lrdOoPvKpWN7VIMxIcM+JdVKZWqlFqjlMpTSh1QSt11yuM/UEpppdTwWykv+tTd42yYzZwFB/hxVmY8qw9V9nvXOb+ymU6TZcjrzeyyEsNJjgoeUnrQZyV1tHSaHepvdqrgAD9yUqIcCs46TRa2Hat1eZXGUwX5+3H13LGsPmSk1MmGz6cyNrVTUtvqkpRGu+kpURypbKK1s/c75O/tr+BoVQt3rhi+a816WpKdQFuXmV1OFo45lcls4fPjjYNebwbWdZIZ8WGDCs601nx04ATzM+KIDg3s83mXz07lje8sxKAUVzyyhZe2lwx6vKdad7gKk0VztovXm9nluKAZ9dojVcwYG9Pv9wggISKI52+aR0igH9c9uX3IP6uu9OmhSs796zpe332cmxaNIyLYn2se38YuBzMEBtJhMvPt53fxWUkdD101g8tmpfD3q2bw5m0LSY8L5cdv7OfChzb0O+Pc1N7F81uL+dLU0aTHDy1FfqiiQwO5c0UW645UeTVVNd/Y3GdKo93irAS2H6v1meqSp7LfGBlMpUa7tLhQuszWLCRfprXG2CgzZ77EkdueJuD7WutJwHzgdqXUZLAGbsA5gOv+6gmf0N3jbBg0oD7V8omJlNa29Xvht/94PYDLZs6UUiydkMjG/OpBX9xsyK/Gz6AG3UdrzrhY9pc10NbZ/x+7z0rqaO00uz04A/j6vLEYlOKFrUMrq28PKGa5oBiIXU5KNBYNnx8/fbbAYtH8Y3U+2Unhp6XODVcLMuPwNyjWDfFudb6xmbYu86DXm9lZKzY6n6ZWYGzmaHUL500ZeNZq6pgo3v3uIuZlxPLjN/Zz32v7XHIx+OkhIzGhAcwYQr+9/mQnRRAc4Fwvvp6qmzvYV9bQXUJ/IKmxoTx/0zw6TBa+8eS27spt3lLf2sk9/9nDjc/sJDokkDdvW8jPL5rMK99eQFx4INc9uY1tR4fWt89ktnDXS3vYkF/NHy7N4UvTRnc/NmNsDK/euoB/XzOTlk4T1z21nRue3k5+L2ukXt5eSlO7iW8v9e6smd11C9NIiwvld++5d81lX1o7TRyvb2N8wgDBWXY8HSYLO4d4s8hduoOz2KHMnA2Pio0NbV10mi0kSnDmMwYMzrTWFVrr3bbPm4A8YIzt4b8C9wK+XXJHOK3CtnZq9DBoQH2q5RMHLqm//3gDEUH+pA+xGEhPNy0ah7+fgWuf3Eb1INa5bCioZnpqNJGDLMs9Jz0Gk0XzWWn/f+w2FVRjUHikmfLoqBDOm5LEyztKBwwa+7OzuI4gfwNTkl0TTAPkpFqP1Vua1AcHTpBvbOa7K7LcUs3SG8KD/JmVFsP6Ia7z2GtLERxsGX27zIQwSmpbnU6z/PDACQDOmexY0BwTFsgz35zLHcvH85+dpVzx6BYaWgff4sFktrDmsJHlExLd1mYkwM96rg82hc++prSv9Wa9yU6K4OlvzqGqqYPrn9pBQ5tne8bZfXjgBOf8dT3v7C3nzpVZ/Pe7i8ixnWvJ0SG88u0FjI4O4fqnt3f3anSWxaK57/X9fHDgBL+4aDJXzD699L1SigumjeaTe5by0wsmsau4jvP/voGfvrm/+/d7p8nCkxuPsTAzrnuM3hbk78dPLphEvrHZpbPFjjpa1YLWkJXUf3A2b1wsgX6G7nPV15TUWgOqwRYEAbqvL1xVJdddpMeZ73FqwYBSKh2YAWxTSn0FOK613uuOgQnvqmhoJ9DfQFxY/ykxvmhMdAgTR0X0H5yVNTBljGuKgdiNTwznqRtmc6KxnRue3u5Uj6/61k72ldUPqZntrLRYlGLAO5EbC6rJSYkmKsR1vZn6c/2CdBraunhn7/FBH2NncR25KdEE+rtumWxiRDBjokNOW49ksWgeWp1PZkIYF/S4mz4SLMlOIK+icUgzI3vL6okKCRhSug9AZmI4Zot2uknrhwcqmZ4azSgn1sP6GRQ/OG8Cj147i7yKRn742t5BF9vYXVJPfWsXK11cpfFU9l58g5n9WHe4iriwQKY6eTNj5tgYHvnGLAqMTXzvP3ucft2hqG3p5Lsvfca3n99FfHgQb99xFveck33az3xiZDAv3zKf9Lgwbnx2x4Dri0+ltebX7x7k9d1lfO/sbG5cNK7f5wf5+/GtJRms++Fyrp2fxss7Sln257U8vLaQV3aWcqKxnW8vzXT6/brTuZOTmJ8Ry4MfH/F4kG0voz9QWmNooD+z02NYP8gA292KalqJCQ0Y0t/JxIggggMMFFf79syZ/e+BpDX6DoevdJRS4cDrwN1YUx1/CvzCgf1uUUrtVErtrKryzTsk4nTltjL6w3WtzfKJiewsquv1D1OnyULeiSa33OmclRbLw9fM4lBFE7c8t8vhFKpNBTVozZCCs6iQACYkRfS77qyxvYu9ZQ1uK6Hfm7njYpk4KoJnNxcP6oK4rdPMgeMNzHLhejO73NSo09b1fJxXyaETTdyxYvywacDuKHua21CqpO0pbSA3NXrIvxvsFRvtF3OOOF7fxv7jDYNONT1vyijuO38iHx2sHHShmtV5lQT4KZY40YtwML7oxefcujyLRbM+v5ol2QmDuvm0JDuB25aN59NDRioahlZ91lHv76/gnAfX8cHnFdxzTjbv3HFWv7Pk8eFBvPSt+WQnhXPL8zv5yDab6oi/fpLPM5uLuGnROO5cOd7h/WLDArn/K1P48O4lzM+I5Y8fHOJnb33OpNGRPtecXinFzy+aTH1bF//8NN+jr11gbMbPoBzKSlmcNfSbRe5SUtPK2CFm1hgMirTYsGEzc5YkpfR9hkPBmVIqAGtgtkpr/QaQCYwD9iqlioAUYLdS6rS/mFrrx7TWs7XWsxMSnC90ILyjvL5tWPU4O9XKiYmYLLrXlIkjlU10mixMddF6s1Mtn5jIA5fnsuVoDXe/vMehal8bC6qICPIfcqrYnPRYdhfX9Xm3fWthDWaL9sh6MzulFNctSOdgReOgFvLvLavHZNEuaT59qpyUaEpr27rLrWut+cen+aTHhfLlnGSXv563TR4dSVxY4KCrpLV2mjhS2cR0FxTSGWcrnuBMURD7Rbgj6836ctOicaycmMj/vX+I/YMoOb76kJF54+KIGGT6saPsN4+cTW3cd7yB2pZOp1IaT3XxdOu5/94+9zbzrm7u4LZVu7ht1W6So0P473cXcefKLIeqgMaEBbLq5vlMSY7itlW7eXffwM20n9hwlIdW53Pl7FR+duGkQd1gGJ8YzhPXz+HFm+exJDuBn1ww0SdvYk5JjuLyWSk8s7mIYx6cuck3NpEWF+pQloP9ZuSmAt+bPSuubSHNRW1b7CmSvqqy0RocJ0YM32u+kcaRao0KeBLI01o/CKC13q+1TtRap2ut04EyYKbW2vHbV8KnVdS3DctiIHbWKmUBvaY2fn7cekGW46bgDOCSGWP4xUWT+eDACX765v5+Z4y01qw/Us3C8XH4D7I0ud2ccbG0dJrJq+i9ueemgmpCAvyYmRY9pNdx1iUzkokM9ucZJ2YrtNYcKG/gyY3HANcWA7GzB8P7bOfEmsNGPj/eyO3Lxw/5/8IXGQyKxVnxbMivHlRz8APljZgtekiVGu3CgvxJjgp2qijIhwdOkJUYTsYAxQb6o5TigctziQ8P5PYXd9PoRPpxcU0LBcZmVkx0f0Py9LhQIoP9na7YuO5wFUoxqKqvdhkJ4UweHcm7bgzO3t1XzjkPruOTg0Z+eN4E3rxtIRNHRTp1jKiQAF64eR4zxkZz50uf8eZnZX0+9+XtJfz2vTwunDaa//vatCEHVAvHx/PcjXOH9H12tx+cO4EAPwO/fz/PY69ZYGwesBiInf1mka/1O+s0WThe1zakHmd26fHWXmeD+X3rKVVNHUQE+xMS6OftoQgbR64+zgKuBVYopfbYPi5w87iEF5ktmsqmjmHXgLonP4NiaXYC6w5XnfZLcd/xBiKC/Ye8ZmYgNy4ax+3LM3l5RykPfHS4z+cdq27heH0bi1zwR36OLfVvex+pjRsLqpk7LpYgf8/+Eg4N9OeK2al88PmJ7rt0fSmtbeVfawo496/rufChjaw5ZOSGhekDlgQfjGkpUShlLXKhtebvqwtIjQ3hkhljBt55mFqSnUBtSycHyp3vaWUvBuKqlODMxHCHZ85qWzrZfqzWJdUzY8ICeejqGRyvb+PHb/R/86SnT/KsN3vOdvN6M/iiF5+zFRvXHjGSkxJN7BDXC1+UO5o9pfVuKa2fV9HIHS9+xti4MN67c9GQboaEB/nz7I1zmZ8Rxz2v7OU/O04vgvHuvnJ+/OZ+lmYn8Ncrp4+4dOW+JEYGc9uyTD46WMnmQvcHQJ0mC0U1rQMWA7EzGBRnjY9nfX71kBquu9rx+jYsmiGnNQKMjQ2lw2Sh0gdTN+2kx5nvcaRa40attdJa52itp9s+3j/lOelaa9+69SEGzdjUjtmih2Wlxp5WTEykpqXztDvPnx9vYNqYKI+kovzg3AlcPXcs/1pT2D0DdKqNtpQOV6xbGB0VQkpMCDt7Cc4qGtoorGrx6Hqznq5dkIZZa17cdvrFU21LJ89vLeayhzez+E9r+POHh4kKCeA3l0xl+0/P5v6vTHHLmMKD/MlKDGdvaT3r86vZW1rP7cvGD7q58nBgv9M/mNTGPaX1jIkOIcFFf8gzE8IpNDY7dGH2SV4lFo3LWhvMTo/l++dm896+Cl50sKrd6rxKshLDh1TBzRm5KdEcrmxyuNJpXUsne0vrWeZgCf3+XDTNmtr4/n7Xz569srOUQD8Dz9wwh6ykiCEfLzTQn6dumMOSrATue30/z28p6n5szSEjd7+8hzlpsTzyjVkuLSo0HNy8OIMx0SH89t08h1Lsh6K4pgWzRQ9YDKSnxVnxVDd3cOhE79ke3lBsK33vihu43RUbq3133VllY7sUA/ExZ9ZvKeGQclsD6uGc1gjW4gcGxUnVvDpNFg5VNLmsv9lAlFL89pKpfGnqKH7z7kHe2H162s36I9WMjQ3t7okyVHPTY9lRVHvaBa+97LQn15v1lBYXxvIJiby4vYROk4W2TjPv7C3npmd2MPd3n/Dztz6noa2LH543gQ33Lue17yzk2vlpQ54BGEhOSjR7yxp4aHU+Y6JD+NrMFLe+nrclRAQxeXQk6/pprNuXvWX1Q+5v1lNmQhgtnebuBen9+ejACcZEhzB1jHOpb/25dUkmS7IT+NV/D5JX0f9MYmN7F9uP1bq9SmNPOSlRmC2agxWOzZ5tKKjGomHpENab2Y2NCyU3JcrlqY2dJgtv7ynn7MmJxLjwZzs4wI/HrpvF2ZMS+fnbB3hiw1G2Ha3h1hd2MXF0BE/cMPuMTNsKDvDj3vMncLCikdd39Z326Qr24j5ZiY4H3PabRb5UUt8VDajt7Mco9uFeZ8YmaUDtayQ4E6exV+ga7jNn0aGBzEqL4dPDXwRnRyqb6DRbmOaCggaO8jMo/nbVdBZmxvHD1/bx6aHK7se6zBa2FFYPqUrjqWanx1Ld3HlahahNBdXEhwcycdTQ71QP1nUL0qhq6uDaJ7cx+7cfc+dLn3GwopGbFo3j/TsX89H3lnD78vGkumAhtqNyU6OpbelkV3Ed31mWeUbcWV86IYHdxXVOtXuoae6gtLaN3FTX/exk2u6wD5Ta2NJhYn1+NedMTnLpjLfBoHjwilyiQwK4/cXdtHSY+nzu+iNVmCyalZPcv97Mzh4I73EwtXHd4SqiQwOGXFjI7sKc0ew/3kCRCwtKfHrISG1LJ5fNcv1NkCB/P/59zSwumDaK376Xx7VPbSclJoRnvzl30P0jR4Kv5CYzY2w0f/7oMM39nONDlW8LzjISHL/ROCoqmOykcDb4UEn94ppWQgP9SAgfeoZAcnQIAX7KZys2aq0xNnZIWqOPGflXIcJpFbaZs9HDfOYMrJUTPz/e2L3OaZ+tOpunZs7sgvz9ePTaWUwaHcFtq3Z3px1+VlJPS6fZpcHZ3HHWdWc7jn2R2qi1ZmNBDQsz473aVHlJVgITkiLIq2jky7nJvPSt+Wy6bwU/vmASk5MjvVL1bLrtQnZUZDCXzx7Zs2Z2S7ISMFk0Wwpren28y2yhtLaVbUdrePOzMv61poCfvvk5MPTm0z3ZCwcMFJytPVxFp8nispTGnuLDg/j7VTMoqm7hZ2993meK5eo8IzGhAcwc6/rCNH1JjAxmVGSwQxUbLRbNuiNVLM5KcNmaqgttFUvfc2Fq42u7ykiICGKJmwppBPobeOiqGVw+K4WxsaG8cPM84lxwkT2cKaX4xUWTqWrq4JG1hW57nQJjM2OiQwgN9Hdqv8VZCWw7Vutw6xl3K65pYWxsqEv+HvkZFKmxvluxsb61i06zhUSZOfMpzv0EiTNCeUMbYYF+RAYP/9NjxcRE/vTBYdYcMnLV3LHsP95AZLA/Yz04M2MXERzAM9+cyxWPbOHGZ3bwyq0L2JhfhUHBgkzXBWeZCeHEhAawvaiWK+akAnC4sonq5g6vrTezMxgUb99xFgalfGaGasKoCCaOiuBbizM8XijFW2alxRAW6McrO0upaGinvL6N4/VtlNe3UV7fTmVTO6fGKLFhgSzMjHNJpUa7hIggIoL8KRyg19mHB04QExrQXfDG1RZkxnHXymz++skRFmbGcfns1JMeN1s0aw4bWTEh0ePFJHJTo7oLsfTnYEUj1c0dLllvZjcmOoSZY6N5d18Fty93vCdYX6qaOlhz2MjNi8a5tRqqv5+BP1+ei9baJ8vce8OMsTFcPD2Zxzcc5ep5YxnjhoJfBcZmh4uB9LQ4K54nNx5j+7Falrjw/B2s4tpWMp2Y/RtIelyYz645MzZJjzNfNPyvvoXLlde3MTo6ZET8UZuQFEFyVDCfdgdn9bYKfd55b/HhQTx741wue2Qz1z25nYhgf6anRhMV4rqUG6UUs9NjTyoK0r3ezAeapQYH+FYAFOhv4IO7l3h7GB4V6G9gcVYCHxw4wSd5RgL9DSRHBZMcHcKirHiSo0MYE239Ojk6hOSoELes11FKkZEY3m85/U6ThTWHjJw/dZRbL+jvWDGerUdr+MXbB5ieGn1SoYrdJXXUt3axwoMpjXY5KdF8eKCS+tbOfiuW2tcQuvri9sKcZH7z7kEKq5q7G4cP1tt7jmO2aLekNPZmJPwNc6V7z5/IB5+f4I//O8RDV89w6bHNFk1hVTMLM+Oc3nfeuDgC/QxsyK/yenBmsWhKaltd2i5jbGwo247W+OTNAulx5pt849a18CkVDe3DugF1T0oplk9MZGNBNc0dJg6faGLamGivjik1NpTnbpxHh8lirZ7ohvSeuemxFNW0YrSV791UUE1GfJhb7paK4emPl+Xwzh1nseOnZ3Po1+ez9ofLefFb83ng8lzuOSebK+eMZXFWApkJ4W4tpJCZENZdSKA3mwuraeowuSWlsSc/g+LvV00nLMiP21/cfVKFxE/yKvE3KK9cONrXne0boGH22sNGpo6JdFklTbsLp41GqaE3pNZa8+rOMnJPCXyF54yJDuGWJRm8s7ecXcV1Lj328bo2OkwWpyo12oUE+jFnXIxPrDs70dhOp8ni0uya9LhQWjrNVDd3uuyYriIzZ75JgjNxmvL69hF1Eb9iYiKtnWae3VxEl1l7fL1ZbyaMiuCpG2aTmxLFV3KTXX782bb0r51FdXSaLGw7Vuu1Ko3CN0WFBJCTEk1CRJBX1yFmJoRzorG9z0IFHx6oJDTQj0UemPVNjAzmr1dOJ9/YzP3vHOjevjrPyLyMWK8UlZhq+33V37qzhrYudpfUsyzb9TN7o6KCmZMWy7v7yod0nM+PN3K4ssljs2aid7cuzSQxIojfvHvQpY2R843WUviDSWsE67qzQyeaMA7QB9Pd7JUa011UPRkgLT7MdmzfW3cmM2e+SYIzcZIOk5nq5o4RUQzEbmFmPEH+Bp7YcBSwlqf2BbPSYnn7jkWDutM4kKljoggJ8GP7sVo+K6mjtdMswZnwSfZUuaO9FAUxWzQfH6xk2YQEj6XDLs5K4LZlmfxnZylvfXac4poWCozNrJzouRL6PUWFBJCREMbefmbONhVUY7Zol5TQ781FuaM5UtnMkcrB96J6bVcpgf4GvpLj+ptRwnFhQf784LwJ7Cmt579DDLh7ss9+j08Y3KyovSiWt2fP7IU7XFFG366715kPVmw0NrYTEex/RraZ8GUSnImTVDZYp7iHexn9nkIC/ViYGUddaxdRIQGkxIycwLMvAX4GZoyNZkdRLZsKqm1FR5xfCyCEu41PtF649Fax8bOSOqqbO9ye0niq752dzZz0GH765v7u5vGeLKF/qtyU6H6Lgqw9bCQy2J8ZLizW0tP5U0dhUPDu3sFdzHeYzLy9t5xzJycRFXrmlrT3FZfNTGFKciR//N8hhxucD6TA2ExCRNCg/38njYokPjzQ6/3Oimpa8Tcoly7tGBMdgp9BUeKDM2fS48w3SXAmTlJu63E23BtQn8q+uDfHi8VAPG12eix5FY18eKCSnBTXFh0RwlXGxobhZ1AUGk+/cPnwwAkC/KzrRj3J38/AQ1fPINDfwHNbihmfGO6yJvGDkZsShbGpgxMNp6d8af1FCX13FUxJjAhm3rg43t1f0Wergf6szjNS39olKY0+wmCwltYvb2jvzigZqnxjc3drjMGOadH4eDYWVLs03dJZJTWtpMaGuvRnKdDfwJjoEJ+cOatsbJceZz5IgjNxkpHSgPpUy3sEZ2eKuemxWLS1jL63S+gL0ZdAfwNpsaGnzZxprfnwQCULM+O9stZrdFQIf7kiF4BzJnsnpdEup7sZdf1pjx060URlYwdL3Vys5KLc0RytaiGvwvnUxtd2lZEUGcRiN/U2E86blxHH+VNG8fC6wu51R4OltabQ2DzkFP3FWQlUN3eSd6JxSMcZiuLaFre02kmLC/XRNWcyc+aLJDgTJym3NaAeaTNnKTGhPP3NOdy0KMPbQ/GYGWOju3syeaKYghCDlZkYflpwduhEEyW1rR5PaexpxcQk3rxtoUt6fA3F5NGR+BtUr0VB7CX03bXezO78KaPwMyinC4MYG9tZe9jI12ameLxHnOjfjy+YSJfZwsNDbExd2dhBU4dp0MVA7Ly97kxrTXF1q0vXm9mlxYX63MyZ1pqqpg4SpVKjz5HgTJykoqGN6NCAEbk4dPmERGLD+u4TNNKEBfkzJTmSkAA/ZoyN9vZwhOhTZkI4RdWtmMyW7m0fHjiBUt6ftZoxNobwIO+2BA0O8GPi6Aj29hKcrT1sZOKoCLff/Y4LD2JhZhzvOZna+OZnx7FoJKXRB6XFhXHu5FH8d285XT1+9pz1RTGQoQVniZHBTBwV4bV1Z3WtXTR1mNySwpweF0ZDWxf1rb5TTr++tYtOs0UqNfogCc7EScrr20dUpcYz3V0rs/jJhZMI8h95wbYYOTITwug0Wyira+ve9uGBSmaNjXF5367hKiclmn1lDSetx2nuMLGzqI5lEzyzJu+inNEU17Ty+XHH0s601ry2q4yZY6OH3MBauMfF05Opaelk4xBmqwpsZfTHD3HmDKyzZzuO1bmsUIkz7GmHaW5Ja/S9io3S48x3SXAmTlJe30byCGlALWDlpCSunZ/m7WEI0a9M21oV+x340tpW8ioavZrS6Gump0TT1G7iWI91K5sKqjFZNMvcnNJod96UUfg7kdq4t6yBfGMzl81KdfPIxGAtm5BIdGgAb+05Puhj5BubiQz2JyF86Bf5i7MS6DRb2HqsZsjHclZ3j7N41wdn6bZUSV9ad2ZfayhrznyPBGfiJBUN7SSPoAbUQgjflxlvDc7s684+PHACQIKzHnJST29GvfZwFeFB/sxKi/HIGKJDA1mcFc+7+xxLbXxtVylB/gYuyh3tgdGJwQj0N3DBtNF8dKCSlj4awQ+kwFYMxBWVkOeOiyXQz8CWQu8EZ0pZ16i7WmpsKEp9EQD6gi8aUMvMma+R4Ex0a+000dDWNeIqNQohfFtUaADx4UEnBWcTR0Uw1g0L84errMQIQgP92FtqbUattWb9kSrOGh9HgJtK6Pfmwpxkjte39Vo5sqf2LjPv7Cnn/KmjvFJtUzjukuljaOsy89HBE4Pav7CqmazEwTWfPlVwgB/Tx0Z7KThrYVRksFsa3gcH+DEqMpgiH5o5s6c1ypoz3yPBmeg2Uis1CiF8X2ZCGIVVLVQ1dbCzuE5mzU7hZ1BMTY7qLgpSYGzmeH0bS7M92wPu3ClJBPoZeHdfRb/P+/hgJY3tJi6XlEafNzsthjHRIbz1mfNNxutaOqlu7hxyGf2eFmbGcaC8gYbWLpcd0xHFte6p1GhnLafvOzNnxsZ2IoL9R2QBuOFOgjPRrbvHmaw5E0J4WGZiOAXGZj4+WInWktLYm9zUKA6UN9JltnSX0PfUejO7yOAAlmQn8N6+in6bBb+2q4zkqGAWZMZ5cHRiMAwGxcXTk9mQX0WVbTbFUQW22W5XBmcLMuKwaNjm4XVnxTWtpMW6r9l8elyYj605kx5nvkqCM9Gtwj5zJmvOhBAelpkQTkNbFy9tLyE1NoRJo12TJjWS5KRE02mycPhEE2sPV5GdFO6V39dfzh3NicZ2dpfU9fr4iYZ2NuRXSW+zYeSrM8Zg0Tjdxy6/0vXB2fSx0QT5G9hy1HPBWXOHiermDremUqfFhVHd3EnzINf2uZqxqV0qNfooCc5Et/KGNpSSyj1CCM/LTLDesd5/vIHzJo9ySXGBkWZ6ajQAWwpr2H6slqXZnp01s1s5KYkg/75TG9/4rEx6mw0zWUkRTB4dyVufOVe1scDYTEiAH2NceJMgyN+P2ekxHl13VmKv1OiGHmd2vlaxsbKxQ9ab+SgJzkS38vo24sODCPSX00II4Vk9+2CdN1VSGnuTEhNCTGgAT206RqfZ4rH+ZqcKD/Jn+YRE3ttfgfmU1EatNa/tLGNOegzp8e670BWud8mMZPaWNXCs2vHgoaCqmczEMAwuniFdkBHHoRNN1LZ4pmlzSa2tx5mbZ87ANyo2aq2pauogUWbOfJJchYtuFQ3t0uNMCOEVY6JDCA4wEB8eyMyxnikNP9wopchNjaaioZ3QQOvsgrdclDuaqqYOdhTVnrR9d0k9R6tbpBDIMPSV3DEohVOzZwWVTYx3Q4Nx+1rFbR5KbbQ3h3ZnWqP92L5QsbG+tYtOs4UkmTnzSQMGZ0qpVKXUGqVUnlLqgFLqLtv23yil9iml9iilPlJKJbt/uMKdyuvbZL2ZEMIrDAbFl6aO5roF6bJOqR85KdGAtaJdkL/3qqytmJhISIDfaWuUXttVRkiAHxfkSG+z4WZUVDALMuJ4a89xh/rYtXSYKG9od+l6M7uclGhCA/3Y7KHUxuKaVmLDAt3a9iE8yJ/48CCKq70/c1bZZOtxJjNnPsmRmTMT8H2t9SRgPnC7Umoy8GetdY7WejrwLvAL9w1TuJvWmoqGdkZLGX0hhJf89crp3Lkyy9vD8GnTbc2ol3oppdEuNNCfFZMS+d/+E5jMFgDaOs28u7ecL00dRXiQv1fHJwbnkhljKK5pHbCPHXzRNH68i3qc9RTgZ2BOeqzHioKU1LYwNtb9fRXT40J9YubM2Gityik1BnzTgMGZ1rpCa73b9nkTkAeM0Vo39nhaGDDwbRbhsxrbTLR2mkmWBtRCCOGzFo1P4L7zJ/LVGWO8PRS+nDOampZOth61pjZ+dPAETR0mLpsthUCGq/OnjiLQ3+BQaqM7KjX2tCAzjgJjM0bbLI87FVW7t8eZXVpcGCW1PjBz1mj9nkpao29yas2ZUiodmAFss339O6VUKXANMnM2rJV39ziTmTMhhPBVgf4GvrMs0ydmppZNSCQs0I/39ltTG1/dWUZKTAjzx0lvs+EqMjiAsycl8u6+CrpsM6J9Kahqxt+g3BbULMiwnkf24N9dOkxmKhraugt2uFN6XCgVDe20d5nd/lr9Mdr62Ulao29yODhTSoUDrwN322fNtNY/1VqnAquAO/rY7xal1E6l1M6qqipXjFm4QXcDapk5E0II4YDgAD/OnpzE/z4/QUlNK5sKq7l0ZorLK/cJz7pk+hhqWjrZmF/d7/PyK5sZFx9GgJ97astNSY4kIsjf7SX1y+rasGhI80BaY5qtgqm3Z8+Mje1EBvsTHOC9dauibw79RCmlArAGZqu01m/08pQXgUt721dr/ZjWerbWenZCgnd6soiBldsbUMvMmRBCCAddlJNMfWsXP3htL1rDpTMlpXG4WzYhkaiQAN7a039qY2FVs9tSGgH8/QzMHRfLVjevO7P3OPNIWqMtACxyol2BO1Q2dpAo6818liPVGhXwJJCntX6wx/aeq7a/Ahxy/fCEp5TXt+FvUCREyBS3EEIIxyzJjici2J/tx2qZNy7WraXIhWcE+hu4MGc0Hx2opKXD1OtzOkxmimtayHJjcAbWdWfHqlu6s3vcwd4U2jNpjb7R66yyqZ0kSWn0WY7MnJ0FXAussJXN36OUugD4g1Lqc6XUPuBc4C53DlS4V0VDO0mRwVLCWgghhMOC/P04d7K1afjls6W32UhxyfQxtHWZ+ejgiV4fP1bdgkVDpgeCM8CtqY1FNa2EBvoRHx7ottewiwoNIDo0wOsVG42NHVIMxIcNuKJYa70R6O2K/X3XD0d4i7XHmfygCiGEcM43z0qnsb2LC6aN8vZQhIvMTothTHQIb31WzldnnJ6qWmB0b6VGu0mjIokODWBLYQ1fc1PKbEltK2NjQ7Emirmftys2aq0xNrWTIDNnPss9qzjFsCM9zoQQQgzG1DFRPH7dbEIDvV9BUriGwaC4eHoyG/KrqLJV9uspv7IZpSAzwb3BmcGgmDfOvf3OimtautMNPcHbvc7qWrvoMmuZOfNhEpwJLBbNiYZ2qdQohBBCCMDakNqi4d195ac9VlDVTGpMqEeq/S3IiKOsro1SN8w2mS2a0to2jxQDsUuLC+N4XRudpv5bFbiLvW+cNKD2XRKcCWpaOuk0W6RSoxBCCCEAyE6KYPLoyF4bUhcam91eDMRuQWY84J51Zyca2+k0WzxayCYtNhSLhrI676Q2VjZKjzNfJ8GZ+KLHWZTcRRFCCCGE1SUzktlb1sCxHqXfTWYLR6ta3L7ezC47KZy4sEC3pDbaKzV6NK0xPtT22t4JzoyNtpkzSWv0WRKciS96nEXLzJkQQgghrL6SOwalOGn2rLSujU6zxe2VGu2UUszPjGNLYQ1aa5ce2x4gjfVAA2o7e8l+b607MzbJzJmvk+BMyMyZEEIIIU4zKiqYBRlxvLXneHdgZK/U6Km0RrCuOzvR2E6Ri2ebimtaCfBTHr05HRcWSHiQv9dmziob24kM9vfIekExOBKcCcrr2wjyNxAb5v4eH0IIIYQYPi6ZPobimlb2lNYDkG9sAtzf46wnd/U7K65pITUm1KM9XpVSpMWFdqdUepqxsUOKgfg4Cc4E5Q3tjI4K9liPDyGEEEIMD+dPG0Wgv6E7tbHA2ExSZBCRwQEeG0NGfBiJEUEuX3dWXNPq0WIgdulxYd6bOWtql5RGHyfBmaCivk3WmwkhhBDiNJHBAZw9KZF391XQZbZQYGwmKzHCo2NQSrHAxevOtNaU1LZ6tBiIXVpcKKV1rZjMgyunb7FoWjpMg9rX2NghxUB8nARnI8C7+8p5fmvxoPeXBtRCCCGE6Msl08dQ09LJhvwqCo3NHqvU2NOCjDiqmzu617wNVU1LJ80dJo8WA7FLiwuly6ypaGgf1P7/XlvA/N+vprLRuf211hib2kmUtEafJsHZMLfmsJE7X/qMX71zoLs8qjNMZguVje0kSwNqIYQQQvRi2YREokICeGTtUVo6zV4Jzhba+525KLXRnlboyQbUdkOp2NjU3sVj64/S1G7iwY+OOLVvXWsXXWZNYoSkNfoyCc6GsSOVTXz3xc9Ijw/DZNG8srPU6WMYmzqwaGTmTAghhBC9CvQ3cMG00WwvqgXwSnCWGhvCmOgQlxUFKam1BkZpXkhrtKdSDmbd2aptJTS2m1icFc+ru0o5dKLR4X2NTbYeZzJz5tMkOBumapo7uOnZHYQE+rHq5nmcNT6Ol7aXYrY4l4vdXUZfZs6EEEII0YevzhjT/bk3gjOlFPMz4th6tAaLk9c6vSmqbkUpa9DnaYkRQQQHGJyu2NjeZeaJDcdYnBXPP66eQXiQP79//5DD+1c2WnucJUlBEJ8mwdkw1GEyc+sLuzA2dvD4dbMZHRXCNfPSOF7fxvojVU4dq7sBtcycCSGEEKIPs9NiGBMdQkxoAHFear2zIDOOutYuDp1oGvKxSmpbGR0ZTJC/5/t9GQyKtNgwp/u2vbqzlOrmDm5fPp7o0EC+uyKLdUeq2Jhf7dD+9jVqiVIQxKdJcDbMaK356Zufs6Oojgcuz2V6ajQA50xOIj48iFXbnCsMUl4vM2dCCCGE6J/BoPjZhZO4a2WW11rvdPc7c8G6s+KaFq+kNNo52+usy2zhkXVHmZUWw7xxsQBctzCNlJgQfvd+nkOZU1VN1pkzKaXv2yQ4G2YeXX+U13aVcdfKLL6cm9y9PcDPwJVzUvj0kLE74HJERUM74UH+Hu1XIoQQQojh50vTRnPDWeO89vpjokMYGxvqknVnxTWtXikGYmcNzlodTtF8Z085x+vbuG1ZZndwHOTvxw/Pm0BeRSNv2vrQ9aeysZ3IYH+CAzw/WygcJ8HZMPLRgRP88YNDXJQzmrvPzjrt8avmjEUDL+9wvDBIeX2bVGoUQgghxLCwMDOObcdqnF5j31Nzh4malk6vNKC2S4sLo8NkobJp4ErbFovm32sLmDgqghUTE0967Ms5yeSmRPGXjw7T1mnu9ziVje1SDGQYOOODsy6zpbt6jS87WN7I3f/ZQ86YKB64PLfXlILU2FCWZifw8vYSuhxsbCg9zoQQQggxXCzIjKOp3cTBcserFJ7Knk7ojQbUds5UbPzo4AkKq1q4bfn4067/DAbFTy6YREVDO09tOtbvcYxNHRKcDQNndHCmtebKR7fw/Vf2enso/TI2tXPzszuIDA7g8etm9zsdfc28NIxNHazOMzp07IoGmTkTQgghxPCwIMO67mxzoWNFMHpjD4i80YDazp5SOdC6M601/1pTSHpcKBdOG93rc+ZlxHHO5CQeXltIdXNHn8cyNnZIj7Nh4IwOzpRSnD91FBvyq9l+rNbbw+lVe5eZW57bRV1rF09cP3vAru7LJyQwKjKYF7eXDHjsDpOZ6uZOmTkTQgghxLCQGBlMRkLYkIqCeLMBtV1ydAgBfmrAio0b8qvZf7yBW5dm4mfouxDLj740kbYuMw+tzu/1ca01xqb2Aa8jhfed0cEZwLXz00mICOLBjw97eyin0Vpz72v72FNaz1+vnM7UMVED7uPvZ+CquamsP1JFyQA/8CcarOmco6PkB1UIIYQQw8OCjDh2HKt1eAnHqYprWogLCyTCi8XQ/AyK1NiBKzb+a00BoyKD+erMMf0+LzMhnKvnprJqWwmFVc2nPV7X2kWXWUuPs2HgjA/OQgL9uG1ZJluP1rK5YPBT5O7wz08LeGdvOT88bwLnTx3l8H5XzRmLn0ENOHvW3eMsWmbOhBBCCDE8LMiMo6XTzP7jDYPav7im1avFQOzSYkMpqu77RvrOolq2HavlW0syHOrHdvfZ2YQE+PHH/53emFp6nA0fZ3xwBnD13LGMjgrmLx8fQeuhd513hff3V/CXj4/wtRljuG1ZplP7jooKZsXERF7dWUqnqe+7ShUNth5nMnMmhBBCiGFivm3d2WBL6pfUtpLmxfVmdmlxYRTXtPR57fnvtYXEhAZw9dxUh44XHx7ErUsz+Ohg5WnLdYy2Hmcyc+b7BgzOlFKpSqk1Sqk8pdQBpdRdtu1/VkodUkrtU0q9qZSKdvto3SQ4wI/bl49nV3Ed645UeXs47Cur555X9jArLYbfXzptUM0er5k3lpqWTj48cKLP53Q3oJY1Z0IIIYQYJuLDg5iQFMHWQaw76zCZKW9o82oDarv0uFBaOs3UtHSe9tiB8gY+PWTkxrPGERro7/Axb1qUwajIYH73ft5JQZ995kyqNfo+R2bOTMD3tdaTgPnA7UqpycDHwFStdQ5wBPix+4bpflfMTiUlJoQHvTx71tDWxbef30VcWBCPXjvLoWns3izJSiAlJoRV24r7fE55QzuxYYGEBEozQiGEEEIMHwsy49hRVEuHqf/eXqcqrW1Da+8WA7FLi7eX0z993dnDawsJD/LnugXpTh0zJNCP75+bzd7Set7dV9G93WgLzhKkWqPPGzA401pXaK132z5vAvKAMVrrj7TWJtvTtgIp7hum+wX6G7hzRRb7yhr4xMEy9O7w+/fzqGxs59/XzCQ+fPA/QAaD4uq5Y9l6tJYC4+kLQwEq6tskpVEIIYQQw878jDjauyzsLXVu3VlJrTUQ8oXgzN7r7NR1Z0ermnlvfwXfmJ9GVKjzRUu+NjOFiaMi+OMHh7qDV2NTB1EhAf22YxK+wak1Z0qpdGAGsO2Uh24E/ueiMXnN12aOIS0ulAc/PoJlCJ3nB2tTQTUv7yjlW4szyE2NHvLxrpidir9B8VIfhUGkAbUQQgghhqP5GbEo5fy6M3sg5AtpjWOiQ/AzqNNmzh5dd5RAPwM3LRo3qOP6GRQ/vXASZXVtPL/FmkFV2dguPc6GCYeDM6VUOPA6cLfWurHH9p9iTX1c1cd+tyildiqldlZVeX89V3/8/QzctTKLvIrGftdquUNrp4kfvbGPcfFhfO+cbJccMyEiiPOmjOK1XWW0d50+7V9eLw2ohRBCCDH8RIcGMmlUJFuODlxpu6yulee3FnPTMzv404eHiAz2Jy4s0AOj7F+gv4Hk6OCTep2V17fxxmdlXDkndUgpiIuzEliSncBDq/Opb+2ksrFD1psNEw4FZ0qpAKyB2Sqt9Rs9tl8PXARco/tYqKW1fkxrPVtrPTshIcEVY3ari6ePITMhjL9+cgSzB2fPHvjwCKW1bfzha9NcOuV8zbyxNLR18f7+ipO2t3SYaGw3ycyZEEIIIYalhZlx7C6pP+0GdJfZwtajNfz+/TzO/es6Fv1xDT9/63OOGJu4cnYqz9w4d1DF1twhPS6M4tovgrPHNxxFa7hlScaQj/2TCybS3GHin58WUNXUQaJUahwWBiz/oqxn75NAntb6wR7bzwfuA5ZqrfvvdjyM+BkUd5+dzXdf+ox395Vz8fT+m/65wq7iOp7efIxr56cxz1Ye1lUWZMaRER/Gqm0lfG3mF8sC7WX0ZeZMCCGEEMPRgsw4nth4jN3FdYxPCmfd4SrWHq5ifX4VTe0mAvwUc8fFcsXsVJZPTCQjPsxngjK7tLjQ7sIdNc0dvLS9hIunjyElZuhr4iaOiuSyWSk8t6UYs9bS42yYcKQ251nAtcB+pdQe27afAA8BQcDHthN9q9b6VncM0tMunDaaf60p4O+f5HPhtNH4+7mvHVyHycx9r+9jdGQw954/weXHV8paGOR37+dx6EQjE0dFAl80oJaZMyGEEEIMR3PGxWJQ8N2XPusuR58UGcSF00azbEIii7LiCQ9yvAy9N6THhVHf2kV9aydPbyqiw2ThO8uGPmtmd885E3hnbzmdXVp6nA0TA56xWuuNQG+3Gd53/XB8g8E2e3brC7t4a085l81yXyHKf35aQIGxmWe+OYeIYOcr8jji0lkp/Pmjw7y4rYRfXzwV6NnjTO6iCCGEEGL4iQwO4NKZKRytbuHGReNYNiGByaMjfW52rD/2wiSfH2/k2S1FnD9lFOMTI1x2/FFRwdyyOIOHPi2QmbNhwrdvJ3jReVOSmDomkodW53Px9GQC3DB7drC8kYfXFvK1mWNYNiHR5ce3iw0L5MJpo3lz93F+9KWJhAb6U97QjlLWH1ohhBBCiOHoz5fnensIQ5JuK+n/+//l0dRu4rZl413+GrcuyyTQ38DSCb5f+0E4WUr/TKKU4p5zsimpbeW1XWUuP77JbOHe1/cSHRrAzy+c7PLjn+rr88bS1GHiv3vLAWuPs8SIILcEnUIIIYQQYmCpsdbg7EB5I0uyE5iWEuXy1wgN9OeOFVk+n+IprOTKvB/LJyQyPTWaf35a4HQH+oE8vuEYnx9v5NcXTyXGA+VcZ6fFkJ0Uzqpt1p5n0uNMCCGEEMK7ggP8upeY3L4s08ujEb5AgrN+KKX4/rnZHK9v45UdpS47bmFVM3/95AjnTxnFBdNGu+y4/VFK8fW5Y9lX1sD+sgbKG6THmRBCCCGEt+WkRHHW+Djmjov19lCED5DgbACLxsczNz2Wf64p6LWRs7MsFs2PXt9HsL+BX188xQUjdNxXZ6YQHGBg1bZiKupl5kwIIYQQwtv+9fWZPH2D7/ReE94lwdkAlFJ875xsKhs7ulMCh+KFbcXsKKrj5xdNJtHDndqjQgL4Sm4yb3x2nLYus1RqFEIIIYTwMn8/A4H+ckkurORMcMCCzDgWZsbx8NoCWjtNgz5OWV0rf/zfIZZkJ7i1PH9/vj4vjU6TBYDkaJk5E0IIIYQQwldIcOag75+bTXVzJ89tKR7U/lprfvLm52jg/7461WtT17kpUUxJtjailpkzIYQQQgghfIcEZw6alRbL0uwEHl1XSHOH87Nnr+8+zvojVdx3/kRSYkLdMELHKKW4efE4QgL8GBcf5rVxCCGEEEIIIU4mwZkT7jknm7rWLp7ZdMyp/YxN7fzm3YPMSY/h2vlpbhqd4746I4XPfnEO0aHuL+EvhBBCCCGEcIx0o3NCbmo0Z09K4oGPjvDIuqNEhQQQGRJAdEgAUfaP0B6f2z6e21JMW5eZP1yag8HgG5V4ggP8vD0EIYQQQgghRA8SnDnpj5dO46XtUdS2dNHQ1kVDWycNbV0crW6moa2L+tYuOmwFN3q69/wJZCaEe2HEQgghhBBCiOFAgjMnxYUHcceKrH6f095lprHNGrzVt3WhgFlpMZ4ZoBBCCCGEEGJYkuDMDYID/AgO8PN4HzMhhBBCCCHE8CUFQYQQQgghhBDCB0hwJoQQQgghhBA+QIIzIYQQQgghhPABEpwJIYQQQgghhA+Q4EwIIYQQQgghfIAEZ0IIIYQQQgjhAyQ4E0IIIYQQQggfIMGZEEIIIYQQQvgACc6EEEIIIYQQwgdIcCaEEEIIIYQQPmDA4EwplaqUWqOUylNKHVBK3WXbfrnta4tSarb7hyqEEEIIIYQQI5e/A88xAd/XWu9WSkUAu5RSHwOfA18DHnXnAIUQQgghhBDiTDBgcKa1rgAqbJ83KaXygDFa648BlFLuHaEQQgghhBBCnAGcWnOmlEoHZgDbnNjnFqXUTqXUzqqqKieHJ4QQQgghhBBnBoeDM6VUOPA6cLfWutHR/bTWj2mtZ2utZyckJAxmjEIIIYQQQggx4jkUnCmlArAGZqu01m+4d0hCCCGEEEIIceZxpFqjAp4E8rTWD7p/SEIIIYQQQghx5nGkWuNZwLXAfqXUHtu2nwBBwD+ABOA9pdQerfV5bhmlEEIIIYQQQoxwjlRr3Aj0VZLxTdcORwghhBBCCCHOTE5VaxRCCCGEEEII4R4SnAkhhBBCCCGED5DgTAghhBBCCCF8gARnQgghhBBCCOEDJDgTQgghhBBCCB8gwZkQQgghhBBC+AAJzoQQQgghhBDCB0hwJoQQQgghhBA+QIIzIYQQQgghhPABEpwJIYQQQgghhA+Q4EwIIYQQQgghfIAEZ0IIIYQQQgjhAyQ4E0IIIYQQQggfIMGZEEIIIYQQQvgACc6EEEIIIYQQwgdIcCaEEEIIIYQQPkCCMyGEEEIIIYTwARKcCSGEEEIIIYQPkOBMCCGEEEIIIXyABGdCCCGEEEKIkeFPf4I1a07etmaNdfswIMGZEEIIIYQQYmSYMweuuOKLAG3NGuvXc+Z4d1wO8vf2AIQQQgghhBDCJZYvh1Wr4KKLYOVK2LIFXnnFun0YkJkzIYQQQgghxMiwdy/cey+0tsJ//wvf+c6wCczAgeBMKZWqlFqjlMpTSh1QSt1l2x6rlPpYKZVv+zfG/cMVQgghhBBCiFN0dcFvfgOzZ0NJCURGws9/Dg8/fPoaNB/myMyZCfi+1noSMB+4XSk1GfgRsFprnQWstn0thBBCCCGEEJ5z4AAsWAC/+AUsXQoGA7z1Fvz619aUxp5r0HzcgMGZ1rpCa73b9nkTkAeMAS4GnrU97VngEjeNUQghhBBCCCFOZjLBH/8IM2daZ8teew3OPRdeffWLVMbly60B2o4d3h2rg5wqCKKUSgdmANuAJK11BVgDOKVUouuHJ4QQQgghhBCnOHQIbrgBtm2DSy+Ff/8bEvsIR5YvHzbrzhwuCKKUCgdeB+7WWjc6sd8tSqmdSqmdVVVVgxmjEEIIIYQQ4kx0at8ys9la5GPqVMjPh5dess6U9RWYDTMOBWdKqQCsgdkqrfUbts2VSqnRtsdHA8be9tVaP6a1nq21np2QkOCKMQshhBBCCCHOBD37luXnQ24uPPIIzJtnXWt21VWglLdH6TKOVGtUwJNAntb6wR4PvQNcb/v8euBt1w9PCCGEEEIIccZavhxefhm+/GWYPBkOHoQf/Qg2boRRo7w9OpdzZM3ZWcC1wH6l1B7btp8AfwBeUUrdBJQAl7tlhEIIIYQQQogzU0WFNbWxpcX69V13we9/790xudGAwZnWeiPQ11zhStcORwghhBBCCCGAt9+Gm26CpiYID4e777amNF588bAp8OEshwuCCCGEEEIIIYTbtbTArbfCJZdATAyEhcE771ibTA+zvmXOcqqUvhBCCCGEEEK4za5dcM01cOQI3HsvREVZG0z31rdsBM6eSXAmhBBCCCGE8C6zGR54AH72M0hKgk8+gRUren/uMOpb5iwJzoQQQgghhBDeU1oK110Ha9fCZZfBo49CbKy3R+UVsuZMCCGEEEII4X6nNpQG+OUvYcIEa5ri009bUxbP0MAMZOZMCCGEEEII4Qn2htKvvAKzZ1s//+ADmDgR/vtfGD/e2yP0OgnOhBBCCCGEEO63fDk89RR85SsQEAB1dXDttfDkk9avhaQ1CiGEEEIIIeg97XDNGuv2oWhvh9dfh0svhcsvh+Zma2B2/fXw3HMSmPUgwZkQQgghhBDii7TDl16Cjg5rYHbFFdbtvekvmDObrRUXb7zRWn3xsstg0ya48EKIjrZWZXzvvRHbr2ywJK1RCCGEEEII8UUPsZUrQWswGGDmTHjjDdi/H7KzISsL0tLA3//kNWTLl8Onn1pnx1auhJQUOHECIiKs277+dVAKrr7aerzly62l8nvuL1Baa4+92OzZs/XOnTs99npCCCGEEEIIJ1gs1mDqrbdgyhQIDob8fGhs/OI5AQGQkWEN1oKD4X//swZxmzZZZ8wCA60zZF//uvXfkBDrfn/6kzWg6xmIrVljrdR4770efZvepJTapbWe3etjEpwJIYQQQgghgC9SGb/zHXj4Yeus1rJlYDRag7QjR6wf9s8LCqxrygDS063pil/7GsTEePNd+LT+gjNJaxRCCCGEEEJ8EZjZ0wyXLz/566QkWLTo5H1Wr7Y+5/rr4fnnrTNqEpgNmhQEEUIIIYQQQljTC3uu/7KvQduxo/fnr1kDV10Fr70GDz5ofe4VV0iRjyGQtEYhhBBCCCGE82QN2aDImjMhhBBCCCGE8AH9BWeS1iiEEEIIIYQQPkCCMyGEEEIIIYTwARKcCSGEEEIIIYQPkOBMCCGEEEIIIXyABGdCCCGEEEII4QMkOBNCCCGEEEIIHyDBmRBCCCGEEEL4AAnOhBBCCCGEEMIHeLQJtVKqCij22As6Lh6o9vYgxIgg55JwJTmfhKvIuSRcRc4l4Spn8rmUprVO6O0BjwZnvkoptbOvLt1COEPOJeFKcj4JV5FzSbiKnEvCVeRc6p2kNQohhBBCCCGED5DgTAghhBBCCCF8gARnVo95ewBixJBzSbiSnE/CVeRcEq4i55JwFTmXeiFrzoQQQgghhBDCB8jMmRBCCCGEEEL4gGEVnCmlzldKHVZKFSilftRj+3+UUntsH0VKqT197B+rlPpYKZVv+zfGtv2aHvvvUUpZlFLTe9l/le31P1dKPaWUCrBtV0qph2zj2qeUmume74BwJR8+nyYqpbYopTqUUj9wz7sXruTD59I1tt9J+5RSm5VSue75DghX8eFz6WLbebRHKbVTKbXIPd8B4UpuPJ8ClFLPKqX2K6XylFI/7mP/cUqpbbb9/6OUCrRtl+umYcaHz6WRd82ktR4WH4AfUAhkAIHAXmByL8/7C/CLPo7xJ+BHts9/BPyxl+dMA472sf8FgLJ9vAR8p8f2/9m2zwe2efv7JR/D+nxKBOYAvwN+4O3vlXwM63NpIRBj+/xL8rvJtz98/FwK54ulEDnAIW9/v+TDe+cT8HXgZdvnoUARkN7L/q8AV9k+f0Sum4bnh4+fSyPummk4zZzNBQq01ke11p3Ay8DFPZ+glFLAFVj/oPTmYuBZ2+fPApf08pyr+9pfa/2+tgG2Ayk9jvuc7aGtQLRSarTD70x4g8+eT1pro9Z6B9Dl1DsS3uLL59JmrXWd7Wlb+eJ3lvBNvnwuNdu2AYQBsmDd97nzfNJAmFLKHwgBOoHGXo69Anitl/3luml48dlzaSReMw2n4GwMUNrj6zLbtp4WA5Va6/w+jpGkta4AsP2b2MtzrqTvEwuwTsEC1wIfODE24Vt8+XwSw8twOZduwnqnWvgunz6XlFJfVUodAt4Dbuxvf+ET3Hk+vQa0ABVACfCA1rr2lH3jgHqttamX15frpuHFl8+lEWc4BWeql22n3rnr826gQy+g1DygVWv9+QBP/TewXmu9wYmxCd/iy+eTGF58/lxSSi3HGpzdN9gxCI/w6XNJa/2m1noi1jvWvxnsGITHuPN8mguYgWRgHPB9pVSGE68v103Diy+fSyPOcArOyoDUHl+nAOX2L2zToV8D/tNj29O2BYrv2zZV2qfNbf8aT3mNqxj4buIvgQTgHkfHJnySL59PYnjx6XNJKZUDPAFcrLWuceJ9Cc/z6XPJTmu9HshUSsU78qaE17jzfPo68IHWuktrbQQ2AbNPef1qrOmK/r28vlw3DS++fC6NOMMpONsBZNmqtQRi/QPzTo/Hz8a6QLnMvkFr/U2t9XSt9QW2Te8A19s+vx542/5cpZQBuBxrHm2vlFI3A+cBV2utLT0eege4zlZ9aD7QYJ+6FT7Ll88nMbz47LmklBoLvAFcq7U+MoT3KDzDl8+l8bZ1HyhrZb1AQIJ93+bO86kEWGG77gnDWtTjUM8Xt61RXANc1sv+ct00vPjyuTTyaB+oSuLoB9bqPkewVoz56SmPPQPcOsD+ccBqIN/2b2yPx5YBWwfY32R77T22j1/YtivgX7bH9gOzvf29ko9hfT6NwnqXqhGot30e6e3vl3wMy3PpCaCux/ad3v5eycewPZfuAw7Ytm0BFnn7eyUf3jufsFbvfNV2ThwEftjH/hlYC8sU2J4fZNsu103D7MOHz6URd81kL4srhBBCCCGEEMKLhlNaoxBCCCGEEEKMWBKcCSGEEEIIIYQPkOBMCCGEEEIIIXyABGdCCCGEEEII4QMkOBNCCCGEEEIIHyDBmRBCCCGEEEL4AAnOhBBCCCGEEMIHSHAmhBBCCCGEED7g/wF9hBPANTjvBAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACMTUlEQVR4nOzdd3gc1fXw8e/dVe9dsppVLDe5SO4FY5veu4FAqKEmJCSkkPImIe2XQAgphBpKIBA6hECoBtvg3i0XuUuWZKv3Lu3uff/YXSHbKqvVNsnn8zx6LM3OztyVV9Kcueeeo7TWCCGEEEIIIYTwLoO3ByCEEEIIIYQQQoIzIYQQQgghhPAJEpwJIYQQQgghhA+Q4EwIIYQQQgghfIAEZ0IIIYQQQgjhAyQ4E0IIIYQQQggfIMGZEEIIIYQQQvgACc6EEGKEUkq19PqwKKXae319vbfH5wylVLFS6ixvj2MgSqmVSqnb3Hj8p5VS+2z/pzef8NiTJ/y/dyqlmns93nLCh1kp9Wivx89USu1VSrUppVYopcb2ekwppR5UStXaPh5SSil3vU4hhBAnk+BMCCFGKK11mP0DKAEu7rXtZW+P70RKKb/RcA4P2AF8E9h64gNa67tO+H9/BXij1+O9H0sE2u2PK6XigLeBnwMxwGbgtV6HvwO4DJgOTAMuAu50+asTQgjRLwnOhBBilFFKGZRSP1ZKHbLNgLyulIqxPZahlNJKqVuUUqVKqXql1F1KqdlKqQKlVINS6u+9jnWzUmqNUupRpVSjbdblzF6PRyqlnlVKlSuljiqlfquUMp7w3D8rpeqAB5RS2Uqpz23jqlFKvayUirLt/y8gHXjPNuvzI6XUEqVU2Qmvr2d2TSn1gFLqTaXUS0qpJuDmQcY0Tim1yvZaapRSvYOT3ucIsh2z1vY92aSUSlRK/Q5YBPzdNsa/2/afqJT6VClVZ5v1urrXsf5pm/H6VCnVbDv/2L7OC6C1fkxr/RnQMcj/cyhwJfBCP7tcBVQBX9q+vgLYrbV+Q2vdATwATFdKTbQ9fhPwJ611mdb6KPAn4OaBxiCEEMK1JDgTQojR5ztYZ0AWA8lAPfDYCfvMBXKAa4C/AD8DzgJygauVUotP2PcwEAf8EnjbHuxhDQxMwDggHzgHuK2P5yYAvwMU8HvbuCYBaViDBLTWN3D8DOBDDr7eS4E3gSjg5UHG9BvgEyAaSAUepW83AZG28cUCdwHtWuufYQ127rGN8R5bkPQp8G/b6/wa8LhSKrfX8a63nTsO2G4b53BdCVQDXwzwGl7UWmvb17lYZ+UA0Fq3Aods20963PZ579cghBDCzSQ4E0KI0edO4Ge2GZBOrMHPVSek/P1Ga92htf4EaAVe0VpX2WZMvsQa1NhVAX/RWndrrV8D9gEXKqUSgfOB72qtW7XWVcCfgWt7PfeY1vpRrbVJa92utT6otf5Ua92pta4GHsEaRA7HOq31f7TWFiBikDF1A2OBZNvrX93PMbuxBmXjtNZmrfUWrXVTP/teBBRrrZ+3vc6twFtYZ67s/qe1/sL2//EzYL5SKm04L5qTg68eSql0rN/X3rNqYUDjCbs2AuH9PN4IhMm6MyGE8JzRkJsvhBDieGOBd5RSll7bzFjXINlV9vq8vY+vw3p9ffSEAOAI1pmvsYA/UN7r+t0AlPbat/fnKKUSgL9hTQ0Mt+1f79Cr6l/vcww2ph9hncHaqJSqx5rG91wfx/wX1lmzV21ply9hDXi7+9h3LDBXKdXQa5uf7RgnjVFr3WJL80w+YewOswV2i4Hb+9nlRmC11rqo17YWrMFrbxFAcz+PRwAtfQV/Qggh3ENmzoQQYvQpBc7XWkf1+giyzYo5I+WE2ZN04JjtPJ1AXK/zRGite6fCnXhh/3vbtmla6wjg61hTHfvbvxUIsX9hWzsWf8I+vZ8z4Ji01hVa69u11slYZxgfV0qNO/EF22YJf6W1ngwswDo7dmM/YywFVp3w/Q7TWt/da5+eWTKlVBjWghzHTjzvENwIrNVaHx7g8RPXou3GWuzDPo5QINu2/aTHbZ/vRgghhMdIcCaEEKPPk8Dv7EUnlFLxSqlLh3G8BOA7Sil/pdQyrGvFPtBal2Ndv/UnpVSErRBJ9gnr1U4UjnWGpkEplQL88ITHK4GsXl/vB4KUUhcqpfyB/wcE9nfwwcaklFqmlEq17V6PNdAyn3gcpdRSpdRUWzDYhDXN0b7fiWN8HxivlLrB9j3ytxVYmdRrnwuUUqcppQKwztxt0Fr3OWumlApQSgVhDVr9bcVJTvx7fSPwz36evwBIoVcVR5t3gClKqSttx/8FUKC13mt7/EXgPqVUilIqGfh+f+cQQgjhHhKcCSHE6PNX4L/AJ8raA2s91sIcztqAtXhIDdaiHldprWttj90IBAB7sAY7bwJjBjjWr4AZWNcz/Q9raffefg/8P1uFxB9orRuxlpV/BjiKdSatjIENNKbZwAalVAvW79G9J6T+2SXZntcEFAKrsKY2gvX7e5WyVrr8m9a6GWvRkWuxzoZVAA9yfBD5b6zFVOqAmVgLhPTnE6yppQuAp22fn25/UCk1H2sxkxODL7ubgLdt4+phW+N3Jdb/w3qs74ne6wOfAt4DdgK7sP7/PDXAOIUQQriYklRyIYQQ/VHWJsi3aa1P8/ZYRiql1D+BMq31//P2WIQQQvg2mTkTQgghhBBCCB8gwZkQQgghhBBC+ABJaxRCCCGEEEIIHyAzZ0IIIYQQQgjhAyQ4E0IIIYQQQggf4OfJk8XFxemMjAxPnlIIIYQQQgghfMaWLVtqtNbxfT3m0eAsIyODzZs3e/KUQgghhBBCCOEzlFJH+ntM0hqFEEIIIYQQwgdIcCaEEEIIIYQQPkCCMyGEEEIIIYTwAR5dc9aX7u5uysrK6Ojo8PZQxCgTFBREamoq/v7+3h6KEEIIIYQQg/J6cFZWVkZ4eDgZGRkopbw9HDFKaK2pra2lrKyMzMxMbw9HCCGEEEKIQXk9rbGjo4PY2FgJzIRLKaWIjY2VGVkhhBBCCDFieD04AyQwE24h7yshhBBCCDGS+ERw5m2/+93vyM3NZdq0aeTl5bFhwwYAbrvtNvbs2eOSc2RkZFBTUzPgPv/3f/835OP+85//5J577jlu2/PPP09eXh55eXkEBAQwdepU8vLy+PGPfzzk43vCX/7yF9ra2rw9DCGEEEIIMdI99BCsWHH8thUrrNtHgFM+OFu3bh3vv/8+W7dupaCggOXLl5OWlgbAM888w+TJkz02FmeCs77ccsstbN++ne3bt5OcnMyKFSvYvn07f/jDH1xy/KHSWmOxWPp93JngzGQyDXdYQgghhBBitJk9G66++qsAbcUK69ezZ3t3XA465YOz8vJy4uLiCAwMBCAuLo7k5GQAlixZwubNmwEICwvj/vvvZ+bMmZx11lls3LiRJUuWkJWVxX//+1/g5Fmsiy66iJUrV550zssuu4yZM2eSm5vL008/DcCPf/xj2tvbycvL4/rrrwfgpZdeYs6cOeTl5XHnnXdiNpsB68zY+PHjWbx4MWvWrHH4tf7xj39k9uzZTJs2jV/+8pcAFBcXM3HiRG677TamTJnC9ddfz/Lly1m4cCE5OTls3LgRgAceeIAbbriBM844g5ycHP7xj38MetxJkybxzW9+kxkzZlBaWsrdd9/NrFmzyM3N7dnvb3/7G8eOHWPp0qUsXbq053tt9+abb3LzzTcDcPPNN3PfffexdOlS7r//fg4dOsR5553HzJkzWbRoEXv37nX4eyGEEEIIIUahpUvh9dfh0kvhzjutgdnrr1u3jwRaa499zJw5U59oz549J23zpObmZj19+nSdk5Oj7777br1y5cqexxYvXqw3bdqktdYa0B988IHWWuvLLrtMn3322bqrq0tv375dT58+XWut9fPPP6+/9a1v9Tz/wgsv1CtWrNBaaz127FhdXV2ttda6trZWa611W1ubzs3N1TU1NVprrUNDQ3ueu2fPHn3RRRfprq4urbXWd999t37hhRf0sWPHdFpamq6qqtKdnZ16wYIFx53zRPbzfvzxx/r222/XFotFm81mfeGFF+pVq1bpoqIibTQadUFBgTabzXrGjBn6lltu0RaLRf/nP//Rl156qdZa61/+8pd62rRpuq2tTVdXV+vU1FR99OjRAY+rlNLr1q3rGYv9dZtMJr148WK9Y8eOk743J34f3njjDX3TTTdprbW+6aab9IUXXqhNJpPWWuszzjhD79+/X2ut9fr16/XSpUtPev3efn8JIYQQQggPO3JEa39/rUHrn//c26M5CbBZ9xMveb2Ufm+/em83e441ufSYk5Mj+OXFuf0+HhYWxpYtW/jyyy9ZsWIF11xzDX/4wx96ZmvsAgICOO+88wCYOnUqgYGB+Pv7M3XqVIqLi4c0pr/97W+88847AJSWlnLgwAFiY2OP2+ezzz5jy5YtzLZNwba3t5OQkMCGDRtYsmQJ8fHxAFxzzTXs379/0HN+8sknfPLJJ+Tn5wPQ0tLCgQMHSE9PJzMzk6lTpwKQm5vLmWeeiVLqpNd26aWXEhwcTHBwMEuXLmXjxo2sXr263+OOHTuWefPm9Tz/9ddf5+mnn8ZkMlFeXs6ePXuYNm3akL53y5Ytw2g00tLSwtq1a1m2bFnPY52dnUM6lhBCCCGEGIW+9jXo7obvfAeeeMI6azZCZs58KjjzFqPRyJIlS1iyZAlTp07lhRdeOCk48/f376n+ZzAYetIgDQZDz/onPz+/49ZW9VXGfeXKlSxfvpx169YREhLCkiVL+txPa81NN93E73//++O2/+c//3GqCqHWmp/85Cfceeedx20vLi7ueS0DvTY4ufqhUmrA44aGhvZ8XVRUxMMPP8ymTZuIjo7m5ptv7rfMfe/znLiP/ZgWi4WoqCi2b98+2EsXQgghhBCnit/+FtauhTvugL/+FS67bESlNvpUcDbQDJe77Nu3D4PBQE5ODgDbt29n7NixTh0rIyODxx9/HIvFwtGjR3vWa/XW2NhIdHQ0ISEh7N27l/Xr1/c85u/vT3d3N/7+/px55plceumlfO973yMhIYG6ujqam5uZO3cu9957L7W1tURERPDGG28wffr0Qcd27rnn8vOf/5zrr7+esLAwjh49ir+//5Be37vvvstPfvITWltbWblyJX/4wx8IDg526LhNTU2EhoYSGRlJZWUlH374IUuWLAEgPDyc5uZm4uLiAEhMTKSwsJAJEybwzjvvEB4eftLxIiIiyMzM5I033mDZsmVorSkoKHDoeyGEEEIIIUahlhZ4+GHIyIC//926zb4GbdMmCc5GgpaWFr797W/T0NCAn58f48aN6ynSMVQLFy7sSRGcMmUKM2bMOGmf8847jyeffJJp06YxYcKE49L+7rjjDqZNm8aMGTN4+eWX+e1vf8s555yDxWLB39+fxx57jHnz5vHAAw8wf/58xowZw4wZM3oKhQzknHPOobCwkPnz5wPWdM6XXnoJo9Ho8OubM2cOF154ISUlJfz85z8nOTmZ5ORkh447ffp08vPzyc3NJSsri4ULFx73us8//3zGjBnDihUr+MMf/sBFF11EWloaU6ZMoaWlpc/xvPzyy9x999389re/pbu7m2uvvVaCMyGEEEKIU9Wvfw2NjfC//0HvyYIRlNaorGvSPGPWrFnaXv3QrrCwkEmTJnlsDMI5DzzwAGFhYfzgBz/w9lCGRN5fQgghhBCngJ07IT8fbrkFelUV90VKqS1a61l9PTZoKX2lVJpSaoVSqlAptVspda9te55Sar1SartSarNSao6rBy6EEEIIIYQQA7JY4K67IDoavNTX11UcSWs0Ad/XWm9VSoUDW5RSnwIPAb/SWn+olLrA9vUS9w1VeNMDDzzg7SEIIYQQQghxsueesxYB+ec/4YQK6CPNoMGZ1rocKLd93qyUKgRSAA1E2HaLBI65a5BCCCGEEEIIcZLqavjRj2DxYrjxRm+PZtiGVBBEKZUB5AMbgO8CHyulHsaaHrmgn+fcAdwBkJ6ePoyhCiGEEEIIIUQvP/yhtUrjE0+AE+2mfM2ga87slFJhwFvAd7XWTcDdwPe01mnA94Bn+3qe1vpprfUsrfUse+NkIYQQQgghhBiWlSvhhResAdooKQDnUHCmlPLHGpi9rLV+27b5JsD++RuAFAQRQgghhBBCuF9np7UISGYm/Oxn3h6NyzhSrVFhnRUr1Fo/0uuhY8Bi2+dnAAdcPzzPMBqN5OXlMWXKFJYtW0ZbW5vTx7r55pt58803AbjtttvYs2dPv/uuXLmStWvX9nz95JNP8uKLLzp9brvi4mKmTJly3LYHHniAhx9+eEjHcdV4hBBCCCGEcKmHH4Z9++CxxyAkxNujcRlH1pwtBG4Adiqlttu2/RS4HfirUsoP6MC2rmwkCg4OZvv27QBcf/31PPnkk9x33309j5vN5iE1a7Z75plnBnx85cqVhIWFsWCBdbneXXfdNeRzuIvJZPKp8QghhBBCCAHAoUPw29/CsmVw/vneHo1LDTpzprVerbVWWutpWus828cHtu0ztdbTtdZztdZb3D7ahx6CFSuO37ZihXW7iyxatIiDBw+ycuVKli5dynXXXcfUqVMxm8388Ic/ZPbs2UybNo2nnnoKAK0199xzD5MnT+bCCy+kqqqq51hLlizB3nT7o48+YsaMGUyfPp0zzzyT4uJinnzySf785z+Tl5fHl19+edzs1vbt25k3bx7Tpk3j8ssvp76+vueY999/P3PmzGH8+PF8+eWXQ36NAx37pz/9KYsXL+avf/1rz3iOHTtGXl5ez4fRaOTIkSMcOXKEM888k2nTpnHmmWdSUlICWGcPv/Od77BgwQKysrJ6ZhKFEEIIIYQYFq3hnnvA3x/+/Gdvj8blHC4I4hNmz4arr/4qQFuxwvr17NkuObzJZOLDDz9k6tSpAGzcuJHf/e537Nmzh2effZbIyEg2bdrEpk2b+Mc//kFRURHvvPMO+/btY+fOnfzjH/84Lk3Rrrq6mttvv5233nqLHTt28MYbb5CRkcFdd93F9773PbZv386iRYuOe86NN97Igw8+SEFBAVOnTuVXv/rVcePcuHEjf/nLX47b3tuhQ4eOC6iefPJJh47d0NDAqlWr+P73v9+zLTk5me3bt7N9+3Zuv/12rrzySsaOHcs999zDjTfeSEFBAddffz3f+c53ep5TXl7O6tWref/99/nxj388xP8JIYQQQggh+vDmm/DRR9aZs5QUb4/G5YZUSt/tvvtdsKUX9is5Gc49F8aMgfJya2WWX/3K+tGXvDz4y18GPGR7ezt5eXmAdebsG9/4BmvXrmXOnDlkZmYC8Mknn1BQUNAzC9TY2MiBAwf44osv+NrXvobRaCQ5OZkzzjjjpOOvX7+e008/vedYMTExA46nsbGRhoYGFi+2Lum76aabWLZsWc/jV1xxBQAzZ86kuLi4z2NkZ2f3pGrCV02kBzv2Nddc0++41qxZwzPPPNMzW7du3TrefttaE+aGG27gRz/6Uc++l112GQaDgcmTJ1NZWTng6xVCCCGEEGJQTU1w770wYwZ885veHo1b+FZw5ojoaGtgVlIC6enWr4ep95qz3kJDQ3s+11rz6KOPcu655x63zwcffIAapKeC1nrQfYYiMDAQsBYyMZlMLjsuHP+aeysvL+cb3/gG//3vfwkLC+tzn96v0T5GsL5+IYQQQgghhuyhh6xZckuXws9/DhUV1n8fecTafHqU8a20xr/8xdqvYKCPX/4S2tqs/yltbdavB9p/kFkzR5177rk88cQTdHd3A7B//35aW1s5/fTTefXVVzGbzZSXl7PixDVxwPz581m1ahVFRUUA1NXVARAeHk5zc/NJ+0dGRhIdHd0zQ/Wvf/2rZ6ZruJw5dnd3N1dffTUPPvgg48eP79m+YMECXn31VQBefvllTjvtNJeMUQghhBBCCOCrZU1PPQV//ztccgn84hcuW9bka0bWzJl9jdnrr1uj56VLj//ajW677TaKi4uZMWMGWmvi4+P5z3/+w+WXX87nn3/O1KlTGT9+fJ+BTnx8PE8//TRXXHEFFouFhIQEPv30Uy6++GKuuuoq3n33XR599NHjnvPCCy9w11130dbWRlZWFs8//7zLXstQj7127Vo2bdrEL3/5S375y18C1hnDv/3tb9x666388Y9/JD4+3qVjFEIIIYQQgqVL4V//gosvhuBgWL0a3njD7df+3qI8mXI2a9Ysba9eaFdYWMgkRzt6957WtFuxAjZtGpXTmmL4hvT+EkIIIYQQvkVruO46sGVr8fOfw69/7d0xDZNSaovWelZfj42smbO+AjD7DJoQQgghhBBidPnVr6yBWWgo3HcfPPHEqL7+9601Z0IIIYQQQggB8O9/W4OzwED473+tM2avv358a61RRoIzIYQQQgghhG9ZuxZuvRUyM62Bmb1d1dKl1gBt0ybvjs9NfCKt0dWl5oUAKeEvhBBCCDEiFRfDZZdBWhqsXw+xscc/LmmN7hMUFERtba1cSAuX0lpTW1tLUFCQt4cihBBCCCEc1dQEF10E3d3w/vsnB2ajnNdnzlJTUykrK6O6utrbQxGjTFBQEKmpqd4ehhBCCCGEcITJBNdeC/v2wUcfwYQJ3h6Rx3k9OPP39yczM9PbwxBCCCGEEEJ40333wYcfwtNPw5lnens0XuH1tEYhhBBCCCHEKe6xx+DRR+H734fbb/f2aLxGgjMhhBBCCCGE93z8Mdx7L1x8MTz4oLdH41USnAkhhBBCCCG8Y88ea9+yKVOsfc2MRm+PyKskOBNCCCGEEEJ4xkMPfdVAurraWpnRaIQLLoCwMO+OzQdIcCaEEEIIIYTwjNmzrTNlH39s7WVWVgZaw9lne3tkPsHr1RqFEEIIIYQQp4ilS+Hhh+GSS6CrC8LD4e23R21T6aGS4EwIIYQQQgjhXseOwauvWteVbdny1fbvflcCs14krVEIIYQQQgjhnN5ryOxWrLBub2iAZ5+19ixLTbWWyVcK7r4bYmLg5z+HJ544+fmnMAnOhBBCCCGEEM6xryGzB1j2tWTvvQeJiXDbbVBSAr/4Bezdaw3a3ngD3nwTfv1reP31459/ipO0RiGEEEIIIYRzli61BlhXXAFjx0JBgbXAx8GD8M1vwnXXwaxZ1hkzgHffte5vT2W0P3/TJklvRIIzIYQQQgghxHDExVlTGBsaYPp0a8GPpUv77ln2ox+dvG3pUgnMbCStUQghhBBCCOG8++6z/vv978PRo9ag7BRvJu0sCc6EEEIIIYQQznnlFVi+HK66yjpjJmvIhmXQ4EwplaaUWqGUKlRK7VZK3Wvb/ppSarvto1gptd3toxVCCCGEEEL4jr//3TpL9uc/W7/uvYZMDJkja85MwPe11luVUuHAFqXUp1rra+w7KKX+BDS6a5BCCCGEEEIIH1NdDdu2wY03Wkvl28kaMqcNGpxprcuBctvnzUqpQiAF2AOglFLA1cAZbhynEEIIIYQQwpc8+ih0dMAPf+jtkYwaQ1pzppTKAPKBDb02LwIqtdYHXDguIYQQQgghhK9qabGmNF56KUya5O3RjBoOB2dKqTDgLeC7WuumXg99DXhlgOfdoZTarJTaXF1d7fxIhRBCCCGEEL7hH/+A+nq4/35vj2RUUVrrwXdSyh94H/hYa/1Ir+1+wFFgpta6bLDjzJo1S2/evHkYwxVCCCGEEEJ4VVcXZGdbP1au9PZoRhyl1Bat9ay+Hht0zZltTdmzQGHvwMzmLGCvI4GZEEIIIYQQYhT497+hrMw6eyZcypG0xoXADcAZvUrnX2B77FoGSGkUQgghhBBCjCIWCzz0EEyfDuee6+3RjDqOVGtcDah+HrvZ1QMSQgghhBBC+Kj33oPCQuvsmeozRBDDMKRqjUIIIYQQQohTlNbwhz9AZiYsW+bt0YxKjjShFkIIIYQQQpzqvvwS1q+Hxx4DPwkj3EFmzoQQQgghhBCD+8MfID4ebrnF2yMZtSQ4E0IIIYQQQgysoAA+/BDuvReCg709mlFLgjMhhBBCCCHEwB58EMLC4Jvf9PZIRjUJzoQQQgghhBD9KyqC116Du+6C6Ghvj2ZUk+BMCCGEEEII0b8//QkMBvjud709klFPgjMhhBBCCCFE36qq4Nln4cYbISXF26MZ9SQ4E0IIIYQQQvTt0UehsxN++ENvj+SUIMGZEEIIIYQQ4mTNzfD3v8Pll8OECd4ezSlBgjMhhBBCCCHEyf7xD2hogPvv9/ZIThkSnAkhhBBCCCGsHnoIVqyAri545BFYuhRaW63bhdtJcCaEEEIIIYSwmj0brr4a/t//g6NH4bzzrF/Pnu3tkZ0S/Lw9ACGEEEIIIYSPWLoUXn0Vzj0XkpLgj3+E11+3bhduJzNnQgghhBBCiK9ERIDZDBUVcPfdEph5kARnQgghhBBCiK+0tEBMDPzsZ/DEE9Y1aMIjJDgTQgghhBBCWK1YYV1j9uab8NvfWlMar75aAjQPkeBMCCGEEEIIYbVp0/FrzJYutX69aZN3x3WKUFprj51s1qxZevPmzR47nxBCCCGEEEL4EqXUFq31rL4ek5kzIYQQQgghhPABEpwJIYQQQgghhA+Q4EwIIYQQQgghfIAEZ0IIIYQQQgjhAyQ4E0IIIYQQQggfIMGZEEIIIYQQQvgACc6EEEIIIYQQwgcMGpwppdKUUiuUUoVKqd1KqXt7PfZtpdQ+2/aH3DtUIYQQQgghhBi9HJk5MwHf11pPAuYB31JKTVZKLQUuBaZprXOBh904TjFKrT5Qw9KHV7K5uM7bQxFCCCGEEMKrBg3OtNblWuutts+bgUIgBbgb+IPWutP2WJU7BypGn7e2lHHz8xspqmnl7W1HvT0cIYQQQgghvGpIa86UUhlAPrABGA8sUkptUEqtUkrNdsP4xCiktebvnx/g+2/sYE5mDAuyY1l9oMbbwxJCCCGEEMKrHA7OlFJhwFvAd7XWTYAfEI011fGHwOtKKdXH8+5QSm1WSm2urq520bDFSGUyW/jpO7t4+JP9XJaXzD9vmcN5U5IoqWvjSG2rt4cnhBBCCCGE1zgUnCml/LEGZi9rrd+2bS4D3tZWGwELEHfic7XWT2utZ2mtZ8XHx7tq3GIEausycce/tvDKxhK+uSSbP1+TR4CfgdPGWd82X8jsmRBCCCGEOIU5Uq1RAc8ChVrrR3o99B/gDNs+44EAQK6uRZ+qmzu59un1rNxXxW8vm8KPzpuIfaI1My6UlKhgVh+QmVUhhBBCCHHq8nNgn4XADcBOpdR227afAs8BzymldgFdwE1aa+2WUYoR7XB1Czc/v4mq5g6evmEWZ01OPO5xpRSLcuL4X0E5JrMFP6O03xNCCCGEEKeeQYMzrfVq4KS1ZDZfd+1wxGiz5Ugdt72wGYNSvHrHfPLSovrcb1FOPK9uKmVHWQMzx8Z4dpBCCCGEEEL4AJmiEG7z0a4KrvvHBiKD/Xnr7gX9BmYAC8fFohR8KevOhBBCCCHEKUqCM+EWL6wt5u6XtzBpTARv3b2AjLjQAfePCglgWkqkBGdCCCGEEOKUJcGZcCmtNb//oJBf/nc3Z01K5JXb5xEbFujQcxflxLO9tIGmjm43j1IIIYQQQgjfI8GZcKnPCqt46ovDfH1eOk9+fSbBAUaHn7soJw6zRbPuUK0bRyiEEEIIIYRvkuBMuNQL64pJigjigYtzMRr6qyPTt/z0aEICjHwpJfWFEEIIIcQpSIIz4TKHq1v48kAN181Nd6ocfoCfgflZsayWdWdCCCGEEOIUJMGZcJmX1pfgb1RcOyfN6WOclhNHcW0bJbVtLhyZEEIIIYQQvk+CM+ESbV0m3thSynlTxpAQHuT0cRblxAPw5UFJbRRCCCGEEKcWCc6ES7y7/RjNHSZumDd2WMfJjg8lOTJIUhuFEEIIIcQpR4IzMWxaa15cd4SJSeHMzoge1rGUUpyWE8eagzWYLdpFIxRCCCGEEML3SXAmhm3LkXoKy5u4Yf5YlBpahca+LMqJp6nDREFZw/AHJ0a9qqYOzvnzKg5UNnt7KEII4TCt5QakEOJkEpyJYXtx3RHCA/24LC/FJcdbOC4OpeBLSW0UDlhzqIb9lS2s2i/rFIUQI0NBWQO5v/yYwvImbw9FCOFjJDgTw1Ld3MmHu8q5cmYqoYF+LjlmTGgAU5Ijpd+ZcMiO0kYA9hyTixwhxMjw0vojtHWZ+ayw0ttDEUL4GAnOxLC8tqmEbrPmhvnDKwRyokU5cWwraaC5o9ulxxWjjz39dbcEZ0KIEaC108T7BeUArD9c5+XRCCF8jQRnwmkms4WXN5Rw2rg4suPDXHrs03LiMFm0/OESA+o2W9h9rAk/g+JgdQsd3WZvD0kIIQb0wc5y2rrMTE+NZPOROrpMFm8PSQjhQyQ4E05bXlhFeWOHy2fNAGaOjSbY3+iV1MYPdpZLitwIsa+imU6ThXNyEzFbNPulKIgQwse9sbmMrLhQ7l6STUe3hR1S/EoI0YsEZ8Jp/1pfTHJkEGdOTHD5sQP9jMzLivF4vzOzRXPf69v548d7PXpe4ZyCMut6s6/NSQdk3ZkQwrcV1bSysbiOq2alMi8rFqVg/aFabw9LCOFDJDgTTjlY1cKag7VcNzcdP6N73kan5cRzuKaVsvo2txy/L8W1rXR0W9hYVEe3WVJNfF1BWQNRIf4szI4jPNBP1p0JIXzam1tKMSi4ckYqUSEBTEyKYH2RBGdCiK9IcCac8tL6I/gbFdfMTnfbOU7PiQPw6OzZ3nJrWlxrl5mdRxs9dl7hnB1ljUxNicRgUEwaE8EeKUvtFU0d3RTVtHp7GEL4NLNF8+aWMhaPjycxIgiAeVkxbC6up9Mk62WFEFYSnIkha+008daWMi6YOob48EC3nWdcQhiJEYEe7XdWWN6EwdZHe52kmvi09i4z+yubmZ4aBcDk5AgKy5uwWKSxq6c99NFernxirTTVFWIAXxyoprKpk6tnpfVsm58VS6fJ0tMSRAghJDgTQ/bOtqM0d5q40Q2FQHpTSrEoJ57VB2swe+iCe29FE9nxYUxMCpfgzMftKW/EbNFMS40ErMFZW5eZ4lqZwfG0DYfrqGvtoqKpw9tDEcJnvbG5lJjQAM6clNizbU5mDErJzUAhxFckOBNDorXmX+uOMHlMBDPSo91+vkU5cTS2d7PLQymGheXNTBwTwYLsODYV10mqiQ/bbrvTnJcWBcDkMREAktroYY3t3RyoagGsa1GFECera+3i0z2VXJaXQoDfV5deUSEBTEqKYP1hCc6EEFYSnIkh2VhUx77KZm6cPxallNvPt3Ccdd2ZJ0rqN7Z3c7ShnYlJ4czPtqaabCtpcPt5hXMKyhpIiggiwbZ2Y3xiOP5GJUVBPGxHaUPP5wcqJTgToi/vbj9Kt1mzbFbqSY/Nz45la0m99GkUQgASnIkhenH9ESKC/Lg0L8Uj54sLCyQ3OYIvPLDubF+FtRjI5DERzMmMwSCpJj6toKyxJ6URIMDPwLiEcCmn72FbS+pRCsIC/ThYLcGZEH15fXMZU1MimWSb4e9tnm3d2fZeNzqEEKcuCc6Ew6qaOvh4VwXLZqURHGD02HkX5cSzraSelk6TW89TaEuHmzgmnMhgf6amREpw5qMa263VAafbUhrtcpMjZObMw7aWNDAhMZyJSeEclJkzIU6y62gjheVNXN3HrBnAnAzrujNJbRRCgARnYghe2ViKyaL5+jz3FgI50aKcOLrNmg1u/sO1t6KJqBB/kuwljrNj2VZaT3uXpJr4mp225tO9Z87AOutZ09JJVbMUpvAEi0WzvaSe/PQoxiWEycyZEH14Y3MpAX4GLpned8ZJZIg/ucmy7kwIYTVocKaUSlNKrVBKFSqldiul7rVtf0ApdVQptd32cYH7hyu8pdts4d8bj3D6+Hgy40I9eu6ZY6MJ8je4vaT+nvJmJiaF96ylW5BtDQo3H6lz63nF0O0oawBgWkrUcdtzk21FQUb57FlFYwf1rV3eHgaHa1po6jCRnx7NuIQw6lq7qG3p9PawhPAZHd1m/rP9GOfmJhEZ4t/vfvMyY9la0iDrzoQQDs2cmYDva60nAfOAbymlJtse+7PWOs/28YHbRim87tM9lVQ2dXKDh2fNAIL8jczJjHVrURCzRbO/ovm49QCzM6LxMyjWejm1UWstvbtOsKO0gcy40JMudibZgrPRnNpYVt/G+X/9gh++ucPbQ2HrkQYAZtiCM5CKjUL0trywksb27n5TGu3mZcXSJUWohBA4EJxprcu11lttnzcDhYBnqkEIn/HiumJSooI5Y2KCV85/ek4ch6pbOdbQ7pbjl9S10d5tZlLSV8FZSIAfeWlRXg/Ofvnf3Vz3zHqvjsHXnFgMxC4iyJ+0mOBRW06/o9vMnf/aQn1bNxuK6rwetG8rrSciyI+suFByEsMBJLWxD0U1rVzx+Bq2HKn39lCEh72+uYzkyCAWZMcNuN9sWxEqSW0UQgxpzZlSKgPIBzbYNt2jlCpQSj2nlHJ/0yvhFfsrm1l/uI7r56VjNLi/fH5fFuXEA7DaTamNvYuB9LYgO5adZQ00dXS75byD0Vrz8e4KNhbV0ermgigjRVVTBxVNHUxLjerz8dwxkaMyrVFrzU/f2cnuY01cOG0MzR0mDnk5ENp6pIH89GgMBkVyZBAhAUYpp3+Csvo2rv/HeraWNPDpnkpvD0d40LGGdr48UM1VM1MH/dsZGexPbnIk6yQ4E+KU53BwppQKA94Cvqu1bgKeALKBPKAc+FM/z7tDKbVZKbW5utr9vaqE6/1r3RECjAaumZXmtTGMTwwjITyQL9yU2ri3vAmDsvbK6m1+dhwWDZuKvLPu7EhtG5VNnVg07PRQI25ft8NWDGR6HzNnAJOTIyiubXV7dU9Pe2FtMW9vPcp3z8rhvrPHA9Yy9t7S1NHN/qrmnmb0SinGJYR5PWD0JVVNHXz9mQ00d5pIjgxi9zH5GT6VvL21DK3hqpmO/e2clxXDdll3JsQpz6HgTCnljzUwe1lr/TaA1rpSa23WWluAfwBz+nqu1vpprfUsrfWs+Ph4V41beEhzRzdvby3jomljiA0L9No4lFKclhPHmoM1bknl2lPeTGZcKEH+x7cIyE+PIsDP4LXUxo29gsId0gMHsDafNhoUucl9B2e5yRFobQ24R4v1h2v5zf8KOWtSAt85I4esuFCiQvx71nx5w47SBrSGGWOjeraNiw+TmTObutYuvv7sBqqaO3nh1jmcPj6eXUcb0VrWj54KLBbN65vLmJ8VS3psiEPPmZ8dS5fZ4tWbLkII73OkWqMCngUKtdaP9No+ptdulwO7XD884W0bDtfR2mVmmRdnzexOz4mnvq3bLcUe9lY09dkcNMjfyKyx0V4LztYX1RIbGkBaTLA0KLXZUdZITkJYv732JtsrNo6S4Ky8sZ17/r2VsTEhPHJNHgaDQilFfloUW7x4EbetpAGlOK7X3LjEMCqaOmj2Uhqwr2jq6ObG5zZwpLaNZ26axYz0aHJTIqlv6+ZYo7R5OBVsLK6jpK6NZYMUAultVoZt3Zn01xTilObIzNlC4AbgjBPK5j+klNqplCoAlgLfc+dAhXeUN1kvJLLjPVs+vy8Lx1kXVLs6tbGpo5uy+vY+gzOwrjsrLG/ySunyDYfrmJMZQ15atMycYV13VVDWwPR+1psBJEUEER3iPyrWnXV0m7nrpa20d5l5+saZRAR9VZ1y5thoDla10NjmnUBoa0k9OQlhx41pXLxUbGzrMnHL85vYV9HMk1+f2VMIYortpoG9R58Y3V7fXEpYoB/nTxkz+M42EUH+TEmJZP1had8ixKnMkWqNq7XWSms9rXfZfK31DVrrqbbtl2ityz0xYOFZVU0dGBReTWm0iw8PZNKYCJcXBdlX0QzAxKTwPh+fnx0LeL6KVll9G0cb2pmbGUNeWhTHGjuoanL9XfetJfX85O2dFNe0uvzYrlZS10ZDW/dxszUnUsqa8jjSy+lrrfnFu7vYUdrAn66ezriE49+f9rVe20o9P3tmsWi2lTT0jMHuVC+n39Ft5vYXN7OtpJ6/XpvP0l7VbSeNicBoULLu7BTQ3NHNhzsruHh6cr8z/P2ZnxXL9tIG2rtk3ZkQp6ohVWsUp57Kpg7iwwO9VqXxRIty4th8pI62LtcVe7CvTepv5mxaahQhAUaPpzZusN09nZsVS16adX3VNjfMnv1zTTGvbCzh7D+v4vcfFvp0IQ17MZC+yuj3Njk5gn2VzXSbLZ4Yllu8vKGE1zeXcc/ScZzXx9336WlRGBRs9UJfpMM1rTS2d5OfHnXc9vSYEAKMhlMyOOs2W/jWy1tZc7CWP141nQumHv9/FuRvJCchjF1S2GfU+19BOe3d5iGlNNrNy5J1Z0Kc6iQ4EwOqbOokMSLI28PosSgnjm6z7glcXGFPeTMRQX6Miez7dfobDczJjPF4ieONRXVEBvszITGc3ORI/AzK5amNWms2FtWxKCeOS6an8NSqwyx9eCVvbinzeg+tvhSUNhDoZ2BCP7OcdrnJEXSZLCO2cuDm4jp+9d5ulkyI53u2yownCg30Y0JSBNu8cBFnP+eJM2d+RgOZcaGnXHBmtmi+99p2PttbxW8um8KVM/u+KM9NjmTXCJ/RFYN7fXMp4xLCyB9ghr8/szKiMRqU9DsT4hQmwZkYUGVTh08FZ7MzYgj0M7D6oOtSG+3FQKy1b/o2PyuWg1Utbkkr7M+GolpmZ8RgMCiC/I1MGhPh8qIgZfXtVDR1cPbkRP509XTe+eYCkqOC+cEbO7jiibU+V4SkoKyRyckR+BsH/tU12TYLOhLXnVU2dXD3y1tJjgrmr9fkDzhrPSM9im0lDZg9HEhvLWkgIsiPbNsas97GJYadUo2oLRbNj98q4P2Ccn56wURumDe2332npERQ3dzp0d8jwrMOVrWwtaSBq2elDvg3pT/hPevOJDgT4lQlwZkYkDU48/56M7sgfyOzMqJZ46LgzGLR7Kto7jel0c6+qN9Ts2eVTR0U17YxLyumZ9v0tEgKyhpdeiFuL9U/J9N6nvz0aN65ewEPL5vO0YZ2LntsDT94YwdVzd6/mDRbNLuONQ5YDMQuKz6MIH/DiFt31mWycPdLW2jpMPH0DbOIDPEfcP+ZY6Np6TRxoKrZQyO02lZST56t+fSJxsWHUVLXdkr0atJa8+v39/DGljLuPTOHO07PHnD/qSnWdFzpWTh6vbGlFKNBcXn+0FMa7eZlxYyIdWcHq5ppbD+1K7MK4Q4SnIl+dZrM1Ld1kxjuOzNnYK3auLei2SUBQ0ldG21d5n6LgdhNTo4gIsiPdR5ad2a/azo3M7ZnW16a9UL8sAtnJeypk+N7FZswGBRXzUxlxQ+WcOfiLN7dfpQzHl7FU6sO0WXy3hqug1UttHWZB11vBmA0KCYkRYy4mbNfvbebrSUN/HHZtEFTN+GrtEJP9jtr6TSxr7K535StnMQwtIbD1b5fYGa4/vjxPv65tpjbF2Xy3bNyBt3fOkMPu46OrPelcIzJbOHtrUdZOiGB+HDnb2rOy4ql26zZcsR3152ZzBYuf3wtD3+8z9tDEWLUkeBM9KuqqRPAp9IaAU6zldR3RaC0t2LgYiB2RoNiblasx4qCbCiqIzzQr6dnF+CWoiAbi+uYndH3DEhYoB8/OX8Sn3xvMXMzY/j9h3s59y9f8PneSpedfyjs6+0GqtTY2+QxEewpbxoxTX9f3VjCyxtKuHNxFhdNS3boOWNjQ4gJDfBo8YCvmk9H9/m4vWKjp2fzPO2xFQd5fOUhrp+bzk8vmORQCltooB9ZcaHskoqNo9Kq/dVUN3dytROFQHqbnRHj8+vODla30NxhYlOxlP0XwtX8vD0A4bsqbesiEvsplOEtucmRRAb7s+ZgDZfmpQzrWHvKmzEoGJ84+CzFguxYPt1TSWldG2kxIcM672A2HK7tWRhulxUXRniQHztKG7jaBU3Bq5o7KKpp5WtzBj5WZlwoz948m5X7qvj1+3u49Z+bOWdyIo9fPwO/QdZ+udKOsgbCA/3IjHWs515ucgSvbCzhaEM7qdHu/f/q7UBlM69sLKWpo5vQACPBAX6EBhgJCfQjJMBISICR0ADb54HWx8obO/jFu7tZlBPHj86d6PC5lFLMSI/yaHC21XY3P6+fIDkzLhSDgkOjuCjI7mON/PHjfVyen8JvLp0ypLVFU1Ii2VQkF7Sj0eubS4kLCziuhYIzwgL9mJoS6fEiVENRUGq9wbC/spnWThOhgXI5KYSryE+T6Fdlz8yZ76w5A+ss1vysWFYfqEFr7dSia7u95U1kxIU61Ium97ozdwZnNS2dHKpu5aqZxwdNBoNiemqUy4p0bCqyXmTPzogZZE+rJRMSWDgujkc/O8DfPj/Ilwdqhn0RMhQFZY1MTY3sc5avL/ZZxz3HmtwenFksmi8OVPPs6iK+PFBDgJ+B+LBAWrtMtHWa6XKgpH9qdDB/u3bgAiB9yU+PZnlhFfWtXUSHBjj7Ehy2taSecQlhRAb3vR4u0M/I2NhQDozi4OzTPZUoBT+/aLLD70e7qSmRvLv9GLUtnT7RP1K4Rk1LJ58VVnHLwoxBCxY5Yl5WLM98eZi2LhMhAb53qVZwtAEAi7b+brb3AxVCDJ/v/cQLn9Ezc+Zja84AFubE8dHuCopr28iMc2wmpS97K5p7FukPZnxiGLGhAaw/VOuSmav+2It0zM06OWianhbJk6sO095lHnJz0xNtKq4j2N/IFAdfP1jbCnz7zBxbD65SjwVnnSYzeyua+MZpWQ4/Z1JSBAYFu481cU5uklvG1dZl4u2tR3l+TRGHqltJCA/kB+eM52tz0o+78O42W2jrMtPWZbL+22mmtctEe5f137YuM6fnxDsVXPVuRn3GxESXvba+aK3ZVtrAOZMHPk92fNioLqf/+d4q8tOiiHHi/ys32frztutYE4vHx7t6aMJLXlxbjMmiXfa3YX52LE+uOsSWI/UsyvG998nOskYmJoWzt6KZbaX1EpwJ4UISnIl+VTZ3EOBnIGqQinHeYF93tuZgjdPBWXNHNyV1bQ6vD1BKMS/buu5suDN2A9lwuJaQAGOfQWNeWjRmi2b3sUZmOTjj1e95iuqYMTZqyHd5/Y0GLs9P4YV1xdS1djl1gTpUheXNdJs10x0oBmIXHGAkMy6UPeWuL75wrKGdF9cd4ZWNJTS2dzM1JZK/XJPHBVPHEOB38vfT32ggMtjQ72zTcExPi8RoUGw90uD24KyoppWGtu6T+pudKCcxjFX7q+g2W1wyi+BLqpo7KChr5Afn9N1/bjD2Gd1dRxslOBsl6lq7eHZ1ERdOHUOOAynyjpg11prWvu5Qrc8FZ10mC4XlzdyyMINOk4VtJQ3eHpIQo8ro+qspXKqy0VpG311ByHBkxIaQEhU8rJL6+yutBQsmJg1cDKS3BdmxVDRZ12q5y4aiOmaOje7zona6rSjIcFMbG9u72VvRxJwM5+52LpuVRrdZ859tR4c1DkcVlDUAMG2ITV0nJ0e6tGLjtpJ67vn3VhY9tIKnvzjEwnGxvHnXfP57z0Iuy0/pMzBzt5AAPyaNCffIurOttouw/oqB2I2LD6PbrDlS2+b2MXnayn3VAE4HwpHB/oyNDWG3FAUZNZ5adYj2bjPfO3vwip2OCg30Y1qqb/Y721fRTJfZwrTUKPLTrKn2I6XwkhAjgQRnol+VTZ0+mdII1lmsBbZZLGf7fu0ptwVnYxy/0zk/yxrMuGuhdn1rF3srmpmb2fesWEJ4EClRwcMOzrYcqUNrmJ058EV2fyYkhTM9NZLXN5d65I/y9tIG4sICSB5icZrc5AiONrTT0NY1rPMv31PJ5Y+v4fLH17JqXzW3Lsxg1Q+X8vj1M5mVEeP1Gxgz0qPZUdqAyYG1bcOxtaSe8EA/xvXRfLq3nETr46MxtXHF3irGRAYxaQi/N040JTlSep2NElVNHbywrpjL8lMYl+CaWTO7+VmxFJQ10tppculxh2uH/WZZaiT56VFUN3dytKHdu4MSYhSR4Ez0q7K5w+fK6Pd2Wk4cje3dTt+B3lveRHiQHylRwQ4/JzMulKSIILeV1N9YbG8K3f+MVl7a8IuCbCyqx9+oyE9zLjgD6+zZ3opmjzR6LiizNp8eahA02dYiYTipjfsrm7ntxc3UtXbxq0tyWffTM/nZhZPdXrFzKGakR9PaZWZfpXvL128raSAvPWrQIhjZ8fbgbHSV0+8yWfjyQA1LJiQMKyCfkhJJaV07jW3SwHeke2zFQUxmzb1num7WzG5eViwmi2azj/U721nWSHSIP6nRweTZ/oZIaqMQriPBmehXVVMnCT5WqbE3e/XENQedC5T2VjQzKSliSBdZ9hm79bZ1Z662saiOQD9DT/piX6anRVJW305NS+cwzlPL1JTIYRUVuXh6MoF+Bl7fXOr0MRzR0mniUHUL01Kjhvzc3hUbnfXc6iIC/Qy8882F3LQggzAfLBnd04zajRdILZ0m9lU0kT/IejOwpmSlRAWPupmzTcV1tHSaOGOYhXCmpFjfl5LaOLKV1bfx740lLJuVxlgHW3wMxcyx0fj5YL+zHWUNTLXdLJs4JpxAP4PLqggLISQ4E/1o6TTR0mny6Zmz+PBAJiaFO7XuzGLR7C1vcio1aV52LLWtXeyvdP2F54aiWvLTowj06z9ost+p3OHkH8P2LjM7jzYOODvniMhgf86bksR/th2lo9s8rGMNZGdZI1rDtAEC1v7EhQWSGBHodHBW29LJ29uOcuXMVI8UPnFWWkwwcWGBbHPjHfaC0gYsGmakRzm0f3ZC2Kgrp//53ioC/AwsHDe8n52vKjZKcDaSPfrZQZRSfOfMcW45fmigH9PTonwqOGvvMnOgqoVptoJV/kYD01Ij2ebBXouuYjJbnF4WIYQ7SXAm+mQvo5/kw8EZWGfPNhbXDTk4KKtvp7XLzMQxjhcD+eqc1guztYecL0bSl6aObvYca2LuIEHTlJQIjAbl9J3KbaX1dJs1c5xcb9bbsplpNHWY+HRP5bCP1R97MZDpTsycgfVC2NnUy5fWl9BlsnDrwkynnu8pnmhGvc32fnM0FXZcfBiHqluwjKKLnxV7q5ifFTvsvlMxoQGkRAWz66hrUoItFs1Fj37JEysPueR4YnBFNa28ubWM6+emMybS8dT4oZqXFUNBWSMtPrLubE95E2aLZlqvyrn56dHsOtZEp8l9N+nc4eFP9jP7d8tZfcC1f8uFGC4JzkSf7MGZL6c1ApyWE0uXycKWIc4Y2NcgTUwa+sxZanQI6TEhLl93trm4Dovuu79ZbyEBfoxPDHc6ONtUVI9SMHPs8ErxgzVQTYkKdmtqY0FZI6nRwU7PXE0eE8HB6pYhB/CdJjP/Wn+EJRPiGZcwcAEMXzBjbDTFtW3UDiPddSBbj9STHR9KpIOtNXISw+jotoyaQgFFNa0crmkddkqj3ZSUCHa5qCjIjrIGdh1t4q+f7aeiscMlxxQD++vy/QQYDXxziXtmzezmZcVitmg229Yje1tP5dxeN8vy0qJ6yuuPJFuO1FHX2sWNz23giZWHpOKk8BkSnIk+VTVZL/B8Oa0RrIUz/AxqyKmNeyuaUMpaddAZ87NiWX/Y+UqRfdlwuM7hIh15aVHsKG1walZiY3EtE5MiXNJzy2BQXDUzldUHazjmpovw7aUNTs+agXXdmdmie1onOOq/249R09LJbUNofO1N7lx3Zm8+PVh/s97sAe1oWXf2+d4qANcFZ8mRHK5ppblj+EVBlhdWYjQoLBb40yf7XDA6MZB9Fc28u+MYNy/MID7cvTcwrW1VlNsqBA/VzrJGEsIDSepVOTffluq8fYSlNhbVtHHhtDFcMHUMD360l2++vNVnZijFqU2CM9GnCtvMma8HZ2GBfuSnRw09OCtvJiM21On0pAXjYmnuMLm0h9aGojqmp0Y5VKQjLy2Spg4TRbVD67fWbbaw9UhDv6X6nXHVzFS0hre2lLnsmHa1LdYSzQMVSBlMrhNFQbTWPLu6iIlJ4cNeX+Qp01Ij8TMot6Q2Fte2Udfa5VAxELtx8a4Lzkrr2njoo700uSCQcdaKvVWMSwhzWZXOKbY1O66YbVi+p4rZGdHctGAsb24to9ANjdfFV/786X7CAvy483T337gJCfBjemoU6w/7xszZjrKG41IaAcZEBpMUEdST+jwSNHd0U9PSSW5yBI9+LZ//d+EkPtlTyaV/Xz1qbiiJkUuCM9GnyqYOwgL9fLIy3YkWZMdRcLRxSGWpCyucKwZiZ+935qp1Z62dJnYebRw0pdHO2aIgu4420t5tZnaG64KztJgQFmTH8saWMpevLyoos6Z9OVOp0S4tOoSwQL8hldNfe6iWvRXN3Hpaptd7mDkqyN/I5OQItrqhKIh9sf+MsVEOPyc6NIC4sAAOuKCc/j++PMzjKw+x7Il1bpuhHUhLp4kNRbUumzUDyLVVbBxuamNJbRv7Kps5a1Ii9yzNISLIn99/uNcVQxR92FnWyEe7K/jGokyiQjxTJGheViy7jja6ZJZ1OJo7ujlc08rUlKiTHstPjxpR5fSLa9oAyIwNRSnFbYuyeOkbc2lo6+bSv6/mo13lXh6hOJVJcCb65Otl9Hs7LScOrWHdYccCpdZOE0dq25iYNPRiIHYJEUFkx4e6bN3ZliP1mC160GIgduMSwggNMA553dnGIuvdV2ebT/dn2axUSuraevq0ucqOsgaU+mqWwRkGg2LymIghFQV55svDxIUFcMn0ZKfP6w0z0qMpKGt0eTPqrSX1hAX6kTPEJrvjEsKGfRdaa81nhVVMSAznWEM7Vzy+1qUz1o5YfaCGbrN2aXCWEB5EYkTgsIOz5YXWYjxnT04kMsSfe5aO44v91Xx5oNoVwxQn+NOn+4gK8ecbp3muSND8bPu6M++mDe4+1tRv5dy8tChK6ty35tXV7FknGXFftUCYnx3L+985jZzEcO56aSt/+HCvy3+XCuEICc5EnyqbOkgM9+2URru8tChCA4wO9zvbW2G9kz/JiUqNvS3IjmNTcR3dLvjlvaGoFqNBMXOsY0GT0aCYmho55OBsU3EdmXGhJLj4//a83DGEB/q5vDBIQVkj4+LDhj2DOzk5gsLyJodm9g5WtbBiXzVfnzeWIH/n+8B5w4yx0bR3m3ve466y9UgDeWlRGAdpPn2icbZy+sNZaF9Y3szRhnZuWZjBG3fPB+Dqp9Z5NPhYsbeK8CA/h38+HTUlOXLY5fSXF1aSkxDW02frxgVjSY0O5vcf7B1VlTJ9webiOlbuq+auxdmEBw1/za6jZqRb1515u6R+TzGQPm6W2VOeR0q/s+IaW3B2Qn+6MZHBvHbnPK6bm86Tqw5x0/MbqWvt8sYQxSlMgjPRp4qmDhJHyMyZv9HA3KxYh9ed7a1wvlJjbwuyY2nrMvf8wRqODYfrmJoSSegQgpC8tGgKy5scrkJosWg2Fdczx4UpjXbBAUYump7MBzvLXZZ6o7WmoKxhWCmNdpPHRNDWZabYgTV6z68pIsDPwNfnjR32eT3N3oNsqNVLB9LaaWJvRVPPov+hyEkIp7nDRHWz83fTP7PNDJ0xKYGJSRG8860FpEYHc8vzm3jDzQ3Qwfpz8/m+Kk4fH4+/0bV/MnNTIjlY1UJ7l3MlyBvbutlQVMdZkxN7tgX6GfnhuRPYU97EO9uOumqoI96/1h/h0r+vdro/pNaahz/ZR1xYIDfO9+zvhuAAI/lp0T4QnDWSEhVMbNjJ1wZTUyIxGtSISW0srmklKSKozzXegX5G/u/yqTx01TQ2Fddz8aOrXfJ3XghHSXAmTqK1pqqpk8TIkTFzBrBwXByHa1odKtu9t7yZ8EA/UqOH15tmrn3dmYMzdv1p7zKzo2zoRTry0qLoNmuH11Ltr2qmsb2b2S4sBtLb1bNS6ei28L8C1+TqH2vsoKala1jFQOwm24uCDPK9qm/t4q2tZVyel0JcHxcgvi4lKpiE8ECXFgUpKGu0NZ8e+qyRKyo2Lt9bxfS0qJ7Z3jGRwbx+13zmZcXywzcL+OvyA24tgb37WBPVzZ2cMcF1KY12U5IjsGjrGlhnrNxfhdmiOWtS4nHbL56WzLTUSP70yT63NogfKd7dfpSf/2cXe8qbuPKJtfzji8NDnlVce6iW9YfruGdp9rD73DljXlYMO482erUoTkFZ40nFQOyCA4xMTApnW+nIqNhYVNtKRtzAxX2unpXGW3ctAOCqJ9fx+ib33wwSAiQ4E31oaOumy2wZMWmNQE9FPUdmzwrLm5g4JnzYhR5iQgOYNCZi2CWO7U2hHS0GYpeXFgXAdgfvVNrXm7myUuOJ48lJCHNZaqP9DrcrZs5yEsPwM6hB1539e2MJHd0WbvXgehJXsjajjnZpcGY/lv39NhT24OyAk8FZVVMHO0obOOuEtV4RQf48d/NsrpyRyp+X7+f+twpckl7cl8/3VqEULJkQ7/Jj29dS7nZy3dlnhVXEhgac9H9jMCh+esEkjjV28NyaouEOc0T78kA1P3hjB3MzY1hz/xmcNSmR331QyK0vbKLGwfVR9lmz5MggvjY33c0j7tu8rFgsGtYOsTKxqzS0dVFS1zbg7+P89Ch2lDa6tMWMuxTXtJIZFzroflNTI3nv26cxJyOGH71VwG/f3+OB0YlTnQRn4iSVzSOjjH5vExLDiQsLGPQPl9aavRXNwyoG0tuC7Fg2H6kf1t3pDYfrMCiYNcR0w6TIIJIigtjhYLrFxqI6xkQGDXvGsD9KKZbNSmVrSYNLShHvKGvA36iGVVXTLtDPSE5i+ICFJLpMFl5YW8yinDin+9/5gpljoymtax9WKmFv20rqyYoLJdqJJuAJ4YGEB/k5/X6w9xbrnbZnF+Bn4OFl0/jOmTm8vrmMW/+5yS3V7D7fV0VeWlSfqVzDNSYyiNjQAHY6EZx1my2s2FfFGRMT+lwLOC8rlrMmJfDEikMjpkiDq+0sa+Suf20hOz6Mp2+cRUJEEE98fQa/uWwKaw/Vcv5fv3Toht7ne6vYVtLAt8/MIdDPO+tQZ2fGkBQRxEvrS7xy/q8q5/afyZCfFk1Lp4lD1b5dir6xrZv6tu6T1pv1JyY0gBduncOleck8u6ZIZqOF2w0anCml0pRSK5RShUqp3Uqpe094/AdKKa2UinPfMIUnVTTag7ORk9allGLhuDhWH6wdMMWprL6dlk7TsIuB2M3PiqXLZBnWTMWGolomJ0cQ4cQC8+lpjhUF0VqzsaiO2Rkxbi0Nf3l+KkaD4o0tw589KyhtZNKYCJddDE0eEzFgWuP7Bceoau70aBU2d7CXu3fF7JnWmm0lDUPqb9abUspWFMS5AiXLC6tIiQrud32oUor7zh7Pg1dOZe2hWq5+aj2Vth6NrlDd3ElBWYNbUhrBOv7clEh2HR16WuOmojqaO0x9Bq529583kdYuE49+fnA4wxyRimtaufn5jUSFWC+sI4Otv1+VUtwwbyzvfmshkcH+fP3ZDfzx4/6r8lksmj99sp+xsSFcNTPVky/hOP5GAzcuGMvqgzXsc3HBH0fYbyAMVDnXvi51m483o+6rUuNgjAbFGRMT0BqO1La5a2hCAI7NnJmA72utJwHzgG8ppSaDNXADzga8cytHuEVVk/Uu60iaOQPrurOalk72V/Z/187enHWiC2ZjAOZkxWBQsM7JkvqdJjPbShocLqF/ory0aI7UtlE/SDWpkro2qpo7meOmlEa7+PBAlk5I4O2tR4dVgthi0ew62v/6BmfkJkdQ3dxJVfPJF+/2ptM5CWEsHu/69DVPyk2OxN+oXNLvrKSujdrWriH1NztRTkIYB6uG1iwdoKPbzOqD1Zw1KWHQGwrXzE7nuZtnU1LbyuWPrWF/pWsuXlfuq0JrWOrCEvonmpIcwf7KZjpNQ7sb/2lhJQF+Bhbl9H9fNCcxnGtmp/PS+iM91el8jdaag1UtPL+miFc2lrikdHlVcwc3PrcRi9a8+I05ff4tmzQmgv/es5CrZ6bx2IpDXPP0esrqT77o/mh3BXvKm/juWTkuLwgzVF+bnU6Qv4HnVns+VbWgrIHMuNCeILcv9sd9vSiI/WchawjBGUB2vDVN29dnBsXIN+hvGq11udZ6q+3zZqAQSLE9/GfgR4DvJxgLh9nvPI+UPmd2C8dZL1JWD5CmsreiGaWsaZCuEBHkz7ysWP65ppiDTswO7ChtpNNkcTpo6ll3Nkhq4wbbejN3B2dgLQxS3dzJqv3Olzo/XNNKc6fJJevN7HqKgvSR2rihqI7dx5pGVNPp/gT5G8lNjnTJzJn9GM4UA7EblxBGTUsnDW1DK0e95mANHd0WzpzU/8xQb4vHx/PanfMxWTRXPrHWJQ3iV+yrIjEikNxk18y092VKSiQmi2Z/heMXfFprlhdWctq4uEGLU3zv7BwC/Aw89LHvNKZu6ujmo13l/OTtnZz24ArOemQVv3pvDz95eydXPrGWA8MIrps7urnl+U1UN3fy3M2zey6o+xIS4MeDV03jb1/LZ19FMxf89cvjmg+bLZpHPt1PTkIYl0xP6fc4nhIdGsAVM1J5Z/tRj6eqFpQ1MnWQfpNKKfLSony+nH5RTStKQVrMwAVBTmRfo3ZYgjPhZkO6DaSUygDygQ1KqUuAo1rrHe4YmPCeyuYOokP8vZZb76yUqGAy40IHXHdWWN7E2JiQIZWsH8wfl00n0N/AN17YPOgM1ok22IqJOFvefmpqJEoNXhRkU1Ed0SH+jBvgQsVVlk5MIC4sYFiFQexli6e7MDizp7L2VRTkmS+LiAkN4PJ871+AuYK9GXWXaXizEFuPNBAaYGT8MG5m2BtXD3Xd2fLCSkIDjEMqlDMlJZJ3vrWQMZFB3PTcxmGVv+42W/hyfw1LJww+czcc9gveoaw721/ZQmld+0lVGvuSEB7EHadn8cHOCpe2WBgKi0Wzo7SBRz87wFVPrCX/159y10tbeW/HMXKTI/jd5VP48kdL+ft1+ZTWt3Ph31bz+MqDQ55F6zSZufNfW9hX0czjX5/hcDruJdOT+d93TiMzLpS7XtrK//vPTjq6zby7/SgHq1q47+zxQ+7x5y63Lsygy2Th3xs8l7BU1dxBeWOHQ5kM+elR7KtspqXT5IGROae4tpXkyOAh97EMDfRjTGQQh6t9cxZajB4OB2dKqTDgLeC7WFMdfwb8woHn3aGU2qyU2lxd7bmmocJ5FY2dIy6l0W7huFjWH67tt3KbK4uB2KVEBfPUDTMpb+jgW//eOqSqcRuL65iYFO5UsQWAsEA/xieED1oUZGNxHbMyYjB44ALD32jg8vwUPiuscvru7o7SBkICjD3V/lwhMtiftJjgk9adFde08tneSr4+N33ENZ3uz8yx0XSaLD1pvM7aVlrPdCeaT/fmTMVGi0XzWWEViyfED/kmUUpUMK/fOZ/Y0EC+//qOIacL2m0qrqO508QZbkxpBEiNDiYiyG9IzaiX23q/nTnJsbHdviiL+PBA/u+DQre2HeituaObN7eU8e1XtjHzt59y6WNreGT5frrMFu5enM3rd85n2y/O5ukbZ3H93LGkxYRw0bRkPvne6Zw1OYGHPtrHlU+sdThF1WLR3Pf6DtYequXBK6exdIjrBMfGhvLGXQu44/QsXlpfwmWPreGRT/eTmxzBublJznwL3GJcQjiLx8fz4vojw7754qidPcVAogbdNz89Gq2hwIdnzxyt1NiXrPhQDvloirAYPRwKzpRS/lgDs5e11m8D2UAmsEMpVQykAluVUif9BtNaP621nqW1nhUfP7LXcpwqqpo7Rmxwdtq4OFq7zH02Gm3rMlFc2+qyYiC9zRwbw+8ut1YA+42DpXa7zRa2HKkfdmn76WmR7Cht6Peiq7KpgyO1bW4rod+XZbPSMFm0001wd5Q1MsXW1NSVJo+JOCmt8fk1RfgbDHzdw41l3ckVRUHaukwUljcPK6URrMFSkL9hSDNnu441UtXcyZkTHUtpPFFUSAB/uHIqB6pa+MvyA04d4/PCKgKMhp50aXdRSjElJXJI5fQ/3VPJ9NRIh39Phwb6cd/Z49lypJ6Pd1c6O9Qhueff2/jBGztYd6iWpRMT+Ou1eWz+2Vn8957T+MG5E5iTGdPnGq64sEAev34mj103g9L6di7622oeWzHwLJrWml+/v4f/FZTzk/MncqWThTsC/Az89IJJPH/LbKqbOymrb+f754z3yE2tobj1tEyqmzt5v+CYR85XUNaIQeFQem+eLYDb5qPBmdaaoprBe5z1Jzs+jMNVLR67ySFOTY5Ua1TAs0Ch1voRAK31Tq11gtY6Q2udAZQBM7TWFW4drfCIyqaOEVWpsbd5WbEoBWv6aAy9r6IZrV1XDOREy2alcfuiTF5cd4SX1h8ZdP+dRxtp6zL3NLN2Vl5aNPVt3ZTU9V1Byt7fbLaTqZPOGJ8YzvS0KN7YXDbkP2JdJgt7ypuY7sJiIHa5yZEU17b2pNw0tnXz+uYyLp6e3NPkeDQYExnMmMigYaWxFZRZ+xXZK7A5y2BQZMeHDSk4W76nEoMaXiGOJRMSuHZ2Gk+tOuRUkPr5virmZsW4NAW6P1NSIimsaHZo1r2quYPtpQ0OpTT2tmxmKjkJYTz40V639YSzq2np5MsD1dxxehabfnYmj1ydx6V5KUNqR3DhtDF8+r3TOTs3kT9+vI8rnljbb5XCJ1Yd4p9ri/nGaZnccXrWsMe/dEICH967iKdumDnkGThPOD0njnEJYTy7usgjQcLOo42MSwhz6GchMsSfrPhQny0KUt/WTVOHyeEy+ifKiguludNE9SnankJ4hiMzZwuBG4AzlFLbbR8XuHlcwkvMFk1188hNa4wKCWBqSmSfvWv22v6wT3JxWmNvPz5/EksmxPPAf3cPWpBgw2HXBE09RUH6uVO5qbiOkACjW4sa9OXqWansq2we0lqa2pZO/r7iIF0mi0uLgdhNHhOB1rCvwjp79sqmEtq7zSO+fH5fZqRHD+sCyR7QOFtGv7dxCUMMzgqrmDk2mhgn033tfnbhJJIigvjBGzuG1JvoSG0rh6tb3Z7SaDclJZIuk4UDA1Satfu8sP/ebwPxMxr48fkTKapp5ZWN7l2v9MnuSiwaLs9PGdZ6vdiwQB67bgaPXz+Do/XtXPzoybNor28u5aGP9nFpXjI/u2CSy9YHJkQEcW5ukk8WCFJKcevCTHYfa2JTsXvXEWqtKShrYGpKlMPPyU+LZntpvU/OLhXZUhKdT2u0pmnLujPhTo5Ua1yttVZa62la6zzbxwcn7JOhtfZO23rhUjUtnVi09Q/TSLVwXBxbS+ppPWFBcmF5E2GBfm5rwgzWXih/+1o+Y2ND+ObLWzlS2/8v8A1FtWTHhxIfPrxZyvGJYQT7G/u9EN9YVMfMsdH4ebgM9MXTkwn0MwxaGMRi0Xyxv5pvvryFeb//jL99doB5WTEsmeD6NGh7xcbdx5roNlubTi/Iju3ZPprkp0dxtKHd6b5f20qspbOHGyCBtZz+0Yb2k34m+3KsoZ095U0OV2kcSHiQPw9dNZ3D1a386ZN9Dj/P3vzaY8GZ7f3nyLqz5YWVA/Z+G8gZExOYlxXDX5cfcEvDbrsPd5WTERvi1Bj7csHUMXzSaxbt8sfXsreiic8KK/nJ2ztZlBPHH6+a7nPph+50eX4KUSH+bi+rX97YQU1LF9PTHM9kyE+Poqali7L6djeOzDn2MvpD6XHWW1a89XlSTl+4k3ebdgifY7+QSxrBwdlp4+IwWXRPOp/d3vJmJiSFu/0PeESQP8/eNBut4bYXNvd5EWS2aDYX1w87pRGsd8SnpkT2WRSkoa2LvRXNTleDHI6IIH/On5LEf7cf63PWoqKxg0c/O8Dpf1zBjc9tZN2hWm6cn8En3zudV++YT7gTTbkHMyYyiOgQf/Yca+KDneWUN3Zw26LRN2sGMGOsdcbLmX5n1ubT9cNOabSzFwVx5ILmM1uxi6Gm7fXntJw4rp+bzjOri9hcXDf4E7AGZ9nxoYx1MvVpqDJiQwkNMA667qy9y8yXB2o4e3KiUzM6Sil+dsFkalu7eHLVIWeHO6D61i7WHqrl/KljXDrr1HsW7ViDdRbtmy9vZfKYCJ74+kwC/E6ty5ngACPXzUnnkz0VlPaT0u4K9oqng5XR782ezeGL686Ka1sxKEiLdm7NmbXKo0FmzoRbnVq/zcSgKnsaUI/MNWdgrVQX4Gc4LrVRa01hRROT3LTe7EQZcaE8fv0MDte08t1Xt2O2HJ/esedYEy2dJpcV6chLj2L3saaTqndttqW8zPZgMZDels1Ko6nDxMe7rctRTWYLy/dUctsLm1jwh8/406f7SY8J4W9fy2f9T8/k5xdNHlbZ9sEopZicHMHuY008t7qIrPhQloz3vTUlrpCbHEGAn8Gp9Valde3UtHS5JKURrBXmwLFy+ssLq8iIDSE73nWB0U8umERKVDA/eGMH7V0Dpze2dprYcLjOY7NmYF2Xl5scya4+2jz0tvpgDZ0mi8NVGvsyNTWSS/OSeebLIsobXT+z8WlhJWaL5oIpY1x+bLDOon1632IumDqG8YnhPH/LbMI8sC7QF904PwODUvxzbbHbzlFQ1oifQQ2pkNbEpHCC/A1sc0GvRVcrqmklNTrE6WDeYFBkxoVJrzPhVhKciePYZ85G6pozsDbhnZ0RfVwz6qMN7TR3mFxeRn8gC8fF8cuLJ/PZ3qqTGsBuKLIWLJnngpkzsPYD6+qjdPrG4joCjIaeO5meNj8rlpSoYF5cd4Q/fbKPhQ9+zm0vbmZ7aSN3Ls5m5Q+W8O/b53HJ9GSP9dWzXgQ3sqOskVsWZo7aVKhAPyNTUyLZ6sS6s22l9ubTUS4Zy9jYEPwMatBy+i2dJtYdquWsSc7NDPUnLNCPh66aRnFt26DNmFcfrKHLbBlWMRJn5KZYK4meeCOnt88KKwkL9GNu5vB+b/zgnAloDX///OCwjtOXj3ZVkBodzJQU9/2ujQkN4K/X5vPet08jbghFRkabpMggLpw2htc2lbotTbWgrJEJSeFDajPiZzQwLTXKJ4uCFNe2Op3SaJcVH8phKacv3EiCM3GcyqYODApiXbDOxJsWjotjb0Uz1c3WmcC95bZiIG4ooz+QG+aN5fq56Ty16jBvby3r2b7+cB0ZsSEuC4LzbBfRJ6Y2biyqY1pqpNf6dxkMimWzUtlypJ6/rzjI5DERPPn1maz7yRncf97EYf+RdIa9KEhUiD9XzhgdTaf7MyM9ip1ljUPq9dXc0c07244SEmBkgotmMf2NBjLjQgedOVt9oJous8Ul681OtCA7jpvmj+X5NcWsP3xyNVe7FXurCA/082h1U7CmjbV3m/u9I2+xaJbber8NN4UvLSaES/OS+c+2ow6tA3RUU0c3Xx6o5vwpvllIYzS6ZWEmLZ0m3txSNvjOQ2QvBuJI8+kT5adHsedYk9N9Bt1Ba01xTRuZsc6lNNplx4VSWtfmU69NjC4SnInjVDZ1EB8e6PHiEa52mq03kb1ion1GaYKLFqg7SinFA5fkMi8rhh+/tZOtJfVYLJpNxXXMcWGqYXJkEHFhgWzvdaeyrcvErqONLj2PM25blMXvLp/CmvvP4Plb5nDelKQ++xt5yhTb2onr5qQTEjC606FmpEfTZbawe5B0ObuPd1dw9iNfsGp/NXcvznbp74FxCWEcGiQ4W15YRUSQH7MyXJNOeaL7z59IekwIP3qzoM+gRGvNin1VLBof5/H3qP192V9RkB1lDdS0dHK2iwLXa+ek0dpl5n8F5S45Hlhn9rrNmvPclNIoTpaXFsXMsdH8c23xgLOuziipa6Opw+RU5dz8tCi6zJaT+kp6U01LFy2dpmHfFMxOCMOi4Uit+9b6uUtju/sKAQnXGdlX4MLlKptGbhn93nKTI4kI8mOtrd/Z3opm0mNCvLI2wd9o4InrZ5IUGcQdL25h5f4qGtu7h52a1JtSiry0KLb3mjnbVtKAyaK9tt7MLizQj+vnjiU5yn1VModiXEIYz908i2+fkePtobido0VByhvbuePFzdz5ry1Ehfjz1t0L+PaZrv3+jEsIo7i2td+7zWaL5vO9VSydmOC2wCgkwI+Hl02ntL6NBz86Ob1x97EmKps6OcPJ5tfDkRUXSpC/gV1H+76YXV5YidGgXFbFdEZ6NOMSwnhlk+vK6n+4s4KkiCDyvZRGfaq6dWEmR2rbeorpuMqOMuuNgqEUA7Gzr1f1pdTGomFWarTLirOX0x9Z6852ljWS/+tP2DBA5oDwDRKcieNUNnWMima8RoNiQXYcqw/WeLwYSF+iQwN45qZZdHSbueulrQDMzXJt0JSfHsXh6lYa26x3xjYU1WFQ1gIp4nhnTEwkOMA7qZ6elBgRREpUcL8XSGaL5p9rijj7kS/44kA19583kfe+fRozXFQIpLdxtrvNxTV9323eXlpPXWuXW1Iae5uTGcMtC6zN4tee0A/x871VKIVb2jgMxs9oYNKYCHb1U7Fx+Z4qZmdEExXimpRzpRTXzk5jW0lDv82dh6K108Sq/dWcNyVp1K7j9FXn5iaSEhXMc2tcW1Z/Z1kDAX4GpzJOEiOCSI4M8qmKjfYy+pnDrMKa2VNOf2StO1u1vwqLhnd3HPP2UMQgJDgTx6ls6hjRlRp7W5gTx9GGdvZWNFNc0+rRYiB9GZ8Yzl+vzaPbbCElKphUJ0v59me6LfXEvu5sU1Edk8ZEEOGGkvRi5JgxNrrPio17jjVxxRNreeC9PeSnR/HJdxdz95Jst81a2cvpH6jqOxBYXliFn0GxeLz7A6MfnjuBzLhQfvhmAS290hs/31vFtNQorxWZmJoSye5jTVhOSE8rqW1jX2Wzy9oL2F0xIxV/o+K1TQP3InTEin1VdJosnD8lyQUjE0PhZzRw04KxrD9cx24HeuU5akdZI5PHRDj9OyEvPYrtpb5TsbGothU/gxp2r9OwQD+SIoJGXK+zDbb2Qp/srnB5CqxwLQnORI9Ok5n6tu4R3eOsN/u6s+fXFGHRni8G0pczJyXyl2vy+NmFk1x+7GlpkSgFO0ob6DJZ2FpS7/X1ZsL7ZqRHUd7YwbEGa9n09i4zv/+wkIv/vpqyujb+em0eL946h/RhLpIfTHZ8GEr1X05/+Z5K5mTGEBns/psJwQFGHl42jWON7fzfB4UA1LZ0sqOsgTMmeK+1wpTkSFo6TRw5oW/Vclu62tmTXRucxYQGcE5uEm9vK+uzF+FQfLizgriwAGZ5oaeigGtmpRMSYOT5NcUuOZ7Zotl9tJHpThQDsctPi6a0rr2nMJe3Fde0khYT4pK1tFnxoSOq15nJbGHLkXrGRAZR09LFFif6XwrPkeBM9Kjq6XE2OoKzjNgQkiOD+M826xS+N9Mae7s0L4ULprp+wXxEkD/Z8WFsL21g59FGOk0WrzSfFr7FnqK4taSeVfurOecvq3hq1WGumpHKZ99fzKV5KR6prBfkbyQtOqTPcvpHals5UNXi9pTG3maOjeH2RVn8e0MJX+yvZuW+arTGo/3NTpRrKz9/Ymrj8sJKchLC3NIU+9rZaTS0dfPJHufXK7V3mVmxr4pzc5MwSkqjV0SG+HPVzFT+u/2YS4KhopoWWrvMTHWiGIidvYn9dh9JbSyqaSXDRTehrMFZC1qPjBmo3ceaaOsyc++ZOQT4GfhoV4W3hyQGIMGZ6FHVbO1xljBK0hqVUiwcF0eX2UJogPXCcLSbnhrFjrIGNtrSF7xdDER436QxEQT6Gfj1e3u46bmN+BsNvHbHPB68aprL1i85Kqefio3LC6sAOGsYzZWdcd/Z48mOD+XHbxXw3x3HSAgPJDfZezPsOQnhBBgNx1VsbGzrZkNRHWe5eNbMbmF2HKnRwbw2jMIgq/ZX09ZldstNJ+G4WxZm0mW28NL6I8M+1o5S63vQmTL6dlNSIvEzKJ9oRq215khtG5m2Yh7DlRUXRlOHiZqWLpccz93s1wRnTEzg9Jw4Pt5dMWICy1ORBGeiR0Xj6Jo5Azgtx5raOCEp/JRYpJ6XHkVNSxf/2XaU7PjQU7pBq7AK8DMwOyOGhrZuvntWDh/eu4i5Lmp+PlTjEsI4XNOKyWw5bvtnbpwZGkiQv5GHl02noqmDVfurWTohwau/JwL8DEwcE87uXhUbV+6vwmzRLl9vZmcwKK6Zlcaag7WUOFka/KNd5USH+DNXbgZ5VWZcKGdOTODlDUeGnaa682gjIQFGsuOdD2aC/I1MGhPhEzNnlU2dtHebyYxzzU3a7ISRVbFxQ1EdmXGhJEQEcW5uEkcb2tnZT/Eh4X0SnIkelU3WmbPRsuYMrI1nASb6wHozT8izpaDsq2yW9Waix1+vzeOLHy3lu2eNJ9DPe1UqxyWE0WWyUFrf3rOtsb2bjUV1Hk1p7C0/PZo7F2cDcIaHZ+76kpscyc6jjT13tZcXVhEXFkCeG8vTXzUrFYOC1zYPffas02RmeWEV50xOGvH9MUeDW0/LpKali/eGWZFvR1kDU5Ijh52mmp8exY7SBq8XoHBVGX27LNtxDtf4/rqznt6qtmUOZ01KxGhQktrow+Q3qehR2dxBgNFAVMjoqe4XHx7Iw8umc9tpmd4eikdMHBNOoJ/1x1qCM2EXGxZIUqT3b7rYKzb2Lgqyan81Jovm7MneC4zuO3s8T90w02UNnodjSkoEje3dlNW302WysHJfFUsnJLh1LdeYyGCWTEjgjc1lJ81qDmb1gRpaOk2cN1WqNPqCBdmxTEwK57k1xU6nrXXbmkcPJ6XRLj89itYuc79VWj2luNYWnLlodj4lKphAP8OImDnbV9lMY3t3zzVBdGgA87Ni+WiXpDb6KgnORI+qpk4SIgI9UhzAk66amUrWMFIzRhJ/o4Eptoahs6UYiPAx2X2U0/+ssJKY0ADy0rzXj8/faODcXN/ozzUl2frzu/tYI5uK62juMLltvVlv185Oo6q5k5X7qof0vA93VRAe5MdCW5aC8C6lFLcuzKSwvIl1TjYb3l/ZTKfJwlRXBGe2n+vtXm5GXVzTSoDRQHLU8Mro2xkMisy40BHR68y+3qz3DdtzpyRxuKa1zwJNwvskOBM9rD3OvH93XQzPOZMTmTk22uV91IQYroggf5IignpmzrrNFlbsreKMie6dGRpJJiSF42dQ7DraxPLCSgL8DCzKcX/gs3RiAvHhgbw6hJ5n3WYLn+6p5OxJiQT4yeWEr7gkL5mY0ACeW13s1PN3llnXIk0fRqVGu7GxIUSH+LPNy8FZUU0r6bEhLv09kx0fNiJmzjYW1ZEcGXRcf7dzJyeiFJLa6KPkt6noUTGKGlCfyu5cnM1bdy/w9jCE6NO4hLCe4GxzcT1NHSaPV2n0ZUH+RnISw9l5tJHlhZWcNi6OkAA/t5/X32jgqpmprNhX1bP+eDDrDtXS2N7N+VKl0acE+Rv5+tx0Pttb6VTwUHC0kfAgP8a6oOy8Uoq8tCi2ebkZdXFtq8tSGu2y4kMprW+n0zS84ivupLVmQ1EdczJjjsuKSogIYmZ6NB9KcOaTJDgTPaqaOmXmTAjhVvbgTGvNZ4WVBBgNLMqJ9/awfMqU5AjWHaqltK7dbVUa+3LNrDTMFs2bW8oc2v/DXeWEBhg9MrMnhubr88YS4m/k5uc3DbkKZ0FZA9NSI122xCE/PZoDVS00d3S75HhDZbHYy+i7NpskKz4Us0U7XeXUE4pqWqlp6eyzQu95U5IoLG/iSK3vp2aeaiQ4EwC0dJpo6TRJcCaEcKtxCWG0dZk51tjB8sJK5mfHEhro/pmhkWRKSiRdtsIcZ3pwVjEjLpT5WbG8tqkUyyDV9UxmC5/sruSMSYkE+XuvAqjoW0JEEC/dNpemjm6ufHItheVNgz8J6Og2s6+imWkuSGm0y0+PQmsoKPNO6fbypg46TRaXVWq0s7cZ8OV1Z32tN7M7N9daxOfj3TJ75mskOBMAVNnSWCStUQjhTjm2oiCf7K6guLZNUhr7MCXF2vpjemqkx2+YXTsnjZK6NtYPUkxiY3Edta1dXDBFqjT6qvz0aN64cz5Gpbj6qXVsKq4b9Dl7K5rpNmumpQy/GIidPdDzVjPqYlu5+0wXpzVm9pTT9911ZxuL6ogLC+gp/d9bWkwIU1IiJLXRB0lwJgDrejOAxHCZORNCuI+9nP4zXxYBcIYPlK/3NZPGRBAe6MdF05I9fu5zc5OIDPbnlUEKg3y4s4IgfwOLJ0hKqi/LSQznzbvnEx8WyA3PbuDzvZUD7r+zrAGAaS7sqxcZ7M+4hDCvFQVxdY8zu/AgfxLCAznswzNnfa036+283CS2lTRQ0ejYOlPhGRKcCcC63gwg0Qd6IQkhRq/YsECiQ/w52tDO5DERpLiotPVoEhLgx5f3L+UbXujPGORv5PL8FD7eVUF9a1ef+1gsmo92V7B0QoJHipWI4UmNDuGNu+aTkxDO7S9u4Z1t/a8pLChrJDY0gGQXXwvkp0WxrbTBK321imtaCfQzkOSGWeis+FAO+WjFxrL6No42tPc0n+7LebaZ70/2yOyZL5HgTAD0VOeSNWdCCHfLSQgHkJTGAUSFBHit79o1s9PoMlt4Z9vRPh/fUlJPdXNnz4Wd8H2xYYH8+/a5zMmI4Xuv7eD5NUV97ldQ1shUFxYDsctPj6autYvSunaXHtcR9kqN7vh5spbTb/XJZs5frTc7uRiI3biEcMYlhPHhTgnOfIkEZwKAyqZOQgOMhMnCfCGEm9mbUXuiubIYukljIpieFsWrm0r6vOj8cGcFAX4GzpgowfVIEh7kz/O3zObc3ER+9d4eHvlk33H/v21dJg5UubYYiF2eLU3SGyX1i2payXBxpUa7rPgwGtu7qetnltmbNhbVERHkx4Sk8AH3Oy83iQ1FtT75Gk5VEpwJQBpQCyE859K8ZK6amcqUZNcVHRCude3sNPZXtrCttOG47VprPtpVzuk5cYQH+XtncMJpQf5GHrtuBtfMSuNvnx/k5+/uwmyrzLn7WBMWjUuLgdiNTwwjJMDoUFESVzJbNKV17S5fb2aXFW89ri9WbNxoW282WOPt86YkYdGwfM/A6xGF50hwJgAJzoQQnjMvK5aHl033WtqeGNzF05MJCTDy2sbjC4PsKGvkWGMH50+RxtMjlZ/RwB+unMpdi7N5aX0J9766jS6TpafU/bRU1wdnfkbrTOu7247R5MF+Z8ca2ukyW1xeqdEuO86aBeBMs293qmru4HBNa58l9E+UmxxBanQwH+4q98DIhCMkOBMAVDZ3SBl9IYQQAIQF+nHxtGTeKzhGS6epZ/uHO8vxNyqPNscWrqeU4sfnT+SnF0zk/YJyvvHCJjYcriUpIogEN92ovWtxNs2dJl5af8Qtx++Luyo12qVEBxPgZ+BwjW/NnG0qsqaPDrTezE4pxXm5Saw5WOvRwFn0b9DgTCmVppRaoZQqVErtVkrda9v+G6VUgVJqu1LqE6WU52v+CpfQWlPZ1CkzZ0IIIXpcMyeNti4z7+04Blj/Vny4q4IF2XFEhkhK42hwx+nZPHTVNNYcrOGTPZVumTWzm5ISyenj43ludTEd3Wa3nae34lpbjzM3BWdGgyIzNtTnZs42FtUSEmAkNznCof3Pm5JEl9nCir1Vbh6ZcIQjM2cm4Pta60nAPOBbSqnJwB+11tO01nnA+8Av3DdM4U4Nbd10mSxuu1smhBBi5MlPi2J8Yhiv2nqe7T7WREldGxdMlSqNo8nVs9J48uszCfQzcFpOnFvPdffibGpaOnljS//l/F3pcHUrIQFGEsLdlxlkLafvWzNnG4rqmDk2Gn+jYwlyM9KjiQ8P5CNpSO0TBv1f01qXa6232j5vBgqBFK11U6/dQgHfqyMqHFLZbC2j744eIEIIIUYmpRTXzk5nR2kDheVNfLirHKNBcfZkCc5Gm3Nyk9j+i3O4Yd5Yt55nXlYMeWlRPP3FIUxmi1vPBV+V0Xd1a4DesuPDKKlro8vk/tfjiIa2LvZVNg/Y3+xEBoPi3NxEVu6rpr3LM7Oaon9DWnOmlMoA8oENtq9/p5QqBa6nn5kzpdQdSqnNSqnN1dXVwxyucIdKewNqWXMmhBCil8vzUwgwGnhtUykf7qxgXlYMMaEB3h6WcIPgAKNbgxiwBvzfXJJNaV07/9vp/gIUxTWtbktptMuKD8Vs0ZTUtbn1PI7aVFyP1jhUDKS383LH0N5tZtV+uVb3NoeDM6VUGPAW8F37rJnW+mda6zTgZeCevp6ntX5aaz1Laz0rPj7eFWMWLiYNqIUQQvQlOjSAc6ck8crGEg7XtHKeVGkUw3TWpETGJYTxxMpDbm3e3G22UFrf7rYeZ3ZZ8daKjYd8ZN3ZxqJaAvwMTLf1lnPU3KwYokL8+Xi3pDZ6m0PBmVLKH2tg9rLW+u0+dvk3cKUrByY8p7LRGpzFuzEnWwghxMh07ew0Ok0WlIJzc6VKoxgeg0Fx1+Js9lY0s3Kf+2ZpyurbMVs0GW4qo29n73V22EfWnW0sqiMvLYogf+OQnudvNHDWpESWF1b6TIrmqcqRao0KeBYo1Fo/0mt7Tq/dLgH2un54whMqmzuIDvEf8g+yEEKI0W9+ViyZcaHMy4wlIVwyLMTwXTI9meTIIJ5Yecht5yiucW+lRruIIH/iwwN9omJjS6eJXceamDvElEa783KTaO4wsfZQjYtHJobCz4F9FgI3ADuVUttt234KfEMpNQGwAEeAu9wyQuF2UkZfCCFEfwwGxSu3z8PfKE3DhWsE+Bm4/fQsfvXeHjYX1zFrCMUrHOXuHme9ZcWF+kSvs61H6jFb9JDXm9mdlhNHaICRj3dXsGRCgotHJxzlSLXG1VprZS+bb/v4QGt9pdZ6im37xVrro54YsHC9qqYOKaMvhBCiX0mRQcSGSeq7cJ1rZqcRHeLvttmz4tpWwgP9iPVAAZus+DCfWHO2sagOo0ExIz3aqecH+RtZOjGBT3ZXYrZIEXZvGVK1RjE6VTR1kCjrzYQQQgjhISEBfty8IJPP9laxt6Jp8CcMUVFNKxlx7i2jb5cdH0pDWzd1rV1uP9dANhbVMSUlktBARxLj+nbelCRqW7vYVFznwpGJoZDg7BRntmiqmztJipSZMyGEEEJ4zk0LxhISYOSpVYddfuzi2laPpDSCtdcZ4NV1Zx3dZraXNjDPyZRGu6UTEgjwM0hDai+S4OwUV9vSiUUjaY1CCCGE8KiokACum5POf3cco9SFfcK6TBaO1reTGeveMvp2vlCxcXtpA11mi9PrzexCA/04PSeej3dXuLXVgeifBGenuJ4G1JLWKIQQQggP+8aiTAwK/vGl62bPSurasGjPFAMBSI0OIcBo8Oq6s41FdSgFs8YOv7jK+VOSKG/sYEdZowtGJoZKgrNTXIU0oBZCCCGEl4yJDOby/BRe21RKTUunS45Z7MFKjQBGgyIjLoRDXpw521hUx8SkCCJD/Id9rDMnJeBnUJLa6CUSnJ3iKm3Bmaw5E0IIIYQ33Lk4my6zhefXFLnkeMW1th5nbm5A3VtWXBiHa7wzc9ZttrDlSL3T/c1OFBUSwPzsWD7aVS6pjV4gwdkprqqpA4PCI6VmhRBCCCFOlB0fxnm5Sby47gjNHd3DPl5RTSuRwf5Ee/DaJis+lJLaNrrNFo+d027X0Ubau83DXm/W23lTkiiubWNfZbPLjikcI8HZKa6yqZO4sED8jPJWEEIIIYR33LU4m+YOE//eUDLsY3myUqNdVnwYJoumxIWFTRy1scha9n62C5t5nzUpEYAv9le77JjCMXJFfoqraOqQ9WZCCCGE8KrpaVEsHBfLM6uL6Og2D+tYxTVtHqvUaJftxYqNG4vqyI4PJd6Fxd0SI4LIjAtlw2Hpd+ZpEpyd4iolOBNCCCGED/jmknFUN3fy9tajTh+jo9vMscZ2r8ycged7nZktmo3FdczJjHX5sedmxrCxuA6zRdadeZIEZyPcrqON/OmTfU7/4FQ1d5IYIWX0hRBCCOFdC7JjmZYayVNfHHL6uqakrg2tIdPDwVlksD9xYQEeL6e/t6KJ5g6Ty4qB9DY3K4bmDhN7K5pcfmzRPwnORrDalk6+8cImHv38IOsO1Q75+Z0mM3WtXTJzJoQQQgivU0px9+JsjtS28eGucqeOUWQro+/p4AxsFRs9nNZoX2/mymIgdnNts3GS2uhZEpyNUBaL5nuv76C+rZvQACNvbysb8jGq7A2oZeZMCCGEED7g3NwksuJDeXzFIafKuHu6x1lv2QmhHK5xPjjrNA19rd3GojpSo4NJjgp2+rz9SY4KJjU6mA1FQ58AEM6T4GyEenzlQb7YX80vL57MxdOT+WhXBW1dpiEdo6pZGlALIYQQwncYDIq7Ts9mT3kTXxyoGfLzi2tbiQ0NICJo+M2YhyorLoy61i7qW7uG/Nx/rT9C7i8+5r7XtrPfwfL1Wms2FtW5ZdbMbm5mLBuL6qTfmQdJcDYCrTtUyyOf7ueS6clcNyedK2ak0tZl5uPdQ+vkXtkzcybBmRBCCCF8w2X5KSRFBPHb9/fQ2D60vmdFNZ4vo2+XZa/YOMRm1Mca2vnDB4WkxYTw4a4KzvnzF9z2wma2ltQP+LxD1a3Utna5Zb2Z3dysGOrbujlQ5Z0G26ciCc5GmOrmTr7z6jYyYkP5vyumopRi1thoUqODh1zdqLJJZs6EEEII4VsC/Az86erpFNe2cseLm4dUWr+oppWMWO8EZ9m2io2HhrDuTGvNL97djVlrXrx1Dmt/fAb3npnD5iN1XPH4Wq59eh1f7K/uc+bKvt5srhsqNdrZA78NhyW10VMkOBtBzBbNva9uo6m9m8eun0FYoB9gTQG4PD+FNQdregIuR1Q0deBvVESHeH7qXwghhBCiPwvHxfHwsulsKKrjvte3O1S9sa3LRGVTJ5lxnu1xZpcaHYy/UQ2pKMjHuytYXljJ984aT1pMCNGhAXzv7PGsuf8M/t+FkyiuaePG5zZy8d9X87+C8uO+DxuLakkID2SsG3u6pceEkBQRxIYiKQriKRKcjSB/++wAaw/V8ptLpzBpTMRxj12en4JFw7vbHZ89q2rqJCE8CKWUq4cqhBBCCDEsl+al8LMLJvHBzgp+8/6eQdc9Fde0Ad4pBgLgZzQwNjbU4XL6TR3d/PK/u5k0JoJbT8s87rHQQD9uW5TFqh8t4cErp9LaaeZb/97K2Y+s4rVNJXSZLGywrTdz53WcUoq5WTFskHVnHiPB2Qix+kANf/v8AFfMSGHZrNSTHs+KDyMvLWpIqY2VTR0kRUpKoxBCCCF80+2nZ3HbaZn8c20xT646POC+xbW2So1eSmsEyIoLdbgR9R8/2kdVcye/v2Iq/sa+L8kD/YxcMzud5fct5vHrZxASaOT+t3ay8MHPKW/scOt6M7u5mbFUN3f2tCkQ7nXKB2cVjR3sOtro7WEMqLKpg+++to1x8WH89rIp/d4huXJGCnsrmtlzzLFmgZVNHVJGXwghhBA+7acXTOKS6ck8+NFe3trSf+ugIi+W0bfLTgijpK6NbrNlwP22HKnnpQ1HuGl+BnlpUYMe12hQXDB1DO/dcxov3jqH7PhQAowGFuXEu2jk/bNXg5TURs845YOzW/65iR+9WeCzU7Ums4Vvv7KN1k6z9Y5JgF+/+140LRl/o+LtrY71PKu0pTUKIYQQQvgqg0Hxx2XTWDgulvvfKmDlvqo+9yuuaSU+PLBnTb43ZMWF0m3WlNa19btPt9nCT9/eSVJEED84d8KQjq+U4vTx8bx6x3x2/uocjwSi2fGhxIUF9hQgEe4lwdmCDPaUN7H64NB7aXjCn5fvZ2NRHb+9bAo5ieED7hsdGsCSCQm8u+MYpkHu2LR0mmjpNEmlRiGEEEL4vEA/I09+fSbjE8P55stbKShrOGmf4tpWMr2Y0gjWZSbAgEVB/vHlYfZVNvOrS3KHFUgG+hmdfu5QKKWYmxnDhsO1PjuZMZqc8sHZpfnJJIQH8tQgeczesHJfFY+tOMTVs1K5cubJ68z6cuWMFKqbO1lzaOCSp1W2qo5JkZLWKIQQQgjfFx7kzz9vmU1MaAC3PL+J4hPWQBXVtJHhpUqNdtmD9Do7UtvKX5cf4NzcRM7JTfLk0IZlTmYMxxo7KKtv9/ZQRr1TPjgL9DNy62mZrD5Y41Nrz8ob2/nea9uZkBjOry6Z4vDzlk5MIDLYf9DUxp4G1JLWKIQQQogRIiEiiBdunYNFa256fiM1LdbrmeaObmpaOr263gwgKiSA2NCAPmfOtNb8v//swt9oGNK1nS+YmyXrzjzllA/OAK6bm05YoB9PfeEbs2fdZgvf/vc2Ok0WHrt+BsEBjk9bB/oZuWjaGD7eXUFLp6nf/ez90BIkrVEIIYQQI0h2fBjP3TybyqYObnl+E62dJo7UWtd4eTutESArvu9y+u9uP8aXB2r44bkTRly17PEJ4USF+Eszag+Q4AyICPLn+rnp/K/g2IALOD3l4Y/3sflIPb+/YirjEsKG/PwrZqTQ0W3hw53l/e5jD86kWqMQQgghRpr89Ggeu24Ge8qbuPvlrRyoaga8W6nRLisu7KSZs4a2Ln7z/h7y0qL4+ryxXhqZ8wwGxZyMGJk584BBgzOlVJpSaoVSqlAptVspda9t+x+VUnuVUgVKqXeUUlFuH60b3bIwE6NB8cyX3p09W7Gviqe+OMx1c9O5NC/FqWPMSI9mbGwI72zrv+dZZVMnoQFGwoP8nR2qEEIIIYTXnDkpkf+7fApf7K/m1+/tAbzb48wuOyGU2tYuGtq6erb93weFNLZ38/srpmI0uK9ptDvNyYyhpK6N8kZZd+ZOjsycmYDva60nAfOAbymlJgOfAlO01tOA/cBP3DdM90uKDOLSvBRe21xKXWvX4E9wg45uMz//zy5yEsL4xUWTnT6OUorL81NYd7iWYw19/wBVNndIpUYhhBBCjGjXzE7nvrPHU9/WTVJE0JCWgrhLVpw16+mQbfZs3aFaXt9cxm2Lspg0JsKbQxuWeVmxAFJS380GDc601uVa6622z5uBQiBFa/2J1tq+qGk94Fg5QR92x+lZdHRbeHFdsVfO/48vDlNW386vLsklyH94v1wuz09Ba/jP9r5nzyobO0iQlEYhhBBCjHDfPmMc31qazdWzfONSNMtesbG6hY5uMz97ZydpMcHce2aOl0c2PJPGRBAe6Mf6wxKcudOQ1pwppTKAfGDDCQ/dCnzoojF5zfjEcM6cmMALa4tp7zJ79NxHG9p5bOVBLpiaxIJxccM+3tjYUGaOjeadrUf77EkhM2dCCCGEGA2UUvzw3Incd87QGjq7S1pMCH4GxeGaVh5feYjDNa387rKpPjGrNxxGg2JWRjQbiqQoiDs5HJwppcKAt4Dvaq2bem3/GdbUx5f7ed4dSqnNSqnN1dXVwx2v2925OJv6tm7e3FLq0fP+3weFaA0/vWCSy455xYwUDlS1sPtY03HbtdZUNnWSJMGZEEIIIYRL+RsNjI0NYeW+ap5YeZBL85I5fXy8t4flEnOzYjlc3Up1c6e3hzJqORScKaX8sQZmL2ut3+61/SbgIuB63U/LcK3101rrWVrrWfHxvv/GnJ0RTX56FP/4sgiT2eKRc647VMv/Csq5e0k2qdGua5540dRkAowG3jqh51ljezddJouU0RdCCCGEcIOs+DAKy5sICfDj58OoI+Br5mZa+53JujP3caRaowKeBQq11o/02n4ecD9widba+/XnXUQpxZ2nZ1NS18ZHuyvcfj6T2cKv3ttNSlQwdy3OdumxI0P8OXNSAu/tOEZ3r0CzQsroCyGEEEK4jX3d2c8umERc2Oi53pqSEklIgFFSG93IkZmzhcANwBlKqe22jwuAvwPhwKe2bU+6c6CedPbkRLLiQnlq1eE+12u50r83lrC3opmfXzRp2EVA+nJ5fgo1LV18eeCrlNLKJutUtKw5E0IIIYRwva/NTuf/XTiJZT5SpMRV/I0GZo6NlpkzN3KkWuNqrbXSWk/TWufZPj7QWo/TWqf12naXJwbsCUaD4vbTs9h5tJF1h9x3Z6CutYs/fbKfheNiOTc3yS3nWDIhgegQf97e+lXVRnsDallzJoQQQgjhehlxody2KAtrAtroMjczhr0VzdR7qfXUaDekao2nksvzU4gLC+TJL9zXlPrhT/bR0mnilxfnuu2HN8DPwMXTk/l0TyVNHd0AVNmCs/jw0TPNLoQQQggh3G+uvd9ZscyeuYMEZ/0I8jdyy8IMvthfzZ4Tqh26wq6jjbyysYSb5mcwPjHc5cfv7fL8FDpNFj7cWQ5Y15xFhfi7JY1SCCGEEEKMXtNSIwn0M7BB+p25hQRnA/j63LGEBBh5+otDLj2u1poH/rubmJAA7j3L/Q0J89KiyIwL7UltrGzqJDFcUhqFEEIIIcTQBPoZyU+PYmOxFAVxBwnOBhAZ4s/X5qTzXkE5ZfWuK0j53x3H2Hyknh+dN4HIYH+XHbc/SimuyE9hQ1EdpXVtVDV1kBgpwZkQQgghhBi6uZmx7DnW1LNkRriOBGeDuPW0TBTw7OoilxyvtdPE/31QyLTUSJbNTHPJMR1xWX4KAO9uP2qbOZP1ZkIIIYQQYujmZsVg0bBZ1p25nARng0iJCuaS6cm8urHUJVVp/r7iIJVNnTxwSS4Gg+cq+KTFhDAnM4a3th6luqVTyugLIYQQQgin5KdF429UbJCS+i4nwZkD7licRXu3mZfWHxnWcYpqWnn2yyKunJHKjPRoF43OcVfkp1BU04rZoqUBtRBCCCGEcEpwgJHpqVFSFMQNJDhzwMSkCJZMiOefa4vp6DY7fZzfvr+HAD8D958/wYWjc9z5U8cQ4Gf9L5eZMyGEEEII4ay5WTHsPNpIa6fJ20MZVSQ4c9Cdp2dT29rFm1vKnHr+ir1VfLa3invPzCHBS5USI4P9OXtyIiDBmRBCCCGEcN6czFjMFs2WI/XeHsqoIsGZg+ZlxTA9NZJnvjyM2aKH9NxOk5lfv7+HrPhQblqQ4Z4BOujWhZlMTYkkOyHMq+MQQgghhBAj18yx0RgNio2y7sylJDhzkFKKOxdnU1zbxie7K4b03OfXFFNU08ovLprck1boLTPHRvPet08jLNDPq+MQQgghhBAjV1igH1NSItlQJP3OXEmu0Ifg3NwkxsaGcM8r24h+dzfRIf5EhwQQFeJPTGgAUSEBx22LDg3AaFA8+tkBzpqUyJIJCd5+CUIIIYQQQrjEvMwYnl9jrckQ5G/09nBGBQnOhsBoUDxz4yze3naUhrYu6lu7qWvrori2lW2lDTS0ddFtPjnlMcDPwC8umuyFEQshhBBCCOEeczJjeOqLw2wraWB+dqy3hzMqSHA2RDmJ4dx/3sQ+H9Na09plpr61i4a2burbuqhv6yIlKpj02BAPj1QIIYQQQgj3mZURg1KwoahWgjMXkeDMhZRShAX6ERboR1qMt0cjhBBCCCGE+0QG+zN5TIT0O3MhKQgihBBCCCGEcMqczBi2ltTTaXK+F7D4igRnQgghhBBCCKfMzYyl02RhZ1mjt4cyKkhwJoQQQgghhHDKnEzrWp4N0u/MJSQ4E0IIIYQQQjglJjSACYnhrD8s/c5cQYIzIYQQQgghhNPmZMaw5Ug9JrPF20MZ8SQ4E0IIIYQQQjhtblYMbV1mdh1r8vZQRjwJzoQQQgghhBBO61l3JqmNwyZ9zoQQQgghhBBOSwgP4s275pObHOntoYx4EpwJIYQQQgghhmVWRoy3hzAqSFqjEEIIIYQQQvgACc6EEEIIIYQQwgcMGpwppdKUUiuUUoVKqd1KqXtt25fZvrYopWa5f6hCCCGEEEIIMXo5subMBHxfa71VKRUObFFKfQrsAq4AnnLnAIUQQgghhBDiVDBocKa1LgfKbZ83K6UKgRSt9acASin3jlAIIYQQQgghTgFDWnOmlMoA8oENbhmNEEIIIYQQQpyiHA7OlFJhwFvAd7XWDrf/VkrdoZTarJTaXF1d7cwYhRBCCCGEEGLUcyg4U0r5Yw3MXtZavz2UE2itn9Zaz9Jaz4qPj3dmjEIIIYQQQggx6jlSrVEBzwKFWutH3D8kIYQQQgghhDj1OFKtcSFwA7BTKbXdtu2nQCDwKBAP/E8ptV1rfa5bRimEEEIIIYQQo5zSWnvuZEpVA0c8dkLHxQE13h6EGNHkPSSGS95DYrjkPSSGS95DYrjkPeSYsVrrPtd7eTQ481VKqc1aa2mkLZwm7yExXPIeEsMl7yExXPIeEsMl76HhG1IpfSGEEEIIIYQQ7iHBmRBCCCGEEEL4AAnOrJ729gDEiCfvITFc8h4SwyXvITFc8h4SwyXvoWGSNWdCCCGEEEII4QNk5kwIIYQQQgghfMCICs6UUucppfYppQ4qpX7ca/trSqntto/iXv3YTnx+jFLqU6XUAdu/0bbt1/d6/nallEUpldfH81+2nX+XUuo5pZS/bbtSSv3NNq4CpdQM93wHxHD58HtoolJqnVKqUyn1A/e8euEKPvweut72+6dAKbVWKTXdPd8BMVw+/B661Pb+2a6U2qyUOs093wExXG58D/krpV5QSu1UShUqpX7Sz/MzlVIbbM9/TSkVYNsu10MjhA+/h+R6SGs9Ij4AI3AIyAICgB3A5D72+xPwi36O8RDwY9vnPwYe7GOfqcDhfp5/AaBsH68Ad/fa/qFt+zxgg7e/X/Ix4t5DCcBs4HfAD7z9vZKPEfkeWgBE2z4/X34P+eaHj7+HwvhqucM0YK+3v1/y4dn3EHAd8Krt8xCgGMjo4/mvA9faPn9SrodG1oePv4dO+euhkTRzNgc4qLU+rLXuAl4FLu29g1JKAVdj/WPTl0uBF2yfvwBc1sc+X+vv+VrrD7QNsBFI7XXcF20PrQeilFJjHH5lwlN89j2kta7SWm8Cuof0ioSn+fJ7aK3Wut6223q++v0kfIsvv4dabNsAQgFZlO6b3Pke0kCoUsoPCAa6gKY+jn0G8GYfz5froZHBZ99Dcj00stIaU4DSXl+X2bb1tgio1Fof6OcYiVrrcgDbvwl97HMN/b8RAeuULXAD8NEQxia8z5ffQ2JkGCnvoW9gvXstfI9Pv4eUUpcrpfYC/wNuHej5wmvc+R56E2gFyoES4GGtdd0Jz40FGrTWpj7OL9dDI4Mvv4dOeSMpOFN9bDvxrl6/dwodOoFSc4E2rfWuQXZ9HPhCa/3lEMYmvM+X30NiZPD595BSainW4Ox+Z8cg3Mqn30Na63e01hOx3sX+jbNjEG7lzvfQHMAMJMP/b+d+XmUKwwCOf1/pWigLP8oC5WIri7uwsJCUslGiUNyUhTXJQvFX2N1iK6XMQja6pUSxUCJdVropN/JjSx6L8546TVd3bpqZ9zXfT73NzPue0zvn9NS8z5xzHnYCl1NK06uY3/VQHUqOoYlXU3K2CGzvfN4GfGw/5Munx4E7nb5b+YHGB7nrU3t5Pb8u9c1xipX/abwBbAEuDfrdVIySY0h1KDqGUkp7gTngWER8WcVxaXSKjqFWRDwGdqWUNg9yUBqpYcbQGeBhRPyMiCXgCTDTN/9nmtsV1y4zv+uhOpQcQxOvpuTsObAnV3eZovnx6XXGD9M8vLzYdkTE+YjYFxFHc1cPmM3vZ4H77bYppTXASZr7bpeVUroAHAFOR8TvzlAPOJerFO0HvreXelWUkmNIdSg2hlJKO4B7wNmIWPiHY9RwlRxDu/OzIKSmyt4UYJJfnmHG0AfgUF7PrKcp6vG2O3l+LnEeOLHM/q6H6lByDCkKqEoyaKOpArRAU2HmWt/YbeDiCvtvAh4B7/Lrxs7YQeDZCvv/ynO/zO167k/AzTz2CpgZ97myVRdDW2n+yfoBfMvvN4z7fNmqiqE54Gun/8W4z5Wtuhi6CrzOfU+BA+M+V7bRxhBNxc67OQ7eAFf+sv80TTGZ93n7dbnf9VAlreAYmvj1UFsyV5IkSZI0RjXd1ihJkiRJ/y2TM0mSJEkqgMmZJEmSJBXA5EySJEmSCmByJkmSJEkFMDmTJEmSpAKYnEmSJElSAUzOJEmSJKkAfwDJ4bBXKfNB3AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACREUlEQVR4nOzdd3jb1fXH8feVLO894z3i7GFnT0YILVB2WS2zLaPQAaWD7h900D3opnRQCmkpe28IhOzpTGfb8d5729L9/SHJOI6HJGvZPq/nyUMsS19dJ8HW0b3nc5TWGiGEEEIIIYQQvmXw9QKEEEIIIYQQQkhxJoQQQgghhBB+QYozIYQQQgghhPADUpwJIYQQQgghhB+Q4kwIIYQQQggh/IAUZ0IIIYQQQgjhB6Q4E0IIIYQQQgg/IMWZEEKMU0qptgG/LEqpzgEf3+Dr9blCKVWslDrf1+sYiVLqfaXUbR68/iNKqSO2v9PPDPqcUkr9WClVrpRqtq1lzoDPxyqlnldKtSulTimlrh/0+LVKqcNKqQ6l1HqlVOaga/9cKVVv+/ULpZTy1NcphBDiTFKcCSHEOKW1Drf/AkqASwfcts7X6xtMKRUwEZ7DC/YCXwB2D/G5a4DPAWcBscAW4PEBn/8T0AMkATcAf7EXb0qpeOA54Pu2x+4E/jfgsXcAVwB5wHzgEuDzbvqahBBCOECKMyGEmGCUUgal1LeUUidsOyBPKaVibZ/LUkpppdRnlVKlSqlGpdSdSqklSql9SqkmpdQfB1zrM0qpTUqpP9h2ag4rpdYO+HyUUuofSqlK227Oj5VSxkGP/a1SqgF4QCk1VSn1nm1ddUqpdUqpaNv9HwcygJdtu3/3KaXOVUqVDfr6+nfXlFIPKKWeUUo9oZRqAT4zyppylVIf2L6WOqXUwOJk4HME265Zb/sz2aGUSlJKPYi1MPqjbY1/tN1/plLqbaVUg23X69oB1/qXUuph2+dbbc+fOdTzAmit/6S1fhfoGuLT2cBGrfVJrbUZeAKYbXueMOAq4Pta6zat9UbgJeAm22M/CRzUWj+tte4CHgDylFIzbZ+/Bfi11rpMa10O/Br4zHDrFEII4X5SnAkhxMRzN9YdkHOAFKAR647KQMuAacB1wEPAd4HzgTnAtUqpcwbd9yQQD9wPPGcv9oDHgD4gF1gAfBy4bYjHJgIPAgr4qW1ds4B0rEUCWuubOH0H8BcOfr2XA88A0cC6Udb0I+AtIAZIA/4wzDVvAaJs64sD7gQ6tdbfBT4EvmRb45dsRdHbwH9sX+engT8PPG6IdRfrR1j/DAts63TFk0CuUmq6UspkW+cbts9NB8xa66MD7r8X698ptv/utX9Ca90OnBju84MeK4QQwgukOBNCiInn88B3bTsg3ViLn6sHHfn7kda6S2v9FtAO/FdrXWPbMfkQa1FjVwM8pLXu1Vr/DzgCXKyUSgIuAr6itW7XWtcAvwU+NeCxFVrrP2it+7TWnVrr41rrt7XW3VrrWuA3WIvIsdiitX5Ba20BIkdZUy+QCaTYvv6Nw1yzF2tRlqu1Nmutd2mtW4a57yVAsdb6UdvXuRt4Frh6wH1e1VpvsP19fBdYoZRKd+FrrcT693ME6MR6zPFe2+fCgeZB928GIlz8fDMQLn1nQgjhPRPhbL4QQojTZQLPK6UsA24zY+1Dsqse8PvOIT4OH/BxudZaD/j4FNadr0zABFQOeP1uAEoH3Hfg71FKJQK/x3o0MMJ2/0aHvqrhDXyO0dZ0H9YdrO1KqUasx/j+OcQ1H8e6a/ak7djlE1gL3t4h7psJLFNKNQ24LYDTe8H616i1brMd80wZtHZH3A8ssa2tCrgReM+2S9eGtTgdKBJotf3e2c9HAm2D/u6FEEJ4kOycCSHExFMKXKS1jh7wK9i2K+aK1EG7JxlAhe15uoH4Ac8TqbUeeBRu8Av7n9pum6+1jsRaXKgR7t8OhNo/sPWOJQy6z8DHjLgmrXWV1vp2rXUK1h3GPyulcgd/wbZdwh9orWcDK7Hujt08zBpLgQ8G/XmHa63vGnCf/l0ypVQ41kCOisHP64A84H+2XdE+rfW/sB7RnA0cBQKUUtMG3f+g7fcHbR/b1xEGTB3u84MeK4QQwgukOBNCiInnYeBBe+iEUipBKXX5GK6XCNytlDIppa7B2iv2mta6Emv/1q+VUpG2IJKpg/rVBovAukPTpJRKBb4x6PPVQM6Aj48CwUqpi209Vt8Dgoa7+GhrUkpdo5RKs929EWuhZR58HaXUGqXUPFsx2IL1mKP9foPX+AowXSl1k+3PyGQLWJk14D6fUEqtVkoFYt2526a1HnLXTCkVqJQKxlq0mmzhJPaf1zuAa2zhJAal1E1YdwqP23rIngN+qJQKU0qtwtqPZ9/Bex6Yq5S6ynb9/wP2aa0P2z7/b+CrSqlUpVQK8DXgX8P9WQshhHA/Kc6EEGLi+R3WlL63lFKtwFaswRyu2oY1PKQOa6jH1VrretvnbgYCgUNYi51ngOQRrvUDYCHWfqZXsRYTA/0U+J4tIfHrWutmrLHyfwfKse6klTGykda0BNimlGrD+md0j9a6aIhrTLE9rgUoBD7AerQRrH++Vytr0uXvtdatWENHPoV1N6wK+DmnF5H/wXoksQFYhDUgZDhvYT1auhJ4xPb7s22f+znWoI4CoAlrv9lVWusm2+e/AIRg7RP8L3CX1voggK3H7yqsf4eNWP9NDOwP/CvwMrAfOID17+evI6xTCCGEmyk5Si6EEGI4yjoE+Tat9Wpfr2W8Ukr9CyjTWn/P12sRQgjh32TnTAghhBBCCCH8gBRnQgghhBBCCOEH5FijEEIIIYQQQvgB2TkTQgghhBBCCD8gxZkQQgghhBBC+IEAbz5ZfHy8zsrK8uZTCiGEEEIIIYTf2LVrV53WOmGoz3m1OMvKymLnzp3efEohhBBCCCGE8BtKqVPDfU6ONQohhBBCCCGEH5DiTAghhBBCCCH8gBRnQgghhBBCCOEHvNpzJoQQQgghhL/o7e2lrKyMrq4uXy9FTEDBwcGkpaVhMpkcfowUZ0IIIYQQYlIqKysjIiKCrKwslFK+Xo6YQLTW1NfXU1ZWRnZ2tsOPk2ONQgghhBBiUurq6iIuLk4KM+F2Sini4uKc3pWV4kwIIYQQQkxaUpgJT3Hl35YUZ0IIIYQQQvjIgw8+yJw5c5g/fz75+fls27YNgNtuu41Dhw655TmysrKoq6sb8T4/+clPnL7uv/71L770pS+ddtujjz5Kfn4++fn5BAYGMm/ePPLz8/nWt77l9PW94aGHHqKjo8PXy+gnPWdCCCGEEEL4wJYtW3jllVfYvXs3QUFB1NXV0dPTA8Df//53r67lJz/5Cd/5znfGfJ3PfvazfPaznwWsReH69euJj48f83VdpbVGa43BMPSe1EMPPcSNN95IaGiow9fs6+sjIMAzZdSoO2dKqXSl1HqlVKFS6qBS6p4Bn/uyUuqI7fZfeGSFYsIqa+zgSFWrr5chhBBCCOETlZWVxMfHExQUBEB8fDwpKSkAnHvuuezcuROA8PBwvvnNb7Jo0SLOP/98tm/fzrnnnktOTg4vvfQScOYu1iWXXML7779/xnNeccUVLFq0iDlz5vDII48A8K1vfYvOzk7y8/O54YYbAHjiiSdYunQp+fn5fP7zn8dsNgPWnbHp06dzzjnnsGnTJoe/1l/+8pcsWbKE+fPnc//99wNQXFzMzJkzue2225g7dy433HAD77zzDqtWrWLatGls374dgAceeICbbrqJ8847j2nTpvG3v/1t1OvOmjWLL3zhCyxcuJDS0lLuuusuFi9ezJw5c/rv9/vf/56KigrWrFnDmjVr+v+s7Z555hk+85nPAPCZz3yGr371q6xZs4ZvfvObnDhxggsvvJBFixZx1llncfjwYYf/LEZkryaH+wUkAwttv48AjgKzgTXAO0CQ7XOJo11r0aJFWgittd56ok7Pvf8NvehHb2mz2eLr5QghhBBiEjp06JBPn7+1tVXn5eXpadOm6bvuuku///77/Z8755xz9I4dO7TWWgP6tdde01prfcUVV+iPfexjuqenRxcUFOi8vDyttdaPPvqo/uIXv9j/+IsvvlivX79ea611Zmamrq2t1VprXV9fr7XWuqOjQ8+ZM0fX1dVprbUOCwvrf+yhQ4f0JZdcont6erTWWt911136scce0xUVFTo9PV3X1NTo7u5uvXLlytOeczD787755pv69ttv1xaLRZvNZn3xxRfrDz74QBcVFWmj0aj37dunzWazXrhwof7sZz+rLRaLfuGFF/Tll1+utdb6/vvv1/Pnz9cdHR26trZWp6Wl6fLy8hGvq5TSW7Zs6V+L/evu6+vT55xzjt67d+8ZfzaD/xyefvppfcstt2ittb7lllv0xRdfrPv6+rTWWp933nn66NGjWmutt27dqtesWTPkn8FQ/8aAnXqYemnU/TitdSVQaft9q1KqEEgFbgd+prXutn2uxj3lopjoXt9fyT3/KyDAoKhr66GwqoU5KVG+XpYQQgghJrEfvHyQQxUtbr3m7JRI7r90zrCfDw8PZ9euXXz44YesX7+e6667jp/97Gf9uzV2gYGBXHjhhQDMmzePoKAgTCYT8+bNo7i42Kk1/f73v+f5558HoLS0lGPHjhEXF3fafd5991127drFkiVLAOjs7CQxMZFt27Zx7rnnkpCQAMB1113H0aNHR33Ot956i7feeosFCxYA0NbWxrFjx8jIyCA7O5t58+YBMGfOHNauXYtS6oyv7fLLLyckJISQkBDWrFnD9u3b2bhx47DXzczMZPny5f2Pf+qpp3jkkUfo6+ujsrKSQ4cOMX/+fKf+7K655hqMRiNtbW1s3ryZa665pv9z3d3dTl1rOE4dllRKZQELgG3AL4GzlFIPAl3A17XWO4Z4zB3AHQAZGRljXa8Y5x7feor/e/EAC9Kj+ekn53PBQxvYdLxOijMhhBBCTEpGo5Fzzz2Xc889l3nz5vHYY4+dUZyZTKb+5D+DwdB/DNJgMNDX1wdAQEAAFoul/zFDRbi///77vPPOO2zZsoXQ0FDOPffcIe+nteaWW27hpz/96Wm3v/DCCy4lEGqt+fa3v83nP//5024vLi7u/1pG+trgzORDpdSI1w0LC+v/uKioiF/96lfs2LGDmJgYPvOZzwwbcT/weQbfx35Ni8VCdHQ0BQUFo33pTnO4OFNKhQPPAl/RWrcopQKAGGA5sAR4SimVY9uq66e1fgR4BGDx4sUaMSlprfnN20f5w3vHOX9WIn/49EJCAo1MSwznw2N13HH2VF8vUQghhBCT2Eg7XJ5y5MgRDAYD06ZNA6CgoIDMzEyXrpWVlcWf//xnLBYL5eXl/f1aAzU3NxMTE0NoaCiHDx9m69at/Z8zmUz09vZiMplYu3Ytl19+Offeey+JiYk0NDTQ2trKsmXLuOeee6ivrycyMpKnn36avLy8Udd2wQUX8P3vf58bbriB8PBwysvLMZlMTn19L774It/+9rdpb2/n/fff52c/+xkhISEOXbelpYWwsDCioqKorq7m9ddf59xzzwUgIiKC1tbW/tCSpKQkCgsLmTFjBs8//zwRERFnXC8yMpLs7GyefvpprrnmGrTW7Nu3z6E/i9E4VJwppUxYC7N1WuvnbDeXAc/ZirHtSikLEA/UjnlVYkLpM1v47vMH+N/OUj61JJ0fXzGXAKM1i2ZVbjxP7iihq9dMsMno45UKIYQQQnhPW1sbX/7yl2lqaiIgIIDc3Nz+kA5nrVq1qv+I4Ny5c1m4cOEZ97nwwgt5+OGHmT9/PjNmzDjt2N8dd9zB/PnzWbhwIevWrePHP/4xH//4x7FYLJhMJv70pz+xfPlyHnjgAVasWEFycjILFy7sDwoZycc//nEKCwtZsWIFYD3O+cQTT2A0Ov7ab+nSpVx88cWUlJTw/e9/n5SUFFJSUhy6bl5eHgsWLGDOnDnk5OSwatWq077uiy66iOTkZNavX8/PfvYzLrnkEtLT05k7dy5tbW1DrmfdunXcdddd/PjHP6a3t5dPfepTbinO1KCNrjPvYN3bewxo0Fp/ZcDtdwIpWuv/U0pNB94FMgbvnA20ePFibU+dEZNDZ4+ZL/1nN+8eruHutdO49/xpp20Xv1tYza2P7eQ/ty9j5VTfxawKIYQQYvIpLCxk1qxZvl6GGMUDDzxAeHg4X//61329FKcN9W9MKbVLa714qPs7snO2CrgJ2K+UKrDd9h3gn8A/lVIHgB7glpEKMzH5NLb38LnHdlBQ2sSPr5jLjcvP3KZflhOH0aDYeKxOijMhhBBCCDGpOZLWuBEYrvPvRvcuR0wUZY0d3PzP7ZQ1dvKXGxZy4dzkIe8XHhTAgvRoNh0feWq9EEIIIYSYnB544AFfL8FrRh1CLYSzDle1cNVfNlPX2s0Tty4btjCzWz0tnn3lzTR39HpphUIIIYQQQvgfKc6EW209Wc81D29BoXj6zpUszY4d9TGrc+PRGraclN0zIYQQQggxeUlxJtxm0/E6bv7ndpIig3n2CyuZMeXM6NGh5KVHExZo5MNjUpwJIYQQQojJy6kh1EKM5FdvHSE5Kphn7lxBdGigw48zGQ0sz4mTvjMhxoH27j5MRgOBAfLenhBCCOFu8tNVuMXBimb2lDRxy4ospwozu9XT4imu76C0ocMDqxNCuMvVD2/hx68e8vUyhBBiwjAajeTn5zN37lyuueYaOjpcfy30mc98hmeeeQaA2267jUOHhv9+/f7777N58+b+jx9++GH+/e9/u/zcdsXFxcydO/e02x544AF+9atfOXUdd61nvJGdM+EWT2wtIdhk4KqFaS49fnWuNUZ/84k6rovNcOfShBBuUtncSWFlC8EmeV9PCCHcJSQkhIKCAgBuuOEGHn74Yb761a/2f95sNjs1rNnu73//+4iff//99wkPD2flypUA3HnnnU4/h6f09fX51Xq8SX7CijFr7erlxYJyLp2fQlSoyaVr5CaGkxQZJH1nQvixbScbACiplx1uIcQk9ItfwPr1p9+2fr31djc566yzOH78OO+//z5r1qzh+uuvZ968eZjNZr7xjW+wZMkS5s+fz1//+lcAtNZ86UtfYvbs2Vx88cXU1NT0X+vcc89l586dALzxxhssXLiQvLw81q5dS3FxMQ8//DC//e1vyc/P58MPPzxtd6ugoIDly5czf/58rrzyShobG/uv+c1vfpOlS5cyffp0PvzwQ6e/xpGu/Z3vfIdzzjmH3/3ud/3rqaioID8/v/+X0Wjk1KlTnDp1irVr1zJ//nzWrl1LSUkJYN09vPvuu1m5ciU5OTn9O4njhRRnYsxe2FNOR495yCHTjlJKsSo3ns0n6rFYZJa5EP5oW1E9APXtPbR2yegLIcQks2QJXHvtRwXa+vXWj5csccvl+/r6eP3115k3bx4A27dv58EHH+TQoUP84x//ICoqih07drBjxw7+9re/UVRUxPPPP8+RI0fYv38/f/vb3047pmhXW1vL7bffzrPPPsvevXt5+umnycrK4s477+Tee++loKCAs84667TH3Hzzzfz85z9n3759zJs3jx/84AenrXP79u089NBDp90+0IkTJ04rqB5++GGHrt3U1MQHH3zA1772tf7bUlJSKCgooKCggNtvv52rrrqKzMxMvvSlL3HzzTezb98+brjhBu6+++7+x1RWVrJx40ZeeeUVvvWtbzn5N+FbcqxRjInWmie2ljAvNYq89OgxXWt1bjzP7S6nsKqFOSlR7lmgEMJttp1sICjAQHefhVP1HcxNlf9PhRATyFe+ArbjhcNKSYELLoDkZKishFmz4Ac/sP4aSn4+PPTQiJfs7OwkPz8fsO6c3XrrrWzevJmlS5eSnZ0NwFtvvcW+ffv6d4Gam5s5duwYGzZs4NOf/jRGo5GUlBTOO++8M66/detWzj777P5rxcaOPOaoubmZpqYmzjnnHABuueUWrrnmmv7Pf/KTnwRg0aJFFBcXD3mNqVOn9h/VhI+GSI927euuu27YdW3atIm///3v/bt1W7Zs4bnnngPgpptu4r777uu/7xVXXIHBYGD27NlUV1eP+PX6GynOxJjsPNXIkepWfn7VvDFfa5Wt72zjsTopzsSIiuvaSYwMIjRQvoV5S01LFyfr2rk8P4UXCyooaZDiTAgxCcXEWAuzkhLIyLB+PEYDe84GCgsL6/+91po//OEPXHDBBafd57XXXkMpNeL1tdaj3scZQUFBgDXIpK+vz23XhdO/5oEqKyu59dZbeemllwgPDx/yPgO/Rvsawfr1jydyrFGMyRNbTxERHMCleSljvlZSZDDTEsPZKJH6YgTdfWYu/v2H/PG9475eyqSyrcjab3bNonQATknfmRBionnoIXj//ZF/3X8/dHTA979v/e/99498/1F2zRx1wQUX8Je//IXeXuuR8qNHj9Le3s7ZZ5/Nk08+idlsprKykvWDe+KAFStW8MEHH1BUVARAQ4P1+3lERAStra1n3D8qKoqYmJj+HarHH3+8f6drrFy5dm9vL9deey0///nPmT59ev/tK1eu5MknnwRg3bp1rF692i1r9DV521m4rL6tm9f3V3H9sgy37WCsnhbPf7eX0NVrJtjkfDKRmPiOVLXS3mNmb1mTr5cyqWwrqics0MjynFhiwwIpaWj39ZKEEMK77D1mTz0Fa9ZYfw382INuu+02iouLWbhwIVprEhISeOGFF7jyyit57733mDdvHtOnTx+y0ElISOCRRx7hk5/8JBaLhcTERN5++20uvfRSrr76al588UX+8Ic/nPaYxx57jDvvvJOOjg5ycnJ49NFH3fa1OHvtzZs3s2PHDu6//37uv/9+wLpj+Pvf/57Pfe5z/PKXvyQhIcGta/Ql5c2tvsWLF2t7aowY/x7+4AQ/e/0wb997NtOSItxyzXcLq7n1sZ385/ZlrJwa75Zrionlia2n+N4LB4gNC2TX985361ENMbyP/eYDkqND+PfnlnLlnzcRHGDkv3cs9/WyhBBiTAoLC5k1a5Zjd/7FL6zhHwMLsfXrYccOGNDvJMRAQ/0bU0rt0lovHur+cqxRuMRi0fxnWwnLsmPdVpgBLMuJI8Cg2CiR+mIY+8uaAWho76G6pdvHq5kc6tu6OVbTxrJsaxN5ZmwoJTIwXohh/fqtI/z6rSO+XoZwt/vuO3OHbM0aKcyEW0lxJlyy4VgtJQ0dY4rPH0p4UAALMqLZJH1nYhj7ypuJts3TK6xs8fFqJofttn6z5TnW4iwjLoyK5k66+8y+XJYQfqm+rZu/fnCSxzYXY5bRMEIIJ0lxJlzyxNYS4sODuGDOFLdfe1VuPPvKm2nu8N4cJa01tz22k9f2V3rtOYXzunrNHK1u5Yr8VAAOSXHmFduKGgg2GZiXGg1Yd860hrLGTt8uTAg/9OzuMnrMFlq6+jhUId+jhBDOkeJMOK28qZP3Dldz3ZI0AgPc/09odW48WsPmE97bPatp7eadwmqe2lnqtecUzjtY0YLZolkxNY6M2FApzrxkW1EDizJj+v9/z4oPBeBUvYSCCDGQ1pr/bi8lN9Ea9e3Nn2PCdeMtal2MH67825LiTDjtye0laOBTSzI8cv289GjCgwK8GqlvPx63o6iBPrPFa88rnLPfltA4Py2KWckRFMq70h7X3NHL4aoWlmXH9d+WEWudQyNx+kKcbuvJBorq2rnrnKnkJoaz5WS9r5ckRhEcHEx9fb0UaMLttNbU19cTHBzs1OMkSl84pdds4ckdpayZkUh6bKhHnsNkNLA8J9arfWdHqqxzPtp7zOwvb2ZBxtiHSgr321feTHx4EFMig5mdHMVbh6rp6OmTYdQetL24Aa3pDwMBiA8PJDTQKMXZIK/vr+TNg1U89KkFvl6K8JH/bC8hMjiAi+cns7esiWd2ldFrtmAyynvh/iotLY2ysjJqa2t9vRQxAQUHB5OWlubUY+QVjXDK24eqqW3t5sblntk1s1uVG887hTWUNnR4rAgc6HBVKxHBAbR29bH1ZIMUZ35qf1kz89OiUEoxKzkCra1/dwvl78tjtp2sJzDAQF56dP9tSikyJLHxNHVt3Xzruf00d/byvUtmEx8e5OslCS+rb+vmzQPW2Z/BJiMrp8bx7y2n2FfWxKLM2NEvIHzCZDKRnZ3t62UI0U/eyhFOeWLrKVKjQzhneqJHn2d1rnXGmbd2zw5XtbIoM4ZpcgzFb7V393G8to15qVEAzE6JBCSx0dO2FTWwID36jKHwWXFhFEvPWb8HXy2kudMaYnTUthMvJhd7EMj1y6xvXi7LjkMp2HJCfqYIIRwnxZlw2InaNjafqOf6ZRkYDZ4d/JubGE5SZJBX+s56zRaO17QyY0oEK6bGsbO4gV7pO/M7Byta0NrabwaQGh1CZHCApKF5UEtXLwcrmlmWE3fG5zLjQilr6JSocGDz8Tqe31POp5akA3CkWoqzycYeBLI4M4bpttmfMWGBzJoSyWYpzoQQTpDiTDhs3dYSTEbFtYvTPf5cSilW5caz+UQ9Fg+/+Cuqa6fXrJk1JZLlOXF02PrOhH/ZZwsDmWcrzqxHGyNl58yDdhU3YtGwPPvMI1kZcaH0mC1UtXT5YGX+o7vPzPdeOEBmXCgPXDaHmFATR6U4m3TsQSCfXnr6kf+VU+PYeaqRrl6ZCSiEcIwUZ8IhnT1mntlVygVzppAQ4Z1eitW58TS091BY5dkX3/YX9zOmRPSHHsgxFP+zv7yZ5KhgEiM+Sj2alRzJ4apWjxfwk9XWonpMRjVkD2Zmf2Lj5D7a+Jf3T3Cyrp0fXT6XYJOR6UkR/QFDYvIYGAQy0MrcOHr6LOwuafTRyoQQ440UZ8IhL++roKWrjxuXZ3rtOVfZ+s42HvPs0cYjVa0EGBRTE8KJCw9iRlIEW6XvzO/sK2vu7zezm50cSUePmVMSTOER2042kJcWTUig8YzPZcZZg3pKJnFiY1FdO39ef4JL81I4e3oCYH2T51h1m8RyTyL2IJBPLkw7ozdzSVYsRoNiq7zhJ4RwkBRnwiHrtpUwLTH8tDhtT0uKDGZ6UrjH+84OV7UyNSG8f8Du8pxYdhY30tMnfWf+ormzl6K69v5+Mzt7KIj0nblfe3cf+8ubWZYz9P/zKdEhmIyK4klanGmt+d4L+wkKMPD9i2f13z49KYLW7j4qmyf3cc/J5Lnd5acFgQwUEWxiXmqU9J0JIRw2anGmlEpXSq1XShUqpQ4qpe6x3f6AUqpcKVVg+/UJzy9X+MKB8mb2ljZxw7IMlPJsEMhgq3Lj2VHc4NHz+keqWpmZHNH/8YqpcXT2mtlf3uSx5xTOOWjrAZyXFn3a7bmJ4RgNakL3nf1zYxHX/XWL13didp1qxGzRpw2fHshoUKTFhFLSMDmPNb60t4JNx+u578IZJEZ+dNTWHgYhoSCTgzUIpOS0IJDBVk6No6C0ifbuPi+vTggxHjmyc9YHfE1rPQtYDnxRKTXb9rnfaq3zbb9e89gqhU89sfUUISYjn1zk3BA9d1idG09Xr4XdpzxzXr+5s5fypk5mTonsv22p7cXo1pMNHnlOR5gtms0n6uRolM0+e3E26FhjsMlIbkI4hyZocbb5RB0/fvUQ24oavD5TbFtRPUaDYlHm8DPkMmJDJ+Ug6uaOXn70yiHy0qO5ftnpR72nJ4UDEqc/WWw92cDJIYJABlo5NZ4+i2ZHse9+pgghxo9RizOtdaXWerft961AIZDq6YUJ/9DS1cuLBRVclpdCZLDJ68+/LCeOAIPy2NFGe6razCkfveMZGxbIzCkRPg0FeWVfBdf/bRu7S5p8tgZ/sr+smbSYEGLDAs/43KzkiAm5c1bT2sXd/y0gJtT6Ne/x8r+FbScbmJcaRVhQwLD3yYoLpaS+Y9K9ifDzNw/T0N7Dg1fMPWOsSHRoIEmRQbJzNkn8d5ggkIEWZcZgMiqZoSmEcIhTPWdKqSxgAbDNdtOXlFL7lFL/VEoN//aqGLee21VGZ6/Zq0EgA4UHBbAgI9pjw6gP217UDzzWCLA8J46dpxp81ndmDyTZIwlfAOwrbyJv0JFGu9kpkVQ2d9HY3uPdRXlQn9nC3f/dQ1t3L4/fuozQQCMFpU1ee/7OHjN7y5pG7THNiAujtbuPhgn0Zz+aXaca+c+2Ej67Kpu5g3Zy7aYnRUic/iTQ0N7DG8MEgQwUEmhkQUaMpAALIRzicHGmlAoHngW+orVuAf4CTAXygUrg18M87g6l1E6l1M7a2tqxr1h4jdaaJ7aVkJcW1T9byhdW5cazr7yZ5o5et1/7cFUrkcEBTBnQMwLW4qyr18Je22wtb9teZD3+4s0X5P6qsb2H0obOYf8Nzkq2HkmdSLtnv33nKFtPNvDgFfOYnRLJvNQorxbqe0oa6TXrYcNA7DJjrYmNkyUts9ds4bvP7yc5Kph7PzZ92PvNSIrgeE2bDOie4J7dVUaP2TLikUa7lVPjOOChn2NCiInFoeJMKWXCWpit01o/B6C1rtZam7XWFuBvwNKhHqu1fkRrvVhrvTghIcFd6xZesL2ogeM1bdzgo10zu9W58Wht7b9xt8NVrcxMjjwj6GR5TixK4ZP447q2bk7UtqOUNT5+srMPBJ8/zC6FvTibKH1n6w/X8Kf1J/jUknSusvV5LsiI4VBli9cG2W4rasCgYHHWKMXZJIvTf3RTEYerWrn/0jmEj3Dcc3pSBF29FkonSdE6GdmDQBZlxjBjytBBIAOtyInDoq29nEIIMRJH0hoV8A+gUGv9mwG3DzxgfSVwwP3LE75k73e6aO4Un64jLz2a8KAAt/edaa2tSY1D/GCNDg1k5pRItvrgB+lOW9P4x2YlUdLQMamOjA1ln233cs4wxVl8eBCJEUETojgrb+rk3qcKmJUcyQOXzem/PT89ml6z5qCXRgZsK6pndkrkqH2m6bGhKMWkCAUpb+rkt28f4/xZiVwwJ2nE+06fIomNE509COR6B3bNAPIzogk2GaTvTAgxKkd2zlYBNwHnDYrN/4VSar9Sah+wBrjXkwsV3lfd0kVEUAARPggCGchkNLA8J9btfWdljZ20dfedltQ4kH3eWXefd3Yr7LYVNRBsMvTvWO7z0dFKf7GvrJns+DCiQob/dzg7JXLczzrr6bPwxXW76TNr/nzDwtN6WBZkRAPeOeba3WdmT0nTsBH6AwWbjEyJDOZU/cSP07//xYMAPHDZnFFHikxLlMTGic6RIJCBggKMLMmKlb4zIcSoHElr3Ki1Vlrr+QNj87XWN2mt59luv0xrXemNBQvvqWntIjEyyNfLAKx9Z8X1HW49JnTE9sJpuCMpK3Li6O6zsLfUu0cLtxc1sCA9hoUZ0SiFR57/qZ2lnPer93mxoNzvk/b2lzefEaE/2KzkSE7Uto3rweE/fb2QgtImfnn1fLLjw077XFJkMClRwV7pO9tb2kx3n8XhgfMZsaETvufsrYNVvFNYzVfOn0ZaTOio9w8LCiA9NkR2ziYoR4NABlueE8fhqlbq2ro9uDohxHjnVFqjmFyqW7pJGhSU4Surc+MB3Lp7drjKutMyXHG2LDsOpfDqO50tXb0UVrawJDuWiGATuQnhHtk5e3lvBSfr2rnnyQKue2Sr34Zp1LR2UdncxfxRAmlmJ0fSa9YcqxmfL4Zf21/Jo5uK+eyqLC6aN/Q78QsyYryyc7btZD1KwVIHi7PMuIk966y9u48HXjrIzCkRfG51tsOPmyGJjROWM0EgA62cap+hKbtnQojhSXEmhlXT2kVihH/snOUmhpMUGcSHbi3OWkmPDRm2sT8q1MTs5Eiv/iDddaoRi6Z/12J+WjR7y5rcurvVZ7YO9b5hWQY//eQ8jlW3cvHvP+SBlw7S3OlfSWIHhhk+PdhHiY3j78VwcV079z2zj/z0aL590axh75efHk1ZYye1rZ59131bUQMzkiKIDj1zptxQMuPCqGvrpr27z6Pr8pXfvn2UiuYuHrxyHiaj4z8ypydFcLK2fVzv5oozORsEMtC81CjCgwLkaKMQYkRSnIkhaa39audMKcWqqfFsPVGPxU3x1IerWoftN7NbnhPHrpJGr6Xk7ShqIMCg+nuM8tOjqGvroaK5y23PcbiqlfYeM0uzY/n00gzWf/1cblyeyb+3FHPer97nqR2lbvszHqt9Zc0oxbDzpOyy48MINhn8dgdwOF29Zu5at5sAo+JPNywkMGD4b8ne6DvrNVvYdaqR5Tmj95vZ2RMbJ+Lu2eGqFh7dXMynl2awKNO5UZ7TkyLos2iKJ0E/3mTibBDIQAFGA8uype/M0/rMFjp6JuabRWJykOJMDKm5s5eePguJflKcAazMjae+vcctfRxdvWaK6tqHTGocaEVOHD19Fq/NG9te1MDc1ChCA627efNtg5f3uvH5d9jSIJfYYtKjQwP54eVzefnLq8mOD+O+Z/dx5V82u/U5XbW/rJnchHDCRogtBzAaFDOmjL9QkAdeOkhhZQu/vS6f1OiQEe87NzWKAIPyaN/ZvrJmOnvNDvebAWTGWvvjShomXhHy3O5yjErxzQtnOP3Y6Um2xEYJBZlQnA0CGWzF1DhO1rVT2dzp5pUJuwdfK+SChzZ47U1VIdxNijMxpBrb0akkPwkEAesPNYDNbnjX0T4gdrSdsyXZtnlnXjja2NVrZm9Z02kvjGcmRxBoNLi9OEuNDiFlUDEwJyWKp+9cwW+vy6OiqZMr/ryJbz+3z2dR/lpr9pU3OzwAfXZyJIVVLX4fcGL37K4yntxRyhfXTGXNjMRR7x9sMjIrOdKjbxTYZzA52m8GkDGBd842Ha9jQUa0w0c8B8pJCMNoUNJ3NoG4GgQykP3nmOyeec7hylZKGzr51+ZiXy9FCJdIcSaGVN1iPUaXGOE/O2ep0SFkxYWyxQ3DqEdLarSLCjExJyXSKz9IC0qb6DXr/h0tsMYvz0qOYK+bQkG01uwobmRJ1tBHtJRSXLkgjfe+dg63rc7m6Z1lrPnV+/x7SzF9Zu/2zlS1dFHb2j3s8OnBZidH0NTRS6Ubj4B6ypGqVr77wn6WZcdy7/nTHX5cfno0e0ubMHvo2Om2kw1MSwwnLtzxN2WiQkzEhJomXGJjY3sPhypbWGULI3JWsMlIVlyo7JxNIK4GgQw0a0ok0aEmKc48qLzJuiv55/XHaeqY3HNCxfg08lkhMWlVt/jfzhlYjza+XFBBn9lCgBPN+YMdrmohKMBAVtzosdgrcuJ4bMspunrNLr9b6ojtRQ0oxWnFGViHcD+7qwyzRWM0jDxfaTQlDR3UtnazZJSdkYhgE9+9eDbXLk7ngZcP8n8vHmT94Roe/ezSMT2/M/aV2cJAbEc7R/NRKEjLGbuCnlLd0sW/txTz5sFqAgyKsKAAQgONhAUGEBYUQFiQkdDAAMICjYQGWf8bFhTAQ+8cJTzIxB8+vcCpf8cLMqJ5fOspjte0OR1GMJo+s4WdxQ1cuTDV6cdmxIVNuFlnW07WozWsynW8/26wGVMixmVIjTjTWIJABjIYFMuz49h8oh6t9agz84RzLBZNZXMn581MZP2RGv78/gm+84nhg5aE8EdSnIkh+ePOGVijiP+zrYT95c0syHCuQX+gw1WtTEsKd+iF8fKcOP72YRG7SxpZOdW1d9Edsd2WkhcVevqw5flp0fx7yylO1rYxLWlsL8i3F53ebzaaaUkRPHHrMn77zjF+/+4xjlW3jnkNjtpf1ozRoJidPPLRU7uZtvsdqmhh7awkTy6NA+XN/HNjES/vq6DPolmdG0+IyUhHj5m27j5qWrpp6+6jo6eP9h7zGYl9AQbFv29d6nRPZ356NAB7ShrdXpwdrGihvcfs0PDpwTJjQ9nthRls3rTpeB1hgcb+vk9XTEuM4PUDVR5/Y0d43rYiaxDIr9fkjvlaK3PjeONgFaUNnf3HgoV71LR202vWrJmZSGxYIP/aXMwtK7NG7ekVwp9IcSaGVNvaTWRwACGB/vWCYkXOR31nYy3Ozpme4NB9l2THYlDWlC5PFWe9Zgu7Sxq5elHaGZ/LT7ce6ysobRpzYbSzuJGoEOv8NEcppbhlRSZ/Xn+cZ3aXjRj37k77ypuZlhju8L/B8KAAMuNCKazyTCiIxaJ573ANf994kq0nGwgLNHLDskw+uyqLzLiwER/ba7bQ0WOm3VawRQSbXEpCzY4PIyrEREFpE58aw9Gqodj7zZblON5vZpcZF8or+yro6bOMmDg5nmw+Uc/ynDin4vMHmzElAq2tPa6jJY4K//aPjUVjCgIZaGV//3QdGXHu/f/YHSqbO7n0D5v4+y2L+98QGi/Km6zHq9OiQzhvZiIv7a3gN28d5dfX5vl4ZUI4bmL8FBVuV93S5VdJjXZx4UHMnBLB5jH0ndW3dVPb2j1qUqNdZLCJualRHg0FOVjRQoct3n6wnPhwwoMC+o/5jcWOUw0syYrB4OTxyLjwINbMTOT53eVe6T3TWrO/rIk8J3ctZie7P7Gxo6ePx7cUs/Y3H3Dbv3dSUt/Bdz4xk83fXssDl80ZtTADMBkNRIWYSIkOITcxwuURFUop8tOj2VPS5NLjR7LtZAM58WEu7ZZnxoVh0R/1eox3FU2dFNW1s9LFfjM7SWycGLadrOftQ9XcflaOW3ZApyaEkxARxBY/HUa9o7iRurZu3jhQ5eulOK28yXrqJzUmhNToED6zMovn9pRx2ENv2gnhCVKciSFVt3T5Xb+Z3arceHYWuz57zP5CabSkxoGW58RRUNLksWjeHbbjhkuHOG5oMCjmpUaNORSkrq2bk7XtLHbwSONgVy9Ko6a1262DwIdT1thJY0evw0mNdrOSIznV0EGbGwYiVzV38fM3DrPip+/x/RcPEhli7RHbcN8a7jh7KlEhptEv4gELMqI5WtPqlq/RzmzRbC9ucGnXDD6adTZRZnptsv0bH0u/GUBWXCiBRoMkNo5jFovmJ68VMiUymNvOynHLNZVSrMj5qO/M39jnRfpr8TiS8kbrG0T2vuMvnDuViKAAfv76YV8uSwinSHEmhlTd0k2Sn/Wb2a2cGkd3n8XlHpfDDiY1DrQiJ44es4XdpzzTV7OtqIGsuNBhdyvz0qMprGyhu8/14nBnsXXtwyU1jmbNjERiQk08s6vM5TU4an+5dZdwvpPF2ezkSLSGI2N4l7Sr18zXn97L6p+/x18/OMGq3DievWsFL3xhJZfmpYwpiMYd8tOj0Rr2uSnBE6wvxlq7+lzqNwNrzxlAyQSJ0998op748EBmjPEYcYDRwNTEcLfMZhS+8fK+CvaWNfP1C2a49Zj/yqlx1LZ2c6K2zW3XdBf76YMD5c20dvX6eDXOKW/qICrERLhtNmZ0aCBfWJPL+iO1kpApxg0pzsQZtNbUtnaT4Kc7Z0uzYzEaFJuPu/aN9nBVC/HhgSREOP71Lc6KwWhQHnkn0WLR7ChuGHG2VF5aFL1mPabkt53FDQQFGFzufQkMMHB5fipvH6qmucOzP7D3lTVjMiqnQy9mpdhCQcbw5/T0rjKe2VXGDcsy+OAba/jzDYtYlBnrN6lqH4WCNLntmvagGGfmmw2UEBFEiMk4IWadaa3ZdLyOFVPj3fJ3Pj0pnGPV/vcCXIyuq9fML944wuzkSD65wPkU05HY+5f9sWAorGwhNToEs0Wz00NvSHpKeWPnGeEfn1mZRXJUMD9747Bf7lQKMZgUZ+IMTR299JgtfrtzFhFsYn5alMt9Z0eqWp1+0R/hwb6zYzVtNHf2jpigmGd7QT6WYdQ7ihvIS48mKMD1d3+vXpRGT5+Fl/dVuHwNR+wra2LmlEin15oSFUxUiMnlvjOLRfOvTUXMT4vigcvmkB7rf0lq0aGB5MSHuXUY9baietJjzxxM7iilFJlxoZQ0jP9jjSdq26hp7WbV1LEdabSbnhRBeVOnW3YgfvnmYR546aAbViUc8eimYsqbOvnexbOc7tMdTXqstSdqs58VZ3Vt3dS0dvPppemYjIqtfra+0VQ0dZEac/r3sWCTkXs/Np29pU28Pg776MTkI8WZOEN1q7Wh1tXQAm9YOTWOvWXNTvfdmC2aI9WtTvWb2S3PiaWgtInOHvf2nW23p+SNcKQsOSqY+PAgl/vOOnr6OFDR4vKRRrs5KZHMnBLh0aONFotmf3mz0/1mYC0SZiVH9PdMOOvD43WcqG3ns6uy/GanbCj2UBB3vAtssWi2FzW4fKTRLiM2lOIJsHO2ybYj7+rw6cHsRyOPjnH3rLvPzL82FfOvzcX9O53Cc+rbuvnz+uOsnZk45mCYoSilWDE1ji0n67F4aKi8K+zfOxdmxLAgPcajQVjuprWmvOnMnTOAqxamMT0pnF++eYReL4RaCTEWUpyJM/jrAOqBVk2Nt4YYFDn3g6OkoYOuXotLM6KW58TRa9bscvMxj+3FjUyJDCY9dvhdC2tKX5TLO2cFJU2YLdrh+WYjrePqRWkUlDZxvMYzR7VONXTQ2tXHfBePX85OjuJwVQtmF17wPLqpiISIIC6el+LSc3vLgoxo6tq63ZKOeKymjcaOXpa5eKTRzrpz1uFXLzRdsfF4HemxIW7bNbV/rxlrKMi2kw2095gJNBr44SsHx/2fs7/73bvH6Og18+1PzPTYc6ycGkdTR6/Hxn+4wn7qYFZyJMtzYtlf3kzLOOk7a+nso627b8jizGhQfPPCmRTVtfPkjlIfrE4Ix0lxJs5Q46cDqAdamBlDYIDB6b6zw7Z3BWe5sHO2JMva6+bOdxK1thaYS7JH72manxbNybp2l35Qbi9uQCnrn9tYXZ6fitGgeHa3Z3bP7EEXruycAcxKjqCr1+J0cuDxmjbeP1LLTcsz/X5WV3669e/RHX1n9vlmy3PGuHMWF0ZPn6V/53086jNb2HqynlVunGeYGh1CaKBxzHH67xZWE2wy8OMr5nKgvIVnPPT/n7AebV23rYRPL00nN9G9w94HWmE7OutPfWeFlS0kRwUTExbI8pw4LNrarzwelNlmnA0+1mh33sxElmbH8rt3jtHuxrRbIdzNv1+BCJ+oabXunCX68c5ZsMnI4swYNjn5Q+1wVSsGBdOSHB/CbBceFMC81Ci3hoKUNHRQ3dLtUBBDni2l74AL8852Fjcyc0okkcFjj39PiAhizYwEnttd5tLu1Gj2lzUTFGDonxHlrNn2UBAn+84e21xMoNHA9cv8byjsYDOTIwgKMLil72zLiXpSooJJG+YFjaOybHH64zkU5ECFNbXSncfYDAbFtKQIjtW4XpxprXmnsIbVufFcsziNhRnR/PLNI24dpyA+8tPXDhNiMvKV86d79HmSo0LIjg/zq+LsUGULs5Ot30MXZsYQaDSw9eT4KM7sMfpD7ZyB9eTHty6aSV1bN3//sMibSxPCKVKciTNUt3QRFWJyy7BNT1o5NY7CyhYa2nscfszhqhay4sNc/tpWTI1jb2kTHT3ueVG0fYT5ZoPZj/kVONl31me2jh1YOsZ+s4GuWphGdUs3Gz0w82xfeTOzUyIxuRhZn5sYToBBOdV31tzZy7O7y7gsP4X4cP99U8LOZDQwLzWKPS6Ok7BraO/h3cM1nD87acw9dpmx1mHcp8Yw68xs0Tz46iG+8fRe7n/xAD97/TC/f/cYf//wJOu2neKFPeW8ebCKD4/VsutUA4cqWtw6+No+32ylm8JA7KYnhnOkyvVjwEeqWylv6mTtLOvf0/9dOofaVmtPlHCvLSfqeaewmrvOneqV7wUrpsaxraiBPj/og+rqNXOitp1ZtuIs2GQkPyPar4rHkVTYvhcMt3MG1l66C+dM4ZENJ6hr6/bW0oRwSoCvFyD8jz8PoB5oZW48vHWULSfquXh+skOPOVLV2r+z4orlOXH85f0T7DrVyFnTEly+jt32ogaiQ01MSxx9Jy8mLJDMuFD2lTq3c3aosoWOHrPLw6eHct6sRKJDTTy7q4xzpo/9z8HObNEcLG/m6kVpLl8jKMBIbmI4h5wozp7aUUpHj5nPrspy+Xm9bUFGNI9tOUVPn8XlY5hP7yylp8/Cjcszx7yelOhgAgxqTDtn24sa+NuHRcSFBdJn0XT2mOlx4EXr325ezMdmJ7n8vHabT9Qxc0qE21+Uz5gSwdO7yqhv6ybOhWu/W1gDwNqZiYA1EOaTC1L5+8YiPr00wy9TRccji0Xz4GuHSIkK5tbV2V55zpVT4/jPthL2lzezIMN9b6C54lh1G2aLPu1n5PKcOP743jGaO3uJChn7yQtPKm/qJCjAQFxY4Ij3+8aFM3i7sJo/vHuMH1w+10urE8JxsnMmzlDT2u3X/WZ281OjCA8KcDhSv6Onj1MNHS4lNdotzowhwKDc9k7ijuIGlmTFOhzTnJcW7XRi447+4dPuK86CAoxcnpfCmweraO50X7N4UV0b7T1m5qVFj+k6s5MjHd45M1s0j20pZml2LHNSXOtz84X89Bh6+iwuJ1NaLJp120pYmh3r8hHSgQKMBlJjQjjV4Hpx9ubBKoICDGy4bw177/84Rx+8iGMPXsS+Bz7O1m+v5b2vncMrX17N03eu4LHPLeXhGxeSGh3CvzaP/YhSV6+ZncWN/fOn3Gn6GBMb3ymsZn5a1GlD6u+7cCZGpfjZ64fdssbxbvPxOm7553YOjyFc48W95Rwob+EbF87w2skRe6+nJ2ZoOsv+vcS+cwawYhz1ndmTGkc7BTA1IZzrlqSzblvJmHb6hfAUKc7EGWpauv2638wuwGhgaXasw3Nijla3oTUuJTXahQUFMD/NPfPOqlu6KK7vcOhIo938tCgqm7v6Q1scsbO4gfTYEKZEubfgvmpRGt19Fl7dV+m2a+617QrOdzEMxG52SiTVLd3UO3Bs5e1D1ZQ1dvK5cbRrBtadM8DlvrMNx2opaejgJjfsmtllxoVR4uLOmcWieeNAFWdPTyAs6KNDHSajgchgE1OigslJCGduahRLsmI5Z3oCF85N5vplGWw6Xs+J2rGlh+4+1Uh3n4VVue490ghjS2ysa+umoLSJtTNP3xmcEhXMXedO5dX9lZM+Wr+quYsv/XcPHxyt5Yo/beLpnc6n8XX1mvnlG0eYlxrF5XnuHTg9kvjwIGYkRfjF0cFDlS2EBhrJHLATuyAjmsAAg1+sbzTljZ0jHmkc6Ctrp2EyGvjlm0c8vCohnCfFmTiNxaKpae3y6xlnA62cGkdRXXv/WfORjCWpcaDlOXHsK2sec9pTf7+ZExHm+fZh1A6Ggmitrbtzme7bNbOblxrF9KRwntnlvlji/eXNhJiMTE1wPrBlIPs7v4WVo78YfnRTEanRIXxs9pQxPae3JUcFkxgR5HLf2RNbTxEfHsQFc9z3dWfGhlJc3+7S/LWCsiaqWrq4aK5z67l2sXVY7rqtJU4/50CbTtRhNCin/n90VGJEEFEhJo64UJy9d7gGrWHtrMQzPnf7WTmkRAX7LFr/QHmzW3fOXdFntnD3k3vo6jXz5B3LWZAewzee2cd9z+x1aiblPzYWUdHcxXc+4f6B06NZMTWOHcUNdPe5d4amsw5VtjBzSsRpX3+wyciC9Gi2Ojm2xhfKm7qGDQMZLDEymNvOyuaVfZX9CcFC+AspzsRpGjt66DVrkiL8f+cM6D+C5Mi7eoerWgkNNI45lW7F1Dj6LJqdY5x3tqO4gdBAI3Oc6IGbkxKF0aAc/mFSXN9BXVsPSzzwgtM+82x3SRMnx7hrYbevrIm5qZEYx/jiyF6cHaocuYg9WNHMtqIGblmZOebn9DalFAsyol3aOStt6ODdwzV8emm6W8cGZMaF0trVR1OH8y/Y3zxQRYBBsXaWc71jCRFBXDg3mWd2lY5pQPym4/XkpUUR4YZE08GUUkxPCueYC8XZu4XVJEcFD/l9IiTQyDcvmumTaP3Shg4u/eNGzv7Fev624SRdvb4pLH737jG2FzXw4yvmsjwnjiduW8aXz8vlqZ1lXPnnTQ59b6pr6+Yv75/g/FlJ/fH23rRiahxdvRYK3DAaw1VaaworW4bsyV4xNY6DFS0+L8RH0tVrpq6t2+HiDOCOs3OIDQvkZ68fdukNJSE8RYozcZqPYvTHx87ZzCkRxIYFssmBvrPDVS3MGPSuoCsW2frOxnq0cXtRg/VaTqQShgQamZ4U4fAL8h22PoElbkxqHOiK/FQMCrfMPOszWzhY0cL8MfabAcSGBTIlMnjUnbNHNxUTYjJy3WL/j88fSn56DMX1HU4llgL8d3sJCvj0Uvd+3Rm241DO9p1prXn9QBUrc+NdCh24cVkGLV19vLyvwunHArR09bKvrIlVbozQH2x6UgRHqlqdehHY1Wvmw2N1nDczcdg+msvyUnwSrf/B0Vq0hmmJ4Tz4WiFrf/0Bz+8p8+oO3sZjdfxx/XGuWZTGJxdaQ4SMBsXXPj6Df312CdUtXVz2x02jHr1+6J2jdHp44PRIlmfHoRQOH9H3hLLGTlq7+k7rN7NbnhOH1vj18Vn76ZkUJ4qziGATXz4vl80n6tlwzP3Jw0K4SoozcZpqWy/TeEhrBOsMoRU5cWw5UT/iix6tNYerWpk5hn4zu9DAAPLSxxYv3NTRw+GqVqf6zezy0qLYV9bs0Iu8HUUNxISaxnxMcDiJkcGcMz2B53aXj3nm2bGaNrr7LGPuN7OblRwx4qyzurZuXiqo4KpFqUSF+ncK2XDsfWd7ndg96+4z878dpZw/K8mpFzKOyIp3LU6/sLKVkoYOp4802llDTcJ5Yusplx6/7WQDFo1HwkDsZkyJoKWrj+oWx+O7t56sp6PHzPkj7Cb6Klr/w2O1pEaH8PSdK3ji1mVEh5q49397ueQPG9lwtNbjz1/T2sVX/ldAbkI4P7h8zhmfP3dGIq/efRbTk8L54n92c/+LB4Y8Nni8ppX/bi/lhmUZHvs+OZqoUBMLM2J4eV+Fz3Zw7Om2s4cozvLTowkKMLil19pTyh2I0R/K9csySIsJ4ZENJzyxLCFcMmpxppRKV0qtV0oVKqUOKqXuGfT5ryultFLKcz/VhNfU2F44jIe0RruVuXFUNndRVDf8C8Ka1m6aOnrHlNQ40IqcOPaXN7v8TvVOe4KiC8cN89Kjae7sdSiyfOepRhZnxY55htVIrl6UTmVzl8OpmcPZb+ujm5fqnuJsdkokJ2rbhj1u9Z9tJfSYLXxmpXcisz1hXmoUBoVTfWdvHKiivr2Hm1a4LwjErn/nzMlQkDcOVGJQuByHr5TixuWZ7CtrdqpQtdt0vI5gk4GFmdEuPb8j7ImNzvSdvVtYQ4jJOOpRu4HR+qVjSMt0VK/Zwubj9Zw9PQGlFKunxfPyl1bzu0/l09LVy83/3M6Nf9/GgXLnxn44ymzRfOXJAtq6e/nTDQsJDRx6KlBKdAhP3rGCW1dn89iWU1z78BbKGk//8/npa4cJNRm5Z+00j6zVUTcsy+BkbTubjvumACqsbEGpoQOzgk1GFmbE+HUoyGgDqIcTFGBk5dQ4l5NUhfAER3bO+oCvaa1nAcuBLyqlZoO1cAM+BoytE1v4DfvO2XhIa7Szv9s90pEQe0TwWJIaB1qeE4fZotnq4g+r7cUNBBoN/QEfzrDvLI0WqV/b2k1RXbvHjjTarZ2VSGRwAM/uGtvRxn3lTUQEBZAVF+aWdc1KjqTPojlec+YP3Z4+C49vPcU50xPIdWDGnL8KCwpgxpRI9jhRkDy+5RRZcaGs8sAuUbDJSFJkkNPF2esHqliSFTum+WJXLkglNNDo0u7Z5hN1LMmKJSjAc/Hp/XH6VY4VZ1pr3i2sZvW0eIdi3b9x4QyvResXlDbR2t3H2dM++jdkMCguz0/l3a+dw/cvmc3BimYu+cNG7nlyj9sLxj+tP87mE/X88LK5o46BCAww8P1LZvPwjYs4WdvOxb/fyLuF1YA1fv/dwzV8YU2uS/Pn3OkT85KJDQvk31uKffL8hypayI4PG7bQXZ4TR2FVC00dzh2h9paKpk4MCpdSibPiw6ht7aa1y3976sTkMmpxprWu1Frvtv2+FSgE7DmzvwXuA6STcoKoae0mOtTk0Rcp7pYVF0pyVPCIOzdHbC+I3HGsEWBxVgxTIoN54OWDTvf7gPXs/vy0KJdm6UxPiiDYZOiPnR+OfS6NO4dPDyXYZOSy/BTeOFhFyxh+uO0ra2ZuapTbktJm94eCnHm08bX9ldS2do+rodPDyU+3hoI40utTWNnCzlON3Lg802OJdJmxYZQ0OH6s8XhNG8dq2lw+0mgXEWziigWpvLyvgmYnAklqWrs4Wt3m0SONYO2DTIgIcjhOv7CylYrmLs4fIqVxKMlRIdx5jjVaf5uHj59tOFqL0aBYOUSPXlCAkVtXZ/PBfWv4wrlTefNgFWt//QE/fPmQS98rB9t6sp6H3jnKlQtSuWax48PqL5w7hVfuXk1aTAi3PraTn71+mB+/WkhqdIhffB8INhm5bkk67xRW9x/R86bCqpYh+83sVkz1776zsqZOpkQGY3Kih9sup/84tud3nYVwhFP/ipVSWcACYJtS6jKgXGu91xMLE75R3dJF0jg60gjWI00rp8az5UT9sC9QD1e1MiUymOjQQLc8Z7DJyMM3LaKmtZsvrttNr9ni8GPbu/s4UN7scmS3yWhgTkrUqDtnO4obCTYZmOuFwcpXL0qnq9fCay7OPOvuM1NY2eK2fjOwztwKMRnPGNKstebRTUXkJIRx9rQEtz2fryzIiKa1q4+TIxzrtXti6ymCAgxcvcjxF7XOyowLdepFzpsHqwC4YIzFGcCNyzLp6rU4lVxoP6q12oNhIHbTk8IdLs7suztrZjpWnIE1fc4arX9ozD2gI9lwrI789OgRw1sig03cd+FM3v/6Gq5ckMq/Nhdxzi/W8/cPTzr1/XKgurZu7v7vHrLiwvjRFXOdPq6dGRfGs3et5PplGTz8wQkOVbZwnxcHTo/mhmXWgJ51LvZOuqqlq5fShs4h+83s8tKjCAow+MWw7KGUN3a63ENr75V15HuoEN7gcHGmlAoHngW+gvWo43eB/3PgcXcopXYqpXbW1nq+SViMTXXr+BhAPdjKqXE0dvRSWDV0AMThqlZmJrtn18wuPz2an145jy0n63nw1UKHH7enpIk+ix7TPKW8tGgOVjSP+CJn56kG8tOj3RqVPvx6opiaEOZyauPRqjZ6zZp5bizOjAbFzCFCQXaXNLG3rJnPrszy+jwjT1hgOxo7Wt9Za1cvz+8p57K8FLe9STGUzLhQalq76ehxrB/z9QOV5KdHkxw19nCS2SmRLMyIZt3WUw4HK2w6XkdUiGnICHF3m54UwdHqNod2Od85XENeerRT/b/2aP2DFS1uSVAdSmN7D/vKmhx+Y2NKVDA/v3o+b37lbBZlxfDjVwu56HcfstHJdDyLRXPv/wpo6uzlj9cvJDxo6ON3owk2GfnJlfP4/acXcMfZOVw6P8Wl63hCWkwoa2cl8eSOUq+OJjhsS7UdqTgLCjCyKDOGrSf9c+esvMnxAdSD2Y/SF9VKcSb8g0Ov2pRSJqyF2Tqt9XPAVCAb2KuUKgbSgN1KqTPe+tRaP6K1Xqy1XpyQMP7fpZ7oalu6xlUYiN3KXGvD/FANy71mC8drWt3WbzbQVYvS+NyqbP61uZindjo2jHl7cQMGZY3kd1VeehRdvZZh34Vv7+7jYEULSzx8pNHOOvMsnR3FjRS78O7jvvImwFp0utOs5EgKK1tOe6H+6KYiIoID+qO3x7upCeFEBAWMOl7h+T3ldPSYPRIEMlCG7YVOiQN9RqUNHRwobxnzkcaBblqRycm6dodiybXWbDpez4qcOK/MuZuRFEFnr5myxpGPrdW0drG3tInzndg1s/N0tP7G43VoDWdNd26ncVpSBI9+Zgl/v3kxPX0WbvzHNu58fNcZAR3DeXjDCT48Vsf9l852SyF9WV6KTwZOj+bmFZk0tPfw2n7XTiG44lCF9Yj8aH+uK3LiOOyHfWdmi6aq2fEB1IMFm4ykRodQ7GTKrBCe4khaowL+ARRqrX8DoLXer7VO1Fpnaa2zgDJgoda6yqOrFR5lsWhqWrvHTYz+QMlRIeTEh7Hp+JnvxhbVtdNr1sxyU1LjYN/5xExW5cbxvecPsNuB1LztRfXMTokc07BbexEzXN/ZnpImzBbtteIMrIEMrs4821/WTHSoacwDwgebnRxJS1dffw9HZXMnrx+o4lNL0glz8Z13f2MwKPLSo9kzwgBbrTWPbzlFXlqUW+bIjSTTicRG+5HGC91YnF00N5mYUBOPbxn9aFhJQwflTZ2syvXO4OHpUxxLbFx/uAbA6YHc4Plo/Q+P1RIVYnLpjRSlFOfPTuKte8/m6x+fzgdHa1n76w946J2jI+4U7Shu4NdvHeXi+clc7+bZfP5m1dR4chLC+LcD/37dpbCyldiwQBIjRv7Zv9zWd+Zvu2c1rV30WbTLO2cAWfGhcqxR+A1Hds5WATcB5ymlCmy/PuHhdQkfaOjooc+iSRonA6gHW5kbx/aihjOO+rk7qXGwAKOBP356IUlRQdz5+K7+xMuh9PRZ2FPSNOaiKTMulKgQE/uG6TvbYduds8/B8oYpUcGsnmadeeboINrWrl4e33qKtw9VMy81yu2R//YGd/sw6n9vsR53u3lFllufx9cWZERzpLp12KOE24oaOFbTxg3LPbtrBh8dESpxoDh740AVs5IjyXRTQidY3wW/dkk6bxdWU9U8/P+LQH9s+VDBFp4wzZYMOlrf2TuFNaREBTPLxaPYnorW11qz4Wgdq3Pjx7TTGGwy8qXzpvHu187h/NlJPPTOMc7/zQe8caDqjOOoje093P3fPaTFhPCzT87z6FgQf2AwKG5anklBadOw39/d7VBlC7OTI0f9s7WGWPnfvDN7jP5Y5jZmx4dRVNvmszlzQgzkSFrjRq210lrP11rn2369Nug+WVprGa8+zo23AdSDrZwaT3uPmX1lp+8mHalqJcCgPDpgNCYskL/dvJi27j4+//iuYd8F3l/eRHefhWVj6DcD6zvQ89Oihj3KtqO4gVnJY9udc8XVi9Iob+oc8Ye31pq9pU1885l9LH3wXb7/wgGSIoO592PT3b6emVMiUMoaE93ZY+a/20v42Owk0m27OxNFfno0ZovunxU32ONbTxEVYvJKf01UqImoENOoR4RqWrrYVdLo1iONdjcszcSiNU/uGHnKy6YTdUyJDO5Pa/O0iGATqdEhIxZnXb1mNh6rY+2spDEVIvddOBOjUjz0zjGXrzHYsZo2qlq6ONvJI43DSYkO4U/XL+Q/ty8jLDCAO5/Yxc3/3N4//kJrzdee3kt9Ww9/un6h17+f+cpVi9IIDTR6Zfesz2zhSHWrQ28EBAUYWZwZ63/Fme1kRNoYirOsuDBauvpodCLpVQhP8XxSgBg3alqtA6gTxmHPGVjPw4N1ds1Ah6tamZoQ7vFgjJlTIvnNtXkUlDbx/RcODPkO3DZbDLE7jhvmp0dzrKbtjN2SXrN7dudc8fHZSUQEB/DMEDPP2rr7WLftFJf8YSOX/2kTL+2t4NK8ZF744ipevXs1CzPcP48tzDY3rbCyhRcKymnq6OWzq8bv0Onh2OflDVWs17R28eaBKq5ZlEZIoHdS6TLjQkftOXvzYBVau/dIo11GXChnT0vgv9tLhg3NsVg0W07UszI3zqu7MdOTwvtHewxly4l6OnvNrHUwQn84U6KCuXJhKq/ur3Db/KYNR62hXme5OeV05dR4Xr17NfdfOpuC0iYufGgDD756iD+8d5z3DtfwnU/MZK6bhtOPB5HBJq5ckMrLeytodMP4gZGcrGunp8/icB/f8pxYDle1umUsgrvYezjHcqwxJ8EWClInw6iF70lxJvrVjPOds5iwQGYnR54RBHDEA0mNw7lwbjJ3r53G07vKeGxz8Rmf31HUwNSEMLcMPJ2fZt0tOTgojfBQRQudvWafFGfBJiOXzE/htQOV/S8I95c18+3n9rH0wXf47vMHMFs0P7p8Dtu+u5ZfXJ1Hfnq0R18cz06O5GBlM49uKmJWcuSYdy39UVx4EBmxoUMWZ//bXkqfRXvlSKNdRuzocfpvHKwiJyGs/6ifu920PJPqlu7+SPrB7C8wPTGMeyTTp0RwsrZ92KLxncJqQgONLM8Zex/c1YvS6Oq18Pp+97SDbzhWR25i+JiOjw0nwGjgs6uyWf/1c/nkwlT+9mERv3n7KBfOmcItK7Pc/nz+7uYVWXT3WRwOmnKV/dj/SDPOBlox1frvcnuR/+yeVTR1EhNqGnaAtiOy463fh4rqZNaZ8D0pzkS/6hb7ztn4LM7AGqm/q6Sx/1hhc2cv5U2dHus3G8pX1k7jY7OT+NGrhacNxjZbNDuLG1ma7Z7wgTxb7PzeQS/IdxTbd+fcvxPlCPsLwvtfOsilf9jIpX/cyPN7yvnEvGSe+8JKXr/nLG5akUWkl44ozUqOoLShk6PVbXx2VdaE7VlZkHFmKEif2cJ/tpdw1rR4sr10dA+sR4TKmzqHLUAa23vYerKBC+dM8djfx5qZiaRGh/D4MDOj7P9vrvJSv5ndjKQIeswWTg1x7FNrzXuHazhrWrxbZm8tSI8mJyFsyJ1sZ3X1mtl2st7jswHjw4P4xdV5vPDFVdx+VjY/v3r+hP1/diQzpkSwLDuWx7ee8ujMukMVLQQaDQ4f+5+XGk2IyThkMrKvlDe5PuPMLi0mBKNByc6Z8AtSnIl+1S1dxIYFEhTgHwM5XbEqN56ePgu7TllTE+29HZ5KahyKwaD4zbV5ZMeH8cV1u/sb8g9XtdDa3cfSbPcUTYmRwSRHBbN3UJ/RjuIGMuNCSfRRsMvCDOsLwud2l9PTZ+EHl81h23fO51fX5LEwI8brL7Ts7wjHhQVyWZ7/zDRyt/z0aKpauqhs/iim/d3DNVQ2d3GTF3fNwHqs0GzR/Y36g71dWI3ZorlobrLH1mA0KD69NJ1Nx+s5WXvmC65Nx+vISQhjSpR3/z+ZnmRLbKw6c00HK1qobO5yKaVxKEoprlqYxvbihiGLQWdsL2qgu8/itn6z0eSnR/Pdi2ePOOh6ort5RRZljZ28f6TGY89xqLKFaUnhmIyOvRwMDDCwOMu/5p2VN3a6HKNvZzIayIgNpVh2zoQfkOJM9Ktp7R41StffLcmOJcCg+iP1D3s4qXE4EcEm/nbzYswWze3/3klHTx/bbf1m7to5A2uk/sCdM62tu3OLM313dE8pxT9vWcILX1zFG185i1tWZvn0Bdbc1CgMCm5YnumW3Qh/tcDWs1cwYPfsia2nSI4K5jwX5mWNRX+c/jB9Z28cqCI1OoS5qZ590+TaJemYjIp1204PBunps7CtqMHrRxoBchPDMaih4/TfLaxBKdz69/XJhakoBc/uLh/TdTYcrSUwwMAyN37/EiP7+JwkkiKDPBoMUmhLanTG8pw4jlS3Ut/W7aFVOU5rPaYB1ANlxUmcvvAPUpyJfjUtXT7bbXGX8KAA8tKj+/vODle1EhkcQLKX3x0HazTvH65fyNHqVr7x9D62nWwgNTpkzO/wDZSXHk1JQ0d/0/jJunbq23vctjvnqqz4MI/3kjkqKTKYV758Fl8+L9fXS/GoWckRBBoN/X1nJ2vb+PBYHdcvzSDAwXfF3SWzP07/zBc6rV29bDxWx4VzPXek0S4xIpgL5kzh6Z2ldPZ8lKC6t6yJjh6z1+abDRRsMpIZF8axoYqzw9Xkp0cT74aeVLvkqBBW58bz7K4yh0dcDOXDY3UszYr1WqiMsO7mXL80kw+O1lLkgaKhprWLurYeh/vN7Oz9kPaAK19q7uylo8fslp+r2fHhFNe1S5y+8DkpzkS/6pZuksb5zhlY+872lTXR0tXL4apWZk4ZfX6Lp5wzPYFvXTSTV/dX8uahKpa6OYyiv+/MNg9np63fbLEPwkD82eyUSIeP7YxXQQFG5qRG9vedrdtWQoBBcd3SdK+vJTEiiGCTYchQkPcO19BjtngkQn8oNy3PpKWrj5f3VfTftul4HUrhltANV0xPCj9j56y6pYt9Zc2c76YjjQP1j7hwMcShqrmLI9WtXjvSKD7y6aXpBBgUTwzTOzkWh2xhUo4mNdrNT4siNNDoF5H69qTGNDfsnGXHh9LZa+7vvx8Palq7OP83H/QHu4iJYWK/WhEOM1s0tW3d43YA9UArp8Zj0bDtZINXkxqHc/tZOVyRn4LW7onQH2huWhRK0T/bbUdxI3FhgV6b2yT8S356NPvKm2jt6uWZXWVcOHcKiT4YjWEwKGv/xhDF2RsHqkiICPLI6IShLM2OZXpS+Gkvbjcfr2duShTRoYFeWcNgM5IiKK5rP20e4nuHrX1FY43QH8oFc6YQETT0iAtHbDjmmQh9MbrEyGAumpfM0ztLhx0y76rCStd6sk1GA4uzYv0iFMQ+48wdCaL2xMaT4ygUZMuJeo7XtLHeg32JwvukOBMANLT3YLZoEsdpjP5ACzKiCQow8PTOUtq6+7zebzaYUoqfXTWf718ym8vy3RtIERlsIic+rL/vbEdxA4uzvB+6IfzDgowYunot/PqtozR39no9CGSgjNgwShpOP4rV2WPm/SO1XDAnCYPBO/9GlVLcsCyTfWXN7CtroqOnjz2ljaz0wZFGu+lTIrBoODEgqOTdwmpSo0OYkeT+71fBJiOX5CXz+v4q2rqdf4G/4WgtiRFBzPTx99LJ6uYV1t3fFwsqRr+zEw5VtpAaHUJUqPM9wctzYjlW00adj/vO7KFDbjnWaJt1Np5CQewnJQaP1BHjmxRnArAeqQF88i67uwWbjCzOiuFt23yjmV5MahxOsMnIrauzCQ9yfQ7LcPLSo9lb1kxNSxen6jt8Mt9M+IcFtmHUj20pZnpSuNuP0TrDPoh6YP/GB0dr6ew1ezSlcShXLkwlNNDIE1tPsb2ogV6z9kkYiJ29ALOnyXb1mtl4vI7zZyV67I2Vqxel0dlr5vX9lU49zmzRbDxex1nTEuRNHx9ZnBnDzCkR/HvLKbf2QxVWtjjdb2bX33fm49TG8qZOgk0GYsPGvgueHBlMUIBhXMXp23uMD5Y3j3xHMa5IcSYA67llGL8DqAdbOTUe+88wX++ceVpeWjR1bd28tNf6rqr0m01eaTEhxIUForW118qXL6az4kLp6rVQ0/rRO+tvHKgkOtTk9aIxMtjE5fmpvLS3gtf3VxFoNPj0TYys+DBMRsXRauuLwE3H6+jqtbgtQn8oCzNiyI53fubZgfJmmjp6pd/Mh5RS3LIyi8LKFnbaxsSMVVevmZO1bU73m9nNS40iLNDIlpN1o9/ZgyqarDH67vheZzAosuLCxs0g6u4+M4cqWgg2GSiu76C1q9fXSxJuIsWZAD4aQD0Res7AGgoCkB4b4pHdKn+SZ9steXRTMSEmI3Nc/GErxj+lFAsyYggNNHLFglSfriUjzn5EyHq0safPwruFNXxsVpJPwlluXJ5BV6+F/+0sZUFGtE9TB01GAznx4Rytsu6cvVNYQ1igkWU5nisYlVJcvSiNbUUNlAzRCzicDUdrUQpWe3lYtzjd5fkpRAQHuC1W/0hVKxYNs13sybb3nfl63pk7BlAPlBUfOm52zgorW+kxW/rnd9p7CMX4J8WZAKDGVpy5M8LZl+alRhERHOAXRxo9bVZyBCajorypkwUZ0RM+lVCM7P8umc0Tty0jIti3w3sHzzrbdKKO1u4+LprnnZTGweakRLEwIxqwDqv3telTIjhS3YrWmvcOV3P29ASCAjxbMF65wD7zzPHdsw3HapmbEkXcBPnZMF6FBgZw7eJ0Xt9fSY2tDWEsDtnS/WYnR7l8jeU5cRyvaaO21Xd9Z+WNnW5JarTLjg+npKGDPrPFbdf0lIIS6y7qDcusvcUH5GjjhCGv4gQA1a1dxIUFEhgwMf5JBBgN/PWmRXzzwhm+XorHBQUY+/sG5EijyIgL9VoS4khSY0IwGlT/Ls0b+6sIDwrwaWF0y8osAM6d4fvUwRlJ4ZQ1drKtqIHqlm6PHmm0S4kOYdXUeJ7d7djMs9auXnaXNMmRRj9x4/JM+iya/24vHfO1CitbCA8KGFNhs8J2QsVXkfqdPWbq23vcOjs0Jz6MXrOmomnsBbCnFZQ2kRgRxPy0KBIigiQUZKBf/ALWrz/9tvXrrbePAxPjlbgYs4kwgHqwlVPjyU2c2P1mdvNt886WSnEm/ITJaCAlOphTtneh3y6s5ryZiR7fHRrJZXkprP/6ucxPi/bZGuym20JB/vL+CZSCNV4qGK9elEZZYyfbi0c/jrb5RD1mi+ZsidD3C9nxYZw9PYH/bD9F7xh3dg5VtDArOWJMqalzUyIJDwrwWXFW0WxLanTjzlmWbQzNeIjTLyhtIj89GqUUc1IiOVghO2f9liyBa6/9qEBbv9768ZIlvl2Xg6Q4E4C15yxxAgygnqwumpvMnJRIFmZG+3opQvTLigujpL6d7cUNNLT3eG3w9HCUUmT7yQxAe3H2wdFaFmbEeO3Y4AVzphDu4MyzDUdrCQs0ssAPdmKF1S0rMqlu6ebtQ9UuX8Ni0RyuanU5qdEuwGhgSVaMz4oze4x+SpQ7jzWe3ivrrxrbeyiu7yDfdlR7bkoUx2raTpudOKmtWQNPPQWf+ARcdJG1MHvqKevt44AUZwKwpjVOlKTGyWhVbjyv3n0WoYETO/xEjC/2QdRvHqgi2GTgHD84Tugv0mNDCTZZfwR7YvD0cEICjVw8L5nX9lfSPsLMM601G47VsmJq/IQ57j4RnDsjkbSYEB7bXOzyNUobO2jr7mP2GIszsPadnahtd0sfnLPsA6jduXMWHx5IeFAARX5enBWUNQGQbwsEm5MSidmi+8dzCKC7G7q64I034K67xk1hBlKcCaxzbGpbuydMUqMQwj9kxoXS3NnLS3srOGd6grx5MIDRoJhmO3Z9vhf6zQa6enEaHT1mXj9QNex9TtV3UNrQyTnSb+ZXjAbFjcsz2VbUwJEq116IF9rCQMa6cwYfzTvbWuT91Mbyxk6MBsUUN752se+un/T34qykCaXoP6I9J8Xa2nCgXPrOAGhuhptuAqMRvv1t+MtfzuxB82NSnAnq27qxaCZcz5kQwrcyYq1HhBo7ernQx0ca/dHiLOtw4WmJ4d593swYMuNCeWbX8MESG47VAnD2dNnt9DfXLU4nKMDAH9475tLjD1W0YFDumQE6JyWSiKAAtpzw/tHG8qZOpkQGE+DmhOLs+DCK6/28OCttYnpiRP+ooPTYECKCA6TvzO6GG6CuDn7/e/jJT6xHGgf2oPk5Kc5E/5BY6TkTQrhTVrw1Tt9kVJw307u7Q+PBdz8xixe+uMrrw8KVUly9MI2tJxsobRh65tmGo7VkxIaSGecfPXriIzFhgdx5zlRe2VfJh7Yi2hmHKlvJSQgn2DT2cJ4Ao4El2bFs80HfWbltALW7ZcWHUd7YSXeff/Zvaa3ZW9bUf6QR6A8FOSCJjfDWW/Dqq3DddfCFL1hvs/eg7djh27U5SIozQbXtrLgcaxRCuFOGbdbZqtx4okJ8O3fNHwUYDW55geyKKxdah5Q/t7v8jM/19FnYcqJeIvT92F3nTiUrLpTvv3DA6RCIwsoWt/Sb2S3PieVkXTtVzd7tOytv7CQl2v2vW3Liw7Bohn3jwteK6zto6ujtDwOxm5sSxeHKlnExo81jWlrg9tth5kz4179O/9yaNXDffT5ZlrOkOBNU2wZQSyCIEMKdQgMD+PrHp3P32mm+XooYJC0mlJVT43hmd+kZM892lzTS3mOWCH0/Fmwy8qMr5lJc38Ff3j/h8OOaO3opb+p0S7+Z3TnTrYE2bx8avofR3frMFqpautwaBmLXH6df659HGwtKrcOnB+6cAcxJjaS7z+L3/XIedd99UFYGjz4KweN3w0GKM0F1SxdKQbyXopyFEJPHl86b5hdDscWZrl6URmlDJzsGzTzbcLSWAIPqHzIs/NNZ0xK4LC+Fv7x/wuF0wUO2MJDZKe4rzqYnhTMtMZyX91a67ZqjqW7txmzRpEaHuv3a2bajvP6a2FhQ0kRooLF/HIfdR6Egk7Tv7N134a9/ha9+FZYv9/VqxkSKM0FNazdxYYGY3NxUK4QQwn9dOHcKYYHGM2aebThmnb0WESxHUf3d9y6ZRZDJwPdfOIDWetT7f5TUOPYwEDulFJfmpbC9uIFK22BoT7PPOPPEzllUqInYsEC/DQUpKG1iXmoUxkEDxHPiwwg2GTg4GfvOWlvh1lth+nT44Q99vZoxk1fjgpqWLhIjxu/2rxBCCOeFBgZw8XzrzLOOHuvMs7q2bg6Ut0i/2TiRGBHMfRfMYOPxOl7aWzHq/Q9VthAfHuT2n/mXzE8G4NV93tk9q7DPOPNAzxlYExv98VhjV6+ZQ5UtZ/SbgbWHdeaUyMm5c/atb0FJifU4Y4j7C3Zvk+JMUC0DqIUQYlK6amEa7T1m3rDNPNt0vA6QCP3x5PplmeSlRfGjVwpp7uwd8b6HKlrcumtml5MQztzUSF72UnFmH0Cd4oG0RvDfOP1DlS30mjULBvWb2c1NjeRQZYtDu6gTxvr18Oc/w1e+AitX+no1biHFmaC6RQZQCyHEZLQkK5aM2ND+o40fHK0lJtTU378i/J/RoHjwynk0tHfzqzePDHu/nj4Lx2va3NpvNtCl81PYW9pESb3nUw7LGjuJDQv02GD77Pgwqlu6ae/u88j1XVVQ0gRAfvrQfbxzUqJo7eqjtME7x0t9rq3NepwxNxd+/GNfr8ZtRi3OlFLpSqn1SqlCpdRBpdQ9ttt/pJTap5QqUEq9pZRK8fxyhbv1mS3Ut3XLjDMhhJiEDAbFVQvT2HyintKGDj48VsfqaQln9LMI/zY3NYpbVmbxxLZTFJQ2DXmfE7Vt9Jgtbo3RH+hi29HGl/eNfrxyrDw148wu25bY6G+7ZwWlTUyJDGZK1NBvqM+xFd4HJssw6m9/G4qL4Z//hFD3h8P4iiM7Z33A17TWs4DlwBeVUrOBX2qt52ut84FXgP/z3DKFp9S392DRkCg7Z0IIMSl90jbz7KevF1Lb2s3Z06TfbDz66semkxgRxHef3z/krCt7GIinirO0mFAWZkTzsgO9b2NV4eHiLMtPExv3ljWRlz78rvb0pAgCDIqDk6E4++AD+OMf4e674ayzfL0atxq1ONNaV2qtd9t+3woUAqla64FxMGHAJDrgOnHIAGohhJjc0mNDWZ4Ty2v7rX1n0m82PkUEm7j/0jkcrGjh31tOnfH5QxUtBAYY+neFPOHSvBQOV7VyrLrVY8+htbYNoPZgcRZv3YUp8qNQkIb2Hk7Vdwx7pBGs8+9yE8M5UD7BExvb263HGadOhQcf9PVq3M6pnjOlVBawANhm+/hBpVQpcAPD7Jwppe5QSu1USu2sra0d43KFu8kAaiGEEFcvSgdgRlKEvFk3jl00dwrnTE/gN28fpaq567TPFVa1MHNKBAEeHJtz8bxklMKjwSCNHb109po9EqNvFxoYQHJUMEV+dKxxr+246uDh04PNTY3iYEXzxA4F+e534cQJ63HGMM+92eArDv8fqpQKB54FvmLfNdNaf1drnQ6sA7401OO01o9orRdrrRcnJMi7cf6mptX6zVui9IUQYvK6aO4UokNNfHxOkq+XIsZAKcUPL59Dr9nCj1451H+71tqa1DjFM0ca7RIjg1meHccr+yo8Vhz0zzjz4M4ZWI82+tOxxj2lTRgUzE8bOaxnTkokdW091LR2e2llXvCLX1hTGQE+/BB+/3u48krYutW36/IQh4ozpZQJa2G2Tmv93BB3+Q9wlTsXJryjuqUbpSA+PNDXSxFCCOEjYUEBrP/audy9dpqvlyLGKDMujC+fl8ur+ytZf6QGsP6sb+zo9VhS40CX5qVwsradQ5WeOVpX3mRNg0zz4M4ZQHZCGMV+VJwVlDYxPSmCsKCREyrtSasTqu9syRK49lp4/XX43OcgKQk2bLDePgE5ktaogH8AhVrr3wy4feB38MuAw+5fnvC0mpYu4sODPHrMQQghhP+LCQvEJD8LJoTbz85hakIY//fiAdvgYusL9VkeCgMZ6MK5UwgwKF7e65mjjeVN1hM/nuw5A8iOC6Oxo5fG9h6PPo8jtNbsLW0a9Ugj0F+AH5xIfWdr1sBTT8FVV8Hx49DZCU8/bb19AnLku/Aq4CbgPFtsfoFS6hPAz5RSB5RS+4CPA/d4cqHCM6pbuiRGXwghhJhAggKM/PiKeZQ2dPLH945TWGkN6JjpgQHUg8WGBbJ6Wjwv7/XM0cbyxk5CTEZiQk1uv/ZA9uAUf+g7K6prp7mz16HiLDwogOz4sIkXp9/YaC3KwJrQOEELM3AsrXGj1lrZY/Ntv17TWl+ltZ5ru/1SrXW5NxYs3KumVQZQCyGEEBPNiqlxfHJhKn/dcII3DlSRHhtCZLBnCxq7S+anUN7UyZ5hZq6NRXlTB6kxIVgPdnlOln3WmR8cbbTPrsvPiHbo/nNSIjlYMYF2zo4ehRtvhIAA+M534C9/+agHbQKS8wuTXHVLtyQ1CiGEEBPQdz4xi9DAAPaXN3tsvtlQPj4niUCjwSMzzzw9gNouIzYUg/KPWWcFpU2EBRqZlujYzueclCjKGjtp6vD9kcwxa2+HCy6Ari544glrdP5TT1l70CZogSbF2STWa7ZQ394tSY1CCCHEBBQfHsS3LpoJeKffzC4y2MS5MxJ4dV8lZot7jzZWNHV5vN8MIDDAQHpsqN8UZ/PSojAaHNstnGPrOzs03nfPtIY774TiYvj5z+G666y323vQduzw6fI8RYqzSayurRutIVF2zoQQQogJ6brF6fzgsjl8emmGV5/30rwUalq72VHc4LZrdvT00dDe4/GkRjt/iNPv6jVTWNky4vDpwezF2bg/2vjXv1p3y374Q/jGN07/3Jo1cN99vlmXh0lxNonV2AdQy86ZEEIIMSEZDIpbVmZ5vb987axEQkxGtx5trGjyzowzu+x4a3Hmy4HOByta6DVrh8JA7OLCg0iOCh7foSA7dsA998BFF1mHTk8iUpxNYtUt1jhaCQQRQgghhDuFBgZw/uwkXj9QRa/Z4pZrltkHUHtp5yw7PoyOHjO1PhzobA8DWeBgGIjduA4Fqa+Hq6+G5GTrzplhcpUrk+urFaeptn2zkUAQIYQQQrjbpfOTaWjvYfOJerdcr9wHO2cAJ314tLGgtInkqGCn30ifkxLFido2Onr6nH/SX/zizLCN9eutt3ua2Qw33ABVVfDMMxAb6/nn9DNSnE1iNS1dGJR1+1sIIYQQwp3OmZFARHCA2442VjR1YjQor81nzfaDOP2C0kanjjTazUmJRGv6Z9w5ZcmS09MQ16+3frxkifPXctaPfwxvvgl/+AMsXuz55/NDUpxNYjUt3cSHBzmc/iOEEEII4aigACMXzJnCmwer6O4zj/l65Y2dTIkMJsDonZevKdEhBBoNPgsFqW/rprSh06XibG5qFACHXOk7s6chXnEFpKdbC7OnnvL84Oc334Qf/ABuvhluv92zz+XHpDibxKpbu6TfTAghhBAec8n8ZFq7+thwtG7M1ypv6vRavxmA0aDIjBtbnP5YRgn0D592oThLjgomJtTEgXIX+87WrIHLL4eyMpg71/OF2alTcP311uf6y1/Aw0PG/ZkUZ5OYDKAWQgghhCetyo0nJtTklqON5Y2dpHmp38wuK971OP3OHjNrf/0+P37lkEuPLyhtwmhQzEuLcvqxSinmpERxsNLFxMb16+H112HmTHj/fXj6adeu44jubrjmGujrg2efhdBQzz3XOCDF2TjW3NnLQ+8cdXkCfG1rFwkSoy+EEEIIDzEZDVw0L5m3D1W7Fk5h02e2UNXinQHUA+XEh3GqvsOlHbBndpVSXN/B3zcW8dbBKqcfX1DaxPSkCEIDA5x+LMCc1EiOVLXS0+dkWqa9x+ypp+CVVyAgAG666cyQEFcNDhz56let0fmXXw7TprnnOcYxKc7GKa0133p2Hw+9c4x/bznl9ON7zRbq2npk50wIIYQQHnXp/BQ6e828d7jG5WtUtXRh0d6L0bfLig+jx2zpn7HmKLNF87cPi8hLj2ZuaiT3PbuPquYuhx9vsWgKSptcOtJoNyclil6z5liNk6EgO3Z81GM2daq1eOruhuefd3ktpxkYOPLEE/DnP0NICHz2s+65/jgnxdk49cTWU7x+oIqwQCMvFJQ7PSCxtj9GX3bOhBBCCOE5S7NjSYwIGtPRxvJG78bo29kTG5092vjGgSpKGjq465yp/O5TC+jutXDv/woc3oE7WddOa1cfC8ZQnM1NiQTgoLN9Z/fdd3qP2Xe/C4mJsGcPuGMgtz1w5KqrrAWZyQQvveT5vrZxQoqzcehgRTM/erWQc2ck8N2LZ3Oytp395c6dKf5oALXsnAkhhBDCc4wGxcXzk1l/pJbWrl6XrtE/48zLO2c59jj9eseLM601f91wguz4MD42O4mpCeH84LI5bDlZz183nHDoGv1hIE4Onx4oKy6MsEAjB11JbBwoMtIacb9xo3X2mDssWmQN/ejrgy99Cc4/3z3XnQCkOBtn2rv7+PJ/9hATauLX1+Rx8fxkAo0GXtjj3LtRNbads0TpORNCCCGEh12al0JPn4W3D1W79Hj7zllKlHeLs4SIIMICjZysdbw423qygX1lzdx+Vk7/uKJrFqdx8bxkfvPW0f7CayQFpY2EBwUwNSHc1aVjMChmJUdysMLFxMaBPvc5mD8fvvEN6HL8eOaQtIZLL4WGBmts/uOPu6+fbQKQ4mwc0VrzvRcOUFzfzu8+tYC48CCiQkycNzORl/ZW0Gd2vOGzxrZzlig7Z0IIIYTwsAXp0aRGh7h8tLGiuZO4sEBCAo1uXtnIlFJOJzb+dcMJ4sMD+eTC1NOu85Mr55EUGcw9T+6hrXvkcJS9pc3MT4sa8yzaualRHKpsGVOkPwBGIzz0kDXy/re/Hdu1vvQl2LAB7rgDHnvMesRx4NDrSU6Ks3HkmV1lPL+nnLvXTmN5Tlz/7VcsSKWurZtNJ+odvlZ1SzdGgyIuTIozIYQQQniWUopL8pL58Fgdje3Op0yXNXp3xtlAWfFhDh9rPFzVwvtHavnMyiyCTacXklGhJh76VD6lDR3834sHhr1GV6+ZwsoW8sbQb2Y3OyWSjh6zU8cyh7VmjXUw9U9+ApWVrl1j0yZ4+GFYtcr6X/t1n3rKGkQipDgbL47XtPJ/Lx5keU4sXz7v9JjRNTMTiAwO4MU95Q5fr7qli/jwwDG/IyOEEEII4YhL56fQZ9G84UKsfHlTp9fDQOxy4sMobehwKJL+kQ0nCQ00cuPyzCE/vyTL+jruud3lvFgw9Ou2gxXN9Fn0mJIa7eamWGekHXAym2BYv/ylNbnxe99z/rE1NXDddZCdbY3oHzhoes0aaxCJkOJsPOjqNfPFdXsIDTTyu08tOKOgCgowcvH8ZN44WOXwDJGa1m5JahRCCCGE18xJiSQnPszpo41aayp8WJxlx4dh0VDa2DHi/SqaOnmpoILrlqQTHRo47P2+fF4uizNj+N7zByhtOPOae0qaAMaU1Gg3LSmcQKOBQ+7oOwPIzYV77oFHH4Xdux1/nNkM118P9fXWUJHoaPesZwKa9MVZa1evy5PfveWHrxziSHUrv742b9iC6vL8VDp6zA432la3dEkYiBBCCCG8xnq0MYWtJ+t5/4jjM88a2nvo6rV4fQC1XZY9Tn+UUJBHNxWhgVtXZ494vwCjgYc+lQ8K7n5yzxmZAQWlTaREBZPohjfRTUYD06eEuycUxO5734P4eLj3Xsej9R94AN59F/70J8jPd99aJqBJX5x96pGtfP3pvb5exrBe2VfBf7aV8Plzcjh3RuKw91uaFUtKVDAvOHi00bpzJv1mQgghhPCeW1dlMys5kjse3+VwgearGH07R+L0mzt7+c+2Ei6Zn0xaTOio10yLCeXBK+exp6SJ37177LTPFZQ2jSlCf7C5KVEcqGh2eibusKKi4Ec/soZ6PPfc6Pd/7TVrFP/nPmf9JUY06YuzaxalsetUI7tONfp6KWc4Vd/Ot5/dz4KMaL7+8Rkj3tdgUFyWn8qGY3XUt3WPeN+ePgsN7T2ycyaEEEIIr4oKNbHutmVMSwznjn/vYv3h0Qs0Xw2gtosODSQ61MTJEU5a/WdbCe09Zu44O8fh616Wl8LVi9L44/rjbD1pDXWra+umrLHTLf1mdnNSImnq6KWieYwR+APdeivMmzd6tH5xMdx4I+TlwR//6L7nn8CkOFucTmRwAH//8KSvl3Kanj4LX/7vHpSC339qASbj6H9VVy5IxWzRvLJv5ASdWlvxJjtnQgghhPC26NBA1t22jOlTwvn847t47/DILRn2nbM0H+2cgbXvbLhjjd19Zv65qYizpsUzxxbA4agfXDaHrLgw7v1fAU0dPRTY+s3y02PGuuR+c1LdHAoCEBBgjdQvKoLf/W7o+3R3wzXXWPvNnnkGQnz39zeeTPriLCwogBuXZ/LGwSpOuSNm1E1+/sZh9pU184ur55MeO/r2OMCMKRHMSo7k+VGONlbbZpxJIIgQQgghfCE6NJB1ty5nxpQI7nx8N+8WDl+glTV2EhpoJCrE5MUVni57hDj9F/dUUNvazefPnur0dcOCAvjdp/Kpa+vmW8/up6C0CaNBMS/VuSJvJLOmRGJQuLfvDGDtWrjsMnjwQagaIoHz3nth507rLLPcXPc+9wQ26YszgFtWZhFgUPxzY5GvlwLAO4eq+cfGIm5ZkcmFc5OdeuwV+SkUlDZRPMLWuwygFkIIIYSvRYWaeOLWZcxMjuDOJ3YNW6DZkxqV8t34n+y4MCqbu+jsMZ92u8Wi+euGE8xOjmRVbtwwjx7Z/DRr+8obB6t4bEsxM5Ii3DpsOyTQSE5COIcq3LhzZverX1mPNX7/+6ffvm4d/OUv1mOPV1zh/uedwKQ4w7qDdHl+Kk/tLHNpMKI7VTR18vVn9jI7OZJvf2KW04+/LD8FpeCFYWZngHUANSA9Z0IIIYTwqahQE4/fuoxZyZHc+cQu3hkidbq8yXcDqO2yE4YOBXnvcA0natv5/Dk5Yyoebz8rh9W58bR29bk1DMRubkokB8rdvHMGMG0afPnL8I9/QEGB9baDB+GOO+Dss60Dq4VTRi3OlFLpSqn1SqlCpdRBpdQ9ttt/qZQ6rJTap5R6XikV7fHVetDtZ+XQ2Wtm3bZTPluD2aK558k99PZZ+OP1C86YLO+I5KgQlmfH8WJBxbCpPDWtXRgNiriw4WdwCCGEEEJ4Q1SItUCbnRzJXet2nTEWyJcDqO2y4mxx+oNOJv11wwlSo0O4eJ5zJ50GMxgUv7k2j7mpkVw4Z8qYrjWUOSlRVLV0UTdKaJxLIiMhIgK+8hVoaYGrroKgIDjrLGtvmnCKIztnfcDXtNazgOXAF5VSs4G3gbla6/nAUeDbnlum582YEsHZ0xP41+ZTdPeZR3+ABzy1s5QdxY384PK55CSEu3ydKxekUlTXzt6yobevq1u6SYwIwmDw3fEAIYQQQgi7qBATj9+2jNkpUXxh3S7eOmjtYWrv7qOpo9f3O2fxZxZnu041sqO4kdvOyibAgeC20SRGBvPKl8/i7OkJY77WYHNSIwEP9J2BdYfMYoEPPoBVq+DoUevHa9e6/7kmgVH/JWmtK7XWu22/bwUKgVSt9Vta6z7b3bYCaZ5bpnfccVYOdW3dvLjHucn17tDS1cuv3jzCkqwYrlqYOqZrXThvCoEBhmFnnlW3dLllsKEQQgghhLtEBpt4/NalzEmJ4ov/2c2bB6uoaPJtjL5dWFAAiRFBpxVnj2w4QVSIiWsXp/twZY6Zk2wNGDnoib6zNWvg+efBaIQDByA01PrxmjXuf65JwKkyXymVBSwAtg361OeA1920Jp9ZlRvHrORI/vbhSfcN6nPQH987TkNHD/93yZwxN7xGBps4f1Yir+yrOGPqPECNbedMCCGEEMKfRAab+PetS5mbGsUX1+3mX5uLAd8XZ2CL07cVZydr23jrUDU3r8gkLMj/j+5FhZpIiwnhoCf6zgDOPx9uu836+3vvlcJsDBwuzpRS4cCzwFe01i0Dbv8u1qOP64Z53B1KqZ1KqZ21tbVjXa9HKaW4/axsjtW08f5R7621qK6dRzcVcfXCNOaluSc69Yr8VOraeth4vO6Mz9W0dsmMMyGEEEL4pchgE//+3FLmpUWxblsJgM+PNQLkJIT1p2H/7cMiTEYDt6zM8u2inDA3JcozO2cA69fDs89aUxsfftj6sXCJQ8WZUsqEtTBbp7V+bsDttwCXADfoYbaatNaPaK0Xa60XJyS4/wytu10yP4UpkcH8bYP3hlI/+OohAo0GvnHhDLdd89wZiUSFmM442tjdZ6axo5ckSWoUQgghhJ+KsBVoCzOiCQ8K8IuE6ay4MOrbezhR28azu8u4elEa8eHj583uOSmRFNd30NrV694Lr18P114LTz0FP/yh9b/XXisFmoscSWtUwD+AQq31bwbcfiHwTeAyrXWH55boXYEBBj6zKovNJ+rdO0l9GBuO1vJOYQ1fOm+aW7/xBAYYuHh+Mm8erKa9u6//9hpbjL4MoBZCCCGEP4sINvHfO5bzxlfOwugHIWb2UJAHXjpIr9nC7Wfl+HhFzplrG2zt9kj9HTusBZn9KOOaNdaPd+xw7/NMEo7snK0CbgLOU0oV2H59AvgjEAG8bbvtYU8u1Js+vTSDsEAjf//Qs7tnfWYLP3rlEBmxoXxudZbbr39FfiqdvebTImlrWq3FWYIcaxRCCCGEnwsKMJIWE+rrZQAfFWcfHqvjgtlT+j8eL+bbWmf2lTW598L33Xdmj9maNdbbhdNG7WDUWm8Ehnq74jX3L8c/RIWY+NTSDP61uZj7LpxJioeaUNdtK+FYTRt/vWkRQQHumwRvtzgzhtToEJ7fU84VC6wJkDUtXQByrFEIIYQQwgkZcaEoBVrD588ZX7tmAHHhQaTHhrDX3cWZcKuxD2WYoD67KguARzcVeeT6je09/Obto6ycGsfHZyd55DkMBsXl+SlsPF5HrW3HrNpenMnOmRBCCCGEw4ICjGTHh7E0O5YFGTG+Xo5L8tKi2Vvq+bYd4TopzoaRFhPKJ+Yl89/tpbS4u3ESeOido7R29fJ/l84ec3T+SK5ckIrZonlln3V2W3VrNwEGRUxooMeeUwghhBBiIvrXZ5bylxsW+noZLstPj6a8qZOa1i5fL0UMQ4qzEdx+VjZt3X38b3upW697tLqVJ7aVcP2yDGZOiXTrtQeblhTB7ORIXiiwFmf2GWcGP2isFUIIIYQYTzLiQokbRwmNg+WlRwOwT3bP/JYUZyOYnxbNsuxYHt1URO8Qw5xdobXmR68cIizQyFc/5r7o/JFcuSCVvaVNnKxto6a1i0RJahRCCCGEmHTmpERiNCjpO/NjUpyN4o6zc6ho7uK1/ZVuud67hTV8eKyOe86fTmyYd44WXpafglLwQkEF1S0ygFoIIYQQYjIKDQxgelIEBaVNvl6KGIYUZ6NYMyORnIQwHtlwkmHmbDusp8/Cg68VMjUhjJtXZLpphaNLigxm5dQ4Xiwop7ql2y8GOQohhBBCCO/LT49ib2nTmF/XCs+Q4mwUBoPi9rNyOFjRwpaT9WO61mObiymqa+d7l8zGZPTuH/0V+amcqu+gubNXds6EEEIIISapvLRoWrr6KK7v8PVSxBCkOHPAlQtSiQ8P5G8bXB9KXdfWze/fPca5MxJYMyPRjatzzIVzpxAUYP3rlp4zIYQQQojJyR4KsleONvolKc4cEGwyctPyLNYfqeVYdatL1/j1W0fo7DXzvYtnu3l1jokINnG+bZ5akhRnQgghhBCT0rTEcEJMRuk781NSnDnophWZBAUY+PuHzg+lPljRzJM7Srl5RRa5ieEeWJ1jbliaQWCAwadrEEIIIYQQvhNgNDAvNUoSG/2UFGcOig0L5OpFaTy/p9ypwX1aa3748iGiQ0zcs3aaB1c4upW58Rz6wQWkRof4dB1CCCGEEMJ38tKjOFjRQk+fe0ZFCfcJ8PUCxpNbV2fzn+0lfOqvW8mKDyM61ERsaCAxYYHEhAYSE2oiJiyQ2LBAokNNxIQG8vaharYVNfDjK+YSFWry9ZdAgJeDSIQQQgghhH/JS4+m58MijlS1Mi8tytfLEQNIceaEnIRwHrh0Dm8fqqa6pYvDlS00dvTS2Wse9jEGBTOnRPCpJeleXKkQQgghhBBDy0uLBqCgrEmKMz8jxZmTblmZxS0rs067ravXTGNHD43tvdb/dvTQ2N5DY0cvzZ29XLUwTXashBBCCCGEX0iLCSEuLJC9pU3ctNx7s3fF6KQ4c4Ngk5HkqBCSo6SXSwghhBBC+DelFHnp0RKn74dkO0cIIYQQQohJJi8tmuO1bbR29fp6KWIAKc6EEEIIIYSYZPLSo9Aa9pc3+3opYgApzoQQQgghhJhk7KEge0ulOPMnUpwJIYQQQggxycSEBZIZFyp9Z35GijMhhBBCCCEmoby0aPaWNfl6GWIAKc6EEEIIIYSYhPLSo6ls7qK6pcvXSxE2UpwJIYQQQggxCeWnWwdQy9FG/yHFmRBCCCGEEJPQnJQojAYlRxv9iBRnQgghhBBCTELBJiMzp0RIYqMfkeJMCCGEEEKISSov3RoKYrFoXy9FIMWZEEIIIYQQk1Z+WjStXX0U1bf7eikCB4ozpVS6Umq9UqpQKXVQKXWP7fZrbB9blFKLPb9UIYQQQgghhDvlpUcDEgriLxzZOesDvqa1ngUsB76olJoNHAA+CWzw4PqEEEIIIYQQHpKbGE5ooFGKMz8RMNodtNaVQKXt961KqUIgVWv9NoBSyrMrFEIIIYQQQniE0aCYlxpFQZmEgvgDp3rOlFJZwAJgm0dWI4QQQgghhPCq/PRoCita6O4z+3opk57DxZlSKhx4FviK1rrFicfdoZTaqZTaWVtb68oahRBCCCGEEB6Slx5Nj9nC4cpWXy9l0nOoOFNKmbAWZuu01s858wRa60e01ou11osTEhJcWaMQQgghhBDCQ/pDQWQYtc85ktaogH8AhVrr33h+SUIIIYQQQghvSYkKJj48iAIJBfG5UQNBgFXATcB+pVSB7bbvAEHAH4AE4FWlVIHW+gKPrFIIIYQQQgjhEUop8tOjJLHRDziS1rgRGC6S8Xn3LkcIIYQQQgjhbXlp0bxTWENLVy+RwSZfL2fSciqtUQghhBBCCDHx2PvO9kukvk9JcSaEEEIIIcQkNz8tCkD6znxMijMhhBBCCCEmuejQQLLjw6TvzMekOBNCCCGEEEKQlxYlcfo+JsWZEEIIIYQQgrz0aKpbuqlq7vL1UiYtKc6EEEIIIYQQ/aEg0nfmO1KcCSGEEEIIIZidHEmAQcnRRh+S4kwIIYQQQghBsMnIrORICQXxISnOhBBCCCGEEADkpUexr6wZi0X7eimTkhRnQgghhBBCCADy0qJp6+7jZF2br5cyKUlxJoQQQgghhAAgvz8UpNm3C5mkpDgTQgghhBBCAJCTEE54UID0nfmIFGdCCCGEEEIIAIwGxbxUGUbtK1KcCSGEEEIIIfrlpUdTWNlCV6/Z10uZdKQ4E0IIIYQQQvTLT4+i16wprGzx9VImHSnOhBBCCCGEEP3ybKEg0nfmfVKcCSGEEEIIIfpNiQwmMSKIvWWS2OhtUpwJIYQQQggh+imlyEuPlp0zH5DiTAghhBBCCHGa/PRoTta109TR4+ulTCpSnAkhhBBCCCFOszQ7FoCtJ+t9vJLJRYozIYQQQgghxGny06MJCzSy8Xidr5cyqUhxJoQQQgghhDiNyWhgWU4cm47Lzpk3SXEmhBBCCCGEOMOq3HiK6topa+zw9VImDSnOhBBCCCGEEGdYnRsPwGbZPfMaKc6EEEIIIYQQZ5ieFE58eJD0nXmRFGdCCCGEEEKIMyilWJ0bx6bjdVgs2tfLmRSkOBNCCCGEEEIMafW0BOrbezhS3errpUwKoxZnSql0pdR6pVShUuqgUuoe2+2xSqm3lVLHbP+N8fxyhRBCCCGEEN6yKjcOgI3H5GijNziyc9YHfE1rPQtYDnxRKTUb+BbwrtZ6GvCu7WMhhBBCCCHEBJEcFcLUhDDpO/OSUYszrXWl1nq37fetQCGQClwOPGa722PAFR5aoxBCCCGEEMJHVufGs72oge4+s6+XMuE51XOmlMoCFgDbgCStdSVYCzggcZjH3KGU2qmU2llbWzvG5QohhBBCCCG8aVVuPJ29ZvaUNPl6KROew8WZUioceBb4ita6xdHHaa0f0Vov1lovTkhIcGWNQgghhBBCCB9ZPjUOg4JNcrTR4xwqzpRSJqyF2Tqt9XO2m6uVUsm2zycDNZ5ZohBCCCGEEMJXIoNN5KVHS9+ZFziS1qiAfwCFWuvfDPjUS8Attt/fArzo/uUJIYQQQgghfG11bjx7S5to6er19VImNEd2zlYBNwHnKaUKbL8+AfwM+JhS6hjwMdvHQgghhBBCiAlmVW48Fg1bT9T7eikTWsBod9BabwTUMJ9e697lCCGEEEIIIfzNwowYQkxGNh6v4+Nzpvh6OROWU2mNQgghhBBCiMknMMDAspxY6TvzMCnOhBBCCCGEEKNanRvPydp2Kpo6fb2UCUuKMyGEEEIIIcSoVuXGAxKp70lSnAkhhBBCCCFGNSMpgvjwQCnOPEiKMyGEEEIIIcSoDAbFyqnxbDxej9ba18uZkKQ4E0IIIYQQQjhkdW48dW3dHK1u8/VSJiQpzoQQQgghhBAOWTXN2ncmqY2eIcWZEEIIIYQQwiGp0SFkx4ex8Vitr5cyIUlxJoQQQgghhHDY6tx4thU10NNn8fVSJhwpzoQQQgghhBAOW5UbT0ePmYLSJl8vZcKR4kwIIYQQQgjhsBU5cRiU9J15ghRnQgghhBBCCIdFhZqYlxYt8848QIozIYQQQgghhFNW58ZRUNpEa1evr5cyoUhxJoQQQgghhHDKqtx4zBbNtpMNvl7KhCLFmRBCCCGEEMIpCzNiCDYZpO/MzaQ4E0IIIYQQQjgl2GRkSVasFGduJsWZEEIIIYQQwmmrc+M5XtNGVXOXr5cyYUhxJoQQQgghhHDa6mnxAJLa6EZSnAkhhBBCCCGcNmtKJLFhgVKcuZEUZ0IIIYQQQginGQyKlVPj2Hi8Dq21r5czIUhxJoQQQgghhHDJ6tx4alq7OV7T5uulTAhSnAkhhBBCCCFcsirX2ncmqY3uIcWZEEIIIYQQwiXpsaFkxoVK35mbSHEmhBBCCCGEcNmq3Hi2nmyg12zx9VLGPSnOhBBCCCGEEC5bnRtPW3cfe0ubfL2UcU+KMyGEEEIIIYTLVuTEoZT0nbnDqMWZUuqfSqkapdSBAbflKaW2KKX2K6VeVkpFenaZQgghhBBCCH8UExbIvNQo6TtzA0d2zv4FXDjotr8D39JazwOeB77h5nUJIYQQQgghxolVufHsKWmirbvP10sZ10YtzrTWG4CGQTfPADbYfv82cJWb1yWEEEIIIYQYJ25cnslb955NWKDR10sZ11ztOTsAXGb7/TVAunuWI4QQQgghhBhvUqNDyEkIRynl66WMa64WZ58DvqiU2gVEAD3D3VEpdYdSaqdSamdtba2LTyeEEEIIIYQQE5tLxZnW+rDW+uNa60XAf4ETI9z3Ea31Yq314oSEBFfXKYQQQgghhBATmkvFmVIq0fZfA/A94GF3LkoIIYQQQgghJhtHovT/C2wBZiilypRStwKfVkodBQ4DFcCjnl2mEEIIIYQQQkxsAaPdQWv96WE+9Ts3r0UIIYQQQgghJi1XA0GEEEIIIYQQQriRFGdCCCGEEEII4QekOBPi/9u5u1DLyjqO499f6URNRL72Zi9OBRJkEpNJGKQElTdT0YsvmJRd1G0ZTgR2EV0UdRMkEVKNEDklRQOZEBEY6ZhzcVLTyZnEbFCcLF+wIDX/Xezn4Oawd3P2tnX2s+T7gYe99rPWs9fL+bHP86y115IkSZI64OBMkiRJkjrg4EySJEmSOpCq2rqVJX8D/rJlK9y8k4GHV70RGiWzo2WYGy3L7GhZZkfLMDfDeH1VnTJrxpYOznqV5EBV7Vz1dmh8zI6WYW60LLOjZZkdLcPcbD1/1ihJkiRJHXBwJkmSJEkdcHA28d1Vb4BGy+xoGeZGyzI7WpbZ0TLMzRbznjNJkiRJ6oBXziRJkiSpA6ManCV5f5I/JTmcZPdU/d4ka63cl2RtTvsTk/wqyaH2ekKrv2Sq/VqSZ5KcNaP9D9v670zyvSTHt/ok+VbbrtuTvH2YI6BldZydM5LckuTfSa4YZu/1XHScnUva983tSW5O8rZhjoCW1XF2drXcrCU5kOTcYY6AljFgbo5PsifJHUnuTvLFOe1PT3Jra783ybZWb1+ncx1nx77OIqpqFAV4IfBnYAewDfgD8JYZy30TuGrOZ3wd2N2mdwNfm7HMW4F757S/AEgrPwI+O1X/y1Z/DnDrqo+XZTTZORV4B/BV4IpVHyvLqLLzLuCENv0Bv3f6Kp1n56U8e1vDmcDBVR8vy/C5AS4GrmvTLwHuA94wo/2PgQvb9Hfs64yjdJ4d+zoLlDFdOTsbOFxV91bVk8B1wK7pBZIE+BiTf0Kz7AL2tOk9wAdnLHPRvPZVdUM1wO+B06Y+99o2az/w8iSv2vSeaWjdZqeqjlbVbcBTC+2RtkrP2bm5qh5pi+3n2e8j9aHn7DzR6gC2A9583o8hc1PA9iTHAS8GngQen/HZ5wPXz2hvX6dv3WbHvs5ixjQ4ew3w16n3R1rdtHcDD1XVoTmf8YqqehCgvZ46Y5mPMz+0wOTyLnApcOMC26bV6Tk76ttYsnM5kzPa6kfX2UnyoSQHgV8An/pf7bWlhszN9cA/gQeB+4FvVNU/NrQ9CXi0qp6esX77On3rOTtawJgGZ5lRt/Fs39wziJtaQfJO4F9VdecxFr0auKmqfrvAtml1es6O+tZ9dpKcx2RwduWy26BBdJ2dqvpZVZ3B5Mz2V5bdBv3fDZmbs4H/AK8GTgc+n2THAuu3r9O3nrOjBYxpcHYEeO3U+9OAB9bftEutHwb2TtV9v938eEOremj9Enx7PbphHRdy7DOQXwZOAT632W3TyvWcHfWt6+wkORO4BthVVX9fYL80vK6zs66qbgLemOTkzeyUBjdkbi4Gbqyqp6rqKPA7YOeG9T/M5OeKx81Yv32dvvWcHS1gTIOz24A3tyfBbGPyT2nf1Pz3Mrmp+ch6RVV9sqrOqqoLWtU+4LI2fRnw8/Vlk7wA+CiT3+jOlOTTwPuAi6rqmalZ+4BPtCcZnQM8tn5ZWF3oOTvqW7fZSfI64KfApVV1z3PYRw2j5+y8qd0fQiZP3NsGOLjvw5C5uR84v/VVtjN5qMfB6ZW3exF/A3xkRnv7On3rOTtaRHXwVJLNFiZPCrqHydNovrRh3g+Azxyj/UnAr4FD7fXEqXnvAfYfo/3Tbd1rrVzV6gN8u827A9i56mNlGU12XsnkbNfjwKNt+mWrPl6WUWTnGuCRqfoDqz5WltFk50rgj63uFuDcVR8ry/C5YfKUzp+0v/1dwBfmtN/B5AEyh9vyL2r19nU6Lx1nx77OAmX9UbqSJEmSpBUa088aJUmSJOl5y8GZJEmSJHXAwZkkSZIkdcDBmSRJkiR1wMGZJEmSJHXAwZkkSZIkdcDBmSRJkiR1wMGZJEmSJHXgv+PQMOUJ7h1yAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACI6UlEQVR4nO3dd3gc1dUG8PduUe/V6l3utiy5F1zB1Nh0CL0GAgFCCvAlBFJIgDQCgRBKaCH0TgjNvXfJxraqJat3rdpK2na/P3ZXlmyVXWmbpPf3PHos7e7M3JXG0pw5954jpJQgIiIiIiIi91K4ewBERERERETE4IyIiIiIiMgjMDgjIiIiIiLyAAzOiIiIiIiIPACDMyIiIiIiIg/A4IyIiIiIiMgDMDgjIiIiIiLyAAzOiIjGKCFER58PkxCiq8/X17h7fCMhhCgTQqxx9ziGIoTYLIS41Yn7f0EIUWD5md542nNCCPE7IUSVEKLVMpbpfZ7/txCiRgjRJoQoPH2cQojVQoh8IYRWCLFJCJF02r6fEEI0WT6eFEIIZ71PIiI6E4MzIqIxSkoZYP0AUA7goj6Pvenu8Z1OCKEaD8dwgTwAPwRwcIDnLgdwM4BlAMIA7ALwRp/n/wAgWUoZBOB7AH4nhMgBACFEBIAPATxs2XY/gHf6bHs7gPUAZgOYBeBCAD9w1JsiIqLhMTgjIhpnhBAKIcSDQogSSwbkXSFEmOW5ZCGEFELcJISoEEK0CCHuEELME0IcFkJohBB/77OvG4UQO4QQz1gyNflCiNV9ng8WQrxsydZUWbI6ytO2/asQohnAo0KINCHERsu4GoUQbwohQiyvfwNAIoDPLNm/nwshVgghKk97f73ZNSHEo0KI9y0ZozYANw4zpnQhxBbLe2kUQvQNTvoew8eyzybL92SfECJaCPEYzIHR3y1j/Lvl9VOEEN8IIZotWa8r+uzrVSHE85bn2y3HTxrouAAgpXxWSrkBQPcAT6cA2C6lPCGlNAL4N4BpfbY9KqXssX5p+UizfH0JgKNSyveklN0AHgUwWwgxxfL8DQD+LKWslFJWAfgzgBsHGycRETkegzMiovHnHpgzIMsBxAJoAfDsaa9ZACADwJUAngLwCwBrAEwHcIUQYvlprz0BIALAIwA+tAZ7AF4DYACQDmAOgHMA3DrAtlEAHgMgYM7uxAKYCiAB5iABUsrr0D8D+KSN73cdgPcBhAB4c5gx/RbA1wBCAcQDeGaQfd4AINgyvnAAdwDoklL+AsA2AHdbxni3EMIfwDcA/mN5n1cDeK7vdEMA11iOHQEg1zLOkXgbQLoQIlMIobaM88u+LxBCPCeE0ALIB1AD4AvLU9NhzsoBAKSUnQBKLI+f8bzl877vgYiInIzBGRHR+PMDAL+wZEB6YA5+Ljttyt9vpZTdUsqvAXQCeEtKWW/JmGyDOaixqgfwlJRSL6V8B0ABgAuEENEAzgNwn5SyU0pZD+CvAK7qs221lPIZKaVBStklpSyWUn4jpeyRUjYA+AvMQeRo7JJSfiylNAEIGmZMegBJAGIt73/7IPvUwxyUpUspjVLKA1LKtkFeeyGAMinlK5b3eRDABwAu6/Oa/0opt1p+Hr8AsEgIkTCC91oD88+nAEAXzNMcf9z3BVLKHwIIhDnD9yEAayYtAEDraftrtbx2oOdbAQRw3RkRkeswOCMiGn+SAHxkmY6nAXAcgBFAdJ/X1PX5vGuArwP6fF0lpZR9vj4Jc+YrCYAaQE2fY/0T5uyRVUXfgQkhooQQb1umG7bBPC0vwv632E/fYww3pp/DnL3bK4Q4KoS4eZB9vgHgKwBvCyGqLcUx1IO8NgnAAuvxLMe8BsCkgcYopewA0Azz99BejwCYB3NGzwfArwFsFEL49X2RJaDcDnN28E7Lwx0wB699BQFoH+T5IAAdp/3siYjIiRicERGNPxUAzpNShvT58LFkxUYi7rTsSSKAastxegBE9DlOkJSy71S40y/s/2B5bJalaMW1MAdLg72+E0Bv4GFZOxZ52mv6bjPkmKSUtVLK26SUsTBnGJ8TQqSf/oYtWcJfSymnAVgMc3bs+kHGWAFgy2nf7wAp5Z19XtObJRNCBMBckKP69OPaYDaAdyxZUYOU8lWYp2hOG+T1Kpxac3bUsr11HP6W544O9Lzl86MgIiKXYXBGRDT+PA/gMWvRCSFEpBBi3Sj2FwXgHiGEWghxOcxrxb6QUtbAvH7rz0KIIGEuRJJ22nq10wXCnKHRCCHiAPzstOfrAKT2+boQgI8Q4gJL5uqXALwH2/lwYxJCXC6EiLe8vAXmQMt4+n6EECuFEDMtwWAbzNMcra87fYyfA8gUQlxn+R6phbnAytQ+rzlfCLFUCOEF89qzPVLKflnFPsf2EkL4wBy0qi3FSax/r/cBuNxSnEQhhLgO5kxhsSUreZUQIkAIoRRCrIV5/dtGy7YfAZghhLjUsv9fATgspcy3PP86gPuFEHFCiFgAPwHw6mDfayIicjwGZ0RE48/fAHwK4GshRDuA3TAX5hipPTAXD2mEuajHZVLKJstz1wPwAnAM5mDnfQAxQ+zr1wCyYV7P9F+Y10T19QcAv7RMD/yplLIV5rLyLwGogjmTVomhDTWmeQD2CCE6YP4e3SulLB1gH5Ms27XBPC10C8xTMAHz9/cyYa50+bSUsh3moiNXwZwNqwXwBPoHkf+BeUpiM4AcmKc9DuZrmKeWLgbwguXzsyzPPQFzoY5cABqY15tdKqXUwBxo3gnz96cFwJ9gXnv3CQBY1vhdCvPPsAXmc6Lv+sB/AvgMwBEA38H88/nnEOMkIiIHE5xKTkREgxHmJsi3SimXunssY5UQ4lUAlVLKX7p7LERE5NmYOSMiIiIiIvIADM6IiIiIiIg8AKc1EhEREREReQBmzoiIiIiIiDwAgzMiIiIiIiIPoHLlwSIiImRycrIrD0lEREREROQxDhw40CiljBzoOZcGZ8nJydi/f78rD0lEREREROQxhBAnB3uO0xqJiIiIiIg8AIMzIiIiIiIiD8DgjIiIiIiIyAO4dM3ZQPR6PSorK9Hd3e3uodA44+Pjg/j4eKjVancPhYiIiIhoWMMGZ0KIBACvA5gEwATgBSnl34QQWQCeB+ADwADgh1LKvfYOoLKyEoGBgUhOToYQwt7NiQYkpURTUxMqKyuRkpLi7uEQEREREQ3LlmmNBgA/kVJOBbAQwF1CiGkAngTwayllFoBfWb62W3d3N8LDwxmYkUMJIRAeHs6MLBERERGNGcNmzqSUNQBqLJ+3CyGOA4gDIAEEWV4WDKB6pINgYEbOwPOKiIiIiMYSuwqCCCGSAcwBsAfAfQD+KISoAPAnAA8Nss3tQoj9Qoj9DQ0Noxutkzz22GOYPn06Zs2ahaysLOzZswcAcOutt+LYsWMOOUZycjIaGxuHfM3vf/97u/f76quv4u677+732CuvvIKsrCxkZWXBy8sLM2fORFZWFh588EG79+8KTz31FLRarbuHQURERETkVkJKadsLhQgAsAXAY1LKD4UQTwPYIqX8QAhxBYDbpZRrhtrH3Llz5elNqI8fP46pU6eObPQOsGvXLtx///3YvHkzvL290djYCJ1Oh9jYWIcex9qAOyIiYtDXBAQEoKOjw679vvrqq9i/fz/+/ve/j/i4zialhJQSCsXA9wJGMkaDwQCVavh6Nu4+v4iIiIiI+hJCHJBSzh3oOZsyZ0IINYAPALwppfzQ8vANAKyfvwdg/mgH6g41NTWIiIiAt7c3ACAiIqI3MFuxYgWswWRAQAAeeOAB5OTkYM2aNdi7dy9WrFiB1NRUfPrppwDOzGJdeOGF2Lx58xnHXL9+PXJycjB9+nS88MILAIAHH3wQXV1dyMrKwjXXXAMA+Pe//4358+cjKysLP/jBD2A0GgGYM2OZmZlYvnw5duzYYfN7/eMf/4h58+Zh1qxZeOSRRwAAZWVlmDJlCm699VbMmDED11xzDb799lssWbIEGRkZ2LvXXOPl0UcfxXXXXYdVq1YhIyMDL7744rD7nTp1Kn74wx8iOzsbFRUVuPPOOzF37lxMnz6993VPP/00qqursXLlSqxcubL3e231/vvv48YbbwQA3Hjjjbj//vuxcuVKPPDAAygpKcG5556LnJwcLFu2DPn5+TZ/L4iIiIjIsd7aW47CunZ3D2Nss2Y1BvsAIGCu1vjUaY8fB7DC8vlqAAeG21dOTo483bFjx854zJXa29vl7NmzZUZGhrzzzjvl5s2be59bvny53Ldvn5RSSgDyiy++kFJKuX79enn22WdLnU4nc3Nz5ezZs6WUUr7yyivyrrvu6t3+ggsukJs2bZJSSpmUlCQbGhqklFI2NTVJKaXUarVy+vTpsrGxUUoppb+/f++2x44dkxdeeKHU6XRSSinvvPNO+dprr8nq6mqZkJAg6+vrZU9Pj1y8eHG/Y57OetyvvvpK3nbbbdJkMkmj0SgvuOACuWXLFllaWiqVSqU8fPiwNBqNMjs7W950003SZDLJjz/+WK5bt05KKeUjjzwiZ82aJbVarWxoaJDx8fGyqqpqyP0KIeSuXbt6x2J93waDQS5fvlzm5eWd8b05/fvw3nvvyRtuuEFKKeUNN9wgL7jgAmkwGKSUUq5atUoWFhZKKaXcvXu3XLly5Rnv393nFxEREdFEUNvaJVMf+q/8/Re89hoOgP1ykHjJlj5nSwBcB+CIECLX8tj/AbgNwN+EECoA3QBuH22g+OvPjuJYddtod9PPtNggPHLR9EGfDwgIwIEDB7Bt2zZs2rQJV155JR5//PHebI2Vl5cXzj33XADAzJkz4e3tDbVajZkzZ6KsrMyuMT399NP46KOPAAAVFRUoKipCeHh4v9ds2LABBw4cwLx58wAAXV1diIqKwp49e7BixQpERkYCAK688koUFhYOe8yvv/4aX3/9NebMmQMA6OjoQFFRERITE5GSkoKZM2cCAKZPn47Vq1dDCHHGe1u3bh18fX3h6+uLlStXYu/evdi+ffug+01KSsLChQt7t3/33XfxwgsvwGAwoKamBseOHcOsWbPs+t5dfvnlUCqV6OjowM6dO3H55Zf3PtfT02PXvoiIiIjIMd7bXwGjSeKqeYnuHsqYZku1xu0wZ88GkuPY4biHUqnEihUrsGLFCsycOROvvfbaGcGZWq3urf6nUCh6p0EqFAoYDAYAgEqlgslk6t1moDLumzdvxrfffotdu3bBz88PK1asGPB1UkrccMMN+MMf/tDv8Y8//nhEVQillHjooYfwgx/8oN/jZWVlve9lqPcGnFn9UAgx5H79/f17vy4tLcWf/vQn7Nu3D6GhobjxxhsHLXPf9zinv8a6T5PJhJCQEOTm5g731omIiIjIiUwmibf2VmBxWjhSIvyH34AGZUvmzGWGynA5S0FBARQKBTIyMgAAubm5SEpKGtG+kpOT8dxzz8FkMqGqqqp3vVZfra2tCA0NhZ+fH/Lz87F79+7e59RqNfR6PdRqNVavXo1169bhxz/+MaKiotDc3Iz29nYsWLAA9957L5qamhAUFIT33nsPs2fPHnZsa9euxcMPP4xrrrkGAQEBqKqqglqttuv9ffLJJ3jooYfQ2dmJzZs34/HHH4evr69N+21ra4O/vz+Cg4NRV1eH//3vf1ixYgUAIDAwEO3t7b0FQaKjo3H8+HFMnjwZH330EQIDA8/YX1BQEFJSUvDee+/h8ssvh5QShw8ftul7QURERESOs624EVWaLjx43hR3D2XM86jgzB06Ojrwox/9CBqNBiqVCunp6b1FOuy1ZMmS3imCM2bMQHZ29hmvOffcc/H8889j1qxZmDx5cr9pf7fffjtmzZqF7OxsvPnmm/jd736Hc845ByaTCWq1Gs8++ywWLlyIRx99FIsWLUJMTAyys7N7C4UM5ZxzzsHx48exaNEiAObpnP/+97+hVCptfn/z58/HBRdcgPLycjz88MOIjY1FbGysTfudPXs25syZg+nTpyM1NRVLlizp977PO+88xMTEYNOmTXj88cdx4YUXIiEhATNmzBi0guWbb76JO++8E7/73e+g1+tx1VVXMTgjIiIicrG39pQjzN8L50yPdvdQxjybS+k7gieW0ifbPProowgICMBPf/pTdw/FLjy/iIiIiJynvq0bix/fiJuXpuD/zuc1ly1GXUqfiIiIiIjodO8dqITBJHHVvAR3D2VcmPDTGsk2jz76qLuHQEREREQexGSSeHtfORamhiE1MmD4DWhYzJwREREREZHdthc3oqK5C99fMLJienQmBmdERERERGS3t/aWI9RPjbUsBOIwDM6IiIiIiMgu9e3d+OZYHS7LiYe3yvbq3zQ0BmdERERERGSX962FQOYnunso4wqDMwBKpRJZWVmYMWMGLr/8cmi12hHv68Ybb8T7778PALj11ltx7NixQV+7efNm7Ny5s/fr559/Hq+//vqIj21VVlaGGTNm9Hvs0UcfxZ/+9Ce79uOo8RARERHR+GEySby9twILUsKQxkIgDsVqjQB8fX2Rm5sLALjmmmvw/PPP4/777+993mg02tWs2eqll14a8vnNmzcjICAAixcvBgDccccddh/DWQwGg0eNh4iIiIg8w86SJpQ3a/GTczLdPZRxZ2xlzp58Eti0qf9jmzaZH3eQZcuWobi4GJs3b8bKlSvx/e9/HzNnzoTRaMTPfvYzzJs3D7NmzcI///lPAICUEnfffTemTZuGCy64APX19b37WrFiBaxNt7/88ktkZ2dj9uzZWL16NcrKyvD888/jr3/9K7KysrBt27Z+2a3c3FwsXLgQs2bNwsUXX4yWlpbefT7wwAOYP38+MjMzsW3bNrvf41D7/r//+z8sX74cf/vb33rHU11djaysrN4PpVKJkydP4uTJk1i9ejVmzZqF1atXo7y8HIA5e3jPPfdg8eLFSE1N7c0kEhEREdHY99becoT4qbF2+iR3D2XcGVvB2bx5wBVXnArQNm0yfz1vnkN2bzAY8L///Q8zZ84EAOzduxePPfYYjh07hpdffhnBwcHYt28f9u3bhxdffBGlpaX46KOPUFBQgCNHjuDFF1/sN03RqqGhAbfddhs++OAD5OXl4b333kNycjLuuOMO/PjHP0Zubi6WLVvWb5vrr78eTzzxBA4fPoyZM2fi17/+db9x7t27F0899VS/x/sqKSnpF1A9//zzNu1bo9Fgy5Yt+MlPftL7WGxsLHJzc5Gbm4vbbrsNl156KZKSknD33Xfj+uuvx+HDh3HNNdfgnnvu6d2mpqYG27dvx+eff44HH3zQzp8EEREREXmihvYefHW0Fpdmx8NHzUIgjuZZ0xrvuw+wTC8cVGwssHYtEBMD1NQAU6cCv/61+WMgWVnAU08Nucuuri5kZWUBMGfObrnlFuzcuRPz589HSkoKAODrr7/G4cOHe7NAra2tKCoqwtatW3H11VdDqVQiNjYWq1atOmP/u3fvxllnndW7r7CwsCHH09raCo1Gg+XLlwMAbrjhBlx++eW9z19yySUAgJycHJSVlQ24j7S0tN6pmsCpJtLD7fvKK68cdFw7duzASy+91Jut27VrFz788EMAwHXXXYef//znva9dv349FAoFpk2bhrq6uiHfLxERERGNDR8cNBcCuXp+gruHMi55VnBmi9BQc2BWXg4kJpq/HqW+a8768vf37/1cSolnnnkGa9eu7feaL774AkKIIfcvpRz2Nfbw9vYGYC5kYjAYHLZfoP977qumpga33HILPv30UwQEDLzws+97tI4RML9/IiIiIhrbzIVAyjE/OQzpUYHuHs645FnTGp96Cti8eeiPRx4BtFrg4YfN/z7yyNCvHyZrZqu1a9fiH//4B/R6PQCgsLAQnZ2dOOuss/D222/DaDSipqYGm05fEwdg0aJF2LJlC0pLSwEAzc3NAIDAwEC0t7ef8frg4GCEhob2ZqjeeOON3kzXaI1k33q9HldccQWeeOIJZGaeWvi5ePFivP322wCAN998E0uXLnXIGImIiIjI8+w+0YSyJi2uXsCsmbOMrcyZdY3Zu+8CK1eaP/p+7US33norysrKkJ2dDSklIiMj8fHHH+Piiy/Gxo0bMXPmTGRmZg4Y6ERGRuKFF17AJZdcApPJhKioKHzzzTe46KKLcNlll+GTTz7BM88802+b1157DXfccQe0Wi1SU1PxyiuvOOy92LvvnTt3Yt++fXjkkUfwyCOPADBnDJ9++mncfPPN+OMf/4jIyEiHjpGIiIiIPMube8sR7KvGeTNi3D2UcUu4csrZ3LlzpbV6odXx48cxdepU23bw5JPm4h99A7FNm4B9+4A+652IrOw6v4iIiIhoQI0dPVj0hw24bmEyfnXRNHcPZ0wTQhyQUs4d6LmxlTkbKACzZtCIiIiIiMgpPjhQCb2RhUCczbPWnBERERERkUeRUuKtveWYlxyKjGgWAnEmBmdERERERDSoXdZCIPMT3T2Ucc8jgjOWWidn4HlFRERENHpv7a1AkI8K589kIRBnc3tw5uPjg6amJl5Ik0NJKdHU1AQfHx93D4WIiIhozGrq6MFX39Xikux4+KiV7h7OuOf2giDx8fGorKxEQ0ODu4dC44yPjw/i4+PdPQwiIiKiMevDg1XQGU2c0ugibg/O1Go1UlJS3D0MIiIiIiLqw1oIJCcpFJMnsRCIK7h9WiMREREREXmePaXNONHYyayZCzE4IyIiIiKiM3x0sAqB3ipcwEIgLsPgjIiIiIiIzlCl6UJGdAB8vVgIxFUYnBERERER0RlatDqE+Hm5exgTCoMzIiIiIiI6g0arR4if2t3DmFAYnBERERER0Rk0Wh1CfJk5cyUGZ0RERERE1I/OYEKnzohQZs5cisEZERERERH1o+nSAQCnNboYgzMiIiIiIuqnVasHABYEcTEGZ0RERERE1E9Lb3DGzJkrMTgjIiIiIqJ+NFrztMZQZs5cisEZERERERH1o7FkzoJ9mTlzJQZnRERERETUj7UgSKg/M2euxOCMiIiIiIj6adHqoVII+Hsp3T2UCYXBGRERERER9aPR6hHi5wUhhLuHMqEwOCMiIiIion40Wh0rNboBgzMiIiIiIupHo9UjlMGZyzE4IyIiIiKiflq0OgT7shiIqzE4IyIiIiKiflq7mDlzBwZnRERERETUTwvXnLkFgzMiIiIiIurVrTeiW29CiB+nNboagzMiIiIiIuql0eoBgJkzN2BwRkREREREvVq0OgBAKDNnLsfgjIiIiIiIevVmznyZOXM1BmdERERERNRLY8mccc2Z6w0bnAkhEoQQm4QQx4UQR4UQ9/Z57kdCiALL4086d6g0nkgp3T0EIiIiIhqApotrztzFlsyZAcBPpJRTASwEcJcQYpoQYiWAdQBmSSmnA/iTE8dJ48i7+ysw69df49tjde4eChERERGdhmvO3Ec13AuklDUAaiyftwshjgOIA3AbgMellD2W5+qdOVAa+7p0Rjz8yXd4/0AlAHOQtmZatJtHRURERER9tWr18FIp4KPmCihXs+s7LoRIBjAHwB4AmQCWCSH2CCG2CCHmDbLN7UKI/UKI/Q0NDaMeMI1NJxo6cPFzO/DBwUrcsyod1y5MxNaiBnTpjO4eGhERERH10aLVIdRPDSGEu4cy4dgcnAkhAgB8AOA+KWUbzFm3UJinOv4MwLtigJ+glPIFKeVcKeXcyMhIBw2bxpLPD1fjome2o66tG6/eNB/3nzMZ582IQbfehK1FDNiJiIiIPIlGq0eIL6c0uoNNwZkQQg1zYPamlPJDy8OVAD6UZnsBmABEOGeYNBbpDCY8+ulR3P2fQ5g8KRD/vWcZlmeaA/T5KWEI9lXjq6O1bh4lEREREfWl0epZDMRNhl1zZsmGvQzguJTyL32e+hjAKgCbhRCZALwANDpjkDT2VLZocdd/DiGvQoNblqbgwfOmQK08dS9ArVRg9dQobDheD73R1O85IiIiInIfTZcOKRH+7h7GhGTLFfESANcBWCWEyLV8nA/gXwBShRDfAXgbwA2S9dEJwMb8Olzw9HacqO/A89dm4+ELpw0YfJ0zbRJau/TYV9rshlESERER0UBatHpWanQTW6o1bgcw2GrAax07HBrLDEYT/vJNIZ7bXIJpMUF47ppsJA9x12V5ZiR81Ap8dbQWi9M5I5aIiIjI3aSUaNXqEcxpjW7BuWTkEPVt3bjmpT14bnMJrp6fiA9/uHjIwAwAfL2UWJYRia+P1bEpNREREZEH0OqM0BlNzJy5CYMzGjWTSeL6f+3F4cpW/PXK2fjDJTPho1batO3a6ZNQ09qNI1WtTh4lEREREQ1H06UHAIT4MnPmDgzOaNS+OlqL/Np2PH7pTFw8J96ubVdPiYJSIVi1kYiIiMgDtHTqAAAhzJy5BYMzGhUpJZ7ZWIzUCH9cOCvW7u1D/b0wPzkMXx+tc8LoiIiIiMgerZbMWSjXnLkFgzMalU0F9ThW04YfrkyHUjGyLvJrp0ejqL4DJxo6HDw6IiIiIrJHi5aZM3dicEYjZs2axYf6Yl2W/Vkzq3OmTwIAfMXsGRGNAU9vKMIzG4rcPQwiIqfQaJk5cycGZzRiu0qacKhcgzuWp42qiXRsiC9mxgXj62Ncd0ZEnq1Vq8ffNxXjvQOV7h4KEZFTaCyZM5bSdw8GZzRiz2wsRnSQNy7Lsa8IyEDWTo/GoXIN6tq6HTAyGm+e31KCO9444O5hEOHj3CroDCZUtGjRrTe6ezhERA6n0erh56WEt8q2ytvkWAzOaET2lzVj14km3H5Wms1l84ey1jK18etjnNpIZ/rwYCW+OlaLtm69u4dCE5iUEm/tLYdSISAlUNbU6e4hERE5XItWzzL6bsTgjEbk75uKEe7vhavnJzhkf+lRAUiJ8MfXLKlPp2np1KGwrgNSAocr2A+P3OdIVSvya9tx1Tzz772SegZnE5GUEv/cUoLv2J+TxqnWLh2LgbgRgzOy25HKVmwuaMDNS1Pg56VyyD6FEDhnejR2lTT1lnAlAoB9Zc29nx8qb3HjSGiie3tfBXzUCty7JgNCACWsMDshfXOsDn/4Xz6e3VTs7qEQOUWLVo8QrjdzGwZnZLdnNxUjyEeF6xclOXS/a6dPgsEksSm/3qH7Hc6mgnrUc62bx9pX1gwvlQJJ4X44VKFx93BogtLqDPg0txoXzIxFVKAP4kJ8GZxNQD0GIx774jgAYGthA3QGk5tHROR4Gq0OocycuQ2DM7JLYV07vjxaixuXpCDQx7F3VbLiQxAV6O3Sqo1t3Xrc8uo+/PnrQpcdk+yzt7QZWfEhmJ8chkPlLZBSuntINAH993ANOnoMuMoylTstMgDF9QzOJppXdpThZJMWNy5ORqfOiL2lzcNvRDTGaLR6Vmp0IwZnZJdnNxXD30uJmxYnO3zfCoXA2dOisbmgwWVV0L6rbIVJAhsL6mEy8aLf03T2GPBddRvmp4RhTmIoWrR6nGzSuntYNAG9s68CqZH+mJsUCsAcnJ1o6OTvjQmkvr0bz2wowpqpUXjg3CnwVimwIZ9FrGh8kVJC06VnjzM3YnBGNitt7MRnedW4dlESQv2dk+5eO30StDojdhQ3OmX/p8ut1AAAGtp78F01F3d7moPlLTCapCU4CwEAHKrgujNyreL6duw/2YKr5iVACAEASIvyR5feiBpOiZ4w/vRVAXRGE35xwTT4eimxJD0CG47XM5tP40p7jwFGk0SIL6c1uguDM7LZPzYXQ61U4NalqU47xsLUcAT6qPCVi6o25lVoEBnoDYUANhx37Vo3Gt7e0mYoBJCdFIrM6ED4eSlxqFzj7mHRBPPOvgqoFAKXZJ/q6ZgeGQAAKOHUxgnhcKUG7x2oxE1LUpAS4Q8AWDUlCuXNWpQ0sGonjR+tWnNRNhYEcR8GZ2STyhYtPjxYhavnJyIy0Ntpx/FSKbBqShS+PV4Pg9H5C60PV7ZicVo4shNDsdHFhUhoeHtLmzEjLhgB3iooFQKz40MYnJFL6QwmfHCwCmdPi0ZEwKnffWlRluCMRUHGPSklfvPZMYT7e+HuVem9j6+aEgUA2MipjTSOtGh1AMBS+m7E4Ixs8sLWExACuP0s52XNrNZOn4TmTh0OnHTu9LW6tm7UtHZjVnwIVk2NwpGqVtRxipLH6DEYcahCg3nJYb2PZSeF4HhNG7p0rlmTSPTt8To0d+pw5bz+PR3D/b0Q7KtmcDYBfHa4BvtPtuBnaycjqE8hrNgQX0yNCeKsCxpXNJbMGdecuQ+DMxpWfVs33t5Xgcty4hEb4uv04y3PjISXSoGvjjr3bmSepSx7VkIwVk+JBgCXl/GnwR2pbIXOYML8lFPB2ZyEUBhMkusDyWXe3leB2GAfLMuI7Pe4EAJpkf5sRD3OdemM+MMXxzE9NgiX5SSc8fzqKVHYf7KldyoY0Vh3KnPG4MxdGJzRsF7cdgIGowl3LE9zyfH8vVVYlh6Br47WOnWhdV6lBkqFwPTYYGRGByAuxBcbGJx5jD2WEtV9M2dZ1qIgbEZNLlDZosW2ogZcPjcBSoU44/m0yAAUM3M2rv1zawlqWrvxyEXTBzwHVk2NgtEksaWowQ2jI3K81i7rmjNOa3QXBmc0pOZOHf69uxzrsuKQFO7vsuOunT4JVZouHKtpc9oxDle2YsqkQPiolRBCYPXUKGwvanRZGX8a2r6yZmREBSCsT2XQiABvJIb54eBJjfsG5kTt3Xr84qMj7J/lId7bXwkAuHxu/IDPp0UFoKG9p/dihsaXKk0Xnt9SggtnxfTL4Pc1Oz4E4f5e2Hic685ofGjpNP8+C/Zl5sxdGJzRkP61vRTdBiN+uMI1WTOr1VOjoBBw2tRGk0kir0KDWfEhvY+tmhKFLr0Ru080OeWYZDujSWJ/WQvmDXBBNCcxBAfHYTNqvdGEH755EG/uKcdHhyrdPRyYTBLXvbwHnx+udvdQ3MJoknhvfwWWZUQiPtRvwNekWSo2nmD2bFx6/H/5kBJ46Pypg75GqRBYMTkKmwsbXFLEisjZNF06BHqroFYyRHAXfudpUK1dery2swznzZiEjOhAlx47PMAbc5PD8LWTSuqXNXWirduArITg3scWpobDV6106+Lua17ajb98XeC243uK4zVt6OgxYMFAwVlCCOrbe1DTOn6Kt0gp8YuPjmBbUSMCfVROL4Zji2M1bdhW1IjP82rcPRS32FbUgOrWblw178x1RlbpvRUbue5svNlX1ozP8qrxg+VpiBtmrfXqqVHQaPU4yEqyNA5otHoEc72ZWzE4o0G9sasM7T0G3LUyffgXO8Ha6ZOQX9uOk02Ov/DJszSfnp0Q0vuYj1qJpRkR2JjvnqaiVZou7ChuwueHJ+bFcF97B1hvZjUnMRQAxlVJ/b9vLMa7+yvxo1XpuDQ7HnkVrW6/C7+l0LyGxvp/ZaJ5Z18Fwvy9sGZq9KCvSQj1hVopWLFxnDGZzKXzY4J9cMfy4SsUL8uIgFopsIEl9Wkc0Gh1COV6M7dicEYD6uwx4OXtpVg1JQrTY4OH38AJzplmvij62glTG/MqWuHnpURGVP+M4OopUajSdKGgrt3hxxzO5gJzxu5EYyfqJ3hJ/72lzYgP9R2wOujUmCB4qRTjpijIR4cq8edvCnHxnDjcf3YmcpJC0aU3Ir/W9edgX1sKzMFZTWv3hGsx0djRg2+O1eHS7Dh4qQb/M6lSKpAc7s9G1OPM+wcrcaSqFQ+eNwV+XqphXx/oo8aClHBsZEl9GgdatHpWanQzBmc0oA8OVqJFq3db1gwAEsL8MC0mCF85YWpjXqUGM2KDz6i+ZW0q6o6pjZsLGnovBHdbMkcTkZQS+8qaB12A76VSYGZcMA5ZWiGMZTtLGvHz9w9jYWoYnrh0FoQQyE4yZwbdObWxrVuPA+UtWJQaDuBU24mJ4sODlTCY5Bm9zQbCio3jS3u3Hk9+WYCcpFB8b3aszdutmhKFovoOlDdpnTg6Iudr7dKzUqObMTijAR2rbkNEgBdyLBeK7rJ2+iQcKG9BQ3uPw/apM5hwtLoNsxPOzAhGBflgVnwwNrq4pL7OYMLO4kZcmh2HAG8V9kzgoiQlDZ1o6tRh/gBTGq3mJITgSJW5D9pYVVTXjh+8cQBJ4f7457VzewPz2GAfTArywUE3ZgZ3FjfCaJK4c0UaVAoxoaY2Sinx9r4KzE0KRXrU8Gtt06L8Ud6khZ7FIMaFv28qRmNHDx65aBqEOLN0/mBWTzXf2NvIqY00xrVodQhhpUa3YnBGA6rSdA27CNoVzpkeDSmBbx1Yprigth06g6nferO+Vk2JwsHyFjR36hx2zOHsP9mMTp0Rq6ZEIycptLfHlyPl17bh/z46gu+qPLuB874y83sfLHMGmNed6QwmHHdiqwVnqm/vxo2v7IO3SolXbpzXb/G1OXsW4tbM2ZbCBgR6q7AoLRxTYgKRV+HZ54wj7T/ZghMNnTZlzQBz5sxgkjjJjMmYV9bYiVe2l+GynPh+lXxtkRTuj7RIf/bKpDHNZJJo7dIjlNMa3YrBGQ2oStM14HofV5syKRCJYX4OrdrYWwxkkD++q6eYA0LrGjBX2FLQALVSYHFaOBamhqO4vgONHY7LFgLAK9vL8J895bjwme24/fX9OFrtmRfce0ubERHghZSIwfvqzRnDzag7ewy45dX9aO7U4V83zkVC2Jll2rMTQ1HZ0uWWtYdSSmwpaMCS9AiolQrMjg9BXqUGJtP4al0wmLf3ViDAW4ULZsXY9PpTFRs5tXGse+yL41ArBX6+dvKItl89NRp7TjSjo8fg4JERuUZbtx5SAsGc1uhWDM7oDFJKVHtI5kwIgbXTo7GjuAnt3Y5p9JpXoUGYvxfiQwd+f9NjgxAV6O3SO6CbCxowLzkM/t4qLEg1Z4z2nHBc9kxKiS2FDVgxORL3rcnArhNNuODp7fjBG/txrNqzsk97S83rzYaaUhQT7IPoIO8xt+7MaJK4561DOFrdir9/f86gd+et04ndMbWxuL4D1a3dWD45EoC5oml7twGlTqia6mnauvX475FqfC8r1qZCEACQGsngbDzYXtSIb47V4e5VGYgK8hnRPlZNiYLOaML2okYHj85xpJR4e285A0gakEZrvs5i5sy9GJzRGZo7dejWmzwicwYAZ0+bBJ3RhK2FjvmDl1epwez44EEv/hUKgVVTorC1oMEl60hqWs3VIVdYLoZnxgXDz0uJPaWOW3dWVN+B2rZunDt9Eu5bk4ntD6zCvaszsLO4Cec/vQ13vHHAI6YIVrZoUaXpGnK9GWCZ+pcYOqbK6Usp8evPjmJDfj1+/b3pWD1EifbpscHwUincMrXRWkL/rEzz+Zhlmf47EYqCfJpbjW69acjeZqcL8FZhUpAPSurHf/A6Xkkp8cSX+UgI88XNS5NHvJ+cpFAE+ag8et3ZkapWPPjhEfx790l3D8Vubd16/PWbQtSOox6XnqZFa17OwWqN7sXgjM5QrTH/4osbJLPkajlJoQj1Uztk3VlHjwFF9R2DrjezWjUlCu09ht71T85kLVm+YrJ5QblaqTCvO3Ng5mzraRfcwb5q/Phsc5B2z+oM7ChuxHl/24YfvnkA+bXuC9Ks3+95Q6w3s5qTGILyZq3Dp386y0vbSvH6rpO4/axUXLcoecjXeqkUmBUX7JamtlsKG5ARFdCbOU+LDICfl3JCBGfv7KvA1JggzIyzr31IWpQ/KzaOYVsKG3CkqhU/WpkBb5VyxPtRKxVYPjkKG/MbPHYacIGlRYcrp+07ypdHavG3DUU4929b8eV3jq/iTICmy5w5Y7VG92JwRmeo0pgXtnvCtEYAUCoEVk2Jxsb8+lFnsr6raoWUGDY4W5IeAS+VwiV9azYXNCA22AcZlrUrALAwNRwFde0OK0qypbAB6VEBZ2RDg/3UuN8apK1Kx9bCRpz71Dbc9ebB3j/irrS3tAWBPipMmRQ07Gutzahzx0D27IsjNXjsi+O4YGYMHjx3ik3bZCeF4khlK3oMRieP7pQunRF7Spux3BLEA+b/fzPjgpFb6ZlrFB3lu6pWHKlqxVXzEuyq0geYA9gT9R1uaV5PoyOlxDMbixEX4ov1c+JGvb/VU6LQ2NGDIx5aeKnQ0sNzf1mLw5YKuEppUyfUSoGEUD/c8e8DePCDw+jk9EyH0lgzZ6zW6Fa2TaqnCaXKkjnzlGmNAHD2tGh8cLAS+8tasCgtfMT7sd79H6wYiJW/twqLUsOxMb8ev7xw2oiPNxy90YQdxY24cHZMvwvCBZbM0d7SJpw7w7bCBIOxXnBftzBp0NcE+6lx/zmTcfPSFLy8vRSv7CjDF9/V4EerMnD/2ZmjOr499pY2YW5S6Bn95wYyIzYYKoXAwfIWrJk2+BRBRypp6MAHBypxuLIV3ioFfL2U8FUr4eelhK+XqvdzHy8l/NRK+HopodUZ8X8fHUFOUij+fMVsKGx4b4C5KMgLW0/gaHUbshNd09Jid2kTdAZT73ozq6yEELyyoww6g2nIpsxj2bv7K+ClUmB9lv0X6GmRAWjvMaChvWfE65XIPXafaMaBky347brpDjm3l2dGQiGADfn1w94EdIfCug54qRTQGUzYUdyEc2dMcveQbFbW2ImEMD98cOdiPPVtIf6xpQR7Spvx1JVZHvm9HotOrTlj5sydGJzRGao1XfBVKz1qQeiyDHMm65tjdaMLzio1SAjzRZj/8L94Vk+Nwq8+OYoTDR29i/4d7cDJFrT3GLA8M6rf47PiQ+CjVmD3ieZRB2d7LBfcZ2VGDvvaED8v/OScybh5SQoe+vAI/rG5GNcuSHTJBWdjRw9KGjpxWY5t6318vZSYGhPk9HVnrVo9PjtcjfcPVCK3QgOlQmB6bBCMJokunRFdeiO0OiO6dEboBsnsJof74cXr58JHbfuUqeykEADAwZMtLgvOthQ0wEetwLzT1vzNTgiBzmhCfm2b3SXGx4JuvREfHarC+TMm9WtrYCtrxcbihg4GZ2PMs5uKERnojcvn2r7OcCih/ub+oBvz61x6Y8tWhXXtOGdaNLYUNGBzQf2YCs5KGzuRHO4PL5UCPz93Cs7KjMT97+Ti0n/sxI/PzsQdy9NsurFHg2vR6iEEEMTMmVsxOKMzVLV0ITbEx+6pPc7k763C0vQIfHO8Fg9fOHXEY8uraO0twz6clZOjABzFxvx6pwVnWwoboFIILEnvH3B6qRQO63e2tbAR3ipFbzbOFqH+Xnjo/Cn46lgtXt91Ej8dYWlpe+zv7W9meyAyJzEE7x+ohNEkHfpH2WA0YWtRAz44UIVvjtdBZzBhcnQgfnH+VKybE4uowIEvwA1GE7r05oCtS2cJ2vRGTI4OhL+3fb9uowJ9kBDmiwMnW3DrMke8q+FtLWzAwtTwM4LI2X2KgozH4OzL72rR3m3AlfMSR7R9Wm/Fxk4sTotw5NDIiQ6Vt2B7cSN+cf5Uu26cDGfVlGg88WU+alu7MSnYc4L1tm49alq7MS02CAajxOaCBkgpPepv/WCkNPcS7Pv/a2FqOP5371n4xcdH8MevCrClsAF/vTLLY5ZkjEWtWh2CfNQMct1sfM5PoVGpbu1CXOiZvZfcbc3UaFQ0d6GwbmQL7xvae1Cl6eqtPjechDA/TI4OxEYnltTfXNCAucmhCPQ58y7VgpRw5Ne29c4BH6kthfVYMMAF93CSwv2xZmo03txzEt1656972lPaDG+VAjPjQmzeZk5iCLQ6Y+86itHKr23DY/89hkWPb8TNr+7HzpJGfH9+Ij7/0VJ8ed8y3HZW6qCBGQColAoE+qgRFeiDpHB/TI0JQnZiqN2BmVVOYigOlre4ZC1TeZMWJxo7+603s4oN9kFEgDdyx2kz6g8PVSE+1BcLU22/gdFXdJA3/L2UKKlnUZCx5NlNxQjxU+P7C0YWlA9m9VTzTIhNHlZ0o8jye3JydCBWTolEbVs3Chz0u9PZ6tp60KU3IiWi/7VJsJ8az1w9B3+5YjaOVbfh3Ke24rO8ajeNcuxr0epZqdEDMDijM1S1dCEuxHPu9lmtsfzBG2nVxsOW5tP23PlfPTUKe0ub0eaEhdN1bd04XtN2xpRGqwUpYZDS3PdrpKo0XShp6MRZGSO7m3/L0hS0aPX48GDViMdgq31lzZiTGGLXuo85CeYs22imNppMEm/sPokLn9mGc5/ahld2lGFOQgj+eV0O9vzfGjz6vemYETd46wVnyk4KRV2b+aaCs20pMlf0HCg4E0IgKyG4t4H7eFLf3o3tRQ1YnxU34p+xEAJpUQHsdTaGHK1uxbfH63HLkpQR3zwZTEZUAOJDfbHBARWGHcl6YzMzOrD3785mS7VgT1faaG5VkRzhf8ZzQghckh2PL+5ZhoyoAPzorUO4/53cMVfwxBNouvSs1OgBGJxRP916I5o6dYgN9rxpAVFBPpidEIKvj43sD15ehQYKAcyIG74SoNXqqVEwmCS2OajHWl+nSugPvBZsdoI5UBnN1EZrCf2BLrhtsSAlDNNjg/CvHaVOzd60d+txrLoN81PsW0+YFO6HUD81Do2iWfP7Byrx8MffwWQCHrloGvb832q8cP1crJ0+ye3FL6xrzVzR72xLQQMSwnyRMsDFD2AuolPS0OGUGxXu9HleDUwSWD8ndlT7SYsMYOZsDHluUwkCvVW4fnGyw/cthMDqKVHYXtzoklkHtiqobYeflxJxIb6YFOyDKZMCscmJM0McqazJEpyFD/z7CQASw/3w7g8W4b41Gfg4twrnP70NB0fxt2Ei0mh1rNToARicUT/Vljv0ntLj7HTnTItGXoUG9W32N6HMrWxFZnQg/Lxsv0ualWDuseaMO6CbC+sxKcj8B3IgPmolshNDRtWMemthA2KCfXoLFthLCIFbl6WguL6jtzmxMxw42QKThF3r4gDz+OYkhuLQCHtw6Qwm/G1DEWbFB+O/9yzFTUtSEB7gPaJ9OcOUSYHw81I6veiJzmDCzpJGLM+MHDR7NDshBFIC342zkvof51ZhRlwQ0qMG/n9oq7RIf1S3djuktPdopzLT0IrrO/DFdzW4fnESgp10IbpqajS69SbsKhn5729HK6pvR0ZUQG/F2BWTo8xFqcbADZeyxk54KRXDVpFWKRW4b00m3rtjMUwm4Ef/OeSiEY4PGq3eo4rBTVQMzqgf6/QpTyqj39eaqeaS6d/a2X9MSonDlRqb15tZKRUCKydHYVNBPYwObCpqMJqwrWjoi2HAvO7saHUbWrvs/+NpMJqwvXj4YwzngpmxiAr0xsvbS0e8j+HsLW2GSiFsLtbS15yEEBTXd4zoe/Tu/gpUabrw47MzPXJRvEqpwOz4EKdnzvafbIZWZxx0ii0AzIo3N2bOHUdTG080dOBwZeuIyuefznoDxDr9aqQ2HK9Dzu++xe4TnnNRP948t7kYPiolbl6S4rRjLEgJg5+XEhvyPWdqY0FtBzKjT92EWDk5EgaTxI5ix88McbTSxk4khvvZXKgiJykU1yxMRJWmCx3shWazFq2O0xo9AIMz6qc3c+ahwVlmdAASwnztXndW3qyFRqsfUaW5VVOj0KLVI7fCcRfIhyo0aO82nNFP6nQLUs3rzqyVDO2RazmGLSX0h+KlUuCGxcnYVtTosMIbp9tX1owZccF2ZTWtrM2o8+zMnnXrjfj7xmJkJ4ZgxSi/R86UkxSKYzVt0Oqcd4GxpbABaqUYsk1FiJ8XUiL87f4+e7KPc6uhEMBFs0c3pRHoW7FxdFMb/3ukBkaTxMMffwedYeDWDDRy5U1afJJbje8vSHRqltxHrcSyjAhsPF7vEc3Jmzt1aOzo6RecZSeFItBbNSbWnZ1s0g45pXEgKZbXl43yhslEYTCa0N5tYEEQD8DgjPqpaumCEPCo8r99CSFw9tRJ2F7caNf0oVxr8+mEYLuPuSwjEiqFwAY7s3VD2VxQD6VCYEn60IU6shND4aUc2bqzrYUNUAhgiQNKe39/fiJ81Ar8ywnZs269EXkVrZhv55RGq9kJwRDC/qIgb+0tR21bN356zmSPzJpZZSeFwGiSOOzE6YRbChowNykMAcMURpgdH4y8cVKxUUqJjw9VYXFaBKId0JvMeld/NOvOTCaJLQUNSA73Q1F9B/61w3nZ6onq+a0lUAqB289KdfqxVk+JRnVrN/Jr3V8R0XpjLbPPNHq1UoGlGRG9JfU9lckkUdbUeUalxuGkRJqDs9FmsycK6+wTrjlzPwZn1E+VphvRgT5QKz331FgzLQo6g3laoK3yKlrho1b0u2toq2BfNeYlhzm0pP7mggbkJIYOu97BR61EVkII9oxgitOWwgZkJYSMqKnu6UL9vXBJdjw+PFSFpo6eUe+vr9wKDXRGE+Ynjyw4C/RRIzMqEIfsyGx26Yx4dlMJFqaGYfEwAbK7WStSOmtqY12b+eJxuCwuYF53VtvWjdpW+9d8eppDFRqUN2uxLmv0WTMA8FYpkRjmh5KGkV8I5lVq0NSpw4/PzsTZ06Lxt2+LXFKpc6Kobe3G+/srcfnceIcE5MNZMcX8f8qZ7Vhs1beMfl8rJptL6ntCADmY2rZu9BhMA1ZqHEpSGIMze2gswVmoP6c1upvnXoGTW1Rrujy2GIjVvOQwBPuq8Y0dVRvzKjWYERs84qBz9dQo5Ne2o7JFO6Lt+6pv78bR6jabLoYB89TGI1Wtdi3abu7U4XBV65BriOx185IU6AwmvLmn3GH7BIB9lqzg3GTbm0+fbk5iCA6Va2y++/v6rjI0dvTgJ+c4v7n2aIX6eyEt0n9UFSmHssWOip69zagdsO7MZJKo1nShvq0bGq0OnT0G6Awml93B//hQFbxVCpw7Y5LD9pkW6Y/iUWTONuXXQyHMP4tHLpoGAPjNZ0cdNbwJ74WtJ2CUEncsT3PJ8aICfTA7PtgjSuoX1LUj0EeF6KD+UzlXTPb8kvrWaYn2Tmv09VIiJtiH0xptZC1E5KwiOWQ7xzb3oDGvStPVewHmqdRKBVZOjsTG/DoYTXLYBcJ6owlHq1vx/flJIz7mqilR+N1/j2NTfj2uW5Q84v0AwFZLWf7BSuifbkFKOJ7ZWIz9J1uwcrJtwdb24kZICZyV6bisUHpUAFZMjsTru07iB8tT4a2yr6n1YPaWNWPKpMBRLUKekxiCt/dVoLSxE6mRQ1em7Ogx4PktJViWEYF5I8zWuVp2Yig25JvXrjh6CuaWwgZEBXoPWjW0r2kxQVApBPIqNFg7fXRBzeNf5uOFrScGfE6tFFArFVArFfBSKeClVECtFPjB8jRcPX/0DYP1RhM+P1yDNdOiB2wAP1JpkQHYWtho0++lgWwsqEd2YihC/LwQ4ueFe1Zn4Ikv87Exvw6rpkQ7bJwTUWNHD/6z9yTWZ8UhIcy+6XGjsWpKNJ7aUIimjh63VoItrOvA5OjAM35/RAf5YGpMEDYV1OPOFa4JWu1V2jR4j7PhpET4925PQ9NoLZkzFgRxO2bOqJfJJFHT2uWxxUD6OnvaJLRo9TZN9Sqsa0e33jSi9WZWqZEBSInwxwYHTE/ZXFCPyEBvTIuxrd9adlII1EqBPSdsX3e2tbABIX7qERVAGcotS1PQ2NGDz/JqHLI/g9GEAydbRh0kWYuC2LLu7NUdpWjR6sdE1swqJykUzZ06lDWNPnPbl8FowvaiRpxlY0VPH7USU2ICR5050xlMeG9/BRakhOGxi2fgkYum4f/On4KfrZ2Me1dn4LZlqbhmQSLWZ8VizdRoLEoLh49aid98dgyNDphWu62oAc2dOlzsgCqNfaVFBkBnNI0ow17f1o3vqtqwauqpGzC3LE1BelQAHvn0qEf1yxqLXt5eih6DCT9c6doAZPXUKEjp3syUlBKFde3IGGRa/4rJkThwssVjexiWNXbCW6VAzAimoiZH+HNao41aLMEZC4K4HzNn1Kuxowd6o0RciGcWA+nrrMwIqJUC3x6vG7aQhLWAgb1l9E+3akoU3th9ElqdYURVBYFTJfTPnhZtcwbEz0uFWfG29zuTUmJrYQOWpkeM6O79UJamR2BydCBe3l6KS7PjRp3FOVrdBq3OOOJiIFbpkQEI9FbhYHkLLs2JH/R1rV16vLD1BFZPiRr1+eBK2Umn1p0N1iR6JPIqW9HapberSfns+BB8mlsNk0n29kuy1+aCerRo9fjB8lSbM0IlDR04+y9b8I/NJXj4wmkjOq7Vx4eqEeKnHnUl09OlRZ2q2Jhk5xSsTQXmGz+rppwKzrxUCvx23Qxc/eJuPLepGPePoRsKzpBf24akMH/4etmXtW/V6vHGrpM4f2ZMb1VNV5keG4ToIG9szK8f8neTMzV09ECj1WNy9MDvfeXkKPxjcwl2FDXivJkxLh7d8EobtUgK9xvR75vUCH9otHq0dOq4lmoY1mmNLKXvfsycUa9KD+9x1legjxqL0iLwzbG6Ydeo5FVoEOKnRuIop7KsnmIuRLKjeOT9h/IqNWjt0ts8pdFqQUoYDle22lShMr+2HfXtPQ6/8ATM1TJvXpqM4zVt2OWAPkz7LC0CRhucKRQCsxNChs2cvby9FG3dBvz47MxRHc/V0iMDEOijcnhREGtFz6V2FEWZnRCC9h4DTozibvSHB6sQEeCFszJsP0fTIgNwSXY83th9clQFSTp6DPj6WC0umBkDL5Vj/wSmWarDldTb/73ZmF+P2GCfMwo2LEoLx8Vz4vD8lhM4Mcoy/WPZfw/X4NyntmH5Hzfhjd0noTfa3mbg1Z1l6Ogx4K4V6U4c4cCEEFg1JQpbCxvc1hqhsNZ83gxWECs7MQSBPp5bUr+sqdPu9WZW1u04tXF4Gq0eCgEEDlO1l5yPwRn16u1x5uEFQazOnhqF0sbOYauj5VVqMCs+ZNRZnnkpYQj0VmHjKJqKbikwXwwvS7cvcFqYGg6jSdp0cb7VUuDBngtfe6zLikO4v5dDyurvKW1GUrifQyqnzUkMQX7t4P3AWjp1+Nf2Upw7fRJmxI18iqs7KBQC2YmhDi8KsqWwAbMTQuy6o2zNOI6031lLpw4b8uuwLisOKjsL9Ny7OgMmk8Szm4pHdGwA+PpoLbr1Jlw8x7FTGgHzHeeIAC+7e531GIzYXtSIlVOiBvw99dD5U+CtVuBXnxz16JLnzpJf24afvpeHWfHBSAr3w8Mff4c1f9mCT3KrYDIN/f3o6DHglZ2lWDM1CtNibZtK7mhrpkajvceADw5WuuX4A5XR70ulVGBZRgQ2F3pGT7a+jCaJ8ibtiGcMWMvpsyjI8KwNqEc6I4IcZ9i/jEKIBCHEJiHEcSHEUSHEvac9/1MhhBRCeHY9ahpWVcvYyZwBwJpp5ulQQ1Vt1OoMKKxrR1b86C/G1UoFzpociQ2jaCq6ubABcxJD7S5vn5MUCqVC2DS1cUthAyZHBzqtV52PWolrFiZhQ379qO7km0wS+8qaR1xC/3RzEkNgkhi0H9gL206gUzf2smZW2YmhKKhrd9i6kJZOHfIqNXZNaQTMGSx/L+WI1519frgaeqPEJdn2B0cJYX64Yl4C3t5Xjormka2/+zi3GvGhvshJGnl10KGkRgbYXbFxX2kLOnXGflMa+4oK9MHP1k7G9uJGfH7YMes9Hc1gNOGzvGo8t7kYxmECJnu0avX4wRsHEOijwkvXz8W7P1iEV26cB1+1Eve+nYsLntmOTQWD/05+c/dJaLR63LXS9Vkzq5WTo7AoNRy/+/wYyh28btQWhXXtCPP3QsQQBUlWZEahrq0Hx2s8q6R+taYLOqP9ZfStEkL9oBAsp28LTZeePc48hC23LQ0AfiKlnApgIYC7hBDTAHPgBuBsAI6trU1uUa3pQqCPCkEOrF7mTDHBvpgRF4RvhyhT/F1VG0wSDqtAuXpKFOrbe/DRoSq7t23s6MHhylasGMF0Q39vFWbGBQ9bFESrM2B/WYvNZfpH6rqFSVArFHhlR9mI91Hc0AGNVo95o5zSaJWVMHhRkMaOHry6owwXzYrFZBuqEnqinKRQSDnyjNXptlkqetobnCkVAjPjg0c8jg8OVmHKpEBMjx3ZDZMfrUqHEALPbCyye9v69m5sL2rA+qzRr5ccTFpkgN2Zs4359fBWKbB4iIbx1yxIwoy4IPz282N2tdVwtrZuPV7cegLL/7gZP3rrEJ78sgA/ey/PIQGa0SRxz9uHUK3pwj+uzUZUkA+EEFg5JQpf3LMMf7sqC509Btz0yj5c+c/d2F/W//djt96IF7eVYml6RG/RIHdQKAT+fMVsKBQCP34316HBqy0K69qROch6Myvr34zNhe7vydbXSUswO9JpjV4qBRLC/Bic2UCj1bEYiIcYNjiTUtZIKQ9aPm8HcByA9ZbnXwH8HIBn5cFpRKo03WOiUmNfZ0+dhIPlLWhoH7iCm/UC0lFVCy+YFYOFqWH42fuH8dXRWru2tU43XGFjOfzTLUgNQ16lBl26wau27T7RBJ3R5LQpjVaRgd74XlYs3j9Q2buI2F57LP3NFjgoOAvz90JyuN+AU/+e31yCHoMR967JcMix3GF2QjCEcFwz6i0FI6/oOTshBMdq2tBjsK+CYElDB3IrNLg0e+SFEWKCfXHNgkR8cLDK7guuz/NqYJLA+jmOaTw9kLRIf7Ro9WjutP3/xcb8OixKCx+y0IVSIfC79TPR0NGDv35jf2DqaBXNWvz282NY/IeNeOyL40gI88VL18/F/Wdn4sNDVfi/D48MO+VwOH/5pgBbChvw6PemIyep/+8JhUJgXVYcvr1/OX67fgZKmzpx2fO7cOtr+5Bf2wYAeGdfBRo7etyaNbOKDfHF79bPwIGTLXh+S4nLjmuu1Ngx6Hozq+ggH0yLCfK4dWfWtWKjKYSUHM6KjbbQaPUso+8h7JrwL4RIBjAHwB4hxPcAVEkp84bZ5nYhxH4hxP6GBs/6T0/9VWm6xsyURqs108xlijcNUuI+r1KDuBBfRAY6pr+Mt0qJl26Yh1nxwfjRfw71NvC1xeaCBkQEeGH6CNc9LEwNh94ocXCIdUdbCxvho1aMqqGzrW5ekoIuvRFv7a0Y0fb7SpsRFeg96kItfc1JDMWhiv7NqOvauvHG7pO4eE68yyu1OVKgjxqTowMdEpyZTBJbChuwLCNyRBU9s+JDoDdKu6dAfXiwEgoBrBtlcHTnijR4KRX427eFdm33cW4VpscGIT3KednT9D4VG21xoqEDZU3aQac09pWVEILvz0/EqztLcbR64Om7znaovAV3vXkQy/+4Ca/tLMOaqVH47O6lePv2RVgzLRr3rM7APavS8c7+Cjz8yXcjngL+vyM1eHZTCa6en4BrFgzeo9JLpcB1C5Ow5Wcr8LO1k7GntBnn/W0bfvxOLp7fUoK5SaFYmOoZ/Qy/NzsWF86KwV+/KcR3Va75+VW3dqOjxzBscAacKqnf2uU5mdmyxk74qpVnNM+2R0qEP8oaOz1uPZ2n0Wj1di+5IOewOTgTQgQA+ADAfTBPdfwFgF8Nt52U8gUp5Vwp5dzISOfezafRqdaMjR5nfU2LCUJciC++HmTdWV6lZlT9zQYS4K3CqzfNR0Z0AG5/fT9221C10GiS2FbUgLMyIke82HZuUigUAtgzxPG2FDZgYaq5J5SzTYsNwuK0cLy2s8yuymmA+W7u3tJmzE8Jc+j0sjmJIWho70GVpbgNADy3ybwG5t7VYzdrZpWTFIrccs2oMxLHa9vQ2NFj95RGq9kjKApiMkl8dLAKZ2VGIipwdOshowJ9cP3iJHySV91b7GA4Jxo6cLiy1SmFQPqy3gAosXHd2UbLjSVbG8z/fO0UhPp54eGPvxv1eWAro0nif0dqcOk/duLi53Zia1EDbjsrFdseWImnrpqDmaet6f3x2Zm4Y3ka3txTjl9/dszui+LCunb85L08ZCWE4NHvTbdpGz8vFe5amY5tP1+JH5yVhi+O1KCmtRt3WabBegIhBH63fgbCA7xw3zu5Luld11sMxKbgLApGk8SO4kZnD8tmZY2dSAr3G9XPMCXCH50646AzbMhMo9Uxc+YhbArOhBBqmAOzN6WUHwJIA5ACIE8IUQYgHsBBIcQkZw2UnKujx4DWLv2Yy5wJIbBmahS2FzecMd2vqaMHFc1dmO3gRswAEOyrxhu3LEBimB9ueXXfkNksADhcqUGLVj+qtWCBPmrMiAvG7tKB151VNGtR2tg54gvukbhlaQpq27rxxRH7ihSUNnaitq3bYVMarbJPa0ZdpenCW3srcPnceCSGOy5D5y7ZiaFo7zGgyM6CE6fb0lvRc2R1nGKCfRAZ6G1XcLb7RBOqW7txySimNPZ1x1lp8PdS4a/f2JY9+zi3GkIAF8123pRGAIgL8YW3SmFz5mxTQT0yogKQYGMGOdhPjYfOn4qD5Rq8d2BkWWtbSSnxxq4yrPjTJtz55kHUt3fjkYumYfdDq/HQeVMREzzw3wshBB44dzJuWZqCV3eW4fdfHLc5QGvt0uP21/fD31uF56/NgbfKvhtNIX5eePC8Kdj685V48fq5I1rj60whfl740+WzUVzfgSe+zHf68QprrcHZ8LMGTpXU95x1Z6WjKKNvZS0mwqmNg9MZTOjUGVkQxEPYUq1RAHgZwHEp5V8AQEp5REoZJaVMllImA6gEkC2ltG8RDnmMsVZGv68106LRrTdh+2l3+6xV+xxVDOR0Yf5eePPWBYgI9MaN/9o75DSjzZYS+qNdC7YwNRy55ZoB77j2XnC78GJk5eQopEb441/bS4e9+OrsMeCT3Crc+tp+nPvUNqgUAovt6K9li8mTAuGjVvQGZ3+3FI24e9XYz5oB6K0wONzNgOFsKWjA1JggRI2whYEQArPjQ5BrR8XGDw5WIdBbhXOm2dZ0ejih/l64eWkK/vdd7bBTxKSU+PhQFRanhTukbcNQFAqB1MiAYVt8AOabYntLm22a0tjXpdlxmJ8chj/8L9+utW32+vpYHR7+5CgiA7zx/LXZ2PzTlbhpSQr8beiDJITALy+YiusXJeHFbaX441cFw/6OMJkk7nv7ECpbuvCPa7JHVXE2OsgHZ0+L9pisWV/LMiJx4+JkvLKjDNuKnLvco7CuA1GB3jY1FlYpFTgrIxKbCxo8YgqgwWhCRbN2xJUarVIt25ex19mgNF2WBtRs1O0RbMmcLQFwHYBVQohcy8f5Th4XuZh1GlhciHMvXJxhQUo4Ar1V+Pa0qY15lRoIAaf2tIoK8sGbty5AgLcK1728F0WDTLHaPIJ+UgNZkBIGndE0YEXCLYUNiAvx7f1D5AoKhcBNS5KRV9k64FqoLp0RXxypwQ/fPICc332De9/OxZEqDa5ZmIiPfrjE4WvA1EoFZsWF4FBFC8qbtHhvfyWump8w5qbrDiYp3A9h/l6jWnfW3q3HgZMto86wZiUE40RDp03rUzp7DPjfdzW4YFaMQ6fc3rI0BcG+6mGzZ4cqNChv1mJ9lnOnNFqlRfrbVE5/e1ED9EaJlXYGZ0II/Hb9DLR3G/CkE7Mvb+8tx6QgH7z7g0U4d0aM3esThRB49KLpuHp+Ip7bXIK/bRi6kMlfvy3EpoIGPPK96ZjroBYbnurB86YgLdIfP30vb8RFlWxRWNduV4Xa5ZMjUd/eg2M1bU4bk62qNd3QGyVSIkY36yE2xBdeSgVOMHM2KI3W/HucmTPPYEu1xu1SSiGlnCWlzLJ8fHHaa5KllJ4zSZnsNtZ6nPXlpVJg+eRIbMiv61eiOK9Cg4yoAAQ4udt9fKgf/nPbQigVAte8tOeMZpfNnTocHkE/qYHMTQ6DEDij35neaMKukiYsnxzp8jvFl+bEI9hXjZctTal7DEZ8fbQW97x1CDm/+wY/fPMg9pY24/KcBLxz+0LsenA1Hrlo+hnrVBxlTmIIjla14Y9fF0CpEB5Rqc1RhDA3oz44iuBsZ0kTDCY56vPRmpG2pbDBV0drodUZHTal0SrYV43bz0rFhvz6IbOJHx+qgrdKgXNnuGbmfVpkACpatMOuKdqYX49AH9WIeq5NnhSIW5am4O19FQ6r4NlXtaYLWwobcPnceLubhfelUAg8tn4GLsuJx1PfFg3aQPzL72rxzMZiXDE3HtcuSBzx8cYKH7UST105B00dOjz8yVGnHMNkkiiqb0eGHQVwrNNAPaFqo7VS42inNSoVAonhfmxEPQRrcMY1Z55h5L9xaVyp1nRBpRCjXqjvLmdPi0Zjhw65ljUwUkrkVbY6Zb3ZQJIj/PHmrQugN5pwzUt7+hWk2FbUAClHXkK/r2BfNabFBJ1RhOTgyRZ09BicXkJ/IH5eKnx/QSK+OlqL+94+hLm/+xa3v3EAW4sasC4rFm/eugC7H1qN366fgQWp4SMuiGKrOYkh0Fka4l63MMnp09hcLScpFCcaO0c8nW1LYQP8vZSjbsI8Ky4EAHr/zw3lw4NVSAjzxTwnVBG9cXEywvy98JevB86e6Y0mfH64BmumRSPQRT0c06MCIOXQ06hMJolNBQ04KzMS6hEGP/euzsCkIB888unIqyIO5t39FZAArpibMOp9KRQCT1w6C+uzYvHHrwrwwtb+peSL69vxk3dzMTshBL9ZN8MjpyI6w8z4YNy3JgOf5VXjk1z7e2cOx3yDwITJk2yfoRAV5IPpsUHY4gHBmTWYGk0ZfSuW0x9aiyV7yz5nnoHBGQEwT2ucFOwzorLanmDF5CioFKK3IXVlSxeaO3VOW282kMzoQLxxywK0detxzYu7Ud/WDcB8BzLM3wuzHDS9cmFqOA6Va/r1mNpa1AClQmBxerhDjmGvGxYlw0ulwIb8eqydPgmv3jQP+36xBn+4ZBaWpEeM6s67vazNZv28lLhjRZrLjusq2YkhADBgP7fhSCmxpaABi9Mj4KUa3c8k2E+N1Aj/YYuCVGu6sKOkEZfMiXfKRbe/two/XJGG7cWNA1ZO3VbUgOZOncumNAJ9KzYOfjF4tLoNDe09WDWKmzb+3ir8+OwMfFfVhl0lw1eNtZXRJPHe/kosTY+wuVDJcJQKgT9dPhsXzIrB77/Ixys7zJn2tm49bn/9AHy9lHj+2myXVJr1JHcsT0NOUih++fF3vWu/HaWwzjy1NsOGSo19rZgciQPl7i+pX9rYCX8vpUNa4aRG+qOsSeuyCqdjTat1WiODM4/A4IwAjM0y+n0F+6qxIDUM31jWneVZChW4KnNmNSMuGK/eNB/17T249uU9aOzowdbCBpyVEeGwjNGClDD0GEzIqzg1nWxLYQOyE0MQ5KLMwOkmBftg289XYf8v1+BPl8/GislRI84GjFZ0kA+WpIfjntUZiAhwTH87TzIrPgQqhRhRUZCShk5UabocVtFzVnxw7/+1wXycWwUpgUuynRccXbswCVGB3vjL14VnZJA+PlSNED+1S6uYpkT4Q4ihe51tzK+HEOYL4dFYlxWHiAAvvGSZVuwI24oaUKXpwlXzHDu9UKVU4Kkrs7B2ejR+/dkxvL6rDD9+OxflzVo8+/3sQas/jmcqpQJ/uWI2jCaJn76X59DgwVpGPyPKvrW91pL624vcu1qlrKkTSeH+DrmpkxzuD53BhOpWxwbA48WpzBmnNXoCBmcEwLzwdiwHZwCwZmo0ius7UNrYibwKDbxUCrsWQjtKTlIoXr5hHk42abHu7zvQ1KkbVQn905l7g53qd9bY0YPvqtpcevE5kMhAb7vLXjvLm7cuxB3Lx1/WDAB8vZSYFhs0onVG1oqejjpXZieEoK6tB7Wt3QM+L6XEhwerMC85FEmjXDcyFB+1EnevSsfesmZs63NB2dFjwNfHanHBzJhRZwrt4eulRFyI79DBWUE9ZseHIHyUNxB81EpcuzAJG/PrbSpCYot39lUgzN8LZzuosmZfaqUCz1ydjdVTovCrT45iQ349Hr5wGhakuifr7wmSwv3xqwunYWdJE/61w3FBdmFdO+JCfO2ezjsnIQRBHlBS/2ST1iFTGoFTUyPLGrUO2Z+zHTjZ4tJG85ouPdRKAX8vz/gbPtExOCMYjCbUtnWPyWIgfa2Zar6Q+PZYHfIqWjE9NsilF2R9LUoLxz+vy0F9ezeEA0ro9xXi54XJ0YHYbSkKYr276coS+uRe2YmhyKtohcGO5t8Hy1vwj80ldvXUGo512vBg684OV7aiuL7D4YVABnLlPHNVzj9/fapk+9dHa9GtN2G9kxtPDyQtMmDQYKmxoweHKzV2l9AfzLULk+ClUvROFRyNhvYefHOsDpdmxznt96eXSoHnrs3G+qxY3LYsBdcvSnLKccaSK+clYM3UaDz5VQEKam1rrD6cgtp2m/qbnU6lVGBZZiQ2F7qvpP6pMvqO+V2V0tvrzDE3MJztnrcO4Rcffeey42m0OgT7ek2Y9Z6ejsEZoa69B0aTHJM9zvpKCPPDlEmB+PJoLY5Uua4YyGBWTI7CKzfOx6+/N33Ud8dPtzA1HAdOtkBnMGFLoXlN24xY57UMIM+SkxSKLr0R+TZexL23vwJX/XM3/L2VePaabIeNY1pMEFQKMejUxg8PVsJLpcD5M2McdszBeKuUuGd1OvIqW/HtcfMd/49zqxEf6oucRMcXIhlOWmQATjR0DjhNzdxHCg4LziICvHFxVhw+OFg56r5nHxyshMEkcaWDpzSezlulxFNXzcEvLpjGC0KYK7E+fulMBHqrcN87uf3WFI+EwWjCiYZOZNq53sxqRWYkGtp7cLTaPSX1K1u6YDDJUVdqtIoO8oavWonSMZA5q2jWokrThaPVrcNWfHUUjVaPUK438xgMzmhMl9E/3TnTonHgZAu69EZkubAYyGCWZkTg+kXJDt/vwtQwdOtNOFypwbaiBixz4Jo28nzZlkqLw01tNBhN+O3nx/Cz9w9jXkooPrlryYgv1gbio1ZiakzQgEVBdAYTPs2rxjnTohHsot45l2THIzncD3/5phD1bd3YbqkY6o7/G+lRAejSG1HTduaUz0359YgO8sb02CCHHe+WZSno1pvwnz0nR7wPKSXe2VeB+clhSLdznRKNXkSANx6/dBaO17Thr98M3RNuOGVNWuiMphH/f7dOxbdOhXa13jL6DprWKIRAcoT/mMicWYv76I0ShytdM7WxRatjMRAPwuCMeitEjfU1ZwCwps8aiVlO6qPlCeanmNdnvLKjDI0dOreU0Cf3iQ32waQgnyGLgrRq9bjp1X14eXspblycjNdumu+Uxd6zE4JxuLL1jAzRpoJ6tGj1uNQFUxqt1EoF7l2TgeM1bbj37VyYJFxapbGvtEjzRWXJaVMb9UYTthY2YOXkKIdmjDKjA3FWZiRe23VyxFmXPaXNKG3sxJXzRl8+n0bm7GnRuDQ7Hi9vP4GWUWRBiyzFQEYanEUF+mBGXJDb1p1Zy+g7KnMGACkRfihr8vzM2a4TTQj0MfdndUYPw4FotHoWA/EgDM6otydXbMjY7wc1My4Y0UHeCPJROfSXuqcJ8zevO/vvkRoAwLLMCDePiFxJCIGcpNBB/3AX17dj3bPbsftEE564dCYe/d50p7UzmB0fgo4eA06cdkf6w4OViAjwxrIM156b35sdh/SoAOw60YTpsUF2lxF3lDRL5un0oiD7yprR3mPASgdNaezrlqUpaGjvwed5NSPa/p19FQj0UblkGioN7ualydAbZe/v95EoqGuHEBhVBnRFZhQOlmt6y6y7UlljJwK8VYgIcFzAkBLhj/JmLfR2rNV1NSkldpU04azMSKRG+Ls2OHPRDAcaHoMzQpWmC6F+avh5qdw9lFETQuC+NZm4Y0XauJ/mtyA1DAAwNSZozDYPp5GbkxiCypau3n56Vhvz67D+2Z3o6DHgrdsWOn3tUFZvUZBT029aOnXYmF+P9VmxLu1xB5j7ad1/diYA92XNACDc3wvBvuozgrNN+fXwUiqwNN3xQetZGRHIiArAS9tL7S7k0KrV44sjNVifFQdfVmxzq2kxQciICsDHh0bemLqorgOJYX6j+lmumBwJo0liW7HrpzaWNpmLgTgyu5wc7g+jSaKyxXPL6Zc1aVHb1o1FqeHISQrFwfIWlxRl0XTpEOrPzJmnYHBG5h5nY7wYSF9Xz0/ED1eku3sYTrfAMrXR3SX0yT1yLOvOrFMbpZT4x+YS3PLafiSF++GTu5dibnKY08eRGhmAAG9Vv3Vnnx2uht4oXVKlcSDnzZiEf904F9cvdl8VQCEE0iL9z2hEvTG/HgtSw+Dv7fibYUII3LosBcdr2rBrgIbcQ/noUCV6DCZcNZ9TGt1NCIH1c+Kw/2QLKppHNg2voK591OtLs3pL6rs+OCtr7HT47JfUSGs5/cGbw7ubdb3ZojRzcNbcqUOpk8fbrTeiW29y2dpgGh6DM0JVSxdiJ2Dzz7FuWWYElmVE4LIc92UHyH2mxwbDS6XAgZMt6NYbcd87uXjiy3ycPzMG79+x2GVrSJUKgZlx/ZtRf3CwClNjgjDNgQUv7CGEwKop0W7vu5cWGYDiPpmz8iYtSho6sXKy46c0Wq3LikO4vxde3mZ7WX0pJd7eV4FZ8cGYzqqvHmFdViwA4JNc+7NnPQYjyho7R1RGvy+VUoGzMiOxpbDBoc2xh6MzmFDZ4rgeZ1bWYO+EJwdnJ5oQFeiN1Aj/3htwzp7aqLFMWw3lmjOPweBsgpNSjrvM2UQR5KPGG7csQHqUe9bUkHt5qRSYFReMrYWNuOKfu/BJbjV+tnYy/n71HJdPS5udEILjNW3o1htRXN+BvAoNLs3mTYO0qAA0tPegtct88bMxvw6A40roD8TalHpDfv2QTbD7yqtsRX5tOwuBeJD4UD/MSw7FR4eq7J7WVtrYCYNJOqQy63JLSf2COsf0XrNFRYsWJunYYiCAea12kI/KYzNn1vVmi9LCLZn3AAT7qocs/OQILVpz4RlWa/QcDM4muLYuAzp1xnFRqZFooslJCkVBXTtK6jvw4vVzcdfKdLf0jMpKCIbeKHG8pg0fHqyEUiHwPcud/4ksPdKcuThhCZI2FjQgNcLfYeXBB2NvU+p39pXDV63E92bzZ+ZJ1s+JQ0lDp929xgrrzOfb5EmjD86WWNZG7ihuHPW+bHXSwWX0rYQQSInwd/o0wZEqaehAY0cPFqWalywoFALZiSHYX+aazBmDM8/B4GyCq9SY57OPhx5nRBPNxdlxWDUlCh/dtQRn92kj4WqzLUVBDpVr8NGhKpyVEcEiNehbsbETWp0Bu080OaVK4+kiA72xPisW7x+oHLYce2ePAZ/mVuOi2TEI9OHFmSe5YGYM1Ephd2GQwtp2KBXCIdMCY0N8kRrh79LgzNoo2tHTGgFYep15ZnC260QzAPN6M6ucpFAU1Xc4tWKmxpo58+W0Rk/B4GyCq9aYK70xc0Y09kyZFIR/3TjPoY2lR2JSkA+iAr3xys5S1LR2u60QiKdJCPWFWilQ0tCBHcVN0BlMTp3S2NctS1PNTan3lg/5us/yqtGpMzq9qifZL8TPCysmR+HTvGoY7VjzVVjXjpQIf4etuVySHoE9pc3QGVxTgr6ssRNBPiqEOiGTkxLhj+rWLnTrR9YL0Jl2lzQhJtgHiWF+vY9lWws/VTgve6axTLsO9efNGU/B4GyCq2ph5oyIRkcIgVnxIaho7kKgj8qtWTxPolIqkBzuj5L6DmzMr0eAtwrzXFBBEzBPaVuWEYHXdpYNeVH99r4KZEYHIDsxxCXjIvusz4pDfXtPbxU/WxTWtY+6GEhfS9LDodUZ+xX9caaypk4kR/g7ZYp2SoQ/pATKR1gF01mklNh9ogmLUsP7ve+shBAoFQIHnDi1sYWZM4/D4GyCq27thpdK4dBGj0Q08WQlmKv8XTgrBj5q9smySosMQHF9BzYX1GNpegS8VK77s3vL0hTUt/fg88PVAz6fX9uG3AoNrpyX6Ja1ijS81VOjEOitwsc2Vm3s1htxslnr0Gz6otQICAFsL3LN1MZSJ5TRt7JOlTzR4FlTGwvrOtDUqcPCPlMaAcDPS4VpMUFOrdjYqtXDW6Vgf0MPwuBsgqvSdCEuxJd/mIloVBanR0ClEJwed5q0KH+caOxETWu3y6Y0Wi3PjDQ3pd42cFPqt/dWwEupwCVzWFnTU/molTh3xiR8+V2tTVPxius7ICUcGpwF+6kxMy4YO0ucH5z1GIyo1nQ5rWiOdb9lTZ4VnO2yfG+txUD6ykkKRW6FBgajc6aVtmh1LAbiYRicTXBVLV2IDeHCfSIanezEUOQ9cg6yLMVByCw96tT0shVTXNswXgiBW5am4FhNG3Zbig1YdeuN+OhQFc6dMQmh/pw54ckunhOHjh4Dvj1eN+xrCy0l7x29DnVxWgQOlWvQ2WNw6H5PV9FsLqOfEuE3/ItHIMhHjYgAL5R6WOZs14kmxIf6IiHszPedkxSKLr0R+bXOaWeg0erZ48zDMDib4KotmTMiotHy91a5ewgeJ81STn9mXLBbKliunxOHMH8vvLz9RL/Hv/yuFq1delzF3mYeb0FqOKKDvG2q2lhQ1w4vpQLJ4Y4NbpamR8Bgkthb2jz8i0fBWqnRWdMarfsu9aDMmckksae0ecCsGYDeZtT7y5zzvddo9Qj2ZebMkzA4m8B6DEbUt/ewGAgRkZOkRgbAW6XA2unuKZJibUr97fH63n5rAPD2vnIkhfth4SAXhOQ5lAqBdVlx2FzQgOZhWiMU1XUgNdIfKqVjL+/mJofCS6Vwekl9a4NoZ5TRt0qJ8PeoRtTHa9ug0er7ldDvKzbEFzHBPjhQrnHK8TVdOmbOPAyDswmstpVl9ImInCnAW4Wv7jsLt5+V5rYxXLcwCV5KBV7ZUQbAXHBh94lmXDE3AQoF1xuPBeuyYmEwSfz3SM2QryuobXdKaw0ftRJzk0Kx3cnBWWlTJ0L81AhxYrCQHOGP+vYedDh5iqatrJU4BwvOAHNJ/YNOKgrSotVzzZmHYXA2gVVpugAwOCMicqbkCH+XVmk8XWSgN9ZlxeK9AxXQaHV4Z18FlAqBy3PYj26smBYThMzoAHwyxNTGjh4DqjRdmDzJOX0Pl6RHIL+2HY0dPU7ZP2DOnDlzSiMApFqLgnhI9mz3iSYkh/shJnjwa7G5SaGo0nShprXLoceWUqJVq3dqMEz2Y3A2gVW1mP+Tc1ojEdH4dsuyFHTrTXht50m8f6ASq6dEISqIxaDGCiHMUxv3n2xBxSA9uoosxUAyohzX46yvJekRAICddvRcs9fJJq1TpzQCpyo2lnpAcGa0rjcbImsGnFp35uiS+lqdETqjiZkzD8PgbAKr1pinNcawWiMR0bg2ZVIQlmVE4JmNRWjs6MFV81kIZKxZlxULAPhkkJ5nRXXmNYXOypzNjAtGoI8KO500tbFbb0R1a5fTM2fW/XtC5uxodSvauw3Drv2cGhMEH7XC4cGZpksPAAhlcOZRGJxNYNWaLkQGesNbxcaDRETj3c1LU2AwSUwK8sHyTNf2XKPRiw/1w/zkMHx0qGrAvnUFde3wUSuQEOqcMvRKhcCi1HCnrTsrb9ZCSiDZSWX0rXy9lIgJ9vGIzNnuE5b1ZsMEZ2qlArPjQxy+7qzFUmAm2JfTGj0Jg7MJrIpl9ImIJozlGZFYPSUKd61Kh5KFQMakdXNiUdLQiaPVbWc8V1jXjoyoQKcWeVmSHoHKli6UNw08tXI0rMGSszNn1mN4Qjn9XSVNSIv0t2mK8dzkUBytbkOXbvhm5LZqZebMIzE4m8DY44yIaOJQKARevnEerluY5O6h0AhdMDMGaqXARwMUBimsa0dGtHPWm1lZ1505I3tmnWaY7OQ1ZwCQEunv9syZwWjCvrKWYdebWeUkhcJgksir1DhsDC1ac+aMBUE8C4OzCUpKiSpNF2K53oyIiGhMCPHzworJUfg0rxpG06mpja1aPeraejDZCWX0+0qL9Ed0kDd2lDghOGvqRJi/l0saIqeE+0Oj1fdO63OHI1Wt6OgZfr2ZVXai44uCaLTMnHkiBmcTVFOnDj0GEzNnREREY8jFc+LQ0N6DnX0CpMJ6c6VGZ/Q460sIgSXpEdhZ3AiT6cx1b6NR2tiJ5HDnrjezslaEdOfUxl2W9Wa2Bmchfl5IjwpwcHBmWXPG4MyjMDiboKo1LKNPREQ01qyaEoVAbxU+PlTd+1ihpYx+ppMqNfa1JC0CLVo9jteeue5tNMoatS6Z0gicmjrpzoqNu0qakBkdgIgAb5u3yUkMxcHyFocFxhqtHn5eShaG8zAMziYoa4+zuFAGZ0RERGOFj1qJ82ZOwpff1fQWhyisbUeAtwqxwc5fqtDb76zYcf3OunRG1LZ1I8UFxUAAIDHMDwrhvuBMZzBhf1nLsFUaT5eTFAqNVo8TDhp3i1aPEBdMIyX7MDiboKosmTNOayQiIhpb1mfFoVNnxLfH6wCYy+hnRAdACOdX4ZwU7IO0SH+HFgUpa3JdMRAA8FIpEB/q57Agx16HKzXo0httLgZilW1pRu2okvqtXToWA/FADM4mqCpNF/y8lC5ZeEtERESOsyA1HJOCfPCxpWpjUV0HMqOcP6XRaml6BPaWNkNnMDlkfyctwVmKi4IzwBwIlrlpzdmukiYIASxIsS84S4v0R4ifGvtPNjtkHC1aPUK43szjMDiboKxl9F1xl42IiIgcR6kQ+F5WLLYUNqCorh1NnTqXrDezWpwegS69EYfKHZPBKW00901zVeYMAFIj/FHa0DlgQ29n23WiCVMmBSHU376slRACOYmhDisKotHqEMrMmcdhcDaGjWZBaLWmm8VAiIiIxqj1WXEwmCT++m0hACDTyT3O+lqYGg6FAHaUOGbdWVljJyICvBHgrXLI/myRHO6HTp0RDR09dm/b1q3H7784jopm+5tx9xiMOHDS/vVmVtlJoShp6HRIGwCNVs9KjR6IwdkYVa3pwso/b8YzG4pGtH2VpovFQIiIiMaoqTGByIwOwBdHagHA6T3O+gr2VWNmfAh2OGjdWWmT68roW6VEmoPZ0gb7pza+tPUEXth6Ajf8a6/dQdKhcg16DCa715tZzbWuOxtl1lJKCU2Xnj3OPBCDszGotUuPG1/Zi5NNWry47QS0OoNd23fpjGju1LEYCBER0RglhMD6OXEAzMFSZKDtJdkdYWl6OHIrNGjv1o96X2WNnS6d0gigtzKkvevONFodXtlRhtnxwajUdOHW1/ejW2+0efvdJ5qgEMD8lDC7jms1Kz4EKoUY9dTG9h4DjCaJEF9Oa/Q0DM7GGJ3BhDv/fQAnGjpx/9mZaOs29Ot1Youq3h5nzi+5S0RERM7xvdmxAMxZM1evIV+SFgGjSWJv6eiKU3T2GFDf3uPSYiCAuZWQWinsrtj4r+2laO8x4InLZuGpK7NwsLwF97+ba/NSk10lTZgeGzzigmy+XkpMjw0adXDWqjUH1SwI4nkYnI0hUko8+OFh7CxpwhOXzsKPVqVjWkwQXt9VZteC1ureMvqunUJAREREjhMf6oebl6Tgspx4lx87OykU3ioFdoyy31lvGX0X9TizUioEEsP87Op1Zs2anT9zEqZMCsL5M2Pwi/On4osjtfj9F8eH3b5bb8Shcs2IpzRaZSeFIq9SA71x5NUyW7Tm6Zgspe95GJyNIX/9tggfHqzC/Wdn4tKceAghcMPiJOTXttt156qamTMiIqJx4VcXTcMV8xJcflwftRLzksNGve6srLdSo+tvGKdEBKDUjuDsZUvW7N7Vmb2P3bI0BTcuTsZL20vxyo7SIbc/eLIFOqNpxMVArOYmhaFbb8Kx6rYR70NjyZxxzZnnYXA2Rry7rwJPbyjCFXPj8aNV6b2Pf292HIJ91Xh910mb91Wl6YJCAJOCGJwRERHRyCxJj0BBXTvq27tHvA93Zc4AICXCDyebtDZNSbRmzS6YGYPJfdoWCCHw8IXTcM60aPzm82P48rvaQfex60QTlAqBucmhoxp3dlIIAIxqauOpzBmDM0/D4GwM2FLYgIc+OoJlGRF47OKZ/eaV+3opceW8BHx5tBa1rbb9cqzSdGFSkA9USv74iYiIaGSWpJszQLtGUVK/tLETUYHe8HdhGX2rlIgA9BhMqGkb/vrp5e2l6Ogx4J7VGWc8p1QI/O2qOZgdH4J73z40aCXFXSVNmBEXjECf0QVEMcG+iAvxxYFRVGxs7bKuOeO0Rk8z4a/O27v1ds03drVj1W344b8PICMqAM9dkw31AAHVdQuTYJIS/9ljW/asqqWLPc6IiIhoVKyFLUYztfFkk+srNVpZp1IOV05/sKxZX75eSrx8w1xMCvbBra/tP+PaUqszIK9SM+opjVbZSaE4UNYy4ibaLZ2W4GyEhUnIeSZ0cCalxFUv7Ma97+S6pUP8cGpau3Dzq/sQ5KvGqzfNH/ROS0KYH1ZPicJ/9pajxzB8OdfqVvY4IyIiotFRKgQWpYZjR3HTiK+jShu1vWXtXc1aIbJ0mHL6L28vRadu4KxZX+EB3nj1pvmQUuLGV/aiqU+D6/1lLdAb5aiLgVjNTQpFbVs3qm2cNXU6TZcOgd4qzqLyQBP6JyKEwPWLkpBXocFXRwefI+wObd163PTKPnT2GPDKTfMwKXjo9WHXL0pGY4cO/zsy9PswmiRqW7uZOSMiIqJRW5IRgSpNF042ae3etr1bj8aOHrdlzqIDfeCrVg6ZOTtVoXHwrFlfKRH+eOmGeahp7e7XA23XiSaoFKK3ifRo5Vj2M9J1ZxqtHiH+zJp5ogkdnAHApdnxSIv0xx+/KoBhFCVJHUlnMOGH/z6I4voO/OPaHEyZFDTsNkvTI5Aa4Y/XdpUN+bqG9h7ojZLBGREREY3aEksmaEeJ/VMbrQFdihsqNQKAQiGQFO43ZCPql7ZZsmarhs6a9ZWTFIq/XZWF3AoN7n37EIwmiV0lTZidEOKwtXVTJgXCz0uJgyMOznRsQO2hJnxwplIq8LO1U1DS0IkPDla6eziQUuKhD49ge3EjHr90FpZmRNi0nUIhcN2iJBwq1+BwpWbQ11kbUMczOCMiIqJRSonwR2ywz4jWnVnL2Ce5aVojAKRG+g9aTr+lU4dXd9qeNevr3BkxePiCafjqaB1++fERHKlqddh6M8B8/ZqVEIL9J0fWBLxFq2elRg81bHAmhEgQQmwSQhwXQhwVQtxrefyPQoh8IcRhIcRHQogQp4/WSdZOj0ZWQgie+raoN/3sLk99W4QPDlbivjUZdjeVvDQnHn5eyiHL6lf19jhjcEZERESjI4TA4vQI7CxpsqkkfV/WohnuKKNvlRzuj4pm7YANnXvXmtmRNevr5qUpuHlJCt7aWwGjyXHrzaxykkJxvKYdnT0Gu7dt7dKzUqOHsiVzZgDwEynlVAALAdwlhJgG4BsAM6SUswAUAnjIecN0LiEEHjh3Cmpau/H6MNMCnenDg5X424YiXJYTj3uHWXQ6kCAfNS7JjsOnedVo7tQN+Bo2oCYiIiJHWpoeAY1Wj2M19jVFLm3qxKQgH/h6KZ00suGlRPjDYJKobOnq93hLpw6v7CgdUdasr19eMBXnz5yEQG8VshMds97MKjspFEaTRN4QM6YG06LVsQG1hxo2OJNS1kgpD1o+bwdwHECclPJrKaU1VN8NwL40j4dZlBaOszIj8eymkt7eD65U3qTFLz/+DgtSwvCHS/r3MrPHDYuSoTOY8Pa+8gGfr9Z0IchHNeoeG0REREQAsNi67szOqY1ljZ295ezdxVqx8fTS9y9tPwGt3jiim+V9KRQCf786G1t+vtLhQWh2gqUoSJl9686MJmnOnLGMvkeya82ZECIZwBwAe0576mYA/3PQmNzm52sno7VLjxe2lrj0uCaTxE/fz4NCCPzlyqwBe5nZKiM6EIvTwvHm7vIBC5ywxxkRERE5UlSQDzKjA7DdjuCstrUbJxo7e4Mjd7Ee/0Sf4KylU4dXLX3NMqNHnjWzUigEwvwdP4Uw2E+NzOgAu5tRt3frISUbUHsqm6MAIUQAgA8A3CelbOvz+C9gnvr45iDb3S6E2C+E2N/Q0DDa8TrVjLhgfG92LF7eXop6G7rFO8orO8uwt7QZv7poGuIcEDhdvygZVZoubMivP+O5Kk0X4tnjjIiIiBxocVoE9pU1D9pvtUtnxOaCevz282M4569bsPAPG6DR6jErPsS1Az1NmL8XAn1U/TJn1qzZcH3NPEFOUigOnmyxa71fi9bSgJrTGj2STcGZEEINc2D2ppTywz6P3wDgQgDXyEG6D0opX5BSzpVSzo2MjHTEmJ3q/rMzYTBKPL2xyCXHK67vwJNf5mP1lChcbmcBkMGsmRqF2GCfAdfPVWmYOSMiIiLHWpoegW69CQdPagCYq08fq27DP7eU4NqX9mD2b77Gja/swxu7TyIq0Af/d/4U/O/eZbhqXoJbxy2EQEqEf285fUdnzZwtOzEUbd0GlDR02LyNRmuuSxDKzJlHGrbZgjAvfnoZwHEp5V/6PH4ugAcALJdS2t950EMlR/jj6vmJeGtvOW5dmurUxogGowk/eS8Pvl7KUa0zO51KqcA1C5Pwx68KUFzfjvQo8y+Xtm492rsNDsnOEREREVktSA2DUiHw8vZSvLu/AtuKGtHY0QMAmBwdiOsXJmFZZiTmJ4e5tQDIQFIi/LHfsm7rxW2OWWvmKnOTwwAAn+RW46drJ9u0jcaSOQtm5swj2ZI5WwLgOgCrhBC5lo/zAfwdQCCAbyyPPe/MgbrSj1anQ61U4E9fFzj1OP/cegJ5FRr8dt0MRAU5tnriVfMS4KVS4LWdp8rq12jMUzWZOSMiIiJHCvRRIycxFN8er8OWwgYsTgvHHy+bhd0PrcZXPz4Lv7xwGpZnRnpcYAaYy+lXt3ahtrUbr+0sw4WzYpExBrJmgDmwXJ8Vi2c3F2NroW3LhzRdzJx5smEzZ1LK7QAGSul84fjheIaoQB/csjQFf99UjDuWt2JGXLDDj3Gsug1PfVuIC2bF4KLZsQ7ff3iANy6aFYsPDlbiZ+dORpCPGlUac4KTwRkRERE52t+/Pwf17T2YFhMEhcIxs4FcITXSH1ICv/z4O/Nas1Xp7h6SXX5/yUzk17bjnrcP4bO7lyIhbOgKmC2dljVnrNbokUZeFnCcu315KkL81Hjiy3yH71tnMOH+d3MR7OuF366b4fD9W92wOAlanREfHqgEAFRZMmcsCEJERESOFhXkgxlxwWMqMANONcH+9njdmMqaWfl5qfD8tTkwmiTufPMAuvUDF2Wx0nTpIQQQxODMIzE4G0SQjxp3rUjHtqJG7LSzb8dwnt5QhPzadvzhkplOKa1qNSs+BFkJIXh910mYTBJVLV1QKwUiA7yddkwiIiKiscRaX0AIjLmsmVVyhD/+ekUWvqtqwyOfHB3ytRqtDkE+aijHWBA9UTA4G8J1i5IQE+yDJ74qwCDFKO12qLwFz20uxmU58Th7WrRD9jmUGxYn4URjJ3aUNKJa04WYYN8xd0eLiIiIyFmCfdVIDPPD+qy4MZc162vNtGj8aFU63tlfgbf2lg/6Oo1Wj1AWA/FYDM6G4KNW4sdrMpFXocFXR2tHvb9uvRE/eS8Pk4J88KuLpjlghMM7f2YMwv298NrOk6jWdCE2xLGFR4iIiIjGuk/vXoLHL53p7mGM2n1rMrEsIwKPfHIUeRWaAV/TotUhmMVAPBaDs2Fckh2H9KgAPPlVAQxG06j29cevCnCioRNPXjYbQT6uuWPhrVLi6vmJ2JBfh/zadhYDISIiIjpNiJ8XvFWeV0nSXkqFwNNXzUFkoDfu/PcBNHfqznhNaxczZ56MwdkwVEoFfnrOZJxo6MT7lsIaI7H7RBP+taMU1y1MwtKMCAeOcHjXLEyEQgh09BgQz+CMiIiIaNwK9ffC89fmoLFTh3veOgSjqf/SnBatjpUaPRiDMxusnR6NOYkheOrbomEr4Ayko8eAn72fh8QwPzx43hQnjHBoMcG+WDvdvL6NmTMiIiKi8W1mfDB+t24Gthc34s+n9e3VaPUI4bRGj8XgzAZCCDxw7hTUtpmbE9rr918cR2VLF/50+Wz4ew/bWs4pbl6SAqVCYGpMkFuOT0RERESuc8W8BFw9PwHPbS7prZ1gMJrQ3m1ACKc1eiwGZzZamBqO5ZmReG5zCfJr29DY0QOdYfg1aFsKG/CfPeW4bVkq5iWHuWCkA5ubHIbcX52N2QkhbhsDEREREbnOo9+bjtnxwfjpu3k40dCB1i5zA+pQZs48lnvSOGPUz8+djIue2Y5zn9rW+5ivWolgXzWCfFXmf33Ulq/NH+/uq0B6VADuPzvTjSM3C3RRERIiIiIicj9vlRLPXZuDi57Zjjv+fQB/vjwLAJg582AMzuwwPTYY/71nGQpq29HWrUerVm/+t0uPti4DWrv0qG3rRkFdO9q69GjvMSDQW4UXrs+Bj3rsVwAiIiIiorElLsQXz1w9B9e9vAc/eS8XALjmzIMxOLPT1Jggm9dtmUwSRimhVnL2KBERERG5x5L0CPx07WQ8+aW5OAirNXouRg1OpFAIBmZERERE5HZ3Lk/DOdPM1bsjAr3dPBoaDDNnRERERETjnBACf7tqDg6cbEEcWyt5LKZ1iIiIiIgmAF8vJZZmRLh7GDQEBmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE48OTTwKbNvV/bNMm8+NjAIMzIiIiIiIaH+bNA664Anj1VaCryxyYXXGF+fExQOXuARARERERETnEypXAv/8NnH8+8NhjgEYDvPuu+fExgJkzIiIiIiIaP44dA0wmoLgYuPPOMROYAQzOiIiIiIhovGhpAX71K0CtBh5+GPjHP85cg+bBGJwREREREdH48IMfAB0dwHPPAb/5jXlK4xVXjJkAjcEZERERERGNfaWlwIcfAmvXArfean5s5UpzgLZvn3vHZiMWBCEiIiIiorHvF78AvLyAl17q//jKlWNm3RkzZ0RERERENLbt3w+89RZw//1AfLy7RzNiDM6IiIiIiGjskhL46U+ByEjg5z9392hGhdMaiYiIiIho7PrsM2DLFuDZZ4GgIHePZlSYOSMiIiIiorHJYAAeeADIzARuu83doxk1Zs6IiIiIiGhseuklID8f+Ogjc2+zMW7YzJkQIkEIsUkIcVwIcVQIca/l8TAhxDdCiCLLv6HOHy4RERERERGA9nbgkUeApUuBdevcPRqHsGVaowHAT6SUUwEsBHCXEGIagAcBbJBSZgDYYPmaiIiIiIjI+f74R6C+HvjTnwAh3D0ahxg2OJNS1kgpD1o+bwdwHEAcgHUAXrO87DUA6500RiIiIiIiGg+efBLYtKn/Y5s2mR+3R1WVOSi78kpgwQLHjc/N7CoIIoRIBjAHwB4A0VLKGsAcwAGIcvjoiIiIiIho/Jg3D7jiilMB2qZN5q/nzbNvP7/6lbkYyO9/7/gxupHNBUGEEAEAPgBwn5SyTdiYOhRC3A7gdgBITEwcyRiJiIiIiGg8WLkSePdd4LLLgLlzgX37gA8+MD9uqyNHgFdeAe67D0hNddpQ3cGmzJkQQg1zYPamlPJDy8N1QogYy/MxAOoH2lZK+YKUcq6Ucm5kZKQjxkxERERERGNVXR2g1QJffw20tAD/+AeQl2f79j//ORAcDPzyl84bo5vYUq1RAHgZwHEp5V/6PPUpgBssn98A4BPHD4+IiIiIiMaFpibzGrGrrzZPSbzxRsDXF/j8cyArC7joImD37qH38e23wJdfAr/4BRAW5opRu5QtmbMlAK4DsEoIkWv5OB/A4wDOFkIUATjb8jUREREREVF/X3wBzJhhnsLo5wf873/mqYn//a/56xtvBHbuBBYtAtasATZvBqTsvw+TCfjZz4CkJODuu93xLpzOlmqN26WUQko5S0qZZfn4QkrZJKVcLaXMsPzb7IoBExERERHRGNHeDtx+O3DBBUBEhDmo+vxzcwAGmNeavfceMHUqcPKkuTz+d9+ZH1+6FLj5ZmDjRvNr//1vIDcXuOYa4Omn3faWnEnI0yNSJ5o7d67cv3+/y45HRERERERusnWrOSNWVmbOeP3mN4C39/DbdXUB//qXubx+eTmgUgEPPWTOtPn5Ac3N5qIi9hQR8SBCiANSyrkDPWdXKX0iIiIiIqJ+Tu9d1t1tLo+/fDmgUADbtgFPPGFbYAaY16HddRdQVAS8/DIQHQ389rdAZaW5mMgYDsyGw+CMiIiIiIhGrm/vsoMHgSlTzFMVL7rIPA1xyZKR7dfLyzyt8eRJ4JJLzI/dc8+4DcwABmdERERERDQaK1cCL70EXHihuXdZRQXw+OPAp58CAQGj3//WreaPhx82l93vm6UbZxicERERERHRyBQXm4t8fP/75t5lUgL33w888IBj9r9pkzkr9+675jVr7757Kks3DjE4IyIiIiIi20lpzmRdfDGQmQm8+CJw1llAaKg5u/Xqq44Lnvbt67/GbOVK89f79jlm/x6G1RqJiIiIiOiUJ580ryPru7Zr0yZzg+jkZOAvfwH27wfCw4Ef/hCYPRu4445TQVTfbNc4Xh82UqzWSEREREREtulb4AMAPvvMXNzjL38xT19sbweef95c5v43vwFKSiZUdsuZmDkjIiIiIqL+Nm0CLrsMSE8H9u41P7ZqlXk92XnnmUvk04gMlTlTuXowRERERETk4VauNK8h27sXmDkTeP11ICvL3aMa9xjyEhERERFRf5s2Ac3NwL33AjU1QEuLu0c0ITA4IyIiIiKiU6wFPT74AHjqqXFfvt6TMDgjIiIiIqJTJlj5ek/CgiBEREREREQuwlL6REREREREHo7BGRERERERkQdgcEZEREREROQBGJwRERERERF5AAZnREREREREHoDBGRERERERkQdgcEZEREREROQBGJwRERERERF5AJc2oRZCNAA46bID2i4CQKO7B0FjBs8XshfPGbIHzxeyF88ZsgfPF/dLklJGDvSES4MzTyWE2D9Yl26i0/F8IXvxnCF78Hwhe/GcIXvwfPFsnNZIRERERETkARicEREREREReQAGZ2YvuHsANKbwfCF78Zwhe/B8IXvxnCF78HzxYFxzRkRERERE5AGYOSMiIiIiIvIAYyo4E0KcK4QoEEIUCyEe7PP4O0KIXMtHmRAid5Dtw4QQ3wghiiz/hloev6bP9rlCCJMQImuA7d+0HP87IcS/hBBqy+NCCPG0ZVyHhRDZzvkOkL08+JyZIoTYJYToEUL81DnvnuzlwefLNZbfLYeFEDuFELOd8x0ge3nwObPOcr7kCiH2CyGWOuc7QPZw4vmiFkK8JoQ4IoQ4LoR4aJDtU4QQeyzbvyOE8LI8zusYD+XB5wyvY5xFSjkmPgAoAZQASAXgBSAPwLQBXvdnAL8aZB9PAnjQ8vmDAJ4Y4DUzAZwYZPvzAQjLx1sA7uzz+P8sjy8EsMfd3y9+ePw5EwVgHoDHAPzU3d8rfnj8+bIYQKjl8/P4O8YzPjz8nAnAqaULswDku/v7NdE/nHm+APg+gLctn/sBKAOQPMD27wK4yvL587yO8ewPDz9neB3jpI+xlDmbD6BYSnlCSqkD8DaAdX1fIIQQAK6A+Q/UQNYBeM3y+WsA1g/wmqsH215K+YW0ALAXQHyf/b5ueWo3gBAhRIzN74ycxWPPGSllvZRyHwC9Xe+InMmTz5edUsoWy8t249TvHnIvTz5nOiyPAYA/AC4wdz9nni8SgL8QQgXAF4AOQNsA+14F4P0Btud1jGfy2HOG1zHOM5aCszgAFX2+rrQ81tcyAHVSyqJB9hEtpawBAMu/UQO85koMfoIDMKeCAVwH4Es7xkau58nnDHmesXK+3ALzHW5yP48+Z4QQFwsh8gH8F8DNQ21PLuHM8+V9AJ0AagCUA/iTlLL5tG3DAWiklIYBjs/rGM/kyecMOclYCs7EAI+dfidw0LuLNh1AiAUAtFLK74Z56XMAtkopt9kxNnI9Tz5nyPN4/PkihFgJc3D2wEjHQA7l0eeMlPIjKeUUmO90/3akYyCHceb5Mh+AEUAsgBQAPxFCpNpxfF7HeCZPPmfIScZScFYJIKHP1/EAqq1fWNKylwB4p89jr1gWSn5heajOmqa3/Ft/2jGuwvB3Jx8BEAngflvHRm7jyecMeR6PPl+EELMAvARgnZSyyY73Rc7j0eeMlZRyK4A0IUSELW+KnMaZ58v3AXwppdRLKesB7AAw97TjN8I8XVE1wPF5HeOZPPmcIScZS8HZPgAZlqoxXjD/wfq0z/NrYF7wXGl9QEp5k5QyS0p5vuWhTwHcYPn8BgCfWF8rhFAAuBzm+bwDEkLcCmAtgKullKY+T30K4HpLtaOFAFqtKWRyK08+Z8jzeOz5IoRIBPAhgOuklIWjeI/kWJ58zqRb1otAmCvveQFgUO9ezjxfygGsslyH+MNc1CO/78EtaxA3AbhsgO15HeOZPPmcIWeRHlCVxNYPmKsJFcJcueYXpz33KoA7htk+HMAGAEWWf8P6PLcCwO5htjdYjp1r+fiV5XEB4FnLc0cAzHX394ofHn/OTIL5jlgbAI3l8yB3f78m+ocHny8vAWjp8/h+d3+v+OHx58wDAI5aHtsFYKm7v1f8cN75AnN1zvcsP/NjAH42yPapMBeOKba83tvyOK9jPPTDg88ZXsc46cNaZpeIiIiIiIjcaCxNayQiIiIiIhq3GJwRERERERF5AAZnREREREREHoDBGRERERERkQdgcEZEREREROQBGJwRERERERF5AAZnREREREREHoDBGRERERERkQf4f0AcEVQtWkeeAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB8e0lEQVR4nO3dd3zV1f3H8dfJngQyCCMhQAgzCXuLgLjBLc66Wm21bqtttbXqr7W1atWqba2j1iqt4t5bQEA2hj0SIEAGZED2Ts7vj3uDARKybnIv4f18PPJI8p3n3nyTfD/f8zmfY6y1iIiIiIiIiHt5ubsBIiIiIiIiouBMRERERETEIyg4ExERERER8QAKzkRERERERDyAgjMREREREREPoOBMRERERETEAyg4ExERERER8QAKzkREjlPGmJIGH3XGmPIG31/p7va1hTEm3RhzqrvbcSzGmIXGmOs78PjPG2O2OX+m1x6xzhhj/mCMyTTGFDrbMuKIbS4zxmwxxpQaY3YYY6Y1WDfLGLPVGFNmjFlgjIk74th/NsbkOz8eNcaYjnqdIiJyNAVnIiLHKWttSP0HsAc4p8Gyee5u35GMMT5d4RydYB3wc2BtI+vmAj8GpgHhwDLg1fqVxpjTgD8D1wGhwMnATue6SOAd4H7nvquBNxoc+6fA+cBIIBmYA/zMZa9KRESapeBMRKSLMcZ4GWN+7ew1yTfGzDfGhDvX9TfGWGPMdcaYvcaYg8aYG40x440x640xBcaYZxsc61pjzFJjzDPOnpqtxphZDdaHGWNeMsZkO3tz/mCM8T5i3yeNMQeAB40x8caYb5ztyjPGzDPGdHdu/yrQD/jQ2fv3S2PMDGNMxhGv71DvmjHmQWPMW8aY14wxRcC1zbRpkDFmkfO15BljGgYnDc8R4DxmvvM9WWWMiTbGPIwjMHrW2cZnndsPNcZ8aYw54Oz1uqTBsf5tjHnOub7Yef64xs4LYK39m7X2a6CikdUDgCXW2p3W2lrgNWB4g/UPAf9nrV1ura2z1mZaazOd6y4ENllr37TWVgAPAiONMUOd668B/mKtzXDu8xfg2qbaKSIirqfgTESk67kNRw/IdKAPcBD42xHbTAQSgEuBp4DfAKcCI4BLjDHTj9h2JxAJPAC8Ux/sAa8ANcAgYDRwOnB9I/v2BB4GDPAnZ7uGAbE4ggSstVdxeA/goy18vecBbwHdgXnNtOn3wBdADyAGeKaJY14DhDnbFwHcCJRba38DLAZucbbxFmNMMPAl8F/n67wc+PsR6YZXOs8dCaQ429kWrwODjDGDjTG+znZ+BuAMQMcBUcaYNGNMhjHmWWNMoHPfETh65QCw1pYCO5zLj1rv/PqwlEkREelYCs5ERLqenwG/cfaAVOIIfi4+IuXv99baCmvtF0Ap8D9rbY6zx2QxjqCmXg7wlLW22lr7BrANmG2MiQbOAu6w1pZaa3OAJ4HLGuybZa19xlpbY60tt9amWWu/tNZWWmtzgSdwBJHtscxa+561tg7o1kybqoE4oI/z9S9p4pjVOIKyQdbaWmvtGmttURPbzgHSrbUvO1/nWuBt4OIG23xsrf3W+fP4DTDZGBPbhteajePnsw0ox5HmeKdzXTTg6zzvNGAUjp/jb53rQ4DCI45XiCP9sbH1hUCIxp2JiHQeBWciIl1PHPCuMx2vANgC1OK4ea+3v8HX5Y18H9Lg+0xrrW3w/W4cPV9xOIKB7Abn+ieO3qN6exs2zBjT0xjzujPdsAhHWl5k61/iYRqeo7k2/RJH791KY8wmY8yPmzjmq8DnwOvGmCxncQzfJraNAybWn895ziuBXo210VpbAhzA8R621gPAeBw9egE40hi/McYE4fi5ATxjrc221ubhCH7Pdi4vwRG8NtQNKG5ifTeg5IifvYiIdCAFZyIiXc9e4CxrbfcGHwENxh61Vt8jek/6AVnO81QCkQ3O081a2zAV7sgb+z85lyVba7sBP8IRLDW1fSkQVP+NM3Uv6ohtGu5zzDZZa/dZa2+w1vbB0cP4d2PMoCNfsLOX8CFr7XBgCo7esaubaONeYNER73eItfamBtsc6iUzxoTgKMiRdeR5W2Ak8IazV7TGWvtvHCmaw621B4GMRtpXb5Nz//p2BAPxzuVHrXd+vQkREek0Cs5ERLqe54CH64tOGGOijDHnteN4PYHbjDG+xpi5OMaKfWKtzcYxfusvxphuxlGIJP6I8WpHCsXRQ1NgjOkL3HPE+v3AwAbfbwcCjDGznT1XvwX8mzp4c20yxsw1xsQ4Nz+II5CpPfI4xpiZxpgkZzBYhCPNsX67I9v4ETDYGHOV8z3yNY4CK8MabHO2MeYkY4wfjrFnK6y1h/UqNji3nzEmAEfQ6ussTlL//3oVMNdZnMTLGHMVjp7CNOf6l4FbnT2UPYA7nO0DeBdINMZc5Dz+74D11tqtzvX/Ae4yxvQ1xvQBfgH8u9E3WkREOoSCMxGRruevwAfAF8aYYmA5jsIcbbUCR/GQPBxFPS621uY7110N+AGbcQQ7bwG9j3Gsh4AxOMYzfYyjtHtDfwJ+60wPvNtaW4ijrPyLQCaOnrQMju1YbRoPrDDGlOB4j2631u5q5Bi9nPsV4UgLXYQjBRMc7+/FxlHp8mlrbTGOoiOX4egN24ejnH3DIPK/OFISDwBjcaQ9NuULHCmKU4DnnV+f7Fz3ZxyFOlKAAhzjzS6y1hY41/8eRwC33dnu73H8zHCO8bvI+f1BHNdEw/GB/wQ+BDYAG3H8fP55jHaKiIiLGaWSi4hIU4xjEuTrrbUnubstxytjzL+BDGvtb5vbVkRETmzqORMREREREfEACs5EREREREQ8gNIaRUREREREPIB6zkRERERERDyAgjMREREREREP4NOZJ4uMjLT9+/fvzFOKiIiIiIh4jDVr1uRZa6MaW9epwVn//v1ZvXp1Z55SRERERETEYxhjdje1TmmNIiIiIiIiHkDBmYiIiIiIiAdQcCYiIiIiIuIBOnXMWWOqq6vJyMigoqLC3U2RLiYgIICYmBh8fX3d3RQRERERkWa5PTjLyMggNDSU/v37Y4xxd3Oki7DWkp+fT0ZGBgMGDHB3c0REREREmuX2tMaKigoiIiIUmIlLGWOIiIhQj6yIiIiIHDfcHpwBCsykQ+i6EhEREZHjiUcEZ+728MMPM2LECJKTkxk1ahQrVqwA4Prrr2fz5s0uOUf//v3Jy8s75jZ//OMfW33cf//739xyyy2HLXv55ZcZNWoUo0aNws/Pj6SkJEaNGsWvf/3rVh+/Mzz11FOUlZW5uxkiIiIi4mkefRQWLDh82YIFjuVd0AkfnC1btoyPPvqItWvXsn79er766itiY2MBePHFFxk+fHintaUtwVljrrvuOlJSUkhJSaFPnz4sWLCAlJQUHnnkEZccv7WstdTV1TW5vi3BWU1NTXubJSIiIiKebvx4uOSSHwK0BQsc348f7952dZATPjjLzs4mMjISf39/ACIjI+nTpw8AM2bMYPXq1QCEhITwq1/9irFjx3LqqaeycuVKZsyYwcCBA/nggw+Ao3ux5syZw8KFC4865/nnn8/YsWMZMWIEzz//PAC//vWvKS8vZ9SoUVx55ZUAvPbaa0yYMIFRo0bxs5/9jNraWsDRMzZ48GCmT5/O0qVLW/xaH3vsMcaPH09ycjIPPPAAAOnp6QwdOpTrr7+exMRErrzySr766iumTp1KQkICK1euBODBBx/kqquu4pRTTiEhIYEXXnih2eMOGzaMn//854wZM4a9e/dy0003MW7cOEaMGHFou6effpqsrCxmzpzJzJkzD73X9d566y2uvfZaAK699lruuusuZs6cya9+9St27NjBmWeeydixY5k2bRpbt25t8XshIiIiIseBmTNh/nyYOxeuvtoRmM2f71jeFVlrO+1j7Nix9kibN28+allnKi4utiNHjrQJCQn2pptusgsXLjy0bvr06XbVqlXWWmsB+8knn1hrrT3//PPtaaedZquqqmxKSoodOXKktdbal19+2d58882H9p89e7ZdsGCBtdbauLg4m5uba621Nj8/31prbVlZmR0xYoTNy8uz1lobHBx8aN/NmzfbOXPm2KqqKmuttTfddJN95ZVXbFZWlo2NjbU5OTm2srLSTpky5bBzHqn+vJ9//rm94YYbbF1dna2trbWzZ8+2ixYtsrt27bLe3t52/fr1tra21o4ZM8Zed911tq6uzr733nv2vPPOs9Za+8ADD9jk5GRbVlZmc3NzbUxMjM3MzDzmcY0xdtmyZYfaUv+6a2pq7PTp0+26deuOem+OfB/efPNNe80111hrrb3mmmvs7NmzbU1NjbXW2lNOOcVu377dWmvt8uXL7cyZM496/e6+vkRERESkHWprrX3pJWsDA60Fa3/+c3e3qN2A1baJeMntpfQbeujDTWzOKnLpMYf36cYD54xocn1ISAhr1qxh8eLFLFiwgEsvvZRHHnnkUG9NPT8/P84880wAkpKS8Pf3x9fXl6SkJNLT01vVpqeffpp3330XgL1795KamkpERMRh23z99desWbOG8c4u2/Lycnr27MmKFSuYMWMGUVFRAFx66aVs37692XN+8cUXfPHFF4wePRqAkpISUlNT6devHwMGDCApKQmAESNGMGvWLIwxR7228847j8DAQAIDA5k5cyYrV65kyZIlTR43Li6OSZMmHdp//vz5PP/889TU1JCdnc3mzZtJTk5u1Xs3d+5cvL29KSkp4bvvvmPu3LmH1lVWVrbqWCIiIiLiwTZsgJtugqVLwdvbsezVV+Hii7tsz5lHBWfu4u3tzYwZM5gxYwZJSUm88sorRwVnvr6+h6r/eXl5HUqD9PLyOjT+ycfH57CxVY2VcV+4cCFfffUVy5YtIygoiBkzZjS6nbWWa665hj/96U+HLX/vvffaVIXQWsu9997Lz372s8OWp6enH3otx3ptcHT1Q2PMMY8bHBx86Ptdu3bx+OOPs2rVKnr06MG1117bZJn7huc5cpv6Y9bV1dG9e3dSUlKae+kiIiIicjwpKYGHHoInn4TgYAgJcaQyzpkD55/fpVMbPSo4O1YPV0fZtm0bXl5eJCQkAJCSkkJcXFybjtW/f3/+/ve/U1dXR2Zm5qHxWg0VFhbSo0cPgoKC2Lp1K8uXLz+0ztfXl+rqanx9fZk1axbnnXced955Jz179uTAgQMUFxczceJEbr/9dvLz8+nWrRtvvvkmI0eObLZtZ5xxBvfffz9XXnklISEhZGZm4uvr26rX9/7773PvvfdSWlrKwoULeeSRRwgMDGzRcYuKiggODiYsLIz9+/fz6aefMmPGDABCQ0MpLi4mMjISgOjoaLZs2cKQIUN49913CQ0NPep43bp1Y8CAAbz55pvMnTsXay3r169v0XshIiIiIh7IWnj3Xbj9dsjIgBtugN69YcYMRyCWkAClpY7AbNUqBWddUUlJCbfeeisFBQX4+PgwaNCgQ0U6Wmvq1KmHUgQTExMZM2bMUduceeaZPPfccyQnJzNkyJDD0v5++tOfkpyczJgxY5g3bx5/+MMfOP3006mrq8PX15e//e1vTJo0iQcffJDJkyfTu3dvxowZc6hQyLGcfvrpbNmyhcmTJwOOdM7XXnsN7/ou4haYMGECs2fPZs+ePdx///306dOHPn36tOi4I0eOZPTo0YwYMYKBAwcyderUw173WWedRe/evVmwYAGPPPIIc+bMITY2lsTEREpKShptz7x587jpppv4wx/+QHV1NZdddpmCMxERERFP9+ijjmqLDYOrefPg97+Hbdtg5EhHAOa8vzwkMdGR6jhzZpcMzACMY0xa5xg3bpytr35Yb8uWLQwbNqzT2iBt8+CDDxISEsLdd9/t7qa0iq4vEREREQ9TXw5//nyYMsUxruzllyEgAP74R7j1VvBppA/pwQcdAVxJCQQGdnqzXcUYs8ZaO66xdSd8z5mIiIiIiHSi+vL4F1zgKPRx4ABMn+7oPevbt+n9EhOhrg62bIFGMtS6AgVn0iIPPvigu5sgIiIiIl3FyJFQVgbV1XDFFY7ArDmJiY7PGzd22eCs2UmojTEBxpiVxph1xphNxpiHnMvDjTFfGmNSnZ97dHxzRURERETkuHf33Y7A7Gc/gy++cKQ6NmfQIPD3dwRnXVSzwRlQCZxirR0JjALONMZMAn4NfG2tTQC+dn4vIiIiIiLStM8+g3//GyZMgOeec6Q4XnJJ8wGajw8MG3ZiB2fOiazry+X5Oj8scB7winP5K8D5HdFAERERERHpQp5/3lE2/5FHHN/Xj0Fbtar5fRMTT+zgDMAY422MSQFygC+ttSuAaGttNoDzc88Oa6WIiIiIiBz/amsdwdW4cY75y+rNnAm//GXz+ycmwt69UFjYYU10pxYFZ9baWmvtKCAGmGCMSWzpCYwxPzXGrDbGrM7NzW1jMzuWt7c3o0aNIjExkblz51JWVtbmY1177bW89dZbAFx//fVs3ry5yW0XLlzId999d+j75557jv/85z9tPne99PR0EhMP/xE9+OCDPP744606jqvaIyIiIiICwPvvQ2oq3HMPGNP6/evvcTdtcm27PESLgrN61toCYCFwJrDfGNMbwPk5p4l9nrfWjrPWjouKimpfaztIYGAgKSkpbNy4ET8/P5577rnD1rdkkufGvPjiiwwfPrzJ9UcGZzfeeCNXX311m87lajU1NR7VHhERERE5zlnrmIB64EC48MK2HaM+ONuwwXXt8iAtqdYYZYzp7vw6EDgV2Ap8AFzj3Owa4P0OauMPHn306IGCCxY4lrvItGnTSEtLY+HChcycOZMrrriCpKQkamtrueeeexg/fjzJycn885//BMBayy233MLw4cOZPXs2OTk/xKgzZsygftLtzz77jDFjxjBy5EhmzZpFeno6zz33HE8++SSjRo1i8eLFh/VupaSkMGnSJJKTk7ngggs4ePDgoWP+6le/YsKECQwePJjFixe3+jUe69j33Xcf06dP569//euh9mRlZTFq1KhDH97e3uzevZvdu3cza9YskpOTmTVrFnv27AEcvYe33XYbU6ZMYeDAgYd6EkVERETkBLZkCaxYAXfd1fgk0y3Rrx+EhHTZcWct6TnrDSwwxqwHVuEYc/YR8AhwmjEmFTjN+X3HGj/+8Eou9bOLjx/vksPX1NTw6aefkpSUBMDKlSt5+OGH2bx5My+99BJhYWGsWrWKVatW8cILL7Br1y7effddtm3bxoYNG3jhhRcO6wmrl5ubyw033MDbb7/NunXrePPNN+nfvz833ngjd955JykpKUybNu2wfa6++mr+/Oc/s379epKSknjooYcOa+fKlSt56qmnDlve0I4dOw4LqBr2Bh7r2AUFBSxatIhf/OIXh5b16dOHlJQUUlJSuOGGG7jooouIi4vjlltu4eqrr2b9+vVceeWV3HbbbYf2yc7OZsmSJXz00Uf8+tcq5CkiIiJywnvsMYiIgOuua/sxjOnSRUGaDVmtteuB0Y0szwdmubQ1d9wBKSnH3qZPHzjjDOjdG7KzHeU0H3rI8dGYUaPgqaeOecjy8nJGjRoFOHrOfvKTn/Ddd98xYcIEBgwYAMAXX3zB+vXrD/UCFRYWkpqayrfffsvll1+Ot7c3ffr04ZRTTjnq+MuXL+fkk08+dKzw8PBjtqewsJCCggKmT58OwDXXXMPcuXMPrb/Q2Q08duxY0tPTGz1GfHw8KQ3ey/pJpJs79qWXXtpku5YuXcqLL754qLdu2bJlvPPOOwBcddVV/LLBIM7zzz8fLy8vhg8fzv79+4/5ekVERESki9u8GT78EB54AIKC2nespCR45x1HmmRbxq15sDb2J7pRjx6OwGzPHke3Zo/2z31dP+bsSMHBwYe+ttbyzDPPcMYZZxy2zSeffIJp5qKw1ja7TWv4+/sDjkImNTU1LjsuHP6aG8rOzuYnP/kJH3zwASEhIY1u0/A11rcRHK9fRERERE5gf/kLBAbCzTe3/1iJifDCC5CTA9HR7T+eB2lVQZAO99RTsHDhsT8eeADKyuD++x2fH3jg2Ns302vWUmeccQb/+Mc/qK6uBmD79u2UlpZy8skn8/rrr1NbW0t2djYLGpk8b/LkySxatIhdu3YBcODAAQBCQ0MpLi4+avuwsDB69OhxqIfq1VdfPdTT1V5tOXZ1dTWXXHIJf/7znxk8ePCh5VOmTOH1118HYN68eZx00kkuaaOIiIiIdCFZWfDqq450RlcUCKwvCtIFUxuPr56z+jFm8+c75kKYOfPw7zvQ9ddfT3p6OmPGjMFaS1RUFO+99x4XXHAB33zzDUlJSQwePLjRQCcqKornn3+eCy+8kLq6Onr27MmXX37JOeecw8UXX8z777/PM888c9g+r7zyCjfeeCNlZWUMHDiQl19+2WWvpbXH/u6771i1ahUPPPAADzzwAODoMXz66af58Y9/zGOPPUZUVJRL2ygiIiIiXcTTTzvmN7vrLtccr2HFxlmuHWXlbqYzU87GjRtn66sX1tuyZQvDhg1r2QEefdRR/KNhILZggWM28ZZMWicnnFZdXyIiIiLiWkVFEBsLZ54Jb7zhuuP27Annngsvvui6Y3YSY8waa+24xtYdXz1njQVg9T1oIiIiIiLiWV54wRGg3XOPa4/bRSs2etaYMxERERER6RqqquDJJx0dKeMa7Shqu6Qk2LQJ6upce1w3U3AmIiIiIiKu9/rrkJnp+l4zcPSclZQ4Krh3IR4RnKnUunQEXVciIiIibmKto15EYqJjvJmrddGKjW4PzgICAsjPz9eNtLiUtZb8/HwCAgLc3RQRERGRE8+nnzrSDu+5p2Mmih4xwvG5iwVnbi8IEhMTQ0ZGBrm5ue5uinQxAQEBxMTEuLsZIiIiIieexx6DmBi47LKOOX63btCvn6Ocfhfi9uDM19eXAQMGuLsZIiIiIiLiCqtWwcKF8Pjj4OfXcefpghUb3Z7WKCIiIiIiXchjj0FYGNxwQ8eeJzERtm6F6uqOPU8nUnAmIiIiIiKusWMHvP023HijI/WwIyUlOcr1p6V17Hk6kYIzERERERFpu0cfhQULHF8/8QT4+MDYsY7lHakLVmxUcCYiIiIiIm03fjxccgm8+y78618waxb8/OeO5R1p6FDw8upSwZnbC4KIiIiIiMhxbOZMmD8fZs+GigpYvtyR2jhzZseeNyAAEhK6VMVG9ZyJiIiIiEj7hIRAebnj61tu6fjArF4Xq9io4ExERERERNquuhouv9yRYnjPPfCPf/wwBq2jJSY6CoLUB4bHOQVnIiIiIiLSdjff7KjS+OCDjiIg8+c7xqB1RoCWlATWwpYtHX+uTqDgTERERERE2iYtDV5+GU46Ce6/37GsfgzaqlUdf/4uVrFRBUFERERERKT1rHXMZxYUBK+/fvi6mTM7Z9xZfDz4+ys4ExERERGRE9h//gNffw1//zv07eueNvj4wLBhXSY4U1qjiIiIiIi0Tm4u3HUXTJkCP/uZe9uSmNhlyukrOBMRERERkda5804oLoYXXnBUaXSnxETIyICCAve2wwUUnImIiIiISMt9/jnMmwf33gvDh7u7NT8UBdm0yb3tcAEFZyIiIiIi0jKlpY4iIEOGOIIzT5CU5PjcBcadqSCIiIiIiIi0zIMPQno6fPstBAS4uzUOsbEQGtolgjP1nImIiIiISPPWroUnnoCf/hSmTXN3a35gjCO1UcGZiIiIiIh0eTU1cMMN0LMn/PnP7m7N0eorNlrr7pa0i4IzERERERE5tr/+1dFz9swz0L27u1tztMREyM+H/fvd3ZJ2UXAmIiIiIiJN27ULfvc7OOccuOgid7emcfUVG4/z1EYFZyIiIiIicrhHH4UFCxxpgjfd5JjL7Mor4bHH3N2yxnWRio0KzkRERERE5HDjx8Mll8Bvf+uY1+zaa+GWWxzLPVFUlGM8XFcPzowxscaYBcaYLcaYTcaY253LRxljlhtjUowxq40xEzq+uSIiIiIi0uFmzoSXXoI//Qn69oXXX4f58x3LPVUXqNjYkp6zGuAX1tphwCTgZmPMcOBR4CFr7Sjgd87vRURERESkKzjnHJgzBzIzHamNnhyYgSM427QJ6urc3ZI2azY4s9ZmW2vXOr8uBrYAfQELdHNuFgZkdVQjRURERESkky1cCMuWwf33wz/+4RiD5skSE6GkBHbvdndL2synNRsbY/oDo4EVwB3A58aYx3EEeVNc3TgREREREXGDBQscY87qUxlnzjz8e0/UsGLjgAHubUsbtbggiDEmBHgbuMNaWwTcBNxprY0F7gReamK/nzrHpK3Ozc11RZtFRERERKQjrVp1eCA2c6bj+1Wr3NuuYxkxwvH5OB53ZmwLZtE2xvgCHwGfW2ufcC4rBLpba60xxgCF1tpuxzrOuHHj7OrVq13QbBERERERkSP07w9Tp8K8ee5uSZOMMWusteMaW9eSao0GR6/YlvrAzCkLmO78+hQgtb0NFRERERERabPjvGJjS8acTQWuAjYYY1Kcy+4DbgD+aozxASqAn3ZIC0VERERERFoiMRG+/BKqq8HX192tabVmgzNr7RLANLF6rGubIyIiIiIi0kaJiVBVBampMHy4u1vTai0uCCIiIiIiIuLRGlZsPA4pOBMRERERka5h6FDw8lJwJiIiIiIi4lYBAZCQoOBMRERERETE7ZKSFJyJiIiIiIi4XWIipKVBebm7W9JqCs5ERERERKRrePRRx2drYcsWx9cLFvyw3MO1ZJ4zERERERERzzd+PFx0kePrDRugsBAuuQTmz3dvu1pIPWciIiIiItI1zJz5QyD23HM/BGYzZ7q3XS2k4ExERERERLqOU0+FXr1g+XK46abjJjADBWciIiIiItKVLFgANTVw//3wj384vj9OKDgTEREREZGuYcGCH1IZ/+//HJ8vueS4CdAUnImIiIiISNewatXhY8zqx6CtWuXedrWQsdZ22snGjRtnV69e3WnnExERERER8STGmDXW2nGNrVPPmYiIiIiIiAdQcCYiIiIiIuIBFJyJiIiIiIh4AAVnIiIiIiIiHkDBmYiIiIiIiAdQcCYiIiIiIuIBFJyJiIiIiIh4AAVnIiIiIiIiHkDBmYiIiIiIiAdQcCYiIiIiIuIBFJyJiIiIiIh4AAVnIiIiIiIiHkDBmYiIiIiIiAdQcCYiIiIiIuIBFJyJiIiIiIh4AAVnIiIiIiIiHkDBmYiIiIiIiAdQcCYiIiIiIuIBFJyJiIiIiIh4AAVnIiIiIiIiHqDZ4MwYE2uMWWCM2WKM2WSMub3BuluNMducyx/t2KaKiIiIiIh0XT4t2KYG+IW1dq0xJhRYY4z5EogGzgOSrbWVxpieHdlQERERERGRrqzZ4Mxamw1kO78uNsZsAfoCNwCPWGsrnetyOrKhcvzLL6nk6a9TySqs4LkfjcXby7i7SSIiIiIiHqMlPWeHGGP6A6OBFcBjwDRjzMNABXC3tXaVy1sox72K6lpeWrKLfyzcQUllDQBfbdnPGSN6ubllIiIiIiKeo8UFQYwxIcDbwB3W2iIcgV0PYBJwDzDfGHNUV4gx5qfGmNXGmNW5ubkuarYcD+rqLG+vyeCUxxfy2OfbmDQwgs/vOJm+3QN5eekudzdPRERERMSjtKjnzBjjiyMwm2etfce5OAN4x1prgZXGmDogEjgsArPWPg88DzBu3DjrqoaLZ/suLY+HP9nCpqwikmPCeOLSUUwaGAHAVZPjeOTTrWzJLmJY725ubqmIiIiIiGdoSbVGA7wEbLHWPtFg1XvAKc5tBgN+QF4HtFGOI6n7i/nxv1dxxYsrKCir5q+XjeK9n089FJgBXDY+lgBfL/WeiYiIiIg00JKes6nAVcAGY0yKc9l9wL+AfxljNgJVwDXOXjQ5AeUUV/Dkl6m8sWoPwf4+3HvWUK6Z0p8AX++jtu0e5MeFY2J4a00GvzpzKBEh/m5osYiIiIiIZ2lJtcYlQFNl9X7k2ubI8cZay3OLdvLMN6lU1dRx9eT+3DYrgfBgv2Pud92U/vx3xR7+t3IPt5yS0EmtFRERERHxXK2q1ihypHfWZvLnz7Zy6rBofjN7GAMig1u0X0J0KNMSInl1+W5+Nj0eX+8W16YREREREemSdEcsbba/qIKHPtzEuLge/POqsS0OzOpdN7U/+4sq+WRDdge1UERERETk+KHgTNrEWst972ygsqaORy9ObtOE0jMG92RAZDAvL013fQNFRERERI4zCs6kTd79PpOvt+ZwzxlDGBgV0qZjeHkZrpkcR8reAr7fc9DFLZTjneoLiYiIyIlGwZm0Wk5RBQ9+sImxcT24buqAdh3r4nGxhPr7qPdMDpOeV8rw333Odzs0O4eIdD49HBIRd1FwJq1ireW+dx3pjI+1MZ2xoRB/H+aOi+WTDdnsK6xwUSvlePd+Shbl1bV8kJLl7qaIyAlmX2EFMx5fyD8X7XB3U0TkBKTgTFrlvZRMvtrSvnTGI107pT+11vLa8t0uOZ4c/z7d6CgS8/XWHOrq9ARb3GNzVhFpOcXuboZ0osqaWm58bQ2788t4/tudVNXUubtJInKCUXAmLeZIZ9zsknTGhvpFBDFraDT/XbmHiupalx23OXe9kcL7KZmddj5pmR25JWzdV8yo2O7kFleyIbPQ3U06IewvqujU3z9Pt6+wgkufX8Yv5q9zd1Okk1hr+d17m0jZW8BVk+LIL63is0373N0sETnBKDiTFnGkM26korq2zdUZj+XHU/tzoLSKD9Z1ThrbrrxS3vk+k798sV09Mx7mk/WOXrM/XZiEl4Gvtux3c4u6vvKqWk5/8lse/3ybu5viEay1/Ort9RRX1LA+s5DCsmp3N0k6wWsr9vDG6r3cMnMQD507gn7hQcroEJFOp+BMWuT9lCy+2rKfu08fQryL0hkbmhwfwZDoUF5emt4pA7EXbssBYM+BMhanqeiEJ/lk4z7GxfVgWO9ujI3rwVdbctzdpC7vyy37KSyvZtH2XHc3xSPMX72XRdtzOWdkH6yFZTvz3d0k6WCr0g/w0AebmDkkijtPG4yXl+GKif1YuesA2/crtVVEOo+CM2lWTnEFD3ywiTH9uvPjk1yXztiQMYbrpvZnS3YRK3Yd6JBzNLRgWy5xEUFEhvjpyagH2ZVXypbsIs5K6g3ArGHRbMkuIrOg3M0t69o+cKb3puaUkFN8YhfmyThYxu8/2sLkgRE8PjeZQF9vlqlqaJeWXVjOTa+tJTY8iKcuG30oM2Tu2Bj8vL3474o9bm6hiJxIFJzJMVlr+c27GymvruWxuSNdns7Y0Pmj+9IjyJeXl+7qsHMAlFXVsHxnPqcOi2buuFi+3rKf7ELd/HuCTzY4UhrPTuoFwKnDogH4RqmNHeZgaRULt+UyaWA4AMt2nLi9RPXpjNZaHr04GX8fbyYMCGfpCfyedHUV1bXc+NpayqtqeP6qsYQF+h5aFxHiz1lJvXh7TQZlVTVubKWInEgUnMkxfbAuiy837+fu0wd3SDpjQwG+3lw+oR9fbt7P3gNlHXaeZTvyqaqpY+aQnlwxoR8W+N/KvR12Pmm5j9dnM6Zfd3qHBQIQHxVM/4ggpTZ2oE82ZlNTZ7nv7GGEBviw/ARO4XttxR6WpuVz3+xhxIYHATAlPoK0nBJyik7sHsWuyFrL797fyLq9BfzlklEkRIcetc2PJsVRXFmjaT1EpNMoOJMm1aczju7XnZ+cNLBTznnV5DiMMfxnWXqHnWPBthyC/LwZP6AHseFBzBgcxesr91Bdq5LJ7pSeV8rm7CLOdqY0giPdddawaJbtyKe0sus9ua6oriWvpNKtbXg/JYv4qGCS+oYxcUAE352gvUR78sv40ydbmJYQyRUT+h1aPnVQJMAJ+750Za8t38381Rncesogzkzs1eg24+J6MDg6hHlKbRSRTqLgTBpVn85YVlXLYxd3bDpjQ73DAjkrsRevr9rbITfj1loWbM1l6qBI/H28AbhyYhw5xZV87abUuaqaOpaqKAmfOOc2O6tBcAYwa1hPqmrrWJzatd6jrzbv59QnFjHz8YVuqwaYVVDOyl0HOH9UX4wxTImPYHd+GRkHO67n2hPV1VnueWsd3sbw54uSMeaHv3fDe3cjLNBXv6NdzMpdB3jow82cMrQnd546uMntjDH8aFIcGzILWbe3oPMaKCInLAVn0qiG6YyDenZsOuORrps6gOKKGt5Zm+HyY6fllJBZUM7MIT0PLZs5tCd9uwfy2nL3PBn993e7uPLFFaxO7/hCKJ7skw3ZjIrtTt/ugYctH98/nNAAny5TUn/vgTKuf2UV1/9nNT5ehuKKGuatdE9RmvqpK84d1QeAKYMigBNv3Nkry9JZsesA958znD5HXH9eXobJAx09ip1RSVY6XnZhOT+ft4bY8CCevHQUXs08fLxgdF+C/LxVPEpEOoWCMzmKO9IZGxrTrzsjY8J4+bt0l89BtsBZQn/GkKhDy7y9DJdPiGVJWh678kpder7mWGt5fZVjvNuHnTTHmyfak1/GxswiZh/Rawbg6+3FzCE9WbA1h9rjeE66yppanvk6lVOfWMR3O/K596yhfHnXdKYlRPLKd+lU1XR+Wu37KVmMiu1OXEQwAIN7hhIR7HdCBWc7c0v482dbmTkkirljYxrdZuqgCDILytnTgWNhpXNUVNdy46trKK+qPaoASFNCA3w5b1RfPlyfpTnvRKTDKTiTozy/aCdllZ2bztiQo6z+AHbmlvJtqmvnXVqwNZehvUKPejp+yfhYfLwM8zr5yeiq9IPszC0lLNCXTzbuO66Dj/aoT2lsatzHrGE9yS+tIuU4TSv6dnsuZz61mL98uZ1Zw3ry9S+m87Pp8fh6e3H9tIHsL6rs9OB8+/5itmQXcb6z1wwcvUST4iNYtvPE6CWqrbPc89Z6/H28eeSIdMaGJsc7xp0tTTtxgtauyFrL/e9tZF1GIU9c2ngBkKZcObEfFdV1vN0BGR0iIg0pOJOjbMoqYkTfbp2eztjQ2Um96Rnqz8tL0112zOKKalalH2BGg5TGej1DAzhjRC/eWptBRXWty87ZnNdX7SHU34f75wwnt7iSFbtce/NXXFHN01+nsir9gEffbH+yIZuRMWGHKuQdacbgnnh7GbeNC2yr+vSpq/+1EoD//HgCf79y7KFqlAAnJ0QyODqEFxbv7NSf0fspmXgZmJ3c57DlkwdGkF1YQXp+1+8lemnJTtbsPshD544gultAk9vFRwUT3c2f7zTf2XHt1eW7eXNNBredMogzRjT+IKgpiX3DGBXbnXkrdnv031IROf4pOJOjpOaUkODGwAzAz8eLH02KY9H2XNJySlxyzKVpedTUWWY2SGls6MpJ/Sgoq+bj9dkuOV9zCsur+WRDNueO6sPspN4E+XnzkYvP/ery3Tzx5XbmPreMkx9bwBNfbOv01M3m7D1QxvqMwsOqNB4pLMiX8f178PVxUlK/uraOfy7away/LOLrLTncffpgPrtjGicPPvraM8Zw/UkD2bqvuNMqAlpreT8li6mDIokK9T9s3ZR4x7izrh6IpOUU8/gX2zl9eDTnjepzzG2NMUyNj2TZjnyXp1pL51idfoD/+3Azs4b25I5jFAA5lh9NimNHbinLd57Y44NFpGMpOJPDFJRVkVdSSULPlqd7dJQrJvbDz9vLZWX1F2zNJTTAhzFxPRpdP3lgBAOjgnltReekNn6wLouK6jouG9+PQD9vZg2L5rON+6hxUUl/ay1vrs5gbFwPnrx0JP0jgnlmQRozH1/IBX9fyqvLd1NQVuWSc7XHpxvrJ55uOjgDx4TU2/YXd+gceO1VWlnDgm05nP3Xxfzp061MiY/kq7umc8spCYeqgzbmvNF9iAzx54XFOzulnWv3FJBxsJzzR/U9at2AyGB6dQvo0qXja2rr+MX8dQT7efPwBUlNpjM2NDk+gvzSKrbnFHdCC8WVyqpquGv+Ovp0D+TJy5ovANKUOcm9CQv07bT/EW1x1xspPPXVdnc3o9W2ZBexYFuOeiVFUHAmR6jvpRoU7d6eM4DIEH/mjOzN22syKK5o3yBsay0LtuVwckIUvt6NX/bGGK6cGMf3ewrYlFXYrvO1xBur9jC8dzcS+3YDHP/4D5RWueymePXug+zKK+XyCf24YHQMr/5kIst+PYt7zxpKWWUt97+3kfEPf8XPXl3NZxv3UVnTeemcDX28YR9JfZtOaaw3a1g0gEekNpZV1bA+o4C31mTwp0+2cN3LK5n6yDeMeOBzrnt5FeXVtbx0zThevGZcs68LwN/Hm2smx7FwWy6p+zv+5v/9lEz8fbw4fUT0UevqS+ov78K9RP/8difrMgr5/fmJR/UcNqV+vjONOzv+/PnTrew9WMbjc0fSLaD5AiBNCfD15uKxMXy+cR85xZ43KXlZVQ0frMvihW93HnfzQt737gaue3kV5/1tKYu25ypIkxOagjM5TGp9cBbl/uAM4JrJ/SmtquWdtZntOs7m7CJyiisPq9LYmIvHxODv49XhE45uzCxkY2YRl02IPfTUfvrgKEL9ffhovWsKQ8xftZdgP2/OTvphbEWvsAB+Nj2ez+6Yxse3ncQ1k/uzZncBN762hgkPf81v39vAzlzXpJG2RMbBMtbtLWi21wwcPTrxUcF81YmpjdZaduWV8s7aDB75dCs/+fcqpj3qCMLOfXYpd7+5jpeXppNdWMGYuB7cffpg/nnVWL66a/qhYLKlrpwUR4CvFy8u3tVBr8ahuraOj9dnc+rwaEKbuFHtyr1EW/cV8dRX25md3Js5ycdOZ2yoT/dABkQG853mOzuuLNuRzyvLdnPtlP5MGBDe7uNdMbEfNXWOrARPk7K3gJo6S2lVbael57tCTW0dm7OKGN+/B/klVVzzr5Vc+vxyVp3g08vIicvH3Q0Qz5K6v4RAX++j5ppyl5Gx3RkZ251XlqVz9eS4FqUfNWbhNkfVx+nNBGdhQb6cM7IP732fyb1nDW3y5rW93li1F38fL84b+UNaWYCvN6cNd6Q2/uH8JPx82v7spKSyho83ZHPuyD4E+R39a26MYUSfMEb0CePXZw1lSVoe76zN5K01GXy9JYev7ppOsH/H/3n4bOM+gMMCyGM5dVg0/1q6i+KK6g772RworWJpWh5LUvNYkpZHZkE5AD5ehoFRwSTHdOfiMbEMjg4hITqU/hFB+DTRG9sa4cF+XDQmhjdXZ3D3GUNa3KPTWkvT8sgvreK8kU0HJpPjf5jvbGivbh3SDneodqYzhgX68vvzElu9/+T4CD5IyaKmts4lP3PpWKWVNdzz1jr6RwTxyzOGuuSY8VEhTImP4L8r9nDj9Hi3VDRuypr0gwDEhgfy+qo9XDI+1s0tapnUnBIqa+q4cmIcZyX14o1Ve3nmmzTmPreMmUOi+MXpQ0jsG+buZop0Gv13kcOk5hQzqGdIm3PyO8I1k+PYmVvarnSiBVtzSOobRs/Qpiuy1fvRpDjKqmp5L6VjSpuXV9XyXkomZyf1Jizo8ABjzsjeFFXUsLidUwh8sj6bsqpa5o5r/p+zj7cXM4b05OnLRzPv+klkF1bw9Dep7Tp/S328IZsRfbodmmerObOGRVNda/l2u+t6Lyqqa1mSmsefPt3C7KcXM+b3X3Lr/77nk42Otv3+vBF8fsfJbPn9mXxx53T+dsUYbj81gbOSejOoZ4hLb9J/ctIAquvqeLUDp3R4PyWLbgE+x3xQEdMjiH7hQV1u3Nl/V+xhU1YRfzg/ifBgv1bvPzU+kpLKGtZndnzas7TfI59uJbOgnMfmjiTQr+kxn631o0lxZBaUs3CbZxUoWrX7IEOiQ7lmcn/W7ilgeyekSLvCBufvU2LfMPx9vLl6cn++vWcmvz5rKGv3FDDnmSXcPG+ty4qDiXg6BWdymDQPqNR4pLOTehMR7McrbSwMUlBWxdo9B5us0nikkTFhJPbtxrzlHVMy+ZMN2RRX1HBZI081TxoURVigb7urNs5fvZf4qGDG9Oveqv3GxvXgknExvLR4V4f/Y88qKOf7PS1Laaw3pl93ugf5tnvcWer+Yp5btIMfvbiCkQ99wY9eWsFLi3cR7O/DXacN5p2fT+H7+0/j+avHcdXk/gzpFdrkWEVXGhgVwqyh0by2fHeHTOlQXlXL55v2MTu59zELlICjauPynfldZu69iupa/r4wjQkDwjmjkbF2LTFpoCMtTqmNnu+7tDxeXb6b66YMYHz/9qczNnTa8Gh6hvp3ePp7a9TWWb7ffZCx/Xtw4ZgYfL0Nr6/c6+5mtcimzEKC/bwZGPnDQ7pAP29unB7P4l/N5LZTBrFwWw6nP7mIu99c59FFoURcQcGZHFJcUU12YYVHFANpKMDXm8smxPL1lv1t+qO8ODWPOgszhh49v1lj6guDbN1XzJrdB1t9vua8sWovAyKDGx3/4OfjxRkjovly8/4235zvyC1h9e6DXDIutk1poL8+axghAT7c/97GDh2U/cmGllVpbMjH24uZQ3qyYFtOm4OG79LyOOOpb3nk063kFFdw5cQ4/nXtONY9cDrzfzaZ22YlMKZfD7elrd0wbQAHSqs6ZLLbr7bsp6yqlnNHHl2l8UiT4yMorqjplOI4neH1lXvYX1TJHacmtDk9OiLEn2G9u3W5HsWuprSyhl++vZ4BkcHcc8YQlx/f19uLy8bHsmBbjscECtv2FVNcWcP4/j0ID/bj9BG9eOf7zp23s602ZBYyok9Yoxk73QJ8uev0IXz7y5n8eOoAPliXxSl/WcgD72+kqsY1lY1FPI2CMzlkR65j/itPKKN/pCsnxgG06Unlgm059AjyZWRM9xbvc96oPoT6+/Cai9PLduSWsDL9AJeObzpwmpPch5LKmkPj5FrrzdUZeHsZLhjT/A14Y8KD/fjlGUNZsesA76W0rxDLsXy6cR/DendjQGTLUhrrnTosmoNl1azd0/rAubCsmrvmr6N/ZDDL753FF3dO53fnDOeUodGdMsauJSYMCCepbxgvLd7l8mqJ76dk0qtbABNbUBhh8qH5zo7/QMTRa7aDiQPCmRIf2a5jTY2PYPXug+2+6f0uLY8vNu1r1zGkcX/6dIsjnfHiZJemMzZ02YR+GOB/Kz2j92zNbkfxjHFxjt/ty8bHUlBWzReb3V/d9lhqauvYnF3U7JiyiBB/fjtnOIvumcGFo2N4ZdnuQw/4RLoaBWdySH0J70EeltYIjkpppw/vxRur9rTqpqiuzrJoWy7TB0e1auB2kJ8PF47pyycb9nGg1HVzgc1ftRcfL8OFxwicpsRHEB7s16aqjTW1dby9NoOZQ3q2aHxdUy4bH8vI2O48/PEWCsvbN41BY7ILy1mz+yCzW1gIpKGTB0fi6234qpWpjdZa7ntvA3kllfz10tH0Cmv7+9ORjDFcP20AO/NK+War68a0HCytYuG2XM4d1adFY0p7hgaQ0DOEZV0gOPvfyj3kFFe2efLhhqYMiqCqpq5dveqllTXc/N+13Pjami4/2XdnW5qWx2vL9/CTqQMY5+J0xob6dA/klKHRzF+91yN6cFalHyS6mz8xPRzFvKbGRxLTI5DXPSR4bMqO3FIqqusOTSnTnN5hgfzxwiQCfb1Zl1HQsY0TcRMFZ3JIWk4Jfj5exPbwjEqNR7p6ShwHy6r5cF3Lg5YNmYXkl1Yxs4UpjQ1dOSmOqto63lztmrz9qhpH4DRr2LEDJx9vL85M7MXXW3Ioq2rdXDULt+WSW1zJJeNi2tVWLy/Dw+cncqC0iie+2NauYzXm0w31VRpbntJYLzTAl4kDIviqlU+E3/0+k4/XZ3PnaYNJivHsyl9nJ/WmT1gALy5x3aTUn27cR02d5dxjVGk80pT4CFalH2j3zefrK/fwfkqmW+ZNq6iu5R8LdzBpYPih3sD2mDAgAm8v066g6rXluzlYVk1UqD+3/S+FnCLPmzPreFRSWcMv31rPwMhg7u6AdMYj/WhSP/JKqvjcA3pA1+w+yLi48EMZGV5ehkvHxfLdjnx255e6uXVNqy8GktSKaozeXoYRfbqxIaNrpFyLHEnBmRySmlPCwMhgjy0RPXlgBAk9Q3hlWXqLx0It2JaDMXByQsuKgTQ0ODqUCf3D+e/KPS65qfxm637ySqq4bHy/Zredk9yb8uraVveczF+9l8gQ/zYFo0dK7BvGVZPieHX5bja6uDrdpxuzGdorlIFtnE9v1rCe7MgtJT2vZTcdew+U8bv3NzG+fw9unB7fpnN2Jl9vL66bOoDlOw+47L1/LyWT+KhgRvRpeWn8yfERlFXVsr4dT6i37y/m3nc3cPvrKZz/96Ws7uS5i/67wnW9ZgAh/j6MjAlrc/XY8qpanv92J9MSIvnPjydSUlnNrf/7nppa9/e+HO/++MkWsgrLeWxuMgG+HZPO2NDJCVHEhge6PP29tbIKysksKGdc/x6HLZ87LhYv4xjn7Kk2ZhYS5Ofd6v8FSTFhbMoq6jIFi0Qa8sy7cHGL1JxiEqI9b7xZPWMMV0/pz8bMIr7fW9CifRZsy2V0bHd6tKFsNsCVk/qxO7+MJS6ozvb6qr306hbAyYObDxQnDoggKtSfj9a1PKc+t7iSb7bmcNGYvi6rLHjX6UMID/bnN+9tdFmvx/6iClbvPtimXrN6pzoneG5JamNtneWu+SkY4IlLRnnUvETHcumEWEL8fXhhcft7z7IKylm56wDnj+rbqmIYEwdEYEz7xp09/XUqQb7e/OH8RHKKKrn4uWXc/N+1nVJIoaK6ln8s2sHkgRFMGtj+XrN6UwdFsj6jgKKK1qf8zluxm/zSKm6blcCQXqE8fH4SK3Yd4Ikvt7usfSeiJal5/HfFHq4/aQBj4zounbEhLy/DFRPiWLHrAGlunLB9tTPF9siqlL3CApg5pCdvrsnw2OB/Y2Yhw3t3a/Xf5aS+YZRX17IjV+X1petRcCaA42luxsFyjyujf6QLR/cl1N+H/3yX3uy2eSWVrM8oYOaQtvcinZnYi4hgv3Y/Gc0sKGfR9lwuGRfTon9C3l6G2Um9WbAth5LKlqU2vvd9JjV1lrntTGlsKCzQl9/MHsq6vQW87qKnr59uyMbatqU01osND2JIdChfb2m+Z/G5RTtYlX6Q/zt/BLHhQW0+Z2frFuDLpeNj+Wh9NlnOibDbqj4V+NxRLU9pBOgR7Mfw3t3anMKXur+Yjzdkc/WU/vxoUhzf3D2d22cl8PWW/cx6YhGPfb61xdd3W8xbsYfcYkeFRleaEh9JnYWVO1vXC1hRXcs/v93J5IERh26kLxobw2XjY/n7wh18s9Wzizd0pPKqWn773gbOePJbnvpqe6uu+eKKan719noGRgXzi9M7Pp2xoUvGOcrWv7bcfWO7VqcfIMjPm6G9jn64etmEfoce3Hma2jrLpqzmi4E0JtmZmr5eqY3SBTUbnBljYo0xC4wxW4wxm4wxtx+x/m5jjDXGtK8ElrjVjtwSrMXjg7Ngfx8uGhvDJxv2kVtcecxtv92ei7W0K8XP38ebueNi+WrLfrIL236DXD9urSWTQtebk9ybypq6Fo2tstYyf/VexvTrziAXV9s8f1RfJg4I58+fbSW/5NjveUt8smEfQ6JD2114ZtawnqxKP3DMgiXrMwp48svtzEnuzfmj2la90p2um9ofgH+34GHEsbyXksWo2O4tnuy7oSnxEazdU9Cm6oTPfJNGoK83N0wbCDgK7dx52mAW3D2D2Um9+duCHcx8fCHzV+91+Xi08irHWLMp8RFMdGGvGcDoft3x9/FiaSuD1jdW7SW3uJLbZh0eLD547giG9+7GnW+sI+OgZ5Rm70xb9xVxzrNLmLdiDwF+3jz1VSon/fkbrnt5JZ9t3Ed1M70+f/xkK9mF5Tw+d2SnpDM2FBHiz1mJvXl7bQYHXVg8qjVWpx9scvqPmUOi6Bnq75GpjTtzSyivrm1TcDYgMoQgP2+Xp9yLeIKW9JzVAL+w1g4DJgE3G2OGgyNwA04DPLsckDQrLceRGuCJlRqPdNVkR6GON1Yd+7JbsC2XqFB/hvdu+RibxlwxoR8W2jyhZ22d5c3VGZw0KLJVPTdj+vWgd1hAi6o2puwtIDWnhEtaEfy1lDGG35+fSGllDX/+bGu7jpVTVMGq3Qc4qw1VGo80a1g0NXWWRdsbn3KgrKqGO15PISrUn4fPT2rz3FbuFNMjiLMSe/G/FXva3MO0fX8xW7KLOL+VvWb1psRHUlVTx9pWVidMyynhw/VZXDU5jvAj0op7hwXy5KWjePfnU4jpEcgv31rPOc8uYflO11WGnLdiN3klrhtr1lCArzfj+4e3qpJlZY0jWJzQP/zQZNYNj/f3K8dQV2e5+b/fe0T1v85greXV5bs599mlFJZX89pPJvL+zVNZ/MuZ3DxzEJuzi7jxtTVM/tM3PPLp1kbHmH67PZf/rdzDDdMGMqZfj0bO0vFumhFPRXUt9727oUPnhmxMcUU1W/cVMTau8dfu4+3F3HExLNiW064HjB1hY1bri4HU8/YyJPYJa9d4WBFP1WxwZq3NttaudX5dDGwB6h9BPwn8EtCIzONcak4xPl6mTU/WO1t8VAjTEiJ5bfmeJvPoa2rr+HZ7LjMGR7WobPix9IsI4uSEKP63ck+beo6WpOWRWVDeokIgDXk5UxsXbc+lsOzYY1vmr84g0Neb2cltTxU8lsHRofxk2gDmr844NJ9OW3y2aR/Wwux2pDTWGxXbnYhgvyZ7Fh/+eAu78kv5y9yRhAX5tvt87nL9tIEUV9a0+cn3+ymZeBmYndy24Gz8gHBndcLWBU7PfpNKgI83P3X2mjVmdL8evHPTFJ6+fDQHS6u47Pnl3PTaGvbkt6/3qLyqlucW7WTqoIhGJ3t3hcnxEWzdV0xeC/8mvLUmg31FFdw6a1CjDwr6Rwbz2Nxk1u0t4I+fbHF1c5tVXVtHYXk1+4sq2JVXyqasQlanH+Db7bl8tnEf736fwX9X7OHFxTt57/vMds/zVlBWxY2vreH+9zYyJT6CT2+fxtRBjgSc2PAgfnH6EJb+6hReumYco2K788Lincx4fCGXP7+c91Mc5y+qqObXb68nPiqYO09zfRDeUsN6d+MXpw/h0437eHON6yePP5bv9xRQZ48eb9bQJeNiqbPw1urObVtzNmQUEeDrRXxU2+47kmLC2Jxd5LHj6UTaqlWzrhpj+gOjgRXGmHOBTGvtuuPxibQcLnV/Cf0jg/HzOT6GIV4zuT/X/2c1X27ez1mN3Oin7C2gsLzaJVULAX4+I56r/rWS2U8v4dkrRrdq/pw3Vu0hPNiPU4e3vi1zRvbhxSW7+HzzviZ7xcqravlwXRZnJ/UmNKDjgpDbTkngg5QsfvPuRj669aQ2VfX8eH02CT1DXFJ4xtvLMHNoT77Y5Eh7algE5est+5m3Yg8/PXkgUwYd3xnXo2K7M75/D/61ZBfXTI5r1ftureX9lCymDookKtS/TecP8fchOSbMOe6sZeN5duaW8MG6LK6fNpCIkGOf1xjDuSP7cNqwaF5cvJO/L9zB11tzeOby0Zwxom09rK8td/Sa/ePUMW3avyWmDorksc+38d2O/GanJ6iqqePvC3Ywul93TjrG9XhmYm9+PHUA/1q6i/H9wzvsYUtD2YXlzH1uGRkHW9er0uNDXy6f0I8fTYqjT/fWTb+yKv0At//ve3JLKvnN2cP4yUkDGn2I5uPtxaxh0cwaFs3+ogreWpPB66v2cPvrKYQF+tIvPIh9RRW8fdOUTk9nPNIN0waycFsOD32wiYkDwjvtQefq9AN4GRjVr3uT28RFBDN1UARvrN7LzTMHtfuBpavUFwNpa4XopL5hVFTXkZZbwtBe7cuQEfEkLf6NMMaEAG8Dd+BIdfwN8LsW7PdTY8xqY8zq3NzG04/E/dJySjx+vFlDM4f2JKZHIK8sS290/YJtOXh7GU5KcM2N+cSBEbxz0xT8fLy49PnlvPDtzhalr+SVVPLl5v1cOLov/j6tv3kYGRNGbHggH61vumrjpxuzKamsaffcZs0J9vfhgXOGs3VfMf9Z1voCKbnFlaxMP9CuQiBHOnVYNEUVNaxO/yHlLre4kl++tZ6hvUL5xenue5ruStdPG0hmQTmftXI+pbV7Csg4WN7u8XZT4iNYl1HY4tTKZ79Jw8/H69BYs5YI9PPm1lkJLLh7BsN7d+Om19a0aY7Bsqoa/vntDk4aFHnM3oT2SuzTjdAAH5a1YNzZu99nkFlQzm2zEppNr/31WUMZ3a87v3p7PTs7oRLdM9+ksb+ogjtOTeC3s4fx8AWJPHnpSJ770Vj+8+MJvHnjZD669SS++cV0lt87i3UPnM5/b5jIhAHhPLdoB9MeXcDN89ayKv1As38Ta+ssz3ydyqX/XIavjxdv3zSFG04e2KJgIbpbADfPHMSiu2cy7/qJTEuIZNu+Yn4+YxCj3ZTO2JC3lzlUDfb211OaHSfnKqt3H2R4n26E+B/7Wful4/uRcbC81eMkO0pdnWVTVmGbxpvVS1JREOmiWhScGWN8cQRm86y17wDxwABgnTEmHYgB1hpjjnrMaa193lo7zlo7Liqq9XNNScerrKll94Gy4yo48/YyXDUpjuU7D7Bt39EljBdszWVcXA+6ubAnKbFvGB/ddhKnDuvJw59s4aevrmk23fDdtZlU11ouHd+2sWDGGGYn9WFpWh4HmhhsPn/1XvpHBHVY+lZDZ4zoxfTBUTzx5Xb2t3Li3A/XZbW7SuORpiVE4uftxdfOkvrWWn719nqKK2t4+vLRbQqIPdGpw6LpHxHEC4t3tWpMy/spmfj7eHH6iOh2nX9KfCS1dZZVu5pPad2ZW8J7KZn8aGJcm3rreoUFMO/6iUyJj+Set9bzYiunEnD0mlVx52murdB4JB9vLyYOiGh2vrOa2jr+tmAHyTFhzGjBNBp+Pl787Yox+Hobfj5vLeVV7UsfPJY9+WXMX7WXyyf0445TB3P9tIFcOTGOC0bHcGZiL04eHMX4/uEk9g1jYFQIvcICCAv0ZUp8JP+8ahyL7pnJ9ScNYHFqLnOfW8acZ5bw5uq9jaY87ius4MoXl/OXL7dzzsg+fHTrSSTHdG91m728DFMHRfLsFWPY8NDpHvUApk/3QB6+IImUvQU8801ah5+vuraO7/cUMK4FUwecMSKa7kG+bR477Wo780oprWpbMZB6AyKCCfH3UVGQNiitrGFTlt43T9WSao0GeAnYYq19AsBau8Fa29Na299a2x/IAMZYa1v3WFc8QnpeGbV1lkEePMdZYy4ZF4u/jxf/OaL3bF9hBZuzi1yW0thQtwBfnvvRWO6fM5wFW3OY8+xiNjTx1M5ay+ur9jA2rke70vjmJPemts7y2cajf71255eyfOcB5o6L7ZSCF8YYHjp3BFW1dTz8cdPjYqy17M4vZf6qvdw1P4Wpj3zD/320maG9Qhkc7bqHAMH+PkyOj+BrZ5noeSv28M3WHO49ayiDj7Pr+Vi8vQw/OWkA6/YW8MSX23lnbQYLtuWwPqOAjINllFUd3aNVXVvHx+uzOXVYdLvTXcfG9cDP24tlLSjY8eyCNHy9vfjp9Jb3mh0p2N+Hl64dx1mJvfjDx1t4/PNtLQpKy6pq+OcixwTPnTHX1dRBEew5UHbMOdveT8liz4Eybj2l+V6zen26B/LUZaPZtr+Y372/0VXNPcrT36Ti7WW4eeagNu0fGx7EvWcPY/l9s/jjBUlU19Zxz1vrmfLINzz2+dZDBSi+3rKfs/76Lev2FvLYxck8dekol6Rg+/t4e1yhn3NG9uHC0X159pvUdo3PbYkt2UWUV9ceNfl0Y/x9vLlwdAxfbN7nkqq77bWpHcVA6nl5GUb06aaeszZ45ps0Lvjbd5R24FQm0nYtGXM2FbgK2GCMSXEuu89a+0mHtUo6Vapz8sxBUcdPzxk45mA6b1Qf3lmbyS/PHEpYoOOf/aLtjhv19sxvdizGOG6UR/frzi3z1nLRP77j/jnD+NGkuMNuFFbvPsiO3FIevTi+Xecb0acbAyKD+Wh9FldMPLyoyFtrMvAycNGYjk1pbKh/ZDA3TY/nr1+ncun4WKYOisRaS3p+Gct35rNiZz4rdh0gu9DRsxYR7MfEgeH89OSBnJXUy+U3U6cO68n972/iy837+cPHm5mWEMk1k/u79Bye4KKxMfxn2e4mn8gH+HoRHuRHeIgfPYL88PEy5JdWcV4bqzQefmxvxsR1b3a+s/S8Ut5PyeLaKf3pGRrQrnP6+3jz7BVjuO+dDTy7II2C8ir+79zEY6bAvbrMMcFzR1RobMyUeEfa9LId+Y1WYq2ts/xtQRrDenfj1GGt+3s0fXAUt84cxNPfpDF+QLjLK7HuyC3hnbUZ/HjqAKK7te9nFeTnwxUT+3H5hFiW7cjn5e/S+fvCHTy3aCdj+nVnVfpBhvfuxjNXjCb+OPs/0xYPnTeClekHuOONFD65bVqHjQVe5UznbknPGcBlE2L519JdvLM2kxtObvvDE1fYkFGIv49XuzN2kmPCeGXZ7qPGHcuxLdyWQ1VtHak5JYyK7e7u5sgRmg3OrLVLgGPeTTl7z+Q4lbq/BC8DA9tYMcmdrp7cn/mrM3h7TQY/PmkA4Ehp7B0W4NIemsaM6deDj2+bxp3zU7j//U2sTD/Iny5MOpT7//rKvYT4+zCnnYP6jTHMSe7N3xakkVtceShVrLbO8taaDKYPjqJXWPturlrrphnxvJeSyX3vbiA5pjsrduaT45x3LjLEn0kDw5k4MIJJA8IZ1DOkQ59unzIsmvvf38TN89YS5O/N43NHesyAd1cK8vPhiztPpqiihgOlVYc+DpZWkV9axcGyKvJLnJ+dy5Njwpg+xDXp5FPiI3nyq+0UlFXRPciv0W2eXZCGj5fhZ+3oNWvI28vwyEVJdA/25Z+LdlJYXsNf5o5stHBRaWUN//x2JycPjmqyrLirDY4OITLEn6U78rikkdTlj9ZnsTOvlOd+NKZNvwO3nzqYNXsOcv97G0nqG8awdk4L0tBfv0olwNebG2e07+FRQ8YYpgyKZMqgSPYeKOPV5bv5eH02103tz6/OHOr2oh2dJTTAl6cuHcUl/1zGgx9s5i+XjOyQ86zZfYCYHoEt/vs/ODqUMf268/qqPVw/bYBbex03ZBYytB3FQOol9g2jqqaO1P0lDO+joiAtkVtcyVbncJBt+4oUnHmgVlVrlK4pLaeEfuFBx+U/zsS+YYyN68Gry3dz7ZT+1NRZlqTlcc7IPp3yj6dHsB//umY8/1i0g798sY1NWYX848qx9O4ewMcbsrhwTAxBfu3/NZuT3Idnvknj043ZXO3sFVqSlkd2YQW/mzO83cdvrQBfb/7vvESufXklFdW1TBoYwaSBEUwcGM7AyOBO/afft3sgw3t3Y3N2EU9fOKrdvQCezBhDWKAvYYG+DIjs3Icpk+MjeOJLWL7zAGcmHl1FcXd+Ke9+n8nVk+Pa3WvWkDGGe88aRvdAP/782VaKK6r5x5VjCfQ7/O/Vq8t3c6C0ijtO7dixZke2bUp8BN/tyMdae9h1X1dneeabNIZEh3L68LZVnfT2Mjx16WhmP72Yn89bywe3THVJL8y2fcV8uD6Lm6bHE9lMNc22ig0P4r6zh3Hf2cM65Pieblz/cG6eOYhnvknjlKE9XV5501rLqvSDTI1v3QTrl03oxy/fWs/q3Qc7tGDOsTiKgRRx/uj29+rXj1vckFmg4KyFGmZAbG1kzL64n/qAhdScYgb1PH7H51w9OY5deaUsTstj9e4DlFTWMNNFvQUt4eUcszHv+kkUV9Rw3t+W8Ms311NRXcdlbSwEcqQhvUJJ6BnCR+t+qNo4f/VewoP9mDWsfcUe2mr64CjWP3A6y++dxdOXj+aKif2Ij+rYXrKm3HPGEH47exhnJnZ86fET1ciY7gT6ejdZnfBvC9Lw9jLcON11PTEN3TQjnj9ekMSi7blc9dIKCst/KMZTWlnD89/uZPrgqE6fiHhKfAS5xZWk5RxeWfHTjftIyynhllPaV7o8KtSfZ68Yw54DZdz/nmvGnz355XZC/Hz4qZtT27q622YlMDK2O/e9u8HlE0DvPVBObnFlq6Z1AccY5hB/H7cWBknPL6WksqZd483qxYUHERrgw4bjpCjIF5v2UVRx7EJiHW1xah5hgb4k9Q1j+34FZ55IwdkJrqa2jl15pSR0cApgRzorsTeRIf7857t0Fm7LxdfbHJrMtDNNjo/g49tOYnRsDz7btI9hvbu55J9PvTnJfVi1+wD7Cis4WFrFl5v2c/6ovm6dmy40wNcjBuTPHNqT61tRtl1az8/Hi/EDwhstCrL3QBnvrM3kign9OrTn8oqJ/Xjm8tGsyyjgsueXk+tMpf3Pss7vNatX/7dmadoPQauj1yyV+Khgl1QnnTAgnNtOSeC9lCzeWdu+iYQ3Zhby2aZ9/PikAU2mp4pr+Hp78dSlo6iureMX89dRV9fySqvNWZXuKDbSkmIgDQX5+XDuqD58vCHrsAccnWljVhFAuyo11vPyMiT2CWuyMJcn2ZhZyE9fXcM/F+1wWxustSxJzWPqoAiG9Q5ttNq1uJ+CsxPc7gNlVNfa464YSEN+Pl5cMbEf32zL4b3vM5k4IILgZuZ86Sg9QwN47fqJ/N95I3j4gkSXBi5zRvbGWvh4QzbvpWRSVVvHJeM7rxCIyJT4CLbvLzkUFNX724I0vEzH9Zo1NCe5Dy9eM570vFLmPvcd2/YV8/y3O5gxJMot813FhgcR0yOQ73b8ELR+uWU/W/cVc+spCXi7aPzjLacMYsKAcO5/byPpeaVtPs4TX24nLNCXn0wb4JJ2ybENiAzmd3OG892OfF5c0rppIY5l9e6DhAb4MLgNWS+XjY+lorqOD9Zluaw9rbExsxA/by+XVdRNjgljS3YxVTWdM7dcW9W/319s2u+2NuzILWFfUQUnDYpicHQoeSVV5HlA9U45nIKzE1zqfkcqzvHccwZw5cR+eBtDTnElMzoxpbEx3l6Gqyf3d3l6VXxUCMN6d+Oj9Vm8sWovyTFhDO2lHHvpPFOc41sa9p7tPVDGW2syuGxCbKcVppk+OIrXrp/IgdIqZj+9mINl1Z1WobExU+MjWb4zn9o6i7WWp79OpX9EULuLATXkGH82Ch9vL25//fs23Yiu3XOQb7bm8NOTB7p0Dkg5tkvHx3LGiGge+3yby+aWWp1+gLFxPdqUMpvUN4zhvbvx+so9LmlLa23IKGRo71CXVVdM7BtGVW2dR6fo1dVZPlyXhZ+3F6k5JZ0ywXxjFqc6evinJUQeun9Q75nnUXB2gktzltE/3ssbR3cL4AxnkYKOmN/MU8xJ7s33ewrYuq+YuS4urS3SnBF9wggN8Dls3NnfF+7AyxhucmHVv5YYG9eD+TdOJjzYjzNGRLu14tiUQREUVdSwMbOQBdty2JRVxM0zB7W7Et2R+nQP5M8XJbEuo5Anvtze6v2f+GI7EcF+XDulv0vbJcdmjOGRC5PpEeTH7a+nNDpJd2sUlFWRmlPS5oIexhgumxDLpqyiTp/A2VrLxqxCl6Q01kuOcRzLk8edrd59kOzCCm53pl5/udk9vWdLUvOIiwgiNjyIIb0cPZcKzjyPgrMTXGpOCX27B7otDdCVfn3mUB6+IJGBnVzFrjOdk+yobuXv48W5I9tf6UqkNby9DBMHRBxK4cs4WMZba/ZyyfgYeocFdnp7hvbqxuJfzeTZK8Z0+rkbmuzsUVy6I4+/fp1GbHgg54/u2yHnOjOxN5dP6Mdzi3awJPXY8841tHxnPkvS8rhpRnyX+Ht/vOkR7MdfLhlJWk4Jf/pkS7uOtWa3Y36z9kwZcd6ovvj7ePG/Tu4923OgjOIK1xQDqdcvPIhuHl4U5P2UTAJ8vbh2Sn9G9OnmluCsuraO5TvzOck5TjYyxI/wYD8FZx5IwdkJLnV/yXGf0lgvNjyIKyfGeUSBio7SLyKIGUOiuHR87KFJt0U605T4CHbnl5FZUM7fFzoGtt80Y5Db2uPv4+32yWd7hjrmVfzXknTW7S3g5zMGdWibfjdnOIN6hnDn/BTyWzBexFrLE19sp2eoPz+aFNdh7ZJjm5YQxY+nDuCVZbtZsC2nzcdZvfsgvt6Gkc4y8m0RFujL7KTevJ+SRVlVTZuP01r1AZQrgzNjDEkxnlsUpLq2jk82ZHPa8F4E+/tw2vBo1uw5eNTY3Y72/Z4CSqtqmZbgCM6MMQyJDmWrB6eDnqgUnJ3AaussO3JLSOjZNYKzE8W/r5vA/52X6O5myAlqyiBHL9HbazJ4c/Ve5o6LpW/3zu818zRT4iPJK6mkT1gAF43p2EI9gX7ePH3ZaArLq7nnrfVYe+wqgEvS8liZfoBbThl0XM5n2ZX88swhJPQM4Xfvb6Sypm3pjavTDzCiT9hRc/211qXjYymprOHzTfvadZzW2JBZiK+3cVkxkHpJfbuzdV9Rm9/TjrQkNY+DZdWHsl1OH94La+HrLZ3be7YkNRcvA5Pjf6hmPaRXKKn7i11aSVTaT8HZCSzzYDmVNXUMUnAmIi00uGcoEcF+/PXrVAB+3sljzTxVfarQTTPiO2V6i+F9unHfWUP5ZmsOr3yX3uR21loe/2I7fcICuNRF8y5K2wX4evO7c4az90A5Ly9Nb/X+lTW1rMsoZHwrS+g3Znz/cGJ6BPLO2sx2H6ulNmYWMqRXqMt/R5JjwqiutWzf555CG8fywboswgJ9mT7YUaxsWO9QYnoE8kUnpzYuTssjOab7YVk3Q3uFUlZVS8ZB187DJ+2j4OwEluosBnI8T0AtIp3Ly8swKT6C2jrLxWNjiekR5O4meYRThvbk5WvHc8XEzksbvGZKf2YN7ckfP93KluyiRrf5ZmsO6/YWcNusBPx91GvmCaYlRHHqsJ48+01aq1PbNmYWUlVTx9i4thUDacjLy3DB6L4sTctjf1FFu4/XHGstGzOLXJrSWK/+mOszC1x+7PYor6rli037OCux16GA1BjD6cN7sSQtj5LKzkkpLSyvZt3egkMPkeoNdhYF2bqv8b8f4h4Kzk5gqTmOJ0zqOROR1jh9eDQh/j7qNWvAy8swc2hPl81r1hLGGB69OJnugb7c+r/vKa86PKWrrs7yxJfb6RcexEVjNSeiJ7nv7GFUVNfyxJfbWrXf6nRHMZDWTj7dlAtG96XOOgpWdLSMg+UUlle7tFJjvZgegXQP8vW4cWdfb91PaVXtUQW8Th8RTVVNHd9uz+2UdizbkU+dhZMSjgjOnOmlnjwNwYlIwdkJLHV/CdHd/FVYQkRa5dyRfVhz/6nEhqvXzN0iQvx54pJR7Mgt4f8+2nzYus837WNTVhG3z0pwe9EUOdzAqBCuntyf11ftbdXcZ6vSDzIgMpjIEH+XtWNUbPdOSW3siGIg9YwxJPUN87iKjR+kZNEz1J+JAyMOWz4urgc9gnz5opPG+y1JyyXIz/uo+VdD/H2IDQ9kqyo2ehT9tT6BpeWWkKCURhFpJWOMUuQ8yEkJkfzs5Hj+t3IPn23MBhwFn578ajvxUcEdVtZf2uf2WQmEBfry+482N1vUBRxpgWt2H2BcO0roN+aiMX3Zuq+YzVkdm9q2IbMQHy/XFwOpl9Q3jG37its9j5yrFJZXs3BbLnOS+xzVo+7j7cWsYdF8vTWH6trWTyjfWktS85g4ILzRsX5DokNVTt/DKDg7QVlrSdtfrJRGEZEu4BenD2ZkTBi/ensDWQXlfLQ+i+37S7jj1MGdmmopLRcW5Mtdpw1m+c4DLSoOsSO3lINl1S5Laaw3J7kPvt6Gd7/PcOlxj7Qxs5DB0aEdVjE0OSaMmjrrMYHG5xv3UVVbx3mjGp+T9PTh0RRX1LBi54EObcfeA2Wk55dxUkJUo+uH9AplV16pR1a6PFEpODtBZRdWUFpVq+BMRKQL8PX24unLR1NTW8cdr6fw1FepDO0Vyuyk3u5umhzDFRP6kdAzhD9+sqXZm+M1ux038eP6t78YSEM9gv2YOaQn76VkUdNBvTiOYiCFHZLSWC/xUFEQz0ht/GBdFnERQSTHNP6apyVEEeDrxZebOza1cWlanvN8kY2uH9KrGzV1lp25pR3aDmk5BWcnqPpiIJrjTESka4iLCOb35yeyMv0Au/JKufO0wXip18yj+Xh78ds5w9mdX3bMKRHAMd4sPNiPgZHBLm/HhWP6kltcydId+S4/NkBmQTkHy6pJbCJQcYW+3QMJD/ZjQ0ZBh52jpXKKK/huRx7njuyDMY3/Dgb6eTMtIYovNu9vUVprWy1OyyO6m3+T93tDnGmmntLjKArOTlipzso8CR2U+y0iIp3vwjExXOsssX/68Gh3N0daYPrgKGYOieKZr9PIK2m6tP6a3QcZG9ejyZv99pg5tCdhgb68s7ZjUhs3dmAxkHrGGBL7hrEh0/1l4T9en02dpcmUxnqnD48mu7CCjR3U5ro6y3dpeUwdFNnkdTMwKhhfb8M2VWz0GArOTlBpOSVEBPsRHuzn7qaIiIgLPXjuCF66dnyH3MRLx/jN7OGUVdfyxJfbG12fW1zJrrxSlxcDqefv482c5N58vmlfh8y9tSGzEG8vw9BeHftAOLlvGNv3u78oyAfrshjWu1uz88jOGhaNl4EvOii1cVNWEQfLqptMaQRHSnR8VIh6zjyIgrMTVFpOicabiYiIeIBBPUO4alIcr6/c0+iE4mt2189v5trxZg1dOKYvFdV1fLoh2+XH3pBZRELPkA4rBlIvKSaM2jrL5iYmZe8Me/LL+H5PwVFzmzUmPNiP8f3D+WJT8wVh2mJxmmMetamDmg7OwDHfmYIzz6Hg7ARkrSU1p4SEaAVnIiIinuCOUxMIDfDlDx8fXVp/dfoB/Hy8SOzbrcPOP6ZfD+Iignj3e9fOeWatZVMHFwOpV3+OjW4sCvLh+iwAzhnZsmI8p4/oxbb9xaTnub4gx5LUPIb2CqVnaMAxtxvSK5TMgnKKK6pd3gZpPQVnJ6DckkoKy6sZFKXgTERExBN0D/LjzlMTWJqWz9dbcg5bt3r3QUbFdO/Q+QWNMVwwui/LduaTVVDusuNmF1aQX1pFUgcWA6nXOyyAyBA/1me4Lzj7ICWLcXE9iOkR1KLt68eGftmC6RRao7yqltXpBzmpmV4z4FC66XaNO/MICs5OQGn7nZUaVQxERETEY1w5KY74qGAe/mQLVTWOsvblVbVszCxkrIvnN2vMhaNjsBbeS3Fd79kGZy/WiD4dH5wZY0jqG+a2nrOt+4rYtr+42UIgDcWGBzGsdzeXjztbmX6Aqto6TjrGeLN69RODb1Vqo0dQcHYCUhl9ERERz+PrLK2/K6+U/yxLB2BdRgE1dZbxnRCc9YsIYlxcD95dm+my8u4bMwvxMjC8d8elZDaU5CwKUl7V+UVBPkjJwtvLcHYr5xc8bXg0q3cfPGa1ztZakpqLn7cXEwY0P04xpkcgIf4+bFdw5hEUnJ2AUnOK6RbgQ1Sov7ubIiIiIg3MHNKT6YOj+OvXqRworWJ1umPy6TH9Oj44A8d0DKk5JS4r774xs5CEnqEE+nVsMZB6STHdqbOwObtze8+stXywLoupgyKJCGnd/dXpw6OxFr45Ip21PRan5jEmrjtBfj7NbmuMYXB0iHrOPISCs+NUWk7JoepNbdk3ITpUZZZFREQ80G9nD6OsqpYnv9zO6t0HGRwdQvegzpn6ZnZSb/y8vXjn+/bPeWatZUNmEYmdUAykXn1RkA1tGHe2M7eEmY8v5B8Ld7S653DtngIyDpZzXguqNB5pRJ9u9O0e6LLUxtziSrbuK2ZaQlSL9xnSK5Rt+4s7dEJsaRkFZ8ehTzZkM+eZxVzxwnIyDpa1ev+0nBKlNIqIiHiohOhQfjSxH/NW7Gb5znzGxnVcCf0jhQX5curwnnyQkkV1bV27jrW/qJK8kkqSOrDK5JGiu/kTFerP+laOO6uprePO+evYnV/Knz/byl3z17VqvrQP12Xh7+PF6SNaP/m7MYbThkfzbWoepS6YZ25pWh5Ai4qB1BsSHUpBWTW5xa5LrZS2UXB2HLHW8tevUvn5vLUM7dUNL2P44ydbWnWMA6VV5JVUaY4zERERD3bHqYMJ8fehorquU8abNXTB6BjyS6tYnJrbruPUFwPpzJ4zYwzJfcNa3XP294U7WLe3gKcvH80vThvMu99nctnzy8kprmh235raOj5an8WsYT0JDfBtU7tPHxFNVU1du99zcKQ0hgX6tup9H9LLEUArtdH9FJwdJ8qrarnlf9/z5FfbuXBMX9742SRumhHPJxv2sWxHfouPk+YsBqLgTERExHP1CPbj7jOG4OttmDgwolPPPX1wFD2CfHl7bfuqNm6oLwbSp/N6zsARDO7ILWlxL9SGjEKe/jqV80b1YU5yH26dlcBzPxrDtn3FnPfs0marPy7bmU9eSVWLJp5uyoT+4YQF+rZ7QmprLUvScpk6KAJvr5YPXxniLKevyajdT8HZcWBfYQWXPr+MTzZkc+9ZQ/nL3JH4+3jz05MHEtMjkIc+3ERNC1MPUnMcv3Qqoy8iIuLZrp7cn5X3nUrf7oGdel4/Hy/OHdmHLzfvp7C87RMTb8osJD4qpEVFKVwpOSbMWRSk+aImFdW13Dk/hcgQf/7v3MRDy89M7M1bN03GABc/9x0fr89u8hgfpGQR6u/DjCE929xmH28vZg3ryddbc9qVTrojt4T9RZWcNKjl480AwoP9iAr1Z5vmOnM7BWdAXZ3nDn5ct7eAc59dwo6cEl64ahw/mx5/qJBHgK83vzl7GFv3FfO/VXtbdLzU/SUE+3nTJ+zYs8WLiIiI+/UI7pxCIEe6YEwMVTV1fLqh6aCkORsyCw8V6OhMrSkK8uhn20jLKeGxucmEBR2ekjiiTxjv33ISw3t34+b/ruWpr7Yfdc9YUV3LZxv3cUZiLwJ821eR8vTh0RSWV7Nq14E2H2NxqmO82bQWzG92pKG9QtVz5gFO6ODMWstv39vA/3202d1NadSH67K45J/L8PPx4u2fT+HU4UcPMj0zsReTB0bwly+2UVBW1ewxd+SWMKhniCo1ioiISJNGxoQxMCqYd75vW2pjTlEFOcWVjHBDcNazWwDR3fwPjXlryndpefxr6S6umRzXZGXDqFB//vfTSVw4pi9PfZXKrf/7/rA51BZuy6W4sqZdKY31Th4chb+PF19sbntq45LUPOIigogND2r1vkOiQ9m+v5haD+60OBGc0MGZMQY/b2/+/V06X2xy7czs7VFXZ3nii23c+r/vSY4J4/2bpzK0V+P52sYYfnfOcIrKq3nyy+3NHjt1fwmDeiqlUURERJpmjOHC0X1ZuesAew+0vjJ0fWDkjp4zx3m7sz6joMn1RRXV3P3mOgZGBfPrs4Yd81j+Pt78Ze5I7jt7KJ9szGbuP78ju7AcgA/WZRIZ4seU+PaPCwzy82FaQiRfbNrXppL21bV1LN+Z36oqjQ0N7hVKZU0de9rw8xbXOaGDM4BfnTWExL7duOet9WQVlLu7OZRV1XDzf9fy9DdpzB0bw2vXT2x2MsNhvbtx5cQ4Xlux55jd0UUV1ewrqlAxEBEREWnW+aP7AvBeG3rPNmYWYYxjDi93SOobxs68UkqaKAry4Aeb2F9cyROXjGrRBNnGGH56cjwvXj2O9Lwyzn12KYtTc/l6Sw6zk3rj4+2aW+rTh/ciq7CCTVmtnwT8+z0FlFbVtimlERxpjQDb9rlmAnJpm2avJGNMrDFmgTFmizFmkzHmdufyx4wxW40x640x7xpjund4azuAv483z1w+hpraOm5//fsWF9boCNmF5cx9bhmfbdrHb84exqMXJ+Pv07L85btOc5TcfejDTU0+bamv1Kg5zkRERKQ5MT2CmDggnHe/z2x1T86GzEIGRgYT7N+5xUDqJceEYa2jKMmRPtuYzTtrM7l55iBGxXZv1XFnDYvmnZ9PIdDXm6teWkllTR3njmp/SuMPx++Jl6FNqY1LUnPxMjA5vm3BWULPUIxROX13a0mYXwP8wlo7DJgE3GyMGQ58CSRaa5OB7cC9HdfMjjUgMpiHL0hiVfpBnv461S1tSMsp4dxnl7I7v4x/XTOeG04e2KpxYT2C/fjF6YP5bkc+nzdRhjVtvzM4i1ZwJiIiIs27aEwMO/NKSdlb0Kr9NrqpGEi9+jm+jhx3llNcwb3vbCA5JoxbTxnUpmMPjg7lvZunMnVQBMN7d2NMP9fNQxcR4s+4uPA2DbdZnJZHckx3wgLbNtdaoJ83ceFBbFfFRrdqNjiz1mZba9c6vy4GtgB9rbVfWGvr+4qXAzEd18yOd/7ovlw8NoZnFqTx3Y68Tj333gNl/OjFFVgL7/x8CjOHtq0U6xUT+jEkOpSHP9nc6Kz2qTnF+Pt4EdOj9YNERURE5MRzVlIv/H28eLeFqY11dZb1GQXsK6ro1MmnjxQV6k/vsIDDgjNrLb9+ewNlVbU8cckofNuRihge7Me86yfx0a0nubzI2ukjotm6r5g9+S0f+1VYXs26vQVtHm9Wb0ivUPWcuVmrrkpjTH9gNLDiiFU/Bj5tYp+fGmNWG2NW5+a2f9bzjvTQuSMYEBnMHa+nkF9S2SnnzCmu4KqXVlBWVcOrP5nA4HbMP+bj7cUD5wxn74FyXly886j1aTklxEeFtGpSQhERETlxhQb4ctrwaD5Yl0VVzeFDP6y17M4v5cN1Wfzxky1c9vwykh/6gnOfXQrA2DjX9Si1RVLfsMPK6b+xai/fbM3h12cNddn4e68OuKc6zVmd+4vNLe89W7YjnzoLJ7VxvFm9Ib26kZ5X2uhDfukcLU4ENsaEAG8Dd1hrixos/w2O1Md5je1nrX0eeB5g3LhxHl2bM9jfh2cuH80Ff/+OX7y5jn9dM75DfunqFZZVc/VLK9lfVMlr109kWO/2D5qdMiiSM0f04m8LdnDR2Bh6h/0wcWVqTonb/1CKiIjI8eWiMTF8tD6bt9Zk0CPIl/WZhWzIKGR9RgFFFY4kKj9vL4b16cYFo/uSFBPGmH7d3V4dOqlvGF9s3k9xRTUHS6v5/UebmToogmsm93dru5oTFxHMkOhQ5q/eS7C/DxHBfkSE+Ds/+xHi73NUb92StFyC/LzbnWI5JDqUOut4oO/Ons8TWYuCM2OML47AbJ619p0Gy68B5gCzbFtqfnqgEX3C+M3Zw3jgg038a+kurp82sEPOU1ZVw3X/XsnO3FJeunacS4Om38wexjfbcnjk06389bLRh86XcbCcS8fFuuw8IiIi0vVNS4gkMsSP+97dAICPl2Fo71BmJ/chOSaMpL5hDI4Oxc/Hs4qAJ8U4gov1GYU8+eV2vLwMj108skMfvLvKJeNj+f1Hm7n3nQ1HrfPz8SIy2I/wED8igv2JCPHj2+15TBwQ3u6fwZBDFRuLFZy5SbPBmXGE5i8BW6y1TzRYfibwK2C6tbZLTYhw9eQ4lqTl8efPtjK+fzgjW1nJpzmVNbX87NU1pOwt4O9Xjmly4sO2ig0P4mcnD+SZb9K4alIc4/qHsyOnFFAxEBEREWkdH28vnr1iDKk5JST3DWNIr1ACfFtWTdqd6guS3P/+RnbmlvLkpSPp0z2wmb08w09OGsCVE/txoLSK/JIq8koryS+p4oDzc15JFfmllRworSItp4TyqppDUx+0R/+IIPx8vNimoiBu05Kes6nAVcAGY0yKc9l9wNOAP/Cls2t1ubX2xo5oZGczxvDYxcmc/dfF3Pq/7/n4tpMIDWhb5Zsj1dTWcfv/UlicmsdjFydzZmJvlxz3SDfNiOfN1Rk8+OEm3r/5JFJzHL9k7k4xEBERkePPpIERTBrY/omWO1NEiD99uweyM7eUsxJ7cf6o9gcvnSnA15s+3QM7NaD08fZiUFTIMefNlY7VkmqNS6y1xlqbbK0d5fz4xFo7yFob22BZlwjM6nUP8uOvl48m42AZv3l3Y5tmaj9SXZ3l3nc28NmmffxuznDmdmCKYZCfD/eePZSNmUW8tWYvaTkl+Hob4iJUqVFERERODOP69yAq1J+HL0hyeVXFrmpor1AFZ27kWcnBHmZ8/3DuPHUwH6zL4s01Ge06lrWWP3y8hTfXZHD7rAR+fNIAF7WyaeeO7MO4uB48+tk21u45yIDI4HaVjRURERE5njx8QRKf3T6N8GA/dzfluDGkVyj7iiooLKt2d1NOSLpTb8bPZw5i8sAIHnh/E2k5bX+K8PTXafxr6S6um9qfO05NcGELm2aM4cFzR3CgrIrlOw+QoJRGEREROYGE+PsQEeLv7mYcVwbXFwXRuDO3UHDWDG8vw1OXjSLQz5tb/vt9m+Z9eHnpLp78ajsXj43h/tnDO7VbPbFv2KEKjfEumtNDRERERLqmoYcqNhY1s6V0BAVnLRDdLYC/zB3J1n3F/P6jzUdNwngsb63J4KEPN3PGiGgeuTDJLeVb7z5jCGPjejBjiGurQoqIiIhI19KrWwDdAnzYqnFnbtHiSahPdDOH9uSGaQN4YfEu5q3Yg5+3F0H+3gT7+RDk502Qvw/Bft4E+fkQ7O/47GXg9VV7OWlQJE9fPhofN433igzx5+2bprjl3CIiIiJy/DDGMKRXKNuV1ugWCs5a4ZdnDiWhZyj7iyooraqlrKqG0spayqsdn8uqasgqKHcsr6qlrLKGyQMj+OdVY/H38fz5QEREREREhvQK5f2ULKy1qnLZyRSctYKvtxeXjO+48vciIiIiIu42pFc3iiv2kF1YcdxM3N1VaMyZiIiIiIgcMiRaFRvdRcGZiIiIiIgccig4U1GQTqfgTEREREREDgkL8qV3WICCMzdQcCYiIiIiIocZ0itU5fTdQMGZiIiIiIgcZkh0KDtySqipbfn8vtJ+Cs5EREREROQwQ3qFUlVbR3p+qbubckJRcCYiIiIiIocZ0stRFESpjZ1LwZmIiIiIiBwmPioEby/DdgVnnUrBmYiIiIiIHCbA15v+EUHqOetkCs5EREREROQoQ3t100TUnUzBmYiIiIiIHGVwdCh7DpRRVlXj7qacMBSciYiIiIjIUYb0CsVaSN1f4u6mnDAUnImIiIiIyFGGOis2btO4s06j4ExERERERI4SGx5EkJ836zML3N2UE4aCMxEREREROYq3l2HywAgWp+a5uyknDAVnIiIiIiLSqOlDotidX0Z6Xqm7m3JCUHAmIiIiIiKNmj44CoBF23Pd3JITg4IzERERERFpVFxEMP0jghScdRIFZyIiIiIi0qTpg6NYtiOfiupadzely1NwJiIiIiIiTZo+JIry6lpWpx90d1O6PAVnIiIiIiLSpEkDI/Dz9mLR9hx3N6XLU3AmIiIiIiJNCvLzYcKAcI076wQKzkRERERE5JimD45i+/4SsgrK3d2ULk3BmYiIiIiIHNP0IY6S+t+q96xDKTgTEREREZFjSugZQu+wAKU2djAFZyIiIiIickzGGKYPjmJJah7VtXXubk6X1WxwZoyJNcYsMMZsMcZsMsbc7lweboz50hiT6vzco+ObKyIiIiIi7jB9cBTFlTWk7C1wd1O6rJb0nNUAv7DWDgMmATcbY4YDvwa+ttYmAF87vxcRERERkS5oyqBIvL0Mi7YptbGjNBucWWuzrbVrnV8XA1uAvsB5wCvOzV4Bzu+gNoqIiIiIiJuFBfoypl93jTvrQK0ac2aM6Q+MBlYA0dbabHAEcEBPl7dOREREREQ8xvTBUWzILCSvpNLdTemSWhycGWNCgLeBO6y1Ra3Y76fGmNXGmNW5uYqyRURERESOV9MHO/pjFqfqvr4jtCg4M8b44gjM5llr33Eu3m+M6e1c3xvIaWxfa+3z1tpx1tpxUVFRrmiziIiIiIi4wYg+3YgI9tO4sw7SkmqNBngJ2GKtfaLBqg+Aa5xfXwO87/rmiYiIiIiIp/DyMpw8OIpvU/Ooq7Pubk6X05Kes6nAVcApxpgU58fZwCPAacaYVOA05/ciIiIiItKFTR8cxYHSKjZmFbq7KV2OT3MbWGuXAKaJ1bNc2xwREREREfFk0xIiMQYWbcslOaa7u5vTpbSqWqOIiIiIiJzYIkL8SeobppL6HUDBmYiIiIiItMr0wVGs3XOQwrJqdzelS1FwJiIiIiIirTJ9cBR1FpbuyHN3U7oUBWciIiIiItIqo2K7Exrgo5L6LqbgTEREREREWsXH24tpCZEs2p6LtSqp7yoKzkREREREpNWmD45iX1EF2/eXuLspXYaCMxERERERabXpg3sCsGh7jptb0nUoOBMRERERkVbrFRbA0F6hKqnvQgrORERERESkTaYPjmLVroOUVta4uyldgoIzERERERFpk+mDo6iqrWP5znx3N6VLUHAmIiIiIiJtMrZ/D4L8vJXa6CIKzkREREREpE38fbyZEh+h4MxFFJyJiIiIiEibTR8cxe78MtLzSt3dlOOegjMREREREWmzH0rqq/esvRSciYiIiIhIm/WLCGJAZLCCMxdQcCYiIiIiIu0yfXAUy3bkU1Fd6+6mHNcUnImIiIiISLtMHxxFeXUtq9MPurspxzUFZyIiIiIi0i4TB4bj5+PFou057m7KcU3BmYiIiIiItEuQnw8TB4Rr3Fk7KTgTEREREZF2mz44iu37S8gqKHd3U45bPu5ugIiIiIiIHP/OG9WXaQlR9A4LcHdTjlsKzkREREREpN2iQv2JCvV3dzOOa0prFBERERER8QAKzkRERERERDyAgjMREREREREPoOBMRERERETEAyg4ExERERER8QAKzkRERERERDyAgjMREREREREPoOBMRERERETEAyg4ExERERER8QAKzkRERERERDyAsdZ23smMyQV2d9oJWy4SyHN3I8Tj6TqRltK1Ii2h60RaQteJtJSuleNHnLU2qrEVnRqceSpjzGpr7Th3t0M8m64TaSldK9ISuk6kJXSdSEvpWukalNYoIiIiIiLiARSciYiIiIiIeAAFZw7Pu7sBclzQdSItpWtFWkLXibSErhNpKV0rXYDGnImIiIiIiHgA9ZyJiIiIiIh4gOMqODPGnGmM2WaMSTPG/LrB8jeMMSnOj3RjTEoT+4cbY740xqQ6P/dwLr+ywf4pxpg6Y8yoRvaf5zz/RmPMv4wxvs7lxhjztLNd640xYzrmHZCW8uBrZagxZpkxptIYc3fHvHppKQ++Tq50/i1Zb4z5zhgzsmPeAWkpD75WznNeJynGmNXGmJM65h2QlujA68TXGPOKMWaDMWaLMebeJvYfYIxZ4dz/DWOMn3O57lM8iAdfJ7pH8QTW2uPiA/AGdgADAT9gHTC8ke3+AvyuiWM8Cvza+fWvgT83sk0SsLOJ/c8GjPPjf8BNDZZ/6lw+CVjh7vfrRP7w8GulJzAeeBi4293v1Yn84eHXyRSgh/Prs/Q3RdfKMa6VEH4YopAMbHX3+3WifnTkdQJcAbzu/DoISAf6N7L/fOAy59fP6T7F8z48/DrRPYoHfBxPPWcTgDRr7U5rbRXwOnBeww2MMQa4BMc/rsacB7zi/PoV4PxGtrm8qf2ttZ9YJ2AlENPguP9xrloOdDfG9G7xKxNX89hrxVqbY61dBVS36hVJR/Dk6+Q7a+1B52bL+eFvjbiHJ18rJc5lAMGABpK7T0deJxYINsb4AIFAFVDUyLFPAd5qZH/dp3gOj71OdI/iGY6n4KwvsLfB9xnOZQ1NA/Zba1ObOEa0tTYbwPm5ZyPbXErTvwyAo9sYuAr4rBVtk87jydeKeI7j5Tr5CY4n3uI+Hn2tGGMuMMZsBT4Gfnys/aVDdeR18hZQCmQDe4DHrbUHjtg3Aiiw1tY0cn7dp3gOT75OxAMcT8GZaWTZkU8Im3zq2KITGDMRKLPWbmxm078D31prF7eibdJ5PPlaEc/h8deJMWYmjuDsV21tg7iER18r1tp3rbVDcTz9/n1b2yDt1pHXyQSgFugDDAB+YYwZ2Irz6z7Fc3jydSIe4HgKzjKA2AbfxwBZ9d84u3AvBN5osOxl56DKT5yL9td34zs/5xxxjsto/qnlA0AUcFdL2yadzpOvFfEcHn2dGGOSgReB86y1+a14XeJ6Hn2t1LPWfgvEG2MiW/KixOU68jq5AvjMWlttrc0BlgLjjjh/Ho50RZ9Gzq/7FM/hydeJeIDjKThbBSQ4K8z44fhH9kGD9afiGAidUb/AWnudtXaUtfZs56IPgGucX18DvF+/rTHGC5iLI/e3UcaY64EzgMuttXUNVn0AXO2shjQJKKzvbha38ORrRTyHx14nxph+wDvAVdba7e14jeIannytDHKOIcE4KvD5AQrm3aMjr5M9wCnO+4xgHEU9tjY8uXPs4QLg4kb2132K5/Dk60Q8gfWAqiQt/cBRbWg7jio3vzli3b+BG5vZPwL4Gkh1fg5vsG4GsLyZ/Wuc505xfvzOudwAf3Ou2wCMc/d7daJ/ePC10gvHU7MioMD5dTd3v18n6ocHXycvAgcbLF/t7vfqRP/w4GvlV8Am57JlwEnufq9O5I+Ouk5wVOV80/mz3gzc08T+A3EUjElzbu/vXK77FA/68ODrRPcoHvBRX35XRERERERE3Oh4SmsUERERERHpshSciYiIiIiIeAAFZyIiIiIiIh5AwZmIiIiIiIgHUHAmIiIiIiLiARSciYiIiIiIeAAFZyIiIiIiIh5AwZmIiIiIiIgH+H+UB9XjKOWUOAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACVNUlEQVR4nOzdd3hc1dHA4d/ZVZdWvVvdttzlbtNt0+tHQigBQkISQhqBBNIbpJNOOoH0BAKhBUJJgMQ0G9y75G5ZbdXrqm453x+7K8u2yvZdSfM+jx/bW+49kizrzp05M0prjRBCCCGEEEKI8DKEewFCCCGEEEIIISQ4E0IIIYQQQoiIIMGZEEIIIYQQQkQACc6EEEIIIYQQIgJIcCaEEEIIIYQQEUCCMyGEEEIIIYSIABKcCSGEEEIIIUQEkOBMCCEmKaWUZcQvh1Kqf8Tfbw73+nyhlKpWSl0Y7nWMRyn1mlLqtiAe/yGl1AHX1/TWU55TSqlvK6XqlVJdrrUsGPH8PKXU/1zPHVZKvfuU91+glNqvlOpTSq1XShWfcuzvK6XaXL9+oJRSwfo4hRBCnE6CMyGEmKS01knuX0ANcNWIxx4J9/pOpZSKmgrnCIFdwCeA7aM8dx3wIeBcIB14G/grDH/szwLPu567HfibUqrc9Xwm8DTwNdfzW4HHRxz7duBdwGKgArgS+GhAPzIhhBDjkuBMCCGmGKWUQSn1RaXUEVcG5B9KqXTXcyVKKa2U+qBSqlYp1aGU+phSaqVSardSqlMp9csRx7pVKbVBKfULVzZmv1LqghHPpyilfq+UMruyOd9WShlPee9PlVLtwH1KqZmuzE6bUqpVKfWIUirV9fq/AkXAv1zZv88rpdYqpepO+fiGs2tKqfuUUk8qpf6mlOoGbp1gTbOUUq+7PpZWpdTI4GTkOeJcx2xzfU62KKVylFLfwRkY/dK1xl+6Xj9XKfWKUqrdlfW6fsSx/qSUetD1fI/r/MWjnRdAa/0rrfV/gYFRni4F3tJaH9Va24G/AfNdz80F8oGfaq3tWuv/ARuAW1zPXwPs01o/obUeAO4DFiul5rqe/wDwY611nda6HvgxcOtY6xRCCBF4EpwJIcTUcyfODMganBfrHcCvTnnNamA2cAPwAPAV4EJgAXC9UmrNKa89CmQC9wJPu4M94M+ADZgFLAUuBm4b5b3ZwHcABXzPta55QCHOIAGt9S2cnAH8gYcf79XAk0Aq8MgEa/oW8DKQBhQAvxjjmB8AUlzrywA+BvRrrb8CvAnc4VrjHUqpROAV4FHXx3kj8OuR5YbAza5zZwI7Xev0xWPALKVUuVIq2rXOf7ueG60EUQELXX9egDMrB4DWuhc44nr8tOddfx75MQghhAgyCc6EEGLq+SjwFVcGZBBn8HPtKSV/39JaD2itXwZ6gb9rrZtdGZM3cQY1bs3AA1prq9b6ceAAcIVSKge4DPi01rpXa90M/BR474j3Nmitf6G1tmmt+7XWh7XWr2itB7XWLcBPcAaR/nhba/1PrbUDSJ5gTVagGMh3ffxvjXFMK86gbJYrC7VNa909xmuvBKq11n90fZzbgaeAa0e85gWt9Ruur8dXgDOVUoU+fKxmnF+fA0A/zjLHz7ie24/za/U5pVS0UupinJ/bBNfzSUDXKcfrAkxjPN8FJMm+MyGECJ2pUJsvhBDiZMXAM0opx4jH7EDOiL83jfhz/yh/Txrx93qttR7x9+M4M1/FQDRgHnH9bgBqR7x25J9RSmUDP8dZGmhyvb7Do49qbCPPMdGaPo8zg7VZKdWBs4zvD6Mc8684s2aPucou/4Yz4LWO8tpiYLVSqnPEY1GuY5y2Rq21xVXmmX/K2j1xL7DStbZG4H3A/5RSC7TWfUqpd+HMBn4B556yfwCDrvdacAavIyUDPWM8nwxYTvnaCyGECCLJnAkhxNRTC1ymtU4d8SvOlRXzxYxTsidFQIPrPINA5ojzJGutR5bCnXph/z3XYxVa62ScwYUa5/W9nMj84No7lnXKa0a+Z9w1aa0btdYf0Vrn48ww/lopNevUD9iVJfyG1no+cBbO7Nj7x1hjLfD6KZ/vJK31x0e8ZjhLppRKwtmQo+HU83pgMfC4Kytq01r/CWeJ5nzXundrrddorTO01pcAZcBm13v3ud7vXkciMNP1+GnPu/68DyGEECEjwZkQQkw9DwLfcTedUEplKaWu9uN42cCdrlK563DuFXtRa23GuX/rx0qpZFcjkpmn7Fc7lQlnhqZTKTUD+NwpzzfhDCjcDgJxSqkrXHusvgrEjnXwidaklLpOKVXgenkHzkDLfupxlFLrlFKLXMFgN84yR/frTl3j80C5UuoW1+co2tVgZd6I11yulDpHKRWDM3O3SWs9atZMKRWjlIrDGbRGu5qTuH9ebwGuczUnMSilbsGZKTzsem+F6/UJSqnPAnnAn1zvfQZYqJR6j+v4Xwd2a633u57/C3C3UmqGUiofuGfEe4UQQoSABGdCCDH1/Ax4DnhZKdUDvIOzMYevNuFsHtKKs6nHtVrrNtdz7wdigEqcwc6TOAOCsXwDWIZzP9MLOFu7j/Q94KuuDomf1Vp34Wwr/zugHmcmrY7xjbemlcAmpZQF5+foLq31sVGOket6XzdQBbyOs7QRnJ/fa5Wz0+XPtdY9OJuOvBdnNqwR+D4nB5GP4ixJbAeW42wQMpaXcZaWngU85Przea7nvo+zUcdOoBPnfrP3aK07Xc/fgnNfWjNwAXCRa58brj1+78H5NezA+W9i5P7A3wL/AvYAe3F+fX47zjqFEEIEmJJSciGEEGNRziHIt2mtzwn3WiYrpdSfgDqt9VfDvRYhhBCRTTJnQgghhBBCCBEBJDgTQgghhBBCiAggZY1CCCGEEEIIEQEkcyaEEEIIIYQQEUCCMyGEEEIIIYSIAFGhPFlmZqYuKSkJ5SmFEEIIIYQQImJs27atVWudNdpzIQ3OSkpK2Lp1ayhPKYQQQgghhBARQyl1fKznpKxRCCGEEEIIISLAhJkzpVQh8BcgF3AAD2mtf6aUehyY43pZKtCptV4SpHUKIYQQQgghxJTmSVmjDbhHa71dKWUCtimlXtFa3+B+gVLqx0BXsBYphBBCCCGEEFPdhMGZ1toMmF1/7lFKVQEzgEoApZQCrgfO92UBVquVuro6BgYGfHm7EGOKi4ujoKCA6OjocC9FCCGEEEKICXnVEEQpVQIsBTaNePhcoElrfciXBdTV1WEymSgpKcEZ5wnhP601bW1t1NXVUVpaGu7lCCGEEEIIMSGPG4IopZKAp4BPa627Rzx1I/D3cd53u1Jqq1Jqa0tLy2nPDwwMkJGRIYGZCCilFBkZGZKRFUIIIYQQk4ZHwZlSKhpnYPaI1vrpEY9HAdcAj4/1Xq31Q1rrFVrrFVlZo7bzl8BMBIX8uxJCCCGEEJPJhMGZa0/Z74EqrfVPTnn6QmC/1rouGIsLle985zssWLCAiooKlixZwqZNzqrN2267jcrKyoCco6SkhNbW1nFf893vftfr4/7pT3/ijjvuOOmxP/7xjyxZsoQlS5YQExPDokWLWLJkCV/84he9Pn4oPPDAA/T19YV7GUIIIYQQQoSVJ3vOzgZuAfYopXa6Hvuy1vpF4L2MU9I4Gbz99ts8//zzbN++ndjYWFpbWxkaGgLgd7/7XUjX8t3vfpcvf/nLfh/ngx/8IB/84AcBZ1C4fv16MjMz/T6ur7TWaK0xGEa/F/DAAw/wvve9j4SEBI+PabPZiIoK6Qx1IYQQQgghgmrCzJnW+i2ttdJaV2itl7h+veh67lat9YPBX2bwmM1mMjMziY2NBSAzM5P8/HwA1q5dy9atWwFISkriC1/4AsuXL+fCCy9k8+bNrF27lrKyMp577jng9CzWlVdeyWuvvXbaOd/1rnexfPlyFixYwEMPPQTAF7/4Rfr7+1myZAk333wzAH/7299YtWoVS5Ys4aMf/Sh2ux1wZsbKy8tZs2YNGzZs8Phj/eEPf8jKlSupqKjg3nvvBaC6upq5c+dy2223sXDhQm6++WZeffVVzj77bGbPns3mzZsBuO+++7jllls4//zzmT17Ng8//PCEx503bx6f+MQnWLZsGbW1tXz84x9nxYoVLFiwYPh1P//5z2loaGDdunWsW7du+HPt9uSTT3LrrbcCcOutt3L33Xezbt06vvCFL3DkyBEuvfRSli9fzrnnnsv+/fs9/lwIIYQQQojAe2JrLbtqO8O9jEnL44YgU9XFF19MbW0t5eXlfOITn+D1118f9XW9vb2sXbuWbdu2YTKZ+OpXv8orr7zCM888w9e//nWvzvmHP/yBbdu2sXXrVn7+85/T1tbG/fffT3x8PDt37uSRRx6hqqqKxx9/nA0bNrBz506MRiOPPPIIZrOZe++9lw0bNvDKK694XHb58ssvc+jQITZv3szOnTvZtm0bb7zxBgCHDx/mrrvuYvfu3ezfv59HH32Ut956ix/96EcnlVru3r2bF154gbfffptvfvObNDQ0jHvcAwcO8P73v58dO3ZQXFzMd77zHbZu3cru3bt5/fXX2b17N3feeSf5+fmsX7+e9evXT/hxHDx4kFdffZUf//jH3H777fziF79g27Zt/OhHP+ITn/iEV18HIYQQQggROANWO197di/P7KgP91ImrYiqC/vGv/ZR2dA98Qu9MD8/mXuvWjDm80lJSWzbto0333yT9evXc8MNN3D//fcPZ2vcYmJiuPTSSwFYtGgRsbGxREdHs2jRIqqrq71a089//nOeeeYZAGprazl06BAZGRknvea///0v27ZtY+XKlQD09/eTnZ3Npk2bWLt2Le7mKjfccAMHDx6c8Jwvv/wyL7/8MkuXLgXAYrFw6NAhioqKKC0tZdGiRQAsWLCACy64AKXUaR/b1VdfTXx8PPHx8axbt47Nmzfz1ltvjXnc4uJizjjjjOH3/+Mf/+Chhx7CZrNhNpuprKykoqLCq8/dddddh9FoxGKxsHHjRq677rrh5wYHB706lhBCCCGECJyt1R0MWB2cVx6+7TSTXUQFZ+FiNBpZu3Yta9euZdGiRfz5z38+LTiLjo4e7v5nMBiGyyANBgM2mw2AqKgoHA7H8HtGa+P+2muv8eqrr/L222+TkJDA2rVrR32d1poPfOADfO973zvp8X/+858+dSHUWvOlL32Jj370oyc9Xl1dPfyxjPexwendD5VS4x43MTFx+O/Hjh3jRz/6EVu2bCEtLY1bb711zDb3I89z6mvcx3Q4HKSmprJz586JPnQhhBBCCBECrx9sJsZo4IyyjIlfLEYVUcHZeBmuYDlw4AAGg4HZs2cDsHPnToqLi306VklJCb/+9a9xOBzU19cP79caqauri7S0NBISEti/fz/vvPPO8HPR0dFYrVaio6O54IILuPrqq/nMZz5DdnY27e3t9PT0sHr1au666y7a2tpITk7miSeeYPHixROu7ZJLLuFrX/saN998M0lJSdTX1xMdHe3Vx/fss8/ypS99id7eXl577bXhUkxPjtvd3U1iYiIpKSk0NTXx0ksvsXbtWgBMJhM9PT3DTUtycnKoqqpizpw5PPPMM5hMptOOl5ycTGlpKU888QTXXXcdWmt2797t0edCCCGEEEIE3hsHW1lRkkZCTESFGJPKtP/MWSwWPvWpT9HZ2UlUVBSzZs0abtLhrbPPPnu4RHDhwoUsW7bstNdceumlPPjgg1RUVDBnzpyTyv5uv/12KioqWLZsGY888gjf/va3ufjii3E4HERHR/OrX/2KM844g/vuu48zzzyTvLw8li1bNtwoZDwXX3wxVVVVnHnmmYCznPNvf/sbRqPR449v1apVXHHFFdTU1PC1r32N/Px88vPzPTru4sWLWbp0KQsWLKCsrIyzzz77pI/7sssuIy8vj/Xr13P//fdz5ZVXUlhYyMKFC7FYLKOu55FHHuHjH/843/72t7Farbz3ve+V4EwIIYQQIgwauwY40NTDl5bNDfdSJjWltQ7ZyVasWKHd3Q/dqqqqmDdvXsjWIHxz3333kZSUxGc/+9lwL8Ur8u9LCCGEECL4/rG1ls8/uZuX7jqXeXnJ4V5ORFNKbdNarxjtuWnfrVEIIYQQQgjhn9cPtpBtimVu7unbUYTnpn1Zo/DMfffdF+4lCCGEEEKICGR3aN461MqF83J8alwnTpDMmRBCCCGEEMJnu+s66eq3smZOVriXMulJcCaEEEIIIYTw2RsHW1EKzp0l8838JcGZEEIIIYQQwmdvHGqhYkYKaYkx4V7KpCfBmRBCCCGEEMInXX1WdtR0cF65lDQGggRngNFoZMmSJSxcuJDrrruOvr4+n49166238uSTTwJw2223UVlZOeZrX3vtNTZu3Dj89wcffJC//OUvPp/brbq6moULF5702H333cePfvQjr44TqPUIIYQQQoipacORVhwaCc4CRLo1AvHx8ezcuROAm2++mQcffJC77757+Hm73e7VsGa33/3ud+M+/9prr5GUlMRZZ50FwMc+9jGvzxEsNpstotYjhBBCCCEizxsHWzDFRbG0MDXcS5kSJlfm7Ac/gPXrT35s/Xrn4wFy7rnncvjwYV577TXWrVvHTTfdxKJFi7Db7Xzuc59j5cqVVFRU8Nvf/hYArTV33HEH8+fP54orrqC5uXn4WGvXrsU9dPvf//43y5YtY/HixVxwwQVUV1fz4IMP8tOf/pQlS5bw5ptvnpTd2rlzJ2eccQYVFRW8+93vpqOjY/iYX/jCF1i1ahXl5eW8+eabXn+M4x37y1/+MmvWrOFnP/vZ8HoaGhpYsmTJ8C+j0cjx48c5fvw4F1xwARUVFVxwwQXU1NQAzuzhnXfeyVlnnUVZWdlwJlEIIYQQQkwdWmveONjC2TMziTJOrrAiUk2uz+LKlXD99ScCtPXrnX9fuTIgh7fZbLz00kssWrQIgM2bN/Od73yHyspKfv/735OSksKWLVvYsmULDz/8MMeOHeOZZ57hwIED7Nmzh4cffvikMkW3lpYWPvKRj/DUU0+xa9cunnjiCUpKSvjYxz7GZz7zGXbu3Mm555570nve//738/3vf5/du3ezaNEivvGNb5y0zs2bN/PAAw+c9PhIR44cOSmgevDBBz06dmdnJ6+//jr33HPP8GP5+fns3LmTnTt38pGPfIT3vOc9FBcXc8cdd/D+97+f3bt3c/PNN3PnnXcOv8dsNvPWW2/x/PPP88UvftHLr4QQQgghhIh0h5stNHQNSEljAEVWWeOnPw2u8sIx5efDJZdAXh6YzTBvHnzjG85fo1myBB54YNxD9vf3s2TJEsCZOfvwhz/Mxo0bWbVqFaWlpQC8/PLL7N69ezgL1NXVxaFDh3jjjTe48cYbMRqN5Ofnc/755592/HfeeYfzzjtv+Fjp6enjrqerq4vOzk7WrFkDwAc+8AGuu+664eevueYaAJYvX051dfWox5g5c+ZwqSacGCI90bFvuOGGMde1YcMGfve73w1n695++22efvppAG655RY+//nPD7/2Xe96FwaDgfnz59PU1DTuxyuEEEIIISaf1w+2AHBeubTQD5TICs48kZbmDMxqaqCoyPl3P43cczZSYmLi8J+11vziF7/gkksuOek1L7744oST0LXWAZ2WHhsbCzgbmdhstoAdF07+mEcym818+MMf5rnnniMpKWnU14z8GN1rBOfHL4QQQgghppY3DrUyMyuRgrSEcC9lyoisssYHHoDXXhv/1733Ql8ffO1rzt/vvXf810+QNfPUJZdcwm9+8xusVisABw8epLe3l/POO4/HHnsMu92O2Wxm/al74oAzzzyT119/nWPHjgHQ3t4OgMlkoqen57TXp6SkkJaWNpyh+utf/zqc6fKXL8e2Wq1cf/31fP/736e8vHz48bPOOovHHnsMgEceeYRzzjknIGsUQgghhBCRbcBqZ9PRNilpDLDJlTlz7zH7xz9g3Trnr5F/D6LbbruN6upqli1bhtaarKws/vnPf/Lud7+b//3vfyxatIjy8vJRA52srCweeughrrnmGhwOB9nZ2bzyyitcddVVXHvttTz77LP84he/OOk9f/7zn/nYxz5GX18fZWVl/PGPfwzYx+LtsTdu3MiWLVu49957uffeewFnxvDnP/85H/rQh/jhD39IVlZWQNcohBBCCCEi16Zj7QzaHBKcBZgKZcnZihUrtLt7oVtVVRXz5s3z7AA/+IGz+cfIQGz9etiyBUbsdxLCzat/X0IIIYQQwiPfer6Sv75znF1fv5j4GO9HTk1nSqltWusVoz03uTJnowVg7gyaEEIIIYQQIiTeONjCqpJ0CcwCLLL2nAkhhBBCCCEiWkNnP4eaLayRksaAk+BMCCGEEEII4bE3hlvoS3AWaBERnEmrdREM8u9KCCGEECLw3jjUQm5yHOU5o49XEr4Le3AWFxdHW1ubXEiLgNJa09bWRlxcXLiXIoQQQggxZdjsDt461Mq5szMDOsdXOIW9IUhBQQF1dXW0tLSEeyliiomLi6OgoCDcyxBCCCGEmDJ21XXRPWBjzRwpaQyGsAdn0dHRlJaWhnsZQgghhBBCiAm8cbAFg4JzZmWGeylT0oRljUqpQqXUeqVUlVJqn1LqrhHPfUopdcD1+A+Cu1QhhBBCCCFEOL1+sIWKglRSE2LCvZQpyZPMmQ24R2u9XSllArYppV4BcoCrgQqt9aBSKjuYCxWTW9+QjW88V8m6uVlcujAv3MsRQgghhBBe6uwbYnddJ3ecPzvcS5myJgzOtNZmwOz6c49SqgqYAXwEuF9rPeh6rjmYCxWTl2XQxof+tIXNx9o51torwZkQQgghxCT01uFWHBqZbxZEXnVrVEqVAEuBTUA5cK5SapNS6nWl1MogrE9Mcj0DVj7wh81sO97B4oIUdtZ2MmC1h3tZQgghhBDCS28cbCE5LorFBSnhXsqU5XFwppRKAp4CPq217saZdUsDzgA+B/xDjdJPUyl1u1Jqq1Jqq3RknF66+q287/eb2VXbyS9vXMqnzp/NkN3BjprOcC9NCCGEEEJ4QWvN6wdbOGd2JlHGsE/jmrI8+swqpaJxBmaPaK2fdj1cBzytnTYDDuC0ti1a64e01iu01iuysiQFOl109g3xvt9torKhi1/fvIzLFuWxsjQdpWDTsbZwL08IIYQQQnjhYJOFpu5Bzpst1/PB5Em3RgX8HqjSWv9kxFP/BM53vaYciAFag7BGMcm09w5x48ObONDYw29vWc7FC3IBSImPZl5uMpuPtYd5hUIIIYQQwhtvHHRWwJ0n+82CypPM2dnALcD5Sqmdrl+XA38AypRSe4HHgA9orXUQ1yomgVbLIDc+9A5HWyw8/IEVnD8356TnV5els72mgyGbI0wrFEIIIYQQ3nrjUAuzs5PIT40P91KmNE+6Nb4FnLaXzOV9gV2OmMyauwe46XebqOvo4w+3ruTsUYYTri5N548bqtld18mKkvQwrFIIIYQQQnijf8jOpmPt3HJGcbiXMuXJbj4REI1dA7z3oXdo6OznTx9cNWpgBrCqNAOATVLaKIQQQggxKbxzrI0hm0NKGkNAgjPht/rOfm546G2aewb5y4dWcUZZxpivTU+MoTwnSYIzIYQQQohJ4o2DLcRGGVhdKlVPwSbBmfBLbXsfN/z2bdotQ/zlw6s8KlVcXZrBtup2bHbZdyaEEEIIEeneONjC6rIM4qKN4V7KlCfBmfBZq2WQ9z70Dt39Vh75yGqWFaV59L5Vpen0DtnZ29Ad5BUKIYQQQgh/1Hf2c6Sll/Nmj75lRQSWBGfCZ49vqaW+s5+/fng1FQWpHr9vdZkzu7bpqMw7E0IIIYSIZJWum+nSyC00JDgTPtFa8+S2OlaXprO4MNWr92ab4ijLTJR5Z0IIIYQQEa7NMghAlik2zCuZHiQ4Ez7ZXtPBsdZerl1e4NP7V5els7m6HbtDRuMJIYQQQkSqtt4hADISY8K8kulBgjPhkye21pEQY+TyRXk+vX9VaTo9AzaqzLLvTAghhBAiUrVZhkiMMUozkBCR4Ex4rX/IzvO7zVy+KI/E2AnnmI9qtcw7E0IIIYSIeG29g2QkSUljqEhwJrz2n32NWAZtPpc0AuSnxlOYHs/mY9IURAghhBAiUrX3DpEuJY0hI8GZ8NoT22opTI9nlZ9de1aVZLD5WDsO2XcmhBBCCBGRWi1DZCZJcBYqEpwJr9R19LHxSBvXLivEYFB+HWt1WTodfVYONVsCtDoxmf3mtSN86E9bwr0MIYQQQozQ3jtIRqKUNYaKBGfCK89sr0druGbZDL+PdYZr35mUNgqAVyobee1AMwNWe7iXMuXtqetiX0NXuJchRNjUd/ZztEVuDAoxEa21s6xRMmchI8GZ8JjWmie313FmWQaF6Ql+H68wPZ68lDjekaYg057dodnf2INDwxG5YAq6Tz++g68/uy/cyxAibO78+w5u+8vWcC9DiIjXPWDDatfSRj+EJDgTHttS3cHxtj6uW+F7I5CRlFKsKk1n09F2tJZ9Z9PZ8bZe+oacGbODTT1hXs3U1moZ5EhLL9WtveFeihBh0dDZz7bjHRxt6aW5eyDcyxEiorkHUGdI5ixkJDgTHntyWy2JMUYuXZgbsGOuLs2g1TLIUblQnNaqzCcCsgONkjkLpq3Vzkx1W+8Q3QPWMK9GiNB7aW/j8J9lnIsQ4zsxgFr2nIWKBGfCI31DNl7YbeaKijwSYnybbTaa1WXOjo+bQ/gD8nBzDw2d/SE7n5hYpbmLKIOiNDORQ5I5C6qRF6PHW/vCuBIhwuPFPWbm5JhIio1ik+x5FmJcbRZXcCaZs5CR4Ex45KU9jfQO2bluRWFAj1uWmUhmUiybjobuB+Ttf9nGl5/ZE7LziYlVNnQzKzuJhTNSOCDBWVBtqW4n0zVMtLpNMtZiejF3OUsar1qcx/LiNDYdlcyZEONp63WVNUrmLGQkOBMeeXJbHcUZCawoTgvocZVSrC5NZ9Ox0Ow76x+yc6ytl63VHdhlvlrEqDR3Mz8vmTk5SdR19NM7aAv3kqakngErlQ3dvHtpPuDc6yfEdPLSHmdJ4+WL8lhdls6hZsvwnhohxOnaXZkzGUIdOhKciQnVtvfx9tE2rl1WgFL+zTYbzeqydMxdA9S2B7/U8EiLBa3BMmjjQKNkaCJBq2WQpu5B5ucnMzvHBCCz74Jk2/EOHBrWzskmJzmW6jYpaxTTy0t7zczNNVGWlcTqUmdZ/ZZqyZ4JMZa23iFMcVHEREnIECrymRYTemp7HUrBNcsD06XxVKtd885CUfs/sk37tuPyAzkSVJm7AVyZM2dwdlAC56DYfKydKINiaVEqxRmJkjlz0VrjkEz6lNfUPcDW4x1cvigPgEUzUomLNkhTECHG0WoZHC6FF6EhwZkYl8OheWp7HWfPzGRGanxQzjE7O4nUhOiQ/IA81GTBaFBkJsWw9XhH0M8nJlbZ4AzO5uUlU5ieQGyUQdrpB8mW6nYWzkghISaK0oxEyZzhDMzufGwn1/327XAvRQTZS3vMaM1wcBYTZWBZkew7E2I87b1DUtIYYhKciXFtOtZObXs/1wYpawZgMChWlaSHJHN2qLmHkowEVpWms7VagrNIUGnuJj8ljrTEGIwGxeycJGkKEgQDVju7artY5SrlKs5MoKVncNrv7/v1a0f4164GdtR0MGizh3s5Iohe3NPInBwTs7KThh9bXZpBVWM3XX0yVkKI0bRZhmQAdYhJcCbG9eS2OkyxUVyyIHCzzUazuiyD2vb+oLe4P9RsYVZ2EsuL06nv7MfcJS31w62yoZv5+cnDfy/PMUnmLAh21nYyZHewqsQZnJVkJAJwfBpnz14/2MKPXj5AXkocDg010/hzMdU1dw+w5Xg7ly06+WfZ6rJ0tIatUuYuxKjaeofIkLLGkJLgTIypd9DGS3vNXLk4j/gYY1DP5d6YHcx5Z0M2B8fb+pidbRruOinZs/AasNo52trL/LyTg7Om7kG5kx1gW1zfWytKnP/2izMSgOnbsbGmrY87/76DOTkmfnrDEuDkPaliavn3vka0hitcJY1uSwpTiTHKvjMhRuNwaDr6JHMWahKciTG9sMdM35A9qCWNbvPykjHFBXcgaHVbL3aHZnZOEvPzk4mPNrJN9p2F1cGmHuwOfVLmbLgpSLNkzwJpc3U7c3NNpCY4f8gWuzJnx6ZhcNY/ZOejf9uG1prf3rKcBa5/f0dapt/nYrp4YbeZ2dlJwx1h3eKijSwpTA3prE0hJouufit2h5YB1CEmwZkY05Pb6ijLTGRZUWBnm43GaFCsLEkP6sbsQ03Ou+KzspOINhpYUpgqpSxhNrIZiFt5rvPiSUYdBI7N7mDb8Q5WukoaAZJio8hMiuV46/Qq5dNa88Wnd7O/sZuf3biU4oxETHHR5CTHclSCsympuWeAzdXtw41ATrW6LJ29Dd1Ypvn+SyFO5R5ALQ1BQkuCMzGq4229bD7WznuWB2e22WhWl6ZztLWX5u6BoBz/UHMPSsHMLOdm8BUlaVSZe6Z9Q4RwqjR3kxQbRWFawvBj+SlxJMVGcUj2nQXMvoZu+obsw81A3EoyEqieZpmzP2yo5tmdDdx9YTnr5mQPP16WmSRljVPUf/Y2ntSl8VSrStOxO7RUUghxilbXAGpppR9aEwZnSqlCpdR6pVSVUmqfUuou1+P3KaXqlVI7Xb8uD/5yRag8tc0122zZjJCdc3WZc97Z5iANBD3UbKEwLYG4aOf+ueXFadgdmp21nUE5n5hYZUM38/JMGAwnbgAoJR0bA809ZPfU4Mw562z6ZM7ePtLGd1+s4qL5OXxy3ayTnivLSuRoiwWtZd7ZVPPinkZmZiVSnpM06vPLi9OIMig2h6BjsBCTSXuvMziTssbQ8iRzZgPu0VrPA84APqmUmu967qda6yWuXy8GbZUipJyzzeo5Z1YmeSnBmW02mgX5ySTEGINW2ni4ycLsES2UlxWnodSJC9dQq23vo65j+lwYn8rh0FSZu09qBuJWnm0aLkOdSroHrPQNhT5Tu+lYO8UZCeQkx530eElGAo3dA/QPTf0W8g2d/dzx6HaKMxL4yfWLT7ohAM6MeveAjTbXxYiYGlotg2w61sYVi/LGrAJJiIli4YwUmXcmxCnaLFLWGA4TBmdaa7PWervrzz1AFRC6dIoIuXeOtlHfGdzZZqOJNhpYXpwWlKYgNruDo60WZo24c5ocF82cHFPYSlnueHQ7dz++KyznjgQ17X30DtlPagbiVp5roq13iFbXD4apYGt1O2ff/z++9s99IT2vw6HZWt0+3EJ/pOJMZ1OQmvapfZNgwGrn43/bxoDVzkO3LMcUF33aa8qynJ+LI81T76bAdPbvvY04NFxeMXpJo9vqsnR21XVOixsVQnjKfbMqPUGCs1Dyas+ZUqoEWApscj10h1Jqt1LqD0qp4HeNECHxxLY6THHBn202mjPKMjjYZBlOpQdKTXsfVrtmdvbJnbpWlKSxo6YTuyO0pUx9Qzb2NnSzp74r5OeOFJVmZzOQ+Xkppz033LFxijQFef1gC+/7/SZ6BmxsrwntzYDDLRY6+qysLD09OCt1dWycyvvOtNbc++w+dtV18ePrlzDrlP8D3Nx7UY+2Tt3PxXT04h4zZZmJw/+njOWM0gysds2OWtl3JoRbm2WI1IRooozSoiKUPP5sK6WSgKeAT2utu4HfADOBJYAZ+PEY77tdKbVVKbW1paXF/xWLoOoZsPLSXjNXLc4f3psVSquCNO/skOtu+MiyRoAVxelYBm3sb+wO6PkmsrvOGZT1W+0ca52ed+qrzN0YDc79Zady7w2ZCsOoX9xj5rY/b6E0M4lbziimuq03pKWN7u+l1aMEZ0XTYNbZo5treHxrLZ9cN5NLF459wyk/NZ7YKANHpSnIlNFmGeSdo21cPk5Jo9vykjQMCiltFGKEtt5BmXEWBh4FZ0qpaJyB2SNa66cBtNZNWmu71toBPAysGu29WuuHtNYrtNYrsrKyArVuESQv7jEzYHWEvKTRraIghdgoQ8BLGw+7grOZpwRny13DqENd2jgye7KvIbSBYaSobOhmVlbSqDcBskyxpCZEc2CS7zt7fEsNdzy6ncUFqTx2+xmcPSsTrQnpfrrNx9rJNsVSlJ5w2nMp8dGkJ8ZQPUWbgmw73sF9z+3jvPIs7r5ozrivNRoUpZmJ0k5/CvnPviZnSeMYXRpHSo6LZn5+csBvDAoxmbVZhshIlE6NoeZJt0YF/B6o0lr/ZMTjI/+3ezewN/DLE6H29pE2cpPjWFqYGpbzx0YZWVaUFvC7l4eaeoZbtI9UkBZPTnIsW6tDG5ztqOmkMD2emCjD9A3OzN2j7jcDZ8fG8hzTpM6cPfzGUb7w1B7OmZ3FXz68ipT4aOblOUurQpWp1Vqz+Vg7q0rTx8wcFGckTMnMWXPPAJ94ZBt5KfH8/L1LMBomHglSlpUo7fSnkBf3mCnNTBz+vpvI6tIMttd0MGiTfWdCgHPPmXRqDD1PMmdnA7cA55/SNv8HSqk9SqndwDrgM8FcqAiNFssg+alxIZttNprVZelUNXbT1W8N2DEPNVuYNcqeA6UUK4rT2RrCjo1aa3bUdLCyOJ25uSb2NXSF7NyRor13CHPXwLgXTeU5SRxs6pl0rc211vz45QN858UqrliUx+/ev4KEGOdNgcK0BBJijFSZQxN01nX009g9cFoL/ZFKMhKpnoKDqO/8+w66+q08+L7lpHq4mb0sM4najn6GbI4gr04EW3vvEG8fbeOyhbke/zxbVZrOoM3B7rrp93+yEKNpl+AsLDzp1viW1lpprStGts3XWt+itV7kevz/tNbmUCxYBFdLzyBZpvCmsFeVpqM1AQuYHA7NkRbLafvN3FaUpNHQNUBDZ39AzjeR2vZ+Wi1DLC1OY0F+MvsaugMagDgcmu++WMVzuxoiNrCpGqcZiNucHBM9AzYagzSUPBgcDs19z+3jF/87zA0rCvn5jUuJiTrx36zB4MwIHghRoxN3idZ4wVlxRgINXf0MWKdOtqChs593jrZz5wWzx8zOjmZmdiJ2h6amfeplEqeb/+xrxO7QHpU0urk7mkppoxBgd2g6+oZIl7LGkJP2K+IkrZahsE+CX1aURozRwKYA/YCs7+xnwOoYOzgrdv5A3hqifWfubmDLilKZn59CZ5+V+gAGhodbLDz0xlHu/PsOPvznrSELOr1R6SrlHC9zNtvdsXGS7Duz2h3c88Qu/vz2cW4/r4z737No1FK6eXkm9jcGNiAfy+Zj7aTER1M+RodCcGbOtGZKzdxz7yE9Z1amV+8ry3T+H3G4WYKzye7FPWaKMxJY4EVwnpYYw5wcE+8clWHUQnT0DaE1ZErmLOQkOBPDrHYH7b1DYc+cxUUbWVyYwqYA/YA81OzMUswaIzibl2ciIcbIthCVNm4/3kFCjJE5OSYWui4cArnvbGdNJwAfObeUt4+0cfFP3+Cv7xzHEUEt+yvN3eQmx5Exzo2A8knUTt85R2s7z+yo53OXzOFLl80ds5RqTo6Jjj4rLT3Bn+G2pbqdlSVppw1cHqnY1bFxKpU2bjveQXy0kXmjDDgfj3vW2dFp2kF1qujoHWLjEc+6NJ5qdVk62453YLVHXmlrR+8Qn3tiV0BL/oUYS5vFNeNMujWGnARnYpj7GzHcwRk4y7D2NnTTO+h/y3F3Z7yxgrMoo4ElhakhzJx1UlGQQpTRwNzcZAwqsMHZjtoOUuKj+dJl83j5M+expDCVr/1zL+996J2IaXZQ2TB2MxC39MQYskyxHIjwpiCWQRsf/OMWXq1q4ptXL+CT62aNe0E41xUwVAU56GzuGeBoa++4JY3gzJzB1Jp1tu14B0sKU4n2cjaPKS6abFOsdGyc5F6udJU0LvS8pNFtdWkGfUP2iGzU9NbhVp7YVsf/9jeFeyleee1Ac8jnOwr/tVmcNxClW2PoSXAmhrW6vhHDXdYIsLIkHbtDB+Q/9EPNFldr9rHv/qwoTqPK3I0lAMHgeAasdiobulla5GzhHx9jZGZWEpUBbAqyo6aTxYWpGAyKwvQE/vrhVfzg2gr2N3Zz2c/e5FfrD4f1rvCA1c6RFgvzPchqlOckcShCg7PuASvP727gxofeYXN1Oz+9YTHvP7NkwvfNzXV1bDQH9+LP3YF0Zcn4wVlqQjTJcVEcnyLt9HsHbVSau4fHZHhLOjZOfi/saaQwPZ6FM7zLnAKsLHX+uwlU5UYg1bQ7v0d3uKojJouv/nMv7/3tO7y0R1oTTCZtvc4b9lLWGHoSnIlh7jKrSMicLS92DgTdEoB9Z4ebx24GMny+knQcGnYE+e7envoubA7NsqITF44L8pPZWx+YC/XeQRsHm3pYMmIUglKK61cU8uo9a7hwXjY//M8Brv7lBvaEqSPZ4WYLNof2qFGDs52+JSJKMrV2NpZ5+I2j3PjQOyz75ivc8egO6jr6ePB9y3n3Us9mA6YmxJCbHBf0piCbj7UTH21k4Yyxm66A899HSWbilMmc7arrxO7QLC/xNThL4mhLb8Q20xHj6+wbYuPhVp9KGgGyTXGUZSVGZFOQWldwNpmyUHaHprFrAI3mk49u57HNNeFekvCQO3MmZY2hFzXxS8R0MRycRUDmzOQeCOrnPjCtNYebLbxn2YxxX7esKBWDcmYbzp0dvGHp212lk0uLUocfW5Cfwj93NtBmGRx3D5Yndtd14dAnH98t2xTHr29ezr/3NvL1Z/fyrl9v4LZzS/nMheWjDoIOFnczEM8yZyb6rXbqOvopyjh9iHKwDdkcbD7Wzn/3N7F+f/PwsOY5OSY+cl4Z58/NZmlhKlFels/NzTMFvaxx07F2lhV7VtpXkpHIztrOoK4nVLa5MobLCn0LzmZmJdHVb3W1kA7//4XCOy9XNmFzaK7wokvjqVaXZvD87gbsDu3RfLxQcWfOqsw99A3Zhkd0RLJWyyA2h+Yrl8/jrcOtfPHpPXT2W/nYmpnhXpqYQHvvEAaFx6NIROBE/ne2CJkWS+RkzsBZjvXophqGbI6T2pF7o7F7AMugbdQZZyOZ4qKZk5s83OUtWLbXdFCUnnBS6eiCGSeagpxX7l9g6L7AXlKQOuZrLl2Yy5kzM/jei1X89vWj/GdvIz++fonPZWDeqjR3kxhjpCh94mBruClIU0/IgrOufiv/2dfI/6qaeetwK5ZBGzFRBs6amcGHzyll3dxsCtL8W8ucXBMbD7dhtTu83hflia5+K/sbu/n0BeUevb4kI4Hndzf49b0WKbYe76A8J4mUhGif3u9uCnKkpVeCs0noxT1mCtLiWTRBxng8q0vT+fvmGqrM3RNmnkOptqOPtIRoOvqs7K7r4oyyjHAvaULubsFlWYl84KwS7nliF/e/tJ+O3iG+OE7jJBF+rb1DpCXERNQNiulicv8UFgHV0jOIKTYqpFmU8awqcQ4E3VPve/ndcDOQrPHLGsG572xHTQe2IO3H0lqzvaaTZadktRa4Zn0FYgP6jpoOSjMTSZugDCElPpr731PBo7etxubQfPKR7SErHaxs6GZeXvK4HQTdynOcX7dQNAVp7h7gey9Wcfb9/+PzT+5mZ20n/7ckn9+9fwU7v34Rf/rgKm45s8TvwAxgXm4yQ3YHx1qDU0q47Xg7Wp/YPzOR4oxEHJqAjnQIB4drn6o/NxpmutrpH5V9Z5NOV5+VDX6UNLq5m+hEUmmj1e6goXNgeG7bZCltNHc551TmpcQTE2XggRuW8L4zivjtG0f54lN7gvbzVviv3SIDqMNFgjMxrNUySGaEZM0AVrgaGWzxo7TxULPzAmt2jgfBWUkavUN29gep3Ky+s5+WnsHhZiBuKQnRFKTFs8/PpiBaa3bUdp6032wiZ83K5POXzqWxeyAk3SodDk2ludvjFuemuGjyU+KC2hSkpq2Przyzh3N+sJ6H3zzK2jlZPPvJs3n7S+fz3Xcv4sL5OQEvH5rjagpSFaSmIJuPdRBtVCz1sLSvJNPdTn9y7zs71GyhZ8DG8uLxm6CMZ0aa8yLy6CT/XExHL1c2YrV7N3h6NPmp8RSmx7PpWOQ0BTF3DmB3aBYXplKamcj2453hXpJHTgRncQAYDYpvXb2QO8+fxeNba7nj0R0MWO3hXKIYQ1vvoHRqDBMJzsSwlp7BiNhv5pZliqUsM9GvpiCHmy2kJUST4cGGVvfd9mCVNro7bC0rOv2CeUF+st+Zs4auAVfwl+rV+y6cl018tJF/7Wrw6/yeqOvoxzJo86gZiFt5rokDQRhEvb+xm7se28HaH63nia11vGfZDP53z1p+edMyFhemBrXcZmZWElEGFbSmIJuPtbFoRgrxMZ5lwYunSDt99/fuCj8yZ0aDojQjkSPNkjmbbF7a28iM1HgWF/hfiri6NIPNx9ojpjGMe79ZUXoCS4tS2VHTETFrG4+5s5+4aAOpI8qMlVLcffEcvn7lfP69r5EP/WlL0DslC++1WYZIl8xZWEhwJoa1WAYjZr+Z28qSdLYe7/C55O5wcw+zs00eXWjPSI0nLyXOr0zdeLbXdBAXbWBu3un73xbmp3CstdevH1Du4dPeZM4AEmKiuGBeNi/uMQe9xKTS7MwOetIMxG1OjokjzZaArW3b8Q5u+/MWLn3gTV6pbOLD55Ty5hfW8b1rKijJTAzIOSYSE2VgZlZSULK0/UN29tR3sarU8/0oGYkxJMVO/nb6W4+3k5EYMzxY21dlWYmSOZtkmroHePNQC5ctzA3IjZXVpel09FmHqy/CbWRwtqwojbbeoeHHIpm5a4D8lPhRvyYfOqeUn1y/mE3H2rn54Xdod7VuF5GhrXeITOnUGBYSnIlhrT2DETfPYmVpOl39Vg42e38Rq7XmYJOFWR6UNILzbt7y4rSgZc6213RSMWP07nnupiD+lLntqOkgJso52NpbVy3Op613iLeDPNunsqEbgzpR1ueJ2TkmhuwOjvtxIaK15vWDLdzw27d5z282svV4B5+5sJyNXzyfr1wxn5zkOJ+P7au5eaagZM521HZgtWtWebjfDJz/9oszEiZ95mz7ced+M38vzsuyEqlp72PIJvthJouf//cQWsMtZxYH5HirXTc3ImXeWW1HHzFGAznJccPVF5Nh35m5q5+81LH/f71mWQG/fd9y9jf2cP1v38bcNbn3vU4VVruDrn4r6VLWGBYSnAnAORi4e8AWcZmzVe59Zz6UNrZahujqt3rUDMRtRXEa5q6BgDdGcA6f7mJpceqozy/IdzUF8aP5yc7aThbNSPGp296a8ixMsVFBL22sNPcwMyvJq6Yzc9wdG30MZLTWfPjPW/nAHzZzvK2Pr14xjw1fOJ+7Lpwd1hbBc3OTqe/sp6vfGtDjbjnWgVJ4ve+qJCNxUmfOWnoGqW7rC0jX0ZlZSdgdelJkJgQca+3lsS213LiqaLhE11+F6c5Kik0R0hSkpr2PGWnxGA2KObkmEmOMk2IYtblrgNzk+HFfc+H8HP7yoVU0dQ1w7W/eliHwEaDDlcWUhiDhIcGZAJzNQCBy2ui7FabHk5Mcy+Zq7+8QHnJl2zxpBuLmbkKyNcCljfsaurDa9ZgNGrJNsWQmxfi878xqd3a19Lak0S0u2sjFC3L5995GBm3B25xdZe72ar8ZwKzsJJTyvWPjztpO/re/mY+vncnrn1/LbeeWkRgb/ikic3NPjAkIpM3VbczLTSYl3rtW8sUZCdS2903a7mnuLMIKH4dPj1TmuqEjF4mTw09eOUiM0cCnLpgVsGMqpVhdms6mCNl3VtveR6Fr/IjRoFhcmBrxmTOb3UFT9wD542TO3FaXZfD3289gwGrn5oc3YQ9R92AxulaLKziTssawkOBMACe+ETMjqCEIOH9ArixJZ4sPPyDdG/pnZ3teQjc310RCjDHgpY3DzUDGyJwppZifn8JeH4Oz/eYeBm0Or5uBjHTV4jy6B2y8ebDV52OMp7NviPrOfq/2mwHEu2aiHfKxKcjfN9eQEGPkk+tmERsVGWMigOG9h/sD2LHRanew/XjncCtwb5RkJGJzaBo6BwK2nlDadryDGKNhOAvtD/ess6Mt/pd53vOPXTy6qcbv44jR7a3v4l+7GvjwOaVkmwJbnryqNGM4IxtuNe19FKWfyEAtLUodHkYdqZp7BnFoZxt9TyyckcKnLyqnsXuA5p7J+f/QVNHW67xhL7Mew0OCMwE4S4Ig8jJn4Jw509g9QF2Hd6WGh5otmGKjyEn2/GOKMhpYWpTKVh8ydePZXtNBQVr8uBcPC/OTOdTU41Pmametc72+Zs4Azp6VSVpCNP/aHZzSxkpXEOJt5gycw6h9yZx1D1j51y4zVy/JJykCsmUj5SbHkRwXRVUA953tre+i32r3LTjLnNwdG7cd72BRQUpA5jQmx0WTZYr1e9ZZc/cAT22v41vPV8pemiD5wX8OkJoQze1rygJ+7NVlzu+jcO876+q30tlnpSj9RKObZUVp2B2a3XX+jWAJplPb6HtihivLNllvEk0V7VLWGFYSnAkgsoOzlSW+DQQ95GoG4m1zgBXF6exv7KZnIHB7gbYf7zxtvtmpFuSnYHNonzJEO2o6yTLFMiPVszuUo4k2GrhsUR6vVDbRPxT40sZKV1bQ0xlnI5XnJHGstdfrwPXZnQ30W+28d2WR1+cMNqUUc/OSA9oUxN1p1P09440SV4fD45MwOBuw2tlT1+VXC/1TlWUm+l3W6G6wM2Cz870X9wdiWWKEjUdaeeNgC59YO5PkOO/KeD1RlplIZlJs2Ped1Y7o1Oi2dBI0BXHfkBivIcip3Fk2uZkRXlLWGF4SnAngxJ6zSBw4OCfHRHJclNct7g81W7xqBuK2oiQNhyZgm63NXf00dg+wbIKSwwWujJIvw6h3uoZP+9ul7qqKfPqG7Pxvf7NfxxlNpbnbtbfO+39j5Tkm7A7NMS/am2uteXRTDfPzkqkIwNyjYJiX6+zYGKg9LZuPtVOWmejTTZYsUyzx0caIKOHy1t76LobsDpYFMjjLSvK7nf6Gw62kxEfzibUzeW5XQ9DGdExHWmt+8O8D5KXE8f4zS4JyDve+M29vDAZaXYfze7Ig7URwlp4YE/HDqM2d7syZ5zcN893BmWTOwqq9d5AogwrKTQ8xMQnOBODMnKUmRPvU6S/YDAbFipJ0NntxYdPZN0SrZdCrZiBuS4vSMCjYGqB9Z+4fnhNlzorSE0iKjfK6KUhn3xBHW3v9Kml0W1WaTrYpNihdGysbvG8G4uZuve9Nlml3XRdV5m5uXF0U1IHS/piTm4xl0OZ1ye5oHA7NluoOn7JmcKKdvj+ZM4dD872Xqnhpj9nnY/jCvUc0EJ0a3WZmJdLZZ/Vr9tLGI22cWZbBJ9fNIi8ljnuf3SeNDgLk5comdtZ28ukLZweklHUsq8vSqe/sH85ehcPwjLNT5vdF+jBqc9cAiTFGkuM8LylPjo8iIcZIg2TOwqrNMkRaYgwGQ2T+7JzqIu9KXIRFS88gWRG88XNlSTpHW3qHM3wTOexDMxC3pNgo5uYms+14YO6W7qjpIDbKMGEjDINBMT8vmb1ettPfWdsJ4FczEDejQXFFRR7/O9Ac0LLOQZudw80Wr5uBuJVmJmI0KK9KPh/bUkN8tJGrl+T7dM5QGG4KEoDSxoPNPXT1W33ab+ZWkpHoVXbyVDvrOvnt60f5+CPb+cQj24bLpYNt6/EOSjISAtrQaKafHRtr2vqo6+jnrFkZJMRE8eXL51Fp7ubxLbUBW+N0ZbM7+OF/DlCWlch7lhUE9Vzu76dwljbWtPeRmhB9WhYj0odRm7v6yU2J8+rmmFKK/NR4yZyFWVvvkJQ0hpEEZwJwljVGWqfGkdw/ID1tcX/IFZzNyvY+cwbO0sYdNZ0BaSu+vabD4/ljC2YkU2Xu8eru+o6aTpSCioJUP1Z5wpUV+QzZHLxS2RSQ44EzWLY5tM+Zs9goI6WZiR43BbEM2nh2ZwNXLc6L6LKM8pzAdWx0zwL0Jzgrzkygtr3f5+zOf6uaMBoUd14wm1crm7nop6/zzx31Qb2zr7V2DZ/2/eMezYmOjb4FZxuPOLuenjXTOcz4yoo8VpWm86OXD9DVF9jZdtPN0zvqOdxs4XMXzyHKGNzLmPJsE6kJ0Ww+Fr6mIDXt/SftN3NzD6OO1HlnDV0D5PuwDzovJU4yZ2HWFuHXhFOdBGcCgBbLYEQ2A3FbNCOFuGgDm495Vmp4qMlCfLTR5wYZy4vT6Buy+53RGLTZ2dvQ7XFWa0F+Cv1Wu1fZi521nczJMQWsG+GyolRmpMYHtLTR3QzE18wZOJuCeDoT7LmdDfQN2blxVeQ1AhkpKTaKovQE9gdg1tmmY+3kpcRRkOZ7U5iSjESG7A6fN+P/t6qZlSVp3H1ROS/edQ6lmYl8+vGd3PbnrTR2BedOeHVbH229QwEtaQTn/p4Yo8Hndvobj7SRbYodzsAppbj3qvl09g3x01cPBnKp08qA1c4DrxykoiCFSxfmBv18BoNiVUl6WDNnI2ecjeQeRh2pTUHMnf1edWp0y0+Jl26NYdbWO0S6ZM7CRoIzATjLGiP5LklMlIElhakeb6g/1NzDzOxEn+ul3ft2/N3AX9nQzZDNMXyHcyLeNgXRWg83AwkUpRRXLs7jzUOtdPix32akSnM3CTFGijMSfT5GeY6JmvY+jzpJ/n1zDXNzTQH9vATL3FyT35kzrTWbj7WzsiTdr/11xcMdG70vk6rr6GN/Yw8XzssBYFa2iSc/dhZfu3I+G460ctFPXufxLTUBz6K595sFYvj0SEaDoiQzwaeyRq01G4+0cdbMjJO+HgvyU7hxVRF/fed4wIePTwZaaz72123c9PA7Ps+x+ts7x2noGuALl84N2V7SVaXpHG/rC8u+M7tDU98xeuYskodRW+0OWiyD5HrRDMQtLzWOVsugT2NlRGC0W4akjX4YSXAm6B200Tdkj+jMGcCqknT2NXR5tBfqcLPFp/1mbvmp8eSnxPndFGS7q9xkomYgbrOyk4iJMgxnmiZyrLWXrn5rQPabjXRVRT42h+bf+xoDcrzKhm7m5pow+rG5eE6OCa1P7Cccy566LvbUd3HjqshtBDLS3FwTx1p7GbD6fiFypMVCc8+gXyWN4MycgW+zzv5b5ezweYErOAPnxeOHzynl33edx4IZyXzhqT3c8vvNAb3I3Xa8neS4KJ86s06kLDPJp8zZoWYLrZZBzpqVedpz91w8h8QYI9/4176IbeQQLP/e28i/9zXy9tE2rv7lBvZ4OaOrZ8DKr9Yf5tzZmZw9yuc2WC5dmIvRoPjrO8dDdk63pu4BhuwOCtNOD87AWdoYicOom7oH0BryfcycATR1hWbPqjjZoM1Oz6BN9pyFkQRnYrjJRqQHZytL03HoEwHPWHoGrJi7Bnzeb+a2vCSdbdX+dcLaUdNBfkocuR7+gIo2Gpiba2Kvh5kzdzOQJYWBzRosyE+mLDMxIKWNWmsqzb53anSb7dqfNdG+s79vqSE2ysC7ls7w63yhMjcvGYcHQed4XtjdiFJw0fyciV88jtzkOGKiDD5lzl6taqIsK5HSzNOzoyWZiTx62xl8+10L2VHTwSUPvMFf3q7GEYDOhduOd7CsOC0oXcXKshKpae/D6uXe0w2HT95vNlJ6Ygx3X1TOhsNt/Gdf4PZ1RroBq53vvFjF3FwTz37ybBRw7YMbeXZnvcfHePiNo3T0WfncJXOCt9BRFKQlcPmiPB7dVEN3ABsleaJmlBlnIy0rTo3IYdTDA6h92Frg3qcm+87C48QA6si+JpzKJDgTwx3VMiM8hb2sKA2jQQ03PhjLEded7tl+BmcritNo7B6gvtP3HxA7ajpZ6uVemAX5yexr6PYoKNxR00lijNHvQPRUztLGfN4+2kZzt3+1/3Ud/fQM2Jif59+ssZIM5x6gQ+MEZ72DNp7dUc+VFfmkxEduI5CR3GMCqvwobXxhTwMrS9LJSfb+LvVIBoOiOD2Bai87NloGbWw62j5c0jjWsd93RjEv372GFSXpfP3Zfbz3oXe8PtdIXX1WDjZZAjp8eqSZWUnYHNrrbngbj7RRnJFw0lyqkd53RjHlOUl858VKvzKm3lh/oJknttaGrRnJw28cpa6jn3uvWkBFQSrPfeocKgpSuOuxnXz/3/snbELT0jPI7946xhWL8gLW/MgbHz2vDMugjb9vqgnpeScKztw35iKttNEdnPmSOXMPrZZB1OHR5hpALXvOwkeCMzFpMmeJsVEsyE+ecN6Z++LdnWnxlbvBwDYfSxubXIHdUi/3Pc3PT6Gzz0qDBw0UdtZ2srgw1a9ywbFcVZGH1vCinzOrKl1Bh7+ZsyijgZnZSeNmzp7f3UDvkJ2bVhf6da5QKslIJDbK4NUMt5EONvVwsMnClRV5gVlPZqLXmbM3D7YwZHdwwdzsCV87IzWeP39wJT+8toL9jd3c/LtNPu8tcV+QBnL49Ejujo1HvMhq2uwO3jnaNmrWzC3KaOC+qxZQ297P79486vc6J2J3aD792E4+9+RuVnznFT70py08ta0uZFkgc1c/v37tCJcvyuVM1+clMymWR247gxtXFfGb147wkb9sHbdk/VfrDzNoc3D3xeUhWfOpFs5I4ayZGfxxQzVDNv+7+Hqqtr0Po0ENByynitRh1GbXTU1Pq0ZGcpc1SlOQ8HBfE0b6DfupTIIzMZw5i/TgDJyNOnbWdo57MXe42UKM0UChH13rwLkXKCk2yuemIDt8vHAcbgoywbyzAaudKnN30JpezM4xMTfXxL92+xmcNXRjUM49Y/4qz0kad9bZo5trKc9J8rgBSyQwGhRzck0+dwZ9YbcZpQhY57qSjASOt/d6VXL4alUzKfHRHndMVEpx3YpCfnHTMuo7+/mHj7O/th3vwGhQQfseKHPtYzvqRXZvX0M3PQM2zpw5/p6os2ZlctnCXH61/kjQMwT7Grro6rdy5/mz+ODZpRxo7OGeJ3ax4luvctuft/LPHfVYBoO3Z+l7L+7HoTVfvnzeSY/HRBn47rsX8q2rF/DGwRbe/euNo3aqrW3v45FNx7l+RcFw98tw+Mh5ZTR2DwS0k+1Eatr7yE+NI3qckQGROIza3DWAKTYKkw+jTOJjjKQmRNPgR9WK8N1wWWNi5F8TTlUTBmdKqUKl1HqlVJVSap9S6q5Tnv+sUkorpUK3O1cEVEvPIEpBekLk3yVZWZLOkM0x7kbyQ80WyrIS/Z5/E2U0sLQola3VvmXOttd0EmM0DAdbnpqXm4xBwd4JmoLsre/C5tAeNxvxxVWL89l2vIO6Dt8bOFSauynNTCQ+xuj3espzTNR39o96h31fQxe7ajsnTSOQkebk+Bacaa15YY+Z1aXpZJv8K2l0K85IZMDqoNnDAdJ2h2b9gWbWzcny+nvuvNmZrChO45frD/tU3rf1eDvz85JJiAnMGIlTpcRHk5kU69Wss41HnPOwziwbO3Pm9uXL5+HQmu+9uN/nNXpiw2Hnmt53ZjFfvnweb31hHU9/4ized0Yxe+u7+PTjO1n2rVf46F+38q9dDQFtLrGlup3ndjXw0TUzRy3zVEpxy5kl/PXDq2mzDHL1L9/ijYMtJ73mJ68cxKAUd10QnqyZ29ryLObkmHj4zaMhC4Rq2/vGbAbi5h5GXdseOcFMQ2f/mNk+T+SlxA+XRorQGi5rlMxZ2Hjyk9QG3KO1ngecAXxSKTUfnIEbcBEQ2iJsEVAtFuck+GAP8wyEla522eOVNh5q7gnYHqzVpekcaOrxePj1SDtqOlgwI5nYKO+CkvgYIzOzkqicoCmIe/BoMNvFX1WRDzizM76qMnczP9+//WZu7qHNB0fJnj22uZbYKAPvniSNQEaam5dMq2VwuJzEUwebLBxutnCl6+sUCO6OjZ7O2ttZ20F779BJXRo9pZTi7ovLaeoe5BEv9/JY7Q521XYFfL7ZqcqyEof3sXpi45FW5uSYPKpEKExP4KPnlfHcrgY2B3GO1sYjrZTnJA0H8EoplhWl8fWr5rPxi+fzxMfO5KZVRWyv6eRTf9/Bsm+9wmef2OX3fji7Q3Pfc/vIS4nj42tmjvvaM2dm8Nwd55CfGs+tf9zM71wBUJW5m3/urOfWs0t8KpELJKUUHzmvjP2NPbxxqDUk5xxrAPVI7kqBSNp31tg94FMbfbf8lDjJnIVJW+8QMUYDpgDNThXem/BqXGtt1lpvd/25B6gC3Fc/PwU+D0ROLl14LdJnnI2UkRTLzKzEMZuC9A/Zqevo96uN/kjvP6uEwrQE7vz7Dq9mfg3ZHOyu6/K5vM7dFGQ8O2s7KUiLD2o5alFGAosLU3nex+Csq99KXUe/X8OnR3KXRp7aFKRvyMY/d9RzxaI8UidBBvhUc11NQbzdd/bC7gYMASxphJGzzjwLSF6taibKoFgzJ8un8501M5OzZmbwm9cOe5WxqTJ302+1B3y+2almZiV6nDkbtNnZUt3OWbMmzpq5fXztLPJT4rjvuX0TNsXwhXtNY7WeNxgUK0vSue//FvDOly7gsdvP4JplBTy1vY47Ht3udafKkf6xtZZ9Dd186fJ5HmXOC9MTeOrjZ3HR/By+/UIVn31iN/e/tJ+k2KgJg7tQ+b/F+eQkx/LQG0eCfq6+IRutlsFRB1CPFInDqBs6B3xqBuKWnyqZs3BpswySnhgz6SpQphKvUiVKqRJgKbBJKfV/QL3WelcwFiZCp9UyOCn2m7mtKk1n6/GOUS9kjrRY0Bpm5wQmc5YcF82vblpGi2WQzz25y+NSlv2N3QzaHD7PH1uQn4K5a2C49ns0O2o6QjJk+aqKPPbUd3mcSRmpKkDNQNwK0uKJjzae1hTk+d1megZtvHdVUUDOE2pzfejYqLXm+d1mzpyZEdCbK/mp8UQbFdUeNgX5b1UTq0rTSfZhb4nbPReX02oZ4i9vez5Hyt2oJ+iZs8wkOvqs434vuu2o6WTA6uCsCfabjRQfY+RLl8+j0tzN4z7uvRvP9uPONZ3twZqMBsUZZRl8992L+Mb/LeDVqma+8ORun0YedPVb+eF/DrCqJJ2rvGhWkxgbxW9uXs6nL5zNU9vreP1gCx9bMzNibrrERBn44NmlbDjcxt4J9gX7y12mOFHmLNKGUQ/a7LRaBsnzI3OWlxpHV7+V3iDuhRSja++VAdTh5nFwppRKAp4CPo2z1PErwNc9eN/tSqmtSqmtLS0tE71chEFLzyBZkyRzBs59Zz0DtlGzDO5ZUYFsLb+oIIUvXz6PV6ua+f1bxzx6z3bXhaM/mTNw7qMaTXP3AA1dAyEJzq6syEcpeN6HTfDuYdqBypwZDIrZOUkcPCU4+/vmGmZmJQ6XvU42GUmxZJlivdp3VmXu4WhrL1csClxJIzgv9ArTEzzKnNW293GwyeJTSeNIy4vTWVOexYOvH/FoyDzA1uMdzEiN9+sC0BMzs51lnp5kzzYeacOg8HoY+JUVeawqTeeH/9kf8Fb3Gw63YjQoVpd5t6b3n1nCPReV8/SOer75fKXXe6x+9uohOvqG+PpV872+A28wKD59YTkPvm8571qSzwfPLvHq/cF20+oikmKjeDjInTYnaqM/UiQNo27udpZn+7PnzN2xUdrph15r75DMOAszj4IzpVQ0zsDsEa3108BMoBTYpZSqBgqA7Uqp02prtNYPaa1XaK1XZGX5VvYigkdrTcsky5ytLHFeZIzWRfFQcw9GgxreNxMot55VwsXzc7j/pf3Dg5/Hs6O2k5zkWPJ8LOtwZ5r21o+eSdnhWkMwm4G45abEsbIknX/t9iE4M3eTZYoN6L+v8hzTSXvO9jd2s6NmcjYCGWlursmrssYX9jRgNCguWeBfYDSakoxEjzJnr1Y5hyhfOG/iFvoTufuicjr7rPxxQ7VHr9/uGj4dbGWZro6NHuw723i4lUUFqV7P2FNKce9V8+nqt/LTVw/6tM6xbDjSSkVBik9d8+44fxYfPqeUP22s5mf/PeTx+w439/CXt6t578oiFs7wfb/ppQtzeeC9S4PW8MVXyXHRvHdlIc/vNvvVLGkitd4EZxE0jNq9V8zXn38j3yvt9EOvzTJIhsw4CytPujUq4PdAldb6JwBa6z1a62ytdYnWugSoA5ZprRuDuloRcD2DNoZsjkmz5wycpW15KXGjNgU51GRxDiuOCmxzE6UUP7x2MTnJcdzx6Ha6+se/u729poNlRWk+BwupCTEUpMWPmTnbUdNJtFF53QnSV1ctzudgk8Wr4EFrzb6G7oBlzdzm5Jho6Rkc3gP42OZaYowG3rOsIKDnCbW5uSYONvV4tO9Ia80Lu82cNTMjKHc4izOcmbOJsiX/rWpmVnYSxQG4GbK4MJUL5+Xw8JtHJ8we1Xf2Y+4aCNrw6ZEK0pxlnkdax8+c9Q7a2FnbOe58s/EsyE/hhpWFPLLpeMDmj/UMWNld1+VRSeNolFJ85fJ5XLu8gAdePcQfN0xcOaC15hv/qiQ+xshnwzSTLBQ+dE4pCvjDW9VBO0dNex9JsVGkJkwcWC+NoGHU7r1i/mS181MlcxYu7b1DEpyFmSdXsGcDtwDnK6V2un5dHuR1iRCZTDPO3JRybmDfcqz9tIvHwy2WgDUDOVVKQjS/uGkpjV0DfOHJ3WNeuLb0DFLb3u/3rK0F+cnDZYGn2lnbwfy8ZOKi/W9P74nLFuZiNCiP5vsM2uw8vb2Oq375FlXm7oBfQLv3Ex5s6qF/yHmuyxblkjbJf5jMyU1m0Oag2oNywn0N3VS39XHFosAMnj5VSUYifUN2WsbpHtkzYGXTsTYuCEDWzO3ui8rpGbDxu7fGLxcL1X4zcI7UKMlI5Ejz+F+XLdXt2Bza50AI4NrlhVjtmv9VNft8jJE2HW3H7tBeNSg5lcGguP+aRVw8P4dv/KuSp7fXjfv6V6uaefNQK5+5sHxKl0blp8Zz1eJ8HttSE/BSVLfa9j4K0xM8usmXFkHDqBu6/M+c5STHoZRkzkKtf8hO35Bd2uiHmSfdGt/SWiutdYXWeonr14unvKZEax2avrIioCZjcAawsjSd5p7B4Zp8cAYFx9v6AtYMZDTLitL4/KVz+Pe+xjGbF7iHT/vaDMRtQX4Kx9p6T9sQ7S5dCcV+M7fMpFjOmpnBv3Y3jBmUtloG+dmrhzjn++u5+x+7GLA6+O67F/HRAHdZm5Prbqffw4t7zHQP2LhxkjYCGcndFGS/eeLs5At7zK6SxsB1aRzpRMfGsUu23jjYitWuudDP/WYjzc9P5opFefzhrWPjNuDYVt1OQoxx+HMWbGVZiRydIHO28UgbMUaDXwHj0sJUcpJjeWmvf4Pf3TYcaSU2yuD3jaIoo4Gf37iUs2Zm8Lknd/NKZdOorxu02fn2C5XMzk7iljOL/TrnZPCRc8voG7LzyGbPG9l4o6a9j6J0z7NPS4tS2Vkb/mHUjV0DJMdFkehHK/aYKANZSbGSOQuxtl7nNWGmDKAOq8gfbCWCyj1XaTKVNYJz/hhw0myg6tY+7A4d0GYgo7ntnDLOn5vNd16oGrVb13ZXyaE/ey3AmTnT+vQOfgebeugbsodkv9lIVy3O53hbH3tO+ZgrG7r53BO7OOv+//HTVw+yID+Zv3xoFa985jxuWl0U8BLT3OQ4TLFRHGjq4e+bayjLTBz+9zCZzcpOwmhQ7G8cv2Ojs0tjA2fPygxatrA001mmWD1Oh87/VjWRlhDt94X/qT594Wz6rHZ++/rYrcq3Hu9gaVFqyGYzlmUlUdPWN25b+Y1HWllWnOrXsHWDK+B+/WBLQBo7bDzcxsqS9IBk2OOijTz0/hUszE/mk49u523XsO2Rfv/WMY639fH1q+YTPQnmZvprfn4y587O5I8bqhm0+TcT7lRaa1dwNvF+M7dlRWm0WsI/jLqhc2C4LNEfedJOP+SGB1BP8kqUyW7q/+8pxjVZM2ezspJITYg+qSnIoWZnxiHYwZnBoPjRdYtJT4zhk49uP6273I6awJQcuoO7UwPAUAyfHs0l83OJNjpLG+0OzSuVTdz40Dtc/vM3eX63metXFPDq3Wv40wdXcV55VtCacyilKM818d+qZrYe75j0jUDc4qKNlGYmTtixcU99F7Xt/VzpRXtyb81IjSfKoMbMnNkdmvUHmlk3JxujIbCf+9k5Jq5enM+f366muef0C7PeQRtV5m6Wh/DmxMysJGwOfVKmfqTOviH2NXR71UJ/LJcuzGXA6uD1A/51N27pGeRAU49fJY2nSoqN4k8fXEVxegIf+ctWdtd1Dj/X1D3AL/93mIvm53Du7OnT/Ov288po6Rnk2Z3eN0waT0vPIIM2h9fBGYR/35m5q9+vkka3/JQ46mUQdUi5M2fSSj+8JDib5lp6BjEaFKledhcLN4NBsaI4nS3VJ34IHWqyoJTzQirY0hNj+PmNS6nr6OdLT+8ZLiOx2Z3DpwOR1co2xZKZFHPaMOqdtR2kJUQPl56FSkpCNGvKs3hqez3n//g1PvKXrVS39fLFy+by9pfO59vvWhT0wNitPMeEuWuAaKPimmUzQnLOUJiba5owc/bCbjPRRsUl84NT0gjOMraCtHiOjbH/bXtNBx19Vr9b6I/lrgvLsdo1v3nt9OzZztpOHBqWl4QuW1qW5W6nP/rn452jbWiNz81ARlpVkk5aQjT/3udff62NR5w7DfzZAzeatMQY/vrh1aTER/OBP2zmsOum2Pdf2o/NrvnqFfMCer5Id86sTOblJfPwG0d9mgc3llpXF8gCL4KzSBlG3dg1QF4gMmcp8Zg7B8JepjmduDNnk62aaqqR4Gyaa7UMkpkUgyHAd79DYVVpGsdae4fvrh9usVCUnhCyJhmrStO5+6Jynt9t5u+bncNj9zf20G+1B6TFt1KK+fkppwVnO2o6WVKYGpZs0bXLC4Y7Of3ypqW88fl1YRkQW+7aV3jJgtwp1XRgbq6J2vZ+LGMMXnUPnj5nViYpHnRw80dxRuKYs85erWoi2qg4rzywF/5upZmJvGfZDB7ZVHPanpNtxztQyv89nd6YOdxOf/R9ZxuPtJEQY2RxALLZUUYDF8/P5X9VzX6Vym083EZyXJTf5dWjyU2J45HbVmM0GLjl95v5164Gnt5Rz23nlgakc+dkopTi9vNKOdRs4bWDgWnkAt7NOHOLhGHUA1Y7bb1D5CUHIHOWGke/1T5hd2QROG29UtYYCSQ4m+ZaeibXjLOR3PPOtrqyZ4ebLMwOUebG7eNrZnLu7Ey+8a99VJm7TzQDCVDJ4YL8ZA419zBkc+516R6wcrjFwpLC8AxbvnRhHpu/cgFPf+JsrqzID9u+kuXFaRiUc1DuVDI31zl2YKyRBbvquqjv7OeKisAOnh5NSUYCx1v7Rr1r/d+qZlaXZvg0O8tTnzp/NlprfrX+8EmPbz3ewZwcE8lBPPepUhKiyUiMGTNztuFwK6tK0wP2/XDpolx6Bm1sOOx7n60NR1o5c2ZGwMtO3UoyE/nrh1fRO2jjU3/fQU5yLJ9cNyso54p0V1bkk58Sx0NvBG4odU1bP0o5S4y9Ee5h1I3uNvoByJy5961Jx8bQae8dIi7aQIIfe2eF/yQ4m+ZaLIOTNn29cEYK8dFGNh9rx2Z3cLTVwswQB2cGg+In1y8hOT6aTz66nbcOt5JliqUgzf8fTOAMzqx2zcEm58X67toutA5t1uBU2Sb/74j6q6IglZ33XsyqKdAIZCR3J8qxShtf2N1AtFFx0fzglBOOVJyRSM+g7bSuidWtvRxutgS0hf5oCtMTuH5FIY9vqR0exutwaHaEaPj0qWZmJXFklMxZU/cAR1p6A1o+eNbMDEyxUfx7r2+ljTVtfdR19HP2rOBkNt3m5SXzxw+uJCc5lvuuWuBXd77JLNpo4EPnlPLO0faT9uH5o6a9j9zkOK8rQcI9jNrdRj8/AHvO3PvWJkPHxsPNloA3hQmHVssgGYmxU2If92Qmwdk019ozRNYkDc6ijQaWFqWypbqd4+19WO06aDPOxpNliuVnNyzhWGsv/9nXxNIAlhwuzHeWJLmHUe+sdWbmAlE+NdmFMnMSKgVp8STFRo2aOXMPnj5vdhYpIdgjWpLpLKeqPqUpyKtVzjbqgWyhP5Y7zp+FUopf/O8QAAebe+gZtIVk+PSpnO30T8+cufd2nRmA/WZusVFGLpiXzSuVTdjG6RA5lrdcGbdANCiZyPLidN750gVcFqSZe5PFDSsLMcVG8dsAZc/cM868Fe5h1O7MWW4gGoK4M2cR3rGxvXeIy372Bo+8UxPupfitvXdImoFEAAnOpjGHQ9NqmbxljeAsbXSWE3YChLys0e2sWZncef5sgIDe1S9KTyApNmp439nO2k5mZiWG5OJchJ5SytkUZJRZZ9trOmnoGuCKIHZpHMm9d+jUfWf/rWqmPCfJpwtHb+WlxHPTqiKe2l5PdWtvSIdPn6osK5H23iE6TskkbjzcRmpCNPPzkgN6vksX5tHRZ2XTiHEhntpwpJWc5FhmZoVm/5fcZQdTXDQ3nVHES3vMw5lef9R2eNdG3y0tMYayzMThn4mh5m59n5fif/VIZlIsUQZFQ4R3bNxd14nVrk8bMzMZtVmce8pFeElwNo119luxOfSkLWsEZ1MOh4Z/bHE25Ah1WeNId14wm+++exE3rCgM2DENBsX8vGT2NXSjtXY1AwnPfjMRGnNcHRtP3ev1wm4zMUYDF4agpBGcWTyDOjlz1tVvZUt1e9C6NI7mE+tmEm1U/Oy/h9hW3UFmUqxPF63+cneBHTmMWmvNxiNtnFmWEfCmSmvKs4iPNnpd2uhwaN4+0sbZMzMlaAqxD51ditGg+P1bx/w6zoDVTmP3AIVpvv07X1KUyo6a8AyjbujsJy0h2q95f25GgyInOQ5zhAdn7punE41BmQzaLIOkywDqsJPgbBpzD6CezJmzpUWpRBkUm6vbmZHqLAkLF6NBcdPqooAPBp6fn0yVuZvjbX209Q6xJIz7zUTwzc1LpnvAdtLwVYdD8+IeM2vmZIWsnDM2ykh+avxJmbPXD7Zgc2guDPJ+s5GyTXF84MwS/rmznv8daGZFcVpYgo4yV3B2ZERTkJr2Puo7+wPSQv9U8TFG1s7J4j/7Gr1q0b6/sYf23iHOCvJ+M3G6nOQ4rl4yg8e31J6WYfVGfWc/WkNRhm/Zp3AOo27sGghI1sxtRmp8xJc17nHt7zvSbBl3UH2k01rT1jtEppQ1hp0EZ9PYZB1APVJCTBQLXK2iw5k1C6YF+cn0Ddl5Zkc9ELhOkCIyzXU1BRm572x7TQeN3QNBHTw9mtLMxJMyZ/+taiI9MSbk2duPrplJQrSRzj5rWEoaAQrT4ok2qpM6Nm480gYQtEDo0oW5NPcMsqPW8/1Dw/PNAjh8WnjuI+eW0W+18/jWWp+P4Usb/ZHCOYy6oWsgIAOo3fJS4yK+Icie+i7iog0M2R1Uj7IvNZQON1t87tTZO2Rn0OaQNvoRQIKzacwdnE3mskaAVSXOH0Th2m8WbO45RY9tqSEu2jB88S6mJnfHxqoRHRuf320mJsoQ0nJCgOKMhOHMmc3u4LUDLaybkx209uxjSU+M4YNnlwKwoiQ8wVmU0UBxRuJJHRs3HHbu7SrLDM7ervPnZhNjNPDSHs9LGzccbqUsMzGg2QvhuTm5JhbNSOF/Vb7PPHPvWfN1X2c4h1Gbu/rJSw1gcJYST2PXQEAHfAdSR+8Q9Z39XLIgFwhvaeOA1c5Vv3jrtPEjnmp3DaCeSrNDJysJzqaxqVDWCCfmnU3V4GxWdhIxUQaaugepmJFKVJhmi4nQSI6LZkZq/HBTEHdJ47o5WSEv2y3JSKSzz0pn3xBbj3fQ1W8NaUnjSJ+6YBa/e/8KloQxc1yWmTg8iFrr4O/tMsVFc87sTF7a2+jR/iGr3cHmY+2cJVmzsFpTnsW2mg6fhyfXtPURF23wuZNyuIZR9w/Z6eyzBvTGQH5qHFa7prV3MGDHDKS9rk7K71oyA6NBjTmjMhQONVnot9rZUu3b1939OZaGIOEnV3nTWEvPIDFRBpLjJvdsmvPKs7j9vDIudt25mmqijQbm5DizKbLfbHqYm2sa/iG/9XgHzT2DIRk8fSp3x8bqtj7+W9VEjNHAueVZIV8HOPfAXTg/J6xNLsqykqhp78Nqd3CgqYe23qGAttAfzaULcqnv7B9uOjCeXbWd9A7ZAzpzTXhvzZws7A7NRh+HiNd29FGYluDXv/VwDKN2lx8GtKwxJbIHUe+td35fLitKozQzMayZsyqzcy176rp8GsFxInMmwVm4SXA2jbVYBslKmvzDBuOijXz58nlTuk56Qb6zTbfsN5se5uaZONJiYcjm4PndDcRGGbhgbugzViUZzrKq4229/LeqmdVl6WFtuhNuZVmJWO2a2vY+Nh4O7n4zt4vm52A0KF7aa57wtRsOt6FUYGeuCe8tLUzFFBfF6wdbfHp/TXu/3x1JwzGMOpBt9N3yXSWSkdqxcW99F4Xp8aQkRDMn18SBpolvogRLpSs467faOdRsmeDVp2tzZ86krDHsJDibxlp6Bsmc5CWN08WKknRijIawNUMQoTUnNxmbQ3OwqYcX9zRy/txsEsMQFBWmJ6AUrN/fzNHW3rAEiJFkuJ1+Sy8bj7RSkpHAjNTg7u1KS4zhjLJ0j1rqbzjSysL8FFITpu6Nqskgymjg3NmZvH6wxet29lprnwdQjxSOYdTueWT5Adxzlp8S2YOo9zZ0sci1L3xujona9n4sg6HLVo5Uae4m23VNt6u20+v3t7ozZ1P4RvdkIcHZNNbSM0iWpK8nhWuWzuD1z68lOzlwP/RE5Jrnagry17eP02oZDNng6VPFRRvJS47j+d3OrE2oG5JEGvdQ50PNFjYdbefMEJUPXroglyMtvRxqGrtkqm/Ixo6aDtlvFiHWlGdh7hrgYJN3GYyOPiuWQZvfmbO0xBhKMxN9ukj3VaMrgMoJ4M+p1IRo4qINEZk56+q3crytjwX5zuDM3czp4Djfp8GitabK3M1F83NIiY9mpw9f9/beIRJjjMRF+z+jTvhHgrNprNUyNOmbgUwXBoOS7mvTSGlmIjFGA09uryM+2sj5YcxYFWckYnNo5uSY/L6bP9mlJsSQnhjDszvr6Rm0haxd/SULclEKXhone7b5WDtWu5b9ZhHiPNfezNcPete10d82+iMtmpEyPIMrFBq6BshIjAnoxb1SivyU+JPmPkaKffXOz+1w5izXuf0gHE1B6jr66RmwsSA/hcWFqT4FZ22WQdLlhn1EkOBsmrI7NO29gz53gxJCBE+U0cCs7CTsDs3587JJiAnfPq+STOdF4gVh6tIYaWZmndj0f2ZZaIKz7OQ4lhWljVvauPFIGzFGw3D3WhFeeSnxzMkxeb3vzN1GvyjD/+CsoiCFhq6B4bE5wRboNvpuealxNETgrDN3p0b3uJuCtHgSYoxhCc7c+83m5ZlYUpDCwaYeer0sr2zrHSIjUa4JI4EEZ9NUW+8gDo3sORMiQs3Nc5bIXLkoPCWNbu6OjdO9pNGtLNO572xurimkG+cvW5hLpbmbmhFDwUfacLiVpUWpxMdISVKkWDsniy3HOry6SHZnzgrS/K+UqChIBWBPfaffx/JEY9dAUCo88lLih/ezRZI99d3MSI0fbkZmMCjKc0zsbwx9U5AqczcG5czeLSlKxaGdzUq80WYZIlMyZxFBgrNpqrXHufFTMmdCRKbzZmdRlJ7A2jnhzVi9Z1kB37x6ActkjAPg7NgIcFaIywfdQ27/ve/0ro0dvUNUmrs5O8idI4V31pRnMWR38PaRNo/fU9veR2ZSbECy5QvykzEo2FUbmtLGhs7+gLbRd8tPjae5ZxCrD+3hg2lffRcLZySf9Ni8PBP7G3u8bgTjr8qGbkoyE4mPMbLYFZTvquv06hhtvYNTuuv1ZCLB2TTVMkUGUAsxVb1r6Qze+Py6sGdCskyxvP/Mkkk/ciNQyl0zB8+ZHdrGG4XpCSyckTzqvrO3j7ahNSHbAyc8s7wkjYQYo1eljTXtfRSlByb7lBgbxazsJPZ4mUHxRe+gje4BW1AyZ/kpcWgNTd2Rs++sZ8DK0dZeFrqagbjNyTHR2WelOUSlpG5Vjd3Mz3MGihlJsRSmx3u170xrTXvvkLTRjxASnE1T7hr0TPlGFEIIj60pz+IPt65gXRgympctzGNHTefwsF+3DYdbSYwxDpexicgQG2XkrJkZvHaw2eNMijM4C1zjnYqCVHbXdQY9k+P+NxnINvpuea5xFZHUFKTSNRR+YcEpwZmrKUgoh1F3D1ipbe9nXt6JLN7iglSvMqbdAzasdi1t9COEBGfTVKtkzoQQwmsGg+L8uTlhySReutBZ2vjyvqaTHt94pI3VZRlEG+VHeqRZMyeb2vZ+qsfYKziS1e6godP/AdQjVRSk0GoZCnpg4z5+bhDGveS7SiUjad+ZOxt5auZsrqud/oEQ7jvbb3YGgvPzTwRnSwpTqe/sp7nHs697e69rxpnsOYsI8j/5NNXSM0hCjDEsg22FEEJ4b2ZWErOzk3hp74l9Zw2d/Rxr7eWsmVLSGInWzHa21H/twMQt9c2dAzg0FAQ4cwaw28v9R94ydzqDgPwgDGV3Z84aOiMnc7a3vovc5LjTbnCnJcaQbYoNaeas0tU1cn7eycEZeL7fsM11w166NUYGCc6mqZaeQSlpFEKISeayhblsPtY+fDG14XArgDQDiVBFGQmUZSZ6tO8skDPO3ObmmogyKHYHed5ZQ1c/SgV2ALVbUmwUyXFRp5XzhtPehu7hFvqnmpNrCmk7/SpzDxmuoNBtQX4KRoNiZ22HR8doc2XOpCFIZJDgbJpqtQxKSaMQQkwyly7Mw6HhlUpnaeOGw61kJsUwx9WoRESe88qzeOdoGwNW+7ivC0ZwFhdtZE6uKehNQRq7BshMiiUmKjiXlfmp8RGTOesdtHGkxXJap0a3ubkmDjVbsIWou2SluZt5ecknlVrHxxiZm2vyInPmDM7kpn1kmPC7SClVqJRar5SqUkrtU0rd5Xr8W0qp3UqpnUqpl5VS+cFfrgiUlh4ZQC2EEJPNvDwTRekJvLS3Ea01G460cebMTAwG6aYZqdbMyWLA6mDTsfZxX1fT3keM0RDw7JOzKUhXUJuCNHQNBKWNvlteSlzEZM6qzN1oDYvGzJwlM2RzeLTP0F82u4MDTT0n7TdzW1yYyq66ThyOib/u7kx8WmJ0wNcovOfJLQ4bcI/Weh5wBvBJpdR84Ida6wqt9RLgeeDrwVumCLQWyyCZJklfCyHEZKKU4rKFuWw80sr2mk5aegY5W/abRbQzyzKIjTLw+oHxSxtr2/soSIvHGOBAu6Igha5+63BmLhjMQZpx5paXGh8x3RqHm4GMEZydaAoS/NLGo629DNkczMs7PXO+pDCVngEbR1t7JzxOW+8QprgoYqNkiH0kmDA401qbtdbbXX/uAaqAGVrrka1oEoHQTtwTPhuyOejss5KVFLz/SIUQQgTHJQtzsdo1336hEpD9ZpEuLtrI6rIMXj84flOQ2o4+CgNY0uhW4Wr3viuI+87MXQNBmXHmlp8SR3vv0ISloaGwp76LLFPsmBnOWdlJGFRoOjZWmZ3nmJ93eqB4oilI54THaesdkjb6EcSr4mClVAmwFNjk+vt3lFK1wM1I5mzSaOt1zTiTzJkQQkw6SwpSyU2OY0dNJ4Xp8UG5oBeBtaY8iyMtvdSOk72qae+jMEADqEcqzzERG2VgT5A6NvYMWLEM2oJc1uju2Bj+0sZ99d0sHKWM0C0u2khJZmJIOjZWNnQTYzRQlpV42nMzs5JIjDF6NIy6vXdQBlBHEI+DM6VUEvAU8Gl31kxr/RWtdSHwCHDHGO+7XSm1VSm1taVl4m5FIvjcA6hlz5kQQkw+BoMannl29kzJmk0Ga8qdLfXH6trY1W+ls88a0GYgbtFGA/Pzk4OWOXOXG+YFoY2+W36EDKLuH7JzqLlnzP1mbnNzTRxoCkFwZu6mPDdp1BmHRoOiosC572wibRbJnEUSj4IzpVQ0zsDsEa3106O85FHgPaO9V2v9kNZ6hdZ6RVZWlu8rFQEjA6iFEGJyu6IiDzhx0S8i28ysRArS4scMzmqD0KlxpIoZKeyr78LuQXMIb7mzWflBzJzlp0bGIOqqxm4ceuz9Zm5zcpKpae+jb8gW3PWYu5mXO3YWb3FhKlXm7gnLQVstQzKAOoJ40q1RAb8HqrTWPxnx+OwRL/s/YH/glyeCwZ05k5apQggxOa0sSeeFO88ZzqCJyKaUYk15FhsPtzJkO73Fujs4C1aJakVBKr1Ddo62WAJ+7MYQZM5yXYFfuDNneydoBuI2J9eE1nCwKfCfb7fmngFaLUPMyxs7OFtSmIrVrqk0j73/zeHQdPQNyQDqCOJJ5uxs4BbgfFfb/J1KqcuB+5VSe5VSu4GLgbuCuVAROK2ueRaSORNCiMlrQX7KSbONRGRbU55F75CdbcdPHwxcE/TgzBlMBGMYdUPXAEpx0hDkQIuNMpKZFBP2dvp767vISIyZcH/diY6NwWsKUtngagYyzv43T5qCdPVbsTu0DKCOIFETvUBr/RYw2v/+LwZ+OSIUWnoGMcVFERctLVOFEEKIUDhrVibRRsVrB5s585TxB7UdfaQmRJMcF5w5U2Wu5hC76zp5z/KCgB7b3NlPtil21H1PgZSXEv5B1Hvqu1kwY+KbIkXpCcRHG4PaFKTK7Dz2eGWNuSlx5CbHjdsUpK3XecNeyhojR3C/k0REkgHUQgghRGglxUaxojh91HlnNe39QdtvBs7mEAtmpLC7PvCZs2C30XfLT40L656zAaudQ009LJoxdjDkZjAoynOSgjrrrNLczYzUeFISxg/oFxemjJs5cw+glq0ukUOCs2nIOYBavgmFEEKIUFozJ4v9jT00dZ+cAaptD86Ms5EqZqRQ2dCN1X76njd/mLuCO4DaLS8lvIOoDzT2YHNoFuaPv9/MbU6uKajBWZW5e9z9Zm6LC1Opbuujw5UhO1W763Epa4wcEpxNQ609g7LfTAghhAix0Vrq2x2auo6+oGbOACoKUxm0OTgYwBbvWuuQZs4sgza6B6xBP9do9njYDMRtTm4ybb1Dw03YAmnA6mzuMt5+M7fhfWdjtNRvlbLGiCPB2TQkZY1CCCFE6M3NNZFtij2ptLGxewCrXQc/OHMFFXsC2BSku99G35B9uNV9MLkDQHOY9p3ta+giNSGagjTPAtETTUECnz070NiDQ8P8PNOEr100IwWlYFft6F93d1ljWoIEZ5FCgrNpZsBqp2fQJpkzIYQQIsTcLfXfPNSCzVVeGOwZZ27FGQkkx0UFdBi1udu5ByxUmTOAhjB1bNxT38VCLzqkznEFZ/uD0LHR3Rp/ft7EWTxTXDSzs5PYWXt6l1BwljWmJkQHvaGL8Jx8JaYZd3pdMmdCCCFE6K2dk033gG24zGy4jX5acIMzpRQVBansqe8M2DHdWazcEO05G3nOUBqyOTjQ2ONxSSM4G2xkJsUEJXNWZe4mKTbK4yze4oJUdtV1ofXpQ8jbLEOy3yzCSHA2zbS4u/KY5BtRCCGECLVzZmViUAyXNta292E0KPJCUBpYUZDCfnMPA1Z7QI7nzmKFoqwx2xSL0aDC0rHxYFMPVrtmoQedGkeam5vMgQDu8XOrbOhmXp4Jg8GzLN7iwlTae4eobT/9c9fWO0imDKCOKBKcTTOtw5mz4P9HKoQQQoiTpSREs7QojddcTUFq2vvIT40LSVlZRUEKNocO2Pwtc+cARoMi2xT8a4ooo4EcU2xYyhrdzUAWeZE5A2dp48GmHuyO0zNWvnK4vn6edGp0czcF2TlKU5A2y5A0A4kwEpxNM+7Mmew5E0IIIcJjTXkWu+u6aLUMUtMe/E6NbhUFqQDsHqNzn7fMXQPDGa1QyEuND0tZ4976LkxxUV5/nebkmhiwOjje1huwtdR29GEZtDHfi+BsTq6J2CgDO2s6T3uurVfKGiONBGfTjHvPmdwlEUIIIcJj7RxnS/23DrVSG+QB1CPlpcSRmRTD7gA1BQnVjDO3vJQ4zGHInO31shmIWzA6Nla5moF4kzmLNhpYNCPltHb6doemo2+IDOlDEFEkOJtmWi2DpElXHiGEECJsFuankJ4Yw0t7zbRaBikIcjMQN3dTkEBmzvJSg9+p0S0/1TmIerTGFhPZ19DlU+dEq91BVWMPiwq8K2kEmJ1tQikCVkYKzv1mBnWiG6SnFhemsre+66Qh5B19Q2gNGZI5iyhyhT5J+bqZt6VnkEy5QyKEEEKEjcGgOG92Jq9WNQPBb6M/0qIZKRxuttA7aPPrOM4B1P3khzBzlp8Sx6DNQbtrcLKn7A7NR/68lZse3uT1UOhDTRaGbA4WeDDw+VTxMUZKMhIDmjmrNPdQlpVEXLTRq/ctcQ0hH7mWdhlAHZEkOJuEnthaS8V9L3O0xeL1e1t6BmW/mRBCCBFma+ZkDTeKCGVwVlGQgkPDvgb/5m919lkZsDrIDcGMMzd3lq7By31nbxxqoaFrgPbeIb78zB6vMm97G3xrBuI2J8cU0I6NVeZur/abuQ03BantHH6s1dWHIEO6NUYUCc4mmdr2Pu57bh9Ddgf/2mX2+v2tliEJzoQQQogwO3d21vCfQ5o5c5Xn+VvaONxGP6SZs/iTzu2pxzfXkpEYw+cumcMrlU08tb3e4/fure8iKTaKkoxEr87pNifXRHVbL/1D/o8v6OqzUt/Z79V+M7eCtHjSE2NOCs4kcxaZJDibRBwOzeee3AVAeU4SL+31LjjTWktZoxBCCBEBMpNiqShIwRQbRWpCdMjOm22KIy8lzu+mIO6uiaHcc+aeBWf2YtZZS88gr1Y18Z7lBXxszUxWlaTzjef2Ue/hMfbUdzE/P9njmWKnmptrQms41Ox/9qzS1Qxkvg8llkoplhSmsmtEcNZmcQVnsucsokhwNon8+e1q3jnazteunM+Nq4rY39jDES9KG3uH7PRb7ZI5E0IIISLAp86fzSfPn+V1F0B/VRSkDM/u8pW52xWchTBzlpEYQ0yUAXOX52WNT2+vw+bQXL+iEKNB8aPrFmPXmi88uRvHBPPHbHYHVeZuFub7VtIIJxp3BKIpyIlOjd41A3FbXJDK4RYLPQNWANosgygFqQkSnEUSCc4miSMtFu5/aT/r5mRxw8pCLl2YC8BLezzPnp0YQC3BmRBCCBFuF83P4WNrZob8vBUFqRxr7aWr3+rzMcyd/UQZVEircZRS5KXE0eBhcKa15vEttawsSWNWdhIARRkJfOWKebx1uJW/bTo+7vuPtPQyYHWwqMD7TJVbcUYicdGGgDQFqTR3k5kU6/PQ7yVFqWgNe1xZ07beIdITYkI2p054RoKzScBmd/DZJ3YRF23k/vdUuP5zimdZUSov7mn0+DjuAdSZkjkTQgghpq0K176zvX5kz8xdA+Qkx4X8wj4/Jd7jssbNx9o52trLDSuLTnr8plVFrCnP4rsvVnGsdewB0e7Pj6/NQACMBsXsbFNAgrMqc7fPWTOAxa6v+07XfsM2iwygjkQSnE0CD715lB01nXzz6gXkJJ+4W3L5ojwqzd1Uj/Mfy0iSORNCCCGEO9jwZ9+Zuauf/NTQlTS65aXG0eBhcPb4llpMsVFcvij3pMeVUnz/PRXEGA3c84+dw10zT7WnvouEGCOlmUl+rXlOrsnvskar3cGhJotP+83cUhNiKMlIYGdNJ+BsCCLNQCKPBGcRbn9jNz995SCXL8rl/xbnn/TccGnjXs+yZ+7Mmew5E0IIIaav1IQYijMS/OrYaO4aCGkbfbf8lHiaegbHDKjcuvqtvLDHzP8tySchJuq053NT4vjWuxayvaaT375xZNRj7GvoYn5est/Zwbm5Jlotg7RZvJuxNtKRFgtDdodPbfRHWlKYyi7X1721d5AMuWEfcSQ4i2BDNgd3P76LlPhovnX1wtM2DBekJbC4MNXjro0tPYMYFJLCFkIIIaa5RTNSfM6cOQdQD4S0jb5bXmocdoemuWf8fWfP7axn0ObgvaeUNI70f4vzuXxRLj995eBwsw03u0Ozr6GbhX6UNLq5m4L4U9pY6ZpL529wtrgwlabuQcxd/c7MmVwTRpxpH5w1dg34VXMdTL/83yEqzd18592LxryzcfnCXHbXdVHb3jfh8Votg6QnxsrGTyGEEGKaqyhIob6z36dsTlvvEEM2R0g7NboNzzqbYBD1Y1tqmZ+XzMIZYwczSim+/a5FpMTHcPc/djFkcww/d6zVQt+QPaDBmT+ljVXmbmKiDJRm+jZvzc09jHprdQedfVYZQB2Bpn1w9qE/beGLT+/2alp8KOyq7eRXrx3hmmUzuGRB7pivu2xhHgD/9qC0saVnUEoahRBCCEFFQSoAu324Qd3o6pYYlrJG11w18ziDqPfWd7GvoZv3riqccExBemIM37tmEVXmbn7234MjjuHMVI0X3HkqKymW9MQY/zJn5m7m5pqIMvp36T4vL5loo2L9gWYA0mXPWcSZ9sHZjasK2VvffdLE9HAbsNq554ldZCXFcu9VC8Z9bVFGAgtnJPOiB6WNzgHU8k0ohBBCTHcLZ6SgFOyu9T44czfkCFdDEDgxBHs0j22pITbKwNWLZ3h0zIvm53Dt8gJ+89oRttd0AM5mILFRBmZl+dcMBJwZujk5JvY3+Racaa2pMvcwL9f/QDEu2sj8vGReO9ACQKaUNUacaR+cvXtZAYkxRv76zvizLkLpxy8f4HCzhR9cW0FKfPSEr79sYR47ajon7F7UahmSzJkQQgghSIqNYmZWEnvqO71+r3sIdF4YMmfJcdEkxUZRP8Y1T/+QnWd3NHDFojxSEia+hnL7+lXzyUuJ57P/2EX/kJ299V3My0v2O1PlNifXxKGmngkHX4+mqXuQ9t4hvzo1jrS4MJX23iEAaQgSgaZ9cJYUG8U1ywp4frd5+B9qOG0+1s7v3jrGzauLOK88y6P3XObq2jheaaPW2lnWKN+EQgghhAAqZqSwq67L660d5q4BYoyGsDWTyEuJG7Os8cU9ZnoGbdywstCrYybHRfPDays42trL/S9Vsa+h26/5Zqeam2uib8hObcfEPQJO5W5WMs/PZiBui10lrSBN4iLRtA/OAN53RjFDNgdPbK0N6zp6B2189oldFKTF8+XL53n8vrKsJObmmnhxz9iljd39NobsDsmcCSGEEAJwNgVp6Rmkqdu7piDmrn5yUmIxhKnBWF5q/HD27lSPb6mlNDORVaXpXh/3rFmZ3HpWCX9++ziWQVtAgzN/moJUuoKzuX4MoB5pSVHq8J9lu0vkkeAM5zfMqtJ0/rbpuE/p5kD53ktV1Hb08ePrlpAYe/pMjvFcviiPrcc7hjfpnkpmnAkhhBBipEWuDMouL+edmTsHwlLS6DYjNW7Ubo1HWixsrm7nhpUTNwIZyxcunUuZqyPiggA0A3Erz/G9nX6luZvC9HiS4zwv0xxPaUYiprgojAYVsGOKwJkwOFNKFSql1iulqpRS+5RSd7ke/6FSar9SardS6hmlVGrQVxtE7z+zmNr2fl4/2BKW879xsIW/vVPDbeeU+nS35/JFzq6N/9k3emljS48zOMuUskYhhBBCAAvynQOW93g576yhqz8sM87c8lLiabUMMmizn/T4P7bUEmVQXLPMs0Ygo4mPMfLLm5Zx61klzA1AAw63xNgoijMSfArOqhq6/Z5vNpLBoFhSmEp6YkzYsp9ibJ5kzmzAPVrrecAZwCeVUvOBV4CFWusK4CDwpeAtM/gunp9Llik2LI1BrHYH9z63j7KsRO65eI5Px5iVnUR5TtKYpY2SORNCCCHESHHRRspzTF5lzhwOTVP3QFja6Lu556s1dZ0oxxyyOXhqex0XzMsm2+Rf4Dg/P5n7/m9BwOfCzskxsb+xe+IXjtA3ZONYW2/A9pu5ffrC2Xz1Cs+30IjQmTA401qbtdbbXX/uAaqAGVrrl7XWNtfL3gEKgrfM4IuJMnDjykLWH2j2aKBzID25rY5jrb186bJ5xEUbfT7OZQvz2FzdPpwlG6nV9Zg0BBFCCCGE2+KCFPbUe94UpNUyiNWuw9JG380962xkx8b/7W+i1TLEe1cWhWtZE5qba+JYay8DVvvEL3bZ39iD1gQ0cwawvDidq5f4nmEUwePVnjOlVAmwFNh0ylMfAl4K0JrC5sbVRRiU4pFNNSE754DVzgOvHmRZUSoXzsv261iXL8pD69FLG1ssg0QZlEet+YUQQggxPSwqSKGzz0pdx9jjeLTW7Kzt5L7n9nH5z98EoCg9IVRLPI07czayY+NjW2rJTY7zuNN1OMzJTcah4XCzxeP3BLpTo4h8HgdnSqkk4Cng01rr7hGPfwVn6eMjY7zvdqXUVqXU1paW8Ozn8lReSjwXzsvm8S01Xt3V8Mdf3q6mqXuQz1861+fNq27lOUmUZSXy0igDqZ0DqMPXWUkIIYQQkadiRiowelOQY629/PSVg6z70Wu861cbeHRzDStL0nnoluWsCWMQ5G5G4u7YWN/p7Blw/YqCgJciBpIvHRsrG7oxxUVRkBa+MlIRWh61BFRKReMMzB7RWj894vEPAFcCF+gx8uFa64eAhwBWrFgRvlaIHnr/mSX8Z18TL+4xc82y4FZqdg9Y+fVrRzivPIszyjL8Pp5SissX5vGb14/QZhk8abBgq2VQ9psJIYQQ4iRzck3EGA3sqeviyop8WnoGeX53A//c2cCu2k6UgjNKM/jE2llcsjA3Iipw4mOMpCfG0OAqa3SPQrpuhXezzUKtJCOBmCgDB7zYd1Zl7mZeXrLfN/DF5DFhcKac/xp+D1RprX8y4vFLgS8Aa7TWod2kFURnzcygLCuRv75zPOjB2cNvHKWzz8rnL/GtCchoLluUyy/XH+aVyibeu+pE3XVLzyDZEpwJIYQQYoSYKAPz8ky8UtnE/sYe3jrcit2hmZ+XzJcvn8tVi/PD2jZ/LM5B1APYHZonttZxzqxMCsNYaumJKKOB2dlJvLinEYNBUZqRSHFGIqWZieQkx54WgDkcmv2NPVwf4UGnCCxPMmdnA7cAe5RSO12PfRn4ORALvOL6x/SO1vpjwVhkKCmleN/qYr75fCV767tYGMABhCO19Azy+7eOcUVFXkDPMT8vmeKMBF7c23hacLYgX+qVhRBCCHGy5cXp/GHDMQZtDj56XhnvWjpjeC5XpMpLiaeuo4+3DrdS39nPly6fG+4leeR9ZxTz+7eO8ce3qhmyO4Yfj482UpyRQGmmO2BLID4mir4he8CbgYjINmFwprV+Cxgtl/pi4JcTGd6zvIAf/ucAf337ON+/tiIo5/jV+sMM2hzcc1F5QI+rlOKyhXn87s2jdPYNkZoQg8OhaesdkrJGIYQQQpzmMxfN5pplM5iflzxp9qbnp8ax+Vgbj2+pIS0hmovm54R7SR65cVURN64qwu7QNHT2U93WS3VrL9VtfVS39nKgqYdXq5qw2k/sBArkMGwR+TzaczbdpMRH866l+Tyzo54vXz6PlITA1lfXtvfxyKbjXLe8gLKspIAeG+CKRXk8+PoRXq5s4voVhXT0DWF3aBlALYQQQojTmOKig1YpFCx5KfF0D9h4eV8THzirhNgo30cRhYPRoChMT6AwPYFzZ5/cXMVmd9DQOUB1m7PtvmTOphevWulPJ+87o5gBq4Mnt9cF/NgPvHoIpRR3XTg74McGWDgjmYK0eF5yDaRutQwBMoBaCCGEEFODe86azaG5YeXU2pMVZTRQlJHAeeVZXLwgV5qBTDMSnI1hQX4Ky4pS+ds7x3E4Atdk8mBTD8/sqOMDZxYHbYOtUorLF+Xx1uFWuvqtw0OpZQC1EEIIIaYC9yDqZUWpEb8/TghvSHA2jlvOLOZYay8bjrQG7Jg/+s8BEmOi+MTaWQE75mguW5iL1a75b1UTLRbnHJBMyZwJIYQQYgoozUwkJsrAB84qCfdShAgoCc7GcfmiPNITY/jr28cDcrwdNR28XNnER84rIy0xJiDHHMuSwlTyU+J4cU8jrT1S1iiEEEKIqSMzKZYdX7uIq5fMCPdShAgoCc7GERtl5IaVhbxa1TQ86NAfP/zPATISY/jQOaUBWN34lFJcujCPNw61cLS1l5goA6ZY6f8ihBBCiKkhUa5rxBQkwdkEblpVhAb+vrnGr+O8daiVjUfauOP8WSSF6D+TyxflMmRz8PyuBrKSTh9uKIQQQgghhIgcEpxNoDA9gfPnZPP3zbUM2RwTv2EUWmt+8J/9zEiN56bVRRO/IUCWFaWRbYqlZ9AmJY1CCCGEEEJEOAnOPHDLmcW0Wgb5975Gn97/772N7K7r4tMXzg7pHA6DQXHZwlwAmXEmhBBCCCFEhJPgzAPnzc6iKD2Bv/nQGMRmd/Cjlw8wOzuJa5YVBGF147t8UR4gzUCEEEIIIYSIdBKcecBgULzvjCI2V7ezv7Hbq/c+vb2eIy293HPxHIyG0O/5WlGSzqrSdM4oSw/5uYUQQgghhBCek+DMQ9ctLyQ2ysDf3vE8ezZgtfPAqwdZXJjKJQtygri6sRkNin989ExpNSuEEEIIIUSEkx6kHkpLjOGqxfn8Y0sdlQ3dZCTFkpEYQ7rrV2ZS7PCfM5Kcvz+yqYaGrgF+dN1i6ZQohBBCCCGEGJcEZ1741PmzsNodtPQMUtvex87aTjp6h7A59KivVwrOmZXJWbMyQ7xSIYQQQgghxGQjwZkXijMS+dl7l570mNaa7n4brb2DtPcO0WYZcv0+SPeAlZtWF4dptUIIIYQQQojJRIIzPymlSEmIJiUhmplZ4V6NEEIIIYQQYrKShiBCCCGEEEIIEQEkOBNCCCGEEEKICCDBmRBCCCGEEEJEAAnOhBBCCCGEECICSHAmhBBCCCGEEBFAgjMhhBBCCCGEiAASnAkhhBBCCCFEBJDgTAghhBBCCCEigARnQgghhBBCCBEBJDgTQgghhBBCiAggwZkQQgghhBBCRAAJzoQQQgghhBAiAkwYnCmlCpVS65VSVUqpfUqpu1yPX+f6u0MptSL4SxVCCCGEEEKIqSvKg9fYgHu01tuVUiZgm1LqFWAvcA3w22AuUAghhBBCCCGmgwmDM621GTC7/tyjlKoCZmitXwFQSgV3hUIIIYQQQggxDXi150wpVQIsBTYFZTVCCCGEEEIIMU15HJwppZKAp4BPa627vXjf7UqprUqprS0tLb6sUQghhBBCCCGmPI+CM6VUNM7A7BGt9dPenEBr/ZDWeoXWekVWVpYvaxRCCCGEEEKIKc+Tbo0K+D1QpbX+SfCXJIQQQgghhBDTjyfdGs8GbgH2KKV2uh77MhAL/ALIAl5QSu3UWl8SlFUKIYQQQgghxBTnSbfGt4CxWjI+E9jlCCGEEEIIIcT05FW3RiGEEEIIIYQQwSHBmRBCCCGEEEJEAAnOhBBCCCGEECICSHAmhBBCCCGEEBFAgjMhhBBCCCGEiAASnAkhhBBCCCFEBJDgTAghhBBCCCEigARnQgghhBBCCBEBJDgTQgghhBBCiAggwZkQQgghhBBCRAAJzoQQQgghhBAiAkhwJoQQQgghhBARQIIzIYQQQgghROj84Aewfv3Jj61f73x8mpPgTAghhBBCCBE6K1fC9dc7AzK73fn79dc7H5/mJDgTQgghhBBCnCyY2a116+ALX4CLL4bUVLjmGvjHP5yPT3MSnAkhhBBCCCFO5s5uvfoqHDwYuOzWpk1wwQXwuc9BQgJYLNDbC1ZrYNY9yUlwJoQQQgghhDjZunXObNa118KcOc4s1/XXw9y5vh1v715417vgjDNgzx745CchJgbuugscDrjsMvjrXwP6IUxGEpwJIYQQQgghTrduHXz4w84/Z2bCr38NBQVw0UXwpz9Bd/fExzh6FN7/fqiocGbfvvUt+OMf4fHHncHfAw/AM8+A0eh83fe/D1oH86OKaBKcCSGEEEIIIU63fj385S/wta+BzeYMqr78ZWfA9cEPQk6OM5v27LPw3e+evEfNbHZmymbPhieegM9+1vm+r34V9u07eY/ZVVfBv/4FixfDF78Id97pbBQyDSkdwsh0xYoVeuvWrSE7nxBCCCGEEMIH7j1m7iBq5N/XrnXuHXvkEWcGrKUFkpKcAdw3vwnt7fCTn8DQkDPwevBByM+f+JwOh3Mv2k9+Au95D/ztbxAXF/QPNdSUUtu01itGfU6CMyGEEEIIIcRJfvADZ/OPkR0U16+HLVvg858/8ZjV6mwa8sgj8NRTMDDgfDw2Fn73O3jf+7w/909+AvfcA+ee68zKpaX597FEGAnOhBBCCCGEEMHV2+ssd3ziCWcp5De/6fuxHnsMPvABmDUL/v1vKCwM3DrDbLzgTPacCSGEEEIIIfy3ebMzu/a1r8FvfnP6nDRvvPe9zqCsrg4WLoTf//7k5wM1cy3CSHAmhBBCCCGE8M/IPWnf/Kbz9+uv9y9AW7cO3ngDoqLgIx+Bn/705HONNnMtmMOzQ0CCMyGEEEIIIYR/tmw5uQOje07ali3+HXfxYti+3VnWePfdzsYil13m/FVbCxs3OhuSuLdquYdnuwO0QA3PDhHZcyaEEEIIIYSIbO3tcPnlzi6RqanOGWsOx4nnk5OdbftnzXJm2p57Dm68EZ5++uSgMQKMt+csKtSLEUIIIYQQQgiv7NoFR46c2M/20ktQUgKHDsHhw85fhw7B1q1QXe2ck/bQQ87XR1BgNhEJzoQQQgghhBCR69SZa+vWnfj7FVec/vpXXoEbboCbbnIGcu73TAIT7jlTShUqpdYrpaqUUvuUUne5Hk9XSr2ilDrk+n1qDSAQQgghhBBChJ83+9nWr3cGZU89Bb/8ZWAak4TQhHvOlFJ5QJ7WertSygRsA94F3Aq0a63vV0p9EUjTWn9hvGPJnjMhhBBCCCFE0Hg6PDuMAjqEWin1LPBL16+1WmuzK4B7TWs9Z7z3SnAmhBBCCCGEmM4CNoRaKVUCLAU2ATlaazOA6/dsP9cphBBCCCGEENOWx8GZUioJeAr4tNa624v33a6U2qqU2trS0uLLGoUQQgghhBBiyvMoOFNKReMMzB7RWj/terjJVc7o3pfWPNp7tdYP/X979xYrV1XHcfz7V6jRGiKXoiJeqJgQE5CQgkQhUSRReSkSQVpSGsAHeFUIBRN4ICZqlAcTiTF4KQmRItHQRCAhxIRrgT4cKUJtS4OlgVC5B024yN+HvU6YnMzlnPbss9fufD/JyuxZe6/Ze3Z/nbPWzOw1mbkqM1etWLFiMY5ZkiRJkg4685mtMYDfAk9n5o0DqzYD68vyeuDOxT88SZIkSZoO8/mds68C64BtETFT6q4FfgLcHhGXAXuA81s5QkmSJEmaAhMHZ5n5IBAjVn9jcQ9HkiRJkqbTgmZrlCRJkiS1w8GZJEmSJFVgwT9CfUA7i/g38K8l2+H8HQW81PVBqFrmQ5OYEY1jPjSO+dA45uPg9NnMHDqN/ZIOzmoVEVtH/Uq3ZD40iRnROOZD45gPjWM+po9fa5QkSZKkCjg4kyRJkqQKODhr/KbrA1DVzIcmMSMax3xoHPOhcczHlPGaM0mSJEmqgJ+cSZIkSVIFejU4i4hvRcQ/I2JXRGwYqN8UETOlPBsRMyPaHxER90bEznJ7eKm/aKD9TES8FxEnD2l/a9n/kxHxu4g4tNRHRPyyHNcTEXFKO2dAk1SckRMi4pGIeCsirmzn2WuSivNxUXnteCIiHo6IL7VzBjROxflYXbIxExFbI+KMds6AJmkxI4dGxMaI2BYRT0fENSPaHxcRj5b2myJiWam3H1KBivNhH6RPMrMXBfgg8AywElgG/B344pDtfgFcN+IxfgZsKMsbgJ8O2eZEYPeI9ucAUcofgSsG6u8u9acDj3Z9vqaxVJ6Ro4FTgR8DV3Z9rqaxVJ6PrwCHl+Vv+xpiPubk46O8fxnCScD2rs/XNJY2MwKsBW4ryx8BngU+N6T97cCFZfnX9kPqKZXnwz5Ij0qfPjk7DdiVmbsz823gNmD14AYREcAFNH/UhlkNbCzLG4Fzh2yzZlT7zLwrC+Ax4NiBx72lrNoCfCwiPjnvZ6bFUm1GMnNfZj4OvLOgZ6TFVHM+Hs7MV8tmW3j/tUVLp+Z8vFnqAJYDXizejTYzksDyiDgE+DDwNvDGkMc+C7hjSHv7Id2rNh/2QfqlT4OzTwHPDdzfW+oGnQm8mJk7RzzGxzPzBYBye/SQbb7H6P80QPPxMrAOuGcBx6b21ZwRda8v+biM5h1wLa2q8xER34mI7cBfgUvHtVdr2szIHcB/gBeAPcDPM/OVOW2PBF7LzHeH7N9+SPdqzod6pE+DsxhSN/fdw5HvSM5rBxFfBv6bmU9O2PQm4P7MfGABx6b21ZwRda/6fETE12kGZ1fv7zFov1Wdj8z8S2aeQPNO+A37eww6IG1m5DTgf8AxwHHADyNi5QL2bz+kezXnQz3Sp8HZXuDTA/ePBZ6fvVM+6j0P2DRQ9/ty8eVdperF2Y/5y+2+Ofu4kMnvaF4PrAB+MN9j05KpOSPqXtX5iIiTgJuB1Zn58gKelxZH1fmYlZn3A5+PiKPm86S0qNrMyFrgnsx8JzP3AQ8Bq+bs/yWaryseMmT/9kO6V3M+1CN9Gpw9DnyhzESzjOaP3OaB9WfTXCS9d7YiMy/JzJMz85xStRlYX5bXA3fObhsRHwDOp/mO8FAR8X3gm8CazHxvYNVm4OIyW9LpwOuzH0trSdWcEXWv2nxExGeAPwPrMnPHATxH7b+a83F8uZ6EaGbhWwY4gF96bWZkD3BW6Ucsp5nUY/vgzst1h38Dvjukvf2Q7tWcD/VJVjAryXwLzWxEO2hmw/nRnHV/AC6f0P5I4D5gZ7k9YmDd14AtE9q/W/Y9U8p1pT6AX5V124BVXZ+raS0VZ+QTNO+qvQG8VpYP6/p8TVupOB83A68O1G/t+lxNY6k4H1cD/yh1jwBndH2uprW0lRGaGTn/VP6dnwKuGtF+Jc1kMbvK9h8q9fZDKigV58M+SI/K7NS8kiRJkqQO9elrjZIkSZJ00HJwJkmSJEkVcHAmSZIkSRVwcCZJkiRJFXBwJkmSJEkVcHAmSZIkSRVwcCZJkiRJFXBwJkmSJEkV+D+l3Lg38ulv7AAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACScElEQVR4nOzdd3ib1fn/8feR995729mOE8fZCSEJtGwKhUIplNEWKBRKBx10Qn/f0lI6oYNVoNDSwaaDHUII2ctx9nLsxHvvKen8/pDkOImHJGvZvl/X5Qtb49GRbeLnfs45n1tprRFCCCGEEEII4V0Gbw9ACCGEEEIIIYQUZ0IIIYQQQgjhE6Q4E0IIIYQQQggfIMWZEEIIIYQQQvgAKc6EEEIIIYQQwgdIcSaEEEIIIYQQPkCKMyGEEEIIIYTwAVKcCSHEOKWU6hj0YVZKdQ/6+gZvj88ZSqkypdQnvD2OkSilPlRK3erG4z+plDpk/ZnecsZ9QUqp3yqlqpRSzUqpPymlAgbd97RSqlwp1a6U2qWUuviM55+vlDqolOpSSq1VSmUNuk8ppX6hlGq0fjyslFLuep9CCCHOJsWZEEKMU1rrcNsHcAK4fNBtL3h7fGdSSvlPhNfwgN3AV4CdQ9x3H7AAmA1MA4qAH1rv8wdOAiuBKOBHwItKqWwApVQ88Kr19lhgO/CvQce+HbgSmAvMAS4DvuyydyWEEGJUUpwJIcQEo5QyKKXuU0ods86AvKiUirXel62U0kqpLyilTlpnX+5QSi1USpUopVqUUn8YdKxblFIblFK/V0q1Wmddzh90f5R1tqZaKVWplPqpUsrvjOf+VinVBDyglMpTSn1gHVeDUuoFpVS09fF/BTKB/1hn/76jlFqllKo44/0NzK4ppR5QSr2slPqbUqoNuGWUMU1RSq2zvpcGpdTg4mTwawRbj9lo/Z5sU0olKaUeBFYAf7CO8Q/Wx89QSr2nlGqyznpdO+hYf1FKPW69v936+llDvS6A1vqPWus1QM8Qd18OPKq1btJa1wOPAl+0Pq9Ta/2A1rpMa23WWv8XOA7Mtz73KmCf1volrXUP8AAwVyk1w3r/zcCvtdYVWutK4NfALcONUwghhOtJcSaEEBPPPVhmQFYCqUAz8MczHrMYmAp8Fvgd8APgE0A+cK1SauUZjy0F4oH7gVdtxR7wHGAEpgDzgAuAW4d4biLwIKCAn1vHNRPIwFIkoLW+kdNnAB+28/1eAbwMRAMvjDKm/wPeBWKAdOD3wxzzZiyzTxlAHHAH0K21/gGwHrjbOsa7lVJhwHvA363v83PAn5RS+YOOd4P1teOBYus4naGsH4O/TldKRZ31QKWSsMyu7bPelI9lVg6wFHPAMevtZ91v/XzwexBCCOFmUpwJIcTE82XgB9YZkF4sxc9nzljy939a6x6t9btAJ/APrXWddcZkPZaixqYO+J3Wul9r/S/gEHCp9eT/YuDr1lmbOuC3wHWDnlultf691tqote7WWh/VWr+nte61zvz8BksRORabtNava63NQOQoY+oHsoBU6/v/eJhj9mMpyqZorU1a6x1a67ZhHnsZUKa1ftb6PncCrwCfGfSY/2mtP7L+PH4ALFVKZTjxXt8CvqaUSlBKJWMpxAFCBz/Iug/tBeA5rfVB683hQOsZx2sFIoa5vxUIl31nQgjhORNhbb4QQojTZQGvKaXMg24zAUmDvq4d9Hn3EF+HD/q6UmutB31djmXmKwsIAKoHnb8bsOx7shn8OUqpRCxL8VZgKQoMWGb2xmLwa4w2pu9gmcHaqpRqxrKM75khjvlXLLNm/7Quu/wbloK3f4jHZgGLlVItg27ztx7jrDFqrTusyzxTzxi7PR7EMkNYDPQCT2EppOtsD1BKGayv3QfcPei5HViK18EigfZh7o8EOs742QshhHAjmTkTQoiJ5yRwsdY6etBHsHVWzBlpZ8yeZAJV1tfpBeIHvU6k1nrwUrgzT+x/br1tjtY6Evg8py/TO/PxnQyaFbLuHUs44zGDnzPimLTWNVrr27TWqVhmGP+klJpy5hu2zhL+RGs9C1iGZXbspmHGeBJYd8b3O1xrfeegxwzMkimlwrEEclSd+bqjsc4+3q21TtNa5wKNwA6ttcl6bAU8jaUQv/qMYnIflrAP2zjCgDxOLXs87X7r5/sQQgjhMVKcCSHExPM48KAtdMK6BO6KMRwvEbhHKRWglLoGy16xN7XW1Vj2b/1aKRVpDSLJO2O/2pkisMzQtCil0oBvn3F/LZA76OvDQLBS6lLrUr0fAkHDHXy0MSmlrlFKpVsf3oyl0DKdeRyl1GqlVIG1GGzDsszR9rgzx/hfYJpS6kbr9yhAWQJWZg56zCVKqXOUUoFYZu62aK2HnDVTSgUqpYKxFK0B1nASg/W+NKVUqrJYgiV58f5BT38My8/ncq119xmHfg2YrZS62nr8HwMlg5Y9Pg980/YawL3AX4YaoxBCCPeQ4kwIISaeR4B/A+8qpdqBzViCOZy1BUt4SAOWZXWf0Vo3Wu+7CQgE9mMpdl4GUkY41k+wxL+3Av/DEu0+2M+BH1oTEr+ltW7FEiv/Z6ASy0xaBSMbaUwLgS1KqQ4s36Ovaa2PD3GMZOvz2oADwDosSxvB8v39jLIkXT6qtW7HEjpyHZbZsBrgF5xeRP4dSxHVhCU9caQ+dO9iWVq6DHjS+vm51vvygI3W78NzwH3WfYNYi/EvA4VAjTqj5511j9/VWH6GzVh+JwbvD3wC+A+wB9iL5efzxAjjFEII4WJKlpILIYQYjrI0Qb5Va32Ot8cyXiml/gJUaK1/ONpjhRBCTG4ycyaEEEIIIYQQPkCKMyGEEEIIIYTwAbKsUQghhBBCCCF8gMycCSGEEEIIIYQPkOJMCCGEEEIIIXyAvydfLD4+XmdnZ3vyJYUQQgghhBDCZ+zYsaNBa50w1H0eLc6ys7PZvn27J19SCCGEEEIIIXyGUqp8uPtkWaMQQgghhBBC+AApzoQQQgghhBDCB0hxJoQQQgghhBA+wKN7zobS399PRUUFPT093h6KmGCCg4NJT08nICDA20MRQgghhBBiVKMWZ0qpDOB5IBkwA09qrR9RSs0FHgfCgTLgBq11m6MDqKioICIiguzsbJRSjj5diCFprWlsbKSiooKcnBxvD0cIIYQQQohR2bOs0Qjcq7WeCSwB7lJKzQL+DNyntS4AXgO+7cwAenp6iIuLk8JMuJRSiri4OJmRFUIIIYQQ48aoxZnWulprvdP6eTtwAEgDpgMfWR/2HnC1s4OQwky4g/xeCSGEEEKI8cShQBClVDYwD9gC7AU+Zb3rGiBjmOfcrpTarpTaXl9fP4ahus+DDz5Ifn4+c+bMobCwkC1btgBw6623sn//fpe8RnZ2Ng0NDSM+5mc/+5nDx/3LX/7C3Xfffdptzz77LIWFhRQWFhIYGEhBQQGFhYXcd999Dh/fE373u9/R1dXl7WEIIYQQQojx7uGHYe3a029bu9Zy+zhgd3GmlAoHXgG+bt1b9kUsSxx3ABFA31DP01o/qbVeoLVekJAwZCNsr9q0aRP//e9/2blzJyUlJbz//vtkZFjqzD//+c/MmjXLY2Nxpjgbyhe+8AWKi4spLi4mNTWVtWvXUlxczEMPPeSS4ztKa43ZbB72fmeKM6PRONZhCSGEEEKIiWbhQrj22lMF2tq1lq8XLvTuuOxkV3GmlArAUpi9oLV+FUBrfVBrfYHWej7wD+CY+4bpPtXV1cTHxxMUFARAfHw8qampAKxatYrt27cDEB4ezne/+13mz5/PJz7xCbZu3cqqVavIzc3l3//+N3D2LNZll13Ghx9+eNZrXnnllcyfP5/8/HyefPJJAO677z66u7spLCzkhhtuAOBvf/sbixYtorCwkC9/+cuYTCbAMjM2bdo0Vq5cyYYNG+x+r7/85S9ZuHAhc+bM4f777wegrKyMGTNmcOuttzJ79mxuuOEG3n//fZYvX87UqVPZunUrAA888AA33ngj5513HlOnTuWpp54a9bgzZ87kK1/5CkVFRZw8eZI777yTBQsWkJ+fP/C4Rx99lKqqKlavXs3q1asHvtc2L7/8MrfccgsAt9xyC9/85jdZvXo13/3udzl27BgXXXQR8+fPZ8WKFRw8eNDu74UQQgghhJiAVq+Gf/0LrrwSbrrJUpi9+KLl9vFAaz3iB6CwpDX+7ozbE63/NVjv/+Jox5o/f74+0/79+8+6zZPa29v13Llz9dSpU/Wdd96pP/zww4H7Vq5cqbdt26a11hrQb775ptZa6yuvvFJ/8pOf1H19fbq4uFjPnTtXa631s88+q++6666B51966aV67dq1Wmuts7KydH19vdZa68bGRq211l1dXTo/P183NDRorbUOCwsbeO7+/fv1ZZddpvv6+rTWWt955536ueee01VVVTojI0PX1dXp3t5evWzZstNe80y2133nnXf0bbfdps1mszaZTPrSSy/V69at08ePH9d+fn66pKREm0wmXVRUpL/whS9os9msX3/9dX3FFVdorbW+//779Zw5c3RXV5eur6/X6enpurKycsTjKqX0pk2bBsZie99Go1GvXLlS7969+6zvzZnfh5deeknffPPNWmutb775Zn3ppZdqo9Gotdb6vPPO04cPH9Zaa71582a9evXqs96/t3+/hBBCCCGEhxiNWr/4otaFhVqD5eNHP/L2qM4CbNfD1Ev29DlbDtwI7FFKFVtv+z4wVSl1l/XrV4Fnx1oo/uQ/+9hf5XAa/4hmpUZy/+X5w94fHh7Ojh07WL9+PWvXruWzn/0sDz300MBsjU1gYCAXXXQRAAUFBQQFBREQEEBBQQFlZWUOjenRRx/ltddeA+DkyZMcOXKEuLi40x6zZs0aduzYwULrFGx3dzeJiYls2bKFVatWYVsi+tnPfpbDhw+P+prvvvsu7777LvPmzQOgo6ODI0eOkJmZSU5ODgUFBQDk5+dz/vnno5Q6671dccUVhISEEBISwurVq9m6dSsff/zxsMfNyspiyZIlA89/8cUXefLJJzEajVRXV7N//37mzJnj0Pfummuuwc/Pj46ODjZu3Mg111wzcF9vb69DxxJCCCGEEBNAXx+88AI89BAcPgzp6RAeDvfcA489Zpk1GyczZ6MWZ1rrj7HMng3lEdcOxzv8/PxYtWoVq1atoqCggOeee+6s4iwgIGAg/c9gMAwsgzQYDAP7n/z9/U/bWzVUjPuHH37I+++/z6ZNmwgNDWXVqlVDPk5rzc0338zPf/7z025//fXXnUoh1Frzve99jy9/+cun3V5WVjbwXkZ6b3B2+qFSasTjhoWFDXx9/PhxfvWrX7Ft2zZiYmK45ZZbho25H/w6Zz7Gdkyz2Ux0dDTFxcWjvXUhhBBCCDERdXXB00/DL38JJ09CYSH8+Mfwpz/Bv/9tKcg+8YlxtbTRnpkzjxlphstdDh06hMFgYOrUqQAUFxeTlZXl1LGys7P505/+hNlsprKycmC/1mCtra3ExMQQGhrKwYMH2bx588B9AQEB9Pf3ExAQwPnnn88VV1zBN77xDRITE2lqaqK9vZ3Fixfzta99jcbGRiIjI3nppZeYO3fuqGO78MIL+dGPfsQNN9xAeHg4lZWVBAQEOPT+3njjDb73ve/R2dnJhx9+yEMPPURISIhdx21rayMsLIyoqChqa2t56623WLVqFQARERG0t7cTHx8PQFJSEgcOHGD69Om89tprREREnHW8yMhIcnJyeOmll7jmmmvQWlNSUmLX90IIIYQQQowjDz9sCfSwFVetrXDvvfDPf0JnJyxfDk88ARddZCnUBhdiq1dbvt62TYqz8aCjo4OvfvWrtLS04O/vz5QpUwZCOhy1fPnygSWCs2fPpqio6KzHXHTRRTz++OPMmTOH6dOnn7bs7/bbb2fOnDkUFRXxwgsv8NOf/pQLLrgAs9lMQEAAf/zjH1myZAkPPPAAS5cuJSUlhaKiooGgkJFccMEFHDhwgKVLlwKW5Zx/+9vf8PPzs/v9LVq0iEsvvZQTJ07wox/9iNTUVFJTU+067ty5c5k3bx75+fnk5uayfPny0973xRdfTEpKCmvXruWhhx7isssuIyMjg9mzZ9PR0THkeF544QXuvPNOfvrTn9Lf3891110nxZkQQgghxERjS2B88knYsQN+9ztLUbZgAfzmN7BixanHfuc7Zz9/HC1rVJY9aZ6xYMECbUs/tDlw4AAzZ8702BiEcx544AHCw8P51re+5e2hOER+v4QQQgghJoBXXoFrrrHEfAQGwqOPwhnbasYLpdQOrfWCoe5zqAm1EEIIIYQQQnjcu++e+vy73x23hdloJv2yRmGfBx54wNtDEEIIIYQQk9GePfDUUxAcDN/61rhLYHSEzJwJIYQQQgghfJPW8IUvWD7/xz/g//0/S8DHtdfC2rXeHZsbSHEmhBBCCCGE8E1vv20JAbnzTrjiCsttgxMYJxhZ1iiEEEIIIYTwPUajJTJ/yhT47W9Pv2+CLmuU4kwIIYQQQgjhe556Cg4cgNdesyQ0TgKyrBHw8/OjsLCQ2bNnc80119DV1eX0sW655RZefvllAG699Vb2798/7GM//PBDNm7cOPD1448/zvPPP+/0a9uUlZUxe/bs02574IEH+NWvfuXQcVw1HiGEEEIIIRzS2go//jGsXHlqOeMkIDNnQEhICMXFxQDccMMNPP7443zzm98cuN9kMjnUrNnmz3/+84j3f/jhh4SHh7Ns2TIA7rjjDodfw12MRqNPjUcIIYQQQkwiP/sZNDZamkwr5e3ReMz4mjl7+OGzU1nWrrXc7iIrVqzg6NGjfPjhh6xevZrrr7+egoICTCYT3/72t1m4cCFz5szhiSeeAEBrzd13382sWbO49NJLqaurGzjWqlWrsDXdfvvttykqKmLu3Lmcf/75lJWV8fjjj/Pb3/6WwsJC1q9ff9rsVnFxMUuWLGHOnDl8+tOfprm5eeCY3/3ud1m0aBHTpk1j/fr1Dr/HkY79/e9/n5UrV/LII48MjKeqqorCwsKBDz8/P8rLyykvL+f8889nzpw5nH/++Zw4cQKwzB7ec889LFu2jNzc3IGZRCGEEEIIIUZ1/Dj87ndw001QVOTt0XjU+CrOFi48PTZz7VrL1wsXuuTwRqORt956i4KCAgC2bt3Kgw8+yP79+3n66aeJiopi27ZtbNu2jaeeeorjx4/z2muvcejQIfbs2cNTTz112jJFm/r6em677TZeeeUVdu/ezUsvvUR2djZ33HEH3/jGNyguLmbFihWnPeemm27iF7/4BSUlJRQUFPCTn/zktHFu3bqV3/3ud6fdPtixY8dOK6gef/xxu47d0tLCunXruPfeewduS01Npbi4mOLiYm677TauvvpqsrKyuPvuu7npppsoKSnhhhtu4J577hl4TnV1NR9//DH//e9/ue+++xz8SQghhBBCiEnrvvvAzw8efNDbI/E431rW+PWvg3V54bBSU+HCCyElBaqrYeZM+MlPLB9DKSy0VN4j6O7uprCwELDMnH3pS19i48aNLFq0iJycHADeffddSkpKBmaBWltbOXLkCB999BGf+9zn8PPzIzU1lfPOO++s42/evJlzzz134FixsbEjjqe1tZWWlhZWrlwJwM0338w111wzcP9VV10FwPz58ykrKxvyGHl5eQNLNeFUE+nRjv3Zz3522HFt2LCBP//5zwOzdZs2beLVV18F4MYbb+Q73/nOwGOvvPJKDAYDs2bNora2dsT3K4QQQgghBAAbN1pi8n/8Y0hL8/ZoPM63ijN7xMRYCrMTJyAz0/L1GA3eczZYWFjYwOdaa37/+99z4YUXnvaYN998EzXKOlit9aiPcURQUBBgCTIxGo0uOy6c/p4Hq66u5ktf+hL//ve/CQ8PH/Ixg9+jbYxgef9CCCGEEEKMSGv45jct5/rf/ra3R+MVvlWcjTLDBZxayvijH8Fjj8H993ukx8GFF17IY489xnnnnUdAQACHDx8mLS2Nc889lyeeeIKbbrqJuro61q5dy/XXX3/ac5cuXcpdd93F8ePHycnJoampidjYWCIiImhrazvrtaKiooiJiWH9+vWsWLGCv/71rwMzXWPlzLH7+/u59tpr+cUvfsG0adMGbl+2bBn//Oc/ufHGG3nhhRc455xzXDJGIYQQQggxCf3rX7BlCzzzDAwzGTDR+VZxNhpbYfbii6cazw3+2o1uvfVWysrKKCoqQmtNQkICr7/+Op/+9Kf54IMPKCgoYNq0aUMWOgkJCTz55JNcddVVmM1mEhMTee+997j88sv5zGc+wxtvvMHvf//7057z3HPPcccdd9DV1UVubi7PPvusy96Lo8feuHEj27Zt4/777+f+++8HLDOGjz76KF/84hf55S9/SUJCgkvHKIQQQgghJpHubvjudy1bkm66yduj8RrlySVnCxYs0Lb0QpsDBw4wc+ZM+w7w8MOW8I/BhdjatbBtGwza7ySEjUO/X0IIIYQQwjseegi+9z1YswaGyHCYSJRSO7TWC4a6b3zNnA1VgNlm0IQQQgghhBDjT22tpa/Zpz414Quz0YyvKH0hhBBCCCHExHL//ZZljS7sXTxeSXEmhBBCCCGE8KyHH7ZsT9q7F556Cr7yFaiqmvQFmk8sa3R11LwQIBH+QgghhBA+a+FCS7BfdjZERp4e9DeJeX3mLDg4mMbGRjmRFi6ltaaxsZHg4GBvD0UIIYQQQpxp9WpLKuP27ZZC7bbbPJLA7uu8PnOWnp5ORUUF9fX13h6KmGCCg4NJT0/39jCEEEIIIcSZ3njD0uM4Lw/ee8/Sw3iSF2ZgR3GmlMoAngeSATPwpNb6EaVUIfA4EAwYga9orbc6OoCAgABycnIcfZoQQgghhBBiPNqwAa67DqZNg/p6S2H22GOSwo59M2dG4F6t9U6lVASwQyn1HvAw8BOt9VtKqUusX69y31CFEEIIIYQQ49r+/XD55RAfbynMXnrpVFFm23M2iQu0Ufecaa2rtdY7rZ+3AweANEADkdaHRQFV7hqkEEIIIYQQYpyrqIALL4SgILjhhlOFGVj+++KLsG2bd8foZQ7tOVNKZQPzgC3A14F3lFK/wlLkLXP14IQQQgghhBATQHMzXHQRtLbCRx9BYeHZj5FljfanNSqlwoFXgK9rrduAO4FvaK0zgG8ATw/zvNuVUtuVUtsl9EMIIYQQQohJprsbrrgCDh+G118fujATACh7IuyVUgHAf4F3tNa/sd7WCkRrrbWyNClr1VpHjnScBQsW6O3bt7tg2EIIIYQQQgifZzLBNdfAa6/BP/8Jn/2st0fkdUqpHVrrBUPdN+rMmbXweho4YCvMrKqAldbPzwOOjHWgQgghhBBCiAlCa7j7bkth9rvfSWFmB3v2nC0HbgT2KKWKrbd9H7gNeEQp5Q/0ALe7ZYRCCCGEEEKI8efBB+Hxx+G734Wvfc3boxkXRi3OtNYfA2qYu+e7djhCCCGEEEKIcefhh2HhwlOBHn/+s6V/WVER/Pzn3h3bOOJQWqMQQgghhBBCnGXhwlN9yjo64PbbISAAHnoI1HDzPOJMUpwJIYQQQgghxsbWp+zqq6G9Hfz8LMmMn/ykt0c2rtgdpS+EEEIIIYQQw1q9GqZOBaMR7rkHLrnE2yMad6Q4E0IIIYQQQozd2rWwYwfk5MDzz1u+Fg6R4kwIIYQQQggxNmvXWvqZmUxw222WJY7XXisFmoOkOBNCCCGEEEKMzbZt8JWvWD4///xTe9C2bfPuuMYZKc6EEEIIIYQQY/Od70BNDURGWuLzwVKgfec73h3XOCPFmRBCCCGEEGLs1qyBVavAXwLhnSXFmRBCCCGEEGJsysqgtNSypFE4TYozIYQQQgghxNh88IHlv+ed591xjHNSnAkhhBBCCCHGZs0aSEqC/Hxvj2Rck+JMCCGEEEII4TytLTNn550HSnl7NOOaFGdCCCGEEEII5x04YElqlCWNYybFmRBCCCGEEMJ5a9ZY/ithIGMmxZkQQgghhBDCeR98ADk5lg8xJlKcCSGEEEIIIZxjMsGHH8qSRheR4kwIIYQQQgjhnJ07oaVFljS6iBRnQgghhBBCCOdIfzOXkuJMCCGEEEII4Zw1ayy9zZKSvD2SCUGKMyGEEEIIIYTjenvh449lSaMLSXEmhBBCCCGEcNzmzdDdLcWZC0lxJoQQQgghhHDcmjVgMMC553p7JBOGFGdCCCGEEEIIx61ZAwsWQHS0t0cyYUhxJoQQQgghhHBMezts3SpLGl3Mf7QHKKUygOeBZMAMPKm1fkQp9S9guvVh0UCL1rrQTeMUQgghhBBC+Ir168FolAh9Fxu1OAOMwL1a651KqQhgh1LqPa31Z20PUEr9Gmh11yCFEEIIIYQQPmTNGggMhOXLvT2SCWXU4kxrXQ1UWz9vV0odANKA/QBKKQVcC0jZLIQQQgghxGTwwQewbBmEhHh7JBOKQ3vOlFLZwDxgy6CbVwC1WusjLhyXEEIIIYQQwhc1NEBxsew3cwO7izOlVDjwCvB1rXXboLs+B/xjhOfdrpTarpTaXl9f7/xIhRBCCCGEEN63dq3lv1KcuZxdxZlSKgBLYfaC1vrVQbf7A1cB/xruuVrrJ7XWC7TWCxISEsY6XiGEEEIIIYQ3ffABhIdbYvSFS41anFn3lD0NHNBa/+aMuz8BHNRaV7hjcEIIIYQQQggfs2YNrFwJAQHeHsmEY8/M2XLgRuA8pVSx9eMS633XMcKSRiGEEEIIIcQEcvIkHDkiSxrdxJ60xo8BNcx9t7h6QEIIIYQQQggf9cEHlv9KfzO3cCitUQghhBBCCDGJrVkD8fFQUODtkUxIUpwJIYQQQgghRqe1ZebsvPPAIGWEO8h3VQghhBBCCDG6w4ehslKWNLqRFGdCCCGEEEKI0a1ZY/mvhIG4jRRnQgghhBBCiNF98AFkZkJenrdHMmFJcSaEEEIIIYQYmdkMa9daljSqIYPcAWjq7ONvm8sxm7UHBzdxSHEmhBBCCCGEGFlxMTQ1jbikUWvN91/dw0/+s4+yxk7PjW0CkeJMCCGEEEIIMTI7+pu9srOSt/fVcO8F08lNCPfQwCYWKc6EEEIIIYQQI1uzBmbMgNTUIe8+2dTFA//ex6KcWG5bkevhwU0cUpwJIYQQQgghzvbww5Z9Zn198NFHliWNa9dabh/EZNZ888ViAH5z7Vz8DMPvSRMjk+JMCCGEEEIIcbaFC+Haa+Hxx6GrCxISLF8vXHjaw5746Bjbypr5yafySY8J9dJgJwZ/bw9ACCGEEEII4YNWr4YXX4TLLrN8/fvfw0svWW632lvZym/fO8wlBclcVZTmpYFOHDJzJoQQQgghhBja6tWweLHl86985bTCrKffxNf/VUxMaCAPXlmAGiFiX9hHijMhhBBCCCHE0NauhT174Ec/gsces3xt9Yu3D3K0roNfXTOXmLBALw5y4pBljUIIIYQQQoizrV1r2WP24ouWGbPVqwe+Xp8+m2c3lHHLsmzOnZbg7ZFOGFKcCSGEEEIIIc62bdupwgwG9qB1b9jEtwwm8hLCuO/iGd4d4wQjxZkQQgghhBDibN/5zlk36VWr+FZ1FI17a3j65oUEB/h5YWATl+w5E0IIIYQQQtjl9eJK/ldSzTc+OY3ZaVHeHs6EI8WZEEIIIYQQYlQVzV38+PV9LMiK4Y6Ved4ezoQkxZkQQgghhBBiRGaz5t4Xd2PWmt9+thA/g8Tmu4MUZ0IIIYQQQogR/fnjUrYcb+L+T+WTERvq7eFMWFKcCSGEEEIIIYZ1oLqNX71zmAvzk7hmfrq3hzOhSXEmhBBCCCGEGNaTH5USEujHz6+ag1KynNGdpDgTQgghhBBCDGt3RQsLs2OJDQv09lAmvFGLM6VUhlJqrVLqgFJqn1Lqa4Pu+6pS6pD19ofdO1QhhBBCCCGEJ3X0Gjne0EmBxOZ7hD1NqI3AvVrrnUqpCGCHUuo9IAm4Apijte5VSiW6c6Bi/Oo1mthwtIFV0xIxSLKPEEIIIcS4sa+yFa2hID3S20OZFEadOdNaV2utd1o/bwcOAGnAncBDWute63117hyoGJ/aevq5+ZmtfPEv23l7X423hyOEEEIIIRywp7IVQBpOe4hDe86UUtnAPGALMA1YoZTaopRap5Ra6IbxiXGsrq2Hzz6xme1lzQT5G1h/pMHbQxJCCCGEEA7YW9lKUmQQiRHB3h7KpGB3caaUCgdeAb6utW7DsiQyBlgCfBt4UQ0R36KUul0ptV0ptb2+vt5Fwxa+7lh9B1c9tpHyxk6evmUh505L4OOj8vMXQgghhBhP9lS2yn4zD7KrOFNKBWApzF7QWr9qvbkCeFVbbAXMQPyZz9VaP6m1XqC1XpCQkOCqcQsftutEM595bCPdfSb+efsSVk5L4Jwp8Zxs6uZEY5e3hyeEEEIIIezQ0WuktKFTljR6kD1pjQp4Gjigtf7NoLteB86zPmYaEAjIurVJbu2hOq5/agsRwQG8cucy5qRHA3DOVEvd/vFR+RURQgghhBgP9le1WcJApDjzGHtmzpYDNwLnKaWKrR+XAM8AuUqpvcA/gZu11tqNYxU+7uUdFdz63HZyE8J4+c6lZMeHDdyXGx9GSlQwG6Q4E0IIIYQYF2xhIFKcec6oUfpa64+B4fLPP+/a4YjxSGvNY+uO8fDbhzhnSjyP3zif8KDTf7WUUiyfEs/7B2oxm7VE6gshhBBC+Li9la0kRgSRGClhIJ7iUFqjEGcymzU/+c9+Hn77EJ+am8oztyw8qzCzOWdKPC1d/eyravPwKIUQQgghhKMkDMTzpDgTTus1mvjqP3fxl41lfOmcHH732UIC/Yf/lVo+RfadCSGEEEKMB119Ro7Vd0gYiIdJcSac0tFr5AvPbuN/JdV8/5IZ/OiyWaMuVUyICGJGcoTsOxNCCCGE8HESBuIdUpwJp/xx7VE2lzbym2vncvu5eXY/b/mUeLaWNdHTb3Lj6IQQQgghxFgMhIGkS3HmSVKcCYf1Gk28uO0k589M4qqidIeee86UePqMZraXNbtpdEIIIYQQYqz2VLaSEBFEkoSBeJQUZ8Jhb++tobGzj88vyXL4uYtyYgnwU7LvTAghhBDCh+2VMBCvkOJMOOyFzSfIigtlhTXgwxFhQf7My4yRfWdCCCGEED6qq8/I0ToJA/EGKc6EQw7XtrO1rInrF2U63avsnCnx7K1qpbmzz8WjE0IIIYQQY3Wgug2zhIF4hRRnwiEvbC4n0M/AZ+Y7ttdssOVT4tEaNh5rdOHIhBBCCCGEK+ypsISBzE6L9PJIJh8pzoTdOnuNvLqzkksKkokLD3L6OHPTo4gI8pd9Z4K9la20dMkMqhDC9SQVWAjn7alsIz48kGQJA/E4Kc6E3f69u4r2XqNTQSCD+fsZWJIXJ/vOJrleo4nPPL6RR9Yc8fZQhBATzL6qVgoeeIftZU3eHooQ49LeylZmp0WhlHNbWITzpDgTdtFa87fN5UxPimB+VsyYj3fOlHhONHVxorHLBaMT49GhmnZ6+s3stfZREe7x3v5aPvmbdTKLICaVl7ZX0G/SvLe/1ttDEWLc6e4zcaSuXfabeYkUZ8Iuuyta2VfVxueXZLrkKspya9LjhmMyezZZlVjXsx+obsds1l4ezcT1enElR+o6ON7Q6e2hCOERRpOZ/5ZUAbK3WQhn7LeGgUhSo3dIcSbs8rfN5YQG+nHlvDSXHC8vIYzkyGA+PiLF2WRl22zc0Wukornby6OZmMxmzSbryemx+g4vj0YIz9hwrJGGjj5mp0Wyt0r2tQrhKNuKFpk58w4pzsSoWrv6+c/uKq6cl0ZEcIBLjqmU4pyp8Ww41uCxWZOWrj5q23o88lpidCWVrcSHBwKwv1qWNrrDwZp2mqwtK0rrZeZMTA5v7KokMtif+y6aidawuVT2nQnhiD2VrcSFBZISJWEg3iDFmRjVyzsr6DWauWFxpkuPe86UeFq6+tlf3ebS4w7nh6/v5XNPbfbIa4mR9fSbOFzbzhWFaRgU7K9u9/aQJqSN1mXDEUH+lMrMmZgEuvtMvLOvhksKUliUE0tIgN/A/wdCCPtIGIh3SXEmRqS15oUt5czLjCY/1bXT28umxAF4LFJ/d0ULpfWdVLbIEjpv21/dhsmsWZQTS058GAc8VKBPNhuONpAbH0ZhZjTHZOZMTALvH6ils8/EFYVpBPobWJgTK/vOhHBAT7+JI3UdsqTRi6Q4EyPaVNpIaX0nn188tvj8oSRGBDM9KcIj+846eo2cbLIUZZvlD7XX2fabzUmPYmZKJPurpDhztX6Tma3Hm1g2JY68hHBK6zvQWoJXxMT2RnElyZHBLM6JBWB5XhxH6zpkSbsQdrJdPJUwEO+R4kyM6IXNJ4gKCeDSOSluOf7yKfFsLWtye8z34dpTy+Y2lUpx5m0lFa0kRASRHBnMrNRIKlu6ae3u9/awJpTdJ1vo7DOxPC+evIQwOvtM1LX3entYXtVnNPPxkQYpUieo5s4+PjxUz6cKUzEYLMuxbMnAm+SinBB2GQgDSZfizFukOBPDqmvr4Z19NVwzP53gAD+3vMaKqfH0Gc3sKG92y/FtDlr3NOWnRrJZijOv21PZwhzrevaZKZEAsrTRxTYcbUQpWJoXR25CODC5Exu11nzn5d18/ukt7DrZ4u3hCDf4355qjGbNFYWpA7fNTIkkKiSADR5aPi/EeLenopXYsEBSJQzEa6Q4E8P617aTGM2aG5a4fkmjzaKcWPwNyu37zg7VtBEW6MfVRelUNHdzskmaX3tLZ6+Ro3UdA1fl8qU4c4uNxxrIT40kOjSQ3IQwgEm97+y37x/h9WJL76uDEkAzIb1RXMnUxHBmWf9NAfAzKJbmxrHxWKPMmAphh71VbRIG4mVSnIkhmcyaf2w9wTlT4smJD3Pb64QF+VOUGeP2q5oHatqZnhwxEEIis2feY2tuOcdanCVEBBEXFij7zlyou8/ErhMtLMuzLOlKjgwmNNBv0iY2vryjgkfXHOGa+emEBvqdtsxZTAwVzV1sK2vmynlpZ51ULpsSR2VLNyfkopwQI+rpN3Gktp2CtMjRHyzcRoozMaS1B+uoau1xeXz+UJZPiWdPZSvNne5pFKq15lBNO9OTI5mWGEFsWKD0vfGi3dYlZbbNxkopZqVGcqBGijNX2VbWRJ/JzLI8y8UIpRS5CWGTstfZxmMNfO/VEpZPieNnVxUwJTGco3WTs0idyP692zIr+qm5qWfdZ7tIseGoXJQTYiQHa9oxmrUkNXqZFGdiSH/bUk5iRBCfmJXk9tc6Z2o8WrsvqKOmrYfW7n5mpkRgMCgW58TKzJkX7alsJSUqmMSIU+vZZ6ZEcri2g36T2Ysjmzg2HGsgwE+xyJpYB5AbH05pw+QqSo7WtXPHX3eQHRfGn26YT4CfgSmJ4TJzNgG9sauKBVkxZMSGnnVfXkIYiRFB0u9MiFHssYaBSFKjd0lxJs5ysqmLdYfruW5RJgF+7v8VmZseRXiQv9v2nR2ssZyITU+KAGBJrmWJi+w78449Fa1nXZWblRJJn9E8KWd23GHj0UbmZcQQGug/cFtuQhgVzd1uT0b1FQ0dvXzhL9sI9PfjmVsWEhUSAMC0pAjq2ntp7ZJ00IniQHUbh2rbTwsCGUwpxfIp8Ww61ojZLPvOhBjO3opWYkIDSIsO8fZQJrVRz7yVUhlKqbVKqQNKqX1Kqa9Zb39AKVWplCq2flzi/uEKT/j71hMo4LqFGR55PX8/A0ty49y278y2+X9GsmUN9VLrUi+J1Pe8tp5+Shs6B/ab2Uhio+u0dPWxt6p1YH+lTW5COFpDWePEL4B7+k3c+tx26tt7efrmBafNpkxLsiRXHq6T2bOJ4vXiSvwNikvnDF2cASzLi6Oxs09+7kKMYE9lq4SB+AB7pkWMwL1a65nAEuAupdQs632/1VoXWj/edNsohcf0Gk28uO0k589MItWDV07OmRJHeWOXW2azDtW0kRIVTFSo5cr51MRw674z7xRn/9ldRVvP5Lxqf6p/SvRpt+cmhBHoZ2D/BCvOik+20NVn9Ohrbi5tROtT/Z1s8qyJjRN9dtJs1nzjX8XsrmjhkevmMTcj+rT7pyZaZtCP1E6uJZ4Tldms+U9xFedOSyA2LHDYxy2bIvvOhBhJT7+Jw7Xtst/MB4xanGmtq7XWO62ftwMHgDR3D0x4x9t7a2js7OPzbozPH8o5UxMA3LK08WBNOzOSIwa+VkqxJDeWzV6IVj5U085X/7GLFzaf8Ojr+oo9Fdbi7Ix//AP8DExLDp8wM2dms+bnbx7gyj9u4PEPj3n0tTccbSQ00I+5ZxTAttTViZ7Y+Iu3D/LW3hp+cMlMLsxPPuv+tOgQQgIksXGi2FrWRFVrz7BLGm3SokPIjgtlk+w7E2JIh6xhILLfzPsc2lCklMoG5gFbrDfdrZQqUUo9o5SKcfXghOe9sOUEmbGhrDjjqru75SWEkRwZ7PLirN9k5lh9B9OTT4+FXZobR1VrDyebul36eqPZetxy1Xb3JG2CW1LZSnpMyJBXuGcmR7K/qm3c9yLq7jNx19938sRHpQT6GSi2FqSesuFYA4tyYgn0P/2f99BAf1Kjgid0r7MXtpTzxEel3Lgkiy+dkzPkYwwGxdSkcI7I8rYJ4Y3iSkID/fikHeFVS/Pi2VLahFGCh4Q4iy0MRGbOvM/u4kwpFQ68Anxda90GPAbkAYVANfDrYZ53u1Jqu1Jqe319/dhHLNzmcG07W483cf3iTAwGz643tm3Y3ni0waUbtkvrO+k3aWamRJx2+5Jc7/Q723LcEuFfUtHi0df1FXsqWs+a0bGZlRpJY2cf9e29nh2UC9W393LdU5t5e18NP7psFlcUprKvstVjBWdNaw+l9Z0szxv64kpuQviEnTn78FAdP35jH6unJ3D/5bNG3DMxNTFCljVOAL1GE2/uqeHC/OTTwm+Gs3xKHO29xoGTUCHEKXsrW4kKCSA9RsJAvM2u4kwpFYClMHtBa/0qgNa6Vmtt0lqbgaeARUM9V2v9pNZ6gdZ6QUJCgqvGLdzg5R0VBPoZuGZ+ulde/5ypcTR39bt039FBa++s6cmnF2dTEsOJDw/0aCiI1pptZU34GxRVrT3UtfV47LV9QUtXHyeauihIH/qqnC0UZLzuOztS286Vf9zA4Zp2nvj8fL50Tg6z06Jo7Oyjts0zBactVOfMMBAbW6+z8T47eab9VW3c9cJOpidF8Ifri/AfJWV2WlK4JDZOAOsO1dPa3c+nRlnSaLPUelFu4zHZdybEmfZUWpKUJQzE++xJa1TA08ABrfVvBt2eMuhhnwb2un54wpOO1XWQlxhOXHiQV17fdrXflUsbD9a0429Q5MaHn3a7UorFuXHW8ATPnKieaOqitq2Xy61NUnd7eLmbt9muVs8ZZsnEeC7ONhxt4KrHNtJnMvOvLy/hAutep/xUy3va66Er9RuPNRIbFsjMM5bx2uQlhNPea6S+Y/zOTp6ptq2HLz23jYjgAJ65ZSFhQaPPoEyVxMYJ4Y3iKuLCAu1ehh8XHsSM5Ai3JQMLMV71Gi1hILLfzDfYM3O2HLgROO+M2PyHlVJ7lFIlwGrgG+4cqHC/uvZeEiO8U5gBJEYGMz3JtX84D1a3MSUx/Kz9N2BZ2ljd2sMJD/U7sy1p/MLybPwMyuVLGw9Ut7H+SL3PzoqUWIvR/GH+8Y8KsfRWOVA9vk6YX9x2kpuf2UpqVAiv37WcOYOWbc5MiUQp2Fvl/uJMa83GYw0szY0bdllyrjWx8VjdxNl39uf1pTR09PLMLQtJjgoe/QmcSmyUUJDxq72nn/cP1HLZnJRRZ0oHW5YXz/by5knT708IexyqaaffpGW/mY+wJ63xY6210lrPGRybr7W+UWtdYL39U1rrak8MWLhPbVsPSZHeK87AEv+99XiTy/5wHqppP2tJo83S3FgANnloicu2403EhAZQkBbFtKQIil0cCnLfq3u48emt3PzsNo754L6iPRWt5MSHDTQDHsqs1Ej2e6CQcQWzWfPw2wf5zislLM2L4+U7l57VuDMsyJ/c+DD2Vbl/NvB4QyfVrT0DffyGkptgmTEqbfC93w9nbS5toigzhlmpQ88WDiUtOoTQQD/ZdzaOvb23hl6jmSvmORYevXxKHH1GMzvLm900MiHGHwkD8S0OpTWKictk1jR09JIUad+VZ3c5Z2ocvS76w9na1U9Va89A8+kz5SWEEx8e5LFQkK1lTSzMjkUpxdz0KEoqXBcU0dlrZG9lK/OzYthV3sxFv/uIh946SGevZ3tsjaSkomXUf/hnpkRyvKHT569q9/Sb+Oo/d/GnD49x/eJMnrllIRHBQxed+alR7PPAssYN1osMZ/Y3GywlMpjgAMOE6XXW2t3PvqrWgYAfexkMiqmJktg4nr1RXEVWXCjzzuhjN5pFObH4GZRP7js7XNvOz9864NJQLCHsYQsDyYiVMBBfIMWZAKCxoxeztiwt9KZFOXH4GxTrXbC08ZB1ydKMYWbOBvqdlTa5fSlgbVsP5Y1dLMqxzNbNzYimtbuf8kbXLKksPtmCyay55/ypfPCtVVxRmMbj645x/q/X8e/dVV5f6ljf3ktVaw9zhgkDsZmVEoFZW2Y8fVVjRy/XP7WZN/dU8/1LZvDglbMJGGFZ1ey0SKpae2jq7HPruDYebSA1KpjsuNBhH2Ow7r/0xZlVZ2wva8Kscbg4A5iSGMFhmTkbl+raeth4rIEr5qY6HF4QERzAnPQoNvhgv7PXdlXyxLrScbUXcuOxBv659YTX/8aIsdlT2crstEgJA/ERUpwJgIE0OW/uOQMID/KnMCPaJUsNbUmNM1KGLs7AclJX09ZDmYuKpOFste43sxVntiJlt4v2nW0ra8KgoCgzmoSIIH51zVxeuXMZ8RGB3POPXVz35GavFjx77VwyMSvFcr+vhYIYTWZ2nmjmkfeP8Kk/bGB/dRuP3VDE7efmjfrHLD/V8p72uXG5ptms2VTayLIp8aOOx5bYOBFsLm0k0M/AvMxoh587LSmc+vZeWrrcWzQL1/tPSTVmDZ8qdGxJo83yvHhKKlpp7/GttM6yBsv/l7a/F+PBI+8f4b5X9/DNF3fTa/TtFQ9iaL1GE4dqJAzEl0hxJgDLzA7g9WWNAMvy4iipaKFtjH84D9a0ExnsT/II78m2P8fdSxu3lTURFujHLGsi4bSkCIIDDOw+6ZoT9u1lzcxIjjxtad38rBjeuOscHvz0bA7VtnPJo+v5yX/20drt+ROSkopWlBo+DMQmPSaE8CB/DvhAcVbe2MnfNpfz5b9uZ97/vcdVf9rI79YcJj48kH/evpSLZqeMfhAGJza67z3tr26jpauf5cNE6A+WmxBORXPXhDiR2nK8icLMaIID/Bx+7rQky0WbI3UyezbevFFcyey0SKYkho/+4CEsy4vDZNY+VwQdtxZnW3xsXCOpbOkmMSKI13ZV8vk/b3H7CgHheodrOiQMxMdIcSYAqG23FWfenTkDWJoXj1nD1tKx/YE6VNPOjJSRp+lz48NIiHD/vrOtx5soyooZSBUL8DOQnxrlksRG26yObVZuMD+D4obFWay9dxWfW5TBXzaWcf6vP+Sl7Sc9uq9hT2ULeQnhhI8Sc24wKGamRLDfAwEaZ2rt7uftvdV8/7U9nPvwWlb+8kN++Ppe9la2cWlBCn+4fh47f/hJ3rj7HAod2OcSHRpIekyIW2fOBvqbDdN8erC8hDDMGpctqfWWtp5+9lY6vt/MZiBOXxIbx5XS+g5KKlq50slZM4CirBgC/Q0+te9Maz3w/+TW4+5fau8KJrOmprWHz8xP5/efm8fuilY+/acNE2bZ9GQhYSC+Z/SGMGJSqGvrRSmI91KPs8GKsqIJ8jew4VgDn5iV5NQxtNYcqmnnqqKR/4Bb9p3FsemYpd+ZO9Zbt3T1cai2ncvmnD7TMjc9mr9vLcdoMjsUBX2m/dVtdPWZWJAdM+xjYsIC+emVBVy3MJMfv7GXb79cwr93V/H8Fxd5ZI15SUUr59jZi2hmSiSv7qzEbNbDRsK7SnefiVd3VfDyjgp2n2zBrCEs0I+lefF86ZwcVkyNJyc+bMzfo/zUSLcmNm441siUxHC7Zr7zrImNx+o6BmaPxqOB/WZDXJSwR2qUJDaOR68XV6EUA/0inREc4MeCrBif6ndW195Ld7+JGckRHKxpp6yxi5z4MG8Pa0S1bT0YzZr0mFAun5tKanQItz+/nU//cQOP3zjfrotFwvv2VrUSGexPZuzw+5WFZ8nMmQCgrr2HuLDAEYMNPCXI34+F2bFj2ndW0dxNR69x2KTGwZbmxlHX3juwpMTVtpc1ozUszD79JHJuRhQ9/eYxhxJsK7MkWy7IGv0kdXZaFC/fsYx7PzmN9UcaBp7rTrVtPdS1944aBmIzKyWSjl4jJ5vdN7NT2dLNz986wJKfr+EHr+2lp9/M3aun8NIdSym+/wL+fPMCbl6WTW5CuEuK19mpURxv6HTLHpc+o5ltx5tYPkKE/mC2E75SN/2+e8qW0ibrfrPhL0qMxJbYKDNn44fWmjeKK1mWFzfmJfjLp8RzsKadRh9pyG77+3PtggzA0nrF11U0dwOQFmNJ+JufFcPrdy0nKTKYm57eyovbTnpzeMJOeytbmZ0WJWEgPsT7Z+LCJ9S29ZIY4f39ZjbLpsRxsKadBif/cB60hl8M1+NssCXWfmebx7iMcjhbyywnkXPPWAo319qseKyhINuON5ERG2J3A16DQfGlFTmEBfrxyo6KMb22PWzNpwsGNWceyUzrvjxX7zvTWrO9rIm7XtjJuQ+v5amPSjlnSjwv37GUN+85h29eMJ2F2bFuuUCRn2Z7T64vBHadaKa738QyO2cmw4Is+zDH+9KjzaWNFGZEExLo+H4zm6lJEbLnbBwpPtlCeWMXV4xhSaPNMuvFjE0eaqUymvJGS3H2iZlJxIYFjot9Z5Utlgtog/s7ZsSG8spXlrE0L47vvFLCQ28dlNYAPqzPaOZgdbssafQxUpwJwDJz5gv7zWxsyyGcnT07ZE1qtKc4y4kPIzEiyG1/pLceb2JuRtRZoQVZcaFEhQSMad+Z1prt5U1nzcqNJjTQn0sKUvjfnmq6+tzbC21PRQt+BjUQhjKa6ckRGBTsd1Eh02c089quCq744wY+8/gm1h+p59YVOaz/7nn88YYiFlh7z7nTbGti41439DvbeKwRg3IsTn68Jza29/Szp7KVxbnOLWm0mZooiY3jyR8+OEpEkD8XzU4e87EK0qKICPL3mX1nxxu6CPBTpMWEsDA7hq1lvjGukVTaZs6iT++NFRkcwDO3LOT6xZk8vu4Yd/19J9194z+AaCI6XNtOn8ksSY0+RoozAfjezNns1Mgx/eE8UNNORmzIqAEUYNl3tjQvjs2ljS7fhN3VZ2kOPVRYh1KKOelRFI8hsbGssYuGjj6HizOAq+en09Fr5J19NU6/vj1KKluZmhhu9wxHcIAfuQnhYw4Faejo5dE1R1j+iw/4xr9209lr5KdXzmbz98/nexfPPOuEwp0SI4NJiAhyy76zjccaKEiLIipk6CbYQ8lLsPQ6Gw+hA0PZXt7sdH+zwWx77qTfme/7+EgDaw7Wcdd5U4gcpuG7I/z9DCzOjWWjj+w7K2voJCM2FD+DYlFOHCebuqlq6fb2sEZU2dJNfHjgkP+2B/gZePDK2fzw0pm8va+G657cRJ01eEz4Dnvb3AjPkuJMYDSZaejo9amZM8sfzjg2Otko9FBNu137zWyW5MZR397r8n04u060YDTrYYunwoxoDte2O31V0bYvYeEIYSDDWZQdS0ZsCK/sqHTqte2htWZPRavd+81sZqVEjmlZ46s7K1j20Af85r3DzEqJ5LkvLuK9b6zk80uyCA30Tg6SJRTEtTNnnb1Gdp1osXtJo01uQhjtPUYaOsbnjNHm0kYC/BRFTu43s5HExvHBZNb89H/7SY8J4ZZl2S477tK8eMoau6j0gSKorLGTnDjLftDF1ot528p8e2ljRXP3iBe5lFLcuiKXJ29cwOHaDj79x40D/UeFb9hT2UpEsD9ZcRIG4kukOBM0dPShteXqvi9ZlhdHeWMXFQ4GQ/T0mzje0MkMO5Y02tiuwLui+fVgW45bmkPPzxr6JHJOejQms3b6pH1bWRMxoQEDCXyOMBgUV81LZ8OxBrddoa1q7aGxs8/u/WY2M1MiqWzpprXL8QCNfpOZX75ziBnJEbz/zZU898VFrJyW4Pbkx9HMTo3iSF0HPf2uW96ztawJo1mz3MFUtFzr70vpON13trm0ibnpY9tvBpblWGGBfhyVfWc+7eUdJzlY0859F89wqqfdcGx9Ab09e2aL0c+2hvXMTIkkPMjf5/qwnamyuXsgDGQkn5yVxEt3LMVoNvP5P2/BJHvQfMa+qjbyU0duOSQ8T4ozMbDUIDHCd2bOwBIKAo4XTEfrOjCZtV37zWyy40JJjgx2eb+zbcebyE+NOq059GBzrTNKuyucK862lzePac/U1UXpaA2v7XLP7FnJyRYA5ji4ZGJmiuVnd8CJq6zv7KuhurWHe86b6nSTWnfIT43EZLa0eHCVjUcbCPQzDFv8Dyd3HCc2dvQax9TfbDClFFNckNiotebKP27g0TVHxjwmcbrOXiO/evcwRZnRXFpgX+N3e01LjCAuLNDr+85q2ywx+tnW2Qs/g2JBdoxPF2daaypbRp45G2x2WhRfPW8qDR19srzRhxxv6HTq4q5wLynOBLVtlkTEsUYTu9r0JOf+cNqSGh1Z1mjpdxbL5lLXNf/sM1qaQ4+0HywxMpiUqGB2W4sYR9Rb4/+dWdJokxkXyuKcWF7eUeGW/Uclla0E+ClmpDjWT2tWquVn58y+s2c3lJEVF8p5MxIdfq472TZc73Xh0sYNRxspynJ8BiktOoQgfwPHxuGM0fayJkxm7ZLiDCyJjWPdc3a0roPiky386cOjTifMiqE9se4Y9e29/PCyWS6/um8wWPYbbzzW4NX9l2XWpMbsQX3NFuXEcqSuw2ei/s/U0NFHr9Hs0N7ddOssmy1IRHhXS1cfrd39ZMf5dj+9yUiKM0Ftm+Uqlq8VZ7agDkf/cB6qaSPQ3zBwFdJeS/PiaOjodVnE+J7KVnqN5iHDQAabmx7tVGLjdut+hAVOhIEMdvX8dI43dLLzhOt7nu2paGV6cgRB/o4VD4kRwcSHBzq876ykooUd5c3cvDTb68sYz5QeE0JksL/LQkGaOvvYX93m8JJGsJyU5sSHjcuZs82lTZb9ZlnRLjnetKRwGjp6ae50fv/dusP1APQazTz1UalLxiWgurWbJ9eXcvnc1DHvLxzOsrx4att6OebF9NIy6/+Hg0+SF2Xb9p25vxelM2z79NJj7P87a3tshRRnPqG80bJlRPab+R4pzgR17b0oBfHhgd4eylmWT7H84XTkJPJgTTvTksLxd7Bf1cC+Mxf1O9tqZ1jHnIwoyhq7HI7z3lbWTHCAYSCm3VmXFKQQEuDHyy4OBtFaU1LRQkFatFPPn5kS6fCyxr9sKCMs0I/PLEh36jXdSSlFfmoU+1wUp29b7utoGIhNXkL4mPecVbV002v0bET2luONzEmPdlmwy1RrYuNY+p19eKieaUnhXDE3lec3lfvsbMd488t3DmHW8J0Lp7vtNZYPLJ/33r6z442dBPoZSB00C1WQHkWQv8Fnlzba9oLbs+fMxjbL5ug+cuEeQ83YCt8gxZmgrq2HuLAgh4sZT7A1CnVkw/bBmnamJ9m/pNEmMzaUlKhgNrto/8HW441MSQwnLnzkvXyF1rCMEgf3nW0vb6IwI5pA/7H93MKD/Lm4IJn/7q5yaVjFiaYu2nqMDic12sxKieRwTQf9JrNdj69r7+E/JVVcsyDDJVHb7jA7LZIDNe12v6eRbDjWQHiQ/8C+RUflJoRxoqnL6eKqprWHVb/8kIt+t56PrDNH7tbZa6SkonWgcbwrTE0cW2JjV5+RrcebWDktgbvPm0qP0cRT64+7bHyTVUlFC6/urOSLy3PIiHXflf3M2FDSokPYcNR7+87KG7rIiA3Bb9Bsf5C/H/Myo32239lAjzMHirOQQD/iwwN9Ih1TnJo5y3Tj/1/COb53Ni48rrbNtxpQD2b7w2nvvrPGjl7q23sHAiUcoZRiaa5r+p2ZzJrt5SPvN7OZbQsFcWDfWWevkX1VbU71NxvKZ4rSaXdxzzNbsel0cZYaSZ/JbHez5Bc2n8Bo1tzswqhtV8tPjaLPaHbJ0tmNRxtYnBPr9EWVvIRwzBpONDp3FfvtvdX0mcz0Gc3c9MxW7vzbDrf3Zdpe3uzS/WZwKrHxiJPF2ebSRvpMZlZOS2RKYjiXz0nl+U1lNI1hmeRkp7Xmp/87QFxYIF9ZnefW11JKsSwvjk2ljZi9lCJY1thJzhCzF4ty4thf1UZ7j+Opte5W2dJNRLC/wxfC0mJCZVmjjyhr7CQlKtilCajCNaQ4E9S29frcfjMbR/9w2pLwHElqHGxJbhyNnX1jjtY+WNNGe49xoF/NSCKDA8hLCHMosXHXiRZMZj3m/WY2S3LjSIsO4ZWdrlvauKeylUB/w0CjX0fNTLGGglSP/n3pNZp4YUs5q6cnDnmS4ytmp1ne097Kse07q2zppqyxy+kljWCZOQOc3mvz1t4apiWF88G3VvKtC6ax9lAd5/96HY99eIw+49hnBoeypbQRf4NyOJ1yJEoppowhFGTdoXpCAvxYmGMZ0z3nT6G738RT62XvmbPe2VfL1uNNfOOT0zwyC758Sjyt3f3sH0NvRWeZzZqyxk6yhghlWJwTi1nDjnLf23dW2dzt0H4zm/SYECnOfER5Y5fsN/NRUpwJ6tp7fS5Gf7BlU+Jo6bLvD6czSY2Dndp3NralJAPNoe0ozsASClJ8ssXuGbttZZb+aUWZ0c4O8TQGg+LqojQ+PlJPTatrYo5LKlqYlRJJgJMzO7nxYQT6GzhQPfqMxn93V9PQ0ccXlmc79VqekhMfTkiA35ibUduW+dr2yzg3FlucvuNFSX17L1vLmrh4dgpB/n7cfd5U3vvGSs6ZGs8v3j7IxY985JbeUZtLG5mTHuXyRuLTEsOd3nP24eF6luXFDYTeTEmM4LI5qTy/sWxMISPOqGzp5pv/KuaBf+/jTx8e5dWdFWw42sDRunbaevo9lki48ViD0z//PqOZh946wNTEcK5bmOHikQ3Ntnz+g4N1Hnm9wWrbe+jpNw+572deZjT+BuWT+85Ga0A9nPToECqbu702SylOKW/slKRGH+Xav3Bi3Ok3mWns7PW5BtSDLbOm0W061jgQRz6cgzVtxIUFkuBksZkRG0JadAibSxu5aWm2U8cAS3PgtOgQu/94zc2I5tVdlVS39py2KXw428qamJkSOWz/NGdcVZTOox8c5bVdldy5amxLicxmzd7KNq4qSnP6GP5+BqYnRYwap6+15tmNx5mSGM45Y5hJ8gQ/g2JmSgT7xjhz9uHheuLDA5nu5KwkQERwAIkRQRyrc3zm7J19NWhtCZOxyYgN5ambFvDBwVoe+Pd+rv/zFi6fm8oPLplJctTY/33p6rPsN7v93NwxH+tMU5PCeWlHBc2dfcSE2R+MVNbQSXljF186J+e02+85bwr/Lanizx+X8u0LZ7h6uMN6eXsFr+6qJCLIn/Ze41n3hwT4kRwVTGJEEEmRwaTHhHDrilxiHXjPozlU084tz26jz2jm+sWZ/PDSmQ4V03/dXE5ZYxfPfmGhx/ZBJ0YGs2JqPM9vKuf2c3M9usyrrMGyrDhniJPk0EB/ZqdF+VxxZutxtjTP8YtD6TEh9JnMNHT49nnHRNfRa6Sho49MmTnzSTJzNsk1dPSiNT675wwsEf95CWFssCNN61BNu8M9tQZTSrF4jP3OtNZsPd5s15JGG9u+LHsi9ftNZnadaHHZfjOb7PgwFmbH8PKOk2O+wn68sZOOXiMFDjafPtPMlAgOVLeNOJ4d5c3srWzjlmXZLu+D5A6z06LYX93m9JXjtp5+3t9fy6UFKWN+v3kJ4U7NnL21t5rc+DCmJZ3dvPS8GUm8+41z+fonpvLOvhrO//WH/Hl96ZhDUHaUN2M0axa7cL+ZjS2x0dFQEFuE/sppCWcd75KCFJ7bWO5wCutYbDjWwOy0SPb85EL2/eRC1n5rFf+8fQmPXFfIDy6ZyQ2LM5mdFoUGdle08MRHpdz9952YXDSL0dNv4qv/2ElkcABfWJ7NP7ae4NJHP7Z7P21LVx+PrjnCiqnxrDrje+pud67Mo6Gjl1d2Vnj0dW2JecMtL1ucE8vuihaXhjWNVVu3kY5eo3MzZ9alkCdlaaNXlTee3b5B+A4pzia5OlsD6gjfvoK1LC+ercebRjzBM5k1h2qdS2ocbEluHE2dfU7vQTne0ElDR6/dSxrBsr8qwE9RfHL05W77q9ro7je5vDgDuLoonWP1nRQ70RR7sD0DYSDRYzrOrJRIGjv7qG8fPpr82Q1lRAb7j2mWzpPyUyPp6DVS3uRcEMdbe6rpNZr5dNHY2wXkJoRRWt/pUDHe1NnH5tImLi5IHrY4DA7w4+ufmMZ73ziXRTmx/PR/B7j00fXsHUMbgc2ljfgZFAtcuN/MxrYv8rCDSxvXHa4nOy50yP1C95w3lY5eI09/7Jnkxq4+I7tONA/0vQsL8icnPowluXFcUZjGbefm8sPLZvH7z83jxS8vZd23V/PQVQVsPNbIb9877JIx/OzNAxyu7eDX187l/svz+futS+jtN3HVYxt5dM0RjKMU6I+sOUJ7Tz8/uHSmxy+0LM2LY056FE99VOqyYtUeZQ1nx+gPtignln6THvO/ya5U0eJ4jL6NrRG1xOl7l/Q4821SnE1ytgbUiT48cwaWvTVdfaYRr8CeaOqip988ppkzgKXWK/Obndx3ts3aHHq05tODBQf4MSM50q6Zs20Dzaddf5J6yZwUggMMY756XFLRSkiAH3kJY7sqZwsF2TfMfsOqlm7e3lfD5xZlunwfkrvkW/vSOVuovLqzktyEMKcj9AfLTQintbvfoWTB9/bXYDJrLp6dMupjs+LCeOaWhTx543xauvr56j92OR0Wsrm0iTnpUYQFuf7nnBoVTFigH0cdmDnr6Tex8VgDq6YnDnn/9OQILilI5tkNZR6ZPdtW1ky/STsUEnPNggyuW5jBH9Ye5YODtWN6/ff31/L8pnJuPSdnYCZxaV4cb339XC6bk8Jv3jvMtU9sGrhif6bS+g7+uqmczy7MdHrP8FgopbhjZR5ljV28vdd1qbWjKWvsJDMu9LQY/cEWZMWiFD61tNEWo5/uRHGWNlCcycyZN52asZWZM180anGmlMpQSq1VSh1QSu1TSn3tjPu/pZTSSinf3uwhhlRrnZHw1bRGm8U5cSjFiJH6B60n8DOcTGq0ybDG9ztbnG053kR8eCC5DqYGzs2IYk9F66jL3baVNZEZG+qWn1lkcAAX5Sfz7+Kx9TwrqWghPzVyzHtGZqZaTtIODFOcPb+pHK01Ny7NGtPreNK0pAgC/BT7RtlLN5STTV1sOd7E1UXpLplZcCax8c09NWTEhpCfat8JtFKKC/KTeejqAo43dPL3LeUOj7Orz8juky0ujdAfzJnExm1lTfT0m89a0jjYPedbZs+e8cDs2cajDQT4qVGb3p/pgU/lMyslkm/8azcnnZzNrW3r4dsv72ZWSiTfvuj0htFRIQE8ct08HrmukCN1HVzyyHpe3Hb20umH3jpIkL+Bb35ymlNjcIUL85PJiQ/j8XXHPBaeUtbQNeLSsqjQAGYkR/pUcWYrrJxZ1hga6E9smPQ687byhi7iw4MId8PFLjF29pw5GYF7tdYzgSXAXUqpWWAp3IBPAifcN0ThTnVtPRgUxLlwQ7g7xIQFMislko0j7Ds7WNOOQcHUxLEVZ2BZ2ri5tJHuPscLlK3Hm1iYHevwyfOc9Gjae42UNgx/oqy1ZntZs1tmzWyunp9OW4+R9w84dyXdaDKzr6qNAhfM7EQGB5AeEzJkKEh3n4l/bD3BBbOSnYp09hZbewFnEhtf32VpdXBFYapLxjIlwbJnrNTOvmutXf1sPNbAJbMd3++2enoiy6fE8ciaI7R2O9a3aWd5i2W/mQOz0Y6yJDbaP3O27lA9gf4GFo/QEHtGciQXz7bMnrV2ubdX1YZjDczLjHF4Bjk4wI/HPl+EWWvu+vtOh5uSm82ab75YTE+/mUc/N28gtfJMVxSm8c7Xz2VOejTfeaWEL/91B40dlouDm4418u7+Wr6yeorTYU6u4GdQ3LYilz2VrXb31hwLW4x+9ihLyxbnxLKjvNklzetdobKlm+AAg9NBMhKn7332/N4J7xm1ONNaV2utd1o/bwcOALbNHb8FvgNIJuo4VdfWS1x4kMdSscZi+ZR4dpa3DFswHappJzsujJDAsSdtfWZ+Oi3d/Xz75d0OXUGtaummornbqf1ghRnRwMjNqI83dNLY2cciN+w3s1mWF09KVDCv7HBuaeOx+k66+01ON58+06yUyCFnzl4vrqS1u9/n4/OHMjs1ir2VrQ79bmmteW1XJUtyY11WjKZGhxDobxjxgsBg7x+opd+kubhg9CWNZ1JK8f1LZtLS3c8f1x516LkD+83c+Hs/LSmCho4+u5d4rjtcz+Kc2FGLoXvOn0p7r5FnNrhv9qylq499VW0D+80clRUXxq+vmUtJRSv/99/9Dj33qfWlbDjayP2Xz2JK4tkBMYOlRofwwq2L+cElM/nwUD0X/m49Hxys5cE395MaFXxW6qU3XFWURkJEEI+vO+b216pt76HXOHSM/mALs2Pp7jeNac+mK1VaY/Sdnb1Piw6RPWdeZulxJksafZVDZ+RKqWxgHrBFKfUpoFJrvdsdAxOeUdve49NJjYMtzYujz2QetiHnwZo2p5tPD/Va375wOv8tqebxdfY3k3Vmv5lNXkI4oYF+I+47O7XfzH0nqX4GxVVFaaw7XE9dm+M9z2zjL0iLdsl4ZqZEcryh87SiXGvNsxuOMysl0qnvtbflp0XS3NVPtQM95YpPtlDa0MlVLggCsfEzKHLiwuyeOXtrbzWpUcFO73fLT43i6qJ0/rKhzKEldJtLGylIi3LrEpyp1uTJI3bsO6ts6eZIXceISxptZqZEcmF+Es9sOO7wjKG9Nh1rROux9b27ID+ZL6/M5W+bTwzM0I6mpKKFX75ziItnJ/NZO3uSGQyK287N5Y27lxMXFsgX/7KdvZVtfPfiGR6NsB9OcIAfX1yew/ojDW4vho5bL4rkjFacWRuc+8rSxsqWbtLGcIEoPcbS68xTS0fF6Xr6TdS09UgYiA+zuzhTSoUDrwBfx7LU8QfAj+143u1Kqe1Kqe319fXOjlO4SW1br88nNdosyo7F36CGXNrY1WdJv3PlRvI7V+Zx2ZwUHn7nIGsP2decdOvxJiKC/AeCLBzhZ1AUpEVRXDH8CcG2smZiwwLHHLQxmquK0jFry+yUo/ZUthIe5O/wnrvhzEqNxKzh0KCT5o3HGjlc28EXlo+P+PwzORMK8urOSoL8DVw8O9mlY8lNCLNrz1l7Tz8fHW7gIieWNA72rQum42dQ/OLtg3Y9vrvPxO6KlhGXD7rCVAcSG9cdsvwtWzXdvrj3e86fSnuPkWfdNHu24VgDYYF+zLXOvjvr2xdMZ1FOLN97dc+obQU6e4187Z/FJEQE8fOrChz+nZiZEskbdy/nyytzuaoojcvnuGaprivcsCSTiCB/t8+e2XqcjXaSnBgRTG582MDFOW+raO5yKgzEJj0mlF6jmYYOzzZpFxYnmiSp0dfZVZwppQKwFGYvaK1fBfKAHGC3UqoMSAd2KqXOOmvQWj+ptV6gtV6QkODZviVidPXtPeOmEWRYkD+FGdFsGGIvwOHaDrTGZTNnYFmG9fBn5jAzOZJ7/rHLrtmFrcebmJ8dM2zy1mgKM6I5UNU2bKLd9rImFmTFuL0gyUsIpygzmpd3VDh8dbOkopXZaZEYnPwenGlWytmhIM9uOE5cWCCXz/WdEzpHzEyJQCnsDgXpM5r5T0kVF+Ynu7TxOFh+1ieaukZNUfzgYB19JjOXFIytOEyOCua2c3P5b0k1O08MPQs+2M4TlhRCd4WB2KRGBRMe5G/XzNm6w3WkRYeQlzDyMj6b/NQoLpiVxDMfH6etx/WzZxuPNrIoJ5aAMS5P9/cz8IfPzSMsyJ87/raDjiEaWds88O99lDV28tvPFhId6tzeo+AAP7538Ux+c22hy/69cIXI4ACuX5LJm3uqh02XdIXyxk4C/Q2kRo1e6CzKiWXr8San+yO6SlefkeaufqfCQGwkTt+7yhqkx5mvsyetUQFPAwe01r8B0Frv0Vonaq2ztdbZQAVQpLX2XP6sGLN+k+XKVaIXN2A7alleHHsqWs46wTlUYznJnTnGGP0zhQb68+RN8wnwM3Db89tpH+HEqqmzjyN1HWPqPzYnPZo+k5mDNWeftNe191DW2OWW/mZD+cz8DA7XdrDHgdmdjl4j+6vbxtzfbLD0mBAigvwHQkHKGztZc7CO6xdn+sQyKGeEBvqTlxBudyjI2kN1tHT182k39HLLTQjDZNYDV1OH89aeGhIjgijKHHsYzZfPzSUhIogH/3dg1OLfnf3NBlNKMSUxnCOjJDb2m8xsONrIudMSHLpIcs/5U2nrMfKXDWVjHOnpqlu7KW3oZLkDEfojSYwM5vefm0dZQyfffaVkyJ/Pf3ZX8dKOCu5ePcXtRbO3fGl5Dv4GA09+ZP+ydkcdb+gkKzbUrsJ0UU4sbT3G01YQeMNYYvRtJE7fu2w9zqQ48132XGZbDtwInKeUKrZ+XOLmcQkPqB8nMfqDLZsSj1nDltLTl3ccqG4nNNCPDDek9qXHhPLH64soa+ziG/8qHvbKpW3JyVgS5eZmWJa77R5iaeP2MsssgzuTGge7dE4Kgf4Gu4JB9le18cPX97DkZ2voM5pddqIIlpPmmYNCQZ7bWI6fUnx+yfiJzx/K7NRI9lbaN3P26s4K4sODWOHC76tNrh2JjV19Rj48XMdFs5NdMsMRFuTPvZ+cxo7yZt4apafUltImZqdGunzGcCjTkkZPbNxR3kxHr9Gu/WaDzU6L4hMzk3j64+MjXuRx1IajlpUEy5wMAxnK0rw4vnXhdP5XUs1zG8tOu+9kUxfff20P8zKjuef8qS57TV+TGBnMVUVpvLSjYuBvpauVNXbaHcpguyjn7X1nFS3Ox+jb2J4rcfreUdbYSXRoAFGh7v83VTjHnrTGj7XWSms9R2tdaP1484zHZGuth884Fz6pbqA4Gz8zZ/MyownyN5y17+xQTTvTkiLctjRmaV4cP75sFu8fqOO37x8e8jFbjzcR5G8YU4R8WnQIcWGBQyY2bitrIjjAMLBfyd2iQgK4MD+ZN3ZXDRmv3d1n4sXtJ7nyjxu45NH1vLi9ggtmJfHyHUsdPnEdzcyUCA5Ut9HW089L209y6ZyUcXVRYSj5qVHUtPXQ0DHyiV9LVx8fHKzjysJUt6Sq2tPr7MND9fT0m+1qPG2vaxZkMD0pgofeOjhsfHt3n4liN/Y3O9PUxNETG9cdrsffoJwK3/ja+VNp7e4/q+AZi41HG4gNCxxzf8cz3XFuHp+YmciDbx4YWH5qNJn5xr+K0Roe+ey8MS+j9HW3n5tLv8nMXza6fq+g2awpb+wiJ96+C4rpMSGkRgV7vTg7NXPm/IXQiOAAokMDZFmjl0hSo++b2P+yihHVWpP4EsdJIAhAkL8fC7Nj2TRo35nWmoM1bS4/OTnTTUuzuHZBOr//4Chv7ak+6/5tZU0UZkQP2+fHHkop5mZED5nYuK2siXkZMQT6e+5/26uL0mjp6ueDA6cCUQ7VtHP/G3tZ9LP3+c7LJbT39POjy2ax9fvn85vPFrolSXJWaiSdfSZ+994R2nuN3LIs2+Wv4Wn5aZa9dKPtO/tPSTX9Ju2WJY1g2V+TEBE04szZm3uqiQsLdGkypp9B8f1LZ3KiqYu/bhq6MfWuE830mcyeK86siY0jhWGsO1TP/KwYp2byCtKjOH9GIk+td83smdaaDccaWJoX5/ILUwaD4tfXFJIcFczdL+ykqbOPP6w9yvbyZn565WwyJ0GYQG5COBflJ/PXTeUj7r9zRk2bfTH6Nkopy76zsiavphxWNHcT4KfGvB1Cep15j/Q4831SnE1itpj08TRzBrBsShwHa9oHZhzq23tp7up3e3GmlOL/rpzNvMxo7n1p92kBFR29RvZWtrqkSe6c9CiO1HWcdjLQ0Wtkf1UbCz20pNFmxdQEkiKD+Oe2k7y6s4LPPLaRC3/3Ef/YepLzZiTyr9uX8P43V/Klc3KcDgWwhy398i8bj1OYEc08F+x78rb8FMsM6Gj7zl7dWcGM5IiBYBR3yI0PG7bXWU+/iQ8O1nHh7GSng26Gs3JaAudOS+D3Hxylpevs2arNx5swKM8t5Z1mTWw8MkxiY11bD/ur21hpZ0rjUL72Ccvs2fPDFKSOOFbfSW1br9P9zUYTFRrAYzfMp6Gzj5ue2cKja45w1bw0rpznngsFvuiOlXm09Rj5x5YTLj2uM6EMi3LiqG/vpazRezNOlS3dpESFjPligKXXmRRnntZnNFPV0k1WrBRnvkyKs0mstq0Xg4K48HFWnFlPRGyzZwdqLFe5p7swRn84Qf5+PPH5+UQE+3P7X7fTbF3+tLO8GbOGhS4ozuZmRKP16THru05Yju/O/mZD8TMoPj0vnXWH6/nmi7tp6uzjB5fMZPP3z+eR6+axODfOI1H205Ii8DMozJpx2XR6KFGhAWTEhrBvhH1nxxs62XWihauK0tz6fc5NCOfYMDNn6w7X09VncnmEv833L5lBe08/j645uzH15tJGZqdFeWS/GUDKKImN6w5bIvTHsmx3Tno0q6Yn8OyGMvpNIydkjsa2vHss/c1GMzstigcuz2dvZRvpMaH85Ip8t72WL5qbEc3S3Die/vj4qImmjjhuTYG0d+YMTvXP3Hr87MRiT6ls7hrTfjOb9JhQ6XXmBRXNXZg1sqzRx0lxNonVtfeQEBHk8qvh7jY7NZKIIP+BExNbUqO7Z85sEiODefzz86lt7eWuv+/EaDKz9XgTfgblkiS7udakw8H7zraVNWNQUOTmxLqhfPGcbG49J4e/37aYNfeu5LZzc4kNc98s2VCCA/zISwgjKTKISwpct+/J22anRrF3hJmz13ZWYFBwRaF7ZyryEsJo6eofcq/V23triA4NcNvSwhnJkVy7IIO/bi4bmE0Ay4xd8QnP7TeDU4mNwy1rXHe4noSIoDHPYt68NJuGjl7e2187puNsONpAWnQImW6+Cv65RRn86pq5PPuFhR4rlH3JHavyqGnrcarv43DKG7sI9DeQ4sDe2byEMOLCAtnixX1nlgbUrijOQujuN424v1O43kBSo517HYV3SHE2idW29Y6r/WY2/n4GFufGsdE6c3awpp2kyCBiPFgwzMuM4cFPz2bjsUZ+9uZBtpZZEuXCgvzHfOzYsEAyYkMoGZTYuO14E7NSIwl3wfEdlRgRzA8vm8WyvHivNnx+8NMF/OmGogkVQpCfGkl5Y9eQva/MZs2ruypZPiXe7eEnecMkNvYaTby/v5YLZiW59fv+zU9OI8DPcFpj6l0nWqz7zTw7Wzwtaeg4fZNZs/5IAysdjNAfyrnTEkiLDuGFLc4vbTSZNZuONbJ8ivtnr5VSfGZ+ut193Saac6fGMyslkifWHXNZnzFHYvRtlFIszI71WihIr9FEbVvvmGL0bWyBIr6+tLGrz0hXn2v3G3pTmXXGVmbOfNvEOcsRDqtt6xl3+81sluXFUd7YRUVzFwer25nhgSWNZ7pmQQa3LMvmmQ3H2V7W5NKwhDnp0RRbZ876TWZ2nWxmQZZnT1J9zcLsWOZPsO9Bfppl39n+IUJBtpc3U9HczdVF6W4fhy2xsfSMxMYNRxto7zW6NKVxKImRwXz53Dze2lvDdmtLis2ljdb9Zp4uziJo7Oyj8YwUzd0VLbR297skidTPoPjcogw2HG20q7n9UPZVtdLWY3Rp2woxNKUUX16Zy7H6Tt47MLbZTpuyhk6HljTaLMqJpaK5myovxNBXt1j2qbtiWeN4idP/6t93cdcLO709DJcpb+wiPMifOA+vfhGOkeJsEqtv7yVxnMaR205I1h9p4Ghdh8eWNJ7pB5fOZGlunGW/mQtPIgvTo6ls6aaho5d9VW309Js91nxaeE5+6vCJja/urCA00I8L8pPcPo70mFAC/Qxn7Tt7c08NEcH+LHPjniab287NISkyiJ9aG1NvLm0kPzWKSA8vo5s6TCjIh4fqMShYMdU1xdC1CzLwNyj+sdW5oAlbf7OleROzCbSvubQghYzYEB5fd2zM+6TMZk15Uxc5ThZncKqvpifZCilXLGs81Yjad+P0TWbNptJGtpU1u2zG1NssvfVCvboKRoxOirNJqs9oprGzj6RxuKwRLEuP4sICeWFLOX0mMzNSvFOcBfgZ+NMNRdx38QxWTU902XHnWHullVS0sM26hMXTSY3C/RIjgkmMCGJf5en7znr6TfyvpJqLZ6cQGuj+pax+BkVWXOhpvc76TWbe21/LJ2cmjak9hL1CA/351gXTKT7Zwss7Kth1ssXjSxoBpiZalu6dGQqy7nA9hRnRLkslTYwM5oL8JF7eUUFP/9B93kay8VgD05LCx+XS9PHI38/A7Sty2XWiZczLCqvbeugzmslyIs58Zoplz7U39p0N9DiLHvt+paiQACKD/X16WePh2na6+kx09Bo50eS7RaQjyhu7HEoIFd4hxdkkVW9dspM4Tpc1KqVYmhfHXmvS3fQkzy9rtIkJC+SOlXku7T82Oy0Kg4LdJ1vZVtZEVlzouJ3lFCObnXZ2KMj7B2pp7zVytZt6mw0lLyGc0oZTs0WbjjXS2t3PRW5KaRzKVUXpzEyJ5Edv7KXPaGZxjudnhVKigokI8ufwoH1nTZ19lFS0sHKa6y7AANywOIvmrn7e3lvj0PN6jSa2lTUNJNcKz7hmQQZxYYE8vu7YmI5jC77JceIk2c+gWJAd45V9ZxXNXRgUJEe55m9RWkyoTxdnxYNCuUbrRzkeGE1mKpq7JkWPwvFOirNJqnac9jgbzLa00d+gyEucWFeCwoL8mZoYQfHJFraXy36ziSw/NZKjdR10952aPXl1ZyUpUcEeTSrMTQjjRGPXQLz7W3urCQv041wX7LGyl59B8cNLZ9LTb0Yp17SmcJRSiilJ4RypOzVztv5IPVozpv5mQ1maG0dOfJjDwSA7y1vo6TfLfjMPCw7w45Zl2aw9VM/BGudP1suciNEfbFFOHEfrOgZ6fXpKRUs3SZHBLrsQmR4TMjAb54uKT7QQGeyPv0GN2o/SnXr6Tfz4jb0DvWmdVd3aQ79JSwPqcUCKs0mqrs06czaOl8Qss+61yE0I88iyK0+bmxHFxmMNNHX2yZLGCSw/NQqzZuBkr769l3WH67lyXtqYG706IjchHKNZc6KpC6PJzLv7ajlvZhLBAZ79f2v5lHgunp3MouxYokK8E9s+LTHitMTGdYfqiQkNoMAa4OIqBoPi+kWZbCtr5lDN0PH9Q9l4rAGDgsVeWPY52d24NIvQQD+eXn/c6WOUNXQS5G8g2cnVEItyLH8Ptnt431llc7dLwkBs0mNCqGju8tleZ8UnW5iXGcOUxHD2V3tv5mxzaSPPbyrn37urxnQcSWocP6Q4m6Tq2i1XYMbrskaAzNhQchPCmJcxMQuXOenR9Jssf7S8MYMgPOPMUJB/767CZNZcNc9zSxrh9MTGrWVNNHb2cYkHlzQO9ofri/j7bUu88toAU5PCBxIbzWbNR0fqWTE1wS09Ia+en06gv4G/OzB7tuFoA3PSoz0eliIgOjSQi2Yn886+GqebiB9v6CIrzrEY/cEK0qIJ8jd4fN+Zq3qc2aTHhNLZZ6Kl6+xWIt7W0WvkcF07hRnR5KdGeXVZ4x5rW53tZc1jOk6ZrceZFGc+T4qzSaq2rQc/gyIubPwWZ0opXrljGfd/apa3h+IWhRnRgKXvWa6Ty1+E70uPCSEqJGBg2cxruyooSIsaSA30lLz4U73O3tpTQ3CAweXL+OzlZ1BuKYTsZfveH67tYH91Gw0dfaxy0/ciNiyQSwtSeHVnpV39lNp7+tld0cpyDyRoiqFdmJ9MW4/R6X1f5Y2dYzpBDvQ3UJQZ49HERqPJTE1rj0tnzmzH8sV9ZyUVLWgNhZnR5KdGUt/eO3BR2+NjsQZGbS9vGtMsY3lDJ8EBBhIjxu9532QhxdkkVdfWS0J4kFdPgFwhJizQI2l23jA9OYIgfwMLsmIk9nYCU0oxOy2SvZVtHKppZ29lG1d5MAjEJio0gPjwQI7WdfD2vhpWT0+csP9vjWZakqVQPVrXzrrD9QCsmOq+QvWGxZm09xr5jx3LlrYeb8Jk1iyXMBCvOXdqAsEBBt7Z51iQC5yK0Xd2v5nNopxY9le1DdnA3h1q23sxmvVA82hXsDWzrmzxvSREWxhIYXr0iC1PPGFvZSuB/gYaOvoob3T+e1XW2EVWbJhHl8sL50hxNknVtveO6zCQySDAz8Aj183jWxdO9/ZQhJvlp0ZxqKadF7efxN+guHxuqlfGkRsfztt7a6hv7+XiAvc2nvZlyZGnEhs/PFTH7LRIEtx4tXl+VgzTkyJ4YcvoPc82HG0kyN9AUdbEXM49HoQE+rFyWgLv7qt1uP9VVWs3fUbzmJeWLcqJxaxhZ/nYlrrZyxbc4cpljRnWQs8XZ86KT7SQHRdKTFggs6zF2X4vFGf17b1Ut/ZwZaHlb8L2Mfy8y609zoTvk+Jskqpr6yFhHIeBTBYXzU5mmoeXtwnPy0+NpM9k5m+by1k5LYH4cO9cOMlNCKO910igv4HzZrg2Nn48sSU27ihvZueJFla6ObFSKcUNSzIpqWilpKJlxMduPNbAguwYjwe1iNNdmJ9MTVvPwJIze9lmPrLjx3aSXJgRjUHBzhMtYzqOvWyzW65c1hgZ4k9EkO/1OtNaU3yyZWBrQURwAFlxoV5JbNxr/f369Lx0IoP92VHu3FJWszXsaawztsIzpDibpGrbemTmTAgfkZ9qSQHsNZq5qijda+PIS7As5zt3agLhQZNzSaPNtMQI9le3YTJrlzaYH86V89IICfDj7yPMnjV09HKwpl36m/mA82ck4W9QDi9tPG7tcTbWmbOwIH+mJ0ey64SHZ85cWJwppUiLCfG54qy6tYe69t6B4gwsF9C8sayxpKIVpaAgPYqirBinQ0Fq23voNZrJjJWZs/FAirNJqNdoormrnyRpaiyET8iJDyM00I+IYH/On+m9GaspiZbi7GIvpTT6kqnWfWcRwf7MG3SS5i6RwQF8am4qbxRXDbuPaOOxRgDpb+YDokIDWJIb53BxNtYY/cGKMqMpPtGCycGllc6oaO4mPjyQkEDXztja4vR9ycB+s8xTS4fzU6Mob+zy2B4/mz2VLeQlhBMe5M/C7FiO1HXQ0tXn8HHKGiSpcTyR4mwSqm+39TiTmTMhfIGfQXHtggzuWJnn1eVqK6bG85tr5/KpQu/sefMltuXE50yJx9/PM38qb1iSSXe/iTd2VQ55/8ajDUQE+7u835pwzoX5SZTWd3K0zv4edWWNXWTHuSaUoSgzhvZe42kN092lssW1Pc5s0mNCqWzu9qleZ8UnWwj0MzAz5dSWAtu+swMenj3bU9k68P/7fOs+051OzJaWD/Q4k5mz8UCKs0mo1tqAWmbOhPAdD3wqn7tWT/HqGPz9DFxVlE6Ah4oRXzYrNZLgAINHg1HmpEdTkBbFC1tODHmyuuFYA0ty48Z9yu5E8clZlhnmd/bV2v2cMheGMthCYXaWt7jkeCOpbHZtjzOb9JgQ2nuNtHWP3kbCU4pPtDArNZIg/1MXyryR2Fjb1kNtW+9AcTY3PRp/g2KbE0sbyxq7CPBTpLqhwBauJ3+BJ6H6CdCAWggh3Ck+PIjtP/wkl8/xbGrlDYszOVjTftbV8ZNNXZxs6mZ5nvQ38xXJUcEUZkTbvbTRZNacaOwix0WhDNlxocSGBTo1k+IIrbXbZs4Gep35SJy+0WRmT2XrafvNABIjgkmICPJocWZrPl2QbinOQgL9yE+LYocTxVl5YycZsaFyYWeckOJsEpKZMyGEGF14kL/HewxePjeViCB/Xth8ejDIhqMNgOw38zUX5CdRUtFKVcvooRZVLd30mcwuS8xTSlGUGe324qyho49eo9ltyxrBd+L0D9W2091vYl5m9Fn3WUJBPJfYuKeyFYOCWSmRA7ctyIphd0ULfUazQ8eyLacV44MUZ5NQbVsP/gZFbGigt4cihBBikLAgfz5dlMZ/91TT3Hlq4/+GY40kRgQNhLYI33BhvmVp47t2zJ4NxOi78CR5XmYMpfWdToVE2MsW2OHKBtQ2tkbUvlKcDYSBDBEClJ8aydG6DnqNJo+MZU9lK1MSwwkblJy7ICuGXqOZvQ4UiVprTkiPs3FFirNJqLatl4SIIOkSL4QQPuj6xZn0Gc28srMCsJxcbTrWwLK8OI/P5ImR5SWEMyUx3K59Z8etoQxj7XE2WJE1UXCXG/udVba4vgG1TXRoAKGBfj6T2Fh8ooXYsMAhI+fzU6MwmjWHazrcPg6tNXsqW5l9RvjP/GzLz9uRpY0NHX109pnIkhj9cWPU4kwplaGUWquUOqCU2qeU+pr19v9TSpUopYqVUu8qpSTea5yoa+8hUZY0CiGET5qRHMmCrJiBYJBDte00dPSxTJY0+qQL85PYWtZ02kznUMoaOgkOMJAU4bq/v3MzovAzKLcubRzoceaG4kwpRXpMyMBreFvxyRbmpkcNeRHEtrzQE0sba9t6qW/vZc4ZxVliRDBZcaFsd6AZ9UBSozSgHjfsmTkzAvdqrWcCS4C7lFKzgF9qredorQuB/wI/dt8whSvVtfVKjL4QQviwG5Zkcryhk03HGtlwVPqb+bIL85MxmTVrDtaN+Ljyxk6XxejbhAb6MyM5wr3FWUs3EcH+RAYHuOX46TGhPrGssb2nn6P1HRRmxAx5f2ZsKOFB/h4JBSmpaAFOhYEMNj8rhh3lzXa3Hyhzw3Ja4V6jFmda62qt9U7r5+3AASBNaz34tzMM8J0mFWJEte09JElSoxBC+KyLZ6cQHRrAC1tOsPFoA9lxoW4JZBBjV5AWRWpU8Kipjccb3LPvpygzxq3NqCuau92y38zGVxpRl1S0ojUUDhEGAmAwKGaleCYUZO9AGMjZxdmCrFgaOvoGiq7RlDd24mdQ8u/HOOLQnjOlVDYwD9hi/fpBpdRJ4AZk5mxc6DWaaOnqd+myCiGEEK4VHODHNfPTeWdfDZtKG2VJow9TSnFBfjIfHa6nq2/ofl0ms+ZkU7fLkhoHK8qKprPPxKEa9zSjrmx2T4y+TVp0CG09Rtp6+t32GvYYCANJjx72MbNSIzlQ3e62QtimpLKVaUkRhAT6nXXfAuu+s+1l9i1tLGvsIi06hEB/iZkYL+z+SSmlwoFXgK/bZs201j/QWmcALwB3D/O825VS25VS2+vr610xZjEGdRKjL4QQ48LnFmViNGu6+kwsz5PizJddkJ9Er9HMR4eHPs+xxejnuGFpmS0UxB1LG209ztLdsN/MxjYr5+19Z7tOtJAbH0ZU6PDLN/NTI+nuN3G8odNt49Bas3eIMBCbKQnhRAb7s6Pcvp93uSQ1jjt2FWdKqQAshdkLWutXh3jI34Grh3qu1vpJrfUCrfWChIQE50cqXKLO2oA6QZY1CiGET8tNCGeZten0Umk+7dMWZccSExowbGpjmS2UwQ3FWWZsKHFuakbd1m2ko9fo1pkzX4jT11pTfLJlyAj9wfJTLQWTO5c2Vrf20NDRx5wh9puBZXnl/KwYtttdnEmPs/HGnrRGBTwNHNBa/2bQ7VMHPexTwEHXD0+42kADalnWKIQQPu/Hl8/ioasKiA2TvpS+zN/PwPkzk1hzoJZ+09kNgsusMy05bljWqJSiKCvGLXH6J617wdyR1Ghzqjjz3r6zypZuGjp6h91vZjM1KZxAPwP73RgKUlJhKfwKhpk5A1iQHcvRuo5R+9u1dPXR2t0vM2fjjD0zZ8uBG4HzrLH5xUqpS4CHlFJ7lVIlwAXA19w5UOEadW2WmTMJBBFCCN83IzmS6xZlensYwg4X5ifT1mNkc2njWfeVNXZZYvTd9Le3KDOG4w2dNI0S5+8oW48zdy5rjA0LJDjA4NVljSM1nx4swM/AtORwtyY27q1sxc+gmGmN7h/K/Cxrv7NRZs9soSHumLEV7uM/2gO01h8DQ+W+vun64Qh3q23vxd+giAmVq7BCCCGEq6yYGk9ooB/v7KthxdTTt3GUNVhi9N3VRLzIOuOz60Qz589MctlxB3qcuXFZo6XXmXfj9ItPtBDob2BG8vAFkU1+ShTv7q9Ba+2Wn6ctDCQ44OwwEJu56dEE+Cm2lY3887b1OMuWmbNxRaJbJpnath4SI4Jc2mdFCCGEmOyCA/xYOS2Bd/fVYj4jze+4tceZu8xJj8bfDc2oK1u6CQ4wuH1ZbXpMCBUt3lvWWHyyhdmpkXYlGuanRdLc1U91a4/Lx6G1Zk9FCwVpIxeJIYF+5KdGsWOUZtRlDV0oBRmxUpyNJ1KcTTL17b0kSlKjEEII4XIX5idT195LsbWJMNhi9LvcEqNvExLox8yUSLsT/Oxli9F314yfTVp0iNdmzvpNZvZUtg7bfPpM+amWwskdSxsrW7pp7uqnYIQ4f5sFWTHsrmil12ga9jHljZ2kRAaPOAsnfI8UZ5NMbZs0oBZCCCHcYfWMRPwN6rSG1FUt3fSbtNuXlhVlRrP7ZCvGIQJJnFXR0uXWBtQ26TGhtHT109E7dJ84dzpU006v0TxqGIjNjORIlHJPYuMeaxjInBHCQGwWZMfQZzSzt3L4IrGssVP2m41DUpxNMrVtvSRKUqMQQgjhclEhASzNi+PdfbVobVnaaOuJ5c6ZM4CirBi6+00cdGEz6srmbrcmNdrYAke8EQqyyxoGMm+UMBCbsCB/cuLD3DJztqeyFX+DYnpyxKiPnZ8VCzDi0sYTTV1kx8uSxvFGirNJpKffRGt3v8ycCSGEEG5yQX4yxxs6OVLXAZzqceaOGP3BbM2od7lo31lXn5Hmrn63hoHYeDNOv/hEC3FhgQ4lUuanRrklTn9PZSvTk0cOA7FJiAgiKy6U7WVD/7zbe/pp6OiTmbNxSIqzSaS+3dLjTPacCSGEEO5xwSxLet671qWNZQ1dhAT4kRjh3guj6TEhxIcHsdNF/c5ss1jujNG3sc3O2aL7Pan4ZDOFGdEO7avLT4207A9zYesCrTUlFa3DNp8eyvysGHaUNw/M0g5WbovRlzCQcUeKs0mk1trjzN1/IIQQQojJKikymHmZ0byzrxaw7fsJdXuohlKK+VnRLktsrPBAjL5NQngQQf4Gj4eCtHb3c6y+c9T+ZmeyhYLsr3bd7FlFczet3f3MtmO/mc3C7FgaO/sGls4OVi49zsYtKc4mkdo2y8xZksycCSGEEG5zYX4yeypbqWzppqyh0+1LGm2KMmMob+yioaN3zMeqGGhA7f6ZF6UUaTEhHl/WWGJN1bQ3DMQmP9VSQLkyFKRkIAzE/rEssDaj3j5ESqdtOW2W9Dgbd6Q4m0Tq2i0zZ1KcCSGEEO5zYX4yAG/tqeZkc5fHZi+Ksmz7zlrGfKzK5m4C/JTHVtuMpRF1V59zKY/F1u/THDui6weLDQskJSrYpaEgJZUtBPgppiWH2/2cvIRwokIC2DHEvrPyxk4SIoIIC/J32RiFZ0hxNonUtvUS4KeICQ3w9lCEEEKICSsnPoxpSeE8v6mcfpMmx0OJeQVpUfgblEv6nVW2dJMSFYLB4N7lmDZp0SFOpTWW1ncw///e549rjzr83OKTLeQlhBEV4vh5UX5qpEuLs72VrcxIjiTI3/6eZAaDYn5WDNuHSGwsa+xye/sG4R5SnI0zbT393PTMVt7bX+vwc+vaekiMCHb7unchhBBisrswP5kTTZZletkemjkLDvAjPzXSJfvOKpu7PLLfzCY9JoTGzj6HZ8Ge21hGd7+JX797iM2ljXY/T2tN8ckWu5tPn2lWahSl9R109w3fBNqRseypaKXAgTAQm/lZMRyr7zwrnOREo+dmbIVrSXE2jmit+d6re/jocL1TV4jq2ntJlBh9IYQQwu1sSxvB/T3OBpuXGUNJRQv9Y2xGXdHc7ZGkRhtnep219/Tz8o4KLspPJjsujK/9cxeNdu63q2juprGzz+H9Zjb5qZGYNRyoGfvs2YmmLtp6jBQ4EAZiY9t3Nni2tLvPRE1bj8ycjVNSnI0j/9h6kv+VVDMjOYLiky1DpvOMpLathyRpQC2EEEK4XX5qJGnRIYQGuj9Gf7CirBh6+s0crHa+GXWv0URde69HGlDb2IJHHNl39sqOCjr7TNy5Ko/fXz+P5q5+7n1pN2bz2dHyZ3K0+fSZBhIbXbC00RYG4kxxNjcjmgA/dVooiG3GNlNmzsYlKc7GiYM1bfzkP/tYMTWeZ25ZiFLwRnGlQ8eobeuRmTMhhBDCA5RSfHllLp+Zn+7R7QRF1pmgsSxtrG6xBIh5elkjnEqJHI3ZrHl+UzmFGdHMzYgmPzWKH102iw8P1fPU+tJRn198ooUgfwPTkyOcGm9adAhRIQEu2Xe2p7KVQD8D05IcH0twgB+z06LYXnZq35ktqVFmzsYnKc7Gga4+I3e9sJPIkAB+c20hqdEhLM2N4/VdlUM2HhxKT7+Jth6jJDUKIYQQHnLT0mz+3xWzPfqaadEhJEUGjak4szWD9uTMWUJ4EIF+Brvj9NcfbaC0oZNblmUP3Pb5xZlcUpDMw+8cGjUUpfhkMwVpUQT4OXcqrJQiPzWS/S6I099T0crMlAgC/Z0by4KsGEoqW+k1Wva/ldti9GNl5mw8kuJsHLj/jX2UNnTyu88WkmBdGnFlYRpljV3srrDvH4U6a48zaUAthBBCTFxKKYoyY8ZUnNkKpPRoz828GAy2Xmf2zZw9t7GM+PAgLilIGbhNKcVDV88hNTqYe/6xi5auviGf22c0s7eqzeHm02fKT43kYE07xjHs7zObNXsrnQsDsZmfFWt5T5WWc8Kyxi5iQgOIknTucUmKMx/32q4KXtpRwd2rp7B8SvzA7RcVJBPob+D1XfYtbayVHmdCCCHEpFCUGcPJpu6B/qaOqmzuxqAgOcqz5wxp0fYVZ+WNnaw9VMf1izPPmm2KDA7gD58roq69h2+/XDLkCqODNW30Gc1Oh4HY5KdG0Ws0c6zesQyAwcoaO2nvdS4MxGa+rRm1td+ZJDWOb1Kc+bDS+g5+8NpeFmXH8rXzp552X2RwAJ+Ymch/dlfZlchU22b5B1r2nAkhhBATW1FWNAA7y1ucen5FSzdJkcFOL7NzVnqMfb3O/rqpHD+luGFx5pD3z82I5r6LZ/Le/lr+srHsrPuLrWEgrpg5A9g3hqWNeyptYSDOjyUhIojsuNCBUJCyxk7ZbzaOTfriTGtNR69zneXdqaffxF1/30WQv4FHPleI/xBroq8sTKOxs4+PjzaMejzbskZJaxRCCCEmtvzUKAL8FLucXNpY2dzt0TAQm/SYEBo6eunpH753WFefkRe3n+Si2ckjrgb64vJsPjEziZ+9eYCSipbT7is+0UJ8eNCY32NOfBhB/oYxhYLsqWglyN/A1KTwMY1lflYsO8qb6TWaqGrplpmzcWzSF2c3PbOVb/6r2NvDOMvP3jzAgeo2fnXNXFKihv7HY9X0RKJCAnjDjqWNte09BPoZiJb1x0IIIcSEZmlGHeX0vrOK5m6PhoHY2BOn/9quStp6jKcFgQxFKcWvrplDQngQd/99F209/QP3WZpPR485RdPfz8CMlMgxz5zNTIl0OpjEZkF2DE2dfXx0uAGzhiyZORu3Jn1xNjc9mvcO1DrcM8yd3t5bzfObyvnSOTmcPzNp2McF+hu4dE4K7+yrpXOU2b+6tl4SIoI8GucrhBBCCO8oyoyhpKKVPqNjYRVGk5math6PNqC2sRWElcPE6WuteW5jGfmpkQP7rEYSHRrI76+fR2VLN997dQ9aa1q7+ilt6GTeGPeb2VgSG9vsTs8ezBYGMmcMYSA2tmbUr+yoAJCZs3Fs0hdnNy3LIsBg4OmPR++J4Qknm7r49sslzEmP4rsXzRj18VcWptHdb+K9/bUjPq62rYck2W8mhBBCTApFWdH0Gs0cqHZsyV1tey8msybNg0mNNgO9zoaJ099U2sjh2g5uXpZt98Xm+VmxfOuC6fyvpJq/bz1BsXWJ41j3m9nkp0bS1mN0qHm2TWlDJ519JmaPIQzEJi8hnOjQANYctJwPyp6z8WvSF2eJEcFcOS+Vl3dU0NQ5dOSqp/SbzNzzz12g4Q+fK7JrI+6CrBjSokN4bZSljXXtvZLUKIQQQkwSRZmWmRRHlzbaAjm8sawxMSKYAD81bKHz3MYyYkID+NTcVIeO++Vzc1k5LYGf/Gc//9p2AqVwyWwVWPb3gXOhILboe1eMxWBQzM+Mod+kiQjyJzYscMzHFN4x6YszgFtX5NLTb+Zvm8u9Oo5fvXuIXSda+PnVBWTaecXDYFBcUZjKx0cbqG/vHfZxlpkzKc6EEEKIySA1OoSUqGB2nmhx6HmVLZZZK28EgvgZFKnDxOlXNHfx3v5arluUSXCAn0PHNRgUv7l2LjGhAby5p4YpCeFEBLtmD/6M5Aj8DMqpUJCSilaCAwxMSRhbGIjN/GxLQZ4VHyrbWMYxKc6AaUkRrJqewPObykZMCHKntYfqeGJdKdcvzuSyOY5dEfr0vDRMZs1/S6qGvL+7z0R7j3GggbUQQgghJr6izBh2ljs2c1bRZJ0580JxZnvdyiGWNf5t8wkAPr8ky6njxoUH8ch18zCoU7OKrhAc4EdeQphTxdneylZmpUQOmcjtjAVZsYDsNxvvRv1tUEplKKXWKqUOKKX2KaW+Zr39l0qpg0qpEqXUa0qpaLeP1o1uX5FLQ0ef3U2dXamho5d7X9zNjOQIfnzZLIefPzUpglkpkbxePHRxVicNqIUQQohJZ15mNJUt3QO9Tu1R2dJNfHggIYGOzU65SnrM2TNnPf0m/rntBJ+clTSmonFJbhz/+vJS7r1g2liHeZr81CiHlzWazJq9Va3MSY922TjmpEcREeTPzOQIlx1TeJ49pboRuFdrPRNYAtyllJoFvAfM1lrPAQ4D33PfMN1vaV4cs1IieWp9KWaz44k7Y/Hrdw/R1t3Po5+b5/BUvc2n56Wx+2TLkKmTtbYeZxIIIoQQQkwaRdYEP0dmzypbvNPjzCY9JpS69tN7nf27uIqWrn5uHiU+3x4Ls2NJdPHF6vzUSGrbemnoGH57yZlK6zvo6jNR4IIwEJvgAD/e/ea53Loi12XHFJ43anGmta7WWu+0ft4OHADStNbvaq1t+e2bgXT3DdP9lFLcfm4ux+o7+fBwncded19VK//cdpKblmYzLcn5Kx2Xz01FKYac+bNdMUuUBtRCCCHEpJGfGkmgn8GuUJCjdR38fs0Rik+2eCUMxMaW2FhljdPXWvOXjWVMT4pgaW6c18Y1klmpkQAOLW3cYw0DKXBRMIlNSlSI0xf6hW9waJGrUiobmAdsOeOuLwJvDfOc25VS25VS2+vr650apKdcOieFlKhgnvzIM7H6Wmv+33/2Ex0SwNfOnzqmYyVHBbMsL47XiyvP6rVhK85k5kwIIYSYPIL8/ZidFjlkKIjWmkM17fz2vcNc8Nt1fOI36/j1e4eZnhTBzUuzPT5WG9usna3X2Y7yZvZXt3HTsiyfDbnIT3E8sbGkopWQAD/yXBQGIiYOf3sfqJQKB14Bvq61bht0+w+wLH18Yajnaa2fBJ4EWLBggWfXCzoowM/AF5Zn87M3D7KnotXlVzPO9NbeGrYcb+L/rpxNVOjYU4OuKEzjOy+XUHyyhXmDNrvWt/cS6G8gKsQ1yURCCCGEGB+KMmN4fnM5fUYzAX6KA9XtvLW3mjf3VHOsvhOlYFF2LD/5VD4X5ieTHOXdVTbpsZa0atu+s79sLCMy2J9Pz0vz5rBGFBUaQHpMiMMzZ/mpkfgZfLPgFN5jV3GmlArAUpi9oLV+ddDtNwOXAedrZ1qj+6DrFmXy6JqjPLW+lEc/N89tr9PTb+Jnbx5gRnIEn1uY4ZJjXjQ7mR++vpfXd1WeVpzZGlD76hUnIYQQQrhHUVYMf/74OPe9WsLO8mbKGrswKEs4xi3Lc7gwP8mntj0kRQThb1BUNHdR29bD23truGVZNqGBds8neEV+aiSbjjXyq3cOkRkbSnpsCJmxoaREhZxVgBlNZvZXtXHdItec/4mJZdTfdGU5o38aOKC1/s2g2y8Cvgus1FoP3cp9HIoMDuC6hRk8u7GM7148w22bYp/++DgVzd38/dbFLotQjQwO4JMzk/hvSTU/vGwWAdbj1rb1+tQ/vEIIIYTwjAVZMfgZFG8UV7EsL44vr8zjgllJxIX75lYHfz8DyVHBVDZ388Lmckxac+NS5+LzPenT89LYX93GY+uOYRoULBfgp0iLDiEjNpSM2FAyY0MJ9DPQ3W9yWSNsMbHYcxliOXAjsEcpVWy97fvAo0AQ8J51Rmaz1voOdwzS075wTg7Pbizj2Y+P80Mnou1HU9vWwx/XHuWCWUksmxLv0mNfUZjK//ZU8/GRBlbPSAQsUfrTJVZVCCGEmHQSI4N562srSAgPIiYs0NvDsUt6TAilDZ18fLSB1dMTx0Xfrotmp3DR7BT6TWaqW3o42dzFiSbLx0nrx1t7qmnu6h94TmGG6/qtiYlj1OJMa/0xMNR6uDddPxzfkBYdwqUFKfxz20nu+cRUIl3URd7m4bcPYTRpfnDpTJceF2DV9ESiQwN4vbjyVHHW1suKqQkufy0hhBBC+L6xpEF7Q3pMKC/vqABwSXy+JwX4GciMCyUzLpTlQ9zf3tPPyaZu+k1mcuJ9v+gUnuea9XQT0G0rcunoNfLPrSdcetzdJ1t4ZWcFXzgn2y1XggL9DVxSkMK7+2rp7DXS1WekvddIoiQ1CiGEEGIcsMXp58aHscLFK4y8LSI4gFmpkczNiPb2UISPkuJsGAXpUSzJjeXZDWX0m8wuOabWmp/8Zx/x4UHcvXqKS445lE/PS6O738S7+2uoszWglj1nQgghhBgHbPv9b1qahUHSDMUkI8XZCG4/N5fq1h7+V1LtkuP9e3cVO0+08J0LpxPh4qWSg83PjCEtOoTXdlUN6nEmxZkQQgghfN/5M5O4bUUO17oozVqI8USKsxGsmpZIXkIYT35UelZjZ0d19Rl56K2DzE6L5DPz0100wqEZDIor56Xy8ZH6gZ4b0oBaCCGEEONBbFggP7h0ls/H5wvhDlKcjcBgUNy2Ipf91W1sOtY4pmM9sa6U6tYefnxZvkem6K8sTMOs4dmNxwEkSl8IIYQQQggfJ8XZKK6cl0Z8eCBPri91+hiVLd088dExLpuTwqKcWBeObnhTkyLIT43kZFM3Qf4GIkPk6pMQQgghhBC+TIqzUQQH+HHT0mw+PFTP4dp2p47x0FsH0Rq+d4nro/NHcmVhGmDZb2btRSeEEEIIIYTwUVKc2eHzS7IIDjDwZydmz7aXNfGf3VV8+dzcgfQhT/lUYSpKQWKE7DcTQgghhBDC10lxZofYsEA+Mz+d13dVUdfeY/fzzGbNT/6zn+TIYO5YlefGEQ4tKTKYGxZncv7MJI+/thBCCCGEEMIxUpzZ6Uvn5NJvNvPUR6W0dvfbld74ys4K9lS2ct/FM7yWOPTTKwu40wuFoRBCCCGEEMIxkhJhp5z4MC6YlcRT64/z1Prj+BsU0aEBRIcGEhsaSHRoALFhgZavwyy3//KdQ8zLjOaKwlRvD18IIYQQQgjh46Q4c8Bvri3knX01NHX20dzVR3NXP83Wz8sbuyg+2UJzVx/9JsusmkHBkzfOlzAOIYQQQgghxKikOHNAWJA/VxWN3EBaa01nn4nmzj4AMmJDPTE0IYQQQgghxDgnxZmLKaUID/InPEi+tUIIIYQQQgj7SSCIEEIIIYQQQvgAKc6EEEIIIYQQwgdIcSaEEEIIIYQQPkCKMyGEEEIIIYTwAVKcCSGEEEIIIYQPkOJMCCGEEEIIIXyAFGdCCCGEEEII4QOkOBNCCCGEEEIIHyDFmRBCCCGEEEL4ACnOhBBCCCGEEMIHKK21515MqXqg3GMvaL94oMHbgxA+R34vxHDkd0MMRX4vxFDk90IMRX4vJrcsrXXCUHd4tDjzVUqp7VrrBd4eh/At8nshhiO/G2Io8nshhiK/F2Io8nshhiPLGoUQQgghhBDCB0hxJoQQQgghhPj/7dxbqBVVHMfx76/0RBmRWnazSCuQIJMwkzAoCSpfTkUXL5h0eajXMjQCe4geinoJigipDCItKRIyISIw0mP6cFIrUxMxSZRKkwpS89/DrIObw+zOOeqcWXvv3wcWe/aaWXsu/txnrZk9Yxnw4KzwZt0bYFlyLqwZZ8PKOBdWxrmwMs6FlfI9Z2ZmZmZmZhnwlTMzMzMzM7MMtNTgTNKdkn6UtFPS4ob6FZJ6U9ktqbdJ+zGSPpe0I72OTvXzGtr3SjouaUpJ+/fS+rdKekvSyFQvSa+m7dos6YZqjoA1k3E2JklaL+kfSQur2XtrJuNczEvfFZslrZN0fTVHwMpknIvulIleSZskzajmCFgzFWZjpKRlkrZI+kHSM03aT5C0IbVfIakr1bufUaOMc+E+RjuKiJYowJnAT8BEoAv4Fri2ZLlXgCVNPuMlYHGaXgy8WLLMdcCuJu1nAUrlfeCJhvrPUv10YEPdx6uTSubZGAfcCLwALKz7WHVSyTwXNwOj0/Rd/s5wLlL9uZy43WAysK3u49VJpcpsAHOB5Wn6HGA3cGVJ+w+A2Wn6Dfcz6i+Z58J9jDYsrXTlbBqwMyJ2RcQRYDnQ3biAJAEPUPyxK9MNLEvTy4C7S5aZ06x9RKyOBPgGGN/wue+mWT3A+ZIuGfSe2anKNhsRcSAiNgJHh7RHdjrknIt1EXEwLdbDie8Sq17Oufgz1QGMAnxT+PCqMhsBjJI0AjgbOAIcLvnsmcDKkvbuZ9Qn21y4j9GeWmlwdhnwc8P7vamu0S3A/ojY0eQzLoqIfQDpdVzJMg/S/D8XUFyGBuYDa4awbVadnLNh9WmVXDxKcUbchkfWuZB0j6RtwKfAI//X3k67KrOxEvgL2AfsAV6OiN/7tR0LHIqIYyXrdz+jPjnnwtpQKw3OVFLX/6xi0zOVg1qBdBPwd0RsHWDR14G1EfHVELbNqpNzNqw+2edC0m0Ug7NFJ7sNNmRZ5yIiPo6ISRRnxp8/2W2wk1JlNqYB/wKXAhOApyRNHML63c+oT865sDbUSoOzvcDlDe/HA7/0vUmXhO8FVjTUvZ1u0lydqvb3/QwgvR7ot47ZDHym8zngQuDJwW6bVS7nbFh9ss6FpMnAUqA7In4bwn7Zqck6F30iYi1wlaQLBrNTdlpUmY25wJqIOBoRB4Cvgan91v8rxc8VR5Ss3/2M+uScC2tDrTQ42whck55Y00Xxx29Vw/zbKW6e3ttXEREPR8SUiJiVqlYBC9L0AuCTvmUlnQHcT/Fb4lKSHgPuAOZExPGGWauAh9LTlKYDf/RdvrZhkXM2rD7Z5kLSFcBHwPyI2H4K+2hDl3Murk73l6DiaXxdgAfuw6fKbOwBZqZ+wiiKh3psa1x5ut/wS+C+kvbuZ9Qn51xYO4oMnkoy2ELxtKLtFE/NebbfvHeAxwdoPxb4AtiRXsc0zLsV6Bmg/bG07t5UlqR6Aa+leVuAqXUfq04rGWfjYoqzboeBQ2n6vLqPV6eUjHOxFDjYUL+p7mPVSSXjXCwCvkt164EZdR+rTitVZYPiSZwfpn/f74Gnm7SfSPGQmJ1p+bNSvfsZzkVZLtzHaMPS98heMzMzMzMzq1Er/azRzMzMzMysbXlwZmZmZmZmlgEPzszMzMzMzDLgwZmZmZmZmVkGPDgzMzMzMzPLgAdnZmZmZmZmGfDgzMzMzMzMLAMenJmZmZmZmWXgPzxkZCHLN5oKAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAE/CAYAAAAUrGGzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACFX0lEQVR4nO3dd1zU9/0H8Nfn7th7IxtcKA4E3HGgJmY206Rp9mxWk6ZN07RNmnTkl9E2bZJmNM1ObLNHm2Y5cCuKihMBlQ2y9767z++P7x2eyLiDWxyv5+PBQ73xvQ/wFe79/byHkFKCiIiIiIiIxj6VoxdARERERERE1sEAj4iIiIiIyEUwwCMiIiIiInIRDPCIiIiIiIhcBAM8IiIiIiIiF8EAj4iIiIiIyEUwwCMiIiIiInIRDPCIiMYoIUSbyYdeCNFp8u/rHL2+kRBCFAshVjl6HUMRQmwSQtxuw+O/JoTIN3xPb+53n4cQ4q9CiEohRKMQ4mUhhFu/tXWZnAf5/Z6/UghxTAjRIYTIEkLEm9wnhBDPCCHqDR/PCiGErT5PIiKyDQZ4RERjlJTS1/gBoBTAJSa3rXX0+voTQmhc4TXs4ACAewDsG+C+RwBkAJgBYAqANACP9nvMfSbnwVTjjUKIUACfAXgMQDCAHAAfmjzvTgCXAZgNYBaAiwH82AqfDxER2REDPCIiFyOEUAkhHhFCnDDsxHwkhAg23JcghJBCiFuEEGWGXaC7hBBzhRAHhRBNQoi/mxzrZiHEdiHEi0KIZsPuz0qT+wOEEG8IIaqEEBVCiD8KIdT9nvtXIUQDgCeEEBOFEBsN66oTQqwVQgQaHv8egDgA/zXsPj0shFguhCjv9/n17fIJIZ4QQnwihHhfCNEC4OZh1jRJCLHZ8LnUCSFMAxzT1/A0HLPe8DXZI4SIEEI8CWAJgL8b1vh3w+OThRDrhBANht23q02O9bYQ4lXD/a2G148f6HUBQEr5kpRyA4CuAe6+BMALUsoGKWUtgBcA3DrYsfq5AsARKeXHUsouAE8AmC2ESDbcfxOAv0gpy6WUFQD+AuBmM49NREROggEeEZHruR/KTswyAFEAGgG81O8x8wFMBnANgL8B+A2AVQBSAFwthFjW77EnAYQCeBzAZ8aAEcA7ALQAJgGYA+A8ALcP8NxwAE8CEACeMqxrGoBYKIEGpJQ34MydyGfN/HwvBfAJgEAAa4dZ0x8AfA8gCEAMgBcHOeZNAAIM6wsBcBeATinlbwBsxeldsvuEED4A1gH4l+HzvBbAy0KIFJPjXWd47VAAuYZ1joQwfJj+O0YIEWBy21OG4HW7EGK5ye0pUHYHAQBSynYAJwy3n3W/4e+mnwMREY0BDPCIiFzPjwH8xrAT0w0lgLqqX/riH6SUXVLK7wG0A/i3lLLGsHOzFUpgZFQD4G9Syl4p5YcA8gFcJISIAHABgJ9KKdullDUA/grghybPrZRSviil1EopO6WUx6WU66SU3YYdqOegBKKjsVNK+YWUUg/Af5g19QKIBxBl+Py3DXLMXiiB3SQppU5KuVdK2TLIYy8GUCylfMvwee4D8CmAq0we8z8p5RbD9+M3ABYKIWJH8Ll+A+ABIUSYECISSjAPAN6GP38JIAlANIDXoOyGTjTc5wugud/xmgH4DXJ/MwBf1uEREY0trlCrQEREZ4oH8LkQQm9ymw5AhMm/q03+3jnAv31N/l0hpZQm/y6BsgMXD8ANQJVJDKACUGbyWNO/QwgRDiWtcAmUwEIFZYdxNExfY7g1PQxlJ223EKIRSkrimwMc8z0ou3cfGFJI34cSNPcO8Nh4APOFEE0mt2kMxzhrjVLKNkPKalS/tZvjSSg7lbkAugH8E0owXmM4drbJY98RQlwL4EIoO5VtUAJgU/4AWg1/73+/P4C2ft97IiJyctzBIyJyPWUALpBSBpp8eBp250Yiut8uThyASsPrdAMINXkdfymlaVpf/+DgKcNts6SU/gCux5kph/0f347Tu1Mw1NKF9XuM6XOGXJOU8pSU8g4pZRSUnc6XhRCT+n/Cht3K30kppwNYBGWX7sZB1lgGYHO/r7evlPJuk8f07dYJIXyhNDmp7P+6wzHsgt4npYyWUiYBqAewV0qpG+wpOP31PQKlgYpxHT4AJhpuP+t+w9+PgIiIxhQGeERErudVAE8aG3kY0vkuHcXxwgHcL4RwE0KsgVI797WUsgpKPdtfhBD+huYuE/vV7/XnB2WnqEkIEQ3gF/3ur4aSYmhUAMBTCHGRUMYBPArAY7CDD7cmIcQaIUSM4eGNUAKgs4IjIUSmEGKmIaBsgZKyaXxc/zV+BWCKEOIGw9fITShNa6aZPOZCIcQ5Qgh3KDuI2VLKAXfvhBDuQghPKIGZm6Hhi8pwX7QQIkooFkDpiPm44b5AIcRqw+M1QhmVsRTAd4ZDfw5ghhDiSsPxfwvgoJTymOH+dwH8zPgaAH4O4O3BvtZEROScGOAREbme5wH8B8D3QohWALugNDsZqWwoDVnqoKQIXiWlrDfcdyMAdwBHoQRMnwCYMMSxfgeltX8zgP9Badtv6ikAjxo6Vz4kpWyGMjLgdQAVUHb0yjG0odY0F0C2EKINytfoASll0QDHiDQ8rwVAHoDNUNI0AeXre5VQOpC+IKVshdLI5YdQduVOAXgGZwai/4ISiDUASIfSdGUw30NJk10EpY6uE0qgBig7bjsMX4d3ADxiqKMElNTUPwKohfK9+gmAy6SU+QBgqHm8Esr3sBHKOWFaL/kPAP8FcAjAYSjfn38MsU4iInJCgqn1REQ0GKEM2r5dSnmOo9cyVgkh3gZQLqXsP6+OiIjI6riDR0RERERE5CIY4BEREREREbkIpmgSERERERG5CO7gERERERERuQgGeERERERERC5CY88XCw0NlQkJCfZ8SSIiIiIiIqexd+/eOillmK2Ob9cALyEhATk5OfZ8SSIiIiIiIqchhCix5fGZoklEREREROQiGOARERERERG5CAZ4RERERERELsKuNXgD6e3tRXl5Obq6uhy9FHIxnp6eiImJgZubm6OXQkRERERkFw4P8MrLy+Hn54eEhAQIIRy9HHIRUkrU19ejvLwciYmJjl4OEREREZFdODxFs6urCyEhIQzuyKqEEAgJCeHOMBERERGNKw4P8AAwuCOb4HlFREREROONUwR4jvbkk08iJSUFs2bNQmpqKrKzswEAt99+O44ePWqV10hISEBdXd2Qj/m///s/i4/79ttv47777jvjtrfeegupqalITU2Fu7s7Zs6cidTUVDzyyCMWH98e/va3v6Gjo8PRyyAiIiKise7ZZ4GsrDNvy8pSbh8nxn2At3PnTnz11VfYt28fDh48iPXr1yM2NhYA8Prrr2P69Ol2W8tIAryB3HLLLcjNzUVubi6ioqKQlZWF3NxcPP3001Y5vqWklNDr9YPeP5IAT6vVjnZZRERERORq5s4Frr76dJCXlaX8e+5cx67LjsZ9gFdVVYXQ0FB4eHgAAEJDQxEVFQUAWL58OXJycgAAvr6++OUvf4n09HSsWrUKu3fvxvLly5GUlIT//Oc/AM7eTbv44ouxadOms17zsssuQ3p6OlJSUvDaa68BAB555BF0dnYiNTUV1113HQDg/fffx7x585Camoof//jH0Ol0AJQduilTpmDZsmXYvn272Z/rn/70J8ydOxezZs3C448/DgAoLi5GcnIybr/9dsyYMQPXXXcd1q9fj8WLF2Py5MnYvXs3AOCJJ57ADTfcgBUrVmDy5Mn45z//Oexxp02bhnvuuQdpaWkoKyvD3XffjYyMDKSkpPQ97oUXXkBlZSUyMzORmZnZ97U2+uSTT3DzzTcDAG6++Wb87Gc/Q2ZmJn75y1/ixIkTOP/885Geno4lS5bg2LFjZn8tiIiIiMgFZWYCH30EXHYZcOutSnD30UfK7eOFlNJuH+np6bK/o0ePnnWbPbW2tsrZs2fLyZMny7vvvltu2rSp775ly5bJPXv2SCmlBCC//vprKaWUl112mTz33HNlT0+PzM3NlbNnz5ZSSvnWW2/Je++9t+/5F110kczKypJSShkfHy9ra2ullFLW19dLKaXs6OiQKSkpsq6uTkoppY+PT99zjx49Ki+++GLZ09MjpZTy7rvvlu+8846srKyUsbGxsqamRnZ3d8tFixad8Zr9GV/3u+++k3fccYfU6/VSp9PJiy66SG7evFkWFRVJtVotDx48KHU6nUxLS5O33HKL1Ov18osvvpCXXnqplFLKxx9/XM6aNUt2dHTI2tpaGRMTIysqKoY8rhBC7ty5s28txs9bq9XKZcuWyQMHDpz1ten/dfj444/lTTfdJKWU8qabbpIXXXSR1Gq1UkopV6xYIQsKCqSUUu7atUtmZmae9fk7+vwiIiIiIjvq6pLywQelBJSPxx5z9IrOAiBH2jDmcviYBFO/++8RHK1sseoxp0f54/FLUga939fXF3v37sXWrVuRlZWFa665Bk8//XTfrpGRu7s7zj//fADAzJkz4eHhATc3N8ycORPFxcUWremFF17A559/DgAoKytDYWEhQkJCznjMhg0bsHfvXsw1bCd3dnYiPDwc2dnZWL58OcLCwgAA11xzDQoKCoZ9ze+//x7ff/895syZAwBoa2tDYWEh4uLikJiYiJkzZwIAUlJSsHLlSgghzvrcLr30Unh5ecHLywuZmZnYvXs3tm3bNuhx4+PjsWDBgr7nf/TRR3jttdeg1WpRVVWFo0ePYtasWRZ97dasWQO1Wo22tjbs2LEDa9as6buvu7vbomMRERERkQspLAR++ENg3z7A0xN48EHglVeU3btxtIPnVAGeo6jVaixfvhzLly/HzJkz8c4775wV4Lm5ufV1ZVSpVH0pnSqVqq8eTKPRnFFrNlCL/k2bNmH9+vXYuXMnvL29sXz58gEfJ6XETTfdhKeeeuqM27/44osRdYeUUuJXv/oVfvzjH59xe3Fxcd/nMtTnBpzdlVIIMeRxfXx8+v5dVFSEP//5z9izZw+CgoJw8803DzrCwPR1+j/GeEy9Xo/AwEDk5uYO96kTERERkat77z3gnnuUv/v7A198oQR155477tI0nSrAG2qnzVby8/OhUqkwefJkAEBubi7i4+NHdKyEhAS8/PLL0Ov1qKio6KtfM9Xc3IygoCB4e3vj2LFj2LVrV999bm5u6O3thZubG1auXIlLL70UDz74IMLDw9HQ0IDW1lbMnz8fDzzwAOrr6+Hv74+PP/4Ys2fPHnZtq1evxmOPPYbrrrsOvr6+qKiogJubm0Wf35dffolf/epXaG9vx6ZNm/D000/Dy8vLrOO2tLTAx8cHAQEBqK6uxjfffIPly5cDAPz8/NDa2orQ0FAAQEREBPLy8jB16lR8/vnn8PPzO+t4/v7+SExMxMcff4w1a9ZASomDBw+a9bUgIiIiIhfR2grce68S4C1ZApxzjhLUGYM5Y03enj0M8MaLtrY2/OQnP0FTUxM0Gg0mTZrU1/jEUosXL+5Ld5wxYwbS0tLOesz555+PV199FbNmzcLUqVPPSGG88847MWvWLKSlpWHt2rX44x//iPPOOw96vR5ubm546aWXsGDBAjzxxBNYuHAhJkyYgLS0tL7mK0M577zzkJeXh4ULFwJQUlPff/99qNVqsz+/efPm4aKLLkJpaSkee+wxREVFISoqyqzjzp49G3PmzEFKSgqSkpKwePHiMz7vCy64ABMmTEBWVhaefvppXHzxxYiNjcWMGTPQ1tY24HrWrl2Lu+++G3/84x/R29uLH/7whwzwiIiIiMaLvXuBa68FTpwAHn8cePRRQDNAeDPOUjSFUudnHxkZGdLYldIoLy8P06ZNs9saaGSeeOIJ+Pr64qGHHnL0UizC84uIiIhojHv2WWXMgTFIk1LZtfvHP4AJE4C1a4Flyxy7RgsIIfZKKTNsdfxxPyaBiIiIiIicmOlsu9paYOFCpXnKggXAgQNjKrizh3GfoknmeeKJJxy9BCIiIiIaj4x1dJdfDuh0QFsb8JOfAM8/D4yg+aCrY4BHRERERETOq70d+PxzoLlZ+feddwIvvODYNTkxpmgSEREREZFz2roVmD0bePFFwMsLeOQR4LPPlHRNGhADPCIiIiIici4dHcqg8mXLlL8HBAD/+x/w1FNKuqaxJo/OwhRNIiIiIiJyHjt2ADffDBQWKt0yIyKU+XbjeLadJbiDB0CtViM1NRUzZszAmjVr0NHRMeJj3Xzzzfjkk08AALfffjuOHj066GM3bdqEHTt29P371Vdfxbvvvjvi1zYqLi7GjBkzzrjtiSeewJ///GeLjmOt9RARERERDauzE/jFL5RgrqcH2LAB+PvfgcceOzuQy8wEHn7YMet0ctzBA+Dl5YXc3FwAwHXXXYdXX30VP/vZz/ru1+l0Fg0EN3r99deHvH/Tpk3w9fXFokWLAAB33XWXxa9hK1qt1qnWQ0REREQupP9su+xsYM0aoKwMuOsu5X4/P8eucYwaWzt4zz57dq5tVpZyu5UsWbIEx48fx6ZNm5CZmYkf/ehHmDlzJnQ6HX7xi19g7ty5mDVrFv7xj38AAKSUuO+++zB9+nRcdNFFqKmp6TvW8uXLYRzs/u233yItLQ2zZ8/GypUrUVxcjFdffRV//etfkZqaiq1bt56xy5abm4sFCxZg1qxZuPzyy9HY2Nh3zF/+8peYN28epkyZgq1bt1r8OQ517F//+tdYtmwZnn/++b71VFZWIjU1te9DrVajpKQEJSUlWLlyJWbNmoWVK1eitLQUgLKLef/992PRokVISkrq29EkIiIiIgJwerbdd98pjVMWLgQqKpT39a+8wuBuFMZWgGc65BBQ/rz6auV2K9Bqtfjmm28wc+ZMAMDu3bvx5JNP4ujRo3jjjTcQEBCAPXv2YM+ePfjnP/+JoqIifP7558jPz8ehQ4fwz3/+84yUS6Pa2lrccccd+PTTT3HgwAF8/PHHSEhIwF133YUHH3wQubm5WLJkyRnPufHGG/HMM8/g4MGDmDlzJn73u9+dsc7du3fjb3/72xm3mzpx4sQZQdmrr75q1rGbmpqwefNm/PznP++7LSoqCrm5ucjNzcUdd9yBK6+8EvHx8bjvvvtw44034uDBg7juuutw//339z2nqqoK27Ztw1dffYVHHnnEwu8EEREREbm0zExg7Vrg4ouBZ54BPDyAL75QUjRpVJwrRfOnPwUMqZKDiooCVq8GJkwAqqqAadOA3/1O+RhIairwt78NecjOzk6kpqYCUHbwbrvtNuzYsQPz5s1DYmIiAOD777/HwYMH+3ajmpubUVhYiC1btuDaa6+FWq1GVFQUVqxYcdbxd+3ahaVLl/YdKzg4eMj1NDc3o6mpCcuWLQMA3HTTTVizZk3f/VdccQUAID09HcXFxQMeY+LEiX1pp8DpQeXDHfuaa64ZdF3bt2/H66+/3rdruHPnTnz22WcAgBtuuAEPm+RBX3bZZVCpVJg+fTqqq6uH/HyJiIiIaBzauRPQapW//+IXwCWXOHY9LsK5AjxzBAUpwV1pKRAXp/x7lExr8Ez5+Pj0/V1KiRdffBGrV68+4zFff/01hBBDHl9KOexjLOHh4QFAaQ6jNf6nsBLTz9lUVVUVbrvtNvznP/+Br6/vgI8x/RyNawSUz5+IiIiIqM/hw8Af/qDs3D38sJKWmZnJrphW4Fwpmn/7G7Bp09Afjz+uzMJ47DHlz8cfH/rxw+zemWv16tV45ZVX0NvbCwAoKChAe3s7li5dig8++AA6nQ5VVVXIGmAex8KFC7F582YUFRUBABoaGgAAfn5+aG1tPevxAQEBCAoK6tspe++99/p23EZrJMfu7e3F1VdfjWeeeQZTpkzpu33RokX44IMPAABr167FOeecY5U1EhEREZEL0+mUhip6PfDvfwO//z1n21nR2NrBM9bcffTR6Qjf9N82dPvtt6O4uBhpaWmQUiIsLAxffPEFLr/8cmzcuBEzZ87ElClTBgyWwsLC8Nprr+GKK66AXq9HeHg41q1bh0suuQRXXXUVvvzyS7z44otnPOedd97BXXfdhY6ODiQlJeGtt96y2udi6bF37NiBPXv24PHHH8fjjz8OQNm5fOGFF3DrrbfiT3/6E8LCwqy6RiIiIiJyUc8/Dxw7BvzmN8Dllyu3cbad1Qh7ps9lZGRIY1dJo7y8PEybNs28A/RvpwooQd+ePZyDQQOy6PwiIiIiIts6cQKYORNYtQr48kvAimVMY4UQYq+UMsNWxx9bO3gDBXHM1SUiIiIicn5SAnfcAbi5KTV34zC4s4exFeAREREREdHY9PrrSvbda68B0dGOXo3Lcq4mK0RERERE5HrKy4GHHlIy726/3dGrcWlOEeCxjT7ZAs8rIiIiIicgJXD33UBvL/DPfzI108YcHuB5enqivr6eb8bJqqSUqK+vh6enp6OXQkRERDS+ffAB8NVXwB//CEyc6OjVuDyH1+DFxMSgvLwctbW1jl4KuRhPT0/ExMQ4ehlERERE41dtLXD//cC8ecADDzh6NeOCwwM8Nzc3JCYmOnoZRERERERkbT/9KdDcDLz5JqBWO3o144LDUzSJiIiIiMgFffUV8K9/AY8+CqSkOHo14wYDPCIiIiIisq7mZuCuu4AZM4BHHnH0asaVYQM8IUSsECJLCJEnhDgihHjAcHuqEGKXECJXCJEjhJhn++USEREREZFTevZZZc4dADz8MFBVBdxzD/C3vzl0WeONOTt4WgA/l1JOA7AAwL1CiOkAngXwOyllKoDfGv5NRERERETj0dy5wNVXA889pwwzv+oq4Le/VW4nuxm2yYqUsgpAleHvrUKIPADRACQAf8PDAgBU2mqRRERERETk5DIzgfffBy68EAgKAjZuBD76SLmd7MaiLppCiAQAcwBkA/gpgO+EEH+GshO4yNqLIyIiIiKiMWTXLkCvBxobgcceY3DnAGY3WRFC+AL4FMBPpZQtAO4G8KCUMhbAgwDeGOR5dxpq9HI4646IiIiIyEWdPAk8+STg4aEEd6+8cromj+xGSCmHf5AQbgC+AvCdlPI5w23NAAKllFIIIQA0Syn9hzpORkaGzMnJscKyiYiIiIjIaUgJLFwIZGcDH36o1OJlZSl/Mk3zDEKIvVLKDFsd35wumgLK7lyeMbgzqASwzPD3FQAKrb88IiIiIiJyev/9rxLc3X23EtQBSlD30UfAnj2OXds4M+wOnhDiHABbARwCoDfc/GsALQCeh1LH1wXgHinl3qGOxR08IiIiIiIX09EBTJ8O+PoC+/cDbm6OXpFTs/UOnjldNLcBEIPcnW7d5RARERER0Zjy1FNASQmweTODOydgdpMVIiIiIiKiMxQWKgPOr78eWLrU0ashMMAjIiIiIqKRkBK47z7A0xP4058cvRoysGgOHhEREREREQDgs8+A778Hnn8eiIx09GrIgDt4RERERERkmfZ24Kc/BVJTgXvucfRqyAR38IiIiIiIyDJ/+ANQXq7MvNMwpHAm3MEjIiIiIiLz5eUBf/kLcMstwKJFjl4N9cMAj4iIiIiIzGNsrOLrCzzzjKNXQwPgfioREREREZnnww+BjRuBl18GwsIcvRoaAHfwiIiIiIhoeK2twM9+BqSnA3fe6ejV0CAY4BERERER0cCefRbIylL+/sQTwKlTwK23KjV45JQY4BERERER0cDmzgWuvhp4801l3t1FFwGPP67cTk6JNXhERERERDSwzEyl7u788wF3d2DnTuDjj5XbySlxB4+IiIiIiAaXlgZERQGdncpQcwZ3To0BHhERERERDW7/fqC9HXj0UeCVV07X5JFTYoBHREREREQDy8pSavA++gj4wx+UP6++mkGeE2OAR0REREREA9uzRwnqjGmZmZnKv/fscey6aFBCSmm3F8vIyJA5OTl2ez0iIiIiIiJnIoTYK6XMsNXxuYNHRERERETkIhjgERERERERuQgGeERERERERC6CAR4REREREZGLYIBHRERERETkIhjgERERERERuQgGeERERERERC6CAR4REREREZGLYIBHRERERETkIhjgERERERERuQgGeERERERERC6CAR4REREREZGLYIBHRERERETkIhjgERERERERuQgGeERERERERC6CAR4REREREZGLYIBHRERERETkIhjgERERERERuQgGeERERERERC6CAR4REREREZGLYIBHRERERETkIhjgERERERERuQgGeERERERERC6CAR4REREREZGLYIBHRERERETkIhjgERERERERuQgGeERERERERC6CAR4REREREZGLYIBHRERERETkIhjgERERERERuQgGeERERERERC5i2ABPCBErhMgSQuQJIY4IIR4wue8nQoh8w+3P2napRERERERENBSNGY/RAvi5lHKfEMIPwF4hxDoAEQAuBTBLStkthAi35UJpbNp5oh4n69pw3fx4Ry+FiIiIiMjlDRvgSSmrAFQZ/t4qhMgDEA3gDgBPSym7DffV2HKhNLbo9RIvbzqOv6wrgJTA8qnhiA70cvSyiIiIiIhcmkU1eEKIBABzAGQDmAJgiRAiWwixWQgx1wbrozGouaMXt7+bgz9/X4DlU8IAAOuPVjt4VURERERErs/sAE8I4QvgUwA/lVK2QNn9CwKwAMAvAHwkhBADPO9OIUSOECKntrbWSssmZ3W4ohkX/30rthbW4g+XpuDNm+diYpgPvj96ytFLIyIiIiJyeWYFeEIINyjB3Vop5WeGm8sBfCYVuwHoAYT2f66U8jUpZYaUMiMsLMxa6yYn9OGeUlzxyg5odRIf/nghbliYACEEzp0eieyTDWju7HX0EomIiIiIXJo5XTQFgDcA5EkpnzO56wsAKwyPmQLAHUCdDdZITq6rV4dffnIQv/z0EOYlBOOrn5yDtLigvvvPnR4BrV5iUz7LNImIiIiIbMmcLpqLAdwA4JAQItdw268BvAngTSHEYQA9AG6SUkqbrJKcVllDB+5euxeHK1pwX+YkPHjuFKhVZ2bqzokNRKivB74/Wo1LU6MdtFIiIiIiItdnThfNbQDOqq0zuN66y6GxZOOxavz0g1wAwBs3ZWDltIgBH6dSCZw7PRz/ya1Et1YHD43ajqskIiIiIho/LOqiSQQAOr3Ec9/n49a3cxAT5I2vfrJk0ODO6NzpEWjv0WHniXo7rZKIiIiIaPxhgEcWe/a7Y3hh43GsSY/BZ/csQlyI97DPWTQxFN7uaqzjuAQiIiIiIpthgEcWaWjvwbs7SnBpahT+tGY2PN3MS7f0dFNj2ZQwrM+rhl7PUk0iIiIiIltggEcWeXt7Ebq0OvxkxSSLn3vu9AhUt3TjYEWzDVZGREREREQM8MhsrV29eHtHMc6bHoFJ4X4WP39FcjjUKoF1HHpORERERGQTDPDIbGuzS9HSpcU9yy3fvQOAQG93zEsIZh0eEREREZGNMMAjs3T16vD61iIsmRyK2bGBIz7OudMjUFDdhuK6dustjsaUlq5eRy+BiIiIyGUxwCOzfLy3HHVt3bh7+cRRHefc6co4Be7ijU+F1a2Y8/t1yD7JcRlEREREtsAAj4al1enxj80nMCcuEAuTQkZ1rNhgbyRH+jHAG6e2FNZBp5fYfrzO0UtxSVqdHj/4+zZ8urfc0UshIiIiB2GAR8P678FKlDd24t7lkyCEGPXxzkuJRE5JA+rbuq2wOhpLcoobAAD7y5ocuxAXtbekEQfLm7Exv8bRSyGyuaK6dnzCixlERGdhgEdD0uslXs46geRIP6xIDrfKMc+bHgG9BDYc45vQ8URKiT2GAC+3rInzEG3A+H/qWFWLg1dCZFs6vcR9/9qHhz4+gMqmTkcvh4jIqTDAoyGty6tGYU0b7l4+ESrV6HfvACAlyh9RAZ52S9PcU9yAH7+Xg16d3i6vRwMrru9AXVsP5sQForVLi5NstGN16w3/p4rq2tHVq3Pwaohs5/1dJThSqVzIyOKONRHRGRjg0aCklHg56zjigr1x0cwJVjuuEALnTo/A1sJadPbY/k3oF/sr8N2RauQUN9r8tWhwe4qU3bs7lyQBUHbxyHpO1LbhZF07FiQFQy+B4zVtjl4SkU3UtHbhz9/n45xJoYgJ8kIWs0GIiM7AAI8GteNEPQ6UN+OuZROhUVv3VDl3eiS6evXYZodmGwfLmwHwKq+j7SluQJC3G85LiYSfhwa5ZQy4rcm4e3dvpjKnMo9pmuSinvr6GLp79fj9pSlYkRyO7cfruWNNRGSCAR4N6qWs4wj388CV6dFWP/b8pGD4eWrw/ZFTVj+2qW6tDsdOKW90N/Iqr0PtKW5ARkIw1CqBWbEB3MGzsvV51Zg+wR+LJobCQ6NC/qlWRy/JobYV1jHIdUG7Ttbj8/0VuHNpEpLCfJGZHI7OXh12cfQKEVEfBng0oP2ljdhxoh53LEmCh0Zt9eO7qVXInBqOjcdqoLNhs41jVa3o1UnMSwjG8Zo2lDV02Oy1aHA1rV0oru/A3IQgAEBqbCCOVbXyqruVNLT3YG9JI1ZNj4BaJTAlwg/HxnGAtza7BNe/kY0n/nPE0UshK+rV6fHYF4cRHejVt1O9MCkEnm4qXsAjIjLBAI8G9PKmEwjwcsOP5sfZ7DXOS4lAfXsP9pXaLlXvYHkTAOCBVZMBcBfPUYz1j3MTggEAqbFB0OolDlc0O3JZLiPrWA30Elg1Tel0mxw5fgO893eV4DefH4a7RoWjlS3s1upC3txWhMKaNjzxgxR4uSsXHj3d1DhnUig2HquBlPxeExEBDPBoAPmnWrHuaDVuWZwAHw+NzV5n2ZQwuKmFTbtpHihvRoiPOxZNDEFiqA/r8Bxkd1EDPN1USIkKAKDs4AHA/tImxy3KhazPq0aEvwdmGL6+yRP8UdfWjdrW8TVr8v1dJXj0i8NYkRyORy+ahtZuLcoauWvvCqqaO/H8hkKsmhaOc6dHnHFfZnI4yhs72ViIiMiAAR6d5ZVNx+HtrsbNixJs+jp+nm5YODEU3x85ZbMrrwfLmzArJgBCCGRODcfOE/V26dxJZ8opacCc2CC4a5QfOWF+HogO9GIdnhV0a3XYUlCLldMi+kaZJEf6AcC4qsN7zxDcrUwOxyvXpyEtTkkHPlzBOjxX8IevjkKnl3j8kpSz7sucquxcM0ODiEjBAI/OUFrfgf8erMJ18+MQ6O1u89c7d3oEius7bHLltb1bi+M1bZgVEwgAWJEcjm6tHjtO2L5zJ53W2tWLo5UtmJsYfMbtqXGBDPCsYNfJBrT36HDutNO7GsYAz9hgyNW9t6sEjxmCu5evT4OHRo3JEb7QqAQOVzINeKzbXFCLrw+dwn2ZkxAb7H3W/VGBXkiO9MMGBnhERAAY4FE//9hyAmohcLthVpmtGd+Ufm+DNM3DFc3QS2B2rJK2NjcxCN7ual7ltbP9pU3QS/Q1WDGaExuIiqZO1LR2OWhlrmH90Wp4uamxcGJI320hvh4I9fUYF3V47+0sxmNfHMaqaaeDOwDw0KgxJcKvbxg2jU1dvTo8/uVhJIb64M5lg/9eWpEcjr0ljWju6LXj6oiInBMDPOpT09KFj3PKcVVGDCL8Pe3ympEBnpgdE2CTAO+QoYGHcQfPQ6MU42/Kr7V7Mf6xUy245a3daO/W2vV1ncGe4gaoVQJz4voFeHGBAIBcF6nDq2zqxCOfHkRBtf2CKikl1udVY8nkUHi6ndntdtoEP5ffwXtvZzEe+/IIVk0Lx0vXpZ3V8XdGtD+OVDSz+cYY9tqWkyiu78DvL00ZsqPzymnh0OklthTW2nF1RETOiQEe9Xl9WxG0ej3uWjrRrq977vQIHChrQnWLdXdyDpQ3IzrQC6G+Hn23rUgOR0VTJwqq7VuM/+GeMmTl147LWU17ihswfYI/fPs17EmJCoBGJVwiTXPd0Wpc+MJWfLCnDP/eXWq31z1S2YKq5i6s6td0AlDSNAur26DV6e22Hnt61yS4e/m69AHf/KdEBaC+vQenrPyzheyjtL4DL2Udx0UzJ2DJ5LAhH5saG4QgbzdkMUODyCJdvTp2G3ZBDPAIANDU0YO1u0pwyewoxIWcXeNgS+elRAJQOgFa08HyJsyMDjjjtsxkxxTjbylQrirvLmqw6+s6Wo9Wj/2lTX3jEUx5uqkxbYL/mA7wurU6/O6/R3DHuzmICVLqgPaV2G7sR38b8moghHLhor+pkf7o1upRXO96XSTf3VmM3355BKumReDl69L7mvf0NyPaHwBwhI1WxhwpJZ747xGoVQKPXjxt2MerVQLLpoQhK9+2s1WJXEV9Wzd+998jmPnEd3h7R7Gjl0NWxgCPAAD/2l2K9h4d7l5u3907AJgc7ov4EG+rjkto6uhBSX0HZsWeGeBF+Hti+gR/u17lLW/swInadgBA9jgL8A5XNqNbqz+r/s4oNTYQB8qaxuQbspL6dlz1yk68tb0YNy9KwKd3L0JmcjiOVLbYbYD7+rxqzIkNPGOX2shVO2kag7tzp0fg5evSBg3uAGDaBH8IATZaGYPWHa3GxmM1eHDVFEwI8DLrOZnJ4Wjs6B3TF42IbK2jR4sXNxRi2Z824Z0dxRBC4IBhZjC5DgZ4BEBpSJIU5oPkSH+7v7YQAudOi8CO4/Vos1KN2sFy5Q3dbEP9nakVyeHYW2q/YvwtBUrXztUpEThc0Tyu6vD2GALajAF28AAlwGvv0Y25+VX/OVCJi17YhtKGDvzjhnQ88QOlPig9Thngbjz/bKmquROHKpoHTM8EgEnhvlCrhEvV4a3NLukL7l760dDBHQB4u2uQFOrDUQljTEePFr/771FMifDFzYsTzH7esilhUKsE0zSJBtCr0+O9XSVY+uwm/GVdARZPCsH3Dy7FvIRgl8z0GO8Y4BEAoKKpC9GB5l0ltYVzp0egR6fH5nzrFMgfNFyNmtEvRRNQrvLasxh/c0ENogO9cO28OGj10qrDvU81d+HBD3ORlV/jlI0k9hQ3IjHUB2F+Z+8wAcqoBADILbNfWuNodPbo8KvPDuL+f+/H1Eg/fP3AEqw2pBgDQFq8slO51w5pmhvylDexpuMRTHm6qZEY6oO8KtfYwdPq9Hjmm2NYPCnErODOaEZ0AI5yB29M+fvG46ho6sQfLp0BN7X5b1MCvd2RHhfETslEJqSU+N/BKpz31y147IvDSAr1wad3L8I/bsjApHA/xIV4o7S+3dHLJCtjgEcAlA6Ajgzw0uODEOzjjnVHT1nleAfKm5EU6oMAL7ez7kuNDUSwj7tdrvL26vTYcbweS6eEIiMhGCoBZBdZr9HKp/vK8fn+Ctzy1h5c9epObD9e5zSBnl4vkVPSMGh6JgAkhvjA31MzJlKqCqtbcelL2/Dv3WW4Z/lEfHDngrP+zwT7uCMx1Af7Su0R4FUjPsQbk8J9B31McqQf8qtdY/dqX2kTWrq0uGFBvNnBHQDMiApAZXMX6tu6bbg6spbjNW3459aTuCItGvOTQoZ/Qj+ZyeE4WtWCquZOG6yOaGzZcaIOl720Hff+ax/c1Sq8cVMGPvzxAqTHn/69nBDijcaOXjR3csSIK2GAR+jW6lDb2m12nYMtaNQqrEgOx8ZjNei1Qte/Q+XNmBlz9u4dcLoYf1NBrc1rv/aXNqG1W4tlU8Lg66HBjOgAq9bhbS2sRXKkH568fAYqmzpx3evZ+OFru5yimcuJ2jY0dfQOmp4JACqVQGpckFV3Na1NSomP9pThkr9vQ0N7D969dR4ePj950J2FtLgg7CtptGmg3d6txfYT9ViZHAEhxKCPS470Q1lDp9VSnx0pK78GGpXA4kmhFj0vJcrQaIXz8MaEP3+XD0+NGr+6YPjGKgMxNhzKOsZxCaNV39aNn390wKXSvMeLY6dacNObu/Gjf2ajtrUbf14zG18/sAQrp539OyMu2AeA0rWWXAcDPEJ1s3JlOyrQPrPvBrNqWgRaurTYUzy64KSmpQunWrr65t8NZPnUMDS099i8sHhLQS3UKoFFhjel8xKCkVvWZJUmHO3dWuwtacSyqWG4bn48sh5ajicumY6Tde24+h87ccMb2XbZSRrMbsP3cd4QAR6g7KgWVLc6XW1iTWsXvjlUhXv/tQ8Pf3oQaXFB+Pr+JVg6Zeh27Wnxgahv70Fpg+1+WW4trEOPVo9V08/unmnKWFPrCo1Wso7VYG5CMPw8z96VH0pKlHKhhwGe8yusbsW3R07h5sUJg6Z1D2dKhC+iA72YpmkFm/Jr8em+clzx8g58e9g62TVke129Oqx5dSdyy5rwmwunYeNDy3FVegzUqoEvBiaEKp3Ti5mm6VIY4BEqmpRUFkemaALAksmhcFer+mqLRupAX4OVgXfwAKUYXyWATTZ+E7C5oBZpcYHwN7wpnZ8Ugh6t3ipNOLKL6tGrk1hqmA/l6abGzYsTseUXmXj0omk4WtmCK17egVve2o1Ddmj60V9OcSPC/DwQP8zYjTmxgdDL04PpHUFKieM1rfj37lL8/KMDWPanLMx7cgPuXrsPG4/V4OfnTsF7t81HuP/wF0HS7VCHtz6vGv6emgHHT5hKnqB00hzrV+Crmjtx7FQrMpOHDq4HEuDththgL3bSHANe2XQCXm5q3LI4ccTHEEJgRXI4th+vs1s3W1dVUt8OlVA6Xd/1/l48v76Q89LGgBO1bWjt0uLJy2fgjqVJ8HQ7e0aoqbhg5Xe0LS9Kkv0xwCNUGgK8KAcHeD4eGiycGIINedWjSm87WN4EtUr0XbkfSKC3O9Ljg7Ax33YBXl1bNw5VNPcFYAD66tF2W6EOb0tBHTzdVGfk0gOAl7saty9JwpaHM/Hw+VOxv6wJl/x9G+58Nwd5VfZ7o7+7SKm/GyqFEABmxwYCgF3TNLu1OuwtacCrm0/g9ndykPaHdVj13Bb86rND2JRfg6kRfvjNhdPw+T2LcPDx1fjJysmDXv3sb3K4H/w8NDYL8HR6iaxjNchMDh+2AUV0oBf8PDQ4NsYbrWwyNF/KnDr0juVgUiYE4IgDLyDQ8ErrO/DlgUr8aH4cgn3cR3WsFcnh6OzVYddJ69U7j0fF9R2IDvLChz9eiCvSovHX9QW4Z+0+p8u2oDMVVCs/742jcobj7a5BuJ8Hiuu4g+dKNI5eADmeMcCLDHBsiiYArJoWjse+PIITte1DNo8YyoHyZkwO94WX+9BXrTKTw/Hst/moaekya2fGUtsKlfEIy6aeDvACvd2RHOmH7KIG3DfK428prMX8xJBBr875eGhwz/JJuGFBPN7cVozXt53Ehhe34fN7Fg2ZvmoNlU2dqGjqxO1Lhr8SH+zjjvgQb5t30tTrJXadrMcne8vxzeFT6DRc3U8K9cG50yOQER+MjIQgJIb6DBuUDkWtEkiNC8Q+GwWsuWWNqG/vwcpBumeaEkJgaqTfmE/RzDqmdKId6c+EGdH++PbIKbR29Vqc4kn28eqWE1ALgTuWJI36WAsnhsDTTYWsYzVYPsKLArawt6QRz3x7DG/ePBe+Hs7/9qu4vh0JIT7wdFPjL2tmIyUqAE/+7yiufKUdr92QgbhhsjPIMfJPtcFdrUJ8iI/Zz4kP8UYJd/BcCnfwCJXNnQj19Rh2G98ejG9aN+SNbOi5lBIHy5sGnH/XX18xvo128bYU1CLYxx0z+u0kzksMxt6SxlE1kylv7MDJ2nYsmTx8wwk/Tzc8sGoyNv8iE95uary+tWjEr2suYx3lcCmERqmxgTbrpFlS347nvs/Hkmez8KPXs7HuaDUumxOFV69PR86jq7DxoeV49qrZuHpuLJLCfEcV3BmlxQUh/1QLWrus35Vs3VGl2ciyYWoBjZIn+CHvVIvTdFe1VLdWh+3H65CZHDbi702KYVzKUdbhOaXqli58klOOK9NjrHKh0dNNjUUTQ7HRycbHfLG/AruLGsbEnD4pJYrq2vtS7IUQuO2cRLxz6zxUNXfhBy9tw47jdQ5eJQ2koLoVSWE+Fo0YiQ/xQQlr8FwKAzwyzMBz/O4doKSJTp/gP+I6vPLGTjR19A7aQdPU1Ag/TAjwtEkxvt4wZ2/J5FCo+qX2zUsMRkePblRNH/p2B818kw8oO2XXzI3F14eqcKq5a8SvbY49xQ3w9dCYnSKSGhuI6pZuq7U2b+vW4qM9Zbj61Z1Y9qdNeDHrOCaG++L5H6Ziz6Or8NQVs3D+jEiE+o6skcNw0uODoJfAgTLrpwWuz6vG/KTgAUeADGRqpD9au7SotPH33FZyihvR3qMbcXomcLqT5mEGeE7pn1tOQicl7l420WrHXJEcjrKGTpyobbPaMUfLOCLnuyPO37CkqaMXrV1aJPTbBVoyOQxf3rsYYb4euOHN3Xh7e5FTBdGkNNWaaubvXqP4YG9Ut3SzbtWFMMAjVDZ1Orz+ztSqaeHIKWlAY3uPxc81dsU0ZwdPCIHM5HBsM3QktKajVS2oa+s5o/7OaF6isqs1mjq8rYV1iPT3tDhl7aZFCdBLifd3lYz4tc2RU9yIOXGB0Jh5BTHVUIeXO4q0Rr1eYsfxOvzsw1zM/eN6PPzpQdS1d+Ph86dixyMr8O6t83BparRddqpT4wIhBKzexbS4rh3Ha9qwyoz0TKNphl/0+WO00UrWsRq4a1RYONHymWhG4X6eCPfzwBE2WnE6je09WJtdih/MjrJqyl+mIUNjtE27rKW+rRsF1W3wdFNhU34turXO/Uba2FGxf4AHAAmhPvj83sVYkRyOJ/57FL/89KDTfz7jRWtXLyqaOjElwsIAL9QwKoFpmi6DAd44J6VEZVOnQ2fg9bdyWgT0cmSpkwfLm+GuVpl99WrF1HC09+hGPZqhv80FSlOIJVPOTqEM9/NEUqjPiGfV6fQS247XYcnkUItT1mKDvbFqWgTWZpfY7Epdc0cv8qtbhx2PYGp6lD/c1aoRp2nWtXVj1XOblRTMvGpcnhaNz+5ZhA0/W4Z7lk+y+/nt7+mGKeF+Vm+0st6QumxJgDfF8H8hb4w2WsnKr8GCpBB4u4+uZmlGdACOVIzNINeVvbW9CJ29Oty93Hq7d4DSYCg50s9pxiUYf97fuSQJbd1a7Dju3A1gSgwz0Ywt9Pvz9dDgH9en4/4Vk/BRTjmufW0XalrHZpaAKymsUXasp1oa4Bk6abLRiutggDfOtXRq0dGjc/gMPFMzowMQ5ucxoiuvB8qaMC3KH+4a807tRZNC4K5RWf1NwOaCWkyf4I9wv4G/rvMSg7G7qGFELacPVTSjubMXSyxIzzR1y+JENHb04svcihE9fzh7SxsgJYYccN6fh0aN6VH+2D/CAO/VTSdQXN+O566ejT2/WYX/u3wm0uKG7+BpS2nxQdhf2mjVtuLr86oxNcIPscHm73T4e7ohOtBrTDZaKa3vwInadmROHdm5biolyh/Ha9tGfWGjsqnTaqnE411rVy/e3lGM1SkRFu84mCMzORw5JY1o7rR+Layldp2sh7e7Gj9eNhG+HhqnT9Msrm+HEEBM0OA/a1QqgZ+dNxUvX5eGvKpW/ODF7ahv67bjKqm/AsPPeUtTNI07tdzBcx0M8MY5Z5mBZ0qlEliZHI7NBbUWpU7q9BKHK5qHnH/Xn7e7BguTQqxa9N7a1Yt9hgHkg5mXGIyWLi2OjeBN99aCWggBnDNp+AYrA1mQFIzkSD+8tb3YJrUTu4sa4aYWfWmX5kqNDcSh8mZoLWw+U9PahfezS3DZnGhckRbjFM2CACAtLhAtXVqr1QA1dfRgT3HjsMPNBzJtgt+YnIW3qUD5fzma+jujlKgA6PRyRP/nTN32Tg6u/sdO1qpYwfu7StHSpcW9mZNscvyVyeHQ6SW2Ftba5PiWyC5qQHp8EHw8NFg+NQzrjlZD58Qz5UrqOxAV4GXWz9MLZ07Aazem41RLl9WzYcgy+dWt8HZXW/yeLsDbDQFebhx27kIY4I1zzjIDr7+V0yLQ1q21KI3xZG0b2nt0Fo8AyJwahpN17VZLTdhxoh5avRyw/s5oNHV4WwvrMCMqYMSzooQQuHVxIo6dasVOG8yJyiluwIzogGHHVPQ3Jy4Qnb065Fdb9gb81U0n0auTuH/FZIueZ2vWHni+Kb8WOr20KD3TaGqkH07Uto+5OpmsYzVIDPVBQqj57b4HMyPa0GhlFPPwjte0Ia+qBWUNnXhzu+270bqyrl4d3th2Eksmh9psbMucuCAEers5PE2zob0Hx061YkGSUke6OiUS9e09NpuVaQ3F9ac7aJpjTpzy866ojjtAjlRQ3YrJEX5nNXczR0KId19qLo19DPDGucpm5wzwzpkUCg+Nqq/myBwHy5U3brMs2MEDgBXJyhtma41L2FJQCx939VkDyE3FBHkjOtALuy282tna1Yt9pY1mjUcYyg9SoxDs4463theP6jj9dfXqcLC82aL6O6O+RisWpGnWtHRhbXYJLp8TbZUgwJoSQ30Q5O1mtUYr6/OqEerrYVYDof6SI/2h00ucqBn5RYyuXp1ddxy6enXYcaIey62QngkoWQqB3m6jarTy7eEqAEBGfBBe2ngcNS2sORqpD3aXoq6tB/fZaPcOUGZSLpsS1ndxxFGMFyoXJCk/F5dPDYO7WuXUaZol9R0WzVHz9dAg1JfDsh0t/1QrpkaMbF5oXIgPAzwXwgBvnKto6oS7RoWQEe4G2YqXuxrnTArF+rxqs9MID5Y3wdtdjYlhlv1wiwvxxsQwH6tc5ZVSYnNBLRZODB22DnC+oQ7PkjTJXScboNVLLBlid9Acnm5q/GheHNbnVaPUij/QD5Y3o0ent6j+zigu2BvBPu4WddJ8ZfMJaPUSP1lhuzeJIyWEQFpckFWu0vdo9dicX4uVyeEjujI7bYJSjzHSNM1enR6rntuMVc9txpe5FVatKxzMzpP16NbqrZKeCSjfj5Qo/1GNJ/n60CmkxQXiz2tmo0enx5++y7fK2sabHq0er205ibkJQZifNPLuqOZYkRyOhvaevg7LjrDrZD083VSYGR0IQJlNunhSCL47csopRww0d/aiob0HCRZ2NU0M9UYRAzyHqWvrRl1bD6ZG+o/o+Qkh3qho6hzVjF5yHgzwxrnKpi5EBXiO6E2jra2cFoHyxk4UVJtXw3SgvBkzogOgHsHnsiI5HNknG9DerbX4uaaK6tpR3tg5ZP2d0bzEYNS19eCkBb8QtxbWwttdjbT4wFGsUnHDwniohcDbO4pHfSwjY/1FxhC7l4MRQmB2TIDZO3jVLV1Ym12KK+ZEW3Sl2Z7S4oNworYdTR2Wj/wwtbuoAa3dWqyabnl6JqAU0LtrVCOuP8s6VoPyxk509erwwAe5uPCFrfjexm9ONx2rgZebui+d2RpmRAXgWFXriN7AFNe142hVCy6cOQEJoT64dXEiPt5bjoMODBzGqi/2V6CyuQv32HD3zmjZlDCoBBw6XDy7qAEZ8cFnXPRbnRKJ8sZOHK1yvtpY40U/S3+uJoT4oIg1XA5TYChvsLSDplFcsDd0eomKRjaRcgUM8MY5Z5uBZ2rlNOXKvTlpmj1aPY5WtVjUYMVUZnI4enR6bD9eN6LnGxnHIywzY4fN+MY1+6T5aZpbC+uwICkEHprRNxKJ8PfERbMm4OOcMrSNMrA12lPcgCkRvgga4Y7wnLggHK9tQ2vX8F3vXtl0Anq9xE+crPbOVJqhLmX/KOb7Acr/AQ+NasSNdTRqFSaH+444wPsopxxhfh7Y/ItMvHDtHHRr9bjzvb247KXt2FJQa/VAT0qJrPxaLJ4UYtWmOSnRAejR6VFo5kUjU98cVtLpzp8RCQC4b8UkhPq64/f/PWr3XZjDFc34dG/5qC9IOYJOL/HK5hOYEe2P5SPsBGyJQG93pMcHOawOr6mjB8dOtWB+vwsVq6ZHQCWA746YX4ZgL30z8AYZkTCYhFAf1LZ2W+33CVnG2EFzSuTIUjSNZQ4l7KTpEhjgjXPONgPPVIS/J2ZGB2CDGQFeQXUrerT6ERfrZ8QHw9dDg6z80XVb21JQi8RQH7MG9iaG+iDMz8PsRitlDR0oqmsfdf2dqVsWJ6K1W4tPcspGfSydXmJvceOI0jONUmMDIeXpesrBnGruwr92l+LKtBirDke2ttmxyo7yaNI0pZRYn1eNcyaFWty4xtTUSD8cG8FuQW1rN7Lya3BFWjTcNSr8YHYU1j24FM9eOQt1bT248c3duOa1XVbtnneyrh2lDR1YbqX0TKOUKCV1aSR1eN8ersLsmIC+tvF+nm546LypyClpxH8PVll1ncP5zeeH8POPD2DB/23Ab7887JAOqd8ePoXf/feIxbPPvj5UhaK6dty7fJLdxphkJofjSGULTjXbv2ZSScMHFkw8MxU11NcDGfHB+N4J6/BKDAFenAXjWADldxrAWWqOkl/dhiBvN4T5eozo+cZZeCXchXUJDPDGMa1Oj+qWLkQ70Qy8/lZOC8f+sibUDTNbx1hfMZIGFADgrlFhyeRQbMqvGfHV+K5eHXaerMcyM69KCyEwLzEY2WbW4W0xtPoebf2dqdTYQMyJC8Q7O0tGXVeVf6oVrd3aETVYMZptaLSyf5jGJK9sOg69XuI+J6y9M+XtrsH0Cf6jarSy40Q9yhs7ccHMCaNay7RIf9S0dqOh3bJ00S/2V0Cnl1iTHtt3m0atwtVzY7HxoWX43Q9SUFTXjjWv7sRNb+7GoWGCc3MY0+ms1WDFKDHEBz7uaovr8MobO3CgvPms78GajFhMn+CPp7/OQ2ePfTqU1rR04UB5M65Kj8G50yPwwZ4ynP+3rbjqlR34fH+5XcY3rDtajXv/tQ9vbS9G5p824ZVNJ8zq0CqlxEtZxzExzAerUyJtvk6jFcnKhQJrNdKyxK6TDfDQqAZs/nVeSgSOnWp1ujfUxfUdiPD3gLe7xqLnGWepsdW+YxRUt2JKhN+IL5yE+XnAy03NRisuggHeOFbd2g29dL4OmqZWTYuAlMPXTxwqb0agtxtig0f+uWQmh6OquQt5VSNLY8spbkRXrx5Lp5i/wzY/MRhVzV0oNyPnfWtBHaICPDExzLr1ZrcsTkRRXXvfzLGR6qu/S7C8/s4owMsNSWE+Q9bhVTV34t+7y3BVeoxFA78dJS0uELllTRbP9zN6e0cxgn3ccfGs0QV4ySNotCKlxEc5ZZgTF4hJ4Wen/Xho1LhpUQK2/CITj1yQjAPlTbjk79tw13t7UTaKNJ9N+bWYEuE75JDlkVCpBKZH+Vs8KuFbQ3rmBTPODErUKoHHL5mOyuYuvLblpNXWORRjquFt5yTiuWtSkf2rlXj0ommob+/Bgx8ewIKnNuDJ/x3FSSvNX+xv54l63PuvfZgRHYCvfnIOFk4MxTPfHsO5z20ZtmnIxmM1OHaqFfcsn2TXuu+pEX6ICvB0SJpmdlE90uODBkyrNwa5ztZNs6S+fUR1zcaUTu7g2Z+UEgWnWi0ecG5KCIH4EG+nu+BAIzNsgCeEiBVCZAkh8oQQR4QQD/S7/yEhhBRCWC9vjOzCWWfgmUqJ8seEAM9h6/AOlDdjZnTAqFJ+jLsFI73Ku7mgBu5qVd+sI3Ocnoc3dHqbVqfH9hN1WDI5zOppTRfMiESkv+eoRybsKW5AVIDnqN+Up8YqAdFgbxRf2XQCeiltNhzZ2tLig9DRoxtR/VtZQwc25FXjh3NjR12LZvzFf8yCCxgHyptRWNOGqzNih3ycl7sady2biC0PZ+KnqyZja2Et7ng3Bz1ay4Pa9m4tsovqrdY9s7+UqAAcrWqxaMf660NVSInyH/BN7/ykEFw0cwJe3XwCVc22b06wPq8G0YFeSDZ8P4N83HH7kiRs/Pky/Ov2+Vg0MQRvbS/Gir9sxnWv78LXh6qs1hXvYHkTbn9nD+KDvfH2zXMxIzoAr9+UgfdumwcPjQo/fm8vrns9e8CLCFJK/D3rOGKCvPCD1CirrMdcQgismBaObYV1aO4cvr7XWpo7enG0qgXzEwf+nRAb7I3pE/ydrg6vuL7D4g6agJKxEOHvwVl4DlDV3IXWbi2mjLDBilFcMGfhuQpzdvC0AH4upZwGYAGAe4UQ0wEl+ANwLoBS2y2RbGUsBHhCCKxIDsfWwrpBU486e3QoqG4dcXqmUbifJ2bFBIy429qWgjrMTQyyKK1lSrgfAr3dkD1MHd6B8ma0dmmx1AZNCdzUKtywMB5bC+v6unBZSkqJPcUNo6q/M5oTG4i6tp4BdzUrmzrxwe4yrMmIHRO7d8DpgefDpZ0O5P3sEgDA9QviR72OMF8PhPi4I9+CQPPjnDJ4uqnM3j3093TDT1dNwfM/nINjp1rx6uYTFq9z+/E69Oqk1evvjFKi/NHRozO7219Vcyf2lTbhwiFSZB+5IBk6KfHMN8estcwBdfXqsO14LVZOCz/rQo8QAosmheLl69Kx45EVeOi8KSiu68A9a/fh3Oc2jzp19nhNK256czeCfNzx3m3zz2iktGRyGL55YAl+f2mK0mn0+a149ItDZ6QD7zxRj/2lTfjxsolwU9s/eejaeXHo7NXhjW32G1C/p9hQf5c0+M/F1SmR2FfaaHEto620dWtR29o94rmiCSE+TNF0gHxjB81R7OABSqOVkoYOu4zCIdsa9qeslLJKSrnP8PdWAHkAog13/xXAwwB4JoxBFX0BnvPW4AFKmmZHjw67Tg4cBB2taoZOLy0ecD6QzKnh2FfaiOxBXmswVc2dyK9uNbv+zkilEpibEDzsDt7WwloIASyeZJuZUdfOi4OHRjXiXbzyxk5Ut3RjrhVa2qfGKgHRQGmaL286DgmJezMnjvp17CU60Avhfh4WN1rp6tXhwz1lOG96pFUuwgghkDzBz+wUza5eHf5zoBIXzJgAP083i15r1fQIXDI7Cn/feByFFl40yMqvha+HZlSpvkOZEa38nDA3TXOw9ExTscHeuHNJEr7IrbTK3MPB7DhRh65ePVZOG3pcRri/J+5bMRlbHs7Eazeko1urxxWvbMdb24tGVGNc3tiB61/fDY1ahbW3z0dkwNm/MzRqFW5cmIBNDy3HjQsT8O/dZVj+pyy8ua0IvTo9Xtp0HOF+HliTHmPx61tDSlQALpgRiTe3FaHRwjrUkdp1sh7uGlVfbfFAVs9QyhDWHXWOXTxjel7CCEfPJIb6MEXTAfo6aIaPfgevR6tHtZNccKCRs+gymhAiAcAcANlCiB8AqJBSHrDFwsj2Kps6EeTtZnEhtb0tnBgCLzc1NuQNvLN2oEx5ozbUL1Fz3bwoAUlhvrjtnRyLrnhvLVDGK4xkh21+YjCK6ztQ3TL4D9SthXWYFROIQG/bDKQP9nHHZanR+Hx/+YhmthkD1LlWeFOePMEPHhrVWQFeZVMnPtyj7N5ZuzbLloQQSI8Pwl4Ld/C+zK1AU0cvblqUYLW1TI3wR0F1G3RmXJ397sgptHZpsSZjZG/IH79kOrw91PjlpwfNej1A2QnelF+DJZNDbbbLMyncF+4aFY6a2Wjlm0OnkBzph6SwoVuP3718IsL9PPD7/x6x2dXv9Xk18HFXD7kjZEqtEjgvJRJf378ESyeH4Xf/PYo739tr0f/x2tZuXP96Njp6tHj31nnD1mYFervjiR+k4JsHlmB2bCB+/9VRrPjLJmw/Xo87liRZdeyFpR48dwrae7T4h53qJbOLGpAWFzjk5zw1wg/xId5Ok6ZZ0jcDb2Q/YxNCfVDf3oMWM0bdkPXkV7ci0t8TAd6WXYzrr69RDtNsxzyzf4MKIXwBfArgp1DSNn8D4LdmPO9OIUSOECKntnZ0LejJuiqbupw6PdPI002NcyaHYkNe9YBXnw+WNyHC3wMR/qPfiQzyccf7t81HoLcbbnwz2+zdh80FtYjw9xjRgNHh6vCaO3uRW9aEpVYcjzCQW85JQFevHv/ebfnIhD3FDfD31Iz66iGgpIzOjD574PlLWccBYMzU3plKjw9CWUOn2WlYUkq8vaMEUyP8zH4zb47kCX7o7NWh1IwGKB/nlCMmyAsLBqkfGk6orwcev2Q69pU24d2dxWY9J7+6FVXNXTarvwOU8ys50g+HzRiVUNPShT0lDbhgxvApqj4eGkOjmWZ8vr/CGks9g5QSG/NqsGRymMVzMIN83PH6TRl47OLp2JRfg4te2Ia9JcOPtWju7MWNb+5GdUs33rplHqZN8Df7NadE+OHdW+fhjZsyoBYCYX4e+NH8OIvWbW1TIvzwg9lReHtHkc1TIlu6enGksnnQ+jsjIQRWp0Ri54k6pwiKjOmVI2myApgGCNzFs6eC6lZMGWV6JnA6sC9t4PdvrDMrwBNCuEEJ7tZKKT8DMBFAIoADQohiADEA9gkhzsphkVK+JqXMkFJmhIXZfqgpmc+Zh5z3t2paOCoH6XB5sKIZM6MDrfZakQGeWHv7fGjUKlz/Rvaw3QC1Oj22Ha/D0hE2QJk+wR8+7upBA7ydJ+qh00urjkcYSHKkPxYmheC9ncUWd3w01t9ZqzNeamwgDlc09zXpKG/swEc5Zbhmbiyix8g5a2qOYeD5vpImsx6/p7gReVUtuGlRglWb6iT3NVoZeveqvLED20/U4ar0mFF9Ty9LjcbyqWF49tt8s7pqZh1TLgIus/J4hP5SogJwuKJl2HRFpSskcOFM81r6X5YajdmxgXjm22NWH0J+pLIFp1q6sHLayIJfIQRuOycRn969CGqVwNX/2IWXDeNGBtLZo8Ntb+/B8ZpW/OOG9L5aUktfc+W0CKz/2TJkPbQcPh6OzxZ5YOVk9OokXtlkeX2oJXKKG6CXMKvp1uqUCPTq5Ijrv62ppK4Dob4e8B3h98o4C6+IAZ7d6PQShdVtmBoxsgHnpiYEeMJNLVDMRitjnjldNAWANwDkSSmfAwAp5SEpZbiUMkFKmQCgHECalNK5ev3SkCqaOhE1QC2FM1qRHAEhcNbQ85auXpysbcdsK9TfmYoP8cH7t81Ht1aP617PHjJ98kB5M5o7e0f8plSjViF9iDq8rYW18HFXY05c4IiOb4lbz0lEZXOX2elCUkrsLWnAidp2zLVCgxWj1LhAdGv1ffViL2WdgIDAPcvH3u4dAMyI9oe7WmV2o5V3dhTD31ODy+ZYt9vg5HA/qASG7ej56d4KSAlcmTa6eikhBJ68fCZUAvj154eGDaiy8muQEuVvld34oaRE+aO5s3fY8SRfHzqFSeG+mGzmzrzKMDahprXb6gHE+rxqCKGMcxmNWTGB+Or+c3D+jEg8+20+bnprN2pbz5wz2qPV467392JfaSOe/+GcUTd30qhVIw4YrC0pzBdXpkVjbXapTbue7jrZAHe1yqyf23NigxDm5+EU4xKK69tH1EHTyLgDxBQ/+ylt6EC3Vj/qDpqA8n81JsgbpQzwxjxzdvAWA7gBwAohRK7h40Ibr4tsrLWrF61d2jGzgxfm54HZMYFnjUs4bKiTm2WF+rv+pkb64Z1b5qG+TalBGWxA9JaCWqgEcM6kkadQzk8MRn5164CvsbWwDgsn2q4mydSK5HDEBXvjze1Dd5orrG7FX77PR+afN+HKV3bCy02Nc6dbL60u1fD9zC1rQnljBz427N6NlfO1Pw+NGjNjAsxqwFHV3Ilvj5zCNXNjrV4f6+WuRkKoz5CNVvR6iU/2lWHxpBCrdCqNDvTCLy9IxtbCOny6b/DUxebOXuwtabRpeqaRsdHKUAPP69q6kV1UjwuHaK4ykLS4IFyWGoXXtp4c1SzA/jbk1WBObCBCfT1GfSx/Tzf8/do5ePLyGcguasCFL2zFjuNKHbFOL/Gzj3KxuaAWT10xc8juoWPVT1ZMVsY2bDxus9fIPlmP1GHq74xUKoFzp0dgU36tXQbVD6WkvmPE6ZmAUlIRFeDJTpp2ZOyMPNoOmkbxId78/rkAc7pobpNSCinlLCllquHj636PSZBS1tlumWRtVc3KjtRYesO8alo4DpQ3o8ZkN+2AMcCLtu4OntHs2EC8ftNclDZ04KY3d6N1gBqJzQW1mB07ugYo8w11eMZh4UYl9e0obeiwaHj6aKhVAjctSsDekkYcLG86476yhg68lHUc5/9tC8796xa8lHUcMUHeeObKmdj1q5WYZIX6O6PoQC+E+nogt7QJL2Udh0oI3DOGOmcOJC0uEAdN0k4H86/sUuilxA0LEmyyjuRIvyF38HYV1aOsoRNr0oeefWeJ6+fHIyM+CH/46uigtU/bCuug00tkJts+lT850g9qlcCRIerwvj9SDb0ELhhBgPPLC5KhFgJPfZM3mmX2qW7pwqGK5mG7Z1pCCIHr5sfjy3sXw99Tg+veyMZz3+fjsS8P46uDVfj1hcm4Zq5ja+ZsJTbYG9fMjcVHOWVWDcKNWrt6caiiGQss6Cq8OiUSHT06bCt03Fupzh4dTrV0jWoHD1AarTBF037yT7VCCCVDwxrig5UdvJF03CXnYf9hNOQUKsbADLz+jG9uNprUKRwsb0JcsPcZM5msbeHEELxyfRryqlpw2zs56Ow5fYW1sb0HB8ubsHSU9XEzYwLgoVGdlaa5xfDL3tb1d6bWZMTAx12Nt7YXo6alC29uK8JlL23Hkmez8Kfv8uHjocETl0zHrl+vxPu3z8c1c+NG3bmrPyEEUmMDsaWwDh/nlOPaebGYEDB2ztWBpMcHoUerHzKo6Nbq8O/dpVgxNRxxo3yTNZjkSH+UNnQMWiP2SU45/Dw0WJ1i2c7VUFQqgWeumoXOXh2e+M+RAR+TlV+DQG+3vjEZtuTppsakMN8hRyV8c7gKiaE+fXWLlpgQ4IW7lk3E14dODTrexRLGDsKrrBjgGU2b4I//3HcOrpgTgxc2Hse/sktxz/KJuHPp2L6gMpz7MidDCIEXNhRa/dg5JY1m198ZLUwKgZ+nxqFpmsbmS/EjnIFnlBDKWXj2VFDdivhgb3i5W6dDbXyID1q7tYNmLdHYwABvnDIOOR9LDSuSI/0QHeiF9XmmAV6zVebfDWdFcgSeuyYVe4obcPfavX27MNuO10EvR98UwkOj1Nj1D/C2FtQiJshr1FdULeHv6YY1GbH4MrcC85/agN9/dRQ9Wj0euSAZWx/OxKd3L8LNixMR7mfbOqk5cYGoa+uGSiVw9xitvTOVZmi0MlSa5v8OVqGurceqoxH6S470g5QYcKh9a1cvvj5chUtSo6z2ZsFoYpgvHlg5GV8fOtU3W85Ir5fYlF+LpZPDoLZSo57hpET7D5qi2djegx0n6nH+jMgRN7m5c2kSogO98NTXeaO+Er4hrxoxQV6YYoUmCgPx8dDgL1fPxgvXzsGvL0zGL1ZPtcnrOJPIAE9cPz8en+2vwMnaNqsee9fJeripRV9zJXO4a1RYkRyO9XnVFje5spbivhl4o/t9kxjig6aO3hGN3CHL5Ve3WqX+zshYR1lig91tsh8GeONUZVMnNCqldfVYoXRkC8e240qdQl1bNyqaOu0S4AHAD2ZH4cnLZmJTfi0e/CgXOr3EloJaBHi5YXZM4KiPPy8xBEcqm/vSQHt1euw8UY8lI+zOORp3LE3C4kmhuH/FZKz/2TJ8/cAS3LVsolVqssw1x1CH96N5cQMOVh5rwv09ERPkhX1DNFp5Z0cxksJ8RlXPOZzkSKXVff4AaZpfHaxCV6/eZsOo71yahOkT/PHYl4fR3HE63flIZQvq2rrtkp5pNCMqADWt3WekfButO1oNnV7iQjPGIwzGy12N+1ZMwoHyZmw/PvJdvM4eHbYdr8OqaRE2/znwg9lRuHPpRLv/vHGUu5dPhLtaheetvIuXfbIBqbGBFl8kWZ0SicaOXuwptmxmprUYh5zHB49+Bw9gJ0176NbqUFTXbrX6O+D0iIwS7sKOaQzwxqnKpi5EBnja7Wq5taycFoGuXj12nKjrG0Q+ywrBlbl+ND8Ov74wGf87WIXffH4IWwprcc7kUKt8HRckBkMvlfQeQGkw0tqttfn8u4FEB3rhvdvm48Fzp2BSuG12DYYzLzEYj140DQ+umuKQ17eF9Pgg7C1pHHBHZ39pIw6UN+OmhQlWGzcxkJggL/i4qwesw/s4pwyTwn37mtxYm5tahWevmoWG9h7839en69Oy8msgBEad6myJlCgl0B1oF+/rw1WICfLCjGjz574N5Iq0aET4e+DlTSNv5rH9eB26tfoRj0egwYX5eeCmRQn4z4HKAXe0R6KtW4tDFcPPvxvIsilhcNeoHJamWVzfgSBvt1Gn3CeGGjppOnmAYHqRaaw6WdsOnV5adQcvNtgLQpweek9jEwO8capiDM3AM7UgKRg+7mqsO1qDA+VNEOJ0Rzx7uXPpRPxkxSR8sKcM1S3dWGalN6Vz4oKgUYm+NM2thu6ciybaP8BzBhq1CrcvSbJ6fZ8jpcUFobqlG5XNZ+8avbOjGL4eGlxpo90zI5VKYEqkH/L6zcI7XtOGfaVNWJMeY9MdnBnRAbhjSRI+zCnDdkPnxqz8GsyOCUSIFTpEmmt6X4B3Zh1ec0cvth+vw4UzJ4z66+ChUeP2c5Kw40S92SMy+ttwrBq+HpoRBQw0vB8vTYKPuwZ/XVdglePtLWmETi8tqr8z8vHQYOnkUKw7Wu2QBhcl9e2j6qBpFBvsDZUAipx4VEJpfQcynlyH9UfNGwnkrIwXJqy5g+ehUSMqwIsB3hjHAG+cqhxDM/BMeWjUWDolDBuPVeNAWRMmhfk6ZL7Sz86dglsWJ8DPQ4PlVhrK7OWuxqyYgL4Ab0thHWbHBrpUgDPeGYdF7+tXh1fT2oX/HarCVekxdjmfkyP9kV/desabyE/2lkOtErg8Ldrmr//TVZORGOqDRz47iIqmTuSWNdllPIIpP083JIb64HDFmYHu+rxq9OokLrBwPMJgfjQ/DgFebnh5BHPx9HqJDXk1WDolFO4a/rq2hSAfd9x6TiK+OXxqyKY75tp1sh4alUBafOCInn9eSiQqmjrPOi/tobiuwyr13h4aNaICvVDsxCmaWwpr0auT2HZ8bDeAzz/VCje1QIIVAnNTccHeTNEc4/gbYxzS6SVONXeNyR08QEnTrG7pxtbCOrumZ5oSQuDxS1Kw59FVCLfiUOZ5iSE4WN6EU81dVunOSc4lOdIPXm7qsxqt/Du7DL06iRsWxttlHdMm+KGpoxfVLcqAa61Oj0/3lSNzapjNm+cAShfLp6+YibKGTtz85m5ICbvW3xlNj/LH4X47eN8crkJUgKfV0lR9PDS4eVEC1h2ttjgN8HBlM2pau7Ey2frdM+m0285JRICXm1V28bJP1mN2bOCIZ1iumhYBlYDd0zS7tTpUNnf21c+NVqKTd9I0drcd6c66syiobkVSqK/VLwAlhHpzB2+MY4A3DtW1dUOrl2M2wMucGgYhAK1eYnasfdMz+zNniK0l5icFo1cn8VLWcegl7Db/juxDo1ZhdmzAGY1WenV6rM0uwZLJoZgYZp96x6mGeo08w8DzLYW1qG3txlVWnH03nPlJIbhufhwKa9oQ6uuOGVH2/788IyoA5Y2dfbU4rV292FJQh/NnjD4909TNixLg7a7Gqxbu4q3Pq4FKAJnJrL+zpQAvN9y5NAkbjtWM6g1/R48WB8ub++aajkSwjzvmJQbbPcAra+iAlLDaTlBCiDILzxlnqUkpseukkilzpLLFYcPltTo9fvZR7lkzZy2RX92KKVZMzzSKC/ZBfXvPgLN/aWxggDcOVYzBEQmmQnw9+lrOz7Rz/Z2tpccHQSWAD/aUws9DY5XunORc0uODcLSypW+e4reHT6GmtRs323A0Qn/9O2l+nFOOEB93rLBzIPHIBcmICfLC6pRImzaWGYyxiYqxDm/jsRr06PS4cKb1ZgACShrgtfPi8OWBSosGa2/Iq0ZaXBCCbTjnkxQ3L0pAsI87nhvFLt7ekkZoR1h/Z+r8lEgU1rThhJXHNwyl2FAvF2+lkTwJoT5o7XLOWWonattR19aNVdPCodVLHLJCau5IHK5swWf7KvBS1siaMLV3a1HW0ImpNhifYkzV5S7e2MUAbxyqHINDzvu7bE40Qn3dMW3C6LrcORt/TzdMj/JHr05i0aQQaNT8L+pq0uODoNXLvqu27+woRlywN5bbsQYtwNsNUQGeOFbVgob2HqzPq8Zlc6LtXufl5+mGdQ8uw+9+kGLX1zVKMewaGtM0vzl0CuF+py8gWdPtSxKhEsBrW06a9fiq5k4cqWzBShsMN6ez+XhocPeyidhaWIfsEQ6n33WyHmqV6Ku1HanzUpQLDPbcxTs9A89aKZrO20kzu0j5/t69fCIAx6Vp5hQru4gbj9WgcQSBcGGNcgHAmh00jeIMAV4pZ+GNWXz3OA6dDvDGXpMVo+vnx2HXr1ZaPUXSGcxLUK7+LmH9nUuaE2sYeF7aiMMVzcgpacSNC+PtPrJkaqQfjp1qxRf7K9Crk1iTYdvunYPxclc77EJGsI87ogI8caSyBe3dWmTl1+CCGbbZTZwQ4IUr5sTgo5wy1LZ2D/v4DXk1AIBVHI9gN9cviEe4nwf+8n3BiFILs082YFZMAHxG2SgpKtALs2IC8N0R+3V4LKnvgL+nBoFWauplDBSdsZPmrpMNiPT3RFpcEOKCvbGvpMkh69hb0ggfdzV6dRL/OVBp8fMLTlm/g6aRsZuqMwboZB4GeONQZVMX/Dw18PMcu90ZhRAuu7t1XkoE/Dw0dk+XI/sI8nFHUpgP9pU04Z0dxfByU2NNhv1q34ySJ/jjRG0bPthTipnRAX1pm+NNSnQADlc0Y1N+Lbq1elwwc+TDzYdz1/KJ6NXp8eb2omEfuyGvGnHB3g6bQzkeGYfT7y5usLi7YmePDgfKm6w2zmJ1SiQOlCkNt+yhuL4dCaE+Vqs9jQ32hlolnK6TplJ/V48FScEQQiAtLhD7SgeeTWrrdewpbsR5KZGYPsEfn+4rt/gY+dWt8HRTITbIOmm1pnw9NAj1dUcpUzTHLNd8h0xDqmjqHLP1d+PBgqQQHPrd6jGdQktDS48Lwu6ienx5oBKXp0UjwMv+F1uSI/3Qq5MoqG7D1Q7avXMGKVH+OFnXjk/2liHU1x1zE0beIGM4iaE+uGDmBLy3swTNnYM3L+jo0WL7iXqsnBZu05mEdLZr5sYiKsATf/4u36LmG/tKG9Grk1iQZJ3zZ7Wd0zRL6jusMgPPyE2tQkyQF4qcbAfoZF07alu7Md9QJzknLgg1rQPPJrWl0oYO1LV1Iz0+CFemx+BgebPFXXYLqlsxJcLPZvXL8SHO3QmVhsYAbxyqbOrEhDE4A4/IVaTFB6GlS4serR432mk0Qn/GHTt3jQo/mG372XfOakZUAKQEsvJrsTol0uapsncvm4i2bi3e31Uy6GO2FdahR6vHKtbf2Z2HRo1fXpCMA+XNuOyl7TheY96bbmP9XYaVLhBMCvfFpHBffHO4yirHG0qPVo/yRuvMwDOVEOLjdDt4xvEIxkY4xnrb/rNJbS2nWHm9jIQgXJoaBY1K4NO9lu3i5Z9qtUn9nVF8sDd38MYwBnjjUGVTJ3eHiBzI2IRhQVKww1Ijk8J84OmmwuqUSARYqe5mLJph0on3QhumZ5q+3rIpYXhzW1FfJ9X+NuTVwM9DY9PdRBrcpanRePuWuaht7cYlL27HRzllw6bwZZ9swIzoAPiOsv7O1AUzIrG7qAH1bcPXbI5GRVMn9BJW3cEDDLPwnGxUwq6TDYjw9+gLZpMn+MHTTXXG6Bp7yClpgJ+nBlPC/RDq64HlU8Px+f4KaHV6s57f2N6DmtbuvpE3thAf4oOqli6HjZGg0WGAN8509ujQ2NHLAI/IgSaF+eLaeXF4+Pxkh63BTa3Cv+9YgCcume6wNTiDCH8PhPi4I8jbbVTzyyxxz/KJqG/vwUc5ZWfdp9dLbDhWg6VTw+ze1ZROWz41HF8/sASpsYF4+JOD+OmHuWjr1g742K5eHXLLmrDAyufP6pRI6CWw7qhtm62c7qBp7R08b7T36FBr4wDVXKfr70L6Up/d1CrMig7E/tImu64lp7hRGYtkyBi4Kj0aNa3d2Gpm7Wd+te0arBjFh3hDSqC8kbt4YxF/e4wzlc1jewYekStQqQSeumKmTdrxW2JOXBBCfD0cugZHE0LgtiWJeGDlZLs1bpqXGIyM+CC8tuUkevtdsT9Y0dw3o4scK8LfE+/fPh8/O3cK/nugEhe/sBWHB5iZtq+0ET06/ajn3/WXEuWP2GAvfGvjOrwSQxqltXfwEkINnRidpJOmsf6u//dpTnwgjlQ2222nqqmjB4U1bcgwGaeRmRyOQG83s9M0C+wU4AHO8/0jyzDAG2dcYQYeEZE13bN8Em5enGi31xNC4J7Miaho6sSXuWe2R9+QVw2VAJZPYYDnDNQqgftXTsYHdy5Et1aPy1/ejje3FZ2RdrjrZANUQqmnsiYhBC6YMQHbj9cN2ZRntIrrO+Djrkaor7tVj5sUqnSAdZY6vP71d0ZzYoPQq5M4Utlil3XsLTHW353e8fXQqHHp7Ch8f7TarO91/qlWBHi5IdzPdhfojAF/CWfhjUkM8MYZV5iBR0Q01mVODUdypB9e3XwCev3pYGF9Xg0y4oMR5GPdN9s0OvMSg/H1/UuwbEoYfv/VUdzxbk7fcOpdJ+sxIzrAJqOHVqdEolcnsfGY7dI0S+rbER9ivREJRlGBnnBTC6fppNm//s4oLT4QgP0GnueUNEKjEpgdE3jG7Vemx6BHq8f/Dg7fWKeguhVTI/xs2mU3yNsNfp4alDjJ948swwBvnKlo6oJKKKknRETkGEII3L18Io7XtOF7Q41VRVMn8qpasJLpmU4pyMcd/7wxA7+9eDo2F9Tigue3YmthLXLLmmxWvzknNhAR/h749rDt0jRL6juQEGr9WWoatQqxwd5OsYM3UP2dUbifJ2KCvOzWaGVvcSNSogPg5a4+4/aZ0QGYHO6LT/aeXZtrSkqpdNCMtO2MTCEE4kO8UcJOmmMSA7xxprKpExH+nnBz0SHhRERjxUUzJyAu2BsvbzoOKSU25imB3kqOR3BaQgjcek4iPrt7MTzdVLjhjd3o0Vq//s5IpRJYnRKJzQW16OgZuMnLaGh1epQ1diDByvV3RokhPihyggBvsPo7ozlxQXZptNKt1SG3vAlz489O5xVC4Mr0GOwrbcLJ2rZBj1Hd0o2WLq1NO2gaxYf4cAdvjOK7/HGGM/CIiJyDRq3Cj5cl4WB5M7Yfr8f6vBokhHhjYpht3myT9cyMCcB/f3IOLkuNQrifB+basAPr+TMi0dWrx+b8Wqsfu6q5C706abMALyFUGZZtmobsCIPV3xmlxQWiqrkLVYZGdLZyuKIFPVr9oPWal8+JhkoAn+2rGPQYxg6atpyBZxQf7I3yxk6zxzeQ82CAN85wBh4RkfO4Mi0G4X4eeG5dPnaeqMfKaRE2rash6/HzdMPffjgH2b9eCX8b1N8ZzUsIRrCPO76xQZqmcURCvJVHJBglhPqgq1eP6tYumxzfXIPV3xmdHnjeZNN17C1pAACkxw98QSDC3xNLJofhs33lgwbFBafsF+AlhPhAq5eobHLs948sxwBvHJFSorK5iyMSiIichKebGrcvScS+0ib06PSsvxuDbB2Qa9QqnDstAhuP1aBba91W/sb6OONIA2tLNOwMOjJNc6j6O6NpE/zhoVHZvNFKTnEj4kO8ETZE98sr02NQ2dyFnYZdx/7yq1sR7udhl0ZMcYaAuKSBaZpjDQO8caS+vQc9Wj138IiInMiP5scjwEvpWDc3wT7D1mlsOX9mJNq6tdhu5iBscxXXd8DTTWWzdvvG5i2OnKU2XP0dALhrVJgZHWDTRitSSuwtaUTGILt3RudNj4Cfp2bQmXgF1a02nX9nypi6W8xGK2MOA7xxhDPwiIicj6+HBs9cOQu/+0EKG2DRgBZNDIGfhwbfHLJummZJfTsSbDAiwSgqwAvuGlVfKqgjDFd/ZzQnLhCHK1usvktqVFTXjvr2nmHnJXq6qXHxrCh8c/gU2rrPbKyj10sUVLfaJT0TAML9POChUaGUjVbGHP4mGUc4A4+IyDmdPyMSV6TFOHoZ5KQ8NGqsnBaOdXnV6LViw4vi+g6b1d8BShfQ+GBvh6ZoZg9Tf2eUFheEHq0eR2008DzHOOB8gA6a/V2VHo3OXh2+PnTmTLyyxg509ert0kETMHz/Qry5gzcGMcAbRyoMRbKswSMiIhpbzp8xAU0dvdhd1GCV4+n0EqX1thuRYJQQ6uOwWXjm1N8ZpRkCr302GpeQU9yAQG83TAwbfn5dWlwQEkN9zkrTzDc2WLFTiiYAxAX7oJQB3pjDAG8cqWzqhLe7GgFetuv2RURERNa3bEoYvNzU+OZw1fAPNsOpli706PSIt3GAlxjqg5KGDoeMSiiqa0fNMPV3RhH+nogK8LRZo5WckkakxwVBpRo+HVYIgSvmRCO7qAFlDaeDqwLDiITJ4bYdcm4qPsQbJQ3tkNKxoy7IMgzwxhHjDDy24CYiIhpbvNzVWD41DN8dqbZKsFRi7KBpwxRN5fg+6NHqUWnjGXMD2XVS2e00dxD9nHjbDDyvb+vGydp2pA9Tf2fqivQYiH4z8Y6dakVssBd8PDRWX+NgEkK80dWrR01rt91ek0aPAd44whl4REREY9f5MyJR29ptlW6PxrqqeBuNSDByZCfNXSfrEe43fP2dUVpcECqaOlHdYt25b3sN9XeWdMmNDvTCwqQQfLqvvG/3rKC6FVMj/K26tuHEGXZ4S5imOaYwwBtHKpo4A4+IiGisWpEcDne1yipDz0vq2+GuUWGCv20bryUaAsgiO3ditKT+zmhOXCAAWD1Nc29JI9zVyigGS1yZFoPShg7sKW5Ej1aPk7XtmBppv/RM4PQOryM7oZLlGOCNE91aHeraurmDR0RENEb5ebrhnMmh+PbwqVHXRBXXtyMu2NusmrDRiPDzhKebyu6NViypvzNKifKHu1pl9UYrOSWNmBHtD083tUXPO39GJLzd1fh0bzmK6tqh1Uu7jUgwigr0glol2GhljGGAN06calbSDRjgERERjV3np0SioqkThytG186/pL7D5vV3gNJqPyHE/p00T9ffmZ8W6aFRY0a0P/aVWG8Hr6tXh0PlzciwID3TyMdDgwtnTsD/DlXhQFkTANhtyLmRm1qFmCAv7uCNMQzwxokKzsAjIiIa886dHgG1SuDbIyPvpimlRHF9u807aBolhPjYPUXTWH+XaGGN4Zy4IByqaEaP1jrzBg9VNKNHpzdr/t1ArkyLQVu3Fq9sPgGNSiAp1L4pmgAQF+yN0gbu4I0lDPDGiUrOwCMiIhrzgnzcsSApGN+MIk2zprUbXb16JNi4wYpRQqgPyho6oLVwSHtjew8e+fQgjte0WvS8kdTfGaXFBaFbq0delXUGnucUK7uB6SMM8OYnBiM60AtFde1IDPWBu8b+b90dsQNLo8MAbwyRUuKJ/xzBvf/aZ/FzKw07eJEB3MEjIiIay85PicTJ2nYU1rSN6PnFdhqRYJQY6o1eney72GyuVzefwAd7ynDTm3tQ02r+c0dSf2dk7UYre0sakBTqgxBfjxE9X6USuDI9BoB9B5ybig/xRkuXFk0dPQ55fbIcA7wx5MWNx/H2jmL87+DpXGxzVTZ1ItTXAx4aywp8iYiIyLmsTomEEMC3I+ymaWx5n2DHFE3Ask6a9W3deHdnCeYlBKOhvQe3v5ODjh6tWc8dSf2dUVSgFyL9Pa3SaEWvl8gpaUSGBfPvBnJlWjSEAKZPsO+IBCNjKm8xG62MGQzwxogv9lfguXUFuHjWBHi7q/HerhKLnl/R1Ilo1t8RERGNeeH+nkiLCxrxuITi+na4qQUm2Cmrx1gHZ0ma3z+3FqFLq8P/XTETL147B4crmnH/v3OhM2PI+0jr74zS4gOtMmvwZF0bmjp6kRFveaBpKj7EB5/fsxg3L0oY9ZpG9vrKTm8JG62MGQzwxoDdRQ14+JODWJAUjOeuTsXlc6Lx3wOVaGw3f6ucQ86JiIhcxwUzIpFX1TKiN93F9e2IDfKGRm2ft4Fhfh7wcVejyMwAr6G9B+/uLMYls6IwKdwXq6ZH4PFLUrA+rxp/+OrokM8dTf2d0ZzYIJQ3dlqUFjqQvvq7Ue7gAUBqbCB8PDSjPs5IxAUbAzzu4I0VDPCcXFFdO+58LwcxwV549fp0uGtUuGFhPLq1eny8t8ysY0ip5L0zwCMiInINq1MiAYwsTbO4rqNvV8YehBCID/Exu9X+61tPorNXh/tXTuq77aZFCbjtnES8vaMYb24rGvS5o6m/M0qLDwQA7B9lmuae4kYE+7gjyU7NbGzF002NSH9PBnhjCAM8J9bY3oNb3toNlRB46+a5CPR2BwAkR/pjXkIw3t9VCr0ZqQpNHb3o7NUxwCMiInIRscHemBHtb3GappQSJXYckWCUGGpeJ8bG9h68s6MYF82cgEnhZzYV+fWF07A6JQJ/+N9RfHdk4M97NPV3RilRAXBTi1Gnae4taUB6fNCIdxKdSXyIN1M0xxAGeE6qW6vDne/loLK5C/+8Mf2sH8TXL4xHaUMHthTWDnusymalgyZr8IiIiFzHBTMmILesCVWG3/PmqGvrQXuPzm4dNI0SQr1R1tiJ3mFGJby+7SQ6enW4f+Xks+5TqwT+ds0czIoJxAMf7EfuAA3nRlt/Byg7VtOjAka1g1fb2o3i+o4Rz79zNvEh3ijhLLwxY9wHeAfKmrClYPggyZ6klHj4k4PYU9yIv6yZjfQBinPPT4lEqK8H3ts5fLMVY1ti7uARERG5DmOa5ncW7OIZd2Hi7Zw2mBDiA51eorxx8GC0qaMH7+wowYUzJ2BKxMAjAbzc1Xj9xgyE+Xng9nf2oMwk6JBSIrtodPV3RmlxgThY3jRsQDqYvSXKTuJoO2g6i/gQH9S2dqO927xOpuRY4zrAk1Lit/85gl99dgjdWp2jl9Pnr+sL8WVuJX6xeioumR014GPcNSpcOy8WG/NrzvjhNhDjDDwGeERERK5jUrgvJof74ttB0hUHUmznEQlG5nTSfGNbEdq6tbh/xdm7d6bC/Dzw1s3z0KPV4+a3dqO5o1c5dn0HqltGV39nlBYXhK5ePfJPWTZk3SinuBHuGhVmRAeMei3OwFizWcpdvDFhXAd4Qgg8dN4UVDR14t/ZpY5eDgDg073leGFDIa7OiME9yycO+dgfzY+DSgisHWbtlU2dcNeoEOLjbs2lEhERkYNdMCMSu4sa8O7OYnT1Dn+xuqS+HWqVQLSdL/omGAK8wTppNnf04u3txbhwZiSmmjHQe1K4L167MQOlDR348fs56NHqsetkPYDR1d8ZGQeej7QOL6ekEbNjAlxm/rDxggDr8MaGcR3gAcA5k0KxMCkEf886bvYATVvZeaIej3x2EIsnheDJy2cOm14wIcALq6aF46OcsiF/qFc0dSIqwNMlinyJiIjotOsXxiMtLgi//fIIlj6bpXSg7Bn8PUFxfQeiA73grrHvW8AQH3f4eWgG7aT5xvYitHZrB6y9G8yCpBD86arZ2HWyAY98ehA7T4y+/s4oOtAL4X4e2FdieYDX2aPDkcrmAUtsxqq4EI5KGEvGfYAnhMBDq6eirq0Hb20vdtg6jte04cfv5SA+xAcvX5cONzNn09ywIAEN7T345nDVoI/hDDwiIiLXFO7niY/vWoh/3TEfE8N88cf/5eGcZzbi1c0n0DZAvZTSQdO+DVYA5f1WQqjPgDt4zZ29eGt7Ec5PiURypL9Fx71sTjQeOm8KPttfga8OVlql/s643jlxgdg/QCOX4Rwob0KvTmKui9TfAYC/pxvC/TyQV9Xi6KWQGYaNIoQQsUKILCFEnhDiiBDiAcPtfxJCHBNCHBRCfC6ECLT5am0kPT4Iq6aF4x+bT/TlcdtTfVs3bn17D9w1Krx181wEeLmZ/dzFk0KQFOaDd4dotsIZeERERK5LCIFFE0Px7zsX4OO7FmJ6lD+e/uYYznlmI17cUIiWLuW9jZQSRXXtdq+/M0oIHXgW3pvbitDaZdnunal7Myfh6owY6CUw3wrpmUZpcUEoqe9AXVu3Rc/ba9j1S3eRDppG6fFB2DvK0RFkH+ZsE2kB/FxKOQ3AAgD3CiGmA1gHYIaUchaAAgC/st0ybe/n501Fa7cW/9hywq6vq9dL3P/BflS3dOGfN2YgNtiyq2pCCFw/Px77S5twuKL5rPt7dXpUtzLAIyIiGg/mJgTjvdvm44t7FyM9Lgh/WVeAxU9vxHPf56O4vgOtXdq+ejh7SwzxRkVjJ3q0pztTNnf24s3tRThvegSmR1m2e2ckhMCTl8/En66ahcvnRFtruUgzBGiWjkvIKW7ApHDfvvnFriI9PghlDZ2oaely9FJoGMMGeFLKKinlPsPfWwHkAYiWUn4vpTTu/e8CEGO7ZdretAn++MHsKLy1vRg1rfY7cdfuLsX24/X47SXTMSduZFd6rkyPgZebGu/vOnsX71RzF6TkDDwiIqLxJDU2EG/cPBdf/eQcLJ4Yihc2Hsd5f90MAHafgWeUEOoDvTyzE+Pb24tHtXtn5KZWYU1GLLzdNaNdZp+Z0QHQqAT2W7BrpddL7C1pdKn0TCPjjuTeEdQlkn1ZVIMnhEgAMAdAdr+7bgXwjZXW5DAPrpqCHp0eL2fZZxevrKEDT32dhyWTQ/GjeXEjPk6AlxsumxOFL3IrzkoxrWrmDDwiIqLxakZ0AF69IR3f/XQpzp8xAaG+7g5r3Z/Qb1RCS1cv3th2EqumRTjlOAFl4Lm/RZ00C2va0NKldakGK0YpUQHw0KiQwwDP6Zkd4AkhfAF8CuCnUsoWk9t/AyWNc+0gz7tTCJEjhMiprXWugeL9JYT64OqMWKzNLhl2ttxo6fXKMHOVEHj6ylmjLgi+fkE8unr1+GRf+Rm3cwYeERERTY30w4vXzkHOo+ciwt8xWT2Jhto/Yx3eO9uL0dKlxQOj3L2zpbS4IBwsb4bWzIHnOcYB5y5WfwcoM5hnxwRyB28MMCvAE0K4QQnu1kopPzO5/SYAFwO4TkopB3qulPI1KWWGlDIjLCzMGmu2qftXToIQAs9vKLTp66zNLsHOk/X4zUXTrDKLJiUqAGlxgXh/Vwn0+tPfigpjgBfAAI+IiIgcJ8jHHQFebiiqa0drVy9e31aEVdPCMTPG+XbvjObEBaKjR4f/HapCWUMHurVDzxrMKW5EqK+7QzqV2kNafBCOVDabNXORHGfYRGWhbC29ASBPSvmcye3nA/glgGVSSpcZijEhwAs3LYzHG9uKcNeyJEwKH37YpqXKGjrw1DfHsGRyKH44N9Zqx71xYQJ++mEutp+ow5LJSjBd2dSJIG83eLm7xqBNIiIiGruMnTTf3VmC5s5ePLByiqOXNKS5CcFQCeCBD3L7bgvydkOEvyciAzwR6e+JcH/lz8gAD+wuakBGfLDLzh7OiA/Cq5slDpY3Y16i66WhugpzKlEXA7gBwCEhRK7htl8DeAGAB4B1hpN4l5TyLlss0t7uXj4J/8ouxXPrCvDydelWPbZeL/GLTw5YLTXT1AUzI/H7r9zx3s6SMwI8pmcSERGRM0gM8ca24/U4UtmCFcnOvXsHKCUum3+RiaK6dpxq6UJ1c5fyZ4vy55HKFtS1dcM0j+22cxIdt2AbM3YWzSlpYIDnxIYN8KSU2wAMFIV8bf3lOIdgH3fcviQJz28oxKHyZqv+8Hk/uwS7Tjbg6StmWiU105SHRo1r5sbiH5tP9AV2lU1diHPRNAEiIiIaWxJCffBFbiUAOHXtnanYYO8hx1j16vSobe3GqZYuNHX0YNHEUDuuzr6CfdyRFOaDfazDc2oWddEcT25fkoggbzf86ft8qx2ztL4DT319DEunhOEaK6ZmmrpufhwkgH9llwJQdvCsHUgSERERjUSioZPm8qlhmB0b6NjFWImbWoWoQC+kxQVhRXIEPN1cuywmPS4Ie0saMUj7DXICDPAG4efphnuWT8KWglrsOlk/6uMZUzM1KoGnr5hps9zsmCBvrEwOxwd7SlHf1o3Wbi2iOAOPiIiInEBaXBDigr3x0HlTHb0UGqGMhCA0dvTipGHcBTkfBnhDuGFhPCL8PfDn7/JHfZXivV0lyC5qwKMXT7N5Tdz1C+JR19aDt7YXA+CIBCIiInIOscHe2PJwplPOvSPzcOC582OANwRPNzXuXzkZOSWN2JQ/8hl+JfXtePqbY1g2JQxXZ9gmNdPU0slhiA/xxhvbigAwwCMiIiIi60gK9UWgtxv2FjPAc1YM8IZxdUYs4kO88ex3+WfMlzOXkpp5UEnNvNJ2qZmmVCqB6+fHo9Mwo4Q1eERERERkDSqVQFpcEPaWMsBzVgzwhuGmVuFn505BXlUL/neoyuLnv7uzGLuLGvDYxdMxwY7DxtdkxMBDo4JGJRDq62G31yUiIiIi15YeH4TjNW1o6uhx9FJoAAzwzHDJrCgkR/rhuXUF0Or0Zj+vpL4dz3ybj+VTw7AmI8aGKzxboLc7fjg3FtOj/KFWueawTSIiIiKyP2Md3j7u4jklBnhmUKkEfn7eVBTVteP5DYXIPlmPY6daUNnUifZu7YANWPpSM9UCT9mwa+ZQHr8kBZ/fs9jur0tERERErmt2TCA0KoEc1uE5pWEHnZNi1bRwzE8Mxosbj+PFjcfPuE+jEgjwcoO/4SPAyw06vR67ixrw7FWz7JqaaUrFnTsiIiIisjIvdzVSovzZSdNJMcAzkxAC7942DwWn2tDc2YuWrl40d57+aDH5e3NHD5o7e3Hd/DisSbdvaiYRERERka2lxQfh37tL0avTw03NpEBnwgDPAh4aNWbGcG4LEREREY1vGfHBeGt7MY5WtmB2bKCjl0MmGG4TEREREZFFjI1Wcpim6XQY4BERERERkUUiAzwRHeiFfQzwnA4DPCIiIiIislh6fBByShoG7ChPjsMAj4iIiIiILJaREITqlm5UNHU6eilkggEeERERERFZLC1OqcPjuATnwgCPiIiIiIgslhzpBx93NQM8J8MAj4iIiIiILKZRq5AaF8gAz8kwwCMiIiIiohFJjw9GXlUL2rq1jl4KGTDAIyIiIiKiEUmPD4JeAgfKmhy9FDJggEdERERERCMyJy4QQgA5xUzTdBYM8IiIiIiIaET8Pd0wNcIPe0sZ4DkLBnhERERERDRiafFB2F/SCJ2eA8+dAQM8IiIiIiIasYz4ILR2a1FY0+ropRAY4BERERER0SikxysDz1mH5xwY4BERERER0YjFBXsj1NcD+zgPzykwwCMiIiIiohETQiA9PpCNVpwEAzwiIiIiIhqVjPhglNR3oLa129FLGfcY4BERERER0aikGerw9jJN0+EY4BERERER0ajMiPaHu0aFvSUNjl7KuMcAj4iIiIiIRsVDo8as6ADu4DkBBnhERERERDRq6QlBOFzRgq5enaOXMq4xwCMiIiIiolFLjwtCj06PwxXNjl7KuMYAj4iIiIiIRq1v4DnTNB2KAR4REREREY1aiK8HEkN9WIfnYAzwiIiIiIjIKtLjg7CvpBFSSkcvZdxigEdERERERFaRHh+E+vYeFNd3OHop4xYDPCIiIiIisoq+OrxizsNzFAZ4RERERERkFZPCfOHvqcG+UtbhOYrG0QsgIiIiIiLXoFIJvHfbfCSE+Dh6KeMWAzwiIiIiIrKa2bGBjl7CuMYUTSIiIiIiIhfBAI+IiIiIiMhFMMAjIiIiIiJyEQzwiIiIiIiIXAQDPCIiIiIiIhfBAI+IiIiIiMhFMMAjIiIiIiJyEQzwiIiIiIiIXAQDPCIiIiIiIhfBAI+IiIiIiMhFCCml/V5MiFoAJXZ7QfOFAqhz9CLIafB8oP54TpApng9kiucD9cdzgkwNdD7ESynDbPWCdg3wnJUQIkdKmeHodZBz4PlA/fGcIFM8H8gUzwfqj+cEmXLE+cAUTSIiIiIiIhfBAI+IiIiIiMhFMMBTvOboBZBT4flA/fGcIFM8H8gUzwfqj+cEmbL7+cAaPCIiIiIiIhfBHTwiIiIiIiIXMaYCPCHE+UKIfCHEcSHEIya3fyiEyDV8FAshcgd5frAQYp0QotDwZ5Dh9utMnp8rhNALIVIHeP5aw+sfFkK8KYRwM9wuhBAvGNZ1UAiRZpuvAPXnxOdEshBipxCiWwjxkG0+e+rPic+H6ww/Gw4KIXYIIWbb5itAppz4fLjUcC7kCiFyhBDn2OYrQP3Z8JxwE0K8I4Q4JITIE0L8apDnJwohsg3P/1AI4W64ne8jHMCJzwe+h3AAJz4fLH8PIaUcEx8A1ABOAEgC4A7gAIDpAzzuLwB+O8gxngXwiOHvjwB4ZoDHzARwcpDnXwhAGD7+DeBuk9u/Mdy+AEC2o79e4+HDyc+JcABzATwJ4CFHf63Gw4eTnw+LAAQZ/n4Bf0aM+/PBF6dLJGYBOObor9d4+LDlOQHgRwA+MPzdG0AxgIQBnv8RgB8a/v4q30fwfBjkfOB7CJ4PpueDxe8hxtIO3jwAx6WUJ6WUPQA+AHCp6QOEEALA1VB+kQ7kUgDvGP7+DoDLBnjMtYM9X0r5tTQAsBtAjMlx3zXctQtAoBBigtmfGY2U054TUsoaKeUeAL0WfUY0Gs58PuyQUjYaHrYLp392kO048/nQZrgNAHwAsBjePmx5TkgAPkIIDQAvAD0AWgY49goAnwzwfL6PsD+nPR/4HsIhnPl8sPg9xFgK8KIBlJn8u9xwm6klAKqllIWDHCNCSlkFAIY/wwd4zDUY/BsHQNlqBXADgG8tWBtZnzOfE2R/Y+V8uA3KlXqyLac+H4QQlwshjgH4H4Bbh3o+WY0tz4lPALQDqAJQCuDPUsqGfs8NAdAkpdQO8Pp8H2F/znw+kP2NlfPBrPcQmuEe4ETEALf1v+o56JVUs15AiPkAOqSUh4d56MsAtkgpt1qwNrI+Zz4nyP6c/nwQQmRC+eHMmivbc+rzQUr5OYDPhRBLAfwBwKqRroPMZstzYh4AHYAoAEEAtgoh1kspT5r5+nwfYX/OfD6Q/Tn9+WDJe4ixtINXDiDW5N8xACqN/zBse14B4EOT294yFER+bbip2pjyYPizpt9r/BDDX4l9HEAYgJ+ZuzayGWc+J8j+nPp8EELMAvA6gEullPUWfF40Mk59PhhJKbcAmCiECDXnk6JRseU58SMA30ope6WUNQC2A8jo9/p1UFIvjRfXTV+f7yPsz5nPB7I/pz4fLH0PMZYCvD0AJhs6zLhD+cX6H5P7V0EpVC833iClvEVKmSqlvNBw038A3GT4+00AvjQ+VgihArAGSs7tgIQQtwNYDeBaKaXe5K7/ALhRKBYAaDZu0ZJNOfM5QfbntOeDECIOwGcAbpBSFozicyTzOfP5MMlQbwGhdEt0B8Cg3/ZseU6UAlhheB/gA6VRyjHTFzfUXWYBuGqA5/N9hP058/lA9ue058OI3kNIJ+hcY+4HlC5TBVC63Pym331vA7hrmOeHANgAoNDwZ7DJfcsB7Brm+VrDa+caPn5ruF0AeMlw3yEAGY7+Wo2XDyc+JyKhXA1qAdBk+Lu/o79erv7hxOfD6wAaTW7PcfTXajx8OPH58EsARwy37QRwjqO/VuPlw1bnBJTOqB8bvq9HAfxikOcnQWm4c9zweA/D7XwfwfPB9HzgewieD6bng8XvIYxtmomIiIiIiGiMG0spmkRERERERDQEBnhEREREREQuggEeERERERGRi2CAR0RERERE5CIY4BEREREREbkIBnhEREREREQuggEeERERERGRi2CAR0RERERE5CL+H6ZPs36mNgw+AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAE/CAYAAADVKysfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAChUklEQVR4nOzdd3ib5dU/8O+tbU1blme8E8cjk2zCShgBCi20BVpKKdDSlu5B99u+0L5tf23ppIvSUrrogAItpUDDSCgji4Rsr8R7yVOyprXu3x+PHsVOPDQeDVvnc11cgC1Ljx3H1tE59/cwzjkIIYQQQgghhGQmWbovgBBCCCGEEELI7KhoI4QQQgghhJAMRkUbIYQQQgghhGQwKtoIIYQQQgghJINR0UYIIYQQQgghGYyKNkIIIYQQQgjJYFS0EUIIIYQQQkgGo6KNEEIWKMaYc8o/IcaYZ8r/35Lu64sHY6yTMXZ5uq9jLoyx3YyxO5N4/w8yxlrCf6a3n/U+NWPsR4yxfsbYOGPsF4wx5ZT3VzHGngm/b5Ax9jPGmGLK+y9jjDUzxtyMsV2Mscop72OMse8yxkbD/3yPMcaS9XkSQgiJHhVthBCyQHHO9eI/ALoBvHXK2x5J9/WdbWrxsJAfIwWOAPgogEMzvO9LADYAWAlgOYB1AL465f2/ADAEoATAWgCXhO8LjDELgCcAfA2AGcAbAP425WM/BOB6AGsArAZwLYAPS/IZEUIISQgVbYQQssgwxmSMsS8xxk6HOyaPMsbM4fdVMcY4Y+wOxlhPuCNzF2NsI2PsKGPMxhj72ZT7up0x9hpj7KeMMXu4S3PZlPebGGMPMcYGGGN9jLFvMsbkZ33sjxhjYwDuZYwtZYy9FL6uEcbYI4yx3PDt/wigAsC/wt3CLzDGtjHGes/6/CLdOMbYvYyxvzPG/sQYmwBw+zzXtIwx9nL4cxlhjE0tWqY+hiZ8n6Phr8kBxlgRY+xbAC4C8LPwNf4sfPt6xtjzjLGxcJfspin39TvG2APh9zvCj1850+MCAOf855zzFwF4Z3j3WwHczzkf45wPA7gfwPunvL8awKOccy/nfBDAcwBWhN/3DgAnOOePcc69AO4FsIYxVh9+/20AfsA57+Wc9wH4AYDbZ7tOQgghqUNFGyGELD6fhNAxuQRAKYBxAD8/6zabAdQCeBeAHwP4HwCXQ3iCfxNj7JKzbtsOwALgHgBPiEUggN8DCABYBuA8ADsA3DnDxxYC+BYABuD/ha+rAUA5hOIBnPNbMb1j+L0oP9/rAPwdQC6AR+a5pv8DsBNAHoAyAD+d5T5vA2AKX18+gLsAeDjn/wPgFQAfD1/jxxljOgDPA/hz+PO8GcAvGGMrptzfLeHHtgA4HL7OeLDwP1P/v4wxZgr//08AvJsxpmWMLQFwNYTCDRD+bI+IH8g5dwE4jTNF3bT3h/976udACCEkTahoI4SQxefDAP4n3DGZhFAU3XDW6OD/hbsxOwG4APyFcz4U7rC8AqHYEQ0B+DHn3M85/xuAFgDXMMaKIBQFn+acuzjnQwB+BODdUz62n3P+U855gHPu4Zyf4pw/zzmfDHeKfgihuEzEHs75PzjnIQDGea7JD6ASQGn48391lvv0QyjWlnHOg5zzg5zziVluey2ATs75w+HP8xCAxwHcMOU2/+ac/zf85/E/AM5njJXH8bk+C+BTjLECxlgxhAIdALThf78ModCaANALYQTyH+H36QHYz7o/OwDDLO+3A9DTuTZCCEk/KtoIIWTxqQTwZHiszwagCUAQQNGU21in/Ldnhv/XT/n/Ps45n/L/XRA6ZZUAlAAGpjzWryB0m0Q9Uy+MMVbIGPtreGxxAsCfIHSfEjH1Mea7pi9A6E7tZ4ydYIy9HzP7I4D/APgrE0I/vsemBH6cpRLAZvHxwo95C4Dima6Rc+4EMAbhaxirbwF4E0K37nUIBZkfwBBjTBa+5icA6CB8XfMAfDf8sU4IRe1URgCOWd5vBOA868+eEEJIGlDRRgghi08PgKs557lT/tGEu2jxWHJWt6UCQH/4cSYBWKY8jpFzPnWk7uwn/P8v/LbVnHMjgPdi+rjf2bd34UwXCeGzaQVn3Wbqx8x5TZzzQc75BznnpRA6kr9gjC07+xMOdxW/zjlvBLAVQjftfbNcYw+Al8/6eus55x+ZcptIV40xpocQBNJ/9uPOJ9yt/DjnfAnnvAbAKICDnPNg+D7LAfws3MkcBfAwgLeEP/wEhJAR8Tp0AJaG337O+8P/fQKEEELSjoo2QghZfB4A8C0x7CI8SnddAvdXCOCTjDElY+xGCGfRnuGcD0A4H/YDxpiRCQEoS886D3c2A4SOji185urzZ73fCqBmyv+3AtAwxq4Jd7q+CkA9253Pd02MsRsZY2Xhm49DKMCCZ98PY2w7Y2xVuEicgNDNEm939jU+DWA5Y+zW8NdIyYRgl4Ypt3kLY+xCxpgKwtm2fZzzaV3IKY+tYoxpIBSzynAoiiz8viWMsVIm2AIhCfKe8Oc+AqADwEcYY4pwwMttOHNO7UkAKxlj7wzf//8COMo5bw6//w8APis+BoC7Afxutq81IYSQ1KGijRBCFp+fAHgKwE7GmAPAXgiBIPHaByG0ZATCeN4N4S4OIHSfVABOQiiC/g4hbn42X4cQU28H8G8Io3xT/T8AXw2PGX6Oc26HEFn/GwB9EDpvvZjbXNe0EcA+xpgTwtfoU5zzjhnuozj8cRMQxktfhjDKCQhf3xuYkLx5P+fcASHs5N0QumeDEEYSpxaXf4ZQXI0BWA9hfHI2OyGMqG4F8GD4vy8Ov28phLFIF4TAlS+FzyWK3gHgKgDDAE5BCGT5DACEzxC+E8Kf4TiE74mp5w9/BeBfAI4BOA7hz+dXc1wnIYSQFGE0qk4IIWQ2TFjufCfn/MJ0X8tCxRj7HYBezvlX57stIYQQMhPqtBFCCCGEEEJIBqOijRBCCCGEEEIyGI1HEkIIIYQQQkgGo04bIYQQQgghhGQwKtoIIYQQQgghJIMpUvlgFouFV1VVpfIhCSGEEEIIISRjHDx4cIRzXhDLx6S0aKuqqsIbb7yRyockhBBCCCGEkIzBGOuK9WNoPJIQQgghhBBCMhgVbYQQQgghhBCSwahoI4QQQgghhJAMltIzbYQQQgghhGQKv9+P3t5eeL3edF8KWYQ0Gg3KysqgVCoTvi8q2gghhBBCSFbq7e2FwWBAVVUVGGPpvhyyiHDOMTo6it7eXlRXVyd8fzQeSQghhBBCspLX60V+fj4VbERyjDHk5+dL1sWloo0QQgghhGQtKthIskj5vUVFGyGEEEIIIWnyrW99CytWrMDq1auxdu1a7Nu3DwBw55134uTJk5I8RlVVFUZGRua8zbe//e2Y7/d3v/sdPv7xj09728MPP4y1a9di7dq1UKlUWLVqFdauXYsvfelLMd9/Kvz4xz+G2+1O92XMi860EUIIIYQQkgZ79uzB008/jUOHDkGtVmNkZAQ+nw8A8Jvf/Cal1/Ltb38bX/nKVxK+nzvuuAN33HEHAKFY3LVrFywWS8L3Gy/OOTjnkMlm7lX9+Mc/xnvf+15otdqo7zMQCEChSG0ZNW+njTFWzhjbxRhrYoydYIx9asr7PsEYawm//XvJvVSy0DQNTKBzxJXuyyCEEEIIyUgDAwOwWCxQq9UAAIvFgtLSUgDAtm3b8MYbbwAA9Ho9vvjFL2L9+vW4/PLLsX//fmzbtg01NTV46qmnAJzb9br22muxe/fucx7z+uuvx/r167FixQo8+OCDAIAvfelL8Hg8WLt2LW655RYAwJ/+9Cds2rQJa9euxYc//GEEg0EAQidt+fLluOSSS/Daa69F/bned9992LhxI1avXo177rkHANDZ2Yn6+nrceeedWLlyJW655Ra88MILuOCCC1BbW4v9+/cDAO69917ceuutuPTSS1FbW4tf//rX895vQ0MDPvrRj2LdunXo6enBRz7yEWzYsAErVqyI3O7+++9Hf38/tm/fju3bt0e+1qK///3vuP322wEAt99+Oz772c9i+/bt+OIXv4jTp0/jqquuwvr163HRRRehubk56q9FXMTqc7Z/AJQAWBf+bwOAVgCNALYDeAGAOvy+wvnua/369Zxkhzargzd+7Vl+84N70n0phBBCCCEzOnnyZFof3+Fw8DVr1vDa2lr+kY98hO/evTvyvksuuYQfOHCAc845AP7MM89wzjm//vrr+RVXXMF9Ph8/fPgwX7NmDeec84cffph/7GMfi3z8Nddcw3ft2sU557yyspIPDw9zzjkfHR3lnHPudrv5ihUr+MjICOecc51OF/nYkydP8muvvZb7fD7OOecf+chH+O9//3ve39/Py8vL+dDQEJ+cnORbt26d9phnEx/3P//5D//gBz/IQ6EQDwaD/JprruEvv/wy7+jo4HK5nB89epQHg0G+bt06fscdd/BQKMT/8Y9/8Ouuu45zzvk999zDV69ezd1uNx8eHuZlZWW8r69vzvtljPE9e848DxU/70AgwC+55BJ+5MiRc742Z38dHnvsMX7bbbdxzjm/7bbb+DXXXMMDgQDnnPNLL72Ut7a2cs4537t3L9++ffuMX4OZvscAvMHnqZvO/mfevh7nfADAQPi/HYyxJgBLAHwQwHc455Ph9w1JW06ShcrtC+CjjxyEyxfEif4JcM7pkC8hhBBCMtrX/3UCJ/snJL3PxlIj7nnrilnfr9frcfDgQbzyyivYtWsX3vWud+E73/lOpLsjUqlUuOqqqwAAq1atglqthlKpxKpVq9DZ2RnTNd1///148sknAQA9PT1oa2tDfn7+tNu8+OKLOHjwIDZu3AgA8Hg8KCwsxL59+7Bt2zYUFBQAAN71rnehtbV13sfcuXMndu7cifPOOw8A4HQ60dbWhoqKClRXV2PVqlUAgBUrVuCyyy4DY+ycz+26665DTk4OcnJysH37duzfvx+vvvrqrPdbWVmJLVu2RD7+0UcfxYMPPohAIICBgQGcPHkSq1evjulrd+ONN0Iul8PpdOL111/HjTfeGHnf5ORkTPcVq5iGMRljVQDOA7APwH0ALmKMfQuAF8DnOOcHJL9CsqBwzvE/Tx5H25ATb1lVjGeODWLA7kVpbk66L40QQgghJOPI5XJs27YN27Ztw6pVq/D73//+nKJNqVRGXgCXyWSRcUqZTIZAIAAAUCgUCIVCkY+ZKWp+9+7deOGFF7Bnzx5otVps27ZtxttxznHbbbfh//2//zft7f/4xz/ieiGec44vf/nL+PCHPzzt7Z2dnZHPZa7PDTg3iZExNuf96nS6yP93dHTg+9//Pg4cOIC8vDzcfvvts0bxT32cs28j3mcoFEJubi4OHz4836cumaiLNsaYHsDjAD7NOZ9gjCkA5AHYAmAjgEcZYzXhlt/Uj/sQgA8BQEVFhWQXTjLTn/d348k3+3D3Fctx/tJ8PHNsECf7J6hoI4QQQkhGm6sjliwtLS2QyWSora0FABw+fBiVlZVx3VdVVRV+8YtfIBQKoa+vL3IebCq73Y68vDxotVo0Nzdj7969kfcplUr4/X4olUpcdtlluO666/CZz3wGhYWFGBsbg8PhwObNm/GpT30Ko6OjMBqNeOyxx7BmzZp5r+3KK6/E1772Ndxyyy3Q6/Xo6+uDUqmM6fP75z//iS9/+ctwuVzYvXs3vvOd7yAnJyeq+52YmIBOp4PJZILVasWzzz6Lbdu2AQAMBgMcDkckLKWoqAhNTU2oq6vDk08+CYPBcM79GY1GVFdX47HHHsONN94IzjmOHj0a1dciXlEVbYwxJYSC7RHO+RPhN/cCeCJcpO1njIUAWAAMT/1YzvmDAB4EgA0bNkwr6MjicrTXhq8/dRLb6grwse3L4PYLB1abBiZweWNRmq+OEEIIISSzOJ1OfOITn4DNZoNCocCyZcsi4SCxuuCCCyKjhitXrsS6devOuc1VV12FBx54AKtXr0ZdXd208cEPfehDWL16NdatW4dHHnkE3/zmN7Fjxw6EQiEolUr8/Oc/x5YtW3Dvvffi/PPPR0lJCdatWxcJKJnLjh070NTUhPPPPx+AMBb6pz/9CXK5POrPb9OmTbjmmmvQ3d2Nr33taygtLUVpaWlU97tmzRqcd955WLFiBWpqanDBBRdM+7yvvvpqlJSUYNeuXfjOd76Da6+9FuXl5Vi5ciWcTueM1/PII4/gIx/5CL75zW/C7/fj3e9+d1KLNnZWY+zcGwg9wt8DGOOcf3rK2+8CUMo5/1/G2HIALwKoOLvTNtWGDRu4mIJDFheb24dr7n8VAPD0Jy5Enk4FALj4e7uwcokRv7hlfTovjxBCCCHkHE1NTWhoaEj3ZZB53HvvvdDr9fjc5z6X7kuJ2UzfY4yxg5zzDbHcTzSdtgsA3ArgGGPscPhtXwHwWwC/ZYwdB+ADcNtcBRtZvEIhjrsfPYIhhxeP3bU1UrABQEOJAU0DjjReHSGEEEIIIQtbNOmRrwKY7cThe6W9HLIQ/fLl03ixeQjfuG4F1pbnTntfQ4kRO09a4fYFoFXRLndCCCGEEBKbe++9N92XkHbzLtcmZC6vnx7BD3a24K1rSnHrlnMPzjaUGME50DxI3TZCCCGEEELiQUUbiZt1wotP/uVN1BTo8Z13rJoxAraxxAhACCMhhBBCCCGExI7m1Uhc/MEQPv7nQ3BNBvGXD66DTj3zt1JZXg4MagUVbYQQQgghhMSJijYSl/v+04IDneP4ybvXorbo3P0VIsYYGkqMFEZCCCGEEEJInGg8ksTsueODePC/7bh1SyWuW7tk3tsLCZITCIUoXJQQQgghZCq5XI61a9di5cqVuPHGG+F2u+O+r9tvvx1///vfAQB33nknTp48Oettd+/ejddffz3y/w888AD+8Ic/xP3Yos7OTqxcuXLa2+699158//vfj+l+pLqexYI6bSQmXaMufP6xI1hdZsJXr41ur0lDiRFuXxDdY25UWXRJvkJCCCGEkIUjJycHhw8fBgDccssteOCBB/DZz3428v5gMBjTEmrRb37zmznfv3v3buj1emzduhUAcNddd8X8GMkSCAQy6noyAXXaSEy+/UwTGAN+/p51UCui+wHSQGEkhBBCCFnovvc9YNeu6W/btUt4u0QuuuginDp1Crt378b27dvxnve8B6tWrUIwGMTnP/95bNy4EatXr8avfvUrAADnHB//+MfR2NiIa665BkNDQ5H72rZtG9544w0AwHPPPYd169ZhzZo1uOyyy9DZ2YkHHngAP/rRj7B27Vq88sor07phhw8fxpYtW7B69Wq8/e1vx/j4eOQ+v/jFL2LTpk1Yvnw5XnnllZg/x7nu+ytf+QouueQS/OQnP4lcT39/P9auXRv5Ry6Xo6urC11dXbjsssuwevVqXHbZZeju7gYgdBs/+clPYuvWraipqYl0Hhc6KtpI1HyBEF5pG8Fb15Si3KyN+uPqig2QMSraCCGEELKAbdwI3HTTmcJt1y7h/zdulOTuA4EAnn32WaxatQoAsH//fnzrW9/CyZMn8dBDD8FkMuHAgQM4cOAAfv3rX6OjowNPPvkkWlpacOzYMfz617+eNu4oGh4exgc/+EE8/vjjOHLkCB577DFUVVXhrrvuwmc+8xkcPnwYF1100bSPed/73ofvfve7OHr0KFatWoWvf/3r065z//79+PGPfzzt7VOdPn16WqH1wAMPRHXfNpsNL7/8Mu6+++7I20pLS3H48GEcPnwYH/zgB/HOd74TlZWV+PjHP473ve99OHr0KG655RZ88pOfjHzMwMAAXn31VTz99NP40pe+FOOfRGai8UgStTe6xuD2BXHJ8oKYPk6jlKPaosNJCiMhhBBCSKb69KeB8JjirEpLgSuvBEpKgIEBoKEB+PrXhX9msnYt8OMfz3mXHo8Ha9euBSB02j7wgQ/g9ddfx6ZNm1BdXQ0A2LlzJ44ePRrpGtntdrS1teG///0vbr75ZsjlcpSWluLSSy895/737t2Liy++OHJfZrN5zuux2+2w2Wy45JJLAAC33XYbbrzxxsj73/GOdwAA1q9fj87OzhnvY+nSpZGRT+DMcuz57vtd73rXrNf12muv4Te/+U2ku7dnzx488cQTAIBbb70VX/jCFyK3vf766yGTydDY2Air1Trn57tQUNFGovZyyzCUcoatyywxf2xDiRFvdtukvyhCCCGEkFTJyxMKtu5uoKJC+P8ETT3TNpVOdyYHgHOOn/70p7jyyiun3eaZZ56ZcU/uVJzzeW8TC7VaDUAIUAkEApLdLzD9c55qYGAAH/jAB/DUU09Br9fPeJupn6N4jYDw+S8GNB5JovZy6zA2VJqhn2Un21waS43os3lg9/iTcGWEEEIIIQn68Y+B3bvn/ueeewC3G/ja14R/33PP3Lefp8sWrSuvvBK//OUv4fcLz6NaW1vhcrlw8cUX469//SuCwSAGBgaw6+wzdwDOP/98vPzyy+jo6AAAjI2NAQAMBgMcjnOnoEwmE/Ly8iIdrT/+8Y+Rzlii4rlvv9+Pm266Cd/97nexfPnyyNu3bt2Kv/71rwCARx55BBdeeKEk15ipqNNGojJo96J50IEvXV0f18eLYSTNAxPYXJMv5aURQgghhCSfeIbt0UeB7duFf6b+fxLdeeed6OzsxLp168A5R0FBAf7xj3/g7W9/O1566SWsWrUKy5cvn7EAKigowIMPPoh3vOMdCIVCKCwsxPPPP4+3vvWtuOGGG/DPf/4TP/3pT6d9zO9//3vcddddcLvdqKmpwcMPPyzZ5xLrfb/++us4cOAA7rnnHtxzzz0AhA7j/fffj/e///247777UFBQIOk1ZiKWypbhhg0buJhiQxaWvx3oxhcfP4bnPn0R6ouNMX+8dcKLzd9+Efe8tRF3XFCdhCskhBBCCIlNU1MTGhqiW2GE731PCB2ZWqDt2gUcOABMOU9FyFQzfY8xxg5yzjfEcj/UaSNRebl1GEVGNeqKDHF9fKFBDbNORQmShBBCCFmYZirMxI4bIUlGZ9rIvAJBIer/kuUFcR9kZYyhocSAJkqQJIQQQgghJCZUtJF5vdljg8MbwLa6woTup6HYiBarA4FgSKIrIwvBZCCIXS1D89+QEEIIIYTMiIo2Mq+XW4YhlzFcEEfU/1QNJUb4AiF0jLgkujKyEPzryADuePgATg1Rl5UQQkjmWSyR8CTzSPm9RUUbmdfLrcM4rzwXphxlQvcjJkiepHNtWaV92AkA6Bxxp/lKFh/nZABPH+1P92UQQsiCpdFoMDo6SoUbkRznHKOjo9BoNJLcHwWRkDmNOCdxrM+Oz+1YPv+N57GsUA+lnKFpwIHr1iZ+bWRh6BoVirWecSrapPbX/d345r+bsKYsF+VmbbovhxBCFpyysjL09vZieHg43ZdCFiGNRoOysjJJ7ouKNjKn/7YKP8QuWZ7YeTYAUClkWFZooATJLNM5KozD9ox50nwli48Y7NNv81DRRgghcVAqlaiuplVEJPPReCSZ08utw7DoVVhRGvtutpkICZJUtGULzjl12pJI/Ls0OOFN85UQkhynh53YTUFGhBBCRRuZXTDE8d/WYVxcWwCZLL6o/7M1lhgx5JjEiHNSkvsjmW3U5YNzMgAA6B2nTpuU/MEQTg0J5wUH7VS0kcXpG/86iY89cgihEJ03IoRkNyrayKyO9dkx7vbjkroCye5TDCNJVbetY8RFh4vTqCs8Gllh1qJ3zE1/FhLqGHHBF16fQZ02shg5vH68fnoELl+QXvQhhGQ9KtrIrF5uGQZjwEW1C7NoOz3sxPbv76YdYWkkJkZeWGuBYzIAu8ef5itaPMS/Q0o5g5WKNrII7W4Zhj8ovNDTPEhj9YSQ7EZFG5nVy61DWF2WC7NOJdl9mnUqFBnVkQCFZBJHx4702JP+WGRmXaMuyBhwfk0+AAojkVLTgANKOcPa8lwajySL0s6TVuRphVUzLYO055EQkt2oaCMzsrl9ONxjwyXLpeuyiRpKjCnptInjNPTLPn06R91YkpeDmgIdAKCXwkgk0zw4gWWFBpTnaWGdoDOiZHGZDASxq3kIV60sRrk5B81W+jlOCMluVLSRGb3SNoIQR1KKtsYSI04NOTEZCEp+31P1hYu2VvplnzZdoy5U5etQlifE0VOCpHSaBxxoKDagyKSBdcJLQQ1kUdlzehTOyQB2NBajrshIL74RQrIeFW1kRi+3DsOUo8Ta8lzJ77uhxIhAiEfGF5NF7Op0jrrg9Se3QCQz6xx1ozJfC1OOEkaNgsYjJTLu8mFwwov6EgOKjRoEQhyjLl+6L4sQyew8aYVOJcf5S/NRX2xAx4gr6S/0EUJIJqOijZwjFOJ4uXUYF9VaIJco6n+qM2EkyX3ltM/mgULGEOJIeoFIzmVz+2D3+FGVL4xGlpu11GmTSHO461BfbESRUQMAWRtGMu7y4TN/O0yjt4tIKMTx/EkrttUVQqOUo67YgGAKXugjhJBMRkUbOUfT4ASGHZNJGY0EgGqLDhqlDCf7k3uurc/mwaZqMwA615YOneGl2pVi0ZanpdhuiYhnQhtKjCg2CUVbtoaR3LezBU++2YdX20bSfSlEIod7bRh2TGLHiiIAQH2xAQD9HCeEZDcq2sg5Xm4dBpCc82wAIJcx1BUZkhpG4pwMwOb244JlFqgUMrTQubaUE3e0VeUL59nK8nLQO0672qTQPDgBi16FAoMaxeFO20AWdtqO9trwl/3dAIB+G70gsFjsPGGFQsawra4QAFBl0UEll1HRRgjJalS0kXPsbhlGY4kRheEng8nQUGJE0+BE0p7AiyEkFWYtagv19Ms+DTpH3GBMGIsEhH97/SEMOynpMFHNgw7UFwtjxha9CjIGWLOs0xYKcfzvP08gX6eGWadCf5Z9/osV5xw7Twzi/KX5MOUIcf9KuQxLC/WRsWBCCMlGVLSRaSa8fhzqGscldcnpsokaSoywuf0YTFJ3QDzfsiQvB3VFBira0qBr1IUSowYapRwAUG7OAUC72hIVDHG0DDoiI2MKuQwFBnXS/i5lqr8f7MXhHhu+fHU9qvK11GlbJE4PO9E+4sKOFcXT3l5fTD/HCSHZjYo2Ms3rp0YRCHFsS9JopOhMGElyRiT7wk/gyvJyUFdswOCEF3a3PymPRWbWOeqKnGcDhDNtAO1qS5SQohdCffjvEAAUGzVZFURid/vx3eeasb4yD28/bwlKc3MwQJ22ReE/J6wAgCsaiqa9nX6OE0KyHRVtZJqXW4egVyuwrjIvqY9TXyJ0CZKVINk37oFKIYNFp8Zy8RA7nWtLqa5RN6os2sj/l0WKNuqIJKJ5UAwhMUTeVmzSZFUQyY9eaMW424dvXLcCMhlDaW4O+m0eOi+5COw8acWa8txIwI6oLvxzXPz+J4SQbENFG4ngnOPllmFcsCwfSnlyvzWMGiXKzTk4maROW++4B2W5OZDJ2JnkMSraUmbC68eoyzet05ajksOiV6FnjDptiWgecEAuY1hWqI+8rdioyZrxyJP9E/jDnk7csrkSK0pNAIBSkwaTgRDGaFfdgjZo9+JIjw07GovOeR/9HCeEZDsq2kjEqSEn+u3eSGJXsjUUG5M2Htlr82BJnnCGqtiogUGjQAu9Qpsy3eG4fzE5UlSWR7vaEtU8OIGlBTqoFfLI24pMGji8Abh9gTReWfJxznHPU8eRq1Xh7h3LI28vyRX+rvfbsqNwXayebxJGI69ccW7RVmzUwKhRUBgJISRrUdFGIna3CFH/Fyf5PJuoocSIjhFXUp5o9o27sST8RI4xYcVA6yAtZk2VznDc/9ROGxBesE1BJAlpGjiTHCkSY/8X+4jkPw734UDnOL5wZR1ytarI28W/6/12+t5ayHaeGESNRYelBfpz3scYQ32xkcJICCFZa96ijTFWzhjbxRhrYoydYIx9Kvz2exljfYyxw+F/3pL8yyXJ9HLrMGoL9ZEnQMnWUGIE59IvTPX6gxhx+lCWd+bzqCs2oMXqoDMvKdIVWaw9vdNWniecPQqG6M8hHnaPH302T+RMqChStC3iEUmH149vP9OMNWUm3LShfNr7SsLnnyhBcuGye/zYc3oUO1YUgzE2423qig1oHaSf44SQ7BRNpy0A4G7OeQOALQA+xhhrDL/vR5zzteF/nknaVZKkc/sC2N8xhm1JjvqfqjGSIClt0SYmRy45q2ize/ywTqR2R9ih7nH87rWOlD5mJugccaHQoIZWpZj29rI8LQIhviiKC845/nm4L6WFgvgCR0PJ9E5bkWnxd9p+8kIbRpyT+MZ1KyGTTX9Sb9apoFbIKEFyAdvdMoRAiGPHDKORorpiAxyTgcjPeEIIySbzFm2c8wHO+aHwfzsANAFYkuwLI6m1t30UvmAIlyxPzXk2QIjj16sVkp9rE9MJxbRCAKgrSs8h9t++2oFv/rsJgWAopY+bbl2jblSdNRoJTN3VtvDPtf1xbxc+9dfD+P2ezpQ9ZiQ5crbxyEVQDM+k1erAw6934t0by7GmPPec9zMmJEjSk/mFa+cJKwoMaqwty531NpEwEhqRJIRkoZjOtDHGqgCcB2Bf+E0fZ4wdZYz9ljGW3Ix4klS7W4aRo5RjY3Xq/hjFZEepi7a+cNE2dcyzLvLLPrVhJKeGnAiEeNY9mRR2tGnPebu4q22hF2372kfxjX+dBHAmdCUVmgYcyNUqUWRUT3u7Tq2AQa2AdRF2mjjnuOefJ6BXK/D5K+tnvV1prgYDWfb3bLHw+oPY3TKEKxqLzumiTrU8EvtPRRshJPtEXbQxxvQAHgfwac75BIBfAlgKYC2AAQA/mOXjPsQYe4Mx9sbw8HDiV0yS4uXWYWxdmj8tkS4VGkuNaB50ICThGafecTcUMoYi45k9P7laFYqMarSkMIwkEAyhfVgI5OgYcaXscdPN7QtgyDGJKsu5nbbS3BwwtrB3tfXbPPjoI4dQka/Fxqo8dKewAG0amEB9sWHGMz/FpsUZ+//vYwPY0z6Kz11ZB7NONevtSkw5lB65QL1+egQuX3DGqP+pjBolluTmUKeNEJKVoiraGGNKCAXbI5zzJwCAc27lnAc55yEAvwawaaaP5Zw/yDnfwDnfUFCQuvNSJHqdIy50jbpxSQrPs4kaSoxwTgYkfRLfZ/OgJFcD+Vmv2C4vMqDFmrpOW9eYG77wWGRnFhVts4WQAIBKIUOxUbNgY/+9/iA+/MeDmAyE8OCtG9BYYkT3qDslwQihEEfLoOOc82wioWhL7ZnNZHNNBvCtfzehscSI92yqmPO2pbk5GHJ44c+yUeTFYOcJK/RqBc5fmj/vbeuKDVS0EUKyUjTpkQzAQwCaOOc/nPL2kik3ezuA49JfHkmFl1uFDuglKYr6n0p8Airlku2+cc+MCZj1xQa0WZ0pSy5sm3J+rjOFI3Tp1hXZ0XZupw0QRiR7F2DsP+ccX3nyGI712fGjd63FskI9ys1aOCYDsLn9SX/87jE3PP7gOefZREVGzaIbj/zZrlMYsHvxf9evOOdFmLOVmjQIccC6CLuNi1kwxPFCkxXb6gqimvSoKzbg9LATvgAV54SQ7BJNp+0CALcCuPSseP/vMcaOMcaOAtgO4DPJvFCSPO3DThg0inN2aqVCXZEBMgZJz7X1jnumhZCIlhcZMBkIoWs0NV2vNqswillj0WXVeKT49a2YodMGAGXmnAXZaXv4tU48cagPn7l8Oa4Ij3FVmIXPMRUjkmIIydlx/6JiowbDzslFs06hfdiJ37zSjneuK8P6SvO8ty+lBdsL0pvd4xhx+nDliuKobl9fbEAgxNE+Qns3CSHZRTHfDTjnrwKY6SVOivhfJOweP/K0s58VSaYclRxVFp1kRZsvEILV4Z2x0yaGkbRaHaiZYXmr1FqHnCjLy0FDqRHH++xJf7xM0TnqRr5OBaNGOeP7y/O0eHKiD75ACCpFTFlIafP6qRF865km7GgswicuXRZ5u/hCR/eYe8ZUQymdHHBAxoDawpmLtiKTBsEQx4hzctp5zoXq6/86CY1Cji9dPXv4yFSlucLnPEALtheUnSetUMpZ1Otm6qYkSJ69ZJ4QQhazhfGMiSSVzeNHrnbmJ9ip0FBilGw8csDuAefTd7SJagsNYAwpCyNpszqwvMiA6nwdesc9kp61mfD6MRkISnZ/UuqaJTlSVJaXA84XziLknjE3PvbnQ6i26PDDd62dlm4nrjBISadtYAJVFh1yVDOPkEVi/xfBiOTQhBcvtw7jQxfXoMCgnv8DIASRAMi6pNaFjHOO/5wYxNalFhhmeZHnbDUWPRQyRgmShJCsQ0Ubgc3thyknfUVbY4kRveMeTHgTPxfUF9nRdm7RlqOSo9KsTUkYiZgcWVuoR5VFh2CISxpzf9tv9+OKH/4Xp4czb0Roth1tovLwSOFCGJH0+ITgkUCI48Fb10Ovnj6coFUpYNGrUxL73zxHCAlwpmhbDAumxX2K66uiX0GiUytgylFigMYjF4xWqxNdo+45F2qfTaWQYWmBnsJICCFZh4o2ArsnvUVbQ/iMTvNA4r+Ee8OvspflztzpSVXyWHc4ObK2yIBqi3AtnRKdpfMFQjjWa0f3mBvv+MXr2HN6VJL7lYLXH0S/3TPn+chI0ZbhYSScc3zx8aNoGpzA/e8+b9aR2gpzTtI7bc7JALrH3Ggonnk0EgCKTEJHajEEcYh/R+uKZv98Z1Kam7NgOrgE2HliEABwRUP0RRtACZKEkOxERRuBPc3jkY0lJgDShJH0jnsgY0L8+UzqigzoHHXD60/uaGFrOISktlAf6Tp1jEjzxL5r1IVAiOPuK5ajwKDG+367D48f7JXkvhPVO+4G50CVZfbxyGKjBgoZy/hO269facdTR/rxuR112F5fOOvtKvN1SS/axCeoc53hsejUUMjYotjV1mp1wKJXIV8f3WikqNSkQf8i6DRmi50nrTivIheFMZ7BrCs2oM8mzXQGIYQsFFS0ZblQiMPm9iE3Jz1BJABQZFQjT6uUpGjrG/egyKiZNeCirtiIYIgnfazw1JDwJHtZoR5mnQoGjUKyXW1tQ8K1b68vxOMf2YqNVWbc/dgR/PD51pTsC5tL54i4o232TptcxlCam5PRC7ZfaRvGd55txltWFeOj25bOedtysxYDdk9SI8jFvxuzJUcCgCy8UH4xxP63WJ1YHmOXDaBO20LSb/PgWJ8dOxqjS42cql4MlaJuW0JCIZ70FzAJIdKhoi3LOX0BhDjSOh7JGEN9sVGSg+W94+4ZkyNFdcXCiFuyR2tarU4syc2BTq0AYwzVFp1k45GnhpxgDFhaoIcpR4nf3bEJN64vw/0vtuEzfzuc1oAS8XOsmiOIBBACPKQ84yel7lE3Pv7nN1FbaMB9N6yBsKpydhVmLUI8uQEYzYMTMGgUc35vA8ILIAu90xYK8UiIT6xKcjWwe/xwTQaScGVESs+ftAIArozhPJtITJCkMJLE/N+/T+LS7+9eFOFFhGQDKtqynD28FNiUxvFIQOggtAw6EEpwx1SfzTNjCImoKl8HlVwWCTpIlrYhJ5YXnTkDVZUv3a62tvAqATFFUKWQ4Xs3rMbnr6zDPw7349bf7Me4yyfJY8Wqa9QNU44SufOskCjP06I3w8YjB+we3P9iG2781evgnOPB962HTj3vVpSU7GprHnCgodg4bwFZbNIs+KKtz+aB2xeMPDGPhVjUUux/5tt5chDLCvVxrV9ZkpsDg1pB59oS1D7sQr/diw/8/gC90EHIAkBFW5aze4SiLTeNnTYAaCg2wuMPJvTENxAMYcDunTHuX6SQy7C0MLnJY+L4Ze2UTkGVRYd+m0eSLlib1YFlZz3RYYzhY9uX4ac3n4fDvTa845evp2Whd+eoa94uGyCMFI44fXD70vtEwR8MYeeJQbz/dwdwwXdewg+fb0VtoQG/e/+mqJfNi+sNklW0cc7RPOiYczRStBjGI8W/m3F12ky0YHshsLl92Ns+hh2NsXfZAOHn3XIKI0nYuNuHIqMaTQMT+NRfDyOY4IumJLPY3f60H5kg0qKiLcvZwp22+TojyXZm3CX+c21WxySCIY6yvLmLhroifVLPQnSPueELhFBbeKawqrYII3SJjgQGQxztI65pBeFUb11Tij/fuRk2tw9v/8VrONA5ltDjxapr1B1VsSN2Q/vSdK6ta9SF7z3XjK3feQkf+uNBHO+z46PbluG/n9+OP925Gesqoo+aL9CroVbIkjbu2TvugXMyENUi4WKjBi5fEI4FHNAgdsGndqqjJS7YpnNtme2l5iEEQxw7VsR+nk1UV2xA8+AEPSlNwKjThwuWWvC/1zbihSYrvv1MU7oviSSozerA/S+24S0/eQVrvrETTxzqS/clEQnNP/tDFjWbRxijS2d6JCC8qs4Y0DTgwFUrS+K6D7EAmO/cT12xEf843I8Jrx/GKBe6xqI1/KRzWqdtSoLkssLYOwiinnBBuKxw9ie0G6rMePKjF+D9vzuAW369D/fduBrXrV0S92NGyxcIoXfcjevXls57W7Gw7hl3z1qASm0yEMR/TljxtwPdeO3UKGQMuLS+EO/aWIHtdQVQyON7DUsmYyg3a9El0ZnFs0UTQiISU1OtE96olxVnmlarQxh/i+P6i4waMAZKkMxwzx0fRJFRjdVLTHHfR32xAX/eF8CA3YvSeX7mk5mNu33I06lw+wXV6Bx146FXO1Bl0eHWLZXpvjQSJc45TvRP4NnjA3ju+CBODwu/h9ZX5kGjlOFIrw3vXF+W5qskUqGiLcuJnbZ0BpEAwuLr6nxdQuMu4hmpucYjgTNhJK2DDmyoMsf9eLM5FU53XDat0yYUbYkmSLbNcN8zqbLo8MRHt+JDfzyIT/31MAAkvXDrs3kQ4nMnR4rKzcKfUSp2tXn9Qfxy92n8YU8nxt1+lOXl4HM7luOG9eWzroaIVYVZi+4kfS7Ngw4wFt3OsqIpC7YTeXEgnVoGHXF12QBAKZehyKChTlsGc00G8HLrMN69sRwy2dxnNOci/n1oGXRkTNHGOcfjh/qwY0VRUl4QlJLXH4TbF4RZJ0zZfPWaBnSNunDvUydQYdbikuUFab5CMptQiOPNnnE8e2wQz50YRO+4B3IZw+ZqM27fWoUdK4pRZNTgup+9ivbh1B+TIMlDRVuWE8+0pbtoA4ROwsn++McjY+m0AcIYVjKKNrFToJ8SYpGrVSFXq0RHgt2YmQrC2eRqVfjjBzbhqh+/gscP9SW9aIskR86xo01UoFdDo0zeSKHo9VMj+MqTx9A56saVK4rw3i2VuGCpJaEnizOpMGuxv2MMnPN5w0Ji1Tw4gUqzNqpQlJJwEbpQ0+D8wRDah124pC7+J4wluRoKIslgu1uGMRkIxT1RIRLHhZsHHXPuUUyl08NOfO6xI/iapxEfuLA63Zczp7FwWJVYtCnkMvz0Petwwy9fx8ceOYTHP7I1rjAgklw/e6kNf9jThSHHJJRyhguXWfDJS2txeWNR5M9SVFOgx7720TRdKUkGOtOW5ewePzRKGTRKebovBfXFRnSNueNOseod98CiV8/7uZSaNElNHmuzOlE7Q6egKl8nQafNgSKjOupXcdUKOS6uteBAx1hS94gBQFf4c4um08YYQ1meNmm72sZcPnz20cN4z2/2AQAeuXMzfnXrBlxUWyB5wQYIRZtzMhB5IiSl5gFHVOfZgDOdNusCTZDsGnXBFwxF1VWcjbCrbWF+/tng2eMDyNepsKk6sRfMTFolio0atCRwDlpq4mhaIi8+psrZRRsA6NUK/Pb2jdCq5Hj/7w5gyEF/jzJJKMTx4xfaUGTU4CfvXouDX7sCD9+xCTdtLD+nYAOAGosO/XZv2gO/iHSoaMty6V6sPVV9sQGcnzkTFqv54v5FyUweiyRHztAJq7bo0DWaWGfp1JATtTGOvZ2/1AKPP4gjvbaEHns+naNu6FRy5M/wy2MmZXk56JE49p9zjscP9uKyH+zGU4f78fHty/Dcpy/GBcsskj7O2ZIV++/2BdAx6orqPBsAaJRy5GqVCzb2v2VQ6CTHkxwpKjUJ45EUUJF5vP4gdjUPYceKIsglePFECCPJnARJMbH35MDCLNoA4UWPh27biDGXDx/8w0F4fLR8O1OMuX0IhDhuWF+G69YumffFW3GdRjqSpElyUNGW5Wxuf0aMRgLTx13i0WfzzHueTbS8yIAWq0PyJ3Y9Y25MBkIzhmtU5evQb/fA64/vlyDnHKeGnFGNRk61pcYMxoDXTyV3TKJr1IXKfF3U44HleVpJxyM7Rlx470P7cPdjR1Bt0eHfn7wIn7uyLiVd5Iokxf63Wp3gHFF32gAhQXLQPinpdaRKi9UBGYtu/Hc2pbk5mAyEktL1JIl5pW0ELl8w4dFIUX2xAaeHnfAHkztFEK2OcKft1JAj6ZMNiZqtaAOAVWUm/Pjda3G014a7Hzuc8P5UIg1x7L3IqI7q9jUFwtQLnWtbPKhoy3J2jz/ti7VFZXk50KnkaI7jVcpQiKNv3IOyKA+k1xcbYHP7MeyQ9sltJDlyhiedVRYtOI//ib0w5hCM+QltrlaFFaVGvH56JK7HjVbXqDuq82yicnMOJryByLnKePkCIfx81ylc+eP/4miPHd+8fiX+fldqz2OUi2mYEhdt4t+FxpLoi7Yio2bBjke2DjpQla9LqNAujSzYXphfg8XsueODMGoUOL8mX5L7qys2wB/kGdNJEM8s+4McbUOZ0wGcSaRom2Xdz5UrivGVqxvwzLFB3LezJZWXRmYhjquKY/DzEQPQqGhbPKhoy3J2jz/ti7VFMhlDXbEBTXF02kack/AFQ1GNRwJnxq+kHq0R0x1n6rSJP0DjfYIhhpDMVBDOZ+tSC97stiVt1CUQDKFnPLodbSKx0OlNYETyYNcYrv3pK7jvPy24vKEQL9x9Cd67pTIp59bmkqOSo9CgTnj89WzNgw7oVPKov6+BcKdtoRZtVkdCo5EAUBpesN1HCZIZxR8M4YUmKy5vLIJKIc1TjzP7PTOjQOoYcWFDpbDjMdPPtY25fJCxuUPI7ryoGjdvqsAvd5/Gowd6Unh1ZCbWCeFF5miLNo1SjiW5OWgfcSbzskgKUdGW5Wxuf9p3tE1VX2JEy2DsY4s9YnJklE9uxV/28Z6fm02b1YFSk2ZacqSoKsHY/7YZ9r9F6/yl+fAFQzjYNR7XY89nwO6FP8hRlR99py2yqy3OqPw/7+vGO3+5B05vAL953wb84pb1Uf8ySwYh9l/aou3kwATqig0xFaFFJg1GnJMZMzIWLa8/iM5RF5Yn2CGlBduZac/pUdg9flyVwELtsy0r1EMuYxkRRuLwCpMb2+sLkaOUZ/y5tjG3D3la1Zw/Wxhj+MZ1K3BRrQVfefJY0qc1yNwG7V4wBhQYohuPBIQRSeq0LR5UtGU5m8eXMWfaAKCh2AC7xx9zp0B8VV0sBOZj1qlQYFBLHkbSNuSctagyapTI16ki0fixOjXkhFmnmvEMwnw2VpmhkLGk/dIVP6eYOm3hXW3xdtp+93oHVpeZsPOzl+DyxqK47kNKFWZpz+hxztE8MIH6GEYjAaHTxjkkH/1NtlNDToR4dPvo5mLWqaBWyGg8MsM8e3wQWpUcF0u4/0utkKPakth+T6l0jgh/95cW6FFfYkBTphdtTl9Uv0uUchl+fss6FJs0+NlLp1JwZWQ2Qw4v8nVqKOXRP3WvsejQPuxMSzDTgN2Dfe2jFAolISraspjXH4TXH0LuLDPt6SA+QW0eiO2XcLQ72qaqC4eRSCUY4uF0x9nHF6ssuoTGI+MNaNCrFVhTnovXTycnjKQzPBZYFUPRZspRwqBWxFXo9Iy50Wp14m1rSmfsaqZDRb4WAxNeTAakGUEdsHsx4Q2gIcbOU7FJHfn4hUQ8A1RXHH8ICSB0B0pzcxIej/QFQhlzVmqhC4Y4nj85iO31hZIHA2VKgqR4nq3aokNjiREn+ycy+snqmNuHvChfADRqlFhTlrtgx64Xi0G7N+oQElFNgR4uXxBDaXgR7497unDzr/em5bEXKyrasthEBi3WFolji00xjrv0jruRq1VGtYB46mO1Wh2SJWP1jgvJkXOdyRF2tcVepHDOhS5eAql6W5fm42ivDRPexII/ZtI14oJGKUNhDGMbjDGUmbWR0dZYvNhkBQBc1pD+DpuowiwEzUi1e645/HegIeZOm/DCxUILI2kZdEIll8XUrZ1NiUmDgQSLtr/s78YVP3w56Qvgs8GBzjGMOH24eqV0o5Gi+iIDesc9cMa531MqHcMuMAZU5mvRWGrEhDeQ0ecqx1y+qNezAMJI3kLr3i821olJFMd4BEBMkDw9nNpzbf5gCI8d7MX2usK0HltYbKhoy2K2cNGWSWfajBolluTmxN5pi3JH21R1RQZ4/SHJziG1WoUfistmWKwtqrZoMTjhjTkQZNg5CbvHn1AU+vlL8xHiwIGOsbjvYzado25UmnUxB4CU5eXENR75YvMQaiy6SLhLJpB6V1tT+O9ArGe8ik3CL8jBBdZpa7U6UFOgi2n0ZzZSLNg+2DWOQIjjmWMDCV9Ptnvu+CDUChm21xVKft/iC33pHpHsGHGi1JQDjVIeeaElk8NIxl3Rd9oAoWhzeANxr6whiRtyeFEYc9EmPGdI9bm2l5qHMOyYxLs3VaT0cRc7KtqymM2deZ02QIjjb4650+aJaTQSmPLLXqIRSXG8a77xSAAxn2s7kxwZ/3mfdRV5UCtkSRmRFHa0RR9CIhJ2tcW2CNk5GcC+9jFc1iD9E8BEiEWbVJ2ZpoEJlOXlzLtA9Wx5WiVUCtkC7LQ5JFvTUGrSYMjhTSiM5Xi/HQDw9FEq2hIRCnE8d3wQFy8viGkSIlriDsP0F22uyItI9cUGMJa5S7ZDIY5xd4ydNr0wRUHdtvTwBUIYcfpiHo8sMWqgUcpSXrT9dX83ioxqbK+T7gwroaItq9ncwp6W3JzMOdMGAPUlBrQPu6I+G8R5eEdblCEkotoiPRiT7pd9m9WJEpMGhjmeZItnvmJNkBSLtkQ6bRqlHBuq8iQv2kIhjq4xd6QgjUW5OQcefxCjMSxCfrVtGL5gKKNGIwHhlWiNUoZuiWL/mwcdMS3VFjHGUGRUL6jzJw6vH302T8Jx/6LS3ByEePwjoq7JADpGXCgwqHGszx534isBjvTaMDjhTcpoJCB067UqeVoTJDnn04o2rUqBaosuY8NI7B4/QhzIi+E8u5hYSOeT0mPYKXzdYx2PlMkYqi36lMb+99s8eLl1GDeuL4dCgskJcgZ9NbOYPQPHIwHhldNAiOP0UHRPlMbdfnj8wZg7bVqVAhVmraSdtvni+MXCpiPGTlub1QmDWhHzq2xn27rUgqaBichiVSkMTnjhC4Ti7rQBsXWnXmgaglGjwPrwPqRMwRhDhVmLLgk6bV5/EO3DTjSUxFfEFBs1C2o8UtxvmGhypKgkwQXbTQMT4Bz45KXLAAD/phHJuD13fBAKGcNl9cl5kUUmY1helN4wkjGXDxPewLRx7cYSY8Z22sQXyfL1sRdt1GlLD/EFqHjOh6U69v/RN3oQ4sC7Npan7DGzBRVtWUws2kwZVrSJT1SjHZEUz0RFu6NtquVFBkk6baEokiMBIcXRolfH1WlbVqQHY4ktjT5/aT4AYG+7dN02cdQzluRIUVkk9j+6A/uhEMeu5iFsqyuU5OyT1KSK/Rfj72MNIREVGTUJjUf+Yvcp3PSrPRiwpyZIoXVQTI6UpmhbkuCutuN9wmjkjhXFWFeRSyOSceKc49njg9i6zJLU3zP1xUIScLrSGsWU0eqCKUVbqRE9Y57I79lMMh6esoml0yaGTIkdH5Ja1vALUIVxvHC71KILB6Ul/zxiMMTx6IEeXFRrQbk59hdyydwy71kPSRmb2w8ZA/SqzIhMF1Xl66BSyKJ+5VSM+481iAQQXtnvGIl+FHM2veMeeP0hLJ8jhERUbdHGnCDZNuTEsoLEotABYPUSE/RqhaT72rrC44AJddqiDCM53GvDqMuXcefZROXhBduJPnkUX6Gvj7OIKTZqMDjhjfs6njjUh/0dY3j7z19PyYhXi9UBrUoec7d8NiUm4X7iDSM53j8Bi16NQoMa164uRdPARMrT1xaDkwMT6B5zJ200UlRXbIDN7U/b6F67WLRNeeGqIbK+JvO6baNOoWiLZeenWacCY9RpSxfxRbhYxyMBIYwkxM/8rk6m/7YNo9/uxc0UQJIUVLRlMXGxdqyJf8mmkMtQW6iP+smi2KUpy429aKgrNiAY4gmPDrSGRyyXRREUUpWvi2k80ub2YcQ5idooCsL5KOQybKo24/VT0nbaVHJZ5IlyLHRqBcw6FXrGouuIvNQ0BLmM4RIJF/RKqdKshdsX2xm9mTQPOKBRxh9/X2zSwOsPYcITewy63e3HqSEnrl9bCgC48YE9eKVtOK7riFarVRgtlupnkU6tgClHmVCnbUWpEYwxvGVVCRgDnj5C3bZYPXd8EDIG7GhM7vlTsUObrhHJzhEXFDI27YXDFWKCZAYWbWKnLZaiTSGXIV+noqItTayOSSjlLKbuqEiM/W9PwQtPf93fjXydCpdn2JnzxYKKtixm9wQyarH2VPXFxug7bTYPDGoFjDmxdwyliosWz+REU1hVWXQYdkxGvVdIiuTIqbYuzUf7iEuy0beuETfKzTmQx/mEuzyG2P8XmqxYX5mXsd+3FeFuY6KvaDYPTqCuyBD311SM/R+YiP3P+FDPOADgpo3lePJjW1GWl4M7Hj6AR9/oietaotEy6ESdBC9KTFVi0sT1Pe71B9E25MTKJcKT7mKTBhsrzfj3sX5Jry8bPHt8EJuqzcjXJ3YWdz5nEiTTUyB1jLhQka+dFrpQYFDDoldlZOy/eKY5lqINACx6NYYdC+es7GJitXtRaNDE9cKWeNbydJLPtQ05vHixaQg3rC+DSkHlRTLQVzWL2dy+jIv7FzWUGDDsmMRoFPPzveMeLMnLieu8V7VFB6WcJRxG0mZ1oNioiSqeXfwBGu25tjYJkiOnEs+17ZEoRbJz1BXXeTZRmVkb1Zm23nE3mgcduDxDRyMBaWL/OedoGpiIKzlSJI7QxBNGcqhrHHIZw5qyXJSYcvDoXedjS00+vvD3o/jR862SnxsadU5ixDkpWXKkaEluDvriGI9sGXQgGOJYWWqKvO3aNSVotTojHXUyv1NDDpwacuLqlSVJfyyzToUCgzptnbaOERdqzkrPZYyhocSIpjSmWs5mzOWDViWHRimP6eMKjRrqtKWJ1eGNO4jMoFGi0KBOehjJ3w/2IhDiFECSRFS0ZTG7x59xyZGiWHbv9I674z4Lo5TLsLRAL0mnLdrxxUjsf5QjkqeGnNAoZZKd92koNiJXq5Qk+p9zjq5Rd9xjfIBwFrFv3INQaO5iYFfzEADg0iSl0ElBXDuRyILtIcckxt3+uJMjgTMJY/GEkRzsGkdDiSGyU8uoUeLhOzbihvVl+MmLbfjcY0fhC8S//+xs4lJ6qYu2ktz4Om3ifraVS84UbVevLIGMAU8fya5u26Ddi9t+ux9vdI7F/LHPHR8EAFy5Irnn2UT1xdKESsUqFBLi/md64aqx1IjWQWdC+wKTYdzli7nLBgi72qhoSw/rxGRcyZGimgJdUmP/QyGOvx3oweZqc2ShN5EeFW1ZzOb2Z2ynrT78hLUpil/CfTZPXCEkoroEf9mfSY6M7klnlUV4Yh9Lp21pgV6y8z4yGcP5NfnYc3o04a7JsGMSHn8w8jnFozxPC18wBOs8YzcvNA2hKl+LpQXxF4jJplHKUWzUJFS0icmF8SZHAmeKtkF7bE+wAsEQDvfYsL5i+joFpVyG+25Yjc9cvhyPH+rFHb/bjwmvNKl4YvdKquRIUWluDmxuP9y+2M71neifgFGjmPYzpcCgxpaafDx9dCBtCYXp8NCr7Xi5dRh3/O4AToSL2Wg9e3wQ51XkRkZ1k62uyIC2IScCKS6QBie8mAyEpiVHihpLjPAFQxkXYjMab9FmUGPYOZlVfwcyhdXuTbBo06N92JW0P7u97aPoGnVTAEmSUdGWxeweP3IztGiz6NWw6NXzJm/ZPX44vIG44v5Fy4sM6LN54IjzSWifzQOPPxhVciQg7IcrMqrREWWC5CmrY95VArHaujQffTZPQsUFAHRGkiPjL6TKIyOFs3dFXJMB7Dk9ikvrixJee5BsFWZtQgu297aPQiWXYU15btz3oVIIoQGxLthuHnTA7Qti3Qw78Bhj+NTltfj+jWuwr30MN/5yT9xBH1O1WB0w5SgjkeJSKY0zQfJEnx0rl5jO+T67ZnUJ2kdcaBrIjhFJ52QAf90vRHcb1Aq876H9UQcZdI+6caJ/IumpkVPVFRvgC4QiP5NSJRL3b5m5aAOQcefaxt3xF23+IM/INQaLmWsyAMdkILGizaKD3eOXdEfrVH850ANTjhJXpfDvfDaioi1LBUMcE14/TBka6AAI4y7znVE4E/cff6dHjFUXx7RiJXYKYkl3rMrXRTUe6ZwMoN/unXdpd6zOX2oBgIRHJM/saEuk0ybuapv9ydarp0bgC4Yy+jybSIz9j9ee9lGsrciN+bzJ2eLZ1fZmtxBCsq5i9sXlN6wvw+/u2IR+mwdv/8VrMXdgztY66EBdkUHyYrw0Vyzaoi8s/cEQmgYd00YjRVevLIFcxvD00ewYkXz0QA8ckwHcvaMOf7xzMwDgvb/ZF9XX87kTQtJmKs6ziWIZqZeSGPdfYzn353+1RQe1QpZxRduo0wdzHL/7xQXb6VqtkK3Er3e8Z9oAYGl4ZLE9xh2x0Rhz+fCf44N4+3lLEv69ReZGRVuWcnj94BwZ22kDhGKq1eqYc9ylL/wEIpHzXuJZmnhDBs4EhURfWFVbdFGNR54O3/dSiWfElxboUGhQJ1y0dY0KUdeJfP3FJ9dzddpeahqCQa3Ahipz3I+TKhVmLQYnvPD6Y9/9Z/f4caJ/AufX5Cd8HcUmTcxBJAe7xlFoUM87bnxhrQWPfeR8yBjDTQ/sweun4tv7xzlHi9WB5cXSn4EoMcW+YPvUkBO+QAgrSs8dTTXrVNi6NDtGJIMhjodf78CGyjysLc/F0gI9fv/+TXB4A3jvQ/swMk9A1LPHB7Gi1JjS5bq1RXrIWOoTJDuGXchRymd8Qq2Qy1BfbMi4MJJ4O22RBdtUtKWU+HM80TNtQHJi/5841AtfMESjkSlARVuWsrmF8YZMPdMGAPUlRkzOM+4idmcSGY9ckpsDnUoe9yu0rVYHiozqmL6WVRYdRl2+ec8FxbJKIBaMMWxdmo89p0cSegLaNepGWV7OtKjrWGnCT3hmW7AdCnG82DyEi+sKFkSMcEW+2DmMfXRwf8cYOD+T8JmIeDptB7vHsb4yL6quV32xEU9+9AIUmTT4ypPH4vo+GpzwwuENoE7iTjIgFK2MAf0xFK7iecIVped22gDgratL0T3mxrG+xLqLme75k4PoGfPgAxdWR962cokJD92+EX3jHtz229nPNA7YPXiz25bS0UhA+DlSla9LeYJk56gLVRbdrH9nGkuNONk/kTGFvtcfhNsXRF6c45EAFW2pNuRIvGgry9NCJZdJniDJOcdf9nfjvIpcyc8lk3Nl/jMgkhTiTHqmpkcCZ8YW5yqm+sY90CiF8zvxkskYlicQRnJqyBlz8l0kQXKebtupISeUcobKJLxivXWpBSNOX6QwjEeiyZGi8jztrDH5x/rsGHFO4rL6zB+NBIAKs/D16B6L/ZfjntOjUClkWJvAeTZRiUmDUZcPk4HoOn5DE170jHmwfobzbLMpNmnwsW3L0Dnqxv6O2BMGxb9zUidHAkJ4SqFBHVOn7UT/BLQq+YznkwBgx4oiKGQM/z66uBdtP/RqB8rNOdhxVvLjpmozHnjverQMOnDn796Ax3fu99bOE1YAwFUpHI0UrS3Pxf7OsZSGkcwU9z9VY4kR425/zOdLk0U80xTP70wq2tLjTKct/vFIuYyhMl8r+a62N7rGcXrYhZs3UpctFahoy1K2BVC0LSvUQy5jaJ5jtKR33IMlufHtaJuqrsiAFqsj5ldDQyGONqsz5h1q4pPCjnmLNgeqLbqEOlmzEbs5iYy2CTvaEi8oy+fY1fZikxUyBmyrWyhFWzj2P45AhL3to1hfkSfJuQBxV9vQRHRPsA6J59liKNoA4C2rSqBXK/DoG72xXSDOjCQno2gDhNHbWGL/j/fZ0VhinHWpea5WhYtqLRk1Ijk04cVzxwfwveeacaw38Q7gkR4bDnSO4/at1TN+HbbXF+JH71qLA11j+OgjB89Z//Ds8QHUFuol2ysZi8saimBz+3Gwazwlj+cPhtA95p4zPbexNLPCSMSiLZ5Om0GtgFohw3AU+1OJdKwTk9Cq5NCH17DEKxmx/3/Z3w29WoFr16T+RZpsNO8zQcZYOWNsF2OsiTF2gjH2qbPe/znGGGeMWZJ3mURqNrfwg9uUk7lBJBqlHDUW3ZxpbULcf+JFQ12xAWMuX8yvIJ5JjoztSWdlvhj7P/cT+7YYVgnEqtysRbk5J+5zbeNuIblTik5bWZ7w5HqmfUYvNg9hXUVeXGcw0sGiVyFHKUf3HGf0ZmJz+9A0OCHJaCQAFIXPdEX7Cv/BrnGoFLIZz3PNJUclx1vXlOKZYwMxJ7C2DDpRaFDH9QQyGqWmnKjTI4MhjpMDEzOGkEx17epS9Nk8eLPHJsEVxsYXEFYy/PbVDnz8z4dwwXdewqZvv4i7/nQIv9h9Gh/786EZu1+xeOjVDhjUCty0oWzW27x1TSm+df0q7GoZxt2PHUEwvGNx1DmJ/R1jaUuQu6SuACq5DM+ftKbk8XrG3AiGOKpnCCER1RVnZtEWT6eNMYYCgxpDGdI1zBZWhxfFRk3CL07XFOjRPeqWbG+g3ePHM8cG8La1pdCqEisoSXSiefk+AOBuznkDgC0APsYYawSEgg7AFQC6k3eJJBnE8chMPtMGCMXUXJ22PpsnofNsoi3h4Ic/7OmK6ePahsLJkTG+qqxRylFq0syZIOn1B9Ez5k7qK9ZbayzY2z4aedIVi0hyZAI72kTleVqEODBw1hPsAbsHJ/oncFlD5i7UPhtjTIj9jzFBcm+7dOfZgDOdtmjDSA5127BqiQlqRexdvndtLIfHH8S/jsQ2NthqdST1HERprgb9Nk9UXbGOERfcvuC8ResVK4qgksvwdIyfazzsbj+eOz6Abz/ThBt++TpW3fsfXP/z1/CNp0/iYNc41pbn4qvXNOCJj27FH96/Cd1jbtz/Ulvcj9dv8+Dfxwbwro3lMGjm/t3wns0V+OJV9fjXkX787z+Pg3OOnSetCHGkrWjTqxU4f2k+nm+ypqQTKv4MnG2cVrymqnxtxoSRJNJpA87saiOpY7V7UZjAaKSoxqJDIMRnPYoQq38e7oPXH6LRyBSat2jjnA9wzg+F/9sBoAnAkvC7fwTgCwAyY06ERM2+AIJIAGHBcO+4Z8ZD725fAGMuX0LJhVMf57q1pfj1K+0xnYER1wTE0w2rsujmHI9sH3YhxJHcom1ZPia8gbheBe4KP2GRpNNmDidInhVG8lLzEADgsgUQ9T9VRb425jNte9tHoVHKsLps7k5PtMSiLZowkslAEMd67TGdZ5tqTZkJy4v0ePSNnqg/JhjiaBtyJG00EgBKTDmYDISi2k0kri6Yr9Nm1Chx8fICPHNsAKE4XuyIxft+uw93/ekQfvdaJ4Kc471bKvHz96zDni9fij1fvgw/v2Ud7ryoBusq8nDx8gLcuL4Mv/5v+5wvdM3l93s6wTnH7RdURXX7j2xbirsuWYpH9nXjvv+04Nnjg6gwayP7ydLh8sYidI26cSqBs7rREkMd5jrTBpwJI8kEiXTaACFBks60pZbYaUtUjRj7L8G5NiGApAcrSo1YJdHvLDK/mA7KMMaqAJwHYB9j7G0A+jjnR5JxYSS5bB4/dCp5xqfxRXaozRAScmZHW+JFGwB8/so6cAD3/acl6o9pswrjXaY4zgZWWXSRwmfG+x6Kff9brMRo+ddPx36urXPEDRmT5utfnicu2J5etL3YNIRyc47ky8WTTey0xfJq/972UWyoNMfV6ZqJMUcBjVIWVafteN8EfMHQnPvZ5sIYw00bynG4xxb16oyeMTe8/lBSkiNF4jqJgSi+Bif6J6BSyKJ6keSta0owOOHFwe7knZ1yTQZwrM+O27dW4djXd+DJj16Ar13biGtWl6DENPPfua+8pQHGHCW+/MSxmAtK12QAf97XjatXlsQ0cv7Fq+rwns0V+MXu0/hv6zCuXlks+c69WFwR7srvTMGIZMeIC6Yc5bxdq8YSIzpH3XBOBpJ+TfMZc/kglzEY5+mkzqaAiraU4pzDOjGZUHKkaKkY+y/BubajvXY0DUzg3RTzn1JRP2NnjOkBPA7g0xBGJv8HwP9G8XEfYoy9wRh7Y3h4ON7rJBKzuf3IzeDF2qL68Cu2TTMUbb0SF21leVp84MJqPPlmH4722qL6mEQ6BdX5Ooy7/ZGu59lODzkhY3OP3iSq0KjBskJ9XOfaukZdKM3NkaTIKDFpIJexaWEkHl8Qr50awWX1RWl9EhiPCrMWXn8o6jGiUeckmgcdko1GAkIhVWzURHWm7VCXGEKSG/fjvf28JVDKGR49EF23rUUMIUnieKTYhe+Lont+vM+OhmIDlFGE/lzWUAS1QoanjyRv0fbxPjtCHLio1hL137E8nQr/e20j3uy24ZF9sY16//1gLxzeAN4/JeY/Gowx/N91K3HtaiGI4JrV6Q0kKDZpsLrMlJJzbZ2jrqh+PothJM0D6e+2jbl9yNMqIZslbGc+BXoNxt3+cwJoSHLYwl/rQgmKtlytCmadSpJO218PdCNHKcd1a0sTvi8SvaiKNsaYEkLB9gjn/AkASwFUAzjCGOsEUAbgEGPsnEF2zvmDnPMNnPMNBQUF0l05SYjd44Mxw0cjAaDUpIFBo5hxYWqvTSzapIvD/+i2pcjXqfDNfzfN2yUJhThODcWeHCmqEhMkZ+m2tQ05UZmvk6zzMputS/NxoHMs5l/CnaPuyOqCRCnkMpSYNNPGI187NYLJQGjBjUYCZxIkoz07IMblb6mRdnl4tLvaDnaNo8KsRaEh/icG+Xo1Lm8owhNv9kX1vSR2z5PZRS3JFT6fgXmKNs45jvfZsWKe0UiRXq3ApfWFeOb4YFznQaNxNJwEubosN6aPu25tKS6qteB7z7VEfZ4xGOJ4+LUOnFeRG9eIrFzG8ON3rcULn70k5utNhisainC4x5b0wIyO4bnj/kWNJcL31clMKNqcPuQl8IKtGPs/34J1Ig1reEebFOORgDDK2z5PavV8XJMBPHW4H9esLom7Y0viE016JAPwEIAmzvkPAYBzfoxzXsg5r+KcVwHoBbCOcz6Y1KslkrF7/MhdAEUbYwwNxUY0z5Ag2TfugUouQ4E+8QO6IoNGiU9fsRz7O8bmHa/ps3ng9sWeHCmqtogJkrMXbamIzd66NB9uXzDq7qKoa9QVScGUwtm72l5sHoJOJcfmaum6T6lSEf66dEUZ+7+nfRRalVzyJ7wlpvk7bZzzyFLtRN20sRxjLh9eap6/y9FidaDcnANdgjHWc8nXqaBSyOZdsC2cmw3ElJx5zeoSDDsm49pPF43DvTYsyc2JPEmOFmMM37x+JXzBEO596kRUH/NikxWdo+5py7RjpZBHN1qaCpc3CiOSL4bPxCaDxxdEv90bVaetyKhGnlaZEefaxty+hNJaaVdbalnDK1sS2dE2VU2BLuFO27+O9MPlC+LmTeWSXBOJXjSdtgsA3ArgUsbY4fA/b0nydZEkE8YjM79oA8QEyXN3qPWOu1GSq4l7zGM2N28sx7JCPb7zbPOcHQPxoHu8Z87KzVrI2My72vzBEDpHXCl5ErS5Oh+MIaYRSbvbj3G3X7JOGwCUm3PQEx6P5JzjpWYrLl5ekPHnLmci7A5E1AmSe06PYkOVOarRvFgUmTSwTkzO2TXuHfdg2DGJdRW5CT/exbUFKDZq8LcoRiRbrY6knmcDhAKm1KSZN1zoeF84hKQ0+gP1l9YXIkcpx9NHkzMiebTXhjXl8R3wr8zX4VOX1+K5E4NRjQk+9GoHluTm4KoV6Ul9lFp9sQFleTlJHZE8k547/89AxhgaS41oyoROm8sXdwgJIASRAFS0pYo1slhbok5bgR4jzskZw92i9ZcDPagt1Md9BprEL5r0yFc554xzvppzvjb8zzNn3aaKcx7fhl6SFjbPwina6ksMcE4Gzlm+LOxok+Y821QKuQxfeUs9OkZcc54LEQMX4h3vUivkKM3NmTH2v2vUhUCIpySAI0+nQmOJMeowEpvbh+881wRA2vN25XlaDDsm4fUHcaJ/AtaJyQUV9T+VRilHsVETVdE24pxE25BT8tFIQBip8QVCGJ/l3CQQ/1LtmchlDDesL8PLrcNzjub5AiG0D7uSmhwpKs3Nmb9o67dDLmMxrR/QqhS4rKEQzx0fRECivUeiUeckesY8WJNA5/WDF9WgvtiA//3n8TkDMI732bGvYwy3b62CQuIXDdKFMYYrGovw6qkRuJIU/iFOSET7M7CxxIjmQYfk3yuxGndJ1Gmj8ciUEMfbpYj8B84kncbbbWsamMCRHhvevaliwZ01XwwWx09oEhPOOexuf0Yv1p6qPryctPmsMJLecY8kcf8z2V5XiAuW5eMnL7bNGhTSNuREgUGdUKBLtUU343hkpIuXpMXaZ9u6NB+Humzw+mdfzBsIhvDHPZ3Y9v3d+NuBHtx2fiW21Ul3TlWM/e8d9+CFJisYg6T3n2rlZm1UZ9r2tgsdTjHJU0riOYgB++xFy8GucehUcsm6XjduKEOIA48f6p31Nh0jwosSydzRJiox5cybHnm8bwK1hXpolLGdH712dSlGXT7sbZd2RPJoX3zn2aZSymX49jtWYXDCix/snD0R96FXO6BTyfGuRTbqdEVjEXyBEF5pS87rye2xFm2lRkwGQnOueUm2UIhj3J1Ypy1fL3wsddpSw+rwIk+rlOxs+5nY//gSJJ860g+5jOHt5y2Z/8ZEclS0ZSGvPwRfMJTxO9pE4hO7qclbXn8Qw45JSUNIpmKM4X/e0gi7x4+fzrKsts3qwPIE4/ir8oVdbWePr7WF978tLUxecuRUW5da4AuGcLBr5gjzPadHce1PX8XX/nkCDcVGPPOpi/D161ZK+sp8JPZ/3I2XmodwXnkuLBKeV0y1SrM2qjNte06PQqeSY1WUIRixKDLNv6vtYNc41lbkSvZnWZmvw5YaMx59o2fW2PlIcmQKOm1LcoUwltk6HJxznOi3z7ufbSbb6gqgU0k/InmkxwbGkPD+o3UVeXjv5kr8/vXOGc+sDtq9+NeRfty0sXzRBQpsrDLDqFEkbUSyY8SFIqM66jOZmRBGYvf4EeJIKIhErZAjV6ukoi1FBu3SxP2LKsxayGUsrk4b5xzPHhvA1qX5MCdQ+JP4UdGWhWweYbnmQhmP1KsVqDBr0Txl/5P4ynmyOm2A8MrojevL8Ps9nefsU+Oco23ImXAnrMqiw4Q3cM74WtuQE0tyc6BVJS+kYaqN1WbIZeycEcnecTc++shB3PzrvXB4A/jlLevw5w9ujnQ/pVQeTlw81DWOo732BTsaKaowazHkmITHN3v3EhA6bRurzUkZTRM7bYP2mZ9guSYDaBqYwHqJzybctKEcXaNu7O+cuQPVOuiAXMZQU5D8FyVKcnMQ4oB1lieZQ45JjDh9WBlDCIlIo5TjisYiPHdiEH4Jx96O9tqxrEAPvQQhLZ+/qg4WvRpfevzYOYXrH/Z0IsQ57tgafwBJplLKZbi0vhAvNVuTMpLYMeKK6UxvTYEOKoUsrWEko+JibX1iT7gL9GoMOZKbzEkEQw6vpEWbSiFDhVkb1662pgEHOkfdeMuq9K71yGZUtGUhW7hAWAjpkaL6YsO0TltvOBp+SRLOtE119446KGQyfPe55mlvF5MjE118LSZInj0yk8gqgXjo1QqsKTNFwkg8viB++HwrLvvBy3ipeQifvWI5Xrz7Ely9qiRpc+wFejVUChn+sr8bABZk1P9UYoJk7/js3bahCS9OD7uSMhoJCOdPGMOsCZJHemwIcWnOs0119coSGNSKWXe2tVgdqLYkf50FcGbB9mzn2iIhJHF2Oq9dXQqb249XT0kzhsc5x5EeG9aU50pyf0aNEl9/2wqcHJjAw691Rt7u9gXw5/3d2NFYHPleXWyuaCzGuNuPQ902ye+7c8QV04sOSrkMy4v0ae20jbuFoi2RThsgnK+iTltqDNq9kiVHimos8SVIPnNsAHIZw47Ghf2C6kJGRVsWEos20wLptAFC0dYx4oqcueqTeLH2bIqMGnz4kho8c2wQb0zpGrSFz5wlOt5VGX6lduq5tmCI4/SwMyUhJFNdsMyCo712PPZGDy77wW7c/2Ibrmgswot3b8MnL6uN+bxPrGQyhrLcHIw4fViSm5P0ZMFkEzuHc4WR7BHPs0m4VHsqpVwGi14dSSA7mxhCcl65tEVbjkqOt64txTPHB2ZMKUtFcqSoNDwiOnvRNgHGgIaS+LrHFy23wKBR4N9HB+K+xqn6bB6MunxYk+Bo5FRXrSzG5Q2F+OHzrZFzlo8f6oPN7ccHLlp8XTbRxcstUMoZnj8p7TYiu9uPUZcv5iCmxhIjTvZPzLsDNFnGwp22REfbCvRqCiJJgUAwhBGntOORgND17RhxzTq+PhPOOZ45NoAtNWbkL+BjCwsdFW1ZyB4ej1woZ9oAoL7EiBA/c9ard9wDuYxJtnByLh+6uAZFRvW0hdttCSZHisrzhNj/qQmSveNuTAZCCXfxYnX+0nwEQxyf//tR5GpVePTD5+Nn71mX1BHUs5WFC53LGgoXfDJVpXn+XW1728dgUCvQGGfBEI1i4+y72g52jaO2UJ+UF3DetaEcXn8I/zoy/byX2xdA95g7JefZAGE8EgD6bTN/DY7321Fj0cW9L06tkGNHYzF2npAmRfJIj9D5k6rTBghndL9+3UowBnztn8cRCnE8/GoH1pSZsEHiLmsmMWiUOH+pBc+ftEpaKHWIcf8xrjxpLDFi1OVLW5dKsqLNIHTa0lV8ZotRlw8hLl3cv6imQI/JQAh986TqTtVqdaJ9xIWrV9JoZDpR0ZaF7J7weGSCIxKpVB8OI2kaFEZL+mweFBs1KYmo1qoUuHtHHQ732PCv8KvpbdbEkyMBYb68LE87bTxSTI5M9aLaDZVmvGPdEnzr7Svxr09ciE3V0kfQz6c83Dm9tH5hj0YCwhMjnUo+Z6dtb/soNiXpPJuo2KSZMYgkFOI41G2TZKn2TFaXmVBXZMCjb0xPkTw15ATnQF1xar6/9WoFjBrFrJ22E312rIhhP9tMLq0vxIQ3gCO99oTuBxD2s6nkMsnPjS7JzcHdO+qwu2UYX3j8KNpHXHj/hdUL/sWR+VzRWITOUXfk56oUOsLngWI9k9kY/j47kaYRSSmLNq8/NOcqCZK4QYl3tInEDnF7DEmm/z42ABkDrlwkuxwXKirastBCPNNWma+DRilD84DQ4eob9yT9PNtU71xXhoYSI777bDO8/iBah6QbX6yy6KZ12sTRy2UFqR0PVClk+OFNa3HL5krIJV5YHq3NNflYWqDDliSd8Uolxticsf+Ddi86RlxJG40UzdZpax9xwu7xS36eTcQYw00by3Gkx4aWKes6xP9OVacNEM61zbT2YNQ5iX67FyuXJFYgbV0qLKh/VYJ4+cM9NjSUGpOyVP72rVVYtcSEvx/sRYlJkxWBApeHz8Y+3yRdimTHiBsydmYEOlr1JcL3fLrCSMZcPmhV8oRH3cVdbUN0ri2pxBfbJD/TViDuaov+hYxnjw1gU7U58mdP0oOKtixk8/ihlDNoVckPAZCKXMZQV2RAc7jT1jvuTvp5trMf/6vXNKDP5sFvX+vAKatDsied1fladI64p4xeOlFoUC+oM4dSeduaUrx497akn59LlQqzdtZOm7ifLdkFarFJA5vbf84OPnG9Q7I6bQDw9vOWQCln+NuUQJJWqwMqhSxynjMVSnNz0DfDeOSJ8JPnlQl22vJ0KqxeYsIrbcMJ3U8wxHG8zy7pebap5DKG//eOVVApZPjQxTVQLpJl2nMpMeVg1RKTpNH/HSMulOVpYw7SMWqUKDfnpC2MZNzlkySqvdAgdH4ojCS5xMRbqY+BFOjVMKgVUYeRtFkdaBtyZsWLPJlu8f/EJuewuf0w5SgX3FhMfbERzYMO+IMhDE54UZbCs1aAENRxWX0hfvJCG1y+oGTji1UWHZyTAYw4hdGVU8OpTY4kyVOZLxRtMx343nN6FEaNIu4AjGgVRWL/pxctB7vGkatVoibGMIVYmHUqXNFYhCff7IUvIJz3arEKXepUdnNLczUzdtqO9wvjjImORwLAhbUWvNljg2OG4JVonR52wuULYk0CS7Xns3KJCW989XLcccHiDSA52xWNRTjcY5Mspr5jxImqOP/eNJYY0ZSmom1UoqJN7LZQ0ZZcVrsXMgbJgz8YE9atRBv7/8yxQTAGXEWjkWlHRVsWmvD4F1QIiai+xIAxlw9He+0I8eTH/c/ky29pQCD8BFyqTpv4y79zVFiyfcrqSHlyJEmOCrMWk4HQjElre9pHsbkmP+nFS2RX21kjkoe6bVhXkZf0F29u2lCOcbcfL4TH09pSmBwpKjHlwOb2w+2bfgbnRN8Eys05knS1L6otQDDEsSe8NiMeR3psAIA15cnptIkW2yLt+VzRWATOgZeahhK+L845OoZdcb/Y0VhiQseI65zvxVQYd0tUtOmpaEsF64QXBQZ1Un5H1BToo+60PXt8ABsrzShMQfAbmRsVbVnI5vEtqBASUV04jOTF8JO/srzU7xZaVqjHLZsroJAxLJco3bE6PCbWMeLCgN0raRePpNdssf99Ng+6x9xJ2882VbFJeII1NYzE5vbh1JAzqaORootqC1Bi0uDRN3pg9/gxYPdieXFqi7YlsyRInui3JzwaKVpXkQetSp7QvrYjvTbo1QrUWOjvv5Tqiw0oy8uRZERy2DkJly8Yc9y/qLHUCM6B5innPFNl1OmDWYLf/aYcJZRylrGx/87JAH74fCsmA8H5b5zBrI7JpCVk11h0GLB7533x4PSwE82DDly9irpsmYCKtixkc/sXVAiJSExTE1+xT2UU/VRfvaYR//7kRZIVvmV5OVDIGDpHXFOSIxf2jjIiqBCLtrNi//eeTs15NmDm8cg3w8uG11Ukv2iTyxhuWF+G/7YO47+twpmv1Hfazt3VNuH1o3PUHfdS7bOpFDJsqcnHKwmEkRzttWPVEhNkaQoCWqwYY7i8oQivnhpJuMPVEe5OJFK0AekJI5Gq0yaTMVj0agxNZGbR9vzJQdz/Yhv2d4zNf+MMZrV7k9bdqikQXhiar9v27DEhMfuqlVS0ZQIq2rKQeKZtoTHrVCgyqtFqdYIxoCQ3Pa16lUIW6fpJQSGXodysReeoK5IcmeodbSQ5yvK0YAzoOqvTtqd9FHlaZWSVRTIZNEroVPJp45EHu8Yhl7Gkj+GJblxfjhAH7vtPCwCkvNNWGn6BZ+q5NvFJ84pS6c4UXrjMgo4R16yJoXOZDATRNDAh6X42csaOxiJMBkL4b2tiCZ/iepZ4i7ZSkwamHGXKw0i8/iDcviDyJCjaAKDQkLkLtsUXP+fakbkQWB1eyZMjRZEEyXli/585Noj1lXkoMaXnRXIyHRVtWWjC41+wyYRit63QoI45uSuTVeVr0TEi7BLK1SqRL9EvVpJeKoUMpaacc57E720fxebq/JR1VM7e1XawaxyNJUZoVfEtlI5VRb4W59fko3vMDb1agVJTal9wKTZpwBimJUge75MuhER08XILAMQ1Itk04IA/yJOWHJntNlabYdQoIpMa8eoYcUEll0VeCIgVYwwNJYaUh5GIO9qk+t0iLtjORGLRFs+LJ5nC6w/C5vYnbTyy2qIDY3PH/neOuHByYAJXU5ctY1DRlmX8wRAckwHk5izMokDcc5Ou0chkqbLo0DXqQls4hGShJXuS2ZWbc6adaesZc6N33IMtNalbXl5s0kTGIwPBEA73JG+p9mxu2lgGAFhelPrvb6VchkKDGgNTxiNP9E+gyKiWdO/Q0gI9io2auPa1nQkhyZXsesgZSrkMl9YX4qXmIQRnSHONVseIC5X52oTCIRpLTGgecCR0HbESizapOm2ZXLS1LYJOmzh6mqzxSI1SjlJTzpzjkc8cF0Yjr6ao/4xBRVuWmfCEF2sv0E5bQ7jTlo4QkmSqtujg9gVxtNdO59kWmQqzdtqThz3h/WznL7Wk7BqKjBpYw08Cmgcd8PiDOK8iN2WPDwBXryxBnlaJ1UmMs59LiSkH/VPGI4/3SRdCImKM4aJaC149NRLzE/IjvTZY9OrI+TsivcsbizDm8kV2FMajY8QV92ikqLHUCI8/iM7R6NL7pCB5p02vxphrMqWFZzR8gVDk5+1sOzIXAqtDXKydvJ8H88X+P3tsEGvLcxfdi+QLGRVtWca2wIs28SxZOuL+k6kqnCDpC4YoOXKRqczXYcQ5GQlA2Ns+CrNOJVn6aDSKjcJ4ZCjEcag7+Uu1Z6JRyvHvT16Ez11Zl9LHFS3JzcFAeDzS7Qvg9LATKyQKIZnqwloL7B5/ZPwyWkd6bFhbbqIuexJdsrwASjmLe0QyGOLoGnUnXrSVpD6MJBmdthAHRjPsXFvXqAvBEEeeVonuMTc4T09RaXf7E9oLKI6zJ2s8EhAmAzqGXTN+jbpH3TjWZ8dbKDUyo1DRlmXs4aLNuACDSAAhcv/yhiJcWl+Y7kuR1NQnAbSjbXERY/97xjzgnGPv6VFsqTGn9Ml5sUmDQIhjxDWJg13jKDKq0/LqaWluDvTq1JyjO1uJSYM+m/Bn0DTgQIgDKyUMIRFduEzooL7SNhz1x0x4/WgfcaWtC5ktDBolzl9qwfMnrXE9me+3eeALhhIu2pYV6qGUs5SGkUh/pk0oJoYybERSPM+2va4QzskAxt3xL7tPxFf/eRy3/fZA3B8vjrMnK4gEEDptLl8wMoUx1bPiaORKGo3MJFS0ZRl7+AfYQoz8B4RzCb+5bQM2VqXuPFAqlObmQCUX/jpScuTiUjFlV1v3mBv9dm9K9rNNJY7YWO1C0ba+MvlLtTNNaW4OJgMhjLv9ONEvdMGkivufKl+vxopSY0zR/8d77eCczrOlwhUNhegYceH0HAEMs0k0OVKkUshQW5jaMJIxlw9yGZNssbp4FjTTEiTFom1b+IXdrhSOoE51st+OpoEJTHjjKxqHHJNQK2RJTfoW90HOFEbyzPFBrC4zRV50JJmBirYsY/MIr7YtxOXai5lcxlBuFroQyRyHIKknFm1doy7sjZxnS23RJn5PHe2zoXfck5L9bJmmNPfMrrYTfRMw61RJOz92UW0BDnWPwzUZ3U6wI71CEbk6CUUkme7yxiIAwM44Fm1LVbQBQEOJMbXjkW4f8rRKyRJrC8WiLdM6bcNOLMnNiaxTSce5tkAwFHncY72xjUmLBu1eFBk1SX1xTYz9P31W7H/vuBtHemzUZctAVLRlGdsC77QtZusq8rKyA7LY5WmVMKgV6BlzY8/pUVj0aiwtSG03tThcnDx7bBBA6s+zZQIxor3P5sHxfjtWlBqT9nftoloL/EGOfR2jUd3+SI8Nlflayc4bkdmVmHKwaokJL8RZtOlUckkSRxtLjRhyTKas6Blz+pAn4Yu1Fn2GFm1DTiwr1KM8HFbWnYYEyd5xD/xBYfz2SK8trvuwTiRvR5uo2KhBjlJ+TqftuePC7wk6z5Z5qGjLMgv9TNti9p13rsZDt21I92UQiTHGUG7WomvMjT3tqT/PBghPsOQyhj3to1ApZJLuJlsoxOWwXaMutFodSRmNFK2vzINGKYt6kfPRXhudZ0uhKxqL8GaPLeaCo2PEheoCnSR/f8UwklSNSI65fTBL+KJAjkoOg1qRUUVbKMRxelgo2nJUchQa1GnptImJjDIGHO2Jr9M25JhManIkAMhkDNUW3Tmx/88cG8CKUiMq8xPvKBNpUdGWZWxuPwwaRUI7ZkhyyGUMCjn9lVyMKsxavNE5DuvEZMpHIwHhe6vQoEYwxLF6iQkqRfZ9n+XrVFApZNjdMgx/kGNFEkJIRBqlHJuq86Nasj3k8KLf7qWl2il0eUMROAdejDFFUoj7l6ZLLiYht1odktzffMZc0hZtAFBgzKxdbX02D7z+MwnMlfnCi2WpJhZBFyyz4GgcnTbOeWQ8MtnOjv3vt3lwqNuGt9ButoyUfb+5s5zd41+wcf+ELFQV+Vo4w+ebtqQ4hEQkPgHIxtFIQHhVudSkwb6OMQCQfEfb2S6uteDUkBMDU3bDzUR8JZ5CSFKnocSAynwtfvXf9sj0yXwmA0H0jrtRnS9NMINZp0KBQY3mwdQUbePJKNr0mVW0iSEkYtFWbtamZTyyfcSFXK0SlywvQL/dG3P0v2MyAI8/mPTxSACoKdCjd9wDrz8I4Mxo5NUraTQyE1HRlmVsbh9yc+jcBCGpJIaRFBrUqJEgxCAeYhjJuiwt2gBhRDIY4jCoFZE/k2S5sFaM/p+723ak1wa5jCW180emY4zhvhvWoGfMjc/87TBCUSyI7hlzI8SB6gLp/v7WFxvQkoKiLRTiGJd4PBIQEiQzKT0yUrSFzwxXmnUYnPBGCpJU6Rh2ocaii7wQE+uI5NBE8hdri5YW6MA5IgvJnzk2gPpiA2pSfO6aRIeKtixj9/iTGiFLCDmXWCCcvzQ/bUEzYhhJNiZHisQwksZSo2QperOpKzKgwKCOomizo7ZQD60qPfvrstWmajPueWsjXmoewo9eaJ339h0jwpNaqcYjAeF7pNXqQDCKojERdo8fIY7kFG0Z1mnL16kigT4V+cLf997x1Hbb2kecqLbosaLUKJxri3FEctAufE1TMh45JfZ/0O7FG13juIZGIzMW/ZbIMjaPHyVpWKpLSDZbVqiHXMZwyfKCtF3DTRvKsSQ3R5Lku4VKjP1PZgiJiDGGi5ZZsLt1GKEQn7FI5JzjaK8NV62gUaR0eO+WShzrs+OnL53CilIjrpoj4rwjfO6nWsJwhrpiAyYDQjy8FGsEZjMaXqydjKLNORmA2xfIiBcdToVDSEQVZuFr2j3mxrJCQ0quwTUZgHViEjUFOmhVCiwvMuBwjLH/1hR22sTOcfuIK7Io/Woq2jIWddqyjN3tp7h/QlKsNDcHu+7ehreftyRt19BYasQHL65J2+NnArHTtnJJakYRL1puwZjLh5OzJAR2j7lhc/vpPFuaMMbwjetWYm15Lu5+9MicoSAdIy6YdSqYJDwTLoaRtAwmN0Fy3J2coq3QIBQVmdBt45xH4v5FZ3Zkpq7TJu7yE8fg15Tl4mivDZxH3021OsSiLfkvsOnVChQZ1Tg97MS/jw1geZF+2teQZBYq2rII5xw2CiIhJC0q8rW0gy/N1lXkYUluDjZXpyYM5oJlc59rO9xjAwCspuTItNEo5XjgveuhVSvwoT+8Abt75mCS9mGX5N2w2kIDGEPSw0jGwp02Kfe0AYh07TOhaBt2TsLu8U8rOCx6FbQqeUpj/9vFoi18Jmx1uQk2tx89Y3MHEk1ltXth0ChS1r2ssejxRuc4DnSOUWpkhqOiLYs4JwMIhjidaSOEZKW6YgNe+9KlkY5bshUaNKgvNuCVtuEZ33+01w6NUoblRakZ3SIzKzZp8Mtb1qHP5sGn/vbmjGfMOkelL9pyVHJU5euSHvsvFm35eunTI4HMKNrOTo4EhE5qRYoTJDuGXWBMWDcACJ02ILYl29aJ5O9om6qmQIfuMTc4BxVtGY6KtiwiRhtTeiQhhKTGRbUWvNE5Do/v3AS7Iz02rCg1QUn7GdNuQ5UZ975tBXa3DOOHz7dMe594TikZ586WF+kXfqctAxIkT89QtAHCiGRqO21OLMnNgUYpByC8UKRSyHAk3FWPhtXhjaT9poLYFVxaoEMtjUZmNPpNkUVs4bEPKWfyCSGEzO6i2gL4giHs6xid9vZAMITj/fbIK/Ek/W7ZXImbN5Xj57tO45ljA5G3i+eUklG01RUb0TniSmos/ZjLB61KHikkpGLWqSBjmdNp06sV5xQ7lflC0RbNWgcpCAvYz3yfKOUyrCg14mgMYSRWuxeFKTjPJqoJh5Fcs6qERvgzHBVtWeRMp42KNkIISYVN1WaoFLJzzrW1Wp3w+kNYU07n2TLJvW9bgXUVufjcY0ciO9SSWbTVFxsQ4mfG+5IhGYu1AUAuY7Do1RiayICibdiJpYX6c4qOCrMWk4FQSrqBnHO0h3e0TbWmLBfH+uwIBEPz3kcoxDHkSO145MYqM65bW4p3b6pI2WOS+FDRlkWo00YIIamlUcqxqcqMV88q2sTdTdRpyyxqhRy/fO966NUKfOiPQjBJZ7hoq5Iw7l90JkEyeSOSo0kq2oDMWbB9asgZWao9VUX4zywVCZLDzkk4JwPnLKZeXWaCxx/EqeH5C/NRlw+BEE/peKRercBP3n1eys76kvhR0ZZF6EwbIYSk3oW1FrRYHZH9S4AQTGDKUUYCC0jmKDJq8Mv3rke/zYNP/PVNnBp2osSkQY5K2vFCAKg0a6FSyNCSxDCScXeSi7Y0j0dOeP2wTkzOGFUvxv6n4lxb+/DMHVlxpcfRnvlHJM/saMvefZpkdlS0ZRGbRziMTJH/hBCSOhfVCtH/U7ttR3rsWF1mojMkGWp9ZR6+cd1K/Ld1GP860p+05dcKuQy1hckNIxl1+mCWOIREVKBPf9E2U3KkaEluDmQM6B51Jf06IjvaCqZ/r1Tn62BQK6JKkBwK72grTGGnjSwcVLRlEbvbD7VCJvlhZEIIIbNrKDYiX6eKRP97fEG0WB00Gpnhbt5UgfdsrkCIJ+c8m6iu2JDUBdvJ7rSNOCdTFvQxk7mKNpVChhJTToo6bU6oFTKUmqaPGcpkDKvKTFGFkQzahQI4leORZOGYt2hjjJUzxnYxxpoYYycYY58Kv/3/GGNHGWOHGWM7GWOlyb9ckgibmxZrE0JIqslkDBfWWvDqqVGEQhwnB+wIhnhkbIpkrnvfugK3bqnE289bkrTHqCsywDoxCZvbJ/l9e/1BuH1B5CWpaCs0qBEIcYwn4dqjdXrICZVchvK8mc9kVeZr0ZWCok1MjpTJzu2erynPRdPAxLwpoeJ4pLhOgZCpoum0BQDczTlvALAFwMcYY40A7uOcr+acrwXwNID/Td5lEinYPX5arE0IIWlw4TILRpyTaB504HD4bMuaMkqOzHQqhQz/d/1KbKgyJ+0xkhlGElmsnbROm9ARSmcYyakhJ6otOihm2XeYqgXb7cOzL2BfU2ZCIMTRNDB3R3XI4YVFr6LdjWRG835XcM4HOOeHwv/tANAEYAnnfOp3ng5A+nrjJCo2j49CSAghJA0uqi0AALx6ahhHe20oMWno3AoBANQXGwEgKWEkkcXaSRyPBNK7q+3UsBPLimZfCl2Rr8WoywfnZCBp1+APhtA95j7nPJtodXgUer4RyUG7N6Vx/2RhiamUZ4xVATgPwL7w/3+LMdYD4BZQpy3j2dx+ivsnhJA0KDZpUFuoxyttIzjSY8Nq6rKRsCKjGqYcZVLCSJLfaUtv0eb1B9Ez5p4x7l8USZBMYretZ8yNQIij2jLzdZSYNCgwqHGkxzbn/VgnUrujjSwsURdtjDE9gMcBfFrssnHO/4dzXg7gEQAfn+XjPsQYe4Mx9sbw8LAU10ziZPf4abE2IYSkyUW1BdjXPobOUTedZyMRjDHUFRnQmsSibbF22tqHXQjxmUNIRJVmofuVzDCS2ZIjRYwxrCkzzZsgOeSgThuZXVRFG2NMCaFge4Rz/sQMN/kzgHfO9LGc8wc55xs45xsKCgriv1KSMDrTRggh6XNRrQW+YAgALdUm09UVG9BidYBzaU+aJLvTplcroFXJMZSmok1cWD1X0XZmV1vyYv/FHW01c6SMri7LRfuICw6vf8b3+wIhjDh9tKONzCqa9EgG4CEATZzzH055e+2Um70NQLP0l0ekMhkQEqQoPZIQQtJjc40ZSrmQLLeKxiPJFHXFBji8AfTbvfPfOAZjLh/kMgajJnm/+9O5YPvUkBMyNvdKBpNWCVOOMqmdtvYRF8w6FXLn2Ie3pjwXnAPH+mY+1yaGuVCnjcxGEcVtLgBwK4BjjLHD4bd9BcAHGGN1AEIAugDclZQrJJKwe4RXdkxJWrBJCCFkblqVApur8zHk8Cb1STRZeMQEydZBB5bkzhxdH48xtw95WuWMMfRSSeeC7dNDTpSbtfPun63M16IriWfa2oed8+7yW71EeKHmSI8dW5daznm/GPdPO9rIbOYt2jjnrwKY6W/7M9JfDkkWu1so2uhMGyGEpM8PblqDSX8o3ZdBMszyIqFoax50YHt9oWT3O+b0IS/JL9YWGNRoCy+4TrVTQ07UzjEaKSo3a3Filg6XFDpGXLhk+dxHgPJ0KlSYtTg6y7k2a7jLWkjjkWQWtAgiS0Q6bVS0EUJI2hQZNajI16b7MkiGMeUoUWrSoGVw7j1esRpz+2BO0nk2UbrGIwPBEDpGXFgaRdFWadaid9yDQFD6F0wcXj+GHJOoniWEZKo15bmzxv6LnTYajySzoaItS9jEThudaSOEEEIyTl2xQfLY/zFX8ou2QoMado8fk4FgUh/nbD3jHviCoTnj/kUVZi0CIY4Bic8MAkDniDB2WTNL3P9Ua8pM6LN5ZixyBycmoZQzmOkYC5kFFW1ZwuYRxyPphwEhhBCSaZYXG9A+7IJfwm7QeAqKtnTF/reFl5HPlRwpErvbyQgjaR8RRkNni/uf6sySbds57xua8KLQoEnq+UOysFHRliVsbiH2l5ZrE0IIIZmnvtgAXzCEzhFpoulDIY7xFI1HAqkv2sS4/2jGI8/E/iehaBt2gTEh7GQ+K5cYIWPAkRlGJK0OL51nI3Oioi1LTHj8YAwwqKMJDCWEEEJIKtUVGQFAshFJu8ePEEfyiza9cAYr5UXbkBNFRnVUSawlphwo5SwpCZIdIy6U5eVArZg7wRIQEmSXFxlm7LQN2r2UHEnmREVblrCFF2tT250QQgjJPEsLdZDLGFokKtrGwhM2Keu0OVNbtJ0eckY1GgkAchlDWZ4WPUkaj6yO4jybaHWZCUd6bOcsUh+amKQQEjInKtqyhM3tp7h/QgghJEOpFXJUW3RosUpUtLlSU7Tl61VgLLWdNs45Tg+7UFtoiPpjKsxadI1JM3o69To6hl2omWdH21Sry3Ix7vajd9wTeZtrMgDHZIDGI8mcqGjLEjaPnxZrE0IIIRmsrtggXactXLQle0+bUi6DWavCUAqLtsEJL5yTgajOs4kqzMKC7bM7XIkYckzC5QtGFUIiWlueCwA4MmVEkhZrk2hQ0ZYl7B7qtBFCCCGZrL7IgO4xN1yTgYTvSyza8vXJf8E21bvaToWXeUcT9y+qzNfC4Q1E9tZKoX1Y6NxFE/cvqis2QKWQ4UiPLfI264TwtaPxSDIXKtqyhN3to8XahBBCSAZbXiyM+7WFi5JEpKrTBqS+aGuzhou2GDpt5eEESSnDSMS4/2gWa4uUchkaS4zTEiSHHOJibRqPJLOjoi1L2Dx+WqxNCCGEZLD6cNHWMjiR8H2NuXzQqeTQKOdPNUxUgT7FnbZhJ0w5Slhi6CJWJmFXW8ewCxqlDCUxdsjWlufieJ8dwZAwqjloF4s26rSR2VHRlgVCIU7jkYQQQkiGK8/TIkcplyT2f9zlQ16SQ0hEBUY1hp2Tkp4Xm8upcHIkY9EnYpfnSV+0tY+4UJWvizmZe3WZCW5fEKfDu+asE5PQquTQ01omMgcq2rKAwxsA56AgEkIIISSDyWQMy4v0koSRjLp8yE9V0aZXwxcIYcKT+Fm8aJwecqI2htFIANCpFbDo1eiWcDyyY8SFpTGcqxOtLssFABwOn2uzOrwoMmpiKkJJ9qGiLQuIh27pTBshhBCS2eqKDWiVIPZ/3J3CTltkV5s36Y817vJh1OWL6TybqDJfuth/XyCE7jE3qmOI+xfVWHQwqBWRJdtWu5fOs5F5UdGWBWwe4TAyjUcSQgghma2u2IgRpw8jCS6rHnX6kr6jTSQWbamI/T8VHimMJe5fVGHWomfMM/8No9Az7kYwxGOK+xfJZAyrykw4Gg4jETtthMyFirYFZjIQjPljbG6h00ZBJIQQQkhmOxNGkli3bdztgzlFxyIKxU5bKoq2OOL+RRVmLfrtnrieS51NjPuPp9MGCCOSTQMT8PqDsE5MUtFG5kVF2wLy39ZhrLznPzH/ILd5qGgjhBBCFoLlRULRlkgYidcfhNsXhDkFO9oAoMAgFBypKNrarE7kKOVYkpsT88dWmLXgHOgbT7zb1hGO+49lR9tUa8tN8Ac59raPwhcIUdFG5kVF2wLBOcf3/tMMf5Bjd8tQTB8rnmkz0ngkIYQQktEKDGrk61RoTaBoE3e0parTZtQooFLIUtNpG3aipiD2xEbgTOx/lwQJku3DLuTrVDDF+YK4GEay86QVAO1oI/Ojom2B+M8JK473TUAuY9jbPhrTx9rdwg9vCiIhhBBCMl9dsQHNCYSRRIq2FJ1pY4ylbFfb6XDcfzwqwgu2e6Qo2kZccZ1nE5WYNLDo1XghUrRRp43MjYq2BSAU4vjR862osehw4/oyvNE5HlnIGA2b2w+tSg61IvkLNgkhhBCSmLpiA9qsDoRi+F0/VaqLNkDoEA4nGJ4yH9dkAH02T8xx/6ICgxoapQxdEsT+tw+74j7PBgiF7tpyUyS8pZiKNjIPKtoWgGeOD6DF6sCnLq/F+Uvz4ZgM4GT/RNQfb6PF2oQQQsiCUVdkgNsXRM94fMWFWLSlKvIfCBdtSe60ieEf8XbaGGOoMGsTXrA94fVjxDmJmjjCUKYSRySBMwmchMyGirYMFwxx/PiFNtQW6nHt6lJsqckHAOzriH5E0u7x03k2QgghZIGoSzBBUizaUrVcGxASJJNdtJ0aFr4e8RZtAFBh1iW8YLsjweRI0eoyEwAgT6uERknTUGRuVLRluKeO9OHUkBOfuWI55DKGIqMGVfla7G0fi/o+7G4/JUcSQgghC4SYIJlI0SaXMRg1qfvdX2BQY9Tlgz8YStpjnBpyQiFjqMyPv1gSO22cxzd6CgAdI0LRtjSBM20AsCbcaaPzbCQaVLRlsEAwhJ+80IaGEiOuWlEcefvm6nzs7xiN+lybzeNDbk7qXm0jhBBCSPx0agXKzTlxh5GMuX3I0yrjSliMlzjeN+r0RXV7zjn+ebgPXaOuqB+jzepEZb4WSnn8T18r87Xw+IMJnb9rH3ZCxoDycLBJvPJ0KlTla1FioqKNzI+Ktgz2xJt96Bx14zOX1077wbtlqRkT3gCaB6M712ajThshhBCyoNQVGeOO/R9z+pCXorh/UYE+tgXbjx3sxaf+ehjX3v8qdp4YjOpjTg3HnxwpEhMkExmRbB9xoSxPK0nA28/esw5fvbYx4fshix8VbRnKFwjh/hfbsLrMhCsai6a9b3N1+FxblCOSdo+f4v4JIYSQBaS+2ID2ERcmA8GYP3bM7UtpciRwptM27PTOe9v2YSfufeoENlblobpAhw/98SC+91zznBNEvkAIXaNu1BYaErrOivCutkTCSNqHE4v7n2rlEhOWJhhoQrIDFW0Z6rGDPegd9+AzVywHY9PHG0pzc1BuzokqjMTrD2IyEIp7+SMhhBBCUq+u2IBgiOP0UPTjg6IxV+qLtsLwuaz5Om2+QAif+uthqBQy3H/zeXj0w+fj5k3l+MXu07jtt/sjISpn6xp1IRjiCXfayvJywBjijv3nnKNjJLG4f0LiQUVbBvL6g/jZS6ewriIX25YXzHgb4Vzb2Lw7XGxuPwDQmTZCCCFkAYkkSFqjX/EjGk9D0WbRC483X9H2g50tONZnx3fesRolphxolHL8v3esxnffuQr7O8dw7f2v4EiP7ZyPOzXkBJBYciQAqBVylBg1cS/Ytk5MwuMPJhz3T0issr5oe/SNHvztQHe6L2Oavx3owYDdi7t31J3TZRNtrjZj3O1H69Dc8+42j/CKFZ1pI4QQQhaOaosOSjlDy6Azpo8LhTjG0zAeqVbIYcpRRpZFz+TVthH86r/teM/mCly1snja+961sQKP37UVjDHc+MAe/GV/97SER7Fok2IssSJfi644i7b24fB1UKeNpFjWF23PHBvAz3edTij6VUpefxA/33UKm6rN2Lo0f9bbRfa1zXOuzR7ptFHRRgghhCwUSrkMSwv0aIkydExk9/gR4kh50QbMvWB71DmJzz56GMsK9fjaNTMHb6wqM+HpT1yILUvz8eUnjuGLjx+F1y+c6Ts17MSS3BxoVYqErzORBdvt4bh/qc60ERKtrC/adjQWo3vMjZY4Y3Wl9qe9XRhyTOLuGc6yTVVu1mJJ7vzn2mweoWij5dqEEELIwlJXbIh5V9uYW5iwSUvRpp+5aOOc44uPH4XN7cf97z4POarZUxfzdCo8fPtGfPLSZXj0jV7c8MDr6Blzo82aeHKkqDJfh2HHJNy+QMwf2z7sQo5SjiIDxfST1Mr6ou3yxkIwBuw8YU33pcA1GcAvd5/Ghcss2Fwze5dNtLnajP0dY3N2CSOdNhqPJIQQQhaUumID+u1e2MMvwEZDDPJIR9FWaFTPuP/sj3u78ELTEL50dT0aS43z3o9cxvDZHXX4zfs2oGvUjbf+7FWcGpKuaBP3q/WMeWL+2I4RJ6otupTuwCMEoKINhQYNzivPxfMn01+0/WFPF0ZdPnzmiuVR3X5zjRkjTh9OD88+737mTBsFkRBCCCELSX04jKQthmkgsWhL9Z42YOZOW8ugA9/8dxO21RXgjguqYrq/yxuL8K+PX4hiowa+YAi1UnXawkVbLIu9Re0jLlTTaCRJg6wv2gDgisZiHOuzo98W+ysuUnF4/fjVf09jW10B1lfmRfUx4r62PXOca7N7/FDIGHRzjCIQQgghJPPUFQtdqeYYRiTFoi1fn54zbW5fEM5JYezQ6w/ik395E0aNEt+/cc2cxz5mU2XR4cmPXoDvvXM1rj9viSTXGVmwHeO5Nl8ghJ4xN5ZSCAlJAyraAOxYISyvTme37eHXOmFz+/HZKLtsAFCZr0WRUY197bOfa7O5hcXa8fygJIQQQkj6lJo0MKgVMZ1rS2unTVywHe62ffuZJrRYHfj+jath0avjvt8clRw3bSyHRinNC9C5WiUMGkXMRVv3mAshDuq0kbSgog3A0gI9lhbosPPkYFoe3+7249evtOOKxiKsLsuN+uMYY9hSk499c5xrs3n8tFibEEIIWYAYY1geYxjJmMsHnUouWYETi6lF2wsnrfjDni584MJqbKsrTPm1zIUxFleCZPtwODnSQjvaSOpR0Ra2Y0Ux9raPRYI7UumhV9vh8AZi6rKJNlfnY9gxiY6Rmeey7W4/xf0TQgghC1RdsQEtVkfUq4nGXT7kpSGEBBByAgDgeJ8dn//7ETSWGPGFq+rSci3zqczXons0xqIt/FyLOm0kHahoC9vRWIRgiGNXy1BKH9fu9uO3r3XimlUlaCiZP1HpbJtrzACAfR0zn2uzeXwUQkIIIYQsUA0lRtg9fvzzcH9Utx91+ZCfpqJN7LR997lmePxB3H/zeVArMvNMfblZi55xN4Kh6Pf0dgy7YNGrYdTQi+Ek9eYt2hhj5YyxXYyxJsbYCcbYp8Jvv48x1swYO8oYe5Ixlpv0q02iNWW5KDSoUz4i+cSbvXBOBvCRbUvj+vgaiw4WvRp7ZznXZvcIZ9oIIYQQsvC8/bwl2Fxtxqf/dhi/fbVj3tuPu9PXacvNUUIhY5gMhHDPW1dIFtGfDJVmHfxBjsEJb9Qf0z7iRA2FkJA0iabTFgBwN+e8AcAWAB9jjDUCeB7ASs75agCtAL6cvMtMPpmM4fLGIuxuGYbXH0zJY3LO8Zf93VhTnouVS0xx3QdjDJtrzNjXPvO5NjGIhBBCCCELj16twO/fvwlXrSjGN54+ie882zznqOSo05eWHW2A8FyqtsiAa1eX4N0by9NyDdGqiCP2v2PEhRoajSRpMm/Rxjkf4JwfCv+3A0ATgCWc852cc3GV/F4AZcm7zNTY0VgEty+I10+PpOTxDnXb0Gp14uYEf7BtqcnH4IT3nAO1gWAIDm+AFmsTQgghC5hGKcfPb1mH926pwAMvn8bnHjsKfzA0423H3T6Y03gs4p8fuwD3v/u8jE+trswXF2xHd67N7vFjxOlDNXXaSJrEdKaNMVYF4DwA+8561/sBPDvLx3yIMfYGY+yN4eHhuC4yVc5fmg+9WoGdJ1IT/f+X/d3QqeR465rShO5nS3X4XNtZ+9omvEJNTUEkhBBCyMImlzH833Ur8dkrluPxQ7340B/egNsXmHYbrz8Ity8Icxp2tIlUChlksswu2ACgxKSBQsbQFWUYiRj4VlOQuSOfZHGLumhjjOkBPA7g05zziSlv/x8II5SPzPRxnPMHOecbOOcbCgoKEr3epFIr5NhWV4AXmqwxHUyNx4TXj6eP9uNta5dAp1YkdF/LCvXI16mwt2P6uTa7R0jCpMh/QgghZOFjjOGTl9Xi229fhZdbh/GeX++L7GUDzuxoS2enbaFQyGVYkpcTdex/+7ATAKjTRtImqmqBMaaEULA9wjl/YsrbbwNwLYDLeLRZtBnuisYiPH10AId7xrG+0py0x/nnm33w+kN4z6aKhO+LMYZN1eZzOm02t/DDOzeHfngTQgghi8V7NlcgX6/CJ//yJm544HX84f2bUJanPVO0pelM20Iz2662UIije8yN5kEHWgYdaLFO4FCXDXIZi5yFIyTV5i3amDCU/BCAJs75D6e8/SoAXwRwCec8tkUXGWx7fSGUcoadJ6xJK9o45/jz/h6sXGLEqrL4AkjOtrnajGePD6JnzI3y8A8UG3XaCCGEkEXpyhXF+NOdm/GB3x3AO37xOn7//k1UtMWowqzFv47049W2ETQPToQLNAfarE54wqF0jAGVZi3WlJtwaX0hVAralkXSI5pO2wUAbgVwjDF2OPy2rwC4H4AawPPhw6Z7Oed3JeMiU8moUWJLTT7+c2IQX7q6PikHaY/22tE0MIFvXr9SsvvcXJMPQNjXJhZt4qJwOtNGCCGELD4bq8x47K6tuO23+3HTr/bgbeEz8lS0RafaosOEN4D3PiRENVj0KtQVG3DzpgrUFxtQV2xAbZEeWlVix1gIkcK834Wc81cBzFS5PCP95WSGHSuK8bV/HMepISdqiwyS3/9f9ncjRynHdWsTCyCZqq7IgFytEvvaR3HDeiHIUzzTRsu1CSGEkMWprtiAxz+6Fe97aB8e2dcNgIq2aN24vhw6tQIVZi3qig2w6NXpviRCZkU93hlc0VAEANh5UvoUSedkAE8d6cfb1pTCoJGuAyaTMWyqMmNfx5lzbbZwp82ooVeICCGEkMVqSW4O/n7XVpxXkQuDWgGjhM8vFjOTVombN1XggmUWKthIxqOibQbFJg3WlJmSUrQ9dbgfbl8Q794k/dLJzTX56B5zo9/mAQDYPD4Y1Aoo5PTHTAghhCxmeToV/vah8/H8Zy9ZEJH7hJDY0LP5WexYUYwjPTYM2r2S3u9f9nejvtiAteW5kt4vIISRAMC+cPS/3e2nEBJCCCEkS6gUMhSbNOm+DEJIElDRNosdjcKI5PNN0nXbjvfZcazPjps3VSQl4KShxAiDRhGJ/rd7/Miloo0QQgghhJAFjYq2WSwr1KPaosPOE4OS3edf9ndDrZDh+vOWSHafU8llDJurz5xrs3n8MFFyJCGEEEIIidf3vgfs2jX9bbt2CW8nKUNF2ywYY9jRWIS97aOY8PoTvj/XZAD/PNyPa1eXJrWQ2lydj44RF6wTXtjcPlqsTQghhBBC4rdxI3DTTcBLLwGvvSYUbDfdJLydpAwVbXO4orEI/iDH7pbhhO/r6aP9cE4GcHMSAkim2lwjnGvb2z4Ku4fOtBFCCCGEkARs3w48+ihw3XXAhRcC118v/P/27em+sqxCRdsczqvIg0WvkmRE8i/7e1BbqMf6yjwJrmx2jSVG6NUK7OsYE8600XgkIYQQQghJxPbtwCc+Ifx3IACsWJHe68lCVLTNQS5juLyhCLtbhjEZCMZ9Pyf7J3C4x5a0AJKpFHIZNlTlYXfzEPxBTmfaCCGEEEJIYnbtAn79a+DDHwbcbqHrxnm6ryqrUNE2jx0riuCcDGDP6dG47+OvB7qhUsjwjnXJCSA52+bqfPSHVxVQeiQhhBBCCImbeIbt0UeBBx4APv5xYO9e4DOfSfeVZRUq2uaxdakFWpU87kXbHl8QT77Zh7esLEauNjWhIFvC59oAwERBJIQQQgghJF4HDkw/w3b//cCGDcDPfw40N6f32rIIFW3z0CjluGR5AV44aUUoFHsb+N/HBuDwBnDzpookXN3MVi4xQauSA6BOGyGEEEIIScAXvjA9dIQx4KmngNxc4D3vAXy+tF1aNqGiLQo7VhRhyDGJI722mD/2L/u7UVOgw6Zq8/w3lohSLosEntCZNkIIIYQQIqmSEuA3vwHefBP42tfSfTVZgYq2KFxaVwS5jMU8ItlqdeBg1zhu3pj8AJKznb80HwCQr6PxSEIIIYQQIrHrrgM+9CHgvvuA3bvTfTWLHhVtUTBpldhSY445+v8v+7uhlLOUBZBMdfvWKvz29g0oNGpS/tiEEEIIISQL/PCHQG0tcOutwPh4uq9mUaOiLUo7GotxetiF08POqG7v9QfxxKE+XLmiGPl6dZKv7lxalQKX1hel/HEJIYQQQkiW0OmARx4BBgeBu+6iNQBJREVblC5vFAqge586gZ/v+v/t3X2QVeV9wPHvDxBQGOJLUKNJjVQmqZOiNrvR1mi66qSKgxpSidGgo21qTRNp1KLVCZU4MqnTkoyx6jhEAeMoL9XRiYEmZha1RM0uFhNSaQDfSgLyEtSAb6w8/eOc292Q3exedu+55+5+PzNn9t7nnuee3z37m93zu885z1nPQ/+1kac2bOelbbt4e/fv3sNt+ZrNvP7Wbi4scAISSZIkqVBNTfD1r2czTN57b72jGbRG1DuARnHkgfsz9YQj+dHaLTy5btvvvH7wmJEcPm40H3jfaA5/32h+8uKvOeqQAzhpwiF1iFaSJEkqyMyZsHx5dg+3U06Bo4+ud0SDjkVbFeZ+7ngA3ny3g82vv82mfNn8+lv///hXr7/Ns6/sYMebu7lxyrEMG1bsBCSSJElSoYYPh4UL4bjj4AtfgMcfhxGWGQPJvbkPDhg5ggnjxzJh/Nge19n93h72G+7Zp5IkSRoCjjoKJk+G+++HOXNg1qysvbU1u0H3zJn1ja/BWVXUiAWbJEmShpQvfhFGjYLZs+Hpp7OCbdo0aG6ud2QNz5E2SZIkSf3X0gJLlsB558FZZ2WnTS5ZkrWrXxwOkiRJkjQwpkyBiy+G116DAw+EU0+td0SDgkWbJEmSpIHR2grf+x6cfTZs2AAXXVTviAYFizZJkiRJ/Ve5hm3x4qxwO+ccWLQIbrih3pE1PIs2SZIkSf3X1pYVbJVr2JYuhUmT4JZbYNWq+sbW4CKlVNjGmpqaUnt7e2HbkyRJklRHW7dCUxPs2QPt7XDYYfWOqO4iYlVKqamaPo60SZIkSaqN8ePh4Ydh+3b47GfhnXfqHVFDsmiTJEmSVDvHHw/z58PKlfDlL0OBZ/oNFt6nTZIkSVJtTZsGzz0Hc+bACSfAl75U74gaiiNtkiRJkmrvppuy+7jNmAErVtRmG7fcks1i2VVra9bewCzaJEmSJNXesGHw3e/CxIlw/vnw0ksDv43m5mxUb9my7HnlNgTNzQO/rQJZtEmSJEkqxrhx2cQkO3fC6afDrl2drw3EiFhLS3ZvuHPOgY9/vPO+cZXbEDQoizZJkiRJxZk4EWbPhhdegMmTs4lJBnJE7NVXoaMDnn0Wrrii4Qs2cCISSZIkSUWbORNefBHuvBNOOw3WrBmYEbFdu+DKK2HECLjuOrjjjuw9G7xwc6RNkiRJUvFuvx0+9rFsUpIpUwamsLr8cti2DebOzSY+Wbw4G8Hbe3KSBmPRJkmSJKl4K1bApk3ZdW4LF8Ly5f17vw0b4IEH4Iwz4CtfydpaWrLCra2t3+HWU69FW0R8KCJaI+L5iPh5RMzI28/Pn++JiKbahypJkiRpUKhcw7ZkCTz4ILz3Hkyd2r8RsauvhtGjYcGC325vaclOx2xgfRlp6wCuTin9EXAS8HcRcSywBpgKPFHD+CRJkiQNNm1tndewnX56drPtt97K2vbFD36QzUr5ta/BEUcMbKwlECml6jpEPAzcllL6Yf58BXBNSqm9t75NTU2pvb3X1SRJkiQNJTt3wqRJMHw4rF4NY8b0ve/u3Vnfjo5sQpNRo2oW5kCIiFUpparOVKzqmraI+DBwAvBMNf0kSZIkqUdjx8I998D69XD99dX1ve02WLsWvvnN0hds+6rPRVtEjAX+Hfj7lNIbVfT7m4hoj4j2rVu37kuMkiRJkga7T30KZsyAW2/NJinpiy1b4MYb4cwz4eyzaxldXfWpaIuI/cgKtvtSSg9Ws4GU0l0ppaaUUtP48eP3JUZJkiRJQ8GcOXDMMXDppdkpk725/np480341rcgoubh1UtfZo8M4DvA8ymlubUPSZIkSdKQdMABMH8+vPxy7zM+trfD3Xdno3Mf+Ugh4dVLX0baTgamA6dFxOp8mRwRn4mIjcCfAo9GxH/UNFJJkiRJg9/JJ8NVV8Edd8Bjj3W/zp49cOWVcOihMGtWsfHVwYjeVkgp/SfQ01jjQwMbjiRJkqQh76ab4NFH4bLLshkhx4377dfvuw+eeiobadv7tUGoqtkjJUmSJKnm9t8/O03yl7/Mbprd1W9+k5062dwMl1xSl/CKZtEmSZIkqXxOPDErzubNg2XLOttvvhk2b4ZvfxuGDY1yZmh8SkmSJEmN58Yb4bDDYPp02LED1q2DuXPh05+Gxx+vd3SFsWiTJEmSVE6jRsHs2bB9O1xwAXz1qzBiRDZzZHNzvaMrTK8TkUiSJElS3Vx+OaxcCffemz0fMwaWLoWWlvrGVSBH2iRJkiSV27x5cPjh2eMZM4ZUwQYWbZIkSZLKbuVK6OiAa6+Fu+6C1tZ6R1QoizZJkiRJ5dXaCtOmweLF8I1vZD+nTRtShZtFmyRJkqTyamvLCrXKKZEtLdnztrb6xlWgSCkVtrGmpqbU3t5e2PYkSZIkqUwiYlVKqamaPo60SZIkSVKJWbRJkiRJUolZtEmSJElSiVm0SZIkSVKJWbRJkiRJUolZtEmSJElSiVm0SZIkSVKJWbRJkiRJUokVenPtiNgKvFzYBvvu/cC2egehujMPVGEuCMwDdTIXBOaBOvU3F45KKY2vpkOhRVtZRUR7tXcl1+BjHqjCXBCYB+pkLgjMA3WqRy54eqQkSZIklZhFmyRJkiSVmEVb5q56B6BSMA9UYS4IzAN1MhcE5oE6FZ4LXtMmSZIkSSXmSJskSZIklVhDFW0RcWZE/E9ErI+I67q0L4qI1fnyUkSs7qH/wRHxw4hYl/88KG+/qEv/1RGxJyKO76b/ffn210TE3RGxX94eEXFrHtdPI+JParMHVFHiXPhoRDwVEe9ExDW1+fSqKHEeXJT/LfhpRPw4Io6rzR5QRYlz4dw8D1ZHRHtEfLI2e0BQ0zzYLyIWRMTPIuL5iPjHHvofHRHP5P0XRcTIvN3jhIKVOBc8TihQifOg+uOElFJDLMBwYAMwARgJPAcc2816/wrM6uE9bgGuyx9fB/xzN+v8MfBCD/0nA5Ev9wNXdGlflrefBDxT7/01mJeS58KhQDNwM3BNvffVYF5Kngd/BhyUPz7LvwlDOhfG0nkpwiRgbb3312BdapkHwIXAA/njA4CXgA93038xcEH++E6PE8yFbnLB4wTzAPbhOKGRRto+AaxPKb2QUnoXeAA4t+sKERHANLJ/mN05F1iQP14AnNfNOp/vqX9K6fspB/wE+GCX912Yv/Q0cGBEfKDPn0zVKm0upJS2pJTagN1VfSLtizLnwY9TSjvy1Z6m82+FaqPMubAzbwMYA3ghee3UMg8SMCYiRgD7A+8Cb3Tz3qcBS7vp73FCsUqbCx4nFKrMeVD1cUIjFW1HAv/b5fnGvK2rU4BXU0rreniPw1JKmwDyn4d2s87n6PkXB2RDosB0YHkVsWnglDkXVJxGyYO/IvuGXbVT6lyIiM9ExFrgUeCy39df/VLLPFgK7AI2Aa8A/5JS+vVefQ8BXkspdXSzfY8TilXmXFBxGiUP+nScMKK3FUokumnb+xvLHr8F7dMGIk4E3kwprell1duBJ1JKT1YRmwZOmXNBxSl9HkREC9kfY69jqq1S50JK6SHgoYg4FbgJOGNf49DvVcs8+ATwHnAEcBDwZEQ8llJ6oY/b9zihWGXOBRWn9HlQzXFCI420bQQ+1OX5B4FfVZ7kw5NTgUVd2u7JLzD8ft70auV0hPznlr22cQG9f4v6T8B44Kq+xqYBV+ZcUHFKnQcRMQmYB5ybUtpexedS9UqdCxUppSeAP4yI9/flQ6lqtcyDC4HlKaXdKaUtwEqgaa/tbyM77bHyhXjX7XucUKwy54KKU+o8qPY4oZGKtjZgYj4Ly0iyf6CPdHn9DLILvDdWGlJKl6aUjk8pTc6bHgEuyR9fAjxcWTcihgHnk53v2q2I+GvgL4DPp5T2dHnpEeDiyJwEvF4ZSlVNlDkXVJzS5kFE/AHwIDA9pfSLfnxG9U2Zc+GY/LoGIpsxcCRgEV8btcyDV4DT8v/zY8gmE1nbdeP5tYutwF9209/jhGKVORdUnNLmwT4dJ6QSzO7S14Vs9qVfkM0Ec8Ner80H/raX/ocAPwLW5T8P7vLanwNP99K/I9/26nyZlbcH8G/5az8Dmuq9rwb7UuJcOJzsm503gNfyx+Pqvb8G61LiPJgH7OjS3l7vfTXYlxLnwrXAz/O2p4BP1ntfDealVnlANgvokvx3+d/AP/TQfwLZRDTr8/VH5e0eJ5gLlVzwOME8gH04TqhMQyxJkiRJKqFGOj1SkiRJkoYcizZJkiRJKjGLNkmSJEkqMYs2SZIkSSoxizZJkiRJKjGLNkmSJEkqMYs2SZIkSSoxizZJkiRJKrH/A8detu3gI5VAAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACdPklEQVR4nOzdd3hb5fk38O+jYcuyLMt7xyNxYjuxs8MIgSTssmmhLRQKLaW0pdAJHfSF9lc66KLQQRmFDmjLLC1t2Qlk78RJ7DhxEu+tbQ1rPe8fR0dRPDWOVnx/rouLWDo6ehw79rnPcw/GOQchhBBCCCGEkMSSJXoBhBBCCCGEEEIoOCOEEEIIIYSQpEDBGSGEEEIIIYQkAQrOCCGEEEIIISQJUHBGCCGEEEIIIUmAgjNCCCGEEEIISQIUnBFCCCGEEEJIEqDgjBBCUhRjbDToPx9jzBH08c2JXl8kGGMdjLGLEr2O6TDGNjLG7ojRueczxl5njA0zxgyMsbcYYwvGHfNVxtgAY8zMGPsjYyw96Lm7GWO7GWNjjLHnJjn/hYyxI4wxO2NsA2OsMug5xhj7KWNM7//vEcYYi8XnSQghZHIUnBFCSIrinGvE/wB0Abgq6LHnE72+8RhjijPhPWJMB+BfABYAKAKwE8Dr4pOMsUsBfAvAhQCqANQA+H7Q6/sA/BDAH8efmDGWD+BVAN8DkAtgN4B/BB1yJ4BrASwG0ATgSgCfl+BzIoQQEiIKzggh5AzDGJMxxr7FGDvu3wF5kTGW63+uijHGGWO3M8a6GWNGxthdjLGVjLFmxpiJMfaboHPdxhjbwhh73L9Tc4QxdmHQ89mMsWcYY/2MsV7G2A8ZY/Jxr/0VY8wA4CHG2FzG2Pv+dY0wxp5njOn8x/8FwBwA//bv/t3HGFvLGOsZ9/kFdtcYYw8xxl5mjP2VMWYBcNsMa5rHGPvA/7mMMMaCg5Pg91D5z6n3/53sYowVMcYeBrAGwG/8a/yN//g6xtg7/t2uNsbYjUHneo4x9oT/eav//Ssne1/O+U7O+TOccwPn3A3gVwAWMMby/Id8GsAznPPDnHMjgP8DcFvQ61/lnP8TgH6S018P4DDn/CXOuRPAQwAWM8bqgs79C855D+e8F8Avgs9NCCEk9ig4I4SQM889EHZALgBQCsAI4LfjjjkLQC2AjwN4FMB3AVwEYCGAGxljF4w79gSAfAAPAnhVDPYA/AmAB8A8AEsBXALgjkleWwjgYQAMwI/966oHUAEhSADn/BacvgP4SIif7zUAXoaw6/T8DGv6PwBvA8gBUA7g8SnO+WkA2f715QG4C4CDc/5dAJsA3O1f492MsUwA7wB4wf95fhLA7xhjC4POd7P/vfMB7PevMxTnAxjgnIvB1kIAB4KePwCgKCh4m85pr+Wc2wAc9z8+1bmDPwdCCCExRsEZIYSceT4P4Lv+HZAxCMHPx8al/P0f59zJOX8bgA3A3zjnQ/4dk00QghrREIBHOeduzvk/ALQBuIIxVgTgcgBf4ZzbOOdDEHZ6PhH02j7O+eOccw/n3ME5b+ecv8M5H+OcDwP4JYQgMhrbOOf/5Jz7AGhnWJMbQCWAUv/nv3mKc7ohBGXzOOdezvkezrllimOvBNDBOX/W/3nuBfAKgI8FHfMfzvmH/q/HdwGcwxirmO6TYoyVQwiqvxb0sAaAOehj8c9Z051riteKr8+a4nkzAA3VnRFCSPykem4+IYSQiSoBvMYY8wU95oVQwyQaDPqzY5KPNUEf93LOedDHnRB2vioBKAH0B12/ywB0Bx0b/GcwxgoBPAYhNTDLf7wxpM9qasHvMdOa7oOwg7WTMWaEkMY3oT4LwF8g7Jr93Z92+VcIAa97kmMrAZzFGDMFPabwn2PCGjnno/40z9Jxaw9gjBVA2OH7Hef8b0FPjUIIQEXin62TnWec8a8VX2+d4nktgNFxX3tCCCExRDtnhBBy5ukGcDnnXBf0n8q/KxaJsnG7J3MgNJ7oBjAGID/ofbSc8+BUuPEX9j/2P9bEOdcC+BSEVMepjrcBUIsf+GvHCsYdE/yaadfEOR/gnH+Oc14KYYfxd4yxeeM/Yf8u4fc55w0AzoWwO3brFGvsBvDBuL9vDef8C0HHBHbJGGMaCA05+sa/r//5HAiB2b845w+Pe/owhIYdosUABoPSHqdz2mv96Zhz/Y9Pde7DIIQQEjcUnBFCyJnnCQAPi00nGGMFjLFrojhfIYB7GGNKxtgNEGrF/ss574cQRPyCMab1NyKZO65ebbwsCDs0JsZYGYBvjnt+EEIHQtFRACrG2BWMMSWABwCkYwozrYkxdoM/XRAQduw4hF3F0zDG1jHGGv3BoAVCmqN43Pg1vgFgPmPsFv/fkdLfYKU+6JiPMMbOY4ylQdi528E5n7BrxhjTAngLwBbO+bcm+RT/DOCzjLEGfxD3AIDngl6vYIypAMgByP2NTcQsmdcALGKMfdR/zP8D0Mw5PxJ07q8xxsoYY6UAvh58bkIIIbFHwRkhhJx5fg2hHfvbjDErgO0QGnNEageE5iEjEJp6fCxop+ZWAGkAWiAEOy8DKJnmXN8HsAxCPdN/ILR2D/ZjAA/4OyR+g3NuBvBFAE8D6IWwk9aD6U23ppUAdjDGRiH8Hd3LOT85yTmK/a+zAGgF8AGE1EZA+Pv9GBM6XT7GObdCaDryCQi7YQMAforTg8gXIDRTMQBYDqFByGSu86/xdnb6HLs5AMA5fxPAIwA2QEgv7fSfV/QAhLTUb0HYlXT4H4O/xu+jEL6GRgjfE8H1gX8A8G8ABwEcgvD1+cMU6ySEEBIDjFLJCSGETIUxdhuAOzjn5yV6LamKCcOgezjnDyR6LYQQQpIb7ZwRQgghhBBCSBKg4IwQQgghhBBCkgClNRJCCCGEEEJIEqCdM0IIIYQQQghJAhScEUIIIYQQQkgSUMx8iHTy8/N5VVVVPN+SEEIIIYQQQpLGnj17RjjnBZM9F9fgrKqqCrt3747nWxJCCCGEEEJI0mCMdU71HKU1EkIIIYQQQkgSoOCMEEIIIYQQQpIABWeEEEIIIYQQkgTiWnM2GbfbjZ6eHjidzkQvhZxhVCoVysvLoVQqE70UQgghhBBCZpTw4KynpwdZWVmoqqoCYyzRyyFnCM459Ho9enp6UF1dnejlEEIIIYQQMqOEpzU6nU7k5eVRYEYkxRhDXl4e7cgSQgghhJCUkfDgDAAFZiQm6PuKEEIIIYSkkqQIzhLt4YcfxsKFC9HU1IQlS5Zgx44dAIA77rgDLS0tkrxHVVUVRkZGpj3mRz/6Udjnfe6553D33Xef9tizzz6LJUuWYMmSJUhLS0NjYyOWLFmCb33rW2GfPx4effRR2O32RC+DEEIIIYSQhEp4zVmibdu2DW+88Qb27t2L9PR0jIyMwOVyAQCefvrpuK7lRz/6Eb7zne9EfZ7bb78dt99+OwAhKNywYQPy8/OjPm+kOOfgnEMmm/xewKOPPopPfepTUKvVIZ/T4/FAoZj1376EEEIIIeQMMut3zvr7+5Gfn4/09HQAQH5+PkpLSwEAa9euxe7duwEAGo0G999/P5YvX46LLroIO3fuxNq1a1FTU4N//etfACbuYl155ZXYuHHjhPe89tprsXz5cixcuBBPPvkkAOBb3/oWHA4HlixZgptvvhkA8Ne//hWrVq3CkiVL8PnPfx5erxeAsDM2f/58XHDBBdiyZUvIn+vPfvYzrFy5Ek1NTXjwwQcBAB0dHairq8Mdd9yBRYsW4eabb8a7776L1atXo7a2Fjt37gQAPPTQQ7jllluwfv161NbW4qmnnprxvPX19fjiF7+IZcuWobu7G1/4whewYsUKLFy4MHDcY489hr6+Pqxbtw7r1q0L/F2LXn75Zdx2220AgNtuuw1f+9rXsG7dOtx///04fvw4LrvsMixfvhxr1qzBkSNHQv67IIQQQgghsfPX7Z1oH7ImehkpZ9YHZ5dccgm6u7sxf/58fPGLX8QHH3ww6XE2mw1r167Fnj17kJWVhQceeADvvPMOXnvtNfy///f/wnrPP/7xj9izZw92796Nxx57DHq9Hj/5yU+QkZGB/fv34/nnn0drayv+8Y9/YMuWLdi/fz/kcjmef/559Pf348EHH8SWLVvwzjvvhJx2+fbbb+PYsWPYuXMn9u/fjz179uDDDz8EALS3t+Pee+9Fc3Mzjhw5ghdeeAGbN2/Gz3/+89NSLZubm/Gf//wH27Ztww9+8AP09fVNe962tjbceuut2LdvHyorK/Hwww9j9+7daG5uxgcffIDm5mbcc889KC0txYYNG7Bhw4YZP4+jR4/i3XffxS9+8QvceeedePzxx7Fnzx78/Oc/xxe/+MWwvg6EEEIIIUR6fSYHvvf6Ifz7QH+il5Jykiov7Pv/PoyWPouk52wo1eLBqxZO+bxGo8GePXuwadMmbNiwAR//+Mfxk5/8JLBbI0pLS8Nll10GAGhsbER6ejqUSiUaGxvR0dER1poee+wxvPbaawCA7u5uHDt2DHl5eacd895772HPnj1YuXIlAMDhcKCwsBA7duzA2rVrUVBQAAD4+Mc/jqNHj874nm+//TbefvttLF26FAAwOjqKY8eOYc6cOaiurkZjYyMAYOHChbjwwgvBGJvwuV1zzTXIyMhARkYG1q1bh507d2Lz5s1TnreyshJnn3124PUvvvginnzySXg8HvT396OlpQVNTU1h/d3dcMMNkMvlGB0dxdatW3HDDTcEnhsbGwvrXIQQQgghRHqv7esF58BHl5UneikpJ6mCs0SRy+VYu3Yt1q5di8bGRvzpT3+aEJwplcpA9z+ZTBZIg5TJZPB4PAAAhUIBn88XeM1kbdw3btyId999F9u2bYNarcbatWsnPY5zjk9/+tP48Y9/fNrj//znPyPqQsg5x7e//W18/vOfP+3xjo6OwOcy3ecGTOx+yBib9ryZmZmBj0+ePImf//zn2LVrF3JycnDbbbdN2eY++H3GHyOe0+fzQafTYf/+/TN96oQQQgghJE4453hlbw9WVuVgTl7o/QSIIKmCs+l2uGKlra0NMpkMtbW1AID9+/ejsrIyonNVVVXhd7/7HXw+H3p7ewP1WsHMZjNycnKgVqtx5MgRbN++PfCcUqmE2+2GUqnEhRdeiGuuuQZf/epXUVhYCIPBAKvVirPOOgv33nsv9Ho9tFotXnrpJSxevHjGtV166aX43ve+h5tvvhkajQa9vb1QKpVhfX6vv/46vv3tb8Nms2Hjxo2BVMxQzmuxWJCZmYns7GwMDg7if//7H9auXQsAyMrKgtVqDTQtKSoqQmtrKxYsWIDXXnsNWVlZE86n1WpRXV2Nl156CTfccAM452hubg7p74IQQgghhMTGgR4zTgzbcOeamkQvJSUlVXCWCKOjo/jyl78Mk8kEhUKBefPmBZp0hGv16tWBFMFFixZh2bJlE4657LLL8MQTT6CpqQkLFiw4Le3vzjvvRFNTE5YtW4bnn38eP/zhD3HJJZfA5/NBqVTit7/9Lc4++2w89NBDOOecc1BSUoJly5YFGoVM55JLLkFrayvOOeccAEI651//+lfI5fKQP79Vq1bhiiuuQFdXF773ve+htLQUpaWlIZ138eLFWLp0KRYuXIiamhqsXr36tM/78ssvR0lJCTZs2ICf/OQnuPLKK1FRUYFFixZhdHR00vU8//zz+MIXvoAf/vCHcLvd+MQnPkHBGSGEEEJIAr2ypwfpChk+0lSS6KWkJMY5j9ubrVixgovdD0Wtra2or6+P2xpIZB566CFoNBp84xvfSPRSwkLfX4QQQggh8THm8eKsH72HNbUFePyTSxO9nKTFGNvDOV8x2XOzvlsjIYQQQgghJHobjgzBZHfj+mVliV5Kypr1aY0kNA899FCil0AIIYQQQpLYK3t7UZCVjjXz8hO9lJRFO2eEEEIIIYSQqOhHx7DhyBCuW1oGhZxCjEjR3xwhhBBCCCEkKv860AePj1NKY5QoOCOEEEIIIYRE5dW9vVhYqkVdsTbRS0lpFJwRQgghhBBCInZ00IqDvWZcv6w80UtJeRScAZDL5ViyZAkWLVqEG264AXa7PeJz3XbbbXj55ZcBAHfccQdaWlqmPHbjxo3YunVr4OMnnngCf/7znyN+b1FHRwcWLVp02mMPPfQQfv7zn4d1HqnWQwghhBBCzlyv7O2BXMZwzZLSRC8l5VG3RgAZGRnYv38/AODmm2/GE088ga997WuB571eb1jDmkVPP/30tM9v3LgRGo0G5557LgDgrrvuCvs9YsXj8STVegghhBBCSPLx+jj+ua8Xa+cXIF+TnujlpLzU2jl75BFgw4bTH9uwQXhcImvWrEF7ezs2btyIdevW4aabbkJjYyO8Xi+++c1vYuXKlWhqasIf/vAHAADnHHfffTcaGhpwxRVXYGhoKHCutWvXQhy6/eabb2LZsmVYvHgxLrzwQnR0dOCJJ57Ar371KyxZsgSbNm06bXdr//79OPvss9HU1ITrrrsORqMxcM77778fq1atwvz587Fp06awP8fpzv2d73wHF1xwAX79618H1tPX14clS5YE/pPL5ejs7ERnZycuvPBCNDU14cILL0RXVxcAYffwnnvuwbnnnouamprATiIhhBBCCDmzbGkfwaBlDB9dTimNUkit4GzlSuDGG08FaBs2CB+vXCnJ6T0eD/73v/+hsbERALBz5048/PDDaGlpwTPPPIPs7Gzs2rULu3btwlNPPYWTJ0/itddeQ1tbGw4ePIinnnrqtDRF0fDwMD73uc/hlVdewYEDB/DSSy+hqqoKd911F7761a9i//79WLNmzWmvufXWW/HTn/4Uzc3NaGxsxPe///3T1rlz5048+uijpz0e7Pjx46cFVE888URI5zaZTPjggw/w9a9/PfBYaWkp9u/fj/379+Nzn/scPvrRj6KyshJ33303br31VjQ3N+Pmm2/GPffcE3hNf38/Nm/ejDfeeAPf+ta3wvxKEEIIIYSQVPDK3h5oVQqsrytM9FLOCMmV1viVrwD+9MIplZYCl14KlJQA/f1AfT3w/e8L/01myRLg0UenPaXD4cCSJUsACDtnn/3sZ7F161asWrUK1dXVAIC3334bzc3NgV0gs9mMY8eO4cMPP8QnP/lJyOVylJaWYv369RPOv337dpx//vmBc+Xm5k67HrPZDJPJhAsuuAAA8OlPfxo33HBD4Pnrr78eALB8+XJ0dHRMeo65c+cGUjWBU0OkZzr3xz/+8SnXtWXLFjz99NOB3bpt27bh1VdfBQDccsstuO+++wLHXnvttZDJZGhoaMDg4OC0ny8hhBBCCEk9Vqcbbx0ewEeXlUOlDL8EiEyUXMFZKHJyhMCsqwuYM0f4OErBNWfBMjMzA3/mnOPxxx/HpZdeetox//3vf8EYm/b8nPMZjwlHerqQzyuXy+HxeCQ7L3D65xysv78fn/3sZ/Gvf/0LGo1m0mOCP0dxjYDw+RNCCCGEkDPL/w4OwOn2UUqjhJIrOJthhwvAqVTG730P+P3vgQcfBNati/nSLr30Uvz+97/H+vXroVQqcfToUZSVleH888/HH/7wB9x6660YGhrChg0bcNNNN5322nPOOQdf+tKXcPLkSVRXV8NgMCA3NxdZWVmwWCwT3is7Oxs5OTnYtGkT1qxZg7/85S+Bna5oRXJut9uNG2+8ET/96U8xf/78wOPnnnsu/v73v+OWW27B888/j/POO0+SNRJCCCGEkOT3yt4eVOdnYmmFLtFLOWPMGJwxxioA/BlAMQAfgCc5579mjP0DwAL/YToAJs75khitUyAGZi++KARk69ad/nEM3XHHHejo6MCyZcvAOUdBQQH++c9/4rrrrsP777+PxsZGzJ8/f9JAp6CgAE8++SSuv/56+Hw+FBYW4p133sFVV12Fj33sY3j99dfx+OOPn/aaP/3pT7jrrrtgt9tRU1ODZ599VrLPJdxzb926Fbt27cKDDz6IBx98EICwY/jYY4/hM5/5DH72s5+hoKBA0jUSQgghhJDk1W2wY8dJA75xyXxJM8RmOzZTyhljrARACed8L2MsC8AeANdyzluCjvkFADPn/AfTnWvFihVc7F4oam1tRX19fWirfeQRoflHcCC2YQOwaxcQVO9EiCis7y9CCCGEEBKSx947hl++cxSb71+H8hx1opeTUhhjezjnKyZ7bsadM855P4B+/5+tjLFWAGUAWvwnZwBuBDCxE4bUJgvAxB00QgghhBBCSMxxzvHq3h6cU5NHgZnEwmqlzxirArAUwI6gh9cAGOScH5NwXYQQQgghhJAktKfTiA69HdcvK0v0Us44IQdnjDENgFcAfIVzHtzF4pMA/jbN6+5kjO1mjO0eHh6OfKWEEEIIIYSQhHtlby8ylHJc3liS6KWccUIKzhhjSgiB2fOc81eDHlcAuB7AP6Z6Lef8Sc75Cs75ioKCgqmOCWvRhISCvq8IIYQQQqTldHvxRnMfLl9UDE16cjV+PxPMGJz5a8qeAdDKOf/luKcvAnCEc94T6QJUKhX0ej1dSBNJcc6h1+uhUqkSvRRCCCGEkDPGu62DsDo9uH4ZzTaLhVDC3dUAbgFwkDG23//Ydzjn/wXwCUyT0hiK8vJy9PT0gFIeidRUKhXKy+kHByGEEEKIVF7Z04OSbBXOmZuX6KWckULp1rgZwKTDCzjnt0W7AKVSierq6mhPQwghhBBCCImhIasTHx4bwZ3n10Auo9lmsRBWt0ZCCCGEEELI7PSv/X3w+jg+Sl0aY4aCM0IIIYQQQsiMNrYNo644C/MKsxK9lDMWBWeEEEIIIYSQGfUY7ZhXqEn0Ms5oFJwRQgghhBBCpuXzcfSZnSjLyUj0Us5oFJwRQgghhBBCpjViG4PL40OZjoKzWKLgjBBCCCGEEDKtPpMTACg4izEKzgghhBBCCCHT6jU6AAClFJzFFAVnhBBCCCGEkGn1mYTgjGrOYouCM0IIIYQQQsi0ek0OZKUroFUpE72UMxoFZ4QQQgghhJBp9ZoctGsWBxScEUIIIYQQQqbVa3RQvVkcUHBGCCGEEEIImVaf2UGdGuOAgjNCCCGEEELIlGxjHpjsbto5iwMKzgghhBBCCCFTEjs1lupUCV7JmY+CM0IIIYQQQsiUevzBWTk1BIk5Cs4IIYQQQgghUzq1c0bBWaxRcEYIIYQQQgiZUq/RAYWMoTCL0hpjjYIzQgghhBBCyJT6TA4UZ6sgl7FEL+WMR8EZIYQQQgghZEq9JmqjHy8UnBFCCCGEEEKm1GdyUnAWJxScEUIIIYQQQibl8fowYHGijDo1xgUFZ4QQQgghhJBJDVrH4PVx6tQYJxScEUIIIYQQQibVaxTa6FNaY3xQcEYIIYQQQgiZFM04iy8KzgghhBBCCCGT6jXRzlk8UXBGCCGEEEIImVSvyYHczDRkpMkTvZRZgYIzQgghhBBCyKR6jTTjLJ4oOCOEEEIIIYRMqs/kQKlOlehlzBoUnBFCCCGEEEIm4Jyj1+RAmU6d6KXMGhScEUIIIYQQQiYwO9ywu7y0cxZHFJwRQgghhBBCJhA7NZbnUM1ZvFBwRgghhBBCCJlAHEBNM87iZ8bgjDFWwRjbwBhrZYwdZozdG/Tclxljbf7HH4ntUkkq2ddlhNXpTvQyCCGEEEJIhPpoxlnchbJz5gHwdc55PYCzAXyJMdbAGFsH4BoATZzzhQB+HsN1khTy2r4eXPe7rXhq08lEL4UQQgghhESo1+SASilDbmZaopcyayhmOoBz3g+g3/9nK2OsFUAZgM8B+AnnfMz/3FAsF0pSw7bjetz3cjMAYfeMEEIIIYSkpj6TE6W6DDDGEr2UWSOsmjPGWBWApQB2AJgPYA1jbAdj7APG2MoYrI+kkPYhKz7/l92ozMvEFY0laO4xg3Oe6GURQgghhJAI9JhoAHW8hRycMcY0AF4B8BXOuQXCrlsOhFTHbwJ4kU0SVjPG7mSM7WaM7R4eHpZo2STZDFvHcNuzu5CmkOPZ21bivNp8mB1udOrtiV4aIYQQQgiJQB8FZ3EXUnDGGFNCCMye55y/6n+4B8CrXLATgA9A/vjXcs6f5Jyv4JyvKCgokGrdJInYXR589k+7oB914Y+3rUBFrhqLy3UAgAM9poSujRBCCCGEhM/p9mLYOkadGuMslG6NDMAzAFo5578MeuqfANb7j5kPIA3ASAzWSJKY18dxz9/241CvGY9/cima/EHZ/CINVEoZDnSbE7tAQgghhBAStgGzEwB1aoy3GRuCAFgN4BYABxlj+/2PfQfAHwH8kTF2CIALwKc5FRjNKpxz/N8bLXi3dRDfv3ohLmooCjynkMuwqDSbds4IIYQQQlKQOICads7iK5RujZsBTNWi5VPSLoekkmc2n8RzWztwx3nV+PS5VROebyrX4YWdnXB7fVDKad45IYQQQkiqEIOz8hwKzuKJrphJRN481I+H/9uKyxcV4zsfqZ/0mMUV2XC6fTg6aI3z6gghhBBCSDR6jQ4wBhRpVYleyqxCwRkJ294uI+79+34sqdDhVx9fApls8o1VsSlIcw/VnRFCCCGEpJI+kwOFWelIU1C4EE/0t03C0qm34Y4/7UaRVoWnb10BlVI+5bGVeWpkZyjRTHVnhBBCCCEppZfa6CcEBWckZEabC7c/uws+zvHc7SuRp0mf9njGGJrKs7GfOjYSQgghhKSUPpODmoEkAAVnJGTf/edB9JgceOrWFagp0IT0msXlOhwdtMLh8sZ4dYQQQgghRAo+H0efyYkyagYSdxSckZBYnW682zKET51ViZVVuSG/bnGFDl4fx+E+2j0jhBBCCEkFI7YxuLw+SmtMAArOSEg2tA3D5fXhI43FYb1ucXk2AOAANQUhhBBCCEkJvUahjT4FZ/FHwRkJyVuHBlCQlY5lc3LCel2hVoWSbBUOdJtiszBCCCGEECKpPpMTAA2gTgQKzsiMnG4vNrQN4ZKGoinb5k+nqTybOjYSQgghhKSIXpMdAKjmLAEoOCMz2nRsBHaXF5ctCi+lUbS4QocOvR0mu0vilRFCCCGEEKn1mZzISldAq1ImeimzDgVnZEZvHhqAVqXA2TV5Eb2ehlETQgiZit3lwZEBS6KXQQgJ0mN00K5ZglBwRqbl9vrwbusgLmooglIe2bfLojKhKQilNhJCCBnv9xuP4+rHt8A25kn0UgghfjTjLHEoOCPT2nHCALPDjcsWRpbSCADZGUrUFGTSMOpZxGx3418H+hK9DEJICtjcPgKX14cjA9ZEL4UQ4tdrclCnxgSh4IxM683D/chQynH+/IKozrO4XIcDPSZwziVaGUlmf9vVhXv+tg/dBnuil0IISWK2MU8g5b21n1IbCUkGo2MemB1u2jlLEArOyJR8Po63Dg9iXV0BVEp5VOdaXJ6NYesYBixOiVZHktmxwVEAwMkRW4JXcmb5x64uPP7esUQvgxDJ7O40wusTbtpR3RkhyaHP5J9xRjVnCUHBGZnSvm4jhq1juDSKlEZRU4UOAHCAUhtnhfZhITjr0FNwJqXntnbirzs6E70MQiSz44QeChnDojItWvsprZGQZNArBmc6VYJXMjtRcEam9OahAaTJZVhfVxj1uRpKtFDIGDUFmQU45zg+RDtnUnO6vTg6aMWQdQwujy/RyyFEEttP6NFUno3lc3JwpN8Cn49S3wlJtF6jGJypE7yS2YmCMzIpzjnePDyA1fPykCXBjAuVUo66kiwcoODsjDdoGcOov+saBWfSOdxngdfHwTkwYKb0YJL67C6h3uysmjzUl2hhc3nRbaQ6VUISrc/kgELGUJCVnuilzEoUnJFJHe6zoNvgiHjw9GSaynVo7jHH5c7ogNkJi9Md8/chE7X7d83yMtPQQcGZZA4G3djoMdEFLEl9ezqN8Pg4zvYHZwA1BSEkGfSaHCjRqSCXsUQvJTKPPAJs2HD6Yxs2CI+nAArOyKTeOjwAGQMuqi+S7JxLynWwOj04GYc6pJuf3o4f/Lsl5u9DJjrurzdbX1eIbqMDbi+l4EmhuccMhf8XpZhyQkgq23HCALmMYXllDhYUZ0HGgBaqOyMk4fpMDpRmp3AzkJUrgRtvPBWgbdggfLxyZWLXFSIKzsik3jw0gFXVucjTSLel3VQRn2HUYx4vTozYsLfTGNP3IZNrHxpFVroCq6pz4fVx9FAgIYnmXjPOmZsH4FSxNiGpbPsJPRrLsqFJV0CllKM6P5N2zghJAr1GR2p3aly3DnjxReCqq4Sg7MYbhY/XrUv0ykJCwRmZoH1oFMeGRqMaPD2Z2sIsqNPkMe/Y2G1wgHPgxIgNVkptjLv2oVHMLdSgOj8TACi1UQKjYx4cHx7FispcFGalB9ocE5KqHC4vDvSYcFZNbuCxuhIttdMnJME8Xh8GLM7UH0Dd1AQ4ncBLLwFf+ELKBGYABWdkEm8dHgAAXCJxcCaXMSwqzY55U5DOoLRJas0cf+3Do5hXqEGVPzijpiDRO9RrBudAU3k2ynIyaOeMpLy9XUa4vUK9maihRItug4NuqhGSQAMWJ3wcqR+c3X8/4PUCd90F/P73E2vQkhgFZ2SCtw4PYHGFLiaT4RdXZONwnyWmdUgd+lPNEg720ly1eDI73Bi2jmFeoQZ5mWnIUikoOJPAwR7h+7ixPBuluoxZW3Nmtrvx6t4ecE7t1lPdjhN6yBiwojIn8Fh9SRYA4MgA3VQjJFH6TEI34FhcA8bNO+8Azz4LrFghBGYvvnh6DVqSo+CMnKbX5EBzj1nylEZRU7kOLo8PbTH85dultyErXYEibToOU3AWV2IzkLkFGjDGUJ2fSYOoJXCgx4QyXQbyNeko12Wgz+ScdfOgOOf4+ksH8LUXD+D4MH1PpbrtJwxoLMs+bVQLdWwkJPF6/d2AU7rm7NlnAZ8P+P73hY/FGrRduxK7rhBRcEZO89YhIaXx0oXSdWkMtrhcBwAxTW3s0NsxJ0+NRaXZtHMWZ2Ib/XmFGgBAVV4m7ZxJ4GCvGY1lQkOdspwMuLw+jNjGEryq+Hp1by/ebR0EAHQbaJRAKnO6vdjfbcJZQSmNAFCsVUGnVlJwRkgCBXbOUrVbI+dAezswfz5w2WWnHl+3DrjvvsStKwwUnJHTvHl4AAuKslBToInJ+StyM5CjVuJAtykm5weALoMdVXmZWFSWjePDo7C7PDF7L3K640OjSJPLUOG/41aVn4k+kwNjHm+CV5a6zHY3OvX2QLdTsQ5gNqU29psdeOjfh1FXLKS9dVFwltL2dhnh8vpwdlAzEABgjKG+WEvt9AlJoB6jA3mZachIkyd6KZHZvl3YIbv3XkCWmmFOaq6axMSwdQy7Ogy4VMLB0+MxxgLDqGPB4/Wh22BHZZ4ai8qy4ePUFCSe2odGUZ2fCYVc+NFSna+Gj9NORzSae00AgKYyHYBTdQCzpSkI5xzfeuUgPF6OJz61HCqljL6fUtz2Ewah3qwqd8Jz9SVatA1Y4J1labuEJIs+kyO1680efRTQ6YBbb030SiJGwRkJeLd1EJwjZvVmosUVOhwdtMZkR6vP5ITHx1GZpw6kgR2i1Ma4Oe7v1CiqyhM7NtLFdKTEGxnBaY3A7Nk5+8eubnxwdBjfurwOVfmZqMhR085ZittxQo+FpdnQBtWbiepKsuB0+07ruksIiZ9ekwOlOlWilxGZri7glVeAz30O0MQmAyweKDgjAW8eGsCcXHWgY1asLC4XdrQO9UpfV9BpEH6hV+ZlokibjnxNGgVnceJ0e9FlsGNuQWbgMZp1Fr3mHhOq8tTIVgsXslqVElkqxayYddZjtOOH/2nFOTV5uOXsSgBARa4a3bMkMD0TOd1e7Os2TUhpFDUEmoJQxgMh8cY5R5/JgTKdOtFLicxvfyv8/+67E7uOKFFwRgAILdC3Hh/BZYuKwRiL6Xs1+ZuCNMegKYjYRr8yTw3GGBZSU5C46dDb4OPA3KCdM506DTlqJU5QcBaxgz1mNPr/zYjKdGf+rDOfj+O+l5vBOccjH2uCTCb8XJqTq0a3wU7t9FPU/m4TXB4fzqrOm/T5eYUayGWMmoIQkgAmuxt2lzc1d85sNuDJJ4HrrwfmzEn0aqJCwRkBAGw4MgS3l+PSGKc0AkBBVjrKdBnYH4OmIF16G9IVMhRlCT9YGsuycWxoFE43NaSItfGdGkVV+Zm0cxahYesY+sxOLC7PPu3xMl0Ges7w3aO/7ujE1uN6PHBlAypyT93FLc/JwOiYByY7DSpORdtP6MEYsLJ68p0zlVKOuQWZFJwRkgDiTb/yVGyj/5e/ACYT8JWvJHolUZsxOGOMVTDGNjDGWhljhxlj9/off4gx1ssY2+//7yOxXy6JlTcPDaAwKx1LK3Rxeb/FFdkxaQrSoReagYh32ReVaeH18ZjOVSOC9qFRMCbMOAtWnUezziJ10N8MRKw3E5XlZJzRaY0dIzb8+L9HcMH8AnxiZcVpz83xB2pUd5aadpwwoKFEi+yMifVmovoSLQVnhCSAGJylXEMQnw/49a+BlSuBc85J9GqiFsrOmQfA1znn9QDOBvAlxliD/7lfcc6X+P/7b8xWSWLK4fJi49EhXLqwOBDUxFpTuQ5dBjsMNpek5+3U2zAn91TN0yL/RW28Uxuf2XwSj793LK7vmWjHh20oz8mASnl6+92q/Ez0m51wuFJ795Jzjt9uaMeb/lmA8dDcYwZjwMLxwZkuAxanB1bnmbd75PVxfPPlA1DIGX7y0cYJadbiLlq3kYKzVDPm8WJvlxFn10ye0iiqL9Giz+yEyS7t7wdCyPTEm35lqRacvf02cOSI0D4/xqU58TBjcMY57+ec7/X/2QqgFUBZrBdG4ueDo8Nwun24LIYt9Mdr8qdpSVl35vNx/4yzUylQZboM6NRKHO6Lb3D2/I5OPL+jK67vmWjtQ6MTds0AITgDTjVrSVW/eucofvZWG57dcjJu79ncY8a8Ag006YrTHj+T2+k/u+UkdnUY8dBVC1EyyRDUCto5S1kHus0Y8/hw1hQpjaJ6agpCSEL0Gh1QKWXIzUxL9FLC8+ijQEkJcMMNiV6JJMKqOWOMVQFYCmCH/6G7GWPNjLE/MsZypnjNnYyx3Yyx3cPDw9GtlsTEW4cHoFMrsWqGX5hSaizLBmPCL2upDFnH4HT7UBkUnDHGsCjOTUHsLg9OjtgwYHGekTsbk/H6OE4Mj2LeJMFZdV7qd2z809YOPPZ+O1RKWdyam3DO0dxjRuO4ejPgzG2n3z40ikfeasNF9YW4ftnk9wA16QrkZqah23Bmfe6zgVhvNtPvmnr/sHFKbSQkvvrMwoyzWDeGk1RLC/DWW8CXvgSkpVhQOYWQgzPGmAbAKwC+wjm3APg9gLkAlgDoB/CLyV7HOX+Sc76Cc76ioKAg+hUTSbk8PrzbOoiL6ouglMevP0yWSom5BRpJd87EuTiVeZmnPb6oLBttA1a4PD7J3ms6RwasEBvJiU0yznS9RgfGPL4JzUAAoCpfCJZTtWPjvw/04aF/H8bFDUX40tp5GLaOxSXoHrA4MTI6hsXjOjUCQLl/5+xMqjvzeH34+ksHoE6T40fXT0xnDFbh79hIUsv2E3rUFWuhU09/AVWQlY68zDQcGaDgjJB46jU6Ui+l8bHHAJUKuPPORK9EMiFdjTPGlBACs+c5568CAOd8kHPu5Zz7ADwFYFXslkliZdsJPaxOT8wHT09mcbkOB3rMkrXE7vS30a+aEJxp4fZyHB2MT4pMS9+pC4pjsyQ4Oz48eadGQAjE8zXpKblztunYML724n6srMzF459citoi4fM7GYfPRdxVnmznLF+TjjS5DD1nUHD25KYTONBtwg+uWYTCrOnbOFfkZFDNWYo5VW82c4YGY8zfFITSGgmJp16TM7WCM70e+POfgU99CjiDNoBC6dbIADwDoJVz/sugx0uCDrsOwCHpl0di7aB/52r1vPy4v/fiimyMjAqtwqXQobdBIWMT5nMsKhUubuM1jPpwnwValQJpCtms2TkTP8/Jas4AoDpfjY6R1LqYbu4x4fN/2YO5BRo89ekVUCnlqPF/fieGYx+cHew1QSFjgaG8wWQyhhKd6oxJa2wbsOLRd47hI43FuKqpZMbj5+Sq0Wt0wOujWWepornHDKd76vlm49WXZKFt0AqPNz4ZD4TMdk63FyOjY6nVqfGppwCHQ2gEcgYJZedsNYBbAKwf1zb/EcbYQcZYM4B1AL4ay4WS2DDY3NCkK5CRJp/5YImJ6VrNEs076zTYUZ6TAcW49MzKPDWyVAocilNTkJZ+CxaWZmNugQbH4rRbl2jtQ6PIy0xDzhRFxFV5mTiZQu30TwyP4rZndyE3Mw1//syqQNvvyjw1ZEx4Ptaae8yYX5Q1oful6EwZRO3zcXz9pf3IUinwf9csCqnWoSJXDY+Po9+c+p//bLHjhB4AZmwGIqov0cLl8cVll5oQAvT7b5SnzM6Z2w385jfARRcBixYlejWSCqVb42bOOeOcNwW3zeec38I5b/Q/fjXnvD8eCybSMtjGkJM59byZWKoryYJSzrBforqzTr0Nc8alNAJCiszCUi0O9sa+fsHj9eFIvwULS7WYV6iRNK3R7fXh5T09GB3zSHZOqbQPj2LuJCmNoqr8TAxbx5Jy7eMNWpy45ZmdYAD+8tmzUKg9tRObrpCjPEeN4zG+YBSbgTRNktIoKtOdGbPO2gatONRrwTcuXYA8TXpIr6FZZ6ln+wkD6oqzpryBM57YsbGFmoIQEhd9qTbj7JVXgN7eM2Lo9Hjx6wBBkpLB7kbuDMXZsZKukKO+RItmCTo2cs7RqT+9jX6wxrJstPZb4I5xikyH3oYxjw8NpVrUFmrQY3TA7pImIHnr8AC+8dIBXP345qTqYsY5R/vQ6KT1ZqLq/NTo2Gi2u3HrMzthsrvw3O2rAusOVlOQGfO0xm6DA2aHe9J6M1FZTgaGrGNxa3QTK2K6cTjdYityhH/nPdSxMSW4PD7s6Zx5vlmwuQUaKOWM6s4IiRMxTb48J0WCs0cfBWprgcsvT/RKJEfB2SxntLkSOs9icbkOB3vN8EVZO2K0u2F1eiZ0ahQtKsuGy+MLNK6IlcP+ZiBicAYAx4ekuZA/3GeBQsZgHfPg2t9uwYu7uyU5b7T0NhfMDvekbfRFgeAsiVMbnW4v7vjzLpwYGcUfblkxZWBUk69Bx4gt6u/Z6Rzw7yZP1qlRVKrLAOdI+dS+w30WqNPkgZELoSjRqSCXMWoKkiIO9prgcHtDagYiSlPIMLdAk1Q3ogg5k/WaHGAMKNJO35ApKWzfDuzYAdxzDyA780KZM+8zImEx2Fwhp5nEQlN5NkbHPDgxEl3QJF70V+ZOvnO20N8U5GBPbOvOWvosSJMLFxViZ79jQ9Lc+W3tt2BeoQb/vWcNllfm4L6Xm/GNlw7A4fJKcv5IBZqBTJfW6L/wPhmHRhqR8Hh9uPuFvdjdacSvPr4E59VO3SCnuiATDrcXAxZpGtlM5mCvGWlyGeYXZU15jNhOP9WbghzuM6OhRAuZLPS5Okq5DCXZKkprTBHbTxgAAKtCbAYiaijRUjt9QuKk1+RAUZYKaYokDQ0eeQTYsEH486OPAtnZQE2N8PgZJkm/AiRejHZXwtIaAWBxhQ6A0PwgGl1iG/38yYOzmvxMZKbJAztbsdLSb8H8Yg2Uchkq8zKhkDHJ6s5a+y1oKNGiICsdf/nsWbjnwlq8srcH1/52S0K7QorvPV1aY0aaHMVaVVI2BeGc4zuvHcS7rUP4wdULcWVT6bTHz/XvAsYytfFAtwn1pdppf0kGBlGncN2Zz8dxuM+CRWVTp29OZQ7NOksZ20/osaAoK+wsjfoSLQYtYzDYXDFaWfjeax3Ebze0J3oZhEiuz+SY0O06qaxcCdx4I/Dii8DLLwOXXAJ8+tPC42cYCs5mMafbC7vLm9Cds7kFGmQo5VEHZx16GxgDynMmD85kMoaGUi0OxrCdPuccLX0WLCwRLjSVchmq8zMlCZz0o2MYtIwFiuTlMoavXTwff7p9FYZHx3D1bzbj9f29Ub9PJNqHRqFOk6M0e/of6lX56qSqOTPZXfjbzi58/MnteHF3D+65sBa3nFM14+sC7fSj3O2dis/HcajXjKYZApbibBUYS+3g7KTeBrvLi4WlE8cFzKQiR40uqjlLem6vUG92VhgpjSLx510ypTb+bWcXHn33KMY8ic1YIERqvSYHyqa4hkoK69YJgdmnPw14vcB77wkfr1uX6JVJjoKzWcxoF+5GJrLmTC5jWFQWfdDUqbejRKuasu04IKQ2tvRZYjYbacg6Br3NhYagC83aIo0kwZlYFF8/bubV+fML8J97zkNDiRb3/n0/HvjnQTjd8b1oOD48irkFmhlboFfnZ6JDn9idDtuYB6/v78Vnn9uFlQ+/i2+/ehDD1jE8cEU9vnpRbUjnKNKmIzNNHrOdsxMjNthc3mmbgQBCQ50CTXpKpzWKzUAi2jnLU2NkdCzhab1kegd7zbC7vGE1AxHVlwhpvckUnHUbHHB7OTUqIWcUn4+j3+RM7p0zAHA6hf8A4EtfOiMDMwBQJHoBJHH0o0JwlpPAtEYAaCzT4YWdnfB4fRNmlIWqU2+bshnIqffJxnNbO3ByZBTzCqeu5YlUS1AzENG8wiy8eWgATrd32sBxJuLFiXixEqwkOwN/u/Ns/PytNvzhwxPY323C725ajjlTdK6U2vGhUZwVwoVXVV4mDP7mIeLcsHgY83ixsW0Y/zrQh/daB+F0+1CSrcLtq6txVVMpFpVpQ5qtJWKMobogEyditAvYHEIzEFFZTmrPOjvcZ0GaQjZtSuxUxI5i3Ub7tLV5JLG2++ebhdONU5SnSUdhVnrStNPnnAfqHPd3GbHEn5ZPSKobGR2Dy+sL1DInpcFB4KabALkcuO8+4Pe/F4KzMzBAo+BsFkuGnTNAaAryxy0+tA+Poq44/PQmQNg5u7ihaNpjxLvzB3vNsQnO/BcQdcWnzl1bqIGPAydHbBN2vcLR2m9BkTZ9yjlQSrkM3/5IPVZU5eLrL+7HFY9vwq9uXIKLZvg7iZZtzIM+sxNzC2butBfcTn9xjC9qOOfY3D6C1/f34a3DA7A6PcjNTMPHlpfj6sVlWFGZE1YDivFq8jXY22WUcMWnNPeYkaGUh/R3WqbLCOw+paJDvWbUF2dBGcFNGXHWWbeBgrNktuOEAbWFGuSHOMNuvPoSbdLsUo2MuuDwZyYciHFzKULiqTfZZ5xxDlxzDWAyAc88A3zmM8DFF5+qQTvDAjRKa5zFxCLrRAdnYvpWpHVnVqcbeptrxp2zuQWZUCllOBSjYdSH+8yozFMjS3VqV+hUx8boUhtb+i0hBXcXNxThP/eswZxcNb78t30xT/kSRxOEsvMhBmcnY1x3trvDgOt+txW3PLMTbx0awCUNxfjTZ1Zhx3cuxA+vbcSq6tyoAjNA+Fx6TY6YpJA295iwqEwb0i5yWU4G+kzOmLb1jxXOhdq6hRGkNAJABQ2iTnoerw+7OwwR1ZuJ6kqy0D5kTYp5fuLoBk26Avu7TYldDCESEoOzsmSdcfab3wit87/8ZSEwA07VoO3aldi1xQAFZ7OYMUmCs+q8TGjSFRG3ue8UOzXOkMankMtQXxK7piAtfUI3xWDV+ZmQMaB9MPI7v2MeL9qHRkPeeavIVeO+y+rgcHux7cRIxO8bilA6NQavi7HYBWcdIzZ84a978LEntqHP5MBPP9qIXQ9chF/cuBgXzC+IaHdmKjUFmeBc+rltHq8Ph/ssaCzThXR8mS4DLq8PI6Njkq4jHnqMDlicnoiagQBAXmYaMpRydFNTkKR1qM8CW4T1ZqKGEi3cXh6zBjzhELuDXtJQhJMjNpjsydNFkpBoiNdRZcm4c3bwIPDNbwJXXAH8+tenP7dunZDieIah4GwWM9jdYAxxrf+ZjMzfFKQ5wqBJ/KESSo3VIn9TEKl3GkbHPOjQ2ydcaKYr5KjKy4xq56x9aBQeHw8rLfKs6lxkKOV4/8hQxO8biuPDo1DI2Iy7lgCgUspRmp0heUBjtLnw/X8fxsW/+gAfHB3GVy+aj43fXIuPr5wTVZ3fdOaKHRslbgpybGgUYx4fmmZoBiISf5GmYt3Z4T5/M5DSyHbOGGOYk6umnbMkJtabnRXmfLNgydSxURzZckVTCQBKbSTx53R78aXn9+L5HZ2Snre134LynIzTMn+SgsMh1JnpdMAf/wiEUR+eyig4m8WMNhd0GUrIo0zxkkJTuQ6t/ZaIUlc6Df4B1CEECI1lwtDrTokv6I70T2wGIppbqIkqOBPrLcbvyk1HpZRj9bx8bDgyDM5jl/LWPjSKOXnqkHelqvMzJWunP+bx4qkPT+CCn23An7Z24GPLy7HxG2tx70W1UKfFtpy2OjDrTNq7+WIzkJCDsxSedXao1wK5jGFBceT1YhW5GegxUnCWrHac0GNuQSYKsiKrNwOEGZVpCllS1J11G+0ozErHqupcMCbMI0xm33ntIO75275EL4NIxOXx4Qt/3YP/HOzHP/dJOzqnNcTSibi7/37g0CHgueeAwsJEryZuKDibxQx2V0JnnAVrLMuGy+PD0QjS/zpH7MjXpEGTPvMF+cIy4YeP1KmNYjOQhpKJF9W1hRp0jNgirplo7bdApZQFAoJQra8rRK/JIdkQ7Mm0D41iXkHonfaq8tU4OWKLKmDknOPfB/pw0S8/wMP/bcWyyhz8797z8ePrm1CojU8b4Mx0BYq1Ksk7Njb3mJGVrkBVCDcagFPF26nYTv9Qnxm1hZqodjcr/DtnsbwBQSLj8fqwq8MYVUojIKSjzy/SJMfOmcGOilyhrnhegSbp6862n9DjXwf6kn6dZGZeH8fXXtyPDW3DqMnPlDQDyOHyRt20LCb++1/g8ceBe+8FLrss0auJKwrOZjHDqAu5CW6jLxJ3CiIJmjoNM7fRF80vykKaXIbDEgdnh3styM1MQ5F24h3i2iINPD6OzgjT+Vr6LFhQlBX2Due6ugIAiFlqo9vrQ6feHlYb9Kq8TFicHhjt7ojec1+XEdf9biu+/Ld9yExT4C+fXYXnbl8V1e5LpGoKMiVPa2zuMaOxPDvkhiValRJZKkXK7ZyJzUAimW8WrCJHDbvLG2huRJLHzg4DRsc8UQdnAFBfrE2K4Kzb4Ah0CV1cocOBblPS3hjgXJhbBQCPv3cswash0eCc44F/HsIbzf341uV1+PwFNbC5vJKldLcNWuHjQMMko3oi9sgjwIYNpz+2YYPweCgGB4HbbweamoCf/ES6daUICs5mMWMS7ZzNyVVDq1JE1LGxU29HZYgzvZRyGepKsmKyc9ZQMvm8rFp/2/5IhlFzztE6EFm6QUl2BupLtDELzjr1dnh8PKzgrKYg8o6NFqcbNz21A30mBx75WBP+c88arKktCPs8UqnOz8SJ4VHJLs7GPF4cGbDMOHx6vDJdBvpSLDgbso5hZNSFRRE2AxHNoY6NSev3G48jX5M244iTUNSXaDEy6sKQ1SnByiLj8vjQb3YEuoQuqdBBb3OhJ0l3rc0ONxxuL0qzVXjvyFBKj9yYzTjn+Mn/juBvO7vwxbVzcdcFcwMZOof7pLlh0TpN5k/EVq4U2tyLAdqGDcLHK1fO/FrOhcDMYgFeeAFQJflg7Big4GwWM9hcyEuS4IwxhqZyHQ72msJ6ndPtRb/Zicrc0FP+FpZm41CvWbKLarfXh7ZB65Rd5+YWaMBYZO30ByxOmOzuSWvZQrG+rgB7Oo0wR7hTNZ1wOjWKxHS9SIKztw8PwuH24olbluPGFRUJr5WsKdDA4vRAL9GuTduAFW4vR1OInRpF5TkZSXuBOBXxQjHqnTNx1lmKff5nun1dRmw6NoLPramRpClPnf+OfiLrzvpMDvg4UOGv8xQHUCdrymC/WQhk772oFlqVAo/R7llK+t3G4/jDhydwy9mV+OalCwAA84s1UMhYoKlStFr7LdCkK1AuZRv9deuAP/1JmEVWVgZcfTXw9NOhzSN7/HHgf/8Dfv5zYOFC6daUQig4m6U450m1cwYI887aBqxhzY4SWxtX5Ye2cwYI9W0Wp0eyC9oTw0I92VQBVEaaHOU5GREFZ+IdrUhzwdfXFcLr4/jw2HBEr5+OOOOsJoyas4pcNeQyFlFTkP8096FMl4GlMR5gHSpxF1Cq1Eax81uozUBEpbqMlEtrPNRrAWORf1+LKnKFi4nuKHbOOOe48vFN+MMHx6NaCznltxvaoVMrcfPZlZKcT2yGdCSBqY3i7qy4W7ugOAvpClnSNgXpNws/E2qLsvCZ86rxdssgWiTaaSHx8ZdtHfjZW224bmkZvn/1wkBmTrpCjnmFmkCte7Ra+y2oK86Kev7nBCdOAF4v0NcHjI4KO2c33AC88Qbg8Uz+moMHhdb4V14JfPGL0q4nhVBwNkuNjnng9vKkqTkDgKaybLi9HG0Dod8d7dCf/gszFIskbgrS0i+cZ7puirWFWTgWQbMT8U5xXYQ1VUsqcpCjVmJDDFIb24dGUZKtCqkRi0gpl6E8JwMnw6y/M9ld2HRsBFc2lUyaOpoIc/PFdvrSNFw52GNCjloZ9t3LMl0GrE4PLE7pd0dj5XCfGdX5mcgM43tnMuo0BfI1aVEFZ90GBw71WvDslg54U3CYd7I53GfGu61D+Mzq6rB+NkxHp05DSbYqoXVn4gBqcWSLUi7DorLspN056/PXm5VmZ+D2c6uRla7AbzbQ7lmqeG1fD773+mFcVF+ERz7WNCFwaijVSpLW6PNxtPZbI87OmZLHA/zwh4BCAXzve0Ir/CuvBDZuBK66CigvB77+deCrXz2V+uhwAJ/8JKBWA0uXzpq2+ZOh4GyWMtqEC7lk2zkDENa8M7HJRqjd7QChKYhCxiTLwT/ca0G6YvpuirWFGpwYscHjDa9jY0ufBRW5kc8ekcsYLphfgI1HhyW/8GwfGg0rpVFUlRd+O/23Dg/A4+O4sqk07PeLlbKcDKQpZJIN1RaagejCDj7FdvqpVHd2uM8S8Xyz8SqinHW2r9sIQEgh3hSDHebZ5rcb2pGVrsCnz62S9Lz1JdqEpjV2GexIk8tQlHWq/mVxuQ6H+sxwh/lzPR76zQ4oZAwFWenIVitx2+oq/PfgQEQdkUl8vX14AN94qRnn1OThNzctnXRUzcLSbAxbx6Kuw+wxOjA65pG+U+NDDwlNPR58EPjBD4BXXwU+/FCoIXv9deDcc4X0xUcfFVIf775b6Mp4+DDg84WW/ngGo+BsljLYhTqZ3MzkGThYpstAbmYaDvpnPYWiU2+HVqWATh3656FSyjG/SLqmIC3+lADFNLO+5hVq4PL4wq6Nae23oL44uh+a6+oKYbC5cCCMv9eZcM5xfHg0MIw5HOKss3Bq/t5o7kdlnjqw65kM5DKGqjw1jkuQ1uhweXF00IrFYaY0AkGDqFOk7spgc6HX5JDsa1mRow7sakRib6cR6jQ5cjPT8NLuHknWNFsdG7Tif4cG8Olzq5CdIe3vlvqSLBwfHsWYJ/S0dyl1G+woz8k4bQdjyRwdnG5fWNke8dJvdqJIqwrU5n5mdTUy0+T4zfvtCV4Zmc6W9hHc/cI+LCrLxlOfXjFlzaaYqRNtqmpLlKUTk+JcGBhdUQF85zvCY+vWAS++COzbJ9SfvfqqkO742GPA3LnAb38LPPUUkJEBvPYaBWeJXgBJDINtDACQk0RpjYwxNJZlh9WxsUMvtNEPd7dhUZmQEhBtUxDOudCpcYaUgNoiIS0xnNRGu8uDk3pb1OkGF8wvgIwBGyVMbew3O2F3eTE3gp2z6vxM2FxeDI+OhXS8fnQMW4/rcUVj8qQ0imryNTgxEn1aY0u/GT4u1EOGKxCcRbhzxjnH+0cGw6r1jIZYxC7VztmcXDX6TM6wd6VFe7tMWFyuwzVLSvFOyyCM1JY/Yr/beBwqhRyfOa9a8nPXl2jh8XEcG4zd3MbpiDPOgi0p1wGApDe+pNJvcqI4+9QuX05mGm49twr/bu6LqHMwib19XUZ87s+7UZ2fiT/dvnLatGDxuiDaurOWfgtkDFhQJGEb/XffBfr7hd0zWVCYsW6dUE8mys8HvvxloK0N+Pznhce+8pVZH5gBFJzNWgZ/WmNuEqU1AkIzhGNDo3C4QrtQ7DKE3kY/WGNZNgw2V6CjVaT6zWI3xekvNMX0v3CagrQNWMF59He0dOo0LJuTg/fbpAvOAp0aI9g5q/Knf54MccfpzcMD8CZZSqOouiATXXp71GlNB7qFgGVxBM1O8jXpSJPLIt45e7d1CJ95bjeu+93WiBq1hOtQr3AxsVCytMYMeH08on/LDpcXrf0WLJ2jww3LK+Dy+vD6/l5J1jXbdIzY8Pr+Xnzq7Dkx+b0i/hxMVN1Z8IwzUUWukO2xv8uUkDVNp9/sQEn26S3I7zivGiqFHL/bQLtnyebYoBW3PbsLBVnp+MtnV0E3w43z7AyhPjnaurPWfguq8zORkRZ9V9WARx4BSkuBm28O7fgNG4BXXhFq0556auJ8tFmIgrNZSrw7nEw1Z4AQNHl9PKS7QW6vDz1GR0TB2cKyyIdeBxNTCqZrBgIAmnQFSrNVYd2xbOkP7dyhWFdXiEO9FgxZpJkTFEkbfVG1vz6wI8SmIG8c6EdNQSbqpRyQKZGa/Ex4fDyqhhSA8H1YmJWOIm3481xkMoZSnSrinbMt7SNIV8jQZ3Lgqt9sxtuHByI6T6gO9ZlRkZuB7DBSkadTEcWss4O9Znh8HMvm5KChVItFZVq8tIdSGyPx+43HoZDL8Lnza2Jy/qq8TKiUsoTUnZntbpgd7kB3UBFjDIvLs5Nu54xz4WZFqe709eZp0nHLOZX45/7euNyIIaF7etNJ+Hwcf/3sWSgM8ffAwlItWiUIziRNady7V9g5+8pXgPT0mY8X55+9+KJQm/bii6fPR5ulKDibpQx2F5RyhiyJumlJpcmfJhJKs44+kwNeH0dlGM1ARPXFWsgYcDjK4Oxwn9ASPJRuivOKsnBsKPQLi9Z+C7Ikmj2yvq4QALBBot2z9uFRZGcoka8JP7gv1amglDOcHJn5YnrI6sSOk3pc2VSadCmNwKkxAtG20z/QYwq7hX6wspzI2+lvO67HqupcvPHl81CVl4k7/7IHP/5fa8RpgjM53GuWLKUREGrOgMja6e/rEpqBLJ2jAwDcsLwCh/ssks0Pmi16TQ68srcHn1xZgcKs2AyMlcsYFhRlJWTnLNCpcZKuwEsqcnBsaBTWJOqWarS7MebxoXiSi/zPramBUi7Db2n3LKmc1NtQV5I1IXV2Og0l2Tipt8E2NkVb+hmYHW70GB3SBmc/+xmg1QJ33hna8bt2CQGZmMoo1qbt2iXdmlIQBWezlNHmQo46LekueIu06SjISg+p7kxsox9Op0ZRRpoctYXRNwVp6TejOi+0luDzCjRoHxqFL8Suia39VtSVZEnyNaorzkJJtgrvS1R3dtzfqTGStSnkMlTkqkO6c/vmoQH4OHBlU0kky4y5uQWRD9UWWZ1unBi2BW5MRKI0OyOitMaR0TG0DVpxztw8VOSq8dJd5+Dms+bgDx+cwM1P74i6E9h4FqcbHXr7lAPbI1GSrYJCxiJqCrK3y4jKPDXyNMId3muWlCJNLpt1jUFa+y14t2Uw4tc/sfE4GAPuvGCuhKuaqL5EiyMD0dcKh0sM/Ce7cF5ckQ3OpRvNIgWxc2upbmJwVpCVjpvPqsSr+3qj3vEn0unS2zEnN7xrmYWlWnAOHBmI7IbFEQmzcwAAJ08KgdVddwHZId6Au+++iTVm42vTZiEKzmYpg82VdPVmgJAm0lSWjYO9phmPFdvoR5LWCAALy7Q4JEGno/oQLzRrizRwun0h7XD4fBxH+i2S/dBkjGFdXSE2HxuRpNuZ0Kkx/KBYVJ2XGVJa4xsH+jG/SIP5UhYrS0inTkNuZlpUTUHEGqzGKHfOhqxjYX9tt5/QAwDOnZsPQOhk+vB1jfjljYtxoMeEKx7bjJ0nDRGvazwxDXhhBI1PpqKQy1Cqy0CXIbzglHOOvV0mLJuTE3hMp07DxQuL8Pr+Xrg8ydcePRbMDjdue3Yn7vjzbjz14YmwXz9oceIfu7vx0WXlgeY0sVJfooXR7sagJbRmQlLpmiY4W+KvExXrRpOBWH9Zkj351+PzF9RALmP43UbaPUsGTrcXAxZn2NcyC/0dbyOtOxN3oSWbcfaLXwByudASn0SFgrNZymh3JVWnxmCN5dloHxqdcau+U2+HSilDYVYIec2TWCTOCYmwDsvscKPb4Ah5F6DWX58VSt1Zt9EOm8srabrB+gWFsLm82HXSGNV5THYXRkZdEdWbiarzheBsul3EAbMTuzoNSdkIJFhNfmZU7fR3dQjBz+Iods7Ei+KBMJtibDuuhyZdgUXjvoevX1aOf35pNTTpCnzyqe148sPjkuxWiBcRUqY1AkK6Wbi7AL0mB4atY4GURtENy8thtLvxXmvkO0mp5Mf/bcWwdQyr5+Xh4f+2hp3u9tSHJ+D1cXxx7bwYrfCURDUF6TLYoVMroZ1k3qROnYaqPDX2d0f3c1VK/WbhRkXJJDtnAFCkVeGTKyvw8p4e9EQxhoJIQwz+ww3OirUq5KiVONwbaXBmRW5mWsTXUKcZHhba599yi9AMhESFgrNZKll3zgChKYiPz9witlNvQ2Vu+G30A+9THl1TkHBTAk51bJy57kzcYZAyODt3Xh7SFLKoUxujaQYiqsrPhNPtw8A0gfF/DvaDc+CKJE1pFFXnZ0ZVc7axbQhN5dlR/XsUB1GHm9q47bgeZ1XnTjqjr65Yi3/dvRqXNBThR/89gi/8dS8sUdbVHO41B1KXpVSRmxF2cLbX32EveOcMANbUFqBYq8KLu7ulWp5kRsc8+OEbLZIFJ1vaR/D3Xd343Joa/On2VbhuaRl+9lYbfvXO0ZCCcf3oGJ7f0YVrFpdiToQZDOGo8zcFirZ9eLi6jRM7NQZbUqFLup0zpZwhP3Pqf2d3rZ0LBoYnPjgex5WRyXTqp65pnA5jDAtLsyP+99A6YEG9RKUT+O1vAYcD+MY3oj8XoeBstjLYXMhJogHUwcRZTzPVnXXqI2ujL2oo0YKxU2ll4RJ3AUJNCdCp01CQlR7SnJ5WcfZICI1GQqVOU+DsmjxsjLIpyPFhsY1+5Gur9rfTn67u7D/Nfagv0UY06Dqeago0GBkdiyhwMdpc2NdtwtoFhVGtQdw56wmjKciA2YkTIzacMzdvymOyVEr87uZleOCKerzTOoirH98cVWBwqE/aZiCiilw19DZXWIXx+7qMUCllE/6NyWUMH11ehg+ODmNQou6mUrA63bj1mR14evNJfPa5XdCHOCdwKnaXB99+9SCq8tT46sXzoZDL8PMbFuOG5eX49XvH8MhbbTMGaM9sPgmnx4svrottrZlIqxLah8c9ODPYA41nJrO4QocBizPsnetY6Tc5UKRVnTYwe7yS7AzcsKIcL+7qCey0kcQQSzQiqZ9vKNWibcAa9jgXj9eHIwNW1BdLcAPYZgN+8xvgmmuA+vroz0coOJuNvD4Ok8ON3CRNayzUqlCsVeHgNO2JfT6OToM9MDMrEpnpCtTkZ0a8c9bSb0G+Jj2s7mS1hZqQZp219FtRU6CBSinh7BEA6xcU4MSILao2yu1Do0hXyAK7NZEIzDqbou6s1+TA3i5T0jYCCVZTEN7ctmAfHhsG58DaBQVRraEkOwOMhbdztu3ECABMG5wBwt3ZO9bU4O93ng27y4uP/2FbRJ3pHC4v2odGJa03EwU6NoaRorW3y4Smch2Uk+wafmx5BXwceGVvcjQGsTjduPWPO9HcY8bXL56PEZsL9/x9X1QdNX/x9lF0Gez4yUebAj9n5DKGn360CTefNQe/33gcD/+ndcoAzWx348/bOvGRRSWYVxi/mtClc3Kw44Q+5MZK0fL6OHqMEwdQBxPrzvZ3m+Kyppn0mZ0onaLeLNgX1s6Fj3P84YPwaw2JdLoMdmSpFNBFMF5kYakWLq8vcNM0VCdHbHB5fNLUmz37LKDXz/omHlKi4GwWMjvc4Dz5BlAHayzPRvM0QdOAxQmXxxd2GsB4i8qyI26b3dJnCfsHW22h0LFxpjvSks8e8VtfVwQAUaU2tg+Nojo/E/Jp7srOpESrQrpCNmWQ+J/mPgDAVUlebwac6tgYSVOQD9qGkaNWRlVvBgBpCqH2si+MnbOt7Xro1MqQ75yurMrF059eAYvTE1E3w9YBC3wcE+rbpCD+HOgOsSmI0+1FS595QkqjqDo/E6uqcvHy7p64dwYcz+xw45ZnduJgjxm/uWkZvnxhLX547SJsadfj528fjeice7uM+OOWk7j5rDk4u+b04FwmY/jhtYtw27lVeHrzSTz0r8OTBkLPbe3A6JgHd6+Pfa1ZsAvrCjEy6pr294OUBi1OuL182t819SVaKOUsaYKzfrNjynqzYOU5anxseTle2Nkl2QxMEj4xCyiS9EKxrCLcujNx9znq6wyPR2gEsno1cO650Z2LBMwYnDHGKhhjGxhjrYyxw4yxe8c9/w3GGGeM5cdumURKhiQdQB2sqSwbJ4ZtU96h74yijX6wRaXZ6Dc7MRJmipDL48OxIWvY3RTnFWVhdMwzba2V2e5Gr8kRk6HLc/LUmFuQGdW8s/bh0ajqzQDhArAyTz3lrLP/NPejqTw7LnUs0ZqTKwSq4dad+XwcHxwdxvnzC6IKdEWluvBmnW07ocfZ1XnTpj6N11Suw4rKHDy3tQPeMHcuxJmCi2KxcxbmIOrDfWa4vXxCM5BgH1tRjhMjNuztSlyjB7PdjVue2YGWPjN+/6nluGxRMQDgxhUVuOmsOXjig+N481B/WOcc83hx/8vNKNaq8K3L6yY9hjGGB69qwJ3n1+BP2zrx3X8ePC1Aszrd+OOWk7iovigmN5Gmc8H8AsgY8H6cGrac6tQ49U6USilHfYkWB5IgOPP5OAbNYyjODi2j44tr58Hr4/hDBJ06iTS6DHZUhtlGXyRk2MjCTvVt7bdCKWfRlw28/DLQ0UG7ZhILZefMA+DrnPN6AGcD+BJjrAEQAjcAFwPoit0SidSMdiE4S/adM2DqerBo2+iLxAvFPZ3hXYC1D43C7eVhz2sSOzZOV3fWOiB9M5Bg6+sKseOEIaLBlU63Fz1GR9TBGSAE1pO10+/S23Ggx5wSKY2AsGtVkZMRdnB2sNcMvc0VdUqjqCyM4KzbYEeP0YFz502f0jiZz5xXjS6DPexuhod6LchRK1ES4kVjOHLUSmSmyUNuCrK30wQA0wZnVzSWQJ0mx4u7EpPaaLK7cPMz23Gk34onPrUcFzcUnfb8g1c1YEmFDl9/8UBIHWBFv91wHMeGRvGj6xqRNUn3QRFjDN++vA53r5uHv+3sxjdfbg4E5H/d3gWzwx33XTNAuKm4bE4O3pNoZuNMxOBspiyNJRU6NPeYwr5pITW9zQWX1xdSWiMg3LC7bmkZnt/RiWFrfEcUEKH2q8doj/hGpFzGsKBYG3YGUEu/BfMKs5CmiCKBjnPgpz8F6uqAK6+M/Dxkghm/Kpzzfs75Xv+frQBaAZT5n/4VgPsAJPanEQlLYOcsSWvOgFNNQaaad9aht0MpZ1Ff6C2do0OZLgM/f6strBlRLRHOBwkEZ9NcTLVKPRhynHV1hXB5fdjcPhL2a08M28B5dJ0aRdUFmejS2ydczLxxUEhp/EhjagRngHD3Mtyc/41tw2AMOL9WouAsJwP9JmdItThbj/vrzWrCD84uaShCmS4Dz27pCOt1h/rMWFSWHZPB94wxVITRTn9ftxHlORnT1otmpitwRWMJ3mjug90V/o2MaBhtLtz01A4cHRzFH25ZjgvriyYck66Q4/efWgaVUo7P/2U3RkO42dLab8HvNrTjuqVlWFc3cxMaxhi+cekCfO3i+Xhlbw++9uJ+WJ1uPL3pBNbU5gdqreJtfX0hDvdZ4tKAo8dgh4wJO9PTWVyug83lDfvngNQCbfTD+N34pXXz4HT78Nq+5KixnE36zULabGUUJRoLS7Vo6QtvOHurFHNU330X2L8f+OY3ARlVSUkprL9NxlgVgKUAdjDGrgbQyzk/EIuFkdgx2pJ/5yxPk44yXcaUHRu7DDZU5KgnbQEeDpVSjh9euwjHhkbDKoo+3GdGhlIedlplniYduZlpaJ+mnX5rvwV5Us0emcTKqlxkpSuwIYI7z+3+Cw8pOihW52XC5fVNqJN640A/ls7RoXya7mjJJpS5beNtaBtCU7kOeRppvs7lugy4vL6QUnS3HdcjX5MeUZCtkMtw6zmV2HZCHxj5MBOXx4ejg1YsjEGnRlFFrjrkhiB7O01T1psFu2FFBWwuL/53cCDa5YVMPzqGTz61HceHR/HUrSumDaJKsjPw+E1LcXLEhm++dGDaizOP14f7X2lGdoYS37uyIaw13XNhLe67bAFe39+Hjzy2CXqbC/dcWBvWOaR0ob92Npr07FB1Gewo1WVM2jgm2BL/Lmyi6876TELAOlMwGaw6PxO5mWno0NPMs3gLtNGPsvO0xelBT4gNoUZGxzBsHYu+dOKRR4SZZjffHN15yAQhX9kyxjQAXgHwFQipjt8F8P9CeN2djLHdjLHdw8PDka6TSEifAjtnANBUnj1lJ8WOkcjTAMZbV1eIK5tK8Jv320O+69nSZ0FdSVZEtULz/E1BptLab0V9iTYmOwwAoJTLsGZ+Pja0DYXd7KB9aBQydqoVfjQCHRuDmoKcGB5FS78l6QdPj1dTIMxt6w+xqN5gc+FAjwlr50uzawacuhibqZ0+5xxbj+txzty8iL/HPrFyDjKUcjy75WRIxx8dtMLt5VhUFrv6JGEQtWPG7+l+swMDFue0KY2ilVU5qMpTx23m2cjoGG56agdOjtjwzKdX4oIQvj/OnZuP+y+rw/8ODeCpTVPfYPrjlpNo7jHjoasXRnRj7otr5+GBK+rRbXDgrOpcrKzKDfscUplfpEGZLgPvtcYnOJuujb6oOi8TWSpFwoOzAf/OWag1Z6LynIyQL+6JdDoNYolG5L9TxfKKUOvOJMnO2btX2Dn7yleA9NjcSJ7NQgrOGGNKCIHZ85zzVwHMBVAN4ABjrANAOYC9jLHi8a/lnD/JOV/BOV9RUCDdhQiJnNHmQoZSjow0adu0S62xPBudejvM9tObgnDO0WWwR90MJNj/u6oBKqUM33714Iy7H5xztESRElBbqMHRwck7Nnq8PrQNWmPSDCTYugWFGLSMhV1EfHxoFBW5akla/AdmnQXVnf2nWWhucEUKpTQCQE2+sAN1IsTgfpO/hX4oqWWhCnUQ9YkRG4asYzh3hhb608lWK/Gx5eV4/UBfSDt1Yj1ELGaciSpyMuBwezEy6pr2OLHeLJSdM8YYblhRgR0nDYE611gZto7hk09uR6fBhmdvW4nzakPvsXXn+TX4SGMxfvK/I4GU1WAdIzb84u2juLihKKpazjvW1OCFO87CY59cGvE5pMAYw/q6QmxpH4HTHXo6eiS6DNMPoBbJZMw/jNoU0/XMpN/sRJpChrwwA3AhOKOds3jr0tuRJpehWBt5iUZdsRYydmr26kzEjIew69ofeQTYsEH4889+Bmi1Qr3ZI4+Edx4yo1C6NTIAzwBo5Zz/EgA45wc554Wc8yrOeRWAHgDLOOfxy/0gETPYXUmd0ihqKtMBwITdM73NhdExT9Rt9IMVZqnw3SvqsfOkYca75D1GB6xOT8QpWvMKNTA73JNeRJ7wzx6JdQc0cehxuKmNx4dHMU+iodCFWelQp8lP2zl7o7kfK6tywr7rm2iBdvohNgXZcGQIuZlpaJKwc6E4iHqmdvpbj+sBRFZvFuy21VVweXx4YcfM/aAO9VqQla6Q9N/seOJO+kwdG/d1GZGukIX8b+z6ZWWQMeDlPbGrxxmyOvHJp7ajx+jAs7etwrnzwmt+zBjDIx9bjJoCDb78wr7Tvgd8Po77X2lGmkKGH167KOod+XPn5aMoigtJqayvL4TD7cW2E/qYvYfD5cXI6FjIWRqLy3U4MmCFwxXbgHE6fWYnSrJVYX+dy3PU6DE64jY/jgg69XZU5GZE1bE3I02OmgINWkJsCtLab0FJtir8jt0rVwI33gi88ALw4ovA5ZcDn/mM8DiRVCg7Z6sB3AJgPWNsv/+/j8R4XSSGjLbUCM7EpiDN45qCiHewq/KlvdC7cUUFzqrOxY/+24oh69TpaZE2AxHV+ge2Hpuk7qxVqtkjMyjISkdTeXZY8868Po4TIzZJmoEAwgVlZV5mYNbZsUEr2gatKZfSCAh/n5p0RUg7Zz4fx4fHRnB+bX5YbexnkqVSQqtSzNixcftxPUqzVVF3Op1boMHaBQX4y/bOGZvpHOozo6FUK+nnO56YejbT3f+9XUY0lmWH3KWsJDsDa2oL8Mqenph14vvqP/ajz+TAc7evnHEo+FQ06Qo88anlGPP48IXn9wa+Jn/b1YUdJw144Ir6pAiqpHJOTR4ylPKIamdDJdYwlueEVr+1pEIHr49HPDtTCv0mR0SNsipyMuDyhFazSqTTabBHldIoEpuChEIsnQjbunVCUPbZzwofv/OO8PG6deGfi0wrlG6NmznnjHPexDlf4v/vv+OOqeKch9/6jSSEwe5O6hlnomy1EpV5ahwc1xRELKCV4gdaMMYYfnR9I5xuH37w75YpjzvcZ4GMAQuKIks9rC0SgpvJ6s5a+i1Ik8skabgxk3ULCrGv2xTo3jmdXR0G3Pz0drg8voiD0snU5GcGitDfaO6HjAGXN07Ijk56jDHUFGTixBRDtYM195phsLkkTWkUleoypk1r9Pk4tp3Q45y5+ZLUNH5mdTWGrWOBdNTJeLw+tPZbYjLfLJjYQKZrmqYGYx4vDvVasKxy5pTGYDesKEef2TlpymC0rE43tp8w4PbVVTgryt3MeYUa/PyGJhzoNuH7/25Bv9mBH//3CM6dm4cbV1RItOLkoFLKsXpePt5rDb92NlTi91KoO76L/d0rE1l31m92oiTENvrBxH8/3VR3Fjecc3TpbZJkFDSUaNFndgYavk3F6RY6ikZcOrFunbBT5vMBX/oSBWYxQr0vZyGjzYVc9dTzbZJJY1n2hI6NHXo7GAv9bmY45hZocPf6eXijuR/vH5l8jlNLnwU1BZqIa/YKs9KRpVJMOuuspc+CeYWa6GaPhGh9XSE4Bz44OvWd5/3dJtz6x5244YltaB+y4cGrGnCVhDtbVflqdBnscHt9eKO5D2dV503b3jyZVednhpTWuOHIEBgD1kjUQj9Yec70s87aBq0w2FwR786Mt6Y2H/MKNfjjlpNTXiCfGLHB6faFPRMwXBlpchRkpU/bsbGlzwKX14elYbaAv7ihCDq1Ei/ulj61cccJA7w+jtVhpjJO5bJFJbjrgrl4YUcXPvHkdnh9HD+5vilmDYYSaX1dIXpNDhydZm5kNMTvpVAvnguyhC7DiQrOvD6OQYszop0z8fcp1Z3Fj97mgs3ljTqLAUCgzGKmOvL2oVF4fBwNJRHeLNuwAWhtBb73PeD3vz9Vg0YkRcHZLGS0uVJi5wwQOjb2mhzQB6VadOltKM3OQLoiNg1N7rpgLmoLNXjgtUOTDmqOdj4IYwy1hZop0hojTDeIQGNZNvI16Xj/yMQuqof7zLjjT7tw7W+34GCPCd/5SB023bcOt6+uljQ1rSovE14fx3utgzg+bMMVKTJ4ejI1+Rr0mhwzNijYeHQYi8t1MUktnmkQ9Tax3kyi4IwxhttXV+FQrwW7pxjkfshfMxrrnTNAuIieruZsb5cJAMLeOUtXyHHN4lK8dXhgQoOiaG05PoJ0hSykBiWh+sYl87F6Xh469XZ849IFknW2TTbr/bvP4aRnh6PLYIc6TR7Wv9UlFbqEBWcjo2Pw+DhKwmijLyoLBGe0cxYvYomGFMGZmNEyU0ptS6B0IoKdsw0bhJqzF18EfvAD4f833kgBWgxQcDbLjHm8sI55kJvkbfRFjZM0BenQ2yX5YTaVNIUMP/loI/rMTvzi7aOnPWeyu9BrckS9C1BbmDUhrXHYOoaRUQlmj4RIJmNYu6AAH7QNweP1ARDqvr74/B5c8dhm7DxpwDcumY9N96/HnefPjUl3T7Fj4+Pvt0MuY7h8UeqlNIpqCiaOBhhPPzqG5h4T1i2QPqUREC6wrE4PLM7JA4itx/WozFMHmodI4fql5cjOUOKPmydvq3+4zwKVUoYaCcYvzKQiJwPdhqkvLvd1GVGarYqo9uqGFRVweXz4V3NfNEucYGu7HiurciXpgCpSyGX43c3L8etPLMFt51ZJdt5kU5ytwsJS7ZRZDtHqNtgxJ1cd1q7jkgodeoyOhNRuiY1gSiPYOVOnKZCXmUbBWRwFZpzlRv+zMTczDSXZqhnrzlr7LchQyiMrC9m16/QaM7EGbdeuCFZMpkPB2Sxj8t/1TZWdM3EuUnDdWafeJnm92XjLK3PxqbPn4LmtJ09rjRxtMxBRbZEGI6Ou0+q9WiU6dzjW1xXC4vTgtX29+Mrf9+GSRz/EB23DuGf9PGy6fz3uXl8LTboiZu8vzjo73GfBuXPzJBvInAg1IXRs/NDfQn/tgtiMFRFnnU1Wd+b1cew4qY+qhf5kMtLkuOmsOXjr8AC6J9m1OtRrRn2JNuqB8aGYk6tGv9kBt/9mw3j7ukxYGuaumWhhqRb1JVq8JOHMs2HrGNoGrZKlNAbLzlDimiVlUXWBSwUX1hViT6dxxlqbSHQbHKgIsx5IrDtLREv9AbPQyCrSbrep0k7fOsXNp1TT6S/RqMiV5mZZQ4l2xnb6rf0WLCiObEYr7rtvYo3ZunXC40RSFJzNMmIwEO4MlETJUilRU5CJZv/OmdnhhtHuRlUc0nTuu6wOBVnp+NarBwMXexHPBxlH7HgYvHsmyWDIMJ1Xmw+FjOGbLzfjzcMDuPP8Gmy6fz2+dskCZGfEvi4xLzMNWf7gL5r5S8lA3AWcrmPjxrZh5GWmBTqRSq1smuDscJ8ZVqcHZ0fZdGIyt5xdCcYY/rK987THfT6Olj5LTOebBSvPVcPHJx8nMGhxotfkiDh9kDGGG5aXo7nHjLaBiSnJkRAbjKyeJ/3XZLZYV1cIHwc+ODoxPTsa4jzNUAZQB1tUpoVcxhISnPX5g7PSCBqCAEJTkJnmJCZat8GOZf/3Dra2p34Pui6DHSValWQlGgtLtTg+PDplaj3nws/jeN4AJpGh4GyWEe8upsrOGQA0lWUHds66Ap0aYx+caVVKfP/qRWjtt+AZf8pWS58FRdp05Ee5w1NbNLGdfot/9ogujimnWpUSX15fizvOq8aH963Dty+vj+uYBcYYqgsyoZAxXLowdVMaASEtqDRbNWXHRq+P44Ojw7hgfkHMWsqLdSN95okXWFslrjcLVqrLwOWLivG3nV2n1Wl2GeywjnkCO+CxJjZumKzubF+XUBO3dI4u4vNftbgUjAFvHpJmpOeW9hFoVYqIZyYSYbZYXmaa5HVnI6MuONxezAlzV0OdpsD8oizs75m+9icW+k0OqJQy6CJs+FWem5H0s84O9Jjg9vKQBy4nM6mzgBpKtfBx4MgUN4/6zE5YnJ641bWTyFFwNssY7EJwlgpzzkSN5ToMWJwYsjjRaRALaGNfvwIAly0qxiUNRXj03aPo1NvQEmUzEFFptgqZafIJO2eJ+KF570W1eODKhoR1Sbx2SRnuWFMT16A0VmoKNFMGZwd6TDDZ3bggRimNAJCfmY40hWzSu9/bjusxr1ATs6/zZ86rhtXpwSt7T3U0POQvTo9X8CGmoE1Wd7a3y4Q0uSyqetGCrHQsm5ODt1uiD84459jSrsc5c/PO+NTDWJLJGNbVFWJjUO2sFAKdGiO4EbikIhsHuk0xa/E/FbGNfqSdOctz1HB5fRhO4llnYmfOVEi/nEmXQdr6+UDHxikC19Y+MTsnPnXtJHIUnM0ygZ2zFLoQbioXfuAc7DUHFdDGr/vYD65ZBIVMhvtfaUb70KgkKQGMMcwr1ASCM2H2iC1uzUCSyWfOq8a3Lq9L9DIkIbTTH530omxj2zBkDDg/Bi30RTIZQ2m2Cj3j0vrcXh92dRgkrzcLtmxODpZU6PDslo7AnfdDvRYo5QzzI5wJGK5irQpKOZu0nf6+LiMWlmmjTiG6pKEIh/ssMw77nkmXwY5ekyMm9WazzYX+2tk9U3QMjYRYPxnJ75olFTqYHe7ADMd46TdHNoBalArt9I/6d4VSvXHJ6JgHI6MuSTupludkIEulmLJjo1g6saCYds6SHQVns4zBJhTSRpr2kAgNJVrIGNDcY0bHiA0FWenIjGGTivGKs1W4/7IF2H7CAI+PS7YLMK8wKzDrrH1oFN5oZo+QpFBTkAmrU/ilO97GtiEsqdDFPKW4LGfiIOrmHhPsLm9MgzMAuH11FU6O2AL1P4f7zJhflBWXuX0AIJcxlOkyJqQ1ujw+NPeYJWlXf3FDEQDg3ZboOgRuaRfSTM+dS8FZtM6rzYdSziRNbRRT6MvDrDkDgodRSxcshiLSAdSiihRop3908MwIzgIlGhJ0ahQxxqZtCtLSb0FVnjqmTb6INCg4m2UMtjFoVQoo49A5TSqZ6QrMK9QIO2cGe1yagYx381mVWOavVZEq9XBeoQYDFicsTndQo5HZt3N2JqkpEBq9jG8KMjI6huYeM9bGqIV+sDJdxoSGGFvb9WAMOKs6tsHZRxpLUKRNDwylPtRrjlszEFFFrho944KzIwMWjHl8UdWbiWoKNJhbkBl1auOW4yMo1qowtyA+KdpnsiyVEquqcyUNzrqNdhRmpUc04qC2MAvqNDkOdMev7szj9WHQ4kSpLvKdszKd8Ls1WQMfp9uLDr0NjAm7e/FOG5WSlDPOgi0szcaRAQu8k9QNJqp0goQvda7QiSQMdndK1ZuJGst0aO4xo1Nvk2QmSLhkMoZff2IpHriiXrLgsDaoY2NLNLNHSNIQZ3mNrzv70L+TFKv5ZsHKdGoMWccw5jnVsWvrcT3qi7Ux37VTymW49ZwqbDo2gg+ODsNod8etGYioYpJB1Hv96W5SDXq+uKEYO04YYHZE1tLb5+PYdlyPc+flRVwfRE63vq4Ix4ZGAzsS0eryzziLhFzG0FiWjX1x7Ng4ZB2Dj0feRh8QxmLka9KSNq3x+PAofBxYWqGDzeUNjAZKRZ2GyGsap9NQqoXT7cPJkdNvEI6OedBpsFNwliIoOJtljDZXSnVqFDWVZ2NkdAyDlrGE7JwBwkXfHWtqJLuYqi3yB2eDo9HNHiFJo0yXgXSFbMLO2Ya2YeRr0qIeXh4K8c55v0loq+10e7GnyxiTLo2TuWnVHKQrZHjgn4cAAAtjNDZgKnNy1TDa3afNQtrXbUKxVhWYAxetSxYWwePj2NgW2U5N64AFBpsLqymlUTIX1gk3PqQaSB3JjLNgS+bo0NpnOe0mSSz1R9lGX1SWo07anTMxpXG9/2sdbd1nInXq7chRK6FVSVtiIv6OGZ/a2DZgAefxHdVDIkfB2SxjsLlSZsZZsMbyUxd4Ut9pSpTyHDXSFTIcHbRSusEZQiZjqM7PxMmgnTOvj2PTsWGcH8MW+sEC7fT9Fy57u4xweXwxrzcT5WSm4fplZegxOiBjQH2ci8/FuVTBHRv3dhklSWkULSnXoSArHW9HWHe21V9vRs1ApFOVn4magky8J0Fqo8vjQ585yuCsXAeX14fWfmlm4s2k3z8+oySKtEZAaCox2TD5ZHB0cBRKOcN5/qZKybrDF4ougw1zYpApM69QgzS5bELHxhb/92E9zThLCRSczTJGuyulOjWKGkq0gV2lqjMk9U8uY5hboMGHx4ZhcXpoMOQZQujYeCo4298ttNCPR0ojAJSLdSP+4Gz7cT1kDFhZnRuX9weA21dXAxAuFDLSpBmwGioxFU3s2DhsHUO3IfLh05ORyRguqi/ExiNDEe2MbDk+gpqCzKhS0MhE6xcUYscJw2mz9iLRZ3KA8+i6Ai/x3wyI1zBqcac8moYggHBzo9eUnLPOjg5YUZOvQbX/GiBZd/hC0am3ozIGXaeVchnmF2vQ0n96cNbab4FWJcziJMmPgrNZhHMOg82VkjVnKqU80I77TAnOACG1UZzbQrNHzgw1BZnoMtjh9s9c2tg2BBkD1tTGZ5ekOFsFxhDo2Lj1uB6N5TrJ02emM78oCzedNQfXLS2P23uKKvxDg8W7/1IMn57MxQ1FsLm82OYf7h0ql8eHnScNlNIYA+vrC+Hy+rC5fSSq84g1i2L3wkgUa1Uo1qqw86QhqrWEqs/sgDpNDq0quk585TkZcHs5hqzJN+usbdCK2iINtBkKZKUrUjY4c3l86DM5YlaiIXZsDG6YImbnUI1raqDgbBZxuL0Y8/hSsuYMAFZU5qBIm47sFBoDMBOxKQhAs0fOFDX5Gnh8PHCBt7FtGEvn5MRtyHaaQobCrHT0mhywuzzY322KW0pjsB9d14gvrJ0b9/fNzlAiK10RCM72dpmglDMskrj27dy5+VCnyfFOmKmNB/xjDVbPi//X5Ey3sioXWekKvN8aXWpjlwTNGhhjOH9+Pj48Nhy4URNLA2YnSrJVUV98J+usM9uYBz1GBxYUZYExhrKcjKRbY6h6TQ74OGKS1ggIHRsNNhcGLUKA7fVxHOm3UnZOCqHgbBYx+AdQ56ZgWiMA3HfZArzyhXMTvQxJzSsUdssqafbIGaPG3xr9xLANw9YxHOw1Y92C2A2enozYTn9XhxEeH8c5NbMnEGCMndaxcV+XEQ0l2ohaok9HpZTjgvkFeLd1MKwUsC3tI2AMOKeGds6kppTLcP6CArzfNhRVWl630Y40uQxFWdGlgK2vK4JV4uHYU+kzOyVpeCPOdUu2XaljQ0KGyfxi4XdmeRI3LplJrNroi041BTEH3s/h9lJdewqh4GwWEYOzVN05y1IpIxoImszEjo3UQenMETzrTBzGHI/5ZsHK/HUjW4+PQClnWFElXb1VKqjIzUC30QGPVxg+vVTCerNgFzcUYdAyhube0OdZbWkfQWNZ9hmVAZBM1i8oxLB1bMpBvKHoNthRnpMRdQMfcTj2Bgnnr02l3+RAiQT1RMm6cyZ2ahTLG8pzMtBjdKTkrLPOwADq2FzP1JVowRgCTUHEpjR0nZE6KDibRQI7Z5l0UZAsKnPVKMhKx9mzaGfjTJedoUS+Jg0nR2zY2DaEgqz0uP9SLNWp0G9yYmu7HksqdFCnza5d2Tm5anQb7Gjtt8Lh9mJZZWyCs/V1hZDLGN4JcSC1bcyDfV0mnEv1ZjGzdkEBGAPei6KlfpfBHlWnRpEmXYGzqvMk6SA5HZfHh+HRMRRH2QwEEHaE8zXpSbcrdXTAinSFLNCkpTwnA6NjHlgc0TV/SYROvR0ZSjkKstJjcn5NugJVeZmBGxSt/RbIZQzzgsooSHKj4GwWMdrF4Cw2PxBI+BRyGTbfvw63nF2Z6KUQCdXka3BsaBSbjo3ggji10A9WrsuAy+vDwV4zzpmFgUBFrhpjHh/e9gdNSyt0MXkfnToNq6pyQ64729lhgMfHqd4shvI06VhaocP7UQRE3QZHVJ0ag62rK0T70GhM29MPWZ3gHJJ14ivPyQh0O00WYjMQsWuzuMOXbOsMRZfBhjm56pg252go0eJwv7Cj39JvwbwCjeSp3SR2KDibRQw2YShrqtacnanSFfK4X7yT2KrOz8SeTiPMDjfWxrneDDg16wzArKo3E4m7Hq/v70NBVnrgQi4WLm4owtHBUXQEzbabytb2EaTJZVhRGb+xBrPRhfVFaO4xY8jiDPu1ZrsbZoc70PUzWusDw7Fjt3smDqAukWjIekVu8tVzHRscxfzCUx2NE1UbN+bx4pwfv4e/7+yK+BydenvM57U2lGrRbXDA7HD7OzVSN+hUQsHZLGK0uSCXMWRF2WqXEDI9sSmIXMawZl4CgjP/rLN0hUzyFvKpQBxE3WWwY2mFLqZ3qC9uKAKAkHbPtrTrsaxSF/fZb7ONOFNwY9tw2K8Vd2Kk2jmrzs9ETX5mTIMzceC8lDtnfSYHvEky68xsd2PA4gw0AwESVxt3qNeCfrMTbzT3R/R6n7+Tb6zqzURiZ8Ztx/XoNzupGUiKoeBsFjHYXchRK2mXhpAYE5uCLJujS0jjh1KdcJG2vDJnVqayBO+UxareTFSRq0Z9iXbG4Mxgc6Gl34Lz5s2+NNN4qy/JQkm2KqK6MzH9UIqaM9G6ukJsO6GH3RWb+ihx50yqoeanZp2Fv/MYC0eHhIYWC4pOBWfZGUpoEjDrbK+/8+bODgOc7vAH0A9ZxzDm8aEyP7bzWsWOja/s7QEACs5SDAVns4jR5kIOpTQSEnNi4XW8uzSKslRKrF1QgBtWxH8IdDJQKeUo0gq1tbGqNwt2cUMRdncaoB+denCvOKz6XArOYo4xhvV1hdh0bARjnvAuoLtiEJytryuEy+PDlvbwBpaHasDsRFa6AlkSDZpPtnb6YqdGsbsxIHyNxY6N8bSn0wjGhCYsuzrCHzAeaKMf452zwiwV8jXpgU6hFJylFgrOZhG9zZWybfQJSSXV+Zl44lPLcfvqqoSt4bnbV+G6pbMzOAOEtDSFjKGpXBfz97qkoQg+jmm78m1uH0FWugJNEg/DJpO7sL4QdpcX20+EdwHdZbBDp1ZCK1GgAwjDsTXpipilNvaZHCjRSbNrBiRfO/2jA1ZkpslRNq6mrjzOg6g559jTZcSlDcVIk8uw+dhI2Ofo9Af/sZpxFmxhqRYeH0dBVnrMOkOS2KDgbBYx2lzUDISQOLlsUfGsa2GfTNYuKMRHGkviUt+1sFSL0mzVtKmNW4+P4KyaXCjk9Gs3Hs6dmw+tSoHntpwM63XdRuk6NYrSFDKcNy8fG9uGYjKXq9/sRIkEbfRFYhDUY0iOnbO2QSvmF2dNqB0t02Wg1xS/NXYbHBi2juG82nwsq9RhUyTBmd4GuYxJMjB8JmLdGe2apR76LTGLGO0u5GooOCOEnPm+tG4eHvvk0ri8F2MMFzcUYdOxYThcE9Poeox2dOrtNN8sjlRKOe5aOxcb2oax82Tou2fdEs04G299XSH6zc7AQGAp9ZulGUAtUvlncCVLm/rxnRpF5TlqWJ0emB3uuKxjT5fwfbS8MgdragvQ0m/ByDSpzJPp1NtRpsuAMg43aRYGgjPq1JhqKDibJXw+DqPdTTtnhBASAxc3FMPp9mFz+8S76Vv9tUarqd4srm4/txqFWel45M0jIe1YeX0cPUZ7oNunlNbWCV1b349iOPZkxjxejIy6JN05A5CQeq7JjIyOQW9zndapURTv9Ms9nUZo0hWYX5QVaOyzZZJ/79PpMtjjktIIAEvn5CBNLsNZ1TS6I9VQcDZLWJ0eeH2cas4IISQGzqrJRZZKgbcPD0x4bsvxEeRr0jE/qKEBib2MNDm+fGEtdncasaFt5nqvAYsTbi+XPK0REBo0NJVnS153NmgWdm6krDkDhHEUyRCcHR2Y2KlRFO/GJbs7jFg6Rwe5jGFRWTayM5Rh15116u0x+f6aTJkuA7u+exHW1xXF5f2IdCg4myUMdhcAIDcz/m29CSHkTKeUy7C+rhDvHxk6bT4U5xxb2vVYPS8vpvPWyOQ+sbIClXlqPPJmG3wzzO0S2+jH6uJ53YJC7Os2wWBzSXbOPrMQmEiZ1ggkz6wzsVPjZDc2Tu2cxT44szrdaBu0Yrl/NIdcxrB6Xh42t4+EXEcoDjiP184ZgISMciHRo+BslhB/GVArfUIIiY2LG4qgt7mwt8sYeOzo4ChGRsewmurNEkIpl+FrF8/HkQEr/t3cN+2xp9rox6ZZw/q6QnAOfHBUut2z/kBwJnVaoxoeH8egJbGzztoGR6FTKyftNqhTK5GZJo9LWuP+bhM4RyA4A4Dz5hWg3+zE8WFbSOfoNAjHzcmN7YwzkvooOJslxOAsl9IaCSEkJi6YXwClnJ2W2ijWpJw7Ly9Ry5r1rmoqRV1xFn7x9lG4PL4pj+s22CFjiFknvcaybORr0vH+kWHJzikOoC6VOK0xnrtS0zk6aMX8oomdGgFx1ll80i/3dBohY8CSoLmJa2qFGy6bj4X29ezUC0FkVX78ds5IapoxOGOMVTDGNjDGWhljhxlj9/of/z/GWDNjbD9j7G3GWGnsl0siZaSdM0IIiakslRLnzM3HOy2DgVSnrcdHUJmnDtTHkPiTyRjuu2wBugx2/GN395THdRvsKI1hJz2ZjGHdggJ80DYEj3fqIDEc/SYnsjOUko/tSIZZZ5xzf3A2da1mWU4GeuMUnC0o1p426LsiV43KPPWkTYAm0xXjtFly5gjlJ5AHwNc55/UAzgbwJcZYA4Cfcc6bOOdLALwB4P/FbpkkWqdqzig4I4SQWLmkoQgdejvah0bh8fqw44SBWugngXULCrGyKgePvXds0nEHgHDxHItOjcHW1xXC4vRgT6dx5oNDIHUbfZG4e5jInbMBixNWp2fSZiCieAyi9vo49nWZsLxSN+G58+blY/sJA9whBNsdIzYUZKXT/EsyoxmDM855P+d8r//PVgCtAMo455agwzIBJLZqlEzLaHMhXSGDOg4DWQkhZLa6uEHojPZ2yyCae82wjnmwmlIaE44xhvsuq8OwdQzPbp18MHWXQfoB1OOdV5sPpZzh/RC6R4aiz+SMSXCmUspRmJUeaJKSCG0DYjOQ6YMzS4xnnR0dtGJ0zHNavZloTW0+Rsc82N9tmvE8nQY7KmnXjIQgrL17xlgVgKUAdvg/fpgx1g3gZtDOWVIz2FzIzUyjbmGEEBJDRVoVFpdn4+2WQWwV681o5ywprKzKxfq6Qjyx8TjM9tMv5h0uL0ZGxzAnxp30slRKrKzKxQaJWuoPWJwoiVGNXEVuYtvpHxscBTBTcCZ8vWKZ2rjbv8u5onLivLBz5uZDxoBNIbTU79LbY/79Rc4MIQdnjDENgFcAfEXcNeOcf5dzXgHgeQB3T/G6Oxljuxlju4eHpSuCJeEx2l1Ub0YIIXFwcUMRDnSb8Pr+PjSUaCmdPIl845IFsDg9eOLD46c93m0UOzXG/uJ5fV0hjg6ORr0r5XR7YbC5UBqDnTPAnzJoSuDO2aAVBVnp085njUdt3N5OIwqy0gPvFSw7Q4mmct2MTUGcbi8GLE5UUqdGEoKQgjPGmBJCYPY85/zVSQ55AcBHJ3st5/xJzvkKzvmKgoKCyFdKoiLunBFCCImtSxYWAwCODY1SSmOSaSjV4polpXh2y0kMBbWJ7/J30quY5AJcauvrCgEgpMHY0xE7NRZL3EZfVJ6TgX6TU7LmJeE6Nmidtt4MiM8g6j2dRiyfkzNl5tGa2nwc6DHD4pw6tVIMxOM544ykrlC6NTIAzwBo5Zz/Mujx2qDDrgZwRPrlEakY7e5p7z4RQgiRRm2hJnARdu48SmlMNl+7eD48Xo7H3j8WeEzcOYtHJ72aAg2q8tR4P8rUxn6TEJDEbufMP+vMOhaT80/H5+M4OjiK2mk6NQJAjlqJDKU8ZsHZkNWJLoN90noz0Xnz8uH1cWw7rp/yGLGNPqU1klCEsnO2GsAtANb72+bvZ4x9BMBPGGOHGGPNAC4BcG8sF0qiox8dQy5NiieEkJhjjOHyRSXIUMqxqmpinQpJrMq8THxiVQX+vrMbnXphMHCXwY7MNHncMkzW1RVi63E97C5PxOcQd85iVXMWSBlMQFOQHqMDDrd3xp0zYdZZBnpjlH65119vtrxq6uBs6ZwcqNPk2DxN3Vmn/++wKo/SGsnMQunWuJlzzsS2+f7//ss5/yjnfJH/8as4573xWDAJn9vrg8XpoZ0zQgiJk69cVIu3v3o+MtOpbXYyumd9LRRyhl+9cxSAkHZWkauOW9Os9XWFcHl82No+9W7LTPrNwm5RLLo1AvFJGZzK0UF/p8bi6YMzQGynH5s17uk0Ik0hw8JS7ZTHpClkOLsmb9p5Z116G7LSFcihm+QkBLGZtEiSisnflSqPgjNCCIkLlVIel+YSJDKFWhVuX12N1w/0obXfgm6DI65fr1XVuVCnyaNqqd9ndiJHrYRKGZsROaU6FRg7lfIZT23+4Ky2cPq0RkAIImMZnDWVZSNdMf3f8Xnz8nFyxDZlk5cOf6dG6phNQkHB2Sxg9A+gpp0zQgghRHDX+XORla7Az95qQ5fBHpd6M1G6Qo41tfnYcGQInEc2Jrbf5EBJjJqBAMIai7JUCds5K9NlIEs1805TeU4GzA73tA05IuF0e3Go1zJtSqNoTa1QWzrV7lmXwU7NQEjIKDibBQw2ITjLpVb6hBBCCAAgW63EXWvn4v0jQ3C4vXHp1BhsfV0h+s1OHPEPWw5Xv9mJUl1sUhpFQspg/HfOQmkGIorVrLNDvWa4vD4snzNzcDavUIMibfqkdWdeH0eP0Y451EafhIiCs1nAaKOdM0IIIWS828+tRkFWOoD4d9Jbt0BoqR9p18Z+szOmO2dAbOu5puLx+nB8aHTGZiCiU7POpF3nHn8zkGXTdGoUMcZw3rwCbDk+Aq/v9J3QPpMDbi+nnTMSMgrOZgGDP62R5pwRQgghp2SkyfHVi+ZDxoDawtCCAakUalVYVKaNKDizuzwwO9wojlEzEFF5jhr95vjOOuvQ2+Hy+jA/xOCsLEaDqHd3GlGVp0a+Jj2k49fU5sNkd+Nwn/m0x7vEGWdUg0pCRMHZLGAYFYIzHXUJIoQQQk5z01lzsP3bFyakgcv6BYXY12UMZLiEqs8ktNGPR1qj18cxEDSwO9aOiZ0aQwzO8jLToFLKJE1r5Jxjb6cRyytDH4Wx2j/TcNO41EaacUbCRcHZLGCwu6BJV8zYbYgQQgiZjQq1sQ1yprKurhA+DnxwdDis1w2IM85intYY/3b6bYNWMCbUcYVCmHUmbcfGTr0deptr2uHT4xVkpaOuOGtC3VmnwQalnMX8a0XOHBSczQJGm4tSGgkhhJAks7hch7zMtLBTG/tiPONMJNZzTdUiPhaODlpRmatGRlroN5TLczLQI+EgarHeLJzgDBBSG/d0GuFweQOPdemFGXpyGbXRJ6Gh4GwWMNjd1AyEEEIISTIyGcPaBYXY2DYUVl1Xvz+tMdY1ZyX+WWfx3DkTOjWGV/8ndeOS3Z1GZKkUIc1ZC3ZebQFcXh92nDw1XLxDb6d6MxIWCs5mAaPNhVyqNyOEEEKSzvq6QlicHmw9rp/5YL9+swP5mrSYlyukK+Qo1sZv1tmYx4uTI7aQOzWKynPUMNndsEo062xvpxHL5uRAFuZu16qqXKTJZYHURs45uvQ2VOZRG30SOgrOZgGDzUU7Z4QQQkgSWldXgDJdBh7692E43d6ZX4D4tNEXRTrrrGPEhvePDIb1mhPDNnh9HPOLw985A4BeU/RBpNnhxtEha9gpjYDQ/XNFVU5gGLXe5oLN5Y3rgHOS+ig4mwWMdhcNoCaEEEKSkDpNgZ98tBEnhm349XvHQnpNv9kR85RGUaTNNr7+0gF85rnd2NI+cTDzVI4GOjWGl05YpvO30zdEH5zt6zKC8/DrzUTn1ebjyIAVQ1ZnoFMjzTgj4aDg7AzndHthd3lp54wQQghJUmtqC/DxFRV48sMTaO4xzXh8v8mJ0rgFZxkYsIQ366xtwIo9nUYo5Qxff/EATPbQRgUcHbRCIWOoyQ8vOBO7Skqxc7a30wgZA5ZU6CJ6/Zp5BQCALe0j6DLYAFBwRsJDwVkKeWFHF3Z3GMJ6jcFGA6gJIYSQZPedK+qRr0nDN19qhsszdSBkdbphHfOgRBe/tEavj6PfHPqssxd2dCJNLsMfb1uJkdExfPe1Q+Ccz/i6toFRVOdnIk0R3uWpUH8nk2QQ9Z4uI+pLtMhMV0T0+oWlWuSoldh0bASdejsYOxU8EhIKCs5SxJ5OI77z2kH84u2jYb2OgjNCCCEk+WVnKPGj6xrRNmjFbze0T3lcf2DGWfzSGgGgO8TAx+Hy4tV9vbi8sRhragvwtUvm4z8H+/Hq3t4ZX3tsyBry8Olgwqyz6Ds2erw+7O8yRZzSCAgdOFfPy8fmYyPo0ttRrFVBpaQ5syR0FJylAJ+P4/v/PgwA2N1pwOiYJ+TXGu0UnBFCCCGp4ML6Ily7pBS/3dCO1n7LpMf0x2kAtUhsthFq4PPv5j5YnR7ctGoOAODz58/FqupcPPivw9POS3O4vOgy2CMKzoR1Rj+I+siAFTaXN6rgDBDmnQ1Zx/DB0WFqBkLCRsFZCnhlbw+ae8y4cUU53F6ObWG02xV3znKoIQghhBCS9B68aiF0aiW++fKBSeu8+k3xGUAtKsnOgCyMWWcv7OjCvEINVlXnAgDkMoZf3rgYjAFf/cf+KWvX2odGwTmwoDi8ejNRpF0lg+3timz49Hjn1Qp1Z3qbC1XURp+EiYKzJGd1uvHTN9uwdI4O/3ftIqjT5Pjw6HDIrzdSWiMhhBCSMnIy0/CDaxbhUK8FT246MeH5PrMTjMV+ALUoTSHzzzqbOfBp6bNgf7cJn1w1B4ydmhFWnqPGD69dhN2dRjzxwfFJX9vm79QY7gDq4Pcw2t1hZReNt6fTiCJteqD7Y6TKdBmoyReCsjnUDISEiYKzJPebDe0YGR3Dg1ctRLpCjnPn5mHj0aGQCmsBwGB3gzEhl50QQgghye8jjSW4fFExHn33GNqHrKc9129yoECTDqU8fpdwoaYMvrCzE2kKGT66rGzCc9csKcPVi0vx6LvHcKDbNOH5o4NWpClkqIwwDbBMnHUWRWrj7g4jllfmnBZYRuq82nwA1KmRhI+CsyR2csSGP24+iY8tLw+0dD1/fgG6DQ506EPbujfYxqDLUEIe5pR7QgghhCTO969ZCHWaHPe93Ayv79QN2QGLM24pjaLynIwZgx7bmAf/3NeHKxtLoJuilOL/rl2Ewqx0fOUf+2F3nb7DdXTQinkFGigiDDpPDaKOLLVxwOxEr8mB5ZW5Eb1+vEsaiiFjQH2JVpLzkdmDgrMk9vB/WpEml+G+SxcEHrtgvpDHHGpqo9HmphlnhBBCSIopzFLhwasasLfLhOe2dgQe7zM54tYMRFSek4F+swPuaWad/ftAH0bHPLjprDlTHpOdocQvblyCDr0N//dG62nPHR2whj18evwagdBr48aTqt5MdF5tPnY/cDHmFkT+OZHZiYKzJPXh0WG82zqIu9fXolB76g5ZZV4mqvLU+CDE4MxgcyGXmoEQQgghKefaJWVYX1eIn711BJ16GzgX5o2V6OK9c6aGjwu7S1N5YWcX5hdpZgxuzpmbhzvPr8HfdnbhnZZBAIDF6Uaf2Yn5xZHVmwFAgSbdP+sssuBsd4cR6QoZGiTc6aJ6fxIJCs6SkNvrww/eaEFlnhqfOa9qwvPnzy/AtuN6jHm8M57LaHfRDwdCCCEkBTHG8PB1i6CUyXD/K80wO9ywu7woTcDOGYApW+Ef6jWjuceMm8Y1ApnK1y9egIYSLe5/pRlDVieODY4CABZE2AwEEP6uyqLo2Liny4jFFbqwB2ATIjX6DkxCf93eifahUTxwRQPSFRMHF14wvwAOtxe7O4wznstgo+CMEEIISVUl2Rl44Mp6bD9hwC/ePgogfp0aReIg6ql2pZ7f0QWVUobrlpWHdL40hQy//sQS2MY8uO/lZrQNCE1PIp1xFrzOSHbOnG4vDveaJUtpJCQasz44++U7R/Grd44mehkBBpsLv3rnKNbU5uOi+sJJjzm7Jg9pctmMqY2ccxjtLqo5I4QQQlLYjSsqcN68fPxleycAoDTOaY0lOpV/1tnEXanRMQ/+tb8XVzaVhtUZurYoC9/5SD02tg3jN+8fgzpNLkkL+0iCs+YeMzw+juVzKDgjiTfrg7OTIzb8eVvHtEWu8fSLt9tgc3nxvSsbpkwNyExXYEVVzoxNQUbHPHB7OdWcEUIIISmMMYYfX98IdZqQTRPvhiBKuQwl2ZMHPq/v74XN5Z22EchUbj2nEhfML0Cf2YnaoizIouwsXZ6TAYPNNaET5Ex2dxoAAMto54wkgVkfnF2zuBRGuxubjoU+2DlWWvos+NvOLtxyduWMW/sXzC/AkQHrtMW5RpsbAGjnjBBCCElxFblq/OCaRVhcoUNhVnrc31+o5zo9OOOc44UdXagrzsJS/8ifcDDG8LMbmpCvScOS8uyo11ge4ayzbcf1qMnPpDIQkhRmfXB2/vwC6NRKvL6/L6Hr4JzjB28cRnaGEl+5qHbG4y9YMHNLfb1tDACQm0kDqAkhhJBU97Hl5Xj9S6sjngUWjfJJmm0095hxuM+Cm88KrRHIZAqzVHjva2vxnSvqJVjj9LVxkzk6aMWmYyO4eklp1O9PiBRmfXCWppDhI40lePvwIGxj4W2DS+nNQwPYfsKAr12yYMrhjcEWFGWhSJuOD6bZ8TPaXQCAHEprJIQQQkgUynPUGLA44fKcKgN5YUcXMpRyXLO0LKpzZ6uVkzZAC1dFYNZZ6B0b//DBCWQo5fj0OVVRvz8hUpj1wRkgzBFxuL14t3UwIe/vdHvxw/+0oq44C59cWRHSaxhjOL+2AJuPjcAzRb2cwZ/WmJcZ//QHQgghhJw5ynMy4ONAv1nYlbI43fjXgT5cvbgUWlVyZOjka9KRFsass16TA6/v78UnVlVQCQhJGhScAVhRmYPSbBX+ua83Ie//1Icn0Gty4P9d2RBWqsIFCwpgdrhxoMc86fNGm3/njNIaCSGEEBKF8sCulBD4vL6vFw53ZI1AYkUmYygPo2PjM5tOAgDuWFMTy2UREhYKziD8Y756SRk+PDYC/ehYXN+73+zA7zYex2ULi3HuvPywXnvevHzI2NR1Zwa7C0o5gyZdIcVSCSGEEDJLVQTquezgnOP5HV1YWKpFkwSNPKQU6iBqo82Fv+3swtVLSqNu4U+IlGYMzhhjFYyxDYyxVsbYYcbYvf7Hf8YYO8IYa2aMvcYY08V8tTF0zZJSeH0c/z3YH9f3ffSdY/Byju9GUAirU6dhcYVuynlnRpsLOeq0iIt0CSGEEEIAoCRbBbmMocfowP5uE44MWHFTFI1AYqV8kq6Sk/nztk443F7cdcHcOKyKkNCFsnPmAfB1znk9gLMBfIkx1gDgHQCLOOdNAI4C+Hbslhl7dcVZmF+kiWvXxiGLE6/t68XHV1SgIlcd0TkumF+AAz2mQApjMIPNRW1hCSGEEBI1hVyGYq0KPUYHXtjRBXWaHFcvTr4Oh+U5auhtLjhc3imPsbs8eG7rSVxUXzjj6CJC4m3G4Ixz3s853+v/sxVAK4AyzvnbnHOxveF2AOWxW2bsMcZwzZIy7O40otsQepefaPxpWwfcPh8+e151xOc4f34BOAc2t49MeM7g3zkjhBBCCIlWeU4GWvos+HdzH65ZUoqsJGkEEiww68w09bXcP3Z1w2h34wtradeMJJ+was4YY1UAlgLYMe6pzwD4n0RrShjxDtC/DsR+98zu8uCv27twcX0RqvIzIz7P4nIdsjOUk6Y2Guy0c0YIIYQQaZTnqNE2aIXT7cNNqyoTvZxJicFZ9xSpjW6vD09vOomVVTlYXpkbz6UREpKQgzPGmAbAKwC+wjm3BD3+XQipj89P8bo7GWO7GWO7h4ennsmVDCpy1VhRmYPX9/eCcx7T93p5Tw/MDjc+d350HYLkMoY1tfn48OjwhDUbKa2REEIIIRIRA5/Gsmw0JlkjENFMg6j/faAPvSYH1ZqRpBVScMYYU0IIzJ7nnL8a9PinAVwJ4GY+RTTDOX+Sc76Cc76ioKBAijXH1DVLSnF0cBRHBqwxew+vj+OZzSexpEKHFZU5UZ/v/PkFGLKOnbZmr4/D5HDT3A5CCCGESEIMzpKpff54BZp0pMllk3Zs9Pk4nvjgOBYUZWHdgsIErI6QmYXSrZEBeAZAK+f8l0GPXwbgfgBXc87jU6QVB1c0lUIhY/jn/tjNPHun5f+3d6/BUZV3HMd//1xJQjAXQiAJEu6KI8aCKEpAGSqtjqKdeh9KqzjVN31hbWvHGfui44t22jedtoMtY7UzTr2NFjpSp9pxJIgXqA2KBeRiQK4xIRBCIAnk6Ys9wRV3ySY5u/sk+/3MnNnNs+c559nz/JM8/z3nPHtYe1s79WD9lFBmOVo0I5L0Rl/aePxUj5yTygr9ux4cAAAMP9+cVakfLZ6m26+sTndT4srKMlWVjIp55uytHc369EiHfrhoirKy/JplEuiTyJmz6yQtl7TYzBqD5SZJv5dULOmNoGxVMhuaKmVFeaqfPlb/aDyo3t7kXNr454bPVFNaoKWXVYayvcoxo3TJ+OKvfN/Z0XNfQM2ZMwAAMHQlhXl65MaZGpWbne6mXFBNaWHM5GzV27tVXVKgWzycZRLok8hsjRucc+acm+2cqwuWdc65ac65iVFlD6Wiwalw25XVOnj8tDY1HQ192x/ua9N/9rbp/usmKyc7vO8AXzSjQpuajupkV2QCzbbOSHLGPWcAACCT1JQW6MB5ydnmpqPa1NSmlfWTlRvi+AsIG9EZw5JLK1WQm601SZi1cXXDHo0ZlaM7r5oY6nYXzahQz1mnd3e3SpJaO4IzZ0ylDwAAMkhNaYFaOrp0uufL7zpb9fZulRbm6q6Qx19A2EjOYijKz9GNl1Vq3ceH1H2mN7Tt7mvt1OtbD+veqydpdH5OaNuVpDm1pSrMy9b6nZFLGzlzBgAAMtH5MzbuOHxCb25r1opra1WYF+74CwgbyVkcy+qqdKyz5yv3cQ3V0+98piwzff/a2tC22Sc/J1vzp5SfmxSk754zkjMAAJBJ+maV7Jux8an1u1WQm60V82vT2CogMSRncdRPr1BpYW5oszYe7+zRi5s/1611VRp/0ahQtnm+RTMrtLe1U00tJ9V2sluFedne37QLAAAQpupzydkpHTh2SmsbD+rueROZJA3DAslZHLnZWbp59gS9ue2IOoJJNobiuQ/2qrP7rFYuGNqXTl9I35T663d+oaOd3dxvBgAAMs644lHKzTbtbzul1Q17JEkr65M3/gLCRHJ2AcvqqnW6p1f/+uTwkLbTfaZXz7zTpAXTxmpW1ZiQWvd1k8qLNKm8UG/v+EJtJ7u5pBEAAGSc7CxTVUmBth44ruc/iFy1VF1SkO5mAQkhObuAOReXqrqkQGsahzZr49otB9V8oksr6yeH1LL4Fs2o0MbdrTrc3sXpewAAkJFqSgu0YVeLTvWc1UOLpqa7OUDCSM4uICvLdGtdlTbsalFLR9egtuGc0+qGPZpZWXzussNkWji9Qqd6zmrboXaVFeYmfX8AAAC+qSmJzNi45NJxmlFZnObWAIkjOevHbXXVOtvr9NpHhwZVf8OuFm0/fEIP1E+WmYXcuq+bP7VcudmR/XDmDAAAZKKLyyPJ2cPXc9YMwwvJWT9mji/WJeOLtWaQszb+af0eVRTna1ldVcgti60oP0dX1ZZJksqYEAQAAGSge+ZdrKeWz9GcSWXpbgowICRnCVhWV60P9x3TvtbOAdXbfrhdDTtbtGL+JOXnpG5K+4XB5ZNlo0nOAABA5ikrytPSy8anuxnAgJGcJeCWKyZIktZuGdjZs9UNn6kgN1v3XT0pGc2Ka8mllcrJMk0uL0rpfgEAAAAMHslZAmpKCzWvtkx/bzwo51xCdZrbT2tN4wHdMbcm5fd+TRs3WpseX6L5U8tTul8AAAAAg0dylqBb66q0q7lDr3x4QNsOtau1o0u9vfETtWc2NulMr9P91yV/+vxYSovyUjIBCQAAAIBw5KS7AcPFzZdP0JOvbdOPX9pyriwny1RRnK9xxfmqKB6lcWPyVTE6X+PG5Ou59/dp6azxqh3LpYUAAAAA+kdylqDSojyt/+kN2tt6Us0nutTcfjryGCz72zr1331taj3Zfa7OgwunpLHFAAAAAIYTkrMBqCjOV0Vx/gXX6Tnbq5aOLvWccee+YwMAAAAA+kNyFrLc7CxNuKgg3c0AAAAAMMwwIQgAAAAAeIDkDAAAAAA8QHIGAAAAAB4gOQMAAAAAD5CcAQAAAIAHSM4AAAAAwAMkZwAAAADgAZIzAAAAAPAAyRkAAAAAeIDkDAAAAAA8YM651O3M7AtJe1O2w8SNldSS7kYgrYiBzEb/gxjIbPQ/iAGkMgYmOecqYr2Q0uTMV2a22Tk3N93tQPoQA5mN/gcxkNnofxAD8CUGuKwRAAAAADxAcgYAAAAAHiA5i/hTuhuAtCMGMhv9D2Igs9H/IAbgRQxwzxkAAAAAeIAzZwAAAADggWGVnJnZt8xsh5ntMrPHospfMLPGYGkys8Y49cvM7A0z2xk8lgbl90XVbzSzXjOri1H/uWD/W83saTPLDcrNzH4XtOsjM/tGco4API6BS8zsXTPrMrNHk/PuIXkdA/cFv/8fmdlGM7siOUcgs3nc/8uCvm80s81mtiA5RwBJjIFcM3vWzD42s21m9vM49Seb2ftB/RfMLC8oZyyQIh7HAGOBFPC4/8MZBzjnhsUiKVvSbklTJOVJ2iJpVoz1fivpiTjb+LWkx4Lnj0n6VYx1Lpe0J079myRZsPxN0sNR5f8Myq+R9H66j9dIXDyPgXGSrpL0pKRH032sRurieQxcK6k0eP5t/g5kXP+P1pe3CsyWtD3dx2skLsmMAUn3Sno+eF4oqUlSbYz6L0q6O3i+irEAMSDGAvS/C28cMJzOnM2TtMs5t8c51y3peUnLolcwM5N0pyL/MGNZJunZ4Pmzkm6Lsc498eo759a5gKQPJNVEbfevwUvvSSoxswkJvzMkytsYcM41O+c2SeoZ0DvCQPkcAxudc23Bau/py78PCI/P/d8RlElSkSRu6E6OZMaAk1RkZjmSCiR1S2qPse3Fkl6OUZ+xQGp4GwOMBVLC5/4PZRwwnJKzakmfR/28PyiLVi/piHNuZ5xtVDrnDklS8Dguxjp3KX5nSoqc9pS0XNLrA2gbhs7nGEBqDJcYeECRT9ARLq/738xuN7Ptkl6TdP+F6mPQkhkDL0s6KemQpH2SfuOcO3pe3XJJx5xzZ2Lsn7FAavgcA0i+4dL/gx4H5AymUppYjLLzP5mM+2lnQjswu1pSp3Nuaz+r/lHSeudcwwDahqHzOQaQGt7HgJndoMgfZe45Cp/X/e+ce1XSq2a2UNIvJS0ZbDsQVzJjYJ6ks5KqJJVKajCzN51zexLcP2OB1PA5BpB83vf/UMcBw+nM2X5JE6N+rpF0sO+H4BTkdyS9EFX2l+CmwHVB0ZG+SwyCx+bz9nG3+v+09BeSKiQ9kmjbEBqfYwCp4XUMmNlsSaslLXPOtQ7gfSExXvd/H+fceklTzWxsIm8KA5LMGLhX0uvOuR7nXLOkdyTNPW//LYpcrtj34Xb0/hkLpIbPMYDk87r/wxgHDKfkbJOk6cEMKXmK/ANdG/X6EkVuwN7fV+Cc+4Fzrs45d1NQtFbSiuD5Cklr+tY1syxJdyhy7WpMZrZS0lJJ9zjneqNeWivpexZxjaTjfadLESqfYwCp4W0MmNnFkl6RtNw59+kQ3iPi87n/pwX3Isgis/TlSSJBD18yY2CfpMXB//IiRSb12B698+C+wrckfTdGfcYCqeFzDCD5vO3/0MYBzoOZVxJdFJkJ6VNFZml5/LzXnpH0UD/1yyX9W9LO4LEs6rXrJb3XT/0zwb4bg+WJoNwk/SF47WNJc9N9rEbq4nEMjFfk05x2SceC52PSfbxG4uJxDKyW1BZVvjndx2okLh73/88kfRKUvStpQbqP1UhdkhUDisy4+VLQj/+T9JM49acoMhnMrmD9/KCcsQAxwFggs/s/lHFA37S/AAAAAIA0Gk6XNQIAAADAiEVyBgAAAAAeIDkDAAAAAA+QnAEAAACAB0jOAAAAAMADJGcAAAAA4AGSMwAAAADwAMkZAAAAAHjg/5xVyR2UrAH2AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB30UlEQVR4nO3dd3iUVdrH8e9Jb7RAEiAkhN4hdATpKCpWFHsXsbfVXXVdV3df3bX3ggV7BcXeKNJBqvTeQkIooaUQ0s/7x0zYAOmZyUyS3+e65srMU++ZJ8nMPeec+xhrLSIiIiIiIuJZPp4OQERERERERJSciYiIiIiIeAUlZyIiIiIiIl5AyZmIiIiIiIgXUHImIiIiIiLiBZSciYiIiIiIeAElZyIiIiIiIl5AyZmISA1ljMkociswxhwr8vgqT8dXGcaYncaYUZ6OozTGmNnGmPFuOnZ7Y8x3xpgUY8whY8xvxpgOJ21znzFmrzEm1RjznjEmsJjjtDPGZBljPjlp+UhjzEZjTKYxZpYxpmWRdcYY87Qx5qDz9owxxrjjeYqISPGUnImI1FDW2rDCG7ALOK/Isk89Hd/JjDF+teEcbtYQ+B7oAEQBS4DvClcaY0YDDwEjgTigNfCvYo7zOrC06AJjTBNgKvAoEA4sA74ssskE4EKgB9AdOBe4papPSEREyk/JmYhILWOM8THGPGSM2eZsAZlsjAl3roszxlhjzA3GmERjzGFjzK3GmL7GmNXGmCPGmNeKHOt6Y8wCY8yrzpaajcaYkUXWNzDGTDLG7DHG7DbGPGGM8T1p3xeNMYeAx40xbYwxvzvjOmCM+dQY09C5/cdALPCDs/Xvb8aYYcaYpJOe3/HWNWPM48aYr4wxnxhj0oDry4iprTFmjvO5HDDGFE1Oip4jyHnMg87XZKkxJsoY8yQwGHjNGeNrzu07GmOmO1u7NhljLi1yrA+MMROd69Od529Z3HmttUustZOstYestbnAi0AHY0xj5ybXAZOsteustYeB/wOuPyn2y4EjwMyTDj8WWGetnWKtzQIeB3oYYzoWOfbz1toka+1u4PmTjy0iIu6l5ExEpPa5G0cLyFCgOXAYR0tKUf2BdsBlwEvAI8AooAtwqTFm6EnbbgeaAI8BUwuTPeBDIA9oC/QEzgTGF7NvJPAkYID/OuPqBMTgSBKw1l7DiS2Az5Tz+V4AfIWj1enTMmL6P2Aa0AhoAbxawjGvAxo442sM3Aocs9Y+AswD7nTGeKcxJhSYDnzmfJ5XAG8YY7oUOd5VznM3AVY64yyPIcBea+1B5+MuwKoi61cBUYXJmzGmPvBv4P5ijnXCvtbao8A25/KSjl30OYiIiJspORMRqX1uAR5xtoBk40h+Ljmpy9//WWuzrLXTgKPA59ba/c4Wk3k4kppC+4GXrLW51tovgU3AGGNMFHA2cK+19qi1dj+Olp7Li+ybbK191VqbZ609Zq3daq2dbq3NttamAC/gSCKrYpG19ltrbQFQv4yYcoGWQHPn859fwjFzcSRlba21+dba5dbatBK2PRfYaa193/k8VwBfA5cU2eYna+1c5/V4BDjNGBNT2pMyxrTAkVT/pcjiMCC1yOPC+/WcP/8PR8taYjGHPHnfwv3rlbA+FQjTuDMRkepT0/vmi4jIqVoC3xhjCoosy8cxhqnQviL3jxXzOKzI493WWlvkcQKOlq+WgD+wp8jndx+gaGJwQpJgjIkEXsHRNbCec/vD5XpWJSt6jrJi+huOBGaJMeYwjm587xVzzI9xtJp94ex2+QmOhDe3mG1bAv2NMUeKLPNzHuOUGK21Gc5uns1Piv04Y0wEjha+N6y1nxdZlYEjAS1UeD/dGBOPo/WzaGJd1Mn7Fu6fXsqxM0669iIi4kZKzkREap9E4EZr7YKTVxhj4ipxvGhjjCnyIT0WR9GKRCAbaGKtzSth35M/2P/Xuay7tfagMeZC4LVStj8KhBSJ3xeIKOUcpcZkrd0L3Ow81unADGPMXGvt1pO2y8VRaONfztfsZxwthpOKiTERmGOtPePk8xVxvJXMGBOGoyBHcnEbGmMa4UjMvrfWPnnS6nU4CnZMdj7uAexzvpbX4CgSssuZmIYBvsaYztbaXs59rytynlCgjXN50WMvKXLswnUiIlIN1K1RRKT2mQg8WVh0whgTYYy5oArHiwTuNsb4G2PG4Rgr9rO1dg+OJOJ5Y0x94yhE0uak8Wonq4ejheaIMSYa+OtJ6/fhqEBYaDMQZIwZY4zxB/4BnFI6vlBZMRljxjm7C4Kjxc7iaFU8gTFmuDGmmzMZTMPRzbFwu5Nj/BFob4y5xvka+RtHgZVORbY5xxhzujEmAEfL3eLiuh46x4z9Biyw1j5UzFP8CLjJGNPZmcT9A/jAue5tHMlWvPM2EfgJGO1c/w3Q1RhzsTEmCPgnsNpau7HIsf9ijIk2xjTHMW6t8NgiIlINlJyJiNQ+L+No2ZpmjEkH/sBRmKOyFuMoHnIAR1GPS4oUqLgWCADW40h2vgKalXKsfwG9cIxn+glHafei/gv8w1kh8QFrbSpwO/AusBtHS1oSpSstpr7AYmNMBo7X6B5r7Y5ijtHUuV8asAGYg6NrIzhe30uMo9LlK9badBxFRy7H0Rq2F3iaE5PIz3AUUzkE9MZRIKQ4FzljvMGcOI9dLIC19lfgGWAWju6lCc7jYq3NtNbuLbzhSIKznGP7cP68GMc1PIzjd6Lo+MC3gB+ANcBaHNfnrRLiFBERNzDqSi4iIiUxxlwPjLfWnu7pWGoqY8wHQJK19h+ejkVERLybWs5ERERERES8gJIzERERERERL6BujSIiIiIiIl5ALWciIiIiIiJeQMmZiIiIiIiIF6jWSaibNGli4+LiqvOUIiIiIiIiXmP58uUHrLURxa2r1uQsLi6OZcuWVecpRUREREREvIYxJqGkderWKCIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeoFrHnBUnNzeXpKQksrKyPB2K1DJBQUG0aNECf39/T4ciIiIiIlImjydnSUlJ1KtXj7i4OIwxng5HaglrLQcPHiQpKYlWrVp5OhwRERERkTJ5vFtjVlYWjRs3VmImLmWMoXHjxmqRFREREZEaw+PJGaDETNxCv1ciIiIiUpN4RXLmaU8++SRdunShe/fuxMfHs3jxYgDGjx/P+vXrXXKOuLg4Dhw4UOo2//nPfyp83A8++IA777zzhGXvv/8+8fHxxMfHExAQQLdu3YiPj+ehhx6q8PGrw0svvURmZqanwxARERGRmu6ZZ2DWrBOXzZrlWF4D1PnkbNGiRfz444+sWLGC1atXM2PGDGJiYgB499136dy5c7XFUpnkrDg33HADK1euZOXKlTRv3pxZs2axcuVKnnrqKZccv6KstRQUFJS4vjLJWV5eXlXDEhEREZHapm9fuPTS/yVos2Y5Hvft69m4yqnOJ2d79uyhSZMmBAYGAtCkSROaN28OwLBhw1i2bBkAYWFhPPjgg/Tu3ZtRo0axZMkShg0bRuvWrfn++++BU1uxzj33XGbPnn3KOS+88EJ69+5Nly5dePvttwF46KGHOHbsGPHx8Vx11VUAfPLJJ/Tr14/4+HhuueUW8vPzAUfLWPv27Rk6dCgLFiwo93N99tln6du3L927d+exxx4DYOfOnXTs2JHx48fTtWtXrrrqKmbMmMGgQYNo164dS5YsAeDxxx/nmmuuYcSIEbRr14533nmnzON26tSJ22+/nV69epGYmMhtt91Gnz596NKly/HtXnnlFZKTkxk+fDjDhw8//loX+uqrr7j++usBuP766/nLX/7C8OHDefDBB9m2bRtnnXUWvXv3ZvDgwWzcuLHcr4WIiIiI1ELDh8PkyXDBBTB+vCMxmzzZsbwmsNZW26137972ZOvXrz9lWXVKT0+3PXr0sO3atbO33XabnT179vF1Q4cOtUuXLrXWWgvYn3/+2Vpr7YUXXmjPOOMMm5OTY1euXGl79OhhrbX2/ffft3fcccfx/ceMGWNnzZplrbW2ZcuWNiUlxVpr7cGDB6211mZmZtouXbrYAwcOWGutDQ0NPb7v+vXr7bnnnmtzcnKstdbedttt9sMPP7TJyck2JibG7t+/32ZnZ9uBAweecM6TFZ73t99+szfffLMtKCiw+fn5dsyYMXbOnDl2x44d1tfX165evdrm5+fbXr162RtuuMEWFBTYb7/91l5wwQXWWmsfe+wx2717d5uZmWlTUlJsixYt7O7du0s9rjHGLlq06Hgshc87Ly/PDh061K5ateqU1+bk12HKlCn2uuuus9Zae91119kxY8bYvLw8a621I0aMsJs3b7bWWvvHH3/Y4cOHn/L8Pf37JSIiIiLVLD3d2sBAa8HaRx/1dDSnAJbZEvKlMkvpG2OCgLlAII7S+19Zax8zxjwLnAfkANuAG6y1R6qSKP7rh3WsT06ryiFO0bl5fR47r0uJ68PCwli+fDnz5s1j1qxZXHbZZTz11FPHW2sKBQQEcNZZZwHQrVs3AgMD8ff3p1u3buzcubNCMb3yyit88803ACQmJrJlyxYaN258wjYzZ85k+fLl9HU2wR47dozIyEgWL17MsGHDiIiIAOCyyy5j8+bNZZ5z2rRpTJs2jZ49ewKQkZHBli1biI2NpVWrVnTr1g2ALl26MHLkSIwxpzy3Cy64gODgYIKDgxk+fDhLlixh/vz5JR63ZcuWDBgw4Pj+kydP5u233yYvL489e/awfv16unfvXqHXbty4cfj6+pKRkcHChQsZN27c8XXZ2dkVOpaIiIiI1EKPPALZ2XDDDfDmm45WsxrSclaeec6ygRHW2gxjjD8w3xjzCzAdeNham2eMeRp4GHjQjbG6ja+vL8OGDWPYsGF069aNDz/88JTkzN/f/3j1Px8fn+PdIH18fI6Pf/Lz8zthbFVxZdxnz57NjBkzWLRoESEhIQwbNqzY7ay1XHfddfz3v/89Yfm3335bqSqE1loefvhhbrnllhOW79y58/hzKe25wanVD40xpR43NDT0+OMdO3bw3HPPsXTpUho1asT1119fYpn7ouc5eZvCYxYUFNCwYUNWrlxZ1lMXERERkbpi5kx4/XXo2BEmTYLZs2tU18YykzNn01uG86G/82attdOKbPYHcElVgymthctdNm3ahI+PD+3atQNg5cqVtGzZslLHiouL44033qCgoIDdu3cfH69VVGpqKo0aNSIkJISNGzfyxx9/HF/n7+9Pbm4u/v7+jBw5kgsuuID77ruPyMhIDh06RHp6Ov379+eee+7h4MGD1K9fnylTptCjR48yYxs9ejSPPvooV111FWFhYezevRt/f/8KPb/vvvuOhx9+mKNHjzJ79myeeuopgoODy3XctLQ0QkNDadCgAfv27eOXX35h2LBhANSrV4/09HSaNGkCQFRUFBs2bKBDhw5888031KtX75Tj1a9fn1atWjFlyhTGjRuHtZbVq1eX67UQERERkVrq008hPx/++U8w5n9j0JYurR3JGYAxxhdYDrQFXrfWLj5pkxuBL0vYdwIwASA2NrbykbpJRkYGd911F0eOHMHPz4+2bdseL9JRUYMGDTreRbBr16706tXrlG3OOussJk6cSPfu3enQocMJ3f4mTJhA9+7d6dWrF59++ilPPPEEZ555JgUFBfj7+/P6668zYMAAHn/8cU477TSaNWtGr169jhcKKc2ZZ57Jhg0bOO200wBHd85PPvkEX1/fcj+/fv36MWbMGHbt2sWjjz5K8+bNad68ebmO26NHD3r27EmXLl1o3bo1gwYNOuF5n3322TRr1oxZs2bx1FNPce655xITE0PXrl3JyMigOJ9++im33XYbTzzxBLm5uVx++eVKzkRERETqsqQkaN4cLinSblSDujUaR8NYOTc2piHwDXCXtXatc9kjQB9grC3jYH369LGF1Q8LbdiwgU6dOlUwbKlujz/+OGFhYTzwwAOeDqVC9PslIiIiUkesWwddu8KTT8Lf/+7paEpkjFlure1T3LoKldJ3FvyYDZzlPPB1wLnAVWUlZiIiIiIiIm7zyisQFAQTJng6kkorT7XGCCDXWnvEGBMMjAKeNsachaMAyFBrbcVmEJYa5/HHH/d0CCIiIiIixTt4ED76CK65Bpx1DGqi8ow5awZ86Bx35gNMttb+aIzZiqO8/nRndb0/rLW3ui9UERERERGRYrz9NmRlwd13ezqSKilPtcbVQM9ilrd1S0QiIiIiIiLllZvrKJ8/apRjzFkNVq5qjSIiIiIiIl7p669h92546y1PR1JlFSoIIiIiIiIi4lVeegnatYOzz/Z0JFWm5Azw9fUlPj6erl27Mm7cODIzK1/f5Prrr+err74CYPz48axfv77EbWfPns3ChQuPP544cSIfffRRpc9daOfOnXQ9qUn38ccf57nnnqvQcVwVj4iIiIiIW/zxByxe7Bhr5lPzUxt1awSCg4NZuXIlAFdddRUTJ07kL3/5y/H1+fn5FZqsudC7775b6vrZs2cTFhbGwIEDAbj1Vu+pp5KXl+dV8YiIiIiInOLll6FBA7j+ek9H4hI1K7185hmYNevEZbNmOZa7yODBg9m6dSuzZ89m+PDhXHnllXTr1o38/Hz++te/0rdvX7p3785bzj6t1lruvPNOOnfuzJgxY9i/f//xYw0bNozCSbd//fVXevXqRY8ePRg5ciQ7d+5k4sSJvPjii8THxzNv3rwTWrdWrlzJgAED6N69OxdddBGHDx8+fswHH3yQfv360b59e+bNm1fh51jasf/+978zdOhQXn755ePxJCcnEx8ff/zm6+tLQkICCQkJjBw5ku7duzNy5Eh27doFOFoP7777bgYOHEjr1q2PtySKiIiIiLhMUhJMmQLjx0NYmKejcYmalZz17QuXXvq/BG3WLMfjvn1dcvi8vDx++eUXunXrBsCSJUt48sknWb9+PZMmTaJBgwYsXbqUpUuX8s4777Bjxw6++eYbNm3axJo1a3jnnXdO6KZYKCUlhZtvvpmvv/6aVatWMWXKFOLi4rj11lu57777WLlyJYMHDz5hn2uvvZann36a1atX061bN/71r3+dEOeSJUt46aWXTlhe1LZt205IqCZOnFiuYx85coQ5c+Zw//33H1/WvHlzVq5cycqVK7n55pu5+OKLadmyJXfeeSfXXnstq1ev5qqrruLuIqVL9+zZw/z58/nxxx956KGHKnglRERERETK8MYbYC3ceaenI3EZ7+rWeO+94OxeWKLmzWH0aGjWDPbsgU6d4F//ctyKEx/vGCRYimPHjhEfHw84Ws5uuukmFi5cSL9+/WjVqhUA06ZNY/Xq1cdbgVJTU9myZQtz587liiuuwNfXl+bNmzNixIhTjv/HH38wZMiQ48cKDw8vNZ7U1FSOHDnC0KFDAbjuuusYN27c8fVjx44FoHfv3uzcubPYY7Rp0+Z4V0343yTSZR37sssuKzGuBQsW8O677x5vrVu0aBFTp04F4JprruFvf/vb8W0vvPBCfHx86Ny5M/v27Sv1+YqIiIiIVEhmpqM644UXQlycp6NxGe9KzsqjUSNHYrZrF8TGOh5XUdExZ0WFhoYev2+t5dVXX2X06NEnbPPzzz/jnIS7RNbaMrepiMDAQMBRyCQvL89lx4UTn3NRe/bs4aabbuL7778nrIRm46LPsTBGcDx/ERERERGX+eQTOHTI0bhTi3hXclZGCxfwv66Mjz4Kb74Jjz0Gw4e7PbTRo0fz5ptvMmLECPz9/dm8eTPR0dEMGTKEt956i2uvvZb9+/cza9YsrrzyyhP2Pe2007jjjjvYsWMHrVq14tChQ4SHh1OvXj3S0tJOOVeDBg1o1KgR8+bNY/DgwXz88cfHW7qqqjLHzs3N5dJLL+Xpp5+mffv2x5cPHDiQL774gmuuuYZPP/2U008/3SUxioiIiIiUyFpHIZBevaCWff70ruSsLIWJ2eTJjoRs+PATH7vR+PHj2blzJ7169cJaS0REBN9++y0XXXQRv//+O926daN9+/bFJjoRERG8/fbbjB07loKCAiIjI5k+fTrnnXcel1xyCd999x2vvvrqCft8+OGH3HrrrWRmZtK6dWvef/99lz2Xih574cKFLF26lMcee4zHHnsMcLQYvvLKK9x44408++yzREREuDRGEREREZFizZgB69fDhx+CC3uneQNTnV3O+vTpYwurFxbasGEDnTp1Kt8BnnnGUfyjaCI2axYsXQpFxjuJFKrQ75eIiIiIeL8xY2D5ckhIgCJDaWoKY8xya22f4tbVrJaz4hKwwhY0ERERERGp3TZtgp9/dhQDrIGJWVlqVil9ERERERGpW4rOdfzqqxAQAF26uHSuY2+h5ExERERERLxX4VzH338P77/v6DV3660um+vYm3hFt0ZXl5oXAZXwFxEREakVhg93FAA891zH/GaLF8PUqbVyaJPHW86CgoI4ePCgPkiLS1lrOXjwIEFBQZ4ORURERESqKj4e8vMd9++6q1YmZuAFLWctWrQgKSmJlJQUT4citUxQUBAtWrTwdBgiIiIiUlV33gnZ2TBhgmOu41paFNDjyZm/vz+tWrXydBgiIiIiIuKNvv4aPvsMRo6Et96Cyy+vtrmOq5vHuzWKiIiIiIiU6IUXwMcHJk50PC4cg7Z0qWfjcgOPt5yJiIiIiIgUa+dORxJ2883Qtu3/ltfSbo1qORMREREREe/0r385Ws0efdTTkVQLJWciIiIiIuJ91q+Hjz5yFAOJjvZ0NNVCyZmIiIiIiHiff/4TQkPhoYc8HUm1UXImIiIiIiLeZdkyR5XG+++HJk08HU21KTM5M8YEGWOWGGNWGWPWGWP+5VweboyZbozZ4vzZyP3hioiIiIhIrffII9C4Mdx3n6cjqVblaTnLBkZYa3sA8cBZxpgBwEPATGttO2Cm87GIiIiIiEjlzZ4N06bB3/8O9et7OppqVWZyZh0ynA/9nTcLXAB86Fz+IXChOwIUEREREZE6wlpHUhYdDbfd5uloql25xpwZY3yNMSuB/cB0a+1iIMpauwfA+TPSbVGKiIiIiEjt99NPsGgRPPYYBAd7OppqV67kzFqbb62NB1oA/YwxXct7AmPMBGPMMmPMspSUlEqGKSIiIiIitVpBgWOsWdu2cP31no7GIypUrdFaewSYDZwF7DPGNANw/txfwj5vW2v7WGv7REREVC1aERERERGpnb78Elavhn//G/z9PR2NR5SnWmOEMaah834wMArYCHwPXOfc7DrgOzfFKCIiIiIitVlurmNes+7d4bLLPB2Nx/iVY5tmwIfGGF8cydxka+2PxphFwGRjzE3ALmCcG+MUEREREZHa6v33YetW+OEH8Km7UzGXmZxZa1cDPYtZfhAY6Y6gRERERESklnvmGejbFwYMcHRlPO00CAlxLP/b3zwdnUfU3bRUREREREQ8p29fuPRSuP9+2L3bcf+yyxzL66jydGsUERERERFxreHDYdIkuPBCaN0annwSJk92LK+j1HImIiIiIiKeMX26Y+Lp7dsdk07X4cQMlJyJiIiIiIgnrF4Nr78OQUHw6KPw5pswa5ano/IoJWciIiIiIlK9rIVrrnHc/+ILR0GQyZMd487qcIKm5ExERERERKpX4YTT990HF1zgWDZ8uCNBW7rUs7F5kLHWVtvJ+vTpY5ctW1Zt5xMRERERES+TkQEdOkDTprBkCfj6ejqiamWMWW6t7VPcOlVrFBERERGR6vPkk5CcDF99VecSs7KoW6OIiIiIiFSPLVvg+efh2msdk07LCZSciYiIiIhI9bj3Xkd1xqef9nQkXkndGkVERERExP1+/BF+/hmee84x3kxOoZYzERERERFxr6wsuOce6NgR7rrL09F4LbWciYiIiIiIez3/PGzfDtOmQUCAp6PxWmo5ExERERER90lMhP/8B8aOhTPO8HQ0Xk3JmYiIiIiIuM8DD0BBgaP1TEql5ExERERERNxj1iyYPBkeegji4jwdjddTciYiIiIiIq6Xm+so/hEXB3/7m6ejqRGUnImIiIiIiGs884yjtQzgjTdg3Tq44QZ49VXPxlVDKDkTERERERHX6NsXLr0Upk6Fxx6D3r0diVnfvp6OrEZQKX0REREREXGN4cMdrWeXXuooArJ9O3z9tWO5lEktZyIiIiIiUnUFBfDii3DbbY65zKyFO+9UYlYBSs5ERERERKRqdu2CUaPgL3+BXr0gOBgefRTefPN/Y9CkTErORERERESkcqyFjz+Gbt1g6VLHnGZbtsBXX8G//+0oo3/ppUrQyknJmYiIiIiIVNyBAzBuHFx7rSM5W7UKIiIcCVlhV8bhwx2Ply71bKw1hLHWlr6BMTHAR0BToAB421r7sjEmHpgIBAF5wO3W2iWlHatPnz522bJlrohbRERERESqyzPPOCouFiZdP/8MV18Nqanwn/84Wsx8fT0bYw1hjFlure1T3LryVGvMA+631q4wxtQDlhtjpgPPAP+y1v5ijDnH+XiYq4IWEREREREvUVgi/8MP4fvv4a23HMnYW2/B+PGejq7WKDM5s9buAfY476cbYzYA0YAF6js3awAkuytIERERERHxoOHD4YUX4LzzHFUZg4Phm29g9GhPR1arVGjMmTEmDugJLAbuBZ41xiQCzwEPuzo4ERERERHxEhdfDHFxjvsPPKDEzA3KnZwZY8KAr4F7rbVpwG3AfdbaGOA+YFIJ+00wxiwzxixLSUlxRcwiIiIiIlLdFi+GtDSVyHejMguCABhj/IEfgd+stS84l6UCDa211hhjgFRrbf3SjqOCICIiIiIiNdCsWY4xZ4WVGE9+LOVWWkGQMlvOnInXJGBDYWLmlAwMdd4fAWypaqAiIiIiIuKFli5VifxqUJ5S+qcD84A1OErpA/wdSANexlFUJAtHKf3lpR1LLWciIiIiIlKXVamUvrV2PmBKWN27KoGJiIiIiIiIQ4WqNYqIiIiIiIh7KDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES9QZnJmjIkxxswyxmwwxqwzxtxTZN1dxphNzuXPuDdUERERERGR2suvHNvkAfdba1cYY+oBy40x04Eo4AKgu7U22xgT6c5ARUREREREarMyW86stXustSuc99OBDUA0cBvwlLU227luvzsDFe9nrWXB1gP849s17E/P8nQ4IiIiIiI1Snlazo4zxsQBPYHFwLPAYGPMk0AW8IC1dqnLIxSvV1BgmbFhH6/P3saqxCOOZRb+c1E3zwYmIiIiIlKDlDs5M8aEAV8D91pr04wxfkAjYADQF5hsjGltrbUn7TcBmAAQGxvrssDF8/LyC/hhdTJvzt7G5n0ZxIQH8+RFXVmTlMqUZYncNrQNMeEhng5TRERERKRGKFdyZozxx5GYfWqtnepcnARMdSZjS4wxBUATIKXovtbat4G3Afr06XNC4iY1U1ZuPlOWJ/H23G0kHjpGh6h6vHx5PGO6NcPP14c9HY8xdcVuXp+1lacu7u7pcEVEREREaoQykzNjjAEmARustS8UWfUtMAKYbYxpDwQAB9wRpHiH9KxcPl28i0nzd5CSnk3P2IY8dm4XRnSMxMfHHN+uWYNgrugXw6eLd3HH8LZqPRMRERERKYfytJwNAq4B1hhjVjqX/R14D3jPGLMWyAGuO7lLo9QeHy/aybO/bSItK4/B7ZrwyuU9GdA6HEfufqrbh7fl86WJvPr7Fp65pEc1RysiIiIiUvOUmZxZa+cDxX8Ch6tdG454oxnr9/Hod+s4vW0T/nZWB7q3aFjmPlH1g7iqfywfLUrg9mFtiWsS6v5ARURERERqsDJL6UvdlnDwKPdNXkmX5vV597o+5UrMCt02tA1+PoZXf9/qvgBFRERERGoJJWdSoqzcfG79ZAUGmHh1b4L8fSu0f2T9IK4Z0JJv/kxix4Gj7glSvIa1loMZ2Z4OQ0RERKTGUnImxbLW8o9v17JhTxovXR5f6aIetwxtQ4CfD6/M3OLiCMXbfLk0kdP++zuJhzI9HUqtsWDrATbuTfN0GCIiIlJNlJxJsb5YmshXy5O4e0RbRnSMqvRxIuoFcu1pcXy3cjfbUjJcGKF4m4//SCAnv4DvVyV7OpRaYX96Fjd+sJR/frfO06GIVNmug5lcM2mxvmwQESmDkjM5xeqkIzz23ToGt2vCPaPaV/l4E4a0JtDPt1paz9Ylp/L6rK2ocGj1Wrs7lXXJafj7Gr79c7defxd4e852svMKWJ5wmNTMXE+HI1Jp+QWW+6esZN6WAzz76yZPhyMi4tWUnMkJDh/N4bZPVhBRL5CXL++Jr09JhTrLr0lYINcNjOP7Vcls2ZfugihL9srMLTz72yYWbjvo1vPIiaYsSyTAz4d7R7Vny/4MNu5173Wu7VLSs/lkcQIdm9Yjv8Ayb2uKp0MSqbRJ87ezdOdh+rRsxMyN+1m7O9XTIYmIeC0lZ3JcfoHl3i9XkpKezRtX9SI8NMBlx54wpDUh/r687MbWs4zsPGZtcnyIfX2WKkRWl6zcfL5dmcxZXZpyRb9Y/HwM361U18aqeGfednLyCnjtyp40DPFn1sa6lZxZa/llzR7++8sG8gvUCluTbdqbznO/bWZ0lyjeu6Ev9YP8ePV3jUEWESmJkjM57tXftzBncwr/PK8zPWIauvTY4aEBXDcwjp/W7GGTm1pVZqzfR05eAWd3bcrCbQdZseuwW84jJ/pt3V5Sj+VyaZ8YwkMDGNyuCT+sSqZAH6or5UBGNh8vSuD8Hs1pG1mPoe0jmLN5f515PRMOHuX695dy26creGvOdpYn6O+4psrJK+Avk1dSL8iP/1zUjfpB/twwqBW/rdvHhj0aeyYiUhwlZwLA7E37eXnmFsb2iuaq/rFuOcfNg1sTGuDHyzM3u+X4P67eQ7MGQTxzSXcaBPvzxqxtbjmPnGjyskRaNApmYJvGAFwQH83uI8dYruS4Ut6dt4OsvHzuHNEOgOEdIjmQkcOaWt4VLCs3n5dnbOGMF+eyPOEwD53dkQBfH35bt9fToUklvfb7FtYlp/Gfsd1oHBYIwI2DWhEW6Mdr6t0gIlIsJWdC4qFM7v1yJR2i6vHkhd0wpurjzIrTKDSAGwbF8fOavS7/1jQtK5e5m1M4p1sz6gX5c8OgOGZs2KfKYG6WeCiTBVsPMq53DD7O8YlndI4iyN+H71bu9nB0Nc+hozl8tGgn53VvTtvIMACGto/AGPh9434PR+c+87akcPbL83hxxmbO7BzFzPuHcuvQNgxq25jf1u1VgZkaaGXiEV6fvY2Le7VgdJemx5c3CPHnuoEt+XnNHrbu19hUEZGTKTmr47Jy87n90xXkF1gmXt2b4ICKTTRdUeNPb029QD9enuHaMQcz1u8jJ7+AMd2bAXD9wDhCAnx5c3b1tp69MXsrny/ZVa3n9KQpy5MwBi7p0+L4stBAP87o3JSfVu8hN7/Ag9FVTeqxXN6cvY0Xprunpbc4787bzrHcfO4e2fb4skahAfSMacjsTbUvOduXlsWdn63gmklLAPj4pn68dmUvouoHAXBW16YkHT7GenWBq1GO5eTzl8kriaoXyGPndz5l/U2ntybY35fXflfrmYjIyZSc1XH/+mEda3an8vy4HsQ1CXX7+RqE+HPj6a34dd1e1iW7rpvWT6v3EN0wmJ7OsXINQwK4ekBLfliVTMLBoy47T2kSD2Xy3G+beOqXjWTl5lfLOT0pv8Dy1bJEBreLILph8AnrLujRnMOZuczfcsBD0VVe4qFM/v3Degb+dyZP/7qRV2ZuYbObq4yCo1Lqhwt3MqZbM9pG1jth3YiOkaxKSiUlPdvtcVSHvPwC3pu/g5HPz2Ha+n3cN6o9v9wzmMHtIk7YblSnKHwM/LZun4cilcp4+teNbE85yrPjelA/yP+U9eGhAVwzoCXfr0pmx4Hq+f8sIlJTKDmrw+ZvOcDnSxK5bVgbzizS7cTdbjy9FfWC/HjJRa1nqZm5zN2SwpjuzU7okjn+9Fb4+fgwcc52l5ynLJPm76DAOlpcflm7p1rO6Unztx4gOTWLS4u0mhUa0j6CBsH+Napr4+qkI9z1+Z8Me242Hy3ayeguTfnkpv74+himrnD/85g0fweZufncPbLdKeuGdYgEYM7mml+1cWXiEc5/bQH//nE9vVs2Yvp9Q7hnVDuC/E9ttW8cFkifuHCmadxZjbFw6wE+WLiT6wfGMahtkxK3Gz+4NQF+PqqsK4KjQu2va/fw2Hdryc6r/V/uSumUnNVhi3ccxMfA3SNO/TDoTg2C/Rl/emumr9/HmqSqt55NW7+X3HzLmG7NTlgeWT+IcX1a8PXyJPamZlX5PKU5fDSHL5cmMrZnNC0bh/D5kkSXHXvKskTu+GwFU1ckcSQzx2XHrarJSxNpFOLPGZ2jTlkX4OfDOd2aMW39PjJz8jwQXfkUFFh+37iPy99exPmvLWD2xv2MP70V8x4czguXxXN6uyYMax/Bt3/udmtJ9yOZOXywcCfndG1G+6h6p6zv0rw+kfUCmVXDx53tTc3isrcWcehoDm9e1YsPbuhLy8alt9iP7tKUjXvT2akWFq+XlpXLX79aTesmoTx4VsdSt42oF8iV/VryzZ+72XUws5oirF0mztnG+A+XaUxmDbfzgKNC7a2frODDRQk1/v+8VJ2SszpsfXIabSLC3D7OrDg3nB5Hg2B/XppR9fE8P63ZQ4tGwXRv0eCUdbcMaUO+tbw7z72tZ58uTuBYbj4Thrbm8r6xLNlxiK37M6p83MycPJ74aQO/rd3LXyavovcTM7jynT/4YMEOko8cc0HklXPoaA7T1u/lwp7RBPoV//tzQXxzMnPymbHB+95osnLz+XLpLs58aS43frCMXQcz+ceYTix8eAQPn9OJZg3+101zbK8W7E3LYpEbJzZ/b/4OMrLzuKvIWLOijDEM7xDJ3C0pNXoc36T528krsEy+5TTO7tasXMWHznQm/6ra6P3+/cN69qQe47lLe5TrfeWWoa3x9TG8OUetZ5Xx7Z+7mbFhH7+s1d9GTZSVm8+L0zdz5kuOCrX/GNOJiHqBfPNnzelxIu6h5KwOW5ecRpfm9T1y7vpB/ow/vRUzN+5nbRVKhB/JzGH+lgOndGksFNs4hPN7NOfTxbs4fNQ9rU5Zufl8sDCBoe0j6Ni0Ppf0boGfj+HLpVUvDPL18iRSj+Xy+YQBfHfHIG4d2pqU9Gwe/2E9A5/6nfNenc+rM7ewaW96tX57+u2fu8nNt1zWN6bEbfrFhdO0fhDfe7BrY0Z2Hmt3p/Lj6mRe+30LD0xZxSVvLqTfkzN48Os1BPj68PLl8cz523DGD25NvWLGx4zsFEm9ID+mrkhyS4ypmbm8v2AnZ3VpSsemJf89Du8YQXpWHitq6LxfRzJz+HTxLs7r3ozYxiHl3i8mPIQuzesrOfNy09fv46vlSdw2rA29YhuVa5+o+kFc3jeGr5YnsduDXzad7Ld1e9lSDeNMqyItK5dNzhif+21Tjf7Spi6atXE/Z744l5dnbuGsLk2Zef9Qxg9uzfk9mvP7xv1e1UtGqp+SszrqYEY2e9Oy6NL81Nam6nLdoDjqB/nxyszKjz2btm4feQWW87o3L3Gb24e14VhuPu8v3Fnp85Tmmz93cyAjm1uGtAYc3XXO6BzF1yt2V6nveH6BZdL8HcTHNKRPy0b0iGnIX0d3ZPpfhvL7/UN56OyO+Psanp++mdEvzWXYc7P5z88b3JaEFrLWMnlZIt1bNCg1mfDxMZwf35w5m1Pc/kZzJDOHmRv28fqsrTwwZRXjJi6kzxMz6PrYb5z76nzu/OxPnpu2mXlbUvD1MZzTrRmfju/PT3efzgXx0fj7lvyvMMjfl3O7N+eXtXs5mu36LprvLdhBenZesWPNihrUtgn+vobfa2jVxg8XJpCZk89tw4pvHSzN6C5NWbHrCPvT3Ns9WSrnYEY2D09dTadm9blnZPsK7Xvr0DYATKzmyrolSUnP5vZPV3D7pyvI8+KEZ+WuI1jrqEy8/cBRJi9zXVd6cZ/dR45xy8fLuOGDpfj7Gj4b359Xruh5vELtRT2jyc23/LTGNePW96ZmccvHy9za80Ncz8/TAYhnrEt2lKb2VMsZOFrPbhjUipdnbmHDnjQ6Nat4LD+sTqZl45BSn0e7qHqM7hLFBwt2MGFIa8ICXfdrX1BgeWfedro0r89pzkmYAS7vF8sva/cybd0+zutRcuJYmpkb9rHzYCavje5wSqtg64gwbh0axq1D27A/LYsZG/Yzbf1e3pu/g4170/ng+r7H5x1ztdVJqWzcm84TF3Ytc9vzezTn7bnb+WXtXq7o55rJza217DhwlGUJh1m+8zDLdx0+oQtpZL1A4pqEMqJjBHFNQmnVOJS4JqG0bBxCSEDlrv3FvaL5fMkufl27l4t7n1oApbJSj+Xy3oIdnNk5is5l/C3WC/Knb1w4szem8PDZnVwWQ3XIzMnjg4U7GNUpkg5NTx1TV5bRXZrywvTNTFu/j6sHtHRDhFJZ1loe+WYtacfy+GR8DwL8Kvadb/OGwVzSO4YvlyZyx/C2NG0Q5KZIy+e7lY7xpVv2Z/DF0kSv/X1bnnAYHwP3n9metbtTeXnGFsb2bOGRYQpStpy8At6dv51XZzq68P7trA6MP731KX8vXZrXp11kGN/+uZur+lf9d++9BTv4bd0+pq3fx13D23L3yHb4lfJlpHgHXaE6qnDeoLI+ELrbjYNaERboV6n5bg4dzWHhtoOMKcfYlduHtSUtK49P/0iobKjFmrlxP9tTjjJhSOsTYhjctgnRDYP5ogpdG9+dv4PohsGcVUYlzcj6QVzZP5YPbujHY+d3Ye7mFD5ctLPS5y3L5GWJBPn7cH582Ulnl+b1aRMRWqWqjVm5+Szbeej44PfeT8xgxPNz+NtXq/l13V5iw0P46+gOfDFhAGv/NZolj4xi8i2n8cwlPbh9WFvO7taMTs3qVzoxA+jdshGx4SFM/dO1XRs/WLCT9KyyW80KjegYyaZ96V7VBaw8vliSyOHMXG4b1qZS+7ePCiOucYi6NnqhqSt28+u6vdx3RvtSW9JLc/swx9jgt+Z6vvXs6xW76d6iAf1ahfPi9M2kZ+V6OqRirdh1mA5N61MvyJ8Hz+7I/vRs3luww9NhSTGW7DjE2S/P5ZlfNzG4XROm/2UItw9rW+wXGcYYLuwZzdKdh0k8VLVCOVm5+UxelsioTpFc3KsFr/y+lcvf/qPGvX/URUrO6qh1yWlENwymYUiAR+NoEOLP9QPj+HntngrPJfXbur3kF9jjE0+XpkdMQwa3a8I783a4dA6yt+duI7ph8CmVIn18DJf3jWHB1oOVmmdtddIRluw4xA2D4ir0LdfV/WMZ2TGS//6ykU17XT9m4lhOPt+vTOacrs2Knb/oZMYYLoiPZvGOQ+xJrfgbwrwtKfT6v+lcMnERT/2ykW0pGYzoGMlTY7sx/b4h/PnoGbx3fV/uGN6WAa0bu7RVtChjDGN7RbNw20GXFWJJy8pl0vztjOoURdfo8nUvLiypX5OqeeXkFfDOvO30axVO75bhlTqGMYbRXZqyaNtBUo9V7cNygRurbtY1XyzZxd++Xk3fuEZMcHbrroyY8BDG9ozms8W72J/uua6r65JT2bAnjXG9W/CPMZ04eDSHN7yku2VR+QWWP3cdoU9Lx9i+vnHhjOwYycQ52zRWycscy8nn+veXkJNfwPvX9+Xta/vQolHpY24v7BkNOMZ2V8UPq5I5kpnL+MGteW5cD16+PJ6Ne9M5+6W5/FoHpvupyZSc1VHrklM93mpW6KbTWxHs71vh1rOfVu+hVZNQOpezO+Ttw9pyICObKctd0/qxYtdhlu48zE2ntyo2gRrXJwZfH8MXSys+FuDdeTuoF+hXasGN4hhjePqS7tQP8uOeL/50+WTYv6zdQ3p2HuP6lD+u83s0x1r4cVXF3gx2HDjKHZ+uoEWjYN6+pjfL/jGKWQ8M47lxPbi8Xyztouq5retmccb2bIG18K2LCpx8tHAnaVl53FPOVjOANhGhxIaH1Kjk7NuVu9mTmsXtlWw1K3Rml6bkFdgqPfc5m1OI//c0tcBVUUGB5ZlfN/LQ1DUMatuE967vi28V/xbvGN6W3PwC3p3nudafr5YnEeDrw3k9mtO9RUPG9oxm0vwdJB32rlL/m/elk5GdR++W/yu88tezOpCRneeVyWRd9sf2g2Tm5PPkhd0Y3jGyXPtENwymf6twvlm5u0qFvj7+I4H2UWH0b+X4UuyC+Gh+uvt0WjUJ5dZPVvDIN2tc/hlBXEPJWR10NDuPHQeOenS8WVGNQgO49rQ4flidXO7y8wcyslm47QDnllClsTgDWofTK7Yhb83Z5pLKVu/M3U79oJITqKYNghjeIZIpy5IqdL7kI8f4ac0eLu8XU2z1wLI0CQvk2Ut6sHFvOs/+tqnC+5fmy6WJtGwcwoDW5W8BiWsSSo8WDfhuVfmTmrSsXMZ/uBRfH8Ok6/pyZpemNAkLrEzILhPbOIS+cY2YuqJqb5jgqCL57vwdjOwYSbdipoAoiaOkfgQLth2o9Jvq0ew8Drm5aEyh/ALLxDnb6NysPkPbR1TpWD1jGhJZL7DSiVV+geXJn9aTlpXHXZ//yeLtGiBfGVm5+dz9xZ+8MXsbV/SLZdJ1fSr1f+pkcU1CuSA+mo8XJXAwI9sFkVZMTl4B361M5ozOUcd7lDwwugMGeOZX1/4frarlzoqtRZOzjk3rc1HPaD5YuNOj06zIieZsTiHI34d+rSrWa+CintFsTznKmkpWs16VeITVSalcM6DlCZ+RWjYOZcqtA7llSGs+XbyLC15bUOFeS+J+Ss7qoI1707CWcrc4VYfxg1sR5OfLG7PK13r269q9FFjK1aWxkDGGO4a3JenwMX5YlVzZUAHHpJG/rtvL1QNaElpKV7or+sVwICObmRv2lfvYHzirSl43MK7S8Q3vGMm1p7Vk0vwdzNuSUunjFLXzwFEW7zjEpX1iyp0QFzo/Ppq1u9PKlXznF1ju+fxPEg5m8sZVvYkJL3/ZdXcb26sFW/dnVPoNs9CHC3dyJDOXe0ZVfAL4YR0jycotYPGOQxXeN7/AcuU7f9D7iemMm7iQd+dtr/K4htJMX7+X7SlHuW1Ymwr/zpzMx8dwRucoZm9KqVRiOnVFEpv3ZfDkRV1p0SiY8R8tY4Nz7K2Uz6GjOVz97mJ+XL2Hh87uyH8u6lpqpdOKumN4W7Ly8pk0v/pbz2Zt2s+hozlcUqTgT/OGwUwY0prvVyXz5y7vmcJiRcJhIuoF0qJR8AnL/3JGe7C4ZP5QcY3Zm/ZzWuvGBPlXrFDL2d2aEeDnw9QVleup8dGiBEIDfI93kSwqwM+Hh8/pxIc39uPg0WzOf20+ny3epcnMvYiSszpofWGlxnKOc6kOTcICuXpALN+u3M3OA2WP0fpp9R7aRITSIapild9GdIykY9N6vDF7W5XGnkyavwN/Hx+uLyOBGto+gmYNgvhsSfm6NmZk5/H54l2c3bVpmf3Sy/L3czrRNjKM+yevcklLyZTlifgYuLhXxasVnte9GcbA9+VIip/5dSOzNqXw+PldTqiA6Q3Ocb5hfl2FrrFHs/N4d952hneIoHuLhhXe3/FG71Op7n0fL9rJqqRULuoZTUZ2Pk/8tIHBz8zinJfn8YqL58uz1vLG7G3ENQ7hnG7l/xKlNGd1bcqx3HzmbTlQof0KJ3vt0aIBV/aL5eOb+hMa4Me17y1xa3Jam+w4cJSxbyxg9e5UXruyJ7cOrXrCfbK2kWGc062Z88uL6h079dXyJCLqBTK4XZMTlt8ytA1NwgJ54qcNXvPhdfmuw/SObXTK69+iUQhXD2jJV8uTvH6etrpg54Gj7DyYeXyscEU0CPZnVKdIfliVXOGePoeP5vDD6mTG9mpRaqv20PYR/HzPYPrGhfP3b9Zwx2crqjymV1yjzOTMGBNjjJlljNlgjFlnjLnnpPUPGGOsMaZJSccQ77IuOY2GIf4093DJ4pPdPKQ1/r4+vF5G69n+9CwW7zjImO7NK/zhwBjD7cPbsnV/BtPWl781q6hDR3OYsjyRC3s2J7J+6a+hn68P4/rEMG9LSrk+BE5emkh6dh7jB1d+cH2hIH9fXr48nsOZOTw8dXWVPljk5Rfw1fIkhraPqFSp68j6QQxs05jvy+hDP3VFEm/N3c7VA2K9soR1g2B/zugcxferksnJq1zX2NdmbeVwZm65KzSeLMjfl4FtmvD7xv0VuqZ7U7N4btpmBrdrwvPjevDLPYOZ+9fhPHJOJ4IDfHlxhmO+vOHPzea/v2xgxa7DVfoCY8HWg6xOSuWWoW2qPB6p0IDWjakf5Ffhro2f/JFAcmoWD57VEWMM0Q2D+eimfuTkFXDNpMUc8EA3utLk5BXw8R8JLm/Zyy+w5Ffimi7beYixbywg9Vgun43vz7mlzCtZVXeNaMvRnHzeW7DTbec42YGMbGZt3M/YntGnjB8OC/TjgTPbszzhMD+v8fxYxZT0bBIOZp7QpbGoO0e0JSTAz+Vd2qXi5mx29FqpbJfuC+OjOXg0h/lbK/Zl1ORliY7/baeV/R4aWS+ID2/ox8Nnd2Taun3c+dmKSsUqrlWelrM84H5rbSdgAHCHMaYzOBI34Ayg8vXCpdqtS06jS/P6Lv/Ws6oi6wVxRb9Yvvlzd6mJzG/OLo3nVqBLY1FjujUjrnEIb8zeWqmE5aNFO8nKLSh3dbLCMWlTypgkNC+/gPcW7KBvXCPiYxpWOK7idGnegL+O7sBv6/ZVaZLSuVtS2JeWXeECJUVd0COanQczWZ1UfJfAP3cd5qGpaxjQOpzHzutS6fO428W9ojmcmcvsSkwGvWznId6as41L+7SgZ2zxH67KY3jHSHYdymR7OVqZC/37x3Xk5hfwxIVdj//txzYO4eYhrfn6toEsfngkT1zYlZjwECbN28HYNxYy8KnfmVXJSa/fmL2VyHqBjO11areayvL39WFkpyhmbthX7gmC07JyeW3WVga3a8LAtv/7DrF9VD3eu74Pe9OyuOH9pWS4YYLxykg4eJRxExfy6LdrOffV+fz35w1k5lQttvwCy6eLE+jzxHR6/nsat368nI8X7WR7SkaZ/wN/XJ3Mle8upmFIAN/cPog+cZWruFleHZvW5+yuTZk4Z9vxD7fu9t3KZPIKbIlzGI7rE0PHpvV46tcNZOd5toDCCmf3yl4lJGfhoQFMGNKaaev3HR+bJp4xZ3MKcY1DiGsSWqn9h3WIpGGIf4WqNhYUWD5ZnED/VuG0L2fPIh8fwy1D23BZ35gS35+lepWZnFlr91hrVzjvpwMbgMJ32xeBvwHe0dYvZcrNL2DT3nSvGm9W1K1D2+BjTKkVp35YvYf2UWHl/sdzMl8fw61D27A6KZWZGyr2wTMrN5+PFiUwsmMkbSPLd/7ohsEMbR/Bl8sSS/1AOW39PpIOH+Om06vealbU+NNbM7BNYx7/fj07KvBhvqjJS5NoHBrAiI5RlY5jdNemBPj68N3KU7s27k3N4paPlxNVP5A3rurt0nEsrja4XQRNwgIqPBYgIzuPv0xeRXSjYP5ZxeRzeAfHN7Hl7do4a+N+fl6zl7tGtKVl4+I/KETWD+LqAS35+Kb+LP/HGbx4WQ8ahvgz4aNl/LS6YpU2VyYeYeG2g4wf3IpAP9dOiju6SxSHM3NZsrN8Y+7enrOdI5m5PHhWx1PW9W4ZzhtX9WL9njRu+XiZxz94f/vnbsa8Mp8dB47ywqU9GNe7BW/N3c6ZL86t1JcBAEt3HuK8V+fzyDdraR9Vj7O6NmXN7lQe/W4dI56fw8CnfueBKav49s/dJ5Sxt9by5uxt3PnZn/Ro0YCptw2s9IfMivrv2G60jQhjwkfLmF/BLqyV8dXyJLq3aFDie4qvj+GRMZ1IPHSMD51jgj1lRcJhAnx96Bpd8nv4Tae3oklYIE//utFrumLWNVm5+SzcdqBKhZAC/Hw4t3szflu3t9xfHs3ZnELioWPlajU7WVzjUFKP5ZKaqa6NnlahT0DGmDigJ7DYGHM+sNtau8odgYl7bEvJICe/gC7NvWe8WVFNGwRxWd8YvlqeWOxEifvSsli68xBjulWtW81FvaKJaxzCLZ8s59nfNpa7wMBXy5M4dDSnwnP6XNEvln1p2czeVPI3we/O207LxiGc0bnyCVBxfHwMz1/agwA/H+794s8K918/kJHNjA37GNsruthJM8urQbA/wztG8MPq5BO6VmXl5nPLx8scY7Gu7Ut4qGfn3iuLv68P5/eIZubGfRUaF/PEj+tJPJzJC5fGV3k+thaNQmgfFVauVq1jOfk8+t1a2kaGMWFI+crZNwjx56KeLZh862n0aNGQuz5fUaGW1zdnb6VBsD9X9nd919Qh7SMI9PNh2rqyuyXvT8ti0vwdnNejeYlzyY3oGMUzF3dnwdaD/GXyqkp1+6uqo9l53D95Ffd+uZJOzerxy71DGNurBU9d3J0vJwwg0M+H699fyl2f/0lKevm6YO5NzeLeL/5k3MRFHM7M4bUre/LFhAE8c0kP5j84nNkPDOOJC7vSM7YhMzbs494vV9LvyZmc+eIc/vXDOu6fsoqnf93IeT2a8/FN/WlUjX+XDUMC+HR8f1o1CeWmD5eysILduiqicG6zS0poNSs0uF0EwztE8OrvW6ut2mlxliccpluLBqV+6REa6MfdI9uyZMehUt9zxH2W7jxEVm5BpcabFXVRz2iycgv4bW35utR+tGgnEfUCGd2laYXPVVh8a5fG4XpcuT9pGWPCgK+Be3F0dXwE+Gc59ptgjFlmjFmWkqJ/Ep62brezGIiXlNEvzq3O+ZAmFtN69suaPVgLY7pX/B9PUYF+vnx7xyAujI/m9VnbGPPKvDK7gOQXWN6dt50eLRpUuCzuiI6RRNQL5PMlxfcAXp5wmBW7jnDjoFYuG59TVLMGwfznom6sSkrllZlbKrTvNyt2k1dgubQCc5uV5IL4aFLSs/nDWcbcWstDX69mVVIqL14WT4emlWsNrW5je0WTm2/5oZwtSjPW7+OLpYncOrQNfV3ULWx4h0iW7DhU5jeqr/y+haTDx3jiwq4VTq7rB/nz0U39GNS2CX/7ajUfLCi7it7W/en8tm4f153W0i2TgocE+DGkfQTT1u0ts1Xgld+3kJtfwP1ntC91u4t7t+Dv53Tkp9V7+NcP66q1tWHt7lTOfXU+3/yZxN0j2/H5zQOIbvi/Knz9Wzfm53sGc++odvy2di8jn5/N50t2lTgeMDsvnzdmb2XE87P5ea2jtXTm/UM5t8gYXWMMcU1CuXpAS964qjcr/nEGP951Og+d3ZGo+kF8tngXU1fs5o7hbXj5svgKV5pzhUahjgQtrnEoN364lEXb3DP1wdfLdzvmNivHOLq/n9OJzJx8XvZQNcTsvHxW704tcbxZUZf3jSU2PISnf92oidc9YPamFAL8fBjQumpFrXrFNiImPLhc82vuOpjJ7M0pXNEvtlK9T2KVnHmNcl09Y4w/jsTsU2vtVKAN0ApYZYzZCbQAVhhjTvnEbK1921rbx1rbJyKiavPcSNWtS04jyN+H1hFhng6lRNENg7mkdwxfLk1kb2rWCet+WrOHjk3rlbtLYWkahgTw/KU9+OCGvmTlFnDJxIX864d1JY7vmL5+HzsPZjJhSMWrlPn7+nBpnxbM2rSfPamntghOmu+YM62sb2+rYkz3ZlzSuwWvz9rK0jK6hO1Ly+K3dXt5+teNvD1vOz1jG9Kukt1IixrRMZKwQD++c77RvDV3O9+uTOaBM9tzZiW+6fOULs3r0yGqHlNXlF218WBGNg9NXU2nZvW5b1TpSUJFDO8YSW6+LbXb16a96bwzdzuX9G5R6Q8JIQF+vHtdH87sHMXjP6zn9Vmlj9WcOGc7Qf4+XD+oVaXOVx6juzQlOTWr1CkNdh44yhdLErmiX2y5uuNNGNKGCUNa89GiBF79vXxTelSFtY4vey56YwHHcvL57OYB/OWM9sVOaB/o58u9o9rz8z2D6dSsPg9PXcNlby9i6/4TK/L9vnEfo1+cyzO/bmJQ2ybMuG8o95/ZgZCA0pNkHx9D1+gG3Dq0DR/f1J9Vj53JoodH8NfRHat1oveTNQ4L5NOb+xPTKIQbP1jKkkpMH1GanLwCvl25m1GdI8vVMtguqh5X9Ivhk8W7yj0npyut3Z1GTl4BvcoxXjXAz4f7z2zPxr3pFZpjUlxjzuYU+rcKJzigal9sGGO4KD6aBVsPsC8tq9RtP12cgI8xXNkvtlLnim2s5MxblKdaowEmARustS8AWGvXWGsjrbVx1to4IAnoZa31fCkjKdW65FQ6Nq3vltYZV7p9WBsKrGMC20J7U7NYuvMwY1xUlrvQsA6R/HbfEK4Z0JL3F+zkzBfnFvuB9+2524gND+GsrpVLIi7rE0uBdYzfKirxUCa/rt3LVWXMmeYKj5/fhRaNQrj3i5WkZTn6lWdk57Fw2wHenL2NWz5exoD/zKT/f2Zyy8fLeWfudprWD+Lv53RyyfmD/H0Z3aUpv6zdy69r9/D0rxs5t3sz7hje1iXHry7GGMb2iubPXUfYnlLyhzRrLQ9PXUPasTxeuiy+St1CT9a7ZSPqBfqVOBapoMDyyDdrqBfkV+XrF+jnyxtX9eKintE8+9smnv51U7EJ2u4jx/j2z91c3jfWrd1TR3WKxNfH8GspXX2em7YJf18f7hpZ/t+th87qyNhe0bwwfTOfLk5wRajFOpCRzY0fLOWJnzYwrEMkv9wzuFzJc9vIMEfXxIu7s3lfBme/PI8Xpm1i0950bnh/CTd+sAwfH8OHN/bjnWv7HP+wVVFB/r40axBc9obVoElYIJ/dPIDoRsFc//4SlpVzrGF5zC5mbrOy3DuqPcH+vjz1ywaXxVFeKxIKi4E0LNf253VvTpfm9Xl+2maPj6esS5IOZ7J1f0aVxpsVdWHPaAosfF/MeO1CWbn5fLkskTM7R1WqojI4KpM2Dg1QcuYFyvNJYRBwDTDCGLPSeTvHzXGJG1hrWb8njc5e3KWxUEx4CGN7RfP5kl3HB6n/tMbRhawiE0+XV1igH/++oCuTbzkNf18frp60mAe/Wn18zo9lOw+xYtcRxg+ufLfD2MYhDG7XhMnLEk8Y1/Legh34GMN1p8W54qmUKizQjxcvi2dvWhZXvP0HZ744h26P/8aV7yzm6V83smlvOv1bh/PPczsz9faBrP3XaH6463SXdcUDuCC+OelZedz+6Qo6N6vPs5f08LrKoeVxYc9ofAx8U0olrSnLk5i2fh9/Hd3B5V02/X19GNy+CbM2FV9Sf8ryRJYlHObhczq5JFHy8/Xh+XE9uKp/LBPnbOPR79ae0l3qnbnbAce0GO7UMCSA/q3CSyypvyYplR9X72H84FZE1iv/BxUfH8PTF3dnRMdI/vHtWn5dW7FCKOWxYOsBzn55Hgu2HeTfF3Th7Wt6V2g8lzGGS/vGMPP+oYzp1oxXft/K6JfmsnTnYR45pxO/3jPEZR8KvUVEvUA+u7k/TRsEcd17S1xWhfCr5Uk0CQtkSLvyv15NwgK5Y3hbZmzY79axcMVZnnCY2PCQcv9O+/gY/nZWR5IOH+OzxSqqXV0Kq4xWdbxZodYRYfSIaVjqe82Pq/dwJDO3UoVAiooJD2HXocoVDhPXKU+1xvnWWmOt7W6tjXfefj5pmzhrbfX+l5IKSzp8jPSsPK8eb1bUHcPbkldgj3/g+2l1Mp2b1Xdrl8x+rcL55Z7B3DK0NVOWJ3Lmi3OYvn4fb8/dTsMQ/yp3O7y8byy7jxxj7hbHP+/UY7lMXprIeT2aV/rbrorq3bIRfx3dgZT0bKIbBnPvyPZ8cENf/nz0DGb/dTgvX96TG09vRa/YRm4ZazKwTWOahAUSHhrAO9f2qXK3D0+Jqh/EoLZNmLpid7FjOhIPZfLvH9YzoHU4N53uni5+wztEsi8tm/UnzYd1MCOb//6ykX5x4YxzYVdZHx/DExd25ZYhrfnkj108MGXV8QqkBzOy+WLpLi7sGX3CmCl3Gd2lKdtSjhbbveyZ3zbSKMS/woV7wJH0vn5lL+JjGnLfl6tO6TpYFe8v2MHVkxbTINif7+4YxLWnxVX6i4kmYYG8dHlPPrqxH7cMbc3v9w/l5iGtXdo6600i6wXx+c0DiKzvSND+3FW1BO1gRja/b9zP2F6nzm1WlhsGxRHdMJgnftpQbQVkrLWOyafLMd6sqCHtmnBa68a89vtWr5kuojRHMnNIz6rZ1QJnb0ohumEwbSJcV930ovjmrN+Txqa9xf8/+viPBNpEhHJaFce4xYaHqOXMC9TO/+JSrHXJjvEZ3lqp8WQtG4dyQY/mfPLHLtYkpbJi1xG3tJqdLMjfl4fP7sS3dwyiUUgAN3+0jGnr93HtgJZljt0oyxmdo2gcGsAXzsIgXy7dxdGcfLd9eC/JrUPbsOSRUbx/Qz/uGdWOYR3KN+bCFfx8ffj85v58e8cgmlfDh3h3urhXC3YfOXZKWff8Asv9k1dhgOfG9XDbuJ2hzpL6J1dke/LnDRzNzuPJi7q6vFXSGMNDZ3fkgTPbM/XP3dzx2Qqy8/L5cOFOsvMKuHWoe1vNCp3ZxVHV9OTWswVbDzBvywHuGN6WekH+lTp2cIAvE6/uTUiAL7d/uqLK84wBzNuSwv/9uJ4zOkXx/Z2D6OSi6UyGtI/g4bM7EVm/er7c8aSo+o4ErXFYANdOWsKqxCOVPtbxuc16VfzLiyB/Xx48uyPr96TxdTnGnbpC0uFjpKRnlzi/WUmMMTx4dkcOHs3hMzd21XWF/ALLxW8u5PZPa+5EyDl5BSzceoBhHSJc+r/3vB7N8fUxxbaerU46wqrEI1wzoGWVzxkbHkLykawKV3UW11JyVoesS07Dx0DHGlIRD+COEW3JystnwsfLAFw+3qw03Vs05Ps7T+e+Ue3p0aIB1w6Mq/IxA/x8uKR3C2Zs2E/ykWO8v2Anp7VuXGKZ79qqXVQ9WjSq3HgYb3JmlyhCA3xPKQzy7rztLNl56PgYP3eJrBdE9xYN+L3IfGcLtx1g6ordTBjS2iVFXIpjjOHOEe3457md+W3dPsZ/uIwPFyVwZucolxTrKY9mDYLp0aIB04okZ9Zanv51I9ENg7l6QNW690TVD+Kly+PZsj+Df363rkrHSjyUyd2f/0m7yHq8dHl8lb/kqcuaNnAkaI1CA7hm0mLWVHLS3MK5zSrb3fi87s3oGduQ537b5JLkvSyFXTl7V2Ly+viYhvRu2Ygpy5K8et6z6ev3si3lKPO2HGBnJefk9LRlCYc4mpPv8q7FjcMCGdo+gu9WntpT4+NFCYQE+DLWBb0kYsNDyC+w7DlSevERcS8lZ3XI+uQ02kSEeaQscmW1iQjjvO7N2ZOaRdfo+tU2CWqhAD8f7hnVju/uPJ0mYYEuOeZlfWPIL7Dc9ukK9qRmMX5w9baaieuEBPhxdrdm/LxmL8dyHAPuN+xJ4/lpmzm7a1PG9op2ewzDOkTy567DHD6aQ3ZePv/4di2x4SHcNaKd28994+mtnHOEHSD1WC63D6vewi5ndmnKqqTU4xVQf16zl9VJqdw7qp1L/s8NbhfBXcPb8tXyJKZUYJ63orJy87nt0+XkFVgmXtNbiZkLNG8YzOcTBlA/2J+rJy2ucBfH9clprN+TVqlWs0LGGP5+Tif2p2dXy3iu5QmHCQ3wrXQyeUnvFmzZn8HqSiaz7mat5S1nASpfH8OXlfx787Q5m1Pw9zUMbNvE5ce+sGc0e1KzWFykaunhozl8vyqZC3tGU7+SPQWKKiwilKBxZx6l5KwOWZecVmPGmxV114i2+PoYLox3/wfd6tA6IowBrcNZlXiE1hGhDHfRoGHxjLG9osnIzmPa+r1k5+Vz35craRDiz5MXdauWQicjOkZSYGHulhTemrOd7SlH+fcFXartS5hL+8bwzrV9ePjsjvSIaVgt5yxUONHqtHX7yM0v4Llpm2gfFcbYKnzoPtk9o9pzWuvGPPrd2hLHe5TEWssj36xl7e40XrosnlbV/OVSbRbdMJjPbx5A/WA/LnvrjxLnkCzO1yuS8Pc1nN+j7LnNStM3LpxBbRszcc52snLdWw1xecJhesY2qnRBqjHdmxHo58OU5d6Z9CxLOMyfu45w+/A2DO8QyZRlSTWya92cTSn0aRnuljkez+gURVigH98W6dr41fIksvMKuKaKPQUKaa4z76DkrI44mJHN3rSsGjPerKh2UfWY/cAwrndBt0JvcYVzHpKbTm/l0XmEpOoGtGpM8wZBTF2xmxembWbj3nSeuaS7W0vJF9U9ugGNQwP45I8EXpu1lTHdm7msSlh5jewUxS1D21TrOcFRWr5tZBi/rdvL5GWJ7DhwlL+O7ujSqUJ8fQwvXxFPWKA/t3+6nKMVKKrwyR8JfL0iiXtHtWNkpyiXxSQOMeEhfH/H6Qxo05iHp67hwa9Wl5kk5eYX8O2fuxnVKcol42zvGtGOAxnZx8cRu0NGdh4b96ZVuBhIUfWD/Dmra1O+X5ns9kSyMt6as41GIf6M6x3D5X1jOOAs2FKT7E3NYuPedIZ1cE+11OAAX87q2pSf1+whKzefggLLJ4sT6BvXyGVjWKPqBxHg66PkzMOUnNUR65Id1dxqYssZON6EK1pRy5ud1705713fh8v7Vm6ySPEePj6Gi3pFM29LCm/P285V/WOrtTXUx8cwtEMES3ceJtDXh8fO7Vxt5/YGo7tEsXjHIV6cvoU+LRsxqpPrX/vIekG8ckU8Ow4c5ZFv1pRr3M7yhEP864f1jOwYyd3V0MW0rmoUGsD71/flrhFt+XJZIpe+tYjdR46VuP3sTSkcrODcZqUZ0Lox/VqFM3HOdrfNJbYq8QgFliolZwDjeseQlpXHjA37XBSZa2zdn86MDfu59rQ4ggN8GdYhgqj6gW5NeN1hzmZHMjnUTckZwEU9o0nPzmPmhv3M2ZJCwsFMrnHhNDy+PoYWjYJJVHLmUbXn066UqjA5qwlznNUFPj6GER2jvH4ycCmfsb1aUGChZXgIj4xxzYTdFTGyo6NV5q9ndagTVfuKGt2lKfkFlgMZ2Tx4dke3dSUd2KYJ945qz7crk/liaeldw/anZXHbJyuIbhTMC5fFq3XczXx9DPef2YG3r+nNjpSjnPvKPOZvKX52n6+WJzrmNnNhwYa7R7Rjb1oWU5a5p3Lj8oTDGAPxsQ2rdJzT2jha+d0VZ2W9M3cHgX4+XOuco8vP14dxvWOYszmF5FISbVdLSc/mjBfm8MOqkid7Ls2czSk0rR9EBzcVYgLHlwFR9QP55s/dfLIogSZhgZzl7N7tKjEqp+9xSs7qiPV70ohuGEzDkOrpaiVSl7SJCOM/F3XjnWv7eKTgw9ldm/LZzf25ur9rxh3UJN2iGxDXOIQzO0e5dLL04twxvC2D2zXhse/XsT45rdhtcvIKuP3TFaRn5fHWNb1pEFz1QfpSPmd2acp3dw6iSVgg1763mDdnbzuhlfNgRjYzN+znop7N8XdhT4xBbRvTK7Yhb87eRk6e68dJLU84TIeoelUu+ODrYxjbqwXztqSwN9U7qvHtT8vimz93M65PCxoXKbp1Wd8YCizVmkhOmr/DWZ11LYeO5lRo37z8AuZtOcDQ9q4toX+ywvH3szft5/dN+7miX4zL5zZs2TiEhIOZXl3Zs7ZTclZHrEtOVauZiBtd2T/WbaXry+LjYxjYpkmdbKExxvDdnafzyhU93X4uXx/Di5fF0yjEnzs+W1HsZLlP/rSeZQmHefqS7nRsqv+51a11RBjf3jGIs7s14+lfN3LbJ/+7Tt+vcs5t5sKJ2cHxO3jXyHbsPnLslGk1qqqgwLJi1+EKz29Wkkt6O1r5i5svyxM+WLiT3IICxp9+4vyIMeEhnN62CZOXJVbLRN+px3L55I8EerdsRHpWHk/+tKFC+/+ZeIT0rDy3jTcr6sKe0eQVWAz/G7/uSrHhIaRn5ZF6rGZPBl6TKTmrA45m57HjwNEaO95MRKQ0DYL9q606ZZOwQF65vCcJB4/y8NQTx599vTyJDxclMP70VlWuBCiVFxrox2tX9OSRczoxfcM+Lnx9AVv3Z/DV8iS6RTdwS9I8rH0E3Vs04PXZW11aZXDL/gzSs/IqNb9ZceKahNI3rhFfLU/0eMtIRnYen/yRwNldmxY7Tc7l/WLYfeQY87cW30XVlT75I4GM7Dz+fUEXbh7Smq9XJLFo28Fy7z970358fdxTQv9knZrVp2dsQ87r0ZzmDYNdfvwYVWz0OCVndcDGvWlYC51dVM1HRKQu69+6Mfef2YEfV+/hE+ccV2t3p/L3b9YwoHU4D53d0cMRijGGm4e05uOb+nEkM5fzXp3PuuQ0lxUCKe58d49oR+KhY3y3snJjlopzfPJpF7WcgaP1bFvKUf5MPOKyY1bGF0t2kZaVx4QhxVd6PaNzFI1C/PlyqXsLgxzLyee9+TsY1iGCLs0bcPeIdsSEB/PIt2vKXeRl9qYUesc2qrZuzJNvOY3nx/Vwy7FVTt/zlJzVAYVjI7pE17wy+iIi3ui2oW0Y1iGC//thPfO2pHDrJ8sJDw3gtSt71arKsjXdwDZN+PHu02nftB6hAb5ubdEc2SmSzs3q8/qsrS7rirc84TCNQwNo6Zwc2BXO6daMIH8fvlruucIgufkFvDd/B/1ahRNfwvyIgX6+XNyrBdPX7+NARrbbYvly6S4OHs3h9mFtAUfJ+n9f0JXtKUd5a872Mvffn57FuuQ0t1ZpPJm/r4/b/s8oOfM8vYPUAeuS02gY4k/zBnWripuIiLv4+BheuDSexmEBXDNpCfvTsnnz6t40KVLUQLxDswbBfH3racz923CXzG1WEmMMd49sy44DR/lxtWtazwrHm7myyES9IH/O6dqMH1Z5bs6zn1bvITk1i1uGtC51u8v7xZCbb10+lq9Qbn4B78zbQZ+WjejX6n8FhYZ3iGRMt2a8NmsrOw4cLfUYczc7ul0OdWEFUE8KDfSjSVgAuw4qOfMUJWd1wLrkNLo0r+/WCkIiInWNo6WsJw1D/Hnioq4ltgCI5/n5+pxQDdBdzuzclA5R9Xj1960UVLH17GBGNjsOHHVpl8ZCl/RuQXpWHtPWV/+cZ9Za3pq7nXaRYWXOCdk2sh59Wjbii6XuGSP33cpkdh85xu3DT+1a+c/zOhPo68Oj364t9dxzNqfQJCywVg0dUTl9z1JyVsvl5hewaW96rfqnISLiLXq3DGfFP87g0j4xng5FvICPj+HOEW3Zuj+DX9burdKxVuw6Arh2vFmhAa0bE90wmCnLSp+zzx3mbz3Ahj1p3DykdbkqzF7eL5btKUdZuvOwS+MoKLBMnLONjk3rFZskRtUP4oHRHZi/9QDflzD3WX6BZd6WFIa2j6hV1XJjlZx5lJKzWm5bSgY5+QV0aa7xZiIi7lCbPpRJ1Z3TrRmtI0J59fctVWo9W55wGH9fQzc3jBf38TFc3LsF87ceYE9q9U30DPD23O1E1gvkgvjyjf87p1tT6gX68cUS1xYGmbZ+H1v3Z3D78LYl9iy6ekBLerRowP/9uJ7UzFNLy69KOsKRzNxqHW9WHWLDQ0g+csyllUel/JSc1XLrdjuLgaiMvoiIiNv5+hjuGtGWjXvTmb6h8t0GVyQcpkvzBm6bJuLiXtFYC1NXVN+cZ2t3pzJvywFuGNSKQL/yPa+QAD8u6Nmcn9bscdncW9Za3py9lZaNQzina9MSt/P1MTx5UTcOHc3h6d82nrJ+9qYUfAwMroYS+tUpNjyEAgvJR6o3cRcHJWe13LrkNIL8fWgdEebpUEREROqE87o3J65xCK/+vqVSY6Vy8gpYlXTELV0aC7VsHEq/VuF8tTyp2uY8e2fedkIDfLmyf8UmT768byzZeQV8t9I1ieTCbQdZlZTKLUPalFn1sGt0A24Y1IrPFu86PrVBoTmbU+gR09CthWY8obBiY4KKgniEkrMawlpLZk5ehfdbl5xKh6b18VW3GxERkWrh5+vD7cPbsnZ3GrM27a/w/uv3pJGdV+DW5AwchUF2HDjKil0VH8+VcPAoh4/mlHv7pMOZ/Lh6D1f2j63wfGBdoxvQNbo+ny9xTWGQ12dtJbJeIBf3ji7X9n85oz3NGgTx96lrjnf1O5iRzeqkIwxrX3pRk5ootrHK6XuSkrMaIPnIMS5/+w/6PzmTnWWUdC3KWsv6PWnq0igiIlLNLuoZTYtGwbwyc2uFEwp3TD5dnDHdmhES4FvhOc++Xp7EqBfm0P8/M7nzsxXM33KgzPF1783fiQFuGNSqUrFe1jeWDXvSWLM7tVL7F1qZeISF2w4yfnD5u1aGBvrx+Pld2LQvnUnzdwCOwibWUuvGmwFE1QsiwNeHRCVnHqHkzMv9uDqZs16ay1rnP6MHpqwq9+SWSYePkZ6Vp+RMRESkmvn7+nD7sLasTDzCvC0HKrTv8oRDRDcMJqq+e+cnDQ304+yuzfhx1R6O5ZQ955m1lpdmbOb+KavoGxfOlf1jmbflAFdPWsyQZ2fx6swtxRYYSc3M5Yuluzi/R3OaNwyuVKwXxDcnyN+Hz5dUrcLkG7O20iDYnyv7t6zQfqO7NGVUpyhemrGZxEOZzN6UQnhoAN3dULDF03x8DC3Cg9Vy5iFKzrxURnYeD0xZxZ2f/UmriDB+unswj5/fhWUJh3nP+a1NWdYlOxI6VWoUERGpfhf3jqZ5gyBemVn+sWfWWpYnHKZPnHtbzQpd0rsF6dl5/Lau9NL/OXkF3D9lFS/N2MIlvVvwwQ39ePz8Liz++0hevjyelo1DeH76ZgY99Ts3frCU39btPd4F8JPFCWTm5HNzGZNOl6Z+kD9jujXn+5W7OZpd8WEeAFv2pTNt/T6uO60lYYF+Fd7/Xxd0wccY/vndWuZuTmFIuya1tlpry/AQjTnzECVnXujPXYcZ88o8pq5I4q4Rbfnq1tOIaxLK2F7RnNE5imenbWLLvvQyj7MuOQ0fAx2i6lVD1CIiIlJUoJ8vtw5rw7KEwyzafrBc++w+cox9adlu79JYqH+rcFo0Ci61a2NqZi7XvbeEqSt285cz2vPsJd0J8HN8hAzy9+WC+Gg+HT+AuX8dzu3D2rIuOZVbPl7Oaf/9nad+2cj7C3YytH0Enao45+oV/WI4mpPPT6v3VGr/N+dsI9jfl+sr2bUyumEwfzmjPbM2pXDwaE6t7NJYKDY8hMRDmdVWLEb+p04nZ9ZaXp6xhVdmbvF0KIBjMsPXft/CJRMXkZdv+WLCadx/Zgf8nZWEjDH856JuhAb4cv+UVeSVMf/EuuQ02kSEERzgnjK8IiIiUrpL+8QQVT+Qmz9cxv2TVzFvS0qpwxMKx5v1iq2e5MzHx3BJ7xYs2HaA3cWUTk88lMnFExeyLOEQL17Wg7tHtitxXrDYxiE8MLoDCx4cwaTr+tAztiHvzNvOgYxsbqlCq1mh3i0b0TYyjC+WVnzOs6TDmXy/Mpkr+sUSXoXqitcPjKNzs/oYA4Pb1d7kLCY8hPTsPI4UM7+buFfF23RrmYRDR5m6YjctG4dwQXz5qva4Q9LhTP7y5SqW7DzEeT2a88SFXYutZhRRL5AnLuzGHZ+t4M3Z27hrZLsSj7k+OY0BrcPdGbaIiIiUIsjfl49v6s+keTv4ee0evl6RRES9QM7v0ZwL46PpGl3/hGRnRcJhQgJ86di0+nq9XNyrBS/N2MI3K5K4c8T/PlesTDzC+A+XkpNXwMc39WdA68blOp6frw8jO0UxslMU+9Oy2LI/g4EumAvMGMPlfWN44qcNbN6XTvsK9Ax6Z+52jIGbh1Su1ayQn68Pb17dizW7U2kSFlilY3mzwnL6uw5l1rqpArxdmS1nxpgYY8wsY8wGY8w6Y8w9zuXPGmM2GmNWG2O+McY0dHu0LmaM4b9ju9GvVTh/nbKapTsPeSSO71clc/bL81i/J40XLu3BK5fHl1pmdkz3ZpzbvRmv/L7l+Liykx3MyGZvWpbGm4mIiHhY+6h6PH1Jd5Y+Moo3r+pFr9iGfLwogfNem8/IF+bwyswt7HKO71m+6zDxMQ3LnH/LlWLCQxjQ+sQ5z35bt5fL315EkL8vU28fWO7E7GSR9YMY5MJJmi/qGY2/r+GLChQGOZCRzRdLE7moZzTNGlSuIElRLRuHcm735lU+jjdTOX3PKc9ffh5wv7W2EzAAuMMY0xmYDnS11nYHNgMPuy9M9wn08+Wtq3sT3SiYCR8tq1Cp+qrKys3ngSmruPvzP2kbGcbPdw9mbK8WJXYXKOr/LuhKg+AA7p+8ipy8U7s3rktOA1ClRhERES8R5O/L2d2a8dY1fVj6yCj+O7YbEWGBvDB9M0OencXYNxawYU96tY03K2pc7xh2Hsw8Xnjs1k+W06Fpfb65fRBtI71n7HrjsEDO7NKUqX8msXlferGfgU723vwd5OQXcMvQNtUQYe1QtOVMqleZ3RqttXuAPc776caYDUC0tXZakc3+AC5xT4ju1yg0gPeu78tFbyzgxg+WMvX2gTQMcW8TbnpWLhM+Ws6i7Qe5e0Rb7h7ZrkLfkjUKDeCpsd0Y/9EyXpm5hQdGdzhhfWFy1lnJmYiIiNdpEOLPFf1iuaJfLLuPHOP7lcl8t3I3+QXWI2OZzu7WlH9+t5a7PvuTvWlZjO4SxUuX9fTKcevXDGjJL2v2cOaLc/H1McSGh9AmIpTWEWG0iQilTUQYbSLCaBQaQFpWLh8vSuDsrk1pExHm6dBrjJAAP5qEBR5v0ZXqU6ExZ8aYOKAnsPikVTcCX5awzwRgAkBsbGzFI6wmrZqE8vY1fbj63cXc+slyPrqx//FKRK52ICOb699fwoY96bx4WQ8u6tmiUscZ1TmKS3q34M052xjVOYr4mIbH163fk0Z0w2C3J5kiIiJSNdENg7ltWBtuG9aG1MxcGoSUPLTBXUIC/BjTvRmTlyVx0+mt+Ps5nfD10jLxA1o3Ztp9Q1iXnMa2/RlsSznKtpQM5m45cEJLWnhoAA2D/UnPzuP2YW09GHHNFKu5zjyi3MmZMSYM+Bq411qbVmT5Izi6Pn5a3H7W2reBtwH69Onj1fU4+7UK5+lLunHfl6t4eOoanhvXvVxdDCsi8VAm1763hD2px3jn2t6M6BhVpeP987zOLNh6gPsnr+SnuwcT5O/4hmtdcqpazURERGoYTyRmhR4Z05kLe0YzsI3rxoi5S9vIeqd0t8wvsCQfOcbWlIz/JW37Mxjcrglda+Fk0e4WGx7C0p2HPR1GnVOu5MwY448jMfvUWju1yPLrgHOBkbaWTIRwUc8W7DyQycsztxDXOKTUaogVtWlvOte+t5hjOfl8clN/+sRVvZJi/SB/nr64O9e+t4Tnp23ikTGdOZqdx44DRzm/R+0erCoiIiKu0yDYv0YkZiXx9THEhIcQEx7C8A6Rng6nxosND+H7Vcnk5BW4rTeZnKrM5Mw4mo4mARustS8UWX4W8CAw1Fpbq9o87x3VjoSDR3l++mZiXVRif3nCIW78YBmBfj5MvvU0OjZ1XavWkPYRXNU/lnfn7+CMzk3x9QFroXMVJ3sUERERkboptnEoBdYxMXqrJqGeDqfOKE8aPAi4BhhhjFnpvJ0DvAbUA6Y7l010Z6DVyRjD05d0p29cI/761WqWJ1StxP6sTfu56t3FNArx5+vbBro0MSv093M60aJRMH/9ahXLnE3QXdSELyIiIiKVoIqNnlFmcmatnW+tNdba7tbaeOftZ2ttW2ttTJFlt1ZHwNUl0M+Xt67pQ7MGQdz80XISDlauxP63f+7m5g+X0SYijCm3DiTG+YvuaqGBfjx3SQ92HcrkhembaRjiT/MGQW45l4iIiIjUbkrOPEMdSEsRHhrA+9f3Jb/AcsMHS0nNzK3Q/u8v2MG9X66kd8tGfD5hABH13DuTfP/WjblxUCuy8wro0ry+y4uZiIiIiEjdEFkvkAA/HxKVnFWrCpXSr4taR4Tx1jW9uWbSYm75ZBkThrQm2N+P4ABfgv2dtwDf4499fQzWWl6YvplXf9/KmZ2jeOWKnserKLrbX0d3YHXSEc7s3LRaziciIiIitY+PjyGmUbDmOqtmSs7KYUDrxjw1tjv3T1nFH9tLH38W4OdDoK8P6dl5XNYnhicv6lqhyaWrKsjflym3Dqy284mIiIhI7dSycSgJajmrVkrOyuni3i3o3zqcAxk5ZObkkZWbz7GcAo7l5nMsJ8/50/E4Kzef1hGhXDOgpboWioiIiEiNFBsewpIdh7DW6jNtNVFyVgEtGoXQopF7CnqIiIiIiHiTmPAQMrLzOJyZS3hogKfDqRNUEERERERERE6hio3VT8mZiIiIiIicomVjJWfVTcmZiIiIiIicIsY5nGdXJef7lYpTciYiIiIiIqcIDvAlol6gWs6qkZIzEREREREpVmx4iJKzaqTkTEREREREihUbHkLioWOeDqPOUHImIiIiIiLFig0PITn1GNl5+Z4OpU5QciYiIiIiIsWKDQ/BWth9WK1n1UHJmYiIiIiIFCtW5fSrlZIzEREREREpVuFE1IlKzqqFkjMRERERESlWRFgggX4+ajmrJkrORERERESkWD4+htjwEBIOKjmrDkrORERERESkRJrrrPooORMRERERkRLFhIeQeCgTa62nQ6n1lJyJiIiIiEiJYsNDOJqTz6GjOZ4OpdZTciYiIiIiIiUqrNioro3up+RMRERERERK1FJznVUbJWciIiIiIlKiFo2cyZkqNrqdkjMRERERESlRcIAvkfUC1XJWDcpMzowxMcaYWcaYDcaYdcaYe5zLw40x040xW5w/G7k/XBERERERqW4qp189ytNylgfcb63tBAwA7jDGdAYeAmZaa9sBM52PRURERESklol1ltMX9yozObPW7rHWrnDeTwc2ANHABcCHzs0+BC50U4wiIiIiIuJBsY1D2JOWRXZevqdDqdUqNObMGBMH9AQWA1HW2j3gSOCASJdHJyIiIiIiHhcbHoK1kHT4mKdDqdXKnZwZY8KAr4F7rbVpFdhvgjFmmTFmWUpKSmViFBERERERD9JcZ9WjXMmZMcYfR2L2qbV2qnPxPmNMM+f6ZsD+4va11r5tre1jre0TERHhiphFRERERKQaFSZnGnfmXuWp1miAScAGa+0LRVZ9D1znvH8d8J3rwxMREREREU+LqBdIkL8PCZrrzK38yrHNIOAaYI0xZqVz2d+Bp4DJxpibgF3AOLdEKCIiIiIiHmWMUTn9alBmcmatnQ+YElaPdG04IiIiIiLijVRO3/0qVK1RRERERETqphhny5m11tOh1FpKzkREREREpEyx4SFk5uRz8GiOp0OptZSciYiIiIhImVo2dlRsVFEQ91FyJiIiIiIiZSosp7/jwFEPR1J7KTkTEREREZEytWoSRnhoAPO2pHg6lFpLyZmIiIiIiJTJ18cwomMkszbuJze/wNPh1EpKzkREREREpFxGdYoiLSuPpTsPeTqUWknJmYiIiIiIlMvgdk0I8PNhxvr9ng6lVlJyJiIiIiIi5RIa6MegNo2ZvmGv5jtzAyVnIiIiIiJSbqM6R5F46Bhb9md4OpRaR8mZiIiIiIiU28iOUQBMX7/Pw5HUPkrORERERESk3Jo2CKJ7iwbM2KDkzNWUnImIiIiISIWM6hTFysQj7E/P8nQotYqSMxERERERqZBRnaKwFmZtVNVGV1JyJiIiIiIiFdKpWT2iGwYzXSX1XUrJmYiIiIiIVIgxhlGdIpm/NYVjOfmeDqfWUHImIiIiIiIVNqpzFFm5BSzYesDTodQaSs5ERERERKTC+rdqTFign6o2upCSMxERERERqbAAPx+Gdohgxob9FBRYT4dTKyg5ExERERGRSjmjUxQHMrJZlXTE06HUCkrORERERESkUoZ1iMDXxzBzg6o2uoKSMxERERERqZSGIQH0jWukcWcuouRMREREREQqbVSnKDbuTSfxUKanQ6nxlJyJiIiIiEiljeoUBaDWMxcoMzkzxrxnjNlvjFlbZFm8MeYPY8xKY8wyY0w/94YpIiIiIiLeKK5JKG0jw5ScuUB5Ws4+AM46adkzwL+stfHAP52PRURERESkDhrVKYrF2w+ReizX06HUaGUmZ9baucChkxcD9Z33GwDJLo5LRERERERqiDM6R5JXYJmzOcXTodRolR1zdi/wrDEmEXgOeNhlEYmIiIiISI0SH9OIxqEBzFivro1VUdnk7DbgPmttDHAfMKmkDY0xE5zj0palpCiTFhERERGpbXx9DCM6RjJr035y8ws8HU6NVdnk7DpgqvP+FKDEgiDW2rettX2stX0iIiIqeToREREREfFmozpHkZ6Vx9IdJ4+IkvKqbHKWDAx13h8BbHFNOCIiIiIiUhMNbteEAD8fpqtqY6WVp5T+58AioIMxJskYcxNwM/C8MWYV8B9ggnvDFBERERERbxYS4MfpbZswY8M+rLWeDqdG8itrA2vtFSWs6u3iWEREREREpAYb1SmK3zfuZ/O+DDo0refpcGqcynZrFBEREREROcHITpEAmpC6kpSciYiIiIiIS0TVD6JHiwZMV0n9SlFyJiIiIiIiLjOqUxQrE4+wPz3L06HUOErORERERETEZUZ1jgLg9w37PRxJzaPkTEREREREXKZj03pENwzWuLNKUHImIiIiIiIuY4zhjM5RzNtygKzcfE+HU6OUWUpfRERERESkIm46vRXXD4wjyN/X06HUKErORERERETEpWLCQzwdQo2kbo0iIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIF1ByJiIiIiIi4gWUnImIiIiIiHgBJWciIiIiIiJeQMmZiIiIiIiIFzDW2uo7mTEpQEK1nbD8mgAHPB2EeISufd2la1836brXXbr2dZeufd3lrde+pbU2orgV1ZqceStjzDJrbR9PxyHVT9e+7tK1r5t03esuXfu6S9e+7qqJ117dGkVERERERLyAkjMREREREREvoOTM4W1PByAeo2tfd+na10267nWXrn3dpWtfd9W4a68xZyIiIiIiIl5ALWciIiIiIiJeoEYlZ8aYs4wxm4wxW40xDxVZ/qUxZqXzttMYs7KE/cONMdONMVucPxs5l19VZP+VxpgCY0x8Mft/6jz/WmPMe8YYf+dyY4x5xRnXamNML/e8AnWXF1/7jsaYRcaYbGPMA+559nWbF1/7q5x/76uNMQuNMT3c8wrUXV587S9wXveVxphlxpjT3fMK1F1uvPb+xpgPjTFrjDEbjDEPl7B/K2PMYuf+XxpjApzL9X7vZl587fV+70ZefN2r/73eWlsjboAvsA1oDQQAq4DOxWz3PPDPEo7xDPCQ8/5DwNPFbNMN2F7C/ucAxnn7HLityPJfnMsHAIs9/XrVppuXX/tIoC/wJPCAp1+r2nbz8ms/EGjkvH+2/u7r1LUP43/DAroDGz39etWmmzuvPXAl8IXzfgiwE4grZv/JwOXO+xP1fq9rj97v6+p1r/b3+prUctYP2Gqt3W6tzQG+AC4ouoExxgCX4ngTLc4FwIfO+x8CFxazzRUl7W+t/dk6AUuAFkWO+5Fz1R9AQ2NMs3I/MymL1157a+1+a+1SILdCz0jKy5uv/UJr7WHnZn/wv/8H4hrefO0znMsAQgEN3nYtd157C4QaY/yAYCAHSCvm2COAr4rZX+/37uW1117v927lzde92t/ra1JyFg0kFnmc5FxW1GBgn7V2SwnHiLLW7gFw/owsZpvLKPnCA44mUuAa4NcKxCaV583XXtyrplz7m3B8my6u49XX3hhzkTFmI/ATcGNp+0uFufPafwUcBfYAu4DnrLWHTtq3MXDEWptXzPn1fu9e3nztxX1qynWvlvd6P3efwIVMMctO/rayxG9Ay3UCY/oDmdbatWVs+gYw11o7rwKxSeV587UX9/L6a2+MGY7jH7bGHbmWV197a+03wDfGmCHA/wGjKhuHnMKd174fkA80BxoB84wxM6y128t5fr3fu5c3X3txH6+/7tX5Xl+TWs6SgJgij1sAyYUPnM2VY4Eviyx73zmA8Gfnon2F3Q+cP/efdI7LKfsb1MeACOAv5Y1Nqsybr724l1dfe2NMd+Bd4AJr7cEKPC8pm1df+0LW2rlAG2NMk/I8KSkXd177K4FfrbW51tr9wAKgz0nnP4Cju2LhF9hFz6/3e/fy5msv7uPV17263+trUnK2FGjnrKYSgONN9fsi60fhGJSdVLjAWnuDtTbeWnuOc9H3wHXO+9cB3xVua4zxAcbh6OdaLGPMeGA0cIW1tqDIqu+Ba43DACC1sGlVXMKbr724l9dee2NMLDAVuMZau7kKz1GK583Xvq1zjALGUa0vAFBy7jruvPa7gBHO9+tQHEU9NhY9uXM84SzgkmL21/u9e3nztRf38drr7pH3eusFVVrKe8NRJWkzjoouj5y07gPg1jL2bwzMBLY4f4YXWTcM+KOM/fOc517pvP3TudwArzvXrQH6ePq1qm03L772TXF845MGHHHer+/p16s23bz42r8LHC6yfJmnX6vadvPia/8gsM65bBFwuqdfq9p2c9e1x1Fpc4rz+q0H/lrC/q1xFIHZ6tw+0Llc7/d199rr/b5uXvdqf68vLAUsIiIiIiIiHlSTujWKiIiIiIjUWkrOREREREREvICSMxERERERES+g5ExERERERMQLKDkTERERERHxAkrOREREREREvICSMxERERERES+g5ExERERERMQL/D/frwJloZ5IaQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACCM0lEQVR4nO3dd1zTd/4H8NcnIey9h8oQBBUREffW1tpqa3ev7XVd97jedV33tf21vdF1vfbuutdd7W6tVjscxT3BKqgsRUD2hrAh+fz+SEIRGUlISIDX8/HgISTf8Um+SPLO+/15f4SUEkRERERERGRbClsPgIiIiIiIiBicERERERER2QUGZ0RERERERHaAwRkREREREZEdYHBGRERERERkBxicERERERER2QEGZ0RERERERHaAwRkR0TAlhGjs9qUVQrR0+/laW4/PHEKIfCHEObYeR3+EENuEELdY6dgThBDrhBCVQogaIcRPQojYHtvcJ4QoE0LUCyHeF0I4dbuvsceXRgjxerf7lwkhsoQQzUKIFCFEeLf7hBDi70KIav3XC0IIYY3HSUREvWNwRkQ0TEkp3Q1fAAoBXNjttjW2Hl9PQgiHkXAOK/MGsB5ALIAgAAcArDPcKYQ4D8AjAJYBiAAQBeAZw/09fieCALQA+FK/rz+AbwA8CcAXQCqAz7ud+zYAFwOYCiABwCoAt1v8ERIRUZ8YnBERjTBCCIUQ4hEhxEl9BuQLIYSv/r4IIYQUQtwkhDgthKgVQtwhhJghhEgXQtQJIf7V7Vg3CiF2CyFe12dqsoQQy7rd7yWEeE8IUSqEKBZCPCeEUPbY9x9CiBoATwshxgshftaPq0oIsUYI4a3f/n8AxgH4Tp/1+ZMQYrEQoqjH4+vKrgkhnhZCfCWE+FgI0QDgxgHGFC2E2K5/LFVCiO7BSfdzOOuPWa1/Tg4KIYKEEM8DWADgX/ox/ku/fZwQYrM+25UthLiy27E+FEK8qb9frT9/eG/nlVIekFK+J6WskVJ2APgHgFghhJ9+kxsAvCelPCalrAXwLIAb+/hVuBxABYCd+p8vBXBMSvmllLIVwNMApgoh4rod+2UpZZGUshjAy/0cm4iIrIDBGRHRyHMvdBmQRQBCAdQC+HePbWYBiAFwFYBXATwO4BwAkwFcKYRY1GPbPAD+AJ4C8I0h2APwEYBOANEApgFYDuCWXvYNBPA8AAHgr/pxTQQwFrogAVLK63BmBvAFIx/vagBfQZd1WjPAmJ4FsAmAD4AxAF5H724A4KUfnx+AOwC0SCkfhy7YuUc/xnuEEG4ANgP4RP84rwbwHyHE5G7Hu1Z/bn8Ah/XjNMZCAGVSymr9z5MBHOl2/xEAQd2Ct56P4b9SStnbvlLKJgAn9bf3dezuj4GIiKyMwRkR0chzO4DH9RmQNuiCn8t7lPw9K6VslVJuAtAE4FMpZYU+Y7ITuqDGoALAq1LKDinl5wCyAawUQgQBOB/AH6WUTVLKCugyPb/ptm+JlPJ1KWWnlLJFSnlCSrlZStkmpawE8Ap0QeRg7JVSfiul1ALwHGBMHQDCAYTqH/+uPo7ZAV1QFi2l1Egp06SUDX1suwpAvpTyA/3jPATga+gyVwYbpZQ79NfjcQBzhBBj+3tQQogx0AXV93e72R1AfbefDd979Nh3HHTP60f97GvY36OP++sBuHPeGRHR0BnutflERHS2cABrhRDabrdpoJuDZFDe7fuWXn527/ZzcbfsCwAUQJf5CgegAlDa7f27AsDpbtt2/x5CiEAAr0FXGuih377WqEfVt+7nGGhMf4Iug3VACFELXRnf+70c83/QZc0+05ddfgxdwNvRy7bhAGYJIeq63eagP8ZZY5RSNurLPEN7jL2LECIAugzff6SUn3a7qxG6ANTA8L26xyGuB7BLSnmqn30N+6v7uN8TQGOPa09ERFbEzBkR0chzGsD5Ukrvbl/O+qyYOcJ6ZE/GASjRn6cNgH+383hKKbuXwvV8Y/9X/W0JUkpPAL+FrtSxr+2bALgaftDPHQvosU33ffodk5SyTEp5q5QyFLoM43+EENE9H7A+S/iMlHISgLnQZceu72OMpwFs7/F8u0sp7+y2TVeWTAjhDl1DjpKe59Xf7wNdYLZeSvl8j7uPQdeww2AqgPJuZY8G1+PMrNlZ++rLMcfrb+/r2MdARERDhsEZEdHI8yaA5w1NJ4QQAUKI1YM4XiCAe4UQKiHEFdDNFfteSlkKXRDxshDCU9+IZHyP+Wo9eUCXoakTQoQBeKjH/eXQdSA0yAHgLIRYKYRQAXgCgBP6MNCYhBBX6MsFAV3GTkKXVTyDEGKJEGKKPhhsgK7M0bBdzzFuADBBCHGd/jlS6RusTOy2zQVCiPlCCEfoMnf7pZRnZc2EEJ4AfgKwW0r5SC8P8b8AbhZCTNIHcU8A+LDHMeYCCIO+S2M3awHECyEuE0I4A/gzgHQpZVa3Y98vhAgTQoQCeKDnsYmIyLoYnBERjTz/hK4d+yYhhBrAPugac5hrP3TNQ6qga+pxebdMzfUAHAEchy7Y+QpASD/HegZAEnTzmTZC19q9u78CeELfIfFBKWU9gLsAvAugGLpMWhH619+YZgDYL4RohO45+kOP0j+DYP1+DQAyAWyHrrQR0D2/lwtdp8vXpJRq6JqO/Aa6bFgZgL/jzCDyE+iaqdQAmA5dg5DeXKIf403izPXKxgGAlPJHAC8ASIGuvLRAf9zubgDwjX5cXfRz/C6D7hrWQvc70X1+4FsAvgOQAeAodNfnrT7GSUREViBYSk5ERH0RQtwI4BYp5Xxbj2W4EkJ8CKBISvmErcdCRET2jZkzIiIiIiIiO8DgjIiIiIiIyA6wrJGIiIiIiMgOMHNGRERERERkBwYMzoQQzkKIA0KII0KIY0KIZ/S3+wohNgshcvX/+lh/uERERERERCPTgGWN+oVH3aSUjfo1ZnYB+AOASwHUSCn/JoR4BICPlPLh/o7l7+8vIyIiLDNyIiIiIiKiYSYtLa1KShnQ230OA+0sddFbo/5Hlf5LAlgNYLH+9o8AbAPQb3AWERGB1NRUowZNREREREQ00gghCvq6z6g5Z0IIpRDiMIAKAJullPsBBEkpSwFA/2+gBcZKREREREQ0KhkVnEkpNVLKRABjAMwUQsQbewIhxG1CiFQhRGplZaWZwyQiIiIiIhrZTOrWKKWsg658cQWAciFECADo/63oY5+3pZTJUsrkgIBeSyuJiIiIiIhGvQHnnAkhAgB0SCnrhBAuAM4B8HcA6wHcAOBv+n/XmTOAjo4OFBUVobW11Zzdifrk7OyMMWPGQKVS2XooREREREQDGjA4AxAC4CMhhBK6TNsXUsoNQoi9AL4QQtwMoBDAFeYMoKioCB4eHoiIiICuMSTR4EkpUV1djaKiIkRGRtp6OEREREREAzKmW2M6gGm93F4NYNlgB9Da2srAjCxOCAE/Pz9wniMRERERDRcmzTmzFgZmZA38vSIiIiKi4cQugjNbe/755zF58mQkJCQgMTER+/fvBwDccsstOH78uEXOERERgaqqqn63+ctf/mLycT/88EPcc889Z9z2wQcfIDExEYmJiXB0dMSUKVOQmJiIRx55xOTjD4VXX30Vzc3Nth4GEREREZFNGTPnbETbu3cvNmzYgEOHDsHJyQlVVVVob28HALz77rtDOpa//OUveOyxxwZ9nJtuugk33XQTAF1QmJKSAn9//0Ef11xSSkgpoVD0/lnAq6++it/+9rdwdXU1+pidnZ1wcBj1v75ERERENIKM+sxZaWkp/P394eTkBADw9/dHaGgoAGDx4sVITU0FALi7u+Phhx/G9OnTcc455+DAgQNYvHgxoqKisH79egBnZ7FWrVqFbdu2nXXOiy++GNOnT8fkyZPx9ttvAwAeeeQRtLS0IDExEddeey0A4OOPP8bMmTORmJiI22+/HRqNBoAuMzZhwgQsWrQIu3fvNvqxvvjii5gxYwYSEhLw1FNPAQDy8/MRFxeHW265BfHx8bj22muxZcsWzJs3DzExMThw4AAA4Omnn8Z1112HpUuXIiYmBu+8886Ax504cSLuuusuJCUl4fTp07jzzjuRnJyMyZMnd2332muvoaSkBEuWLMGSJUu6nmuDr776CjfeeCMA4MYbb8T999+PJUuW4OGHH8bJkyexYsUKTJ8+HQsWLEBWVpbRzwURERERWY9WK/HerlPIr2qy9VCGlVEfnC1fvhynT5/GhAkTcNddd2H79u29btfU1ITFixcjLS0NHh4eeOKJJ7B582asXbsWf/7zn0065/vvv4+0tDSkpqbitddeQ3V1Nf72t7/BxcUFhw8fxpo1a5CZmYnPP/8cu3fvxuHDh6FUKrFmzRqUlpbiqaeewu7du7F582ajyy43bdqE3NxcHDhwAIcPH0ZaWhp27NgBADhx4gT+8Ic/ID09HVlZWfjkk0+wa9cuvPTSS2eUWqanp2Pjxo3Yu3cv/u///g8lJSX9Hjc7OxvXX389fvnlF4SHh+P5559Hamoq0tPTsX37dqSnp+Pee+9FaGgoUlJSkJKSMuDjyMnJwZYtW/Dyyy/jtttuw+uvv460tDS89NJLuOuuu0y6DkRERERkHbkVjXh2w3GkFdTaeijDil3VhT3z3TEcL2mw6DEnhXriqQsn93m/u7s70tLSsHPnTqSkpOCqq67C3/72t65sjYGjoyNWrFgBAJgyZQqcnJygUqkwZcoU5OfnmzSm1157DWvXrgUAnD59Grm5ufDz8ztjm61btyItLQ0zZswAALS0tCAwMBD79+/H4sWLYVjQ+6qrrkJOTs6A59y0aRM2bdqEadN0jTcbGxuRm5uLcePGITIyElOmTAEATJ48GcuWLYMQ4qzHtnr1ari4uMDFxQVLlizBgQMHsGvXrj6PGx4ejtmzZ3ft/8UXX+Dtt99GZ2cnSktLcfz4cSQkJJj03F1xxRVQKpVobGzEnj17cMUVv67g0NbWZtKxiIiIiMg6DEHZ9HAfG49keLGr4MxWlEolFi9ejMWLF2PKlCn46KOPzgrOVCpVV/c/hULRVQapUCjQ2dkJAHBwcIBWq+3ap7eFtbdt24YtW7Zg7969cHV1xeLFi3vdTkqJG264AX/961/PuP3bb781qwuhlBKPPvoobr/99jNuz8/P73os/T024Ozuh0KIfo/r5ubW9fOpU6fw0ksv4eDBg/Dx8cGNN97Y58Lj3c/TcxvDMbVaLby9vXH48OGBHjoRERERDbHUghr4uzsi3M/4ngJkZ8FZfxkua8nOzoZCoUBMTAwA4PDhwwgPDzfrWBEREfjPf/4DrVaL4uLirvla3dXX18PHxweurq7IysrCvn37uu5TqVTo6OiASqXCsmXLsHr1atx3330IDAxETU0N1Go1Zs2ahT/84Q+orq6Gp6cnvvzyS0ydOnXAsZ133nl48sknce2118Ld3R3FxcVQqVQmPb5169bh0UcfRVNTE7Zt29ZVimnMcRsaGuDm5gYvLy+Ul5fjhx9+wOLFiwEAHh4eUKvVXU1LgoKCkJmZidjYWKxduxYeHh5nHc/T0xORkZH48ssvccUVV0BKifT0dKOeCyIiIiKyrkMFtUga58OljUxkV8GZLTQ2NuL3v/896urq4ODggOjo6K4mHaaaN29eV4lgfHw8kpKSztpmxYoVePPNN5GQkIDY2Ngzyv5uu+02JCQkICkpCWvWrMFzzz2H5cuXQ6vVQqVS4d///jdmz56Np59+GnPmzEFISAiSkpK6GoX0Z/ny5cjMzMScOXMA6Mo5P/74YyiVSqMf38yZM7Fy5UoUFhbiySefRGhoKEJDQ4067tSpUzFt2jRMnjwZUVFRmDdv3hmP+/zzz0dISAhSUlLwt7/9DatWrcLYsWMRHx+PxsbGXsezZs0a3HnnnXjuuefQ0dGB3/zmNwzOiIiIiGysUt2G/OpmXDNrnK2HMuwIKeWQnSw5OVkauh8aZGZmYuLEiUM2BjLP008/DXd3dzz44IO2HopJ+PtFRERENLR+OlaG2/+Xhq/vnIPp4b62Ho7dEUKkSSmTe7tv1HdrJCIiIiIiy0krqIWjUoH4MC9bD2XYGfVljWScp59+2tZDICIiIqJhIK2gFlPGeMHJwfjpM6TDzBkREREREVlEa4cGGUX1SGYLfbMwOCMiIiIiIos4VlKPdo0WSQzOzMLgjIiIiIiILCI1n4tPDwaDMyIiIiIisoi0glpE+LnC393J1kMZlhicAVAqlUhMTER8fDyuuOIKNDc3m32sG2+8EV999RUA4JZbbsHx48f73Hbbtm3Ys2dP189vvvkm/vvf/5p9boP8/HzEx8efcdvTTz+Nl156yaTjWGo8RERERDTySSmRVlDL9vmDwG6NAFxcXHD48GEAwLXXXos333wT999/f9f9Go3GpMWaDd59991+79+2bRvc3d0xd+5cAMAdd9xh8jmspbOz067GQ0RERET2raC6GdVN7SxpHIThlTl74QUgJeXM21JSdLdbyIIFC3DixAls27YNS5YswTXXXIMpU6ZAo9HgoYcewowZM5CQkIC33noLgO4TgnvuuQeTJk3CypUrUVFR0XWsxYsXw7Do9o8//oikpCRMnToVy5YtQ35+Pt5880384x//QGJiInbu3HlGduvw4cOYPXs2EhIScMkll6C2trbrmA8//DBmzpyJCRMmYOfOnSY/xv6O/dhjj2HRokX45z//2TWekpISJCYmdn0plUoUFBSgoKAAy5YtQ0JCApYtW4bCwkIAuuzhvffei7lz5yIqKqork0hEREREI1dqge49ZXIEgzNzDa/gbMYM4Morfw3QUlJ0P8+YYZHDd3Z24ocffsCUKVMAAAcOHMDzzz+P48eP47333oOXlxcOHjyIgwcP4p133sGpU6ewdu1aZGdnIyMjA++8884ZZYoGlZWVuPXWW/H111/jyJEj+PLLLxEREYE77rgD9913Hw4fPowFCxacsc/111+Pv//970hPT8eUKVPwzDPPnDHOAwcO4NVXXz3j9u5Onjx5RkD15ptvGnXsuro6bN++HQ888EDXbaGhoTh8+DAOHz6MW2+9FZdddhnCw8Nxzz334Prrr0d6ejquvfZa3HvvvV37lJaWYteuXdiwYQMeeeQRE68EEREREQ03aQW18HR2QHSAu62HMmzZV1njH/8I6MsL+xQaCpx3HhASApSWAhMnAs88o/vqTWIi8Oqr/R6ypaUFiYmJAHSZs5tvvhl79uzBzJkzERkZCQDYtGkT0tPTu7JA9fX1yM3NxY4dO3D11VdDqVQiNDQUS5cuPev4+/btw8KFC7uO5evbfx1ufX096urqsGjRIgDADTfcgCuuuKLr/ksvvRQAMH36dOTn5/d6jPHjx3eVagK/LiI90LGvuuqqPse1e/duvPvuu13Zur179+Kbb74BAFx33XX405/+1LXtxRdfDIVCgUmTJqG8vLzfx0tEREREw19aQQ2Swn2gUAhbD2XYsq/gzBg+PrrArLAQGDdO9/MgdZ9z1p2bm1vX91JKvP766zjvvPPO2Ob777+HEP3/AkopB9zGFE5Ouu43SqUSnZ2dFjsucOZj7q60tBQ333wz1q9fD3f33j8N6f4YDWMEdI+fiIiIiEau+pYO5JQ34sKEUFsPZVizr+BsgAwXgF9LGZ98EnjjDeCpp4AlS6w+tPPOOw9vvPEGli5dCpVKhZycHISFhWHhwoV46623cP3116OiogIpKSm45pprzth3zpw5uPvuu3Hq1ClERkaipqYGvr6+8PDwQENDw1nn8vLygo+PD3bu3IkFCxbgf//7X1ema7DMOXZHRweuvPJK/P3vf8eECRO6bp87dy4+++wzXHfddVizZg3mz59vkTESERER0fByqFC/vhnnmw2KfQVnAzEEZl98oQvIliw582cruuWWW5Cfn4+kpCRIKREQEIBvv/0Wl1xyCX7++WdMmTIFEyZM6DXQCQgIwNtvv41LL70UWq0WgYGB2Lx5My688EJcfvnlWLduHV5//fUz9vnoo49wxx13oLm5GVFRUfjggw8s9lhMPfaePXtw8OBBPPXUU3jqqacA6DKGr732Gn73u9/hxRdfREBAgEXHSERERETDx6GCWigVAlPHeNt6KMOaGMqSs+TkZGnoXmiQmZmJiRMnGneAF17QNf/oHoilpAAHDwLd5jsRGZj0+0VEREREZrn67X1Qt3Vgw+8XDLzxKCeESJNSJvd23/DKnPUWgBkyaERERERENOQ6NVocPl2Hq2aMtfVQhr3h1UqfiIiIiIjsSlaZGi0dGiRx8elBY3BGRERERERmS82vAQAkMzgbNLsIzthqnayBv1dERERE1pdWWIcQL2eEervYeijDns2DM2dnZ1RXV/ONNFmUlBLV1dVwdna29VCIiIiIRrS0/BpMZ9bMImzeEGTMmDEoKipCZWWlrYdCI4yzszPGjBlj62EQERERjVgldS0oqW/FrQzOLMLmwZlKpUJkZKSth0FERERERCZKK9AtPp0c7mvjkYwMNi9rJCIiIiKi4SmtoBYuKiXiQjxsPZQRgcEZERERERGZJa2gFoljvaFSMqywBD6LRERERERksub2ThwvbWAzEAticEZERERERCY7fLoOGq3E9AgGZ5YyYHAmhBgrhEgRQmQKIY4JIf6gvz1RCLFPCHFYCJEqhJhp/eESEREREZE9OKRvBpI0lsGZpRjTrbETwANSykNCCA8AaUKIzQBeAPCMlPIHIcQF+p8XW2+oRERERERkL1ILajEhyB1eripbD2XEGDBzJqUslVIe0n+vBpAJIAyABOCp38wLQIm1BklERERERPZDq5U4VFDL+WYWZtI6Z0KICADTAOwH8EcAPwkhXoIuyJtr6cEREREREZH9OVHZiIbWTkzn+mYWZXRDECGEO4CvAfxRStkA4E4A90kpxwK4D8B7fex3m35OWmplZaUlxkxERERERDZkWHyamTPLMio4E0KooAvM1kgpv9HffAMAw/dfAui1IYiU8m0pZbKUMjkgIGCw4yUiIiIiIhtLza+Fn5sjIvxcbT2UEcWYbo0CuqxYppTylW53lQBYpP9+KYBcyw+PiIiIiIjszaHCWiSF+0AXKpClGDPnbB6A6wBkCCEO6297DMCtAP4phHAA0ArgNquMkIiIiIiI7EZVYxtOVTXhNzPG2nooI86AwZmUcheAvkLi6ZYdDhERERER2bNDnG9mNUY3BCEiIiIiIkorqIWjUoH4MC9bD2XEYXBGRERERERGSyuoRXyYJ5xVSlsPZcRhcEZEREREREZp69QgvbgeyRFc38waGJwREREREZFRjhY3oL1Ti6RxnG9mDQzOiIiIiIjIKGwGYl0MzoiIiIiIyCinqpvg6+aIAA8nWw9lRGJwRkRERERERqlStyHAnYGZtTA4IyIiIiIio1Q1tsHfw9HWwxixGJwREREREZFRqhrb4c/MmdUwOCMiIiIiIqNUNbYxOLMiBmdERERERDSgprZONLdrGJxZEYMzIiIiIiIaUFVjGwDA351zzqyFwRkREREREQ2oKzhjG32rYXBGREREREQDqlS3AwBb6VsRgzMiIiIiIhqQIXPGBaith8EZERERERENyBCc+bpxzpm1MDgjIiIiIqIBVTW2wcdVBZWSIYS18JklIiIiIqIBVam5ALW1MTgjIiIiIqIBVXIBaqtjcEZERERERAOqamxjG30rY3BGREREREQDqlK3sY2+lTE4IyIiIiKifrW0a9DUroG/Bzs1WhODMyIiIiIi6pehjT7nnFkXgzMiIiIiIupXpWEBagZnVsXgjIiIiIiI+lWpZuZsKDA4IyIiIiKifnWVNXLOmVUxOCMiIiIion5VqdsBAH5uzJxZE4MzIiIiIiLqV1VjG7xdVXB0YPhgTXx2iYiIiIioX1WNbZxvNgQYnBERERERUb90wRnnm1kbgzMiIiIiIupXVWM7M2dDgMEZERERERH1q1LNssahwOCMiIiIiIj61NqhQWNbJwI8GJxZG4MzIiIiIiLqk2EB6gBmzqyOwRkREREREfWJC1APnQGDMyHEWCFEihAiUwhxTAjxh273/V4Ika2//QXrDpWIiIiIiIZaVaNuAWrOObM+ByO26QTwgJTykBDCA0CaEGIzgCAAqwEkSCnbhBCB1hwoDQ8arYRSIWw9DCIiIiKykK7MGYMzqxswcyalLJVSHtJ/rwaQCSAMwJ0A/ialbNPfV2HNgZJ9q1C34u41h5Dw9E84XdNs6+EQERERkYUY5pz5cZ0zqzNpzpkQIgLANAD7AUwAsEAIsV8IsV0IMcMK4yM7J6XEF6mnce4rO7A5sxzNHRp8fajI1sMiIiIiIgupamyDp7MDnByUth7KiGd0cCaEcAfwNYA/SikboCuJ9AEwG8BDAL4QQpxVzyaEuE0IkSqESK2srLTQsMkeFFY347fv7cefvkpHbJAHfvjDAsyJ8sPXh4qg1UpbD4+IiIiILKCqsQ3+bKM/JIwKzoQQKugCszVSym/0NxcB+EbqHACgBeDfc18p5dtSymQpZXJAQIClxk021KnR4p0deVj+6nakn67H85fE47PbZmN8gDsunz4Gp2tacDC/xtbDJCIiIiILqFK3s43+EDGmW6MA8B6ATCnlK93u+hbAUv02EwA4AqiywhjJjhwvacClb+zB899nYn50ADbfvwjXzgqHQt8EZEV8MNwclSxtJCIiIhohmDkbOsZkzuYBuA7AUiHEYf3XBQDeBxAlhDgK4DMAN0gpWcs2QrV2aPDiT1m46F+7UFLXgn9fk4R3rp+OYC/nM7ZzdXTABVNCsDG9FM3tnTYaLRERERFZSmVjGzNnQ2TAVvpSyl0A+uqN/lvLDofs0aHCWjz4xRHkVTXh8ulj8MTKifB27btbz+XTx+DLtCL8dKwMl0wbM4QjJSIiIiJLau3QQN3aCX92ahwSJnVrpNGnvrkDN394EO0aLT6+eRZeumJqv4EZAMyI8MVYXxd8lcbSRiIiIqLhjGucDS0GZ9Svf27NRX1LB96+LhnzY87q99IrhULgsqQx2HOyGsV1LVYeIRERERFZS1VjOwAGZ0OFwRn16URFI/67Nx9XzRiHSaGeJu17WdIYSAmsZWMQIiIiomGrSr8ANRuCDA0GZ9Snv3yfCReVEg8sn2DyvmN9XTEr0hdfHyoG+8QQERERDU+GssYABmdDgsEZ9Wp7TiV+zqrA75dFm53Gvmz6GJyqasKhwloLj47sRUVDK+77/DDqWzpsPRQisgMH82uwI6fS1sMgIgsyBGd+bmwIMhQYnNFZOjVaPLvhOCL8XHHj3Eizj3PBlBC4qJRsDDKCffNLMdb+Uowtx8ttPZQR4YlvM7DucLGth0FklpZ2De78+BDu/ewXtHdqbT0cIrKQqsZ2eDg7wFmltPVQRgUGZ3SWNfsLcaKiEY9dMBGODub/irg7OeD8+GBsOFKK1g6NBUdI9mJbdgUAYPdJrj8/WLnlany8rxCfHTht66EQmeW/e/NR1diGuuYO7DrB7BnRSME1zoYWgzM6Q11zO/6xJQfzov1w7qSgQR/v8uljoG7rxE/Hyiwwuv6l5tegrZNB4FBRt3YgNV9Xsrr3ZDXnFg7SN7/oMmbpRXXQaPlc0vCibu3Am9tPYl60H7xdVVh/uMTWQyIiC6lUt7FT4xBicEZneHVLLhpaOvDkqkkQoq+1x403O8oPYd4u+PqQdUu1TlU14fI39+KdHXlWPQ/9aveJanRqJVYlhKC0vhX51c22HtKwpdVKfPtLMZxVCjS1a3CiotHWQyIyyQe781Hb3IGHV8Th/PgQbDpejpZ2flhGNBJUNbbB34PzzYYKgzPqcqJCjf/tK8DVM8chLti01vl9USgELk0Kw67cSpTVt1rkmL3Ze7IaALD2F3aHHCrbcyrg7uSAe5fFAAB2n2Bpo7n25VWjtL4Vdy2OBgAcPs0mOjR81DW3450deVg+KQgJY7xx0dRQNLdrsCWTc1GJRoIqZs6GFIMz6vLshky4Oipx/7mmt87vz6VJY6CVusDJWvaf0gVnJyubcLy0wWrnIR0pJbZnV2JetB9iAt0R7OncFSCT6b4+VAwPJwfcuiAKns4OOHy6ztZDGlJ7TlThka/TOTd1mHpnZx7UbZ24T//aMTPSF8GezljH0kaiYa+tU4OG1k7OORtCDM4IAJCSXYHtOZX4w7IY+Fn4P2CkvxuSw33wVdppq2S1pJTYl1eNBTH+UCkF5zoMgdyKRpTUt2JxbCCEEJgb7Yc9J6ug5VwpkzW3d+LHo6W67qaOSkwd641fCutsPawh87+9+bju/QP47OBp7D9VY+vhkImqG9vwwe58rEoIwcQQXcWFUiGwKiEE23MqUN/MZTaIhrPqxnYAXIB6KDE4I3RotHhuw3FE+bvh+jkRVjnHZdPH4GRlE44U1Vv82PnVzShvaMOK+GAsmhCA9UdKGCRYmaFL4+LYAADA3PH+qG3uQFaZ2pbDGpY2HStHU7sGlyaFAQCmjfVGTrkaTW2dNh6ZdXVotHji2ww8ue4YFsT4Q6kQSM1ncDbcvLn9JFo7NPjjOWdWXKxODEOHRuKHo6U2GhkRWYJhjTOWNQ4dBmeEj/cV4GRlEx5fObjW+f1ZmRACJwcFvkqzfJvw/Xm6crpZkX64KDEMpfWtOMg3eVa1LbsSsUEeCPFyAQDMHe8HANjDlvom+/pQEcb4uGBGhC8AIHGcN7QSyCi2/AcZ9qKuuR03vH8AH+8rxO2LovDeDTMwKcST/2+HmfKGVvx3bwEumTYG0YHuZ9wXH+aJKH83ljYSDXOVakNwxoYgQ4XB2ShX29SOV7fkYkGMP5bGBVrtPJ7OKpw3ORjfWWHNs3151fB3d8L4ADecMzEQro5KfMs3BFbT2NaJg/k1XVkzAAj1dkGkvxv2cN6ZScobWrH7RBUumRYGhULXHXXqGG8AGLHzzk5UqLH637uRml+Ll6+YikfPnwilQiA5wgeHT9ehQ8PFi4eLf6ecgEYr8Qd9U6DuhBC4cGoo9p2qRnmD9ZpBEZF1MXM29BicjXL/2JKDxrZOi7XO78/l08egvqUDWzMrLHZM3XyzGsyO8oUQAq6ODlg+KQjfZ5SivXPo3uTtPlGFoyM409HdnhNV6NBILOoWnAHAnPF+2J9XPazfXLd2aIb0d2fd4WJoJXDJtLCu2/zcnTDO1xWHR+C8s5TsClzy7z1oauvEp7fNxmXTx3TdNyPCF60dWhwrYUOf4aCothmfHijElTPGYpyfa6/bXJQYCimB747wwzKi4apKP+csgHPOhgyDs1Esp1yNNfsLce2scZgQ5GH1882L9kewpzO+PlRksWMW1jSjrKEVs6L8um5bnRiG+pYO7MiptNh5+tPWqcEdH6fhiW+PDsn5bG1bTiXcHJVIDvc94/Z54/3R1K5BuhXmFQ6FlKwKnPuP7bhrzSF8kWr58tuepJT4Oq0Y08Z5IyrgzJKwxLHeIypzJqXEuzvzcPOHBzHW1xXr7pmP6eE+Z2yTrP+Z886Gh3/9fAICAvcsie5zm/EB7ogP82RwRjSMVarb4O7kAGeV0tZDGTUYnI1SUko8u+E43ByVZ03kthalQuCSpDBsz6lEhdoyZS779PPN5kT9GijMj/GHj6sK64boDcGu3CqoWztxpKgO1fr0/0j1awt9/7PmJ87WX4O9w2zeWWl9C+74Xxpu+vAgHJUK+Ls7YWeu9QP746UNyC5X49JuWTODxLHeKGtoteragEOlrVODP32Vjuc2ZmL5pGB8decchHm7nLVdoKczwv1cOe9sGMivasKXaUW4ZtY4hPZyLbtbPTUMR4rqcaqqaYhGR0SWVNXYxqzZEGNwNkodK2nAztwq3LssBr5uQzfJ87KkMdBoJdb9YpnAaV9eDfzdHTG+W+ZBpVRgZUIINh8vG5KOdxvTS+GgEJBS1yhjJDtR0YjiuhYsjj17fqKfuxMmhngOm3lnnRot3t2Zh2Uvb0dKdgUeOi8WP/xhIc6ZGIg9J6vRaeXyzLWHiqFSCqxKCD3rvsRx3gCG/2LUVY1tuPad/fgyrQj3Lo3Gf65NgqujQ5/bJ4f7IjW/lgvJ27l/bs2FSilw15LxA267amoIhGBpI9FwVdXYxmYgQ4zB2Sh1oqIRAM5o6jAUogPdkTjWG1+lFQ36DZiUEvvzqjEr0u+s+XKrE8PQ2qHF5uPlgzrHQFo7NNh8vByrE8MQ4OGEn7MtN5/u+4xS7Mqtsqs3qobgs6/fm7nj/ZBaUGv3iwmnFdRg1eu78NzGTMyK9MWW+xfh7iXRcHRQYH6MP9StnUi34hzCTo0W3x4uwdK4QPj08uHIpBBPqJQCvwzz0sa7Pj6EjOJ6vH71NNy/PLar6UlfZkT4oLqpnVkWO5Zbrsa3h4txw9wIBHo4D7h9iJcLZkb4Yt3hYrv6W0ZExqlqbGczkCHG4GyUyq9ughDAGJ/eJ3Jb02XTxyC7XD3oif+na1pQUt/aVU7X3fRxPgjzdsG6w8WDOsdAduZWQd3WiQunhmBJbAB25FRapCFGSV0L7lpzCL99bz/OeWU7/rs3H412sO7VtpwKTAhy77OUaV60H9o7tThUYJ8Zn9qmdjzydToue2Mv6ls68OZvk/D+jTMw1vfX/wfzxvtDCGBnjvXKM3eeqEJVYxsumTam1/udVUpMCvEc1k1BCqqbcCC/Bn88ZwIunHp2drA3yRGGeWf2+ftDuiZSbo4OuGPhwFkzg4sSQ3GysgnHS+2n2YuUksEikREq1W0MzoYYg7NRqqC6GaFeLjaZ4HlRQigcHRT4Km1wjUEM881md2sGYqBQ6No478itsuo8sI3pJfByUWFetG4pAnVrJ9IsEJj8cLQMAPDo+XFwc3LAn9cdw+y/bMXT64/hZGXjoI9vjqa2Thw8VYtFE/rOts6I8IVSIbDbzuadSSnxZeppLHtlO75MK8KtCyKx5f5FWBEfclbW1cfNEVPCvLDrhPVKVNceKoa3qwpL4vp+LhPHeiOjuB6aYbqguqGM7aJE4wIzQNdAwsdVxXlndupYST2+zyjD7+ZF9Jrx7csF8SFwUAist5MlTjo0Wsz568/4eF+BrYfSr7rmdvzl+8yuSheiodbeqUV9SweDsyHG4GyUyq9uQngf7Y+tzctVhXMmBuK7IyWDyjLtO1UNPzfHsxY/NVidGAqNVuJ7faBjaYaSxhWTg6FSKjAv2h8qpUBK1uBLG3/IKMXEEE/cvmg81t8zH2vvmotzJgZizf4CLHt5O657bz+2ZpYP6Rv3vSer0a7R9jrfzMDDWYWEMV42nXem1UqcqmrCd0dK8LcfsnDde/uR9OxmPPRVOiL93bDh9/Px+MpJcHPqe+7Tghh/HCqsg7q1w+LjU7d24KdjZbgwIRRODn1/OJI4zhvN7RrklKstPoahsP5ICZLDfXpt/tEXIQSmh/ta5AMOsrx/bM6Bp7MDbl4QZdJ+Pm6OWDghAN8dKYHWDj5syClXo6yhFZ8esH5X1sH4PqMMb+/Iw/n/3IGXfsq2+3Lx0aiwuhn1LZZ/nbAX1U36Nc48OOdsKPX97oRGtILqZpw3Odhm5784MQzfZ5RhZ24llsYFmby/br5ZDWbp1zfrTVywByYEuWP94WJcNzt8sEM+y7bsSjS1a7AyIQSALjCZEeGLn7Mq8OgFE80+bll9K1ILavHAub920Zw2zgfTxvng8ZWT8OmBQqzZX4CbP0rFOF9XXDc7HFcmj4WXq2rQj6k/23Iq4Oqo7Co968u88f54Y/tJqFs74OFs3TF1arQ4UdmIo8UNOFZSj2PFDThe2tBVAqpSCsQGe+C8ycGYM94PFyaEDjjvCQDmRwfg3yknsS+vBudOMv33sz8/ZJShrVOLS5PO7tLYXeJY3fN8+HQdJoZ4WnQM1pZV1oCc8kY8u3qyyfvOiPDBlsxy/SR0flprL34prMWWTF3jHC8X0/9fr04Mxc9ZFUgtqMXMyLNL0YdShn65j+OlDcirbDxrKQt7kVOuhotKifPjg/GvlBNYd6QY/3dRPJbE9f0BGQ2d6sY2LHtlGzq1EvGhXpgz3g9zxvthRoQv3Pv58G84qVLr1jjj3+KhNTJ+e8gk9S0dqGlqR4SNMmcAsDg2ED6uKnxzqNis4KyotgXFdS24fVHfn+AKIbA6MQwv/pSNotpmi8+v25hRCh9XFeaO/7WscmlcIJ7bmInTNc1nzGMyxY9HSwEAF+iDvu4CPJxw77IY3Ll4PH46VoaP9uTj+e8z8cHuU9h8/6J+s0GDIaXEtuxKzB3v32+2B9A1BflXygkcOFWDZRMtG9gAQH1zB1KyK7D5eDm2ZVegqV33abKLSomJIR64NCkM8aFemBzmiZhAj7Na/hsjKdwbLiolduVWWjw4+/pQESL93ZA41rvf7SL8XOHtqsLhwjpcPXOcRcdgbesPl0CpELhgytm/wwNJjtC9cU/Nr8WKeNt9gERnemVzDnzdHHHj3Aiz9j9nYhBcVEqsP1Js++CsuB7OKgVaO7TYmF6K3y+Lsel4+pJboUZMkDteuSoRVySPxRPfZuCmDw9ixeRgPHXRJIR4GZ+VJss7XtqADo3EpUlhKKptwYe78/H2jjwoFQJTx+iDtSh/TA/3gYvj8FwjrEo/LYSt9IcWg7NRqLC6GQAQ7udmszE4OiiwKiEUX6SeRkNrBzxNzLAY5pvNijx7vll3F00NxYs/ZWP9kRLctbjvxVJN1dKuwdZMXZdGB+Wvb/6X6IOzbdkVuG5OhFnH/v5oGWKDPM5YHqAnlVL3/K1KCMX2nErc8P4BfLgnH3f3syDsYJysbEJRbQvuWDRwE4CkcB84Oiiw52S1xYKzkroWbD5ejk3Hy7A/rwadWokADydclBiGWZG+iA/zRKS/O5RGZMWM4eSgxOwoX+zMtezcuaLaZuw/VYMHzp3QZ8bXQAiBqWOG32LUUkqsP1KCedH+8DPj09b4ME84OSiQml/D4MxOrDtcjJ25VXhi5USzPwByc3LAOZOCsDG9FE9dOBkqpe1mVRwtrkfiWG9otBIbM+w3OMspb8TCGN281Dnj/fDDHxbinZ15eP3nXOx4uRL3nzsBN86NOOM1iIZOVqmu5PyJlZPg6+aIlnYN0gpqsTevCntOVuPN7Xn4d8pJOCoVSBznjRvnRpj1gVVfnt1wHN4uKqv+/lYagjNmzoYU/0ePQvnVujbVEf62y5wBwCVJYWjr1OLHDNPnhO3Lq4GvmyNi+phvZjDW1xVJ47wtPhF9W3YFmts1WNUjuxXl74ZwP1f8bOa8s4qGVhzMr8H5U4x/U7poQgDOmRiIN7efRH2zdWrft+mXCDBm6QVnlRLJ4T7YfcL8wEZKiczSBvxzSy5Wvb4Tc//2M55afwxl9a24ZUEUvrlrLvY/ugx/vXQKLp4WhuhAD4sFZgbzYwKQV9WEotpmix3z21903UMv7mXh6d4kjvVGToXaLjp1GutQYR2KaltwkZEdGntyclBi6hhvHOS8M7uQV9mIx77JQHK4D24wM2tmsHpqKGqbO7BrEH8bBqtDo0VmmRpTwrywckoIssrUOFFhf/M665rbUaluw4SgX1/jHB0UuHtJNDbftwhzovzw3MZMrHp9F9IK2EDHFjLLGhDk6dS1VqyLoxLzY/zx0HlxWHvXPBx5ajk+uHEGbpwXgfKGVjzwxRE0t1vmb3lVYxs+3JOPV7bkIL2oziLH7E2lWj/njMHZkGJwNgoV6IOzcWaW3VnKtLHeiPR3wze/mN61cV9eNWZF+ho1f+jiaWHIKlMjq8xybZw3ZJTCz80Rs3qU5wghsCRWt4hxS7vpk7d/OlYGKYGVJn669sDyWKhbO/HWjpMmn9MY23MqER3obnRp6NzxfsgqU5vVKfNgfg0WvpiC8/+5E69uzYGjUoFHzo/D1gcWYesDi/HI+XFIGudj1LUfjIUx/gCAXRbKnkkp8c0hXUmXsSWvieO8ISWs+uJrad8dKYGjgwLnTTY/a5oc4YNjxfUWeyND5mnt0ODuT36Bo4MCr109bdDZroUTAuDlorJp18accjXaO7WID/PC+VN0C2RvTLdO06jByCnXdWicEORx1n1jfV3x7g3JeOu66ahv6cBlb+zFw1+lW+3DOepdVqkaccF9zwd2d3LAkrhAPHbBRLxwWQJa9E3ELOGHo2XQaCXcnRzw+NqjVmsOVtXYBjdH5bAtyxyuGJyNQvnVzQjydIKro22rWoUQuDgxDPvyalBc12L0fqdrmlFc13JWYNSXC6aEQGnBNs7N7Z34ObMCK+KDey0nWRoXiLZOLfbmmf6mfmNGKaID3RHTywtyfyaGeOKiqaH4YHd+1yddltLc3on9eTVY3E8L/Z7mRusCm715pnVtbO3Q4MEvj0CrBf566RTsf2wZvrlrHu5YNL7fMk9riA50R5CnE3Za6FP+I0X1yKtqwmUDNALpLnGMNwAMm9LGTo0WG9JLsTQ2cFDNYGZE+KJTKwf1uPMqG/HpgUKuZTUIz244jszSBrxyZWKfaxuawtFBgQumBGPTsTKzPryyhKP6xeWnhHkhyNMZMyN8sSHdPlr8d2fo0hoT1PvfPSEEzpscjC33L8LtC6Pw1aEivPBT1lAOcVTr0GhxoqIRcSHGvVbPiPBFiJdz1xIjg/XdkRLEBLrjL5dMQUZxvdWWhahqbIc/55sNOQZno1BBdZNN55t1d4m+vMtQ7mWM/ad0JRyzx/c/38zA390J86P9se5wiUXeqP2cVYGWDg1WJfRetjUryheujkqTSxsr1W04cKrG7Jr0+86dgHaNFv9OOWHW/n0xpoV+TwlhXnB3cjC5pf5b2/NQUN2Mv1+WgKtnjkOgh7Opw7UYIQQWxARg94kqi3wq+c2hIjg5KHC+CdfXx80REX6uw2Yx6n15NahqbMNqE9Y2603SOB8IAaQNYjHqv3yfhUe/ycDGjNJBjWW0+u5ICdbsL8Tti6Is2h3wwqmhaGrXYGuWZTIIpsooroeHkwMi9K+BqxJCkFvRaHdLVuSWq+HmqBxwKQo3Jwc8esFEzInyQ4Y+8CTrO1XVhHaNFhP7yZx1p1AIrEoIwfacStQ1tw/q3KX1LTiYX4MLp4ZiVUIIFsT446WfslHR0Dqo4/amigtQ2wSDs1Eov7rZpp0auxvn54rkcB+s/aXY6MBpX141fFxVmBBofHZpdWIoiutacKhw8PNYNqaXwt/dqc+OY04OSsyL9kdKVqVJweCm42XQSuACE+abdRfp74Yrk8fgk/2FFp0ntS27Eq6OSsyI7L+FfncOSgVmRfpirwnBWWF1M/6z7QRWJoRgvr6k0NYWxPijrrkDx0oG96anvVOL9UdKcO6kIJOb3ySO9caRYVLWuP5IcVcpz2B4uaoQG+Rh9ryzsvpW/JxVDqVC4Kl1x6y6EP1IlF/VhEe/ycD0cB88uDzWoseeFemHIE8nrLNRaWNGcQMmh3l2lUWfFx8MhQA2pNtXEJ9T3ojoII8BGwcZxAZ7IKdcbRfryI0GmaW6aRLGZs4A4KKpYejQSPw4yLVXN6aXQkrdBwtCCPzf6ni0abR4dmPmoI7bG92SJlzjbKgxOBtlmto6Ualus5vMGaBrDHKiQrdWlTH2n6rGTCPnmxksnxwMJwfFoN8QNLV14uesClwwJbjfBhRL4wJRXNfSNW/AGN9nlCLK3w2xJpY0dvf7pbquTa9tzTX7GN1JKbEtpwJzx/sN2EK/pznj/XCqqgklRpSsSinx9HfH4KAQeHLlJHOHa3Hz9OWZg+3amJJdgbrmDlyWNMbkfRPHeqO8oQ2l9caX/hrUNLUj+bktuPyNPdiQPrhF3wfS1qnBD0fLsHxyEJxVg5+fkBzhg0MFtWZlLb9MPQ2tBP5zbRIaWjvw9HfHBz2e0UI3z+wQHJTCIvPMelIqhK7LbHblkM+R6tBokVnagClhXl23BXo4Y1akHzamW6aywlJyK9SYMEDDq+5igzzQ2qFFYY3lPpijvmWXqaFSCkT5G3+NdF2F3bB+kKWN3x0pQXyYZ9f6fJH+brhr8Xh8d6QEO3MrB3Xsnqoa29hG3wYYnI0yBfo2+hF2FJytmhIKR6UCa40obSyqbcbpmhbMjjKupNHAvVsb58G8Qd2aVYG2Tu2ADTuW6EsAjS1trG5sw748XUmjsZ+U9ibU2wW/nR2Or9KKcLLS+MCwL3lVTThd04JFJpQ0GswdrwtsjClt3Hy8HD9nVeCP50xAsJftShl78nd3wqQQz0G/4K09VAx/d0csMCMjmDhOvxi1GaWN/9tbgKrGNpQ1tOKeT37BwhdS8O+UE6hpGlxZTW+2ZVdC3dppdpfGnmZE+KKxrdPkRj5arcTnqacxJ8oP500Oxu+XxuC7IyX46Zj9NX2wR89vzMSxkga8fMXUAUvqzLU6MRTtGi1+PDa02arc8sauZiDdrZoagpOVTcgqs4/SxpqmdlQ1tvfaDKQvscG6bbPtrDxzpMoqU2N8gLtJ62gKIXDh1FDszas2uwSxoLoJR4rqcWGPaRV3LBqPCD9X/HndMbR2WGY+Z4dGi9rmDpY12gCDs1HG0Kkx3E7KGgFdCdPSuECsP1KCzgECp/15+vlmJgZngK6Nc3VT+6BavG9ML0Ggh1PXQrl9CfZyxsQQT6QYGZxtOl4OjVaa1EK/L3ctGQ9nlRKvbM4Z9LG2Z+uCElOagRjEBXvA180RewZ4vpvbO/HMd8cxIcgdN86LMGeYVrUgxh9pBbVmdw6sa27H1qxyXDQ1zKz1iCaGeMBRqTC5OUZLuwYf7c3H0rhAbH9oCd69PhlRAW548adszPnrVjz8VXpXaY4lrD9SAl83x65s42BND9cFpakmzjvbdaIKRbUtuHqWbuHuOxePx6QQTzy+9uig53oMFwXVTVC3mp6V2pheiv/tK8BtC6OssoC8wZQwL4tkEEyVUVzXdf7uVkzWlTZutJPSRsP8twnBxgdnhsYh2XYSYI50WaUNmBhi3Hyz7i6aGgopzS+jNey3qseHYM4qJZ69OB6nqprw5nbLdG2ubtT9vWRwNvQYnI0y+V0LUNtPcAboShurGtsG7Iy3/1Q1vPXzUUy1KDYAns4OZpc2qls7kJJd2dX9cSBL4wKQVlhrVOnO9xmliPBzxSQz/tj35O/uhJvnR2Jjeumg50pty6lEVICb0a3fu1MoBOZE+WHPyep+y4X+9fMJFNe14NnV8TZdmLYvC2IC0KGRXR8MmOqTA4Xo0EhcNt34Lo3dOTkoMSnUE7+YGJx9dagINU3tuH1hFJQKgXMmBWHNLbOx6b6FuGz6GKw7Uozz/7kTV721Fz/q2zKbq6mtE1szy3HBlGCLXcMwbxeEeDnjYL5pz/tnBwvh46rqauWvUirw4hUJqGtux/8NYXmjreb+fHHwNJa+vB1z//oz/v5jFirUxn1CX1DdhIe/Tse0cd546DzLzjPryZBB2HOy2qiyZ0vJKK6He7dmIAZ+7k6YO94fGzNK7aK0MdcQnPXRqbE3ro4OGOfryszZEKhv7kBJfSviTAieDaID3TEpxBPrzPxgYv3hEiSH+/Sa1V4QE4ALp4biP9tOIr+qyazjd1fVyDXObGXAV1EhxFghRIoQIlMIcUwI8Yce9z8ohJBCCPuYwU/9Kqhugr+746DaXFvDkthAeLuqsPZQ/6WN+/JqMDPCtPlmBk4OSlwwJQQ/mdnGeWtmBdo7tWctPN2XpXGB0Ggltg9QElfb1I49J6v1a+5YZu2uWxZEwctFhZc3mZ89a2nXYF9eNRZPML+5w9xoP5Q1tOJUHy8UJyoa8c7OPFyaFIZZZmRDh0JyhA+cHBRmzTtTt3bg7R15WBIbgMmhXgPv0IfEsd7IKKofMLNsoNFKvLszD1PHep/VuGZCkAf+cskU7Ht0GR67IA5FtS244+M0LHwhBV+knjZrfJuPl6O1Q4vVieYFoL0RQiA5whep+bVGv2GuamzD5uPluDRpzBlzJCeHeuGuxePxzS/F+HkIugSmF9Uh7skfsfrfu/GfbScsUmI8ECklXt2Sgz99nY45UX5YGBuAN7efxPy/p+CJbzNQWN33XKS2Tt08M6VC4HUrzDPrzRXTx8BRqcCf1x0dsoAoo7gBk0M9e339WJkQglNVTThuwWyyuXLKG+Hh5IBgT9NKvGODPZg5GwKGUutYM4IzALgoMRRHTtd1VTIZK7tMjexyNS7sp3T8yZUT4aRU4EkL/L+q1AdnAR5sCDLUjPkL3AngASnlRACzAdwthJgE6AI3AOcCKLTeEMmS8u2ojX53jg4KrEoIwabjZWhs6718rKSuBYU1zWaVNBpclBiK5nYNtmSa/gZtQ3opgj2dkTTOuK6FiWN94OOqGrC0cbO+pPGCePNa6PfGy0WFOxaNx89ZFUg1MfNgsC+vGu2dWiyONb2k0cAw72x3L/POpJR4av1ROKuUePT8iWafw9qcVUrMjPTFrhOmzzt7f1c+6po7cP+5g8tETBvnjZYOjdENZjYdK0NBdTNuXxjVZ8Dv7eqI2xaOx/aHFuPN305HoKcT/vRVullzs9YfKUGolzOmG/l/w1gzInxQ1tBq9DqIX6cVoUMjcfXMsWfdd/fSaEwIcsdj3xxFgxklf6b4cE8+HJQCUkq88GM2lr28Hcte3oYXfszCkdN1Fg9GOjRaPPx1Ol7dkovLp4/BBzfNwL+vScLPDyzGZUlh+OJgERa/lIJ7P/0Fx0vODj7+sjETR4t188yMXWh+sMb6uuKh82KxJbPCqPnGg9VbM5DuVkzWNXmyh9LG7HI1YoLcTf6wLjbIA6eqmtDWaZs15EYLw9xEc8oaAXQFV6auebYhvQQKgX6X2wn0dMYDyydgZ27VoDuQVqmZObOVAYMzKWWplPKQ/ns1gEwAho9H/wHgTwBsXwdARimobra7kkaDS6aFobVDix/6WJdo/yndG/xZUcYtPt0bQxvnNfsLTGoM0tDagR05upJGY7N2SoXAogkB2JZd0W/J2PdHSzHW1wXxYYMvaezuhrnhCPBwwgs/ZZv1ZnBbdgVc9IGJuSL8XBHq5Yy9J8/OOm1IL8XuE9V46LxYu+8GtSDGHznljSirN34Sd31zB97dlYflk4IwZYz5WTNAlzkDjFuMWkqJN3fkIdzPFedNHngOo4NSgRXxwfjsttmYOsYLD35xpM9MZ29qm9qxI6cSF04NNSuj3Z/kcN3vnjHzzqSU+PzgaSSH+yC6l2U2nByUePHyqahQt+L5DZZvOW1Q39yBjemluGRaGNbfMx97HlmKZy6ajCBPZ7y1Iw+r/70bc//2M55adxS7T1QNuoNmU1snbvkoFV+kFuHeZTF48fKErsxXpL8b/nppAnY+vAS3LIjSlZ6+thM3fXAAB07VQEqJHzJK8dHeAtwyPxLnTLLePLPe3DQvEsnhPnh6/TGUW2GNpu4MzUD6+r/oo58vuSHdtqWNUkrklqtNagZiEBvsAY1W4mTF4EvaqG9ZZQ3wcVUh0MzXrTBvFySH+5g051JKie+OlGDueP8BXy+vmxOBKWFeeHbD8UF9EFXFOWc2Y1LtghAiAsA0APuFEBcBKJZSHrHGwMjyWjs0KK1vtatOjd0ljfNBuJ9rn5+i7jtZAy8XldGLPvZGqRC4e0k09uXV4OaPUvvM0vW05Xg52jVarDSypNFgSVwgaps7+nxTXd/cgd0nqnBBvOVKGg1cHR3w+6XROHCqxqySvG05lZgz3m9QbdGFEJgz3h97T1afMQensa0Tz208jvgwT1w7K9zs4w+V+dG67OEuE5rJvLMzD+rWTtx37oRBn3+cryt8XFU4fHrgIOXAqRocOV2HW+ZHGjU30sDJQYn//HY6HJQCd/wvzegGKN8fLUWnVvZbamOu2GAPeDg5GDXvbP+pGuRVNeE3M8f1uc3Usd64beF4fJ56GjtyLNty2uDrQ0Vo69TiGn1DklBvF9wwNwKf3DobqY+fg5eumIopYV74PPU0rn13P5Kf24Invs0wKSA2qFC34qq392LXiSr89dIpuP/cCb3+HQnydMZjF0zEnkeW4cHlE3CkqB5XvrUXl7+5F3/6Kh2JY73xpxVxg37splIqBF68YiraNVo8+k2GVYOio/oFmnt2auxu1ZQQFNY0G72sizVUNbajtrkDMWYGZwDsbkHtkSazVI24YM9BvWavTgxFTnmj0d1ojxY3IL+6GRdOHfg9iFIh8Pwl8ahsbMMrg5jaUNXYBldHJdycHMw+BpnH6OBMCOEO4GsAf4Su1PFxAH82Yr/bhBCpQojUykrrvBiScQzrn9hr5kwIgYsTw7A3r7rXNZ32mbG+WW+unxOBv182BbtPVOGqt/Ya1dJ2Y3opwrxdkDTO26RzLZoQAIVAn6WNmzPL0aGR/ZYpDMZvZozDGB8XvLTJtOzZqaomFFQ3D6qk0WDueD/UNncgs9uL0Kubc1ChbsOzq+NNCiBsJS7YA/7uTka31K9ubMP7u09hZUKI2aUv3QkhMHWst1GZs7d35MHXzRGXTz+7tG8gYd4ueO3qacipUBv9Znn94RJEBbhhcqhlM7+A7k1GUriPUZmzzw4UwsPZYcBlLv54TgzGB7jh0W8yjP5wxlhSSqzZX4CpY717nWPo4+aIy6ePwdvXJ+PQk+fizd9Ox5LYAHxxsAhLX96G2/+XirQC48qQT1Y24tL/7MHJiia8c/10XN1PUGrg5arCPUtjsPthXTavrL4VDkrdPDNTWoJbUqS/Gx46Lw4/Z1Xg6wHmHA+GoRlIZD8fTi6fHAQHhcCGDNsskA2Y1wzEINLfDSqlYFMQK9JqJbLL1CYtPt0bQ2Ox9UY2KFt/pBgqpTCqGgIAEsZ447ezwvHfvfldH0yYSrcANbNmtmDUX2MhhAq6wGyNlPIbAOMBRAI4IoTIBzAGwCEhxFm/NVLKt6WUyVLK5ICAwb/RI/MZuvfYa+YM0JU2Sgl8+8uZf7BK61tQUN2MWYMosevuqhnj8O4NyThV1YRL/rMHJyr6fjGrb+nAjtxKXDAl2ORPyrxdHTE93Acp2b0HZ99n6IK+hEGWvfXF0UGBP54zAelF9fjpmPHz7LbpxzuYZiAGc6N1cwT3nNCVpWaVNeCDPfn4zYyxmGbhOUrWolAIzI/2w+4TVUZ14XtrRx5aOzS475wYi40hcaw3cisa+22RnluuxtasClw/JxwujuZlPBfEBODB5bFYd7gEH+3J73fbsvpWHMivwUVTQy2e+TVIDvdBdrm6366ndc3t+P5oGS6ZFjbg43ZWKfHC5VNRUt+Cv35v2fLGA6dqcLKyCdcaESi5OjpgRXwwXv3NNOx6ZAnuXqzL6F/2xl5c+p/d+PFoaZ/l0Kn5NbjsjT1oadfgs9tmY2mcaeWILo5K3DA3AtsfWoydDy81qxurJd00NwIzInzwzHfHTCodNkVGcX2fzUAMvF0dMT/GHxttWNrY1UbfjMyZSqnA+AB3NgWxosKaZrR0aAZVwQPoOoTOi/bHd0Ysfq7VSmxIL8XCmAB4uxrfnOPB82Lh6+aEx9dmmNWNt1LdBn93NgOxBWO6NQoA7wHIlFK+AgBSygwpZaCUMkJKGQGgCECSlJKrfNoxe1yAuqcIfzckjfPG2l+KzviDNZj1zfqyJDYQn982B22dWlz2xl4cONX7J9abjpWhQyOxMsG8sq0lcYE4VtJw1pyKhtYO7MytxPnxpgd9prhkWhiiA93x8qbsPv9AG+Y5vL3jJK55Zx/+8n0mogPdMc4CWdYQLxdE+bthz8kqSCnx52+PwdPZAX86b+jLqAZjQUwAqhrbB1yotkLdiv/uzcfFiWG9zn0yV+JYb0gJZBT1/SnoOzvz4KxS4Po5EYM6152LxuOciUF4bmNmvw1lNqSXQEpYbOHp3hjWFEwr7Hsc3xwqRnunFr+ZMXBQBOjWUPvdvEis2V+IPb3MhzTXJwcK4eHkgFVGlB51F+jhjAfPi8XeR3UZrcrGNtzx8SEse3kb/rev4Izusj8eLcW17+6Hj6sjvrlrLqbq5yOaw0GpgLsdlCwpFAIvXj4VHRotHv0m3eKBUecAzUC6W5UQiqLaFhzp5/+ZNeVUNMLT2cHs+UwTgtix0ZoMZYiDzZwBur+bp2taBlwmJa2wFqX1rbgo0bS/s14uKjy5aiKOFNXjk/0FJo+PmTPbMSZzNg/AdQCWCiEO678usPK4yAryq5vg7aqCl6t9tdHv6ZKkMcgpb8Sxbl3F9uVVw9PZwSIlYt1NGeOFtXfNhZ+7I3773v5eO3Vt1Ge3ppqZ3Voap8s+9Sxt3GooaTRxHpuplAqBB86dgNyKRqw7/GvZUHN7J7YcL8fjazMw/+8pOPcfO/CX77NQ09SO382PxLvXJ1tsDHOj/XDgVA2+TC3CgfwaPHJ+HHzchtcncvNjdJ0nBypt/E/KSXRoJO5dZrmsGfBrU5C+XsgrGlrx7S8luGL6WPgO8rlVKARevnIqwnxccPcnh/pcK2v9kRJMCfNCVIDpJVjGShzrDQeFwME+ShullPjsYCGmjvHCJBNKKx9cHosIP1c88nWG2QuMd1fT1I4fMspwSVIYXB3NC3hcHR1ww9wIbHtwCf5zbRK8XB3x5LdHMfdvW/HK5hy8tf0k7lxzCJNCPfH1nXPtsvOuuSL83fCn8+KQkl2Jr9KKLHrs3IpGtPXTDKS7cycFQaUU2Jhum9JGQzMQcz+wiw32QHFdi1mLkNPAMkvVUAggxgIfvJ03OQiODooBSxu/O1ICZ5UC55ixMPxFU0MxL9oPL/yUbXJzkKrGdvjbebOukcqYbo27pJRCSpkgpUzUf33fY5sIKaXlPn4kq9B1arT/F/NVU0KgUgp8260xyP5TNZgZ6WuV+UljfV3x9R1zkRDmhXs+PYR3d+Z13VfX3I5duVVYlWB+w47YIA+EeDnj5x7B2cb0MoR4OSNxjPdghm+UFfHBiA/zxD+25ODdnXm47r39SHxmM275byq+/aUYk0M98ddLp2DPI0vx4x8X4tHzJyLC33K/K3PH+6OpXYMn1h1F0jhvXGHGfChbC/J0xoQg936bgpTWt+CT/YW4PGmMRZ8/QFdyFenv1ue8sw/25KNTq8UtCyItcj4vFxXe/O101Ld04J5Pfjmrq+CpqiakF9VbNWsG6Erw4sO8kNZHcHaosA455Y39NgLp67h/vywBhTXNeOHH7EGP8+u0IrRrfm0EMhhKhcAFU0Lw7V1z8eUdc5Ac4YvXf87FX3/IwrkTg/DJLbMHHYDboxvnRmBmhC/+b8Nxi5Y3GrLN/TUDMfByUWFhTIBNShullMgpbzSrGYhBbJChKYj119YbjbLL1IjwdzO7bLw7D2cVlsYGYmNG3yXMnRotvs8oxbK4ILMacwghcP+5E6Bu7RxwWZ+e561tbmfmzEZsMwOYbCK/ugkRdtoMpDsfN0csiQ3EuiMl6NRoUVavW8TYkiWNvZ3z41tmYcXkYDy3MRP/991xaLUSm46Vo1MrscrMkkZA98dxSVwgdp2o6lp/Rt2qm8d2frzxrfkHQwiBB5fH4nRNC57bmImy+lbcMDccn9wyC7/8eTnevj4ZV88ch1BvF6uc33DtOjVaPHtx/JA8ZmtYEBOA/adq0NrR+zpC//r5BCQkfr8s2irnT9Q3Ben5prGxrRMf7yvA+fEhFv0AZmKILmg/cKoGL/yYdcZ96w+XQAiYXMJnjhkRPjhcVNfr+k2fHSiEq6PSrG6Rs6L8cMOccHy0N9+ojpB9kVLi0wOFSBrnjbhBzkXpTgiBGRG+eOf6ZGy5fxFeuXIq3vjtdIu8MbRHCoXAC5cnoEOjxSMWLG80phlIdysTQlBS3zpguZmlVarbUN/SYVYzEANDx0aWNlpHVlnDoOebdXdRYigq1W3Yl3f2WqAAsDevGlWN7UZ1aezLtLE+8Hd3wqbjxs87r2lqh5RAAOec2QSDs1GirVODkrqWYZE5A4BLk8JQqW7D7pPVXeubWTM4A3SNAv51TRJumheB93efwj2fHsLaX4oxztd10GuQLY0NRHO7pmte289ZFWjv1OKCKcZ1XrKExbGB+PTW2dj5pyXYfP8iPL5yEuZG+w9JlzZfN0esSgjB75fG9NrFbriYH+OP9k5tr2/kT9c04/ODp3HVjLFWW8g3caw3KtVtKOmRVfjsQCHUrZ24bWGUxc95ybQxuGFOON7Zeaqr7FdKifVHijEjwhchXtYJ6LtLjvBFe6f2rK5j6tYObEgvxUVTQ82eO/WnFXEI9XLBo99kmL147968auRVNVl1WYjxAe64NGnMsOhuOhgR/m54eEUctmVX4ksLlTdmFNdj0gDNQLo7d5Ku3GyoF6Q2ZLvMaQZiEObtAjdHpd220z+YX2NUUyV71NTWiYKaZsQFW24u8dK4QLg7OZwx5aC7746UwN3JAYtjzW/OpVAInDspCNuyKoz+G1fZqFuA2t7XIB2pGJyNEkW1LdBKDIvMGaBrouHlosLaQ0XYl1cDDyvMN+uNUiHw1IWT8cTKifg+owx786qxchAljQZzo/3g6KDoKm38PqMUQZ5OSBriboVzxvvZrDPbv65JssiaX7Y0K9IXjkpFr+vGvbY1FwqFwD1LLDvXrLuuxagL67pu69Bo8f6uU5gV6Tuo5hD9eXzlJCSN88ZDXx3BiQo1jpc24GRlk9VLGg2Sw3X/T3rOO1t3uAQtHRqTSxq7c3NywHMXx+NERSPe2p438A69+GR/IbxcVCavg0i9u2FOBGZG+uLZ7473uqyKKUxpBmLg4azCogm60sahDCQMAVXMIDJnCoVAjJ02Bdl7shpXvLkXGzKGNui1lJxyNaQE4iz4XsRZpcTySUH44WjZWYFTW6cGPx4tw/LJQYNabxTQLRPR1K7BnpO9Z+h6qlTrgjOWNdoGg7NRoqBa10Z/uGTOnByUWJkQgp+OlWNHTiVmRlhnvllfblkQhX9dMw3Rge64YvqYQR/P1dEBc6L8kJJVgaa2TmzLHrqSRrIcV0cHTA/3OSs4O1XVhG9+Kca1s8Yh2MvZauefGOIJRwfFGYtRb0gvQUl9K25fZPmsmYGjgwL/vjYJro5K3P6/NHx6oBAO+nlRQ8HP3QlR/m5ndY787GAhJoZ4mt2sx2BJXCBWJoTgXyknkFdp2lydqsY2/HSsDJcmhQ36DRTp6Lo3JqBTK/HI14NbnLqrGYgJwRkArEoIQVlDKw4VDrzGnqXkVqjh46pCwCDfEMcFeyC7XG2z5QD6sum4rqG3tRaAtzZDp15LZs4A4MLEUKhbO7E9+8znZWdOFRpaO80q2e5p7ng/uDkqscnIJXWqGtsBMDizFQZno0R+laGN/vDInAHApdPC0NKhQXFdi9VLGnuzKiEUW+5fZLFOdEvjApFf3Yz3d51CW6cW58cPXUkjWc6CCf7ILG3o+mQRAP65JQcqpcCdi8db9dyODgpMDvXsagoipcRb2/MQE+hukTXp+hPi5YLXr05CfnUzPt5XiAUx/kPalCI5wgepBbVdmYyMonocLW7A1TPHWmQpiqcunAQnBwUeX3vUpDe1X6UVoUMjca0FGoHQr8L93PDI+XHYnlOJL1PNL2/MKDa+GUh3yyYGwclBgQ1DWNpoaAYy2N/nCUEeqGlq73qDbQ+klNiaqasc2ZVbZZPAMbO0ATVN5j8nWaUNcHdyQJiF52bPj/aHj6sK64+c2bXxu/QSeLuqMD/af9DncHJQYnFsILZklhuVDa7SlzWyW6NtMDgbJQqqm+Dh5DCsOnxND/fBOH0J3qwoyyw+bUuGlvqvp5xAgIdT1/pNNLwsiA4AAOzWd23MLVdj3ZES3DA3AoEe1suaGSSO9UZGcT06NFrsyK1CVpkaty2MGpIs7Jzxfnh4RSwA3ZIXQyk5whd1zR04qc9sfXqwEM4qBVYnhlnk+IEeznjk/Djszas2upW7VqtrBDIzwteia9qRznWzwzE7yhfPbjiOkjrzyhuPFtfDzVGJKBO7p7o7OWBJbCC+zxia0kZdp0b1oJqBGMTZYVOQExWNKKxpxpQwL5Q1tOJkZdOQnr+1Q4PL39iD//vumNnHyCxTIzbYw+J/a1VKBS6YEoItmeVoatMt69HSrsHm4+U4Pz4EKqVl3qovnxyESnUbDhfVDbhtlboNzioF3EZo8yF7x+BslMivbka4v6tVFzu2NCEErp8TjjE+Lpg0BPPNrG2sryuiA93R3qnFisnBI35i/0g1OdQTPq6qrtLGV7fkwlWlxO0LrZs1M0gc643WDi2yy3SLhgd5OlksQDHGrQuisOm+hbhwiOdXzdB/mJFaUIumtk6sP1yCC6aEwMvFcus2Xj1jHJLDffD895mobmwbcPs9J6tRUN1skfb5dDaFQuCFy6ZCIyWe/z7TrGNkFNdjcpiXWW+oVyaEoELdNqhOnsYqa2iFurVzUM1ADCYYgjM7agqyRZ81e3LVJADArgHWi7S0g/k1aGrXYEum8U0xupNSIqu0weIljQYXTQ1Fa4cWWzJ1ZYdbs8rR3K6x6LzexbGBcFAIo0obDQtQD6f3jCMJg7NRoqC6adjMN+vu5vmR2PmnJXCw0CdHtmbIng3VXB2yPIVCYF60P3bmVuJYST02ZpTid/MjhywrPW2srjnGmv2F2H2iGjfNixySjpsGQohBLZJrrgg/V/i7O+Jgfg02ppeisa0TVw+iEUhvFAqBv1w6BU1tnXh+48DBwCcHCuDjqsIKlihbzTg/V1w/JwI/ZJTidE2zSfua0wyku6VxgXBWKbBxCBpYGDo1WmJxY393J/i7OyK7rGHQx7KUrZnlmBzqiZmRvhjn64pdJ4xrTGEp2/TzuRrbOruqHkxRWt+KhtZOizYD6U7X+da5a0Hq746UINDDCTMjLVdh4+Wiwpzxfl1z//pT1cg1zmxpZLzjpX51aLQoqm0ZVvPNDIQQI+qTm5vmReCh82It+geXht6CGH9UqNvwwBdH4OHsgFvmW68ZR09jfV3g6+aITw8Uwt3JYdRkbYQQSA73RWp+LT49WIjoQPeuLo6WNCHIA7cvHI9vfinGrl66chpUqFux6Vg5Lksaw0YgVnbD3HAohMAHu/NN2u9EZSNaO0xvBmLg5uSApXGB+D6jrM9Fgi0lV5/lskRZo+44Hsi2k4Woa5racaiwFssmBgHQLUmyL6/6rIXtrWl7TiVmRfrCw8kBP2QMHJz0lKUPdCdaKXOmUAisSgjBjtxKnK5pRkp2JVYmhFi8wmb5pCDkVTbhREX/vxtVjW1so29DDM5GgZK6FnRq5bDMnI00IV4uuHtJNEsah7n5Mbp5Z1llaty6IAperpYrrRuIEKKrpf7VM8fC03nozm1ryRE+KKxpxi+FdfjNDMs0AunNPUujEeHnise/zehzwfEvU4vQqZW4epQEx7YU4uWCC6eG4vODhahv6TB6v/Qi85qBdHdhQiiqGtuwv49Fgi0lp1wNPzdH+FkoWzEhyAO55Wq7WFMsJasCWgmcM1FXObIg2h+NbZ1IN2LukyUU1TbjREUjzp0UhGUTA7E5s9zkwDCzVB88Wyk4A4CLpoahQyPxwJdH0N6ptUiXxp7OmaQLkAfKnlWq25g5syEGZ6NAfrWhUyODMyJLCPN2QVSAG7xdVbhpXsSQn392lC+cHBT43fzIIT+3LRma6DgqFbjUig1JnFVKPH/JFBRUN+P1n3PPut/QCGR2lC/GW6ibK/Xv5vmRaGrX4LMDhUbvY24zkO6WxAXCzVGJ79JLBt54EHSdGi33uxQX7IHmdg2Kage3TpwlbM0qR6CHE+JDdUHynPF+EAK9rhdpDTtydOdZHBuAFfEhqGvuwP480+YRZpWpMcbHxaofhsWHeSLS3w0HTtVgjI8Lpllh3coQLxdMHePV77yzTo0WNc3tCHAfPg3kRhoGZ6OAYY2z4VjWSGSvXrx8Kt69PhkeNshc3TQvEjv+tAQhXpZt6WzvJod6wsPJASvig60+x29etD8uTQrDW9vzzup6tyO3EkW1LbhmVrhVx0C/ig/zwpwoP3y4J9/orEdGcT0mh5rXDMTAWaXEufpFgts7rVOGJ6XEiYpGizQDMbCXpiDtnVrsyKnCsomBXdfB29URCWFe/ZYNW9K27AqEebtgfIA7Fk0IgItKiR+PmTaPMLusAXHB1m1MJoToypZdODXUapUByycH4/DpOpQ3tPZ6f01zO6RkG31bYnA2CuRXNcNFpWT9MJEFTQ/3sdlyCCqlAkGe1m/bb29USgW+uWsunr04fkjO98TKSfBwdsBjazPOKA/7ZH8hfN0ccd7koCEZB+ncsiASpfWt+N6IBh2GZiCDKWk0uHBqKOqaO8xqJGGMkvpWNLZ1IsaSwVmQoZ2+bZuC7D9Vjca2TiyLO/P/yrxof/xyug7qVuPLVM3R3qnFnpPVWBQbACEEXByVWBwbgJ+OGbfeFwC0dWpwsrIJE0Osv1zGlcljkDjWG1clj7XaOc7VlzZuPt579qxKzQWobY3B2Sig69Q4vNroExH1JibIw6Lt8/vj6+aIx1dOQlpBLT7Rl9OVN7Ria1YFrpg+Bk4ObAQylJbEBiIqwA3v7MwbcBHjrmYgYwaf7VgQEwBPZwd8d8Q6pY05hmYggZYra3R3csAYHxebNwXZmlkBJwcF5vVYSHl+jD80WmlyeaGpDhXWorGtE4smBHTdtiI+GJXqNqQV1hp1jBMVjdBopdUzZwAwxscV3949DxGDKMUdSEygOyL8XLGpr+DMsAA1gzObYXA2CuRXN3G+GRGRGS5LCsPc8X74+49ZqGhoxecHT0OjlRZv408DUygEbpkfhaPFDdh/qv839Rn6ZiDmdmrsztFBgfPjQ7DpeHmfDWIG49dOjZbNzMQGedg0cyalxJbMcsyP9odLj8WMp4f7wFmlwC4rZSMNtudUwkG//InB0rhAOCoVRndtzNI3A4kbgszZUBBCYPnkYOw9WdVr5vLX4IxzzmyFwdkIp9FKnK5pQbg/55sREZlKCIHnL5mCtk4tnlp/DJ8fPI150X5W/WSb+nZpUhh83Rzx7s5T/W5naAYS6W+ZbNSFU0PR2NaJbdkVFjledznljfB3d4KPhedRxgZ7IK+yyWpz5QaSU96IotqWrhb63Tk5KDEz0s/qwdm27EokR/jA3cmh6zYPZxUWxPjjp2NlA2ZgAV0bfScHxYj6kHv5pCB0aGTX+m/dGYIzToWxHQZnI1xpfQvaNdoR9UeFiGgoRfq74fdLovHD0TIU17XgWjYCsRlnlRK/nR2OrVnlyKvsu2TP0AzEUsuWzI7yhb+7I747YvkFqXPL1YgNtnzXz9hgD3RqJU5VNVn82MbYkqkrm1umb6Hf0/xoP5yoaERZfe+NKQarvKEVmaUNWDTh7POviA9GcV0LMorrBzxOVpkaE4I8RtQSONPG+cDf3bHX0sZKdRucHBRnBLQ0tBicjXAF+jb64ezUSERkttsXjUdMoDsCPJy6JtSTbVw3OxwqpQLv7+49e9ap0eK4hZqBGDgoFbhgSgi2ZpWjqa3TYsfVaiVyKxoRE2j5krlYfcfGLBuVNm7NLMeUMK8+mxfNj9bNA7NW9mxHji4r1H2+mcE5E4OgVAj8cHTg0sbMUjXirLi+mS0oFQLnTAxCSlYF2jrPLNWtamyHv7sT+xTYEIOzES6/q40+M2dEROZydFDg41tm4Yvb50Cl5EunLQV4OOGSxDB8lVaE2qb2s+4/WdlksWYg3V04NRStHdqujJAlFNe1oLldY/H5ZgAQ5e8OB4XoajgylKoa2/DL6bo+s2aAbi02f3dHq3XB3JZTiUAPp167LPq4OWJOlB9+PNp/aWOlug1VjW2IC7F+M5ChtnxyEBrbOrGvR1OWqsY2ttG3Mb7CjHAF1c1wdFAgeBS23SYisqQgT2dEcq6ZXbh5QSRaO7T4eF/BWfelF9UBsEwzkO6mj/NBsKezRUsbcysMzUAsX9bo6KBAVIDbWev0DYWUrApIqctQ9UWhEJg73h+7TlQZNffLFJ0aLXblVmHRhIA+M0Ar4oNxqqqp37XgDM/dxBGWOQOAueP94eqoxKZjZ2YPK9VtXIDaxhicjXD5VU0I93Ud1CKcRERE9mRCkAcWTQjAR3sLzirLOlpcD1cLNgMxUCgEViWEYHtOBeqbLbM+V3aZbt6cJdc4625CkIdNFqLemlmBYE9nTA7tP+M0P8Yfleo25Fi45f+RonrUt3RgUezZJY0GyycHQQjgx35KGw0lobEjMDhzVimxaEIANh8/c803Q1kj2Q6DsxGuoLoZ4SxpJCKiEeaWBZGoamzDusNnrj+mawbiaZUGDhdODUWHRuKn48a1YR9IbrkaQZ5OVlu7LzbIA6drWtBowXlyA2nr1GBnbiWWTgwccN7SfH2L+525Z3cNHIztOZVQiF+P35tAD2fMCPftNzjLLFUj0MMJfiM0WFk+OQgV6jYc0WebNVqJmqY2Bmc2xuBsBNNqJQpqmhDBZiBERDTCzI/2R1ywB97beaqrLM4azUC6SxjjhXG+rhZbkDqnQm2V+WYGhoxP7hBmz/bl1aCpXYNz+plvZhDq7YKoADeLNwXZnl2BaeN84O3af3neefHByCpT99nRMqusYUTONzNYGqtrjGLo2ljT1A6tZBt9W2NwNoJVqNvQ2qFFOOdIEBHRCCOEwC0LopBdrsbOXN2b+65mIFYKzoQQuHBqCPacrO5aD8pcWq3ECSt1ajQwBGdD2RRka2Y5nFUKzB3fd9aqu/nR/tifV2Ox9diqG9uQXlzfa5fGnlbEBwMAfjh69jzCTo0WuRWNI3K+mYGXqwqzo3yxWR+c/boANYMzW2JwNoL92qmRmTMiIhp5LpwaggAPJ7y7S9dW37BulbWCM905Q6HRSqPasPfndG0zWju0VmkGYjDWxxUuKiWyhqgpiJQSWzMrMD86AM4qpVH7zI/2R0uHBocKay0yBl2Dkd5b6PcU5u2CqWO8ei1tzK/WLeAd10u3x5Fk+aRgnKhoxMnKxm7BGRuC2BKDsxGsgG30iYhoBHNyUOLGuRHYkVOJ7DJ1VzOQqADrBTyxQR6ICXQfdGmjoQmGtZqBALomJhOC3Icsc5ZVpkZxXYtRJY0Gs8f7QakQFmupvy27Er5ujkYH6CviQ5BeVI/iupYzbs8s1T1nccEjt6wRQNe6jZuPl/8anLGs0aYYnI1g+dXNUCkFQrzYRp+IiEama2aOg7NKgXd35lm1GYiBrrQxFAfza1Ba3zLwDn0wBEwxVsycAfqOjSZmzjo0Wjy34Tj2nqw2ab+t+jXglsYZH5x5OqswdYxXV2nqYGi1EjtyKrEwxt/oLtXn60sbe2bPssoa4KAQGG/FQN8ehHq7YEqYFzYdK0OVWrduIMsabYvB2TBwqqoJl7+xB9uyK0zar6C6CWN9XOHABVOJiGiE8nFzxBXTx2Ld4RIcLa63WjOQ7lYlhEBKYGO6+Wue5ZarEeLlDE9n63RqNIgN9kBVY7tJc+Q+2pOPd3edwg0fHOgKuIyxJbMCU8d4IdDEtVXnxwQgvagO9S2DW6LgWEkDqpva+22h31OEvxvigj3wY495Z1mlaowPcIejw8h/D7V8UhB+OV2HzNIGOCoV8HR2sPWQRrWR/xs3zOWWq3HlW3uRWlCLZzcch0Zr/EKN+VXNCOd8MyIiGuF+Nz8SHVot2jqt1wyku6gAd0wO9cR3gwjOcsobrVrSaNDVFMTI7FmFuhWvbsnFvGg/xAV74Pb/peH7jIEfZ6W+Jfuyfhae7sv8aH9oJUzO1PW0PUf3IfaCGOODM0DXGCS1oBYV6tau27LK1CN+vpnBuZODdB82ZJTC391xwCUQyLoYnNmxYyX1uOrtfQCAB5dPwMnKJmxIN67GXUqJguomrnFGREQjXqS/G87RBwVDEZwBusYgR07X4XRNs8n7arQSJysbEWvlkkbg1+DM2MWo//ZDFto7tXju4in4+JZZSBzrjXs+OYS1vxT1u19KVgWkBJaZMN/MYNo4b7g5Kgc972xbdiUSxniZXJZ3frwuE7rpmC5LWN/SgeK6lhE/38wgNsgD43xd0dapZRt9O8DgzE4dOV2Ha97ZD2cHBb64fQ7uWhyNuGAPvLY116jsWVVjO5raNezUSEREo8Kj58fh90ujh2yO0MopIQCA74z80LS7wppmtHVqhyRzFuDuBB9XlVFNQVLza/DNoWLcujASkf5u8HRW4aPfzcTsKD/c/8URfHqgsM99t2SWI9TLGZPMWBdMpVRgVpTfoNY7q2/uwKHCWqO6NPY0IcgdUf5uXfPODHP0RkvmTAiB5frGIJxvZnsMzuxQan4Nfvvufni6OODz2+cg0t8NCoXAH5bFGJ09M3Rq5BpnREQ0GkQFuOOB5bFGN4IYrLG+rkga543vjphe2mgIlKy5ALWBEAKxwR4DttPXaCWeXHcMoV7OuHtJdNftbk4OeP/GGVg0IQCPfpOBD3afOmvf1g4NduZWYenEQLNL4uZH++NUVROKak3PRALA7pNV0BrZQr8nIQRWxAdjb141apvakVXWAACYOEoyZwCwfLKuMQqDM9sb9cGZViuhbh3cBFRL2nuyGte/fwABHk744vY5GOv7a+brvMnBiAv2wD+NyJ7lV+v+uLGNPhERkXVcODUUmaUNOFFhWjfEXEOnxsChyfLFBnkgp0wNKft+7/DJ/gJkljbgiVWT4Op4ZkMIZ5USb103HedNDsIz3x3Hf7adOOP+vXnVaOnQmDXfzGB+jG7RanNLG7dlV8DT2QGJY73N2v/8+BBotBKbM8uRWaqGt6sKQZ6jJ1CZHu6D+DBPJIV723ooo96oDs6klLjhgwO47/Mj/f7BGirbcypx4wcHMMbHBZ/dPhshXi5n3G/InuUZkT0rqG6CUiEQ5u3S73ZERERknpVTQiAETM6e5ZQ3IszbBW5OQ9MVb0KwB5raNSiq7b31f3VjG178KRvzov26Wsv35OSgxL+uScJFU0Pxwo/ZeGVTdtd7p62Z5XB1VGJOlJ/ZY4wJdEegh5NZLfWllNieU4kFMQFmd6iOD/NEmLcLfjxahqyyBsQFe4yqxhhKhcCG3y/AVTPG2Xooo96oDs6EEJgf7Y8tmeX46djZq8MPpc3Hy3HrR6kYH+COz26bg0CP3tvQGps9y69uRpi3y6hoAUtERGQLgZ7OmBXpi+/SS0z6kDenXI0JQ9AMxCDO0LGxj3lnL/6UjeZ2DZ65aHK/AYlKqcA/rkrElclj8NrPJ/CX7zOh1Ur8nFmB+dH+cFYpzR6j4T3ZnpPV0JrQmRrQNTspb2gzq6Sx+/lXxAdjV24VskrVo6YZCNmfUf/O/eb5kZgU4ok/rzuGBhuVN25ML8WdH6dhYqgnPr11NnzdHPvc1tjsma5TI5uBEBERWdOFU0ORV9mE46UNRm3fqdEir7JpSOabGRgaj/Q27+zw6Tp8nnoav5sfiejAgcekVAj87dIEXD8nHO/sPIVb/5uKkvrWrm6ZgzE/xh81Te1GP5cG27MrAQALBxGcAboFqds1WrR0aDBxlDQDIfszYHAmhBgrhEgRQmQKIY4JIf6gv/1FIUSWECJdCLFWCOFt9dFagYNSgb9eOgVVjW148cfsIT//2l+K8PtPD2HaOG98fPNMeLkOvBjlQNkzKSVOVTVxvhkREZGVnR8fAqVCGF3amF/djHbN0HRqNPB0ViHM2+WszJlWK/HUuqMIcHfC75dG97H32RQKgWcumozbFkZha1YFhACWxJneQr+n+dHmzTvbll2JuGAPBHuZtvh1T0njfBCobyXPzBnZijGZs04AD0gpJwKYDeBuIcQkAJsBxEspEwDkAHjUesO0rqljvXHD3Ah8vL8AaQU1Q3bedYeLcf8XRzA7yg8f/W4mPJwHDsyAgbNndc0dULd2MnNGRERkZb5ujpgf7Y/vjhhX2pjb1alx6MoaDefL7pE5+yL1NI4U1eOxCyYa/R7EQAiBR8+Pw+MXTMRtC6Mssj5WoKczJgS5m9RSv7GtE6kFNVgUO7isGaB7f3V+fDBUSoGYIb4+RAYDzkSVUpYCKNV/rxZCZAIIk1Ju6rbZPgCXW2eIQ+OB5bH46WgZHv0mAxt+v8Dqc7XSi+rw0FfpmBHhi/dvnGFynXb37NmqhFAou7UOzte30WfmjIiIyPounBqKB788gps+PIixPq4I8nRCoKczgjydEeTphCAPZ3i7qiCEQE55IwAgeog6NRpMCPbArhNV6NBooVIqUNfcjr//mIWZEb5YnRhq1jGFELh1YZRFxzk/OgBr9hegtUNj1HujvSer0aGRg5pv1t0D58Xi4mlhZ3WsJBoqJv3mCSEiAEwDsL/HXb8D8LmFxmQT7k4O+L/V8bjlv6l4e8dJ3LM0xmrnqlS34fb/pSHA3QlvXJtk1gRaQ/bszjWH8N2RElw8LazrvgJDG31/Zs6IiIis7fz4YGw+Xob8qmb8UliH+paz57A7KhUI9HRCc7sGY31dhvzNf1ywBzo0EvlVTYgJ8sDLm3JQ39KBZ1b33wRkqM2P8cP7u08hraAW8/Rljv3Zll0BN0clksN9LXJ+T2cVpo3zscixiMxh9F8GIYQ7gK8B/FFK2dDt9sehK31c08d+twG4DQDGjbPv9pznTArCyikheO3nE1iZEIpIKyzg3KHR4u41h1Db3I6v7pgLv0Es9mfInr22NRcXTv01e5Zf3QQhgDE+DM6IiIiszc3JAW9dl9z1c2uHBhUNbShXt6K8oRXlDW2oaNB9X9bQimVxg2+eYaoJ3ZqCtHVqsWZ/Aa6fE4GJIfY1t2pWpB8cFAKf7C9Ep1YiwN0JAR5O8HVzPKNKCPi1hf7caH92p6YRw6jgTAihgi4wWyOl/Kbb7TcAWAVgmeyj0FpK+TaAtwEgOTnZ9ouJDeCpCydhR24lHvsmA5/cOsvinyY9u+E4DuTX4J+/SUR8mNegjtVX9qyguhmhXi6DamlLRERE5nFWKTHOzxXj7Gju9/gAdygVAtllany4Jx8+ro6479wJth7WWdycHLAgxh8bM0qxMePXJisKAfi5O3UFawEeTnB3ckBRbQvuWDTehiMmsqwBgzOhi07eA5AppXyl2+0rADwMYJGUstl6QxxagZ7OeOT8ODy+9ii+SivCFcljLXbszw8W4r97C3DbwiisTgwbeAcj9JY9y2cbfSIiIurGWaVEhJ8r/revAPUtHXjh8gR4uZjWBGSovHN9MkrqWlHZ2IpKdduvX42/fp9Trkalug3OKgWWWqBTJJG9MCZzNg/AdQAyhBCH9bc9BuA1AE4ANuuzS/uklHdYY5BD7eoZ47D2UDGe/z4TS+MCB1V6aHCosBZPfnsMC2L88afzYi0wSh2FQuCP58Tgjo9/zZ4VVjdj+eRgi52DiIiIhr+4YE9szChF4lhvXJ40xtbD6ZODUmFU5lGrlejUSpY00ogy4G+zlHKXlFJIKROklIn6r++llNFSyrHdbhsRgRmgC3j+eukUNLV14rmNmYM+XkVDK+74XxqCvZzx+tXT4KC07B+R5ZN+zZ7VNbejuqkdEcycERERUTeTwzwhBPB/qydDobCfJiDmUigEAzMacfgb3YeYIA/cuWg81v5SjB05lWYfp61Tgzs+ToO6tRNvXz8d3q6OFhyljiF7llfVhH/9fAIAEM42+kRERNTNTXMj8eMfFiJhjLeth0JEfWBw1o+7lkQjyt8Nj3+bgZZ2jcn7Synx1LpjOFRYh5evnGrV1eYN2bP3d58CwDb6REREdCYXRyVigz1sPQwi6geDs344q5T4y6VTcLqmBa9uzTF5/4/3F+Kzg6dx95LxuGBKiBVG+CtD9kyr74c5zpfBGRERERHRcMLgbACzo/xwZfIYvLvzFI6XNAy8g96BUzV4Zv0xLI0LxP3nWq4BSH8M2bMQL2eubE9ERERENMzwHbwRHrtgIrZmVuDBL4/ghrnhcHNygLuTAzycHeDupIK7s+5ndycHKBUCJXUtuGtNGsb5uuIfVyWetWiitSgUAm9dNx3VTe1Dcj4iIiIiIrIc0cfa0VaRnJwsU1NTh+x8lvRDRinu/ewXdGj6f75cHXULPyuEwLd3z0V0IGu7iYiIiIhIRwiRJqVM7u0+Zs6MdP6UEByeEID6lg40tnVC3dqJxrZONLZ2orGto+vnprZONLVrcMm0MAZmRERERERkNAZnJnBzcoCbE58yIiIiIiKyPDYEISIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7MGBwJoQYK4RIEUJkCiGOCSH+oL/dVwixWQiRq//Xx/rDJSIiIiIiGpmMyZx1AnhASjkRwGwAdwshJgF4BMBWKWUMgK36n4mIiIiIiMgMAwZnUspSKeUh/fdqAJkAwgCsBvCRfrOPAFxspTESERERERGNeCbNORNCRACYBmA/gCApZSmgC+AABFp8dERERERERKOE0cGZEMIdwNcA/iilbDBhv9uEEKlCiNTKykpzxkhERERERDTiGRWcCSFU0AVma6SU3+hvLhdChOjvDwFQ0du+Usq3pZTJUsrkgIAAS4yZiIiIiIhoxDGmW6MA8B6ATCnlK93uWg/gBv33NwBYZ/nhERERERERjQ4ORmwzD8B1ADKEEIf1tz0G4G8AvhBC3AygEMAVVhkhERERERHRKDBgcCal3AVA9HH3MssOh4iIiIiIaHQyqVsjERERERERWQeDMyIiIiIiIjvA4IyIiIiIiMgOMDgjIiIiIiKyAwzOiIiIiIiI7ACDMyIiIiIiIjvA4IyIiIiIiMgOMDgjIiIiIiKyAwzOiIiIiIhoZHjhBSAl5czbUlJ0tw8DDM6IiIiIiGhkmDEDuPLKXwO0lBTdzzNm2HZcRmJwRkREREREQ8/YLJcp2bAlS4B33gEuuQS46SZdYPbFF7rbhwEGZ0RERERENPSMzXL1tV1yMnD6NLB+PfDMM8Dq1cC4cbrArL4e+PBD4M47h01gBgBCSjlkJ0tOTpapqalDdj4iIiIiIrJjKSnABRcAHR2AVguMGQOEhQE+Provb2/dv1VVwJo1wLJlwKZNwKRJQEGB7nYAEAKIjQWmTQM8PYHPPgNuvVUXoNlZ5kwIkSalTO7tPoehHgwREREREREAoKkJaG3VfZ+UBIwfD9TVAZWVQE6O7vu6OkCj0W2zbh2gUOgCuYsu0u0zbRqQkAC4u/+aVVu7VheQXXDBsCptZHBGRERERERDr6kJuPlmQKkEHn4YePtt4KWXzg6ipAQ2bgRuuAG46irgyy+Bl1/uPdg6ePDMQGzJEt3PBw8Oi+CMZY1ERERERDT0rrpKFzj985/Avff+mvXqmeXqeXtf2w0T/ZU1siEIERERERENrcOHdRmwlSt1gRlwZparu/6yYSMMM2dERERERDR0NBpg7lwgPx/IzAR8fW09oiHFhiBERERERGQf3nwTOHBA131xlAVmA2FZIxERERERDY2SEuCxx4BzzwWuvtrWo7E7DM6IiIiIiGho/PGPQHs78MYburXJ6AwMzoiIiIiIyPo2btQ1AXniCd16ZnQWBmdERERERGRdTU3A3XcDEycCDz1k69HYLTYEISIiIiIi63rmGaCgANixA3B0tPVo7BYzZ0REREREZD3p6cArrwC33AIsWGDr0dg1BmdERERERGQdWi1w2226lvl//7utR2P3GJwREREREVH/XngBSEk587aUFN3t/W371lvA/v3ArbcC775r/XEOcwzOiIiIiIiofzNmAFdeCfz0E6DR6IKvK6/U3d7Xtl99BTzyCJCUBLz9du/b0hmElHLITpacnCxTU1OH7HxERERERGQhKSnAypVAS4tujbLgYCA0VFey6ONz5r/l5cBrr+kCOU9P4OuvgSVLbP0I7IIQIk1KmdzbfezWSEREREREA1uyBLjsMuDjj4HkZGDCBKC2Fqip0XViNHyv0Zy53z33MDAzEssaiYiIiIhoYCkpwI8/Ak8+CZw6Bdx8s25h6b17gexsoKIC6OgAGhqATz7RZdGefBJ4442z56tRrxicERERERFR/wxzzL74Avi//9P9e+WVZwddQgCpqcC99+pKGfvbls7C4IyIiIiIiPp38KAuyDKUJy5Zovv54MHBbUtnYEMQIiIiIiKiIdJfQxBmzoiIiIiIiOzAgMGZEOJ9IUSFEOJot9sShRD7hBCHhRCpQoiZ1h0mERERERHRyGZM5uxDACt63PYCgGeklIkA/qz/mYiIiIiIiMw0YHAmpdwBoKbnzQA89d97ASix8LiIiIiIiIhGFXMXof4jgJ+EEC9BF+DNtdiIiIiIiIiIRiFzG4LcCeA+KeVYAPcBeK+vDYUQt+nnpaVWVlaaeToiIiIiIqKRzdzg7AYA3+i//xJAnw1BpJRvSymTpZTJAQEBZp6OiIiIiIhoZDM3OCsBsEj//VIAuZYZDhERERER0eg04CLUQohPASwG4A+gHMBTALIB/BO6OWutAO6SUqYNeDIhKgEUDG7IVuEPoMrWg6AhxWs++vCajz685qMPr/now2s++oyEax4upey1pHDA4Gw0EEKk9rVKN41MvOajD6/56MNrPvrwmo8+vOajz0i/5uaWNRIREREREZEFMTgjIiIiIiKyAwzOdN629QBoyPGajz685qMPr/now2s++vCajz4j+ppzzhkREREREZEdYOaMiIiIiIjIDgyr4EwIsUIIkS2EOCGEeKTb7Z8LIQ7rv/KFEIf72N9XCLFZCJGr/9dHf/u13fY/LITQCiESe9l/jf78R4UQ7wshVPrbhRDiNf240oUQSdZ5BkYnO77ucUKIvUKINiHEg9Z59KOTHV/za/X/x9OFEHuEEFOt8wyMPnZ8zVfrr/dhIUSqEGK+dZ6B0ceK11wlhPhICJEhhMgUQjzax/6RQoj9+v0/F0I46m/na7qV2PE15+u5ldjxNbff13Mp5bD4AqAEcBJAFABHAEcATOplu5cB/LmPY7wA4BH9948A+Hsv20wBkNfH/hcAEPqvTwHc2e32H/S3zwaw39bP10j5svPrHghgBoDnATxo6+dqpHzZ+TWfC8BH//35/L8+Kq65O36dApAAIMvWz9dI+LLmNQdwDYDP9N+7AsgHENHL/l8A+I3++zf5mj6qrzlfz0ffNbfb1/PhlDmbCeCElDJPStkO4DMAq7tvIIQQAK6E7oW1N6sBfKT//iMAF/eyzdV97S+l/F7qATgAYEy34/5Xf9c+AN5CiBCjHxn1x26vu5SyQkp5EECHSY+IBmLP13yPlLJWv9k+/Po3gAbHnq95o/42AHADwInalmHNay4BuAkhHAC4AGgH0NDLsZcC+KqX/fmabh12e835em419nzN7fb1fDgFZ2EATnf7uUh/W3cLAJRLKXP7OEaQlLIUAPT/BvayzVXo+xcEgC6VCuA6AD+aMDYyjz1fd7KO4XLNb4bu03UaPLu+5kKIS4QQWQA2Avhdf/uT0ax5zb8C0ASgFEAhgJeklDU99vUDUCel7Ozl/HxNtw57vuZkHcPlmtvV67mDrQdgAtHLbT0/wezzU1GjTiDELADNUsqjA2z6HwA7pJQ7TRgbmceerztZh91fcyHEEuj+mHP+kWXY9TWXUq4FsFYIsRDAswDOMXcc1MWa13wmAA2AUAA+AHYKIbZIKfOMPD9f063Dnq85WYfdX3N7fD0fTpmzIgBju/08BkCJ4Qd9WvNSAJ93u+0D/UTD7/U3lRtKE/T/VvQ4x28w8KeqTwEIAHC/sWOjQbHn607WYdfXXAiRAOBdAKullNUmPC7qm11fcwMp5Q4A44UQ/sY8KOqXNa/5NQB+lFJ2SCkrAOwGkNzj/FXQlSsaPqTufn6+pluHPV9zsg67vub2+no+nIKzgwBi9F1XHKF7oV3f7f5zoJuoXWS4QUp5k5QyUUp5gf6m9QBu0H9/A4B1hm2FEAoAV0BXD9srIcQtAM4DcLWUUtvtrvUArhc6swHUG1KwNGj2fN3JOuz2mgshxgH4BsB1UsqcQTxGOpM9X/No/bwFCF3XPkcAdvMiPoxZ85oXAliqf012g66pR1b3k+vnEaYAuLyX/fmabh32fM3JOuz2mtv167m0g64kxn5B10EpB7rOL4/3uO9DAHcMsL8fgK0AcvX/+na7bzGAfQPs36k/92H915/1twsA/9bflwEg2dbP1Uj6suPrHgzdp0INAOr033va+vkaCV92fM3fBVDb7fZUWz9XI+XLjq/5wwCO6W/bC2C+rZ+rkfJlrWsOXYfNL/XX7TiAh/rYPwq65i8n9Ns76W/na/rou+Z8PR9919xuX88N7YGJiIiIiIjIhoZTWSMREREREdGIxeCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOzA/wMrWktReluDvAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB/N0lEQVR4nO3dd3iUVfr/8fdJ74GQhJJC7x1CF2l2cW1gYxV7317U3d+u7n7XXVe3qWtZxba2FQt2BUWQ3qX3EmogDVJJP78/ZhIDJGSSzGQmyed1XXOReeqZeUJm7ufc5z7GWouIiIiIiIh4l5+3GyAiIiIiIiIKzkRERERERHyCgjMREREREREfoOBMRERERETEByg4ExERERER8QEKzkRERERERHyAgjMREREREREfoOBMRKSZMsbkV3tUGGNOVns+w9vtawhjTKox5jxvt+NsjDELjTG3e+jYvYwxHxljMowx2caYucaY3tXWD3AuyzTGnDFRqTEmxhgzxxhTYIzZb4y54bT1U4wx240xhcaYBcaYztXWGWPMX40xWc7H48YY44nXKSIiNVNwJiLSTFlrIyofwAHgsmrL3vR2+05njAloCefwsDbAx0BvoD2wCvio2vpSYDZwWy37PwOUOPedATxnjOkPYIyJBT4AfgfEAGuAd6rteydwBTAYGARMBe5q/EsSERFXKTgTEWlhjDF+xpgHjTF7nD0gs40xMc51XYwx1hhzizHmoDHmuDHmbmPMCGPMRmPMCWPMv6sd62ZjzFJjzNPGmBxnr8uUauujjTEvGWPSjDGHjTF/Msb4n7bvP40x2cAjxpjuxphvnO3KNMa8aYxp49z+dSAZ+MTZ+/drY8xEY8yh015fVe+aMeYRY8x7xpg3jDG5wM11tKmHMeZb52vJNMZUD06qnyPEecws53uy2hjT3hjzKDAe+Lezjf92bt/HGPOVs7drhzHmmmrHetUY87xzfZ7z/J1rOq+1dpW19iVrbba1thT4J9DbGNPOuX6HtfYlYEsNbQ4HrgZ+Z63Nt9YuwRHo3ejc5Cpgi7X2XWttEfAIMNgY08e5fibwd2vtIWvtYeDvwM01tVNERDxDwZmISMvzYxw9IBOATsBxHD0q1Y0CegLXAv8CfgucB/QHrjHGTDht271ALPAw8EFlsAe8BpQBPYChwAXA7TXsGw88ChjgL8529QWScAQJWGtv5NQewMddfL2XA+/h6HV6s442/R8wD2gLJAJP13LMmUC0s33tgLuBk9ba3wKLgfudbbzfGRR9BbzlfJ3XA89W9lg5zXCeOxZY72ynK84Fjlprs1zYthdQbq3dWW3ZBhzXFOe/GypXWGsLgD21rT9tXxERaQIKzkREWp67gN86e0CKcQQ/005L+fs/a22RtXYeUAC8ba1Nd/aYLMYR1FRKB/5lrS211r4D7AAuNca0By4GfmqtLbDWpuPo6bmu2r5HrLVPW2vLrLUnrbW7rbVfWWuLrbUZwD9wBJGNsdxa+6G1tgKIqqNNpUBnoJPz9S+p5ZilOIKyHtbacmvtWmttbi3bTgVSrbWvOF/nOuB9YFq1bT6z1i5yXo/fAmOMMUlne1HGmEQcQfXP63oDnCKAnNOW5QCRDVyfA0Ro3JmISNNp7rn5IiJyps7AHGNMRbVl5TjGIVU6Vu3nkzU8j6j2/LC1tnrxif04er46A4FAWrXv737AwWrbVv8ZY0w88BSO1MBI5/bHXXpVtat+jrra9GscPVirjDHHcaTxvVzDMV/H0Wv2P2fa5Rs4At7SGrbtDIwyxpyotizAeYwz2mitzXemeXY6re1VjDFxOHr4nrXWvl3TNjXIxxGcVhcF5DVwfRSQf9q1FxERD1LPmYhIy3MQuNha26baI8TZK9YQCaf1niQDR5znKQZiq50nylpbPRXu9C/2f3EuG2StjQJ+iCPVsbbtC4CwyifOsWNxp21TfZ+ztslae9Rae4e1thOOHsZnjTE9Tn/Bzl7CP1hr+wFjcfSO3VRLGw8C3572fkdYa++ptk1VL5kxJgJHQY4jp5/Xub4tjsDsY2vtozVtU4udQIAxpme1ZYP5fnzaFufzyvOEA91rW3/aviIi0gQUnImItDzPA49WFp0wxsQZYy5vxPHigR8bYwKNMdNxjBX73FqbhiOI+LsxJspZiKT7aePVTheJo4fmhDEmAfjVaeuPAd2qPd8JhBhjLjXGBAL/Dwiu7eB1tckYM92ZLgiOHjuLo1fxFMaYScaYgc5gMBdHmmPldqe38VOglzHmRud7FOgssNK32jaXGGPOMcYE4ei5W2mtPaPXzBgTBcwFllprH6xhvTHGhABBzuchxphg52svwFGN8Y/GmHBjzDgc4/Eqe/DmAAOMMVc7j/F7YKO1drtz/X+BnxtjEowxnYBfAK/W8DaLiIiHKDgTEWl5nsRRpW+eMSYPWIGjMEdDrcRRPCQTR1GPadUKVNyEI1DYiiPYeQ/oeJZj/QEYhmM802c4gonq/gL8P2eFxF9aa3OAe4FZwGEcPWmHOLuztWkEsNIYk4/jPfqJtXZfDcfo4NwvF9gGfIsjtREc7+8046h0+ZS1Ng9H0ZHrcPSGHQX+yqlB5Fs4iqlkA8NxFAipyZXONt5iTp3HLtm5vjOOtNPKHq2TOMYAVroXCMUxTvBt4B5r7RYA5xi/q3Fcw+M4fieqjw/8D/AJsAnYjOP6/KeWdoqIiAcYpZKLiEhtjDE3A7dba8/xdluaK2PMq8Aha+3/83ZbRETEt6nnTERERERExAcoOBMREREREfEBSmsUERERERHxAeo5ExERERER8QEKzkRERERERHxAQFOeLDY21nbp0qUpTykiIiIiIuIz1q5dm2mtjatpXZMGZ126dGHNmjVNeUoRERERERGfYYzZX9s6pTWKiIiIiIj4AAVnIiIiIiIiPkDBmYiIiIiIiA9o0jFnNSktLeXQoUMUFRV5uynSwoSEhJCYmEhgYKC3myIiIiIiUievB2eHDh0iMjKSLl26YIzxdnOkhbDWkpWVxaFDh+jatau3myMiIiIiUievpzUWFRXRrl07BWbiVsYY2rVrpx5ZEREREWk2vB6cAQrMxCP0eyUiIiIizUmdwZkxJsQYs8oYs8EYs8UY84fT1v/SGGONMbGea6ZnPfroo/Tv359BgwYxZMgQVq5cCcDtt9/O1q1b3XKOLl26kJmZedZt/vznP9f7uK+++ir333//KcteeeUVhgwZwpAhQwgKCmLgwIEMGTKEBx98sN7Hbwr/+te/KCws9HYzRERERKS5e/xxWLDg1GULFjiWNwOu9JwVA5OttYOBIcBFxpjRAMaYJOB84IDHWuhhy5cv59NPP2XdunVs3LiRr7/+mqSkJABmzZpFv379mqwtDQnOanLLLbewfv161q9fT6dOnViwYAHr16/nsccec8vx68taS0VFRa3rGxKclZWVNbZZIiIiItLSjBgB11zzfYC2YIHj+YgR3m2Xi+oMzqxDvvNpoPNhnc//Cfy62vNmJy0tjdjYWIKDgwGIjY2lU6dOAEycOJE1a9YAEBERwQMPPMDw4cM577zzWLVqFRMnTqRbt258/PHHwJm9WFOnTmXhwoVnnPOKK65g+PDh9O/fnxdeeAGABx98kJMnTzJkyBBmzJgBwBtvvMHIkSMZMmQId911F+Xl5YCjZ6xXr15MmDCBpUuXuvxan3jiCUaMGMGgQYN4+OGHAUhNTaVPnz7cfvvtDBgwgBkzZvD1118zbtw4evbsyapVqwB45JFHuPHGG5k8eTI9e/bkxRdfrPO4ffv25d5772XYsGEcPHiQe+65h5SUFPr371+13VNPPcWRI0eYNGkSkyZNqnqvK7333nvcfPPNANx88838/Oc/Z9KkSTzwwAPs2bOHiy66iOHDhzN+/Hi2b9/u8nshIiIiIi3QpEkwezZcfjncdZcjMJs927G8ObDW1vkA/IH1QD7wV+eyHwBPOn9OBWLrOs7w4cPt6bZu3XrGsqaUl5dnBw8ebHv27Gnvueceu3Dhwqp1EyZMsKtXr7bWWgvYzz//3Fpr7RVXXGHPP/98W1JSYtevX28HDx5srbX2lVdesffdd1/V/pdeeqldsGCBtdbazp0724yMDGuttVlZWdZaawsLC23//v1tZmamtdba8PDwqn23bt1qp06daktKSqy11t5zzz32tddes0eOHLFJSUk2PT3dFhcX27Fjx55yztNVnnfu3Ln2jjvusBUVFba8vNxeeuml9ttvv7X79u2z/v7+duPGjba8vNwOGzbM3nLLLbaiosJ++OGH9vLLL7fWWvvwww/bQYMG2cLCQpuRkWETExPt4cOHz3pcY4xdvnx5VVsqX3dZWZmdMGGC3bBhwxnvzenvw7vvvmtnzpxprbV25syZ9tJLL7VlZWXWWmsnT55sd+7caa21dsWKFXbSpElnvH5v/36JiIiISBNLT7c2MNBasPZ3v/N2a84ArLG1xEsuldK31pYDQ4wxbYA5xphBwG+BC+ra1xhzJ3AnQHJy8lm3/cMnW9h6JNeVJrmsX6coHr6sf63rIyIiWLt2LYsXL2bBggVce+21PPbYY1W9NZWCgoK46KKLABg4cCDBwcEEBgYycOBAUlNT69Wmp556ijlz5gBw8OBBdu3aRbt27U7ZZv78+axdu5YRzi7YkydPEh8fz8qVK5k4cSJxcXEAXHvttezcubPOc86bN4958+YxdOhQAPLz89m1axfJycl07dqVgQMHAtC/f3+mTJmCMeaM13b55ZcTGhpKaGgokyZNYtWqVSxZsqTW43bu3JnRo0dX7T979mxeeOEFysrKSEtLY+vWrQwaNKhe79306dPx9/cnPz+fZcuWMX369Kp1xcXF9TqWiIiIiLRAd90FpaVwzz3w3HOOXrNm0nNWr3nOrLUnjDELgcuBrsAGZ0W8RGCdMWaktfboafu8ALwAkJKS4pPpj/7+/kycOJGJEycycOBAXnvttTOCs8DAwKrqf35+flVpkH5+flXjnwICAk4ZW1VTGfeFCxfy9ddfs3z5csLCwpg4cWKN21lrmTlzJn/5y19OWf7hhx82qAqhtZaHHnqIu+6665TlqampVa/lbK8Nzqx+aIw563HDw8Ornu/bt4+//e1vrF69mrZt23LzzTfXWua++nlO36bymBUVFbRp04b169fX9dJFREREpLV46y2YMwcuuQSefRamT29WqY11BmfGmDig1BmYhQLn4UhtjK+2TSqQYq09eznCOpyth8tTduzYgZ+fHz179gRg/fr1dO7cuUHH6tKlC88++ywVFRUcPny4arxWdTk5ObRt25awsDC2b9/OihUrqtYFBgZSWlpKYGAgU6ZM4fLLL+dnP/sZ8fHxZGdnk5eXx6hRo/jJT35CVlYWUVFRvPvuuwwePLjOtl144YX87ne/Y8aMGURERHD48GECAwPr9fo++ugjHnroIQoKCli4cCGPPfYYoaGhLh03NzeX8PBwoqOjOXbsGF988QUTJ04EIDIykry8PGJjHQU/27dvz7Zt2+jduzdz5swhMjLyjONFRUXRtWtX3n33XaZPn461lo0bN7r0XoiIiIhIC/XEExAYCM66DlVj0FavbhnBGdAReM0Y44+jgMhsa+2nnm1W08nPz+dHP/oRJ06cICAggB49elQV6aivcePGVaUIDhgwgGHDhp2xzUUXXcTzzz/PoEGD6N279ylpf3feeSeDBg1i2LBhvPnmm/zpT3/iggsuoKKigsDAQJ555hlGjx7NI488wpgxY+jYsSPDhg2rKhRyNhdccAHbtm1jzJgxgCOd84033sDf39/l1zdy5EguvfRSDhw4wO9+9zs6depEp06dXDru4MGDGTp0KP3796dbt26MGzfulNd98cUX07FjRxYsWMBjjz3G1KlTSUpKYsCAAeTn51OTN998k3vuuYc//elPlJaWct111yk4ExEREWmt1q93PB58EBISvl/ejNIajWNMWtNISUmxldUPK23bto2+ffs2WRukYR555BEiIiL45S9/6e2m1It+v0RERERaiYsvhpUrYe9eaNPG262plTFmrbU2paZ19RpzJiIiIiIi4nMWLIAvv3SkNfpwYFYXBWfikkceecTbTRAREREROZO18MADkJgI1eYcbo4UnImIiIiISPP1/vuOgh8vvwwhId5uTaP4ebsBIiIiIiIiDVJaCr/9LfTvDzfd5O3WNJp6zkREREREpHl6+WXYuRM++gjqUYXcV6nnTEREREREmp+CAnjkERg3Di67zNutcQsFZ4C/vz9DhgxhwIABTJ8+ncLCwgYf6+abb+a9994D4Pbbb2fr1q21brtw4UKWLVtW9fz555/nv//9b4PPXSk1NZUBAwacsuyRRx7hb3/7W72O4672iIiIiIi43ZNPwtGj8Ne/gjHebo1bKK0RCA0NZf369QDMmDGD559/np///OdV68vLy+s1WXOlWbNmnXX9woULiYiIYOzYsQDcfffd9T6Hp5SVlflUe0REREREqmRlOYKyH/zA0XPWQjSvnrPHH3fMYVDdggWO5W4yfvx4du/ezcKFC5k0aRI33HADAwcOpLy8nF/96leMGDGCQYMG8Z///AcAay33338//fr149JLLyU9Pb3qWBMnTqRy0u0vv/ySYcOGMXjwYKZMmUJqairPP/88//znPxkyZAiLFy8+pXdr/fr1jB49mkGDBnHllVdy/PjxqmM+8MADjBw5kl69erF48eJ6v8azHfs3v/kNEyZM4Mknn6xqz5EjRxgyZEjVw9/fn/3797N//36mTJnCoEGDmDJlCgcOHAAcvYc//vGPGTt2LN26davqSRQRERERcYs//xny8x3/tiDNKzgbMQKuueb7AG3BAsfzESPccviysjK++OILBg4cCMCqVat49NFH2bp1Ky+99BLR0dGsXr2a1atX8+KLL7Jv3z7mzJnDjh072LRpEy+++OIpaYqVMjIyuOOOO3j//ffZsGED7777Ll26dOHuu+/mZz/7GevXr2f8+PGn7HPTTTfx17/+lY0bNzJw4ED+8Ic/nNLOVatW8a9//euU5dXt2bPnlIDq+eefd+nYJ06c4Ntvv+UXv/hF1bJOnTqxfv161q9fzx133MHVV19N586duf/++7npppvYuHEjM2bM4Mc//nHVPmlpaSxZsoRPP/2UBx98sJ5XQkRERESkFvv3w7//DTNnOqo0tiC+ldb405+CM72wVp06wYUXQseOkJYGffvCH/7geNRkyBD417/OesiTJ08yZMgQwNFzdtttt7Fs2TJGjhxJ165dAZg3bx4bN26s6gXKyclh165dLFq0iOuvvx5/f386derE5MmTzzj+ihUrOPfcc6uOFRMTc9b25OTkcOLECSZMmADAzJkzmT59etX6q666CoDhw4eTmppa4zG6d+9elaoJ308iXdexr7322lrbtXTpUmbNmlXVW7d8+XI++OADAG688UZ+/etfV217xRVX4OfnR79+/Th27NhZX6+IiIiIyFk9/rijQ2bSJPj97x1jzC680LG82nfQ5s63gjNXtG3rCMwOHIDkZMfzRqo+5qy68PDwqp+ttTz99NNceOGFp2zz+eefY+oYgGitrXOb+ggODgYchUzKysrcdlw49TVXl5aWxm233cbHH39MREREjdtUf42VbQTH6xcRERERabDKDLrHHoPXX4fp0+H++2H2bG+3zK18Kziro4cL+D6V8Xe/g+eeg4cfdkTQHnbhhRfy3HPPMXnyZAIDA9m5cycJCQmce+65/Oc//+Gmm24iPT2dBQsWcMMNN5yy75gxY7jvvvvYt28fXbt2JTs7m5iYGCIjI8nNzT3jXNHR0bRt25bFixczfvx4Xn/99aqersZqyLFLS0u55ppr+Otf/0qvXr2qlo8dO5b//e9/3Hjjjbz55pucc845bmmjiIiIiMgpJk1yBGIXXQRBQTB/Prz7bpPEAU3Jt4KzulQGZrNnOy7EpEmnPveg22+/ndTUVIYNG4a1lri4OD788EOuvPJKvvnmGwYOHEivXr1qDHTi4uJ44YUXuOqqq6ioqCA+Pp6vvvqKyy67jGnTpvHRRx/x9NNPn7LPa6+9xt13301hYSHdunXjlVdecdtrqe+xly1bxurVq3n44Yd5+OGHAUeP4VNPPcWtt97KE088QVxcnFvbKCIiIiJyivh4KClx/PzrX7e4wAzANGXKWUpKiq2sXlhp27Zt9O3b17UDVM81rbRgAaxe3aJyTcV96vX7JSIiIiK+6+ab4bXX4Gc/c6Q2NkEHjScYY9Zaa1NqWte8es5qCsAqe9BERERERKRlWrAA3ngDBgyAf/wDLrusyTLomlLzKqUvIiIiIiKtzxdfQHk53Hab43nlGLTVq73bLjdrXj1nIiIiIiLS+rRr5/jXOaUU0CIz6Hyi50yl1sUT9HslIiIi0kK8/76j9kRysrdb4lFeD85CQkLIysrSF2lxK2stWVlZhISEeLspIiIiItIYBw440her95q1UF5Pa0xMTOTQoUNkZGR4uynSwoSEhJCYmOjtZoiIiIhIY8yZ4/j36qu9244m4PXgLDAwkK5du3q7GSIiIiIi4ovefx8GDoSePb3dEo/zelqjiIiIiIhIjY4ehSVLWkVKIyg4ExERERERX/Xhh2Btq0hpBAVnIiIiIiLiqz74wJHOOGCAt1vSJBSciYiIiIiI78nOhgULHL1mxni7NU1CwZmIiIiIiPiejz+GsrJWM94MFJyJiIiIiIgvev99x6TTKSnebkmTUXAmIiIiIiK+JS8P5s1z9Jq1kpRGUHAmIiIiIiK+5rPPoKSk1VRprKTgTEREREREfMv770P79jBmjLdb0qTqDM6MMSHGmFXGmA3GmC3GmD84lz9hjNlujNlojJljjGnj8daKiIiIiEjLVlgIn38OV14J/v7ebk2TcqXnrBiYbK0dDAwBLjLGjAa+AgZYawcBO4GHPNZKERERERFpHebNcwRorSylEVwIzqxDvvNpoPNhrbXzrLVlzuUrgEQPtVFERERERFqL99+HmBiYMMHbLWlyLo05M8b4G2PWA+nAV9baladtcivwRS373mmMWWOMWZORkdGoxoqIiIiISAtWUgKffAI/+AEEBnq7NU3OpeDMWlturR2Co3dspDFmQOU6Y8xvgTLgzVr2fcFam2KtTYmLi3NDk0VEREREpEWaPx9yclplSiPUs1qjtfYEsBC4CMAYMxOYCsyw1lp3N05ERERERFqRDz6AyEg47zxvt8QrXKnWGFdZidEYEwqcB2w3xlwEPAD8wFpb6NFWioiIiIhIy1ZWBh9+CJdeCiEh3m6NVwS4sE1H4DVjjD+OYG62tfZTY8xuIBj4yjhm7V5hrb3bc00VEREREZEWa/FiyMxstSmN4EJwZq3dCAytYXkPj7RIRERERERan/ffh9BQuPhib7fEa+o15kxERERERMTtKipgzhy46CIID/d2a7xGwZmIiIiIiHjXypVw5AhcdZW3W+JVCs5ERERERKTpPf44LFjg+Pn99x3zmkVHO5a3UgrORERERESk6Y0YAddcA9984wjOhg6FW291LG+lXKnWKCIiIiIi4l6TJsHs2Y5UxhMnHJUaP/7YsbyVUs+ZiIiIiIh4x6RJ0KeP4+c772zVgRkoOBMREREREW+ZO9dRDKRPH/jvf78fg9ZKKTgTEREREZGmt2ABTJ8O1sKTTzpSHK+5plUHaBpzJiIiIiIiTW/1aujRA44fh/POAz8/R4C2enWrTW9Uz5mIiIiIiDS9K6+E776D2293BGbgCMp+/WvvtsuLFJyJiIiIiEjTmzUL/P3hllu83RKfoeBMRERERESaVkkJvPoqTJ0KnTp5uzU+Q8GZiIiIiIg0rY8/hvR0R/l8qaLgTEREREREmtYLL0BSElx4obdb4lMUnImIiIiISNPZtw+++spRCMTf39ut8SkKzkREREREpOnMmuWoznjrrd5uic9RcCYiIiIiIk2jtBRefhkuuQQSE73dGp+j4ExERERERJrGZ5/B0aMqBFILBWciIiIiItI0XnjBUTr/4ou93RKfpOBMREREREQ8b/9++PJLuO02CAjwdmt8koIzERERERHxvJdfdvx7223ebYcPU3AmIiIiIiKeVVYGL73kmNesc2dvt8ZnKTgTERERERHP+uILOHxYhUDqoOBMREREREQ868UXoUMHmDrV2y3xaQrORERERETEcw4dcpTQv+UWCAz0dmt8moIzERERERHxnFdegYoKuP12b7fE5yk4ExERERERzygvh1mz4PzzoVs3b7fG5yk4ExERERERz5g3Dw4cgDvu8HZLmgUFZyIiIiIi4j6PPw4LFjh+fvFFiIuD6GjHcjkrBWciIiIiIuI+I0bANdfAe+/Bxx/D5MkwY4ZjuZxVncGZMSbEGLPKGLPBGLPFGPMH5/IYY8xXxphdzn/ber65IiIiIiLi0yZNgtmzYeZMx5izefMczydN8nbLfJ4rPWfFwGRr7WBgCHCRMWY08CAw31rbE5jvfC4iIiIiIq3dhAkQFOT4+f77FZi5qM7gzDrkO58GOh8WuBx4zbn8NeAKTzRQRERERESamX/+E06cgCuvhOee+34MmpyVS2POjDH+xpj1QDrwlbV2JdDeWpsG4Pw33mOtFBERERGR5mHBAvjtbyEiAt56y5HSeM01CtBc4FJwZq0tt9YOARKBkcaYAa6ewBhzpzFmjTFmTUZGRgObKSIiIiIizcLChY6xZrfeCiEh349BW73a2y3zefWq1mitPQEsBC4CjhljOgI4/02vZZ8XrLUp1tqUuLi4xrVWRERERER8W9u2UFYGt9/+/bJJk+DXv/Zem5oJV6o1xhlj2jh/DgXOA7YDHwMznZvNBD7yUBtFRERERKQ5sNYxt9moUTBwoLdb0+wEuLBNR+A1Y4w/jmButrX2U2PMcmC2MeY24AAw3YPtFBERERERX7diBWzd6gjQpN7qDM6stRuBoTUszwKmeKJRIiIiIiLSDL34oqMQyHXXebslzVK9xpyJiIiIiIjUKDcX3nnHEZhFRHi7Nc2SgjMREREREWm8t9+GwkK44w5vt6TZUnAmIiIiIiKNN2uWowjIiBHebkmzpeBMREREREQaZ/16WLPG0WtmjLdb02wpOBMRERERkcaZNQuCg2HGDG+3pFlTcCYiIiIiIg138iS88QZcfTXExHi7Nc2agjMREREREWm4996DnBwVAnEDBWciIiIiItJws2ZBjx4wYYK3W9LsKTgTEREREZGG2bEDFi2C229XIRA3UHAmIiIiIiIN89JL4O8PM2d6uyUtgoIzERERERGpv5ISePVVuOwy6NDB261pERSciYiIiIhI/X3yCWRkqBCIGyk4ExERERGR+ps1CxIT4cILvd2SFkPBmYiIiIiI1M/+/TB3Ltx6q2PMmbiFgjMREREREamfV15x/HvLLd5tRwuj4ExEREREROr2+OOwYAGUl8PLL8P558O+fY7l4hYKzkREREREpG4jRsA118ATT8DBgzBmjOP5iBHeblmLEeDtBoiIiIiISDMwaRLMng0XXQRhYfDMM47nkyZ5u2UthnrORERERETENUOHQlkZFBbCPfcoMHMzBWciIiIiIuKa776DNm3gpz+F555zjEETt1FwJiIiIiIidVuwwDHG7L334J//dKQ0XnONAjQ3UnAmIiIiIiJ1W7361DFmlWPQVq/2brtaEGOtbbKTpaSk2DVr1jTZ+URERERERHyJMWattTalpnXqORMREREREfEBCs5ERERERER8gIIzERERERERH6DgTERERERExAcoOBMREREREfEBCs5ERERERER8gIIzERERERERH1BncGaMSTLGLDDGbDPGbDHG/MS5fIgxZoUxZr0xZo0xZqTnmysiIiIiItIyBbiwTRnwC2vtOmNMJLDWGPMV8DjwB2vtF8aYS5zPJ3quqSIiIiIiIi1XncGZtTYNSHP+nGeM2QYkABaIcm4WDRzxVCNFRERERERaOld6zqoYY7oAQ4GVwE+BucaYv+FIjxzr7saJiIiIiIi0Fi4XBDHGRADvAz+11uYC9wA/s9YmAT8DXqplvzudY9LWZGRkuKPNIiIiIiIiLY6x1ta9kTGBwKfAXGvtP5zLcoA21lprjDFAjrU26mzHSUlJsWvWrHFDs0VERERERJofY8xaa21KTetcqdZocPSKbasMzJyOABOcP08GdjW2oSIiIiIiIq2VK2POxgE3ApuMMeudy34D3AE8aYwJAIqAOz3SQhERERERkVbAlWqNSwBTy+rh7m2OiIiIiIhI6+RyQRARERERERHxHAVnIiIiIiIiPkDBmYiIiIiIiA9QcCYiIiIiIuIDFJyJiIiIiIj4AAVnIiIiIiIiPkDBmYiIiIiIiA9QcCYiIiIiIuIDFJyJiIiIiIj4AAVnIiIiIiIiPkDBmYiIiIiIiA9QcCYiIiIiIuIDFJyJiIiIiIj4AAVnIiIiIiIiPkDBmYiIiIiIiA9QcCYiIiIiIuIDFJyJiIiIiIj4AAVnIiIiIiIiPkDBmYiIiIiIiA9QcCYiIiIiIuIDFJyJiIiIiIj4AAVnIiIiIiIiPkDBmYiIiIiIiA9QcCYiIiIiIuIDFJyJiIiIiIj4AAVnIiIiIiIiPkDBmYiIiIiIiA9QcCYiIiIiIuIDFJyJiIiIiIj4AAVnIiIiIiIiPkDBmYiIiIiIiA+oMzgzxiQZYxYYY7YZY7YYY35Sbd2PjDE7nMsf92xTRUREREREWq4AF7YpA35hrV1njIkE1hpjvgLaA5cDg6y1xcaYeE82VHxbXlEpWfkldIkN93ZTRERERESapTqDM2ttGpDm/DnPGLMNSADuAB6z1hY716V7sqHim8orLO+tPcgTc3eQe7KMxQ9Mon1UiLebJSIiIiLS7NRrzJkxpgswFFgJ9ALGG2NWGmO+NcaM8ED7xIetTs3m8meW8MD7m0hoE0pJeQX/W3XQ280SEREREWmWXA7OjDERwPvAT621uTh63doCo4FfAbONMaaG/e40xqwxxqzJyMhwU7PFm46cOMmP3/6O6c8vJzOvhCevG8KH943j3F5xvLVqP6XlFd5uooiIiIhIs+NScGaMCcQRmL1prf3AufgQ8IF1WAVUALGn72utfcFam2KtTYmLi3NXu8ULikrLeWr+Lqb8/Vu+3HKUH03uwTe/nMDlQxIwxnDj6M4cyy1m/rZj3m6qiIiIiEizU+eYM2dv2EvANmvtP6qt+hCYDCw0xvQCgoBMTzRSvMtayxebj/LoZ9s4fOIklwzswEMX9yUpJuyU7Sb3iSehTSivr9jPRQM6eqm1IiIiIiLNkyvVGscBNwKbjDHrnct+A7wMvGyM2QyUADOttdYjrRSv2XUsj999tJkVe7Pp0yGSt+8YzZju7Wrc1t/PcMOoZJ6Yu4Pd6fn0iI9o4taKiIiIiDRfrlRrXAKcMZbM6YfubY74kpzCUm6YtZKy8gr+dMUArhuRRID/2TNhr0lJ4l9f7+TNlft5+LL+TdRSEREREZHmr17VGqV1eezLbWQXlPD6baP44ejOdQZmAHGRwVw8oCPvrT1EYUlZE7RSRERERKRlUHAmNVqxN4u3Vx3ktnO6MiAhul773jimM3lFZXy8/oiHWiciIiIi0vIoOJMzFJWW85s5m0iKCeWn5/Ws9/4pndvSp0Mk/12+Hw1DbJnSc4t0bUVasUPHCzVtioiIByg4kzM8u2A3ezMKePSKgYQFuVIz5lTGGH44ujNb03L57uAJ9zdQvOpgdiHj/voN76495O2mNHvbj+Zy+MRJbzdDpF62H81l4hMLeXbBHm83RUSkxVFwJqfYeSyP577dw5VDEzi3V8PnpbtiaAIRwQG8sXy/G1snvmDulqOUllvmbj7q7aY0a0Wl5Vz3wgp+9+FmbzdFxGXWWh7+aAtlFZbZaw5SUaEedBERd1JwJlUqKiwPvr+RiOAA/t+lfRt1rIjgAK4alsCnG9PILihxUwtrVlRaTs7JUo+eQ743d4sjKFu6J5Oi0nIvt6b5+mxjGicKS1m9L5tyfcGVZuLTjWms3JfNhF5xHD5xkmV7srzdJBGRFkXBmVR5c+V+1h04wf+7tB/tIoIbfbwfju5MSXkFs9ccdEPravfbOZu54pml+oLbBDLyilmz/ziDk9pQVFrBqn3Z3m5Ss/XWqgMYA3nFZWw/muvt5ojUqaC4jEc/28aAhCie/+FwokICeHetZ/++i4i0NgrOBIC0nJP89csdjO8Zy1XDEtxyzF7tIxnVNYY3V+73WOBUXmH5etsx9mUWsHR3pkfOId/7etsxrIXfT+1HcIAfC3ake7tJzdK2tFzW7j/OzDFdAFitIFeagX8v2M3R3CL+8IP+hAb5c/mQBL7cfFSZCyIibqTgTACcYwgqePSKgRhT25zj9XfjmM4czD7Jop0ZbjtmdRsPnaj6YvDOat3B9bS5W46S2DaUYcltGNO9HQt3eOa6tnRvrTxAUIAfPz2vJx2jQ1idetzbTWoyy/dkcc3zy9Vb2Mzszchn1uK9XD0skeGdYwCYnpJIcVkFn27UtCkiIu6i4Ez4cnMa87Ye42fn9SK5XZhbj31Bvw7ERQbz+grPFAZZvCsTY+CqoQnM23qUrPxij5xHIK+olGW7s7iwfweMMUzsFce+zAJSMwu83bRmpaC4jDnfHWbqoI60CQtiRJcYVqVmt/ipCcorLE9+vYsZs1awKjWbOd8d9naTxEXWWv7wyVaCA/x54OLeVcsHJkTTu30k765R5VYREXdRcNbK5Zws5fcfbaFfxyhuO6er248fFODH9SOSWLAjnYPZhW4//qKdGQxMiObuid0pLbf6wudBC3dkUFJewYX9OwAwsXe8c7lSG+vj4w1HyC8uY8aozgCM6BpDRl4x+7Pc///DV6TnFXHjSyv559c7uXxIAoOT2rBstwpJNBdfb0vn250Z/PS8nsRHhlQtN8YwPSWR9QdPsDs9z4stFGlZdqfnaxx9K6bgrJV7/MvtZOYX89erBxHg75lfh+tHJeNnDG+uPODW4+YWlfLdwROM7xlLr/aRDEtuw/9WH2zxPRDeMnfLUdqFBzG8c1sAusSG0y02nAVKbXSZtZY3VuynTwfH7yvAyC6OFLFVqS1z3NnS3Zlc8uQS1h04zuNXD+If1wxmUu84Nh/JIadQY5V8XVFpOX/8dAs94yOYObbLGeuvGJpAgJ9R75mImxzIKuSCf37Lv7/Z7e2miJcoOGvFVqdm8+bKA9w6risDE6M9dp6O0aGc1zee2WsOurX0+rLdWZRXWM7t6ZiP7boRyexOz2fdgaYbv5NzspT84rImO5+3FJeVs3BHBuf3a4+/3/djEif0jmPF3ixOljTfkvql5RVNNiXAxkM5bDmSy4zRnavGdvaMjyA6NLDFFQUpr7D8Y94OfvjSStqEBfLRfedwzYgkjDGM7R6LtbB8r3rPfN0Li/ZyMPskf/hBfwJruIEXGxHMpD7xfPDdYcrKK7zQQpGW5dtdGVRYmLV4LycKPTsVkfgmBWetVHFZOQ++v5GENqH8/IJeHj/fjaO7kF1Qwheb09x2zEW7MggP8mdosqMn59JBHQkP8ud/q5qmMIi1luteWMFP3v6uSc7nTct2Z5FfXFaV0lhpUu94issqWNEMv2SXV1j+t+oA4x77hhtfWtkk53xz5X7Cgvy5YkinqmV+foYRXdqyugX1nB3LLeKGF1fw1De7uWpoIh/fP47eHSKr1g9JakNooD/L96jCqi87mF3IMwt2c+nAjoztEVvrdtOHJ5KRV8y3Hir8JNKaLNmVQXRoIHnFZby4eK+3myNeoOCslXpu4R72ZBTw6JUDCAsK8Pj5xnZvR7fYcF5f7p7CINZaFu3MYEz3WIICHL/G4cEB/GBIJz7dmEZekefTpTYcymFbWi7f7sxo8Xe35m45SkRwAGN7tDtl+ciuMYQG+jerkvrWWhbuSOeSJxfz4AebKKuwrE49zpETJz163pyTpXy84QiXD0kgMiTwlHUjusSQmlVIel6RR9vQFL7dmcElTy5m46Ec/jZ9MH+/ZvAZf2OCAvwY0TVGExj7uEc/24afMfzm0r5n3W5Sn3hiI4KU2ijSSGXlFSzbncUlAzswdVBHXlmaqkJnrZCCs1Yov7iMZxfs4QeDO1UVdfA0Pz/DjNGdWXfgBJsP5zT6eKlZhRw6fpIJvU69m3vtiGROlpbzyQb39dDV5v21h/AzUFZh+WrrMY+fz1vKna9vYu84ggP8T1kXEujPWGdJ/eYw1m/LkRxufGkVN7+ymqKycp6dMYzZd40GYP52zwaYc9Ydoqi0ghmjks9YN6KrY9zZ6n3Nt6R+WXkFT8zdzsyXV9EuIoiP7x/HtOGJtW4/rns7dqXnk57b/APSlmjxrgy+3HKU+yZ1J6FN6Fm3DfT344ohCczffozsgpZ9o0rEkzYcyiGvuIxzesTx0/N6UVRazvPf7vF2s6SJKThrhXan51NSXsHUQR2b9LzThiUSEujHmysb33tWOW/aeOd4s0qDE6Pp0yGSd1a7t/jI6YrLyvl4wxGmDupEQptQvtx81C3HzSsq5Q+fbOHzTWkUl/nGOK61+4+TVVByRkpjpYl94jmQXcheHy6pn5Zzkl++u4GpTy9h85Ecfj+1H1/9bAKXDOxI97gIurQLY/42zwXY1lreXHmAwYnRDEg4c3zngE7RhAT6NevUxleWpvLMgj1cm5LER/edQ8/2kWfdfmx3x40VjTvzPSVlFTzy8RY6twvj9vHdXNpnekoSpeWWD1UxV6TBljinBxrXox094iO4YkgC/12+v8luYhWVljNr8d4mG4ctNVNw1grtSc8HoHt8RJOeNzoskMsHJ/Dhd0eqJo5uqMW7MkiOCaNLbPgpy40xXDsiiQ2Hcth6xHOT3M7flk7OyVKmDU/kogEdWLwr0y2plO+uOcQrS1O59811jP7zfB75eItHX4cr5m45SpC/HxN7x9W4fmIvx/IFHu55aoj84jL+NncHk/62kI/XH+GO8d349peTuPWcrlXpsMYYpvRtz7I9WRSWeKa4y+rU4+xKz68qn3+6oAA/hiW3ZVUzLQpireXtVQcY2SWGv04bRGiQf5379OsURXRoIEt3a9yZr3l12T72ZBTw8GX9CAms+1oC9O4QyaDEaN5d6zupja8u3cdKBf/iYV9uTuPjDe6ZiH3xrgwGJUTTJiwIgB9P6UlZheXZhU3Te/bZxjT+9Nk2t9YHkPpTcNYK7cnIJ8DPkBzj3gmnXXHjmM6cLC1nzrqGf4CXlFWwfE8W5/aqeYD6FUMSCPL3Y/YazxUGeW/tITpEhTCuRywXD+hASXkF37ghOJnz3WH6d4riv7eOZFyPWN5aeYBLnlrM1KcX89/lqU0+ts1ay9wtRxnXo90Z46QqJcWE0TM+wmeKAeQUlrJybxbPf7uHiU8s4N8LdnNBvw7M/8UEfnNJX6LDznwdU/rGU1JWweJdngkU3ly5n8iQAKYOrr23ekSXGLYdzSW3CcZLutvq1OPszSzgmhFJLu/j72cY3U3jznzNsdwinvx6F5P7xDO5T/t67Tt9eCLb0nLdkrreWIUlZfzfZ9t49PNt3m7KWT30wSaufm4Zy/X/oNmx1vL3eTu4+411PPDexkZXLc5zTg90Ts/vv9t0iQ1n+vBE3lp5gMMeHhcNjkJr4LgBLd6j4KwV2pORT+d2YTWWRfa0AQnRDEqM5q1VBxo8Rmnt/uMUlJSfkdJYqW14EBcO6MAH6w55pGs+Pa+Ib3dmcNWwBPz9DMOS2xIfGcwXmxqX2rjrWB6bDudw1bBEzu0Vx79vGMaq307hDz/oj7Xw+4+2MPLP87n/rXUs2pnRJBNUbkvL49Dxk7WmNFaa2DuOlXuzKWjCaQWKSsvZfDiH99ce4s+fb+Oml1cx6s9fM/iP87j2hRU89sV2usVG8OF943jq+qEkneVmxIguMUSGBHgktTErv5gvNh3l6mGJZy2+M7JrDNY6fr+bm3dWHyQiOIBLBp799+R0Y7vHcuj4SQ604Am4m5vHvthOabnl91P71XvfHwxOICjAj/d8oPds46EcyissGw/lsOOob06Qba3l801prN1/nOtfXMFtr65m1zHfbKucqqi0nJ++s56nv9nNyC4xnCwt59udjQtoVuzNprzCnvHd5v7JPbBYj897VlFhWeK8QbloZwalmhrDaxSctUJ7MgroHte0KY3V3TAymZ3H8hv8JXTxrgwC/Axju7erdZvrRiSRW1TG3C3uGQtW3UffHaG8wnK1s9iBn5/hwv4dWLgzvVFpcR98dxh/P8MPBn9fZr1NWBAzx3bhsx+P59MfncMNI5NZvCuTm15exfi/fuPx3qq5W45iDEzpe/Y76JN6x1NSXuHRXpCD2YW8sWI/9721jsl/X0i/33/J1KeX8It3N/DqslQy84oZ1z2Why7uwyu3jGD5Q5N5567RDElqU+exA/39mNg7nm+2Z1Dh5qD3vbWHKCmv4IYaCoFUNzS5DQF+ptnNd5ZXVMrnm9K4bHCneld+Hees/rlMJfV9wtLdmcz57jB3ntvtjJRxV0SHBXJh/w58uP6w18fMVn6+BPgZ3lvbNNOr1NeRnCJyTpby/y7tywMX9WHVvmwu/NciHvpgowrl+LDsghJufGklH60/wq8u7M1bd4wiJjyIzxt5g3bxrgzCgvwZ5pweqFJi2zCuG5HMu2sOevRG1ta0XLIKSrigX3tyi8qa5Y3ClkLBWStTWl7B/qyCJh9vVt1lgzsRERzAWysbVrRj0a4MhiW3rTXNDmBMt3YkxYS6fc4zay3vrT3E0OQ2pwS4Fw/sQFFpBd/uaFiwVF7hGEg/oVcccZHBNW4zICGaR37Qn5W/mcK/bxhKSJA/v35vg0d7q+ZuOUpK57a1tqlSSpcYwoPcW1L/ZEk5C3ak88jHW5j8t4WMf3wB/+/Dzaw/cIKe8RHcP6kHz9wwjK9/PoGtf7iQz38ynn9cO4S7JnRnUu94OkaHVk307Irz+saTmV/MhkMn3PYaKiosbznHYvWqo0BGWFAA/ROim11RkE82pHGytJxrUmqvzFib7nERxEcGK7XRBxzNKeIn//uO7nHh3Dupe4OPM314IicKS/l6q3fTor47cJxuceFM6RvPnO8O+2QvQOV44qHJbblnYne+/fUkZo7twntrDzHhiYX846ud5DdhNoLUbV9mAVc9u5QNh3J4+vqh3DepBwH+flzYvz3ztx1rVLbOkl2ZjOoaUzUeurr7JvXAz8/w1De7GtP8s6pM63/okr4E+hufHEfeWig4a2UOZhdSWm692nMWHhzAFUM78emmNI7Xs+xyVn4xmw/nMr5n7ROigqM369qUJJbvzSLVjVUENx/OZcexPK4eduoX0ZFdYogJD+KLBlZtXLE3i7ScIq4cmlDntiGB/kwd1Iknpg3mWG4xzy70TKrDgaxCth/NqzOlERwFLcb1iOXbRpTUt9ay81gesxbv5caXVjL4j/O45ZXVvL3qAMntwnj4sn7M/8UEljwwif/cmMLPL+jNpYM60iM+ggA3pOhO7BWPv59xa6790j2Z7M8qZMbos/eaVRrZpS0bDuY0q0pZ76w5SK/2ES71UJ7OGEcP+LI9Wc1iKoaWqrS8gvvfWkdhSTnP/3B4o+a+HNcjlo7RIbzrxd4qay3rDpxgWHJbpg1PIjO/pME3zjxpW1ouxkAf5wTtMeFBPHxZf77++QQm943nqfm7mPjEAl5fsd8ng8vWZtW+bK58dim5RWW8fccoLquW5XLxgI4UlJQ3eNzyoeOOise1DdfoEB3CD0d15oN1h9ibkd+gc9Rl0c4M+naMomtsOCO7xnh8ehmpnYKzVmZPhiNQ6R5X/5QVd7phZGdKyip4v56FQZY4K7ud26vmP2DVTRuehJ/BrYVB3l93iKAAPy4b1OmU5QH+flzQrz3fbE9v0BfrD9YdJjI4gPP7uT4Af3jntlw5NIEXF+/zSKpDZUqoK8EZOCaiPXziJLvS6//BMW/LUcY+9g0X/HMRf/psG0dzirhpdGf+e+tINjx8Aa/eMpJbxnWle1xEvXrD6iM6LJCUzm352o3jzt5aeYCY8CAuGuDaeziiSwwl5RVs8oGCCq7YcTSPDQdPcE1KUoOvy9jusWTmFzfo90bc47EvtrNm/3Eeu3pQnVMg1MXfz3D1sEQW7czgaI53UvNSswrJLihheOe2TOwdR2xEkE+Mgzvd1iO5dGkXTnjwqcFw53bhPHPDMObcO5ZusRH87sPNXPivRSx0Y2aC1M9H6w/zw1kriQkLYs69YxneOeaU9WO6tyM6NJAvNjWsymHlWK+z3Xi+Z2J3ggP8+dfX7u89KywpY83+bM51nn9yn/bsTs/nYLbGA3uDgrNWpvKOSzcv9pyBo4z20OQ29S4M8u3ODNqGBdY4V9TpOkSHMKl3PO+uPUSZG+46lpRV8NH6w1zQr32NFf8uGtCB/OKyqj+yriosKeOLzWlcOqijy2WrKz1wUR8C/AyPfr61Xvu5Yu6Wo/TtGHXWQhrVVZbar28qRFrOSX7x7gaiQwP5y1UDWfrgZL76+QT+39R+nNsrrt7vSWOc17c924/mceh44z+QjuUWMW/rMaYPTzxj8u7ajOji+MBvLiX131l9kEB/w1XD6p/SWGmsc9xZY0rqr9ibxZNf73L7eMHW4LONaby0ZB83j+1yynjXxpg2PJEKCx98552AaJ1zrMyw5LY+PUH21rRc+nWMqnX90OS2vHPXaF68KQUs3PnftU1adEkcvbBPz9/FT/63niHJbfjg3rF0bnfmze1A5w3ar7Yda9B4y8W7M2kfFUyPsww5iYsMZubYLnyy8Yjbi9ys3JtNafn3xUgm94kHcEsVaqk/BWetzJ6MfOIig4kOrX28VlO5YWQyezMKWOniF1FrLYt3ZTKuRyz+fq7dpb92RBIZecUscENKyzfb0zleWFpVCOR0Y7vHEhkSUO/UxrlbjlJYUu5SSuPpOkSHcN+kHszdcsyt80Vl5BWz9sBxLuzvek9ex+hQ+nSIZGE93mtrLQ+8v4mycst/bhzO9SOTSWgT2pAmu8WUvo4PJHekNs5efZDyCsv1I11LaQRHpdGe8RHNYtxZcVk5c747xPn92hMTHtTg4yS2DSM5JqzB484qKiy/mbOJf369k7984dtl033Nnox8fv3eBoYmt+E3l/R123G7xIYzsksM76055JV01XUHjhMZHEBP5xfdaSmJlJZbPlrvOxNk5xWVciC7kL4dz95TaYzh/H7teeiSvpSUV7D9qHfnvWxNSsoq+NV7G/n7Vzu5amgCr982smr+sZpcMrAjeUVlLNtdv79l5RWWpbszGd8zrs4MhLvO7UZ4UAD/+npnvc5Rl0W7MggJ9COli6MYSdfYcLrGhiu10UsUnLUyjkqN3k1prDR1UCciQ1wvDLL9aB4ZecUupTRWmtQnnrjIYN5Z3bDiI9W9t/YQ8ZHBjO9Rc9pBUIAf5/dtz9fbjtVrfMAH6w6T2Da0qtekvm47pytJMaH84ZMtbukhBPhq6zGsdT2lsdLE3vGsTs12eULud1YfZNHODB66pE+NdyObWre4CLrFhjc6tbG8wjEp8/iesfWuejeiawxrU483aKqEotJyZq8+2CSpKF9vddysuCbF9bnNajO2eztW7M1q0Gv+dlcGezMKGJAQxYuL9/Hf5amNbk9rUFhSxj1vrCU40J9nbhhWYxGCxpiWksjezALWHWj6im9r9x9nSHIb/Jw38fp0iGJgQrRPpTZud/Z89OtUe89Zdf2d2205ouCsqdzzxlreW3uIn57Xk79fM7jODIixPdoRGRLA5/VMbdxyJIcThaV1jqUHxw28W8d14YvNR9lyxH3p74t3ZTKqa7tTMlUm94lnxZ4s9dZ6gYKzVsRay+70fK8WA6kuNMifq4cl8uXmoy6lmyxylo135Q9YpUB/P6YNT+Sb7emNGv+QmV/Mwh3pXDks4azFJy4a0IGck6UuTyh6NKeIpbszuWpoQtUXifoKCfTnt5f0Y+exfN5sYAXM083dcpTkmLCqgequmtQ7jjLnXcC6HDpeyJ8+28aYbu344ajODW2q203pG8/KvdmNqpK2cEc6R3KKmFFH+fyajOwSQ15xWYPukL+0ZB+/fn8j5z6xgB/OWsknG454rKT57DUH6RQdUusA9voY2yOWvKKyBk1e/PKSfbSPCua9u8dyXt94Hvl4C19vdf98dS2JtZaHPtjErvR8nrpuKJ080Ft96cCOhAX58+6apg2I8opK2Xks74xy5NOGJ7LlSG5VhURvq2xHv451p+gDdIwOoW1YIFsO+0b7W7q0nJPM357Ojyb34Kfn9XJpTG1wgD/n923PvK31u0FbWURkXC03fk932/huRIUE8M+v3NN7duTESXan55/x3WpyH8cUOe7MyhHXKDhrRbILSsg5WeozwRnADaOSKSmvcGkemsW7MunVPoKO0fX7InFNShIVlnoXH6nuo/VHKKuwTKtjbM25veIIC/J3ObXxo/WHqbBwZSPG7ABc2L8943q04x9f7ax3BczT5RaVsmxPJhf2b1/vIg/DOrclMjigztRGRzrjRqy1PD5tUIMDU0+Y0rc9JeUVLG7EHHJvrjxAXGRwnfPD1WREV0cPan3nO8stKuWFRXs5p0csP53Si32ZBfzo7e8Y9ef5PPLxFremQx05cZJFuzKYNjzR5RTjsxnTrXK+s/qlA+08lueY929MF0IC/Xnq+qH07xTNj97+jk2HmkdRlcYoLa9o0Di7N1bs56P1R/j5eb04px43u+ojPDiASwZ25NONaY2a/7G+NhzMocI6/hZV94PBnQjy940JssERnMWEB9E+6uzTlFQyxjAgIZrNbuwtkdpVjvu9oF/9skcuHtixXjdowVEMpF/HKGIjXPtdiA4N5M5zu/H1tnS+c0PP9OJdjs+607OSRnSJISI4wK1T5IhrFJy1IlWVGr04x9nperWPJKVzW95edfCsYxNOlpSzKjWbcxtwl75rbDiju8XwzuqDDS4Y8N7aQwxOjK6zkllIoD+T+8Qzb8vROlO0rLV8sO4wQ5Pb0LUBE75WZ4zh91P7k19cxj8aeTdt4Y4MSsttvVMawdFTOb5XLAt2pJ/1er6x8gBLd2fx20v7uVxwpKmkdG5LdGggXzdw3Nnu9HwW7Ejn2pQkAhtQ4j+hTSgJbUJZnVq/D91XlqSSc7KUBy/uw0/O68niX0/i9dtGMq5HLG+u3M9F/1rM5c8s5a2VB1xOO63Ne2sPYS1Md0NKIzgGuvduH1nvyahfWbqP4AC/qnF9YUEBvHRzCjHhQdz62mq3FHbxVamZBUx4fAGT/r6QV5buc7mnd/3BE/zx061M6h3HfZN6eLSN04cnkl9cxpcNnGKkIdYdOI4xnDG1Q9vwIM7rF8+H6w9TUub9svTbjubSt2NkvW6A9esUxc5jeT7R/pZudWo2EcEBdY4JPN34nrGEB/nzxWbXUhsrqyTWJyMI4OZxXWkbFtjoz3uARbsy6RAVUjVGs1JQgB/je8byzfazf56L+9X5zcEYk2SMWWCM2WaM2WKM+clp639pjLHGGM/cfhO32eOs1OgrY84q3TAqmX2ZBWe907RyXxYlZRWMr8d4s+quG5HMgexCVuytf9GBLUdy2JaWW2shkNNdPKAjWQUldVbc25rmmDOtMZXuquvdIZIfjkrmzZX72ZbW8F6SuVuOEhsRfEZakKsm9o7nWG4x29JqriZ1IKuQv3y+jfE9Y7l+pHu+3LtTgL8fE3vHsWBHeoPGQP35821EBAVw87guDW7DiC5tWZWa7fIHYk5hKbOW7OXC/u2rKpn6+RnG94zjmRuGsfI35/G7qf04WVLGb+ZsYuSj8/nluxsaFLxUVFhmrznIuB7t3BpYj+nejtWp2S6nYWYXlPDBusNcNSzhlIIk8ZEhvHrLCIpKy7nlldXknGxcIOoO+cVlfLzhCK8tS3XLF+sDWYVc/+IKTpaW0y48iD98spUxf57Pnz7detbxhtkFJdz7xlraR4Xwz2uHeLzHemTXGDq3C+O5hXvIbeQNAVetO3CcnvERNRa9mjY8keyCEq/3BJSVV7D9aN5ZKzXWpH+naErLLbvS3VupT860al82wzu3rfccmiGB/kzp2565W465NAZ85T5HlcT69mBHBAdw94TuLN6V2agCUt8XI4mt8UbB5D6Oz3ONdWxarvzWlQG/sNb2BUYD9xlj+oEjcAPOB9wz0EU8ak96PiGBfnSqZ1qgp10ysCPRoYFnHS+1aGcmwQF+jOrasKIZFw3oQFRIAP9bXf85z95fe5gg/zPnNqvNxN5xBAf48WUdd84+WHeYQH/D1IEd692m2vzs/F5EhQbyx0+2NuhOV1FpOQu3p3N+v/YN/uI20RlAL9x55hegigrLr97bgL8x/PXqQR6bs6yxpvRtT3ZBCesP1q/3atHODL7Zns79k3u4nKJSkxFdY8jIK2a/i/PXzVqyl7yiMn56Xq8a18eEB3HbOV2Z+9NzmXPvWK4Y2onPN6Xxw1kr611efPneLA4dP+mWQiDVjesRS1FpBesPnHBp+7dXHaC4rIJbx3U9Y13P9pH858bhpGYVcPfra73S05BzspQP1h3i9tfWMOz/vuLHb3/Hwx9vYebLq8gpbHigcjD7+8DsjdtH8cG94/jwvnFM7BPPK8tSmfDEAu55Yy1rTgvuyyssP/nfd2Tml/DcjOFnrTrnLsYYHr1iIPsyC7jrv2s9Nv6xUkWFZd3+4wzvXPONpXN7xhEXGez11Ma9mQWUlFW4XAyk0oDKoiAad+ZR2QUl7DyWz8gGft+4ZGAHsl24QQuw2PndpiEFwW4a04XYiGCemt/wec82HXYWI6nlxvfE3o4KxvWdIkcap87gzFqbZq1d5/w5D9gGVNb8/ifwa0D9nc3Anox8usVG+NT4HnDcabp6WCJztxwlI6+4xm0W7cpgZNeYBs95FRLoz5VDE/hy81HWHzzh8n6l5Y65zc7rF09bF8uFhwcHMKFXHF9uOVprGmVZeQUfrT/C5D6uH9cVbcKC+MX5vVi+N6tBqUTL9mRSUFJerxL6p4uPCqF/pygWbj9zzNZ/l6eycl82v5vazyNFCNxlQq84AvxMvVIby8or+NNnW0mOCWtUrxk4ioIArHLhjujxghJeXrKPSwd2pG8dd+KNMQxNbstfrhrE67eN5EhOEXf8d029Jk5/Z/VBokICGpT2ejYju8bgZ2CpC2M1SsoqeG1ZKuN7xtaaajy2eyx/vXoQy/dm8eAHG5skLSe7oIR3Vh9g5surSPnTV/x89ga2HMlhxqhk3r17DP+4ZjBr9mdz9fPLGlRR89BxR2CWV1TKG7eNon8nRy/pkKQ2PH39UJY8MIk7z+3Osj1ZTHt+OZc/s5SPnGl8T83fxeJdmfzh8v4MTHStCIU7nNMzlsenOa7Dr97d6NG56PZm5pNbVMbQWnr9A/z9uGpoAgu2p5OZX/NnTVOobzGQSl3ahRMe5O/WKn1ypsqeqIYGZxN6xRMa6M/nLqQ2Ltnd8O82oUH+3DKuC4t3ZTZ4TPHinRkYA+fUUowkLjKYwYnRKqnfxOrVX2uM6QIMBVYaY34AHLbWbvBEw8T99mQU0M3HUhor3TAqmbIKy7s1FAaprCTUkPFm1d0+vhvxUcFc8/xyl0vrL9yRQVZBCVfXM/Xw4oEdOJZbzHe1BIKLd2eSmV/stpTG6q4fmUyfDpE8+vm2en3pBpi7+RgRwQGM6d6uUW2Y1DuetQeOn5JSlppZwGNfbmdi7zimp7j/dbtTdGggI7rEML8eJfX/t/ogO4/l85tL+rg86XRtesRH0DYs0KWiIC8s3kthaTk/Oa9nvc4xvHMM/7xmCGv3H+cX725w6UtzTmEpX245yhVDE9w+OXh0aCADE6JZ7sK4s883pZGeV8yt55zZa1bdVcMS+dl5vfhg3WH+9XXD7y6fTU5hKa+v2M+MWSsY8ejXPPD+JvZm5nPruK7MuXcsSx+YzMOX9WdElxiuGpbI67eNIiOvmCufXVqvG0VHTpzkhhdXknOylDduH1WVvlpdx+hQHry4D8sfmsz/XTGA/OIyfvK/9Zzz12946ptdXD0sketGNH0q8VXDEnngoj58vOEIj3253WPnWbf/BMBZU7KnDU+krMLy4Xfem/NsW1ouQf5+9f489vMz9O0YpRQzD1u1L5ugAD8GNfAmRmiQY+z5l5uPnTU1/lhuETuP5dcaGLlixqhkQgP9eWnxvgbtv3hXJgM6RZ91rsrJfdqz4dAJr97QaG1cDs6MMRHA+8BPcaQ6/hb4vQv73WmMWWOMWZOR0fiJgKVhikrLOXi80KcqNVbXIz6CUV1j+N+qM4t21FZJqL6SYsL45P5zGNk1hgfe38Rv5myqM83mvbUHiY0Irve5J/dpT6C/qTW18YN1h2kTFsgkZ8qAOwX4+/H7y/px6PhJXly01+X9yissX287xqQ+8Y0OLib1iaO8wrLEWSK4vMLyy3c3EOTvx2NX+W46Y3VT+saz81i+Sz0cOSdL+cdXOxnVNcYtPUrGGFK6xNQ5liAzv5jXlqVy2aBO9KqjWE1NLh3UkYcu7sNnG9N4fO6OOrevLKbg7pTGSmN7xPLdgRNnnVfHWsvLS/fRLS6cCS7csPnxlB5MG57Ik/N3uT2dzVrLTa+s4ncfbiYtp4h7JnTn0x+dw6JfTeKhS/oyNLntGZkKo7u14/17xhIa5M91Lyxn7pa6e7iP5hRx/YsrOF5Qwuu3jWJQYpuzbh8WFMCNozvz9c8m8MrNI+jdIZJRXWP40xUDvPZ/7+4J3bhpTGdeWLSXl5c07ItkXdbuP06bsEC6naXAUs/2kQxOauMsauOdpJ+tabn06hDRoIJBAxKi2ZqW69EeyNZudWo2Q5PaNOpz8OKBHcjML2bNWf6GV5bQb8x0JG3Cgrh6eAIfrT9Sa+ZRbfKKSll34HidxUgm94nHWuqswizu49JfBmNMII7A7E1r7QdAd6ArsMEYkwokAuuMMWd8K7HWvmCtTbHWpsTFNX4+HGmY1KwCrPWtSo2nu2GUo2jHktPm1Fi0M5P2UcH0at/4trcND+K1W0dy94TuvLXyANe/sIJjuTXPf5ZdUMI329O5cminen+IRocGMq5HLF9sPnrGF4C8olLmbTnKZYM6uX3i10pju8dy8YAOPLtwD2k5J8+6bXmFZcPBEzwxdwdZBSWNSmmsNCTJUfGwcuD9K0v3sWb/cR75QX86RIc0+vhN4TxnGXxXJqR+ZsFujheW8Lup/dz25XdklxhSswpJz6t9fr4XFu2lqLScH0+pX69ZdXee240bRiXz/Ld76pwQ/p3VB+nfKarGXht3GNu9HWUV9qxB6dr9x9l4KIdbx3V1KUXbGMOfrxzIuB7tePD9jW6ds+eb7elsOHiC/7tiAPN/PoFfXtibAQnRdf4O9IiPYM694+jTIYq731h71mDlWK4jMMvKL+G120aeUYXwbPz8DJP6xPP6baP4351jCA1yb29nfRhjePiy/lzYvz3/99lWPttYv4l6XbHuwHGGJrWp8/di2vBEth/N80oPlLWWrUdy610MpFK/TlEUlpSzL6vAzS0TcBTv2Xw4p8Hj2ytN6h1PcIDfWafVWbIrg9iIoHrPJ3q6W8d1paS8gtdX7K/Xfsv3ZFFWYeu8+dy/UxTxkcEad9aEXKnWaICXgG3W2n8AWGs3WWvjrbVdrLVdgEPAMGtt09XLlXrZk+4so++jaY3gKNoREx50yhfE8grLkt2ZjO8Z57Yvvf5+hgcv7sO/bxjK9qN5TH16SY13tz5ef5jScutylcbTXTygA4eOn2TzaYO3v9h0lOKyCq4allDLnu7xm0v6Um4tj31xahqRtZYdR/N4eck+bn9tDUP+OI/Ln1nK89/uYWSXGCb3aXxvnr+f4dxecSzckcHu9DyemLuD8/q258qhnn3N7tQlNpzuceHMr2PcWWpmAa8s3cf04YluDVq+n++s5qIk6XlF/Hd5KlcMSaBHI266GGP44w/6M6FXHL/7aDMLa6lkt/lwDlvTcrnWg2lxKZ1jCPL3O2vl1peW7CM6NLBe/3+CAvx47ofD6RYXzt2vr23QeK/TWWt5av4ukmJCuW5EUr3/PsVGBPP2HaO5sF8H/vjpVh75eMsZKVDpeY7ALD23iNduHdHgCqq+wt/P8OR1Qxme3JafvbOelQ2onlubnMJSdqXn11oMpLofOG+MeaMwSHpeMVkFJQ0OzvpXFgVRaqNHrN1/nAoLI7s2LrU/PDiAib3j+GJzWo29nBUVliW7sxjXI7bRdQC6xUVwXt943lixv15DGRbvyiQsyL/Ovyt+foZJveNZtDOjXpNrS8O5ctt+HHAjMNkYs975uMTD7RI3qyyj3y3Wd3vOggP8mTY8ka+2HSPd2Zu18dAJck6WNjqlsSZTB3Vizr3jCAvy5/oXV/D6iv2n9HK9t+4QAxKi6NOhYR+i5/frgL+fOWO+k/fXHaJbbHi97oA3RFJMGHed242P1h/hs41pvLXyAPe/tY4Rj37Nhf9axB8/3cqu9DymDurI09cPZfVvz2P23WMICwpwy/kn9Y4jM7+YmS+vJjTInz9f5b2UqoY6r297Vu7LOuu8YH/5YhuB/n788oLebj13/05RhAb619qL9PzCvZSWW37UiF6zSgH+fjwzYxi92kdy35vrqgoWVPfO6oMEBfhx+WDPBdihQf4MTW7D0lrGnR3MLmTulqNcPzK53r+nUSGBvDRzBKUVFTzhQgpnXb7dmcGGQzncN7FHg9LTwPF6n50xjDvGd+XVZanc9fqaqgmbM/KKueHFlRzNKeKVW0YyvHPj7uT7ipBAf2bNTCEpJpQ7/ruGncfcUxb+O2dlVVcC2OiwQC7o154P1x/2eAXJ0211TnNSV/Ge2vSMjyTQ36goiIes2peFv59haHKbRh/rkoEdnWPPz7zBtv1oHpn5xY0ab1bdbed0I7ughDn1GEu5eFcGY7q1cymDZ3LfePKKyxpVtl9c50q1xiXWWmOtHWStHeJ8fH7aNl2ste7LFRG325ORT0KbUK+mtbji+pHJlDvnUQLHnZ2zVRJqrN4dIvn4vnM4p0csv/twMw+8v5Gi0nK2H81l8+HcehcCqS4mPIjR3WL4slpq46Hjhazcl82VQxOaJFC5Z2J3OkSFcN9b6/jNnE2sTs1mfM84npg2iCUPTOLbX03iL1cN4rLBnYiLbHjp95pUBtSHT5zkDz/oT3xk80hnrG5K3/aUllsW7az5z9uyPZnM3XKM+yb1ID7Kva8v0N+PYZ3b1FiO+VhuEW+s3M9VQxMaPYF5pYjgAF65eQSRIYHc+upqjuZ8n05ZVFrOh+sPc/GADkSHnTl/lDuN6xHLliO5nCg8s8T/f5enYozhpjGdG3TspJgwbj+nGx9vOFKvYhyns9by5PxdJLQJbXRRHz8/w28v7ccfL+/PN9vTufY/K9iWlsuMWSs4fPwkL988osFV43xVmzBHenlIoD8zX15VZ+q1K9YdOIGfgcEu3vSaNjyRE4WlfNPAyeYbqvLGR996ltGvFBTgR+8OkSqn7yGr9x1nQEI04cGNv0k5uU88Qf5+fL7pzKSyJbsd47caM96sutHdYujXMYqXluxzaSzlgaxCUrMKXZ78+pwesQT5+ym1sYl4ZsCL+Jw9Gfk+Pd6sUtfYcMZ2b8fbqw5SXmFZtDODgQlnryTUWNFhjjvqP57cg9lrDnHtf5bzn2/3EuhvuHxI43oJLhrQkb2ZBew85ui5rKwQdkUTpfeFBQXw4k0pPHrlAOb/YgIrHprCP68dwvSUJBLbum8C4ZrERgQzuU88VwzpxA8GuzZHnK8ZltyGNmGBNVZtLK+w/OnTbSS0CeW2OqoGNtSILjFsO5p7xgS+zy7YTUWF5UeTG99rVl2H6BBevnkEeUWl3PLqavKdhTm+3HyUvKIyrvVQIZDqxnZvh7WcMWF8fnEZ/1t9kEsGdmzUNAx3T+xObEQQj37WsLkAAZbszuS7Aye4d1J3t40bvWlMF168KYXd6flc/ORiDmQX8tLNKYzu1rj0Kl+V2DaMV28ZSV5RGTe/3PjJwtftP06fDlEuf6ke3zOO9lFNP+fZ1rRckmJCiQpp+E2O/h2j2XIkx2sFTWpTVFrerL+8F5WWs/7giUaPN6sUGRLIub1i+WJT2hnXavGuTHrGR7htDLYxhtvHd2V3ej7f7qy7cMfiyuDQxayk8OAARnWLUUn9JqLgrBWw1rI3o8Cnx5tVd8OoZA6fOMmnG4/w3cETjS6h7wo/P8PPL+jNf24czp6MAuZ8d5jJfeIbHRRe2L89xsAXmx1/nD9Yd5hRXWNIivFsYFTdwMRoZozqTPe4iCZPK3z55hH889ohzS6dsVKAvx+Te8ezYEf6GeOB3lt7kK1puTx4cR+3l5WvNLJLDNY6xkFUOnLiJG+vOsj0lESS27n/96hfpyiemTGMncfyuO/NdZSVV/DO6oMkxYQ2SaAwKLENYUH+LDtt3Nn7aw+RV1TGrY2cQy4iOICfnd+L1anHmbvF9akSKllrefLrXXSMDmFaA8ej1mZK3/a8e/cYxnZvx0szRzC2u2cyBnxFv05R/OfG4ezNzOeu19c0OMWwvMKy/uAJhnVu4/I+/n6Gq4YlsnBnxlmL7rjbtiO59G1gqnyl/glRHC8sJS2n6drtileXpXLLq6sb1SvtTRsOnqCkvKJqnkl3uHhAR47kFLHh0PdpqEWl5azal805LvZauWrqoE7ERwbzkgvVUBftzCChTehZK5uebnKfePZmFJCaqWI0nqbgrBU4mltEYUm5z5bRP90F/ToQGxFUNUDe1W53d7iwfwc+vG8c5/WN596JPRp9vPjIEFI6t+XLzUfZcCiHvZkFHi8E4muaa2BWaUrf9hwvdJQcrpRfXMYTc3cyvHNbpg7q6LFzD01uS4CfOWW+s2cW7MZiud/NvWbVTewdz/9dPoBvd2Zw/1vfsXxvFtcMT2qSCeyDAvwY2TXmlKqKFRWWV5buY2hym1onGK6Pa1OS6BkfwWNfbKOkrH4D3JfvyWLN/uPcO7F7o6ecqMmAhGjeumM04zyUyu1rxvWI5Ylpg1mxN5tfvduwycJ3Hssjv7jMpWIg1U0bnkh5E855VlhSxr6sAvo1MKWxUuXk45sP+9a4s8oKnN/UY35IX1KZQp7SxX2Fd87r65hW54tN3489X5N6nOKyCrffeA4K8GPm2LonpS4rr2DZ7izO7RVbr8/nymJh36j3zOMUnLUC31dqbB7BWVCAH9NTkjheWEpEcADD6vmB21g94iOYNXOEy2MX6nLRgI5sP5rHP77aSXCAHxcP9NyXeXG/c3vFEuhvTimp/+yC3WTmF/N7N5bOr0lokD8DEqKrBmEfzC5k9pqDXDcimYRGpPa54oZRydw9oTtfbjmKn4FpTThx+Nju7diTUVA1zcU329NJzSrk1nHuSR8N8PfjN5f0JTWrkDdX1q/89JPzd9E+KpjpTZDi2VpcMTSBn53Xi483HGHF3voXHKi8cVLfapbd4yIYltyGd9c0zZxn24/mYS0NrtRYqW/HSIzxrYqNB7IK2XQ4B2PwSurbqn3ZjUpVBliVmk2fDpG0CXPfMIroMMe0Op9v/j61cfHuDAL9DaO6uX8s6YxRyYQE+p11eo4Nh06QV1xW7/Funds5KhgvqKWir7iPgrNWoLJSY/f45pHWCHD9iGQAxnRv1+BKaL7iogGO6f8W7czggv4dGjXWQJpeZEggo7q2qyqpfzC7kFlL9nHV0AS3BfBnM7JrDBsO5lBUWs6/v9mNMYZ7J3X3+HkBfn1hb24a05mZY7vQMdqzwWB1lel8lSX1X166j07RIVw8oPETfFea2DuOcT3a8eT8XS6Pd1qxN4uV+7K5e0J3j6WytlZ3TehGbEQQzy7cXe991+0/QbvwIJIbkC4+bXgSu9Lz2XjI871QlcVAGttzFhYUQLfYcJ8Kzj5z9gzNGJXMliO5pxQUagrPLdzNi4v38V0DUyrLyitYu/+4R4rvXDKgIwezv59WZ/HOTIYlt3VbZeTq2oQFMW14Ih9+V/uk1It2ZuJnHDfB6mtyn3hW7M2qGo8sntG8v/WKS/Zk5BMZEkBchHur8XlScrswnpg2iJ+d18vbTWm0hDahDE50pKFc1Yzm+ZLvTekbz+70fPZnFfDYl9vxM/Cri9xbOr82I7rEUFJewScbjvDeukPcMDK5yQIlPz/DHy8fwMOX9W+S81Xq1zGKNmGBLN2dyba0XJbtyeKmsV0IcOONGmMMv7mkLzknS3l2gWsBwVPzdxEXGcz1I5Pd1g5xCAn059ZzurJ4V2a90/XWHTjOsM5tG9SLPXVwR4KbaM6zrWm5RIUEuKXXe0BCNFt9qJz+55vSGJzUhpljugBNm/qWX1zG0t2OGzmzVx9s0DG2HMmlsKTcI8HZ+f3a4+9n+HxzGpn5xWxNy/XI9ECV6pqUetGuDAYltmlQD+HkPo4Kxkt2qUC7Jyk4awX2ZOR7pRhEY01PSWr0HUZfcdOYLgzv3LZJx8+J+5zXtz0Aj3+5g882pnH3hO5NFiClONN6H/54CwF+hnsnNk2vmTf5+RnGdGvHsj1ZvLxkH6GB/lzngcmv+3eK5uphibyyNLXOialXp2azbE8Wd53bTb1mHvLD0Z2JDA7guYV7XN4nu6CEfZkFDZ6gOyokkIsGdOCj9YfrNYFvQ2xLy6Vvxyi3fBb37xTFkZwisgvOnHKiqVWmNF46sAM94iNIigmtscKtpyzckU5JeQW920fyyYYjFDSgV6dyvJk7i4FUahsexNju7fhiU1rVWFpPTQ8EZ5+UOqewlA0HT3BuA7+LpHRpS2RIQLOuytkcKDhrBfakFzSb8WYt1dXDE3n/nrFuvfMvTScpJoxe7SP4bFMaHaJCuPPcbk127rbhQfRqH0FhSTk3ju7s9vnUfNXY7u04fOIkH3x3mKuHJ7h1HEh1v7ygN35+8HgdE1M/NX8XsRFBzBjVsDnWpG5RIYHcOKYzn29OY68zHb8u3znHm9W3GEh104cnkVtUdsq4Uncrr7BsT8tz2w3HyqIgvjAZdWVK4yUDO2KMYUqf9izZncnJkqaZ4HvelmO0Cw/i/64YQEFJeVVhkvpYuS+bLu3CPPb39eIBHUnNKmTW4n1EhwYyICHaI+epdOs5XWuclHrZnkwqLA3uuQv09+PcnnF8syOdigrfmsqhJdE3xRYuv7iMo7lFzWq8mYgvmuLsPXvg4t4eGStwNmO7xxIW5M9dE1p+r1mlMc5xZ+UVllvcVAikJh2iQ7hzfDc+2XCk6ov+6dbuP87iXZncMb4boUHqNfOkW8/pSpC/H//5dq9L26/df5wAP8OgxIZ/2R3TvR2dokM8mtqYmlXAydLyRhcDqdTfGeT5wrizzzYdYXBSm6q5M6f0jae4rILlez2f+lZSVsGC7emc17c9I7q0pVtcOO+sqV9qY0WFZc3+bI9O9n5B//b4Gdh0OIdzesTi7+HKt2O6tatxUupFuzKJDA5o1HjpyX3iycgr9onfvZZKwVkLV3n3UT1nIo1z67iuPHrlAC4f3PTjBn95YW/m/vRc4iKbz7jRxuoeF05i21Cm9In3+N+vOyd0JzYimD9/vq3Gam9Pf7OLmPAgfjhavWaeFhsRzLUjkvjgu0Ok5Zysc/t1B47Tr1NUo1JNK+c8W7Qzw2OFLCqLgfR1U3DWJiyIhDahXi+nvz+rgM2Hc7l04PfFekZ2jSE8yL+qiJInrdibRV5xGRf0b48xhmtTkli7/zi70/NcPsau9HxOFJYysqvn5nGMjQhmlPP47p7frCY1TUptrWXRzoxGF1qb2DvOWZWzeU6Z0BwoOGvh9ig4E3GLuMhgZozq3CRzfZ0uIjigSScu9wXGGN67eyz/vG6Ix88VERzALy6onJj66Cnr1h88wcIdGdw+vivhwU3bY9pa3TG+GxUWZi0++2S6ZeUVbDiY0+DxZtVNG55IheWMNDB32ZaWS4CfoWd7930W9+8UVRX0eUv1lMZKwQH+jO8Zxzfb0z0+RcHcLUcJC/KvmhfwqmGJBPgZZq9xvRd01T5HMZFRHuw5A7hyaAKB/sajxUCqO31S6n2ZBRw+cZLxjTx/u4hghiS10bgzD1Jw1sLtSS8gwM/QuV3r+mInIs1fh+iQJpt6YvrwRHq1j+CxL7afMjH10/N30SYskJucVejE85Jiwrh8cCfeXnWA42cpeLH9aB4nS8vdMhdml9hwRnRpy7trD3okoNialkuP+Ai3Tlzev1M0+7IKvFrWvLJKY2VKY6XJfeNJyyliW5rrPVj1VVFh+WrrMSb2jqvqOY2LDGZK33g+WHeI0nLXJphfuS+bjtEhJLb1bJGn6SmJLH1wssfnqKx0+qTUi50VFhtaDKS6yb3j2XAoh/S8pp0yobVQcNbC7cnIJzkmrNnPFSYi4kkB/n48dNrE1JsP5zB/ezq3n9OVCPWaNam7J3ansKScV5el1rrNOjcUA6lu+vAk9mYUNHiurLPZeiTX7dWHByREYa2jV84bKlMap1brNas0qXc8AN94MPVtw6ETpOcVc0G/U+c/vHZEEpn5JS6lVVprWbUvmxFdYjxe0doYQ3xk0xZ0umHk95NSL96VQed2YXRu1/gaBJP7Oq7vwu0ZjT6WnEnf2Fu4PRn5dFNKo4hInSb2imN8z1jHxNSFpTw5fxdRIQHcNLaLt5vW6vRqH8n5/drz6rLUWkujr91/nPZRwXSKds8X3ksGdSQ00N/thUEy84tJzyt2WzGQSlUVG7007qwypfHigWdODh8XGczgpDbM92Dq29wtxwjwM1WBYKVze8bRPiqYd1YfqPMYB7ILSc8r9mgxEG9qG/79pNRLd2e5bTqffh2jSIoJ5YPvPD8/YGuk4KwFKyuvIDWzUJUaRURcYIzhoYsdE1P/fPZ6vtp6jFvP6dpkqZVyqnsmdifnZClvr6r5S/a6A8cZltywyadrEhEcwMUDOvDJhiNunfOssmfL3cFZ+6hg2oUHea1q3ueb0hhSQ0pjpSl94ll/8ASZ+cUeOf+8rUcZ3a0d0WGn/v8M8Pdj2vBEvnWhwMtK5/xmnh5v5k2Vk1KfLC1nfE/3jHczxnDdiGRW7M1md7pr016I6xSctWCHjp+kpLxCxUBERFzUr1MU04YlMn97OpHBAdwy1nNl/OXshiW3ZXS3GF5cvJfislODpfS8Ig5mn3RbSmOlaSmJ5BWVnVEYpjHcXamxkjGG/gnRXgnOvq/SeGZKY6XJfeKxFhbucH/q2+70fPZmFHBh//Y1rr8mJYkKC++tPXtZ/VX7sokJD6JHfMv9ntQtLoIpfeIJ8DOM6e6+ipTXpCQR6G94a2XdPZRSPwrOWjBVahQRqb9fXtibyJAA7ji32xl35aVp3TuxB8dyi5mz7tQqiuv2nwBgqBsqNVY3ums7EtqEujW1cWtaLh2jQ2gb7v6J1Pt3imLnsbwzgldPO1tKY6X+naLoEBXCfA9M7j1vqyN4Pq9fzcFZ53bhjO4Ww+w1h846WbJjvJn7el991Z+vGsh/bx3p1iyAuMhgLuzfgffWHnRrT7MoOGvRvg/OlNYoIuKq9lEhrHhoCvdP6uHtprR643vGMiAhiv8s2kt5tS/Z3x04TpC/HwMS3Nsb5ednuHp4Ikt2Z3LkRN3zrLliW1qu21MaK/XvFEVZhWXXsaZNLasrpREcPXuT+8azaGfGKRVQ3WHulmMMToymY3TtlQ+vG5HMgexCVjhL5Z/uaE4RB7ILGdGl5aY0VmofFcLYHu6fX23GqM7kFpXxyYYjbj92a6bgrAXbk15AbEQQbcLcf7dORKQlCw8O8MqcdnIqYwz3TuzBvswCvticVrV87f7jDEiIcmtp+krThiVi3TTnWVFpOXsyCtxeqbHSgMqiIEeariiIKymNlab0iaegpJxVzrFd7nA0p4gNB09wQf/ae+0ALhrQgciQAGavrjm1cVVq5Xgzz00+3dKN7hZD97hw3lRqo1spOGvBVKlRRESauwv7d6BbbDjPLtiDtZaSsgo2HnbP5NM1SW4XxqiuMby7pvFznu08lkd5hfVYz1lyTBgRwQFsPtx0485cSWmsNLZ7LMEBfsx3Y0n9r5xpkrWNN6sUEujPFUMS+GLzUXJOlp6xftW+LCKCA+jbMdJtbWttjDHMGNWZ9QdPsNlLVUNbIgVnLdjezAKNNxMRkWbN389w94TubE3L5dudGWxNy6WkrMLtxUCqm56SRGpWIWv3H2/UcTxVDKSSn5+hX8eoJu05+2xj3SmNlUKD/BnXI5b529LdNrn3vC1H6RYb7tL3m2tHJFFcVsHH68/sBV21L5vhndsSoHlgG+XqYYkEB/jxVi1VVaX+9BvZQmUXlJBdUKLxZiIi0uxdMTSBjtEhPLtwT1XANMyDwdnFAzoQFtT4Oc+2peUSHuRPckzdgUxD9esUxba0vFPG5HnK/qwCthzJZeqgulMaK03uE8+B7EL2ZBQ0+vw5J0tZvieL8/u3d6mIx4CEaPp1jOJ/p6U2Hi8oYeex/BY7v1lTig4L5LLBnfjwu8PkFZ3ZQyn1p+CshdpbWQykBZeHFRGR1iEowI/bx3dj1b5s3lyxn4Q2obSPcs/k0zUJDw7gkoEd+XRjGoUlNU+C7Yqtabn07Rjl0fGLAxKiOVlazr7M+hUF+XJzGtuP1i8d8vuUxvoFZwDfuCG1ceGOdMoqLBfWMd6sumtHJLHlSO4paXernePNFJy5x4xRyRSWlPPhehUGcQcFZz7OWsvLS/bx1y+312u/ykqNPZTWKCIiLcD1I5NoGxbI3swCj/aaVZo+PJH84obPeVZRYdmWluexYiCV+juPX5/5zpbuzuTuN9Zx5TPL+Gqr60HTZxvTGJrchoQ2tVdJPF2nNqH07RjF/G3pLu9Tm3lbjhEXGcyQxDYu73PFkASCAvyYveb73rNV+7IJCvBjUGJ0o9skMCSpDf07RfHmiv1uS19tzRSc+bDS8goe+mATf/x0K88t3MOina5P5Lgno4DgAD861eMPqIiIiK8KCwrgZuek4MOS23j8fCO7xpAcE8a7axqW2njweCH5xWUeG29WqUd8BEEBfi4HZwXFZTzw/ka6xobTq30Ed76+hleX7qtzv9RMR0qjK1UaTzelTzxr9h8np7DhaW9FpeUs3JHO+f3a16snMjoskIsHdODD7w5Xzce1KjWboUltPFLtszWqLAyy/Wge6w6c8HZzmj0FZz4qv7iM215bw/9WH+Seid1Jignlz59vczmnfE96Pl1jw/FXKWgREWkhbh7XhetHJjUoQKgvYwzThieybE8Wh44X1nv/bWmOYMlTlRorBfr70adDpMtFQR7/cjuHT5zk8WmD+N+dYzi/b3se+WQrf/xk61m/YzQkpbHS5L7xlFdYvt3l+k3m0y3bk0lBSTkX1DLx9Nlcm5JEbpGjFzS/uIzNh3MYpZRGt/rBkE5EBAfw5or93m5Ks6fgzAcdzSli+vPLWbo7k8euGsgDF/Xh1xf2YfvRPN5f59odvD0Z+RpvJiIiLUp0aCB/uWoQ8R4cb1bdVcMSAPhgXf3nPNt6JBc/A707eL5Ue/9OUWw+nFtnStnKvVm8tnw/M8d0YUSXGEKD/Hnuh8O5dVxXXl66j3veWMvJkvIa9/18U/1TGisNTmxDu/AgvtnW8HFn87YcIzI4gLHd6z+Z8uhu7UiKCeWd1QdZu/84FRZGan4zt4oIDuCKoZ34dFMaxwtKvN2cZk3BmY/ZlpbLlc8u5UBWAS/fPILrRiYDMHVQR4YkteHv83bUOTi5uKycA9mFKqMvIiLSCIltwxjbvR3vrT1ERT2rIW5Ny6V7XAQhgZ5PnevXKZqck6UcPnGy1m1OlpTz6/c3khwTxq8v6l213N/P8PvL+vHIZf34etsxrnthORl5xafs25iUxspzTOoTz4IdGZSVV9R7//IKy9fbjjGxTzxBAfX/6urnZ7hmeBLL9mTx/tpD+PsZhjZBamxrM2NUZ0rKKlzuSJCatfrg7Outx/h0o29Ul1m0M4Ppzy/HWnj37rFM6BVXtc4Yw/+7tC/HcouZtfjsueH7swqpsKiMvoiISCNNT0nkQHZhVYU/V209kuvx8WaVBrhQFORv83awP6uQv149iLCggDPW3zyuK/+5MYWdx/K58tml7E7Pq1rXmJTGSlP6xJNzsrRBY5LWHThOZn5Jg1IaK01LScTPwMcbjjAgIZrw4DPfA2mcvh2jGN65LW+uPKDCII3QqoMzay0vLN7Lg+9v4mB2/fPJ3Wn26oPc+upqEtuGMue+sTVWd0rpEsPFAzrw/Ld7SM8tqvVYe9KdZfTVcyYiItIoF/XvSERwQL3mPDtRWMKRnCKPV2qs1KdDFH4GthyuedzZ2v3ZvLx0Hz8cncyY7rWn853frz3v3DWaotIKrnp2Gcv2ZAKNS2msdE7PWAL9DfMbUFJ/3pajBPn7MbF3XN0b16JjdCjnOm96a7yZ58wYlcy+zAKW78nydlOarVYdnBlj+Pv0wQD8fPb6JpnA8XTWWv4+bwe/fn8jY7q34927x9AxuvY/fg9c1IeSsgr++fXOWrepLKPfTT1nIiIijRIa5M/UQR35bFMaBcWuzXm2tYmKgVQKDfKne1xEjT1nRaXl/Oq9jXSKDuXBi/vWeaxBiW2Yc+9Y2keFMPPlVTw1f1ejUhorRYYEMqprO76pZ0l9ay3zth5jbI92RIYENqoN141wDBUZ003jzTzlkoEdaRMWyBsrVRikoeoMzowxScaYBcaYbcaYLcaYnziXP2GM2W6M2WiMmWOMaePx1npAUkwYf7y8P6tTj/OfRXua9NwlZRX8fPYGnv5mN9ekJPLyzSPq/MPTJTacG8d05p3VB9lxNK/GbfZkFNApOqTGtAURERGpn2nDEyksKeeLza7NebbVGSQ1VVojOIqC1BSc/fPrnezNKOCxqwcS4WIqX1JMGO/dM5YRXWL4x1eOm8GXuKFC5uQ+8exKz+dAluvZSjuP5bM/q5AL+rk+8XRtLuzfng/uHduoHjg5u5BAf6YPT2TelmNnzfKS2rnSc1YG/MJa2xcYDdxnjOkHfAUMsNYOAnYCD3mumZ515dAELh3YkX/M23nKDPKeVFRazq2vrmbOd4f5xfm9+OvVgwj0d60j88eTexIRHMBfvthW43pVahQREXGf4Z3b0jU2nHerTWR8NlvTcomLDCYuMtjDLfvegIRojuYWkZn/fTGP9QdP8OKivVw/MonxPesXkESHBvLqLSO5aUxnrhuR5JZ5U6f0jQfgm3qkNs7dchRj4Lx+8Y0+vzGGYcltMUbTDHnS9SOTKauwp0z8La6rMxqw1qZZa9c5f84DtgEJ1tp51trK/v0VQKLnmulZxhgevXIA7SKC+Mn/vqu1jKy7VFRYfjF7A0t2Z/L4tEH8aErPev2haBsexI8m92ThjgwWnzZniLWWPen5Gm8mIiLiJpVznq3cl82w//uKqU8v5s7/ruEPn2xh1uK9fL4pjfUHT5CeV0RFhWVbWl6TpTRW6ndaUZDisnJ+9e4G2keF8NAldacz1iQowI8/Xj6Ax64e5JY2dm4XTve4cOZvdz21cd7WowxLbkt8ZNNMnyCN1y0ugnE92vH2qoNeGTLU3NUr780Y0wUYCqw8bdWtwDu17HMncCdAcnJy/VvYRNqEBfH36UP44UsreeyLbfzh8gEeOY+1lj9+upXPNqXx20v6ck1KUoOOc9PYzry2PJVHP9vGZz+OrZps+lhuMQUl5arUKCIi4kYzx3bB389wMLuQwydOkppVwNLdjomRqwvy96OkvIKJvbs3afv6d4wGYMuRHCb0iuPp+bvZlZ7Pq7eMIKqRY7XcaUrf9ry6NJX84rI60ywPnzjJ5sO5PHRxnyZqnbjLjFGduffNdSzckc6Uvg2vstkauRycGWMigPeBn1prc6st/y2O1Mc3a9rPWvsC8AJASkqKT4fP5/SMrZqIcVKfeCb2bnwX+uleWLSXV5elcts5Xbnj3G4NPk5wgD8PXNSHH739HR+sO8R0Z5BXWQxEPWciIiLuExEcwN0TTg24rLXkFpVx+PhJjpw4yZGckxw+cZLMvBKudk5g3VSiwwJJiglly5FcNh/O4blv9zBteKJHvss0xuQ+8bywaC/Xv7CCpJhQ2oUH0y4iiHYRwcSGO/5tFxFEbHgwc51j/C7o3/jxZtK0zu/XnrjIYN5ceUDBWT25FJwZYwJxBGZvWms/qLZ8JjAVmGJbyIQGv76oN0t2Z/Cr9zYy96fnEhMe5LZjz/nuEH/5YjtTB3Xktw1MMahu6qCOvLRkH3+bt4OpgzoRGuT/fXCmMWciIiIeZYwhOjSQ6NDAJiubfzb9O0az8dAJfvnuBtqFB/G7S/t5u0lnSOnclhtGJbM7PZ8dR/PIKsjiRGFprdv3jI+ga6yygZqbQH8/rhuRxL8X7ObQ8UIS24Z5u0nNRp3BmXEMhnoJ2Gat/Ue15RcBDwATrLXenSTMjUIC/fnXtUO54pml/OaDTTz3w2FuGTi6eFcGv3p3I2O6tePv1wzGz6/xx6ycmHra88t5cfFefjylJ3szCogIDiC+CQchi4iIiPf17xTFl1scvU2zbkohOsx30hkrBfj78ecrB56yrLS8guOFJWTlOx8FxVX/1reQifiO60Ym88yC3fxv1UF+eWFvbzen2XCl52wccCOwyRiz3rnsN8BTQDDwlTN4WWGtvdsTjWxq/TpF8YsLevGXL7bz3trvUwYbavPhHO5+fS094iP4z03DCQ7wd1NLT52Y+rqRSY5KjXHhqkQkIiLSygxIcIw7u2JIJ87r13xSyQL9/YiPDFHRjxYmoU0ok3rH8/mmNH5xQS99N3VRncGZtXYJUNO7+bn7m+M7bh/fjQU70nnk4y2M6tqO5HYN6449mF3Iza+spk1YEK/eMtIjg3IfuKgPX209xj+/2sWe9HxGa3JFERGRVmdcj1gevLgP14/03QJs0rr88YoBtAkNVGBWD65NrNUK+fsZ/n7NEPz8DD+fvZ6y8op6HyO7oISbXl5FaXkFr906gg7Rnrkj9P3E1Ac4klOk8WYiIiKtUFCAH3dP6E50qO+lM0rrlNAmlHAXJz8XBwVnZ5HQJpQ/XTGANfuP8/y3e+q178kSxyTTR06cZNbMFHrER3qolQ4/ntyz6pdfZfRFRERERJofBWd1uHxIApcN7sS/vt7FxkMnXNqnrLyC+99ax8ZDJ3jyuqGM6BLj2UbimJj6J1N6AtCng/crRomIiIiISP2YpqyAn5KSYtesWdNk53OXnMJSLnpyEcVlFfSMjyA8OMDxCPI/5d+w4AAigv1ZtDOTOd8d5v+uGMCNozs3WTuttaRmFarkrIiIiIiIjzLGrLXWptS0TkmgLogOC+T5Hw7n6W92k1tUSnpeEQWZ5RQUlzkeJeVn7HPfpO5NGpiBo7S+AjMRERERkeZJwZmLBie1YdbMGgNcKiosJ0vLKSgpo6C4HIOjSIeIiIiIiIirFJy5gZ+fqUp1xLN1P0REREREpIVSQRAREREREREfoOBMRERERETEByg4ExERERER8QEKzkRERERERHyAgjMREREREREfoOBMRERERETEByg4ExERERER8QEKzkRERERERHyAgjMREREREREfoOBMRERERETEBxhrbdOdzJgMYH+TndB1sUCmtxshTULXunXR9W49dK1bF13v1kPXuvVoTde6s7U2rqYVTRqc+SpjzBprbYq32yGep2vduuh6tx661q2LrnfroWvdeuhaOyitUURERERExAcoOBMREREREfEBCs4cXvB2A6TJ6Fq3LrrerYeudeui69166Fq3HrrWaMyZiIiIiIiIT1DPmYiIiIiIiA9oVsGZMeYiY8wOY8xuY8yD1Za/Y4xZ73ykGmPW17J/jDHmK2PMLue/bZ3LZ1Tbf70xpsIYM6SG/d90nn+zMeZlY0ygc7kxxjzlbNdGY8wwz7wDrYsPX+8+xpjlxphiY8wvPfPqWxcfvtYznP+nNxpjlhljBnvmHWhdfPh6X+681uuNMWuMMed45h1oPTx4rQONMa8ZYzYZY7YZYx6qZf+uxpiVzv3fMcYEOZfrc9vNfPha6zPbA3z4ejf/z21rbbN4AP7AHqAbEARsAPrVsN3fgd/XcozHgQedPz8I/LWGbQYCe2vZ/xLAOB9vA/dUW/6Fc/loYKW336/m/vDx6x0PjAAeBX7p7fequT98/FqPBdo6f75Y/7db/PWO4Pt0/0HAdm+/X8354clrDdwA/M/5cxiQCnSpYf/ZwHXOn5/X53arvNb6zG5d17vZf243p56zkcBua+1ea20J8D/g8uobGGMMcA2OD9uaXA685vz5NeCKGra5vrb9rbWfWydgFZBY7bj/da5aAbQxxnR0+ZVJTXz2eltr0621q4HSer0iqY0vX+tl1trjzs1W8P3/eWk4X77e+c5lAOGABmU3jievtQXCjTEBQChQAuTWcOzJwHs17K/Pbffy2Wutz2yP8OXr3ew/t5tTcJYAHKz2/JBzWXXjgWPW2l21HKO9tTYNwPlvfA3bXEvtv0iAo8sVuBH4sh5tk/rx5est7tVcrvVtOO60S+P49PU2xlxpjNkOfAbcerb9pU6evNbvAQVAGnAA+Ju1Nvu0fdsBJ6y1ZTWcX5/b7uXL11rcr7lc72b5uR3g7QbUg6lh2el3NWu9U+rSCYwZBRRaazfXsemzwCJr7eJ6tE3qx5evt7iXz19rY8wkHH/kNQap8Xz6eltr5wBzjDHnAv8HnNfQdohHr/VIoBzoBLQFFhtjvrbW7nXx/Prcdi9fvtbifj5/vZvz53Zz6jk7BCRVe54IHKl84uz+vAp4p9qyV5wDEj93LjpWmbbg/Df9tHNcR913Wh8G4oCfu9o2aRBfvt7iXj59rY0xg4BZwOXW2qx6vC6pmU9f70rW2kVAd2NMrCsvSmrkyWt9A/CltbbUWpsOLAVSTjt/Jo50xcob0dXPr89t9/Llay3u59PXu7l/bjen4Gw10NNZnSUIx4fvx9XWn4dj8PahygXW2lustUOstZc4F30MzHT+PBP4qHJbY4wfMB1H3myNjDG3AxcC11trK6qt+hi4yTiMBnIqu2qlwXz5eot7+ey1NsYkAx8AN1prdzbiNcr3fPl693COZcA4qvcFAc3ug92HePJaHwAmOz93w3EU9dhe/eTO8YMLgGk17K/Pbffy5Wst7uez17tFfG5bH6hK4uoDR3WlnTgqxPz2tHWvAnfXsX87YD6wy/lvTLV1E4EVdexf5jz3eufj987lBnjGuW4TkOLt96olPHz4enfAcdcoFzjh/DnK2+9Xc3748LWeBRyvtnyNt9+rlvDw4ev9ALDFuWw5cI6336vm/vDUtcZRWfNd5/XaCvyqlv274Sj6stu5fbBzuT63W8+11md267rezf5zu7JksIiIiIiIiHhRc0prFBERERERabEUnImIiIiIiPgABWciIiIiIiI+QMGZiIiIiIiID1BwJiIiIiIi4gMUnImIiIiIiPgABWciIiIiIiI+QMGZiIiIiIiID/j/3pqrNru/ADYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACcw0lEQVR4nOzdd3ib5dUH4N+j5SXJW94jtmM7TuI4IWGFQAYEWqCMMtpSCm2B0paWFrr7tdBBS+nezG46oGwKLQEChBWyHGfYsZPY8ZYt2dpber4/Xr2K7Fi2tmT73NfFRSJrPHYSW+c9i3HOQQghhBBCCCEktSSpPgAhhBBCCCGEEArOCCGEEEIIISQtUHBGCCGEEEIIIWmAgjNCCCGEEEIISQMUnBFCCCGEEEJIGqDgjBBCCCGEEELSAAVnhBBCCCGEEJIGKDgjhJB5ijFmCfrPxxizB/3+ulSfLxqMsT7G2PmpPsdsGGOvMcZuStBzNzLGnmGMjTPGJhhj/2OMNQV9fIX/Nh1j7JRFpYyxvzHGRhhjJsZY9/RzMsa2MMa6GGM2xth2xlhN0McYY+xHjDG9/7/7GGMsEZ8nIYSQmVFwRggh8xTnXCn+B6AfwKVBtz2a6vNNxxiTLYTXSLA8AM8CaAJQAuA9AM8EfdwN4DEAnwzx+B8CqOWcqwF8AMD3GWOnAQBjrAjAkwC+BaAAwG4A/wp67C0ALgewCkArgEsAfCoOnxMhhJAwUXBGCCELDGNMwhj7GmPsmD8D8hhjrMD/sVrGGGeMfZwxNsAYm2SM3coYW8cY62CMGRhjvwl6rhsZY28xxn7NGDP6sy5bgj6eyxh7xJ+tGWKMfZ8xJp322J8zxiYA3M0Yq2eMveo/l44x9ihjLM9//78CqAbwnD/79xXG2EbG2OC0zy+QXWOM3c0Y+7c/Y2QCcOMcZ2pgjL3u/1x0jLHg4CT4NTL9z6n3f012McZKGGP3ANgA4Df+M/7Gf/9mxtg2f7brCGPsmqDn+hNj7H7/x83+16+Z6XU55+9xzh/hnE9wzt0Afg6giTFW6P/4Ec75IwAOhXj8Ic65U/yt/796/++vBHCIc/4459wB4G4Aqxhjzf6P3wDgp5zzQc75EICfArhxptchhBCSGBScEULIwvN5CBmQ8wCUA5gE8Ntp9zkDwFIA1wL4BYBvAjgfwHIA1zDGzpt23+MAigDcBeBJMdgD8GcAHgANAFYD2ArgphkeqwFwDwAGIbtTDmAZgCoIQQI459djagbwvjA/38sA/BtC1unROc70PQAvAcgHUAng1yGe8wYAuf7zFQK4FYCdc/5NADsA3OY/422MsRwA2wD83f95fhjA7xhjy4Oe7zr/axcBaPefMxznAhjlnOvDvD8YY79jjNkAdAEYAfCC/0PLAewX78c5twI45r/9lI/7fx38ORBCCEkwCs4IIWTh+RSAb/ozIE4Iwc9V00r+vsc5d3DOXwJgBfAPzvmYP2OyA0JQIxoD8AvOuZtz/i8ARwBczBgrAfA+AF/gnFs552MQMj0fCnrsMOf815xzD+fczjk/yjnfxjl3cs7HAfwMQhAZi3c4509zzn0A1HOcyQ2gBkC5//N/M8RzuiEEZQ2ccy/nfA/n3BTivpcA6OOc/9H/ee4F8ASAq4Lu8x/O+Rv+P49vAjiLMVY12yfFGKuEEFTfMdcXIBjn/DMAVBAyfE8CEDNpSgDGaXc3+u8708eNAJTUd0YIIclDwRkhhCw8NQCe8pfjGQB0AvBC6GESaYN+bZ/h98qg3w9xzoOHT5yAkPmqASAHMBL0Wg9AyB6JBoIPxhjTMMb+6S83NAH4G4RsUiyCX2OuM30FQvbuPcbYIcbYJ0I8518B/A/APxljw/7hGPIQ960BcIb4ev7XvA5A6Uxn5JxbAExA+BrOiDFWDCHD9zvO+T9C3S8Uf0D5JoTs4Kf9N1sgBK/B1ADMIT6uBmCZ9mdPCCEkgSg4I4SQhWcAwPs453lB/2X6s2LRqJiWPakGMOx/HSeAoqDXUXPOg0vhpr+x/6H/tlb/0IqPQgiWQt3fCiBb/I2/d6x42n2CHzPrmTjno5zzmznn5RAyjL9jjDVM/4T9WcLvcM5bAJwNITv2sRBnHADw+rSvt5Jz/umg+wSyZIwxJYSBHMPTX9f/8XwIgdmznPN7ZrpPBGQ42XN2CMKwD/F1cvwfOzTTx/2/nrG3jRBCSGJQcEYIIQvP/QDuEYdOMMaKGWOXxfB8GgCfZ4zJGWNXQ+gVe4FzPgIhiPgpY0zNhEEk9dP61aZTQcjQGBhjFQC+PO3jWgB1Qb/vBpDJGLvYn7n6PwAZoZ58rjMxxq72lwsCQi8eh5BVnIIxtokxttIfDJoglDmK95t+xucBNDLGrvd/jeRMGLCyLOg+72eMncMYU0DoPdvJOZ+SVfS/rhpCxu4tzvnXZvg4Y4xlAlD4f5/JGMvw/1rDGPsQY0zJGJMyxi6E0P/2qv/hTwFYwRj7oP85vg2gg3Pe5f/4XwDcwRirYIyVA7gTwJ9m/EITQghJCArOCCFk4fklhHHsLzHGzADehTCYI1o7IQwP0UEY6nFV0ICKj0EIFA5DCHb+DaBsluf6DoA1EPqZ/gOhJyrYDwH8n7888EuccyOAzwB4GMAQhEzaIGY325nWAdjJGLNA+BrdzjnvneE5Sv2PM0EoC30dQgkmIHx9r2LCpMtfcc7NEIaOfAhCNmwUwI8wNYj8O4RhKhMAToNQ9jiTK/xn/Dibuseu2v/xGghlp2JGyw6hBxAQAs1PQ/j6TAL4CYTeu2cAwN/j90EIf4aTEP5OBPcHPgDgOQAHAByE8OfzQIhzEkIISQBGpeSEEEJCYYzdCOAmzvk5qT7LfMUY+xOAQc75/6X6LIQQQtIbZc4IIYQQQgghJA1QcEYIIYQQQgghaYDKGgkhhBBCCCEkDVDmjBBCCCGEEELSAAVnhBBCCCGEEJIGZMl8saKiIl5bW5vMlySEEEIIIYSQtLFnzx4d57x4po8lNTirra3F7t27k/mShBBCCCGEEJI2GGMnQn2MyhoJIYQQQgghJA1QcEYIIYQQQgghaYCCM0IIIYQQQghJA0ntOZuJ2+3G4OAgHA5Hqo9CFpjMzExUVlZCLpen+iiEEEIIIYTMKeXB2eDgIFQqFWpra8EYS/VxyALBOYder8fg4CCWLFmS6uMQQgghhBAyp5SXNTocDhQWFlJgRuKKMYbCwkLKyBJCCCGEkHkj5cEZAArMSELQ3ytCCCGEEDKfpEVwlmr33HMPli9fjtbWVrS1tWHnzp0AgJtuugmHDx+Oy2vU1tZCp9PNep8f/OAHET/vn/70J9x2221TbvvjH/+ItrY2tLW1QaFQYOXKlWhra8PXvva1iJ8/GX7xi1/AZrOl+hiEEEIIIYSkVMp7zlLtnXfewfPPP4+9e/ciIyMDOp0OLpcLAPDwww8n9Sw/+MEP8I1vfCPm5/n4xz+Oj3/84wCEoHD79u0oKiqK+XmjxTkH5xwSyczXAn7xi1/gox/9KLKzs8N+To/HA5ls0f/1JYQQQgghC8iiz5yNjIygqKgIGRkZAICioiKUl5cDADZu3Ijdu3cDAJRKJb761a/itNNOw/nnn4/33nsPGzduRF1dHZ599lkAp2axLrnkErz22munvObll1+O0047DcuXL8eDDz4IAPja174Gu92OtrY2XHfddQCAv/3tbzj99NPR1taGT33qU/B6vQCEzFhjYyPOO+88vPXWW2F/rj/+8Y+xbt06tLa24q677gIA9PX1obm5GTfddBNWrFiB6667Di+//DLWr1+PpUuX4r333gMA3H333bj++uuxefNmLF26FA899NCcz7ts2TJ85jOfwZo1azAwMIBPf/rTWLt2LZYvXx64369+9SsMDw9j06ZN2LRpU+BrLfr3v/+NG2+8EQBw44034o477sCmTZvw1a9+FceOHcNFF12E0047DRs2bEBXV1fYXwtCCCGEEJJY42Yn/vruCYybnak+yryx6IOzrVu3YmBgAI2NjfjMZz6D119/fcb7Wa1WbNy4EXv27IFKpcL//d//Ydu2bXjqqafw7W9/O6LX/MMf/oA9e/Zg9+7d+NWvfgW9Xo97770XWVlZaG9vx6OPPorOzk7861//wltvvYX29nZIpVI8+uijGBkZwV133YW33noL27ZtC7vs8qWXXkJPTw/ee+89tLe3Y8+ePXjjjTcAAEePHsXtt9+Ojo4OdHV14e9//zvefPNN/OQnP5lSatnR0YH//Oc/eOedd/Dd734Xw8PDsz7vkSNH8LGPfQz79u1DTU0N7rnnHuzevRsdHR14/fXX0dHRgc9//vMoLy/H9u3bsX379jk/j+7ubrz88sv46U9/iltuuQW//vWvsWfPHvzkJz/BZz7zmYj+HAghhBBCSOLs7NXjW08fxIjRnuqjzBtpVRf2necO4fCwKa7P2VKuxl2XLg/5caVSiT179mDHjh3Yvn07rr32Wtx7772BbI1IoVDgoosuAgCsXLkSGRkZkMvlWLlyJfr6+iI6069+9Ss89dRTAICBgQH09PSgsLBwyn1eeeUV7NmzB+vWrQMA2O12aDQa7Ny5Exs3bkRxcTEA4Nprr0V3d/ecr/nSSy/hpZdewurVqwEAFosFPT09qK6uxpIlS7By5UoAwPLly7FlyxYwxk753C677DJkZWUhKysLmzZtwnvvvYc333wz5PPW1NTgzDPPDDz+sccew4MPPgiPx4ORkREcPnwYra2tEX3trr76akilUlgsFrz99tu4+uqrAx9zOumqDCGEEEJIutg/YIBCJkFzqTrVR5k30io4SxWpVIqNGzdi48aNWLlyJf785z+fEpzJ5fLA9D+JRBIog5RIJPB4PAAAmUwGn88XeMxMY9xfe+01vPzyy3jnnXeQnZ2NjRs3zng/zjluuOEG/PCHP5xy+9NPPx3VFELOOb7+9a/jU5/61JTb+/r6Ap/LbJ8bcOr0Q8bYrM+bk5MT+H1vby9+8pOfYNeuXcjPz8eNN94Ycsx98OtMv4/4nD6fD3l5eWhvb5/rUyeEEEIIISnQPmDA8nI1FLJFX6wXtrQKzmbLcCXKkSNHIJFIsHTpUgBAe3s7ampqonqu2tpa/O53v4PP58PQ0FCgXyuY0WhEfn4+srOz0dXVhXfffTfwMblcDrfbDblcji1btuCyyy7DF7/4RWg0GkxMTMBsNuOMM87A7bffDr1eD7VajccffxyrVq2a82wXXnghvvWtb+G6666DUqnE0NAQ5HJ5RJ/fM888g69//euwWq147bXXAqWY4TyvyWRCTk4OcnNzodVq8eKLL2Ljxo0AAJVKBbPZHBhaUlJSgs7OTjQ1NeGpp56CSqU65fnUajWWLFmCxx9/HFdffTU45+jo6Ajra0EIIYQQQhLL7fXhwJARHz69OtVHmVfSKjhLBYvFgs997nMwGAyQyWRoaGgIDOmI1Pr16wMlgitWrMCaNWtOuc9FF12E+++/H62trWhqappS9nfLLbegtbUVa9aswaOPPorvf//72Lp1K3w+H+RyOX7729/izDPPxN13342zzjoLZWVlWLNmTWBQyGy2bt2Kzs5OnHXWWQCEcs6//e1vkEqlYX9+p59+Oi6++GL09/fjW9/6FsrLy1FeXh7W865atQqrV6/G8uXLUVdXh/Xr10/5vN/3vvehrKwM27dvx7333otLLrkEVVVVWLFiBSwWy4znefTRR/HpT38a3//+9+F2u/GhD32IgjNCCCGEkDRwZNQMh9uHtqq8VB9lXmGc86S92Nq1a7k4/VDU2dmJZcuWJe0MJDp33303lEolvvSlL6X6KBGhv1+EEEIIIcn36M4T+OZTB/HGlzehujD8dUmLAWNsD+d87UwfowJQQgghhBBCSFy19xtQkKNAVUFWqo8yryz6skYSnrvvvjvVRyCEEEIIIfNE+4ABqypzoxpkt5jNmTljjFUxxrYzxjoZY4cYY7f7b29jjL3LGGtnjO1mjJ2e+OMSQgghhBBC0pnZ4cbRcQvaqvJTfZR5J5zMmQfAnZzzvYwxFYA9jLFtAO4D8B3O+YuMsff7f78xcUclhBBCCCGEpLuOQSM4B9qq81J9lHlnzuCMcz4CYMT/azNjrBNABQAOQNwolwtgOFGHJIQQQgghhMwP7QMGAMCqytzUHmQeiqjnjDFWC2A1gJ0AvgDgf4yxn0Aojzw7xGNuAXALAFRX054DQgghhBBCFrL2AQOWFOUgL1uR6qPMO2FPa2SMKQE8AeALnHMTgE8D+CLnvArAFwE8MtPjOOcPcs7Xcs7XFhcXx+PMcSeVStHW1oYVK1bg6quvhs1mi/q5brzxRvz73/8GANx00004fPhwyPu+9tprePvttwO/v//++/GXv/wl6tcW9fX1YcWKFVNuu/vuu/GTn/wkoueJ13kIIYQQQsjiwDlH+4CB9ptFKazMGWNMDiEwe5Rz/qT/5hsA3O7/9eMAHo7/8ZIjKysL7e3tAIDrrrsO999/P+64447Ax71eb0TLmkUPPzz7l+S1116DUqnE2WcLScdbb7014tdIFI/Hk1bnIYQQQggh6W/Y6MC42UnBWZTCmdbIIGTFOjnnPwv60DCA8/y/3gygJ/7Hm+a++4Dt26fetn27cHucbNiwAUePHsVrr72GTZs24SMf+QhWrlwJr9eLL3/5y1i3bh1aW1vxwAMPABCuDtx2221oaWnBxRdfjLGxscBzbdy4EeLS7f/+979Ys2YNVq1ahS1btqCvrw/3338/fv7zn6OtrQ07duyYkt1qb2/HmWeeidbWVlxxxRWYnJwMPOdXv/pVnH766WhsbMSOHTsi/hxne+5vfOMbOO+88/DLX/4ycJ7h4WG0tbUF/pNKpThx4gROnDiBLVu2oLW1FVu2bEF/fz8AIXv4+c9/HmeffTbq6uoCmURCCCGEELKw7ff3m1FwFp1wyhrXA7gewGb/2Px2/3TGmwH8lDG2H8AP4O8rS6h164BrrjkZoG3fLvx+3bq4PL3H48GLL76IlStXAgDee+893HPPPTh8+DAeeeQR5ObmYteuXdi1axceeugh9Pb24qmnnsKRI0dw4MABPPTQQ1PKFEXj4+O4+eab8cQTT2D//v14/PHHUVtbi1tvvRVf/OIX0d7ejg0bNkx5zMc+9jH86Ec/QkdHB1auXInvfOc7U8753nvv4Re/+MWU24MdO3ZsSkB1//33h/XcBoMBr7/+Ou68887AbeXl5Whvb0d7eztuvvlmfPCDH0RNTQ1uu+02fOxjH0NHRweuu+46fP7znw88ZmRkBG+++Saef/55fO1rX4vwT4IQQgghhMxH7QMGKKQSNJepUn2UeSmcaY1vAgi1Pe60uJ7mC18A/OWFIZWXAxdeCJSVASMjwLJlwHe+I/w3k7Y24Be/mPUp7XY72traAAiZs09+8pN4++23cfrpp2PJkiUAgJdeegkdHR2BLJDRaERPTw/eeOMNfPjDH4ZUKkV5eTk2b958yvO/++67OPfccwPPVVBQMOt5jEYjDAYDzjtPSEzecMMNuPrqqwMfv/LKKwEAp512Gvr6+mZ8jvr6+kCpJnByifRcz33ttdeGPNdbb72Fhx9+OJCte+edd/Dkk0KV6/XXX4+vfOUrgftefvnlkEgkaGlpgVarnfXzJYQQQgghC0N7vwEt5WpkyCJvCSIRTmtMC/n5QmDW3w9UVwu/j1Fwz1mwnJycwK855/j1r3+NCy+8cMp9XnjhhTk3n3PO47odPSMjA4AwyMTj8cTteYGpn3OwkZERfPKTn8Szzz4LpVI5432CP0fxjIDw+RNCCCGEkIXN4/XhwJAR166rSvVR5q30Cs7myHABOFnK+K1vAb//PXDXXcCmTQk/2oUXXojf//732Lx5M+RyObq7u1FRUYFzzz0XDzzwAD72sY9hbGwM27dvx0c+8pEpjz3rrLPw2c9+Fr29vViyZAkmJiZQUFAAlUoFk8l0ymvl5uYiPz8fO3bswIYNG/DXv/41kOmKVTTP7Xa7cc011+BHP/oRGhsbA7efffbZ+Oc//4nrr78ejz76KM4555y4nJEQQgghhMw/R7Rm2N1erKbl01FLr+BsLmJg9thjQkC2adPU3yfQTTfdhL6+PqxZswaccxQXF+Ppp5/GFVdcgVdffRUrV65EY2PjjIFOcXExHnzwQVx55ZXw+XzQaDTYtm0bLr30Ulx11VV45pln8Otf/3rKY/785z/j1ltvhc1mQ11dHf74xz/G7XOJ9Lnffvtt7Nq1C3fddRfuuusuAELG8Fe/+hU+8YlP4Mc//jGKi4vjekZCCCGEEDK/7B8wAqBhILFgySw5W7t2LRenF4o6OzuxbNmy8J7gvvuE4R/Bgdj27cCuXUBQvxMhooj+fhFCCCGEkKh95d/7se2wFnu/dUFcW3oWGsbYHs752pk+Nr8yZzMFYGIGjRBCCCGEEJIy7QMGrKrKo8AsBuGM0ieEEEIIIYSQkMwON3rGLFTSGCMKzgghhBBCCCExOTBkBOfUbxartAjOaNQ6SQT6e0UIIYQQkhztAwYAwKrKvJSeY75LeXCWmZkJvV5Pb6RJXHHOodfrkZmZmeqjEEIIIYQseO39BtQWZiM/R5Hqo8xrKR8IUllZicHBQYyPj6f6KGSByczMRGVlZaqPQQghhBCyoHHO0T5gwNn1hak+yryX8uBMLpdjyZIlqT4GIYQQQgghJAojRgfGzE7qN4uDlJc1EkIIIYQQQuav/f5+s7bq/NQeZAGg4IwQQgghhBAStfYBAxRSCZaVqVJ9lHmPgjNCCCGEEEJI1PYNGLCsXI0MmTTVR5n3KDgjhBBCCCGERMXj9eHAoBGrqd8sLig4I4QQQgghhESlZ8wCu9tLw0DihIIzQgghhBBCSFQCy6cpOIsLCs4IIYQQQgghUWnvNyAvW47awuxUH2VBoOCMEEIIIYQQEpX2AQNWVeaBMZbqoywIFJwRQgghhBBCImZxetA9ZqZ+szii4IwQQgghhBASsQODRnAOtFXnpfooCwYFZ4QQQgghhJCIBYaBVOal9BwLCQVnhBBCCCGEkIi1D0yipjAbBTmKVB9lwaDgjBBCCCGEEBKx9gED9ZvFGQVnhBBCCCGEkIiMGh3QmpwUnMUZBWeEEEIIIYSQiLQPTAKg5dPxRsEZIYQQQgghJCL7BgyQSxlaytSpPsqCIpvrDoyxKgB/AVAKwAfgQc75Lxlj/wLQ5L9bHgAD57wtQeckhBBCCCGEpIn2fgNaytTIlEtTfZQFZc7gDIAHwJ2c872MMRWAPYyxbZzza8U7MMZ+CsCYqEMSQgghhBBC0oPXx3FgyIirT6tM9VEWnDmDM875CIAR/6/NjLFOABUADgMAY4wBuAbA5gSekxBCCCGEEJIGesbMsLm8tHw6ASLqOWOM1QJYDWBn0M0bAGg55z1xPBchhBBCCCEkDXUMCAVztHw6/sIOzhhjSgBPAPgC59wU9KEPA/jHLI+7hTG2mzG2e3x8PPqTEkIIIYQQQlJu0GAHAFQVZKf4JAtPWMEZY0wOITB7lHP+ZNDtMgBXAvhXqMdyzh/knK/lnK8tLi6O9byEEEIIIYSQFNJZnCjIUUAupcHv8TbnV9TfU/YIgE7O+c+mffh8AF2c88FEHI4QQgghhBCSXnRmJ4qUilQfY0EKJ9xdD+B6AJsZY+3+/97v/9iHMEtJIyGEEEIIIWRh0VmcKFJmpPoYC1I40xrfBMBCfOzGeB+IEEIIIYQQkr50FhfaqvJSfYwFiQpFCSGEEEIIIWGjzFniUHBGCCGEEEIICYvN5YHN5UWRinrOEoGCM0IIIYQQQkhYdGYXAFDmLEEoOCOEEEIIIYSEZdziAAAUU3CWEBScEUIIIYQQQsIy7s+cFasoOEsECs4IIYQQQgghYdFZnACorDFRKDgjhBBCCCGEhEUMzgppCXVCUHBGCCGEEEIICYvO4kRethxyKYURiUBfVUIIIYQQQkhYdGYXlTQmEAVnhBBCCCGEkLAIC6ippDFRKDgjhBBCCCGEhEUIzihzligUnBFCCCGEEELCorNQWWMiUXBGCCGEEEIImZPd5YXF6aEdZwlEwRkhhBBCCCFkTuIY/WLKnCUMBWeEEEIIIYSQOY2LC6hVNBAkUSg4I4QQQgghhMxJZ/YHZ5Q5SxgKzgghhBBCCCFz0llcACg4SyQKzgghhBBCCCFzEnvOCmnPWcJQcEYIIYQQQgiZk87ihDpThgyZNNVHWbAoOCOEEEIIIYTMSWdxoojG6CcUBWeEEEIIIYSQOY2bndRvlmAUnBFCCCGEEELmpLO4aAF1glFwRgghhBBCCJmTzuykBdQJRsEZIYQQQgghZFYOtxdmpwdFNKkxoSg4I4QQQgghhMxKHKNPPWeJRcEZIYQQQgghZFa0gDo5KDgjhBBCCCGEzEpn9mfOaCBIQs0ZnDHGqhhj2xljnYyxQ4yx24M+9jnG2BH/7fcl9qiEEEIIIYSQVDhZ1kg9Z4kkC+M+HgB3cs73MsZUAPYwxrYBKAFwGYBWzrmTMaZJ5EFJ+nrkzV50j5rxo6taU30UQgghhBCSAONm6jlLhjkzZ5zzEc75Xv+vzQA6AVQA+DSAeznnTv/HxhJ5UJKe/vruCXzv+cP41+4BGG3uVB+HEEIIIYQkgM7ihCpThky5NNVHWdAi6jljjNUCWA1gJ4BGABsYYzsZY68zxtYl4HwkjT3TPoRvP3MQ9cU5AIB9A5MpPhEhhBBCCEkEncVFO86SIOzgjDGmBPAEgC9wzk0QSiLzAZwJ4MsAHmOMsRkedwtjbDdjbPf4+Hicjk1SbfuRMdz52H6sqy3AY586CxIG7Os3pPpYhBBCCCEkAcYtTippTIKwgjPGmBxCYPYo5/xJ/82DAJ7kgvcA+AAUTX8s5/xBzvlazvna4uLieJ2bpNDuvgl8+m970FSqwsM3rEWhMgONJSrs7afMGSGEEELIQqSzOFGkomEgiRbOtEYG4BEAnZzznwV96GkAm/33aQSgAKBLwBlJGukcMeETf9qF8tws/PkTp0OdKQcArKnJR/uAAT4fT/EJCSGEEEJIvOnMlDlLhnAyZ+sBXA9gM2Os3f/f+wH8AUAdY+wggH8CuIFzTu/MF7ATeiuuf+Q95GTI8JdPnj7lH+ia6nyYHR4cHbek8ISEEEIIISTenB4vTA4PBWdJMOcofc75mwBO6SXz+2h8j0PSldbkwEcf2Qmvz4d/3nIWKvOzp3x8TXUeAGDviUk0lqhScEJCCCGEEJIIeosLAI3RT4aIpjWSxclgc+Fjj7yHCYsLf/r46WjQnBp8LSnKQX62nPrOCCGEEEIWmJM7zqjnLNHCWUJNFjGby4NP/GkXenVW/PHj67CqKm/G+zHGsLo6H3tpYiMhhBBCyIKis/iDMxVlzhKNMmckJJfHh1v/thftAwb86sOrsb7hlGGcU6yuysPRMQuMdlpGTQghhBCyUIjBGe05SzwKzkhI33v+MN7oHse9V7biohWlc95/TU0+AKB9wJDgkxFCCCGEkGTR+XvOiilzlnAUnJEZ2Vwe/HvPIK5ZW4lr1lWF9ZhVVXmQMGEoCCGEEEIIWRjGzU4oM2TIlEtTfZQFj4IzMqNXu8Zgd3txxerKsB+jzJDRMmpCCCGEkAVGZ3HSMJAkoeCMzOj5/SMoVmXg9CUFET2OllETQgghhCwsQnBGJY3JQMEZOYXZ4cb2I2O4eGUZpJJQK+5mtroqj5ZRE0IIIYQsIDqLi4KzJKHgjJzi5U4tnB4fLl1VFvFjxaEg1HdGCCGEELIw6CxOFKmorDEZKDgjp3h+/wjKczOxuio/4sfWFeUgL1uOfbTvjBBCCCFk3nN5fDDY3JQ5SxIKzsgURpsbb/SM4+LWMkgiLGkE/Muoq/JoKMgCNGp0wGijHXaEEELIYqK3+nec0Rj9pKDgjEzxv8OjcHs5Lmktj/o51lTno4eWUS841z+yE9957lCqj0EISRKfj+OpfYNweXypPgohJIV0ZmHHGWXOkoOCMzLFc/uHUV2QjdbK3Kifg5ZRLzw2lwc9YxYcHjGl+ijz2r/3DOL3rx1L9TEICctr3WP44r/248WDI6k+CiEkhXQWIXNGwVlyUHBGAvQWJ94+psclrWVgLPKSRlFrZS4YLaNeUHq0wvTN4zorvLQmIWoP7ziOP73dm+pjEBKWN3v0AID9A8YUn4QQkkrj/uCsmIKzpKDgjAT899AovL7YShoBQJUpRxMto15QurVmAEJT8LDBnuLTzE8WpwfdWjO0JiecHm+qj0PInN4+pgMAHBgypPYghJCUCmTOaFpjUlBwRgKe3z+CuuIcLCtTxfxcq6tpGfVC0jN2cm8d7bCLTsegAeI/h6FJCnBJetNZnOgaNSNTLsHBIRM8Xuo7I2Sx0pldyFZIka2QpfooiwIFZwQAMGZy4N1ePS5pLY+ppFG0plpYRn0sgW/kHW4v7nxsPwYnbQl7DSI4MmpGWW4mAOD4uDXFp5mfgtdLDFBwRtLc28eEksYPrauG3e3FMfp3T8iipbM4qd8siSg4IwCAFw6MgHPg0tbIF0/PJLCMOoGljR2DRjyxdxDP7adm9UTr0ZpxxpIC5GXLExpwL2TtAwaoM4WrjnRBgaS7t4/qoMqU4SNnVAMQMr+EkMVp3OxEkZJKGpOFgjMCAHi+YwTNpSosLYm9pBEAlhTmIDdLjr0nDHF5vpn06oQggd40JJbZ4caw0YGlJSrUFytxnIKziHHOsa/fgC3LSiCXMgxMUOaMpLe3julwZl0hGoqVUGbI0DFIQ0EIWax0FiftOEsiCs4Ihg127D4xiUvilDUDAImEYXV1YpdR9+qE7MN+GtmfUN3+SY2NJSrUFeVQeVMUBift0FmcWFOTj4q8LAxQ5oyksYEJGwYm7FhfXwiJhGFFhRodQxScEbJYUVljclFwRvCfDqEsMNYpjdMlehm1mDkbNjowZnYk5DWIUNIIAE0lKtRrlBg3O2Fy0ILxSOzzX0BYXZWHyvxsDC6inrO3j+lwaJje2M8nbx0VpjSubygCALRW5qFz2ETLqAlZhNxeHyZtbgrOkoiCM4LnO4axsiIXtUU5cX3eNdWJXUbdq7MGvll00B6ehDmiNSNLLkVlfhbq/H9HaChIZNr7DciUS9BcqkJVQRYGJxZH5uzQsBE3/mEX7n2xK9VHIRF465geGlUGGjRKAMLuSpfXF1ipQQhZPCasLgBAEZU1Jg0FZ4tcv96G/YPGuJY0ilZVCcuo9yWgtNHr4+jT2/D+laWQShj2U99ZwvRoLWjQKCGRMNT736xR31lk9g1MorUiDzKpBJX52dBbXbA6Pak+VkLZXV58/h/74PL60KenYH6+8Pk43j6qw9n1hYHJva0VeQBAfWeELELjZnEBNQ0ESRYKzha55w8MAwAuTkBwdnIZtSHuzz1ssMPl8aGlTI3GEhX205uGhOnWmtHoHxRTXZANmYTRxMYIOD1eHBoyYXV1HgCgqiAbABZ8aeP3/nMYx8atOGNJAYYm7VQSN08c0Zqht7pwtr+kEQCqCrKQly2n4UuELEKBBdRU1pg0FJwtcs/tH8HqaqEPJhFWV+dhX/9k3JdR9+qEK/FLinLQVpWL/QMGcE4Lr+PNYHNhzOxEY4mQMZNLJaguzMaxMcqEhOvwsAkury8QnFXmZwFY2OP0/3doFH/f2Y9PnVuHa9ZWwccX9ue7kEzvNwMAxhhWVuRS5oyQRUhn8Zc1UnCWNBScLWLHxi3oHDHh0jgPAgm2ujo/IcuoA8FZcQ5aK/NgtLtxQk9v/uItMKmx9OSKhfpiJY7rKHMWLnH59Gp/D2aV/0LIwALtOxs1OvDVJzqwokKNO7c2oaZQ+HxPLNDPd6F5+5geS4pyUJGXNeX21spcHNGa4XB7U3QyQkgqiGWN1HOWPBScLWLP7x8BY4kpaRSJQ0HiPVK/V2eFMkOGYmUGVlXmAQD1nSWAOACgMWj/XV1xDvp0NnjjnA1dqNoHDCjLzUSJOhMAUKRUIFMuwcACLGv0+ji++K92ON0+/OpDq6GQSVBTKAyROaGjbGu6c3t92Hlcj7PrC0/5WGtlHrw+jsMjphScjJCFQezFnU8X53QWJzLlEuQopKk+yqIxZ3DGGKtijG1njHUyxg4xxm733343Y2yIMdbu/+/9iT8uiRfOOZ7rGMa62oLAm8ZEqCtKzDLqXp0VS4pywBhDY4kSmXIJ9tPExrjr1pqhzJChPPfk35H6YiVcXh+VqYVp38BkoKQREErEhHH6C+/r9+Abx/HOcT2+84HlqCsWSmGLlArkKKToo8x22usYNMDq8k4paRS1VuYCAA5QaSMhUesYNODZ/cN4rmM41UcJm7iAWhwQRBIvnMyZB8CdnPNlAM4E8FnGWIv/Yz/nnLf5/3shYackcXdEa8bRMQsuTWDWDEjcMupenTUw+l8mlWBFeS5lzhKgW2vG0hLllG/K9cXC152Ggsxt3OzEwIQdq6vyp9xelZ+FgYmFlTnbP2DAT186gotXluHqtZWB2xljqC7MQf88ulK8WL11VA/GgLPqTs2claozUazKoO+zhMRAbMnYn6AVQ4lAC6iTb87gjHM+wjnf6/+1GUAngIpEH4wk1vP7RyBhwPtWJjY4A4DVVfFdRu30eDE4acOSoL1sq6rycGjYCLc3ORPhfvlyD37wQmdSXiuVurUWNGpUU26rKxLH6c/PMrVRowO3/nUPjowmfmeTuOMvOHMGCBMbBxZQ5szi9OD2f+6DRpWBH1yx8pQrrLWF2TROfx5466gOLWVq5OecOjKbMYbWilzKnBESg169GJzNn39HOrOLgrMki6jnjDFWC2A1gJ3+m25jjHUwxv7AGMsP/UiSTjjneL5jGGfXFyXlH9yamjwA8btSNDBhg48jsBAZEEpuHO7kLUn9994BPLl3KCmvlSo6ixMTVteUYSAAkJ+jQEGOYl5mzsbNTnzk4Xfx30OjeLlTm/DXax+YhEzCsKIid8rtVfnZMDs8MNric8Ei1e5+9hD6J2z4xYdWIzdbfsrHqwuzMThhpz7FNGZ3ebGv3zBjSaNoZWUujo5bYFngO/oISZRe/0XNUZMDo0ZHik8THsqcJV/YwRljTAngCQBf4JybAPweQD2ANgAjAH4a4nG3MMZ2M8Z2j4+Px35iErODQyb06W0JWTw9k7aqPDAWv6EgYsYmOHPWVpUHIDlLUietLgxM2KGzOKH37/9YiE4OA1Ge8rH64hwcm2eZswmrCx99eCdGDA6oMmU4Opb44HJfvwHLytTIlE9tpBbH6S+E7Nlz+4fx7z2DuG1TA05fUjDjfWoLc+Dy+jBiXFilnAvJrr4JuLy+GYeBiFZV5oFz4NDQ/LnqT0g66dNbofFPPWyfB6WNHq8PEzYXLaBOsrCCM8aYHEJg9ijn/EkA4JxrOedezrkPwEMATp/psZzzBznnaznna4uLi+N1bhKD5zuGIZMwXLSiNCmvp8qUo1ETv2XUYs12bVBwVl2QjbxseVLquA8On3xjciRJmbpU6B49dVKjqK5IiePzKHNmtLnx0Yd3ok9vxSM3rEVbVV7CgzOvj2P/gOGUkkYgeBH1/A7OBidt+MZTB7CmOg+f37I05P0C4/RpKEjaeuuYDnIpCxlgA0LmDAAOUHBGSMR8Po4+vQ3vW1EKuZTNi/7NCZsLnNMY/WQLZ1ojA/AIgE7O+c+Cbg9Ou1wB4GD8j0cSYVunFusbipCXnbwrIWtq4reMuldnRZFSgdysk+VTjDG0VuYl5UpU8BuTZPQtpUr3mAW5WfLAVb5g9Zoc6CyueVGWZ3a48bE/7MTRMQseuP40nN1QhAaNEkfHLHFfjh6sZ8wMq8s7c3AW2HU2fzNJHq8PX/hnOzgHfvmh1ZBJQ/84CYzTp+Asbb19VI/VVfnIVshC3qdImYGKvCzsp74zQiI2bLTD5fGhqVSNZWXqeTEURGemBdSpEE7mbD2A6wFsnjY2/z7G2AHGWAeATQC+mMiDkvgZNtixVHNqqVoixXMZ9XH/GP3p2ipz0TNmgc2V2H6Ig0NGVBdkIz9bnrQet1ToHjWjcdqkRpE4FORYmi+jtjo9+Pgfd+HQsAm/vW4NNjZpAABLNSrY3V4MJ7DMrt2fKW6rOrUdV50lgypDNq8zZ7/dfgy7T0zinitWBDKBoZSpM6GQSXCChoKkJYPNhYPDRpzdELqkUbSyIhcH5sEVf0LSzcmqn2ysqsxDx6AxoRcI42Hc37pBwVlyhTOt8U3OOeOctwaPzeecX885X+m//QOc85FkHJjExubywOH2oTDJ/9DW+LMH++JQ2tgbIjhbVSUsST00nNglqR2DRqysyEVTqQpdccqcOdxe7DyuB+fp8Y2ac45urXnGkkYAqNek/8RGu8uLT/55F/YNGPCrD6/GBS0lgY81+M+fyNLGff0G5GXLUVt4auDCGENlQfa8XUTt8vjwu9eO4uLWMlzWNvfwXomEobogmzJnaeqdY3pwjlmHgYhWVuaiT2+bF1lzQtJJnz84qytSYlVVHixOD44n8QLn4KQtcIZw6cxCcFZMZY1JFdG0RjL/6S1CirpwhlHJiVRXpIQ6UxbzUBCL04NxsxNLik7N/LVW5gFI7P6QSasLg5N2rKzMRXOpGt2j5rhc+frrOydw7YPv4ua/7E6LISNjZidMDk/I4KwqPwtyKUvbiY0Otxe3/HU3dvZO4GfXrML7p62MSEpwNjCJ1VV5IRd3CrvO5mew0jVqgtPjw8URrOKoKaBx+unqrWM6ZCukWOX/Hjob8T7Ud0ZIZHp1NmTJpShRZ6CtSujfbE/iSP2vP3kAN/1ld0SP0QUyZzQQJJkoOFtk9FZ/cJbkf2jCMur8mIMz8arPkqJTsxHFqsT3Q4jDQFZW5KKxRAWry4shQ+zZj/YBA5QZMrzRrcOFv9iB17tTO9lU7KVbOsOkRkBY/F1TmINjSZh4GCmXx4fb/r4XO3p0+NEHW2fM7BT41wEkKjgzO9zoGbNgdXXoDSOV+dkYnLSnTbY0EuK/sdbK3DnueVKNfxH1fPx8F7q3j+px+pICKGRzvyVY6V8L0TFkSPCpCFlYenUW1BblgDGGuiIllBkytA/EZ4p1OI6NWXB0zBJRebnO4kSGTAJlRuheVBJ/FJwtMhNW4SpIQZIzZwCwplpYRm1yRF8OczwQnM0cNLRW5iY0cyaO6l9RLpQ1AvEZCnJw2IgNS4vwzG3rUZAjxw1/eA/ffe4wHG5vzM8dDbGXrilE5gwQ9swdj7BEItE8Xh9u/+c+vNw5hu9fvgLXrK0KeV9xKEgidAwawfnJFQ8zqSrIgt3tDVwwmU86BgwozFGgIi8r7MfUFGbD5vIGehhIehgx2nFcZ8U5YZQ0AkCuv1S3I02W6A4Z7LQYmyTM33f2Y/29r8blZ3Gf3ha4sCyRMP/7leT83XW4vRj271V7tWss7MfpLMIC6lAVICQxKDhbZHSW1E3eWV0t7MiJ5Yd677gVjJ0czT3dqqo89E/YMJmgN7wHh4yoKcxGbrY8sP8r1nH6RrsbJ/Q2rKjIxbIyNZ697RzceHYt/vBWLy7/7VspGTrSo7WgMEcxa29ivUaJE3orPF5fEk8WmtHuxh2P7ceLB0fxrUta8NEza2a9f4NGiZ4xS0IyOfv8GeJVswVngYmN86+0sWPQiNbK3Ih+YNM4/fT01lE9AODs+vCCMwBYWZmXNmWNP/nfEdz4x/fSNiPLOcd9/+2K255PkjzDBjvu+c9hDBns6NHGdiHP7fWhf8J2yn7WzhFTUi7CBv+ciSw4c9IY/RSg4GyRmfAHLanInIlvVGNJ4/fqLCjPzTplqW/gNcS+swRNEzswZMQKf1mPKlOOirysmDNnh/0DTJaXqwEAmXIp7v7AcvzxxnXQWZy49Ndv4s9v9yX1zccRrTlkSaOorigHbi9P6VCLCasL/9rVjxv/+B7Wfn8bnt0/jK9c1IRPnrNkzsc2FCthtLsDFyziaV+/AQ0a5ZR1D9OJEw7n21AQq9ODnjFzoMczXLX+cfqRNqSTxHr7qA4FOQo0l4bOkk/XWpGLIYM90I+SSif0Vuj9vcDpaNzixO9eO4brH96JPScoQJtP7n72EBwe4eJj52hsg8YGJ+3w+njg+yAgvCfy+DgOjyR2iBkgZO0AYF1tPnYen4DVGd5U63GzkxZQpwAFZ4uM3l8/nK2YObhJpNwsOeqKc2Ka2Nirs6Ku+NRJjaKVlblgDAkpFQgMA6k42WfTVKqKOTg76L8CvaJiav/OpmYNXrz9XJxdX4i7nj2ET/xpV1LeDHHO0aM1z1rSCJyc2JjsvrMxswN/e/cErnv4Xay752V89YkDODpmwcfXL8Ezn12Pz2xsCOt5xOAz3qWNnHPsGzBg9SxZMwCozBdKAufbOP2DQ0b4OLCqKvx+MwCoyM+CVMLQPw8zhQsV5xxvHdPhrPpCSCThZ0HFXsN0KCccNgilWgfTJJM33ZhJ+J7t9nHc+If30EFrCOaFlw6N4qXDWtxxQSMy5ZKYf873+qcyBr9/Ecvek7HvTOwzu/HsJXB5fXjrqC6sx4lljSS5KDhbZPTW1NYPr67KR/uAIaosEOc85I4zkTJDhoZiZUJ+AIplPNODs2PjFrg80Zf2HRw2oiw3c8ZvgMWqDPzhxnX4zgeW461jelz0izew/Uj4JQnRGDLYYXV5sXSu4Mzf95eMUcAjRjv++FYvrnngHZzxg1fwf08fxIjBgVvPq8PznzsHO76yCd94/7JZywinOzmxMb5lowMTdkxYXWibYfl0sJwMGQpyFPNuEXVHYBhIXkSPk0slqMjLClzBJal3bNwKrcmJ9RGUNALA8grhIlhHioMzl8cHrVkIztKlzHI6rUk43y+vbUNejhwffXhn2gaSRGB1enD3s4fQXKrCLefWYakm9ouwvTrh+15w5qxEnYlSdWaSgjMb1JkyXNBSAmWGDNuPzD10zOvjmLA6KThLAQrOFpkJqyslJY2ituq8qEtQ9FYXzA7PrMEZILxp3D8YXQA4G/GH/4ryk8FZc6kKHh8PLJeMxsEhI5aXh85CMMZww9m1eO62c1CkzMDH/7groT/cxdr6pjnKnHKz5ShSKnBsLHFlakfHzPjMo3tw1g9fxXeeOwyjzY3btyzF/75wLl658zx8+cJmrKiIrPdJVKrOhDJDFvfM2T5/2e7qGZZPT1eVnzXvMmf7Bw2oyMuK6gd2TWE2+mmcftp4+5hw9Xx9GMungyXyIlgktCYHxG/z6RucCZmztuo8/P2mM6HMkOGjj+xEZxJK2Uh0fr6tG8NGB+65YiXkUklcdpr26ixQZ8pOef+1qio3oROmRX16K2oKc6CQSbBhaRFeOzI253ukCasLPk47zlKBgrNFRm9xJX2MfjCx1Cua5ujewKTG2YOztqpc6CyuuIy4DxY8DEQk7gGLdiiI1enBcZ0VKyrUc963qVSFf91yFmQShv8cSNzOd3EASaNm7h6UuiJlQjJnAxM23PnYfmz9+Rt4/cg4btvUgFfuPA//++K5+ML5jWgqVcWc/WWMoV6jxNE472rb129AtkIaGBgzG3Gc/nwiDgOJRk1hNmXO0shbR3WoyMtCdcHMA5Zms7IyFx1DxpQO4hD/7VQVZOFAis8SitbkAGPCEK6qgmz845YzkSGT4KMP70RPCoY9kdkdHDLiD2/14iNnVOO0GuECW3OpCjqLM6YdpH06YRjI9J9bq6ry0KuzwmBL7NTeE3pbYCjTpmYNRowOdI7M/vfv5I4zCs6SjYKzRSbVmbOmUhUy5RK0R5HGDzc4E0vb4l1y0zFoPKUvrL5YCZmE4UiUzcKHR0zgfGqp5Gxys+U4o64A2w5ro3q9cBzRmqFRZUwJQkOp1+Tg2Hj8MiFjJge+/cxBbP7pa3i+YxifPGcJdnx1M750YRPqi+cOdiLVUKyMeQrXdPv6J9FamQuZdO5vr5UFWRiatMdlkXkyTFpd6J+wRVzSKKotzIHR7k74GxEyN6+P451jeqxvKIzqQseqyjyMm50Y9ZftpcKw/wLcRctLYbC50/JCx5jZgcKcDMj93w9qCnPwj5vPhETC8OGHduJYnC8Okeh5fRzffOoACnIy8NULmwO3N5cKF09jKW3sDdGS0RYYYpa47Jnb68OQwR4oqdzYVAwAc7ZI0ALq1KHgbBHhnAtjUVN4FUQulWBlRW7UwZlcyubcrdRcqoZCKolrHfekVcjEtU4LohQyCZYU5UT9TTvUMJDZbG0pxdExS8J+qPdoLXOWNIrqipSYsLpiXl0waXXhhy924twfb8ffd/bjmrVVeP3Lm/DNi1sSejGhQaPEmNkZ0+69YA63F4dHTGgLo6QREMbpu7wn+2bSXYf/7+uqKDNnYoaGxumn3qFhI0wOD9aHud9supX+vwOp7DsTqyO2Li8FkJ6ljVqTEyXqqT9z64qV+MfNZ4Bzjo889C5NME0Tf3v3BPYPGvGtS5ZNuTgp/jyMtrRR2DFmR+0MwdnJIWaGqJ47HEP+SZFi5kyjykRrZe6cI/UDwRmVNSYdBWeLiM3lhdPjS2nmDBAmFB0aMsHpiWy3R++4FdUF2XNmJBQyCZaVq+M6Tn+mYSCiplJV1GWNB4dMKFJmQBPBN78LWkoAICHZM5+Po2fMjKVhlDQCQuYMiH4oiMXpwS9f7sG5923Hg28cx/tWlOGVO8/DPVesRGluZlTPGYmlmvhObDw0bILby7F6jmEgosA4/XkyFKTD/wZiRZTBmfjmpI/6zlLuTf+0trPqI+s3E7WUqSGTsJRObBw22FGkzEBrZS7kUpbyASUz0ZocKFGf+r2sQaPCozefAZfHh4889O683He4kGhNDvz4f0ewYWkRPrCqfMrHilUZKMxRRH0Rtn/CBs5nrvpRZcrRUKxMaHAmfr8NDg43Nmmwr39y1gurOnPq9uIudhScLSJ6S+p2nAVbXZ0Pl9c3Z73zdEJZQHilbW2VuTgwaIQ3TuViYnC2fIbgrLlUhYEJOyxh7g0JdmjYiBUV6ojKisrzsrCiQp2Q4Gxg0gaH24em0vC+znX+P49oShvfOqrDufdtx89f7sbZDYX47+3n4ufXtqGmcPay1XgKTGyMU2mjuHx6rjH6ovk2Tn//oBF1xTlQZ85d8joTypylj7eP6tFYooRGFd1FkEy5FI0lqoTtlAzHkMGOivwsZMikaCpVpeUUxJkyZ6LmUjX+dtMZsLq8+PBD78a9T5qE7zvPHYLb68P3L18x489jYShIdO0Lx8dnb8lYVZWYIWYi8fttTVBv6eZmDXwceKMn9NRGncUJhVQCdaYsIecioVFwtojorelRPyzu9miPYCiIz8fRq599x1mw1so8WF3euJX+HRj0DwOZYamwOBQk0uZuh9uLnjFL2P1mwba2lGJv/yTG4lwO1+0PUuYaoy+qzM+CQiqJ6uv805eOIFshxTOfXY8Hrl8bdillPFUVZEMhk8RtKMi+AWGSoWaGK+UzEUt0503mbNAQ6JGIRqZcilJ1JgVnKeZwe7GrbwJnRzhCf7rWytyUDuIYMthRkSf8W1tZkdqzzMTt9UFvdc4aAC8vz8VfP3k6jDY3PvLQuxg1zo8S54Xk1S4tXjgwis9tbgh5cbCpVIVurSWq/uCZMlfBVlXlJWSImeiE3oYsuXTK1MXWilwUKRWzljaOW5woUipStnppMaPgbBGZsIqZs9SmqMtyM6FRZUTUdzZstMPl8c05DES0Ks7LHQ8MGUMGUdE2C3eOmOD18VnH6IeydXkJOAde6YzvzjNxUqNY7jcXmVSCmsLswJXBcJ3QW7G334DrzqiJaDdZvEklDHVFOXEra2zvN8y53yxYplyKEnUGBuZB5mzU6MCY2Rn1pEZRTWF2YCFqNDpHTHjojeNp9SZ8vtndNwmnxxd1v5motTIPBps7JRcXOOcYNtgDFzhWVuTBaE/NWULRWZzgHDOWNQZrrczDnz95OkaNDvx2+9EknY4AgM3lwbeePoQGjRK3nFsf8n7NpSrY3V70R1F+2jtuRZFSEbLiIDAUZCAxmd8TeitqCrOnBFkSCcN5jRq83j0essJo3OykfrMUoeBsERHLGgtTXNbIGMPq6jzsiyBwCndSo6iuKAeqDFlcSm4m/MNAQgVnlflZyFZII24WPjgslEiEM0Z/uqYSFaoKsuJe2titNaMiLwuqCMrW6ouVEWfOnt43DMaAy9rK575zgjVolOiJwyLqMZMDQwZ72CWNImGcfvoHZ+K/pdYYg+mawmyciKG/5qE3juOeFzrx7vGJmM6xWPl8HD/ddgSFOQqcHWW/mUgM1DuGDHE4WWQmrC443D6UB4Kz1J0lFHHHWaiyxmBrqvOxtEQ5Ly7ULCS/fLkHQwY7fnDFSihkod8SN/kvwkYzFKRXb52yfPrU51ZBIZOgfSDyFUPh6Avx+pubNTDY3IFy/Ol0FheKqd8sJSg4W0T0/sxZKvecidqq8nFCbwtk8+YiBmd1YQZnEgnDysrcuFyJmm0YiPhaS0tUgaxTuA4NGZGXLZ9z+uRMGGPY2lKKN4/qoup1C6Vba8HSMPZzBasrzkG/3ga31xfW/TnneLp9CGcuKQy8sUqlBo0Sg5N2ONyRDaiZTrzYsLo6vEmNoqr8rLS62h9Kx6ABMglDS1nkFxOC1RTmYNzshDXKv7e7TghB2a9f7YnpHIvVv/cOYl+/AV97XzNyMmLrJWksUUEhlaRkEIdYAiZ+/2wsVUIhlaTVxEatf83AXJkzUYkqk8oak6hzxISH3+zFtWurcPqSglnv21iiBGPRjdMPNUZfpJBJsLxcnZDMmdfHMTBhD0xqDHbO0iJIJSxkaWOqp3svZhScLSJ6ixNZcimyFalv7myLsOzw+LgVOQppRJvqV1XloWvUFPOb7oOzDAMRNZUoI/6mfXBYKJWMtp57a0sJXB4f3ugO3dAbCY/Xh2NjFjSF2W8mqi9WwuPjYZd7tA8Y0Kuz4orVFdEcM+4aNEpwjpj7E/f1GyCXMiwvjyx4qSrIxojRHnZwmyodg0b/nkJpTM8jXsGNpu9s1OjAwIQddcU5ePuYHrv7KHsWCaPNjXtf7MJpNfn44JrKmJ9PnIzbkYKhIOKOM/ECjzgUJJXTI6cb8wdnmjAyZwBQkpuJMXP0i45J+Hw+jm88dQC5WXJ87X3Nc94/WyFDdUE2jmgjGwpicXowbnaG7DcTrarMw4EhIzxx/jkwanLA5fXN2EuXmyXH2pr8GYMzn49jwupCkSr1F/MXIwrOFpFUL6AO1lqZCwlDyHT6dH16K2qLciIKZFZV5sLt5egciW7CkujAoBG1IYaBiJpK1dBbXYG9IHNxerw4MmqOqt9MdFpNPvKz5Xjp0GjUzxHsxIQNLq8v7GEgonp/f9qxMPu2nt43hAyZBBetLI34jIkgrg2Ite9sX/8kWsrUEQcvlflZ8HFgxBD5FfMxkwM/39YddgY6Wpxz7B8wRL18Oph4Bbd/IvK+s13+YOwHV6xEQY4Cv3qV+nMi8dNtR2CwufDdy5ZDIolPk39rRS4ODpmSvkhdXDgtTjwFhJ1R6TQURGtyQiphKAyzz7tElYkJqyviNTMkco/vGcC+fgP+7+JlyA/zfVFzqSrissa+MKt+2qryYPcPCYunE/7Xr50hcwYIpY1do2aMGKdWb0zaXPD6OGXOUoSCs0VEb3WlRUkjAORkyNBYogq772yusoCZiIMmYi25OTBknHNJdLN/0mC42bMerQVuL4+q30wkk0qwZVkJXu0ai0vWpdt/9sYoyhoB4HgYi1TdXh+e6xjB+S0lUY9jj7faomxIWGzBmcfrw4EhY8QljYCwiBqIbpz+n9/pwy9f6cH7fvkG3j6mi/jx4erT22ByeKJePh2s2v8moS+KzNnuvglkK6RYW5OPmzfU4Y3u8agW2i9GB4eM+Nu7J3D9mTUxXRSarrUyFxanJ6x///E0bHAgWyGdctFsZUUuzA5P2kwD1ZocKFZmQBpmIFyaK7wRHjNR9izR3ujWoTI/K6IKjqZSNfp01oiqccSWjLkyZ5FWE4VL/D5bE+L1NzdrAADbu6ZW4OgstOMslSg4W0T0VmfKh4EEW12dh/0DhjmvuLo8PgxM2MLuNxOVqoWpkLF8s5trGIhIHKcf7lU1sVRyRYxvkra2lMDk8OC93tjLu7q1FjB2cvdXuNSZchSrMsLKnO3oGceE1YUr2tKjpBEQyqFqCmOb2NittcDm8oa9fDpYYBF1FMHZjh4dGjRK5ChkuO7hnfjx/7oSUh4plq3FI3OmzpSjIEcR1cTGXX2TWF2dB5lUguvPqkFethy/od6zOfl8HN9+5iDysxW4Y2tTXJ9b/DtxIMmDOMRJjcHVFOL36XTpO9OaQ+84m4m4gkPsVSOJMzBpw5IIq3GaS1XwceHiargCwdkc+zvFVT3x3ht4Qm+FQipBaYi+xwaNEpX5WaeUNopVQBScpQYFZ4vIhMWV8jH6wdqq8mByzH3FtX/CBh8HloS540zEGENrZR7aY/hmFxgGMkfGoFiVgcIcRSD7NJeDw0aoMmUzNulGYsPSYmTKJXEpbeweM6MqPzuqnsS6opywrpw/uXcI+dlynNtYHM0RE0aY2Bh9cLZvQFw+HXnmrCw3E1IJi3goyKTVhQNDRnxgVTme+9w5uPq0Svx2+zFc88A7GIhhGuJM9g8YkSmXRJxVDUUYpx/ZGU0ON7pGTVhbIzTuKzNk+MT6JXi5cwyHhtPjzXiieLy+mHpnn9g7iL3+ISCzlWdHo744B1lyacLGgIcyZLCfMlBIHFCSLsHZmMkR9s5DAIE30FrKnCXcwIQtcGEsXOIuzkiWUffprCjLzUSWYvZyd8YYVlXlYV+/IaIzzeWE3oaqgqyQ2VvGGDY3a/DWUd2U7zFicFZMPWcpQcHZIsE5h87qSvkC6mBiCdhcZUknx+hH/sawrSoXx8etMDncET8WCMpwhbEourFEha4wJzYeHDJhebk65uWOWQopNiwtxrbD2pj7LLpHzVG/+a7XzD1O3+xwY9thLS5dVT7ryOJUaNAo0aezRp112tdvQEGOAlUFkU+flPmvakZa1vjWMR04FyZu5WTIcN9Vq/DrD6/GUa0F7//lDjzTPhTxWULpGDRgeXkuZNL4/LnVFuZEHJztPTEJH8eUqWo3nF0LVYYMv1nAvWc+H8cn/7wb5/xoe+D7USTEISBrqvPiMgRkOplUghUV6qQHRMMGOyryp/57U8gkWFaWPkNBtCZHRJmzEsqcJYXZ4cakzR0oKQ9XbWEOMmSSiIZ/9erDb8loq8xFt9YMmyt+E5hDjdEPtqlJA7vbi51BFTjjZsqcpVJ6vUMiCWN1eeHy+NJmIAggTPlTZsjm3O3RqxPe9C+Z4xvMTAIlN1H+sBaHgYTTH9VUqkKP1jxnmabH60PniCnmkkbR1pYSDBsdODQc/eATl8eHXp01UJ4ZqbqiHBhs7lkHU/z34CicHh8uT5MpjcEa/BMno+1V2d03gdVVeVEH21UFWRiYjCxztqNbB3WmDK1BFw4uXVWOF27fgKUlStz+z3Z86fH9UY+sF3m8PhwcNsa8fDpYdUE2ho32iAYf7O6bhFTCAr0ZgDBt7OPra/HiwdGoRlzPB3/beQKvd4/D4fbiww++i3eP6yN6/M+2HcGkzYXvXrYibkNApltZkYdDw/GfNBeK3eWF3uqacQ3JiopcHBwyJn1AyXROjxeTNjdKVOFnzvKz5VBIJRScJZhYpRDpxTSphGFpiRJHIlib06uzztlvJlpVlQcfFy7exgPnws+0mSY1BjurvhCZcgm2B5U2jluckEtZ3DPtJDwUnC0Sen+KujCNroJIJQytlblhZc4KcxTIzY78m4T4hjLaoQEHhoxYGWafTXOpCjaXNzBFLJSj4xY4Pb6wsnHh2LKsBBKGmEob+/RWeHw86uAsMLFxluzZU/uGUFuYHfGS5mQQd7sdjWIZ9bFxC/r0Nmxsir5Usyo/O6JSRM45dvSMY31D0SnZrKqCbDz2qbPwuc0NeGLvIC759ZsxZRJ6xixwuH1YFYd+M1FtUTY4R0SlnLv6JrC8XH3Kbq5PnLMEOQopfrM9PbJnPh/HoztPxKXUsldnxQ9f6MK5jcV46YvnoiQ3Ex/7w3thL58/NGzEX989gY+eWRO37zczWVWVC4fbF/dJc6EMG6fuOAu2siIXZqcnpkXn8TAWWEAdfnDGGINGnUHBWYKJ/b2RZs4AoKlEHXZv+aTVBYPNHXa/vHgxOV5DQcbNTtjd3jnbJzLlUpxdX4RXu8YCFTg6swtFyoyYq3tIdCg4WyQCC6jTKHMGCENBOkfMsLtCX0E/Ph75pEZRXrYCS4pyotrDc3IYSHgTFRvDrEcXr4rFMqkxWEGOAmtrC/BSmG/YZnIkMKkxyuDMX3J6PERwNmK0453jely+uiItv9nXF4vBWeRvLsU3yluWlUT9+pX52RgzO8PuKzqus2LY6MCGpTMHhDKpBHdubcLfbzoTdpcXV/7+LTz0xvGoSl9PDgOJ35v7msCus/CGgjg9XrQPGLCu9tRFsXnZClx/Vi2e7xiOeVddrGwuDz796B5886mDuP6R92Lq/fP6OL70+H7IpQz3fbAV5XlZePxTZ2FZmRq3/m0PHt89MOvjhSEgh5CfrcCdF8R3CMh04iCOePfLhDI0OXXH2ZSzVKbHUJAxc2Q7zkQl6kyMUnCWUOK/y0h7zgDhIuy42RnW+pJefXjDQETFqgxU5GXF1CcfTLxAEU5v+6ZmDfonbIHecVpAnVoUnC0SE/6xqOlU1ggAbVX58Po4Ds5ylVnccRat1srcqJrVD0TQbwacDGy65yh5ODhkRLZCGlUPXShbW0rQNWpGf5RleT1aMyTs5Fj8SFXkZ0Ehk+DY+Mxvtp9tHwbnwOVpNKUxWE6GDOW5mVEFZy8f1mJ5uXrGN4rhEstrhgzhZZJ2+BePb1haNOv9zqovxIu3b8CmJg3ueaETLxyIPLu6f1AYXhPuG4xw1PjfFIVbRnpwyASnx4d1tTMPXLlpwxJkyCT4bQqzZyNGO66+/x1sO6zFZzfVw+P14ea/7I66rPShHcex58QkvnvZCpTmCtmX/BwF/n7TGTi7vhBf/ncHHnzjWMjHP7F3EHtOTOKr72uOquogEkuKclBVkIUXD44k9HVEJxdQn5qVaixRQSGT4EAKFmMH00aROQOEoSA0Sj+xBiftyFFIkR/Fv4vmsvCHgog7ziIZZtZWlRe3zFlfmJMiAWCTv/JDLG0UgrP0er+4mFBwtkjorWJZY3r9YxP7R9pDXHG1Oj3QmpxRZ84AYFVlHkZNjohLRcQf7uEGZ8oMGSrzs+YseTg4ZERLmTrs3Tfh2NoiLHR+6XB0pY1HtGbUFuZEvEBZJJUwLCnMCZk5e2rfEFZX58UUZCdaQ4kq4rIsvcWJPf2TOD+GrBkQNE4/zEzLjh4daguzw7rym5+jwO8/ehrqinLw+9ePRpw96xg0CEvj4/j3tSBHAVWGLOzM2W7/8unTak7NnAFC0/pHz6jBM+3DUY3oj1XHoAGX/eYtnNDb8MgN6/DlC5vxm4+sQbfWjC/+qz3i/qeuURN+9lI3Llpeisvayqd8LCdDhodvWIuLW8vwgxe68MMXO0/5MzXahSEgq6vzcFUChoBMxxjD5W0VeOuoLikleUMGOyQMM44Hl0slWFaW/AEl04lfh0iDM406A6MmR9os0l6IxEmN0VRxBCY2jsxd2tirs0LCIiufbKvKw+CkPTAtMRYn9DZIJeyUwTkzqczPRmOJMjBSnzJnqTVncMYYq2KMbWeMdTLGDjHGbp/28S8xxjhjbPZLuCSlTpY1ptc/tmJVBirzswKjyKcTJzVGuuMs2KoqIbiK9GrUgSEjlhTlRLQsublUNWvmzOvjODxiinv/R3VhNppLVWH3okzXo7VEXdIoqtfkzJg56xwxoWvUjCvTcBBIsIZiYeJkJG+khRp94IKWGIOzfHHX2dyZM5fHh3eO60OWNM5EKmG45dw6HBwy4a2j4Q+UcLi96Boxx2W/WTDGGKoLs8PuC9rVN4m6ohwUq0J//7rl3DpIJQy/2x46m5QILxwYwTUPvAO5VIJ/f/osbPIvdT23sRj/d3ELXjqsxc+2dYf9fC6PD3c+th+qTBnuuWLFjG8gM2RS/OpDq3HdGdV44PXj+NoTB6YM4/j5tm5M2lz4XgKHgEx3xeoK+DjiOiU0lCGDHaXqzJDTQ1dWqHFwyJTSoSBakzBQIdLsTKk6EzaXF5YYB/mQ0AYmbaiMot8MAIqVGSjIUYQ1gKhXZ0VVQXZE04lXxXEZdZ/eioq8LMjDnLK7qVmD93onYHK4obe4UDTL91uSWOH8iXkA3Mk5XwbgTACfZYy1AELgBuACAP2JOyKJB73FhWyFdM5dG6nQVpUXMnPWG0VZwHTLy3ORIZPgsd2DEV2NPDgUeRDVWKLC8XErXJ6Zp5b16qywubxYXh6ffrNgW1tKsKtvIqxa+GAOtxd9emvMO6zqipTon7Cd8rk/vW8IMgnDxa3lIR6ZHho0SjjcvrBLCwHg5U4tStWZMf95alQZUEglYY3T39c/CZvLO2dJ43RXrKmARpWB+18PP3jpHDHB4+NYFcd+M1G44/R9Po7dJyawNkRJo0ijzsSH11Xhib2DEa8liAbnHL9+pQefeXQvWsrUeOa29Wgunfr34OPra/GhdVX4zfajeHb/cFjP+5tXe3Bo2IQfXLly1gFOUgnD9y9fgc9vWYp/7R7AZx7dC4fbi0PDRvzlnT5cd0Zih4BMV1esxKqqPDy1L7zPMxZDk6eO0Q/WWpEHi9ODvhRkUUVjJgc0qsyIszM0Tj+xOOcYmLCjOop+M0C4sNQU5tqcXt3cY+ynW1GhhoTFJzjrn7BFtEt1c5MGHh/HfzpG4PFxypyl0JzBGed8hHO+1/9rM4BOAOIl8J8D+AoAyr+nuQmrK+36zURtVXkYNs5cdtgbQc10KJlyKe64oBEvd2rxdJhXdfUWZ0TDQERNpSp4fDzkYAJxgttcS62jsXV5KXwceKUzsuzZsXELfPzkQJNo1Wty4PVx9E+cfEPk9XE80z6MjU3Fafv3T9SgiWwoiMPtxRvdOpzfool5yInEX3oyGMb0wh09OkglDGfWF0b0GhkyKT5xzhK8eVQX9vTGDv/9ViVgwmZNoTChcq7x68fGLTDY3Fg7wzCQ6T51Xj0YQ0QBaDQcbi+++K92/HRbNy5vK8ffbz5zxjcyjDF897IVOL22AF9+fP+cg4n2Dxjw29eO4co1Fbhweemc52CM4Y4LGnHXpUKG7sY/vodvPX0QedkKfGlrYoeAzOTK1RX+THl8RoGHMmw8dQF1MDEoTWVpo9Yc2Y4zUQktok4ovdUFu9sb1U5KUThrczjn6NNFPswsWyFDY4kK7THu6uOcRxwcnlaTD3WmDI/5hw1Rz1nqRNRzxhirBbAawE7G2AcADHHO98/xmFsYY7sZY7vHx8ejPymJic7iTKsx+sHEZdQzTfrq1Qlp+Wh7oUQ3bajDaTX5uOuZQ2FdkYx0GIhIvHIeqrTx4JARGTIJGorjNwxEtLxcjfLczIhLG3u0QjASa1ljXZEY3JwMznYe12PU5MAVqxPf9xKrpREGZ+8c08Pu9sbcbyaqzM8KjHiezY6ecayuyouo3Fb0kTOqocqQ4f5ZBkkE2z9oQLEqY8benljVFGbD4+MYMc7+73FXn1DyPNOkxunK87Jw1WlVeGzXIEbneN5o6SxOXPfwTjzdPow7L2jEz69tm/X7k0Imwe8/ugZFygzc/JfdIb//ONxe3PFYOzSqDNx16fKIzvTx9Uvwyw+1YXffJPb2G/C1ixI/BGQml7SWQSZheGpv4kobvT6OEYNjxjH6oqUlSmTIJCldRq01OSPuNwMQCOgoc5YYgUmNUZY1AifX5sz2/Xrc7ITV5Y2qX14cChJL36HB5obZ4YkocyaTSnBuY3HgvVhxmr5nXAzCDs4YY0oATwD4AoRSx28C+PZcj+OcP8g5X8s5X1tcHP0eIBKbCasr7cboi5aXqyGXshl3kR2P4srTTKQShh9f1QqX14evPdEx5ze9g1EGZ0uKciCTsJBDQQ4MGdFcpg7ZKxELxhguaCnBGz3js64mmK5ba4ZMwmKexidOejyuOxncPLlvCKoMGbYs08T03MmQn6NAYY4i7OBsW6cWOQopzoowgxVKZX72nDvyJq0udAwZI+o3C6bOlOO6M2vw4oGRsAZn7B8wYFVlbkLWH4jj9OcqPdvVN4EiZQZqw3yT8ZmN9fBxjgfCDEAjcWTUjMt+8xYODRvx24+swee2LA3ra1OozMDDN6yF2eHBLX/dM+PKhJ/87wiOjVtx31WtUS1+vaytAn/6+On43OYGXHVaai6GFCozcF5jMZ5uH4I3Qf1e42YnPD4+a+ZMHArSkcrMmckRZXAmPIbG6SeG2NcbzRh9UWAoyCx9Z4GWjCjev6yqyoPR7g57mu1MxO+rcy2gnm5z88mf1bP1+JLECusdImNMDiEwe5Rz/iSAegBLAOxnjPUBqASwlzE2dx0GSYl0LmvMlEuxrEyN9mlDQTjn6B23xCU4A4SeiK9c2IztR8bx+O7BWe8bzTAQQLhKXl+sRPcM37R9Po5DQyasSEC/mWjr8lI43D7s6Ak/S92tNaOuOCeipuWZqDLl0KgycMyfObO7vPjvwVG8b2VpzJnPZKnXKNETxiJqn4/jlU4tzm0sRoYsPp9bVUEWJqyuWUevv31MD86BDY3Rz1/6xPpayCQSPPjG8VnvZ3a4cVxnjfswEJF4Rbdvjjcgu/omsK42P+wAsaogG1esrsDfd/YHdk3Fg9HuxtX3vw2314fHPnUWLm4ti+jxy8rU+Nk1bdg/YDjlAtG7x/V45K1eXH9mTdSBNwCcs7QId25tStoQkJlcsaYCWpMT7x4Pf/BMJIYMwt+XuSbQtVbm4tCQMSVDQWwuD8wOT8Q7zgBhGqcqQ0bj9BNEzJxVhjHBMBSxymS2oSAxBWfiMuoY1kH0+z/PcC9qic5rLIb4rZZ6zlInnGmNDMAjADo55z8DAM75Ac65hnNeyzmvBTAIYA3nPLo53iShOOfQW1xpN0Y/2OqqPHQMGqdcbZ2wumByeOIWnAHAjWfX4owlBfje84dnHfxwYNAYdTN9Y6lqxitqA5M2mJ2ewMLWRDh9SQHUmbKwSxtdHh86R8xYGmNJo6i+WBnInL3cqYXF6ZkXJY2ipRoljo5Z5s6sDhuhNTnjVtIIBE9sDB2s7OgZhypThtYY/g5p1Jm4ck0FHt8ziHFz6DeAB4aM4Dy+y6eDlagykSGToH+WzNmI0Y7BSXtY/WbBPrupAW6vDw/v6I31mAGvd4/D5PDgt9etiTpgvWhFKe68oBFPtw/j9/6+OIvTgy//ez+qC7Lx9fc3x+28qXL+shKoMmR4MkGljUMGIeCerawREKoerC5vYKluMomBVYkqunLgktzMhJXlLnYDEzYU5iiQkyGL+jlyMmSoLsiePTjTW6GQSqLaf9lYokSWXDpjNVG4+nQ2MBZ5hrBQmYFVlXmQSVhUGXwSH+FcKl8P4HoAmxlj7f7/3p/gc5E4sjg9cHl9aVvWCABt1XmwubxTerXEtHw8gzOJhOHHV62Cl/OQ5Y16ixPDRkfUb4CbS1UYMthhdrin3H5wSGiST+QENblUgs3NGrzcqZ110ILD7cWf3urFeT/ejiGDHWfHqTSvrjgHx/zBzVP7hlCWm4kzlkT2xjqVGjRKmBwejM+xY+blw1pIGAJj0+NBvJI7EGIoCOccO3p0WF9fFHNZ7C3n1sHt9eHPb/eFvI84DCRRmTOJhKGmMHvWzJnYb3Z6hMFZbVEOPrCqHH995wSMNvfcDwjDq51aFOQosKZ69qmRc7ltcwMuXVWOH//vCF4+rMU9/+nE4KQdP716FbIV0b9hTBeZcinet7IU/z04ElF5dbiGJsUF1HNnzoCTJerJFO2OM1GJOgPaOGZ9yUkDkzZUxlDSKGouVaFzlsE3fTorqguzo9pnKpNKsLIiN6bg7ITeijJ1ZlRVKzdvqMO166pSmoFf7MKZ1vgm55xxzls5523+/16Ydp9azrkucccksdBb0nPHWbC2KuENT/A3o+Pj8Q/OAGEn2Nffvww7enR4dOepWyCiHQYiavJnobq1U3uXDgwZIZcyLI1xZP1cti4vxaTNjT0nTt0dZ3F6cP/rx3DOj17F3c8dRlVBNv7yidPxkdOr4/La9cVCcNMzZsHr3eO4rK1iXn2DD3di47bOMaytKYhrqbB4hTPUGPjjOiuGDPaYShpFdcVKXNhSir+80xdyn1LHoAFVBVkJLYeuLshB/yzB2e6+CWQrpFhWFnlm94aza2F3e/FKV3S7/4J5fRyvdY9jY2NxzMvjGWO474OtWFGei9v+sRf/eK8ft2yoizg7mM6uWF0Jq8uLlw7Hv5hm2GBHbpYcyjkyHw3FSmTKJYGLDMmk9Weko5nWKDwuE1rKnCXEwIQdVTGUNIqaS1Xo01ln7B8FohujH2xVVS4ODZtCruWZS59eCA6jcXFrGe65YmVUjyXxEf+pBCTtiAuoC9K4rLG2MBt52fIp+856dVbIJCym2vBQPnpGNc5pKMIPXugM1KCLxCutyyMcoy8Sm4WnlzwcGjaisUQVtx6lUM5tLIZCKplS2miwufDzbd1Yf++ruPfFLiwrU+Nft5yJxz51Fs5tLI7bwAdxKMgvX+6B18dx5Zr0Xjw93VKN8Gc3W3A2OGlD54gJ57fEd8hJYY4CWXJpyMzZjm6hj/DcGHqSgt26sR4mhwf/fG/mNZX7B4wJy5qJaguzcWLCGrIvaFffJNZU50eVKVxVmYcSdQb+dyj2AGFf/yQMNjc2x2mwTZZCioc+thbqTDmaSlT44gWNcXnedHHGkgKU52biqX3xL20cNtjnLGkEhOxDS5k6JZmzMX/mTBN15iwTY2ZnSpdoL0ReH8ewwR7TMBBRU6kaPj7zzwqfj6NPbwv8PIzGqqo8uDy+sJZdz6R/whbzkC+SOhScLQLiUuKiNM6cMcbQVpWHfUFDQXr9ZQGJmmz4o6taIWEMX3p8/5Qfgh2D0Q0DEVXkZSFHIZ1Sosk5x8EhY0L7zUTKDBnWNxTipcNajJuduPfFLqy/91X88pUenL6kAM98dj3++skzcEZdfEoZg9X7VwT858AIWsrUMY/nT7YSdQaUGbJZg7NXOscAIK79ZoDwd7KqIPQ4/TeP6lBTmB2XNxaAMK75zLoCPLyj95Srs+Kev0Qsnw5WU5QDh9uHsRl630wON7pGTWGN0J+JRMKwtaUUr3dHNr10Jq92jUEmYTEN65iuNDcT2754Hp74zNnzZmBOuCQShstWV2BHj27WvsZoDBlm33EWbGVFLg4OGxM2OTIUrcmBTLkE6szoylRLVBnw+HjgwiqJjxGjHR4fj2mMvmi2iY3DRjtcHl9smTP/hbHpg9LCYXa4obO4Ip7USNIHBWeLgN7fP5POmTNAeLPYM2YJ9Gr16qyoi3NJY7CKvCx865Jl2Nk7gb+80xe4PdYgSiJhWFqimrKIddjowKTNjeVJCM4AobSxf8KG9fe+igfeOIbNy0rw3y9swEMfW5uQhcKiirwsZPinPl6xen5lzQAhQKr3DwUJ5eVOLeqKc1CXgF11ocbpuzw+vHNMjw1LYy9pDHbrefUYNTnwzLTl7InuNxPV+APNmcb67zkxCc6BdbXR93hdGMX00pm82jWGtbX5cW+Qz82euzxvvrpydQW8Po5n9w/H9XmHDPawqylWVgq9zL268NZjxIu44yzaioTSXHERNZU2xpNYlRDLAmpRbWE2FDIJjszQd9anEy6wxdKSUZmfhfLcTOzoibxjSBzBH+mkRpI+KDhbBMSrb+k8EAQQllFzLkxK9PmE7fbx7jeb7pq1VdjUVIx7/9uFXp0VOv8wkFgzXM2lKhwZNQcGjojLUBM5Rj/Y1pYS1BXn4ANt5Xj5jvPw6w+vDizITiSJhGFJUQ4kDPhAW3nCXy8RlmqU6AkRnJkcbrx7XI8L4pw1E1XlZ2FwwnbKoJp9/ZOwurxxzdwAwtjk5lIVHnjj+JTs8f5BAxhL7PAaAIEryzPt89ndNwGZhKGtOi/q5z+jTphe+lKEi9mDDRns6Bo1Y0tzYv7MF6qlJSqsqFDjqX2zry2JhMkhLNYtzwuvXFD8Pp7svjOtyRH1pEbgZDlkPFdBkJOTcKvjUH0gk0qwVKOcMXMmXgyI5f0LYwybl2nw5lFdyL62UMTvp9H2nJHUo+BsEdBbXMhRSNO+dKbNf5V+34ABIyYHnB4flhQldngGYwz3frAVCqkEX3p8Pzr8e0VifVPaWKLCpM0dmPp3aNgIqYRhWVlygrNCZQZevXMjfnL1qkCpYbK8f2UZPnR6ddSTylKtQaPEuNkJo/3UKX9vdI/D7eU4vyVBwVlBNsxOzymvvaNHB6mExW3htYgxhlvPq8fRMQte6RoL3N4xaERDsTLhWZ3yvEzIJGzGRdS7+iaxvCI3pgmGcqkEW5aV4JU5ppfO5lX/1yWekzkXiytWV+LgkAk92uj6ZqYbNoQ3qVFUX5yDLLk0MOQpWcbMzqh2nIlKxUXURtp1Fk+DEzZIWPh/f+bS5L8IO12vzoYsuTTqgTCiLctKYHN5I94ZeGIiugXUJH1QcLYITFidaV/SCAglPnVFOdjXb0BvgiY1zqREnYnvXLYce05M4rvPHQYArIhyGIioedpQkINDRizVKNM+QI6Hz29Zih/M40lPDcWhJza+fFiL/Gx5zOPUQwk1Tn/HUR3aqvKi7oOczSWtZajIy8L9/r1bnHN0DBoSXtIICFefK/OzcGLaUB6nx4v2AQPW1cT+dd7aUoJJmzswlj9Sr3ZqUVOYjfoYmvsXq0tXlUHCELfBIOIY/XAGggD+oSDl6kDlQjJwzoXMWQwXp4pVGWAsPcsak92/F08Dk3aU5WZBHqc+9uZSFcbMzkBfv6hXZ0FtUU7Mg7bOqitEllwauEAUrhM6G4qUGQu2ZHoxoOBsEdBbXWk9Rj9YW3Ue2gcMcSkLiMTlbRW4oKVEmLBUlANVjG+Cp09sPDhswvLy5PSbkdiIqw6Ojk29Iur2+vBq1xg2N5fEPE49lMr8U8fpG2wudAwa4t5vJpJJJbh5wxLsOTGJ3X0TGDY6oLO4sKoqOX9fawpzTuk5OzhkhMvji8t4+fOaipEhk0Q1tdHu8uLtY3psatLEbaLpYqJRZWLD0mI80z4cl8mDYuYs3OAMEEobDw2bkhZUWJwe2FzemLImcqkEhTkZaRec7e6bQMu3/4shw8wTZdPdwIQtrtOfm/ytAl3T+s7E9xGxypRLsb6hCK90js24kzWUPr2V+s3mOQrOFgG9xZX2/Wai1VV50FmcePOoLi5lAeFijOEHV6xEQY4Cp8Xhan2hMgNFSgWOjJoxZnJg3OyMORtHkqMyX2j0np452903CZPDgwviPEI/mDiJMXhi41tH9eAcce83C3bNuirkZ8tx/+vH0OHfNZiMzBkA1BRm44R+ap+dmOWKZRiIKFshw4alRdh2WBvRGxwAePuYDk6PD1viNEJ/MbpyTQWGDHbs7J2I+bkGDXYopBIUKcP/ubCyIhd2txfHx5MzFERrEnecxVbWXaJOv+Ds3eN6OD2+wPeI+WZg0ha3abcAsGyGtTlur08YY18Un9fZskyDIYP9lL2pszmht1G/2TxHwdkiMGF1oXAelDUCJ5dRv9o1hiVxKAuIRLEqA//7wrm4+wPL4/J8TaUqHNGaY15qTZJLKmGoK8o5JTh7uVMLhUyS0CApN0sOdaZsSlnjjp5xqDJlCR1rn62Q4Yaza/Fy5xie2DsIuZRFtfg5GjWFOTA7PJi0neyz29U7gbriHBRG8CZ8NluXl2LIYMeh4VMnq83m1a4xZCukOH3JwlkQnWxbW0qRo5Di6TiUNg4bHCjLy4xosX1rZXKHggR2nMUwEAQQ+s5GTenVc9bpD0Jmm2abrhxuL7QmZ1zG6IuKVRnIz5ZPCc4GJ+3w+njc+uU3+3tdX+4Mb6iRw+3FqMlBO87mOQrOFjjOOfRWJwrmSVljc5kKGTIJ3F6OJSno8ShWZSAnTnXajSUqdGvN6Bg0gjGgJUnDQEjsGqZNbOSc4+VOLdbXF8bt70cowjh9W+B1d/TocHZ9YUL2/QW74axaZMmleLlzDMvK1Alfli4Sx+mLQ0F8Po7dJyaxriZ+AdH5y0ogYYiotJFzjle7xrBhaVHSvhYLUZZCigtXlOKFAyMRT52bbmjSFlFJIwDUFSuRrUjeUBCtf8JirFUfGnVmINBLF10jwsWNo0nKQsaTuKIkHmP0RYwxNJWqpkxs7NOJ/fLxCQJL1JlYWZEbdt9Zv79/t4YyZ/MaBWcLnNnpgdvL501Zo1wqCYw/TuSOs2RoLlXB4fbhxYMjqCvKSfibehI/SzUqDBnsgeXFR8csOKG3JWxKYzBhEbXwRqJXZ8WQwZ7QbJ0oP0eBa9dVATiZbUgGsfyn3z/++ei4BUa7G+vimK0qyFFgXW0BXjoU/kj9rlEzRowOGqEfB1euroTZ6Qn76n8owwZHxJP2pBKG5eXq5AVn/myXJsayxlJ1JvRWF5ye2ALaeHG4vej1Bx7HUhCc9WjN0FmizySKpeLxLGsEgOZSNbq15kBP5fFAcBa/KcmbmzXY2z95yuCRmYjBIWXO5jcKzhY4vcW/42yelDUCwjJqIHnDQBJFbBbu1lqopHGeadAowfnJNyHb/G8qk/FGvcqfOROzZgBwbhKCMwC4acMSqDJkOKchOa8HCJlCxk5mznb1Cb1J8eg3C3bh8lIc0ZoDb17mIl6p3ticvK/FQnVWfSFK1Bl4am/0pY0ujw9asyPizBkglJQfHjZFvU4hElqTA8oMWcyT8sTM27g5PUobe7QW+DhQnpuJY2PWuAx4icRHH9mJ7z9/OOrHD/ozSvEsawSE9gWbyxvIzPXprFBnypCfHb/JuluWacA58NqRubNnlDlbGCg4W+AmrMI39oJ5kjkDELhi3liSnJ6XRFmqOXnlbAVNapxXGjRTx+m/fFiL1spclOYmfndbZX4WHG4fdBYXdvSMo6YwO2nN3ZX52dj37Qtw0YrSpLweIEwkK1NnBhan7uqdQLEqIy6LYoNd4M96vnQ4vNLGVzqFP/NYe4eIkL26vK0Cr3ePQx9l9kNrcoDzyCY1ilorhaEgx8bDC8xjMWaKbceZqMT/vUabJn1n4kTCi1vLYHd7MWxM3sRGvcUJrcmJvf2GqJ9jYNIOhUwCjSq+LR7iZGbx69Ors2JJsTKu/fIrynNRrMqYsosylD69FblZcuRlz5/3fORUFJwtcGLmLJLpVqm2taUEz962ft5nm3IyZIE3mMtpUuO8UluUDamE4eiYBeNmJ/YNGHD+suSUt4llN706K945psc5DYkZoR9KonvbZhI8Tn9X3yROry2I+zCgqoJsLC9X439hlDZOWF3YN2DApiaa0hgvl6+ugMfH8XzHSFSPFzMTFVGMQhdL5ZNR2qg1OVASh4BefI50mdjYNWpGllyKzf7qgWQOBREnFfZP2GCwzV3aNxNxjH4kw2TCIV5EFoeC9OqsWBLni2kSCcOWZg3eODIOl2f27O8JvS19xujfdx+wffvU27ZvF24ns6LgbIHT+2uU51PmjDGWtDHeiSZ+46YdZ/NLhkyKmoJsHB2zYHvXGDhH0oOzZ/cPweryJqXfLNVqi4Rx+sMGO4YMdqyNc0mj6MLlpdjbP4kx8+xveF87IvyZ0wj9+FlWpkZzqQpPRjm1UdxxFmnPGSD0/+QopDgwaIjqtSOhNTvisgJGfI70Cc5MaCxVodG/BzIZWUhR8M7JaKduDkza4l7SCADKDBmqCrLQNWqGw59RrE1AS8bmZg3MTg92982+kqJPb0VNuvSbrVsHXHPNyQBt+3bh9+vWpfZc8wAFZwvcxDwMzhaSD66pwEfOqEZuVvzqz0ly1GuU6BkzY1unFhV5WUkbLS+WbT29bxhSCcNZ9YVJed1Uqi7Igd7qwmtHxgEA6+KwfHomW5eXgHPg5cOzlwe92jWGImUGlSPH2ZVrKrB/wBDVQAlx8XFZFKXFwlCQ3IRnzjjn0JqcMe84A4Sf2XIpw2gaBGecc3SOmLGsVIWCHAXysuVJz5xlyYWJqR1RBtgDE/a4TmoM1lSiRteoCf0TNnCemH759Q1FUMgks5Y2ujw+DE3a06ffbNMm4LHHgMsuA/Lzhf8/9phwO5kVBWcLnM7ihDJDhkw5jYJOhfetLMMPrliZ6mOQKCzVKHFCb8OOnnGcv0yTtJ17ORkyFOYoYHF6sKoyd1EE9mIZzr/3DCBHIUVzaWIC4aYSFWoKs2cdqe/2+vB69zg2NxfHvQRqsbusrQKMAc+0D0f82GGDHUXKjKh/lq2oyMWhBA8FMdrdcHl8MU9qBIQKEo0qE2Np0HM2bnFiwupCU6kKjDE0FCtxLKnBmRnLylSoK8rB/igyZyaHG0a7OyGZMwBYVqZCn96GTv+qgUQEZzkZMpxVVzjrSP0hgx0+jvTJnAGAVgtYLIDBAJjNwD/+AThSf8Eh3VFwtsBNWF2UNSMkCg0aJTw+Dofbl5QR+sEq/aWNi6GkEUBg4MnefgPW1OQnrO+NMYatLSV4+5gOZod7xvvsOTEJs8MT6K0h8VOizsTamny8fDjykfpDBntU/WaiFRVqOD2+wDj4RBCHd8SjrBEASnMzMWpM/RvZrhGhrLDZP4G4QaNM6q6znjELGktUaK3MjSpzNjCRmDH6oqZSFbw+jpc7hcApEWWNgFBm3auz4niIr7048TZtes7+9jfgIx8BpFLgy18GsrKAhx4CzjoLOHYs1adLaxScLXB6i2tejdEnJF2IExuVGTKcsSS5pYVV/jeh5zYmdxhIqgRf6U1USaPowuWlcHs5tvtLKKd7tWsMcinDOUsXx9c+2TY1a3B4xBRx0DFksKMiL/qMVEu5EFgc9mc3EkHsD4tHWaPwPBmBpdapJA67EDPaDRolJqyusPZuxUrnz9otLVGhtTIPWpMz4j68gQn/AuoEZc7Er8v2rjEUKRVQZyam2mFzs9AD+0rnzNmzE/4LD2mROfvzn4HrrwdkMuCZZ4QhIP/5D6BWA0ePAmvWAE8+mepTpi0KzhY4vdU1bxZQE5JO6ouF4Oy8pmIoZMn9VtlamYvy3EysWiCDceaizJAFJsomahiIaHV1PoqUCrwUorTxlU4tzqwrjHlPFZmZ+AZzexg7m0Sccwwb7FGN0RfVFyuhkEpweDgJwVmc1i+UqDOhTYPMWeeoCaXqTOT730uI3xuTsYy6WysEho0lSqyqEnpA9w8YInqOk5mzxPSc1RbmQCGTwOL0JHQ/a2V+NppLVXila+bM84kJG3IUUhSl+oL8I48AH/840NAgBGbvf79w+6ZNwNNPA5/9LNDUBHzwg8CddwLumasYFjMKzha4CasThTnzZ4w+IekiJ0OG+65qxRfPb0z6a9+8oQ6vfXlTSsbap0pNYTZkEobVVYkNzqQShgtaSvDakXE4Pd4pHzuht+LYuJVG6CdQU4kK5bmZ2B7GzibRhNUFh9sX1aRGkVwqQWOpMqGZszH/wuh47DkDhODM6vLC4vTE5fmi1TViRnPQQKTpeyATqcc/Rr+xRIWWslxIJSziiY0DkzaoMmQJ69+VSSVo8AestQnOWm1u1mBX3ySM9lMDmhN6G6oLc5LWHz2jBx4AbroJuPBCoKMDeN/7pn580ybg3nuBHTuA224DfvYzYONGYHAwJcdNV4vnJ/8ixDkXes5SfRWFkHnqmrVVgTciycQYS3q2LtW2tpTgyjUVyFIkfnjR1uWlsDg9ePuofsrtYrM9jdBPHMYYNjVr8OZR3SnBcSjDBiF7FEtwBgAtZWocHjaBcx7T84SiNTmQmyWP2wCuUn95ZCr7ztxeH46OWQLLlgFhomymXJKU4Kxba4Y6UwaNKgNZCikaS1TYH2Hf2cCEDZUF2QkNWsTSxiXFiQ3OtizTwOvjeKP71LLsPr01tf1mv/0tcOutwMUXA089JfSYhZKRAfz618A//ykEcU1Np+4/W8Q70RbXT/9FxuTwwO3lVNZICEl7nzqvHvddtSopr3V2vVC2+NLhqaWNr3aNoa44Jz16NhawTU0a2FxevNc7+84m0ZBBKEuLpawREIIzvdWFcXNiJiBqTfHZcSYSM3BjKRyn36uzwuX1YZl/GAggLEWuK1ImpayxR2vB0hJVILBaVSmsRIgkwB6YtAf6eBNFDF6XJPh7R1tVPgpyFHilc2ppo9fHMTBhS933rl/8QsiEXXYZ8MQTQGaYpb3XXgvs3g1oNMBXvwrccAPg9S76nWgUnC1geovwA4gGghBCyEkZMik2NhVj22EtvD7hTZ7V6cHO4xPY0kxZs0Q7u6EQCplk1rHgwYb8mbOYgzP/3rpDCSptjNeOM5GYOUvlUJAucRjItD2P9RplwjNnnHN0j5kDi68BoLUyDwabOzDkI5znGJy0oTpBkxpF6xuKkJslR2tVXkJfRyph2NhUjNe6x6eshRgx2uH28uRkzu677+RiaQD4yU+AL34RWLFC2GOWEeEFiqYm4NAhYOtW4C9/AerrgauuWtQ70Sg4W8BOLqCmnjNCCAm2dXkpdBYX9vVPAgDePKqDy+vDJgrOEi5bIexsei3ExMzphibtyFZIkZcdW8+QGGAkaijImMkBTZyGgQAnpz6OGlO366xrxAS5VMiUBWsoVmLIYIfdFV5pajR0FhcMNjeWak4Ghq2V/qEgYZY2jluccLh9CRujL1pRkYv9d22N+QJCOLY0l8Bgc2Nf0GCUE3ohu1ydjOBs3Tohq7V9u9A/9uUvCwHZz34GKKJMBmRnA//9L/CBDwAnTgA2G2BKXH9ouqPgbAHTWYTgjMoaCSFkqk1NxZBLWWAh9audY1BlyBI+yp8INjcLO5vC2Ts2bLCjPC8r5p4hdaYcVQVZCRkK4vNxjJmdcS1rzMmQQZUhi3h0fDx1jZqFSZfTemAbNEpwntiJjT2BSY0ng7OmUhUUMknY+84CY/QTNKkxFTY0FkEmYVNG6p/ccZaEssZNm4Ss1qWXAl//uhCYPf88cMEFsT3va68Bb78NfOYzgMcDXH65MNnRHl6WdCGh4GwBEzNnVNZICCFTqTLlOLu+CC8d1sLn43j1yBjObSqGfBFNyEwlcSJmOKWNQzGO0Q/WUqZGZwIyZxM2Fzw+HteyRkDoO0tpcDZiCgy7CCYOSkpkcBY8Rl8kl0rQUqbG/jAnNg5O+sfoJ2jHWSqoM+U4fUkBXg0aqX9Cb4NCJgmUwibcpk3AJz4h/PpLXwLOPz+25xN7zB57TBgs8vzzwkCR3/0OOP104ODB2M88j8z5U4gxVsUY284Y62SMHWKM3e6//XuMsQ7GWDtj7CXGWHnij0siMWEVSiEKKHNGCCGnuHB5KU7obXhi7yDGzU5sphH6SVNdmI364pywRuqLmbN4aCnLRa/eCmucx9OfXEAd3zaCEnVmyoIzo82NYaMDzWXqUz5WW5QNCQOOJbDvrHvMgtwsOYpVU7+mqypzcXDIGOgXnY2446xyAQVnALBlWQm6tZbA53dCb0VNQTYkkiSN0d++HfjHP4BvfUsYnx/cgxaNXbum9phdeKGwtPqTnwTGxoRSyt//HkjQpNV0E84lQg+AOznnywCcCeCzjLEWAD/mnLdyztsAPA/g24k7JomGzuKCKkOGDFniR1MTQsh8c36LBowBP3yxC4wBG5uKU32kRWVzswY7e/WzBkp2lxd6qwuVcZq211KuBucnB13Ey5hJ3HEW38xFqToTWlNqes6O+DNXM2XOMmRSVBdk42iCyxobS5SnlLO2VubB5vKGlbUbmLCjSJmRlBUdySQOLhKnNp7Q21CTrDH6wVmu735X+L/Ygxatr3zl1OEfmzYBDz8sjNrfuFEod1y5UlhkPf08C2zk/pzBGed8hHO+1/9rM4BOABWc8+C6gBwAiyOcnUcmrC4qaSSEkBA0qkysqc7HhNWFtqo8FCppeFIybWrWwO3lePOoLuR9ho1Cv0l5XnyCnpZyIQsU776zk5mzeJc1ZmLM7IAvjCxRvHWNCl+jZTNkzgChtPHY2Nw9g9HgnKPbP0Z/ulVV/qEgQQMxQhmYtC2ofjNRbVEO6opz8ErXGDjn6NNbkzdGf3qWS+xB27UrMa9XUiJk0X76U6CrC/jgB4Gf/1z42AIduR9RcT1jrBbAagA7/b+/hzE2AOA6UOYs7eitTippJISQWVy4vAQAaIR+CqyrLYAqQzZraePQpBCcVeTFJytQnpuJ3Cx53Cc2itmt4jgH+KXqDLi9HBM2V1yfNxydI2bkZ8uhUc38OdVrlOjVWaeMdI+XcbMTRrsbSzXKUz5WV6SEMkOGjjD6zgYmbQuq3yzYlmYNdh6fQK/OCofbl7wF1KGyXF/5SuJeUyIB7rgDeO89oKxM+PXll5/M4C2wkfthB2eMMSWAJwB8Qcyacc6/yTmvAvAogNtCPO4Wxthuxtju8fHwxuaS+NBbXDRGnxBCZnFZWwXOqivEZW0VqT7KoiOXSrChsQjbj4yFXCo8bIhv5owxhpYydfwzZ2YHCnMUp0w1jJWYiUtF31nXqAnNpeqQUzLri5VweX0YmIz/NL0efy9b4wyZM4mEYUWFes6JjR6vD8MGx4LMnAFC35nL68OjO/sBIHULqJNpzRohe1ZZCTzzDHDjjQsuMAPCDM4YY3IIgdmjnPMnZ7jL3wF8cKbHcs4f5Jyv5ZyvLS6mev5kmrC6UERljYQQElKJOhP/uOXMhO9BIjPb2KSB1uTEoRCZrCGDHRKGuE6haylXo2vEFNeMz5jJEfd+MwAoyc30P39y+858Po4jo2Y0zdBvJhInNiZiGbU4qXFpyamZMwBYVZmHzhEzXJ7Qf4YjRge8Pr5gM2en1eRDnSnDv3YNAEDyes5SbdcuwOL/O/fb38Y+jCQNhTOtkQF4BEAn5/xnQbcvDbrbBwB0xf94JFqcc0xYXVTWSAghJG2JQ1heOzJzaeOQwY5SdSZkcVxx0FKmhtPjC+yGigetKb47zkSBRdRJzpwNTNpgc3mxrGzu4CwR4/S7tRbkZctDlomurMyFy+sL9MXNRJxkuFAvvMilEpzXpIHF6YFMwpKyADvlxB6zJ58Ebr4ZcDqFHrQFFqCF891uPYDrAWz2j81vZ4y9H8C9jLGDjLEOAFsB3J7Ig5LImOweeHycGtwJIYSkLY0qE62VuSH3nQ0b7KiI06RG0cmhIPGb2Kg1OVCiin/mTOz3SnZZozjNsrl05mEggLBvS6PKSEjmrEdrRqNGFbKkclVlHgDM2nc24N9xVr1AgzPgZK9sZX5WXC9gpK3gYSTf/z6gVAJLlyZuGEmKhDOt8U3OORPH5vv/e4Fz/kHO+Qr/7ZdyzoeScWASHp1/x1khZc4IIYSksU1NGuwbMGDCeurQi6E47jgT1RcroZBK4jYUxOP1QWdJTOZMLpWgSKlIfnA2YgZjM/d8BasvVsY9OBMmNZpDljQCQjCSny2fte9sYMIOqYShLDdJi5lTYGNTMSRskfSbAVOHkWg0wLe/LQwJWbkyteeKs0UQZi9O4g85GqVPCCEknW1u1oBz4PXuqdkzr49j1OiIe3CmkEnQoFHGbSiI3uqCj8d/x5moJAW7zrpGTVhSmDPnfjBhnL4l5ECXaIyZnTA5PLMGhowxtFbmzZk5K8uNb0lsusnLVuC2zUtx9drKVB8lNT73OSFzdscdgNud6tPEzcL9G7vI6S3CN3LqOSOEEJLOVlbkokipwPauqROdx81OuL08Ib00LeXquGXOErXjTFSizsSoMflljbMNAxE1aJQwOz0YN8cveJxrGIhoVWUuurVm2FwzLzEfmFi4Y/SD3XFBIy5pLU/1MVJDoTi5/+x3v0v1aeKGgrMFSi9mzmiUPiGEkDQmkTCc16jB693jUyYoDhnEHWcJCM7K1NBZnBgzxx70iFmtRJQ1Cs+bGZdzhsvm8qBPb52130yUiImN3drQY/SDtVbmwccRctLnwKR9wY7RJ0EuuQTYuhW4+25AF3qh/XxCwdkCNWERgjPKnBFCCEl3m5s1MNrd2DdgCNwWCM7iPBAECBoKEofsWeIzZxnQWVyzjo2Ppx6tBZwDzbNMahTVF/uDszhObDw6Jiy/nqtnvrUqFwCwP+jvjMjh9mLc7FwUmbNFjzHg5z8HzGahB20BoOBsgdJbXVBlyuK+EJMQQgiJtw2NRZBK2JSpjScXUMc/OFtWJk5sjD04GzM5IGGJG8AlBn3jluT0nYnj6ZeFkTkrUWdAmSGLe+ZsaUnoSY0ijSoTZbmZM/adDU4u7DH6ZJqWFuDTnwYeeAA4cCDVp4kZvXNfoPRWF4pojD4hhJB5QJ0px9qafGwPCs6GJu3IzZJDmSGL++vlZslRmZ8Vp8yZE0XKjIQNnhAXcCdrYmPniBk5Cikqw8hYMsZQr1HGbdeZOKmxcY5+M1FrZe6MExsHJoTAnsoaF5HvfAfIywO+8AUgjgNqUoGCswVKb3FSSSMhhJB5Y3OzBl2j5kDGbDgBY/SDtZSp45I505odCStpBACNv5dNm6ShIF2jJjSWqiCRzJ65EjXEcZy+1uSEeY5JjcFaK/PQp7fBaJs6qa9fXEBNZY2LR0GBEKC9+irwzDOpPk1MKDhboCasLtpxRgghZN7Y7F+ou/2IkD0bMtgTMgxE1FKuRq/OGnLaX7i0psTsOBMlM3PGOUfXqDmsYSCiek0OtCYnTI7YR5kHJjVqwg3OhL6zjiHDlNsHJmzIkElQrKIKokXl1luFEsc77wScyV0/EU8UnC1QOouLdpwRQgiZNxo0SlTmZwVKG4XgLHEZqZYyNTgXxsbHYszkSNiOMwDIz1ZALmUYTcKuM63JCYPNjWVhDAMRNfiHghyLQ/ZMDM7CLmusyAOAU/rOBiZtqCrInrNvjSwwMhnwi18Ax48L/5+nKDhbgHw+jkmbi8oaCSGEzBuMMWxu1uCto3qMm4XytkRMahTFY2Kjy+OD3upCiSpxwZlEwqBRZWIsCZkzcRhIJJkzcZz+sXFrzK/fo7WgMEeBwjB75nOz5agtzD6l72xgwo6qBP7dIWnsgguASy8Fvv99YHQ01aeJCgVnC5DJ4YbXx2nHGSGEkHllU5MGdrcXT+0bBJCYSY2iirwsqDNl6Iyh70ycoJjIskbx+UcjDM7+0zGC7z1/GDyC4QhiFjGcBdSi6oJsyKUsLn1n3WPmOZdPT9damRcyc0YWqeZmwG4HvvnNk7dt3w7cd1/qzhQBCs7S3PFxCzb/5LUZ93iEovPvOKOyRkIIIfPJWfWFyJRL8OjOfgCJWUAtYoxhWYxDQRK940xUmpsZUc8Z5xw/3XYEj7zZi+c6RsJ+XNeICRV5WcjNkof9GJlUgtrCnJiDM845jmotYQ8DEbVW5mLE6Ags6jba3DA7PDQMZDF73/sAhQL4wx+APXuEwOyaa4B161J9srBQcJbGOOf4v6cP4rjOiqf2DYX9uAmrPzijzBkhhJB5JFMuxdn1RTihF6btJTI4A4TSxq4RM7y+6EZvi6WGmgRnzjSqTGgj6Dk7NGzC8XErMuUSfPe5wzDawxvW0TVqjihrJmqIwzj9UZMDZqcHSzWRZc5WVeUBADoGhOzZQGDHGZU1LlqbNgH/+pewoPraa4XA7LHHhNvnAQrO0tgz7cN4+5ge6kwZXunShl2aoPeXWVDPGSGEkPlmk39qo0IqSfi+zpYyNexuL/r00fVLiQFTMjJnFqcHFmd4kyWf3jcEuZTh4Y+tw4TViR//r2vOx7g8Phwds6A5yuCsf8IGp8cb8WNF3VohuFsaYeZsebkaEoZA39mAf4x+JWXOFrdLLwWuvx44dkxYUD1PAjOAgrO0ZbS58f3/HEZbVR6+fFEzBibsYZcM6P2ZsyIqaySEEDLPbGoqBgCU5WWGvWsrWrEOBdGaHJBJGAqyE/vzVuxpC2coiNfH8VzHMM5r1OCcpUW44exaPLqzH/v6J2d93HGdBR4fR3NZ+MNARA0aJbw+Hsh4RqMnMKkxsuAsWyFDY4kK+wenZ84oOFvUtm8HXngB+Na3gN//Xvj9PEHBWZr68UtdmLC68P3LV+D8ZcJVxFf844XnIpY15lPmjBBCyDxTmZ+NZWVqLCnKSfhrLdWoIJeyqPvOtCYnNKqMhAeRYmYunKEgO4/roTU5cVlbOQDgjgsaoVFl4JtPHYTH6wv5uK4RIThaFkXmrN4/Tj+WvrNurRlFSkVUVT8rK3LRMWgA5xwDE3aoM2UR9c2RBUbsMXvsMeC73xX+f8018yZAo+AsDe3rn8SjO/tx49lLsKIiF2W5WWgpU+OVTm1Yj9dbnFBnyiCX0h8vIYSQ+ecPN67FfR9sTfjrKGQSNGhUUWfOxsyJ3XEmEoOzsTD6zp5uH0KOQorzl5UAAFSZctx96XIcHjHhT2/3hXxc56gJCqkkqqC4rlh4TGzBmSXs5dPTtVblYdLmxuCknSY1EmDXrqk9Zps2Cb/ftSu15woTvXtPMx6vD9986iBKVJm4Y2tj4PYtyzTYc2ISk/6s2Gz0VlfC6/QJIYSQRCnLzUpK0AMIfWfRZ84cCR+jD4SfOXO4vXjx4CguXFGKLIU0cPtFK0qxuVmDn23rxpDBPuNju0bMaNAoIYviwm62QoaKvKyoh4JwznF0zBL28unpVlXmAgD2DxrQP2GjSY2L3Ve+cmqP2aZNwu3zAAVnaebP75zA4RETvn1pC5QZssDtW5aVwMeB17vH53wOvYUWUBNCCCHhaClXY9zsDIxij4TW5Ez4MBAAUGbIoMyQzTlO/7UjYzA7PLisrWLK7YwxfOcDy+HjHHc/e2jGx3aNmtBcFl3mChD6zqLNnA0bHbA4PREPAxE1l6qhkEqwf8CAwUk7TWok8xoFZ2lk1OjAz146go1NxXjfitIpH2utyEWRUhFW39mE1UU7zgghhJAwtPgHYHT6e67C5XB7YbS7kxKcAcK4/rmCs6f3DaNIqcD6+sJTPlZVkI3btzRi22EtXjo0OuVjk1YXtCYnlpVGPgxEVF8sjNP3RbGWoDvKYSAihUyCZWUqvNI5BpfHh2oqayTz2KIPzsZMDhwaNs59xyT47vOH4PFxfPcDK8DY1OZiiYRhU5MGrx8Zg3uWhl4A0FudKKAdZ4QQQsicxOAs0r4zsf9Lo0rOz9tS9ey7zox2N149MoZLWstDlibetGEJmkpUuPvZQ7AGjeXvGhWCo1gzZw63L2TZ5GyOimP0I9xxFqy1Mg/HdcJKhEoKzsg8tuiDs4//aRe++dTBVB8D24+M4YUDo/j8lqWoLpz5m8qWZRqYHB7s7gs9Dtfn45i0uWmMPiGEEBKG3Gw5KvKy0Blh35nWXwaZrMxZiToTo8bQmbP/HRyFy+MLTGmciVwqwQ+uXIFhowO/eLk7cHvXqPC5N8eQOWvwB1bR9J0JkxozYpoy3ervOwNAPWdkXlv0wdkVqyvQPmDA0bHIyhniyeH24tvPHER9cQ5u3lAX8n7nLC2GQirBq12hpzYa7W54fZx6zgghhJAwLYtiKIhYYpjM4GzM7ADnM5cNPt0+hJrCbLRV5c36PKfVFODDp1fhD2/1BbKFXSNmFOYoUBxDFlAMzqLpO+uOYRiIaFXQ512ZTz1nZP5a9MHZ5asrIJMwPL5nMGVn+M2rRzEwYcf3L18JhSz0H4kyQ4Yz6gpm7TvTW4WSBwrOCCGEkPC0lKtxfNwCu8sb9mPEEsNkTGsUX8ft5YFdplPP4sA7x/W4rK3ilLaImXz1ombkZcnxjacOwOfjMQ8DAYT3HfnZ8ogzZ5xzHNWao+43E9UXK5GtkEKjykCmXDr3AwhJU4s+OCtSZmBjkwZP7R2adTljohwdM+OBN47hyjUVOGuGBt7ptjRrcHzcil5/XfV0eovwTZtG6RNCCCHhaSlTw8eBI9rwq2jGTA4oZJKkLTsu9WfoZuo7e27/MDjHrCWNwfKyFfjmxcvQPmDAoztP4IjWHFNJo6hBo8SxsZnfn4QyZLDD6vJiaYyZM6mEYW1tAZqiWKJNSDpZ9MEZAFx1WiXGzE7sOKpL6utyzvF/Tx9EtkKGb7x/WViP2dwsLJUMtZBa77+iRpkzQgghJDzLyyMfCiLuOAsnUxUP4t437Qwj/59pH8bKilzUF4cf4FyxugJn1xfie//phMPtQ3McgpoGjRJHI8yc9fiHgcSaOQOAX39oNX7z4TUxPw8hqUTBGYDNzRrkZ8vx7ySXNj61bwjvHp/AVy9qDjvTVV2YjaUaJV4NUdooBmc0Sp8QQggJT2V+FlQZMhweCX96s9bkRIkqOf1mAFCa6w/Opg0FOTZuwYEhY9hZMxFjDN+7fAXgb2FbVhZ75qy+WIkJq2vG0stQAmP0NbEHZ7nZcuRmJyeTSUiizBmcMcaqGGPbGWOdjLFDjLHb/bf/mDHWxRjrYIw9xRjLS/hpE0Qhk+CytgpsO6SF0eZOymsabC7c859OrK7Ow4fWVUX02C3LSvBe7wRMjlPPqrcI5Q752RScEUIIIeFgjGFZuTqyzJnZkbRhIABQ7L+IO72s8Zl9Q2AMuHRVZMEZIARTt5+/FPnZ8sBAj1jURzEUpFtrgUaVQUEVIX7hZM48AO7knC8DcCaAzzLGWgBsA7CCc94KoBvA1xN3zMS7em0lXF4fnt0/lJTXe3hHLyZsLnz/8hWQSCIridiyTAOPj2NH96llmBNWF/Ky5ZCH2HFCCCGEkFO1lKnRNWqGN8wlymMmJzRJGgYCCBeSi5QKjAYtouac45n9wzi7vjDqQPGzmxrw3jfPj8sQjYbiyMfp94zFPgyEkIVkznfwnPMRzvle/6/NADoBVHDOX+KcixsM3wVQmbhjJt7y8lwsK1MnpbTR5HDjz+/04aLlpVhenjv3A6ZZXZWHvGz5jH1nequL+s0IIYSQCLWUq2FzeXFCP/dAC4vTA4vTk9TMGQBoVJkYCwrO2gcMOKG34bK2ipieN14XdCvyspAll4adOfP5OI6OWeKStSNkoYjoXyNjrBbAagA7p33oEwBejNOZUuaq0yqxf9AYqH9OlL++cwJmhwef3dQQ1eNlUgk2NhZj+5GxU67w6S1OFFJwRgghhESkxd9zNde+M5PDjb+9ewJA8sboi0rUGVMyZ8+0D0Mhk+CiFaVJPUcoEglDXXFO2MHZkMEOm8tLmTNCgoQdnDHGlACeAPAFzrkp6PZvQih9fDTE425hjO1mjO0eHx+P9bwJdXlbOWQShicSmD2zu7z4w5u92NhUjBUVkWfNRFuWlWDS5kb7wOSU2yesLhTm0Bh9QgghJBJLS5SQSdiMfWecc+w5MYEvPb4fp9/zMu59sQvLy9U4Y8ncK3DiqTQ3M9Bz5vH68HzHMLY0a6DOTJ9+rfpiZdjBWc+YfxhIjGP0CVlIZOHciTEmhxCYPco5fzLo9hsAXAJgCw+xsp5z/iCABwFg7dq14RVyp0ihMgObmzV4ct8QvnxhE2QJ6Nv6x3v90FtdUWfNROc2FkMqYXilcwyn1RQEbtdbXFhbS5kzQgghJBIZMikaNMopmTODzYUn9w7hn7v60a21IEchxRWrK/Hh06uwsiI3aWP0RRpVJvRWJ9xeH94+pofO4oq5pDHeGjRKPLt/GHaXF1mK2fvYuv1j9JdS5oyQgDmDMyZ853kEQCfn/GdBt18E4KsAzuOc2xJ3xOS66rRKvHRYizd6xgM7xeLF5fHhwTeO4/QlBVhXWzD3A2aRmyXHutp8vNI5hq9c1AxAqN2etLlQRGWNhBBCSMRaytR486gO7x7X45/v9eOFg6NweXxYVZWHe69ciUtXlSMnI6zr2glRmpsJzoFxsxPP7BuCKlOGjU3FKTvPTMT+sW2dWpy7tAh5s0yP7taaUaLOSNoib0Lmg3C+w6wHcD2AA4yxdv9t3wDwKwAZALb5rxy9yzm/NRGHTKZNzRoU5ijw7z2DcQ/Ontw7iFGTA/dd1RqX59vSXIJ7XujEwIQNVQXZMNjd8HFaQE0IIYREo6VcjSf3DeFDD74LVaYMH15XhQ+dXh2XHWDxIPa49emt+N+hUVzSWh6XKYvxtKI8F4wBn//HPgBAYY4C9cVK1BXnTPl/ZX4WerQW6jcjZJo5gzPO+ZsAZsrbvxD/46SeXCrsPPvbuycwaXUhP06Bjsfrw+9fP4aVFbnYsLQoLs+5eZkG97zQ+f/t3WtwXGUdx/HvP2kS04SWhDSlTYG2gJQ65dYqFwGh4AUcKWJR7ozXUV86OuLo4AtHZ3D0jSI6DoOioxZhZOwM6IyWKiAFwbFQKS20FWhpbZNSaBM0vT2+2BNJa9Juym727O73M3Mmm2fP2fPs+TU8/PecfQ7L127jpnNn/u8eZ8cUeUNrSZL0psvmTePpTa9z0duncPm8aYe9LG+8Dc0O+csnXmZg974x33h6PBx/zEQe/fJC1mzZyYbeAdb39rO+t58/rN7KkoGN/1uvqTHYuz/x8fNmVbC3Uv5U7tx8jl29YAZ3/eWfLH16MzefN7Mkr/nAqi28tP0NfnTD/JJdo37ilHZmdbWx7LmsOBvYDeBsjZIkHYGeo1v5/rVnVroboxoqzh5ctYWpk1o4e/b4TkhSrJ6jW+k5upVLTj2wfcfAbjb09bM+K9o27fg3V52Vr+/MSZVmcTaCU6dN4h3TC/c8K0Vxtn9/4o7l6zm5u533zS3tpZIL53Tz8xUvMTC4l+39heKss93iTJKkWtM5sZmmxmDPvsQVp0+nsWF8JyR5qzrampnf1nnARGaSDlT66QhrxOL5M1j1yuus+deh73dSjGVrtrF26y4+f/GJNJT4P6SXzOlm9779PLquj1cHsssanUpfkqSa09AQdB9VOHuWt1kaJZWGxdkoFp3RQ1PjW7/nWUqJ25ev47jOVj50WumvDV8ws5OjWibw0HPb6MvOnHVMdNYjSZJqUU9HKyd1t/OO6fmYpERSaVmcjaKzrZmFc7q5/++vsGff/iN+ncfWb+fpja/x2fecWJb7pjVPaODCU6bw0NptbB8YpGNiU1n2I0mSKu+2j5zGnTctGPd7rEkaH/5f/CFcPf84+vp38+e1vUf8Grc/tI6pk1pYPH9GCXt2oEvmdNO7a5CHn+9zGn1JkmrYrK42Zna1VbobksrE4uwQ3nPKFLraC/c8OxJ/e2kHKzZs59MXzKZlQvmm473olG4i4OVX33AafUmSJKlKWZwdQlNjA1ee0cOyNVt5NZumfizuWL6OjolNXHf28WXo3Zs625o56/gOwGn0JUmSpGplcXYYixfMYM++xNKVr4xpu9Wbd7JszTY+8e5ZTGwu/x0LFs7pBvCyRkmSJKlKWZwdxpxjJzGvZzL3jvHSxjv+tI72lgncVKKbWB/OpacW7p/mZY2SJElSdbI4K8Li+TN4dvNOVm8u7p5nG3r7eWDVFm489wQmt47PtPZvn9rO1z54Kled6X1PJEmSpGpkcVaEK06fTlNj8LMVL7L5tX+ze++hp9b/4Z/W09zYwCfPnzVOPYSI4FMXzHYGJ0mSJKlKlf/LUDWgo62Z9809liVPbmTJkxsBmNzaxJSjWuhqb6arvSV73MKk1ibu//sr3HDOCXR5iaEkSZKkIlmcFelbV83jyjN76OsfpG/XIL39g/T1D9K7a5BnN++kb9cguwb3AtAyoYHPXDi7wj2WJEmSVE0szoo0ubWJ986desh1/rNnH727BpnQGEyb3DpOPZMkSZJUCyzOSuhtTY0c1zmx0t2QJEmSVIWcEESSJEmScsDiTJIkSZJywOJMkiRJknLA4kySJEmScsDiTJIkSZJywOJMkiRJknLA4kySJEmScsDiTJIkSZJywOJMkiRJknLA4kySJEmSciBSSuO3s4he4KVx22HxuoC+SndCZWfOtc+M64M51wdzrg/mXPvM+P+dkFKaMtIT41qc5VVEPJVSWlDpfqi8zLn2mXF9MOf6YM71wZxrnxmPjZc1SpIkSVIOWJxJkiRJUg5YnBX8uNId0Lgw59pnxvXBnOuDOdcHc659ZjwGfudMkiRJknLAM2eSJEmSlANVVZxFxAciYm1ErIuIW4a13xMRK7PlxYhYOcr2nRHxh4h4IfvZkbVfP2z7lRGxPyLOGGH7X2T7/0dE3BURTVl7RMT3sn49ExFnlecI1Icc5zwnIlZExGBEfLE8775+5Djn67O/42ci4rGIOL08R6A+5DjnRVnGKyPiqYg4vzxHoPaVMeOmiLg7IlZFxHMR8ZVRtp8VEU9k298TEc1Zu2NzCeU4Z8fmEspxzvUzNqeUqmIBGoH1wGygGXgamDvCet8Fbh3lNb4N3JI9vgW4bYR15gEbRtn+ciCy5VfA54a1/y5rPwd4otLHq1qXnOfcDbwT+CbwxUofq2pecp7zeUBH9vgy/55rNud23ry0/zRgTaWPVzUu5cwYuA5Ykj2eCLwIzBxh+18D12SPf+TYXHc5OzbXR851MzZX05mzdwHrUkobUkq7gSXAouErREQAH6UwAI9kEXB39vhu4MoR1rl2tO1TSg+mDPBXYMaw1/1Z9tTjwNERMa3od6bhcptzSmlbSulJYM+Y3pFGkuecH0sp7chWe5w3/841dnnOuT9rA2gD/AL2kSlnxgloi4gJQCuwG9g5wmsvBO4bYXvH5tLJbc6OzSWV55zrZmyupuKsB9g47PdNWdtwFwBbU0ovjPIaU1NKWwCyn90jrPMxRv8HBxROzQI3Ar8fQ99UnDznrNKplpw/SeGTdx2ZXOccER+OiDXAA8AnDrW9RlXOjO8DBoAtwMvAd1JKrx607THAaymlvSPs37G5dPKcs0qnWnKu6bF5QqU7MAYxQtvBn3SO+ulpUTuIOBt4I6X0j8OsegfwcErpkTH0TcXJc84qndznHBEXUxgA/C7Skct1ziml+4H7I+JC4BvApUfajzpWzozfBewDpgMdwCMR8ceU0oYi9+/YXDp5zlmlk/uc62FsrqYzZ5uA44b9PgPYPPRLdpr0KuCeYW0/yb64+GDWtHXokobs57aD9nENh//09evAFOALxfZNY5LnnFU6uc45Ik4D7gQWpZS2j+F96UC5znlISulh4MSI6CrmTekA5cz4OuD3KaU9KaVtwF+ABQftv4/C5YpDHzYP379jc+nkOWeVTq5zrpexuZqKsyeBk7NZXJopDMhLhz1/KYUvdG8aakgpfTyldEZK6fKsaSlwc/b4ZuC3Q+tGRANwNYXra0cUEZ8C3g9cm1LaP+yppcBNUXAO8PrQKV2NWZ5zVunkNueIOB74DXBjSun5t/Aele+cT8q+30AUZvFrBmp2sC+jcmb8MrAwG1vbKEzqsWb4zrPvDS4HFo+wvWNz6eQ5Z5VObnOuq7E55WBWkmIXCjMvPU9hJpmvHvTcT4HPHmb7Y4BlwAvZz85hz10EPH6Y7fdm+16ZLbdm7QH8IHtuFbCg0seqmpcc53wshU+VdgKvZY8nVfp4VeuS45zvBHYMa3+q0seqmpcc5/xl4NmsbQVwfqWPVbUu5cqYwoya92Y5rQa+NMr2sylM9rIuW78la3dsro+cHZvrI+e6GZuHphGWJEmSJFVQNV3WKEmSJEk1y+JMkiRJknLA4kySJEmScsDiTJIkSZJywOJMkiRJknLA4kySJEmScsDiTJIkSZJywOJMkiRJknLgv7qb5SztvGM+AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACE/ElEQVR4nO3ddXhb1/kH8O+RLDOzHVNMIVMcZmrapGmXMjPTituv7bauHXSFrV1XZu7WppxC2iQNNMwO2DEmjpmZLen8/pDkOIlBaMn29/M8fmJLV/ce+TqS3nve875CSgkiIiIiIiKyL4W9B0BEREREREQMzoiIiIiIiBwCgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiGiYEkK09PrSCiHae/18tb3HZw4hRKEQ4ix7j2MgQohNQohbbLTvRCHEt0KIaiFEnRDiZyHEuF73J+lvqxFC9NmoVAhxhRDiqBCiVQhRIISY1+u+JUKIbCFEmxBioxAiutd9QgjxjBCiVv/1rBBC2OJ5EhFR3xicERENU1JKT8MXgCIA5/e67RN7j+90QginkXAMG/MFsBrAOAAhAHYD+LbX/d0AVgG4ua8HCyGWAngGwI0AvADMB3BMf18ggK8APAbAH8BeAJ/1evhtAC4AkAogBcB5AG63xpMiIiLjMDgjIhphhBAKIcQj+lmTWiHEKiGEv/6+GCGEFELcKIQoFkLUCyHuEEJME0IcEkI0CCFe7rWvG4QQ24QQLwkhGvWzLkt63e8jhHhHCFEuhCgVQvxdCKE87bH/FkLUAXhCCBEnhNigH1eNEOITIYSvfvuPAEQB+E4/+/d/QoiFQoiS055fz+yaEOIJIcQXQoiPhRBNAG4YZEzxQojN+udSI4ToHZz0Poarfp+1+t/JHiFEiBDiSQDzALysH+PL+u3HCyHW6We7coQQl/Xa1/tCiNf19zfrjx/d13GllLullO9IKeuklN0A/g1gnBAiQH9/jpTyHQCZ/Zz+vwD4q5Ryp5RSK6UslVKW6u+7CECmlPJzKWUHgCcApAohxuvvvx7Ac1LKEv1jngNwQz/HISIiG2BwRkQ08twL3QzIAgDhAOoBvHLaNjMAJAC4HMALAP4I4CwAkwBcJoRYcNq2xwAEAngcwFeGYA/ABwDUAOIBTAZwNoBb+nhsMIAnAQgAT+nHNQFAJHRBAqSU1+LUGcBnjXy+KwF8Ad2s0yeDjOlvANYC8AMQAeClfvZ5PQAf/fgCANwBoF1K+UcAWwDcox/jPUIIDwDrAPxX/zyvBPCqEGJSr/1drT92IIAM/TiNMR9AhZSydrAN9QHoVABBQoh8IUSJEOJlIYSbfpNJAA4atpdStgIo0N9+xv3673s/ByIisjEGZ0REI8/tAP6onwHphC74ueS0lL+/SSk7pJRrAbQC+J+Usko/Y7IFuqDGoArAC1LKbinlZwByAKwQQoQAWA7gfillq5SyCrqZnit6PbZMSvmSlFItpWyXUuZLKddJKTullNUAnocuiLTEDinlN1JKLQDvQcbUDSAaQLj++W/tZ5/d0AVl8VJKjZRyn5SyqZ9tzwNQKKV8T/889wP4EsAlvbb5QUr5q/58/BHALCFE5EBPSggRAV1Q/eBgvwC9EAAq/XHnAUiD7jz+SX+/J4DG0x7TCF36Y1/3NwLw5LozIqKhw+CMiGjkiQbwtT4drwHAUQAa6D68G1T2+r69j589e/1cKqXsXXziBHQzX9HQBQPlvY71BnSzRwbFvQcmhAgWQnyqTzdsAvAxdLNJluh9jMHG9H/Qzd7tFkJkCiFu6mefHwH4GcCnQogyfXEMVT/bRgOYYTie/phXAwjta4xSyhYAddD9DvskhAiCbobvVSnl//rb7jTt+n9fklKWSylroAt+z9Xf3gJd8NqbN4Dmfu73BtBy2rknIiIbYnBGRDTyFANYLqX07fXl2mvtkanGnDZ7EgWgTH+cTgCBvY7jLaXsnQp3+gf7p/S3pUgpvQFcA12w1N/2rQDcDT/oU/eCTtum92MGHJOUskJKeauUMhy6GcZXhRDxpz9h/SzhX6SUEwHMhm527Lp+xlgMYPNpv29PKeWdvbbpmSUTQnhCV5Cj7PTj6u/3gy4wWy2lfLKvbfoipawHUNLH+AwyoSv2YTiOB4A4nFy/dsr9+u/7W9tGREQ2wOCMiGjkeR3Ak4aiE0KIICHESgv2FwzgXiGESghxKXRrxX6UUpZDF0Q8J4TwFrpCJHGnrVc7nRd0MzQNQogxAH5/2v2VAGJ7/ZwLwFUIsUI/c/UnAC797XywMQkhLtWnCwK6tXgSulnFUwghFgkhkvXBYBN0aY6G7U4f4/cAEoUQ1+p/RyqhK7Ayodc25woh5gohnKFbe7ZLSnnKrKL+uN7Qzdhtk1I+0sf9QgjhCsBZ/7OrEKL37+M9AL/Vz1D6AbhfPz4A+BpAkhDiYv0+/gzgkJQyW3//hwAeFEKMEUKEA3gIwPunj4GIiGyHwRkR0cjzH+jKsa8VQjQD2AldYQ5z7YKueEgNdEU9LulVoOI66AKFLOiCnS8AhA2wr78ASIduPdMP0JV27+0pAH/Spwf+TkrZCOAuAG8DKIVuJq0EAxtoTNMA7BJCtED3O7pPSnm8j32E6h/XBF1a6GboUjAB3e/3EqGrdPmilLIZuqIjV0A3G1YBXTn73kHTf6ErplIHYAp0aY99uVA/xhvFqX3sovT3R0OXvmiY0WqHbg2gwd8A7IEuqD0K4AB05wz6NX4X63+uh+5vovf6wDcAfAfgMIAj0J2fN/oZJxER2YBgKjkREfVHCHEDgFuklHPtPZbhSgjxPoASKeWfBtuWiIhGN86cEREREREROQAGZ0RERERERA6AaY1EREREREQOgDNnREREREREDoDBGRERERERkQNwGsqDBQYGypiYmKE8JBERERERkcPYt29fjZQyqK/7Bg3O9I0qf4WuX4sTgC+klI8LIf4J4HwAXQAKANwopWwYaF8xMTHYu3evicMnIiIiIiIaGYQQJ/q7z5i0xk4Ai6WUqQDSACwTQswEsA5AkpQyBbpml49aYaxERERERESj0qDBmdRp0f+o0n9JKeVaKaVaf/tOABE2GiMREREREdGIZ1RBECGEUgiRAaAKwDop5a7TNrkJwBorj42IiIiIiGjUMKogiJRSAyBNCOEL4GshRJKU8ggACCH+CEAN4JO+HiuEuA3AbQAQFRV1xv3d3d0oKSlBR0eHWU+AqD+urq6IiIiASqWy91CIiIiIiAZlUrVGKWWDEGITgGUAjgghrgdwHoAlsp9u1lLKNwG8CQBTp049Y5uSkhJ4eXkhJiYGQghTx0/UJyklamtrUVJSgrFjx9p7OEREREREgxo0rVEIEaSfMYMQwg3AWQCyhRDLADwM4DdSyjZzB9DR0YGAgAAGZmRVQggEBARwRpaIiIiIhg1jZs7CAHwghFBCF8ytklJ+L4TIh668/jp9YLVTSnmHOYNgYEa2wL8rIiIiIhpOjKnWeEhKOVlKmSKlTJJS/lV/e7yUMlJKmab/MiswcwRPPvkkJk2ahJSUFKSlpWHXLl29k1tuuQVZWVlWOUZMTAxqamoG3OYf//iHyft9//33cc8995xy23vvvYe0tDSkpaXB2dkZycnJSEtLwyOPPGLy/ofCCy+8gLY2sydfiYiIiIh0nn0W2Ljx1Ns2btTdPgwYVa1xJNuxYwe+//577N+/H4cOHcL69esRGRkJAHj77bcxceLEIRuLOcFZX2688UZkZGQgIyMD4eHh2LhxIzIyMvD0009bZf+mklJCq9X2e785wZlarR58IyIiIiIaXaZNAy677GSAtnGj7udp0+w7LiON+uCsvLwcgYGBcHFxAQAEBgYiPDwcALBw4ULs3bsXAODp6YmHH34YU6ZMwVlnnYXdu3dj4cKFiI2NxerVqwGcOYt13nnnYdOmTWcc84ILLsCUKVMwadIkvPnmmwCARx55BO3t7UhLS8PVV18NAPj4448xffp0pKWl4fbbb4dGowGgmxlLTEzEggULsG3bNqOf6z//+U9MmzYNKSkpePzxxwEAhYWFGD9+PG655RYkJSXh6quvxvr16zFnzhwkJCRg9+7dAIAnnngC1157LRYvXoyEhAS89dZbg+53woQJuOuuu5Ceno7i4mLceeedmDp1KiZNmtSz3YsvvoiysjIsWrQIixYt6vldG3zxxRe44YYbAAA33HADHnzwQSxatAgPP/wwCgoKsGzZMkyZMgXz5s1Ddna20b8LIiIiIhqBFi0CVq0CVq4EbrpJF5itWqW7fTiQUg7Z15QpU+TpsrKyzrhtKDU3N8vU1FSZkJAg77zzTrlp06ae+xYsWCD37NkjpZQSgPzxxx+llFJecMEFcunSpbKrq0tmZGTI1NRUKaWU7733nrz77rt7Hr9ixQq5ceNGKaWU0dHRsrq6WkopZW1trZRSyra2Njlp0iRZU1MjpZTSw8Oj57FZWVnyvPPOk11dXVJKKe+88075wQcfyLKyMhkZGSmrqqpkZ2ennD179inHPJ3huD///LO89dZbpVarlRqNRq5YsUJu3rxZHj9+XCqVSnno0CGp0Whkenq6vPHGG6VWq5XffPONXLlypZRSyscff1ympKTItrY2WV1dLSMiImRpaemA+xVCyB07dvSMxfC81Wq1XLBggTx48OAZv5vTfw+ff/65vP7666WUUl5//fVyxYoVUq1WSymlXLx4sczNzZVSSrlz5065aNGiM56/vf++iIiIiGiIdXVJ6eoqJSDlY4/ZezRnALBX9hMvmVRK39b+8l0mssqarLrPieHeePz8Sf3e7+npiX379mHLli3YuHEjLr/8cjz99NM9szUGzs7OWLZsGQAgOTkZLi4uUKlUSE5ORmFhoUljevHFF/H1118DAIqLi5GXl4eAgIBTtvnll1+wb98+TNNPwba3tyM4OBi7du3CwoULERQUBAC4/PLLkZubO+gx165di7Vr12Ly5MkAgJaWFuTl5SEqKgpjx45FcnIyAGDSpElYsmQJhBBnPLeVK1fCzc0Nbm5uWLRoEXbv3o2tW7f2u9/o6GjMnDmz5/GrVq3Cm2++CbVajfLycmRlZSElJcWk392ll14KpVKJlpYWbN++HZdeemnPfZ2dnSbti4iIiIhGoOefBzo6dLNmr72mmzUbJjNnDhWc2YtSqcTChQuxcOFCJCcn44MPPjgjOFOpVD3V/xQKRU8apEKh6Fn/5OTkdMraqr7KuG/atAnr16/Hjh074O7ujoULF/a5nZQS119/PZ566qlTbv/mm2/MqkIopcSjjz6K22+//ZTbCwsLe57LQM8NOLP6oRBiwP16eHj0/Hz8+HH861//wp49e+Dn54cbbrih3zL3vY9z+jaGfWq1Wvj6+iIjI2Owp05EREREo8XGjcDjjwMeHsCHHwLbtw+r1EaHCs4GmuGylZycHCgUCiQkJAAAMjIyEB0dbda+YmJi8Oqrr0Kr1aK0tLRnvVZvjY2N8PPzg7u7O7Kzs7Fz586e+1QqFbq7u6FSqbBkyRKsXLkSDzzwAIKDg1FXV4fm5mbMmDED9913H2pra+Ht7Y3PP/8cqampg47tnHPOwWOPPYarr74anp6eKC0thUqlMun5ffvtt3j00UfR2tqKTZs24emnn4abm5tR+21qaoKHhwd8fHxQWVmJNWvWYOHChQAALy8vNDc3IzAwEAAQEhKCo0ePYty4cfj666/h5eV1xv68vb0xduxYfP7557j00kshpcShQ4eM+l0QERER0Qi1Ywfg5ARceing4nJyDdqePQzOhoOWlhb89re/RUNDA5ycnBAfH99TpMNUc+bM6UkRTEpKQnp6+hnbLFu2DK+//jpSUlIwbty4U9L+brvtNqSkpCA9PR2ffPIJ/v73v+Pss8+GVquFSqXCK6+8gpkzZ+KJJ57ArFmzEBYWhvT09J5CIQM5++yzcfToUcyaNQuALp3z448/hlKpNPr5TZ8+HStWrEBRUREee+wxhIeHIzw83Kj9pqamYvLkyZg0aRJiY2MxZ86cU5738uXLERYWho0bN+Lpp5/Geeedh8jISCQlJaGlpaXP8XzyySe488478fe//x3d3d244oorGJwRERERjWZJSUBrK3D55SdvG0ZpjUK3Jm1oTJ06VRqqHxocPXoUEyZMGLIxkHmeeOIJeHp64ne/+529h2IS/n0RERERjSJXXQWsXQuUlwMmZokNFSHEPinl1L7uG/Wl9ImIiIiIaARoawNWrwYuvthhA7PBjPq0RjLOE088Ye8hEBERERH178cfz0xpHGY4c0ZERERERMPfp58CISHAggX2HonZGJwREREREdHw1twM/PCDrkqjCQXvHA2DMyIiIiIiGt6++07XePqKK+w9EoswOCMiIiIiouHt00+BiAhA395puGJwBkCpVCItLQ1JSUm49NJL0dbWZva+brjhBnzxxRcAgFtuuQVZWVn9brtp0yZs37695+fXX38dH374odnHNigsLERSUtIptz3xxBP417/+ZdJ+rDUeIiIiIiKbqa8HfvoJuOwyQDG8wxtWawTg5uaGjIwMAMDVV1+N119/HQ8++GDP/RqNxqRmzQZvv/32gPdv2rQJnp6emD17NgDgjjvuMPkYtqJWqx1qPEREREREffrmG6C7e9inNALDbebs2WeBjRtPvW3jRt3tVjJv3jzk5+dj06ZNWLRoEa666iokJydDo9Hg97//PaZNm4aUlBS88cYbAAApJe655x5MnDgRK1asQFVVVc++Fi5cCEPT7Z9++gnp6elITU3FkiVLUFhYiNdffx3//ve/kZaWhi1btpwyu5WRkYGZM2ciJSUFF154Ierr63v2+fDDD2P69OlITEzEli1bTH6OA+37D3/4AxYsWID//Oc/PeMpKytDWlpaz5dSqcSJEydw4sQJLFmyBCkpKViyZAmKiooA6GYP7733XsyePRuxsbE9M4lERERERFb32WdAbCwwtc++zsPK8ArOpk3TTVcaArSNG3U/T5tmld2r1WqsWbMGycnJAIDdu3fjySefRFZWFt555x34+Phgz5492LNnD9566y0cP34cX3/9NXJycnD48GG89dZbp6QpGlRXV+PWW2/Fl19+iYMHD+Lzzz9HTEwM7rjjDjzwwAPIyMjAvHnzTnnMddddh2eeeQaHDh1CcnIy/vKXv5wyzt27d+OFF1445fbeCgoKTgmoXn/9daP23dDQgM2bN+Ohhx7quS08PBwZGRnIyMjArbfeiosvvhjR0dG45557cN111+HQoUO4+uqrce+99/Y8pry8HFu3bsX333+PRx55xMQzQURERERkhJoaYP16XUwghL1HYzHHSmu8/35An17Yr/Bw4JxzgLAwoLwcmDAB+MtfdF99SUsDXnhhwF22t7cjLS0NgG7m7Oabb8b27dsxffp0jB07FgCwdu1aHDp0qGcWqLGxEXl5efj1119x5ZVXQqlUIjw8HIsXLz5j/zt37sT8+fN79uXv7z/geBobG9HQ0IAF+h4N119/PS699NKe+y+66CIAwJQpU1BYWNjnPuLi4npSNYGTTaQH2/flAzTt27ZtG95+++2e2bodO3bgq6++AgBce+21+L//+7+ebS+44AIoFApMnDgRlZWVAz5fIiIiIiKzfPkloNGMiJRGwNGCM2P4+ekCs6IiICpK97OFeq85683Dw6PneyklXnrpJZxzzjmnbPPjjz9CDBKlSykH3cYULi4uAHSFTNRqtdX2C5z6nHsrLy/HzTffjNWrV8PT07PPbXo/R8MYAd3zJyIiIiKyus8+A8aNA1JS7D0Sq3CstMYXXgA2bRr46/HHgbY24LHHdP8+/vjA2w8ya2asc845B6+99hq6u7sBALm5uWhtbcX8+fPx6aefQqPRoLy8HBtPXxMHYNasWdi8eTOOHz8OAKirqwMAeHl5obm5+YztfXx84Ofn1zND9dFHH/XMdFnKnH13d3fjsssuwzPPPIPExMSe22fPno1PP/0UAPDJJ59g7ty5VhkjEREREdGgyst1n/evuGJEpDQCw23mzLDGbNUqYNEi3Vfvn23olltuQWFhIdLT0yGlRFBQEL755htceOGF2LBhA5KTk5GYmNhnoBMUFIQ333wTF110EbRaLYKDg7Fu3Tqcf/75uOSSS/Dtt9/ipZdeOuUxH3zwAe644w60tbUhNjYW7733ntWei6n73r59O/bs2YPHH38cjz/+OADdjOGLL76Im266Cf/85z8RFBRk1TESEREREQ3oiy8AKYEBluUMN2IoU86mTp0qDdULDY4ePYoJEyYYt4Nnn9UV/+gdiG3cCOzZA/Ra70RkYNLfFxERERENH3PnAk1NwKFD9h6JSYQQ+6SUfZaWHF4zZ30FYIYZNCIiIiIiGh2Ki4Ft24Ann7T3SKzKsdacERERERERDWbVKt2/IyilEWBwRkREREREw81nnwFTpgBxcfYeiVU5RHDGUutkC/y7IiIiIhqBCgp0NSdGSG+z3uwenLm6uqK2tpYfpMmqpJSora2Fq6urvYdCRERERNZkSGm87DL7jsMG7F4QJCIiAiUlJaiurrb3UGiEcXV1RUREhL2HQURERETW9NlnwOzZQFSUvUdidXYPzlQqFcaOHWvvYRARERERkaMytNQKCwMOHgT+858R2VLL7sEZERERERHRgKZN06UxrlgBCKEL0i677GSK4wjB4IyIiIiIiBzbokXAm28Cl1wCREYCd92lC8xGWL9juxcEISIiIiIiGlBHB/Cvf+lmzYqKgDvvHHGBGcDgjIiIiIiIHJlWC9xwA7B9O+DuDjz2GPDaa7o1ZyMMgzMiIiIiInJcf/6zrkKjhwfw7bfAX/+qS2m87LIRF6AxOCMiIiIiIsf0/vvAk0/qCoKsXn0ylXHRIl2AtmePXYdnbYMWBBFCuAL4FYCLfvsvpJSPCyH8AXwGIAZAIYDLpJT1thsqERERERGNGhs2ALfeCpx1FvDjj4BKder9ixaNuHVnxsycdQJYLKVMBZAGYJkQYiaARwD8IqVMAPCL/mciIiIiIiLLHD0KXHwxkJgIfPHFmYHZCDVocCZ1WvQ/qvRfEsBKAB/ob/8AwAW2GCAREREREY0iVVW6fmYuLsAPPwA+PvYe0ZAxas2ZEEIphMgAUAVgnZRyF4AQKWU5AOj/DbbZKImIiIiIaORrbwdWrgQqKnRrzGJi7D2iIWVUcCal1Egp0wBEAJguhEgy9gBCiNuEEHuFEHurq6vNHCYREREREY04zz57suKiVgtcfz2wc6eu2fT06fYdmx2YVK1RStkAYBOAZQAqhRBhAKD/t6qfx7wppZwqpZwaFBRk2WiJiIiIiGjkmDbtZEn8P/4R+PxzXcn8G2+098jswphqjUEAuqWUDUIINwBnAXgGwGoA1wN4Wv/vt7YcKBERERERjTCGkvi/+Q3Q0gK4up5aMn+UGTQ4AxAG4AMhhBK6mbZVUsrvhRA7AKwSQtwMoAjApTYcJxERERERjUQpKUBnp+77hx4CFi+273jsaNDgTEp5CMDkPm6vBbDEFoMiIiIiIqJR4oEHgO5u4I47gDfeAJYsGbUzZyatOSMiIiIiIrKaH34APv4YmD0beO01XYqjYQ3aKMTgjIiIiIiI7OPVVwEpgeef1/1sWIO2Z499x2Unxqw5IyIiIiIisq6ODuDAAd0asxkzTt6+aNGoTWtkcEZEREREREPvgw+A8nLgo4/sPRKHwbRGIiIiIiIaWmq1rgH1tGmjujrj6ThzRkREREREQ2vVKuDYMeC55wAh7D0ah8GZMyIiIiIiGjpaLfDUU8DEibrm09SDM2dERERERDR0fvgBOHIE+PBDQMG5ot742yAiIiIioqEhJfCPfwDR0cAVV9h7NA6HM2dERERERDQ0Nm8Gdu4EXnkFUKnsPRqHw5kzIiIiIiIaGk89BQQHAzfeaO+ROCQGZ0REREREZHv79gFr1wIPPgi4udl7NA6JwRkREREREdneU08BPj7AnXfaeyQOi8EZERERERHZVnY28NVXwD33AN7e9h6Nw2JwRkREREREtvXMM4CrK3DfffYeiUNjcEZERERERLZTVAR8/DFw661AUJC9R+PQGJwREREREZF1PfsssHGj7vt//Uv37+zZutupXwzOiIiIiIjIuqZNAy67TLfO7K23gLPO0q03mzbN3iNzaGxCTURERERE1rVoEbBqFbBiBdDRAezaBXz5pe526hdnzoiIiIiIyPqSkwGNRvf9PfcwMDMCgzMiIiIiIrK+O+8Eurp0/7722sk1aNQvBmdERERERGRd//sf8MUXwPLlwKuv6lIcL7uMAdogGJwREREREZF1/etfgEoFvPGG7mfDGrQ9e+w7LgfHgiBERERERGQ9hw8DBw4Av/sdEBl58vZFi7jubBCcOSMiIiIiIut59FHAxwd45BF7j2TYYXBGRERERETWsWUL8MMPwMMPA/7+9h7NsMPgjIiIiIiILCelLigLDwfuvdfeoxmWuOaMiIiIiIgst3o1sGMH8OabgLu7vUczLHHmjIiIiIiILKNW69aajRsH3HijvUczbHHmjIiIiIiILPPhh8DRo7reZk4MMczFmTMiIiIiIjJfezvw+OPA9OnARRfZezTDGsNaIiIiIiIy38svAyUlwEcfAULYezTDGmfOiIiIiIjIPA0NwFNPAcuWAQsX2ns0wx6DMyIiIiIiMs8zzwD19boAjSzG4IyIiIiIiExXWgr85z/AVVcBaWn2Hs2IMGhwJoSIFEJsFEIcFUJkCiHu09+eJoTYKYTIEELsFUJMt/1wiYiIiIjIbp59Fti4Uff9X/6iK6F/7rm628lixsycqQE8JKWcAGAmgLuFEBMBPAvgL1LKNAB/1v9MREREREQj1bRpwGWXAR98ALz7LnDeecD99+tuJ4sNWq1RSlkOoFz/fbMQ4iiAMQAkAG/9Zj4Aymw1SCIiIiIicgCLFgGrVukKgCgUwK+/Ap9/rrudLGZSKX0hRAyAyQB2AbgfwM9CiH9BNwM329qDIyIiIiIiBzNzJhAcrCuff9ddDMysyOiCIEIITwBfArhfStkE4E4AD0gpIwE8AOCdfh53m35N2t7q6mprjJmIiIiIiOxl506gowP4wx+A1147uQaNLCaklINvJIQKwPcAfpZSPq+/rRGAr5RSCiEEgEYppfdA+5k6darcu3evFYZNRERERERDbuNG3ZqzVat0M2an/0yDEkLsk1JO7es+Y6o1CuhmxY4aAjO9MgAL9N8vBpBn6UCJiIiIiMiB7dlzaiBmWIO2Z499xzVCDDpzJoSYC2ALgMMAtPqb/wCgCcB/oFu31gHgLinlvoH2xZkzIiIiIiIazQaaOTOmWuNWAKKfu6dYMjAiIiIiIiLSMbogCBEREREREdkOgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgAMzoiIiIiIiBwAgzMiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgCDBmdCiEghxEYhxFEhRKYQ4r5e9/1WCJGjv/1Z2w6ViIiIiIho5HIyYhs1gIeklPuFEF4A9gkh1gEIAbASQIqUslMIEWzLgZJj0mol1FoJZydOwhIRERERWWLQ4ExKWQ6gXP99sxDiKIAxAG4F8LSUslN/X5UtB0qO50BRPR76/CC8XJzwzd1zIISw95CIiIiIiIYtk6Y7hBAxACYD2AUgEcA8IcQuIcRmIcQ0G4yPHFCnWoNnfsrGxa9tR2l9Ow6WNCKzrMnewyIiIiIiGtaMDs6EEJ4AvgRwv5SyCbpZNz8AMwH8HsAq0cfUiRDiNiHEXiHE3urqaisNm+zlcEkjzn9pK17bVIBLp0Ri/YMLoFIKfHOg1N5DIyIiIiIa1owKzoQQKugCs0+klF/pby4B8JXU2Q1ACyDw9MdKKd+UUk6VUk4NCgqy1rhpiHWptXh+XS4ueHUbGtu78d4N0/DMJSmI9HfHgsRgrD5YBo1W2nuYRERERETDljHVGgWAdwAclVI+3+uubwAs1m+TCMAZQI0Nxkh2drS8CRe8sg0v/pKHlanhWHv/Aiwaf7L+ywWTw1HV3Imdx2rtOEoiIiIiouHNmGqNcwBcC+CwECJDf9sfALwL4F0hxBEAXQCul1Jy6mQEUWu0eH1zAf7zSx583FR489opOHtS6BnbnTUhBJ4uTvjmQCnmxJ8xeUpEREREREYwplrjVgD9leG7xrrDIUdxvKYV9396AAdLGrEiJQx/W5kEfw/nPrd1VSlxzqRQ/HSkAn+7IAmuKuUQj5aIiIiIaPhjcyo6g0YrcftHe3Girg0vXzUZr1yV3m9gZnDB5HA0d6qxIZsdFYiIiIiIzMHgjM7w5b4S5Fa24KkLk3FeSrhRj5kdF4ggLxdWbSQiIiIiMhODMzpFe5cGz63LweQoXyxLOnN9WX+UCoHzU8KxKacajW3dNhwhEREREdHIxOCMTvHutuOobOrEH86dgD7a1g3ogsnh6NJo8eORchuNjoiIiIho5GJwRj1qWzrx2qYCLJ0Ygmkx/iY/PnmMD2IDPZjaOIIcLG7Af9bn2XsYRERERKMCgzPq8dKGfLR3a/DwsvFmPV4IgZVpY7DreB3KGtqtPDqyhze3HMO/1+fyfJops6wRv/v8ILo1WnsPhYiIiIYBBmcEACisacXHO0/g8mmRiA/2NHs/K9N0BURWHyyz1tDITjRaiW35ur7yu46zwbg53th8DF/sK0F2ebO9h0JERETDAIMzAgD8c20OVEoF7l+SYNF+YgI9kBbpa/PUxqaObpQ3cjbHljLLGtGgL+6y61idnUcz/LR1qbEuqxIAcLCkwb6DISIiMtLeQmZA2RODM0JGcQN+OFSOW+fHItjb1eL9XZAWjuyKZuRU2G624C+rs7Dy5W1QM13MZrbk6WbNJkf5YucxzpyZav3RKrR3ayAEcLik0d7DISIiGlRRbRuufGsnXlifa++hjFoMzkY5KSWe+vEoAj2dcdv8WKvs87zUcCgVAt9k2Gb2TEpdul1Vcyd2HeeMjq1syavGpHBvrEgOQ2FtGyqbOuw9pGFldUYZQr1dMTc+EIdKGZwREZHj+9faHHRrJApr2uw9lFGLwdkotyG7CruO1+G+JQnwdHGyyj4DPV0wLyEQ3x4ohVYrrbLP3krq21GhDxS+P8Sy/bbQ2qnGvhP1mJsQiBljAwCAs2cmaGjrwubcKpyXEobUCF/kVjajvUtj72HZXG5lM15Yn8sCKMNMQXULVr68FflVXBtJNJodKmnA6oNlcHZS4ERdq72HM2oxOBvF1Botnl6TjbGBHrhiepRV931B2hiUNXZgT6H1Z7YM+xwf6oWfMyuY2mgDu4/XoVsjMT8hCBPDveHl4oSdXHdmtJ+OVKBbI/GbtHAkR/hAo5XIKm+y97Bsalt+DS5+dTteWJ+HPZzRHja0WolHvzqMgyWNeHvLcXsPh4jsRJdJlQ1/D2fcOCcGlU2d6Oge+RcVHRGDs1Hsy/0lyKtqwcPLxkGltO6fwtKJIXBTKfFNhvWrNu4prIeXqxPuW5KAutYuBg028GteNVycFJgS7QelQmDaWH9WbDTB6oNlGBvogeQxPkiN8AWguyI5Un2+txjXv7sbIT66Nav7i+rtPCIy1uf7irH7eB0i/NzwbUYZmjq67T0kIrKDTbnV2HGsFvcujsfEMG8AQFEdUxvtgcHZKNXWpcbz63KRHuWLcyaFWn3/Hi5OOHtSCH48XI4utXVntvYU1mFqtB8WjQ+Gh7MSPxxm2X5r25pXgxmxAXBVKQEAM8b641h1K6qaue5sMFVNHdhxrBbnp4ZDCIEQbxcEebmMyKIgUko8vy4Xv//iEGbGBuCru2YjPtgT+4sa7D00MkJ1cyee/OEopo/1x6tXp6O9W4Ov9pXYe1hENMQ0Woln1mQjOsAdV82IRnSABwDgRC2DM3tgcDZKvbv1OCqbOvGHcydACGGTY1yQNgaN7d3YlFNltX3WtXYhv6oF08b6w1WlxJIJIfoUMqY2Wkt5YzvyqlowLz6w57YZsbp1Z7uZrjao7w6VQ0rgN6m6nn9CCKRG+Iy4oiBdai0eWnUQL/6Sh0umRODdG6bB21WF9ChfHCiqh5TWX29K1vXX77PQ0a3FPy5MRkqEL1IjfPDxriKeO6JR5usDpciuaMbvzxkHZycFov3dAQAnarnuzB4YnI1CNS2deH3zMZw9MQRTY/xtdpy5CYHw93DGt1ZMbdyrX282XT/uFSlhqG/rxo6CoUm5q23pxNERvnZoq76E/rzEk8FZUrg3PJyVw7YoSFuXGoU1Q/Mms/pgGSaFe5/SzD15jC8KqlvQ0qkekjHYWmN7N65/dze+OlCKB5cm4p+XpMDZSfd2kh7lh/q2bhwfot83mWdjThW+O1iGuxbF9fytXj0zGvlVLayCSzSKdHRr8NzaHKRG+GBFchgAwNddBS9XJ6Y12gmDs1HopV/y0N6twf8tG2/T46iUCpyXEob1RyvRbKV1DHsK6+DspEByhA8AYEFikC61cYiqNj6+OhOXvb7D6qmajmRLXg2CvFwwLsSr5zYnpQJTY/yHZTPqzbnVWPr8rzj737+itqXTpsc6UduKg8UNPbNmBikRPpASODICZs+K69pwyWvbsfdEHZ6/LBX3Lkk4ZfY9PdoPAJja6MDautT409dHEBfkgTsXxvXcfn5KOLxdnfDxzhN2HB0RDaX3txeivLEDjyw/mUklhEB0gDvTGu2EwdkoU1jTik92FeGKaZGnXNm3lZVpY9Cp1uKnIxVW2d/uwnqkRfjCxUm3FspVpcTSiSH4KdP2qY0d3RpsyK5Cc6cae08MvyDFGFqtrofcvPjAM9JdZ8T6I6+qBTU2DnCspb61Cw9+loHr392Nbo0WXRqtzYvHrNbPEp93WnBmuJgw3NedHSppwIWvbkdFUwc+uGk6LkqPOGOb+CBPeLk6sSiIA3thfR5KG9rx1EUpPa+lAODmrMQlUyLx05EKri8lGkZyK5tR3Wz6e3N9axde2ZiPxeODMSsu4JT7ov09OHNmJwzORpnXNhXA2UmB+85KGJLjpUf5Isrf3SqpjW1damSWNmLaWL9Tbl+REo7G9m5sy6+x+BgD2ZJXgzZ9r6pfc217LHvJKm9CbWsX5iYEnnHfzGGy7kxKie8OluGs5zdj9cEy3LMoHpt+vxCeLk7YVmC78yalxOqDZZgW44cxvm6n3Bfo6YIxvm44OIwrNq7PqsTlb+yEi5MCX905G7PjzvwbAQCFQmBylB/2n2Bw5oiOlDbina3HceX0SEwfe2Za+9Uzo6DWSqzaU2yH0RGRqdQaLS5+dTuW/2cL9pn4uvvKxny0dqrxcB+ZVFEB7iipb4PGBv1qaWAMzkaZrPImTI3xR7CX65AcTwiBlWnh2F5Qg6omy67EZhQ1QK2VZ6yTm5cQCC8XJ/x42LapjT8dqYC3qxOmRPvh19xqq+yzsa0bGcUNDrMAf6s+wJ0bf+YH7+QxPnB3VmKXA687K29sx60f7sVv/3cAEX5u+O63c/G7c8bB3dkJM8b623RtYnZFM/KqWvCbtDF93p8S4YPDwzStceexWtz20V7EB3vi67tnI6FXymtf0qN0jbdHyhq7kUKj72nm5+6MR5ZN6HObuCBPzIkPwP92F/NDGZEJtFqJy97YgS+GuOJpbmULmjvVaOnsxpVv7sRX+407fnFdGz7ccQKXTInAuNAzX9Oj/d3RrZEoa2i39pBpEAzORpmiujZE+bsNvqEVrUwbA63UFUqwxO7COggBTIk+debMkNr4c2alzdaCdWu0WH+0EmdNDMHi8cHIKm+yStrPkz9m4YJXtmH5f7bgi30l6FTbt+HjlrxqjA/1QrD3mcG7Sqnre+aIxQK0WomPd57A0ud/xdb8GvxpxQR8ddccTND3agGAWXEBOF7TarM3mtUHy6BUCJyb1HdriuQIH5yobUNDW5dNjm9Lq/YUw9PFCZ/eNtOoCzvpUX7QSuBgcYPtB0dGe397IQ6XNuLx8yfCx13V73bXzIhGaUM7NmZbr9Iu0Uh3tKIJu4/X4ftDQ9vex5CR8elts5Ae7YsHVx3E02uyoR3k4spza3MgBPDA0sQ+748K0FVsZGrj0GNwNoo0tnWjsb0bUfoSqUMlPtgTSWO8LU5t3FtYjwmh3vB2PfNDxYqUMF1qo43S1nYdq0NjezeWTQrFgsQgAMAWC1Mb1Rot1mZVIjXCB1op8bvPD2LuMxvx8oY81LUO/Qf49i4N9hTWY14fKY0GM2MDkF3RbJfx9aegugVXvLkTf/rmCNIifbH2/gW4ZV4slIpT18zN0c8G2mL2TEqJ1RllmBsfiABPlz63SRnjCwDDbvasU63BuqxKnD0pFB4uTkY9Ji3KF0LA5BQbsp3ShnY8tzYHi8YF4byUsAG3PWtiCIK9XPDxLscoDNLY3o1r39mF/Kpmew+lT1JKfLSjELmVjjk+Ghpb9JWODxQ1DBoYWVNGUQN83VVIjfDBRzfPwFUzovD65gLc/vE+tPaTvXCktBHfZJThprljEebT9wV79jqzHwZno0hxve4/WJS/x5Afe2XqGBwubTS7vLZao8X+onpMi/Hr8/65CYHwcnWyWdXGnzLL4aZSYn5iECaGeSPQ0xmbLUxt3F1Yh4a2bty5MB4/3z8fH940HRPCvPGvtbmY/fQv+OPXh1FQ3WKlZ2DceLrUWsxNCOp3mxn6NSr2XHdW29KJjTlVePGXPNzywV4s/88WZFc04dlLUvDRzdN7rvadblyIF/w9nLHdBsHZ/qJ6lDa0n1GlsbfkMbqiIIeGWVGQrXk1aO5U95RYNoa3qwoJwZ4sCuIgpJT48zdHICXw15VJg/a2VCkVuGJ6FDbnVqPYAa6a7zlehy15NfjvLsdcB5dd0YzHvs3Eihe34IX1uSO6mu9wodXKIV8uYGhD09jejWM1Q/fefbCkAakRvhBCQKVU4MkLkvDE+RPxy9FKXPzadpTUn/l/+Ok12fBzV51SrfV0od6ucFYqcKKObVGGGoOzUcRw9WOoZ84A4LxU3Qe778xMbcwsa0JblwbT+ljADgAuTobUxgqrvzFqtRI/Z1Zi0fgguKqUUCgE5icEYWt+jUVXx9ZmVsLFSYH5ibrKiPMTg/DhTdOx9oH5uCBtDD7fV4Ilz23Gze/vwfb8Gpu/0WzNq4azk6Knh1xfUiJ84apSYNfxoVl31tjWja15NXh1Uz7u+Ggf5jy9AVP+vh43vrcH/16fi+M1LbhkSgTWP7QAl02NHPBDp0IhMCs2ANsLrP+7XJ1RBhcnBc6eFNLvNj7uKsQEuOPQMCsK8sPhcni7OvXMPBorPcpvyK8gU9/WHKnAL9lVeOjsREQa+fp/5fRIKITAJ7uKbDy6wWXpe0v+nFnhMOtze8ur0n0QnxbjjxfW5+H8l7Yigym9dqPWaDH3mQ2Y9dQGPLTqIL45UGpWJUNTtHdpsLuwDovHBwMA9p9osOnxDFo71citbEZqpG/PbUII3DBnLN6/cTpKG9qx8uVtPT1iAeDX3Gpsza/BPYsT+sxEMlAqBCL83VDEmbMhx+BsFDHkDfc3s2BLYT5umB7jj9UHy8x6c92jf2GZNkDgcF5KGJo71Niab51iHQb7i+pR3dyJcyadXEs0PzEIda1dOFJm3iyIlBJrMyswPzEI7s6npoolhnjh6YtTsP2Rxbj/rARkFDfgqrd34eq3d9l0gf6WvBpMi/GDm7Oy322cnXTrzmxVkl6t0WJbfg3+9M1hLPjnRqT+dS2ueWcXnv0pB9kVTUiP9sMfz52AT2+biUOPn41fHlqIf1yYbHSBm1lxAShv7EChFd9s1BotfjhcjiUTguE1wBsdoAtuh1M5fUNK49KJoT1Npo2VHuWnv4LMq6721NjejcdXZyJpjDdumB1j9OPCfNywZHwwVu0ttvta2Ez962xpQzuOlDbZdSx9ya9qgUIA794wDe9cPxWN7d246NVt+Pv3WWjvsu/vbjQ6UdeGssYOBHm5YEN2Je7/LAPTnlyPZS/8ir9/n4VNOVVo67JusSJD5sl1s6Lh664aspTuI6WN0EogLdLnjPvmJwbhm7vnwNtNhave2oUv9pVAq5V4ak02IvzccM3MqEH3H+XPXmf2YNwCAhoRiuraEODhDE8j141Y2/lp4XjsmyPIrmg+pVCDMfYU1iHK3x0hfRSqMJgbH6RPbazA4vH9z2CY6qcjFXBWKnquiAHoKTW/OacaKRG+Ju/zSGkTyho7+l2IC+jKr99/ViLuWBCHt7ccw7/W5uL7Q2VY2U81QEtUNXUgu6IZjywfvDH5jLEB+Pf6XDS2dQ9YVMBYXWotthfUYM3hCqzNqkB9WzfcVErMSwjEFdOikBLhg6RwH6sca7a+j8v2ghqMDbROeu/2glrUtHQNmNJokBLhg9UHy1Dd3Ikgr77XpjmSbfk1aO5QY0VK30VOBpIe7QtAd3FjKHoqUt+e/SkbtS2dePf6aXBSmhZgXzsrGmuzKrHmcAUumGz91x1jZZY1YU58AHYeq8NPmeU9fQMdRUFVC6L83eGqUmLJhBBMG+uPZ9Zk4+2tx7E2qxJPX5SM2SbOPJP5cit0a/+euigZE8O8kVnWhC351diWX4MPd57A21uPw1mpQHq0L+YlBOG6WdGDXlgbzJZcXebJjLEBSI/yG7KUbkMxkNR+PofEBXni67tm4+7/7sfvPj+Irw+U4Gh5E/5zRdopPQ77E+3vjr2F9ZBSDpoOTdbDmbNRpKiu1eiUFls4NykUSoUwuWqjlBJ7C+sHnDUDdLM650wKxdqsCqtd6ZVS4qfMCv2atpMv3oGeLkge44Nf88ybpVubVQGFAM6aMHgQ6apS4q6F8UgM8cRLG/JtMns2UAn9080Y6w8pdVcKzdXRrZuRefCzDEz5+zrc8N4e/HC4HPMTg/D6NVOw/7GlePO6qbhzYRzmxAdaJTADgLGBHgj1drXqurPVB8vg5eKEheOCB93WsO7scGmD1Y5vSz8cqoCXqxPmxve/DrE/sYGe8HZ1wgGuO7Obbfk1+GRXEW6cM9asgGZOXCBiAtzx8U77FQZpbO9GSX075sQHYsZYf/x0pMJuY+lPflXLKRcgvF1VePLCZHx620woBHDV27vwyJeH0NjebcdRjh65lS0QQleMTKEQSI7wwV0L4/HJLTNx8M9n48ObpuOGOTFoalfjnz/n4Jmfsi0+5tb8k5kn6VG+yKtqQWOb7c93RnEDIv3d+i1EBQC+7s54/8bpuHZmNLbl1yJ5jA/OTxn8YiIARAV4oKVT7VBFwEYDBmejiK6Mvv2CswBPF8yJD8R3JqY2HqtpRW1rF6aP7bsYSG8rDKmNedap2phZ1oSS+nYsm3TmzMH8xEDsL2pAU4fpL8BrMysxfaw//DycjdpeoRC4d0kC8qta8IMN+rltzatBgIczJhoxo5ka6QsXJ4VZ/c6Katvw2/8dwJS/rcOtH+7F+qOVOHtiKN65fir2/uks/OeKyViWFDpgaqUlhBCYHR+AnQW1VlkL1dGtwc9HKnBOUihcVYOPOWmMD4QYHkVButRarMuqwNKJISanNAK9m1E3WH9wNKjKpg7c9+kBxAd74qGz+5+hH4hCIXD1jGjsPVGP7Ar7pBNmlemOOzHMG8uSQlFQ3epQVRvVGi2O17Qiro/Z4ZmxAfjp/vm4fUEsVu0txtLnN2NtpuMFlyNNbmUzovUzmadzc9YV9vrDuRPw433zsCIlDGsOV0CtMX+tuiHzZJ6+mFa6vt3PgWLbX5g6WNzY76xZbyqlAn+7IAnv3jAVr16dDoXCuFmwaP1nxhMOUBhoNGFwNkp0a7Qoa+hAtB3Wm/X2m9RwlNS344AJi6X36CsDnt58ui9z4gLh46ayWtXGnzP1M1wTz5zhWpAYDI1WYnu+aYFgYU0rciqbcfZE01LFzk0KQ0KwJ178Jc+qs2dSSmzJr8Gc+ECjXrBdVUpMjvLFThOLgkgp8cCqDGw4WonfpIXjg5umY++fluK5y1KxZEKIUcGNNcyOC0RtaxdyrfABb1NOFZo71UalNAKAh4sT4oM8h0Vwti2/Bk0dplVpPF16lB9yq5rNuoBhUN7IBqimUmu0+O3/DqC1U4PXrk4/Y12rKS6ZEgFnJ4XdZs8MxUAmhfv0vGY60uxZcX07ujRaxAf1nbrrqlLi0eUT8M3dc+Dv4YzbPtqHX45WDvEoR5ecymYkhpzZVLkvK5LDUNvaZVEFYkMJfUMbmtQIXygEsN/G686qmjtQ2tCOtF7FQAazeHyISRlUhs+MjlC1dTRhcDZKlDW0Q6OVdk1rBICzJ+muwq82oefZ7sI6BHo6I9aINUK61MYQrMuqREe35amNPx2pwIyxAfDvY4ZrcpQvPF2csNnEfmdrs3QfLAaq7NcXhULgvrN0s2c/WnH2LKeyGdXNnQP2NzvdjLEByCprMulD9+qDZdh3oh6Pnz8JT12UggWJQWbNyFhqln7d2bZ8y1MbVx8sQ6Cnc89aNmOkRPjiUEmjQ1ad6+2Hw+XwcnHqWV9pjvRoX0gLmlF/c6AUs57agFV7HLOEuqN6fl0udh+vwz8uSkKCkR9S++Pn4YzzUsLw9f5StPTTM8mWMssaEezlgiAvF4T6uGJylC9+cqDZp3x9pcbB1lWmRPji23vmwFmpsGsrkpGuU63B8ZpWjAs17u9+0bhguKmUFmWkbMmrRoCHMyaE6jJPPFycMCHMG/uLGszepzEOFesu8qWaEJyZyvCZkUVBhhaDs1Gip1KjnYMzb1cVFo0Lwg+Hy42e/dlbWI+p0f5GL0ZdkRKO5k51z9Usc+VXtSCvqgXLkvqe4VIpFZgdF4Bfc6tN+qD9c2YlJoV7I8LP9HNhi9kzQzPteQP0NzvdjFh/aCVOKc87kLYuNZ5ek42kMd64ZEqEWeO0ljG+bogJcMcOCxuWN3d045ejVViRHGZSoYWUCB/UtHSioqnDouPbUpdai7WZupRGYxaN9yctUteM2tzUxv/qy7j/6dsjw64Fgb1szK7Cq5sKcOX0SFw42Tr/166ZGY3WLg2+OVBqlf2ZIqusCRPDT6ZbL5sUiiOlTQ5zJT9PPwPfV1rj6VyclIgN8ugpvU/Wd6y6FRqtNHrmzM1ZicXjg/FzZoVZ76larcTW/FrMTTg180TXSqTephWWD5Y0QKkQSAq3XYEcV5USod6uDM6GGIOzUcIQnNk7rREAzk8NR3Vzp1FrliqbOlBU14ap/TSf7svsuAD4uqvwwyHzeqoZ/Jw5+AzXgnFBKG1oR0G1ceXCq5o7sL+o/pSy/KYwrD3Ls+Ls2Zb8GiQEeyLUx7hy9IDujcdZqTC6pP7rm4+hvLEDj58/yehcd1uaFReIXcfqLFpnsC6rEp1qLX6TZlxKo4GhMMPBYtNTGzPLGnHrh3vxw6Fyi8Y+mG0FupTGcy1IaQQAL1cVEoO9zKpcVljTit2Fdbhl7lgEebrgjo/2oabFtr2KhrvShnY8sCoDE8K88fj5k6y238mRvpgU7o2Pd54Y0hnfjm4N8qtaMKlXcGZ47fzZQWbP8qtaEOLtMmC/qN4SQrx6AjqyvtxK3e/W2OAMAM5NDkNNS5dZ/TuzK5pR09J5xsXNKdF+aO3S9IzHFjKKGzAuxMtma7QNogLcUcRG1EOKwdkoUVTbBmelAiFG9oOypSXjQ+DhrMR3RgRPhvSP6f00n+6LSqnAskmhWH+0yqLUxp+OVCAt0hdhPm79bjNf/4K8Ode4qo3rs6ogpekpjb2dmxyGeP3smaVFLTq6Ndh1rNbk1DVXlRJpkb5GBdgl9W14Y3MBzk8NH7Ti5lCZEx+A5k41jpSZX+Tg24wyjPF1Q3qU8RcOAF1hAyeFMKti47/X5WJdViXu/u9+LHpuE97fdhytNkg1+/GQLqVxXqLl5b/To31xoKje5L/VL/eXQCGAm+eNxRvXTkFtaxfu+e9+mwalw1mXWou7P9kPtUbi1avTrbqGUwiBa2ZGI7uiechKhANAXmUL1FqJSb1mBmICPTA+1MthgrOC0yo1DiYh2BMl9e1W77NFOrmVzXBSCJNapSwaHwRXlcKsC55b9BWbT18WYHhfsFW/M61W4mBxg01TGg2i2etsyDE4GyWK6toQ4e/mELMWbs5KLJ0Ygh8PV6BLPfAHrb2FdXB3VhpVRbC3FSlhaOlU41cjg6bTldS34XBpI5b3k9JoEOnvjtggD6OPszarAtEB7hhnwToQZe/ZsyOWzZ7tO1GPTrW2J8g0xYxYfxwpa0LzIOvOnlqTDSFgVA+1oTIz9mS/M3PUtnRia34Nzk8NN7n3i6tKicQQL5OLghTWtOKX7Crcsyger18zBcFernjiuyzMfnoDnv0pG1VWSpPs1mixNqsSZ1mY0mgwOcoPTR1qHKsxPpVLq5X4cl8J5iYEIczHDUljfPDkhcnYeawOT6+xvOz1SPT0mmxkFDfg2UtSrNbDr7eVaeHwcnHCRzuGrjCIofn06a//y5JCsfdEPaqa7ZsaLKVEQXUrEoKNfz1PCPaElEBBFWcibCGnogWxQR4mrWd2d3bC4vHB+OlIpclpiFvza5AY4nlGD9ZIfzcEerrY7GJGYW0rmjrUfTaftrboAHdUNXeyofoQYnA2ShTVtfWURHUE56eGo7G9G1vzBw5qdhfWIz3Kz+TmqbNiA+DnrjJ7ke/PmbpqWsakH85PCMLOY7WDztI1d3Rje34tzp4YYnEzxxVWmj37Na8aKqXAjFjTZ7RmxgZAo5XYO8CVwV3HavHDoXLcsSAOY3z7n4EcaoGeLhgf6oUdZvY7+zajDBqtNLpK4+lSI31wuNS0oiDvby+Ek0LgulnRWJYUii/vnI0v75yN2XEBeG1zAeY+sxG///ygxWk02/Jr0NjebXFKo4HhCrIp6862F9SirLEDl/Zan3jJlAhcNysab289jm8zhn7t01DILGvEbR/uxTcHSk36kPjTkXK8u+04bpgdY7Xzdjp3ZydclD4GPx6uQO0QpZdmlTfB08XpjLXSy5JCIaWuJYk9VTR1oKVTbdR6MwNDgRamNtpGrgmVGnvTpTZ2mlSspaNbg13H6/pcry2EQHqUr80qNvY0nx6CmbOoAN3FniIHWec5GjA4GwWklCiqtW+Ps9PNSwiCj5tqwKqNje3dyK5oMisVzkmpwLKkUKw3s2rjz0cqMD7UCzFGXIFeMC4InWrtoC/qm3Kq0aXRmr3erDelQuC3i+ORW9mCNRaUld6aV4Mp0X5mldpOj/KDSimwq591ZxqtxF+/z0K4jytunx9n9hhtZVZcAPYU1pncsLxTrcGbvx7D9Bj/UwoVmCJ5jC8a2rpRXGdcmfimjm58vrcY56eEI7jXFdop0X547Zop2PjQQlwxPRLfHyrH2f/+Fde/uxs7zehDBwA/Hi6Hp4uTSdU7BxIb6AEfN5VJV5C/2FcMb1cnLD2thcWfVkzE1Gg/PPzlIRwtt0/fLVvZlFOFy17fgQ3ZVbj/swwsfX4zvtxXMmgaZ2FNK37/+SGkRvriD+dOsOkYr50VDbVWixfW59n0OAaZZU2YGOZ9RsbHuBAvxAS42z21sadSYz9l9PsSHeAOlVKwKIgNtHWpUVzfZlZmyuLxwSanNu4+Xocutbbf18op0X4orG2zycWMg8WNcHdWmjRra66eXme1nO0dKoMGZ0KISCHERiHEUSFEphDivtPu/50QQgohrPNOTlbX0NaN5k613cvo9+bspMDypFCsy6rsd6p8/4l6SAlMM6L5dF9WJIejtUuDTTmmpTZWN3diz4m6fqs0nm7m2AA4OykGTW38ObMCgZ7OmGziGqX+nJcSjrggD/znl1yzZs9qWjqRWdZkUpXG3tyclUiJ8O13EfXne4uRWdaER8+dYPMFy+aYHReIjm4tDphY7viLfSWoaOrAb5fEm33sFENRECMrEK7aU4zWLg1unDO2z/tjAj3w15VJ2P7IYvzu7ERkljXhijd3Yl2WaTMLPSmNE4KttmZJ14za1+i1F00d3VhzpAK/SQs/YwzOTgq8ek06vF1VuP2jfWhsM79/mjVotLoLX5YWyfhsTxFu/mAvogM8sPXhxXj9mnS4qJR46PODWPL8ZqzaW4zuPoK0jm4N7vpkPxQKgZevnGzz1hTxwV64fnYMPt51AhlmtkcwlkYrcbS8qc8LIEIInJMUih0FtWho67LpOAZibBn93lRKBcYGeiDPhoUiRqv8qhZICbPaR7g7O2HRuGD8ZELVxi151XBWKjBjbN+tVAzNqG1RUv9AcQOSx/hAOQRLVQyF5DhzNnSMeSVXA3hISjkBwEwAdwshJgK6wA3AUgBFthsiWcpRyuif7jepuuBpQ3ZVn/fvKayDk0JgcqR5wczMWH/4ezjjexOrNq7LqoSUMDo4c3NWYnqM/4BFQTrVuiDxrAkhVnsxNaw9y61sMavvz7b8UxtnmmNmrD8OlTSeUZSiqaMb//w5B9Ni/HBeim3SrCw1I9YfCqFLoTNWt0aL1zYVIC3SF3Pjzf+9JYZ4wdlJgcOlg68702glPthRiGkxfj2VHvvj5+GMexYnYOvDi5A0xhu/+/wgShuMb+K8vaAWDW3WS2k0SI/yQ15VCxrbBw+mvj9Yjk61FpdMiezz/mAvV7x2zRSUN7bjvs8O2LRUdX/auzT4aEchFj+3CfP/uRHXvbsbhTWmX1WWUuK5tTl4+MvDmBMfiFV3zEKojyuWJYXhx3vn4s1rp8DL1Qn/98UhLPrXJvxvd9Ep63T/+n0Wssqb8PxlqUN28e3BpYkI9nLBH746bNPiLCdqW9HWpel3dnrZpFCotRK/HO37/WMo5Fe1wMdNhUDPM/tgDkRXsZEzZ9aWU6ELeI3tcXa6c5PDUN3caXSLmC15NZga49fvxcfkMT5QKYXV1511qjU4WtZkUvNpS/i6O8Pb1YlFQYbQoMGZlLJcSrlf/30zgKMAxujv/jeA/wPg2N1UR7mTZfStv0jcEjNiAxDk5YLVB/teP7KnsA5JY3zMnnVxUiqwMi0c3x8qxztbjxv9uJ8yKxBjYtGOBYlByKtqQVk/H4R3FNSipVNtlZTG3s5LCUdskAf+s970tWdb8mrg6646pRKaqWaM1a07O31W5KVf8lDX1oXHz59k8fo6W/F2VSE5wtekfmdfHyhFSX077l0Sb9HzcnZSYEKYt1G9u9YfrURxXTtu6mfWrC+uKiVevjIdGq3Evf870OesS19+PKRLaZyfaN5san8M686MmW35Yl8xEoI9kTpAIDol2g+Pnz8Jm3Kq8cL6XGsNc1DVzZ14bm0OZj39Cx77NhN+7s747eJ4ZBQ14OwXfsXLG/IGLXJk0KXW4qFVB/HShnxcMS0S71w/FZ4uJ9OLhRA4e1IovrtnLt69YSoCPJzx6FeHsfCfG/HRzhNYtbcY/91VhDsWxGHJBPOrv5rKy1WFx8+fhKzyJnxgw+IgmfpKqpP6Cc5SI3wR5uNq14bUefpKjaa+FiQEe6Kors2iasJ0ptzKZrg4Kcy+EL14fDBcnIxLbaxq6kB2RfOAmSeuKiUmhvtYvWJjdnkzujTaIVlvZhAd4IETnDkbMiblQAghYgBMBrBLCPEbAKVSyoO2GBhZjyE4i/R3nIIMgG7mZ0VyGDbmVKPptIp/Hd0aHCxuNKmEfl8eWT4ey5NC8bfvs/Dc2pxB048a27uxPb8Gy5LCTHrDNXyY7S+18efMSng4KzErru/0B3MpFQL3LUlATmWzSesvpJTYmleDOfGBFs3kTYn2g1IhTkltLKhuwXvbCnH51EgkjbF9JSlLzI4LwIGiBqPKWqs1Wry6MR9JY7yxaFywxcdOjfDBkdKmQYPqd7cexxhftzPWXw0mJtAD/7goGftO1OO5tYMHMN0aLX7OqsASK6Y0GqRG+uibUQ/8ISW/qgX7ixpwyZSIQf//XT0jCpdNjcBLG/JtvvYor7IZD39xCHOe3oCXN+Zjeow/vrhjFr6+azYeOnsc1j+0AEsnhOBfa3Nx7otbBm0x0djejRve242vDpTid2cn4qmLkqHqp+iREAKLx4fgm7vn4P0bpyHExxWPfXME//fFIUyP8cfvzk60xVMe0PKkUCwaF4Tn1+agvNH4mVlTZJY1QaUU/a6pUSgEzpkUil9zq23STsIYBVUtJq03M0gI9oKUJ9MiyTpyKluQEOJp9nuah4sutXHNkYpBX5e3Gpl5MiXKD4dKGoy+QGaMoSwGYhDl744irjkbMkYHZ0IITwBfArgfulTHPwL4sxGPu00IsVcIsbe62ryy5mSZoto2BHq6mFX0wdZ+kxaOLrX2jKpbh0sb0aXRYmq0ZeuzXJyUePmqdFw+NRIvbcjHn7/NHPBF95ejlVBrpdEpjQaJIZ4I9XbFr3ln/o1rtRLrsiqxcLz1P/QCvWbPTKjcmF/VgoqmDsyzIDUP0L2ZpUT4nFIU5MkfjsJVpcRDZ4+zaN9DYXZcANRaaVSFru8PlaOwtg33LEqwymxg8hgftHSqcWyAdLjMskbsOl6H62dHm1yxFNClDl85PQqvby7AppyB07922CilEdDNtowLGbwZ9Zf7S6BUCFyYPmbA7QBd0PLXlUlIifDBQ6sOoqDauh90pZTYXlCDm97fg6X//hXfZJTismkR2PDQQrx53VRMjfHv+TsI8XbFK1en470bpqGjW4PL39yJ//viIOpbz1wPVdbQjktf347dx+vw/GWpuGexcX9PQggsHBeMr+6cjY9vnoGrZkThpasmm/V3YSnD716tlfjrd1k2OUZWeRMSgr0GXEd3zqRQdKq1RveZtKb61i7UtnaZtN7MIDFE9xgGZ9aVV9mMRAsLZJybEoaq5s4BqxADusyTAA/nQdv8pEf7oqNba9UCRhnFDQjyckG4z9D1rY0KcEdJfTv7TA4Ro17VhRAq6AKzT6SUXwGIAzAWwEEhRCGACAD7hRBnfKKVUr4ppZwqpZwaFGTdVBkyTlFdW8+CTkczOdIXEX5u+O7gqevCDB+WrdG0WKkQePriZNy+IBYf7TyB+z7L6Df16KcjFQjzcUWKiTM+QgjMTwzE1ryaM168DhTXo6alE2ebOPNhLKVC4N7FCciuGHz2rKVTjTWHy/G3H44CgMnNp/syY2wADpY0oL1Lg005VdiQXYV7l8QjyMvF4n3b2tRof6iUYtCS+lqtxMsb8zEuxMtq5zElwhcABmxG/d62Qrg7K3H51Cizj/P4+RMxLsQLD646iMoBeqH9eLgcHs5KLLBySqNBerQfMoob+r2AoNFKfLW/BAsTgxDsZdyHDleVEq9dMwXOTgrc9uFeq/XhqWzqwMpXtuGqt3bhYHEDHlyaiB2PLsHfL0gesIfYovHBWPfAAtyxIA5f7S/FEn3FRcOMfWZZIy58dRvKGzrwwU3TcVF6RL/76o8QAnMTAvGPC5PP6K00lCL93XHvkgSsOVKBDdnWLWkvpURWWWO/KY0G02L84O/hjJ8sqFhrrvxq04uBGEQHeMBJIVhO34oa27tR3tiBRDPXmxksMSK1UUqJLfrMk8F6x06Jtn4z6oziBqRG+A7pkoFof3eotRLljfbtLThaGFOtUQB4B8BRKeXzACClPCylDJZSxkgpYwCUAEiXUtq3ri31qajOscro9yaEwPmp4diaX3NKudk9hXVICPaEn4dpC60HOs6jyyfgkeXj8d3BMtz20Zkf5Nq61NicW41zJoWa1ax7fmIQmjrUZ1TgW5tZCZVSYNF4y1Ph+nN+ajhiA/uePSttaMeHOwpx3bu7kf7Xdbjzk/04WNyAOxfGIcLP8r+LGbH+6NZI7Dpei799n4WxgR64Ybbx66Psyc1ZiclRfoMWBVlzpAL5VS24Z3G81Rq5xwd7wk2lxMHivouCVDd3YnVGGS6ZEgEfd5XZx3FVKfHK1ZPR3qXBvf870OeVz26NFj9nVmDJhBCbzO4CunVnzR3qng+1p9uSV43Kpk5cMsW0gGWMrxteuDwNBdWt+HSPdWpTvbwhH9nlzXjqomRse2Qx7l2SAH8jX4vcnJV4ZPl4fH/vXMQEuOOhzw/iqrd2YdWeYlz2+g4ohMDnd87CHAtnrR3BrfNiER/siT9/m2nVBrVVzZ2oaekatFWFk1KBpRNCsCG7yuSWGJYyp1KjgbOTAjGBHsit5MyZtRiqX5pTRr83DxcnLBwXhDVHyvu9kJRd0Yyalk6jimmF+bghzMfVahUbG9u7cay6dUiaT/cWFWAop891Z0PBmJmzOQCuBbBYCJGh/zrXxuMiK+lSa1HW2O5QZfRP95vUcGi0sqdfl6HAxFQrzJqd7o4FcXj6omT8mluNa97ZdUop7s051ehUm9+HbG58IBQC2Jx7ssCElBI/Z1ZgVlwgvF3N/4A9GKVC4LdL4pFd0YyfMiuQUdyA59bmYNkLv2LO0xvw528zUVLXhutnR+PT22Zi35/OwsPLxlvl2FP1684e+/YICqpb8acVE2xe0tua5sQF4khZY79l2bVaiZc25CE2yMOqKX9KhUDSGO9+KzZ+susEujRa3DA7xuJjxQd74e8XJGHX8Tq8uCH/jPt3HqtFvY1SGg3So3wB9L/u7PN9JfBzV5lV3GJ+YhCmx/jj7S3HLV7bUdvSiVV7i3Hh5DG4cnqU2cHq+FBvfHHHbDx5YRIyyxrxf18eQlSAB76+aw7Gh5rXH8/RODsp8OQFSSipb8eLG6zX+yyrpxjI4B9AlyWFoqVTje355vX1M1d+VQvcVEqM8TVvLXdiiCfTGq0oRx+cWTpzBuiqNlY2dWJfP2nYW/TLF4xtQ5Me7We1ZtSHS3TvF0O53gw4WVDuRB3XnQ0FY6o1bpVSCillipQyTf/142nbxEgpjS95RkOmtKEdUp5sIuiIxod6IT7YE6v1qY05Fc1o7lBjupn9zQZzxfQovHJVOg6XNOLyN3egSp/q9VNmBfw9nDEtxrzj+ro7IzXS95T1D3lVLSisbbNZSmNv56foZs/u+mQ/LnhlG17dVABvNxX+cO54/PLQAmz43UL8ccVEzIwNsOo6FS9XFZLCvVFc1475iUFYbMMZQluYHR8AKYGd/fRrW3+0EtkVzbhnUbzVe8qkRPgis6zxjNmsTrUGH+88gUXjghBrRsGBvlw8JQIXp0fgpQ152J5/6su1IaVx4TjbpZ6PDfSAn3vfzagb2rqwLrMSK9PGmB3Y37EwFqUN7WekSJvqg+2F6NJocduCWIv2A+iKVlw9Ixq/PLQQf/nNJKy6fSZCh3CdyFCYERuAS6dE4K1fjyHXSr27Mst0H0AnhA3+QXt2fAA8XZyGPLUxv6oFsUEeZs+kxwd74URtKys2WkluRTM8XZyssg5ryYQQODsp8MOhvlMbt+TV6NaZG3ms9Cg/lDa0o8IKKYGGzBxDWvxQCfV2hbNSgSLOnA2J4XN5m8xi6Oge5aBrzgBdyuFvUsOxp7AO5Y3t2FNovfVm/VmeHIZ3b5iGoro2XPL6DuRXtWDD0SosnRBiUeCyIDEIh0oaegoB/Kz/wDAUwZmTUoG/X5CEi9Mj8MLladj3p7Ow6vZZuG1+HOKs9AG/P3PiA+GkEHhsxQSHLZ3fn9QIX7iplH2uO5NS4qUN+YgOcMdvUsOtfuyUCB90dGvP6Hn0/cFy1LR04aa51k0P/dsFkxAb6IH7PstAdbMujVit0eLnzEostmFKI6D7fz45yq/P9J7vDpahS6M1OaWxt0XjgjEuxAtvbD5mdlPo1k41PthxAksnhFj1/0yQlwuunx0DLxvOntvTo+dOgKerE/749WGTW3r0JbOsCdEB7kb9vlyclFg8PhjrjlYOabGCfH0ZfXMlBHtCK4Fj1ZyJsIZcfaVGa7z/eLo4YWFi36mNHd0a7D5eh7nxxl/ImtLTjNry2bOM4gbEBnnAx21oX0uUCoEIfzemNQ4RBmcjXLGDNqA+3fmp4ZAS+OFQOfYU1iHMx9XsdBFjzU0IxCe3zEBTRzfOe2kLmjvVWJZsWR+y+YlBkBLYop+ZWJtViclRvggeooX7s+MD8dxlqbhg8hj4ultnvZ4x7l4UjzX3zUOChfn+9uDspMC0sf49Tbl725RbjcOljbhrYZxNquIl6wvPGFJVAF1A+O6240gI9rSo0XVf3J2d8MrV6Whq78YDn2VAq5XYeawOda1dWGHh374x0qN8kV/VckYK6ef7SjAhzNui1gtCCNy+IBY5lc3YOEhlyv58tqcYje3duGNhnNnjGI38PZzxh+UTsKewHl/sK7F4f1nlTYMWA+ltWVIo6lq7sKfQuv2k+tPaqUZpQ7tZZfQNEvWvlY5UFKS1U42F/9xo89YUtpBb2WzxerPeDKmNpwdUewrr0KnWYl6i8a/NE8O84eKksDi1UUqJjOIGpA3xrJlBtL87e50NEQZnI1xRXRtcnBQIdvDKeWMDPZA8xgerD5ZhT2EdpvUqU21Lk6P8sOr2WfBxU8Hb1QmzLexDlhrhCx83FX7NrUZpQzsOlzZavfG0I/JwcRqWgZnB7LgA5FW1oKr5ZNqJlBIv/ZKHMb5uuHCy+TM6A4kJ8ICXq9MpRWR2H69DZlkTbpwz1ib/B8aHeuOJ30zC1vwavLa5AD8cLoe7sxILrdC7bTCGZtQHik9+SMmpaMahkkaLZs0Mzk8NxxhfN7y2qcDkx3ZrtHhn63FMH+vfM04y3iVTIjAtxg//WHMUdX20EDBWU0c3TtS2GbXezGBBYhBcnBRDFlQYZrssmTmLCXSHUiEcat3ZtvwaFNa24ft+0vkcVU1LJ2pbu3oCXmtYMiFYl9p4WtXGLXk1cFYqMMOEHqzOTgqkRPj0u4bNWOWNHahu7hzy9WYG0QEeKKptNTszgYzH4GyEM1RqHA6pZuenhuFQSSMqmzoxzcLm06ZIDPHCj/fOwzd3z4GLk2VpXUqFrsz1r7nVWJs5dCmNZJk5cbqroL1TG7cX1GJ/UQPuWBhnswInCoVA8hifU4qCvLvtOHzdVbhw8uC9vsx1xbRI/CY1HM+tzcF3B8uw2EY9+E6XGukLhcApqY1f7CuGk0LggjTL00ZVSgVumTcWewrrse/E4L3revvuYBlKG9pxhxXWmo1GCoXAkxcmo6VDjad+PGr2frLLdTNJg/WP6s3DxQnzE4PwkxHNg60hv1o3RkuCMxcnJaID3K22Ts8aNubo1kvvKKgdVh/Acyv0xUCsGJx5uaowPyEIaw6f+jf1a241psb4mdw3Nj3KD5mlTRatMTxY3ABg6IuBGET5u6O1S2PRxRcyDoOzEe5EreOW0T/deSknP5yZW5TDXAGeLlYrvLAgIQhVzZ14e4suNc1a+yXbmRjuDW9Xp1OCsxd/yUOItwsutcKMzkBSInxxtLwJnWoNiuvasC6rEldNj4Kbs23Xfz15YRKi/N3R0qnGChtWaezNw8UJ40K9cUB/Bblbo8XXB3TBYYCndWb3L58WCT93FV7bdMzox0gp8cbmYxgX4oVFQzCDOFIlhnjh1vmx+HxfCXYdM696oqEYiClpjQCwbFIoKpo6cKif6qfWlF/VAqVC9FSwM1disNcZ603tRUqJzTlVcFUpUNPSOaQzep1qDZa98KvZxXxOVmq07nvtihTd35Rhpr+quQPZFc1m9QdNj/ZDl0bb8/dtjoySBjgrFUYVyrEFQ79cpjbaHoOzEUxKieK6NocuBtJbuK8bpsf4w8dNhcTg4ZsiN1/fxLe0oR1nT+Ks2XCgVAjMjA3o6Xe2+3gddh2vw+3z42w+o5QS4YNujURORTM+2F4IhRC4dla0TY8J6K4Mv3HtVFwxLdKmPfhOlx7li4yiBmi0EptzqlHT0olLp0Zabf/uzk64blYM1h+t7Ol9NJhNOdXIqWzG7Qtih0WWgSO7d3ECIvzc8KdvjqBLbXqBjsyyJgR6upi8TnfJhGA4KcSQVG3Mr2pBTIC7xTPqCSGeOFHbNuQ92vqSW9mCssYO3KwvQrTDzODaHPtO1CO7otnsPoW5lS3wc1chyEoXeAyWTAiBs1KBHw7p/qYM65LnG1lCvzdDqvT+Ew1mj+dgcQMmhHtbnOFjLkNwxoqNtsfgbASra+1Ca5dm2MycAcA/LkrGG9dOsVqjX3sI9XHtWZg8GtabjRSz4wJQVNeG4ro2vLQhD4GezrhyepTNj2soCrKjoBaf7SnG8uQwhPnYthiOwbhQLzx9ccqQpDQapEf5oblTjbyqZny+rxiBns5WL+F//ewYuKoUeH2zcbNnr20uQLiPK863QUXO0cbNWYm//GYS8qpazCoOklXWNGjz6b74ujtjVlwAfjpSbvOUPEsrNRrEB3tCo5U4XmP/io2b9EV0rpkZjTG+bkPaN25rni7o2XWsDo3tffebHEhuZTMSQ7ysfmHF21WF+YmBPVUbt+TWwN/D2aSUW4MgLxdE+btjn5lFQTRaicMljUiLGNrm071F+LlDCDaiHgoMzkawE8OkUmNv8cGemBlrWVEOR3DB5DFIGuPd88GbHN9sfWXEVzcVYEteDW6dF2vT1EKDCD83+Hs44+WN+WjuVOOmOTE2P6Y9pevLSv9ytAq/HK3CBWljoLJyJUx/D2dcMS0K32aUoqyhfcBt9xfVY/fxOtw8L9bq4xitFo8PxsQwb7y//bhJgVKXWou8qmaTUxoNzpkUisLatp40N1vo1mhxorbNKsFZT8XGSvunNm7Kqcb4UC+E+bhhdlwAdh6vHZL1ewCwNb8Gfu4qqLWyJ0g0lpQSuRXNGGeF5tN9OTc5DOWNutTGLfk1mBsfaPbF4/QoX+wrqjfr4kF+VQtauzR2W28GAK4qJUK9XdmIegjwnWgEM5TRjx4maY0jyZ0L4/D9b+cxRWoYSQj2RKCnC/63uwh+7ipcM9P2qYWAbv1X8hgfNHeoMTnKF5NHeKXAmAB3+Hs449WN+VBrJS6Zaps1fbfMGwsJ4J2txwfc7o3NBfBxU+GKadZLrRzthBC4cU4McitbelKFjZFb2YxujTQ7ODt7UgiEgE1TG0/UtkKtlVYJzsYGekAhYPd1Z80d3dhTWIcF+hnsWXEBaGjrRnaF7YuV1Ld24XBpI66dFYNATxeszao06fHljR1o7lTbrFrwWRN1qY3/XpeH6uZOs9abGUyJ9kN1cydK6ge+YNQXexcDMYjyd2da4xBgcDaCGf4DRfgxOCMajBCip5XCzXPHwsPFtGpclkjVp6rcOMe6TacdkRACkyN90dqlQfIYH4wPNe+D+GAi/HSNw/+3uwgNbX1XFyuobsHarEpcNyt6SM/3aHB+ajgCPJzx3raBg+PessqbAJhWqbG3YC9XTIv2x5rDtgvODLNc8UGWBwOuKiWiAzyMXhtpK9vya6HWyp5iOLP0r4PbC87s/WhtO47VQkpgQWIgzpoQjM051SatwTNUu7Rmj7PevF1VmJcQiK369WbzLAjODBfezGlGnVHSAC9XJ4y1sAiNpaID2OtsKDA4G8FO1LUhxNtlSNeTEA1nK9PCMTHMG9fNjhnS414yJRJ3LIjD8qTRsUbRkNp4qY1mzQxuXxCLti4NPtxxos/73/r1GJyVClw/xOd7NHBVKXH1jCj8kl2FE7XGpUFllTXBw1mJGAs+gC5PDkVOZbPNqg0a9hsXbJ0PyQnBnnafOducWwUvFydM0f+/DPNxw9hAD+wcgqIgW/Jq4OXihNQIXyydGIKWTjV2HjO+DYYhOEsMsV1V5HP11WwTgj0tWg88PtQL7s5Ks5pRHyxuQFqkr93X40f5u6O6uRNtXWq7jmOkY3A2ghXVtSHa375XWYiGkyUTQvDjffPg7aoa0uNGBbjjkeXjR82ap/NSwrA8KRQr02zXyw3QNdxeNC4I728vRHvXqVfjq5o68NX+Ulw2NRKBVq7yRjrXzIyGUgi8v73QqO0zyxoxIczbog+gy/QXOH46YptGyvnVLRjj62Zyn6v+JIR4orCm1azKltYgpcTG7GrMTQg85fVnZmwAdh2rg1pj23Ftza/GzLgAOCkVmBMfCDeVEuuyjJ/5zKloQYi3C3zdnW02xrMmhsBVpbC4qq2TUoHUCN9T+jwao71Lg+yKZqRG+Fp0fGuI0l84KeLsmU2Njk8Co1RxXRsih1ExECIaHaIDPPDaNVPg42b7IPiOBXGoa+3C5/uKT7n9nW3HodZqces8Np22lWBvV6xICcPne0vQ3DFwFT6tVuJoebNZlRp7C/NxQ3qUL360UWpjflUL4qyw3swgIdgLaq1EoZGzi9aWU9mMiqaOMyqmzooLQHOnGpllTTY79onaVhTXtfekCrqqlJifGIj1WVVGF80wVGq0JR83FdbcNx/3n5Vg8b6mRPshq7zJpJmnzLJGaLTS7uvNACBa/5mSFRtti8HZCNXRrUFFU8ewqtRIRGRt08f6Iz3KF2/+eqxnFqCpoxv/3VmEc5PDhk0fyOHqxjlj0dKpxpeDlNUvqmtDS6fa7GIgvZ2bHIas8iYUWrlEvVYrUVDdgvggKwZn+nQ8e1Vs3JhdDQBYkHjqrNAsfdVkW/Y726IvoT8n/uQ6rqUTdY2fDxvRTFyrlcirsn1wBuiKt1hjtjQ92hcarcShEuObUWcYioHYsYy+AXudDQ0GZyNUSX07pGSlRiIa3YQQuGNBHErq2/HDYV2q2393FaG5U407FsTZeXQjX1qkLyZH+eKDHScGLM1umKGZGGb5B1BDauMaK1dtLG1oR0e3tiegsoa4IE8IAeRV2acoyKacKkwI80aoz6lNv4O8XJAQ7GlStU1Tbc2rQbiPK2IDTy6/WDw+GAoBrDOiamNxfRs6urU2KwZiC5Mjdev6TOl3drCkEeE+riY3ZrcFX3dneLs6sZy+jTE4G6EMZfSZ1khEo91ZE0IQH+yJ1zcfQ0e3Bu9uPY658YFIYh/CIXHjnLE4XtOKTbn997DKKm+Ek0IgMdTywCfCzx2pET5YY+V1Z/nV+kqNVkxrdFUpEeXvbpeZs6aObuw7Ud9vE/hZcQHYW1iHbhusO9NoJbYX1GBuQuApLWf8PZwxNcbfqOAsR1/qP9FGPc5swc/DGbFBHjhgQsXGg8UNSIvytd2gTBQd4MG0RhtjcDZCFQ3DBtRERLagUAjcNj8WR8ub8NDnB1HV3MlZsyG0PCkUId4ueG9bYb/bZJY1IT7YEy5O1qkuvDw5DIdKGlFSb70Pkfk9ZfStWxkwIdjLLjNn2/JqTimhf7rZcQFo69LgUEmD1Y99qKQBTR1qzE04MzA8e2IIsiuaey4y98dQqTHBisHyUJgS5Yf9RQ1GraurbelEUV2bQxQDMYgKcGdBEBtjcDZCnahtg7uzEoGetqtgREQ0XFyQNgah3q744VA5ksZ4Y058gL2HNGqolApcOzMaW/Jq+u3plVnWZHExkN6W91RttF5qY35VCwI8nOHnYd331YQQTxyvabXJDNVANuVUw8vVCen9zMrMGBsAIYDt+dZPbdxqWG8Wd+b/w6UTQwBg0IbUOZUtiPBzG3Y9CtOj/VDX2oVCI2afDGvTHKEYiEG0vztK69ttXslzNGNwNkIV1bUhyt/9lHQBIqLRytlJgVvm6Zp83z4/jq+NQ+zK6VFwdlL0WVa/qrkD1c2dmBRuvTTT6AAPTAzzxo+HrZfamF9t3UqNBgnBnujWSKP7wVmDlBKbcqswLyEQTv208PDzcMb4UG+bFAXZkl+DSeHeCOijjUV0gAcSQzwHLamfW9E8rNabGRj6yX2xrxi5lc0DVm7MKG6AQgDJDpSCHR3gDrVWoqyhw95DGbGG1+UGMlpxXRurkBER9XL97BjEBXn2u8aGbCfA0wUXpIXjq/2l+L9zxsPH/WQbhSx9MRBrVGrs7dzkUPxrbS7KG9stah4M6IKZ/KoWrEgJs9LoTjJUG8yrbEF88NAEG0fLm1HZ1ImF/aQ0GsyOC8DHO0+go1sDV5V1Uk5bO9U4UFSPm+aO7XebpRND8PrmY2ho6+qzh1m3RotjNS1YPMGy3mP2EB/kiRBvF7yysQCvbCwAAAR6OiPS3x2Rfu6I9HdDlP77XcdrkRDs5VCzg1H6/rkn6lr5OdNGOHM2Akkpe2bOiIhIR6XUNZLlrJl93DhnLNq7Nfh0T9EptxsqNU4Is25wtjxZF0hZI7WxpqULje3dVl9vBvSu2Dh0RUEMxVkWJg58oWJWbAA61VocMLFx8kB2Ha9Ft0ZiXnz/x146MRQarcSG7L6LyBTWtKJbI4flzJlCIbD+wQX46q7Z+M8Vafj9OeNw1oQQuKmUOFBcj9c3H8PDXx7GVW/vws5jdZjsQMVAgJNVwFkUxHYcJxQnq6lu6UR7t4Zl9ImIyGFMCPPGzFh/fLjjBG6eO7YnnS6rvAmR/m5Wb0oeF+SJcSFeWHO4AjfO6X+Wxhj5Vdav1Gjg5qxEhJ9bT4GLobApuxqTwr0HLc8+PdYfCqHrdzarj/Vh5tiSVwMXJwWmxvj1u03KGB8Ee7lg/dFKXJQeccb9OYZiIFZsazCUvFxVSI/yQ3rUmb8DtUaL8sYOFNe1oayxA3N79YFzBKHernB2UrAoiA1x5mwEYhl9IiJyRDfMHovShvZTSqVnlTVhkhX6m/VleXIo9pyoQ1WTZetjDGX0bRUMJAZ79QSAttbY3o19Rf2X0O/N21WF5DE+2GnFfmdb82owfaz/gGmSCoXAkgkh2JxTjU615oz7cyuaoRC6AHykcVIqEOnvjtnxgbhkSsQZPejsTaEQiPRzYyNqG2JwNgIZppqZ1khERI5k6cQQRPi54T19YZCWTjUKa1utWqmxt3OTwyAl8HOmZamNBVUt8HRxQqiNGgHHh3jiWHXrkFTA25pXA41WDrrezGBmXAAOFNejvevMIMlUlU0dyKtqMWo26OyJIWjt0vTZCDu3sgUxgR5WWwdHpokO8MAJzpzZDIOzEaiorg1CABF+li2AJiIisialQuD6WTHYfbwOmWWNyC5vgpTWLwZikBDsibggD6yxcN1ZXlUz4oI8bLZeMSHYC10a7ZCkim3KqYK3qxMmG1mefVZsALo1EntP1Fl8bEMJ/bkJgwdns+IC4O6s7LMhdW7l8KzUOFJE+bujqLbVqF5tZDoGZyNQUV0bwrxdrdbMk4iIyFoumxYJd2cl3ttW2FMMxJpl9HsTQuDc5DDsPFaL2pZOs/eTX2WbMvoGifp0ydxK01IbG9q6TPqArCuhX415iUH9ltA/3bQYfzgpRJ8zWKbaml+DAA9nTAgdPBh3VSmxIDEI67MqodWefI4d3RoU1rYigcGZ3UQHuKO1S4Pa1i57D2VEYnDm4KqaO1DW0G7SY4pq27jejIiIHJKPmwoXp0dgdUYZtuRVw9/DGSHeZ/a7spblSWHQysGbGvenqaMblU2dNikGYmBYO5VfZXxRkOyKJkz/xy+4/7MMaLTGBWiZZU2obu4ctEpjbx4uTkiN9MUOC4MzKSW25tdgdnwgFArjZiCXTgxBVXMnDpU29tyWX9UCrQRnzuzIsGyGFRttg8GZA8utbMbyF7bg0td3oEttfB56UV0bKzUSEZHDun52DLo0Wqw/WoVJ4d42bW8wIcwLMQHuZjekLjBUarRh8QkPFyeM8XUzupy+lBJ///4oIIFvM8rwu88PGhWgbc6tBgAsMLHX36zYABwubURzR7dJj+stp7IZ1c2dmGdC9cHF44OhVIhTGlIbqlqOCx15xUCGC8NnzKK6oWucPpowOHNQ+VXNuOqtnehUa1Ha0I5vMkqNelx7lwZVzZ0sBkJERA4rPtgT8/WzN7YqBmIghMDy5DBsL6hFvRlpWLYso99bYoin0WmNG7KrsDW/Bo+eOx6/OzsRXx8oxe+/GDxA25hdhaQx3gj2Mq2wyey4AGi0EnsKzV93Zsp6MwNfd2dMi/E7Zd1ZbmULnJUKRAd4mD0WskyEnzuE4MyZrTA4c0AF1S248q1dAAS+uXsOksZ447VNBUZdFSupZxl9IiJyfDfNiQEApEb42vxY5yaFQaOVWHfU9NTG/GpdMGDri54JIV4oqG4Z9L2+W6PFkz8eRWyQB66ZGY17FifgwaWJ+Gp/KR7+8tAp67N6a2zrxv6ieiwyskpjb+nRfnBWKixKbdySV4PYIA+E+5pWrGzpxFDkVrbgRK1ulia3shmxQR5QGblmjqzPVaVEqLcry+nbCP+yHcyx6hZc+eZOSCnx6W0zEB/sibsXxuN4TSvWHBk8JcNwFYNXlIiIyJEtHBeMr+6ajXMmhdr8WEljvBHh54Y1ZqQ2FlS1YGygh9EFNMwVH+yJLrW2p1dpfz7eeQLHqlvxx3Mn9AQo9y5JwH1LEvDFvhI88lXfAdqW/GpoJYzqb3Y6V5USk6N8seOYecFZp1qDXcdrTUppNDh7YggA9Mye5VQ0I5Hrzewuyt+d5fRthMGZAymsacWVb+2EWivx31tnIj5Y9+JzzqRQxAV54JWNBYNWZTKU4WVaIxERObr0KD8ojSwOYQkhBJYnhWJrfg0a201bN5Vf1WLzlEYAPQGHYU1VXxrauvDC+jzMjQ/E4vGnzoDdf1YC7l0cj1V7S/CHrw+fEaBtzK6Gj5sKaZF+Zo1vdlwgMsua0NBmemrovhP16OjWYm6C6YFhpL87xod6YW1WJZo7ulHa0I5xoQzO7C06wJ1pjTYy6oOz3Mpm7D5uee8OSxXVtuHKt3aiS63Ff2+dccpVIYVC4M6F8Tha3oRNOdUD76euDZ4uTvBzV9l6yERERMPG8uQwdGskfjEhtbGjW4OiujabltE3MASAAxUF+c8veWju6MafzptwRhEVIQQeWJqIexbF49M9xfjjN0d6AjStVmJzbjXmJwaZHQzPiguAlMAuMz4zbc2rgVIhMDPW36xjL50Ygr2FdT1r3jhzZn/RAR6oaelEa6fa3kMZcUZ1cCalxAOfZeCBzzLQ3qWx2ziK63SBWXu3Bp/cMhPj++j/sTItHGN83fDyxvwBZ8+K6toQ5e9u08pXREREw01ahC/CfFxNakh9vKYVWmn7YiAA4OnihHAf154CJKcrqG7BRztO4IrpUX1+TgB0AdpDZyfiroVx+N/uIvx59RFIKZFZ1oSaFtNK6J8uNdIHrirz1p1tza/B5EhfeLmad+F46cQQaCXw+qZjAE72hSP7MWRoDUXj9NFmVAdnQgj8+byJKG1ox6ub8u0yhpJ6XWDW3NGNj2+e0W/VKpVSgdsXxGLfifoBZ/oMwRkRERGdpFAILEsKxebcarQYebU/fwjK6PcWH+LVb1rjP344CjeVEg8uTRxwH0II/P6ccbh9QSw+3lmEx1dnYmNOFQDTS+j35uKkxLQYf5ODs/rWLhwubTSpSuPpksf4INTbFbsL6+CqUiDSj59z7M1QTp+pjdY3aHAmhIgUQmwUQhwVQmQKIe7T3/5PIUS2EOKQEOJrIYSvzUdrAzNiA3Dh5DF4Y/MxHK8Z2n4NZQ3tuPKtnWhs78Ynt8xE0hifAbe/bGokAj2d8cqmgj7v12oliuvaEMUeZ0RERGc4NzkMXWotNmRXGbV9flULhABig4amyFZisCfyq86s2Lg1rwa/ZFfh7sXxCPQcvGG3EAKPLBuP2+bH4sMdJ/DKxnykRPgY9diBzIwNQE5lM2pbOo1+zPaCWkgJzLMgOBNC4KyJujV2iSFeRjexJtuJ9tf9n2CvM+szZuZMDeAhKeUEADMB3C2EmAhgHYAkKWUKgFwAj9pumLb16Lnj4eKkwOOrMwctuGEt5Y26wKyhtRsf3TwDyREDB2aArlrSzXNj8WtuNQ6XNJ5xf1VzJzrVWs6cERER9WFKlB+CvVyMrtqYX92CSD93uKqUNh6ZTkKIp66/aX17z20arcTff8hCpL8bbtS3HzCGEAKPLh+PW+aORadai4VmlNA/3ay4AADAzmPGrzvbml8NTxcni1smLJ2oq+rJ9WaOwcddBV93FQqqGJxZ26DBmZSyXEq5X/99M4CjAMZIKddKKQ15ATsBRNhumLYV7OWKB5Ym4tfcavycaXoPFFO1d2lw43t7UNvShQ9uno60SF+jH3vNzCh4uTrhlY1npmGyUiMREVH/DKmNG3Oq0NY1eGpjwRBVajQwVGnundr42Z5iZFc049HlE+DiZFqQKITAH1dMwPs3TsOdC+IsHl/KGB94ujhhe0GN0Y/Zml+DmbEBFrcimBUbgEnh3ma1AiDbmBbjj635NUM2sTFaOJmysRAiBsBkALtOu+smAJ9ZaUx2cd2saKzaW4y/fpeJ+YmBcHc26VdjNCkl/vTNEeRUNuO9G6YhPcq0krZerircMDsGL23IR15lMxJ6XUFicEZERDSw5Ulh+HDHCaT+ZS383J3h73HyK8DDGf4eLvD3UMHfwwXHalox34IiGqZKCDlZsfGsiSFo7ujG8+tyMD3GH8uTzOsHJ4SwyqwZADgpFZgW42d0v7MTta0ormvHLXNjLT62s5MCP9w7z+L9kPUsGR+MdVmVyKls7rdIDZnO6MsYQghPAF8CuF9K2dTr9j9Cl/r4ST+Pu00IsVcIsbe6euAy8PbkpFTgryuTUNbYgZc32K44yGd7ivHl/hL8dnGC2S+WN84ZCzeVEq9tPnXtWVFtKxQCGOPnZo2hEhERjTgzY/3x1EXJuHluLBaNC0aEnzs6ujXILGvC1wdK8e/1uXjs20zc/d/96FJrMamfQl224O2qQqi3K/KqdDNnr2wsQG1rFx47b6LDVGGeFReAY9WtqGzqGHTbLXm6GTZLioGQ41qk77X3y1Hj1nCScYyaHhJCqKALzD6RUn7V6/brAZwHYInsZ05TSvkmgDcBYOrUqQ497zl9rD8uSh+Dt7Ycw8VTIhBn5epMR0ob8efVmZiXEIj7liSYvR9/D2dcOT0KH+woxANnJSKyVznTcF83qCxMHSAiIhqphBC4cnpUv/d3a7Sob+tCXWsXWjs1SDViTbg1JYR4Iq+yBUW1bXh363FcNDnCqHXpQ2V2nC7Quv2jfUgM8USwlytCvF0Q5OWKYG8XhHi7IsjTBc5OCmzNq0G4jytiA4emoAoNrRBvVySN8caG7CrcvSje3sMZMQYNzoTuUs07AI5KKZ/vdfsyAA8DWCClHDF1NB9dPgHrsirxxOpMfHjTdKtdqWps78Zdn+xHgIczXrg8zewmkAa3zY/FRzsL8eavx/C3C5IAsIw+ERGRpVRKBYK9XBHs5WqX4ycEe+F/u4vw1JqjUCoE/m/ZOLuMoz8Tw7xx+dRIZJU3YXNuNaqbO6Ht49K7v4czmju6ceHkMQ4z60fWt3h8CF7ekIe61i74ezjbezgjgjEzZ3MAXAvgsBAiQ3/bHwC8CMAFwDr9f7qdUso7bDHIoRTk5YLfnT0Oj6/OxJojFTg3OczifUop8dCqgyhraMdnt89CgIWlbAEg1McVl0yJwGd7i/HbJfEI9nJFUV07zppgnbxyIiIiGnoJIZ5o79ZgzZEKPHBWIkK87RMk9kehEHjmkpSenzVaidrWTlQ1daKquQNVTZ2o1H9f39aF62bF2G+wZHNLxgfjxV/ysDm3ChdOHra1AR3KoMGZlHIrgL4uefxo/eE4hqtnROGzPcX42/dZWJAYBA8Xy4qDvPHrMaw/Wok/nzcRU6JNKwAykNvnx+GzPcV4Z+tx3Ls4ATUtnexxRkRENIwl6KtDhvm44rb5lhfSsDWlQvSaaXSc9EsaGsljdP3zfjnK4MxauDipD05KBf52wSSUN3bgxQ15Fu1r57Fa/PPnHKxIDjOpP4kxYgI9cF5KOD7ecQJHSnV9z5jWSERENHxNCPNGbJAHHj9/Etych6a/GpG5FAqBxeODsDm3Gt0arb2HMyIwOOvHlGh/XDolAu9sOY78qubBH9CHquYO/PZ/BxDt746nL062Sc71nQvj0NqlwZM/HgXA4IyIiGg483BxwoaHFmKZmaXziYba4vEhaO5QY29hvb2HMiIwOBvAw8vHw91ZiT9/m2lygz21Rovf/vcAmju68eo16fByVdlkjBPCvHHWhGAcKtHNnEX7syISEREREQ2NuQmBcFYqsCG70t5DGREYnA0g0NMFvz9nHLYX1OL7Q+UmPfa5dbnYdbwO/7gw2eaN+e7Sly/1dnWCj7ttgkAiIiIiotN5ujhhRqw/fslmvzNrYHA2iKtmRCNpjDf+/kMWWjrVRj1mXVYlXttUgCunR+GidNsvjkyP8sP8xCBMHMJGmUREREREgK5q47HqVhyvabX3UIY9YWq6niWmTp0q9+7dO2THs5YDRfW48NXtSI/yRUKwFzxdneDl6gQvVxW8XHTfe+p/Vmu0uOn9PYgKcMcXd8yGq2poFvN2dGuglRLuzpZVliQiIiIiMkVRbRvm/3MjHjtvIm6eO9bew3F4Qoh9Usqpfd3HT/JGmBzlh/9bNg5f7ivBptwqNHeo0dal6Xd7b1cnvHb1lCELzAAM6bGIiIiIiAyiAtyREOyJDdmVDM4sxODMSHctjMddC+N7flZrtGjt1KCpoxstnWo0d6jR0tmN5g41UiJ8EcmqiUREREQ0SiyeEIx3thxHc0e3zQrhjQYMzszkpFTAx13BAhxERERENOotGR+CNzYfw5a8GpybHGbv4QxbLAhCREREREQWSY/yhY+bCr8cZdVGSzA4IyIiIiIiizgpFVg4Lgibcqqg1Q5dwcGRhsEZERERERFZbPH4YNS2duFgSYO9hzJsMTgjIiIiIiKLLUgMglIhsIENqc3G4IyIiIiIiCzm6+6MKVF+XHdmAQZnRERERERkFYsnBCOrvAnlje32HsqwxOCMiIiIiIisYsn4YABgaqOZGJwREREREZFVxAd7ItLfDRuY2mgWBmdERERERGQVQggsGR+Crfk1aO/S2Hs4ww6DMyIiIiIisprF44PRqdZix7Eaew9l2GFwRkREREREVjMj1h/uzkpWbTQDgzMiIiIiIrIaFycl5iUEYkN2FaSU9h7OsMLgjIiIiIiIrGrJ+BCUN3bgaHmzvYcyrDA4IyIiIiIiq1o4PggAsDGHqY2mYHBGRERERERWFezlitQIH/xytNLeQxlWGJwREREREZHVLR4fggPFDaht6bT3UIYNBmdERERERGR1SyYEQ0pgU061vYcybDA4IyIiIiIiq5sU7o0QbxdsyOa6M2M52XsAREREREQ08ggh8NZ1UxEd4GHvoQwbDM6IiIiIiMgmUiJ87T2EYYVpjURERERERA6AwRkREREREZEDYHBGRERERETkABicEREREREROQAGZ0RERERERA6AwRkREREREZEDYHBGRERERETkABicEREREREROQAGZ0RERERERA6AwRkREREREZEDEFLKoTuYENUATgzZAY0XCKDG3oMgm+H5Hdl4fkc2nt+Rj+d4ZOP5Hdl4fs0TLaUM6uuOIQ3OHJUQYq+Ucqq9x0G2wfM7svH8jmw8vyMfz/HIxvM7svH8Wh/TGomIiIiIiBwAgzMiIiIiIiIHwOBM5017D4Bsiud3ZOP5Hdl4fkc+nuORjed3ZOP5tTKuOSMiIiIiInIAnDkjIiIiIiJyAMMqOBNCLBNC5Agh8oUQj/S6/TMhRIb+q1AIkdHP4/2FEOuEEHn6f/30t1/d6/EZQgitECKtj8d/oj/+ESHEu0IIlf52IYR4UT+uQ0KIdNv8BkY+Bz7H44UQO4QQnUKI39nm2Y98Dnx+r9b/3z0khNguhEi1zW9gZHPg87tSf24zhBB7hRBzbfMbGNlseH5VQogPhBCHhRBHhRCP9vP4sUKIXfrHfyaEcNbfzvdgK3Dg88v3Xytw4PPL99/TSSmHxRcAJYACALEAnAEcBDCxj+2eA/DnfvbxLIBH9N8/AuCZPrZJBnCsn8efC0Dov/4H4M5et6/R3z4TwC57/76G45eDn+NgANMAPAngd/b+XQ3HLwc/v7MB+Om/X87/wyPu/HriZBp/CoBse/++htuXLc8vgKsAfKr/3h1AIYCYPh6/CsAV+u9f53vwqDm/fP8d2eeX77+nfQ2nmbPpAPKllMeklF0APgWwsvcGQggB4DLo3pT7shLAB/rvPwBwQR/bXNnf46WUP0o9ALsBRPTa74f6u3YC8BVChBn9zMjAYc+xlLJKSrkHQLdJz4h6c+Tzu11KWa/fbCdO/t8m4zny+W3R3wYAHgC42Np0tjy/EoCHEMIJgBuALgBNfex7MYAv+ng834Mt57Dnl++/VuHI55fvv6cZTsHZGADFvX4u0d/W2zwAlVLKvH72ESKlLAcA/b/BfWxzOfr/wwSgm8IFcC2An0wYGw3Okc8xWW64nN+bobsKT6Zx6PMrhLhQCJEN4AcANw30eOqTLc/vFwBaAZQDKALwLyll3WmPDQDQIKVU93F8vgdbzpHPL1luuJxfvv8CcLL3AEwg+rjt9Kuf/V5RNeoAQswA0CalPDLIpq8C+FVKucWEsdHgHPkck+Uc/vwKIRZB9+bANUmmc+jzK6X8GsDXQoj5AP4G4CxzxzFK2fL8TgegARAOwA/AFiHEeinlMSOPz/dgyzny+SXLOfz55fvvScNp5qwEQGSvnyMAlBl+0E+nXgTgs163vadf4Pij/qZKQ6qD/t+q045xBQa/Ivs4gCAADxo7NjKaI59jspxDn18hRAqAtwGslFLWmvC8SMehz6+BlPJXAHFCiEBjnhT1sOX5vQrAT1LKbillFYBtAKaedvwa6NIVDReVex+f78GWc+TzS5Zz6PPL999TDafgbA+ABH21F2fo3qRX97r/LOgWeZcYbpBS3iilTJNSnqu/aTWA6/XfXw/gW8O2QggFgEuhy8PtkxDiFgDnALhSSqntdddqANcJnZkAGg1Tv2QSRz7HZDmHPb9CiCgAXwG4VkqZa8FzHM0c+fzG69c8QOgq+TkDGPUfAExky/NbBGCx/j3UA7qiHtm9D65fM7gRwCV9PJ7vwZZz5PNLlnPY88v33z5IB6hKYuwXdBWZcqGrOPPH0+57H8Adgzw+AMAvAPL0//r3um8hgJ2DPF6tP3aG/uvP+tsFgFf09x0GMNXev6vh+uXA5zgUuitPTQAa9N972/v3Ndy+HPj8vg2gvtfte+39uxqOXw58fh8GkKm/bQeAufb+XQ3HL1udX+iqaX6uP0dZAH7fz+NjoSv0kq/f3kV/O9+DR/b55fvvyD6/fP897ctQWpiIiIiIiIjsaDilNRIREREREY1YDM6IiIiIiIgcAIMzIiIiIiIiB8DgjIiIiIiIyAEwOCMiIiIiInIADM6IiIiIiIgcAIMzIiIiIiIiB8DgjIiIiIiIyAH8PyOHYkdSl4DLAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACrCUlEQVR4nOzdd3hcZ5U/8O87vUoatVGzilXc4m6nNyckAQKbUJIAgSR0Aix9gWWXJfx22aUtsLBACIS2hJIASehJAKc41XZiO64qtixZdaQZTe/z/v64c0cjaaS5M3PvzEg6n+fhIVEZXTnyaM495/0exjkHIYQQQgghhJDSUpX6AgghhBBCCCGEUHFGCCGEEEIIIWWBijNCCCGEEEIIKQNUnBFCCCGEEEJIGaDijBBCCCGEEELKABVnhBBCCCGEEFIGqDgjhBBCCCGEkDJAxRkhhCxTjDFf2v8SjLFg2r/fWurrywdjbJAx9opSX8dSGGOPM8bepdBj9zDGHmaMORhjTsbYI4yxdWnvPy/5tinG2IJFpYyxDYyxvzPG3IyxfsbY6+a9/2rG2EnGWIAxtpcx1pb2PsYY+xJjbDr5vy8zxpgS3ychhJDMqDgjhJBlinNuEf8HYAjAa9Pedl+pr28+xphmJXwNhVUB+B2AdQDsAF4A8HDa+6MA7gfwzvmfmPzeHwbwBwDVAN4D4GeMsZ7k+2sB/BbAZ5PvPwDgV2kP8R4ANwLYCmALgNcAeK9c3xghhJDsqDgjhJAVhjGmYox9mjE2kOyA3M8Yq06+r50xxhljb2eMDTPGXIyx9zHGdjPGjjDGZhhj/5v2WHcwxp5mjH0r2Y05yRi7Ou39lYyxexljY4yxEcbYfzDG1PM+9+uMMSeAuxhjncnOznSy+3MfY6wq+fH/B6AVwO+T3b9PMsauZIydm/f9pbprjLG7GGO/Zoz9jDHmAXBHlmvqYow9kfxephhj6cVJ+tcwJB9zOvlnsp8xZmeMfQHAZQD+N3mN/5v8+PWMsceS3a5TjLGb0x7rx4yxu5Pv9ya/flumr8s5f4Fzfi/n3Mk5jwL4OoB1jLGa5PtPcc7vBXAsw6evB9AE4Ouc8zjn/O8AngbwtuT7Xw/gGOf8Ac55CMBdALYyxtYn3387gP/mnJ/jnI8A+G8Ad2S6TkIIIcqg4owQQlaeD0HogFwB4cW6C8C3533MBQC6AdwC4BsA/gXAKwBsAnAzY+yKeR97GkAtgM8B+K1Y7AH4CYAYgC4A2wFcC+BdGT63HsAXADAA/5W8rg0A1kAoEsA5fxvmdgC/LPH7vQHAryF0ne7Lck3/DuBRADYALQC+tchj3g6gMnl9NQDeByDIOf8XAE8B+GDyGj/IGDMDeAzAz5Pf55sBfIcxtint8W5Nfu1aAIeS1ynF5QDGOefTEj420wgiA3Be8p83ATgsvoNz7gcwkHz7gvcn/zn9eyCEEKIwKs4IIWTleS+Af0l2QMIQip83zhv5+3fOeYhz/igAP4BfcM4nkx2TpyAUNaJJAN/gnEc5578CcArA9YwxO4BXAfgI59zPOZ+E0Ol5U9rnjnLOv8U5j3HOg5zzfs75Y5zzMOfcAeBrEIrIQjzLOX+Ic54AUJHlmqIA2gA0Jb//fYs8ZhRCUdaV7EId5Jx7FvnY1wAY5Jz/KPl9vgjgNwDemPYxf+ScP5n87/EvAC5ijK1Z6ptijLVAKKo/lu0PIOkkhP9W/8QY0zLGroXwZ2tKvt8CwD3vc9wArIu83w3AQufOCCGkeJb7bD4hhJCF2gA8yBhLpL0tDuEMk2gi7Z+DGf7dkvbvI5zz9PCJsxA6X20AtADG0l6/qwAMp31s+j+DMVYP4JsQRgOtyY93SfquFpf+NbJd0ychdLBeYIy5IIzx/TDDY/4fhK7ZL5Njlz+DUPBGM3xsG4ALGGMzaW/TJB9jwTVyzn3JMc+medeewhirg9Dh+w7n/BeZPmY+znmUMXYjhG7gpyCcKbsfQDj5IT4IxWu6CgDeRd5fAcA37789IYQQBVHnjBBCVp5hAK/inFel/c+Q7Irlo3le96QVwGjy64QB1KZ9nQrOefoo3PwX9v+VfNsWznkFgLdi7jje/I/3Y7bzg+TZsbp5H5P+OUteE+d8nHP+bs55E4QO43cYY13zv+Fkl/DznPONAC6G0B27bZFrHAbwxLw/bwvn/M60j0l1yRhjFgiBHKPzv27y/TYIhdnvOOdfyPQxi+GcH+GcX8E5r+GcXwdgLYRQEUA4p7Y17euYAXRi9vzanPcn/znT2TZCCCEKoeKMEEJWnrsBfEEMnWCM1THGbijg8eoBfCg5KncThLNif+Kcj0EoIv6bMVaRDCLpnHdebT4rhA7NDGOsGcA/zXv/BISCQtQLwMAYu54xpgXwrwD0iz14tmtijN2UHBcEhI4dh9BVnIMxtocxtjlZDHogjDmKHzf/Gv8AoIcx9rbkn5E2GbCyIe1jXs0Yu5QxpoPQuXuec76ga8YYqwDwCICnOeefzvB+xhgzANAl/93AGNOnvX9L8m0mxtgnADQC+HHy3Q8COI8x9obkY/wbgCOc85PJ9/8UwMcYY82MsSYAH0/7XEIIIUVAxRkhhKw8/wMhjv1RxpgXwHMQgjny9TyE8JApCKEeb0wLqLgNQqFwHEKx82sIBcFiPg9gB4TzTH+EEO2e7r8A/GsyIfETnHM3gPcD+AGAEQidtHNY2lLXtBvA84wxH4Q/ow9zzs9keIyG5Od5AJwA8ASE0UZA+PN9IxOSLr/JOfdCCB15E4Ru2DiAL2FuEflzCGEqTgA7IQSEZPK65DW+nc3dY9eafH8bhLFTsaMVhHAGUPQ2AGMQzp5dDeCa5Dk3JM/4vQHCf0MXhJ+J9POB3wPwewAvAzgK4b/P9xa5TkIIIQpgNEpOCCFkMYyxOwC8i3N+aamvZblijP0YwDnO+b+W+loIIYSUN+qcEUIIIYQQQkgZoOKMEEIIIYQQQsoAjTUSQgghhBBCSBmgzhkhhBBCCCGElAEqzgghhBBCCCGkDGiK+cVqa2t5e3t7Mb8kIYQQQgghhJSNgwcPTnHO6zK9r6jFWXt7Ow4cOFDML0kIIYQQQgghZYMxdnax92UtzhhjawD8FMJCzgSAezjn/8MY+xWAdckPqwIwwznfVvDVEkIIIYQQQsgqJKVzFgPwcc75i4wxK4CDjLHHOOe3iB/AGPtvAG6lLpIQQgghhBBCVrqsxRnnfAzAWPKfvYyxEwCaARwHAMYYA3AzgKsUvE5CCCGEEEIIWdFyOnPGGGsHsB3A82lvvgzABOe8L58LiEajOHfuHEKhUD6fTsiiDAYDWlpaoNVqS30phBBCCCGEZCW5OGOMWQD8BsBHOOeetHe9GcAvlvi89wB4DwC0trYueP+5c+dgtVrR3t4OoQlHSOE455iensa5c+fQ0dFR6sshhBBCCCEkK0l7zhhjWgiF2X2c89+mvV0D4PUAfrXY53LO7+Gc7+Kc76qrW5gYGQqFUFNTQ4UZkRVjDDU1NdSRJYQQQgghy0bW4ix5puxeACc451+b9+5XADjJOT9XyEVQYUaUQD9XhBBCCCFkOZHSObsEwNsAXMUYO5T836uT73sTlhhpXC6+8IUvYNOmTdiyZQu2bduG558XjtS9613vwvHjx2X5Gu3t7ZiamlryY/7zP/8z58f98Y9/jA9+8INz3vajH/0I27Ztw7Zt26DT6bB582Zs27YNn/70p3N+/GL4xje+gUAgUOrLIIQQQgghpKSkpDXuA5CxBcE5v0PuCyq2Z599Fn/4wx/w4osvQq/XY2pqCpFIBADwgx/8oKjX8p//+Z/4zGc+U/DjvP3tb8fb3/52AEJRuHfvXtTW1hb8uPninINzDpUq872Ab3zjG3jrW98Kk8kk+TFjsRg0mqLuUCeEEEIIIURRks6crWRjY2Oora2FXq8HANTW1qKpqQkAcOWVV+LAgQMAAIvFgk996lPYuXMnXvGKV+CFF17AlVdeibVr1+J3v/sdgIVdrNe85jV4/PHHF3zNG2+8ETt37sSmTZtwzz33AAA+/elPIxgMYtu2bbj11lsBAD/72c9w/vnnY9u2bXjve9+LeDwOQOiM9fT04IorrsDTTz8t+Xv9yle+gt27d2PLli343Oc+BwAYHBzE+vXr8a53vQvnnXcebr31Vvz1r3/FJZdcgu7ubrzwwgsAgLvuugtve9vbcNVVV6G7uxvf//73sz7uhg0b8P73vx87duzA8PAw7rzzTuzatQubNm1Kfdw3v/lNjI6OYs+ePdizZ0/qz1r061//GnfccQcA4I477sDHPvYx7NmzB5/61KcwMDCAV77yldi5cycuu+wynDx5UvKfBSGEEEIIUd7ZaT/uPzCMRIKX+lKWB7GrUYz/7dy5k893/PjxBW8rJq/Xy7du3cq7u7v5nXfeyR9//PHU+6644gq+f/9+zjnnAPif/vQnzjnnN954I7/mmmt4JBLhhw4d4lu3buWcc/6jH/2If+ADH0h9/vXXX8/37t3LOee8ra2NOxwOzjnn09PTnHPOA4EA37RpE5+amuKcc242m1Ofe/z4cf6a17yGRyIRzjnnd955J//JT37CR0dH+Zo1a/jk5CQPh8P84osvnvM15xO/7iOPPMLf/e5380QiwePxOL/++uv5E088wc+cOcPVajU/cuQIj8fjfMeOHfztb387TyQS/KGHHuI33HAD55zzz33uc3zLli08EAhwh8PBW1pa+MjIyJKPyxjjzz77bOpaxO87FovxK664gh8+fHjBn838P4cHHniA33777Zxzzm+//XZ+/fXX81gsxjnn/KqrruK9vb2cc86fe+45vmfPngXff6l/vgghhBBCVqtEIsFvu/d5vvGzf+aTnlCpL6dsADjAF6mXymou7PO/P4bjo57sH5iDjU0V+NxrNy36fovFgoMHD+Kpp57C3r17ccstt+CLX/xiqlsj0ul0eOUrXwkA2Lx5M/R6PbRaLTZv3ozBwcGcrumb3/wmHnzwQQDA8PAw+vr6UFNTM+dj/va3v+HgwYPYvXs3ACAYDKK+vh7PP/88rrzySojJl7fccgt6e3uzfs1HH30Ujz76KLZv3w4A8Pl86OvrQ2trKzo6OrB582YAwKZNm3D11VeDMbbge7vhhhtgNBphNBqxZ88evPDCC9i3b9+ij9vW1oYLL7ww9fn3338/7rnnHsRiMYyNjeH48ePYsmVLTn92N910E9RqNXw+H5555hncdNNNqfeFw+GcHosQQgghhCjnkWPjeKLXgc++ZiPqrPpSX86yUFbFWamo1WpceeWVuPLKK7F582b85Cc/WVCcabXaVPqfSqVKjUGqVCrEYjEAgEajQSKRSH1Ophj3xx9/HH/961/x7LPPwmQy4corr8z4cZxz3H777fiv//qvOW9/6KGH8koh5Jzjn//5n/He9753ztsHBwdT38tS3xuwMP2QMbbk45rN5tS/nzlzBl/96lexf/9+2Gw23HHHHYvG3Kd/nfkfIz5mIpFAVVUVDh06lO1bJ4QQQgghReYPx/D53x/HhsYK3H5RW6kvZ9koq+JsqQ6XUk6dOgWVSoXu7m4AwKFDh9DWlt8PUHt7O77zne8gkUhgZGQkdV4rndvths1mg8lkwsmTJ/Hcc8+l3qfVahGNRqHVanH11VfjhhtuwEc/+lHU19fD6XTC6/XiggsuwIc//GFMT0+joqICDzzwALZu3Zr12q677jp89rOfxa233gqLxYKRkRFotdqcvr+HH34Y//zP/wy/34/HH38cX/ziF2E0GiU9rsfjgdlsRmVlJSYmJvDnP/8ZV155JQDAarXC6/WmQkvsdjtOnDiBdevW4cEHH4TVal3weBUVFejo6MADDzyAm266CZxzHDlyRNKfBSGEEEIIUdb//K0PY+4Q/vctO6BRr/qYC8nKqjgrBZ/Ph3/8x3/EzMwMNBoNurq6UiEdubrkkktSI4LnnXceduzYseBjXvnKV+Luu+/Gli1bsG7dujljf+95z3uwZcsW7NixA/fddx/+4z/+A9deey0SiQS0Wi2+/e1v48ILL8Rdd92Fiy66CI2NjdixY0cqKGQp1157LU6cOIGLLroIgDDO+bOf/QxqtVry93f++efj+uuvx9DQED772c+iqakJTU1Nkh5369at2L59OzZt2oS1a9fikksumfN9v+pVr0JjYyP27t2LL37xi3jNa16DNWvW4LzzzoPP58t4Pffddx/uvPNO/Md//Aei0Sje9KY3UXFGCCGEEFJip8a9uHffGbxp9xrsbLOV+nKWFSacSSuOXbt2cTH9UHTixAls2LChaNdA8nPXXXfBYrHgE5/4RKkvJSf080UIIYQQUjycc9z8vWfRP+nD3z9+JWxmXakvqewwxg5yzndleh/1GAkhhBBCCCGy+M2LI9g/6MKnX7WeCrM8rPqxRiLNXXfdVepLIIQQQgghZWwmEMF//ukEdrbZcNPONaW+nGWJOmeEEEIIIYSQgn35kVNwB6P4jxvPg0qVe7o4oeKMEEIIIYQQUqCXhlz4xQtDuOPidmxorCj15SxbVJwRQgghhBBC8hZPcPzrQ0dRb9Xjo9f0lPpyljUqzgghhBBCCCF5+9lzZ3Fs1IN/e80mWPQUaVEIKs4AqNVqbNu2Deeddx5uuukmBAKBvB/rjjvuwK9//WsAwLve9S4cP3580Y99/PHH8cwzz6T+/e6778ZPf/rTvL+2aHBwEOedd96ct91111346le/mtPjyHU9hBBCCCFkZZr0hPDVR07hsu5avHpzQ6kvZ9mj0haA0WjEoUOHAAC33nor7r77bnzsYx9LvT8ej+e0rFn0gx/8YMn3P/7447BYLLj44osBAO973/ty/hpKicViZXU9hBBCCCGk/HzhTycQjiXw/244D4xRCEihllfn7MtfBvbunfu2vXuFt8vksssuQ39/Px5//HHs2bMHb3nLW7B582bE43H80z/9E3bv3o0tW7bge9/7HgBh0d4HP/hBbNy4Eddffz0mJydTj3XllVdCXLr9l7/8BTt27MDWrVtx9dVXY3BwEHfffTe+/vWvY9u2bXjqqafmdLcOHTqECy+8EFu2bMHrXvc6uFyu1GN+6lOfwvnnn4+enh489dRTOX+PSz32Zz7zGVxxxRX4n//5n9T1jI6OYtu2ban/qdVqnD17FmfPnsXVV1+NLVu24Oqrr8bQ0BAAoXv4oQ99CBdffDHWrl2b6iQSQgghhJCV45n+KTx8aBTvu7ITHbXmUl/OirC8irPdu4Gbb54t0PbuFf59925ZHj4Wi+HPf/4zNm/eDAB44YUX8IUvfAHHjx/Hvffei8rKSuzfvx/79+/H97//fZw5cwYPPvggTp06hZdffhnf//7354wpihwOB9797nfjN7/5DQ4fPowHHngA7e3teN/73oePfvSjOHToEC677LI5n3PbbbfhS1/6Eo4cOYLNmzfj85///JzrfOGFF/CNb3xjztvTDQwMzCmo7r77bkmPPTMzgyeeeAIf//jHU29ramrCoUOHcOjQIbz73e/GG97wBrS1teGDH/wgbrvtNhw5cgS33norPvShD6U+Z2xsDPv27cMf/vAHfPrTn87xvwQhhBBCCClnkVgC//rwUbTVmPD+KztLfTkrRnmNNX7kI0ByvHBRTU3AddcBjY3A2BiwYQPw+c8L/8tk2zbgG99Y8iGDwSC2bdsGQOicvfOd78QzzzyD888/Hx0dHQCARx99FEeOHEl1gdxuN/r6+vDkk0/izW9+M9RqNZqamnDVVVctePznnnsOl19+eeqxqqurl7wet9uNmZkZXHHFFQCA22+/HTfddFPq/a9//esBADt37sTg4GDGx+js7EyNagKzS6SzPfYtt9yy6HU9/fTT+MEPfpDq1j377LP47W9/CwB429vehk9+8pOpj73xxhuhUqmwceNGTExMLPn9EkIIIYSQ5eWRY+M47fDj3tt3waDN/fgPyay8ijMpbDahMBsaAlpbhX8vUPqZs3Rm82x7lnOOb33rW7juuuvmfMyf/vSnrPO1nHNZZ3D1ej0AIcgkFovJ9rjA3O853djYGN75znfid7/7HSwWS8aPSf8exWsEhO+fEEIIIYSsHGPuIADg/I6lmw4kN+VVnGXpcAGYHWX87GeB734X+NzngD17FL+06667Dt/97ndx1VVXQavVore3F83Nzbj88svxve99D7fddhsmJyexd+9evOUtb5nzuRdddBE+8IEP4MyZM+jo6IDT6UR1dTWsVis8Hs+Cr1VZWQmbzYannnoKl112Gf7v//4v1ekqVD6PHY1GcfPNN+NLX/oSenpmd1dcfPHF+OUvf4m3ve1tuO+++3DppZfKco2EEEIIIaS8uQJRaNWMovNltrz+NMXC7P77hYJsz565/66gd73rXRgcHMSOHTvAOUddXR0eeughvO51r8Pf//53bN68GT09PRkLnbq6Otxzzz14/etfj0Qigfr6ejz22GN47Wtfize+8Y14+OGH8a1vfWvO5/zkJz/B+973PgQCAaxduxY/+tGPZPtecn3sZ555Bvv378fnPvc5fO5znwMgdAy/+c1v4h3veAe+8pWvoK6uTtZrJIQQQggh5cvlj6DKpKOERpmxYo6c7dq1i4vphaITJ05gw4YN0h7gy18Wwj/SC7G9e4H9+4G0806EiHL6+SKEEEIIIZK89/8OYHAqgEc+enmpL2XZYYwd5JzvyvS+5dU5y1SAiR00QgghhBBCSFG4/FHYzNpSX8aKs7yi9AkhhBBCCCEl5wpEYDPpSn0ZKw4VZ4QQQgghhJCcuAIR2MxUnMmtLIozilonSqCfK0IIIYQQ+XHO4QpEYTPRWKPcSl6cGQwGTE9P0wtpIivOOaanp2EwGEp9KYQQQgghK4onFEM8wWmsUQElDwRpaWnBuXPn4HA4Sn0pZIUxGAxoaWkp9WUQQgghhKwoLn8EAKg4U0DJizOtVouOjo5SXwYhhBBCCCFEAldAKM6q6cyZ7Eo+1kgIIYQQQghZPsTijAJB5EfFGSGEEEIIIUQylz8KABQIogAqzgghhBBCCCGSUedMOVScEUIIIYQQQiRz+iPQqBis+pLHV6w4VJwRQgghhBBCJHMFoqgy6cAYK/WlrDhUnBFCCCGEEEIkc/kjdN5MIVScEUIIIYQQQiRzBSJ03kwhVJwRQgghhBBCJHMFIqimBdSKyFqcMcbWMMb2MsZOMMaOMcY+nPa+f2SMnUq+/cvKXiopN9/4ay+++sipUl8GIYQQQggpIlcgCpuZxhqVICViJQbg45zzFxljVgAHGWOPAbADuAHAFs55mDFWr+SFkvLy2PEJfOOvfai16PCJ69aV+nIIIYQQQkgRcM6TZ86oc6aErJ0zzvkY5/zF5D97AZwA0AzgTgBf5JyHk++bVPJCSfmY9ITwqd8cgVrFMOWLYMoXLvUlEUIIIYSQIvCGY4glOBVnCsnpzBljrB3AdgDPA+gBcBlj7HnG2BOMsd2LfM57GGMHGGMHHA5HwRdMSiuR4Pj4A4cRiMTw2es3AAB6J7wlvipCCCGEEFIMM/4oAFpArRTJxRljzALgNwA+wjn3QBiJtAG4EMA/AbifZVh2wDm/h3O+i3O+q66uTqbLJqXyw6fP4Km+KXz2NRvx6i2NAIDecSrOCCGEEEJWA2cgAgCopjNnipC01psxpoVQmN3HOf9t8s3nAPyWc84BvMAYSwCoBUDtsRXq6IgbX/rLSVyz0Y63nN8KALCZtDg14SvxlRFCCCGEkGJwJYuzKhprVISUtEYG4F4AJzjnX0t710MArkp+TA8AHYApBa6RlIFgJI4P//Il2Ew6fOkNW8AYA2MMPXYrjTUSQgghhKwSLn+yc0bFmSKkjDVeAuBtAK5ijB1K/u/VAH4IYC1j7CiAXwK4PdlFIyvQv//xOE5P+fH1W7ahOm3GeF2DFb3jXtB/ekIIIYSQlc+ZLM4oEEQZWccaOef7ACw4S5b0Vnkvh5SjR46N4+fPD+G9l6/FJV21c97XY7fCG45hzB1CU5WxRFdICCGEEEKKYSYQhVrFYDVIOh1FcpRTWiNZfcbdQmz+ec0V+Pi1C/eZrWuwAgBO0WgjIYQQQsiK5wxEUGXUQqVarHdDCkHFGVmUEJt/COFoAv/zpu3QaRb+uPTUC8UZJTYSQgghhKx8M4EIxegriIozsqjvP3UaT/dP43Ov3YjOOkvGj6k0adFQYaDOGSGEEELIKuD0RygMREFUnJGMjo648dVHT+GVmxpwy+41S35sTwMlNhJCCCGErAYzgSiqTLTjTClUnJEFApEYPvSLl1Bj1uOLb9iMDLvF51hnt6Bvwod4ghIbCSGEEEJWMqc/Mie5m8iLijOywHf2DuDMtB9fu2WrpAWDPXYrwrEEhpyBIlwdIYQQQggpBc45XIEILaBWEBVnZIG/npjARWtrcHFnbfYPhlCcAaDRRkIIIYSQFcwfiSMa56g201ijUqg4I3NM+cI4Oe5dsM9sKd12ISyEEhsJIYQQQlYuV3IBNXXOlEPFGZnjmYFpAMipODPpNGitNlFiIyGEEELICuYKCMUZpTUqh4ozMscz/VOwGjTY3FyZ0+f12CmxkRBCCCFkJXMmO2e050w5VJyROfb1T+GitTVQ57j1fV2DBacdfkRiCYWujBBCCCGElNJMIAoAsFGUvmKoOCMpQ9MBnHMFcWm39JFGUY/diliC48yUX4ErI4QQQgghpSZ2zihKXzlUnJGUff1TACA5pTHdugYhsZHOnRFCCCGErEyuQAQqBlQYqHOmFCrOSMrTA1NoqDCgs86c8+eurbVAo2KU2EgIIYQQUoY45/jps4NwB6N5P4a440yV4/EXIh0VZwQAkEhwPNM/hYu7asBY7n/hdBoVOmrN1DlbIf54ZAz+cKzUl0EIIYQQmRwb9eDfHj6GPx4Zy/sxXP4oqui8maKoOCMAgBPjHrgCUVyaQ4T+fD0NlNi4EpyZ8uMDP38RD740UupLIYQQQohMTiWnm0Zngnk/hisQoRh9hVFxRgAAz/Tnvt9svnV2K4acAQQi1HFZzganhVCXYVegxFey/IgjI2Pu/H/xEUIIIUronSy8OHP6IxSjrzAqzggAIQykq94Ce4Uh78fosVvBOdA/6ZPxykixDTuFomx0JlTiK1l+hp1B/NvDx/DbF6nrSAghpLz0TQivz0YLuIE4E4hSjL7CqDgjiMQSeOGME5d01hT0OKnERgoFWdbE4myEOmc5E8d6JzxU2BJCCCkv4u+oMXd+v6M453AGqHOmNCrOCF4aciEYjRc00ggArdUm6DUqOne2zA2JxVkBYw+rlTgyMukJl/hKCCGEkFn+cAznXEFo1Qxj7hASCZ7zYwQicURiCdjozJmiqDgjeHpgGioGXLC2sM6ZWsXQbbfg1ASNNS5nw06hKJv0hhGJJUp8NcuLODIy6aXOGSlPf3p5DDOBSKkvgxBSZAMO4ffTrrZqRGIJTPtzfx5wJZ87KBBEWVScETzdP4UtLVWoNBY+Q9xjtyq+6+yPR8ZSG+qJvDjnGHYGYNVrwDkwnufow2oldo0nvdQ5I+Wnf9KH99/3In723NlSXwohpMh6kzcPr1hXBwB5BVe5/MJ+NBprVBYVZ6ucNxTFoeEZXNJVWNdMtM5uxbgnBHcg/wWHS5n2hfGBn7+Inz47qMjjr3buYBTecAy7O6oB0GhjLuIJngrDmfSEwXnuIyOEKOnp/ikAwAk6F0zIqtM34YVOrcKFySmpfEK/xM4ZBYIoi4qzVe6FM07EE7zg82ainmQoiHj2Rm5isdBHiZCKEM+bXbiWirNcDTkDCMcSWN9gRSSegDuozA0KQvK1L1mcUWgTIatP74QXa+vMWGMzAsizcyYWZ9Q5UxQVZ6vc0/3T0GtU2NFqk+Xx1tmVTWwU7/QMUHGmCPG82QUd4p01Ks6kEkcaxRsdNNpIykksnsBzp4XzxWem/AhF46W+JEJIEfVO+NBjt6LarINeo8orsdHlFztnVJwpiYqzVe7p/insbq+GQauW5fEaKw2w6jWKJTaKxcJphx+xOIVVyE3snHXWW1Br0WPERcWZVH2p4kwobClOn5STl0fc8IZiuHZjw5wRXELIyucPxzAyE0SP3QLGGBorDXlNxjgDUTAGWTIKyOKoOFvFJr0hnJrwyjbSCACMMfQ0WBXrnIlt+Eg8gWEqHGQ35Ayg2qyDRa9Bs81IY4056J3wobnKiI5aC4DVEacfjsXpJskyIZ43e/sl7QBotJGQ1UQ8CtKdnG5qrDRiLI/f7y5/BJVGLdQqJuv1kbmoOFvFnh2YBgDZwkBEPXYreie8igQijLpDYMnnBLrzK79zrgDWVJsAAM1VBhprzEHvhBfddgvqrXoAK3+sMZ7guOV7z+EjvzpU6kshEjzdP42NjRXY2WaDTqPCKdpHSciqIU4z9SSLs6YqY35jjYEIxegXARVnq9jT/VOoNGqxqalS1sftsVvgCkTh8Mn/4nRsJojNzcL19ikUOrKaDTkDqcPCzVVC54xSB7OLxRM47fCjx26FWa+BWade8bvOHnxpBIeGZ2jp/DIQjMRx8KwLl3TVQKNWoavOgpPUOSNk1eib8EKvUaE1efO1qcqACU8o58kHVyBCYSBFQMXZKsU5x9P907hobY3s7WkxFKRPgWXUozMh9NitaKgwUOdMZvEEx4grmPbkbUQ4z0WVq81ZZwCReCJ1V9JeYVjRY43BSBxffeQUAOR195UU1/5BJyLxRGqEfX2DFafGPSW+KkJIsfRN+tBZZ0m93musNCLBc5/wcPmjFKNfBFScrVJnpwMYmQnikm75zpuJxDh9uc80xOIJTHpDaKo0oKveQsWZzMbcQcQSPG2sUeigUShIdn2pkRHhvFmdVb+iO2f37juNcU8IV62vhzcUgz8cK/UlkSU8PTAFrZrh/OT+wnUNVkx4wpgJ0I0XQlaDvgkfupO/nwCgscoAIPdEZlcgQkmNRUDF2Sol7ru5pFPe82YAUGvRo8ask33cacIbRoILHR2xOKORO/mIMfpi56w5Od5I586y6012ibvqhV9+9RWGFXvmzOEN47uPD+DajXa8dmsjAGCckinL2tP9U9jeaoNJpwEgFGcAaLSRkFXAl0pqtKbeJt58Hc1x8sHpp7HGYqDibJV6ZmAKTZUGdNSaFXn8HrtV9gPnYpHQmCzOApF4zk8sZHHDyRj91vmdMyrOsjo14cWaamPqxa/dqseEJ7Qibx5846+9CMcS+PSr1qOhQvgZmaC/h2XL5Y/g2KgHl6al8q5vqABAiY2E5EL4u+Qu9WXkTJzs6K5P65xVCp2zXBIbg5E4wrEEdc6KgIqzVSiR4HhmYBoXd9WCMWXiUNc1WNE7Lm9io1iciWONACU2ymnYFYBaxVJP2pVGLcw6Nc7RWGNWfRNe9NTP3pWsr9AjFE3Au8LG/fomvPjFC0N464VtWFtnQYP4C56Ks7L17OlpcI45K1PsFXpUGrXUOSMkB995vB833f3sslsfIp7/T++cWQ1aWPWanJ67nQFxATWdOVMaFWer0PExD2YC0Tl3UuXWY7fCH4nL2nURn0Qaq4ypO0B9lBQnmyFnAE1VBmjUwtMCYwxNVUYaa8wiGk/gzJQ/tT8GAOqtQtGy0kJB/uvPJ2HWafChq7sBAA0VwvdJY43la1//FCx6Dba2zKbyMsawjkJBCMnJ2ekAApE4hpJTJstFbzKpUTxPLmqsym0RtSsZDkZjjcqj4mwVEs+bXazAeTPRugaheJLz3NnoTBAVBg0seg1qLHrYTFoMOKhzJhchRn/ukzctos5ucMqPaJynwkAAoXMGYEWFgjzdP4W/n5zEB67qQnXyl7NRp0alUYtx6pyVraf7p3Dh2urUTRfR+gYreid8SCRW3ugtIUoQb0L1LbOJnd5JH7rqLQuSuRsrjRhz51CcJTtn1VScKS5rccYYW8MY28sYO8EYO8YY+3Dy7XcxxkYYY4eS/3u18pdL5PB0/xR67BbUJ+96K0HsIpwal+9JbHQmhKbkOSgA6K63KhLXv1oNO2dj9EXUOcuuN8PIyErrnCUSHF/44wk0Vxlxx8Xtc97XWGmgscYyNewM4Ox0YM5Io2hdgzUVFEAIyW50RnieW27HKfomvHN+P4maqowYm5H+3O0KRAHQWGMxSOmcxQB8nHO+AcCFAD7AGNuYfN/XOefbkv/7k2JXSWQTjsWxf9CJizuVG2kEgAqDFk2VBlk7Z2PuYOo8FAB01lvQV6TExkgssSwPAksViMQw5QsvGHtorjLCFYgiEFl+Z6dC0XhRrrt3wgvGgM66lds5e/ClERwf8+CTr1wHg1Y95332CmGZKSk/zwwkU3kzFGfrKbGREMnCsTimfMLNNrmTqJXkCUUx5g7NidEXNVUaMO2PIBSNS3qs1FgjBYIoLmtxxjkf45y/mPxnL4ATAJqVvjCijBfPziAUTSh63kzU02CVNQ1szD2/c2aBOxjFlE/5XT0PHBzGa7+1b8W82J5PDP2YX5y1LNM4/VA0jpvufhbv+skBxb9W36QXbdUmGHWzRYtVr4FBq1oRnbNgJI6vPnoKW1sq8dotTQveT52z8rWvfxp1Vv2clDZRT2q6gc6dEZLNhHv2uXw5TeyIXb70wCpRY/L1lNSxdGeyOKs0UudMaTmdOWOMtQPYDuD55Js+yBg7whj7IWPMJvfFEfk93T8FtYrhgrXVin+tdXYr+h0+WZKNgpE4nP7InOKsmImNJ8Y8SHDgjMOv+NcqhaFp4YDzGptxztvFP+/lltj4hT+ewMsj7qJEhfdO+OaEgQBC4IK9woCJFbDr7N59pzHmDuEzr94AlWphumtDpQHT/jAiseWVYLbSJRIcz/RP4dJFUnmtBi1abEbqnBEigXg2a0NjBQYcPsSXyVlNMTQt41hjZW6LqGcCEVQatQvOrxL5Sf4TZoxZAPwGwEc45x4A3wXQCWAbgDEA/73I572HMXaAMXbA4XAUfsWkIE8PTGFrSyWsBuXvfPTYrYjEEjgrQ7KR+MSYPtYotun7ixAKMjApFGVyfC/laNg1d8eZaDnuOvvDkVH833NnUWfVY9ofUXS0MRyLY3DKPycMRFRv1WNymY/7pS+cvmBt5gChhgoDOF85I5wrxakJL6b9kSWDn9bLPN1AyEolTgdc3lOLcCyR2gta7nonfDBoVakpmHRNOS6idgaidN6sSCQVZ4wxLYTC7D7O+W8BgHM+wTmPc84TAL4P4PxMn8s5v4dzvotzvquurk6u6yZ58ISiOHLOnfH8gRLWJc809Mrwy198YkzvnDVUGGDRa9BfhPnv01NCAbhcnpBzNeQMwKxTL0hhqrfqoVaxZTPWODjlx6d/8zK2t1bh069cDwAYUbDrd2bKj1iCZ7wrWW81wLHMO2fpC6cXI+46o3Nn5eXp/sXPm4nWNVhxesqPcEzamRNCVqvR5A3iK7qF17HL5dxZ74QXXfWWRaceAOmLqGcCEYrRLxIpaY0MwL0ATnDOv5b29sa0D3sdgKPyXx6R0/OnnYgneNGKs656CxgT7uAWaiS1gHq2OGOMobPeonjnzBuKYiJ5dujs9MoszoadQaypNi0Yf9KoVWioMCha4MglFI3jAz9/EWoVw/++ZQfaa80AlB3JFJMauzPM89dX6DG5jIuzvgkvfrl/OLVwejG0iLo8Pd0/hbW15jk3tOZb11CBeIKnJgMIIZmNzYRQYdBgy5oqAMsnTr9vwpfxvBkAGLRq1Jh10jtn/giqKQykKKR0zi4B8DYAV82Lzf8yY+xlxtgRAHsAfFTJCyWFOzkmHPzelnxyUZpBq0Z7jVmWO0xi3Ku9Uj/n7V11FsUP555OnjNTq9iyWz4p1bAzsCAMRNRcZUxFCJez//zTCRwb9eC/b9qK5ipj6vzcOZdy/836JrxQMWBtnXnB++qtBvjCMfjDyy/pEgC++OeTMGnVqYXTi2msyO1QOVFeJJbA82ecWW/EiYmNpyYoFISQpYiBZBa9Bs1VxtRZrnLmDkYx7gktOBOdrrHKkMOZsyiqqDgrCk22D+Cc7wOwsB8KUHT+MuMORmHSqRdEYSupx26R5UzDmDuIWosees3ca++2W/CbF8/BHYwqliAkjjTubLUV5XxbsXHOMeTMvAsJEBZRv3DGWeSrys0fj4zhp8+exbsv68ArNtoBALUWPXQalcKdMy/aa8wZ/07VW8U4/TA69FmfasvKM/1T+NvJSXz6VeuzLhytMArJlFSclY9DwzMIROJZi7OOWjO0akahIIRkMeYOpqYEupJrfMpd/6QYBrL45ENjpRFnp6V1zp3+CKrNdOasGChyZRVxB6OoKEIQSLp1disGpwOS92gsZmQmiOaqhUuzu+qUT2wcmPRDrWK4tLsWTn8E3lC04MfknCMqQ4qlHKb9EQSjcbRWZx5/aqoyYNwTkiV1UwmDU3586jdHsL21Cp985ezZKJWKoaXKqGhx1jfhy7g/BkjbdbYMz2L97HkhUGX+wulMGGNorDRifBl+nyvV0/1TUDHgokVCXERatQqddfLcQCNkJRtzh9CYPFbRXW9B/2T5JzaKY/eZzkSLmiUuog5F4whG49Q5KxIqzlYRT0i57tJiehqsiCd4ajQwX+lPjOnEF8YDChZnp6d8aKs2pZYMyzHa+O9/OIErv/J4UdYAZCN+P4uPNZoQT/CyjIVPP2f2rTdvh3ZexG+zzYhzCoWZhKJxDE77sW6RX3z2imRQRhn+uWVzatyL7WuqJHfZ7RV66pyVkaf7p7C5uRKVEpLV1jdYcXKMijNCFhOKJlf5JDtnPXYrwrGEoiPz6Z7odeB0HlM7fRM+GLXqVOpyJo2VBnjDsaw3nV0BYcdZtkkKIg8qzlYRdzCKCmNxx6vEF66FnDvjnGNsJojGDJ2zFpsJOo0KfZPKvbgYmPRjbZ0FbTVC8SJHYuPBIRdGZoK4+XvP4si5mYIfrxDi9zM/Rl/UXMaLqNPPmbXYFl5/i82IEYV+gZ52+JHgWHSePzXWuMw6StF4AmenA6k9glI0VhopEKRM+MIxHBqekRz8tK6hAuOeENyBwicCCCk3nBfe3RJvPIlLm7uSN4WLtYz6I798CZ958OWcP69v0otue+akRpH4PWV7/hYXUFOUfnFQcbaKeIKxonfO2pNnGgpJbPSEYvBH4hnv/qhVDJ11FsU6UPEEx5lpPzrrzKnOUqGJjZxznHH4cOW6Ohi1arz5nufwzMCUHJebF7E4y1TcAEiNk5ZbYmOmc2bztdhMmPJFEIzIHxXeN7n4ck8AqDRqodOoll2c/tlpYT1ALsWZvcKASW8IiTIf81kNXjgzjVgOqbxiKMjJ8dKHgjx8aAS3//CFUl8GWSGe6Z/C9n9/LLUnNV+j8/asdiefG3sVvCksCkXjcAWieO60E0M5vvbonfBmTBJOJ3YDs+0ynUnevLHRWGNRUHG2igids+IWZ1q1CmtrLQXtOhM7NpnGGgFlD+eOuIKIxBLorLOg0qhFlUlb8FjjtD8CTyiGy7vr8Js7L0azzYg7frgffzk6JtNV52bYGUSdVQ+jLvMIW1MZLqJe7JzZfOLizZEZ+btnp8a90KgYOmoXJjUCwlmseuvyi9MXb3Tk1jkzIBrnmE7eXSWls69vGnqNCjvbbJI+fl0qsbH0o41P9U3hiV5H6i59ufnhvjN0Pm+Z4Jzjq4+ewkwgiqMjhd14EM9kicWZ1aBFY6UB/UXonE35Zn9//PrgsOTPcweFFUCLnYkWib/fs507E/9O0lhjcVBxtop4QsUPBAGEc2GF3GES73plGmsEhFCQkZkgAhH5I8sHknPenfXCC/DWalPBxZl4/q6jzoyGSgPuf+9F2NRcgfff9yJ+tX+osAvOw5AzkIqdz8Sk08Bm0pZNcZbtnFk6sTgbVqDr1zvhQ3utGTrN4l+/3qpfdsuZxeKsc4ndZvOlztcts+91JXq6fwq726slnxdsrDSgwqApi8RGcXwsn/M1SgtEYvh/fziOd/x4P1xlWjySWc+ensaLQzMACj8nnnoNknaDuNtuLUrnTJy8MOvU+PXBc5JDSMSo/6WSGgHhd5SKIWt3cSZ55owCQYqDirNVIp7g8IaKP9YICGNf51z5F0/ijq2mRTpn3XYLOEfBoSOZiMXZ2lrhCU6e4iz54jf5mFUmHe571wW4tLsOn/rNy7j7iYGCHj9Xw67AoufNRM02Y8nHGiOxBB4+NIJbvvfskufM0onvVyKxsW/SK+EXn2FZds6aKg0w5xD/30iLqMvCpDeEUxNeXNy1dEpjOsYY1jdUlEVHSEz8HCjD4kzsHIzMBPGx+w/RCG+Z+/beftRZ9TDr1BiSGBW/mDF3CDaTds50iZjYqPTPgVicvfWiNoy6Q5KPQIhJjdnGGjVqFewVhqy7TJ1+Yayxis6cFQUVZ6uEmMRT7LFGQLhzw7kQrJGP0ZkgNCqGOqs+4/vF8Sslzp0NOPyoNutgS7byW6tNGHEFC4qVPz3lh06jSgVtAEJ36ge37cJrtjTii38+if/60wlZDjJnE40nMDoTzFqcNVUaSxYIMuEJ4WuP9eLiL/4dH/7lIXhCMXzljVsWPWeWrs6ih06tkj1VKxiJY8gZyPqLr75Cv+wCQfodPnTmMNIIzBZnFKdfWs8OTAMALpV43ky0rsGK3nFvUZ5zljLbOZP/RluhXMkXp1f01GHvKQfufrK4N9GIdC8OufB0/zTee/latNWYcbbgztnCtOjuegtC0YTiEyXizb1bz29DpVGL+w+ck/R5vRNemHRLJzWKGiuzL6J2BSKwGjRLTqoQ+Syvzagkb56g0LUqReesq342sXFzS2XOnz/mDsFeYYB6kcSh9hoz1CqmUHHmQ2fd7JmithoTYgmOMXdo0ej5bE47fGivMS34fnQaFf7nTdtRZdLie0+exkwgii+87jxoFHwyHJ0JIsGBFgmds339U+Ccg7HFk5/kwjnHC2ec+OlzZ/HI0XHEOcdV6+px28XtuKyrdsn0qXQqFRPi9GXunA04fOB86f0xgDDu5wnFEIrGi7r8PV+JBMfApB9vOr86p8+rseihVjGMF3jwnhRmX98UKgwabGrK7Xl2XYMV3nAMIzPBrN1opXhDUfjCwu+psuycJce6/vGqLlgMGnz1kVPY0WrDhVl2yZHi+/bf+2EzafGWC1px8Kyr4K7w6ExwQZHTnZZEne9rASkc3jAYE4513LitCb/YPwx3IJp1TUbfpBfd9UsnNYoaq4w4NuJe8mNcgQidNysiKoFXCXcw2TkzFL8eb68xQadW5T2fPToTRNMi580AoahpqzEpEqd/2uFLjTQCkCWx8fSUf85jplOrGP79hvPwoau78asDw/jAz18seIH3UoadwovprGONVUYEIvHUz5FSApEYfv78EF71P0/hlnuew76+Kbzj0g488Yk9uPeO3biip05yYSZqUaA465U4z1+XitNfHqONo+4ggtF4TmEggPBza7fqMe5eHt/nSsQ5x9P9U7i4s3bRG1mLERMbSznaKJ5X1KhYmXbOZgMRvvSGLWivMeMff/HSsktjXemOjbrxt5OTeMclHTDpNGitMWHYFShoYfSYO7TgzLv4HKlUGJnI4Quj2qSDVq3CTbvWIBJL4HeHR7J+Xu+Eb9E1L/M1VwmrUJbqnDv9EUpqLCIqzlYJT3KssRSdM41ahbV15ryTjcbcoVSi0GLE+W85uQNRTPkiqTAQAGirEf4533Nn0XgCQ9MBrK3LnPAHCGdAPnZNDz732o145NgE/vWho3l9LSmyLaAWiXcNlTi7BQhnIn/w1Glc8J9/w2cefBkqxvClN2zGc/98NT7z6g1orcn/zqQSu856J3zQqhnaF0lqFKV2nXmXx7hfKqkxhzAQkb3SgHEPdc5KZXA6gFF3CJd05zbSCAA9qTj90hVn4nnFHa02nHUGEInlPzquhPS0Ooteg2/fugOeYBQf/uVLBb3wJ/L6zt4BWPUa3HZxOwCgrdqMaJznHacfiMTgDkYXjDVWGrVoqDAUtMNVCoc3nLrJt6mpAhsaK/DAwaVHG2cCETi84aw3D0WNlQaEY4klU1JnAlHacVZEVJytEmLHI1srXCn5JhslEsKT6mIx+qKuegsGp+X9hT4wNTcMBAAaKgzQqhnOOvO7szvsDCCW4IvGr6d7+yUdeMOOFjx2fEKxQ8fDrgC0aoaGisU7k8DsImol5usHp/y45XvP4j/+eAK72mz49fsuwh8/dClu2d26aLx/LpTYddY34cXaWkvW+XsxxXC5hILkE6Mvaqw0pM4MkeLb1y8EBVzSmfuYXYVBi+YqY0mLM/Fn5+KuGsQTvODgJbm5AhGoVSyVeLyhsQL/fuN5eGZgGt/4a2+Jr44AwvPXn46O4baL21I3otuSN/by/XkSbxpkmt7ptiu3Y1WUXpwxxnDTzhYcOedeci+h2M2T2jkTX18tFejk9EdSZ++J8qg4WyU8qbHGEhVn9RYMO3NPbJzyhxGN8yXHGoXHtyKe4DhbYCpTugExUjzthapaxbDGZkotbs6VOK6zVmJn4qLOGriDUcUie4ecATRXGbOOQYmdSzlDQRIJjh8/fQav/J8ncWrCi6/dvBU/vGM3drVXy3quTYldZ72T3qz7Y4DZztlyiZgfcPhgM2lRY8kcvrMUe4Uh62gMUc4z/VNoqjRIuvGTyboGK06VcBF1qjjrFDp/5XbubNofgc2knTNWffOuNbhpZwu+9fd+PH5qsoRXRwDgu48PwKBR4x2XdKTeJo7s57rAWSTu/2qoWHiDuKvegr4JZRMbHd4w6tKej2/c3gytmuGBJYJBZsfupRVn4uurpW6+ugI01lhMVJytEqnOWQnGGoHZszm53mUayxKjL1Ji/vv0lB9aNVuwA2xNAXH6p6fEHVLSXkBd0CEEM+w/48zr62VzzhmQdJi5xqyDXqOSLU5/2BnArT94Hnf9/jgu6KjBYx+9Aq/f0aJI2Ijcu8784RiGnUFJv/hsJh00KrasOmf5dM0AoXMWiMThDcu/b5AsLRJLCOfNumrz/ju0rsGK0w5/ycYJxz1CXPmGRuHvVbmdO3Mtcubm/91wHtY3WPHRXx0qWaItEX6nPHRoBG+5oHXOzaXGSgM0KpZ3YuNochwy0w3iHrsVwWhcscRGzrlQnFXMfj/VZh1escGOB18aWfTvat+ED2adGk2VS9/UFs0uos78fYSicQQicQoEKSIqzlYJdzAKtYrBJMOYWD7E9npfjufOxF92iy2gFnXWWcCYvHH6A5M+tNWYF6QlttWYcHY6kFeH4HQyml/qIscWmxENFQY8r1BxNiSxOGOMobnKmPpFlS/OOX7+/BBe+Y0n8fKIG198/Wb8+O270SDxl0g+5N51Jv6MSZnnVyVXQCyXQJBCirPUImoabSy6J3sd8IRieNV5DXk/xvoGK2IJXrKO1bg7hIZKI6wGLeqt+rLrnC021mXUqfHtW3cgEkvggz9/EdEC1qyQ/N39xADUjOE9l6+d83aNWoUWm7HwzlmG31HdqZvCyky2eIIxROKJOZ0zQOjYOv0R/P1k5m5t74QXXXar5Bs1NWYddBrVomONMwHacVZsVJytEp5QFJVGbVFi0DNpq84vsXHULa1zZkzu85CzczY/Rl/UWm2CNxTLK7lQSGqUPnbEGMP5HdXYP+iUfVzMG4rCFYhmTWoUFbqIeswdxO0/2o/PPPgytq6pwl8+chnedH6r4j+Tcu86E0dGpM7z11cYlkUgyLQvDFcgis48wkAAaecWiDIeOjQCm0mLy3vq8n6MdSVObBR2SQkvgNfWmXG6zIozVyCC6kVuqnXWWfClN27Bi0Mz+OKfTxb5ysiEJ4QHDpzDG3e1pG4SpWutMed9TnzcE0StRQe9ZuGNbXHPZa43naVy+ITn0vk7Xi/rrkW9VY8HDgxn/LzeCR96crjJxhgTdp0t8tztSq6RWOznn8iPirNVwh2MlSRGXyQmNub6JDY2E4RBq5J0x0bOxMZoPIEhZyDjC9XWAuL0Tzv8SyY1ZrK7oxoTnrDsB+TFGP01EvcaNVUaMTKT+wtvzjkeODCMa7/+JPafceL/3bAJP3vnBUXbpyT3rrO+SR90ahXaJBa19cukc1ZIGAiAVKgMLaIuLm8oiseOT+D6LY0FLYhdW2uBRsVKFgoy4QmlXlh31lkw4PCX1flFpz+6ZCDCa7Y04faL2nDvvjP4y9GxIl4ZuefJ04hzjjuv6Mz4/rbq/KddRmdCi052VJqELq9Scfri7435xZlGrcIbdrbg8V4HJuc937r8EUz5wpLPm4mWWkQtrpGgQJDioeJslfAEoyU7bybqtltzjp0ddQfRVGWU1F3pqrdgwOGTJdZ42BlANM4zBne05pn+5AlFMeULSw4DEYnnzuQebRSvP5fO2ZQvnPPetUeOTeCffn0E6xus+POHL8NtF7XnvKusUM1V8hVnvRNerK1bOO66mHqrfll0zvodhRVn9clzEZTYWFyPHJtAOJbA67Y3F/Q4Oo0KnXWWkoSChGNxTPsjaZ0zC9zB6JLR3sXEOU8u4V36d+hnrt+ArS2V+KcHjsjWqSdLc/oj+PnzQ7hhW9OiI/ptNflPu2RLi+6xW9GnUJy+wycUZ/XWhcXhTTtbEE9w/PaluTvPZic7cnseb6o0LnrmzJUca6RAkOKh4myVcAejqChxcdZTb8E5VxD+HAIDRmdCWUcaRd31VkRiCVl+KQ4kD6MvNtYI5F6ciQfcc01T66qzwGbSyh4KIv45SS7O8kxsfPTYOGwmLX75nouy7gVTSkuBI5np+iZ8Od2VtFcY4ApEEY4pt0xcDv2TPhi1asl/3+YzaNWoMeuoc1ZkDx8awZpqI3a02gp+rPWN1pKMNYodgoZU50x4nhgok1AQTyiGeIJnfXGq16jxlZu2whuO4cneqSJd3er2w31nEIrF8f4ruxb9mEKmXcZmQksGa3TVW9A36VOkyysuOJ/fOQOEGxi72mx44MDwnK/dlzoTnVvnrKnKiAlvOOPNbWdA7JzRmbNioeJslfCESl+ciWd0cjnoLdy1khYWIUbeyzH/LZ53yNTlMuk0qLXocz5gLD6m1KRGkUrFsKu9Gi8Myt85sxo0knffzcbpS3/xnUhwPNk3hcu667LG9SupJc+u33y+cAwjM8HU+RwpxDh9R5knNvZP+tBZby6oq2mvKGzX2e8Oj1LiXQ4mvSE83T+FG7Y2y3J2c12DFaPuUF4dhkKI5xTF8TFxnLxczp250hZQZyPu1XL6y/vv+0rgDkbxk2cG8erzGpfs+IvTLrkmNnpDUXjDMTRWLX7DqttuQSCiTGKjwxuGTqNa9EjKTbtaMODw48WhmdTb+ia8sOo1kl83iRqrDIgneMYpD/Hnv8pInbNioeJslSiPsUbhybNXYvEUjScw6Q2nioJsxCfnfhl+oQ84fKi16Bf9M2urMeV8wPi0ww+1iqG1Ovfu0QUd1Tg7HZB1X9awMyC5awbkty/s+JgHU75wQUEFcpArsVEcX+nOYfRPHPcr9zj9gUkfuvIMAxEVsoh6JhDBh37xEgUq5OD3h8eQ4MCN25tkebz1yZsOuY6fF2osmQIrvqBsqjJCr1GVTWLjdA7FmV6jhkWvgdNf3AJ3Nfq/ZwfhDcfw/j2Zz5qJZned5fY7W3wuW6rQETtUSpw7m0zuOFvsxsv1W5pg1Krx64OzwSC9Ez502S0536wRJyYy3Xx1BSKw6jXQaahkKBb6k14FOOfwBGMlW0AtEhMbpc5nj7tD4DzzfpFMKo3Jw7kydM4GHP4lO1yt1aZUoIZUp6d8WGMz5vUEt7tdOHf2goyjjUPOgOQwEEDoijCGnEJBnuxzAAAu767N+frkJBaWhY68ij9buYyMiOcFyjkUxB+OYdQdyvu8mcheach7rPHEmPC88Jdj43AH6IWtFA8fGsGmpgp01ec2wrSYdQ0VAFD0UBDxppM9+SJYrWLoqDWXza6zXDpngDD+RZ0zZfnDMdy77wyuWl+PTU2VS36sSadBnVWf81jjaKo4W6JzlprYkf/vjMMbzjjSKLLoNXj15kb8/vAYAhHhuEjfpBc9eTwfiOuKMk0uuPwRVNFIY1FRcbYKhKIJROKJknfOxMRGqXdlxyQ8Mc7XVW+RpXN22uFLjUlmsqbahFF3MKdzREJSY34vfjc1VcCkU8tWnCUSHOdcwdS4hxQ6jQp2qyGns1tP9jqwobEC9RnijYtJrs7ZqQkv9BqVpN1wotnOWfmexRpIhYEU9iK/scIApz+S1/joiTEhiCISS+B3h0eyfDQZcPhw5Jy74CCQdE2VBlgNGpwcK24oyJg7BLNODat+dnxLSGwsj85Z6syNxECEarMeTrrBoKhfvDAEVyCKD+xZ/KxZurZqU85jjWJAxlKdsyqTDnUy3RSez+ENp8biF3Pzrhb4wjH85eg4nP4IpnyRnMNAgLRF1Bl2mboCUYrRLzIqzlYB8fxAhbF0UfqiHrtVcvtffJKQOtYICHexBgo8nOv0R+AKRJfcR9ZWbQLnkFyoJBIcg9O57ThLp1GrsLPNhv0ynTtz+MIIxxJYY8st/KGpavG43fl84RgODLpwRYlHGgHh3JdWzQouznonvOiqt+R0fq7GrIeKlXfnrNAYfZHY+cjnez057kGNWYeNjRX41SL7e8ish18aAWPAa7fKM9IICPuO1tmLHwoy4RHiytNHsdbWmTHkDJRFkE6unbNqkzb1OUR+oWgc9zx5Ghd31mBnm7QgnNYaE4ZzLc7cITCWeQF1uu5kKIjcHL6lO2cAcH5HNdpqTLj/wHDOOzjTVRi0sOg1i441Uox+cVFxtgp4QkJxVurOGSA8iUlNbBQP2EodawSEF5e+cKygxLhUcIeMB4xH3UGEoom8O2cAcH57NU6OezETKPyXvvhLKpcOEAA020ySDz4/OzCNWILj8p7SjjQCyV1nVUZZxhpzTcFSqxhqLfnF6cfiCfzhyGjBQSbZ9E36oFGxVJhBvsQ7zJnuvmZzYsyLDY0VuGX3Ghwd8eDYqLuga1nJOOd46NAoLu6sybh0txDrGqw4NeEt6o6xMffCXVKddRYkOHIOXlKCMxCBTqOCSbdwEXEmNrOubNYArETHRj2Y9IZx20Vtkj+nrdqMcU8op+fSMXcQdRZ91v2B4o5VOf/OROMJOP2RrMUZYww37WzBc6ed+NuJCQBATx6dM0B4/s7cOYtQjH6RUXG2CqQ6ZyU+cwbM3tGRsix6bCaESqMWJp30jp84llXIMmpxlKazdvEnOHEBsdQ7cfnG6Kc7P7nv7MCgK+/HEA3lW5xVGTHmDiIhYZfcE72TMOnU2NVWndc1yq3FZiqoc+YORjHuCeU1MmKvMGAij27SH46M4YM/fwnv/Mn+nFZQ5Kp/0of2WnNBS4yB/BdRx+IJnJrwYkOjFTdsa4JOrcIDB84VdC0r2UvDMxhyBnDDNvlGGkXrG6zwhmKp8zbFMO4OoaFibhd/bSpOv/SjjS5/BNUmneSQhRoqzhQlLl5uq5H++7S1xgjOczt3POYOSUo97LZb4QvHUkcx5DDlWzxGf77X72gBY8BPnj0Lq16Teh7OVWOVMXPnzB+l4qzIqDhbBTzB8umc9aQSG7OPzeQSoy/qkiFOf8Dhh06jQvMSI391Vj0MWpXkA8b5xuin27qmCjq1SpZI/SFnAIzN7i6TqrnKgGicp5ZjLuXJ3ilc3FlTNglPLbbCFlH3Two/s/kcthYWUedenB0anoFWzfDcaSfeeu/zsnRNM5EjqRGYHf/JNbFxcNqPSCyB9Q0VqDLpcO0mOx46NFIWI23l6OGXRqDXqPDK8xpkf2wxFKRYy6iF+O4wGirnvggVpwzKYdeZ0x/NaazLZtYhGI0jGKGfXyWIATLZzmOlE1OScwkFGZ1ZegG1SAwFkTPlVFy9kmkB9XxNVUZc1l2HSCyB7jySGlOPk6FzFokl4AvHYJO4cofIozxeNRFFucuoOGutNkGnUUnqbI3MhHIuHmotOlSZtAWFgpx2+LC21rzkuSLGGFqrTZIXUZ+e8sOi10i6C7YYg1aNrWsq8bwMoSDDziAaKgwwaKWN6YiaU6mHSxc5g1N+DDkDJY/QT1forrPePJIaRfUVejjyGGs8NDyD7a02fOfWHTg24sGb7nlO9mCRSCyBs85AwefNAMBq0MKsU+fcOTueTGrc0CgUBjfvWoOZQBSPHZ8o+JpWmmg8gd8fGcMrNtgVmYZYl/z5LlZi45RPWHzbMO9FsEWvgb1CXx6ds0AE1Tmk1dUkCzmnQjdTVrsJbxhaNcupmyOObEstzjjnQudMwrGKnhwmgqRaagF1JjfvaplzLfloqjJiyheZc1NsJrWAmjpnxUTF2SrgSQWClL4406hVWFsrLbFxzB2U9MSYjjGGrjoL+gvsnK2V0OFqrTZJPg9xZkp4zEIXxZ7fUY1jI+6CR9yGc4zRF80uol66OHuiV4zQL6firLDExt4JL4xadSqWPxf1VgOm/RFE4wnJnxOJJXB81INta6pw3aYG/OjtuzHkDOCmu5/N+WD7Ugan/YgnuCzFGSB0z3LtnJ0Y80CjYqlruKSrFs1VRtxPo40L7OubgtMfwQ3b5AsCSVdp0qKx0lC0UJDULqkMo1iddZayiNN3+nM7cyN+rNNHxZkSJj1h1FsNUOUUzKSDWaeWfEPVE4ohEImn9n8txWbWodaiU6RzJrU4e8UGO3a0VmHP+vq8v2ZjhsmHXJNKiTyoOFsF3EHhhfxiW+aLrcduzbqIOhiJYyYQzSlGX9Rtzz9OPxJLYMgZQKeEEa/WaiFNTMoh4NOO/JMa0+1ur0YswfHS0ExBjzPsCuR83gyYHYPMFgryZK8DbTUmtMvwPcul0F1nfRM+dNstOb0gENVX6MH57DkCKU6OexCJJ7C1pQqAULD87F0XYCYQxU13P5sasyyUXEmNooY8dp2dHPOgq96SGoFVqxjesLMFT/U5JKeDLjf37x/Gdx7vzzlE4KFDI6g0anHluvxfhGWzrqF4iY3iOZ1MiXhinH4xw0kycfojqW6YFDUW6pwpadIbynkKhTGG1hqz5OJMHO/LltQo6q6XnkQthTgGX2uR9nNn0Krx2/dfgus25T/qPHvzdfb525Vcpm6jPWdFRcXZKuAORmHWqaEp8LC/XHrsFozMLJ3YOJp8Ysx1rBEQfqE7/RFM5/BCWDTkFLoI0oozI4LReNbzV8FIHCMzwYKSGkU722xQMRR07iwci2PcE8Ka6tz/bK0GLawGzZIvmMOxOJ49PV1WXTOgsM4Z5xynJrzoznMPWD6LqA8PzwAAtq6ZXbC6o9WGX733QsQ5x013P4uXzxWeaCgWZ1K6xVI0VBjz6Jx5UyONopt2toBz4NcHV173bMITwmcfPoov/+UU7nnytOTP84djePTYBK7f0qjoWc71DRUYcPhy6vTma3yJF8Fr68zwhmKYKmEHKhZPwB3M8cxZsstAcfrKmPSEYa/I/YhAW7UJZ6eldWLHkgWK1LTobrswsSPXjQSHN4wqkxZ6TW5HDwohds7Sf7+7ArmtkSDyKI9X60RRnlC0LM6bicTExqXuMo1KWP6Y7fHzmf/unxSeuKW8UBWTorKNmJ2Zkv6Y2VgNWmxqqsQLZ6bzfowRVxCcC2OZ+WiuMi653+3goAuBSLws9pulK2TX2chMEA5vGFtaKrN/8CJfG0BOoSCHht2otegW3KBY31CBB957EUw6Dd78/efw/On8fxYA4e9Jc5Uxp1TUpTRWGjDpFc4RSeHyRzDuCWFD49zCd021CRd31uCBg8OS0kGXk+8+PpBcM1GH//rzSfzxyJikz3vs+ASC0ThuVCClMd36BiuicV6UkcJxj3B+KNOS285UKEjpzp3NJI8F5PLiVPzYaSrOFDHhDUkKypivtcaEYZe0tGGxoyt1eqe73gJvgWt80jm8YdRZ8j+jno9Mi6hdNNZYElScrQLuYLQszpuJulOJiouPzczetcq9u5NKbMyjOBNfBEjpcoljgdkOGJ+eEh6zkBj9dLvbq/HS0EzeSXb5xuiLmquMS441PtHngFbNcFFnTV6Pr5RCdp2Jy793tUtbeDqfuItqIodf3IfPzWBrS1XGc4rttWb85s6L0VBpwG0/fAF/P5l/cEb/pE+2kUZAWEQdT3DJI5wnkqmA6xsqFrzvlt1rMOwM4rkCbkaUm9GZIH7+/BBu2tmCe962E7vabPjo/YdwQEI3/KFDI2iuMmKXxMW7+drUJPy3eHGo8LUd2Yy7g7BXZD4/JN7QKuW5M7H7lcuL0wqDFmoVo86ZAkJR4chDPp2z1moTIrGEpAJqzB2EiklPhEzddC7gvHs6KQuo5WbQqlFt1s1ZoyH+DFdRWmNRUXG2CnjKrDhrqzFDp1Et3TlzB8EY8lqw2lRpgFmnzqtzdtrhR0OFARZ99i5Ci80IxpB1hl2OHWfpzu+oRjiWwNGR/EbahpOdo7w7Z7YsxdkpB3a22WCW8GdYbPnuOts/6IJVr8lYQEhRa9GBMemdM08oigGHD1vXVC36MQ2VBtz/3ovQY7fiPT89iN8dHs35uhIJjtNT8hZnYrCD1NHGE/OSGtNdt6kBVoMG9+8flu36Su3be/vBwfHBq7pg0Kpxz2270FxlxLt/eiDVZc9kyhfGU31T+IdtTXmde8xFV70FzVVG/LUIaZnjnsV3STVVGmHQqkraORP3leXSOVOpGGwmLXXOFJCKmM/jtUEuiY2jM0J3TupxELnj9PM5VyeHxkoDxtJ+vzv9wrGYYo5XEirOVgV3sLzGGtUqhs46y5JPYqMzQdRZ9Hmdq2CMobPekldxNuDwSR4/NGjVaKgwZE1sPDPlR1OlQbaxsd3J7k2+kfrDzgB0GlXeIxPNVUZ4QzF4QtEF75v0hHBy3IsrepQLKyiE0DnLvTg7MOjEjjbbkusVlqJRq1Bj1kmO0z96zg3OsWRxBggvGH/+7guwo82Gj/7qUM4pjiMzQYSiCVmLM/HskNSFrCfHPKi16DO+EDFo1bhhWxP+fHQ8tRJkORt2BnD/gWHcsntN6gxktVmHH92xGwDw9h+9sOjy4j8cHkU8wfG67cqONALCc+g1G+3Y1z+FQES55eeAUMQvdhNOpWLoqLWk9kSWQr5jXdVmHXXOFCCuEsllx5moLbnrbMiZvROba1p0jUWPGrNOljh9znlJxhoBYYwzPRBkJhChGP0SoOJsFfCGYorswylEj92yZPtf2C+S+0ijqCuP4oxzjgGHT1IYiEjKrrPTDp8sYSCiGoseXfUWvJBncTY0HcAamzHvu+9Lxek/2TcFALi8pzavx1ZaPrvOXP4Ieid8qaI4X/VWg+RAkEPnZgAAWyWccbMatPjvm7YinuA5d8/kTmoE0hdRSyuCT4x7Fpw3S3fzrjUIxxL4fR6dwXLzv3/vBwPDB/Z0zXl7e60ZP7h9F0bdIbz7pwcy/nw+dGgUGxorCtpjlItrN9oRjiXwZO+UYl8jtUtqibPFnXXmki6idvpzP3MGCMXcYoU2yd9E8jk0r6maKgM0KiYpsXHMHZIUo5+uq37pm85S+cIxhKIJ1OcxulmopipDKpANEBJH6bxZ8VFxtgqUW+cMEEYARmaC8C2S2Dg6E0RTHmEgoq56C8Y9IXgzdHcWM+WLwBuKoTOH4I7WahPOLvFEz7lwqF6uJDzR+R3VODjokhy6kC7fGH2RuIg6UyjIE70O1Fn12JhhRK0ctFRLWwWQ7uBZ4dzN7vbqgr52fYUeExI7Z4eHZ9BeY0KVxF+Ka6pNOL+9Gr998VxOaWGp4kzGmwfVJh20aoZxCYVoLJ5A74Qv40ijaHNzJdY3WPHAgeU92nh22o9fv3gOb7mgNWPIwM62anzjlm04eNaFjz9weE5oweCUH4eGZ3CjQrvNMtndUY0KgwaPHh9X7Gu4g1GEY4klX2ivrbPgnCuQ9/L4Qjn9ws9xrmduaiw6itJXwGTyvFg+xZlGrUKzzZh1rFG4aRDMOZCsxy7E6Rea2JjrjjM5NSUnY8TXZq5AbkmlRB5ZizPG2BrG2F7G2AnG2DHG2Ifnvf8TjDHOGCvPW+WrXCyegC8cQ4WxvM7/LJWoyDnH6EworzAQkfhiM5fuWS5hIKK2GhMc3jCCkcwvHBy+MLzhmCw7ztKd314NbziGE2OenD93yBnI+7wZMLveYH7nLJ7g2NfnwGXdtQUv21ZKPnH6+886oVWzrCOG2dRb9ZI7Z4eH3Tl/vRu2N2HA4cexUek/E/2TPtSYdbL+8lWpGOwVBkmdszNTfkRiCaxvWLwbxBjDzbvW4PA5N06O5/7zXi6++bd+aFQM77+yc9GPefXmRnzm1evxxyNj+NIjJ1Nvf/jQKBgD/qGIxZlWrcLVG+z4+8lJxBSK1JeSiNdZZ0aCSzsnpATxzI1Bm9uZG5uJxhqVMOEV0j1teQZUSJl2mQlEEYomcp7e6bZb4A3FUt29fKWKM0v+N6jzJRak4rkzlz+CagoDKTopnbMYgI9zzjcAuBDABxhjGwGhcANwDYAh5S6RFMIbEu5+lFvnTBzNyTQC4A5GEYzG84rRF53XXAkVA/70srSIamC2OOvMYcRL7EAt9mQvhoHIOdYICJ0zYDZFUCp3IApvKFZQcVZnSUbSzyvOjo644QpEyy5CP10+i6j3n3Fic3Nlzi/O5qu3GjDlyx4xP+4OYdwTSi2flur6zY3QqhkefGlE8uf0O3w5/bxL1VAhbRH18eTNhaU6ZwBw4/ZmaNUM9+8v/s6zQCSGs9N+HDzrzHtk6bTDhwdfOoe3XdiWNcjg3ZetxVsvbMX3njiNnz13FpxzPHRoBBd21EiO9ZbLNRvtmAlEceCsMqmN4s/IUot+xTHzUp07cwUiqJa4CDhdtVkHVyCy4tZAlNqERwjqyPcGYGu1KWuhL4715foaZDYpurDRxskSd84ApBIbXYGI5AkOIp+s7RTO+RiAseQ/exljJwA0AzgO4OsAPgngYSUvkuRPPERfbmfOWqtN0GtUGeP0RwuI0Rc1VRnxuu0t+OmzZ/HOS9cu+ctfdNrhh0GrSqXNSSHuOhtyBrAuw91/uZMaRU1VRjRXGfHCGSfefkmH5M8Ti0ixg5QPlYotODQMCCONjAGXdpVvE73eashp11koGsfLI26841Lpf8aLsVfokeDAtC+85Av0w+J5sxw7Z1UmHfasq8fvDo/iM6/ekDW8hHOO/kkfrt/SmNPXkaKh0iApTfTEmBdaNct6zrParMM1G+148KVz+PSr1su6gDkUjeN3h0cx7g7B4Q3D4Q1jyheGwxfGlDcMf1pXnDHgS2/Ygpt3rcnpa/zP3/qg16jxviW6ZrNfg+Gu127CiCuIf3v4KJz+CM5M+fG+K9bm/L0V6vKeOujUKjx2fAIXrpV/NYaY6LnU87P43FmqxEanP5JxB1s21WYdEhw5L7AmS3N4wwWdxWqrMcEdjMIdiKJykY6QuMonn7FGQIjTv6w7/5uUqUTKEqU1AsJkTDSegDcUowXUJZDTbzjGWDuA7QCeZ4z9A4ARzvlhJS6MyENM1Cu3ztlsYuPCX7jiAsRCijMA+MgrupHgHN/6e5+kjx9w+LC21pJTUEZratdZ5gPrZ6Z80GtUCxYJy+GCjmq8cMaZ03z7cLJjVEjnDBAXUc+9+/hkrwObmytRU4KEKanUKoamHBIbDw/PIBrn2N1W2HkzAKhLLk3NFqd/5NwMNCqW2jWVi9dtb4bDG8YzA9lDHKZ8EbiDUVnPm4nEzlm2n82T4x501lkkFVs371oDVyCKv52QN979oZdG8MlfH8HXHuvF74+MYsDhg1atwtaWKtyyuxWfeuV6fOWNW/Cjt+/GpV21+NRvjuR0/q1vwovfHR7F7Re3o1bi3w2NWoX/fcsObGiswNce64VOrcIrz5O/iM7Gotfg4q4aPHp8vOBzNJmMuUNgWXZJmfUaNFYaSrbrzJVnWh0tolaG0DnL/3dMazKx8ewSiY1jnvxuENeYdbCZtAV3zhw+YXSzFK/b7BUGqJgw1jibVFperx9XA8kHkRhjFgC/AfARCKOO/wLgWgmf9x4A7wGA1tbWvC6S5E/snC12h6iUuu0WHBhcOC4jnmUqJBAEEEYO37S7Fb94YQjvvbwTrTVLFyQDDh+2rcktkc9m0sKq1ywaYX7a4UdHrVmRvUTnd1Tjty+N4PSUX3LC5OwC6sKKxWabEU/1OVL/7g5G8dLwDO68IntnoNRabNIXUYtjoztlWPor3u0VoqAXT2E8POzG+kZrXmOUe9bXw2rQ4MGXRrLeuVUiqVHUUGlAKJqAOxhdciTmxJgHl3RK67Re1l2HhgoDfnVgGK/aLF+hcvjcDCqNWuz/l1dkLRIvWluDd/3kAD75myNQMYY37GzJ+vjf+FsfTFo13nN5bp0vs16DH96xG2/47jO4oKOmZDfYrt3YgM88+DJOTXjz3vO3mAl3CLUWPbRZdkl11llK2jnL5waGWJy5KBREVpPecEFdXHHX2ZAzgC2LjI6PzQShUTHJN1NEjDF0260FL6J2eMOotegV32eYiVatQr3VgFF3CDMB4fUjdX6LT1LnjDGmhVCY3cc5/y2ATgAdAA4zxgYBtAB4kTHWMP9zOef3cM53cc531dWV71mUlcoTFM6cldtYIyCMAGRKbBx1h6BV5/7EmMkHr+qCWsXwjb/2LvlxoWgc51zBnIM7GGNYs0Ri4+kp+ZMaRbuT585yidQfdgaEgrLAn4emKiMmvWFEYkJQwDP9U4gnOK5YV/5/x1uqpC+i3j/oQo/dIssvJzFdbKlQkESC4/C5mZzPm4kMWjWu39yIR46OZ91P1e9QrjgTz0Ytde7M6Y9gwhPOet5MpFYxvHFnC57sdaS663J4ecSNzc2Vkrp3Bq0a379tFy7urMEnfn0YD7609Bm4E2Me/PHIGN5+SUdeo0H2CgP2fuJKfPENm3P+XLm8YoOws/CxY/IvpB5bYgF1urXJOH0lunfZuPz5dc7E+PFpHxVncglF45gJRAvsnGVfRD2W3L2Xz17L7mScfiE/q5PecEnOm4kaqwwYcwdnF7DTmbOik5LWyADcC+AE5/xrAMA5f5lzXs85b+ectwM4B2AH51y5zF2Sl1TnrMzGGgHhSQzAgnNnYzNBobUuw10je4UBd1zcjgcPjSx5mH9w2g/OcwsDEbXVZE5/isQSGHIGsLZW/he/ALC21oxaiw77cyjOhpyFxeiLWqqM4Hz2zMiTfQ5Y9RpsKzDRsBhabEY4vNl3ncUTHC+edWFXgRH6InGh6FJJXmem/fCGYgUlQ964vRn+SByPHV/6xfTApA9mnbqg4J3FNFQK3+tSi6hPJsNA1i+x42y+N+5sQYIDv31ReujJUsKxOE6Ne3Fec/Z9ciKjTo0f3LYbF62twcfvP4yHlghg+cZfe2HVa/Duy/I/L6ZVq7J2lpRUX2HAtjVVeEzmcVJA6Jw1SDjj21lngS8cS53FKZZQNA5/JJ5XYV1joc6Z3FJnsfKI0ReZ9RrUWvQYWqI4G53JPUZf1F1vgSdU2M+qwxsuyXkzUVPyTPlM8meXAkGKT8oz/iUA3gbgKsbYoeT/Xq3wdRGZpAJByixKH5h7eDZdoTH6873vik6YdRp87dHFu2cDk8L8eS47zkSt1SaccwYXpPANOQOIJ7hinTPGGHa3V+P5HDtnchRn4n+fkZkgOOd44pQDl3TVlvRFpFRSd52dHPfAG44VvHxapNOoYDNpk2ONmR0engGAgorc89ur0VRpWLJoAISxxs56iyJrDxqSnbOJJYozqUmN6dprzbigoxr3HxiWJQWvb8KHaJxjcw7FGSAUaPfevhsXdNTgY/cfwsOHFv5ZHx1x45FjE3jnZR1lOVaei2s22nHknFvWjiUgnC+WEtYkPof2F3m0cfbMTf6dM1pELR/xuTOfHWfpWquNS545G/eEco7RF80mUef/s+oodees0oDRmWDqvCQFghRf1ldSnPN9nHPGOd/COd+W/N+f5n1MO+c8+wl0UnSeUBRaNYOxwBhwJawRExvnHZ4ddRe2gHo+m1mHd13Wgb8cG8eRZBLefGJMcz6piq01JkTiCUzMG+E6ncfetFyd31GNkZlg1kIjFk/g3n1nMOwKoqOm8GIxtYh6JogBhw+j7hAuL+MI/XRSd52J5yELXT6drt5qWDIQ5PDwDMw6teQzhJmoVAw3bG/Gk31TmPIt/rX6J32KhIEAQsADY0t3zk6MeVFn1ec8vnzL7jU4Ox3IeY1EJi8nEyVzLc6AZIF2xy7sbq/GR391CL8/PDrn/V9/rBeVRq0sSZ+ldt0mOwDgr1m6sbkIRGLwhGKSirPZOP3ihoKkxrrMuRfXBq0aJp2aijMZiVMHhXaV2mrMi3bOhAXUobxfg3TZC4vTjyc4nP5watKiFJqqjAjHEjiT/PuW6wJ2Urjyv81NCuIORlFh0JblUuBMiY2JBMdEAXetFvPOSztgM2nx1UW6ZwMOH5qrjDDpcu8wti6y6+zMlDIx+ulS+86W6J4dOTeDG7/zNP79D8dxeXct3n5Je8FfNz1u94le4b7M5T3lG6GfTuqus/2DTjRWGmRN2qyv0GNyiXNYh865sbmlMq+zDulet70Z8QTHH+YVDCJvKIpxTyj1QkJuWrUKtRZ9auw1k5PjniWXTy/muk0NUDFgX3/h9wNfHnGjwqDJOyDHpNPgR2/fjV3t1fjIrw7hD0eEP+9DwzP428lJvOfytWV53jdXnXUWdNSa8aiMxVkqRl9CF6ShwgCjVl30UBCXX5g8qTbn90K52kyLqOUk3gAtvHNmwpgnhHBs4Wj7tD+CSCwh6aZBJnUWPapM2rw7Z9O+MBK8NDvORE1Vwvd+bNQDUx4L2EnhqDhb4TzBaFmeNxP12C1zzpxN+cKIxrmsY40AYDVoceeVnXiy14HnT08veH8hwR1tyWje+XfiTjv8qLXoFP3zX99QAatek3G00RuK4q7fHcON334ak54wvnPrDvzwjt2yRN0btGrUWvQYcQXxRK8DnXXmgnanFZOUXWecc+wfdGJ3e7WsNzaW6pyFY3GcGPXkHQaSrsduxcbGCjx4KHNxNpC8I6pU5wxYehF1NJ5A34QPG3MYaRSZ9RpsaKzAi0OFL0Y+OuLGec2VBf03Nuk0+NEdu7Gz1YYP//IQ/nhkDF9/rBc2kxa3X9xe8DWWA8YYrtlox3Onp1PrWQolZceZSKViWFtnLn7nLJB/50z4PB1F6cto0itEzBca7d5WYwLnmacnZnec5fcahDGG7npLxh2uUpRyAbVI/N6Pj3nyGuklhaPibIVzB6OoKOPirNtuxag7BG/yF/6ITDH6mdx2UTvqrXp89dFTc5KUOOcYmPTlPUrWWCWkOs3vnJ2e8ikWBiJSqxh2tdvmjHhxzvGXo+O45mtP4ifPDuKtF7bhrx+/Aq/e3ChrodFsM2LA4cPzp6eXzUgjIG3X2TlXEBOesGznzUT1FXo4vOGM56VOjnkRiScKCgNJ97rtzTg8PJPq4KZTMkZf1FBpWLRzdtrhRySeyOm8WbodrTYcGppZcM4zF5FYAifHvHmNNM5n1gsdtB2tVfjHX7yIJ3odeO8VnbDoy++sb76u2WhHNM7x+ClH9g+WQCzcpb4IXluCOH2x65XvC9Rqs44CQWQk7DgzFPx7LBWnn2G0cXbPav6vQbrtVvRN+vJKbHT4xOJM/tdAUjUmv3dhgXr5vn5cyag4W+E8oVh5F2fJF4fii0XxjEq+d62WYtCq8Y9Xd2P/oAtP9M6+wJjwhOGPxPMKAwGEEa7mKuOCOP3TDuVi9NOd31GD/kkfpnxhjMwE8e6fHsD7fnYQVSYtfnvnxfh/N5ynyGhVc5UBB866EI4lcMUyKs6A7LvOxGJXrqRGkd2qRyzBM75gO5w8DylXcfbarU1gDBmDQfonfdCpVQUvI1/KUp2zk+O5JzWm29FWBX9ESFrMV++EUAznktS4FKFAOx8722xoqjTgtovaZHnccrGj1YYasy5rCqhUYzmMNQJCWNPITDBryqqcnP4IGMs/7bjapKMofRlNesKpfZGFSC2inl5440qO1yA99Ra4g9G8EhtTiZQl7JzVmvXQJcO9qHNWGlScrXDlP9Y4N7ExtYC6gLtWS7ll1xq02IxzumdyBHe0Vs+N03cHopj2R4pUnAndnc89fAzXfO0JPN0/jc+8ej1+/4+XYnurvJ2fdOJZLJ1GhQs68l8KWgrNWTpn+wedsBo0WGfPr3hYjBgBnSlO/9DwDGotetm6xg2VBlzcWYOHDo0suIPbP+lDe60JGgXTNRsqDXAHowhGFr6YPj7mgVbN8u5W72wViuZCRhuPFhAGshiLXoNfveciPPaxK/I6v1rO1CqGqzfU4/GTk6n9hoUYd4dQadTCqJN2nqWzzgLOkbETrBRXIIJKozbvvyfUOZPXpDcEuwwdpVqLDiadOuN+0lF3EDq1CjUFJBQWktgoFmdy7HnNl0rFUuPGVJyVBhVnK5wnGEWFoXxfJIiJjeIOstGZEEw6tWIFpU6jwkdf0YOjIx785aiwlk8clSkkIa+1xoShtLtwA1PJgk/hsUYA2NxcBb1GhT++PIYL19bgsY9djvdc3ql4rL14LvCCjmrJL7DKRYvNtOSus/2DLuxqs8myay+deDc0U5z+4eEZbFtT2Pmn+W7c1oyz0wG8lIzoFw04fIqONAKzHZFM3bMTY1501Vvz/hldU21ErUWHF88WUJyNumE1aFIjTnJRqRjMK2icMd01GxvgDcfw/JmF53ZzNe6RtuNMJN7oKua5M6c/UtACXptZh0AkXtRu30o2IVPnjDEm3FDNNNY4E4K9Ul/Qc393qjjLvbPv8IZh1WtK/jtVDP2iGP3SoOJsBeOcw13mnTO1iqGr3oLe1FijsPxRyXTJG7c3o6vegv9+rBfxBMeAww+zTg17AU/6rdUmuALR1GF5MYK2owidM51Ghf++eSvuedtO3Hv7rqIFc4ids+U20gjMJjZmWkHg9EfQP+mTfaQREAJBACwIBfGEohhw+GUJA0n3yvMaoNeo5ow2hqJxnJ32KxoGAsz+cs+0G+vkmAcb8hxpBIQXV9tbbQV1zl4e8WBTU0VZJtmWq0u7amHQqvDoscJHG8fdoZwS8cQbXcU8d+b0R2Ar4MWp+MKW4vQLF4rG4Q5GC05qFLVWmzJ2zsbdoYKPVdRadLCZtHkXZ3UyFKCFEm++Uox+aVBxtoIFInHEErysz5wBmJNsNOqWdwF1JmoVw8ev6UH/pA8PvTSCAYcPa+sKW8abitNP3ok7PeWDRsUUPdOT7jVbmnDtpoaivtDc3V6Nazfa8dqtTUX7mnJZatfZgeR5M3FNgZzEu77z4/RfPieM2Ml13kxkNWhxzUY7fn94FNG4MIo2OO1HggOdCnfO7JXiCOfc73XaF8akN5xXUmO6nW02DE4HML3ELrfFROMJnBjzyDrSuBoYdWpc3l2Hv56YyCvsIN2YO5Qq4KV+7eYqY2oMvRic/khBY11UnMlH7rNYbTUmDDsDC8KZ5NizyhhDt92af3FWwpFGkXi0hDpnpUHF2QomdnHKuXMGCCMAY8nExtGZIJoUCAOZ75XnNeC85gp8/a+96J3w5h0GIhKLsOHknbjTDj9aq02KjxaWks2swz237ZLtTmYxpTpnmYqzsy7o1CpFXrgbtGpUGDQLOmeHkmOHW1rk/5qv294MVyCKJ5MhOMVIagRmxxrnL6I+mQzxWN9QWHG2I3me8qWhmZw/t2/Ch0hMvjCQ1eSajXaMuUM4OuLJ+zEisQSm/eGcnzvW1plTayCKwRWI5B2jD5RncXZ0xI3fLbL/sJyJN3nq5eqc1ZgRjiXmPBfLuWdVWBOUe2KjwxcuaYy+SOweVtGZs5JYua8cCdzB5VGciYdnj496MOULp2JclcQYwyeuXZeKTC/kvBkgnDkDkBqTKFZSI8mPvcIAjYplTGx84YwTW1oqFVu8WV9hwOS8QJDDwzPoqDUr8ovw8p462ExaPJgcbeyf9IGxws5YSmHWa1Bh0GBiXnF2Ykx4UV/IWCMgFLIaFcPBPEYblQgDWS2u3mCHigGPHR/P+zEmvSFwjpw6Z4DwM3vakV9Eea4453D5o3kvoAZmi7NyCgW5+4kBfOa3Lxflz1BOYhFVyPGDdG3JG6rpiY3intVcfy4zWWe3whuOLZpYu5hJT6gsirPm5A3MWuqclQQVZyuYJxgDAEVi1OXUYxdeJO7rnwLnKErnDBDOSol7rApJagSEP2ObSYshZwDxBMeZaX/Bj0mUs9ius2AkjqMjbuxWYKRRZK/QY2JeIMjhczPYqkDXDBBWPbx2axMeOz4BbyiK/kkfWmxGxYrPdA2VhgWds+NjHtRb9QUvQzdo1djUVJFXKMjLI25Y9Bq019ANlFxVm3XY1VaNRwuI1Be7IPacizMz/JF4xrRTufkjcUTiicI6Z8mbLeUUp392OgBfOJZ6fbBcpDpnMu3/Eqdd0s+dybnKpzuPxEZ/OAZ/JC7b91iIS7tq8V+v36zIeD/JjoqzFWy5dM5abEJio7jcVOkzZyLGGD7z6g1oqzFhR1tVwY8npj+NzgQRiSWwtpZe+JWzTLvODg3PIJbgsi+fTldvnds5G3eHMOEJy37eLN2N25sRjiXwl6Pj6J/0KR4GImqoNC64c3xyzIv1BZ43E21vteHIOXfqPJ1UR0fd2NRUIXsa52px7SY7To57U2PcuZp9EZzrWKPwc1uMc2eFLqAGhN+9KlY+nTPOOQaTnaLhJfY8lqMJTxhaNYNNpoCKZpsRahWbk9gohhfJ0TmbXRMk/dzZVGoBdek7Z1q1Cm8+v1XRdStkcfSnvoJ5ksVZhbG8Y53FxMaXk6NGxRhrFG1vteGJf9ojy52y1hozhpwBnE7u4aHOWXkTirO5nbP9g04wNrtHSwn1Vj0c3nBqrEju5dOZbF9ThbYaE3774ghOT/kVP28maqjQYzytcxaNJ9A/6St4pFG0o82GYDSOk2PSXwDFkmEgdN4sf9dstANA3t0z8WeisSK3511xFLcYiY3iObFCAhFUKgabSYfpMjlzNhOIwhsSOmaZkmrL2aQ3hHqrfEnOWrUKTVWGOZ2z0Rnh51KOG8TVZh1qLbqcQkHE0JNyKM5IaVFxtoItl84ZMHuXCSjeWKPcWquNGJkJpu6UdVDnrKy12EyYnLfrbP+gE+vsVlQqGB9cX2FAJJ5I/f08PDwDjYoVnF64FMYYbtzWjGdPTyMSSxSvOKs0wuELpzpbAw4fIvGEbN/rjtYqALkto+53+BCKJui8WQHaaszosVvyPnc27g7BoFXlfOPQXqGHWacuSiiIM9ntKiRKX/x8V5kUZ+mFSKak2nI2KdOOs3Rt1cINVdGYOwi9RiVbd6673prTWKN4rq4c0hpJaVFxtoKJL/6sZX7mDAC6k+fOqkzaki9fzFdbtRnxBMdTfVOwGjSotdBB2nImJjaOJu8gx+IJvHjWhV0KjjQCs1HQ4rmZw+dmsKGxQvEzYDdub079c/E6ZwZwPntHWOxwFZrUKGquMsJeoc+pOBPXFlDnrDDXbLTjhTPOvAqPMY+wSyrXLghjDGvrLMXpnCXPiRWyhBoQOijlktaYHn6RKalWSedcAQQj+S/jnvCEYJf5LFZrjQlDaX8m4noHubpzQmKjV3L4CnXOiIiKsxXME4rCqtdAvQzOVXTXC52z5do1A4A1yQPGz52eLnhvGlHe/F1nJ8e98Efi2K3A8ul0YnE26Q0hkeA4MuzG1jXKFwodtebU6GRXnTxjhdnMLqIWxoVOjHmgU6tkSzJljGFHqw0HcwgFOTrihlmnpjOhBbp2YwMSHPj7ycmcP3fCHUqtWsjV2jozThehc+aSqXNWbSqn4kzoErXVmDIm1SqFc47XfGsfvvX3vrwfY9Ibli2pUdRWbYIrEE2tHRqTYQF1um67Ff5IXPIIqcMbhlrFaLcYoeJsJXMHo2W/gFokJjY2FfG8mdzaknH64VgCnfTCr+yJnTOxONufXD6teHGWfFE66Qnj9JQf3nAMW1uqFP2aog9f3YU37V6j6NhmOnGPlZi0dnzMg267Rdb9fztabTjnCmLSKy2y+uURNzY1VVIYSIE2N1fCXqHHY3mcOxtzh9CQZ+hCZ50FIzPBgrowUjj9EahVDBWGws5sV1t0ZRMIMjjtR2OlAZ11lqKONTq8YcwEojg6mt9uvFA0DncwKtuOM5GY2CiGgozNBGU98z4bCiKt0+vwhlFj1i2LG+pEWVScrWCeYGzZFGdrbCZY9Rq0Vi/fosZeYYAu+aKTdpyVv/m7zg4MutBcZVQ8LTQ11ugN4XBy+fQ2BcNA0l213o4vvmFLUb4WsLBzdnLcK9tIo2hHmzCG+uLZmawfG4sncHzMg03Nyp3vWy1UKoZXbLDjyT7HnHOb2YiLfvMtzsTn1tNTyo42ugIR2Ey6gicgqk06uAJRJBKl3ys2NB1Aa7UJzVXGogaCiOe6Bibz+28mptvWyzzul9pPOi2swJnwhmWd3hFvOksNBSmXBdSk9Kg4W8E8wSgqyzypUaRSMdz/vovwj1d1lfpS8qZWMbRUC0/slNRY/tJ3nXHO8cKgU/HzZoCwnNmi12DSE8bhczOw6DUr9uelyqSFTqPChCeEKV8YDm9YtqRG0XnNFdCpVXhJwrmz01N+CgOR0bWbGhCIxLGvb0ry50z7I4gleN5jjZ2pOH1lRxud/ghqZBgvqzbrEE/w1OhcKQ1OB9BeY0aLzQh3MApvka5JjO0fmQnCH859v5rYFbfL3DlrS+45POv0Y9IbQjzB875pkEmVSYd6q15yKMiktzwWUJPSo+JsBfOEomW/gDrdhsaKguf7S00ck6DO2fIg7jobcgbg8IYVH2kUiXH6h4dnsLm5csWOsTDG0JhcRH1iTBhp2iBzKqVeo8am5gpJ587EMBAqzuRx0doaWPUaPHJMemqjGKOf74vgjlozGFM+Tt/lj8JWwAJqkXh+qNRx+v5wDFO+MFprTGhOjnQXq3s27Jz9Ovn8dxPDk+ROa7ToNagx6zDsDKS6+3IfreixW9E3KbFz5g3L3h0kyxMVZyuYOxhdFjH6K0l7jfDCob2GirPloDnZOds/KLywL1pxVqHHOVcAx8c8iu43KwcNFQZMuEOppEa5izMA2Nlqw5ERNyKxpZdRvzzihkmnXrGdymLTaVS4akM9/npiAjGJi8DFpeT5Lvo1aNVorjIq3zkLRGQJZhBvOJY6Tl8cLWyrMc2GITmLU5wNOQMQ7z/15zHaKJ5ZlTutERBGG89OBzA2I/5cyjvW3m23oG/Cl3WsNZHgmPJFqHNGAFBxtqItp0CQleIdl3TgW2/erngsOpGHuOtsX58DlUYtuosUMV9vNeDIiBvROMe2IiQ1llJDpQFjniBOjHlgr9ArkkS2o82GSEw4T7aUoyNubGysWLGdylK4blMDXIFo6gZHNuNuoSDId6wRQFHi9F1+4cxZocTRyFInNoox+uJYI1DMzlkAm1uqoFGxvIqzSW8YOrUKVQoEGbVVJ4uz5M+l3InRPXYrgtF41gAWVyCCeILTjjMCgIqzFSsaTyAQiVPnrMhaa0x4zZamUl8GkUh8kfLo8QnsarMVLcGv3qqHuPpmxXfOKg2YcIdxfMwjexiIaEercFZwqdHGeILj2KiH9pvJ7IqeOug0KsmjjWPuEDQqhpoCXoSurTXjzJRf8v6oXCUSHC6ZO2elL86EzllrjQk1Zh0MWlXR4vTPuYLorDWjrcaUX3HmEc5iKbGeprXGjDF3EGenAzBq1TkvRs9GaihIagG1At1BsvxQcbZCeZILqKk4I2RxYnEWiMSxq0gjjcDs2Yk6q76gDsJy0FBhQCSewMlxryIjjYBQADZXGZdcRn3a4UMwGqfiTGZmvQaXd9fiseMTkoqlcU8I9VZ9Qd3LjlozApF4ammv3NzBKBIcsnTOxCXWzhLH6Q9OB1Bt1qHCoAVjLDXSrbRILIFRdxAt1SZ01VvQn0fHU4kdZ6LWahMSXFil0lgl3wJqUVdyh2tvlnNn4s+y3OfqyPJExdkK5QkJiUhy3wUiZCVpSQa4AMDuIiQ1isTUsa0tVSt+WXn62SK5kxrTbW+twktLdM5eHqEwEKVcu6kBIzNBHB3JvsdqvIAdZ6L25B7JM1PKnDsTCyk5OmdGnRpGrRpOX6nPnPlTgVUA0GwzFWWscXQmCM6BNTYjuuotODsdyHo2dL4JTwj1CnWUxP2kpya8so80AsIN8oYKQ9ZdZ2JxRmONBKDibMVyU+eMkKzsVj00KgadRoXNLcV70S4e+l7p582AufHXSnXOAGG0cdQdSp0dme/oiAcGrQqdlKQqu1dssEPFgL8cG8v6seOeUMGhCx3JwKXBaWWKMzG8Q6704GqzrvSds6kA2mtmizMhqVb54kyM0W9Nds7iCZ7zf7cJT0ixzllbsmDlPP+Qmmx6GqxZxxodPnGskYozQsXZiiWONS6nKH1Cik2jVqGpyohtLVXQa4oX4rKhoQIbGitwzcaGon3NUhFfiOs0KqytVa4w2pllGbUYBqJR0689uVWbdbigowaPHJtY8uM45xh3hwreV9VUZYBWzXBmSpkzU+L5MDn2nAHJ4qyEZ84isQTG3EG0pqUIN1cZ4fRHEIjkvncsF2JK5JpqE7qTI365nDsLRePwhGKoV2j8u86qhzEZ4KVYcVZvQf+kD/ElEhsnPWGYdGqY9TTtRKg4W7Goc0aINF96wxbc9Q+bivo1bWYd/vzhy7CuQbkxv3JRa9FBxYSD8UoWRhsaK6DXqDKeO0skOI6NummkUUHXbbKjf9K3ZIqiJxRDIBIv+EWwRq3CmmoTBhUaa3QF5O2c2cy6kkbpn3MFkOBY0DkDgBGFu2fDziC0agZ7hSG1/zOX4mxS3HGmUEeJMZYa92yskn+sERASG8OxBIadi99McPjC1DUjKVScrVCeULJzRsUZIUu6qLMGG5uUG7db7TRqFdbWWVKJikrRaVTY0lKZsTg7PeWHP0JhIEq6dpPQBV4qtTG1r0qGDkVHjVm5M2d+4fdntQyBIIDQgSvlWKOY1Ng2pzhL7jpT+NzZsCuAFpsJahWDSadBc5Uxp+Jswpv8mVEwOKk1+eeiVOesW0Jio8MbogXUJIWKsxWKOmeEkHLxwHsvwmdevUHxr7OjzYajI26EovE5bz+aDAOh4kw5TVVGbGmpXHK0ccxd2ALqdB21ZgxO+7Mu982HKxCBQauCUSfPqLPNpCtpIIi446y1enasUeycKX3ubNgZSH0tAOiqt6Avj86ZosVZsnPWpFDnrNueTGxcsjijzhmZRcXZCuUORqHTqGgZMiGk5GxmXVGei3a02hCNCyOM6V4ecUOvURVtyfhqdd2mBhwensF4sgibbyL5djnWR7TXmhGOJTDuyfy1CuH0R2TrmgFAjUUHfyS+4KZBsQxOB2DWqVFrmf2e6ix66NTK7zobdgbmpER21Vtw2rH0+at0YrdVya7SrjYbbCbtnCJSTha90DHsXSKx0eENU1IjSaHibIXyBGMUBkIIWVXE0cn5oSBHR9zYQGEgirsuOdr46PHMo41i50yOLkhHMlxGiXNnTn9EtvNmwOy+NFeJRhuHnAG01pjnrO1QqRiaqgyKnjnzhqJwBaJYk1acdddbEI4lJH/dCW8IOrUKVSblXs+88rwGvPRv18KkUy6Mo9tuWbRzJoaeUOeMiOg31QrlCUZRSTvOCCGrSJ1VjzXVRhxM23cmhIF4KAykCLrqLeisM+MvRzMXZ+OeIGotOug0hb/0SO06UyBO3+mPyLLjTCQ+VqkSGwen/XPCQEQtNpOiY43DTuGx19jmds4AoN+xdLS8yOERxv2U3AdZjF2T6+xWnHb4EYsv3PGWWkCt0C43svxQcbZCeUJRCgMhhKw6O1tteHHIBc6FsanBaT984RgVZ0Vy3aYGPH/GmTGdUI4YfVFjhQF6jUqRzpkrEEl1u+RQyuIsnuA45wymQi/SNVcZFV1Enb7jTJQqziSeO5vwKrfjrJi67VZE4gmczZDYSDvOyHxUnK1Q7mCUwkAIIavOjjYbJr3h1IvOlykMpKiu29SAeILjbycnF7xvzB2SLRFPpWJoqzEpsutM/s6ZNvW4xTbuCSEST6C9ZuGOwRabEQ5vWLGzcMOpHWezZ7mqTDrUWnToW+L8VbpJT1jRMJBi6UkmNvZlGG0UO2dUnBERFWcrlCcYpTNnhJBVRzx3Jo42Hh1xQ6dRpeKsibK2tFSisdKQMVJ/whNCg4xx5R21ZpyZkp78J0U0noA3FJO5OBNedJdi19nZZGexrTrDWGOyaFKqezbsDMCq1yy4UdxZZ0H/Evvw0k14VkbEvNgxzBQKMknFGZmHirMVijpnhJDVaH2DFUatGi8NzQAQOmcbGqzQUhhIUTDGcO1GO57sdSAQiaXeHorG4QpEZUlqFLXXmjHsDEpO/pNC7gXUgLDShrHSdM7EMbrMY43C25QKBRl2BbGm2rTgTFe33YL+SV9q9HgxYlBG/QronJl0GqypNmYMBXF4w2BM2IdHCCChOGOMrWGM7WWMnWCMHWOMfTj59n9njB1hjB1ijD3KGGtS/nKJFJxzeEIxKs4IIauORq3C1jXCMupEguPYiIdGGovsuvMaEI4l8GSvI/U2MV6/oVK+uPKOGjMi8QRGZez8uGReQA0AahUTdp2VIK1xcNoPnVqFxgx/7krvOhtyBuaMNIq66izwhmKpcb7FFGPHWTH11FsXLc5qzDpKkyUpUn4SYgA+zjnfAOBCAB9gjG0E8BXO+RbO+TYAfwDwb8pdJsmFPxJHPMFRQWmNhJBVaEerDcdHPTg14YWXwkCK7vz2athM2jmpjeI+Mrk7ZwBwRsZQELG7ZTPLe3PTZtKWpHM2NB1AS7URatXCREJ7hQEaFcPIjPzn9jjnOOcKzElqFHXVC0uZs4WCTHiV33FWTN12K85M+RGdl9jo8IZRSzvOSJqsxRnnfIxz/mLyn70ATgBo5px70j7MDEC+uQJSEHdQuPNHnTNCyGq0s82GWILjFy8MAaAwkGLTqFW4eoMdfzs5iUhMeCE62zmT98wZIHSH5CIWUHKeOQOAGrO+JMXZ4HQgYxgIIHT0GqsMinTOHL4wQtFExnFK8fxVX7bizCPfXrxy0GO3IBrnCxJGHd4QnTcjc+TUQ2WMtQPYDuD55L9/gTE2DOBWLNI5Y4y9hzF2gDF2wOFwZPoQIjNPsjijQBBCyGq0PRkK8puD56BTq9Bjt5b4ilaf6zY1wBuK4bnT0wDSOmcyFmf1Vj1MOrW8nbPk6KGcY42A0IkrdnHGOcfQtH9OlP18LVUmRc6cpZIaM3TO7BV6WPSarJ2z2bHGlVG4iM9D80NBHN4wFWdkDsnFGWPMAuA3AD4ids045//COV8D4D4AH8z0eZzzezjnuzjnu+rq6uS4ZpIFdc4IIatZtVmHjloz/JE41jVYZVl6THJzWXctTDp1KrVx3B2CVa+BRS/fuD1jDG01ZlmLMzFRsUrm4qzarIMzeZ6tWKb9Efgj8YwLqEXNNqMinbPUAuoMZ84YY+iqt0gaa9RpVCvmtUxXvQUqhjnnzjjncPjCtICazCHpNxZjTAuhMLuPc/7bDB/ycwBvkPPCSP5SnbMV8oRGCCG5EiP1aaSxNAxaNa5cV4fHjk8gkeAYcwdl7ZqJ1taaZV1E7fRHYNVrZC/oq806uAIRJGRMlszmbHLcs22RsUZACAWZ8IZS46dyETtnLRk6Z4BQqGSL05/0hFFv1S9Ie1yuDFo1WqtN6JucLc7cwSiicU6dMzKHlLRGBuBeACc4519Le3t32of9A4CT8l8eyQd1zgghq92OtioAoDCQErpuUwMmvWG8NDyDcU9YkeKsvdaEYVdwQchCvlyBiKwx+iKbSYd4gsMbimX/YJmcnRYKpLalOmdVRnAOjLnl7Z4NOQOot+ph0Kozvr+r3gKHNwx3YPFu4qR3Zew4S9dtt84Za6QF1CQTKbeGLgHwNgBXJWPzDzHGXg3gi4yxo4yxIwCuBfBhJS+USOemM2eEkFXu6vV27G634cp1NE5fKnvW10OrZnjk2DjG3UFZkxpF7TVmxBNcttE8pz8iexgIANRYhMcsZpz+4HQAKrZ49wqYfZ/co43DrgDWLHHWratOCAXpdyyMlhdNeMIrJgxE1GO3YHDKj3AsDiBtATWlNZI0WYe/Oef7AGTqKf9J/sshcvCEYmAMsBooSp8Qsjo1VBrwwPsuLvVlrGoVBi0u6qzFn4+OweENo1GBzlkqsXHKn/rnQrgCEUXO/9iSZ9ic/rAs1ynF0LQfjZXGJUc0xV1ncoeCDDuDOL+jetH3i4mN/ZM+7GzL/HETnhAu7aqV9bpKrcduRSzBcWbKj/UNFanOWf0KCT0h8qBT0iuQJxiFVa+BKsNeE0IIIaRYrttkx7AziAQH7IqMNcq768zlj6YKKTmJ3bhihoIMTgfQXrt49woQbmKoGHDOJd+us2g8gTF3EGtsiy8cX1Ntgk6jWjQUJBiJwxuKrbhxv+76uYmNNNZIMqHibAXyBKMUBkIIIaTkrtloh5jnoETnrMasg1Wvka04m/aHUS3zAmogvTgLy/7YixlyBtBavXSXTqtWobHSiHMz8nXORmeEYrxlibFGtYphba150eJs0ruydpyJ1taZoVYx9CUTGx2+MPQaFawyppiS5Y+KsxXIHYxSGAghhJCSq7casDOZnNlQsXgnJV+MMXTUmWVZRB2MxBGKJhQJBCl258wTisLpjywZoy9qrpI3Tl+M0V9qvxqwdGKjeBZrpew4Exm0arTVmFJx+pMeYQH1SkmkJPKg4mwF8oSiFAZCCCGkLPzDtiboNSo0LzHmVoh2mXadKbWAGgBMOg0MWlXROmdDEpIaRS02o6xnzobEBdQSirNzriCCkfiC900kl5avxP1fPfVW9IljjT5aQE0WouJsBaLOGSGEkHLx1gva8OQn9yj2e6m91ozRmWAqAS9f4gJqJTpngFD0FatzNhujnz18pNlmxLgnhJhM6wiGXQFo1SxrOmdXvQWcAwMZumcTnpXZOQOSiY3TfoSicTi84RW3LoAUjoqzFcgTjKHCSPPLhBBCSk+lYoqeHeqoNSHBZxcf58uZLM6UiNIHgGqLsIi6GMQxz2yjhYDQOYsnOMbcIVm+9pAzgOYqI9RZQsnEcIxMxdmkNwSdRrUibzR3261IcOC0ww+HlzpnZCEqzlYg6pwRQghZLdprxMTGwoozsXBSIq1RfNxpf3GKs6HpAGotepglBE00VwkF3IhMoSDnnEvvOBO115qgYsgYCjLpETpKK/EsVo9dKEqPjbrhCkRRZ1l5o5ukMFScrTCRWALBaJyKM0IIIatCRypOP3O4hFRi56xGqc6ZWZcanVTa4LRfUhgIMLvrTK5QkGFXUFJxpteo0VaTObFxwhNacUmNoo5aMzQqhmcHpgFQjD5ZiIqzFcYTEubZKUqfEELIalBl0sFm0hbeOfNHoGLK/f6sNutSBaDShpwBtEoszhqrDGAy7TrzhWNw+iNYY5P2tTvrLJk7Zyv4LJZOo0J7rRn7+qcAYMV+nyR/VJytMO6gUJxR54wQQshq0V5rxmCBiY3T/giqTLqsZ6XyVW3SwReOFRxckk0oGseYO5Qa98xGr1Gj3qqXJbFxOJXUKC2Zs6vegjNTfkTnhZGs5M4ZAKyzW1PrAqhzRuaj4myF8SSLM4rSJ4QQslp01BS+68wViMBmUu53Z7VFGJd0KZzYKBZIUmL0RS02kyxjjeLXlhJEAgjFWSzBU+mSgLBvzhuKoX4FJjWKuu2W1D9TcUbmo+JshRE7ZzTWSAghZLVorzVjzB3KuDNLKqc/olhSIzC7P03p0cZcYvRFzVVGWQJBUjvOJI41dtcLRUr6aOOkd+XuOBOJoSAAUGuh4ozMRcXZCuMJxQAAlRSlTwghZJVoT4aCnHXm3z1z+aOKJTUCsxH9Ssfpix3ENondK0AIBRmdCSKe4AV97XOuICx6DaokdiA7k8VZepz+St5xJupJds5sJi10GnopTuain4gVhjpnhBBCVpsOMU7fkX9x5gwo3DlLPnYucfpHR9y45XvP5pTyOOQMoMIgvUAChEXUsQRPda3yNZyM0ZcagW/Ra9BYaZjTOZvwCNewks+ctdWYoVUzGmkkGVFxtsLQmTNCCCGrTXut0CU6k+e5M845XP4IbAoWZ+Jj51Jo/ebFc3j+jBM/evqM5M8ZnA6grcac046wluQYYqHnzoacAayxSQsDEXXVW9A36U39uxiUsZJTDLVqFbrrrWiszO3PiqwOVJyVMYc3jA/+/MWc7mR5glHoNSoYtGoFr4wQQggpH1aDFrUWfd6Jjd5wDLEEV2zHGQBUGbVgLLfO2ZO9DgDAj58ZhDckLUhkaNovOUZfNLvrLP84fc45zknccZaus86CgUk/EsmRyklPCDqNasWnTn/zzdvx/27YVOrLIGWIirMy9r0nBvCHI2N45NiE5M9xB6Mr/gmNEEIIma+j1oTBPHedid0sJc+cadRCwSG1czYyE8SAw48btjXBE4rhZ88NZf2cWDyBc66g5AXUouYqoTgrJE5/yhdBMBqXnNQo6rZbEIzGMeoWvvakNwx7hT6nzt9y1FVvySm0haweVJyVKZc/gvueF56IDw46JX+eJxSl82aEEEJWnfYac95jjWI3S8kzZ+LjS01r3NcndM0+sKcLl3XX4t59pxGKLp1GOToTQizB0Vad24t+g1aNWou+oLHGoRx3nIm66uYmNk54Qis6qZGQbKg4K1M/emYQwWgcGxorcOCsS/LnUeeMEELIatRea4bDG4YvHMv5c1OdM6WLM5P04uzJvinYK/TorrfgA3u6MOWL4Ff7h5f8HDGtMpcdZ6JmW2Fx+uJIpNQYfVFX/cLibCUnNRKSDRVnZcgXjuHHT5/BdZvseMOOZpxzBVPpRdl4gjFUGChGnxBCyOrSkYzTz+fcmVgwVSs41ggInTMpUfrxBMfT/VO4rLsOjDFc0FGNXW02fO+JAURiiUU/bzCPHWeiFpuxoM6ZuIC6JcfirMaih82kTRVnk94wdc7IqkbFWRm677mz8IRieP+VXdjZZgMAHBiU1j2jzhkhhJDVSCzOzuRRnIkFk82s7O/ParNOUiDI0RE3ZgJRXNZdCwBgjOEDe7ow6g7hoUMji37e0LQfBq0qr6TDluQi6kSeu86GnAHUWfUw6nIPJOuqt6B/0odAJAZvKIZ66pyRVYyKszITisbx/afO4LLuWmxdU4VNTZXQa1Q4cFbauTMqzgghhKxG7TWFdM6i0KoZLHplJ09sZh1c/gg4X7oAeip53uzSrtrU265cV4eNjRW4+/GBRZdFD04H0FptgkqVe5hGi82ISCyBKV84588FgGFnMOcYfVFXvRX9Dh8mxQXU1DkjqxgVZ2XmgYPnMOUL4/1XdgEAdBoVtq6pwkEJ584SCQ4vBYIQQghZhYw6NRoqDHmFgrj8EdhMOsUTAmvMOsQSHJ7Q0ufinuybwnnNFaixzHaQxO7Z6Sk//nJ0POPnDU0H0JpjGIhIHEccznO0ccgZyDmpUdRVb8FMIIoTYx4AoM4ZWdWoOCsj0XgC33tiADtaq3Dh2urU23e12XBs1INAZOknc18khgQHdc4IIYSsSu21pvw6Z4GI4kmNwGxU/1Jx+r5wDC+edeGy7roF73vleQ1YW2fG/+7tX9B945zjrNOfc4y+qDnZ9conFCQaT2DMnfuOM5EYCvL0wBQAwF5BnTOyelFxVkZ+f3gU51xBfGBP15y7d7vabYgnOA4Pu5f8fE9QWFBZYaDijBBCyOrTUWtOhWLkwuUvTnFWbRG+xlLnzp4bmEYswVPnzdKpVQx3XtGJE2MePH7KMed9k94wQtFEXkmNwOyus3wWUY/NhJDguSc1isTi7Jn+aQA01kgK9OUvA3v3zn3b3r3C25cBKs7KRCLB8Z3HB7C+wYqr1tfPed+OViEU5GCWc2dusTijzhkhhJBVqL3GDKc/AncgmtPnOf0RxWP0gdk0yKU6Z0/1OWDSqVOBYPPduL0ZzVXGBd2zswUkNQKAWa+BzaTNaxH17I6z/IqzpkoDTDo1Tk/5odOoUGGk1GlSgN27gZtvBn73O4BzoTC7+Wbh7csAFWdl4tHjE+if9OH987pmAFBl0qG73pJ135knKIw90pMaIYSQ1ahdTGzM8dyZMxBRPEYfmF1y7VwiTv/JvilcuLYGek3m1EOtWoX3XrEWB8+68PyZ2Zu2g9P57zgTtdhMecXpD7vyW0AtYoylumf2Cr3iZ//ICrdnD3D//cAb3gBs2SIUZvffL7x9GVj1xdmDL53Drw+eK+k1cM7xncf70V5jwvWbGzN+zK52G14861oy4lbsnNGZM0IIIavR2jx2ncXiCbiD0eJ0zsTibJHO2bAzgDNT/owjjelu3rUGtRYdvr23P/W2oekANCqWGk/MR3NVfouoh53C126szP9rd9UlizMaaSRyqKwEYjHg6FHgzjuXTWEGUHGGB18axXfSntxKYV//FI6cc+N9V3RCvUj87c62anhCMfQllzRm4glRcUYIIWT1WlNtAmO57TpzB6PgHKg2Kf+706RTQ6dRLTrW+FSfEIiRKQwknUGrxjsvXYun+qZweHgGgNA5a7YZoVHn/9JOWEQdyBr1P9+QM4Bmm3HR1zBSdCY7Z5TUSGTx+c8L//+JTwDf/e7CM2hlbNUXZ1etq8PpKX9e6U5y+fbefjRUGPC6Hc2LfswucRn1EufOPHTmjBBCyCpm0KrRVGlMjfhJMbuAWvnOGWMMNUsson6qz4GmSgM667KfG3vrha2oMGhS3bNCouxFLTYjQtGEpEXZ6YZdwbzDQETiWGM9dc5Iof78Z+D3vweuuQb4yleEkcabb142BdqqL872JMM39p6aLMnXP3jWiedOO/Huy9cuOl8OCDPktRYdDg4ufu7MHYxCxQCLjs6cEUIIWZ06as053XB1+oUbm8VIawSEOP1MnbNYPIGn+6dwWXedpDNXVoMWd1zcjkePT6B3wouz04HUIu58NScLrFxDQc45A3mHgYi6qHNG5PLjHwtBIP/6r8K/i2fQ9u8v6WVJteqLs7YaM9bWmbF3XiRtsXxn7wBsJi3efP6aJT+OMYadbbYlQ0E8wSisBi1UBYwVEEIIIctZe60JZ6b8kkfzxPNftiIEggBAjSVz5+zIiBueUAyX9Sx93izd2y/pgEmnxn/96QTcwWhBYSCA0DkDkFMoiD8cw7Q/kncYiGhtrRn/dN06/MPWpoIehxCMjgI9PcBll82+bc8e4JOfLN015WDVF2cAsGddPZ47PZ11ybPcjo968LeTk3jHJR0wSeh27WqrxpAzgElvKOP73cEonTcjhBCyqrXXmOEJxRYN3ZhPHGssaucsQ1rjU71TYAy4pFN6cWYz6/CW81tTN5jzjdEXzS6ilr7rLJXUWOBYI2MMH9jThZYCH4escidOAPv2Ae96F7BMUz+pOANw1fp6RGKJ1PLDYvnuEwOw6DW47aJ2SR+/sz2572yR0UZPKEYx+oQQQla1tcnzWlLPnYlFXLGKs2qzLmPh+FSfA1uaK3M++/buy9dClwwBKbRzVmHQosKgyalzNuwUPrbQ826EyOLeewGNBrj99lJfSd6oOIMQU2/WqYt67mxwyo8/HhnFWy9sQ6XEhKjzmiqh16gWHW2kzhkhhJDVTjx3dWZKWvfH6Y/ApFPDoF383Lecqs06eEMxRGKJ1Ns8oSheGp7JmtKYib3CgJt2tUCnUclSIDXnuOus0AXUhMgmHAZ+8hPghhuA+vpSX03eqDgDoNeocUlXLfaenMw5PjZf33tyAFq1Cu+8tEPy5+g0KmxtqVq0OPNQcUYIIWSVW1NtglrFJIeCuPyRop03A2ZTIWfSRhufHZhGPMGz7jdbzGdfsxF/+MdLZSkwW2zGnAJBhp0BmHVq2IqwioCQJf3ud8DUlDDSuIxlLc4YY2sYY3sZYycYY8cYYx9Ovv0rjLGTjLEjjLEHGWNVil+tgq5aX49Rdwi9E4vvEZOLwxvGrw+ewy2716DOmlsq0c52G46NuBGMxBe8zx2MosJAT46EEEJWL61ahRabEWekjjUGIkUbaQSAmuTXSg8FearPAbNOje2ttrwe06BVo8duleX6ct11ds4VSO6XW57ne8gK8v3vA62tQoT+MialcxYD8HHO+QYAFwL4AGNsI4DHAJzHOd8CoBfAPyt3mcq7cp3Q/vz7SeVHGx8+NIJonEs+a5ZuV5sNsQTH4XMzC95HY42EEEKIMNqYU+esiMWZ2KVzzSnOpnBRZw10mtIPNDVXGeGPxOFO7k7NZkiGGH1CCnbmDPDYY8A73gGoizOirJSszwKc8zHO+YvJf/YCOAGgmXP+KOdcjDd8DkCLcpepvIZKAzY2VhTl3NmvD57D1jVVqZ0eudiZXEZ9cN5oYygaRziWoAXUhBBCVr2OWnPWOH3OOZ7pn8LgdADVRRzJq7HM7Zydnfbj7HQAl/fkft5MCWJaopRzZ5xz/P/27jy6qvLc4/j3zTwQyEACAiEIMhQHFIIgOBDUJbqoXkVRUa/rOrS2dei6VWtvq/XWVVd1qW3t8vZWcbqtVlFgiWOv3EahMpSAgIjMMiRRMkDClECG9/6x94EAJ8nJGXL2Ofl91tor5+yz99nvOQ9h59n7fZ93157QJ6AWCdlLLznVGW+7LdotCVmXLtEYY4YA5wDLT3jpNuDDMLUpakpG5bNyx96ArxYF48vKejZ8u59rxw4Mav/sjBROK+hF2fY9x63f1+i0WcmZiIj0dKf2zeTQkRaq9x/2+/qSrTVc/6dlzJq9nPTkRG6eWNRtbTt658wdc7Zocw1AUMVAIqErc53VHDhCQ1MLg0Oc40wkJM3N8PLLMG0aFHY8b3AsCDg5M8b0AuYCP7bW7muz/uc4XR9fa2e/7xljyowxZdXV0ZnoOVAlIwtoabUs3hy5ds5dWUFKYgLfDWGSxeKiHFbu2Etr67ErgvsanJuYvdNUSl9ERHq2IX19FRuP79q4dGst1/9pKbNeWM6OPQf5zytP55MHplA8JLfb2uYrnFF7wEnOFm+qZlBOOkNCLIMfLseSs86rXR6d40zdGiWaPvoIKirgzjuj3ZKwCCg5M8Yk4yRmr1lr57VZfyswHbjJttN3wFr7vLW22FpbnJ/vjatC7TlncA7ZGcmUbohMctbU0so7qyu4+DsFZIdQGWpcUQ77GpvZUn2seInvbp/GnImISE93at7xc50t31bLDc8v5cYXlvF1zUEe/e5oPn2ghFsnDem2Evo+SYkJ9ElPZu+hIzS1tLJ0ay0XDM/3TEGNPunJZKYkBnTnbJfK6IsXvPAC9OsH06dHuyVh0eltFuP8b/Ei8JW19pk266cBPwUustYGPpW8hyUmGC4cns+nm6pobbUkJIT3P8pFm6qpPXiEa8aGNjzPd4WvbPveo9WZfN0alZyJiEhPNyA7jeREw8frq3hndSVLttaSn5XKI9NHM2vC4G5PyE7km4h6za469h9u5sIgS+hHgjGGQTkZrCmvY11FPSP7Z5Gc6P9a/tHkTGPOJFoqK+H99+H++yE5Pv4GDqQP3GTgFuALY8xqd91/AM8CqcDH7tWeZdbauyLRyO40dVQBC9ZU8kVFPWMKs8P63nNXlZOXmcKUkaHdQRySl0FeZgplO/Ywa8JgwJnjDDTmTEREJCkxgcLcDBZ+tZu+vVJ5ePpobvJAUubjS84Wba4hwcCkYd5JzgDGFuXw13/uZPof/kFqUgKjB/RmzKBszhrUhzGF2Zyal0lCgmHXngb69kolPcUb36v0QK+8Ai0tcPvt0W5J2HSanFlr/wH4u4X0QfibE30XjsjHGCjdWBXW5Kzu0BEWrq/ipomD270CFShjDOPccWc+6tYoIiJyzM8u/w6VdQ3MLC70XPKQk5FC+d5DLN5czZjCbPp4bALnx68+gx9cNIw15XWsLa9jza565pTt4pUl2wHISk3izEF92F5zkEIVA5FoaW2FF1+EKVNg+PBotyZsVD3iBLmZKZxTmE3phip+fMmIsL3vu2u/4UhLKzNC7NLoUzwkh/9dv5vq/YfJz0o9dudMk1CLiIhw6eh+0W5Cu/IyU1i+rZaDR5q5e6r3/qg0xjA4L4PBeRlHC5i1tFq2VB1gTXkda3bVsba8nuoDh7nsjP5Rbq30WKWlsG0b/OpX0W5JWCk586NkZAFPf7zpaOITDnNXljOqfxanD+gdlvcbV+SMO1u5Yw/TzjiF+oYm0pMTPTGBpYiIiLQvJzOF/YedKsteGm/WkcQEw8j+WYzsn8XMYqdceVNLK0lhHp8vErDZsyEnB2bMiHZLwkp/yftRMqoAgE83hadq49bqA6zeVceMsYPCVo3pjIG9SUlKONq1cV9DM73TlWuLiIh4XV6mU7E5KzUp7OPbu1NyYoJnqkxKD1NTA/Pmwc03Q1patFsTVkrO/Dh9QG8KslIp3VgVlvebt6qcBANXnR383GYnSk1KZMygPpS5yVl9Q5PGm4mIiMSAHDc5O29YXsjj0EVi3pNPOl0U2yotdda35y9/gSNH4I47Itu2KND/CH4YY5gyMp9Fm6ppbmkN6b1aWy3zV1Vw4Yh8CnqHN7MfW5TDuop6Gpta2Neo5ExERCQW5GY65+sLRnh7/leRbjF+PMycCX/7G+zcCQsXOs/Hjz9+O18SZ60zt9m550JtbcdJXAxSctaOqaMK2N/YfFxFxGAs3VZLZX1j2AqBtFVclEtTi2VteT31DU0qBiIiIhIDiofkcn1xIdPPPCXaTRGJvpISePNNuPJKKCqCSy+F1FQn6br7bvjtb2HBAsjPd5K2556D9evh/PP9J3ExToOU2jH5tL4kJxpKN1YzYWhe0O8zd2U5WWlJEakaNa4oB4CyHXuob2hipDshtYiIiHhX77Rknrj2rGg3Q8Q7du1yuikCTJoEAwbA1q2wZAns23f8tvfc40w4/eqr8NZbTnIXR3TnrB1ZacmMH5JL6Ybgx50dONzMh+u+ZfpZAyIy8WVuZgpD8zNZuX0v+xqaNAG1iIiIiERWMGPEOlJRAT/6ESQlwS9+AZs2wQ9/CKtWQV0dVFfDsmXw+uvw2GMwZgw0NTnbxFliBkrOOlQysoCNu/dTUdcQ1P4frfuWhqYWrh03MMwtO6a4KIeyHXvZf7hZyZmIiIiIRJZvjJgvQSstDb57obVOKfyDB+Gll5zka86cY+9vDPTtCxMmwI03wuTJTjL38MPwxz+enCTGASVnHSgZ5QzU/STIqo1zV5YzJC+DsYNzwtms4xQX5VLf0IS10DtNvVRFREREJIJKSpwEasYMGD4crrvOeR7MXaw//xmWL3fugt1yy/Hvv2LF8dv6ksA5c5yJp9smcXFEyVkHhuX3ojA3PaiujeV7D7F0Wy3XhHFuM3/GDTmW+Klao4iIiIhEXEkJXHYZbNkCGRlO5cSuqqyE++5z7oY9++zJ7//gg8evW7Hi+CSwvSQuxik564AxhpKRBXy2pZbGppYu7Tt/VQUAV58TuS6NAEP7ZpLrzpei5ExEREREIq601Cl5P2OGU8zjoougsTHw/a2F73/f2efllyExgNoMDz548t05f0lcjFNy1omSUQU0NLWw/Os9Ae9jrWXe5xVMHJpLYW5GBFvnJJC+bpMacyYiIiIiEdW2e+HbbzvJ0cqVcPHFTqGOQLz2Grz3Hjz+uNM1Uo5SctaJ84bmkZac0KWujat21vF1zcGIzG3mT7HbtVHznImIiIhIRJ3YvfCJJ5zuiUuWOOPGWjrpbfbNN3DvvU53xnvvjXx7Y4wqSHQiLTmRScP6Urqxil/a0QGNH5u7qpz05EQu76bJJWeMHUTdoSZG9OvVLccTERERkR7KXzfC3/0OBg50XsvIgNmzIcHPPSBfd8aGBqc6YyDdGXsYJWcBKBmZz983VPF1zUGG5necADU2tfDemkqmndGfXqnd8/XmZ6Xy0OWjuuVYIiIiIiIneeABOHDAqaTYqxf8/vdOKfy2Xn8d3n0Xnn4aRoyITjs9TslZAKaMLAC+5A9/38Jlp/djQHY6A7LTyctMOelO2sKvdrOvsbnbujSKiIiIiHjCo486Cdozz0BmpjOmzPe38rffwj33wHnnOd0gxS8lZwEozM1gwqm5zP+8gvmfVxxdn5qUwEA3URuQncaA7HRKN1ZzSp80zhuWF8UWi4iIiIh0M2Pgqafg0CH4zW+gqgpefNHpznjXXU7iNnmyujN2QMlZgN743kTqG5qoqGugYm8DlXUNVNY3Hn3+ycZqqvYfBuC+i4eTmBC5uc1ERERERDzJGHjuOdi61RlXlpbmJGTvvOPcTbviimi30NOMtbbbDlZcXGzLysq67Xjd7XBzCzUHjtC/d5qSMxERERHpuZqbYepUWLwYktz7QR9+CJdcEt12eYAxZqW1ttjfayqlH0apSYkMzE5XYiYiIiIiPVtSkjNR9WmnOYnanXcqMQuAkjMREREREQm/zz6Dujr4yU/grbecCaylQ0rOREREREQkvEpLYeZMZ8Lqp55yfs6cqQStE0rOREREREQkvFascBKykhLneUmJ83zFiui2y+NUEERERERERKSbqCCIiIiIiIiIxyk5ExERERER8QAlZyIiIiIiIh6g5ExERERERMQDlJyJiIiIiIh4gJIzERERERERD1ByJiIiIiIi4gFKzkRERERERDygWyehNsZUAzu67YCB6wvURLsREhGKbXxSXOOXYhufFNf4pdjGJ8U1soqstfn+XujW5MyrjDFl7c3SLbFNsY1Pimv8Umzjk+IavxTb+KS4Ro+6NYqIiIiIiHiAkjMREREREREPUHLmeD7aDZCIUWzjk+IavxTb+KS4xi/FNj4prlGiMWciIiIiIiIeoDtnIiIiIiIiHhBTyZkxZpoxZqMxZosx5qE26980xqx2l+3GmNXt7J9rjPnYGLPZ/Znjrr+pzf6rjTGtxpiz/ez/mnv8dcaYl4wxye56Y4x51m3XWmPM2Mh8A/HLw7EdZYxZaow5bIy5PzKfPr55OLY3ub+va40xS4wxYyLzDcQnD8f1Kjemq40xZcaY8yPzDcSvCMY22RjzqjHmC2PMV8aYn7Wz/6nGmOXu/m8aY1Lc9TrXhsDDcdV5NkQejq3Os8Gw1sbEAiQCW4GhQAqwBhjtZ7ungUfaeY8ngYfcxw8BT/jZ5kxgWzv7XwEYd/kr8IM26z90108Elkf7+4qlxeOxLQDGA78G7o/2dxVri8djOwnIcR9frt/buIlrL4512T8L2BDt7yuWlkjGFpgFvOE+zgC2A0P87D8HuMF9/N8618Z9XHWejd/Y6jwbxBJLd87OBbZYa7dZa48AbwBXtd3AGGOAmTgnan+uAl51H78K/IufbW5sb39r7QfWBfwTGNTmff/HfWkZkG2MOSXgTyaeja21tspauwJo6tInEh8vx3aJtXavu9kyjv0+S+e8HNcD7jqATEADq7smkrG1QKYxJglIB44A+/y891TgbT/761wbPM/GVefZkHk5tjrPBiGWkrOBwK42z8vddW1dAOy21m5u5z36WWu/AXB/FvjZ5nra/8cLOLd5gVuAj7rQNmmfl2MroYmV2N6Oc0VeAuPpuBpjrjbGbADeB27raH85SSRj+zZwEPgG2Ak8Za3dc8K+eUCdtbbZz/F1rg2el+MqoYmV2Oo8G6CkaDegC4yfdSdeEW33KmtABzBmAnDIWruuk03/C1hkrV3chbZJ+7wcWwmN52NrjCnBOWlobFLgPB1Xa+18YL4x5kLgMeCSYNvRA0UytucCLcAAIAdYbIxZaK3dFuDxda4NnpfjKqHxfGx1nu2aWLpzVg4Utnk+CKj0PXFvuV4DvNlm3cvuIMgP3FW7fV0g3J9VJxzjBjq/SvtLIB/490DbJp3ycmwlNJ6OrTHmLGA2cJW1trYLn6un83Rcfay1i4Bhxpi+gXwoASIb21nAR9baJmttFfAZUHzC8Wtwuiv6Lh63Pb7OtcHzclwlNJ6Orc6zXRdLydkKYLhbESYF58S9oM3rl+AM/C73rbDW/pu19mxr7RXuqgXAre7jW4F3fNsaYxKA63D66vpljLkDuAy40Vrb2ualBcC/GsdEoN53e1gC4uXYSmg8G1tjzGBgHnCLtXZTCJ+xJ/JyXE9zx0BgnGp+KYD+IAhcJGO7E5jqniszcYp6bGh7cHe8YClwrZ/9da4NnpfjKqHxbGx1ng2S9UBVkkAXnEpNm3Cq0vz8hNdeAe7qZP884P+Aze7P3DavTQGWdbJ/s3vs1e7yiLveAM+5r30BFEf7u4q1xcOx7Y9zVWofUOc+7h3t7yuWFg/Hdjawt836smh/V7G0eDiuPwW+dNctBc6P9ncVa0ukYotTSfMtNz7rgQfa2X8oTpGXLe72qe56nWvjM646z8ZvbHWeDWLxlRsWERERERGRKIqlbo0iIiIiIiJxS8mZiIiIiIiIByg5ExERERER8QAlZyIiIiIiIh6g5ExERERERMQDlJyJiIiIiIh4gJIzERERERERD1ByJiIiIiIi4gH/DwDqa8f4gkl5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACIDUlEQVR4nO3dd3hT1/kH8O+R5L333uABeAA2YYOBrCZp0mYnJZCdNE1XOtL1SzrSZnSmI2n2bLNXs8PeYANm2tjGeO8l7yHp/P6QZGzwkGTJkuXv53n8YHSle498wbrvfd/zHiGlBBEREREREdmXwt4DICIiIiIiIgZnREREREREDoHBGRERERERkQNgcEZEREREROQAGJwRERERERE5AAZnREREREREDoDBGRERERERkQNgcEZENE0JIbqGfemEEL3D/n6zvcdnCSFEuRBinb3HMR4hxDYhxB022neyEOJDIUSTEKJVCPGFECJl2PYNQoiDQogOIUS1EOJxIYTKsM1NCPG8EKJCCNEphDgshLj0nP2vFUIUCSF6hBBbhRBxw7YJIcRjQogWw9fjQghhi/dJRESjY3BGRDRNSSm9jV8AKgFcMeyx1+09vnMZg4jpfgwb8wfwEYAUAGEADgD4cNh2TwDfBxAM4AIAawH8yLBNBaAKwCoAfgB+BeAtIUQ8AAghggG8Z3g8EEA+gDeH7fsuAFcByASQAeByAHdb880REdH4GJwRETkZIYRCCPGgEOK0IQPylhAi0LAtXgghhRC3CiGqhBBtQoh7hBA5QoijQoh2IcQ/hu1roxBitxDi70IItSHrsnbYdj9DtqZOCFEjhPidEEJ5zmv/IoRoBfCwECJJCLHFMK5mIcTrQgh/w/NfBRAL4H+G7N9PhBCrhRDV57y/oeyaEOJhIcQ7QojXhBAdADZOMKZZQojthvfSLIQYHpwMP4a7YZ8thp9JnhAiTAjxCIAVAP5hGOM/DM9PFUJ8Zch2nRJCXDdsXy8JIZ42bO80HD9utONKKQ9IKZ+XUrZKKQcB/AVAihAiyLD9KSnlTinlgJSyBsDrAJYZtnVLKR+WUpZLKXVSyo8BnAGw0LD7bwI4IaV8W0rZB+BhAJlCiFTD9g0A/iSlrDbs+08ANo42TiIisg0GZ0REzue70GdAVgGIBNAG4J/nPOcCALMBXA/grwB+AWAdgLkArhNCrDrnuWXQZ2seAvCeMdgD8DIADYBZAOYDuAjAHaO8NhTAIwAEgD8YxpUGIAb6IAFSyvUYmQF83MT3eyWAd6DPOr0+wZh+C+BLAAEAogH8fYx9boA++xQDIAjAPQB6pZS/ALATwHcMY/yOEMILwFcA/mN4nzcC+JcQYu6w/d1sOHYwgALDOE2xEkC9lLJlnO0nRtsghAgDkDxs+1wAR4zbpZTdAE4bHj9vu+H74e+BiIhsjMEZEZHzuRvALwwZkH7og59rzin5+62Usk9K+SWAbgD/lVI2GjImO6EPaowaAfxVSjkopXwTwCkAlxku/i8F8H1D1qYR+kzPDcNeWyul/LuUUiOl7JVSlkopv5JS9kspmwD8GfogcjL2Sik/kFLqAPhOMKZBAHEAIg3vf9cY+xyEPiibJaXUSikPSik7xnju5QDKpZQvGt7nIQDvArhm2HM+kVLuMJyPXwBYIoSIGe9NCSGioQ+qfzjG9lsBZAP44yjbXGAIVKWURYaHvQGoz3mqGoDPGNvVALw574yIaOpM99p8IiI6XxyA94UQumGPaaGfw2TUMOz73lH+7j3s7zVSSjns7xXQZ77iALgAqBt2/a6Aft6T0fDvIYQIBfAk9KWBPobnt5n0rsY2/BgTjekn0GewDggh2qAv43thlH2+Cn3W7A1D2eVr0Ae8g6M8Nw7ABUKI9mGPqQz7OG+MUsouQ5ln5DljHyKECIE+w/cvKeV/R9l+FYBHAayTUjafs01hOPYAgO8M29QFffA6nC+AzjG2+wLoOufcExGRDTFzRkTkfKoAXCql9B/25W7Iilki6pzsSSyAWsNx+gEEDzuOr5RyeCncuRf2fzA8liGl9AXwLehLHcd6fjf0TTAAAIa5YyHnPGf4a8Ydk5SyXkp5p5QyEvoM47+EELPOfcOGLOGvpZRzACyFPjt2yxhjrAKw/Zyft7eU8t5hzxnKkgkhvKFvyFF77nEN2wOgD8w+klI+Msr2SwA8C33557FztgkAz0MfiF99TjB5AvpmH8bnegFIwtmyxxHbDd+PWjJJRES2weCMiMj5PA3gEWPTCSFEiBDiyknsLxTAd4UQLkKIa6GfK/aplLIO+iDiT0IIX0MjkqRz5qudywf6DE27ECIKwI/P2d4AIHHY34sBuAshLjOU6v0SgNtYO59oTEKIaw3lgoA+YyehzyqOIITIFUKkG4LBDujLHI3PO3eMHwNIFkKsN/yMXIS+wUrasOd8TQixXAjhCn3mbr+U8rysmRDCF8AXAHZLKR8cZfsa6MsVr5ZSHhjlR/AU9OfnCill7znb3gcwTwhxtRDCHcD/ATg6rOzxFQA/FEJECSEiATwA4KVRjkFERDbC4IyIyPn8Dfp27F8KIToB7IO+MYel9kPfPKQZ+qYe1wxrUHELAFcAJ6EPdt4BEDHOvn4NYAH085k+gb61+3B/APBLQ4fEH0kp1QC+DeA5ADXQZ9KqMb7xxpQDYL8Qogv6n9H3pJRnRtlHuOF1HQAKAWyHvrQR0P98rxH6TpdPSik7oW86cgP02bB6AI9hZBD5H+ibqbRC3z1xrHXovmEY461i5Dp2sYbtv4K+Ucmnw7Z9BgCGYPxuAFkA6sU5a94Z5vhdDf05bIP+38Tw+YH/BvA/AMcAHIf+/Px7jHESEZENCJaSExHRWIQQGwHcIaVcbu+xTFdCiJcAVEspf2nvsRARkWNj5oyIiIiIiMgBMDgjIiIiIiJyACxrJCIiIiIicgDMnBERERERETkABmdEREREREQOQDWVBwsODpbx8fFTeUgiIiIiIiKHcfDgwWYpZcho26Y0OIuPj0d+fv5UHpKIiIiIiMhhCCEqxtrGskYiIiIiIiIHwOCMiIiIiIjIATA4IyIiIiIicgBTOudsNIODg6iurkZfX5+9h0JOxt3dHdHR0XBxcbH3UIiIiIiIJmT34Ky6uho+Pj6Ij4+HEMLewyEnIaVES0sLqqurkZCQYO/hEBERERFNyO5ljX19fQgKCmJgRlYlhEBQUBAzskREREQ0bdg9OAPAwIxsgv+uiIiIiGg6cYjgzN4eeeQRzJ07FxkZGcjKysL+/fsBAHfccQdOnjxplWPEx8ejubl53Of8/ve/N3u/L730Er7zne+MeOzFF19EVlYWsrKy4OrqivT0dGRlZeHBBx80e/9T4a9//St6enrsPQwiIiIimu4efxzYunXkY1u36h+fBmZ8cLZ37158/PHHOHToEI4ePYpNmzYhJiYGAPDcc89hzpw5UzYWS4Kz0dx6660oKChAQUEBIiMjsXXrVhQUFODRRx+1yv7NJaWETqcbc7slwZlGo5nssIiIiIjI2eTkANdddzZA27pV//ecHPuOy0QzPjirq6tDcHAw3NzcAADBwcGIjIwEAKxevRr5+fkAAG9vb/z0pz/FwoULsW7dOhw4cACrV69GYmIiPvroIwDnZ7Euv/xybNu27bxjXnXVVVi4cCHmzp2LZ555BgDw4IMPore3F1lZWbj55psBAK+99hoWLVqErKws3H333dBqtQD0mbHk5GSsWrUKu3fvNvm9PvHEE8jJyUFGRgYeeughAEB5eTlSU1Nxxx13YN68ebj55puxadMmLFu2DLNnz8aBAwcAAA8//DDWr1+PNWvWYPbs2Xj22Wcn3G9aWhq+/e1vY8GCBaiqqsK9996L7OxszJ07d+h5Tz75JGpra5Gbm4vc3Nyhn7XRO++8g40bNwIANm7ciB/+8IfIzc3FT3/6U5w+fRqXXHIJFi5ciBUrVqCoqMjknwUREREROaHcXOCtt4ArrwTuvlsfmL31lv7x6UBKOWVfCxculOc6efLkeY9Npc7OTpmZmSlnz54t7733Xrlt27ahbatWrZJ5eXlSSikByE8//VRKKeVVV10lL7zwQjkwMCALCgpkZmamlFLKF198Ud53331Dr7/sssvk1q1bpZRSxsXFyaamJimllC0tLVJKKXt6euTcuXNlc3OzlFJKLy+vodeePHlSXn755XJgYEBKKeW9994rX375ZVlbWytjYmJkY2Oj7O/vl0uXLh1xzHMZj/vFF1/IO++8U+p0OqnVauVll10mt2/fLs+cOSOVSqU8evSo1Gq1csGCBfLWW2+VOp1OfvDBB/LKK6+UUkr50EMPyYyMDNnT0yObmppkdHS0rKmpGXe/Qgi5d+/eobEY37dGo5GrVq2SR44cOe9nc+7P4e2335YbNmyQUkq5YcMGedlll0mNRiOllHLNmjWyuLhYSinlvn37ZG5u7nnv397/voiIiIhoitXVSeniIiUg5a9+Ze/RnAdAvhwjXrJ7K/3hfv2/EzhZ22HVfc6J9MVDV8wdc7u3tzcOHjyInTt3YuvWrbj++uvx6KOPDmVrjFxdXXHJJZcAANLT0+Hm5gYXFxekp6ejvLzcrDE9+eSTeP/99wEAVVVVKCkpQVBQ0IjnbN68GQcPHkSOIQXb29uL0NBQ7N+/H6tXr0ZISAgA4Prrr0dxcfGEx/zyyy/x5ZdfYv78+QCArq4ulJSUIDY2FgkJCUhPTwcAzJ07F2vXroUQ4rz3duWVV8LDwwMeHh7Izc3FgQMHsGvXrjH3GxcXh8WLFw+9/q233sIzzzwDjUaDuro6nDx5EhkZGWb97K699loolUp0dXVhz549uPbaa4e29ff3m7UvIiIiInJCt98ODA4C990HPPWUPms2TTJnDhWc2YtSqcTq1auxevVqpKen4+WXXz4vOHNxcRnq/qdQKIbKIBUKxdD8J5VKNWJu1Wht3Ldt24ZNmzZh79698PT0xOrVq0d9npQSGzZswB/+8IcRj3/wwQcWdSGUUuJnP/sZ7r777hGPl5eXD72X8d4bcH73QyHEuPv18vIa+vuZM2fwxz/+EXl5eQgICMDGjRvHbHM//DjnPse4T51OB39/fxQUFEz01omIiIhopnjuOeDTT4Grrwb+8Q/9n9OotNGhgrPxMly2curUKSgUCsyePRsAUFBQgLi4OIv2FR8fj3/961/Q6XSoqakZmq81nFqtRkBAADw9PVFUVIR9+/YNbXNxccHg4CBcXFywdu1aXHnllfjBD36A0NBQtLa2orOzExdccAG+973voaWlBb6+vnj77beRmZk54dguvvhi/OpXv8LNN98Mb29v1NTUwMXFxaz39+GHH+JnP/sZuru7sW3bNjz66KPw8PAwab8dHR3w8vKCn58fGhoa8Nlnn2H16tUAAB8fH3R2diI4OBgAEBYWhsLCQqSkpOD999+Hj4/Pefvz9fVFQkIC3n77bVx77bWQUuLo0aMm/SyIiIiIyAlJCTz2GODjAxj7IxjnoOXlMTibDrq6unD//fejvb0dKpUKs2bNGmrSYa5ly5YNlQjOmzcPCxYsOO85l1xyCZ5++mlkZGQgJSVlRNnfXXfdhYyMDCxYsACvv/46fve73+Giiy6CTqeDi4sL/vnPf2Lx4sV4+OGHsWTJEkRERGDBggVDjULGc9FFF6GwsBBLliwBoC/nfO2116BUKk1+f4sWLcJll12GyspK/OpXv0JkZCQiIyNN2m9mZibmz5+PuXPnIjExEcuWLRvxvi+99FJERERg69atePTRR3H55ZcjJiYG8+bNQ1dX16jjef3113Hvvffid7/7HQYHB3HDDTcwOCMiIiKaqT79FCgtBf72NyAg4Ozj06isUejnpE2N7Oxsaex+aFRYWIi0tLQpGwNZ5uGHH4a3tzd+9KMf2XsoZuG/LyIiIqIZYHAQyMgAdDrg+HHAzAqxqSSEOCilzB5t24zPnBERERER0TT3zDNAURHw4YcOHZhNhMEZmeThhx+29xCIiIiIiM7X3g489JC+dPGKK+w9mkmZcBFqIYS7EOKAEOKIEOKEEOLXhscDhRBfCSFKDH8GTLQvIiIiIiIiq/r974HWVuBPfwIs6GruSCYMzgD0A1gjpcwEkAXgEiHEYgAPAtgspZwNYLPh70RERERERFOjrEzfAGTjRsCw7u50NmFwZljI2tguz8XwJQFcCeBlw+MvA7jKFgMkIiIiIiIa1YMPAioV8Lvf2XskVmFK5gxCCKUQogBAI4CvpJT7AYRJKesAwPBnqM1GSURERERENNzu3cDbbwM//SkQGWnv0ViFScGZlFIrpcwCEA1gkRBinqkHEELcJYTIF0LkNzU1WThM21IqlcjKysK8efNw7bXXoqenx+J9bdy4Ee+88w4A4I477sDJkyfHfO62bduwZ8+eob8//fTTeOWVVyw+tlF5eTnmzRt5ih5++GH88Y9/NGs/1hoPEREREZFV6XTAD38IREUBDzxg79FYjVndGqWU7UKIbQAuAdAghIiQUtYJISKgz6qN9ppnADwD6Nc5m+R4bcLDwwMFBQUAgJtvvhlPP/00fvjDHw5t12q1Zi3WbPTcc8+Nu33btm3w9vbG0qVLAQD33HOP2cewFY1G41DjISIiIiIa8sYbwIEDwMsvA15e9h6N1ZjSrTFECOFv+N4DwDoARQA+ArDB8LQNAD600RjPevxxYOvWkY9t3ap/3EpWrFiB0tJSbNu2Dbm5ubjpppuQnp4OrVaLH//4x8jJyUFGRgb+/e9/AwCklPjOd76DOXPm4LLLLkNj49kYdfXq1TAuuv35559jwYIFyMzMxNq1a1FeXo6nn34af/nLX5CVlYWdO3eOyG4VFBRg8eLFyMjIwDe+8Q20tbUN7fOnP/0pFi1ahOTkZOzcudPs9zjevn/+859j1apV+Nvf/jY0ntraWmRlZQ19KZVKVFRUoKKiAmvXrkVGRgbWrl2LyspKAPrs4Xe/+10sXboUiYmJQ5lEIiIiIqJJ6+3VzzVbsAD41rfsPRqrMqWsMQLAViHEUQB50M85+xjAowAuFEKUALjQ8HfbyskBrrvubIC2dav+7zk5Vtm9RqPBZ599hvT0dADAgQMH8Mgjj+DkyZN4/vnn4efnh7y8POTl5eHZZ5/FmTNn8P777+PUqVM4duwYnn322RFlikZNTU2488478e677+LIkSN4++23ER8fj3vuuQc/+MEPUFBQgBUrVox4zS233ILHHnsMR48eRXp6On7961+PGOeBAwfw17/+dcTjw50+fXpEQPX000+btO/29nZs374dDwxLD0dGRqKgoAAFBQW48847cfXVVyMuLg7f+c53cMstt+Do0aO4+eab8d3vfnfoNXV1ddi1axc+/vhjPPggG3kSERER0SQMT9L85S9AVRWwfj1g5rQdRzdhWaOU8iiA8/pSSilbAKy16mi+/33AUF44pshI4OKLgYgIoK4OSEsDfv1r/ddosrKAv/513F329vYiKysLgD5zdvvtt2PPnj1YtGgREhISAABffvkljh49OpQFUqvVKCkpwY4dO3DjjTdCqVQiMjISa9asOW//+/btw8qVK4f2FRgYOO541Go12tvbsWrVKgDAhg0bcO211w5t/+Y3vwkAWLhwIcrLy0fdR1JS0lCpJnB2EemJ9n399dePOa7du3fjueeeG8rW7d27F++99x4AYP369fjJT34y9NyrrroKCoUCc+bMQUNDw7jvl4iIiIhoXMYkzdNPA3/4A7B8OfDII8Bbb9l7ZFZl1pwzhxAQoA/MKiuB2Fj93ydp+Jyz4byG1a9KKfH3v/8dF1988YjnfPrppxATLHYnpZzwOeZwc3MDoG9kotForLZfYOR7Hq6urg633347PvroI3h7e4/6nOHv0ThGQP/+iYiIiIgslpurD8Quuwzo7wdOnADefVf/uBNxrOBsggwXgLOljL/6FfDUU8BDD03JSbn44ovx1FNPYc2aNXBxcUFxcTGioqKwcuVK/Pvf/8Ytt9yCxsZGbN26FTfddNOI1y5ZsgT33Xcfzpw5g4SEBLS2tiIwMBA+Pj7o6Og471h+fn4ICAjAzp07sWLFCrz66qtDma7JsmTfg4ODuO666/DYY48hOTl56PGlS5fijTfewPr16/H6669j+fLlVhkjEREREdF5VqwAhNB3avzOd5wuMAMcLTibiDEwe+st/cnIzR35dxu64447UF5ejgULFkBKiZCQEHzwwQf4xje+gS1btiA9PR3JycmjBjohISF45pln8M1vfhM6nQ6hoaH46quvcMUVV+Caa67Bhx9+iL///e8jXvPyyy/jnnvuQU9PDxITE/Hiiy9a7b2Yu+89e/YgLy8PDz30EB566CEA+ozhk08+idtuuw1PPPEEQkJCrDpGIiIiIqIR/vY3oKcHuOYafZLGGA84ETGVJWfZ2dnS2L3QqLCwEGlpaabt4PHH9fWmw0/C1q1AXh4wbL4TkZFZ/76IiIiIyDFt3Qp87Wv671tbgX37pixJY21CiINSyuzRtk2vzNloAZgTRsxERERERDTMvn2AiwtwxRWAh8fZOWh5eU4VC0yv4IyIiIiIiGae+fOBzk5geGdxJ0zSmLLOGRERERERkf28+Sbg56dfUsuJOURwxlbrZAv8d0VERETkBPr7gfffB666Chi2XJMzsntw5u7ujpaWFl5Ik1VJKdHS0gJ3d3d7D4WIiIiIJuPLLwG1emRJo5Oy+5yz6OhoVFdXo6mpyd5DISfj7u6O6Ohoew+DiIiIiCbjzTeBwEBg3Tp7j8Tm7B6cubi4ICEhwd7DICIiIiIiR9PbC3z4IXDDDfpujU7O7mWNREREREREo/rsM6Cra0aUNAIMzoiIiIiIyFG9+SYQEgKsXm3vkUwJBmdEREREROR4uruBjz8GrrkGUNl9NtaUYHBGRERERESO5+OPgZ6eGVPSCDA4IyIiIiIiR/TGG0BEBLB8ub1HMmUYnBERERERkWPp6NA3A7n2WkCptPdopgyDMyIiIiIiciwffgj098+okkaAwRkRERERETmaN98EYmKAxYvtPZIpxeCMiIiIiIgcR1sb8OWXwHXXAYqZFa7MrHdLRERERESO7f33gcHBGVfSCDA4IyIiIiIiR/Lmm0BiIpCdbe+RTDkGZ0RERERE5BiamoDNm/UljULYezRTjsEZERERERE5hvfeA7Ra4IYb7D0Su2BwRkREREREjuHNN4GUFCAjw94jsQsGZ0REREREZH/19cD27fpGIDOwpBFgcEZERERERPby+OPA1q367995B9DpgPh4/eMzEIMzIiIiIiKyj5wcffOPrVv1JY3x8cBPfqJ/fAZS2XsAREREREQ0Q+XmAm+9BVxzDdDaCnh6Ah9/rH98BmLmjIiIiIiI7Cc3F5g/X//9rbfO2MAMYHBGRERERET2tHmzvqwxNlZf2micgzYDMTgjIiIiIiL72LoVuPpqfSOQ3/9eX+JonIM2AzE4IyIiIiIi+8jL05c0BgbqgzTjHLS8PHuPzC4YnBERERERkX1s3Ajs3g1s2AC4u+sfy83Vd2ycgRicERERERGRfbz0EjA4CNx5p71H4hAYnBERERER0dTT6YBnnwVWrADS0uw9GofA4IyIiIiIiKbetm1AaSlw9932HonDYHBGRERERERT79//BgIC9I1ACACDMyIiIiIimmqNjcD7749sBEIMzoiIiIiIaIq9/LK+Echdd9l7JA6FwRkREREREU0dnQ545hk2AhkFgzMiIiIiIpo6xkYgzJqdZ8LgTAgRI4TYKoQoFEKcEEJ8z/B4lhBinxCiQAiRL4RYZPvhEhERERHRtPbMM2wEMgZTMmcaAA9IKdMALAZwnxBiDoDHAfxaSpkF4P8MfyciIiIiIhpdUxPw3nvALbcAHh72Ho3DUU30BCllHYA6w/edQohCAFEAJABfw9P8ANTaapBEREREROQEXnqJjUDGMWFwNpwQIh7AfAD7AXwfwBdCiD9Cn4Fbau3BERERERGRk5BSX9K4fDkwZ469R+OQTG4IIoTwBvAugO9LKTsA3AvgB1LKGAA/APD8GK+7yzAnLb+pqckaYyYiIiIioumGjUAmJKSUEz9JCBcAHwP4Qkr5Z8NjagD+UkophBAA1FJK3/H2k52dLfPz860wbCIiIiIimlZuuAH48kugpmZGzzcTQhyUUmaPts2Ubo0C+qxYoTEwM6gFsMrw/RoAJZMdKBEREREROSE2AjGJKXPOlgFYD+CYEKLA8NjPAdwJ4G9CCBWAPgDMTxIRERER0fleflnfCOTOO+09EodmSrfGXQDEGJsXWnc4RERERETkVIyNQJYtA+bOtfdoHJpZ3RqJiIiIiIhM8vjjQE6O/vuSEuCXvwS2bgXy8oCf/MS+Y3NQDM6IiIiIiMj6cnKA664D0tMBf38gNFT/97fesvfIHJbJrfSJiIiIiIhMlpsLPPmkPluWnAysX68PzHJz7T0yh8XgjIiIiIiIrE+rBZ56CnB1BQ4cAO69l4HZBBicERERERGR9f3pT8DOnYCbG/CrX+kDta1b7T0qh8bgjIiIiIiIrOvIEeDnP9dnzT74APjNb/QljdddxwBtHAzOiIiIiIjIevr6gG99S7/Y9JtvAmvW6B/PzdUHaHl59h2fA2O3RiIiIiIisp5f/hI4fhz49FPg0ktHbsvN5byzcTBzRkRERERE1rF1K/DnP+ubf5wbmNGEGJwREREREdHktbcDGzYAs2cDTzxh79FMSyxrJCIiIiKiybv/fqC2FtizB/DysvdopiVmzoiIiIiIaHLeegt47TV9y/xFi+w9mmmLwRkREREREVmupga45x59UPbzn9t7NNMagzMiIiIiIrKMlMBttwH9/cCrrwIuLvYe0bTG4IyIiIiIiEz3+ONnF5L+17+AL78E7rpLv9g0TQqDMyIiIiIiMl1ODnDddcDLLwM/+pG+nPG11/SP06SwWyMREREREZkuNxf4z3+Ar31NX8ZYWgq88w4Xl7YCZs6IiIiIiMg8a9YAq1YBvb3AffcxMLMSBmdERERERGSeHTuAI0f0rfOfeursHDSaFAZnRERERERkuq1b9XPO3noL+M1v9H9edx0DNCtgcEZERERERKbLy9MHZMZSxtxc/d/z8uw7LicgpJRTdrDs7GyZn58/ZccjIiIiIiJyJEKIg1LK7NG2MXNGRERERETkABicEREREREROQAGZ0RERERERA6AwRkREREREZEDYHBGRERERETkABicEREREREROQAGZ0RERERERA6AwRkREREREZEDYHBGRERERETkABicEREREREROQAGZ0RERERERA6AwRkREREREZEDYHBGRERERETkABicEREREREROQAGZ0RERERERA6AwRkREREREZEDYHBGRERERETkABicEREREREROQAGZ0RERERERA6AwRkREREREZEDmDA4E0LECCG2CiEKhRAnhBDfG7btfiHEKcPjj9t2qERERERERM5LZcJzNAAekFIeEkL4ADgohPgKQBiAKwFkSCn7hRChthwoOQ4pJT4oqIG7SolL0yPsPRwiIiIiIqcwYXAmpawDUGf4vlMIUQggCsCdAB6VUvYbtjXacqDkGPoGtfj5+8fw3qEaBHi64MI5YVApWR1LRERERDRZZl1VCyHiAcwHsB9AMoAVQoj9QojtQogcG4yPHEhVaw+ufmoP3jtUg5XJIWjrGcShynZ7D4uIiIiIyCmYHJwJIbwBvAvg+1LKDuizbgEAFgP4MYC3hBBilNfdJYTIF0LkNzU1WWnYNNV2FDfhin/sQmVrD57fkI1/3bwArkoFNhU22HtoREREREROwaTgTAjhAn1g9rqU8j3Dw9UA3pN6BwDoAASf+1op5TNSymwpZXZISIi1xk1TREqJf24txYYXDyDMxx3/+85yrE0Lg7ebCouTgrDpJIMzIiIiIiJrMKVbowDwPIBCKeWfh236AMAaw3OSAbgCaLbBGMlOOvsGcferB/HEF6dweUYk3r9vKeKDvYa2X5gWirLmbpxu6rLjKImIiIiInIMpmbNlANYDWCOEKDB8fQ3ACwAShRDHAbwBYIOUUtpwrDSFShs7ceU/d2NzUSN+eVkanrwhC56uI/vHrE0LAwBmz4iIiIiIrMCUbo27AJw3l8zgW9YdDjmCz47V4UdvH4GHqxKv3X4BliQFjfq8SH8PzInwxabCBty9KmmKR0lERERE5FzYA51G+OBwDe59/RBmh/ngf/cvHzMwM1o3JwwHK9rQ2j0wRSMkIiIiInJODM5oiFYn8ZdNxZgX5Ys3716MCD+PCV9zYVoYdBLYWsRl7oiIiIiIJoPBGQ357HgdKlp68J3cWXBTKU16zbwoX4T5urGlPhERERHRJDE4IwD6lvlPbTuNxGAvXDgn3OTXCSGwLi0M24ub0DeoteEIiYiIiIicG4MzAgDsLGnGidoO3L0qEUrFWP1fRrduThh6BrTYV9Zio9ERERERETk/BmcEAHh6+2mE+brhqvlRZr92SWIQPF2VLG2c5g6cacVHR2rtPQwiIiKiGYvBGeFIVTv2nG7B7csTTJ5rNpy7ixIrZ4dg08lGcKm76euPX57CL947Bp2O59AcJ2rV+OxYnb2HQURERE6AwRnh6e2n4euuwo2LYi3ex7o5Yajv6MOJ2g4rjoymyoBGhyNV7ejs16Csudvew5lWHvmkEA+8fYRBLTmUvkEtBjQ6ew+DiIjMxOBshjvd1IXPT9Rj/ZI4+Li7WLyf3JQQCAF8dZKljdPR8Vo1+g0Xckeq2u07mGmko28QB860omdAi6q2HnsPhwiAvsHTjc/uw7dfP2TvoRARkZkYnM1wz2wvg6tSgY1LEya1nyBvNyyMDbDpvLOTtR14+KMT0DJDYXX55a0AAFeVAkeq2+07mGlkR3ETNIZ/j6fqO+08GiK9z4/X43BlO7YXN6KrX2Pv4RDRFKhu68HqJ7ZiP5uzTXsMzmawenUf3jtcjeuyYxDi4zbp/a2bE4YTtR2obe+1wujO9/bBKry0p5zBgw3kl7chPsgTC2L9mTkzw5bCRvi4qwAwOCPHoNVJ/PmrYni7qTColdhd2mzvIRHRFHjii1Mob+nBZ8fr7T0UmiQGZzPYC7vPQKuTuHNFolX2ty4tDACwuajRKvs717FqNQBg26kmm+x/ppJS4mBFGxbGBSIzxh8n6zrQr+GadRPR6iS2nmrEurQwxAR6oKiBwRnZ3/+O1KKksQuPfGMevN1U2Gqj38dE5DgKqtrxYUEtlAqBvaeZOZvuGJzNUOqeQby+rwKXZ0QiNsjTKvtMCvFCQrAXNtlg3plGqxtqNrLtFC82rOlMczdaugeQEx+A+TH+GNRKFNYx0JjI4co2tPUMYk1qKFLCfJ0+c9beM4AH3jqCk2z647AGtTr8ZVMx0iJ8cUVGJFbMDsbWU+yiS+TMpJT43ccnEezthntWJeJUQydauvrtPSyaBAZnM9Rr+yvQPaDFPauSrLZPIQTWpYVi7+kWq89zON3Ujd5BLWaFeuNotRpNnfzFYy355W0AgOz4AGTG+AMACirb7Dii6WFzUSNUCoGVySFIDffBmeZup804qnsG8a3n9+PdQ9VcC8+BvXuwGhUtPfjRRclQKARyU0PR0NGPk3UMqImc1efH65Ff0YYHLkrGWkMF0/4zrXYeFU0Gg7MZqG9Qixd3n8Gq5BDMifS16r7XpYVhQKvDzmLrlh4eNcwzu3/NLAD6RgxkHfkVrQjwdEFSiDfCfd0R6uOGI4YSUhrb5sIG5MQHws/DBSnhPtDqJE43Ot8yBOreQax/YT+K67sQ5OXKC30H1a/R4snNJciK8cea1FAAwOqUEABgaSORk+rXaPHo50VICfPBddkxSI/yg6erEvvYFGRaY3A2A719sBrNXQO4d7X1smZGC+MC4O/pgq+s3LXxWI0aXq5KXJYegRAfN2xlaaPV5Je3YWFcAIQQEEIgM4ZNQSZS1dqD4oYurE3TXwSnhvsAAE41OFfg0tk3iA0vHEBhXQf+dfMC5KaG4mStmmVyDui/+ytRq+7Djy9OgRACABDq4470KD9sYXBG5JRe3VuBipYe/OKyNCgVAi5KBXLiAznvbJpjcDbDaLQ6PLPjNObH+uOChECr71+lVGBNSii2FjVCo7XeAqhHq9WYG+UHlVKBVckh2FnSbNX9z1QtXf0oa+5GdvzZfwtZMf4oa+6GumfQjiNzbMaLXWMJSXywF1yUAkVONO+sq1+DjS/m4XiNGv+4aQHWzQnD3EhfNHcNoJFlxQ6ld0CLf2w9jcWJgViaFDRiW25qKA5XtaO1e8BOoyMiW2jrHsCTm0uwKjkEK5NDhh5fnBiEksYuTv+YxhiczTCfHq9HVWsv7lmVNHR31drWzQlDW88gDlW2W2V/g1odTtZ1ICPKDwCQmxIKde8gCpjdmbT8CsN8s7iAoccyo/0BAEdr2u0woulhU2EDEoP1DXAAwEWpQFKIt9M0Benu1+DWFw+goKodf79xPi6eGw4AmBup/z94opZlr47k5b3laO7qx48uSjnv9/qa1FBIyVJwImfz5JYSdPVr8IvL0kY8vsRwg2b/GWbPpisGZzOIlBJPbTuNpBAvXGi4428LK2YHw0UprLYgdXFDJwY0OqRH6y8Ml88OhlIhpqSlfne/Bg++exQNHX02P5Y9HKxog6tKMfSzBYCMGP330620cVCrw3M7y4YW1LaVrn4N9pe1DpU0GqWG+zhFcNYzoMFtL+XhYEUb/nZDFi5NjxjalhahL988UeNc5ZvTWWffIJ7efhqrU0JGZMCNMqL8EOTlytJGIidyprkbr+6twPU5sUgO8xmxbV6kL7zdVCxtnMYYnM0gO0qaUVjXgbtXJUGhsE3WDAB83F2wODHIai31j9fo79JnGDI6fh4uWBgbMCXzzjYXNeKNvCp8VOCcHeryyluREeUHN5Vy6DFfdxckhXhNq8xkbXsvbnhmH373SSH+uqnEpsfaVdKEAa0Oa1JH3uBICfdFnbpvWpeD9g5occfL+cgrb8Vfrs/C5RmRI7b7uLsgLshzaFkLsr/nd51Be88gHrgwZdTtCoXAqpQQbC9uYik4kZN49LNCuKkU+OGFyedtUykVyIkPYFOQaYzB2Qzy1LZShPu646qsKJsf68I5YShr7sbppq5J7+totRo+7irEBZ5dj21VSghO1Hag0cYZLWPXyQM2zsbYQ9+gFsdr1KPebc+M8UdB1fRo/LC1qBGXPbkTRXUdyIj2Q0FVO7Q62417c2EjfNxVyI4PGPG4sSlIceP0zJ71DWpx16v52FvWgj9em4krx/g9MTfSlx0bHURb9wCe33kGF88NG5H9PteaVJaCEzmLfWUt+OJEA76dOwshPm6jPmdxYhBON3Xb/BqJbIPB2QxR0tCJfWWtuGNFAlxVtj/txkYJ1sieHatRIz3Kb0S2LzdFX1K2zYbzKKSU2FnSDECfYdLZ8ILfHo5UtWNQK0fMNzPKivFHc1c/atWO+4tdo9Xh0c+KcOtLeQj388DH312BW5bEo6tfg9LGyd8UGI1OJ7H1VCNWp4TCRTny/1GKITibjk1B+jVa3P3qQewqbcbjV2fgmwuix3zu3Eg/VLb2oKNv+mYIncUzO8vQNaDBD8fImhmtmB0CpUKwtJHIwdS292J/WYvJN0J1OolHPilEpJ87bl+eMObzjPPO9nG9s2mJwdkMYbxYXXJOJy9bifL3wJwI30nPO+vXaFFY13HeXeG0CB+E+bphuw3nnZU2dqG+ow/ZcQFo7xlEqRWygINancMsVGxsBrJwlODM2BTEUeed1av7cOOz+/D09tO4cVEs3v/2UiQEe2FBrD8A4LCNFtE+Ut2O5q4BrE0NPW9bhJ87fNxVOFU//bJKD757DNuLm/DoN9NxbXbMuM81ro14kqWNdtXY2YeXdpfj65mRQzcGxuLn4YKFcQEMzogczMMfncD1z+zDVf/cjS1FDRMGaR8eqcGxGjV+fEkK3F2UYz5vToQvfDjvbNpicDZDGDMgkX4eU3bMdXPCcLCibVItnIvruzColciI8h/xuBACq5NDsaPEdvMothuycj+8SF/TfcAKd6B+8f4xZP92E/62Sd9lyZ7yy1sxK9QbAV6u521LjfCBq1LhkMHZ9uImfO3JnThR24G/3ZCFP3wzfehDKiHYC/6eLjhko+BsS1EjFOLs4r7DCSGQEjb9moJ09g3if0dqsXFpPK7PiZ3w+XMNwRnnndnXU9tOY0Crw/fXnT/nZDRrUkNRVN+JOnWvjUdGRKaQUuJQZRvmRvqipXsAt72Ujyv/uRubC0cP0noHtHj881PIiPbDlZnjT09RKRVYlBCI/Zx3Ni0xOJshatt74eGihL+ny5Qd88K0MOgkJnW31tjOPWOU+RSrU0LQ2aexWsv+c+0saUZiiBeWJAYh1McNeZOcd6bVSXxxogGuKgX+sqkYKx7bgmd3lKFvcOozaTqdxMGKNuTEn581AwA3lRJzIn0dao6KRqvDE18UYcMLBxDq44b/3b/8vHlRQgjMj/G32b+JTYWNyI4LhL/n+QEtoC9tLKrvnBZz9Yx2l7ZAo5O4ZF64Sc8P9XFHsLcb2+nbUW17L17fV4lrFkQPLecwkTWGbO/WIvu31P/sWB0+OVpn72EQ2VV1Wy+auwZww6JYbP3Rajx2dTraegZw+8v5+Po/zg/Snt9Vhjp1H37xtTSTmrotTgxCWXO303abdmYMzmaIOnUvIvzdbba22WjmRfkizNcNW4osL208Vq2Gv6cLogPOz/gtmx0MlULYpGtj36AW+8+0YOXsEAghkJMQiLxJZs6O16ih7h3E/10xBx/etwzzovzwyKeFWPXEVry6rwIDmqnrpFbS2IWOPg0Wxo29EHlWjD+O1aht2lzDFFJKnKrvxM3P7cc/t57GDTkx+OC+ZUgK8R71+QtiA1Da2AV1r3XnRNW296KwruO8FvrDpYb7oLNPg/pp9GG4vbgJ3m6qUctbxzI30pdljXb09y2lkJC4f+0sk18zO9QbUf4eDlHa+NjnRfjNxyem1U0MIms7bLj5OT/GHy5KBa7PicWWB1bj8aszoO4dHArSNp1sQGNnH57adhoXzw3DBYmmTU8ZmnfG7Nm0w+Bshqhp75vSkkZAn8VYkxqKHcXNFgceR6v1zUBGCyp93fXzKGyx3tnBijb0DeqwYnYwAGBRfCBq1X2obuuxeJ+7SvXNRZbNCkZmjD9evf0CvHHXYsQEeOJXHxzH2j9vwzsHq6ckGMqv0AeaY2XOACAzxg89A1qUTHH3wUGtDocr2/DMjtO485V8LPjtV7j4rztwtFqNv1yfiUevzhi31n6BIciwdtbPeFE7XnCWEq4v+ZsuTUGklNh+qhHLZgWd1+BkPHMjfVHa2OUw8ydnkoqWbrydX4WbFsUiOsBz4hcYCCGQmxqC3aXNdj1vbd0DKG/pQUNHP041TI//J0S2cLiyDe4uiqFOvwDgolTgupwYbH5gFR6/Rh+k3fFKPtb+aTv6NTo8eGnaOHscKS3CF77unHc2HTE4myHq2nsR6e8+5cddkxqGrn6NRSWBfYNaFDd0Ij1q7BbRuamhKKzrQL2VuwruKG6Ci1JgseEOVY6h3fxkSht3lTQjLcIXwd5nW98uTgzC2/cswYu35sDPwwU/evsILv7rDnx6rM6m3SHzy9sQ7O2G2MCxL+6mqilId78Gu0qa8ZevinHTs/uQ8fCX+Ma/9uD3nxahpKET69LC8Pg1Gdj6o9X4xvyxuwgaZUT7QQjgUIV1551tLmxAbKDnmBk7AEgxLAY6XeadlTR2oVbdh9UpYweco5kb6QeNTqK43jZdMWlsf/mqGEqFwH25pmfNjNakhqJ3UIv9Zfbr4FZQ3T70/Q4bdtu11AeHa/D6/gp7D4OmmJQS1zy1B3/84tSUHbOgqh0ZUf5QjXJjzEWpwHXZ+iDtiWsyEOHnjvtyZ5lcxgwASoXAooQg7LUwc6bR6uwy7YIAlb0HQLY3oNGhqasfEVOcOQOAZbOC4KpSYHNhI5bNCjbrtYV1HdDo5KjzzYxWp4Tg0c+KsL240aRmBqbaUdKMhXEB8HLT/xdJCfeBj7sKB860mRQgnKt3QIuDFW3YuCz+vG1CCOSmhGJ1cgg+P16PP31VjG+/fgj3rk7CTy9JnexbGVV+RSty4gPGLXOND/KCr7sKBVVqXJ9j3eMPaHTYUtSIt/Or9Ivj6iQUQn+n7/qcGOTEByInPgChvubfUPBxd0FKmM9QyYg19AxosPt0C26+IHbcn5mfpwvCfd2nTXC2zVASvCr5/AYn4znbFEQ97vpaZF0natX48Egt7lmVZNH/jSWJwXBTKbClqBErzTzn1lJQ2Q6FAKIDPLG9uAl3rUyyyzjG8u8dZTjd1IVL5oYjyHv0NaTI9qSUUzoNo7K1B/kVbThc1Y4rsyIxO2z8DqiT1a/R4kRNx6jXBMO5KBW4Njtmwi66Y1mcGIhNhQ2obe9FpL9514A/ffcYCus68On3Vlh0bLIcg7MZoKGjD1LCLpkzT1cVliYFYeupRvzfFXPMeu2xGn3DgXRDBmc0KWE+CPd1x9aiJqsFZ42dfSis68CPLz67dpBSIZAdF4ADZyy7A7X/TAsGtDosHydAFULg0vQIXDQ3HPf/9xBe3VuB+3JnwdvNuv9NGzr6UNXaiw1L4sd9nkIhkBnjb9XM2an6TryVX4UPDtegpXsAIT5uuHVZPJbNCsaCuAD4ulunYc382AB8fLQWOp00aeL0RHaXtmBAo8Pa1LAJn2tsCjIdbC9uQnKYt9kf2rGBnvB2U7Fj4xR7/PNT8HV3wT2rLAtoPFyVWJIUZAjK51p3cCYqqGpHcpgPVswOxst7KtAzoIGnq2Nciuh0EmeauzCg0eE/+ytx/9rZ9h7SjNTQ0YeL/rIDQV6umBflh4xoP6RH+WFulJ/VPw+NjNMOXJQCv/2kEC/fmmPT4LCwrhMDWh3mx/jb7BjAyHln461fea7Sxi68d7gaAvpA0k019lQCsj6WNc4Ate361snmXoBZy5rUUJxp7kaZmeuEHa1WI8jLFZF+YweVxnkUu0qbMWillvq7DAtPn5tNWJQQhNNN3Wjp6rdon65KxVB55HiUCoE7VySiq1+D9w5Vm32sieSX68v9TBlLVow/TjV0onfA8tIGde8gXt1XgSv/sQsX/3UHXtlbjpz4QLywMRt7H1yDX1w2B6tTQq0WmAHA/Fh/dPZpUNZsnbK7LUUN8HZTYVHCxD+z1HAfnG7sstq/R1vp7tcg70yb2SWNgD5wT4vwYcfGKbTndDO2Fzfhvtwk+HlY/n9lTWooylt6zP59bA1SShRUtSMrxh8rk0MwoNU5VLOCuo4+9A3q4KIUeGVfBedU2snBijaoewcR7ueO/PJW/O6TQlz/zD6kP/wF1v5pG77/xmE8v+sM8spb0TNgnSVpdpc2I8LPHT++OBU7ipts0mhsOONanPNjTW/EZIm0cF/4ebiY/f/sn1tLISWgk0BVq+Vz7ckyDM5mgDrDfCx7lDUCQK7h4s/cLmHHa/QlUxPdvVqVHIqufs1Q0DFZO0uaEejlijkRviMeX5Sg/yWaZ8FxdpU2Izs+AB6upt19mh8bgMxoP7y0p9zqc8/yylvh4aIcWkx4PJnR/tDqJI5bcBG+v6wF3/3vYSx6ZBN+9cFx9Gt0+NXlc7DvZ2vx9PqFWJMaNmqtvTUsMHzgHapon/S+pJTYXNiIlcnBcFVNPN6UcB8MaHWoaOme9LFtac9pfTZ3tYXlbXMj/VBU32n3bp4zgZQSj31WhAg/d9wyQcZ7Ipb+PraGM83dUPcOIivGHznxgXB3UWBHcfOUj2MsxoD1jhWJaOrsZ7t/OzlZ2wGlQuCFjTnY87O1yPvFOry4MQc/WJeMhGBv7C1rwW8/Polrn96Lxb/fDHXP5DrzanUSe063YNmsYNyyJA5JIV747ceFNu2gfLiyHeG+7ggf5+azNSgUAhckBJo176y8uRsfFtTgAsPNyLImx/4sc0YMzmaAmqHM2dSXNQJATKAnUsJ8sLnQ9IuB3gF9M5CMcZqBGOk7zQlsK578xYZOJ7GzpBnLZwWfVw6XHuUPN5XC7KYgjZ19KKrvxPLZ5s2527gsHmVN3UPlFtZysKINWYbWvRPJiNH//M0tbcwvb8X1z+zDtlONuD4nBv/7znJ89r0VuH15wpTM40gM1s+Xs8Zi1MdrOtDY2W9SSSOgD84Ax+/YuL24EZ6uSmSbkEEdzZxIX/QMaFHu4EGoM/jseD2OVKvxgwuTx+1UaoqYQE/MCvW2SZfbiRg7qGbF+sPdRYnFiUEO1RTEeBG6YUk8ZoV64/ldZ9ju3w4K6zqQFOI19G89xMcNuamh+O7a2XhuQzb2/3wdDvx8LX7/jXR09Gkm/dl/srYD7T2DWD4rGC5KBX51+Rycae7Gy3vKrfBuRldQ1Y75sf422/9wS5KCUNXaa3K36X9uLYWLUoFHvpEOAPwdbwcMzmaAOnUv/D1d7FrXvyYtFHnlrejoM+0O18k6NXRy/PlmRj7uLsiOC8Q2KyyuWlTfieau/lEny7uqFMiK8Tc7ONttCK5WzDIvQ/G19AgEe7ta9QOiu1+Dk3UdyB6nhf5woT7uiPL3MLst/d82lyDIyxV7frYWv7lynkkZUGtSKATmxwbgsBUWo95c1AAh9M1nTJEU4g2lQjh0UxApJbadasLSJNOygaM52xTEsnlnX56ox8/eO8rM2wQGtTr88YtTSA7zxtVmzBkZz5rUUOw/04KufuuUhJmqoKodXq5KzA7V38BYlRyCsuZuhymbKmvqgperEmG+brhtWQJO1HZYVClBk1NY14G0iPErO0J93XFDTgyCvFzNuvE7GuMN0KWz9POzVqeEYk1qKJ7cXIKmTvOnMUykpasfla09yLLxfDMjY9fpfSZ0aa1q7cF7h2tw0wWxmBXqjQBPF5xpZnA21RiczQB17X12K2k0WpsaCo1OYqeJJSxHq/VldON1ahwuNzUEpxo6h+bXWWpHiT7AWzFGlmtRQiBO1Hag24yLml0lLQjwdBm6mDWVm0qJmxbFYsupRlS2WOfipaCqHVqdNCtbkhnjhyPD2l9P5GBFG3aWNOOulYk2m7xtigWxAShu7DT5hsBYNhc2Yn6Mv8kZP3cXJeKDPB06c3a6qRvVbb0mB5yjmR3qAxelsHje2b+2ncZ/D1Th+V1lFo9hJngrvwplzd348cWpUFqhuQ2gv9EwqJVD82unSkFVO9Kj/Ybeh/Em2HYHyZ6VNXcjMcQbQgh8Y34U/D1d+O9zirX3DKBW3TdhcAbob8LlpoZi26lGaCYxx3d3aTNSwnwQ6nO2uugXl6Whd1CLP31p/db6xpudtp5vZpQS5oMAT9Pmnf1r22koFWKo6VBCsBeDMztgcDYD1LT3IspOJY1G82MD4O/pgs1FDSY9/1i1GqE+bggzsV20sanBZEt1dpY0ISXMZ8zj5sQHQquTJpfLSSmxq7QJS0cpkzTFzYvjoBQCr+wtN/u1o8krb4UQMKucIjPaH1WtvSY3QnlycwkCvVzxrcVxFo7SOubH+kPKya3T1tDRh2M1aqxNM62k0Sg13NehM2eWttAfzlWlQHKYD05akDmrU/eioKodPm4q/PHLYpRwMeJR9Qxo8LdNJciOC8C6cRY/N1dOfCB83FRD/w6mQt+gFoV1HciKOXtBmhjshegAD8cJzpq6kRSiX0fKw1V/c+zLkw1WuzlGEyus0/8uMCU4A/Q3fjv6NDho4bqWfYNa5JW3nrfUT1KINzYujceb+VU4XmPdxkeHK9uhVIhx13C1Jv28s6AJF6Ouae/FOwercENOzNA1UHywF8qb+e9/qjE4mwHq1PbPnCkVAquTQ7DtVJNJZUxHa9QmZ80AYHaoN6L8PSZ1sdE7oEXemTasTB57btiCuAAoBJB3xrTSxtLGLjR09GOFmWu8GYX5uuOSeeF4M7/KrGzdWA5WtCE13NeszojG0gtjNnM8BVXt2F7chDtWJAytEWcvWbH+EAKTKm00Nk1Ya+aFcUq4Dypbe8w+Z23dA1jzp2344VsFNi312l7chKQQL8SMswi5KeZE+OJEbYfZ83I+P14PAHh+Yw683VR44O0jDt/d0h5e3F2Oxs5+PHhpqlXLgl2UCqxIDsbWU41TNqfqRG0HBrVyRCmXEAIrk0Ow93SLTZsvmKJ3QIua9l4kDltk/pYl8VAKgZetdHOMJlZYp7/ZkxZh2jpjK5JD4KIUFje4OVTRhn6NDstnB5237f61sxHo6Yrf/O+kVf+fFFS1IzXcx+QGYdawJCkINe29436uPL3tNACMWKojMdgL9R19VuuKSaZhcObkuvs1UPcOIsLOmTMAWJMWhtbugQnnL3X1a3C6qQvpUf4m71sIgVUpIdhd2mzxh7xxLbIVs8fOJni7qTA30g/7TQzOdhrKhsxtBjLcrcvi0dmnwfuHayzeBwBotDocqmhDdpx5pRTzovygEDBp3tmTm0vg7+ky6Y5y1uDr7oLZod6TagqyubARUf4eSDFzQVJjU5CSRvPalX90pBZlTd34+Egd1vxpGx7+6ITV5zz0Dmix/0yrRS30zzU30het3QNo6DBvjJ8fr0dymDcWJQTid1fNw9FqNZ4yXBiQXlv3AJ7edhrr0sIsbtoyntUpoWjo6J+yterOlnL5j3h8VXIIuvo1VmneMxnG0q1EQ+YMAML93HFZRgTezKtC5yTLo8k0hXUdCPZ2HVFiOB5vNxUWJwZhU6FpVTnn2lXaDJVCYFHC+cGZn4cLfnRxCg6Ut+KTY9bp3KnTSRwxLCcxlYzzzsbq2liv7sObeVW4ZmHMiGWX4oP1/x+YPZtaDM6cXJ1aPwcryk5rnA23anYIlAqBLROUNp6oUUNK0+ebGeWmhKJ7QIt8Mxt2GO0oboabSjHhWlY58YEoqGo3aQ2cXaXNiA/yRHSA5RmKBbEBmBfli1f2lk/q7l1RfSe6B7QmNwMx8nJTITnMZ8Lg7Fi1GluKGnHH8gS7zjUbbn6MvimIJT+3vkEtdpc2Y21aqNlZi1RDcHaq3rwL33cOVmNOhC92/CQX1yyMwav7KrDqia344xenJj13zmhvmf4GxmTmmxnNNZTlmDPvrLmrH3nlrbhkbjgAfeObr2dG4snNJU65bpqUEm/lV6HYzNLNf24tRfeABj+5JMUm4zKe/6kqbSyoakeEn/t5JeNLk4KgUgi7d200romYGOw94vHbliWgq1+Dt/Otv+Ykna+wfuJmIOdakxqK003dKLdgbtTu0mbMj/Uf8zPruuwYpEX44g+fFk1qvU+j001d6OzXTNl8M6PkMG8Eerli3xiljf/ecRo6KfHt1SMXuE8wBGecdza1GJw5udp2+65xNpyfpwuy4wKwZYKuiscM9d3zzKzHXpoUBFelwuLFI3eWNGFRQuCEraoXJQSgX6ObsA59QKNfYHUyWTNAnxXcsCQexQ1dE9aMj8cYtFpyFz4z2h9HqscPcv62uQS+7ipsWBpv6RCtbkGcP9S9gyiz8EO7d1Br9nwzAIgJ8ISHi9KspiCn6jtxrEaNqxdGI9zPHX/4Zjq++sFKrEkNxT+2lmLFY1vx7+2n0Tc4uQuE7aea4OGiNGkR8omkRfhCCPM6Nn55ogE6CVwyL2Losd9cORcBXq544K0jTrfw7182leAn7xzFZU/uxJObS0wq36xu68Ereytw9YJoJJuZtTVVqI87MqL9pmy9s4KqtlHnuvq4u2BBXIDd550Z2+gbL0aNMmP8kR0XgJf2lLOzqI1ptDoUN3RZFJwB5q/dp+4ZxNEa9XnzzYZTKgQeumIOatp78cyOyTeHMZbZT3XmTAiBxYmB2FfWct7neGNnH/6zvxLfmB91Xql7fJAhc8Z2+lOKwZmTM3YvjLDxQoemWpMaisK6jnG7Kh6tViPSzx0hPuath+XlpsKihECLmoLUqXtR0tiFleOUNBoZL2oPnBm/DOdwZRt6BrRYbmYL/dFckRmJQC9XvDiJtvr5FW2I8HO3KIuaGeOP9p5BVI5Rr368Ro1NhQ24fXkifMyYz2Zr84cWoza/ZOq/B6oQ5OWKxYnmBzEKhUBymLdZTUHePVQNlULgyqzIoccSQ7zxj5sW4OP7l2N+rD/+8FkRVj2xFa/vr7B4jta24iYsSQqa9HpZgL6kKD7Iy6yM1+cn6hEX5DliTom/pyseuzodRfWd+NumkkmPa7LUvYMmN8AZzzsHq/Hk5hJ8Y34ULp0XgT9/VYyv/2P3hDd2/vJVCSCAH1yYPOkxjCc3JRSHq9rR2j1g0+O0dPWjqrV3zAvSVckhOFHbYZO25aYqa+pClL/HqPOAbluegMrWHmy2sHSOTFPW3I0Bjc7k+WZGcUFemBXqbXZwtresGVICyyeYE744MQiXpUfgqe2lk+4IfbiqHb7uKiSecxNgKixJDEKtuu+8z/Fnd5RhUKvDfbmzznuNl5sKoT5uXIh6ijE4c3K16j4IAZuvQm8qY2OF8X6JHqtRI93Mkkaj1SkhKGnsMnmxRSPj3LAV4zQDMQrydkNSiNeE653tLm2GQugn4k6Wu4sSN+TEYHNhg0WNIqSUyC9vs3juSqZhMeqxShv/vqUEPu4qbFwWb9H+bWVWiDd83FU4bGbHxuq2HmwpasANi2LgprIsiEkJ9zE5ONNodXjvUA1yU0MRPErL/nlRfnjp1kV4867FiA7wxC/eP46L/7oDjZ19Zo3pTHM3Klp6rFLSaGRsCmIKdc8g9pQ245K54eeViq5JDcN12dF4evtpHLbD/KPufg0+LKjBHS/nI+d3m7DkD1vw2STmmewpbcaD7x7FsllBePyaDDx543w8e0s2Wrr6ceU/d+Oxz4tGzYIW1XfgvcPV2Lg0fsTcD1vITQ2FlLYvbRxafDpm9FIuY9fQnSX2y57p2+iPfsF80ZwwRPl74IXdZ6Z4VDPL2WYg5mXOAH3Xxv1nWsyaG7irtBlerkpkmpDFevDSVEgJPPZ5kdljG+5wZRuyYgMs6t48WWfXOztbgdPS1Y/X9lXiqqyoofll50oI9mLmbIpNGJwJIWKEEFuFEIVCiBNCiO+ds/1HQggphJhc7RbZRF17L0J93OCidIw4PCnEG7GBnmMGZx19gzjT3G1xi1lLW+rvKG5CqI+byY0fFiUEIr+8Fbpxylx2ljYjM8Yffh7WySR9a3EchBB4bV+F2a+tae9FfUef2c1AjFLCfODuosCRqvPv+BfWdeCLEw24dVmC1d6rtSgUAlkx/mZnzl7fXwkAuOkCy5cDSAn3RUv3AJpNyMDsLGlGc1f/hIsMX5AYhHfuWYJnb8lGdVsvfvO/k2aNyXgRvjrZem3Z50T6orqtF+reiS+KNhU2QKOTuGRe+Kjbf3X5HET4eeCBt45YZX7HRPoGtfj8eD3u+88hLPzdV/jeGwU4XqPGLUvikB7th/v+cwj/PVBp9n5LGjpx92sHkRjihX/dvHDo9++Fc8Lw1Q9X4eoFUXhq22l87cmdOFgx8ibP45+fgreb6ry5H7aQEeWH6AAPi96jOSZqHT4nwhdBXq52m3cmpURZU/eY2QyVUoGNS+Oxr6zVKedFOoqTtR1wVSqQFOI98ZPPsTYtzOy1+3aXtmBxYpBJ10cxgZ64a2UiPiyotXhee3e/BsUNnVNe0mg0K9Qbwd6uI6ZHPLfrDPo0Wnx7lKyZUUKwl0Xz+chyplyxawA8IKVMA7AYwH1CiDmAPnADcCEA2/5mJ4vVqnttfvfVHEIIrEkN1c/nGeXiy1jukx7tb9H+k0L06+Z8eqzO5CYQWp3ErtJmrJgdYnLjh5z4QHT0aXBqjEn+6t5BHKlqt7iF/mgi/T1w8dwwvJFXZfaFa365PjgxtxmIkUqpQHrU6ItR/31LCbzdVLh9WYJF+7a1+bEBKG7oRJeJbe37BrV4M68K69LCJtVI52xTkImzZ+8crEaAp8vQ3InxCCFw4Zww3J87Cx8frZuwwc5w24ubkBjshdigybXQH864uLop6519fqIeEX7uyBzj/7ePuwsevyYDZc3deOIL6y/+CgCDWh22nWrED98qQM7vNuGe1w5i3+kWXLswBm/dvQR7HlyDX14+B6/evggrZofgZ+8dM6uTZGNnHza+mAd3FyVe2Jhz3g0LPw8XPH5NJl65bRH6B3W45um9+PX/TqBnQIP9ZS3YUtSIe1cnwd/T1dpv/TwKhcBtyxKQV95m02xlQVU7UsLGbh2uUOhb6u8saR73hpetNHb2o6tfM6KN/rmuy4mBp6sSL+wqn7qBzTAn6zowK9TbopvJC2L1N0I3FZqWBa5u68GZ5u5x55ud697VSQj3dcev/3fSon+nR6vV0Enz1hm1JiEELkgMwr6yVkgp0dY9gFf2lOPyjEjMCh37335CsBdaugdMugFH1jHh/wApZZ2U8pDh+04AhQCiDJv/AuAnADhL1kHVtfch0gGagQy3Ni0U/Rod9padf4frmGEtLUszZ0IIrF8chz2nW/DoZ6aVH5yoVaO9Z3Dc9c3OZZx3NlZp497TLdBJYLkJc9jMsWFJPNS9g/iwwLy2+vkVrfB2UyE13PxyEaPMaH8cr1GPmOt0qr4Tnx6rx8al8fDzdKysmdGCWH/oJHDUxNLGT4/VobV7YNLLARjb6U/UFETdM4ivTjbgyqwouKpMvyi5e1USUsJ88Mv3j5sUePYNarH3dAtWTmLh6dHMjTStY2N3vwY7iptw8dzwcUt6ls0KxoYlcXhxz5kR5TfWUNrYhSV/2IKNL+Zh08kGXJoejldvX4T9P1+L3141D4sSAofG5umqwrO3ZOPrmZF47PMi/P7Twglv+PQMaHDHy/lo7R7A8xuyx+3SujI5BF/8YCXWL47Di7vLcfFfd+D/PjyBMF833Lp06m50XJcTAx93FZ7baZuSvaHW4RNckK5MDkZL98CUtfYf7nSToVPjGGWNgD6ovnZhNP53pNbscmIyTWFdJ+ZEWvYZpVIqsDolBNtONZrUuGVPqf53izkNuzxdVXjw0lQcq1HjYwtKng9X6W+AZFl489kaliQGob6jD+UtPXhh9xl0D2hx/5qxs2bA8Hb6zJ5NFbNuTwgh4gHMB7BfCPF1ADVSyiMTvOYuIUS+ECK/qcm+3ZhmGiklatW9DtMMxGhRQiA8XZXYPModrqM1akQHeCDQy/K7xnetTMT6xXH4944yPL194jvexlIac+6gRQd4IMLPfcz1znaVNsHLVWn1O2SLEgKRGu6Dl/aY11Y/v1zfKU05iTr3zBh/9Gt0IzJBf99SAi9XJW5f7phZM0DfTh+AyesovbK3AokhXlg2a3JzBYO93RDk5TphO/2PjtZiQKvDNQvHL2k8l6tKgT9cnY66jj780YQs076yFvRbqYX+cCE+bgj1cZswc7b1VCP6NboxSxqH++mlqYgL9MSP3zlicsbTFK/tq0BH3yCevSUbeb9ch8evycSK2SFQjXGn3lWlwF+vz8ItS+LwzI4y/OSdo9CM0YhFq5P43hsFOFajxpM3zkeGCRdg3m4q/ObKeXjzrsVQCoFTDZ34/rrkKV2c1ttNhZsuiMVnx+tssvB5WbO+dfhEpVzG9SV32GHembHZwXiZMwDYuCwBgzodXtvHYiFra+rsR3NXv0XzzYzWpIaipXtg1AqPc+0qbUaIjxtmj5MxGs3XMyOREOyFF3aZfzOjoLIdCcFeCJjE9c1kGeedfXmiHi/tLsfX0sMn7AjLdvpTz+TgTAjhDeBdAN+HvtTxFwD+b6LXSSmfkVJmSymzQ0Kse1FA42vrGUTfoM6hyhoBwE2lxIrZwdhS1HhegHGsWm32+mbnEkLg11+fiysyI/HoZ0V4Y4L5FDtKmjEvynfURgzjHSMnPhB5Z1pHDZJ2lTTjAhNr2c0hhMDGpfEoqu80eSFsde8gTjV0Ijtucq3TjRdXxsn9pY2d+ORYHW5ZGm/XD5uJ+Hm6ICnEa6iF8XiOVatRUNWO9Yb5fZNlSlOQdw5WIzXcZ6g80BwLYgNwy+I4vLy3fMKytO3FTXBTKYY+nK1pbuTETUE+P16PIC9Xk1r4e7qq8MdrM1Hd1ovff1polTFqdRKfHKvDmpRQXDgnzORGLwqF/vfJ99bOxtsHq/Ht1w+N2sjjkU8K8dXJBjx0+RxcOMe85RcuSAzCZ99biVduW4Trs2PMeq013Lo0AQohbNLwwvj/bv4EwVmwtxvmRfliuwXddierrKkb7i4KRPiOfyMzIdgLa1ND8fq+ikkvaUEjnW0GYvnSEauSDWupTlDaqNNJ7C5txvJZwWb/nlcoBDYsiUNBVbtZpcBSShy2w+LT50oK8UKIjxv+/FUxOvs1+E7u7AlfExvoCSEYnE0lk64chRAu0Admr0sp3wOQBCABwBEhRDmAaACHhBAT3xKlKWNs+Rrp71iZMwBYmxqGOnUfCuvOXri29wygsrUH6VH+k96/QiHwp2szsSo5BD9//9iYXde6+jU4VNE2dNfWHDkJgWjs7D+vLW1Vaw/KW3ombM9rqSuzouDv6YKXTWir39E3iJf3lENKIMfC+WZG0QEeCPJyxRFDcPb3LaXwcFHizhWJk9rvVFgQG4DDVRMvRv3K3nJ4uipxtZlZrLGkhPuguKFrzPkJpY2dOFLVjqsXRFscDP74klSE+7rjZ+8dG7e9/vZTTVicaJ0W+ueaE+mL0qauMS9Y+wa12FrUiIvmhpmcvc2OD8RdKxLxn/2VVlkDa19ZC5o6+/H1YUsVmEoIgR9cmIyHr5iDL0824NYX80Z0hXtp9xm8sPsMbl0Wj40Wzr30cFViZXKIXbq4hfu54+uZkXgzrwrqHuvOKymoaoePm8qkJg+rkkNwqLLNaguum6qsuQsJwd4m/exvW5aAlu4BfHSkdgpGNnMYg7M5k8ic+Xu6YmFcADZP0FL/VEMnWroHzKqWGe6a7Bh4u6lM+gw2qlX3oamz327zzYz0650FoV+jw4VzwkwqI3V3USLSz4MdG6eQKd0aBYDnARRKKf8MAFLKY1LKUCllvJQyHkA1gAVSynqbjpbMcnaNM8fKnAHA6lR9MDR8wWjj4tOTzZwZuaoUeOpbC5AV44/vvVEwahenfadboNFJrLBgoehFQ+udjcxg7S41tOWf5OLTY/FwVeL6nBh8ebJh1DVX9B3o6nDvaweR/btN+PNXxZgb6YsFFnZqNBJCIDNGvxj16aYu/O9ILdYvjptUCepUWRAXgNbuAZS3jF221Wa44LpqfhR8rbRWW2q4D3oHtagaY2mHdw7WQKkQuHK++QGDkbebCr+9ch6K6jvHXCS1sqUHZc3dVi9pNJob6QetTqJ4jAY5u0qa0T2gHbHwtCl+cGEyEkO88OhnRWaV8Y7mw4IaeLupTGq6MpaNyxLw1+uzkFfeipue3Y+Wrn58dbIBv/n4JC6cE4ZfXjZnUmO0pztWJKJnQIv/WLlzY0FVOzJi/EwKfFbODoFGJ4fmA02Vsqax2+ifa0lSEFLDffDCrjOT/jdJZxXWdSDCz33SjXDWmrCWqvEz2tLSdW83Fa7NjsYnx+rQ2GHa/ENjls3emTMAWJ0cAoUAvrtm4qyZUWKIFzNnU8iUzNkyAOsBrBFCFBi+vmbjcZEV1Kn1vzQcrawRAEJ93JEZ7TdiUc+jhmYg8yKtE5wB+vKoFzbmICHYC3e9mn/eOl07Sprg6arEQgsCl9mh3vDzcDmvKcjO0maE+bqN2/1ostYvjoOUcqitvtZQpvGTd44g55FNuOe1Q/oLyEWxeO/bS/Hx/cutkjHJjPZHSWMXHvusCK4qBe5c6fhZM+Bsd6zxylDePliFfo0OtyyxvH3+uVIMDVhGawqi1Um8f7gaq5NDEOozuez2ujlhuCw9An/bXIIyQ3OD4bYVG1rop1ivhf5wxpLMsUobPzteD193FZaYWVLp7qLErcsSUFjXMfT7wRL9Gi0+O16Pi+aGTfr/wVXzo/DsLdkoaezE1U/twXf/exjzovzwtxuyJjWn097mRPpi+axgvLTnDAY0li1wfq7eAS2K6juH5n1OZEFcALzdVFM676xfo0V1Ww+STFwUWAiB25YnoKi+c0RLcpqcwrrOSc03M1qbpi8pHi97tqu0GUkhXpO6cb1hSTw0Ojm07MpECirb4aZSTKopl7V8Y34Udvwk16z1ZOOD9MEZb0hMDVO6Ne6SUgopZYaUMsvw9ek5z4mXUpq+uARNiVp1L1yVCgQ5aGYjNzUUh6va0WJYB+pYtRrxQZ5W7/rn7+mKV29fhCBvV2x88QBKG89eKO8sacbixCCLFhpWKAzzzsrPXvDrdBJ7SpuxfJbpbfktER3giXVpYfjvgUr89uOTWPKHzbj5uf349Fg9LpoTjlduW4R9P1uLh78+FwtiA6w2lswYP0gJfHmyAd+6IM6seXr2NDvUB95uqjGbguh0Eq/tq8Si+ECrfngmh+kD9NHmne0qbUZDR7/VSigfumIO3FQK/Pz9Y+d9gG4/1YS4IM+hid3WFhPgCR831agdGwe1OmwqbMC6tDCzulEaXZkVCQ8XJd7Iszyjs/1UEzr7NPh6puUZyuFyU0Px6u0XoKV7AIFernhuQzY8XVVW2bc93bEiAQ0d/fiflUr2jteqodVJk7MFLkoFliYFYfuppim7CKxo6YFOTtwMZLivZ0bCx02F/x21fJFyWzpY0YamzonXV3QU/RotTjd1TWq+mVFSiBfigjyxpXD0JUYGNDrsL2u1uKTRKD7YC7kpoXh9fwX6NRPPPzxc1Y55UX4W/Q60NoVCjNtJdjQJwV7o7NOgpXvARqOi4ez/r4Rspra9D+F+7naZw2CKtalhkPLsgtHHatQWr282kVBfd7x2+wVQKRT41nMHUN3Wg6pW/Tonkyk/XJQQgDPN3UOtlU/UdqCtZ9BmJY3D3bosAW09g3h1bwWyYvzxz5sWIP+X6/Cn6zKxMnnsDnSTYVyfyk2lwF2rpkfWDACUCoHMGL8xm4JsL25CZWsP1lsxawboM7exgZ6jBmfvHKyGn4cL1qZZJ5sV6uuOn38tDfvKWvFWftXQ432DWuw53YJVVm6hP5xCIZA2RlOQfWUtUPcOmtSlcTS+7i64IjMCHxbUWty58aMjtQj0cp30BdlwOfGB2PzAKnx8//JJZz4dxarkECSHeePZnWVWCY4KDP/fJmqjP2IMKSGoae9F2RSVUBkzzeYsfOzuokRWrP95lRiOoG9Qixuf3Ye/biq291BMVtLQBY1OWiVzNrSW6ukW9Ayc//vicGUbege1VvldsHFpPJq7BvDJBEH6gEaH4zXqCZviOLIEttOfUgzOnFhde69DNgMxmhvpi1AfN2wpakRzVz9q2nuRYeH6ZqaIC/LCq7cvQveABuufP4APDuvXCpvMuk/GznPGRZ53lprflt9SS5KC8P63lyLvF+vwzC3ZuCwjwibNHoYL8HLFitnBuHd10rS7IF0QG4Ci+s5RP7Bf2VuOEB83XDzX+j2NUsJ9UHROO3117yC+PFGPr2dGWpS1Hcv12TFYlBCIRz4pHLphkFfeit5Brc3mmxnNjfRFUV3neWsMfXa8Hp6GZheWunFRLHoGtPiowPyMTne/BpsKG/C19HCrd08N9XF36E6l5hJC4I4ViSiq78RuK8z7KqhqR3SAh1kZ9pWG5kxT1bXxtKGNfoKJc86M5sf441R9x6i/T+ypoKodAxqdSe3kHcXZTo3WqVpYmxqGAY1u1LmLu0uboRCwStfaFbODMSvUGy/uHn9pm6L6DvRrdJgfO7l53/YUz3b6U4rBmROrUzveAtTDKRT6O1w7ipuGMhrm1EBbIi3CFy9szEGduhd/+qoYUf4eSJxEqde8KD94uCiHmoLsKmlGargPQnymptxvfmzAlC/+/OrtF+D765Kn9JjWsCA2AFqdxJGqkaV3lS092FbchBsXxdqk5CQ13AflLT0jOhl+crQO/Rrz1zabiEIh8IdvpqNPo8Ov/3cSgP4i11WlwJJE294wmBPhi95B7YgPb61O4ssT9chNCZ3UjYOsGH+khvvgvxY0q/jqZAP6BnX4emaUxcefSa7MikSIjxue2Tl6cxlzHK5sM7sBQkygJxJDvKZs3llZUzfCfN3g7WZeWWqWYXH7Y5OYC2kLeYbPoqK6zmnT7r+wrhPuLgrEB1mn7HpRQiC8XJWjzjvbVdqMjGh/+HlM/nNTCIENS+NxrEaNQ+Ms1XLYggyyo4kO8IBKIRicTREGZ05Kq5Oo7+hzyGYgw61JDUVnvwYv7DoDIWDRWk/myokPxFM3L4RKIZCbOrm5YS5KBebH+uPAmVb0DmiRX95msxb6NDnGi8TDVSPnnb22vwIKIXDTolibHDcl3AdancTpYY063j1Ujdmh3lbrTDpcUog37s+dhU+O1mFzYQO2FTfhgoRAmy9sPNfQyGf4vLODFW1o7hqwuKTRSAiBGxfF4liN2uyL4Y+O1CLSzx3Zk+xWOlO4qZTYuDQeO4qbJlyjbzyNHX2oVfdZ1J1u5ewQ7CtrmZLgoqy5C4nB5jdvMpZ4H3aw0sa8Cv3vN41OjtqIyBGdrFMjJdzXag11XFUKrEwOwZaihhEZrY6+QRypVlv1M/qb86Pg467CS+O01S+oakeojxsi/aZXtclwLkoFYgI92U5/ijA4c1KNnX3Q6iQiHLisEdCX/7kqFdhb1oLEYC/4WKmF+URyU0Ox+YFV+PnX0ia9r5z4QBTWd2BLUSMGtDosn4L5ZmS+AC9XJAZ74VBF+9BjfYNavJVfhYvnhiHcRh+cqeH6Se7GC92ypi4crGjD1QstX9tsInevSkJKmA9++u5RlDZ22XS+mdHsMG+4KhU4OWze2WfH6+CqUiB3Eu3rja6aHwU3lQL/NaMxSFv3AHYUN+GKzEiHnXvriG6+IBYeLko8O4nsmTFosWRdp1UpIegb1J3XCdfapJRmtdEfLsjbDXFBnkPz6hyBVidxqKJtaLmIo9OgtFFKicK6TsyxQjOQ4damhaGho3/EPNj9Za3Q6qRVpx14ualwfXYMPjtWh3r16G31jRlkWzYJmwoJwV4oa2JwNhUYnDmp2nZDG30HLmsE9L/YFifpa78zbNQMZCxxQV5W6bC2KCEQUgJ/31ICV6UCFyRMvpadbGN+bAAOV7YN3U396Egt2nsGsX5xvM2OGR/kBVelYig4e/dQNRRC387YVlxVCvzh6vShzlq2aqE/nItSgeRw76GLISklvjhej5Wzg80uGRuNn4cLLs+IxEcFteg2sTHIZ8frodFJXGGlLo0zhb+nK67NjsaHBTUmr+N0roKqdqgUYiijao7FCUFwVSmwwwqLj4+ntXsA6t5Bszo1DpcV41hNQQrrOtDVr8GVWZEI8nKd1PITU6VO3Qd176DV5psZrU4JgRDA5sKzpY27S5vh7qLAgjh/qx7rliXx0A5b2ma4NsP6mtN5vplRfJAXKlp62E5/CjA4c1LGBRgdvawR0C8aCQDpNmwGYkvzY/2hUggU1XdiYVyAzcvHyHLzY/3R0j2AqtZeSCnx6t4KzA71xuLEQJsdU6VUICnUG0X1+mYZ7x2qwYrZIQjztW1We0FsAO5emYT5sf5IsiAzYIm5EX44UauGlBJHq9WoVfeZvfD0eG66IAZd/Rp8fNS0xiAfFtQgMcRrSsqlnc3tyxOg0Um8vLfcotcXVLYjLcLXormGHq5KXJAQiO02Ds6MHSEtyZwB+qYg9R19qFOPveDxVDJmGnPiA5ER7TctMmfGZiBzrBycBXu7ISvGH1uKzrbU31XajEUJli2dM57YIE+sTQ3Dfw5UnleKawzeHWHx6clKCPZE76AWDR3TZ5mG6YrBmZMyflg4elkjAFyaHo5F8YFWayk+1TxdVZhrCCxZ0ujYFhjuXh6qbENBVTuO1aixfkmczctNUsN9cMqwaG2dus/qjUDG8uClqXj/28umrJxmTqQv2noGUafuw2fH66FSCKyz4v/rBbEBSA7zxn8OVE343Hp1Hw6Ut+LKzKhpX05kD3FBXrh4Tjhe21dpdkdCrU7iaHX7pC5IV84OQXFDl00Dn6E2+hbMOQOALMPvE0cpbcwvb0OUvwci/T2QHu2P0sYuk7PM9mIMzlKtHJwB+hu/R6rVaOzsQ726D6WNXVg+yzaVLbcti0dr98B5awQermqHQsAm84unWoLh/0lZc9cEz6TJYnDmpGrb++DtpoLvFM3hmoxQH3e8dc8SxFmpU5M9LIrXf0hPxfpmZLmUcB94uipxuLINr+6tgJer0qblhcOPW9/Rhxd2n4GPuwoXzgmz+THtwZihOlHbgc+P12FJUhD8Pa3Xat7YGORIVfuoC14P9/HRWkgJfD2LJY2WunNlAtS9g3g7v9qs15U2dqF7QDup4GyVYekHW5Y2ljV1w1WlQFSAZRUmaRE+cFUqHKIpiJQSeeWtyDF8FmVG+0EngZN156896EgK6zoRG+hpldLnc61J1f+e3VbUhD2nmwHYbpmbJUlBSA47v63+4co2JIf5wMsG72+qxQfrF64ub+6x80icH4MzJ1Xr4GucOZv1i+Pxg3XJmGfB/AqaOkqFQGa0P7YXN+Hjo3X45oLoKWlCk2JoCrKlqBFXZEbafD06e0mL8IUQwPuHq1He0jPpLo2j+cb8KLiqFHhjguzZR0dqkR7lN7R4KplvYVwgFsT64/ldZ85bv248BYaOqJY0AzGaHeqNMF83q6y3NpbTTd2ID/K0uEugm0qJuVG+DpE5q2ztQWNnP7INa28apwkccYDAcTyFdR1Is3IzEKO0CB9E+Lljc1EDdpU2I9DLFWnhtilxFkJg49IEnKzrQJ5h3VOdTuJIVbtTzDcD9D0MXFUKnGHmzOYYnDmpOnUfIhy8GYgziQ3yxPfWzWZHuGlgQZw/ylt6MKDVYf2SuCk5prFjI4ApK2m0By83FRKCvPDpsXoIAVw0x/rBmb+nKy5Lj8AHh2vGLLc709yNo9VqfJ2NQCbtzhWJqGztwZcn6k1+TUFVO/w8XCYVGAshsDQpGHtOt9isAUFZk2Vt9IfLivHH0Zp2aLQ6K43KMsaAYFGCPjgL9XVHuK87jtU4blOQngENzrR0W70ZiJEQ+rVUd5Y0Y2dJM5YmBdn0M/qq+ZHw83DBS3vOANDPaezo00zqJoUjUSgE4oM8cYaZM5tjcOak9JkzBmdE55ofo7+LuTgxEMlhtrlje65wX3f4uquQGOKF+U4wMXw8cwyljTlxgTZbjP3GRbHo7Nfg46N1o27/qKAWQgCXZ1qvGclMddHccMQGeprVVv9wZTsyrdA6fElSEJq7+lHaaP079YNaHSpbeyxuBmKUFeOPvkGd3dcUyzvTCj8PF8wa1nlS3xRkaoKz4zVq7C5tNus1p+o7ISVsFpwBwLq0MPQMaNHU2W/zNUg9XVW4IScGX5xoQE1771AzEGf6nR8f5MW1zqYAgzMn1DeoRUv3wLRe8JDIVnISApEU4oX7cmdN2TGFEPjV5XPwm6/Pc/rmFMbW6bYoaTTKiQ9AUogX3jhw/ppnUkp8dKQGi+IDWT1gBUqFwO3LE3Cosh2PfV6EAc34GaLufg2KGzqt0p1uqWGZlT2nrV/aWNnaA41OWtxG38jYZMjeLfXzKvTzzYZnhjKi/XCmuRvq3kGbH/8X7x/Dna/ko6XL9E5+hXX6gNbanRqHW5IUBHcX/aWureabDbd+SRykoa3+4co2+LipkDTJf2OOJCHEC5UtPWaVOZP5GJw5IeNCiBHMnBGdx8/DBZsfWI0Vs22/MPNw12bHzIhunmtSQzEvytemWStjY5BDle0oqh/Z8OBkXQdON3WzEYgV3bgoFtcujMZT207jqn/uHlqzbzRHq9XQSetkC6IDPBET6DHUzMGajIvpTjZzFh3ggSAvV7sGZ81d/Shr6h6ab2ZkXDv0uI1LG1u6+nG0Ro2eAS2e3XnG5NcV1nXAx02FaAsbspjC3UWJ3JRQzA71Rkygp82OYxQd4ImL5oTjvwcqsf9MKzJj/J1qukNCkBcGtLqh5ZrINhicOaGza5wxc0ZEUysl3Acf378CoT62/f3zzQXRcFWe3xjkoyO1UCkEvmbF9dVmOleVAk9cm4ln1i9EQ0cfrvj7Ljy7o2zUu+fGICXTSqVcSxODsa+s1ep36ifbRt9ICIGsGH8crmyzxrAskm+Yb5ZzTnBmbApi69LGnSXNkFI/t/aVveVo7R4w6XUn6zqQGuFj82qCx6/JwBt3LbbpMYbbuCwe7T2DKG3scpr5ZkbGeaTGNQLJNhicOaFaQ+YskiU9ROSkAr1cccm8cLx3qBq9A/qFX3U6if8V1GLF7GAEeFmvhT/pXTQ3HF/8YCVWpYTgkU8LceOz+1DVOrI5QEFVG+KCPBFopZ//0llBUPcODq2HZS1lTd0I8nKFn+fku7XOj/XH6aapKR8cTV55K9xUiqFgzCjAyxWxgZ44VtNu0+NvL25CkJcr/nbDfPQOak2an6jTSRTVddh0vpmRj7sLgrxtM/91NBckBA41gXKGxaeHMwZn5QzObIrBmROqM2TOwjnnjIic2I2LYtHRp8Gnx/SNQQ5WtqFW3Ycrs2y/dt1MFezthmfWL8QT12TgZG0HLv3bTryVVzXUUbGganKLT59rSaJx3pl1SxvLmrusNhcoy9BkyF5t6/PLW5EV4w9X1fmXdOnRfjhSZbvMmU4nsaO4CSuTQ5AS7oPLMyLx8p6Js2dVbT3oHtBOSXA21YQQuC93Fvw8XLAwzjna6BuF+LjBy1WJMwzObIrBmROqVfci2NvVaddSIiIC9B03E4K98F9DY5CPCmrh7qJw2kW+HYUQAtdmx+Dz76/AvChf/OTdo7jzlYM4XqNGQ0e/VYOzUF93zAr1tnpTkLKm7knPNzPKiPGDEPZpCtLdr8Hx2o7zShqNMqP9UNPea1ajDnMcr1WjpXsAq5L1c3i/u2aWSdkzYybUGYMzALgiMxIF/3ch/D2dK4MvhEB8sBeDMxtjcOaEatu5xhkROT99Y5AY5Fe0obCuA58eq8PatDB4uansPbQZITrAE/+5YzF+eVkadpQ04Rv/2g3A+qVcS5OCcOBMKwattJaYumcQLd0DVgvOfN31LeztEZwVVLVDq5PISRg9OEuP8gcAHLVRU5Btp5ogBLDC0Oxodphp2bOTdZ1QCCBlipYzsQdn7cwbH8x2+rbG4MwJ1bb3IoIljUQ0A1y9IBouSoEH3jqClu4BLjw9xRQKgTtWJOLj+5cjOcwHgV6uQ2vdWcvSpCD0DGhxtLrdKvs73axvBjLZBaiHMzYFsdWC2WPJK2+FQgALxmg8MS/KF0IAx2zUFGTbqUZkRPmNmNNlSvassK4D8cFe8HBlhc90kxjsharWngmX1SDLMThzQnXqPi5ATUQzQpC3Gy6aG46TdR3wcVdhdcrULpFAeslhPvjoO8ux/cer4aay7gX3BQlBEALYU2qd0kZrtdEfbn5sANp6BlF5ToMUW8srb0VquC983EdvbOLj7oLEYC+rBbbDtfcMoKCqHatSQkc8PjvMB5elR+CVcbJnhXUdNl3fjGwnPsgLOqmfN0i2weDMyXT0DaKrX8M2+kQ0Y9y0KBYAcOm8cKsHBmQ6pUKMGSRMRoCXK+ZE+Fpt3llZUxdUCmHVda+MpZxTWdo4qNXhcGU7Fo1R0miUEe1vk3b6O0uaoZMYmm823HfXzkbPoBbPjZI96+gbRHVbr9PON3N2CSHs2GhrDM6czNk1zpg5I6KZYUliEH58cQruy51l76GQjSxNCsLByjb0DWonva+ypm7EBnnCRWm9S6DkMG94uChxuLLdavucyMnaDvQMaJEdP35HwIxoPzR29qOho8+qx99e3AQ/D5dR5xgmG7Jno809K6rTL2LOzNn0lBCkD87YFMR2GJw5mbp2/S9fNgQhoplCodC3ro4Lsl6ZGjmWpUnBGNDocKhi8os9lzV3WXW+GQColApkRPvh8BRmzvLKWwGcv/j0uTKi9eufWbPVv04nsb24CStmB0OpGL3xxVjZM2fv1OjsArxc4efhwuDMhhicOZlatTFzxrJGIiJyDjkJgVAqxKRLG7U6ifKWHiRZcb6ZUVasP07Wqq2S3TNFXnkrYgM9EeY7/uf9nAg/KBUCx6zYsbGwvgNNnf1Yfc58s+GGZ8/ahmXPCus6EODpgjDfqVsYmqwrge30bYrBmZOpbe+FUiEQ6sPgjIiInIO3mwoZ0X6TXoy6pq0XAxqdVZuBGM2P8cegVuKkITNkS1JK5Je3TZg1AwAPVyVmh3rjiBXnnW071QQAWJkcPO7zhrJnu85mz07WdSAtwtdpW83PBAnBXpxzZkMMzpxMXXsfwn3dxywzICIimo6WJgXhSLUaXf0ai/cx1EY/xLpljYC+YyMAFEzBvLOy5m60dA8gZ4L5ZkaZ0f44Vt1utVb/24ubMDfSd8IbwclhPvhaegRe2q3Pnmm0Opyq72RJ4zSXEOyFWnXflGWJZxoGZ06mVs01zoiIyPksTQqGVieRd6bV4n0MtdEPtn7mLMzXHRF+7lMy7yzfON9sgk6NRunRfmjr0XdJnKyOvkEcrGgbtUvjaL675mz2rLylG/0aHYOzaS7e8P+Hi1HbBoMzJ1PbzjXOiIjI+SyMC4CrUjGp0sbTTV3w83BBoJerFUd21vxYfxRUTb5pyUQOnGlDkJeryUFmZrQ/AFilpf6e0mZodXLc+WbDpYSfzZ4Z5wymRfhMehxkP8aOjSxttA0GZ05Ep5OoV/chgs1AiIjIybi7KLEgzn9STUHKmrqQGOJls/lOWTH+qGrtRXNXv032b5Rf0Yrs+ACT30dKuA9clQqrLEa97VQTfNxUmB/rb/JrjNmzJ744BZVCYFao9ctKaerEB+vXCCxjcGYTDM6cSHN3Pwa0OkSyjT4RETmhpUnBOFnXMaL7nznKmrqt3kZ/uKwY2887a+zoQ0VLj0nNQIxcVQqkRfhMOnMmpb6F/vLZwWatE2fMnnX2aTAr1JuLxU9zPu4uCPZ2Y+bMRhicOSidTuIX7x/DI5+cNPk1xjXOWNZIRETOaGlSEKQE9p8xP3vW2TeIxs5+m3RqNEqP0retLzBj3tnnx+twywsHUK82bZHovHJ92aQ5wRmgn3d2vEYNnc7ypiDFDV2oU/eZPN9suO+umQ0huL6Zs0gM9kJ5c4+9h+GUGJw5qD9+eQqv76/E87vOoLbdtAm8dYY1ztgQhIiInFFGtD88XZUWlTYa12WyxRpnRh6uSqSG++CwifPOCus68P03C7CjuAk3PrvPpAAtr7wVHi5KzIk0L8jJiPJHZ78GZybRxGF7cSMAYFWK+cFZSrgP/nHjAtyXO8vi45PjiA/2ZFmjjTA4c0DvHKzGv7adxiVzwyEBvJFXZdLragyZsyhmzoiIyAm5qhTIiQ/EXguCM2OnxiQbtNEfLivGH0erJs5QqXsHce9rB+Hr7oKnv7UQTZ39JgVoeeWtmB/rb1ZZIQBkxPgBAI5NorRx26kmpIT5IMLC6ROXZURwvpmTSAj2RnNXPzr7Bu09FKfD4MzB7C9rwc/eO4rls4Lx95vmY1VyCN44UIlBrW7C19a198LdRQF/T5cpGCkREdHUW5oUhJLGLjR2mlYGaFTW1AWFAGKDPG00Mr35sQHo7NfgdFPXmM/R6SQeeKsA1W29+NfNC3DJvHC8fFvOhAFaZ98gCus6zC5pBIBZId5wd1HgiIVNQbr7Ncgrb8VqC7Jm5HwSDE1BWNpofQzOHEh5czfufu0gYgM98c+bF8BFqcDNF8ShsbMfmwsbJnx9nboPkX4eNutCRUREZG9Lk4IBwOzs2enmbsQEetq8GUVWjD8A4PA4TUH+ta0Umwob8cvL0pBtCLQWxgVOGKAdqmyHTpo/3wwAVEoF5kX6WZw523O6BYNaadF8M3I+xrXOJlMmS6NjcOYg1D2DuO3lPAgAL2zMgZ+HPvu1JjUUkX7ueH1/5YT7qGnvZTMQIiJyanMifeHrrjI7ONN3arTdfDOjxGAv+LqrxlyMekdxE/70VTGuyorEhqXxI7bpA7RFaOrsxw3P7D0vQMsvb4VSIcxqYz9cerQfjteqoTGhGudc24sb4emqHAomaWaLN6x1dqaJwZm1zfjgrG9Qa3LDDVsZ1Opw338Ooaq1B09/ayHigs5+eCgVAjcsisXOkuahycxjqVP3shkIERE5NaVCYHFikFlNQXQ6iTPNXUi08XwzAFAoBDJj/Eft2FjV2oPvvnEYKWE++P0300etdFkYF4CXb1uE5q6B8wK0A2daMTfSF15uKovGlhntj75BHUrHKbkcjZQS2041YWlSMFxVM/7SkaBfdzDSzx3lzJxZ3Yz+HyalxHX/3ovvv1kAKS1vLTvZMTz00QnsKm3G77+RjgsSg857zg05MVAqBP57YOzs2aBWh8bOfkQwc0ZERE5uSVIQKlt7UNVq2nyXuo4+9A3qbNpGf7j5Mf44Vd+B7n7N0GN9g1p8+/VD0Ooknv7WQni6jh1gjRagDWh0KKhqt6ik0Sg9Wt8UxNz1zsqau1Hd1sv5ZjRCQojXhIkDMt+MDs6EELh6QTQOnGnF7lLzOz9Zwwu7y/Gf/ZW4d3USrs2OGfU5ob7uuGhOGN7Or0LfoHbU59Sr+yAlEOXPzBkRETm3oXlnZaZ9dpcZMkW2XIB6uPmxAdBJ4FjN2SDooQ9P4FiNGn++Lmtovs54zg3QNhU2oF+jQ058gMXjSgjygo+bCkfNbAqy7VQTAHC+GY0QH8TgzBZmdHAGADcsikGknzv++OWpKc+ebS5swO8+OYlL5objxxeljPvcby2OQ1vPID47Xjfq9jpD2YOl7W2JiIimi+QwbwR5uZo070yj1eHLE/qmWrZc42y4zHOagrxxoBJv5lfhO7mzcOGcMJP3szAuAK/crg/Q7v/vYQCY1JwvhUJgXpT5TUG2FzchKcQLMYG27XRJ00tCsBfUvYNo6x6w91CcyoTBmRAiRgixVQhRKIQ4IYT4nuHxJ4QQRUKIo0KI94UQ/jYfrQ24qZT47trZKKhqx5aixik7bmFdB77738OYF+mHP1+fCYVi/A6LSxKDkBDshdf2jV7aaJw3x4YgRETk7IQQWJIUhD2nm8e9sZpf3orL/74Lr+6rwGUZEQjxcZuS8QV6uSIuyBMFVW04UtWO//vwBFbMDsYPLkw2e18LYvUBmoeLErNCvRHsPbn3kBHjh8K6TgxoTGsK0jugxb6yFqxKDp3Uccn5JBgywFyM2rpMyZxpADwgpUwDsBjAfUKIOQC+AjBPSpkBoBjAz2w3TNu6emE04oI88acviydcNNIaGjv7cPtLefBxd8FzG7LHrTs3UigEbr4gFgcr2lBY13He9lq1MThjWSMRETm/pUnBaOjoH/XCsKWrHz9++wiueXovOnoH8fS3FuIfN86f0qVm5sf4I7+8Dd9+/RBCfNzw5A3zoZzgRuxYFsQG4LPvrcAz6xdOelwZUf4Y0Opwqr7TpOfvO9OCAY2O883oPMby3HIGZ1Y1YXAmpayTUh4yfN8JoBBAlJTySymlcabrPgDRthumbbkoFfj+utk4WdeBz0/U2/RYUkr85J2jaO0ZwHMbshHma3owdfWCaLiqFHh9f8V52+ra++Dn4WJSoEdERDTdLU3SN9Aa3rVRp5N4fX8F1vxpO94/XIN7ViVh0wOrcMm88ClfAzQrxh8t3QNo6urHU99agAAv10ntLybQ0yrdJjMMTUFMXYx6+6kmuLsosCiBLfRppJgATygVgh0brcysOWdCiHgA8wHsP2fTbQA+s9KY7OLrmVGYFeqNP39VDK0Ns2fvHarBtlNN+OklqZgX5WfWawO8XHF5RgTeP1SDrmEdoAB9WSNLGomIaKaIC/JEpJ879p5uBgAcq1bjG0/twS/eP460CB989r0VePDSVLvdtFw6KxhKhcDvrpyHjGh/u4xhNNEBHgjwdDF53tn24iYsSQyCu4ttF++m6cdVpUB8kCeO11i2sDmNzuTgTAjhDeBdAN+XUnYMe/wX0Jc+vj7G6+4SQuQLIfKbmpomO16bUSoEfrAuGaWNXfjoSI1NjtHY0Ydf/+8EsuMCsGFJvEX7uPmCOHQPaPFhwcgx1qr7EMk1zoiIaIbQzzsLxt7TLfi/D4/j6//chZq2Xvz1+iz8987FmB3mY9fxJYf54NjDF+G6nNE7MduLEALp0f4mZc4qWrpxprmbXRppTCtmh2DP6Rb0DozeTZzMZ9LtJCGEC/SB2etSyveGPb4BwOUA1soxZuRKKZ8B8AwAZGdn22cxMRNdOi8caRG++OumElyeEQkXpfWaWUop8csPjqNfo8Pj12RM2ABkLAti/ZEW4YvX9lXipkWxQ2UadepeLIzzt9p4iYiIHN3SpCC8e6gar+2rwIYl8fjBhcnw83Cx97CGOOpUg8xoP/xrWzN6B7TQ6HSoau1FZWsPqtv0a8dVtvagqq0X1W36deRWp7AZCI1uTWooXtpTjr1lzViTanonUhrbhL81hP7q/3kAhVLKPw97/BIAPwWwSkpp2iqQDk6hEHjgwmTc8Uo+3jtUjetzYq2270+O1eHLkw342aWpk6oZF0LfGOSXHxzH4ap2LIgNQM+ABu09gyxrJCKiGeWSeeEobujEFZmRZk8VmMnSo/yg1UksemQTOs+ZJuHjpkJ0oCeSQrywOjkEGTH+Jq3LRjPTBYmB8HRVYktRI4MzKzHlls4yAOsBHBNCFBge+zmAJwG4AfjKkL3ZJ6W8xxaDnEpr00KRGeOPJzeX4qr5UXBTTb7GuqWrHw99eAKZ0X64fXnCpPd31fwo/OHTQry+rxILYgNQ265f4yySa5wREdEM4uWmws++lmbvYUw7y2YF45vzo+DuqkRsoCdiAjwRE+iB2EBP+Hm4THnzFJq+3FRKLJ8VjC2FjZBXSv7bsYIJgzMp5S4Ao/2kP7X+cOxPCIEfXZSM9c8fwJt5VbjFwrlhw/36fyfR0TeIx69ZDJUVSiW93VS4an4U3jlYjV9dnoY6Qxv9CM45IyIiogl4uanw5+uz7D0MchJr00Lx5ckGnGroRGq4r72HM+1Zb1KVE1k+KxiLEgLx9y2lk57g+OWJenx0pBb3r5mNlHDrTU7+1uI49Gt0eOdgNRegJiIiIiK7yDXMSdxc2GjnkTgHBmejEEI/96ypsx+v7Tt/TTFTqXsG8csPjiMtwhf3rk6y4giBtAhfLIwLwH/2V6KmvQ9CAOHMnBERERHRFAr1dUd6lB+2FjE4swYGZ2O4IDEIK2YH46ntp89bU8xUv/vkJFq6B/DENRlW7fxodPMFsShr7saHBTUI9XGzyTGIiIiIiMaTmxqKQ5VtaOsesPdQpj1ezY/jgYtS0No9gJd2nzH7tduLm/D2wWrcsyrRZh2kvpYeAX9PF1S09CCCzUCIiIiIyA7WpoZCJ/XXvzQ5DM7GkRXjj3VpYfj3jjKoewZNfl1n3yB+9u5RzAr1xv1rZttsfO4uSly7MBoAEOnPkkYiIiIimnrpUX4I9nbDZpY2ThqDswn88MJkdPZp8NyuMpNf89jnRajr6MPj12TA3WXyrfjHc9MFcQCAKDYDISIiIiI7UCgEclNCsP1UIzRanb2HM60xOJvAnEhfXJYRgRd2ncHppi70DmghpRzz+XtPt+C1fZW4fVkCFsQG2Hx8CcFeeGb9Qty6bPLrpxERERERWWJNaig6+jQ4WNFm76FMa6YsQj3j/WBdMj47Voe1f9oOAHBVKuDr4QI/DxX8PFxGfG0uakR8kCceuChlysZ30dzwKTsWEREREdG5ls8OhotSYMupRlyQGGTv4UxbDM5MMCvUGx/etxxHa9qh7h2EuncQHYY/1b2DaOrqR2lTF9Q9g1ApFfj3+oXwcLVtOSMRERERkaPwcXfBooRAbClsxM8uTbP3cKYtBmcmSo/2Q3q0bbouEhERERFNd2tSw/Dbj0+iqrUHMYGe9h7OtMQ5Z0RERERENGlrUkMBAFvYtdFiDM6IiIiIiGjSEoK9kBjsxeBsEhicERERERGRVeSmhmJvWQt6BjT2Hsq0xOCMiIiIiIisYm1qKAY0OuwubbH3UKYlBmdERERERGQV2fGB8HZTYUtRg72HMi0xOCMiIiIiIqtwVSmwMjkYW4oaIaW093CmHQZnRERERERkNbkpoWjo6MeJ2g57D2XaYXBGRERERERWszolFEIAW9m10WwMzoiIiIiIyGpCfNyQEe2PzQzOzMbgjIiIiIiIrGptaiiOVLejuavf3kOZVhicERERERGRVa1JDYWUwLZTTfYeyrTC4IyIiIiIiKxqbqQvwnzd2FLfTAzOiIiIiIjIqoQQyE0Jxc7iZgxodPYezrTB4IyIiIiIiKxuTWooOvs1yC9vtfdQpg0GZ0REREREZHXLZgXDVanAFnZtNBmDMyIiIiIisjovNxUWJwUxODMDgzMiIiIiIrKJNSkhKGvuxpnmbnsPZVpgcEZERERERDaxJjUMALCV2TOTqOw9ACIiIiIick6xQZ546+4lyIzxs/dQpgUGZ0REREREZDOLEgLtPYRpg2WNREREREREDoDBGRERERERkQNgcEZEREREROQAGJwRERERERE5AAZnREREREREDoDBGRERERERkQNgcEZEREREROQAGJwRERERERE5AAZnREREREREDoDBGRERERERkQMQUsqpO5gQTQAqpuyApgsG0GzvQZBV8Zw6H55T58Nz6nx4Tp0Pz6nz4Tm1vzgpZchoG6Y0OHNUQoh8KWW2vcdB1sNz6nx4Tp0Pz6nz4Tl1Pjynzofn1LGxrJGIiIiIiMgBMDgjIiIiIiJyAAzO9J6x9wDI6nhOnQ/PqfPhOXU+PKfOh+fU+fCcOjDOOSMiIiIiInIAzJwRERERERE5gGkVnAkhLhFCnBJClAohHhz2+JtCiALDV7kQomCM1wcKIb4SQpQY/gwwPH7zsNcXCCF0QoisUV7/uuH4x4UQLwghXAyPCyHEk4ZxHRVCLLDNT8A5OfB5TRVC7BVC9AshfmSbd++cHPic3mz4P3pUCLFHCJFpm5+A83Hgc3ql4XwWCCHyhRDLbfMTcD42PKcuQoiXhRDHhBCFQoifjfH6BCHEfsPr3xRCuBoe52eqhRz4nPLz1EIOfE75eWorUspp8QVACeA0gEQArgCOAJgzyvP+BOD/xtjH4wAeNHz/IIDHRnlOOoCyMV7/NQDC8PVfAPcOe/wzw+OLAey3989runw5+HkNBZAD4BEAP7L3z2q6fDn4OV0KIMDw/aX8v+oU59QbZ0v0MwAU2fvnNR2+bHlOAdwE4A3D954AygHEj/L6twDcYPj+aX6mOvU55eep851Tfp7a6Gs6Zc4WASiVUpZJKQcAvAHgyuFPEEIIANdB/8E9misBvGz4/mUAV43ynBvHer2U8lNpAOAAgOhh+33FsGkfAH8hRITJ72xmc9jzKqVslFLmARg06x2RI5/TPVLKNsPT9uHs/2EanyOf0y7DYwDgBYATqU1jy3MqAXgJIVQAPAAMAOgYZd9rALwzyuv5mWoZhz2n/Dy1mCOfU36e2sh0Cs6iAFQN+3u14bHhVgBokFKWjLGPMCllHQAY/gwd5TnXY+x/4AD0qWAA6wF8bsbYaHSOfF7JMtPlnN4O/d15mphDn1MhxDeEEEUAPgFw23ivpyG2PKfvAOgGUAegEsAfpZSt57w2CEC7lFIzyvH5mWoZRz6nZJnpck75eWpFKnsPwAxilMfOvUM65l1Xkw4gxAUAeqSUxyd46r8A7JBS7jRjbDQ6Rz6vZBmHP6dCiFzoP0w4P8k0Dn1OpZTvA3hfCLESwG8BrLN0HDOILc/pIgBaAJEAAgDsFEJsklKWmXh8fqZaxpHPKVnG4c8pP0+tbzplzqoBxAz7ezSAWuNfDGnZbwJ4c9hjLxomSn5qeKjBWBph+LPxnGPcgInv2j4EIATAD00dG43Lkc8rWcahz6kQIgPAcwCulFK2mPG+ZjKHPqdGUsodAJKEEMGmvKkZzpbn9CYAn0spB6WUjQB2A8g+5/jN0JcrGm8SDz8+P1Mt48jnlCzj0OeUn6e2MZ2CszwAsw1dY1yh/yD/aNj2ddBPBK82PiClvFVKmSWl/JrhoY8AbDB8vwHAh8bnCiEUAK6Fvp53VEKIOwBcDOBGKaVu2KaPANwi9BYDUBtTyDQhRz6vZBmHPadCiFgA7wFYL6UsnsR7nGkc+ZzOMsyLgNB39XMFwIuEidnynFYCWGP4TPSCvqlH0fCDG+YJbgVwzSiv52eqZRz5nJJlHPac8vPUhqQDdCUx9Qv6Dk7F0Heu+cU5214CcM8Erw8CsBlAieHPwGHbVgPYN8HrNYZjFxi+/s/wuADwT8O2YwCy7f2zmk5fDnxew6G/a9UBoN3wva+9f17T4cuBz+lzANqGPZ5v75/VdPly4HP6UwAnDI/tBbDc3j+r6fJlq3MKfQfNtw3n5SSAH4/x+kTom7uUGp7vZnicn6nOd075eep855Sfpzb6MrYfJiIiIiIiIjuaTmWNRERERERETovBGRERERERkQNgcEZEREREROQAGJwRERERERE5AAZnREREREREDoDBGRERERERkQNgcEZEREREROQAGJwRERERERE5gP8HiQmYs8DNt8gAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACm3UlEQVR4nOzdd3hb53k28PvFniQBkCDFLZGUZGtYkjW8LdnOHo5jO0njuHGbNNNp8mWnSZuu7DZJs5q4zWpip/WKsxMnsSx5SpZkDduSOCRK3AQIEnvj/f44OCBIEcQBcA4AQs/vunxZwjyiKOI853nf+2GccxBCCCGEEEIIqSxVpQ+AEEIIIYQQQggVZ4QQQgghhBBSFag4I4QQQgghhJAqQMUZIYQQQgghhFQBKs4IIYQQQgghpApQcUYIIYQQQgghVYCKM0IIIYQQQgipAlScEULICsUYC2T9l2KMhbN+f0elj68YjLFhxthNlT6O5TDGHmeMvVOh117LGPsFY8zFGPMwxv7AGFuXdf/bGWOHGWM+xtgoY+zLjDHNomOLZH0fnF70+jcyxk4xxkKMsb2Msa6s+xhj7EuMsZn0f19mjDEl/pyEEEKWRsUZIYSsUJxzi/gfgPMAXpd1272VPr7FsouIlfweCmsA8EsA6wA0AzgI4BdZ95sAfAhAI4BdAG4E8NFFr3F31vdBdmHXCOBhAH8PwA7gEID/y3reuwC8AcBlADYDeC2Ad8vzxyKEECIFFWeEEFJjGGMqxtgnGWND6Q7I/Ywxe/q+bsYYZ4z9FWNshDE2yxh7D2NsB2PsOGNsjjH2razXuosx9hRj7JuMMW+663Jj1v31jLHvM8YmGGNjjLF/ZYypFz33a4wxD4B/ZIz1MMYeSx+XmzF2L2OsIf34nwDoBPCrdNfn44yx3Yyx0UV/vkx3jTH2j4yxBxljP2WM+QDcleeYehlj+9J/FjdjLLs4yX4PQ/o1Z9Jfk+cYY82Msc8BuBbAt9LH+K3049czxv6Y7nadZoy9Keu1fsQY+276fn/6/buWel/O+UHO+fc55x7OeRzA1wCsY4w50vf/J+f8Cc55jHM+BuBeAFdL/NZ4I4AXOecPcM4jAP4RwGWMsfXp+98O4N8556Pp1/53AHdJfG1CCCEyoOKMEEJqz99C6IBcD6AVwCyAby96zC4AfQDeDODrAD4N4CYAGwC8iTF2/aLHnoHQrfksgIfFYg/AjwEkAPQC2Arg5QDeucRznQA+B4AB+EL6uC4B0AGhSADn/E4s7AB+WeKf92YAD0LoOt2b55j+BcCjAGwA2gF8M8drvh1Affr4HADeAyDMOf80gCcw3526mzFmBvBHAPel/5x/AeA7jLENWa93R/q9GwEcTR+nFNcBmOSczyxz/4uLbvtCuvB8ijG2O+v2DQCOib/hnAcBDKVvv+D+9K+z/wyEEEIURsUZIYTUnncD+HS6AxKFUPzctmjJ379wziOc80cBBAH8jHM+ne6YPAGhqBFNA/g65zzOOf8/AKcBvIYx1gzgVQA+xDkPcs6nIXR63pL13HHO+Tc55wnOeZhzPsg5/yPnPMo5dwH4KoQishTPcM4f4ZynANTlOaY4gC4Arek//5M5XjMOoSjr5ZwnOeeHOee+HI99LYBhzvkP03/OIwAeAnBb1mN+wznfn/77+DSAKxljHcv9oRhj7RCK6g/nuP+vAGwH8G9ZN38CwBoAbQDugdCF7EnfZwHgXfQyXgDWHPd7AVho3xkhhJTPSl+bTwgh5EJdAH7OGEtl3ZaEsIdJNJX16/ASv7dk/X6Mc86zfn8OQuerC4AWwETW+bsKwEjWY7N/DcaYE8A3ICwNtKYfPyvpT5Vb9nvkO6aPQ+hgHWSMzUJYxveDJV7zJxC6Zv+bXnb5UwgFb3yJx3YB2MUYm8u6TZN+jQuOkXMeSC/zbF107BmMsSYIHb7vcM5/tsT9bwDwRQA3cc7dWa99IOthP2aM/QWAV0PoEAYgFK/Z6gD4079efH8dgMCiv3tCCCEKos4ZIYTUnhEAr+KcN2T9Z0h3xYrRtqh70glgPP0+UQCNWe9TxznPXgq3+MT+C+nbNnPO6wC8DcJSx1yPD0IIwQAApPeONS16TPZzlj0mzvkk5/xvOOetEDqM32GM9S7+A6e7hP/EOb8UwFUQumN/meMYRwDsW/T1tnDO35v1mEyXjDFmgRDIMb74fdP32yAUZr/knH9uiftfCeC/ICz/PLHUa2T/UTD/9X0RQtiH+DpmAD2YXxa54P70rxcvmSSEEKIgKs4IIaT2fBfA58TQCcZYE2Ps5hJezwngbxljWsbY7RD2iv2Wcz4BoYj4d8ZYXTqIpGfRfrXFrBA6NHOMsTYAH1t0/xSEZXmifgAGxthrGGNaAJ8BoM/14vmOiTF2e3q5ICB07DiEruICjLE9jLFN6WLQB2GZo/i4xcf4awBrGWN3pr9GWiYErFyS9ZhXM8auYYzpIHTuDnDOL+iaMcbqAPwBwFOc808ucf8NEPar3co5P7jovgbG2CvSYSYaJoxTuC79egDwcwAbGWO3MsYMAP4BwHHO+an0/f8D4MOMsTbGWCuAjwD40eJjIIQQohwqzgghpPb8B4Q49kcZY34Az0II5ijWAQjhIW4IoR63ZQVU/CUAHYCXIBQ7DwJYtcxr/ROAbRD2M/0GQrR7ti8A+Ew6IfGjnHMvgPcB+G8AYxA6aaNY3nLHtAPAAcZYAMLX6IOc87NLvEZL+nk+ACcB7IOwtBEQvr63MSHp8huccz+E0JG3QOiGTQL4EhYWkfdBCFPxALgcQkDIUm5JH+NfsYVz7DrT9/89hKCS32bd97v0fVoA/wrABeHv6gMA3sA5Pw0A6T1+t0L4O5yF8D2RvT/wewB+BeAEgBcg/P18L8dxEkIIUQCjpeSEEEJyYYzdBeCdnPNrKn0sKxVj7EcARjnnn6n0sRBCCKlu1DkjhBBCCCGEkCpAxRkhhBBCCCGEVAFa1kgIIYQQQgghVYA6Z4QQQgghhBBSBag4I4QQQgghhJAqoCnnmzU2NvLu7u5yviUhhBBCCCGEVI3Dhw+7OedNS91X1uKsu7sbhw4dKudbEkIIIYQQQkjVYIydy3UfLWskhBBCCCGEkCpAxRkhhBBCCCGEVAEqzgghhBBCCCGkClBxRgghhBBCCCFVgIozQgghhBBCCKkCVJwRQgghhBBCSBWg4owQQgghhBBCqgAVZ4QQQgghhBBSBag4I4QQQgghhJAqkLc4Y4x1MMb2MsZOMsZeZIx9MOu+DzDGTqdv/7Kyh0qqxRlXAKcmfZU+DEIIIYQQQmqKRsJjEgA+wjk/whizAjjMGPsjgGYANwPYzDmPMsacSh4oqQ4zgSjefM+zsJt0+MP/u67Sh0MIIYQQQkjNyFuccc4nAEykf+1njJ0E0AbgbwB8kXMeTd83reSBksrjnONjDx6Hyx+FJxhDNJGEXqOu9GERQgghhBBSEwrac8YY6wawFcABAGsBXMsYO8AY28cY26HA8ZEq8uOnh/HYqWlcucaBZIrjjCtY6UMihBBCCCGkZkguzhhjFgAPAfgQ59wHoetmA3AFgI8BuJ8xxpZ43rsYY4cYY4dcLpdMh03K7eSED5//3SncuN6Jz77+UgDA6Ul/hY+KEEIIIYSQ2iGpOGOMaSEUZvdyzh9O3zwK4GEuOAggBaBx8XM55/dwzrdzzrc3NTXJddykjMKxJD7ws+fRYNTiy7dtxppGC7RqhtNTVJwRQgghhBAiFylpjQzA9wGc5Jx/NeuuRwDckH7MWgA6AG4FjpFU2L/85iUMTgfw1TdtgcOih06jwppGC/qpc0YIIYQQQohspKQ1Xg3gTgAnGGNH07f9HYAfAPgBY+wFADEAb+ecc0WOklTM71+YxH0HzuPd163BNX3zjdG1LVYcOTdbwSMjhBBCCCGktkhJa3wSwAV7ydLeJu/hkGoy4Q3jkw8fx+b2enzk5esW3Le+xYpfHRuHPxKH1aCt0BESQgghhBBSOwpKayQXj2SK40P/exSxRAr/8Zat0GkWfqusbbYCAAamA5U4PEIIIYQQQmoOFWdkSd/dN4QDZz34p9dvwOpG8wX3r0sXZ5TYSAghhBBCiDyoOCMXOHJ+Fl/9Yz9ed1krbru8fcnHtNuMMOnUVJwRQgghhBAiEyrOyAK+SBwf/N/nsaregM/dshFLjK4DAKhUDH3NVvRTnD4hhBBCCCGyoOKMLPAPj7yA8bkI/uMtW1CXJ+hjXbOFOmeEEEIIIYTIhIozkrG/34VHjo7jgzf24fIue97Hr222YiYYgzsQLcPREUIIIYQQUtuoOCMZfz45BaNWjXdfv0bS49e31AEADaMmhBBCCCFEBlSckYwnB93YudoOvUYt6fFrWywAgFNUnBFCCCGEEFIyKs4IAGHg9JAriGt6GyU/p8mih82kpVAQQgghhBBCZEDFGQEAPDU4AwC4uoDijDGGdS1WnKbijBBCCCGEkJJRcUYAAE8NuuEw67C+xVrQ89Y1W9E/6QfnXKEjI4QQQggh5OJAxRkB5xxPDrpxVW8jVKql55rlsrbFimAsidHZsEJHRwghhBBCyMWBijOCgekAXP4orul1FPxcsdNG+84IIYQQQggpDRVnBE8OuAEUtt9M1NcsFGe074wQQgghRBnHRuYw6Y1U+jBIGVBxRvDUoBurG81ot5kKfm6dQYvWegNOU5z+ihSJJ/H++45gcJr+/gghhJBqxDnH2394EF/7Y3+lD4WUARVnF7l4MoVnz8zg6iKWNIrWtVipOFuh+qf8+M3xCTx2arrSh0IIKcLpST9u/c+n4Q3FK30ohBCFjHsjmAvFMTwTrPShkDKg4uwid2xkDsFYsqD5ZoutbbHijCuIeDIl45GRchjxCEEuYxToIlkknsQrv74f+/pdlT4UQvDQkVEcPjeLIyOzlT4UQohCTk/6AIDC1y4SVJxd5J4cdIMx4Mo1xRdn65qtiCVTGHbTFZ2V5rwnBAAYm6N17FL1T/lxatKPw8OeSh8KIZmu99B0oMJHQghRyqn06qQJb5guhF8EqDi7yD016MbmtnrUm7RFv8a6FgoFWanmizO6GidV/5RwEjzli1b4SMjFbsQTwmC6KBuk4oyQmiVuHUlxUCjIRYCKs4tYIJrA8+fnikppzNbTZIGKAf2072zFGRGLs9lQhY9k5RDHRkz76QOSVNbjp4Wu2ap6AxVnhNSw05N+WPUaAMAIfV7XPCrOLmIHz84gkeIl7TcDAINWje5Gc6btTlYOsXPmiyTgj1CggBRicUadM1Jpe0+70O0wYfc6JwZdAXDOK31IhBCZxZMpDLkCuG5dEwDad3YxoOLsIvbkwAz0GhW2ddlKfq11zVZFB1G/+yeH8A+/eEGx178YJZIpjM2F0e0QRijQ0kZpxA7xtJ+KM1I5kXgSTw+5sXudE71OC+ZCccwEY5U+LEKIzITANY4965xQMSrOLgZUnF3Enhp0Y+dqOwxadcmvta7FinOeEMKxpAxHdqHD5+bw9NCMIq99sZrwRpBMcVyxRhijQImN+fkjcYx7IzDp1JgJRpGgjdmkQp45M4NIPIU964XiDKBQEEJq0al0UuPGtjq01Bkw6qFljbWOirOL1LQ/gtNT/pL3m4nWNVvBOTCgwDDjaCIJdyCKYTfF9ctJ3G8mFmfj1DnLSwwDuWKNA5wD7gB1KkhlPH5qGkatGrtW2zPF2aCLijNCas3pST80KoY1jRa0203UObsIUHF2kXp6UOhClbrfTLRWTGxUYN+ZmEyUSHGcowGMshH3m23rtEGnVmGUirO8BtJLd8V/N1M+CgUh5cc5x2Onp3F1rwMGrRqt9QaYdGoKBSGkBp2e9KOnyQKdRoV2mxGjFAhS86g4u0g9OehGg0mLS1fVyfJ63Q4zdBqVIvvOsvdCDUzRyYdczntC0KgYWhsMaG0w0LJGCU5P+WHUqjP7NGnfGamEIVcQI54wdq9zAgAYY+hpslBxRkgNOjXpz4wsareZMOmLIJagVUS1jIqzixDnHE8NunF1TyNUKibLa6pVDH1OiyKJjRNZA5IH6ORDNuc9IbTZjNCoVWizGSkQRIKBqQD6mi1YVW8AUNuds/4pP277z6fhogK06ogR+rvT6W0A0NNkpj1nhNQYfySOsblwVnFmpFlnFwEqzi5CZ9xBTHgjsu03EymV2CjuhXJa9VScyWjEE0KnXUhqbK03UudMgtNTfvQ5rXCYdWCsdjtnnHP84y9fxKFzszg+OlfpwyGL7D09jbXNFrTbTJnbep0WjHsjCEYTFTwyQoicxHOq9VnFGUCzzmodFWcXoacG3QDk228mWtdixZQvirmQvCEJ494IHGYdNrbV07IdGZ33hDInd202I6b9UUQTyqRt1oLZYAwufxTrWizQqFVotOgxXaOds8dOTWfSUSfoCm1VCUQTOHjWgz3rnQtuzyQ2UigIITVDXI0kds460p/ZtO+stlFxdhF6csCNDrsRnQ5T/gcXQKlQkPG5MFY1GNDntGDIFUAyRYNWS+WPxDEbimc6Z20NwtU4WiqRm3gFs69Z+D53WvU12TmLJ1P4/G9PYnWjGWoVo++JKvPkgDsz8yhbJrGRLmARUjNOT/ph1Wsyn9Gr6g1QqxglNtY4Ks4uMolkCs+cmZG9awYIyxoByL60ccIbRmu9ET1OC2KJVCYCnhRvxCP8YM8UZ+mlErS0Mbf+9Emv+H3eXGeoyT1nPzt4HkOuID71qvVwWvWYrME/40r2+OlpWA0aXJ4OpRF1OczQqBgVZ4TUkFOTfqxtsYIxIR9Ao1YJs87os7qmUXF2kTkx5oU/kpB9vxkgXNGxGjQ4LWNxxjnH2GwYrQ1G9KWvDNO+s9KJMfpicdbekF4qQaEgOfWnr2CKYSC12DnzhuP4+p8GcMUaO152aTNa6g3UOasinHPsPT2N6/qaoFUv/PjWqlXocpioOCOkRnDOcTorqVHUbjPSReoaR8XZRUbcb3ZVj/zFGWNMCAWZlO/kwBdJIBhLorXBkFm2o8Sg64vNyKLirKXeAMaoc7ac/ik/+potmSuYzjoD3IEoEjU0GP07ewcxG4rhM6+5FIwxtNQZMOGl74lq8dKED1O+6IKUxmy9TgsNoiakRkz5ovCG45kwEFG7jQZR1zoqzi4yTw66saG1DnazTpHXX9tixalJHziXZ1+YeGLY2mCE1aDFqnoDXRmWwXlPCHUGDepNWgCATqOC06qnOP0cOOfon/JjbfP8h6TTqgfnwExQ3gCcShnxhPDDp4bxxq3t2NhWDwDUOasyj592AQCuX6Y4OzcTohlIhFSBRDKFr/zhFNyB4lZYnJr0AZhfSi/qsBsx5Y9QgFcNo+LsIhKKJXDk3Jwi+81E61us8EUSmPLJs9xLjNFfVS/siep10qBVOZz3hC4IhGlrMGa+3mQhdyCG2VA8EwYCCHvOgNqZdfal35+CSgV87BXrMretqjcgGEvCH4lX8MiIaO+paWxqq4fTaljy/l6nBckUx7mZYJmPjJDqlkxxfPj/juLEqLds7/nShA/f3juE+w+NFPV8MVxtfUvdgtvbbSZwvnAGLKkteYszxlgHY2wvY+wkY+xFxtgH07f/I2NsjDF2NP3fq5U/XFKK54ZnEUumFNlvJhI7C3LtOxtP//ARk4rE4ixFiY0lGZkNZSJ5RW02E3XOchhIfz+vW9Q5A4BpmS5EVNLhc7P49fEJvOu6HrTUz5/4t9RTime1mA3GcOT87AUR+tl6m4TvT7qARchCY7NhPPz8GH73wkTZ3tOV3pO8v99V1PNPT/rRUmfIrHARibPOaGlj7ZLSOUsA+Ajn/BIAVwB4P2Ps0vR9X+Ocb0n/91vFjpLI4qlBN3RqFXZ02xV7j0xxlm7Hl2p8LgyNiqEpfSLc57QiFEtivAz7YI6cn63Jk9JUimPUE87sNxO1NRgxMRdZcYXv+ZkQQjFlB++KFxvWNlsyt2U6Z/6V/T3COce//uYlNFn1ePd1axbcJ4af0Kyzyts/4EKKA3tyLGkEgB6nGQAVZ4QsJl54PFfGIA1xOePhc7NFDYc/tUQYCECDqC8GeYszzvkE5/xI+td+ACcBtCl9YER+Tw64cXmXDUadWrH3sJt1aLLqcVqmUJAJbwTNdcJcDwDoay5PYiPnHG//wUF87Y/9ir5PJUz5I4glU+hYXJzZjIglU3AVuT6+Ek6MenHTV/fhO3uHFH2f/qkAGkzazEUCAGi06MDYyu+c/fr4BJ4/P4ePvnwtzHrNgvta0gVoLV6kWGkeP+2C3azD5vaGnI8x6YR5SBQKQshC4pL9ci75dQeE/cjxJMeBszMFPTeRTGHQFbggDAQQfi4Ls86oOKtVBe05Y4x1A9gK4ED6prsZY8cZYz9gjNlyP5NU2kwgipcmfLimT7kljaL1LVbZZp2NzYXR2jC/zKq3KT1odUrZk48pXxT+SAJna3DvxvmZhUmNorb013mlLJXwhuN4332HEUumFO8U9E/5sdY5P2sGEObNOMx6TK/gzlkknsSXfn8K61usuO3yjgvud9YJxSjNOqusZIpjX78L169tylyoyqWH9uUScoH54iwkW2BZPi5/FCadGgatCvv73QU9d3gmiFgitSCESqRRq9DaQLPOapnk4owxZgHwEIAPcc59AP4TQA+ALQAmAPx7jue9izF2iDF2yOUqbt0tKd3TQ8JVGyX3m4nWNgvFWVKG5XETXmHGmchm1qHRolf85GMofeVZLGRqyeIZZ6K29KyzlRAKwjnHxx88hom5CDrtJozOKff3lElqbLFccJ/Tql/RnbMfPz2M0dkwPvOaS5c86ddr1Gi06GhZY4UdG52DJxhbdr+ZqLfJgiEX7cslJNt4+meYP5LAbKg8AUeuQBTNdQZcscaB/QOFnf+eSoeBLLWsERBmk1JxVrskFWeMMS2EwuxezvnDAMA5n+KcJznnKQD/BWDnUs/lnN/DOd/OOd/e1JR7rTxR1lODblgNGmxKR2QraV2zFdFEKlMEFCuV4pj0RjJJjaJep1nxWWdicTbpiyASr6242hFPCCqGBUUvICxrBLAiQkF+8NQw/vDiFD75qvW4bm2joh9Sk74I/JHEklcwm+v0K3bP2Uwgim89Nogb1juX7agLcfrV/z1Ryx4/NQ0VA66TsPKh12lBJJ4qy75cQlaK7IuO5Vra6PZH0WjR4dq+JpxxBQtahnh60g+1imXmuy7WbjPSssYaJiWtkQH4PoCTnPOvZt2+KuthtwB4Qf7DI3J5asiNq3oceZfEyEG80iPGwBbLHYginuSZ5XaiPqcVA9MBRZcmDGV15kbKuIG4HEZmw1hVb4ROs/Cfv0WvQb1RW/WDqI+cn8UXfnsSL7u0Ge+4ZjXabSbMheKKxb33p5fQLlWcOa2GFds5+48/DyAUT+LvXr1+2ccJg6hXZgFaK/aedmFbpw0NpvzzKcWTOVraSMi88blw5t/GuTKtiHEHomi06HH9WuGiyhMD0pc2npr0o9thgkG7dEZAu82EKV+05i4eE4GUztnVAO4EcMOi2PwvM8ZOMMaOA9gD4P8peaCkeMkUx4gnjHWLZmUoRQztKLU4G1s04yz79f2RBKb9yp0UD7mCmeKl1A5gtTnvCaHDblzyvrYGY1V3zmaDMXzgvufRUm/Av912GRhjmeQqpY67f1JMaly6c+YORGVZwltOg9N+3HvgPN66sxO9zqWXzYha6g2056yCpn0RnBjzSlrSCFBxRshinHOMz4Wxa7UdjJWzOIuhyapHT5MFq+oNeKKApY2nJ/0XzDfLJn6Gr4RtCKRwUtIan+ScM8755uzYfM75nZzzTenbX885L9/wCFIQsaNQb9TmeaQ8TDoNOu2mkkNBxKv1i5ffiScfAwqGggy5ArhyjQNA+X6Ql8t5T+iC/Wai1gZj1XbOUimOjzxwDNP+CL791m2Z2S/t6XltIx6FirMpPxotetjNF3YtmuoMSHFhieBK8sXfnYZJq8aHburL+9hV9UbMheJ0hbZCHk/PSNqzTlpxZjfrYDfrMkuzCbnY+cIJBGNJrG40Y1WdoSzLGqOJJLzhOBotejDGcG1fI54ccCORTOV9bjCawHlPKOd+M2D+c4/2ndWmgtIaycrkCwvzNcpVnAHC0sZSB1GLV4Ral1jWCAhX/5UQiCYw4Y1gR7cNFr1Gls7Z+ZkQDp71yHB0pQnHknD5ozmLs3ab0DkrV5pVIe554gweOzWNz7zmUlzW0ZC5vSMzkFOZIrp/yr9gvlm25nS0/tQKWtqYSKawr38ab9rRAYdFn/fxFKdfWY+fnkZznR6XrFq+w5mtt4kSGwkRjWXOJYzodJjKMutsJh2j35j+GXvd2ib4IgkcH/Pmfa54YXv54owGUdcyKs4uAt5weTtngBAKctYdRDRR/NX28bkITDr1BcfdaNGh3qhVbNbZWZdwVa3XaUGn3STLVbbP/fYlvOl7z+C/9p8p+bVKIQ6tXDzjTNTWYEQgmoAvouxQ50I9N+zBV/5wGq/ZtAp/eWXXgvvsZh2MWrUiH1KpFMfAdGDJJY0A4EwXLispTv+cJ4R4kuOSVdKWObfQIOqKiSdTeKLfjT3rnAvGOOTT4zRXRXGWTPEVt+SX1J7xrOKs22EuS+dMHEDdaBFWXFzd0wjGgCckROqLW0KWmnEmaq4zQKNiNIi6RlFxdhEQi7M6gybPI+WztsWKZIpjaLr4H4Ljc0KM/uKTEsYY+pwWxYozcTlQT5MFXQ6TLJ2zgekAtGqGz/32JL7wu5MV60zlmnEmyiQ2VtHVuJlAFHffdwQdNiO+cOumJb8flEquGpsLIxRL5izOmutWXudMPGnPlQK2mFicTfqq53viYnFoeBb+aELyfjNRT5MFs6F4xZfb/s3/HMKnf36iosdAVq5hdxB333cEwWhpFwvF5NLWBgM6HSa4AzEESnzNfDLFWXp1hc2sw+a2ekmR+qcm/TDp1OiwLf05DQBqFUNrg5E6ZzWKirOLgE/cc2YqX+dMvOJzespX9GtMeMNYVW9Y8r6+ZuWW7Qy5AlCrGDodJnTaTRiZDZc0MyieTOH8TAjvuGYN7tjVie/tO4OPP3hc0tpzuUnpnAHVE6efSnF86P+OYjYUx7fv2IY6w9Lfw0JxJv8xzy8vWbqQEfYTrKzOWcHFWWZZ48opQGvF46enoVWzgudTVksoyMkJHw4OV34592KReBI/ffYc7aOscl959DR+fXwCx0bmSnqdsbkwdGoVGs16dDvMAJSP03f7hWWNTVlLx69b24SjI3OZC+a5nJ70o6/ZClWedO0OO8Xp1yoqzi4ClVjWuLrRDI2KZWLIizE2F8kUC4v1Oq3wBGOKXBkecgXQaTdBr1Gj02FCLJEqKa1uxBNCIsXR67TgX9+wER+8sQ8PHB7Fe356pOwnB+c9IZh0ajiWCLcAsjtn1fED/9t7B/HEgBuffd2l2NCae0Zfu82kyMgDcd9krkRDrVoFh1m34jpnq+oNsOilddLNeg3qDBqadVYBe09PY+dqu+S/K1GmOKtgKAjnHO5AFOdnQohX4ELUcp4ZmsFnHnkBf/8ITQCqVoPTAfz2hJAzV+oesfG5CFY1GKBSscyqkfMKB3250ucmTdb54uzaviYkUxzPDM3kfB7nHKen/FifY7VGNhpEXbuoOLsIzC9rLF9xplWrsLrRjIEiQ0GiiSTcgegFMfqiPgWvDA9NB9HTJFxd67KLV9mK/0F+Jr2HbU2TGYwx/L+XrcU/37wBfz41hb/8/sG8V9HkNJJOasy1f8Vh1kGvUVW8c5ZIpvDQ4VF87U/9uHlLK966s3PZx3fYjfBFErJ/LQemhEJmuQsbTVYDXCuscya1ayZaVW+kPWdlNjYXRv9UQHJKY7bWeiOMWnVFO2fecBzxJEcixasu8VZccvbA4VHcf2ikwkdDlvKdxwdh0KihUbGSv3/G58JoTZ9LdDmE4mxY4e9JdyAKi16zYE7Z1s4GWPSaZZc2ugJReIKxZcNARO02I1x+mnVWi6g4uwh4w3FoVAwm3dLDDJWyttladOdsMhOjv/SyxkycvswnH8kUx1l3ED1NwuuLP8jPe4pfAnHGnd7D1jh/QvyXV3bjG2/ZiudHZvHm7z2D6TLNkRJmnOVex84YQ1uDEeNzlTkRd/mj+OafB3Dtl/fiIw8cw7qWOnz+lgv3mS0mxgrLvVdOXF6ynOY6/YrpnKVSvKjirJlmnZXd46enAQC71zUV/FyVilU8FMSVNYey0ssrF5sNCUvOtnU24B9+8QJOTRa//J7I7/xMCL84Oo47dnWiw24q6fMXmN+/DgBWgxYOs67k18zH5Y9mwkBEWrUKV/Y4sL/flXPfuZQwEFG7nRIbaxUVZxcBXziOeqO2oLQvOaxttmJkNoRQrPCNt9nRt0tZVW+AWSf/leHR2RBiyVSmOFtVLyQilRIKcsYVhMOsu2DP3+sua8UP7tqB854Qbv3u0xh2K/thwTlfdsaZqM1mxGgZO2eccxwa9uBvf/Y8rvrin/Hvf+xHr9OCe+68HL/+wDUwS1jS1a5AnH4yxTHkCmBdjhh9kdOqx9QKKVzGvWGE48nCO2d1BorSL7PHT7vQ1mDM/CwqVG+TBUNVUpxV28w1TzAOrZrhe3duR51Bi/f99IjiARFEuv/cNwi1iuFd161JJyYX/3M9nkxhyhdBW9aF3i6HCcNu5TtnjUuMKrmurxGjs+GcnTuxOJPWORNnnVVXZ5qUjoqzi4A3HEddGfebidY2W8B5cVdNJ+aWHkAtYoyht9mKAZlnnWWSGp3CckaNWoU2m7GkD4chVyDnCda1fU342d9cgUAkgdu++zRekDADpViuQBSReCp/cVamQdShWAI/O3ger/7Gk7jtu89g7+lpvO2KLvz5I9fjJ+/YhZdvaIE6z4ZokRIDOc97QogmUhI6Zwa4A9EVERmeCQMp8IS/pd4AVyBadXuHalU0kcRTg27sWd9U9EW1XqcF495IyUl3xRL33KhY9RVns8EYbCYdmqx6fPMvtmJ4JohPPnS8Kuc7XmzG5sJ48PAo3rKjA846g5CYPBMq+u9myhdBii88l+hymGVJYV6OOxBbujhbK3TCn8ixtPHUpB+NFr2kGZQdNIi6ZlFxdhGoVHEmntQWs7RRnEuSK60REPadDZQQOLIUMfp/TdYSxE57aXH6Z1xBrEnvYVvKZR0NeOA9V0GvUeMt9zyLE6PKFGgjHuFr2mFfuuAVtTUY4Q4ot459LhTDv/z6Jez6/J/xqYdPgHOOz9+yCQf+7kZ89nUbiuoU2ExamHVqWWe+iFcwc8Xoi5xWPVIcFY8tl0IszvIVnIutqjeAc2DaX/1/xlpwaHgWoVgSu9cWvt9MJHZHK1UYiZ2zDa31GHIpP1eqEJ5QDPZ0KNKuNQ589BXr8OvjE/jJs+cqfGTknn1DAIB3X98DQPj89UcTmA0Vt594fIkLvV0OE8a94ZLmsObjDkQXhIHMv7cZnXYT9ueYd9Y/5Ze0pBEQPnu0akbFWQ2i4uwi4IskyprUKOp2mKBTq4oKBRn3RuAw6xZspl2sz2nBtD8qawjEkCsAh1kHW1aaYZej+GUV3lAcM8HYssUZIJxIPfjeK8EA3HdQmRMEMc0wX+dM/BAbV2Bp4x9fmsLLvrYfP3p6GNevbcL9774Sv/vgtXjrrk6YdMXP4RNmncmbXCV+3/blWQI4P4i6+guXwekA7GZd5sRUqmZx1hklNpbF46enoVOrcFWvo+jXqHScvssfhU6jwtbOBgxNB6qqKyV2zkTvua4He9Y14V9+/VLJse2keNP+CH723Ahu3daeSWruKjH6fnyJLRLdDjM4n79gKbdYIoW5UHzJzhkAXNvXiGeG3IglFq5ESKY4+qf8kpY0AsLe0rYGitOvRVScXQTEPWflplGrsKbJnJkVVYjxuTBW5QgDESlx8rHUEsQuuxnecBzeIq7cDaXDQLI7cbmsqjdi52o7DpxRZi6Q2P1rX2awJZAVpy9jceYNxfHh/zuKv/mfQ3CYdfjF+6/Gt966DTtX22XbCyn3rLPTU36024x597w5reIg6urfkzU4HSh4SSMw38GmWWfl8fhpF3autpd0waLLIYwzqVhxFoiiyaJHr9OCQDRRVRcvsjtngHCS+9U3bYHTasD77ztS1M96Urr/2n8GyRTHe3f3ZG7rTodyFXuBdH7/+vz5RGfmNZXp6M4ExQHUS18Eu25tE4KxJJ4/P7vg9vOeECLxlOTiDEiPkaHOWc2h4uwi4A3HUWco/kO+FH1FJjZOeOejb3O+dnr21KCM+86GXMHMfjORmG5YzNLG7Bh9KXautuOMO6jIUOPznhCa6/TLdiOB+UHUcnXOHjs1hZd/fR9+cWwcf3tDL3559zXY2JZ7ZlmxhOJMviuIA1MBrJOw/K95hXTOOOcYmA6gN0/AyVJW1QnfExPUOVPc6GwIA9OBolIas2nVKnQ5TBXtnDVZ9ZmLXZUMJ1lsNhiDzbzwgqXNrMO33roVU74IPvLA0arq9F0MPMEYfvrsedx8WWumWwbMf/4WW5yNz4VhM2kXXOiYH0StTMdJHECdq3N2ZY8DahW7IFL/dDo1VOqyRkD43KuWuaREPlSc1TjOecU6ZwCw1mnB2Fy44E3p43ORnGEgojabEQatSrZ9Z55gDJ5g7MLOmXiVrYjo3SFXABoVWza+PtvO1XYAwHNnZ/M8snBSkhoBIfxBxUqPpfeG4/joA8fw1z86hAajDo+872p8+OXroNMo82On3WaCP5KQ5ap3PJnCGXdA0t4s8QO42jtn7kAM3nC8qM5ZnVEDo1ZNiY1l8Php4YSt1OIMEFYXVGoQtRAlnlWcVUkoSDLFMReOw266sKuxtdOGv3v1JfjTyWncs/9MBY7u4vX9J88gkkjifXt6Ftxu0KrRUmco6vMXWBijL7KZtLDqNYp1zsQ5ermKszqDFls7GvDEwMJ9Z6cm/WBs/sKzFB12E9yBGMIxmnVWS6g4q3GhWBKJFK9ccZa+AlTIPDJfJI5ANJFzxplIrWLoabLINuvsjJjUuOjktbOEK3dnXAF0OUzQqqX9U9vYVg+jVo2DZ2cKfq98RvLMOBNp1Sq01BlKitPfe3oar/jafvz8+THcvacXv/zA1djULn+3LJsYdCJHKMiwO4h4kmNdS/5CRqdRwWHWVX3nbD4MpPDijDGGlnoDJqq8AK0Fj592od1WfIR+tl6nBednQhVJ2RQDEZrr9LDoNVUz68wbjoNzLNhXnO2uq7rxqo0t+PIfTuO5YWWWmJOFvKE4fvz0Obx64yr0LlGYdKYTG4ux1IVexhi6Gk04p1Bio5hU6lwiEER03domnBjzwhOMZW47PelHt8MMYwEzadsz2xCoe1ZLqDircWJYRiXSGoH5pLtC9p0ttYE3l16nRbYP/aEcxZlZr0GjRZ8J1CiEkNQo/SRLq1bh8i4bDpyV96Qgmkhi0hfJRO/m02YrLk7fF4nj4w8ew1/98DlYDRr8/H1X4aOvWAe9RvkB6HLG6Z/OhIFIu4LZZNWXbZB4scTlv4XOOBO11BkwRZ0zRUUTSTw95MbudcVH6GfrdVqQSHHFOgS5JJIpzARjaLLqwRhDT5O5ahIbxZPhXKE4jDF86bbN6LAZcfd9RzJdEKKcHz8zjEA0gbtv6F3y/i578YXU+Fw4s1R/4WualVvWmKdzBgihIJwDTw7Od89OT/olLaXPJhZnSoWbkMqg4qzGicVZpTpnnXYT9BoV+ielF2fijLNVefacAUKSXjHLJpcy5ApCp1FlAjGyddoLn3WWTHGcmwlJ3m8m2rnajtNTfsyFYvkfLNHYbBic509qFLU2GIsKBLnrBwfx4OFRvG93D379t9dgc3tDwa9RLDkHUfdPBaBi0guZ5jrDiuicWfQatNQt35HOZVW9ARNUnClKjgj9bL1N4r7c8natPMEYOEcmSrynyVI1yxpn0z9XbUssaxTVGbT49h3bMBuK49M/P1GuQ7soBaIJ/OCps7jpkmZcsqpuycd0OUxw+aMIxQr7nPdF4vDnWIXT5TBhdDaEhAJdZZc/CrNOvWwHbHN7A+qNWjzRLyxjjsSTGJ4JFhQGAtAg6lpFxVmN81W4OBOXHvYXcHIgFgVLXe1aTFwCIccH/9B0AGsazUsOPi5maOXobAixZAo9EpIas+1abQfnwomaXMRjF1Oq8mlrMGLSGylosPLYXBhHzs/ho69Yh4+/cn1ZumXZ6o1aWPQaWTpn/ZN+dDnMecNTRE6rvur3nA1MB9DjtBTdkWmpNwgDXVfAsO2VSo4I/WxiuFG5izNxWVdTunPQ47RgwhtBoEIDsbPl65yJNrTW4w1bWnH4nPz7f8m8nz57DnOhOD6Qo2sGAJ3pAI9CP4OXW4XT5TAhnuSKXHByB2JoXGZJIyCcG13T24gnBtxCWNNUACleWBgIIPwb02lUNOusxlBxVuMq3TkDgLXNloJmnU14w9Co2JIDHBcT98/IEQqyVIy+qNNe+NDKQpMaRZd1NECnVuGgjPsdpM44E7XZjEikeEGpkfvTVwBvuqS58AOUgTDrTJ7Exv5pP9YWsDeruc4AdyBWUDFbbsXG6ItW1RuQSHG4g8V1CH91bJwCRfLYK0OEfjaTToO2BmP5i7N0Fzm7cwbM7+utpNl0cZZrz1m2Jqses6E4XZBQSDiWxH8/cQbXrW3CZR0NOR/XVeS+7+WLM+USG93pMJx8ru1rxKQvgoHpAE6lkxoL7ZypVAztDfKOkSGVR8VZjcvsOTNUrjjra7ZiwhuBLyItRW98LoLmOsOSHazFuuwmaNWs5FCQaCKJ854QenIUUl0OEzgvbD+T2M0rZM8ZIKRTbelokHXf2XlPCHqNKnMlOx+xa1nIvrN9p11YVW/IO7RZSXIMoo7Ekxh2BzP7JaVw1umRTPHMfJtq4w3HMe2PFr3fDJgfGTBVxKyz2WAMH/jZ8/jS708V/f61bnQ2hEEZIvQX66lAYmOmOEv/vOlNd/CqYWmjJ72scam0xsXsZuHftdTPLlKYnx08D3cgtmzXDJhPTC40FGQsvUViyT1n6dccVmA/pjs94y+fa9cK/9b397twetIPg1a1YIyAVG0yj5EhlUfFWY3zRYRlJJXtnKUTGyV2t4ToW2n7YjRqFVY3mku+MnxuJoQUF05klpL5cChgWcWQKwibSZt3+cxSdq6244Uxr2zLgM6nkxpVEgpeIDsBSlqhE0+m8NSgG9evlSfIoFjiIOpSZhSdcQWR4iisOLOmZ535qrM4yyQ1llCciXtAi5l1dnJCuCr82xMTdKKbw3yEvjz7zUQ9TWYMTQfL2v0RlzWKQ3g77cJy8aHpyoeCzAZjMGhVkhLx7OlZaDNB+fb/EkE0kcT39g9h12o7dnTbl31sg0mHeqO24Dj98bkwtGq2ZKHUbDVAr1EVNb80H3cgmnMAdba2BiN6mszYP+DG6Sk/+pxWSRelF6NB1LWHirMa5w3HwRhgrdAQagCZ5WFSlzaOey+cS7KcPqe15EHU4oDUXMsaM4OoC7hyd8YVKLhrJtq52o5kiuOITPsdRjxhyUsagfllIFK7UM+fn4M/msD1a+W96l+odpsRgWgi0zEuhpgsWmjnDIAiw8PlIH5/l9I5a6kXCtDJIvbWvZQuzqKJFH51bLzoY6hl8xH6hV85X06v04JwPInxMg4Qd/mjsOg1meWZOk1lB2Jn8wSXnnG2FLtZ+Hc9S8WZ7B44NIopXxR/e2OfpMd3OUxFLWtsqTcseVFSpWLotJsw7Jb3gkE8mcJsKC5pWSMAXNvXhANnZvDiuK/gJY2idpsRnmBMlmA0Uh2oOKtxvnAcFr1GcsdECR02EwxaFfoldM5SKY5Jb0RSUqOo12nBeU8IkXjxQxjF5TarG5c+MWqy6GHSqQv6cDjjDmJNjtfLZ1uXDWoVw0EZljZyzoUZZ0ukUOZi0mlgM2kld8729U9DrWK4qrex2MOUhRxx+v1TfmhULOf3wlLEJX9V2zlzBaDTqCQPQ1+Kw6yDVs2K2kB/csKPJqse61usuP/QaNHHUKvkjtDPJu4zLGdh5PJHL9gzXC2JjbOhmKT9ZoDwPQ9Q50wJ//3EGWztbMBVPdLCbzrtxRVnrcucS3Q55I/TnwkI3ytSi7Pr1jYimkjBE4wVHAYiEn+uF5OwTKoTFWc1zhuOV3RJIyBcoepzWjEgobvlDkQRT3K0SVzWCAihICk+H8BRjCFXEK31Bpj1S3cYGROusp2XuKzCH4nD5Y8W3Tmz6DXY2FonS3E2FxLihAs9MW+zGTMbqvPZ3+/Gts6Gin+vzc98Kf4Dt3/Kj9WNZug00n88istmpooozn7/wiR+/8Jkwc8rxMCUP2cSqVQqFYPTaigq1OPkhA+XrKrD7ds7cGxkDqcLGK1xMXjurLwR+tnEbmnZizPLhcXZ8ExQkejyQniCMclLzcUizkPFmayE2PgQblzvlHwxosthwthcuKCB6uNzkWVTn7scJpzzBEtaBr+YlBln2a5Y44BWLXwNSumcARSnX0uoOKtxvioozgChgJJyQjbulT7jLPPa6Th9KcVfLkOuQM79ZiKhOJP2w6/YpMZsO1fbcXRkrqSOIJAVo19ocdYgbRC1OxDFiTFvxZc0AvNXEEvrnAWwtsAPSZ1GBbtZV/CyRs45/v4XL+A9Pz2M7+4bKui5hRh0BUpa0ihaVV94cRZLpDAw7cclq6x4w5ZWaNUMDxwaKflYaoncEfrZHBY9bCZtWbtW7sBSnTMz4kle8b0xs6HYsjPOsonLH6k4k5cYGNNcwMzFLrsZyRSXfMEwkUxh0hdZdotEt8OESDwl64zKzBgJCWnTgLBKZXuXsOeu1OKMBlHXDirOapw3HK9oUqNobbMV0/4ovKHl9wItF32bS3ejCSpW/JVhzjmGpnPH6IvE4kzKVTbxRKiU/SM7VzsQS6ZwbGSu6NcACp9xJmprEK5U5vvzPjEgBBlcr8BV/0LVG7WwGjRFX0EMxRIYmQ1hrbPwD0lh1llhH/IT3ghc/iha6w344u9O4Yu/OyXrVVxAiKsenQ1nLmKUoqXeUPCesyFXAPEkx6Wr6uCw6HHTJc34+fNjiCUq20GpJo/3u7BrjXwR+ov1Oi0VX9ZYiQ7eUmYL6JwZdWoYtWoqzmQmzoQspDgTP7+kLkOc9keRTPFlzyU6FYjTdy9KKpXirbs6cdMlzoKek63Joodeo6LOWQ2h4qzGVcOyRmA+FKQ/T3drvjiT/kNbr1Gj21F8YuOUL4pgLJm3y9VVwFW2M64g1CqGTnsJxVm3HYyh5KWNYnHWYSt8WWMolsRcnoJ632kXHGYdNrTWFX2MciolTn9wOgDOgXUthXeZnHUGuArsnImF97fu2IY7dnXiu/uG8Hc/f0HWeWlDLuHPJFfnbMJbWBqmmNR4ySrh++NN2zswE4zhsVPTJR9PLRAj9JXsPJezOIvEk/BFEmi0LCyAxCXeldx3Fk+m4IskJHfOAGFYNQWCyEu8iCUGKUkhJiafk7h6Rcq5RLcCcfpucc+ZhLRG0esua8V/v31H0ftNGWPpOH3qnNUKKs5qnC9SHcWZeNW+P09i4/hcBCaduuBj7nVaip51Nt/lytM5K+Aq2xl3AJ12U0H7lharN2mxrtla8jDq0dkQGi26nPvpchH3/S23yTiV4tg/4MZ1a5sqGjqTrb2EDykxtKavgKRGUTGds6Mjc9CpVdjQWod/fcNGvH9PD3528Dz+9mfPy9ZZEr+/5SjOWuqNiMRTBaVhnpzwQadRZcJxru1rRHOdvmaXNha6DFmpCP1sPU0WzIbimAkoH1jjzrGsq96oRZNVn0kOrQTxQpMYkS+Fw6KjQBCZZTpnVukXYZutBug0KpyXWEiJn1vL7TlrbTBCrWIFz09bjssfhUmnVqwLnkuHDDM+SfWg4qzGecNx1JsqX5y1NRhh0qnzzjoTZpwZC76C1NdswbA7WNQJrdTirMsufdbZGVfxSY3Zdq224/C52YI2QS923hPKpBgWoq0hfwLUC+NeeIKxqthvJmq3GTEyK2356WL9U37o1KrM33Uhmuv0cAWiBc2TOjoyh0ta66DXqMEYw8desR6ffvUl+M2JCbzjx88hFCs9GnlwOgC1iqG7sfikRlFLXeFx+icn/FjbbIFGLXzcaNQq3LqtHXtPT2dO0mrF0ZE5XPZPj+K/9p+R/BylIvSzlXNJYWYA9RJ7bnqazBXtnM2mB1BLTWsEAJtJR8saZTblj0CnVqGhgHMTMfpe6hLE8fQA6lXLFGdatQrtNqPMnbOo5DAQObXTIOqaQsVZDYsmkojEU6ir4IwzkZDYaMnbOZvwhrGqXvrVNFGf04pEiuNcET9kh6YDMOvUaM6zxKK1wQgVQ94rd6kUx1l3sKQwENHO1Q6EYkm8MOYt+jXOe0IFh4EAwrJGAMuGguw77QJjQjekWnTYTAjFkpjNsxxzKScnfOhxzhcShXBaDUimuOSr7MkUx4kxL7Z2NCy4/W+uW4Mv37oZTw268bb/PpB3n2Y+A1MBdNlN0GvyD93NR5x1JjVOn3MuJDW2LFzyevv2DqQ48PCRsZKPqZr88KmziCZS+NxvT+Knz57L+3gxQn/POumpdcXIFGdlKIwyxZnlwp/j4vJKufdVSiUWWVLnnAFCnD4VZ/Ka9kXhrNMX/D3f7ZAeyjU+F0a9UQtLnhUjhQR9SbFUGE45tNtMmA3FEaBZZzWBirMa5gsL/0irYVkjIISC5Jt1NpYn+jYX8eSjmKWNZ9xB9DgteT8odBoVWhuMede8j82FEU2kio7Rz7ZjtQ1A8fvO4skUxuciRRVnNpMWRq162c7Zvn4XNrXVw1GBK4W5FBsrnEimcOTcLC7vaijqfZsLHEQ9MO1HKJbEZR31F9z3ph0d+M4d2/DCmA9vvucZTJfQYRqUkEQqlXjhRGpio8sfxUwwltlvJlrdaMaObhseODRSsRN1uc0EovjdiUncsasTN6x34u9/8QIePrL8TLdMhP46ZTvPrfVGGLXqsnTOxD03S3fOLPBFEpnHlJu4d6ygzhkVZ7Kb9kcKCgMRddqFuWRSfmaIq3Dy6XaYZR1ELXTOpH9/yYXi9GsLFWc1TNwXUldFxZk7EM35QRdNJOEORAuK0Rf1NFnAikxslJLUKOpy5F9WIS7bkWNZo9NqwJpGc9HF2cRcBMkUL6o4EzcZ5+qceUNxHDk/W1VLGoHiB1GfnPAjGEtiR7e9qPdtshY2iFoMA9nSYVvy/lduXIUf3LUD5z0h3PbdZ4raFxFPpjDsDqJPpuKsyaqHiknvnL20KAwk2+3bO3DGHcThc7OyHFul3X9oFLFkCndd1Y3v3LENV65x4KMPHMPvX5jI+RwxQv9KiYN4i6VSMfQ4iw9NKoTYOXMscYLaU+FQEE96WaPUtEbxseF4EuFYaSNNyLwpXzTvSpWldDlMCMeTme+x5YzNhSXNS+1ymOCLJDAXkqcAdwdiFVvWCACjFKdfE6g4q2HVVpz1iYmNOZY2ilfjC0lqFBl1arTbjAV3zoLRBMa9Ecn7PTrt5rxLIOZnnMlzQrxztR0Hhz1FJfhlkhqLKM4AYSlnrs7ZU0NupDiqrjhrK/IKohi8snN1ccVZoZ2zoyNzqDNoMolhS7mmrxH3vnMXfJE4bvvu0wX/mc7NBJFIcVnCQABhj0ajRY8picXZyQnh3/qlSxRnr9m0CiadGvfXQDBIKsVx38Fz2LXajr5mKwxaNf7rL7djS0cDPvCz5/H46aWTKZWO0M92WXsDDg3PKr7syRWIwGbSQrvE0mCxg1up4kzsnBWy18khDqKW6eSdCIEgzgLCQESdBSQ2Su2cdaWDvoZlCAWJJ1PwBCtTnM3P+KTOWS2g4qyG+dLFWTUtawSAgRzFmbiBt5AZZ9n6nNacr53L2fRyhkI6Z55gDP5I7n1AZ9wB1Bk0si1t2LnaDn8kIWmI92Ijs8XNOBO1LVOc7TvtgtWgwZZFe6Yqrd6oRZ1BU/BAzufOetBuMxbVuQXml3FJTWw8OuLFZR0NeZfTbu204f/edSVmgjH89NnzBR2T2CmRqzgD0nH6EpdZnpzwoa3BuGQokVmvwWs3r8Kvj08guML3SewbcGHEE8bbrujK3GbWa/DDv9qJPqcV7/7JYTx7ZmbBc0Y8ykfoZ7tlaxvC8SR+/8Kkou+z1Iwz0ao6A0y68iyvXIonGIdFrylo/6W4BNJToaWYtSYUS8AfSRQUoy8Sg5ryrV4JRBPwRRISizPxNUtf2iiuCmqswJ4zh1kHg1ZFiY01goqzGuaLVFdxtqreAKtek3PfWTEDqLP1OS044w4iUUCyYSapUeLJa6eExMYzriDWNOXfwybVrjXCkqeDZ2fyPPJC5z0haNUsk7JXqHabEZ5g7IIlPZxz7Ot34dq+xqLCM5TWYTcVdAWRc45D5zzYWeSSRkCYt2czaSV1zkKxBPqn/BeEgeSyrsWK69c24RdHxwpKgxTTUaVefJCipd6ASa+0E4CTEz5csir3WII3be9AKJbEb07kXvq3Etz77Dk0WvR4xYaWBbfXG7X4yTt2osNuwjt+9ByOZg2Uf7xf+Qj9bJd32dDlMOXdB1eq5YozlYphTZMZQy759vgUYjYUg62AGH2AOmdyE5d9FxKjL2q3mSSFck0UcC7RKbHgk2I+DKf8e84YY2i3mTIXZMnKlvesijHWwRjbyxg7yRh7kTH2wUX3f5Qxxhlj1RPXRgDML2usluKMMYbe5tyJjRPpE75i0hoBocCKJVIYKeDK0dB0ACo2f/Usn0xxtswPcqE4ky8Wu63BiLYGY1Hzzs57QmhLz3Ip9r2BC+P0+6cCmPRFqm5Jo6jQWWdn3UG4AzFsL6E4A4Q9glI6Zy+M+ZBMcVxWQNfxlq1tmPBGLujALGfQFUBbg7HgGXfLWVVvlLTnLBJP4ow7uOR+M9HlXTasaTSXfeZZPJnCtD+C/ik/nj0zU1Ia6thcGI+dmsabd7QvOdfQYdHj3nfugsOix9t/cDAzlHvf6Wl02JWN0M/GGMMbt7bjmTMzy4b8lMoViKJpmWVdPU2Wis068wRjBSU1Almds6DyM+IuBpkZZ0VcMNRpVFhVLy2UC4CkPWcGrRotdQZZirNcM/7KpZQZn6S6SPnETgD4COf8CGPMCuAwY+yPnPOXGGMdAF4GoLC1NqQsxAjuOkN1FGcAsNZpxR9PTi1539hcJN2aLy7yW1w2eeTcLFZLDOMYcgXRWUDMeFeeNe+BaAKTvoisnQpAmHe2f8AFznlBHbkRT6jo/WZAVpz+XHjB0rh9/cIemuuqtjgzYX+/W/LX67nMfrOlwzmkctbpMS1hs7oYBlJIcfayS5th0Wvw8+fHcFWvtGthg9MBWZc0AsJJlT+SQDCaWLboG5gKIJniyxZnjDHcvr0DX/r9KZxxBWTbpwkI+8C+vXcQZ91BzIZi8ITimA3GMBuKwR9ZuIxSxYBf3n0NNrZdmJyZz88OnAcH8Bc7O3M+prnOgHvfuQtv+t4zuPP7B/CTd+zC00MzuHVbu6IR+ovdsrUNX/tTPx55fgzv39Mr++tzzpftnAFCcfaLo+MIx5Iw6kof71CI2VCsoDAQIKtzFixtpAURTKV/PhYTCAJIC+UqdIuE8Jqld3PFFNJK7DkDhDEyz5+fq8h7E3nl7Zxxzic450fSv/YDOAmgLX331wB8HEBtZCHXGF8kDqNWveTV3EpZ22KFJxjLXGHKNuENY1URYSCiTW31WNtswbcfH5S8tHHIJT2pEQCsBi3sZl3OZY1nxTAQGZIas+1cbYc7ECt4OVCxM85Emc7Zoqtx+/pdWNdsLXp/ltLabUaE40nJEdgHz87CbtaVXFQ7rQZJsfdHR+bQbjMW9CFu0Krxqo0t+N0Lk5KS41IpjiGX/MVZJk4/z5/z5DJJjdlu3dYGtYrhwcPyLrd7cdyHf/9jP54cdMMdiKHOoMHWzgbcuq0d/++mtfiXmzfgm3+xFT/6qx2wm3X49CMvFBy6E0uk8L/PnccN65x5B7132E346Tt3AQBu/c+nyxKhv1inw4Sd3XY8fGRUkREGwZgwW3O54qy3gqEgxXTO6gxaqFWMOmcyEX8+Ootcat/lyB/KNT4XhlrFJIeOdDlMkkJG8hGXNVaqOGu3GeENxzNbWsjKVdBZO2OsG8BWAAcYY68HMMY5P6bEgZHSecPxqlnSKFq7TGLj+FwYrSWc7KtVDB95+TqccQUlDbdNpnhmxlkhOuymnMsaz7jTMfoyd87EBMFCIvV9kTjmQvGSijOnVQ+1imFsbv7PG4wm8NzZWVxf5hPLQognylKXuD437MH2LlvJXYzmOj1c/mjefWFHR+YK6pqJbtnWhkA0kbP7nG1sLoxIPCV7cdYicdbZSxM+mHTqzCb+XJx1Buxe24SHjowWtF80n2OjcwCAh957FX71gWvwk3fswn+8ZSv+8fUb8MGb+nDnld143WWt2L3Oic+85lIcG5nDzw4WtgjkDy9Owh2ILQgCWU5PkwU/eccuaNUq6DTKR+gv5Y3b2jDkCuL4aPFLOXPJ7LnJ0zkDKlOczQZjBc04A4R9cjaTlmadyWTaH4VBq0Kdobil1lJCucbnwmipM0hezt/lMMPlj5YcTOQORGHUqmVdRl6IzBgZitNf8SQXZ4wxC4CHAHwIwlLHTwP4BwnPexdj7BBj7JDL5Sr2OEkRvOE46oyV+SGRy3xi44UfzBNzkaLDQEQvv7QZl3U04Ot/6kckvnx3YWw2jFgiVfCejy67Cec8S3ewhlzBgvawSbW60YxGi76gUJCR9JXAUoozjVqFljpDZpkIADx7ZgaxZKpq95sBQIddepz+lC+C855Q0RH62ZxWPRIpvmx4gMsfxdhcWHIYSLYrVjuwqt6AR57Pf/FBTMSTa8aZSOyc5dt3dnLCh3UtVqgknCDdvr0DU74onhhwy3KMAHB8dA42kzYz/2c5N29pxVU9Dnzp96ckzVAS/fTZc+iwGwta3nvJqjo8/L6r8MO7dpQlQn+xV29eBZ1GpUgwiJTOQZdDCHUodyhIJJ5EMJYseFkjIMw6o+JMHlM+YQB1sRfCpCQ2js2FCxrJI35e5+vI5eMORNFoLX8YiIgGUdcOScUZY0wLoTC7l3P+MIAeAKsBHGOMDQNoB3CEMday+Lmc83s459s559ubmqr3ZK4W+cKJquucOa161Bk0OL2oc+aLxOGPJoqacZaNMYaPv2Idxr0R3Hdg+avgmaTGArtcXQ4TxuciiC9xlf+MK4B2m6nofXO5MMawa7UdB856JC9HGilxxplo8SDqff0uGLVqbO8ubX+WksTlmFI2R4v7zYodPp1N3OS+3CDqYvabiVQqhpu3tGFfv2vJpcHZBqaFf2NK7DkD5jf2L4Vznk5qXH5Jo+iG9U44zDpZZ54dH/ViU3v+UQWA8O/rX96wEdF4Cp/7zUuSXn9gyo8DZz14686uggN3eposuFrivkG51Rm0ePmlzfjlsXHEEvJ1KgFpnTODVo0Ou6nsnbO59B5sW4HLGgEqzuQkzDgrftlfZtbZMsXZuFfajDNRd3rWWan7ztx5wnCUNl+cUedspZOS1sgAfB/ASc75VwGAc36Cc+7knHdzzrsBjALYxjlXdoAKKUg1LmtkjGFt84XzyCZKnHGW7ereRlzd68C39w4uO3C12OKs025CMsUz0f/Z5E5qzLZztR0T3ojkH7ylDqAWtS+adbav34WrehwFzQoqN6tBiwaTVtIVxOfOemDUqnFpq7RCYjni7J6pZeL0j43OQa1i2NhaePgEICxLS6Y4fnVsfNnHDU4H0GjRoaGIk9HlGLTCyICJZeL0x70R+CIJycWZTqPCLVvb8KeTU5jJU3RKEY4lMTAdwGXt0r/GPU0WvOf6NXjk6DieHszfwbv3wHno1Cq8aXt7KYdaEbdua8dsKJ5zOHaxXOnv+3wnqL0VSGwUiyt7gVH6wnOoOJPLtC9a9H4zYH5odK7VK8kUx6S3sFU4Ugo+Kdz+ygygFtnNOph06qotzkY8oYJn0V6spHTOrgZwJ4AbGGNH0/+9WuHjIjLwhuNVldQo6mu2on8qsKADJBY6cgVMfPTl6zATjOGHT57N+ZghVwB2s67gPQi55qKkUhxn3AGsaZS3UyEqdN/ZeU8I9UZtyQV6m82ISV8EiWQKw+4gzs2Eqnq/majdZpQ0iPrg8Cy2dTVAK8O8NnEDumuZztnRkTmsa7YWnVS3ttmKDa11eZc2KpHUKGqpNy675+zkuBAGcukyM84Wu317B+JJjkeOLl90SvHShBfJFMfm9oaCnve+Pb3otJvwmUdeQDSRe1l0KJbAQ4dH8apNLXBU8GSsWNf2NaLRopO0N7cQrkAUahXL253qSc+kLDSApRSz6aXG1DmrrClfpKgZZyKLXgOHWZdz37c7EEU8yQsqzurSQV/DJRZnrkC0IgOoRcKsM2NVLmt8cdyLN/7n0/jAz54vaFbnxUpKWuOTnHPGOd/MOd+S/u+3ix7TzTmXb7MAkYUvHEddlXXOACEUxBuOL9jbMe4V55LIU5xt7bTh5Zc24579ZzCb40N1aDpY1Iyh+St3C38ATvgiiMRTinXO1jVbUW/USirOBqf9eGpwpqT9ZqLWBqNwNdIXwb704Nxq3m8mam/IP4jaG47j1KRPliWNwPxyrlxL/lIpjmNFhoFku2VrG46NenMuDeOcY0DB4mxVvWHZPWdiUuO6FundyHUtVlzW0YAHDo2UnCR4bEQIu9hcQOcMELqC/3zzBpxxB3HPvjM5H/fLo+PwRxOSg0CqjUatws1b2vDnU1OYk3G4stA50OXdZ9jTZEYskbogBVZJ852zIoozkw5z4XhZi8laFIgmEIwli47RF3UuE6dfyIyzBa9pN+F8jm6cFIlkCrOhynbOAKQHUVdX5+zpITfe8r1noVExfPMvtkrah3yxq56MdSKrZIrDH62+PWfAfChIf1YoyPhcGBoVk3V440devg6BWALf3Te05P2FxuiLnFY99BoVzi9an37GJSY1KlOcqVQMO7rtyw6jjsST+Lc/nMar/uMJzASi+OCNfSW/b3ac/r5+F7odpkyBWs067MJAzuVO9I+cmwXnwE6ZijODVo0GkzbnrLPhmSB8kURRYSDZXn9ZK1QM+HmOzofLH4U/kkCvzKmhopZ6w7J7zk5O+tDlMMFSYGrZbdvacGrSX/J+pOOjc2iu0xc16Hb3Oides2kVvrl3cMk9KJxz/PTAOaxrtmJ7V/Xuu8znjdvaEE9y/Or4hGyv6QosP+NMJF40GHSVb4lTpnNWZCAI55C1kL0YTZcwgDpbl92UM7xDXIVT6BaJbocJw+7iO06eYAycA02WygWCAKi6ztlvjk/grh88h5Z6Ax5671Xoa5a+muJiRsVZjRJjZqu7OJv/YB6fExKcCt1Yv5x1LVbcsqUNP3p6+IITydlgDDPBWFHFmUrF0Gm/8MrdmXT6mFInxIAwjPqsO7jkLK39/S684uv78a29g3jt5lY89tHduOnS5pLfUxxEPTwTxDNDMyuiawYIVxCjiVRmMOhSDg57oFExbO2U7yTbadXnLFyOlhAGsuA96gy4pq8JjxwdW3KJSCapUaEPwpY6A9yBWM6lfycn/LikgK6Z6No+4XvrQAEjI5ZyfMyLTW0NRT//7197KXRqFf7hFy9eUNwfG/XihTEf3nZFZ1kHSMvt0lV1WN9ilTW10eWPSuociEu/h6bLl9gods4aivhMtKf/TLS0sTRT6eXezpI7Z2aMe8NL/vwptjjrdJgxkeM1pXAF8ofhlEO7zQh/JAFvuPKzzv7nmWHc/bMj2Nxejwfec6UsmQIXCyrOapT4D7MalzU2WnSwmbSZNDkgPeOsxKTGpfy/l61FinN8488DC24X55H1OIvrAHU5Lrxyd8YVgEWvUfSHs7jvLPvkddoXwd33HcFf/uAg1IzhvnfuwtfevEW25RVi5+yR58cRjidXxH4zQFqs8KFhDza21Re9/2spzXWGnJ2zYyNzMOvUsiw3vGVrK0Znwzh0bvaC+wbSxZlye85yp1KGYgkMzwQlh4Fk63KY4LTqC5rnt5gvEscZV7CgMJDFWuoN+MjL12Jfvwu/PbEw5+qnz56DSafGG7a2Ff361YAxhjdua8Pz5+cyXf9SufzS0upsZh0cZl1ZExtngzHUG7XQFLG3VBxcTcVZaab98nTOuh0mcL50KuH4XARWvabg/fbdDhNSOV5TCvEiYKWXNXakZ509f/7Cz4Vy4Zzj3x89jX/4xYu4cb0TP3nHLtmDqWodFWc1yhcWUgqrsXPGGMuEgogKjb6VqsNuwlt2dOL/nhtZsERJvGJbTOdMfN3zntCCq+pn3EJSo5JX0ze01sGkU+PgWQ+SKY6fPDOMG/99Hx59aQr/76a1+N2HrsVVMkd0G7RqNFp0eObMDHRqFa5YU/7BucXIN4g6Ek/i2IgXO2QeCdBk1S/Z2QSAo6NebGqvl6VD/IoNLTDp1Pj58xd2PganA7AaNCVFVi9nuVlnpyb94By4pIAwEBFjDLvWOHDgjPSREYu9kB6uvLnE7uSdV3RhQ2sd/ulXL2ZWIsyFYvjVsXG8YWsbrFUYtlSom7e0CctjJczNyyeV4kKUuMTvuZ4mS1mLM08oXtR+M2B+nxoVZ6URVxSU+nMpM5dsiX1nwoyzws8llntNKdwSZvyVw1U9jei0m/CB+57PrNQop0QyhU89fALffGwQb97ege++7XJZL35eLKg4q1Fi56waizNACAXpn/SDc45UOvpWrqTGxT5wQy80aoav/bE/c9uQKwCdWpU5gS9Ul92EUCy5YMnc0HQAaxqV3YulUatweZcNj52axhu/8xT+/hcvYnNHPf7woevwwZv6FIu3Fz/sdq62V2RwbjHydc6Oj3oRS6ZkCwMRNdcZ4ApEL1huGE0kcXLcV/KSRpFJp8ErN7Tg18cnLhi4PjDtR6/TotiFArE4m1yiCBXDQIrpnAHC99ikLyIpaXMpx8eE4mxTW/GdM0D4t/a5WzbBFYjiq+mfHQ8eHkU0kcLbdq3MIJDFmtPLYx8+svTy2ELMheNIpLj04sxpySy/LYfZYAw2U3Gfh2JxNkPFWUmmfFGYdOqC96Iu1mnPPZes2FU44j7q4SJnnYnLGiuZ1ggA9SYt/vddV8Bm1uHO/z5Q1gItHEviPT89gv99bgQfuKEXX7x1U1GdakLFWc2aX9ZYnSfSa5ut8EcTmPRFMtG3haYrSeWsM+Cuq1bjF8fGcWpSOHEccgWwutFcdAdD/EEupjuFYgmMeyNYo+B+M9Gu1XaMzYUxNhfGf7xlC376jl1YrXBRKC5tXCn7zQDArNfAbtblXKYi5/DpbE6rHvEkzwQQiE5O+BFLprClwHj35bxhaxv8kQT2nlo4r2pwOqjo3kdxWdLkErPOTk74YDVoMsVxoXZllu7OFPX846Nz6LAbi+6SZNvS0YA7dnXix08P48SoF/ceOI9tnQ2yzMSrFrdua8PYXHjZoCEp3AXuuelpMmM2FC9bN8oTjBX9PWFLz0bLlfxLpJnyCXvLS71o1GgR5nktTkwGxOKs8J89DrMOZp266Flnbn8UBq0K5iroErU2GOcLtO+Xp0CbC8Vw5/cP4M+npvDPN2/AR16+bkXvya00Ks5qlK+KA0EAoM85n9g4nl4apVTnDADec/0aWPQa/NsfhCvgQ65g0fvNgPmhleK+s7NuoUhTKqkx251XdOMfXnsp/vzh3bh5S1tZfgBmirMVst9MJCRXLV2cHTzrQZ/TUlR623LEwmXxvrOj6T0AWzobZHuvq3sb4bTq8XDWsrS5UAzuQBR9zcoVZ1aDFha9ZslljWIYSLHfl71NFthM0kZGLOXYiLfg+WbL+dgr1sNu1uEdP34OZ91B3HllbXTNRC+/tAVmnbrkYBBxNIqUPWeA0DkDULaljbOhWFEzzgBAr1HDqtdQ56xE076oLEutGVs6lCsUS2A2FC+qOGOMocthXrIbJ4W4pLdaCpLWBiN+9q4rYDMJBdoxBQs0dyCKN33vGRwf9eJbf7ENf3llt2LvdbGg4qxGrYRljQAwMOUvOl2pEA0mHd593Rr86eQUnj0zg/OeUNH7zQDhpJ+x+UHUYlKjUgOos9WbtPjra1ajvsglOsV4w9Y2vOf6HvQpFDChlFyxwskUx5Fzs9ixWt6uGTC/n2JxYuOxUS+cVj1aStwMn02tYrh5SysePz2duao/qHAYiKil3nDBIOpUiuPUhK+o/WYilYph52p7UYmNM4EoxubC2FziksZs9UYt/v61l2LaH4XNpMWrNq6S7bWrgVGnxqs3rcJvT0wiHCsuqQ7IKs4knnyLnd2hMixt5JzDE4yVdCHGZtZd0A0nhZn2R0oOAxF1OUwXFFLjc8LPo2LnpXY3mpbsxknhDlR+xtlibekCrcGkxdsULND++4mzGHIF8aO/2oHXbK6tn4+VQsVZjfKG49CqGYzayrfYl+Kw6OEw69C/oDhTZlmj6K+uXo1Giw4ff/A4kileUnGm16ixqs6Q2Tx8xhUEY1B8eWGlbGyrxydftb5qrgpK1W4zYXQ2fMF+mpMTPvijCdnmm2XL1Tk7NjKHLR0Nsn8N37BVmFf16xPCvKpMcdak7DyZpQZRj8yGEIwli95vJtq52oHznhAmllg2uRxxv5mcnTNAmCv3Fzs78OGXrYWhSn+mluKN29oRiCbw6EuT+R+cg1icSd1z09ZghF6jKsu+s3A8iWgiVXTnDBD2nVVLIIg3FMf2f/0TnhhwVfpQJOOcY8oXLXkAtajLYcbIop/tpV7o7bSbMeIJFTVs3B2QNkai3NoajPjfd12pWIGWSKbw8JFR7F7bJHsY2cWMirMa5Q3HUWfQVvXJ9Np0YuP4XAQmnVrxLp9Zr8Hde3ozSxFLKc4AYWmjeJXtjDuA1nojpRJVmXabEbFEKrMfRnRI3G+mQOdM7BxkJzZ6Q3GccQdlCwPJdumqOqxrtuLn6WVpg9MBGLSqzHw6pbTUXTiIutQwEJG476zQpY0nRr1gDNjYJu+eMMYYvvDGzbizRpfr7FptR1uDEQ/nGGouhSsQhV6jglVi2INKxbCmTImNYlFlNxf/GWM36zCzzMzEcuqf9sMdiOLIublKH4pk/mgC4XgSTqs8F2E77SbEEqkFoUSlXujtdpgQT/KCLwoB0mf8VcLiAu346Jxsr/3EgBvT/ihu394u22sSKs5qli8cr9oljaK1zUJal7iBtxyF5F/s6swseSh1f1iX3Zwp9IZcgbLsNyOF6cgRp//c8Cxa6w1FL39ZjkErXGjI7pwdS38YblGgOGOM4ZZtbThyfg7D7iAGpgNY02iRdaD7UlrqhXluiWQqc9tL4z6omDAAvhSXrKqDVa8peGnj8dE5rGk010TMfTmpVAy3bG3DEwOunGMg8nH5C99z09NkxpBL+UHUs0FhmX+pnbNqWdY4nN7jvNwMx2ojfl+VOoBaJEbfZ+87G58LQ8WKn6PWucRrSpFIpuAJxdBkqd5ZXm0NRvzsb4Qljnf8t3wF2gOHR2A363DD+mZZXo8IqDirUd5wvCoHUGfra7YiEE3g8PnZTDS30vQaNb546ya8+7o1MJca5+swweWPIhhN4KwrWHInjshvqTh9zjkODnsU6ZqJnFb9gq7S0ZE5MAZsKmEw8nJu3tIKxoBHjo5hcDqg+H4zQCjOkim+YJzESxN+rG40l7z0T61i2N5tK6hzxjnHsVEvLpN5SePF4pZtbUhx4BdHx4t6vlicFaKnyYKR2dAFoyDk5gmJnbPiT54dZh1mgrGi5+/JSbwoWOzA5EqYSg+sl2vPWfeixGQAGJsT9rRpi4xvF1+z0OLME4qBc+n7LSul3WbCz/7mCtQbtXibDAXabDCGP700jZu3tEKnoXJCTvTVrFG+FVCcrW0Wrq67/FFFOhi5XNvXhE+9+pKSX6fTLlxlO3RuFsFYkjpnVagtU5zNn8ScmwnB5Y/KHqGfrbnOsLBzNjKHniYL6hTq6KyqN+LKNQ48cGgUY3PhsgS3zA+inv/anpzwlbykUbRztQOD04ELlqTmMuWLwuWPKlYA17qeJgu2dDTgoSJTG92BqOSkRlGv0wLO59NulSKG5ZQaCBJLpBAqITRFLsPp4mF0buV0zsSLVXIVZ6vqDdCo2AWds1KCxVrqDNBpVAUnNrr9wvdXtS5rzNZuM+F/33UF6oxavOt/DiOaKP77+RdHxxBLpnD75R0yHiEBqDirWb5IYkUsaxQpGaOvFHFZhThjqhxJjaQwJp0GDrNuQedMnOe0U+HO2XT6SrHQ0ZlTZEljtlu2CvOqAOWTGgGgpU74NyuedHnDcYzNhWUszoS/n0MS52+JS0flDgO5mNy6rQ2nJv14adxX8HOL7ZwBysfpZ/aclbisMfu1KkksHibmIkWFV1SCeLFKjih9QBgS324zLkhXHPeWVpypVEtH9OfjrpIB1FK120z40q2bMemL4MHDxY/QeODwKDa01tXU3MdqQcVZjfKG46iv0gHUogaTLvNhrnRSoxK67EKn7PHTQnFWytw0opzFs86eO+tBg0mr6JBmZ50B0/4IOOcYnQ3DHYgpEgaS7ZUbW6BPLy1RcsaZqCXTOROKs1PpMJBLZSrONrXVw6BV4dkz0oqz46NzUKsYNtCJQtFeu1lYHvunk1MFPS+e3nNTaOdgdaMZjAFD0wp3zkIxqBhKWk3iSBdn1TDrbNgdhFGrRiLFLwjlUcqkN4Ib/u3xogvpKV8EVr2m5O0E2Tod5kxicirFMTEXKflcostuwnCBnbNMUukK6JyJrupxYEtHA767b2jBvmGpXhr34cVxH26/nIJAlEDFWQ3inGfSGqud2D1TcsaZUupNWtQbtRieCcGkU8s6v4rIp91uWlCcHTo3i+1ddqgUDMxwWvWIJzlmQ/H5MBCFOzpWgxYv39ACnVqFLofyFwpsJi10GlVm1plcSY0inUaFy7uk7zs7PurF2mZrTUbdl4vNrMOaRjNOpEcSSOUJFrfnxqhTo63BWJbOWYNJV1JIjrgkcrbCxdlcKAZfJJHZM1uufWdHR2Zxxh3EM0MzRT1/2heVLQxEJBZSnHO4g1HEkqmSt0h0OYSgr0L2FmY6Z1UcCLIYYwzv39OLEU8Yvzpe+D7TBw6PQKdW4eYtbQocHaHirAYFY0kkU7zqlzUC8/vOVmJxBszvOxOuAFfv2IKLWbvNiLH0PJxpfwRn3UHs6LYp+p7ivoopXwTHRuag06iwvoTBzFL9w2svxf+8Y2fRG+ILwRhbMOvs5IQfNpNWtjlGALCz24GTkz54w/FlH8c5x4kxLy6j/WYl29RWjxOjhRVnhQ6gztbrtCg+62w2FIPNVNrnYbV0zsT9Zlf3OACUL7FxxCMUgcX+XU35IrLF6Iu6HCb4IwnMheKZAdStJW6RWN1kRiiWLKjodafHSFhk7AqWw43rnVjfYsV39g5dMAt0ObFECr84Oo6bLnWWtI+T5EbFWQ3ypU9kVkJx9rJLmrGj21bWQBA5idG7ayipsWq120yIJVNwBaI4NDwLQJn5ZtnEK8TT/iiOjsxhY2tdWQqmJqseV6xxKP4+opY6Q2bO0MlJIQxEzosUO1fbwTlw+Nzy3bMRTxhzoTjtN5PBpvYGTPoimPZLXy5XSnHW02TBGXegoJPDQnmCsZKSGoHq6ZyJ+82u6hEG/parcyYmRBZdnPkjsl64AeYvjp7zhEoeQC26Iv3Z8NSgW/Jz3IFYwWMkqoFKxfDe3T0YmA7g0ZekL2V+7NQUPMEYBYEoiIqzGuRdQcXZVb2NeOA9V63YGNau9IfDmkbab1atxDj9EU8IB896YNCqsLFV2Q5Lc/oK8fhcWOjoKLzfrFJW1Rsw6Y0gkUzh9KRftiWNoq2dDdCpVTiQZ9/ZfBgIdc5KJX4NXyhgaaMrvayr0LRGQCjOIvEUxosY/CvVbDBe0owzALDqNdCqWeU7Z+4QGBP2lTZZ9Rgrc3E2MO0v+Lmcc0z5orIlNYq6MtH3wUxxVuqF3l6nBc11ejxRUHFWvQOo83nt5lZ0O0z49t5ByUs5Hzg0CqdVj2v7GhU+uovXyjwjJssSi7Nqj9KvBV2ZzhkVZ9WqIytO/7lhD7Z22BS/GCB2zp4ccCMSTyme1Fgpzeni7Kw7iGgiJXtxZtCqcVlHfd5h1MdHhaWjpQ6/JkKgC2PCHj6pSuucCT87lVza6AmV3jljjMFu1sETlDbaQSnnPEG01Blg0KqFsKMyxemPpJdPTvmi8EWWX2a8mDccRyyRglPm4kzsnJ2fCWFsLgyzTo26EoPQGGO4urcRTw+6JXdzXf6VW5yp092zE2Ne7B/IX5BO+yN4vN+FN25rh6YMq0EuVvSVrUEraVnjSnd5lx1tDUZc3qXsHiZSvHab8AF+ctKHkxM+xZc0AkJRUWfQZJI8a7U4W1VnQCyZwtPpkIBLFNhXt3O1HS+MeRGMJnI+5vioF5euKs/S0Vpn1mvQ22QpaN+Zyx+F1aApKoxFHPsw5FImsZFzjtlgTJa9MTaTDp5gYYWJ3M7NhDIXBdttprIsa0ylOEY94aILaTFGX+5ljUadGs11+syyxtYGoyxLC6/ta8RsKI6XJqSNlHAHomiyrty9V7dsbceqegO+vXcw72N/fmQMyRTH7dsppVFJ9ElWg1bSssaVrtdpwVOfvCFTAJDqY9Cq0WjR49fHJpDiwE4Fh09nc9YZEIwlYTNpM1d4a01LevP9Y6emoVExRear7VztQCLF8fz5uSXvT6Y4Xhjz0pJGGW1qr8fxApc1FrOkERDmhzWYtIolNvqjCSRSvKQZZyKHpQo6ZzNBdKeX87U1GDE+F1Z81tmUP4JYMoUb1jsBFF6cyT2AOluXXYjTH5+LyBYsdnV6P9+TEpY2JlMcnmDhYySqiU6jwruuW4ODZz14bpm5kpxzPHB4FJd32TIzCokyqDirQZlljSsgSp+Qcmi3GTE2F4ZaxbC1s6Es7yleJb6so2HFbRSXalV61tkzZ2bQ67RAr5E/xv7yLhvUKoYDZ5eO8D7jCiAYS1IYiIw2tdXD5Y9KnqHl8keLHsDLGENPkwVDCi1rFAM85OqczYYq1zkLRBNwB2KZvVbtNiPiSV5QeEsxxKTGq3obodOoiijO0p0zmdMaASGU65wnmOmcycFZZ8C6ZiuelLDMzxOMIVXEGIlq85YdnXCYdfjWY7m7Z0dH5jA4HaDZZmVAxVkN8kUSYAywGlZWrCshShFDQTa01sk6BHU5Ymz0ZTVcNIiDqGOJlGzDpxez6DXY2FqXc9+ZuDeKOmfyEb+WUveduf3Rkk5Oe5rMinXOPOnizG4u/WKlw6zDTKBynTMxqXF+WeP8floliWEgqx1mrGk0F905k3vOGSCEck35opgJxtBW4gDqbFf3NuLgsAeReHLZx83POFvZxZlRp8ZfX7Ma+/pdOcOAHjg8CoNWhddsXlXmo7v4UHFWg3zhOKx6jaJDdglZScRlpzvKtKQRmD8R2VKmTl0lNFr0mcG+coeBZNu52o6jI3NLnigdH52DSaemZTYyunRVPVQMOJFOwczH5S9+WSMgLA93B2KYC8mfhDibfs1S0xoBwG7WwxdJIJ5MlfxaxTiXnnGWvecMgOKJjSMeISGytcGIXqel4MTGaV8EdUXuScxHHGcDyDsv9dq+RsQSqcz4lVxqpTgDgDuv7ILVoFly71kknsSvjo3j1RtXwUqrshRHxVkN8objqC9x4CYhtaTDLnxol7M462mywKhVY0sNd87UKobmdMdE2eLMgVgitWQn59ioFxvb6jNFIimdUafG2mYrTkjYdxaJJ+GPJkrsnCkXCiIGeJSa1ii8hvC5OqtAESnFcKZzNr+sEVB+EPWIJ4TWeiN0GhX6nFaMzoYRji3fUcqmRIy+SPxaAPIWZztX26FRsbz7zsSk0kbLyg0EEdUZtLjrqm78/sVJDC4qwP/w4iT8kQRuoyCQsqDirAZ5w3Hab0ZIlt3rnLh5SyuuKeNcllu3tWP/x/fIstelmolLG5VIahTt6LaBMeDAmYX7zuLJFF6a8GFzGy1plNvGtnqcGPPmnX1USoy+aL44k39po5x7zuxm4c/oqdCss/MzITRadLCkl2aLYUflWNYoFoK9Tgs4L+zvShhArVBxlhW2VOqMs2xmvQbbOm14ctC17OMynbMVvudM9FdXr4ZBo8Z3Hh9acPsDh0bRbjPiitWOCh3ZxYWKsxrkC8cpqZGQLG0NRvzHW7ZmTmrKQa1iK36TuBTtNhNa6gxwKLisp8Gkw7pmKw4uShI7PelHLJHC5hodVVBJm9vr4Q7EMOFdPmyilAHUog67CTq1SpFQEE8oBo2KwSrDv31bunNWqeJseCa4oFMEAG02o+LF2chsKJM429dceCE97Ysqst8MABpMWlgNGjAmfxrkNX2NeHHct+zftzsQg16jkuX7qxrYzTq8dVcnfnF0HCPpvYZjc2E8NeTGbZe303aZMqHirAZ5qTgjhJTJx1+5Dv/99u2Kv8+u1XYcPje7YL+PuOzuMgoDkd2mdDcy39JGOTpnahXD6kZlQkHEGWdyJKY6Ktw5y55xJmq3GRVd1hiJJzHli2aKs26HGWoVw8CUtL8rzoU0SaU6Z4wxdDvMcFr10GnkPaW9urcRnAPPDC2dFAsIYTiNFn1NJfL+zbVroGYM39svdM8eOjwKzoXVIKQ8qDirQbSskRBSLu02EzaWYVnhztUOhGJJvDg+Pxj2+Ogc6o21O0euki5ZVQe1iuUdRi1HcQYAPU6zQnvOYrLMOAPm961VojiLxJOY8EYyM85E7TYjxuciSCk060ws/DrS/8Z0GhW6HCbJoSCzoTjiSQ6ngqsIbrzEiRvWN8v+upe118Oq1yy7tNEVKH6MRLVqqTfg1svbcf+hUUz5Injw8Ciu6nFkvgeI8qg4q0G+CAWCEEJqy47VNgAL950dGxGGT9fSVetqYdAKoSD5hlG7/FEwVnrgRk+TBec9IUQT0oMmpJgLxTPLEUvVYKrcskZxidmFnTMTYslUZnmp/O8rLJnMPjHvbbJIjtNXcgC16EM3rcUX3rhJ9tfVqFW4osexbCiIkFRae/uK33t9D5IpjrvvO4LznhBupyCQsqLirMZEE0lE4ila1kgIqSlOqwFrmsw4mJ53Fokn0T/lp/lmCtrcVo8To3PLhoK4A1HYTTpo1aWdTvQ6LUimeCYuXi6eUEyWpEYA0KpVqDdqK1KcDWdi9C/snAHKJTaKM87ExFtA2Hc2PBNCLJF/pMB8cbYyu0vX9jVixBPOzJhbzB2I1USM/mKdDhNef1krnhuehVWvwSs30GyzcqLirMZ4w0JscB0VZ4SQGrNrtR0Hhz1IpjhemvAhkeLY1NZQ6cOqWRvb6zEbimNsLnfghKvEAdSiTGKjzKEgs8GYLDPORHazriLFmVgcdC/qnHUoPIh6xBOCQataEPgyX0jnX4Y67RM6ek6rcp0zJV3dKyT8LtU9S6Y4PEF5vv+r0Xt39wAAXnvZKhh18s+oI7lRcVZjfOEEAKDOUBvJQYQQItq52g5/JIFTkz4cH5kDAFzWQZ0zpYgjCpbbd+YKyHNyurpR6AjJGQqSSnHMytg5AypZnIVQZ9CgYVGhKc72Uqo4O+8Rkhqzlw73OYWxGQMSCmmxc6ZUWqPS1jSa0VpvwJMDFxZns6EYUrw2BlAvZW2zFf/7rivwiVeur/ShXHSoOKsxYueMljUSQmrNzvSMnYNnPTg+5kWjRY8WBfeyXOzWr7JCq2bL7jtzpdPqSmXWa9Bab5A1FMQXiSPFUROds+GZILobzRfcbtJp4DDrFF3W2GFb2K1b0yQch5R9Z9P+KGwmLfSaldl5YYzh6t5GPD00g+Si0JXMjLMaLc4A4Io1jgsuCBDl5S3OGGMdjLG9jLGTjLEXGWMfTN/+L4yx44yxo4yxRxljrcofLsnHR8UZIaRGtTUY0W4zCsXZqBeXURiIovQaIRTkhRzFGedctmWNANDjlB40IYVYRMnaOTNVrnO2eL+ZqF2hWWecc4zOhi9I6TPpNGi3GSV3zpQMAymHa/oa4Q3HL/h3ICaVNtZgIAipLCmdswSAj3DOLwFwBYD3M8YuBfAVzvlmzvkWAL8G8A/KHSaRivacEUJq2c7Vdjw9NIMhVwCb2xsqfTg1b3N7PY6PepcMBfFHE4gmUiUNoM7W02TBkCuwbABJIWZDQhFlk7M4s+gwG4rJdoxSxJMpjM2FL9hvJmq3mTCmQHE2G4ojEE0sGaHeK7GQnpKxeK+UXPvOMp2zFf7nI9Unb3HGOZ/gnB9J/9oP4CSANs65L+thZgDl+0lFcvJFqHNGCKldu1bb4Q3HwTkoqbEMNrU1wBuOZyLVs8k140zU47QgFEtiMr1PqVSeoPB5KNecMwBwmHWIJzn80YRsr5nP2GwYyRTPOc+v3WbE6FxY9llnYlLjUu/b5xQK6cVL/RabroHOWaNFj0tW1V2w78ztj2XuJ0ROBe05Y4x1A9gK4ED6959jjI0AuAPUOasK3lC6c0ZDqAkhNUjcdwZQcVYO4tf4xBJLG91yF2cF7GWSYjYods7k+zwU9695AuVb2jgsJjUusecMEIqzWCKV6eTIZWSZ4qzXaUEskVp2r1sqxTHtj67YGP1s1/Q6cPjcLMKx+Tl87kAUOo2KAtiI7CQXZ4wxC4CHAHxI7Jpxzj/NOe8AcC+Au3M8712MsUOMsUMuV+4p60Qe3nAcRq0aOg1lvRBCak+3wwSnVY+2BiMcdMVacWubrdCpVTg+NnfBfeLgY7mKs16nvHH6npACe87S+4tmyrjv7NzM0gOoRW3pOP0RmZc2ip0zcZZatl4xsXEq99/VTDCGZIqv+M4ZICxtjCVTODjsydzmCkTRZNHTvlciO0ln8IwxLYTC7F7O+cNLPOQ+ALcu9VzO+T2c8+2c8+1NTU3FHymRxBeJ05JGQkjNYozhAzf04j3Xr6n0oVwUdBoV1q+yLhmnPx+IIE9x1mTRw2rQyJbYOBuMQa9RwaiVLylQXCI5W8bibHgmCJNOnXNvX3s6TVHuxMbR2RAaLTqY9Rd2hsRCenCZ0QeZGP0VOuMs287VdujUKjyVte9MSCqlMBAiv7y9WCZcEvg+gJOc869m3d7HOR9I//b1AE4pc4ikEN4wFWeEkNp255XdlT6Ei8qmtnr88tg4OOcLugQufxQaFUODTJ85jLFMKIgcPEFhxpmcnQ2xC1fOxMbzMxfOGsvWlp51ttyw8KLe1xNaMgwEEPa1O636ZTtnYvFeC8saTToNtnU14ImsfWfuQAyt9Su/8CTVR0rn7GoAdwK4IR2bf5Qx9moAX2SMvcAYOw7g5QA+qOSBEmmoOCOEECKnTW318EcSmeV1InHGmUolX/HT0yRfnP5sKCbrjDMAcKQ7JeKSyXIYngmiO0eMPiDMiLObdbLH6S814yxbX7NFUuesFpY1AsC1fU04OeHL7O1zB+SZ8UfIYlLSGp/knDMxNj/9328557dyzjemb38d53ysHAdMlucLJ1BnpM2phBBC5LEpHQqyeBi1KyB/THqv04JpfzSTPFwKsXMmJ6NWDb1GVbbOWTLFMeIJo6sxd5EEyD/rLJFMYXwukjMhEgB6mywYms49+mDKV1tDmsVI/aeHZpBKcXiCsRU/JoBUJ0qNqDHecJxmnBFCCJHN2mYrdBoVTozOLbjdrUBxJiY2npFh39lsKC7rjDNAWHrpMOswU6a0xklfBLFkCl323J0zQCzO5NtzNuGNIJni6LBfGAYi6m22IhBN5Bx9MOWPwGHW1UxA2aa2etQZNHhywIXZkBB2QnvOiBJq418MyfDRskZCCCEy0qpVuGRV3QVx+i5/VLYB1KIeGRMbPcEY7Cb5Pw9tZl1mwLXSzrnTMfo5khpFbQ1GjM2GZRuOLcbo59pzBgidMyB3YuO0LwJnjSxpBAC1iuGqnkY8OeDOJJXSAGqiBCrOakgyJQzGpBlnhBBC5LS5rR4vjPkyg45TKQ53QP5lXZ12EzQqtuxeJikSyRS8Yfk7Z4AQClKuKP1hMUY/x4wzUbvNhGgilSkaSrXcAGpRX3M6sTFHIT3lq40ZZ9mu6WvEuDeC54ZnAdTOkk1SXag4qyH+9Bp96pwRQgiR06b2egSiCZxND0RWalmXVq1Cd6O55M7ZXFj4PJR7zxkAOMy6skXpn5sJQqdRYVWeDpQ4i2xMpn1n5z0haFQMq+pzL2t0mHVoMGkxkOPvatofQXMNxOhnuya97+yR54WYBSrOiBKoOKsh3jAVZ4QQQuS3qU0IBXkhvbRxfgC1/CffPU3mkuP0xeJJ7rRGQFjWWK5AkHMzIXTYjHkTMednnclTnI3MhtFmM0K9zPsyxtDntCxZSCdTHC5/7XXOuhwmtNuMOHxO6JxRIAhRAhVnNYSKM0IIIUroc1qg16hwPD2MWpxhpcTJaU+TBedmQognU0W/hlg8KdU5C0QTiCaSsr/2Yvli9EVt6c6ZXMVZvhh9Ua/TgoFp/wW3zwSiSHHU1J4zQChIxe6ZTq1CnYHSsYn8qDirIb5wAgAorZEQQoisNGoVNrTW4US6OHMHlCvOep0WJFL8grlqhRADO5TqnAHAbLD0uP/lcC58DbokFGcWvQY2k1a2xMaRZQZQZ+t1WjEbimNm0V43MUbfWYOdpWv6hOKs0SLvgHNCRFSc1RDqnBFCCFHK5vYGvDDuzSxZA5TrnAEoaWmjJ6jsnjMAmAnKE76Ri8sfRTieRFeepEZRm0yzzgLRBDzB2LJhIKLedLrm4n1ntTaAOttVPY1gjJIaiXKoOKshVJwRQghRysa2eoRiSZx1B+DyR2HUqmHWqWV/nzXpWWelFGdi56xBgSh9u1k4KVe6c3YunZgotThrbzDJ0jmbj9HPHQYi6nMundg45a/d4sxu1mFHlz0zSoAQudFi2RriS6c11hnpr5UQQoi8NrcLoSDHR71w+aNotCqzrMtq0KK5To+h6eIHUXuCMZh1ahi08hePdrNQ8CndORvOzDjLv6wREBIbH++fBue8pL+XEQkx+qJV9QaYdeoLizNfVOgu1eiQ5h/99Y5lw1IIKQV1zmqINxyHVs1gVODDiBBCyMWtp8kCo1YtFGcB+QdQZ+t1WkqadTYbjCky4wyY75wpndh4biYEtYplwj7yabcZEYmnSp7BJs44kxIIwhgT/q4WFWcufwSNFj006to8zTTpNNBr6FyLKKM2/9VcpLzhOOqNWtqgSgghRHZqFcOG1jq8MCZ0zpSMEe9psuDMdACc86Ke7wnFFNlvBghbB1QMis86O+cJoa3BCK3EAkeuOP0RTwhWvUbyktCeJRIba3EANSHlQsVZDfGG46gz0H4zQgghytjUXo8Xx32Y9EYUL8780UQmeKRQs8GYIkmNgFCkNph0JXeo8jk3E5S83wwA2u1inH5p+85GZsPosJskX+jtc1ox5YtmtlYAQiCIs8YGUBNSLlSc1RBfOE4x+oQQQhSzub0e4XgSvkgCTRblTr7FxMZilzYq2TkDhFAIMXREiv39Luz43J8wNietq8U5x1m3tBlnorYGeWadnfeEJIWBiJYKBaHOGSHFo+KshvjSyxoJIYQQJWxqq8/8WsnOmRjRPjRdXHE2G4wr1jkDALtJh5mA9OLsl8fG4fJH8b19Q5IePxeKwx9JFNQ5sxq0qDdqMVZCccY5x4gnJCkMRNS7qDiLJ1OYCUapc0ZIkag4q1LeUBz/+MsXMVfAlTkvFWeEEEIUtLrRkonPV7I4a67Tw6xTY8hVeGJjNJFEIJrIpCoqwW7WSQ4E4ZzjiQEXGAP+97kRTKdngC1nPkZfeucMEEJBSlnW6PJHEU2kCirOOuwm6DSqTHHmDkTBeW3G6BNSDlScVan/euIMfvT0MH7/wqTk5/giCYrRJ4QQohi1imFDunumZEw6Yww9TktRs87mQsLeJ6XSGgHAbpG+rLF/KoApXxTvvb4HiWQK//3k2bzPOTcjxuhLL5IAsTgrvnMmJjW2F1CcqVUMaxrNGJgSQkGmfMI+QVrWSEhxqDirQr5IHD9+ZhgA8NzwrKTncM6pc0YIIURx4tJGJTtngLDvbHFEuxRiR8uu8LLG2VAcqVT+NMn9/S4AwNuu6MLrL2vFT589lzfpcdgdAmNCV6oQ7TYTRmfDRadcjsxKn3GWra/ZmtkfKHYGqXNGSHGoOKtCP3nmHPyRBHqazDh8ziPpOcFYEskUp+KMEEKIot64rQ23X96OVfXSQyOK0eu0YMIbQSCaKOh5YuGjaOfMrEMyxRckFOayf8CFXqcFrQ1GvG9PL0KxJH741PLds3MzQbTUGQoeot1uMyIcTxY9g+38jNB1E8NFpOptsmB0NoxwLImpdMKmkzpnhBSFirMqE4ol8P0nz2LPuia8aXsHhmdCkqKEvWHhA4Ki9AkhhChpQ2s9vnL7ZVCrlJ2p2dMk7Lc6W+C+M096uaHSaY0A8sbpR+JJHDjrwXV9TQCAtc1WvGJDM3709PCyhd05T6igMBBRqYmN5z2hoorCvmYLOAeGXAFM+yJQMcBhpuKMkGJQcVZlfnZwBJ5gDHff0Ivt3XYAkNQ986WLM+qcEUIIqQVinH6h+84ynTMllzWmi7N8HaoDZz2IJVK4bm1j5ra79/TBF0ngJ8+cy/m8czOFxeiLxEHUUiP7FxuZLSypUZSd2DjlE2bgKV28E1KrqDirItFEEvfsH8Ku1XZc3mXHxrY66DQqHJKw78xLxRkhhJAa0uUwQ61iBe878wSFz8MGk7JpjcJ7LV+c7e93QadRYddqR+a2Te31uH5tE37w5FmEY8kLnuOPxOEOxNBZTOfMVtog6hFPKDPMuhDdWX9Xwowz2m9GSLGoOKsiDx0ew5Qvirtv6AUA6DVqXNZej+fOSS/OaAg1IYSQWqDTqNBlNxXeOQvFYDVooFUrd4pTSHG2s9sOo27hMsEP3NCLmWAMPzt4/oLnnJsRCqtiOmf1Ri3qDJqiljVGE0lM+iJFdc50GhW6HCYMTPsx5YvQjDNCSkDFWZVIJFP47r4hXNZej2t655c/bO+248Ux75JX17LRskZCCCG1Zk1T4XH6nmBM0f1mgLTibMIbxsB0YMGSRtH2bjt2rbbje/uHEE0s/Hw/n5lxVniRBMwnNhZqbDYMzoEOW3Hv2+cU0jWn/VGK0SekBFScVYlfHR/HeU8I79/TC8bm12lv77IhkeI4OjK37POpc0YIIaTW9DjNGHaHkEimJD9nNhRTdL8ZABi0aph06mWLsyf63QCA69Y2LXn/3Tf0YsoXxUOHxxbcPpyecVboAGpRsYOoxaKwmOWUgLDvbHgmBE8wRssaCSkBFWdVIJXi+M7eIaxrtuKmS5oX3Hd5lw1A/lAQXzgOxgCrnoZQE0IIqQ09TRbEkimMFNAJKkfnDBC6Z8sVZ/sGXHBa9VjXbF3y/mt6G3FZRwP+c9/gguLznDuERosOliI/z9vSg6gLnXUmfo2LWdYIAH1OK5LpuW/UOSOkeFScVYFHX5rEwHQA79vTA9WidKMGkw59TgsO5dl35oskYNVrLng+IYQQslKJKYBDBYSCzAaV75wBgGOZ4iyZ4nhywI1r+5oWrIbJxhjD3Xt6MeIJ45fHxjO3n/MEi+6aAcKyxlAsiblQ/hls2UY8Ieg0KjRZiiusxL8rALTnjJASXPTF2UcfOIaPP3isYu/POce39g6i22HCaze3LvmY7d02HD43i1Qq91UwbziOegWTqQghhJBy62ksPE7fE4rBblb+89C2THF2YswLbzi+5H6zbDeud2J9ixXf3juY+Yw/N1PcjDNRu624WWfnZ0LosBmLvsjb02SBWIfSAGpCinfRF2cA8IcXpwpazy6nff0uvDDmw3t39+ScCbK9yw5/JIH+aX/O1/GG4xQGQgghpKbUm7RotOglF2fhWBKReAq2Ci9r3N/vAmPAtX1L7zcTqVQM79/TiyFXEL9/cRKReBIT3gi67KV0zoqL0x+ZDaGjyCWNAGDUqTNDsGnPGSHFu+iLsxvWO+ENx/F8nsANpXx77yBa6w24ZWt7zsds7xb2nT23zLwzbziOOgMVZ4QQQmpLr9MsedaZJyQUS/YKL2vc3+/CprZ6SXvfXr1pFdY0mvHtvYPzMfqNpXTOhOcW3DnzFDeAOluf0wKNipXl609Irbroi7Nr+hqhUTE8dmq67O994MwMnhuexbuuWwOdJvdfRafdhCarHoeHc4eC+KhzRgghpAb1NFkw5ApKCriYTRdL5eic2cw6hOPJC0bd+CLCBd9r+5Zf0ihSqxjeu7sHL4778ONnhgEUn9QICCN1rAZNQZ0zbygOfyRRcnH2yo0teMXGFtr/TkgJLvrirM6gxY5uO/ZWoDj71t5BNFp0eMvOzmUfxxjD9i5b3s4ZFWeEEEJqTU+TBd5wHDN5Bj4D83PHypHW6BBnnYUWHtfTgzNIpjiuy7OkMdsbtrahrcGI+w4IQ6m7S9hzBgBtDUaMzUnvnIkx+u1FzjgTvXlHJ7791m0lvQYhF7uLvjgDhKWNpyb9Bf0gK9WxkTk8MeDGO65ZA4NWnffx27vtGJsLY9IbWfJ+Ks4IIYTUop4CEhtn04VSOdIaxffwBBYWZ/sHXLDoNdiWHoUjhVatwnt29wAA6gwaNJR4/IUOos7MOCuxc0YIKR0VZwD2rHcCQFmXNn577yDqDBq87Yrlu2ai7ekf8oeWmHcWiScRTaRoADUhhJCaI0a0D0oIBSlr58xyYeeMc479/S5c2eOAVl3YKdbtl7fDadVjdWPxSxpF7QXOOhtJL4HssBtLfm9CSGmoOAPQ02RGp91UtqWNpyf9ePSlKdx19WpYJYZ4XNpaB6NWjUNLLG30RYRZJlScEUIIqTWr6gwwatUYmg7mfexsMAbGUJaVJHazEBfvCUYzt511BzE6G8Z1EvebZTNo1fjBXTvwuVs2lXxs7TYjAtEEvGFps87Oe0KwmbSSz0kIIcqh4gzCnq4b1jvx9JAbkXgy/xNK9J+PD8KkU+OvruqW/BytWoUtHQ1Lds586R++tKyREEJIrVGpGNY0mSXF6XtCMTQYtTlH08hJTCScyVrW+MSAGwBw3Vrp+82ybWyrx8a2+pKPrdDExhEZkhoJIfLIW5wxxjoYY3sZYycZYy8yxj6Yvv0rjLFTjLHjjLGfM8YaFD9aBe1Z70QknsIzQzOKvo8nGMNvTkzgzTs6Ck6T2t5tw0vjPgSiiQW3e8PC7+sMGtmOkxBCCKkWPU0WvDDmxR9enFy2GzQbipclqREA6owaqFUss88NECL0uxymktIW5VDorLMRTwjtVJwRUhWkdM4SAD7COb8EwBUA3s8YuxTAHwFs5JxvBtAP4FPKHabydq22w6hVK77v7JdHxxBPcrxpe0fBz93ebUeKA0fPzy24nTpnhBBCatnLLm1GKJbEu39yGFv/+VHc/K0n8eXfn8JTgwtXvMwGY2WbscUYg800P+sslkjhmTMzBaU0KmW+OMvfOUumOMbmwtQ5I6RK5G21cM4nAEykf+1njJ0E0MY5fzTrYc8CuE2ZQywPg1aNq3sb8dipafwz52BMmSURDx4ZxYbWOlyyqq7g527tbABjwHPDHlyTtZ7dS8UZIYSQGva6y1rxig0teP78LJ4amsHTg27cs/8MvvP4EHQaFbZ32XB1byNGZkNY31L452uxsgdRHzrnQSiWlDzfTEn1Ri0seo2k4mzSF0E8yak4I6RKFLQOjjHWDWArgAOL7vprAP+X4znvAvAuAOjslJZMWCk3rHfiTyenMDAdwNpmq+yvf2rShxfGfPjs6y4t6vl1Bi3Wt9Th8LmFoSBUnBFCCKl1Oo0Ku9Y4sGuNAx9+2VoEogk8d9aDpwbdeHLQja/84TQA4Noydq7sWcXZEwNuaFQMV/Y4yvb+uTDGMomN+ZyfSSc1ljjjjBAiD8nFGWPMAuAhAB/inPuybv80hKWP9y71PM75PQDuAYDt27dLy3StkD3rhR/oj52aVqQ4e+jwKDQqhtdf1lr0a2zvsuGhI6NIJFPQpGN6xWWNlNZICCHkYmHRa7BnvTMzDscdiOLwuVls6Wgo2zHYzTqcnBROifb3u7Cty1Y1iYdCcZZ/z9kIzTgjpKpISmtkjGkhFGb3cs4fzrr97QBeC+AOLnWYRhVbVW/EJavqFNl3lkim8PPnx3HDeiccFn3Rr7O924ZQLIlTk/7Mbd5wHCaduuCZKoQQQkitaLTo8YoNLWiuM5TtPe1mHWaDMbj8Ubw47sP1RaY0KqHdZsK5mRAePjKKwekAUqmlT9NGZkNQMWBVQ/m+boSQ3PJ2zpiw+er7AE5yzr+adfsrAXwCwPWcc2lxQCvADeub8N19Z+ANxVFvku/q1/4BF9yBKG67vL2k19nebQcAHBr2ZOJ2veE4LWkkhBBCysxm1mEuHMe+fhcAVMV+M9HVvY24/9AIPnz/MQBCp3FjWx0ua2/A5vYGbG6vR7vNiPOeEFobjHSBl5AqIWVZ49UA7gRwgjF2NH3b3wH4BgA9gD+mwzOe5Zy/R4mDLKcb1jvx7b1D2D/gwutKWH642IOHR2E367B7nbOk12lrMGJVvQHPnZvFXVevBiAMoa6rkmUUhBBCyMXCYdaBc+BXx8ZhN+uwsbX0GWVyedmlzTjxj6/A4HQAx0bncGLUi+Ojc/jhU8OIJVMAhM5fPJHCpvbqOW5CLnZS0hqfBLBUdOFv5T+cytvSYYPNpMXeU9OyFWdzoRj+9NI07riiEzpN6VemtnfbcfDsDHg6VZI6Z4QQQkj52dMz1Z4cdOM1m1ZBVYbh14VQqxjWtVixrsWaGeETTSRxetKP4+li7YUxH165saXCR0oIEdHU4kXUKobr1zbh8X4XkikOtQw/aH91bByxZAq3bittSaNoe5cNvzo2jtHZMDrsJnjDCbQ1GGV5bUIIIYRIIxZnyRTHdVW032w5eo06vayxAUBXpQ+HELIILTBewp71TniCMRwbnZPl9R48PIr1LVZsaJVn9sr2bhsAZCL1feE46oxUZxNCCCHlJBZnQHXtNyOErFxUnC3h+rVNUDFgrwypjQNTfhwb9eK2y9tlG2y9vqUOFr0Gzw17AAjFGS1rJIQQQsrLkS7O1rdYy5oSSQipXVScLaHBpMPlXTZZIvUfPDIKtYrh5i1tMhyZQK1i2NrZgMPnZpFMcfijCSrOCCGEkDJrMOmg16hKDvsihBARFWc57FnvxIvjPkz5IkW/RjLF8cjzY9izrglN1uJnmy1le5cdp6f8GJsNAwAVZ4QQQkiZ6TQq/Px9V+Nvb+yt9KEQQmoEFWc53LBeuApWytLGJwZcmPJFZQsCyba92wbOgb2nheOjKH1CCCGk/C5trYNJR/u+CSHyoOIsh3XNVrTWG0pa2vjQkTE0mLS44RL5lzts6WiAWsXw5/TxUeeMEEIIIYSQlY2KsxwYY9iz3oknB92IJpIFP98bjuMPL07i5staodeoZT8+s16DS1fV4dmhGQBAvYmKM0IIIYQQQlYyKs6WccN6J0KxJA6c8RT83F8fH0cskcKtl8u/pFG0vduGWDIFgJY1EkIIIYQQstJRcbaMq3oaodeoilra+NDhUaxttmBTW70CRybY3mXP/JqWNRJCCCGEkLL48peBvXsX3rZ3r3A7KQkVZ8sw6tS4sseBvaenwTmX/LwhVwBHzs/JOttsKeIwaoCKM0IIIYQQUiY7dgBvetN8gbZ3r/D7HTsqe1w1gIqzPG5Y78S5mRDOuIOSn/PwkVGoGPAGGWebLaW5zoAOuxE6tQoGLf1VEkIIIYSQMtizB7j/fuCWW4A1a4TC7P77hdtJSeiMPo896wqL1E+mOB4+Mobr1zbBWWdQ8tAAAFeuccBZp1e0Q0cIIYQQQsgCe/YAr389cPYssH07FWYyoeIsjw67CX1Oi+R9Z08PuTHhjSgaBJLt06+5FPe+c1dZ3osQQgghhBAAwlLG3/0OaG8HHn1U+I+UjIozCW5Y78TBsx74I/G8j33o8CjqDBrcdElzGY5M2GvW5TCX5b0IIYQQQgjJ7DG7/37gnnuAVAq49dYLQ0JIwWikvQQ3rHfie/vP4BVf248OuwltDUa0NhjRZkv/v8GAVfVGpDjH71+cxG2Xt8OglX+2GSGEEEIIIRX33HPze8w4B7ZtAyYngQMHaHljiag4k2BHtx0fe8U69E/5MT4XxoGzHkz6IkimFiY4mnRqROIp3LqtPEsaCSGEEEIIKbuPf3z+14wBn/kM8MY3Ap2dlTumGsEKiYgv1fbt2/mhQ4fK9n5KSiRTmPZHMT4XxthcGONzEUx4w7DoNfjYK9ZRQAchhBBCCLk4pFLA5s1CF+3ECUBFO6eWwxg7zDnfvtR91DkrkkatQmt6eeOSX1lCCCGEEEIuBioV8OlPA299K/DII0IXjRSFylpCCCGEEEJIad70JqC3F/jc54QOGikKFWeEEEIIIYSQ0qjVwKc+BRw5Avz+95U+mhWLijNCCCGEEEJI6d72NiEU5F/+hbpnRaLijBBCCCGEEFI6nQ74xCeAZ54BHn+80kezIlFxRgghhBBCCJHHX/810NIC/Ou/VvpIViQqzgghhBBCCCHyMBiAj30MeOwxoYNGCkLFGSGEEEIIIUQ+73434HAIyY2kIFScEUIIIYQQQuRjNgMf/jDwm98Azz9f6aNZUag4I4QQQgghhMjr/e8H6uvL3z378peBvXsX3rZ3r3D7CkDFGSGEEEIIIURe9fXABz4APPQQ8OKL5XvfHTuEgdi//rXw+717hd/v2FG+YygBFWeEEEIIIYQQ+alUQkDIF74wf5vSXaw9e4D77wduuQXYuFEozO6/X7h9BaDijBBCCCGEECK/3bsBxoD77gOGhsrXxVq3DkgkhI7de9+7YgozgIozQgghhBBCiBL27AF+8hOAc+C228rXxfrqV4X/v/vdwH/+54V70KoYFWeEEEIIIYQQZdx6K7BrF3D0KPDGNypfmO3dC3zzm4DTKRRm998vFIUrpECj4owQQgghhBCijL17gcFBwGgEfvhDYTi1kp5+WtjrdtttwpJKcQ/ac88p+74yoeKMEEIIIYQQIj9xj9kDDwhLDeNxIahDyS7W9u1AJAK85jXzt+3ZA3z848q9p4zyFmeMsQ7G2F7G2EnG2IuMsQ+mb789/fsUY2y78odKCCGEEEIIWTGee25+j9k73wls2iR00J5+Wrn3/M1vhPdYQSEg2TQSHpMA8BHO+RHGmBXAYcbYHwG8AOCNAL6n5AESQgghhBBCVqDsbpVGA3z968CNNwrLDZXAuTDf7MYbhQJtBcpbnHHOJwBMpH/tZ4ydBNDGOf8jALASv7jxeByjo6OIRCIlvQ4hixkMBrS3t0Or1Vb6UAghhBBCyA03CKEgn/88cNddQGurvK9/6hRw9izwiU/I+7plJKVzlsEY6wawFcCBAp7zLgDvAoDOzs4L7h8dHYXVakV3d3fJhR4hIs45ZmZmMDo6itWrV1f6cAghhBBCCAB85StCd+tTnwJ+/GN5X/vXvxb+/+pXy/u6ZSQ5EIQxZgHwEIAPcc59Up/HOb+Hc76dc769qanpgvsjkQgcDgcVZkRWjDE4HA7qyBJCCCGEVJM1a4CPfAT4n/8BDkju90jzm98AmzcDHR3yvm4ZSSrOGGNaCIXZvZzzh+U+CCrMiBLo+4oQQgghpAp96lNASwvwwQ8CqZQ8rzk7Czz5JPDa18rzehUiJa2RAfg+gJOc868qf0jl97nPfQ4bNmzA5s2bsWXLFhxIV/HvfOc78dJLL8nyHt3d3XC73cs+5vOf/3zBr/ujH/0Id99994LbfvjDH2LLli3YsmULdDodNm3ahC1btuCTn/xkwa9fDl//+tcRCoUqfRiEEEIIIaQcrFbgi18UOmf33SfPaz76KJBMLozQX4EY53z5BzB2DYAnAJwAIJa2fwdAD+CbAJoAzAE4yjl/xXKvtX37dn7o0KEFt508eRKXXHJJMccui2eeeQYf/vCH8fjjj0Ov18PtdiMWi6FV5g2K3d3dOHToEBobG3M+xmKxIBAIFPS6P/rRj3Do0CF861vfKvp9lcY5B+ccKtXS1wKKOcZEIgGNJv+WyUp/fxFCCCGEkCWkUsAVVwBjY8Dp04DFUtrr/eVfAr/9LTA1BajV8hyjQhhjhznnS44iy9s545w/yTlnnPPNnPMt6f9+yzn/Oee8nXOu55w35yvMqtXExAQaGxuh1+sBAI2NjZnCbPfu3RCLSYvFgk984hO4/PLLcdNNN+HgwYPYvXs31qxZg1/+8pcALuxivfa1r8Xjjz9+wXu+4Q1vwOWXX44NGzbgnnvuAQB88pOfRDgcxpYtW3DHHXcAAH76059i586d2LJlC9797ncjmUwCEDpja9euxfXXX4+nnnpK8p/1K1/5Cnbs2IHNmzfjs5/9LABgeHgY69evxzvf+U5s3LgRd9xxB/70pz/h6quvRl9fHw4ePAgA+Md//EfceeeduOGGG9DX14f/+q//yvu6l1xyCd73vvdh27ZtGBkZwXvf+15s374dGzZsyDzuG9/4BsbHx7Fnzx7sSc+jsGT943zwwQdx1113AQDuuusufPjDH8aePXvwiU98AkNDQ3jlK1+Jyy+/HNdeey1OnTol+WtBCCGEEEIqSKUC/uM/gPFx4EtfKu21kkmhMHvVq6q+MMunoLRGpf3Tr17ES+OSs0YkubS1Dp993Yac97/85S/HP//zP2Pt2rW46aab8OY3vxnXX3/9BY8LBoPYvXs3vvSlL+GWW27BZz7zGfzxj3/ESy+9hLe//e14/etfL/mYfvCDH8ButyMcDmPHjh249dZb8cUvfhHf+ta3cPToUQBCx+f//u//8NRTT0Gr1eJ973sf7r33XrzsZS/DZz/7WRw+fBj19fXYs2cPtm7dmvc9H330UQwMDODgwYPgnOP1r3899u/fj87OTgwODuKBBx7APffcgx07duC+++7Dk08+iV/+8pf4/Oc/j0ceeQQAcPz4cTz77LMIBoPYunUrXvOa1+CFF17I+bqnT5/GD3/4Q3znO98BICwftdvtSCaTuPHGG3H8+HH87d/+Lb761a9i7969kjpn/f39+NOf/gS1Wo0bb7wR3/3ud9HX14cDBw7gfe97Hx577DHJfw+EEEIIIaSCrrwSuOMOIcHxHe8AuruLe52DB4GZmRW/3wyosuKsEiwWCw4fPownnngCe/fuxZvf/GZ88YtfzHRrRDqdDq985SsBAJs2bYJer4dWq8WmTZswPDxc0Ht+4xvfwM9//nMAwMjICAYGBuBwOBY85s9//jMOHz6MHTt2AADC4TCcTicOHDiA3bt3Q0y+fPOb34z+/v687/noo4/i0UcfzRRygUAAAwMD6OzsxOrVq7Fp0yYAwIYNG3DjjTeCMXbBn+3mm2+G0WiE0WjEnj17cPDgQTz55JM5X7erqwtXXHFF5vn3338/7rnnHiQSCUxMTOCll17C5s2bC/ra3X777VCr1QgEAnj66adx++23Z+6LRqMFvRYhhBBCCKmwL34R+PnPgY99DHjggeJe49e/Fjpmr1iRC/kWqKribLkOl5LUajV2796N3bt3Y9OmTfjxj398QXGm1Woz6X8qlSqzDFKlUiGRSAAANBoNUlmJM0vFuD/++OP405/+hGeeeQYmkwm7d+9e8nGcc7z97W/HF77whQW3P/LII0WlEHLO8alPfQrvfve7F9w+PDyc+bMs92cDLkw/ZIwt+7pmsznz+7Nnz+Lf/u3f8Nxzz8Fms+Guu+7KGXOf/T6LHyO+ZiqVQkNDQ6bTSAghhBBCVqD2duDqq4EHHwT27QPEFWx79wLPPQd8/OP5X+M3vxFeo6FB0UMtB8lzzmrV6dOnMTAwkPn90aNH0dXVVdRrdXd34+jRo0ilUhgZGcns18rm9Xphs9lgMplw6tQpPPvss/+/vbsPjqLK1zj+PcZgkAAXdqOXiHoT3XiNIcRIIgEBMbsERORlAdEtQQHdWKXUrotXry4SVm6Vr+ULxSVSFCwqdZFlXaCWl1IxATSwRMugKCigISIxsInhRdBNyLl/dM+QwCSZgYTpGZ5PVdfMnO4+fbp/mTo5c06f9q+LjY2lrq4OgNzcXJYvX86BAwcAqKmpYe/evdx4440UFxdTXV1NXV0dfwnyF4a8vDwWLlzon3Dk22+/9ecdrJUrV/Ljjz9SXV1NcXExWVlZQed7+PBhOnXqRNeuXamqqmLt2rX+dZ07d+bIkSP+z5deeik7duygoaHB38N4qi5dupCUlOQ/f2st27ZtC+l8RERERMQDHn7YuQdtyhTn/rGiIhg/HtwRZC365hvYti0qhjSCx3rOwuHo0aM89NBD1NbWcuGFF3L11Vf7J+kIVf/+/f1DBNPS0sjMzDxtm6FDh1JYWEh6ejrXXHNNk2F/999/P+np6WRmZrJkyRJmz57NkCFDaGhoIDY2lrlz59K3b18KCgrIycmhR48eZGZm+icKacmQIUPYsWMHOTk5gDOc84033iAmhJsms7OzGT58OBUVFcyYMYPExEQSExODyrd3795cf/31XHfddSQnJ9O/f/8m5z1s2DB69OhBUVERTz/9NLfddhuXX345aWlpzc5guWTJEh544AFmz55NXV0dEyZMoHfv3kGfj4iIiIh4wNCh8MQT8NRTzlT4H30Ey5aBO1lci9ascV4jfAp9n1an0m9LXpxKX4JTUFBAfHw806dPD3dRQqK/LxEREZEIYC2kpMDu3ZCfD/PmBbffiBHw2WewZw+cwa0/4XBWU+mLiIiIiIi0q+JiqKmBjh1hwQLnodKtOX4c1q93es0ipGHWmvN+WKMEp6CgINxFEBEREZFo5LvHbPlyOHwYRo1yltWrWx7aWFTkNNCi5H4zUM+ZiIiIiIiEU2npyXvMRo50JgY5ftxJa8nq1XDxxSdneIwC6jkTEREREZHwOXW6/JdecoY5rl3r9KR16XL6PtY6zzf71a8gLu5clPKcUM+ZiIiIiIh4R3w8vP66M03+tGmBt/nsM6ioiJpZGn3UOBMREREREW/JyXGm11+8GP7619PXr17tvN5667ktVztT4wyIiYkhIyODtLQ0xo0bx7Fjx844r3vuuYfly5cDMHXqVD7//PNmty0uLqakpMT/ubCwkNdee+2Mj+1TXl5OWlpak7SCggKef/75kPJpq/KIiIiIiIRsxgznQdT33w/79zdd9/e/w/XXw2WXhads7SSyGmfPPuvMytJYUZGTfhY6duxIWVkZ27dvp0OHDhQWFjZZH8xDngNZsGABqampza4/tXGWn5/PxIkTz+hYba2+vt5T5RERERGR80xsLLzxBvz4I9x7LzQ0OOk1NVBSEnVDGiHSGmdZWc40m74Gmm/azaysNjvEgAED2L17N8XFxQwePJi77rqLXr16ceLECR555BGysrJIT0/n1VdfBcBay4MPPkhqairDhw/nwIED/rxuvvlmfA/dXrduHZmZmfTu3Zvc3FzKy8spLCzkxRdfJCMjg02bNjXp3SorK6Nv376kp6czevRovv/+e3+ejz76KNnZ2aSkpLBp06aQz7GlvB9//HEGDRrEyy+/7C/P/v37ycjI8C8xMTHs3buXvXv3kpubS3p6Orm5uVRUVABO7+G0adPo168fycnJ/p5EEREREZGQpKTACy84zz2bO9dJW7fOaahF0RT6Pt6arfF3v4Oyspa3SUyEvDzo0QMqK+Haa2HWLGcJJCPDmfElCPX19axdu5ahQ4cCsHXrVrZv305SUhLz58+na9eulJaW8tNPP9G/f3+GDBnCxx9/zBdffMGnn35KVVUVqampTJ48uUm+Bw8e5L777mPjxo0kJSVRU1ND9+7dyc/PJz4+nunTpwOwfv16/z4TJ05kzpw5DBo0iCeffJJZs2bxknse9fX1bN26lTVr1jBr1izefffd085lz549ZGRk+D9/9913/uO0lHdtbS0bNmwATj7bLDExkTI3LnPnzmXDhg1ceeWVjBgxgokTJzJp0iQWLlzItGnTWLFiBQCVlZW8//777Ny5k9tvv52xY8cGFQMRERERkSZ++1t4+WX4wx8gN9e53ywhAY4edUbQnTrbYwTzVuMsGN26OQ2zigq44grn81k6fvy4vyEzYMAApkyZQklJCdnZ2SQlJQHw9ttv88knn/h7gQ4dOsSuXbvYuHEjd955JzExMSQmJnLLLbeclv+WLVsYOHCgP6/u3bu3WJ5Dhw5RW1vLIPeZDZMmTWLcuHH+9WPGjAHghhtuoLy8PGAeV111lb9BBScbWq3lfccddzRbrg8++IAFCxb4e+s2b97MW2+9BcDdd9/NfzX6YowaNYoLLriA1NRUqqqqWjxfEREREZFmGQOzZ8O4cc5z0KqrnZFzEya0/iy0COOtxlkwPVy+oYwzZsC8eTBzZstPDg+C756zU3Xq1Mn/3lrLnDlzyMvLa7LNmjVrMMa0mL+1ttVtQnHRRRcBzkQm9fX1bZYvND3nxiorK5kyZQqrVq0iPj4+4DaNz9FXRnDOX0RERETkjP361/CnPzltAIDNm2HlyrNuB3hNZN1z5muYLVvmBGfZsqb3oLWjvLw85s2bR11dHQBffvklP/zwAwMHDmTp0qWcOHGCyspKigKUJScnhw0bNvD1118DUFNTA0Dnzp05cuTIadt37dqVbt26+XuoXn/9dX9P19k6k7zr6uoYP348zzzzDCkpKf70fv36sXTpUgCWLFnCTTfd1CZlFBERERE5zR//CJmZzvv8/KhrmIHXes5aU1rqNMh8gRg82PlcWtruwZk6dSrl5eVkZmZirSUhIYEVK1YwevRo3nvvPXr16kVKSkrAhk5CQgLz589nzJgxNDQ0cMkll/DOO+8wYsQIxo4dy8qVK5kzZ06TfRYvXkx+fj7Hjh0jOTmZRYsWtdm5hJp3SUkJpaWlzJw5k5kzZwJOj+Err7zC5MmTee6550hISGjTMoqIiIiINFFU5Nza9Pvfw6JFMGxY1DXQzLkcctanTx/rm73QZ8eOHVx77bXnrAxyftHfl4iIiEgUaDyCbvDg0z9HEGPMR9baPoHWRdawRhEREREROf+0NIIuikTWsEYRERERETn/BJouf/DgiOs1a416zkRERERERDzAE40zTbUu7UF/VyIiIiISScLeOIuLi6O6ulr/SEubstZSXV1NXFxcuIsiIiIiIhKUsN9z1rNnT/bt28fBgwfDXRSJMnFxcfTs2TPcxRARERERCUrYG2exsbEkJSWFuxgiIiIiIiJhFfZhjSIiIiIiIqLGmYiIiIiIiCeocSYiIiIiIuIB5lzOkmiMOQjsPWcHDN7PgX+GuxDSZhTP6KFYRhfFM3ooltFF8YweimVkuNJamxBoxTltnHmVMeZDa22fcJdD2obiGT0Uy+iieEYPxTK6KJ7RQ7GMfBrWKCIiIiIi4gFqnImIiIiIiHiAGmeO+eEugLQpxTN6KJbRRfGMHopldFE8o4diGeF0z5mIiIiIiIgHqOdMRERERETEAyKqcWaMGWqM+cIYs9sY81ij9DeNMWXuUm6MKWtm/+7GmHeMMbvc125u+m8a7V9mjGkwxmQE2H+Je/ztxpiFxphYN90YY15xy/WJMSazfa5AdPFwPP/TGLPZGPOTMWZ6+5x99PFwPH/jfi8/McaUGGN6t88ViB4ejuVIN45lxpgPjTE3tc8ViC7tGM9YY8xiY8ynxpgdxpj/bmb/JGPMP9z93zTGdHDTVXeGyMOxVL15BjwcT9Wb4WStjYgFiAH2AMlAB2AbkBpguxeAJ5vJ41ngMff9Y8AzAbbpBXzVzP63AsZd/g94oFH6Wje9L/CPcF8vry8ej+clQBbwP8D0cF+rSFg8Hs9+QDf3/TB9PyM6lvGcHI6fDuwM9/Xy+tKe8QTuApa67y8GyoH/CLD/MmCC+75QdWdUxlL1ZnTFU/VmGJdI6jnLBnZba7+y1v4LWAqMbLyBMcYA43Eq80BGAovd94uBUQG2ubO5/a21a6wL2Ar0bJTva+6qLcC/GWN6BH1m5yfPxtNae8BaWwrUhXRG5zcvx7PEWvu9u9kWTn5vJTAvx/KomwbQCdBN061rz3haoJMx5kKgI/Av4HCAvG8BlgfYX3VnaDwbS9WbZ8TL8VS9GUaR1Di7DPim0ed9blpjA4Aqa+2uZvK41FpbCeC+XhJgmzto/ksAON3FwN3AuhDKJk15OZ4SukiJ5xScX+qleZ6OpTFmtDFmJ7AamNzS/gK0bzyXAz8AlUAF8Ly1tuaUfX8G1Fpr6wMcX3VnaLwcSwldpMRT9eY5dmG4CxACEyDt1F9Nm/0lNqgDGHMjcMxau72VTf8X2Git3RRC2aQpL8dTQuf5eBpjBuNUMrpPqWWejqW19m/A34wxA4GngF+eaTnOE+0Zz2zgBJAIdAM2GWPetdZ+FeTxVXeGxsuxlNB5Pp6qN8MjknrO9gGXN/rcE9jv++B23Y4B3myUtsi9mXKNm1TlGzLhvh445RgTaP2X3JlAAvBwsGWTgLwcTwmdp+NpjEkHFgAjrbXVIZzX+cjTsfSx1m4ErjLG/DyYkzqPtWc87wLWWWvrrLUHgA+APqcc/584wxV9PwY3Pr7qztB4OZYSOk/HU/Vm+ERS46wU+IU7s0wHnMp9VaP1v8S5OXyfL8Fae6+1NsNae6ubtAqY5L6fBKz0bWuMuQAYhzPmNyBjzFQgD7jTWtvQaNUqYKJx9AUO+bqZpVlejqeEzrPxNMZcAbwF3G2t/fIszvF84eVYXu3eJ4FxZvbrAOifhpa1ZzwrgFvcuq8TzqQeOxsf3L1HsAgYG2B/1Z2h8XIsJXSejafqzTCzHpiVJNgFZ2anL3Fmt3nilHV/BvJb2f9nwHpgl/vavdG6m4Etrexf7x67zF2edNMNMNdd9ynQJ9zXKhIWD8fz33F+0ToM1Lrvu4T7enl98XA8FwDfN0r/MNzXyuuLh2P5KPCZm7YZuCnc1yoSlvaKJ87smX9xY/I58Egz+yfjTOyy293+IjdddWf0xFL1ZnTFU/VmGBfflMQiIiIiIiISRpE0rFFERERERCRqqXEmIiIiIiLiAWqciYiIiIiIeIAaZyIiIiIiIh6gxpmIiIiIiIgHqHEmIiIiIiLiAWqciYiIiIiIeIAaZyIiIiIiIh7w/7XvKANCh9ZBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAE/CAYAAADyhar3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAC1f0lEQVR4nOy9d5wkV3nu/5zOuXu6Z6YnzwZp8yqsIiJJIAkuORvDD5NsDAZfnK8Tvs5wccbYBJtkW0SDscmSQASBwgaFzZJ2d3Lu7umc+/z+qD49PTMdqrqrOs37/Xz4oO1UZ1JVPed93+dhnHMQBEEQBEEQBEEQvYmu3QsgCIIgCIIgCIIgtINEH0EQBEEQBEEQRA9Doo8gCIIgCIIgCKKHIdFHEARBEARBEATRw5DoIwiCIAiCIAiC6GFI9BEEQRAEQRAEQfQwJPoIgiAIgiAIgiB6GBJ9BEEQXQpjLFb2vwJjLFn27ze3e32NwBibYozd2e511IIx9kPG2C9q9Nn7GGP/zRhbZYwFGWPfY4ztL3v+rYyxk4yxCGNsjjH2YcaYoez5XYyxbzPGQoyxJcbYR7c8/0LG2AXGWIIx9gBjbLLsOcYY+3+MsUDxfx9mjDEtvk6CIAiitZDoIwiC6FI45w7xPwAzAF5e9tg97V7fVsrFRzcfQ2M8AP4HwH4AfgCPAvjvsudtAH4NQD+AWwC8EMBvlT3/zwBWAAwDuA7A8wH8CgAwxvoBfA3ABwB4AZwA8KWy974LwKsAXAvgGgAvA/DLan1hBEEQRPsg0UcQBNFjMMZ0jLHfZYxdKlZsvswY8xaf28UY44yxtzPGZosVoXczxm5ijD3JGFtnjH207LPexhj7KWPsHxlj4WKV6IVlz7sZY59ijC0yxuYZY3/OGNNvee/fMcaCAP6YMbaXMfaD4rrWGGP3MMY8xdf/O4AJAN8oVit/hzF2O2NsbsvXV6oGMsb+mDH2n4yx/2CMRQC8rc6armKM/aj4tawxxspFT/kxLMXPDBS/J8cZY37G2F8AeC6AjxbX+NHi6w8wxu4rVucuMsbeUPZZn2WMfbz4fLR4/MlKx+WcP8o5/xTnPMg5zwL4OwD7GWO+4vMf45z/hHOe4ZzPA7gHwLPLPmI3gC9zzlOc8yUA3wVwuPjcawCc5Zx/hXOeAvDHAK5ljB0oPv9WAH/DOZ8rfvbfAHhbpXUSBEEQ3QWJPoIgiN7jf0Oq2DwfwAiAEIB/2vKaWwBcDeDnAPw9gD8AcCckgfAGxtjzt7z2MqTq0v8F8DUhIgF8DkAOwFUArgdwN4BfrPDeQQB/AYAB+GBxXQcBjEMSH+CcvwWbK5Yflvn1vhLAf0Kqkt1TZ01/BuBeAH0AxgD8Y5XPfCsAd3F9PgDvBpDknP8BgJ8AeF9xje9jjNkB3Afg88Wv8+cB/DNj7HDZ5725eOx+AI8X1ymH5wFY4pwHajx/tuzf/wDgjYwxG2NsFMD/giT8AOln+4R4Iec8DuASNkThpueL/13+NRAEQRBdCok+giCI3uOXAfxBsWKThiSqXrel9fHPitWgewHEAXyBc75SrPD8BJJYEqwA+HvOeZZz/iUAFwG8lDHmhyQqfo1zHuecr0CqTL2x7L0LnPN/5JznOOdJzvkznPP7OOdpzvkqgL+FJE6b4SHO+dc55wUArjprygKYBDBS/PofrPKZWUhi7yrOeZ5zfpJzHqny2pcBmOKcf6b4dZ4C8FUAryt7zbc45z8u/jz+AMCzGGPjtb4oxtgYJLH+G1WefzuAGwH8ddnDP4Ik1CIA5iC1cH69+JwDQHjLx4QBOKs8HwbgoLk+giCI7odEH0EQRO8xCeC/im2J6wDOA8hDmhETLJf9d7LCvx1l/57nnPOyf09DqtRNAjACWCw71icgVbsEs+ULY4wNMsa+WGy7jAD4D0jVr2YoP0a9Nf0OpGrjo4yxs4yxd1T5zH8H8D0AX2SMLRRNTYxVXjsJ4BZxvOIx3wxgqNIaOecxAEFI38OKMMYGIFUk/5lz/oUKz78KwIcA/C/O+VrxMV1xzV8DYIf0fe0D8P+Kb4tBEsXluABEqzzvAhDb8rMnCIIguhASfQRBEL3HLCQx4Cn7n6VYxWuE0S3VngkAC8XjpAH0lx3HxTkvbwncKhg+WHzsGs65C8D/B0mEVXt9HJJ5CQCgOJs3sOU15e+puSbO+RLn/Jc45yOQKqL/zBi7ausXXKxq/gnn/BCA2yBV836hyhpnAfxoy/fbwTl/T9lrSlU9xpgDkpHKwtbjFp/vgyT4/odz/hcVnn8xgH+B1AZ7uuwpb/E4Hy1WUgMAPgPgJcXnz0IyaRGfYwewFxvtoZueL/53eesoQRAE0aWQ6CMIgug9Pg7gL4RZCGNsgDH2yiY+bxDA/2aMGRljr4c0i/dtzvkiJHHyN4wxF5MMZPZumQfcihNSRWm9OHP221ueXwawp+zfTwGwMMZeWqy0/SEAc7UPr7cmxtjri22TgDTryCFVQTfBGLuDMXa0KDIjkNo9xeu2rvGbAPYxxt5S/B4ZmWSMc7DsNS9hjD2HMWaCNNv3COd8UxW0eFwXpGrdTznnv1vh+RdAmgd8Lef80S1f+xqAKwDewxgzFA1y3oqNOb3/AnCEMfZaxpgFwB8BeJJzfqH4/L8B+A3G2ChjbATAbwL47NY1EARBEN0HiT6CIIje4x8g2f7fyxiLAngYkqFKozwCyfRlDZIZy+vKjEV+AYAJwDlIIuo/IcUFVONPAByDNC/2LUitiOV8EMAfFtskf4tzHoYUOfCvAOYhVf7mUJtaa7oJwCOMsRik79H7OedXKnzGUPF9EUjtsT+C1IoKSN/f1zHJ+fQjnPMoJLOYN0Kq3i1BaqksF6efh2SCEwRwA6T2z0q8urjGt7PNOYwTxec/AMlg5ttlz32n7P2vAfBiAKsAnoFkaPPrAFCcoXwtpJ9hCNLvRPn85ScAfAPAaQBnIP18PlFlnQRBEEQXwahVnyAIgqgGY+xtAH6Rc/6cdq+lW2GMfRbAHOf8D9u9FoIgCGJnQpU+giAIgiAIgiCIHoZEH0EQBEEQBEEQRA9D7Z0EQRAEQRAEQRA9DFX6CIIgCIIgCIIgehgSfQRBEARBEARBED2MoZUH6+/v57t27WrlIQmCIAiCIAiCIDqGkydPrnHOB1p5zJaKvl27duHEiROtPCRBEARBEARBEETHwBibbvUxqb2TIAiCIAiCIAiihyHRRxAEQRAEQRAE0cOQ6CMIgiAIgiAIguhhSPQRBEEQBEEQBEH0MCT6CIIgCIIgCIIgehgSfQRBEARBEARBED0MiT6CIAiCIAiCIIgehkQfQRAEQRAEQRBED0OijyAIgiAIgiAIooch0UcQBEEQBEEQhGZMrcXxpeMzCCez7V7KjoVEH0EQBEEQBEEQmvHDiyv4P189jWQm3+6l7FhI9BEEQRAEQRAEoRmn5yPod5jhd5nbvZQdC4k+giAIgiAIgiA04+xCGEdHXWCMtXspOxYSfQRBEARBEARBaEIqm8fTKzEcGXW3eyk7GhJ9BEEQBEEQBEFowrnFCPIFTqKvzZDoIwiCIAiCIAhCE87OhwEAR0n0tRUSfQRBEARBEARBaMLp+TC8dhOG3ZZ2L2VHQ6KPIAiCIAiCIAhNOD0fwZFRN5m4tBkSfQRBEARBEARBqE4qm8fTy1EcHXW1eyk7nrqijzE2zhh7gDF2njF2ljH2/rLnfpUxdrH4+Ie1XSrRCXzwO+fxm19+ot3LIAiCIAiCIDqci0tR5AocR0Zonq/dGGS8JgfgNznnpxhjTgAnGWP3AfADeCWAazjnacbYoJYLJdrPqZkQPvGjy3CYDfhrfg2V6QmCIAiCIIiqnC6auJBzZ/upW+njnC9yzk8V/zsK4DyAUQDvAfAhznm6+NyKlgsl2ku+wPGBr58BAMTSOazFMm1eEUEQBEEQBNHJnF0Iw2MzYqzP2u6l7HgUzfQxxnYBuB7AIwD2AXguY+wRxtiPGGM3abA+okP4j4encXYhgtffMAYAmArE27wigiAIgiAIopM5PR/GkREycekEZIs+xpgDwFcB/BrnPAKpNbQPwK0AfhvAl1mFnyhj7F2MsROMsROrq6sqLZtoJavRNP763ot4zlX9eO8dVwEArqyR6CMIgiAIgiAqk87lcXEpSq2dHYIs0ccYM0ISfPdwzr9WfHgOwNe4xKMACgD6t76Xc/5JzvmNnPMbBwYG1Fo30UI++J3zSGXz+JNXHsZYnxUGHcMUiT6CIAiCIAiiCk8vx5DNcwpl7xDkuHcyAJ8CcJ5z/rdlT30dwAuKr9kHwARgTYM1Em3k0StBfO3UPH7puXuwd8ABg16Hca+N2jsJgiAIgiCIqmyYuFBcQycgx73z2QDeAuA0Y+zx4mO/D+DTAD7NGDsDIAPgrZxzrskqibaQzRfwga+fwajHive94KrS47v77biylmjjygiCIAiCIIhO5vR8GC6LARNeW7uXQkCG6OOcPwig2vTl/6fucohO4nM/m8LF5Sg+8ZYbYDNt/Krs8tnx0KUAOOc0mEsQBEEQBEFs4+x8GEdGycSlU1Dk3knsHJYjKfz9/U/jjv0DuPuQf9Nzu/ttSGbzWI6k27Q6giAIgiAIolPJ5gs4TyYuHQWJPqIif/6t88jkC/jjVxzetkOzq98OgBw8CYIgCIIgiO08tRxFJlcg0ddBkOgjtvGzZ9bwjScW8J7n78Wkz77t+V3Fx8jMhSAIgiAIgtjK2fkIAJBzZwdBoo/YRCZXwAf++wwmvDa85/a9FV8z4rHCpNdRbANBEARBEASxjdPzYTjMBkySiUvHIMe9k9hBfOrBK7i0Gsen33YjLEZ9xdfodQwTPhu1dxIEQRAEQRDbOD0fxuERF3Q6MnHpFKjSR5SYX0/iI99/Gncd8uMFB/w1X7vLZ6f2ToIgCIIgCGITuXwB5xcj1NrZYZDoI0r8+TfPgYPjj152qO5rd/fbMB1IoFCgaEaCIAiCIAhC4pnVGNJk4tJxkOgjAAAXl6L4zpkl/MrtV2FcRv/17n4H0rkCFiOpFqyOIAiCIAiC6AZOz4UBgERfh0GijwAAPDoVBAC86rpRWa/f1S8Jwyur1OJJEARBEARBSJyZD8Nu0mNP/3YHeKJ9kOgjAACPTYfQ7zBh3GuV9frdIquP5voIgiAIgiCIImcWIjhEJi4dB4k+AgBwaiaE6yf6tgWxV8PvtMBipNgGgiAIgiAIQiJf4Di3EKHWzg6ERB+BQCyNqUACxyb6ZL9Hp2OSgyeJPoIgCIIgCALApdUYktk8OXd2ICT6CDw2sw4AODbhUfS+XT47tXcSBEEQBEEQAKR5PgAk+joQEn0ETs2EYNAxXDPmUfS+Xf12zAYTyOUL2iyMIAiCIAiC6BpOz4dhNeqxZ8DR7qUQWyDRR+DUTAgHh12wmvSK3re734ZsnmNhnWIbCIIgCIIgdjpn5sM4NOKCnkxcOg4SfTucXL6AJ2bDils7ASmrDyAHT4IgCIIgiJ1OocBxdiFCrZ0dCom+Hc6FpSiS2TyOTco3cRGIrD4ycyEIgtCeD33nAv7qexfavQyCIFTm1EwIv/qFx5Av8HYvpSkur8WRyORxeMTV7qUQFSDRt8N5bCYEAIqcOwUDDjPsJj2ukOjrOuLpHP3cCKKLSGby+OzPruA7p5favRSCIFTmu2eW8I0nFrAU6e5xmZKJyxhV+joREn07nFMz6+h3mDHWJy+UvRzGGHb120k8dCGf+PFlvOIfH0Shy3cVCWKn8OAza0hlC5gLJenvliB6jMur0n3UUrj7RZ/ZoMNVZOLSkZDo2+Gcmgnh2IRHdij7Vnb12zFFM31dx5W1OKLpHEKJTLuX0hVwzhFL59q9DGIHc+9ZqcKXyRewEk23eTUEQajJlbUYgO4Xfafnwzg47IJBT/KiE6Gfyg5mLZbGdCDR0DyfYLfPjrlQElmKbegqlsJJAMByhG4e5fBfj83jWX/5fSQyJPyI1pPLF3D/+WUMOs0AgNlQos0rIghCLXL5AmaC0t/0YvHa3I2QiUvnQ6JvB7MRyt646NvVb0e+wDEbpJuQbkLEbKxEu3tXsVU8PruOaDpHIploCyenQwglsviFZ00CAJ1vCaKHWFhPIZuXWra7udI3HUwgls6R6OtgSPTtYDZC2Rv/A90tHDypxbNrKBQ4lovD4iskYmQxFZBusoNx+n4Rrefec8sw6XV40y2TYAylqgBBEN3P5WJrJ4CuNnI5XTRxOTxKzp2dCom+Hcyp6RAOjbhgMSoLZS9nl88OALiyRjch3cJaPI1c0QhiuYsvMK1kuripEYjRDCTRWjjnuPfcEp59lQ9euwl+pwWzwe5tASMIYjPCDO/qQUdXV/rOzIdhMuiwz+9s91KIKpDo26Hk8gU8ORduqrUTALx2E1wWA2X1dRGL6xsXlWVq76xLNi85JgJAIE6ij2gtF5aimA0mcffhIQDAuNdKM30E0UNMrcXhNBtwZNSNxS4XfQeHnDCSiUvHQj+ZHYoIZb9+wtPU5zDGsFtjB8+T00EyilERcVHR6xjNqMlgLpQsBeYGSfQRLebes8tgDHjhwUEAwHifDXPU3kkQPcPltTh2D9gx5LZgOZLqykgWzjnOzIdxmOb5OhoSfTuUZkLZt7Kr317KmFGbuVACr/3YQ/ifxxc0+fydiHDuPDDkxAq1d9alvIpN7Z1Eq7n33BKOTfRh0GkBAIx5bViMpJDJ0UYYQfQCV9bi2OWzY9htQa7Au7KjZCaYQCRFJi6dDom+HcqpmXUMOBsLZd/KLp8dC+EkUtm8CivbzHyxre6Z1VidVxJyWQynYNLrcGDIRXlfMhBVbKfZgAAZuRAtZC6UwNmFCO4+5C89Nt5nBefAwjrN9RFEt5PO5TG/nsTufjuGXNLGTjfO9Z2ZjwAAib4Oh0TfDqXZUPZydvfbwbk2NuJClMwEqJ1JLRbDKQy5LRhym7ESTXdlK0krmQ4k4DAbsHfQQe2dREu579wyAJTm+QBg3Cs5JtNcH0F0PzOBBDgH9hTbO4HuzOo7PR+GUc9wtd/R7qUQNSDRtwMphbKr0NoJSO2dwIYDlZoI0TcdJKMYtVgKpzDstsDvsiDfpa0kreTKWhyTPht8dhO1dxIt5d6zy7h60IHdxXMsUCb6yMGTILqey8X7pt39G6KvG2MbzsyHsX/ICbOhcTd4QntI9O1ASqHsk+qIvt3F2AYtzFxWhegLJMA5VaTUYCGcxLDbUpoRotiG2kwHpHkLn8NE7Z1EywjFM3h0Koi7D/s3PT7kssCoZ1TpI4geQGyW7+q3o99uhkHHurK988JSBIeGKZ+v0yHRtwMRoexq9V67bUb02YyaZPWtFCMFoqkc1hNZ1T9/pyGC2YfcVgy6zAA2vsfEdrL5AmZDSezqt8FrNyMYz/Ts5gPnXJMWbaIxfnBhBfkCx92HhjY9rtcxjHis9LMiiB5gai2OfocJLosROh2D32XpOtEXT+ewFsuUur6IzoVE3w7k1HQIh5sMZd/K7n67Jll9q2VGI9N0k9M0gXgG2TzHiEdq7wSAFYptqMp8Ma5h0mdHv8OEbJ4jms61e1ma8JmfTuH5f/UAVX47hHvPLWHIZam4OTfhtWE2RO2dBNHtXF6Lb2rfHnJbui6rT3QdjPfZ2rwSoh4k+nYYIpT9epXm+QS7NMrqW4mkSyfEaQ2zAHcKYkB8yGXBgEOq9FFWX3XE7/Tufju8dhOA3oxtSOfy+MSPL6HAUQqiJ9pHMpPHj55axV2H/NDptpttjVFWH0H0BCKuQTDktnTdTJ+YLxbzxkTnQqJvhyFC2dWa5xPs9tmxGE4hmVE3tmE1li4ZzpCDZ/OIHcRhtxUmgw4+uwnL1N5ZFVG9nvTZSqIv2INzff/92EJJ/K9SjEfbefCZNaSyhW3zfIJxrxWBeAbxHq06E8ROIJbOYTWaxu6BDdE3XGzv7KYxgpniBtQEib6Oh0TfDuNUKZTdo+rnil5uNat9mVwBwXgG414r/C4ztXeqgJgVGPZIrZ2DLgsFtNdgKpCA3aTHgMOM/mJltNcqffkCx8d/fAmjHimzcy1Goq/d3Ht2CU6LAbfs9lV8XrRRUVWWILoXsam4Z0t7ZzKbRyTZPRs6s0HpOtlnM7Z7KUQdSPTtME5NhzDoNJdu8NRCtGCqOdcnbj4HnRZMeu1U6VOBhXASJr0OXptUtRp0mqm9swZTgTgmfXYwxjbaO3ss4uK+c0u4vBrHb79oPwASfe0mly/g/vPLeMGBQZgMlS/RG7ENdE4kiG5lI65hI9uulNUX6Z4NnblQAuNemyq5z4S2kOjbYZyaWcexiT7V/zhLWX0qVvpEm9mg04wJn42y+lRgKZyC320uzQn5XWZy76zBdCCBXf3SDfZGe2fviD7OOT72w0uY9Nnw8mtH4LWbqL2zzZycDiGUyG5z7SxnvE/atJsh0UcQXUv5+IBguBTQ3j3X5Zlggub5ugQSfTuItVgaM8EEjk16VP9sh9mAfodZ1UqfCGYfdJkx6bVhOZJWfWZwp7EYTmHYvVHl9bssWI2mkS90z/xAq8jlC5gNJkpD9hajHg6zoacqYQ9dCuCJuTB++Xl7odcx9DtMPfX1dSP3nluGSa/D8/cPVH2N126CzaSnrD6CKGM1mkY2X2j3MmRzZS2OUY91k5P6UPH6vNwlok+K+knSPF+XQKJvB3FqWszzqWviItjdb8OUill9ogI1UKz0AbSz3SyLxWB2waDLggIHAnSjv4359SRyBb7JWc1rN/VUpe9jP7qEAacZrzk2CgDod5ix1mMzi90E5xz3nlvCs6/ywWE2VH0dYwzjfbaSax5B7HRy+QJe+Dc/xL/+5Eq7lyKbrXENgNTZxFj3VPrWYhkks/lS9wHR2ZDo20GcmlmHUc9wRKVQ9q3s8tlVbe9ciaTBmHQjOumj2IZmKRQ4lsPp0swAAPidFNtQjaniDGl5600vib7Tc2H85Ok1vPM5u0s7zZLoo9+FdnFhKYrZYBJ3H67e2ikY91oxR5U+ggAgzVpHUjn87NJau5ciC845rqzGSuMDAqNeh36HuWsC2ksZfVTp6wpI9O0gTs2EcGjErWooezm7B+xYjaYRU8lGfDWWhtdmglGvw6SXKn3NEkxkkMkXMLKlvRMABXJXYGptI6NPILU/9obo+9iPnoHTYsCbb5koPTbgNNNMXxu59+wyGANeeHCw7mvH+myYDSa6ytqdILRipbhx+fjMOgpdMK4QSmQRSeU2mbgIht0WLHbJNXmW4hq6ChJ9O4RsvoAn59ZVj2ooZ7dPXQfPlUgaA8VKlMdmhNNiwDQ5eDbM4rp0ERna1N5ZrPSRmcs2pgJx2Ez60u8gICp93S+KLq/G8J0zS/iFZ03Cadmw2e53mJHI5JHIdI9deC9x77klHJvow6DTUve1414b4pk8QolsC1ZGEJ3Naky6hkXTOTyzGmvzaupzZU1a454t7Z0AMOSydM1MnxB9Y30k+rqBuqKPMTbOGHuAMXaeMXaWMfb+4uN/zBibZ4w9XvzfS7RfLtEoFxajSGULms3zAWUOniqJvtVoqnTDzRjDpM9GWX1NsBiW5n/KZ/r6HdL8wAq1d25jOpAoxTUIvHYzgvFM11dXPvnjyzDpdXjbbbs3Pd7vkBxK16K9Uc3sJuZCCZxdiODuQ5UD2bciZmgotoEgNl/DHivmEXcyl1e3d5IIht2W0vW605kNJjHgNMNq0qaDjFAXOZW+HIDf5JwfBHArgPcyxg4Vn/s7zvl1xf99W7NVEk1TCmWf1FD0qV3pi6Y37XhLWX3az/R98dEZ/O8vPKb5cVrNUrFdpNy906jXwWfvrtiGfIHj//73GTx8OaDpcabW4tjl27x72e8wIZvniKS6txK2FE7hq6fm8IYbxzdVMQGgv/jvVZrrazn3nVsGAFnzfEBZVh/N9RFEqS3daTHg1PR6excjg6lAHAYdw1gFAxS/24JIKoe4SqMyWjITTJCJSxdRV/Rxzhc556eK/x0FcB7AqNYLI9Tl1EwIfpcZI+76bUONYjXpMeSyqGLmUihwrMXSpfZDAJjw2TAXSiKnsSXz/eeX8Z0zi10xF6CEhfUUjHoGXzFvTuB3dVdA+78/NIXPPTSNbz65oNkxcvkCZkOJUvVa0AtZfZ/+6RUUOPCu5+3Z9tyAoyj6aK6v5dx7dhlXDzoq7vxXYiOgvTsqAgShJSvRNDw2I26c7CttcncyV9bimPDaYNBvvw0X3ThLXTDXNxtK0DxfF6Fopo8xtgvA9QAeKT70PsbYk4yxTzPGtCshEU1zaiakSSj7Vnb121Sp9K0ns8jmOQbLKhG7fDbkClxzK+PZYBLZPO85F8OlcBJ+l6UUzC7wuyxdY+SysJ7EX33vIgBgKazdz2dhPYVsnm+r9PmKoqhb5/rCiSzueXgaL7tmuKLbmqj89drvfqcTimfw6FQQdx+W19oJSNmofTYjVfoIAtJG1YDDjOsn+vD0SgzhZGfPul5e3R7XIBhydUdWXzZfwMJ6kpw7uwjZoo8x5gDwVQC/xjmPAPgYgL0ArgOwCOBvqrzvXYyxE4yxE6urq82vmFDMajSN2WBS03k+we5+e8nqvhnKM/oEE14R26DdTQ7nvOQQutDhJ1ylLIZTm5w7BYPO7qj0cc7xR/99BgUO7Pc7NRWqU8Vq9aRv80VZVEm71cHz3x+eQjyTx7ufv7fi897S19f5vw+9xKNTQeQLHHfsr+/aWc6410YzfQQB6Z5h0GUu3ec8Mbve3gXVoFDgmA5s7yQRiEpfp2f1La6nUOAU19BNyBJ9jDEjJMF3D+f8awDAOV/mnOc55wUA/wLg5krv5Zx/knN+I+f8xoGBAbXWTShgY57Po/mxdvnsCMYzTe+yiaHsTTN9xarLdFC7ub5AXAoaBaSqUi+xGE5tcu4UDLosCMTTmrfNNst3zyzh/vMr+I279uHacbemrS9C9G3die3m9s5kJo/P/HQKd+wfwMFhV8XXGPU69NmMJPpazLmFCBgDDo1U/rlUY7xPankniJ3Oakyq9F077gZjwGMz6+1eUlWWoykks/nqlb4uae8UG+Tj5NzZNchx72QAPgXgPOf8b8seHy572asBnFF/eYQanJoJwahnODyiTSh7OeIk1myLp5gpKm/vHHJZYDLoMKNhpa88B7CXRB/nHEvh1CbnToHfZQbnnV29Ciez+L//cxaHR1x4+7N3YchlwVosjaxGQnVqLQGrUb/p9w/obtH3lZOzCMQzeM/tV9V8HWX1tZ7zixHs9tlhMxkUvW/ca8N8KNlz88cEoQTOOVYiaQy6LHBajNg36Ozoub4rRefOSnENAGAx6uGxGTvewXMjmJ2MXLoFOZW+ZwN4C4AXbIln+DBj7DRj7EkAdwD4dS0XSjTOM8sx7B1waBbKXk5J9DVp5rJSvOksb+/U6RjG+6yatneWt0p1emuFEoJxKZi9ouhzdn5A+4e/ewFrsTQ+9JprYNDr4HdbwLl2hiPTgTgmfbZtM7AWox4Os6HrKmHZfAGf+NFl3DjZh5t3e2u+tt9h7ugNgF7k/FKkavW1FuNeKzL5AuVsEjuaaDqHdK5QMqI6NunBYzMhzTdDVqIpfOvJRcXvu1zcFN89UN20achl0XRuXQ1mgwkYdGyTIzjR2chx73yQc84459eUxzNwzt/COT9afPwVnHPlv/lES4imc/DYjPVfqALjXhsYaz6rbyWagt2kh928eed70mfXNKtPiL6RLsrJkYMQsEMVTs5+V2eLvuNTQdzzyAze8ezdODomVauHXNq2v1wJxEsRJFuRAtq7SxR988kFzK8n8Z7bK8/ylSOJvs6+2egloqksZoNJHBx2Kn6vaKvSsvuBIDqd1S2bxNeP9yGSypXElVZ88dFZvPfzp3BZYRj81FocFqOutOFaiWG3BUuRzr4HmQkmMNpnhV6nrUEgoR6K3DuJ7iSWysFhbo3osxj1GHFbVRB9UqvGVia8NswE4pqFY88Gk+h3mLFnwIGF9c4UQY0gRF+lSp+IxVjuwJa+dC6P3/vaaYx6rPj1u/aVHi8JVQ2qsfkCx2wwgcn+ynMKPocJgS6rhH3mp1PY53fIMgrpd5ix1oG/C73KhaUoADRY6RNZfZ19c0gQWrLhAbBR6QOgeYunEJv3FjM25XJlTdpU3OqkXc6Q24KlDu82mg0lKa6hyyDRtwOIpXNwWpTNijTD7n67KjN9W4OjAcnMJZ7JI6BRpWUmmMCE14phlSp9z6xE8V+PzamwsuZYKn4tw57tos9nN0HHgNUOrPR94keX8cxKDH/+qiObqr5aDrovrEuRHburVPp8dpNmv39akC9wnF+M4IUH/TVvMgQDTjPimTwSmc4PBu4Fzi9GADQm+kY8FjAGcvAkdjSrsc2Vvj39DrgsBs3NXIIJ6Tpw79klRe+7shbHnhqtnYAU27AWyyCdyze8Pq2ZDSYwRiYuXQWJvh1ALJ2Dw9w60ber34Yra81V42qJPkC72IbZUALjXhuGPVasRJs3Cvnkjy/j17/0BD7540sqrbAxFsMpGHQM/fbt31ODXod+R+fFNlxajeGjP3gGL7tmGHcc2Fyh8tpMMOqZJqKvWlxD6dh2U1fl9C2GJRErd0e231GMbYh2j7DtZs4vRuC2GitW4ethNugx5LJQVh+xo1kpXgeE27dOx3DdRB8e07jSFyx2fJyaWS+toR65fAEzwUTV8QGBOB+sdNh1WRBL5xCMZ6jS12WQ6NsBxFI5OFpY6dvlsyOSyiGUaDy2YSWS2uacCGxk9c1oENsggkYnvDaMFI1Cmp1zE26gf/ntC/jKiVk1ltkQi+FUxWB2gd9l6SgziEKB4/e+dhoWow5/9PJD257X6RgGnRZN2jtFzmQ1O22fw4xgPKNZi7HaiN/BSbmir/h3t0pzfS3h3GIUB4ed20yD5DLeZ8NcsL3tnR/5/tP4w6+fbusaiO7ka6fmmm5jXI2lYTLo4LJu3Occm/Dg4nIUsbR2HQvBeKZ0nbjvvLwWz7lQErkCr3p9EXR6bIPoLiDnzu6CRF+Pk87lkckXWlrpEyezRuf64ukc4pn8pow+wbjXCsa0qfSVgkb7pEofgKbn+maDSbz06DCec1U/fvdrp3G/wt5/tVgMJzFSobVT4Hd1VqXvKydn8eiVIH7/JQcr/h4AxZkHLSp9xSH7SpsOgNTemc1zRFLd0f4oTD4mfPJEn3DAo9gG7ckXOC426NwpGPNa217pe/DpNXzvbHvObbXgnHd8/uhO5sm5dfzGl5/A5x+ZbupzViNSRl/5xsn1E33gXNuQ9kA8g1v3eLHLZ5P9+y/ui+q2d3Z4QPssZfR1JST6epxY8ca0lTN9u5rM6quU0ScwG/QYdlk0casrBY0WK30Amprry+YLWAwnsWfAjo+/5QYcGXHhvZ8/hUevBFVZrxKWwqmKzp2CQZdFdnuK1qxG0/iLb53Hzbu9eMON41VfN+SyaCJUpwNxTHqrD9l3W1bfdDABo16+rbZoqyYHT+2ZCsSRyhZwqAnRN95nw1Ik1dbZn2Aig9VoGslMZ80f/eW3z+Nl//ggUtnOWhchcc/DMwCA+SY3V1dj28dBrhv3AABOTWvT4lkocIQSGXjtJtx9eAgPXVpDJFW/u0mIvt39jpqvK1X6OtRFXJhHUXtnd0Gir8cRrQ2trPSN99mgY9LNcyNUyugrZ8Jn0yS2oTxoVI1KX3nl0GE24DNvvxmjfVa883PHcW4hosqa5cA5x2KVYHbBoNOMQDyDTK79u+J/+s1zSGUL+MtXH61pPOJ3Se5mardZXlmLY1cV505Aau8EgECXiKKZ4rC9XFttIWpJ9GmPOA80U+kb99rAefNdCc0QKm6AzHXYbOFTyzFcWIrioz94pt1LIbYQTmbxP08sAGhucxWQ5t62bhK7rUZcNejAYxpV+iKpLPIFDq/djBcd9iOb53jgwkrd911Zi8NlMaCvToyW02yA3aTv2Ky+2WACDrOhZXFghDqQ6OtxoqnWiz6TQYfRPmtpNkopK8XZMhElsJVJr12T9s6ZsqBRh9kAl8XQ1MVI3ACNFXvevXYT/v2dt8BuMuCtn3m0ZdlaoUQW6VzlYHaBiEBo541+KpvHx390Cd94YgHvveMqXDVYbyfUjGQ2r2qbpRTXkKw5ZO8riqJucfCcCSQU7cYa9Tr02Ywk+lrA+cUIDDqGq/21f9drMd4nnV/a5eApKh7ARrdEpyAqLx//0SVcWGrdRhtRn68/No9kNo89A3YsrDcn+ipV+gBpru+xmZAm89fi/O+zm3D9eB/6HWZZ0Q1X1uLYPeCoO8PLGIO/g7P6ZoOJYi4zZfR1EyT6epxSpa+F7Z2AZObScKWvlLlTWaRM+GxYi6URV3lAe3ZL0OiIx9rU7nmpcljW8z7qseLf33kzsvkC3vLpR0oCV0uEcK0t+opZfW1o8Uxl8/jsT6/geR9+AB/6zgU8b98A3n37nrrv0yJUfjGcRCZfKLUoV8Ln6LL2zkBccQtOv8NMM30t4PxiBHsHHDAb9A1/xkZWX3sEVySVRaF4T91p0RHhZBa37fXBZTXid796GvlCd5gv9Tqcc9zzyDSuGXPjzoN+LDbRsZHJFRCMZyreLxyb6EMokW14A7oW4vzvtZug0zHcdciPH15YqdtKfGUtjj11TFwEUnRUZ4xdbGUmmChtOBHdA4m+Hqc009eicHbBpM/W8Il2NZaGUc/gsVZes4htUHtXeTa4uSLSbFbfbDAJvY5tE1tX+5349Ntuwkokjbd9+risOYBmWCwK15ozfU4hoFp3o5/K5vGZotj742+cw+5+O77wS7fi395xs6yb4CGXmHlQ76I4tVZ0uqxheiLaH7uhvTOcyCKSytX8eiox4DRjrcsC6LuR80Xnzmbwuyww6hlm2+TgWb75MdNmF9GtRJJZTPrs+MDLDuLx2XX8+0NT7V4SAeD4VAhPLcfw/90yiWG3BemicGuEQLz6OMj1E30AtJnrC8Q2RB8A3H3Yj3gmj59dWqv6nlQ2j4Vw7U6ScoZc1o4MaOecY46C2bsSEn09TjsrfeFkFusJ5SfylUga/Q5z1XmuyWJsg9otnrOh5Kag0WGPtaldttlQAsNuCwz67X9mxyb68PG33ICnlqP4pc+d0NRoYLFYCRuR0d7Zispjudj7kzKx96Vffhaetdcn+3O0sLQWGX21Lspmgx4Os6Er2juni9Em4w1U+qi9U1tC8QyWIqmm5vkAQK9jGPW0z8EzlCgXfZ1T6eOcI5zMwm014lXXjeJ5+wbwV9+72HQrIdE89zwyDafFgJddO4yRJufnNzqDtou+qwcdcJoNOKVBXp8QqaLz47a9PjjMBtxbw8VzOpAA58DuOs6dgmG3BSvRdMdVqNdiGSSzecXXFaL9kOjrcaJtMHIBNm6aG6n2rUQrZ/QJJkqVPvWy+ioFjY64LQjGMw0Lstlgoqad8fP3DeBv3nAtHp0K4le/8Jhm1uJL4SQMOlYyIKmEz26CXsc0be/cKvb2DDQm9gSl9k5VK31xmA26UhWxGj6HqSvaO8XGiNJKX7/DjDVq79SU84vNm7gIxr02zLVJcAXjUqeC32XuqPbOVLaAbJ7DbTWCMYa/eNURFDjwga+f6ZqMzV4kEEvjO6eX8NpjY7CZDBgpdqAsNNhVs1rD+E2nY7h23IPHZtYbXm81gsUKo6j0mQ163L5/APedW64q0q6sxQBAdnun321BvsA7bgNuhjL6uhYSfT1OOyIbAJTcDxuZ61uNpjFQZZ4PkFy5PDajqpW+SkGjwuK+0Z3huVCy7knxldeN4o9ffhj3nVvGlzQKb19cl4LZa7k36nQMAw5zaddUbR6fXccL/vqHm8TeF9/VmNgTWIx6eGxGlSt9CUz6bDVdQwHpQh/ogvZHcXFWPNPnNCGeySOR6Y4swm7knIqib6zPVrJQbzXCufPaMQ9mQ4mOEVThpCRGRWD3uNeG37hrH75/YQXfOr3YzqXtaP7z5Bwy+QLedMsEAGC4mB/b6HVWuH1XM347NuHBhaWI6h4AgXgGDrNh0yjCiw4PIRDPVK0sXimOD9SaGS9n2NWZWX3CpI7aO7sPEn09TiydhUHHYDa09kc91mcDY40FtK9G01VP4IJJr03VVqLZCjfH4mLUyAk3lc1jJZre1C5ajbfetgt+lxknp7TJE6oX1yDwu8xY1qC68+Xjs3jDxx+CTsdUEXvlSFl96l0QpwNxWfMWPrupK9o7ZwIJ9DvMsJmUbfqIgPa1aOd/jd3K+cUo+h3mqtE0Shj3WhGMZ0rt/K1EtHdeO+5BIpPvmL8LIfrcZbPhb3/2LhwddeOP/+ccwgltZ6mJ7RQKHJ9/dAY37/Jin1+aZfXZTTAZdA0LG1Hp89kr/x1dP9mHAgeenAs3tugqBOOZUpVPcPv+AZj0OnzvzFLF91xZi2HAaZbdedWpWX3CeVzO/Q3RWZDo63FiqRwcFkPLbXUtRj1G3FbF1bhsvoBAPFO66azGhE/d2IZSu0JfeXtn45W+ueKuu9z2h6OjHjw5r+5FSbAUSZUuHrVQO6A9kyvgA18/g9/56pO4aXcfvvG+56gm9gR+l0W1Sl+hwDEdTMjahfXZzV1h5DIdjCtu7QSA/qIQWe2Cr7FbOb8YadrERSA2q9rRXhlMZGA26LC/eBPfKXN9wiCrXPQZ9Dp88DVHEUpk8MHvnG/X0nYsP720hulAAm++daL0GGMMI25LE5W+FLxF4ViJ60VIu8pzfcF4Bn1bRJ/TYsRtV/lw77nlihXvK2tx7JZZ5QM2HLc7zcxlNpTAoNMMi7Fx12GiPZDo63Gi6VzL5/kEkoOnskqf6F2XU+mbX08iq9Ic3FwoCeeWoFEhlBrZgawU11CLa8bcuLQaU32nnnOOhfWk/EqfSgJqNZrGm//1Yfz7w9N41/P24HNvv3nbBVINhlwW1cJrFyMpZHIFWZU+r8OEUCLTMa1s1ZgNJjHZQAtOqdJHok8TsvkCnlmJ4ZAKrZ3AxnmmHaIvFM+gz2YqzVp3ylyfqOS5t7hAHxl14xefsxtfPD6Lhy8H2rG0Hct/PDwNr92EFx8Z2vS4FI/U+ExfrU1ij82EPQN2PKay6AvEMqXM1nLuPjSEmWACF5ai2567spaQPc8HSGMEJr2uZMbWKcwUM/qI7oNEX48TS7VT9CmvxtXL6BNM+GzIF7hqTmwzwQTGtgSNWox69DtMDcU2zJVmBOWdGI+OucE5cFblat96KZi9fsXR77QUg9ybcxJ9fHYdL//HB3F6Pox/eON1+P2XHKzoYKoGfrcFgXhaFfE/tSacO+v/zHx2E7J5rmowvNqkc5I9eCMX5/7iTRRl9WnDpdUYMvmCKvN8QHlWX+vbwILxLPrsprYKz0qUZvos26N/fu3OfZjw2vD7XzutqXMyscFSOIX7z6/g9TeObYvkGXY37pS9ImMc5PrxPjw2s67qJl2l9k4AuPPQIBjDNhfPSCqLtVhaUaVPCmg3d16lL0hxDd0Kib4eJ5bOtdzERbDLZ0MwnildfOUgbjJruXcCKFUv1GrxlDL6tgujYXdjAe1zoSRMBl3dNlXB0VE3AOC0yqJPXEjlVPrEhbOZG30xv2fQM3z1PbfhldeNNvxZchhyWcD5xjB/M4iq9KSc9k5H52f1zYWS4Fy5cyew8fVRpU8b1HTuBIA+mxF2k749lb5EBl67EVaTHgNOc8e0d1aa6RNYTXr8xauP4PJaHB/9wTOtXtqO5EvHZ5EvcLzp5oltz414pNnsRhys61X6AODYpAeBeEa1303OOYLxypW+QacFxyb68L2zm+f6SpuKCkQfAAy7mouOUptsvoDFcJKC2bsUEn09Tqyt7Z3SyW1GgTBbqWG/XOmzp1U4iXPOMRuqHK/QaED7bCiBMY+1rgukoN9hxqjHqvqwuVi73Jk+oLGA9vL5vZt3e/GN9z0Hh0fcij9HKUNu6fdEjZ3Q6UACJoOu5JhWC2/RNKCTYxvEDU4jos+o16HPZiTRpxHnF6Mw6XXYIzOvqx6MMSm2oQ1ZfaK9EwDG+6wdI/rETF+1Tc/nXj2A1xwbxcd/dAkXliKtXNqOI5cv4IvHZ/Dcq/tL1+5yRjxWFDgUG4lxzotu33VEXzGkXa3ohlg6h0y+ULHSBwAvOuzHucXIpk0YYWqnpL0TkK7dWkYpKWVhPYkCB8ao0teVkOjrcSQjl+07na1AtDEomesT4eD9dXbuBp1mmA06zDQQCbGV1VgaqWyhNJNSzojHisUGKn2zwaTik+LRUbdmlT4RgFsLf7GlVqmZSzCeKc3v/fLz9uCzb79Jk/m9SpSy+lS4KF5Zi2PSWz+uAUBph7dTnAorITZbGp29kLL6Ovfr62bOL0Zwtd8Bo4ptz2N9NswG29Demdhoc5vwtmcNlQgns3CYDTVby//wpYfgshrxu1893XEB2L3EAxdXsRhO4c23TFZ8XnSiLCoc14gkJfFVT/Tt8zthN+lVM3MRm33VRN/dh6SZxXvPbbR4XlmLgzFUvM+oxZDbgsVwqmPmx8XfN7V3dick+nqcdhq5TJRaMJWIvnRNJy6BTscw4bWp0t45W8G5UzDstiCazpV2jWV/ZiihuP3h6JgbV9biitph67EUTkGvY3VFNCAZuQDKBdTHfvgMHptZx0d+/nr8nobze5UQIerqVPrisltvNto7O1cUTQcSsJn0sluMt9LvMJN7p0ZIzp3qtHYKxr3Wlufk5fIFhJPZUqVvwmvDYjiJTE4dg61mCCezFVs7y/HaTfjAyw7i8dl1/ODCSotWtvP4j4en4XeZcefBwYrPjxY3JecVij6xSVxP9OlVDmkXm33iOrCVXf127Pc7cW9Zi+eVtThGPdZt84z1GHJZkMkVEOqQiJEZhX4FRGdBoq/HiaXaN9NnNekx5LKUAknlsBpN153nE0z61MnqEztXlU5iw8WLkZJqXzSVxXoiq/ikeM2Y1A6pppnLQjgJv9NcM5hd0GczwahniltsHr0SxLHJPrzi2pFGl9kwwt2s2UpfocAxHUjIMnERxwWAYLxzRdFMMIGJLeZEShhwmqm9UwNWoimsxTLqi74+GxKZfEtbjsPJLDjf+HsY99pQ4I0HbatJJJmFq47oA6Q2TwANtfET9ZkJJPDjp1fxxpsmqm4Ilq6zCjfvNjwA6rfkXz/hwfnFCJKZ5o17gjFR6at+r3L3YT+OTwVLc99K4xoEpSpoh/x+zoYSMOpZacOV6C5I9PUwuXwByWy+bZU+QBJmSit9csOKJ7x2zASb39kWwnGsQmVupHjCXVBwwi1l9CkMLhVmLmrm9S2FU6ULaj10OoYBh7LYhkQmhzMLEdy0q6/RJTYFYwyDLnPTWX1LkRTSuULFeZNKmA16OM2Gzm7vDMab2o2V2jsbE33ZfAGPkB1+Rc4tSPNjasU1CNrh4CmC2fvKRJ+0hvbP9UWSObit9a99ohpIYe3a8IXjM2AA3njzeNXXOMwGOC0GxZsFcj0AAGmuL1fgeHJuXdExKiE2VioZuQhedHgIBQ58//wKOOe4shZXPM8HbMzjK7kuP3BhBS/++x9r4kw7E0xg1GOVtZFMdB4k+nqYeFr6g2+n6Nvls2NKQQvmaiQlW/RN+qSd7WZb0GaDCfhdlYNGRxqo9M3WEJG18NhMmPDacFpFM5elsLxgdsGgy6LIvfOxmXXkCxw37fI2sjxVkLL6mhN9wllNyU6s12Hq2PZOzjlmgomGMvoE/U4T4pk8EhnlsRTfenIRP/fJh3FyWt1srF7g/KKU36W+6JPON6108AzGJaHkLWvvBDojoD2czFaMa9iKUa+D3aTHuopt9YREJlfAl4/P4oUH/XVjg0Y9yp2yS5W+OpENAHBdMaT9sdl1RceoRKDOTB8AHB5xYdRjxb3nlhCIZxBN5Rqq9DWSF3zPI9O4sBRVnJMshznK6OtqSPT1MNG0dBFztKm9EwAm+21Yi6VlhY5zzrEaS8tq1QA2BqKVuINWYiZY2bkTkAxjdExZa4XYaW/kxHh0zI0n59cVv68SnHMshJOy3CgFSgPaj08FwRhwbLI9lT5Ayuprtr1TbEwocbr02k0d6965GpXMiRpx7hSIOdBGzFwuLkvCZqttOSHN8424LXDb1DXYKuXktbDKJn7/++zS1+J3WWDS6zpG9NWb6RO4rUZVZ6kJie+dlQTPm2/ZHtOwlUacsldjaZgNOjhlbGz7HGbs8tlwSoWNqGBcOq7NVH0+jzGGuw758eOn13C2WN1XGtcAAAMO6R5E7sZmPJ3Dj59eA6BepFU5s6HGsl+JzoBEXw8jhJacE6JW7BLRCjJ2nNYTWWTzXP5Mn0pZfXM1TmIGvQ5+l0XRDuRsMAG7SY++Bm7qrhl1YzaYREgFMRFOZpHKFmS3dwLSTZuSyIYTUyEcGHLJ2lHXiiGXBUuR5tzNpgNxmAw6jMgIsRf47OaObe+cVmHYXlTcG6mkX1qJAZBu+jrFda5T0MLEBQDsZgO8dlNL3TNFe6eoeOh1DKN91o4IaFci+lwk+jThnkemMe614nnFuclajHisyts7IykMusyy55aPTfThsdnmQ9oDxYy+esd90eEhZHIFfO5nUwCAPf0Oxccy6HUYdFpkV/p+eHG1ZKSk9t9hLJ1DMJ5RPLpCdA4k+nqYWEoSfW2t9PnkCzMl/fmAZFGuY81l9WVyBSyEa+9cKd2BnAtJ7Q+NGGgcHVMvpF1JMLvA77IUxWL9WYBcvoBTM6G2zfMJhlwWpLIFRJLK2xAFV9bimJAZ1yDw2U0dG84+XapcNp4DJ1w/GzFzubwWh1HPMB1IlKp+BJDK5nF5La6J6AOknLxWZvWVKn22jTa38Q6IbcjkpHl2qvS1j2dWonj4chBvunlS1nl1xGNFKJFVZLSyGqsfzF7O9RMerEbTpbn7RgnGM/BWce4s56ZdfeizGfGDCysw6qUNkUZQktX3vbNL8NpNcFoMqlf6hIikuIbuhURfDxMtVvraPdMHyMvqE/bLcit9JoMOw25rU1l9C+tJcI6a8QrDHquifvq5UBJjDe6EHRlVU/TJD2YXCMG9IqPad24xgkQm39Z5PkBq7wTQlJmLEudOgddhQiiR6chK1kwwAR3bsEJvBNHeqWTGE5A2A6YDcbzyulEwBnzvzHL9N+0Qnl6OIV/gmom+Ma86jsZyCcUzsJn0m+ahJ7ztD2gXETty3DsBwGMzkpGLyvzPE4vQ6xhef+OYrNcPN2CathKRPw4CANcXQ9qbzesLxjM1nTsFBr0OLzzoByAJpUbNT4Zc8ip96VweD1xYwV0H/aq5m5ezEdfQ+HWFaC8k+noYUelrV2QDILUcDTjNmJYR27AxlC3/JD7pszVV6ZuRsXM14rYUxWH9m3vOOWaDCcUmLgKXxYg9/XZVHMZKwewKWhZF2LkQ4LU4PiVdOG/sgEof0LjoKxQ4pgLx0gaFXHx2E7J5jkhKWYVxLpTA39//FNI59Z3VBDOBOIbd1rp5l7UQGVRKK32zoSSyeY5bdntxbKKP5vrKOL8ozfYcHHZq8vnjfTYsrCdbFjQeTGQ2VfkA6VwaTmbbWjkTx6ZKX/tYWE9i0GmWlRELNGaathqT7/YNAAeGnLAa9U3n9QVimZrOneXcfUgSfbsbaO0UDLnlmZX97FIA0XQOLzrix2TR3VxNqNLX/ZDo62FipUpf++atAGCXzyaz0qesvRMoZvU10cIgTA9qt3dakc4VZJl2hBJZxDP5pmapjo658aQKDp4imF3J93MjoL3+jf6JqSDG+qx1Xdm0Roi+5QYdPJejxbgGhUP2GwHtykTRV0/O4+/vfxq/8aUnNLs5nw4mmjJxASRXwz6bUbHou7wqzfPtHXTgRYf9OLcY6YgZr07g3GIEVqO+qbbbWox7rcjmedMRJnIJxTPbHAxLhjJt/JmT6Gs/wXimanh5JcTmpNxKXzqXx3oiK7szCJAqb9eMufGYKpU+eV/b8/YNwG014tBI49X9YbcFsXQO0VTt39F7zy7BYTbgtr39mPDZMBdKqHqNmQ0m4DQbZP9dEZ0Hib4ephNm+gBprkiW6IukYTPpFbWjTnjtCMQzstxBKzETTMBUNGupxohHvmWyuNGp1S5aj6OjbiyGU7KqbbVYWE9hUGYwu8DvlJcJxDnH8akgbm5zayewYdfd6I3uVLEKvVvhjbho71Hq4HlhKQKjnuFbpxfxp984q0l76KwKog8QWX3Kvr5LQvT1O/Ciw0MAyMVTcH4xgv1DTs0yrlotuIKJbCmjr7QGb/tFXySprL3TbTUimc1rWn3faQRiaVktkAK/2wzGINvMZa0Yl6NkUxMArpvw4OxCBNl8QdH7BMlMHslsXrbosxj1uO83nodfuX1vQ8cD5GX15Qsc955dxu37B2Ax6jHhtSGb56qGugvnzkb8CojOgERfDxNN58AYYKuQP9dKdvlsWI6k6+Z9rURTinbtgHKjmMbm+uaCSYz21Q4aFW0nci5GciqH9bhmzAMAONPkXN9SJKnIxAWQZltMeh2W6wjOqUACa7EMbuwA0WcxSk6pDYu+4u+OUpEk2nvWFGb1XVyK4oUH/Pil5+7G5x6axj//8JKi99cjls5hLZZRxVa732FW7N55eTUOn90Et82ISZ8dB4acuPcszfVxzjVz7hRMtFhwheIZeLe4FJeidDqi0idvA9FdbFGlap96rMUy6JcpjADAbNCj32GW3d65Ujzfy8noK2fSa0euwEudRUoJJuoHs29l0GmpmAMsF9HNUmvj+eR0CIF4prTRNqlBZuZsMEHzfF0Oib4eJpbKwWEyKHIk1ALRylTv5LMaVTaUDZSFATfY4jkjI2hUtC/KqfQJV7BGZ/oAKdSVMTTd4rkYTiluvWSMYdBlrmvkcnwqCABtd+4U+F2Whts7pwJxmPS6kriXi2hdUlLpS2byuBKI48CwE7/3vw7iVdeN4K++dxFfPj6r6Ni1EDf8k97mWwj7neYG2jvj2DuwMb9y9+EhHJ8ONuQC2ksshFOIpHI4pNE8HyBtUDG2kRWqNaF4Zlulz2UxwmMztjQvcCuNVPrK30c0j9L2TqA4Py+zMiU8AAYcyu4ZhkXnjsJ4CEEwVj+YXW3k3IN898wSTHod7jgwCGBj47nZHGMB5xyzoeqZxkR3QKKvh4mls21v7QTKHDzrmLmsRpUNZQNllb4Gd7Okk1jtm32f3QSTXifrYjQbTMBjM8LZRG6d3WzAVQMOnG5C9HHOsbieUuTcKRh0muu2lp6YCsJjM266uW8nQ25LE+2dcYx7a1d7KyEu+sG4fDHz9EoUnEuGAjodw4dfdy2ee3U/fu+/TuP759WphgmbbjWG7QccZqwp3BG/tBrDnoENwfmiw35wDtx/rreqfbl8AfedW5bdJnZ+QZi4aFfpMxl0GHZZMNeCKlsmV0A0nYPXtv3md7zPhpk2xjaIip3c/FAh+qjSpw6JTK7YAqnseq4kq2+lZPym8Bil2cHGrheB4vleqaBthtIIQ5U1c87xvbNLeM7V/aXxmBGPFQYdU63StxpLI5UtlCr5RHdCoq+HiaVzbY1rEEz2y2vBXGlA9DktRnjtpobyaCKpLNYT2bo3xzodw5DbIqvtZDaUVGUn7OiYG0/Ohxue94okpYuu0vZOQF5A+/GpEG6c9La9iiwYcsnPMdqKFNegvCpmNujhNBsUtXdeWJQy6w4MSTf+JoMOH///bsDhERfe+/lTODndnMEAAMwEpb8zNS7O/U4T4pl83dZswXoig0A8s2kz4NCwC2N91p6b6/vCozP4pX87gQ9954Ks1wvnzgMaij5Aim1oRZVtvdjmtrXSB0gbDm2d6UvlYDboZLfUkehTl0DxnKhUGA27pXgkOde91WgajClrswQ2Kn1LDc66ic4OpYK2GSxGPXx2U9WNzbMLEcyvJ/HiYmsnAOh1DGN91qbczcvZ8CvQUPR9+MPAAw9sfuyBB6THCVUg0dfDRFO5jqj0uSxG+OwmTNUQZolMDrF0TvGuHSDdYIgbXSWUTmIyKiJyA9rnVOp5v2bUjdVoWpaLZiUWI9JaG3HW9NcRUKvRNK6sxTumtROQ1rwWyyCTUzacn8sXpLgGhc6dAq/DpKi988JSFNbikL3Abjbg02+7CUMuC975ueN4ZqW5MPOZYrVZDYc1Ybcu18zl0qr0d1he6WOM4UWHh/DTZwJ13ee6iS8en4Vex/CpB6/gXhmC9vxSBBNem+YbceN9rQlHF7NNldrcxr3qOwcqIZzIKvr99xRfu05ZfaoQKJ4T+5W2d3osSGTyssT3SjQNn90Eg17ZbazTbIDdpMeCgmiIcjZEX+sqfYB0jatW6fve2SXoGPDCg4ObHp/w2VVr7xTnFDVmxaty003AG94AfOMbQDotCb43vEF6nFAFEn09TKdU+oBinl6NSl8po0/hTN/GZys/sSnJnJHaTmpfJAoFjjnVKn0eAGg4r09UJRtq73SZEU3lqlZ3Tk5L83ydYOIiEF+nUtORS6txpLIFHG7QTttnVyr6IthXbO0sp99hxr+94xYYdDr8wqcelZXJVI3pQEK1HKUBEdAu8/sq4hr2bGn7fdHhIWTyBfzw4qoq62o3p+fCOLsQwe/9rwM4OurGb33libqVrfOLUc3y+coZ91qLMSTaOlGK3/utOX1iDdk8b7j63izhpDLRR5U+dRExNo20dwKQJchWo2nZGYDlMMYw7LE27GoZiGdg1DO4WryhLm08Vxd9N+/2wrfl+zHhtarW3ik+pxm/grrccQfw278NvPKVwNGjkuD78pelxwlVINHXw8RSubYGs5ezy2evKcwayegTTHqlQGKlVZ7SzpUMkTZcnBmrtXO9Gksjky9gTIUb7sMjLuh1DKcbdPAsBbN7GmjvLArvamYuj14JwWzQ4eiou6G1aUEpoF2hWBLf30a/Fq9dvtEJ5xwXlqI4OFT5xn/CZ8Nn334TIqkc3vrpRxFusOowE1RR9BX/HuV+jZfX4jDq2bY52Rsm++Czm3qmxfMLx2dgMerw+hvH8dE3XQ/OgV/9wmNVz0HxdA5Tgbim83yC8T4bOAfmNTZzCcWl389KFY8JDZwDlRBJKRN9LhJ9qlJq71TaelncvJMz17caTTV0vyCO0+jGWjCWQZ/N1PLYAimgffv35fJqDE8tx0quneVMeu0IJ7MNX0vKmQ0m4HeZm3IhrctHPwr83u8BJhPw9NPAi15Egk9lSPT1MJ1V6bNjIZxEKlt591kIDKWRDYDUwlDgwLxCN66ZYAIuiwFuW/2bg2GPFfkCL1UkKzGr4k6YxajHPr+zYQfPpXASOrZRqVHCYCmgvfJF8cR0ENeNe2AydM7pQ+QsKq0snJkPw2bSb6tMyUVJpW81lkYwnsH+KqIPAI6MuvHJt9yAy2sx/NK/naj691KNXL6A+VBSlYw+oKy9U6bou7QSw6TPvq3lSq9juOuQHz+8uNr1WWiJTA7/8/gCXnJ0GG6rFEvx/153DR6fXceHv1t5vu/CkmTg0wrRJ1qVn1purk24HsHSTN/282e7RV84mZXt3AlIv59Os4FEn0qI9k6lM32jHuFSKUf0KXf7Foy4rU0YucgPZleTYbcFoUR22zXhe8U4nLsriL5xFf8ONXXuzOWA970P+NVfBW69FXA4ALcb+OIXge9/X5tj7lA6566NUJ1YKgeHufm5HjXY1S/tPldrgRJukY2Ivkaz+mZD9eMaBKPFilktB89SRp9KJ8ZrRt043aCZy0I4hUGnRfG8A7AhoCrlGMXTOZxdiOCmDmrtBDbaOxup9B0adjUclu0rzvTJ+RltNXGpxm1X9eNv33Adjk8H8bf3PaVoPYvhFHIFrlqlT9y01drsKOfyWhx7ByrPR77o8BBi6Rx+9kxAlbU1QjCewX88PN2U8Pzmk4uIpXN4400TpcdecnQYb33WJP71wSu4r4JLqTBxOdQC0XfNmBtOiwHfP7+i6XFCNdo7RzxW6Bha4iJaCaXtnQDgthlVqYgQUnun1aiHzaRs07nfYYZRz+oKMs45VmPKjd8EQ24L1mJpxd1BgOTW3ErnTkG1jc3vnl3CNWPukmAuZ8PdvLEc43Jmg0nVriubWF8HXvpS4J/+SWrnfOop4CtfAT72MSCfB1796u3mLkTDkOjrUQoFjlimM4xcgI2svmpmLqvRNAw6VvEGou5nN7ibpaQNrpSTU2PWQLSLqtXzfnTMjWA8o7iCCUjiZ7iB1k5go72zUtXs8dl15AscN+3uLNHXZzPCZNApqvTlCxznFiI40kSbqtduQq7AEUnWd7e8uCREX/25rpdfO4IXHvDjW08uKhL9G3ENzWf0AYBRr4PHZpRV6cvlC5gOxKtWTW+7ygeH2dC2Fs+F9SRe9/Gf4Q+/fgb//tB0w5/zpeOz2DNg32Zk9PsvPYgjoy781leewNwW98zzixE4zQZt52GKGPU63LF/ED+4sKKpkUownoHTYoCxwsaSUa/DsFu9eSKlNCT6rEaq9KlEIxl9wIZTdr32zvVEFtk8b2iTGJDGHjhX3hkCSF9bK507BZWy+pbCKTwxu16xtRNQr9KXyRWwGE6qMrqyiUuXgGc9C/jBD4B//Vfghhs2Zvh+7uckAxezGfjpT9U97g6GRF+PksjmwbnkVNUJ7KpTjVspDmU3EgEw4DTDatQrMnMpma7IPImNuOu3ncwGExh0qtfzfs2YJEYayetbDCcbimsAAJfVALNBV7HS9+iVIHQMODbhaeiztYIxBr/LrCir79JqDMlsvqnZRHFjE5CR1Xd+KQK/y1zR4r4Sdx0axPx6EheW5LfpiYu7Wu2dgMjqq9/COhtKIpvn2FPFCdVs0OP2/QO479xyy10dn1mJ4XUf+xlWo2kcHHbhYz+8hHhaXgxFOU8tR3FyOoQ33jS+babHbNDjn950DIUCx/s+v3m+7/xiBAeHXS2bA7rzkB+BeAaPzzYfAVKNUKJ2m5vkqtx60VcocMTSOUXtnQCJPjVZi2e2mYrIZdhtrRuP1IwHgDgGUDvsvBqBeEbxrKIaVOpmufectIFWTfQ5zAb0O0xNO3gurCdR4KibaayIn/wEuOUWYGUFuO8+4J3vBH7ndzZm+HQ64K//Glhbk/6bUAX6TvYosZR0Q9MplT6PzQS31YipGqKvkbgGQLrhn/Aqc/BciUqtHXJFn8tqgK2OzbMSESmH/UNOGPUMTyo0c+GcYzGcwpCrsRO0JKAqxzacmA7iwJCrqfB5rRiqYWldCSGmj441IfqKO75y5vouLkWxv05rZzl3HJDst5WEmk8H4zDpdaVWIDXod8gzqxHOnXsHq89HvujwEALxjCp5hHI5PRfGGz7xEDJ5ji+961n4y1cfQSCewWd+ekXxZ33p+CyMeobXHBur+Pykz44PvVaa7/ur70nzfYVC0cCnBc6dgtv3D8CgY7hXwe+OUoLxTM3ODEn0tT6gPZrKgXModlck0acegVi6YWE06rHW7W7ZcPtu3MgFkDc7WE4mV0A0lWvLTF9J9JVdl797Zgl7B+y4qsY5V43NFzG60nB759b8vc9+VhJ3jAEPPwzcfnvl9z3vecCrXgV88IPAsnbnsp1EXdHHGBtnjD3AGDvPGDvLGHv/lud/izHGGWP92i2TUEosLV28OsXIBZAMBqoJs5VIquETOCA5H15Zi8l+/cb8nTxhxBirm9U3G0qo2r5lNuhxYMiluNIXSeWQyOQbcu4UDDrN20RfNl/AYzPrHZXPV069fMGtnJ4Pw2rUbwoSV4q4+NcLaM/lC3h6OVbVubMSg04Lrhv34P7z8i92M4EExrzWhmcUK9HvNMuKbLgkRF9/9e/n7fsHYNLrWtbi+dClAH7+Xx6GzaTHf777WTg04sL1E32486Afn/jxZUUzXOlcHl87NYe7DvlrWsW/9JphvOXWSfzLT67g/nPLmAkmkMjkW2LiInBZjLh1j0/RhoFS6lX6xr1WrMXSSGZaa9wjhJvS9k6PzYh1En2qEGyiGjbsls7jtboBhAdAw5U+BdEQ5YRqZFNqjcNsgNNsKG1shuIZPHIliBcfqVzlEyjdEK/EjIJM44qI/L3vf19y53z726Xq3ac+BVx9de33/r//B6RSwJ/8SWPHJjYhp9KXA/CbnPODAG4F8F7G2CFAEoQA7gIwo90SiUaIdlilD5BaPKtV+tZiaQw06MQFAM/a48Ol1bhsgTQTUL5zJWX1VRZ9uXwBi+GU6u5WR8fceHJuXdFcl7goNJLRJ/C7LNvaO88tRJDI5Dtunk8w5JJiNeR+r87Mh3FopHETF2CjvbNepe/KWhyZfKGmc2cl7jrkxxNzYazIFLMzwURpxlUt+h0mrMkwcrm8Gke/w1TTDddpMeLZV/nwvbNLDRkUKeHes0t462cexYjHgv98920lV0sA+M279yGWzuGTP7mk4POWEUpkNxm4VOMPXnoQh0dc+M2vPFES7a0UfQBw58FBXFqNlyqwahOKZ2tW+sQN4myotS2ejYo+F1X6VIFzjkCsifZOjxW5Aq/ZXVCq9DXY0eAwG+C0GCpGINSi0SgKtRgq23i+/7zUJl+ttVMw4bNjMaw80qqc2WCyuQ6SO+6QZvVe+UrgQx8CLBbgW98CXvGK+u/dtw/45V8GPvlJ4Pz5xo5PlKgr+jjni5zzU8X/jgI4D2C0+PTfAfgdAK0d0CDqEivOq3TKTB8gtT7Nh7affHL5AgLxTMO7dgDw+hvH4DAb8KkHL8t6/WwoAcaAUQWVuWG3paqr2GJY2pkc96pr1HDNqBuRVE5Re4ZwGG10pg+QYhu25vQdnyqGsk92qOhzW5DKFmSZquQLHGcXIk1nDYod30CdStiFJXnOnVt54UGpxfP7F+o7MXLOMaNiMLtgwGlGPJNHIlP7+3ppNYY9Nap8ghcdHsJcKIlzRUdLLfjPk3N4zz2ncGjYhS//8rO2bYAcHHbhZdeM4NMPTsl2Jv3i8RmMeqx4zlX1m1osRmm+L1/g+Mtvn4eOQbHgb5Y7D/kBQDMXT8nQorqwKsU2NFllUEok1Zjoc1uNyOQKimNSiM1E0zlk8oUm2julv9VaLZ4rUckd1G5qfH6+kdgGsbnXjkofILL6pDV/7+wyRtyWutewCa+toUircmZDCYz2NdlBcu21UjQDAPzWbwF33SX/vf/3/wI2G/B//k/jxycAKJzpY4ztAnA9gEcYY68AMM85f0KLhRHN0WkzfYBU6StwbHO2W4tlwHnj/fmAVEF4w43j+OaTi7Ja/GaCCQy5LDAb5F80ht3WqjbPIopCi0ofAEV5feKiIIbVG8HvsiCWzpU2DwDgxFQI415rUxVELRG7kHLMXC4XTVyace4EpBZcp9lQyqWqxoWlCPQ6hr2Dylw19/udGOuz4vsyWjxDiSyi6RwmfOo4dwpKWX11zFwur8axp0pcQzl3HvJDxzbypdTmUw9ewW995QnctteHe37xFniqVKN+/c6rkckX8M8/fKbuZ84EEvjpMwH83E3jss2mdvXb8aHXHkWBA7v77dqGGldgrM+Gg8OuihESzZLM5JHM5muaEk20udLXiJFL+fuJxgiKaliDsQZynLJXix4AzRgjDdUZ16iEMOxqR2QDUAyVj6QQT+fw46dXcffhobrfA2Hq1cxc32xQfrxVVd79biCdlqp2H/+4shiGgQHg938f+MY3gB/+sLl17HBkiz7GmAPAVwH8GqSWzz8A8Ecy3vcuxtgJxtiJ1dXVRtdJKCRavFnvpJm+jdiGzS2ezWT0lfO223Yhzzn+7aGpuq+dCyYVC7RRj7WqzfNcSLp4qGnkAgD7/E6YDDqcVmDmshhOScHsTXw//UVTHdFWyDnHielgx+XzlVNp0L0aZxaKJi5Nij4A8DrqB7RfXIpi74Bd0SYDIM2S3nnQj588vVZ3Nqrk3Kl2pa8o+mrN9a0nMgjEM7LmI/sdZtw46cW9Ks/1cc7xN/dexJ998xxecnQI//rWG2Gvcf7bM+DAa4+N4p6HZ+paxH/pxAx0TOooUMLLrhnB/3nxAfzic/coep9a3HVwECemg7KMhpQgZptqtXd67SbYTPqWO3g2PNNnlb6Wdcrqa4oNYdRonEJ9p+yVaKp0XmqUEY+lrkvoVjYqfa2PbACkEYaVaBrfv7CCTK5Qt7UTKK+4N57VNxtMNOfc+YUvSNl7L36xJPi+/GVpxk+J8Hv/+4HxcalKWGi8VXWnI0v0McaMkATfPZzzrwHYC2A3gCcYY1MAxgCcYoxt+w3knH+Sc34j5/zGgYEB9VZO1ERU+pwdEs4ObMQ2TK1tvglotj9fMOGz4e5DftzzyIysG2SlAk3k3lW6QZwNJaBjzc3RVcKo1+HQsAtPzq3Lfs/iehIDTnPF/Cy5bGT1ST+bK2txrMUynS36RHitjJad03MRWIy6qkHiSvDZTXUjG84vRhW3dgruPOhHOlfAg8+s1XydiEOZUDGuASir9NUQfZdWpWPLqfQBwN2H/biwFK0a4dIIf3PvU/jHHzyDN940jn/8+WOyBPb/fuHV4OD4xx88XfU1uXwBXzkxh9v3DzZUPX/P7Xvx8zfXnwPUgjsP+VHgwAMy2oOVIEf0CVfl2S4RfVTpU4e1JufeXBYD7CZ9zXbE1SbcvgXDbisC8Yyidt5gPAMdAzwKf7fUYsgtbTz/x0PT8NpNskzVBp1mmA26hs1coqksQolscxvaH/4wYDQC//Iv0r/FjN/x4/I/w2oF/vIvgZMnJRFJNIQc904G4FMAznPO/xYAOOenOeeDnPNdnPNdAOYAHOOctyd1l9iGaMuzm1vbUlQLr90Ep9mw7Uav2cydct75nD1YT2Txtcfmqr4mlc1jOZpSPH9XK9tnNpjAsNvalNCqxjVjbpyZj6AgM9tsKZJqqrUTQOmCKqqwJ6Yki/1Ode4ENtYsq9I3H8ahYRcMKvy8vHZzacC/EpFUFvPryYZnum7e7YXTbKjb4tmIOZEcxN9lLdFXimuQ6YQqdqjVdPH84vFZ3HnQjw++5qjs2ZOxPhvedPMEvnxiDlNrlQXoAxdXsRJN4403jau21lZxdNQNv8usyAFWDqG4JIzqzTaNe22YbXFsQySZhUHHYFM470WiTx1ENazRFkjGGIY9tbP6VqLppit9YoNWieNzoBhT0kiesBqIOf1Hp4K48+CgrOuX2HxptOIu/n4bvq6cPAk8/rhUoRsr65S44w4pl08Jb3oTcOyY1OqZbH0cTC8g547n2QDeAuAFjLHHi/97icbrIpokls7BatSrclOrFowxTPbbMLVlx0kYhjR7EgckUXJ01I1PP3ilqkiaX0+Cc+UnMRGBsFCh7WQ2lFTdxEVwdNSNWDqHKzKrIovhVFMmLsBG1VX8bI5PBdFnMzYVb6A1ZoMeXruprugrFDjOLoRVae0EJHfLWu1zTxVNXBrNaTMZdHje/gHcf36lpvCfCSbgd5lVnx0TN2+1DE8ur8Vh1DPZkSXjXhsODbtUm+sLxNJYi6Vx6x6v4jmf977gKhj1DH9//1MVn//iozMYcJpLuYndhGgP/tFTq6oalARL1vW1Kx7jfdLNptZOreWEk1m4rEbFvwck+tRBmFo1Y3Yy4rFWvM4C0qZtNJVrujNoxK08tiEYy9ScY9Wa8k6ielEN5Uz6Ghd9M834FXAO/PZvA/396piwiMD2mRngIx9p/vN2IHLcOx/knDPO+TWc8+uK//v2ltfs4pzX7j0iWko0lesoExfBpM9eodKXQp/NCJOheYHKGMM7nrMLl1bj+PHTlWdIZxvMnLGZDHBbjRV3IKWed3UrLIJrxjwAICuOgnOOxfVk022mTrMBVqO+tAt6fCqIG3cpv6FuNX6XpW575+W1OOKZPA6rJPq8dkn0VbuxFc6dSoLZt3LXQT/WYmk8UaPNdzqovnMnILUYe2zG2u2dKzFM+uyKNpledHgIp2ZCpWpyM1xcFt9j5cJ60GnBW2/bhf9+YgEXiz8rwVI4hQcuruD1N4xpUsVvBXce8iORyeOhywHVPjMUr9/eCQATXiuS2XzdHEs1CSezils7AZSiRtYTrVtrL7IWy8BpNiieXy5nxG2pKsbE5lOzm8RiXGMpIr9iJDnWtlH0FYWu3aTHbXvlR2OPexvffHm6eG6d7G/g2vLd70pze3/0R4Bbnestjh8HnvUsqdVT+IQ88IDUQkrUpTuvYkRdYulcR8U1CHb77JgLJZHNbwzirkbTGGwio28rLz06gkGnGZ968ErF54Xoa+QGedht2TbTl8rmsRJNq27iItg7YIfVqK/r4BlOZvEr95xCPJPHwSYEBiCJZ7/LjOVoGivRFKYCiY5u7RQMucx1K31n5tUzcQEk0Zcr8KpREReWInBaDBhpQojfvn8Aeh2rab8vxTWo69wp6HeYa7p3Xl6LK56PfNERPziHKu6SF5caF30A8O7n7YXDZMDf3ndx0+NfOTGLAgd+rgtbOwXP2uODzaRXNag9GM+AsfpzcxMqOAcqRVT6lOI0G8CY1B5KNE4wnmna3XLEIzllp3Pbq9OlcZCmZ/rEjL6S9s502zL6AMBjM8Ju0uOOA4OKOjomvTYkMo1tvpyaCWGf3wGXReHfVD4vtW/u3Ss5dqrFTTcBFy4AsRjwp38qCb43vEF6nKgLib4eJZbKdmilz4ZcgW8STivRtCrzfAKTQYe33rYLP3l6DU8tR7c9PxtKwmTQNbRTKLWdbL5IiIFzua1tSjHodTg84sLp+fWqr3lsJoSXfuQnuO/cMn7/JQfwuhuUuQxWYtBlwXIkhZPFeb4bO9jERTDkttSd0Tg9H4bZoMPVg+q0qgqjk2pmLhcWozgw5GyqSuqxmXDjZF/V2axUNo+lSEqTSh8g7apXq/Tl8gVMB+LYo7D1d7/fiXGvFT+62Lyr81PLUfTZjA3v/vfZTXjnc3fje2eXS6ZJhQLHl07M4ra9vpLzcDdiMerx/H0DuP/8smptlqFEBm6rsW5lV/w+bo3p0ZJIKgdXA9c+nY7BZaGA9mYJxNNNV8OEIFuq0LWhVqWv1LmjILah3ZU+xhg+/bab8IGXHVL0vkY3XwoFjlMz67hhsoEN33/7N+DMGeCDHwRMKn7P7rgD+OpXpc/8p38CXvMayRTmjjvUO0YPQ6KvR4mlcx0V1yDY1S9iGzZOPlKlT10L5DfdPAGzQYfP/HR7tW8mINkPNzKMPVwh26fRdlElHC2aueS3zHQVChyf/PElvP7jDwEAvvLuZ+Fdz9uryqD5oNOMlUgKx6dCsBh1ODKiUnuGhvhdFqzFMhWzFAWn58M4qJKJC1AW0F5hro9zjotLjTt3lnPXIcnxspIboripnlTZuVPQ7zRXjWyYDSWRzXPs6VcmjBhjuG68D2cXmg9pv7AUxf4mhfU7n7MbfTYj/vpeabbvp5fWMBdK4o1tct5UkzsP+rEcSSuKfqlFMJ6Bt05rJyAZ5QCtDWiPNNjeCUiVFBJ9zRGIZRqOaxCI2IZKVbhVEfHUZKUPKObeyQxozxc41pPZtlb6AOCWPb5SJq1cRAfITFCZW/LltRjCySyOTSgUfYkE8IEPADffDLzudcreK4c77gDe9z5pZjCdBia6/xzdKkj09SjRVGeKvslSbIN08uGcYzWabrpVYyt9dhNec2wMXzs1v81kYzbUeNDoiMeK9UR2UyTErMjo02imD5AcPJPZPC4VXRIBaWD+HZ87jr/89gXcfdiPb/3v5+J6pSfnGviLmUDHp4K4btyjysyl1oiZh2pzYoUCx7mFiGqtnUCZ6KvQOjO/nkQ0nWu47bCcFx70A0BFF09hx612XIOg32HCWhUjl5JzZwOV00PDLsyvJ5uao+Kc46mlKPb7m/seOy1GvPv5e/Hjp1bx6JUgvnh8Fh6bEXcf8jf1uZ3AHQcGoWNQrcUzlJBnaGEx6jHoNLe8vbNR0ee2GrFOoq8pAvEM+lVo7wQqxyOtRtPQMcCnQlbeiMcqu70zlMiA8+YMatrFWJ8VjAEzAWWOlyenpS4fxZW+v/97YH5eMl3RwgfggQeAz34WeO97gVRKEoHBoPrH6UE6/y6OaIhYujONXAYcZthM+lJAeziZRSZfUHWmT/DO5+xCOlfAPQ9Pb3p8pgnDi0oOnnPBBEwGnerVynKOjnoAoDTX99ClAF7ykZ/gZ5cC+LNXHcE/velYwzc61fC7zEhk8jizEO7ofL5y/HVsuK8E4oilc6qKPtHeWcnB82KTzp3l7O63Y++AHfdXmOubaWJOVQ79DjPimXzF/EuxEbG3X7noOzwiVUDPLTZe7ZsLJRHP5JsyyhH8wrN2YdBpxp9+8yzuPbuE11w/probajvw2k24cdKL+2rMhCohGM/WNXERTHhtmG1ReyfnvKlKn9tKlb5mKBS4Ki2Qor2zUuvlSjQNr90sO5alFkMVOneqUQpmV8FlvNVYjHoMuSyYVljpOzkdQp/NiN1KujhWV4EPfQh45SuB5z5X4UplIGb4vvxl4KMfBf7u74DZWUn4ZciEqR4k+nqUTjVyYYwVHTylmwA1M/q2ctWgE8/fN4B/e3i61O4XTmQRTeUarsqVsvrKdgfnQkmMeRprF5XLnn477CY9Hp8N4e/uewpv/teHYTcb8PVfeTbecuukJq6aooWE8+6Y5wM2Kn1L4cpVKWHickRF0ddXtK0PVGh/FM6d+5qsQgnuPOTHI1cCiKQ235hOBxKwm/SatR7Vyuq7vBpHv8NUcj9UwiEh+ppo8dwwcWl+RtNq0uNXX3AVzsxHkM1zvPHm7jVw2cpdh/w4vxhRJSw9FM/UjWsQtDKrL5HJI1fgDRm5AICLRF9ThJNZ5Au86SqcxSidy7bOzwPqjoOMuC0IbencqUagydD5djPhtSn+2z85HcINk33K7i/+7M+k9s4PfUjhCmVy/PjmGb73v1/K7XvySeCXfkm6YSGqQqKvB+GcI9ahkQ0AsMtnK1X6RA6cVlWydzxnN1ajaXzzyQUAZZkzjVb6RLZP2e7gbCiBUY1MXAQ6HcORUTf+4+EZ/MP3n8arrx/DN973nNJNsxaI6quOAccmPJodR01Koq9Kpe/0XBgmgw5X+9XLGzQb9HCaDRVn+i4sRTHWZ4VTqfNZFe486Ec2z/Hjpzabn8wEE5jw2TWL1BCmCSsVWjwvrcawp4EqHyBVEP0uc3Oib1ldYf1zN01g3GvFjZN9qn1mJ3DnoertwUrgnCMos70TkM61C+FkzTlbtRCCreGZPquR3DubINBkMHs5w57tTtmAusZvYhO3nuMzUFbp62LRN61gtjYUz+DSalzZyMgzzwAf+xjwi78IHDjQwCpl8Du/s9205S/+AviTP5HMY/78z7U5bo9Aoq8HSecKyBU4HGZ12/3UYtJnx2wwgXyBl2avtBJ9z7u6H1cPOvCpB6+Ac15qM2o0SN3vltZZXumbDTY+I6iE517dD5tJj795/bX4mzdcC7vGlVx/cc7y4LBLNdGiNZ5i3mO19k5h4qJ25prPYaos+hYjqpi4CI5N9KHPZtw2myW1LGu38SBaWKtV+vYojGso59Cwq6n2zotLUYx61BPWJoMOX33PbfjkL9yoyud1CrXag5WQyOSRyRVkGbkA0s0m5xsux1rSrOhzW41YT2RbGibfS4huBzXm7Ybd1oqZuGpW+kRW36KM381gXHxt3Sn6Jn02rETTsqqaAPDYrMx5vg9/WGq5BKSKm9kM3HVX63PzPvAB4C1vkTIB77mntcfuIkj09SDRlJQX1qmVvt39NmTzUmzDqobtnYAIa9+NswsRPHIl2HSlz2zQo99hLu1AxtI5hBJZTU1cBO+5/Sqc+sBdeK0KcQxyEO2d3TLPB0g/7yFXZUe2QoHj7EIER0fVr45KAe2bBVE6l8fltTgOqGDiItDrGO44MIgHLq4iV8y6LBQ4ZoIJTWMF+p3Sjc5W0beeyCAQz2CvwriGcg6PuPH0SgyprLybka08tRxVxSinnEGnpWt39Gtx5yE/Hr68vT1YCaLiIbfSJ+ZM1WgrrUdEBdGXK3AkZN4YE5tRs9I36rFuq/QVChxrMfUrfZXaSLcSUPh732mIex6587Unp0PQ6xiuHfPUfuFNN0kzdv/8z8BXvgK89rXAu9/d+tw8xoB/+Rfg+c8H3vEO4Cc/ae3xuwQSfT1ILC2Jvk6c6QNQujmdDiSwEk3DatRr6jT66utH0Wcz4tMPXsFsMAGPzag8aLSMEY+l1N65EdegbXsnIN3wt9JUwm424B/eeB3e/fy9LTumGgy5LBXbdaY0MHER+Bzmbe6dz6zEkC9wHFDBxKWcuw76EU5mcaLorLYcTSGTK2hm4gJs7NxvDWi/tCq1aTdV6RtxIV/geHo5Vv/FW8jmC7i0GuupNkwtufuQH7kCxw+byEYMFZ1W5Vb6xLmxFQ6eotLX6PldiEWa62sMVds73RZE0zlEyzYoQokMcgWuXqWvlAcop9KXgctiUL1LpFWU33fJ4dT0Og6PuGA11bnnuOMO4Etfkmbr7HbgW99qX26e2Qx87WvA7t3Aq14FPP1069fQ4XTnby9Rk5io9HWo6NvlE1l9caxE0xh0mTWbRQKkofA33zKJ+84v46HLgaarclJWnyQq5loQ19BOXnndKIbc6juraom/SkD7aQ1MXAQ++/b2zguL0qyZmpU+AHjuvgGY9LpSi6fIQNNS9JkMOnhsRqzGNn9fS3ENTVX6pMrr2QXlGXJX1uLI5rnq3+Ne5brxPvjspqaiG5RW+vxOC0x6XUsqfU3P9BXNiNYT7Rd9qWwer/7nn+LkdPdY0Yv2TrnOrrUQsQ2LZVW4DeM3da5JFqMe3iqGMVsJxpvPH2wn4vogZ/Mlly/g8dl1+fl8t90GXHMNEI8Dv/Ir7Q1K93ol4ZlKAbffDgQCG8898EDr2047DBJ9PUg0LV2wOrW9c9BphsWow3QgjpVIStOoA8EvPGsSBh3D5dV40zfHIx4rFteT0oxg8QQ6prGRCyGfIZcZS+HUtrmcM/OSiYsWVSGv3YRQPLPpmBeXozAZdKVNDrVwmA24da8P959fBucc00Ftg9kF/Q5zxUqfUc+a+v0f77PBYTY0NNd3oeTcSaJPDnodwwsODOKBiyvI5hszVilV+mSKPp2OYcxrbUlsQ7Oiz9VBlb4ra3E8NrOOhy4F6r+4QwjEMvDYjKpUw0Q8UvksqBgHUSOYXTDkssic6Ws+iqKd9NmMcJoNmAnUj224sBRFMpuXn8/30EPAzIw0V/exj23M+LWLvXsl99CFBUn4pVIbUQ+tbjvtMEj09SCdXunT6RgmvXZcWUtgVcX+/FoMuix4+TUjAICxJlsxR9xWxDN5RFI5zIYSsJn0XX0x6DX8LgvSucK2G7fT82EcHHJq0p7jc5iRK3BEkrnSY+cXI7h60AGDBse76+AgpgIJXFqNYyaQgF7HSjvjWtHvMG2b6bu8GsOkz97U16jTMRwaduFsAw6eTy1FodexptpLdxp3HvIjmsrh+JXGKkjBuPR3Jbe9E5CEfSvaOyOpHBgDnA1ueHZSe6eYZ5PjLNkpBOMZ1YxOKsUjlSp9KlbcRjyWTdXEanS76GOMYdwr7+9QUSh7eW7en/6p9P9veEP7hd+v/qokQs+cAW6+eWON7axCdgAk+nqQ0kxfh1b6AKkqMR2IYzWS1iSYvRLveM5uMAZcPdhcVaDk+BVOYjaYxHifTdP2VEIZoh21/GapUOA4Ox/RpLUT2HB0Wyszc7m4FFXVubOcFx7csN+fCSYw4rFoPmsy4LRsF31rcexVQXAdGnHh/GIEhYIy18QLS1Hs6bfDbOj+APVW8dyr+2E26HBvgy2eoXgGeh1TdH2Z8NpKbchaEklm4TAbGs5MFaKvE2IbhOhbjlTOHO1E1mJpVZw7AakjSK9jm8xctDB+G3ZbZYm+gIqCtl1M+mylzpBanJwOYdhtkbeRuDU37447pH8fP97kalXgT/9UchI9fRp4z3t2vOADSPT1JEL0dWqlDwB29dsxFYgjms61pNIHSLNc9/368/HK60aa+pzyHci5UKIlJi6EfDYC2jcu5NPBBKIambgAG61uYt4pGM9gJZrWbNZsxGPFoWEX7j+/jOlgApNe7Std/Q5T6aYLkOY+pgNx7Glink9waNiFRCYv64aknKeWo9hHrZ2KsJkMeM5V/aX2YKUEExn02YyKhNWE14ZIKoewxrNy4WS24dZOAPAUq5frye3xK61mvljhqhY/04kE4hlVTFwAwKDXwe80b8rEXYmmYDfpVY0rGvZYEE5mkcjkqr6Gc45Ql1f6AGDCZ8NcMFl3c+3kdAjH5LZ2VsrNu+MO6fF288ADwGOPdU7baQdAoq8H6fTIBkDaccrmpRNPK2b6BFcNOpquiJTPGsyFkhjrUROXbkVETZTfLGlp4gJsuNUJB88LS1KrotrOneXceciPk9MhPLMcxYTG83yANNMXz+RLOU+zoSSyed6UiYvgUANmLvF0DjPBBA6Qc6di7jzkx1woWQq2V0IonlFs1KHULr5RmhV9dpMeeh3rrPZOGVWoTiGoougDxPz8xte/Gk1j0KVuZ5Bw8FyokAkoiCRzyBV494s+rw2ZfKFmy/BSOIX59SRuUBLK3ol0attpmyHR14PE0jmY9LqObnnaXWZu0apKn1oMOi3Q6xjOL0YQS+fIxKXD8JcqfRtVqTPzYZj02pi4ABuRBoFie+eGc6c27Z0AcOfBQRQ4EM/kNXXuFAxsCWi/tCI5d6oxT3e13wGDjuGcgrm+p4qChSp9ynnhwUEAaMjFMxjPKM4qa1VsQySZbSqOhzEGt9XYUaJvLZYuZXJ2Mrl8AaFEBl6V2jsBYNhj3VLpS6s6zwdsdO7UEtfivK6moG0HoiOk1t/hqRkF83ydTCe3nbYREn09SCyV6+gqHwBM9m/cKLZqpk8t9DoGv9OMR4tGCI0GvRPaYDLo4LObNu1mnp4L48CwEyaDNqe8Prt0oxksVvouLkXhs5s03dA4MuKGv+hiN9kK0Vf8WoSZwuW1YlxDf/OVPrNBj6v9TkVmLkL0UVyDcgadFlw77mkory+UyCgycQE2zpFai75mK30AiqKveqtfq1hYT0LHgAIH1mKtaTd9bCaEf/3J5YbeG0pkwbnUBq4WI8V4JNGOuBZNY0BF507pGCKgvbqDp2jbV1PQtoNSbEON+dqT0yGYDTocHNZuw7IldHLbaRsh0deDxNK5jp7nA4Bhl6V0A66m/XKrGPFY8XSx0tGrGX3djN+1kdXHOceZhbBmrZ2AJFqcFkMpq+/CUkTT1k5Acr0Uhi6tau8ENip9l1fj6HeY4LY1d5MtODTsUhTbcGEpCqtRT39/DXLtmBsXlqKK5/qC8aziSp/LYkSfzah5Vp9aom890d6ZvlyxBW9/sVOgVQ6en39kBh/8zoWG4jyEMFLLyAWQrrOZXKF0XtWi0ud3S5+3WKO9sxQ63+XtnSMeqUtpOlg9tuHkdAjXjnk02yAl2gv9VHuQaKrzRZ9OxzDhtUGvY4p3jTuB4TJXKzJy6TyG3JZSu850IIFoSjsTF4EIaM8XOC4uR7Hfr/1O6VtuncRLjg7hqsHmq2316HcWHUpFe+dqDHtUqPIJDo+4sBpNYyUq7wb3qeUo9vkdDTs17nSu9jsRS+dkBVMLOOfFFj7lwkquXXwzhJPZpjch3FZj2907l6NpFDhwbMIj/btFom8pkkK+wDEfqp9btxURzK7m3JuYt1sMJ5HI5BBL51TfJDYb9Oh3mLAoq9LXffcq5Rj0Oox6rJgJVv5aU9k8zi6E5Zu4EF0Hib4eJJbOdnx7JwDs8tkw4DB35U3bSPFi5LEZ4WxihoTQhvJKnzBx0Vr0ee0mBONpzAQTSGULmlf6AODgsAv//OYbWjK/K3bwRUD75dU49g6q5xoqzFzkzvVdXIpqNqO5E9hX3Ch4SoGZSySVQ77AFRu5AJLo07LSl8rmkc4V4Gry2tcJM31inu/6oplGq0SfiC5Q6qILAGtFYaRqe2dxc3VhPbUR16BypQ+oH9vQK6IPkEz0qgW0n5kPI5vn3T/PR1SFRF8P0g3tnQDw/hfuw5+96ki7l9EQYgeSTFw6kyGXBYF4BulcXnMTF4HPYUYglsGFYotir82amQw6eGxGrMZSWE9kEIhnVK30bTh41hd9a7E01mIZ7O+x73ErEX8PTysQfaEmbn4nvDbMryeRV5jFKJdIShJq6sz0dYbou2bMDYOOtczBUxynmiioRTAmzE7Ube8EpO+HFhl9gmG3pWalLxDLwG7Sw2LsXHM8udSquItQdlFhJnoPEn09SKwL2jsB4OiYG3cd8rd7GQ0h2jtpnqgzGSrOaaxE0jizEMb+Ie1MXASivfPCUhQ6Blw92HuCpN9hxlo0g0ur0k2hGs6dApfFiHGvVdZc31NLklAh0dc4fUWjoYtLMdnvCRZn3ZTO9AGS6MvmuWbzaaIl09Wk6PPYJNFXL8tMS+aLom/UY8Wg09ySgPZIKlvK+J2uYfRRjUA8Ax0DPE1+/8vpsxlhNuiwGE6WDKS0MH4bdltqzvQF42l4u9y5UzDptSGUyJY2Sco5OR3C7n67qsKd6CxI9PUgsXTnu3d2O8Lxi5w7O5NSbEMkhTPzEU1NXAQ+hwmheAbnFyPY5bPDaur+XeGt9DtMWIulcXm16NypQkZfOYeH3bLaO0W+HIm+5tjvd+LplQYqfY20d/bVdw5sBlGdU6PSV+BArEZYt9YsrCfhsRlhNxswWNaqriXl1cRGZi/XYlJ4uZrjGowxjHqsm9s7taj0eayIpnOIVhBCgCRou925U1DNwZNzjlMzIRzr9nw+oiYk+nqQaCoHZxdU+rqZCZ8NVqMeh7rd1rhHGSq2356YCiGczGo+zwdIdt65AseJ6VBL5vnaQb/DjLVYGpdW4zDqmertzYdGXJgKxEsVh2pcXIqiz2bUZL5nJ3G134Gnl2Oyq1rNzDaJm02t5voixZiFZit94v3hRPtaPBfWU6WNxSGXpSXunWKmzWMzNiT6gvG0qs6dgmGPBQthqb1Tr2OazNWJcY1qbbTBeKbrnTsFwul56894JpjAWixD83w9Dom+HiOTKyCdK3RFe2c347Ya8dPffQFece1Iu5dCVGCoWOm7/7wUPt0K0SduCoLxjKah7O1kwGnGalSq9O3y2WHQq3sJOTTsAufAxaXa1b6Ly1HsH3KCse4zgeok9vmdSGbzmJPp1hhqor1zuGgXPxvq/Epf+ee1g4X1ZGmebcjdqkqf9Dtw8y4vZoIJxVEegWKlT21G3FYsrqewEk3BZzdBr4HxW2l2sIbo6wUTF6Cs0rdF9Il5PhJ9vQ2Jvh4jXtwhp/ZO7VG7lYVQD7dVmgU5NROCUc+wb0j7SANf2cxHr7Yd9jvMiGfyOLsQUXWeT3B4tL6ZS6HA8dRSFPvJubNphJmLXAfPYDwLk14HewOty0a9DsNui2axDWqJPk/HiD5p42rQZUY0lUNC43bTxXAKjAE37fIikcljNaZsjjAQz2w6B6rFsMeK5WgKi+GUZpm+YpNwcX375gfnXPraekT0OS1GeO2mbXObJ6dDcJoNuLoF8T9E+yDR12OItiiq9BE7GcYYhtwWcC4JsFZEGpTvBB/s1UpfsZ1yfj2JPSrP8wHSzVefzVhzrm9+PYl4Jl8KriYa52q/9DO8KFP0heIZeGzGhiusExpm9ZWMXJqM0BE5f+0SfdFUFpFUbqPS56rdeqgWS+EU+h3mUgyL0tnLQCyNfg3arUeK5/Ez82HN2rmH3BYwhoqxDfFMHplcoWcqfYD0d7i1zfrkdAjXTXhoI7vHIdHXY0RTkuhzUqWP2OEIM5cjI9q3dgIbOXY2k75nozxEQDugvokLIIn1wyPumpW+iyXnTtqRbhaXxYhht0V2bEMw0Vybm3SzqTz4Ww7hZBZWo75pl952t3cK4bFV9Gnt4LkQTmHYbcGEtyj6FIjzTK6ASCqnTXtn8fsQSmQ1ce4EpCr0gMNcMbYhGOudjD7BhNeG6eBGLEc0lcXF5Si1du4ASPT1GBuVPgoMJ3Y24mapFc6dwMZNwf4hZ8/ulg44Nm66tGjvBCQzl4vLUWTzhYrPi6oUBbOrwz6/E08ty4ttCMUzDQWzC8a9NqzF0pq0KoaT2aZbO4H2i76NuAbR3ilEn9aVviSGXBaMe61gTFlsgzD40aK9U7S5Ato4dwqkrL7t3+NAXOQP9o7om/TZsLCeKp1jH59dB+c0z7cTINHXY8TS0oWKZvqInY5w8GyFiQsghZcPOM0tO1472FTpUzGYvZzDIy5kcgVcWq0sRC4uRTHqscLZZBsfIbHP78AzqzFZoenNVvrGSw6e6lf71BJ9VqMeJr0O621y7xTB7OVGLgA0d/BcDKcw4rHCbNBj2KVs9rIkjLRw73RvdE1oNdMnjlNJ9G041vaOU/C414Z8gZd+105Oh8AYcN24p70LIzSHRF+PIdo7aaaP2OncONmHA0POlsYnfOGXbsVv3rW/ZcdrNeKmrt9hKs0+qY2IQak213dxKdqzRjntYJ/fiUyugOlAvO5rQ/EM+uyN/9yrOQeqQSSljuhjjMFlNbat0rewnoRex0qtjA6zAQ6zQdNKXyydQzSVKwnMCZ9N1u+DIBDTrtJnNxtKP1ctI1qGPRYsrie3uZYGRBWzh9o7J4t/h6Kae2pmHfv9TtpI2wGQ6OsxRHsnzfQRO527Dw/hu7/2vJaYuAiuGnRoJoY6AZNBB7fViD0aVfkAYM+AAxajruJcn6gAUmunemw4eNZu8cwXOMLJbEPB7AIts/rCyRxcVnWue26roWQM02oW1lMYclk2RRMMusyaij5hEiPy6ia99gYrfdoII7EuLSt9I24r4pk8IqnNrcfNZFN2KuVZfYUCx2PTIWrt3CGQ6OsxYlTpIwhCQ+486Mfdh/2afb5ex7B/yFWx0ndlLY5cgeMAVfpU46qiRXu92IZIMosCbyyjT9BnM8Ju0mtT6Utmmw5mF7jbWOmbX09i1LPZCGrIZdHUyEUYmIg56AmfDWuxTCkCqh4blT5tRJn4fpTPFKuNqHJuNXMJxjMwGXSwNRBT0qn4nRaYDDrMBBN4eiWGaDpHom+HQKKvx4ilc2AMPXWCIgiic/ibN1yLX3zuHk2PcXjEhXOLkW2tVmTioj52swHjXmtd0RdMNF/xYIxhvIJdvBqoNdMHAB6bCevJjCqfpZTyjD7BkMuiaWTDYqnSJ4krpW24gXgGRj2DS6MOo+Hi90NLIxfxPd861xeISRl9jcaUdCI6HcN4nxUzgQSFsu8wSPT1GNFUDg6zoadOUARB7CwODbsQTmZLToaCi0sR6HWslCVGqMO+QWdd0Rcqtrk1494JFGMbQuqKvly+gFg613RGn6Bdlb58gWOpaKhSzqDLgpVoCgUZZjuNIASl3y2Jqknf5pmvegRiaXg1FEYvv2YE73j2blg13MwWgndxfbPoC8bTPdXaKZj02TEdlERfv8NUEvpEb0Oir8eIpXNwUmsnQRBdzOGRymYuF5di2N1vb+mc5k5g35ATV9biVWMyAPVmm0RA+9YqbjMIAzO1Kn1uqxHhNrh3rkbTyBX4NtE35DIjm+cIJbSpPi6GU+h3mEp/V5OlrD55Zi7BeEZTd8tb9vjwRy8/pNnnA8Cg0wwdq9ze2YuiTwS0n5wO4thEHxUKdggk+nqMWCpHcQ0EQXQ1B4Zc0DFsM3O5uBwh504N2Od3IJvnmFqrfpMvBEczM32AZBefyhawGlNvRk1U5dQSfS6rEdF0TlaMhZpsZPRtEX0axzYshZOlYwCA22aE22qUXelbi2XQ3+U5dga9DoPO7Vl9gXimp5w7BRNeG2LpHKYCCWrt3EGQ6OsxYukcmbgQBNHVWE167O6349zihuiLpXOYDSZxgOb5VOfqQel7erFGi2cwLgmrZtw7AW0cPNUWfR6rEZwD0VRrq31bM/oEWge0L4ZTGHJtPuakz6Zgpi/dE8Jo2GOpUunrnYw+gWjhBYBjJPp2DCT6eoxoOgcHZa0QBNHlHB5xb2rvfFqYuFClT3WuGnRAx2rHNoQSGViMuqbnqrQIaI8UxZma7p0AWj7XJwRHJSMXAJo5eC6GU6VYBMG4V77oC8Z6QxiNuK2bZvpS2TwSmbwm+YPtRmy+GPUMR0fdbV4N0SpI9PUYsVSWZvoIguh6Do24ML+exHqxrfDikiT6KK5BfSxGPSZ99pKwrkQwnmm6ygcAY31SRUnN2Aa1K33tEn0L6yk4LYZtIdkDTjMYgyYOnolMDuFkdlN7JyAFeM+HksjVmPMEgGQmj3iPCKMht9TeKeZNAz2Y0ScQmy+HR9ywGGlGeqdAoq/HoPZOgiB6ga1mLheXo7Aa9RjvI5c5Lbh60FGzvTMUzzQ9zwdIAtPvMne26LO1R/TNrycx4rZue9yo18Fn1yagXQjJrdXFSZ8NuQLHwnrtY4pg9m6f6QOkEPhkNl/6uYd6WPRZjHrcONmHFx0eavdSiBZCoq/HICMXgiB6gUPDRdFXnOu7uBTFPr8DOh25zGnB/iEnpgMJpHP5is8HE+q5GE6onNWnxUwfAKy32MGzUkafYMitrejbOtM3UXTwnK7j4Lnh6toD7Z3FWUohdEWlrxfmFSvxn++5De+5fW+7l0G0kLqijzE2zhh7gDF2njF2ljH2/uLjf8YYe5Ix9jhj7F7G2Ij2yyVqkS9wxDN5qvQRBNH1+BxmDLksJQfPp5ajFMquIVf7ncgXOC6vVr7JD8UzTWf0CdQOaI8kczDqGSxGdfax29femdxm4iIYclmwpMFM30Yw+/ZKH1A/qy8QKwqjHqj0iRZXMVsZLFYxe7HSR+xM5JwhcwB+k3N+EMCtAN7LGDsE4K8459dwzq8D8E0Af6TdMgk5xDNSVpGTKn0EQfQAh0ZcOLcQwVosjbVYhuIaNGR/UVBXC2lXM69svM+GxUiqalVRKeFkFm6rUbWsMVcbRF8ik0Moka0q+gZdFm0qfcXP3DrT53dZYNLr6opzUQ3r74VKnwhoLwrhkqDtga+NIAAZoo9zvsg5P1X87yiA8wBGOeflAUp2AK0NtCG2ESsG1FKljyCIXuDwiAvPrMZwei4MACT6NGR3vx0GHaso+rL5AiKpnGqVvgmvDZyj7ryYXCLJrGrOnYA072Q26BBpoegT34utGX2CIZcFwXhGNaG8cdwk+mzGbWYeeh3DmNcqo9JXrIb1QKVvwGmGQcfKKn0ZGHQMLivdUxG9gaJeCMbYLgDXA3ik+O+/YIzNAngzqNLXdmLpouijSh9BED3AoWEX8gWObzyxAIBEn5aYDDrs6rfj4tL22AYx2+a1qyOsJoqtg2qZuURSWdXm+QQem7GlM33VMvoEIrZhReUWz6VwCkMVzGMAycFzWkalz2zQwd5klEcnoNcx+F2WUmxDsGhepFYFmSDajWzRxxhzAPgqgF8TVT7O+R9wzscB3APgfVXe9y7G2AnG2InV1VU11kxUIUqVPoIgeojDI1J+1HfOLKHPZsSAg9qstGS/34mnV7ZX+kLF2Aw13DsBlBxY1RJ94WQWLpXzad1WY0vbOzdEX2Ujl0GX9LuvdovnYjiFEXflY0767JgJxEsRBpUIxDLod5h7RhiJ2AZAErS9auJC7ExkiT7GmBGS4LuHc/61Ci/5PIDXVnov5/yTnPMbOec3DgwMNL5Soi6i0kczfQRB9AJjfVY4zQYks3nsH3L2zI1lp3K134GZYALJzOYWwpJDo0rtnYNOM0yG+vNichEzfWrSDtGnY9IsXSXEzJ3aAe1LkdS2eT7BhNeGeCZfmturRCCe7imjk2G3ZVN7Zy99bQQhx72TAfgUgPOc878te/zqspe9AsAF9ZdHKGFjpk/dix9BEEQ70OkYDhbz+vaTc6fm7PM7wTnwzMrmFk+RV6ZWpU+nYxjvs5LoK2N+PQW/ywKjvvJtmWjvXFKx0pfK5hGMZ7Y5dwrkOHgGYpmecO4UjHispYB2En1EryGn0vdsAG8B8IJiPMPjjLGXAPgQY+wMY+xJAHcDeL+WCyXqE0tLFyia6SMIolcQeX37h1xtXknvs6+Kg2cwoX5I9YTXpkp7J+e8aOSi7nXPbTW1vNJXbZ5PWo8RJoNO1fbO5ZJzZ+XjTngl0VdLnAfjmZ5ytxxyWZDOFRCMZxCIpam9k+gp6p4lOecPAqjUU/Nt9ZdDNAPN9BEE0WscGZXm+g4MU6VPa3b5bDDpdXhqy1yfqPR5bOpV08a9NpyYDjX9ObF0DgWuXjC7oOXtneEkrhnzVH2eMYYhlWMbhGNotUrfuLd2pY9zjrVYuscqfdL3YjaURCSV64nQeYIQkDroIUrunST6CILoEV5+7TAsRh2uH/e0eyk9j0Gvw54BO55a2lLpi2fhMBtgNqjn0DjhtSGayiGcyMLdhJgUwkwL0RdL55DLF2Co0nKpFoUCx+J6Ci8+Ull8CYZcFiyF1RN9SxFpdq2a6LMY9RhyWTAdjFd8Pp7JI50r9FQ1bLhY9Ty3IKWS9UIUBUEItD2TES0llsrBZtJDryOzA4IgegOzQY+XXTNCJi4tYp/fiaeWt8z0JTLoUymuQSCqSM22eGon+qTN00ixg0ZLAvEMMvlC1Yw+waDLrGqlT7hUVjNyAaR4jZkqlb6gCC/vIVfd4WKl78yClA3aS4KWIEj09RCxdI6qfARBEETD7PM7ML+eLHWOAEUXQ5WcOwVqxTZEktI61Y5s8BS/3vVEdedKtSjFNVSZrRNI7Z3pmhEKSlgKp+C2GmEzVb9vqJXVtxaXnER7SRj1280w6hnOzkuij4xciF6CRF8PEU3nyMSFIAiCaBhh5vJ0mZmLVOlTWfR5JYGjVqXPpUF7Z/nna0m9YHbBkNuCZDavWvVxMZyq2topmPTZsBpNb4vxACTnTgA9NdOnKwa0ny+2OPeSoCUIEn09RCyVg5MqfQRBEESDbIi+jRZPLSp9TosRXrsJs6FmK33atHe6Wij65usEswsGXSKrT50Wz8VwsmZrJ1C7DTcoKn091N4JSBXXTK4AgCp9RG9Boq+HiFGljyAIgmiCca8NZoMOF8srfXH1K33iWM1m9ZVm+lR0FgVaXelLwWbS1xWuQyqLviVZlT47AGA6sN3MZU1U+npMGIm5PsY22nwJohcg0ddDxFI000cQBEE0jl7HcLXfUcrqS2XziGfy6FNZVAHAeJ+1+Zm+VBaMAY4ac2mNIOIpWtXeOeKx1jUrKgW0q+Dgmc7lsRbLlNwqqzFZo9IXiGVgN+lhMarn6toJiOpnn81ExnhET0Gir4eQjFzUvzATBEEQO4d9g85Se+d6QhI9WlT6Jrw2zIeSyBcaNyYJJ7NwWYzQqXxzXqr0JVog+sK1g9kFgy6pjVKNSt9KRGrNrNfe6bEZ4bQYKmb1BePpnmvtBDYMdai1k+g1SPT1ENFUFk5q7yQIgiCaYN+QE0uRFMLJLILFYHa1Z/oASfTlChyL4WTDnxFOZlWf5wMAo14Hm0nfskrfaJ15PkDKzfPYjFguCrZmEHEN9do7GWOY9NkqV/rimZ4URuJ70otfG7GzIdHXI3DOKbKBIAiCaJp9fgcAycEzVIws0GqmD2jOwVMr0QdI1b51jUVfKiu1WdaLaxAMuSxYUqHSJ4R2PdEHSOK80s9oLZZBfw85dwpEy2uvzSoSBIm+HiGZzaPAQUYuBEEQRFNcPSg5eF5cjm5U+jRq7wSAuWDjlb5IMguXVZvrnttq1LzSJypucto7AcDvsqjS3rkRzF7/uBNeO+ZCiW1tuMF4Gj5777V3CiMXqvQRvQaJvh4hVsztoUofQRAE0QyjHivsJj2eXo5tVPo0aO8cdlug17GOrvRpLfrkZvQJ/C6zKqJvKZyC02KQdc8w6bMhm+eltQJSd1EgloG3Byt9PrsJox4rDgw5270UglAVUgg9QjQtiT6a6SMIgiCaQadjuMrvxFPL0ZKLpUcD906DXodRT3MOnuFkTlPR16y7aD1ERt+oTNE35LJgNZpGLl+AQd/4vv1iOCmrtRPY7OApWnIjyRxyBd6TLZCMMfzot28n506i56BKX49AlT6CIAhCLfYNSrENoXgGLosBxiYERi3GvY2LPs651N5p0XCmT2P3zoX1JBgD/G55bZJ+twUFvpGR1yhL4ZSs1k4AmPBJQq/cwTNQDGbv70H3TkDakKgXoUEQ3QaJvh4hlibRRxAEQajD/iEn1mIZXFqNazrbNOG1YS7UmOhL5wrI5AtwaVTp89ha09454DDDbJCXded3qhPQvhhOYdglr9I37LbCqN/chhvQcNaTIAhtINHXI0RFpY/aOwmCIIgmudovzTOdnA5p4twpGPfasBbLIF7cuFSCEGRatncms3lkcgXZ70lklH0di+GU7Hk+YCNXrxkHz2y+gNVYum5Gn0CvYxjrs2EmGC89FohJlT5fD870EUSvQqKvRxCVPieFsxMEQRBNsr8o+pLZvCYZfYLxPql1cLaBal8rRF/5ceqxEknh2J/dh68/Ni/7GPPrSdnzfIDk3gk0V+lbjqTAuby4BsGE17alvVOq9PWieydB9Cok+nqEWEq6KFGljyAIgmgWv8tcMgbTstInYhtmG4htiBTFmFbtna6S6JM3P/fwlSBS2QI+/dMrsl7PueSIOSIjmF3gs5tg0LGmRN+SCGZXIDYnfTbMBBLgXIptCMSovZMgug0SfR3KwnoS04F4/RcWEZU+u1neXABBEARBVIMxhn3Fap/WM31AYwHtWlf6PMUKp9xK38mpIADgybkwTs+F674+lMgilS0oau/U6RgGnWYshdOy37MVkdGntNIXTecQKhrbBGJpuCwGmAx0G0kQ3QL9tXYgnHP84udO4D3/cUr2e6LpHEwGnexhcIIgCIKohRB9WmT0CTw2I5xmA2Y7UPQpbe88MR3CNWNuWI16fP7R6bqvV5rRJ/C7mwtoXyoFs8sXfZM+O4ANcR6IZ+DrUedOguhVSPR1II/PruPcYgQXl6NIZfOy3hNL5eAk506CIAhCJfb5HQAAr127WXHGGMa8to6s9CkRfbF0DucXI7h9/yBefu0w/vvxBURTtd8nMvpGZEYnCPzO5kTfYjgFu0mv6J5hshTbIHUgBWKZnszoI4hehkRfB/L5R2YAAPkCx4WlqKz3xNI5mucjCIIgVGP/kFTp0zqLbcJrbajSF0kWDcw0uvYJ0Scnq++xmRAKHLhxsg9vumUSiUwe//34Qs33bFT65FfcAKlC14x751IkiSG3RVEOnTDcmQmISl+anDsJossg0ddhhJNZfOPJBTz36n4AwJn5+nMBgFTpo4w+giAIQi1u3e3DR37+ejxv34Cmx5koVvqESYhcwsks7Ca9ZsHxrqKYlFPpOzEVgo4B1094cO2YG4eGXbjnkZmaX9PCehJmg07xzKTfZUE0lVMcD7FxXGUxEQBgNekx6DRjuijOg/EMvOTcSRBdBYm+DuPrj80jlS3gd150AG6rEWcX5Im+aJpEH0EQBKEeOh3DK64d0UxUCca9NqRzBaxGlZmThJNZzVo7AcCg18FpNsgSfSenQ9g/5ILTYgRjDG++dQLnFyN4fHa96nsW1lMY9VgVVdwAyVkVAJYjjZm5LIVTGJIZzF6OcPDMFziC8Qz6qdJHEF0Fib4OgnOOzz8yg6Ojbhwdc+PIqAtn5iOy3htL5TRrcSEIgiAIrRj3NpbVF05mNYtrELisxrqiL5cv4NRMCDdO9pUee+V1o7Cb9KVxjUrMrycVV9wAlASbMGRRQi5fwEo0pci5UzDhtWM6GMd6IoMCB830EUSXQaKvgzg1E8LF5SjedMsEAODIiBsXl6LI5gt13xvPUKWPIAiC6D4ajW2IpLQXfW6rEeE6M30XlqJIZPK4cdeG6HOYDXjFdaP4xpMLVUWj0ow+gd/deED7aiyNAgeGFJrHAFKlbzmSxsK6dFwvuXcSRFdBoq+DuOeRGelCce0IAODwqBuZfAFPL8fqvjeWIiMXgiAIovuQWhyBmYCygPaIxu2dgBQpUa/Sd6KYz3fjLu+mx998ywRS2QL+69Tctvekc3msRNMNVfr8rsZFXyMZfQIhzh+fDQEA+qnSRxBdBYm+DiGcyOJbTy7ildeNwF6s2B0ecQEAzsiY65Nm+rS9+BEEQRCE2liMevidFsWVPq1n+oBipa+e6JsOYdhtwegWAXdk1I1rx9z4/KPbDV2Wi+HqjYg+h9kAh9nQkIPnYrFKN9xAhXGiGNvw2Mw6AFBOH0F0GST6OoSvnppDOlcotXYCwG6fHXaTHmfrOHimc3lkcgWa6SMIgiC6kgmvraGZvnaLPs45TkyFcEPZPF85b7plAk8tx3BiOrTpcZHRt1UoysXvMjdY6ZOOO+xqoL2zWOk7NSN9LUpdRwmCaC8k+joAzjk+/+gMrh334PCIu/S4TsdwaMSFswu1zVziaSnAnWb6CIIgiG5k3GtTlNWXzReQyOThsmgv+tZriL759SSWIinctKW1U/Dya0fgNBu2GboI8dVIpQ+QWjwbce9cCqdgNerhsiq/X/DaTXCYDZgKJMAY0Gej7iKC6CZI9HUAx6dCeGYlhjffPLHtucMjbpxbjCBfqJ71E0tJWT0k+giCIIhuZNxrxVIkhXQuL+v1kaIQczcgXpTgthmRyRWQylZe18liBa9apc9mMuDVx0bxrdOLCMUzpcdFMHsjs3WA5ODZiHvnYkRy7lQaEwEAjLHSXF+fzQSDxlEeBEGoC/3FdgCff2QaTrMBL7t2eNtzR0bdSGTyuLIWr/r+aFq6+JGRC0EQBNGNTHht4ByYD8kzcxEtl26Nq02ifbRai+eJqRDsJj0ODDmrfsabbplAJlfAV8sMXebXU+h3mGAx6htal99twUo0hUKNDeFKLIVTGGpQaAKSgydArZ0E0Y3seNH3s0treODCStuOH4pn8O0zS3j1sVHYTNtFmzBzqRXSLip9Tqr0EQRBEF2I0tgGIcJa0d5ZfrytHJ8K4vqJvppVrwNDLtww2bfJ0GWhwYw+gd9pRjbPEUpk6r+4jGZFn/g5UUYfQXQfO170/cP9T+Nv73uqbcf/6qk5ZLYYuJRz1aADJoMOZ2qYucTSxfZOqvQRBEEQXYgQE3Ln+iLFzc5WGLkAwHqFrL5IKouLy9FN+XzVeNPNE7i8GsfDl6V4h4X1JEYayMoTCOGmxMEzX+BYiqSaOq5w8Own506C6Dp2vOi7ZY8PZxfCiKRqWzJrgTBwOTbhwYEhV8XXGPU6HBxy1jRzKYk+qvQRBEEQXciA0wyzQYdZpe2dWuf0WU2bjlfOYzPr4By4cbKyiUs5L71mGG6rsVTta7rS10BW31osjXyBN9fe6bUDoPZOguhGdrzou3W3FwUOnJwK1X+xyjxyJYjLq3G86ZbJmq87POrGmfnwtpwfQTRFlT6CIAiie2GMYdxrw0xAWXtnqyp9lUTfyakgdAy4bsJT93MsRj1ec2wU3z2ziMtrccQzeYw0kJUn2BB98h08mwlmF4iZPp+DRB9BdBs7XvRdP9EHo57h4SuBlh/784/MwGUx4GXXbDdwKefwiAuRVA5zVXZARaXPSeHsBEEQRJcy4bXJnukT7p2uNoq+41MhHBx2ye6yefMtE8jmOT7y/acBNB7XAEiVUcagyMFzqRgT0Uylb9RjxVtuncRdh/wNfwZBEO1hx4s+q0mPa8Y8eKTYZ98qgvEMvntmCa85NlbXvetIMbuv2lxfLJWDXsdgMe74HydBEATRpYz3WTEbTFTtaiknkszCZNA17H4pF6fFAMaA8BbDlGy+gMdn16vm81XiqkEnbt7txf88sQCgOdFn1OvQ71AW0L5R6Wv8uDodw5+96simTGGCILoDUgkAbtntxen5MOLFilkr+M+Ts8jkqxu4lLN/yAm9jlWd64ulc3CYDQ3l7hAEQRBEJzDutSGazlV1yiwnnMxq3toJSCLHZTFuW9P5xQiS2XzVfL5qvPmWCQhN20x7JwD4XcpE31I4BbNBR6HqBLFDIdEHycwlX+ClkFWt4ZzjC4/O4sbJPuzzV8/2EViMelw96MCZKrEN0VSOTFwIgiCIrkZJbEOrRB8gtXhuFX0nij4Acpw7y3nxkSF47SaY9Dr025tzwBxyWbCkYKZvIdx4MDtBEN0PiT4AN0z2Qa9jePRKa1o8H7oUwJW1uKwqn+BIDTOXWDoLJ5m4EARBEF2MiAOQI/oiqSxcLbruVRR900GMeqyKWyXNBj1+5fa9uOuQHzpdc+LL77IorPQlm5rnIwiiuyHRBynq4MioG4+0yMzlnkdn4LYa8ZKjtQ1cyjk84sJaLIOV6PZdPdHeSRAEQRDdynifyOqrH9vQ6krfepno45zjxFRIcZVP8IvP3YN/evOxptfld1kQjGeQzuVlvX4xnGpqno8giO6GRF+RW3d78cRsGKmsvJNno6zF0rj37BJeK8PApZwjo9XNXGKpHMU1EARBEF2N3WyAz27qvPZO2+ZK31woiZVoGjcqnOdTm6FibMOKjBbPQoFjOZKiSh9B7GDqij7G2Dhj7AHG2HnG2FnG2PuLj/8VY+wCY+xJxth/McY8mq9WQ27Z40UmX8CpGW3n+u49u4xsnuP1N44pet/BYRcYQ0UzlyhV+giCIIgeYNxrw5n5MBbDtat94URrK32RMtF3YloaBblBRii7lvjd8gPaA/EMsnneVEYfQRDdjZxKXw7Ab3LODwK4FcB7GWOHANwH4Ajn/BoATwH4Pe2WqT03THrBGDSPbvje2SVM+mw4MFTfwKUch9mA3f32qpU+mukjCIIgup2bi27az/rgD/Cyf/wJ/v7+p7bNsxcKHNF0TvOMPoGY6RNrOD4VgtNswH6F13G18bskIxg5Ae1LKsQ1EATR3dRVCpzzRQCLxf+OMsbOAxjlnN9b9rKHAbxOmyW2BrfViEPDLk3n+qKpLH52aQ1vu21XQ+5ZR0bcFR1GaaaPIAiC6AV+738dwBtuHMP951dw/7ll/MP3n8bf3/80ht0WvODAIO485MeRETc4R0srfdk8RyKTh91swMmpEK4vGsC1E9HeuSSj0rdQrJxSpY8gdi6KlAJjbBeA6wE8suWpdwD4kkprahu37Pbhnkemkc7lYTaoH/j6w4uryOY57j481ND7D4+48D9PLCAUz6DPbgIA5AvShchhptwdgiAIorthjOGqQSeuGnTi3c/fi0AsjQcuruL+c8v4r8fmcc8jMzAZpCalVlX6PMXjhJNZ5PIcT61E8dJr5BuxaYXbaoTZoJPV3ikqfTTTRxA7F9mijzHmAPBVAL/GOY+UPf4HkFpA76nyvncBeBcATEzIjyhoB7fs8eLTP72CJ+fCuGmX+r36955bhs9uwrGJxoa/hZnL2YUInnN1PwCpygeAjFwIgiCInsPnMON1N4zhdTeMIZXN4+HLAXz//Aoen13HsQlPS9bgLhN9F5ei4BxtN3EBJIEsN7ZhMZyCSa+D12ZqwcoIguhEZCkFxpgRkuC7h3P+tbLH3wrgZQBeyCsFyAHgnH8SwCcB4MYbb6z4mk7h5qLQe+RyQHXRl87l8cCFFbzsmuGGW0IOj7gAAGcWwttEn5PaOwmCIIgexmLU4/b9g7h9/2BLj1su+k5MB6HXMVzXIsFZjyGXpVTFq8VSOAm/29x0NmAvks1mMTc3h1RKfuYhQcjFYrFgbGwMRmP7O/LqKgUmDZ99CsB5zvnflj3+YgD/B8DzOef1/ZW7gD67CQeGnHjkShDvU/mzH74cRCydw92H/Q1/hsdmwlifdZOZSyxFlT6CIAiC0ArRRrqeyOLEVAiHR1ywmTrjmut3W/DQpTV868lF3LLHi36HueLrKKOvOnNzc3A6ndi1qzG/BYKoBuccgUAAc3Nz2L17d7uXI6vS92wAbwFwmjH2ePGx3wfwEQBmAPcV/0ge5py/W4tFtpKbd3vxnyfnkM0XYNSrF2N479kl2Ex63La3v6nPOTzi2hTbEEtLNtJk5EIQBEEQ6uOxSaIvEE/jibl1/PzNnTOqcsf+AXz//DLe+/lTAICrBh24ZbcXt+zx4dbdXgwWzV4Wwylc3yHVyU4jlUqR4CM0gTEGn8+H1dXVdi8FgDz3zgcBVPpL+Lb6y2k/t+z24d/+//buPTqq6u7/+HvnQiAJBBKCJSKQICi5EQIJIGISokCLoFgRlQqotCLLsp7V0kJ9qoCPpVD9tRRqpciC0kp/Xlgt8uuDNqAJdwjQRoQECJdwkRAgCBKuuZzfHzMZAkzCDGSSyfB5rTUrM2fO2Wef+SZrzzf7cjYd4quvz97y3LvrVVVZrMovIf2+SLduyO5MfFQY/9pVwrlL5bRsHsg59fSJiIh4TPXwzo37SrlUXkXvRr4/X01PJHdgWI8odn59li0HT7PlQCmf5B1j6ZbDAMS0DaFPTDjHz+rG7HVRwiee4k2/W/XXleUjUqOr5/XV3/36vjx6hhPnLjMo9tZW7aypejGXguJzgOb0iYiIeFJoUAD+foa1e23/re/dufEXcakp0N+Pnh3bMCGtC4ufTyXv9UdY8Up//vt73YluG8I/dxRzpbKKLpGhjV1VqcWvfvUr4uLiSExMJCkpiS1bbIvkjx8/nvz8/Ho5R+fOnTl16lSd+8ycOdPtcv/85z/zyivXTopavHgxSUlJJCUl0axZMxISEkhKSmLq1Klul98Q5syZw4ULPjFTrU7KFK4T2TKILpEh5B4s5eX0LvVS5r92lRDgZ8ioh8nncXfbF3P5+iyp0eGa0yciIuJBxhhaNQ/gmwvl3BPegrtaeXePWYC/H4kdWpPYoTU/fCiGyiqLI6cvcE94cGNXTZzYtGkT//znP/n3v/9NUFAQp06d4sqVKwAsXLiwQesyc+ZMXn311dsu5/nnn+f5558HbMlmdnY2bdve3vSm22FZFpZl4efnvK9rzpw5/OAHPyA42PW/kYqKCgICmtZ3b/X0OdEnJoJtRd9QWVU/i41m5R+nb0wEYcG3v3JPu5bNadcyiJ3HbIu5OG7ZoJ4+ERERj2htv9WBNw3tdJW/n6Fz25BGv5m8OFdcXEzbtm0JCrItwtO2bVuioqIASE9PZ9u2bQCEhoYyZcoUevXqxcMPP0xubi7p6enExMSwYsUK4MZet0cffZScnJwbzvn444/Tq1cv4uLiWLBgAQBTp07l4sWLJCUlMXr0aADef/99UlNTSUpK4qWXXqKyshKw9eR169aNtLQ0NmzY4PK1vvXWW6SkpJCYmMi0adMAKCoq4v7772f8+PHEx8czevRoVq9eTf/+/enatSu5ubkATJ8+neeee46BAwfStWtX3nvvvZuW2717dyZOnEhycjJHjhzh5Zdfpnfv3sTFxTn2mzt3LseOHSMjI4OMjAzHZ11t2bJljBs3DoBx48bxk5/8hIyMDKZMmcL+/fsZMmQIvXr1YsCAAezevdvlz6IxKFNwok90OH/bcpj8Y9+S0CHstsrad6KMAyfPM+6BzvVTOeyLuXxtW8ylek5fiJesJCYiIuJrqlfw7OUF9+cTz5nx/3aRX2OxvPoQG9WKacPian1/0KBBvPHGG3Tr1o2HH36YUaNGkZaWdsN+58+fJz09ndmzZzNixAh++ctfsmrVKvLz8xk7dizDhw93uU6LFi0iPDycixcvkpKSwve//31mzZrFH/7wB/Ly8gAoKCjgww8/ZMOGDQQGBjJx4kSWLl3KI488wrRp09i+fTthYWFkZGTQs2fPm54zKyuLwsJCcnNzsSyL4cOHs3btWjp27Mi+ffv4+OOPWbBgASkpKfztb39j/fr1rFixgpkzZ7J8+XIAduzYwebNmzl//jw9e/Zk6NCh7Ny5s9Zy9+zZw+LFi/njH/8I2IbRhoeHU1lZSWZmJjt27GDSpEn89re/dbk3cu/evaxevRp/f38yMzOZP38+Xbt2ZcuWLUycOJEvvvjC5Tg0NGUKTvSJjgBgy8HS2076svKPA/Bw91u/VcP14u8OY23hKS6VV1J2uYLQoADde0dERMRDqhdz8bb5fNL0hYaGsn37dtatW0d2djajRo1i1qxZjt6las2aNWPIkCEAJCQkEBQURGBgIAkJCRQVFbl1zrlz5/KPf/wDgCNHjlBYWEhERMQ1+3z++eds376dlJQUAC5evEi7du3YsmUL6enpREZGAjBq1Cj27t1703NmZWWRlZXlSBDLysooLCykY8eOREdHk5CQAEBcXByZmZkYY264tscee4wWLVrQokULMjIyyM3NZf369bWW26lTJ/r27es4/qOPPmLBggVUVFRQXFxMfn4+iYmJbn12I0eOxN/fn7KyMjZu3MjIkSMd712+fNmtshqakj4nvhPWnE4RwWw+cJrxA2Juq6ysXSUkdggjqnX93R8nLiqMyiqL3cfPUXapQkM7RUREPCgipBmtmgfQrV3Lxq6KeFBdPXKe5O/vT3p6Ounp6SQkJLBkyZIbkr7AwEDHSpB+fn6O4aB+fn5UVNhGfQUEBFBVVeU4xtkN53Nycli9ejWbNm0iODiY9PR0p/tZlsXYsWP59a9/fc325cuX39KKlJZl8Ytf/IKXXnrpmu1FRUWOa6nr2uDGlTCNMXWWGxIS4nh98OBB3n77bbZu3UqbNm0YN26c0+u+/jzX71NdZlVVFa1bt3b0jDYFmtNXiz7R4WwtOk3VbczrK/n2EnlHzjA47vZX7awpvsZiLmWXK7SIi4iIiAf9eOC9vDemt0bVSL3bs2cPhYWFjtd5eXl06tTplsrq3LkzeXl5VFVVceTIEcd8uJrOnj1LmzZtCA4OZvfu3WzevNnxXmBgIOXltvs/Z2ZmsmzZMk6cOAHA6dOnOXToEH369CEnJ4fS0lLKy8v5+OOPXarb4MGDWbRoEWVlZQB8/fXXjrJd9cknn3Dp0iVKS0vJyckhJSXF5XK//fZbQkJCCAsLo6SkhE8//dTxXsuWLTl37pzj9V133UVBQQFVVVWOHtHrtWrViujoaMf1W5bFl19+6db1NDRlC7XoEx3BR9uOsqfkHN3bt7qlMlbllwAwKLb+hnYC3N26BWEtAtl17CznLqunT0RExJNiIkOJ0S0PxAPKysr48Y9/zJkzZwgICODee+91LK7irv79+zuGSsbHx5OcnHzDPkOGDGH+/PkkJiZy3333XTP88Uc/+hGJiYkkJyezdOlS3nzzTQYNGkRVVRWBgYG888479O3bl+nTp9OvXz/at29PcnKyY4GXugwaNIiCggL69esH2Ia1vv/++/j7u37/6tTUVIYOHcrhw4d57bXXiIqKIioqyqVye/ToQc+ePYmLiyMmJob+/ftfc93f/e53ad++PdnZ2cyaNYtHH32Ue+65h/j4eEdCeb2lS5fy8ssv8+abb1JeXs7TTz9Njx49XL6ehmYsq35WqHRF7969repViLzd0W8u8ODsbKYPi2Vc/+hbKmPMolyOnL7AFz9Nq/ebM45euJlzlyoI8DOEBAXw1xf71Gv5IiIiIr6uoKCA7t27N3Y15CamT59OaGgokydPbuyquM3Z75gxZrtlWb0bsh4a3lmLDm2Cubt1C7YcvLWbtH97qZxN+08xKPauek/4AOKjwthdfI4zF8rV0yciIiIiIrVStlCHPjHhrNlzEsuy3E7ccvacpLzSYlBc/Q7trBZ3dxhXKqs4cOq8lpAWEREREZ81ffr0xq5Ck6eevjr0iQ6n9PwV9p1wPpa3Lv/adZy2oUEk3eOZhCw+6uo8Qy3kIiIiIiIitVHSV4fq+/VtdnOI5+WKSnJ2n+CR2Hb4e2ilr84RIYQ0s01SbanhnSIiIiIiUgslfXXoFBHMXa2C2HKg1K3jNu4v5fyVSgbF1u+tGmry8zPE2nv71NMnIiIiIiK1UdJXB2MMfaIjyD14GndWOc3aVUJIM3/6dYnwYO1sN2kHCA0K9Oh5RERERESk6VLSdxN9YsI5ce4yRaUXXNq/qspiVX4J6fe1o3mg6/ceuRXxd9uTPvX0iYiIiDRJ/v7+JCUlER8fz8iRI7lwwbXvnM6MGzeOZcuWATB+/Hjy8/Nr3TcnJ4eNGzc6Xs+fP5+//OUvt3zuakVFRcTHx1+zbfr06bz99ttulVNf9REbJX03UT2vz9Uhnv85coZTZZc9tmpnTX2iw2kZFECXyBCPn0tERETkjvab30B29rXbsrNt229DixYtyMvLY+fOnTRr1oz58+df874rNz93ZuHChcTGxtb6/vVJ34QJExgzZswtnau+VVRUeFV9fIGSvpvoEhlC29BmLt+vLyv/OIH+hoz723m4ZnBPeDBfzRjsGOYpIiIiIh6SkgJPPXU18cvOtr1OSam3UwwYMIB9+/aRk5NDRkYGzz77LAkJCVRWVvKzn/2MlJQUEhMT+dOf/gSAZVm88sorxMbGMnToUE6cOOEoKz09nW3btgHw2WefkZycTI8ePcjMzKSoqIj58+fzu9/9jqSkJNatW3dNb1xeXh59+/YlMTGRESNG8M033zjKnDJlCqmpqXTr1o1169a5fY11lf3qq6+SlpbG73//e0d9jh07RlJSkuPh7+/PoUOHOHToEJmZmSQmJpKZmcnhw4cBW2/npEmTeOCBB4iJiXH0fN7pNC7wJowxpEaHs+VA6U3v12dZFlm7SugbE0Gr5ppnJyIiItJk/Nd/QV5e3ftERcHgwdC+PRQXQ/fuMGOG7eFMUhLMmePS6SsqKvj0008ZMmQIALm5uezcuZPo6GgWLFhAWFgYW7du5fLly/Tv359Bgwbxn//8hz179vDVV19RUlJCbGwsL7zwwjXlnjx5kh/+8IesXbuW6OhoTp8+TXh4OBMmTCA0NJTJkycD8PnnnzuOGTNmDPPmzSMtLY3XX3+dGTNmMMd+HRUVFeTm5rJy5UpmzJjB6tWrb7iW/fv3k5SU5Hh9/Phxx3nqKvvMmTOsWbMGuHpvvqioKPLscXnnnXdYs2YNnTp1YtiwYYwZM4axY8eyaNEiJk2axPLlywEoLi5m/fr17N69m+HDh/Pkk0+6FANfpqTPBX2iI1j51XFmf7aHru1C6dw2mE4RIUSENLsmCdx/soyDp87zwoPRjVhbEREREfGINm1sCd/hw9Cxo+31bbp48aIjQRowYAAvvvgiGzduJDU1leho23fKrKwsduzY4ei1Onv2LIWFhaxdu5ZnnnkGf39/oqKiGDhw4A3lb968mYceeshRVnh4eJ31OXv2LGfOnCEtLQ2AsWPHMnLkSMf7TzzxBAC9evWiqKjIaRldunRxJGpwNYG7WdmjRo2qtV4bNmxg4cKFjt7FTZs28fe//x2A5557jp///OeOfR9//HH8/PyIjY2lpKSkzuu9Uyjpc0Fm93Ys2VjEgrX7qaqxiGdoUAAdw4MdSeDh07aJt4909/x8PhERERGpR670yFUP6XztNXj3XZg2DTIybuu01XP6rhcScnXNBsuymDdvHoMHD75mn5UrV9Y5Cq362Jvt446goCDAtgBNRUVFvZUL115zTcXFxbz44ousWLGC0NBQp/vUvMbqOgJurcDvyzSnzwUd2gTzxeR0Cv5nCJ//NI3F41KYNiyWJ3t1oF2rIHYXn+O9tQf43x3FpHRuw3fCmjd2lUVERESkPlUnfB99BG+8YftZc46fBw0ePJh3332X8vJyAPbu3cv58+d56KGH+OCDD6isrKS4uJhsJ3Xp168fa9as4eDBgwCcPm1bp6Jly5acO3fuhv3DwsJo06aNo0ftr3/9q6Nn7nbdStnl5eU89dRTzJ49m27dujm2P/DAA3zwwQcALF26lAcffLBe6uir1NPnhqAAf7pEhtIl8sb/MFRUVlF89hKtgzWXT0RERMTnbN1qS/Sqe/YyMmyvt2697d6+mxk/fjxFRUUkJydjWRaRkZEsX76cESNG8MUXX5CQkEC3bt2cJlCRkZEsWLCAJ554gqqqKtq1a8eqVasYNmwYTz75JJ988gnz5s275pglS5YwYcIELly4QExMDIsXL663a3G37I0bN7J161amTZvGtGnTAFsP59y5c3nhhRd46623iIyMrNc6+iLTkF2evXv3tqpXERIRERERaUwFBQV07969sashPszZ75gxZrtlWb0bsh4a3ikiIiIiIuLDlPSJiIiIiIj4MCV9IiIiIiIiPkxJn4iIiIjcsbSkv3iKN/1uKekTERERkTtS8+bNKS0t9aov5+IbLMuitLSU5s2941ZuumWDiIiIiNyROnTowNGjRzl58mRjV0V8UPPmzenQoUNjVwNQ0iciIiIid6jAwECio6MbuxoiHqfhnSIiIiIiIj5MSZ+IiIiIiIgPU9InIiIiIiLiw0xDrlZkjDkJHGqwE7quLXCqsSsht01x9A2Ko29QHH2HYukbFEffoDj6hvssy2rZkCds0IVcLMuKbMjzucoYs82yrN6NXQ+5PYqjb1AcfYPi6DsUS9+gOPoGxdE3GGO2NfQ5NbxTRERERETEhynpExERERER8WFK+mwWNHYFpF4ojr5BcfQNiqPvUCx9g+LoGxRH39DgcWzQhVxERERERESkYamnT0RERERExIc1qaTPGDPEGLPHGLPPGDO1xvYPjTF59keRMSavluPDjTGrjDGF9p9t7NtH1zg+zxhTZYxJcnL8Uvv5dxpjFhljAu3bjTFmrr1eO4wxyZ75BHyHF8fyfmPMJmPMZWPMZM9cve/w4jiOtv8t7jDGbDTG9PDMJ+AbvDiOj9ljmGeM2WaMedAzn4Bv8GAcA40xS4wxXxljCowxv6jl+GhjzBb78R8aY5rZt6uNdIMXx1Htoxu8OI5qH93gxXF0v320LKtJPAB/YD8QAzQDvgRinez3f4DXaynjN8BU+/OpwGwn+yQAB2o5/nuAsT/+L/Byje2f2rf3BbY09uflzQ8vj2U7IAX4FTC5sT8rb354eRwfANrYn39Xf5NNNo6hXJ2GkAjsbuzPy1sfnowj8Czwgf15MFAEdHZy/EfA0/bn89VG+lwc1T76RhzVPvpGHN1uH5tST18qsM+yrAOWZV0BPgAeq7mDMcYAT2H70uDMY8AS+/MlwONO9nmmtuMty1pp2QG5QIca5f7F/tZmoLUxpr3LV3bn8dpYWpZ1wrKsrUC5W1d0Z/LmOG60LOsb+26bufq3Kjfy5jiW2bcBhACahF47T8bRAkKMMQFAC+AK8K2TsgcCy5wcrzbSdV4bR7WPbvHmOKp9dJ03x9Ht9rEpJX13A0dqvD5q31bTAKDEsqzCWsq4y7KsYgD7z3ZO9hlF7YEDbF2ywHPAZ27UTa7y5liK65pKHF/E1ssgznl1HI0xI4wxu4H/BV6o6/g7nCfjuAw4DxQDh4G3Lcs6fd2xEcAZy7IqnJxfbaTrvDmO4rqmEke1j3Xz6ji62z42paTPONl2fVZb63+SXTqBMX2AC5Zl7bzJrn8E1lqWtc6NuslV3hxLcZ3Xx9EYk4GtUZtyq3W4A3h1HC3L+odlWfdj++/m/9xqHe4AnoxjKlAJRAHRwE+NMTFunF9tpOu8OY7iOq+Po9pHl3h1HN1tH5tS0ncUuKfG6w7AseoX9u7RJ4APa2xbbJ/guNK+qaR6SIn954nrzvE0N/9P9DQgEviJq3WTG3hzLMV1Xh1HY0wisBB4zLKsUjeu607j1XGsZlnWWqCLMaatKxd1B/JkHJ8FPrMsq9yyrBPABqD3dec/hW3YZoCT86uNdJ03x1Fc59VxVPvoMq+OYzVX28emlPRtBbraV7Fphu1LxIoa7z+MbRLj0eoNlmU9b1lWkmVZ37NvWgGMtT8fC3xSva8xxg8YiW28rlPGmPHAYOAZy7Kqary1AhhjbPoCZ6u7csUpb46luM5r42iM6Qj8HXjOsqy9t3GNdwJvjuO99jkNGNuKj80AfUFxzpNxPAwMtLdxIdgWY9ld8+T2uSXZwJNOjlcb6TpvjqO4zmvjqPbRLd4cR/fbR8sLVsdx9YFtBbC92FbS+e/r3vszMOEmx0cAnwOF9p/hNd5LBzbf5PgK+7nz7I/X7dsN8I79va+A3o39WXn7w4tj+R1s/9n5Fjhjf96qsT8vb314cRwXAt/U2L6tsT8rb354cRynALvs2zYBDzb2Z+XND0/FEdsqcR/bY5EP/KyW42OwLcSzz75/kH272kjfiKPaR9+Io9pH34ij2+1j9VKfIiIiIiIi4oOa0vBOERERERERcZOSPhERERERER+mpE9ERERERMSHKekTERERERHxYUr6REREREREfJiSPhERERERER+mpE9ERERERMSHKekTERERERHxYf8fTMHBkg0EXZAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3MAAAE/CAYAAADsTJpEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClUUlEQVR4nOzdd3xb9bk/8M9X21q2JXnH207iLAJkQRgJqxToZrQ/2kJbSi90L7pve3tvdy+3t4NSegtt721poYWWTggQdhaBbDtxhrctTy1rS9/fH0dHkR1ZPpKOLFl+3q9XXgRblr5OHPs851mMcw5CCCGEEEIIIYuLIt8HIIQQQgghhBCSPgrmCCGEEEIIIWQRomCOEEIIIYQQQhYhCuYIIYQQQgghZBGiYI4QQgghhBBCFiEK5gghhBBCCCFkEaJgjhBCCCGEEEIWIQrmCCFkkWKMeRJ+RRljvoT/vzXf58sEY6yHMXZVvs+RCmPsOcbYHTl67uWMsT8zxsYYY5OMsScZYysS3v9OxthxxpiTMTbKGPsVY8yc8P6PMMZeZYwFGGO/TPL8VzLGuhhjXsbYTsZYY8L7GGPsO4yxidiv7zLGWC4+T0IIIfKgYI4QQhYpzrlR/AWgD8CbEt72m3yfbzbGmKoYXiPHygA8AWAFgCoAewH8OeH9LwPYyjkvBdACQAXgPxLePxT7/wdnPzFjzAbgMQBfAWAB8CqA3yc85E4AbwVwHoB1AG4A8KHsPyVCCCG5QsEcIYQUGcaYgjH2ecbYqViG5RHGmCX2vibGGGeMvY8x1s8Ym2KM/QtjbCNj7BBjzMEY+3HCc93OGHuZMfajWDaoizF2ZcL7Sxljv2CMDTPGBhlj/8EYU8762P9ijE0C+BpjrJUx9mzsXOOMsd8wxspij/9fAA0A/hLLLt7DGNvGGBuY9fnFs3eMsa8xxv7AGPs/xpgLwO3znKmNMfZ87HMZZ4wlBjOJr6GLPedE7M9kH2OsijH2DQCXAvhx7Iw/jj1+JWNsRyybdpwxdnPCc/2SMXZ/7P3u2Os3JntdzvlezvkvOOeTnPMQgP8CsIIxZo29v59zPp7wIREAbQkf/xjn/E8AJpI8/dsBHOWcP8o59wP4GoDzGGMrY++/DcB/cs4HOOeDAP4TwO3JzkkIIaQwUDBHCCHF52MQMiyXA6gFMAXgJ7MesxlAO4BbAPwAwJcAXAVgNYCbGWOXz3rsaQA2AF8F8JgYHAL4FYAwhIDifADXALgjycdWAvgGAAbgW7FzdQCohxBUgHP+HszMMH5X4uf7FgB/gJDV+s08Z/p3AE8BKAewDMCP5njO2wCUxs5nBfAvAHyc8y8BeBHAR2Jn/AhjzABgB4Dfxj7PdwG4jzG2OuH5bo29tg3Agdg5pbgMwAjnPB6cMcYuYYw5AbgBvAPC358UqwEcFP+Hcz4N4FTs7ee8P/b7xM+BEEJIgaFgjhBCis+HAHwplmEJQAiWbpxVgvjvnHM/5/wpANMAHuacj8YyMi9CCIJEowB+wDkPcc5/D+A4gOsZY1UA3gjgE5zzac75KIRM0jsTPnaIc/4jznmYc+7jnJ/knO/gnAc452MA7oUQdGZjF+f8T5zzKADzPGcKAWgEUBv7/F+a4zlDEIK4Ns55hHO+n3PumuOxNwDo4Zw/FPs8XwPwRwA3Jjzmb5zzF2J/H18CcBFjrD7VJ8UYWwYhCP9U4ts55y/FyiyXAfgegJ5Uz5PACMA5621OAKY53u8EYKS+OUIIKVyLvbeAEELIuRoBPM4Yiya8LQKhB0tkT/i9L8n/GxP+f5BzzhP+vxdCZq0RgBrAcML1vgJAf8JjE38PxlglgB9CKFU0xR4/Jemzmlvia8x3pnsgZMj2MsamIJQVntNfBuB/IWTlfhcrA/0/CAFyKMljGwFsZow5Et6mij3HOWfknHtiZae1s84exxirgJBBvI9z/nCyx3DOBxlj/wTwOwAXJHvMLB4IwW4iM4QMX7L3mwF4Zv3dE0IIKSCUmSOEkOLTD+CNnPOyhF+6WNYtE3WzsjMNEAZt9AMIALAlvI6Zc55Ymjc7EPhW7G3rOOdmAO+GUHo51+OnAejF/4n1vlXMekzix6Q8E+d8hHP+Qc55LYQM5n2MsTbMfkIhC/lvnPNVAC6GkH177xxn7Afw/Kw/byPn/K6Ex8SzcIwxI4QBJEOzXzf2/nIIgdwTnPNvJHtMAhWA1nkeIzoKYbiJ+DqG2MceTfb+2O+PghBCSMGiYI4QQorP/QC+IQ7ZYIxVMMbeksXzVQL4GGNMzRi7CUKv298558MQgo7/ZIyZY4NXWmf1281mgpABcjDG6gB8dtb77RCmNIpOANAxxq5njKkBfBmAdq4nn+9MjLGbYuWLgJAR5BCyljMwxrYzxtbGgkcXhLJL8XGzz/hXAMsZY++J/RmpYwNlOhIec12s100DITO4h3N+TlaOCWsGngTwMuf880nefytjrIEJGiH0IT6T8H4VY0wHQAlAGRvkIlbhPA5gDWPsHbHH/CuAQ5zzrtj7fw3gU4yxOsZYLYBPA/jluX/KhBBCCgUFc4QQUnz+G8J4+6cYY24AuyEMIsnUHgjDUsYhBA83JgzkeC8ADYBjEIKjPwCoSfFc/wahJNAJ4G8QRuUn+haAL8cmSH6Gc+4EcDeA/wEwCCFTN4DUUp1pI4A9jDEPhD+jj3POzyR5jurYx7kAdAJ4HkKpJSD8+d7IhEmgP+ScuyEMWXknhGzbCIDvYGbQ+VsIw2MmAVwIYSBKMm+LnfF9bOYewYbY+1cBeAVCQPwyhP7FDyZ8/JchlMl+HkLW0xd7G2I9iu+A8Hc4BeFrIrG/8WcA/gLgMIAjEP5+fjbHOQkhhBQARqXwhBBC5sIYux3AHZzzS/J9lsWKCcu7BzjnX873WQghhBQXyswRQgghhBBCyCJEwRwhhBBCCCGELEJUZkkIIYQQQgghixBl5gghhBBCCCFkEaJgjhBCCCGEEEIWIdX8D5GPzWbjTU1NC/mShBBCCCGEEFIw9u/fP845r5DjuRY0mGtqasKrr766kC9JCCGEEEIIIQWDMdYr13NRmSUhhBBCCCGELEIUzBFCCCGEEELIIkTBHCGEEEIIIYQsQhTMEUIIIYQQQsgiRMEcIYQQQgghhCxCFMwRQgghhBBCyCJEwRwhhBBCCCGELEIUzBFCCCGEEEJy47vfBXbunPm2nTuFt5OsUTBHCCGEEEIIyY2NG4Gbbz4b0O3cKfz/xo35PVeRUOX7AIQQQgghhJAitX078PvfA297G3DnncBDDwGPPCK8nWSNMnOEEEIIIYSQ3HA4gPvuA5xO4HvfA+66iwI5GVEwRwghhBBCCJHf3r3A+ecDjz8OqGIFgT/+8bk9dCRj8wZzjLF6xthOxlgnY+woY+zjCe/7KGPseOzt1MVY5PyhCMY9gXwfgxBCCCGEFDLOgXvvBbZuBXw+wGwGHn0UMJmANWtm9tCRrEjpmQsD+DTn/DXGmAnAfsbYDgBVAN4CYB3nPMAYq8zlQUl+hSJRvPfBvRh2+vDiPVfk+ziEEEIIIaQQTUwAt98O/PWvQp/ceecBl10mlFZ+8pPA178O3H8/sG8flVvKYN5gjnM+DGA49ns3Y6wTQB2ADwL4Nuc8EHvfaC4PSvLre08ex94zkwCAcU8ANqM2zycihBBCCCF5893vChMpEwOyH/4Q+Nd/FbJxP/oR8OEPA4ydff8nPym8/S9/EYI9krW0euYYY00AzgewB8ByAJcyxvYwxp5njNF80SL1zyMjeOCF0zhvWSkAoHPYlecTEUIIIYSQvEpcORCNAnfcAXz844DBAOzaBXzkIzMDOQAoKwM++1ngb38Ddu/Oy7GLjeRgjjFmBPBHAJ/gnLsgZPXKAWwB8FkAjzA2+28MYIzdyRh7lTH26tjYmEzHJgulZ3wan330IM5bVooH3rsBAAVzhBBCCCFL3vbtwoqBG28E2tqAX/xCeFtnJ3DBBXN/3Ec/ClRUAF/5ysKdtYhJCuYYY2oIgdxvOOePxd48AOAxLtgLIArANvtjOecPcM43cM43VFRUyHVusgD8oQju+s1rUCoZfnLrBagy61Bt1qFz2J3voxFCCCGEkHzbvl0I3M6cAW64AXjmGWHYSSpGI/CFLwBPPw0899yCHLOYSZlmyQD8AkAn5/zehHf9CcAVsccsB6ABMJ6DM5I8+cqfjqBrxIX/umU9lpXrAQCras04NkSZOUIIIYSQJW/nTuDAAaE3bvdu6cHZv/wLUFsrZOc4z+UJi56UzNxWAO8BcAVj7EDs13UAHgTQwhg7AuB3AG7jnP42isXv9/Xh0f0D+Oj2NmxfcXZQaUeNCafGPAiEI3k8HSGEEEIIyaudO4WeuUceEXbHPfKI9JUDJSXAl78MvPQS8NRTuT9rEZs3mOOcv8Q5Z5zzdZzz9bFff+ecBznn7+acr+GcX8A5f3YhDkxy7+iQE1/581Fc0mbDx69aPuN9HTVmhKMc3XZPnk5HCCGEEELybt8+IYATp1mKPXT79kn7+A98AGhsFII6ygdlLK1plqT4OX0h3PV/r8Gi1+C/37keSsXMmTYdNUIdNA1BIYQQQghZwu6559w9cdu3C2+XQqMBvvpV4NVXgSeekP98SwQFcySOc47PPHoQQw4ffnLrBbAm2SXXZDWgRK2kISiEEEIIISQ773kP0N4u9M5Fo/k+zaJEwRyJ+9kLp7HjmB1fvK4DFzaWJ32MUsGwotqEY8POBT4dIYQQQggpKioV8G//Bhw+DDz6aL5PsyhRMEcAALtPT+B7Tx7H9etq8L6tTSkf21FjRuewGzTvhhBCCCGEZOWWW4A1a4SSy3A436dZdCiYIwhFovj4715Ho1WP77xjHZLsfp9hVY0JTl8Iw07/Ap2QEEIIIYQUJYUC+PrXgePHgd/+Nt+nWXQomCN4vc8BuyuAz16zAkatat7H0xAUQgghhBAimxMnhN65r30NCIWEt+3cCXz3u3k91mJAwRzBc8dHoVIwbG23SXr8SgrmCCGEEEKIXDZtAux24MwZ4KGHzu6w27gx3ycrePOnYUjRe/7EGC5oLIdZp5b0eKNWhUarHscomCOEEEIIIdnavh14/HHgDW8APvtZYW1B4g47MifKzC1xo24/jg65sG1FRVof11FtpvUEhBBCCCFEHldcAbztbYDLJfyeAjlJKJhb4l44MQ4AuHx5msFcjRk9E9PwBmnqECGEEEIIydLOncIvk0nI0u3cme8TLQoUzC1xzx0fRYVJi1WxPjipVtWawTnQNULZOUIIIYQQkgWxR+6RR4B77hGGoLzjHRTQSUDB3BIWiXK82D2Oy5dXzLuOYLaOGhMAGoJCCCGEEEKytG/f2R65O+4A1Gqh1HLfvnyfrODRAJQl7EC/A05fKO0SSwCoKyuBWafCsSEK5haT546PorasBMurTPk+CiGEEEKI4J57zv6+ulrIyv3jH8CvfpW/My0SlJlbwp4/MQYFAy6VuJIgEWMMK2vMlJlbZD71yEH89zPd+T4GIYQQQsjcPvxhwOkEHn443ycpeBTMLWHPHx/F+voylOk1GX38qhozukbciEa5zCcjueD0hjA5HUT/pDffR1kUHnjhFH5IgS/Jg2iU42tPHMXhAWe+j0IIIfmxdSuwdi3wk58AnK4zU6Fgboma8ARwaNCJbSsqM36OVTVmeIMR9FFwsCj0Tk4DAAVzEv1ubz/+9Ppgvo9BlqCDAw788pUe/PG1gXwfhRBC8oMxITt34ACwe3e+T1PQKJhbol7sHgfn6a8kSNQRm4BJpZaLQ8+EEMRNeUPwBGilRCq+YARnJqYx4vKD0x1BssB2HLMDoO+thJAl7tZbAbNZyM6ROVEwt0Q9f2IMFoMGa+tKM36O9iojlAqGY3TBsSj0jk/Hf0/ZudSO293gHPAGI3BT4EsW2NOdQjAnfB3SzQRCFrsz49P0czcTRiNw223Ao48Co6P5Pk3BomBuCYpGOV44MYbL2m1QKNJbSZBIp1aixWbI2d1jfyiCA/2OnDz3UnRm4mwwNzDly+NJCl9Xwte03enP40nIUtM7MY0Tdg9abAY4vCHYXYF8H4kQkqW7f/Mavvj44XwfY3G6+24gGAR+8Yt8n6RgUTC3BB0ZcmJiOphVv5xoVa0ZncO5WRz+yKv9eNt9L2PURRfTcuid8GJFbCUB3SFMrWvk7Nf0CH39kQUklljevb0NANA5QpUPhCxm04Ewjo+4cnatVPRWrhT2zd1/PxCJ5Ps0BYmCuSXoueNjYBmuJJito8aMQYcPTm9IhpPNdHpsGpyDyjhl0jsxjfX1ZdBrlOifomAulWPDLlSYtACAEcrMkQW045gdK6pMuHpVFQDg+AhdABKymB0dciHKgXFPICfXSkvChz8M9PUBf/tbvk9SkCiYW4KePzGGdXWlsBq1WT+XOAQlFwHXoEMoBTxhp4uZbLn9IYx7gmiyGVBfrkf/JJVZzoVzjq5hFy5rF4YDUTBHFsrUdBD7eiZx9aoqlJaoUVuqm1HySwhZfA4NOOK/Pznmyd9BFrM3vxmoq6NBKHOgYG6JcXpDeL1vKqsplok6aoSyvVz0zQ3G+rq66M501npjkyybrHrUW0owQJm5OQ07/XD5w1jfUIYyvZrKLMmC2Xl8FFEOXBXLyq2M7fIkhCxehwac0KqEy+1ToxTMZUSlAj70IeCpp4Bu2v86GwVzS8yLJ8cQ5cDlMvTLAUClSQebUZOTYE4MOCgzlz0xmGu0GrCsXI/+SS9NyZuD+LXcUW1CtVkHe5EGc3aXHz98phuRKH0dFIodx+yoNGmxLjZleGW1CSdHPQiGo3k+GSEkU4cHnbi0vQIalYIyc9n44AeFoO6nP833SQoOBXNLzPPHx1Baosb6+jLZnrOjxix7k77LH4LLH4ZWpUC33UMXnFnqiU2ybLTqUW/RYzoYgYNq95MSMyErqk2oLtUVbWbui48dxr07TlBPVoHwhyJ4/sQYrlpVFZ8yvKLahHCU4/Q4XQASshg5fSGcGZ/G+Q1laLEZcJIyc5mrrgbe8Q7goYcAL1UXJaJgbgnhnOP5E2O4tN0GZRYrCWZbVWPGCbsHoYh8d4/FEsutbTYEwtF4MEIy0zsxjQqTFgatCsvKSwCAhqDMoXPYhXpLCUw6NarNOow4i280/DOddjzTJezsGXZS/2Qh2HV6At5gBFd3VMXfJvYkd9EUPEIWpSODTgDAumWlaK00UjCXrQ9/GHA4gIcfzvdJCgoFc0tI57Abo+6AbP1yoo4aM4LhKE6PyRdwicHcFSuFctATlD3ISs+EF01WPQCgvlz4Lw1BSa5rxI2V1cJFdJVZh4npQFGVuflDEfzbX46hplQHABhy0NdBIdhxzA69RomLWq3xtzXbDNAoFbSegJBF6mBs+MnaulK0VRjRP+WFP0Tj9TN2ySXAmjXCIBRqFYmjYG4Jee6EcCc+F8EcIO8QFLFfbtuKCjBGQ1Cy1TsxjUarAQBQb6HM3Fz8oQhOj3niX9PVpTpwDoy6i6fU8oEXTqNv0ovv3Xge1EqGQUfxfG6LVTTK8UynHZe1V0CnVsbfrlYq0FZppMwcIYvU4QEnGq16lOk1aKs0gnPIeuN7yWEMaG8HXn8d2LPn7Nt37gS++938nSvPKJhbQp4/PoZVNWZUmnWyPm9LRezusYzB3KDDB51agbqyEjRZDTQEJQveYBh2VyCemTPp1CjTq2lxeBLddg+iXBh+AgDVsX8rxTIEpX/Si5/sPInr19bgknYbakpLqMyyABwedMLuCsR3yyVaWW2ivkZCFqlDA06sjQ00aqs0AgBO0RCU7NxxhxDUfeUrwv/v3AncfDOwcWN+z5VHFMwtEW5/CPt7p3D5CnmzcoBw93h5tVHWXXMDUz7UlpWAMYYVVXQxk42+ybOTLEX15Xr0T9FF/GxiOdvKmrNllgCKpm/u3/96DArG8KXrOwAANaU6KrMsAE932qFgZ8vKE62sMWHE5cfUdDAPJyOEZGrcE8Cgw4fzlpUBEMqmFQzUN5et664D3vIW4OmngU9/WgjkHnkE2L493yfLGwrmloiXT04gHOXYJnOJpaij2oxOGUuBBh0+LIv1di2vNqFnYprqzDPUMy7umEsI5mjXXFKdwy6UqJVotAhfe2JfWTFMtHzu+CieOmbHR69sQ22ZUGpbV1aCISqzzLsdx+zY0GRBuUFzzvvE/k0qNSdkcTk8IAw/WbtMyMzp1ErUW/S0nkAO3/qW8N977wXuumtJB3KAhGCOMVbPGNvJGOtkjB1ljH089vavMcYGGWMHYr+uy/1xSaaePzEKk1aFCxrLc/L8HTVmjHsCsvUWDUz5UBe74FxZbUKU092sTPWKawls+vjblpXrMTDlQ5RWPszQNezGimpTfDR8mV4NjUqx6MssA2Fh6EmLzYAPXNIcf3tNmbB6gVZ/5E//pBddI25ck6TEEhAycwBwnIagkCXuZ8+fws+eP5XvY0h2aMAJxoA1sTJLAGitMNLicDkMDwMajfDrvvuEUsslTEpmLgzg05zzDgBbAHyYMbYq9r7/4pyvj/36e85OSbLCOcfzx8ewtc0GtTI3ydizQ1Cyv3vsDYYxOR2Mj9BfXiVezNCd6Uz0THhhNWhg1qnjb6svL0EwHMWYpzjKB+XAOUfXiAsdsYtnAGCMxdYTLO5g7n9ePIMz49P46ptXQ6s6O2CjtqwEkSjHmJu+DvJlxzE7AOCqjuTBXIVRC4tBQ5k5suQ9un8AP3/xDPgimWJ4aMCB1gojjFpV/G1tlUacHp+mG2jZEHvkfvQjIBgUSi5vvnlJB3TzXtlzzoc556/Ffu8G0AmgLtcHI/LpHvVgyOnPSb+caJWMEy3FtQRiMNdk1UOjUuB4joegnB7z4Lx/ewonR4vrokmYZKmf8bZlFnE9weIotfQFI7j9ob34/b6+nL2G3RXAlDcUL2sTLfZgbtDhw4+fPYk3rK46Z5JtbWlJ/DEkP3Ycs6O90ogmmyHp+xljWFltQicFc2QJ45xjYMqLcU8AZ8YLfxok5xyHBp1Yl5CVA4C2CiOC4eii+dlbkPbtE3rk7rwTuP564M9/Bn71K+HtS1RaaRrGWBOA8wGI80A/whg7xBh7kDGWm/o9krXnj48BkH8lQaJSvRp1ZSWyBHMDjpnBnEqpQFuFMeeZuX09k3D6Qnit15HT11lovRPeGf1yQMKuuUXQN8c5x+f+eAjPHR/D052jOXsdcfiJmGUWVZXqFnXP3Df/1gkOjq/csOqc94m9czQEJT+c3hD29kwmnWKZaGW1GSdG3FQWTZasiekg/CFh3+e+nsk8n2Z+dlcAY+4A1i2bGcy1xiZaUttIFu6552yP3Je+BExMAF1dwtuXKMnBHGPMCOCPAD7BOXcB+CmAVgDrAQwD+M85Pu5OxtirjLFXx8bGsj8xSdtzJ0axvMoYv3DLlY4ak6yZubqys9mkhRjP3W0XvrmemSj8u35S+UMRDDl9MyZZAmcD5YFFsDj85y+exhMHh6DXKHN6N1Pc5bWi2jTj7TWxYG6xlPYkeql7HH87PIwPb2uLDxRKVFsmDHih9QT5sfP4KCJRjqvmC+ZqTPCFIvHJtIQsNYMJ05f3npnK40mkiS8Lj02yFNF6AplddBFw5ZXA974H+BfvTddsSQrmGGNqCIHcbzjnjwEA59zOOY9wzqMAfg5gU7KP5Zw/wDnfwDnfUFGRu8wQSW46EMa+M1PYtuLckddy66gx49RY9lMnB6Z8UCsZKk3a+NuWVwvjuZ3eULbHnNOJ2J2ynkVQwiHVwJQXnANNtpkX8jq1EpUmbcFn5l44MYZv/6ML162txs0b6tE36c1ZUNU57EJdWQlKS9Qz3l5l1iEYjsKRw6+9XAiGo/jqE0fQaNXjg5e1JH2MSaeGSauiiZZ5suOYHTajFutnXfDNtjJ2g6GLhqCQJWogFsw1WvXY2zOR59PM7/CAE0oFw+ramZUepSVqVJi0lJmT05e+BIyMAA8+mO+T5I2UaZYMwC8AdHLO7014e03Cw94G4Ij8xyPZ2n16AsFINKcllqKOGjMiUR7PcGVq0CHsmBMnCgJnsyW57Jvrjj33YqjHl0pcSzA7MwcI2bn+As7M9U5M46MPv47lVSZ878bz0GTVwxuMYNyTm31bs4efiMTF4Yut1PKhl8/g1Ng0vvqmVdCplXM+rrashMos8yAQjuD5E2O4qqNyxve6ZNorTVAweQZMEbIYiat03nZ+HfonfQXfx3xwwIHlVaak33vbKoy0nkBO27YBF18MfOc7wkCUJUhKZm4rgPcAuGLWGoLvMsYOM8YOAdgO4JO5PCjJTM+E8A1w1aw+oFyQawjKwJQ3XgYoEu9M52o8t9sfwrDTD7WSoWdiumh6U3piJaNN1nNL7Oot+oLNzE0Hwrjz1/sBAA+8ZwMMWhUaYp9DLkrNAuEITo1NnzP8BACqS4UM8WIK5kacfvz3M924qqMSV6xMXcJXU6bDEJVZLrjdpyfhCYTn7ZcDgBKNEk02A2XmyJI16PDBrFPhipVCldHeAu6b45zj8KAT583qlxO1VhpwctSzKEv3CxJjwJe/DPT1Af/3f/k+TV5ImWb5Eueccc7XJa4h4Jy/h3O+Nvb2N3POhxfiwCQ9Tl8IjAHmWaVjudBg0cOgUeJYlsHcYMKOOVG1WQeTTpWzzFx3rOTh4lYb/KEo7DLty8u33gkvSkvUKNOfu4y4vlyPYacf4Ug0DyebG+ccn3n0ILpH3fjx/zs/HsQ15HACZ7fdg0iUx3d6JaqKZebsBX4nONG9O44jHOX41xtWz/vYWlocnhdPH7OjRK3E1jabpMcvRN8wIYVqYMqHZeV6rKoxw6BRYu+Zwi217J/0weENxZeFz9ZWYYTbH6aVMHK69lrggguEZeKR7Fp9FqPcLB0jBcPpDcKsU0M5TxmPHBQKhhXV2Q1B8YciGHUHzhnWII7nztXFzMlYaah4lzzbUsvjI258/o+HMJ7nPW49E9NJs3IAUG8RdowNF1iQct9zp/CPIyP4whs7cGn72fJg8WsiF5k5cYfX7EmWAFBpEoeEFNafUyqvnJrANauq4oFwKnVlJZicDmbd60qk45zj6U47Lm23pSyBTbSy2ozeSS+mA+Ecn46QwjMw5UVdeQlUSgUuaCzHvgIegnJo0AEAOG+OXti2SuGmIfXNyYgxoXfu5ElhbcESQ8FckXP4QucMdMiljhozjg27Mi4fEC+YZ2fmAGF5+PERd05KE07Y3dCqFLgsFjyIvWaZ+uNrA/jdvn687b6X87q3rmdiOmm/HFCY6wme7bLj+08dx1vW1+KOS5tnvE+nVqLarEPvRA6CuWEXtCrFOSscAECjUsBm1MK+SMosPYEwBqZ8SQPTZGpKhWCV+uYWzpFBF4adfkkllqKV1SZwLnyvImQpEXbM+eLtF5uaLDhud8PhLcz+qEMDTmiUCiyvOrfSAzg70ZL65mT21rcCq1YB3/gGEC2siqNco2CuyDm8IZTpFy6YW1VrhtsfzngJsdjkXFd+bjC3stoElz+ck96lE6MetFUaUVdeAo1SEe81y1S33Y1qsw6+YBRvu+8VvHxyXKaTShcMRzE45ZszMydmugplPcGpMQ8+/vABrKox49tvXwdh9tJMDRZ9TsosO0dcWFFtmjODXV2qXTQ9c+Ign7kuJGYTV5YspszjYrej0w4FQ7z/RwoxOKdSS7LUOLwheIOR+M+sTc0WAMC+ntxm53Z2jeLf/nI07RvIhwYc6Kg1Q6NKfoldZdbCqFVRZk5uCoWQnTt6VFgkvoRQMFfknHnIzAGZT10Td8nMHoACnL04zcXFzEm7G+2VRigVDA1WfdZllt2jHmxqtuBPH74YNaU63PbgXjyyr1+m00ozMOVFlCefZAkIgy8UrDAyc25/CHf++lWoVQr87D0XokSTvPSswaqXvcySc47OYTc6kgw/EVWbdQU/PU0kZm5WSA3mSoV/a5negCHp23HMjgsby2E1aud/cExdWQkMGmW8JDgf/nJwCJu/+TSV5BLJ7nvuJN743y9mVVEzMOu64Lz6MmiUipwvD3/i4BAeerkH+3ulB43RKMeRQRfW1SXvlwOEtpHWSiPtmsuFm28G2tqA//gPYAkNmKFgrsg5faGkwy9yZUVVdlMnB6Z8UCpYfBz8jOeuzk0w5/aHMOT0oz129iarIatdc96gUObWVmnEsnI9/nDXxbio1Yp7/ngI3/1n14JNyhTLEWfvmBOplQrUlJbkdBG3FKFIFJ/8/UH0THjxk/93QdLl1qIGix4jLr+sF5NjngAmp4NJh5+Iqsy6RVNmeXzEgxK1MukNkWSqSrVgDBimISgLYmDKi85hV1olloA8PcnZ2t87BbsrkPX6GbI0jLkD+NEzJ9E57MJUFns64xU7sSoCnVqJdctKsfdMboM58QbeL146I/ljTo9PwxMIY90cw09EbRVGyszlgkoFfOELwGuvAU8+me/TLBgK5oqcwxtE2QJm5gxaFRqtenRmGHANOnyoNuugUp77pVmm16DKrJV9oqX4DVXM/DXb9Oid9GYcdJ0eEwLB9lhdvFmnxoO3b8S7NjXgvudO4aO/e31B7myLpaJzZeYAYQhK/1R+MjI949P4zj+7cPG3n8XTnXZ8+foOXNRqTfkx4kTLARmziV2xLHKytQSiarMOU97QoshInLC7sbzKOO/uMpFWpUSFUUs9cwvk6WN2AMBVHekFcwCwssaMrhz1DUsh3vihvj0ixU92noQv9j0zm2oXsWqgPuFG36ZmC44MOuEN5m4g0IjLD8aAJ4+OSL7peWjAAQBYN8fwE1FrpQF2VwAuf+ZBLpnDu98N1NcD//7vSyY7R8FcEYtG+YKXWQJCb1tXhnePxYlVc1lRbZY9MyfeZRaDryabAcFwNOPdW92xgSftVcb429RKBb75tjX44nUr8bdDw/h/P9+NiRxPuuyd8MKoVcFqmDszW1+emx60ufhDEfz5wCDe9cBubPv+c3jghdM4b1kZHrp9I26/uGnej8/Frjkx05FsYbioKjYkZDFk57pG3JL75UQ1ZSW0a26B7Oi0o7XCgJYK4/wPnqWj2gSnLwS7Kz9TcsWS7BN5HOpEFodBhw+/3dOHLS1Cf1s2wdzAlA8mrQrmElX8bRubLQhHOV7vc2R71KQ45xh2+nDDulooGMNDL/dI+rhDA06UqJXxISdzaYv9+z9F2Tn5aTTA5z4HvPIK8Pzz+T7NgqBgroi5A2FEORZ0AAogZDjOjE9nlMUYTJhYlcyKKiO6Rz2y7kYTJ1nWx7I+zbFMVqYTLbvtHqgU7JyMGGMMd17Wip/eegGODrnwtvteyWmZhTDJUp90kIio3qLHqDuQ84xT14gLX3viKDZ/8xl8/HcHMODw4rNvWIFXPn8F/ue2Ddi+sjLlOUViZk7OiZZdI27UlOpSliOLEx8LvW9uwhPAuCcQL0mWqq5MR5m5BeD0hbDn9CSuXlWd0ceviGWPO/OwPJxzjv7YsKQTBTaE5dCAg75+C8wPn+4GAHz3HedBqWA4M575zzrxJm/iz4gLG8uhYMCeHJVaOn0h+ENRrK8vw/XravDIq/1wS8iiHRpwYE2ded51UPGJlhTM5YbDAZSXC71zop07ge9+N29HyiUK5oqYyyd841nozFxHjQlRjrT7KkKRKEZcfixLspZAtKLajGA4il4ZMzPdox60Vhjj33ybbEIQdibDiZYnRz1oshmgTlIqCgBvXFuD3925Bd5gGG+/72UcG8rNhVnvhDfpqP1EYuCci+EXnHP8/fAw3vqTl3HtD17Eb/f04bLlFfjNHZvx/Ge248Pb2+ILuaWyGjTQa5SyZ+ZWzhP8iD2chT7R8oR9ZsmwVDWlwuLwfJXvLRXPHR9FOMpx9SrpUywTiUF6V4YDprIx7gnCF4qAsbNfZ4Xirv97DV994mi+j0FiTo958IfXBnDrlgY0WPVosOizWvczkOQmr1mnRkeNGftyFMyJ031rSnX4wCXN8ATC+P08Q8zCkSiODrnmLbEEhBuTGqWC1hPkysUXA8Eg8MwzwO7dQiB3883Axo35PllOUDBXxByxhuOFHIACnO09Svfu8YjTjyhHygEYK3Iw0bI71mMkqjbroFUpMh6CcnLUEy/ZnMv5DeV4/O6tCEc5frevL6PXSSUciaJ/0ovGeZZGi9lIuUst+ye9eN8v9+Hu37wGtz+EL1/fgd1fvBI/etf52Npmk9zPNRtjTNb1BMFwFKfGPPPuZFssZZbxSZZpZuZqy0rgC0Xg9FH/Ri493TkKm1GD9fXlGX18aYkadWUl6MpDZk4ssTy/vgyDDh88BbK8PBrlGHH5sevUhKwVGyRz//V0N7QqBe7e1gYAaLLqcTrDn6ec81jFzrk/yzY2WfB6/xSCYfn/3sUqjOpSHdYtK8OmJgt++UpPyq+x7lEPAuHovMNPAEClVKDJpqcyy1zZvl1YHs4Y8N73CoHcI48Iby9CFMwVMYdPWKi50GWWDRY9StTKtO8ei+OHU/XMtVcZwZh8wdzsSZaAMDUu04mWgXAEPRPT8wZzgBBIbWyy4JVTE2m/znyGHH6Eo3zezNzZxeHyZObCkSgeeOEUrvmvF7D3zCS+csMqPPmJy3DHpS2wpOjdS0eDRS9bmeWpMQ9CEY6V8wRzJq0Keo0SI8789CpJddzuRplejUqT9JH3AFAbC1ZpPUHuBMNRPNc1iitWVs5bgpXKimpTXnbNiTdQrowNbukukCEoU94gIlEOTyCMgwPOfB9nyTs25MJfDg7h/VubURH7PtRsM6JnfDqjzL/LF4Y7EE7afrG52QJ/KIrDg/L/vSdm5gDg/Zc0Y2DKh6diA4ySkTr8RNRWacSpsezWIJEUrrsOuOUWoLsbuOuuog3kAArmipqYmVvoMktxhHa6d4/FCYWpeuZ0aiWarAbZLmbEevXZwVezzZBRmeWZ8WlEOdAqIZgDgItbrTg56sGozBmfs5MsU2fmKk1aaFQKDMiQ6TrY78Cbf/wyvvn3Lmxts2LHpy7HBy5pTjqZNBsNFmHXnBwlgeLXaMc8mSzGhHUZBZ+Ziw0/kdJ/mEhcHD5E6wlyZs+ZCbgD4Yz75UQrq004OerJSTYiFTGYExedF8p6gnFPMP77l0+O5/EkBADu3XEcZp0KH7ysJf62ZpsevlAko8E9/bPWEiTa0CQuD5e/1HLE6YOCARWxXZBXr6pCg0Wfck3BoQEnTDoVGi2pf+6K2iqM6J2YRiBc+FOSF6WdO4Gnnwa+8hXgpz8V/r9IUTBXxByxkqmFXE0g6qgR9iGlc8E96PCBMaF/J5UVVSbZRmN3z9Fj1GQzoH/Sm3bZztngUFqZ28WtNgDArtPyZud6Y8Fcsy11Zk6hYFhWVpLV4nBPIIyvPXEUb7vvZUxMB3D/uy/Az9+7IekPXzk0WvUIhKMYc2efJescdkOjUsz75wQIu+aGC3jiI+ccx+1uycvCE4nBXCF/fovd08fs0KkVuKTNltXzrKwxIxzlC75wuG/SiwqTFsurTNCqFAWznkD8PqBRKvASBXN59VrfFJ7uHMWHLm+dcRO52Sbc3DydwRAUsVogWZllhUmLFpshJ31zw04/Kk1n1yQpFQzv29qE/b1TONDvSPoxhwacWLesVHIbQWulEVGe+bA1koLYI/fII8DXvy789+abizago2CuiIkDUMx5COZWVJkw5Q2ldcE9MOVDlUkHjSr1l+WKahN6JjKbljlb9+jMSZaiZpseoQhPO1PRbfdAwYCWivmDAwBYVWuGWaeS/Y5yz4QXJWplvMwllWUWfbzENV1PHR3B1fc+j1/t6sG7tzRix6cux7VratLODKVD/LuSYwhO57ALy6uMkrKHNaW6vI2El2LE5YfbH8byNPvlAGGwjEapoDLLHOGcY8cxOy5pq0CJRpnVc4lZ5IUuteyf9KG+vARKBUNbpVH2fZ+ZGvMI36O3r6zA631TOd07RlL7/pPHYTNq8L6tTTPe3mQTvmdnErSIP5vmqtjZ1GzBvp7JjPfCzmXE5Ud16cwBXTdtqIdJq0qanQuEI+gacWFtXZnk12itoImWObNv38weObGHbt++/J4rRyiYK2IObxAlaiV06uwuHjIh9iClszx8cMqXsl9OtKJamJYpxzfAE/aZkyxFYq9ZuqWWJ0c9aLDoJf+ZKxUMF7VaZe+b65WwlkC0rLwk7YEikSjHRx9+HXf+736Ulqjxx7suxtffsgZmXe5vHIjrCfpk6JvrGnGnXBaeqKpUKLOU+6JBLuLFfSaZOYWCoaZMh2Eqs8yJY8MuDDn9uGZV+ovCZ2uyGaBRKhZ8PUH/lDd+I2VFlalwyizdQpnlW9fXIRTh2Juj6YYktZdPjuOVUxP48PY26DWqGe+rLS2BRqXIaD3BwJQXeo1yzt7/jU0WuPxh2W8uDDv98X45kVGrwjs31ePvh4fPufHVNexGKMJxnoThJ6LWCmEGAAVzOXDPPef2yG3fLry9CFEwV8Qc3tCCDz8RrYyP0JZ+wTHg8KbslxPFx3PLcGf65KhnxiRLkVh2l+4QlO5R97zLQme7uNWGgSmfrBMleySsJRDVl+sx5Q2lNZ1uf+8U/nJwCB+6rAV/+egluKAhs+l8mVhWrgdj2S8OH/cEMOYOzLuWQFRt1iEc5ZiYDs7/4DwQy96SfT1LUVNKu+ZyZccxOxgDtq/MbCVBIrVSgbZK44KuJwhFohhy+OI3UtqrTBhx+Qti+umYJwCdWoFtKyqhUSmoby4POOf47pPHUVuqw//b3HDO+xUKhmarAWcyzMwtm7VjLtGm5tz0zY04/UlX59x2cRM45/j1Kz0z3n4oNoRlbRrBXIlGibqyElpPQLJGwVwRc/hCCz78RFSm16CmVCc54IpEOYYdfkl9Vo0WPTQy9Gx4AmEMOnwzJlmKKkxaGDRKnEkjmAtHojgzPo02if1yootbrQCAV07JcxESiXL0TXjRaJPWhF1vEf7M0wkmn+m0Q61k+MgVbXPu08sVjUqB2tKSrIM58WJ41TyTLEXiD/ZCHYJyfMSDKrM241UktWUl8Qlu6XL6Qmn9W1lqdhyz44KGckllz1KsrEl/wFQ2hh3C2hhx+q14w6AQJlqOuQOoMGlRolFiQ2M5Xjop/3RgktrTnaM42O/Ax69qh1aVvCqlyabPKDM311oC0bLyEtSU6mRdHu72Czc3Z2fmhNfT441ra/DbvX2YTrgBeqjfAatBk3aveFulkTJzJGsUzBUxpzd/wRwgZOc6JWbm7C5hlL6UMkuVUoH2SmPWmbm5JlkCwvTCRqshPhVSit5JL0IRLmktQaK2SiNsRq1spZYjLj+CkWhamTkgvWDu6U47NjdbYVqAsspk6i0yBHOxi2GpO9nE/omRDAOeXDthd6e9LDxRXVkJRlz+jHZ1/edTx3HDD1+E25//TE2hGXL4cHTIhatlKLEUdVSbYXcFMLVAWWLx35pYZil+nRXC8vBxTwC22MTBrW02dA67MO4p3N7WYhONcvznU8fRbDPgHRcsm/NxzTYj+ia9iKRZpj4wlbpihzGGjU0W7DszKcuEY+DsDbvZPXOiD1zSDLc/jD/sH4i/7fCgE2uXlabdL95WYcTpMU/Blu+TxYGCuSLm9OWvzBIQ+uZOjUkboZ1qYlUyK6pMOJ7lnWkxs5csMwcIpZbplFmKPSTpllkyxnBxrG9Ojh9GvePS1hKI4ovDJQ5B6RmfxqmxaVzZkX3JWKYaLYasg7ljwy5UmrSwGqVlS8S7tMMFmJmLRDm6RzObZCmqKS1BJMoxmsGU0Nf7HJgORvDEwaGMX79YPd0p7KW6qkO+YE7OUnMpxGm3Yha/rqwEeo2yICZajrkD8fHx4qTQXOzuJMn95dAQukbc+OTVy1MOkhKHig2mMWzL5Q/B5Q/Pm+3a2GzBqDuQ9c8E0dkdc8lf94KGcpzfUIYHXz6DSJTDGwzjhN0teb9corZKIwLhKA2fIlmhYK6IOXxBlJXIs6g5EyurTQhFuKRxxAMpdskks6LaBLsrAIc38zvT3XZhkmXDHDthmmx69E/5EJKYqRBHhUvdMZdoa5sVY+6ALOUWPbHBIFIzc+V6NQwaZfzvYD7PdI0CAK5cKd/FaboarHqMuQNZTa7rGnajQ2KJJQDYjFooFQz2AszM9U164Q9FM5pkKaotiwWraa4nCIaj8eErv9vbn/HrF6sdx+xosRnSvsmTysoaMZhbmFLL/kkvVAoWv7hVKBjaK42FE8zFylfX1JUK04G7qW9uIYQiUfzXjhNYWW3CDWtrUj42k/UEg1PSbvJujvXNyVVqOXtheDIfuKQZvRNePNNpx7EhF6IcWFcnvV9OJF4vUKklyQYFc0UsnwNQAMQvlKU06g/OM354tuUyjOfuHk0+yVLUZDUgEuWSx/Z3292oKyuBUaua/8GziPvm5Lij3DsxDY1KgeokzdvJMMawrFyP/klpn+cznXa0VxrRIDHzlwvxbKLEM88WikRxctQTvyiWQqlgqDBqMVKAmblsJlmKxF1zg+mu4xh1IxiJYmNTOQ4POnEkNgiACJmF3acnZC2xBIRFxlaDZsGGoPRNelEXW0sgWl5lynuZZTgSxaQ3GC+zFKcDv3RyXLaSOzK3P+4fQM+EF5+5ZsW8u9UyGSo231oCUVuFEWV6tWz75sRS+krz3FUb166uRl1ZCX7x0hkcHBC+561LY/iJqI3WExAZUDBXpPyhCALhaF52zIma0xihPTDlg82okTzSX5xAmM2d4W67B+0pJv+l+8One9ST8d33eosey8pLZBmC0jMxjUaLXvLiUuH1SyRl5lz+EPaemcSVMpaMZaJRXE+QYVnNmfFpBCNRdEhcSyAS1xOk6wuPHcb9z5/K2QXm2ZLhzLM/8TLSNMt9jg4K/76/dP0qaFUKPLy3L+MzFJvnj48hFOG4SuZgjjGGFdUmdC1QZqx/yhfvrRUtrzJh3BPAZB6nu05OB8E5ZgyWuaTNhkGHD70yrC4hqf30+VNYX18mqeTeZtTAqFWlNSgpXrEzTzCnUMT65mSaaDns9MNm1Mw5zAUQevdvv7gJe85M4tFX+1Ft1qFS4g3UROUGDawGDQVzJCsUzBUph1cYRJDPzFw6I7QHHT7USeyXA4Qx8SadKuOeEXGSZaqBEU2xYE7KD59olOPUWObBHCBMtdx9ejLtBvHZeie8aJRYYikSMnPeeYONF06MIRzluCqP/XLA2V1zvWnuARSJg3nSKbMEgGqzNu0BKKNuPx7e24dv/6ML9/zhkOSy3XQct7vRYNGfs98pHSadGiadKu31BEeGnDBqVVhXV4rr19bgzweGaHFzzNOddlgMmpys7lhZbcaJEXfW3y+k6J88u2NOJN44yGeppdjfmRjMbY31zb1EKwpyyh+KoHfCiytXVkoa+sEYQ7PNgDNpBNkDUz7o1ApYDfO3i2xqsqBnwotRGSonRpy+OYefJLplUz0MGiW6RtxprSSYrbXSmNZ6glz8DCGLGwVzRUrc/5PPnjlA+gjtwSkflqUx0pcxhpXVpowvJMS7YKmCL6tBA5NWJWmi5aDDB38omvYky0QXt9rg9IUkTwBNJhrl6JmYRlOaJZD1Fj2mgxFMeVNPI3ymcxTlejXOX8C9csmU6dUwaVUZ7+brHHZDrWRoqUgv6K0269Ius3yt1wEAuH5tDR7dP4D3PbQPLpmnPp4YcUueyplKXVlJ2mWWRwadWFVrhkLB8M5NDfAEwvjroeGsz7LYhSJR7OwaxRUrK+cs5c7GyhoTfKGIbEMf5jIdCGNyOhgffiISv97yuZ5gLDa10pYwxKjZZkBtqY72zeXYqEv4s6+SEPSImmyGtNYTiGsJpASLG2N9c3tlyM4NO/2oNs9/PWLWqXHThnoASGtZ+GziegIplRtDDh+2fPMZ/GrWnjuytFEwV6TEwSD5zMwBZ0dopyrFiUY5Bhw+yf1youVVJnSNuDMqXTu7YHnuC2DGWOyHz/zBXPdo9mVu4r65bC5CRt0B+ENRNNrSC1Lqy+ffNReJcuw8PortK3JzcZoOxhgarPqML2S7RlxoqzSlvSOvurQEbn94xn6h+bzWNwWNUoF7bzkP37txHXafnsDN9+9Ke9DIXALhCM6MT2fVLycSds1JP1c4EsWxYRfW1AoXMhubytFaYcDvqNQS+85MwuUPy94vJxJLhLOd6juf+CTLWZUT1WYdTFpVXvvmxmOZucqEzBxjDFvbbNh1emJBspZLld0t3PRJtlh7Ls02AwanfAiEI5IeP+BIvZYg0epaM/QapSx9cyMuf8rhJ4k+cEkzmm0GbFuRebVKW4URTl8I457UJcvRKMdnHj2Iiekg9pyhia3kLArmipQjlpnL5545QNrUtfHpAILhqKQdczOeu9oEtz+c0UCKk6MeaFJMshQ12aTtmouvJajI/IK60qxDW6UxqyEo4lnTzcyJ08JSDXt5rW8KDm8o7/1yogaLHr0ZZ+Zc6Ehj+ImoulS4aEzna25/7xTWLiuFVqXETRvq8cv3bcLglA9v/cnLODqU/bCQM+PTCEd5VpMsRTWlurTKLE+PT8MfimJNnRBYMMbwrk0NeK3PkdVwokIz4Qngnj8cTCsL9dQxO7QqBS5tt+XkTO1VRiiYkGXOpb5YWdzs75WMMbRXGXG8wDJzAHBJuw0ObwjHhhZusfpSI5abSx20BQjrCaJc+k7TgSmf5AnXaqUCFzSUZz3R0heMwOENSSqzBISqlp2f2YY1GUyyFIkVQqfmKbV86JUevHJqAuV6dc7/3ZPFhYK5IuX0FkgwF797PPc3HqkTq2YTs2qZ9M2dsLtTTrIUNVv1GJzyzbsr7+SoBxUmLUqzzIRe3GrFvp5JSbv5kumNB3NpZuZiJVT9KYagPN1ph0rBcOny3FycpqvBosfApC/tZauT00HYXYH4EJ10iHehpa4nCIQjODzgxIWNZ8tSL2m34dG7LoKCMdx8/y48f2Is7XMkkmOSpai2rART3hB8QWl3zsXJlYkXMm+/YBk0yuIahPKDp7vxyKsDePcv9ki6EOWcY8cxOy5ps2XVx5iKTq1Ek82Q8/UE4v7J2T1zgFBq2W3PrDpCDmPuAIxaFUo0MwdViNOBqW8ud+KLtdMK5mLrCcbmv0HqCYTh8IYk754FgI1NFhy3u+PXP5kQb9RJzczJQcp6gm67G9/5Zxeu6qjEbRc3oWdimnqTSRwFc0XK4SuMMssK0/wjtMW1BHVl6WWTxEDxRAbBXLfdg+USSiKbbAZE+fxTE7tHPVn1y4kubrXCG4zg0IAjo4/vmfBCrWRp/yAy6dQo06tTXqg+0zmKzS0WmHX5/ZoSNVj1CEai8XIfqfbG7txmMpRCvHCRmpk7MuhCMBI957VWVpvx+N1b0WA14P2/3Iff78s88Dlhd0OlYPHpq9kQd80NSSy1PDLogk6tQEvCa1sMGlyzugqPvz4If0haUFjIzoxP4+G9fbhyZSV8wQje++BejHtSL1bvGnFj0OHLWYmlqKPajCODOQ7mJr0walUoT/KzpL3ShCnv/OVhuTLuCc4YfiKqMGmxstpEfXM5NOL0Q6dWwFwi/WZFc+wmo6Q+9Axu8m5qtoBz4NXezLNzYpl5OkFqtmpLddBrlHMGc8FwFJ/4/QEYtSp86+3r0FFjBueZ3cgmxYmCuSLl9IWgVLCMdp7Jbb4hKGJmLt0yy1K9GtVmXdrlXNOxSZZSgi8pEy055zgpUzC3udkKxjLfN9c7MY36cj1UafaCAUJPTP8cZZa9E9M4OerJ66Lw2cSyr740R5DvPj2BErUS65aVpf2aYumN1GDutd4pAMAFjee+VnWpDo/+y0W4pM2Gz/3xML7/5PGMMhzHRzxoqTBAo8r+23ltbCn0sMQhKEeGnOioMZ/z9fauTQ1w+kL455GRrM+Ub997sgsalQLffsc6PHj7Rgw7fbj9ob1wpxhis+OYHYwBV+R46uuWFktsDH9mU12l6J8U+paSDaEQqyPyNdFyzO1HhTH5LrCtbTbs7ZksihsKhWjE5Ue1WSdpOImoVK+GxaCR1IcudS1BovMbyqBWsqyGoMTLRxcwM8cYQ2uFcc4yyx8+042jQy586+1rUWHSYlVsCnM2w9JIcaFgrkg5vCGUlajT+kabKyurzThun3uE9qDDizK9OqPAc3m1Ke27U92xu1/tEsrS4ncSU/zwGXH54QmEs1pLICo3aLCqxpzxHeWecS8aM1zmXW8pwcAcmblnOkcBQNI+oYUSX0+QZt/crlMT2NBUnlHwo9eoYNKpJJdZ7u+dQoNFj0pT8gsDo1aF/7ltA965sR4/3nkSn//j4bTPdMLuTjnIJx3i4nApfXPRKMexIRfWJukVuajFigaLftGXWr7eN4W/Hx7BnZe1oMKkxYYmC35664XoGnbjg79+dc5A4elOO9bXl8359y6XS9srAAAvdOcuA9U/de5aAtHy6vyuJxhzB2AzJZ/YfEmbDcFwFPtjN1SIvOwuf1rDT0TNEoeKZdJ+oVMrsbauNKshKOKNuoUM5oCzEy1n2987ifueO4mbLlyGN6yuBiD8mZi0Kklrn+Tg8ofopkiBo2CuSDl8obz3y4lWVpvgD0XnvHucTpNzsuc+OeZBOI29K+IQAymZtHKDBqUlapxJcef77JoDeS6ot7bZ8HqfQ3Lfkohzjt6J6bR3zInqy/UYmEreg/ZMlx1tlcaMnzsXastKoFSwtNYTTHgCOG53Y0uLNePXrSmVtp6Ac479fVMz+uWSUSsV+Nbb1+IDlzTj96/2pzVkwxsMo2/SK0u/HCBcwDAmrNqYT++kF55AOD7JMpGwpqAee85M4nQa+5MKCecc3/p7F2xGLT54aUv87dtXVuI/bz4Pu09P4mMPv37O954Rpx+HBpw5L7EEgEarHvWWEryYZd/lXDjn6J/0zTkoqsKoRZlenbeJluOe4JyZuU3NFqgUjPrmcmTE5c8o4GmySgvmBh0+aFWKOf9+57Kp2YpDA860f36KRpx+lJaoc9brOpe2SiOGncKNYdF0IIxPPXIQtWUl+Nc3rYq/nTGGlTWmBcnM+UMRvPlHL+FLjx/J+WuRzFEwV6Sc3lDWwzjkIi5mniuDJuySySyYW15lQjAcRU8apXbdsUmWUgOTZpshZWZOnGSZzVqCRBe1WhGMpH9HedwTxHQwkvYkS9Gy8hIEI9H4hDiR2x/CntOTBZWVA4QgqLZMl9Z6AnHS2UWtmQdzVWadpMXhA1M+jLkDuGCeYA4Qfjjfva0VaiXD7/f1Sz6L+LUnxyRLQPgzrTRpJa0nEIefrK5Lvnj9xguXQaVI7/MpJM90jmJvzyQ+flU7DLOqBt6yvg5fe9MqPHXMji88dnhGeeyOTjsA4OoFmPrKGMOl7RXYdWoiJ4uExz1B+EKR+OqSZK+/vDLzfZ/ZCIQjcPpCSXvmAMCgVeH8hjLqm8sBzjnsrkBGmbmWCgPsrsC8610Gpryom6O8N5XzG8oQjvKMp6wOO6WvJZBTa0VsomVCdu4//taJvkkv/vOm82Ca1au+stqMrhF32gPA0vWrV3rQM+HNaSk3yd68wRxjrJ4xtpMx1skYO8oY+/is93+GMcYZY4Ux4o4AEHrmygokM9dWKYzQ7kpyF4lzHsvMZRaAiBMJ07mY6JY4yVI0bzA36kG5Xg2rQZ4F7RubhDvKr5xK7yJE/Gab7o450bLY3ffZma4XTowjHOUF1S8narDo0ZtGIL/r1AQMGmXS0kCppC4OF4PxCyUOWrEatbiqowqPvT4oeZqpnJMsRTWlJRiS0DN3ZNAJjVKB9jky0pUmHa7sqMQf9g9kPJ01X8KRKL7zzy602Ax458b6pI+5fWszPn5lOx7dP4Bv/6Mr/vanj9nRZNXLUnYtxWXtNrgDYRzsd8j+3OKNkoYUN4iWVxtxIg8TLcWhK7PXEiTa2mbD4UFnfO8qkYfDG0IwHM24zBKYfwhKphU7YsVNpsvsR5yZZRyzNXs9wbNddjy8tw93XtqCzUkqSTpqzPAEwinXCWVrwhPAj589CQApdwWT/JOSmQsD+DTnvAPAFgAfZoytAoRAD8DVABZ3Y0QRcviCKNPLE1xkS6dWoqXCiM4kmbkpbwi+UCTjzFxbpRE6tSKtQQsn7OkNK2myGjDk9M9ZM35y1I22SqNs/YlGrQrn1ZelPQRFzE6mu5ZAJC4Fnr2e4JlOO8r0alzQUJbR8+ZSg8WQVpnlrtMT2NBkSXtZeKLqUh3G3IF5S3v3907BoFFiRRpZs5s31mNyOohnYtmd+Ry3u6FTK+bsacpEXVmJpGmWR4acWFFtStl7+M5NDZiYDmLHMWmfj1wiUY4xdwAnRz0ZLY7+42sD6B714J5rV6T8WvnEVe1470WN+NkLp3H/86fgCYSx69QEruqoWrB+5YtabVCw3PTNDcyxMDzR8iph36fdlXrCp9zEheFzZeYAoW+Oc+EmDpHPSAZrCUTiz6f5Si0HpnxprSUQNVj00CgVOJlheXe+MnONVj1UCoaTo57YXsvDWFltwqeuWZ708eKe1M4crib572e64Q1FcHGrFRMUzBW0eYuCOefDAIZjv3czxjoB1AE4BuC/ANwD4M+5PCRJn8NbOD1zgJBBO5hk3H4mE6sS6dRKfOCSZvxk5ym8/5JmrK8vS/l4cZLluzYlv9ueTJMtNmhjwnvOhTnnHN2jHrxxTU3aZ0/l4lYrfrLzJFz+kORVAL0T01AqWMaBsfhx/ZNnL+QjUY6dx0exfUVlRhMyc63BosfEdBCeQHjeATqjbj9Ojnpw44XLsnrNKrMOUS5kBlLdwd3fO4XzG8olZ4AB4LL2ClSbdXjk1X68ce38X1Mn7G60V5rSeo351Jbp8EyXHZzzOQMSzjmODLpw3drqlM91WXsF6spK8Lt9fbh+nXz/RnzBCP5xZBh2VwDjnoRf7iAmpgOYnA5CjOG2tFjw8/duOKdMKdVz37vjBC5oKIsPHJgLYwxfe9NqOLwhfPsfXTjQ50AwEl2QfjlRaYka6+vL8GL3GD51dfILv0yJN0pSXVSLmdnjdveCZjTGJARz59WXwaBR4uVT45L+PRFpzg4JSa+fDTj78zRVtYs3GMbkdDCjn2UqpQLNNsOMckWpguEoxj0BVJsz+xmaDbVSgUarHidHPfjS40fg8oXwvx/YBK1KmfTxK6pNYEyYaDnf96lMnBx14zd7+nDr5gaU6zV4JVbKnc2NUJI7af2tMMaaAJwPYA9j7M0ABjnnB3NxMJK5cCQKtz9cUMFcR40Z/ZO+c8Z5Z7JLZra7trXBZtTgG387Nm+pTybDSppTrCeYmA7C4Q3JspYg0cWtNkQ5sPe09KlcPRPCCPFMv9nq1EpUmrQzMl2v901hyhvCFSsLq19OlM56gt2xP8uLshh+ApxdJpuq1NITCKNrxCWpXy6RUsFw44XL8PyJMUl9ecdH5JtkKaopLYE/FMVUisW7A1M+OH0hrE4y/CSRUsFw04ZleLF7PK0M6nx+v68Pn3rkIL7zzy48vLcPr/VNwRuMoMGqx9WrqvDh7W34tzevxj3XrsC+ninc+j97JJcJPfjyGdhdAXzhug5J2TWFguH7N52Hy5dX4J9HR1CuV8879EZul7ZX4GC/I6tlycn0TXpRYdKes5Q7kbivM9OytkyJvb2pyizVSgW2tFjx8knKzMlJnOabSZmlXqNCtVmH0ymCuWyvC9oqjfGp1emw52FheKK2SiOeOz6Gfx4dwaeuWR6fN5CMXqNCs9WQsyEo3/x7F/QaJT5+ZTusRqHKa4rKlQuW5Ks+xpgRwB8BfAJC6eWXAPyrhI+7kzH2KmPs1bGx3EzcIjO5/EJjcb4Xhieaq7ctPn44w545QChL/NTVwkXbk0dTl1uKry9lYbioKUWNv9zDT0TnN5RBq1KkVWqZzSRLUb1FP6MG/+nOUagUDJevqMjqeXNFXMMgZQjK7tMTMGlVWF079w9IKcQLmFTB1sF+B6IcGV3U37RhGaIc+MP+1INDpqaDGHUHsKJa3q89KesJjg4Jw0/WSOg9vHlDPRQMsg5C2d/nQLVZh2NffwOOff1avHjPFXj87q34+Xs34FtvX4dPX7MCt13chLu3teFn774Qx0fcuOn+V+Yd7DI5HcT9z53CVR1V2NhkkXwejUqBn777AlzVUYXbLm5a8Cz2ZcuFmz/p9tnOp3/SN+fwE5HVqIXNqFnwIShiZk680JzL1jYbzoxPx6tASPbEG1mZrt6Ybz1BJmsJErVVGtE/6U17nH6+1hKI2iqNCEai2NRkmTFBdy7CREv5/9292D2GZ7tG8ZHtbbAatbDE5gFQ31zhkvQThzGmhhDI/YZz/hiAVgDNAA4yxnoALAPwGmPsnFwv5/wBzvkGzvmGiorCvCAsNk6fcHe2oIK5+JLLmd94Bh0+mLQqmEuyGwN884ZlWF5lxLf+0ZVy2MLJ2CTLuUZtJ2PWCcNNkpWFiHX5cg870KmV2NBULvnijHOOM+PTGU+yFC0rL5nRM/dslx2bmi2SSz0XWv0cQ1uS2X1qQhhXnuWFdnxxeIrAYH/vFBjDvGW/yTRaDdjSYsEjrw6knFQmXjyvqM4uOJ2ttkz4/FIFc0cGXVAqWPwmTernK8G2FZV45NX+tFaIpHKgfwrnN5RJGh9+1aoq/Or9m2B3BXDjT3elvIj80bPdmA6G8blrV6R9Jr1G2Bn4iavkLXWU4rxlZTBpVbL3zfVNeiV9r2yvNOH4Aq8nGPcEUKZXz1mGJrqkXZjN9gpl52Rjd/lhM2oy2tUJCDdIU5VZDjjEYC6zn2dtlUZEOXB6LL0JjMPO/GbmtrbZ0FJhwH/efJ6k0vmOajP6Jr3nVDxlIxLl+MbfOlFvKcFtFzcBwNlgzkPBXKGSMs2SAfgFgE7O+b0AwDk/zDmv5Jw3cc6bAAwAuIBzLn0KBckZcXJXWUlhDEABgNpSHUw6FbpmNesOTPkyGj88m0qpwBev60DvhBe/3tUz5+NO2N1osRnSvqBvmuNO4km7G0atKqNG8Plc3GpD14gbE575Bws4vCG4/eHsM3Plegw7/QhHouif9OKE3VOwJZaA0C9UWqJG72TqH9p2lx+nx6ez2i8nsug1UCsZRlIMfNjfO4X2SmPGpc63bKxH36Q3vkohmXgwJ3OZpZiZG06ReTwy5ER7pRE6deoLadE7N9Zj1B3As12jWZ9vwhNA/6QvrUB5S4sVv7tzC/yhCG66/5V4ZjFR34QX/7e7F7dsrEe7zH+muaZSKnBxmxUvnBiTbapkKBLFsNMnabjOimoTTi7wRMsxdyBliaWovdKICpOW9s3JKNO1BKIWmwFT3tCcU0YHprzQKNPfMScSb66mOwRFvEGXr8zcxa02PPvpbZIHWollmHJmxR99tR9dI258/tqO+Pd3q0H4e6AhKIVLyhXtVgDvAXAFY+xA7Nd1OT4XyYIjlpkrlD1zgDAooKPajK7h2WWW3qz65RJtW1GJy5ZX4EfPnpzzh0T3qCejHqMmqyF5meWoR9ZJlonEXWi7Tqe+o8w5x58PDMbOmV1mrt5SgkiUY9jpx9OxiYpXLcC+rGw0WvXom0xdPidOs8tmv5xIoWCoNOni/RWzRaMcr0lYFp7KG9fUwKRT4ZFX5y5NPG53w6xTocqc2QXPXKwG4Y77XJk5YfiJU1KJpeiKlZWoNGnxOxlKLQ/ERvCnm/VcU1eKR/7lImiUCrzzgd3Y1zMzUP7+U8ehVLC8ZNbkcGl7BQYdvrR2bqYy7PAjylNPshS1VxkxHYxIWjYvlzF3QNLFPmMMl7TZ8PLJ8Zzv5FoqRpz+rIK5VH3ogHCTt7ZMB0WGg52abQYomHCzNR3DTj8MGqXkYUn51hFrGTgmU6mlJxDGf+44gQsby2cMt6Iyy8I3bzDHOX+Jc8445+s45+tjv/4+6zFNnHO67VUgxCb4QhqAAgh3b7tGZt69HXRktktmLl+6rgNufwj//Uz3Oe+bju1kyWRYSbNND7srAG9w5qJTMZjLhXV1pTBqVSn75g4NOHDj/bvwtb8cw3n1ZUn30aQjvp5g0otnu0bRWmGI9wwWqnqLft4yy12nJmDWqVI2lKejunTuxeGnxjxw+8O4QOJ+uWR0aiXesr4Wfz88HC+bnu3EiCc20UzeGwmMMdSW6jA0x+c36g5g3BPEmjR6D1VKBW7asAzPHR9NWb4pxYF+B5QKhrXL0t8V2FphxKN3XYwKoxbv+cUe7DwuZAoPDzjxxMEh3HFJS1YXqfl0WbvQxvBitzy96WIfqpQsgXiDbCH75sY9gZSTLBOJo9UzXSRNZrK7sgvmmiQEc5mWWALC988Giz6DzFx+dsxlqrZUB7NOJdsQlJ89fwpj7gC+fP3M4U/lscQAZeYKF80YLUJnyywLK5hbWWOaseTS6RNKA7P5pj3bimoTbtnYgP/d1XvODwpxkmUmJVTxISjjZ4MGpzeEMXdA9kmWIpVSgc3NlqQ7ksbcAdzzh4N4y09eRu+EF9+9cR0ev+viecfzz0e8cOsccWP36QlcWeBZOUCYaDkw5U25T2zX6QlsbrHKNsK/unTuzFx8WXiWEw1v3lCPQDiKJw4OnfM+zjmO2+WfZCmqLSuZM+g6PCB9+EmiGy+sR5QjnvHN1IF+B5ZXmST1yyVTV1aCR/7lIrRVGvHBX72KJw4O4Vv/6ITFoMGHLp9/6ECharDq0WjV44UT8txXFXtn6y3z32xbXikGcwvXNzfmlh7MbW0T+uZeLsBSy//d3Yv9vdKnFudbIBzBxHQwq9aCBoseCjb3eoLBKV/WFTttlab4z3yphB1zC7+WIFOMMaysMcsSzA05fHjghdN483m1OH/WjUiVUoEyvRqT0wu7S5JIR8FcEXL6hOxRoWXmVsYGNXTFloeL44cz3TE3l09dvRxalQLf/kfnjLd3j2Y+eVJcdJpYanlyzJ3x80l1UasVZ8an4xfWwXAUD7xwCtu//xwef30QH7y0BTs/c7kwMVCGQKW6VAcFAx7e24dQhOPKAu6XEzVa9AhF+JyTCgcdPvRNerNeSZCo2qzDiMuftEdof+8UyvXqeClRptbWlWJltQmPJim1HHUH4PSF0lpIno6a0rmDuSNDTjCGtLOcTVY9akt12JPGuo3ZolGOA/2OjAbLJLIZtXj4g1twQWM5Pvbw63jl1AQ+ekXboimvmsul7TbsOjWOkAyDZvomvVApmKSL21K9GlVm7YJl5rzBMKaDEUk9c4Bwc6KlwlBwfXPRKMe///UYfr2rN99HkWw01iucyY45kUalwLJyfdL1BP5QBOOegAzBnBFnxqfTGrpkdy2uzBwArKox4/iIO+sS4u89eRwcwD1zDH+yGDRUZlnAKJgrQg5fECatquCWPIsXnl2xu0jiqGi5euZEFSYt7trWiieP2rE7od+s2+6GRqlAYxqTLEXJykLiawnS2FmXrotbhTvKu05NYGfXKK79wQv45t+7sKnZgic/cRm+eF2HrBegaqUCNaUlODnqQWnJwu/LykR819wcpZa7Y5lNOYafiKrNOniDkfgakET7Y/1y2ZY/MsZwy8Z6HBpwnnPn9fiIuGIjN197dWVC5jHZhdCRQRdabAYY0swCM8awucWKPWcmMh6UcXp8Gm5/GOdnGcwBgEmnxq/fvwlvXFONVTVm3Lq5MevnzLdL2yswHYzg9T5H1s/VP+lFXXmJ5Gz28irTggVz427holJqZg4ALmmzYc/pSdkmqsphxOVHMBxNOWyo0IgVCdmWI8+1nmBAppu87ZVGhCIcvRL3W4YjUYy6A3mbZJmpjhoTvMGIpPU8cznY78Djrw/ijkua56yUsho0mKBplgWrsK72iSyc3hDMBZaVA4R9cA0W/dnMXOzOv5w9c6I7Lm1BbakO3/hbZ/yOVfeoBy0V6U+yBISzV5i0M8pCTo56oFMrcnJ+0cpqE8r1anztL0fxvl/uAwA89L6NePD2jWipyE1GUCyr2raiouBuCCRTP8/i8F2nJ1CuV0saoy9VVewH/uxSy8npIE6PTae9LHwub11fB41Scc6OtrP7EnOUmSsrQZQDdve5ZTVHh9IbfpJoS4sF454gTqXZyyKKDz9pKMvo42fTqZX46bsvxN8+dknGY9YLyUWtQimxHH1z/VM+ScNPRMurhLK2hRgyMuYR/t2lE8ytrjXDF4oUVODUG/uelWpnZaGRaxdbc2w9wewbO4NZriUQib3s3RJLf8c9QUSifNFl5jria58yK7XkXFhFYDNqcNe21jkfR5m5wrb4f3qRczh8oYLaMZdoZbUJnSNiZs4HnVoRn5QkJ51aic9euwKHB53480Fh0uMJuzurkePNsyZado960FphlKW8cS4KBROmSXJhuMs/P3EZtq/IbemjeAG3GPrlAGEnkErB5rwzuevUBDY3W2X9e6qeY3H4632xfrkshp8kKjdocPXqKvzpwCAC4bMLcLtG3KgwaXPybwdIWE8wq9Ry3BPAsNOPNbWZBXObm8UJrZmVWh7on4JRq0KrzDcycjGNNh/MOjXW15fJsm+uf9IreUQ6ACyvMsIfis7YU5kr4sJw2zwLwxM1JimVz7fe2FlGnP4Fm7Q56PBJ2ss5F7tYZilDZm46GIn/XYrkqthpjQVzUm8ciWX6iy0zt7zKBAXLPJh78ugI9vZM4pNXL09Z5WMxaCmYK2AUzBUhhzdYuMFcjRk949PwhyKxJmd9zi6k3nJeHdYtK8V3/3kcE54ABqZ8WJ7FsJImmx5nEgagnBz15Gz4SaJvvG0t9n35KnzwspYFyR6srDFDr1Hi8th0vEKnUiqwrLwkaTDXP+nFoMMny0qCRPFgblZmbn/vFFQKhnXLymR7rVs21MPhDWHHsbODQ07Y3bLvl0tUF1scPnvU/NEh4YJhdV1mU0EbrXpUmbXYM8+6jbkc6Hdg3bJS2QbZFKNL2204NOCYcz2LFJ5AGJPTQUnDT0RillgsAc6lMU/6ZZbxvucUy6oXmlgCGIxEMZnF31c6vvDYYXzsd69n/PF2lx8alSLrnvy51hMMTPmgiq1/yYZRq0JtqQ7dEkt/xRtz1ebFMwAFEG5cN9sMGa0nCIaj+NY/urC8yohbNtSnfKzVoMGUN0jrPQoUBXNFyOkLFdTC8EQd1SZEuVD6MODw5rREUaFg+NJ1HRh2+vGFxw4DyG5YSZPNgHFPAG5/CNOBMAYdvgVZLqxRKSQvZ5bDey9qxHOf2VZQewrnU2/RJw3mxB19cgdzlbHdbnbnucHc6lozSjTy/X1d0mZDXVlJvNQyGuU4kcNJlgDiQy+GHDM/vyODwiTL1Rlm5hhj2NJixZ4zk2n3zflDEXQNu7MeflLsLm2vAOfAyyczC5gBxDM3DWlk5sTvhd1pThDMxJg7AAU7u8xYikqTFjq1QrY9fHLoTcgSLlSpZc/4NLrtnoz7VkecflSbdVnfhE0VzNWWSe/VTKW10ih5PYFYfrvYMnOAUGrZNZJ+Zu6ZTjt6J7y45w0r522psBg0iHLMuSqH5BcFc0XI6QsV7IX4SrG+e8Qly/jh+WxuseINq6vwVCyrkW2ZJSD0OYilG3KXexUCtVKBykW2a6thjmBu96kJWA0a2TOoOrUSFoNmRmYuFIni4IBDtn45kULBcOOFy/DSyXEMTHnRP+WFPxTFiurcfe0ZtCqUlqjPmRB6dMiJRqs+q7vym5utGHMHkk6yS+XIoBPhKKdgbh7nLSuFSafKqm9ODObS6ZkzalWoKytZkCEoY+4ALAZNWhf8CgVDk9UwI4DKt94Jb7xUNNv9i1JEo8LUX08gjPEMh1mMuPxZl1gCQim3Rqk4J5gbnPLKdl3QXim9j3PE5YdWpSjYqqZUOmrMGJjyweVPL9D666Fh2IwabFsxfxWONfZ1SrvmChMFc0WGcw6HN1RwawlEDRY9StRKvNY7hSlvSPa1BMl8/o0dUClYxpMsRYkTLeOTLHO4loBI12jVw+ENzbhryDnHrtMT2NJizUkpb5V55uLwzmEX/KFoTiaA3njhMgDAH/YP5HySpaimVHfOBebhQWfG/XKiLS0WAEh7RYHcw0+KlUqpwNZWG17sHs84+9IfmyiYTs8cIPTNLUSZ5bgnIHktQaJGq75gMnOcc/ROeON9pLNLtnNh3BNAKCJ8TWTaO2h3+eMDoLKhVDA0WPVJM3NyBXNtlUIf5+xy8WSEHXPZZxzzYVXsJnlXGqWW04Ewnumy441raiQNOhP7s6lvrjBRMFdkpoMRhKO84BaGi5QKhuXVJjzTNQog+4lVUjTbDPjk1ctxw3nSvmnNJbHnonvUA7WSZRUcEvmI5WCJjf29E14MO/3YInOJpajarJ1xASbXsvBk6i16bG214dFXB+LTYHMdzNWVlcwos3R6Q+if9GXcLydqthlQYdLOWBsixYF+B+rKSrLupVkKLl1uw6DDl3b2U9Q/6YVRq0J5mlmK5VUmnB5Lb7dXJtJZGJ6oyWpA34QXkQLo+5mcDsITCOP8hjKoleyckuZcSAxqkq0FmA/nPFZmmfmOuUSz1xP4QxGMugOoK5Pn56p4s1VKqeWI07foJlmKMplo+WzXKPyhKK5fVyPp8WeDOVocXogomCsyYtN7IZcKdFSb4hOsctkzl+jD29tw783rs3qOEo0SNaU6nJmYxslRN1psxkUxun8pqE+yay7eLyfjfrlE1aW6GasJ9vdOobZUJ2nJciZu3liPQYcPv9vbh3pLSdp73tJVW1aCoYQyy6NDQr9ctpm5s31z6e2bk2NZ+FJxWWx40YsnMiu17J8USt3SzVK0V5kQjEQl7/bK1Jg7gIqMMnMGBCPRBcmCzUfMEDbbDLEsf+7LLBMDxkwGwbh8YQTC0ax3zIlabAb0Tp4NrofiawlkyszF2iBOSlhPMOyUp3w0H6rMWpTp1Wn1zf310BAqTVpsbLJIerzYn0plloWJrkSLjFhmVlqgA1AAzNj3Vb8AZZZyarIKu3FOjnrie2xI/iVbHL7r1AQqTFq0Vhhy8ppVZh3GPUEEw0IW4rXeKdn75RJds6oKpSVqDDn9OZ1kKaop08HhDcEbFBajHxkSh59kl5kDgM3NFthdAcklb+OxabQUzElTb9GjyarHixmuKOib9KY1/EQkfl2eyGGpJeccY55MM3PC51QIEy37JoUzNFoNqC0tWZD9d2KwZDNqMyqzlGvHnKjJZkAwHI2fa1DmYK7coIHNqMHJeYbyRKMcdpcf1Tm6EZdrjDF0VJslT7T0BMLYeXwM162tkdx3Wm4QEgSTtDi8IFEwV2ScXiGYK+TM3Ipq4WJQo1Rk1PeQT002A7pHPeib9FIwV0BMOjUsBk18CS/nHLtPT+CiHPXLAWenno26/Rhy+DDk9OekxFKkUyvx1vW1AHJfYgmczZqLd/OPDLpQW6qDVYZ/s1ti2VKpKwoO9DkAUL9cOi5tr8Cu0xPxmw1Scc4xMOVLu18OEHqUGANOSFzUnAl3IIxgOJpRMNdoK5xdcz3jXjAG1FtKUF2qW5BgbtDhg0mrwto684w1O1KJwZxcmbnmWX8fA7FeTTl76VsrjOgeTR3kTEwHEYrwRTnJUtRRY8bxEZekEuKnj9kRDEdxg8QSSwDQqpQwaVWUmStQFMwVGUc8M1e4wZyYmasrL8npwu1caLbp4faHEeU0/KTQ1Fv08Z650+PTGHUH4kFDLogXNHaXH6/15a5fLtE7NzVAqWALkqE6u55AuMA6MuTE6rrsSixFrRUG2Ixa7DkjbQjKgX4HlAqWdYnnUnJpuw3eYCT+tSnVuCcIXyiSUdVEiUaJ+nI9Tsxz8ZyNswvD0w/masw6aFSK+E2ffOqb9KK2tARalVC+P+L0ZzywRqohhzD2v8kmVJik+3r2+C42eYM5sW9uYMoLpYLJWu7YXmXEydHUqxjiO+YWdTBngj8UlXSj4q+HhlBTqsMFDen9vLIYNTQApUBRMFdkHIsgM1du0KDarFuwfjk5iUNQAFBmrsA0Jqwn2HUqN/vlEok/+IedfuzvnYJOrYg3oudKR40Zr3z+Cly9qiqnrwMAtWXi5yeMMj8zPi1bMMUYw+YWC3afltY3d6DfgZXVJln39xW7i1qtUCpY2isKxH9DDdbMhlAsrzLltMxSDOYyycwpFMLQqkIos+yZmEZj7M+4plQnLA7P8YXyoMOH2jIdmm0G+EIR2F3pDbMQM3OVMg1AqTRpodcocXpM+PsYnPKhplQnay96W4URLn84/nWTjPh5LfbMHDD/EBSnL4QXTozjurU1ad9MtxgomCtUFMwVGYcvNgClgHvmAOCbb1+DT17dnu9jpE28k6hgZ39PCkODRY9Bhw/hSBS7Tk+g2qyL98jkgnj3eMTpx2u9UzhvWRnUCzAQp0qGhb3SXwcYdPjROewC58DaZfIFq1uaLRh2+tE/mXrwQzTKcZCGn6TNpFPjgoaytPvmBqbS3zGXaHmVEWfGp9Mu75Rq3JN5MAcIPWoFkZmb8MaDObFXK9ellvHMnDX5wu75jLj8sBg00KrkuanCGEOzzTCjzFLu3bNtlUIlUKq+OXH4zGLOzLVVGqFUsHnXE+w4Zkcwkl6Jpchq0FCZZYGiYK7IOH0haFQK6NSF/Vd7xcoqXNgobYpSIam36MGYkKGT6wcakUeDRY9IlGPQ4cOe0xO4qDV3/XKAUMqsjZVsHR1y5XT4ST6olQpUmXQYdvhwZFCeSZaJNsdKYOdbUXB63AN3IEzBXAYuba/A4UEnptK4AOuLBTqZro1ZXmVCOMpz1peWTZklIAxB6Z2clrRIOlfc/hAmpoNojAVVZ7PguQvmvMEwprwh1JaVnNOrJpXd6ZetX07UlLCeYGDKJ9taApGU9QTDTj9UCgabYXH18CfSqZVorTDMm5n766Eh1JWVZPT9tFyvodUEBaqwr/hJ2pzeEMpK1Ity8eVioFMr0WjRY0V17gdQkPSIZWHPdo1i3BPM2UoCEWMMNaU67DhmRzjKcWGa/QeLQW2ZDkNOHw4POlFh0qJSzl6WSiMsBg12n0kdzL0eG35yPg0/Sdul7TZwDrx8Snp2rn/KiwqTNuOSVnE4T66Wh4+5A1ApWMa7VBttBvhDUYymKLvLNTEzKO4pFTNCuVxPIA4yWlZegtqyEmiUirTLTe1u+XbMiVpsBgxM+TAdCMPu9suemas0aWHSqtCdYijPSCxIXWw9/LN11JhTBnMObxAvdY/jhnU1GV0jij1zue7tJOmjYK7IOLyhgh5+UgweeO8G/OubVuX7GGQWcZT67/f1A0BOh5+Iqsy6eL9FsWXmAKAmtjj86KALa2RYSZCIMYbNzRbsOZ16CMqBfgdMOhVabNSjmq51y8pg1qnw4ok0grlJX1YrY1oqDFAwoHuecfCZGvcEYDNqM77wFkuvM1maLZd4MBfLzNkMWmFxeA4zc+Igo9qyEigVDPWWkvTLLJ0B2UsRm6wGRKIce89MgnP51hKIGGNoiw1Bmcuw07+o++VEHTVmDDn98X3Dsz15dAThKJe8KHw2q0GDUITDHQhnc0ySAxTMFRmHL1jQw0+KwfIqU84WQ5PMVZl10CgV6Bpxo66sBPWW3P8diRc2LTYDLIbC7lPNRF1ZCQYdPpwc82CNTJMsE21psWLQ4YtPIU3mQL8D5y0rW/R3zfNBqWC4pN2GF7vHJN9Nz3THnEinVqLeosfpFGVt2RhzB2AzZf5vTewX683jeoLe2I45sZpAoWCxxeELE8wBmNGrJkUoEsXEdACVJnmDnubYHlCxt1POtQSitgpjypsLIy7/ou6XE4lDULrmyIr/9dAwGix6rM3we7klVoZKu+YKDwVzRcbpCxf0wnBCckWpYFgWC+C25HC/XCJxCEoxZuWA2JS9cBSRKMfqHKwF2Nwi9M3O1TfnC0bQNeKmfrksXNpegSGnH8fm6aUBhAv2YWdmO+YStVYYcWosRz1zngAqsth1WFOqg1rJJC+sz4XecS9sRi2MWtWMcw3ntMzSBwUDqmKDY5pig2Ck9g6OugPgXP4hIc1WMZgTpq5mOngnlfYqI8Y9gaQZK845hp2+4sjMxdo/kpVaTngCeOXURMYlloCQmQNAQ1AKEAVzRcbppcwcWbrEjEIuVxIkEocB5Hq/XL7UJqwPWVMn/9qF5ZUmlOvVc+6bOzLkRCTKKZjLwtWrqmDWqfCVPx2Zd6HwkMOHKIcMwZwBp8c8ORkyMu4OZjzJEgBUSgXqLfq8Z+YaZ03arS4tyekAlEGHH9Xms2P/m2wGBMJRDLukveaIzDvmROUGDcr0anSPeqBguZkoKa4RSlZq6fSF4A9F4xNFF7MKkxZWgyZpMPfPoyOIZFFiCSBefULrCQoPBXNFxuELZdwYTshiJwZzW1oWZlLqyhoT1EqW82Er+SLugizTq3OyF1KhYNjUbMGeOYagHIgNP1lPw08yZjNq8e9vXYPX+hz42QunUj5WXBORbXakpcKIQDiKQYe8maZolMd75rLRZDXkNzOXsJZAVFuqw3AOF4eLawlELeJES4l9c/ZY0Cf3NEvg7JqfmtKSnKx3aU+xnmA4R0FqPjDGYkNQzi2z/NuhYbTYDFiVxS7Us8EcTbQsNBTMFZFAOAJvMEIDUMiSdfOGenz2DSsyHquerotbbdj/lavRVKQ7B8XSozW1pTkrW93SYkX/pC/phf+BfgeWlZdkffG+1L35vFpct7Ya/7XjRMppd/3ijrks+01bK4RMyCmZ++YcvhDCUZ5VZg4AGq1CZi4fU/n8oQiGnX40WmZ+z6iOlTRPeUM5ed3BWcGc+D1L6hCUeGYuB5kzsdQyFzeMxOfVqRVJ++Zy+XnlQ0eNCcftboQjZ/c8jrkD2H16AtdnUWIJAFYjlVkWKgrmiojTJ/wQoDJLslStqSvFh7e3LehrmnXF++/NYtCgwqTF5ubcZTo3NwtZzT1J+uYO0LJwWTDG8B9vXYvSEg0++fsDCIQjSR/XN+mFSsGyHvDUGhtqIXffXLYLw0VNVgO8wQjGPAufYRCH/TTZZt5wEm+cDMmczQSEjOawc2YwV23WQauSvp7A7vZDo1KgPAfXF2JmTu5JliKFgqG1IvlESzEzVww9c4AwBCUYjs4YbvPPI8OIcuCGdbVZPbdeo4JOraABKAWIgrki4ooFc6V6GoBCCMkeYwxPf+py/Mu21py9xspqE0pL1OcMQRl1+zHo8FEwJxOLQYPvvGMtukbc+O+nu5M+pn/Si7pyYXR9tq9VplfLnpnLdmG4SCxx7Blf+FJLcS3B7ImhYgCdi4mW454AQhE+Y1KkQsFi5aYSgzmnH1VmbU4y9E05DuYAoW8uWTA34hQGw2R7g6BQrKwWyiiPJZRa/uXQMNorjbLsx7UatNQzV4AomCsijlh5BvXMEULkUlqizkkfi+hs39zMISgHaFm47K7sqMLNG5bh/udPYX/v1Dnv789yLYGIMSETckrmXXNiMCdHZg5AWqP55SK+pngGkZgZkjqQJB1iCXNd2czsU5NNL73M0uVHlcxrCURiWW62g3dSaaswYtAhLCdPNOLyo8Kkzen3uIXUVmmEWsni5dR2lx/7eiazGnySyGLQUJllASqOr14C4GwwRz1zhJDFZHOzBb0T3hmj2Q/0O6BSsJysRFjKvnLDKtSUluDTjxyANzjzwrZ/yidbv2lrhaFgyyzF7GM+Jlr2TXph1qnOaYewGrVQKRiGc1BmOeQQAsTaWT1pTTYD+id98045BQC7K4CqHJUidtSY8KN3nY83nZddGWAq7VVCwHh61tfksNNfFJMsRRqVAq0Vxngw9/fDw+AcuEHGYI4yc4WHgrki4qCeOULIIrSlReybO5udO9DvQEeNGTq1Ml/HKkomnRrfv+k89Ex48e1/dMXf7gmEMTkdzHr4iai1Qtjt5ZRxoMeYOwCNSgFTwn62TKiVCtSXl+RlomXPhBeNVsM55YrKHC4On70wXNRsNSAYic7bp8c5x4jTn7OJj4wxvOm82pz+WxfXE3SPzpz0OOL0o6YIJlkmWlVjRleszPKvh4axstqEtsrsSywBYdccBXOFh4K5IiIuxCyjpeGEkEWko8YMk04VX1EQiXIcGnBSv1yOXNRqxfu3NuPXu3rjy5rFwRxylFkCCRMtx+UrtRxzCwvD5ejbarQa8pOZmzh3x5yoJraeQG6DDh9MWtU5w5qkTrR0+cPwhSKLenx/o9UAlYKd0zc34vQXzSRLUUeNGSMuP44OObG/d0q2rBwgllnSaoJCQ8FcEXH5QmAMMOmyu2tJCCELSalg2Nxswe5YZu7UmAeeQJiCuRy659oVaK0w4LOPHoLTF4oHc9numBO1xjIhcvbNjXkCsg2qaLLq0TvuXdD1BOFIFANTvjmDuepS3YxSY7nM3jEnapYYzMV3zC3ioEetVKDJZpixnsDtD8EdCBfNJEvRyhohC3fvUycAANdnOcUykcWogT8UPadEm+TXvMEcY6yeMbaTMdbJGDvKGPt47O3/zhg7xBg7wBh7ijGWu2JnIonDF0JpiRqKLCeREULIQtvcbMWZ8WnYXX5aFr4AdGol7r15PcY8AfzbE0fRJ3Nmrr68BGolk7VvbswtXzDXaDXAHSstXShDDj/CUY5Ga/K9lLVlJTlZHC7smDs3YKk0aaHXKCUHc4s5MwcA7ZUzh/LEP68iC+Y6YovBn+kaxepaczxol4M1tjh8gtYTFBQpmbkwgE9zzjsAbAHwYcbYKgDf45yv45yvB/BXAP+au2MSKRzeEA0/IYQsSmLf3O7TE3i93wGzThVfJkxy47z6Mnx4exsee30Qv9vXD6P23MEcmVIpFWiyGmRdTzDuCci2QF7c87aQEy3F12qcI2CuNusQyMHi8Lkyc4wxNEpYTxBfrL3Ig7m2SiN6J73xPYtnd8wVzwAUQFjdId70yHa33GwWg/C81DdXWOYN5jjnw5zz12K/dwPoBFDHOXclPMwAYOFqFUhSDl+I1hIQQhalVbVmmLQq7DkziQP9DpxXX0ZVBgvgo1e0YU2dGSdHPVhWXiLrHrHWCqNswVw4EsXEdFDWzBywsLvmxB69pjkyJfH1BDKWWnqDYUx5QzN2zCVqtunnXRwuZrAqzYt7F1tbpRGRKI//nRfbwvBEYnbu+rXy9csBQs8cQMFcoUmrZ44x1gTgfAB7Yv//DcZYP4BbQZm5vHN6g7QwnBCyKCkVDBubLXj++BhO2N04n/rlFoRaqcC9N6+HRqU4Z/dZtlorDeib8CIUiWb9XJPeIDiXb7lzfbkeCoYFHYLSO+GFTq1A5RyfQ02Z/IvDxbUEdUkyc4Cw765/ypfy72jE5UeZXr3oJ8uKEy3FISjin/NiD1KTeefGerx/azMa5ujPzFS8zJKCuYIiOZhjjBkB/BHAJ8SsHOf8S5zzegC/AfCROT7uTsbYq4yxV8fGxuQ4M5mDkzJzhJBFbHOzBYMOYe8V9cstnOVVJjz8wc34/BtXyvq8rRVGhKMcvTKsAIgvDDfKc8NSo1KgboHXE/RMeNFoOXctgUjMEA3JGswlX0sgarIZEIlyDEzNnQ0ccQYWfYklIHw9MnZ2PcGw0w+rQQOtanEHqclct7YG//qmVbI/r8UoZuZoomUhkRTMMcbUEAK533DOH0vykN8CeEeyj+WcP8A538A531BRUZH5Scm8HL4Q7ZgjhCxam2N9cwBw3rKy/B1kCbqw0TJn+V+m4usJZCi1jAdzMmXmACErtZCZub7J6ZSZEltscfiIjGWW8wVz4nCMVKWWdpcfVUUQzOnUStSX6xMyc76iG36SayatCmolw+S0vH2dJDtSplkyAL8A0Mk5vzfh7e0JD3szgK7ZH0sWTjTK4fTRABRCyOK1ptYMg0aJBoseVpkGXZD8aakQAgU5grnx2PS8CqN8F9+NVv2CZeaisQxlU4pgTlwcLueuuSGHDwoGVM0RBEtZTzDiyt3C8IXWVmmMB3PDTn9R9svlEmMMFoOGMnMFRspCsq0A3gPgMGPsQOxtXwTwAcbYCgBRAL0A/iUnJySSuP1hcA4K5gghi5ZKqcD7tjbTrswiYdKpUWXW4tRo9tkvMTNnM8nXF95kNcDpC8HhDaIsx/3mo+4AAuEoGubpS6wu1WHYIV8wN+gQAjGVMvm9e6tBA5NWNedEy3AkinFPYFHvmEvUXmnESyfHEY5EMeLyY0NTeb6PtOhYDFoagFJg5v2JyTl/CUCyAu+/y38ckimHT/iHlesfSIQQkkufecOKfB+ByEiuiZZj7gAMGiX0GvkCfXGi5ZnxaZzfkNufnWKwlCozBwh9c0eHXCkfk4651hKIGGNoshnmzMyNeQLgfPGvJRC1VhoRDEfRPeqBwxsqurUEC8Fq0NAAlAKT1jRLUricPqF+mQagEEIIKRRiMJftIuxxj3wLw0ViYCXHgJb59MVeo9GSOjNXU6rDsNMn2+LwwXmCOUAYgjJXZk6c+FhVJBMf22MTLV8+OQ6geILUhSSUWVIwV0gomCsSjtiSURqAQgghpFC0Vhjg9ocx5smux2bMLd/CcFG9RQ/GFmZxeM/ENFQKhtqy1MFDdWkJ/KFo/Gd6NqJRjmGnb84dc6Jmqx6DUz4Ew+euJxB3zBXDABRAyMwBwIvdQjBHPXPpsxg0mPRQMFdIKJgrEo5YZo565gghhBQK8eI52765sRxk5nRqJWpLSxYkM9c76cWy8pI5e9dEtfHF4dn3zY17AghFuKTMXJQDfZPn/jmImblimfpo1qlRbdZhz5kJAMXzeS0kq0EDdyCMQDiS76OQGArmioTTK9wlKaXMHCGEkAIh13qCXJRZAuJEy9xn5nonpuM9eqmIwcWIK/v1BIOxtQR182QDm1KsJxhxBaBWMliKqB+/rdIIf0jIQlIwlz5x19wUrScoGBTMFQmxJIMyc4QQQgpFtVkHvUaZVTAXCEfg8IZkL7MEhCEouc7McT7/WgKROJBjSIaJluJzzJeZa44FmcmCWrvLj0qTDgpF8kXni1FbLFtcWqKWdaDOUmE1CMHcBK0nKBgUzBUJpy8EvUYJrUqZ76MQQgghAACFgqGlwoBTY5lnvybEHXM5yMw1WfWYnA7Gh4jlwpQ3BLc/PO9aAkD4HJUKFi9vzMZ8C8NF5QYNSkvUSSda2l3+osteicEc9ctlxmIQ/h3SEJTCQcFckXDQwnBCCCEFqLXCiFOjmWfmxB1zFTnKzAFCGWSu9EpcSwDEFoebtLL0zA06fDBpVTDr5r82mGs9QTEtDBeJwVyxDHVZaJZYZo6CucJBwVyRcHgpmCOEEFJ4WiuMGHT44AtmNjBh3CMuDM9BZs4mBFg9OSy1FMs4GyUEc0Bscbgz+565+XbMJWq26pP2zNmdflQWyVoCUTtl5rISL7OkiZYFg4K5IuH0BWktASGEkIIjDkE5PZ5Zdi6emcvFAJTY3rfeOZZmy6F3wgvGgGXl0oK5mrISWcoshR1z0gKWJpsBQ04//KGzAbfbH8J0MFJ0mTmrUYvr19Zg+8rKfB9lUSotUUPBKDNXSCiYKxJOXwhlJcUzbYoQQkhxaK0UAqZM++bEYM5mlP9nXIlGiWqzLseZuWnUmHXQqaX1tNeYdRh2+rNeHD7kmH/HnKjZJpabnv1zEHfMFVvPHAD85NYL8IbV1fk+xqKkUDCU6zWYoGCuYFAwVyQc3hBl5gghhBScJqsBjAGnM5xoOe4JwKxT5WzAV6NVn9ueuUmvpLUEoupSHXyhSFZDWbzBMKa8Iclllk2x8yX2zY04hSCaesvIbBaDBpM0zbJgUDBXBDjnNACFEEJIQdKplagv12eemcvRjjlRk9WQ88yc1H454Oz0yWyGoIhrCeqkBnO2c9cTjIiZOQrmyCxCMEeZuUJBwVwR8IeiCIajtDCcEEJIQWqtMGQ80XLMndtgrtGmx7gnALdf/vUEnkAY455g2pk5AFn1zUldSyAqLVHDatDMGIJSzGWWJDtWI5VZFhIK5gqQNxjGN//eGZ/gNR+HT/gHRT1zhBBCClFrhRGnxz2IRtPvAxv3BHOyMFzUZD23X0wuYvlmOpk5ccriUBYTLdMN5oBz1xPYXX6Ulqgl9/qRpYMyc4WFgrkC9OBLZ/DAC6fxp9cHJT1erKunnjlCCCGFqLXSCH8omlGAkvPMXCzQykUw15fmWgIAqDTpsl4cPuTwQcGAqjT+3IRy08SeueLbMUfkYTFo4fCGEI5E830UAgrmCo7TF8IDL5wGAOw+PSnpYxzeWDBHPXOEEEIKkLieIN2+OV8wAk8gnONg7tx+Mbn0xIM56WWWSgVDpUkb73vLxKBDCMRUSumXec02PeyuALzBMAAhM1dsO+aIPMRdc1Ne+UuTSfoomCswv3jpDFz+MNbXl2Ffz6SkkhQxmDNTMEcIIaQAtVbE1hOk2TcXXxiewzJLo1aFCpM2JxMt+yanYTNqYNSq0vq46lIdRlyZl1kOOrxplVgCCUNQxoUAdMRFmTmSnCUWzFGpZWGgYK6ATE0H8eBLZ3Dt6mq896JGOH0hdI245/04p9gzR2WWhBBCCpDFoEGZXo1Taa4nGM3hwvBETVZ9TiZa9ox70WCRXmIpqi0tyXqaZdrBXEKGMhyJYswdoOEnJCkxMzdB6wkKAgVzBeSBF09jOhjGJ69ejs0tVgDA7tMT835cvMxSTwNQCCGEFB7GGForjGkHc+LC8IocZuYAoQwyN5k5bzxISkd1qQ7DjswWh0ejHMNO6QvDRWJm7sz4NMY9QUQ57ZgjyVmMlJkrJBTMFYhxTwC/fLkHN6yrxYpqE+rKSrCsvAR7zswfzDl9IagUDAYNTZwihBBSmFpshrR75sQyy8oFyMwl9oulwjlHREILRCAcwZDTh4Y0hp+IamKLw12++c8z27gngFCEp52ZE8tNe8anz64loGCOJEFlloWFgrkCcf9zpxAIR/CJq9rjb9vSYsXeM/P3zTl8IZTp1WCM5fqYhBBCSEZaK40YcwfiE5ilGHMHwNjZi8dcaZS4nmByOoh3/PQVXP1fz88Y459M/6QPnCOjzFxNaWxxeAZ9c4OxtQR1ZekHYs2xiZYjtGOOpFAeqwSb8FAwVwgomCsAdpcf/7u7F289vy4+8QsANjdbMOUN4cRo6r45pzdEw08IIYQUNPHn2+k0Si3HPAFY9Jq0pjJm4uyuubkDtCGHDzfd/wqODrkwOR3E2+97Gft65p46ncmOOZEYRA1nMNFSnIKZbmYOAJpsepwZ98Yzc1RmSZJRKxUoLVFTZq5AUDBXAO7beRLhKMfHr2yf8fYtsb65PfOsKHD4grSWgBBCSEGLT7RMo9Qy1zvmRI02IeCaawjKyVE33vHTVzDqCuDX79+EP929FeV6DW79+R48cXAo6cf0ZrCWQFQby6plMgQlk4XhoiabAeOeAE6OeqBSsPigC0Jms9Li8IJBwVyeDTp8eHhvP266cNk53/CXlZegrmz+vjmHN0TDTwghhBS0eoseaiVLawjKuCeQ07UEIrNODatBkzQzd6DfgZvu34VQhOP3H7oIm1usaLIZ8Me7Lsb6+jJ87OHX8ZOdJ88ZVtI7MQ2TToXyDCZNVxi1UDBgJIMl64MOH0xaFcy69F+3OXYdsuf0JCpNWigU1L5BkrMYNDTNskAs+WDu8388hC8+fjhvr//jZ08CAD46KysHCNO/NjdbsOf0ZMqJVk5fiDJzhBBCCppaqUCj1ZDWrrmFyswBQjmkuGNN9MKJMfy/n++GSafGY3ddjFW15vj7yg0a/O8dm/CW9bX43pPH8fk/HkYoEo2/v3fSi0arPqN+dpVSgUqTDkMZZuYyycoBZydaHre7UUX9ciQFC2XmCsaSD+ZCEY6/Hhya8Q14ofRNePHoq/1456Z61M3xjXdziwUT00GcTPHDz+kNoZR2zBFCCClwrRUGyZk5zvmCBnNNs9YT/OXgED7wq31otBrwh7suSjqVUqtS4ge3rMfHrmjD71/tx/se2geXXxjw0jvhzajEUlRTpsNIBsHcoMMXL9NMV+KwFppkSVKxGimYKxRLPpi7ZnUVXP4w9p5J3ZeWCz98thtKBcOHt7fN+Rixb273HOcLRaJwB8IopcwcIYSQAtdaYUTvhFfSDVRPIIxAOAqbcWHaCBqtBgw5/fCHIvjfXT342O9ex/kN5fj9h7ag0jR3YMMYw6euWYHv3rgOu09P4MafvoK+CS8GprxozGBhuKimVIfhDMoshxzp75gTlWiUqIll5Gj4CUnFYtBgyhuad+I6yb0lH8xd1l4BnVqBp46OLOjrnh7z4LHXBvDuLY0pv2E2WPSoNuuwZ47l4a7YiGcqsySEEFLoWiuMCEc5+iZTrwAAEhaGL1RmLjYE5QuPHcZX/nwUV66swq/fv0ly79nNG+rxq/dvwrDTjxt+9CJCEZ7RWgJRtbkEw870Fod7g2FMeUMZl1kCZ7NztJaApGIxaBGJ8ngmmuTPkg/mSjRKXNpegaeO2dP6hpmt/36mG1qVEndta035OMYYNrdYsHuOvjmHGMzRABRCCCEFrrVSWE8gpW/u2LALABZkAApwdurk468P4qYLl+H+d18AnVqZ1nNsbbPhsbsuhikWAGaylkBUW6aDNxiByy99cbi4lmCu1g0pxL45KrMkqYiTTieo1DLvlnwwBwDXrKrCsNOPI4OuBXm9E3Y3njg4hNsubpL0Q2pzsxXjngBOJ1lQKi5fpZ45Qgghha5F4nqC3acn8NlHD6Gt0ogLGsoX4mhoqzTCZtTgrm2t+O6N6zLebddeZcKfPrwV33zbWmxssmR8HjEzlk7fXDZrCUTNsQxlpXlhgmiyOFliwRz1zeWfKt8HKARXdlRBwYCnjo1g7bLSnL/eD54+AYNGhQ9d1iLp8VtahB8Ge05PzlgqDgjDTwBQzxwhhJCCZ9apUWnSphyCsuf0BN730D7UlZfg4Q9ugUG7MJcqRq0Ke794lSzj+CtMWvy/zQ1ZPYfYuzbk9GFFtUnSx8gRzG1psaKmVIflVdJekyxNYjA34aFgLt8oMwfhC3JjkwVPHbXn/LWODjnx98MjeP/WJpRLXMbZbDOgwqRNum/O4RP+EVHPHCGEkMWgtcI4ZzC398wk3vfLfagt0+G3H9y8YP1yokLaq1ZTKgRk6WbmFAyoyuLPbd2yMuz6wpULVt5KFierkTJzhWLeYI4xVs8Y28kY62SMHWWMfTz29u8xxroYY4cYY48zxspyftocumZ1NY7b3ehJUsoop589fxomnQofuFRaVg44u29u9+mJc/rmHF7qmSOEELJ4tFYKu+Zm/zzb1zOJ2x/ai+pSHR7+YOoJkktBhUlYHD6cRjA36PCj2qzLuESUEKnOllnS4vB8k/KvPQzg05zzDgBbAHyYMbYKwA4Aazjn6wCcAPCF3B0z965ZVQUA2HEsd9m5yekg/nlkBO+4YFnaZZFbWqywuwLonZg5AUwM5sw6qpglhBBS+ForjHD5wxhPKM96tWcStz8oBHK/++AWVNLwDaiVClSYtBh2SF9PMOjwZlViSYhUWpUSRq2KBqAUgHmDOc75MOf8tdjv3QA6AdRxzp/inIsjlnYDWJa7Y+ZevUWPjhoznjqWuxUFj702gGAkindtSr+OPt43N6vU0ukLwaRT0V04Qgghi4LY+y2WWr7aM4nbHtyLKjMFcrPVlJZgxJVOmaU/4x1zhKTLYqDF4YUgrQiAMdYE4HwAe2a96/0A/jHHx9zJGHuVMfbq2NhYRodcKNesqsKrvVMY98ifMuac4+G9fbigoUxyI3Oi1gphytbu0zOXhzt9IRp+QgghZNGIrycY82B/79lA7uE7KZCbTVgcLi2Yi0Y5hp0+ysyRBUPBXGGQHMwxxowA/gjgE5xzV8LbvwShFPM3yT6Oc/4A53wD53xDRUVFtufNqWtWV4Fz4JlO+Ust9/VM4dTYdEZZOUDsm7Niz6y+OYc3iDJaS0AIIWSRqDHrUKJW4q8Hh3Hbg/tQGQvkqiiQO0d1qQ7DDp+kPbjjngBCEU7BHFkwVoOGplkWAEnBHGNMDSGQ+w3n/LGEt98G4AYAt/KF3LidI6tqzKgrK8nJVMuH9/bBpFPhhnW1GT/H5hYLhpx+DEydrZ93+EIoK6HhJ4QQQhYHhYKhpcKAXacnYDNq8PAHKZCbS21pCaaDEbgD8y8OH4z11tWV0Z8lWRiUmSsMUqZZMgC/ANDJOb834e3XAvgcgDdzzr1zffxiwhjD1auq8OLJcUxL+MYplcMbxN8OD+Nt59ehRKPM+Hk2N1sBALtOn+2bc/pCtDCcEELIorKxyYKWCgMevnNLfDk2OZf4ZzPsmL/Ucij2GMrMkYViMQrBXBHkcxY1KZm5rQDeA+AKxtiB2K/rAPwYgAnAjtjb7s/lQRfKNaurEAxH8WK3fP19j702iGA4induzG6BaHulERaDBnsS+uac3hDtmCOEELKofPVNq7Djk5fHd6mR5GpjWbZh5/wTLeVYGE5IOqwGDYKRKDwyJkBI+uadZ885fwlAsi2af5f/OPm3qcmC0hI1njpqx7VrarJ+PnHwyfr6MqyqNWf1XAoFw6YmS3yiJeccDhqAQgghZJFhjEFZOPu5C1Z1GovDBx0+mLQqmHV0TUAWhsUgLJafnA7CRF93eUPz7GdRKRW4sqMSz3SNIhSJZv18+3un0D3qwbs21ctwOqFvbmDKh4EpLzyBMCJRTgNQCCGEkCJUadKCMWBIQjA35KBJlmRhWWOLw2nXXH5RMJfENauq4fSFsO/M5PwPnsdv9/bBqM1u8EmiLS1C39ye05PxheE0AIUQQggpPmqlApUmLUYklFkOOny0Y44sKEssmJukiZZ5RcFcEpctt0GrUuCpY9lNtXR6Q/jboWG8ZX0tDNp5K1olWVFlQplejT1nJuD0CcEcDUAhhBBCilN1aYmkXXNCZo6GyZCFEw/mKDOXV/JEGEVGr1Hh0vYKPHV0BF990yoIAz3T96cDgwiEoxnvlktGoWDY2GTBnjOTeMv6OgCgASiEEEJIkaox63ByzAMACEWicPpCcHiDcHhDcHhDmPIGY79CVGZJFpSFyiwLAgVzc7hmdRWe7rTj6JALa+pK0/54cfDJumWlGX18KltarNhxzI7OYWF3O2XmCCGEkOJUU6bDk8dGsOarT6acGqhRKXB+ffkCnowsdXqNElqVApPTgXwfZUmjYG4OV66shIIBTx0dySgYe73fga4RN7719rWyn21zswUA4svNqWeOEEIIKU43XrgMbn8YJp0KZSUalOnVsV8alOvVKCvRoFSvhkmrgkJBI0LJwmGMwWrQUGYuzyiYm4PVqMWGJgueOmbHp65ZkfbHP7ynD3qNEm86T57BJ4k6asww6VR4tVcY0ELTLAkhhJDitLq2FN+/6bx8H4OQpMTF4SR/aABKCtesqkLXiBu9E9NpfZzLH8JfDg3hLetrYZRp8EkipYJhc7MFUQ5oVQro1ErZX4MQQgghhJBULAYtBXN5RsFcCtesqgYA7EhzquWfXx+EPyTv4JPZNjcLKwpoYTghhBBCCMkHq0GDCVpNkFcUzKXQYNVjZbUp3psmBeccv93bj9W1ZqyVefBJos0tQt8clVgSQgghhJB8sBiozDLfKJibxzWrq/Fq7yTGPdIm9RwacKJz2IV3bWrIeKWBFKtqzDBpVTT8hBBCCCGE5IXFoIEvFIEvGMn3UZYsCubmcc2qKkQ58GznqKTHP7y3DyVqJd6yXv7BJ4lUSgXuvKwFN5xXk9PXIYQQQgghJBlrfNccrSfIFwrm5rG61oy6shI8dWxk3se6/SE8cXAIbzqvBiZd7ssfP3plO957UVPOX4cQQgghhJDZxMXhVGqZP7SaYB6MMVy9qgq/3duHLzx2GDWlOlSX6lAT/1UCQ2xi5RMHh+ANRnI6+IQQQgghhJBCYDWKmTkK5vKFgjkJ3rWpAa/3TWHHsRGMJ5nYY9KpUFOqw7gniJXVJqyvL1v4QxJCCCGEELKALAYtAGCKgrm8oWBOghXVJvz5I5cAAALhCOzOAIadPoy4/Bh2+jHi9GPI4YNeo8Jd21pzOviEEEIIIYSQQkBllvlHwVyatColGqx6NFj1+T4KIYQQQggheWPWqaBWMiqzzCMagEIIIYQQQghJG2MM5XoNJmlxeN5QMEcIIYQQQgjJiMWgocxcHlEwRwghhBBCCMmI1ajBJO2ZyxsK5gghhBBCCCEZsRi0NAAljyiYI4QQQgghhGTESmWWeUXBHCGEEEIIISQjFoMGbn8YwXA030dZkiiYI4QQQgghhGSkyiwsDh9y+PJ8kqWJgjlCCCGEEEJIRlZUmwEAXSOuPJ9kaaJgjhBCCCGEEJKRFVUmKBhwbNid76MsSRTMEUIIIYQQQjJSolGiyWZA5zBl5vKBgjlCCCGEEEJIxjpqzBTM5QkFc4QQQgghhJCMraoxY2DKB5c/lO+jLDkUzBFCCCGEEEIy1lFjAgB0Ud/cgqNgjhBCCCGEEJKxjhphoiWVWi68eYM5xlg9Y2wnY6yTMXaUMfbx2Ntviv1/lDG2IfdHJYQQQgghhBSaarMOZXo1BXN5oJLwmDCAT3POX2OMmQDsZ4ztAHAEwNsB/CyXBySEEEIIIYQULsYYOqppCEo+zJuZ45wPc85fi/3eDaATQB3nvJNzfjzXBySEEEIIIYQUto4aM47b3YhEeb6PsqSk1TPHGGsCcD6APTk5DSGEEEIIIWTR6agxwR+K4sz4dL6PsqRIDuYYY0YAfwTwCc655BwqY+xOxtirjLFXx8bGMjkjIYQQQgghpIDREJT8kBTMMcbUEAK533DOH0vnBTjnD3DON3DON1RUVGRyRkIIIYQQQkgBa68yQqVgFMwtMCnTLBmAXwDo5Jzfm/sjEUIIIYQQQhYTrUqJ1gojBXMLTEpmbiuA9wC4gjF2IPbrOsbY2xhjAwAuAvA3xtiTOT0pIYQQQgghpGB11JjQSYvDF9S8qwk45y8BYHO8+3F5j0MIIYQQQghZjDpqzPjTgSFMTQdRbtDk+zhLQlrTLAkhhBBCCCEkGRqCsvAomCOEEEIIIYRkTQzmjlEwt2AomCOEEEIIIYRkrcKkhc2opb65BUTBHCGEEEIIIUQWwhAUyswtFArmCCGEEEIIIbJYVWPGyVEPQpFovo+yJFAwRwghhBBCCJFFR40ZwUgUp8Y8+T7KkkDBHCGEEEIIIUQWNNFyYVEwRwghhBBCCJFFS4UBGqWChqAsEArmCCGEEEIIIbJQKxVorzJSZm6BqPJ9gFAohIGBAfj9/nwfhRQZnU6HZcuWQa1W5/sohBBCCCFLRkeNGc8dH833MZaEvAdzAwMDMJlMaGpqAmMs38chRYJzjomJCQwMDKC5uTnfxyGEEEIIWTI6asz4w/4BjLr9qDTp8n2copb3Mku/3w+r1UqBHJEVYwxWq5UyvoQQQgghC6yjxgQA1De3APIezAGgQI7kBH1dEUIIIYQsvFU00XLBFEQwl2/f+MY3sHr1aqxbtw7r16/Hnj17AAB33HEHjh07JstrNDU1YXx8POVjvvnNb6b9vL/85S/xkY98ZMbbHnroIaxfvx7r16+HRqPB2rVrsX79enz+859P+/kXwg9+8AN4vd58H4MQQgghhMigTK9BTamOgrkFkPeeuXzbtWsX/vrXv+K1116DVqvF+Pg4gsEgAOB//ud/FvQs3/zmN/HFL34x6+d53/veh/e9730AhCBy586dsNlsWT9vpjjn4JxDoUh+7+AHP/gB3v3ud0Ov10t+znA4DJVqyX/5EkIIIYQUpI4aMwVzC2DJZ+aGh4dhs9mg1WoBADabDbW1tQCAbdu24dVXXwUAGI1GfO5zn8OFF16Iq666Cnv37sW2bdvQ0tKCJ554AsC5WbIbbrgBzz333Dmv+da3vhUXXnghVq9ejQceeAAA8PnPfx4+nw/r16/HrbfeCgD4v//7P2zatAnr16/Hhz70IUQiEQBC5m358uW4/PLL8fLLL0v+XL/3ve9h48aNWLduHb761a8CAHp6erBy5UrccccdWLNmDW699VY8/fTT2Lp1K9rb27F3714AwNe+9jW85z3vwRVXXIH29nb8/Oc/n/d5Ozo6cPfdd+OCCy5Af38/7rrrLmzYsAGrV6+OP+6HP/whhoaGsH37dmzfvj3+Zy36wx/+gNtvvx0AcPvtt+NTn/oUtm/fjs997nM4deoUrr32Wlx44YW49NJL0dXVJfnPghBCCCGE5E5HjQmnxqbhD0XyfZSiVlCpjX/7y1EcG5I3gl9Va8ZX37R6zvdfc801+PrXv47ly5fjqquuwi233ILLL7/8nMdNT09j27Zt+M53voO3ve1t+PKXv4wdO3bg2LFjuO222/DmN79Z8pkefPBBWCwW+Hw+bNy4Ee94xzvw7W9/Gz/+8Y9x4MABAEBnZyd+//vf4+WXX4Zarcbdd9+N3/zmN7j66qvx1a9+Ffv370dpaSm2b9+O888/f97XfOqpp9Dd3Y29e/eCc443v/nNeOGFF9DQ0ICTJ0/i0UcfxQMPPICNGzfit7/9LV566SU88cQT+OY3v4k//elPAIBDhw5h9+7dmJ6exvnnn4/rr78eR44cmfN5jx8/joceegj33XcfAKGc1WKxIBKJ4Morr8ShQ4fwsY99DPfee6/k7OGJEyfw9NNPQ6lU4sorr8T999+P9vZ27NmzB3fffTeeffZZyX8PhBBCCCEkNzpqzIhEOU6OerCmrjTfxylaBRXM5YPRaMT+/fvx4osvYufOnbjlllvw7W9/O54NEmk0Glx77bUAgLVr10Kr1UKtVmPt2rXo6elJ6zV/+MMf4vHHHwcA9Pf3o7u7G1ardcZjnnnmGezfvx8bN24EAPh8PlRWVmLPnj3Ytm0bKioqAAC33HILTpw4Me9rPvXUU3jqqafigZ/H40F3dzcaGhrQ3NyMtWvXAgBWr16NK6+8Eoyxcz63t7zlLSgpKUFJSQm2b9+OvXv34qWXXprzeRsbG7Fly5b4xz/yyCN44IEHEA6HMTw8jGPHjmHdunVp/dnddNNNUCqV8Hg8eOWVV3DTTTfF3xcIBNJ6LkIIIYQQkhsdsSEox4ZdFMzlUEEFc6kyaLmkVCqxbds2bNu2DWvXrsWvfvWrc4I5tVodn46oUCjiZZkKhQLhcBgAoFKpEI1G4x+TbCz+c889h6effhq7du2CXq/Htm3bkj6Oc47bbrsN3/rWt2a8/U9/+lNGUxo55/jCF76AD33oQzPe3tPTE/9cUn1uwLnTIRljKZ/XYDDE///MmTP4/ve/j3379qG8vBy33377nGsDEl9n9mPE54xGoygrK4tnMgkhhBBCSOFoshqgUyuoby7HlnzP3PHjx9Hd3R3//wMHDqCxsTGj52pqasKBAwcQjUbR398f7zdL5HQ6UV5eDr1ej66uLuzevTv+PrVajVAoBAC48sor8Yc//AGjo6MAgMnJSfT29mLz5s147rnnMDExgVAohEcffVTS2d7whjfgwQcfhMfjAQAMDg7Gn1uqP//5z/D7/ZiYmMBzzz2HjRs3Sn5el8sFg8GA0tJS2O12/OMf/4i/z2Qywe0+u4ekqqoKnZ2diEaj8QzmbGazGc3NzfHPn3OOgwcPpvX5EEIIIYSQ3FAqGFZU0xCUXCuozFw+eDwefPSjH4XD4YBKpUJbW1t8KEm6tm7dGi9ZXLNmDS74/+3df3BVZX7H8feXCIIEWbIbNFlAE3eRRAjXGCI/lJ8dwEVUGERkB7CATpw6jNPFwdoRwpbO+Kv1B0ONDIsLyhQtbYFpkaoYCAhI3DFdWAKCa0ipEZAfSsXRBJ7+cc+NCSTkJORyzwmf18yZ3Pvcc57znPtJ5slzzznPzc29YJ2xY8dSVFRETk4ON998c73LEB955BFycnLIzc1l1apVLFq0iNGjR3Pu3Dnat2/PkiVLGDhwIIWFhQwaNIi0tDRyc3NrJ0a5mNGjR1NeXs6gQYOA6OWlb775JklJSb6PLz8/n3HjxlFZWcnTTz9Neno66enpvurt378/t956K7fccguZmZkMGTKk3nHfddddpKWlUVxczDPPPMPdd99Nz5496du3b+1A8XyrVq3i0UcfZdGiRVRXVzNlyhT69+/v+3hEREREJH6y07qwYfeXOOf0/b9xYs65y7azvLw8F5sdMqa8vJysrKzL1gZpmcLCQpKTk5k7d26im9Is+v0SERERSYyVOyqYv+5PbH9yJOk/6ZTo5gSGmf3BOZfXGnVd8ZdZioiIiIhI64tNgrLvS11qGS9X/GWW4k9hYWGimyAiIiIiIdLn+i4AlFedZmSf6xLcmrZJZ+ZERERERKTVdenYnp4pndirSVDiRoM5ERERERGJiyzNaBlXGsyJiIiIiEhcZKVdS8VX3/LdD03Pvi7Np8GciIiIiIjERVbatZxzsP/I6aZXlmbTYA5ISkoiEonQt29f7r//fs6cOdPiuh566CHWrFkDwOzZs9m7d2+j627evJnt27fXPi8qKmLlypUt3ndMRUUFffv2rVdWWFjICy+80Kx6Wqs9IiIiInJlyvZmtNSllvERrsHcc89BcXH9suLiaPkl6NSpE2VlZezZs4cOHTpQVFRU73U/X8rdkGXLlpGdnd3o6+cP5goKCpg+fXqL9tXaampqAtUeEREREQmfHt06kXz1VRrMxUm4BnMDBsDkyT8O6IqLo88HDGi1Xdx5550cPHiQzZs3M2LECKZOnUq/fv04e/YsTzzxBAMGDCAnJ4fXXnsNAOccjz32GNnZ2YwbN46jR4/W1jV8+HBiX5K+ceNGcnNz6d+/P6NGjaKiooKioiJefPFFIpEIW7durXf2rKysjIEDB5KTk8OECRM4efJkbZ3z5s0jPz+f3r17s3Xr1mYf48Xqfuqppxg2bBgvv/xybXu++OILIpFI7ZKUlMShQ4c4dOgQo0aNIicnh1GjRlFZWQlEz07OmTOHwYMHk5mZWXumUkRERESuLO3aGX2u76LBXJw0+T1zZtYTWAlcD5wDljrnXjazFOAt4EagApjsnDt5Sa15/HEoK7v4OunpMGYMpKVBVRVkZcHChdGlIZEIvPSSr93X1NTwzjvvMHbsWAB27drFnj17yMjIYOnSpXTt2pXS0lK+//57hgwZwujRo/nkk0/Yv38/u3fv5siRI2RnZzNz5sx69R47doyHH36YkpISMjIyOHHiBCkpKRQUFJCcnMzcuXMB2LRpU+0206dPZ/HixQwbNoz58+ezcOFCXvKOo6amhl27drFhwwYWLlzI+++/f8GxfPbZZ0QikdrnX375Ze1+Llb3qVOn2LJlC/Djd8ulp6dT5uWyZMkStmzZwg033MD48eOZPn06M2bMYPny5cyZM4e1a9cCUFVVxbZt29i3bx/33HMPkyZN8pWBiIiIiLQtWWnXsvaT/8U5h5klujltip8zczXAb5xzWcBA4K/MLBt4EtjknPslsMl7Hn/dukUHcpWV0Z/dul1yld999x2RSIS8vDx69erFrFmzAMjPzycjIwOAd999l5UrVxKJRLj99ts5fvw4Bw4coKSkhAcffJCkpCTS09MZOXLkBfXv3LmToUOH1taVkpJy0fZ8/fXXnDp1imHDhgEwY8YMSkpKal+fOHEiALfddhsVFRUN1nHTTTdRVlZWuxQUFPiq+4EHHmi0XR9++CHLli1j+fLlAOzYsYOpU6cCMG3aNLZt21a77n333Ue7du3Izs7myJEjFz1eEREREWm7stKu5fT3NRw++V2im9LmNHlmzjlXBVR5j0+bWTnwc+BeYLi32gpgMzDvklrj5wxa7NLKp5+GV1+FBQtgxIhL2m3snrnzde7cufaxc47FixczZsyYeuts2LChyU8YWvtTiKuvvhqITtxSU1PTavVC/WOuq6qqilmzZrF+/XqSk5MbXKfuMcbaCNHjFxEREZErU5+0LgDsrfqGninXJLg1bUuz7pkzsxuBW4GPgOu8gV5swNe91Vt3vthA7u234be/jf6sew9dHI0ZM4ZXX32V6upqAD799FO+/fZbhg4dyurVqzl79ixVVVUUN9CWQYMGsWXLFj7//HMATpw4AUCXLl04ffrCaVq7du1Kt27dau+He+ONN2rPpF2qltRdXV3N5MmTefbZZ+ndu3dt+eDBg1m9ejUAq1at4o477miVNoqIiIhI29Hn+i6YaUbLeGjyzFyMmSUD/wo87pz7xu+ZJjN7BHgEoFevXi1p449KS6MDuNiZuBEjos9LSy/57FxTZs+eTUVFBbm5uTjnSE1NZe3atUyYMIEPPviAfv360bt37wYHRqmpqSxdupSJEydy7tw5unfvznvvvcf48eOZNGkS69atY/HixfW2WbFiBQUFBZw5c4bMzExef/31VjuW5ta9fft2SktLWbBgAQsWLACiZyRfeeUVZs6cyfPPP09qamqrtlFERERE2oZrOlzFmoLB/KJ7w1d3ScuZn0vgzKw98B/Afznn/tEr2w8Md85VmVkasNk5d/PF6snLy3Ox2R1jysvLycrKamn7RS5Kv18iIiIiEiRm9gfnXF5r1NXkZZYWPQX3O6A8NpDzrAdmeI9nAOtao0EiIiIiIiLSND+XWQ4BpgG7zazMK3sKeAZ428xmAZXA/XFpoYiIiIiIiFzAz2yW24DGbpAb1brNERERERERET+aNZtlvGjqeokH/V6JiIiISFuW8MFcx44dOX78uP7xllblnOP48eN07Ngx0U0REREREYkL319NEC89evTg8OHDHDt2LNFNkTamY8eO9OjRI9HNEBERERGJi4QP5tq3b09GRkaimyEiIiIiIhIqCb/MUkRERERERJpPgzkREREREZEQ0mBOREREREQkhOxyziJpZseAQ5dth/79DPgq0Y2QS6IMw035hZ8yDD9lGH7KMNyUX/j5zfAG51xqa+zwsg7mgsrMPnbO5SW6HdJyyjDclF/4KcPwU4bhpwzDTfmFXyIy1GWWIiIiIiIiIaTBnIiIiIiISAhpMBe1NNENkEumDMNN+YWfMgw/ZRh+yjDclF/4XfYMdc+ciIiIiIhICOnMnIiIiIiISAiFajBnZmPNbL+ZHTSzJ+uUv2VmZd5SYWZljWyfYmbvmdkB72c3r/zXdbYvM7NzZhZpYPtV3v73mNlyM2vvlZuZveK1649mlhufdyD8ApxhHzPbYWbfm9nc+Bx92xDgDH/t/f390cy2m1n/+LwD4RfgDO/18iszs4/N7I74vAPhFsf82pvZCjPbbWblZvY3jWyfYWYfedu/ZWYdvHL1hT4FOEP1hT4FOEP1hT4FOMPm9YXOuVAsQBLwGZAJdAD+G8huYL1/AOY3UsdzwJPe4yeBZxtYpx/w50a2/xVg3vLPwKN1yt/xygcCHyX6/QriEvAMuwMDgL8H5ib6vQrqEvAMBwPdvMd36e8wlBkm8+Pl/znAvkS/X0Fb4pkfMBVY7T2+BqgAbmxg+7eBKd7jIvWFbSpD9YXhz1B9YfgzbFZfGKYzc/nAQefcn51zPwCrgXvrrmBmBkwm+s9BQ+4FVniPVwD3NbDOg41t75zb4DzALqBHnXpXei/tBH5iZmm+j+zKEdgMnXNHnXOlQHWzjujKE+QMtzvnTnqr7eTHv0+pL8gZ/p9XBtAZ0E3dF4pnfg7obGZXAZ2AH4BvGqh7JLCmge3VF/oT2AzVF/oW5AzVF/oT5Ayb1ReGaTD3c+B/6jw/7JXVdSdwxDl3oJE6rnPOVQF4P7s3sM4DNB4aED19CkwDNjajbRLsDMWfsGQ4i+gZArlQoDM0swlmtg/4T2Dmxba/QsUzvzXAt0AVUAm84Jw7cd62PwVOOedqGti/+kJ/gpyh+BOWDNUXNi7QGTanLwzTYM4aKDt/pNroJ8G+dmB2O3DGObeniVX/CShxzm1tRtsk2BmKP4HP0MxGEO3A5rW0DW1coDN0zv27c64P0U8o/66lbWjD4plfPnAWSAcygN+YWWYz9q++0J8gZyj+BD5D9YVNCnSGzekLwzSYOwz0rPO8B/BF7Il3KnMi8Fadste9mwc3eEVHYpd8eD+PnrePKTT9SfICIBX4a79tk1pBzlD8CXSGZpYDLAPudc4db8ZxXUkCnWGMc64EuMnMfubnoK4g8cxvKrDROVftnDsKfAjknbf/r4hePnlVA/tXX+hPkDMUfwKdofpCXwKdYYyfvjBMg7lS4JfezC8diP6zsL7O639B9AbBw7EC59xfOucizrlfeUXrgRne4xnAuti6ZtYOuJ/oNbMNMrPZwBjgQefcuTovrQemW9RA4OvYaVepJ8gZij+BzdDMegH/Bkxzzn16CcfY1gU5w1949xFg0ZkQOwD6R6S+eOZXCYz0+rLORCcx2Vd35959HMXApAa2V1/oT5AzFH8Cm6H6Qt+CnGHz+kIXgBll/C5EZ8r6lOjsM3973mu/Bwqa2P6nwCbggPczpc5rw4GdTWxf4+27zFvme+UGLPFe2w3kJfq9CuoS4AyvJ/opzTfAKe/xtYl+v4K4BDjDZcDJOuUfJ/q9CuoS4AznAX/yynYAdyT6vQriEq/8iM6g9i9eBnuBJxrZPpPoxDUHvfWv9srVF4Y/Q/WF4c9QfWH4M2xWXxib9lJERERERERCJEyXWYqIiIiIiIhHgzkREREREZEQ0mBOREREREQkhDSYExERERERCSEN5kREREREREJIgzkREREREZEQ0mBOREREREQkhDSYExERERERCaH/B63EQgUeSgLRAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2oAAAE/CAYAAAA39zBmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACjiElEQVR4nOzdd3xb9bk/8M9Xe1qyvGc8YjuDJM4AEgKEQBkttNAWumgLbaEtXXTdztsf9N62t+N2XLoobW8nLbfMDqBlZbAyIdM7ifeQLS/t+f39cXQU2ZGtI+nIlp3n/XrlBbE1jkek85xnMc45CCGEEEIIIYTkDsViHwAhhBBCCCGEkJkoUCOEEEIIIYSQHEOBGiGEEEIIIYTkGArUCCGEEEIIISTHUKBGCCGEEEIIITmGAjVCCCGEEEIIyTEUqBFCCCGEEEJIjqFAjRBClijGmCvuT4Qx5o37+62LfXzpYIx1M8besNjHMR/G2G7G2B1ZeuxGxthfGWOjjLFxxti/GGNNcZ9/F2OsnTE2xRizM8Z+xxjLS/A4DYwxH2Psj7M+fhVjrI0x5mGM7WKMrYj7HGOMfYcx5oj++S5jjGXj6ySEEJIcBWqEELJEcc5N4h8AvQDeHPexBxf7+GZjjKmWw3NkmRXA3wA0ASgBcADAX+M+/zKA7ZxzC4A6ACoA30jwOD8FcDD+A4yxQgCPAfgaABuAQwD+L+4mHwZwE4ANANYDuAHARzL8egghhKSJAjVCCFlmGGMKxtiXGGOnopmRvzDGbNHP1TDGOGPsA4yxPsbYBGPso4yxCxljxxhjk4yxn8Q91u2MsZcZYz+OZnHaGGNXxX3ewhj7NWNsiDE2wBj7BmNMOeu+P2SMjQO4lzFWzxh7IXpcY4yxBxlj1ujt/wCgGsDfo1nBLzDGrmCM9c/6+mJZN8bYvYyxRxhjf2SMTQO4PckxrWSM7Yl+LWOMsfhAJf45dNHHdES/JwcZYyWMsW8CuAzAT6LH+JPo7Vcxxp6NZsHaGWPviHus3zLG7o9+3hl9/hWJnpdzfoBz/mvO+TjnPAjghwCaGGMF0c/3cc7H4u4SBrBy1rG/C8AkgOdnPfzbAJzknD/MOfcBuBfABsbYqujnbwPwfc55P+d8AMD3Adye6DgJIYRkHwVqhBCy/HwKQmZkB4ByABMQMizxLgbQAOCdAH4E4KsA3gBgLYB3MMZ2zLrtaQCFAO4B8JgY+AH4HYAQhGBhI4BrANyR4L7FAL4JgAH4r+hxrQZQBSFgAOf8fZiZGfyuxK/3RgCPQMhGPZjkmP4TwDMA8gFUAvjxHI95GwBL9PgKAHwUgJdz/lUALwL4RPQYP8EYMwJ4FsCfol/nuwH8jDG2Nu7xbo0+dyGAI9HjlOJyAMOcc4f4AcbYpYyxKQBOAG+H8PMTP5cH4D8AfC7BY60FcFT8C+fcDeBU9OPnfD76//FfAyGEkAVEgRohhCw/HwHw1WhmxA8hELp5Vlngf3LOfZzzZwC4AfyZc26PZlJehBDgiOwAfsQ5D3LO/w9AO4DrGWMlAN4I4NOcczfn3A4hA/SuuPsOcs5/zDkPcc69nPMuzvmznHM/53wUwA8gBJSZeJVz/gTnPAIgL8kxBQGsAFAe/fpfmuMxgxACtJWc8zDn/DDnfHqO294AoJtz/pvo1/kagEcB3Bx3myc553ujP4+vAtjGGKua74tijFVCCLA/G/9xzvlL0dLHSgDfA9Ad9+n/BPBrznlfgoc0AZia9bEpAOY5Pj8FwER9aoQQsjiWei0/IYSQc60A8DhjLBL3sTCEnifRSNz/exP83RT39wHOOY/7ew+EjNgKAGoAQ3Hn8goA8UHCjICBMVYM4D4I5YPm6O0nJH1Vc4t/jmTH9AUIwcwBxtgEhFK//03wmH+AkE17KFqa+UcIwW8wwW1XALiYMTYZ9zFV9DHOOUbOuStaClo+69hjGGNFEDJ/P+Oc/znRbTjnA4yxfwJ4CMAmxlgzhKzoxkS3B+CCEMjGy4OQmUv0+TwArlk/e0IIIQuEAjVCCFl++gB8kHP+8uxPMMZq0ni8CsYYizthr4Yw8KIPgB9AIec8NMd9Z5/k/1f0Y+s55w7G2E0AfjLP7d0ADHHHrwRQNM9zzHtMnPNhAHdGH+tSAM8xxvZyzrtm3S4I4OsAvh79nj0FIZP46wTH2AdgD+f86tnPFyeWPWOMmSAM8xhMdEPGWD6EIO1vnPNvzvOYgPA+Xh/9/ysA1ADojQapJgBKxtgazvkmACchlHSKz2OM3vdk9EMnIQwSORD9+4a4zxFCCFlgVPpICCHLz/0AvikOrGCMFTHGbszg8YoBfIoxpmaM3QKht+wpzvkQhIDi+4yxPCYMMamf1d82mxlC5maSMVYB4N9mfX4EwjRDUQcAHWPsesaYGsC/A9DO9eDJjokxdku0pBAQMnkcQrZxBsbYTsbYumhgOA2hFFK83exj/AeARsbY+6LfIzUThrOsjrvNm6K9ZRoIGb39icoToz1m/wLwMuf8Swk+fytjrJoJVkDo+xOHhjwAIfBqjv65H8CTAK6Nfv5xABcwxt7OGNMB+H8AjnHO26Kf/z2AzzLGKhhj5RD63H47+xgIIYQsDArUCCFk+fkfCBmvZxhjTgD7IAz1SNd+CINHxiAEBjfHDbd4PwANgBYIgc8jAMrmeayvA9gEof/pSQjj4uP9F4B/j05a/DznfArAxwD8CsAAhAxbP+Y33zFdCGA/Y8wF4Xt0N+f8TILHKI3ebxpAK4A9EMofAeH7ezMTJmbexzl3QhhY8i4IWbJhAN/BzIDyTxAGsYwD2AxhuEgib40e4wfYzD151dHPrwHwCoRg92UIWb47AYBz7uGcD4t/orfxRXsBEf3v2yH8DCcg/E7E9xP+AsDfARwHcALCz+cXcxwnIYSQLGNUek4IIWQujLHbAdzBOb90sY9lqWKM/RZAP+f83xf7WAghhCwdlFEjhBBCCCGEkBxDgRohhBBCCCGE5BgqfSSEEEIIIYSQHEMZNUIIIYQQQgjJMRSoEUIIIYQQQkiOWdCF14WFhbympmYhn5IQQgghhBBCcsbhw4fHOOdFyW63oIFaTU0NDh06tJBPSQghhBBCCCE5gzHWI+V2VPpICCGEEEIIITmGAjVCCCGEEEIIyTEUqBFCCCGEEEJIjlnQHjVCCCGEEEJyRTAYRH9/P3w+32IfClmGdDodKisroVar07o/BWqEEEIIIeS81N/fD7PZjJqaGjDGFvtwyDLCOYfD4UB/fz9qa2vTegwqfSSEEEIIIecln8+HgoICCtKI7BhjKCgoyChbS4EaIYQQQgg5b1GQRrIl098tCtQIIYQQQghZJN/85jexdu1arF+/Hs3Nzdi/fz8A4I477kBLS4ssz1FTU4OxsbF5b/Otb30r5cf97W9/i0984hMzPvab3/wGzc3NaG5uhkajwbp169Dc3IwvfelLKT/+QvjRj34Ej8ez2IeREPWoEUIIIYQQsgheffVV/OMf/8Brr70GrVaLsbExBAIBAMCvfvWrBT2Wb33rW/jKV76S8eN84AMfwAc+8AEAQoC4a9cuFBYWZvy46eKcg3MOhSJxfupHP/oR3vve98JgMEh+zFAoBJUq+2FU0owaY6yKMbaLMdbKGDvJGLs77nOfZIy1Rz/+3eweKllMDpcf+087FvswCCGEEEKWjaGhIRQWFkKr1QIACgsLUV5eDgC44oorcOjQIQCAyWTCF7/4RWzevBlveMMbcODAAVxxxRWoq6vD3/72NwDnZrduuOEG7N69+5znvOmmm7B582asXbsWDzzwAADgS1/6ErxeL5qbm3HrrbcCAP74xz/ioosuQnNzMz7ykY8gHA4DEDJmjY2N2LFjB15++WXJX+v3vvc9XHjhhVi/fj3uueceAEB3dzdWrVqFO+64AxdccAFuvfVWPPfcc9i+fTsaGhpw4MABAMC9996L973vfbjyyivR0NCAX/7yl0kfd/Xq1fjYxz6GTZs2oa+vD3fddRe2bNmCtWvXxm533333YXBwEDt37sTOnTtj32vRI488gttvvx0AcPvtt+Ozn/0sdu7ciS9+8Ys4deoUrrvuOmzevBmXXXYZ2traJH8vJBOjzLn+ACgDsCn6/2YAHQDWANgJ4DkA2ujnipM91ubNmzlZenzBEL/hvhf5yq88yb2B0GIfDiGEEEKILFpaWhb1+Z1OJ9+wYQNvaGjgd911F9+9e3fsczt27OAHDx7knHMOgD/11FOcc85vuukmfvXVV/NAIMCPHDnCN2zYwDnn/De/+Q3/+Mc/Hrv/9ddfz3ft2sU553zFihV8dHSUc865w+HgnHPu8Xj42rVr+djYGOecc6PRGLtvS0sLv+GGG3ggEOCcc37XXXfx3/3ud3xwcJBXVVVxu93O/X4/v+SSS2Y852zi8/7rX//id955J49EIjwcDvPrr7+e79mzh585c4YrlUp+7NgxHg6H+aZNm/gHPvABHolE+BNPPMFvvPFGzjnn99xzD1+/fj33eDx8dHSUV1ZW8oGBgXkflzHGX3311dixiF93KBTiO3bs4EePHj3nezP7+/Dwww/z2267jXPO+W233cavv/56HgoJ58JXXnkl7+jo4Jxzvm/fPr5z586E34NEv2MADvEkcRPnPHnpI+d8CMBQ9P+djLFWABUA7gTwbc65P/o5u7whJMkV33qyFccHpgAAnSMurKu0LPIREUIIIYTI6+t/P4mWwWlZH3NNeR7uefPaOT9vMplw+PBhvPjii9i1axfe+c534tvf/nYsiyPSaDS47rrrAADr1q2DVquFWq3GunXr0N3dndIx3XfffXj88ccBAH19fejs7ERBQcGM2zz//PM4fPgwLrzwQgCA1+tFcXEx9u/fjyuuuAJFRUUAgHe+853o6OhI+pzPPPMMnnnmGWzcuBEA4HK50NnZierqatTW1mLdunUAgLVr1+Kqq64CY+ycr+3GG2+EXq+HXq/Hzp07ceDAAbz00ktzPu6KFSuwdevW2P3/8pe/4IEHHkAoFMLQ0BBaWlqwfv36lL53t9xyC5RKJVwuF1555RXccsstsc/5/f6UHkuKlIorGWM1ADYC2A/gewAuY4x9E4APwOc55wdlP0KyqP5xbBC/e7UH16wpwTMtI2gdnqZAjRBCCCFEJkqlEldccQWuuOIKrFu3Dr/73e/OCdTUanVsgqBCoYiVSioUCoRCIQCASqVCJBKJ3SfRWPjdu3fjueeew6uvvgqDwYArrrgi4e0457jtttvwX//1XzM+/sQTT6Q1yZBzji9/+cv4yEc+MuPj3d3dsa9lvq8NOHeCImNs3sc1Go2xv585cwb//d//jYMHDyI/Px+33377nGPz459n9m3Ex4xEIrBarThy5EiyLz0jkgM1xpgJwKMAPs05n2aMqQDkA9gK4EIAf2GM1UXTefH3+zCADwNAdXW1bAdOsu/MmBtfevQ4NlZbcd+7N2LjfzyLtiHnYh8WIYQQQojs5st8ZUt7ezsUCgUaGhoAAEeOHMGKFSvSeqyamhr87Gc/QyQSwcDAQKy/K97U1BTy8/NhMBjQ1taGffv2xT6nVqsRDAahVqtx1VVX4cYbb8RnPvMZFBcXY3x8HE6nExdffDHuvvtuOBwO5OXl4eGHH8aGDRuSHtu1116Lr33ta7j11lthMpkwMDAAtVqd0tf317/+FV/+8pfhdruxe/dufPvb34Zer5f0uNPT0zAajbBYLBgZGcHTTz+NK664AgBgNpvhdDpjA09KSkrQ2tqKpqYmPP744zCbzec8Xl5eHmpra/Hwww/jlltuAeccx44dk/S9SIWkQI0xpoYQpD3IOX8s+uF+AI9FA7MDjLEIgEIAo/H35Zw/AOABANiyZcuMII7kLl8wjI8/+BpUSoafvGcTdGolGkvNaB2StySAEEIIIeR85XK58MlPfhKTk5NQqVRYuXJlbMBHqrZv3x4rI7zggguwadOmc25z3XXX4f7778f69evR1NQ0ozTwwx/+MNavX49NmzbhwQcfxDe+8Q1cc801iEQiUKvV+OlPf4qtW7fi3nvvxbZt21BWVoZNmzbFhozM55prrkFrayu2bdsGQCj5/OMf/wilUin567voootw/fXXo7e3F1/72tdQXl6O8vJySY+7YcMGbNy4EWvXrkVdXR22b98+4+t+4xvfiLKyMuzatQvf/va3ccMNN6CqqgoXXHABXC5XwuN58MEHcdddd+Eb3/gGgsEg3vWud8keqLFZCbBzbyDk/34HYJxz/um4j38UQDnn/P8xxhoBPA+genZGLd6WLVu4OL2G5LavPH4cf9rfi/+9fQuuXFUCAPjSo8fwr5PDeO1rV9NySEIIIYQsea2trVi9evViHwZJ4t5774XJZMLnP//5xT6UlCX6HWOMHeacb0l2XykLr7cDeB+AKxljR6J/3gTgfwHUMcZOAHgIwG3zBWlk6fjrkQH8aX8vPrKjLhakAcDqsjxMeIKwO+VvliSEEEIIIYScJWXq40sA5kqfvFfewyGL7dSoC1957Di2rMjH569pmvG5VaVCjW7L0DRK8nSLcXiEEEIIIeQ8c++99y72ISwKKRk1cp7wBoS+NK1aiR+/ZyPUypm/HqtK8wCABooQQgghhBCSZSmN5yfL271/O4m2YSd++4ELUWbRn/N5i0GNCqsebcM0UIQQQgghhJBsoowaAQA89lo//u9QHz6+sx5XNBXPebtVNPmREEIIIYSQrKNAjaBzxImvPn4CF9fa8Jk3NM5721VlZpwadcMfSj6KlRBCCCGEEJIeCtQIvvr4CRg0Stz37o1QKef/lVhdlodwhKPLnninBCGEEEIIkU6pVKK5uRkXXHABbrnlFng8nrQf6/bbb8cjjzwCALjjjjvQ0tIy5213796NV155Jfb3+++/H7///e/Tfm5Rd3c3Lrjgghkfu/fee/Hf//3fKT2OXMezlFGP2nlu3B3AwZ5x3H1Vg6RJjuJAkdYhJ9aWW7J9eIQQQgghy5per8eRI0cAALfeeivuv/9+fPazn419PhwOp7QYWvSrX/1q3s/v3r0bJpMJl1xyCQDgox/9aMrPkS2hUCinjmexUEbtPPdS1xg4By5vLJJ0+5oCA7QqBdqoT40QQggh55PvfhfYtWvmx3btEj4uk8suuwxdXV3YvXs3du7cife85z1Yt24dwuEw/u3f/g0XXngh1q9fj1/84hcAAM45PvGJT2DNmjW4/vrrYbfbY491xRVX4NChQwCAf/7zn9i0aRM2bNiAq666Ct3d3bj//vvxwx/+EM3NzXjxxRdnZL2OHDmCrVu3Yv369XjrW9+KiYmJ2GN+8YtfxEUXXYTGxka8+OKLKX+N8z32V77yFezYsQP/8z//EzuewcFBNDc3x/4olUr09PSgp6cHV111FdavX4+rrroKvb29AISs4qc+9SlccsklqKuri2UYlyIK1M5zeztGYdGrsaHSKun2KqUCTaVmtA3TiH5CCCGEnEcuvBB4xzvOBmu7dgl/v/BCWR4+FArh6aefxrp16wAABw4cwDe/+U20tLTg17/+NSwWCw4ePIiDBw/il7/8Jc6cOYPHH38c7e3tOH78OH75y1/OKGUUjY6O4s4778Sjjz6Ko0eP4uGHH0ZNTQ0++tGP4jOf+QyOHDmCyy67bMZ93v/+9+M73/kOjh07hnXr1uHrX//6jOM8cOAAfvSjH834eLxTp07NCK7uv/9+SY89OTmJPXv24HOf+1zsY+Xl5Thy5AiOHDmCO++8E29/+9uxYsUKfOITn8D73/9+HDt2DLfeeis+9alPxe4zNDSEl156Cf/4xz/wpS99KcWfRO6g0sfzGOccL3aO4tKVhVAq5tppfq5VpWY832oH5xyMSb8fIYQQQkjO+vSngWgJ4pzKy4FrrwXKyoChIWD1auDrXxf+JNLcDPzoR/M+pNfrRXNzMwAho/ahD30Ir7zyCi666CLU1tYCAJ555hkcO3Yslh2amppCZ2cn9u7di3e/+91QKpUoLy/HlVdeec7j79u3D5dffnnssWw227zHMzU1hcnJSezYsQMAcNttt+GWW26Jff5tb3sbAGDz5s3o7u5O+Bj19fWxck7g7MLqZI/9zne+c87jevnll/GrX/0qlsV79dVX8dhjjwEA3ve+9+ELX/hC7LY33XQTFAoF1qxZg5GRkXm/3lxGgdp5rH3EiZFpPy5vLEzpfqtK8/CXQ/0YdflRbE7e10YIIYQQsizk5wtBWm8vUF0t/D1D8T1q8YxGY+z/Oef48Y9/jGuvvXbGbZ566qmkF83lvrCu1WoBCENQQqGQbI8LzPya4w0NDeFDH/oQ/va3v8FkMiW8TfzXKB4jIHz9SxWVPp7H9rSPApDenyZaXSYMFGkbovJHQgghhCwTP/oRsHv3/H/uuQfweICvfU347z33zH/7JNk0qa699lr8/Oc/RzAYBAB0dHTA7Xbj8ssvx0MPPYRwOIyhoSHsmt1DB2Dbtm3Ys2cPzpw5AwAYHx8HAJjNZjid557LWSwW5OfnxzJXf/jDH2IZsEyl89jBYBDveMc78J3vfAeNjWfXSF1yySV46KGHAAAPPvggLr30UlmOMZdQRu08trdzFI0lJpRZ9Cndb1WpGQDQOjSdcpBHCCGEELIkiT1pf/kLsHOn8Cf+71l0xx13oLu7G5s2bQLnHEVFRXjiiSfw1re+FS+88ALWrVuHxsbGhEFPUVERHnjgAbztbW9DJBJBcXExnn32Wbz5zW/GzTffjL/+9a/48Y9/POM+v/vd7/DRj34UHo8HdXV1+M1vfiPb15LqY7/yyis4ePAg7rnnHtxzzz0AhEzifffdhw9+8IP43ve+h6KiIlmPMVewhUwHbtmyhYvTZ8ji8gRCaP76s3j/thX49xvWpHz/rd96HtvqC/DDdzbLf3BEVuEIx29ePoN3XlgFs0692IdDCCGE5IzW1lasXr1a2o2/+11hcEh8ULZrF3DwIBDXH0VIvES/Y4yxw5zzLcnuSxm189T+0+MIhCNpZ8RWl5nRSiP6l4Sj/ZP4xpOtyNOr8Y4tVYt9OIQQQsjSlCgYEzNrhGQB9aidp/Z0jEKrUuCi2vkn/8xlVVkeTo26EAhFZD4yIrcehxsA0D/hXeQjyX13P/Q6/nZ0cLEPgxBCCCGEArXz1d7OUVxcVwCdOvVN94DQpxYMc5wadcl8ZERuPQ4PAKB/wrPIR5LbpjxB/PXIIHa12ZPfmBBCCCEkyyhQOw/1T3hwetSNyxtSG8sfb404+XGYyh9zXSxQG6eM2nzaR4TJV8NTvkU+EnI+cflD+LeHj2Jkmn7vCFksS3l8O8ltmf5uUaB2HtrbMQYA2JHBxMbaQiM0SgVaaUR/zjtb+kgZtfmIFx1GnHTCTBbO860jePhwP55pWboLWQlZynQ6HRwOBwVrRHacczgcDuh06e8cpmEi56G9HaMos+iwsjjxwkApVEoFGkpMWRsoMjzlgy8YRk1h4sWHRDoxozY87UMgFIFGRddnEmkbFi46jFBGjSwg8cJZO1UnELIoKisr0d/fj9HR0bTuzznHpDcInVoJfZrtJGT50ul0qKysTPv+FKidZ0LhCF4+NYbr15VlvKV+dVke9nSk98KWzL1/O4nTYy488xl5Fiyer1z+EBzuAOoKjTg95sbwlA/VBYbFPqyc1B4N1NyBMJy+IK0yIFnHOceLncJraMcw9fsSshjUajVqa2vTui/nHF95/AT+fKAf160txf3v2yzz0ZHzHV1aP88c6ZuE0xeSZVH1qlIzRp1+jLn8MhzZTGfG3Oiyu+ALhmV/7POJWPa4faXQj0jlj4lxztE+7ES+QQjORqbl/50mZLa2YSfsTj8sejXahqep9IqQJea3r3Tjzwd6oVMraLgayQoK1M4zeztGoWDA9vr0B4mIVosDRWTuU+OcY2DSiwgHvfBlSCx7FAO1PgrUEuqf8MLlD+GyBuECBg12IAthb7Qi4b1bqzHtC2GYfu8IWTL2dIziP//RgqvXlOC2bTXodrgRCtPKIiIvCtTOM3s6RtFcZYXFkHlZ16pSMwD5Jz9Oe0Nw+UMAgI4RGlaSCTFQ21png4LRLrW5iP1p4oAdmvxIFsKLnWNoLDFhR2MxgLPlt4SQ3NZld+ETf3oNjSVm/OidzVhZbEIwzNFH77FEZhSonUfG3QEcG5iSpewRAApMWhSbtbJPfhyYPPtC1zFCGbVM9I67UWDUwGrQoMyip0BtDuIgB/HfxnKc/Oj0BfHz3aeonDhHeANhHOgex+UNRWgqES56UaBGSO6bcAfwod8dhFalwK9u2wKjVoX66HC2U3Y6ZyHyokDtPPJS1xg4h2yBGgCsKsuTffKjGKipFAwddOKSke4xD1ZEh4dU5OupR20OrcNOVObrUWTWIk+nWpaTH7//TAe+8882vHrasdiHQgDsO+NAIBTBZY1FsBjUKM3TUaBGSI4LhiO468HDGJr04Rfv24LKfOH9tb4wGqhRuwaRGQVq55G9HaOw6NXYUGmV7TFXl5nRZXchKGNd9kA0mLio1hZbQkzS0zvuwYoCYcVBVb6BMmpzaB92YlWp0HNZkqdbdr1C7cNO/GFfDwBgaHJ5fW1L1d6OUWhVClxcawMANJaa6fWOkBzGOcc9fzuJfafH8e23r8PmFfmxz1kMahSatBSoEdlRoHaeEMdAX7qyEEpFZmP5460uzUMgHMGZMbdsjzkw6YVOrcDWugL0T3jhjvarkdT4Q2EMTnlRbROu+FXm6zE87YM/RKVv8XzBMM6MuWM9l6UW3bKa+sg5x9f/fhImrQoKBgxNUbCeC/Z2jOKiWht00b1Lq0rN6LS7aBgBITnqd69040/7e3HXFfV426Zz92LVFxlxalS+cyFCAArUzhvtI06MTPtxeWPm0x7jrSoTTm7lLH8cmPSi3KpHU/TEuZNqvtPSN+4F50BN4dlAjXPKqMzWZXchHOGx3+WSPN2ymvr4zxPDeOWUA5+7phEleToM0s9/0Q1MenFq1B0bXgMATSVmBEIRdDuoPJmQXLOnYxT/EZ3w+G/XNCW8TX2xCV12F63ZILKiQO08IY6BlrM/DQDqi0xQK5msA0UGJryosOpjDfbUp5ae3nHhyl61TSh9FGvpqfxxJrEvSMyoleRpYXf6EY4s/TdbXzCMbzzZilWlZrznomqUWXSUUcsBLyZ4PRYvTNGkW0Jyy+wJj4o5qpLqi0yY8gYx7g4s8BGS5YwCtfPE3g5hDHSZRS/r46qVCqwsNss6on9gUgjUqmwGaFUK6ttIU/eYcGVeHCZSmS/87GmgyExtw9PQqBSoifbylebpEI5wONxLv/zxF3tOY2DSi3vevBYqpQJlVj2GluGglKVmb+coSvN0aIhOigOAlcUmKNjZVRGEkMU35Q3ijlkTHudSXyS8h1D5I5ETBWrngfgx0NmwutQsW+mjLxjGmCuACqseSgVDQ4mJrjCnqXfcA5NWhQKjBgBQZtFBqWCUUZulbdiJhmITVErh5bA4TwcAGJla2oFa/4QHP9vdhevXl2FbfQEAoNyiw+Ckl0pzFlEoHMFLnWO4rKEQjJ29Mq9TK1FTaKQKAkJyyLefbkPvuAf3v3dzrCplLvVFNPmRyI8CtfOAOAZa7rJH0eqyPIxM+2VJ9w9GR/NXRLM/jSVmCtTS1ONwo9pmiJ0MqpQKlFl06KOM2gxtcRMfASGjBmDJT378r6fawBjwlTetjn2szKKHPxTBhCe4iEd2fjvaP4VpXyjh63FTCU1+JCRX7DvtwJ8P9OJDl9ZiS40t6e0rrHpoVQrapUZklTRQY4xVMcZ2McZaGWMnGWN3Rz9+L2NsgDF2JPrnTdk/XJIOcQz0RbXJX2jSIQ5hkKP8UdyhVmEVArWmEjNGpv2YohPLlPU4PLFBIqLKfFp6HW/cHcCo0x/rTwOEqY8AlvRAkVdOjeHJ40P42BUrY/+WAKDcKnxtg5P0O7BYXuwcBWPApSvPHezUVGpGt8MNb4AmsxKymHzBML7y2HFU5uvxmasbJd1HoWCoKzJRRo3ISkpGLQTgc5zz1QC2Avg4Y2xN9HM/5Jw3R/88lbWjJBnZ0zGKi+sKYmOg5SZmI+QYKDIwcW5GDQA67Nm9yvz5h4/iF3tOZfU5FlI4wtE34YkNEhFV5huWTI8a5xzf/Wcbfvvymaw9h3hxoSkuUCswaqBgSzdQC4Uj+PrfWlCZr8eHL6+b8TmxR5X61BbP3o5RrK+0Ij9akhyvqcQMzoXhBYSQxfPTXV04PebGt966DgbN3H1ps9GIfiK3pIEa53yIc/5a9P+dAFoBVGT7wIg8+ic8OD3qxuUN8o7lj1dk1qLQpEWbDH1qA5NeKNjZ8rPG6Al0exb7NsIRjr8fHcRzrSNZe46FNjTlRTDMY4NERJX5eoxM+5fELrU/7OvBz3afwl8O9WftOdqiFxfErDAglIgWmbVLNlB7cH8v2kec+Pfr15xzcaYsmlGjyY+LY8oTxJG+SeyY4/VYvGAg53AmQkhq2oan8fPdp/C2jRUpt4zUF5nQN+GBL5j777FkaUipR40xVgNgI4D90Q99gjF2jDH2v4yx/Dnu82HG2CHG2KHR0dHMjpakbG/HGADM2NeTDavLzLJMKxuY8KI0Txcb7FBu0cGkVWW1T21gwgv/Mttf1OOYOfFRVBVths71XVqHusfxH39vgVLB0Dfuydrwi/ZhJ2xGDYpM2hkfL83TYXgJLr0edwfw/WfacenKQly7tuSczxcatVArWc7//Jerl0+NIcKBy+Z4PV5RYBQm3dJAEUIWRTjC8aVHjyNPr8a/37Am+R1mqS82gXOg20FZNSIPyYEaY8wE4FEAn+acTwP4OYB6AM0AhgB8P9H9OOcPcM63cM63FBVlN1gg59rbMYoyiw4r48ZAZ8OqUqEJPhSOZPQ4/ZPeWNkjADCW/cmPXaPCY486/XD7Q1l7noV0NlCbXfoofG/7xnM3KLVP+3DXg6+hIl+Pj+9cCac/hClvdnoU24ansarUPGP6HiBMfhxZguWB//1MO9yBMO5585pzviZA6KEopV1qi2ZvxyjMWhWaq6wJPy9OuqWBIoQsjj+82o0jfZP4fzesgS1BeXIysRH9dgrUiDwkBWqMMTWEIO1BzvljAMA5H+GchznnEQC/BHBR9g6TpCMUjuDlU2PY0ViU8KRNTqvL8hAIRTK+ijQY3aEWr6nEjPZhZ9ayKp0jZ/tBlstVsJ5xNzRKRayEVFRpy+2l14FQBB978DW4fCH84n2bsbZc6H/szUJgGY5wdIy4ZvSniUrzdBhxLq1A7cTAFP58oBfv37YCDSXnfk2iMoseQ5RRW3Ccc7zYOYZLVhZArZz7rbepJI8yaoQsgoFJL777r3Zc3liEG5vL03qMukIa0U/kJWXqIwPwawCtnPMfxH28LO5mbwVwQv7DI5mwO/1w+kJYX2nN+nPJMVAkHOEYnvLNyKgBwkCRCU8QY67Mx/8n0ml3QYxje5ZJ+WPPmAdVNmEXXbwSsxYqBcvZgSLffLIFh3om8J2b12NVaR6qo4Fl37j8gWXvuAfeYBir40bzi0otOkx6gkumz4Bzjq///STyDRp8+g3zTygrt+gwSBm1BXdq1I2BSW/SnpdVpWbYnX5MyLDuhBAiDeccX3viBDgHvnnTBWlf3NZrlKiw6ilQI7KRklHbDuB9AK6cNYr/u4yx44yxYwB2AvhMNg+UpG4yOtI+36DO+nPVFxuhUrCMFl+PTPsQinBUWGf2VcUmP2apHKjT7sKGaDC7fDJqnnPKHoHoLjWrLiczao8e7sfvXu3BnZfV4i0bhKuZVdFALRsZtfYEEx9FxWahZ22pDBR56vgwDnZP4AvXNsGin//fe5lVj5FpHyIRWnq9kPZ2CD3alzfMH6jFBihR+SM5zzh9Qdy/5xSCGbZQpOMfx4bwQpsdn7umMfa+k676YhrRT+QjZerjS5xzxjlfHz+Kn3P+Ps75uujH38I5H1qIAybSiX09yU7c5KBVKVFfZMpooMjArGXXosZSoZQgG4Ea5xyn7C5sqLSgyKxF91hmgZo3EMZPd3VhzLV4gyg457Fl14lU5eCI/hMDU/jK48extc6GL163KvZxk1YFm1GTlUCtbdgJxs5eCIh3dpfa0hgo8nzbCApNWtyypSrpbcstOgTDfFF/R89HeztHUVdoTHoSuGoBJt0Skov+dXIE3366DbvbF3bw3KQngK///STWV1rwge21GT9efZERp+xuuhhGZJHS1EeytEx5hdIZywJk1IDo5McMMmqxHWqzetSKTFrkG9RZCdSGp31w+UNYWWJGTYEh48mPz7QM43v/asfbfvYKTi/SFbUxVwCeQBg1BYlPCCvz9ejLoYzahDuAj/zhMGxGDX7ynk2xiZ+iKlt2Asu2ISdqCozQa87dLyj29g0vkYxa54gLq8vM55S6JiLuUhtcgsNSlipfMIx9px24TMKalGKzFlaDWpYpuoQsJT3RihYx+7xQvvlkKyY8QXz7beslvYYmU19kgjcYXjLvHyS3UaC2jC1kRg0AVpXlYXDKh0lPer0VYkat3DpzAAZjDI3RgSJyEweJNBSbUFNgjL1RpKvL7oKCAS5/CG//+Ss43DMux2GmpHdc+BoSlT4CwtLrUac/J/qvwhGOTz30Okadfvz8vZtROGtMPgBU2wzZKX0ccaJpjqEbxdFAbSlMfoxEOLrsroSZwURiu9QmcydYX+4O90zAF4xI2skkvt5lc9JtMuEIx+f+chQnBqYW7RjI+UfsEd/dYc/a8LDZXu4aw8OH+/Hhy+uwpvzcfuV01BfRQBEiHwrUljExULMaUh8xm45VsWWt6Z1g9E94YTNqYNCozvlcY4kZnSMu2V+8O+1xgVqhESPTfngC6Y/o77K7sKLAiMfuugQWvRrv/uV+PH18YauCu8eEN7vqeTJqwNnAeDF9/5l2vNg5hv+4ce2cI8ur8vUYmPAiLGMZiScQQrfDPWPRdbw8nQp6tXJJ9Kj1T3jhDYbRWCJtBUc5ZdQW3N6OUaiVDFvrCiTdflWpGR1ZnHSbzOCkF4++1o9/HMutjoZ9px0Ypt/bZUu8UNo37l2Qvaa+YBhfefw4agoMuPuqBtkeV1yHdMpOgRrJHAVqy9ikJwilgsGYoLQrG1aXCVej0s18DSQYzS9qLDXD6Q9hSOY36S67sPC4wKSNLYfOZPJjl92F+iIh6HvsY9txQXkePvan1/CrF08v2ElXz7gHCnY2IJutMj83RvT/88QQfrb7FN59UTXedVH1nLerthkQinBZd38JQf/ZiwuzMSbsG1sKpSvi0In5RvLHsxrU0KkVlFFbQHs6RrFlhQ1G7bkXoRJpLBFe7xYrmLY7hf7FzhwaaMI5x4d+exDv+dU+OH3Z2atIFle3wxMrD97Tbs/68z10oBc9Dg++9bZ10KnlO08qNGmQp1Ph1OjyGE5GFhcFasvYlDcIq16d9R1qokx7KxLtUBOJJWpyT0LrsruwMlqmUBMtFUx3oEgoLOyRE6+m2Ywa/OnOrbhubSm+8WQrvv73FlmzQnPpdbhRZtFDq0r8xlNlE77HizFQhHOOg93j+Mz/HcGn/nwEG6qsuPcta+a9T3UWJj+2RSc+rkowml9UbNYuiYyaWCLXIHGpPWMM5Ra97Bc9SGL2aR/ahp2Syh5FZweKpN/zm4nR6A7BzhzKCLgDYbgDYZwedeOzfzlKgxqWmUlPAFPeIC5vKEJtoRF7O8ey/pztIy7YjBpcUp+8dzQVjDGa/EhkQ4HaMjbpDS5YfxogvDgJy6lTP7ngnGNgwnvOxEeRWNYl5xVezoWFxyujjy1m1NItuegZ9yAY5rFADQB0aiV++p5N+NCltfjtK92464+H4Q1ktzes2+GJfS2JFJt1UCtZVnaTzWXSE8D/vnQG1/xwL265/1U82zKCd1xYiV+9f8ucAaWoKrZLTc5AzQm9WjnnZExAmPy4FKY+do44UWHVw6yT/m+9zEq71BaKeMJ5eaP0k8HGDMvIMyVm1PomPFl/vZJK3Cu3sdqKZ1tG8JNdXYt8RMufNxDGh39/CL9+6UzWe5rFSpYVBQbsaCzCq6ccWX/O/gkPquY458hUfREFakQeFKgtY9Pe4IJNfBStKhWGfqR6tXPCE4Q3GJ4zo2Y1aFBs1qJ9WL4XvjGXcAVPzESYdWoUmjRpDxTpil59Xjkrs6FQMHzthjW4581r8GzrCN79y31ZHY3eO8cONZFSwVBu1Wc9oxafPbvoW8/jP/7RAoNWhe++fT0OfPUqfOOmdSgynzs8ZLYyiw5KhbyBZfuwE40lJijmmfBVmieUPi5Wn5BUHSMuNEjsTxOVWfQYmqSM2kJ4sXMUhSZNwsXqc8nTqVFu0aFjsQK16AUKznNnIIIjGqh9YudKvHVjBX74XAdeaBtZ5KNa3tpHnHimZQT/+Y8WXPX9PfjLoT6EsrTjTNxhuqLAiMsbC+ENhnGoeyIrzyXqG/fEWgHkVl9kwsi0n8p0ScYoUFvGJj0Lm1EDgKbSPLgD4ZQHVcRG889zdaupVN5JaJ12sWTsbG9PTYERZ9IsfRQDtfqixEHSB7bX4ue3bkbr0DTe9rNXZM0QiaZ9QYy7A/Nm1AChfy1bPWreQHhG9uy5lhG8c0sVnvzUpfjrx7fjHRdWJRwYMxeVUoEKq1620kfOOdqGnfOWPQLC5MdAKBJbHJ+LwhGOrlHpEx9F5RYd7E5f1k66iCAS4XixcwyXNRTNe1EgkaZS8yJm1HwQK+a7cqT8cdwtBI82owbfeus6rCnLw90PHUn79Zok54heUPzyG1eh0KTBFx45hmt/tBdPHx+S/QJWbzSjVm0zYGtdATRKBfZ0ZK9PLRzhGJj0otKWrYyacB5wmvrUSIYoUFvGxB61hdSUZsnOwKTwIj1XRg0QAqpOe+rZurmIJyDx2YgVBca0h4mcsrtQmqebtwTtugtK8ecPb8XItA+/fPF0Ws8zH/HNbq4daiJh6bX8gdorXWO47n/2zsie7f/qVfjPmy7A2nJL2o9bZZMvUBt1+THuDsR+V+ci7lIbceZu5qnH4UYgFJHcnyYqs+oR4cCIM/dLO5eyk4PTGHcHUip7FDWV5uHUqAvBRQim7U4/GovNUClY7ILWYnO4hIxagVELvUaJ+9+7GSoFw0f+cAhuf/qTesncxO/5m9aV4YmPb8f9790MxhjuevA13PjTl/GSjH1k3Q4PSvN00GuUMGhUuKjWhr0d2etTszt9CIY5qrKVUSumEf1EHhSoLWOTnsAiZNTSa4Lvn2PZ9czHNsEXjKBPppK9LrsLZq0KxXHldzUFBgxP+9Lqy+gadZ1T9pjIpup8XFRrw6unHCk/RzI9sauSc5c+AkJGbcwl3y61KU8QX3jkKN7zq/1gAP50x8VpZc/mUi3j0uu2IeHEc67R/KJSi/B7kcvjwDuiewBTzaiVWWiX2kJ4oU3ICFy6UvogEVFTqQnBME97uFEmRp1+VOTrUVNojO2aXGzj0dJHm0lYN1NlM+DH796ELrsL//bI0ZwvUV6KRqMZtUKTFowxXHdBKf716cvxvZvXw+EK4L2/3o/3/HIfjvRNZvxcPQ73jJUyOxqL0D7ilHXabzyxlL5qnj7lTFTbDFApGAVqs3z76Tbc/dDr9O81BRSoLVPhCIfTH1rwQM2kVaEyX59GRs0Lg0YJ6zw9deLJqFyLrzujg0Tip2LWFAoBTs94aidHnHOcsksL1ABgW30BOu0ujMqc0RDr/OfaoSY6O6I/s+CHc44njw3hqh/swaOvDeCuK+rxz09fjktWyjtFq8pmwJgrIMuVc/H3J2npozmaUcvhyY+dsdH8qWXUyq25s0tvueKc469HBrC1ziapF3O2phLh93Mxyh/tTj+KzVo0FJtyZvLjuDsAjUoxY93MpQ2F+NIbV+Gp48O4f4/8FQrnO4crAKNGCX3c91ypYLhlSxVe+PwO/L8b1qB92ImbfvoyfvvymYyeq2fcM6MSRJySurdjNKPHnYvYepCtYSJqpQIrCgw4ZafSR1E4wvHYa/3wByMLNo18OaBAbZly+oLgHLAs0LLreOJAkVSIo/nn+8cr7omS68Sh0+46p2Ts7Ij+1AKYoSkf3IFwrNwhmW3Rxbf7TsubVet1eFBo0sKUZF+TuGOtL4Pyx6EpL+78/WF8/E+vocyiw98+sR1fvG6VrPtoRGJ5ihzZ1LZhJ4rNWtiM8//bKM4TTq5zefJj+4gTVTZ9ylnLWEYth7OFS92x/imcHnPjrRsr0rp/fbERSgWT7cKUVOEIh8N1NlDrcbizPn1PCoc7gAKj5pz3iDsvq8MN68vwvX+1Ze2k/nzlcPtRYEp8kUGrUuKDl9Zizxd2YlWpGU+fGE77edz+EEad/hlDsBpLTCjN02FPtgK16HtJ+TxVPJmiyY8zHeoeh93px/Xryxb7UJYUCtSWqSmvMABhoTNqgFD+eHrMDX9I+pv7wOTco/lFJq0KFVa9LCcuE+4Axlz+GYNEAGBFobj0OrWrYOKLsbiTLZl1FRaYtCq8KnOg1jPuTjpIBMhs6XUkwvGHfT24+gd78VLXKL76ptV4/GOXZNSDlkx1bER/5hmgtuHppP1pgHAiYjNqcnrpdeeIC43FqZU9AsKEU7NWRaWPWfT46wPQqBS47oL0Tkq0KiVqC42y745MxuHyI8KBojwdVpaYEeHIiYEd4+5AwosrjDF89+b1aCwx45N/fj3Wp0sy53AFUGCa/4KWSatCc5U1owuo8aP5RYwx7GgswkudY1kZetQ37kVJnjYrFxZF9cUmdDvcNLQp6h/HhqBTK3DV6uLFPpQlhQK1ZUoM1BZ6mAggNMGHIzyllP/AxNzLrmc+tjyTH7tGE4/Sz9OpUWDUxEoIJT/eHKP556JSKnBhTb7sGbUehwcrJNTcF5u10CgVKZc+9o178I5fvIqvPXECzVVWPPPpHbjz8jqolNl9KZFr6XUoHEGn3RVbKJxMSZ4OIzmadQqGIzg95oplmlMl7FLLza9tqQuGI/j70UG8YXVxRhfLmtKoTsiUuEOtyKSNVRzkQvnjXIEaABg0KvzifZvBOcdHFmBX5flizOVHgTF52W5DiRnj0Yuf6eiNthrUzFors6OpCNO+EI72T6b1uPMRdqhlpz9NVF8k9JlmUrmyXITCETx9YghXrSqRpW/9fEKB2jIljhRf6D1qAGInwe0j0gaKeAIhTHiCSTNqgNCnJscktPkCqxUFhpRLH7vsLlj0wh42qbbVF+D0qFu2HihfMIzhad+8O9RECgVDRRoj+r/xZAvahp343s3r8YcPXZS0F04uVoMaJq0q45UG3dEpicn600SledqcnfrY43AjGOZoKk2tP01UZtFnrVH/fPdS1xgc7gBuak6v7FHUVGJG77gHnsDCTTW0R3/fi/O0qC00QsGArgXO6iUyX6AGCBN773v3RrQNT+M//nFyAY9s+RpzBVBkTv6e1hjtkU33Imq3OARr1vvJ9vpCKBiwp13+8sf+CW/WBomIxBH9p3LgQsdiO3BmHGOuAG6gsseUUaC2TC1mRq220Ai1kklugh+QMPFR1FgiXKFKdym1qHPEBb1amfA5awqMKT9+V3SQSCoNstvqhIEbcmXV+ic84BySSh+B6C61FAIffyiMFzvHcNPGctyypWpBm4EZY6iyGTLOqIm/k1JKHwEhozY8lZs9auLy99nlu1KVWzNbek1Tu+b2xOsDsBrUuKIpsxIf8fe0YwEnL4rLrovNQlnYigJjzmfURFc0FeP6dWVZHet+vohEOMbd0jJq4qCvdBe09zjcsBk1yJu12sZiUGNjdb7sfWrBcARDU96sDRIR1RXRiH7R348NwaBRZvyaeD6iQG2ZmlzEHjW1UoH6IpPkkp3+yVQCNXHyY2YvfJ12J1YWmxIuoa0pNGJwypdSA/2pUZfk/jTRmvI85OlUso3pF7OAUrNcqS693n96HJ5AGFeuWpwX2mqbPuOMWtuQE0oFk1yiWpKng8PtX5RdVsl0jDihYNLLbWcrt+jgcAfSGhTxtSdO4LbfHEzreZc7tz+EZ06O4Pp1ZdCoMnuLXZXmupNMxEofo5Mqc2Hyoz8UhssfQkGSQA0QLkA43Ll5cWUpmfQGEeFI2qMGCEG9Ra9GR5q/Jz0Oz5wXGHc0FuHYwFRsPYMcBie9iPCzvdrZYtGrUWTWnveBWigcwT9PDOENq0tmTBAl0lCgtkxNRwO1vEUI1IDUJj/GMmoSrm6tLDZBwZBxg31XgomPIvENQ2r2ZtITwJgrkPIJs1LBcFFtgWwDRXrGxWXXyUsfAeFNyuEOSC6reqHNDq1KEcsELrSqfCGjlkkmp23YidpCo+QG8lKLDpxD9jUKcui0O1FtM6TdDF8WvTCSzp643R127O0YRVeOLEPOJc+0DMMbDOOmNKc9xqvKN0CvVmZ8YSoVdqcPVoMaWpXwe9VQYkL3mFAyvFhiO9QkZHdsRg18wciClosuR2NxO9SSYYyhscQUWxeSqh6HZ873rcsbi8A58GKnfFk1cShVpS27GTVAKH88Nbr4w3gW0yunHJjwBGnaY5ooUFumJj0B6NSKrE40mk9TaR6GpnyYivbKzWdw0guVgsX2Vs0nVoqTQaDm9AUxNOWbc5T+2RH90l5cUx0kEm9bfQF6HB4MyjB9r9fhhlmrQr7EvkRxRP+AhKwa5xwvtNmxfWXhol0Rqy4wwB+KZBQ0tY9MSx4kAgAl0RH9uTj5sWPElfKi63jl0RH9gyn2qU15grETnYcP9af9/MvV468PojJfj83V+Rk/lkIhnABL7feVg31aGM0vaig2IxThKQ9YkpPDJQZqybM7YtZNvA9JjxioScmoAcJAkY4RV8oX0vyhMAanvLGBUbOtq7Ag36CWtfxRHKKV7WEigDBQpMue+vdlOXny2BBMWhV2RHfjkdRQoLZMTXmDsOoXfoeaaFWZOFAkeUA1MOlFmVUHZYIyxESEE5f0AzXx6tZcGbVYoCbxxEQM1OpTLH0Ezu5Tk6P8sdvhQXWBQXLvWCoj+k+NutE77sHORSp7BBBr/E53l5rLH0LfuDfFQC269DrHpiP6Q2GcGXNnFKiJGbVU+9RODk0BEE6IH3t9gEZPx7E7fXipcxQ3NVckLKtOR2PJwk5+FJZdn71oJl6A6lzAPrnZxIyalKBBvI1DxlK585EY6ErJqAFAY7EJU95grHRWqr5xLzgHagoTB01KBcNlDUXY2zGGSESeYKdvwgOlgsX2SWZTfZHwfZGzdHMpCYQi+OfJYVy9pmTREgdLHQVqy9SkJ7go/Wki8WS4TUJvhdTR/KKmEjO6x9Jfwipm4+Yaa24xqJFvUMcmUSXTZXdBq1JIKt2cbVWpGVaDWpbyx97xuctHEqmKLb1O/nXuarMDwKL1pwFnr36mO1CkPTZIRNrERwAoFQO1FDNq074gfvvymayNCT8z5kY4wtFQkl5/GhC/9Dq1jFrLoPBv+nPXNGHU6c/aQtql6O9HhxDhwE0by2V7zKZSM8Zc6Y8+T9Woc2ZGrb7IBMaEUtvFMuFJJaMmHLtjgb5fy1Usoybhew7EDRRJ8SKqOLhrvmnFOxqLMObyo1WmXs2+cS/Krbqsr5UBEKvc6cqBgTyL4eVTY5jyBmnaYwYoUFumprzBRRnNLyrN0yFPp5I0+XFg0osKq/QShMZSYQnr6TTrvrvsLmhUinknPq1IYfJj16gLdUUmyRnBeAoFw8W1towzaqFwBH3jnpTG5ReatNCoFJIyai+02dFUYk4poJabWKrZ60ivTFS8aJBKRi3foIFayTA8ndpJ35/29+Lev7fg1l/tw0QWrqSKUwAzyajp1MJC71R3qZ0cnEZJnha3bKlEgVFD5Y9xnnh9AOsqLFiZ5iTORMRVEulO1EsF5xyjTj+K8s4GanqNElX5hkUdKBIrfTQkDxrEYI4yaplxuAJQMOE1UIrGNCeUihdE59v/eVmj0Bct10WhvgkPKlM458hEbET/edqn9o+jQzDrVLi0YXF625cDCtSWqSnv4mbUGGNYVZqXtGQnGI5gZNqHCqv0EoR0r9yJOu0u1BUa572aVltolLxLTRzNn65tdQUYmPRmNNFwaMqHUISjJoVATaFgqLTqky69nvYFcbB7HFeuXtyxujq1EqV5urRLH9uHnTBpVbGATwpFtHcy1Yzaaz0TsOjVODE4jbff/0rG0ypn6xwRplfWFUnPoCZSZtFhKMX+yJODU1hbboFaqcBNGyvwfNvIeVvWE6/L7sTxgSlZhojEa4zuyZO67iQTU94gAuHIOf3CDcUmdC1y6aNSwSS9p8VKH6lHLSMOtx82o1ZyCW+hSQubUZNy/7jYWz1ftrTYrMOasjzZ9qkJO9QW5qJjuUUPnVpxXk5+9IfCeKZlGNeuLY0NJyKpo0BtmVrsQA0QSnY6hp3zNtEOT/kQ4dImPopqCoQ9ben2qUkJrFYUGDA45U1aXukNhDEw6U15NH+8bfXClaZMsmo94sJQW2on7pU2Q9KM2osdYwhF+KKWPYqqbPq0Sx/bhpxoKjWnvP+t1JJaoMY5x2u9k7hqVTEevONiOFwBvPVnr+DEwFSqhzyn9mEnagoMGb/5CUuvpX9tvmAYp0bduKBcyPLcsqUSwTDHE68PZHQcuWbKG0y5+f+J1wehYMCbN8hb4lMUPQFO98JUKsT+ovjSR0AoEz895lq0fkSHO4B8g1pS0GDQqKBXKzFOI/ozMuYKoFDiIBFRQ7Ep5d/TbocHKwqT91bvaCrC4Z4JOH3JB5TNxxcMY9TpX5BBIoBwsa+u0HReBmovdozB6QtR2WOGKFBbpoRhIosfqDn9IQzMc8W+P7bsWvqLpkalQF1heqOAvYEw+iY8SZcE1xQYwTmSZptOjbrAefq7rABhOEqBUZNRn1p3rM4/tTcfKbvUXmizw6JXY2OVNd3Dk02VzZBWdopzjrbhacmLruOV5GlTmvrYP+HFmMuPjSvycWGNDY/etQ1alQLv/MWrspXudNozm/goKrfqUpo42jbsRDjCsabcAkAoy1tXYcHDh5dP+WP3mBvb/ut53P3QEcnDCyIRjieODODShiJJ02tTwRhDU4l5QTJq4rLrotmBWrEJwTCPrQBZaONuv6T+NFGBSUMZtQyNufySB4mIGkvM6Exx8mOPw40VEi4w7mgsQijCM24TiE18nKfUUm71xdIDNc75sumvfPL4EKwGNbavpLLHTFCgtgwFQhF4AuFFz6idXdY69wmGeJKY6iCOhjQnP4qBVbIhDDWFwhvHmSTlj+KLbyaBGmMMW+sKsO+0I+0Rvr3jHmhUitjwC6kq8/UYdwfg9ifeORSJcOzpsGNHY9GCNF4nU20zYHjaB38otSEdw9M+TPtCWJ1WoKZLaerja70TAIBN1VYAwMpiMx772CWoshnwod8exCMZBjW+YBg9Dvecw3BSUWbRY9oXmvPnP9vJQSEruLb87ECWW7ZUonVoWtaM4WLhnOOev52EPxTB344O4ofPdUi63+HeCfRPePFWGYeIxGsqNaNzxCnb1Lu52J3C7/m5GTVx8uPiDBQZdwdSC9SMGoxROW5GHK6A5NH8osboxVmpWfpQOIL+Ca+kC4ybqvNh1CgzvtglrhZZqNJHQOhT659IXqEDAD98rhMXfev5pBeJc50vGMazLSO4bm0p1Dlw7rCU0XdvGZqKLru2LuIwEeBsc/F8V4LFbFuqY3KbSszoG/dKPsEUiZOX5hrNLxJ7vZINFOmyu6Bgc48WlmprfQGGpnyxEsZU9TjcqLYZUh4JnmxE/7GBKYy5AjlR9ggIkx85l7b7Ld6R3kkAiGWCUlGap4M7EIZL4u/a672TMGiUaIoLpErydPjLR7fh4jobPv/wUfx0V1faQfmpURciXMjEZqrcmtrkxxMD07Do1TP6/N6yoRwapSLjAHQ+r/VOLEgg+K+Tw9jTMYqvvGk13rmlCj9+oUvS1/X46wPQq5W4Zk1pVo6rqdQMd7TMOptipY+zLviIq0cWa0S/wx2ITXOUosCkpdLHDDlc/pS+54Awoh+Q3j8+OCn2VifPqGlUClyyshB7OkYz2kkm9jhXLlDpIyD8++FcmNY7n2dODuO+5zsRjgjl80vZ7vZRuPwhWnItAwrUlqEpr3AlMW+RM2p5OjUqrPp5M2oDE14UmbUp79cQg8BUJ5F12p1QKdi8o4ABwGrQwKJXJ92l1mV3YUWBMeNeodg+tTTLH3scnnmnZs1FnHw519W7F1pHoGDImUWV4lTLVPvU9p12QK9WYn1l6oGauEttWOJV4td6J7C+0nJOBjJPp8Zvbr8INzWX43v/ase/P3EC4TQyJOJJUJNMGTVAOGGSomVwCmvK8mb0k1gNGlyztgRPHBlIOdMpBeccH/79Ybz5Jy/hq48fj12IkpvbH8LX/96C1WV5uG3bCnzjrRfgkvoCfPmxY/OWW/lDYTx5bAjXri2BUavKyrE1SbjoJQf7tB8GjRKmWV+HUatChVW/aJMfJ1LMqNmMVPqYCW8gDHcgnHpGLfqaJDWgF99fpU4r3tFYhP4JL04nCXjm0z/hhUalQFGKZZ2ZEC90zFf+eGrUhc/+5SjWVVigUSlwvH9ygY4uO548PgSbURM7tyHpo0BtGTqbUVu8hdeiptL5l7UKo/lTL0FId/KjEFgZoFEl/9WvkTD5scvuSmvR9Wz1RUYUmbVp1d9zztE77kkafCaSLKP2Qrsdm6rzkZ/CSVI2VceWXqeWWdh/ZhxbavLTKsEoSWGXmi8YRsvgNDZV5yf8vEalwA/e0YyP7KjDg/t78ZE/HE55H2DHiAtqJYuV52YilV1qoXAEbcPOGWWPolu2VGHSE8RzLfaMj2k2u9OPMZcfa8vz8OcDvbjq+3vw1yMDGV1VT+S+5zsxNOXDN266ACqlAmqlAj9/72asKDDio388POdJ1u72UUx5g7hR5mmP8TKddCuV3ek7p+xR1FBiWpRALRzhmPQGU3oNKjBp4HAHZP8dOV+IO9RSDWbyjRoUmrSS2xLEnkep+z/FC4Z7Myh/7Bv3oDJfL9tCeilqC41gDDhlTxxguvwhfOQPh6FRKXD/+zZjTVkejvUv3VJybyCM51tHcN0FpTnRMrHU0XdwGZr0CIHaYveoAUKgdmrUhUAo8bSwgUlvWouiq20GaFWKlHcLddpdSQeJiGoKDPNm1ELhCLod7oz600SMMWyrK8CrafSpjbr88ATCKQ8SAYBCkwZalSJhRs0+7cOJgWnszJGyR0A4cdCoFCkNFBl3B9A27MTFtba0nrPUIj1QO9Y/hVCEzxmoAcIUsC+/cTW+/pa1eK51BL9+6UxKx9M54kRtoVGWuv9Siw6MScuonRp1wx+KYG3FuYHapSsLUWbR4eHDfRkf02wtQ8L+u69dvwZ/+8SlKLfqcPdDR/D+/z2A7gyurMfrGHHi1y+dwTu3VGHzirM/O4tejd/cfiFUCoYP/vZgwjUET7w+gAKjBpdlsWHepFWhvsiIFzuzu1zc7vTPOQylIToQIZ0scCYmPAFwLn3xMiDcNhCKSC5XJjOJO+hSzagBQkm21F7GnjE3dGrFnBcHZquyGVBXaMyoT61vwrNgEx9Feo0SFVZ9wos9nHN8/i9HcXrUhZ+8ZyMqrHqsr7TgxMBU1ntSs2VXux2eQJimPcqEArVlKJZRy4FAbVWpGaEIx+mxc1+gIhGedkZNqWApDxTxh8LocXiSDhIRrSgwYnDSO2c5V++4B8EwlyVQA4Bt9QUYdfpTXowZG82fRqDGGENlvj7WYB1vV7uQHcmV/jRACHKq8vXoTaGX78CZcQDA1jRLMEqiy3+lTH4UB4lsjA4Smc9tl9Tg4lobHj7Ul1Jw3jHikmWQCAColUIJkJSM2tlBIueWjyoVDG/bVIG9HaOSS0SlahkUArXV5Xm4oMKCxz+2HV9/y1q83juJa360Fz9+vjOjkkvOOf79iRMw6VT44htXnfP5KpsBD7x/C4amfPjw7w/NyIBOeYN4vtWON28oz/qV45uaK7Dv9LjsO/nijc1adh2vocSMQCiS1edPRAyOUxsmop1xX5IacepgQRrlgY0lZnTaXZKCjG6HJ+Xe6ssbi7DvtCPlSgRR3/jC7VCLt3KOyY8/33MK/zw5jC+/cTUuia7qWVdhgTsQTnjelIpvPdWK+57vzOgx0vGPY4MoNGlxcS2VPcoh6TsLY6yKMbaLMdbKGDvJGLt71uc/zxjjjDGav5kjci2jBiSe/Djm9iMQiqQVqAFnRwFL1T3mQTgiPbCqLTQgwpEwiAHODiaRLVBLs09NDNSklo/MVplvQP/kuSdfL7TZUWbRxaZ35opqmyGlpdf7TjugUyuwvtKa1vMZNCqYdSpJkx9f65lATYFB8gnOLVuq0O3w4GD3hKTbewIh9I570CgxKyxFmVXaLrWTg9PQqRWom6Pk8ubNVYhw4LHX5R0q0jI0jSqbHnk64fVMqWC47ZIaPP+5Hbh6dQm+/2wH3vQ/L2Jfmv2dj78+gANnxvHF61bNGQxsXpGPH7xjAw71TOALjxyLBdb/PDGEQDiCt2ax7FH0ts2VYAx47LXs7awTMmpzBGrR17mFLn8Ue81SyqhFM0Fj1KeWFrH0MdU9aoDwvuyROPimd9ydcsn+jqYi+IKR2AW4VEz7gpjyBhd0kIiovsiE06PuGQHs3o5R/Pe/2vHmDeW447La2Mc3RFfhZFL+GApH8Md9PfjxC50prWDJlNsfwgttdrxpXSmUC1heupxJuQQYAvA5zvlqAFsBfJwxtgYQgjgAVwPozd4hklSJGbXFHiYCAHWFJqgULGETvFhulW6g1lRixvC0T/LEuk67cAxSSx/FN5C5Jj92Ra+O1Rdl3iskPJ8BZRYd9qXYp9bjcEPB0v8+VtnO3aXmD4XxYucYrlxVnPKC6GyrshnQ6/BIzkLtPzOOzSvyJfUlzqU0T4eR6fmnyHHO8Xrf5Lxlj7O9aV0pjBolHpFYMiheHGgqlefiAACUW6TtUjsxMIVVpXlzZo5qC424sCYfjxzql7U3qHVoGmvKzi23LMnT4ae3bsJvbr8Q/lAE73pgH77wyNGUyt2mvEF866lWNFdZ8c4tVfPe9ob15fi3a5uEsf3PCmP7H399AHWFxrSG1KSqwqrHJfUFeOS1vqyURHkCIbj8oTlLH1emONFPLrGMWgpBA2XUMjMWC47TyaiJAf38vyeRCEePwxObsCzV1toCqBQsrcFb/eJo/kUK1LzBMIailRl94x586qHX0VBsxnfevm7G+2x9kQl6tTKjQK11yAlPIIxgmOMXe05lfPxSPd9mhy8YwfXrqOxRLknPXDjnQ5zz16L/7wTQCkC8fPhDAF8AsDQLaZepKW8QZp0qJ65maFQK1BeZ0BbtM4knjlhPp0cNAN60rgxqJcP/PCcttd9ld4ExoE5iYCVmqLrnKLPrsrtQmqeDWSdPQCz2qaW6T63H4UG5VZ92IFKZb8CkJwin7+w0vQNnxuEJhHOq7FFUbTPA6Q9Jmv436QmgbXgaWzMswSjJ0yUtfeyf8GLU6ZdU9igyaFR407oyPHlsCJ5A8gCjI5pBlqv0ERAmPw5N+eb9neOco2VoOuEgkXi3bK7C6TF3rAQ0U55ACGfG3FidIFAT7VxVjGc/swMf3VGPRw73480/fgnHJZ7gfP+Zdoy7A/jGTRdIKr/62BX1eMeWStz3Qhd+8kIn9p0ex00bKxbsYsbNmyvRN+7Fwe7UswnJiMuu58qomXVqlFl0sYsFC0Ucs5/qwmsAy2Zx8EJzuAIwapTQa1KfZiy+NrUPz/97MuL0wR+KoDrFjJpeo8Tqsjwc7ZtM+dj6YsuuF770Ubyge8rugjcQxkf+cBiRCMcv3rcZBs3MKatKBcMFFXk4nsFKkkM9wmvE5Y1F+PPBvtiOxGx78tggis1aXFiTXk84OVdKZ3aMsRoAGwHsZ4y9BcAA5/xoNg6MpG/KG8yJskfRXJMfB6LldukGalU2A96/rQZ/OdQn6Spvp92FaptB8iqAfIMaeTrVnAMLTtldspU9irbWF8DhDsROyKXoGfekXfYIILYTK75U5YU2O7QqRaxmPpdUiZMf5yhJjbf/zDg4By7OcERwSZ4u6TCRs/1p0jNqgFD+6A6E8dTx4aS37RxxQqNUpLWKYS7lVh08gTCmvXMHin3jXjh9oYT9afHetL4MerUSDx+Sp/yxbdgJzpEwoxZPr1HiS29chT/duRXeQBhv+/nL+NWLp+cNPo/3T+EP+3rw/m01uKBCWkaMMYZv3LQO2+oK8N/PCFm1m5qzX/YounZtKUxaVVZ21p3doTZ3FmVlsSlppkRu4mCL/BSmGItBnYMyamkZc/nT6k8DhJaL0jxd0oEi4kTlVDNqALChyoJj/akP2xD7KxcloxY9V+iyu/DVx4+jdXga//OujXNO711XYcXJwSmEwokHsSVzqGcC5RYd/uMtaxEKR/DLvafTPnapnL4gdrWP4k3ryhZ0quZyJzlQY4yZADwK4NMQyiG/CuD/Sbjfhxljhxhjh0ZHszuxigimvMFFX3Ydb1WZGYNTvnMyIAMTXph1qljvSTo+sXMljFoV/uup1qS37RpxJV10HY8xYQR6osmPnHOcGpVn4mO8WJ/aqTHJ9+lxuNMaJCKKjeiPBj6cc7zQZse2+oK0rqhmm/gmK2WX2v7T49CqFNhQlVlpWkmeFnanf94TA3HRdao9fRfW5KOmwICHDyUvf2wfcaKuyCjr4IrYLrV5SojPDhKZP2AyaYUM4T8kZgiTaY1m4tckeV7R1roCPH33ZdjRWIxvPNmKD/72YMKsSjjC8e9PHEeBUYvPXtOY0jFpVArc/97NaCwx4bKGwoz+7aXKoFHh+nVlePL4ENwyTzQUr7gXzTOBr6HYjC6JgyLkMuEOIE+nSmnKqU4t7IKjXWrpcbj9afWniRpKTOhIEtD3jgvvq+lcZNxQaYXLH0p52Eb/hBcmrWpRzo8KjMJu1l++eBqPvT6AT1/VOO9E5Q1VFviCkbR6QjnnONQ9ji01NtQUGnFjcwX+uK8366XAz7faEQhF8OYNVPYoJ0mvfIwxNYQg7UHO+WMA6gHUAjjKGOsGUAngNcZY6ez7cs4f4Jxv4ZxvKSrKjaW5y92kJ5BTGTXxxHV21ivdiY/x8o0afGLnSuxqH8UrXXMHN6FwBKfHXFiZ4hCGmgJjbFhHvOFpH1z+kGz9aaIqmwEVVr3k+vspbxCTnmBGGRYxoyaWhZwec6PH4cnJskfgbNmKlEBt32kHNq/Iz3ghealFh3CEY8w9dynVXIuuk2GM4ebNldh/ZjzpNMvOEVdsQI9cyqzJd6mdHJyGUsEkPfctWyrh8ofwzxPJM4TJtAxOI0+nSul1It+owS/fvxlff8tavHzKgTf+z4vnvDY8dLAXR/un8LUbVqd1ochiUOOpT12GX75/S8r3zdTNWyrhCYTxtAzf33hnSx8T96gBwgm4LxiRNChCLg53IK3sjs2ogWOef69kbg5Xet9zUWOJENDPt8qh2+GBSsFiuxxTIZaXv947mdL9xB1qi9F3zRhDfZERQ1M+vGF1MT555cp5b78umuWXWsYdr3/Ci5FpP7bUCNUdH99ZD18ojF+/lN2s2j+ODaLMosPGqtSqSsj8pEx9ZAB+DaCVc/4DAOCcH+ecF3POazjnNQD6AWzinMv7zkHSMuUNwqrPjQXFANBUKlwNnz1QpH8i80ANEMacV1j1+NbTrXNe6U13lH5NgQH9E55z9sCJfRr1MmfUAGFM//4z45KuWosn9uksuxYVGDXQq5WxgSK72oSx/DubcjNQM+vUsBk1SSc/TnmCaB2elmVEcGzp9VTiE79ki66TedsmYaLffENFXP4QBia9seXHcikXM2rz7FI7OTiFlUUmSWXDF9fasKLAgL9IyBAm0zI0jdVleSmfWDEmTIZ84mPbYdapcOuv9+O7/2xDMByBw+XHd//Zjm11BXjLhvK0j02lVEguo5bTlhVCBlbqABqp7E4/1EqG/HmyDVIHRchp3B1IqT9NVGDS0DCRNI25Ahll1BqjAf18qxx6HG5U2QxpVQfUFZpg0qpwtH8ypfv1T3gXZeKj6OK6AjSVmPGDdzYnLQ2sKTDCrFXh2MBkys9zuEcowxd3Qq4sNuNNF5Thd6/0YMqTvLc7HcFwBHs7x3Dt2lIqe5SZlH8h2wG8D8CVjLEj0T9vyvJxkQxMeYM5MfFRVG7RwaxToX145kCRdJddz6ZTK/H5axtxYmAafzs6mPA2YvlAKqWPgBAARTjOWQgt92j+eNvqCjDpCSaclDmbWPqRzrJrkbhLTfwaX2izo7HEFOsFy0VV+fqk+5wOdAv9aVvrMm9qjgVqc/SpHR9Ivuh6PuVWPS5dWYhHXxuYM0AXez5S/R1OpsishUrBkmbUEi26ToQxhps3VWLf6eQZwvmEIxztw07JZY+JrCnPw98/eSnesbkKP9t9Cu/4xav4yuPH4faH8J83rc25iaZSiBlYuXeq2Z0+FJm0835PVhYJFwlSWYuSqbQDNaOGxvOnIRzhGHf7UZhBRk0cKDJf73iPw5P2+5ZCwbC+0oKjfdKzTZxzYdn1IgwSEX3xulV4+u7LJGXxFQqGCyosaU1+PNQzDpNWhVWlZ187P75zJVz+EH77SnfKjydFl92FQCiS0jAtIo2UqY8vcc4Z53w957w5+uepWbep4ZxLb6ohWcM5z7keNcYYmkpmDhSZ9gXh9IVkyagBwI0bKrC2PA/f+1d7wkWY6WbAxEbf2eWPXXYX8nQqFGXwZjaXbfXJ96kFo83BX338BCx6dUbDRABEAzUvnL4gDpwZn7d2PhdU2QxJSx/3n3ZAo1LEdtJkojQaqM01+fG1HumLrudyy5YqDEx65/y5iyc9cmfUlAqGkjwdhubIqNmdPtid/qSDROK9Pbrz65HX0h960eNwwxMIzzvxUQqDRoXv3LweP373RnSNuPCvkyO48/K6lMugc8lboxnYRzP4/s426vSjKG/+MjSLQY1iszalYUeZcrgDKe1QExUYtbGJkUS6SU8AEZ7a3rrZku3c41wYzZ9Jyf6GKitah6YlL74edwfgCYQXZZBIvFSyTeurLGgdmoY/lNpy70PdE9hYbZ0x+XtNeR7esLoE//vymZRWmEjVMihciE/Wx0xSJ19HOskJ4t6MXOpRA4TJj8IENyFbIO5tkiOjBggvfl9502oMTHrx+1e7z/l854gTFVY9TFrVuXeehziR6sysyY9d0YmP2bgiX27VY0WBAa/OsU/tpc4xvPF/XsQ3n2rFhTX5eOLj2zMe+lGZb0D/hBcvdY4hFOG4MkfLHkXVNgMGJrzz9kDsO+PApmqrLOVphSYNFGzujNprvRNYkcKi60SuWVMCs04151CRjhEXdGpFVjKdZRbdnMNETqbxBhzLEB7uT3vwRIs4SCTDQE305g3leOruy/Bv1zbhU1c2yPKYi6XCqsf2+kI8+lr639/Z7NNzL7uO11BiQtcClT5yzjGRZkbNFi19lHOn3/lAnJSZyWuZWadGhVU/Z0bN4Q7A5Q9lVLLfXGVFKMJjr0/J9EVL+3O5UmS29RVWBMMcHUlWHcSb9gXRPuKMlT3G++SVKzHlDeIPr/bIeZgAhMFPOrUCtYXyVxmd7yhQW2bEyYrWHAvUVpWa4fSFMDQlnOjGdqjJlFEDgO0rC3FFUxF+8kIXJj0zS1460xylbzNqYNaqzll6fWpU/tH88bbVFWD/GceMQKR/woO7/ngY7/31fgRCEfz6ti34zQcuQu0c431TUZmvx5Q3iCeODCBPp0r4Ip9LqmwGhCJ8znK9KW8QJwensTXDsfwilVKBQpM2YaDGOcdrvaktuk5Ep1biLRvK8fSJYUz7zu0j6BhxYmWxKSv7Ecus+ti/zdnEK6WpliDe2FyBgUlvLOBKVcvgNFQKhoYS+f6dVdkM+PjOlTk5zTRV4k61AzLtVBt1SQzUis3otLsWJACa9oYQivC0Sx+DYY5pn/zZg+VsLLqmoSCDHjUgOvlxjsyrWKFSU5h+0NQcrZSQuk9NLBOulOni8EJYXylUMaTSp/Z67yQ4B7asOLfkf0OVFZc3FuFXL56GN5Bali6ZlqFpNJXm5cT+3uWGArVlZjLaKJp7GTXhJE8sfxyQOaMm+vIbV8PlD+EnL3TFPhaJ8LQDq7Mj+s+W2U16AhhzBbIbqNUXwOkLoWVQKO348fOdeMMP9mBXux2fu7oRz3zmcly1ukS25xOvMj7bMoIdTcWyjn/Phmrb/CP6D0X70+QYJCIqtegwPH1uKZW46HqTDLX5t2ypgj8UwT+ODp3zuc4RFxqzVK5XbtHNufT65OAUqm2GlKcjXrpS2ME3V2Y4mdahaawsNmU8sXO5knOnWiAUwbg7MO/ER9HKYhM8gTAG5wjs5TTuEbM76Q0TAWjpdarGohm1TMv6G0vMOGV3JdwDJl74rLalf5GxJE+H0jyd5IEi/Uswo1aZr4fVoMaxFHrxDnePQ6lgaJ7j/eiTV66Ewx3Anw/0ynSUwsXKlqFp2aofyEy5fTZGUiZm1Cw51KMGAE3RvhpxQMbAhBcalQKFRnl7vJpKzbh5cyV+/2pP7ArawKQXvmAk7SEMKwoMM3apZXOQiEjcp3b/nlO45od78f1nO3DlqmI8/7kr8MmrGmSfNideZYxw4MpVub9GQwzU+udYer0v2p8mZ2NzSZ4OIwlOTtNddJ3IhkoLGopNeHjWRL8pbxDD075Yk77cyiw6BEKRhAuCTw5Op9V3UGrRoa7IiFdS2AkYj97456fXKHHD+jI8JcNOtTFX8mXXolj/UZKFxnIQe8xSWXYtKoi+t9Dkx9SIgW0mpY+AEKgFwhH0JLiY1u3wgDFkPNhjQ5VFekZtwoN8gzrl9ofFxBjDugoLjg1ID9QOdk9gdZl5zq/zwhobttbZ8Iu9pyT39yUzNOXDpCeINWVLt+83l1GgtszEArUcy6hZDGqUWXSxyY/9k16UW3RZGeP62auboFAA3/1XO4Czo6TTLaGqKTCif8KLYPTKYCxQK8rei1JxnnCS++TxIWhUCjx4x8X42a2bZS0VjSeOLGYM2NGY2/1pgBBYKBVszoza/jPjaK6Spz9NVJKnxYjz3EAt3UXXiTDGcMuWSrzeOzmjD6gzNkgkOxcHyqK/V7MHikz7guhxeNJuEL+kvgAHzozH/u1I5XD5MTLtz2ji4/ng5s3y7FSzO8UdaslPzsVhNl1pLOJNlbiwuiCNC3piRo0mP6bG4QpAqWAZt0/EVjkkCOh7HW6UW/QZZ8ubq/LR7fBgQkIw3jfuWVLZNNGGSis6RpySgqpgOIIjfZMJyx7jffLKBoxM+2XJxgPpl8cTaShQW2amvMILVq4FasDZgSKAkFGTu+xRVGrR4c7L6vD3o4M42jcZGyWdbmBVU2hEOMJjfXVddhe0KkXWjl9075vX4hs3XYCn774M26NlZNmSb1DDoFFiY5U1rX6QhaZSKlBu1SUM1KZ9QZwYmJKtP01UmqfDpCd4zhvm62kuup7LTRsroFQwPHJ4IPYxsddD7omPotgutVk9f7FJXhXSJz7G215fCHcgnPKI6dYh4XUi04mPy91mmXaq2aO9l1JKH/ONGhSaNAsyol/MhtnSKX2kjFpaxlx+2IyajC+iihUnifrUujMYzR9vQ5XwuiSl/LF/wrvoEx/Tsa7SgnCES+r1bR2ahjcYTtpjfkl9ATZVW/Hz3adSvoiWSMvQNBg72+JC5EWB2jITGyaSRqlItjWVmnFq1IVgOCLsUMtSdggAPnx5HQqMGnzrqVZ02l0oNmvTLgeNTX6Mlj+eGnWhrig7Qx3iXd5YhPduXQH1AvSLMcbwhWub8Nmrm7L+XHKpnmNE/+HuCURk2p8WL9EuNV8wjJMZLLpOpNisw86mIjz2Wn+sv6NjxAmDRpm1fzNlVuFrE6exitKZ+BhPDJZfTbH8sWVICOwoUJufXDvVxIxakYSMGiCchHcswOTH2ATCdKY+GqlHLR1jrvTWIcxm0KhQZUs8+bHH4c5o4qNoXYUFjCHpPrVI9ELrUhokIooNFJFQ4nmoWyjD31Iz//sRYwyfvLIBA5NePP76wLy3laJlcBo1BcYlVVa6lFCgtsxMeoJQKhiMOTjVbFWpGcEwR9uQE6NOPyqs2bu6Zdap8ek3NGD/mXE8fXwoo34y8Q2lJzqivyvLEx8Xy+3ba3FpQ3Yzd3Kqyjecs4gciPanKRWyBk9AfKB29sRPXHQtR39avJs3V8Hu9OPFTiHA6RhxoqHYlJVSYUA4EdaoFOdMfjw5OIUis1ZSpiWRfKMGa8ry8EqKA0VaBqdRZtEtiezuYntbdKdaJmVMdqcfjAlrKKRoKDajayT7kx/H3QEYNMq0Spg1KgXMOlXCvsuF9mzLCL706LHFPgxJHBkuu47XWGw+J1Cb8gYx4QnGLoBmwqxTo6HYhCN9E/Pezu70IxCOoHIJlj6W5ulQaNJK6lM73DOBCqseZZbkAekVTUW4oCIPP9vVlXDgSyqonzi7KFBbZqa8QVj16qzs98pUU4nwD3l3ux2A/BMfZ3vXRdWoKzTCHQinPUgEEE5eTFoVuh0e+IJh9E94sbJo+QVqS02VzYAxV+CcQQr7Tjtk708DhJJaYObSazkWXSdy5api2Iya2FCRjhFX1gaJAMIV1jKL7pyMWkuag0TiXVJfgEM9Eyk1rrcOOemNX6LYzroMdqqNOn0oMGokl+82lJjg9IdmXLTIhvE0d6iJCk3anAjU/n50EA8d7JNteEM2jbn8GY/mFzWWmnFmzD2jvK43OkFZjtJHQOjhOto/Ne9Fg77oBb2qJZhRY4xhQ6UFx5OUj3POcahnPGk2Lf5xP7GzAd0OD548fu6UYamcviB6xz3Un5ZFFKgtM5PeYE72pwFAfbERSgXD823RQC2LpY8AoFYq8IXrVgEQ3jDSxRiLTX48NeoC59md+EikESc/9sVl1Zy+IE4MTuNimcsegbiMWlzWSVx0LdcVaJFGpcCNzeV4rsWO06MujLn8scmp2VIWHdEv8gXD6LS7Mg/UVhYgEIrEgtpkfMEwukZdVPaYgps3V6J/wov9Z9LbqWaf9qMohayp+PrXmeXyx3F3ZmV4NqMmJ0ofxanBiSoAco3DFZAvo1ZiQjDM0T12dmqy+L2Qo/QREHaDjbsDsfH7iYhlwUtxmAgg9Kl1jbrmne7aP+HFyLQfW1LYgXrNmhI0lZjx011daWfHxbkDdGEteyhQW2amvcGcG80v0qqUqCs0xhp/F6Je/Nq1JfjdBy/C2zZWZvQ4NQVG9Dg8CzKan0gjvun2xY3oP9QzgXCEyz5IBADydCro1IpYj5pci67ncsvmKgTCEfz3M8L0UjkXPydSbtFjKC6j1jHiRDjCsbY8vUEiogtrbFAqmOTyx84RF8IRTldoU3DNmlKYM9ipZndKW3Ytaoju88v2QJFxdwD5GQRqBUbNog8T4ZzjzKgQnPTNsU4kV3gCIXgCYdkyauLvSfxAEbGvWK6Mmrj4+sg8PVzi9z3bF4ezZX2lBZwDJ+YpfzzUI1yk2Zxk4mM8hYLh1q3V6BhxzTlBORlx4BRdWMseCtSWmUlP7mbUAGGgCOfCGHgxQ5FNjDHsaCyCPsOevZpCA/rGPWgfdkLBhL+TxZVo6fX+0+NQK1lWgifGGErzdLHSx4FJ+RZdJ7KmPA9ry/Pw1HFh9Hq2Jj6Kyqw6jDj9CEfL5zIdJCIy69RYX2mRvE+tNTrdjK7QSqfXKHHDhjI8fSK9nWqjKQZqhSYN8g1qdGZ5RH+mpY8FJs2ij+d3uANwRn8m6Z4MLxRxHYJc+01XFpugYEB7XJ9a95gbRWYtDBp5Bk80lZqhVSnmDdT6JzwoNmtlL4dfKOsqrACEnui5HOqegFmrQlOK1UOX1AsXNfedTq2PWNQyOA2bUYMSCTsYSXooUFtmxB61XCVedSkx66BRLZ1fvxUFRoQiHHs7R7GiwJjx/heSOXF5afy0u32nHdhQac04MJ9LSZ4ullF7rXcSgDyLrudyy2YhE2zWqlBmye6FjTKLHuEIhz26K+7EwBTMOlUsIM7EJfUFONo/BZeEIKJlaBpGjVKW5z2fiDvVnkqx3yQS4Rhz+SUtuxYxxoSBIlkufXS4/RmVPhYYtZjwBNLu3ZNDfNlfJpM5UzHq9GN46tydj8mIi88LzfJk1HRqJVYUGGfsUutxeGQZJCJSKxW4oGL+xdd9E0tzh5qoyKxFuUU375qTwz0TaK62pjyNur7IhEKTBvtOp1c2LQ4SycW5CMvF0jlTJpJM5XCPGoBYn022B4nIrSZaT39iYBr1RfLU1pPMMMZQma+Pnfy4/CEcz8L+tHhCoCaczLzWMwG9Wp5F13O5sbkCGqUCK0tMWX8jLI+N6BdO8E4OyvcGfEl9IcIRjoMSeqhaBqexqiwvaxMul6tN1fmoLTTi0ddSK38c9wQQivCUJ3uuLDGhI4uTHz2BEHzBCGwZZHdsRg3CER5bW7MYTkcDNYNGOaOfNpu+9Ogx3PXg4ZTvl8mC8bk0FJtmTH7sGZdnNH+8DZVWnBicmnMnWN+4d0kOEom3rtIyZ0ZtyhtE+4gz6aLrRBhjuLiuAPtOO1L+txwMR9A+4qQy9SyjQG0ZiUQ4pn1BWHJwh5pITMsvtVrx+FLHeupPyxnxu9QOR/vTsjFIRFRqEUofOeeyL7pOJN+owVfetAp3XlaXtecQiSOdh6a8CEc42oanM+5PE21ekQ+NSpG0/JFzjlYa9ZwWxhiuXVuKwylO2LRHLzykUvoICCfgU94gRrM0rONs0JBZ6SOARZ382D3mhkrBsKXGtmA9au0jTrQNOVPOJDrcws9Srh41QCjZ7nZ44A+F4QkIk0JXyJzd2lBlgS8YQfvwuRneYDiCoSnvks6oAcD6SivOjLkTXnR4vXcCnCffnzaXrXUFGJrypVyae3rUjUAoQq/XWUaB2jLi9IXAOXI6o1aZr0eVTR9b4rhUFJm0METL6Wg0f+6othnQN+EB5xz7TjugUjBsTmHqVapK8nQIhCIYmfYLi66z+Fyi27fX4k3ryrL+POVioDbpw+lRF3zBSMb9aSKdWonN1flJB4r0T3jh9IeoMT1NzVVWBMMcLdE+PynEUtdUSh+Bs4MiurI0UEQcApJRj1o0M7SYkx+7HW5U2wyoLRD6nLO9ey4QimBw0gtvMIyh6dTKH8V+Pjmn2DaUmBCOcJwZc58dJFIob0ZtY5XwOiwOKos3NOlDhAt7N5eydRXCOVOigSKHeyagVLDYYJVUbYte3Ey1T61lSDgWyqhlFwVqy8ikV3iRzeVAjTGG3Z/fiQ9dWrvYh5ISYUS/8OZCEx9zR5XNAF8wglGXH/tPO7C+0iJbk3oiYsP0c60jCEV41iY+LoY8vQoGjRKDU96zg0Qq5HsDvqS+AC1D05iYJ7shPi+98adH3Od3JNo/KYXdKWbUUit9FKeQZmugSCxQyyC7kwsZtdOjbtQUGlFlM8DpD2W9DHNg0gsxkXYqxZ/NmMsPk1Yl69ANsYqmfdiJnugONTl71ACgyqZHvkGdsE9NXImwEFOms0m8uJ2oT+1Q9wTWlOXBqE3vvS/dPrXWISc0KgXqZA68yUwUqC0j4htALg8TAQClgi3JxtPaaPkjlT7mDnHgRPuwE8f6s9ufBgCl0Uml/zwhTGKUe9H1YhKXXg9N+nBycAoalQL1MmaPL1lZAM6B/WfmvmrbMjQNBUPWd8YtVyV5OpRZdPNOwJttNBqoFaVY+lhs1sKsU2Vtl1osUMuglH+xAzXOeXR4hjHhOpFs6HGcHV5yajS1QM3hCsha9ggAtYXC/tTOEVfs2FbY5D2xZ4xhQ5UVR/vODWJiy66XeOmj1aBBtc2A4wOTMz4eDEfwet9ERpUk6faptQxOo6nEnNXyf0KB2rIy6RECtVzdo7bUXbWqBNesKUGejr6/uUJ883389QGEsrQ/LZ64UuLV046sLLpebOVWPYamvDgxMI1VpWaoZXwDXl9phUGjnLf8sXVoGrWFxqxN7TwfNFdZUwrU7NM+mHWpZ1EYY2gsMWdtl5ocGbX8aJC3WKWPI9N+eINh1BYZY6V32R4oIpYXqhQs9UAtwymbiWhVStQUGNAx4kS3wwOrQZ2Vc5QNlVZ02J3nTJbtG/dCqWBZn5q7ENZVWs4JRlsGp+ELRtLuTxOl2qfGOY9NfCTZRYHaMrJUMmpL1ds3V+KB929Z7MMgccRylqePD0OZ5f404GwfT3iZlT2Kyiw6DEQzanINEhGplQpcVGubN1BrGZzGGpmf93zTXGVF77hHcnCS6rLreA3FJnRlqfTR4Q5ArWQwp1nOBQi/c1aDetGWXp8eE743tQVGVNmE16ps71LrcXigUyuwrtKS8s9mzBnIysWnxhIzOu0u9Do8sk98FDVXW8E5cHxWaWDfhAdlFt2yyPqsr7BgYNI749/2oZ4JAEhr4mO8VPvURqb9GHcHqEx9ASz931wSMxkN1HK5R40QOenUSpTkaeENhrG+0pJ2jb5UWpUyNtwgW4uuF1OZRY8xlx/TvpBsg0TiXVJfgC67K7aLLt6UJ4iBSS9doc3QhuhAgfl2LsUTArX0sg0ri01wuANZyViNu/2wGTUZl8nbjJrYBMmF1j0W7ckqNMCsU8NqUGd9l1qPw4NqmwENxSacGnUnv0Mch9uPgiwEag0lZnQ73Ggfcco+8VG0odIK4NyBIn3jniU/SES0Pvo1xo/pP9wzjgqrHqUZZgyFPjWt5D41GiSycChQW0amo4FaHgVq5Dwi9qldXJvdskeRmH3I5qLrxSLuUgOQpUCtEADwaoKsWuuwMEhkdRn1p2ViXYUFCga8LrH80e70pTzxUdQQ7SXMxkCRcXcgox1qokKjNjZ2fqF1O9zQqBSxiarClNrs9qj1jrtRbTOivsiEUadf8vCScIRj3B1Aocw9aoDQc8q50A8p9yARkc0o9HDNHijSP+Fd8oNERBdEhzuJWUPOOQ51T+DCDMseAaGUeWudTXKfWkt08FM294gSAQVqy8ikJwCdWiHrxCZCcp14tXRrFvenxSu16LK+6HqxiLvUFAxYVSp/oLa6LA8WvTrhPrUWmvgoC6NWhcYSs6Q+Nc45RjMsfQSyE6g53AFZ+qUWM6N2etSNmgJDbHl7Vb4B/VnMqHHO0TvuwYoCQ2wQ0GmJfWqTngAiPLO9dXNpLDk7lChbpY+AkE2O/733BcOwO/1LfpCIyKxTo67IiKPRQK1/wgu704/NNfK896XSp9YyNI0VBUKmmGQXBWrLyJQ3CKs+d5ddE5INTaVmGDRKbJHpzSqZd19Ujc9d07gseh5mEzNq9UWmrAz0UCqEq7aJ+tRahqZRaNKmXYZHztpYbcXRvsmkV8ad/hB8wUja3/Myiw4mrQpdI/JPfhQyapm/nxWYNIvWo9btcKMmLjCptOnRP+FNeRG1VHanH75gRAjUokG01PLH2A61NIP2+dQUGqFWCsHqiixl1AChP3Noyhcrre6PZi/F/sDlYH2FJTb58VCPUKa4RabebHEYV6KKh9lah5xUpr5Alt+Zxnlsyhuk/jRy3rl9ew2e++wOmLLcnya6dm0p7risbkGea6GJGbVslD2Ktq8sRP+E95xendahacqmyaS5yoopbxBnxuY/SbdPR3eopVn6yBjDymJTFksfZQjUjBqMewIIZyk4mks4wtHr8KC26GygVpVvQCAcwYgztUXUUol7yqptBlTl66FRKiQPFBH7DAtkKDedTa1UoDa6ayubGbXmKmEQkVj+GBvNv0x61AChT21k2o+RaR8Odk/AHM2gy6G+yBjtU5s/UHP5Q+h2uClQWyAUqC0jk54gjeYn5x2tSoly6/K5YrqYjFoVPrC9Bu+4sCprz3FJvXDVNr78MRCKoHPERf1pMhEHiiQrf7RHA4ZUd6jFa8hCoBYIReD0hWTKqGnBuVDat5AGJ70IhCOojQtMqrO8S61b3FNWYIRKqUBNoUHyiP6xaNYxGz1qgDD50ahRZu3xAWBtuQVKBYv93p/NqC2nQE0IRo/3T+Fw9wQ2rsiHUiHPXtqzfWrj82bj24enwblQyk6yjwK1ZYQyaoSQTN3z5rWxoR/ZUF9kQpFZO6P88dSoC4FwhK7QyqShWDgpnj1YYTZx2XUm5aYNJcLQCjkDoYnoY8kRqImPsdBLr8VsZk1hXEYtFqhlp0+t1+GBggEV0QtX9UUm6YFa9HchW7shP/2GBtz37o0ZT/Gcjy7aOyxOfuwf90CjUqBoGe27XFOeBwUDXuoaQ4fdKVvZo2hrXQGGp32x7Gwi1E+8sChQW0YoUCOE5DrGGC6pL8Arp85OF2sdEt74s1lyeT5RKhjWVVqSZ9QyLH0EhKAQkHegiDj8Q47BFgXRDM7YAi+9FrNbdXGBWrlVB8ayt0utZ9yDcqseGpVwaldfZEKvw4NgOJL0vg63H0oFy9o5xMpiM65aXZKVx47XXGXFsb4pRCIcfRMeVFr1sWEuy4FBo0JDsRmPHO4H58h40fVsYp/afOWPLUPTsBrUy2KJ+FJAgdoyIgwToUCNEJLbLqkvwKjTH7va3zI4Da1KMWPwAslMc1U+Woam4QuG57yN3emDVqXIaKn0SnHy44h8gZo4/EOeHjXtjMdcKKdH3TBqlDPKSrUqJUrzdLHeKbn1OtwzhnXUFxsRivB5syMih0voCVzqQc2GKiuc/hBOj7nRN+5F5TIqexStr7TA5Q9BqWBojpY5y0VKn1rL4DTWlOVlNTtKzqJAbZkIhCLwBMKUUSOE5DyxtFIsf2wZmsaqUvOynKS5WJqrLAiGOVqi2cpE7E4/ivO0GZ1wVVj10KuV6LTLN/lR3HtWIEM/k/gYCz2iv9vhxooC4znf2yqbAf1Z6lHrGffMGNYhjuiXUv445pJnHcJia47rz+yb8KBqmexQiyf2qa0tz4NBI+8QrWR9aqFwBG3DNPFxIdG74jIhLrW00jARQkiOq7IZUJmvxytdQvljC018lF1zlVASdaR3cs7b2Kf9Ga9DUCiEyY9SpwtKcTajlnlvUb5BA8YWvkete8w9Y+KjqCrfkJWM2pQ3iElPECviMkh10UBNys9mzOXPaKhMrqgvMsGoUeLlrjFMeoLLapCIaF2lFQCwWeb+NNF8fWpnxtzwhyL0er2AKFBbJqa8wptQHmXUCCFLwCX1BXj1tAMDk15MeoI0QUxmpRYdSvN0scEKididvrSXXcdrKDHJXvrIGGSpEFEqGPINmtj4+YUQDEfQN+GdMfFRVGXTY3jaB39o7pLUdPRGT6rjSx9NWhXKLDpJGTWH278sMmpKBcP6SiuebRkBAFQuw4zamrI8vGVDOd6+qTIrjz9fn5qYoadAbeEkDdQYY1WMsV2MsVbG2EnG2N3Rj/8nY+wYY+wIY+wZxlh59g+XzOVsRm3pv9ASQpa/S+oLMeUN4tHDAwBApTRZ0FxlnXegiN3plydQKzZjeNqHaV8w48cChEAt36CRbex4gXFhl173jXsQjvAZEx9FVfkGcA4MTMhb/tgzLgwvqbbNfE5h8mPypdcOVwAFy2Q64oYqK1z+EIDltUNNpFEpcN+7N+KCCktWHn++PrWWoWlolIpYWS3JPikZtRCAz3HOVwPYCuDjjLE1AL7HOV/POW8G8A8A/y97h0mSmfQIb5DUo0YIWQq2Rfep/WFfNwBgFQVqsmuutqLH4UkYpPiCYTh9IRTnZT65raFYeomdFHItuxbZjJoF7VETR/PXJgjUqqMZrz65AzVx2XXBzMCkvsiI03bXvHuxPIEQPIFw1kbzLzRx8TWwvHaoLZT5+tRaBqfRUGKCmvqJF0zS7zTnfIhz/lr0/50AWgFUcM7jO5SNAOZ+FSBZF8uoUaBGCFkCSvJ0WFlswpgrgBUFBpgymDxIEtsQ7WVJtE9N3KEmR19SQ4k4+VGegSIOmQO1QpM2NqBkIcwXqIkZHrl3qfU6PCg0ac75d1RfbILTH4r9vBOJrUPI4jLqhSQufDdqlMinvv20JOpT45zHJj6ShZNSSMwYqwGwEcD+6N+/yRjrA3ArKKO2qMRAjTJqhJCl4pJoVo3e+LNjfaUFCga8niBQszt9ACBL6WNlvgFalUK2PrVxt7wTCG1GzYIOE+l2uJGnUyUMEorNWmhUCtkDtZ5xN6oTZI/qJQwUEXfMFS6TQK3MokdJnhZVNgONkE9Toj61UacfDneA+tMWmORAjTFmAvAogE+L2TTO+Vc551UAHgTwiTnu92HG2CHG2KHR0VE5jpkkIJY+0jARQshSQYFadhm1KjSWmBP2qcWWXWc49REQBjjUF5lkW3otd+ljgUmDSU9Q0uJnOZwZc6O2yJQwSFAoGCqtetknP/Y4Zo7mF0kZ0X92wfjyKH0EgDsvq8O7Lqxa7MNYshL1qZ0UB4nQ6/WCkhSoMcbUEIK0BznnjyW4yZ8AvD3RfTnnD3DOt3DOtxQVFaV/pGReU94gzDqVbM3XhBCSbdtXFuLSlYW4em3JYh/KstVcZcXRvslzek3s0VK44jx5Ts4bSuQZ0R+OcEx45M2oiY814VmYrFr3mAe1BXP3RlXZDOiTcZeaLxjG8LQvYUatJE8Lk1Y170CRWEZtGYznF91xWR1u31672IexZCXqU2sZFAK11ZRRW1BSpj4yAL8G0Mo5/0HcxxvibvYWAG3yHx6RasobpB1qhJAlxaxT4493XIxVpfTGny0bqqyY8gbRPWsnkt3pg1LBYJNpUnBjiRkDk97YtL10TXoC4BwyZ9SEAGQhBor4gmEMTnkTTnwUVdn06JWx9LF/wgPOZ47mFzHGUF9knD+j5hYzasuj9JHIY3afWsvQNKpseuTp6FxzIUnJqG0H8D4AV0ZH8R9hjL0JwLcZYycYY8cAXAPg7mweKJnflDdI/WmEEEJmaI4OVjjSNzHj4/ZpPwpNGihkqsJYGZ38eCrDrJqY9cqXuUcNwIKM6O9xCEFTokEioqp8A6a8QdnWGfTEdqglfs76ItO8P5cxlx8mrQo6tVKW4yHLw+w+tdahaaymi2oLTsrUx5c450wcxR/98xTn/O2c8wuiH38z53xgIQ6YJDbpCVCgRgghZIbGEjMMGiWO9E7O+LiwQy3z/jSROKI/0z61bPRLiUMyxhZg6fV8Ex9F4sh4uQaK9CRYdh2vvtiEwSkf3HNkO8dcgWUzSITIJ75PzRMI4cyYmwaJLAJahLBMTHmDsOrphZYQQshZSgXDugrLOQNF5Fp2Laq2GaBRKjIe0S9mveTdo6ad8djZ1O0QArX5Sh+rY4GaPH1qveMeGDXKOUsX64uEYzk9R5+aw+VfNsuuiXzi+9Rah5zgnAaJLAYK1JaJKW+QJj4SQgg5R3O1FS1D0/CHwrGPjTp9sg0SAQCVUoG6ImPmGTW3/Du9rHo1FGxhetTOjLpRaNLM28cj9y61Hocb1QXGOUfRJ5v86HDJO7yFLB/b6oU+tX+eGAIAyqgtAgrUlgHOOQ0TIYQQklBzpRXBMI9NbQuFI3C4AyiSsfQREPrUOu3yZNTyZRpyAggj8Rdql9oZhxs1c/SKiSwGNcw6lWwj+nvGPViRYOKjaEWBEUoFmztQc1NGjSQm9qk9dLAPeToVKqz6RT6i8w8FasuANxhGMMypR40QQsg5mqutABArf3S4hcmKcpY+AkBDsRn9E154AulPfhx3B2DWqaBRyXt6UmDUwrEAPWrdY+55yx5FVfkGWTJq4QhH/7h3zv40ANCoFFhhMyQM1MIRjnF3AEXUo0YSqCs0osishdMXwpryPFogvggoUFsGxGXXVgrUCCGEzFJm0aMkTxsL1M4uu5Y3UGssMYHzuXuhpHC4s1OGV2DSZL1HzeUPwe70zztIRFRtM6BvIvMeteFpHwLhCKrnCdQAoK7IhFP2c38uE54AIhyUUSMJCX1qQlZtTZllkY/m/ESB2jIw5RUCNcqoEUIISaS5yno2UHP6AADFefKWPjaUiJMf0y9/nHAHZB3NL1qI0sduCRMfRVU2PfrGPecsIk9VT3R4yQrb/M9ZX2zEmTE3QuHIjI/HpmxSRo3MYWudDQD1py0WCtSWATGjZqEeNUIIIQk0V+Wjx+HBhDsAuzM7GbUVBUaoFAydI+kPFMlWRq3QpM36eP7YxMckPWqAMKLfH4pg1JnZMfUmGc0vqi8yIRCOoH9WFk/8nhRSRo3M4dq1pbh6TQkubyxc7EM5L1GgtgxQRo0QQsh8NlQJZUtH+idjpY9yn5yrlQrUFhrRkUGgNu72yzqaX2QzauD0hRAIRZLfOE1nRsXR/PMHTUDc5McMB4p0OzxQKRjKLPNnR2MLyWf1qZ0N1CijRhIrNGnxy/dvkXXvIpGOArVlYMorlC5YZZySRQghZPlYX2kFY8CR3knYnT7YjBrZB3YAQvljV5qlj5wLgy1sMi67FomlfdnsUzvjcKM0TweDRpX0tlUy7VLrHXejMl8PlXL+n2V9YeJALRsLxgkh8qFAbRmgjBohhJD5mLQqNBabcaRvEnanH0VZKnVbWWxG77gHvmA4+Y1ncfpDCIZ5doaJRB/T4c5e+aMw8TF5Ng0AKvOFMee9GU5+7HF4sEJCqaXFoEahSXvOQBGH2w+lgtH5AyE5igK1ZWDSE4RSwWDUKBf7UAghhOSo5iorjvZPwj4t77LreA3FJkTSnPw4Hs3uZKP0UZxqmM2l12fG3JIGiQCATq1EsVmb0Yh+zjl6HZ6k/Wmi+iIjumaXPjqFnkCFgsauE5KLKFBbBqa8QVj1atpvQQghZE4bqqyY9ATROuREkcyDRESNJWYA6U1+FKcy2rLQLyUGf1JLH8MRjh8824F+iT1kU54gJjxByYEaIJQ/ZtKjNuEJwukPoXqeZdfx6otN6LK7ZkyapGXXhOQ2CtSWgUlvkMoWCCGEzKu5ygoACIQjWRsMUFNogFLB0GVPfaCIGETZstBvXRjtwZI6+fHAmXHc93wnvvVUq6Tbn0lh4qOo2mbIqEctNppf4nPWF5kw5Q3OCFbHXAEaJEJIDqNALQf97pVu/L+/npB8+2lvkEbzE0IImVdjiQl6tVAiL/dofpFWpcSKAkNaI/on3NkrfczTq6BSMMkZtd0ddgDAU8eH0To0nfT2Z8aErzeljFq+HkNTXgTD6U2iFPvbpJY+np38eLYs1eH202h+QnIYBWo5xuHy4zv/bMOD+3vh8ock3WeKMmqEEEKSUCkVWFcpjOnPVo8aIPSpdWRQ+piN5cuMMWHptcQetd1to9hQaYFZp8L/PNeZ9PZnxjxgDKiWGDQBQKXNgAgHBifTy6r1RHeoSS59LBKCyPjJj2KPGiEkN1GglmMeePE0PIEwwhGO13omJN1n0iP0qBFCCCHz2Rgtf8zmTqSGYjN6HB74Q6lNfhx3+6FTKySNt0+HzaiJBYPzGZj0on3EiTdvKMcHt9finyeHcXJwat77dI+5UWHVQ6uSPtQrtkstzfLHHocHJXla6NTSnrPcoodOrYiVpXoCIXiDYepRIySHUaCWQ8Zcfvz+lR5cvaYESgXDgTPjku5HGTVCCCFSXNFUDLNWhboi6SV6qWooMSEc4egeS21QhsMdyOo+r0KTVtJ4/t3tQtnjFU3F+OCltTDrVPhRkqxaKhMfRWL2Ld2BIr3jbqywSX9OhYKhrtAUy6jFdqhRjxohOYsCtRzyy72n4Q+F8cXrVuGCCoukQC0S4Zj2BWGhZdeEEEKS2FZfgGP3XpPVviSxFyrVyY/CsuvsvZcVmKSVPu5qG0WVTY/6IiMsejXuuLQOz7aM4MRA4qwa5xzdaQRqpXk6qJUs7V1qPQ5PSqWWgDD5UQzURqODVbK1U48QkjkK1HLEmMuP37/ag7dsKMfKYhMurrXhSN9k0qWhTl8InNOya0IIIdJke5VLfZEJCoaUB4pkO1CzGTVJh4n4Q2G83DWGnU3Fse/TBy6tQZ5OhR8915HwPg53AE5/KKWJjwCgVDCUW/Vp7VLzBEKwO/1YIbE/TVRfZET/hBe+YJgyaoQsARSo5YgHotm0T17VAAC4qMaGQDiCI32T895v0iu80FKPGiGEkFygUytRbTOkPKLf4cpuoFZo0sLlD817AfTAmXF4g2HsbCqOfSxPp8adl9XhuVY7jvVPnnOfM2PCFMVUM2qA0KfWN5F6j1ps4mOKz7my2ATOhWN2RDNq1KNGSO6iQC0HjDr9+P2r3bixuQL1RULJyIU1NjCGpOWPU94gAMqoEUIIyR0ri80plz5OeLKfUQPmX3q9q20UWpUCW+sKZnz89u01sBrUCXvVMgrUbAb0p5FREyc+pp5RE0f0u85O2aSpj4TkLArUcsADe08hEIrgk1eujH3MYlCjqcScNFCb9ARjtyeEEEJyQUOJCWfG3JJ3hPmCYXgC4ez2qEUfe74+td3tdmytK4BeM3OSojmaVXuhzX5OpUv3mBsqBUNlvj7lY6qy6eFwB+CWuI5H1OtIbYeaqLbQCMaALrsLo04/zFqV5KmRhJCFR4HaIrM7ffjDvh7c1FyBuuiVLtHWugIc7pmY941OzKhR6SMhhJBc0VBsQjDM0eNwJ78xsCDZHbEXa67Jj91jbpwec2NnU1HCz992SQ3yDepzetXOjLlRZTNApUz9lCo2oj/FyY89427k6VSwpjhITKdWojJfj1OjbmHKJvWnEZLTKFADEAhJu+KXDQ/sOS1k06K9afEuqrXBGwzPOWkKACap9JEQQkiOaSg2A5A+UGQ8muXKbkZN6MWaK6MWP5Y/EZNWhQ9fXo/d7aN4rffsntN0RvOLqmzp7VLrcXiwIsXhJaL6IhNO2V1wuPzUn0ZIjjvvA7UP/vYgPvXn1xflue1OH/64vwc3baxI+CJ/YY0NwPx9atPRQC2PAjVCCCE5or5YeE/rlDhQRMxyZTPDYzPN36O2q30UdYVG1MwTdL1/2wrYjJpYr1okwtHtcKc88VFUHQvUUsuo9Y6nPppfVF9kwukxF+xOPwopo0ZITjvvA7Vyqw57OkaTjsHPhl/sOY1gmONTV56bTQOAIrMWdUXGeQO1KW8QOrWCaswJIYTkDINGhSqbXnKgJgZPtiwuvDZrVdAoFRhLUProDYSx77RjzmyayKhV4SOX12FvxygO90xgxOmDLxhBbWF6QVO+QQ2jRpnSLrVQOIKBCW/Kg0REK4tN8AUjOD3qoowaITnuvA/Url5TCm8wjFdPORb0ee3TPvwx2ps239W7i2ttONA9jnCEJ/z8pCcAq56uiBFCCMktDcVmdI5Im/x4NlDL3vsZYww2Y+Kl1/tOO+APRbBzVeL+tHjv27YChSYNfvRcR9zER1OSe819TFU2A/pT6FEbnPQhFOEpDxIRiZMfIxwopImPhOS08z5Q21png0mrwjMtIwv6vPfvOY1QhM+Y9JjIRbU2OH0htA1PJ/z8lDdI/WmEEEJyTkOxCafH3AhJmPw47g5ApWDI06myekwFpsRLr3e126FXK3FRrS3pYxg0Knzk8nq82DmGRw71AwBq0syoAUBlviGlHrWecSE4rLal26N29n6FZsqoEZLLzvtATatSYkdjEZ5vHUFkjqyV3OzTPjy4vwdv3Th/Ng0ALqoVdrnMVf446QnSaH5CCCE5Z2WxCYFQRNJC53F3APlGDRhjWT0mIaM2s/SRc44X2uzYvrIQWpW0NoL3bl2BQpMWj70+AI1KgXJL6qP5RdU2A3rHPeBc2jlIT5qj+UU2owbW6HlDQRZLTQkhmTvvAzUAeMOaYtidfhybZ7qinH6+55SkbBoAVFj1qLDq5wzUKKNGCCEkFzWUCJMfOySUPzrcgQVZvFxo0sZWAYhOjbrRP+GVVPYo0muU+OiOOgBATYEBCkX6AWaVTQ9vMHzOcc2ld9wDjUqB0jxdWs/HGIuVP9J4fkJyGwVqAHY2FUOpYHhuAcof7dM+/Gl/L96+qULyaN2La204cGY84dW2KW+QdqgRQgjJOSuLhWCgS8JAkXF3IKv9aaKCBD1qycbyz+W9W1egJE+LptK8jI4ptktN4kCRHocb1bbMgkOx/JGmPhKS2yhQA2A1aHBhTT6eXYBA7We7TyEc4fjEzsSTHhO5uM4GhzuAU6PnLg6ljBohhJBcZNKqUG7RSRooslCBms2kgTcYhicQin1sV7sdTSVmVFhTK1/UqZX42ycuxX/euDajY4rtUpNQIgpEd6ilOfFRtLbcArWSoTjNrBwhZGEkDdQYY1WMsV2MsVbG2EnG2N3Rj3+PMdbGGDvGGHucMWbN+tFm0RtWl6B9xIleR2q7TFIx5Q3ioYO9eOvGipT2n8zVpxYIReAJhClQI4QQkpMaSsySRvQ7XP6FKX2ctfTa5Q/hwJlxXJFC2WO8kjwdrIbMjrvKJgSIUjJqnPOMdqiJ3n1RNZ6++zLk6ej8gZBcJiWjFgLwOc75agBbAXycMbYGwLMALuCcrwfQAeDL2TvM7Lt6TQkA4NnW7GXV/nZ0EL5gBO/fVpPS/WoKDCgya3HgzMwVAlPRZddWGiZCCCEkBzWWmNA6NI33/HIffra7C8f7p84Z3BUMRzDtC2V1h5pIzNqJkx9f7hpDMMyxM8WyRzkZNCoUmjSSArVRlx+eQDjjjJpGpcDKYnNGj0EIyb6kc3A550MAhqL/72SMtQKo4Jw/E3ezfQBuzs4hLowVBUY0lpjwXMsIPnRpbVae4/8O9mJNWR4uqEitnp0xhotqbdgf7VMTp2KJgVoeZdQIIYTkoA9dWgfOgZe6xvDdf7bju2iH1aDG9vpCXNpQiEtXFkKrEq4Z24zZfy8Th2c4okuvd7fbYdaqsHlFftafez6V+Qb0Sdil1hub+JjeaH5CyNKS0sISxlgNgI0A9s/61AcB/N8c9/kwgA8DQHV1depHuICuXlOC+/ecxlQWRt6fGJjCiYFp/MeNa9MaP3xxrQ1PHhtC/4Q3Vs8+5RWuCGZadkEIIYRkQ6lFh3+/YQ0AwO704ZUuB17sHMNLXaN48vgQAKAkT8ikLURGrSCu9JFzjl1to7i0oRBq5eK27FfZDDjaN5n0duJo/kxLHwkhS4PkQI0xZgLwKIBPc86n4z7+VQjlkQ8muh/n/AEADwDAli1bFmZRWZresLoEP911Crva7bhpY4Wsj/1/B/ugVSlw44b0Hldcwrn/zHhcoCZk1KhHjRBCSK4rNutw08YK3LSxApxznBp1CUFb5xg0KmfK1SbpOJtRC6Bt2Inhad+ilj2Kqm16PHV8CKFwBKp5gsaecQ8YAyrz09/bRghZOiQFaowxNYQg7UHO+WNxH78NwA0AruJSNzXmsA2VVhSZtXi2dUTWQM0XDOOJIwN407qytDN1jcVmWPRqHDjjwM2bKwEIy64B0Hh+QgghSwpjDCuLzVhZbMYHtmen3SARg0YJrUoBh8uP3e2jAIAdTekNEpFTVb4B4QjHno5RbKsvgEGT+PSs1+FGuUUveTE3IWRpSxqoMaFO79cAWjnnP4j7+HUAvghgB+c8e6MSF5BCwfCG1cX4+9Eh+ENh2V4Inz4xBKcvhHdeWJXRsV1YY5sx+ZEyaoQQQoh0jLHY0uuj/VNYW56HkhwYUb+mPA+MAR/63SEoGFBfZMIFFRasLc/DBRUWrCnPQ55OjZ5xD6ozHCRCCFk6pGTUtgN4H4DjjLEj0Y99BcB9ALQAno32XO3jnH80Gwe5kN6wugR/PtCH/afHcXmjPFfZHjrQh5oCAy6Oli+m6+JaG55rHcHItA8lebpYRo2GiRBCCCHS2IwanBlz41j/FO7aUb/YhwMAWF9pxb4vX4Vj/VM4MTCFk4NTePWUA4+/PhC7zYoCA4anfHirzK0ZhJDcJWXq40sAEk2/eEr+w1l821cWQq9W4tmWEVkCtdOjLuw/M44vXNeU1hCReBfXCYHegTPjePOGckx5gzDrVFAqMntcQggh5HxRYNLEyh53prk/LRtK8nS4eo0uti4IAEadfpwcnMLJwWmcGJiCSsFwRQ701BFCFkZKUx/PBzq1Epc1FOK51pG0JzTG+8uhfigVDDdvqsz42NaU5cGoUc4I1GiHGiGEECKduEvNalCjuWpxx/InU2TW4oqmYgrOCDlPLe482hx19ZoSDE35cHJwOvmN5xEMR/DI4X5cuaoYxTLUwKuUCmyO61Ob8gapP40QQghJQaFJGNF/eUMRVaQQQnIaBWoJXLmqGAoGPNsyktHjvNBmx5jLj3dlMERktotrbWgfcWLCHcCkJwCrnnaoEUIIIVIVRDNquVT2SAghiVCglkCBSYvNK/LxXGtmgdr/HexDSZ4WO2QaSgKc3ad2sHucMmqEEEJIitZVWlCZr8cVjVROSAjJbRSozeENq0twcnAaA5PetO4/NOXF7nY7btlcNe/yylStr7RAo1Jg/5lxTHlDNPGREEIIScEl9YV46YtXIt9IFSmEkNxGgdoc3hCduvR8mlm1Rw71I8KBd2yRr+wRALQqJTZWWbH/jANT3gANEyGEEEIIIWQZokBtDvVFJtQVGdPqU4tEOP7vUB+2ryxAdYH8iykvrrXh5OA0gmFOpY+EEEIIIYQsQxSozePq1SXYd9qBaV8wpfu9csqB/gkv3nlhdVaO66LaAnAu/L+VAjVCCCGEEEKWHQrU5nH1mhIEwxx7oosxpXroYC+sBjWuiVtaKadNK6xQRUcKU0aNEEIIIYSQ5YcCtXlsrM5HgVGT0vTHCXcAz5wcwU3NFdCplVk5LoNGhXWVFgCAhXrUCCGEEEIIWXYoUJuHUsFw5api7GqzIxiOSLrP468PIBCO4J0y7k5LRBzTTxk1QgghhBBClh8K1JJ4w5oSTPtCOHhmPOltOef4v4N92FBlxeqyvKwe11s2lOOiGhtqCoxZfR5CCCGEEELIwqNALYnLGgqhVSnwrITyxyN9k2gfceJdWc6mAcDacgv+8tFtMGpVWX8uQgghhBBCyMKis/wkDBoVLl1ZiL8fHYRZq0KZVY9Siw7lFj3KrDrk6c6WHv7fwT4YNEq8eUP5Ih4xIYQQQgghZKmjQE2C925dgZOPTePHu7piY/FFJq0KpRYdyiw6HOqewJs3lMFEWS5CCCGEEEJIBiiikGDnqmLs+8pVCIYjsDv9GJr0YmjKh6EpLwYnfRiO/n9Jnha3X1K72IdLCCGEEEIIWeIoUEuBWqlAhVWPCqt+sQ+FEEIIIYQQsozRMBFCCCGEEEIIyTEUqBFCCCGEEEJIjqFAjRBCCCGEEEJyDAVqhBBCCCGEEJJjKFAjhBBCCCGEkBxDgRohhBBCCCGE5BgK1AghhBBCCCEkx1CgRgghhBBCCCE5hgI1QgghhBBCCMkxFKgRQgghhBBCSI6hQI0QQgghhBBCcgwFaoQQQgghhBCSYyhQI4QQQgghhJAcQ4EaIYQQQgghhOSYpIEaY6yKMbaLMdbKGDvJGLs7+vFbon+PMMa2ZP9QCSGEEEIIIeT8oJJwmxCAz3HOX2OMmQEcZow9C+AEgLcB+EU2D5AQQgghhBBCzjdJAzXO+RCAoej/OxljrQAqOOfPAgBjLLtHSAghhBBCCCHnmZR61BhjNQA2AtiflaMhhBBCCCGEECI9UGP/v737D7KqPA84/n0kahSGKIopEjFBzZhMGq1drGNwwiqbVJwJKEpiyEpsO06dZqamsYa2SczEMVOZ1pm0aXWYRFkURUjIKMHiOLqpUn+xNjQmBYLNxB+RACkg2hoVfPvHOVsusLv33uX+OGf3+5k5c+997zn3fe95Zufd5573fU/EOOD7wHUppT11HHdNRPRFRN+OHTuG00ZJkiRJGlVqStQi4kiyJG1ZSmlVPRWklBanlDpSSh0TJ04cThslSZIkaVSpZdXHAL4LbEwp3dr8JkmSJEnS6FbLqo8fA7qB5yJiQ17218DRwD8CE4E1EbEhpfTJprRSkiRJkkaRWlZ9XAcMtrTjDxrbHEmSJElSXas+SpIkSZKaz0RNkiRJkgrGRE2SJEmSCsZETZIkSZIKxkRNkiRJUv0WLYLe3gPLenuzch02EzVJkiRJ9Zs2DebNy5KzlLLHefOych22Wu6jJkmSJEkH6uyEJUvgE5+Aiy6CZ5+FFSuych02r6hJkiRJGp5LLoETT4SHHoJrrzVJayATNUmSJEnD09sLr72WPf/2tw+ds6ZhM1GTJEmSVL/+OWk9PXDEEXDxxfvnrLXLCFrgxERNkiRJUv3Wr8/mpM2dm81TW7cOli/Pytulf4GTpUvhzTdLvcBJpJRaVllHR0fq6+trWX2SJEmSWuCee2D+fPjRj+DjH29vWx59NEscp06FXbsKt8BJRDybUuqotp9X1CRJkiQdnjlzYNw4uOuudrcEjjkG9u2DLVtKvcCJiZokSZKkw3PssdkQyJUr4Y032tuWb34ze7zhBrjtttIucGKiJkmSJOnwdXfDnj2wenX72rB2LaxZA11dcMst2bDHdi9wMkwmapIkSZIO34wZMHlye4c/Ll0KKcHChdnrzs4sWWvnAifDZKImSZIk6fCNGZMtKLJ2LWzf3p427NwJU6ZkSWO/zs5sGGTJmKhJkiRJaozubti7N1umv9V+9St4+GG46qrsvm4lV/5vIEmSJKkYPvIROPvs9gx/vOsueOcdWLCg9XU3gYmaJEmSpMbp7oa+Pti0qXV1pgRLlsD06XD66a2rt4lM1CRJkiQ1zpVXZkMPW3lV7ZlnYPNm+PznW1dnk5moSZIkSWqcSZOy5fHvvjsbitgKS5ZkN7q+4orW1NcCJmqSJEmSGqu7G158ER5/vPl1/fa3cO+9cNllMH588+trERM1SZIkSY01Zw6MG9ea4Y/33w+vvjqihj2CiZokSZKkRhs7FubOhZUr4Y03mltXTw+cckp2v7QRxERNkiRJUuN1d8OePbB6dfPqeOUVeOihrK4xY5pXTxuYqEmSJElqvBkzYPLk6sMfFy2C3t4Dy3p7s/Jq+hcsGSH3TqtkoiZJkiSp8caMgfnzYe1a2LFj8P2mTYN58/Yna7292etp04b+/P57p51/Pnzwgw1rdlGYqEmSJElqju5u2LsXli8ffJ/OTrjjDvjUp+CCC7Il9lesqD7nrK8PNm4ccYuI9DNRkyRJktQcDz4Ip5124PDH/mGNb72VzV+bNy9Lzl5/Hdatg337YMKE6p+9ZAm8+93Z8SOQiZokSZKk5pg2DX79a1i/HjZvhkcfze539sQTcPLJ2VW03l6YNQuOOw6uvjpbgOTcc2HZssE/t//eaZdeCu95T8u+TiuZqEmSJElqjs7O7MoXQFdXtu3ena3U2NUFP/wh3HNPdmPsVauyIZArVmTzzz73ObjuOnj77UM/d/Vq2LVrxA57hBoStYg4JSJ6I2JjRPwsIv48L58QEQ9HxJb88fjmN1eSJElSqVx+OZxxBrz0EkyZAnfeCdu2ZVfELrkEfvzjA+ekzZ0La9bA9OnwrW/BzJnZ/pV6erIVJS+6qPXfp0VquaK2F/hSSulDwHnAn0XEh4GFwCMppTOAR/LXkiRJkrRfby/s3Alf/GI2D+3UU2H8+P3v33DDoQuHdHVlV9nuvjsbNnnOOfCFL2SftXVrtpJkdzc89lhty/iXUNVELaW0NaX07/nz14CNwGRgNtCT79YDzGlSGyVJkiSVUf9S+ytXwq23ZlfOKpfir2b+fHjySTj6aLj99mxO29e/ni04cuaZtS3jX1J1zVGLiPcDvwc8Dbw3pbQVsmQOOKnhrZMkSZJUXuvXHzissbMze71+fe2fcdZZ2VL8M2dmV+QWL86GPV5/fW3L+JdUpJRq2zFiHPCvwM0ppVURsTuldFzF+7tSSofMU4uIa4BrAKZMmfL7L7zwQkMaLkmSJGkU2bcPbrwRbr45e/3Vr8I3vtHeNg1DRDybUuqotl9NV9Qi4kjg+8CylNKqvHhbREzK358EbB/o2JTS4pRSR0qpY+LEibW1XpIkSZIqjRmTLR5ywgnwla/AbbfVPoSyhGpZ9TGA7wIbU0q3Vrz1ALAgf74AuL/xzZMkSZIkDpzvdtNN9c93K5larqh9DOgGLoyIDfk2C/hboCsitgBd+WtJkiRJarxGzHcrkZrnqDVCR0dH6uvra1l9kiRJklQkDZ2jJkmSJElqHRM1SZIkSSoYEzVJkiRJKhgTNUmSJEkqGBM1SZIkSSoYEzVJkiRJKhgTNUmSJEkqGBM1SZIkSSqYlt7wOiJ2AC+0rMLanQj8pt2N0LAYu3IzfuVl7MrL2JWb8SsvY1dejY7dqSmlidV2ammiVlQR0VfL3cFVPMau3IxfeRm78jJ25Wb8ysvYlVe7YufQR0mSJEkqGBM1SZIkSSoYE7XM4nY3QMNm7MrN+JWXsSsvY1duxq+8jF15tSV2zlGTJEmSpILxipokSZIkFUypErWI+MOI2BwRz0fEwory+yJiQ779MiI2DHL8hIh4OCK25I/H5+XzK47fEBHvRMTZAxy/LK//pxFxR0QcmZdHRPxD3q6fRMQ5zTkD5Vbg+J0ZEU9GxJsRcX1zvn25FTh28/O/uZ9ExBMRcVZzzkC5FTh+s/PYbYiIvoiY3pwzUF5NjN2REdETEc9FxMaI+KtBjv9ARDydH39fRByVl9vvVVHg2Nnn1aDA8bPfq6LAsau/z0splWIDxgD/BUwFjgL+A/jwAPv9PfC1QT5jEbAwf74QuGWAfX4X+MUgx88CIt/uBa6tKP+XvPw84Ol2n6+ibQWP30nANOBm4Pp2n6uibQWP3fnA8fnzi/3bK138xrF/CP5HgU3tPl9F2poZO+CzwPL8+bHAL4H3D3D8CuAz+fPb7fdGROzs88odP/u98sau7j6vTFfUzgWeTyn9IqX0FrAcmF25Q0QEMI/sH4GBzAZ68uc9wJwB9rlysONTSg+mHPAM8L6Kz12av/UUcFxETKr5m40OhY1fSml7Smk98HZd32j0KHLsnkgp7cp3e4r9f5Par8jxez0vAxgLOGn6QM2MXQLGRsS7gGOAt4A9A3z2hcD3Bjjefm9ohY2dfV5Nihw/+72hFTl2dfd5ZUrUJgMvVbx+OS+rdAGwLaW0ZZDPeG9KaStA/njSAPt8msEDB2SXPoFuYG0dbRvtihw/Da0ssftjsl/4daBCxy8iLo2ITcAa4I+GOn4Uambsvgf8D7AVeBH4u5TSzoOOPQHYnVLaO0D99ntDK3LsVF1Z4me/d6hCx67ePq9MiVoMUHZwJjroL7o1VRDxB8D/ppR+WmXXfwYeSyk9XkfbRrsix09DK3zsIqKTrMP68nDbMIIVOn4ppR+klM4k+8XxpuG2YYRqZuzOBfYBJwMfAL4UEVPrqN9+b2hFjp2qK3z87PcGVejY1dvnlSlRexk4peL1+4BX+l/klyEvA+6rKLszn7D3YF60rX9oRv64/aA6PkP1X4RvBCYCf1Fr2wQUO34aWqFjFxEfBb4DzE4p/Xcd32u0KHT8+qWUHgNOi4gTa/lSo0QzY/dZYG1K6e2U0nbg34COg+r/DdmQxncNUL/93tCKHDtVV+j42e8NqdCx61drn1emRG09cEa+kspRZP8YPFDx/kyySXkv9xeklK5OKZ2dUpqVFz0ALMifLwDu7983Io4AriAbyzqgiPgT4JPAlSmldyreegC4KjLnAa/2XzLV/yty/DS0wsYuIqYAq4DulNLPD+M7jmRFjt/p+Xh+Ils18CjAfzr2a2bsXgQuzPutsWQLgmyqrDyfS9ELXD7A8fZ7Qyty7FRdYeNnv1dVkWNXf5+XCrBCS60b2SpTPydbzeVvDnpvCfCnVY4/AXgE2JI/Tqh4bwbwVJXj9+Z1b8i3r+XlAfxT/t5zQEe7z1URtwLH73fIfoHZA+zOn49v9/kq0lbg2H0H2FVR3tfuc1XErcDx+zLws7zsSWB6u89V0bZmxY5s9bGV+fn/T+AvBzl+KtkCMM/n+x+dl9vvlTd29nnljp/9XnljV3ef179EpCRJkiSpIMo09FGSJEmSRgUTNUmSJEkqGBM1SZIkSSoYEzVJkiRJKhgTNUmSJEkqGBM1SZIkSSoYEzVJkiRJKhgTNUmSJEkqmP8DczfuexYzI58AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAChbUlEQVR4nOzdd3hcZ5k28PudKk3TjKRRr1axLZc4bumxnUY6sCHAbhISlh56WcoCS5alw7IsCx8QaoBQEkINCYmT2Emc4hpXSbYsyeplRtJomqa/3x9nzqiNNGdmzmhG0vO7rlyxp+nIKnOe8z7v/TDOOQghhBBCCCGEZJci2wdACCGEEEIIIYSKM0IIIYQQQgjJCVScEUIIIYQQQkgOoOKMEEIIIYQQQnIAFWeEEEIIIYQQkgOoOCOEEEIIIYSQHEDFGSGEEEIIIYTkACrOCCFkmWKMuWf8F2GMTc34+13ZPr5UMMYuMMauy/ZxLIYxtp8x9s4MvXYzY+wvjDEbY2ycMfYUY2ztjPvfyhg7yxibZIyNMsYeYoyZZtzvnvNfmDH2fzPuv5Yx1s4Y8zLG9jHGamfcxxhjX2eMjUX/+wZjjGXi8ySEEBIfFWeEELJMcc4N4n8AegHcNuO2h7N9fHMxxlQr4WNkmBnAXwGsBVAK4BCAv8y4/yUAV3DOCwCsAaAC8CXxzjnfE6UApgA8CgCMsWIAfwTweQCFAI4A+P2M1343gDcAuAjAZgC3AniP3J8gIYSQhVFxRgghKwxjTMEY+zRjrDO6AvIIY6wwel8dY4wzxt7OGOtjjE0wxt7LGNvBGDvJGHMwxr4347XuY4y9xBj7v+hqTTtj7NoZ9xcwxn7KGBtijA0wxr7EGFPOee7/MMbGATzAGGtgjD0XPS47Y+xhxpg5+vhfAagB8Lfoqs8nGWO7GWP9cz6/2OoaY+wBxtgfGGO/Zow5AdyX4JgaGWPPRz8XO2NsZnEy82PkRV9zLPpvcpgxVsoY+zKAqwB8L3qM34s+fh1jbG90tessY+zNM17rF4yxH0bvd0U/fm28j8s5P8Q5/ynnfJxzHgTwPwDWMsaKovf3cc7tM54SBtC4wLfCmwCMAngx+vd/AnCGc/4o59wH4AEAFzHG1kXvvxfAf3PO+znnAwD+G8B9C7w2IYSQDKDijBBCVp4PQVgB2QWgAsAEgO/PecwlAJoAvAXAdwB8FsB1ADYAeDNjbNecx3YBKAbwBQB/FIs9AA8BCEEoEC4GcAOAd8Z5bgmALwNgAL4aPa71AKohFAngnN+D2SuA35D4+b4ewB8grDo9nOCY/gvA0wAsAKoA/B/iuxdAQfT4igC8F8AU5/yzEIqdD0SP8QOMMT2AvQB+E/08/xnA/2OMbZjxendFP3YxgOPR45TiagDDnPMx8QbG2JWMsUkALgB3QPj6LfQ5/JJzzqN/3wDghHgn59wDoDN6+7z7o3+e+TkQQgjJMCrOCCFk5XkPgM9GV0D8EIqfN81p+fsvzrmPc/40AA+A33LOR6MrJi9CKGpEowC+wzkPcs5/D+AsgFsYY6UAbgLwEc65h3M+CmGl560znjvIOf8/znmIcz7FOT/POd/LOfdzzm0Avg2hiEzHK5zzP3POIwBMCY4pCKAWQEX08z+wwGsGIRRljZzzMOf8KOfcucBjbwVwgXP+8+jneQzAYxBWrkR/55y/EP16fBbAZYyx6sU+KcZYFYSi+mMzb+ecH4i2NVYB+CaAC3GeWwPh3/WhGTcbAEzOeegkAOMC908CMNC+M0IIWTrLvTefEELIfLUA/sQYi8y4LQxhD5JoZMafp+L83TDj7wMzVl8AoAfCylctADWAoRnn7woAfTMeO/PPYIyVAPguhNZAY/TxE5I+q4XN/BiJjumTEFawDjHGJiC08f0szmv+CsKq2e+ibZe/hlDwBuM8thbAJYwxx4zbVNHXmHeMnHN3tM2zYs6xxzDGrBBW+P4f5/y38R7DOR9gjP0DwO8AbJ1z99sAHOCcd8+4zQ2heJ3JBGEFLt79JgDuOV97QgghGUQrZ4QQsvL0AbiJc26e8V9edFUsFZVzVk9qAAxGP44fQPGMj2PinM9shZt7Yv/V6G2bOecmAHdDaHVc6PEeADrxL9G9Y9Y5j5n5nEWPiXM+zDl/F+e8AsIK4/9jjM3bsxVdJfxPznkLgMshrI69bYFj7APw/Jx/bwPn/H0zHhNbJWOMGSAEcgzO/bjR+y0QCrO/cs6/HO8xM6gANMS5/W2YvWoGAGcghH2IH0cffe6ZePdH/3wGhBBClgwVZ4QQsvL8EMCXxdAJxpiVMfb6NF6vBMCHGGNqxtidEPaKPcE5H4JQRPw3Y8wUDSJpmLNfbS4jhBUaB2OsEsC/zbl/BEIKoegcgDzG2C2MMTWAzwHQLvTiiY6JMXZntF0QEFbsOIRVxVkYY3sYY5uixaATQpuj+Li5x/g4gGbG2D3RfyM1EwJW1s94zM3RvWIaCCt3Bznn81bNmBCL/xSAlzjnn45z/12MsRomqIWwj+/ZOY+5HEAloimNM/wJwEbG2B2MsTwA/wHgJOe8PXr/LwF8jDFWyRirAPBxAL+YewyEEEIyh4ozQghZef4XQhz704wxF4BXIQRzpOoghPAQO4Ri4E0zAireBkADoBVCsfMHAOWLvNZ/QmjBmwTwdwjR7jN9FcDnogmJn+CcTwK4H8BPAAxAWEnrx+IWO6YdAA4yxtwQ/o0+PKf1T1QWfZ4TQBuA5yG0NgLCv++bmJB0+V3OuQtC6MhbIayGDQP4OmYXkb+BEKYyDmAbhICQeN4YPca3s9nzymqi97cAeBlCgfsShP1/75rzGvcC+GP0uGKie/zugPA1nIDwPTFzf+CPAPwNwCkApyF8fX60wHESQgjJAEat5IQQQhbCGLsPwDs551dm+1iWK8bYLwD0c84/l+1jIYQQktto5YwQQgghhBBCcgAVZ4QQQgghhBCSA6itkRBCCCGEEEJyAK2cEUIIIYQQQkgOoOKMEEIIIYQQQnKAaik/WHFxMa+rq1vKD0kIIYQQQgghOePo0aN2zrk13n1LWpzV1dXhyJEjS/khCSGEEEIIISRnMMZ6FrqP2hoJIYQQQgghJAdQcUYIIYQQQgghOYCKM0IIIYQQQgjJAVScEUIIIYQQQkgOoOKMEEIIIYQQQnIAFWeEEEIIIYQQkgOoOCOEEEIIIYSQHEDFGSGEEEIIIYTkACrOCCGEEEIIISQHJCzOGGPVjLF9jLE2xtgZxtiHZ9z3QcbY2ejt38jsoZJscfmCeOGcLduHQQghhBBCyIqmkvCYEICPc86PMcaMAI4yxvYCKAXwegCbOed+xlhJJg+UZEcgFME7HzqCg93jePGTe1BdqMv2IRFCCCGEELIiJVw545wPcc6PRf/sAtAGoBLA+wB8jXPuj943mskDJUuPc47P//k0DnaPAwBODUxm+YgIIYQQQghZuZLac8YYqwNwMYCDAJoBXMUYO8gYe54xtmOB57ybMXaEMXbEZqPWuOXkpwe68fsjfXj31WugVjKc7KfijBBCCCGEkEyRXJwxxgwAHgPwEc65E0JLpAXApQD+DcAjjDE293mc8wc559s559utVqtMh00y7bn2EXz5iTbctLEMn75xHdaVmXCaVs4IIYQQQgjJGEnFGWNMDaEwe5hz/sfozf0A/sgFhwBEABRn5jDJUjo77MIHf/MaNlSY8N9vvggKBcPGygKcGpgE5zzbh0cIIYQQQsiKJCWtkQH4KYA2zvm3Z9z1ZwDXRB/TDEADwJ6BYyRLyO72419/cRh6rQo/edsO6DRCZszmqgJMTgXRNz6V5SMkhBBCCCFkZZKycnYFgHsAXMMYOx7972YAPwOwhjF2GsDvANzLaVllWfOHwnjPr47C7vbjJ/duR1lBXuy+TZUFAICTA44sHR0hhBBCCCErW8Iofc75AQDz9pJF3S3v4ZBs4ZzjM4+dwtGeCXz/X7Zic5V51v3NpUZolAqcGpjErZsrsnOQhBBCCCGErGBJpTWSlesHz3fij68N4GPXN+OWzeXz7teoFFhXbqRQEEIIIYQQQjKEijOCf5wexjf+cRa3X1SBD17TuODjNlYW4FQ/hYIQQgghhBCSCVScrXKtg0589PfHsaXajG+8aTPiTEOI2VxZAKcvhN5x7xIeISGEEEIIIasDFWer3P8+ew46jRIPvm0b8tTKRR+7UQwFoWHUhBBCCCGEyI6Ks1XMFwzjhXN23LypHCXGvISPby41QqNS0L4zQgghhBBCMoCKs1XspfN2TAXDuL6lVNLjNSoF1pcZaeWMEEIIIYSQDKDibBXb2zoCo1aFS9cUSX7OpqoCnB6cRCRCoSCEEEIIIYTIiYqzVSoS4XimbRS71lqhUUn/NthUWQCXL4QeCgUhhBBCCCFEVlScrVKv9Tlgd/sltzSKxFCQU7TvjBBCCCGEEFlRcbZK7W0dgUrBsHttSVLPo1AQQgghhBBCMoOKs1Vqb+swLl1ThIJ8dVLPUysVWF9uwsl+R2YOjMjmRJ8D9/z0IHzBcLYPhRBCCCGESEDF2SrUZXOj0+ZJuqVRtLmyAGcGnBQKkuOeaRvBix12nB91Z/tQctrRnnF4A6FsHwYhhBBCCBVnq9He1hEAwHUpFmebKgvg8odwYcwj52ERmXXZhK9PL4W3LGjE6cObfvgKfnuoL9uHQgghhBBCxdlqtLd1BBsqTKg056f0/E1VFAqyHHTahBUzKqIXdqp/EpwDvfRvRAghhJAcQMXZKmN3+3G0dyLllkYAaCoxQKtS4BQNo85ZkQhHt10oOHrstHK2kNODwvfw4KQvy0dCCCGEEELF2arzXNsoOEdaxZlKqUBLhSljK2fnR12Y8AQy8tqrxYBjCv5QBACtnC1GTB0ddExl+UjIajA86cNbfvQK+qjVmBBCyAKoOFtlnm4dQaU5Hy3lprReZ1NlAc4MZiYU5K0PvopvPHVW9tddTbqiq2bVhfm052wRpwecAIAhWjkjS+C3h3pxsHscz7aNZPtQCCFJuP/ho/jB/s5sHwZZJag4W0WmAmEcOG/D9S2lYIyl9VobKwvg9ofQLfOqjMMbgN0dwIk+h6yvu9p0RfebXbO2BEOTPorTj8Pm8mPY6UOxQYNxTwBTAfo3IpkTiXD84Wg/AOBU9KIAIST3jTp9eOLUMP5xZjjbh0JWCSrOVpEXO2zwBSNptTSKNkdDQeQeRi2u8nSMuhCItuWR5HXa3DDmqbC11gKAEhvjEfebXbde+HkYnKTWRpI5r3aNYcAxBZ1GKfvvTUJI5jx/zgYAaB9yIhSm8xKSeVScrSJ7W0dgylNhZ31h2q/VaDUgT63ASZlDQcQiIhjm6Bh1yfraq0mXzYMGqwF1RXoAwAU77Tub63T/7OJsyLHyWhuDdCKRMx492g9jngp3X1qLjlEXzdYjZJnYHy3O/KEI7eEmS4KKs1UiHOF4rn0Ue9aVQK1M/8uuUirQUi5/KMjMFZ7WQWr9SVWXzYM1Vn2sOOsZo5WzuU4PTqK+WI+1ZUYAKy8U5ILdg23/tRd/OT6Q7UNZ9Zy+IJ48PYTbL6rA9loLIhxoG6Lfb4TkulA4ghfP2bCpUugWOkPnJWQJUHG2ShzrncCYJyBLS6NoU2UBzgxMyhoK0jvmRaFeA51GSb8EU+T2hzDs9KHBakCBTg2zTo2ecbraN9fpASc2Vhag1JQHxlZWW2MkwvGpx07C6QvJvrpNkvf3k0PwBSO4c3s1NleZAYC+LoQsA8f7HHD6QnjnVfXQKBVopYsqZAlQcbZK7G0dgVrJsKvZKttrbqoywxMIx5IB5dA77kVtkQ7ryoz0SzBF3Tbh69FgFVbNagt1tHI2x7gngAHHFDZWmKBRKWA1aFfUytlvDwupgEoFQ/8Efe2z7dEjfWgqMeCiqgKUmrQoNmgzNoqEECKf/WdtUCoYdq8tQVOpgTp6yJKg4mwV4Jxjb+sILmsohjFPLdvrisv8pwYcsr1m77gXtYU6bKgoQFuGovpXui67kNS4xmoAANQW6alPfg4xkEH8Hq4w52Nwhew5G3RM4atPtOOKxiJc2ViM/omVU3QuR+dH3TjW68Cd26vAGANjDJsqTRQKQsgysP/cKC6uNqMgX42WchO1I5MlQcXZKtBpc6Pb7pG1pREQVmby1Uqc6pfnl1UgFMGgYwo1hTq0VJjg8ofQR1f9k9Zp80DBgNoiHQCgrkiHgYkpSr+cQUxq3FAhFmd5K6KtkXOOz/35NMIRjq++cTNqCnVUnGXZH472Q6lgeMPFlbHbNlWZcX7UTaEghOQwm8uP0wNO7F4rdBy1VJhgdwcw6loZF/JI7qLibBV4ulUYeHr9enmLM5VSgZYKk2wrZ4OOKUQ4UF2ow4YKYUg2tRAkr9PmRpVFB61KCUBYOYtwYGAFte2l6/TAJGoKdSjQCSvJFQX5GHRMgfPlvVL71xODeK59FJ943VrUFOlQZcnH5FQQTl8w24e2KoXCEfzxWD/2rLWixJgXu31TZQEinH6/kdXnzOAkDl8Yz/ZhSPJCNKVx99oSAEBLOZ2XkKVBxdkqsLd1BJurClBWkJf4wUnaVFmAM4NOhGVoPxSTGmsKdWguNUKpYBQKkgIhRl8f+7u4gkatjdOEMBBT7O8V5nz4ghE4vMu3iLG7/Xjgr2dwcY0Z911eBwCosghf+/5xKsyz4cUOO0ZdfrxpW/Ws26dbwqm1kawuX32iHf/26IlsH4Yk+8/ZUGzQxoqy9eJFY2ptJBmWsDhjjFUzxvYxxtoYY2cYYx+O3v4AY2yAMXY8+t/NmT9ckqxRlw/H+xyyr5qJNlUWwBsIozu6zykdYnFWW6RHnlqJRquBfgkmKRLh6La7Y/vNAOHfEwB6aNYZAGDSG0TvuBcboyfIgNDWCCzv1cX//FsrPP4wvnHHZigVDABQZckHAAoFyZJHj/ahUK/BNetKZt1eatLCatTiFCU2klWmZ9yDnnEvfMFwtg9lUeEIx4sdNuxqtkIR/X1qylOjujCfVs5IxklZOQsB+DjnfD2ASwG8nzHWEr3vfzjnW6L/PZGxoyQpe7ZtFJwD12/IUHFWJZzgyhEL3TvuhUalQIlRC0Do7z4zmNmTlwlPAI8c7lv27WyiIacPvmAEa2asnBUbNNBrlLiwTBIbhyd9OJLBthfxe2pjxcziTChilmti497WEfztxCA+cE0jmkqNsdurC6MrZ7TvbMlNeAJ4pnUUb9hSCY1q9lutEApSQCtnZFUJhiMYdPjAuRCUk8uO9zng8AZj+81ELeUmumhMMi5hccY5H+KcH4v+2QWgDUDl4s8iuWJv6wiqC/OxdsYJm5warAYhFESGk4zeMS+qLfmxq1QbKkwYcfphd/vTfu2F/PZwLz752MllU7gk0hl9w1tTPL1yxhhDbZEePcugrdHm8uPOH72Me392KGNJneL36syVs/ICoTgbmlx+G70np4L43J9PYV2ZEe/d1TDrPotODZ1GScE6WfCX4wMIhCO4c3tV3Ps3VRbgvM0Nj59CQcjqMOTwxbZA5Hpx9vzZUSgYcFVT8azb15eb0G33UJgPyaik9pwxxuoAXAzgYPSmDzDGTjLGfsYYs8h9cCQ9Hn8IB87bcf36MjDGMvIxlAqGDRUmWdpzhBln0ys+S7H5tm3IBWC6qFnuumzC59FQop91e12xDj3juX2C7g2E8M6HDqNvfAqeQBgjGUrEOj3oRKU5H4V6Tey2Ir0GGpViWa6cfe3JNthcfnzjTZvjrtBUWfJp5SwLHj3aj42VJqwvN8W9f1NlATin/Stk9eid8R50bsSVxSNJbP85G7ZUm2HWaWbd3lJuAudA+3BuHz9Z3iQXZ4wxA4DHAHyEc+4E8AMADQC2ABgC8N8LPO/djLEjjLEjNpst/SMmkr3YYUMgFJE9Qn+uTVXph4JwztE77kVNtA0LENoagcyevIgzSzptK6Q4s3tg1KpgNWhn3V5TqEffuFeW4JZMCIUj+NBvX8OpgUm8/Yo6AEB3hvbInR6YnBUGAgAKBUNFQR4Gl9nK2cvn7fjtoT686+o12FxljvuYKgvF6S+11kEnzgw68aat8VfNgOmWcNp3RlYLsTgz5anQkcMXRO1uP072T8ZSGmdqoSRpsgQkFWeMMTWEwuxhzvkfAYBzPsI5D3POIwB+DGBnvOdyzh/knG/nnG+3Wq3xHkIyZG/rKAry1dhRl9lFzU2VBZgKhtMqcCa8Qbj9odgeGQAw6zSoNOdnLLHRFwzHVppyvcVCqk6bG2us+nkrpXVFOgTDPCdXhjjneOBvZ/BM2ygeuH0D3nnVGgCZKc5cviC67Z5Z+81E5dE4/eXCGwjh0388hboiHT56XfOCj6u25FMgyBJ79GgfNEoFXr9l4R0ApaY8lBi1tO+MrBp9E16olQyXNRShI4dXzl7sECP055+zVprzYcpT0Yo3ySgpaY0MwE8BtHHOvz3j9vIZD3sjgNPyHx5Jx/lRFy6qNkOlzOzEhM0yXAGeGaM/U0uFCa0ZCgU5P+pGhAMKtoJWzmweNMxIahTFEhtzcG/dj17owq9f7cV7rl6Dt11Wh3JTHrQqBS5koDgTr3ZurJpfnFWYl1dx9t9Pn0PvuBdfv2Mz8tTKBR9XZdHB5QthchmPCVhOAqEI/nJ8ENe1lMCi1yz6WAoFIatJ77gXVRYd1paZ0JvDiY37z9pQbNDEvYjHGIuel1BxRjJHyln7FQDuAXDNnNj8bzDGTjHGTgLYA+CjmTxQkrxxbwCF0SG7mVRfbIBOk14oyHSM/uzibEOFCV0Z2nwrXvm6rKEInTbPsk9s9AZCGJr0zUpqFNUVC/+uPeO5FQry1xOD+NqT7bh1czk+deM6AEKLYV2RPiMrZ7EwkDhvuhXmPIw4fQiFI7J/XLl12dz42UvduPvSGlyypmjRx4px+hQKsjSeax/BuCeAO+fMNotnY2UBOikUhKwSfeNeVFny0VxqQITn5kXRcITjhXM2XN00HaE/V0t5Ac4Ou3J2mwBZ/qSkNR7gnDPO+eaZsfmc83s455uit9/OOR9aigMm0jk8wYRXbuUQCwVJpziLJglWW+asnEU334rBHXJqH3IhX63EnrUlmJwKwu4OpPxaU4EwbvzOC/jS460IZunkvssm/BuuibNyVmrMg0alyKmVs1e7xvCJR05gZ30hvnXnRbPeCOuKdRkpzs4MOmMzpuaqMOcjwoERV+bSQeVypGcCnANvv6I+4WNjg6hp39mS+MPRfpQYtfNS3uLZXCWEgmSqdZuQXCLuK28qEdKjc3E7wcl+Bya8QeyK09IoaqkwYSoYxoVlkIBMlqfM9ruRrAmEInD5Q7DoMl+cAcCmSjNaB50przr0jnthNWqRr5ndnrUhGneeif7utiEn1pYZ0RwdM5DOVbzWISfah134yYFu3P2Tg7Bl4QRfPP54K2cKBUNtoS4jrYKpOD/qwrt/eQTVhfl48J5t89ry6osN6M1AgMmpgUlsqpy/agZMzzobWgatja2DTug0StQVzf9az1VdSIOol8qoy4d9Z234p61VktrJxe9Fam0kK93kVBAObxA1hTrUF+uhVLCcTGzcf9YGxoCrmhYpzpYgSZqsblScrVCOKWEVyLIEbY0AsKnKFA0FSe3kv3fci9o5+80AoKIgDwX5atn3nXHO0T7sxPpyIxpKhJWmdK7inY3G6v7b69biRL8Dt/3fARzrnZDlWKXqsnnAGBY8YRdmnWX/BH3U6cO9PzsMjUqJX7x957yoYgCoLxYCTAZkXO3xBkLotLmxIU5LIyB8rwHAwHIozoacWFdmhHKBtpuZCvLVMGhVtHK2BP782gDCEb7gbLO5Skx5KDVpcarfkdkDIyQNnHM8crgvrT25fTP2lWtUCtQV6dAxknsrZ/vP2XBRlXnWqJW5GksMUCsZhYKQjKHibIVyRDf/L0VbIzB9Bfh0ileAe8e888JAAGHz7YYMbL4dcfox4Q1ifbkJ5aY86DTKtFbOzg47YdCqcP/uBjz2vsuhVjG85Uev4OGDPUu2l63L7kGVJX/BcIi6Ih16xrO7t87jD+FfHzqMcU8AP79vx6x0zpnEArNbxraR1kEnOMeCK2fl0ZWzQUdux+lzztE26FywyJxretZZ9gvzlYxzjkeP9GNrjTluKM9Csh0KcrBrDN966mzWPn48vmCY9vPkkGfaRvHJx07i16/2pPwa4u8f8Xd+c6kx5+L0xz0BnOx3xE1pnEmjUqCxxEgrZyRjqDhbocY94srZ0hRnYijI6RRWuPyhMIacvgVP1FvKTWgfdska1NA2LPxSXVdmgkLBsMaqT3nVT3g9F9aWGaPFZAH+9oErcXlDMT77p9P41GMnlySVqsvmxprihU8Ka4v18AUjGM1Cy+XQ5BR+9Hwnbv/eAbQOOvH9uy6OzXmKpz7amtkt44Zx8cLBxgWKM4NWBVOeCkOTub3C1D8xBZc/FJu3IwUNos68E/2T6Bh1487tiYNAZtpYWYAuuwfuLIWC/Pn4AL637zwmp3InzfNNP3wZd//kIPyh3EzzW00CoQi+8kQbgPS6S8TQL/F9vqnEgJ4xT04lNr7YYQPniDvfbK6WchOtnJGMoeJshXJ4l7Y4UyoYWspNODOQ/C+rgYkpcD4/Rl+0odIEfyiCLhn3S7VHA0bWlgn7zRqsBnSm+MbDOcfZaHEmMus0+Nl9O/ChaxrxyJF+3PnDVzK6chGJcHTZPHH3m4nEttGl2nfm8gXx6JE+/MuPX8XlX3sOX32yHaZ8NX5w9zZcs27xwehWgxZ6jRIXZGzDPDXgRLFBi1LT/DAQ0XKI0xfDI8R9D1KIg6iXeyJpLvvzawPQqBS4ZXN54gfPEAsFydLq2VB08LrYmp1tnHOcH3Xjla4xfPyRE4jQClpW/frVHnTbPSg1aXE+jYtlveNeFOSrUZAvbLVoKjUiwqeDrHLB/rM2FOo12LzABbyZWipMsLn8GHXldqcFWZ6oOFuhxj1iW+PS7DkDhCvAZwYnk34zXShGX9RSLvyiPCPjvrO2IScqzfmxN4pGqwEDjqmUIvuHnT5MTgWxfkZxBggF68duWIsfv207Ltg9uO3/DuBAh12W4493DFPB8KLtVHVLMOssGI7g2bYRfOA3x7D9S8/g3/5wEgOOKXzomibs+8Ru/On+K/C6DWUJX4cxhnqrvHH6ZwYnsbHSNG9A90yV5vycb2tsHXJCwTDrYkAiVZZ8uP2hnFodWUnCEY4nTg1hz1orTHnJ/c7dmOVQkOFocdaWI6sAbn8IvmAETSUGPH5yCF99si3bh7RqObwB/O+zHbiysRh3bqtGz5gXgVCqoV9Tsy7ANpUK71Udo7lxUSASi9AvXjBCfybx4lgmkqQJoeJshZpY4pUzQJhJ5gkkHy+70ABqUYNVD41KIWt/txgGEvsY0VCQVK7itQ+Lq3DxVzKubynFXz5wBaxGLd72s4P464nBFI54cdMx+guvnFWY86BSsIzE/zq8AXzliTZc8pVn8Y6HjuCl83a8ZUc1/nj/5dj/id346PXNqC9OnCw4k5yzznzBMDpG3QvuNxOVm/MwmONtja2DTjRYDYsOnp5LjNPvG8/tz225OnxhHKMuP27dXJH0c0uMeSgz5aW8XzddQzlWnIkjTd67qwH3XlaLH7/YjZ8d6M7yUa1O3332PFy+ID57y3o0lhgQjnD0pPj+0Tc+e1+5mNiYK6EgpwYmMeYJSGppBCixkWQWFWcrlMMbQL5amdQJXLrEK8Cnk/xl1TvmRZ5aEXf2FAColAqsKzPKNgvIF02VXD+jLawxWpylEgoSa5EsXXglY43VgD/dfwUarAY89PKFpD9GIuJxL7ZyplIqUF2oQ8+4fCtnoXAEv3rlAnZ/az9+8mIXLltThJ+8bTsO/vt1+OLrN2JrjWXRlarF1Bfr0T+R+pXamdqGnAhHeMIQjQpzPhzeYEaGnsulbciZ1H4zYHoQNYWCZMbjJweRr1bi2vXSTuzm2lhZgJNZKM68genV1LYcaWsUx5BYjVr8x20b8LoNpfivv7fiiVM0SnUpddnc+OUrF/CWHdVYX26Kvbeksu8sHBGSd2fuK9eqlKgt0uXMytl0hH7i+YQAUKBTo9KcT/vOSEZQcbZCjXuCSxajL2osMUCjUiR9BVgcTLnYSfyGCmHzrRx7Zs6PuhGOcKybsdJVW6SDgiGlfWdnh51C5H+Cf2+9VoWbNpbhtd4JTHrlbS/rsrlh0KpQskCBK6op1KV85XOul87bcct3D+DzfzmD9WUm/P1DV+H7d23FdS2l0KjS/9VSX6xHhE+vrKZD/J5cLIQEACoKcjux0eENYMAxldR+M2B6Ez6FgsgvFI7gyVPDuGZ9CXQaVUqvsamyAN1ZCAURWxqL9BqcHXbmREKi3T1dnCkVDP/71ouxrcaCj/z+OA51j2f56FaPrz7ZDq1KgY9e3wwAaCgROh9SuYA54vQhEI7EZi6KmkuMObNytv/cKDZXFqDIsPh76EwtFaacWXEmKwsVZyuUwxtYshh9kVqpwPoyY8rF2WJayk1weIMYnEz/pFlsQ5zZ1qhVKVFTqEtpw3P7nDCQxexaa0WEAwfOy7v3rMsuhIEkWqWqK9Khx+5Nq8jtGfPg3b88grt+chDeYAg/vHsrfvOuS2atRMqhLtoGKUeAyekBJyw6dWyW2UIqYnH6uVnEiFdpk105K8hXw5inopWzDHi1axxjngBuSzIIZKZshYKIxdmutVb4ghHZLtykQ1w5K46eJOeplfjx27ajypKPdz50GB05OLh4pXm50469rSO4f08jSozC70ydRoVKc35KK2cLbV1oKjXgwpgn66mcE54ATvQ5sEtiS6OopdyELpsbU4HcSZwkKwMVZyvUhDewpPvNRBsqC3B6YFLyyT/nHL3j3gVj9EUt0XY0OU5e2oacyFMrUDtnWHNjiQGdo8mdnARCEXTa3FgnsTC5qMoMU54Kz58bTerjJNJl82CNhD1dtUV6uPyh2KiFZLj9IXztyXZc/+0XcOC8Hf/2urXY+9FduHFjecqti4sRPx859sidGpjExsqChMdZYRZORHI1Tl/c35BKIVxl0aGPVs5k9/jJQeg1Ssl7VeLJViiIuN/smnXCsedCuIHd7YeCYdYQYIteg4fevhNatRL3/fwwRpy5ubK9EoQjHF96vA2V5ny848r6Wfc1lBhSuoC5cHGW+cTGocmphCvSL563I8KRcL7ZXC0VJkQ4cJYuGBCZUXG2Qk14gzAvcVsjAGysKIDTF5LcPjXmCcAbCCdcOVtfbgRjkKW/u33YibWlRijnJDI1WA3otnuSau3psrsRDHOsk7hyplIqcFWTFc+fs8kWa+4NhDDgmMIaCYNv64qjcfpJJjb+5fgA9nxrP374fCduu6gC+z6xG+/f05jRPY1mnQZmnTrtEQr+UBjnRlwLzjebqdSUB8aAgRxta2wdcqLUpI2tKiSDBlHLLxiO4B9nhnF9S2laPwtWoxZlprwlL86Go0XOVY1WKBUsJ1q0bC4/CvXaeb+fqwt1+Pl9O+DwBnDvzw7B5aPk0Ux47Fg/Woec+OSNa+d9TzdahQuYySYy9417oWDTnQmiphIxsTEzrY3ddg8u++pz2PiFp3DpV57FXT95Ff/xl9N46OULONBhx9CkMF5k/9lRWHRqXFRlTur1KRSEZEpqDfIk5014A7OuPC6VjZXCL6vTA5MJV8OAxDH6Ip1GhfpifdqhIJxztA25cEPL/DlbDVYDAuEI+sa9sZa6RMTZQOsWSGqMZ1ezFX8/NYT2YZcsrYBiouFiYSAicbWwd9yDbbUWya//4d8dx0XVZvz4bduxpdqc8rEmq65In3Zb49lhF0IRnjCpERBac0uNebnb1jjoTHq/majaosNL5+3gnGdkpXM1OnDeDoc3mFJK41ybqgpwqn+pV86mYNGpUaBTY02xHu3D2T/JtLv9C4ZDbawswA/u3oZ//cVhvPfXR/Hz+3bKsr+VCDz+EL711FlcXGPG7RfN/55uLDFgKhjG4ORULAFWir5xLyrM+VArZ3+t1lj1UDBkrFW12y4UfXdfWgNvQAgC+9OxAbhmrKTpNUoEwxw3biybd0EgkSpLPoxaFVqHspO0SlYuKs5WoHCEY3IqCHMW2hqbS41QKRhOD07ipk2J92D0ji0eoz/ThooCHOuZSOv4bC4/xj2BuCtdDTMSG6UWZ21DLqiVbNEI+7mubhZaJ54/Z5OlOJMSoy+qsuSDMeCCXfoKipiS9oO7ts678plpa4r1eKVrLK3XOB0djL4xQVKjqNycl5Ntjf5QGOdH3SknAlZZ8uENhDHhDSZ94WbM7UeY89j+EyJ4/MQQjHkqXNUsLeFtMZsqC7C3dQQuXxDGJGelpWp40oeyaAjOunJT2r9f5WBz+VFsWPj78+pmK752x2Z84tET+PLfW/Gfr9+4hEe3sv3o+U6Muvz4wd3b4l7AaYi+x5wfdSdVnPWOe1Ed5/FalRJ1RfqMhYIMTwr7F9+/pxHl0e9zzjlsLj/O29zotHnQOepG37gX915em/TrM8awvsJEK2dEdnTJaQWanAqCc6AwC22NeWolmkqNsRPiRMSVMym/6FvKTRhwTMHhTX6/lEhsi4xXFIlvPMmkUZ0dFmZOzb0iuJiygjysKzPi+bM2yc9ZTJfNA8YgaY6YVqVERUF+Uhv/nzw9hC3V5iUvzAAhFGRo0pfWhutTA5Mw5anmJYUtpCJHB1F3jLgRivDYUPZkiXH6fSmkX37k98fxxu+/DF+QNr6L/KEwnm4dxg0tZdCq0m/vFZNE5RoZIsXQpA/l0ZCc9eVGDDimsj6o3O4OLLhyJnrTtipct74UL3bIG6y0mg06pvDgi124dXP5gl0V0yNnkp1lOrXgBdimUkPG4vRHnD4whllt4IwxlJjycHlDMe65tBYP3L4BP71vB7bVFqb0MVrKTWgfduVE0ilZOag4W4FiA6iz0NYIABsrTJJDQXrHvSg1aSXt19gQTahLZ99Z+yJtiGadBsUGTVJpVGeHXZL3m820a60VR3rGZYnO7rS5UVGQL3nPS12xTvKes75xL04POHHzprJ0DjFlYsHZM556a+OZQWlhIKJKcz4GHVOy7QmUS6pJjSLxAkiycfrhCMfRngkMOKbwo+e7UvrYK9EL5+xw+UK49aLUUxpnEttul7K1UVg5E4sz4fuqPYv7zsRVjUTFGSBcbBCTHUn6vvnUWUQ48Kkb1y34mCKDFhadOqn3SG8gBLvbj5oFti40lRhxYcybkcTGUZcPRXptUhdPk9VSYYI3EM6JpFOyclBxtgJNRJP4stHWCAj7AsY8AYw4E79x9o55UVsorSVQPClNp4WgfciJSnP+gjPJGqwGyVcFJ6PR/lKTGmfa1WxFMMzxSmd6LXuAEEoitmRKUVuklzw77MnTQkvjTRvlOQFNllicdaeY5hUMR9A+5JK030xUXpAHfyiSUqJlJrUOOqHTKFEroQU4nqrC1AZRd4y64A2EUaTX4AfPn8dAju7HW2qPnxyEWafGlY3ptzQCwtX98oKlCwXxBcMY8wRQbooWZ9ELVu1ZHEbt9IUQCEdglRB4YzVq4fKHKMZcBif6HPjTawN4x5X1CfeKC6nG0ouzvnHh98VCr9tUakA4wpNqtZdqeNKHUlPy4UnJiIWC5ECYDlk5qDhbgSaiA44Ls1acTYeCJCIlRl9UbNCi1KRNqzhrG1p8pauhxIDzo25JqyZifK7UGWczba8thE6jTDtSn3OObokx+qLaQh3GPQFJ7UtPnh7GxkqT5K+R3MS9f90pXpU8N+JCIBzBhiSKs+lZZ8m1Nk54ArEBupnQOuTE+nITFEluWheZ8tQoyFcnvXJ2os8BAPjOW7eAc+CrT7Sl9PFXEl8wjGdaR3DjhjJZr8pvio4iWQqj0Ytn4spZqUlYFclmYqO4EiZl5Ux8TCZ/5lYDzjm+9PdWFBs0uH93Q8LHNyYZp79QjL6oqUR4/zyXgVCQEacfZabM7pNtKjVApWC074zIioqzFWh65Wzp95wBQnsMY8DpwcVPMnzBMIadPklhIKKWclPKezL8oXB0JtnCxVSj1YDJqSDGJKyaiMlm65NIahRpVApc3lCM/WfTi9QfcfrhCYRj++WkiCU2JmhtHJqcwmu9jqytmgGAQauC1ahNeeXsTHTvYzIrZxXRjeODSYaCfPC3r2H3N/fjqTPDST1PCs452tJIahSlEqd/vM8BU54KVzYW4z27GvD4ySEc6h5P6ziWu/1nR+EJhGVJaZxpU2UBuuweOJcgJl4MvRGDEhhjWFdmympxJhZaUkZFiMXZKLU2puXMoBOHL0zgQ9c2SQqiabAaMO4JSO4sEPe4Vlvi7/mNJTZmIE5/1OVDSYaLM61KicYSQ06MoSArBxVnK5C45ywbUfqAEHvfYDUkDAURr+AnitGfaUNFAc7b3CkFE5wfFQIVFktIjCU2SnijaB92oSBfnXLbxK61VvRPTMWi8FMhhpdIidEXTc86W/zj/uO0UGTctDE7+81E9UX6lAdRnxqYhEGrSqoVUBxEnUycvi8YxqHucQTCEbznV0fx7afPJj0LaDH9E1Nw+UMp7zcTVVnykx5E/VqvAxdVm8EYw/t2NaCiIA8P/PXMqt4A/7eTQyjSa3DpmtRCBBayUQwFkRiolA5xxpm4cgYIF9bOjmQv3CCplbNoAUf7ztIjFk9SR6uI75FS9531jnuh1ygXPB/JUytRW6SXPU4/EIrA7g5kvK0RELZcUFsjkRMVZyvQhDcIjVIBnSZzA4IT2VhhwpkEK2e90ZCHZFrmWipMCEd4Si0Q7UOJZ5LFooIltG20DzmxrsyY8syoXU3Tkfqp6ooep5QB1CJxpTLRBuYnTw1jXZkxqdfOhPpiPbpT3I9wenASGyqSawUs1GugVSkwNCm9rfFY7wQC4Qj+9y1b8KZtVfjuc+fxrl8ekW0FRPxZSnflrNqiQ/+EV/JqrTcQwrkRFy6OzrbL1yjxmZvXo3XIid8f7kvrWJYrbyCE59pGcdOmMqhkDhqIhYIMOGR93XjE7+/ZxZkRvmAk5Ysh6Upm5awkWsDZqK0xLeIe0kqJabyN1umRM1L0RbcuLPY+2VRikH3lTPy+yHRbIyD8Xh5x+qnFlsiGirMVaMITgFmnzuqg2Y2VBRia9C36yyqZGWciMbExldbGtiEntCrFopHzFQX5yFcr0Tm6+MlJJMJxbsSdUlKjqKZIhzXFeuxPI1K/0+aBXqNM6uqgTqNCqUmLnkXaGkddPhzuGceNWV41A4R9Z3a3H64kC51QOIK2ISc2JtHSCAjtXRXm/KSCLw52jUPBgCuaivHNN23GF1+/Ac+fs+EN33sJ52WIiW4ddELBUtvfOFOVJR++YERS2y4gJAdGOHDRjMHjt24ux876Qnzr6bOY9GY3dl0OU4FwUqESz7aNYioof0sjIBQlFQV5OLUUK2eTPhjzVDBop8edTic2ZicUxObyQ6VgMOcnbq8r1GvAGK2cpWvQ4YNOo0SBhH9zQCji8tXKpFbOEr3HN5UacMHuQSAUkfSaUoxEV4ZLl6g4AyCptfHlTjseevlCho+ILHdUnK1AE95A1loaRRsqEs/s6R2fgk6jXHTg6FzVFh0MWlVKm2/bh11YW2aEcpFVFIVCGCid6KrggGMKbn8opaTGma5utuLVrrGU50d12tyot+qTLsRrC/WLFmdPnRkB58DNEgaJZ1q92IaZ5OqZ0P4aiQXUJKPCnJdUW+PB7jG0VJhgyhMuirztsjo8/M5L4PQF8Ybvv5z2PrTWIWGentRxCQtJNk7/RL8DALBlRnHGGMMXbmuBwxvAd549l9bxZFsoHMFbH3wFu765D2clphQ+fnIQJUYtdtTJ29Io2lS1NKEgQ5NTsRlnosYSA5QKlrX9M3a3H0UGjaSVbpVSgSK9hoqzNA06plBhzpf8HiK+R0opzjjn6JtIXJw1lxoRinBZV2xHoivDJUvQ1ihe1Eh0XvLQyxdwz08P4Qt/PUOrbGRRVJytQBPeQNbCQETi3pjFTjJ6xz2oSdDuMJdCwaKhIMmfvLQPOyWtdDVYDQnfeMS46XRXMnavtcIfiuBgigELXTZPUvvNRLVFukXfCP9xeghrrHo0JRHRnyn1xcIxdNmTa3t5+bwwpmB7CsNFywvyMSQxrdEXDOO1XgcuqS+adfsla4rw1w9ciQarPu19aK2DzrT3mwHTcfpSB1Ef73OgujAfRXPazDZUFOCtO2vwy1d6ZN8rspQeeqUHJ/onMRUI480/egXHeicWfbzLF8S+szbcvKl80Ys86dhUWYDuJQgFEWaczW5ly1MrsaZYHws7WmpSZ5yJig1aKs7SNDg5FUuolaqxJPF7JCC0FvqCEUnx/IC8iY3iytlStDVa9BpUFOQtuO8sGI7g838+jS/89QyaS4VzhmM9i/+uIasbFWcr0IQ3CEuWYvRFBflq1BbpFi2ikonRn6mlwoT24eQ2rY+6fLC7A4uGgYgaSwwYcEwt2uokDmoVf9Gm6tI1RdCqFHg+hdZGXzCMwckprClOvoCqK9Zj1OWHNzB/CPaY249Xu8Zx88byrLbGisTAmGRXzl7ssGFNsT6l77EKcz5GXD4Ew4nbbE70OeAPRXBJ/fwisMKcj9+/57K09qFNeAIYnPSlvd8MSH7l7HivAxdVmePe94kb1kKvUeKLj7fm3MBuKQYcU/jvp89iz1or/v6hq2DWqXH3Tw7ixY6FfxafaRtBIBTBbTINno5HbMPN9OrZ0KQvNuNspvXlJrRlq63R7Ze030xkNWppz1maBh1TqDQnV8A0WoX3yHjvHzP1JYjRFzVYDUJi44h8+85GXH6olWzJzoVaKkxxV84mvUG8/eeH8atXe/Ceq9fgsfddBrWS4VivY0mOiyxPVJytQA5vAJYstzUCwknGQgNVOeeSetHjaakwwRsIJ9UCISUMRCSuRC22UtM+4kJNoW7Wfo1U5KmVuGRNUUrzzrrtHnAuRBEnSyx44g2j3ts6gnCE58R+M0D4N6o05yf19faHwni1axxXNaU2ILjSnAfOp6++LuZg9zgYA3bGKc4A4fhn7kN7y49eTerCgthiJsfKmUGrgkWnlhSnP+r0YXDSN6ulcaZCvQYfvb4ZL3bYsbd1JO1jS4YvGMaoK7k5dDNxzvGFv5wG58AXX78RNUU6PPrey1BTqMO//uIwnjw1FPd5j58YQkVBHi6ulpZsl4rN0WL4tQyevAXDEdjc/llhIKL15SYMOKaysp/Q7gpIGkAtshq0sNPKWcp8wTDs7kBsfIhU4kpXV4IRJ+L7S6ILZHlqJWoKdeiQYX+uaGTShxJjXspzIZPVUm5C55wk6W67B2/8wUs42D2Gb9yxGZ+5eT10GhVaKgoSrtKT1Y2KsxWGcx5dOctuWyMAbKwoQN94/Dd5sd0hmRh9kRgKksy+M/EEd/0iM85EjRKigs9G96/JYVezFZ02j+RWM1FnLKkx+eKsLjrrLN5q1JOnh1FTqIv9O+eCumIdupIYOXDkwgSmgmFc3WxN6eOJs5+kDKI+2D2GdWUmmBe5QivuQ/v6HZvRNuRMqhhvjX3vyvP1qLLoJK2cHY8On16oOAOAuy+tRVOJAV/6e1vK+ybjaRty4h+nh/HLVy7gm0+14xOPnsA9Pz2I1/3PC9jyxaex7vP/wM4vP4vP/ulUSqt2T50ZxjNto/jo9U2xE8cSYx5+/+7LsLnKjPf/5hh+f7h31nMmvUG80GHDLZvLM3rCV6jXYFNlAZ5py1zBO+ryg3PM23MGIDYHcqlbGyMRDrvbj+Ik2hrFlbPluHKbC8TEzmTbGqXG6feOCb9nqhaYcTZTU6lR5pUz35LE6ItaKkyIcMT2rr7SOYY3fP8lTHgC+PU7LsGbd1THHru1xoyT/Q5JnRmLOT0wmfZrkNyUsDhjjFUzxvYxxtoYY2cYYx+ec/8nGGOcMZbaJWoiK6cvhHCEZ72tEUAsiCFea6OY1JhKy1lTiRFqJUsqsbF92IXygrxFT6BFtUU6KJiQhBiPLxhGt92D9TIWZwDwwiLtVPGIVy1TaWusKYofpz/pDeKl83bctKksJ1oaRXVFenTb3JJPwl7osEGtZLh0TVHiB8chnqwkCgUJhCI42jMRt6Uxntu3VKDEqMVDL/dIPpbWQSdKTdqk2r0WI8w6S3wh4ES/AyoFWzTtUq1U4D9ua0HvuBc/PdAty/Gd6HPgpv99Ee/99VH8x1/O4IfPd+Gl83Y4fSHUFulw2+YKfOKGZrx5exUePtiLHz7fldTru3xBfOGvZ7C+3IR/vaJ+1n0FOjV+9Y6duKrJik89dgo/er4zdt9TrcMIhnlGUhrnuqGlFK/1OjAqYeU2FcPRAdTxVs6SSZ6T0+RUEKEIT27lzKhFIBSB07d4ex2Jbyj6+y3Z4qyuSA+lgiUMzuod96LMlCcpyKipxIBuGRMbR5z+JUlqFLWUC78nW4ec+N2hXtzz04OwGrX48/uvwCVz3oe21ljgC0bS+hk71juBW//vAD7wm2PZL9C+8Q1g377Zt+3bJ9xOUiKlJysE4OOc82OMMSOAo4yxvZzzVsZYNYDrAfQu/hJkqUxEI7JzoTgTExtPD07i8sbZtXuvxF70eDQqBZpKjDjYPQbOuaQiom3IKXnlIU+tRHWhbsFB1OdH3QhHONZKaJGUosGqR6U5H8+fteGuS2olP6/L5hZijVOYZ2fKU6NQr8GFOYmNz7SNIBThuGlj9lMaZ6ov1sPpC2HCG5SURPrCOTu21VqgT7HtNDaIenLx4uzUgAO+YETyMGK1UoF/uaQG33mmAxfsHtQtMtZB1DrklGW/mai6UIfn2kcT/uwc73NgXbkx4YnVVU1WXN9Siu/vO487tlbFPeFPxqtdQpDLI++5DPXFehTqNXHDNyIRjqlgBF//RzuqLPm47SJpRdO3njqLUZcfP7pne9w5ZTqNCj9+23Z87JHj+OqT7XBMBfHJ163F4yeHUFOow+aq5EYzpOKGDWX4773nsLdtJKnfCVKJKyblcdrZSoxaWHTqWOjRUhH3jiW7cgYIQSJSo+DJtGRnnIk0KgVqC3UJV876JryoLpT22mJiY8+YB01p7uUGhLbGKxuXbs2gypIPo1aF7zxzDiNOP65utuJ7/3IxTHnzvy/Fgd/HeiZibczJevGcHYCQrPyxR07gO2/ZkrGQooR27ADe/GbgkUeAPXuEwkz8O0lJwpUzzvkQ5/xY9M8uAG0AKqN3/w+ATwKgnoIcMeGNFmf67L9RFeo1qDTn43ScmT29414wJq3dIZ637KjGa70O/H2BvSEzBUIRdNqSm0nWaDUseFVQPGlZJ6FFUgrGGHatteLlzrGkrhp22T0ptTSKaot081bOnjwt7Km5aAlOQJMhzqbrltDaOOryoW3ImXJLIyCcoJt16oQrZ692CSmbO+ulr9D9y84aqBQMv3o18eqZLxjG+VG3LPvNRFWWfPhDkUWDFCIRjpN9kwuGgcz1uVvWIxTm+MY/2tM+vmO9E6gr0mFnfSGsRu2CJxwKBcM337QZO+os+PijJ3DkQuLE0+N9Dvzy1R687dLaRds1NSoF/vetF+OuS2rwg/2d+PgjJ/DSeTtu2bw0ITnNpQbUFunw9JnMtDYOxxlALWKMRUNBlnblTNw7luyeM4BmnaVq0OEDY0BpQfKr8g0SEhv7kgj9mk5sTL+10eMPweUPLenKmUIh/NyMOP247/I6/Oze7XELM0BYqSwz5aUVCvJypx0bK034zE3r8LcTg/i3P5xIOQ04bXv2CIXYnXcC//zPsws1kpKk9pwxxuoAXAzgIGPsdgADnPMTmTgwkhpHdH9XLqycAcL+sNMLtDWWm/KgVaU2t+nuS2uxocKEL/6tNeFw4k6bG8EwT2omWUOJAV12T9zghrPDwjBrcd+WHHY1W+H2h3BUYrwu5xydo+6UYvRFdUWzZ525fEG80GHHjTmS0jiTWJxdkFCcHegQrihe3ZR6cQYIA8kTxem/2jWG5lJDUnMFS0x5uGlTOR450pcw7ez8qBuhCI+1zMhBvCCy2L6zLrsbLn9o0QJmptoiPe66tAZ/OTEItz/1FjPOOY72OLC1RlrgRp5aiQfv2Y5Kcz7e9csji35/hMIRfOaPp1Bi1OITr1ub8LWVCoYvvWEjPrCnEX98bQDhCMetm5dmRZkxhhtaSvFypz3p4etSDE0Kg4dNefFXlteXm3B2JLlE3HSJFwusRuk/S7GVM0psTMmgYwpWgzal9+HGEgMujHkQWqClzhcMY9jpk9wd01hiAGOQJRRkNFqsL+WeMwD43K3r8cO7t+GB2zfEXZWfaWutOeVQkKmAML7l8oZivGdXAz52fTP+eGwAn/3zqewWaPX1wO9+B+zaRYVZmiQXZ4wxA4DHAHwEQqvjZwH8h4TnvZsxdoQxdsRmSz4unCRnPIfaGgEhsbHb7pl3wpZqjL5IPHGyuf34zjMdiz42lnaXxEpXg1WPQCgSN9WufdiF5tLFh1kn6/KGIqgUDM+fk/YzMurywxMIp7VyVlOow+DkFPwhIcjhufZRBEIR3LwpN1IaZ6ou1EGpYJJWzl44Z0ORXpN2K2CFOS/W9hNPMCzuN0t+X9vbLquFyxfCX44PLvo4MfRG3pUz4edusQAaMSlQanEGAHvWliAc4WnN7+kbn4Ld7cfWWulpiBa9Bj+/bwcYY7jv54divwPn+tlL3WgbcuI/b98A4wJXtOdijOETr1uL/3r9BvzzzhpZ20sTuWFDGYJhjv0pjNlIRJhxlrfgRZh1ZUb4ghFZhwInYoutnElf7ZjZ1kiSl8qMM1Gj1YBgmKNngd8jA44pcC5960IssVGGlTNxZXgpV84AIWlVasrx1hoL+iemUtpXerRnAoFwBJc1CO89H7q2CR/Y04jfHurDA387k52AnH37gO5uoKoKeOwx4D//c+mPYQWRVJwxxtQQCrOHOed/BNAAoB7ACcbYBQBVAI4xxuZ9V3LOH+Scb+ecb7da07uSTRKbbmvMleLMBM7nby5PNUZ/potrLPjnnTX4xcsXFk1ubB92QZPkSpfYYhGvtbFdxqRGkTFPje11FsnFWSypMYUwEFFdsQ6cCyfEAPCP08MoMWolr1osJbVSgSpLProTnCxGIhwvdthxVVNx2ol6Feb8RdsaTw9MwhsI4xKJ+81m2l5rwfpyEx56+cKib6StQ07oNErUpvmzMpOUlbMT/Q4YtaqkVma31lqgVDAcSnGgOgAc7RWeuy2J4gwQ5vb9+G3bMDjpw7t/eWRecmTfuBf/s7cD160vxes2JH/x4Z7L6vDVf9q0pCvKW2ssKNJr8HQGxhQMTU7FTWoUrc9CKIjN7YdGqYApX/o+0YJ8NdRKRsVZigYcU0nvNxMlSmxMZV95U4lRppWz7BRnyRAvQKWyevZKlx0qBcOOuun3no/f0Ix3X70Gv3ylB1/+e9vSFmjiHrNHHwVaW4GWFuCBB4AvfWnpjmGFkZLWyAD8FEAb5/zbAMA5P8U5L+Gc13HO6wD0A9jKOR/O6NGShBzeIJQKtmC7ylLbKIaCzJh3NhUIY9TlTylGf65PvW4dzPlqfG6R5fy2ISfWlhoTthnMJBY9naOzi4Extx82lz+p/WtS7WouQduQU9JsLTFJMr09Z8Jze8Y88AZC2Hd2FDduLFuyuTDJqi/WozvBXJ3WISfGPAFclWZLIyCEJTh9oQXb9A5Gi5BUVs6EaP1atA+7cGSRlabWQSHIRs6viU6jQpFes2hxdrzPgc3VBUl9XINWhY0VJhySsPdrIcd6HDBoVSkNd99WW4j/efMWHOmZwCcend5/wTnHf/zlNBgD/vP1G3KuZXchSgXDdetLsa99NLa6LZfhSR/KTAuflDeWGKBUsNh8yKVgdwVQbNAk9fVhjMFq0FJxlgLOOQYdixfpi2mIvvcstDe7X+KMs5maSoXExnTTB8X30KVua0zGhgoTNEpFSvvOXu4cw+aqgllzVhlj+MxN63Df5XX4yYFufOvps0tXoB0+PL3HzGgEXnkFWLcO+MIXgMcfX5pjWGGknK1eAeAeANcwxo5H/7s5w8dFUjTuDcCcr86ZE5ASUx6sRu2sUBAxxjudtkZRgU6Nz9y8Hsd6HXj0aF/cx7QNuZIupix6DYr0mnlXBcUZJlKGWScrFqm/yOoZ5xxPnBrCj1/ogjFPhbI0rgzWxYozL54/a4MvGMmZwdPx1BXpcWHMs+gbjjiO4Krm9FO6xMTGoQVWzw52jaHBqo+1ViXr9VsqYMpT4aGXL8S9PxLhaB1yZmTeXJUlf8FB1L5gGO1DLslhIDPtrC/E8T5HyjPPjvZMYEu1OeWW4Vs2l+MzN63D4yeH8K2nzwIAnjg1jH1nbfj4DWtTXiXIlhs2lMLtD8WCZ+QQjnCMuPyLnpTnqZVosOqXfOUsmaRGkTjrjCRnwhuELxhJua3RmKdGmSlv0ZUzrUqRVMBLc2m0VTLNdtrhST90GuWs4iXXaFVKbKw0Jd0G7vIFcbJ/Epc3zH+PY4zhC7e14J931uD7+zrxf8+dl+twF/fJT87eY2YyCQXa1q3AHXcATz65NMexgkhJazzAOWec882c8y3R/56Y85g6zrk9c4dJpHJ4AznT0ijaWGGaNetMnHGWbluj6I6tldhZV4ivPtk+b7+JzeWH3e1PaYBvQ8n8xMY2mZMaZ1pfboTVqF2wtfGl83a8/vsv4f6HjyFPrcCP7t6W1oqKRaeGMU+FnjEPnjg9jCK9Bjvrkm/RWyprrHp4A+FFr5K/eM6O9eUmlBjTb2cRT+QHJ+evZIYjHEcuTMybX5MMnUaFN2+vxj9OD8fdd9A/MQW3P5SRfU5VFh0GFlg5OzM4iVCEJ7XfTLSjrhCBUAQn++eHACXi9ofQPuxMar9ZPO++eg3+5ZIa/L/9nfjxC1144G9nsLHShHsvkz+SPtOuaCyGTqPE02fka0qxu/0IR3jCkQfry01LGqdvd/mTOpEXWY20cpaKwRRnnM3UWGJYcOSMuK88mfeophLhfTXdxMYRlw9lpoX3VOaKrTUWnByYTCql+fCFcYQjHJc3xH/vYYzhy2/YiDdtq8K3957DD2fMalxSZjPw9NPAhg3AG98o/JlIllRaI8l9454ALLrsx+jPtLGyAB2j7tjV9HRmnMXDGMN/vWEj3L7QvCjv9mHhym8qxVSD1YDzcwYfnx12otigkW0g8EyMMexqtuLFDvuslLRT/ZO456cHcddPDmLMHcC37rwIT3746nmz41L5eLVFOpwdceG5thHcsKE0qdbPpSau9HUtEAri8YdwpGccVzfJM9umfJFB1K2DTrj8IcnDpxdy96W1CEU4fnNo/qjI1iGhwJEzDERUVZiP/ompuK3AqYSBiMQ9EIe6x5J+7ok+ByI8+f1mczHG8MXbN2BXsxVffqINY24/vvrGzTn9vb2QPLUSu5qt2Ns6IlsK2/SMs8WLs3VlJgw4pjDplT8tMh6b25/SKjQVZ6lJdcbZTI0lBnTa4ncz9I5PJf0e32CNJjamWZyNOn0oyeGWRtG2WgsCocisi9eJvNI5Bo1KsehFLIWC4et3bMbtF1Xga0+240kJI4cywmIB9u4VWhxf/3rg2WezcxzL0PJ7tyKLcniDOZPUKNpQUYBwhMeuwvaOe2HQqpKKH09kbZkR77iyHr873IejPdMtQOKeifUptCE2lhjg8AZnrca1D7sy0tIo2tVsxeRUECf6HeiyufH+h4/htu8dwOmBSXz+1hY894ldeNO2KtmSImuL9Hi1axyeQDjnBk/PlShO/9WuMQTDPK35ZjOVGrVQsPjFmTgo+dI0Vs4AIchi91orfnOwd94+i9ZBJ5QKltL+q0SqLDoEwvFnnZ3on0RFQR5KUmiZteg1WFtqjO3HS8axngkwllpROJdKqcD379qKKxuL8dHrmrEpx+b2JeOGDaUYdflxot8hy+sNRwerJ145E77v2oYz39oYjnCMewIpXfSyGrQY9/iXNPZ/JZheOUu9y6ChxAC3P4ThOSv/nHP0pRD6la9Rotqiw7k0Q0GGnb6cDgMRTYeCOCQ/5+XOMWytMSNPvfj4A6WC4dtvvghlpjxJ82AzpqgIeOYZYSXt5puB/fun79u3D/jGN7J1ZDmNirMVZsIbyLnibGOlUMyIoSBiu4PcLQcfurYJ5QV5+OyfTsdmr7QNOVFmykup1XN6w7NQDIQjHOdG5E9qnOnKxmIoGPCpP5zE9f/zAvadHcWHrm3CC5/cg3dcWZ/yXLiF1EVDWQry1bFY3lxVYc6HRqlYME7/xQ478tQKbK+TJ21SpVSg1JSHwTizzg52j6GuSCfLCcDbLqvFqMuPp+a0rrUOOdFg1Sd8E07FdGLj/H1nx/smsKXGnPJr76wvxNGeiQXnHy3kaO8EmkuMKMiXZ+XfoFXh1++8BB+8tkmW18uWa9aWQqlgsqU2Tq+cLb5iIraCty/BvrMJbwDhCE955SzCgTEPrZ4lY9AxBa1KkdZF0kZr/MTGCW8Qbn8o9nsmGc2lBpxPY+WMc44Rpz+t/dhLpdSUh0pzvuTExglPAK1Dzrj7zeJRKRXYWV+IwxfGsxOvLyouBr7/fSAcBm68EXjhhemExx07sndcOYyKsxWEc44JTxBmfW61NVaa82HWqWNL90KMvvwb8/VaFb5wWwvah1146JUeAMIesVT3hzXMeePpHffCF4xkJKlRZNFrsL2uEBfGPLjn0lo8/2978LHrmyXPZUqWmNh4fUsp1Dne9qVUMNQU6RYszl44Z8Ola4pkLWDjxemHIxyHusdTSmmMZ1dzCWoKdfjlyz2zbm8ddGZsrlb1AnH6Y24/+sanUgoDEe2sL4Q3EMaZRcZbzBWJzkfbWpv6x12pCnRqXLqmULZ9Z8OTPmhUioTt7yVGLQr1GrQtQWKjPbqCm8rKmfgcam1MzqDDh0pzfloXSRtKohcw5xRnfWlsXWgsMaLL7k45sXFyKohAKJLSyn82XFxjlhwKcrB7DJxjwf1m8eyoL8SI0x/bTpI1//RPwO9/D4RCwHXXAW9603TCI5knt8/GSFK8gTAC4QgKc2zljDGGjRUFOD3gRCQitDvUJjFzLBmv21CGPWut+PbTZ9E/4cX5UVdKYSCAUFTmqRWxUBDxCnIm2xoB4Id3b8NLn7oGD9y+IeUkQKnEk//bL6rI6MeRS32xPu5g3L5xL7rsHlwtQ4T+TBXmfAxNzi5g2oedcPpCuLRBnvAUpYLhnktrcejCeCwdb8ITwOCkLyP7zYCFB1GLrXPptBbujO7DO5xEpH6nzQ2nL5STM/ZywQ0tZei0eRZMxkvG0KQP5YsMoBYxxrC+3Bjbt5tJsQHUKa6czXwNIs2AI/UB1CKrQQtTngrn5wRnxfaVpzAuZzqxMbViYngZxOjPtK3WgqFJ37z3mXhe6RyDTqPE5iQunon7otOZPymbO+4A3vteIBgUgkKoMFsQFWcriLg3KtfaGgFgQ6UJZ4ddGHBMwR+KyBKjHw9jDP95+0aEIhzv/fVRBMM85ZUuhYJhTfF0YmP7sAsKJsxiyaRCvWbJrvptrCzAgU/tkW2fVqYJxZl3XjjCix1CWKzcn0dFQR4GJ32zPt7BrtTnmy3kzu1V0KoU+KW44hst0lrKM7NXKk+tRLFBO2/l7HivAwomfF+kqtSUh7oiXVL7zsS2nnTDQFaq61tKAQB7ZWhtFGacSfv9sq7MhLMjrozv55peOUv+vUsszuzuQIJHkpkGHVNp7TcDhPfbxhLDvIsGYnFWbUn+fV5MbOwYSW3FdsQpfC8th7ZGALELUsd6HAkf+3LnGLbXFUKjkn7q3mg1wKxTJ3WxLGP27RNWzxoagJdeEsJCSFxUnK0gjmiqljnH0hoBYRh1IBzBM23CyYVcSY3x1BTp8P49jbHZaqmunAHChmfxjad92Im64szsAcqmqhTeQLOlrkiPQCiCwTlXGV84Z0NFQV5sn6BcKsz5CIQiGJsRCnOwewzVhflpX3WeyazT4A1bKvHn1wYwORVE65D4vZu5Flph1tmc4qx/Es2lRujTnA+0o07Y5yA1YfBozwQsOnUs9IXMVmHOx6bKAjzdmn5r45BT+uDh9eUm+IKRBVuJ5ZLOylmutDVyzvG95zoWHMqcS/yhMEZdfll+hwnF2ezvj75xL4oNmpR+jzSWRBMbU1wlnh5AvTyKs/XlJmhVioT7zkZdPnSMupNqaQSEi8zbawuzv3Im7jF75BHg298GIhGhtXHfvuweV46i4mwFmfAKJ5BypiDKRbwS/+Qp4eQik8UZALxn1xrUF+uhUSmwJo0TvkarAQOOKUwFwjg7nPwwayIv8eR95sliKBzBS512XN1slT1kRjyJFVtOIjLvN5vpnstqMRUM4w9H+9E6KATZFGVgZINo7iBqzjlO9DlwcRphIKKd9YVweIOST7CO9kxga40l5+cSZdMNLaV4rdcRdyaeVJEIx8ikH2UJwkBE4u+7TLc22t0BaFWKlIYG67Uq6DXKrBdnQ5M+fOvpc3j0SH9Wj0OKkUnh30qu4szu9s8audA77k35ol++RokqSz7OpbpyFg28yfSWALloVApsrirA0QT7zl7pFBKCky3OAKG18cKYF6Ou1H93pO3w4ek9ZjffDFRVAc3Nwu1kHirOVhCxODPnYFtjbaEOBq0Kh3vGoWDpzVaRQqtS4kf3bMN33rIlrflGDSV6cC4M5u0Z92Z8vxlZXLw4/RP9Drh8IVwl834zYPrkRQwFOTfqwoQ3mPZ8s3g2VhZgW60Fv3rlAk4PTmZsv5moulCHAcdUrGXtwpgXk1PBtMJARGLxKmXemcMbQKfNk/bw6ZXuhg1lAIC9bam3No57AwiEI5JXzppKDVApWKzNNlNsLmHGWarFudWojTsWYimJHRYLjfrIJXLMOBM1lkSDs2zTxVTfRPIx+jM1lxhT3l854vLBolMvqw6XrbUWnBmcjM2CjeeVzjEY81TYUJF8y/kOcR9wt7TgkYz45Cen95ipVMC73gUcOSLsQyPzUHG2gkx4cnflTKFg2FBhAudChHMyPdOpai414uZN6c3uEt94njw9DM6R0Rh9klipSYt8tRLd9ukVn+fP2aFgwhgCuVXGijPhiqO43yzd+WYLedtltbgw5sW5EXfGkhpFVZZ8BMM8djX1eJ/wxp1OjL6oujAfZaY8SfvOxKHXtN9scc2lBtQW6fD0mdSLs+HoqkKiGWcirUqJBqshNi8yU+xuf0pJjSJhEHUWVwUw3YYXL7Ao10zPOEu/OBNTjTujrY3BcASDDl9axVljqQFdNk/S4zgAYc/ZcmlpFG2tsSAY5osOo36lawyX1BelNON0Q4UJ+WqlpItlS+Yd7wCUSuDBB5N/7je+Mb8dcoXNTKPibAUZ9wbBGGSbEyQ3sbUx0y2Ncqor0oMx4InoEMdUhlkT+TDGUFesR7d9+qrqix02XFRtRkEG9lqadWrkqRWxk5mD3WOoKMhLaX6PFDdtLI+dpGZ65UxsOxL3nR3vdUCnUcY25KeDMYad9cI+h0TzdY72TECpYLKs2K1kjDHc0FKKlzvtcPmCiZ8Qx/SMM+knr+vKjUu2cpYqoTjLkZWzMU92Z0pJILZpJ/N9sJAqiw4alSKW2Djk8CEc4WmvnAXCEfSkEP8+4vQtmxh9UaJQkP4JL3rGvCm1NAKAWqnAtloLDl3I4srZXJWVwO23Az/7GeBP8md3xw5h/9qjjwKBwIqcmUbF2Qri8AZgylOndGVlKYjDqGtTiNfNljy1EtUWHYYmfdBFe+FJdtUX63AhGrM86Q3iRJ8jIy2NgHBCXGHOx+DkFDiP7jdbU5SxvVEalQL/srMagBCik0lzB1Ef75/EpsoC2X5/7KwvxKgr8Xydoz0TaCk3IV+zfNqQsuWGDWUIhjn2n7Wl9Pzh6Em51JUzQAgsGJz0zdpTJLe0V84MuVCcCauLvmAklhiYSY8d7cebf/hKSoXggMOHYoNGltY/pYJhTbF+1jxQAGklMouJyKkkNo44fShbJjH6IqtRi+rC/AX3ncX2mzWm3rGxo64Q7cNOTE5l7uc4ae99L2C3A3/8Y3LP27MH+OY3hYLs1lung0ZWUDQ/FWcryIQ3mJMtjSLxZDNTMfqZIrY2ri0zQpGjhe9qUl+sR++4F8FwBAfO2xHhwK5m+VsaRRUF+Rh0+NBpc8PuDuDSNfLvN5vp/dc04nfvvjSlGUHJEFs2+8an4A+F0TbolKWlUSTOO1ustTEUjuB4n4NaGiXaWmNBkV6Dp1OM1B+a9EGlYCjWSz95FUNB2jIUChIKC2mo6a6cOX2hRffsZNr5UTeqC4WfqUynWwLA/nM2HLowHlsNTcagDDPOZpoZpz9dnKX++uJ7bsdIcvvOwhEOm2v5tTUCwLYaC471TsQttl/pHEORXoPmNLoadtRbwDkkD7xeEtddJ8Tq//CHyT2Pc+AXvxD+vHcv8L73rajCDKDibEWZ8ARyMkZf1FhiwGdvXo87tlZl+1CSIsazU1Jjbqgr0iMc4eifmMKLHTYY81QZbYmrMOdh0DGFVzMw3ywerUqZsT1tM+WplSgxatE/4UXbkAuBcARbZPx3bLQaYNGpF41wbh92YSoYpjAQiZQKhuvWl2Jf+yj8oeQLkeFJH0pNeUldZBL3PmaqtXHcEwDngDWFGWei6Vln2Vk9G3P7MeEN4vr1QmjLUuw764q2EbYOJv91GXRMoUJiYqcUjSUG9E144QuG0TfhhUrBUJ7G6+s0KlRZ8pOO07e7/YhwLLu2RkAIBRl1+WNhLSLOOV7pGsOlDUVpXRy+uNoCtZIlNX8y4xQK4D3vAV54AWhtlf68X/4SeP554c9r1gA/+MGKi+Sn4mwFmfAGUJiDSY0ixhjedfWapFpqcoG44ZmSGnPDGqsYp+/GC+dsuKKhOK1EzkTKC/Jhc/txoMOOUpN2WbXlJiLOOjveK18YiEihYNhRt/h8HRo+nbwbNpTC7Q/FLhYkY2jSl/Q+I6tRiyK9JmOhIGLKYrorZ0D2Zp2JRcRVzcXQKBUZT2zknMdW55ItmjnnGVk54xzosnmiMfr5abdHN5cak47TF2ecLZcB1DPF9p1FA5JEF8a8GJr04bI0L9jla5TYVFmQG8OoZ7rvPkCjAX70I2mPHxsDPvQhIfHxyisBrVZoaXzzm1dUgUbF2Qri8AZzMkZ/ubu4RrjitL2OTiBzQV2RUJw90zaKwUkfrm7OzH4zUaU5H5wDz50dxSX1mdtvlg1VFp1QnPU5UGLUyn5Ss7O+EL3j3lgAwVxHeyZQatKiYpldsMmmKxqLodMo8fSZ5AdSDzt9SV8cY4wJoSAZamsUC6r09pzlzXqtpSa29K0tNaKmSJfxtsZhpw/egLBy2ppkceacCsETCKPCLN/P3HScvht9415Zti40lRjQZU8usVHc61e6zPacAUJnTr5aOa/t8OVOO4DU5pvNtaO+ECf7HVlt/53HahWGUT/0EOCVEADzqU8BLpfQCrljB9DbC+zeLRRoK2hmGhVnK8i4JwBLDrc1Lldry4w49cDrUpovQuRXqNfAmKfCn44NAACuasrcfjNgOm46EIrgkgzvN1tq1YX5GHRM4VivA1uqzbIXntPzzuJfrT3aM4FttTR8Ohl5aiV2NVuxt3UEkYj0MAjOOYYmp1JK6FtfZsLZYVdsJp6c7G5hBIwsK2dZams8P+qGXqNEeUEe6or0GW9r7LYJr1+k1yRdnMk540xUV6SHggGdo270jqc340zUWGJAIBRJGCg003B05Ww57jlTKRW4qLog1k0gerlzDGWmvNiMz3TsrCtEMMxj40tyxnvfC0xOAr///eKPe/FF4Kc/BT7xCSGKv6YG8HiAiQlhz9knP7k0x7sEqDhbIXzBMKaCYVhyOBBkOVtOAy1XOsaEdLCpYBhrivUZD5gpn3GFOdP7zZZalUWHUISjd9wra0ujaH25EQatKm5xNur0oX9iKtbOQ6S7YUMpRl1+nOh3SH7O5FQQvmAEZSnsBVpXboI/FMnIipAcK2dF0f1q2Vw5aywxgDGG+mIdesa8SRXOyeqMfh1u2lSGnjFvUqMV5JxxJspTK1FdqMNrfQ44vEFZfic3lwp7vJPZdzbq9EHB0vteyqatNRa0DjpjK1ucc7zaOYbLG+Tp2NheWwjGkHutjVdeCbS0CHvHFhIICMEfNTXAF74g3FZTI/y/tzfzx7jEqDhbISa8wtVHC7U1klWgLnoVMdMtjQBiG+eLDdpYOMxKMXM0hJxhICJVdL5OvJMB2m+WumvWlkKpYEmlNqYy40y0VjxRTiHaPBG72w+dRgm9VpXya6iVChTqNVncc+ZCQ7S1r65YD38oElvFyYQumxv5aiX2rC0BIATrSDU4KX9xBggBQK92CZHvcq2cAcl9z404fbAatTk7TiiRrTUWhCIcJ/uFYdTnRtwY8wRwqQwtjQBQoFNjbakx94ozxoTVs8OHgaNH4z/m298GzpwBvvc9QB99H6bijOS6CY9w5axQT22NZOWrjxVnmW1pBISN1CVGLS5dU7ji2u/EQdSMAZuqMtO2u7O+EOdG3Bj3BGbdfrRnAhqVgtqFU1CgU2NHnQX72kclP2c4WpylEsgkrAoJJ4tys7nSm3EmKjZkpzhz+oIYcfpjw9vro3tiMxkK0mXzoL5Yj42Vws9OMomNA44paJQKFMncZSO2IQLyFGd6rQqV5uQSG4edyzNGX3RxtHtBnHcm534z0c76QhztmUhqL9+SuOceID8/fjBIdzfwxS8Cb3wjcNtt07dTcUZynSO6ckaBIGQ1uHZdKXavteKyNZkvzgDgZ/ftwH/c2rIkH2spVZjzwJhw1duYl5kLO+K8s7lXa4/2TGBzZQE0KnobSsWetSVoH3YtGLYyVzorZ/kaJWoKdUmn50lhd/vT2m8mshq1WYnSF8NAxJWe2uiFo+4M7jvrsruxxqpHSTRJM5nExkGHD+Xm5MYpSCGuHALyzTJtKjUkdUFg1Olb1sVZkUGL+mJ9rKvg5c4x1BTqYhfR5LCjrhDeQBhnUhjBkFFmM/DP/wz85jfC/jMR58AHPgAolcB3vzv7OVarkNZIxRnJVePU1khWkU1VBfjF23ciX7M0ewE3VhYsy9k5iWhVSjRYDbJemZ1rc5VQgM3cd+YPhXF6wEktjWnYHW1p23/WJunxw5NTUDDAmuIqVVNJ8tHmUthc/pSPaSarQZuVQBCxOGuKFiflpjxoVZmL0/eHwuifmMIaq7DHbX25KalQELlnnInE4rQgX42CfHku9DSXGtFpc0sOohlx+pZlUuNMF9eY8VrvBMIRjoNdY7L/bl7oYllOeO97hYCPhx+evu2xx4AnnhBWzqrmzMhlTFg9o+KM5KoJr9DWaKG2RkJIEh577+X4zM3rM/b6WpUSF1ebZxVnpwecCIQjNHw6Dc2lBlQU5GH/WWmtjUOTPpQY81KeCbi2zIBuuyfWuiYXu9uPYmP6FxWtRi1sLj84z1wQRzznR93QqBSx1SKFgqG2SIduu/SUwWT0jHnBOWL7X1sqTGgfdkluU5N7xplInAdaXSjv/DSpiY2+YBgT3iBKjcv7ItrWGgvs7gD+cXoYTl8Il8lcnJWa8lBbpFt0/mTWbN8ObN0qxORzDjidwIc/DGzZAnzwg/GfQ8UZyWUT0f0c5nxaOSOESFegU2c8jfSS+kKcGZyMpcqJs3woqTF1jDHsWluCAx12SQVTKjPOZmouNSIU4bImNgbDEUx4g7E5ZemwGrXwBSNw+0MyHJl050fdWFOsnxVCkck4/S6bsFIn7rttKTchEIqgS8LXJRiOYMTpQ6WMM85EBfnq2CgBuTQnEUQj7jdczm2NwHRA0vf2nQeAtIdPx7OjrhCHL4xnNFE0JYwBdXXAqVPAK68An/88MDQEvOtdQiBIPFSckVw24Q3AoFXR/g1CSM7ZWV+ECAeORefrHO2ZQE2hTpa9RqvZnrVWeAJhHOlJfBV8aNKX0n4zkXiifFbG1sax6IwzuVbOgKWP0+8YdcVa+kT1xXr0jnkzMheuMzrjLFacVZgASAsFGXH6EOHyJzWKfvy27fj0Tetke71YYqOEUJARccbZMh9o31wqjB9pG3KiscSQkXb6nfWFmPAG0WmTP+Anbe94h1CkvfOdQjLj7bcL0fk7dsR/fE0NMDgIBKWPk1gO6Ex+hXB4g9TSSAjJSRfXmKFUMBzqHgPnHEd7J2i/mQwubyyGWskk7Tsbnkxv5WyNVVgdkjNOXyyk5NlzljfrNZfCVEDY/yUmNYrqivUIhCOxmWJy6rZ7UGLUxgJ81hTroVEpJO07G3QIBUymirONlQWyhlcYxMRGCd9z0wOol/cFH6WC4aJqIYUzU3uBd9YJ+84O5eK+s5tvFgqytjYhvfHAAeCRR4Qh0/HU1AgtkAMDS3ucGUbF2Qox7glQGAghJCfptSpsrCzAoe5x9E9Mweby034zGRi0KuysL0y478zlC8LtD6W1cqZVKVFXpMPZJGZqJSKmKxbLlNYIYElDQTptbnCOeStnYmtfz5j8+866bEJSo0ilVGBtqVFSYmMmBlBnWmOJtMTGEWe0rXGZ7zkDptu9M9HSCAC1RULXQk7uOwOAr3wFUKmEcJD771+4MANWbJx+wuKMMVbNGNvHGGtjjJ1hjH04evt/McZOMsaOM8aeZoxVZP5wyUIcXirOCCG565L6Qpzom4zN7tkanelD0rO7uQTnRtwYWGSVZnrGWXon5c2lxqTmTiUi68pZFtoaxbawptL5bY1AZuL0u+we1BfP/ngt5Sa0DjoThqEMxIqz5VPANJcaJCU2jjp90KgUMOuWfwfRrZsrcGVjMa5sysyoGMYYdtYV4nCuFmcjI0K0/uc/D/zgB8C+fQs/drUWZwBCAD7OOV8P4FIA72eMtQD4Jud8M+d8C4DHAfxH5g6TJDLuDcCyAn4pEUJWpp11hQiEI/j5Sxeg1yixttSY+EkkoT3rrACw6OpZOjPOZmouNeLCmAe+YDit1xGJq1xy7D0056uhUrAlLc7Oj7qhVLB5IRglRi3y1PLH6Y97AnB4g7GkRlFLhQljngBGE3zug44pWHRq6DQqWY8rk5pKjPCHIuhLkNg4HI3RZ0ze+W3ZsLbMiF+/85KMzZ4EhH1ng5M+9E9kJlU0Zfv2AW9+s9DK+MUvCv9/85sXLtCqq4X/r7bijHM+xDk/Fv2zC0AbgErO+cw1dD2AHIt9WV0cniANoCaE5KwddYVgDGgfdmFLjTnlSHcyW4PVgEpz/qL7zmIrZ2mGCzSXGsH59GyvdNlcfhi1KlnSQhUKhmKDdkmLs44RN2qLdPOCuBTRgk3u4kxMalwTpzgDEoeCDE36llVLIzC9KploxXbE6VsRLY1LZUddjs47O3x49h6zPXuEvx8+HP/x+fnCMOrVVpzNxBirA3AxgIPRv3+ZMdYH4C7QylnWBMMRuPwhFOqpOCOE5KYCnTq2WraNIvRlwxjDnnVWvHTeDn8o/oqWuHJWkmZYwtoy4URZrmHUwowz+QIcrMalHUR93uZGo9UQ9766Ir3sbY1iXP6aOW2N68qEn6tEoSCZmnGWSeJ+vkTfc6NO/7JPalxKa8uMMOapcm/f2Sc/OX+P2Z49wu0LWYFx+pKLM8aYAcBjAD4irppxzj/LOa8G8DCADyzwvHczxo4wxo7YbIkTpUjyJrxCHDG1NRJCctkl9cLV2ospDERWu5tL4A2EceTCRNz7h51TKDZooFWlt0JVW6SHWskkBTRIYXP5ZdlvJhIHUS+FYDiCC3bPvP1morpiPfrGvZKHQ0vRZfNArWSosswusIx5atQW6RKunA04plC5zIozY54aFQV5i67Wcs6FtkZaOZNMqWDYUVeYe8VZKlZrccYYU0MozB7mnP8xzkN+A+COeM/lnD/IOd/OOd9utVpTP1KyIIdXmO9goZUzQkgOu+2iCmyqLMB2Ks5kdXljETRKBfa1x993NpRmjL5IrVSgwWqQeeVMvvct6xK2NfaMeRCK8HlJjaL6Yh2CYR6Lr5dDl82NmkJd3Jbg9WWmRVfOnL4gXL7QsgoDETWWGhf9nnP7Q/AGwss+Rn+p7agrRKfNE0tNXbZqaoCeHiFSf4WQktbIAPwUQBvn/Nszbm+a8bDbAbTLf3hEinGPuHJGxRkhJHdtryvE3z54ZUY3uq9GOo0Kl6wpxP5z8btThid9KDPJs2LSlOBEORmZWDkb8wQyMvx5ro7o6mGjNX6wjRgSImdrY5fdgzULtFG2VJhwYcwDjz8U9/6hDM84y6TmEgPOjy6c2CjG6MtxAWI12VkvXCQ7kmv7zpJVUwO43cDkZLaPRDZSVs6uAHAPgGuisfnHGWM3A/gaY+w0Y+wkgBsAfDiTB0oW5oi2Na6ECFlCCCHJ29VsxflRd9xUu6FJX9pJjaK1pQb0T0wtWARI5Q+F4fSFUCxzcRaO8FirfyaJbXYNJfq494tx+j0yFWehcAQ9Y555YSCilnITOBcCd+JZjjPORE2lBvhDkQWTBUeiA6hLqK0xKZsqzdCqFDjUHb8detlYgXH6UtIaD3DOmRibH/3vCc75HZzzjdHbb+Ocr6zx3MvIRLStkQJBCCFkddqzrgQA5q2eeQMhTE4FZVtVaIqGuqQ778zuFgooOWL0RUs566xj1I1Kc/6CsfRWoxY6jRLdMiU2DjimEAxzNBQvvHIGLBwKIs44W257zoAZ33ML7HUUizNqa0yORqXAxTXmRRMbfcEw/n5yCO/91VF8e++5JTy6JKzG4ozkPmprJISQ1W1NsR7Vhfl4fs68s2GZZpyJxMTNcwus0EglFlByrpyJr7UUe2jOj7oXDAMBhBTNWhnj9LtswuvUL7ByVl6QB7NOvWAoyKBjCmolk7WNdKnEEhtH43/PiW2NpWmOiliNdtYV4szgJFy+YOy2UDiC58/Z8LFHjmPbf+3F+39zDP84M4w/v5ajazArsDhbPpMIyYIc3gDy1UpZZsUQQghZfhhj2LO2BI8e6YcvGI69H8RmnMlUnFUX6qBVKdLed2Z3yTeAWrRUK2fhCEenzY3LG4oWfVx9sQ5tQ/Lsz+sUZ5wVxy/OGGNoKV84FGTQMYWygjwoFMtvSLMpT43ygjycX2TlzKhVQa+lU9pk7agvROQ54GjPBIx5avz1+AAePzmEMU8AxjwVbt1cgddvqcA/zgzjT8dytDgrKQE0GirOSG6Z8AYpRp8QQla53Wut+OUrPTh8YRxXNQnpyEOxlTN52tmUCoamUgPOplmcifPI5J5zBmS+OBuYmII/FFl05QwQQkGePjOCUDiS9tD1LrsHBfnqRbcvrC834eGDPQhHOJRzirBBhw8VMn0PZENjiWGRlTNf2jP8VqutNRYoFQzv+dVR+EMRaFUKXLe+FLdvqcDutdbY+I3DFybg8ocQDEegTvN7WXYKBVBdTcUZyS0TngDM1NJICCGr2mVriqFRKbCv3RYrzoaj+3HKZGz5ai4x4uXOsbRewx5ra5TvvUuvUSJfrcx4cdYRLRIWitEX1RXrEYpw9E9MoW6BFS+pum1CGIgQoB1fS7kJvmAE3XbPvGMbcEzF5gwuR82lRjx8sAeRCJ+3+jfilGdUxGqk16rw1h3V6J+Ywu0XVeCGDaVx03QL9cJtDm9Q1tVu2aywWWc5Vv6SVEx4AxQGQgghq1y+RolL1xRh/7npfWdDk1Mw69TI18jX9t5cZsSw04fJqWDiBy/A5vbDlKdKezD2TIwxYRB1hveciUmNC8Xoi8TERjni9LvsbqxZIAxEtFAoSDgiDGlejkmNoqYSA3zBCPonpubdN+L00wDqNHz5jZvw0L/uxB3bqhYccyIuACxFEmpKqDgjuWbCG6QYfUIIIdiz1ooumwe9Y0LsuDDjTN4T1+ZoO19HGq2Ndrc/I1fgrcbMD6LuGHXDatSiIMH7rjjrLN1QELc/hBGnf8EYfVGD1QCNUjEvFGTU5UM4wlG+DAdQi6ZTQmd/z0UiHKMuH0ooDCSjxAWACU8OF2cDA0AovREfuYKKsxVgwhugpEZCCCHYvVaM1BdWz+SccSZqjp4op7PvzObKUHFmyHxxdn7UjaYELY2A0LJp0KrQMxZ/PpdU3dGkxoXCQEQalQJNpYZ5K2fLecaZKJbYOCcUZMIbQDDMUUZ7zjJKXADI6ZWzSAQYHMz2kciCirNlLhzhmJwKwkJtjYQQsurVF+tRW6TDvnahOBue9KFM5iCISnM+9BrlgnOnpLC7A7LG6Isy3dbIOUfnqDvhfjNAaLOsK9alPeusyx5NarQm/pjry03zVs4GHMK+w+U440xUkK9GmSlv3srZcGzGGa2cZZIl1taYeitzRq2wOH0qzpa5yakgOAelNRJCCAEA7Flbgle6xjA5FcSYJyD7yhljDI2lRpxNY9ZZxlbOjFo4vEH4Q2HZXxsQ9je5/CFJK2cAhFlnae4567J5wBhQW6RL+NiWchPsbj9GXb7YbeLKmdzfB0utqdQw74LAaHTGGbU1ZpZlOew5A6g4I7lB/EGhQBBCCCEAsGutFb5gBH89IbT4ZCLJbm2pYd4qhlRTgTDc/lDGVs4AYMydmZNIMQykQWJxVl+kR//EFILhSMofs8vuQaU5X9Is01goyIzVs0HHFEx5qgXDHpaLphIjzo+6EYnw2G0jTnnn+JH48jVK5KkVubvnrLpa+D8VZyQXiD8oFKVPCCEEAC5bUwStSoHfHhROVDKxYtJcaoTdHcBYCi2Edrf8A6hFVkNys858wTCeP2cD5zzxgzEdSNFUsnhSo6iuWI9whKNvPPV9Z102t6SWRkBoawQwa/j1oGNqWe83EzWVGjAVDGPAMZ3YKLY1WjNQ6JPZCnWa3G1r1OuBoiIqzkhm+IJhfOaPpyS3i4g/KNTWSAghBADy1Epc1lAUC4bIVHEGzA9okELcE5aJE+pkB1H/8pULuPdnh/DUmWFJjz8/6kZBvlryfLb6YqEVMdXWRs45uu2ehGEgooJ8Naos+bNCQQYcvmW930wUSwmdsWI74vSjSK+BRkWns5lm1mlyd+UMWFFx+vTdnGN+8fIF/PZQL357SNo3mNjWSGmNhBBCRHuiqY0AZA8EAWYWZ8m3NoqFU6b2nAGQHAry5GmhKPvqk+0IhBK3HnZEw0AWGwY9kxin321PbeVsxOmHNxBGQ4IY/Zlayk1oHZyM/X1ocmWsnDVGVytn7jsbdfooDGSJWPTq3N1zBlBxRjJjzO3H9587DwB4scMm6TniVQxKaySEECLavdYKADBqVTBoVbK/fqlJC1OeKqXiTGxrzMSes6LoipaUlbPhSR9e63XgsjVF6Bnz4pevXEj4nE6JMfqiQr0GxjxVyrPOumzSkxpF68tN6LJ74A2E4PGH4PAGV0RxVpCvRqlJO2u1dtjpQynF6C8Ji04DR662NQJUnJHM+O6zHfAGw3jrjmp02jwYmpxK+JwJbxAapQJ6TeKNwoQQQlaH2iI91hTrMxaUwBhDc6kxrZWzIomtgcnQqpQw69SSirOnW4VVs/96wwZc3WzFd5/tWLRta9wTwJgnIClGX8QYQ31x6omNndGirl5iWyMghIJwDpwddsXOIyqW8QDqmYRQkNltjbRytjQsOg3Gc33lbHJS+G+Zo+IsR3Ta3Hj4YC/+eWc17r28DgDwYoc94fMmPAGYdWrJLRaEEEJWhwdu34BP3rguY6/fXGbEuRG35DANkd3th0WnhlqZmVMQq0EbW51bzFNnhtFg1aOxxIjP3rwebn8I//tsx4KPF5MakynOAKG1MdXirMvmRr5aibIkCpCWaChI65BzRcw4m6mp1ICOaGJjMBzBmIeKs6Vi0WswORVEOJLcz/uSEeP0+/qyexwyoOIsR3z1iXbkqZX4yHXNWFdmRLFBiwNSijNvgPabEUIImefqZiuubynN2Os3lxgwORWUHL4hytSMM1GxQZvwmCY8AbzaNY4bN5YBANaWGfGWHTX49as9sVbCucQgiuSLMx0GJqYk7Wmbq8vmQX2xHgqF9AuwVZZ8GPNUaBtyxmacrYS2RkBYOfMGwhicnILN5QfnNIB6qVh0anAuzNfNSWJx1tOT3eOQARVnOeCVzjE80zaC+/c0oNigBWMMVzYW4aXz9lnzPOJxeIOw6CmpkRBCyNJqLhMCGs4m2dpodwcyst9MZDVqEwaCPNM2gnCE48YN5bHbPnZ9M7QqBb76ZHvc55wfdUOnUaIiyYCVumI9IhzoTSFOv9vuwZokwkAAoZVSCAURijOlgqEkg8XwUoolNo64YzPOaM/Z0qBB1EuHirMsi0Q4vvxEKyrN+fjXK+pjt1/ZZMWYJ4C2YecizwbGaeWMEEJIFqQap5/plTOrMfHK2VNnhlFpzsfGStOs592/pxF7W0fwcuf8zpXzo240WA1JrWIBQnEGIOlQEH8ojP4Jr+QY/ZnWl5vQPuxC37gXZaY8qDLUQrrUxPlyHaMujDiFrzGtnC0NMXjOkavFWVkZoFZTcUbS9+fjAzg94MS/vW4t8tTToR5XNhYDQMLWRoc3QEmNhBBCllyxQYsivQbnJM7lFNnd/oyvnHkDYXj8obj3u/0hvNBhx+s2lM3br/2OK+tRac7Hl//eNq9z5XySSY2i+micfrL7znrGvIjw5JIaRS0VJngDYbzSNbZiwkAAoECnRolRSGycXjlbOZ9fLhPn6Y57crStUaEAqqqoOFsJOOdZuwowFQjjm0+dxeaqAtx+UcWs+8oK8tBUYsCB8wsXZ5xzTHiDNICaEEJIVjSVGnBuVHpx5vGH4A2EM7tyZlh8EPX+s6MIhCKx/WYz5amV+OSNa3Fm0Ik/vjYQu93lC2Jo0oeGFIozi16Dgnw1upNcOZuO0U9+5UwMBRlx+lfMfjORGAoy4vRBpWAoogvUSyLn2xqBFROnv+qLs7f86FV89PfHs/Kxf3qgC0OTPnz25vVx2ySubCrGoe5x+ILhuM93+kIIRzi1NRJCCMmKtaVGdCSR2JjJGWeiRIOo/3F6GMUGDbbVWuLef9vmClxUbcY3n2qHNyCsvnXahMIqlZUzQGhtTHblTPyYycToi5pKDVBFzytWXHFWYsT5EReGnT6UGLVJt5mS1IhdWouNm8g6Ks5Whi01ZrzYYV/y1bNRlw8/2N+JG1pKccmaoriPuaqpGP5QBEcuTMS9XzxmKs4IIYRkQ1OpEW5/CIOTPkmPF1ezMr3nbObHmskXDGNf+yiubymDcoGTeoWC4fO3rMeI048HX+gCkHqMvqi+SIcL9uQCQbrtHpQYtTDmJd8do1UpY8e64oqzUgM8gTCO9zpQQi2NS0avUUKtZJjI9UHUAwNAKH5L83Kx6ouzWzeXIxTheOrM8JJ+3O880wF/KIJP37TwDJpL6ougVjK8eN4W9/7x6NULSmskhBCSDWujiY1S952JBVNxBgZQixYrzl46b4cnEI7b0jjT9rpC3LKpHD96vgsjTh86Rl3QKBWoKdSldEx1xXoMTk4t2AkTT5fNndKqmailQmhtrFxBe86A6SCaLruHkhqXEGMMFp0mdwNBAKE4C4eBoaFsH0laVn1xtqmyADWFOjx+cum+kOdGXPjdoV7cfWntoht99VoVLq6xLBgK4ohevaCVM0IIIdnQXCImNkorzsS2xkyunFl0GigVLG5x9o/TwzDmqXDZAh0rM33qxnUIRzi+9dRZdI4KhVKqqYd1RXpwDvQlEaffZfekFAYiEvedlScZ/Z/rZraWJjOcm6TPotPEFgZy0gqJ01/1xRljDLduLsfLnWMYSzAXRS5feaINeq0KH762KeFjr2osxplBZ9xjm6C2RkIIIVlUoFOj1KSVPOvM5vKDMaAwg+9bymhIxNziLBSOYG/bCK5bXwqNKvHpT02RDvddUYc/HOvHwe5xNJamXiiJcfpSQ0HGPQE4vEE0pBAGIvqnrVX49E3rsDa60rRSmHWaWHFPbY1Ly6JXxxYGchIVZyvHrZsrEI5wPHk6862NL3bYsP+sDR+8plFSBP6VTUKk/kudY/Pui7U1UnFGCCEkS5qjoSBS2NwBFOk1GZ+7FW8Q9aHucTi8Qbxuw+ItjTO9f08jzPlquHwhNKaxipVsnH63PfWkRlGhXoP37mpYkYEZ4uoZxegvLYtOg/Fcbmusrhb+v9KLM8ZYNWNsH2OsjTF2hjH24ejt32SMtTPGTjLG/sQYM2f8aDNkfbkRa6x6PH5yMKMfJxzh+PLf21BdmI97L6+T9JzNVWaY8lQ40DF/35nDG4RSwWDMU8l8pIQQQog0zaVGdIy65s0Fi8fmyuyMM1G8QdT/ODOMPLUCu5qtkl+nIF+Nj17fDGB6r1MqCnRqWHRqdEsMBZlOaky9IFzJxK8FtTUuLXOu7zkzGgGLZeUXZwBCAD7OOV8P4FIA72eMtQDYC2Aj53wzgHMAPpO5w8wsobWxAge7xzHqlJY4lYonTg2hfdiFT75uHbQqZeInQGjPuLyhGAc67POiise9AZjz1SvyqhghhJDlobnUAF8wgr6JxIWH3e3P6H4zkdUwuziLRIO/djeXIF8j7f1XdNcltfj+v2zF9S2laR1TXbEeFyS2NXbZPFArGaotK2u/mFzE4qx8hYWd5LpCvRoT3qDk0RlZsQLi9BMWZ5zzIc75seifXQDaAFRyzp/mnItZla8CqMrcYWbebZvLwTnw91OZCwb5+UvdqC3S4ZZN5Uk978qmYgxO+tA155e6wxuAmQZQE0IIySLxRPmshMRGm8sfGxKdSVajFna3P7aad7zfgRGnP2FKYzxKBcMtm8sl7VNbTH2R9FlnXTY3agp1GW//XK7+aWslfnDXVjSk0WpKkmfRaRCOcDh9ORxVvxqKs5kYY3UALgZwcM5d/wrgSZmOKSuaSo1YV2bMWGrjiT4HjvU6cO9ldUmvdF0V3Xc2N7VxwhNEoYR9a4QQQkimNEWLs47RxfedBUIR2N1+FC/FyplRi1CEwzElhBc8dXoYaiXDnnUlGf/YC6kr1mNo0icpTj/dpMaVLk+txE1JXugm6RMzDnK6tXE1FWeMMQOAxwB8hHPunHH7ZyG0Pj68wPPezRg7whg7YrPFn9eVK27dXI6jPRMYdEzJ/to/f6kbBq0Kd25PfoGxtkiP6sJ8vDi3OPMGYKYwEEIIIVlk0KpQac5fcOXM7vbju8924MqvPwd/KBKLeM8ksXXS7vaDc45/nBnG5Q3FKMjPXrdJbZEwI61nbPH2z3CEo2fMk1YYCCGZIM7Vzfk4fYcDcDoTPjRXSSrOGGNqCIXZw5zzP864/V4AtwK4iy/QgMo5f5Bzvp1zvt1qlb4JNxtu3VwBAPi7zKtno04f/n5qCG/aVgVjXmpvDFc2WvFq1xiC4UjstglvIKNxxIQQQogUzaWGebPOTg9M4hOPnsDlX30O3957DuvLTfjF23fg9VsqMn48YuukzeVH+7ALPWPelFoa5VQvMU6/f8KLYJhjTRoDqAnJBHNs5WwZxOn39WX3ONKQMOaPMcYA/BRAG+f82zNuvxHApwDs4pxLn6qYw+qK9dhYacLjJwfxrqvXyPa6v361B6EIx30SExrjuaqpGL891IsTfQ5srysE5xwTniDMetpzRgghJLuay4x46fwYfMEw9rWP4ucvXcChC+PQaZR4y45q3Ht5HRpLlq5NT2ydtLn8ONQ9DsaQdqBHusRZZ4n2nXVFkxqprZHkGnFBYCLX2xoBobVxw4bsHkuKpGSwXwHgHgCnGGPHo7f9O4DvAtAC2CvUb3iVc/7eTBzkUrp1cwW+9mQ7ese8qIm2IKTDFwzj4YO9uGZtSewXcyoubygCY8CLHXZsryuENxBGIByhGWeEEEKyrrnEiEA4giu/vg92tx9Vlnx87pb1uHN7dVZaCa0zirOnzgxjR13hkkT4L8aUp0axQYPvP3ce+8+OornUiOZSI9aWGdFcYkRBNOCr0xadcUYrZyTHiOecOd/WCCzrfWcJizPO+QEA8RIsnpD/cLLvlk3l+NqT7Xj81CDu392Y9uv97cQgxjwBvP2K+rRex6zTYHNlAQ6ct+Oj1zfHrlpQWyMhhJBs21ZrgVrJ0Fiix5ffuBHXrS+FMotjXoxaFbQqBQ5dGEf7sAv/cWtL1o5lpq/fsRlPnxnBuVEXHjvaD09gOhyk1KRFc6kRNpcfBflqCvwiOceYp4JSwXK7rbG8HFAqV3ZxttpUF+pwcY0Zj58YSrs445zj5y9dQHOpAVc0FqV9bFc2FeOHz3fB6QtiwiP8YFCUPiGEkGyrK9aj7Ys35kz0O2MMVqMWz7aNAABel+X9ZqJr15fi2vVCeyXnHIOTPpwbduHciAtnR1zoGHHjwpgHVzVZEe1KIiRnKBQM5nw1xnO5rVGpBKqqqDhbaW7dXIH/erwVnTZ3WjM0DnWPo3XIia+8cZMsv2SvbLTi+/s68WrnGPLUwhBNurJGCCEkF+RKYSayGrXon5jC5qoCVJpzb5gzYwyV5nxUmvNnRfxHIhxUl5FcZdapcztKH1j2cfq59Zs0R9yyqRyMAY+fSC+18ecvXYBZp8YbL66U5bi21pqRr1biwHl7rK2RovQJIYSQ+cTExtdtyI1VM6kUCkarZiRnFeo1se6tnEXF2cpTVpCHHbWFePzkYMqv0TfuxdOtw3jrjhrka5SyHJdWpcQlawpxoMOOiehmTAu1NRJCCCHziKEg2Y7QJ2QlMes0uZ3WCAjFWX8/EE488D0XUXG2gFsvKkfHqHvBoZqJ/OrVHjDG8LbLamU9risbi9Fl9+DMoBOMIasDNQkhhJBc9fotlXjf7oa0ticQQmYrXC7FWSgEDA9n+0hSQsXZAm7aWA4FQ0qrZ95ACL871IsbN5ShQuY+96uahEHe/zgzDFOeOud6/AkhhJBcsLO+EJ+6cV22D4OQFcWsV2PCEwTnPNuHsrBlHqdPZ/YLsBq1uHRNER4/OZT0N+Bjxwbg9IXw9ivqZD+u5lIDSoxauHwhCgMhhBBCCCFLxqLTIBCOwBvI4ZZBKs5WrtsuqkB3tIVQqkiE4xcvdWNTZQG21VpkPybGGK5sLAZAMfqEEEIIIWTpiPN1c7q1kYqzlevGDWVQKRgePyk9tfHF83Z02jx4+xV1GUtburJJKM4slNRICCGEEEKWiLgwkNOJjSYTUFBAxdlKZNFrcEVjMR4/OSi5tfHnL3Wj2KDFLZvLM3Zc4soZFWeEEEIIIWSpiFtqcnrlDFjWcfpUnCVw6+Zy9E9M4XifI+FjO21u7D9rw92X1kCrkic+P54SUx7effUa3LKZ4oEJIYQQQsjSMC+HtkaAirOV7IYNZdAoFZJaGx96+QI0SgXuukTe+Px4/v3m9bhmXWnGPw4hhBBCCCHA9Hxdcd5uzlrGxZkq2weQ6wry1bi62YqfHujGI0f6UGLUotSUh1JTHkpMWpQahf8X6jT4w9F+3HpReWzwJSGEEEIIIStFQb4ajAET3hzecwYA1dXA+DjgdgOG5TXrkIozCb5wWwsurjHD5vJjxOnDiNOHwxfGMer0IxCOzHrsv15Rn6WjJIQQQgghJHNUSgVMeerl0dYIAH19wPr12T2WJFFxJkF1oQ7v39M473bOORzeIEZcPow6/VApGTZWFmThCAkhhBBCCMk8i06d+ytnM+P0qThbPRhjsOg1sOg1WEfZHIQQQgghZIWz6DW5vefsG98Q2hqB6X1n+/YBhw8Dn/xk9o5LIgoEIYQQQgghhEhi0Wlyu61xxw7gQx8CGBOKs337gDe/Wbh9GaDijBBCCCGEECKJRaeBI5fbGvfsAR55RCjO/vpXoTB75BHh9mWAijNCCCGEEEKIJBadGuO53NYICIXYtdcCJ08C73vfsinMACrOCCGEEEIIIRJZ9BpMBcPwBcPZPpSF7dsHvPYa8PnPAz/4gfD3ZYKKM0IIIYQQQogkFp0GAHJ335m4x+yRR4AvflH4/5vfvGwKNCrOCCGEEEIIIZJYdGoAwIQnR/edHT48e4+ZuAft8OHsHpdEFKVPCCGEEEIIkcSiF1bOHLm6chYvLn/PnmWz74xWzgghhBBCCCGSiG2N47lanC1zVJwRQgghhBBCJIm1NeZynP4yRsUZIYQQQgghRBKzGAiS63H6yxQVZ4QQQgghhBBJNCoFDFpV7qY1LnMJizPGWDVjbB9jrI0xdoYx9uHo7XdG/x5hjG3P/KESQgghhBBCss2iV8NBbY0ZISWtMQTg45zzY4wxI4CjjLG9AE4D+CcAP8rkARJCCCGEEEJyh0WnwTi1NWZEwuKMcz4EYCj6ZxdjrA1AJed8LwAwxjJ7hIQQQgghhJCcYdZpcjdKf5lLas8ZY6wOwMUADmbkaAghhBBCCCE5rVCnpij9DJFcnDHGDAAeA/ARzrkziee9mzF2hDF2xGazpXKMhBBCCCGEkBxh1mng8NCes0yQVJwxxtQQCrOHOed/TOYDcM4f5Jxv55xvt1qtqRwjIYQQQgghJEcU6jVw+UMIhiPZPpQVR0paIwPwUwBtnPNvZ/6QCCGEEEIIIblqehA1tTbKTcrK2RUA7gFwDWPsePS/mxljb2SM9QO4DMDfGWNPZfRICSGEEEIIIVknDqKmOH35SUlrPABgoUjGP8l7OIQQQgghhJBcVqgXijOK05dfUmmNhBBCCCGEkNXNHG1rpDh9+VFxRgghhBBCCJFMXDmboLZG2VFxRgghhBBCCJHMoqO2xkyh4owQQgghhBAiWZ5aiTy1gtoaM4CKM0IIIYQQQkhSCnUajNMgatlRcUYIIYQQQghJilmnoZWzDKDijBBCCCGEEJKUQr2GhlBnABVnhBBCCCGEkKSYdWpKa8wAKs4IIYQQQgghSbHoaOUsE6g4I4QQQgghhCTFotdgciqIcIRn+1BWFCrOCCGEEEIIIUmx6NTgHJicotZGOVFxRgghhBBCCElKoV4YRE2tjfKi4owQQgghhBCSFLMuWpx5qDiTExVnhBBCCCGEkKRYdGoAoMRGmVFxRgghhBBCCEmKRUdtjZlAxRkhhBBCCCEkKRY9tTVmAhVnhBBCCCGEkKToNUpolApqa5QZFWeEEEIIIYSQpDDGYNapaeVMZlScEUIIIYQQQpJm0Wloz5nMqDgjhBBCCCGEJM2iV8NBbY2youKMEEIIIYQQkjSLToNxWjmTFRVnhBBCCCGEkKRZ9Bo4qDiTFRVnhBBCCCGEkKRZdGpMeIPgnGf7UFYMKs4IIYQQQgghSbPoNAhHOJy+ULYPZcWg4owQQgghhBCSNItOGERNrY3yoeKMEEIIIYQQkjSLXg0AGKdZZ7Kh4owQQgghhBCStOmVM4rTlwsVZ4QQQgghhJCkicUZrZzJJ2FxxhirZoztY4y1McbOMMY+HL29kDG2lzHWEf2/JfOHSwghhBBCCMkFYnE2QXvOZCNl5SwE4OOc8/UALgXwfsZYC4BPA3iWc94E4Nno3wkhhBBCCCGrgDFPBaWCUVujjBIWZ5zzIc75seifXQDaAFQCeD2Ah6IPewjAGzJ0jIQQQgghhJAco1AwmPPVGKeVM9kkteeMMVYH4GIABwGUcs6HAKGAA1CywHPezRg7whg7YrPZ0jxcQgghhBBCSK6w6DUUpS8jycUZY8wA4DEAH+GcO6U+j3P+IOd8O+d8u9VqTeUYCSGEEEIIITnIolNTIIiMJBVnjDE1hMLsYc75H6M3jzDGyqP3lwMYzcwhEkIIIYQQQnKRWaehPWcyUiV6AGOMAfgpgDbO+bdn3PVXAPcC+Fr0/39J5QCCwSD6+/vh8/lSeTohC8rLy0NVVRXUanW2D4UQQgghZEUq1Glwst+R7cNYMRIWZwCuAHAPgFOMsePR2/4dQlH2CGPsHQB6AdyZygH09/fDaDSirq4OQh1ISPo45xgbG0N/fz/q6+uzfTiEEEIIISuSWa/GhCcIzjmdy8sgYXHGOT8AYKF/6WvTPQCfz0eFGZEdYwxFRUWgEBpCCCGEkMwp1GkQCEfgDYSh10pZ9yGLSSqtMVOoMCOZQN9XhBBCCCGZJQ6iplAQeeREcZZtX/7yl7FhwwZs3rwZW7ZswcGDBwEA73znO9Ha2irLx6irq4Pdbl/0MV/5yleSft1f/OIX+MAHPjDrtp///OfYsmULtmzZAo1Gg02bNmHLli349Kdzc074d77zHXi93mwfBiGEEEIISZJZJ+ztp1AQeaz6tcdXXnkFjz/+OI4dOwatVgu73Y5AQKj8f/KTnyzpsXzlK1/Bv//7v6f9Om9/+9vx9re/HYBQFO7btw/FxcVpv26qOOfgnEOhiH8t4Dvf+Q7uvvtu6HQ6ya8ZCoWgUq36b19CCCGEkKwq1AsrZxM060wWq37lbGhoCMXFxdBqtQCA4uJiVFRUAAB2796NI0eOAAAMBgM+9alPYdu2bbjuuutw6NAh7N69G2vWrMFf//pXAPNXsW699Vbs379/3sd8wxvegG3btmHDhg148MEHAQCf/vSnMTU1hS1btuCuu+4CAPz617/Gzp07sWXLFrznPe9BOBwGIKyMNTc3Y9euXXjppZckf67f/OY3sWPHDmzevBlf+MIXAAAXLlzAunXr8M53vhMbN27EXXfdhWeeeQZXXHEFmpqacOjQIQDAAw88gHvuuQfXXHMNmpqa8OMf/zjh665fvx73338/tm7dir6+Przvfe/D9u3bsWHDhtjjvvvd72JwcBB79uzBnj17Yv/Woj/84Q+47777AAD33XcfPvaxj2HPnj341Kc+hc7OTtx4443Ytm0brrrqKrS3t0v+tyCEEEIIIekz66g4k1NOLT3859/OoHVQ8nxrSVoqTPjCbRsWvP+GG27AF7/4RTQ3N+O6667DW97yFuzatWve4zweD3bv3o2vf/3reOMb34jPfe5z2Lt3L1pbW3Hvvffi9ttvl3xMP/vZz1BYWIipqSns2LEDd9xxB772ta/he9/7Ho4fPw4AaGtrw+9//3u89NJLUKvVuP/++/Hwww/j+uuvxxe+8AUcPXoUBQUF2LNnDy6++OKEH/Ppp59GR0cHDh06BM45br/9drzwwguoqanB+fPn8eijj+LBBx/Ejh078Jvf/AYHDhzAX//6V3zlK1/Bn//8ZwDAyZMn8eqrr8Lj8eDiiy/GLbfcgtOnTy/4umfPnsXPf/5z/L//9/8ACO2jhYWFCIfDuPbaa3Hy5El86EMfwre//W3Jq3vnzp3DM888A6VSiWuvvRY//OEP0dTUhIMHD+L+++/Hc889J/nrQAghhBBC0hNbOaM9Z7LIqeIsGwwGA44ePYoXX3wR+/btw1ve8hZ87Wtfi63WiDQaDW688UYAwKZNm6DVaqFWq7Fp0yZcuHAhqY/53e9+F3/6058AAH19fejo6EBRUdGsxzz77LM4evQoduzYAQCYmppCSUkJDh48iN27d8NqtQIA3vKWt+DcuXMJP+bTTz+Np59+OlbIud1udHR0oKamBvX19di0aRMAYMOGDbj22mvBGJv3ub3+9a9Hfn4+8vPzsWfPHhw6dAgHDhxY8HVra2tx6aWXxp7/yCOP4MEHH0QoFMLQ0BBaW1uxefPmpP7t7rzzTiiVSrjdbrz88su4887pCQ5+vz+p1yKEEEIIIekpyFeDMWCc9pzJIqeKs8VWuDJJqVRi9+7d2L17NzZt2oSHHnpoXnGmVqtj6X8KhSLWBqlQKBAKhQAAKpUKkUgk9px4g7X379+PZ555Bq+88gp0Oh12794d93Gcc9x777346le/Ouv2P//5zymlEHLO8ZnPfAbvec97Zt1+4cKF2Oey2OcGzE8/ZIwt+rp6vT729+7ubnzrW9/C4cOHYbFYcN999y04eHzmx5n7GPE1I5EIzGZzbKWREEIIIYQsPaWCwZSnhoPaGmWx6vecnT17Fh0dHbG/Hz9+HLW1tSm9Vl1dHY4fP45IJIK+vr7Yfq2ZJicnYbFYoNPp0N7ejldffTV2n1qtRjAoXHW49tpr8Yc//AGjo6MAgPHxcfT09OCSSy7B/v37MTY2hmAwiEcffVTSsb3uda/Dz372M7jdbgDAwMBA7LWl+stf/gKfz4exsTHs378fO3bskPy6TqcTer0eBQUFGBkZwZNPPhm7z2g0wuVyxf5eWlqKtrY2RCKR2ArjXCaTCfX19bHPn3OOEydOJPX5EEIIIYSQ9BXqNZiglTNZ5NTKWTa43W588IMfhMPhgEqlQmNjYyykI1lXXHFFrEVw48aN2Lp167zH3HjjjfjhD3+IzZs3Y+3atbPa/t797ndj8+bN2Lp1Kx5++GF86Utfwg033IBIJAK1Wo3vf//7uPTSS/HAAw/gsssuQ3l5ObZu3RoLClnMDTfcgLa2Nlx22WUAhHbOX//611AqlZI/v507d+KWW25Bb28vPv/5z6OiogIVFRWSXveiiy7CxRdfjA0bNmDNmjW44oorZn3eN910E8rLy7Fv3z587Wtfw6233orq6mps3LgxVvjN9fDDD+N973sfvvSlLyEYDOKtb30rLrroIsmfDyGEEEIISZ9Zp6Y9ZzJhnPMl+2Dbt2/nYvqhqK2tDevXr1+yYyCpeeCBB2AwGPCJT3wi24eSFPr+IoQQQgjJrHf84jCGnT78/UNXZftQlgXG2FHO+fZ49636tkZCCCGEEEJI6sw6Da2cyWTVtzUSaR544IFsHwIhhBBCCMlBhXo1xjwBOH1BmPLU2T6cZY1WzgghhBBCCCEpu3FjGcIRjvf9+igCoUjiJ5AFUXFGCCGEEEIISdm22kJ87Y7NeOn8GP79T6ewlJkWKw21NRJCCCGEEELS8qZtVegb9/7/9u4/uKryzuP4+0sEg2BpYoMrm6KJayophFtIEJAfQhyhdUBh+VHokFiCbTrjMM4WButu+eHOzqw/dlUyLpHJguA4ostugc4iIyIkIFBix1SiIj9qQIYYMBBqxVUCz/5xT0IS783vcM8Jn9fMmXvvc855znPOJ5nnPvfccy7P7zjCwMQbWJh9R6ybFEganImIiIiISIc9eu8dfHruAv++/TDJCb2ZPiw51k0KHH2tEYiLiyMUCjF48GBmzpzJhQsX2l3XQw89xMaNGwFYsGABH374YdRld+3axd69e+tfFxYWsn79+nZvu05FRQWDBw9uVLZ8+XKeeeaZNtXTWe0RERERke7PzPjX6RmMSr2JJf/9PnuPfR7rJgVOsAZnTz0FO3c2Ltu5M1zeAb1796asrIzy8nJ69epFYWFho/mt+ZHnSIqKikhPT486v+ngLD8/n5ycnHZtq7PV1tb6qj0iIiIi4n+9rutB4bzh3HZTH3758h85UvVFrJsUKMEanGVlwaxZVwZoO3eGX2dlddomxo4dy9GjR9m1axcTJkxg7ty5DBkyhEuXLrF48WKysrLIyMjgxRdfBMA5xyOPPEJ6ejr3338/p0+frq/rnnvuoe5Ht7dt28awYcMYOnQo2dnZVFRUUFhYyLPPPksoFGL37t2Nzm6VlZUxcuRIMjIymDZtGufOnauvc8mSJYwYMYK0tDR2797d5n1sru7HH3+c8ePH8/zzz9e359SpU4RCofopLi6O48ePc/z4cbKzs8nIyCA7O5sTJ04A4bOHCxcuZPTo0aSmptafSRQRERGR7q9f756s/XkW8T3jeGhtKae/+L9YNykw/HXN2aOPQllZ88sMGACTJsEtt0BlJQwaBCtWhKdIQiF47rlWbb62tpY33niDyZMnA3DgwAHKy8tJSUlh9erV9OvXj9LSUr7++mvuvvtu7rvvPt577z0+/vhjDh48SFVVFenp6cyfP79RvWfOnOHhhx+mpKSElJQUzp49S2JiIvn5+fTt25dFixYBsGPHjvp1cnJyKCgoYPz48SxdupQVK1bwnLcftbW1HDhwgK1bt7JixQreeuutb+3LsWPHCIVC9a8/++yz+u00V3dNTQ3FxcXAld82GzBgAGVeLi+88ALFxcXceuutTJkyhZycHHJzc1mzZg0LFy5k06ZNAFRWVrJnzx4OHTrE1KlTmTFjRqsyEBEREZHgS064gf/MzWT2i/vJe+ldXvvlSG7o5a+hhx8F68wZQEJCeGB24kT4MSGhw1V+9dVXhEIhMjMzGThwIHl5eQCMGDGClJQUAN58803Wr19PKBTirrvuorq6miNHjlBSUsKcOXOIi4tjwIABTJw48Vv179+/n3HjxtXXlZiY2Gx7zp8/T01NDePHjwcgNzeXkpKS+vnTp08HYPjw4VRUVESs4/bbb6esrKx+ys/Pb1Xds2fPjtqud955h6KiItasWQPAvn37mDt3LgDz5s1jz5499cs++OCD9OjRg/T0dKqqqprdXxERERHpfjKSv0vBnB/xwanzLHz1PS5d1i32W+Kv4WtrznDVfZXxt7+FVatg2TKYMKFDm6275qypPn361D93zlFQUMCkSZMaLbN161bMrNn6nXMtLtMW119/PRC+kUltbW2n1QuN97mhyspK8vLy2LJlC3379o24TMN9rGsjoN+6EBEREblG3Zt+M8un/pClmz/gid9/wPKpP+zU98XdTbDOnNUNzF5/HZ54IvzY8Bq0LjRp0iRWrVrFxYsXATh8+DBffvkl48aNY8OGDVy6dInKykp2RmjLqFGjKC4u5pNPPgHg7NmzANx444188cW3L5Ls168fCQkJ9deTvfzyy/VnujqqPXVfvHiRWbNm8eSTT5KWllZfPnr0aDZs2ADAK6+8wpgxYzqljSIiIiLSfeSMuo2Hx6awbt9xyj6tiXVzfM1fZ85aUloaHpDVnSmbMCH8urS0w2fPWrJgwQIqKioYNmwYzjmSkpLYtGkT06ZN4+2332bIkCGkpaVFHOgkJSWxevVqpk+fzuXLl+nfvz/bt29nypQpzJgxg82bN1NQUNBonXXr1pGfn8+FCxdITU1l7dq1nbYvba177969lJaWsmzZMpYtWwaEzxiuXLmS+fPn8/TTT5OUlNSpbRQRERGR7uM3Px7ExDtv5kcDO35JUndmV/MrZ5mZma7u7oV1PvroIwYNGnTV2iDXFv19iYiIiIifmNkfnXOZkeYF62uNIiIiIiIi3ZQGZyIiIiIiIj7Q4uDMzNaY2WkzK29QNtTM9pnZQTP7vZl9p2ubKSIiIiIi0r215szZS8DkJmVFwGPOuSHA74DFHWmEbrUuXUF/VyIiIiISJC0OzpxzJcDZJsU/AOp+uXg78PftbUB8fDzV1dV6Iy2dyjlHdXU18fHxsW6KiIiIiEirtPdW+uXAVGAzMBP4fnsbkJyczMmTJzlz5kx7qxCJKD4+nuTk5Fg3Q0RERESkVdo7OJsPrDSzpcAW4JtoC5rZL4BfAAwcOPBb83v27ElKSko7myEiIiIiItI9tOtujc65Q865+5xzw4FXgWPNLLvaOZfpnMtMSkpqbztFRERERES6tXYNzsysv/fYA/gnoLAzGyUiIiIiInKtac2t9F8F9gE/MLOTZpYHzDGzw8Ah4BSwtmubKSIiIiIi0r3Z1bxLopmdAY5ftQ223veAz2PdCGkz5RZMyi2YlFswKbdgUm7BpNyCKRa53eqci3i911UdnPmVmb3rnMuMdTukbZRbMCm3YFJuwaTcgkm5BZNyCya/5daua85ERERERESkc2lwJiIiIiIi4gManIWtjnUDpF2UWzApt2BSbsGk3IJJuQWTcgsmX+Wma85ERERERER8QGfOREREREREfCBQgzMzm2xmH5vZUTN7rEH5a2ZW5k0VZlYWZf1EM9tuZke8xwSv/GcN1i8zs8tmFoqw/ive9svNbI2Z9fTKzcxWeu1638yGdc0RCC4fZ3enme0zs6/NbFHX7H1w+Ti3n3n/a++b2V4zG9o1RyCYfJzbA15mZWb2rpmN6ZojEExdmFtPM1tnZgfN7CMz+02U9VPM7A/e+q+ZWS+vXH1cM3ycm/q3Zvg4N/VvzfBxbp3XvznnAjEBccAxIBXoBfwJSI+w3L8BS6PU8RTwmPf8MeDJCMsMAf4cZf2fAOZNrwK/alD+hlc+EvhDrI+XnyafZ9cfyAL+BVgU62Plp8nnuY0GErznP9b/XGBy68uVr9NnAIdifbz8MnVlbsBcYIP3/AagArgtwvqvAz/1nheqjwt8burfgpmb+rdg5tZp/VuQzpyNAI465/7snPsG2AA80HABMzNgFuE3A5E8AKzznq8DHoywzJxo6zvntjoPcABIblDvem/WfuC7ZnZLq/es+/Ntds650865UuBim/bo2uDn3PY65855i+3nyv+i+Du3v3plAH0AXfR8RVfm5oA+ZnYd0Bv4BvhLhLonAhsjrK8+Ljrf5qb+rVl+zk39W3R+zq3T+rcgDc7+Fvi0weuTXllDY4Eq59yRKHXc7JyrBPAe+0dYZjbRAwXCpz6BecC2NrTtWubn7CS6oOSWR/hTfQnzdW5mNs3MDgH/C8xvbv1rTFfmthH4EqgETgDPOOfONln3JqDGOVcbYfvq46Lzc24SXVByU//WmK9z66z+LUiDM4tQ1nRUGvWT3FZtwOwu4IJzrryFRf8DKHHO7W5D265lfs5OovN9bmY2gXDntaS9beiGfJ2bc+53zrk7CX/a+M/tbUM31JW5jQAuAQOAFODXZpbahu2rj4vOz7lJdL7PTf1bRL7OrbP6tyANzk4C32/wOhk4VffCOw05HXitQdla78K8rV5RVd1XMbzH00228VNa/iR4GZAE/ENr2ya+zk6i83VuZpYBFAEPOOeq27Bf3Z2vc6vjnCsBbjez77Vmp64BXZnbXGCbc+6ic+408A6Q2WT7nxP+uuJ1EbavPi46P+cm0fk6N/VvUfk6tzod7d+CNDgrBe7w7pLSi/Cbgy0N5t9L+OK7k3UFzrmfO+dCzrmfeEVbgFzveS6wuW5ZM+sBzCT8/dWIzGwBMAmY45y73GDWFiDHwkYC5+tOmQrg7+wkOt/mZmYDgf8B5jnnDndgH7sjP+f2d9539rHwHf96AXrjEdaVuZ0AJnp9VB/CN/U41HDj3rUSO4EZEdZXHxedn3OT6Hybm/q3Zvk5t87r35wP7r7S2onwHaMOE75Tyz82mfcSkN/C+jcBO4Aj3mNig3n3APtbWL/W23aZNy31yg14wZt3EMiM9bHy2+Tj7P6G8CcxfwFqvOffifXx8svk49yKgHMNyt+N9bHy0+Tj3JYAH3hl+4AxsT5Wfpq6KjfCdxH7L+/YfwgsjrJ+KuEbuBz1lr/eK1cfF8zc1L8FMzf1b8HMrdP6t7pbPoqIiIiIiEgMBelrjSIiIiIiIt2WBmciIiIiIiI+oMGZiIiIiIiID2hwJiIiIiIi4gManImIiIiIiPiABmciIiIiIiI+oMGZiIiIiIiID2hwJiIiIiIi4gP/D95H9Nno2torAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACHU0lEQVR4nO3dd3hb1fkH8O+RvPfe27FjJ7HjJM4mw0lIwiqU3VIgbCgFWigFuqD9tYXSDR3sTSl7lDLCcBbZw1m2M+3Ee0se8tA4vz+u5DiObEuyZMnO9/M8fmJfXV0d6TqW3nve875CSgkiIiIiIiJyL5W7B0BEREREREQMzoiIiIiIiDwCgzMiIiIiIiIPwOCMiIiIiIjIAzA4IyIiIiIi8gAMzoiIiIiIiDwAgzMiIiIiIiIPwOCMiGicEkJ0DvgyCSG6B/x8jbvH5wghRKUQYoW7xzEcIcQ6IcTNLjp2thDiQyFEkxCiVQjxuRBi8hD7fi2EkEIIrwHbIoQQ7wshuoQQJ4QQ3x10n+VCiHIhhE4IUSyESB1wmxBC/F4I0WL+elwIIVzxPImIyDoGZ0RE45SUMsjyBeAkgIsGbHvd3eMbbGAQMZ4fw8XCAHwEYDKAWADbAXw4eCdz8G3tuf4DQJ/5vtcA+JcQYqr5PlEA3gPwCwARAHYCeHPAfW8FcAmA6QDyAVwI4LbRPyUiIrIVgzMioglGCKESQjwohDhmngF5SwgRYb4tzTzbcoMQokoI0SaEuF0IMVsIsU8IoRFC/H3AsdYIIb4RQjwphNCaZ12WD7g9VAjxvBCiTghRI4T4jRBCPei+fxFCtAJ4RAiRaZ7xaRFCNAshXhdChJn3fxVACoD/mmf/fiKEWCqEqB70/Ppn14QQjwgh3hFCvCaEaAewZoQxTRJCrDc/l2YhxMDgZOBj+JmP2WJ+TXYIIWKFEL8FsAjA381j/Lt5/xwhxBfm2a5DQogrBxzrJSHEU+bbO8yPn2rtcaWU26WUz0spW6WUegB/ATBZCBE58DUH8DCAnwwacyCAywD8QkrZKaXcBCXQu9a8y6UADkop35ZS9gB4BMB0IUSO+fbrAfxJSlktpawB8CcAa6yNk4iIXIPBGRHRxHM3lBmQJQASALRBmVEZaC6ALABXAfgrgJ8BWAFgKoArhRBLBu17HEAUlKDgPUuwB+BlAAYAkwDMALASwM1W7hsD4LcABIBHzePKBZAMJUiAlPJanD4D+LiNz/diAO9AmXV6fYQx/R+AtQDCASQBeHKIY14PINQ8vkgAtwPollL+DMBGAD8wj/EH5qDoCwD/Nj/P7wD4p2XGyuwa82NHASgxj9MWiwHUSylbBmz7HYB/AagftG82AKOU8vCAbXuhnFOY/91ruUFK2QXg2FC3D7ovERGNAQZnREQTz20AfmaeAemFEvxcPijl7/+klD1SyrUAugC8IaVsNM+YbIQS1Fg0AvirlFIvpXwTwCEAFwghYgGcB+CHUsouKWUjlJmeqwfct1ZK+aSU0iCl7JZSHpVSfiGl7JVSNgH4M5QgcjS2SCk/kFKaAISMMCY9gFQACebnv2mIY+qhBGWTpJRGKeUuKWX7EPteCKBSSvmi+XnuBvAugMsH7PM/KeUG8/n4GYD5Qojk4Z6UECIJSlB974BthQAWwnpQGQRAO2ibFkCwg7drAQRx3RkR0dgZ77n5RER0plQA7wshTAO2GaGsQ7JoGPB9t5Wfgwb8XCOllAN+PgFl5isVgDeAugGf31UAqgbsO/B7CCFiADwBJTUw2Lx/m03PamgDH2OkMf0EygzWdiFEG5Q0vhesHPNVKLNm/zGnXb4GJeDVW9k3FcBcIYRmwDYv8zHOGKOUstOc5pkwaOz9hBDRUGb4/imlfMO8TQXgnwDukVIarMRMnVCC04FCAHQ4eHsIgM5B556IiFyIM2dERBNPFYDzpJRhA778zLNijkgcNHuSAqDW/Di9AKIGPE6IlHJgKtzgD/aPmrflSylDAHwPSqrjUPt3AQiw/GBeOxY9aJ+B9xl2TFLKeinlLVLKBCgzjP8UQkwa/ITNs4S/klJOAbAAyuzYdUOMsQrA+kGvd5CU8o4B+/TPkgkhgqAU5Kgd/Ljm28OhBGYfSSl/O+CmEACFAN4UQtQD2GHeXi2EWATgMAAvIUTWgPtMB3DQ/P1B88+WxwkEkDnU7YPuS0REY4DBGRHRxPMUgN9aik4IIaKFEBeP4ngxAO4WQngLIa6AslbsEyllHZQg4k9CiBBzIZLMQevVBguGMkOjEUIkArh/0O0NADIG/HwYgJ8Q4gIhhDeAnwPwHergI41JCHGFOV0QUGbsJJRZxdMIIYqEEHnmYLAdSpqjZb/BY/wYQLYQ4lrza+QtlAIruQP2OV8IcY4QwgfKzN02KeUZs2ZCiBAAnwP4Rkr54KCbtVBm2wrMX+ebt88yH68LSjXGXwshAoUQC6Gsx7PM4L0PYJoQ4jIhhB+AXwLYJ6UsN9/+CoB7hRCJQogEAPcBeGnwGImIyHUYnBERTTx/g1Klb60QogPAViiFORy1DUrxkGYoRT0uH1Cg4joAPgBKoQQ77wCIH+ZYvwIwE0qg8T8owcRAjwL4ublC4o+llFoA3wfwHIAaKDNp1RjecGOaDWCbEKITymt0j5Sywsox4sz3awdQBmA9lNRGQHl9LxdKpcsnpJQdUIqOXA1lNqwewO9xehD5byjFVFqhBFND9aH7tnmMN4jT+9ilSEW95QtAk/k+DVLKPvP33wfgD2Wd4BsA7pBSHgQA8xq/y6CcwzYovxMD1wc+DeC/APYDOADl/Dw9xDiJiMgFBFPJiYhoKEKINQBullKe4+6xjFdCiJcAVEspf+7usRARkWfjzBkREREREZEHYHBGRERERETkAZjWSERERERE5AE4c0ZEREREROQBGJwRERERERF5AK+xfLCoqCiZlpY2lg9JRERERETkMXbt2tUspYy2dtuYBmdpaWnYuXPnWD4kERERERGRxxBCnBjqNqY1EhEREREReQAGZ0RERERERB5gxOBMCOEnhNguhNgrhDgohPiVeXuEEOILIcQR87/hrh8uERERERHRxGTLmrNeAMuklJ1CCG8Am4QQnwK4FMBXUsrHhBAPAngQwAP2DkCv16O6uho9PT323pVoWH5+fkhKSoK3t7e7h0JERERENKIRgzOpdKnuNP/obf6SAC4GsNS8/WUA6+BAcFZdXY3g4GCkpaVBCGHv3YmsklKipaUF1dXVSE9Pd/dwiIiIiIhGZNOaMyGEWghRAqARwBdSym0AYqWUdQBg/jfGkQH09PQgMjKSgRk5lRACkZGRnJElIiIionHDpuBMSmmUUhYASAIwRwgxzdYHEELcKoTYKYTY2dTUNNQ+th6OyGb8vSIiIiKi8cSuao1SSg2U9MXVABqEEPEAYP63cYj7PCOlLJRSFkZHW+215na//e1vMXXqVOTn56OgoADbtm0DANx8880oLS11ymOkpaWhubl52H1+97vf2X3cl156CT/4wQ9O2/biiy+ioKAABQUF8PHxQV5eHgoKCvDggw/affyx8Ne//hU6nc7dwyAiIiIicqsR15wJIaIB6KWUGiGEP4AVAH4P4CMA1wN4zPzvh64cqKts2bIFH3/8MXbv3g1fX180Nzejr68PAPDcc8+N6Vh+97vf4ac//emoj3PDDTfghhtuAKAEhcXFxYiKihr1cR0lpYSUEiqV9WsBf/3rX/G9730PAQEBNh/TYDDAy2tMe6gTEREREbmULTNn8QCKhRD7AOyAsubsYyhB2blCiCMAzjX/PO7U1dUhKioKvr6+AICoqCgkJCQAAJYuXYqdO3cCAIKCgvDAAw9g1qxZWLFiBbZv346lS5ciIyMDH330EYAzZ7EuvPBCrFu37ozHvOSSSzBr1ixMnToVzzzzDADgwQcfRHd3NwoKCnDNNdcAAF577TXMmTMHBQUFuO2222A0GgEoM2PZ2dlYsmQJvvnmG5uf6x/+8AfMnj0b+fn5ePjhhwEAlZWVyMnJwc0334xp06bhmmuuwZdffomFCxciKysL27dvBwA88sgjuPbaa7Fs2TJkZWXh2WefHfG4ubm5+P73v4+ZM2eiqqoKd9xxBwoLCzF16tT+/Z544gnU1taiqKgIRUVF/a+1xTvvvIM1a9YAANasWYN7770XRUVFeOCBB3Ds2DGsXr0as2bNwqJFi1BeXm7za0FEREREY+vVrSdwtLHD3cPwbJZZjbH4mjVrlhystLT0jG1jqaOjQ06fPl1mZWXJO+64Q65bt67/tiVLlsgdO3ZIKaUEID/55BMppZSXXHKJPPfcc2VfX58sKSmR06dPl1JK+eKLL8o777yz//4XXHCBLC4ullJKmZqaKpuamqSUUra0tEgppdTpdHLq1KmyublZSillYGBg/31LS0vlhRdeKPv6+qSUUt5xxx3y5ZdflrW1tTI5OVk2NjbK3t5euWDBgtMeczDL437++efylltukSaTSRqNRnnBBRfI9evXy4qKCqlWq+W+ffuk0WiUM2fOlDfccIM0mUzygw8+kBdffLGUUsqHH35Y5ufnS51OJ5uammRSUpKsqakZ9rhCCLlly5b+sViet8FgkEuWLJF79+4947UZ/Dq8/fbb8vrrr5dSSnn99dfLCy64QBoMBimllMuWLZOHDx+WUkq5detWWVRUdMbzd/fvFxERERFJWavRydQHPpb/KD7i7qG4HYCdcoh4yaPywn7134MorW136jGnJITg4YumDnl7UFAQdu3ahY0bN6K4uBhXXXUVHnvssf7ZGgsfHx+sXr0aAJCXlwdfX194e3sjLy8PlZWVdo3piSeewPvvvw8AqKqqwpEjRxAZGXnaPl999RV27dqF2bNnAwC6u7sRExODbdu2YenSpbCs37vqqqtw+PDhER9z7dq1WLt2LWbMmAEA6OzsxJEjR5CSkoL09HTk5eUBAKZOnYrly5dDCHHGc7v44ovh7+8Pf39/FBUVYfv27di0adOQx01NTcW8efP67//WW2/hmWeegcFgQF1dHUpLS5Gfn2/Xa3fFFVdArVajs7MTmzdvxhVXXNF/W29vr13HIiIiIqKx8WVpAwBg5ZQ4N4/Es3lUcOYuarUaS5cuxdKlS5GXl4eXX375jODM29u7v/qfSqXqT4NUqVQwGAwAAC8vL5hMpv77WCvjvm7dOnz55ZfYsmULAgICsHTpUqv7SSlx/fXX49FHHz1t+wcffOBQFUIpJR566CHcdtttp22vrKzsfy7DPTfgzOqHQohhjxsYGNj/c0VFBf74xz9ix44dCA8Px5o1a4Yscz/wcQbvYzmmyWRCWFgYSkpKRnrqRERERORma0sbkBEdiEkxQSPvfBbzqOBsuBkuVzl06BBUKhWysrIAACUlJUhNTXXoWGlpafjnP/8Jk8mEmpqa/vVaA2m1WoSHhyMgIADl5eXYunVr/23e3t7Q6/Xw9vbG8uXLcfHFF+NHP/oRYmJi0Nraio6ODsydOxf33HMPWlpaEBISgrfffhvTp08fcWyrVq3CL37xC1xzzTUICgpCTU0NvL297Xp+H374IR566CF0dXVh3bp1eOyxx+Dv72/Tcdvb2xEYGIjQ0FA0NDTg008/xdKlSwEAwcHB6Ojo6C9aEhsbi7KyMkyePBnvv/8+goODzzheSEgI0tPT8fbbb+OKK66AlBL79u2z6bUgIiIiorGj7dZjy7EW3Lwow91D8XgeFZy5Q2dnJ+666y5oNBp4eXlh0qRJ/UU67LVw4cL+FMFp06Zh5syZZ+yzevVqPPXUU8jPz8fkyZNPS/u79dZbkZ+fj5kzZ+L111/Hb37zG6xcuRImkwne3t74xz/+gXnz5uGRRx7B/PnzER8fj5kzZ/YXChnOypUrUVZWhvnz5wNQ0jlfe+01qNVqm5/fnDlzcMEFF+DkyZP4xS9+gYSEBCQkJNh03OnTp2PGjBmYOnUqMjIysHDhwtOe93nnnYf4+HgUFxfjsccew4UXXojk5GRMmzYNnZ2dVsfz+uuv44477sBvfvMb6PV6XH311QzOiIiIiDzMukONMJgkVk6NdfdQPJ5Q1qSNjcLCQmmpfmhRVlaG3NzcMRsDOeaRRx5BUFAQfvzjH7t7KHbh7xcRERGRe935+m5sr2zFtoeWQ6Wyf3nORCOE2CWlLLR2m11NqImIiIiIiGzVozdi3aFGrMiNZWBmg7M+rZFs88gjj7h7CEREREQ0zmw51oKuPiNTGm3EmTMiIiIiInKJtaUNCPRRY0Fm5Mg7E4MzIiIiIiJyPpNJ4ovSBizNiYGvl+1F6M5mDM6IiIiIiMjp9lRp0NzZi5VTmNJoKwZnRERERETkdGtL6+GtFijKiXH3UMYNBmcA1Go1CgoKMG3aNFxxxRXQ6XQOH2vNmjV45513AAA333wzSktLh9x33bp12Lx5c//PTz31FF555RWHH9uisrIS06ZNO23bI488gj/+8Y92HcdZ4yEiIiKis4uUEmsPNmBeRiRC/LzdPZxxg9UaAfj7+6OkpAQAcM011+Cpp57Cvffe23+70Wi0q1mzxXPPPTfs7evWrUNQUBAWLFgAALj99tvtfgxXMRgMHjUeIiIiIho/jjV1oqK5CzcuTHP3UMaV8TVz9vjjQHHx6duKi5XtTrJo0SIcPXoU69atQ1FREb773e8iLy8PRqMR999/P2bPno38/Hw8/fTTAJSrAj/4wQ8wZcoUXHDBBWhsbOw/1tKlS2Fpuv3ZZ59h5syZmD59OpYvX47Kyko89dRT+Mtf/oKCggJs3LjxtNmtkpISzJs3D/n5+fj2t7+Ntra2/mM+8MADmDNnDrKzs7Fx40a7n+Nwx/7pT3+KJUuW4G9/+1v/eGpra1FQUND/pVarceLECZw4cQLLly9Hfn4+li9fjpMnTwJQZg/vvvtuLFiwABkZGf0ziURERER0dvj8YAMAYAXXm9llfAVns2cDV155KkArLlZ+nj3bKYc3GAz49NNPkZeXBwDYvn07fvvb36K0tBTPP/88QkNDsWPHDuzYsQPPPvssKioq8P777+PQoUPYv38/nn322dPSFC2amppwyy234N1338XevXvx9ttvIy0tDbfffjt+9KMfoaSkBIsWLTrtPtdddx1+//vfY9++fcjLy8OvfvWr08a5fft2/PWvfz1t+0DHjh07LaB66qmnbDq2RqPB+vXrcd999/VvS0hIQElJCUpKSnDLLbfgsssuQ2pqKn7wgx/guuuuw759+3DNNdfg7rvv7r9PXV0dNm3ahI8//hgPPvignWeCiIiIiMaztaUNmJ4UivhQf3cPZVzxrLTGH/4QMKcXDikhAVi1CoiPB+rqgNxc4Fe/Ur6sKSgA/vrXYQ/Z3d2NgoICAMrM2U033YTNmzdjzpw5SE9PBwCsXbsW+/bt658F0mq1OHLkCDZs2IDvfOc7UKvVSEhIwLJly844/tatW7F48eL+Y0VERAw7Hq1WC41GgyVLlgAArr/+elxxxRX9t1966aUAgFmzZqGystLqMTIzM/tTNYFTTaRHOvZVV1015Li++eYbPPfcc/2zdVu2bMF7770HALj22mvxk5/8pH/fSy65BCqVClOmTEFDQ8Owz5eIiIiIJo6G9h7srdLg/lWT3T2UccezgjNbhIcrgdnJk0BKivLzKA1cczZQYGBg//dSSjz55JNYtWrVaft88sknEEIMe3wp5Yj72MPX1xeAUsjEYDA47bjA6c95oLq6Otx000346KOPEBQUZHWfgc/RMkZAef5EREREdHb4olS5MM8S+vbzrOBshBkuAKdSGX/xC+Bf/wIefhgoKnL50FatWoV//etfWLZsGby9vXH48GEkJiZi8eLFePrpp3HdddehsbERxcXF+O53v3vafefPn48777wTFRUVSE9PR2trKyIiIhAcHIz29vYzHis0NBTh4eHYuHEjFi1ahFdffbV/pmu0HDm2Xq/HlVdeid///vfIzs7u375gwQL85z//wbXXXovXX38d55xzjlPGSERERETj19rSBqRHBWJSjPUL+jQ0zwrORmIJzN56SwnIiopO/9mFbr75ZlRWVmLmzJmQUiI6OhoffPABvv3tb+Prr79GXl4esrOzrQY60dHReOaZZ3DppZfCZDIhJiYGX3zxBS666CJcfvnl+PDDD/Hkk0+edp+XX34Zt99+O3Q6HTIyMvDiiy867bnYe+zNmzdjx44dePjhh/Hwww8DUGYMn3jiCdx44434wx/+gOjoaKeOkYiIiIjGn/YePbYca8YNC9Odmjl2thBjmXJWWFgoLdULLcrKypCbm2vbAR5/XCn+MTAQKy4GduwABqx3IrKw6/eLiIiIiEblo721uPuNPXjn9vkoTBu+zsLZSgixS0pZaO228TVzZi0As8ygERERERGRW609WI+oIB/MSBl9XYiz0fgqpU9ERERERB6p12DEukNNWJEbC7WKKY2OYHBGRERERESjtuVYCzp7DVg5lVUaHeURwRlLrZMr8PeKiIiIaOysLW1AgI8aCzKj3D2UccvtwZmfnx9aWlr4QZqcSkqJlpYW+Pn5uXsoRERERBOeySTxRWkDlk6Ohp+32t3DGbfcXhAkKSkJ1dXVaGpqcvdQaILx8/NDUlKSu4dBRERENOHtrdagqaMX57Lx9Ki4PTjz9vZGenq6u4dBREREREQOWlvaALVKYNlkBmej4fa0RiIiIiIiGt/WHqzHvIwIhAZ4u3so4xqDMyIiIiIiclhLZy+ONXVhSXa0u4cy7jE4IyIiIiIih7Xp+gAAsSEsxDZaDM6IiIiIiMhhGp0eABAW4OPmkYx/DM6IiIiIiMhh2m5zcObP9WajxeCMiIiIiIgcZpk5C2VwNmoMzoiIiIiIyGH9M2es1DhqDM6IiIiIiMhhGnNwFuzH4Gy0GJwREREREZHDtLo+hPh5Qa0S7h7KuDdicCaESBZCFAshyoQQB4UQ95i3FwghtgohSoQQO4UQc1w/XCIiIiIi8iTabj2bTzuJlw37GADcJ6XcLYQIBrBLCPEFgMcB/EpK+akQ4nzzz0tdN1QiIiIiIvI0mm49wvxZRt8ZRgzOpJR1AOrM33cIIcoAJAKQAELMu4UCqHXVIImIiIiIyDNpu/UsBuIktsyc9RNCpAGYAWAbgB8C+FwI8Uco6ZELnD04IiIiIiLybFqdHglh/u4exoRgc0EQIUQQgHcB/FBK2Q7gDgA/klImA/gRgOeHuN+t5jVpO5uampwxZiIiIiIi8hBKWiNnzpzBpuBMCOENJTB7XUr5nnnz9QAs378NwGpBECnlM1LKQillYXR09GjHS0REREREHkJKqRQEYXDmFLZUaxRQZsXKpJR/HnBTLYAl5u+XATji/OEREREREZGn6uw1wGiSXHPmJLasOVsI4FoA+4UQJeZtPwVwC4C/CSG8APQAuNUlIyQiIiIiIo+kNTegZrVG57ClWuMmAEN1lJvl3OEQEREREdF4odEpwVkI0xqdwuaCIERERERERAO1W2bOmNboFAzOiIiIiIjIIRpzcMaCIM7B4IyIiIiIiBxiSWvkzJlzMDgjIiIiIiKHsCCIczE4IyIiIiIih2i6++CjVsHPm2GFM/BVJCIiIiIih7R36xEa4A2lNTKNFoMzIiIiIiJyiEanZzEQJ2JwRkREREREDtHo9AhjcOY0DM6IiIiIiMgh2m49KzU6EYMzIiIiIiJyiLZbjxDOnDkNgzMiIiIiInKItlvPMvpOxOCMiIiIiIjspjea0NlrYEEQJ2JwRkREREREdmu3NKDmmjOnYXBGRERERER205iDM86cOQ+DMyIiIiIisptGZw7OOHPmNAzOiIiIiIjIbv1pjZw5cxoGZ0REREREZDdNdx8ApjU6E4MzIiIiIiKym1ZnKQjCUvrOwuCMiIiIiIjsZikIEuLn5eaRTBwMzoiIiIiIyG4anR7Bvl7wUjOkcBa+kkREREREZLf2bj0rNToZgzMiIiIiIrKbplvPYiBOxuCMiIiIiIjspu3WI4wzZ07F4IyIiIiIiOym0fVx5szJGJwREREREZHdtN0GhPqzjL4zMTgjIiIiIiK7SCmh7e5jWqOTMTgjIiIiIiK76PqM0Bsl0xqdjMEZERERERHZRWtuQB3G4MypGJwREREREZFdNDolOOPMmXMxOCMiIiIiIrtYZs7YhNq5GJwREREREZFdtN19ADhz5mwMzoiIiIiIyC6WtMawAJbSdyYGZ0REREREZBcWBHENBmdERERERGQXTbceXiqBAB+1u4cyoTA4IyIiIiIiu2i79QgL8IYQwt1DmVAYnBERERERkV20Oj1CmNLodCMGZ0KIZCFEsRCiTAhxUAhxz4Db7hJCHDJvf9y1QyUiIiIiIk+g6e7jejMX8LJhHwOA+6SUu4UQwQB2CSG+ABAL4GIA+VLKXiFEjCsHSu7Rozdi14k2LMiM5LQ1EREREQFQ0hpjgv3cPYwJZ8SZMyllnZRyt/n7DgBlABIB3AHgMSllr/m2RlcOlMbesaZOXPKPb3DNc9uw7nCTu4dDRERERB5Co9Ozx5kL2LXmTAiRBmAGgG0AsgEsEkJsE0KsF0LMdsH4yE0+LKnBRU9uQkN7DwJ91Phsf727h0REREREHkLbzeDMFWwOzoQQQQDeBfBDKWU7lJTIcADzANwP4C1hJe9NCHGrEGKnEGJnUxNnXzxdj96Ih97bh3v+U4KpCSH45J5FWDElFl+UNcBgNLl7eERERETkZkaTREePgcGZC9gUnAkhvKEEZq9LKd8zb64G8J5UbAdgAhA1+L5SymeklIVSysLo6GhnjZtc4Gijksb4xvYq3LE0E2/cMg/xof5YPTUOrV192FHZ5u4hEhEREZGbtVsaUAcwOHM2W6o1CgDPAyiTUv55wE0fAFhm3icbgA+AZheMkcbAB3tq8K2/K2mML94wGw+szoGXWvn1WDI5Gr5eKnx+kKmNRERERGc7DYMzl7Fl5mwhgGsBLBNClJi/zgfwAoAMIcQBAP8BcL2UUrpwrOQCPXojHnx3H3745qk0xqLJpxfeDPDxwpLsaHx2oB4mE08xERER0dlMo+sDAKY1usCIpfSllJsADFVD/XvOHQ6Npcb2Hlz3wnaU13fg+0szce+52f2zZYOtnhaHtaUN2FejRUFy2NgOlIiIiIg8htY8cxbq7+PmkUw8tvQ5ownqL18exvGmLrx4w+wzZssGW54TCy+VwGcH6hmcEREREZ3FTgVnnDlzNrtK6dPEUd2mwzu7qnHV7OQRAzMACA3wxvzMSHx2oA7MXiUiIiI6e2m55sxlGJydpZ5afwwAcPvSTJvvs2pqHCpbdDjc0OmqYRERERGRh9PoOHPmKgzOzkL12h68taMal89KRmKYv833WzklFkIAnx1g1UYiIiKis5VGp0egjxreQ9QqIMfxFT0LPbX+GExS4vt2zJoBQEyIH2alhLOkvod7Z1c1fvifPe4eBtFZr89gcvcQiIhcQtutR1gAi4G4AoOzs0xjew/e2H4S356RiOSIALvvv3paHErr2nGyReeC0ZEz/Gf7SXxQUovWrj53D8UjaXR9WPmX9dhe0eruodAEdrJFh4Jfr+XFLCKakLTdfQhhSqNLMDg7yzyz4Tj0RhPuLJrk0P1XTY0DAH7g8FA9eiP2VmsAAHtOtrl3MB5qbWkDDjd0ovhQo7uHQhPYS5sroesz4r3d1e4eChGR02m79QhjcOYSDM7OIs2dvXht2wlcUpCItKhAh46RHBGAqQkh+MxFwdkn++vQ1WtwybHPBrtPtkFvlP3f05nWHmwAAJTVtbt5JDRRdfYa8PbOKqgEsP5wE7r7jO4eEhENo7pNh52VzKawh0anZzEQF2FwdhZ5bmMFeg0m3LnMsVkzi9VT47DrRBsa23ucNDLFofoOfP/13XhhU4VTj3s22V7RCpUA0qMCsfuExt3D8Ti6PgM2HmkCwOCMXOe93dXo6DXgvpWT0aM3Yf3hJncPiYiG8eC7+3H9C9u5TtQOypozBmeuwODsLNHa1YdXtlTiovwEZEYHjepYq6eZUxtLG5wxtH4lVcpMz5flTDdz1LbjrZiSEIJFWVHYW62Bwcg3moE2HG5Cr8GEZTkxaGjv5bo8cjqTSeKlbyoxPTkMty7OQFiAN9YyDZzIY1W36fDNsWZ09Rm5HMBGUkpouvUIZXDmEgzOzhIvbKqArs+IH4xy1gwAJsUEISM6EJ87uaR+SZUGALC3SoPGDufOyp0Neg1G7D7ZhrnpkZiZEg5dnxGHGjrcPSyPsvZgA8ICvHHd/FQAE2v2zGA04XeflOHlzZXuHspZbcORJhxv7sKNC9PgrVZheU4svixrgJ4XSog80ru7agAAKgFsOtrs5tGMDz16E/oMJqY1ugiDs7OAVqfHS5srcX5eHLJjg0d9PCEEVk2Nw5bjLdDonDfzsOekpr/v2tdlnD2z1/5qLXoNJsxJj8DMlHAAwO6TGvcOyoPojSZ8WdaA5TmxyEsMBQCU1k6M4KzPYMJdb+zBMxuO43mmBbvVi99UIjrYF+dNiwegZBq09xiw9XiLm0dGRIOZTBLv7K7CwswoFCSHYcMRBme20HYrDajD/FlK3xUYnJ0FXtxcgc5eA35QlOW0Y66eGgejSeJLJwVRuj4DDjd04LKZiUgM83facc8m28yl4eekRSA5wh9RQT7Yc4IpGhbbK1rR3mPAqqmxiAzyRUyw74SYOevRG3HHa7vw6YF65CWG4mSrDlqd3t3DOisda+rE+sNN+N7cVPh4KW+vi7KiEOCjZoVbOmt09RrGzdqtrRUtqGrtxhWFSViUFY391RqnXnSeqDTdymvEmTPXYHA2wbX36PHCpgqsnBKLKQkhTjtuflIo4kP98JmTUhv3V2thkkBBShiW58Zg09Em9OhZ4cwe2ypaMTk2GOGBPhBCYEZKOPaYU0UJWHuwHn7eKizKigYA5MaHoHScB2fdfUbc8spOfFXeiN9cMg0/WT0ZAHCgVuvmkZ2dXtlcCR+1Ct+dm9K/zc9bjSXZ0Vh7sAEmk3Tj6IhcT0qJi57chN99Uubuodjk7Z3VCPbzwqqpcViUFQWTBDYf4yz3SCwXAFkQxDUYnE1wr2yuRHuPAXcvd96sGXAqtXHDkSanlL639OaanhSG5bmx6NGb8A1zv21mMJqwq7IVczMi+rfNTAlHRXMXi15A+cCwtrQBi7Oi4e+jBqAEZ8eaOsfNFd7BOnsNWPPidnxztBl/uDwf35uXimkJSrrmvmoGZ2OtvUePd3ZV48Lp8YgO9j3tttXT4tDY0cuLJTTh1bf34HhzFz4/WA8pPftiRHuPHp8eqMO3pifAz1uN6clhCPb1wkamNo5IY05r5MyZazA4m8A6ew14blMFlufEYJp5jY0zrZ4Whz6DCesOjb5MdEmVBskR/ogM8sW8jAgE+qhdntr4ZWkDTrR0ufQxxsrB2nZ09RkxJ31gcBYGYHw0o+7o0eOL0gaXvZnvr9GiTtvT30QdAHLjg6E3Shxt7HTJY7pSe48e1z2/DTtPtOGvV8/AFYXJAIDwQB8khfvjQA2Ds7H29s5qdPUZccOC9DNuK8qJgbdaMLWRJry9Vcrfnjptj8f/bf14bx169CZcaf776a1WYV5mJDYeafL4wNLdLDNnDM5cg8HZBPbqlhPQ6PS4y8mzZhaz0yIQGejjlIbUJSc1KEhWilj4eqmxODsaX5e77sO6tluP217bhT+uPeyS44+1bRVKGsbA4Cw/KQxeKuHxzah3nWjD+U9sxC2v7HRZOsnagw1QqwSW5cT0b5sSr6T5jrd1Z21dfbjm2W3YX6PFP747E9+annDa7flJodjP4GxMGU0SL2+uRGFqOPKSzrwQFuLnjQWZUeNiNoFoNPZVa6ASyvee3t/v7V1VyI4NQv6A/7OLs6JQ3daNEy06N47M8/UXBGFao0swOJugdH0GPLfxOBZnR6MgOcwlj6FWCZw7JRZflzWMan1YY3sParU9p41zeW4sGtp7caDGNR+cNx1phtEksfV4y4T4sLS9ohUZUYGICfbr3+bvo0ZufIjHNqM2miSe+OoIrnx6C0wmpYzxdnNRE2f7/GA95qRFIDzwVGWp9KhA+HqpxlVw1tzZi+88uxWHGjrwzLWF/T0HB5rGoiBjrri8ESdbdVizMG3IfVZNjcOJFh3bW9CEtq9ai9z4EGTFBHl0cHa0sQN7TmpwZWEyhBD9288xr0neeMRzx+4JNN19UKsEgny93D2UCYnB2QT1yf56tHT14S4n9DUbzqppcejqM2LzMcdztC39zQqST129KpocDZUAvihzbqNri+JDSspkU0cvjjeP79RGo0lie8Xp680sZqaEeWQz6uo2Ha5+Zgv+/MVhXJgfj09/uAg5cSHYecL5wdnxpk4caezEqqmxp233UqswOS543BQFaWjvwVVPb0FlSxdeuH42igbMAg5kaRPA2bOx89LmSsSH+p2WNjvYuVNiIQScVkSJyNOYTBJ7qzXITwrDkuxobKtoRXefZxb2entnNbxUApfMSDxte1pkAJLC/bnubATabj1C/b1PC2zJeRicTVDHmzrhpRL9/a5cZUFmJIJ9vUb1gWNvtQZeKoGpCaeCs8ggX8xMCcdXLgjOTCaJdYea+lMZRtt/qKRKg21unIErr29He4/htJRGi5mpnteM+qO9tTjvbxtRVteBv1w1HX+7egZC/LxRmBaOPSedH0iuLVV+h8618sE5Ny4EZXXt42L29Puv70a9tgev3DgX52RFDbkfg7OxdbihA5uONuN781LhrR76LTU62BeFqeH4/KBrLjgRuVtlSxc6egwoSA7F4uxo9BlM2FrheZUP9UYT3t1dg2U5MYgKOr14jxACi7KisOVYi8dd1PQkGp0eYVxv5jIMziaoWk034kL9oFa59qqGr5cay3Jj8EVpg8N/yEqqNMiJD4aft/q07ctzY3Gwth112m5nDLXfwdp2NHf24vr5aYgN8cWWUaxzMpkkbnllJ656ZiuueGqLWxYSW1IB56ZHnnGbJzWj7uw14L639uLuN/ZgUkwQPrl7Eb49I6n/9sK0COj6jCirc24gufag0v/L0uB8oNz4YLTp9Gho73XqYzpbnbYbu0604QfLsqwG4QOFBfggOYJFQcbKS5sr4eulwnfmpIy476qpcSira8dJN61n6RxH/ado7JXXt6PX4PhMl6VKbH5SGOakR8DPW4X1TigY5mzrDzWhubO3v5DSYIuyotHRa+ivIk1n0nbrEcLgzGUYnE1QNZpuqx9GXWHV1Di06fTYXml/SprJJLGvSmt1Xdy5U5S0LWdXbVx3qBFCAEsmR2NeRiS2Hm91OKAqrWtHU0cvLsiPR42mG9c+vx2X/Wsz1h1qHLMgbdvxViSF+yPByvlOCvdHVJCv25tRl1RpcMETG/H+nmrcvWwS3rptPlIiA07bpzBVCSSdmdrY2N6DPVUarJwSa/X23HFSFOTrcuX/gOX/xEjyEkOxr0bjwhERAGh0fXhvdzUuKUhExID1jEOxpD26q2rjJf/4Br/9X6lbHtuaV7eewK2v7HT6BTiy3/t7qrH6rxvxj6+POnyMvdUa+HmrkBUTBD9vNeZlRGKDi9dubTnWgi9K7ZuNfmtnFaKCfLF0crTV2xdkRkIIYMNhpjYORdutZzEQF2JwNkHVtHUjMXxsgrMl2dHw8VLZ/QcSAI43d6Kj19BfqXGgzOggpEYGOD21sfhQI/KTwhAV5Iv5GZFo7uzFsSbH1p1ZFjw/fNEUrLt/KX5zyTQ0tPdizYs7cMk/N7u04iSg9O/aXtlqddYMUFI0ZqaEjXnFxubOXqw9WI9HPy3DFU9txmX/2gyDUeI/t87HvSsnW03/SgjzR2KYP3ZWOm+sX5Q1QEpg5RBrgXLMwZmnrzv7qqwRKREByIwOsmn/vMQwVLV2Q6NjjztXenNHFXr0pmELgQyUHBGAKfEhbgnONLo+HG3sxCcHPKdi5EclNVhb2oDz/rYRXzrw/kHOseFwE+5/e5/y/SjWWu2t0mBaQii8zH/fF2dF43hTF6paXTdT/H8fl+LWV3fif/vqbNq/ubMXX5c34tKZiUOmIYcF+CA/KQyb2Gt1SBqdnmX0XYjB2QSkN5pQ396DpDGaOQv09cKiSVFYe9D+QGSPOd1uYDEQCyEElufEYvOxFqc0ugaA1q4+7KnSoMh8xWxehhLUOLrubP2hJkxNCEFMsB98vdT43rxUFP94KR69NA8tnb248aWduPgf3+BLF/XwOtrYidauPswdJtVtZmo4Klt0aOl0Teqe0SRRXt+O17edwL1vlWDpH4pR+Jsvceuru/DCpgoYTBK3LMrAJ/csGjElb1ZqOHaecHwmc7C1BxuQFhmA7FjrQU2ovzeSwv09euasu8+Ib442Y3lujM2Lry3rzlxV7ZSUxu+vbDmBeRkR/TOwtlg9LQ67TrahsaPHhaM7U3m9ki7c1NGLg7We8XtR0azDoqwoJIb54+ZXduLX/y1l2uUY21+txe2v7cKkmCCsWZCG/TVadDrwfqs3mnCwth3TB2TBLDG/z7qqaqOuz4Dy+nZ4q1T44Zt7sMmGwPKDPTUwmCSumJU07H6LJkWhpEqD9h5WvbVG2801Z67E4GwCqtf2wCQxZjNngFKJrEbTbfcMxN5qDYJ9vZARZf3D84opMegzmJxWOUlZEwYUTVbSw1IjAxAX4octDgRn2m49dp1sOyM1wse8/qT4x0vx+8vy0Kbrw82v7MT97+xzynMYaJtlvZmVSo0WlnVne5y47sxgNGHdoUbc8589KPjVWqz+60b87P0D2HC4CdmxwXjovBy8c/t87H9kFd7//kI8eF6OTVfZZqeFo6G9F9Vto09z6ujRY/OxZqycGjdsUJMbH+LRwdk3R5vRazBheY711ExrpiUqwQJTG13ny7IG1Gi6scZK0+nhrJoaBynhUKbBaJQP+B0vLnduqrgjOnr0aO7sxfzMSLz3/QVYsyANL3xTgcuf2owTLeO7gu54caKlCze8tB3hAT54+cY5WDklFkaTxA4HWpocbuhAr8F0Ws+wjKhAJIX7Y4OLgrP91VqYJPDYZXnIjA7Cra/uxF5z9WdrpJR4a2cVCpLDkBUbPOyxF2VFwWiSo1qTPlGZTBLtPXqEBoycyk2OYXA2AdVolA+2iWEBI+zpPMtzlTLRa+2sRFZSpUF+cihUQxQumZ0WgWA/L6elNhaXNyIy0Kd/ZkEIgXkZEQ5VW9x8VOmVtiTb+jogb7UKV81Owdf3LcW181Lx7u5qVDi5bP+2ilbEhvgiJWLoc52fFOqUZtRSShyo0eL/Pi7FvEe/xpoXd6C4vBHn58Xjz1dOx/r7l2LHz1bgmesKcduSTBSmRZxR5GUkhWlKkOmMdWfFh5qgN8oh15tZ5MaHoKK5y2NLPn9V3oAgX68RZx0HCgvwQUpEAIuCuNCL31QiMcwf547w+zVYdmwQ0iIDxrykfnl9ByICfZCfFNrfSsSdLE1+0yMD4eulxiPfmoqnr52FyuYuXPDEJvx3b62bRzixNXf24roXtsNoknjlpjmIDfHDzNRw+KhVDl2stBQDmZ4U1r9NCIHF2dHYfKzFJTOiljY8i7Oj8fKNcxAR6IMbXtqBo42dQ47xcEMnrhyiEMhAM1LCEeijZr8zKzp6DJASTGt0IQZnE1CNedYhIcxvhD2dJzrYF7NSwu26GtyjN6K8rmPYJtneahWWTo5B8aFGmEyjS3UzmiTWH27CksnRpwWD8zMj0dzZh2NN1v+gD2X94SYE+3lhZkrYsPt5q1W4a/kkeKtUeGFThSNDt0pKie0VLZibHjnszJCftxpTEkIcDs5qNd3457qjWPmXDbjwyU14ZUslZqWG4anvzcSOn6/A7y/Px6Uzk5AaGTjqnifZscEI9vXCDiesO1t7sB5RQb6YMUI7iSnxwTBJeFS7AQspJb4qa8Ti7Cj4eNn35zovMZTl9F1k6/EWbKtoxXXzU+2uiCuEwKppcdhyrAXa7rFLmSqr70BOXDCKJsdgT5UGrV3uXY9ouVCVFhXYv23V1Dh8cs8iZMcG4a439uCh9/Z57EWT8ayr14AbXtyBhvYePL9mdv9aVj9vNWakhDk0W7S3SoNQf2+kDir0tCQ7Gp29Bpesey6p0vQXvYoN8cOrN82FSgDXv7DdapGZt3dVwc9bhQunx494bB8vFeZlRNqUKnm20XQrfzuY1ug6DM4mIMvMmbXqfa60cmosSuvabV78e7BWC4NJWi0GMtCK3Bg0d/ahZJRlbfdWa9Cm0/enNFpY1p1tOW77bI2USq+0cyZF9S9+Hk5MsB8uLkjA27uq0OakD0UnWnRoaO+1aUZlZko49lZp7Wp3cLSxE995ZisW/v5rPP7ZIYT6e+M3l0zDjp+twNPXFmL1tHj4etk3MzYStUpgZmo4do0yOOs1GLHuUBPOnRIz4odnT67YeKCmHY0dvVhmR0qjxbTEUFS1djvt940UHT16/PjtvUiNDMD35qU6dIxVU+NgMMkxSy80mSQO13dgclwwinJiICXcPiPQH5xFBp62PSk8AG/eNh93LM3EG9urcPE/NuGwB144Ga/0RhPueH03Suva8Y/vzjyjF+r8zEgcrNXafeFgb7UW+UmhZ1ygW5AZCS+VcElqY0mV5rSLb+lRgXjphjnQdutx3fPbTyuI1KM34sOSWpw3LR4hfrYFFYuyolDZonNpQZPxSKNTfjc4c+Y6DM4moFpNN6KCfO1OKRutc6coFfFsnT2zrIGabqUYyEBLs5UP2KOt5rWuvBEqofzBHSglIgDxoX7YasfVwsMNnahv78GSbOuleK25eVEGevQmvL7thM33GY6lv9m8YdabWcxICUO33thfFGAkUkr89P39KK1rxw+XZ2PD/UV4544F+N68VIS5OM+8MDUchxo6oNU5Pquw+VgLOnsNWDnFepXGgZLDAxDoo/bI4Oyr8gYIgf4CNvawrP04UGv/7FlzZy8qnZyCO1H85uMy1Gq68ecrpyPQ18uhYxQkhSE2xHfMUhtPturQrTciNy4E+YmhiAz0cfu6s8rmLsSH+sHf58z3KW+1Cg+szsErN85Ba1cfbnllpxtGOPFIKfHAO/uw4XATfvftaViee+ZFn/kZkTDJU+8vtujuM+JwQ8dpKY0WwX7emJka7vSiIPXaHtRpe87IvJmWGIpnryvEiVYdbnhpB3R9SnGTzw/Wo6PHMGIhkIHOyVL+7tqz5n3jkSY8+O4+j6mI6gqWwJ2l9F2HwdkEVKMZuzL6A6VHBSIrJsjm4GxvtRaJYf6ICR4+/TI0wBuz08Lx1Sj7nRUfasLMlPAzggtl3Vkkttqx7mydec3GEjs+NE+OC1Zy47ecGFWjT4utFS2IDPSxqbz6qaIgts1IbTzSjO0VrbhvZTbuWZF1Rk8yV7KsOxtNGszagw0I9FFjwSTrLQYGUqkEcjy0KMhXZY2YkRyGyCBfu+87LUEJzhxJbbz/7b246MlNqNeObUVBT/dlaQPe3FmF25dkYlaq7WsAB1OpBFZOicP6w01jkrZXXq/8bufEB0OlEliSHY31h5tgHGWq+GhUtHSdMWs22OLsaNx0TgZOtOjQwap5o/b7zw7hvT01uO/cbFw123rT9IKUMPh6qexKbSyt08JokqcVAxloSXY0DtYqPUGdpaRKeX+wtixifmYknrh6BvZWaXDHa7uhN5rw9s5qJIX792fK2CIzOhAJoX42zzLXa3tw1xt78J8dVSirm7izvZpuzpy5GoOzCaimrXvMyugPtnJqLLZXttqUSlVS1TbirJnFitxYHGrocDi9oLGjB/trtCjKsV68Y35GJFq6+oZcSDzY+sNNmBwbjPhQ+17nWxalo6mjFx+VjH6x+7bjrZiTHmHTOq+kcH9EB/titw0VG6WU+OPaQ0gM88fVQ7yBu1JBchi8VAI7HGhqDihrC78obcDSnBib0y6nxIegvK7Do652NrQrv7PWrm7bIjTAGykRAdhfbV9w1trVhw1HmtHRa8BP39/vUa+JO7V09uLB9/YhNz4EP1yRPerjrZoah2690eVNegGgrK4DKgFkxSgV6opyYtCm0/cXVHCHyuau09abDSXdvE9lM1PLRuOFTRV4av0xfG9eCn6wbNKQ+/l6qVGYFm5XUZCSKuVvzFDrxy0ZJs5Mpd1TpYG3WmBqgvU2FqunxeF3387D+sNNuO3VXfjmWDMun5U0ZPExa4QQOCcrCt+Yi38Nx2SSuO/tEvTolYstrmof4AksM2ehnDlzGQZnE4yU0m0zZwCwckocjCaJr0dImWnp7EVVa/ewxUAGsnxA/dLBqo0bDitpCYPL3lvY0++sq9eAHZWtQx5rOOdMikJOXDCe31Qxqg+91W061Gi6ba7gZ08z6rWlDdhXrcU9K7LsLkLhDP4+akxNDHW4GXVJVRuaO3tHrNI4UG58CDp6DXaV8DeaJO58fTd+83GpU68IW1j+Dy3PtX5BwRZ5SfYXBfnsQD2M5j5AX5c34v09NQ4//kQhpcTP3j+A9m4D/nLVdKf8v5ibEYFQf+8xaUh9qL4DaZGB/SmEi7OioRKnMgDGmlanR5tOj/SokWfkM6KV4Ox4s30Fm+iUls5e/OZ/pTh3Six+9a1pI17Qm5ceibK6dpvXq+6r1iAuxA8xIdazYKbEhyAqyMepAUvJSQ2mxIcMu3zj6jkp+Mnqyf1/Sy+3I6XRYlFWNNp7DNg3wpr35zYdxzdHW/DIRVORExfssvYBnkBrXsvHmTPXYXA2wTR39qHXYEKim2bO8hJDERvii7Wlw3/g2Gv+QzdSMRCL9KhAZEYHOpzaWHyoETHBvpgyRLPY5Ah/JITa1u9s87EW6I3SrvVmFkII3HROOsrrO0bVu82yHmBuuu0pGjNTwnGiRYfmYZpRG00Sf157GBnRgbh0RqLD4xutwtRw7K3WOJT+ufZgA7zVYshZUmty45UZBXua82443IT/7a/Dc5sqsOjxr/Hb/5UO+9ra66uyRiSG+WPyCP14hpOXGIrqNvuKgny8rxYZUYF47LJ8zEoNxyMfHURj+9md3vj+nhp8drAe963MRk6c7Q2nh+OtVmF5bgy+KmuE3o5CPY4or29HTvyp36PQAG/MSg13W0n9ihbrxUCsSYkIgBBwehuSs8nB2naYJHDDwjSbqovOz1TeV7ZV2DZ7ts9cDGQoKpXA4qxobDzSPOqqy4DSZ3N/jdami7t3LMnE/asm49bFGUgKtz89f+GkKAiBYas2HqjR4g+fH8LqqXG4anYylmRHY+eJVnQ50Mx7PNB26+HvrXZ6QTA6hcHZBHOqx5l7gjOVSuDcKbHYcLi5f3rfmpKTGqhVor9Zri1W5MZiW0UL2u1ce2AwmrDhcBOKJscMecVQCIF5mZHYerx1xBmt9YcbEeCjxqw02wLLwb5VkIDoYF88u/G4Q/cHlOAsxM8Lk+Ns/+A+M3XkZtQf76vFoYYO/GhFtk1VKF1ldlo4eg0mHKixbx2YlBKfH6zH/MwomytyAcp6QCHsq9j4xvaTiArywdofLcb50+Lx/KYKLPp9MR79pGzUQVqP3ohNR5uwPHfo31lbWPr52Tp71tTRi63HW3BhfjzUKoHHL89Hr8GEn31wYEKkNxpNEiVVGrs+INZquvHwhwcxOy0cNy/KcOp4Vk+Ng7Zbb9OMvaN0fQacaNWdEVQunRyjVAN1Q+BdYZ4Fs8yKDcfPW43EMH8GZ6Ng+bs21MXJwfKTwuDvrbZp3ZlWp0dFcxemjxAoLc6ORmtXn0MFigY73NAJXZ8RBSO0sQGU9/Y7iybhofNyHXqsiEAfTEsIHfJiqq7PgLv/sweRgb547LI8CKGs6dQbJ24Da41Oz2IgLsbgbII51ePMPcEZoKQ2duuNw15pKqnWIjs2GAE+tlc7WzElFnqjtDtdYPdJDTp6DCjKGX6ma15GJFq7+nBkmHVnlhL6CzKjHL5q5OulxpoFadh4pLl/ob69tlUo683s6bGUlzh8M2q90YS/fHEYufEhuCBv5D4wrmQptrDLzmbUB2vbUdmisyulEQACfLyQHhloc3DW2NGDr8obcdmsJGTHBuPPVxXgi3uXYPW0ODy78bgSpH1ahhYHg7Qtx1rQozc5vN7Mwt6iIJ8eqINJAhdOTwAAZEYH4d5zs/FFaQM+GudNgY0miXvfKsEl//gG3/7nNzattzKZJO5/Zy+MUuJPVxTY3dNsJIuzoxHi54XXt5506nEHOtzQCSmBnEEXciwtRdYdGvv0q4pmHVQCSI6wbSYjPSqQwdkolNa1IzHM3+ZKuz5eKpvXne2r0QCA1UqNAy3KUmag1jvh983yf9fWzJvROicrCrtPtqHTykzYb/5XhormLvz5yun9r++stHAE+Kgn7LozTbeeKY0uxuBsgqnRKIum3bXmDFCCnGBfryFTG6WU2FulQYGNxUAsZqaEIzzA2+7UxuJDjfBSCSycFDXsfvNtWHd2vLkL1W3ddlVptOaauSnw91bjuY32N6VubO9BRXOXXSmNgHIFempCCHafsB6cvburGpUtOtx3brZdi6ZdITrYF2mRAXY3o35pcyX8vdW4KD/B7sfMjQ9BmY3B8ju7qmE0SVxVmNy/LTM6CH+5qgBrf7QEK6fG4pkNx7Ho8WI89mm53bO9X5Y1IMBHjbk2rikcSmiA0hT2gI3B2cd765AVE4TsAamUNy/KwPTkMDzy0UGXrK0D4PJZOaNJ4sdv78WHJbW4YlYSarU9uOQf3+CBd/YNG0C/sqUS3xxtwS8unOKSiqV+3mpcNz8Nn5fW41iTa9ZUlZsvOAyeOcuND0ZciJ9bUhsrm7uQEOZv8wWujKhAVDR1TYjZW3corW3v7+doq/mZkTjc0DliFsA+c8GhvGHSGgEgMsgXeYmhTglYSqraEBbgjbQxqiK8KCsKBpM8o93O5wfr8e9tJ3Hr4gwsGPD5wtdLjfkZkRM2ONMyOHO5EYMzIUSyEKJYCFEmhDgohLhn0O0/FkJIIcTwn3xpTNRqehDs6+XW/zg+XioszVHWUlircFTR3AVtt97mYiAWapVA0eQYFB9qtKuZcnF5I2anRSB4hDS3pHB/JIb5D5uKYLnqt9SB9WYDhQX44IrCJHxYUmN3WtE283ozW4uBDDQjJRz7qs9sRt2jN+JvXx1BQXLYqApQOFNhWgR2nWiz+QNZY0cPPiqpxRWFSQ5VkcqND0ZVa/eIJbullHhzRxXmpkcgw0obg0kxQfjb1TPwxY8WY0VuLJ7ecAzff223zc9DSqWgzqKsKKf0KpyWGNr/AWo49doe7DjRigsHBbZqlcAfL89HV68RD390YNTjGeytHVWY/PPPsOQPxbj2+W34xQcH8NzG41h7sB6HGzqGTY+2hdEkcf/be/H+nhrcv2oy/nDFdHx93xLcujgD7+6uRtEf1+HlzZVn/J842tiJRz8tx7KcGFw9O3mIo4/emoVp8Far8Nwo0pyHU17fgUAfNZIGXbATQqAoR1kH5Oo1b4NVtnT1V2G0RXpUIDp6DWjuZEN1e/XojTjW1IkpQ1Q1HIotFysBYG+VBulRgTZ95licFY09VRq7G1wPVlKlQUFy2KhSvu0xKzUc/t5qbDp6Khuoob0HD767D9MSQ3DfuZPPuM+SydE42aqbkP0itUxrdDlbZs4MAO6TUuYCmAfgTiHEFEAJ3ACcC8B1ORlkl+o291VqHGjllFi0dPVZTaGzFAMZKUfdmhVTYqHR6bFriNmfweq03Siv7xgxpRE41e9sW0XrkGtS1h1uQkZ0oM3pOMO5cWE6DCaJV7bY15R6e0UrAn3UQ5YQHs7M1HCrzaj/ve0k6rQ9uH/V5DF7wxtJYWo4Wrv6cNzGN7fXt55En9GENQvSHHo8y4eXkRp1bzneghMtOlw9Z/gP7JNigvHEd2bg/y6ehk1Hm/Hv7bb9mSyta0edtgfLc0aX0miRnxiKGs3IRUH+t78OUgIXTj8zpTUrNhj3rMjCJ/vr8cn+OqeMy+L1bScQHaxcVdfo9PiwpAa/+V8Zbn11F1b+ZQNyfvEZ5v7uS6x5cbvNM4AWRpPET97Z19/b6c4ipYR4sJ83fnp+Lj774SLkJ4Xh4Y8O4sInN2Gb+YOowWjCfW+VIMBH3b+OxFWignxxxawkvLvL/gs1tiira8fkuGCrs+FLJ8egs9fgcGVUR0gpUdE8co+zgdLNF0GY2mi/Q/UdMElgSrx9hYXyEkMR5Os14rqpfdVaTB9h1sxiyeRoGE0Sm486Xgyro0ePI42ddl/cHQ1fLzXmZkT0t70wmSTue2svevQm/O3qGVart1oKhk3E2TPOnLneiMGZlLJOSrnb/H0HgDIAljJufwHwEwDMNfAQNZputxUDGWjp5Gh4qwXWWikTXXJSg0AfdX/PHXsszo5GsJ8XHnpvv00fZCzrKZZOtm02aF5GxJDrznr0Rmw73uJQlUZr0qICsXJKLF7bdgK6PturOm2raMGstAiHCnbMNC+gHhg06/oM+Oe6o5ifETli6udYsjSj3mXDB8cevRGvbT2B5TkxVmezbGFJ+xlp3dmbO6oQ4ueF86bZti7vmrkpWDgpEr/7X5lNffq+Nqft2lNtcji2FgX5eF8tcuNDhmxqftviDOQlhuIXHxxAqx3VH4dT2dyFvdVaXL8gFX//7kz8965zsO+RVSj55bn44M6F+NvVBbjv3GycMykaB2q0+NbfN+HX/y21uvZjMJNJ4sF39+Hd3dX40Yps3LU864x9JsUE49Wb5uCp781ER48BVz2zFff8Zw8e/bQce6u1+O238xATbL08uDPdujgDBpMJL3xT6dTjSilxqKEDk4eoMLlwUhS81WJMS+q3dvWho8dgU48ziwzzvhUsp2+3U8VA7FtG4KVWYfYI684a2ntQ396D/BHWm1nMSA5DsJ/XqAKWfdVaSDl0TzVXOWdSFI43daFG043nN1Vg09Fm/PKiKUP+vUyNDERqZMCEDM403X02r18kx9j16U4IkQZgBoBtQohvAaiRUu51xcDIMTVtOo+YOQv288b8zCisLW04I52rpFqLvKRQhxbXB/l64cU1s1Hf3oNrnts2YsGF4nKlHHlWjG0f2Ifrd7bleAt6DSabAz1b3LwoAxqdHu/uqrZp/9auPhxu6HR4LVJimD9ign1PW3f24jeVaO7sw49XnZma4U6Z0YEID/C2qRn1R3tr0dLVhxvPSXf48eJC/BAW4I3SYcrpa3R9+PRAPS6dmWRzyqEQAr+/LB8A8MC7+0asFPhleSOmJ4chOtjX9sEPY6oNwVl1mw57TmpwYf7QAaeXWoU/XJGP9h49Hv7ooFPGZikyMjiVMizABwXJYbi4IBF3Lc/Cn66cjq/uW4rvzk3Bi5srsOJP6/HZgbohU0VNJomH3tuPt3dV4+7lWbhnxZmBmYUQAqunxePLe5fg7uVZ+PRAPZ7fVIFLChJw/hgVxkmNDMR5efF4feuJEdNq7dHQ3guNTt/fKmKwIF8vzEmPGNN1Z5bZrww7grOEMH/4qFU2z6LTKaV17Qj29TojrdUW8zMjcbypCw1DXAjday7MMd3G9eNeahUWZkZhw+Emh9cPnioGEubQ/R212HxR9pn1x/D45+VYNTV2xHTnJdnR2HKsxaGWMJ6qR29Ej97EmTMXszk4E0IEAXgXwA+hpDr+DMAvbbjfrUKInUKInU1NE+8Kgifp6NGjvcfgETNngJLaeKJFd9osVK/BiLLadodSGi0K0yLw/PWzUdWmwzXPbYNGZ/0qfq/BiG+ONmPp5Gib05KSIwKQFG593dn6Q03w9VKNukjDQIWp4ZieHIbnN1VYXZ832Kn+Zo6NQWlGHY7d5nL62m49nl5/DMtzYjArdWwqX9lKCIFZqREjprBKKfHCpgrkxAVjQaZ9RVIGP15uXMiwM2fv7a5Bn8GEq+xcg5QUHoCfXTAFm4+14PVh0hubOnqxt0qD5U6aNQOURqFpkQHYP8y6s//tU1IVRyqkkhMXgh8UZeG/e2tH3TxZSomP9tZiTlqETdVlQ/298ZtL8vDeHQsQHuiD21/bjZte3nnGbKTJJPHT9/fjzZ1VuGvZJPxomMBsIH8fNe49Nxtf/mgJ7js3G7++ZJpDz8tRty/OREevAf/e5rxVApYCN8P1ZiuaHIPDDZ2obht5VtcZLMGZPTNnapVAamQAKpoYnNnLUgzEkSJP8zOUTIqh1p3tq9ZCrRJ2zcotmRyNWm0Pjg5TFXk4e05qkBEVOOYzN1kxQYgN8cXLW04gItAHj12aP+LniiXZ0ejWG8c0bdjV2s3rBRmcuZZNwZkQwhtKYPa6lPI9AJkA0gHsFUJUAkgCsFsIETf4vlLKZ6SUhVLKwuho56SDkXX9Pc48YOYMAM41lzMfmNpYWtuOPqMJM0Z51Wt+ZiSeva4Qx5u7cO3z260uMN5Z2YauPmN/yWhbKevOWs6Y4dhwuAnzMyOdUqTBQgiBWxalo7JFhy/LGobcr0dvxGcH6vH0hmPw9VLZnEZizczUMJxsVZpRP7fxONp7DLh3ZbbDx3OlwrRwHG/uGrZi2JZjLSiv78CNC9NHvTYoNz4Ehxo6rAbKlkIg05PD7K58BgDfmZOMRVlRePSTodMbi8uVGQxnF2WZlhg67MzZx/vqkJ8UalNFwu8XZSI3PgQ/e//AkBdGbFFW14GjjZ24qMC+ypozUsLx3x8sxM8vyMXW4y049y/r8a91x6A3mmAySfzsgwP4z44q3FmUiXvPzbb7dyIlMgB3Lc+yq0+eM+QlhWLhpEg8v6nCaVfay+uU9ZPD9UO0pM8Wj1FJ/cqWLqhVwu6ZnPSoQM6c2clkkiira7e7GIjFlIQQhPgNve5sb7UGk2OD4e9j+3vi4lGsxZJS9hcDGWtCCCzKUsb+5ysLEB44cnA4LyMS3moxoVIbNebPWiwI4lq2VGsUAJ4HUCal/DMASCn3SyljpJRpUso0ANUAZkopR3cplUbFE3qcDRQb4oeC5DCsLT0VdJxKgwgb9fEXZUXjqe/NRHl9O9a8uP2MdSjrDjXCR63Cgkn2zabMy4hEm06Pw42nCkOcbNHheHOX09abDbR6ahwSw/zPqNbWozfi84P1uPuNPZj1f1/g9td24USLDg+szrG6ANlWM1OUGbIvSxvwwqYKXJAfj6kJ9q1HGCuzzY2+h7vy+PymCkQG+uBbdn7ItyY3Phg9epPVwgN7qjQ41NDhcOU+IQQeuywfKiHwk3espzd+Vd6A+FA/m5vF2irPXBTE2lqxyuYu7K/RDpvSOJC3WoU/XpEPja4Pv/641OExfbS3FmqVwPnTzrimNyIvtQo3L8rAl/cuweKsaPz+s3Jc8MRG/PDNEryx/STuWJqJH6/0nOI2trp9SSYaO3rx4R7n9JQ7VN+OhFC/Ya9yZ0QFIiUiAOvKxya1sbJZh+Rwf3jbuWY2IzoIJ1q6bMowIMXJVh26+oxDprWORK0SmJMeaXXdmZRSKQZiZ0ucxDB/TIoJcihgqdF0o7mz16bm067w45WT8dpNc21emx3o64XZaRF292b1ZFrOnI0JW/46LgRwLYBlQogS89f5Lh4XOcAyc5bkIcEZoMye7avWok6rjK2kSoPYEF/EhzpnjMtyYvHkd2ZiX7UWN7y4/bTCGsWHmjA3I8KuRteAUhQEwGk9TdYfVj64uCI481KrcOM56dhR2YZtx1vw+cF63PMfJSC77dVd2HikCd8qSMRrN83F9p8uH9W6KkCZRfFWC/zmf2Xo1hvxoxWeOWsGKGP18VIN2Yy6orkLX5U34pp5qU6Z0bRcYbaW2vjm9ioE+Khx0XTHg8DEMH/8/IJcbDnegte2nV6ls0dvxMYjzViWE+P0oMLSg8ja7Nn/zNUXL7CjN9zUhFDcvCgD7+2ucSg9SUqJ/+6txTmTohAZ5PjauoQwfzxzXSGeva4QXb1GfLS3FrctycBPPKjqqD3OmRSFqQkheGrDsRHXJtqivL4DOSME+kIIFE2OxjfHmkfdtsAWFc1ddqU0WmREBUJvlP0XIWlkpQ4WAxlofmYkTrToUKs5/XU/0aKDtlvvUBbHkuxobKtoRXeffb9ve8zp+O6YOQOAuFA/nJNlX9GsJdnRKK/vQL3W/kqsnnghQqMzz5z5syCIK9lSrXGTlFJIKfOllAXmr08G7ZMmpXS8Nio5RY2mGz5qFaJG8WHH2VZNVVIbvzTPnu2t1jr9D+vqaXH429UF2HWiDTe/vBM9eiOqWnU42thpd0ojoKwPSo7wP+1q4bpDTUiJCLCrN489rpqdjGA/L1z1zFbc9uourD/chIumJ+DVm+Zg+89W4NFL83BOVpRDFRoH8/NWY0pCKDp7Dbh0ZhIm2VgsxR18vdSYnhQ6ZDPqF7+pgI9ahe/NS3HK402KCYKXSpwRnHX2GvDffbW4KD8BQb72BfuDXTU7GYuzo/HoJ+U42XIqvXFbRSt0fUaX9JmbZi4KYq0U/X/31mJmSpjda1VvWZQOXy8Vnt1gf3+u3SfbUKPpxrdGEegOdO6UWHxx72K8ees8PLg6Z1wGZoASKN22JBPHm7rwxTBpzrboM5hwtLETOcOkNFoszYlBj97U30PRVaSUqGyxr4y+RXq0cp/jrNhos7K6dqhVAlmxjv+Nt1ysHJzaaGmJk29jGf2BFmdHo89gwtaK4cv0D1ZSpYGPl2rYNZSexpLGae/s2cf7ajHpZ58g9xefYeFjX+PCJzfi2ue34e439uCRjw7ib18ewatbKvF1+ZlF11yJM2djY/Sf9Mhj1LR1IyHMz6GFv66SGR2EjKhArC1tgEbXh4rmLqekNA52YX4C/nTldGw53oJbX93VX6zA0XLk89JP9TvrNRix+ZhSQt9VH/qCfL3wyEVT8Z05KXjlxjnY8bMVeOyyfCzKirY7/ccWc9Mj4K0WuMdKeXFPU5gWgYO12jOusmp1ery9sxoXTU9wWrlzXy81JsUEnRGc/XdvLXR9xhF7m9lCCIHHLs2Dl0rg/nf29s+QfFXWAD9vFRZkOr+dQYifUhRkn/kDlcXRxk6U13ecUS3RFpFBvriyMBnv76kZsprbUD4qqYWvlworpzqnlxsABPh4YW5G5LgNzCzOnxaH5Ah/PLX+2Kg+dB1r6oTBJEecOQOUhsO+Xqr+NY+u0tjRC12fERnRDgRn/eX0ue7MVqW17ZgUHTSqrILcuBCEBXifkdq4r1oLP28VsmPtT5mcmx7h0O9bSZUGeeZsivEiJy4YMcG+WH/E9uCsR2/Eo5+UIzM6CN+bl4J5GZGICfZDR48B+6o1eG93Nf7y5WH84sODuPGlnfjmqH1B7mhY1hmHcs2ZS42f33AaUY3GMxpQDySEwLlTY7HlWAs2HlEmV12VkvDtGUn4/aX52HC4CY9+Wo60SMdnuuZlREKj0+NQQwd2VrahW2/E0smuLWhz2awkPHppHhZnuyYgG+iuZZPwyd2LnNJM29UKU8OhN8r+K7UW/9lxEt16I248J82pj5cbH9KfDtT/WNtPYnJssNN+dxPC/PGLC6dgW0UrXtlSCSklviprxDmTopxacGagvKQwHKg5/Xl9vK8WQgAX2LjebLCbF6XDYDLhRTv6cxmMJvxvfx2W5cQgeIyLbowHXmoVbl2UgT0nNUPOGNvikLmZui0zZ37eaizIjMTX5Y0uvQrfX6nRgZmzyEAfBPt5uT0423y0GbN/++WwRYo8RekoioFYqFQCc9MjzqjYuLdKg6kJoQ69V/l5q7Fqahze3VWNNht7JuqNJhyocX7mjasJIbAkOxqbjjTbnKb4ypZK1Gi68etvTcXPLpiCP105HS+smY0P7lyIdfcXYd8jq3Dkt+dh60PLEeLnhXd329aKxxm03XoIAQSPMoOEhsfgbAKpafOMBtSDrZwSC4NJ4omvjkCIU01xXeHK2cn4v0umwWiSWJbj+FX5eZmn+p1ZCotYeqBNBMF+3shy4IqnO1hK/A8sqW8wmvDy5krMy4hwejGT3PhgNLT39hfPKK1tx95qLa6ek+zUWZkrCpOwdHI0fv/ZIawtbUCNphvLc503kzRYXmIIajTd/b0BpZT4eF8dZqdFIDbEsZlHR/pzbTnegubOPqelNE5EVxQmIzLQB0+tP+bwMcrq2+GjVtl8gWpZTgxOtupcGvxUmo/tyEUzIQQyogLdHpz9b38dmjp6hywv7ylau/pQp+1xSnGh+RmRqG7r7q8yazCacKBW61BKo8VdyyZBpzfiuU22pUWX13Wg12Aad8EZoKQ2arv1Z1xgtEaj68Pfvz6KJdnRWDBM4RFvtQpxoX64cHoCPjtQf0ZBNFfRdusR6u/tURlaExGDswmi12BEY0cvEsM8byakIDkcUUG+ONLYiayYIJdfLb92Xio+vHMhfrzK8UIXiWH+SIkIwJZjLVh/uAmz08MRyCtFbhEW4IOsmKDTmlF/drAetdoe3HROhtMfz1Im35La+OaOk/DxUuHbMxKd+jhCCDx6aR681AJ3vbEHgPIB2VWmDWpGfajBXMrewVkzi9sWZ6Cj14A3hunfNtBHJbUI8vVyOOX4bODnrcb1C9LwdXlj/wyYvcrrOjApJsjmmY2lk11fUr+ipQs+apXDFYXTowJx3M29zixrr0bqv+hulr9fjrT9GGy+OdXaktp4pLETPfrRBUpZscE4Py8eL28+YVNLjj1Vyus9HoOzcyZFQSWUXqkj+ee6Y+joNeDB83JsOvZlMxPRrTfiU3NhJ1fT6PQI43ozl2NwNkHUaZQ1H56W1ggo5XjPnaK88Y/VH9bpyWF2V2kcbF5GBDYeacbhhk4szeYHSXcqTFOaUVvWZ72wqQKpkQEuCWYGBmc9eiPe31OD86bFuaTpaXyoP3554RT0GUzISwx1eAbLFoOLgny8tw4qAayeNrrgLD8pDAsybevP1Wsw4rOD9Vg5NdZl6ZsTxXXzUxHgo8bTGxybPTtU32FTSqNFckQAJsUEYd0h1607q2zuQnKEP9QOXnVPjwpCrbZ7TKpKWlOn7e7vtTYWwVlLZy+ueGqzQxVRTwVno8+QyI4NQmSgT38F4339xUDCRnXcu5dlobPXgOc3VYy4b8lJDaKCfO3uj+cJwgN9MD05bMT2ATWabry0uRKXzkiyOaiemRKOtMiAMUtttMyckWsxOJsg+htQe2BaI3CqIbUrioG4yryMSHSbPwQscfF6MxpeYWo4OnoMONzYgT0n27D7pAY3LEhz+EPecKKCfBET7IvSunZ8eqAO7T0GXD3bOdUgrbl8VhJuW5KBO4smuewxAKUoSHpUIPbXaM0pjbWYnxmJ6ODRV3e9fUkmGtp78WHJ8P251h1qQkePgSmNNggL8MHVs1PwUUlt/993W7V19aG+vQc5dn4wL5ocjW3HW9HlohSpymbdqCrepkcHQkqljLs7WGbNluXE4GBt+2mtW1xh/eEm7Khswzu77P/gXVrbjrgQv1G1qrAQQmBehtLvTGkErUWInxfSbGhaP5zJccE4Py8OL31TCa1u+LRoS/Pp8VrwZ3FWNPZVa4ZdY/entYcAAPeutD3rRwiBS2cmYevxVlS3uf7/haZbj1AXXKik0zE4myAsvV88NThbkh2D3307z+mpYa5kWWOWEOqHLA8uN382mJ2mlHPeWdmGF76pRLCvFy4vHH3lxKHkxoegrK4Db2yvQlpkQH85aVcQQuCh83Kx2oFmzPaalhiK/dVaHKxtR2WLzqEqjdYsyopCbnwIntlwfNj+XB/trUVEoI/NTVzPdjctUnoaPr9x5JmFgcr7i4HYl9JWNDkGfUYTvjnq/M44JpNSRn80wVlGf8VG95TT33ysBeEB3vjevBQYTRIlVRqXPt6240oq91cOtFVwRjGQgeZlRqJO24MTLTrsq9YgP8k5gdLdy7PQ0WvA898M/Tuu1elxvLkLM9zUfNoZlkyOhkkCm4b4v1Va247399TghoVpdn+Os3yu+mBPzajHORKtro8zZ2OAwdkEUaPphhBKk0RPpFYJfHduyqhTDcdSQpg/8pNCcdH0hHF7tW6iSI7wR0ywL/67txaf7K/D1XOSR91vbDi58SE43NCB7RWtuGp2yoQ5//mJoajV9uCVLZXwUgmsnuqcgFAIgduXZOBoYye+HqI8dlevAV+VNeD8vDiXVyOdKBLD/PGt6Qn4z46TNq3LsSivV1La7J05K0yLQJCvl0vWndW196DXYHKoAbWF5b7H3VAUREqJLcdaMD8zErNSlIs1u0ZRTdMW2ytboVYJHGnsPK0n4kh69EYcbex0SjEQi/nmi5XrDinrIKcnO6cQU05cCFZPjcOL31T099AarMScRjke15tZTE8KQ6i/95CpjY99Vo4QP298f4n9GRTJEQGYmx6Bd3fXuLznmbaba87GAt8hJ4gaTTdig/3GVf+P8eDDOxfavDCXXEcIgcK0cGyraIWUEtfNT3Pp4+XGB8NokvBSCVw2a/zM9o7Esu7snV3VWDgpCuGBzktPOT8vHolh/kOukfqitAE9ehO+NX3ivJ5j4bYlmdD1GfHy5hM23+dQfQciAn0QbWdKm4+XCudMisK6Q84vqd9fqdGBMvoWQb5eiAn2RYUbioKcbNWhRtON+ZlRCA3wRnZsEHa6cN1ZY3sPKpq78B1zb8Uv7Zg9O9qo9LhzRjEQi8zoQEQH++KlzZUwmOSo15sNdPfyLHT0GPDiELNne062QQjHGl57CrVK4JysKGw43HTG/61NR5qx4XAT7lo2yeH+YZfNTEJFcxf2uHA212SSSnDGHmcux0/yE0RNm+f1OJsIhBATZtZkvCtMVa5Wr54W5/L+bJYrzstzY5zW4NoTTE1UnpdJAheOskrjYN5qFW5elI4dlW3YdaL1jNs/LKlBfKgfCs2tEcg2k+OCsSI3Fi9urrC5XHaZuRiII3+7inKiUaftwaEGx6pEDqW/x9koZs4ApWKjO8rpbzavN1tgbrMyKzUCu0+2DZvGOxrbKpT/Q1fMSsakmCB8VW57cFZaq8ycOjOtUQiB+RmRqDTP4E13YnA2JSEEK6fE4oVNFWi30pKjpEozJpWeXW1JdjQaO3r7044BJeB59NMyJIb549r5qQ4f+7y8OPh5q/CuA+sTbdXZZ4BJgmmNY4DB2QRRo/HMHmdEzrJ0cjSignxx+5JMlz9WRnQQrpufinuWO96OwROF+HkjIyoQPmoVVjoppXGgq2YnIyzAG0+vP713UVtXHzYeacZF0xPYH8cBdy2bBI1Oj9e2jjx7ZjRJHK7vsHu9mUV/Sf1y56Y2VjZ3wddLhbhRViTNiA5yW3AWG+Lbv+5tYJEiV9he0YpAHzWmJoRgeW4Mth1vtRq4WFNa144AHzVSnXwRa745MI0J9nX6Eoq7l2ehvceAlwY1tJdSYq+5GMh4tyRbKSw2MLXxo721OFjbjh+vyoavl+MVbIP9vLFqahz+u7d2xKq5jrIUbWFw5noMziYAk0miTsuZM5rYMqKDsPPnK5yaTjMUtUrg1xdPc+qVZ0/x3bkpuGVxukveYAN8vHDdvFR8UdZwWvnvTw7UwWCSrNLooOnJYVicHY3nNh5Hd9/wH7xOturQrTfavd7MIjbED1PiQ1A8xNpBR1W2dCEtMnDUwXlGVCBauvpGrO7nTMp6s2YsyIzqn42cZZ4B3umidWfbK1oxKy0CXmoVVuTGwmCS2DBCKXaL0rp25MaHOP1CiGXdmSuqLk9LDMWK3Fg8v6nitIb2J1p0aNPpUZA8/mfcY0P8kBMX3H8eew1G/HHtIUyJD8HFTkj3vmxmEtp7DPiqzDXtMDQMzsYMg7MJoLGjF3qj5MwZEY3o5kUZuH+V69ZRXrcgDT5qFZ7beGr27KOSWmREB2LqBAx2x8pdyyahubMP/x6h2fchSzEQO3qcDVaUE41dJ9ucGgAdbx5dpUaL9P6iIGNXsfFIYyeaO/v6Z44AIDUyAFFBPtjtgnVnbV19ONTQgbnpSir3zJRwhAd42/ShW0qJstp2pxYDsUiNDMAF+fG41EVVl+9ZngVttx4vb67s32apiDkRZs4AZfZsR6XSruLVLSdQ3daNh87PcUogvXBSFGJDfPGei3qeWQq2uKLnJ52OwdkEUKNRcsA5c0ZE7hYV5IsrC5Px3u4aNLb3oF7bg+2VrfgWq56Oyuy0CMzLiMAzG44N24S5rK4DKgFkxTgenC3LiYHRJLHxqHNSGw1GE6padaNebwYovc4AjGlq42Zz+fMFA4IzIQRmpYa7pCjI9kplvdkcc3CmVgkUTY5B8aFGGEdY41bd1o2OXoNTi4FYCCHwj+/OxHl5zl2vapGXFIrlOTF4btOp9ZV7TrYhwEeN7NiJ0c5mSXY09EaJzw/W4+/FR7EoKwqLspzTR1WtErhkRiLWHWpCc2evU445kKZbqRjLgiCux+BsAqjR9ADw3B5nRHR2uXlROgwmE174phIf76uFlGBKoxPcvSwLDe29eHuYRf/l9e1IiwqEv4/j61cKksMRFuDttHVntZoe6I0S6VGjXwOVHB4AtUqMbXB2rAUpEQFICj99/IWpETjZqkNjR49TH297RSt8vVSnVSdcnhsLjU6P3SeHDwYPuqAYyFi6Z0UWNLpTs2clVRrkJYbCa4K035iVFg5/bzV++eFBaLv1eGC1c7MYLpuZBINJ4qOSWqceFzg1c8a0RtebGL/tZzlPb0BNRGeX1MhAnJcXj9e3nsDbO6sxLTEEGdET48q3O83PjMTMlDA8te4Y+gwmq/uU13cg18FiIBZqlcDirGisP9zolGqEFS3mSo2jKKNv4eOlQnK4/5j1OjOaJLYebzlt1sxiVpqyDsrZ/c62V7RiRkrYaQUiFmVHwUslRiypX1bXDpUAJsc6PnPqTvlJYSiarKyvbO3qQ2ldOwrGcfPpwXy91FiQGYnOXgMuKUjsb2/iLNmxwchLDMW7Lkht5JqzscPgbAKo0egQFuCNQBc25SUissdtizPQ0WvAoYYOzpo5iRACdy3PQo2mGx/sqTnj9q5eA0626jB5FOvNLIpyotHc2YcDtdpRH6u/x5kT0hotxxmrXmcHa7Vo7zGctt7MYlpCKHy9VE5Nbezo0eNgrRZz0k9/vBA/b8zNiBhx3VlpXTsyooNGNXPqbvesyEabTo+H3tsHvVFixgRZb2Zxfl48gn29cO+5rqkGfOnMRBysbe9vRu8s7d16+Hqp4Oc9fn+3xgsGZxNATRvL6BORZ8lPCuufbbgwn8GZsyzNjkZeYij+se4oDMbTZ88ON3RAytEVA7FYnBUNIYCvnVC1saK5C4E+akQH29cUeyjpUUo5fWc3yrbG0t/MWnDm46XC9KQwpwZnO0+0wSTRXwxkoOU5sTja2IkTLUMHpqUuKgYylgqSw7AkOxqfH2ww/zz+KzUOdOnMROz8xQqX9ev81vQEeKkE3tt95gWc0dDo2IB6rDA4mwDY44yIPNHvvp2HJ78zAwn8++Q0Qgj8YNkknGjR4b/7Tl9XYmlu64xiEJFBvpieFIbiQ6Nfd1bR3IW0qECnFYRJjw5Et96IhnbnFz0YbPOxFmTFBA3ZjH5WWjgO1mhHbHFgq+0VrfBSCcxMOTMgWZEbCwD4cojZM61OjxpNt0uKgYy1e1ZkAQDiQ/2c3lPN3YQQo+ppNpLIIF8snRyD9/fUnHEBZzQ03X0I82elxrHA4Gyck1IqM2es1EhEHiYtKhAXMaXR6c7NjUVOXDD+/vXR06r3HarvQKCP2mkX65blxGBftWbUld8qW7qcUqnRImOMyun3GUzYUdFqdb2ZxayUcBhMEnurNU55zO0VrchPCrWalpgSGYCsmCB8NcS6s9K68V0MZKCZKeG4dGYiLi5wTdn+ie7yWYlo6ujFJnOlUWfQduu53myMMDgb57TdenT1GTlzRkR0llCpBO4smoRjTV347EB9//ayunZMjgt2WvPhoskxkBI2Nz+2Rm80obqtG+lOKAZiYVm75uqKjXurNejWGzE/M2rIfSzNqHc5IbWxu8+IfdWaM9abDbQ8NxbbK1rR3nNmD7r+4GwCzJwBwJ+vLMCD57muJ+NEVpQTg1B/b6emNmp0eoQyrXFMMDgb56rNlRqTOHNGRHTWOD8vHhnRgXjy6yMwmSSklCiv70COEz+YT00IQVSQ76hSG6tadTCapFNnzuJC/ODnrXJ5UZDNR1sgBDAv48z1XxbhgT7IjA50SnC252Qb9EZpdb2ZxYrcGBhMEuutnJOyunZEB/s6bW0fjV++Xmp8a3oCPj9YbzWQd0Q7Z87GDIOzca5WowRnXNNBRHT2UKsE7lw6CeX1HfiyrAH17T3QduuR64RiIBYqlcDSydFYf6jR4bUrlS2WSo3OK36gUgmkRQa6fOZs87FmTE0IQVjA8OtsClMjsOtE26jbDmyraIVKnCrRb82MlHBEBPpYTW2cCMVAyHkunZmIXoMJn+6vG3a/rl4DjjZ2QNdnGHY/TbceYQzOxgRrr49zNRr2OCMiOhtdXJCAv311BH8vPoofrVDKck8eZY+zwYomx+CdXdXYU6XB7LShZ3SGUtGsA+CcHmcDZUQHoryuw6nHHKi7z4g9JzVYszBtxH1npYXjzZ1VONbUiaxR9BfbXtGKKQkhCPEb+gOw2hwwf1WmBMyW5sx9BhOONHZgyeRohx+fJpaC5DBkRAfi3V01uLIwGXXaHhxv6sKxpk4ca+rs/75OqzRRF0JJGZ4SH4IpCSH9/8YE+6HPYIKuz8iZszHC4Gycq2nrhp+3ChGBrKBDRHQ28VKr8P2lmXjwvf14ZsNxAHBKj7OBzsmKglolUFze6GBw1okQPy+nv0dlRAVh7cEG6I0meKudnwS060Qb+owmqyX0Bys0rzvbeaLN4eCs12DE7pNtuGZu6oj7rsiNxXu7a7DrRBvmZijjO9rYCb1RTohKjeQcQghcNjMJf/j8EKY+/Dl0AyqKBvt6ISMmCPMzIpEZE4SEMD+caNGhtLYdJVUafLzv1GxbVJAvsmKCAICl9McIg7NxzlJG31kliomIaPy4dGYSnvjqCLYcb0FimL/Tr2yH+nujMDUcxYea8JPV9hdnqGzWId2JZfQt0qMCYTBJVLXqkBEdZNN9jCYJtY3FUjYfa4aXStgUkKZHBSIy0Ac7K9vwnTkpNh1/sP3VWvQaTJgzzHozi0VZUfBWC3xV3tgfnE20YiDkHFfPTkZ5fQeignyQGR2EjOhATIoOQnSw77D/J7U6Pcrq21Fa246Dte0orWtHsK+XU9e00tAYnHkYKSV0fUYE+tp2amo03UgMd00jQyIi8mw+XircvjQTv/zwoFOaT1tTlBODxz4tR722x+6eUxXNXSgcZg2Vo9KjT1VstCU4e2FTBf657hheu3kOcmxI/dx8rAXTk8MQZMN7sRACM1PDsetE68gDH8K2CuW+tgRnwX7emJcRiS/LGvDT83MBKMVA/LxV/ZUsiQCl59mT35lh9/1CA5TfsXkZI88ck/OxIIgHMZokbn9tFxY/XmxzdZ2aNjagJiI6m11ZmIxJMUFYlDV0yffRKJocAwBYd8h68+Oh9OiNqNV2O329GXCq15ktRUG03Xr89cvDaO7sxZoXdvQX0hpKe48e+6o1w/Y3G6wwNRyVLTo0dTjWE257RSuyY4NsTv9cnhOD401d/c+/tLYdOXEhNs8MEpHnYnDmIaSUePijA/j8YANauvrwzs7qEe/T3WdES1cfy+gTEZ3F/LzV+OJHi7FmYbpLjp8dG4SEUD98XW5fcFbVqoOUcMlsTliAD8IDvHHchuDs+U0VaO8x4M9XTkdXrwFrXtwOrW7oC6A7KlphkrBpvZmFpd/Z7pP2l9Q3GE3YWdlq06yZxfLcWADAV2UNkFKitK59QjSfJiIGZx7jn+uO4bWtJ3H7kkzMSg3Hy1sqRyzLy0qNREQEwKXrjoUQWJoTg2+ONqPXYBz5DmaWwMmZPc4GSo8KHLHXmUbXhxc2VeC8aXG4dGYSnr5uFiqau3DLqzvRo7f+XDYfa4GPlwozU2xPx5yWGAoftcqhfmelde3o6jMO23x6sOSIAEyODcaXZQ2o1ZrbKHA9ENGEwODMA7yzqxp/+PwQLilIwE9WTcaaBWk40aLDusPDX6VkjzMiIhoLRZNj0NVnxM5K24OPSnNwlu6CtEYASI8KGjGt8ZkNx9HVZ8APza0GFmRG4U9XFmB7RSvufasERisXQTcfa0Fhajj8vNU2j8XPW428pFDsrLR/3dl283qz4ZpPW7M8NwY7Ktuw5VgLABYDIZooGJy52YbDTXjw3X1YOCkSj18+HSqVwOppcYgN8cWL31QOe9/+mTOmNRIRkQstnBQJH7UKxXakNla2dCEi0AehLiq/nREdiPr2HnT1Wm+e29LZi5c2V+LC/ITTWgx8a3oCfn5BLj7ZX4//+7gUUp4K0Fq7+lBW127XejOLwtRwHKhpH3JGbijbKlqRFhmA2BD7iq0sz42F0STx9PpjEAIuKwhDRGPrrA/OOnr0/Vf3xtqBGi3ueG0XsmKD8dT3ZsHHSzkd3moVrp2Xio1HmnG0cegmmzVt3VCrBGKDfcdqyEREdBYK8PHC3IwIFNtRFKSiuQtpka6rJmxZy1bZYv09/OkNx9GjN+Ke5Vln3HbzogzcdE46Xtpc2d8jDgC2HldmoeZn2l9cZVZqOPqMJuyv0dp8H5NJYoed680sCpLDEBnogyONnUiPDLS5yjMRebazOjiTUuLqZ7bih2+WnHblbCxUtepww0s7EBbgg5dumI1gv9OvLF49JwU+ahVe3nxiyGPUaLoRF+IHLxc04CQiIhqoaHIMjjV14WSLzqb9K5t1LltvBpwKzqylNjZ29OCVLZW4pCARk2Ksl9r/2fm5uDA/Ho9+Wo739yhFuDYfa0agjxr5SaF2j8dSFMSe1M/DjR3Q6PSYa8d6Mwu1SqAoR6mkmctiIEQTxln9qV4Igevnp6GkSoPPDtSP2eO2dfXh+he3o1dvxEs3zLaayhAV5IuLpifg3d3V0HZbrypV09bNlEYiIhoTlkDAltkzXZ8B9e09LltvBqC/RL+1oiD/WncMeqPE3VZmzSxUKoE/XTkd8zIicP/b+7DxSBM2H2vBnPQIeDtw0TMyyBcZUYF29Tvbbkd/M2tW5CrnhOvNiCaOszo4A4DLZiUhOzYIj39+CHqjyeWP16M34qaXd6C6rRvPXT8bWbFD54ivWZAGXZ8Rb++ssnp7jaYbSSwGQkREYyA9KhBpkQE2BWeVzcrsmitnzvx91EgI9Ttj5qxe24PXt53EZTMTR3x8Xy81nr62EJNignDbq7twvKkLCxxIabSYlRqOXSfabM7G2VbRioRQP4db4izJjsGlMxJxfl68Q/cnIs8zYnAmhEgWQhQLIcqEEAeFEPeYt/9BCFEuhNgnhHhfCBHm8tG6gFol8MDqHFQ0d+E/O6wHQc5iNEnc/cYe7KnS4K9XFYx4pSwvKRSFqeF4ZcuJMypKGYwm1Lf3cOaMiIjGTFFODLYca0F33/BFLyzrwFzR42yg9OjAM3qd/aP4KEwmibuWDT1rNlCovzdeumEOwvyV5QX29DcbbFZqONp0epv6r0kpse24st7M0VYI/j5q/PmqApe/zkQ0dmyZOTMAuE9KmQtgHoA7hRBTAHwBYJqUMh/AYQAPuW6YrrUsJwZz0iLwty+PDFn1yRke/7wca0sb8MsLp9h8lWvNwjScbNVh3aArlfXtPTCaJHucERHRmCmaHINeg6m/cMZQKlzc48wiIyoIx5s6+2eqajTd+M+Ok7hydjKSI2wvRhIX6ofXb5mH/7t4KqaOYv1WYZqy7myXDevOKpq70NzZi7kZjgeDRDTxjFjaR0pZB6DO/H2HEKIMQKKUcu2A3bYCuNw1Q3Q9IQQePD8Hl/5zM57bWIF7Vth2tc0eW4+34JkNx/GdOSm4YWG6zfdbNTUOcSF+eGlzJZbnxvZvr9X0AGCPMyIiGjtz0iPg763G458fwv/218FbLaBWCXipVOZ/BbzUAhuPNCM62BdBLq4gmB4ViPYeA9p0ekQE+uDvXx+BgMAPiiY5dKzRzkBlRAUhLMAbO0+04srZycPuO9r1ZkQ0Mdn1V1MIkQZgBoBtg266EcCbQ9znVgC3AkBKSor9IxwjM1PCcd60ODyz4RiumZeCqCDnlafv6NHjvrf2IiUiAD+/INeu+3qrVbh2fir+8PkhHGno6F+jVqNR8vmZ1khERGPFz1uNNQvT8L99ddhyrAV6owlGk4TBJGE0ydN+vrggweXjSY+2VGzsRGePH97eWY1r5qa47cKlSiUwKyUcO0+MPHO2raIVUUE+yGBKIhENYHNwJoQIAvAugB9KKdsHbP8ZlNTH163dT0r5DIBnAKCwsHBs69Xb6f5Vk7G2tAFPfHUEv754mtOO++v/lqJO2423b1/gUB+Sq2cn429fHcHLWyrxm0vyACiVGgEwrZGIiMbUA6tz8MDqnGH3Gav2NJbA5lhTF97YXgW1SuD7DsyaOdOstHB8Vd6I331ShoRQP8SH+SM+1A/xof6IDPSBSqWsL9teMbr1ZkQ0MdkUKQghvKEEZq9LKd8bsP16ABcCWC7HulGYC2REB+Hq2cn497aTuHFhulNy5dcerMfbu6pxZ1Fmfw8Ue0UG+eLi6Ql4d1cN7l+Vg1B/b9RouhEV5AM/b/Wox0hERORMYxVwJIb5w1stUFzeiM8P1uOGhelW29OMpZVT4vDurmq8tLkSfYbTq0D7qFWIC/VDbIgvajTduHVxhptGSUSeasTgTCh/YZ8HUCal/POA7asBPABgiZTSto6U48A9K7Lw/p4a/GHtIfzjuzNHdazmzl489N5+TIkPwT3Ls0d1rOsXpOHtXdV4e2cVbl6Ugeq2bs6aERHRWc1LrUJKRAA+PVAPf281bl+S6e4hYVJMEL66bymklGjp6kO9tge1mm7UaXtQq+1GnaYH9doeTIkPwYopsSMfkIjOKrbMnC0EcC2A/UKIEvO2nwJ4AoAvgC/MV8i2Silvd8Ugx1JMsB9uXpSBJ746glsXaTA9Ocyh40gp8dB7+9HRY8C/bymAj9foWspNSwzF7LRwvLylEjcsTEeNphs5cUP3SCMiIjobpEcF4VhTF65bkIroYOetFx8tIQSignwRFeSLaYmh7h4OEY0TI0YMUspNUkohpcyXUhaYvz6RUk6SUiYP2DbuAzOLWxdnIDLQB49+WuZw3vzbu6rxRWkD7l81GZOdFEStWZCOqtZufFXWgFoNZ86IiIimJYYgxM8Lty12/6wZEdFojW46Z4IK8vXC3cuzsPV4K9YdbrL7/lWtOvz6v6WYmx6Bm86xvWz+SFZOjUV8qB/+8uUR9OhNDM6IiOis9/2lk7Du/iJEBPq4eyhERKPG4GwI35mTgtTIAPz+03IYTbbPnhlNEve9vRcA8McrpvdXZXIGb7UK35uXirI6pVhmYrjtDTaJiIgmIh8vFQMzIpowGJwNwcdLhR+vnIzy+g68v6fG5vu9sKkC2yta8cuLpiA5wvnB03fmpPSvX0sIc29FKiIiIiIich4GZ8O4IC8e+Umh+PPaQ+jRG0fc/1B9B/7w+SGcOyUWV8xKcsmYIgJ9cElBAoQAkjhzRkREREQ0YdjfEfksolIJPHheDr777Db8+uNSnDMpCqH+3gjx80aIvxdC/LwR7OcFL7UKfQYTfvhmCYL9vPDopXku7fHy0/Nzcd60eIT6e7vsMYiIiIiIaGwxOBvBgswoXJAXj39vO4l/bztpdZ9AHzX8vNVo6erDM9fOQlSQa0v5hgX4oCgnxqWPQUREREREY4vBmQ2e/M4M/OyCXLT36NHebUB7tx7abv2pn3v0aO/WIz8pFCunxrl7uERERERENA4xOLOBSiWQEOaPBLB0PRERERERuQYLghAREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERFNDI8/DhQXn76tuFjZPg4wOCMiIiIioolh9mzgyitPBWjFxcrPs2e7d1w28nL3AIiIiIiIiJyiqAh46y3g/POBxYuB3buVn4uK3D0ym3DmjIiIiIiIJg6dDujpAdauBe64Y9wEZgCDMyIiIiIimii0WmDNGkCtBh56CPjXv85cg+bBGJwREREREdHEcM01QHMz8OSTwO9+p6Q0DlyD5uEYnBERERER0fj35ZfA//4HXHWVks4InFqDtmOHe8dmIyGlHLMHKywslDt37hyzxyMiIiIiorNAZyeQlwf4+AAlJYC/v7tHNCQhxC4pZaG121itkYiIiIiIxref/hQ4cQLYuNGjA7ORMK2RiIiIiIjGr40blTVmd90FLFzo7tGMyojBmRAiWQhRLIQoE0IcFELcY94eIYT4QghxxPxvuOuHS0REREREZNbdDdx0E5CerhQAGedsmTkzALhPSpkLYB6AO4UQUwA8COArKWUWgK/MPxMREREREY2Nhx8GjhwBnn0WCAx092hGbcTgTEpZJ6Xcbf6+A0AZgEQAFwN42bzbywAucdEYiYiIiIiITrd9O/CnPwG33gosX+7u0TiFXWvOhBBpAGYA2AYgVkpZBygBHICYIe5zqxBipxBiZ1NT0yiHS0REREREZ73eXuDGG4GEBODxx909GqexOTgTQgQBeBfAD6WU7bbeT0r5jJSyUEpZGB0d7cgYiYiIiIjobPf446eaSf/2t8DBg8D3vw88/bR7x+VENgVnQghvKIHZ61LK98ybG4QQ8ebb4wE0umaIRERERER01ps9G7jySmV92aOPAitXAn/+s7J9grClWqMA8DyAMinlnwfc9BGA683fXw/gQ+cPj4iIiIiIJryBs2IWxcWnUhb1ekClUtaW3X474OsL7NoFvPUWUFQ09uN1EVtmzhYCuBbAMiFEifnrfACPAThXCHEEwLnmn4mIiIiIiOxjmRWzBGjFxcDllwMtLcr26Ghg6VLgvfeAlBSgq0tJaZxAgRkACCnlmD1YYWGh3Llz55g9HhERERERjRPFxcBllwF5ecDmzYDBoGyPjwfOPx+44ALAxwdYswa44w7gX/8alzNnQohdUspCa7d5jfVgiIiIiIiIzpCdDXR0ABs2AImJSvriBRcABQWAEErwduWVpwKyoqLTf54A7CqlT0RERERE5BK3367Mln3/+0qp/IULgRkzlMAMAHbsOD0QKypSft6xw31jdjKmNRIRERERkXu98gpw/fXAt7+trCsbPEs2gQyX1siZMyIiIiIicq8//Qnw81PWkQETclbMFlxzRkRERERE7rN7N7BvH/DznwOxsae2W9aVnUU4c0ZERERERO7z058CERHAj3/s7pG4HWfOiIiIiIjIPdatAz7/HPjDH4DQUHePxu04c0ZERERERGNPSuChh5Sy+Xfe6e7ReATOnBERERER0dj773+BrVuBZ58F/P3dPRqPwJkzIiIiIiIaW0ajstYsOxtYs8bdo/EYnDkjIiIiIqKx9frrwMGDSrl8L4YkFpw5IyIiIiKisdPbCzz8MDBrFnDZZe4ejUdhmEpERERERGPnmWeAykrg6acBFeeKBuKrQUREREREY6OzE/jNb5Tm0uee6+7ReBzOnBERERER0dj461+Bxkbgo48AIdw9Go/DmTMiIiIiInKdxx8HiouBlhal2fQllwA6nbKdTsOZMyIiIiIicp3Zs4ErrwSWLVPSGr/1LeXnt95y98g8DmfOiIiIiIjINUwmpTpjZqYSjE2bBvzkJ8r3RUXuHp3H4cwZERERERE55vHHlZmxgYFWcTGwcSMQFgb84x/A4cNAXByweDGwYQPwi18wMBsCgzMiIiIiInKMJWXRMhP28svA7bcrt/X0APPmKQ2no6KAa65RArN//UvZlwHaGZjWSEREREREjikqAt54QynykZEBrFkDGAxKwLZjB7BlCxAfrwRmb70F/PrXyr9XXqnMsNFpOHNGRERERESOy8wE2tuVr6VLgTffBGJiTt2+Y8fpa8yKipSfd+zg7NkgDM6IiIiIiMhxlZVAaChw553AM88ABw+eHpz95Cdn3odpjVYxrZGIiIiIiBxTXKykKL7/PvDb3zJlcZQYnBERERERkWOGS1kkuwkp5Zg9WGFhody5c+eYPR4REREREZEnEULsklIWWruNM2dEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXkABmdEREREREQegMEZERERERGRB2BwRkRERERE5AEYnBEREREREXmAMW1CLYRoAnBizB7QdlEAmt09CLILz9n4wvM1/vCcjT88Z+MPz9n4wvM1/njqOUuVUkZbu2FMgzNPJYTYOVSXbvJMPGfjC8/X+MNzNv7wnI0/PGfjC8/X+DMezxnTGomIiIiIiDwAgzMiIiIiIiIPwOBM8Yy7B0B24zkbX3i+xh+es/GH52z84TkbX3i+xp9xd8645oyIiIiIiMgDcOaMiIiIiIjIA4yr4EwIsVoIcUgIcVQI8eCA7W8KIUrMX5VCiJIh7h8hhPhCCHHE/G+4efs1A+5fIoQwCSEKrNz/dfPjHxBCvCCE8DZvF0KIJ8zj2ieEmOmaV2D88eBzliOE2CKE6BVC/Ng1z3588uBzdo35/9c+IcRmIcR017wC448Hn7OLzeerRAixUwhxjmtegfHFhefLWwjxshBivxCiTAjx0BD3TxdCbDPf/00hhI95O9/LhuDB54zvZUPw4HPG9zIrPPh8jf37mJRyXHwBUAM4BiADgA+AvQCmWNnvTwB+OcQxHgfwoPn7BwH83so+eQCOD3H/8wEI89cbAO4YsP1T8/Z5ALa5+/XyhC8PP2cxAGYD+C2AH7v7tfKULw8/ZwsAhJu/P4//z8bFOQvCqfT5fADl7n693P3lyvMF4LsA/mP+PgBAJYA0K/d/C8DV5u+f4nvZuD5nfC8bf+eM72Xj63yN+fvYeJo5mwPgqJTyuJSyD8B/AFw8cAchhABwJZQPB9ZcDOBl8/cvA7jEyj7fGer+UspPpBmA7QCSBhz3FfNNWwGECSHibX5mE5fHnjMpZaOUcgcAvV3PaOLz5HO2WUrZZt5tK079/zvbefI56zRvA4BAAFzk7NrzJQEECiG8APgD6APQbuXYywC8Y+X+fC+zzmPPGd/LhuTJ54zvZWfy5PM15u9j4yk4SwRQNeDnavO2gRYBaJBSHhniGLFSyjoAMP8bY2WfqzD0iQegTJECuBbAZ3aM7WzkyeeMrBsv5+wmKFf4ycPPmRDi20KIcgD/A3DjcPc/S7jyfL0DoAtAHYCTAP4opWwddN9IABoppcHK4/O9zDpPPmdk3Xg5Z3wvU3j0+Rrr97HxFJwJK9sGR69DXtm16QGEmAtAJ6U8MMKu/wSwQUq50Y6xnY08+ZyRdR5/zoQQRVDe0B5wdAwTjEefMynl+1LKHChXIf/P0TFMIK48X3MAGAEkAEgHcJ8QIsOOx+d7mXWefM7IOo8/Z3wvO41Hn6+xfh8bT8FZNYDkAT8nAai1/GCerrwUwJsDtr1oXsD3iXlTgyVFw/xv46DHuBojXxl+GEA0gHttHdtZzJPPGVnn0edMCJEP4DkAF0spW+x4XhOZR58zCynlBgCZQogoW57UBObK8/VdAJ9JKfVSykYA3wAoHPT4zVDSFb2sPD7fy6zz5HNG1nn0OeN72Rk8+nxZjNX72HgKznYAyDJXU/GB8mHhowG3r4CySK/askFKeYOUskBKeb5500cArjd/fz2ADy37CiFUAK6AkudqlRDiZgCrAHxHSmkacNNHAK4TinkAtJap1bOcJ58zss5jz5kQIgXAewCulVIeHsVznGg8+ZxNMufyQyiV/3wAnO0fRFx5vk4CWGZ+LwqEUtSjfOCDm9dOFAO43Mr9+V5mnSefM7LOY88Z38us8uTzNfbvY9IDqrTY+gWlktRhKBVdfjbotpcA3D7C/SMBfAXgiPnfiAG3LQWwdYT7G8yPXWL++qV5uwDwD/Nt+wEUuvu18pQvDz5ncVCu1LQD0Ji/D3H36+UJXx58zp4D0DZg+053v1ae8uXB5+wBAAfN27YAOMfdr5UnfLnqfEGpKva2+TUvBXD/EPfPgFK45ah5f1/zdr6Xjb9zxvey8XfO+F42vs7XmL+PWUpDEhERERERkRuNp7RGIiIiIiKiCYvBGRERERERkQdgcEZEREREROQBGJwRERERERF5AAZnREREREREHoDBGRERERERkQdgcEZEREREROQBGJwRERERERF5gP8H1iUdKw0rULgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9dElEQVR4nO3dd3xUVfrH8c9JIxAIpNISEkLvLXSRpoiiYsW21rXuurpV3XVd9be667rNdYuude2KBcWCigJKkU7ovQWSEBIgHVLP74+ZiQFSZpKZZBK+79crL5I7t5yZG3Lvc89znmOstYiIiIiIiEjTCmjqBoiIiIiIiIiCMxEREREREb+g4ExERERERMQPKDgTERERERHxAwrORERERERE/ICCMxERERERET+g4ExERERERMQPKDgTEWmmjDEFVb4qjDHHq/x8XVO3rz6MMfuMMec0dTtqY4xZZIy51Uf77m2M+cgYk2WMOWqM+cIY06eGdRcYY6wxJqjKsteNMRnGmDxjzI5T22mMmWqM2WaMKTLGLDTGJFR5zRhj/mSMOeL8etIYY3zxPkVEpHoKzkREmilrbVvXF5AKXFRl2RtN3b5TVQ0imvMxfKwDMBfoA3QEVgIfnbqSM/iu7r3+EUi01oYDFwOPGWNGOLeJBj4AHgIigdXAO1W2vR24BBgCDAYuBO7wwnsSERE3KTgTEWlhjDEBxpgHjDG7nT0gs40xkc7XEp29LTcbYw4YY44ZY+40xow0xmwwxuQYY/5VZV83GWOWGmP+aYzJdfa6TK3yentjzIvO3po0Y8xjxpjAU7b9uzHmKPCIMaaHs8fniDEm2xjzhjGmg3P914BuwMfO3r/7jDGTjDEHT3l/lb1rxphHjDHvOXuM8oCb6mhTT2PMN873km2MqRqcVD1GqHOfR5yfySpjTEdjzOPABOBfzjb+y7l+X2PMfGdv13ZjzKwq+/qfMeZZ5+v5zuMnVHdca+1Ka+2L1tqj1tpS4O9AH2NMVNXPHHgYuK+a7Tdba4tdPzq/ejh/vgzYbK1911p7AngEGGKM6et8/Ubgr9bag9baNOCvwE3VtVNERHxDwZmISMtzD44ekIlAF+AY8O9T1hkN9AKuAp4CHgTOAQYAs4wxE09Zdw8QjSMo+MAV7AGvAGVAT2AYMA24tZptY4HHAYOjd6cL0A+IxxEkYK29npN7AJ908/3OBN7D0ev0Rh1t+j3wJRABxAH/rGGfNwLtne2LAu4EjltrHwQWA3c723i3MSYMmA+86Xyf1wD/McYMqLK/65zHjgZSnO10x9nAIWvtkSrL/gA8AxyqbgNjzH+MMUXANiAD+Mz50gBgvWs9a20hsNu5/LTXnd9XfQ8iIuJjCs5ERFqeO4AHnT0gxTiCnytOSfn7vbX2hLX2S6AQeMtae9jZY7IYR1Djchh4ylpbaq19B9gOzDDGdATOB35qrS201h7G0dNzdZVt0621/7TWlllrj1trd1lr51tri621WcDfcASRDfGdtfZDa20FEF5Hm0qBBKCL8/0vqWGfpTiCsp7W2nJr7RprbV4N614I7LPWvux8n2uB94ErqqzzqbX2W+f5eBAYa4yJr+1NGWPicATVP6+yLBkYT81BJdbaHwHtcPTwfQC4etLaArmnrJ7rXLe613OBthp3JiLSeBSciYi0PAnAHGc6Xg6wFSjHMYbJJbPK98er+bltlZ/TrLW2ys/7cfR8JQDBQEaVY/0XR++Ry4GqDTPGxBpj3namG+YBr+PoTWqIqseoq0334ei9W2mM2WyMuaWGfb4GfAG8bYxJdxbHCK5h3QRgtOt4zmNeB3Sqro3W2gLgKI7PsFrGmBgcPXz/sda+5VwWAPwHuNdaW1bTts5jlDsDzzjgLufiAhzBa1XhQH4Nr4cDBaecexER8SEFZyIiLc8B4HxrbYcqX6HOXrH66HpK70k3IN15nGIguspxwq21VVPhTr2x/6Nz2WBn0Yof4AiWalq/EGjj+sE5dizmlHWqblNrm6y1h6y1t1lru+DoYfyPMabnqW/Y2Uv4qLW2PzAOR+/YDTW08QDwzSmfd1tr7V1V1qnsJTPGtMVRkCP91OM6X4/AEZjNtdY+XuWlcCAZeMcYcwhY5Vx+0Bgzobp94Sga4hpzthlHsQ/XccKcr22u7nXn95sREZFGo+BMRKTleRZ43FV0whgTY4yZ2YD9xQL3GGOCjTFX4hgr9pm1NgNHEPFXY0y4cRQi6XHKeLVTtcPRQ5NjjOkK/OqU1zOBpCo/7wBCjTEznD1XvwVa1bTzutpkjLnSmS4IjrF4Fkev4kmMMZONMYOcwWAejjRH13qntvEToLcx5nrnZxRsHAVW+lVZ5wJjzFnGmBAcY89WWGtP6lV0HjccR4/dUmvtA6e8nIujt22o8+sC5/IRwApnr+TVxpi2xphAY8x5OMa/LXCuNwcYaIy53BgTCvwO2GCt3eZ8/VXg58aYrsaYLsAvgP+d2kYREfEdBWciIi3PP3CUY//SGJMPLMdRmKO+VuAoHpKNo6jHFVUKVNwAhABbcAQ77wGda9nXo8BwHIHGpzjGRFX1R+C3zvTAX1prc4EfAS8AaTh60g5Su9raNBJHIFOA4zO611q7t5p9dHJul4cjLfQbHCmY4Ph8rzCOSpdPW2vzcRQduRpHb9gh4E+cHES+iaOYylEcwVRN89Bd6mzjzebkeey6WYdDri8gy7lNprW2BEegeZfz8zkG/AXH2LuPAJxj/C7HcQ6P4fidqDo+8L/Ax8BGYBOO8/PfGtopIiI+YJRKLiIiNTHG3ATcaq09q6nb0lwZY/4HHLTW/rap2yIiIv5NPWciIiIiIiJ+QMGZiIiIiIiIH1Bao4iIiIiIiB9Qz5mIiIiIiIgfUHAmIiIiIiLiB4Ia82DR0dE2MTGxMQ8pIiIiIiLiN9asWZNtrY2p7rU6gzPnRJXf4pivJQh4z1r7sPO1nwB3A2XAp9ba+2rbV2JiIqtXr/aw+SIiIiIiIi2DMWZ/Ta+503NWDEyx1hYYY4KBJcaYeUBrYCYw2FpbbIyJ9U5zRUREREREzjx1BmfWUc6xwPljsPPLAncBT1hri53rHfZVI0VERERERFo6twqCGGMCjTEpwGFgvrV2BdAbmGCMWWGM+cYYM7KGbW83xqw2xqzOysryWsNFRERERERaErcKglhry4GhxpgOwBxjzEDnthHAGGAkMNsYk2RPmTjNWvsc8BxAcnLyaZOqlZaWcvDgQU6cONGgNyJyqtDQUOLi4ggODm7qpoiIiIiI1Mmjao3W2hxjzCJgOnAQ+MAZjK00xlQA0YBH3WMHDx6kXbt2JCYmYozxZFORGllrOXLkCAcPHqR79+5N3RwRERERkTrVmdZojIlx9phhjGkNnANsAz4EpjiX9wZCgGxPG3DixAmioqIUmIlXGWOIiopSj6yIiIiINBvu9Jx1Bl4xxgTiCOZmW2s/McaEAC8ZYzYBJcCNp6Y0ukuBmfiCfq9EREREpDmps+fMWrvBWjvMWjvYWjvQWvt/zuUl1tofOJcNt9Yu8H1zfePxxx9nwIABDB48mKFDh7JixQoAbr31VrZs2eKVYyQmJpKdXXvH4h/+8AeP9/u///2Pu++++6RlL7/8MkOHDmXo0KGEhIQwaNAghg4dygMPPODx/hvDU089RVFRUVM3Q0RERESauyefhIULT162cKFjeTPgVrXGluy7777jk08+Ye3atWzYsIGvvvqK+Ph4AF544QX69+/faG2pT3BWnZtvvpmUlBRSUlLo0qULCxcuJCUlhSeeeMIr+/eUtZaKiooaX69PcFZWVtbQZomIiIhISzNyJMya9X2AtnCh4+eR1RaW9ztnfHCWkZFBdHQ0rVq1AiA6OpouXboAMGnSJFavXg1A27Ztuf/++xkxYgTnnHMOK1euZNKkSSQlJTF37lzg9F6sCy+8kEWLFp12zEsuuYQRI0YwYMAAnnvuOQAeeOABjh8/ztChQ7nuuusAeP311xk1ahRDhw7ljjvuoLy8HHD0jPXu3ZuJEyeydOlSt9/rn//8Z0aOHMngwYN5+OGHAdi3bx99+/bl1ltvZeDAgVx33XV89dVXjB8/nl69erFy5UoAHnnkEa6//nqmTJlCr169eP755+vcb79+/fjRj37E8OHDOXDgAHfddRfJyckMGDCgcr2nn36a9PR0Jk+ezOTJkys/a5f33nuPm266CYCbbrqJn//850yePJn777+f3bt3M336dEaMGMGECRPYtm2b25+FiIiIiLRAkyfD7NkwcybcfLMjMJs927G8ObDWNtrXiBEj7Km2bNly2rLGlJ+fb4cMGWJ79epl77rrLrto0aLK1yZOnGhXrVplrbUWsJ999pm11tpLLrnEnnvuubakpMSmpKTYIUOGWGutffnll+2Pf/zjyu1nzJhhFy5caK21NiEhwWZlZVlrrT1y5Ii11tqioiI7YMAAm52dba21NiwsrHLbLVu22AsvvNCWlJRYa62966677CuvvGLT09NtfHy8PXz4sC0uLrbjxo076Zinch33iy++sLfddputqKiw5eXldsaMGfabb76xe/futYGBgXbDhg22vLzcDh8+3N588822oqLCfvjhh3bmzJnWWmsffvhhO3jwYFtUVGSzsrJsXFycTUtLq3W/xhj73XffVbbF9b7LysrsxIkT7fr160/7bE79HN5991174403WmutvfHGG+2MGTNsWVmZtdbaKVOm2B07dlhrrV2+fLmdPHnyae+/qX+/RERERKSRlZdb26aNtWDtQw81dWtOA6y2NcRLHpXS97VHP97MlvQ8r+6zf5dwHr5oQI2vt23bljVr1rB48WIWLlzIVVddxRNPPFHZW+MSEhLC9OnTARg0aBCtWrUiODiYQYMGsW/fPo/a9PTTTzNnzhwADhw4wM6dO4mKijppna+//po1a9Yw0tkFe/z4cWJjY1mxYgWTJk0iJiYGgKuuuoodO3bUecwvv/ySL7/8kmHDhgFQUFDAzp076datG927d2fQoEEADBgwgKlTp2KMOe29zZw5k9atW9O6dWsmT57MypUrWbJkSY37TUhIYMyYMZXbz549m+eee46ysjIyMjLYsmULgwcP9uizu/LKKwkMDKSgoIBly5Zx5ZVXVr5WXFzs0b5EREREpAX673+hqAguuQSeecbRa9ZMes78KjhrKoGBgUyaNIlJkyYxaNAgXnnlldOCs+Dg4MrqfwEBAZVpkAEBAZXjn4KCgk4aW1VdGfdFixbx1Vdf8d1339GmTRsmTZpU7XrWWm688Ub++Mc/nrT8ww8/rFcVQmstv/71r7njjjtOWr5v377K91Lbe4PTqx8aY2rdb1hYWOXPe/fu5S9/+QurVq0iIiKCm266qcYy91WPc+o6rn1WVFTQoUMHUlJS6nrrIiIiInKmWLgQfvlLx/fPPw8bNzar1Ea/Cs5q6+Hyle3btxMQEECvXr0ASElJISEhoV77SkxM5D//+Q8VFRWkpaVVjteqKjc3l4iICNq0acO2bdtYvnx55WvBwcGUlpYSHBzM1KlTmTlzJj/72c+IjY3l6NGj5OfnM3r0aO69916OHDlCeHg47777LkOGDKmzbeeddx4PPfQQ1113HW3btiUtLY3g4GCP3t9HH33Er3/9awoLC1m0aBFPPPEErVu3dmu/eXl5hIWF0b59ezIzM5k3bx6TJk0CoF27duTn5xMdHQ1Ax44d2bp1K3369GHOnDm0a9futP2Fh4fTvXt33n33Xa688kqstWzYsMGtz0JEREREWqhVqyAhAdq1g+jo78egrVql4Kw5KCgo4Cc/+Qk5OTkEBQXRs2fPyiIdnho/fnxliuDAgQMZPnz4aetMnz6dZ599lsGDB9OnT5+T0v5uv/12Bg8ezPDhw3njjTd47LHHmDZtGhUVFQQHB/Pvf/+bMWPG8MgjjzB27Fg6d+7M8OHDKwuF1GbatGls3bqVsWPHAo50ztdff53AwEC339+oUaOYMWMGqampPPTQQ3Tp0oUuXbq4td8hQ4YwbNgwBgwYQFJSEuPHjz/pfZ9//vl07tyZhQsX8sQTT3DhhRcSHx/PwIEDKSgoqLY9b7zxBnfddRePPfYYpaWlXH311QrORERERM5kt9wCDzwAv/vd98uaUVqjsfWbN7pekpOTrav6ocvWrVvp169fo7VB6ueRRx6hbdu2/NLVTdxM6PdLRERE5Azy5ptw3XWwYgWMGtXUramWMWaNtTa5utfO+FL6IiIiIiLSQsyb50hnTK429vF7Z3xao7jnkUceaeomiIiIiIjUrKICvvgCzjsPAppnH1TzbLWIiIiIiEhVa9ZAVhacf35Tt6TeFJyJiIiIiEjz99lnYIyj56yZUnAmIiIiIiLN37x5jiIgzumZmiMFZyIiIiIi0rxlZ8PKlc06pREUnAEQGBjI0KFDGThwIFdeeSVFRUX13tdNN93Ee++9B8Ctt97Kli1balx30aJFLFu2rPLnZ599lldffbXex3bZt28fAwcOPGnZI488wl/+8heP9uOt9oiIiIiI+NSXX4K1zT44U7VGoHXr1qSkpABw3XXX8eyzz/Lzn/+88vXy8nKPJmt2eeGFF2p9fdGiRbRt25Zx48YBcOedd3p8DF8pKyvzq/aIiIiIiNTos88gJqbZltB3aV49Z08+CQsXnrxs4ULHci+ZMGECu3btYtGiRUyePJlrr72WQYMGUV5ezq9+9StGjhzJ4MGD+e9//wuAtZa7776b/v37M2PGDA4fPly5r0mTJuGadPvzzz9n+PDhDBkyhKlTp7Jv3z6effZZ/v73vzN06FAWL158Uu9WSkoKY8aMYfDgwVx66aUcO3ascp/3338/o0aNonfv3ixevNjj91jbvn/zm98wceJE/vGPf1S2Jz09naFDh1Z+BQYGsn//fvbv38/UqVMZPHgwU6dOJTU1FXD0Ht5zzz2MGzeOpKSkyp5EERERERGvawEl9F2aV+tHjoRZs74P0BYudPw8cqRXdl9WVsa8efMYNGgQACtXruTxxx9ny5YtvPjii7Rv355Vq1axatUqnn/+efbu3cucOXPYvn07Gzdu5Pnnnz8pTdElKyuL2267jffff5/169fz7rvvkpiYyJ133snPfvYzUlJSmDBhwknb3HDDDfzpT39iw4YNDBo0iEcfffSkdq5cuZKnnnrqpOVV7d69+6SA6tlnn3Vr3zk5OXzzzTf84he/qFzWpUsXUlJSSElJ4bbbbuPyyy8nISGBu+++mxtuuIENGzZw3XXXcc8991Ruk5GRwZIlS/jkk0944IEHPDwTIiIiIiJuWr3aMeasmac0gr+lNf70p+BML6xRly6OqLhzZ8jIgH794NFHHV/VGToUnnqq1l0eP36coUOHAo6esx/+8IcsW7aMUaNG0b17dwC+/PJLNmzYUNkLlJuby86dO/n222+55pprCAwMpEuXLkyZMuW0/S9fvpyzzz67cl+RkZG1tic3N5ecnBwmTpwIwI033siVV15Z+fpll10GwIgRI9i3b1+1++jRo0dlqiZ8P4l0Xfu+6qqramzX0qVLeeGFFyp767777js++OADAK6//nruu+++ynUvueQSAgIC6N+/P5mZmbW+XxERERGReps3z1FCf9q0pm5Jg/lXcOaOiAhHYJaaCt26OX5uoKpjzqoKCwur/N5ayz//+U/OO2XehM8++wxjTK37t9bWuY4nWrVqBTgKmZSVlXltv3Dye64qIyODH/7wh8ydO5e2bdtWu07V9+hqIzjev4iIiIiIT3z2GYwe3axL6Lv4V1rjU0/BokW1fz38MBQVwUMPOf59+OHa16+j18xd5513Hs888wylpaUA7Nixg8LCQs4++2zefvttysvLycjIYOGpY+KAsWPH8s0337B3714Ajh49CkC7du3Iz88/bf327dsTERFR2UP12muvVfZ0NVR99l1aWsqsWbP405/+RO/evSuXjxs3jrfffhuAN954g7POOssrbRQRERERcUtWFqxa1SJSGqG59Zy5xpjNng2TJzu+qv7sQ7feeiv79u1j+PDhWGuJiYnhww8/5NJLL2XBggUMGjSI3r17VxvoxMTE8Nxzz3HZZZdRUVFBbGws8+fP56KLLuKKK67go48+4p///OdJ27zyyivceeedFBUVkZSUxMsvv+y19+LpvpctW8aqVat4+OGHefjhhwFHj+HTTz/NLbfcwp///GdiYmK82kYRERERkTq1kBL6LqYxU86Sk5Otq3qhy9atW+nXr597O3jySUfxj6qB2MKFjmi5yngnERePfr9EREREpHn5wQ8cAdqhQ82mUqMxZo21ttqa/82r56y6AMzVgyYiIiIiImeO8nL4/HO44IJmE5jVpWW8CxERERERObOsXg1HjrSYlEZQcCYiIiIiIs3RvHmOHrMWUELfpc7gzBgTaoxZaYxZb4zZbIx59JTXf2mMscaYeteuVKl18QX9XomIiIi0YPPmwahREBXV1C3xGnd6zoqBKdbaIcBQYLoxZgyAMSYeOBdIrW8DQkNDOXLkiG6kxaustRw5coTQ0NCmboqIiIiIeJurhP4FFzR1S7yqzoIg1hE1FTh/DHZ+uSKpvwP3AR/VtwFxcXEcPHiQrKys+u5CpFqhoaHExcU1dTNERERExNu++KJFldB3cataozEmEFgD9AT+ba1dYYy5GEiz1q43xtS7AcHBwXTv3r3e24uIiIiIyBlm3jyIjYXhw5u6JV7lVnBmrS0HhhpjOgBzjDGDgQeBOkffGWNuB24H6NatW/1bKiIiIiIiUl7u6DlrQSX0XTx6N9baHGARMBPoDqw3xuwD4oC1xphO1WzznLU22VqbHBMT0+AGi4iIiIjIGejJJ2Hhwu9L6F9wgePnJ59s6pZ5jTvVGmOcPWYYY1oD5wDrrLWx1tpEa20icBAYbq095MvGioiIiIjIGWrkSJg1C/79b0ePWevWjp9HjmzqlnmNO2mNnYFXnOPOAoDZ1tpPfNssERERERGRKiZPhrfegunToXNnuPVWmD3bsbyFcKda4wZgWB3rJHqrQSIiIiIiItU6cMAx5iwtDR56qEUFZuDhmDMREREREZEmUVgIv/oVBAXBb38LzzzjGHPWgig4ExERERER/3f33Y5CIH/9K/z+946UxlmzWlSApuBMRERERET826FD8MYbMGEC3HOPY9nkyY4AbdWqpm2bF7k1z5mIiIiIiEiTeeQRsBZefPHk5ZMnt6hxZ+o5ExERERER/7VlCzz/PPzoR9CrV1O3xqcUnImIiIiIiP+67z5o185RnbGFU1qjiIiIiIj4p6+/hk8/hSefhOjopm6Nz6nnTERERERE/E9FBfzyl5CQAD/5SVO3plGo50xERERERPzP669DSgq8+SaEhjZ1axqFes5ERERERMS/FBXBgw/CyJFw1VVN3ZpGo54zERERERHxL089BQcPOuY2Czhz+pPOnHcqIiIiIiL+7/BheOIJuOQSOPvspm5No1JwJiIiIiIiTevJJ2HhQsf3jz4Kx4/DpZc6lp9BFJyJiIiIiEjTGjkSZs2CV16B//4XZsyAX/zCsfwMojFnIiIiIiLStCZPhtmzYfp0CAyEJUvg3Xcdy88gCs5ERERERKTpdegAJSWO73/0ozMuMAOlNYqIiIiIiD+45x4wBn71K3jmme/HoJ1BFJyJiIiIiEjTeuEFRyrj9dc7ioDMnu0Yg3aGBWgKzkREREREpGk9/TS0bu2Y3wy+H4O2alWTNquxacyZiIiIiIg0nU2bYONGePBBiIj4fvnkyWfcuDP1nImIiIiISNN57DFo2xZ+9rOmbkmTU3AmIiIiIiJNY+tWR/ri3XdDVFRTt6bJKTgTEREREZGm8dhj0KaNY8JpUXAmIiIiIiJNYPt2ePttx5xm0dFN3Rq/oOBMREREREQa3+OPQ6tW8MtfNnVL/IaCMxERERERaVy7dsEbb8Bdd0FsbFO3xm/UGZwZY0KNMSuNMeuNMZuNMY86l//ZGLPNGLPBGDPHGNPB560VEREREZHm7w9/gJAQ+NWvmrolfsWdnrNiYIq1dggwFJhujBkDzAcGWmsHAzuAX/uslSIiIiIi0jLs2QOvvgp33AGdOjV1a/xKncGZdShw/hjs/LLW2i+ttWXO5cuBOB+1UUREREREWoo//hGCguC++5q6JX7HrTFnxphAY0wKcBiYb61dccoqtwDzvNw2ERERERFpSfbtg//9D267Dbp0aerW+B23gjNrbbm1diiO3rFRxpiBrteMMQ8CZcAb1W1rjLndGLPaGLM6KyvLC00WEREREZFm48knYeFCx/dPPAEBATBhgmO5nMSjao3W2hxgETAdwBhzI3AhcJ211tawzXPW2mRrbXJMTEzDWisiIiIiIs3LyJEwa5ZjTrOXXoLzzoMf/9ixXE7iTrXGGFclRmNMa+AcYJsxZjpwP3CxtbbIp60UEREREZHmafJkmD0bbr4Zysth6VLHz5MnN3XL/E6QG+t0Bl4xxgTiCOZmW2s/McbsAloB840xAMuttXf6rqkiIiIiItIsTZzoSGesqHD0mikwq1adwZm1dgMwrJrlPX3SIhERERERaVmeeQaKiuDSSx3fT56sAK0aHo05ExERERER8cjChY7JpgMC4MUXHSmNs2Z9XyREKik4ExERERER31m1CmJjYdIkiIj4fgzaqlVN3TK/o+BMRERERER857LLYP9+uPji75dNnqxJqKuh4ExERERERHzn448d/1YNzqRaCs5ERERERMR35s6FQYOge/embonfU3AmIiIiIiK+cfQoLF6sXjM3KTgTERERERHf+Owzx8TTCs7couBMRERERER8Y+5c6NwZkpObuiXNgoIzERERERHxvuJi+PxzuOgixxxnUid9SiIiIiIi4n2LFkF+vlIaPaDgTEREREREvG/uXGjTBqZMaeqWNBsKzkRERERExLusdQRn06ZB69ZN3ZpmQ8GZiIiIiIh4V0oKHDwIM2c2dUuaFQVnIiIiIiLiXR99BMbAjBlN3ZJmRcGZiIiIiIh419y5MG4cxMQ0dUuaFQVnIiIiIiLiPQcOwLp1qtJYDwrORERERETEez7+2PGvxpt5TMGZiIiIiIh4z0cfQe/e0KdPU7ek2VFwJiIiIiIi3pGXBwsXKqWxnhSciYiIiIiId3zxBZSWKjirJwVnIiIiIiLiHXPnQlSUo1KjeEzBmYiIiIiINFxpKXz6KVx4IQQGNnVrmiUFZyIiIiIi0nBLl8KxY0ppbAAFZyIiIiIi0nBz50KrVjBtWlO3pNlScCYiIiIiIvXz5JOO6ozWOoKzqVNh1SrHcvGYgjMREREREamfkSNh1iz43/9g927H3GazZjmWi8eC6lrBGBMKfAu0cq7/nrX2YWNMJPAOkAjsA2ZZa4/5rqkiIiIiIuJXJk+G2bMdRUAAXnkF3nvPsVw85k7PWTEwxVo7BBgKTDfGjAEeAL621vYCvnb+LCIiIiIiZ5LJk6FnT8f3P/6xArMGqDM4sw4Fzh+DnV8WmAm84lz+CnCJLxooIiIiIiJ+bOFCSE+H+++HZ55x/Cz14taYM2NMoDEmBTgMzLfWrgA6WmszAJz/xvqslSIiIiIi4n8WLnSMMZs9G554wvHvrFkK0OrJreDMWlturR0KxAGjjDED3T2AMeZ2Y8xqY8zqrKysejZTRERERET8zqpVjoDMlcroGoO2alXTtquZMtZazzYw5mGgELgNmGStzTDGdAYWWWv71LZtcnKyXb16db0bKyIiIiIi0pwZY9ZYa5Ore63OnjNjTIwxpoPz+9bAOcA2YC5wo3O1G4GPvNJaERERERGRM1CdpfSBzsArxphAHMHcbGvtJ8aY74DZxpgfAqnAlT5sp4iIiIiISItWZ3Bmrd0ADKtm+RFgqi8aJSIiIiIicqZxqyCIiIiIiIiI+JaCMxERERERET+g4ExERERERMQPKDgTERERERHxAwrORERERERE/ICCMxERERERET+g4ExERERERMQPKDgTERERERHxAwrORERERERE/ICCMxERERERET+g4ExERERERMQPKDgTERERERHxAwrORERERERE/ICCMxERERERET+g4ExERERERMQPKDgTERERERHxAwrORERERERE/ICCMxERERERET+g4ExERERERMQPKDgTERERERHxAwrORERERERE/ICCMxERERERET+g4ExERERERMQPKDgTERERERHxAwrORERERERE/ICCMxERERERET9QZ3BmjIk3xiw0xmw1xmw2xtzrXD7UGLPcGJNijFltjBnl++aKiIiIiIi0TEFurFMG/MJau9YY0w5YY4yZDzwJPGqtnWeMucD58yTfNVVERERERKTlqjM4s9ZmABnO7/ONMVuBroAFwp2rtQfSfdVIERERERGRls6dnrNKxphEYBiwAvgp8IUx5i840iPHebtxIiIiIiIiZwq3C4IYY9oC7wM/tdbmAXcBP7PWxgM/A16sYbvbnWPSVmdlZXmjzSIiIiIiIi2OsdbWvZIxwcAnwBfW2r85l+UCHay11hhjgFxrbXht+0lOTrarV6/2QrNFRERERESaH2PMGmttcnWvuVOt0eDoFdvqCsyc0oGJzu+nADsb2lAREREREZEzlTtjzsYD1wMbjTEpzmW/AW4D/mGMCQJOALf7pIUiIiIiIiJnAHeqNS4BTA0vj/Buc0RERERERM5MbhcEEREREREREd9RcCYiIiIiIuIHFJyJiIiIiIj4AQVnIiIiIiIifkDBmYiIiIiIiB9QcCYiIiIiIuIHFJyJiIiIiIj4AQVnIiIiIiIifkDBmYiIiIiIiB9QcCYiIiIiIuIHFJyJiIiIiIj4AQVnIiIiIiIifkDBmYiIiIiIiB9QcCYiIiIiIuIHFJyJiIiIiIj4AQVnIiIiIiIifkDBmYiIiIiIiB9QcCYiIiIiIuIHFJyJiIiIiIj4AQVnIiIiIiIifkDBmYiIiIiIiB9QcCYiIiIiIuIHFJyJiIiIiIj4AQVnIiIiIiIifkDBmYiIiIiIiB9QcCYiIiIiIuIH6gzOjDHxxpiFxpitxpjNxph7q7z2E2PMdufyJ33bVBERERERkZYryI11yoBfWGvXGmPaAWuMMfOBjsBMYLC1ttgYE+vLhoqIiIiIiLRkdfacWWszrLVrnd/nA1uBrsBdwBPW2mLna4d92VBpfBm5x/n7/B1k5Rc3dVNERERERFo8j8acGWMSgWHACqA3MMEYs8IY840xZqQP2idNoLisnP8s2sWUv3zDP77eyTOLdjd1k0REREREWjx30hoBMMa0Bd4HfmqtzTPGBAERwBhgJDDbGJNkrbWnbHc7cDtAt27dvNZw8Y1F2w/z6Mdb2JtdyLT+HTleWs77aw9y3/Q+hAYHNnXzRERERERaLLd6zowxwTgCszestR84Fx8EPrAOK4EKIPrUba21z1lrk621yTExMd5qt3jZgaNF3Pbqam56eRUA/7t5JM/dkMxdk3qQe7yUTzdkNHELRURERERatjp7zowxBngR2Gqt/VuVlz4EpgCLjDG9gRAg2xeNFN85UVrOs9/s5plFuwkwhvum9+GHZ3WnVZCjl2xsUhRJ0WG8uTKVy0fENXFrRURERERaLnfSGscD1wMbjTEpzmW/AV4CXjLGbAJKgBtPTWkU//b11kwenruZg8eOc+Hgzjw4ox+d27c+aR1jDNeO7sZjn25l26E8+nYKb6LWioiIiIi0bHUGZ9baJYCp4eUfeLc50li+232EH76ymt4d2/LmbaMZ1+O0jNRKlw+P48kvtvPmilT+b+bARmyliIiIiMiZw6NqjdIyFJeV8+CHG4mPbM1HPz6r1sAMICIshBmDOjNnbRpFJWWN1EoRERERkTOLgrMz0H+/2cOerEJ+P3MgrUPcq8B47ehu5BeX8cl6FQYREREREfEFBWdnmH3Zhfxr4S5mDOrMpD6xbm+XnBBBr9i2vLFivw9bJw2xeGcW87dkNnUzRERE/MqxwhJuenklu7MKmropInVScHYGsdby0EebaBUYwO8u6u/RtsYYrhvdjfUHc9mUluujFkp9WWt5cM4mfv3BRioqVJfnVPknSrn2+eWsSz3W1E0REZFGNnv1ARZtz+KdVQeauikidVJwdgaZuz6dxTuz+eV5fegYHurx9pcOjyM0OIA3VqT6oHXSEDsyC0g9WkR2QTFbD+U1dXP8zocp6SzbfYS569ObuinSQn24Lo2dmflN3QwROYW1lredQdkXmw+hwuLi7xScnSFyj5fy+0+2MjiuPT8Yk1CvfbRvHcxFg7swNyWNgmLvFgbZnVXAjKcXc/BYkVf3e6aYv+VQ5fff7Mhqwpb4p7dXOh4orNmvnjPxvjdXpPLTd1K4//0NTd0UETnF8j1H2ZtdyKjESPYfKWLnYaU2in9TcHaG+PMX2zhaWMwfLh1EYEBNMyPU7drR3SgsKeejlDQvtg4+WZ/B5vQ83lqpXrn6mL/1MEPiO9C/czjfbFdwVtXGg7lsTs+jS/tQNqfnUejlBwtyZlux5wi/+2gTkWEhrE3NUdq3iJ95a2Uq4aFB/OXKIRgDX2w6VPdGIk1IwdkZYF3qMd5YkcqN4xIZ2LV9g/Y1NL4D/TqH88byVK+mBizZ5Qgo3l+TRrnGTHkkM+8E6w/kMK1/Ryb2iWHN/mPknyht6mb5jTdXphIaHMCvL+hHeYVl/YGcpm6SV1hrmb3qALe+sprjJeVN3Zwz0oGjRdz1xlq6RbXhox+PJzQ4gNeXq2iSiL84WljC55sOcdnwOLpFtWFYfAe+VOGsesk/UUpazvGmbsYZQcFZC1dWXsFv5myiY7tQfjGtT4P35yoMsiUjj/UHvfOEuKC4jHWpOfTu2JZDeSdYvFM9P574aqvjQnNu/45M7B1DWYVl2e4jTdwq/1BYXMbclDRmDOrCxD4xGAOr9jX/1MbjJeX86r0N3Pf+Br7amsmKvTrfja2wuIzbXl1NWXkFL9yQTHxkGy4Z2pUPU9LIPa6HIyL+4IO1Bykpr+CaUd0AmDagExvTchVk1MPjn25l5r+WUFpe0dRNafEUnLVw/1u2j60ZeTx8UX/atgryyj5nDu1Cm5BA3vRSWf3lu49QVmH5zQX9iGgTzLurD3plv2eK+Vsy6RbZhl6xbRneLYK2rYI07szp4/XpFJaUc+3oeMJDg+nTsR2r9x9t6mY1yJ6sAi79z1LeX3uQH03qQXCg4bs9Cs4aU0WF5eezU9iRmc+/rh1OUkxbAH4wJoETpRW8t0Z/w0SamrWWt1amMrxbB/p0agfAeQM6ATB/s1IbPbVy71GyC0pYubd5X0ObAwVnLVhaznH+Nn8HU/rGMn1gJ6/tt11oMDOHdmXu+nSvPCFesiub0OAAxvaI4pJhXZm/JZNjhSVeaGnLV1BcxrJdRzi3f0eMMYQEBTCuRxTfbM9SRSrgrVUHKoNWgOTECNal5jTb1NnPNmZw8b+Wkpl3gpdvGsl90/syNL4Dy9VT2qie+nonX2zO5MEZ/Tm7d0zl8oFd2zO8WwdeX75fU1qINLFV+46xO6uwstcMoHt0GL1i2yq10UO5RaXsyS4EYN6mjCZuTcun4KwFe2TuZiqs5dGLB2BM/YuAVOe60d04UVrBh+saXhhk8c4sRnWPolVQIFeOiKekvMLrBUeq2nU4nz98trXZ3qBX9e2OLErKKzi3f8fKZRP7xJCWc7zyD6m/OlZYwtNf72Rzum8KKGxJz2P9gRyuGdWt8vd/ZGIkBcVlbGtm0w2UlFXwfx9v4UdvrKVnbFs+uWdC5STyY5Oi2JiWS57GGTaKTzdk8PTXO7lyRBy3jE887fUbxiayN7uQpbuzG79xIlLprZWptAsN4sLBXU5aPm1AR1bsPaqHwB5YfzAHgI7hrfhic6YePvmYgrMW6svNh5i/JZOfntOb+Mg2Xt//wK7tGRzXnjdW7G9QD01G7nF2ZxUyoWc0AP27hDOwazizfZja+O+Fu3nu2z2s3tf8u+bnb8mkQ5tgkhMiKped3cvxJN9fqzaWlFXw4pK9TPzzQv42fwf/+GqnT47z9qpUQoICuGx418plI5yf0+pmNO4sPec4Vz/3HS8t3ctN4xKZfcdYunZoXfn6mKQoKiwt4vfZ321Ky+UX76YwIiGCxy4dWO1Dr/MHdSIqLIRXv1NhEJGmklNUwqcbM7hkaFdahwSe9Np5AzpRXmFZsO1wE7Wu+Uk5kIMx8JMpvcjKL2ZtavO5hjZHCs5aoLLyCh79eAt9Orbjh2d199lxrhvdjR2ZBQ2aO2rJTsfT5bN6RVcum5Ucz5aMPJ+UpC4sLuNzZxndz5t5znlpeQULth1mSt9YggK//68cH9mGpJgwvxt3Zq1l/pZMznvqW37/yRaGxHfgnH6xLNmVTXGZd6sNHi8pZ866NM4f2IkObUIql3ft0JrO7UNZ3UzmO/t2RxYX/nMJ2w/l869rh/HIxQMICTr5z/bwhAhCAgP4TqmNPpWVX8ztr64mok0Iz/5gBK2CAqtdr1VQIFeNjOfrrZkqOiDSRD5Ym0ZJWcVJKY0ug7q2p3P7UL7c0rzvARpTyoEcesS0ZebQLoQEBlTeR4lvKDhrgVKPFpGWc5wfntWd4EDfneKLhnShXasg3lxR/7nJluzKJrptCH06tqtcdvEQx39+Xwyq/3zTIY6XltO1Q2u+3JzZoF6/A0eLeH35frLyi73YQvet2neU3OOlTKuS0ugysXcMy/cc4USpf5RY35qRx3UvrOC2V1cTYODlm0by6i2juGZUN4pKyr0+wPjTjRnknyg77cJsjGFEQkSz6GVatiubG19eSXTbEOb+5KzTUnNcQoMDGdatg4qC+FBxWTl3vr6Go0UlPH9DMjHtWtW6/rWjHb933iqaJCLus9by9qpUx9yfXcJPe90Yw7T+HflmR5amIXGDtZaUAzkMje9Au9BgzuoVzbxNhzSu3YcUnLVAe51jjXrEtvXpcdqEBHHp8K58sjGjXrnbFRWWpbuyGd8zmoAqE2N3aBPCtAEd+TAlzes9KnPWpREf2Zp7p/YiLec4m9PrP/boj/O28tsPNzH2j19z52trWLT9cKOOY5u/JZOQoAAm9Io57bWJvWMoLqtgRRNXVcrKL+bXH2xgxtOL2ZKRx6MXD+Dzn57N5L6xGGMY1yOaVkEBXk8veXtlKknRYYzuHnnaayMTI8nIPeH3vRqvfrefqLAQPvzxeHrE1P5/eWyPKDan55FbpHFnvvDI3M2s2X+Mv1w5xK25IuMi2jClb0feXnnA63/DRM4khcVlzPz3Ul77bp/b26xNPcaOzAKuHRVf4zrTBnTiRGmFpu5xw8FjxzlaWMKQ+A4ATB/YqcH3T1I7BWct0J4sZ3AWE+bzY107uhslZRV8UI/CINsO5ZNdUMJZPaNPe+3K5Hhyikr5aov3btoP5Z5g6e5sLh0Wxzn9OxJg4It6pjbmnSjlq62HuXBwZ24en8jKfUe56eVVTPjTAv4+f4fPb/xdKYJn9YwmrJopEsYkRdEqKKDRx51VVFj2ZRfy+aYM/jhvK5P/soh3Vx/kpnHd+eaXk7lxXOJJvbmtQwIZ1yOKhV4MznZm5rN6/zGuHhVf7Zig78ed+W/v2dHCEr7elsklQ7vSJqTuKTDGJkVhLZrvzAcW78zirZUHuGNiUo29l9W5YWwCR5wT4DY2ay2zVx/wm/nWysor+HzTIUrKND+SeOa73UdYfyCHhz7azPtuZtO8ueIAYSGBtf5/HdU9kvatg/lis6o21mXdgRwAhjmDs3P6dSQwwKhqow8pOGuB9mQXEBkWctJYG1/p2ymcofEdeGdVqsdd3Et2OQKH6np+zuoZTef2oby75oBX2gnwYUoa1sKlw7oSGRbCqO6R9Q7OXDcaPzyrOw/O6M/yX0/l39cOp0dsW55esJOz/rSAG19aybyNGT65Idl2KJ+Dx46fVKWxqtDgQEYnRfHNDt8NeM4pKmH5niO8smwfv/5gA5f8eykDHv6CSX9ZxJ2vr+W5b/cwJimKL392Nr+7qD/t2wRXu58pfWPZd6SIPVkFXmnXWysPEBxouHx4XLWv9+3Ujratgvy6KMhHKWmUlluuSK7+PZxqaLcOtAoKUGqjlx0vKefBOZtIig7jZ+f09mjbs3pGkxjVpkkKg6xNzeG+9zbw8tK9jX7s6ny6MYM7X1/Dna+v8ZtUa2keFu/Mcky1kxTFfe9vYH4dJfBzj5fy6cZ0Zg7rWu2DS5fgwACm9o3l622ZlGlS5VqlpObQKiigcq64yLAQRneP1LgzH1Jw1gLtziokKdr3vWYu14yKZ0dmAWtTczzabvHObHrGtqVT+9DTXgsMcNxcf7sji0O5JxrcRmstc9amMaxbB7o7P5vzBnRiR2ZBZRqoJz5cl0ZCVBuGOp8khQQFMGNwZ1774Wi+/dVkfjKlFzsy87nrjbVc+M/FXr8hmb8lE2Ngar/YGteZ2DuG3VmFHDha5JVjHi8pZ+G2wzz80SYm/nkhQ/9vPlc/t5yH527m802HaB0cyNWj4nny8sHMvXs8Wx6dzgs3JldO0FuTyX0d78EbqY0nSsv5YN1BpvXvRFTb6scFBQUGMKxbB1b5cc/Zu6sPMqhre/p2On28RHVaBQUyIiGC5Xv89z01R/9csJPUo0U8dulAQoOrLwBSk4AAww/GJLBm/zGfTRdRE1dPtDd7pBti/YFcAgMMC7Yd5tZXVlNUUtbUTZIG2nU4n5wi35eiX7wzmzFJUTx/YzIDu4Tz4zfXsryWh1AfpaRxorSCa6spBHKqaQM6klNUyio/flDnD1IOHGNQ1/YnZb2cP7ATu7MK2XU4vwlb1nIpOGuB9mQVktQIKY0uFw7uQlhIIG+vdL8wyIlSRxGI6lIaXa4YEUeFhffXNrwwyJaMPLZn5nNZld6UaQMcE3N72nt2KPcE3+05wiVDu1abNhcf2Yafn9ubJfdP4c9XDGZHZgH/W7avQe0/1fwtmQyN70Bsu9MDW5eJzslxv21ATv2+7EJeXrqXG19aydD/+5Kb/7eK2asP0jOmLQ+c35dXbhnFyt9MZe1D5/LW7WN4+KIBzBoZz+C4DqeVL65JXEQbends65Xg7IvNh8gpKq22QldVyQmRbM/M98u5wTan57IlI48rRrjXa+YyNimKrRl5mrvHS7YdyuO5b/dwxYg4xvWo+e9Uba4cEU9ocACvL2/c3rOvnf+X1h/M5XB+wx9uNdSmtFyGxLXnL1cOYdnubG56aRX5fvh/r7l74P0NTPrzQn757nreWZXK7qwCnxRtyD9RysX/Wsql/1nm04JYB48VsSe7kAm9YmjbKoiXbx5Ft8g23PbK6mqrOVtreXNFKgO7hrs1NvTs3jG0CgqodwbNmaCkrIJN6XmVD6JdXPdP8zbqs/MFBWctTN6JUrILiuvsrfCmsFZBXDy0C59syHD7grtm/zGKyyqY0Kvmm57E6DBGdY/k3dUHGnyBmbM2jeBAw4WDOlcu69qhNYO6tve4a/7j9elYC5cM61rreoEBhiuT45naN5Z/LdhFdoF3LmIZucfZmJZbY0qjS4+YMLp2aO3xuLMt6Xk8Mnczk/68kEl/WcSjH2/hwNEirhudwKu3jGLd787lxZtGcufEHkzsHUNseGiDJzmf3DeWlXuPNviG7a2VqcRHtmZcj6ha10tOjMBaWOuHJfXfW3OQkMAALh7i/vgmcBQFAY0784aKCstvPthIu9AgfnNBv3rvp32bYGYO6cqH69IbbfxXRu5xtmbkMXOo4/dn0bamLXhQUWHZnJ7LoK7tuWJEHE9fM4y1qcf4wYsrVcDGi8orLHPXp1Nabvl6ayb3v7+RqX/9huTHvuKO11bzwuI9pBzIodQLKXzzNh2iqKScg8eKuOGllT773XZNteO6T4gMC+G1H44ivHUwN7608rRU+JQDOWw7lF/nwzmXNiFBTOgVw/wtDavc3JJtP5RPSVlFZTEQl47hoYxIiGj2UxL5KwVnLYyrGEhjpjUCXDWyG8dLy5m7Pt2t9RfvzCYowDA6qfab6FnJ8ew7UtSgeanKyiv4MCWdyX1iiQg7eRzeeQM6knIgx6PUyTnr0hgS174yPbIuv5nRjxOl5fxt/g6P2l2Tr7Y6nopXV0K/KmMMZ/eOYdnuI25fkA/lnuCq/37HWytT6R4dxqMXD+CbX01iwS8n8buL+nN27xiP07vcMaVPLGUVtvJiXB97sgpYvucoV4/sdlL1z+oMje9AYIBp0Bx9vlBSVsFHKemc0//039W6DI7rQOvgwHrNd3aitNwn8wo2V2+uTGVtag6/ndGfSA/Pw6muH5vA8dJyt4sZNNRCZzD2o0k96dw+lK+3NW3Bgz3ZhRSWlFf2ZFw4uAv/uW44W9PzuOb55Rzx0kOrM92OzHyKSsq5b3of1j50Ll/9fCJPXDaISX1i2ZqRz2OfbuWSfy9l8CNf8koDMznmrE0jMaoNL9w4kl2H87nlf6t8kqq6eGc2HcNb0atK5enO7Vvz2g9HAXD9iyvJyP2++NZbK1NpExLo0YOtaQM6qvJgLVIOOK6Rp/acAUwf0InN6XmkHvHO0An5noKzFsb1JKkxe84AhsS1p2+ndryzyr0CHkt2ZTG8WwRtaxmwC3DBoE6EhQQy2839Vn+sbLILirls+Ok9Xec5u+bnuzkZ5Y7MfLZk5NXZa1ZVj5i2/GBMAm+vTGXboYZfAOZvyaR7dFid5dXBkdpYUFzmVg+RtZYH52yktKKCL356Ni/fPIobxyWSEOX7QH9EQgThoUENSm18Z9UBR2+lG+mAYa2C6N853O/GnS3YdpijhSVcOaLmEtA1CQkKIDkxol5FQR79eAsX/nOJBngDh/NO8KfPtzGuR1S1fzM8NbBre4Z368Dry/dT0QhTbSzYlknXDq3p3bEtU/rGsnin9yd594Qr6B8U932a2bQBnXj+xmR2ZxVw9XPLOZzX9KmXzd3aVMff+GHxERhj6BnblqtHdeOvs4bw7X2TWfEbR9Gqfp3b8dcvt9d7HHR6znGW7z3CJcO6MrF3DE9fPYx1qce447U1Xv09K6+wLNmVzYReMadlZiTFtOWVW0aRd7yU619cydHCEvJPlPLx+gwuHtKFdqHVF5+qzjn9HJWbv3SzB2jJzmxmPfsdB4+dGQHJugM5RLcNIS6i9WmvTR9Yv6EhUjcFZy3MnqxCAgMM3SLbNOpxjTFcM6obGw7m1jn4/WhhCZvT8zirlpRGlzYhQVw4uAufbsygsLh+T+bmrEujfevgysITVfWMbUtSTJjb5XQ/XJdGYIDxqKQ2wE/P6UW70GAe/3Rrg9In8k+U8t3ubM7t39GtVMJxPaMICjB8s6Pu1KaPUtL5etthfjmtD4mN3PMaFBjAxD6xLNyeVa8b2JKyCt5bc5CpfWOJDa95HF5VyYkRHqf5VFRYPt+UcdLTWm96b80BYtu1qjXdtzZjkqLYkVngUQptTlEJc9YdJDDA8IvZKezMPLMHeD/68RaKyyp4/NJBDU7Xdbl+bAJ7sgtZurv+PcPuOFFaztJdR5jazzGP4NR+sT6Z5N0TG9NyaRUUQM9THiZN7B3D/24eRVrOcWb99zu/n3fQ361LzSEqLIT4yNNvosGRhjZjcGd+eV4f8k6U8emG+pVB/yjFmdY/1PHg4vxBnXnissEs3pnNT99O8Vrlw01pueQeL63xb+HAru154cZkDhwt4uaXV/LmilSOl5ZztZspjS6RYSGMTIzkyzqqQAJ8tSWTW15Zxcp9R3ljhftj7Jsz1+TTNY2vH9AlXCX1fUDBWQuzJ7uAbpFtCAlq/FN7ydCutAoK4O2VtfdyLd2VjbW4FZwBzBoZR1FJOZ9u9PwPQEFxGV9sPsSFgzvTKuj0dDxjDOcN6MTyPUfqHP9QUWH5KCWds3pGE9Ou+kqANenQJoR7p/Zi8c5sFm6vf+/QNzuyKC23dY43cwkPDWZ4QkSdwVlWfjGPfLyZYd06cPP47vVuX0NM6RtDdkExm+pR2W7+lkyOFJZwzWj3L8zJCZGcKK3wKJ3lg3Vp3Pn6WsY/sYBbX1nF11u9V4Y5K7+YhduzuHR4V4IC6/f/t3LcmQdVG99ZdYATpRW8eGMyrUOCuO3V1X4zP1ZjW7Atk083ZvCTyT3dTlt2xwWDOhMVFsJrPi6rv3zPEY6Xllc+iBrXI5rQ4AC+3tp0VRs3puXSr3N4tb/TY3tE8doPR3OkoIRZz37H/iOeV84Vh3WpxxjWrfqb6KrGJkWRFB3Gmx4U8HKx1jJn3UGGd+tw0gO8WSPj+e2MfszbdIjfzNnolfFbrsmhaysaNjopin9fO5xN6Xn8cd42+nUOZ0hc3YVATjVtQCe2Hcqv9ffvkw3p3Pn6Gvp1aseYpEg+WHuQ8kboCW9KucdL2ZNVWG1Ko8v0AZ1Ym5pDpnq/vUrBWQuzp5HL6FfVvk0wFwzqzIcpaRwvqTm9YcnObNqFBjHYjWpKAMO7RZAUE8Z7qz0fszFvYwYnSitqTU86b0AnyipsnWMz1qQeIy3nOJcM86zXzOX6sQkkRYfx2Kdb6z0oe/6WTKLCQhjeLcLtbSb2jmFzel6tVdsembuZouJy/nzFYALrGK/lKxN7x2IM9bqRfHtVKl07tObsaubMq0lyomeTUZeVV/CvBTvp26kdd03qwfqDufzwldVMeHKhVyYe/3BdGuUV1q20zJoM6tqesJBAvtvjXg9NWXkFr363nzFJkUzqE8uzPxhOWs5x7n17XbO/8bDW8up3+3hm0W63gs2ikjIe+nAzPWPbcsfEHl5tS6ugQK4aGc9XWzN92kO0YNvhyjmhwDHf4fge0Xy9rWkKHlRUWLak5zGolr/1IxIiePO2MRSWlHHVf5f7ZQVVf5dbVMrurEKGuXFdcGW5rNl/jO2HPOsl35KRx47MAi6tZg7JWyckcc/UXsxefZDHGpghAvDtzmwGdAmvcUoUl3P6d+QvVw7GGLhpXEK9ertd47e/rCGD5r01B7nnrXUM69aB128dzY1jE8nMK25QJeTmYMPBHIDTioFUdf4gR2qju2mh4h4FZy1IRYVlb3bjltE/1VUj48k/UcZnNfRyWevIIx+bFOV274AxhitHxLNy31GP5ySb45yPrLZgZnDX9nQKD60zb3rOujRaBwcyrX8nj9rgEhwYwG8u6MeerELeqEdp7dLyChZuO8yUvrEeBVCukvqLd1R/wz5vYwafbszg3nN60TO2ncft8pbIsBCGxXfwuGdxc3oui3dmMys53qPPpWN4KPGRrd0uCjJ3fTr7jhTx03N686vz+rLsgSk8+4MR9O7YjqcX7GTCnxZw88sr+XLzIY9706y1vLfmIEPjOzToHAQHBpCcGOl2UZCvth4mLec4N41z9JYmJ0byyMUDWLQ9i79+ub3e7WiIE6Xl/PLd9dz08sp6l+kuK6/gN3M28buPNvOnz7cx/okFPDFvW637cwXYf7xskE8yD6519uq+uNg3E0Nba1mw7TBn9Yw+qWjPlH6xHDh6nN1emuTdE3uPFFJQXFZrcAaO8Wj/uHoYh/JOeNTrKw4pzpvoYbXcRFd1+Yg4QgIDeHOFZ9eh6qoeV/Wzc3px07hEXlyyl38u2OXRvqtyjZOe4ObDtkuHxbHmt+dy1UjPUhpd4iPb0L9zOF9WM/b8teX7+eW76xnXI5pXbhlFu9BgpvbrSESb4Ho9MG5OUpxz1w6O61DjOj1j29EjJox5Gq/sVXVegYwx8caYhcaYrcaYzcaYe095/ZfGGGuMqd8gCfGatJzjFJdV0D26cYuBVDW6eyRJ0WE1FgbZd6SItJzjHo+puWx4VwKMY0yOu9JzjvPdniNcOqz6+chcAgIM0wZ05JsdWTX2+JWUVfDphgymDehIWB1FTGoztV8s43tG8dTXOz0uI71y71HyTpS5ndLo0r9zONFtW1Wb2nissISHPtrMwK7h3H52kkf79YUpfWPZ4MHcTNZa/vDZVjq0Ceam8YkeH29kQiSr9h2r8ylveYXlXwt20bdTu8qnrMGBAUwf2IlXbhnFt7+azI8n92Rzeh63v7aGCU8u9Kj64ca0XLZn5nNlcv17zVzG9ohid1ahW0UWXlm2j64dWnNOlcnMrxudwDWjuvGfRbv5ZIN71Ve9JbugmGueX857aw6ybPcRLv7XEtYfyPFoH0UlZdzx2hreWpnKXZN68MlPzmJinxj+++1uzvrTAh76cNNpE7NvSsvlpaX7uGZUPCMTI734jr4XF9GGWcnxvPrdPnb4YFzfzsMFHDx2/LSxtVOcPzdFaqPr/4A7c06N7h5JcKBh9X4FZ55al3oMY2Cwm8FZZFgI5w/qxAfras9yqaq8wvLR+nQmVVP12MUYw+8u7M9lw7vyt/k7+N/S+j2IWLHnCGUVlrM9uE9oaFXV8wZ0YvX+Yyc9wHn+2z089OEmpvaN5YUbk2kT4rj2hwQFMHNoV+ZvyWyUibibSsqBHHrEhNG+de0FVqYP7MSKvUc5qjk2vcadx4NlwC+stf2AMcCPjTH9wRG4AecCZ8bISD+3x9mr1JQ9Z8YYrhrp6OXadfj0J7VLXHnkHqSfgaOXY1KfWN5bc9DtlMAPU9KwFi51o7LieQM6caK0osaxWYu2Hyb3eGnlIOj6Msbw2xn9yTteyj++3unRtvO3ZBIaHOD200SXgADD2b2jWbwz67RUtd9/soWcohKevHwIwfUc5+RNrhvLRW7OzbZoRxZLdx3h3qm96ryAVGdEYgTZBcWkHq298tbH69PZk13IvVN7VVumPz6yDb+Y1odlD0zhuetHYIBbX1nt9hQN7605SKugAI8LzVTHldK2vI4iENsO5fHdniNcPzbhtF7sRy7uz4iECH717ga2ZjROieldh/O59D9L2ZKexzPXDWfOj8YRYAxX/vc73nOzDL0juFvBwu2H+f3MAdw/vS8Du7bn39cOZ8EvJnHpsK68vSqVSX9ZxM/fcRQ/Ka+w/GbORiLaBPPA9PrPaeaO+6b3JaxVEL/7aJPX0wxdlU4n9zk5OOvcvjX9OodXTkzdmDal5RISFECvjnU/MAwNDmRg1/as2edf01s0B+tSc+jTsV2d1Y+runZUN/JPlPGxmw9glu7KJiu/uM7raUCA4cnLBzOtf0ce+XhLvSrALt6ZTWhwACMS3U/fb6hpAzpiLXy91ZEC/PTXO3n8s63MGNSZZ68fcdoUMrOS4ykpd0x90hJZa53FQOo+B+cP7Ex5heUrN4qqiHvqvBuz1mZYa9c6v88HtgKu/51/B+4DmvfghBbi+zL6TRecAVw2PI6gAMM7q06P2RfvzKZrh9YkRnleTfIHY7qRmVfMjS+t5FgdT2istcxZm0ZyQoRbpeBHdY+kfevgGvOmP0pJJyosxO0iJrXp1zmcq0Y6nqCfOolmTay1zN+SyVk9Y2gd4vk8YxN7x3CsqJSNVXpzFmzL5IN1afxock/6dwn3eJ++0L9zOJ3CQ1noxo1kWXkFf/h0K4lRbbhudEK9jufqJVlVyw1heYXl6QU76dOxXeXUCzUJCgxg2oBOvHjTSPJPlHLrq3XP/3OitJyPUtI5b0CnegWYpxrQJZx2rYLqTG18Zdk+QoMDuHrk6WX7WwUF8sx1wwlvHcTtr632+dPhZbuyuew/yzheUs47d4zl/EGdGdClPR//5CxGdIvgl++u55G5m2t9MLMvu5DLn1nGtow8nv3BCK4fm3jS692jw3ji8sF8e99kbhqXyLxNhzj3799y8b+WsOFgLg9d2J/2bRr++dcmMiyEX53Xh+V7jro9J6S7Fmw7TL/O4XTpcHq1vql9Y1mz/1ijP+V3FQNx98FPckIEGw7m1rvM+5moosJxEz2sWwePthvVPZKesW15082qgx+uS6NdaFBlT2xtggIDePqaYfTp6Cjb72kF3m93ZjEmKaraIl6+0rdTO+IjW/PF5kP86fPt/G3+Di4b3pV/XD202t/f/l3CGdAlnHc9yOapav2BHC77z1IeeH8Db69MZfuhfL8a53vw2HGOFJYw1I3fqwFdwomLaK0Jqb3Io0flxphEYBiwwhhzMZBmrV1fxza3G2NWG2NWZ2W17MGTTW1PViHtWgURU8cAWl+LadeKc/t35P21aZSUfX8zVVZewXe7jzChV3S9Bu1O6duRP18xmNX7jjHz30trHcy8OT2PnYcLuNTNeYqCAwOY2i+Wr7ZmnnYDmHeilK+2ZnLh4M5e6136+bl9CA0O5A+fbXNr/S0ZeaTlHK9z4umaOOaKgW+cPVJ5J0r5zQeb6NOxHXdP7lmvffqCMYbJzrmZqv7uVOfdNQfZebiAB87vW+8xQj1j2hIeGsSaWlKpPt2YwZ6sQn4ytWedk1u79OscztPXDGNzeh4/f2d9rTcnX2919Mpe0YBCIFUFBQYwsnsky2uZ78xRPj+NS4d1pUOb6tOBYsNDefYHI8jMLeYnb63zWlXKU81efYAbXlpJx/BQ5vxo/EmVwSLDQnjth6O4ZXx3/rdsH9e/uKLaSYtTDuRw+TPLyDteypu3jWFaLUF05/ateejC/ix9YAr3TO3FwWPHOadfrEcT1zbENaO6Mahrex7/dCsF9Zwe5FS5RaWs2X+MKX2r71Wf0i+W8grr1pQa3lJRYdmclsegru4/+BmREElJeYUmRPfA3iOF5B4vZZgbPRxVuQqDpBzIYUsdFWuLSsr4fPMhZgzqfFoPUk1CgwO5c1ISOw8XePR7l5ZznD1ZhbVWafQFYwzn9e/Ewu1ZPPvNbq4b3Y2/XDGk1rHxV46IY1NaXp2f36mstTw8dzM7MwuYt+kQD3ywkfOe+pYhj37JdS8s589fbOOrLZkeTYnibSnOdPKhtYw3czHGMH1AJ5bszCZfBX28wu07GmNMW+B94Kc4Uh0fBH5X13bW2uestcnW2uSYGM/SscQze7ILSIoJ89rcPA1x1ch4jhaWML9KN/f6g7nkF5c1qPfpyuR43r5jDMdLy7nsP0trLOLxwdo0QgIDuHCQ+zdc5w3oRN6JstMGpH++6RDFZRXM9GDi6brEtGvFjyb34KutmSzbVXNlPWst2w7l8dy3ezCGaudqc0dkWAiDu7bnmx2OHqk/fraVw/knePKKwU0y7UJtpvSNpaC4rNYqioXFZfz1yx0kJ0TU2ZtVm4AAQ3JiZI09ZxUVln9+vZNesW25YGD1g+BrMrVfRx68oB+fbz7EX2oprvHumgN0bh/KeC/ejIxNimJvdmGNaZWu8vk3jkusdT/DukXw2CUDWbwzmye/8G6BkIoKy5+/2MZ9721gbI8o3v/ROOKrmZ8xKDCA313Un7/NGsLa1Bwu/tfSk27ev96aydXPfUebVoG8f9c4RiS4d5MaGRbCz8/tzerfnsOzPxjRaH83AwMM/zdzAIfzi/nHVzu8ss9vnCnLU/pW//BmSFwHosJC3OqR9pb9R4vId6MYSFWVFVTdLNIjjpRGwOOeM4DLh3clJCiAN1fWXhjki82HKCopd2uIQFUXDu5C5/ah/Pfb3W5v4xr6cHbvxr9fvHBIFwIM3HpWdx67ZGCdD+NmDu1KSGCAx71nn286RMqBHB66sD8pvzuXBb+YyN9mDeHSYV3JPV7Ks9/s4dZXV5P82Fdc/K8lTRLwpBzIoVVQAH07u1egavrATpSUV1SmV0vDuHVXZowJxhGYvWGt/QDoAXQH1htj9gFxwFpjTP3vkqTB9mQVkhTTdMVAqprQK4auHVrzdpXUxiU7szEGxvdo2E3o8G4RfHz3WY6S16+t4R9f7TypZ6KsvIK569OY0jfWozSls3vFEBoccFrA91GKo+Kju5Ww3HXL+O7ERbTm/z7ZclI6Q3rOcWavPsC9b69j5ONfM/2pxXyUks6lw7p6PL9aVRN7x5ByIIfPNmbw1soD3DYhqdYSuU1lfM8oQoICah0j899v95BdUMyDM/o1+KZ6REIEuw4XVJsq+9mmDHYeLuAnNYw1q8sPz+rOtaMdxTWqGzd1KPcE3+7I4vLhcV6dwsA131l1JfWrls/v26nuXo1ZI+O5YWwCz327h49S0rzSvhOl5dzz9jr+vXA3V4+M56WbRhIeWvv/1cuGx/HenWOpsJbLn1nGh+vSeHNFKre9uppese344K7x9fr7FxwYUO955eprWLcIrh4Zz8tLvVMcZOG2w0SGhdQ4H1FggGFSn1gW7cjyWQ/oqTZ6UAzEJbptK7pHh7k9vYU4ioG0Cw2iRz1+9zu0CeHCQZ35cF06hbX04s5Zl07XDq09LpYTHBjALeO7s3zP0cqy7HX5dmc2HcNb0Su28e9lhsZ3YN1D0/jthf3duq5EhIVwTv9YPkpJrzPTw6W0vIInv9hOr9i2XDbcUawsKaYtlw2P4/eXDOSTn0xg0yPn8e6dY/n5ub3ZcDC3SSa8TjmQw8Cu7d3OFhreLYKYdq3qNcZQTudOtUYDvAhstdb+DcBau9FaG2utTbTWJgIHgeHWWp2VJlJUUkZG7okmm+PsVIEBhlnJ8SzemV1ZGW3JriwGdmlfY6UnT3RqH8o7d4zlsmFd+ftXO/jxm2srLy6Ld2aTXVBS69xm1WkdEsik3rF8ueVQZbCXmXeCZbuPMHNo7RUf6yM0OJAHzu/LtkP5/OGzrTz04Sam/GUR455YwH3vbWDprmzG94ziySsGs/SBKfxt1tAGHW9inxgqLNz79jq6R4fxs3N7e+eNeFmbkCDGJEXV+JT/UO4Jnvt2NxcO7uzWvD51cd1wnFpSv6LCMSi8R0wYM2ooHV0XYwyPXjyA8T2j+PUHG1h5SpGOOevSqLCO0tbe1K9zOOGhQSzfffpN7qnl893x0IX9GdU9kgfe30hGbsPm6TpSUMx1L6zgkw0ZPHB+X/542SC3bwAGx3Vg7t1nMSSuAz99J4XfzNnIxN4xvH37mAY9uGgK3ioOUl5hWbT9MBN7x9Qa4E/tF0tOUSnrPKx+WV+uYiC9O3o2NURyQgRr9tddQVUc1qXmMDS+Q70eHoFjioeC4jI+rmEM5OG8EyzZmcUlw7rU6xhXj4qnXasgnvt2T53rlldYlu7KdqbhN00GkKfjTq8c4cgSWlDHPKku76w6wN7sQu6f3rfGh0KtQwIZmRjJPVN7MaFXNC8u2duo4zBLnanFtU0+faqAAMN5AzqyaHvNVa/Ffe5cEccD1wNTjDEpzq8LfNwu8dCeLFelRv/oOQO4MjmOAOMYU1JQXMa61ByvFNRwCQ0O5K+zhvDgBf34YvMhLn9mGQeOFvHBujQi2gQzqY/nKYDnDexIZl4x651P+eampGMtXDLUN+NRZgzqTHJCBC8u2cv7aw+SGB3Gb2f04/OfTmDVg+fwj6uHMSs5nq7VDPL31JC4DoSHBlFWYXnyisFujx1oClP6xLAnu5B91cxr97f526mogPun9/XKsQbHtXeW8D45OPt88yF2ZBZwz9ReDerVCg4M4D/XjiA+sg13vLa68j1Za3l3zQFGJkbQ3csPVQIDDKOToviumnFn1ZXPr0twYAB/vXII5dbyp3nujZOsjrWWH72xlk1pufznuuHcObGHxzdhMe1a8cZto7lzYg9uPzuJ529IbtD0Fk3FW8VBUg4c41hRaZ2FGib0iiYowDRaSf2NB3Pp16mdx+N0kxMjOOacVFlqV1hcxrZDeQ16SDUiIYLeHdvy1srqe2fmrk+nws2qx9VpFxrMtaO78dnGjNOmsDjVprRccopKPZ5qpylN6BVNbLtWvOvGnGeFxWU89dVORiVGMtXNv793TexBVn4x769tvDnVth/Kp7iswuPMmukDOnO8tLzFT87dGNyp1rjEWmustYOttUOdX5+dsk6itbbmgTPic/5QRv9UXTq0ZmLvGN5dfZClu7Ipq7BM8PIgX2MMt52dxMs3jyIt5zgX/2sJX24+xIWDu9RrLNWUPh0JCjCVVYc+TEljSFx7nwW9xhieuyGZ9+8aR8rvpvHSTSO5dUISfTuFe/3JYVBgAPdM7cWvz+/rs7mcvMU1dubU/PWtGXm8u+YgN45LqHZ8Un2EBgcyqGv7k1KpXL1mSTFhXilv375NMC/fNBKAW15ZRa6zB2NPVqHXCoGcakxSFKlHHfMKurjK599QTfn8usRHtuH2CUl8mJJeawGV2ry/No0Ve4/yyMUDuKCevZHgCBYfOL8vv7mgX6OnJHqTN4qDLNh2mMAAU+cYnXahwYxOinT7CX9DWGvZlJ7LAA9SGl1GJDj+NjV1amNFhW203oo9WQX1KoKy4WAuFbZ+481cjDFcO6ob6w/mVtuGOevSGNS1PT1jPesBrerm8d0JMIYXl9Q+79kS5/hrb46/9bWgwAAuHxHHoh1Zdc7P+eKSvWQXFHP/+X3dvr6P7RHFkPgO/PebPY2WkuzqXfd0KMfopEg6tAlWaqMXNN+rmpxkT1YBxuD1J/ANddXIbhzKO8Gfv9hOaHAAw90crO+pib1j+OjH44kMC6G4rMLjlEaX9m2CGdsjii83Z7IzM5/N6XnMbODcZnWJDAthREJEoxTmuHVCEref3cPnx2moblFt6BnbloXbTw7O/vDZVsJDg7l7ci+vHi85MfKkEt5fbjnEtkP5/GRKT6+NBUuICuPZH4zgwNEifvzmWt5emUrr4EBmeCH4q45rvrOqJfVd5fOvqqZ8vjvumtSDjuGtePTjLR6Xxz5WWMIfPtvKiIQIrkqu3/FbGm8UB/l662FGJES4NQ3DlL4d2ZFZUGcPRkPtP1JE/gnPioG49IgJI6JNcJMXBfnH1zuZ8pdFjXJD/MD7G7np5VUeH2vdAcdn5E5FvdpcOjyO0OAA3jyl92yH8xpY314zl07tQ7l4aBfeWXWg1ukcvt2RxYAu4UQ3ccVpT105Io7yCsf0PTXJLijmv9/sZvqATm4XLQJH8HzXxB6kHi3is0YKelJSc4gKCyEuwrOMneDAAKb178iXmw/VOYWM1E7BWQuxJ6uQLu1b+12q2tR+sUS3bcWuwwWMTIz0afuSYtry4Y/HM/uOsQ1K85g2oBN7swt58ovtBAYYLmqkEttysil9Y1mx52hlj8I3O7JYvDObe6b28vp8VMkJEZUlvCsqLP/4ehfdo8O4yMuB0+ikKP5w6SCW7Mpm9uqDnD+wk0cTx3qib6d2RLQJrgzO3CmfX5ewVkE8cH5fNhzM9TjN5ol528g9Xsrjl9ZdBe1M4ioO8lI9ioOk5xxn26F8prpZxdWV+ujrimquYiD1Cc6MMYxIiGzSnjNrLe+tOUh67gk2+Lisf2FxGWtTj5FdUMzinZ4lIK1LzSEpOqzB47jbtw7mwsFd+Ghd2kk9uHPWpXntGnj72UkcLy3n9eXVV4YscH4OE3o1v6reSTFtGZEQwbtrDtY4VvJfC3ZxoqyCX03v4/H+p/XvSI+YMJ5ZtLtRxmKmHDjG0PgO9creuWx4HIUl5TVW0hb3KDhrIVxl9P1NcGAAVyY70rYaI4+8XWgwo7o3LGXPNZfY/C2ZjO8Z3ewKDbQUk/vEUlJewZKd2ZRXWP7w6VYSotpw/Zj6TThdG9eTzNX7jzF/ayZbM/K4e3JPn6TMXZkcz12THL2XV4/q5vX9uwQEGEZ3j6qc78zd8vl1mTmkK8O6deBPn293u8Tzqn1HeWf1AW49q7tbFSLPNPdN70vbehQHcQVZ7kwMDI7MiqTosForoXrDprRcQgI9LwbikpwYwb4jRWTlN808TykHcirTgZd4GDB5auXeo5RVWIzBowce1lpHMZAGpDRWde3obhSWlDM3xTH+saLC8tG6NCb08s41sG+ncM7uHcP/lu2vNl10xZ4jlJZbzm5G482qunJEHLsOF1TOD1bV/iOFvLFiP1eNjK9XVc2AAMOdE3uwNSOPRT6eqzDvhGO8pyfFQKoalRhJfGRr3l/jncq+ZyoFZy2AtZa9WYX1+k/fGK4fk8DYpCifpW95W8fw0Mocfl8VApG6JSdG0C40iIXbDvPemgNsz8zn/un1n3C6NlFtW5EUE8aqvUd5+uudJES1YaYPz/195/Vh2QNTGvwgoS5je0SRlnOcfdmFvPrdfsYmRTU4OAoIMDxy0QCyC4r598K65y8qLa/gwTkb6dqhNfee49101JaivsVBFm47TFxEa3p6UHZ8St9Ylu8+Umvp9IbalJ5Ln07t6v1/daRzvrNTK6g2ls82ZhAcaEiKCWOxj4sbLNmVTUhQAFclx/Pllkxyj7v3wOPgseNkFxR7pWItOMYX9e3UrnLOs+V7j5Cee6LBKY1V3XF2EtkFxXy47vQb98U7swkNDmBEom+GPvjajMGdCQ0O4N1qpkz5y5c7CAoI4KdT6//3b+bQrnRuH8ozi9yfM64+Nhxw9BTXd5qdgADD5cPjWLo7+6TxzuIZBWctwOH8YgpLyv2y5wwchUHeun2MVyoONpYrRsQR3bYV0xowwbE0THBgAGf3imHB9sP89csdDO/WgfMH+u58JCdEsHD7YTan5/FjH/WauRhj6NII/x/GOMed/f6TLaTlHG9wr5nLkPgOXDEijpeW7K22omZVLyzey47MAh69eABtQppfVcXG4mlxkBOl5Szdnc3UvrEepR9N6efokV66yzc9QtZaNqXleTS/2akGdm1PSFBAk6Q2Wmv5bOMhzuoZzfQBnVibmuPTSYCX7spmZGIE147uRklZBfM2Zri1XX2LNtTEGMN1o7uxKS2PDQdz+HBdGmEhgUzr772/ueN6RNG/czjPL95z2pjVxTuzGN09ilZB/jU0w13tQoO5YGBnPk5JP6mU/IaDOXy8Pp1bJ3QnNjy03vsPCQrgtglJrNx7tN4FmdyR4hzH2JA5UC8fHoe1MKcRK0y2NArOWoDdWQUAJEX7Z89Zc3Td6ARWPTjVZ+OBxD2T+8aSlV/M4fxiHpzh3sSg9ZWcGEmFhfjI1l59WtyUendsS1RYCF9vO+xx+fy63HdeH4IDDY99urXGdQ4cLeIfX+9gWv+OnONMF5bqBQYYfn/JQLIKirn+xRXscf5dr8l3u49worSCyW6mNLqMTIykXasgn407O3D0OLnHS+s13sylVVAgg7u2b5KiIK6UxhmDuzChVwzlFZble3xzM5xdUMy2Q/mM6xHtrIjY1u3UxnWpxwgNDqBvp/pXUTzVzGFdaR0cyEtL9jJv4yGmD+xM6xDvBUvGGO6YmMTurMKTfv/Sco6zO6uwWZXQr84VyXHkF5dVjrey1vLEvG1EhoVw+9lJDd7/1aPiiWgT7NPes5QDOSTFhLlVYKgm8ZFtGN09kvdqGYMntVNw1gJ8P8eZf/acNVdNNQmmfG9SH8fEuhcM8qzCVX2MTYoiONDws3N6ezw3k78yxlT2ntWnfH5tYsNDuXtKL77amsm31YyDsNby8NzNBBjDIxcP8NpxW7Kh8R14+uph7Mkq5Px/LOalJXtrrIq5YNthWgcHVp5fdwUHBnB2nxgWbDvsccVNdzSkGEhVyYmRbE7PbfQJbV0pjef278jwhA60CQn0WWrjMmexnvE9ozHGcNnwrqzad4z9R+qe421dag6D4zp49f90eGgwFw/pwocp6eQXl/nkIdUFgzrTtUPrkyalXuL8fOuaDsLfjekeRXxka95dcwCAb3dms2z3EX4ypSftQhtexKpNSBA3jevOV1sPs/2QZ8WD3GGtJeWAZ5NP1+SKEXHsO1LUZKnJzV3LuAM5w+3JKqR1cCCdGtBlLuKPotu2YvYdY3ni8sE+P1Z8ZBvWPnQulw33zbxjTeWCQZ3p0j603uXza3PLWYkkRLXh959sofSUMuBfbM5kwbbD/Pzc3o2SwtlSXDSkC1/+7GzG94zm/z7ZwjXPLz+t9L21lgXbDjO+Z3S9KuBO7RvL4fxiNqfneavZlTam5RIcaOjdqWGZHMkJEZSWW9YfzPFOw9xQNaWxfetgWgUFMrp7pM+KgizdmU270KDKQPaSoV0xxlElsTbFZeVsSc9r0PxmNbl2tKNIUcfwVozt4Vng747gwABuHp/Iyn1HWZfquHFfvDObjuGt6OXB2El/FBBguGJ4PMt2H+HA0SKemLeN+MjWXDfae0WsbhibQJuQQJ79xvu9Z2k5znGMXgjOLhjUmTYhgbxXzRg8qZuCsxZgT3YB3aPDVJ5aWqQRCRGEe+Gpozu88XTT38wY3Jllv55a7/L5tWkVFMiDF/Rj5+EC3qhSIruguIxH5m6mX+dwbvLSOLczScfwUF68MZknrxjM5vQ8znvqW95Ysb8yRWhHZgFpOcfdrtJ4qkl9YjEGvvbBhNSb0hzFQBo6dsjVU96YT96rpjS6TOgVw57sQg4e8/7ccEt3ZzM2KapyLsUuHVozrkcUH6xNqzUdbHN6HiXlFQz3UjGQqgbHtefCwZ25a2IPr83xeKqrR3WjXWgQzy/eQ3mFZcmubM7qGdMislUuH+HobbzrjTVszcjjl9P6eLWIVURYCNeM6sbc9elen6/QVWmyIePNXMJaBXH+wM58siGj0Xu/WwIFZy3AnqxCpTSKSJM4t39HzuoZzd/m7+BooWOC2b/P30Fm/gkev3SgTwurtGTGGGYlx/PFz85meLcIHpyziRteWkl6zvHK8TqT+9YvDSwyLITh3SK8Pu7MWsvGtNwGpzSC4ya0Z2zbRi0KUjWl0cU1DsrbvWepR4o4eOw4Z50yzury4XGkHq09HWxdag7gvWIgVRlj+Ne1w7lpfHev79ulbasgrhudwOebDvHZxgxyiko5u3fzHm/mEhfRhnE9opxFccK9PlcmwK0TuhNg4PnFe+pe2QMpqTmEBAV4bbqTK0bEUVBlDJ64T1fNZq64rJyDx4pI8tMy+iLSshlj+N1F/SksKedv87ezKS2Xl5fu5ZpR3XzyZP9M07VDa1774Sh+f8lA1uw/xnlPfcvry/fTv3M4ndvXP110St9YNhzM5XDeCa+19eAxRzGQAV0aHpyBI7Vxzf5jPhkbd6pTUxpdesa2pVN4qMcTRNdlibNa5rgeJwcl5w3oRJuQwFoLg6xLPUbXDq0bVP2vqd08PpHAAMODczYCjnF3LcU1zvkrf31+P59kNHVu7yha9c6qA2QXeG8uwJQDOQzsEu61nr7R3SOJi2it1MZ6UHDWzO0/UkSFhR7qORORJtK7YzuuH5PAmytSufftdUSGhXD/eX2bulkthjGG68ckMO/eCfTrFE5aznGmNrDy5jn9HL1DdY1v8oS3ioG4JCdGkneijJ2Ha69c6Q3rD+aeltIIjs/+rF7RLN2dTbkXg8Slu7PpFB562rU7rFUQ0wd24pMNGdVO1gyOnjNfjDdrTB3DQ5k5tCt5J8oY0CWc6LYNn+jaX8wY1JllD0zxacB5x8QelJRX8PLSvV7ZX2l5BZvScxka770HalXnPEvXnGceUXDWzO1RGX0R8QM/PacX4a2D2Z1VyG9n9Kd9m5Y3fq+pJUSF8fbtY3jppmTumtSjQfvq06kdE3pF8/ziPV4bE7IxLZegAEMfL5V3T3aOO1vVCKmNn25IPy2l0WVCr2hyikrZ5Aw+G6qiwrJsVzbjekZVO87q8uFx5J8o46utp48JzMw7QVrOca9NPt2UXOXlm3uVxlM1xjyWPWLaMn1AJ179br9X5uHbfiifE6UVDPVy0F8555kXHwKdCRScNXO7nWX0u6vnTESaUIc2Ifxt1hDumtSDmUO9P85CHAICDFP6dvTKhN73Tu1FdkEJb6zYX/fKbtiUlkvvju3qVUGyOglRbYhuG+LzoiA1pTS6uHpAvFVSf+uhPI4VlXJWDT0rY5Ki6Nw+lA/Wnn5DWznerJn3nIGjx/3dO8c2+EHDmequST3IP1HGGytSG7wv16T0Q+M6NHhfVXWL0pxn9aHgrJnbk1VIx/BWmixZRJrclL4duX963xZRde1MkJwYyfieUTz7TcN7z6y1bPJSMRAXYwzJCZGs3u/bnrOaUhpdotu2YkCXcK+NO3PdCNeU9hYYYLh0WFe+2ZFFVv7JY4rWHThGSGAAA7p4p2hDUxuZGNlo1XhbmsFxHTirZzTPfrOb57/dw+F8z8aPlpVX8NnGDC5/Zhl/nLeNXrFtiY/0fo/fFSPi2JtdyNpUzXnmLgVnzdye7AKlNIqISL3cO7U32QXFDe49S8s5zrGiUgbGeS84A0hOjODA0eNkerFwyalqS2l0mdArhrWpxygsLmvw8ZbuOkKPmDA61lLQ47LhXSmvsHyUcnLv2brUHPp3CW/wVAXSMvzuov4kRoXx+GdbGfvHBdz6yio+35RBSVlFjdvknyjlhcV7mPjnRfzojbVk5Rfz8EX9mfPj8T55sKY5zzyn4KwZs9aqjL6IiNTbqO6RjOsRxX+/3VNjAQp3bPJyMRAX13xnq/f55ql7XSmNLhN6RVNablmx90iDjldSVsHKvUdrTGl06RnbjiFx7U9KbSwrr2DDweZfDES8p3fHdnz44/F89fOzuW1CEhsO5nLn62sZ/YeveGTuZjal5VamEx44WsT/fbyFsX9cwGOfbqVrh9b89/oRLPzlJG4e391nGViVRW7Wa84zdyk4a8aOFpaQe7xUZfRFRKTe7p3ai6z8Yt5swNgVVzGQvl4qBuIyoEt7QoMDfJba6EppvGBQ51rXG5EQQWhwAN/uaFhq47rUYxwvLWecG5X8Lhsex5aMPLZm5AGwzVm0oSUUAxHv6hnbjgfO78uyB6bw8s0jGdczmjdXpHLhP5dw/j8Wc+srq5n454W8+t0+pvaLZe7d45l951jOG9DJZ5ONV3XFiDjyi8v4covmPHOHgrNmbE+2oxiIes5ERKS+RidFMSYpkme/2V3v3rONaXn08mIxEJeQoACGxHXwWc+Za+Lpaf071bpeaHAgo7pHVc5PVl9Ldx8hwDiKftTloiFdCA40lZXu1h3IAXwz+bS0DEGBAUzuE8u/rx3Oygen8vuZAwgJCmBd6jHumNiDxfdP5h9XD2Owlwt/1GVM9yi6dtCcZ+5ScOZHKiosb6zYz47MfLfWd5XR76ExZyIi0gD3Tu3N4fxi3lrpee/Z98VAfFOkYmRiJFsy8rwy3qsqay2fbshwpDS6MfXD2b2i2XW4gIzc+s/ZtHRXNoPiOtSaQukSGRbC5D6xzFmXRll5BetSjxHTrhVxEb4t0y4tQ4c2IVw/NpG5d5/FmofO5f7pfRs0cX1DBAQYLh8Rx5JdmvPMHQrO/ERxWTn3vL2OB+ds4p631rk12eWerEJCggLoqj/UIiLSAGN7RDG6e/16z9JzT3C0sMTr481cRiRGUF5hWe/sOfIWd1MaXc7q5SqpX7/es/wTpaQcyOGsnnX3mrlcNjyOrPxiluzKJiU1h2HxHVQNVZqly4d31ZxnblJw5gfyTpRy40sr+WRDBtP6d2TboXw+dOOXd3dWIYlRbRolX1hERFq2e8/pRWZeMe+sOuDRdhsPOoqBDPBRcDa8WwTGwCovpza6m9Lo0qdjO2Latap3cLZy71HKKyzje9Q93sxlct8YOrQJ5sUle9mTXajxZtJsJUSFMap7JO9rzrM6KThrYodyTzDr2e9Ys/8YT101lGd/MIJBXdvzt/k76nx6qTL6IiLiLWOTohiVGMkzizzrPduUlktggKF/Z9+kNbZvHUyfju3qLApyrLCEn89OYfwTC3hm0e5aK8N5mtIIjnnXJvSMZumubCrcyG451dJdR2gVFMDwBPcDrFZBgVw0uEtlQKhKjdKcXTEijj3Zhax1TqYu1TvjgzNrLaXlNc8H4Us7M/O57D9LOXC0iJdvGsUlw7oSEGD49fl9Scs5zmvf1TzvTGl5BalHilQMREREvMIYw73n9OJQ3glmr3a/92xjWi69Ytt6vRhIVSMSIliXmlNtyr+1lrnr0znnb98wNyWdjuGt+NPn25j454W8vnx/tdd4T1MaXSb0juZoYQlbnBUUPbF0VzYjEyM9/pwuHxEHQICBwV6eR06kMV0wqDOtgzXnWV3O6ODMWsu9b6fwwPsbG/3Yq/Yd5fJnllFaYXnnjrGVuewA43pGc3bvGP61cBe5RaXVbn/gaBFlFVZl9EVExGvG9YhiZGIEzyzaTXFZ3b1nrmIgA32U0uiSnBhBQXEZ2w6dHBRl5B7n1ldWc89b64iLaM3HPzmLD340ntl3jKVbZBt+++Emzv3bN8xdn35Sb5enKY0u450l8L/dmeXRdln5xWzPzGecB+PNXIbEtadHTBj9u4TTJsQ3c1GJNIa2rYI4f1An9h8pVGpjLc7o4MwYQ0JUG95fe5AvNzfe3Aufb8rguhdWEN22FR/cNa7ai9oD0/uSd6KU/3yzq9p97MlSGX0REfEuYwz3Tu1NRu4JZq+u++n21ox8jviwGIhLckIkAGv2O8adVVRYXlu+n3P/9i1Ld2fz2xn9+OBH4+nnTK0c1T2Sd+8cy0s3JRMaHMg9b63jwn8uYeH2w/VKaXSJbRdK307tWOLhuLNlux3r1zX5dHWMMTx3QzJPXTXU421F/M0fLxvEm7eNUWGbWtQZnBlj4o0xC40xW40xm40x9zqX/9kYs80Ys8EYM8cY08HnrfWBn0zpxYAu4fxmzkaOFBT7/HivfrePu95Yy4Au4bx31zjiI9tUu17/LuFcOrQrLy/dV23Z0T3ZKqMvIiLeN75nFCMSInhm4a5qe8+y8ot5Zdk+Ln9mGRc8vZiQwADG16NHyBNxEa3pGN6KVfuOsSergKufW85DH25iSHx7vvzpRG6dkHRacSxjDFP6duSzeybwj6uHUlBcxs0vr2LG00vqldLocnbvGFbvO1brmLZTLd2VTXhoEAO61C+I7RHTlp6x3p3gW6QptAryXfpzS+FOz1kZ8AtrbT9gDPBjY0x/YD4w0Fo7GNgB/Np3zfSdkKAA/jZrKHnHy3hwziafdrP+9cvt/O6jzUzt25E3bx1DZFhIrev/7NzeYOHv83ec9tqerEKiwkI8fuonIiJSG0fvWS/Sc0/wrrP3LO9EKe+uPsD1L65g9B++4uG5myksLuNX5/Xh619M9HngYIwhOSGSBVszmf6PxWw7lMeTVwzm9R+OpltU9Q85XQICDDOHduWrn0/k9zMHkFVQTOvgQI9TGl3O6hlNSXkFK/YecWt9ay1Ldx1hXI9oVVcWkTrVmbxsrc0AMpzf5xtjtgJdrbVfVlltOXCFb5roe306tePn03rzxLxtfJiSxqXD4rx+jJeW7OWfC3ZxVXI8j186kKDAuuPi+Mg23DA2gZeW7uXWCUn06fT9xW9PdqFSGkVExCcm9IpmeLcO/GvBLpbszGbB9sOUlFUQF9Gauyb14OIhXU+6JjWGcT2j+HRjBhcM6sQjFw8gtl2oR9uHBAVw/dhErhgRz7Gikno/3BzVPZKQoAAW78xmUp/YOtfff6SItJzj3DkxqV7HE5Ezi0cjS40xicAwYMUpL90CvFPDNrcDtwN069bN8xY2ktsmJPHVlkx+99FmxiRFeXUW9c83HeL3n27hvAEd+cNlgzx6cvbjyT15Z/UBnvx8Gy/eNLJy+Z6sQqb2rfuiICIi4iljDD87tzfXv7iS1fuPce2oblw8tEuTToJ89chujO4e2eBeutYhgbQOqf81PjQ4kFGJkSx2syjIUud4s/H1GG8mImcetwuCGGPaAu8DP7XW5lVZ/iCO1Mc3qtvOWvuctTbZWpscExPT0Pb6TGCA4a+zhlBeYbnvvQ1eS29cl3qMe99ex5C4Djx11TCPUxoiwkK4a1IPvt52mBV7HCkUeSdKyS4oVs+ZiIj4zIReMSy+bzLLfz2FRy4e4JwMuunS8gIDjN+Mu5rQK5odmQVk5p2oc92lu7Lp3D6U7tG6ZotI3dwKzowxwTgCszestR9UWX4jcCFwnW0BNTETosL4zQX9WLwzm9dXpDZ4f/uPFHLrK6vpGB7KCzcm0zqkfoMgbxnfnU7hofxx3jastZWVGvWHXkREfCk+so1bafhnGtf0N4vrqNpYUWFZtvsI43tGqzqdiLjFnWqNBngR2Gqt/VuV5dOB+4GLrbVFvmti47pudDfO7h3DHz7dyr7swnrv51hhCTe/vIpya/nfzSOJbtuq3vsKDQ7k5+f2JuVADvM2HWJPlqNSo+Y4ExERaXz9OoUT3TaEr7dmcqyw5KQ51KrakpFHTlGpz6tZikjL4c6Ys/HA9cBGY0yKc9lvgKeBVsB859Og5dbaO33RyMZkjOHJywcz7e/f8It31zP7jrEepyKeKC3n9tdWczDnOG/cOtorQdRlw7vy/OI9/PmL7Zw3oBOBAYZuNZThFxEREd8JCDCc3SuGD9alMW/TIQIDDBFtgokKa0VkWAiRbUOICgvh4DHHVDjje2i8mYi4x51qjUuA6qKTz7zfHP/QqX0o/zdzID99J4Xnvt3DXZN6uL1tRYXll++uZ9W+Y/zzmmGMTIz0SpuCAgO4f3pfbn11Na99t49ukW0ICVKqiYiISFP47YX9Obt3DEcKSzhaWMzRwhKOFJRwtLCErel5HCksIfd4KcO7dSA23LPKkiJy5vKoWuOZZObQLnyx+RB/n7+DyX1j6Nsp3K3tnvxiO59syOCB8/ty0ZAuXm3T1H6xjEyMYNW+YyRpvJmIiEiTiQwL4ZJhXWtdp7S8ggCNNRMRD6jrpQbGGB67ZCDhrYP42TvrKSmrqHObN1bs59lvdnPd6G7ccbb35zMxxvDA+f0A6Bmr8WYiIiL+LDgwQBNPi4hHTGMWWUxOTrarV69utON5w/wtmdz26moGdW1Plw6hhLUKom2rIMJaBREWEuj4t1UQ+SfKePzTLUzqE8tz14/waXWrr7dmMqhre6VJiIiIiIg0M8aYNdba5OpeU1pjHc7t35H7pvdh/pZM9mUXUVBcRmFJGYXFZZSWnxzYDurann9eM8znZYen9uvo0/2LiIiIiEjjU3Dmhh9N6smPJvU8bXlxWTmFxeUUFpdRVFJO9+gwFekQEREREZF6UXDWAK2CAmkVFEhkWEhTN0VERERERJo5dfOIiIiIiIj4AQVnIiIiIiIifkDBmYiIiIiIiB9QcCYiIiIiIuIHFJyJiIiIiIj4AQVnIiIiIiIifkDBmYiIiIiIiB9QcCYiIiIiIuIHFJyJiIiIiIj4AQVnIiIiIiIifsBYaxvvYMZkAfsb7YDuiwaym7oR4hadq+ZF56v50LlqXnS+mg+dq+ZF56v5aM7nKsFaG1PdC40anPkrY8xqa21yU7dD6qZz1bzofDUfOlfNi85X86Fz1bzofDUfLfVcKa1RRERERETEDyg4ExERERER8QMKzhyea+oGiNt0rpoXna/mQ+eqedH5aj50rpoXna/mo0WeK405ExERERER8QPqORMREREREfEDzSo4M8ZMN8ZsN8bsMsY8UGX5O8aYFOfXPmNMSg3bRxpj5htjdjr/jXAuv67K9inGmApjzNBqtn/DefxNxpiXjDHBzuXGGPO0s10bjDHDffMJNC9+fL76GmO+M8YUG2N+6Zt337z48bm6zvl/aoMxZpkxZohvPoHmxY/P10znuUoxxqw2xpzlm0+g+fDhuQo2xrxijNlojNlqjPl1Ddt3N8ascG7/jjEmxLlc161q+PH50nXrFH58rnTdOoUfnyv/vGZZa5vFFxAI7AaSgBBgPdC/mvX+Cvyuhn08CTzg/P4B4E/VrDMI2FPD9hcAxvn1FnBXleXznMvHACua+vNq6i8/P1+xwEjgceCXTf1ZNfWXn5+rcUCE8/vz9X/L789XW75Plx8MbGvqz6ulnivgWuBt5/dtgH1AYjXbzwaudn7/rK5bzfZ86brVfM6VrlvN51z55TWrOfWcjQJ2WWv3WGtLgLeBmVVXMMYYYBaOm4XqzARecX7/CnBJNetcU9P21trPrBOwEoirst9XnS8tBzoYYzq7/c5aJr89X9baw9baVUCpR++o5fLnc7XMWnvMudpyvv8/dybz5/NV4FwGEAac6YOafXmuLBBmjAkCWgMlQF41+54CvFfN9rpunc5vz5euW6fx53Ol69bJ/Plc+eU1qzkFZ12BA1V+PuhcVtUEINNau7OGfXS01mYAOP+NrWadq6j5lwNwdKMC1wOfe9C2M40/ny85WXM5Vz/E8aT/TOfX58sYc6kxZhvwKXBLbdufAXx5rt4DCoEMIBX4i7X26CnbRgE51tqyao6v69bp/Pl8ycmay7nSdcvPz5U/XrOaU3Bmqll2aoRb45Netw5gzGigyFq7qY5V/wN8a61d7EHbzjT+fL7kZH5/rowxk3Fc5O6vbxtaEL8+X9baOdbavjieTP6+vm1oIXx5rkYB5UAXoDvwC2NMkgfH13XrdP58vuRkfn+udN2q5Nfnyh+vWc0pODsIxFf5OQ5Id/3g7NK8DHinyrKXnYP8PnMuynSlbTj/PXzKMa6m7ifFDwMxwM/dbdsZyp/Pl5zMr8+VMWYw8AIw01p7xIP31VL59flysdZ+C/QwxkS786ZaKF+eq2uBz621pdbaw8BSIPmU42fjSFcMqub4um6dzp/Pl5zMr8+Vrlsn8etz5eJP16zmFJytAno5K66E4Lh5mFvl9XNwDOQ76Fpgrb3ZWjvUWnuBc9Fc4Ebn9zcCH7nWNcYEAFfiyIWtljHmVuA84BprbUWVl+YCNxiHMUCuq/v1DObP50tO5rfnyhjTDfgAuN5au6MB77El8efz1dOZ349xVP8LAc7kGxNfnqtUYIrzuhOGo6jHtqoHd46lWAhcUc32um6dzp/Pl5zMb8+Vrlun8edz5Z/XLOsHVUnc/cJRXWoHjqovD57y2v+AO+vYPgr4Gtjp/DeyymuTgOV1bF/mPHaK8+t3zuUG+LfztY1AclN/Vv7w5cfnqxOOJzl5QI7z+/Cm/rx0rqo9Vy8Ax6osX93Un5U/fPnx+bof2Oxc9h1wVlN/Vk395atzhaPK2LvOz3sL8Ksatk/CUbRll3P9Vs7lum41r/Ol61bzOVe6bjWfc+WX1yxX+UgRERERERFpQs0prVFERERERKTFUnAmIiIiIiLiBxSciYiIiIiI+AEFZyIiIiIiIn5AwZmIiIiIiIgfUHAmIiIiIiLiBxSciYiIiIiI+AEFZyIiIiIiIn7g/wEGLc9X2tgrMQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAC26klEQVR4nOydd5xkVZn+n1M5d1V1TtOTGCYwiSRRZgABAcWECRH8iQHDGte4rrgrxl1l1VVEXSO7CqKoGEB0QDIzMD0zMDPA5M7d1d3VlfP5/XHrVFd3V7i36lac9/v5zGdmqqtu3aqucN7zPu/zMM45CIIgCIIgCIIgiNqiqfUJEARBEARBEARBEFScEQRBEARBEARB1AVUnBEEQRAEQRAEQdQBVJwRBEEQBEEQBEHUAVScEQRBEARBEARB1AFUnBEEQRAEQRAEQdQBVJwRBEEQBEEQBEHUAVScEQRBNCiMsUDWnxRjLJz1/+tqfX6lwBg7xhi7tNbnUQjG2EOMsZsqdOw1jLHfMcamGGMzjLH7GWOn5rnu3xljnDGmW3T5mxljBxhjQcbYYcbYhVk/u4QxdpAxFmKM7WCMDWT9jDHGvsoYm07/+RpjjFXicRIEQRC5oeKMIAiiQeGc28QfACcAvCrrsjtrfX6LWVxENOp9VBgngN8DOBVAJ4CnAfxu8ZXSxfeSx8oYewWArwJ4BwA7gJcDOJL+WRuA3wD4HAA3gF0AfpV183cDeA2AzQA2AbgawHvUeFAEQRCEPKg4IwiCaDIYYxrG2KfSXZNpxthdjDF3+mfL092WdzDGhhhjs4yx9zLGzmKM7WWMeRlj38k61o2MsccYY99mjM2luy6XZP28hTH2I8bYGGNshDH2RcaYdtFtv8kYmwFwC2NsVbrjM80Y8zDG7mSMOdPX/zmAZQD+kO7+fYIxto0xNrzo8WW6a4yxWxhjv2aM/YIx5gNwY5FzWs0Yezj9WDyMseziJPs+TOljTqefk52MsU7G2K0ALgTwnfQ5fid9/bWMsb+mu10vMMbemHWsnzDGbk//3J++/4Fc98s5f5pz/iPO+QznPA7gmwBOZYy1Zj/nAD4P4BM5DvEFAP/GOX+Sc57inI9wzkfSP3sdgOc553dzziMAbgGwmTG2Nv3zGwD8J+d8OH2b/wRwY67zJAiCICoDFWcEQRDNxz9B6oBcBKAHwCyA/150nZcBOAXAmwDcBuCzAC4FsAHAGxljFy267hEAbZCKgt+IYg/ATwEkAKwGsBXAZQBuynHbDgC3AmAAvpw+r3UA+iEVCeCcX4+FHcCvyXy81wD4NaSu051FzunfATwAwAWgD8C38xzzBgAt6fNrBfBeAGHO+WcBPALgA+lz/ABjzArgrwD+N/043wLgu4yxDVnHuy59320ABtPnKYeXAxjnnE9nXfYlAN8DMJ59xXQBeiaAdsbYIcbYMGPsO4wxc/oqGwDsEdfnnAcBHE5fvuTn6X9nPwaCIAiiwlBxRhAE0Xy8B8Bn0x2QKKTi5w2LJH//zjmPcM4fABAE8H+c88l0x+QRSEWNYBLAbZzzOOf8VwBeAHAVY6wTwCsBfJhzHuScT0Lq9Lw567ajnPNvc84TnPMw5/wQ5/yvnPMo53wKwDcgFZHl8ATn/F7OeQqAo8g5xQEMAOhJP/5H8xwzDqkoW805T3LOn+Gc+/Jc92oAxzjnP04/zmcB3APgDVnX+SPn/B/p38dnAZzLGOsv9KAYY32QiuqPZl12JoDzkbuo7ASgT9/vhQC2QPo9/kv65zYAc4tuMwdJ/pjr53MAbDR3RhAEUT2oOCMIgmg+BgD8Ni3H8wI4ACAJafEumMj6dzjH/21Z/x/hnPOs/x+H1PkagFQMjGXd1/chdY8EQ9knxhjrYIz9Mi039AH4BaRuUjlk30exc/oEpO7d04yx5xlj/y/PMX8O4H4Av2SMjabNMfR5rjsA4GXi/tL3eR2ArlznyDkPAJiB9BzmhDHWDqnD913O+f+lL9MA+C6AD3HOEzluFk7//W3O+Rjn3AOp+L0yfXkAUvGajQOAP8/PHQACi373BEEQRAWh4owgCKL5GALwSs65M+uPKWv2SCm9i7onywCMpu8nCqAt634cnPNsKdzihf2X05dt4pw7ALwNUrGU7/pBABbxn7R0r33RdbJvU/CcOOfjnPN3cc57IHUYv8sYW734Aae7hF/gnK8HcB6k7tjb85zjEICHFz3fNs75zVnXyXTJGGM2SIYco4vvN/1zF6TC7Pec81uzfuSAJFv8FWNsHMDO9OXDjLELOeezAIZznJ/geUhmH+J+rABWpS9f8vP0v58HQRAEUTWoOCMIgmg+bgdwqzCdYIy1M8auKeN4HQD+iTGmZ4xdC2lW7E+c8zFIRcR/MsYcTDIiWbVoXm0xdkgdGi9jrBfAPy/6+QSAlVn/fxGAiTF2Vbpz9S8AjPkOXuycGGPXpuWCgDSLxyF1FRfAGNvOGNuYLgZ9kGSO4nqLz/E+AGsYY9ennyM9kwxW1mVd50rG2AWMMQOk2bOnOOcLuorp+3VA6tg9xjn/1KIfz0Hqtm1J/xEdsTMAPJX+948BfDDdoXQB+HD6/ADgtwBOY4y9njFmAvCvAPZyzg+mf/4zAB9ljPUyxnoAfAzATxafI0EQBFE5qDgjCIJoPv4Lkh37A4wxP4AnIRlzlMpTkMxDPJBMPd6QZVDxdgAGAPshFTu/BtBd4FhfAHA6pELjj5Cs3bP5MoB/ScsDP845nwPwPgA/BDACqZM2jMIUOqezADzFGAtAeo4+xDk/muMYXenb+SDJQh+GJMEEpOf3DUxyuvwW59wPyXTkzZC6YeOQ7Oyzi8j/hWSmMgOpmMqXQ/fa9Dm+gy3MsVvGJcbFHwBT6dtMcM5j6X//O6SO2ovp894N6XeG9Izf69P/n4X0msieD/w+gD8A2AfgOUi/n+/nOU+CIAiiAjCSkhMEQRD5YIzdCOAmzvkFtT6XRoUx9hMAw5zzfyl2XYIgCOLkhjpnBEEQBEEQBEEQdQAVZwRBEARBEARBEHUAyRoJgiAIgiAIgiDqAOqcEQRBEARBEARB1AFUnBEEQRAEQRAEQdQBumreWVtbG1++fHk175IgCIIgCIIgCKJueOaZZzyc8/ZcP6tqcbZ8+XLs2rWrmndJEARBEARBEARRNzDGjuf7GckaCYIgCIIgCIIg6gAqzgiCIAiCIAiCIOoAKs4IgiAIgiAIgiDqgKrOnBEEQRAEQRBEvRCPxzE8PIxIJFLrUyGaEJPJhL6+Puj1etm3oeKMIAiCIAiCOCkZHh6G3W7H8uXLwRir9ekQTQTnHNPT0xgeHsaKFStk345kjQRBEARBEMRJSSQSQWtrKxVmhOowxtDa2qq4K0vFGUEQBEEQBHHSQoUZUSlKeW1RcUYQBEEQBEEQNeLWW2/Fhg0bsGnTJmzZsgVPPfUUAOCmm27C/v37VbmP5cuXw+PxFLzOl770JcXH/clPfoIPfOADCy778Y9/jC1btmDLli0wGAzYuHEjtmzZgk996lOKj18NbrvtNoRCoVqfRgaaOSMIgiAIgiCIGvDEE0/gvvvuw7PPPguj0QiPx4NYLAYA+OEPf1jVc/nSl76Ez3zmM2Uf5x3veAfe8Y53AJCKwh07dqCtra3s45YK5xycc2g0uXtSt912G972trfBYrHIPmYikYBOV5kyijpnRF6eOT6DmWCs1qdBEARBEATRlIyNjaGtrQ1GoxEA0NbWhp6eHgDAtm3bsGvXLgCAzWbDJz/5SZxxxhm49NJL8fTTT2Pbtm1YuXIlfv/73wNY2sW6+uqr8dBDDy25z9e85jU444wzsGHDBtxxxx0AgE996lMIh8PYsmULrrvuOgDAL37xC5x99tnYsmUL3vOe9yCZTAKQOmNr1qzBRRddhMcee0z2Y/3617+Os846C5s2bcLnP/95AMCxY8ewdu1a3HTTTTjttNNw3XXX4cEHH8T555+PU045BU8//TQA4JZbbsH111+Piy++GKeccgp+8IMfFD3uunXr8L73vQ+nn346hoaGcPPNN+PMM8/Ehg0bMtf71re+hdHRUWzfvh3bt2/PPNeCX//617jxxhsBADfeeCM++tGPYvv27fjkJz+Jw4cP44orrsAZZ5yBCy+8EAcPHpT9XBREVJP5/gDoB7ADwAEAzwP4UNbPPgjghfTlXyt2rDPOOIMTjcHBMR9f8an7+Jf+tL/Wp0IQBEEQBFER9u+v7TrH7/fzzZs381NOOYXffPPN/KGHHsr87KKLLuI7d+7knHMOgP/pT3/inHP+mte8hr/iFa/gsViMDw4O8s2bN3POOf/xj3/M3//+92duf9VVV/EdO3ZwzjkfGBjgU1NTnHPOp6enOeech0IhvmHDBu7xeDjnnFut1sxt9+/fz6+++moei8U455zffPPN/Kc//SkfHR3l/f39fHJykkejUX7eeectuM/FiPu9//77+bve9S6eSqV4MpnkV111FX/44Yf50aNHuVar5Xv37uXJZJKffvrp/B3veAdPpVL83nvv5ddccw3nnPPPf/7zfNOmTTwUCvGpqSne19fHR0ZGCh6XMcafeOKJzLmIx51IJPhFF13E9+zZs+S5Wfw83H333fyGG27gnHN+ww038KuuuoonEgnOOecXX3wxf/HFFznnnD/55JN8+/btOZ+DXK8xALt4nnpJTj8uAeBjnPNnGWN2AM8wxv4KoBPANQA2cc6jjLEOdcpFoh742l8OIsWBY55grU+FIAiCIAii4nzhD89j/6hP1WOu73Hg86/akPfnNpsNzzzzDB555BHs2LEDb3rTm/CVr3wl060RGAwGXHHFFQCAjRs3wmg0Qq/XY+PGjTh27Jiic/rWt76F3/72twCAoaEhvPTSS2htbV1wnb/97W945plncNZZZwEAwuEwOjo68NRTT2Hbtm1ob28HALzpTW/Ciy++WPQ+H3jgATzwwAPYunUrACAQCOCll17CsmXLsGLFCmzcuBEAsGHDBlxyySVgjC15bNdccw3MZjPMZjO2b9+Op59+Go8++mje4w4MDOCcc87J3P6uu+7CHXfcgUQigbGxMezfvx+bNm1S9Nxde+210Gq1CAQCePzxx3HttddmfhaNRhUdKx9FizPO+RiAsfS//YyxAwB6AbwLwFc459H0zyZVOSOi5jx1ZBp/OzgJnYZhaCZc69MhCIIgCIJoWrRaLbZt24Zt27Zh48aN+OlPf7qkONPr9RnnP41Gk5FBajQaJBIJAIBOp0MqlcrcJpeF+0MPPYQHH3wQTzzxBCwWC7Zt25bzepxz3HDDDfjyl7+84PJ77723JAdCzjk+/elP4z3vec+Cy48dO5Z5LIUeG7DU+ZAxVvC4Vqs18/+jR4/iP/7jP7Bz5064XC7ceOONeS3us+9n8XXEMVOpFJxOJwYHB4s9dMUommRjjC0HsBXAUwC+DuBCxtitACIAPs4535njNu8G8G4AWLZsWbnnS1QYzjm+8peD6HKYcNGadvxp3xg452QzSxAEQRBEU1Oow1UpXnjhBWg0GpxyyikAgMHBQQwMDJR0rOXLl+O73/0uUqkURkZGMvNa2czNzcHlcsFiseDgwYN48sknMz/T6/WIx+PQ6/W45JJLcM011+AjH/kIOjo6MDMzA7/fj5e97GX40Ic+hOnpaTgcDtx9993YvHlz0XO7/PLL8bnPfQ7XXXcdbDYbRkZGoNfrFT2+3/3ud/j0pz+NYDCIhx56CF/5yldgNptlHdfn88FqtaKlpQUTExP485//jG3btgEA7HY7/H5/xrSks7MTBw4cwKmnnorf/va3sNvtS47ncDiwYsUK3H333bj22mvBOcfevXtlPRfFkF2cMcZsAO4B8GHOuY8xpgPgAnAOgLMA3MUYW5nWUWbgnN8B4A4AOPPMMzmIuub+58ex+4QXX339RvgjCfh3JTAXjsNpMdT61AiCIAiCIJqKQCCAD37wg/B6vdDpdFi9enXGpEMp559/fkYieNppp+H0009fcp0rrrgCt99+OzZt2oRTTz11gezv3e9+NzZt2oTTTz8dd955J774xS/isssuQyqVgl6vx3//93/jnHPOwS233IJzzz0X3d3dOP300zNGIYW47LLLcODAAZx77rkAJDnnL37xC2i1WtmP7+yzz8ZVV12FEydO4HOf+xx6enrQ09Mj67ibN2/G1q1bsWHDBqxcuRLnn3/+gsf9yle+Et3d3dixYwe+8pWv4Oqrr0Z/fz9OO+00BAKBnOdz55134uabb8YXv/hFxONxvPnNb1alOGOLaqncV2JMD+A+APdzzr+RvuwvkGSND6X/fxjAOZzzqXzHOfPMM7lwnSHqj0Qyhcu++Q9oNAx/+dCFePDAJN77i2fwhw9cgI19LbU+PYIgCIIgCFU5cOAA1q1bV+vTIIpwyy23wGaz4eMf/3itT0UxuV5jjLFnOOdn5rp+USt9JunZfgTggCjM0twL4OL0ddYAMAAonG5H1DW/2jWEI54gPnnFWui0GixzS3kPQ7P1E8xHEARBEARBEM2KHFnj+QCuB7CPMTaYvuwzAP4HwP8wxp4DEANww2JJI9E4hGIJ3PbgSzhzwIVL10nGm/1uMwBgaIaKM4IgCIIgCKI23HLLLbU+haohx63xUQD53CDepu7pELXiR48cxZQ/itvfdnrG/MNu0sNp0eMEFWcEQRAEQRAEUXGKyhqJ5mc6EMX3/3EEl63vxBkD7gU/63dZMDRLdvoEQRAEQRAEUWmoOCPwnR2HEIol8IkrTl3ys363GcPUOSMIgiAIgiCIikPF2UnOiekQfvHkcbzprH6s7lia49DvtmB4NoxUisYJCYIgCIIgCKKSUHF2kvOff30BWg3Dhy5Zk/Pn/S4LYskUJvy5U9QJgiAIgiCI0tFqtdiyZQtOO+00XHvttQiFSlcs3Xjjjfj1r38NALjpppuwf//+vNd96KGH8Pjjj2f+f/vtt+NnP/tZyfctOHbsGE477bQFl91yyy34j//4D0XHUet8Gg3ZIdRE8/HcyBx+NziK921bha4WU87r9As7/ZkwulvM1Tw9giAIgiCIpsdsNmNwcBAAcN111+H222/HRz/60czPk8mkorBmwQ9/+MOCP3/ooYdgs9lw3nnnAQDe+973Kr6PSpFIJOrqfKoJdc5OYr76l4NwWvR477ZVea/T7yI7fYIgCIIgCHzta8COHQsv27FDulwlLrzwQhw6dAgPPfQQtm/fjre+9a3YuHEjkskk/vmf/xlnnXUWNm3ahO9///sAAM45PvCBD2D9+vW46qqrMDk5mTnWtm3bsGvXLgDAX/7yF5x++unYvHkzLrnkEhw7dgy33347vvnNb2LLli145JFHFnS3BgcHcc4552DTpk147Wtfi9nZ2cwxP/nJT+Lss8/GmjVr8Mgjjyh+jIWO/ZnPfAYXXXQR/uu//itzPqOjo9iyZUvmj1arxfHjx3H8+HFccskl2LRpEy655BKcOHECgNQ9/Kd/+iecd955WLlyZaaT2ChQcXaS8shLU3jkJQ8+sH01HCZ93uv1usxgjIKoCYIgCII4yTnrLOCNb5wv0HbskP5/1lmqHD6RSODPf/4zNm7cCAB4+umnceutt2L//v340Y9+hJaWFuzcuRM7d+7ED37wAxw9ehS//e1v8cILL2Dfvn34wQ9+sECmKJiamsK73vUu3HPPPdizZw/uvvtuLF++HO9973vxkY98BIODg7jwwgsX3Obtb387vvrVr2Lv3r3YuHEjvvCFLyw4z6effhq33XbbgsuzOXz48IKC6vbbb5d1bK/Xi4cffhgf+9jHMpf19PRgcHAQg4ODeNe73oXXv/71GBgYwAc+8AG8/e1vx969e3Hdddfhn/7pnzK3GRsbw6OPPor77rsPn/rUpxT+JmoLyRpPUr7990PodZpx/bkDBa9n1GnR5TBhaIbs9AmCIAiCaGI+/GEgLS/MS08PcPnlQHc3MDYGrFsHfOEL0p9cbNkC3HZbwUOGw2Fs2bIFgNQ5e+c734nHH38cZ599NlasWAEAeOCBB7B3795MF2hubg4vvfQS/vGPf+Atb3kLtFotenp6cPHFFy85/pNPPomXv/zlmWO53e4l18lmbm4OXq8XF110EQDghhtuwLXXXpv5+ete9zoAwBlnnIFjx47lPMaqVasyUk1gPkS62LHf9KY35T2vxx57DD/84Q8z3bonnngCv/nNbwAA119/PT7xiU9krvua17wGGo0G69evx8TERMHHW29QcXYSEkukMHjCi3ecvxxGXXENc7/LQrJGgiAIgiAIl0sqzE6cAJYtk/5fJtkzZ9lYrdbMvznn+Pa3v43LL798wXX+9Kc/gTFW8Pic86LXUYLRaAQgGZkkEgnVjgssfMzZjI2N4Z3vfCd+//vfw2az5bxO9mMU5whIj7+RIFnjSciLE37Ekimc1tsi6/p9bjPJGgmCIAiCaG5uuw146KHCfz7/eSAUAj73Oenvz3++8PWLdM3kcvnll+N73/se4vE4AODFF19EMBjEy1/+cvzyl79EMpnE2NgYdiyeiQNw7rnn4uGHH8bRo0cBADMzMwAAu90Ov9+/5PotLS1wuVyZDtXPf/7zTKerXEo5djwexxvf+EZ89atfxZo18+7i5513Hn75y18CAO68805ccMEFqpxjraHO2UnIcyNzAICNMouzfpcFv/WNIJpIyuq0EQRBEARBNB1ixuyuu4Dt26U/2f+vIDfddBOOHTuG008/HZxztLe3495778VrX/ta/P3vf8fGjRuxZs2anIVOe3s77rjjDrzuda9DKpVCR0cH/vrXv+JVr3oV3vCGN+B3v/sdvv3tby+4zU9/+lO8973vRSgUwsqVK/HjH/9Ytcei9NiPP/44du7cic9//vP4/Oc/D0DqGH7rW9/C//t//w9f//rX0d7eruo51hJWzVbfmWeeyYVrDFE7Pvvbffj9nlHs/fxlstrc9zwzjI/dvQc7Pr4NK9pyt5sJgiAIgiAajQMHDmDdunXyrvy1r0nmH9mF2I4dwM6dQNa8E0Fkk+s1xhh7hnN+Zq7rU+fsJOS5kTmc1tMiW38sss5OzISoOCMIgiAI4uQkVwEmOmgEoRI0c3aSEU+mcGDcj4198iSNANDvpqwzgiAIgiAIgqg0VJydZLw44UcsId8MBAA67SYYtBoyBSEIgiAIgiCICkLF2UmGUjMQANBoGHpdZgxT1hlBEARBEE1Go1mtE41DKa8tKs5OMvaNzMFu1GEgPUcml363hTpnBEEQBEE0FSaTCdPT01SgEarDOcf09DRMJpOi25EhyEnGvhEfNvQ6oNEoCyPsd5mxd9hbmZMiCIIgCIKoAX19fRgeHsbU1FStT4VoQkwmE/r6+hTdhoqzk4h4MoUDYz7ccO6A4tv2uy3whuLwR+Kwm/QVODuiVO7eNQSHWY/LN3TV+lQIgiAIoqHQ6/VYsWJFrU+DIDKQrPEk4qWJgGIzEEG/S5JBDtHcWd3x3YcO48ePHa31aRAEQRAEQRBlQsXZSUQpZiCCjJ0+zZ3VHZO+CDyBWK1Poy556IVJTAeitT4Nosn4+ZPH8U//t7vWp0EQBEE0IVScnUTsG5mDzajD8lblQdLL3KJzRsVZPRGIJhCMJeGhAmQJ/kgc7/jJTtz51IlanwrRZNy7ewR/fm4MyRQZCBAEQRDqQsXZScS+kTls6FFuBgIALWY97EYdFWd1xqQvAgDwhuKIJ1M1Ppv6Yng2DM5BnTNCVeLJFJ4bmUM8yTHpj9T6dAiCIIgmg4qzk4RE2gykFEkjADDG0Oe2YGiWZs7qiUn/fOExTdLGBYiNhNlQvMZnQjQTB8f8iCakjRCawSUIgiDUhoqzk4SXJgOIJlLY2FdacQZIdvrUOasvJnzzO/ckbVyI2EiYDVHRSqjH7qHZzL+HaQaXIAiCUBkqzk4S9qXNQEpxahQsSwdRU1Bj/TCV1TnL/jcxv3Cm4oxQk8ETXrgsUpzIMCkJCIIgCJWh4uwk4bm0GciKEsxABP1uCyLxFKZU7tD4I3E8/CKFP5ZCdudM7d9LoyMkZ7NBkjUS6jE45MWZy91otxupc0YQBEGoDhVnJwn7RuawvkQzEEHGTl/lOYu7dw3jhv95mobrS2DSH0WbzQCAZI2LEQtnL3XOCJXwhmI44gliS78T/S4zdc4Ioo4YHPLip48fq/VpEETZUHF2ElCuGYhABFGrvVs8kS7KaLheOZO+KAZarbAYtPD4qQgRcM4zC+dgLIlYgpwsifIZHPICALYuc6LPZaHijCDqiO/8/SX8+337KeKCaHioODsJODQVQCSeKrs463NVJutMuAyOeGmho5QJfwQddiPabEbqnGUxF44jEE1gRZsk46XuGaEGg0NeMAZs6nOiz2XGqDdMC0GCqAPiyRSePDKDRIrT/DXR8FBxdhKwb7h8MxAAMBu0aLcbVe9wiaJihHahFTPli6LTYUK7nYqzbMRrVGxIkJ0+oQaDQ16s6bDDZtShz2VBIsUXzH0SBFEb9gx5EYgmAACjc7SWIBobKs5OAp4bmYPVoMXKttLNQAT9LjNOVKhzRsP1ygjFEvBHE2i3G9FmM1BxloV4Lc0XZ9Q5I8qDc449Q15s6XcCAPpc0gwuSRsJovY8esiT+fcoqXCIBoeKs5OAfSNz2NDTUpYZiKA/baevJtOic0YfqIqY9EnP27yskQoQgXiNily/ZpI1pkhGVxOOT4cwG4pjyzIngOzijDaVCKLWPHbIk9mAHvNSN5tobKg4a3ISyRT2j/mwodehyvH6XRaMzUWQSKpjsMA5hyeYnjmjHWhFTKZ19Z0OE9psRsyGYqr9XhqdoZkwHCYdBlqlOclmkTXGEilc+o2H8f2HD9f6VE46RPj01nRx1uOsjHstQRDKCEQT2H3CiytO64LVoKWNXqLhoeKsyTk8FVTFDETQ7zYjmeIYm1NnZyoQTSCWSEGnYRieDVPAtQJE9ECHw4g2uxGcAzPB5ukQlcPwbAh9LgtcFilmoFmel/ufH8cRTxAHx/21PpWTjsETXlgNWpzSYQcAmPRadFDWGUHUnKeOTCOR4rjglDb0OM0Yo5kzosGh4qzJ2TcimYGoV5xJnQi15s7EvNnabjvC8WTTdDiqwURG1mhCezrrjIKoJYZmw+h3m2HSa2HSa5pG1vizJ44BAKabpNhsJAaHvNjY1wJtljy8j7LOCKLmPHrIA5Neg9OXudDjNGOUZI1Eg0PFWZPz3MgcLAYtVrbbVDlev8p2+tNBqZjY3OcEQNJGJUz6I9BrGVwWPdpsRgAgC2GIjLNQJvrBZTE0RdG/f9SHncdmwRgwE6TfczWJxJPYP+bDln7Xgsv73RYMe6lzRhC15LFDHpy13A2TXosep4kMQYiGh4qzJmffyBzWdzsW7PaWQ3eLCVoNU80URJhYiOKMJELymfJF0WE3gTGWKc7IFER6DiLxFPrThg1Oi6EpOmc/f/IYTHoNLlnbiRn6PVeV50d9iCd5xqlR0OcyY8yr3gwuQRDKmPBF8OJEABesbgMA9LSYMR2MIRJP1vjMCKJ0qDhrYpIpjv2jvrLzzbLRaTXocZpUG4IX9u+b+qVzpEFe+Uz4I2i3S0VZm10UZ9RREQX+fOdM3/Cds7lQHPfuHsVrtvRiRZsF08EYzWdWkcEhL4B5MxBBJuuMOtYEURMeS1voX3CKVJx1p4161JqLJ4haQMVZE3N4KoBwPKnavJlgmYp2+mLmbGWbDTajjuY3FDDpi6LTIRVlVoM0W+WhRSKG0q8hMR8pyRobu9N09zNDCMeTuP7cAbitRkQTKYRpZ7hqDA550dNiQqfDtODyjJ2+ytmPBEHI49FDHritBqzrkhype5zSe3SMNnqJBoaKsyZm33DaDKRP3eKs32VRb+YsEIXDpINBp0Gvk4brlTDpl2SNADLSRuqczc9D9mVkjXp4G7hzlkpx/OLJ4zhzwIUNPS1otUrmL9Mkbawag0OzmXyzbER3lj63CKL6cM7x2CEPzlvVmslx7WmRPvdJhUM0MlScNTH7RuZg1muxSiUzEEG/2wJPIIZQLFH2sTzBWEaS1+sy0weqTCLxJObCcXSknzsAFESdZng2DLfVAKtRBwBwW6WZs0YNb/7HS1M4Nh3C9ecOAJAeD9A88QD1jicQxdBMeMm8GTC/S0/FGUFUn0OTAUz4opl5MwDoakl3zkjWSDQwVJw1Mc+NzGF9j3pmIIKMlEeFBcl0IIo2qzFz3BEyBJHFVFYAtaDdTp0zQJo5E2YggGQIkuKAP1L+ZkIt+PkTx9FmM+KVp3UDANw2Ks6qyeAJLwBg6zLXkp8ZdVp0OijrjCBqwaPpebPzs4ozk16LNpuBHBuJhoaKsyYlmeJ4ftSn+rwZMD/Lo4a0cToQQ2t6sdnrNMMXScAXaVwJWrUQAdTtjsWdMyrOhmfDGbkZIBmCAMBMA86dDc2E8PcXJvHWs/th0Ekf1xlZIxVnVWFwyAuthuG0ntyfpX0uC3XOCKIGPHbIg+WtlsyaRNDjNGOUOmdEA0PFWZNyJG0GoqZTo2CZikHU08Gs4izd7aCss+KIAOpOe1bnzGbATDCGZIPK99QgleIYmQ2jzz3fOXNZpNdXI5qC/OLJ49Awhre+bCBzmStdnM1ScVYVBoe8WNtlh9mgzfnzPpdZNYMkgiDkEU+m8OSRmQVdM0FPi5k6Z0RDU7Q4Y4z1M8Z2MMYOMMaeZ4x9KH35LYyxEcbYYPrPlZU/XUIu+0bSZiAVKM5arQaY9dqy7fQTyRRmQzG0ZmSNUtFXyeJsfC6CQLQx5W3ZTPqkXcGO7M6Z3YgUr3+5G+e8YrlQk/4oYsnUgs6ZM905a7Sss0g8iV/tGsLlGzozcxQAYDfqoNcy6pxVgVSKY8+QN+e8maDPZcbYHGWdEUQ12TPkRSCaWDBvJuh2mjDmDVPcCNGwyOmcJQB8jHO+DsA5AN7PGFuf/tk3Oedb0n/+VLGzJBSzb2QOJr0Gq9qtqh+bMYZ+d/m7xTOhGDgH2rJkjUBlg6jf8oMn8fW/HKzY8avFhD8KnYbBne4KAcgKoq5vaeOX/3wQV/zXIxU5tnhNZs+cZTpnwcaSy/5+zyi8oTiuP2f5gssZY3BbDZgJ1vfvuRk4PBWAP5ooWJz1uyxIpjjGfSSjIohq8eghDxgDzl3VuuRnvU4zgrEkfOHG34glTk6KFmec8zHO+bPpf/sBHADQW+kTI8rjuZE5rO92QKetjHJVDTt9YQXemi4q2mwGGHWaijk2xhIpHJsO4uh040uQJn1RtNuNGftgYL44m6rjrLOXJvz40aNHcWgygGhC/Zwu8ZrMnkFoRFkj5xw/e+IY1nTacM5K95Kfu63Guu+QNgO7M+HTS81ABGSnTxDV57FDHmzsbYEza4NS0E12+kSDo2jlzhhbDmArgKfSF32AMbaXMfY/jLH8315EVamkGYig3y0NwZcjG8gUZ+kZGsZYRe30J3wRcD4vCWxkJv2RBTb6wHwHsp47Z7f+6UBmJq4SOV1igSy6sABgN+mgYWiorLPdQ148N+LD9ecuB2NL3VZbrQaSNVaBwSEv7CYdVrblVyCo6V5LEERxAtEEdp/w5pQ0AllB1HP0niQaE9nFGWPMBuAeAB/mnPsAfA/AKgBbAIwB+M88t3s3Y2wXY2zX1NRU+WdMFOWoJ4BQrDJmIIJ+twWBaAKzZSx4p9OyrLasIqOSQdSi6JtohuLMF0V7lhkIMP881mtx9vCLU3johSmcu1KSoUxWoMM3NBNCh90Ik37evEGjYXBaDA3VOfv5E8dhN+rwuq25RQouq4E6Z1Vg8IQ0b6YpEEfS7TSBscrKsQmCmOepI9NIpHiB4kzaMCFTEGVE4smT2lCsnpBVnDHG9JAKszs5578BAM75BOc8yTlPAfgBgLNz3ZZzfgfn/EzO+Znt7e1qnTdRgIwZSF8Fi7P0bnE50kYRmCxyzgCRdVaZD1TxQT0bildEUldNJv0RdDoWds7sRh0MOk1dBlEnkil88b79GGi14GOXrQFQGfmlZKNvXnK506JvmM6ZJxDFH/eO4fVn9GWCtBfTSsVZxQnFEnhhwl9w3gxIZ53ZTdQ5I4gq8eghD4w6DU4fyC3YarcZodcystNXyJX/9Qi+u+NQrU+DgDy3RgbgRwAOcM6/kXV5d9bVXgvgOfVPjyiF50Z8MOk1WN1uq9h9ZLLOytgtng5IphYO8/wCtM9lwXQwhnBM/eIpexdt0lef3SU5RBNJzIbi6FjUOWOMod1mhKcOZ87+b+cQXpoM4NOvXJeJTKhEcTY0G1qSeQMA7gbqnP1q5xBiyRTeds5A3uu4rQb4IwnEEuQQWCn2Dc8hmeJFizNA2lSizhlBVIfHDnlw9gr3AoVENhoNQ6fDRJ0zBUQTSRzxBLFneK7Wp0JAXufsfADXA7h4kW3+1xhj+xhjewFsB/CRSp4oIZ/j0yEsb7VWzAwEyA6iLv3DzxOIotVmWDBTI2aFRrzqL3RGvPO7aCLEuRERRU3Hos4ZIM2dTdWZrHEuHMc3//oiXrbCjcs3dGaiE9QuzhLJFMbmInk6Z43RaUokU/jFk8dxweo2rO7Iv7nitjaeyUmjMZg2A5FfnNFCkCAqzYQvghcnAnkljYIepxlj3sb9nq82Yga8XKM3Qh1ya2ay4Jw/CiCX4J6s8+uUUCwBWx45lFrYjDq4rYYyO2fzGWeC3qzh+tUd9rLOcTGj3jBMeg0i8VQmxLkREbNai2WNANBuNy4oQuuB/95xCLOhGD539XowxmDQMbgsekwF1D3PsbkIkimOftfSzpnLosdzI/Uva3zwwCTG5iL4wqs3FLyeMNGZDsTQ6TAVvC5RGoNDXixzWzJusoXoc1nwh71jSCRTFd0UI4iTnccOeQAgZ/h0Nj0tJuw8NluNU2oKxGbpiZkQOOc5jaiI6kHfIk1IMJrIO6uiJv0uc3kzZ8EYWm0LbXBF16MSjo2j3jA29TkBSGHUjYqQZC6WNQKSnX49GYIcnw7ix48dxRtO71tgUNNuN6reOctknOWQNbqsjSFr/NXOE+h1mnHJus6C1xOds0boBjYqg0XCp7Ppc5mRTHGMNfDnCkE0Ao8e8sBl0WN9t6Pg9XqcZkz4ImRwIROxbgjHk+QEXAdQcdaEBGNJWI25tdhq0ucuL+tsOhDNZHMJOuwm6DRMdYkQ5xyj3jDWdztg0GowUYasMZni+N+nTsAXqU0nRkgyF1vpA1JxNhOMIVUnX0hf/tNB6LUa/PPlpy64vMNuUr04E6+ZfIYg0USqIrOMavLiRABnr3BDW8AdEMgqzhqg4GxExuciGJuLyC7OxIYASRsJonJwzvHYIQ/OW91W0EEVkIqzRIrXde5nPZH9PJ0gaWPNoeKsCQlGE7AaqtE5s2DEGy55Z2o6EMtkcwm0GoZup0l1x0ZfOIFgLIk+lxkdDmNZhiB7hr34zG/34f13PotEsvqGDJO+KDQMOeVWbTYDkileF12iJ49M4y/Pj+Pmi1ahY5H0rt1uVN1Kf3gmBA2bDyDNphGCqBPJFMZ9kQUZbfnIFGd11CVtJgaHJDnUlmVOWdefzzqjRQ1BVIpDkwFM+KJF582A+ayzUco6k0V2cUZzZ7WHirMmpGqyRrcZ8SQvKTcsFEsgHE/mLDD6nBbVZY3iA7rHaUanw1RW1pkoHB95yYMv//mgKuenhEl/BG02Y87uynzWWW2LkFSK44t/3I+eFhPe9fKVS34uZI3lhJgvZng2jC6HCQbd0o81l0UPoL6Ls/G0BKc3R+dvMU6LAYyRrLFS7B7ywqDVYENPYemUoLvFnM46o4UgQShlyh/F9T96Cv/14EsFNzgeTc+bySvOKOtMCVOBKMxp98sT01Sc1RoqzpoMznnVZI3L0lKeUlrgwhlIGBtk01sBW2rxAS0VZ8ayirOxdKF37Rl9+NGjR3H3riFVzlEuE75oTqdGABmZaK2lHPc8O4znRnz45CvX5rQ7brcZEU2k4I8mVLvPodkQ+nLMmwFSMQOgrrPORNEvp3Om1TC4LAaaDagQgye8WNfjgFEn73PUoNOgy1G7rLMXxv2qbnSUw3MjczjqCdb6NIgGYveJWTzykgfffPBFXPi1HXjbD5/C7wZHEIkvlKE/dsiDgVZLzrnixQgFBTk2ysMTiKLHaUKH3UiyxjqAirMmI5pIIZnisFRJ1giU1gIXw6eLZ84AaXE66Y+qmuE0X5yZ0GE3lSVrHPVGYDfq8OXXbcT5q1vx2d8+h2eOV88VatIfRWcOMxBg/vmspSlIMJrA1+9/AZv7nXjVpp6c12m3q19E5gugBhpD1ii6xXI6Z4AkbaTOmfokkinsG5nDVpnzZoJaZZ0dGPPh8tv+gScOT1f9vnPx8bv34ON376n1aRAqkEimqiLdF59jd7/3XHzoklNwbDqID/1yEGfd+iA+89t92H1iFvFkCk8emSnq0ihwmHSwGXUVMRdrRqb8UbTbjVjmtlBxVgdQcdZkBNOdiEpb6QNAt9NUspRHyO4WuzUC0iKH8/kOlRqMeCMwaDVosxrR6TDBH01kniuljHrD6HGaodNq8J23nI5upwnv+fkzqp5vIab8kbyds/Y6KM6+//BhTPqj+Ner1+Ud2la7OIsmkhj3RXLa6AOAy5qWNdZxMaOkcwZIwdpUnKnPixMBhGJJ2WYggj6XpSads+NpCdLhqUDV7zsXM8EYnjk+i8ky1AlEfXDTz3bhk/fsq/j9CAXAxt4WfPjSNfjHP2/H/77rZXjFuk785tlhvPa7j2Pb1x9CIJqQJWkEAMYYulsoiFouU37JoG2ZuzafY8RCqDhrMkJpNzqLofKyRqNOW7KUZzpdPOSaOcvOOlOLUW8Y3U4TNBqWyQcr1ZBibC6C7vSwsctqwA/efiYi8STe/bNnKu4GGE+m4AnEctroA4DDrINBq6lZEPXhqQDueOQIrt7UjTMG3Hmvp3ZxNuaNgPPcNvoA4DSLzlkdyxq9YbTZDDlloLmgzlllUBI+nU2fy4xxX6TqJkFiI2a4ThahwsX2gf0TNT4TolyeH/Xh4RenKi6ZnQ7EYDVoM599Gg3Deava8I03bcHTn70UX37dRnQ6jGizGXD+KnnFGZAOoqZ4C1l4AjG0243oc1swOhdWVblEKIeKsyYjUMXOGVC6lEfslOWaOetzSgtsNR0bR71h9KQ16CK0t9S5s1FveIEj4JpOO2570xY8NzqHT9yzt6JfZGIhlq9zxhhDq80Aj7+6i/a5cBxf+tMBvPK2R6DXaPDJK9YWvH6HysWZyDjLJ2s06DSwGXV1L2uU2zUDALeNirNKMDg0C5dFj4HW4nMt2dQq60x8JozWwWxNNJFEJC4t6u5/frzGZ0OUg7QRGIUnEK24NHAmGIU7h4oGABwmPd5y9jL85n3nY9e/vAItaXMnOfQ4qXMmh1AsgUA0kZE1cl6ZrFlCPlScNRmhmFScWapWnJXWAvcEorAZdTm7BF0tJmiYujvBQooIINM5K6U4i6QDGnudCztXl67vxMcvOxV/2DOK7z50uPwTzkOhAGpBNYOo48kUfvLYUWz7+g784JEjePWWHvz1oxcVHdhuMeuh1zLVOnxDM9JrpdD9Oi36ujcEkTtvBkgbG7Oh+sm0axZE+DRjhXOUFtPnqk3WmdjgGKkDG39/RPr+cVn0eOLwNObq+P3WqEz6I/jaXw5mNmIrheSmK/179wlvRe9rOhhDqzX3hmM59LSYMR2MLTEWIRYiNnPb07JGgLLOag0VZ01GICp9CNmq4NYIAP0uM8bmwogrlPLkyjgTGHQadDrUyzqbz4+SChqRuVWKKch4elc8V5bW+7atwqs29+A/HngBD1ZI0iMKys48nTNAyjqrdHHGOcf9z4/jsm/+A7f8YT/WdTtw3wcvwH9cuxldLfkLRwFjDO228vLmshmeDUGnYehy5L9vl8VQt50zzrnyzpnVgBQHvGFaAKuFPxLHS5MBbOl3Kb5tf6Y4q+6ipp46Z770a/GaLb1IpDj+dpCkjWrz0AtT+O5Dh/HhX+4uOWNUDuNZm5dC6lspZoKxnCqaculOf56StLEwYpO0zU7FWb1AxVmTEUrvplXDrRGQdotTfL5okct0MJpz3kzQ61TP+WzCH0WKz+ee2I06mPXakjpn2Zb8i2GM4Wuv34TTelrwoV/uxosT/vJOPAdiTq5Q56zdXtnO2d5hL958x5N4z8+fgYYB/3PjmbjzppdhQ0+LouO0243qdc5mpc5oruw3gdOir9uZM08ghmgipbg4AyjrTE32Ds+Bc/nh09mIjv9QlTtnwlxpwh+p+ZyIL905u2B1G7pbTCRtrADC1OjBA5P46l8ql7M5kf5Od5h0VSnO3BUozkQQ9RhJ9Aoiuu/tNiM67EYYdBoMU3FWU6g4azJqMXMGKLfTnw4U3inrc5lV0zwvLqgYk0xBJkqYdxpNf2H1OHMXR2aDFne8/QyYDTrc9NNdqhuETPoiYAx5u46AJGucDqgvd5sLxfHRXw3i1d95DIcmA/j315yGv3z45bh4badiCRgwH0StBsOzobzzZgKXxQBvnXbO5m305c85UXGmPhkzkD6n4tvOZ51Vd1Ez5Y9CwwDOS5+jVQvROWux6HHZ+k48/OJUxU2STjZmQ3HotQxvP3cAd/zjCO7aWZmcTdFtunR9J/aNzFWs8OecYzoQyztzVg5is4vmpwojNkk77EZoNAz9LjN1zmoMFWdNRjXdGoH5GR+lcxaeQJHOmcuM8Tl1nM9ydbs6HKayOmeFpHvdLWZ88TUbcGImpPqO46Q/ilarETpt/rdum82IRIpjTkW526g3jGu//zj+sHcUN29bhR3/vA3XnzMAfYHzKIaaxdnQTDivjb7AZdHXrZW+Uht9ILs4q23geDOx+4QXK9utikwHsqmFnb4nEMWaTjuA6s+7LUbMnDlMely+oQuReAoPvzhV03NqNmaDMTgtBvzr1etx4Slt+Oy9+/DkEfUz7iZ8UvzMxWs7EEukcHDcp/p9ANKGciyZqoisUXxPk6yxMFP+KBib/07pp6yzmkPFWZMhOmfWKnXOMuYdCnaLkymOmWD+mTMA6HVakEjxkrpbixnJCqAWdDpMJeXwjM2F0WYzwqgrXPyePiDNrBwYU/cLbdIfzTgd5qPNrm7W2Qvjfrzuu49jzBvBT99xNj55xVo4TKUtXrNptxkxE4yWPTcRiSfhCUSLds6cFgN8kUTVrc7lMOKV3j/KDEGk3/N0nRacjQbnPGMGUip9LrOqLrPFCEYTCMWS2Jzu9NXamU7Y6DvMOpy9wg2nRU/SRpWZDcXgthiknM23no5lbgtu/sUzOD4dVPV+xn0RdLYYsXWZ9F1WKVMQ0fl3V8AQxKjTos1mrPn7ot7xBKKZ1xQAKYh6OlTxCAUiP1ScNRmhWAJaDYNRV51frV6rQXeLWdGchTcUQ4rnttEXiIW2GgudUW8YLot+wRxep92ICV9U8YfPqDeSV9KYTbvNiFarQfXdxglf/gBqgSh61ehKPXVkGtfe/jhSnONX7zkX58kMAJVDu8OEFJfmD8tBbAwUc4h0pbsh9WigMTIbht2oQ4tZftErgrVnAlScqcHwbBieQBRbyyzOSjFIKhWxAbOpX5r3rPUiVMgaHSY9dFoNLl3Xib8dmKj5LFwz4Q3F4Ux/lrWY9fjRDWeBA3jnT3dlimM1GJ+LoMthQk+LCR12Y8XmzjKxOhWQNQJpO33qnBVkyh/NZI8CUnHmjyZUVd8QyqDirMkIRpOwGrQlzQCVitKss/kP48KyRmC+o1AOUkG1sCPR1WJCOJ6EX6EdsZRxJs+NcF23AwfG1DUFmfRH0VnADASQCkMAZZtt/GnfGK7/0dNotxvxm/edh/U9jrKOt5jMeZZZRM7b6BeZOUtvBtTj3NmIV5mNPiDtCtuNOuqcqcR8+LRyp0ZBqQZJpSKKs16nGW02Y81na3yROLQalpHVX7GhC75IoiKyu5OVmVAMLst8IbO8zYrb33YGjnmCeP+dz6qmDJjwRdDpMIExhi39Tuw+MavKcRcjNpcqIWsEJDv9Wm9a1DtT/ijastZj/eTYWHOoOGsygtFE1SSNAqVzFmJB0VbErREAhmfU6Zwttr4XdvoTChdRY3NLC718rO2y48UJv2pflolkCtOBqIzOmZA1lr5o/+njx/D+/30WG/ta8Ov3npfJcFITsVM3WWZxNpwJoC7WOZO+/OvRsXF4VpmNvsBlrd94gEZjcMgLo06Dtd32ko+RMUiqkimI2NhosxnRq6KJUqn4wgk4TLrM5uAFp7TBYtCStFFFvKFYZqNJcM7KVtz62tPwyEsefPGPB8q+D86lMHURTbJlmRPHpkMVmdmdlzVWpjjrTgdRk0QvP57A0s4ZML/xSVQfKs6ajGCsFsWZGeM++TbO0+miodDMmUmvVW0nWMqPWtht6rSLIGr5hYEvEkcgmkBPjoyzXKzrdiCaSOGYSrMA00FJDlps5qzFrIdOw0qaOeOc46t/OYjP//55XLquE3fe9LIlCwG1EI+j7M7ZbBgGnSbTictHpjirw05TKZ0zQFrQkFujOgwOebGxt6Usk5tqB1FPpT9L2+1G9DpNtS/OInE4sqS5Jr0W20/twAP7JygsXQU455gNxTMS7WzedNYyvOvCFfjJ48fw8yePl3U/c+E4oolUxlBja7qbXAlpoycta69ECDUgbfSGYkn4wpUN7W5UOOdLZI3UOas9VJw1GULWWE363RZwLn/eYTpdNBSSNQJQZSfYF4nDH0ks6XZ1is6ZAlMQ8fi6ZcycAVJxBgD7VZI2isDmjgJBywCg0TC02gzwKCx64skUPnbXHnzvocN468uW4XvXnQ6TvnKvpTaVZI3DsyH0Oc3QFMg4A5CZ0/DWWedMvEZL6Zy1Wg2ZzQ6idGKJFPaNzJVlBgJInw2SQVJ1iiRPlstar9Nc8w6BLxxfYhZ02YZOTPmj2D1UGVncyYQvkkAyxfN2mT71ynW4ZG0Hbvn983j0JU/J9yMCqEVxtqmvBRoG7K5AcTYTiMGs18JcoXWLUM3UeuOiXvFHE4gmUgs2y21GHdxWAxVnNYSKsyajNrLGtARR5oLEE4hBwwBnEfODPqe57EXOmFfkki2WNaY7Z375xVm+Y+VjVYcVOg3DQZUcGyfT51qscwZIhY+SzlkyxfGun+3Cb3aP4GOvWINbX3NaQbt+NTAbpJkpNWbO+oqYgQDzM2f1JgPM2OhT56xmHBz3IZZIlRQ+nY0wSKpW1tlUIAqXxQC9VoMepxmReKqmrwdfJAGHeeH3z8VrO2DQavCX50jaWC5iXtZpyV2caTUM//WWrTilw4Z/+uXukp1wxcykkDVajTqs6bRXpHNWqQBqQSaIeo6Ks1yITdz2ReuKfrdFcX4toR5UnDUZwVhygSthNZgvzuS9kaeDUbitxqKdDtE5K0cOkyvjDAAsBh3sJl2mGyXrWOkPd7myRqNOi9UdNtXs9Cdkds4AUZzJX6QdGPPhoRem8Mkr1uKDl5xSNUOZdruxbOMSOQHUAGA1aKHXsrqbOSsl40zgtknFGc1TlMe8GYiz7GP1usyqzMrKweOPZna8xetn1Fs7Z7pcnTO7SY/zVrfi/ucn6HVaJqLwziVrFNiMOrz93OWYCcZKDiUXt+vM+q7ZusyJwROzqstTp4vE6pRLT+Z9QcVZLsTmaLtt4bpiGWWd1RQqzpqMYDQBm7G6ssYuhwk6DZM9BO8JyPsw7nOZEUukMpr0UhBShlwL306FQdSj3jB0GrZkh6kQa7vsODiukqwx3TkrNlsFKO+cicXp1Zu6Szq3Uik3iDoQTWA2FC8aQA1IDppOi6Hu3Bozr9FSOmcWA2LJFILp8HmiNAZPeNNzW8p/B4tR6l5bDlNZg/xiEaqGw22p+CJx2E1LNwcv39CFEzMh1d1rTzaEJLvYHLBwri218zE+J30mLyjO+l3wRRI4qnKeWqU7Z+02I/RaRnb6eRCbo4vXNcvc0uZ4PeaCngxQcdZkhGIJWKosa9RpNeh2mmRLEKcDUVmZJhnHxjKkjYUKqk6HUVFxNuaVrIW1RTp+2azrdmBsLqJKQTDpj8JtNcAgI8Ou3W7EdEB+R2XPkBetVoOsDpSatNuNimfjshGLj2I2+gKXRV9/skavZGjSVsJAvFjUKM06SyRTuGvXEOVPpRHh02p0jPtcFkUGSeXgCcxbYGeyIWvYOfNHEjkD6l+xvhOMgVwby2S+c1b4+7NcY5pxXxiti75rhORX7TBqqTirjBkIIM1gd7WYqHOWh3nH14WvqWVuC5IpybWTqD5UnDUZgWgCtioXZwDQ55Rvpy/JGIp/GPeqEEQ96g2jqyV3QdVpNylyaxydC8sKoM5mbdoURI0d40lfRNa8GSB90MaSKdkOVXuGvdis0uJUCe12Y1lW+uI1J9fq32kxYDZYf7LGXhmGJrkQmxxKg7yfODKNT/x6L367e1jxfTYb3lAMRzxBVSSNgFQkVSPrjHMOj3/+s7TFrIfFoC3r87Ic4skUQrHkArdGQZvNiLMG3FSclYnYWHIXKc56nCYwVnqkw/hcJGMGIljdboPdqMOgisYunHN4ZG7WlkN3izkzM04sxBOIQqthSwp+oUahubPaQMVZE5FIphCJpzIBoNWkz2WW/SaeDsRk2eb2ZmQ65RRn+XPJOhwmTPojsrtLo97Ikry0YqxLZyapMXc26Y/KmjcD5iUKcua5AtEEXpoMYHOfs5zTK4l2uxGBaAKhWGk2x5nOmcyOn9tSf7lgw97SMs4AZHaclZpAHPNI0qQ/7qPFspD0blWxOAPkz+CWSjCWRDiezLzXGWMZx8Za4I9I72FHDlkjAFx+WhcOjvszrz1COd5QHBqGnNLRbIw6LbocppJzqsZ90YwZiECjYdjU36Jq5ywUSyKaSFVU1ghIawlya8zNVHpudfHmINnp1xYqzpqIUFyaO6lF56zfbcGkP4pIvPDsSySeRCCakLVTZjfp0WLWl7XIGSmw8O10GBFPclkGEakUx7iCAGpBh92ENptBneLMF1XQOZNvU79veA6cA5v7W8o6v1IQ83Mef2kF0/BsGGa9VvaXu8uqr0tDkFKLs1ar6Jwpe/6OT0vvqccOeeoy962aDA55wRiwsU+d139/lbLOPFkB1IKeGi5CfWHpfZWrcwYAl63vBEDSxnKYCcXgsixdSOeinNnHCV8EnS1LNwK39rtwcNyPsEozrpUOoBZ0t0jz5aW6VzYzUnG2dF3R3SJ5CVBxVhuoOGsiglFp57Labo3A/G5xsV1bsYiU687U6zSXLNNJpjjGfZG8UkQlWWfTwRhiyZRiWSMArO1ylG0KkkxxTAWi6HQoK87kmILsGfYCQM06ZwAwFShNcjI0G0K/2yxbjikMQerFNS4ST8ITiJZkBgLML2qUFljHpkOwGrRIpjj+cpIvlgeHvFjTYYc9x6xUKXS1iKyzyi5qPDkG+Xtq2DnzRdLFWZ7nsd9twWm9DirOysAbimXyGovR75I/apBNJJ7ETDC2pHMGSG6myRTHc6Nzio+bC6XrgVLpcZqRSPGyY1uaEU8glnMmX6fVoNdlpuKsRlBx1kQEo9JulrXKbo2A/AFksdsrR9YoHbf0neBJv7RTlq/bJQodOcVZJoBaoawRkKSNL0z4y3I9mgnGkExxdNjlFYfiy05WcTbkxUCrpagDWCXIFGclfmkOz4Zlz5sBkiFIIsURiJYmo1Sb0QJuonKwGLQw6DSKZY0nZoI4d1UbVrRZ8ce9YyXddzPAOc+YgajFfNZZZYukXIP8fS4zpoMx1TobShDzrfk6ZwBw+fouPHvCW7LF+8nOTDBW1AxE0Oe2YGwujLjC7x0RL5OzOMuYgqgzdzaTnpWtpCEIMJ91RtLGpUz5o3kdoJdR1lnNoOKsiRCdM2sNOmcZ694iu8XCuEDuAHCvS1rklNLpyJdxJhCFjpysMxFgWWrnLJZI4VgZFsRKAqgByc1Lq2Gyi7NadM2A+d9BKcUZ5xzDMyHZ82bAfHirV4G0MRBN4BdPHkc0of6CtxwbfUCaM2q1GhTJGjnnODETwvJWC67a2I3HD3swXWbWXKNybDoEbyhedvj0YvpclS/OMp2zBbJG6f00WoPA3UznzJz/++eK07oAAA/sn6jKOTUb3lBc9iaaMKZR2kkdTxfOiw1BAEmR0e82qxZGPZ12mW2t8MagWANQEPVCUinJkKUtz7qi323BUI0Mhk52qDhrIoJpUwVrDWbOOuwm6LWseOcsIGQM8oqMXqcZoVhS0WJaICyl83UlOhR1zqTryA2gzmZd2rFxfxmOjZMKAqgBaXjbbTUUneWa9EUwOhfBZhU7B0pwWw3QsNKKs7lwHP5oIjO4LAex66zEFOQvz43jX+59Drf8/nnV5ZDlBFAL3FaDos6ZNBuawkCrBVdt6kaK46SVNgrnOTU7Z4CkJKi0rHEqEANjC+d1ep3Se6EWjo2ZmbMC8tDVHTasbLPi/udOztdbuUidM/myRkD57GOh4gwAtvS7VDMFma7azBkFUediLhxHIsXzds76XRbMBGPwR+prTvtkgIqzJkLIGmthCKLVMPQ4i+8WZ3bKZHbOhGStFDnCvBQx95eMUaeFy6LHhF+erNGk18jW+2ezqsMKnYbhYBmmIEo7Z4C8IOo9w9LswJYamIEA0uum1WaU5Sq5mHkbffmFjVjYKDEFeWlSKqr/7+kh3PnUCQVnWJwRbxgaln8hJAe3ws6ZcMtb1mrF2i47VrafvNLGwRNeWAxarOm0q3rcPpe54llnU/4o3BYDdNr5r/FM56wGi9D5zln+z0jGGC7b0IUnj0zXXRh8vcM5V9Q5KzWIeiIdAdGZZyNwa78TY3MRVaIiZoIxGHWaijtMO0w62Iy6zCYrIZEvgFqwzC3s9KmorTZUnDURwo7cUoOZM0DaZSn2RTAdiMJi0Mo2LSnHlnrUG4bDpCs46N/pkJd1NpZ2aiwlB8yo02J1h60sx0Zxjvk+RHPRZjMUL86GvNBqGDb01KY4AyRZlhxp6WLEa03JzNm8rFH+wvDwZACr2q24eG0Hbvn983j66IyyEy3AyGwYXQ4T9NrSP4pbrQZFhiDH08/bgNsCxhiu3tiNJ49Mn5TD8oNDXmzqa1EULC8HISmrpIwqO4Ba0OWQzEhqMVvjCyegYYC1yEL7itO6kEhx/O3AZJXOrDkIxZKIJVOyZ866HJLbntKss3FfBGa9Nm8kgpAAq5F3JsXqGCqer8kYQzcFUS9BfOYXK87IFKT6UHHWRAiTg1p0zgB5cxbTwZiiwEkh9yplfmPUGy5qfd/hMGFShqxxxBsuSdIoWNftKCuIetIfgdOih0kvv/ButxkzMtJ87Bn2Ym2XXdFx1abdXl7nrF+hIQigLBfs0GQAazrtuO3NW7DMbcH77nxGtS/5YW+45HkzgUuhrPHEdAhaDcvc71Wbek5KaWMknsT+MR+29LtUP7Zcg6RymPJHlyyqdFoNuhymmhRn/kgcdpO+6EJ7U28LLAYt9qsQL3IykbGdl1mc6bQadDtNymWN6QDqfL/HDT0OGLQa7FZh7mwmGIW7wk6Ngh6nGWMVDoZvNKZyxHFkM985o+Ks2lBx1kSE0rLGWoRQA1Jx5gkUzjrzBKKynRoBwGnRw2rQlrTYGPFGis7ydNqNGY19IcbmwnnlkXJY22XHuC9ScqaUkowzQVu66Mk3J8U5l8xAajRvJmi3G0vq2gzNhmA36dCiQGraYtaDMfmyxmgiiRMzIazusMFh0uOOt5+JSDyF9/z8maKZfnIoJ+NM0Go1IBBNyDYsOT4TQq/TnOnWrem0YXWHDX/cO1rWedSaWCKFbzzwguxu1fOjPsSTXPV5M6A6QdRS52zpwrbXVXr8SDn4IomCZiACjYbBVYdh8PWOmLtWIq2Xo2ZZzLgvktOpUWDUabGux6HK3NlMMKZoPVAOSmIm6iVqpdLkiuPIpsWih8Oko85ZDaDirIkI1DDnDJhPlC+0IPEEYooyTRhjGcdGpcjpnHU6TJjyRwuGU8aTKUz6o4oDqLMRpiAHxkvbLZ7wR2Xb6AvabUbEEin489jGH5sOwRdJYEuNnBoF7XZpNi6lMCBUqY0+IO0mO0x62bLGY54QUlwyMgCkv2970xY8NzqHT/9mX1lf4olkCuO+SNmdM2FDLbd7dnw6iIHW+eeNMYarNnbjqaMzmdnGRuT+58fxrb8fwj/fvVfW70U4zm1V2akRkOZctZriBkmlwjnPKWsE0ovQWrg1huMFzUCycVn1J334uVJm0p9ZSiJP+l3K3fZE56wQW/ud2Dc8V1Y8DJBW0lQpwqWnxYTpYKzoplo8mcJrvvs4vvnXF6tyXrVkyh+FQafJK2EFhGMjFWfVhoqzJiIUS8Cs16o+PyEXsVtc6MtgWmHnDCgtiDoQTWAuHJdRnBmR4ihoJT4+FwHnpdnoC9Z2S4YDB0uUNk75Ihl3Sbm02dNZZ3m6UnvSi9Nad8467EbEkxxzYWWOUEMKbfQFLotedufs0GQAALCq3Za57NL1nfjopWvw290j+NGjRxXfv2AivSkgHPZKRTidTReRsAqOT4cychXBVZu6wbnkTNmo3LVrCDoNw6OHPPj1M8NFrz845EV3iymv8UE5CHlhpYqzQDSBSDyVc8e712nGmDdScMOpEvgiCoozi0GRKQ8xPycrd+YMkL6Tp/yF1SzZpFIck/5I0ffE1mVOhONJvDgRkH0uuZgOxCru1CiYt9MvvAH108ePYc+QF08cnq7GadUUkXFWSIq8zG2hzlkNoOKsiQhEkzWx0RcUm7NIpbgkY1CoMe9zWRTLGscyGWeFv2TEl1AhUxDxYV5KALWgw25Cm81QkilIKsUxFVDeORO76vkkg4NDklOd6ArVikwQtYK5s1gihaOeIFaVcO5Oi0F250wUZyvbrQsuf//21bhiQxe+9KcDePQlj+JzALJs9MvsnIn3k5zO2VwojrlwHMtbFz6eNZ12rOm04b4GdW0c8Ybx6CEP3rdtFc4ccOGLfzxQVCq7+8RsRbpmgmVuC456Ss82LEShSJIepxmJFK+6wYsvLE/WCCh7DxISotMo10ofyFazyPv+nAnFEE9ydBXZCNyantPcXYYpSDiWRDierNrMWXd6LTBWYC0x6Y/gtgdfAgAcqdB7t56YKpBxJljmtmB4JqxY2UKUBxVnTUQoloC1Rk6NgCSjM+g0eWWNvoiUqdEqM+NM0OsyS5lWCrI2MuG+MmSNQOGss/kA6vIW0Wu7HDg4rrxzNpv+wlQ8c5Z+nvOZguwZ9uK0XvWd6pTSXqSIzMURTwCJFMfaLuUW6FLnTN7C8PBUAL1O8xKpsEbD8J9v3IxTOuz4wP89ixPTpbmJAuVlnAHznTM5j+n4jLDRX9qtu2pjD3Yem5GV+1dv/OaZYXAOXHtmP77y+k0Ix5K45Q/P572+JxDF8Gy4IvNmgnXdDrww7q9IB6vQrIgo9ke81d3tVtY5k9+9JiRmQnEwJs3NyiVjpy9Tlibs8YvJGvvdZritBgyWMXc2HZRew9WSNYrP2UIbvV/98wuIJpJ481n98ASimXiIZkV0zgrR77YglkzJihwi1IOKsyYiGE3AWqN5M0BasPY5zRjOk4kxv9ur7MNYzofqYjKh0XKLswIfPCMyu3DFWNdtxwsTfsU6/cl00aJUfjVfnC0temKJFJ4f9VV0cSoXscBUMu8k5KFruxyK789lMWA2KF/WmK+zaDXqcMfbz0AqxfHun+9CMM9sXz7kbiAUQ7i3yZE1HksXkQO5irNNXeAc+PO+xuqepVIcdz8zjPNWtaLfbcHqDhs+ePFq/HHvGP66fyLnbcSishJOjYINPQ6E40kc9ZQn/cpFIZe1+c/L6i6mfOF4wYyzbJwWA3yReNWll42MNxSDw6RfkGtXjIyaRaYsbbxIxpmAMYYt/c6yHBsz7pNVMgQRBWe+rLNnjs/inmeH8c4LVuLitR0AgKNTzd098wSiaLcXXo9l7PRL2IAkSoeKsyYiGE3WtHMGIG3ekftNLOa68tm25kPMsimZOxubC0OrYUW7TW02AxgrImv0Sjb25RqtrOt2IJZI4di0sg98UZwpnTlzWw3QsNzF2QvjfsQSKWyusRkIkCVrVNA5OzDug17LlsgN5SBXUpVKcRzx5C/OAGCg1YrvvPV0vDjhxyfu2avoPIZnw2i1GmAu0121xayHVsNkyRpPpF97i2fOAGB1hx1ru+z4Y4MVZ08fm8GJmRCuPbMvc9l7LlqFtV12/Mu9+3Lufg+m8/029lYu329Dr7Rx8Pyo+pbx4j3dlmNhJTakqunYmEimEIwlZXfO3BY9OIfiOdOTmZlgTJGkEchWs8h7LQjnYjkS/q39ThyaDJT8O5xOf14pHXMoFaNOizabMaebayrFccvvn0enw4gPXrw6871SKVlyPZBMj5kU65xl7PRr4AB7MkPFWRMRjCVqOnMGSDt1+b4ISv0w7s3YUsv/cBjxSuG+xXYZdVoN2mzGgllnko1+ed0NYL7Ls1+hKYiQmSmVNWo1DG5r7iDqwWEvAGBzf+3CpwU2ow4mvUZRcfbCuB+r2m0lhTe7LHoEY8mi1vMj3jAi8dQCM5BcvHxNOz6wXerUKNldHFEh4wwQ1uT6zPurEMenQ+iwG/NuNFy1sRs7j81mdtAbgbt2DcFu1OGKDd2Zyww6Db76+k2Y8kfxlT8fXHKbwSEp36/cwrgQq9ptMOg0lSnO/FFoGHKaK9mMOrSY9VUN3PVHpK6x3JkzlwIpLiHhDcUVOTUCaTWLyyxb1jjhi0DD5KlbRBj13vR3iVJm0p3+askaAUn9kkuBc9euIewbmcOnX7kOVqMO/W4LNKy5586mg1GkeH4bfUGP0wzGKIi62lBx1kTUWtYISFr06WAsp8RLFAlK3RrbrNLunzJZo/xcsk6HseCczYg3gp4yMs4Eqzts0GmYYlMQUbQoNQQBpC7llH/pAmjPkBdtNkPZkjo1YIwpzjo7OObPxBMoxZleDHiLzLwcmpLkaHIMU67Z2gsAeOTQlOzzGJkNqfb8u60GzASLP3/HZ0I5JY2CKzdJBc6fGqR75o/E8ed947h6c8+SQmtzvxP/7/wV+N+nTuDJI/POa6mUlO9XaUmvXqvB2i47nh+dU/3YU4Eo3FZD3nnRXgWZTmogupN2mZ0zZ1qKS3b68pE6Z8oLmT6XBUN5Rg0WMz4XQbvdKEs6ubnfCcZQ8tyZmDmrllsjAPS0LA2ingvF8bX7X8BZy124ZksPAKnL1u+24MiU+pLkeqFYALXAoNOgp8VMQdRVhoqzJqIeZI1C456rkPIEYmBMmdsUMD/LpkSmM+qNyDbw6LSbirg1Fs9Lk4NBp8HqDhsOKizOJn0R2E26knb522zGnJ2zPUNebO5zFrTQrSYddpNst0ZvKIZxX6QkMxBg/vVXbNf+8KT84mxlmxU9LSY88qI850bOudQ5U7E4kzNHd3w6iGXu/FLQVe02rOt2NIy08Y97xxCOJ/HGLEljNh+9bA363WZ8+jf7Mnbih6cC8EcTVZm33NDjwPOjPtVDbaf8sYKLqh6nWbHDbTlkOmcF8pKymX8PkqxRLt5QacVZf4FRg8UUC6DOxmHSY1W7LZMXqJTpYAwGrQa2Kqp9RBB19vvxmw++CG8ohltevWHB9+GKNmtTyxpFcVascwZIm+7UOasuVJw1EcFYomYB1IK+jARx6Rt5OhCFy2JQNNAs6HWZMSxzsZFKcUUFVYfDlNeMIhRLwBuKZ2x4y2VdtwMHFMsaoyVnMbXZlsoa/ZE4Dk0Fap5vlk27TX7nTDhenlpicebO7NoX6ZxNBuC2GmTt7DLGcOEp7Xj8sEeW4ctMMIZIPKWKrBGQirPpIp2zSDyJCV+0YOcMAK7e1I1njs9WtfNSKnc/M4zVHba8hZbFoMOXX7sJRz1BfOtvkkX27gqGTy9mfU8LvKE4RlWWiU4FogUXVX2u6hZnvvTckVxDEFFkkKxRPrOhuOKNTUBy25sNxRGQYVg0Plc84yybrWlTkFI2H2bSGWfV3CDscZoQiiXhC0vPxcFxH37+5HG85exl2NCzUOIvijO1N1bqBWHQJqc4o6yz6lN0lcwY62eM7WCMHWCMPc8Y+9Cin3+cMcYZY22VO02iGJxzBKOJqu5C5aI/3TnLJaOYDsRK1pf3uSw4OhVAXMbC1xOIIp7k6JVZUHU6jPAEYjmPnXF9VGHmDADWdtkx7osokvNM+iOK580EonOW/QWzb2QOnNc+fDobJbJG0XksWdZoEbLGwr+DQ5MBrC4yb5bNBae0wRdJYO9IcRmbWk6NAknWWPjxiC/XYsXZlRsbQ9p4aDKAZ47P4o1n9hVc4F1wShuuPaMP3//HETw/OofBIS/sJh1WtlU+329DT9oURMZrQgkef7RI58wEfyRRNStwcT9yDUGc6SKDss7kEYlLmWBKZ86A+Q1TObK0cV9E9jgAIM2dzQRjsmWT2cwEqxdALejJcn7mXDIBsZt0+Phlpy657so2K0KxZEFVTSMjV9YISMXZlD+KcExemHld8LWvATt2LLxsxw7p8gZATgsjAeBjnPN1AM4B8H7G2HpAKtwAvALAicqdIiGHaCKFFAcsNZY1ttkMMObJOpsORkt2ZnrF+g74Ign87UBua+xs5q3vZcoa0zuFuYoDtTLOBKKgODAuX9o46Y+WXpzZjYjEJSc1wZ4haaG4ua/2ZiCCdrsRs6E4YonixfcLE344LfqSnxOXVZ6k6vBUAKs65LtBnr+6DYxBVii1WgHUArfVCG+4sDX58YyNfuHHtKLNig09lZM2RuJJ7Buew107h3DL75/HG7//BDbdcj8++qtBRbvUv35mGFoNw2vS836F+Jer1sNlMeCT9+zFM8dmsaXfCU0V8v3WdTmgYeo6NnLO4QlEC5o29DqlArxa3U/RiZBrCGIz6qDXMpI1ykR0GEuTNcoLog7FEvBHEuhUUJyVE0Y9HYxVzalRIArPsbkw/rhvDE8emcHHLjs1Z9G7Mr0xd6QCURj1wJQ/CotBK8tEbj7MvIG6Z2edBbzxjfMF2o4d0v/POqu25yWTosUZ53yMc/5s+t9+AAcAiG/DbwL4BIDm7Ps2EEKyUOvOGWOSO1SuL4LpQOE5iUJctKYDXQ4T/u/poaLXlZtxJuhMW9TnMgUZ8wprYfVkjcB8TlcxOOeYLEPWmCvgec+QF8tbLZkOUj0gpBW55uMWc2DMj7Vd9pLlMHIkVdOBKGZD8aJOjdm4rQac1tOCR14qbgoiNhD6nIW7WHJptRrAeeHHdDxtoz+Qw0Z/MVdt6sbuE15VvoyHZkK44x+H8eFf7sbl3/wHNnz+frzqO4/iE/fsxV27hpBIpnD6gAu/2T2Cnz1xXNYxE8kU7nl2GNtP7ZBllNNi0ePfrtmA50Z8eGHCX7V8P7NBi5XtNlWLM380gWgiVVCOJDIZq2Wnn+mcyZQ1MsZkR1oQ85lgpcoageKds0wAtYLvmjWdNpj0GuwdVt4ZngmWrqQpFaFUODwVwK1/PIB13Q689exlOa+7oq257fQ9RaTR2YjXUFWkjWp1vLZvB+66C3jNa4D3vU8qzO66S7q8AVA0/MMYWw5gK4CnGGOvBjDCOd9TiRMjlBGKSp2RWs+cAdIbOVdxJu32llacaTUMbzyzD/94aarognFUYedMLO5yyRdGvGEwNh9gWS7tdiPabAbZjo1z4ThiycILsUK05Sh69gx760rSCOQuInORSnG8OOEvKXxaYNJrYdJrCi4MDykwA8nmwlPasPuEt+h8x/BsGDajTnanoRhCHlRILnt8OgS7SZeRlBXiqrS08c/7xss+t3/93XP40p8O4skjM+h1mXHzRavw3289HTs+vg3P3XI5fvO+8/E/N5yFS9Z24It/3I/dJ4rvwv/jpSlM+aMLss2K8crTunDZ+k4AqGr4+oYeB/ar6NjokSFHEh3Z6nXO4mAMsCn4/nFZ9LKy+Yh5Z9lSZI0uix4Wg7aonb7IOFNSnOm0GixvtWY2fpQwHYhWLYBa0GYzQq9l+M7fD2FsLoIvvHpDXsfTLocJJr0GR5o0iHrKHy2acSZYVs3iTM2Ol8UCBIPA974H3HxzwxRmgILijDFmA3APgA9Dkjp+FsC/yrjduxljuxhju6am5NtME8qY75zVVtYIIGeuSiyRgi+SKGun7I1n9QMA7to1XPB6I970wlemc5joSuUyBRmbC6PDbiwpTysf67odsmWN8wHUpRuCAPMLuklfBGNzkboIn85GbhD10GwIoViyZKdGgctiKCipUmKjn80Fp7QhkeJ48vB0wesJp0a1huFFcVYo6+z4TAjLW62y7nOg1YqNvS24TwVp40uTAVy9qRtPfuYS/M+NZ+Hjl5+KqzZ1Y0WbNSMt1GgY/vONm9FhN+ED/7u76EzmXTuH0WYz4OK1HbLPgzGGL71uIz6wfTXOX129EekNPQ6MzimbMy2EnEH+NqsRBq1GtolSufgiCdiNOkVSUWeR9yAxTzmyRsYY+mXY6YvOmRJZIyDNsB5XkO8ISNLmYCxZdVmjRsPQ1WKCL5LANVt6cPYKd8HrrmizNW3nbErBZnmr1QCLQVud4kx0vK69FnjXu0rveB0/DlxxBcA58LGPSQXa4o5cHSNrxckY00MqzO7knP8GwCoAKwDsYYwdA9AH4FnGWNfi23LO7+Ccn8k5P7O9vV29MycWEIpJxVk9dM76XBZ4Q3H4s4bRhZNca4mdM3HcC09px927hgrO1ox6w+hxmmQvfFvTeUE5ZY1zEVUCqLNZ22XHixMBWa5+4pw6S+yciZ0x0Tnbk5af1FvnrCMtLS1mpy+cLteWaAYiKCapOjwZhFmvVWwEc8aAC2a9tqi0cWRWnQBqgSjOCnUiTkwHsayIGUg2V27sxp4hb8GA9mJE4kmMeMOy5KFOiwHfve50TPoj+Ohdg0jleY9PB6J48MAEXrOlV/GmSZvNiI9ffipM+uptYgkXOLWkjXIG+TUahh6nKSPxrjS+cFy2pFHgsuhJ1igTUdiLeVml9LuL2+mX0jkDpI2c4zOhvO/XXIjPqWobggCStNFi0OLTr1xX9Lorm9hOX4mskTGGZW5L9bLOtm8H2tuBH/4QOPNM5YWZzwds2wbMzQH/8z/Af/yHVOBld+TqHDlujQzAjwAc4Jx/AwA45/s45x2c8+Wc8+UAhgGczjkvXwNDlITonMkZ7qw0/TmyzqbTu73l7pS95ax+jM1F8I8X8y9+RxXmkmk0DB12I8bncssae1Sy0Res63YglkjJ+tCf9JXXOZOsioGp9PO/Z8gLnYZlXOTqBRFMXqxz9sK4H4xJsw7lUExSdWgqgJXtVsWmEUadFi9b6cYjhwqbgqiZcQYg05HO1zlLJFMYng3LmjcTbO6XioqXJksfiD8+HQLnwMp2ecYqm/ud+NzV67HjhSl87+HDOa9z7+AoEimOa8/sL/m8qsn69EaCWmHUYqOl2K53j9OMkSoN8PsicdlOjYJi3WtiHvE8Oc2lux0Pz4YLGu5MzEl5mkrXEAOtFsQSqUxxJ4daFmefuXId/ufGs2SNKqxos+LETEiWUVUjEU0k4Q3FFY1L9FfTTv+nPwUOHpRkiX/5C/Dud8u/bSIBvPnNUufsa18DbrhBulx05HburMw5q4ycbcfzAVwP4GLG2GD6z5UVPi9CIaG0G1+tQ6iBbOve+eJsfkFR3ofxJes60WYz4P+ezm8QqiSAWpAr64xzjjFvRDUbfYGYlzowXtwUZCJ9TqU6E+q0GrgshqzOmRendtmr2jmQg0GngcuiL1qcHRz3YcBtKbtD7LIYMnMcuTg8GVAsaRRcsLoNR6aCeXOmAtEE5sJxVTtnYhZlJpC7OBv1RpBI8aI2+tmIbtfhqdKLs6NppzMltvXXnzOAV23uwX8+8AKeWCQP5Zzj7l1D2NzXUnLOXbVxWQ3oaTGp1jnzBKLQsOIL216nuYqdswTsMmXkAtG9btYcKTWZCcZgM+pg0JUmr+9zmRGIJgp+5ikJoM5medr9VYm0UWwiVdsQBAA29TlxzspWWddd2W5FMsWLzus1GmKzXIkHgNQ5K1zgq2LmsWMH8N73Ano98OKLwMUXAz/4AXD99ZJEsRgf+Qjw5z8Dt98OfPzjC3+2fTvwiU/IP5caIset8VHOOeOcb+Kcb0n/+dOi6yznnBf3jyYqRqZzVheyxqVB1JnOWZkDwAadBq8/ow9/OziZU24VjiUxE4wp7kp02o1LZI3eUBzheBLdKnY4AGmOSa9lskxBJn1R2IzKdzOzabMZ4PFHkUpx7BmqPzMQgZyssxfGyzMDEbis+rzOhqFYAiPesKKMs2xevkaSbz+aR9qYsdFX8XWl12rgMOnyPqbjM2mnxiI2+tl02I2wGXU4XEbn7HB6mH55m/yikDGGL79uI5a3WfHB/9u94H3+3IgPB8f9DdM1E6zvaVGtczbll4wU8hkZCHqcZkz4I1XZ9fdFlMsa3VY94km+IOaDyI03FCtZ0ghkW6Hnnzsb90VLMr4SZhFKTEFmVBhzqAYZx8YSTEEmfRGc+cUHceHX/o7rf/QUPnfvc/jhI0fwtwMTODQZQDRRu9e9+J5V1DlzmRGOJzMzrzlRw8zjb3+Tul833QT09gIPPABceSXwi18AH/1o4QLtO9+R/nz0o8q6bXWIei4HRE0J1ZGs0Z0eHs3+IhAzZ20ldoCyefNZy5BMcdz9zFJjkNFMLpmyL5lOh2mJW2PmWCo5NQoMOg1WtdsyYcr5+MeLU7jn2WGsKrGDIxBB1Memg/BFEthSZ2Yggna7MacpiyAcS+LodFCVjonLYsBcOJ5zTkK4c5XaOTulw4ZOhxH/yJN3NuKVNi3U7JwB0kInn6xxPuNMWZG0qt2aKbBK4agniA67EXaFkjebUYfvXXcGAtE4Pvh/uzPzmXftGoJRp8GrNveUfE61YEOPA0c8wcxscDkUyzgT9LrM4Dx3RIja+CMJxbJGEeWhllFKMzMbipdkBiIQowaFOkDjc+GSIlt6nGbotQzHlHTOArWTNSpBdPxLyTp74sg0PIEo1nTY4QvH8bvBEXzxjwfwzp/uwqXfeBjrPvcXXPDVv+NdP9uFYBF3X7URSholxZmYVy4obdy+XepYXXkl8MlPlmbmEYsBqdR810urBe67D/jQh4DbbpOKrmSOwvbPf5au8+pXN0zQdCFqv5InVCFYR7JGkXWWPTw6HYjBqNPAaij//Fa0WfGyFW78aucQbr5o1YK5oIyNvkIpYqfDiLlwHJF4MiP5G1OYl6aEdd2OJZItAeccP37sGL74x/1Y02nHf791a1n31WYzYnDIiz3DXgD1ZwYiaLcZ8UwBG/UXJ/zgHFjXXX5x5rQYkOLSjv/ivDdho19qUcwYwwWr2/G3gxNIpviSDofonPWp/LqS5uhydx6PTwdh0GnQKSMTLJtV7TY8caSw82QhjnqCmd1npZzaZccXX7MRH797D77x1xfxT5ecgt8NjuCK07rQorBLU2s29DjAuWRoc8aAq6xjTfnlDfKLzuzwbDjTOakUkiGIsuVEdt5gpc+v0ZkNxcoqzvrcYtQg98I6kUxhyh8tSdao1bD0PJL8TZzpYAx6LZPtqFwrWix6tFoNJZmCDA55YdZr8f3rz4BOqwHnHN5QHEengzg+HcQxTwh7h7346/4J7Bny4rwqOsiW0jlblpWXV/AzrLcXiESkAulzn1NWmHm9UnF37bXAypXzlzMGfPObgM0G3HorEAoBP/mJJH0EgOeeA970JmDTJuDOO6WCrsGhzlmTEIwmoNMwGFS0fC8HMYAs8KQDqNWyDn/L2ctwYiaEJxctHJVmnAmE4cZkVvdMdM66VTYEAaQCY9y31F47lkjh07/Zh3+7bz8uXdeJe24+D32u8hYuonO2Z2gOFoO25I5QpRGyxnya9hfSM3qnqiFrTGd95TIkODQZgFbDMrMUpXDhKW3whuI5pWzD3jAMWk3JmX/5cFuNmR3pxRyfDmGZ26LY4GRVhw1jc5GiuW35OJI2VimVN5zRhzed2Y/vPnQYn7v3OfgiCVx7RmNJGgFgQ69krqJG3pknEJOVTySKs0pnnSVTHP6o8s5ZofdgNRn1hrHz2ExNz6EYUnFW+oaEw6RHi1mfV9boCcSQ4qXneQ64LTjmkd85mwlIxaZa64FKsqLNWlLW2e4TXmzsa4EuvSZjjMFlNeD0ZS68dmsfPvKKNfjS6zYCAA5X2RFSFGdKZv7EOqSoKUg4DJjSr6Nvf1uZO+LttwN+v9R1WwxjwBe/CHz5y8D//q/kxhiNAhMTwNVXS4XalVdKBVwTUB8reaJsgtEErEZd3XzY9bkWWvd6AlFVM03E7vn/7RxacPmIN1JSaLSQc0xkyepGvRHotQxtFQjKnDcFmZc2TgeieNsPn8Ivdw7hgxevxu1vO0MVmWqb3YBQLInHD3uwsbel6KxKreiwmxCJp/IWAgfGfTDrtZkdvHLI3rVfzOGpAAbclpKH7wFkcrQeySFtHJmVHECVFkrFaLUa8jpQnpgJYbkCSaNgVXvpMxezwRhmQ3FFZiC5+MI1G7Cu24G7nxlGr9OM81bJG+avJ3paTHBa9GWbgnDOpXwiGTve4jMwnzGNWgQi0vtV6cyZ6FjX2k7/238/hHf/bFdNz6EYs8F4SQHU2fS7l+aPCkq10RcMpIOo5Zq7TAdjdS9pFKxos+KIwuIpmkhi/6gPW4uoVLocJlgM2rLmekvBE4jCYdIpMgYz6bXodBgLF2dixuyuu4DubskOX659fSQiyRYvuwzYWkAt9KlPAR/4APD448AFFwCveQ0wNiZJIS+9VPbjqXeoOGsSgrGkKpJBteh3WeCLSK50gDRzpqYzk0mvxWu39uL+58YXLEhHvWF02k2K84860zlb2fMZY3NhdLeYVV9EA5KsEZjP7Tow5sOrv/MY9gx78V9v3oKPXXaqavcrOjQvTgSwpU4ljUDxIOoXxv1Y02VXpbh0pnehcy0MD00Gyp7za7cbsa7bkTPvbMSrbsaZwG0zYDaH+x3nPN05U97BKsexUSxoSpU1Ckx6Lb573elotRrwjvOXV+T9WGkYk+Iryi3OfJEEYomUrM6ZSa9Fm81Y8c6ZL51nqVSilumc1XjmbMQbxmwoXrd26bGEtGFVjqwRAPqc+XOqRAB1qZ2z5a0WBGPJvDOvi5kJqrtZW0lWttsw5Y8uyG0txoExP2LJVNHvW8YYVrYrL/7KZUpBxlk2Uph5geJs506pMHvVq4BvfQt46SWpOJNjX//Tn0pdsFxds8V8+9vAP/8zsGsX8OSTUqfuN79RnodWx1Bx1iSIzlm9sNixcToQU92Z6S1nL0MsmcJvnp03BhktMZdM7Bhmm4KMesPoVtkMRNBuN6LNZsDBMR8eeH4cr//e40ikUrjrPefimi29qt+XoF7nzYDCxRnnHAfGfFjbqY59uljozAQXfuEmkikcmw7KCk0uxstPacMzx2eXmECMzKqbcSZotRoQT0oSs2ym/FGE40lFZiCCZa0WaDWspOJMzGmUI2sUrGiz4snPXIKbLlxZ/Mp1yoaeFrww7kdcRvh8PjKRJHZ5C9tel7ninTOxAae0c9Zi1oOx2ssaJ9KFST6n01ojNpDKkTUCIog6txX6eFrCX4ohCDDvAivXsXEmGCvbublaiM0lJbLNwfTs9JZlzqLXXdlmw5Ey4kpKYcofLUlWXzSI+hOfmC+QXv964KqrpKLrzW8ufOBkEvj61yVXR7kF1te+Brz1rdK/P/ShpirMACrOmoZgLAlLXRVn89a9nPN0cabuTtmpXXZsXebEL3cOZb5wpOJM+cK3xayHQadZYNtdSl6aEtZ1O/Dn58bx7p8/g1M6bPj9By6oSPGUvcveEMVZYGlxNuWPYjYUx1oVzECA+eJscefs+EwI8SRXZS7vglPaEE9yPHVkfp4lmkhi0h9Fr1N9A4RMwRlY+piAebctJRh1koy0pM7ZVAC6tFmAGijthtcbG3ociCVTGcOZUvCIQX6bvEV0r9NU8eJsvnOmrHjQaTVwmPQ1lzUKSV++ec1aI4rX8mWNFkQTqZyfr+O+KPRaVrK6RWz8yC1gpgONI2sUm0tKHBt3D3nR5TChW4Yx2ap2G0a8YUTi1bPW9wRipXXO3BaM+SLyYgAYk2ztOZdkiIUkr/fcAxw+LHXN5I7m7Ngh2ex/7nPA976nbLatAWjsbzsiQzCagK0OnBoF/e55pzB/NIFYUp4URylvOWsZDk0G8MzxWaRSHKNzkZK6EowxdDrms86SKY4JX6SkLpxc1vc4EIgmcM2WHvzqPeeWvGtZDLFD1mYzqh4LoCbi9ZGrc3YwYwaiTnFmN+mgYUt3y4X2X43i7Kzlbhh1mgVzZ8IBtFKyRgBLpEXCRr9Ug5NV7VYcnlQuuznqCWKZ29LwRZVabOiRpMz7y5A2TintnDnNGPUWCY4tE19YzJwp3xx0WfSYqWHnLBxLLpDe1yOzmc5ZmbJGl3BsXFqsT/gi6LCXPgfb57JAw+Y3ggoRTSThjyZqEkBdCgOtFjAGRaYgg0Ne2SMEK9ut4BwlOUKWilzH18Usc1vA+bzjcFGWLwe+8AXgD38A7r0393U4B776VWDNGml+TA7Zs23/9m/S33Jn2xoE+tZsEoLRBCx1EEAtaDHrYTPqMDQTmg+groDG/KpN3bAatPjlziFMB2OIJVIld7s67fNZZ1P+KBIpLmvnq1RuvmgVfvj2M3Hbm7YoGsxVinjet/S31I1hTC5azHrotQyTOYszaUGrRgA1AGg0DC6LYYmk6lC6Q7RKBSmeSa/F2SvcC+bORBejUrJGAEtMQU5MB6Fhpd/nqnYbjnqCSObIhCvEkanSbfSbkRVtNpj12rLmzkTnTK4kqcdpRiSeymsUowalds4AyRSklp2z8SylRCWfo3IQM3nlFmf9GTXL0gJqfC5S8rwZIGV39rrMsmSNs2kpubtBZs6MOi36XGbZxdNMMIbj0yFZkkYgqzNXRp6kEkKxBALRRGmyRjlZZ4v58IeBzZuBD34Q8OX47Pvb34Bnn5VmyORa4IvZNiFl3L5d+r+c2bYGgYqzJiEYS8BWR7JGkXU2PBvGdEDYtqrfObMadXj1ll7ct3c0Y7VecnHmMGXcGksNs1aC02LApes7K14w6bVSaO9rt/ZV9H7KRaNhaLMZ83bOOuxGVaUwTstSSdWhyQA6HcpDk/Nx4SlteGkykBm4z2ScVaJzlinOFj5/x6ZD6HGaS3afXNVuQyyZyrmoy0cqxXF0OqjKvFmzoNUwrO2254xXkMtUIAptemNBDqIgr6S00S/cGkt4z7gs+prOeon3JdAIssbyPpOyRw0WM+GLlOzUKBhwW2UFUYsOZaN0zgBpY0WurHHPkBcAZHfOxAZWKdLxUvD4pdd5qZ0zIH9eXk50OuCOO4DRUeBf/mXpz7/6VcnZ8frr5R8ze7ZNsH27dHmTQMVZkxCMJmGpI7dGQGSdhTJD7JVyZ3rL2f2IxFP43sOHAJReUHU4jJmcs0oGUNeCb79lK67a1F3r0yhKhz1PcTbmx9pudbpmApfFkNnFFRyeDKiaA3fB6nYAyHTPhr1haEqIepCD2PxYbHJyfCZUkhmIYFWH8sXDiDeMWCKFFWXa6DcbG3oc2D/mK1lm6PFLszpyHUt7qpB15kvLAm0lBArneg9Wk2x33maXNZoNWrTZDEsW1pxzjM1FypbVD7RaZHXORIfS3SCGIACwss2Ko1PyogJ2D3mhYcDGdLZhMSwGHXqd5qqZgghpdCnFWbvNCJNek5HKy+bss4H3v1+aQcvubj3zDPDgg8BHPgIYG+f1UA2oOGsSpJmz+umcAch0zqbSO5Jqh+4KNva2YH23A48dkgKpS5VvdTpMCESllr9YzFRS1kgspT1HcRZPmyisU2neTOC0GBbs2nPOcXgqiNUqODUK1nbZ0WYz4NFD0tzZyGwYnQ7lUQ9yMBu0MOu1SzpnJ6aDGTe1UhA5ZUrmztR0amwmNvS0wB9J5Jz7kYMnoMxlbd41t4LFWSQOu1FXUsRFvcgarQZtXcsazXqtKtL3PpdlSdaZL5JAOJ5EV0t538/LW63whuKYKzJDKJ7nRrHSB6TPsWAsmTfmJZvdJ2axptOuyD27mnb6UxlTIeW/b42GYZnbIqtDuoRbb5U6ZO9+N5BIOwp/9atASwvwnvcoP16TQ8VZE5BIphBNpOrKSh+QFgaBaCKzI1Tuzl8+GGN4y9n9AACLQYsWhZbOApF1NumLYHQuDKtBqzi7hyiPdrtxiZvYMU8QsWRKNTMQgcuihzdrITHhiyIQTajaOdNoGC5Y3YZHX/IgleIY8YYqMm8mcFsNCwxB5sJxzIbiGCjDMdFlNaDValDUORPv+ZU0c7YAYQpSqrRRaT5Ri1kPi0GLUW+k+JVLxBdOKLbRF7itegRjSXnubxVgfC4Cu1GHPpelrmWN5droC/rdliWFuugedpW5ESnmkY7PFC4yPGIGvaFkjUI9UPixpVIce4a82LrMpej4K9usODwZqKhxj6CczhkwHziuGIcDuOQSYHAQ+K//kjLQ7rkHuPJK4PbbSzqXZoaKsyYgGJO+2OpN1igstPcMeTNW9ZXimq29MOk16G4xlTzD1WmfzzobS9vo17OBRjPSbjNiOhBdYD5xID1LqJYZiMBlXRjaLCzOyw2gXswFp7RjOhjDgXFfxQKoBW6rYUEH4ER6h7McWSMgzZ0pGVg/6gnCZtSVvABoVtZ0SiHqpZqCePxRtCnoODDGMo6NlcIXicNe4iaWMxNpURtp4/hcBJ0tpiWbGvXEbChWto2+oM8lvRayP18zAdRlyhqFG2yxrspMUJqbLGVGsVasTKspipmCHJ0OwhdJYKvCyJpVHTYEY8mcZlhq4/FHwRhKnt9e3mrBiZkQUgoNogAAN94IGAzAZz8LfOxjkgHI/fdL+WbEAqg4awKC6dDZepQ1AsBzo76KSxgcJj0+fOkavOGM/pKP0ZEJopY6Z91NMm/WSLTbjUjxhc5pL4z7oNWwzOyTWjgtekQTKYTT+TKHJqUiUE1ZIyCZggDAwy9OYcxbWtSDXBYXZ2IXe5m7vOduVYdVWefMIzk10ubGQkx6LU7psJXUOeOcl5RP1OOsbBC1LxwvuXMm1BS1MgUZ90XQ3WKC22aoX1ljKKaa6qTfZUE8yRe4VIp/l1ucCbOIE0W6KjNB6fGUattfC7odJhh1GhwtYgoyeMILQF74dDYZ6XgV5s6mAlG4LYaSpfXLWq2IJlIZ8zRFXHyxFEodjUr2+lot8OtfN12AtBpQcdYEhGJScVZPIdTAvDtULJGq2LxZNu+9aBVu3raq5NsLWeOELyIFUNdxJlizIhaek1kf/AfH/FjVboVRp25neH5hKO3aH54Kwm5Sv9vT6TBhTacNv3l2BIkUr2jnrHVxcaZi52w6GMvYehfjyBQ5NeZjfY+jpM6ZL1xaXmSvq9Kds0TJXRAh16uVKciETzLCaLMaMq7C9cZsUL3OWSZ/NMsURHTOOhzlfe6ZDVp0OoxFO2fTgVhDSRoBSZ6+os1aVD0wOOSFzajDKoUbfNW005/yK5tbXcxyhYHjS3jzm4ErrpD+/c53UmGWByrOmoBAVNr5r6cQakCadxAzW0qkOLXCZtTBYtBiKO0w2SxOjY2EKIyyB68PjvtVlzQC2QtDqeA4lHZqrES358JT2jOyyWp2zk5Mh9BmM5Y9jyoWG3LspCPxJEbnwpRxlocNPS2Y9EdlmQtkkwmgVlqcOc2YDsYQjlVmrkvqnJUra6x+1yqZ4pj0R9HlMMFtNcIXSSCWSFX9PIqh6sxZesN0KGvubNwXgcuiV8VwRM480kwwpmokSrVY2W4tKmvcPTSLTX0tis1xuhwmWAzaqnTOPArnVhcj5KsniswW5mXHDmDXLuDTnwZ+9aumCo5WEyrOmoBQWtZYTyHUAtE9q0TGmdowxtDpMGHPkCQ56qbOWdXpSM/9iYWrLxLHiDesuhkIsHTe5dBUQHVJo+CCtLQRqEzGmcBlNSAUSyKSlmoemw6W3TUD5oszOY6Nx6aD4Hx+ToNYSKmmIJ4SB/nFZoDIblQbXyReeucsnd21OAy+GojZ1s60rFE6j/qSNiaSKcyF45nPqnLpdprA2MKcqgkVbPQFy1stRW3WZ4KxhnJqFKxos+LETAjxZO4CPhJP4uCYH1sVShoB+Z05NZjyl1ecdbeYoNOw0hwbd+wA3vhGKTD6S1+S/n7jG6lAywEVZ01AoE5nzoD5hWijfBh32I04MCZJjirZ4SByI7oCoksggsXXdatfnInd29lQDHPhOKb8UdXNQAQvW+GGIa3xr2RHVsiFhLnBiTIzzgS9LinEWs7O7tH0AoOcGnOzPlOcKZM2ig0LpZ0z8XobqYCdfirFEYiW7tZYy5mzsSwjjDbxvqkzx8a5dIacW6XOmVGnRZfDtMBOX8zdqcFAqxWT/mhm1CIXnkC04WSNgBREnUjxvAHMz43MIZHi2NKvzKlRsLJdftB1qXDO07LG0p9/nVaDfre8TLsl7NwpFWRCyrh9u/T/7OwzAgAVZ01BqE7dGoF5x8bWKsycqUGnw4RE2oWIDEGqj9mghd2oyyxED6YL5VMrIGt0phc83lAsU3RUqnNmMehwxoALbquhoh1uUXDOBGKIxJMY90UwUKYZCABoNUyye5ZRnIm8HpI15sZh0mOZ24L9CoszT0bWqGxhJWYcKzF3FoglwDlKjhwx6aVsPrmzjGoijDC6026NQP0FUYuOolozZ4Akbcy205/wRdClWnGWttPP01WJJ1PwRRINFUAtEHNh+aSNg0NeAMAWhU6NglXtVgzPhjOqh0rgjyYQTaTKnqsekNEhzcknPrF0xmz7dulyYgFUnDUBjdA5a2uQnbLOrKFokjXWhuwg6oPjfthNuoqYszjN84YgYh5MzYyzxXzmynX40mtPq9jxgfkO9UwohuHZEDgv3wxEsLLdWjTnB5CG2jsd5c+5NTMbehyKZY1TfsmCXKlzX6fdCK2GVcSx0Zfu7JRji+6y6GsiaxT5Xp0O0/z7ps4cG0VHUc2M0D6XOWMIEkuk4AnEVJQ1SgVMvoW7KMLdDaKkyUYoAfIVZ7tPeNHrNJdc+Kxst4FzSRZeKTz+0qTRixlwS8VZNXLZTlaoOGsC6tWtEZj/sO5skEJHfEm1Wg2qDEgTymlbVJyt63JUxKTDoNPAZtRhNhTD4ckADGm5RqXY2NeCK07rrtjxAWR2pGeC0Yyb1jKVirNV7TacmAkVDQw+4glkrKGJ3GzoceDYdAj+iPyiRMjBlFqQ67QadDlMFSrOpO+eUg1BAGn2sxaGIONzEei1DK1WQ2Ymut5kjaKYUbU4c1sw5osglkjNB1CrVJxlgqjzFBhCbt2IskanxQCXRZ93g2pwyKvYQj8bUfxVcu6sVGn0YgZarQhEE3W3mdFMUHHWBAi3RksdFhMXrWnH/9x4puJQxlohss66nY1RTDYj7XYjpgJRcM7xwri/ImYgAqdFD2+6c7aizarYZavecGfNzhxP746LDZJyWdVuQzLFM8HW+TjqCWIF2egXZENPCwDgwJhf9m08gVjJi6oep6kiM2e+iAqdM6u+JjNn43MRdNhN0GgYWsx6aDWsDmWN6eLMql5gc7/LDM6BsbnwfPdQpc1Th0kPt9WQ1yxCLOYb0a0RkLpbubLOJv0RjHjDZa1zhGzy8GTl5s6mSjQVWszytrSdfinSRkIWVJw1AaFoAhaDti5DHTUahovXdjZMGG1n+kOru4XmzWpFu82IKV8Uw7NhBKIJrK2AGYjAZZGs5w9PBSoqaawWDpMOOg3DTDCGE9NB2I061Wy4M46NBebOZoIxeENxMgMpwvoSHBvLcVnrdZor4taYkTWWaAgCiM5Z9WWN475IRsau0TC4LPq66wRkZs5UlTWm7fRnwgvm7tRioNWS12a9kTtngDRHm0vWKMKnS3FqFFgMknz/SBG7/nLIyBrL7Jwtcwv5auXdJU9WqDhrAoKxBM13qISQNZJTY+3ocBjhjyYyA9ZrK9w5m/BFcGImVDGnxmrCGIMrnXV2fCaEZa0W1TZGMju7BWQ3YleZAqgL02E3os1mUOTY6AmUHh7b4zRjzBtBMqXujIgvkpY1lj1zVhtDkOxNuFarsf5kjaEYDFqNqmZfIoh6aDaUCaBWS9YISPNI+QKKRdB3oxiELWZFmxUTvmhmzl8wOOSFTsMyHfFSWdluw5EKZp1NBUqbW11Mv9sMxvLPFhLlQ8VZExCMJmGtQ6fGRqSrxQSHSVfRgoAojNjVe/QlDwBgTWdlO2cvTviR4pU1A6kmrVYDpoMxHJ9Wx0ZfYDXq0N1iKii7EYXbCpo5KwhjDOt7WmQXZ5zzssJje11mJFIck/5ISbfPx3znrPTNQbfFAG84rnrhWIzF+V7u9PumnpgNxuCy6lVVnnQ5pJyq4dkQJnwRGHUatJTR+VzMQKsVo3PhnLOpM8EYNAxwqnh/1WRVetPp2KLu1u4TXqzrdpQ9p76yXco6q5TRxpS/tLnVxRh1WvS0mKlzVkGoOGsCglHqnKmFSa/Fo5+6GG88s7/Wp3LSIhagj7w0hX63GfYyduWL4bLoIdaElbLRrzZuqwGeQBTDsyEMqDRvJljVbisoazzqCUKnYeivYNB2s7Chx4GXJvxFDVYAKe8qnuQl5xP1pDtEolOiFmLmrBynYKfFAM7nC71q4I/EEYwl0dUyX+y6bYa6lDWqKWkEJIOYbqcJQzNhjM1JNvpqFn/L2yzgHAvs+gXTwRhclvKLg1ohNp2yPwOTKY69w96SLfSzWdVugz+ayBh3qI0nECt73kww0GqhmbMKQsVZExCMJWCtYHbSyYbDpG/YL49mQHx5jM5FcGqn+vlm2Yj8IMaaR4rnthpwcMyPeJJjQGX3yVVpO/18O7tHpgJY1mqBTktfLcXY0ONAIsXx0kRxGZOnzEF+kWOlenEWTsBm1JX1+xZmF9WUNornIbtz1mY1ZGR39cJsuphRm36XBUPpzplaNvqCQvNIM4FYw5qBAFJBwthCO/1DkwEEY0lVijM50vFyKGdudTEDrVacyBPITZQPfYM2AcFoElYjyRqJ5iD7y2NdBc1AgPlB+z6XuWmiE9xWA8LpIFO1bPQFqzpsCEQTmMyzs3vUEyQbfZmI+RQ5piBTfqlwKXWQXxg+jFWgc1ZqALXAaZnPG6wW4zks5N1WI3yRBGKJVNXOoxizoZiqTo2CfpclYwiidp7n8vRnTq65s5lgYxdnJr0WvU7zguJscGgWQHlmIIKVafXGkRyOkGow5S99bnUxy1stmAnGMFfFjvfJBBVnTUAwlqjLjDOCKIVWqxGicVlJG31AMgQBmkfSCCy0qa6ErBHIbfecTHEcmw41TQey0gy4LbAbdXjq6EzR6woL7LYSd71bzHqY9JpMUaIW/ki8bNmx2CCpZtaZ6JxlG4KIYORamJPkwxuKZ4pXNelzmeEJRDE+F1HVDASQPn/sRl3Orsp0MJoJ/G5UVrRZF2SRDQ550WLWY4UKDrXdDhPMei0OT6rfOUulyptbXYyYZy4WrUKUBhVnTUAwmoCNZI1Ek6DVsEyY8tquCssa0wufZjEDAeZtqg06DbpVXngVstMf9YYRS6TIRl8mGg3DNVt7cN+esUzeVD48ZYbHMsbQ3WJWv3MWTpRlBgIgE/VQzc6ZeL47HPPPZ1tWRmCluP/5cdlzbakUx2woBnclZI1puXM8yVWXNTLGsKzVgmM5ZI3TwVgm8LtRWZm20xfS7t0nvNjc71Rlbk+jYVLxV4HO2Vw4jkSKl22jLxAbf8fzxCYQ5UHFWRMQiiZhIVkj0UR02I0w6jQZiUylEF2mVU3VOZO+fPtdZtVnJzsdRlgN2pwzEaJgU2MH+WThPS9fhSTn+OEjRwpebyoQhU7DynK563KYMK5y1pkkayyvc+asRefMF4HLol8gZRafBZUyBZkLxfGenz9T9Hct8EcSSPH57r6aCDt9YH4eUU2Wt1qX2Kwnkil4Q/GGljUCkvQwEE1gKhBFMJrAixN+VebN5o+/sDOnFuV23xezLF3gk51+ZaDirMHhnCMYS5TllkUQ9caKNis29bVU3FhifbcDn7t6Pa7e3FPR+6kmYvGjtqQRkHbFV3XkdmwUcxgrm6jQrTT9bgtetakb//vUiYLFiccvycHKKba7W0yVmTkr0xbdYdJBmw5Orxbjc0uNMITcbjpYGVOQMZ9UGIv8xmLMpF8PlShmRBA1ANU7Z4AkeRueDSGRnJ/fE53RZpA1AsCRqSD2Ds8hxYGtKhZnq9ptGJoNIRIv7uKqhCmVAqgFVqMO7XbjklgBQh2oOGtwIvEUUlxKlyeIZuFLr9uIO64/s+L3o9EwvPOCFU21uSEWc8tUdmoUrGq35dzZPTIVhN2oK9nu/WTlvdtWIRhL4mdPHM97nXICqAVdLSZM+CJIqZgn5gsnyjYEYYylg6irawiyuGMk5HaVkjWKObe9w3OyMt3E7Fsl3BrbbUYYdNLyrxKds4FWC+JJvmAzQBTfjd45E8XZUU8wU2hvVrlzxrn6HalyHV9zsbzVguPk2FgRqDhrcERSvY1kjUQT0WLWZ2zuCWV0OUzQa1nFgtRXtVsx4g0jFEssuPyoJ4iV7VZVM5NOBtZ2OXDJ2g78+LGjS55TwZQKg/zdLSbEk1y1oOVUisOvQucMkKSN1TUEiS5xKWwx6yvawZv0SYvjQDSBIwWyAgWz6fOoxOegRsPQ5zKDMUlCrjaia589dyY6ko1enPU6zTDoNDjqCWL3iVksb7Wo+piExF7Oa0QJanfOACk2gYKoKwMVZw2O+DKnzhlBEADQYtHjgY9chDec0VeR488vHhZ+KR+ZCtC8WYm8b/sqzIbi+OXTQzl/7vHHVOicqRtEHYxJM1HlzpwBSHfOqlOcxRIpTAejS+R8Go3UwauUrDHbKXO3DGmj6CS6KjBzBkh2+m02I/QVkI4vF2YRWd0fUfQ2uiGIRsOwotWKI1MBDA6pEz6djfgMzSUdL4cpfxQGraZsA59slrdaMOGLIhxTV4JJUHHW8IjOmbWJZFkEQZTHijZrxeb1VnUsdWwMx5IYnYvQvFmJnDHgxtkr3PjhI0eW5GylUhzTQXU6ZwAwppIpiC8iffeosdiTOmfVkTVO+iPgHDkt5FutxsrJGn0ROC162E06WXNnopNYCSt9AHjH+cvxkUvXVOTYwtApu6sintdGnzkDpM/XncdmMemPql6cWY06dLeYVDcFEd13NZUNA+lCksKo1YeKswYnlN6xoBBqgiCqwUCrBRqGBY6NQr5EnbPSuXnbKozORfC7wZEFl8+F44gnuSozZwBUyzrzpcNnG61zJmz0O3PMWrmthgrKGiPobjFjc58Te2QUZzPBGLQaVvZMXz62ndqBt75sWUWOrdEwDLRacCyrczYdjIGxyszQVZsV7dZM+PKWZS7Vj7+y3YrDKhttTPmjqjk1CgbSc825YhOI8qDirMGhzhlBENXEqNNimduyoHMmdnkpgLp0tq1px/puB25/+PAC0w4xyF+u0YrbYoBBq1HNsTFTnKkwc+ayGjAbjGeyoyrJ+Jz0fObqnLltBtVm8pbcry+CTocRm/tbcHDcX1QKNhuKw2XRN+wM50CrdUFA8UwwCmd6rq/REVmOBq0G67rVn+2VTJcCqr0fEskUnh/1YYXK0TTz8lUqztSGirMGJxRNd85o5owgiCqxqt2Gw5PzxdlRD2WclQtjDDdvW4XDU0E8sH88c3lmkL/MXW+NhqGzxajazJk/LWu0q9DZcVkMiCVTGSVIJRGdw8WGIIAU4D4dqNDM2VwUXQ4TtvS7kExxPD86V/D6s8FYQ3eZBtwWHJ8JZjYaZoKxhjcDEYhNqPU9Dhh16quWVrZZ4Y8kMtlk5fLEkWnMBGO44rRuVY4naLHo4bToKeusAlBx1uAEM50zkjUSBFEdVnXYcNQTzFiCH5kKorvFRMZEZfLK07ow0GrB9x46nNk1Fws0NVzWuh1mFWfO1JU1AqiKtHHCF4FRp0FLjo5fq9UIXySxZO6vXOLJeROSzf0tAIrnnc2GGrw4a7MiEk9hMr25MB2INbwZiGBFmzRbq/a8mWBlHtOlUrlvzxisBi22ndquyvGyGXBbqDirAFScNTjBtFsjdc4IgqgWq9qtiCZSGPVKC/0jniB1zVRAp9XgPS9fhT3Dc3j88DQAwJM2Uih35gyQ5s7U6pypKWsUphfVMAUZm5MyznLJBd1p6ajaReKUPwrOpcDnDrsJvU5z0eLMG4rDZa2MU2M1WJ6W0AnJWzN1ztxWA/7j2s1418tXVuT4wnRJjeIsnkzhL8+P4xXrO2HSq7+JP9BqpZmzCkDFWYMTpJkzgiCqjNjZPZSeizgyFaB5M5V4/Rm96LAb8d2HDgGQFvZ6LcvZ6VFKd4sJY3MRVWZZfCrLGoEqdc7mIkts9AWt6eJBbcdGIaXsapEK7M39LUWLs5lG75y5F9rpTwdjTeHUKHjDGX3odZorcuxuhwkmvUYVO/3HDnkwF47j6k09KpzZUpa3WjDqDavebT7ZoeKswQnGktBrGQw6+lUSBFEdRNbZ4ckAZoIx+CKJjNSHKA+jToubLlyBxw5NY8+QF55AFK1WIzQqGCl0tZgQTaRU6VD5wnFYDFpVcrLmZY2V75yN+yI5zUCA+eJMbcfGiXS3UhSFW/qdGJ4NZ8xeFsM5hzcUq5iNfjXocZqg0zAcm5bkz7OhWOb5JQqj0TCsaLOpEkR9394x2E06XLimTYUzW8qyVitSHBieJWmjmtCKvsEJRhPUNSMIoqq4rQa4LHocngriSNryeSXJGlXjrS8bgMOkw/ceOgxPIIo2uzqL2vmss/Kljb5IXJV5M2Be1jhbIadEAecc475ITjMQYD6DS+0gamHfL4rCzX1OAMhrqR+IJhBPcrgbWNao02rQ77bg+EwI3lAMnKNpZI3VYGW7NfPZWiqxRAr3Pz+Oy9Z3VcS4BMiWr1JxpiZFizPGWD9jbAdj7ABj7HnG2IfSl/87Y2wvY2yQMfYAY6wyPVOiIMFokubNCIKoOqvabTg8FcBRstFXHZtRhxvOW477949j3/CcKmYgANDVIsmwxn3lm4L4wglVAqgBwFklQ5DZUByxRCqvrNGdNqxQX9YoSVOFTHFjXwu0Gpa3OBOdzUbunAHAMrcFx6eDmU6kW6XX8cnAqnYbhmZCiCZKdzB95KUp+CMJXL1JXZfGbAbITr8iyOmcJQB8jHO+DsA5AN7PGFsP4Ouc802c8y0A7gPwr5U7TSIfUueMnBoJgqguIovnsCcAvZZVbP7iZOXG85bDqNNgOhhTxQwEqN/OmV6rgd2kq7ghiDBD6crTOXOa9dCwCsgafRF02E0ZaarFoMOaTjt25ynOMsVMgxdny1stOO4JZbLjSNYon1XtklywnI7UH/eOocWsx/mrKyNpBKT8RYtBuyBwnCifosUZ53yMc/5s+t9+AAcA9HLOfVlXswKofHoksYRgjGSNBEFUn1UdVngCMew+4cVAqxU6FWaPiHlabUa8+axlAMrPOBO02YzQapgqjo2+SFwVp0aBy2KoeOdMyAvzdc40Gga31aC6rHE87RCZzZb+FuwZ8uY0ZxHPQyO7NQJSV8UfTeBQOhORZI3yWdkmHBtLmzuLxJN4YP8ELt/QWVFPAsYYBlqt1DlTGUW/McbYcgBbATyV/v+tjLEhANeBOmc1IRhNkKyRIIiqI0xBnjk+Szb6FeJdL18Ji0Gbea7LRath6LQb1emchRNwqODUKHBZ9BU3BCkUQC1wWw2qyxon/BF0OhYW2Fv6nfBFEjiaY66oWWSNA+l5pGePzwKgzpkShEz8cIl2+v94cQqBaKJiLo3ZLG+VZgsJ9ZBdnDHGbADuAfBh0TXjnH+Wc94P4E4AH8hzu3czxnYxxnZNTU2pcc5EFsFokmSNBEFUHVEwJFOc5s0qRK/TjKc/eyled3qvasdUK+vMH4nDrpKsEZAKEW+FO2fjcxEwVrgT2Wo1VsStcXG3bnM6wHjPsHfJ9ZtF1ijmkYR800XFmWysRh26HKaS7fTv2zsGl0WPc1e1qnxmS1nWasHQTAjJFAno1EJWccYY00MqzO7knP8mx1X+F8Drc92Wc34H5/xMzvmZ7e3qp5Of7ARj1DkjCKL69LnMMKSljOTUWDlsRl3OwORS6W4xY2yuPEMQzjl8EfUMQQDROat8cdZmMxa0/3fbDJkZKTXwR+IIxpJL7PtP6bDDYtBi8IR3yW28oRgYUyfgu5b0u81gDDjqCaLFrFclduFkYmW7taQg6kg8iQcPTOCK07qr8pwvb7UinuRlf64Q88hxa2QAfgTgAOf8G1mXn5J1tVcDOKj+6RHFICt9giBqgU6rwfI2Sba0UiXZHVF5ulQIog7FkkimuGqGIIDUVZkNVl7WmC/jTNBqNWA6T/5YKUz4pGMtnjnTahg29uYOo54JxeA066FVIduulhh1WvSkHUJJ0qgcYbqk9L264+AkQrFkRV0asxlwk52+2sgpqc8HcD2Ai9O2+YOMsSsBfIUx9hxjbC+AywB8qJInSuQmGEvCQrJGgiBqgJA20sxZ49DdYkIoloQ/mij5GL6IVESpbQgSiCYQS6RUO+ZiJnxL5YWLabUa4Yuodx7ChKTDvvR+tyxzYv+Yb4ld+mwonrHdb3TE3BmZgShnZbsVvkgCHoUzkPftG0ObzYCXrXBX6MwWMpD+/D9GpiCqUbTlwjl/FECu7Zs/qX86hBLiyRRiiRRsJGskCKIGXHBKG4Znw7Qr3kCIDs74XKTkzpcvLBV2qnbO0lln3nAsZyGjBuO+CM5aXnjB6k4HUc+GYkULOVn3WcC+f0ufE/Ekx/5RH7Yuc2Uu94ZiTTOfNdBqxeOHp6k4KwGhSDgyFZDt2BqKJfD3A5N4/Rm9VXPQ7XaYYNBpcII6Z6pBAuAGJhSVdtssJGskCKIGXPeyAfzhgxeoOhNFVBY1ss7mO2fqffcIZ8JKZZ1F4kl4Q/G8GWcCsdGglmPjeMa+f+niessyJwAsCaOeCcYzxWqjIzpnrTYqzpSyKm20dCSHo2c+/n5wEuF4EldtrLxLo0CjYeh3malzpiJUnDUwgZi0e2kjWSNBEAQhg670DNB4GcP7vnC6OFO1c5buWKnslCgQHaziskbpPNRybJz0RWA36WDJoXDpbjGj02FcMnfmDcUa3kZfsFwUZ1Z1svpOJnpazDDpNTg8Kd+x8b49Y2i3G3F2lSSNguWtVpo5UxEqzhqYUHpmINeHPkEQBEEspsNuBGNqdc7UtNKXjlWprDPRwSpqCJLu8KgVRF3MhGRznxN7hucWXDYTjDWNDFDY6TfL46kmGg3D8lar7M5ZIJrAjhcmceVpXVU3kxlIF2flGA0R81Bx1sAEoqJzRsUZQRAEURy9VoN2m7GsrLP5mTMVrfSt87NelUAYc3S1FO7guNMdHvVkjdGCUsoty5w46glmMt7CsSSiiVSmWG10Tumw4YZzB3DJuo5an0pDsqpDcmyUw98OTCCaSOHqzdWTNAoGWi0Ix5OY8qvndHoyQ8VZAxOKpWfODCRrJAiCIOTRnbbTLxUha1QzhFoELleqOJs35jAXvJ7TrIeGqStrLCSl3NLnBIBM90w8/kYPoBbotBp84ZrTMh00QhlrOuw4PhPCHf84jESysIPofXvH0OUw4Ywsc5lqIWYLj5G0URWoOGtgROeMcs4IgiAIuXS1mMrqnPmjCZj1Whh06i0hzAYtjDpNxQxBxuYisBl1RZUmGg2D26pOEHUyxTHpj+Y0AxFs7GsBY8iEUYuisFlmzojyuOG8AVyythNf+tNBvO57j+PAmC/n9fyROB5+YQpXbuyGpgb5eMvTxfdxMgVRBSrOGphQjIozgiAIQhndLWaMlWkIYldR0ihwWQwVMwSRMs7kmVK4VQqing5EkUzxgjNndpMeq9tt2DPsBTDvVtksbo1EeTgtBvzg7WfgO2/dipHZMF717UfxjQdeWJKN99f9E4glU7iqSsHTi+l1maHVMDIFUQkqzhqYQNpK30pujQRBEIRMulpM8EUSCJYYRO2LxFU1AxE4LfqKGoIUs9EXtFqNqsga5230C9/vln4nBoe84JxjRsgayUCDSMMYw9WbevDgRy/Cq7f04Ft/P4SrvvUonjk+m7nOH/eOoddpxunpeIZqo9dq0OskO321oOKsgRFujVZyayQIgiBkIrLORPGgFF84oaoZiMBlMWSMMdRmYq7w7Fc2bptBleJswid134rd7+Z+J2aCMQzPhjOPn2SNxGJcVgO+8cYt+Mk7zkI4lsQbbn8cX/jD8xibC+MfL03hyo1dNc2cHGi14MQMdc7UgIqzBiYYTYAxwKynzhlBEAQhDyGzK3XurFKdM5dVn+kcqYmY/eqW3TkzwKOCrDFj31/kfrf0OwEAu4e8WTNnJGskcrPt1A7c/5GX4+3nDOAnjx/DJf/5MOJJjqs3Vd+lMZuBVguOeoJkp68CVJw1MMFYEha9tibDnwRBEERj0p12LCzVsdEXjqsaQC1wWgwVMQSZDkSRKDL7lU2r1QhfJIF4EXe8YkzMRaDVMLTZCs+6ndplh0mvwZ4hL7whaZ5Pr6XlGZEfm1GHL1xzGu5+z7noajFhbZcdm/paanpOy1ut8EcSFTP1OZkgPVwDE4wmyAyEIAiCUERH2hhjvERTEF8kAYdZ/e8ed1rWmEpxVTcd5c5+Zc4jHUQ9G4yhQ+ZtcjHhi6DdZiwaCKzXanBaTwsGh7zoc5lp3oyQzZnL3XjwIxchnkrVVNIIzAeOH58JZXILidKgrZkGJhhLUnFGEARBKMKk16LVaiipc8Y5r2DnTI8UB/yR0oxK8jGfcSZf1ggAnjKDqMcVOERu6XfiuZE5TPqiNG9GKEKjYTDqaj/eIrLOyE6/fKg4a2Ckzlnt35AEQRBEY1Fq1lk4nkQixSszc1ahIOoJMfslt3OWLs7KNQWZKBJAnc3mfieiiRR2D82SjT7RkCxzp4OoPWQKUi5UnDUwwWgCFnJqJAiCIBTS3WIqqXPmC0tdrUp0zlxW6ZhqF2fjvgh0GobWIrNfgra0rHE6WJ4pyPicfPt+YQoSiafgps4Z0YCY9Fp0t5hwfIY6Z+VCxVkDE4wlYCNZI0EQBKGQrhZTSVb6/og07F+JmTMh51PbUGBsLoIOe/HZL4HbKhVx02XIGsOxJHyRhOzOWZ/LnJFTkqyRaFSWuS0URK0CVJw1MKFoEhYDyRoJgiAIZXQ5TJgJxhCJJxXdzpcuzuyV6JxZ1JETLmbCF0GnzA4WADjNemhYeecxodCEhDGW6Z65rSRrJBqT5a1WmjlTASrOGphAlDpnBEEQhHK60nb6Ewq7Z/Oyxsq4NQIVkDXORWTPmwGSwYLbasB0GcXZuMI5N0CaOwOoc0Y0LstaLfAEYghE1TX1Odmg4qyBCcWSNHNGEARBKEYEMiudO/NlZI3qd3fsJh00TH1Z44QvKruDJXBbDZguI4g6Y0LSIm/ODZifO2slG3KiQVmettM/5qHuWTlQcVZH+CNx3L1rSFa6Ouc8PXNGskaCIAhCGcKoQqljoy+cLs4qIGvUaBicFoOqnTN/JI5ANJEpRuXithpUkTUqyUk7f3Ub/u2aDdh2akfJ90sQtWRzfwt0GoY7nzpe61NpaKg4qyN+8MhR/POv92L/mK/odcPxJDgHLCRrJAiCIBQi5HbKO2eSXMleAVkjIGWdqdk5m+9gKSvOWm3Gsoqz8bkoLAYt7Aq+o7UahrefuxxmmiUnGpQ+lwXXnzuAX+0cwgEZa1kiN1Sc1Qmcc9y7ewQA8MK4v+j1hZ6XQqgJgiAIpViNOjhMOozPhRXdzheOw6jTwKSvTAHhUrlzNj4nSROVyhpbrQZ4ypQ1djlMYEyeQyRBNAsfuuQU2E163PrHA7KUYMRSqDirE5494cWJGcl+VE5xFopKDltW2mEjCIIgSqC7xVzSzFkl5s0ELoteVbfGUow5AEnW6IskEE+mSrrfCV8EHQ7582YE0Sw4LQZ8+NJT8OghD/5+cLLWp9OQUHFWJ9y7ewRGnQbLWy14YYI6ZwRBEERlKSXrzBdOVMSpUeC0GOpG1ggAsyUWiuM+ZQ6RBNFMvO2cAaxss+LWPx0oeYPjZIaKszoglkjhD3tHcdmGLmxd5pLXOYuJzhkVZwRBEIRyultMddc5c1vVlTWOzYXhtOgVyzCFY6KnhCBqzjkmfVFF2WoE0UzotRp85sp1ODIVxC+eJHMQpVBxVgc8/OIUvKE4Xru1B2s67Ribi2AuXHjnMJjpnJGskSAIglBOV4sJnkAUsYT8nW1fJFERp0aB06JHNJFCOKYsHDsf43PRkjpYbmvpgdizof/f3p1Hx33W9x5/PyNptMyMR/viRV5jOZttJSbJydqQUgINWVgaCqUUKPfc0nMvvUAvYblADxTK0uVSbi+nLBc4TctWDCkJoYFQO9TExfUSJ7EtObETb1otayRZM9LMPPeP+Y0WeySNZtH8ZvR5naPj8W9+v/k9mm+cZ77zPM/3mWQiFtfImSxrd13ZzC2bGvibn3VzIcd7F5Y6JWcu8MMDZ2jwebntiia2tAYA6FpgauPYRCI50ybUIiKSibZgFdZC30j6o2cj45N5q9QIiYIgkLuNqHtD4UUXAwFo9CfaMTi2+KIgye0JMrmvSKkwxvDR376KkfAkX/z58UI3p6goOSuwUHiSJ4708rptK6ko87DZSc4WmtqYHDlTKX0REclEa7AaWNxeZ0tREARyl5xluvar3pdYczaYwbTG5Do3JWey3F3ZtoIHX7GGb/3qJC/2jxa6OUVDyVmBPX64h4lonPs7VwGwMlhFoLI8jeQsMeXDrzVnIiKSgeTGzOmuO7PWOgVB8jmt0Rk5G5t/an937wi/8+Vf8aUnu+cc+ZuMxRkYjSy6GAhAbXUFHpPZtMaeDIuQiJSi972qg6qKMj792NFCN6VoKDkrsJ0HzrC+0ce21UEgMQy8uTWwiJEzrTkTEZHFSyYP6Y6cRaJxJmJxVlQXdlpjPG750A8Oc/DUBb7wr13c/Jkn+eOH97PnhYFZ+yr1jUSwNrMkyeMx1Pu8DGaQnCVHzpoDKqUv0hSo5D13buRnR3rZc3yg0M0pCkrOCujshXGePjHI/dtXzdqosqM1wLHekXk37xudiOIt91BRphCKiMjiBSrL8XnL0h45CzmFqvI5clbnS7z2fAUEvr//NPteGuJTD1zDk++/gz+4eR2/PD7AW76yl7v+ahdf++UJhi9OTiWdmRbmqPd5GcxgI+reUJhGv1f9s4jjnbesZ1VtNZ989AixuDamXoj+z1FAjxw6i7Vwf+fKWcc7WgIMj0/SG5q7U7gYiWkDahERyZgxxtnrbDyt80NhJznL45qz2urkyFnqaY1DYxN85rEjvGJdHW+8bjUbmvx89J6r2Pvhu/jLN20jWF3BJ3/8PDd8+md86tHngczXftX7vJlNaxzOrAiJSKmqqijjodds4ci5EN//z1OFbo7rKTkrEGstO/ef4br2WtY2+GY915EsCjJPxcaxSFQbUIuISFbagtVpj5wNjyem0+dzE2pvuQd/Zfmc0xo/+/hRQuEon7r/Wjye6RknVRVlvOH61ex8zy08+t9v5Q3Xr+ZYzwjeMg+r6qozakuDvzKj5Kw3lFn5fpFSds/WNq5fW8fnf9rFqLM0R1JTcgZEornZT2Uxjpwb4VjvCA84hUBm6mhJVmwMzXn92ERUG1CLiEhWWoNVaa85W4qRM0jsdXYhxcjZf740xLd/fYp33bp+6kvMVK5eGeTTD1zL3g/fxeN/chvBDNvbkMWas2YlZyKzGGP4X/dcxcBohP/7byqtP59ln5z93lf38p5/2L/k9/3hwTOUewz3bF152XN1Pi/NgUqO9cxddnQsEtMG1CIikpW2YBV9IxGisYU3ol6KNWeQKApy6chZNBbnoz98lpXBKt571xVpvU6gqoINTf6M21Hv8zI8PslkGu9NUiQaY3BsQiNnIilsX1PL/dtX8pWnTnB66GKhm+Nay37opS1Yxc+P9mGtnVWUI59iccuPDp7hNzqaqfN5U56TKAoy/8iZNqAWEZFstAariMUtA6MTC1Y1HAk70xrzWK0REiNnQ5eMWH1jz0mOnAvx5d+7fsmm9Df4E9UWh8Ym0h4J63PWircGValRJJX/efcWVtVVZzyivRws+5GzzvY6zo9N8PL5pcvgn35xkN5QJOWUxqSOlgDdvaNzVrUZi2hao4iIZGd6r7OFi4JMTWtckpGz6WmNPcNh/vqJLu7saOLVV7fk9d4zNThfni5mamNyzzUVBBFJbWVtNX/66i0E8vz/kWKm5Ky9FoADL19YsnvuPHCGQGU5d13ZPOc5Ha0BItE4Lw2OpXx+LBLTHmciIpKV1hWJYhnprDsLjUfxlnmoLM/vR4d63+xpjZ/88fNE45Y/u/eaJZvhkmwHwOBo+slZz3Bi5EzJmYhkatknZ5tbAvi8Zex/eWhJ7jc+EePxZ3t4zbWtVFXMnVwlFzt3zVGxUdMaRUQkW9MjZ2kkZ+FJVlSX5z1Bqq2pYCQcJRqLs6urn0cPn+O/vXIT7Q01eb3vpRr9yZGz9Pc66wllt7eaiMiyT87KPIZta2qXbOTsiSO9jEai3D/PlEaAK5oDGANHe1InZxcjMWo0rVFERLJQW1NBZblnKqmYz6nzF/M+pRES0xoBekcifOxHz7Khyce7b9+Q9/teqt6XWDe2mHL6faEw3nIPtTWasiUimVn2yRkkpjYeORdifCL/JfV/eOAMbcEqblrfMO951d4y1tbXcCxFcjYRjTMRi+PXtEYREcmCMYa2YNWCI2ePHT7HU90D3Ld9/i8WcyGZ2Hz6sSO8NHiRT913DZXlS9/f1VZX4DGLnNYYCtOyonJJp1+KSGlRcgZ0rqkjGrc8e3Y4r/cZHI2wq6uf+7avmrV55lwSFRsvT84uTiQqZmnkTEREspXY62zugiB9I2E+svMw164K8p47N+a9PcmRs0efOcd921dy86bGvN8zFY/HUFezuL3OeobDmtIoIllRcgZsd4qC7H8pv+vOfvzMOWJxO2+Vxpk6WgKcHBgjPDl7RC+5s7rWnImISLbagtVzjpxZa/nwDw4zNhHjrx/cRkVZ/j82JJOzQGU5H/ntK/N+v/k0+L2cX8Sas95QWMVARCQrSs6ARn8laxtq8r7ubOeBM1zZtmKq2MdCOlpXELdwvG/2ZtQXnemXqtYoIiLZag1W0RsKE0+xdcv39p3mZ0f6+ODdW9jUnF7fla1VddVUlnt46LVbaA4UNtGp93nTntZoraU3FNHImYhkRcmZo3NNLftfHsLa1PuKZeulwTEOnrrAA50r076mo9UPcNm6s+TI2VJtxCkiIqWrLVjFZMxeNn3v1PmL/Nm/PMdNG+p5x83rlqw99T4vhz7+W7z1xrVLds+5NPgq0y4IEgpHGZ+MaeRMRLKyYHJmjFljjPmFMeaIMeY5Y8x7neOfN8YcNcY8Y4zZaYypzXtr86izvY6+kUha5YQz8eTRPgDuvrot7WvWNfjwlnkuK6d/MZIYOdMm1CIikq3kSM/Mvc7iccsHvncIYwyff+O2tNZJ59J8W80spQZ/+mvOep2Kly1BJWcikrl0Rs6iwPuttVcCNwF/bIy5CngCuMZauxXoAj6Uv2bmX3Iz6nztd7arq58Njb5F7dNSXuZhY7P/snL60yNn7ui8RESkeLUFExtRn5tRFOTr/36CvSfO87HXXcWa+qXdX8xN6n1ehscnmYzFFzy3V3uciUgOLJicWWvPWWv3O49HgCPAKmvtv1pro85pTwOr89fM/NvSuoLKck9e1p2FJ2M8/eIgt29uyqBdgctHzpxqjRo5ExGRbLU6Iz3Jvc66e0f43E+P8ZtXNvOm64u6a89agy9RnGQojdGz5Mhjy4rKvLZJRErbotacGWPWAZ3A3kueeifwkxy1qSC85R62rg5yIA8jZ78+eZ7wZJw7MkjONrcEODccZvji5NSxMa05ExGRHGnweakoM5wbDjMZi/O+7x7CX1nOZ16/ddnv19XgTyRa6UxtnJrWqJEzEclC2smZMcYP/DPwJ9ba0IzjHyEx9fHhOa77L8aYfcaYff39/dm2N6862+t49myISDS3m1HvOtaPt8zDjRvqF33tFqeyY1ff9OjZmFOtUdMaRUQkWx6PoWVFFT3DYb705HEOnxnmz++/hqaARoDqnZGzdCo29oTC1NZUuGa9nIgUp7SSM2NMBYnE7GFr7Q9mHH87cA/wVjtHmUNr7d9ba3dYa3c0NS1+5Ggpda6pZSIa5/mzoYVPXoTd3f3csL4+o02jk2X3Z647G4tEMQaq1QGIiEgOtAWr2PviIF/6xXEe6FzFa65Nv3hVKUtOaxxMY68zldEXkVxIp1qjAb4GHLHW/tWM43cDHwTutdZezF8Tl05nex1ATtednb0wTlfvaEZTGiHRYQaqyjnWM50wjkVi+Lzly366iYiI5EZrsJqzw2Ga/JV84t6rC90c10hOa0ynnH5vKEyzkjMRyVI6I2e3AG8DXmmMOej8vBb4EhAAnnCOfTmfDV0KrcEqVgarOHDqQs5ec3dXYipnJsVAAIwxdLQE6OqZ3oh6LBLVlEYREcmZVbWJio2ff9NWgtUVBW6Ne9RWV+AxaU5rHA7TqmIgIpKlBefZWWt/CaQaonks980pvM72upwWBdnd3U/riio2t/gzfo3NrQF+fOgs1lqMMYxNRFWpUUREcuZdt67n1k2N3HpFY6Gb4ioej6GuZuG9zqKxOAOjmtYoItlbVLXG5aCzvZbTQ+P0jWS/GXU0Fuep7gHu2NyU1RTELa0BQuEovaHEnPfEyJmSMxERyY2mQKUSszk0+L2cX2DN2cDoBHGLpjWKSNaUnF0iuRl1LtadHTp9gZFwNOMpjUmbW5JFQRLrzsYmYtR4Na1RREQk31bVVrPnhUGeeL53znN6tAG1iOSIkrNLXL0ySEWZyUlytutYPx4Dt27K7tvIDic5S25GPRaJ4tfImYiISN594t6rWdtQw7u/tY9PPPJcyu12khtQJzf0FhHJlJKzS1RVlHHVytxsRr2rq5/O9jqCNdktrq7zeWkOVE6V0784EaNGyZmIiEjerW3w8c9/dDPvuGUd39hzktf/3R5ODIzNOie5FEIbUItItpScpdC5ppZnTg8TjcUzfo3zYxM8c2aY26/Izd5uHa2BqZGz0UgUv6o1ioiILInK8jI+/rqr+crv7+DMhXHu+eJT7Dxweur5nuEw5R4ztS+aiEimlJyl0Nley/hkbNbGz4v1VHc/1sIdHTlKzloCdPeOEotbLkZUrVFERGSpveqqFn7y3tu4emWQ//GdQ7z/u4cYi0TpCYVpDlTi8Wj/URHJjj7hp3BdcjPqUxe4ZlUwo9fY1dVPbU0F12Z4/aU6WgNEonFODIwlCoJoWqOIiMiSawtW84/vvpEvPnmcv32ymwOnhigzhhatNxORHNDIWQqr66pp9FdmvO4sHrfs7hrgtiuaKMvRt2gdrYmiIAedDbI1rVFERKQwyss8vO9Vm3n4D29kNBylu2+UloCSMxHJnpKzFIwxdLbXcjDDio1HekIMjEa4I8sS+jNd0RzAGNjvJIw1mtYoIiJSUDdvbOQn772NB3es4YHrVhW6OSJSAvQJfw6d7bU88XwvQ2MT1C1yge+urn4Abs/hhp7V3jLWNfjY/1IiOVMpfRERkcJr8Ffy2TduLXQzRKREaORsDp1rEuvOktMIF2N3Vz9Xtq2gOccldTe3+KcqNmoTahERERGR0qLkbA7b1gTxGBa97mw0EmXfyaGcTmlM6mhdQdwmHmvkTERERESktCg5m0ONt5wtrSs4sMiRsz3HB4jGLbdvzt2UxqSOlsDUY1VrFBEREREpLUrO5pEsChJPDlelYXd3PzXeMnasrc95e5IVG0HVGkVERERESo2Ss3l0ttcxEolyvH80rfOttfzbsX5u3tiItzz3b+26hpqp11W1RhERERGR0qLkbB7XtdcC6a87OzEwxumhce7Iw5RGSOyrsqnJD4BP0xpFREREREqKkrN5rG/0Eayu4ECa+53tdkro37G5OW9tSk5t9Klao4iIiIhISdHwyzySm1HvT3PkbFdXP+sbfbQ31OStTfduW0ncWsrLlFeLiIiIiJQSfcJfQOeaOrr7RgmFJ+c9LzwZ4+kXz+d04+lU7tzSzP9+c2de7yEiIiIiIktPydkCrltbi7XwzKnhec/bd3KI8ckYd3Tkfn8zEREREREpfZrWuIBta2oxBv72yW6O9oTY2OxnU5OfVbXVeDxm6rxdXX14yzzctKGhgK0VEREREZFipeRsASuqKnhwxxoef66HvSfOTx2vLPewvtHHxmY/G5v8/PS5Xl6xvk4l7kVEREREJCPKJNLwF2/Yymdefy3nxyZ4oX+MF/pHeaFvlBf6Rzl8epjHDp/DWnjHLesK3VQRERERESlSSs7SZIyhwV9Jg7+SG9bXz3ouPBnj3HCY9vr8VWkUEREREZHSpuQsB6oqyljf6Ct0M0REREREpIipWqOIiIiIiIgLKDkTERERERFxASVnIiIiIiIiLqDkTERERERExAWUnImIiIiIiLiAkjMREREREREXUHImIiIiIiLiAkrOREREREREXEDJmYiIiIiIiAsoORMREREREXEBY61dupsZ0w+8tGQ3TF8jMFDoRsiCFKfioDgVD8WqOChOxUFxKg6KU3Eo9TittdY2pXpiSZMztzLG7LPW7ih0O2R+ilNxUJyKh2JVHBSn4qA4FQfFqTgs5zhpWqOIiIiIiIgLKDkTERERERFxASVnCX9f6AZIWhSn4qA4FQ/FqjgoTsVBcSoOilNxWLZx0pozERERERERF9DImYiIiIiIiAsUVXJmjLnbGHPMGHPcGPPQjOPfMcYcdH5OGmMOznF9vTHmCWNMt/NnnXP8rTOuP2iMiRtjtqe4/mHn/s8aY75ujKlwjhtjzBeddj1jjLkuP+9A8XBxrLYYY35ljIkYYz6Qn9++eLg4Tm91/i09Y4zZY4zZlp93oDi4OE73OTE6aIzZZ4y5NT/vQHHIY5wqjDHfNMYcNsYcMcZ8aI7r1xtj9jrXf8cY43WOq4+awcVxUv90CRfHSn3UDC6OU3H2UdbaovgByoAXgA2AFzgEXJXivL8EPjbHa3wOeMh5/BDw2RTnXAu8OMf1rwWM8/NPwB/NOP4T5/hNwN5Cv1+K1ZyxagZeAfw58IFCv1eK05xxuhmocx6/Zjn/m3J5nPxMT4/fChwt9PtVinEC3gJ823lcA5wE1qW4/rvAm53HX1YfVXRxUv9UPLFSH1UccSrKPqqYRs5uAI5ba1+01k4A3wbum3mCMcYAv0Piw0Mq9wHfdB5/E7g/xTm/O9f11trHrAP4D2D1jNf9lvPU00CtMaYt7d+s9Lg2VtbaPmvtr4HJRf1GpcnNcdpjrR1yTnua6X9ry5Gb4zTqHAPwAct5EXM+42QBnzGmHKgGJoBQitd+JfD9FNerj5rm2jipf7qMm2OlPmqam+NUlH1UMSVnq4BTM/5+2jk2021Ar7W2e47XaLHWngNw/mxOcc6DzP0fD5AYZgXeBjy+iLYtJ26OlUwrlji9i8S3/suVq+NkjHnAGHMUeBR453zXl7h8xun7wBhwDngZ+IK19vwl1zYAF6y10RT3Vx81zc1xktmKJVbqo1wcp2Lso4opOTMpjl2aAc/5zW9aNzDmRuCitfbZBU79O2C3tfapRbRtOXFzrGSa6+NkjLmTRMf3wUzbUAJcHSdr7U5r7RYS31R+MtM2lIB8xukGIAasBNYD7zfGbFjE/dVHTXNznGQ218dKfRTg8jgVYx9VTMnZaWDNjL+vBs4m/+IMeb4e+M6MY//PWQT4mHOoNzmVw/mz75J7vJmFvzn+ONAEvC/dti1Dbo6VTHN1nIwxW4GvAvdZawcX8XuVGlfHKclauxvYaIxpTOeXKkH5jNNbgMettZPW2j7g34Edl9x/gMR0xfIU91cfNc3NcZLZXB0r9VFTXB2npGLqo4opOfs1cIVTkcVL4sPEIzOe/00SC/1OJw9Ya99hrd1urX2tc+gR4O3O47cDP0qea4zxAG8iMVc2JWPMHwKvBn7XWhuf8dQjwO+bhJuA4eTw7DLl5ljJNNfGyRjTDvwAeJu1tiuL37EUuDlOm5z5/phEBUAvsFw/pOQzTi8Dr3T6GB+Joh5HZ97cWVfxC+CNKa5XHzXNzXGS2VwbK/VRs7g5TsXZR1kXVCVJ94dExakuElVhPnLJc98A/usC1zcAPwe6nT/rZzz3G8DTC1wfde590Pn5mHPcAP/Hee4wsKPQ71Whf1wcq1YS3/KEgAvO4xWFfr8Up8vi9FVgaMbxfYV+rxSnlHH6IPCcc+xXwK2Ffq9KMU4kKo59z3mvnwf+dI7rN5Ao2HLcOb/SOa4+qjjipP6peGKlPqo44lSUfVSyvKSIiIiIiIgUUDFNaxQRERERESlZSs5ERERERERcQMmZiIiIiIiICyg5ExERERERcQElZyIiIiIiIi6g5ExERERERMQFlJyJiIiIiIi4gJIzERERERERF/j/Iyft9M24RroAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACxFUlEQVR4nOy9d5hb5Zn+f7/qXVM0fcYz44a7Ddj0XkISSCGNbAiBbHrChpTdtP1mIb/dZFM2ZZNNL6SRRgLpBEhiCNU2xbiDsT0eT6/qXXp/fxy9Gs2MyjnSORpp/Hyuay6MytErjUY69/s8z30zzjkIgiAIgiAIgiCIpUW31AsgCIIgCIIgCIIgSJwRBEEQBEEQBEHUBCTOCIIgCIIgCIIgagASZwRBEARBEARBEDUAiTOCIAiCIAiCIIgagMQZQRAEQRAEQRBEDUDijCAIgiAIgiAIogYgcUYQBFGnMMaCOT9pxlgk5/9vXOr1lQNjbIAxdtVSr6MYjLGHGGNv1+jYaxljv2OMTTLGZhhj9zPGzihw278zxjhjzJBz2frM5T7G2IuMsesX3OdKxtgRxliYMbaTMdabcx1jjH2OMTad+fk8Y4xp8TwJgiCI/JA4IwiCqFM45w7xA2AQwCtyLrtrqde3kFwRUc+PoTENAH4P4AwAbQB2A/jdwhtlxLdhwWWGzG3/CKAJwDsB/JQxtjZzvQfAPQA+mbn+KQC/zDnEOwG8GsBWAFsAXAfgXWo9MYIgCKI0JM4IgiCWGYwxHWPsY4yxY5kKyK8YY02Z6/oy1Za3MsZOMcZmGWPvZoztYIztY4x5GWP/l3OsWxhjjzHGvpapxhxhjF2Zc72bMfZ9xtgoY2yYMfZfjDH9gvt+mTE2A+AOxtiqTGVnmjE2xRi7izHWkLn9TwCsAPCHTPXvI4yxyxhjQwueX7a6xhi7gzH2a8bYTxljfgC3lFjTasbYw5nnMsUYyxUnuY9hyRxzOvOa7GGMtTHGPg3gYgD/l1nj/2Vuv44x9mCm2vU8Y+wNOcf6IWPsW5nrA5nH7833uJzz3Zzz73POZzjnCQBfBnAGY6w59zUHcDuAjyy4+zoAnQC+zDlPcc7/DuAxADdlrn8NgIOc87s551EAdwDYyhhbl7n+ZgBf5JwPcc6HAXwRwC351kkQBEFoA4kzgiCI5cf7IVVALoV0sj4L4OsLbnMugDUAbgDwFQD/DuAqABsBvIExdumC2x4H4IEkCu4RYg/AjwAkAawGcCaAlwB4e577tgL4NAAG4L8z61oPoAeSSADn/CbMrwB+XubzfRWAX0OqOt1VYk3/CeABAI0AugF8rcAxbwbgzqyvGcC7AUQ45/8O4BEAt2bWeCtjzA7gQQA/yzzPfwLwDcbYxpzj3Zh5bA+AvZl1yuESAGOc8+mcyz4D4JsAxhbcNl8LIgOwKfPvjQCeE1dwzkMAjmUuX3R95t+5z4EgCILQGBJnBEEQy493Afj3TAUkBkn8vG5By99/cs6jnPMHAIQA/JxzPpGpmDwCSdQIJgB8hXOe4Jz/EsDzAK5ljLUBeBmAD3DOQ5zzCUiVnjfm3HeEc/41znmScx7hnL/IOX+Qcx7jnE8C+BIkEVkJT3DOf8s5TwNwlVhTAkAvgM7M83+0wDETkETZ6kwV6mnOub/Aba8DMMA5vzPzPJ8B8BsAr8u5zZ845//I/D7+HcD5jLGeYk+KMdYNSVR/KOey7QAuRH5ReQTS7+rfGGNGxthLIL22tsz1DgC+BffxAXAWuN4HwEFzZwRBENWj3nvzCYIgiMX0AriXMZbOuSwFaYZJMJ7z70ie/3fk/P8w55zn/P9JSJWvXgBGAKM55+86AKdybpv7bzDGWgF8FVJroDNz+1lZz6owuY9Rak0fgVTB2s0Ym4XUxveDPMf8CaSq2S8ybZc/hSR4E3lu2wvgXMaYN+cyQ+YYi9bIOQ9m2jw7F6w9C2OsBVKF7xuc859nLtMB+AaA2zjnyYWaiXOeYIy9GpJw+yikmbJfAYhlbhKEJF5zcQEIFLjeBSC44HdPEARBaAhVzgiCIJYfpwC8jHPekPNjyVTFyqFrQfVkBYCRzOPEAHhyHsfFOc9thVt4Yv/fmcu2cM5dAN6M+e14C28fwlzlB5nZsZYFt8m9T9E1cc7HOOfv4Jx3QqowfoMxtnrhE85UCT/FOd8A4AJI1bG3FFjjKQAPL3i9HZzz9+TcJlslY4w5IBlyjCx83Mz1jZCE2e8555/OucoFYDuAXzLGxgDsyVw+xBi7OLPufZzzSznnzZzzawCshGQqAgAHIZl9iMexA1iVuXzR9Zl/HwRBEARRNUicEQRBLD++BeDTwnSCMdbCGHtVBcdrBfD+TKvc6yHNiv2Zcz4KSUR8kTHmyhiRrFowr7YQJ6QKjZcx1gXg3xZcPw5JUAheAGBhjF3LGDMC+H8AzIUOXmpNjLHXZ9oFAalixyFVFefBGLucMbY5Iwb9kNocxe0WrvGPANYyxm7KvEZGJhmsrM+5zcsZYxcxxkyQKne7OOeLqmaMMReA+wE8xjn/2IKrfZCqbdsyPy/PXH42gF2Z+2/JmJnYGGP/CqADwA8zt7sXwCbG2GsZYxYA/wFgH+f8SOb6HwP4EGOsizHWCeDDOfclCIIgqgCJM4IgiOXH/0KyY3+AMRYA8CQkY45y2QXJPGQKkqnH63IMKt4CwATgECSx82tIgqAQnwJwFiSh8SdI1u65/DeA/5dxSPxXzrkPwHsBfA/AMKRK2hCKU2xNOwDsYowFIb1Gt3HOT+Q5Rnvmfn4AhwE8DKm1EZBe39cxyenyq5zzACTTkTdCqoaNAfgc5ovIn0EyU5mBJKYK5dBdn1njW9n8HLsVXGJM/ACYzNxnnHMez/z7JgCjkGbPrgRwdWbODZkZv9dC+h3OQnpP5M4HfhvAHwDsB3AA0u/n2wXWSRAEQWgAo1ZygiAIohCMsVsAvJ1zftFSr6VeYYz9EMAQ5/z/LfVaCIIgiNqGKmcEQRAEQRAEQRA1AIkzgiAIgiAIgiCIGoDaGgmCIAiCIAiCIGoAqpwRBEEQBEEQBEHUACTOCIIgCIIgCIIgagBDNR/M4/Hwvr6+aj4kQRAEQRAEQRBEzfD0009Pcc5b8l1XVXHW19eHp556qpoPSRAEQRAEQRAEUTMwxk4Wuo7aGgmCIAiCIAiCIGoAEmcEQRAEQRAEQRA1AIkzgiAIgiAIgiCIGqCqM2cEQRAEQRAEUSskEgkMDQ0hGo0u9VKIZYjFYkF3dzeMRqPs+5A4IwiCIAiCIE5LhoaG4HQ60dfXB8bYUi+HWEZwzjE9PY2hoSH09/fLvh+1NRIEQRAEQRCnJdFoFM3NzSTMCNVhjKG5uVlxVZbEGUEQBEEQBHHaQsKM0Ipy3lskzgiCIAiCIAhiifj0pz+NjRs3YsuWLdi2bRt27doFAHj729+OQ4cOqfIYfX19mJqaKnqbz3zmM4qP+8Mf/hC33nrrvMvuvPNObNu2Ddu2bYPJZMLmzZuxbds2fOxjH1N8/Grwla98BeFweKmXkYVmzgiCIAiCIAhiCXjiiSfwxz/+Ec888wzMZjOmpqYQj8cBAN/73vequpbPfOYz+MQnPlHxcd761rfirW99KwBJFO7cuRMej6fi45YL5xycc+h0+WtSX/nKV/DmN78ZNptN9jGTySQMBm1kVMnKGWOshzG2kzF2mDF2kDF2W851/8IYez5z+ec1WSGxJDw/FsDAVGipl0EQBEEQBLFsGR0dhcfjgdlsBgB4PB50dnYCAC677DI89dRTAACHw4GPfvSjOPvss3HVVVdh9+7duOyyy7By5Ur8/ve/B7C4inXdddfhoYceWvSYr371q3H22Wdj48aN+M53vgMA+NjHPoZIJIJt27bhxhtvBAD89Kc/xTnnnINt27bhXe96F1KpFACpMrZ27VpceumleOyxx2Q/1y984QvYsWMHtmzZgttvvx0AMDAwgHXr1uHtb387Nm3ahBtvvBF//etfceGFF2LNmjXYvXs3AOCOO+7ATTfdhCuuuAJr1qzBd7/73ZLHXb9+Pd773vfirLPOwqlTp/Ce97wH27dvx8aNG7O3++pXv4qRkRFcfvnluPzyy7OvteDXv/41brnlFgDALbfcgg996EO4/PLL8dGPfhTHjh3DS1/6Upx99tm4+OKLceTIEdmvRVGEmiz0A6ADwFmZfzsBvABgA4DLAfwVgDlzXWupY5199tmcqH2mAlG+5Y77+Y3ffXKpl0IQBEEQBKEZhw4dWtLHDwQCfOvWrXzNmjX8Pe95D3/ooYey11166aV8z549nHPOAfA///nPnHPOX/3qV/Orr76ax+NxvnfvXr5161bOOed33nknf9/73pe9/7XXXst37tzJOee8t7eXT05Ocs45n56e5pxzHg6H+caNG/nU1BTnnHO73Z6976FDh/h1113H4/E455zz97znPfxHP/oRHxkZ4T09PXxiYoLHYjF+wQUXzHvMhYjHvf/++/k73vEOnk6neSqV4tdeey1/+OGH+YkTJ7her+f79u3jqVSKn3XWWfytb30rT6fT/Le//S1/1atexTnn/Pbbb+dbtmzh4XCYT05O8u7ubj48PFz0uIwx/sQTT2TXIp53Mpnkl156KX/uuecWvTYLX4e7776b33zzzZxzzm+++WZ+7bXX8mQyyTnn/IorruAvvPAC55zzJ598kl9++eV5X4N87zEAT/ECeqlkPY5zPgpgNPPvAGPsMIAuAO8A8FnOeSxz3YQ6cpFYaj573xH4Igm8OBFc6qUQBEEQBEFUhU/94SAOjfhVPeaGThduf8XGgtc7HA48/fTTeOSRR7Bz507ccMMN+OxnP5ut1ghMJhNe+tKXAgA2b94Ms9kMo9GIzZs3Y2BgQNGavvrVr+Lee+8FAJw6dQpHjx5Fc3PzvNv87W9/w9NPP40dO3YAACKRCFpbW7Fr1y5cdtllaGlpAQDccMMNeOGFF0o+5gMPPIAHHngAZ555JgAgGAzi6NGjWLFiBfr7+7F582YAwMaNG3HllVeCMbboub3qVa+C1WqF1WrF5Zdfjt27d+PRRx8teNze3l6cd9552fv/6le/wne+8x0kk0mMjo7i0KFD2LJli6LX7vWvfz30ej2CwSAef/xxvP71r89eF4vFFB2rEIqaJRljfQDOBLALwBcAXMwY+zSAKIB/5ZzvUWVVxJKxZ2AGdz89BI/DhDF/FOF4EjYTjSYSBEEQBEFogV6vx2WXXYbLLrsMmzdvxo9+9KNF4sxoNGad/3Q6XbYNUqfTIZlMAgAMBgPS6XT2Pvks3B966CH89a9/xRNPPAGbzYbLLrss7+0457j55pvx3//93/Mu/+1vf1uWAyHnHB//+Mfxrne9a97lAwMD2edS7LkBi50PGWNFj2u327P/f+LECfzP//wP9uzZg8bGRtxyyy0FLe5zH2fhbcQx0+k0GhoasHfv3lJPXTGyz7oZYw4AvwHwAc65nzFmANAI4DwAOwD8ijG2MlOqy73fOwG8EwBWrFih2sIJ9Umk0vh/9x5AV4MVH7hqDf7t1/swMBXGhk7XUi+NIAiCIAhCU4pVuLTi+eefh06nw5o1awAAe/fuRW9vb1nH6uvrwze+8Q2k02kMDw9n57Vy8fl8aGxshM1mw5EjR/Dkk09mrzMajUgkEjAajbjyyivxqle9Ch/84AfR2tqKmZkZBAIBnHvuubjtttswPT0Nl8uFu+++G1u3bi25tmuuuQaf/OQnceONN8LhcGB4eBhGo1HR8/vd736Hj3/84wiFQnjooYfw2c9+FlarVdZx/X4/7HY73G43xsfHcd999+Gyyy4DADidTgQCgaxpSVtbGw4fPowzzjgD9957L5xO56LjuVwu9Pf34+6778brX/96cM6xb98+Wa9FKWSJM8aYEZIwu4tzfk/m4iEA92TE2G7GWBqAB8Bk7n05598B8B0A2L59+zzhRtQWdz52As+PB/Ddt2xHZ4MFAHBiKkTijCAIgiAIQgOCwSD+5V/+BV6vFwaDAatXr86adCjlwgsvzLYIbtq0CWedddai27z0pS/Ft771LWzZsgVnnHHGvLa/d77zndiyZQvOOuss3HXXXfiv//ovvOQlL0E6nYbRaMTXv/51nHfeebjjjjtw/vnno6OjA2eddVbWKKQYL3nJS3D48GGcf/75AKR2zp/+9KfQ6/Wyn98555yDa6+9FoODg/jkJz+Jzs5OdHZ2yjru1q1bceaZZ2Ljxo1YuXIlLrzwwnnP+2Uvexk6Ojqwc+dOfPazn8V1112Hnp4ebNq0CcFg/jGfu+66C+95z3vwX//1X0gkEnjjG9+oijhjCwpdi28g1fZ+BGCGc/6BnMvfDaCTc/4fjLG1AP4GYMXCylku27dv58J1hqgtRrwRXPWlh3HBqmZ87+YdCMWS2Hj7/fi3a87A+y5fvdTLIwiCIAiCUJ3Dhw9j/fr1S70MogR33HEHHA4H/vVf/3Wpl6KYfO8xxtjTnPPt+W4vp3J2IYCbAOxnjO3NXPYJAD8A8APG2AEAcQA3FxNmRG3z//3hENKcZ0v6drMBbS4zjk+SnT5BEARBEARBVAM5bo2PAig0+fdmdZdDLAU7j0zgLwfH8G/XnIGeprkAvn6PHQPTJM4IgiAIgiCIpeOOO+5Y6iVUjZIh1MTyJppI4T9+fwCrWx14x8Ur513X77HjBAVREwRBEARBEERVIHF2mvP1nS/i1EwE//mqTTAZ5r8d+j12zITi8IUTS7Q6giAIgiAIgjh9IHF2GnNsMohvPXwM15/ZhfNXNS+6vq9ZynI4Qa2NBEEQBEEQBKE5JM5OUzjn+I/fHYDFqMcnXp7fpWhliyTOBqi1kSAIgiAIgiA0h8TZacrvnxvBYy9O4yPXnIEWpznvbXqabNAx4DiJM4IgCIIgCE3Q6/XYtm0bNm3ahNe//vUIh8NlH+uWW27Br3/9awDA29/+dhw6dKjgbR966CE8/vjj2f//1re+hR//+MdlP7ZgYGAAmzZtmnfZHXfcgf/5n/9RdBy11lNvyAqhJpYX/mgC//Wnw9jS7cabzi2cQm826NHVaCVTEIIgCIIgCI2wWq3Yu3cvAODGG2/Et771LXzoQx/KXp9KpRSFNQu+973vFb3+oYcegsPhwAUXXAAAePe73634MbQimUzW1HqqCVXOTkN++NgApoIxfPrVm6HXFUpJkOj3OKitkSAIgiAI4vOfB3bunH/Zzp3S5Spx8cUX48UXX8RDDz2Eyy+/HG9605uwefNmpFIp/Nu//Rt27NiBLVu24Nvf/jYAaUzl1ltvxYYNG3DttddiYmIie6zLLrsMTz31FADgL3/5C8466yxs3boVV155JQYGBvCtb30LX/7yl7Ft2zY88sgj86pbe/fuxXnnnYctW7bg+uuvx+zsbPaYH/3oR3HOOedg7dq1eOSRRxQ/x2LH/sQnPoFLL70U//u//5tdz8jICLZt25b90ev1OHnyJE6ePIkrr7wSW7ZswZVXXonBwUEAUvXw/e9/Py644AKsXLkyW0msF0icnYY8cWwam7vc2NztLnnb/mYbTkyFQPniBEEQBEGc1uzYAbzhDXMCbedO6f937FDl8MlkEvfddx82b94MANi9ezc+/elP49ChQ/j+978Pt9uNPXv2YM+ePfjud7+LEydO4N5778Xzzz+P/fv347vf/e68NkXB5OQk3vGOd+A3v/kNnnvuOdx9993o6+vDu9/9bnzwgx/E3r17cfHFF8+7z1ve8hZ87nOfw759+7B582Z86lOfmrfO3bt34ytf+cq8y3M5duzYPEH1rW99S9axvV4vHn74YXz4wx/OXtbZ2Ym9e/di7969eMc73oHXvva16O3txa233oq3vOUt2LdvH2688Ua8//3vz95ndHQUjz76KP74xz/iYx/7mMLfxNJCbY2nGclUGntPeXHDjh5Zt+/32BGMJTEVjBecTSMIgiAIgqh7PvABINNeWJDOTuCaa4CODmB0FFi/HvjUp6SffGzbBnzlK0UPGYlEsG3bNgBS5extb3sbHn/8cZxzzjno7+8HADzwwAPYt29ftgrk8/lw9OhR/OMf/8A//dM/Qa/Xo7OzE1dcccWi4z/55JO45JJLssdqamoquh6fzwev14tLL70UAHDzzTfj9a9/ffb617zmNQCAs88+GwMDA3mPsWrVqmyrJjAXIl3q2DfccEPBdT322GP43ve+l63WPfHEE7jnnnsAADfddBM+8pGPZG/76le/GjqdDhs2bMD4+HjR51trkDg7zTgyFkAkkcJZvY2ybt/nydjpT4VInBEEQRAEcXrT2CgJs8FBYMUK6f8rJHfmLBe73Z79N+ccX/va13DNNdfMu82f//xnMFZ8RIVzXvI2SjCbpfNBvV6PZDKp2nGB+c85l9HRUbztbW/D73//ezgcjry3yX2OYo0A6q77i9oaTzOeGZT6es+WKc5WeqQ/AJo7IwiCIAhiWfOVrwAPPVT85/bbgXAY+OQnpf/efnvx25eomsnlmmuuwTe/+U0kEgkAwAsvvIBQKIRLLrkEv/jFL5BKpTA6OoqdC2fiAJx//vl4+OGHceLECQDAzMwMAMDpdCIQCCy6vdvtRmNjY7ZC9ZOf/CRb6aqUco6dSCTwhje8AZ/73Oewdu3a7OUXXHABfvGLXwAA7rrrLlx00UWqrHGpocrZacbTJ2fR5jKj022RdfvOBguMekZ2+gRBEARBnN6IGbNf/Qq4/HLpJ/f/NeTtb387BgYGcNZZZ4FzjpaWFvz2t7/F9ddfj7///e/YvHkz1q5dm1fotLS04Dvf+Q5e85rXIJ1Oo7W1FQ8++CBe8YpX4HWvex1+97vf4Wtf+9q8+/zoRz/Cu9/9boTDYaxcuRJ33nmnas9F6bEff/xx7NmzB7fffjtuv/12AFLF8Ktf/Sr++Z//GV/4whfQ0tKi6hqXElbNUt/27du5cI0hloaLP/93bO5y4xs3ni37Pld+8SGsbnXg2zdt13BlBEEQBEEQ1eXw4cNYv369vBt//vOS+UeuENu5E9izB8iZdyKIXPK9xxhjT3PO855YU+XsNGLCH8WpmQhuPr9P0f0kO/3yAxEJgiAIgiDqnnwCTFTQCEIlaObsNELMm8k1AxH0e2wYmA4hna6vgUqCIAiCIAiCqCdInJ1GPDPohcmgw8ZOl6L79XsciCXTGPVHNVoZUQ6BaALRRGqpl0EQBEEQBEGoBImz04inT85iS5cbZoNe0f36PDYAwIlJMgWpJW65cw8+9YeDS70MgiAIgqhr6s1qnagfynlvkTg7TYglU9g/5FPc0gjM2emfmCZxVks8PxbA0fHgUi+j5pgOxhCKqZu7QpzeDE6H6eSNIJYpFosF09PT9DdOqA7nHNPT07BY5DmkC8gQ5DTh4Igf8VQaZ61QLs7aXGZYjXqqnNUQ/mgCwVgS4wFqNV3Im767C+f0N+E/X71pqZdCLANeGA/gmq/8Az+4ZQcuP6N1qZdDEITKdHd3Y2hoCJOTk0u9FGIZYrFY0N3dreg+JM5OE545KcxAGhTflzGGPo8dA1Q5qxlGvZIoG/fHwDkHY2yJV1QbxJIpvDARQJvMHD+CKMVTA7PgHDg04idxRhDLEKPRiP7+/qVeBkFkobbG04SnT86ip8mKVmd5J60rPXacoCDqmmHUFwEAxJNpeMOJJV5N7XBqJgzOpdZGglCD/cM+AKDPP4IgCKIqkDg7DeCc45nBWZxdRkujoM9jw+BMGIlUWsWVEeUy6ptrZ6TWxjlOZPL4poPxJV4JsVw4kBFnAyTOCIIgiCpA4uw0YNgbwbg/hrPLMAMR9HscSKU5hmYjKq6MKJdR79zvYdxPVSKBOIGeCcVpuJuomHgyjefHAgBAbd0EQRBEVSBxdhrwdGbe7MwKKmf9wk5/Sl13wF8/PYQ3ffdJVY95OjDqi0Kvk+bMxil/LotwFI2n0giQYyNRIS+MBxBPpbG5y42pYBz+KLUQEwRBENpC4uw04JmTs7CZ9FjX7iz7GP3CTj/TNqYWTxybxuPHpuGL0EmPEkZ9Uaxtk36fEyTOsuS2nlFrI1EpYt7sFVs7AFBrI0EQBKE9JM5OA54Z9GJbTwMM+vJ/3Y02I1wWg+qVs4nMvNTgtLqib7kz4oug32NDg81IbY05DEyF0Gw3AQBmQvS6EJWxf9gHp8WAS9dKLo1kCkIQBEFoDYmzZU44nsShUX9Z+Wa5MMbQ3+LAgMqVs8mAdAJ9coZOeuTCOceYL4p2lxVtTgu1NWaIJlIY8UWzQetTVDkjKmT/kA+bOt3obbaBMRJnBEEQhPaQOFvmPHfKh1SaV2QGIuhvtql+cjIhxBlVzmTjjyQRjqfQ2WBBq8tM4izD4Iz0Htqeea/PhEicEeUjzEA2d7thMerR6baSOCMIgiA0h8TZMueZQWEG0lDxsfo9Dgx7I4gmUhUfC5BOfsQJ9ElyQpPNSCbjrMNtRZvLQm2NGcSJs9iIWC5ZZ5F4CjuPTCz1Mk47hBnIpi43AGBli51mzgiCIAjNIXG2zHnm5CxWtdjRYDNVfKz+FjsA9apcUzknz1Q5k48IoG53W9DusmAyGEMqTbbx4sR5TZsTTrNh2bQ1fvGB5/HWH+7BsJdiLKqJMAPZnBFnfc12HJ8KUUQDQVQZzjlOTodw3/5RfOmB5/HYi1NLvSSC0BTDUi+A0A4RPn31hjZVjtffLImzE1NBnFGB86NAtDQ22owkzhQgAqg7Gyxoc5mRSnNMh2JodVqWeGVLy8B0CE12E9xWI5odpmXR1jgbiuNnuwcBAGO+KLoarEu8otMHYQbS2yTFiPR77AhEk5gJxdHsMC/x6ghieZJIpXF0PIiDIz4cGvXj4Igfh0f886JRznxxCheu9izhKglCW0icLWNOTIUwG06oMm8GAH3ZrDN1hJSwgN/e14QHD40jmkjBYtSrcuzlzKhXyjhrdVrQ6pIE2YSfxNmJqRD6mqX3aJPdhOll4Nb4w8cHEI5LbcRTy6RNs144MCyZgegyeYL9HrE5FSJxRhAa8PPdg7j9dwcRT6UBAFajHus7nHjVmZ3Y2OnGxk4Xfvj4ALV5E8seEmfLGBE+XalTo8BpMcLjMKtmpy8qZzv6GvHgoXEMzoSz2V1EYUZ8EbQ6zdDrGNoy4mzcH83OxpyuDEyFccHqZgBAs8OMUzP1XY0NxpL44eMD2NrtxnNDvqyzKaE98WQaR0YDuOXCvuxlueJse1/TEq2MIJYno74I/vOPh7C1x42bzu/Dhg4X+j126DObI4Iz2py455lh+MIJuG3GJVotQWgLzZwtY54ZnIXLYsCqFodqx1zpsatmpz8RiIGxOQMHam2Ux5gvig63JMraXNIO/uluChKJpzDmj2Zbb5vtJkzXeVvjz3cNwhdJ4P9dtwGMUeWsmiw0AwGA7kYrDDpGjo0EoQGf/tNhpNIcX3rDNrxyaydWtzoWCTMA6BObJGQiRixjSJwtY5456cVZvY3Zthw16PPYcFylk5PJQBTNdlNWPJJjozxGfVF0ZGaPPA4zGMNpb6cvcvLEF7eYOUvXqVFKLJnCdx85jgtWNWNHXxMabSaqnFWRAwvMQADAoNdhRZMNA/Q5RRCq8vixKfxx3yjec9kq9GRmPAuxMvMZT86pxHKGxNkyxRdJ4IWJgGotjYJ+jwNTwRgC0UTFx5rwx9DitKDBZoLLYqDKmQw45xjxRtCRaWc06nVotlPWmfiiFq1nzXbJKMWvwvt0KfjN08OYCMTw3stWAwBaHGaqnFWR/cM+OM1zZiCCPo8dxyfppJAg1CKRSuM/fncQPU1WvPvSVSVv39MkBcKrtUl8uhBPpvGq/3uUnC7rBBJny5S9p7zgHKqZgQj6s7tWlQupiUAMrU6pLa+32Y6TdT4jVA284QRiyXS2cgZIrY2nuzgTJjW9GUOQZocUHVGPdvrJVBrfevgYtna7cWFmhs7jpMpZNTkw7MPGLteiroO+ZjtOTofJTp8gVOLOx07gxYkg7njFRlmGYCIQnipnyhj3R/HckA+PHCVxVg+QOFumPHNyFjoGbO1pUPW4QpwdV8EUZCIQzc5M9TbbqK1RBiKAutM958zYTkHUGJgKweMwwWmRBsSb7dL7qh6DqP+0fxSDM2G857LVYEwSBy0OMybr8LnUI4lUGofHAvNaGgX9LXZEEqnT/u+NINRg3B/F//71KK5c14or18uP/On32Km9WCGzYWmjst6Nsk4XSoozxlgPY2wnY+wwY+wgY+y2zOV3MMaGGWN7Mz8v1365hFyeGZzFGe0uOMzqGnL2NkstBZVWzlJpjsnAnP17b7MNw7MRJDIWukR+Rr1Shaw9R5y1uiyYCJzmlbPpEPoyZiCAZKUPoO6yzjjn+OZDx7C61YGX5OQTehxmTAXiVLGpAi+MBxBPpvO6nwrDGTU2pwjidOfTfzqMRJrj9ldsVHS/fo8dJygQXhGzYanFf5DEWV0gp3KWBPBhzvl6AOcBeB9jbEPmui9zzrdlfv6s2SoJRaTSHM8OenF2b4PqxxYtBZXa6U+HYkhzoNU119aYTEvzVFogZrXqnVG/CKCe39Y4FYzXvLDV0pxjYCqUNQMBAI9oa6wzcfb3IxM4MhbAey5dNa+lrsVpRiSRQiiTeUZoRz4zEEF/i3pt3QRxOvPEsWn8/rkRvPvSVVjRXNwEZCF9OYHwhDxmM68VdSjVByXFGed8lHP+TObfAQCHAXRpvTCifI5OBBCMJVWfNxP0e+w4UaF5x0SmLSg7c5YZvNfKFOSxF6dx4ef+jmOT9b3jPeqNwKBj8OSE4Iqss1qeSXpxIogz//NB/P3IuOrHDseTmAjEsi23ANCYqZzVU1sj5xz/t/NFdDVY8cptnfOuE7/vqRr+HS8X9g/74DAb5lViBR0uC8wGnWpZjwRxOpJIpXH77w+gu9GK915W2gRkIf0e6XyBYi3kI9oa/dEkfOH6NMo6nVA0c8YY6wNwJoBdmYtuZYztY4z9gDGmjRIgFKN2+PRC+jw2nJgMVtRSIIRES6atUVQ9tDIFOTzqB+fAsYn6Pqka9UXR5rLMy3+ZyzqrzdbGdJrj4/fsgy+SwIFhv+rHF1WM3JNpo14Ht9VYVzurTx6fwbODXrzr0pUw6ud/NLdkNjFo7kx79g/7sbFzsRkIAOh0DH3N9qwBDUEQyvnR4wN4YTyI/7hugywTkIWIz3oSZ/KZzRFk1NpY+8gWZ4wxB4DfAPgA59wP4JsAVgHYBmAUwBcL3O+djLGnGGNPTU5OVr5ioiRPn5yFx2HCihJ5IeXS73HAH03O+2NXipiREpWzVqcZFqMOJzX6sBUfRvXe2jjqi2QDqAVibq9WTQp+tnsQewakDYMxDQSkGAzvXdAa0+wwYbqO3Bq/8dCL8DhMeMP2nkXXUeWsOiRSaRwe9edtaRT0eWxUOSOIMpnwR/GVvx7FZWe04OoN8k1AculpskGvY2QKooDZnI1KEme1jyxxxhgzQhJmd3HO7wEAzvk45zzFOU8D+C6Ac/Ldl3P+Hc75ds759paWFrXWTRTh2UEvzlrRmHV6U5u5loLyT1BEW6OoCDDG0NuknZ2++DAa9dVmdUkuuQHUAtHWWIumIGO+KD573xFcuLoZ6ztcGNPg9Re7p7kzZwDgsZsxHaoPMbM/Y3H8totW5t1JpspZdTg6HkQ8mcbm7sLirN/jwOBMGKk6DTgniKXkM38+jHgyjTtesbHscxSjXoeeRivNfipgNhzPboaTOKt95Lg1MgDfB3CYc/6lnMs7cm52PYAD6i+PUMp0MIYTUyGcpdG8GSCdnACoKIx1IhCD22qcdyK6QkM7fWEfO1LH4oxzLomzBZWzZrsJBh3TRPhUAucc/++3B5BMp/GZ6zejw23RZI0DUyG0OM2LnEmb7PVTOfvGQy/CaTHgzeetyHt9k90EHaPKmdYIM5B8To2Cfo8NiRTH8Gx9V+EJotrsOj6N3+4dwbsuXbloM00pfR47BVErwBtOoLvRiia7icRZHSCncnYhgJsAXLHANv/zjLH9jLF9AC4H8EEtF0rI4+CINNOzpcjOb6V0N1phqLClYCIQze7iCHqbbBicCavu6pdOcwxlTqTqua1xOhRHPJleJM50OoZWp7nm2hrvOzCGvx4ex4euXoveZjvaXBZN5uIGpkNZi/Ncmh0mTNfBzNmLE0H85eAYbj6/L5vTthC9jqHJTllnWiPMQPK9nwRic+oEtVQRhGySqTRu//1BdDVY8d7LVld8PCkQnuz05TITiqPRJo27DM7QZ1etUzIEi3P+KIB8tWeyzq9BfBFpDizXzU9tjHodeppsFQ3jTgRiWRt9Qa/HjmgijYlAbF6OV6WMB6KIp9LQ6xhG61iciapTh9u66LpayzrzhRP4j98dxKYuF/75wn4AQIfbgulQHLFkCmaD8iHwQpyYCuOKdYtbppvtJsyG40il+TwDlVrjWw8fg9mgw1sv7Ct6uxanGZOB2heb9cy+YR82FDADEfSJtu7JIC5dS636RP3DOddsDELwxPFpHBkL4Kv/dCaspso//1e22BGOpzARiGVb+4nCeMNxbOh0wW424NlTs0u9HKIEitwaidonGEsCAJwWdcOnFyKFQJZfGp/wzwVQC+bs9NXd1RnM2PNv6nJjzB9FssbzwAohqn4LK2eA5NhYS26Nn/nzYcyG4/jsa7bAkHEebBezcSpW+IKxJKaCsbwtMs0OMzifsxCuRWZCcfz22WG8cccKNJfYUPE4TFQ50xBhBrKlSEsjALQ4pBbaAY1iPwiimvz0yZO46HM7Nc2hBOYMq7Z1N6hyPHJsVMZMOI5GmxErmmwY8UZrPhf1dIfE2TIjGJXE2cL5G7Xpa7ZjYKq8lgLOOSYDsUVtjeLDVu2sM9FffV5/E9JcqtqVy0+fPIlfPz2k1tIUIcxMOhryiTNLzbQ1Pv7iFH751Cm84+KV82Z32jKiUk3HxoHMF3OhtkYANT139sJ4AMk0x5XrW0vetsVpppkzDZFjBgJI5kV9HhvNuxDLgn1DXgx7IxjWuKtEZE6Kz+VKEbmWA/R3WJJoIoVoIo1Gu9TWmEpzjHprZzOXWAyJs2VGIFM5s5s0rpy12BFJpMoSBL5IAvFUOutAJ+hssMCgYzipcj/0qZkwdAzY3tcEoLK5s6/vfBH/evdz+M0SCLRRXxRGPYPHvrjC0uaywBdJIJpIVX1duUQTKXz83v3obbbhA1etmXedqPip6Zg5Z6O/WJw1iSDqGnZsFFXd3qbSw/EtDmnmjGYstEGOGYig3+Ogk0JiWSA+j49OBDR9nKlgDBajDjYVWhoBoLPBCpNeR5UzGYjukUabCT2ZDiUyBaltSJwtM4LRJBxmQ9GZCTUQlYrjZdjpi8pV64I+cYNeh+5GqyaVs84Gazb3rVzHxlgyhTF/FGaDDh/5zT48cHBMzWWWZNQXQZvLkvd3K6qQarYMlsNX/noUJ6fD+O/XbF5kCS/mAsbVFGdZG/3FmX5i7rKWK2cnZ0Iw6Bg681RDF9LiNCOeTMOfqY4T6iLHDETQ32zD0GwY8WT1W4NOzYRJoBOqITYrX5zQNrtvOhhHs92s2mybXsewormy2ffThZmQEGfGbB4oibPahsTZMiMYS2je0ghIlTOgvH5vISAWtjUCwIpmuybibEWTLXsCXG7lbMQbBefAv1+7Hpu73Lj158/iiWPTai61KKPeKDrzmIEAOcJnCU1BDgz78N1HjuOG7T24YJVn0fUuiwFWo17VtsYTU2G0ucyw5akUi8rZTA07Np6cDqOr0ZqdyytGNoia5s40Yb8MMxBBf4sdaV79E5xjk0Fc/PmdeLyKnzvE8kXEswBSW6+WTIXi8KjU0ijoa7ZTELUMvGHJKK7RZkKbywKTXqd6hxKhLiTOlhmBaBIOjc1AAKDDZYHZoCtLSAlXwXzirLfJhgGV7XEHZyLoabTBaTHCaTaU7dgostLWtjlx5y070Ntkwzt+/BT2D/lUW2sxRv2RvPNmwJw4W6qss2QqjY/dsw+NNhM+8fL1eW/DGJOyztScOZsOZWcVF9JoM4GxuVmHWkRsHMghG0RNc2eqk8yYgWyW0dIILJ0ZgfgMOjzqr+rj5iOaSOEzfz5cUy6xhDL80STCcakV/qjmlbNYSdMjpfR7bBiYVj9+Z7mRbWu0m6DXMXQ3WrOfJURtQuJsmRGMJTV3agSkbK3eMlsKCrU1AkBvsw2BaDK701Mp4bjk5rciU8rvbLBiuMxBWLFLvqLJhka7CT9527losBlx8527NW8JSac5xnzRvDb6wJwT4lI4NnLO8Y2HjuHAsB//36s2wm3Ln9UFSCJSTQE5MBXKDoYvRK9jaLKZMFXjlTPRZlIKqpxpx9GJIGLJtGxxtlRmBOIkqxZOrJ475cV3/nEcn7jnALVZ1imjPmmj0uMw4dhEUNPfo9TWqHLlzGNHPJnGiK9+I3KqwWzmO7Ah893ck8mUJWoXEmfLjEBm5qwa9GYcG5Uy4Y/BZtLnXacwdjip0geHCJ8WQ7AdDZbsF5JSTs2GYdSzbJWq3W3BT992LnSM4abv79LU7WoqFEMixfPa6AOAy2qA2aCryIlSKek0x/0Hx3Dd1x7Flx58AS/d2I6XbWovep92t3rizB9NYDoUz2ujL2iymzBTozNnvnACvkhClhkIQJUzLdmvwAwEABpsJjTajFUPohbzk7VwYuXNZGr+9fA4/rR/dIlXQ5SDcOy7eE0LArGkZo6/nHNMh7SonIlNkqX/e6hlZnPaGgFpg3mQokBqGhJny4xqVc4A6YPx5IzyloKJQDRvSyMA9DWrm3UmPoBE61hng7XsmbOhmQi6GqzzAo37PHb8+J/PQTCWxE3f26VZVWMugDq/OGOMZez0ta+cpdMcf94/ipd/9RG86ydPIxRL4n9evxVfe9OZJYe92zJh2Wq0oZzMfCH3Fak8NTtMNevWKHr+V8isnDVYjdDrGFXONODAsA92kx4riwj9hfR57DgxuTSVs1oQZ76MOOtqsOKO3x/M7s4T6nDvs0P40oMvIBLXzoFXzJtdvEaaEdaqA8QfTSKR4qrPnAlxVu1NknpjNhyH02yAMTPbvKLJBn80CZ9KHUqE+pA4W2YEq1o5syGeTGNUoSCYCCwOoBb0ZIOo1Tn5yG1FBIBOtwWz4URZX3inZsPZ9eWyodOFO2/ZgRFfBLfcuRuBqPofeCOZHc7OhvxtjYD2QdSpNMcfnhvBS//3H3jvXc8gnkrjyzdsxV8/dCled3Z39oO/GB1uCxIpjmkVTuTEF3Kxylmzw1yzbo3iPS63rVGnY1IQNVXOVGf/sA8bO92KXG77PdU3I5gJSZ8tp2YjSz5n48+Isy/fsA3ecAL/+adDS7qe5cYPHxvAV/92FNd85R94/NiUJo8x6otAr2NZAyet7PTFhpJH5cpZm9MCi1FHsRYlmA3F0ZjTUio2BMkUpHYhcbbMCMaScJgLz/yoibCcPqnwg3EyEEOLK/+HtMWoR4fboqo4c5gNaMz0WgtxU05r46mZ/OIMkDLUvvnms3FkNIC3/+gp1fPGxHrbC1TOAGmGTwsr/VSa47fPDuMlX34Y//LzZ8E58NV/OhMPfvBSXH9mtyynQUGbirNx4gu5WFtgs92kihDUgoUbB3JocZoxVaNis14RZiByWxoF/c12jPqimlY2FiKqU/FkuqotzPnwRRJSfmRvI9596Src88wwHnp+YknXtJzwRhLY3OWGjgFv+u4ufPye/fCrvPE34pW6WNpcZritRs0qZ2KDTK0AaoFOxyTHRhJnRZkNJ7LnQMDcd04tVOCJ/JA4W0ak0lwSZ1Vqa+wts6Vgwl+4rRGQPjjUamsUgkq02wlDjRGFpiCBaAKz4QR6GgufSF9+Riu++Iat2HViBj/fPVj+ovMw5ovCZNAVHahuc6rf1jjhj+KGbz+BD/xyLww6Hb7+prNw/wcuwSu3ds5r75SLEJdqzJ0NTIXQ4bbAWiTUtNluhi+SQCJV/TyqUpycDqHFmT8GoBAeh5kqZyrz4mQQ0UQam7tdiu4n4kSqWT2bCcWzf3dLfWLlDSfgshqh0zHcesVqrGqx49/vPYBgjHL41MAbTuCsFQ2477ZL8K5LVuKXewbxki/9A387PK7aY4z6IuhwW8AYw5pWh2aOjcIxt9mubuUMkCrYlHVWnNlwHA22uXMHCqKufUicLSNCcelL0VUlcVaOnX4olkQonirY1ghINtVqGYJIVuVzrYBdmcqZUnenUzPCWKRwWyEAvGpbF7oarHhm0KtsoSUY8UWzX6KFaHOZEYqnVDs5empgBtd+7VEcHPHji6/fivtuuxjXbumoKOBczMwpbYXNx4kiNvqCpsxObS3Ow5ycDqNXQdUMAFocZpo5UxkRhSHXqVGwFHb6M+E41rY5ASz9iZUvkoDbKu3GW4x6fO61WzDii+B/7n9+Sde1HEilOfzRBNw2E6wmPT7+8vW4970XosFmxNt+9BTe//NnVYkIGfNF0ZH5Tlzd6tCsciYcc9WeOQOktvbBmTCSNbgBVyvMhuPZ3E8AcJgNaLabasL1lcgPibNlRDAqnZRXa+asHDv9rI1+scpZsw2TgRhCFYoMzvmiHKk2t/S4Sk1BTs1KH2LFKmeCzV1u7BvyKjp+KUa9kaxdfiHUyjrjnOPHTwzgjd95EnaTHr9934V47dndFYkygcdhhl7HMK5S5azYvBkAeDJfSLXYCnhyOizbDETgcUribKnnjZYTB4Z9sJn06Pc4FN0va0ZQRXE2G4pjc5cLOlYb4qzBOtcqtb2vCW85rxc/emIAT5+cWcKV1T+BaAKcY14r2taeBvz+1ovwwavW4r4Do7j6y//A7/YOl21/zznHiC+Cjsz3xupWB2ZCcU1yIcUxG1W20gek9uJkmmvqllzveEOJrI2+gOz0axsSZ8sIUTGpVlsjIFnfK2lBnMhUTFoLzJxJx1Sn5D4ZiCGWTM+bEzMb9GhxmrMWwnIRO0yFZs5y2dLjxsnpsKpOSKO+aFEzEGBOnE1UUJWKJlL417v34T9+dxCXrm3B7269CGe0O8s+3kL0OoYWh7niIGpfWGoz7fcU/30I6+Zac2yMJlIY80dl2+gLWhxmJFI865RHVI5kBuJS3KZrNxvQ6jRXTZyl0xyz4TjaXBZ0uJc+RNYXkdoac/m3l65Dp9uKj/x6n+pzt6cTwvp84Qm1yaDDbVetwZ/efzF6mmy47Rd7cffTQ2U9hjecQDSRnlc5A7RxbJwOxtFgM8oyjVJK3xJsktQT8WQagVgya6Mv6G0mcVbLkDhbRgSqXDkDMnb60/Lt9MezlbPibY1A5Xb62WrXAkHV6bYobmscmo3MMxYpxpauBgDAvmGvoscoRCrNMe6PFrTRF7RlBO94oDzhc2omjNd+83H85pkhfOCqNfjuW7Zn25bUpN1d+WycmPPpLdXWmNmpnamxtkZxYt1XQlwuxOOkIGo1CcWSODDix9buhrLu3++pnhmBL5JAmktZRStqYNfbn9PWKHCYDfj09ZtwbDKEr+98cYlWVv94M5EJDdb8laa1bU7c854L0Gw34emB2bIeQ3wHdma+V9Zk2mVfnNRAnIViqgdQC5aigl1PeCPSe2lh1XJFkw0j3mhNzmMTJM6WFaJyVq2cM0DafYkpsNMXVZ22IpWzrM1rhY6Nhdzwysk6G5wJo7vRWjLHCwA2d0uzK/sysyyVMhWMIZkuHEAtaM06ISo/cX/k6CRe+X+PYnAmjO/fvB0fuGqtKm2M+Wh3WbL5OuUixFl/qbZGR222NZ6czv/eLEWLg4Ko1eThFyYRT6Zx5fq2su5fTTOCmcwJe5PdlDFNWmJDkDziDAAuO6MVrzmzC9986BgOj/qXYGX1jwj4dhfZDNRnxgrKtUPPZmdmKmedbgtsJj2OjqsvzqaCcdVt9AUehwkOs4EcGwvgzQZQL25rTKV52bmvhLaQOFtGzM2cVcdKH1Bupz8ZiMFk0BWtyLgsRjTZTRWbggxOR8DYnAmIoMNtxYg3qqhXv5iN/kLcViP6PXbV5s7Eh6dwmiyEw2yAw2xQVJXinOObDx3DzT/YjVanBX+49aKyT1Tl0u62VDxzdmIqBMZKixuXRQpu1mKOohLEe7tU5W8hLU5JbE7W2POpV+4/OIZGmxE7+hrLun+/x47pULwqbabC1KbJbsKKZhumgjGE40vjjMg5n2cIspBPXrcBbqsRH/3NPjJqKAPREt9QonOht9mOwTJF+ogQZ5lNP8YYVrc6cEyDytlUMKaZOGOMoc9jw4kl3qyoVUTXyMK2RrLTr21InC0jRPhxVWfOFNrpTwRiaHGYS1ag1LDTH5wJo91lgcU432q9s8GCSCIl+4SKc46h2YgsMxCBZAqiTuVsboezeOUMkGb5lGSd3X9wDJ/7yxG8fHMH7nnvBSUNNtSg3W1BIJasyFVyYCqETrd10e92ITodQ5PdVHNtjYPTIThltsnm0uKQ3gNUOauceDKNvx+ZwFXr2xRl9eUi/l6qsWs/kyPOxEaRcJGtNqF4Cqk0XzQTJWi0m3DHKzdi35APP3jsRJVXV/9k2xptxVsBe5ttGPVHy5rvG/VGYNCxeaJpdatDk8rZdDCuesZZLpR1VhjxXiJxVl+QOFtGLEVbY4fLApMCO/2JQLSoGYigr7nytp1C1S5hrCHX3WkqGEckkSppo5/Llm43Rn1RTJQ5/5XL3A5n6cdXmnX2yNEpOMwG/O8bz4S9SrOK7Sq4Sp6YDsue12q2m2qvrXFGcmqU0yabi8tqgEmvq7nnU488cXwagWgS12xsL/sYKz3VyzrL7oBn2hqBpTuxEhtbxTogrtvSgavWt+LLDx5FPEnVMyWItsZSsTi9zTZwDgzNKn8fjPqiaHNZ5hnhrG51YMwfVTXsOp5MwxdJaJJxJljpsWNoNkzvszwIc5lG+/y/1TaXBSa9jsRZjULibBkhDEHsCkJtK0WnY+htkm+nP+GPFbXRF6xotmPEG6now3ahjb4gm7Ul07FRGIsomQ/a2tMAYC5DqRJGvRGYDTpZVZY2l1mRIciegRmc1dtYVqB0ubRlZ+PKF2cDU6UzzgTNDhNmasytcXA6nHUlVQJjDB6HqazK2a7j00vu8FdL3H9wDDaTHhet8ZR9DCngHjg+WQVxJmbObDUgzsKlxRljDJeubUEkkcqaEhDy8IYTcFoMJSu6K5qEeVY54iyCzgXdGGtaJVOQYyo6Ns5m3reaVs48dqQ5VYHyUaitUa9j6G6ylt0WS2gLibNlRDCWhN2kr+qJNiB9MMptQZwIxIo6NQp6m2xIl7kjCMxZlecTVEqDqJXY6As2dkpZRM+pIc78ko2+nCpLm8uCcX9M1jzdbCiOF8aDOKfMeZtyaXdXVjmbzcz4yBZndjOma6itMZXmODUbzp5YKaXFqTyImnOOd/7kaXzi3v1lPeZyI5XmeODgOC47o6Vka2wxLEY9uhqsVamczYbisBr1sJr0aLQZ4TAblkxsC7G10Ep/Ie7MCaGfoh8U4YsszqXKR28F5lmjvijaF3RjCDv9oyqKM/FZpUUAtaCa7cX1hjcsfW7k+5yrBddXIj8kzpYRwWiyqvNmArl2+tHMnJecyploWSu3tXFoVhJe+VoRPQ4zjHqGEbmVs8yHV3ej/LZGm8mANa1OVUxB5ARQC9pcFsST6axDUzGeOilZMO/oa6pofUrJtjWWWTkTJ8Jy5+OaHSZM11Ab4KgvgkSKl1U5A6T3r9LK2WQwBl8kgcdenKo4pHw58OzgLKaCsYpaGgXVstOfCSWy0RCMsSUNkfXLaGvMvV7O5xExhzccL2ijn0uz3QS7Sa/4fcA5l7IzFzgA9zRaYTLoVK2cic/eZo0MQYA5Y7JqbJLUGzOhRMGumxVNNgxOh8sOMie0g8TZMiIYS1Y140wg7PRLnWyLE0o5M2dz7RrlfdgWa0XU6Rja3RaMyq6cReBxmGBT2C66pduN/UO+ij/4Rn1RWWYgQE7LoIzWxj0DMzDpddkWzGphNenhthrLFglzNvryZ86CsWTNhOKKNpJehTb6gnIqZ8cmpNcszYHf7R0u63GXE/cfHINRz3D5utaKj9XvseP4VEjzE5yZUGze3MiKJuuSz5yVMqwQboMUmq4Mr8zKGWMMK5rld64IZkJxxJPpRfEsBr0OKz12VStn0yFROdNOnDXaTWiwGSnrLA/ecHxRxplgRZMNgViS/j5rEBJnywh/NAGHpXo2+oLsrlWJD8YJGQHUAo9D2hEs106/VCuiZKcvU5zNhtGtwKlRsKXbjelQXLbxSD6SqTQmAjF0yjADAXKCqGU4Nu4+MYMt3e6K2rrKpd1lKbtydmIqDB2T32YqdmxrxbFRvKdXVFA5mw7FkZIZ/A4ga4/d3WjFvc+e3uKMc477D47jglUeuFT4vOxrtiMQTWr+/poJJ+bNjaxosuHUTOmOBS2QYwiSez1VzpThCxeOKVhIb5NN8ffk6IKMs1xWtzrwopptjQHtZ84A6e+QxNliZsPxRfNmgh5ybKxZSJwtI4KxZEl3Jy3ozTqWFf8Dn8xUc1pktDXO7QiW96ExOB2GxajLhvYupKvBKr+tcTa/sUgptnQ3AKjMFGQyGEMqzbNzWqWQa7YRjidxYNiHHf3VbWkUtLuVuUrmMjAVQmeDFWaDPFEpWsGUnDyn0lyzeZ6T02EY9UyW+2Y+WpxmpNI8O2gvh2OTQdhMerzzkpU4MhbAoZHTNxz4yFgAgzNhVVoaAaC/JRMnovGJ4WwojuacHfAVzXbEkuklybzzRRLQ6xjspuJ/g6L6QzvzypBbOQOkzpWhmYiizZq57MzF3ytrWp04NRtGJK5Op8FUKAaTXgenxl091Wovrjdmw4XfS6K1nsRZ7UHibBkRjC5NW6Ow0y/V7z2hoK0REHb65X3YCqfGQiYaHW6pclPqCy2ZSmPEG1Vkoy9Y1+GEUc8qMgURAnKhq1YhhPCdKCF89g56kUxznFPleTNBu8uS3b1VysB0CP0K8tjEILqSVsA/7hvBxZ/fiV/tOaV4faUYnAmhp9FWtnGPaA9S8nyOTYawssWOV2zphFHPcM8zQ2U99nLg/oNjYAy4eoM6Yeuic6Aa4iy3PWkpHRtFAHUpkyJnpjLpJXEmm3Say545A6QKfDxVeqwgl9Ei8SyrWx3gHKqFUYuMM6WxIUrpa7ZjxCcv8y2RSuNvh8dPi1mr2XA8u0G5EJHdWmlsEaE+JM6WEUs1cybXTn/CH4OOQXbeyYpmG04p3BEUFLLRF3Q2WJFK85LGCqM+ScApCaAWmA16rGt3VWQKMqYg4wyQ3OMabMaSbY27B2bAGHBWb3WdGgVtbgumgjEkUsqiEjjnOKHARh+Ye78pMQXZe8oLAPjYPfvw4KFxRWssxcBUuOyWRmBOgCsxBTk2EcSqFgca7SZcfkYrfvfcCJIKX/vlwv0Hx3H2ikZZFXw5dDdaYdAxTcVZLJlCIJZEky2POFuCEyuvzLY7vY7BZTGQW6MCgvEk0hzyK2dlzGeP+qIw6XXzKrGCNW2SY6N64iymeUsjMFfBliM0vv3wMbztR0/h6Ywp1nIlleYZ58/8r7/dbIDHYaKIlRqExNkyYqncGgF5dvoTgSg8DrPsikFvk13xjiAgncAXCqAWiEpUqXmwcmz0c9nS7cb+YV/ZcyHCtCRf+0kh5ARR7xmYwbp2l+y5BrXpcFvAuTKBAUitiYFoUpHTYZNDeVvjkdEA1rU7sbm7Abf+7BnsOj6taJ2F4JxjcCZcthkIoLwSGImnMOKLYFWLdNL1mrO6MRmI4dEXp8peQ71yaiaMw6N+1VoaAclEYUWTTVOnOG82SHbuJKurwQrGlrZyJge3zQivghbc0x2RIVfKbEWQbU1TINJHfRG0uy3Q5fku7mu2Q69jODqukjgLxTUNoBbIrWBPBWP41sPHAQAvqPQcaxVfJAHOUTQjdSldX4nCkDhbJqTTHMF4UvO+7kJILYjFh9MnAjHZLY3imABwUuGO9EwojlA8VbJyBqCkY2M5AdS5bO1uQCCaLPvEbcQbhdWoVySiWl3mouIskUrjmZPequeb5SLs9JW2Noq5RiVtjU6zASa9DlMyg6g55zgy5seZKxpw5y070NVoxdt//BQOj1Y+pzUTiiMYS2KFgsrfQpRWzk5MhcA5sDKzs3z5uha4rcbT0hjk/oNjAKCqOAOkzSktg6jFxkJupcNk0KHTbV2SXW+/AnHWYDXRzJkChBBvkPn6drgtMOiYIlOQUW+04ByzyaBDb7NNNVMQ0daoNSJ+p5Q4++rfjiKSSMGk16lqfFKLiLnkQm2NAGWd1SokzpYJoXgSnGNJK2el7PQn/PICqAWi9UupE5X4oCkmqESbYCnHxlMzEeh1TFHlKpfN3W4AwL4y587G/BF0NFgU9eu3Z4KoC3FwxI9IIrVkZiCAfOOShYiBb7kZZ4BkLtNkl591NhGIYTacwLp2F5rsJvzkbefCbjLgLT/YXfGJsHgv91XQ1ugwG2A26DAl8/mI9iRROTMb9HjF1g7cf3AMwViy7HXUI385MIZ17c6K2krzITfrsVxmM+JsoSV2zxLZ6SuqnFmNNHOmAHFCLbet0aDXobvRqqhyNuKLLMo4y2VNqwNHJwKyj1cIzjmmgjFNbfQFTosRHoepqCnI8ckgfrZrEP90Tg/WtDnwokqtm7WK+NwoVoXtbbJhxBtRPGJAaAuJs2WCOMlyLoGVPiDPTn8iEJMVQC3ocFth0usUD6sOymhFdFkMcJgNJR0bT82GpZ1JfXl/KmtaHbAYdWWLsxFvVLEwbHNZsi6P+dhzYgYAlswMBJhr01SadTYwHZJs9BXOADY7TLLbGkWFbF27E4DUPvaTt52DeDKNm76/S3ErZi7ZjLMKxAFjDC1O+UHUxyaDYGx+tfH6M7sRTaRx3/7RstdRb0wGYnh6cFb1qhkArG1zIJJIqTans5DpUP4d8BVl2KirgdK2RqqcycebzZCT/12+otmOkzPyKrfpNMe4P5rXRl+wutWBk9NhxJOVnbCH4inEkulsK7bW9HvsOFGkS+Xzf3keZoMOt125FqtbHaqGbdcis5kqbFMRcdbTZEOaA8Oz5Uf+EOpD4myZEIxK4mwpDEGA0nb6yVQa0yFl4kyvY+husip2bBzKfMgUO4FnTKqGlaqcDc6EyzIDERj0OmzqdJdtCjLqiyi2XG9zSVbr0wXa+HYPzKC32YZWV3nVQDVosBlhMugUzxMeHQ9iRZMNJoOyj65mhxnTMme0Do9KO8br2l3Zy9a0OfGDW3ZgzB/FLXfuRiBa3snmyekwGENZuXm5eBzyg6iPTYbQ3Widl2d31ooG9DXb6rq18Ylj0/in7zwpO6/wwUPj4Fz9lkYAuGCVBwDwyFFt5vhENWVhXtGKJhsmAzHVbM/lkM6YDCipnPko50w2vszv2i3TrRHIZJ1Nh2W5D06FYkikeInKmRPJNC/bLTn7WJkNpGrMnAHSvFyhDeKnT87gLwfH8K5LV6HFacbqFgeGvRGE48u3e0BOFXYpXV+JwpA4WyYEMpWzpWprLGWnPx2Kg3OgRaEg6Csj62xwOowWpxnWEhk8nQ3WkjNPp2YiZdno57K5240DIz7F7niJbAC1stdMiK6JPK2N6TTHUwMz2LGEVTNAEsftLoviytn+YR82dbkVP16z3ZStPpTiyJgfnW4L3Au+0M7ubcQ333w2nh8L4J0/flqWZfNCTs6E0O6yVBz8rahylnFqzIUxhuvP7MYTx6dli5ta4wv3H8ETx6fxzz/cI0ss339wDCuabFjf4VR9LT1NNqz02PHI0UnVjw3MzZwtHOwX3QFiNrYaKHUTbLAaM8YEy9+2XA3EzJmSOePeZhsC0aSssO/RTLdIe5FNv9Wt0ufF0QorS2KDsBozZ4DU7j4RiC1q1+ac4zN/PoIWpxlvv7gfALAq8xy1nBVdagq1Q+eygrLOahISZ8sEUTlbKkMQYadfaNdKCAUllTMg07YzHVL0xV7KRl/Q2VC8chaJpzAVjJVtBiLY2t2AaCKtuL99IhAD58W/RPNRbJ7r2GQQs+HEkrY0CtpdFkWVs+lgDMPeCLZ0lynOZM5oHRkNYF2HK+91l5/Rii+8fgueOD6ND/5yr+KYh8Hp8gLNF9LilFc5S6c5jk8tFmcAcP2ZXeAc+O3e+quePTs4i2cGvbhuSwdenAjivXc9U3Rmwh9N4PFjU7hmY5tmeUuXrG3Bk8dnEEuqX8WaDcXhthoXtVcvhZ2+qIK5FFTOkmmOUBWre/WMN5KA3aRX1B0g3gdyWlzlOACvanGAMVRsmCHmYqsxcwbMtW4vPA+5/+AYnj45iw9dvRY2k3SOJASoVq3ItcBsOAGTXlc0LL7NaYFJryM7/RqDxNkyIbjElTNA2rUqVDmbCEgn4UrFWV+zDaF4SnbVA1AgztxWTIfiBSsgQ7OV2egLhJjYd0rZ3NloRjh2yAygFrRlHDHzmYLsHpDmzZbSDETQ7i5t+Z/L/mHp9SurcuYwI5JIlWxhiSWluaFi1ZXrz+zG/7t2Pe47MIb//OMhRes4OROuaN5M4HGYMR2Kl6zGjvgiiCbSecXZimYbdvQ14t5nhuuuqvH9R0/AaTbgs6/dgk9fvwmPHJ3CJ397oODz2HlkAokU16SlUXDxGg8iiRSeHlA/O2k6lD9IdilaksT8mGy3xkyFjebO5OENF86lKkRvs/ysM9Et0llk5sxq0qOrwVp55SwjzqpVOcuKs5zXIZFK43N/eR5rWh14/dnd2ct7m23QqSBAaxlvOI4GW/GweF1mfIQqZ7UFibNlwlLPnAHF7fQnMi1YSueclHzpAEA8mcaoLyJLUImB6EKtdaJVqNL5oL5mO5xmA55TOHc2Ir5EFVbOPA4zGMtfOdtzYgYeh7kit0C1aHdbMOqLyhYGByoRZ5kT21LVs2MTISTTfN68WT7efvFK3LC9B3ftOgm/zPmzcDyJyUAs+56uhBanGZwDMyXyo0TLzqqW/I95/ZndODoRxIHhymMCqsWwN4L7Dozhjef0wGE24IYdK3Dr5avxiz2n8M2Hj+W9zwMHx+FxmHHWCu3iI85b2QyjnuEfGsydzYbzi7Mmuwl2k76qJ1Z+heJM3I6yzuThi8QV509mK2cyKqijvijMBl3R7CtAMrOqVLiIOd9iVu5q0pfHmOwXuwdxYiqEj71s3bzKs9mgR2+zfVlXzmZC8UVzqvnoJTv9moPE2TJBnCAulVsjUNxOX7Q1tihsb8ja6cts2xnxRpDm8nLJRBB1odZG0SpU6cyZTsewORNGrYSxTPtJoTyaQhj1OjTb82ed7RmYxTn9jZq1dimhzWVBPJmWNScBSHEE/R47XGW8x8XObakK7JExSaTImUt63fZuJFIc/3hB3pyRnIgHubRknk+pubOsjX7r4soZAFy7uQMmvQ73PDtU8ZqqxY8fHwDnHDdf0Je97MMvWYtXbu3E5//yPP7w3Mi820cTKTz0/ASu3tCWN3RXLexmA87ubZT9flDCTCiR9ySLMYaeJltVW5K8CsWZaH+kypk8pMqZss84q0mPNpdZ1vfkiDeCDnfpeJY1bU4cmwwqbt3OZToUh9NigNlQ2YytXKwmPdpdFpyYkl6HQDSBr/z1KM7tb8IV61oX3X5VS2UC9H/ufx7feOjFsu+vNd5wAo320u+lFU02DMo0lCGqA4mzZUK2rXFJK2eF7fQnAlE0Zhz6lNDdaIWOyRdnSk6ARUVqpGDlLAKLUadYUOZjS3cDDo/6Fc2jjHijsJv0cJXRqtruXizOhr0RDHsjS24GIsja6ctsbTww7MPmMqpmwNzObSnHxiNjAZgMuux7uRhnrWhEk92EBw+Ny1rDSRVs9AVyg6iPTQbhshjmhRfn4rYZcdWGVvx+70hd5NyEYkn8bPcgXrapY15FmzGGL7x+C87pa8KH734OT2XadwHgsRenEIqncM3GNs3Xd/GaFhwa9VcUt5CP2VAcTQVOsqodIutTaPXekHEdJMdGeXgjysUZAPQ22TEow05/zBeV5QC8usWBeDKdbe8vh6lgTJXvTyX0eWw4MSUJru/84zimQ3F84uXr84rRVa12DEyFFZt1AZLJyI+fGMAXH3gBx2u0+jYbllc562myIRCTZyhDVIeSZ8qMsR7G2E7G2GHG2EHG2G0Lrv9XxhhnjHm0WyZRimA0CZtJD72GO8Ol6Ctipy9lnCm3bjcb9OhwW3G8SH5aLkrEmahIFaqcncrY6KtRZdrS7UYixXFkVH6w56gvgo4Ga1mP3+ZcHEQt8s1qRZwJ4xI5jo2TgRhGfNGyzECAuYH0UpWzw6N+rG1zyMq10+sYrljXmplnKv3lns04a6q8rVE8n1JB1McmQljV6ij6Hrr+zG5Mh+KaOQ2qya+fHkIgmsQ/X9S/6DqzQY9v33Q2uhuseMePn8KJzGfGXw6MwWk2ZO3uteSSNS0AJEGoFpxzqT2pgMAW4qxau95KZ87cNHOmCG84ochGX7AiM1ZQilFfVNYc8+q2jGPjePnCYyoYq9q8maDfY8fAdBjj/ii++8hxvGJrJ7b2NOS97eoWB+KpNE6VkfE1NBuBP5pEKs3xhfufr3DV2jAbLvy5kQvZ6dcecsoYSQAf5pyvB3AegPcxxjYAknADcDWAQe2WSMghGEsuadUMKG6nP+GPotVV3g7auSub8PfD47K+3E/NhmEy6GQZj1iMengcpqx71eJjyZtdk0PWFERBa6O0w1leFlmry5I1YRHsHpiB02zA+gJOhNWmXUHlrJJ5MyCnrbGEmDkyFig5b5bL1Rva4I8ms8K3GCdnQnBbjYss+stBiDM5lbN8ZiC5XLq2BU12E+55pjqujadmwvi3u59b1H5YinSa487HTmBbTwPO7s0/O9ZoN+HOt+4AYwxvvXM3JgMx/PXwOC5f16q4al8OGztdaLKbVG1tDMVTiKfSBaufvc02xJJp1at1hfBFEjDqGawy4yAaqK1RNpxz+CLxMitnNkyUyLxLpTnG/PK+V9Sw058OxquWcSbo99gxE4rjjt8fRCrN8W8vOaPgbUW7dzmtjeI76ar1rbjvwBieGVTfCKgSOOeYDSdKzhYCZKdfi5T8tuKcj3LOn8n8OwDgMICuzNVfBvARANSousQEYskldWoEitvpl1s5A4B/vrAfoXgKv9xTeg/g1ExYaoWUWUHscFsx7F0sDjjnGJoJo6exsnkzQVeDFc12E/ad8sq+z0gF4qzNZcZUMD6vorPnxAzO6m1c0upqLq1OybhETuVs/7APjEknv+VgMxlgMeowUyCYG5B2eScDMaxrl5+DdfEaD8wGHR48XLq18eS0Ok6NgDTfZDPpi9rp+6MJTARiJcWZyaDDK7Z04IFD47LNTcohHE/iiw88jyu/9DDufnoIH777ORwckb9Z8bcjExiYDuNteapmufQ22/Hdt2zHiC+KV3/9McyGE3jpJu1cGnPR6RguWu3BP45OqVbJymYVFWhP6qnyrrcIoJZb0beZ9DDoWHZWjShMOJ5CIsWzglYJck6wJwMxpNJcVlujy2JEm8tc0UzWdChe9cqZaEm/78AY3nJ+X/Z1yUcldvoHRnww6Bi+8Lqt8DjM+Oyfj9TUzJao6slpa6TKWe2haCuRMdYH4EwAuxhjrwQwzDl/TouFEcoIRpNLlnGWSz47/XSaYzIQK7tytqnLjfNWNuGHjw2UbB+Ta6Mv6GywZC3rc/GGEwjEkqpVzhiTTEH2Dck7GY0n05gKxmR9ieZDtAyK3fTZUBxHJ4I4pwYs9AVGvQ4eh1mWOBNmIJUY3jTbzUUrZ6LlVEll0WYy4KLVHjx4aLzkF/NJlTLOBKWCqEs5NeZy/VndiCfTuG//qGrrE3DO8fvnRnDlFx/G1/7+Il62qR1/ev9FaLQZcevPnpUVIA0A33/0ODrdFrxMhtA6u7cRX7lhG4a9EZgMOly6tqXSpyGbi9d4MBWM4bCCFuZiiADqQo531T6x8oUTsjPOAOmzr8FmpMqZDLwK5/lykeNsLLpEOmXGs6xpdeLFifLex8lUGrPhOJqrPHMm7PSdFgNuvXx10du6LEa0OssToPuH/VjT5kSj3YTbrlqD3QMz+NvhibLWrAXCHVWOOLOZDPA4zFXNSySKI1ucMcYcAH4D4AOQWh3/HcB/yLjfOxljTzHGnpqcrP2ZhnolEE0seeUMyG+nPxuOI5nmijPOcnnHxSsx4ovivgNjRW+nNOS3w23FiDey6MT6lEoZZ7ls6W7A0YlAyawtQLLB51z+l+hC5rLOJOGzZ6C25s0EcoOoDwz7sKXMlkZBs8OEqSIzZ8KpUUnlDJBaG4dmIzgyVvgkJpFKY9gbUa1yBkitjcUqZ8dLODXmsrXbjZUtdvxG5dbGgyM+3PDtJ/H+nz+LJrsJd7/7fPzvG8/Exk43vvZPZ+HkdAifuLdwPlnucZ48PoNbLuyTNQ8IAC/f3IGv3LANn7x2PexV3Li6JCME1ZrhE+Ks0OxIV6MVjFW/cqYEl9VIhiAyECfU5cyc9coQ6SLjTO6m3+qMnX45FaHZcAKcA54qV85WNNvQ7rLgX19yhqx5q3IcGznnODjsw+YuaSPvjTt6sNJjx+f+cqQscxEtmM38vclxawSAFZR1VlPI+pZjjBkhCbO7OOf3AFgFoB/Ac4yxAQDdAJ5hjC3a0uScf4dzvp1zvr2lpXq7l6cbwVgSTvPS2egL8tnpZzPOymxrBIDLz2jFSo8d33vkeMEvCl84AX80qUicdTVYEYqn4I/OF0ynZqQdxp4KM85y2drtRpoDB0dKZ0qJL9H2Mitn4rUWpiB7BmZg0uvKNtTQCjlB1BOBKMb80bLnzQTNdlPRtsbDowG0Os2Kd3qvWN8KxoC/FnFtHPFGkEpzVTLOBC2O4pWzY5NBGHRM1t8DYwyvObMLu0/MqGLLPhOK49/v3Y9XfO1RvDgZxH+/ZjN+f+tF8zYHzulvwodfcgb+8NwIfr77VNHjff/RE7CZ9LhhxwpF63j1mV246fy+cp5C2bS5LDijzYlHVMo7E+Ks0MyZ2aBHh8tSVXGmtO2uwUqVMzkIAStnTmghDTYjnBZDUVMQYX4lt11+dasDoXgq+32khOnMZ221Z87MBj2e+PgV86I2irG61YFjk8oE6Jg/iulQPPudZNTr8JGXnoGjE0H85pnaiCUR7dByA82r7fpKFEeOWyMD8H0AhznnXwIAzvl+znkr57yPc94HYAjAWZzz4mUNQjOC0aWfOQPy2+nPBVCX/yGt0zH880X92Dfkw56B/IO34oNFSbWro0DW2VzlTJ2ZMwDYnBFGz8mYO8u2n5Q9cybdT5iC7B6YxdYeNywyh/irRbvLUvKLXwxeb+luqOixmh0l2hrH/FhXhllKq9OCbT0NRefOsjb6Krc1FqucHZsIobfZBqPMStN1WzoBAA9XaGax8/kJXP4/D+EXe07h5gv6sPPDl+GfzlmRd9bxPZeuwsVrPLjjDwdxqMCmxYQ/ij88N4I3bO9RXLFZKi5e48HugZmi5gxymQ0Xr5wBqGrWWTmVM7fVCG+EQqhLMdfWqLzaxBhDb7MNJ0tUzqxGvezf3+oKDDPEZ221Z84AKHI4XtViRyCaVGSoc2BY+qza2Dm3YXjNxnactaIBX3rwBVX+7itFfG40KRBno74I4snaqPyd7sj51r4QwE0ArmCM7c38vFzjdREKCdSAWyOQ305/IlMZqaStEQBee1Y3GmxGfO+R43mvLyfkt7NBEl8LHRtPzYQzO5HqnQy2Oi3ocFtkhVFn208ayhOHzXYTDDqGMV8U4XgSB4d9NdfSCEiVM18kgWii8JfZvqHKzEAEzXYTpoPxvDukyVQaR8eDWK+wpVFw1fo27BvyFZyfEydMalbOPA4zZsOJgnOYxyaDWFnCDCSX3mYbnBYDDo+WruwW49sPH4PTYsB9t12M21+xsag7pU7H8OUbtqHRZsT7fvZMNq8xl588eRLJNMdbL+yraF3V5JK1LYgn09h1YrriY82E4jDoWNGZ4hVN8mzU1aAccdZgM1HlTAbihLqcmTMgk3VWZOZsLGOjL1e8rKnAsVFsHHmqPHOmlNWt0mf+iwpMQQ4M+6BjwPqOue8Lxhg+/vL1GPfH8IPHTqi+TqVk2xplirOeJhvSvHC0EFFd5Lg1Pso5Z5zzLZzzbZmfPy+4TR/nXL1gF0IRnHOprbEGKmf57PTVaGsEAKtJjzef24sHD4/ndYQsp3ImgqgXOjYOZjLO1GZzV2lTkBNTIdz7zDAabcayBbdOx9DqNGPcH8Ozg14k0xw7asgMRCAn62z/kA+rWhwVzw01O0yIp9J5BcCJqRDiqTTWdZQnzl6yQQo4/muB6tngdAhmmREPchFB1PmqgclUGgPToZJOjbkwxrC+3VWROOOc49CIH5esbcHaNnmvpcdhxlffeKY0f3bP/nniOZpI4a5dg7hqfZuqwlZrzulvgsmgU6W1UWScFTuhXiHDRl0N0mkOf7TMyhnNnJVEvEblVohXNNswNBspOPc04otkv/Pk0Owwo9FmLMsURGQwVnvmTClZx0YFAvTAsPSdZDPN/07a0deEq9a34VsPHcu2Iy8Vs6E4dAyyzwvF5yu1NtYG2ge/EJoTjqfAOWqicpbPTn8yEIPTbIDVVHlL3VvO74VBx3Bnnp2pU7NhNNtNil6HFqcZBh1b5Ng4NBtR1VlPsLWnASemQgV3ke99dgjXffURjPmj+OIbtlb0WCLrbPeJGTCGgtlQS0mHjKyz/SqYgQBAk72wmDmcMfNQknGWy+pWB3qbbQXFmXBqlBvxIAdx0pOvHefUbASJFJfl1JjL+g4njowF5hn6KGHYKwWzblDYHnruymZ86Oq1+P1zI/jFnrn5s3ufHcZMKF7SPr/WsBj1OLe/SZW8s5lQvOC8mUDYhQ/NantiFYgmwTkUuTUCktgIZKy9icL4IglYjLqy2897m2xIpnnBVvFRbzSbLykXybGxnLbGGAw6BpeK3Sda0OYyw2E2KHqOB0Z82FzgO+mjLz0DoXgS//f3F9VaYlnMhuNotJlkf+eI851ibbFE9SBxtgwQlYBamDkDFtvpTwSiaKlg3iyXVpcFr9zahV89NbTI/evUTBjdCgWVXsfQtmDuKZ3mGJ6NoFvFeTOBMOQ4sKC1MRRL4kO/2osP/vI5bOx0477bLsYV69oqeqw2lxnj/ij2DMxgfburJr8kS1XOxv1RTARiFZuBADlB1Hl2NI+M+mHQMUWVplwYY7h6fRsef3E6b2VucEa9jDOBqJxNBhe/dmIXWI5TYy7rO1wIx1PZmUulCPv4DWW0oL73stW4eI0Ht/9emj/jnOMHj57Axk4Xzq3Bqm8pLlnTgqMTwYIh93IRJ1nFqFbWma/MmShRCfJTa2NRvOE4GspwahQIkZ6vxTWZSmMiEFU8x7y6zYGjZTg2TgfjaLLLFwdLBWMMq1rsODZZuB00l4lAFOP+GDYW+E5a0+bEG7b34CdPDlRtDjQf3nBCUXtsq9MMk0G3pGsm5iBxtgwQOUFqzkdVwkI7/Ql/TNV2rrdd1I9IIoWf7Z4fSq0040zQ1WDFcE7lbDwQRTyV1qytEQCeG/JmLzsw7MN1X3sUv312GLdduQY/e8e52Vm4SmhzWTDqjeLZQW9N5Zvl0l6icrZ/SJiBVC7OPNnK2eJK05GxAFa3OmAylP+ReNWGNsRT6UXVEs555r2pbluemOWYCiwWmyJUdZVHuTgDUHZr46ERPxhTHkcAzM2fNViNuPVnz+AvB8ZwdCKIt13Ur2jAv1a4eK0HACpubZwJxQtmnAmqlXUmxJnymTPjvPsT+VF6Qr2QbNbZzGKhMRGIIc2VzzGvbnHAG07k3dQqxnQoVvWMs3JRYqcv3JY3FdmA+uDVa6HXMXzh/udVWV85yPncyEWnY+hptFLWWY1A4mwZEMjYwNdCCDWw2E5/IhCreN4slw2dLly4uhk/fPxE1lkomUpjeDaCFWVUuzoaLPN2t7M2+hq0NTbYTOhttmHfKR845/j+oydw/TceQySews/ecR4+ePVa2TlOpWhzWRCIJRFJpGrSDASQWnGdZkPBytm+zOB1OZWYhTQVqZwdHvWXJShy2d7biAabcZGl/mQwhnA8pWHlbLHYPD4ZgsdhLmrGkY8z2p3QMeBQmQHKh0Z96G+2L5rFkIvHYcb/vvFMDEyH8P5fPItWpznrIllvnNHmRKvTXHFrozRzVvz32Gw3wWbS16w4E7f3kjgrircMs5Vc2l0WmPS6vCfY4jtOro2+YE1bxhRkXFlr41QwXvPzZoJVrQ6M+aN5ux4WcjDT9VLsO6nNZcHbLurH758byW4wVpvZcFxxhZvs9GsHEmfLgJpraxR2+tMhcM4xEYiqWjkDgLdfvBLj/hj+tH8EgORumEzzsipnnQ1WjPmi2Upf1likUf22RkCyhH9mcBZv/9FT+M8/HsKla1tx320X47yVzao+Tu5rvqO/9ubNBG1uS0Fxtn/Ii9Wtiwevy0HM7Swc1PaG4xj1Rcuy0c/FoNfhinWt+PvzE/MG8sWJ0gqVxZnFqIfTbMg7c3ZsMqh43kwcs99jL7tydng0gPUVCunzVzXjg1etRSLF8ZbzeyuqZi4ljDFcvKYFj744VfasVSrN4Y0ksvOSxR5rRRXs9IUdPlXOtMFXYeVMr2PobrLmbWsc8SoLoBZk7fQVuBkCmcqZgsrNUqLEFGT/sA/9HnvJTqV3XboKTXYTPvuXw2WFeFeK1A6t7L3U22zHqZnwkqyXmE99fusR8whmKme1YAgC5NjpT4URiCURTaQryjjLx6VrWrC61YHvPXICnPPsSUk51a5OtwWJFM9a/56aCYMxoEsrcdblxkQghkeOTuFTr9yI777l7KIZRuUi5rn6mm2qVi7Vpt1lydvWyDnH/mE/Nnc1qPI4FqMeDrNhUTbYkawZSGWVMwC4en0bvOEEnjo5l8WnRcaZoMVpzls5OzYZVDxvJljfUZ5joz+awOBMWLEZSD7ee/lq3PnWHXjnJasqPtZScslaD7zhBA6OlLd77oskwDnQJOMkq6cKu94VV87ClHVWDG+kspkzQPqcyWfqkK2cNSj7Lmh3WSTDjHFl1fTpYLzmbfQFYtZYTmvjgWG/rBlol8WIf7liNR57cRqPvVh5pIYSOOeYDScUn1f0NNkQiCXJWbUGIHG2DAjEakucCTv9k9MhTPjVsdFfiE7H8LaL+nFwxI8nj8+UlXEmEPNdYu7s1GwY7S4LzAZtApuv29qBV23rxL3vuwA3X9Cn2TyNEGe12tIoaHdbMJ5HnI35o5gKxrC5q/KTfUFTJusslyMZIaKGqLhkbQtMeh0ezGltPDkTho4B3RrMMHocZkwtqJzNhOKYDSfKNjdZ3+HC0GwE/qiyL+gjwgxEhddRr2O4/IzWuq2aCS5cLc2dldvaOBOSfrdyTrJ6M+JMy13vOUMQpeJMWj8ZghSn0pkzQKp+nMx0reQy6ovCYTYoNoZijGF1qwMvKGhrDMeTCMdTdTNz1ttsg0HHsrO6hZgNxTHsjRSdN8vlxnN7YTHqsPP5CTWWKZtIIoV4Mi0740zQ75G+o5RWSQn1qe9vPgLAXOWsFnLOgDk7/RNTIUwE1Amgzsf1Z3ahyW7C9x89jsGZMAw6prhlA5hr8xCOjUMzEU3MQHIf73/feCY2dlZuclGMFU02rGiy4eWbOzR9nEppd1kwEYgtav0SvfqbuxtUe6xmh2lRW+ORsQCa7KbsDFcl2M0GXLC6GQ8eGs+eHJ2cDqHDbdVEaOSrnIkTjJVltDUCc8Gqz48p2ykX1TY15gOXCx6HGZu6XPhHmaYgMyFJzMgZ7F/RbEM0kc5bSVULXyQBk0G51ftc5YzEWSGiiRRiybTiOdGFrGiyIRxPZXPGBOXY6AvWd7hwaNQvW/iLDbDmOpk5M+p16G22laycZc1AZLoHmww6rO9wLXJn1hrxHae0rXFT5pykVBYroT0kzpYBgRprawTm7PTFPIzabY2A1Kb25vN68dfDE/jH0Ul0N1qhL8O2tytTORvJqZxpYaNfbawmPf7xkctx+brWpV5KUdrcFqTSfFG74X5hBqJCJUbQbDctepzDYwGsa3eqVsG8ekMbBmfCOJr5oj85rb6NvqDFubhyJuYmVldQOQOUOzYeGvGj2W7SZCOmnrl4TQueOTkry2xgIeIkS444Ey3dWs6d+cs0rDAZdLCZ9DRzVgQhXCtta+zzCOfO+Y6No76IYjMQwYZOF3yRxDxX42KIz9h6MQQBpLmzUpWzA5n25I0KNqA2dbpxaMRfdnZkOYj3ktLKWavLgnaXBftz3KSJpYHE2TIgGEvAatSr5vKnBsJOX7SrtWg083TTeb0w6XU4MOwv213RZTXAZtJjxBtFLJnCmD+qaeWMmE9Hgayz/cM+rG1zqhJeLmi2m+dVzlJpjhfGAmWHT+fjqvVSPp1obdQi40zgcZjgjyYRTaSylx2bDMJs0JUdx9DusqDBZlQuzkb9WN/hqkvbey25eI0HyTTHE8eUz53MhuWLs2rY6fsqcBN0W41L6ta488gEbvr+rqqeJCtBmK1U2tYoIjsWmoKM+qLoLKOzBJgTI4dG5H0mZCtnJYxsaonVrQ6cnA4jkWPmtJADwz50N1oVuSBu7HQhEEuWnR1ZDuJzo5xZ9s3dbuyrcqWPWEztnM0TZROMJWvGqVEg7PT3DflgNujg0mh9LU4zXn2mZLVdrjhjjKGzwYoRbwTDsxFwXt7sGlEe+bLOOOfYP+TL5sKphWhrzHXmjCRSWNdRuRmIoM1lwdZuNx48NI5ANIGZUFz1jDOBaMXMjQc4PhlCv8deVhUZkP4e1re7FNnpJ1NpPD8eoJbGPJzd2wibSY9HjiqfO5trTyp9ktXVYAVjwOB0ZaHXxfCGKxNnS1k5e/iFSTxydApTIe3aPithrnJWmTjraZLeB7niLJ6U2l2VmoEI1re7oGNzbX2lmM68xvXS1ghIpiDJNMfJ6cJh1AeGfdnWP7mIFsgDw+U54JaDks+NhWzpcuP4ZCibn0ssDSTOlgGBaLJmMs4Ewk5/94kZtLrMmu6mv+2ilWAMZRsgAFL2y6gvglOz2mWcEflpy1M5G/FFMR2KY7MK4dO5NNlNSKZ51uxCmIGsV7FyBkjVs72nvFnXxj7NKmeZrLOc1sZKnBoF6ztceH7ML9sC/vhUCPFkWtUW1OWC2aDHeSubywqjngnFYTPpZc14WYx6tLssmlfOyhUPbqsRviWcORMteeO+GhdnZZxQ52I26NGx4H0w7o+Cc+UZZwKrSYrYOCSzmj5Vp5UzAHhxIr8480cTGJgOK/5OWtPmgEHHsi2R1WCurVH536p4ftUUk8RiSJwtA2q1cgaoH0CdjzPanfjDrRfhTeesKPsYXQ1WDHujOZb89T9zVi80200w6tm8ylnWDETlypkQM6LSdHgsAB2bC1pVi6s3Sq2NP3j0BAD1M84EonIm5s5iyRQGZ8IVbVQAwLoOJ6KJNAaK7CLnItqd1pM4y8vFazw4MRVSPA82G4rLamkUSHb68n5n5VBpW+NSVs7ETHG+2I5awKdSWyMgfd7kVoCE2VU5hlmCjZnZKTlMB+Owm/SqtqRrzcrMZ2ahuTPx3JXMmwGSWF7b5pRddVQDUTkr529VfOfuH/aquSRCISTOlgHBaLKmzECAOTt9QBunxoVs6nJX9EXQ4bZiKhjDsckgTHod2mo4F2y5odMxtDotGM+pnO0f9kKvY6qf7IsTXTETcXjUj36PXbH7XCnOaHOiu9GarZb0NmvT1pitnGUG8E9Oh5HmKCuAOhdRATsis7Xx0KgfJoOubIfI5c4la1sAAP9Q2No4E1YmzlZonHXmiyTgKlOcNdhInBVjrnJWuTjrbbLPex+IjLPOMtsaAckUZNgbkZVVNxWMwVNnxkAOswEdbkvBIGrhuFiOy/KmLhcODvuqFu7sDcfhthrL8iFodpjR1WDFc+TYuKSQOFsGBGpQnAk7faA64qxSRC/+noEZdDdaoStzXocoj3a3Jbu7CwD7h/1Y2+ZUXTSJGYjpjJg5MubHOg2qPYwxXL1Bqp41202a/X2K5yPaGsWJRaWVs9WtDuh1TLYpyOFRP85oc8JYQ6ZEtcRKjx1dDVbFeWczobiiuZEVTTaM+2PzDGLUIpXmCESTFRqCLE0IdTiexGxG/Iz7alOczYYTMOl1sKrwmbei2YapYDzrECo+W9srqpzJNwWZDsXQXIYZxVKzutVRMOPr4Igf7S5LWZErGzvdmA7FMe6vTkvtbDhRVkujYEu3O9u9QiwN9E26DAjGknAqDJasBqJa0Oqq/SqUsNM/NOJHN82bVZ1211wQtWQG4lU1fFqQ29YYiCZwaiai2ZyUEGdatTQCUsuM22rMWldXmnEmsBj1WNVilyXOOOc4NOLP5qMRi2GM4Zz+Jjx3StkJz4zCtkZhZDSkgTOcCJAuV5w12EyIJtKaCMdSjORYwGtdOUum0vjZrsGirn/58EXicNuMqsxnC3fYwYwpyKg3AqfFUNEmkficlNOeNx2M100AdS6rWhw4NhHMW+HaP+zDpjK/k8T9qpV3NhuOVzS7uKW7AYMzYVlVUkIbSJwtAwLRRM0EUOci0ubVCPfVGjEoneZATyPNm1WbdrcFY/4oOOcY9kYwG06oGj4tEFWI6WAcL4xLLXvr2rURFTv6mtBoM5adNyaXFqd5rnI2GUKn2wKbqfLPg/UdLlnibCIQw3QoTmYgJVjb5sSYP6qota+cmTNAGzt9se5y2+5EO6R/CVobh72SIDPoWHYTSCsePzaNT9y7X7E7pzdcvtnKQnoz7rBi/nCkAht9QbPDjHaXRZYpyFQwXlcZZ4JVrQ6E4qlFAj4cT+LYZFB2+PRC1rW7wBiqZgoyq7AdeiFbusXcGVXPlgoSZ3UO51wyBKmxtkZgzhSkHtoaczOhyKmx+rS7LAjHU/BHk9l2ii0qm4EAUhiuy2LATCiGw5l5Ki3aGgHAqNfh7ndfgI++bJ0mxxd4HKZ5lbNKnRoF6ztcGPFFS+6eipO1DWXMYpxOrG0TbnDy5viiiRRC8VRZlbPBae3EWdmVs8z9lmLuTFTO1ne4FuUpavVYp2aURRp4wwlV5s2AuWq9sNMf80XLttHPZWOnCwdLCIx0mmMmFKsrp0aBmNV9ccHc2eFRPziHYht9gd1swEqPvWqmILOhyt5L4nnuo9bGJYPEWZ0TSaSQ5qg5t0YAOLe/GatbHXWRfWQx6rMnQRRAXX3aMpXLcX8U+4Z9MOgYztCoouVxmDEViuPImB9OiwGdZdpLy2F1qyPbSqkVLU4LJgMxcM5xfDJU8byZQJixHC5hCiJmUNTMiluOrG2TXp/nx/LPtCwkGySroD3J4zDBatRjUKEwkEOl4kzcbymCqIdnI9DrGLZ0uzVvaxTzXUqdOb2RBNxWdapNbqsRDTYjTmbWMOqLVOTUKNjQ6cKxyVDR1lRvJIE0r6+MM8Gcnf78v1FhK19u5Uzc92AV2xrLyTgTuG1G9DXbaO5sCSFxVucEo9LAby1Wzla3OvDXD12quZW+WggnKwqgrj6irXTMF8WBYR/OaFffDETQZDdhOhjDkdEA1re7NM3gqwZS5SyOiUAMwViyYqdGwfqMOD4yVny399CoHz1NVrhqcO61luhqsMJq1GfbaUsh7LCb7PJfV8aYZo6NFVfOMjv5S5F1NuKNoN1lQVejFYFoEuF4UrPHEs6IQ7PKBLIvHFetcgYAvU02DE6HEUumMBWMl51xlsvGThdSaY7nxwq/h4XZUj3OnLU4zHBaDIvs9A8M++BxmNDmKv85beyUOhHE37VWxJIphBVW3POxubsB+4a86iyKUAyJszonkHFjqsWZs3pD7CxSxln1ac8Jot435FM93yyXZocJ08E4jowFlkW1p8VpRjCWzA6bq1U5a3Ga0Ww3lZw7Ozzqp3kzGeh0DGvbHDgqs61xNiSJmCaF7WE9TTbFVRs5eOu5cuaNoLPBMu9zRiuylTOFpizeCgK+87Gi2Y6TM6Hsc1VHnEmfy8Xa80QAdT3OnDHGJMfGBZWz/cM+bOx0V7SRtyn72mlbjVIrkmFLlxsjvmh2npmoLiTO6pxAlMSZWqxpdaDNZS775IMon9bMjuSegRn4Igls7tZOnDXZzTg+FUIwlsS69voXFS2ZHepdJ2YAQLWZM8ZYxhSksJgIx5M4MRWi8GmZrGlz4oVxeW2NM2HllTNAcuobnAmrnqkkjDzKzjnLtOwtxcyZJM6sc+JMw9ZGIc6UVM5EtUPtytmIN5qdfcudqy6X7kYrnBYDDo0WFhhi/lXrdm6tWN3iwLHJuQDvaCKFoxPBijcMxXiHaJHUimzFvYK2RgDZ7+BqOUwS8yFxVufMtTWSoKiU91+5Bn+49aK6b3OrR8wGPZrtJvz9yAQAaFo58zhMSKWlE9flUDkTYa9PHp+Gw2xQ1YBnfYcTz48HkCxgC35kLADOQZUzmaxtc2AyEJNlUT2TOclVOjvS02hFJJHKVjDUwhdJwGLUld1u7LQYwJjUvldNUmmOMV8UXQ3WebOtWjHmi8KgY/BFEvBH5QnRbMtohSfUuaxotiGV5tgzIG3aqFE5Y4xhQ4eraOUs29ZYhzlngLS5NRmIZX8nz48FkErzsm30BQ02E7obrZpXzsSsaiVW+oA0I8cYmYIsFSTO6pxgTPoAqcWZs3rDYtTXRSbbcqXNZcF0KA6jXjszEGD+ScMZbfUvzkTl7MCwD6ta7KpuLqzvcCGeTOPEVCjv9cIMpB5Mf2qBNZn3m5zq2Uw4AcaUn2R1ZQyNhr3qmoL4womKugp0OgaXxVj1ytlkIIZkms+vnPm0adXyRxMIxpJZ4wi57aViDk/NtsbezOz0k8enAUAVQxBA+ls/MhrIbnAtZDoUh66M922tIKJPRGujsL/fqIIb7aZOt+aOjaIdulFhxX0hDrMBq1oc2D/sVWFVhFJInNU51NZILBfaMzu769pdMBu0MQMBgKaMmOlttsG+DDY1RI5gmqs3byYQ7YqFso0Oj/rhshiyIe5EcdZmxVnpubPZUBwNViP0OmViuzuT0zis0JCiFL5IZeIMkObOqj1zJkRqV4MVdrMBTrNBs8qZmO86t78JgPzWRm+FGXL56G2WjIGePeVFg80Iq0mdz9SNnW5EEqmCGzZTQSljS+n7tlYQbeHCFOTAsB9uqzH7d1UJGztdODEVQkBmRbUcROWs0rZGQJo7o8rZ0kDirM4JxmrXrZEglNCW2dWuxK5YDp5M5Wz9Mpg3AyT3SVEsW6mSU6NgVYsDRj3DkQLubIdG/VjfUf+Ol9Wi022Bw2zAURnibCYcR2MZrWFdmZPIIYWGFKXwRuIVi7MGW/UrZ1lxlnldWl1mzcSZyDjb0SeJM7mVs6yJg0pW+oCUL2o26BBPplWrmgFzLcyF2vOmg/WZcSboabTCpNfhmKicDfuwqUudzzjx3VYqnqQSvCq1NQLS3NlEIKZ5cDuxGBJndU525owqZ0SdI2YitmhoBgIATRkXseUwbwZIYddiLkntypnJoMOqFkdex8ZUmuPIaIBaGhUg3OBktTUG42XtfrssRjgtBvXbGiNJdSpnVbbSF4JJfL60uy2aGYKIytkZ7U44zAb5lbPsCbV6lTOdjqE3E0atxryZYE2bAya9rmA1fToUr8uMM4FBr0O/x45jk0HEk2k8PxZQbcNwY5cwBdGuGjUTSsBu0sNkqPz0XnwXP3fKW/GxCGWQOKtzArEkLEYdjHr6VRL1jWiN01qc9TXbcdX6NrxsU4emj1NNxNyZWk6NuWzocOUVZyenQ4gkUmQGopC1bQ55bY3heNlZRd2NNtXbGv0qhCS7rcas62O1GPFG4LIY4Mzk8LW5LBjXyEp/1BcFY5IA7G60yq5e+jRoawSAFU1SJV1NcWbU67C23ZGdN13IdDBWlxlnuaxqtePFiSCOTgQQT6WzNviV0uq0oMVp1nTuzFtmxT0fGzrc0DEpSoCoLnRGX+cEoklyaiSWBddu6cD3b96uyuB1MSxGPb5383ZNTUeqjcdpgo4hu1OuJus7XBj3xxaFp4qdc7LRV8baNiemQ/Gsq10hZkLli7OuBqviEORS1O3M2Wxkno18u8uCiUAM6QKGFpUw6ougxWGGUa9Dd6Mta2NfCm84Ab2OqT6eID4P1LDRz2VDhwuHRvx54xqmgvG6zDjLZXWLA4MzYTxzchaAuq32mzpdmjo2zobjih1eC2E16bG2zUlzZ0sAibM6JxhLkhkIsSywGPW4cn3bUi+jLlnV4sCGTm2MVIT4Wlg9OzTih0HHsKZN/WrdckaOYyPnXDrJKrtyZsWwN6Ja1lkilUYwVnlbo5g5UzuDrRjD3sg8M4d2twXJNMdUSH3HxlFfNFul6mmSKmdynqs3Ipm/qD27qUVbIyCZgkyH4hj3z38No4kUgrFk3WacCVa1OpDmwB/3jcJhNmSdL9VgY6cbRyeCiCZSqh0zl5lwQrXKGSB1suwf9lX1b5YgcVb3BKMJMgMhiNOcT7x8PX7+jvM0Ofb6zGzeQnF2eNSP1a0OTZ01lyMivuHoROHWxkAsiUSKl+241t1oRTCWVM18Q7Qiuq2Vfde4rUak0jxrZFUNRrzzK2fCeGhcAzt9SZxJj9XdaEMonsKsjBm72XACbpVbGgFgTav0XhPOjWoh5kwXVoCmM9X1es04E4jZ3V0nZrCh0wWdis6Tm7pcSKU5ni9gslQp3nAcjSq+lzZ3N2AmFFd9hpUoDomzOicYS5I4I4jTHItRn52pUZtmhxmtTvMih7FDo36aNyuDNpcZTouh6NzZbOYkt5K2RkC+lXsp5kKSK29rzD2e1gSiCfijyUVtjQA0MQUZ80WzkSA9ClwzfeGEqhlngvNWNuG377sQZ61oUPW4kkMrFs2dZQOo671ylmOstFll92DRtn9Ao9bG2ZB6bY2AZKcPAPuptbGqkDircwLRJDk1EgShKesWmIJMB2MY98fIqbEMGGNY2+Ys2tY4U6E461Y5iDprWFGxIYhp3vG0ZsQrCbDcHD4hntQWZyKAurNBtDVKvwM5c2feSFyT0GbGGLb1NKjeLukwG9DXbF9kbDEdzFTO6nzmzGrSZ98zm7rU/YzrbrTCbTVqYgqSTKXhjyZVFWfrOpww6hmeI3FWVUic1TmBKM2cEQShLes7nHhxIohEKg1gLqeHKmflsbbNgaPjgYJzHCJIttzZkbmsM3XFmUsFQxBAqhRVA2Gjn1s58zjM0OuY6o6Nwka/PdvWKL9y5tWocqYlGzpci+z0pzKVM08d55wJVmecb9VyahQwxrCx04WDGjggCrOdRrt67yWzQY8z2p3YP+xV7ZhEaUic1TnBWBJOamskCEJDNnS4EE+lcWxSqvYcGpVOLMipsTzWtDoxG05gKhjPe72oQJQ7c9ZoM8Jm0qtmp59ta1TBECT3eFqTDaDOEWd6HUOLw6x65SwrBDOVOafFiAabEadktjVqMXOmJRs6XRicCcMfnftdZmfO6rxyBkjtjI02I1aqnB0JABs7XTg8FshudqmFaIdWuwq7uasB+4bIFKSakDirYziXBquprZEgCC1Z6Nh4aMSPDrdFVVew04m1whSkwNyZqJw1lXmSyxjL2OnLy9kqhV8lcSbuXy07/WFvBAYdQ4tzfiWnzW3BuMribK5yNueM2N1oLdnWmEilEYglK24ZrTaipflwTnveVCAGq1EP+zLYML71itW477ZLoFfRDESwqcuNeHJus0sthPlMuZs6hdja7UYgmsTJaXU+T4jSkDirY6KJNFJpTjlnBEFoykqPHSaDLtvOSGYglbE2Ez/wfAFxNhNKwKTXwW4q3wmzK2OnrwbecH1Wzka8EXQ0WBadYLe7zFkxpRYigFq4QQJAT6OtpED2axRArTUbs46NObOoofiyqJoBkslSu8oRBIKsKciwunNnYlNH7ffS5m5pvfsojLpqkDirYwIx6UOdKmcEQWiJQa/D2jYHDo/6EU2kcGwyRGYgFdDiNMNtNRY0BZkNxdForyz3qltFceaLJGAz6WEyVHbKYDXqYdSzrNjTmhFvBJ3uxQHM7S6L6m2NuQHUgu5GKQy8WDuYt07FWavTghaneZ44mwrG6t6psRr0e+ywGvWqh1GLtka1OxrWtjlhMuiwf8ir6nGJwpT8pGWM9TDGdjLGDjPGDjLGbstc/p+MsX2Msb2MsQcYY53aL5fIJRiVsmJo5owgCK1Z3+7C4dEAjo4HkUpzmjerAMmx0VGwrXFaBTvsrgYbvOGEKplivkii4qoZID1vt9VUVbfG3HkzQZvbgkA0iXBcvby13ABqQU+TDbFkGpPBwplqalUll4KFpiDTwTg81OpcEr2OYUOnCwdVr5xp09Zo1OuwocOFfeTYWDXkbIMlAXyYc74ewHkA3scY2wDgC5zzLZzzbQD+COA/tFsmkQ/xpUs5ZwRBaM26DhemgjH84+gkAHJqrJQ1bU68UMCxcTZceXuYcAtUwxRELXEGSEHWvkh+IxQ1SabSGPNHs86VuWSzzlRsbcwNoBb0NJa20xevhRZW+lqzsdOFo+MBxJIpAMB0KLZs2hq1ZmOnCwdHfEin1TPZ8IbjMBt0sFbQDl2ILd1uHBj2IaXieonClBRnnPNRzvkzmX8HABwG0MU5z5X8dgD0G6syAVE5o7ZGgiA0Zn2HZGLxm2eGYDfpsSKT40SUxxltTvijSUwEFldV1AiS7VJg5V4KXyRRsY2+oMFWncrZeCCGVJrPs9EXaBFEnRtALZBjpy8qZ/VmpQ9IpiDJNMfR8SA455gOxqmtUSabOt0IxVM4OaOeycZMKF52NmIpNndJ6z0xpa6JCZEfRQ3kjLE+AGcC2JX5/08zxk4BuBFUOas6QpzRzBlBEFojKmXHJ0NY1+GCTgMXs9OJNRlTkBfytDbOhCs/yerOiBI15s7UrZwZqzJzli/jTNCWEVFqOTYuDKAWiDDwYnlzWXFWZzNnwJyxxaERP/yRJJJpjmZqa5TFxky49QEVTTZmwwnNKrBbuhsAgFobq4RsccYYcwD4DYAPiKoZ5/zfOec9AO4CcGuB+72TMfYUY+ypyclJNdZMZBBtjU5yayQIQmMabKbsTA21NFaOsNNfaAqSTKXhDScqrpx5HGaYDDrV2hrVquw0WI1VqZyJ593VsNhxb66tsfAsmBIWBlALrCY9PA4TThWpjngjCTAGuCz19z3e22SD3SQZW0yFMgHUVDmTxZpWJ4x6hgMqmoLMhuNo1Ejkr251wGrUkzirErLEGWPMCEmY3cU5vyfPTX4G4LX57ss5/w7nfDvnfHtLS0v5KyUWEYySWyNBENVDmICQU2PleBxmNNlNi0xBhHtfpbM7Op3IOqutypnLaoSvCpWz4SKVM7vZAKfZoFrlbGEAdS7djbaivwNfOA631ViXlWidjmF9xhRkKkDiTAkmgw5ntDtxaEQ9U5DZcFyz7Em9jmFTlwv7yU6/Kshxa2QAvg/gMOf8SzmXr8m52SsBHFF/eUQxROXMblZ/+JMgCGIhYu6MnBrVYU2rY1FbY9YOW4X2pO5GK4YqbGtMpNIIx1OqibMGmxGBWBLJVFqV4xVixBtBo80Imyn/5mWb26KaIUi+AGpBd6MVp4rNnKlYlVwKNna6cGjEn3WkJEMQ+WzskEw2ikUtKEGquGv3Xtrc1YCDIz7N/3YJeZWzCwHcBOCKjG3+XsbYywF8ljF2gDG2D8BLANym5UKJxQRiSZgMOpgNJM4IgtCe67Z04totHdTWqBJr25xZMwXBTEacqTHY39VgxXCFhiCiBdGt0kmfEHn+qHo29vkY9kbyVs0Eamad5QugFvQ02TDijRR0ufOGE3DXoVOjYEOnC6F4Cs8OegGQOFPCpi4XZsMJjKqwSZBOc3jDlRsJFWNLtxvRRBpHJ8gURGtK9sNxzh8FkK/e/mf1l0MoIRBNwkUtjQRBVIn1HS58/U1nLfUylg1r2xwIxJIY9UWzQmJGxcpZV4MVU8E4ookULMbyNvHUzuESxhe+SEIzZzlAqpz1NdsLXt/msuDYsSlVHitfALWgp9GGRIpj3B/NKxa94Xhd2ugLhCnIP16QPAXUzthazmzskl67A8O+ohsJcvBHE0hzdT43CrG5W1rv/iEfdU9ojCK3RqK2CEaTlHFGEARRp6zJmoLMtTbOhCVxpkYForupcsfGbOVMRbdGQBIlWsE5x/BsicqZ24yJQEyVnKlRXxQdBR5L2OkXMgXxRhJ16dQoWNPmgEHHcHQiiEabEYY8ApXIz/p2F3QMOKDC3JkIoG60a/de6m+2w2E2YN+wV7PHICTor6iOCcaSZAZCEARRpwjHxqM5jo1i5kyNE/auhtJW7qXwqy7OJNGppWOjP5pEKJ5CV4m2xlSaZ10GK2HUF0VHnpZGQGprBAr/Drzh+p45Mxv0WN0qxUJQxpkyrCY9VrU4cEgFx0Y1K+6F0AlTEHJs1BwSZ3UMVc4IgiDqlya7CR6HeV7lbDoUh8NsUGWWWFRtKrHT16pypqU4y9roNxYWZ2I+bFwFO/18AdSCzgYLGENeU5BUmsMfre+ZM2CutZEyzpSzqcuNA8OVV85EJVpLcQZIv+sjYwFVKs5EYUic1TGBWBIOyjgjCIKoW9a2OfDCxPzKmVqtSW0uCww6hmFv+aYgaouz3JkzrSgWQC0QYqpSU5BCAdQCs0GPNqclb+UsEE2Ac9R15QyYi9bwOKlyppSNnS6M+aMYqtC4J9vWqLE46/fYEUumVTPTIfJD4qyOCcYScFJbI0EQRN2yts2JF8cDWcfGmXACTXZ1TnL1OoZ2d35hIBdhCOJSu3KmYdbZiE+Is/yCCcgJoq7wJLNQAHUu3Y3WvDNn4rWt55kzQBIYAOChypliLjujBRajDm/8zpOLYjWUkI3g0HDmDJDEGQAMTIU0fZzTHRJndUwwmiRxRhAEUcesaXMgFE9lTTtmQ3E0qXiy3t1orbit0W7S53UiLAejXgebSZ8N29aC4dkITHodPEVEbrPDDL2OYbxCG/NiAdSCnqb8QdTiNah3cba+wwWjnhU0RSEKs7rViV+963zEkmm89huP45Gjk2UdZzYch0HHNB916cuIsxPTJM60hMRZncI5R4BmzgiCIOqahaYgM6E4GlWsQHQ15BcGcvFFEqpbvTdYjdrOnHkj6GywQKfLlwIkodcxtDjMKlbOioizRitGfREkFoT3ijkhYZJSr7itRtz73gtx03m9S72UumRLdwN+974L0dVoxS137sFdu04qPsZsJpKBscLveTXocFlgNuiocqYxJM7qlFgyjWSak1sjQRBEHbO2VRJnz2dammZCcVWzorobrRgPRBFPpkvfOA++SEK1lkaBy2rMtvRpwUiJAGpBm9uC8QrFWbEAakF3ow1pDox65z+Wb5lUzgDJ2MJOm8Vl09lgxa/fcwEuXuPBv997AP/1x0MFg8vzMRtKoEnjlkZAcmzsbbbhxFRlM3JEcUic1SmBaBIA4KQPQ4IgiLrFbTOi1Sk5NkbiKUQSKTSpkHEm6Gq0gvO5Co9S/JEE3FZ1v2cabMasRb8WjHjzBz4vpN1lLvt1ERQLoBaIvLmFpg/ZmbM6NwQh1MFhNuB7b9mOm8/vxfcePYF3//RphOPJkvcLxpIY8UWqFmbe12zHALU1agqJszolGJP+YKlyRhAEUd+sbXPi6HgQs5k2N1UrZw35hYFcvJG4ak6NArfVCG9EmxDqeDKN8UC0aMaZoN1lqbitsVgAtaCnUco6W2inL8SZ2q8vUb8Y9Dp86lWbcMcrNuBvh8fxhm8/sWgDIRRL4uEXJvHZ+47g1V9/DFs/9QD2DfnQ12yryhr7PXYMTocVVfYIZdCZfZ0SzFTOyEqfIAiivlnT5sAvdp/CVFDK3FJz5qw7IwyGvOXNnfkiCdXFQ4PVBF/Eq+oxBeP+KDiHLHHW5rYgEE0iHE/CZirvdGjUF8XqFkfR23S4LdDr2KLZP28kDqfZAINKZivE8uGWC/uxotmGf/nZs3j11x/Dx1++Ds+PBfDk8WnsG/IhmeYw6Bi29TTgvZetwnkrm7Gjr6kqa+vz2BFPpTHijWRD1gl1IXFWpwRi0o4bGYIQBEHUN2vbnIgkUtg35AOgbphvu1sKQS7XFEQLQxC3TbuZs2EZGWeCrJ2+L4qVJQRWIcZ8UVy02lP0Nga9Du0uyyI7fV84gYYqzAkR9ckV69pw97svwNt+tAe3/WIv9DqGLd1uvPOSlTh/VTPO7m0se1OhEvqaM3b60yESZxpBZ/Z1SnbmjNoaCYIg6hrh2LjrxAwAdStnJoMkDMqx048lU4gm0pq0NcaSaUQTKViMelWPLZ5nsYwzQW7WWTnirFQAdS49TVacWlQ5S6Chzp0aCW3Z0OnCn99/MZ4fD2BzjZiu5GadXbymZYlXszyhWnqdEiRxRhAEsSxY0yYJg13HpwGoO3MGSC1+w17lM2fCTVBtt8ZsELUGpiAjCipnbRn7+3IdG+UEUAt6Gm15DEHiy8KpkdCWRrsJ561srglhBgBtLjOsRj05NmoIibM6JWsIUiN/rARBEER5uCxGdLgtmAjEoGPqG0R0NVrLamv0aWRYIQSJXHF2YNgn+7Yjvgg8DpOsitxcW2NM1rEXMpoRZ8UCqAXdjTaM+2OIJlLZy7wazPMRhNYwJtnpk2OjdpA4q1PIrZEgCGL5sCbT2thoMxUNTy6H7kYrxnxRJFPKss6EINKirRGArLmzcDyJ13zzcfx/fzgk69jDMm30AcBuNsBpNpRdORvNVOmKBVALejJ2+iM5xizecIIqZ0Rd0u+xUxC1hpA4qyH+emgcjxydlHXbQDQJk14Hs0Hdfn2CIAii+qxtlVob1Zw3E3Q12JBMc4wHlFWIsiHJGrg15h6/GHtPeRFPpvGHfSOYDZW23x+eDctyahS0uS1lZ53JCaAWdGft9CVxlk5zqa2RZs6IOqTPY8fgTFjxhg8hDxJnNUIknsIHf7UXn/nzEVm3D8YSVDUjCIJYJghTELXnzQCpcgZAsSmI9pWz0mLrqYFZAFJ+2W+eGSp6W8657ABqQSVZZ3ICqAWiciYcG4PxJNIcVDkj6pL+ZjuSaZ51RyXUhcRZjfCHfSMIRJM4Oh6Y15NeiEA0SWYgBEEQywRhCtKogbV6lxBnCk1BNBNnCmbO9gzMYF27E9t7G3HXrkGkiwTfesMJRBIpReKszWUpv61RRgC1oNVpgVE/l3Wm1TwfQVSD3kzg9QlqbdQEEmc1wl27BqHXMSTTHC+MB0rePhhNkhkIQRDEMkHMnDXZzaofW7T5Dc2UVzlT263RaTaAsdLiLJlK45mTs9je14g3n9eLE1MhPH5suuDtxS5+lwxre0G724yJQAypIqKvEKO+KDpktDQCgF7H0NVgxamMY6OYt1M7Q44gqkGunT6hPiTOaoADwz48d8qLm8/vy/y/v+R9AjESZwRBEMsFh9mAd126Etdu7lD92BajHh6HWXELkjecgNNsgF5lgxKdjsFtNZYUZ0fGAgjFU9jR14SXbmpHo82Inz55suDt58SZ/GDcdpcFqTTHdFC5Y+OYL4oOBUKwp8mWrZx5I1JLJ7U1EvVIi9MMu0mPgWmy09cCEmc1wF27TsJi1OG2K9fAZTFg/7Cv5H2C1NZIEASxrPj4y9bjojUeTY5djp2+P5LItiCqjdtqLOnW+NSAFMq9va8JFqMeb9jegwcPjxdsQ5zLOJMvmNpygqiVIAKoO2Q4NQq6G60YmllQOaO2RqIOkez07WSnrxEkzpYYfzSB3+0dwSu3dsJtM2JTlxsHR2SIM6qcEQRBEDLpbrQqrpz5NMzhapBROdtzchadbku2LfNN565AKs3xi92n8t5+xBuBxahDkwLHS2GDr9SxUUkAtaC70YbpUBzheBJeMc9HlTOiTiE7fe0gcbbE/O7ZYYTjKdx4bi8AYFOXG0dGA0iUsCcNxpLk1kgQBEHIortBEmfFDDUWoqU4c5UQZ5xzPDUwg+19TdnLepvtuGRtC36+ezCvhfewN4LOBisYk9+GKYKolcYMKAmgFgjXzKHZCHwZp0oyBCHqlT6PDadmIyXPVwnlkDhbQjjnuGvXIDZ3ubG1pwGAJM7iqXRJUxCprZE+1AmCIIjSdDVaEU+mMaVgtkrTypnNVFScDc1GMO6PYUdf47zLbzx3Bcb8UfztyMSi+wx7o4oyzgCg2WGGXscwrrBypiSAWtDTlMk6mwnDG07AZtJTVilRt/Q125FKc8Xt0kRpSJwtIU+fnMWRsQBuPHdF9rJNnS4AwMEipiDRRArxVJraGgmCIAhZZKs2ClobvRqKM7fVUFSc7cmZN8vlynWt6HBbcNeuwUX3GfFG0KmgzRCQXBRbnWbFM2dKAqgFuZUzbyRB82ZEXUOOjdpB4mwJuWvXIJxmA16xtTN7WV+zHQ5zcVOQYCwJAGQIQhAEQchCOBgq2eX2aWwI4oskwHn+NsunTs7CaTFkw7kFBr0Ob9yxAv94YRInc8wIookUJgOxbKabEsrJOlMSQC1ocZhhMeqylTOy0Sfqmb6MOKOsM/UhcbZEzITi+NP+UVx/VhfsORUwnY5hQ6cLB4qYggSjkjijyhlBEAQhh2wQtUxxFk2kEE+mNTQEMSGV5tnNxoU8NTCDs3sb89r4v/GcHuh1DD/LqZ4Jgw4lAdSCdpdFsSGIkgBqAWMM3Y2Snb4vEicbfaKuabab4DQbyLFRA0icAYoGpNXiN08PIZ5MZ41ActnU6cbhUX/egWdgrnJG4owgCIKQg8NsQIPNiGGvvFwi0XKoXVujdNx8dvrecBwvjAexY0FLo6DNZcHV69vwq6dOIZpIASjPRl/Q7raU1dYoN4A6l+5GKYhaqpyROCPqF8YY+jx2qpxpwGkvzt79k6fxLz9/tqqPmU5z3LXrJHb0NeKMduei6zd3uxBNpHFsMv8bPiAqZ9TWSBAEQcikq0F+1pnm4iwjTPLNnT19chYAsL23cdF1gjef14vZcAJ/OTAGIDeAury2xkA0iXA8fxUvH0oDqAU9jTaprTGSgNtKbY1EfdPnoawzLTjtxZnDYsDjx6aqWj17/Ng0BqbDeatmgFQ5A4ADBebOROXMRW6NBEEQhEy6G62y2xpFRUvrylk+cbZnYBZGPcu6GOfjglXN6PfY8dMnTwKQxBljytwTBe1uMwD5WWflBFALuhut8EeTmArGqHJG1D39zTYMz0YQT5Kdvpqc9uLsvJXNmA0n8MJEcet6Nblr10k02ox46ab2vNevbHHAatQXNAUJRKUvM2prJAiCIOTS1SDNOxUy4chFiKYGjao7DUUqZ08NzGBTlxsWY2GbeZ2O4U3nrMBTJ2dxZMyPEa9k0FGONb1wXJTb2ihEXIdCZ0hgzk6fc5BbI1H39HnsSHNgcEZeuzQhj9NenJ3bL/W07zo+U5XHG/dH8cChcbx+e0/BLx59xhTkYAFTkOzMGbU1EgRBEDLpbrQikkhhNs+c10KWauYsmkhh35Cv4LxZLq87uxsmgw4/ffIkRrzRssxAgJwgapnibDQrzsqrnAmockbUO31kp68Jp70462myoavBiiePT1fl8X655xRSaY5/OmdF0dtt6nTh4Ig/b7tlgNwaCYIgCIUocWzUWpyJitzCytn+YR/iqXTReTNBo92E67Z04N5nhnFsMliWjT4w1wo55pMX0F1OALWgp9GW/TfNnBH1Tn9zRpxNh4DPfx7YuXP+DXbulC4nFHHaizMAOHdlE3admJHV6lEJyVQaP989iIvXeLLhfYXY1OVGOJ7C8Ty7EcFYEkY9g9lAvz6CIAhCHsIsY2i2dAuSL5IAY9rlaVqMOpj0Ongj8XmXi/Dps2WIM0AyBgnFUxj1RcsyAwEAm8kAp8WgqHKmNIBa0GAzZjdWqXJG1DuNdhPcVqPk2LhjB/CGN8wJtJ07pf/fsWNpF1mH0Nk9pLmzmVAcRyeCmj7OQ89PYtQXxY3nFq+aAZI4A5C3tTEYTcJhNoCxxfkvBEEQBJEPUbURzobF8IXjcJoN0OXJGVMDxhjcNiP8CypnTw3MYlWLHc0Os6zjnNnTgPUdLgBAZxmVLEGbgqyzcgKoBVLWmSQiSZwRy4GsY+PllwO//CVw3XXAK18pCbNf/Uq6nFAEiTMA569sBgDNWxvv2nUSrU4zrlzfVvK2q1sdMBl02D+UR5zFkjRvRhAEQSjCZTXAYTbIstP3RRJZu3utcFuN82bO0mmOpwZmZM2bCRhjePN50oZnV07LoFLaXfKzzsoJoM6lO7NOrcxWCKKa9DfbMDCVqcZfcQXQ3Az84Q/Au99NwqxMSJxBGtDtdFs0NQU5NRPGQy9M4o07emTtthn1OqzvcOFAnspZIJqE00w7bgRBEIR8RNVGrjjTWjw0WI3zZs6OTgThjyaxXYE4AyRjkP989SZcstZT9lraXBZFbY3lBFALqHJGLCf6PHaM+CJSIPzOncCslFOIr3998QwaIYuSKoEx1sMY28kYO8wYO8gYuy1z+RcYY0cYY/sYY/cyxho0X61GMMZw3spmPHl8WrO5s7ufOgUG4IYSRiC5bOp04eDwYlOQQDRBlTOCIAhCMV0NVnltjZGEZmYggoWVMzFvtqNP3ryZwGzQ46bzesuy0Re0u82YCMSQkpF5Wm4AteB1Z3fj/VeuKRoVQBD1Qr/HDs6Bqd//RWpl/MlPAIMBuOaa+TNohGzkVM6SAD7MOV8P4DwA72OMbQDwIIBNnPMtAF4A8HHtlqk9561sxnQojhc1mju778AYdvQ1KRpY3tzlRiCWXJQfEYwl4SSnRoIgCEIhXY1W2YYgmosz2/zK2VMDM2hxmrGiqfz2xHJpd1mQSnNMB4s7NlYSQC3Y1OXGh65eW/b9CaKW6Ms4NoYff1KaMXv1q4GXvAR4/HHgF78A9uxZ2gXWISXFGed8lHP+TObfAQCHAXRxzh/gnCczN3sSQLd2y9Sec1dKbRRPnlC/tfH4ZBBHJ4K4ZmP+0OlCCFOQha2NNHNGEARBlEN3oxWBaBL+aOGss3SawxtOwFWFylmuONszMIsdfY1LYnYlN4i6kgBqgliOiKyzh151y9yM2ZveBAwOAmYz8JGPLN3i6hRFM2eMsT4AZwLYteCqfwZwn0prWhJWNNnQ4bZoYgpy/8FxAMBLNpY2AsllTZsDRj3D/uEF4izj1kgQBEEQSuhqyDg2Fpg72zfkxfXffBzToTjWtTs1XUuD1YRgLIlEKo1RXwTD3gi29yqbN1OLuayz4uKskgBqgliOuK1GNNlNODGVU5F/1asAqxX42c+WbmF1jGxxxhhzAPgNgA9wzv05l/87pNbHuwrc752MsacYY09NTk5Wul7NEHNnuzSYO7v/4Bg2dbmyDk1yMRv0OKPdiYPD/nmXB6hyRhAEQZSBMKNYaAoyE4rj4/fsw6u+/hhGvBF8+YateMv5vZquxW2Vvsf8kQSeGpBMBJQ4NapJe6ZyVsoURARQV+LWSBDLjb5mGwZyc3kdDslO/+67gUThKj2RH1nijDFmhCTM7uKc35Nz+c0ArgNwIy+gaDjn3+Gcb+ecb29paVFjzZpxbn8TpoJxHPv/27v34Kqu+9Dj3yWBeEhCWBIyIGyQMKkNuLYTKCIuTnDS4nrcOnHcxCZ1fOt6mnj6SMZJ/ZjbNNOmN2nc20zjaZM0j9tLJh7H5OE6r5omDtd5AQF7qI1s/OLhCMxTWGDegnX/2PuAAAkdPY7OPtL3M3NGR/vsfc7S+Rmv8ztrrd/afe7Gz/21o+MI63/9Oktm921KY87cqTVs2N5xKmE82nmCY50nmTDWKk+SpL5pTJOzbem6sxMnI19fvZVr/+n/sXxdG3dc3cRPPvo23n3VtIJPL5w4PqkG2XH4OOu2tDO+opzLphR2tK4ndVVjKC8LvU5rzG1A3VCd3z5s0khwaq+zrpYuhT174Mc/Lk6jSlg+1RoD8FXg+RjjZ7scvw64F/iDGGPvq4tLQEsB9jv70XM7AFgyt3/J2ZzGGl4/dPzUt5xvHEmW+TmtUZLUV3WVFYwdXUbbvsM8/eo+bvzXn/PX/7GB37iwmh/+5SI+fsNsqofoy79cwZGOw8dZu2Ufb774Akb1Y2PnwVBeFmioHsOOjvMXBBnIBtTScNVUV8lrHUc4fOzE6YPXXQcXXODUxn7I5/8uVwO3AdeGENant+uBfwGqgR+lx75YyIYOhel147lwwhjWDGJRkBWtO2mur2RWQ1W/rr88LQrSmhYFeeOoyZkkqX9CCDROHMe3nm7jps//kt0HjvLgrVfxjT9t4TcKvMbsbLlNrtv2HWbjjv28ZXrfSugPtgsnjOXJF3fxye8/x+MbdnRbuXGgG1BLw9H0tCjI1vYuo2cVFXDzzfDoo3BoWIzhDJleP+HHGH8OdDe34YeD35ziyq07++UrybqzgU7p6Dh0nNWb9nLnouZ+P9elk6spL0uKglw3dwoHciNnrjmTJPXDrIZqtj6/kw9e08xfvGNW0b7sy42crXxhFydj8dab5dz19pn8+y828/XVW/nqzzcDcElDFfNn1LKgqZb5TbW81nGESyb178tWabhqSsvpb9lzkEsnTzj9wNKl8OUvw/e+B+97X5FaV3r8hH+WluY6Hlu/nU17DjJzgP8DfmLjTjpPRpb0sUpjV2NHlzOroYoNaVGQ3MiZ+5xJkvrj0zddzic6Zxe9HPyp5GzjLsrLAldePLGo7VkyZzJL5kzmaOcJNmzrYM3mdtZubuf7z2zn4V+9euq8RbPqi9hKKXtm1CcF786o2AiwaBE0NiZTG03O8uYn/LMsaEq+uVuzqX3AydmK1h1cOGEMV0ybOKDnmdtYw8qNu4gxnl5z5siZJKkfLqisKHYTgNPJ2b5Dx7m8sSYz0/XHjCrnLdNrecv0Wnh7UjRl4479rN3czjNtHdx4ZWOxmyhlSvXY0dRXVZxZsRGgvBxuuQUefBDa26G2uKPjpcIVrWdpqq+koXrMgIuCHD52gidf3M3vzp5MWdnApkfOnTqBvQePsWP/kdMjZ1ZrlCSVsNHlZVRWlAMwb0Zx15udT3lZYM7UGv7H1U189n1XcuVFE4vdJClzZtRVsvnsio2QTG08fhy+/e2hb1SJMjk7y6n9zjYPbL+zn760myPHT7JkTv+qNHZ1+bSkKMiGbfs5cCTZLyIr3zBKktRfuXL6xV5vJmlgZtRXnjtyBnDVVfCmN1m1sQ9MzrqxoLmWnfuPsmVv/6vLrGjdQc240SxoHniHc9mUCYQAz27r4MCpkTOTM0lSaZuQTm2cV+RKjZIGpqm+kl0HjnIw/Zx6SgjJ6NmTT8K2bcVpXIkxOevGQPc7O37iJE88v4t3XNowKHuhjK8YxcxJVbRu6+CNI52MKguMGWXoJEmlrbZyNNPrxtMwYWyxmyJpAGbkKjZ2N7Xx1lshRnjkkSFuVWnyE343musrmVQ9hjX9TM5+tbmdjsPH+d1BmNKYc3ljDRu2d/DG0U6qxo4acJl/SZKK7b7rLuOz772i2M2QNEC5io1bzq7YCMm0xnnznNqYJ5OzboQQWNBUy+pN7f1ad7aidQdjR5fxtjdNGrQ2zZk6gZ37j7J5z0HXm0mShoXLp9UkVREllbTzjpxBMrXxqafghReGsFWlyeSsBy3NdezYf4StfVx3dvJk5L9ad3LNrEmMS6tQDYbLG5OiIOu27DM5kyRJUmZUjhlFQ/WY7ouCQLLPWQjw8MND27ASZHLWg5a0kMeazX2b2vjMtg527D8yKFUau5o9Ndlx/fDxE0ywjL4kSZIyZEZ9Zc8jZ1OnwuLFydTGAVRDHwlMznowc1IV9VUVrN7U3qfrVrTuoLws8I7LGga1PdVjR9NUnwwZuwG1JEmSsqSprpLN3a05y1m6FF56KZneqB6ZnPUghMCC5jrWbOrbfmcrWnfQ0lx7au+WwTQ3ndrotEZJkiRlyYz6Sva8cfTUnrznaGuDUaPOLAyyciU88MDQNLBEmJydR0tTLds7jvDr9sN5nf/yrgNs2n2Q6wZ5SmPO3HRqoyNnkiRJypKmtGJjj/UarrkGyspg2TI4cSJJzN77Xpg/fwhbmX0mZ+fR1/3OVrTuBOB3ZhcmOcsVBal25EySJEkZMiNdfrO5p6IgixfDvfdCezvcfnuSmC1fnhzXKSZn53FJQxV1lRWszrMoyIrWHVx50UQm1xRmM805U2sYVRaorxpTkOeXJEmS+mN6bVpOv6fkDOD++6GyEh56CD70IROzbpicnUey7qyWNXnsd7b99cM809Yx6FUau6oZP5rH/vxqli64uGCvIUmSJPXVuIpyptSMZdP5krPVq5OS+gCf+1wytVFnMDnrRUtzHdteP0zbvvOvO/uv1h0ALJlzYUHbM2dqDZVOa5QkSVLGzG2s4elX93X/YG6N2aOPwlVXwdixye8maGcwOetFbt3ZJ77byheffIX/fPY1ntu+n4NHO884b0XrTmY1VNE8qaoYzZQkSZKKqqW5jq17D7H99W4GNdauTdaYvfOd8M//DLt3ww03JMd1ikMwvZjVUMWSOReybss+frJx1xmP1VdVcHHteKbXVfKrLe3c9baZRWqlJEmSVFwL00GNVa/s5T1vmXbmg/fcc/r+NdfAzTcnydqLLw5hC7PP5KwXIQT+7bZ5ABw4cpytew8lt/aDbN2T/FyzaS9jR5Vx45VTi9xaSZIkqTgunVzNxPGjWbWpm+TsbA88AN/7XlIk5GtfG5oGlgCTsz6oHjuauY01pzaD7irGSMgtcJQkSZJGmLKywIKm2vy2oWpqgrvvhk9/Gv7sz2DBgsI3sAS45myQmJhJkiRppFvYXEfbvsP8ur2Hzai7uv9+mDwZPvIR6KUy+khhciZJkiRpUCycWQ/AqnxGz6qr4VOfSkrsP/xwgVtWGkzOJEmSJA2KWQ1V1FZW5De1EeD22+HNb4Z774VDeYy2DXMmZ5IkSZIGRVlZoKW5ltWv7CXmM1WxrCwprd/WBv/4jwVvX9aZnEmSJEkaNAub69jecYRX81l3BrBoUbIh9Wc+kyRpI5jJmSRJkqRB05Lud5b31EZIqjd2dsJ9950+tnJlUnJ/BDE5kyRJkjRoLmmoor5qDKte6UNytmQJjB4NDz2UFAhZuTIZTZs/v3ANzSD3OZMkSZI0aEJI1p2t2rQ3/72AFy+Gb34Tfv/34T3vgWPHYPny5PgI4siZJEmSpEHV0lzHzv1H2bznYP4XXX99kpxt3w5XXDHiEjMwOZMkSZI0yBbOzK07a8//opUr4Re/gNmz4Ykn4HOfK1DrssvkTJIkSdKgaq6vpKF6TH6bUcPpNWbLl8OqVdDYCHffDd/5TmEbmjEmZ5IkSZIGVbLurI5V+e53tnbt6TVmEybAD34A5eXJ5tQnThS+wRlhciZJkiRp0C2cWceeN47yyu481p3dc8+Za8yuuAK+8AV4+WX4+7/P/0UfeCAZheuqhErym5xJkiRJGnQL0/3O8p7aeLY77oAPfAD+9m/hxz/O75r585PpkbkErcRK8pucSZIkSRp00+vGM6VmLKv7st9ZVyHA5z+fFAhZujSp4tibxYth2TK44QZ417tOr2MrkcqPJmeSJEmSBl1u3dnqTXmuO+tOZWWy/9mhQ3DLLdDZ2fO5nZ3wpS/BnXcm5z/2GNx1V8kkZmByJkmSJKlAFjbXsffgMV7a9Ub/n+Syy5Kk62c/g49//NzHY4RHH4W5c+GDH4TaWpg4MTn3C184dw1ahpmcSZIkSSqI3H5nq/o7tTFn6VJYsAD+4R/g+98/ffzBB2HGDLjppmQa5Cc/CTt3JiX4/+7vkimNXdegZVyvyVkI4aIQwsoQwvMhhNYQwofT43+Y/n4yhDCv8E2VJEmSVEqmXTCOxonjBp6cQVIYpLwcbr0VVqyAt74VPvxhOHgQvvxlePZZqKg4c43Z4sXJ72vXDvz1h0Dobf5nCGEKMCXG+HQIoRp4CngXEIGTwL8BH4sxruvtxebNmxfXrev1NEmSJEnDxEeX/zc/2biTp/76dygrCwN7sq9/PangGGMyUnbHHcno2fjxg9PYIRBCeCrG2O3gVq8jZzHG12KMT6f3DwDPA40xxudjjC8MblMlSZIkDScLZ9ax79BxXth5YOBP9kd/BO9/f3L/7rvhK18pqcSsN31acxZCmAFcBazpwzV/GkJYF0JYt3v37j42T5IkSVIpa2muBQZh3Rkka8cefzwp9rFsWcmsJctX3slZCKEK+DbwkRjj/nyvizF+KcY4L8Y4b9KkSf1poyRJkqQSNe2C8VxUO47V/d2MOie3ofTy5SVZ7CMfeSVnIYTRJInZQzHG7xS2SZIkSZKGk4XNdazZ3M7Jk/3c7wySoh4lXOwjH6N6OyGEEICvAs/HGD9b+CZJkiRJGk5amutYvq6N517bz9zGmv49yT33nHts8eKS2mS6N/mMnF0N3AZcG0JYn96uDyG8O4TQBiwEfhBCWFHQlkqSJEkqSbn9zgY8tXGY63XkLMb4c6CnmpePDm5zJEmSJA03U2rGMaNuPKs37eXORc3Fbk5m9alaoyRJkiT1R0u67uzEQNadDXMmZ5IkSZIKbuHMOg4c6aR1e0exm5JZJmeSJEmSCm5hc7LubFD2Oxumel1zJkmSJEkD1TBhLN/80ELmTu1ntcYRwORMkiRJ0pCYP6O22E3INKc1SpIkSVIGmJxJkiRJUgaYnEmSJElSBpicSZIkSVIGmJxJkiRJUgaYnEmSJElSBpicSZIkSVIGmJxJkiRJUgaYnEmSJElSBpicSZIkSVIGhBjj0L1YCLuBrUP2gvmrB/YUuxE6L2OUfcYo+4xR9hmj7DNG2WeMsm+kx2h6jHFSdw8MaXKWVSGEdTHGecVuh3pmjLLPGGWfMco+Y5R9xij7jFH2GaOeOa1RkiRJkjLA5EySJEmSMsDkLPGlYjdAvTJG2WeMss8YZZ8xyj5jlH3GKPuMUQ9ccyZJkiRJGeDImSRJkiRlQEklZyGE60IIL4QQXg4h3Nfl+CMhhPXpbUsIYX0P19eGEH4UQngp/XlBevz9Xa5fH0I4GUK4spvrH0pff0MI4f+EEEanx0MI4cG0Xc+EEN5cmHcg+zIco0tDCKtCCEdDCB8rzF9fGjIco/en/36eCSH8MoRwRWHegezLcIxuTOOzPoSwLoTw24V5B7KvgDEaHUJYFkJ4NoTwfAjh/h6ubwohrEmvfySEUJEetz9KZThG9kepDMfI/iiV4RgN3/4oxlgSN6AceAVoBiqA/wZmd3PePwF/08NzPADcl96/D/hMN+dcDmzq4frrgZDeHgbu6nL8P9PjLcCaYr9fxuicGDUA84H/BXys2O+VMeo2Rm8FLkjv/57/jjIZoypOT4f/TWBjsd+v4RYjYCnwjfT+eGALMKOb65cDt6T3v2h/VFIxsj/Kfozsj7Ifo2HbH5XSyNlvAS/HGDfFGI8B3wBu7HpCCCEA7yX5MNGdG4Fl6f1lwLu6OefWnq6PMf4wpoBfAdO6PO/X0odWAxNDCFPy/suGj8zGKMa4K8a4Fjjep79o+MlyjH4ZY9yXnraa0/++Rposx+iN9BhAJTBSFy0XMkYRqAwhjALGAceA/d0897XAt7q53v4okdkY2R+dkuUY2R8lshyjYdsflVJy1gj8usvvbemxrhYBO2OML/XwHBfGGF8DSH82dHPO++j5PzAgGYoFbgMe70PbRoIsx0iJUonRn5B8+z8SZTpGIYR3hxA2Aj8A7jjf9cNYIWP0LeAg8BrwKvC/Y4ztZ11bB7weY+zs5vXtjxJZjpESpRIj+6PTMhWj4doflVJyFro5dnaW3OM3wXm9QAgLgEMxxg29nPp54Kcxxp/1oW0jQZZjpETmYxRCWEzSGd7b3zaUuEzHKMb4aIzxUpJvLz/Z3zaUuELG6LeAE8BUoAn4aAihuQ+vb3+UyHKMlMh8jOyPsh2j4doflVJy1gZc1OX3acD23C/psOhNwCNdjv17ulDwh+mhnbnpHenPXWe9xi30/k3yJ4BJwN35tm0EyXKMlMh0jEIIvwl8Bbgxxri3D3/XcJLpGOXEGH8KzAwh1OfzRw0zhYzRUuDxGOPxGOMu4BfAvLNefw/JdMVR3by+/VEiyzFSItMxsj8CMh6jnOHWH5VScrYWmJVWbakg+XDx3S6Pv5NkMWBb7kCM8Y9jjFfGGK9PD30XuD29fzvwWO7cEEIZ8Ick82m7FUK4E1gC3BpjPNnloe8CHwiJFqAjN4Q7wmQ5RkpkNkYhhIuB7wC3xRhfHMDfWOqyHKNL0jUAhKQKYAUwEj+0FDJGrwLXpv1JJUlRj41dXzxdZ7ESuLmb6+2PElmOkRKZjZH90SlZjtHw7Y9iBqqS5HsjqUL1IknlmP951mP/F/hQL9fXAU8AL6U/a7s89nZgdS/Xd6avvT69/U16PAD/mj72LDCv2O+VMTonRpNJvgHaD7ye3p9Q7PfLGJ0Ro68A+7ocX1fs98oYnROje4HW9Ngq4LeL/V4NtxiRVCD7Zvo+Pwf8VQ/XN5MUa3k5PX9Metz+KPsxsj/Kfozsj7Ifo2HbH+VKUEqSJEmSiqiUpjVKkiRJ0rBlciZJkiRJGWByJkmSJEkZYHImSZIkSRlgciZJkiRJGWByJkmSJEkZYHImSZIkSRlgciZJkiRJGfD/AeEb5Bu+wMJ1AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACh8klEQVR4nOzdeXhbZ5U/8O+r3dpsy/vuON6yp9m7ZekOLWtpYaaUwlBKO/CjrAMMAy0MDBRmWGdoKQUGSodCFyiUtrSlSfesbZqmSWxn8b7Ilixb+/r+/ri6smxL8pV0Zcv2+TxPHhpblq+TYOvcc97vYZxzEEIIIYQQQghZWIqFvgBCCCGEEEIIIVScEUIIIYQQQkheoOKMEEIIIYQQQvIAFWeEEEIIIYQQkgeoOCOEEEIIIYSQPEDFGSGEEEIIIYTkASrOCCGEEEIIISQPUHFGCCGLFGPMFfcrwhjzxv3+hoW+vkwwxroZY5ct9HWkwhjbxxi7OUfP3coYe4wxNsoYszPG/sYYa4t7/4cZY+EZf/e7o+/TMsZ+wRjrYYw5GWOvM8beNuP5L2WMnWKMeRhjexljDXHvY4yxuxhjtuiv7zLGWC6+TkIIIYlRcUYIIYsU59wo/gLQC+AdcW97YKGvbybGmGopfI4cKwLwZwBtACoAHATw2IzHvBr/d8853xd9uwpAH4BdAAoBfBXAHxhjjQDAGCsF8Gj07RYAhwH8Pu55bwHwbgAbAKwHcA2Aj8v61RFCCEmJijNCCFliGGMKxtiXGGNnoh2QPzDGLNH3NTLGOGPsI4yxPsbYOGPsVsbYVsbYMcaYgzH233HP9WHG2MuMsZ8wxiaiXZdL495fGO3WDDHGBhhj32SMKWd87A8YY3YAdzLGVjLGnote1xhj7AHGWFH08fcDqAfwl2hH6F8YY7sZY/0zvr5Yd40xdidj7GHG2G8ZY5MAPjzHNTUzxp6Pfi1jjLH44iT+c+iiz2mL/pkcYoxVMMa+BeBiAP8dvcb/jj6+nTH2TLTb1cEYuz7uuf6XMXZP9P3O6OdvSPR5OecHOee/4JzbOedBAD8A0MYYK5nr751z7uac38k57+acRzjnjwM4B2Bz9CHvBfAW5/whzrkPwJ0ANjDG2qPvvwnAf3HO+znnAwD+C8CH5/q8hBBC5EPFGSGELD2fgtAB2QWgGsA4gP+Z8ZjtAFoAvB/ADwF8BcBlANYAuJ4xtmvGY88CKAVwB4BHxWIPwK8BhAA0AzgPwBUAbk7wseUAvgWAAfh29LpWAaiDUCSAc34jpncAvyvx630XgIchdJ0emOOa/h3A0wCKAdQC+EmS57wJQvepDkAJgFsBeDnnXwHwIoBPRq/xk4wxA4BnAPxf9Ov8BwA/ZYytiXu+G6KfuxTA0eh1SrETwDDn3Bb3tvOihWUnY+yrybqFjLEKAK0A3oq+aQ2AN8T3c87dAM5E3z7r/dH/jv8aCCGE5BgVZ4QQsvR8HMBXoh0QP4Ti530zXsT/O+fcxzl/GoAbwO8459Zox+RFCEWNyArgh5zzIOf89wA6AFwdffH/NgCfjnZtrBA6PR+I+9hBzvlPOOchzrmXc36ac/4M59zPOR8F8H0IRWQ2XuWc/4lzHgFgnuOaggAaAFRHv/6XkjxnEEJR1sw5D3POj3DOJ5M89hoA3ZzzX0W/ztcAPALgfXGP+Svn/IXo38dXAJzPGKtL9UUxxmohFNWfjXvzCwDWQigCr4VQCH4hwceqES1UOeenom82ApiY8dAJAKYk758AYKRzZ4QQMn8W+2w+IYSQ2RoA/JExFol7WxjCGSbRSNx/exP83hj3+wHOOY/7fQ+EzlcDADWAobjX7woI555E8f8Nxlg5gB9DGA00RR8/LumrSi7+c8x1Tf8CoYN1kDE2DmGM75cJnvN+CF2zB6Njl7+FUPAGEzy2AcB2xpgj7m2q6HPMukbOuSs65lk949pjGGNlEDp8P+Wc/y7uY8/GPexNxtg3IBRn3477WEX0cwcAfDLu8S4IxWs8MwBnkvebAbhm/N0TQgjJIeqcEULI0tMH4G2c86K4X7poVywTNTO6J/UABqOfxw+gNO7zmDnn8aNwM1/Yfzv6tvWcczOAD0IYdUz2eDcAvfib6NmxshmPif+YlNfEOR/mnH+Mc14NocP4U8ZY88wvONol/DrnfDWACyB0xz6U5Br7ADw/48/byDm/Le4xsS4ZY8wIIZBjcObnjb6/GEJh9mfO+bcSPWbG1x7784v+Pf0CQiF+7Yxi8i0IYR/iYw0AVmJq7HHa+6P//RYIIYTMGyrOCCFk6bkHwLfE0AnGWBlj7F1ZPF85gE8xxtSMsesgnBV7gnM+BKGI+C/GmJkJQSQrZ5xXm8kEoUPjYIzVYPZI3giAprjfdwLQMcaujo7q/RsAbbInn+uaGGPXRccFAaFjxyF0FadhjO1hjK2LFoOTEMYcxcfNvMbHAbQyxm6M/hmpmRCwsiruMW9njF3EGNNA6Nwd4JzP6poxxswA/gbgZc75lxK8/23RcVJEgzy+iulpjndD+Pt5B+fcO+PD/whgLWPsWsaYDsDXAByLG3v8DYDPMsZqGGPVAD4H4H9nXgMhhJDcoeKMEEKWnh9BiGN/mjHmBLAfQjBHpg5ACA8ZgxDq8b64gIoPAdAAOAGh2HkYQFWK5/o6gE0QzjP9FUK0e7xvA/i3aELi5znnEwD+GcB9AAYgdNL6kVqqa9oK4ABjzAXhz+h2zvm5BM9RGf24SQAnATwPYbQREP5838eEpMsfc86dEEJHPgChGzYM4C5MLyL/D0KYih1CemKyPXTviV7jR9j0XWb10fdfCuAYY8wN4AkIf37/AQDRYvzjADYCGGYzdt5Fz/hdC+HvcBzCv4n484E/A/AXAG8COA7h7+dnSa6TEEJIDjAaJSeEEJIMY+zDAG7mnF+00NeyWDHG/hdAP+f83xb6WgghhOQ36pwRQgghhBBCSB6g4owQQgghhBBC8gCNNRJCCCGEEEJIHqDOGSGEEEIIIYTkASrOCCGEEEIIISQPqObzk5WWlvLGxsb5/JSEEEIIIYQQkjeOHDkyxjkvS/S+eS3OGhsbcfjw4fn8lIQQQgghhBCSNxhjPcneR2ONhBBCCCGEEJIHqDgjhBBCCCGEkDxAxRkhhBBCCCGE5IF5PXNGCCGEEEJIvggGg+jv74fP51voSyFLkE6nQ21tLdRqteSPoeKMEEIIIYQsS/39/TCZTGhsbARjbKEvhywhnHPYbDb09/djxYoVkj+OxhoJIYQQQsiy5PP5UFJSQoUZkR1jDCUlJWl3Zak4I4QQQgghyxYVZiRXMvm3RcUZIYQQQgghC+Rb3/oW1qxZg/Xr12Pjxo04cOAAAODmm2/GiRMnZPkcjY2NGBsbS/mY//iP/0j7ef/3f/8Xn/zkJ6e97Ve/+hU2btyIjRs3QqPRYN26ddi4cSO+9KUvpf388+GHP/whPB7PQl9GDJ05I4QQQgghZAG8+uqrePzxx/Haa69Bq9VibGwMgUAAAHDffffN67X8x3/8B/71X/816+f5yEc+go985CMAhKJw7969KC0tzfp5M8U5B+ccCkXintQPf/hDfPCDH4Rer5f8nKFQCCpVbsqoOTtnjLE6xthexthJxthbjLHb4973/xhjHdG3fzcnV0jm3cikD6/1ji/0ZRBCCCGELGlDQ0MoLS2FVqsFAJSWlqK6uhoAsHv3bhw+fBgAYDQa8cUvfhGbN2/GZZddhoMHD2L37t1oamrCn//8ZwCzu1jXXHMN9u3bN+tzvvvd78bmzZuxZs0a3HvvvQCAL33pS/B6vdi4cSNuuOEGAMBvf/tbbNu2DRs3bsTHP/5xhMNhAEJnrLW1Fbt27cLLL78s+Wv93ve+h61bt2L9+vW44447AADd3d1ob2/HzTffjLVr1+KGG27As88+iwsvvBAtLS04ePAgAODOO+/EjTfeiEsuuQQtLS34+c9/Pufzrlq1Cv/8z/+MTZs2oa+vD7fddhu2bNmCNWvWxB734x//GIODg9izZw/27NkT+7MWPfzww/jwhz8MAPjwhz+Mz372s9izZw+++MUv4syZM7jqqquwefNmXHzxxTh16pTkP4uUxGoy2S8AVQA2Rf/bBKATwGoAewA8C0AbfV/5XM+1efNmTvKb2x/kl/7XPr72a0/xcDiy0JdDCCGEEJIzJ06cWNDP73Q6+YYNG3hLSwu/7bbb+L59+2Lv27VrFz906BDnnHMA/IknnuCcc/7ud7+bX3755TwQCPCjR4/yDRs2cM45/9WvfsU/8YlPxD7+6quv5nv37uWcc97Q0MBHR0c555zbbDbOOecej4evWbOGj42Ncc45NxgMsY89ceIEv+aaa3ggEOCcc37bbbfxX//613xwcJDX1dVxq9XK/X4/v+CCC6Z9zpnEz/u3v/2Nf+xjH+ORSISHw2F+9dVX8+eff56fO3eOK5VKfuzYMR4Oh/mmTZv4Rz7yER6JRPif/vQn/q53vYtzzvkdd9zB169fzz0eDx8dHeW1tbV8YGAg5fMyxvirr74auxbx6w6FQnzXrl38jTfemPVnM/PP4aGHHuI33XQT55zzm266iV999dU8FApxzjm/5JJLeGdnJ+ec8/379/M9e/Yk/DNI9G8MwGGepF6asx/HOR8CMBT9bydj7CSAGgAfA/Adzrk/+j6rPOUiWUhf/dNbOG11AQD6x72oL5He4iWEEEIIWay+/pe3cGJwUtbnXF1txh3vWJP0/UajEUeOHMGLL76IvXv34v3vfz++853vxLo1Io1Gg6uuugoAsG7dOmi1WqjVaqxbtw7d3d1pXdOPf/xj/PGPfwQA9PX1oaurCyUlJdMe8/e//x1HjhzB1q1bAQBerxfl5eU4cOAAdu/ejbKyMgDA+9//fnR2ds75OZ9++mk8/fTTOO+88wAALpcLXV1dqK+vx4oVK7Bu3ToAwJo1a3DppZeCMTbra3vXu96FgoICFBQUYM+ePTh48CBeeumlpM/b0NCAHTt2xD7+D3/4A+69916EQiEMDQ3hxIkTWL9+fVp/dtdddx2USiVcLhdeeeUVXHfddbH3+f3+tJ4rmbSGJRljjQDOA3AAwPcAXMwY+xYAH4DPc84PyXJVZEE8fKQfj7zWj0vby/H3U1acHJ6k4owQQgghJIeUSiV2796N3bt3Y926dfj1r389qzhTq9Wx5D+FQhEbg1QoFAiFQgAAlUqFSCQS+5hEEe779u3Ds88+i1dffRV6vR67d+9O+DjOOW666SZ8+9vfnvb2P/3pTxklEHLO8eUvfxkf//jHp729u7s79rWk+tqA2cmHjLGUz2swGGK/P3fuHP7zP/8Thw4dQnFxMT784Q8njbiP/zwzHyM+ZyQSQVFREY4ePTrXl542ycUZY8wI4BEAn+acTzLGVACKAewAsBXAHxhjTdFWXfzH3QLgFgCor6+X7cKJvE5bnfjqn45jR5MFP/zARqz/+tM4NeTElWsqF/rSCCGEEEJyLlWHK1c6OjqgUCjQ0tICADh69CgaGhoyeq7Gxkb89Kc/RSQSwcDAQOy8VryJiQkUFxdDr9fj1KlT2L9/f+x9arUawWAQarUal156Kd71rnfhM5/5DMrLy2G32+F0OrF9+3bcfvvtsNlsMJvNeOihh7Bhw4Y5r+3KK6/EV7/6Vdxwww0wGo0YGBiAWq1O6+t77LHH8OUvfxlutxv79u3Dd77zHRQUFEh63snJSRgMBhQWFmJkZARPPvkkdu/eDQAwmUxwOp2x0JKKigqcPHkSbW1t+OMf/wiTyTTr+cxmM1asWIGHHnoI1113HTjnOHbsmKQ/i7lIKs4YY2oIhdkDnPNHo2/uB/BotBg7yBiLACgFMBr/sZzzewHcCwBbtmyZVriR/OALhvGJB16HXqPEjz5wHkw6NRosenSMyNvaJ4QQQgghU1wuF/7f//t/cDgcUKlUaG5ujoV0pOvCCy+MjQiuXbsWmzZtmvWYq666Cvfccw/Wr1+Ptra2aWN/t9xyC9avX49NmzbhgQcewDe/+U1cccUViEQiUKvV+J//+R/s2LEDd955J84//3xUVVVh06ZNsaCQVK644gqcPHkS559/PgBhnPO3v/0tlEql5K9v27ZtuPrqq9Hb24uvfvWrqK6uRnV1taTn3bBhA8477zysWbMGTU1NuPDCC6d93W9729tQVVWFvXv34jvf+Q6uueYa1NXVYe3atXC5XAmv54EHHsBtt92Gb37zmwgGg/jABz4gS3HGZjS6Zj9A6O39GoCdc/7puLffCqCac/41xlgrgL8DqJ/ZOYu3ZcsWLqbOkPzx5UeP4XcH+/Drf9qGXa3CDPGt9x9B54gTz31+98JeHCGEEEJIjpw8eRKrVq1a6Msgc7jzzjthNBrx+c9/fqEvJW2J/o0xxo5wzrckeryUJdQXArgRwCWMsaPRX28H8EsATYyx4wAeBHBTqsKM5KfHjg7gdwf78M+7V8YKMwBoqzThnM0Nb2DuuyGEEEIIIYSQ7ElJa3wJQLKTfx+U93LIfDo35sa/PvomtjQU47OXt05736oqEzgHOkec2FBXtDAXSAghhBBClr0777xzoS9h3kjpnJElSDhn9hrUKgV+/A/nQaWc/k+hvdIMAOgYdi7E5RFCCCGEELLspBWlT5aOb/31JE4MTeKXH96C6qKCWe+vt+hRoFbi5DCFghBCCCGEEDIfqHO2DD3x5hDu39+DW3Y24ZL2ioSPUSgY2ipNODVEnTNCCCGEEELmAxVny4zV6cMXHz6GjXVF+MKVbSkf215pwqnhSVDOCyGEEEIIIblHxdky88yJETj9Idx17Xqolan/+tsrTRj3BDHq9M/T1RFCCCGELC9KpRIbN27E2rVrcd1118Hj8WT8XB/+8Ifx8MMPAwBuvvlmnDhxIulj9+3bh1deeSX2+3vuuQe/+c1vMv7cou7ubqxdu3ba2+68807853/+Z1rPI9f1LDZ05myZebFzDDVFBWitMM752PYqIRTk5LAT5WZdri+NEEIIIWTZKSgowNGjRwEAN9xwA+655x589rOfjb0/HA6ntaxZdN9996V8/759+2A0GnHBBRcAAG699da0P0euhEKhvLqe+USds2UkFI7g5TNj2NlaCmG3eGrtlSYAwKkhCgUhhBBCyDL33e8Ce/dOf9vevcLbZXLxxRfj9OnT2LdvH/bs2YN//Md/xLp16xAOh/GFL3wBW7duxfr16/Gzn/0MAMA5xyc/+UmsXr0aV199NaxWa+y5du/ejcOHDwMAnnrqKWzatAkbNmzApZdeiu7ubtxzzz34wQ9+gI0bN+LFF1+c1t06evQoduzYgfXr1+M973kPxsfHY8/5xS9+Edu2bUNraytefPHFtL/GVM/9r//6r9i1axd+9KMfxa5ncHAQGzdujP1SKpXo6elBT08PLr30Uqxfvx6XXnopent7AQjdw0996lO44IIL0NTUFOskLhZUnC0jb/Q74PSFcHFL2dwPBlCk16DSrMMpitMnhBBCyHK3dStw/fVTBdrevcLvt26V5elDoRCefPJJrFu3DgBw8OBBfOtb38KJEyfwi1/8AoWFhTh06BAOHTqEn//85zh37hz++Mc/oqOjA2+++SZ+/vOfTxtTFI2OjuJjH/sYHnnkEbzxxht46KGH0NjYiFtvvRWf+cxncPToUVx88cXTPuZDH/oQ7rrrLhw7dgzr1q3D17/+9WnXefDgQfzwhz+c9vZ4Z86cmVZQ3XPPPZKe2+Fw4Pnnn8fnPve52Nuqq6tx9OhRHD16FB/72Mdw7bXXoqGhAZ/85CfxoQ99CMeOHcMNN9yAT33qU7GPGRoawksvvYTHH38cX/rSl9L8m1hYNNa4jLzQOQYFAy5cWSr5Y9qrTFScEUIIIWTp+/Sngeh4YVLV1cCVVwJVVcDQELBqFfD1rwu/Etm4EfjhD1M+pdfrxcaNGwEInbOPfvSjeOWVV7Bt2zasWLECAPD000/j2LFjsS7QxMQEurq68MILL+Af/uEfoFQqUV1djUsuuWTW8+/fvx87d+6MPZfFYkl5PRMTE3A4HNi1axcA4KabbsJ1110Xe/973/teAMDmzZvR3d2d8DlWrlwZG9UEppZIz/Xc73//+5Ne18svv4z77rsv1q179dVX8eijjwIAbrzxRvzLv/xL7LHvfve7oVAosHr1aoyMjKT8evMNFWfLyItdo9hQV4RCvVryx7RXmvHy6bMIhiNzBogQQgghhCxpxcVCYdbbC9TXC7/PUvyZs3gGgyH235xz/OQnP8GVV1457TFPPPHEnEdVOOeSjrNIpdVqAQhBJqFQSLbnBaZ/zfGGhobw0Y9+FH/+859hNCbOTYj/GsVrBLDoUsfp1fYyMeEJ4mifQ/JIo2hVlQnBMMfZUXeOrowQQgghJA/88IfAvn2pf91xB+DxAF/9qvC/d9yR+vFzdM2kuvLKK3H33XcjGAwCADo7O+F2u7Fz5048+OCDCIfDGBoawt6ZZ+IAnH/++Xj++edx7tw5AIDdbgcAmEwmOJ2zp6MKCwtRXFwc61Ddf//9sU5XtjJ57mAwiOuvvx533XUXWltbY2+/4IIL8OCDDwIAHnjgAVx00UWyXONCo87ZMvHKmTFEOLCzRfpIIwC0iaEgw5Ox/yYL61cvn0OZSYtr1lcv9KUQQgghy4d4xuwPfwD27BF+xf8+h26++WZ0d3dj06ZN4JyjrKwMf/rTn/Ce97wHzz33HNatW4fW1taEhU5ZWRnuvfdevPe970UkEkF5eTmeeeYZvOMd78D73vc+PPbYY/jJT34y7WN+/etf49Zbb4XH40FTUxN+9atfyfa1pPvcr7zyCg4dOoQ77rgDd9xxBwChY/jjH/8Y//RP/4Tvfe97KCsrk/UaFxKbz1bfli1buJgaQ+bXlx99E4+/MYjXvnZ5WuOJgVAEa+54Cjdf3IQvXtWewyskUm371rNYWWbE727ZsdCXkjcCoQjCEY4CTfpRw4TE+/MbgxgY9+K23SsX+lIIIfPg5MmTWLVqlbQHf/e7QvhHfCG2dy9w6BAQd96JkHiJ/o0xxo5wzrckejx1zpYBzjle6BzFBc0laZ8b06gUWFlmpDj9POENhGF1+qFV00RyvH9//ATeGpzAo/984UJfClnEAqEIvvGXE/AHw7h1V5OsZzQIIUtAogJM7KARIhN6hbcMnBtzY8DhTfu8mWhVlZkSG/NEr90DABhy+BAKRxb4avLHwXN2dNC/UZKlp94axpjLD6c/hMEJ30JfDiHL0onBSfRFf9YRshxRcbYMvNg1BgDYmWFx1lZpwtCEDxOeoJyXRTLQYxOCWUIRjhGnf4GvJj8EQhGcGXXBHQjD5Zc3NYosL/e/2g2NSvix2EnFPiEL4mO/OYxv/fXkQl8GIQuGirNl4MWuUTSU6FFfos/o49vjQkHIwuqNu5vYT3cWAQid4VBEODs7MkndDpKZk0OTONQ9jo/vbAIAdIxQcUbIfLM6fRhweHF61DWvn3exRa2TxSOTf1tUnC1xgVAEr56xZdw1A4SxRgCyjzY+cKAHX3vsuKzPudTFF2cDDu8CXkn+iL9pMEKjaCRD9+/vgValwEcvWoFKs47GZAlZAMcHJgAAvTYPwpH5KZh0Oh1sNhsVaER2nHPYbDbodLq0Po4CQZa413rH4Q6EcXGaEfrxyk1aFOvVsnfOnjo+jIPn7LjjHWugVNDBeyl6bB60VhjROeJC/zgVZwCmvYgecVJxRtI36QviT68P4J0bqlGk16Ct0kTFGSEL4M1+4XVGIBzBoMOLOktmEz/pqK2tRX9/P0ZHR3P+ucjyo9PpUFtbm9bHUHG2xL3YNQqlguH8lSUZPwdjDG2VJpwckvfFyoDDC38ogl67BytKE2+EJ9P12j1YXWWGwxNE/ziNNQJCcVZbXID+cS9GJukcHknfI0f64QmE8aHzGwEI52xfPWtDKByBKs2EW0JI5t4ccEDBgAgHum3ueSnO1Go1VqxYkfPPQ4hU9FNniXuxawyb6otg0qmzep72SjM6R5yIyDRmwDnHYHQsr5POdkgSjnD0j3tQX6KPFSNEGLc9r74YJq0KwzTWSNLEOcf9+3uwsa4I62oLAQCtFSYEQhH00LlOQubVsf6J2M3kc2PuBb4aQhYGFWdLmN0dwJsDE1mdNxOtqjLBEwijT6Zujd0dgC8oRMF3UXEmyaDDi2CYo8GiR22xnoozAE5fEAMOL9oqjCg3a2FdImONZ0dd6LVRYTAfXjljw9lRN27c0RB7mxiCRKONhMyfkUkfrE4/LmmvgF6jpOKMLFtUnC1hL50eA+fAxa3ZF2ftlUIoiFyjjfFhFp0j85vKtFiJYSBi52zQ4Z23A9P5Svy301ZpRoVZtyTGGp2+IK7/2X786x/fXOhLWRZ+82o3LAYNrl5fFXtbc7kRjFFxRsh8erNfCAPZUFuIhhIDuqk4I8sUFWdL2IudoygsUGNdTWHWz9VaYQJj8sXpiyONFWYtjTVK1BPtpDSUGFBbrEcowpdMpyhT4ovn9koTKs26JTHW+N97T2PM5ZetS02SG5rw4pkTI7h+Sx10amXs7Tq1Eo0lBvreRMg8enNgAgoGrK42Y0WpHt00PUCWKSrOlijOOV7sGsNFzaWyJCEWaIQXK3LdSRZH8na3luPsqBuhcESW513KeuxuaJQKVJp1qCkuAIBlP9rYMTwJg0aJmqIClJt1sDp9izoO+dyYG7986RzUSoahicX9tSwG/3egFxzADdvrZ72vtcJInTNC5tGbAxNoLjdCr1GhscSAPruHXhuQZYmKsyXqtNWF4UlfVhH6M7VXmmTbdTbo8KFArcS2FRYEwhG6QyZBr82DWksBlAqG2lhxtrz/3E4NO9FaaYJCwVBh1iIY5hj3BBf6sjL2rb+ehEapwC07mxAIRWBzBxb6kpasQCiC3x3swyVt5QkT4doqzei2ueELhhfg6ghZXjjnONY/gXU1RQCAxlIDQhG+7G9AkuWJirMl6vlOYV+HHOfNRO3RFyueQCjr5xpweFBTXIDWCuHgPYWCzK3H5kFD9EVkTVG0OLMv3x9cnHN0jDhj4Q2VZmHJ42IdbXyhcxTPnhzBJy9pwfraIgCL92tZDJ48PoQxlx83nt+Q8P1tFSZEuHCjixCSWyOTfoy5/FhXI5xvb4qu16FQELIcUXG2RL3YNYaVZYbYi3g5tFWawLk8AR6DDh+qiwpiB+8pFCQ1zjl67R40lAg/sHRqJcpM2mV9V9Hq9MPhCaItWuCXR4uzxbiIOhiO4N8fP4GGEj3+6aJGVBcK/78ddCzfv99c++3+HjSU6JOm2bZVGgHQqg9C5sOxfgcAYF30xlQjFWdkGaPibAnyBcM4cM6Gi2WI0I+3qkqMl84+FGTA4UVNUQEKNErUFevRaaUXQKnY3QG4/KFp41e1xQXTUi+XG3HEti2aJFph1gIArJOLrzh7YH8PuqwufOXtq6BVKVFZKBSaQ9Q5y4mTQ5M41D2OD25vgCLJmdzGEgM0SgWdOyNkHhwfmIBSwbC6Svh+XmLQwKRVodtGxRlZfuYszhhjdYyxvYyxk4yxtxhjt0fffidjbIAxdjT66+25v1wixZGecfiCEexsle+8GQDUFeuh1yizjtP3BsKwuwOoKRJegLZWmGiscQ5ijH5DXHFWU1SwrM+cdcaKs2jnzCSONS6uOH27O4DvP9OJi5pLcfnqCgDCCxONUkHFWY785tUeaFUKXLelNuljVEoFVpYb0UHfmwjJuWMDE2gpN6JAI6SmMsbQWGqgzhlZlqR0zkIAPsc5XwVgB4BPMMZWR9/3A875xuivJ3J2lSQtL3SOQq1k2NFUIuvzKhQMbZWmrOP0xW6PmDjYWmHE2VE3AqHcpDLZ3YFF2U2JFyvOSuI7Z3oMOLyI5PGus3CEw+XP/oxiIqeGnSgzaWExaAAAGpUCJQbNohtr/MEznXAHwvjqNavBmNDFUSgYKgt1GJpYvp3RXJnwBvGn1wfwro3VKNJrUj62rcIYuwlACMkNzjne7J+YtfansdRAnTOyLM1ZnHHOhzjnr0X/2wngJICaXF8YydwLXWPY0mCBXqOS/bnFxMZsIr7FczTiuZrWChNCEZ6zb8JffOQYPv7bIzl57vki7jibOdYYDHNYnfnZKYpEOG75zWG84ycv5eT5O0YmY2EgonKzblEV4qeGJ/HAgR58cHt9rAMoqizUYcixeL6WxeLR1/rhDYZx447GOR/bWmnC4IQPE97FmwBKSL4bmvDB5g5gXe304mxFiR4D4174Q5SYSpaXtM6cMcYaAZwH4ED0TZ9kjB1jjP2SMVYs98WR9FmdPpwcmsTFMo80itorzXB4glkVBIMzOmctFbk9eP/WwAQ6sywoF1qPzYNKs27aotx8j9P/8XNd+PspK86NueENyPvDNRzh6BpxxcJARJVmLYYXSXHGOcc3/nIC5gI1PnN566z3VxfqMDRJnTM5cc5x//4ebKwrmvVCMBGx+Kexa0Jy51j/BAAk7JxFONBnz8+fcfnGHwov6tc5ZIrk4owxZgTwCIBPc84nAdwNYCWAjQCGAPxXko+7hTF2mDF2eHR0NPsrJim9fHoMAJImkGVLfLFycijz0cYBhxcKBlRE0/VWlhmhyFFio9sfwuCED+5AGGOuxbszqtfuRn3J9F1MtcXC7/MxFGRvhxU/+nvXVOS/zAVkt80Nfygyq9tUYdZhZDI/O4kzPX1iBK+cseGzl7cmHK+rKirA8IQvr8dWF5uD5+w4O+rGjTsSx+fPJK76oHNnhOTO8YEJqBQMq6JhIKIVscRGKs7mEgxHcOF3nsPvDvYt9KUQGUgqzhhjagiF2QOc80cBgHM+wjkPc84jAH4OYFuij+Wc38s538I531JWlpuCgUx5sXMMJQZNLPFIbu3RZLxsllEPOLyoNOugVgr//HRqJRpKDDm5O31mdKrg61nEs+vxO85EU4VPfhVnfXYPPv3gUbRXmvG9960HMHVmTi5igp7471FUbtZhzOVHKJyb84ty8QXD+NZfT6K1woh/3Faf8DFVhToEwxxj7sVRbC4Gr5yxgTHg8jUVkh5fU1QAg0ZJ584IyaFjAxNoqTBNmwwBpoqzbgoFmdOo048xVwCHu+0LfSlEBlLSGhmAXwA4yTn/ftzbq+Ie9h4Ax+W/PJKuwz3j2NFUkjQeOluFejWqCnU4lU3nbNyL6hn711rKjTkZa4xfINttW5x337yBMKxO/7QwEAAo0ChRatTk1VijLxjGrb89As457vngJrREOw9yj6WcGnZCwaZGYkWVZh04B0Zd+V3Q/PLlc+i1e3DHO9ZApUz8bbgqeiaTFlHL50jPONorzTDr1JIezxhDa/ScLSFEfkIYiAPra2aPGRfpNSjSq3FuEd9YnS/iUZPTo7QzdimQ0jm7EMCNAC6ZEZv/XcbYm4yxYwD2APhMLi+USGN3B2LjgrnSnuWLlcEJb+y8mait0oRum0f2g79dVhdUCgalgi3azpnYdaqPLqCOV1Osz5vOGeccX/3Tcbw1OIkfvH8jGkoMKDVqUKBWok/ma+wcdqKxxDDrTqu46yyfRxutkz7893OnccXqClzYnPxsaFV019kghYLIIhSO4PXecWxpSO94dHulCZ0ji/vMKiH5asDhxbgniLVJzoA2lhiocyaBGIR12uqiUfglQEpa40ucc8Y5Xx8fm885v5Fzvi769ndyzofm44JJcsFwBC5/CEV6aXeFM9VeZcaZUVdG0ffhCMeQwze7c1ZhQjjCZd9pctrqwopSA6qLdFl1zoLhCI70jC/ICzSxqJw51ggIoSD5Upw9eKgPDx3px6cuacalq4SxMcYYaosLZO+cdYw4Y+eB4ok3JkbyOBTksaOD8ATC+PLbV6V8XFVsEXV+/P0udqeGnXAHwtjSmF5x1lphwrgnmPfdWEIWozejYSCJOmeAMNpIxdncxM6ZJxDGUB7//CPSpJXWSPLbZDTuubAgx8VZpQnBMMfZsfTb56NOP0IRHjsvJWqNjqd1yDw+dMbqQnO5EY0lhqw6Zw8e6sO1d7+Crz52HOF5viuVaMeZqLa4AAPjC7/r7I0+B+547C1c3FKK2y+bnjxYZ9HLeubMGwij2+aeFQYCLI7irGNE2M8mnqdIxmLQQKtS0FijTMSzGJvT7JyJiaByf28ihABvDkxArWRor5r9/RwQOmeDEz7ZE3+XmvgVMvHHOcjiRMXZEjIxb8VZNBRkKP0XKwMO4UX6zOJsRakBSgVDl4yJjf5QGD12D5rLjWgo0Wd19+3k0CQUDPjt/l7c+tsj8/qDosfmgVmnSpjoV1usRyAcwdgC3tW3uwO47bdHUGbS4scfOA/KGecd6y3C6KVcXccuqxOcY9aOMwAoMWigVLC8Ls66RpyxmxGpMMZQVajDIBVnsjjcM46qQt2s7z1zEW8CzHdxFo5wfOWPb1JRSJa0Nwcm0FphglalTPj+FWXCTaweO3XPUrE6/dCphZf0tPpj8aPibAmZr+KsqcwAjVKBk8Pph4IMRM/PzDxzplUp0ViilzUUpHvMg3CExzpnk74QHJ7M4vRPW104r74YX3/nGjx7cgT/eN9+2N3zE83fY/fMitEX1UZfaMp9pkuqcITjU797HWPuAO7+4CYUGxIVkAVw+UNweORZ5Cued0zUOVMoGMpN2rw9c8Y5R5fVhZbyxHeJZxIWUdNYoxyO9Ixjc0MxhIwr6UqMWpQaNTnbw5jMoMOLBw704rGjA/P6eQmZL5xzHOufwPoUOwdXlFBioxRWpx8ry4wo1qunpVSTxYmKsyUkVpzl+MyZWqlAU5kho3jpgWgRMfPMGSCc7eiSsR0vtvaFzln0G3yG587OjrqwssyAmy5oxN03bMKJwUlce/cr6J2HBMhemxsNlsQjcAu9iPoHz3TipdNj+MY712B9bVHCx9RFz8r1yXSNHcNO6NSK2N/pTMKus/zsNg04vPAEwrNSJpOpLizAEHXOsjbg8GJowpd2GIiotcKEjhzsYUzF6pw64L/QXjk9hpt/fRhOnzw3WAgBhDUwE94g1iY5bwYAjaXCzw/adZaa1elDuUmL5nKjrBNIZGFQcbaEzFfnDBC6FpmM2ww6vCgsUMOoVc16X0uFCT02N3xBeUYGT1tdYExYct0Y7Txlcu7M4QlgzBVAc7nwgvqqtVV44ObtGPcE8N67X8axfocs15tIOMLRP+5N2jmrKZ7/XWehcAR/e2sYH/rlQfz33tN4/5Y6fCDJri4AqIsuy5br3FnHsBMt5aZZ45OiCrM2b4sz8YdmojCTRCoLhUJzvs85LjXiebMtjZaMPr61woSuEee8nu0Uu7/5UJy90DWGZ0+O4HN/eGPBz7eSpeNYLAykKOljTDo1So0a6pzNwTrpR7lJh+ZyE06PuihddpGj4mwJme/ibHDCh8k076QOOGbvOIs9Z4UJEQ7ZWvJdVidqiwugUytRZ9GDMWHUMV3i9awsm+p2bGm04OFbL4BOrcQH7t2PvR1WWa55pkGHF6EIT5jUCAB6jQolBs28FGeDDi++/0wnLrzrOXz8/iPoHHbiM5e14uvvWpPy4+os0dFLuzzX2DHiTDjSKBI6Z/k51thlFW5otJRL65xVFRUgFOELeqZwKTjcPQ6DRpnwnKIU7ZUmeALheb0JIgbBdNvcsq8YSZc9ugj96RMjuPv5Mwt6LUvNQ4f78PLpsYW+DNkEw9JTnN8cmIBGqUBrZervh40lBtp1lkI4+jOi3Cx0zhyeIGzzdOyC5AYVZ0vIhGcei7Ponf90RxsHHd6kB/LFkAS5WvKnrS40RwsqnVqJKrMuo87ZGavwMc0zXlA3lxvx6D9fgBWlBtz868P4/aHe7C96hqkdZ4mLMyCa2Jijc0nhCMfeU1bc/OtDuOiu5/CT57qwqsqMe2/cjJe+uAe3X9Yya9fYTCadGsV6tSxjjXZ3AKNOf+zfXyIVZh0mvEHZOrBy6hxxocykTRjukkh1LE4/PzuBi8XhnnGcV1+cdOH3XFrFUJB5PHc2Eh1rjPDMbirJye4OYlWVGdesr8J/Pd2BF7tGF/R6lgq3P4QvPHwMN9x3AB+870BOpzDmg83lx4avP40/HOqT9Pg3Bxxoq0weBiJqLDXIvmZnKbG5/IhwoNysi934o9HGxY2KsyVkwhuEQaOEOsMXIOloy/DFysC4FzVFiZdkN5YaoFYyWV4AhSMcZ8fcaIl7Ed9QYkB3BsXZ6VEXNCoFaotnF0jlJh1+//HzccHKEnzxkTfxq5fPZXXdM/XYxBj95LHrNcUFsp85C4YjuO/Fs9j53b34yP8ewtG+Cdy2eyVe+MIe/O9HtuGKNZVpvdCts+hl2XV2KhpCM1fnDMjPOH2pSY2iSrE4o1CQjDl9QXQMT6YdoR9PfMEzn6Eg1kk/xMldseO6UOxuP0oMGnz3fevRUm7Cp373+oKdc11KbC6hu3FJezneGpzAO//7ZXzigddwdpEGOnSMOOEJhPHvj5+YcwUI5xxv9k9gXYowENGKUgNGnX64/CG5LnVJEXeciWfOAOF1C1m8qDhbQhze4Lx0zQAhCt+oVaV17mzSF4TTH5qV1ChSKxVYUWqQJQa2f9yDQCgS65wBwsHingwCPM5YXWiKRv0nYtSq8MsPb8X2FRb84iWZizO7GxqlApXmxAUtIMTpD8gYVX98YALv+u+X8c2/nkS9RY//+cdNeOVLl+ALV7bHwj3SVVcsT3Em/ntLNZ5WYdYCQN6NNkYi6SU1AkIgCACK08/C670ORDjSXj4dz6RTo6aoIJYUOh+GJ3xYXW2Ggi38XXC7O4BigwZ6jQr33LgZoTDHrb89kpfd6cVkLDoueuOOBrzwL3vwqUtbsLfDist/8AK+/Oibi27Hofg93hMM444/H0/52F67B5O+ENalCAMRiTsh6dxZYmJ4ULlJi6pCHQwaJU5TnP6iRsXZEjLhDcI8T8UZYwytFca0irNUSY2ilgoTOmV4ISK+mFkZN4pYbzHA5g6knTh2etQ17bxZImqlAm9bW4n+ca8sRYio1+ZBraUgaWEICGON/lAEo1meS/IFw7jrqVN41/+8jFGXH/d8cDN+d8sOXL2+ChpVdt8q6ix6DDi8WQdbdAw7UaxXo8ykTfoYsXM2nGeds8GJ9JIaAaBIr4ZOrcDwBHXOMnW42w4FA86rz7w4A4QbApkk1GZqxOlDg8WAeot+wUNB7O4ASqJrMlaUGvCD92/E8YFJfPVPxyl4IAti56zEqIFJp8ZnL2/F81/Ygxt3NODhI33Y9b29+M6Tp2JHFjLFOcc9z5/J2fi7qNfugUrB8JnLWvC3t0bw1PHhpI8Vw0CkFGeNsbRlKs4SsUZvRJabdWCMobncSJ2zRY6KsyVkYh47Z0A0sXHEKfmH82D0B0OqJbCt5Sb0jXuyXvIsfmOKPyc2ldgovXjyBcPos3uwsiz5WKFox8oSAMCBc/Z0LjWlHpsnaRiIqFaGxMZD3Xa8/Ucv4u59Z3Dtpho8+5lduGptZcbPN1OdpQDBMM961PDUsBAGkmpXlVicWfOsOEs3qREQF1EXUOcsC4d7xrGqypwwITYdrZUmnBl1IRCSHniQDevk1AH/hSzOguEIJn0hFMedk7xsdQX+3yXNeOhIP/7voPxnbZcLW/SGWolx6mZTmUmLO9+5Bs99bjfevq4KP3vhDC79/vOxwK9MdNs8+M6Tp/DTvaezvuZUeu1e1BQX4OO7VmJVlRlfe+x40tCw4wMT0KgUkr4finH61DlLTJwSKYv+O1q5wN8zSPaoOFtCJr1BFOV4x1m8tgoTHJ4gRp3SOjYDUoqzCiM4zz4++rTVhXKTdlqxKp7bSqc467a5EeHTO3DJtJabUKxXY/9ZW/oXnADnHL12T8rzZgBiZ+EyKc5c/hC+9thxXHfPqwiEI/jtR7fju+/bIPuuPDFOP5uuYiTC0TniRHulOeXjzDoVdGpF3p05E88rSU1qFFXRIuqMhcIRHO1zZLzfLF5bhQmhCJ+XYAKXPwSXP4QKsxCNfXbMhVAaKXhyGvcI3R2LcXqIzacva8Wu1jLc+ee38Frv+EJc2qInJuqJXcl4dRY9fvD+jfiff9yEMZcfxwcmMv484lGBp44P5/TfUa/dg3qLHmqlAndduw5jLj/uevJUwsce65/AqkqTpKkMvUaFCrOWdp0lYXX6YDFoYn+WLeUmjEz6007TJvmDirMlxOGZ386ZmGAm9RzGgMMLjVKBUmPykTTxObM9eH/a6pqVrtgQ7ZylMxohJjXONdYIAAoFw46mEtmKM7s7AJc/hPo5OmdisTuQZnG2t8OKK77/PO7f34N/unAFnv7MTlzUUprx9aYinlXLZtdZ/7gwFpgqDAQQuk0VZh2G8+zMWZc1vaRGUVVhwaI7e5IvTg4JAQWbM9xvFi/TEKRMiDcWKqPpa8EwR4+M49LpsCcpIJQKhh99YCMqC3X459++JvkmHZky5vLDqFWlTLwVbyxk8zOxK3qz0+YO4FWZfj4l0mf3xL7Xr68twkcuXIEHDvTiUPf0aZJIhOP4gLQwEFFjhoFey4HV6Ud53Kh/LBSEumeLFhVnS8i8jzVWpFdIDYx7UVWkgyLF+akGix4apQKdWaSTcc4TFmcGrQplJm1acfqJdpylsqOpRLZzZ+KLsYYUMfqA8HUV69Vppaf9/lAvPvKrQzBoVXj41gvwtXeshl6T3dhXKjVFBWAM6Mti9FJ8UTxXcQaIu87yq6BJN6lRVFWow4jTT4uoMyC+KJSjc9ZUJoQCzce5M/HfbrlZGzujuFChIPbouajiBDcVivQa3H3DZox7Avh/v3ttwbp7i5XNFUCJMfXNmrLoBEhXFi+0T1tdKDVqYdSq8Jc3BjN+nlScviDs7sC0m4mfvbwVNUUF+NIjx6bt6uuxe+D0SwsDETWVUZx+Mlanf9o57FhxRnH6ixYVZ0tEIBSBNxie1+KsxKhFqVEruXOWaseZSKVUoKnMkNULoJFJIXJ3ZnEGCOfOutMYazxtdaGmqAAFmtR7WEQ7moRzZ3J0z3qj1zlX5wwQRhvTGWt86HA/2itNePxTF2UVMS6VRqVAlVmH/iyK1o5ojL6UMwoVZl1enTnLJKlRVFWkQzjCY4lcRLojPeOoKSpIGUIklValxIpSw7x2zirMutiNoTMLdMDf7pkKrUhkbU0h/uM967D/rB1376MF1emwRVcUpMIYQ0u5MasU4y6rE6uqTLhidQWeOj6ck3OTfXbh50/8zyuDVoVvvWctzoy68T97p/5tiPvc1tUUSX7+xhID7O5AVmfvlirrpA/lpqlE57riAmhUCgoFWcSoOFsixG9YhWmOTGWrvdIkvXPm8Ep6kdSaZWKj2MpPVJw1lBjS7pwlep5kWsqNsBg02H82+1AQ8WyclPj62jR2nTk8AbzWO44rVlfMufxTTrUWfVaLqE8NO1FbXCAp2KHCpMXwpC9vkuQGHOknNYrEOP10F1Ef63fgjseOI7JMO26ccxzusct686GtwpRWQm2mxAP+FWYdDFoVaooKZFkxkglxrDFR50x07eZarKk241APnT1Lh9A5Sz7mLxJTjDP5fhaJCJMkLeUmXLOhCpO+EF46Lf8ScXFkfebNxN1t5Xj3xmrcve907LXC8YEJaFWKtL4fNlKcfkKRCMeoUwgPEqmUCjSVGmiscRGj4myJmPAKP0Dns3MGiIWUc86Rq0AoAqvTP2fnTHhOIwYcXrgzXDgpLmxN1jkbmfTDE5j7uSMRjjMSYvTjKRQM21dYZOmc9djdqDTrUp5HENUWF2DAIW3X2QtdY4hwYE97edbXmI66Yn1WZ846hp0p95vFqyzUwRcUUubygfhDMp2kRtHUIur0irOHDvfj16/24PW+5fmCuX/ci5FJf1b7zWZqqzSh1+6R9P0jGyOTPhi1qtiNiOZyY1ZjbdmYKs5S/2wpN2lhd9O5s3SMuQIonWOsERB+Jk54gxmtSxlweOELRtBaYcRFzWUoLFDj8TeGMrnclMRR/kQ3E796zWoYtSp8+dE3EYlwIQykygy1UvpL0NiuMzp3Ns24J4BQhKNixnoZ4XsG7TpbrKg4WyJinbN5Ls7aK03wBSNznrEamfSB89RJjaKW6AvYTF+MnLa6YNapYrGy8cTkQylFwuCE8EMtnc4ZIIw2DjiyP3fWZ/egfo7zZqLaYj18wUgs/SuVfaessBg0WF9blNX1paveIhTGmSyu9YfCODvmlnTeDBD2vQD5E6cv3jFuzWCscapzlt55vbcGhXS3vx5LvmtoKTsS7eLI2TkTi+tcn/8SY/RFLeVGnBl1LUgX1O4OoEivhmqOF9IWgzZ2Po3MLRLhsLv9KDFI6JyVZ/7vTnyB3lJhhEalwJVrKvD0iRHZF4j32N0oLFAnfA1SYtTi365ejSM947h/fw/eGpzE+jTCQADh5wdjoHNnM1idUzvO4jWXG9E/7s16LRFZGFScLRELVZxJTWwUz0PVFEsbawQyT6cSw0AS7cJqSGPXmdjtkLLjLJ5c586k7DgTiUXvXOfOwhGOfZ2j2NValnKxdS7UWaKpkhnEwp+xuhGOcLTNEaMvEu8i5ssi6s6R6GqHDFYUmAtU0GuUaY01hiM89v/JJ48PLcvRxkPddhi1qjlXL6QjltiY49HG4UkfKuNebDWXG+ELRnK+RDgRmzsAi4Rx+RKjBjZ3IG9GifOdwxtEhCc/yxevNRYKk/6/O7Ggay4T/u1es74aLn8I+zrkHW3stXtTno9+76YaXNxSim/99SRc/hDWphEGAgA6tRLVhQU01jhDrDhL0DnjfOHOqpLsUHG2RIjFWdG8jzUKPzTmKqTEBdRSzpzVW/TQqhQZn7E4M5o8eKHBIu46m/sb/JnRaIx+mp2z1orsz515A2FYnf45kxpFtRaxOEtddB7rd8DuDsz7SCMwNe6SSUexY0QIA0lnrBGYOrsjhTcQxsNH+qelisnltNWZ0XkzQAgEqCzUpdU567a54QmEcX5TCYYmfDgaPYC/nBzpGcd59UWy3oSot+ihUytyHgoyMumLLVMHMJXYuABjSuPuACxzhFYAQtS+PxSBm+7USyKOgEo5c1Zm0sKsU6Ezg2mSLuv0G0MXrCyBxaDB48fkTW3si+44S4Yxhm+9ex0U0Ved6XbOAGG0kTpn08WSXU3TO2fiayAqzhYnKs6WCIdnYTpneo0K9Rb9nHeSxTu+VYW6lI8DhP05zeXGjEJBxt0BjLkCSUcRC/VqFOvVkhIbz4y6UKRXz5mmNRNjDDuahHNnmd5Fjh2unmMBtUhq52xvxygUDNiZo31mqdRnU5wNu6BWsti5g7mIP6jSidP//aFefP6hN/CRXx2CU8blndkkNYqqCwswmMaZs7cGhWL29staoFYyPPmm/GdM8tmEN4iOESe2NGS/3yyeUsHQUi49BCkTnPNZY41i12Mh4vTt7gCKJXwPFAs4Gm2UZiz651Qq4c+WMYbWClNmnTOra9qNIZVSgbetrcTfT1plOzsZjnD0j3vmDK+qL9HjK1evRnulCc1pnOUWNZbqcW7MTd3ZOKOxscbpRX5jqR4KRrvOFisqzpYIsXNmnufiDBBGfea6kzzo8KLUqJUUbgFMBY2kS4yOTXVOTGpi42mrEAaSaDxyLuK5s3Ti7eOJ1yd1rNGkU6NIwq6zvaes2FRfnPYiZDmUGbXQqBQZ7TrrGJ7EyjKj5APkBRolzDpVWsXZa70OGDRKHDxnx/U/2y/beTUxqTGTMBBRVaEurUXUJwYnoVYybKovxsUtZXjizeFl9YLm9d5xcA5Zw0BErTlObBz3BBEIR6aNNRbq1SgzaRfkhZbdHZB0g0ocz7NRKIgkNpe4omDuzhmQWWIj5xynR5yzbgxds74a3mAYz52ySr/gFIYnfQiGuaRJjxt3NOCpT++c8wxjIo0lBkz6Qhj3UJy+yDrpg1k3e5G5VqVEY4lhwfYjkuxQcbZETHiDMGlV836OCBDipc+NuVOOgw04vKgpmrtrJmqpMGJowofJNDsYqWL0RY0lenSPzd29OTvqyujuHjB17uzVDM+d9UpcQB1PiNNPXvhYnT68OTCxICONgJBkWVtckGHnzCk5DERUWZjeIurX+8axq60M9920BT02N9579ys4K8NISPyB/ExVFepgdfokL/l9a3ACLeUmaFTCXfIBhxdv9E9k/PkXm8Pd41AqGDbWFcn+3G2VRlidfoxLCN/JRPyOs3gtC5DYyDnHuEfaWKMlGmxho86ZJLbYWKO0G2Ut5eknNg5N+OAOhGf9PNy2woIyk1a2hdTp7OTMhjg5QaONU6xO/6wwENHKciPtOlukqDhbIia8wQXpmgFC5ywc4ThjTf4Nc8DhlRQGImrNMJ3qtNUFnVqRMhWyocSAwQlvymLS4RHGI1eWpxcGIprad5ZZcdZj88CsU6XV4aopKsBAiuLs+egB8D1tC1OcAUKcfrq7zia8QQxO+NIuzirMOslnzkadfvTZvTivrhi728rxu4/tgDcQxvvueRVH+xxpfd6ZxH/DmSQ1iqqKChDhwIhz7q+Hc44Tg5NYUy0EYVyxunLZjTYe7rFjdZUZBgk78dIlhtLk6tzZVHE2vaPSUm7EaWtmu64yNekLIRjmks+cAVPR+yS1MVcAjKXeHxdP7LyfTuNnojh90jKjOFMqGK5eV4W9HaOyjHD3JdlxJjfadTab1emfFQYiaik3onvMjaDEm3okf1BxtkRMeIIoyiAJTg6xBLNoaMNMnHMMOryxSHAppiKr03sB1BUdRVSk6CA2lurBOdBnT17InJEwHpmKeO7swFl7Ri+meuyeWOy/VLXFevSPJ991trfDigqzFquqMi8SslVv0cfuskolvsCQGgYiKjdJ75yJBdh59UUAgA11RXj4tgtg0CrxD/fux96OzMd/sklqFIlnNYclhIJYnX7Y3AGsjhZnhXo1LmwuxV/fHFrUo433vXgWH7j31dgZi2SC4QiO9jlkjdCP11aR28TGZAf8mytMcPlD85pAKnYHJRVnsbFGKs6ksLn8sOg1kqddWiSGb8UTJ0laEoxUX7O+CoFQBM+eHJH8fMn02j1QKpikM+XZqCsWzlHRrrMpI5O+pMVZc7kRoQiXdIyD5BcqzpaICW9w3sNARCtKDVArGTqGE9/Rs7sD8AUjaXXOaosLUKBWph0KciYao5+KWPSk+oY1FaOf+ShaNufOem3utO9C1hYXwBsMJ7xzHQxH8GLnGPa0lWd0hk4udZYCTPpCsTOSUoj7qtbVFKX1uSoLtbA6/ZJi5F/vHYdKwabFO68oNeCR2y5AU5kBH/v1YTxypD+tzy/qyiKpUVQVvbEhJRTkRDQMZE311Nfy9rVV6B/34vhA4hso+a7P7sF3n+rA/rN2vP/eV1MmV54YnIQvGMnJeTNA6GhVmnWyLJpPROz2zjzgL45Yz+e5M7HQkhIIoteooFMraBG1RDZXQPJIIyBEpaeb2Ng14kKJQZOwuN5UX4yqQp0sC6l77R7UFBVkdI4sHRqVAnUWPc5S5wxANDwoxVij+FqIQkEWHyrOloiFLM7USgVWlhnRMZz4hd9AGjH6IkU0sTGd6Gi3P4QBh3fOc2KNseIseQfnzKgbGpUCtcWZj2mcn+G5s1A4gv5xr+QF1CLxWhMVg0d6xuH0h7B7AUcaAeHOJ5BeYuOBszY0lRlQluTuYDIVZh3CES7pTv7rvQ6sqTbPOlRdbtLhwVt2YHuTBZ976A3cve9MWt2nSITjdJZJjQBQFT2vKSVOX1w+Hd8hvWJNBVQKhr8u0tHGbz95EkoFw0/+4TxYJ/24/mevJv03dKhbWGEhd1KjiDGGPe1leLFrLCfjQiOTPlgMGmhV0/8txuL05/GAv9g5k5pYW2LQ0pkziWwSF1CLxMTGdMYau6zOpDcrFQqGa9ZX4YWuUUxkGbDRM0eMvpwaSww01hg16Q0hEIok7ZyJN5cpFGTxoeJsiVjI4gwQRhuTdbnEHWepzoElkm5ioziKOFeXolivhkmrmrNz1lRqyCpgpbnciJIMzp0NTfgQinDJSY2i2uLkcfp7T1mhVjJctAAR+vHEqOW5UiVF4QjH4e5xbF9RkvbnkhqnH45wvNHvwHn1iTstJp0av/rwNrxzQzXueuoUfvBsl+RrkCOpEQDMOjWMWpWkRdQnhibRUKKHSTf1/aBIr8H5K0vw5PHFN9p44KwNT7w5jFt3rcQ7NlTjgZu3Y9IbwvU/ezVhYMuRnnHUFhfEdt3lwu62crj8IRzuHpf9uZONKZUYNCjWq+c1FMSexlgjMLWImswt3c4ZIPxs67Q6Jf1/mHNhhUeq7z3XrK9GMMzxt7eG07qOmfrsc8foy2VFqVCcLbbvY7lgdUZHoJN0zgxaFWqKCigUZBGi4myJcHiDWZ1pyVZrhQkDDm/CdEWxWEi/ODNiZNIv+a6elKRGQLgD2VCqT7nr7MyoK6uRRvHz7Ggqwf4z6e07Ezt66XbOxLHRAcfsr2tvhxXbVlhgzEFAQjqmFlFLG/U8OTQJpz+EHU3pd0GmFlGnLmg6hp3wBMKx82aJaFQK/PD9G3H1+ir87PkzklNExc5va5ZjjYDw9QxJGGt8a3ASq6vMs95+9boq9Ng8sR1oi0EkwvHvfz2BqkIdbtnZBEA4D/jgLTsQDEdw/c/2Tzv7xTnH4Z5xbMnReTPRhc2lUCtZVmcRkxmZ9CcsLBkTdqydnsdF1LY0izOLQUOBIBKNufwolRijL2opN8HhCcZ2pKVidfrh9IVS3qxcX1uIeosef8liIbXTF4TdHZjHzpke7kA4rdTKpcoq7jhLMVXSHA0SIovLnMUZY6yOMbaXMXaSMfYWY+z2Ge//PGOMM8YW9pb8MuYLhhEIRRa0cyaGNSQK8Bh0+KDXKNMOLBHv+HVKfDFy2uqCSsEkBWmk2nXmC4bRZ/dgZYZhIPF2NFkwOOGTXIwAQI/dHbvGdJh1aph1qlmds/5xDzpHXAua0igqLBCusVfiWKPYdcykcyam3c2V2Ph6n9D9OK8u9Qt6hYLhYxc3wR+K4Ilj0sYDxW5ytmONgBAKMtdYo9MXRI/NE0tqjHfFmkooFQxPLKLRxkde68fxgUl86W3tKNBMjfmtqjLjwVvOh1IBvP/eV/FmdE1An92LUacfmxtzM9IoMmpV2LbCgr0y7YmKNzLpQ4UpeTR21zwmNo57AtCpFdBrpN3UoeJMmkAogklfSPK4qGhqtHXun4niKFuqm5WMMVy9vgqvnLHBlmGxI/5sm7fiLJbYmP5KlqVmKjwodXF2ZtQl6ew1yR9SOmchAJ/jnK8CsAPAJxhjqwGhcANwOYDe3F0imYsYrrCQxZlYSJ1KkGA24PCguqgg7SAK8QeR1FS001YXGkr0khYVN5YIyYaJzox029yIcGBlWWYx+vHEfWfpjDb22j3QKBXTltBKJSY2xtsnRugv0H6zmeos0uP0D5yzo6FEn9GIWqlRC8YwZ7rd670OlBg0qLPM3dndUFuI5nIjHpYYDtIlQ1KjSCjOUn8tJ4eE/6/Eh4GILAYNzm8qwRM5SG2MRDicviAGHF6cGJzE/rM2PP3WMB4+0o9fvnQOP3q2C8cH0tuz5vaH8N2/deC8+iK8c0P1rPc3lxvx0McvgFGrwj/+fD+O9NhxuEc4b7Y1R2Eg8fa0laPL6spob18yoXAEYy7/rBh9UUu5EQ5PcN5GB22uACxprPMoNWox5vLTyNkcxAJW6gJqUeyGpZTiTNyvOMeNoWvWVyEc4Xgqw9HG3nmK0RetoDj9mFjnLMVrheZyI3zBSOzsP1kc5nwVyzkf4py/Fv1vJ4CTAGqi7/4BgH8BQN+JF1A+FGe1xQUwaJToTFBIDTp8aY80AsIYZE1RAR460i/ph306wQsNJQaEIjx2Hi6euK8t0xj9eJmcO+u1eVBrKcjovJuwiHr6i8W9p6yot+jRVJp9sSmHumK9pBe0kQjHoW47tmXYBVErFSg1amGdszgbx3n1RZJuHjDGcO2mWhzuGZf04qDL6sz6vJmoqrAAoy4/AqHkIRRiGMjqBJ0zAHj7uip02zyxIk4ODx7sRcu/PYl1dz6NC7/zHN7+4xfxgXv345b7j+DzD72Bbzx+Aj94thPX/+xVHI6GdUhx974zGHX68dVrVif9u6kv0eMPHz8fZSYtbvzFQdy/vwcmnSqrnXJSiTc79nWOyvacY64AIhyoSHIzYr5DQexuPyxpnIuyGDTwhyLwBJLvkCTCSCMgfQG1SExslHLusMvqQpFejdI5PsfqKjOaSg0ZpzbO144zUU1RAdRKRomNAKyTfhg0ypTHFcQdd+mEq5GFl9aZM8ZYI4DzABxgjL0TwADn/I1cXBiRzhE9k1VUkN43ejkxxtBaaUrSOfOmldQY/5yfvqwFb/Q58MSbqe/qBUIR9Ng9kgsqMbEx0bkzcT67qTT74ix27uys9HNnPTZP2mEgopm7znzBMF4+M4Y9bWULGqEfrz7atZxrzKJjxAmHJ4jtTemPNIoqzNqUZ84mPEGcGXUnDQNJ5D3n1UDBhJG7VCIRjq6RuVc7SFVdpAPnqc/QnRicRKlRk3TM5co1FVAw4Mnj8o02/u2tYZSbtPjK21fhrmvX4Z4PbsL/3bwdj/+/i/DCF/bg6Ncux6tfvgSVZh1u+uXB2GqEVPrHPbj3xbN418ZqbJrj76a6qAAPfnwH6or1eL3XgU31xSn3HMqlqdSAeote1tHG2ALqJGONU9HY8/NCy+4JwpJGoqCFFlFLInY+5yqcZmKMoaXCJKk4Pz3iQku5cc7v+4wxXLOhGvvP2ea8kZVIr92DwgL1vJ15VymFOP356pyls/ZlvlmdvpRdM4Di9BcrycUZY8wI4BEAn4Yw6vgVAF+T8HG3MMYOM8YOj47Kd4eRTMmHzhkgnDvrHJmeJOUNCHu3atPYcRbvvZtq0VZhwvf+diplbHW3zY1whKdRnAnFT6JzZ2dGXagpKph2xiUbO1aWSD53xjlHbwYLqEU1xQXwBMIYjxbsB87Z4QtGsDtPRhoBoK64AP5QZM4D3QfPCV2W7SsyPz9UYdJhOMWZs6P9DgBIGQYyU2WhDhe3lOHR1wZSFpgDDi+8weyTGqc+r/D/oVRjmm8NTmJVlTnpC7ISoxY7mkpkW0jNOcex/glc2FyKj+1swvu31uOqtVW4oLkUa2sKUV+iR5Feg6rCAvzfx3agzKTFTb88iNd7Uxdo33nyFBQM+OJV7ZKuQ1x5cNWaSvzj9vqsvy4pGGO4pL0cr5wZgy8oT6coVpwlecFVadbBqFXN2wstu9sPSxovusUzVGMU1pCSeL4rnSh9UauExEbOOTqtTjRL7CC/Y30VOEdG51F75zFGX7SixDAvi6iP9Ixjw9efxrv+52U8dnQgJ6szsmF1+udcMVOk16DUqKXibJGRVJwxxtQQCrMHOOePAlgJYAWANxhj3QBqAbzGGKuc+bGc83s551s451vKysrku3ISky/FWWuFCeOeIEadUz+Yp3acZRZrrVQwfPFtbei2efC7g8mPNkpNahSVmbQoUCsT7jo7LWGRdTrOjyYNShlttLsDcPlDGf+wE4vggei5s72nrNCpFbGda/mgNpbYmHq08cA5G2qKCrKKaK4o1KW8G/x67zgUDFhfW5TW8167uRYDDm/Kv1M5kxoBoDo66pZoFBcQusddVmfC82bx3r6uCmdH3ehIY01FMv3jXtjcAWyoK5rzsZWFOvzulh2wGDT40C8P4li0MJ7pSI8djx8bwi07V6bVcS82aHDPjZtx5ZpZP4ZyZndbGXzBiGwLqWPFWWHiF1yMifsf5+eF1rg7vc6ZeIaKOmepibvg0h1rBIBmCYmNNncADk8wNtI2l5YKE9oqTHhcYtBRvL4FKM4aS4XiLNchF395YxAalQKT3iBuf/AoLrrrOfz3c10Zh6fIzZpk7cZMzeWGeV3BQbInJa2RAfgFgJOc8+8DAOf8Tc55Oee8kXPeCKAfwCbOeXbLMkhG8qU4a4smNsa/6JvacZb5N+89beXYvsKCHz3bBZc/lPAxXSMuMAbJ8feMMTSU6Gd1ziIRjrNj2cfox1tZZkSpUSNpGXVPtGBpSDNGXzS168wDzjmeO2XFBStLZy1XXkixRdQpQkE45zh4zp5V1wwQOmc2dyDpOa3Xex1orTClvWLgitUVMOlUKYNB5ExqBICqaKGSLBSky+pEMMyTnjcTXbmmEgqGOUeFpTgWTUncUJu6IBRVFRbgd7fsQJFejQ/ed2BWSEgkwvGNv5xAhVmLW3c1ZX19ubajqQQ6tUK20caRST+UCpayo9IyT8WZPxSGyx+CxZB+54x2naU25vZDo1JktNqkVUJiozj2ONfOz3hXr6/C4Z7xaTdX5xKOcPSNz9+OM1FjqQG+YAQjzvTHMKXinOOZEyO4uLkUf//sLvzqw1vRWmHCfz7difO/8xz+5eE3cHJoYdeSWJ3+2D7PVMQ4fQrqWTykdM4uBHAjgEsYY0ejv96e4+siaZjwBsEYYNIt7A6rtuj4Vny6YradM0AopL789lWwuQO494WzCR9zOoNRxIaS2bvOBie88AUjsnbOGGPYLvHcmVgsZl6ciUuevTg35kav3YM9bfnVsRYLyFRjnmdGXRhzBbAt2+IsmnpnTfBDPBLh0TCQ9JP9dGol3rGhGk8eH056w6BzxClbUiMgxLebtCoMJynOTkT3lyWK0Y9XZtJi2wqLLJH6b/Q7oFEq0F6Z+nPGqykqwO8+tgMmnRo33HcgFmICAH86OoA3+ifwxavaJce3LySdWokLVpZib8eoLC98RiZ9KDNqU4YBNZcbMeqUvv8xU1MLqOnMmdxsrgBKDJqMzgGLY9KpCvTTEpMa413UImxDOpRGaM/wpA/BMF+QsUZg6gZYLpwccmLA4cXlqyugUDDsaS/H/R/djmc+sxPXba7FX94Ywtt+9CI+cO+raf2ZycXlD8ETCCdNdo3XUm6C0xeKpTuS/CclrfElzjnjnK/nnG+M/npixmMaOedjubtMksqEJwCzTj0vh+BTKTFqUWrUTivOBh1eKBgyioWPt7GuCFevq8J9L55N+EI7k1HExhIDem0ehONGI8TxSDli9OPtaCrB0IQv6X6vUDiCX7/Sja899hYKC9SxIitdhQVqmHQq9I978Fz0bv7uPNhvFk+nVqLCrE2562z/2eh5syzHMcWzO4l2nZ0dc2PSF0rrvFm8azfVwhsMJy1yTltdsp03E1UV6ZKONb41OIkCtTIWdpPK1euqcNrqkrQvKZU3+hxYVW2GRpVWthRqi/V48JYdMGiU+OB9B3ByaBKeQAh3PXUKG2oL8e6NNXM/SZ7Y016OXrtHlvS44Ulf0qRGkdgNOT2a21AQe5oLqAFAr1FCp1bkzdhXvrK5/BmNNAJCYqNJp0oZp9854oJJq5L0wl20troQOrUidtZXil7b/CY1ijbWF6FYr8Y9+87krBv0zIkRMAZcuqpi2ttbKkz41nvW4dUvX4Ivva0d58bc+Pj9R+a9KyWO65dL+DumUJDFJ72fqCQvTXiDCz7SKGqvNE0baxwY96LSrINKwu6xuXzhyjYEQhH8+O9d094ejnCcGXWhOc1RxIYSAwLhyLSAhTOj8sXox0t17uxIjx3v/O+Xccef38KG2iI8ctsFWY0hiomN+zpG0VJunPeREynmitM/cM6OcpM2FtySKbE4S3TuTAyl2JRhcbapvghNpYaEo41iUmM6Y0VSVBUWJB1rPDE0iVVVJkkrGK5cWwnGgL9m0T0LRzjeHJjARokjjTPVWfT43S07oFMrccN9B/BvfzyOkUk/vvaO1Qt+oykdu1uFzrQco43WST8q5jhDInZDch2nn0lxxpgwkkljjanZ3IGMwkCAaDJyhSll56zL6kRLxdxJjfE0KgU21RenVZzNd4y+yKhV4TOXt+LVszY8e1L+RfAA8PSJYZxXV5Q0cKNIr8Gtu1bik3uaYXcH5tynKbfYjjMJY40teVicff6hN/CNv5xY6MvIW1ScLQH5VJy1VgiJjWI3asDhRU2GSY0zNZYa8I/b6/G7g304Ozr1TaZ/3INAKJL2C+FYYmPcHe/T0d0w6bwgkUI4d6aNdYQAIdHs8w+9gWvvfhXjngB+esMm3P/RbVkXhjVFBei0OnHgnC1vFk/PVGeZvSxbJJw3s2F7U0nW8f/ineNEPzhf73PArFNlvDKBMYZrN9fi4Dl77A6ySExqlOu8mSjZIupIhOPk4OSc581E5SYdtjZmN9p4ZtQFTyCcdphKvIYSA/7vYzugVjI8+voArllfhc0N2Y2yzrc6ix4t5Ubs7cj+ReKI05c0qVFUU1QAnVqR83NnmRRn4uNprDE1myuQcecMiJ47HEme2JjOzs94WxstODk8iUmftJHZXrsHSgVDVRbHFjL1D9vq0VRmwLefOCl7iuKAw4u3BidxhYRwofYq4XvuKRl3R0ohhgdJCQQpi3Zb82XXmT8kTJz4Q7QPMRkqzpaACW8QRfO0Y2Qu7ZUm+IKR2B21wYnMdpwl86lLW6BTKfC9v3XE3pZuUqOooXT2rrMzo0IYiNw7wYR9ZxbsP2uLjTDu+c99eOzoAG7dtRLPfnYX3r6uSpbPW1tcgD67F8Ewx+48O28mqrPoMTThTRjU0WPzYGTSn3UYCAAU6zVQK1nCscbXex3YmOVOrPduqgFLsPNM7qRGUVVhAcZc/lk/1PrGPXD6Q3MmNca7el0VOkdcGe/MOtrnAABJSY2prCg14Hcf24H3bqrBV65eldVzLZQ97eU4eM6e9PyhFL5gGA5PcM5RNIWCYWWZMed3wak4yw3OOcZcfpQaM+ucAcJo3XiSxEa7O4AxVyCjrv22FRZwDkm7CAGhOKsu0kEtw2RMutRKBb7y9lU4O+bGA/t7ZH3uZ0+MAAAuX10xxyOngtBODs9vOMhoGp0zMeU1XzpnB8/Z4QmEcUme3jzOB1ScLQEObxDmfOmcRb9RnRoWumdDDh9qZCzOSo1a3LJzJZ48PozXomNpseKsLL07hVVmHTQqxbTExjPW9McjpRLPnV35wxdiI4xP3r4TX3pbOwwZpHYlIwZuGLUqbMnTLkRdcQEiPHEs/IFzwuinHMWZQsFQbpodp+/2h9AxPInzsiwsqgoLcFFzKR55rX9arLPcSY2xzxe9Qz0yMb3YlBoGEu+q6GhjpqmNx/odMGlVaCrN/nxmU5kR379+I6oK5fteMZ/2tJUjGOZ4+XTmR6+t0RsIc3XOAKFzMh/FmYIBRWn+bCkxamJR8WQ2dyAMfygSS7bMRCyxMcGNlUxvVgLCvkeVgkkebVyIHWfxLmkvx4XNJfjh37tkDch55sQImsoMklKbzTo1aooK5r1zZnX6oVUpYC6Q9tphPr5nSPXcKSs0KgXOX5k/K37yDRVnS8BkXo01Ct/MOkecGHX6EYpwWTtnAHDzxStQatTiO0+cAuccXVYXSo3pp+IpFAz1Fn1s19m4OwCbO4CV5fKGgYguWFkCxgBPICzbCGMiYpjIxS2laQc1zBfxHFyiOP0DZ+0oMWhk+7OpMGtnjTUe659AhKe3fDqZ922uRf+4FwfjErvkTmoUVUXDIoYmphe1bw1OQqlgaQWQVJh12FRfjL+fHMnoWt7om8C62sJFdT4sV7Y0FsOoVWFfFqONYiy4pOKswoQBhzerTt1c7O4AivWatP9+Swwa2NwUCJJMbAF1Np2zFOcOxYKtJYMwIr1GhbU1hTgksThbiB1n8Rhj+MrbV2PCG8RPnuua+wMkmPAGsf+sTVLXTLSqyoRT89w5s076UG7WSp62aS43YswVgMOz8DdO9nWM4vymkkWRyLtQ8vOVG5GMc55XZ870GhXqLXp0DDsx4BBeeMt15kxk0Kpw+2UtONhtx99PWqPz9Zm9kG8s0aM72jk7M5r5HUcpmsqM+MsnL5J1hDHx5xGKy5kpU/mkPraIOlHnzI5tKyyy/flUmHWx+XyR2HXdmGXnDACuWF0Jo3b6zrNcJDUCiHWWZp47OzE0ieYyY9pBMrtay3BsYCLtMTRfMIxTw5NZnTdbStRKBS5uKcXeU5lH6scWUEsozsQ7+mdyeCfc7g6gOIPujsWghS8YgSeQu8JxMRvLYgG1qMKc/AxR14gLBo0ytrQ+XdtXWHCsfwK+YOrzQC5/CDZ3APWW3NzMlGp1tRnXb67Dr1/tRrcMian7OqwIRTiuSKM4a68048yoe17PUEndcSYSC/qF7p6dG3Pj3JibRhrnQMXZIucNhhEM87wpzgBhBrtjxIkBh/BiQ86xRtEHttahqdSAu546JYwiZlhQNZQY0GMTFjaLxZmcC6hnWltTKOsIYyKtFSY8ctsFeO95+RtHXmHWQa1kszpnfXYPBhxeWUYa4z+XdcaZs9d7HWgqM6BIn33wS4FGiWvWV+GJN4fg9odyltQITHXOBmd1ziYkh4HE29VaBs6BF7tG0/q4k0OTCIY5NtZlltS4FO1pL8fwpA8nMxxvEvfXSVk7EovTz3Fxlkkwklh00GhjYmLnrDTDtEZA6Bi1lBsT7vkS18pkenNra6MFgXAkdqY0mYVKakzkc1e0Qq1U4K6nTmX9XM+cGEGpUYONddL3X7ZXmRCO8HktfEYmfZLCQETia6T5WGCfirjih4qz1Kg4W+Qc0TnrdM8F5FJbhUm4OxKNpZd7rBEQ7lR/4co2dFldcPpDGRdnjSV6eINhjDr9ODPqhkalyHjHWD7Z3JBd0EWuKRUMNUUFs3adiWcdst1vFq/CrIPTH4I7OgLGOcfRvnGcl8YP37m8b3MtPIEwnjo+HEtqzEXnzKBVwaybvoh6zOXHyKQ/rfNmorU1hSjWq/F8Z3rF2bF+YXE0dc6mxCL1MxxtTOcMSYNFD7WS5fSFlt0dgCWDmxfiWaqFitMfdfrxoV8eTLgPMx+Ify7ZdM4A4SZcosTGLqsTzVmcdd3aaAFjmHO0sWeBdpwlUm7W4dZdwln0dFYBzBQIRfB8xyguba+QtJJE1F45/4mNQudMenEmprwudOds7ykrmvN0xU8+oeJskZvwCsVZvnXOwhGOF7tGUVighjFHnaKr1lbGzgxlWpzVl0wlNp62utBUakjrmzLJXJ1Fj/4ZxdmBczYUFqjRJmNhI6bfiWNj/eNejLkCspw3E21uKEZjiR4PH+mPLYfNdNR2LtVFBRh0TL3wFMNAVlelX5wpFQwXt5Thhc6xaYEmc3mjz4EykzbWySPCC8S1NeaM952NTAox+lI6HiqlAk2lxoyTNqWwuwOwZFBAiN02+wKdO9t/1oYXOkdx6Jy0xMH5JnbOsl3XIiY2xhfBE94gRib9WXXtC/XC99/4M7SJ5FPnDAA+dnETKs06fPOvJ9L6XhZv/1kbnP5QWufNAOEmr1almLdzZ75gGE5fCOUSuuyi+Up5TcXlDwkrfvI0RTqfUHG2yOVrcQYI53pyMdIoYozh6+9cg4uaS7E+w0W44q6zbps7FqNP5kedRY++GbvODpyzY2ujRdaunzgmJsbpvxZbPi1f54wxhms31eLVs7ZY5ySTA/lSCLvOpv7cTgxFi7MMOmcAsLO1DGMuf1pR0G/0O7ChtjBn5yYXqz1t5XitdzyjQ/fDEz5JI42i5nJjzjpnkQjHuCeQUaKguFx5ocYaxXNHicKG8sGYKwCTVpX2+dCZxJs/4s0gYGrMNdsbQ1sbLXitZxyhFPvDeu0emHUq2UOPMlWgUeJfrmrDsf4JPPbGQEbP8cyJERSolbiopTStj1MpFWitMOHU8Px0zsQx/XQ6ZwAWPE7/5dNjCIZ53u5fzSdUnC1yYnGWL1H6gLC3SK1kiPDcjDTGW19bhN/evB0mXWZff01RAVQKhs5hJ/rsHqzMUbeDzFZXrIfdHYglzg1P+NBj82BHk7zx/+Wx4kzoNr3e64Beo5R9B9l7N9eCMeDBg32oMGtzdsOksrBg2ljjW4OTqCkqyPj83M7oC5EXOqXFwE/6gjgz6sYGGmmcZU97OSIceKEr/Uh9q9OP8jl2nMVrLjeiz+6ZM7ghExPeICJc2BOYrtiZswUaazwXDXjqs+dncWZ3Z7eAWiSOTce/2BY7qdmu8Ni2wgJ3IBy78ZNIr92D+pL86JqJ3r2xButqCvHdpzrgDaT3/wvOOZ49OYKLW0ozKpzbK00ZnzdNlziym07nDBCK9gGHF5/4v9fwyRS//vh6/9xPloG9p6wwaVXY2pifK37yCRVni5y42yNfllADwnkwsQNVK3NSo9xUSgVqiwuwr3MUEQ6sLFvY5KnlpM4i/NsQX0RN7TeTd/fJzLHG1/scWF9bCJXMi1NrigpwflMJQhEu+36zeNWFOtjcgdiL8kzDQETlZh1WVZnxfKe0cbzj4nkzGZIul5oNtUUo1quxL83RRs55bKxRqpYKIyIcODuafULdTHZP5uei9BoltCrFgi2inuqczU6CzQc2tz+rGH1RhVkLk1Y1rXPWNeKCTq3I+ufutmggU6rzWwsdo5+IQsHwb1evwtCED7946WxaH3t8YBJDE760RxpF7VVmjLn8seXQuTSSYedsd1t5tIicxIkkv57vHMWPnpVnLUE8zjn2dlhxcWvpgiwtX2xoycAil49jjYAw2nhq2Inqovw/k9JQYogFIuQqRp/MVlcsxul7sKrKjAPn7DBqVVkVGomYdGoYNEqMTPrhC4ZxYnACN1/cJOvnEL1vcy1eOWPLSVKjqCrajR6eEPbcnBtz4x3rq7N6zl2tZfjFS2fh8ofmPCN6tN8BANiQ4SjxUqZUMOxqLcO+zlGEI1zy+VWnPwRPIJzWWGNs15XVKfv/Z8TCKpNzUYwxYdfZQo01RoMqZp5nlduo04///FsH7njn6rT2NdlcAVmKGsYYWiqmJzZ2RZMasx0LrzDr0FCix8Fz9oTfK8MRjv5xLy5fk3/rWrY3leDKNRX46b4zuH5rneS4+WdODEPBMl9Bsyp6nKNj2ImyNIumdMU6Z2l+nrU1hXjq0ztTPuZHz3bhh3/vhCcQknUP2VuDkxiZ9GN3G400SkHl6yI34Q1CqWA5C93IlDhyUVOUX3fWEhHPnTEGNJVScTZfYrvOone4D5y1YUtjcU4CWcRdZ28NTiAY5jgvR12fq9ZWYnNDMS5tz92LlqlF1EJsO+fIKKkx3s7WUgTDHK+esc352GN9E2go0cuyhmAp2tNeDrs7gGPRIlYK66Q4piT9xVZjqR4Klps4fbGwymSsEQAsRs2CBIJMeIOwuwPQqhTod3gzDoaQYu8pK35/uA+Hu9MLHhlzBWTpnAHCz9npY40u2br2WxstONRtT7i3b2TSh0A4knedM9GX3rYKwXAE//W3Tskf8/SJEWxpsGQc1CKetZ+PUBCr0w+1kmX8/89U2ipN4DzxgvNs7Iuexd5NYSCSUHG2yE14gzDrVHl3MF9MwstlB0EuDdHExpqiAhRosjukTaQr0gtJnn12T2yVgdwjjaJysxYjkz683usAAGyUMakxnl6jwiO3XZD2gfJ0TBVn3tiZkDU12XWxtjRYoNco8YKESH0hDKQoq8+3lO1sKYOCAXs7pK8nEMeU0hlr1KqUaCwx5KQ4G89irBEQQkEW4syZONK4bYUFgVAEo67cFYjiGhBxP6YUkQiH3e1HqQxnzgBh0sPuDmDM5YfLH8KAwyvb9Me2RgvGPcGE/7568yypcaYVpQZ85MIV+P3hPjxwoGfOx/fZPTg17Mx4pBEASoxalJu083LuzDrpR5lRm5N1Oe1xHUA5PXfKivW1hWktzl7OqDhb5BzeYF7ewb5gZSle+dIlOdn1JLfGUuEHDCU1zi/GGGqLC9Bn98TtN8vNQeFKsw4jTqE4qy0uWNQ/IKoKhbHGoQkfTgxOoLBAjeosI+01KgUuWFky574z66QPQxO+jNNRl4Nigwbn1RfH7hRLIZ6HTKc4A3KX2CiONWZ6Z36hxhq7o2EgO1uEu/O5DAXpiT53Omf+HNGglUxSMBMRf752jbhkS2oUxc6dJYjUF4uzBkv+ntH+wpVtuKS9HP/2p+P4yxuDKR/7zIkRAMiqOAOEc2fz0znzoSzN7xVS1Vv0KFAr00rvnYvdHcDrfQ7soZFGyag4W+QmvMG8SmqMl+ukRrmInTMqzuafEKfvwYFzNug1SqzLsgOUjDDW6MdrveOyRugvhAKNEkV6tdA5G5zEmmqzLJ3zna1l6LV7Yt2HRN6IhoFspDCQlPa0leFY/4TkRcjDseIs/Wjs7jE3AqHkkeeZsLsDMGiUGce9WwyaBQkE6R7zgDHggmahA5/LOP1MOmfijjO5xhrFyZQuqxNd4n5FmW6INpToUWbSJgwF6bV5oFQwVOXxmXK1UoGf3rAJWxst+Mzvj6ZcDv/MiRG0VhjRWJpdsbmq0oSuEVfKFQRysE6mt4A6HQoFQ2uFUdbO2fOdVnAOXEIR+pJRcbbITXiDeRcGstjUW/S4uKU067tmJH31Fj367F4cOGvH5obinKU4lZt1CIQiGJrwybp8eqFUFRagz+7FqWFnRsunE9nVKnQbUnXPjvU7oFQwrKmmzlkq4qH3lyRG6lsn/TDpVGkfwG+pMCIU4ei1y5vYmOkCalGJUQtvMAxPICTjVc2t2+ZGlVkXu9HWZ89dYmNvtEuXTnE25spuXHSmSrMulth42uqCRqVAnUwJyYwxbFthwaFExZndg+oiXd6n7unUStx30xa0V5lw22+P4FCCLqDDE8DBbrssP//bq0wIhCM4l+IGlxysTl/OijNAOHcmZ3H23KlRlBo1Obv5uhTl9/+zyJwmqTjLmlqpwP0f3Y7zV+bmvBNJrq64AN5gGB0jTmzL4e6T+BS88xZ55wwQ4vQPddvhD0Wwpkae4qyhxICGEn3Kc2dH+xxorTDR2cw5rK4yo8SgwYsSi7N0Y/RFzWWzd13JweYOwJLFuLw4tjffo43nxtxoLDVAp1ai3KRFf446Z5O+IMY9QRTr1RiZ9Md2Nc7FFg1JKZWpcyYmNnaNuNBldaGp1CDripBtjRYMTvhm/Tn25mGMfjJmnRq//sg2VBcV4J/+9xDeGpyY9v7nTlkRjnBcvroy68/VXil8Lz6Zw2XUgVAE455gRt8vpGqrNMPmDsiyFiAUjuCFzlHsai3PyRm5pYqKs0XO4QmgiIozskjVxf2A396Uu+JYHBfTqBSydZoWUmWhDp7oktXVVfLdjdzVWoZXztjgD81e4Mo5x7H+CYrQl0ChYLiopRQvdo1KSgwcnvSlFaMvWlkujGHJXZyNuwMZp9YBUxH88z3a2G1zx0bT6qJd+Vzojcb1i93msxK7Z2KxKteZM0BYqdBldaHL6pRtpFGUbN9ZPu44S6XEqMX9H90Ok1aFm355cFpn65kTIyg3abFehq7OyjIjVAqGUymWd2dLDLnJZedMzlCQ1/scmPAGaaQxTVScLWKcc0z6QtQ5I4uWWJxpVQpsqMvdi37xLuPaajM0qsX/bU88z6lRKWRdnL6zpQzeYBhHEsSD99g8mPAGsYHOm0lycUsZxlyBWKJmKtZJf1ox+iK9RoWaogLZQ0Hs7gCKsynOjPNfnDk8ATg8QayIniGuKy7I2Zkz8bzZnugLTqmjjTaXHwoGWUO8WiqExMY+u1e2MBBRW4UJZp1q2jigyx+CzR2YdmNtMagpKsD9N29HhAMfvO8Ahia88AXDeL5zFJetrpClq6NRKdBcbsSpHHbORjJYu5GudhnXAjx3ygqVguHi1twlGC9Fi/9VyjLm8ocQjnAqzsiiJS6iPq++CFpV7kblys1aKBVs0YeBiMQuS3ulSdYxpvNXlkCtZAnPnb0R3dtFSY3S7IyuU5hrtDES4bA6MxtrBICV5UbZO2d2dyCr7k6pQXjhOJbDKPuZxG6I2DmrLdZjaMKXk3AGsTi7uKUMSgWTnNg4Fu1IyrnLMb5bJndxplAwbGm04EBc56wvz2P0U1lZZsRv/mkbJrxB3PiLg3jizSF4AmFZz5u3V5py2jmzToqds9yNNZYYtSg1amXpnO09ZcWWxmKYdfQ6NR1UnC1iE94gAFBxRhatAo0SV62pxHWb63L6ebQqJe7/6DZ8Yk9zTj/PfBFT0rJdPj2TQavClgZL4uKsbwI6tWJRrMfIB+VmHdorTXPujrN7AgiGeUZjjQDQXGbEmVGXbAuXvYEwvMEwLIbM78wvROdMjNFfEV2NUmcpQDjCMTQhLTEzHT02DywGDSwGDeqKC9LqnJVk8eeaSGvcLtFc7BXdtsKCs6PuWKGd7zvO5rK2phD33bQFfXYPPv/QGzBolLhAxvPm7VVmDE74MOEJyvac8UajCbC5HGsEhCKzYyS74mzQIYRWUYR++qg4W8Qc0f/zF+qpOCOL1z03bsa1m2tz/nkuWFma1ahWPhFfGK3PwTLoXW1lODXsjI3PiI71O7CmujDvE9ryyc7WMhzuscOdIjBiJMMYfVFzuRG+YAQDDnnOV4mhFRZD5j9XDBolNCrFvBZn58Y8ULCpUWmxK5+LXWfxZ65Wlhkld85sroBsSY0iMbFRrWSxtTBy2hoNajocHW1czJ0z0Y6mEvz0hk1QMIY97eWyTm20yTgSmIjVKYzGyrWOIZm2ShM6R5wIZ3HTR1xfQOfN0kc/ZRexSeqcEbIs1Rbr8chtF+B9OShqxQW+8R2fUDiC44MT2JCDYnAp29lShmCY48A5W9LHxMaUMu2cRUfZTqcR6Z7KuFv4uZJN54wxJiyinsfirMfmRnVRQeyFtlik9Y/LHwrSY3dPFWflRpwdc0t6EWtzB2R/US0mNq4oNeTkxsm6mkLo1IrYaGOv3QOTTrXoX3dcuqoCT95+Mb757rWyPu+qaGJjrs6dWSf9KDVqZR2NTaSt0gRfMIIeW+ZrAfaesqK2uCD2PYpIR8XZIkZjjYQsX7naC7eqyoQyk3baaGPniAu+YCSnoS1L0ZbGYujUCrzQmfzcmbiAOuOxxugLnzMynTuTo3MGCLu8bPN45qx7zI0VcUuEqwp1UCqY7KEgwXAEgw4fGkqE4qyp1IBAKIIBCUXgmMsva1Kj6OvvXItvv3e97M8LCCEX59UVx0JBemxC11COxfcLraXCJGs4CyB0wIv06px1zkacvpyGgYiyTWz0BcN4+bQNl7SXL4l/K/ONirNFjIozQojcGGPY2VKGl06PxboBYhgIdc7So1MrsX1FCV7oSn7uTBxrLMvwDIl49kmuUBBxFDGbzpn48fM11sg5x7kxd6xgAgCVUoFKs072scZBhxfhCI915laKxfFY6j9/fygMpy+EUpnHGgFgXW0hNjfkLuxo6woLTgxOwukLos/umfbnTKZjjKG90oSTQ7nrnOUyDETUUm4CY5l3APeftcEbDNN5swxRcbaIOaLFWRGdOSOEyGhXWxkcniCORYuyY/0OFBao6UVZBna2luHsqDvpQuSRST9KjZqsuqDNZfIlNk4VZ9kVEfM51jjuCWLSF0LjjDNXdZYC9Mk81tgT3XHWEHfmDJi7cyn+ueb6rFAubF9hQYQDh7vH0T/uXXQx+vOtvdKMjmGnbCE98axOf87DQAAhrKuxxJBx52xfxyh0agXOlzFsZTmh4mwRm/AGoVYyFKhzF0FOCFl+Lm4uBWOIjeMd7ZvA+tpCGk/JgBipn2y00TqZeYy+aGW5EadHXeA8+xeDdncAKgWDWafK6nlKDJp565yJMfrxY42AEAoid+csllYYvVFhMWhQpFfjzByhILlYQD1fzqsvgkrB8Jc3BhEIRxZ1GMh8WFVlgjcYjv1bkUsoHIHN7c/4fGq6Mk1s5JzjuVNWXLCyFDp6fZoRKs4WsQlvEIUFanrBRAiRVbFBg/W1RXi+0wpvIIzOESeNNGaoudyIqkIdXkwy2jgsQ3HWXG6EwxOUpVM17hEWUGf7c8Vi1MATCMMbCGd9TXPpnrHjTFRn0cPq9MMXlO8aeu0eaFQKVMSNlgmJjak7Z2IU/WLsnOk1KqytKcSTx4cBLO6kxvnQHgsFkffcmc0dAOe5j9EXtVWa0G1zp/3/4TOjbvTaPbEl7SR9cxZnjLE6xthexthJxthbjLHbo2//d8bYMcbYUcbY04yx6txfLok34Q3CTOfNCCE5sKulFEf7HHjljHD2bENd0UJf0qLEGMPFLaV46fRYwoXII5P+jGP0RbHERhlGG22uACwyhCSIHSIxYCSXum1uIUa/eHrRUGcpAADZ1gwAQG80EEMRl5bXVGqQ3DnLxZmz+bBthQXeaJFLxVlqrRXCeS25z52J51PnqzhrrzSBc6DLmt7XsfeUEKG/p60sF5e1LEjpnIUAfI5zvgrADgCfYIytBvA9zvl6zvlGAI8D+FruLpMkMhntnBFCiNx2tZUhwoGf7jsDANhQS0mNmdrZWganL4Q3+iemvT0ojillecBfzuLM7g5kfd4MmAoUmY/RxnNjbtQW66FRTX9Jk4tdZz1xO85EK8uNGHP5YyFdiYhF6mLsnAHAtui+MwUDqosKFvhq8luBRokVJQbZO2fZrt1IV1uGawH2dljRWmFEbTEV8ZmaszjjnA9xzl+L/rcTwEkANZzz+H91BgDyn3wkKTk8QRRRcUYIyYENtUUw6VQ40jOOqkLdvL0gWIouip3hmz7aOOr0g3OgsjC7P9vqQh30GqU8xZknAIsM3R1x2bLYMcqlHptn1kgjgNiLQ7lCQTjn6LW5Zxdn0VCQVKONNlcAWpUCBs3iPIOzpVFIg6wuKqBF9BK0V5kkFzWBUAQvdo3OGSBidUaLs3nqnNVb9NCpFWmFgjh9QRw8Z6eRxiyl9f8wxlgjgPMAHIj+/luMsT4AN4A6Z/NugjpnhJAcUSkVuDgaZkHnzbJTpBfO8M2M1BfHlLIda2SMYWWZEWdkWERtd8s91pjb4oxzLuw4S5AkWm7SQqNSoF+mzpndHYA7EJ5VnDWVCYVhqtHGMVcApUbtoj0jXqTXYE21OVaIktTaK83osXng9ofmfOx/Pd2BG39xEPe8cCbl46zO7NZupEupYGitMKXVAXypawyhCMclFKGfFcnFGWPMCOARAJ8Wu2ac869wzusAPADgk0k+7hbG2GHG2OHR0eS7Xkj6qDgjhOTSzhbhzMB6Wj6dtV0tpXijz4EJz9To24g4piTD3qLm8uzj9EPhCCa8QZnGGoXnsOf4zJnNHYDTH0JDyezOmULBUFtUINsi6p5okTdzpUS9RQ+VgqXunLn9sW7iYvWzGzfjrmtzs+x6qYktcZ4j7bBj2IlfvHQORq0K33+6E2/0OZI+1uoUlpjPZ+eyrcKUVufsuVNWmHWqnO7dWw4k/Q0zxtQQCrMHOOePJnjI/wG4NtHHcs7v5Zxv4ZxvKSujw4FyiUQ4Jn1UnBFCcufy1RXY3FCMK1ZXLPSlLHo7W4UzfC+fmYrUFztn2Y41AkJxNjThg0vCnfpkHN4gOM9+xxkAGLUqaJSKnHfOupPE6ItqLXr0yzTWKJ5dm9k5UysVqC/Rp+xc2lyBRRmjH6+2WC/Lv9XlYFVV9LxWilAQzjm++qfjMOpU+Mv/uwjlJi1uf/D1pN0266Rv3rpmorZKE8ZcgVjaaCqRCMfejlHsbC2DikZfsyIlrZEB+AWAk5zz78e9vSXuYe8EcEr+yyPJOH0hcA4UyjB+QgghiZQYtXjktgvQXG5a6EtZ9DbUFcGkVU07dzYy6YNKwWQZI5S6DDkVuRZQA8KoZYlRk/MzZ+eSxOiL6ooLZAsEERdQJ1rCLMTpJx9rtLn8izYMhKSvpqgARq0q5Ujgw0f6cbDbji9d1Y4VpQb84P0b0WP34M4/v5Xw8Vbn/O04E4lrAaR0z94anMSYy489NNKYNSml7YUAbgRwSTQ2/yhj7O0AvsMYO84YOwbgCgC35/JCyXRiKhR1zgghJP+plQpc0FyCF7vGYsuiRyb9KDdpp8WyZ6qlIvvERrE4k6vDY5mHRdTdNjeUCoba4sQJgrXFeox7gll1FEW9dg8qzbqEi3VXlhnRbXMnXJfAOceYO7DoxxqJdAoFQ1ulKWnnzOEJ4NtPnsKm+iJcv6UOALC9qQSf2N2Mh4704/Fjg7M+xhr9fjGf2quEG3NSwk2eO2UFY8BuitDPmpS0xpc450yMzY/+eoJzfi3nfG307e/gnA/MxwUTARVnhBCyuFzcUoYBhzcWHDEy6UOFTGNiDRY91EqGLhmKs2IZi7PcjzV6UFecPEFQ3HUmR/dM3HGWSFOZAcEwT5gM6fKHEAhFUGqgztly0l5pwsnhydjNmHh3PdWBCW8Q33z3umk3Z26/rAUb64rw5UffnLafLxLhGHNlvxMxXaVGLUqNGnRICAV5rsOKDbVF1CGWAQ2FLlJUnBFCyOKyq1W4o/xiNLVxZNKHChnCQAAhXbOxxJBXnbNSozbngSDnxtxJRxoBeXed9djdqE+QCgmkjtOP/blS52xZaa8yw+kLYXDCN+3tr/WO48FDvfjwBY1YXW2e9j61UoEffWAjIhGOzzx4FOFovL7dE0AowmUJD0pXW+XcoSBjLj+O9TtwCUXoy4KKs0XK4RW+2RfpqTgjhJDFoM6ix4pSQ+zc2cikT9Y74c3l2cXpi0VEkUxnmS2G3J4545yjx+ZGY4KkRpF4PizbXWe+YBgjk/6knbOVsTj92X/+Yy6xOKOOwnKyKprYeGpoqusUCkfwb388jnKTFp+5vDXhxzWUGPD1d63FwW477t53GsBUeNB8jzUCQFuFGZ0jrpR72J7vGAXnoPNmMqHibJGizhkhhCw+F7eUYv9ZOyY8QUz6QrKNNQJCcdZjc8MfCmf08XZ3ACadChqVPC8NLAYNPIEwfMHMrmcuoy4/3IFw0qRGACjWq2HQKNGfZZx+X5IYfVGRXoMSgwZnrLNDQWzRpLvFntZI0tNaOfu81m9e7cGJoUl87Zo1MGpVST/22k01eMeGavzg2S681js+tYB6nscaAWE80xsMozdF9/m5DivKTFqsmdEJJJmh4myRouKMEEIWn50tZfAGw/jrm0MAINtYIyAUZxEunMPKhN0tb9x7rhdRi19nqrFGxhjqLHr02bPrnIkvTBMlNYpWlhlxdmx250z8+kupc7asmHVq1BYX4GS0czYy6cP3n+nEztYyvH1dZcqPZYzhm+9ei0qzDp9+8CjORc+pLtRYI5A8FCQYjuCFzlHsaSuTJdyIUHG2aE14g9CoFAlTowghhOSnHStLoFIwPHSkDwBQIWM0tnjuKdNzZ3Z3QLYwEGBqjM+eo9FGccdZY5Julqi2uCDrzpkYo9+QojhrKjPEwl7iiZ2zYgPdTF1u2ivNsaLm3x8/gUA4gm+8cw2ELVWpFRao8cMPbET/uAfff6YTAOZ9zxkAtFaYwBiSrgU40jMOpy9E581kRMXZIjXhCaKIumaEELKoGLUqbG4oxuu9DgBAZaF8L7ZWlhnBWHbFmZydM3Ff2liOQkHO2dxQKRhqihLH6Itqi/Xos3sSpuZJ1Wv3wKhVpdwBt7LMCLs7gPEZncIxlzAuqlXRzdTlZlWVCWdHXXj2xAgePzaEf969MmWnd6atjRZ8ck8zXP4QCgvUC3JDvkCjRINFnzQUZO8pK9RKhgubS+f5ypYuKs4WqQlvkEYaCSFkEdrZOrUHSM6lsgUaJWqKCnA6w1AQuzuAYpnCQICpscZcds7qLXqoksToi+osergDYYx7ghl/rl67B3UWfcqOR1M0FGTmaKPNHaCRxmWqvdKMCAc++4ejaCzR49ZdK9N+jk9d2oItDcWxf18LIVVi494OK7Y2WmDS0WtSuVBxtkhRcUYIIYvTzhahOCtQK2FKEQqQieZyY0adM8457O4ALDLGvYvPlatF1HPF6Ivqoguqsxlt7LG5U440AlNjpTNDQWwuP4WBLFPiEudJXwjfeNfajDpfKqUCv715O+7/6Ha5L0+y9kozum3uWeE+/eMedI64aKRRZlScLVJUnBFCyOK0ptqMEoMGFWatpLMn6WguM+LsqCu2H0kqdyCMQDgiaxFh0qqgUSpyMtYoxOh7Usboi2Jx+hmGgkQiwnLpZDvORLXFBdAoFTgzs3PmCtCOs2WqscSAIr0a16yvmtYxT5dOrUyZ7phr7ZUmRDjQNTL93/beU1YAwB4qzmS1cH/TJCsOTzCWoEMIIWTxUCgYPnJhIzwB+SPmm8uN8IciGJBQTMQTRw/lHGtkjMFi0ORkrNHq9MMbDGNF6dxfY220c9aXYedsxOlDIBRJuuNMpFIq0FCin905c/uxubE4o89NFjelguHJ2y9OeVZxMZhKbJzEutrC2NufO2VFQ4keTWmcoyNzo+JskZqkzhkhhCxan7ykJSfP21weTWwcdaZXnHnERcnyvoi0GDSSxxrDEQ5vMCypQ3BOTGqU8KLQpFOjSK+O7SpLV280qXGu4gwQRhs7R6bO5oQjwrho6SJ/cU4yV1WYOrBmMWgoMUCnVkw7d+YLhvHKGRv+YVu97BMAyx2NNS5C4QiHM5rcQwghhIhixVma587s0dFDOTtngFDsSd1z9qO/d2HXd/fG9nimMhWjL+2OfV2xHn3jmY019syxgDpeU5kBvXYPguEIAMDhCSDCp9YKELIYKRUMLeUmdMTdeHj1jA3+UIRGGnOAirM80Wf3YM9/7sMbfY45HztJC6gJIYQkUKTXoNSoSbs4s0VHD0sM8hYRJQYNbBLPnD355hBs7gB+9fK5OR97zuaGRqlA9Rwx+qI6SwH6M+yc9dk9UCqYpM+1ssyIUITH9qKJhSmdOSOLXVuladoi6udOWVGgVmL7CssCXtXSRMVZnvjJc104N+bG394anvOxjmhxVqSn4owQQsh0K8vST2wcj441ypnWCAAWg1bSmbMBhxddVhcK1Er84qVzc3bPusfcqLMUQKmQNk5VV6xHv8OLSJpBKYCwgLq6SAf1HJH9ALAy2rk8G11nMBZdQC130UvIfGuvNGHU6YfN5QfnHM+dsuLC5tIF2b221FFxlgf67B48+toAAODgOfucj5+gzhkhhJAkxDj9dJYu29wBaJQKGDTyvtAqMWrgDoRnRXDP9HzHKADgO9eug9MXwv++3J3y8d1jHqxII4Sg1qJHIBTBqCv95MgeuwcNFmmfS9xFdWZUGLsUO5Kl1Dkji5wYCtIx7ESX1YUBh5ci9HOEirM88D97T0PBGN61sRrH+ifm/CFGxRkhhJBkmsuNmPSF0ipExt0BWAwa2Q/2xxZRz3HubF+HFTVFBXjnhmpcvroCv3jpLCZ9ibtnkQhHt80t+bwZEJfYmMFoY190AbUUZp0aZSYtzkQ7Zzaxc0Znzsgi115pBgCcGnbGIvR3t2W+HoAkR8XZAuuze/DwkX58YFsd3rG+GoFwZM5zZ1ScEUIISSaTUBC7O4DiHCQKihHithSjjYFQBC+fHsPO1jIwxnD7pS2YTNE9G3H64A9FJCU1iuqKo7vO0ozTd/qCsLsDksJARCvLDLGxRps7AAUDiujnNVnkykxalBg06Bh24rlTVrRXmiSf+STpoeJsgf103xkoGMNtu1diS3QPylyjjRPRswFm+mZPCCFkhkyKM5s7IOsCapEYhJEqFORwjx3uQDh2F35tTSEuW1WB+15M3D0TY/TTGmuMdc7SS2zstUuP0Rc1lRlxZtQNzjnGXAFYDFooJJ6NIySftVWacLjHjsM94zTSmENUnC2gAYcXDx/pw/Vba1FVWIAivQbtlSYc7J6jOKPOGSGEkCQqzToYtaq0ijNxrFFuYhBGqrHG5ztGoVYyXNhcGnvbpy9L3j3rHhMKpnQ6Zzq1EuUmbdpjjensOBOtLDNiwit03GwuP503I0tGW6UJZ0bdCEc4FWc5RMXZAvrp3tMAgNt2N8fetrXRgtd6xhGK7khJZMIbRIFaCa2KEnIIIYRMxxjDyjJD2p2zXBRnYvpjqrHGfR2j2NJgmbZ8Wuye/eKlc7O6Z902N7QqBarMurSupc6iR3+au85inbM0xhrjQ0Fs7gDF6JMloz0aClKkV+O8+uIFvpqli4qzBTLo8OIPh/tw3ZY61MTN7G5dYYE7EMaJocmkHzvhDVLXjBBCSFIry6XH6QdCETh9oZwUZyatCmolS7qIetDhRceIM2GwwO2XtmDCG8SvZ3TPzo250VCiT3tUsLa4IO0zZz12D4r1aph10n/mNpcJY6VnRl2wufwUo0+WjLZoKMjOljLJayxI+qg4WyB37zsDAPjn3SunvX1bo7DML9W5M4eHijNCCCHJtZSbYHX6kyYexnOIO85yUJwxxmAxaGBPcubs+U4hQn932+wRqXW1hbhsVTnue+kcnHFfR/eYGw1pJDWK6or1GJrwpZxMmanX5kF9mp+ruqgAWpUCZ0ddsLmoc0aWjvZKEzY3FOMD2+oW+lKWtGVfnP3o2S785O9d8/o5hya8+P2hPrxvcy1qi6ePSlQW6lBv0eNQinNnE94gCmkBNSGEkCTSCQURu1q5KM4A4dxZsjNnz3eMoqpQh9YKY8L3335pq9A9e6UbgBCj32NPb8eZqM5SgHCEY2jCJ/ljeu2etM6bAYBSwbCi1IATQ5Nw+kMopRh9skTo1Eo8ctsFuGBl6dwPJhlb9sXZqeFJ/PZADyIR6cs6s3XPvjOIcI5/jjtrFm9rowWHuseTLhClsUZCCCGppFOcjee6ODNqMJbgzFkwLETo724rS7pfbV1tIS5tn+qeDU54EQhF0tpxJorF6UsMBQmGIxhweNGQZnEGCKEgr/U4ACAnKZiEkKVr2Rdnl62qwMikH8cHJ+bl841M+vC7Q324dlNt0qWW21dYYHcHYkssZ5qk4owQQkgKdcUF0CgVOJMHnTNhrHF2cXakZxxOfwi7WlOnvt1+WQscniB+82oPemxiUmP6BZP4M1dqKMiQw4dwhKfdOQOEUBBvMAyAFlATQtKz7IuzPe3lUDDg2ZPWefl8d+87g3CE4xN7EnfNACEUBAAOnhtP+H4HFWeEEEJSUCkVWFEqLbHRvkDF2b6OUagUDBc2l6T8+PW1Rbi0vRw/f/Esjg8IN1IzGWusKtRBqWCSQ0F67MI+tXSSGkUry6bGNOnMGSEkHcu+OLMYNNjcUIxnT4zk/HNZJ3343cFevPe8mpTf7BtL9Cg1anHwnG3W+4LhCDyBMIqoOCOEEJJCc7kRp5NMYMSzuwNgDDn7uVJq1MLlD8EX7SSJ9nVYsbmhGCYJSYhi9+x/9p6GTq1AhSm9GH1AKFgrzTrJY41ijH5DlsVZKaU1EkLSsOyLMwC4dFUFTgxNYtCR3v6TdP3shbMIRTg+eUnyrhkgpFttXyGcO5sptoCaAkEIIYSksLLciD67Z1ZRNJPdHUBhgRoqZW5eEogdufju2fCED6eGnQlTGhNZX1uES9rLMekLobHEkHaMvqjOUoA+iWONvTYPNKrMCsEVZVOdPeqcEULSQcUZhHNnAPD3k7nrno06/XjgQA/evbFGUgTw1sZiDDi86J8xfhErzqhzRgghJIXmciMiXNgLlordk5sF1KJExdnzncJRgkT7zZK5/dIWAMgoDERUV6yX3DnrsXlQV1yQUSFo1KpQadZBp1ZAr1Gm/fGEkOVrzuKMMVbHGNvLGDvJGHuLMXZ79O3fY4ydYowdY4z9kTFWlPOrzZGVZQY0luhzeu7s3hfOIBCKzNk1E4nnzmZG6ovFmZmKM0IIISmIy5DnOndmdwVg0eeuOCuNdo7iF1Hv6xhFpVmH9kqT5OfZUFeEL17Vjg/uaMj4Wuoselid/jm7iUBmMfrxmsoMKDFokyZREkJIIlI6ZyEAn+OcrwKwA8AnGGOrATwDYC3nfD2ATgBfzt1l5hZjDJetqsCrZ2xw+UOyP783EMaDB/twzfpqyYeY2yvNMOlUs0JBJjxCcUZnzgghhKTSVGYAYxKKM3euO2fa6OcRFlEHwxG81DWGXa3JI/STuW33SlzUkvmOpTpLAQBgYI5jDJxz9No9GS27Ft22eyU+e3lrxh9PCFme5izOOOdDnPPXov/tBHASQA3n/GnOuVjJ7AdQm7vLzL1LV1UgEI7gpa5R2Z/7yeNDcPpD+Mft9ZI/Rqlg2NJQPCsUhMYaCSGESKFTK1FXrMfjxwbxu4O9s8bkRXZPIKfnosTCzxbddfZ6rwNOfyitkUa51ErcdTbuCcLlDyVdeSPFxS1luHbzon5pRAhZAKp0HswYawRwHoADM971TwB+L9M1LYgtjcUoLFDjmRNWXLW2Stbn/v2hPjSW6LE9Oqoo1dYVFuztGIXN5Y/tSaHijBBCiFQfvWgF7t53Bl9+9E0AQFOpARe3lGJnaxl2NJVAr1Fi3B1AcQ7HGs06FdRKFhtr3NdhFSL0s+iAZSq2iHqOUJAem3BOL5MF1IQQkg3JxRljzAjgEQCf5pxPxr39KxBGHx9I8nG3ALgFAOrrpXeO5ptaqcDutjLs7bAiHOFQZpgENVP3mBsHztnxhSvb0h7f2B47dzaOq9ZWAqAzZ4QQQqS76YJGfOj8BpwZdeH5zjG82DWK3x/uw69f7YFaybChtgihCM/pWCNjTNh15hKLs1FsaiiGWUKEvtzKTVpoVAr0z9E5yyZGnxBCsiEprZExpoZQmD3AOX807u03AbgGwA2cc57oYznn93LOt3DOt5SVzf8IQzouW1UBuzuA13sTL3/OxENH+qBgwLWb0h9tWFdTBK1KgYPnpkJBHJ4gjFoV1DmKPCaEELK0MMbQXG7CRy9agf/9yDa8cccV+L+bt+OjFzXBGwyDMaC1QnowRyYsBi1sbj+skz6cGJpckJFGAFAoGGqLCuZcRN1rE96fzVgjIYRkYs7OGRPaPb8AcJJz/v24t18F4IsAdnHOpeXS5rldbWVQKRiePWnFlsb0RhATCYUjePhIP3a3laOyMP09KRqVAhvriqYlNk54gzTSSAghJGNalRIXNJfiguZSfOlt7QiGIzm/4Vdi0MDmDmBfp3Cue1frwt2srbXo0TniwrkxNxos+oRR+T12DyrMWujUFINPCJlfUsYaLwRwI4A3GWNHo2/7VwA/BqAF8Ex0XG8/5/zWXFzkfDHr1NjeZMGzJ0fwpbe1Z/18L3SNYmTSj6+/M/MDwdtXWPDfe0/D5Q/BqFVhwhukkUZCCCGymY9JDItBg75xD57vGEW5SYvVVeacf85k1lSb8ULnKPb85z4YtSqsrjZjbXUh1taYsbamEE2lhqxj9AkhJFNzFmec85cAJDos9YT8l7PwLm2vwDceP4EemzurCF0A+MOhfpQYNLikvSLj59i6woLIc8CRnnHsai3DpDeIwoK0clwIIYSQBVVi1GDM6ceLXaO4ck3lgu7++sIVbbh6XRXeGpzA8YFJHB+cwP8d7IEvGAEA6NQKhCMc79xQs2DXSAhZvuhV/gyXrRKKs2dPWvHRi1Zk/DxjLj+ePTmCj1zYCI0q87uSm+qLoVQwHDpnx67WMji8ATSVGjN+PkIIIWS+lRg0cAeExc+728oX9FoUCoa1NYVYW1OI928V3hYKR3BuzI3j0YKtc8SJazbIm9xMCCFSUHE2Q32JHq0VRjx7YiSr4uyPrw0gFOG4fktdVtdj0KqwttqMg9FzZ3TmjBBCyGIjLqJWKlhWS6RzRaVUoKXChJYKE95z3kJfDSFkOaPIvwQuW1WBg912THiCGX085xx/ONyH8+qL0CJDAtbWRguO9jngD4WF4kxPxRkhhJDFQ1xyvam+iG4wEkJIClScJXDpqgqEIxz7Oq0ZffzrfQ50WV14f5ZdM9HWFRYEQhEcOjcOXzBCP9gIIYQsKiXRPWoLPdJICCH5joqzBDbWFaHUqMHfT2ZWnP3hUB8K1EpcvV6eefWt0Vj/Z0+OAKAF1IQQQhaXtTWF+IdtdXjf5szTiwkhZDmgM2cJKBUMe9rK8dRbw2nvf/EEQvjLG4O4en0VTDp5iiiLQYOWciOeOSEUZ0VUnBFCCFlEdGolvv3e9Qt9GYQQkveoc5bEZasr4PSFpi2AluKvx4bgDoTx/q3yjDSKtq6wYMDhBQAaaySEEEIIIWQJouIsiYtbSqFRKfDsifRGG/9wuA9NpQZsaSiW9Xq2r7DE/puKM0IIIYQQQpYeKs6S0GtUuHBlCf5+agScc0kfc3bUhUPd47huS53sCzbFc2cAFWeEEEIIIYQsRVScpXDpqgr02Dw4bXVJevwfDvdDqWC4dlON7NdSXVSA2uICAEARRekTQgghhBCy5FBxlsKlq4TI32clpDaGwhE88lo/9rSVodysy8n1bGu0gDHIFjRCCCGEEEIIyR9UnKVQVViAtTXmWIR9Kns7RjHq9ON6mXabJXLr7pX4xrvWQqmQd2SSEEIIIYQQsvCoOJvDpe0VeK13HGMuf8rH/eFwH0qNWuxpz92CzdYKE27c0ZCz5yeEEEIIIYQsHNpzNofLV1fgR3/vwo7/+DsqzDpUF+lQVViAqiIdqgsLUFWog0mnxnOnrLj5ohVp7UQjhBBCCCGEEBEVZ3NYU23Gjz6wER3DTgxN+DDo8OJonwNPHvciGJ6e4nhdDkcaCSGEEEIIIUsbFWdzYIzhXRtnpy9GIhxjbj+GHD4MTXihUyvRXG5cgCskhBBCCCGELAVUnGVIoWAoN+lQbtJhQ13RQl8OIYQQQgghZJGjA1KEEEIIIYQQkgeoOCOEEEIIIYSQPEDFGSGEEEIIIYTkASrOCCGEEEIIISQPUHFGCCGEEEIIIXmAijNCCCGEEEIIyQNUnBFCCCGEEEJIHqDijBBCCCGEEELyABVnhBBCCCGEEJIHqDgjhBBCCCGEkDxAxRkhhBBCCCGE5AEqzgghhBBCCCEkD1BxRgghhBBCCCF5YM7ijDFWxxjbyxg7yRh7izF2e/Tt10V/H2GMbcn9pRJCCCGEEELI0iWlcxYC8DnO+SoAOwB8gjG2GsBxAO8F8EIOr48QQgghhBCSz777XWDv3ulv27tXeDtJy5zFGed8iHP+WvS/nQBOAqjhnJ/knHfk+gIJIYQQQggheWzrVuD666cKtL17hd9v3bqw17UIqdJ5MGOsEcB5AA6k8TG3ALgFAOrr69P5dIQQQgghhJB8t2cP8Ic/ANddB1x0EfDyy8Lv9+xZ6CtbdCQHgjDGjAAeAfBpzvmk1I/jnN/LOd/COd9SVlaWyTUSQgghhBBC8tmePcD69cBjjwHvfjcVZhmSVJwxxtQQCrMHOOeP5vaSCCGEEEIIIYvK3r3AsWOAVgv85jezz6ARSaSkNTIAvwBwknP+/dxfEiGEEEIIIWTREM+YPfQQ8MUvAoEAcO21VKBlQErn7EIANwK4hDF2NPrr7Yyx9zDG+gGcD+CvjLG/5fRKCSGEEEIIIfnn0KGpM2a33w4YjcCGDcLbSVoY53zePtmWLVv44cOH5+3zEUIIIYQQQubZl78M3HUXcOIE0N6+0FeTd/5/e/cfZFdZ33H8/YWwUKIR0ASDhkiso6gVymxopGSmYXCaxnEiSAMYaWiTYWCq1qAhIZ2xf8QqDUnGX5SCBF1nBJNIELRWRWYdGDTpbjqpQvkRogIRJEgl0WRoSHj6xzlrbsJdd5Ps3fOce9+vmTt773PP2fPd+8nOk++ee54bEZtSSk0/J3rYC4JIkiRJ0pAWLoTjjoNPf7rqSmrH5kySJEnSyJkwAa68Em67DbZurbqaWrE5kyRJkjSyFi2CMWPgM5+pupJasTmTJEmSNLImToQFC6CnB558supqasPmTJIkSdLIW7wYIorFQTQsNmeSJEmSRt6kSXD55bB6NTz9dNXV1ILNmSRJkqTWWLIE9u6F66+vupJasDmTJEmS1BpTpsDcuXDTTbB9e9XVZM/mTJIkSVLrLF0KL74IK1dWXUn2bM4kSZIktc5b3woXXww33ADPP191NVmzOZMkSZLUWhMnwq5d8NnP7h/r7YXlyysrKUc2Z5IkSZJa633vg64uWLUKXnihaMzmzIGpU6uuLCs2Z5IkSZJaa8YM+MIXYPdumD27aMzWri3G9Xs2Z5IkSZJa74or4PTT4b77ijNpNmavYHMmSZIkqfV6e4vl9E84AXp64I47qq4oOzZnkiRJklpr4Bqzdevghz+EMWPg0kvhnnuqriwrNmeSJEmSWquvb/81ZmecAatXw0svwbJlVVeWFZszSZIkSa11zTUHXmP2oQ/Bhz8M998Pa9ZUV1dmbM4kSZIkjb6VK+Gcc2D+fHjooaqryYLNmSRJkqTR19VVXIP26lfDBRfAjh1VV1Q5mzNJkiRJ1TjllOJatJ//HObNg5dfrrqiStmcSZIkSarO9OmwYgXcdVfxWWiNenth+fJq6qqAzZkkSZKkan30o8WCIatXw/XXF2MDy+9PnVptbaNoTNUFSJIkSepwEfCtb8E73wmLF8Njj8E3v7l/+f0O4ZkzSZIkSdUbOxa+/304/ni45RaYPLn4TLQOYnMmSZIkKQ/btsFxx8HZZ8OmTXDaafClL8G+fVVXNipsziRJkiRVb+Aas3XrYOPGoinbvbtYJGTaNPjIR4ptDt6njRYMsTmTJEmSVL2+vgOvMVuwAL73PbjkEvjlL+GLX4RZs+DOO4vn23DBkEgpjdrBuru7U39//6gdT5IkSVIb2LkTli2DVasgJXjve2HDhlouGBIRm1JK3c2eG/LMWURMiojeiHg4Ih6KiH8ox0+KiHsiYkv59cSRLlySJEmSGDeuWGL/wQdh0iT49rfhwgtr15gNZThva9wLfDyldDowDfj7iHg7sAS4N6X0FuDe8rEkSZIktcavfgW7dkFXF/T0vPIatJobsjlLKT2TUvqv8v5vgYeBNwCzgZ5ysx7g/S2qUZIkSVKna1wwZOFC2LMHPvCBtmrQDmlBkIh4E/CnwEbg5JTSM1A0cMCEEa9OkiRJkuDABUMWLoRjj4V3v7sYbxNjhrthRLwKuAP4WEppZ0QMd78rgCsATj311MOpUZIkSVKnu+aa/fdPPhnmz4ebb4abbqquphE2rDNnEXEMRWP2tZTS+nL42YiYWD4/EdjebN+U0s0ppe6UUvf48eNHomZJkiRJnW7RomLlxhUrqq5kxAxntcYAVgMPp5RWNTx1NzCvvD8PuGvky5MkSZKkJiZPhrlzi7Nnzz1XdTUjYjhnzv4cuAw4LyI2l7dZwHXAeyJiC/Ce8rEkSZIkjY7Fi+HFF+Fzn6u6khHhh1BLkiRJqq+LLoIf/ACeeAJe85qqqxnSEX0ItSRJkiRla+lS2LEDbryx6kqOmM2ZJEmSpPo66yyYORNWrYLdu6uu5ojYnEmSJEmqt6VLi0VBbr216kqOiM2ZJEmSpHqbPh3OPReWL4c9e6qu5rDZnEmSJEmqv6VL4amn4Lbbqq7ksNmcSZIkSaq/mTPhzDPhuutg376qqzksNmeSJEmS6i8C3vEOePRRWL9+/3hvb/F2xxqwOZMkSZLUHi6/HI4+Gq69FlIqGrM5c2Dq1KorGxabM0mSJEnt4fzz4eqrYetWmDu3aMzWroUZM6qubFhsziRJkiS1j099CsaNg9tvh6uuqk1jBjZnkiRJktrJAw/AUUfBokVw443FWxtrwuZMkiRJUnsYuMZs/fpiEZC1a4vHNWnQbM4kSZIktYe+vgOvMZsxo3jc11dtXcMUKaVRO1h3d3fq7+8fteNJkiRJUk4iYlNKqbvZc545kyRJkqQM2JxJkiRJUgZsziRJkiQpAzZnkiRJkpQBmzNJkiRJyoDNmSRJkiRlwOZMkiRJkjJgcyZJkiRJGRjVD6GOiOeAJ0btgMP3OuDXVRehQZlP3swnX2aTN/PJm/nkzXzyZTZDm5xSGt/siVFtznIVEf2DfUq3qmc+eTOffJlN3swnb+aTN/PJl9kcGd/WKEmSJEkZsDmTJEmSpAzYnBVurroA/UHmkzfzyZfZ5M188mY+eTOffJnNEfCaM0mSJEnKgGfOJEmSJCkDtWrOImJmRDwaEY9HxJKG8TURsbm8/SIiNg+y/0kRcU9EbCm/nliOz23Yf3NEvBwRZzbZ/2vl8R+MiFsj4phyPCLi82VdP4mIs1rzCuQt43zeFhE/joj/i4hPtOanz1/G+cwtf29+EhE/iogzWvMK5C3jfGaX2WyOiP6IOLc1r0DeWpjPMRHRExE/jYiHI+LaQfY/LSI2lvuviYiucrzj55+Ms3HuIet8nHvIOp/OnXtSSrW4AUcDW4EpQBfw38Dbm2y3EvjkIN9jObCkvL8E+Jcm2/wJ8LNB9p8FRHm7HbiqYfw/yvFpwMaqXy/zOSCfCcBU4J+BT1T9WpnPK/I5BzixvP9X/v5kl8+r2P8W+HcBj1T9erVTPsAHga+X948HfgG8qcn+a4FLyvv/5vxTi2yce/LOx7kn73w6du6p05mzs4HHU0o/SyntAb4OzG7cICICmEPxH4tmZgM95f0e4P1Ntrl0sP1TSt9JJeA/gTc2fN+vlk9tAE6IiInD/snaQ7b5pJS2p5T6gJcO6SdqLznn86OU0m/KzTaw//eqk+Scz+/KMYCxQCdeqNzKfBIwNiLGAH8E7AF2Nvne5wHfaLJ/p88/2Wbj3APknY9zT975dOzcU6fm7A3AUw2Pt5VjjaYDz6aUtgzyPU5OKT0DUH6d0GSbixn8HyBQnKoFLgO+ewi1tbuc81F98plPcRag02SdT0RcEBGPAP8O/N0f2r9NtTKfbwC7gGeAJ4EVKaX/PWjf1wIvpJT2Njl+p88/OWej+uTj3FPIKp9OnXvq1JxFk7GDu+hB/yo8rANE/BmwO6X04BCb/itwX0rp/kOord3lnI9qkE9EzKCYIBcfbg01lnU+KaU7U0pvo/iL5rLDraHGWpnP2cA+4BTgNODjETHlEI7f6fNPztmoBvk497xCNvl06txTp+ZsGzCp4fEbgacHHpSnTS8E1jSMfbm8kPA75dCzA2/3KL9uP+gYlzD0X5X/CRgPXD3c2jpEzvko83wi4l3ALcDslNLzh/BztYus8xmQUroPeHNEvG44P1QbaWU+HwS+m1J6KaW0HXgA6D7o+L+meLvimCbH7/T5J+dslHk+zj155zOg0+aeOjVnfcBbylVduij+o3F3w/PnU1wsuG1gIKX0tymlM1NKs8qhu4F55f15wF0D20bEUcBfU7zftqmIWAD8JXBpSunlhqfuBv4mCtOAHQOneDtIzvko43wi4lRgPXBZSumxI/gZ6yznfP64vC6AKFYC7AI67T8xrcznSeC8cv4YS7GoxyONBy+vu+gFLmqyf6fPPzlno4zzce4B8s6nc+eelMGqJMO9UaxK9RjFyjL/eNBzXwGuHGL/1wL3AlvKryc1PPcXwIYh9t9bHntzeftkOR7ADeVzPwW6q36tzOeAfF5P8dehncAL5f1xVb9e5vP7fG4BftMw3l/1a2U+B+SzGHioHPsxcG7Vr1U75UOxItm68jX+H2DRIPtPoVio5fFy+2PL8Y6ffzLOxrkn73yce/LOp2PnnoElKiVJkiRJFarT2xolSZIkqW3ZnEmSJElSBmzOJEmSJCkDNmeSJEmSlAGbM0mSJEnKgM2ZJEmSJGXA5kySJEmSMmBzJkmSJEkZ+H+0hZ86zF2rJAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAC5/ElEQVR4nOydd5xkVZn+n1M5h85xIpMDM8MMGWFABcVVUcGABLPsGnbVNa4/2aBrXF11FQNm1AUjuigoDkqcGcIww+Q8nburuyvnqvP749apru6ucG/VrdT9fj8fPkxXuHWrQ93znud9n4dxzkEQBEEQBEEQBEHUF029T4AgCIIgCIIgCIKg4owgCIIgCIIgCKIhoOKMIAiCIAiCIAiiAaDijCAIgiAIgiAIogGg4owgCIIgCIIgCKIBoOKMIAiCIAiCIAiiAaDijCAIgiAIgiAIogGg4owgCKJJYYwFc/5LM8YiOV/fXO/zKwfG2BnG2IvrfR7FYIw9whh7e5WOvZox9lvG2ARjbIox9iBjbE3O/bczxlJzfvZXzTm3aM59R+cc/xrG2BHGWJgxtosxtjTnPsYY+xxjbDLz3+cZY6wa75MgCILIDxVnBEEQTQrn3Cb+A3AOwN/l3HZPvc9vLowx3UJ4jSrjAnA/gDUAOgHsAfDbOY95Mvdnzzl/ZM7978m5L7ewawPwKwCfBNAC4GkA/5vzvHcCeDWA8wFsBvAKAO9S6X0RBEEQMqDijCAIYoHBGNMwxj7KGDuZUUDuZYy1ZO5bxhjjjLG3MMYGGGPTjLF3M8Z2MMb2M8a8jLGv5xzrdsbY44yxrzHGfBnV5Zqc+52MsbsZYyOMsSHG2H8wxrRznvtlxtgUgDsZYysZY3/JnJeHMXYPY8yVefyPASwB8LuM6vNhxthVjLHBOe8vq64xxu5kjP2CMfYTxpgfwO0lzuk8xthfM+/FwxjLLU5yX8OUOeZk5nuylzHWyRj7NIArAHw9c45fzzx+LWPsTxm16yhj7KacY/2AMXZX5v5A5vWX5ntdzvkezvndnPMpznkCwJcBrGGMtSr6JcjPawAc5JzfxzmPArgTwPmMsbWZ+28D8CXO+SDnfAjAlwDcrsLrEgRBEDKh4owgCGLh8T5ICsiVAHoATAP4nzmPuQjAKgCvB/AVAJ8A8GIAGwDcxBi7cs5jTwFoA/ApAL8SxR6AHwJIAjgPwFYALwXw9jzP7QDwaQAMwH9mzmsdgH5IRQI457dgtgL4eZnv91UAfgFJdbqnxDn9O4CHALgB9AH4WoFj3gbAmTm/VgDvBhDhnH8CwKOYUafewxizAvgTgJ9m3ucbAXyDMbYh53g3Z167DcC+zHnK4UUARjnnkzm3bc0UlscYY5/Moxb+Z+b+x3NbHiH9bJ8XX3DOQwBOZm6fd3/m37nvgSAIgqgyVJwRBEEsPN4F4BMZBSQGqfh53ZxF/L9zzqOc84cAhAD8jHM+nlFMHoVU1AjGAXyFc57gnP8vgKMArmeMdQJ4GYB/5JyHOOfjkJSeN+Q8d5hz/jXOeZJzHuGcn+Cc/4lzHuOcTwD4L0hFZCU8yTn/Dec8DcBR4pwSAJYC6Mm8/8cKHDMBqSg7j3Oe4pw/wzn3F3jsKwCc4Zx/P/M+nwXwSwCvy3nM/3HO/5b5eXwCwCWMsf5ib4ox1gepqP5Azs1/A7ARUhH4WkiF4D/n3P8RACsA9AL4NiQVcmXmPhsA35yX8QGwF7jfB8BGc2cEQRC1g4ozgiCIhcdSAL/OtON5ARwGkII0wyQYy/l3JM/XtpyvhzjnPOfrs5CUr6UA9ABGcl7rW5AKB8FA7okxxjoYYz/PtBv6AfwEkppUCbmvUeqcPgxJvdvDGDvIGHtrgWP+GMCDAH7OGBvOmGPoCzx2KYCLxOtlXvNmAF35zpFzHgQwBel7mBfGWDskhe8bnPOf5Tz3FOf8NOc8zTk/AODfkFMEcs53c84DmeL3hwAeB/DyzN1BSMVrLg4AgQL3OwAE5/zsCYIgiCpCxRlBEMTCYwDAyzjnrpz/TBlVrBx656gnSwAMZ14nBqAt53UcnPPcVri5C/v/zNy2mXPuAPBmSMVSoceHAFjEF5nZsfY5j8l9TtFz4pyPcs7fwTnvgaQwfoMxdt7cN5xRCf+Vc74ewKWQ1LFbC5zjAIC/zvl+2zjnd+Q8JquSMcZskAw5hue+buZ+N6TC7H7O+afzPWbOey+mbOXefxCS2Yd4HSuAlZnb592f+fdBEARBEDWDijOCIIiFx10APi1MJxhj7YyxV1VwvA4A72OM6RljN0KaFXuAcz4CqYj4EmPMwSQjkpVz5tXmYoek0HgZY72Y3ZIHSAreipyvjwEwMcauzyhX/wLAWOjgpc6JMXZjpl0QkGbxOCRVcRaMsZ2MsU2ZYtAPqc1RPG7uOf4ewGrG2C2Z75GeSQYr63Ie83LG2OWMMQOk2bPdnPNZqmLmdR2QFLvHOecfzXP/yzLtpMgYeXwSGTdHxpiLMXZtxsxEx6Q4hRdljgcAvwawkTH2WsaYCcD/A7Cfc34kc/+PAHyAMdbLGOsB8EEAP8j3fSYIgiCqAxVnBEEQC4//hmTH/hBjLADgKUjGHOWyG5J5iAeSqcfrcgwqbgVgAHAIUrHzCwDdRY71rwC2QZpn+j9I1u65/CeAf8m0B36Ic+4D8PcAvgtgCJKSNojiFDunHQB2M8aCkL5H7+ecn85zjK7M8/yQ2kL/CqkFE5C+v69jktPlVznnAUimI2+ApIaNAvgcZheRP4VkpjIF4AJIbY/5uCFzjm9hs7PMlmTuvwbAfsZYCMADkL5/n8ncpwfwHwAmIP2s3gvg1ZzzowCQmfF7LaSf4TSk34nc+cBvAfgdgAMAXoD08/lWgfMkCIIgqgCjVnKCIAiiEIyx2wG8nXN+eb3PpVlhjP0AwCDn/F/qfS4EQRBEY0PKGUEQBEEQBEEQRANAxRlBEARBEARBEEQDQG2NBEEQBEEQBEEQDQApZwRBEARBEARBEA0AFWcEQRAEQRAEQRANgK6WL9bW1saXLVtWy5ckCIIgCIIgCIJoGJ555hkP57w93301Lc6WLVuGp59+upYvSRAEQRAEQRAE0TAwxs4Wuo/aGgmCIAiCIAiCIBoAKs4IgiAIgiAIgiAaACrOCIIgCIIgCIIgGoCazpwRBEEQBEEQRKOQSCQwODiIaDRa71MhFiAmkwl9fX3Q6/Wyn0PFGUEQBEEQBLEoGRwchN1ux7Jly8AYq/fpEAsIzjkmJycxODiI5cuXy34etTUSBEEQBEEQi5JoNIrW1lYqzAjVYYyhtbVVsSpLxRlBEARBEASxaKHCjKgW5fxuUXFGEARBEARBEHXi05/+NDZs2IDNmzdjy5Yt2L17NwDg7W9/Ow4dOqTKayxbtgwej6foYz7zmc8oPu4PfvADvOc975l12/e//31s2bIFW7ZsgcFgwKZNm7BlyxZ89KMfVXz8WvCVr3wF4XC43qeRhWbOCIIgCIIgCKIOPPnkk/j973+PZ599FkajER6PB/F4HADw3e9+t6bn8pnPfAYf//jHKz7OW97yFrzlLW8BIBWFu3btQltbW8XHLRfOOTjn0Gjya1Jf+cpX8OY3vxkWi0X2MZPJJHS66pRRpJwRs4gmUvjrsYl6nwZBEARBEMSCZ2RkBG1tbTAajQCAtrY29PT0AACuuuoqPP300wAAm82Gj3zkI7jgggvw4he/GHv27MFVV12FFStW4P777wcwX8V6xStegUceeWTea7761a/GBRdcgA0bNuDb3/42AOCjH/0oIpEItmzZgptvvhkA8JOf/AQXXnghtmzZgne9611IpVIAJGVs9erVuPLKK/H444/Lfq9f+MIXsGPHDmzevBmf+tSnAABnzpzB2rVr8fa3vx0bN27EzTffjD//+c+47LLLsGrVKuzZswcAcOedd+KWW27B1VdfjVWrVuE73/lOyeOuW7cOf//3f49t27ZhYGAAd9xxB7Zv344NGzZkH/fVr34Vw8PD2LlzJ3bu3Jn9Xgt+8Ytf4PbbbwcA3H777fjABz6AnTt34iMf+QhOnjyJ6667DhdccAGuuOIKHDlyRPb3oiiimiz0H4B+ALsAHAZwEMD7c+57L4Cjmds/X+pYF1xwAScam/984DBf+pHf8xPjgXqfCkEQBEEQRFU5dOhQXV8/EAjw888/n69atYrfcccd/JFHHsned+WVV/K9e/dyzjkHwB944AHOOeevfvWr+Ute8hIej8f5vn37+Pnnn8855/z73/8+/4d/+Ifs86+//nq+a9cuzjnnS5cu5RMTE5xzzicnJznnnIfDYb5hwwbu8Xg455xbrdbscw8dOsRf8YpX8Hg8zjnn/I477uA//OEP+fDwMO/v7+fj4+M8FovxSy+9dNZrzkW87oMPPsjf8Y538HQ6zVOpFL/++uv5X//6V3769Gmu1Wr5/v37eSqV4tu2beNvectbeDqd5r/5zW/4q171Ks4555/61Kf45s2beTgc5hMTE7yvr48PDQ0VPS5jjD/55JPZcxHvO5lM8iuvvJI///zz8743c78P9913H7/ttts455zfdttt/Prrr+fJZJJzzvnVV1/Njx07xjnn/KmnnuI7d+7M+z3I9zsG4GleoF6So8clAXyQc/4sY8wO4BnG2J8AdAJ4FYDNnPMYY6xDnXKRqBfj/ih+8MRpAMC5yTBWtttKPIMgCIIgCGJh8K+/O4hDw35Vj7m+x4FP/d2GgvfbbDY888wzePTRR7Fr1y68/vWvx2c/+9msWiMwGAy47rrrAACbNm2C0WiEXq/Hpk2bcObMGUXn9NWvfhW//vWvAQADAwM4fvw4WltbZz3m4YcfxjPPPIMdO3YAACKRCDo6OrB7925cddVVaG9vBwC8/vWvx7Fjx0q+5kMPPYSHHnoIW7duBQAEg0EcP34cS5YswfLly7Fp0yYAwIYNG3DNNdeAMTbvvb3qVa+C2WyG2WzGzp07sWfPHjz22GMFj7t06VJcfPHF2effe++9+Pa3v41kMomRkREcOnQImzdvVvS9u/HGG6HVahEMBvHEE0/gxhtvzN4Xi8UUHasQJYszzvkIgJHMvwOMscMAegG8A8BnOeexzH3jqpwRUTe+vusEYsk0AGBwunEGIwmCIAiCIBYqWq0WV111Fa666ips2rQJP/zhD+cVZ3q9Puv8p9Fosm2QGo0GyWQSAKDT6ZBOp7PPyWfh/sgjj+DPf/4znnzySVgsFlx11VV5H8c5x2233Yb//M//nHX7b37zm7IcCDnn+NjHPoZ3vetds24/c+ZM9r0Ue2/AfOdDxljR41qt1uzXp0+fxhe/+EXs3bsXbrcbt99+e0GL+9zXmfsYccx0Og2Xy4V9+/aVeuuKUTTJxhhbBmArgN0AvgDgCsbYpwFEAXyIc743z3PeCeCdALBkyZJKz5eoEgNTYfxszzm8YUc/fvnsEAanI/U+JYIgCIIgiJpRTOGqFkePHoVGo8GqVasAAPv27cPSpUvLOtayZcvwjW98A+l0GkNDQ9l5rVx8Ph/cbjcsFguOHDmCp556KnufXq9HIpGAXq/HNddcg1e96lX4p3/6J3R0dGBqagqBQAAXXXQR3v/+92NychIOhwP33Xcfzj///JLndu211+KTn/wkbr75ZthsNgwNDUGv1yt6f7/97W/xsY99DKFQCI888gg++9nPwmw2yzqu3++H1WqF0+nE2NgY/vCHP+Cqq64CANjtdgQCgaxpSWdnJw4fPow1a9bg17/+Nex2+7zjORwOLF++HPfddx9uvPFGcM6xf/9+Wd+LUsguzhhjNgC/BPCPnHM/Y0wHwA3gYgA7ANzLGFuR6aPMwjn/NoBvA8D27ds5iIbkK38+DsYY3n/Nauw+NYUBUs4IgiAIgiCqSjAYxHvf+154vV7odDqcd955WZMOpVx22WXZFsGNGzdi27Zt8x5z3XXX4a677sLmzZuxZs2aWW1/73znO7F582Zs27YN99xzD/7jP/4DL33pS5FOp6HX6/E///M/uPjii3HnnXfikksuQXd3N7Zt25Y1CinGS1/6Uhw+fBiXXHIJAKmd8yc/+Qm0Wq3s93fhhRfi+uuvx7lz5/DJT34SPT096OnpkXXc888/H1u3bsWGDRuwYsUKXHbZZbPe98te9jJ0d3dj165d+OxnP4tXvOIV6O/vx8aNGxEMBvOezz333IM77rgD//Ef/4FEIoE3vOENqhRnbE4tlf9BjOkB/B7Ag5zz/8rc9kdIbY2PZL4+CeBiznlBq7/t27dz4TpDNA4nxgN46Zf/hrddvhyfuH49brl7N3yRBO5/z+X1PjWCIAiCIIiqcfjwYaxbt67ep0GU4M4774TNZsOHPvShep+KYvL9jjHGnuGcb8/3+JJW+kxqvLwbwGFRmGX4DYCrM49ZDcAAoHi6HdGQ/NefjsGs1+KOq84DAPS5LdTWSBAEQRAEQRA1Rk5b42UAbgFwgDG2L3PbxwF8D8D3GGMvAIgDuG1uSyPR+BwY9OGBA6N43zWr0GI1AAD63GZMheIIxZKwGimnnCAIgiAIgqgfd955Z71PoWbIcWt8DEAhW5Y3q3s6RK354kNH4bLo8fYrlmdv63ObAQBD3ghWd84fgiQIgiAIgiAIQn1KtjUSC5c9p6fw12MTuOPKlXCYZpxt+lssAMhOnyAIgiAIgiBqCRVnixTOOb7w4BG024249ZJls+4TyhnNnREEQRAEQRBE7aDibJHy12MT2HtmGu+7+jyYDbPtRtttRhh1GirOCIIgCIIgCKKGUHG2CEmnOb7w4FH0uc14/Y75weCMMfS6zdTWSBAEQRAEUWW0Wi22bNmCjRs34sYbb0Q4XP766/bbb8cvfvELAMDb3/52HDp0qOBjH3nkETzxxBPZr++66y786Ec/Kvu1BWfOnMHGjRtn3XbnnXfii1/8oqLjqHU+zQZZ8S1C/nhwFAeH/fjijefDoMtfn5OdPkEQBEEQRPUxm83Yt28fAODmm2/GXXfdhQ984APZ+1OplKKwZsF3v/vdovc/8sgjsNlsuPTSSwEA7373uxW/RrVIJpMNdT61hJSzRUYqzfGlh47ivA4bbtjaW/BxfW4zFWcEQRAEQRCCz38e2LVr9m27dkm3q8QVV1yBEydO4JFHHsHOnTvxpje9CZs2bUIqlcI///M/Y8eOHdi8eTO+9a1vAZA8BN7znvdg/fr1uP766zE+Pp491lVXXYWnn34aAPDHP/4R27Ztw/nnn49rrrkGZ86cwV133YUvf/nL2LJlCx599NFZ6ta+fftw8cUXY/PmzbjhhhswPT2dPeZHPvIRXHjhhVi9ejUeffRRxe+x2LE//vGP48orr8R///d/Z89neHgYW7Zsyf6n1Wpx9uxZnD17Ftdccw02b96Ma665BufOnQMgqYfve9/7cOmll2LFihVZJbFZoOJskfHr54ZwciKED75kNbSaQgkJs7POCIIgCIIgFj07dgA33TRToO3aJX29Y4cqh08mk/jDH/6ATZs2AQD27NmDT3/60zh06BDuvvtuOJ1O7N27F3v37sV3vvMdnD59Gr/+9a9x9OhRHDhwAN/5zndmtSkKJiYm8I53vAO//OUv8fzzz+O+++7DsmXL8O53vxv/9E//hH379uGKK66Y9Zxbb70Vn/vc57B//35s2rQJ//qv/zrrPPfs2YOvfOUrs27P5eTJk7MKqrvuukvWsb1eL/7617/igx/8YPa2np4e7Nu3D/v27cM73vEOvPa1r8XSpUvxnve8B7feeiv279+Pm2++Ge973/uyzxkZGcFjjz2G3//+9/joRz+q8CdRX6itcZHxjUdOYGOvA9dt7Cr6uD63sNOPYE0XZZ0RBEEQBLHA+cd/BDLthQXp6QGuvRbo7gZGRoB164B//Vfpv3xs2QJ85StFDxmJRLBlyxYAknL2tre9DU888QQuvPBCLF8u5dA+9NBD2L9/f1YF8vl8OH78OP72t7/hjW98I7RaLXp6enD11VfPO/5TTz2FF73oRdljtbS0FD0fn88Hr9eLK6+8EgBw22234cYbb8ze/5rXvAYAcMEFF+DMmTN5j7Fy5cpsqyYwEyJd6tivf/3rC57X448/ju9+97tZte7JJ5/Er371KwDALbfcgg9/+MPZx7761a+GRqPB+vXrMTY2VvT9NhpUnC0ipkJxnJoI4WMvWwvGCqtmQK6dfpiKM4IgCIIgCABwu6XC7Nw5YMkS6esKyZ05y8VqtWb/zTnH1772NVx77bWzHvPAAw+UXNNxzks+RglGoxGAZGSSTKrbYZX7nnMZGRnB2972Ntx///2w2Wx5H5P7HsU5AtL7byaoOFtEHBz2AQA29jpLPpayzgiCIAiCWFSUULgAzLQyfvKTwDe/CXzqU8DOnVU/tWuvvRbf/OY3cfXVV0Ov1+PYsWPo7e3Fi170InzrW9/CrbfeivHxcezatQtvetObZj33kksuwT/8wz/g9OnTWL58OaamptDS0gK73Q6/3z/vtZxOJ9xuNx599FFcccUV+PGPf5xVuiqlnGMnEgncdNNN+NznPofVq1dnb7/00kvx85//HLfccgvuueceXH755aqcY72h4mwRcXBY+gPc0OMo+diZrDOy0ycIgiAIgsgWZvfeKxVkO3fO/rqKvP3tb8eZM2ewbds2cM7R3t6O3/zmN7jhhhvwl7/8BZs2bcLq1avzFjrt7e349re/jde85jVIp9Po6OjAn/70J/zd3/0dXve61+G3v/0tvva1r816zg9/+EO8+93vRjgcxooVK/D9739ftfei9NhPPPEE9u7di0996lP41Kc+BUBSDL/61a/irW99K77whS+gvb1d1XOsJ6yWUt/27du5cI0has97f/Ycnj07jcc/Or8fOR9Xf+kRrOm045tvvqDKZ0YQBEEQBFF7Dh8+jHXr1sl78Oc/L5l/5BZiu3YBe/cCOfNOBJFLvt8xxtgznPPt+R5Pytki4uCwD+tlqGaCfso6IwiCIAiCkMhXgAkFjSBUgqz0FwmhWBKnPSFs7Ck9byaQss6orZEgCIIgCIIgagEVZ4uEwyN+cC5v3kzQ57ZgOpxAkLLOCIIgCIIgCKLqUHG2SMiagfQqKc4kx8Yham0kCIIgCGKB0mxW60TzUM7vFhVni4SDwz60WA3ocphkPyc364wgCIIgCGKhYTKZMDk5SQUaoTqcc0xOTsJkkr/2BsgQZNHwwpAfG3ocikII+9wWAMDAFBVnBEEQBEEsPPr6+jA4OIiJiYl6nwqxADGZTOjr61P0HCrOFgHxZBrHxwN40eoVip7XZjNkss6orbER+O2+IWg1DK/Y3FPvUyGIBUM4noRJp4VGI3/jiiCIhYNer8fy5cvrfRoEkYXaGhcBx8YCSKS4IjMQAGCMZRwbqThrBL75yEnc/djpep8GQSwYookULv3sX/C/Tw/U+1QIgiAIAgAVZ4uCg8M+AMDGXvk2+oI+twWDXmprbAQ8wRgmg/F6n0bDEImn8IcDI/U+DaKJOT4WhDecwKGMYRJBEARB1BsqzhYBB4f9sBl1WNpiUfxcUs4ag2QqjclQHJ5grN6n0jD8Zt8Q7rjnWZydDNX7VIgm5cioVJSN+OgzjiAIgmgMqDhbBBwc9mNdt72smYo+twXecAKBaKIKZ0bIZTIUB+dAOJ5COE65cwBwLmNUMxkiNZEoj2NjAQDAsDda5zMhCIIgCAkqzhY4qTTH4RE/NvQob2kEcrLOvLSzXE/G/TOKGbU2Soj8PW+Yvh9EeRwZlYozUs4IgiCIRoGKswXOaU8I4XhKsRmIoD/TCjk4RYuXejIRnNnZp9ZGCZG/5w2TqkuUx9FMcTYdTiAST9X5bAiCIAiCirMFjzADqVQ5oyDq+kLK2XyEmjtNxRlRBtOhOMYDMazrljauhkk9IwiCIBoAKs4WOIeG/TBoNVjVaSvr+a1WA0x69bPOTk4EcXiEHNLkMhHIKc5CpJzFkimMZQpWH7U1EmUgWhp3rmkHAIzQ3BlBEATRAFBxtsA5OOzH6i4b9NryftRS1plF9eLs3353CB+673lVj7mQGQ/EYNZrAQAeUs5mLaS9EVLOCOUIM5CdazsAkHJGEARBNAZUnC1gOOd4YdiHjWW2NAr63GYMqNzWOOaPYmCKWiXlMhGIoddths2oo5kzYNZmAbU1EuVwZDQAl0WPzX3S5yMpZwRRO366+xx+/NTZep8GQTQkVJwtYIZ9UXjDibLNQATVyDqbCsXhjybJol8m44Eo2m1GtNkMNHMGYCgTjN5mM5JbI1EWR0f9WNNph1GnRZvNSI6NBFFDvv/4adxDxRlB5IWKswXMwSHJDGR9xcqZBb5IAn6VCinOOaYy2VSULySPiWAMHQ4jWm1GUs4gKWcaBqzrtpNbI6EYzjmOjQWxpssOAOhxmSguhCBqRCrNcXYyjBEfXf8JIh9UnC1gXhj2ZxewlZDNOlNJPfNHkkimOQBgmBZEJeGcYyIQQ7vNiFYrKWeA9LvY5TBJylmEvh+EMganIwjGktnirNtpooUiQdSIoekI4qk0fBGKsCCIfFBxtoA5NOzDinYbLAZdRcfpc2eyzlQqznLdBmm3ujSBWBLRRBodDiPa7EZya4T0u9jntsBl0cMbWhjKWTqzYUFUH2EGsjarnJkx4o2Ac/oZEES1OeUJZv896qdNEYKYCxVnC5iDw/6K580A9bPOREsjQMWZHISNfrvdiDarAVOhOFKLfCE/5I2g122Gy2xAIJZEIpWu9ylVhCcYw/ZP/xl/fGGk3qeyKBA2+qs7M8WZ04xQPAV/NFnP0yKIRcGpiVD23zTrSRDzoeJsgTIZjGHEF1WlOFM76yzXCp7aGksjAqg77Ca02oxIc2B6EZtgJFJpjPgi6HOb4bbqAQC+JrfTv+/pQUyF4jg6Giz9YKJijo4G0Osyw26Sfn+6XSYAtFAkiFqQq5yNkXJGEPOg4myBcnBYCniu1EYfyM06U1c5W9pqoeJMBhPBHOXMZgSART13NuqLIs2BXpcZTrO0uG5mU5B0muOneyTXssVcdNeSo6OB7LwZAHQ7pe4A+jwiiOpz2hPC6k4bANCsJ0HkgYqzBYooztaroJwBQL+KdvqTmWJjY6+T3BplMJ7ZWeywG9FqMwCY+R4uRkQrrDRzJn0/mtlO/9ETHgxMSe9pMtS876NZiCfTODkRnFWc9WSUM/o8Iojqc2oihI09TthNOoxRcUYQ86DibIFycNiHXpc5u3itFEk5U8sQJA67UYcVbVaM+qNINvm8ULWZCMZg0GrgNOvRlinOJhZxcSZ+D3vdZrgtza+c3fPUWbRaDdjY68A0FWdV57QnhGSaZ81AAKllWKth1NZIEFUmHE9ixBfFinYruaQSRAGoOFugHFLJDETQ5zarlnU2FYqj1WZAj8uMVJpjLLB4Cw05TPhjaLcbwRhDq5XaGkWkQ4/LBJdZKlabtR1wxBfBw0fGceP2fnQ5TLPMcojqcGRU6irIVc60GoYuhwkjpJwRRFU57ZHMQJa32dDlNNPMGUHkgYqzBUgwlsQpTwgbeyufNxNk7fSnKt9ZngzF0GKVijOA5jxKMRGMoc0uFWVOsx46DVvUdvqD02F02I0w6rRwNbkhyP/uHUAqzfGmC5fAbTE0bZHZTBwdDUCnYVjRZpt1e7fThGFSzgiiqginxhXtVnQ5jKScEUQeqDhbgBwekXaG1VbOAHXs9CeDcbRYjejNznnQgqgY4/4YOjLFmUbD0GI1wBNYvIv4IW8k+/toN+qg1bCmLGqSqTT+d+8AXrS6HUtaLWjJxCRQ1lZ1OToawIp2Kwy62Ze/bpeZZs4IosoI5WxZqxVdTjMmgrGmj0IhCLWh4mwBcnDIBwDYoIJTo2CmOFNDOYujzTajnKk1y7ZQmQhKbY2CVtviDqIenI6gN6PkMsbgMuubcuZs19EJjPiiuPmiJQAAt9WAWDKNSCJV5zNb2BwZDWBN1/yNqx6nSXICXeQZggRRTU5NBNHrMsNs0KLLYQLnM1meBEFIUHG2AHlh2I82mwGdDmPpB8ukxWqAWa+tuJDinGM6FEeL1QCLQQe3RU/KWRHiyTSmQvGscgYAbTbDrKy4xUQqzbMZZwKnpTmLs3t2n0Wnw4hr1nYAAFoy5j00d1Y9AtEEhryRWWYggh6XGfFUmhwziaYlFEtmO2calVOeEFa0WwFIrcQA2ekTxFyoOFuAHBz2Y32PE4wx1Y4pZZ2ZK25r9EeSSKY5WjN5XT0uMxVnRRAKWfus4swIzyJ1axwPRJFIcfS6Zoozt8UAb6S5FtQDU2H89dgEXr9jCXRa6WPYbc2Ym4Sar9BsFo6NSeG3azrnF2czC0X6PCKakx89eRav+vrjCMWS9T6VvHDOcXoihOVtUnHW6ZD+5sgUhCBmQ8XZAiOWTOH4WEDVeTNBnwpZZ55MsdGaWYj2uMzZ3CpiPuN+6fvVYTdlb2u1GhatW6NwasxVzlxmfdMVND/bcw4MwBt29Gdva8mYm0w14fxcs3B0NABgtlOjYMagiBaKRHMy4osgnkrjxHiw3qeSl4lgDIFYEivaSDkjiGKULM4YY/2MsV2MscOMsYOMsfdnbr+TMTbEGNuX+e/l1T9dohTHx4JIpnmVijNLxcqZaNlqyRRnvS4zhqYjVTNBODcZbuphY9GLP0s5sxsRSaQQjjfm7iiAqmXXDeYrziyGpnJrjCfTuPfpAVy9tjNbEACSAggAU4t4nrDaHB31w2rQzlJeBWKhSEo+0ayITbtjY4E6n0l+ZpwaJadUl0UPg05DyhlBzEGOcpYE8EHO+ToAFwP4B8bY+sx9X+acb8n890DVzpKQzQsZM5CNKpqBCPrcZvijyYoWwuLi0WqbKc5C8RT8UfULDX80gRd/+a+47+lB1Y9dK8YDQjnLMQTJFLaNqp55gjFc/J8P496nB1Q/tlBZe12W7G0uix7eJlKbHjo0Ck8wjpsvXjLrdrFhMdVkKmAzcWQ0gNVddmg081u+W6wGGHUaamskmhbRBn+8QZWzmYwzSTljjFEQNUHkoWRxxjkf4Zw/m/l3AMBhAL3VPjGiPA4O+2Ez6rCkxVL6wQoRWWdDFbQ2TmbbGmdmzoDq7FYPTkUQT6ZxdjKk+rFrhVDO2myzZ84AqUWkEfnqw8fhCcarMpg+OB1Gq9UAs0Gbvc1t0SMUTyGebA6F9Ke7z6HPbcaLVrXPut1h0kuxAGRIURU45zg2FshrBgLMLBSHaaFINCmiM0W07zYapyaCMOg0s5TrLocJY/Q3RxCzUDRzxhhbBmArgN2Zm97DGNvPGPseY8yt9skRyjk47MP6bkfeneFK6W+pPOtsKqP2uDPzNT2ZrLNKCr5CiB3wZm6ZGA9E4c60fghEcdaIytmpiSB+uvscAFTFUXJwerZTIwA4M+2AzWAKcnIiiCdOTuKNFy6Bds7fqEbD4LboaeasSkwEYpgOJ/KagQh6XGaMUFsj0aSI4ux4g7Y1nvaEsLzVOmt90uU0YcRPf3MEkYvs4owxZgPwSwD/yDn3A/gmgJUAtgAYAfClAs97J2PsacbY0xMTE5WfMVGQVJrj8EgA66swbwbMKGcDFSlncdhNOhh1kvLRm1loD1ehlUjsgI83cYbKRGB2xhkw0xI62YDK2RcePAqDToMV7VZ4qvB9H5qOZH9nBG6LVOg3g53+z3afg07DcOP2vrz3uy0GUs6qxJGsGUjhz8duJwVRE81JOs0xFYrDpNdg2BdFINp4n4enJmZs9AVdThPGfLGqzZ0TRDMiqzhjjOkhFWb3cM5/BQCc8zHOeYpzngbwHQAX5nsu5/zbnPPtnPPt7e3t+R5CqMRpTxCRRAobe9WfNwOkRbDFoK1IOZsMxbMzUwDQZjXCoNVUxbFR7IA3c3E2HojNcmoEZmaTGs1O/5mz0/jDC6N414tWYk2nXfW2S845hryR7CaBwGXOKGcNXpxFEyn84tlBXLuha97PVOC2GijnrEoUc2oU9LhMGA9Eq2ZoQxDVwhtJIM2B7UtbADTe3Fkilca5qfD84sxhQjyVps89gshBjlsjA3A3gMOc8//Kub0752E3AHhB/dMjlHBwWJrxqYZTI5CbdVZ+ITUVimUzzgCplavbZarKbrUYMh5v4rbGfMqZSa+F3ahrqCBqzjn+84HDaLcb8fYrllcli20iGEMsmZ7ntOfKKGfTDd4O+MCBEXjDCdx80ZKCj2mxGBr+fTQrR0YDaLcbs5sb+eh2mpHmwFgTb+gQixPh8nrxikxx1mCtjQNTYSTTHMvbbLNuJzt9gpiPHOXsMgC3ALh6jm3+5xljBxhj+wHsBPBP1TxRojSiaBJOSNVAstOvoK0xGJ+3OJLs9Cuz6M+HMBnxR5OIJlKqH7/acM4xEYjNcmoUtNmNmGygncaHDo3h6bPT+KcXr4bVqEObzQhvOKGqSYeYSyxUnPkaXDm7Z/c5rGiz4pKVrQUfIylnjf0+mpViZiCC7swMLM2dEc2GmEHe3OeCSa/JBq43CjM2+rPXJxRELZ//2XUCP37qbL1Pg6gBctwaH+OcM8755lzbfM75LZzzTZnbX8k5H6nFCROFCcWS0GsZTHpt6QeXiaScqdfWCEhD+NVSzoTpwkQT7oT7I0nEU+l5yhkg2elXY6arHBKpND73hyM4r8OGmzKzVOKcJ1XM7BKtr30tc4sz6fepkRWnI6N+PHN2Gm+8cAmkZoT8tFj1mA7Haf5CZVJpyamxmBkIMFP4k2Mj0WyItsA2mxHnddgaLuvslEcqFlfM2Tzudkp/c6ScleYXzwziF880bzQQIR9Fbo1EYxOOp2Ax6Kr6Gn1uMwJlZp2JgWVhaCHocZkxFoiqGhadTnOM+qJYnVmMNeOu3HhAOue8xZnNoGrhUwn/u3cApzwhfPS6tdBppY+UtszP2BNQr2AaLKCcWQ1a6LUM3gYOov7F04MwaDV47QX5jUAEbosBqTSHP9K4AePNyNnJEGLJdNF5M4CCqInmxZMtzgxY3WnH8QZTzk57QmixGrKbaYI2mwEa1pzX6FrjCcQwOKV+lxHReFBxtoAIxpKwGqqnmgEzjo3lqGf+aAKpNEeLdXax0esygXNgVMWds8lQHPFUGlv6JXOUSkxB/nBgBGc8tc9KE2pfvuKszWZsCCv9YCyJr/z5GC5c3oJr1nVkb2/LnLOac2dD0xE4zXrYTfpZtzPG4DQbGjqI+sREEGu67EXnnYCcIOoGfi/NiBwzEACwm/SwG3XU1kg0HTMxNVJxNuqPlrWJWi1OToTmqWYAoNNq0GGnIOpSRBMpBGJJTIbiCMdp826hQ8XZAiIcT8JirL5yBqCsubPJnJ29XHpdmXBrFRdEIuNsS78LQPmmIKk0x3t/9hzefPfumluci4Iyn7Nfq82IqXC87q5y3/nbKXiCcXz85etmteu1i6BsFVsvB6fD81Qzgduib2i3xmFvJJvpV4xscdZA84QLgSOjATAGrOooXpwB0twZtTUSzcZUKAaHSQe9VoPVnZLpxonxxmltPO2Zb6Mv6HKaSDkrQe5GZyVz/0RzQMXZAiIUS9VQOSujOMvs7M1VD8SiVc1WIjHDtr7bCZ2Gla2cjQeiSKY5BqcjeN/Pn0MqXbtZoOLKmQGcA9N1LEjG/VF859FTuH5zd7YIFohzVtNOX7LRz1+cuSz6hp0545xjaDqCngKFZS7ib4OyztTl6GgAy1qtMMv4fOx2mrObOwTRLEyG4lknZLEJ0SimIIFoAhOB2DynRkGXg5SzUuS6M1cy9080B1ScLSDC8WTVZ84qyToTVr/zi7PMEL6KxdloZnHV4zKh3W4suzgTF4yXbezCo8c9+OJDR1U7x1KMB6Iw6jRwmOb/TNts6htuKOUrDx9HIpXGh69dM+8+k14Lm1GnWlsj51KBPDeAWuCyGBpWOfNHkwjFUwVVv1zcFmprrAZyzEAEPS4zRiiImmgypnLMtnpdZlgM2mw7b70p5NQo6HKaVB1rWIjkGoCRcrbwoeJsARGKpWA1Vlc5E1lnA1OVtDXOz+1qtRpUbmuMwqDToMVqQIfdWHbLhLhgvO+aVXjjhUvwzUdO4g8HamNMKjLO8rn7iYtwvebOTowH8L97B3DzRUuxtDX/BbfdblStrdEbTiAcT80LoBa4zI3b1ig2HUg5qw/RRApnJkMl580EPU4TJkPxmsdvjPgi1M5KlE1uTI1Gw7Cqw4bjDdLWeDozs51v5gyQirNgLIlAtDE/wxuB3I3OATIFWfBQcbaAqIVyBmRyycoopEQh4bbMN0XodZsxpOJu9bAvim6nCYwxtNtNZRcJYmHd7TThzleux5Z+Fz503/M1CfgcL5BxBiDbvqJ20LNcPvfHo7DotXjv1ecVfEybzaDa+RVyahS4rQZ4I425sFVSnFkMWhh0GlLOVOT4WBBpXtoMRNDtqo+19zt/9Az+9XcHa/qaROPw1YeP4zXfeLzs50/OcUJe1WlvmLbGUxNBaBiwpDX/5ppwSaW5s8KIa6kUZ0TK2UKHirMFRCiegrXKhiCANHdWTmj0VCgOu0kHg27+r12P06xqW+OIN5L9wO90lN/WOOqLwqTXwGnWw6jT4ptv3gazQYt3/fgZ+Ku8yyeUs3y0Z4uz2i/i/3ZsAn86NIZ3X7UyWyTmo81mVO38hrzS71uhmTOnWY9oIt2QYeMzxVlpQxDGGFosBlLOVOTIqB+A/OKsx1mfIOqB6XC2/YtYXKTSHD9+6iz2DXjLmmtOpzmmw/FZIwOrO22YCMQawsX2pCeE/hYLjLr8nT0iiHrU1xjxMI2IJxiH3ajDynYbFWeLACrOFhDhGljpA5LK5Y8mFRcnnmBsXkujQAqijqgWvjvii6InE27ZYTdhKhRHPKnc2XDELx1HtBZ2O834nzdtw7mpMD7wv88jXUWDEEk5y7+gd5h10GkYJmuonHmCMXzsV/tx2/f3YEmLBW+9bHnRx6vZ1iguRoWKM6HGNmJr45A3CoNWgzZr4UI2F7fVgKlQ472PZuXoaABGnQbLCrTfzqW7DkHUiVQa3nCC8tUWKU+dmsREIIY0R1mf6flialZ1No4pyOmJEJYXaGkEZpQzMuIpzEQwhja7Ef0tZgyQIciCh4qzBUI6zRFOpKpupQ/MtJYNKdy9mQrFC+Y89bhMCMdTqiyuU2mOUX8U3RmlosNRfgvgiDeCLufsAumiFa34xPXr8OfDY/j6rhMVn28+YskUfJFEwbZGxhhaVWwbLEY8mcZ3/nYKO7/wCO57ehBvu2w5fvfey0s637XZjPBFEmUVxXMZnI7AZtTBadbnvd9lkW5vxNbGYW8E3S4TNJr5s4P5aLHqs+Y5ROUcHQtgVacNWpnf/+46KGdi1qwes25E/fntvqHsv8f8yv/288XUrM4WZ/WdO0unuWSjX8CpEZhRzqitsTCeQAxtNgP63BZ4wwmaz1vgUHG2QIgmU+AcNVPOgPKKs9YCxZlQRNQwBZkIxJBKc3RnlTOpwCmntXHUF80eJ5fbL12GG7b24st/PoZdR8YrO+E8FLPRF1Q7iJpzjr8cGcO1X/kbPv3AYexY3oIH/+lF+JdXrC9YJM09P0AdR8nB6Qh6Xea85ijATHE23YCK07A3klVx5eC2GOoakbDQODoawJpOh+zHC4Oi4Rru4ucqzGQpvriIJlL4wwujWJlxMhwPKP/554up6XGaYDPqajIfXYxRfxSRRKqgUyMg/c25LXr63S+C6DyqJGuWaB6oOFsghGLSbmstlLNyCylPcPbAci5q2ukP+2bP+IjWQKW7cqk0x1gglt1Jz4Uxhs/csAnruhx4/8+fwxmPurMiYrEmVL98tNqM8FRpNunEeAC3f38v3vqDp8EY8P237MD3bt+Ble2Fdz/nks06U6G1sVjGGQC4zNLvla9BlTM5ZiCCFquBXPtUYjoUx3gghjVd8n9vgUwQdQ3t9HMV8FrPuhH15ZGjEwhEk3jHFSsAlKec5YupYYxhVaet7m2NpZwaBV1OMylnRfAE42izGdFfQdYs0TxQcbZACMWSAGqjnLVZjTDoNIqKs3wDy7moWZyJjCKheHU6ylPOhAI3t61RYDZo8a1bLoBGw/DunzyDZKry9j2BONd2W2ETiTarYVb2iRrEk2n8++8P4dqvPIpnz03jk69Yjwf/8UXYuaZD8bFEi40arZeD0+GCGWdAjnLWYIpTMpXGqD+KXhlmIIIWqwG+SELV36fFypFMztOaLvnKGVD7IOpcBVzNSJFy+OrDx3Hzd5+q6zksJu5/fgitVgNevbUXQJnKWWYzp3XOXOvqDnvd7fRPTUjF4YoSG3tdDiMpZwWIJ9PwRRJzlDOaO1vIUHG2QAjFpeKsFlb6Gg2T7PQV7Nz4ItLA8tyLh6DVaoBRYcFXCLGoEq1krTYjNAyYULgrNzJHgctHf4sFH3vZWhwZDeD4uHo7lPKUMwMmQzHVTFRCsSTe9sO9uPux07hpez8e+dBVeNvly6HXlvcxIdoaPYHKVCBfJIFANFlUOWtUQ5CxzJC/UuUMALyRxnovzcjRjFPjWplOjYIep6mmQdSzlLM6L1BfGPLhyZOTiMRp9q3aBKIJPHx4HK/Y3J1tpy1LORMxNdbZ7earOm3wBON1VeJPeUKwGLTZTdJCdDnNFERdADEa0GY3oMVqgFmvLStrlmgeqDhbIIQzF9Jqh1ALel1mRTs32Z29Am2NjEkFnxqtRMPeKCwGLRxmqVDVahhabcrt9MUiqctRfGG9pd8NQJptUYvxQAyMoeCMHiAVP9FEOvuzrwRvOI43370bj5/w4POv24z/fM2mojb5csi2NVaonA1lM87yZ+QAgEmvgUGnaQjb6FyUZJwJRKFJdvqVc3DYD7dFX9BYpxA9LjMCMeWOtOXiCcZg0mvQZjPU3bHRH00gzVF3xWUx8NDBMcSSabxyi6SaSQ635SlndpNunlV9I5iCnMo4NRaaFxZ0OaTw91iSNgXmIjY422xGMMbQ36Js/UU0H1ScLRBEW2MtlDNAmjtTonKJnbtCbY2AtCBSSzkTAdSCDnv5xVm+mbNcVrRbodeybAuVGkwEYmi1GqArolqpFUQ96ovipm89iYNDfnzzzRfgpu39FR1PYNJrYTfqKp45E78TxZQzxhjcFn3DKWflFGfib4Tmzipn75kpbF/WUnJhOJdsEHWN1LPJYBytVqMUKVJn9cAfka4lR0aoOKs2v31+GH1uM7YtcQGQXAvLdWvMt5HXEMWZJ1iypRGYuc6Ol/H+FzriGi+6UfrcFpo5W+BQcbZAqIdy5gnKt30W2S2F2hoBqX1QjeJs2BedtxiWijNli55RXwQmvSY7z1QIvVaDle22bAuVGkwEogUz4QSt2Zmu8hfxpz0hvO6uJzA0HcEP3roD127oKvtY+WizGysuHsUOYbGZM0AyBZluMOVsSEEAtSCrnDXYe2k2xvxRnJkM46LlLYqfK4Koa+XYKDKMup2mhlDOAOCwip9nxHwmAjE8fsKDV23pyW4elHOdAiRDkHwbn50OI+wmXd2Ks1gyhcHpSNGMM0Fn5m9ulExB5iG6T9oza4J+N2WdLXSoOFsgzBiC1EY561Xo2FiqrRGQ2tYmArGK2xpGvJF5aleHXfmO5HDGRl/OrvuaLruqbY0TgRg6HMUX9OKDutwg6oPDPtx41xMIx1P42TsvxqUr28o6TjHabIbKlbNpqUgu1uIJSKYgjTanNeyNwGXRK1K0Z5Szxnovzcbu01MAgAvLKM5qrZx5gnG02wzocZkx4o2oNkdaDr7M3xApZ9XlgQMjSKU5XpVpaQQk5UwYUSlhMhifFUAtYIxhdae9bo6NZyfD4BzZmIBizARRU3E2l6xyZpeuDX1uCwLRZPZvlVh4UHG2QJhRzmpUnLmUZW2IFi2hCuRDqAuVDAXHk2lMBGPzssk6HUZMBpVd9EZ9UXSVKJAEa7rsGPZFVfuwHA/EssVXIUShO1lG+9ue01N4w7eegl6rwb3vugSb+1zlnGZJ2lVQzoa8xTPOBC6LvgFnzqKKMs6AGedJCqKujN2nJmEz6rC+W5lTIwB02iUToVo5Nk4GY1Jbo9OMUDyVbS2sNek0RzCz0Xdk1F/XInGh89t9Q1jbZc+2HgKSAVSaK8+GLJYhurrThuNjgbr8LLNOjUUCqAXCFXmMirN5eAJxWAza7CafaPEfmCL1bKFCxdkCYcatsUZtjQqDqCeDMThMOhh0hX/lRMFXSWvjmD8Kzue3kbU7TNJFT0GhMOqLoltmO5pwg1OjfSSd5vAEY0WdGoEZhUWpnf5fjozhlrt3o91hxC/uuBTndSjLgFJCm81YUdslkAmgdhc2AxG4LYaGnDlTMm8GSLN6VoOWlLMK2XN6ChcsdRed2yyETqtBp6M2WWfpNMdkKI42u2EmUqSGNv65BGJJcA70t5gxHU4ontMl5HFuMoxnz3lnqWbATCankrkrzrlUnBXoSlnVYcd0OFHx53A5nMpknC1rK/35bTfqYDFoSTnLgwigFvS3UNbZQoeKswVCOJaCVsNgLFL8qEmXwwSthmHIK2/nZjIUL+n+JxYmSiz65zJj4jF/5gyQn3WWSnOM+qMlzUAEIkdJDVMQbySBRIqXVM6MOi0cJp0i5eyhg6N454+ewepOO+571yXZgrhatNmM8EUSFbWqlgqgFjgzhiCNtNsvqX7y580Ebmvjzc81E5PBGI6PB3HRCuUtjYJazX+JmJE2mzG7GVSvuTN/Rvm/cFkrAODwCM2dVYPf7R8GAPzd+d2zbu/IZnLKL1D8kSSSaV7QbEsoc8frMHd2aiKEDrsRdlPxuW1AasHscpow6qeCYy5ScTbz86Wss4UPFWcLhFA8CYtBq9iVrFx0Wg26HCYFylnhtgvBzMKk/J2zQtlkM8WZvGN7giKAWl7x0uM0wW7SqWIKIifjTCApU/J3Wb/72GksabHgp++4qGKrfDkIO/3JMndtw/EkpkJxWUWk22JAPJVGRKZJTbXxR6V8NqXKGSBFKJBbY/nsPSPNm5VjBiLodtUmiFr8/bbajNnf83o5NgozEPF9U9OBlpDgnOM3zw1hxzI3+uZ0BHRm2uiVzEeLFshCytnqLqkzoh6mIKc9IayQMW8m6HKYKOssD3OVM6dZD5tRR8rZAoaKswVCKJasmRmIoFeBnf5UKF7URh+QlKB2u7GiXWNR2M1TzhzK2kWyFugylTPGGNZ0qmMKIgrIUsoZIF2Q5RZnqTTHwSEfrljVJmsnUw3aKrT7F8W/HOXMZZbe03SDtDYKM4lyijNSzipj9+kpmPQabOp1lX2MHqcJI75o1ZXYiaxNtgFtNiN0GlZH5Uxqj+9rMaPHacIRUs5U58hoAMfHg9lss1zEZ76StsaZmJr814t2mxEuix7HxmtvCnJqIojlMubNBF1OKs7y4QnG0ZaT1cgYQ5+bss4WMlScLRBC8RQsNbLRF/S5zLJ3buS0NQLI5PxU0tYYgcOkm2eMIi56cnckxQWiS2ZxBkimIEdGKx+8nlHOSr92m80oW5U6NRFEKJ7CpiqZf+RDtGKU69g4qKQ4y5jNNIopSDkZZ4IWS3nK2V+OjNXMxKKR2X1qCtuWuIvOuJai22lGLJmuuoIp/n7bbUZoNVJr10i9irOMcuYw6bG220HKWRW4//lh6DQM12/qnnefQadBi9WAMQVtjVkn5AKbn4wxrO6w17ytcToUx3Q4IcupUdDlMGG8DLfKhUwylcZ0OD4vWoeyzhY2VJwtEMJ1UM763GaM+aNIpNJFH5dOc0yHS7c1AkCvS36rZD6GvfMzzoCZi57ctkYxu6bEaW9tlx2BaLLigWYxF9dul6ecyZ052z/oAwCc3+cs/+QUIt5DucrZYDaAuvRAuXA5bBRTEKEqlzPX57YaMK2wKIgn03jHj57B1/9yQvHrLSR8kQQOj/px0fLWio6TNeeosilIblsjIH3m1MKIJB9i5sxp1mNNlx0nxoOIJ4t/vhPySac57t83jCtWtRXsJOmwGxUpZ6K4LxZTs6rThmNjwZrO4wozEDkZZ4JupwnJNC87HmYhMhWKg3Ogfc7Pt7/FjIGpcEPNWBPqQcXZAiEUT9XMqVHQ6zYjzUtb34uB91JtjYC0kB2qIOdn1D8/40wgBXzK+9Af8UVg1JUOoM5FmIJU2to4EYjBYtDCJiMWodVqxHQ4jmSJAhkADgz5YDFosaK9eu6Mc5lpayxPfRicDsOg1chq8XRnlbPGKM6GvRHoNExWkT2XFqsBoXhKdsg7IBWDqTTHC0M+xa+3kHj6zBQ4Ly/fLBcxt1pt50RPMAathmXbcntcprq5NfqjUlujw6TH2i47kmmOkxP1ychaiDx7bhpD3sg8l8ZcOhwmRYYgInKj2PV1dacdvkii4sxJJWRt9BVcb8TMHQVRzzDT9jxfOQvFUw1zvSPUhYqzBUI4nqxZxpmg1yXPzrXUwHIuPa7KWolGvNFsgOxc2hUVZ5JToxKDlTUZV6xKW4HGAzHZC/o2mwGcA1MyWvn2D3qxsccJraY2pjGAZAtvN+rKXhQMTUfQ4zJBI+OcRSHdKLNaw94Iupymsr7f5RSa5zKZN4dHAyXV7IXMntNTMGg12LrEVdFxxNxqtVsMpQBhQ/Z3vNtlxqgvWpfWLpHTaDPpsK5bONDS3Jla/HbfMEx6DV6yvrPgYxQrZ6E4bEYdjLrCm7OrOqUC6WgNWxtPeULQaRj6ZbSkC7J/czR3lkVsbLbZ5xZnmawzmjtbkFBxtkAIx+qjnAGl7VyzbRcFBpZz6akg6yyaSGEyFC9o4tFhN2FC5o7cqC86z1SkFE6LHt1OU8WOjROBaNZdshRiN63U3FkylcbBYT821bClUdBuN2Z3/5QiZZzJ+zk4M8qDWkHglVKoxVYOLVbpvSgJoxXFWTyZxvGxxat2PHV6Cuf3O2HSV/Z52Go1wKDVVH2hONeJrcdlRjKTdVhr/JEE7EYdtBqG5W1WGLQaHBmhuTM1SKTS+L8DI3jxus6iG6mdDunzUm5xLsdsS9jpH6vh58LpiRCWtFoU5Qxmg6hJOcsickznKmf9bso6W8hQcbZACMVrP3Mm2n5KFVIzblLy2hqB8nJ+Zkw88i+IOxyScpaWcdETyplShClIJShRzlpluiEeHw8ilkxjcx2KszabUXFQtmDIG0Gfq/S8GSCpdGa9tnEMQXyRsnPkhHI2rSCIemBqZpNksbY2hmJJvDDkq7ilEQA0GXOOatvaTwTjszKMxOZSORtUleKPJuDIbHLotRqc12EjUxCVeOyEB1OheNGWRkDaREyluezukclg4QBqQZvNiBaroaamIKc8QaxQ4NQISBsiei0j5SwHT46bay5yN8eJ5oSKswVCOJaqeVujUadFh91Y0sDDk7nIzP1wyUdvVjlT/uEs5jQKK2dGJDPmJMVIpTnG/FFFTo2CNV12nJwIVtRWNhGIocMu77XFRbmUcnYgYwayqbcOxZldvt1/LtFEChOBmGzlDJBaG5VY6UcTKfz4yTOIxNXNRkulOUZ90Xl5e3IRGxly2lUF5ybDWNFmhc2ow4FFWpw9c3YaqTSv2AxE0OOqfhD1ZB7lDJiJYqgl/kgSdtPMdWRtt53aGlXi/n3DcJr1uHJ1e9HHdSoMop4MyTPbWtVhq1nWWSrNcWYyrMipEZA2RDrsZKefiycYg1GnmTeD7jTr4TDpMDBFytlChIqzBQDnXFLOamylD8jLOpvKFA5uGRcQl0UPs15b1oJILGYKzZyJYeNSc2eTwRiSaV7wOMVY22VHIsVxOuNUpZRoIoVANKlg5kyecrZ/yAu7UYdlrcoulmrQbjOWNXM2nHVqVFKcGRTNaT1ydAKf/O1BfPzXB1R1vZoISL9D5bc1CuVMQXE2FcbSVgvW9zjwwvDiLM72nJ6CVsOwbalbleP1OM1VnTnjnGfaGnOVs/K7ByrFH01k24MBYF2XA2P+GAWiV0g0kcKDB0fx8k1dJeMd2u3KMjmnQjFZXSmrO+04XiPHxmFvBPFkWpFTo4CyzmbjCUo2+vnm3/tbLKScLVCoOFsAxJJppDlgqXFbIzDjrliMqVAMTrMeehm954wx9JRppy/ynYq5NQKlizPRxtQtI2dsLms6xRB9eTuUEwps9AHAYdJBr2Ul7fT3D/qwsdcpy1hDbdpsRvijScSSytQp0UuvpDXQZdYramsUTnS/fm4IP3nqrKLzK8ZQBRlngLQryhhkL4o55xiYCmNJiwWbep04POKX5eC50Nhzegobe52ynE7l0O0yYayKuUvheArRRHqWcuYw62A1aOvi2OiPzLQ1ApJyBpApSKWcnQwjHE/h0pVtJR+rRDnjnGdmzkpfL1Z32hCIJavuhBhPpvE/u6Q4D2FEooQup4ncGnPwBGPzzEAEUhA1KWcLESrOFgChmGR/XC/lbNgbKTrH5ZHZdjFzTEtZC5NhXxQtVkNBI4CO7I5k8Q/+0cxrl9PWuLLDCq2GlW0KIi7IcoszxhharcVnumLJFA6P+LG5v/YtjcCMy5TcsGyBKHD6WuTNnAGA26qHV4EhyKmJEDodRly9tgP/9vtDePbctKJzLMRwBRlnAKDTauA062U7T3rDCQRiSfRnirNoIo0Ti8wCPZpIYd+AFxepMG8m6HaakUpzRdbmSpibcQZIf9PdLnNdlLNANAmHKac4y8SDkClIZYi/YzkKl/jsH5OhnAViSSRSXNb1tRamIMPeCG761pP4+d4BvOOK5di2RLmC3eWQlDPK75KYCMTmZZwJ+jNB1PS9WnhQcbYACMUkRaIeylmf24JEihdVo6aCpd2kcuktc85jxFs44wyQDEEAGcpZpj2yHNXDqNNiRZu17KwzoZzJdWsEpJmuYsrZsdEgEimOzb2uss6pUkRGmdLWxsHpMLQahk4F3wun2aBYOVvZbsOXb9qCbqcZf/+TZ1VxyRO/v+WYyghaLAbZyplwalzaasXGXmlB/cLQ4lI79g14EU+lVS3OsllnVZr/KjTs3+My18UUQVLOZq4j7XYj2mwGUs4qRHwmycnNNOq0cFv0sjYE5ARQC0RxVi1TkMdPePCKrz2G42MBfOPmbfjE9esVRdEIup0mRBIp+CPJKpxl8yHaGvPR5zYjknGpJhYWVJwtAELxjHJWYyt9AOjLGngU7nueDMVkXTwEPU4zPMG4ogBeQDgsFi6oTHot7CZdaeXMH4VBp4FbQQB1LpU4No4rbGsEpIiCySIFxf4hLwDUxakRmFHOlBY9Q9NSsa3Eitlt0cMbTsjaSeSc41SmOHNa9Pjmm7dhOhzHe3/6XMUtgcPeCBwmHeym8n6HAGlGU65ydjZTnC1psWB5mw0Wg3bROTbuPjUFxoDtS9Uszqo7/5XNMJqz+OpxVt+IZC6pNEcgNls5AyT1jBwbK0PMwQoX1lJ02E2ylDM5AdQCt9WANptRdVOQdJrjf3adwC1370aL1YDfvudyvHxTd9nHoyDqGSTXzliR4kzqKsl16iUWBlScLQDCmeLMUmO3RiDXzrXwQkJuT7yg3AXRsDdS0h2v02EqqZyVE0Cdy9ouOwanIwjGlO/8TQRi0DB5mXCCVpshu8jLx4FBH1wWvSJjDTURqoDS4mxwWrkVvcuiRzLNZX3vJ0Nx+KNJrMg4im3oceLTN2zCk6cm8cWHjil63bkMVZBxJnBbDLJbQcXFub/FDK2GYUOPo+kdG//td4dw011Pyi6U95yZxNouB5xlbqrkYyYUt1rFWf4Mox5XeRtUlRCMSn8zuTNngPR5dnQ0UJdQ7IXCtNLiLBP7UgolGaKANHemZlujL5LAO3/8DL7w4FG8fFM3fvsPl+G8DuVzZrmIboNq/c01E9PhONK8sNN1fwtlnS1UqDhbAIi2xnooZ2LxXOjDIZ3Ja5Fjo589plsUZ/J3zkKxJPzRZMng6A576YteqfbIUqzJzGmU09o47o+h1WaEVoFxR7vNCE8wVlAt2j/ow6ZeZ9nFZqW0ldnWOOSVH0AtcGUWP3IcG0+OS4uUle0zi4nXXdCHN120BHf99ST++MKootfOZdhbfsaZoMUqf+bs3GQYbTZjtrV5Q48Th4b9TbugTqbS+OWzg9hzZgo/fLK0UUs8mcYzZ6dVbWkEJMMdq0FbvbbGQP5ZJPH5U0vXOhHe7jDN3uRb2+1ALJnGmcnyHGgJqa3RoNPApJe35Oqwm0p2eAA5GaIyr6+SY2NAlRmlwyN+vPLrj+GRo+P41N+tx9feuFWVOB8Kop4hu3lToJNGzuY40ZxQcbYAyCpndZg5sxp1cFv0BR0bvZEE0lxe24WgnCBqsctWSjmTirPiH/ql2iNLsbZL6u0vpzibCMYUzZsBknIWS6YRypPVFU2kcGwsULeWRmCmnbSYujeXQDSBEV90VuEkB1dm119OcXYqE3ewYk4Wz6f+bj3O73PiQ/c9j1NlmmoM+yKVK2dWA6ZD8lo0z02FsaRl5vU29ToRSaTKPv968+w5L3yRBNpsRvzXQ0dL7qIfGPIhmlB33gyYMeeo1i7+ZMbJdq69evYzsIbqgT+aKc7yKGcAmYJUwnQ4DrdFL3uDrMMhxY8UM9oCkJ01kmu4tarThlA8VXHA+QMHRnDDNx5HNJHCz995Md5y2XLVNv+EcRcFUc9s3hRqa7Rl1l8DZKe/4KDibAGQVc7q4NYIZLLOCuzcKOmJF3Q6TGAMGFRwARE72yWVM4cJ4/7CKlM6E0BdiXLW6zLDatCW5dg4HogqmjcDZlpa8jk2Hh7xI5nm2FQnMxBBu82ICQVtjcczqpYYYpeLyNLzRkoXgifHgzDpNdlcKYFRp8U33nwB9FqGd//kmezmh1xCsSS84UTFxVmLxYB4Kn/RPZdzGRt9waZMMd6srY0PHxmDTsPwo7deiBTnuPP+g0Ufv/v0JADgQpWLM0BSsaq1UJybcZZ9TZfy7oFK8WeVs9nF2XkdNmg1jExBKsAbTshuaQSATrsRyTQvGUI/GYzDatAWdCiey4wpSGWbNp954DCWt9nw+/dege3L1P2bM+g0aLMZKesMhduec5Gyzkg5W2hQcbYAEItHNVoKyqFY1lmhgfdiGHQadNiNZSlnpYqqDrsRsWQa/mj+BbdHBFBXUJxpNAyryzQFmQgoV86yVvWh+cXP/kFpcV5P5QyQzlFJW+OxzPdO7NrLRShn0zKVs+VttrzZb70uM772xm04MR7ER3+pLKBaropbCrlB1PFkGiO+yKzibEWbFSa9pmkdG/9yeBwXrWjB+h4H3nfNKjx4cAx/PjRW8PF7Tk/hvA7bLEt6teitoq29J5DfiS07d1NDUxChnDnnKGcmveRAe5iUs7LxhhPzvq/F6HDIC6KeCsVktzQCwOoOYadf/s8ykUpj2BvBi9d1KN5IlEuX00iGIJgpztqLfK5JWWeknC00qDhbAIiddWsd2hoBoNdlwVCBrI1sT7wC5Uw6prIF0bA3CsZKZ5OJi0mhfn6xQ95VQVsjkBmiV9jbn0pzeILxMpQzYbgxfxG/f9CHNpuxomJTDcRcnFyOjgVgMWjLMASRvhc+GbNapyaC81oac7l8VRs++NI1uP/5YfxIxtyTYCijdlQ+cya9l1J2+sPeCNJ8ZjgckHLS1nc7mtKx8dxkGMfHg7h6bScA4B1XrMDqThs+df/BvCpmKs3x9Bn1580EvRlzjnIMfkrhKeDEZtJr0Wo11LatMSIMQeZfR9Z2O0g5qwCprVFJ90gm66xEC/6kQrMtp0WPNpsRpybKnx8c8Ualzxu3/PxJpXQ5zKScQRpzMGg1ef8mBSLrrFQLLNFcUHG2AAjHkmAMsoeN1UZkbeRbRCrtiRf0KCzORnwRtNuM0JewXRc2vYVMQeQqcKVY02mHN5yQ5bglmA7HkUrzbM+9XMTiLl/xc2DIi8199TMDEbTZDEWDsudybCyAVZ32vKpWMZwylbNYMoVzU+GSM213XLkSF69owV1/PSm70M5mnKkwcwagZGvTuRwb/Vw29TpxcNjXdBfth49ICtk1azsAAHqtBp+5YROGvBF85c/H5z3+0LAfwViyKi2NALC53wUAeE6lgPJcPIH8bY2A+AysYVtjgZkzYMaBVjyGUIY3koDbqkA5y1wDJkoqZ3HF19YlLeaKZpSESlNN919SziQ8gThabYai1+8+txnxZFqVfE6icaDibAEQiqdgNejqtgAXjkH5WhtF/pa7LOUsKnthOeKLyloMi5bBQqYgQjmruDjLODYqaW0ULSxKlTOhsMy1XQ/FkjgxHsSm3vq2NAJSAemPJmVbgx8dDWJNp3JLZoNOA6tBW9IQ5NxkGGkOrCyinAFSi+r1m3sw4ovitEfebvOwNwINg6Lw7Hy0WOS1NWaLs9bZxdmGXidC8VTW+KRZ+MuRcaxot2JZ28zPZvuyFrxhRz/ufuw0Dg3PVnDEvNlFy1urcj7blrigYcDe01OqHjeWTMEfTRZs+e6ucdaZP5IAY4AtTweGaC8+RnlniuGcwxuOw2mWfw0U14BSjoWTwXKKM0v2M6McRGHX31I95azbaYY3nKhplEQjIs2kFr+OZLPOqLVxQUHF2QIgHE/CUgcbfYFo38pnCjIVisNp1pdUtObS4zIjnkrDk2eOKh/D3gh6ZBRUpXr5R31SALXSNsy5rCljMSMMM5TOnBl0GjjN+nlB1IdG/Ejz+s+bATOLjckShQYgFfSeYEyxGYjAZTHAW0JtOplxMVzRVroAvGyltOh//OSkrNcf8kbQ5VAWnp0Pt8y2xoGpMAxaDTrnKK6iKD84XNvWxlgyhSdOenC2DOv1YCyJp05N4sXrOufd99GXrYXLrMcnfnNg1qbN7tNTWNpqKdnSXC52kx7rexzYc0bd4kz8XAvNyYnuATVsz+XgjyZhN+ryqtVru6XNpsNUnCkmFE8hkeJwK8jfM+m1cJr1RTsvOJdiapTMnAFSUTXiiyIhMz9wLgNTEWg1rKqt8tkg6hq0Nh4bC+Dne85V/XXKoZBhUC79LWSnvxCh4mwBEIyl6mYGAsy0N+RVzkKSLK+UXgVuZZxz2fb3NqMOFoO24EVvuMIAakGL1YB2u1Ghcia913KGrFttBnjmLOKFGUijKGdAfkfJuRzNDKuvUWgGInBZ9PBGiitnJyfy2+jnY3mbFd1OE5444ZH1+lIYeuUtPw6TDloNK1mcnZsKo6/FPG9RvarDBqNOgwOD1S/OhrwR3LP7LN7+w6ex9d/+hDd9Zzfe+oO9iguLx45PIJHiuDrT0piLy2LAJ65fh+fOefHTzGIqnebYe2YKF6rsGDeXHcta8Nw5L+LJ8ha0+ZixyS7U1mhCKJ4qaF6kNv5IIm9LIwD0OE2wm3Q4MkJzZ0oRG0VKZs4Aae6smHIWjCURT6UVK2f9LRak0hwjZbbMDk6HVdl8KsZMEHX1i7Nv/+0UPvqrAw0ZOyJHOet1URD1QqTkXxdjrJ8xtosxdpgxdpAx9v4593+IMcYZY23VO02iGOFYfZUzp1kPq0Gb98NhMhhTfPEAgL7MbtCJ8dIfmP5IEuF4SrY7XrEg6lGfpHqogWQKIn8xI5SzcoqzNqtxXuFzYNCLLocpqxbWE+EoKcexUaiNa8pUztwWQ8nw5lMTIXQ5TLI2NRhjuHRlG548NSmrzXbYG1WlOGOMyXovc230BTqtBmu7HVWx048n03jipAefeeAwXvrlv+Kyz/4Fn/j1Czgy6sdrtvXiHVcsx8mJEB6TWdAKHj48DodJhwuWuvPef8PWXly6shWf++MRjAeiODYegDecwEUrqtPSKLhwWQtiyTQODHlVO6boCiimnAGoWsbaXHyRxDwbfQFjDOu6HGU50C52RIu1S4FyBmSCqIt8Xs6YbSm7XojPinLb4AamI1m1plrUMohabF7d+/Rg1V9LCek0x2QwXjCAWmA2aNFmM2CgglZVovGQs/WRBPBBzvk6ABcD+AfG2HpAKtwAvARAY2rCi4RQPFk3p0ZAunD3ufNnbUyF4mW1CK7usKPXZcZv9w2VfOyIX5h4yLtgdNhNBT/0R3yVZZzlsqbTjuNjQaRkzs2N+2MZZU/5z7LNbpjXMrh/0JfNu6o3ouCUM7R8dCwIl0Vftk2z06KHr8TM2ckSTo1zuXxVK7zhBA6VUA7SaY4RFQKoBS1WfVHljHOOc5P5izMA2NTrwKFhv6qmIAeHfbjgPyR17PuPn0aH3YR/uX4d/vyBF+HRD+/Ef7x6Ez507Rq02Qz44RNnZB83nebYdXQcV67pKNgGzRjDv796I2KJNP7j94exJzMHVi2nRoHIctpzWj1TELGZUsgmW3ye1WruzB9NFHWFW9ttx9HRQNMZzNQbsbniUqicdTiMBV2FgfLNtsSsWLlzZ4PT4eycU7UQG6TVVs4i8RSOj0sbDr98dhDJMls9q4EvkkAyzWXFEBVafxHNS8nijHM+wjl/NvPvAIDDAHozd38ZwIcB0Kd1HQnHU7DUKYBa0OvOn3U2GYyXlT2k0TC87oI+PHbCUzBDTSDaM7rlKmeO/Jlb2QBqlRbWa7rsiCXTOCNz9mYiqDzjTNBqNc6aOfNHEzjlCWFzA7Q0Arl2/zKUs7EAVnfay24tdZdoa+Sc49REsKRTYy6XrpQaAx4voQR5gjEkUhy9FWacCdwWA6ZDhd+LL5JAIJYsUpw5EYglcVbFXdU9p6cQiCbxtTduxb7/91L85O0X4e1XrMB5HTM/M6NOizdeuAQPHxnHuUl5r/38oBeeYDzr0liIle023HHVStz//DC+99hp9DhNVXWOA6TNhRVtVuxVce4smwFpz7+4VtLarQb+SLKgcgYAa7scCMaSJT+PidkI51glM2eAtIk4EYwVLIaFAZTSsYEuhwl6LSurOIsmUhjzx6pqow9Ima12kw6jVVaNxVz2Tdv7MBGIYdfRiaq+nhJmAqhL/3wp62zhoahpmDG2DMBWALsZY68EMMQ5f74aJ0bIJxSrr3IGZIKo53w4pNMc02HlblKC113QB86BXz5TvN1AZAH1KFDO8u1IekLSwlot5WxtxrHxqMxWoAl/rGQLQyFabQZMhxPZIW+RbyVswOuNSa+F3aQr2dbIOcex0UDZLY0A4DJLhiAFFzWhOPzRpCLlrNNhwnkdtpKmIGLhqp5yZihqpV/IRl+woUcqztVsbTzjCcFm1OEVm7uLtoXefNFSaBnDj548I+u4fzkyDg0DrlrTXvKxd1y1EsvbrDgzGcaFy1tq4lR74fIWPH1mSjXlaDIYg1mvLaiUt9uN0GlYTZWzYkHJa7ulv8nDNHemCF+Zylmnw4hEihdsa57KtMUq7UzRahh6Xeay2uDE51u12xoBqYistp2+uE6+9+pVaLMZ8b97B6r6ekqYkBFALehvsWDIG5HdpUM0PrKLM8aYDcAvAfwjpFbHTwD4fzKe907G2NOMsacnJhpnV2IhEY6n6jpzBkjKmT+anJWD440kkObKLx6C/hYLLl3Zil88M1h0QTTijUKnYbLb4DocRoTiKYTmhMoKZyi1Zs5WddqgYfLt9CtRzkTrg7BdP9BAZiCCdrsxb1B2LiO+KAKxJFaXaQYCSLMdaQ4ECoQGn8zMMSpRzgDJtXHv6amiphBC5VCzOCtmpV/IRl+wutMOg1aDgyoWZ6cnw1jWZilZEHU5Tbh2YxfufXogb3j0XB4+PI7tS1tkLWJNei0+/eqNAIDLV5Uu5tRgx7IW+KPJrGFNpXiCsYKqGSAtojsdppqYIgDFDUGAmRlQuZtNhIRQzooVvvkQWWeF5s5m2hqVXzP6WyxlFWeida7abY2A9PlRbbfGA0M+tNkM6HOb8doLerHr6HjRVtJaMqOsy2lrNCOR4gUjgojmQ1ZxxhjTQyrM7uGc/wrASgDLATzPGDsDoA/As4yxrrnP5Zx/m3O+nXO+vb29NhfRxUYolqyrWyOQ49iY0/cs2uzKaWsU3Li9D+emwthdJGNo2BdBp8MErczA4pmss9kXPbUX1ia9FstarTg6Km+nedwfLXvOSrQ+iA/0/UM+9LnNFUcCqEmbzZjdDSxE1qmxEuUss7gvZKcvcr+UKGcAcOl5bYgkUkXDiIeroJxNF1EBRXFWqM3IoNNgbbdddeVsWau8793tly6DP5rEr58rPjs64ovg0IgfV68r3tKYy6XnteFv/7wTN2ztLf1gFRAh12q1NnqC8ZLzJD0uU03aCJOpNELxVNG2RqtRh6WtFjIFUch0OA6bUQeDTpm7YaejeNbZVDAOs14Lcxkbs/0tFgyUMaMkCrqFpJxt7HWCMYabtvcjleb45bOl59xrgZhJlTtzBkgxB8TCQI5bIwNwN4DDnPP/AgDO+QHOeQfnfBnnfBmAQQDbOOejVT1bYh6cc4TjKVjrPXOWJ+us3IHlXK7b0A27UYf7nincbjDijSrKOBI7knMveqK/Xc28pDVddlk7zaFYEqF4KntuShEFsOhTPzDoa4h8s1zabfMdJecinBpXlxFALRCzHYWCqE+OB2HSa2S3wQouXtEKDSuedzbkjcBm1MFhUmezxG0xIM0xS5HOZWAqjDaboejmzIYeJ14Y8qmSlxVPpjE4HZZdnG1f6sb6bgd++MSZoq//8OFxACg5bzaXJa0W2ZsyldLnNqPLYcqakFSKJxgrqXr0uMw1cWsMZOz6ixmCAJID7WGZm02EhC+cUOzUCMhTzsrdfFvSYsFUKI5gge6CQgxOR6DXsrKvU0rodpowEYhVzaQjmkjh+Hgw212yst2GHcvcuO/pgZplCxbDE4xBq2FwyVBc+90i64zmzhYKcrZyLgNwC4CrGWP7Mv+9vMrnRcgknkojmeZlOfypSW+erLNyB5ZzMRu0eMX5PXjgwAgCBRaoI76IojmxDkd+5WzEF4VBq0GLwtmAYqzpsuPsVLhkW5eYxSpfORMhzzF4w3GcmwpjU6+rrGNVi3a7POWs02FUPJ+Ri1gIFZrVOOUJYXmbLW/YbjGcZj029TqL5p1JGWeV5+QJWkoEUZ+dDGfd1wqxqdcJfzSpyq7qwHQYaQ4sa5NXnDHGcPuly3BsLIgnTxUuav9yZBxLWiw4r6P8orzaMMawY3kL9p6ZUmXx5gnG0V6krRGQHBtHfdGqOySK4r+YcgZIc7RnPCFE4qmqns9CYjocL684E9epAurRZCguyywiH1k7fYWtjQPTYfS6zDXZEOl0mpDmKHnNKJdDI36k0hwbc1r/b9rej1OeEPaeUc+VtVw8mRgiOdcp0alBjo0LBzlujY9xzhnnfDPnfEvmvwfmPGYZ51xZoA2hCuGYdJG01nnmrM1qhEGnmVWclTuwPJebtvchmkjj//aPzLtPBFAraSPrFDuScy56Iz5JgVO6aC/G2i47OAeOjxXPaxMXoLLdGjMX6clgPNvC1mjKWZvNgEA0iWii8MJOODVWgijsfAUcG08ptNHP5dLz2rBvwFtwx3lYRRt9AHCXKM4KZZzlInaG1WhtPJtxHl3eJn/m5JVbeuC26Ava6kfiKTx+woOr13bUxNijEi5c5saYP1ZxoZtKc0yFSitnvS4TEikuy+W0EvwRoZwVLyLWdduR5sjajxOlmQ4nFAdQA1JbvMOkK6icTYVi5c9zu8uz0x+cKr0ZpBbVDqIWZiC5c9nXb+6GzahrCGMQOW3PApNeiw67kbLOFhDVi3gnakIoo8hY6jxzpsk4QOVrayznwpTLln4Xzuuw4d6n539gToXiiCXTipQzh1nq/5/rHDjqU9YeKYc1MhwbJ4MxfO4PR8AYsFymIjEXu1EHg1YDTzCO/RkzkI09jVacFc86S6U5jo8FK5o3A5BtA8lnpBFLpnBuKoyVZX6fL1vZhmSaY8/p/CqQWgHUAqHi5ivOEqk0hr2RksXZ6i4b9FqmSnF22iNd/OW2NQLSwuH1O5bgT4fG8rbdPHHSg1gyjWsUzJvVix2ZubM9Fc6decNxpHlpm2yRdVbtubMZ5axUW6P0eXZkhIozufgiibI7ATodhTM5p4JxxQHUgnKVs8HpSNVjKwRLWqTPGGFupTb7B31otRpmrR0sBh3+7vwe/N+B4YKt5LVCMgyS//Ptb6Gss4UEFWdNTiirnNW3OAPmZ21MBqV2jkKBsnJhjOHGC/rw7DkvTozPVqDErprcAGpxvA67cb4hiC+CHpWLsyUtFpj0moJD9CfGg7jhG0/gwJAPX3/jtrJ3JRljaLUZ4AnGsH/Qi2WtFjjLaKWpJjNB1IVVoFgyXZFTIzDjipYv6+zcpNSWt7LM9rnty9ww6DR4/MT84iyaSGEqFM/OX6qB21q4RXPYG0Gao+TvjFGnxepOOw4OV77IOeMJwW7SKd6xf/PFSwAAP3nq3Lz7Hj4yDqtBmzXcaGRWd9jhNOsLFudykevEJgr9ajs2CpW5lHK2pMUCs15Lc2cKmA7HFWecCToc869TgNQxMhmKlz0y4LToYTfpFBVnoVgSk6F4TZwaAWBluxWbep24Z/fZqsyA5ZqB5PL6Hf2IJtL43fPDqr+mEjyBmKK21T63GYNeUs4WClScNTkzyll92xqBTNbZrLbG8geW53LDtl5oNWyeMciMO56yokoqzmYWPCKAukuhSUQptBqG1Z12HB2bv5h54oQHr/nG4wjHk/j5Oy/G9Zu7K3qtNpsURC2ZgbgqOlY1yCpnBdp0hLpYqXKm02pgN+nyGoKcnJCK+xVt5RVnJr0W25e684ZRl/u7WIyZmbM8hWaJjLNcNvU6cUAFU5AzkyEsb7Mqbj/sc1vwkvWd+Pnec7PaWjnn+MvhcbxodTuMuvp/hpVCo2HYscxd8UxK1sm2pCGI9LtU7awzv8ziTKNhWNNlbxjlLBJPZbMdG5FUmkvKmUIbfUGn3YRx//zPy1A8hVgyXZHZ1pIWi6K2RnFtr5VyxhjDLRcvxbGxoGomPAJhBpKv9f/8PifWdNpxbx1bGznn0kyqAqfrfrcFw95o1QxUiNpCxVmTE24g5azXZYYnGM8uviZDMbSV2XYxlw67CTvXtONXzw7N+vApRzkTxxvLuehNhuKqBlDnsqZzvmPjvU8P4Nbv7UGnw4Rf//1l2LrEXfHrtNoMODoawLAv2nDzZsCMSlBowPtYxkZ/VQVOjQKXRZ/XSv/kRHk2+rlcdl4bjowG5rVnZqMYVCzwzXotjDpNXuVMSXG2odcJbzhRcdvLaQU2+nO57dJl8IYTuH/fzI70wWE/Rv1RXK3QpbGe7FjWgtOeUEWZQtmA2RKGIE6zHhaDNvu7VS3ktjUC0tzZkVF/Qzja3fitJ/DFh47W+zQK4o8kwLnyAGpBu0PaRJz7vZ7KKK+VbH72u5XZ6c/Y6NdGOQOAvzu/B06zHj966qyqx81nBiJgjOGmHf14ftCHI3VSiP3RJOKptOyZM0AqmlNpXvX4AaI2UHHW5GSVszobggDzHRsng+opZwBw4/Z+TARi+NvxmTDzYV8EBq1G8Q5ip8M4yxBE2FVXpTjrssMTjMMTjCGd5vj8H4/gw7/Yj0tWtuIXd1yq2sWu1WrEcKZYbaTwaUE2i62QcjYWwJIWiyrOo26LIRv+msupiRC6HKaKcgEvXdkKAHhyjqW+2hlnQKZd1WrIO3N2bioMg1aDThmh6eL3oZLWxlgyhWFvBMsKBF6X4pIVrVjTacf3c2z1/3JkHIwBV61pouIs0375dAXqWbatscTiizGGbqepBspZEhoG2GT8XazptGM6nChoVFFLTk2EsqHyjYhorRbtyUrptEuGMHM/yyZDIkO0AuWsVQqilltkD5TIVKwGZoMWN17QhwdfGFU1HDqfGUguN2zthV7L6mYMIjb+ioXUz4WyzhYWVJw1OcKivd4h1MDMh4PYnZ8KxdFSwcVjLlev7UCr1YB79w5mbxMZZ0odFjscJvhznAPLVeDkIIbo9w968d6fPYdvPHISb7xwCb53+47sfJQaiA9yxiSlpNEw6iT3sUKGIMdGK3dqFDjN+rwzZycrcGoUbOp1wm7U4YmTs1sbh7wRMKZuTh4gOTbmMzcZmAqjzy3P1nptlx06TWWmIANTymz058IYw22XLsPhEX+2LfDhI+M4v89VdoREPdjY44RJr6mo1WoyGINOw0pa1wO1yTrzRxNwmPWy2lXXdkufZ4dH6jt3FkumEI6nssZTjYhQvF3m8q6DM7EvswsTsVlTriEIIGVjxZLpecZYhRicjsCk15Rt318uN1+8FMk0x8/2qFcoHchjBpJLi9WAl67vwq+fG0IsWfvYCCUB1AIRDE5ZZwsDKs6anKwhSCPMnAnlbDoiWUWH42hTUTnTazW4YWsvHj4ylp3ZUJpxJhCLQXFhGs0UZ2ovrAFJOQOA9/70OTzwwgg+/vK1+MwNGys2SpmLaCFd2W6TtQNeD9oKZJ3Fkimc9oSwtkIzEIHbYpjX1sg5x6mJIFa2V9Y2qdNqcNGK1nmmIMPeCDrtJtV/ri1WA6YKtDXKVV1Nei1WddpxYKj8BfUZ4dRYZnEGAK/e2gOHSYcfPnEGE4EYnh/w4sVN4NKYi0GnwdZ+N/ZW4NjoCcbQapOZYeQ0Y6jabY2RhKxCEUB2A0W0CNcLMVNaKGaiERCfQeXknAHIquJjc+bOshmilbQ1tiiz0x+YDqPPbal53MXyNitetLodP91zVrX5wgMFzEByuWlHP7zhBP50aEyV11SCXGU9l26nGYxR1tlCgYqzJiernDXAzFmn3QithmHIG4Y3HAfnlWeczeXG7f1IpDh+k5lbKde6XOSJiR3Jctsj5dBuN6LdbkSKc3zz5m1454tWVuUCJ1pcNjegaiZotxnhCcxfTJ32hJBM84qdGgXSzNncVqA4/NFkxcoZAFx2XivOTYVnuZ1JGWfqF/duS37l7Nxk6YyzXDb2OHCwAlOQMyLjrMyZM0Cyqn79jn788eAofrZHcm68em1n2cerFzuWt+DwiB+BMu22lWQY9bjM8ARjVd3B90eTcJjlXUPcFj0MWk1FM3dq0BzFWaatscyZs+x1ak5Ln1ALK2prVFic1dJGfy63XLwUY/4YHj5ceaEkzEBKtf5ffl4bepymurQ2ZtsaFRRnBp0GXQ4TBkg5WxBQcdbkCOXMrK+/cqbTSh8OQ9ORmbYLBR8ucljTZcfmPifue3oAqYzDYjnKWUc2iHpGOet0GlUNoM7lO7dux+/fezmu21iZI2MxxAf5pgY0AxG02Y152xrVcmoUuCwG+KMJpNIzhYiYTalUOQMkUxAAs1ob1c44E7RYDfNat3zhBPzRpKLibFOfE5OheNm27Kc9ITjN+mwwdrnccvEypDnHVx8+jm6nCeu61fmZ15ILl7UgzYFnzpY3dzYZjKFV5mdjd6bgH62inb4S5Ywxhna7ERN5XARriWgZDESTiCcb06FOzIqVq5xlr1NzWg+nQjGY9JqK5nN73ZLSIndGaWAqXNN5s1yuXtuBXpcZP3qycmOQw0XMQHLRahhet70fj53w1LxV0BOMQcOUb273uynrbKFAxVmTE44nYTFoq1ZUKKXPLdnpZ2X5KihRN27vx5HRAB45Oo5kmqO7HOUs08svAj5HvFF0O6q3KygFaVd3Ebqhx4ELlrpxTQMrEe22/G2NR0cD0GlY2SHcc3GZ9eB8xiIcAE55KndqFKzqsKHdbsy2NnLOMeSNqJpxJnBbDAhEk7NaerJOjQrMOcRipNy5szOToYpaGgVLWi24Zm0HkmmOq9d21LxNSg22LXVBp2FltzZKypm8z0bxO1VNx0Z/VH5xBhRuT64luW3L+dxMGwFvOA4Ng6LvbS5mgxZ2ky6vclYqhqEURp0WXQ6TLOXMF5E2g8RcU63RahjedNESPHFyEifGK4txEJ9/cjYxb7ygDwDwi2cGSzxSXTzBGFqsBlnzxLn0uc0YouJsQUDFWZMTiqdUcbdTi163GYOzlDP1i7NXbu6BQafBVx8+DgBlBUe3WAzQaVh2R3LEH8nuUDcrrTYjfnnHpYoW7LWmzSYVGrlZV4Bko7+i3QqDTp2PpHzhzSfHgzDpNapY3TPGcNnKVjxxcjIbCBtPpquknM1/L0ps9AXruhzQMOBgucWZJ4zlKv1uvfXy5QCAl2+qnpJcTSwGHTb0OssyBeGcYyIYk92yJDoDqunY6IskZLc1ApmcyLorZzMbL43a2ugNJ+A06yvaPO10mObNnKmVISrZ6ZcuzoRyVKsA6ny8fkc/DFpN3iB7JRwY9KHFapC1buhvseCylW247+lBpNO1i46YCMhve86lr8WCEV+kobP/CHlQcdbkhGLJhjADEfS5zBjzR7OKVKW7e/lwWvS4bkMXnh+UFpnlOCxqNFJrznhAsrcf88WqYgZCzEYYscxtbTw6pp5TIzDjjuado5wtb7OppjJfel4bPMEYjo0Fq2KjLxBthNM5QdTnysgcMhu0WNVhL0s5iyZSGPZFVFHOAODSlW3Y8/Frsu2hzciFy9x4fsA3b6OhFMGY1IYnVzkTv1PVdGz0R5KK1J2OBlDOcjcrGrU4mw7Hy543E3TYjfPm+9SKqelvscyamy2EaH2sV1sjILXtv3xTF375zCBCsWTZx5FjBpLLTTv6MeSN4PE57rzVxKNg8yaXPrcZaS51AhHNDRVnTU4o1njKWZpL4bKANDxeDW7c3pf9d7kmDB2Z4mwyFEc8lUa3jLwoojLEBUe0vQLSBsPAVES1eTNgZsbDl7O7fkoFG/1cRGHx2AlPtjirRk5eS2Zxl7sAPTcVRqvVoNiVc2OvEweGlAcIn5sKg3OUHUCdj44m/3vbsawF8VQa+weVFbtKndhMei1arIaqOTbGk2lEEik4FMR6tNuNmMqoxfUi92+7Ue30veEEnBVeAwspZ5WYgQj6W8wY9UdLms3MKGf1aWsU3HLJUgRiSfw2J8heCTNmIA7Zz3np+k5YDFo8fHi8rNcsB6k4U/7zFT8fMgVpfqg4a3LC8SSsDRBALeh1STtr+we9cFn00KlsKy64dGUbel1mmPXasrPC2u0mjPuj2UH7cmbXCGWIBWluts7xjFGHWk6NgGQIAszsrseSKZybCmOlSsoPIM0CLWu14IkTnuzCuRozZ6I1OFcpGFBgo5/Lpl4HPMGYYlOQ05l5PbWUs4XAjmVSGLXSuTOhGss1BAGkDahqKWfCcVLJ56gwqhBhyPVgOhzPtkFP1VnFK4RaytlEIDZrQ2UyFFPFWXhJiwWco+Sc0uB0BDajrmxjE7XYtsSNdd0O/OjJM2W5zgozkFJOjbmY9Fqs73bg4HD5GZFK4JyXr5xl1l9DVQ6tJ6oPFWdNTiiegqWBMq3Ezs2JiWBVbOkFWg3DB16yGm+6aEnZhgIdDumiJxY91VA9iNnka2s8prJTIzCj2Aor63OTUoDyyo7KnRpzufS8Nuw+PYWBqTDMem1VFi+FlDMl82aCLUvcAIB9A15Fzzurgo3+QsNtNWBVh03x3Nlk1iZb/udjt9NctZkzf1RqEVMyc9aetXivZ3GWwNIWCxgDpsLlRRpUG284UfFnQofDhHgqnf0sC8eTiCbSFQVQC+Ta6YvA+3qb9zDGcOslS3FkNFCWU+oLWTMQl6Lnbehx4OCwvyZzZ6F4CtFEGm125T/fLqcJjJUutonGh4qzJiccayzlTJhqcF6debNcXntBHz75ivVlP7/DbsRkKJ69MJUzu0YoQ7TieHKUs6NjAZj0mrKUoELYTXowNuPodnJCUudWtKlbnF22sg3BWBIPHhxFj8tUlcVLVgXMFGfJVBpD3khZxdn6bgcMOg2eVbiwOe0Jw23RV9yitdDYsbwFz56dnhXZUIqJTFtju4Kd8V6XuWpzJMLRVOnMGTBbAa813rDU2ucy6zFVRwWvGN5wPDv/Wi4zmZzSe1QjgFogPnMHZChn9TQDyeVVW3pgN+rKstU/MCTfDCSXDb1OhOMpnJ6sfvC6uDaWo5wZdBp02I1VNQ8iagMVZ01OuMHcGo06bfZiokZPfDXpzMy8HBjyQa9lVVX6CAmjTguHSTfLTODYWACrOuyKbYOLodUwOEz6rCHIyQn1bPRzuWRlKwBgxFedjDNAuuDajTpMZQrNYW8UqTQvqzgz6DTY1OvEcwqVszMedWz0FxoXLmtBIJbE4RG/7OcI5UxJXly304RALAl/maHXxRDHVDpzBszP36ol0+EE3BYDWqyGhjQEiSfTCMVTFc9di+uUMNkS83VqGIK024ww6jRFTUE45xiYDtfNRn8uFoMOr72gD394YUTx5sCBIb8iMxDBxh6pDfKFMp1uleApQ1nPpddlprbGBQAVZ01OKJ6ErYHcGgHJFARQ5+JRTUQRuX/Qh06HqWGy4hY67XOCqI+OquvUKHBb9Fm77VMTIXQ5TLCq3ALcYjVgfbc0XF6NeTOBO2cBWo5TYy7blrhwYMinyMzhzGSIWhrzcOFy5XNnnmAMboseegXzuFnHxiqoZ/5Ipq1RSc6ZTRRn9XOFEy2DrVZjVk1qJLwR6ZxcFV4H5ypnQiVUY/NTo2Hoc5uLFmfT4QTC8VTDKGeAZAySSHHc+/SA7OdEEykcHwsoMgMRrOq0waDVZI3OqslMcVZe51EPFWcLAirOmpxwrLFmzoCZLJRGV6LEUPtpT0iV7CtCHm02IzwBaeEyHYpjPBDDmi512w0BwGkxzGprVFs1E1y+SnJtrJZyBuQvzsrNs9u6xI14Mo1DMtWeSDyFEV+UlLM89LjM6HWZlRVngbgiMxDpdTJZZ1UwBZlRzuRfRww6DdwWfd3aGjnnUsugxQC3Vd+QIdRiRsxVpmGVoMMxuxCeaWtUZ2xgSYul6MyZKNz66+zUmMvKdhsuO68V9zx1FkmZmV6HR/xIKjQDEei1GqztttfEFCTb9lzGzBkgbY6PeKM1zWUj1IeKsyYmnkwjnko31MwZMKMgKF2A1Bpx0QNAGWc1pC0nI+nYmGQGUi3lzBtOgHOOUxNBrGxXvwAEgEszrY3VLM5aLDML0HNTYei1DF1lWtFvy5iCPHdO3tzZ2SmpJXRpA4eb15MLl7dgz+lp2e5xkyHlNtnid6sasyTlzJwB0uZWvdoag7EkkmkOt0WPFquxIdsaxYxopW6NFoMOdqMua74i3muLSmMDpbLOBhoggDoft1y8DMO+KP5yRJ7FvWhJ3FhGcQYAG3qceKGMGBKliJmzcjuP+lxmxFPpeVmiRHNBxVkTE4lL2SSNNHMGNE9bY6vVANF6Tk6NtaPdZsxegERxtkZFG32By6yHNxLHZCgOfzRZPeXsvDZ84uXrcO2GzqocH5CUMxFCLTmnWcqe0etymtDtNOHZc15Zjz+TsdFfTspZXnYsa4EnGMvGDZTCE4wrblnqsJug1bCqtDX6IgloNQwWhZt8wu22HmRVKYsBrVYDpsOJhlMKxLyrGg6uHY6ZIOrJkBQhoNam7JIWC/zR5KzcuFwGM2YhjTJzJnjxug50OUz43uOnZRVMB4Z8cFv0Zbefb+hxwBdJZL8f1aKctudcxEbOILU2NjVUnDUxobg0K2BtsJmzZZkd9s4GD5nVaTXZ1hAqzmpHu92IQCyJaCKFo2MB2E26slWgYrgsBnhDCZzM5KitqJJyptNq8I4XrYBdofKghBbL7LbGSp0tty5xyVbOzkxKO+fU1pifC5dLSqTc1kZPQHmGkVYjKaVVUc6iCThMOsUmCe22+hdnbosBbqsBqTSvillKJYiWaiXGL4XosM8EUU8G42izGlRzhu0vYac/MBWGy6Kv6udbOei0Gtxx1Uo8dWoKP91zruTjyzUDEQjFrdqtjeVmnAnE5jg5NjY3VJw1MaGYVJw1mnJ22co2fO/27dixzF3vUylJZ6a1sYtmzmqGaOmaCMRwbDSINZ32KlnQ6xGIJbPq3MoqKWe1oMVmQCSRQiSeymScVfb7um2JG4PTEVmGDmc8IbRaDYrb3hYLK9ttaLMZ8NiJyZKPjSZSCMSSZTmxdTtN1Zk5iyQVBVAL2h3zw5FrhWjxlQxBpO/lZIO1Nk6rNHMGSNcp8bc6FYqp1tIIAP1uYaefvziTbPQb8/p4y8VLccWqNvz77w/hRGYTLh8zZiDltTQCwNouyVH4haHqmoKUo6znIpRByjprbqg4a2JCmbbGRlPONBqGq9d21j2wUg7CCYuUs9qRG0R9dCyA1VVoaQRmZj2eO+eFSa9patMXEUR9ZjIEXyRRlo1+LluXuABI35tSnCYb/aIwxvDidZ3YdWQcsWSq6GNFAVHO4qvHZcZwNdwaowlFNvqCdpsR8VQavkjtFStRnEkzZ/ND2huB6XAcBq1GcbtoPjocknLGOcdUKK5KALVAtCsWVM6mw9kCrtHQaBi+eOP5MOu1eP/PnyvoQHtkNFC2GYjApNdiVYcNL9RCOSvTDASQMj7tJh0pZ00OFWdNTLhBlbNmQjg2ivBsovqIhenBYT98kQTWVMEMBJiZ9Xjm3DSWt9maOipBtEbtH/QCAJa0VFYsbehxQq9leFZGa+OZyRCWkY1+Ua7d2IVgLIknSqhnYtayHLOkbpcJoz71Xdj8kURZqmhHphW5Hq2NuTNnojirlp1+Os3x231Dsl0BBb6M1b8am5QddiPiyTT8kSQmQ3FVnZDtJj3cFn1eU5B0mje0cgZI4xOfe+1mHBz240t/Opr3MQcqNAMRbOhxVt1OX2p7ruznS1lnzQ8VZ01MVjmj4qxsVnfZ0WYzoE3FnUiiOKI4e/yEB0B1nBoBaeEGAGcnw1UzA6kVYgG6b0BaZFSqnJn0WqzvcZZUzsLxJMb8MSxva8yd80bh0pWtsBl1ePDgaNHHTYbKD5jtFS5sIXWLIX80qchGX9CezTqrfXGWbWs0zyhn1bLT3316Cu//+T48etyj6HnT4bgqZiDATCE8FohiMhhX3WyrkJ2+JxhDPJmueMa12rx0QxfedNESfPtvp/DEifk/pxcGJTOQSovMjb0OTARiGPdXJ98vEk8hFE9V1NYIAH1uc9WNS4jqQsVZExPOGIJYGqytsZm47ZKl2PWhq5paVWk2RHjqk6cklaEaTo3A7FmPlU3elidaNPcNeAGo45y2bYkL+we9SBRRBM54pAXbUlLOimLUaXH12g48dGgMqSLKlsj3K2fx1e0Ug/7qLgzLV87qF0TtDSdgN+mg02qq3tYoFIhiWWD5mA4nshtElSLa789OhhFJpFQJoM6lr8WSdzEv5tAata0xl3+5fh2Wt1nxgXufz5qxCA4M+SoyAxFs6JGUt2q1Ngr7+/YKizOpBZqKs2aGirMmJhSTlDNbg4VQNxM6rabhXKgWOkadFk6zlEHWbjdWLXIhN19oZUd1nBprhfgeHRsLoMVqUOV3dusSN6KJNI6OBgo+5swk2ejL5bqNXZgKxYu6Nnqyylk5xZmknoz6VC7Oyp05yxQM9WlrnFGlTHotrAZt1doaxzIqyWABw4xC+MIJuFVSzoTz8ZFMcLyabY2ApJwNTofnbSwMTEkL/EZuaxRYDDp89Q1bMRmK4WO/OpA1qokmUjhWoRmIYH2PAwCqZgoi8j/b7JW3NfqjSQQazME0l1MTQdz115P1Po2GhYqzJiarnDVYCDVBlEK0dVVr3gwAnDkLoxVtzV2cOc16MAak0ly1FqNtGVOQYnNnojgjQ5DSXLm6HUadBn98oXBroycQh9WghbmMz2yxQB9TsaUqlkwhmkjDYVK+wWc36mDSa7LhyLVkOpyYtfnSYjNUra1xJOOQqbRNbDoch8usrnJ2eFQqCtQ0BAGk4iyR4hid87s12KAB1IXY2OvEB1+6Bn94YRT3PTMIQB0zEIHNqMOKNms20FptxExqpW2NIuusEefO4sk0vvbwcVz334/iG7tO1EV5bwaoOGtihHJGhiBEsyF23as1bwYADpMuG9Tc7DNnWg3LtmlWOm8m6HWZ0W43Fp07O+MJoc1mJHVeBlajDi9a3Y6HDo4WtJf3BGNlmYEAklqi17J5C+hK8EekDb5ylDPGGDrspuxufy2RlLOc4sxiqJqVvlAqlRRnnHN4wwm4rOooZ1ajDjajDodHJJVb7W6DrJ3+nNbNgakI2myGsjYT6sU7r1iBS1a04s77D+KMJ6SaGYhgQ2/1TEE8wfLbnnNp1Kyzp89M4fqvPoov/ekYXrK+E3/+wJVZUzZiNlScNTHheBImvSa7ACWIZkFcfNZ0VU/RYozBadajy2GCdQEUF8KxsdKMMwFjDNuWuIorZ54wmYEo4NoNXRj2RbMLwrlMhsp3YtNopGJoTMW2RhHcXG6GXbvdWEflbOacW6wGTKlslCIY8Slva4wkUoin0rPUvUrpsBuzSnY12hqB+XN1g95w06hmAo2G4Us3nQ+9VoP3/+8+7DvnhUsFMxDBxh4HhrwRTFdhM0DMnFU6U9jXYFlnvkgCn/j1AbzuricRiiVx923b8T9v2pY1uiHmQ8VZExOKJ8mpkWhKRHFWTeUMkHKQml01E4isM7WUM0CaOzs7GcZkAfXjNNnoK+LF6zqg1bCCrY2eQGUBs50OY7ZYUAN/JqOsnBBqQCoY6qacmXOLMyOmqjxzNh1OIJSJrymFCKBWa+YMkAxYhCCrtiFIt8sEDQMG8yhnje7UmI8elxmfuWETnh/w4lfPDWKTCmYgAqHAVUM98wRjcJh0MOoqUyrbbEYYtBoMVSEXUQmcc/zhwAhe8l9/xc/2nMPbLl+OP33gSlyzrrOu59UMUHHWxIRjKXJqJJqS5W1WmPVarKpycfb//m4D/vnaNVV9jVohWpnUXCxtW+IGMOMCmUswlsREIEbzZgpwWQy4ZEUr/vhC/tbGStoaAaDLaVJ15swfFW2N5W3yScpZbReAyVQa/mhydlujVY+pKsycxZIpeIJxrO6UFH65MzxCVXGqNHMGzGRyGrQa1duM9VoNelzmWcpZKs0x7G3sjLNiXL+5Gzde0AfO1WtpBIANwhSkCo6NlQZQCzQahm6Xqa4zZ8PeCN7xo6dxxz3Pos1mxG/+4TJ88hXrF0QXSy2g4qyJCcZIOSOakzdeuAQPf/DKqs8yXbm6HVszBUiz02JVXznb1OuEVpM/jPqMh5way+HajV045QnhxHhw1u2pNMdUOI72ClSPLocZo/5owZk2pQjlrNy2xg67Ef5oEtFESpXzkYMvMl+VarEaEU2ksyZZaiFaNi9Y2gJAfmujtwrKWWcmuqDFalBNBcql323BQE4b3Kg/imSaN4WNfiHufOUGvHZbH161pUe1Y7osBvS6zFUxBfEEK1PWc+l1mTGk0GFULbzhOF7+1Ufx2AkPPv7ytbj/PZdhc5+rLufSrFBx1sSE4ylyaiSaEoNOk3WUIuTR5zbDbtJl867UwGzQYl23Pa8piJhvWdravIuzenDt+k4whnmtjVOhODhHRTvjXU4jwvEUAjLb60qRnTkrs62xHnb62ZbBnLkrMYOltp2+aCHdvlTa4JFrCuKNSOfhVnE2TChn1YoemRtELcxBmlU5AyQjlS/ddD7WdjlUPe7GXkfV2horzTgTSFln9WlrvGf3OXjDCdz3rkvxzhethE5LpYZS6DvWxITiSZKICWKR8PYrVuAP779CdQOgbUvceH7AOy/j6OyktDijmTNldDhM2NrvwoOHZhdn2WH/CmzQs3b6Ks2dZd0ay1bOpPMZr2Fx5ssUPrPbGqsTRC2cMTf1OWHUaWQXZ6KAdJVZ9OZDhH6rPW8m6G8xYyIQQyQuqaDivTbjzFm12djjxGlPSPUcMU+gfMOgufS6zBgLRBFPplU5nlziyTR++MQZXLGqDZv61GsnXWxQcdbEhGOknBHEYsGk11bFOW3rEhdCcSmoNZfTnhA67EbaACqD6zZ24YUh/yxr8smsTXYlbY2ZIGqV5rz80QT0WgaTvrylQF2Us9D8wkcoVGrPnY1mMs66nCb0us3y2xpD8wvIShGFsNpOjQJRhIn3ODAVBmNAj4sc9eYiZthEtIEaxJIp+KNJVdsaOVc/tL4Uv3t+GOOBGN5xxYqavu5Cg4qzJobcGgmCqBRhCjJ37uyMJ0RmIGVy7YYuAMCDB2fUsxmb7MoMQQCo5tjojyTgMOnLnmHqyBZntVsAirDpXJt6UbCo7dg44ovCatDCbtShz22RbU3ujSRgNWhh0Km3xJqZOVM3gFow105/YDqMTrupYufAhciG3owpiIpzZ9nNGxUMQYCZrLNamoJwzvGdR09hTacdV6xqq9nrLkSoOGtiwvEU7WoTBFERS1osaLEa5s2dnZkMYTm1NJbF0lYr1nU78hZnlcyUqN7WGE2WPW8GSIWmhtVWORNmG7kBzy226rQ1jvmj6HKawBhDn9usoK0xrqpqBkiFuUGrqZqSJZQzofYOTkfQr1Km4kKjw25Cu92oqmOj+HxQUzkDalucPXFyEkdGA3jbFcurYlqzmKDirIkJxZJkpU8QREXkC6MORBPwBOOknFXAdRu68PTZ6Wzh4gnGodeysm3rAam11W3Rq9bW6Isk4DCVfz5aDUOL1VjTmbPpcBw6DYM9Z2PSbtRBr2WqtzWO+KJZA55elxmTobgsR0hvOAGXik6NAGAx6PC7916Omy9aqupxBa1WAywGLc5NSYv5wanmC6CuJRt7HDg4pJ4pyExxpk5RL1T24RoWZ9999BTabEZV3TEXK1ScNSnJVBqxZJraGgmCqJitS9w4NRGCN7O4PeORds+Xt9HirFyu3dgJzoE/HRoDkMk4sxor3lHudKiXdeaPJCpSzoBMEHUtlbOIVPjkfh8ZY3BbDKq3NY76olm1UrgWymlt9Ibjs9ou1WJNlx3mKs2ZM8YydvphxJNpjPqj6G9ip8Zqs7HXiePjgayBSqU8fHgcBp1GtegSk16LdrtRditupZwYD2DX0QnceslSaoVVASrOmpRwJleGDEEIgqiUrUtcAIDnMmHUp7M2+qSclcuaTjuWtVrwx0xr42QwhjZ75Qv2LqdJVUOQSouzdnttlTNvOA5nnnNusRowqWJbYyrNMR6IodspijNhmCGnOFNfOasF/S0WDEyFMeKLIM2BPnJqLMiGHifSHDgyWrl65g3H8ctnB/HqLT2qtsP2usw1a2u8+7HTMOo0ePPF1VF2FxtUnDUp4ZhUnNHMGUEQlXJ+nwsahuzc2dlMADXZ6JcPYwzXbuzCEyc88EUSqgXMdjlMGPWpUwz5I8mybfQFHXYjxmtpCBJK5FWlWm0GTIXUKxI9wRhSaZ5tDxMqkhzHRmnmrBmLMzPOTYUxkGltbOaMs2qzMWMKokbe2U/3nEM0kcZbL19e8bFy6XWZa9LW6AnG8Mtnh/DaC/qqlsO32KDirEkJZkJISTkjCKJSrEYd1nQ58Fxm7uz0ZAhdDlPVWqgWC9dt6EIyzfGXI2PZtsZK6XSYMBmKqZJfJClnlW3wtduN8ATjSM/JyasWhcw23BZDNl9MDYQjplDO2mxGGGRknaXTHL5I/gKy0VnSYkE4nsLzg14AQD/NnBWk12WGy6LHwQpNQRKpNH70xFlcfl6b6mHZvW5JOeO8un+bP3nqLOLJNN6mcnG5mKHirEkRQ8k0c0YQhBpsXeLCvnNepNM8Y6NPC7NKOb/PhS6HCX98YRSTwbhqbY2co2K1KppIIZ5Mq6KcpdJcdTOOQnjDCbjzqFKtVgMmg+opZyLjTMycaTQMvS4zBksoEYFoEmmubsZZrRB2+k+enIRWw7KFKTEfxhg29DjwQoWmIA8cGMGoP4q3Xr5MnRPLocdpQiyZhkflWcxcookUfvzkWVyztgMr221Ve53FRsnijDHWzxjbxRg7zBg7yBh7f+b2f2eM7WeM7WOMPcQYI3uWGhLKtDWSWyNBEGqwbYkbgVgSJyeCODMZVm0wfTGj0TC8dEMn/nJkHPFUGm0qKGeiza5SUxB/VFKZKjYEyRQvtTIF8Ubi2dDpXFqsRvijSSRSlSuKwHzlDIAsO32Rw+aq8PtaD4Sd/t4zU+h2mqDT0v59MTb2OHF0NFC2is05x/ceO40VbVZctbpD5bMDejPKZzVbG3/z3BAmQ3G8XW7o9Oc/D+zaNfu2Xbuk24kscv7ykgA+yDlfB+BiAP/AGFsP4Auc882c8y0Afg/g/1XvNIm5kHJGEISaCFOQR45OYCoUp3kzlbhuQxcSKamtSBXlLFMMVTp35o9I15BKrPQBqa0RQE1MQaKJFKKJdH5DkIwF+bRKpiCj/igMWs2sGZo+txlDJWbOsiHZ1iYszjKL+VgyTS2NMtjQ60Q8lcbx8UBZz3/m7DSeH/ThLZctg0ajfi5YtbPOOOf47mOnsaHHgYtXtMh70o4dwE03AX/5C5BKSYXZTTdJtxNZShZnnPMRzvmzmX8HABwG0Ms5z9VyrQBq03BOAABCcWEIQsoZQRCVs7zVCqdZj189NwQAlHGmEhcub8maQ6hlCAKgYsdG1ZSzTHFWC+UsW/jkaRlsydymVnvlqC+KTufs6IM+twWeYLyofbo3kgnJbsK2RrNBm/0dJTOQ0mzsyZiClNna+L3HT8Nh0uG1F/SpeVpZRHFWLeXskWMTODEexNuVhE5fdRXwwQ8C114LGI3Ay18OfOlLwM6dVTnHZkWRZs0YWwZgK4Ddma8/zRgbAHAzSDmrKeGsIQgpZwRBVI5Gw7B1iQuHR6SFBrU1qoNOq8FL1nUCgCqGIC6LHgadpuK2Rl+miKh05mxGOau+Y+N0SDrnfDNnQuFSK+tsxBdFt2N2gZLNOvMWVs+8TdzWCABLWqT32E82+iVZ1mqF1aAtyxRkYCqMP74wijdetKRq6ziHWQebUScr/qEc7n70NLocJly/SeZU065dwOWXAx/7GGC1SspZIgHcfjvw2tcCu3dX5TybEdnFGWPMBuCXAP5RqGac809wzvsB3APgPQWe907G2NOMsacnJibUOGcCucoZFWcEQajD1n539t9LaHGmGm++eCkuXN6iSsHLGMvY6VeonGWKs3wtgkqwGKQFYC2UM28kU/gUsNIHoFrW2agvmp3vE4jibKDIYnemgGw+5QyYKcpIOSuNRsOwoceJF8qw0//Rk2fAGMNtlyxT/8QyMMaqlnV2aNiPx054cNuly2DQ5ZQS+WbKvvY14LzzgKuvBs6eBf7pnwC9HvjkJwGnE3jTm6Q2x4svBq68EnjLW4CHH559jEU2lyarOGOM6SEVZvdwzn+V5yE/BfDafM/lnH+bc76dc769vb29/DMlZhEmK32CIFRm21IXAMnly6Snzxa1OL/fhXvfdYlq0QSqFGfRzMxZhVb6QO2CqL0Zq/x881yiGJpWoa2Rc45Rf3SeW2GvSypchooUZ95IAoxV3i5aL8SmDCln8ljf48ChYT9SCqIkgrEkfr5nAC/f1I0eV3WL4B6XqSptjXc/dhoWgxZvunDJ7DvETNmuXcAzz0gF1/veB0xOAl/5CnD33cCPfwzcey/wb/8G/OIXwIMPAj/5CfDlLwOnTwM/+IHU9viRj0jK2iKcS5Pj1sgA3A3gMOf8v3JuX5XzsFcCOKL+6RGFCMVTMOg00JObEkEQKnF+vwuM0bxZo9PlNFU+c6ZSWyMgFWcT/trNnLnM+XLOpPcxqUJb43Q4gXgynbXRF3TYjdBrWdE2MW84DqdZD20VDB5qwaZeJ8x6Ldmiy2RjrxORRAqnPUHZz7nv6QEEYkm89bJl1TuxDCLrTE3G/FHc//wQbtreD+fcFuOdO4G77gKuuw7Yvh3Yswd4xzuAwUHg/e8Hnn9eKszEjNnOndLXBw8C//iPwMmTUvG2ZImklF15pVSY5T5nESBny+wyALcAOMAY25e57eMA3sYYWwMgDeAsgHdX5QyJvITjSVhJNSMIQkUcJj1evrE769xINCZdThNGD0bBOZc/iD8HfzQBg06jikLabjfiUBmtXUoRypkrz8yZTquBy6LHlAptjSOZjLO5ylk266yIY+N0ONG082YA8JL1nXjmky+meXaZbOyVTEFeGPLjvA57ycen0hw/eOIMti1xYesSd8nHV0qPywxvOIFQLKnaGMxPd59DMs3xlkLF5fXXS+2KExPAhz40ux3xwx+e//idO2cKL70eePObgZtvBtatA558Evj4xxdVYQbIKM44548ByPfp/4D6p0PIJRRL0YcnQRCq8z83b6v3KRAl6HSYEE+mpUDmPJlfcvBHkqqoZoCkKD1SoZInh+lQHGa9tmBB2WI1qFKciZbRuTNngOTYWEo5a0anRgFjjNYWCjiv3QajToMXhnx49dbeko9/+PAYzk6G8c/XrqnB2c12bFzVWbp4lMPjJzzY0u/C0kJxK08+CXAuzZR985vAy16mvLh65BFgZET699e/Drz4xYuqQKOeuCZF2gUh5YwgCGKxoYadvj+aUGXeDAA67CaE4imEMrPQ1cIbSeR1ahS0WFQqzvwigHr+PFCpIGpvuPg5EgsLnVaDtd0OHJSpHN/92Gn0usy4bkNXlc9MQhi7DKrU2hhPprF/yIcLCql+Yj5MzJTde+/MDJpcxDF+8QugvR3YskX5MZocKs6alFA8SbtbBEEQi5Aup2RfX1FxFkmoppy11yjrzBuOw1lElVJTOdMwoM02/7X63GZ4gjFEE/mzzqabXDkjlLOxx4EXhnw4NVF87uyFIR92n57CbZcuha5GfgE9KmedHRrxI55MY9vSAsXZ3r35Z8r27pX/IuIYL3mJ5OT41FOSkYiSYzQ5VJw1KeF4ipQzgiCIRYgwqqjEsdEfTarmKJgNog5WtzibLqFKtdoMqljpj/ii6LCb8i6ge7NZZ/kXu95wIu9MHLFwednGboQTKVz9pb/ipm89iV89O5g3qPx7j0sOh6/fsSTPUapDh90EnYYVdRhVwrNnpwEA2wopZx/+8Pz2w50788+aFSL3GLfeCsTjUoujkmM0OVScNSmhGClnBEEQi5EOuwmMVVacBSIJOEzqXEOyQdRVdmycDseL5oe1WA2YDsfBuXxb83zkyzgT9Lkli/l8rY2JVBrBWLJpM86I8rh8VRue/NjV+Mh1azHuj+ID9z6PCz/zZ3zyNy/ghSEpoHo8EMXvnh/GjRf0VZwtqASthqHbZVLNsfHZc9PocZoK/n2oztatwIYNwI9+VJvXaxBodd+khOMpcmskCIJYhBh0GrRajRiroK3RF0motkjMKmeB6pqClFKl3BYDUmkOfyQ53+JbAaP+KFZ15LeSz87w5HFsLOYmSSxsOuwm3HHVSrz7yhXYfXoK/7t3APc+PYAfP3UWG3sd6LCbkExz3H7Z8pqfW4/TrFpb43PnvNhaqKWxGjAmqWcf+Qhw4oQUZr0IIOWsSQnH1bNFJQiCIJqLLqex7JkzznnGEESdIsJtMUCnYVUNok6nObwllLPWzIzYZKiy8xj1RedlnAk67KaCWWdekcNGytmihTGGi1e04suv34I9H38x/u1VG5BKA385Mo5r1nZieR0yJHvdZlXaGkd9UQx5I4VbGqvFzTdLRdqPf1zb160jtLpvUkKxFBVnBEEQi5Quh6moa2Axook0EimumiGIRsPQZjNWtTgLxJJI8+KqVItVUvCmQnGsaC/zdaIJBGPJeRlnAq2GoceV37HRmwn2JrdGAgCcFj1uvWQZbrl4KY6PBwsW/NWm12XGqD+KRCoNfQVGJM+ek+bNLqilcgYAvb2Slf6PfgR86lOAZuHrSgv/HS5AUmmOSCIFC7U1EgRBLEo6Haay2xr9UamIUMtKH5Dmzqrp1ihHlWrJ3FeJY2OxjDOBZKc/v61xOvO6NHNG5MIYw+pOe01nzXLpdZmR5qioDRqQzECMOg3WdztUOjMF3HorcOYM8PjjtX/tOkDFWRMSyVj4WskQhCAIYlHS5TBhOpwoaOleDH9G4VFLOQOkubNqKmfT4dKqVItNheIss4DtKqJy9Lryt4mJmbN6LcIJIh9Zh9EKWxufPTeNTb1OGHR1KB1uuAGwWheNMQgVZ01IOBP0aSErfYIgiEWJUHbK2Q2fUc5ULM4c9VfOWq1i5qz84mzEVziAWtDntmA8MD/rbDpzjm4rKWdE45DNOvOVX5zFkim8MOQvnG9WbaxW4HWvk/LPIuqYmzQyVJw1IaE4KWcEQRCLGVGclWOn749IG3xqWekDQLvNiMlQDMlUWrVj5uKVoZyZ9FpYDFpV2ho7HMaCjxGOjXMd8LyRBPRaRk7KREPR66pcOTs47Ec8lca2JS6VzqoMbr0V8PuB+++v3znUCCrOmpCQUM7oAkAQBLEoEW135Tg2VkM5a3eYwHllLYXFmJbphOi2GLKzX+Uw6o+i1WqASV/4+loo68wbjsNpNoAxVvbrE4TamPRatNkMFWWdlQyfrgVXXQX09y+K1kYqzpoQUZyRWyNBEMTipLOStsYqzJy12zJB1FVqbZwOJ8BY6XmuVpuhorbGYjb6gpmss9mL3elQgpwaiYakx2XGkLd8Q5DnznnR6zKjo06OkwAkl8Y3vxl48EFgdLR+51EDqDhrQsKZtkZSzgiCIBYndqMOFoMWoz7lxZAvor5bo2gDHK9SELU3HIfDpIdWU1yVarEaKlLvRnzRgjb6gk6HCToNm+fY6I0Uz2EjiHohmdjMdxiVy7Pnpus3b5bLLbcAqRTws5/V+0yqChVnTUgoTsoZQRDEYoYxhq4y7fT90SRMeg2MOvU2+IRyVi1TEG9YnipVaXE26osUtdEHpKyzbpdpXpuYN5yAk5QzogGRlLMIOOeKnzvsjWDEF63vvJlg3Tpgx44F39pIxVkTEo6RckYQBLHY6XKaMFKGA5s/klC1pRGQcs4AYNxfrbbGeMl5M0DKOiu3OIsmUpgOJ0oqZwDQ57LMb2sMx6mtkWhIel1mRBPpbCSFEuoWPl2IW28F9u0D9u+v95lUDSrOmhChnNlIOSMIgli0SMqZ8mLIH02oagYCSKYDDpMOE8HqKWcuOcqZzYBIIoVIXHn+m1AhS82cAfmDqCV1j9oaicajkqyzZ896YdJrsK4e4dP5eMMbAJ0O+PGP630mVYOKsyZkZuaMijOCIIjFSqdTamtMp5W1KvkjSVVt9AUdDlNVlTM5hc9M1pny85CTcSboc1sw5o8hlpSux5F4CrFkWpa6RxC1JmunX4Zj47PnprG51wW9tkFKhrY24PrrgZ/8BEgm6302VaFBvtOEEkKxJPRaVp+UdoIgCKIh6HKYkExzxe6E1VDOAKDDbqy7ciYKuOmQ8vYtkXFWauYMyM06k54zY/VPbY1E41FucRZNpHBw2IetS11VOKsy+fznga1bJcfGhx+Wbtu1S7p9gUCr+wbh3GQYDx8ek/XYcDxFqhlBEMQiR7TfKTUFqcbMGSDNnVXDrTGRSiMYS8pTzmzlK2ciM05JcSZaG0VxRjNnRCPisuhhMWgVtzUeHPYhkeL1zTeby44dwNe/DthskjHIrl3ATTdJty8QqDhrEP7t94fw7p88g0QqXfKxoVgSVjIDIQiCWNSIIkIoPnLxR5Oq2ugLOuxGTARiZTnCFcObMTGQNXNmlYxJyjEFGfVFYTfqZM1z987JOvNlz5HaGonGgzGGHpcZwwqVs2fPegHUOXx6Ljt3AvfeK7U03nsvcOON0v937qz3makGFWcNgC+cwF+PjSOR4jjjCZV8fDiegoXMQAiCIBY1wlVwVIFyxjmvqnIWTaQRiKk7B+LNtgzKcGvMzJyVU5yNyLDRF3Q5TNBqWFaJmFZQQBJEPejN2Okr4dlz0+hvMWfdWBuGnTsltSyZBK66akEVZgAVZw3BHw+OIJGSdhqPjQVLPj5IyhlBEMSip81mhFbDFClnkUQKyTSHsyozZ1JhI8cURIm6JgofOS2DDpMOOg0rWzmTW5zptBp0O0152hpJOSMakx6FxRnnHM+cnW4s1UywaxfwwAOAyQT8/vfS1wsIKs4agPufH0avywwNA46NBUo+PhxP0swZQRDEIkerYWi3GRUpZ76IVOhUwxBE7K6XCqIOxZK44vO78OMnz8g6rldB4cMYg7vMIOpRfxRdMmz0BZKdfqatMfN9rUbRSxBq0Oc2YyoUlx0zMeSNYDwQa7ziTMyY3Xuv9H+DQfr/AirQqDirM+OBKJ48OYnXbOvFkhYLjo+XLs5CsRSsRlLOCIIgFjvCTl8u/ojUcliNtsYOEURdwhTknt1nMTgdwV+PTcg6rpKZM0Cy01fqYJlIpTEeiMkKoBb0uWeCqKdDcZj1Wpj0dG0mGhOljo3PnvMCaKDwacHevTMzZq98JRAIAJ/4hHT7AoHklzrzf/tHkObAK8/vwZHRgKy2RlLOCIIgCADochhxaqL0rLLAHxXKWTUMQaTCpphyFk2k8J1HTwMADgz5ZB13WsHMGSDNnU0rLM4kIxOgS0bGmaDPbcZYIIpYMoXpcIKcGomGpscl4h8iOK/DVvLxz56dhlmvxdoue7VPTRkf/vDMv1/6Ukk5GxgAvvSl+p2TypByVmfuf34Y67odWNVpx+pOG854Qognizs2huIpWMkQhCAIYtHT5TApamv0i7bGKihnDrMOBp2maHF239MDmAjE8JL1nRjzx2SpftPhBPRaJnvWupy2xpkAavnKWa/LDM6BEW8UvkicnBqJhkY4jMpVzp47N43NfU7oGiV8Oh92O3DN/2/v/qOjvO47j7/vjDRIGv0YSaCRkAQYJBlDhDB27DjGP3Da2nVj0R+pE8frpql30yTO6ea03jStm6Sn3f1j4ybn7K7d+HSz3U1P0sRuGwdcO02dhiRgx9guBoQNRvgXCBAg0O+RNCPN3T+eGSHEjDQz0jDPaD6vc3QknnkezdV8gUffud/7vR+CHTtgkbvE5pKLX/Gl7/j5EK8dH6CzYyUAbcEKJqOWd+bp2BhSQxAREcGZ6Rken2Q0xQ6JF2fOFj85M8ZZA5csOYtMRXniZ2+zZVWAT926FoCunvlnzwZCTuJjjElpHJmUNcaTxGBaa87KAOeX3f5QhGq/Zs7EvYIVyy7pMDoXZ/PpIba4raQxkc5OeOstOHw41yNZNErOcuiZg6cAuKejAYDWOmfqeK6mINGoJRRRK30REYH6KmedV6qzZxfXnGXnHuJsRJ04OfvBayc5OTDG5+5oYePKSjwmtdLGgTRLBmv8PgbHIintGxqXyczZzI2o+0NhAqWaORP3KvJ6qK8sSWmvs66Tg0xGXbb5dDL33ON83rkzt+NYRErOcmjn/lNct7p6+t23tSv8eAx0z5GcjU9OYS2aORMRkemZnjMpttOPlzVWZKGsES5uRD3bVNTy1z99iw0NlWy7uo4yXxEtdeUpJWf9ofRKBuN7ncUbiaSid3CMZUWetPYpa6hy9jrr6R9jIBTRHmfieo2BUt44PcTE5NwdG/e91w/AtasCV2BUC9TYCNdf75Q2LhFKznLkzd5h3jwzPF3SCFBS7GVNrX/OpiCjE84/KM2ciYhIvPV7yjNn4xFKi734irJz+3dmzi4fy3Ndp3mnb5TP3dEyXZ7Y3hjgYM/gvHueDYQiBNIow8xkI+rTsT3OUi2dhIszEccvhBgIhbXHmbjeb2xp5EjvMPf/772cH0m+NnTf8X5W15axvNxlm08n09kJe/dCb2+uR7IolJzlyM4DJ/EYuLu94ZLjrcFyjs7RTj8UdkpSNHMmIiLxTZPTKWvM5l5cdRUl9IcilzS2stby+K5jrFvh566N9dPH2xsr6RuZ4Mw8m1b3p5n4xJOz86Pzb4YddybNPc7imqpLOXJ6mKhNvdW/SK7cd8Mq/td919J1cpDtj7/Am72X/77pbD49kB8ljXHbtzsNQZ59NtcjWRRKznLAWsszB05zc8vy6U0749qCFbzbN8p4JPGU80hs0bda6YuISJmviIqSopTLGgfHIllpox8Xv6f1zXhX/t8On+VI7zAPbWvB47k4M9XeFADgYM9A0u9nrXVmztJotlHrd8aQ7sxZOuvN4hqrSzl2zql2UbdGyQf3dKzkyd+/iYnJKL/1jRfZdeTsJY/39I/RNzLBlnwoaYxrb4fVq5dMaaOSM5i39nax7T8xwPELIe6ZUdIY1xasIGpJum9NKLazuzahFhERcNY+pVPWmI02+nEXN6J2kjNrLY/tOkZzTeklZfwAGxoq8XrMnOvOxiJThKeiac2cxbsmprrXWTRqnZmzNPY4i2uqLmMq6pRlap8zyRebmwPs/NzNrK4t48FvvcI3d789XV6877iz3iwvOjXGGeOUNj7/PIRCuR7NghV8cvYfvrmXz3573xV9zp0HTuHzerhzRnlHXFvQ6djYnaS0cVQzZyIiMkOwsoTeVBuCjEey0kY/rq7SSc7iTUFeOHae/ScG+PRt6y7bL6nU56V1nqYg/bGmHukkPvFELtV2+hdCYSJTlvrK9NfXxDs2gsoaJb80VJXyD5++iV/eEOS/PnuYP326i/BklH3v9VPm83J10GWbT89n+3YYH4cf/zjXI1mwgk/O6qtK2H9iYN4FyYtlKmr554Onuf3qFQnr/q9a7qfIY5K209fMmYiIzJTORtRDY5NZa6MPF8sa401BHtvVTbByGR+5rinh+e2NVXTN0RQkPvtVlUab+mKvh6rS4pTLGuOJbWYzZzOTM5U1Sn4p8xXxjfuv47O3r+O7L5/gd/52Ly++dZ6OpoC7N59O5NZboapqSZQ25tkrv/g6mgOcHw3Tk8KmfIth79vnOTc8Qefmy0saAXxFHtYsT96xMT5z5tfMmYiI4LzJeG54gskU9vXK9sxZvLvbueEJ/v29C7z09gU+des6lhUlfkNxU1MV50fD0/uMzTaQwcwZOBtRp5qcZbLHWVxzbCscQN0aJS95PIYv3LWer9/bwb73Bug+O8KW1YFcDyt9xcVw993wzDMwdWWXKy22gk/ONscWJB+YY0HyYtp54BR+n5cPrQ8mPactWJ50r7OLM2dKzkRExClrjFroG5k7GbHWMjSW3TVnxV4PNX4fZ4cneOwnx6jx+7jvhuak57+vsQqAgz2JSxsHxpyfqdqfXuJTnUZy1jvovDmbSXJWX1VCvMdJNrtgimTbb25p4u//041sWRXgw5sSTyC4XmcnnDvntNXPYwWfnK1vqMBX5GH/8YGsP1d4MsoPD/XyyxuClM7RCr+1roL3LoQSdmwcDcfXnKmsUUREUt/rbDQ8RdSS1W6N4DQFefFYH7vePMeDW6+ac430NQ2VFHkMXScHEj4eX3OW7nqumnSSs6FxvB5DbQZ7OhXH9jqrLCnC60l9jzQRN7p+TQ3f/+zNXNNQmeuhZOauu6CoCHbuzPVIFqTgk7Nir4f3ray8IjNnPz96jsGxCNs3N855XluwAmvh2NnLSxtDE1N4PYZlWdpAVERE8sv0XmfzNAUZGnMSnWzOnIGz7uzd8yEqSop44KbVc55bUuylLVhB18mhhI8PxBKsQBprzsApa0y1IcjpwXGCFcsyTq6aqsvSntkTkSwIBOD225WcLQUdzQG6Tg6mVK+/EDsPnKK6rJitrcvnPK8tWA4k7tg4Gp6kzOfFGL1DJyIiF5OzM/PMnMVLB2uynEjEm4L87gfXpJQIOk1BEjfm6g9F8Pu8+NJ8Q7La76N/NJxSs6/ewfHp1zATH31/M/fdsCrj60VkEXV2wuHD0N2d65FkTMkZzn4P45EobyZZ57UYQuFJnn/jDL/a3kDxPB1w1iz3U+w1CZuChCam1AxERESm1ZT5KPaapE01AAZDEb6y8xBXByu47eoVWR3P2uV+KkqK+OTNV6V0fntTFf2hSMLGXAOhcEZdEGv9PiajlqHxyXnP7R0cpyGDTo1xv3VdE5++bV3G14vIIursdD7n8eyZkjOc5AzgwInke60s1I8Pn2UsMnXZJpyJFHs9XLXcn7ApyGh4kjK10RcRkRiPx1BXUTLnzNmfP/M650fCfO3ejqSdExfLp25dx08fvj3lGbr2WFOQQwn2OxsYi0xvKp2O+HPPt+7MWkvv0DjBysxnzkTERVavho4OJWf5blVNGdVlxRw4MZC159i5/xT1lSXcsKYmpfNbgxUJZ85GJyY1cyYiIpeor0q+EfWPXu/l6ddO8tC2lunuiNnkK/Kk1VxjfUMFxV7DwQTJWX8onFGL+lSTs6HxSULhqYw6NYqIS3V2wp490NeX65FkRMkZYIyhoznA/iwlZ0PjEX529Cwf3tSAJ8UFx211FZzoDzEWvrRj42h4Sp0aRUTkEvWViWfOLoyGeeTpLjY0VPLQtpYcjGx+y4q8XF1fQVeCdvoDoUhGLepTTc4ubkCt5ExkyejshGgUnnsu1yPJyLzJmTGm2Rizyxhz2BjzujHmP8eOP2qMOWKMOWiMedoYE8j6aLOooynA0bPDjEzMX5+erheP9RGZsvzKxvqUr2kLlifs2BgKT2qPMxERuUR9VQm9Q+OXNcD40o5DDI5F+PpHO9JuqnEltTdW0XVy8LLxL3zmbGLO807H9jhTciayhFx3HaxcCTt25HokGUnlf+pJ4I+stdcAHwAeMsZsAJ4H3met3QQcBf4ke8PMvs3NAaxNXPO+ULu7+/D7vFy7KpDyNa3BCgCOzlp3FprQzJmIiFyqvrKEUHiK4RlvMP7zwVM8e/A0n/+lNtbXu3vfovbGAINjEU5cuNgUZCpqGRyLUJ3mHmcAtX6nrHK+dvrx2cZ6rTkTWToefdRJ0H70IxiPVRTs2gVf/Wpux5WieZMza+1pa+2+2NfDwGGg0Vr7r9ba+F3gJaApe8PMvo5YU5BslDbuOdbHTetq5+3SONOa2jJ8Xg9HZ7XTHw1rzZmIiFwqOGuvs3PDE3zpB4foaKri929dm8uhpWRTk7MW7uCMzaiHxyNYS0bdGkt9XkqLvfTPk5zFO1yqIYjIEvL+98PPfgajo05StmsX3HuvczwPpFXjYIxZA1wL7J310O8BP1ykMeVEjd/HqpqyRW8KcuJCiPfOh9jaMvfeZrMVeT2sXeGne1ZTkNDElMoaRUTkEvGZn95Bp7Txkae7GA1P8bV7OyhK443BXGkLVuDzeuiaUb3SH3I2zc6kWyM49/X5Zs56B8dZXr7M1SWfIpKmbdvgqaecr//sz5zE7KmnnON5IOX/jYwx5cA/AZ+31g7NOP4ITunjd5Jc9yljzKvGmFfPnTu30PFm1ebmwKInZ7u7nU4xW1vT31fG6dh4cebMWuvMnKmVvoiIzDCdnA2N84P9J/nXN87w8K+00VJXkeORpcZX5GF9w6VNQfpDTmIVKM1s0+wav2/OhiBTUcvbfaPUV6XeWVJE8sSddzrJ2L598JnP5E1iBikmZ8aYYpzE7DvW2u/POP4J4MPA/Xb2Kt4Ya+3fWGuvt9Zev2JFdje+XKiO5gCnBsc5O8deMena3X2OhqoS1q3wp31tW105Pf1jjMbWEExMRolaKFNZo4iIzFBX6SQYB3sG+MqO17ludTUPbnV/OeNMs5uCDMSTswzWnMHcydmr715g++N7ePmdC9y0tjazAYuIe+3aBV1d8KUvwTe+4fw5T6TSrdEA/wc4bK39+ozjdwF/DHRaa0PZG+KVs7nZqXlfrHVnU1HLi2+dZ2vLcpyXMT3xpiDxjo3xJE0zZyIiMlNJsZcav49vv3Sc8FSURz+yCW+KW7e4RXtjFcPjk7x33vmVYiBe1pjBmjNInJz1Do7z+e+9xkee+AV9w2H+x8c286d3X7OwgYuIu8TXmD31FPzFXzif7703bxK0VGbObgYeAO4wxuyPfdwNPAZUAM/Hjj2RzYFeCRtXVlHkMRzoGViU79d1cpDBsQi3tGU2Y9gWLAcudmwMxfY808yZiIjMFm9q8YU717N2RXmOR5O+9ummIE5pY/8iJmfjkSke+0k32/7qpzx3qJfPbWvhJw/fxvbNjRm9eSoiLvbKK5euMYuvQXvlldyOK0Xz/pZvrd0DJPqfKz93dptDSbGX9Q0VizZztqfbWWN387rMSiZW1/rxFXnojs+chWMzZ2qlLyIis9x4VQ0rq0r43Q+uyfVQMtIWrMBX5KGrZ4DOjpUMhMJ4DFSUZPaGZI3fRyg8xc4Dp3j0R0c4cWGMOzcGeeTuDayqLVvk0YuIa3zhC5cf27Ytb9adaQpmlo6mADv3nyIatXgWWBLy8+4+Nq6spLY8s8XGXo9h3Yry6ZmzeFljmbo1iojILH/euTHXQ1iQYq+Haxoqpzs29ofCVJUWZ3wvro1tRP0H332NtmA5337wRra2ptc5WUTkSlPv2Fk2NwcYnpjk7b6R+U+ew+jEJK8d71/wjaAtWD7dTn90wilr1MyZiIgsRZsaqzh0coho1NIfimRc0giwZXU1rXXlfOWeDTz7B7coMRORvKDkbJbN05tRD8594jz2vnOeyJTllpaFdahsC1ZwcmCMkYlJQrGyRq05ExGRpai9qYqRiUnePT/KYCiScadGcO6fz//hbXzy5qsozoO93kREQMnZZdauKKd8WdGC9zvb3d3HsiIP16+pXtD3aa1zFnV3nxm+OHOmbo0iIrIEtTc6TUG6Tg7SHwovaOZMRCQfKTmbxesxbGqqWnBTkD3dfdxwVQ0lxQtLpNpi7fS7z4xMz5z5teZMRESWoNa6cpYVeTjYM8hAKEJAyZmIFBglZwl0NAc4fHqI8chURtefHhyj++wItyxCfXtzTRnLijwcPTPMaDi+5kzJmYiILD1FXg8bV1ZOz5wtpKxRRCQfKTlLoKMpwGTU8sbpoYyu39PdB8DWBa43A2cmr6WunKNnRwhNTGIMlBQrbCIisjS1N1bR1TNIKDxFtZIzESkw+i0/gWtXBQDYf3wgo+v3HOtjebmP9fUVizKetmAFR3udmTO/r0gbZoqIyJLV3hRgLFa5orJGESk0Ss4SCFaWUF9ZwoGegbSvjUYtLxzrY2vL8gXvkxbXGiynd2ic3sFxytRGX0RElrB4UxBADUFEpOAoOUuio7kqo46NR3qH6RsJs7V14SWNcW11zgzc/hMDagYiIiJL2roVfkpjzbS05kxECo2SsyQ2N1fz7vkQ/aPhtK7b3X0OgK0ti7fZZbxj48mBMc2ciYjIkhZvCgJKzkSk8Cg5S6Kj2SmrSLe0cc+xPlrryqmvKlm0sTRVl06/i6hOjSIistS9L1baqLJGESk0Ss6SaG+swhg4cGIw5WvGI1O8/M4Fti5CC/2ZPLGOjQBl2oBaRESWuF+/tpG7NtZTV7Es10MREbmilJwlUVFSTGtdOftP9Kd8zavv9jMxGeXWRVxvFtcadJIzzZyJiMhSt7k5wBMPXEeRV7+miEhh0f96c+hoCnCgZxBrbUrn7+4+R7HXcOPamkUfS3zdmdaciYiIiIgsTUrO5rB5VYALo2F6+sdSOn93dx9bVlVTloXZrbb4zJm6NYqIiIiILElKzubQ0RQA4LUUWur3jUzwxukhblnk9WZxrbF2+n6tORMRERERWZKUnM3h6voKlhV5Utrv7IVjfQCLur/ZTI2BUn5tUwMfXJed5E9ERERERHJLNXJzKPZ6aG9MbTPqPd19VJUW0x5r/7vYPB7D4x/fkpXvLSIiIiIiuaeZs3l0NAfoOjlIZCqa9BxrLbu7+7i5pRavx1zB0YmIiIiIyFKh5GweHc0BJiajfHnH6zz5ynH+/b1+Bscil5zz1rkReofG2dqSnZJGERERERFZ+lTWOI+tLcvpaA7w/X09fPfl49PH6yqW0VJXTmtdORdCTrKWrWYgIiIiIiKy9Ck5m0eN38eOh25mKmrp6Q9x7OwI3WdHpj//076TjExM0hYsp7mmLNfDFRERERGRPKXkLEVej2F1rZ/VtX4+dE1w+ri1lt6hccqK9VKKiIiIiEjmlFEskDGGhqrSXA9DRERERETynBqCiIiIiIiIuICSMxERERERERdQciYiIiIiIuICSs5ERERERERcQMmZiIiIiIiICyg5ExERERERcQElZyIiIiIiIi6g5ExERERERMQFlJyJiIiIiIi4gJIzERERERERFzDW2iv3ZMacA967Yk+YuuVAX64HIQkpNu6kuLiXYuNOiot7KTbupdi4k+KycKuttSsSPXBFkzO3Msa8aq29PtfjkMspNu6kuLiXYuNOiot7KTbupdi4k+KSXSprFBERERERcQElZyIiIiIiIi6g5MzxN7kegCSl2LiT4uJeio07KS7updi4l2LjTopLFmnNmYiIiIiIiAto5kxERERERMQF8io5M8bcZYx50xhzzBjzxRnHnzTG7I99vGuM2Z/k+hpjzPPGmO7Y5+rY8ftnXL/fGBM1xmxOcP13Ys9/yBjzt8aY4thxY4z5n7FxHTTGbMnOK+BeLo7NemPML4wxE8aYh7Pz07ubi2Nzf+zfy0FjzIvGmI7svALu5OK4bI/FZL8x5lVjzNbsvALulcXYFBtjvmWM6TLGHDbG/EmS668yxuyNXf+kMcYXO17Q9xoXx0X3GffGpqDvM+Dq2BT8vSYpa21efABe4C1gLeADDgAbEpz3NeDLSb7HV4Evxr7+IvDfE5zTDryd5Pq7ARP7+C7wmRnHfxg7/gFgb65fL8VmOjZ1wPuB/wY8nOvXSrG5JDYfBKpjX/9qIf27cXlcyrlY8r4JOJLr12upxAb4OPC92NdlwLvAmgTXPwV8LPb1E7rXuD4uus+4NzYFe5/Jg9gU9L1mro98mjm7AThmrX3bWhsGvgdsn3mCMcYA9+L8opHIduBbsa+/Bfx6gnPuS3a9tfY5GwO8DDTN+L5/F3voJSBgjGlI+SfLf66NjbX2rLX2FSCS1k+0dLg5Ni9aa/tjp73ExX9PhcDNcRmJHQPwA4W2MDmbsbGA3xhTBJQCYWAowfe+A/jHBNcX8r3GtXHRfcbVsSnk+wy4OzaFfq9JKp+Ss0bgxIw/98SOzXQLcMZa253kewSttacBYp/rEpzzUZL/BQWcqVzgAeBf0hjbUubm2BS6fInNgzgzAoXC1XExxvyGMeYI8Czwe3NdvwRlMzb/CIwCp4HjwF9Zay/MurYWGLDWTiZ4/kK+17g5LoUuX2JTaPcZcHlsCvxek1Q+JWcmwbHZWXbSd4lTegJjbgRC1tpD85z618DPrbW70xjbUubm2BQ618fGGLMN56b5x5mOIQ+5Oi7W2qettetx3uH8y0zHkKeyGZsbgClgJXAV8EfGmLVpPH8h32vcHJdC5/rYFOh9BlwemwK/1ySVT8lZD9A8489NwKn4H2LTqr8JPDnj2P+NLTR8LnboTLwEJPb57Kzn+Bjzv8v8FWAF8Iepjq0AuDk2hc7VsTHGbAK+CWy31p5P4+fKd66OS5y19ufAOmPM8lR+qCUim7H5OPAv1tqItfYs8AJw/azn78MpVyxK8PyFfK9xc1wKnatjU8D3GXB5bOIK9F6TVD4lZ68ArbGuLz6cXzx2znj8l3AWE/bED1hrP2mt3WytvTt2aCfwidjXnwB2xM81xniA38apx03IGPMfgTuB+6y10RkP7QR+xzg+AAzGp4ALhJtjU+hcGxtjzCrg+8AD1tqjC/gZ85Gb49ISWyeAcboB+oBC+oUmm7E5DtwRu1f4cZp6HJn55LE1GLuAjyS4vpDvNW6OS6FzbWwK/D4D7o5Nod9rkrMu6EqS6gdOp6qjOJ1nHpn12P8DPj3P9bXAvwHdsc81Mx67HXhpnusnY8+9P/bx5dhxAzwee6wLuD7Xr5ViMx2bepx3joaAgdjXlbl+vRQbC847mf0zjr+a69dKcbHglP28Hjv2C2Brrl+rpRIbnO5k/xB7fd8A/kuS69fiNGk5Fjt/Wex4Qd9rXBwX3WfcG5uCvs+4PDYFf69J9hFvYSkiIiIiIiI5lE9ljSIiIiIiIkuWkjMREREREREXUHImIiIiIiLiAkrOREREREREXEDJmYiIiIiIiAsoORMREREREXEBJWciIiIiIiIuoORMRERERETEBf4/wRS14cI4FgcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACk+klEQVR4nOzdd3xb9bk/8M9XW7IlWd57JLHj7J0QKJCQtqz20kKBtpTRlkKhtND2lo5bftDb0sFtGV2M0l06mB2UtqywITtk2bGTeO8hydrz+/vj6MiyI8saR5ZkP+/XixeJJMvHI9J5zrMY5xyEEEIIIYQQQjJLlukDIIQQQgghhBBCwRkhhBBCCCGEZAUKzgghhBBCCCEkC1BwRgghhBBCCCFZgIIzQgghhBBCCMkCFJwRQgghhBBCSBag4IwQQgghhBBCsgAFZ4QQkqMYY/aI/4KMMVfE36/K9PElgzHWyRh7b6aPIxbG2CuMsevT9NxNjLG/McZGGGPjjLH/MMaWRtx/HWMsMO1nvy3i/nrG2HOMMTNjbJAx9lPGmCLi/h2MsVbGmJMxtpMxVhdxH2OM/YAxNhb67x7GGEvH10kIISQ6Cs4IISRHcc7zxf8AdAP4YMRtj2X6+KaLDBJy+XOkWQGAvwNYCqAMwG4Af5v2mLcjf/ac81ci7vs5gGEAFQDWAjgXwM0AwBgrBvA0gDsAFALYC+AvER97A4APAVgDYDWADwC4UbKvjBBCyKwoOCOEkHmGMSZjjH2NMXYylAF5nDFWGLqvnjHGGWOfZIz1hDIsn2WMbWKMHWKMWRhjP414rusYY28yxn7CGLOGsi47Iu43MsZ+yRgbYIz1Mca+wxiTT/vY+xhj4wDuYowtZoy9HDquUcbYY4yxgtDjfw+gFsA/Qhmh2xlj2xhjvdO+vnB2jTF2F2PsScbYHxhjEwCum+WYljDGXg19LaOMscjgJPJzaELPORb6nuxhjJUxxu4GcDaAn4aO8aehxzczxl4IZbuOM8auiHiu3zDGHgrdbwt9/rpon5dzvptz/kvO+Tjn3AfgPgBLGWNFcf74GwA8zjl3c84HAfwbwIrQfZcCOMo5f4Jz7gZwF4A1jLHm0P3XAvgR57yXc94H4EcArovz8xJCCJEABWeEEDL/fAFCBuRcAJUAzAB+Nu0xWwA0ArgSwP0A/gfAeyGcyF/BGDt32mNPASgGcCeAp8VgD8BvAfgBLAGwDsD7AVwf5WNLAdwNgAH4Xui4lgGogRAkgHN+NaZmAO+J8+u9BMCTELJOj81yTN8G8DwAE4BqAD+Z4TmvBWAMHV8RgM8CcHHO/wfA6wBuCR3jLYyxPAAvAPhj6Ov8GICfM8ZWRDzfVaHPXQzgYOg443EOgEHO+VjEbetCgWUbY+yOadnCBwB8lDGmY4xVAbgQQoAGCD/bd8UHcs4dAE5iMnibcn/oz5FfAyGEkDSj4IwQQuafGwH8TygD4oEQ/Hxk2kn8t0PZlecBOAD8iXM+HMqYvA4hqBENA7ifc+7jnP8FwHEAFzPGyiCc/N/GOXdwzochZHo+GvGx/Zzzn3DO/ZxzF+f8BOf8Bc65h3M+AuBeCEFkKt7mnP+Vcx4EYJjlmHwA6gBUhr7+N2Z4Th+EoGwJ5zzAOd/HOZ+Y4bEfANDJOf916OvcD+ApAB+JeMw/OeevhX4e/wNgK2OsJtYXxRirhhBUfyni5tcArIQQBF4GIRD8SsT9r0IIqCYA9EIoXfxr6L58ANZpn8YKQD/D/VYA+dR3Rgghc4eCM0IImX/qADwTKsezAGgBEIDQwyQaivizK8rf8yP+3sc55xF/74KQ+aoDoAQwEPG5HoYQOIh6Ig+MMVbKGPtzqNxwAsAfIGSTUhH5OWY7ptshZO92M8aOMsY+NcNz/h7AfwD8mTHWHxqOoZzhsXUAtoifL/Q5rwJQHu0YOed2AOMQvodRMcZKIGT4fs45/1PEx57inHdwzoOc88MA/hehIJAxJgsd89MA8iB8X00AfhD6cDuE4DWSAYBthvsNAOzTfvaEEELSiIIzQgiZf3oAXMg5L4j4TxPKiiWjalr2pBZAf+jzeAAUR3weA+c8shRu+on990K3reacGwB8AkKwNNPjHQB04l9CvWMl0x4T+TExj4lzPsg5/wznvBJChvHnjLEl07/gUJbwW5zz5QDOhJAdu2aGY+wB8Oq073c+5/ymiMeEs2SMsXwIAzn6p3/e0P0mCIHZ3znnd0d7zLSvXfz+FYY+z09DmckxAL8GcFHo/qMQhn2InycPwOLQ7afdH/rzURBCCJkzFJwRQsj88xCAu8WhE4yxEsbYJSk8XymALzDGlIyxyyH0ij3HOR+AEET8iDFmYMIgksXT+tWm00PI0FhCPVFfmXb/EIBFEX9vA6BhjF0cylx9E4B6pief7ZgYY5eHygUBoRePQ8gqTsEY284YWxUKBicglDmKj5t+jM8CaGKMXR36HimZMGBlWcRjLmKMvYcxpoLQe7aLcz4lqxj6vAYI2a83Oedfi3L/haFyUoQGedyB0DRHzvkogA4ANzHGFKFBK9diso/sGQArGWOXMcY0AP4fgEOc89bQ/b8D8CXGWBVjrBLAlwH85rRvMiGEkLSh4IwQQuafByCMY3+eMWYD8A6EwRzJ2gVheMgohKEeH4kYUHENABWAYxCCnSchjHGfybcArIfQz/RPCCV4kb4H4Juh8sD/5pxbIYyCfxRAH4RMWi9ii3VMmwDsYozZIXyPbuWcd0R5jvLQx01AKAt9FUIJJiB8fz/ChEmXP+ac2yAMHfkohGzYIIRSwsgg8o8QhqmMA9gAoewxmg+HjvGTbOous9rQ/TsAHGKMOQA8B+H7992Ij78UwAUARgCcgDAY5YsAEOrxuwzCz9AM4Xcisj/wYQD/AHAYwBEIP5+HZzhOQgghacColJwQQshMGGPXAbiec/6eTB9LrmKM/QZAL+f8m5k+FkIIIdmNMmeEEEIIIYQQkgUoOCOEEEIIIYSQLEBljYQQQgghhBCSBShzRgghhBBCCCFZgIIzQgghhBBCCMkCirn8ZMXFxby+vn4uPyUhhBBCCCGEZI19+/aNcs5Lot03p8FZfX099u7dO5efkhBCCCGEEEKyBmOsa6b7qKyREEIIIYQQQrIABWeEEEIIIYQQkgUoOCOEEEIIIYSQLDCnPWfR+Hw+9Pb2wu12Z/pQyDyj0WhQXV0NpVKZ6UMhhBBCCCFkVhkPznp7e6HX61FfXw/GWKYPh8wTnHOMjY2ht7cXDQ0NmT4cQgghhBBCZpXxska3242ioiIKzIikGGMoKiqijCwhhBBCCMkZGQ/OAFBgRtKCfq8IIYQQQkguyYrgLNPuvvturFixAqtXr8batWuxa9cuAMD111+PY8eOSfI56uvrMTo6GvMx3/3udxN+3t/85je45ZZbptz261//GmvXrsXatWuhUqmwatUqrF27Fl/72tcSfv65cP/998PpdGb6MAghhBBCCMmojPecZdrbb7+NZ599Fvv374darcbo6Ci8Xi8A4NFHH53TY/nud7+Lb3zjGyk/zyc/+Ul88pOfBCAEhTt37kRxcXHKz5sszjk455DJol8LuP/++/GJT3wCOp0u7uf0+/1QKBb8ry8hhBBCCJlHFnzmbGBgAMXFxVCr1QCA4uJiVFZWAgC2bduGvXv3AgDy8/Px1a9+FRs2bMB73/te7N69G9u2bcOiRYvw97//HcDpWawPfOADeOWVV077nB/60IewYcMGrFixAo888ggA4Gtf+xpcLhfWrl2Lq666CgDwhz/8AZs3b8batWtx4403IhAIABAyY01NTTj33HPx5ptvxv21/t///R82bdqE1atX48477wQAdHZ2orm5Gddffz1WrlyJq666Ci+++CLOOussNDY2Yvfu3QCAu+66C1dffTXOO+88NDY24he/+MWsz7ts2TLcfPPNWL9+PXp6enDTTTdh48aNWLFiRfhxP/7xj9Hf34/t27dj+/bt4e+16Mknn8R1110HALjuuuvwpS99Cdu3b8dXv/pVnDx5EhdccAE2bNiAs88+G62trXF/LwghhBBCyNxzePz4zZsdGLC6Mn0oWWnBB2fvf//70dPTg6amJtx888149dVXoz7O4XBg27Zt2LdvH/R6Pb75zW/ihRdewDPPPIP/9//+X0Kf81e/+hX27duHvXv34sc//jHGxsbw/e9/H1qtFgcPHsRjjz2GlpYW/OUvf8Gbb76JgwcPQi6X47HHHsPAwADuvPNOvPnmm3jhhRfiLrt8/vnn0d7ejt27d+PgwYPYt28fXnvtNQDAiRMncOutt+LQoUNobW3FH//4R7zxxhv44Q9/OKXU8tChQ/jnP/+Jt99+G//7v/+L/v7+mM97/PhxXHPNNThw4ADq6upw9913Y+/evTh06BBeffVVHDp0CF/4whdQWVmJnTt3YufOnbN+HW1tbXjxxRfxox/9CDfccAN+8pOfYN++ffjhD3+Im2++OaGfAyGEEEIImVsHui246x/H0DZkz/ShZKWsqgv71j+O4lj/hKTPubzSgDs/uGLG+/Pz87Fv3z68/vrr2LlzJ6688kp8//vfD2drRCqVChdccAEAYNWqVVCr1VAqlVi1ahU6OzsTOqYf//jHeOaZZwAAPT09aG9vR1FR0ZTHvPTSS9i3bx82bdoEAHC5XCgtLcWuXbuwbds2lJSUAACuvPJKtLW1zfo5n3/+eTz//PNYt24dAMBut6O9vR21tbVoaGjAqlWrAAArVqzAjh07wBg77Wu75JJLoNVqodVqsX37duzevRtvvPHGjM9bV1eHM844I/zxjz/+OB555BH4/X4MDAzg2LFjWL16dULfu8svvxxyuRx2ux1vvfUWLr/88vB9Ho8noecihBBCCCFza2/XOBgD1tUWZPpQslJWBWeZIpfLsW3bNmzbtg2rVq3Cb3/729OCM6VSGZ7+J5PJwmWQMpkMfr8fAKBQKBAMBsMfE22M+yuvvIIXX3wRb7/9NnQ6HbZt2xb1cZxzXHvttfje97435fa//vWvSU0h5Jzj61//Om688cYpt3d2doa/llhfG3D69EPGWMznzcvLC/+9o6MDP/zhD7Fnzx6YTCZcd911M465j/w80x8jPmcwGERBQQEOHjw425dOCCGEEEKyxL4uM5aW6WHQKDN9KFkpq4KzWBmudDl+/DhkMhkaGxsBAAcPHkRdXV1Sz1VfX4+f//znCAaD6OvrC/drRbJarTCZTNDpdGhtbcU777wTvk+pVMLn80GpVGLHjh245JJL8MUvfhGlpaUYHx+HzWbDli1bcOutt2JsbAwGgwFPPPEE1qxZM+uxnX/++bjjjjtw1VVXIT8/H319fVAqE/tH8be//Q1f//rX4XA48Morr4RLMeN53omJCeTl5cFoNGJoaAj/+te/sG3bNgCAXq+HzWYLDy0pKytDS0sLli5dimeeeQZ6vf605zMYDGhoaMATTzyByy+/HJxzHDp0KK7vBSGEEEIImXuBIMeBbgsuWVuZ6UPJWrMGZ4yxGgC/A1AOIAjgEc75A4yxtQAeAqAB4AdwM+f89Ggky9ntdnz+85+HxWKBQqHAkiVLwkM6EnXWWWeFSwRXrlyJ9evXn/aYCy64AA899BBWr16NpUuXTin7u+GGG7B69WqsX78ejz32GL7zne/g/e9/P4LBIJRKJX72s5/hjDPOwF133YWtW7eioqIC69evDw8KieX9738/WlpasHXrVgBCOecf/vAHyOXyuL++zZs34+KLL0Z3dzfuuOMOVFZWorKyMq7nXbNmDdatW4cVK1Zg0aJFOOuss6Z83RdeeCEqKiqwc+dOfP/738cHPvAB1NTUYOXKlbDbo9ckP/bYY7jpppvwne98Bz6fDx/96EcpOCOEEEIIyVLHB22we/zYWG/K9KFkLcY5j/0AxioAVHDO9zPG9AD2AfgQgPsB3Mc5/xdj7CIAt3POt8V6ro0bN3Jx+qGopaUFy5YtS/oLIHPjrrvuQn5+Pv77v/8704eSEPr9IoQQQgjJDr9/uxN3/O0oXvvKdtQWxb9Cab5hjO3jnG+Mdt+smTPO+QCAgdCfbYyxFgBVADgAQ+hhRgD90hwuIYQQQgghZL7Z22VGiV6NmkJtpg8layXUc8YYqwewDsAuALcB+A9j7IcQRvKfKfXBkexx1113ZfoQCCGEEEJIDtvXZcbGOlNSw+0Wirj3nDHG8gE8BeA2zvkEgJsAfJFzXgPgiwB+OcPH3cAY28sY2zsyMiLFMRNCCCGEEEJyyNCEG71mFzbUUb9ZLHEFZ4wxJYTA7DHO+dOhm68FIP75CQCbo30s5/wRzvlGzvlGcTcXIYQQQgghZOHY22kGAArOZjFrcMaEvOMvAbRwzu+NuKsfwLmhP58HoF36wyOEEEIIIYTkun1dZqgVMqyoNGb6ULJaPD1nZwG4GsBhxtjB0G3fAPAZAA8wxhQA3ABuSMsREkIIIYQQQnLavq5xrKkpgEoRd1fVgjTrd4dz/gbnnHHOV3PO14b+ey50+wbO+RrO+RbO+b65OOB0kMvlWLt2LVauXInLL78cTqcz6ee67rrr8OSTTwIArr/+ehw7dmzGx77yyit46623wn9/6KGH8Lvf/S7pzy3q7OzEypUrp9x211134Yc//GFCzyPV8RBCCCGEkIXL5Q3gaP8ENlJJ46wSmtY4X2m1Whw8eBAAcNVVV+Ghhx7Cl770pfD9gUAgoWXNokcffTTm/a+88gry8/Nx5pnCoMvPfvazCX+OdPH7/Vl1PIQQQgghJDcd7LHAH+TUbxaH3Mor3nMPsHPn1Nt27hRul8jZZ5+NEydO4JVXXsH27dvx8Y9/HKtWrUIgEMBXvvIVbNq0CatXr8bDDz8MAOCc45ZbbsHy5ctx8cUXY3h4OPxc27Ztg7h0+9///jfWr1+PNWvWYMeOHejs7MRDDz2E++67D2vXrsXrr78+Jbt18OBBnHHGGVi9ejU+/OEPw2w2h5/zq1/9KjZv3oympia8/vrrCX+NsZ77G9/4Bs4991w88MAD4ePp7+/H2rVrw//J5XJ0dXWhq6sLO3bswOrVq7Fjxw50d3cDELKHX/jCF3DmmWdi0aJF4UwiIYQQQghZePZ30zCQeOVWcLZpE3DFFZMB2s6dwt83bZLk6f1+P/71r39h1apVAIDdu3fj7rvvxrFjx/DLX/4SRqMRe/bswZ49e/CLX/wCHR0deOaZZ3D8+HEcPnwYv/jFL6aUKYpGRkbwmc98Bk899RTeffddPPHEE6ivr8dnP/tZfPGLX8TBgwdx9tlnT/mYa665Bj/4wQ9w6NAhrFq1Ct/61remHOfu3btx//33T7k90smTJ6cEVA899FBcz22xWPDqq6/iy1/+cvi2yspKHDx4EAcPHsRnPvMZXHbZZairq8Mtt9yCa665BocOHcJVV12FL3zhC+GPGRgYwBtvvIFnn30WX/va1xL8SRBCCCGEkPlib+c4lpTmo0CnyvShZL3sKmu87TYgVF44o8pK4PzzgYoKYGAAWLYM+Na3hP+iWbsWuP/+mE/pcrmwdu1aAELm7NOf/jTeeustbN68GQ0NDQCA559/HocOHQpngaxWK9rb2/Haa6/hYx/7GORyOSorK3Heeeed9vzvvPMOzjnnnPBzFRYWxjweq9UKi8WCc88VhmFee+21uPzyy8P3X3rppQCADRs2oLOzM+pzLF68OFyqCUwukZ7tua+88soZj+vNN9/Eo48+Gs7Wvf3223j6aWGbwtVXX43bb789/NgPfehDkMlkWL58OYaGhmJ+vYQQQgghZH4KBjn2dZlx0aqKTB9KTsiu4CweJpMQmHV3A7W1wt9TFNlzFikvLy/8Z845fvKTn+D888+f8pjnnntu1i3nnHNJN6Gr1WoAwiATv98v2fMCU7/mSAMDA/j0pz+Nv//978jPz4/6mMivUTxGQPj6CSGEEELIwnNixI4Jtx/rqaQxLtkVnM2S4QIwWcp4xx3Agw8Cd94JbN+e9kM7//zz8eCDD+K8886DUqlEW1sbqqqqcM455+Dhhx/GNddcg+HhYezcuRMf//jHp3zs1q1b8bnPfQ4dHR1oaGjA+Pg4CgsLodfrMTExcdrnMhqNMJlMeP3113H22Wfj97//fTjTlapkntvn8+GKK67AD37wAzQ1NYVvP/PMM/HnP/8ZV199NR577DG85z3vkeQYCSGEEELI/LCvS+g3o0mN8cmu4Gw2YmD2+ONCQLZ9+9S/p9H111+Pzs5OrF+/HpxzlJSU4K9//Ss+/OEP4+WXX8aqVavQ1NQUNdApKSnBI488gksvvRTBYBClpaV44YUX8MEPfhAf+chH8Le//Q0/+clPpnzMb3/7W3z2s5+F0+nEokWL8Otf/1qyryXR537rrbewZ88e3HnnnbjzzjsBCBnDH//4x/jUpz6F//u//0NJSYmkx0gIIYQQQnLf3k4zivJUaCiOXp1FpmJzWXK2ceNGLk4vFLW0tGDZsmXxPcE99wjDPyIDsZ07gT17gIh+J0JECf1+EUIIIYQQSW37v51oLNPjF9dszPShZA3G2D7OedRvSG5lzqIFYGIGjRBCCCGEEJI1Ru0edI458dHNtZk+lJyRW6P0CSGEEEIIITmB+s0SR8EZIYQQQgghRHL7usxQyWVYWWXM9KHkjKwIzmjUOkkH+r0ihBBCCMmcvZ3jWFllgEYpz/Sh5IyMB2cajQZjY2N0Ik0kxTnH2NgYNBpNpg+FEEIIIWTBcfsCONI3gY31hZk+lJyS8YEg1dXV6O3txcjISKYPhcwzGo0G1dXVmT4MQgghhJAF50ifFd5AEBuo3ywhGQ/OlEolGhoaMn0YhBBCCCGEEInsDQ0DoeAsMRkvaySEEEIIIYTML3s7zagv0qE4X53pQ8kpFJwRQgghhBBCJMM5x/5uMzbUUb9Zoig4I4QQQgghhEimY9SBcYcXG+uppDFRFJwRQgghhBBCJLOXlk8njYIzQgghhBBCiGT2dZph0CiwuCQ/04eScyg4I4QQQgghhEhmX7cZG+pMkMlYpg8l51BwRgghhBBCCJGExenFiWE7LZ9OEgVnhBBCCCGEEEnso/1mKaHgjBBCCCGEECKJfV1mKGQMa6oLMn0oOYmCM0IIIYQQQogk2oftWFSSB61KnulDyUkUnBFCCCGEEEIkYXX6UJinyvRh5CwKzgghhBBCCCGSMDu9KNBScJYsCs4IIYQQQgghkrC4fDDlKTN9GDlLMdsDGGM1AH4HoBxAEMAjnPMHGGN/AbA09LACABbO+do0HSchhBBCCCEki3HOYXX6YKTMWdJmDc4A+AF8mXO+nzGmB7CPMfYC5/xK8QGMsR8BsKbrIAkhhBBCCCHZzekNwBsIokBHmbNkzRqccc4HAAyE/mxjjLUAqAJwDAAYYwzAFQDOS+NxEkIIIYQQQrKYxeUDAJgoOEtaQj1njLF6AOsA7Iq4+WwAQ5zz9hk+5gbG2F7G2N6RkZGkD5QQQgghhBCSvSxOLwBQWWMK4g7OGGP5AJ4CcBvnfCLiro8B+NNMH8c5f4RzvpFzvrGkpCT5IyWEEEIIIYRkLYtTyJxRWWPy4uk5A2NMCSEwe4xz/nTE7QoAlwLYkJ7DI4QQQgghhOQCMTgz6ShzlqxZM2ehnrJfAmjhnN877e73AmjlnPem4+AIIYQQQgghucHiEsoaKXOWvHjKGs8CcDWA8xhjB0P/XRS676OIUdJICCGEEEIIWRjEzJlRS8FZsuKZ1vgGADbDfddJfUCEEEIIIYSQ3GNxeqFVyqFRyjN9KDkroWmNhBBCCCGEEBKNxemjksYUUXBGCCGEEEIISZnZ6aOSxhRRcEYIIYQQQghJmdXlpUmNKaLgjBBCCCGEEJIyKmtMHQVnhBBCCCGEkJRZXBScpYqCM0IIIYQQQkhKOOewOL0waqmsMRUUnBFCCCGEEEJS4vQG4AtwmChzlhIKzgghhBBCCCEpsbiEBdRU1pgaCs4IIYQQQgghKTE7vABAZY0pouCMEEIIIYQQkhJrKHNGZY2poeCMEEIIIYQQkhKLUyxrpMxZKig4I4QQQgghhKTE7BTKGqnnLDUUnBFCCCGEEEJSIpY1GrUUnKWCgjNCCCGEEEJISixOL7RKOTRKeaYPJadRcEYIIYQQQghJidnpo5JGCVBwRgghhBBCCEmJxemjYSASoOCMEEIIIYQQkhKry4sC6jdLGQVnhBBCCCGEkJRQWaM0KDgjhBBCCCGEpITKGqVBwRkhhBBCCCEkaZxzoayRMmcpo+CMEEIIIYQQkjSHNwBfgFPPmQQoOCOEEEIIIYQkzeL0AgBlziRAwRkhhBBCCCEkaRanDwCo50wCFJwRQgghhBBCkmZ1hYIzKmtMGQVnhBBCCCGEkKSZw2WNlDlLFQVnhBBCCCGEkKSJZY0m6jlLGQVnhBBCCCGEkKSJZY0GKmtM2azBGWOshjG2kzHWwhg7yhi7NeK+zzPGjoduvye9h0oIIYQQQgjJNmaHF1qlHBqlPNOHkvMUcTzGD+DLnPP9jDE9gH2MsRcAlAG4BMBqzrmHMVaazgMl6ecLBPHrNzvw4XXVKNGrM304hBBCCCEkB1hcPipplMiswRnnfADAQOjPNsZYC4AqAJ8B8H3OuSd033A6D5Sk3w/+1YpH3+gAANxwzuIMHw0hhBBCCMkFFqcPRhoGIomEes4YY/UA1gHYBaAJwNmMsV2MsVcZY5vScHxkjvz7yGA4MGsdsGX4aAghhBBCSK6wOL00Rl8i8ZQ1AgAYY/kAngJwG+d8gjGmAGACcAaATQAeZ4wt4pzzaR93A4AbAKC2tlayAyfS6Rpz4CtPvos11UbkqRU4NjCR6UMihBBCCCE5wuLyoaksP9OHMS/ElTljjCkhBGaPcc6fDt3cC+BpLtgNIAigePrHcs4f4Zxv5JxvLCkpkeq4iUTcvgA+98f9kDGGn358PVZXF+DkiB1efzDTh0YIIYQQQnKAxemDUUtljVKIZ1ojA/BLAC2c83sj7vorgPNCj2kCoAIwmoZjJGn07WeP4UjfBO69Yg1qCnVYVqGHL8BxcsSe6UMjhBBCCCFZjnMulDXSQBBJxJM5OwvA1QDOY4wdDP13EYBfAVjEGDsC4M8Arp1e0kiy298O9uGxXd248dxF2LGsDACwvMIAAGih0kZCCCGEEDILhzcAf5DTtEaJxDOt8Q0AbIa7PyHt4ZC5cmLYjq8/fRib6k347/cvDd/eUJwHlUKG1kEaCkIIIYQQQmKzOL0AgAIqa5REQtMayfzg9Ppx82P7oFXK8ZOPrYdSPvlroJDL0FSWT5kzQgghhBAyK4vTBwAwUuZMEhScLTCcc3zzr0fQPmzH/R9di3Kj5rTHNJcbKDgjhBBCCCGzEoMzE+05kwQFZwvME3t78fT+PnzhvEac3Rh9euayCgNG7V6M2DxzfHSEEEIIISSXWFyhskbKnEmCgrMFpGVgAnf87QjOWlKEL+xonPFxyyr04ccTQgghhBAyE3Moc0ZLqKVBwdkC8vNXTkKrkuP+K9dBLptpxguwrFyY2Ng6SMEZIYQQQhI3avfgpZahTB8GmQPW0EAQ6jmTBgVnC0QgyPF6+wh2NJehRK+O+VhTngrlBg1aBmhiIyGEEEIS9/CrJ3H97/bC5vZl+lBImlmcPuhUcqgV8kwfyrxAwdkCcajXAovTh3OXRu8zm665Qk9ljYQQQghJyoFuCzgHes2uTB8KSTOLy0cljRKi4GyBeK1tFIwBZy8pjuvxyyoMODFsh9cfTPOREUIIIWQ+8QWCONxnBQD0jDszfDQk3SxOL4w0qVEyFJwtEK+2DWN1dQFMefH941lWYYA/yHFi2J7mIyOEEELIfNI6YIMndHGXMmfzn8Xpg4n6zSRDwdkCYHX6cLDHgnMb48uaAcCycmFiIw0FIYQQQkgiDvaYAQAyBvSYKXM231lcPhqjLyFFpg+ApN8bJ0YR5Ii73wwAGorzoFLIqO+MEDKvWJ0+mihGSJod6LagOF+NojwVesYpczbfWZxeGLVU1igVypwtAK+1jUCvUWBNdUHcH6OQy9BUlo/WQZrYmGkvHhvCH97pyvRhEJLz3jo5ivXfeQEnR6hcm5B0OthjwbraAtQUatFLmbN5jXNOZY0So+BsnuOc49W2EZzdWAyFPLEf97JyA2XOssCv3uzAAy+1Z/owsobV6UMgyDN9GCQHvXJ8BIEgx4FuS6YPhZB5y+L04tSoA2trClBt0qHX7ALn9Jo9Xzm8AfiDnMoaJUTB2TzXPmzH4IQb5zTGX9Ioaq4wYNTuxbDNnYYjI/HqGnNixOaB2xfI9KFknMsbwHvueRl/2t2d6UMhOWhXxzgAoJUuOhGSNgd7LACAdbUFqDZpYff4YXHSrrP5yuwQFlAXUFmjZCg4m+dePT4CADinKfHgbFlFaCgILaPOGI8/gH6rUK/fZ6G6/bYhG2xuP9qH6HeSJMbh8eNoaLT3cfr9ISRtDvZYwBiwuroANYU6ADQUZD6zuoTAmzJn0qHgbJ57rX0EjaX5qCzQJvyxy8oNAECljRkklIMIf6ZdMZPTQwcnKJtLEnOg2wJ/kKPSqEELXXAiJG0OdFvQVKpHvlqBGlMoOKOhIPOWmBUtoD1nkqHgbB5zeQPY1TGOc5PImgGAKU+FcoMmLUNBqP48Pl1jjvCfaVcMwifVgxOeDB8JyTW7O8YgY8CVm2oxavdgzE6/Q4RIjXMeHgYCANWFwoVhGgoyf5mdobJGypxJhoKzeeydjjF4/cGkShpFyyr0kmfOvvCnA/jiXw5K+pzzVeeo8IbGaFcMAOB46ELBMGXOSIJ2d45jRaURG+pMACZ/lwgh0ukYdcDq8mFtTQEAwKBRwqhV0vvXPGahskbJUXA2j716fAQapQybGwqTfo7mCgNODNvh8Us3jOJAjxlvnRyT7Pnms+5xJ/LVCtQW6hZ85oxzHi5rHLZ5aGIjiZvHH8CBbgs2NxSiOdRL20LBGSGSmxwGYgrfVlOopbLGecwaypwZtRScSYWCs3nstfYRbGkogkYpT/o5llUY4A9ynBx2zP7gOASCHAMWN4ZtnvCEHzKzzjEH6op0qDFRcDZs88Ds9GFJaT4CQU5laSRuR/qs8PiD2FRfiOJ8NYrzVTg+SL20hEjtQLcFeSo5lpTmh2+rMekoczaPmZ0+6FRyqBXJn2uSqSg4m6d6xp04NeJIut9MtFy8yixRaeOwzQ1/KOPRRhPTZtU95hSCs0Itehf4QBDxd3Bb6HeahoKQeIkj9DfVC1fzm8sNaemlJWShO9hjwerqAshlLHxbTaEOfbTrbN4SFlDTMBApUXA2T73aJozQP3dpasFZfVEeVApZuJwsVX0R2Z+2Ybskzzlf+QNB9JidqCvKQ7VJhzGHF06vP9OHlTFij5DYQzloze3grHvMidv+fAB2z8L9mc6V3R3jaCzNR1G+GgCwtFyPtiEblcYSIiG3L4CWgYnwMBBRtUkLjz+IERtVO8xHVpeXSholRsHZPPVa2wiqCrRYVJyX0vMo5DIsLdNLNno6cldXG125jmnA6oYvwFFfpEO1SZx4tXBLG1sHbagwarC0XMjmDuVw5oxzjm/+7Qj+erAf74Z6NEh6BIIc+zrN2BTRe9tcrofbF5wyDZUQkpojfVb4gzw8DEQUHqdPpY3zktnpo2EgEqPgbB7yBYJ46+QYzl1aAsbY7B8wi+ZyvWSZMzG4WFZhoEWws+gaE97IaguFzBmwsMcRtwxMoLlcj+J8NeQyhqEcHqf/YsswXgtlt/tpuXhatQxMwObxY8uU4EzY4UgTGwmRjjgMZO20zFlNaJw+DQWZnyxOLwVnEqPgbB7a32WG3ePHOY2plTSKllUYMGr3YtiWeqaiz+JCgU6JdbUFaBuyUQ16DJ2hq/r1xTrULPDMmS8QxMkRO5aWGyCXMZTkq3O258ztC+Dbzx7DohIhqz2Q4+WZ2W53uN9sMjhrLMuHjIH6zgiR0IFuC6oKtCjVa6bcThcX5zery0cLqCVGwdk89GrbCBQyhjOXFEnyfMsqhKvMUpQ29pldqCrQYmmZHhanj2rQY+ged0KlkKFMr0GJXg21QoaeBToU5NSIA74Ax7LQgJoyoyZnyxp/8dopdI878e1LVqI4X0WZszTb0zmOapMWlQXa8G0apRz1xXmSVQQQQjBl+XQkjVKO4nw1Zc5mcbDHgkt//mZO9ZZzzmFx+lBAPWeSouBsHnqtfQTra00waKT5xyKeELdKMLGxzyIEZ01lwnNSaePMOkcdqCvUQSZjYIyhyqRdsJkz8SRaLEcr06tzciBIn8WFn71yAheuLMdZS4pRYdSiPwe/jlzBOcfujvGoux6by/VU1kiIRIYn3OizuE7rNxPVFGqp52wWu06NYX+3RbLp2HPB7vHDH+RU1igxCs7mmRGbB0f6JlKe0hipQKdChVGT8gsG5xx9ZheqTTo0lQk7UOjkaGbd48IYfdFC3hXTMmCDUs7CpYDlRk1OljV+958tAID/uXgZAKDCqMEAZc7S5uSIA2MOLzbXRwvODOgad+bUVWpCAKHM2xcIZvowpjgQXj5dEPX+hfz+FS+xkqh9KHcmWVucPgCgskaJzRqcMcZqGGM7GWMtjLGjjLFbQ7ffxRjrY4wdDP13UfoPl8zmjRPCkAGp+s1EwlCQ1AIps9MHly+AKpMWRflqFOeradfZDDjnoQXUk9M2qxdw5uz44AQWl+RDKRdessoMGtjc/pw6sX7r5Cj+eXgAN527JNyDUVmgpZ6zNNrTKfSbRcucLS3Xg3OgLYdOhAgBgC/86QBu+8vBTB/GFAd7LFDKGVZUGqPeX1OoxYDFDX+WBZXZZMQeCs5yaM2Q1RUKzqisUVLxZM78AL7MOV8G4AwAn2OMLQ/ddx/nfG3ov+fSdpQkbq8eH0FRngorKg2SPu+yCgNODNvh8QeSfg5xx1lVqPdjaXk+jtOJUVTDNg/cviDqIzJn1SYdLE4fbG5fBo8sM1oHbeHeRwAoNwgN57kysdEfCOJbfz+GapMWN567KHx7ZYEGdo8fEwvwZzoXdneMozhfjYYoK0WWhUpkpSjXJmQuHe6z4nCvNdOHMcWBbjOWVRigUcqj3l9t0sEf5DlZ8TBXwpmzHArOzE4vAMqcSW3W4IxzPsA53x/6sw1AC4CqdB8YSVwwyPF6+yjObiyGTJb6CP1IyyoM8Ac5TqTwotFnEUoaxJ1dTWV6tA/ZEEzDItg32kex9Xsv5exJb3iMfkTmTBxHnK3Zs+ePDuLDP38TLm/yAXw0VqcPA1Z3eL8ZIJQ1ArmziPr373Th+JAN37x4+ZSTlwqj8DOloSDpIfSbmaKuFKk2aaFTyWliI8kp/kAQg1Y3+i2urFmiHghyHO61Yt0M/WZAxK4zGgoyo9FQ5uxEDlUUiWWNJuo5k1RCPWeMsXoA6wDsCt10C2PsEGPsV4wxk9QHRxJztH8CYw6vpP1mosmhIMm/aPROz5yV6eH0BqYsppbKGydGMWB1oz2HXuQihcfoT8ucAdkZnLUN2XDbXw7iQLclpQA+mslhIJPBWZlBDSA3FlGP2j2494U2nN1YjPNXlE25r7JACDIHLNn/deSaXrMTfRZX1H4zAJDJGJrKaCgIyS1DNg/8QZ5VWaj2YRsc3sBp+80ihXedUd/ZjEZsHjAG9FvdOVMhYwmVNRopOJNU3MEZYywfwFMAbuOcTwB4EMBiAGsBDAD40QwfdwNjbC9jbO/IyEjqR0xm9Fq78P09W+J+MwCoL8qDWiFLaShIn8UFnUoenurTFDrZTsfJ0Ylh4Tk7RnPzjaB7zAm5jE0Z/z256yy7viary4cbfrcXwdDOum6Jx/2LmY3IssayUFljtpycxPJ//z4OlzeAOz+44rQMTjhzZs2+gDvXTfabzbxSZFmFHq2DE7RvkeSMvoiLc71ZslrlQLcFALC2ZuZr9BVGLWQsOy8uZgOvPwiz04eVoZ69kyOODB9RfCyOUFmjlsoapRRXcMYYU0IIzB7jnD8NAJzzIc55gHMeBPALAJujfSzn/BHO+UbO+caSEumDBjLp1eMjWFllQHG+WvLnVshlaCpLbSiIuONMPEFtLA1NbExDdkus2e4ay40XuOk6xxyoNmnDAzAAoDBPBa1SnlVlIcEgx5f+chC9Zhce+sQGAOkIziZg0ilRqp/8vdZrlMhTybO+rPHdHgse39eDT55VjyWh3/dIpXo1ZIwyZ+mwu2Mceo1iSjnsdEvL9DDTvkWSQ8T2AADoyZJA52C3BQU65ZRKj+lUChnKDZqsCSizzZhDeA06c7FwMSlXqn4sLh/yVHKoFDT8XUrxTGtkAH4JoIVzfm/E7RURD/swgCPSHx6Jl9cfxP5uM96zJH0B8LIKPVoGkr/K3Gdxoco0mQnSa5SoKtBKPrHR7QuEA4SO0dwMzrrHnagtnPpGxxgLTWzMnje3B15qx0utw/h/H1yObUtLUZinSkvmbGm5/rSsU5lRg2Fb9gY1wSDHnX8/iqI8Nb6wozHqYxRy4YSFMmfS290xjk31hZDH6L9tDmVjW6i0keQIMXPGWPZUURzoMWNtTUHU3s5I1YU0Tn8m4gWidbUmqBQyydsD0sXi9NEwkDSIJ9Q9C8DVAM6bNjb/HsbYYcbYIQDbAXwxnQdKYrM4vfAH+ZTgR2rN5QaMObzhca+JEhdQR2oqy5e8rPHkiB2cA3IZCw/WyCWcc3SMOlBfdPqEuZpCXdZcLX3h2BAeeKkdH9lQjavPqAMgHJ+UJwzBIMfxQVt4+XSkcoMmqzNnT+3vxcEeC752YTP0MRbCVxRoaSCIxEbtHpwccUQdoR+pOVxaTRMbSW7os7hQlKdCuUGT1ioKm9uHfx0emHVgl83tQ/uwHetilDSKaky6rKr8yCZicFZu1GBxSX7OTGy0OL0w0hh9ycUzrfENzjnjnK+OHJvPOb+ac74qdPt/cc4H5uKASXRzsWtC7PlpSWIoiN3jh8XpOy14bCrX49SIQ9KFmuIVp831hegcdSSd6XN6/djXZZbsuOIljMv3T1lALcqWzNnJETu+9JeDWFVlxHc+tDJ8xbS2UCdp5qzH7ITTGwgPpIlUbtBk9Sj9P+zqxvIKAy5dF3u4bYVRQ7vOJLanQ+g32zTDMBBRgU44yU1l0BEhc6nXLFSgpPu94G8H+3HTY/vx30++G3M32aFeKzhHzGEgoppCLYZs7pRW8sxX4qTGEr0ajaX5ObMD1uLywZRHwZnUqEh0nghPzElrcCacICczFGT6jjPR0jI9vIGgpL1h7UN2yGUM25aWwObxYzzUsJqoX7zWgcsefAvfefZYWsb9z6QrFNzURcucmXSwuf3hYDwT7B4/bvz9PigVMjx09YYpo+FrC7XoM7skWzQqXghYGiVzVmrQYGjCPac/m3gFgxxtgzZsWVQ461oLcRE1DaWQzu7OcWiUMqyqir4QN9LS8tR6aQmZS31mF6pNWtSYdGkdriE+99P7+3DLHw/MGFAd7LEAANZWF8z6nNUmHTgH+qnH9jRi5qwoT4XG0nz0ml1wev0ZPqrZWZxeGgaSBhSczRPW0K6JgjSOMy3QqVBh1CS1tHX6jjNRU5lYViRdCr992Ib6Il34uTuTDPxaBiagkDE8+kYHPvfH/XD75uZqX1eUMfoi8fvXk6Gm6mCQ48uPH0THqAM//fi604Lt2kJh0ahUmaDjgzYwJpS/TlduUMMf5BhLMvhOpz6LCy5fAEvLZh5GIaowauD1B7Py68hVuzvGsT7UuzGb5nI9TgzbJbugkEsCQT5nr2tE4PYF4PAkd9LNOQ+3B1SbtBiwuiStOok0YBWCwDs+sBz/PjqIG363L+oOywPdFiwqyYtrlHpNht+/stmIzQODRgGNUo7G0PvdyeHs75m3OH00Rj8NKDibJ+YicwYIpY3JlDVOZs6mBhxLSvMhY9JObGwfsqOxVB8uC0x2nP6JETvOay4Nvzl97BfvYCzJfrtEiH1yNYXRgrPM7jp78NWT+M/RIXz9wmacubj4tPvFY5bqzbd1cAL1RXnQqRSn3Scuos7GXWdiH2VjHMGZuC6BJjZKY8Ltw7GBiVlLGkXNFUL2PleHB6XiW/84issfepuytnPoc4/txyd+uWv2B0YxavfC4w8KwVmhDkGevteNAasblUYtPv2eBvzgslV4rX0E1/5695T9W5xzHAwNA4lH+P0hC0rzs82I3YOS0ETiJaXC+0b7cHZn9DnnQlkjBWeSo+BsnrA452bXxNJyPU6O2OH1J3a1rtfiglLOpoxDBwCNUo76ojy0SVRW5PEH0DnmQGNZPmoKdaGhIImfdPkCQXSOOrCkNB+ffk8DHrxqPY71T+DSB9/CqZH0Nup2jjlQYdRMKRcUiYs8M9F39lLLEH74/HH815pKfPo9DVEfI06YlKrvrHXQNmP2Sdx1lpXBWehiQ7SM33SVoV1n6VjGvhDt6zKDc2DLLMNAREvLhJLZhVja2D5kx+E+Kw71WjN9KAvC3s5xvNQ6jKP9E0mVY4uvEVUm3WQVRZreCwasLlQUCK+xV26qxY8/ug77u8z4xKO7wucbvWYXRu1erKudfRgIILxmK+WMdp1FMWKbDM7qinRQylnWDwWxe/wIBDmVNaYBBWfzxITLB8YAveb0DIOUmsv18Ac5TiYYoPSZXcISyij9N01lesmaXztGHQhyISOnlMtQbdImdUW8a8wBf5CHd1NdsLICf7rhDNjdflz64FvhBbfp0DV2+hh9kVGrRL5aMWdvbm5fAE/v78XlD72FT/92L5aW6fGDy1bPODK5wqiFQsYkCc5cXiHQbo4yDASYzJxl4yLq9iEbKo2amFMaReIJ0ACN05fE7o5xKGQs7hPGxaV5UMgYWhfgxEaxH/eZA30ZPpKF4UfPtwEQVt8ksz4jsne7JlxFIX1wFgxyDFk94ddYAPjgmko89IkNaBm04cqH38GwzY0DoX6zdXFmzuQyhsoCLZU1RiEEZ8L3WymXoaE4D+1D2R2cWULtNFTWKD0KzuYJi8sHg0Y56/CBVIkjzRMdf99ncZ3WbyZqKtejc8whSe+D+GLWGCoLqCvKS2qcvjjxMXJx8PpaE56++UwU6lS46tFd+Me7/SkfbzRdY86oY/SBudt1dnzQhrv+fhSb734RX3r8XYzYPPj6hc34yw1boVWdntETyWUMVSatJMFZ25ANnCPqGH0AKM5XgzFgKAsnHR4fsqMpxvLjSEV5KqgUMprYKJHdHeNYVW2M+XsaSa2QY1FJnuQrPXKB2Of493f7E66GIIl56+Qo3j41hvctLwMAdCZRbi/2bleZtKgwaiCXsbSMph9zeOENBMNZfdF7l5fh19dtQve4E1c+/A7+c2QQGqUs5qL36WpM2bMOJpuM2r0oyZ+sLGos1eNElpc1isFZOqeEL1QUnM0TVpcvrcNARItK8qCUs4RLgPrMp+84Ey0t0yPIkXA2Lpr2YTtkTDhOAGgo0iU1Tl8MzhaXTC1LqyvKw1M3nYk11UZ8/k8H8OArJyXt17B7/Bi1e1BXHD1zBgh9Z+l4Q3Z5A3hibw8u/fmbOP/+1/DHXd3YtrQUf/rMGdj539tw47mL47pCVivRLjYxk9E8wxu/Ui5Dcb466zJn/kAQJ0fs4YE0s2GMocKooV1nEnD7AjjUa5l1v9l0zeXJ9dLmsmCQw+z0YlmFAeMOL15tG8n0Ic1bnHPc+3wbyg0a/M9FywAAHUmU2/eZXdBrFDBqlVDIZagwatJyoU7cHxmZOROdtaQYf7h+M0btHvzz8ABWVRmhlMd/KllTqEUf9ZxN4fT6Yff4UayfLA9cUpqP7nFnVg/ssbiEizumPCprlBoFZ/OExembk0WASrkMi0vyEyoB8vgDGLZ5ZlyQvbRcCICkKG08MWxDbaEu3K9VV5SX1Dj9E8N2VBVokac+vUzUlKfC7z+9BR9cU4kf/LsVT+ztTfm4Rd2hLF9dYfTMGTC560yqoDAQ5PjlGx3Y/N0X8ZUnD8Hq8uGbFy/DO9/YgR9/bB22Li6asYwxmppCnSRlK62DNmiV8hlLPIHs3HXWNe6E1x+MOzgDhL4zypyl7kC3Bb4Ax+Y4h4GIlpbr0WdxTRl2kE5efzDjZawTbh8CQY4Pr6tEcb4KT++X7nWMTPVa+yj2dpnxufOWhN6fZOhMoty+d9pFzmqTNi1ZKLHkcnrmTLShrhB/+swZKDOo8d5lZQk9d7VJh1G7NyfGxM+VUZtwfhKZOWsKXbQ+NZK9g4ooc5Y+FJzNE1bX3ARngJDJSKQESJwmNVPmrK4oDyq5TJJx+u1D9vCkIwBoKBaCnETH6Z8YsWNx6czDHDRKOR64ci3qinR4/thgcgcbhTi8JNoCalFNoQ4ObwBmZ+onksf6J3Dpz9/Et589hvW1Jjx+41a8+KVzcf3Zi1CY5NWw2kIdxh3elE90WwdsWFquj1mqWxbadZZN2hMYBiKqKKDMmRR2d4yDMWBjXaKZM+E1Y64Wv/72rU7s+NGrGT1BFUsaS/UafHBNJV5qGQ6vZCHSEbJmx1FVoMWVG2sgkzHUF+UlFZxNbw8Qdp1Jn4UaCL0WRcuciVZWGfH213bghnMWJfTc4vHTUJBJI3bhPawkYmCaOE4/myc2ioNhqOdMehSczRNzGZwtLTdgwOqO+418csJU9OBMKZdhUUleyidGvtA47MaIk+JkxukHgxwnhu1YUhL75FomYzhzcRF2dYwjINEi5MkF1LHKGlOf2Oj2BfCDf7fiv376BnrNLjzw0bX4zSc3YXNDYUJZsmhqw+P0k3/z5ZyjdXBixpJGUbkx+8oajw/awdjUfsXZVBq1GJpwL8hdW1J66+QolpbpEz5ZaK4Q+hrnqrTx2MAEnN5ARkspxWqCwjwVLltfDW8giGcPp6ePdiF7qWUY7/Za8YUdS8J79+qL8pIua5yaOdNhaMIjeenbwIQbKrkMRbNcoJPJWMLvF1KvW5kPxAXUkcFZfVEe5DIWbrHIRpOZMyprlBoFZ/PEXPWcAQhPz4u3tFGcMFVdMHPAsTTBbFw04oTFxoiT4mpT4uP0+ywuuH3BuE6uz1hUBJvbj6P90oyi7hpzoChPFXPKX02Ku87eOjGKC+5/DQ++chIfWleFF790Li5ZW5VyUCaSYpz+sM0Ds9M3e3Bm0MDi9GVVXX7bsA01Jl3U3WwzqSjQIMiFr5skp8/iwu7OcVywsjzhjxUmayrmbCiIOEFWqteNZIg7GwvzVFhRaUBTWT6e3k9TG6UUDHLc+0Ib6op0uHR9dfj2+uI89Iw7E7oYY3X5YPP4p1zkFFerSJ11H7C4UW7UpGXAWKrvX/NRtOBMpZChvkiX1RMbLS4f8lTy8EUHIh36js4DwSCHxemds6sX4glzvIujey0uMBa7RKKpLPWej+mTGgHhBa6qILFx+idGTp/UOJOti4sAAG+dHEvkUGfUOepEbYysGTCZgUz0yqPF6cXtT76Ljz+6CxzAY9dvwQ8vXyN5M68UV0bFgTNiRmMmpVm466xt0JZQvxkw2duR6T6kXPbM/l5wDlwWcRIcL8YYmsv1czZOXyyzPtKXweAslDkTpp4yXLq+Gvu6zEmV25Ho/nN0EMcGJnDrjsYpQzMainXwBTj6E1ggPTlGf/L9odokLnWW9nVj0OqO+X6diuJ8FTRKGWXOIozYvWAMKNRNfS9uLNWjLYvLGs1OLwp0lDVLBwrO5gG7148gx5yVNZYbNDBqlXFPbOwzu1Cm18S8uiIuGk5l6aL4sYtLpw7TqC9ObJz+yWExyJs9OCvVa7CkNB9vSxScdY/PPEZfZNQqYdAktuvstbYRvPfeV/HU/j589tzF+M9t5+CsJcWpHm7M40slc9Y6EHtSo6g8FJwNZskwDa9fKK1NpN8MACoLxCvg2fF15BrOOZ7c14stDYXhiwOJWlquR+ugTdLpq9GYHd5wOdCRvsztVhu3i5PWhPeNS9ZWgjHgadp5JolAkOO+F9uwuCQPl6ytmnKf+BqfSGljtPYAMXMmdd9Zv9WFyjQFZ8I6GF3almfnohGbB0V5KiimTb1sLMtH15gTHn/2VIZEsjrnrmJroaHgbB6wzvEiQMaYcCIzEGdZo8U5Y7+ZSNyT0pZCWVH7sB3VJu1p5WT1CY7TPzFsR1GeKu6M0tZFRdjTOQ5fiv1CHn8A/VZXzH4zUU1h/G9unHP8z18Pw6BV4u+3nIWvXdgcnmaZLrVFqb35tg7aUG7QzHpVTry6O5Ql5YAdo0JpbSJ7f4DJRdQ0FCQ5+7rM6Bxz4iMbEs+aiZrLDbC5/ehPc6AvnpA3leWjfdiWsROvMYcXerUCaoXwWlBh1OKsxcV45kBv2gPUheDZQ/1oG7Ljtvc2QT6tPDA8qCqBLKUYgEUOBCnVa6CUS7vrLBjkGJpwo3yGSY1SqDFp07IOJleN2DwojpjUKFpSmo9AkCe1E28uWOawnWahoeBsHrC6QsHZHI4zbS7Xo23IHtebeJ9l5h1noqoCLXQqedylktG0D9miZrvqExynf2I49qTG6c5cXASnN4BDvamVKPWMu8B57GEgImGcfnxvbidH7OgZd+FTZzVgRaUxpWOMV22hLrXM2aAt3NsYS5lY1pglmTNxqE1kaW08DBol8tWKhMfp+wLBBbk8ebqn9vdCq5TjwlUVST9HuFw7zaWN4gn5B1ZXwhfgGespGXd4UZg/9eLHpeur0DPuwt4uc0aOab7wB4J44MV2NJfrcXGU38kSvRp5KnlC5fZ9Zhc0yqlDOuQyhqoCraRZqFGHB74AR2VBejJngHBxMR1TJnPViN0zpd9MJL6PZOvERvMcttMsNBSczQNicDaXuyaayw2we/yzBgiBIMeAxT1r5kwmY2gs0yc9sdEfCOLUqAONUXp96kMLneMZp885R/uwPaFJe1sWCX1nb58cjftjopkcox+7rBGYHKEcT3D8UsswAOC85tKUji8RNYU69I67EExiiqUvEMSJYRuay2P3mwGAQaOAVinPmomNbUM2yGUsvAQ9Eckson5yXy/Ov/81HOq1JPz55gu3L4Bn3x3AhavKkR9lL2G8msrFQUfpPRHqHHVAxoALQ4NLMtV3Nu7wnrYu4/wV5dCp5LTzLEV/PdiPU6MO3PbepqhDNRhjqCvKS2jFS5/FhcoC7WmDm4RAR7oslLj6piKtmTMdJtz+8LnLQjdqix6cLSrJg4wha4eCUFlj+lBwNg9Y5risEZgsQ5ztRGbY5oY/yGfNnAFAU2l+0rvOeswueP3RJyyK9f3xlAaM2r2wunyzjtGPVJinQnO5Hm+fSq3vrCu8gDq+zJnbF8SoffZs4Eutw1hWYQj3Nc2F2kIdvIEghmyJB02nRhzwBfis/WaAcJJTZsiecfptQzbUFemSKhutLEh8EfWBbiHD8fBrpxL+fPPFf44Owubxp1TSCAjZy6oCLVrTPN6+Y8yJapMOi0vyoVcrcCRDExvHHN7TRqXnqRW4YEU5nj00kFUTUHOJLxDEj19qx8oqA85fMfOC5obixHadzVSBUm3SolfC4Rria1BFmnrOgMnSTBoKIlwQnilzplHKUVuoy8px+pxzKmtMIwrO5oHJzNncpZeXxlkCFJ4wNUvmTHzOUbsnPOI5EZOLf08/oRfH6cdzlVJ8EWxMcKDDmYuLsbfTnFL/SNeYA3q1Iq7lz9XhccSx39ysTh/2dZlxXnNJ0seVjPA4/QQGsYjEiXnxlDUCoUXUWVPWaA8Pt0lUZYEm4WmNR/uF79W/Dg8k9b2eD57c14uqAi3OaChK+bmaJVjpMZvOUQfqi/MgkzEsrzSEf4Zzbdzhifpac+n6atjc/nDGnSTmyX296B534kvva4q5nqS+WIcesyvuXuU+89QF1KJqkw5jDq9kC83F16B0Bmfi0B4qbQQm3H54/UGUROk5A4AlpfqsLGu0efwIBHn2ljXecw+wc+fU23buFG7PARSczQMWV2hL+xyWNearFagp1M6aORMnTFXHkzkLndS2JZHCFyc1RsucJTJOP5Ex+pG2Li6Cxx/EgW5LQh8XqXNMGKMfz76x8Lj6WcpZXm0fQSDIcV7zzFdw0yGVXWetgzYo5QyLiuP7GZQbNQln6NqGbJJnBty+ALrGopfWxqPCqMWo3Rv3cXn9QbQN2fDhdVWQyxh+9WZHUp83lw1a3XjzxCguW18lyU6m5go9To7Y4fWnZxk45xwdow40hPpKV1Qa0TIwMefLxznnobLG008Ity4uQrlBQ6WNSfAFgvjJS+1YW1OA7Utjl5HXF+UhEORxlSS6vAGMObwzZs4A6faGDVrdUClkcV0kTFYiu87GHd6MrpxIt2g7ziI1luWjY9SR8sAxqYmD6LI2c7ZpE3DFFZMB2s6dwt83bcrsccWJgrN5wOr0QaWQQaOc2x/n0jLDrMFZb4KZMwBJ9Z2dGLaj0qiZseck3nH6J4ftyFcrwiPa47W5oRAyhpRG6sczRl80+YYc+2t6uWUIhXkqrK0pSPq4klFZoIWMJVe20jowgcUl+XEvtiw3aDA04Yl7wlznqAPn3/8arnp0F8xxDomJx4lhO4IcSWfOxCvV8a4FaBuywRfgOK+5FP+1pgp/2dMj6deTC54+0Isgx5QFv6lYWm6AP8hxciQ9ZUSjdi/sHj/qQ9P6VlYZ4PYJ/bJzacLthy/ATytrBIQhEx9aV4VX2kYwmkQVw0LWMepAv9WNa7bWzXqRLZGJjeGLnKbTS96lzkL1W92oMGriukiYLKNOCb1GMev7A+ccN/1hHz72i3cQSKJ/OReEg7MZMmeNpfnwBXhC64DmgiUcnGVp5mz7duCxx4BLLgE+9jEhMHv8ceH2HEDB2TxgdflQoFWm9cU0muZyPTpGHTFL+XrNLph0ytPG20dTqlfDqFUmNbGxfdiGJTFOiuMdp39i2I7FJXkJfy+NWiVWVBqT7jvzB4LoGZ99AbUoL1T+GOvKYyDI8UrbCLYtLTltlHO6KeUyVBi1SWfO4uk3E5UZNPD6gzA742su3905Ds6Bgz0WXPbgW5L1PYilJ4nuOBOFd53FWdp4NNSrtLLKiM+c0wCXL4DHdnUl9blzEeccT+3rxaZ6UzjYSdWycC9tekoNxdLqyeBMmJ4615kBcXLtTNmRS9dXIRDk+PvB/rk8rJwnXliJFkRNJ/4OxFPRIQZe0S5yTvZvSZU5cyV8cTIZwq6z2Mf8/LEh7OoYh83tT2h4Si4Zsc+SOQtNbDyRZaWNZqfwGpKVmbOREeDuu4FPfhKw2YA//xm46aacCcwACs7mBYvTN6cljaLmCj0CQR6zWbXP4orrjQoI7U8r0ye86ywYOoZYS6PjHaffPmxLaIx+pDMXF+FAtxkub+LlcgNWYXBKfZzBGSC8KccKLA50m2Fx+uZ0SmOk2sLZ33ynszp9GLC60Vwx+6RGUXmCGacD3WYYNAr88fotGHN48eGfv4XDKa5BAIDjg3Yo5SzpQEEMzgbiXER9tH8C+WoF6gp1aC434NymEvzmra4FM8jhYI8FJ0ccKQ8CiVRfnAeVXJa2iY3iifii0O/IouI8aJSyOe87G3cIJ4RF+dGDs6YyPVZWGfD0ASptTIQ4mCie4KYoTwW9WhFX0BFeQB2lrLEkXw21QiZd5szinpPhUTWzvH95/UF877kWmEIn//O1tHG2ssYlpflgWTix0RKadWDKRHA2Uz/ZF78IXH89UFMDfPObQGUlYDAIf37wwdM/JotRcDYPWDM0MUfMbsSabtZndsY1qVHUVJ6P40O2hJag9llccPuCsYOzOMbpT7h9GJrwJNxvJjpjcRF8AY59SewI6kxgjL6oxqQLD1yJ5qXWYShkDGc3zu0wEFEyu87EjEUiS5zLDMKb2lCcExv3dZmxrtaELYuK8NRNW6FWyHDlI29j5/HUBiC0D9mwqDgfSnlyL6tiWWO8Q0GO9FmxvMIQ7rW68ZxFGLV78MyBvqQ+f6b99UAffvif43GvX3hqfy80ShkuSmG32XRKuQxLy/U40GWR7DkjdY46oAjtpgIAhVyG5nLDnJ94joWmvBZF6TkTXbquGkf6JpJeb7IQiYOJSg0zf19FjAkXcuLJnPWZXVDIWHiv4/TnqZZoqXMgtIA6ncNAROIKgJne63/3dic6x5y45yNroJLLcCxDg3PSbdTugVLOZrzArlXJUW3Shvvqs4XVKc46yEBZY2Q/WSAAfOc7wPnnA/ffD/zxj8B11wG/+hXQ2Qn89a/At78tlDRG9qBlOQrO5gGLKzOZs/qiPKgUshnLEDnnwvjfOPrNREvL9LC5/QmNRhfLyWJNWIxnnP5JcVJjgguERZvqCyGXMbx9KvF9Z53iGP0EM2e95pl3ib3cMoxN9YUZ+d0AgNoiHUZsnoQyiWLGYlkcO85E4glLPL8zE24f2oftWF9rAiBMwnrm5jPRUJyH63+7F3/Z0x33553u+JAtvCsrGRqlHIV5KvTFkTkLBDlaBmxYUTX5fdq6uAgrKg34xeunktovl0nDNje+8cxh/HTnCdz9XMusF2fcvgD+frAfF6woh14j7e/3WUuKsb/bDLtHmul3kTrHHKgt1EEREcCvrDLgWP/EnP7MwmWNM2TOAOC/1lZCLmN4en9uBvuZMDDhRmGeKu5VGvXF8e0667O4UG7UzFieXlOoQ68l9czZmN0Df5DPTXBm0sLlEwadTGd2ePHjl9pxdmMx3rusFE3l+RmbappuIzYPivPVMVspGkuT3wGbLmIbQUbOL7ZvF4Ktj3wEKCkB7rgDKCgAfvADoLcXeOghobQxssdM/Jg9e+b+eJNAwdk8MOHyZeTqhUIuQ2Np/owlQOMOL9y+YGKZszJxRH/8L0Riun9JycwnxtUmHWQsdubsRIyJj/HIVyuwptqIt5IYCtI95oBaIUOZPv43xWqTFt5AMFyzHqnX7MTxIVvGShqByImS8Z807O0yo1SvDmfD4lEa+p7Fkzk72G0B58CGOtPkxxs0+MuNW3HWkmJ89anDuO+FtoQytwDgCC1kb0ryd0dUYYxvnH7HqB0uXwArKo3h2xhjuOGcRTg14sBLrbk1Bv2BF9vh9QfxwTWV+OUbHXhklr1tL7UMY8Ltx2USljSKzmkqhj/I8U4Kw31mcmrEcVrZ68pKI2wef1L9mckST4ijDQQRFeercW5TCf56oG/eDmOQ2pDVHTW7NZOGIqH6YbbpoH3m6DvORFJlzvrDO87SX9YotjtEK2184KV22D1+fPPi5WCMYWWlEUf7rQm/LueCkRkWUEdqLM3HqVHHnE91jcXi9CFPJY97cJfktm8H6uoAsxm47DKgvx+4/XagsFC4//bbT+8x275duD0HUHA2D1ic3oxlR5aW69E6EP2KVrhOPoHM2eQ4/QSCs2G7MEwkRmmnSiFDtUkXs4TkxIgdKrkMNQkc73RbFxfhUK814avunWNO1BbqEhoHXh1jStfO0Mn5ecsyF5wluuuMc453To1h6+KihAayqBQyFOer4grO9nebwRiwpsY45fZ8tQK/vHYjLt9QjQdeasftTx5KaHSxWHKSSuYMEE6K4uk5E68ir6yammG8eFUFqgq0eOS1kykdx1w6OWLHn/f04KottXjgyrW4eHUFvvevVjy1b+Z+pyf39aDCqMGZi4slP54NdSZolXK83j4i6fNyLkxcmz6RVRwKMpeZgXGHFzqVfNYMz4fXVWFwwp1UqfZCNDjhRnkCF5bqi/MQ5LOvHJmtAqXGpIPV5cOEO76hSDMZDF0YKp+jskbg9HUwJ4bt+P07Xfjo5tpwefuKSgPMoX7k+WbE5plxUqNoSWk+vP5gwj3c6WRxeTM7qfGZZ4ADB4D164FXXwVefz1zx5IGFJzlOF8gCIc3kLGJOc3legzbPFEHbYQXUCeQOTPlqVCqV+P4YPz11e3D9riWRtcV6WKOoz05bEdDcd6UkqNEbV1UjECQY0/neEIf1z3mTKjfDEA4iIx2xfSl1mHUF+nCgwcyIdFdZ6dGHRixeXDGosSXCZcZNHENBNnfbcHSMn3UUjilXIZ7PrIat+5oxBP7evHlx9+N+/O3xViCnoiqAk1c0xqP9FmhUsiwuGTq771CLsOn3tOAPZ1m7O/OjRPqe/7dCq1Sjs/vaIRMxnDvFWtw5uIi3P7Uoah9gMMTbrzaNhLe7yY1tUKOMxYV4vX2xMuTYxma8MDlC6CheGrpcmNZPhQyhiP9c9d3Juw4m/3Eak11AYDYFQdk0tCEO6HApj6OcfpefxBDE+6Yg7XE+3pTzJ71hy4MzcVAkJnWwXzvuRZolXJ86X1N4duWV879BYy5MmKPI3MWel9pz6LSRqszM7MOAAh9Y5/4hPDnP/wh5/rJ4kHBWY6zujK7CLA51BsUbfT05G6WxF7ol5bHX1/NOceJIVtcfWINxXkxx+m3D9uTLmkUbagzQSWXJbTvjHOOrnFHQv1mQMQb8rQ3N6fXj7dOjmF7c+mcr1eIZNIpka9WxB2cvRNaQ5B0cDYReydTMMhxoFsYBjITxhi++L4m3HjuIvz93f64x+y3DdqgVsjCAWmyKgq0sLn9sM1yBfxo/wSWleujDh/56KYaGDQK/GKW0sBssLdzHP85OoQbz1mE4tDVY7VCjoev3oDmcj1u/sN+HJgWZP71YB+CHGkpaRSd3ViCU6MOydYsAJOTGhumLVdXK+RoKtPP6VCQMYc3ZkmjSBxsMTQPMxZS8/qDGLV7EyxrDAVnMYLfQasbQQ5UxwiYagpDF+pSnNg4OOGGWiGbkwl8eWoFivJUUy4uvtE+ipdah/G57UvCrwcAsKxCD8bm38TGQJBjLI7gTDwvyaahIGanN3PB2dtvA2o1cMEFwLJlOddPFo9ZgzPGWA1jbCdjrIUxdpQxduu0+/+bMcYZY9LXl5BZWTLZlInJiY3ResR6zS7kqeQJH1tTmR7tw7a4GuQHrG44vIG4gqpY4/TdvgB6xp1Jj9EXaVVyrK0tSCg4G7Z54PYFExqjDwgDJIrz1adlzt46MQavP4gdzWUJPZ/UJqeIxRucjaPMoE74+wAIwdlsZY0nRuywuf1YX1sw6/NdfUYdGBMmAsajLRTYp5rJmZzYOPPXwjkXJjVWGqPen6dW4BNn1OHfRwfRJVHG4/igDe/2WDBsc0s2uIJzju/9qxWlejU+fXbDlPv0GiV+/clNKNGr8anf7Akvheac48l9vVhfW3Ba1lBK5zQJb2dvnJAueza54+z0329xKMhc9dSM2T1xZc7EITWJDGhaqMTXn0SGaZjyVDBqlTHL7cVBH7HKGicv1KWaOXOlfQF1JGGolfD1BYIc3/nnMVSbtPjkWfVTHqdTKbCoOC/pzNn9L7bh5sf2pXq4kjM7vQjymcfoi/LVClQaNTHXFs01i8uXubLGqiqh1+yLX5y8LYf6yeIRT+bMD+DLnPNlAM4A8DnG2HJACNwAvA9A8iPOSErEzFmmgrMSvRomnTJqcCbWySf6Qr+0TA+3Lxg+IYulPTxhMY7gLMY4/Y5RB4I8vueZzdZFRTjab4U1zqXIYklLomWNQOjNbdqUrpdah5GnkmNzQ2HCzyc1YdfZ7MGZ2G92xqLE+s1E5QYNxh3emAvR94f6ZtbXzZw5E1WbdDhrcTGe2NsbVzDSNmjD0hRLGoGIRdSWmU+yes0uTLj9p/WbRbruzHooZTI8+npHysc04fbhgz95A5f87E1svvslLL3jX3jPD17GFQ+9jS/86QC+968W/ObNDhzqtST0vP85OoR9XWZ88X1NUZfUl+o1+N2nNkMuY7jml7sxNOEOjXa3pzVrBgCLS/JRYdRI2nfWOeqASiFDZZRhCysqjRhzeOcsCBLKGuPrjYq3ZHihE4OzRDJnwOwTG+NpDzDplMhTyVPO9A5Y3XMyDERUXagLH/MTe3vQOmjD1y5sjtoLuaLSiGNJlv4+vb8Pzx0ejOucYi6JO86KZ+k5A4AloYvW2cLq9KEg2fPOmfaU3XPP7B/LOXDffcCKFcD73pfc588BswZnnPMBzvn+0J9tAFoAVIXuvg/A7QDm3widHGF1ibsmMhOcMcbQXG5AS7TgbJYJUzM5u6kYKoUMD74y+1ADsQa7MY4T41jj9FOd1Bhp6+IiBDmwqyO+7FlXEmP0ReKuGBHnHDtbh3F2Y0nmpihFEHedzZYRSKXfDADKjcKb23CM0sb93WYU6JRx9+FdvrEafRZXuNxyJlaXD4MT7rh+B2cTT+bsaOgEZeUMmTNAmED5oXWVeGJfz6yL12dzuNcKbyCIL72vCf97yQpcf/YibKwzAQw40GPGr97owF3/OIYP/exNPBljiEckXyCIe/7diiWl+bg8RqBVX5yHX1+3GRanF9f+ajd+/WYHVAoZPrC6MqWvaTaMMZzdWIw32kclm1R4atSBuhmG/oiB9pG+9PfUcM4x5vCiOMYY/UjlBjVlzuIQXkCd4DCN+iJdzBUvYntARcHMz8sYO+29IBmD1rnZcSaqMenQZ3Fhwu3DD59vw4Y6Ey6eYW/hyioD+q1umBN8PRuwusKl9c9k2VqI2RZQR2oszceJYXtWrEnhnIcyZ0med0buKQOE/19xhXD7bF55BXj3XSFrlsG2jXRL6OyNMVYPYB2AXYyx/wLQxzmPv2ueSG6y5yxzU3OWluvRPnR6GWKiO85EFUYtPnVWA5452DdrjfmJYTuK8lRxlejEGqd/YtgOGRP60lK1rrYAaoUMb89yUi/qGp+6mDYR1SYt+i2u8AnksYEJDE64MzqlMVJtkQ5uX/Rx/5FS6TcDJq9Wxypt3N9twfpaU9yZufNXlEOvUeDxvT0xHydeIFhannpgX2bQQMaAgRiZsyN9E5DL2KyLum84ZxHcviB+/3ZXSsf0bigjdvUZdbhmaz2+ekEz7v/oOjx+41a8fvt5OP7tC7HrGztw5uJi/PcT7+L378z++f6ypwenRh342gXNsw7gWVVtxMNXb8TJETuePtCH9y8vm5OLUWc3lmDC7Q9//anqHD19jL5oWYVhznpqHN4AvP5gXK+ZgBBsxLvgfSETs4vliWbOivLQb3XB7Yue9e8zu1CqV0OtiD1ZM7JEMBmBIMfghDtmECi1mkItfAGOb/39GEbtHnzz4mUzvj6vSHIoyO4OYThXtUmLZw70ZUVwIwoHZ3FkzhpL8+H2BcPBeibZPH4EghymZM87t28Hfvtb4AMfAG67TQjMIneSxXLffcJus6uuSu5z54i4gzPGWD6ApwDcBqHU8X8A/L84Pu4GxthextjekRFpRxOTzPecAULfmdMbmFK+Zvf4YXX5UFWQ3ICEm7cvRoFWie/OspA2kSEe4jj9zigTG08M21FTqIt7eWgsaoUcG+tNcfeddY45UWXSJjUlssakgy/AwydPL7cI0+22L82O4Cw8LnmWcptU+s2A2RdRW50+nBi2x9VvJtIo5bhkbSX+dWQw5ojqtqHUlpdHUsplKNVrwvuGojnab0Vjaf6sv6tLSvXY0VyK373dOeOJXzwO9VhRW6iDaYaTeZmMocygwaPXbsR7l5Xijr8eiTmMxO7x4/4X27C5vhA74ryI8J7GYvzoirXIU8lx9Rl1SX0diTprSTEYA15vS73vLBjk6Bp3znjxR6dSYHHJ3CzaHbeHFlDHG5wZtBi1e2fdxbXQDYWGaST6XtxQnAceY5x+n8UV11CtapOQOUu2b3HU7kEgyFE+l2WNoV65p/b34pK1lTGHNa2oDGWXEyxt3NUxDr1GgS+/v0mohIizomUuiBct48qclYlDQTJf2iiueymKM/seVXs74HQCDzwA3HBDfIFZezvw7LPATTcBmrm7iJAJcZ0NMsaUEAKzxzjnTwNYDKABwLuMsU4A1QD2M8bKp38s5/wRzvlGzvnGkpIS6Y6cAJjMnBk0p/dszJXmCuFFs2Vg8kUjXCef5M4wg0aJW3c04q2TY3jlePSgnnOO9iFbXGP0RXVFuqhji08M27FEwgEDWxcVoXXQFldJWTJj9EXV4XH6whv7y8eHsabaGNeL/VyIZ5x+qv1mwOTV6pl6Y/b3hPrNYrz5R3P5hhp4/EE8++7AjI9pG7IhTyVPKvMZTUWBJmbP2ZH+CSyvnLnfLNJnzlmEMYcXT6dQznO4z4rV1TOXUIo0Sjke/MQGXLy6Anc/14IHXmyPeqL4i9dOYdTuxdcvak7o5/1fayrx7p3vx5Yks6uJKsxTYVWVUZK+s36rsGg4VmZ+RaUhXLKaTmMO4YQw3hOrcMmwjbJnsQxOeFCexDANMZs601CQXrMLVTHG6IuqTVrYPf7wBdtEia85lXNa1ii8ZqoVMtx+QXPMxxboVKgq0CZ8AWPXqTFsqi/EhSsroFcr8NS+7CltHLF5oFPJkaee/fxtSYk4Tj/zfXN7u4Rs5NqaxN5Pw8S+MfHfyr33xjcG/4EHAKUSuPnm5D5vDolnWiMD8EsALZzzewGAc36Yc17KOa/nnNcD6AWwnnM+mNajJaexOH3QqxUp7eZKVVNZPhibOrGxT5wwlcIJ68e31KGhOA/ffa4F/igLgUdsHky4/QllLKKN0/cHgugYdUjSbybaGlqOO1u/EuccnWNCL0oyJnfFuDBq9+BgjwXnZXhKY6SqAi0YA7rHZg42Uu03A4RVEiqFDMO26OWTB7rMkDFgTU1BQs+7utqIprL8mKWNbUM2LCnTJ7RAPJZKo3bGnrPhCTdGbJ6Y/WaRtjQUoqE4Dy+3DiV1LKN2D/osrvC+q9ko5TL8+KPrcNn6atz3Yhu+/+/WKf/Whm1u/OL1U7h4VUXMq+QzmevXubMbi3Ggx5Lycl+xp2j6AupIKyuNGLC6MTpLCXCqxAtGiQwEAWa+8EEEg1ZXwiWNQMQ4/SjBWTDIMWCNr3dbrFJItu9M/PnO5UCQKpMWRq0SN29bEtfXuDzBCxijdg9OjjiwuaEQGqUcF62qwL+ODMDp9ady2JIZjWOMvsioU6JUr86Kcfp7O80ozlclXemCn/4U6OoCvvxloazR7QYuuSR2gGY2A7/+NfDxjwNl2XOOky7xvNOdBeBqAOcxxg6G/rsozcdF4jTh8sGYqV0TITqVArWFOhwfmryiJWbOEt1xFkmlkOGrFyxF+7AdT0QZNJDIpEZRXZRx+j1mF7yBoKTB2epqI3QqeczSRs45/nl4ADa3P6lhIMBkZrLX7MIrx0fAOeIuFZsLGqUc5QZNzMyZGMBuSWG6JGMM5TGmyu3vtmBpuSGuK5TTn/eKjTU42GOZcQFo25ANSxPI3s6mMpQ5i5Z1Eq8ar4gzc8YYw6Z6E/Z2mZPqtRAnMMaTORPJZQz/95HV+MQZtXj41VO46+9Hw5/7gRfb4fUH8ZXzlyZ8LJlwdmMJAkGe0GqMaDpGhdeqmJmz0FCQdJc2joVe++LZcwZMDrigoSCxDSa4gFpk1Clh0imj9kIP2zzwBXhcFSjhKook+876w8HZ3GXO1Ao53v76efjCjiVxPX5FpQEdow44PPEFV2K/mfjecun6Kji9Afz7SHbkEUZsnrgmNYqayvRZsYh6T+c4NtUXJr9y4Te/AbRa4M47gR/8ANi6FfD5gOeem/ljfvELoQzyttuS+5w5Jp5pjW9wzhnnfDXnfG3ov+emPaaecy7dQhgSt5Qm5kiouVyP1oiyxl6LCyq5LK5G11jOX1GOjXUm/Oj5ttNekMUXqSUJnBg3RBmnL+WkRpFSLsOm+sIZh4K0DdnwiV/uwi1/PIDmcj0+uCa56XNqhRxlBjV6zE7sbB1GqV4d94n7XKkxxR6n/86pcZTq1SkPYyk3aKKeQAaCHAd7LNhQV5DU835oXRUUMhb1AsGY3YNRuxdNEkxqFFUYtfD4gzBHKU8SrxrHW9YIABvrC2Fx+nBqNPErru/2WCFjwMqq+IMzQOhD+/YlK3HDOYvw27e78NWnDqF9yIY/7+nBVVtqZxyMkW3W15qQp5KnXNrYMeqEVin8W53Jigpx4EF6SxsnM2fx9pxR5mw2nHMMTXiSypwBQmljtLJGsQIl1gJq0eSus+SCswGLCxqlbM7PJ3QqRdwn+SsrjeAcaB2M7wLGrlNj0Knk4devTfWFqCnUplTmLaURmyehc6QlpfloH7bP2T7EaAasLvSaXdhYn+TFVLMZOHYMuPZaID8fUKmAv/xF+PO//gU4opT3+nzAT34CnHcesGZNal9Ajsj8rG2SEovTm9FhIKKl5QZ0jjnCgwf6zC5UFmhSLvVijOEbFy/DqN2DR6YNGWgftsOoVSb04lYXZZy+GJyluoB6ujMXF+HEsB3DEQGD1eXD//7jGC584HUc6ZvA/16yAs9+/j0J78aJVGPSoWPUgdfaRnBec+mcLRCNV03ELpvppOg3E5XNMFWufdgGu8efcL+ZqDhfjfOaS/H0/j74ppXXisNApAzOKkPT0qL1nR3pm0B9kQ56Tfz/5jeG9rrt6TQnfCyHei1YUpqfcMYREP7tfv3CZty6oxFP7OvFpQ++Ba1Sjs/vaEz4uTJFpZBh6+IivN6e2rXHzjEH6op0MX/HjTolagq1OJrmcfrjDi/UChl0qviGHxm1SmiUMprYGIPZ6YPXH0z6dbyhKC/qOP3eBHq3jVolDBoFesaTK2scmBB2nGXb+0ekRLPLuzrGsaHOBGWoHFomY/jwumq8eXIUA9bMTz0cSaCsERCGgji9gZgDo9JNfB/ZnGxw9oc/CGWMN9wweVtNDfDHPwpB2003CT1pkZ56Cujtnbp0ep6j4CzHWV0+FGgzN0Zf1FyuR5BPNqsmO0Y/mvW1Jly8ugKPvHZqyglC+5A91O8W/5tJTZRx+u3DNpQZ1DAkcMIbj62LhR6qt0+NIRjkeHxPD3b86BX8+q0OXLmpBjv/exuu2Vqfch9NtUmL/d1m2Dx+nNecPSWNotpCHQYn3FEnBkrRbyYq06sxaHWfdlVxf5cFQOLDQCJdvrEGo3bPacNpxMlZUmfOgOjB2dEBK1YkmMVqKM5DUZ4KexMMzjjnONRrxeo4+82iYYzhi+9rwtcvbIbN7cdN2xYnVMaTDc5uLEHXmBNdMRYFz6Zz1IFFJbNnC1dWGhOeRpeoUbsHRXmquF83xZLhWLv3FrrwGP0kSwLri/MwOOGGyzv1NVIcmx5v77aw6yz5zNlcljQmo9ygQWGeKq6VExanF8eHbKcFEZetrwLnwDMHMps98/gDsDh9iQVnpeJQkMyVNu7pGEeeSo5lFUm853EOPPIIsHEjsG7d1Pve9z7grruA3/8eePTRqR9z331AUxNw0cLpqKLgLMdZXT4YsiBz1hzaudQSKjdIdgH1TL56fjP8wSDufb4NgHDi2DZsw5IEx5dHG6d/MoFx/IlYUWmEXqPAE3t78eEH38LtTx1CXVEe/nHLe/DdD6+Ku6xoNtUmHTgHVHIZzlpSLMlzSqm2SAvOEXU/y+R+s+T7zUTlRg08/mB4gqloX5cZhXmqpPv6AGDb0hIU56vxxLTBIMcHbTBoFDHL1RIl7hmafjJsdfrQM+6KexiIiDGGDXWm8IStePVZXBhzeBPqN5vJjecuxmtf2Y6bty1O+bnm2tmNwr+pZLNn/kAQ3ePOmMNARCurjOgac6Y8gCSWcYcXRQkGyGUG2nUWy1CSC6hFYpnv9L6zPrMLJp0y7sx1tUmLnhQGgszlMJBkMMZCU01nz5zt6TSDc5w23bWuKA8b60x4en9fRssDx0IrLRILzoTzlBMZHAqyp3Mc6+tMyV1Ufucd4MgR4MYbo9//zW8C558PfP7zwP79wm1vvw3s3g3ceisgWzghy8L5SuchzrmQOcuCnrO6ojxolDIcH7TB7Qtg2OZJesdZNLVFOlyztR5P7OtB6+AExhxeWJy+hIaBTB7r5Dh9zjlOjjgkHaMvkssYtjQU4o0To+i3uHDvFWvw5Ge3Jty/M5uaQuEN9YzFRUmVn6VbrHH6UvWbAZGLqKdOuzvQbcb62oKUynWUchkuXV+Fl1uHp0zTaxuyoalML2kpUHGeGiq5DP3Tym6ODghXi5PpKdxUX4iuMWdC49AP9QqfL5XMWaTaWcr6slVDcR6qCrRJ9531WVzwB3lcfXZiL+GxNA4FGXd4E74wVG6M3s9JBANJLqAWzTSxURijH3/AVGMSMmeJBh2BIMeQzZP1mTNA+DfSNmSbde/erlNjUClkUS8uXbq+GieG7eHXuEwQ30cSacsw5alQnK9G62BmMmdWlw/Hh2zYWJfkxdRHHhF6yz760ej3y2RC2aNGA1x8sdCfdt99gMkE1NcD99yT9LHnGgrOcpjTG4AvwLOi50wuY2gs1eP4oC38RiVVWaPo8+ctQb5age891xoun0xkx5kocpz+4IQbdo8fSyQsS4t023ub8NULmvHyl8/Fpeur03JyKjaC78jCkkZg5kXUUvabAdGnypkdXpwadSQ1tn26yzdUwx/k+GuoHIZzjrYhO5rKpf3dkckYyo2a8KJPkdiLlExwtqFe+Pr3JVDaeKjXCqWcJVe+Mo8wxnBOUzHeOjEWdaXHbE6FTrjjuQAhZkXjKdtK1pjdG/ekRlG5UYOhCU9GMw3ZbHDCDcYSy4JEqg8NquqYnjmzJFaBUm3Swu0LYtQ++37NSCM2YQG1mLXPZisqjfAF+KzLmHd3jmNdTQE0ytN7Ky9eXQGVQoan958+5GmujITWvhQn+DuzvNKQ1os3sezvErKRmxqSeD+1WITBH1ddJQRoMykuBu6+GxgcBLZtA55+WsimXXstsGlTsoeecyg4y2Fi+VZBFgRnQGhi4+DE5AJqCcsaAWEJ5efPa8SrbSP4zVsdAJDQjjNR5Dj98KTGNGTOAKFM6aZtixMa4JCozQ2F+Mr5S3HZhuq0fY5UlOSroVHK0D02NTiTst8MmLxqPRRRDnggtHx6Q13qwVljmR5rawrw+N4ecM4xbPPA6vKhKQ0lsRVGzWkN60f6ragwahIuSQOEk361Qoa9XYkEZxY0lxugVsQ3OGI+O7uxBDaPH++GVgskQsyGxFPWWKJXo8ygTus4/aQyZwYNvDNMECXCa05xvjo8eCJReo0SxfmqKZkzznmoPSD+CpTwhbAE+87ELH0uZM5WVs4+FMTm9uFIn3XGhfVGrRLvW16Gv7/bP2sGLl3E4CzRgH5FpQHtw7NnDtNhd+c4FDKGdcksn37sMcDlmjoIZCaf+xxwyy3AoUNCz9nzzwOPPw5s3574581RFJzlMEvojTIbyhoBYGm5HqN2b/gEJpUdZzO55sw6VJu0+M/RIejVyfX6RI7TT8cY/bmmlMvwue1CVjEbMcZQY9KdVtYoZb8ZMPkmF5k5299lgVzGJOmbAoDLN1ajbUgoh2kLNWVLnTkDgMoCLfqnZ876J7AiwX4zkUohw5qaAuztjK/vLBjkONxrlez7luvOXFwEGQNea0u876xz1IF8tQLF+fEFRCsrjWnLnLm8Abh8ARTGeSwi8cJHNky4y0aDE+6kSxpF9dMmNpqdPrh8gYQqUCbH6Sf2cxKz9NnecwYI36c8lRxHY/wb2ddlRpDH3p35kfXVMDt92Hl8OB2HOatw5izBf4vLKwzwBXj4/Wcu7e0cx8oqI7RxTnoN4xx4+GFgwwZg/fr4PubHPwa2bBE+9nOfW1CBGUDBWU4TM2fZMBAEAJrLhStaL7cOQ8aSb46ORa2Q4/YLmgEI+82SKYeLHKcvjuNP9AWSJKa2UHdao7qU/WaAsPDapFNODc66zVhWoYdOJU3g+sE1lVArZHhiXw+OD0o/qVFUEerxCYSWNzu9fpwcsae0w25TvQlH+yfg9M6+wLVjzAGbx481EvWb5boCnQqrqwvwWhJ9Zx1jTjQU58X9WrWi0oCTI/bTJvdJYcwhnBAmWtZYZhT7OTPTd2Zz+/C3g9mxmyqaoQl3SutQgNCus4iyxmQqUMKLqGdYXTKTgRzKnMlkDMsqYg8F2dUhZHhiTeg9u7EYxfkqPBVlf+VcGLF7YNQqE65MEN8Djg3MbWmj2xfAuz1WbKpPImu2ezdw+HB8WTPRK68AJ08Cd9wBPPggsHNn4p83h1FwlsOsLqGuPBtG6QNAc6g3ZX+3GWUGTdIlHrP54OoKvHdZGd63vCypj48cp38iNKkxFwcV5BJx15nYsyJ1v5mozKAJ75XzB4I42GNJaYT+dAaNEheuLMffD/bjcJ8VRaEGbalVFmgRCPLw1dWWARs4T3wZdKSNdYXwhxZyz+ZQKPu9uoYyZ6JzGovxbo8F1gRL+zpHHQkt3V5RZUSQT06+ldLkAurEfmfFk/ZBq2eWR6bHX/b04NY/H0xpnUE6DU64Uw5sGorzMGLzwO4RLp6EF1AnkDnLUytQmKdKPHNmdUOrlGdF/3o8VlQa0DIwgWAweg/krlNjWF0dO8OjkMtwydoq7Dw+HP53MZdGbIntOBPVF+VBp5LPed/Z4T4rvIEgNiWz3+zhh4G8POBjH4vv8Tt3AldcIZQy/u//Cv+/4ooFFaBRcJbDxLJGY5aUNRbnq1GcrwLn0vebRWKM4dFrN+LmbUuS+niVQoYqkxadY06cHLYnNfGRJKa2UAe7xx/uWZG630wUOVXu+JANTm9A0uAMAK7YWIMJtx//PDSQ1ECaeIQXUYeuaB/tT35So2h9rQmMxTcU5N0eK7RKedp6MXPR2U0lCHLgrZPxlzZ6/UH0mp1oSGCNgxiAxyrbStZYODhL7IJeSb4aMoaMTWwUswRdY8nt8Eont0/YV5VqpUj9tImNYoCVaHtAjUmb8K6zQasbFQWanLlIuaLSCIc3cNrqAUAo3T3UO3O/WaTL1lfDF+B49lB/Og4zplG7J6FJjSIxczjXwdnuDqEkfmOiwZnVCvz5z8DHPw7o46wy2bNnao/Z9u3C3/fsSexz5zAKznJYtg0EAYS+M0D6SY1Sqy/Kw4FuM8Yc3pzuN8sV08fpS91vJio3aMJX9/d3WwBIMwwk0hmLilBt0sIf5FiapimfYu+H2AtytG8ChXmqlK7OG3VKNJXqsSeOoSCHei1YWWVIeUH6fLK2pgD5agVeS2DfWfe4E0GOhDJnlUYNCnRKHOmT/uRL3K2UaFmjQi5Dcb4agxnqORNLiKOt48g0cQF16mWNk73QgBCc5akSz2ZVF+oSzpz1W7N/AXWk5TGGguzvNsMf5Ngco98s8nmay/UZKW0csXkSntQoWlFpwLEYmcN02Ns5jiWl+YnvZxUHgcy02yya228/vcds+3bh9gWC3nlzmMXlg0LGoEu0OTONxL6zdGbOpFBflBd+A1tMwVna1RZND86k7TcTlRk0GHN44AsEcaDLjOJ8teSDaWQyho+EJmM2pik4qwwFZ/2hxd1H+q1YUWlI+cr2xnoTDnSZw71s0fgCQRztn8CqqoKUPtd8o5TLsHVxEV5rG4l7pHx4UmMCv+eMMaysNIb32klpXOw5S6LHVshKz31Zoz8QDK9OSXQK4VwQs4lSDAQBJn9n+izCjrNE/81Xm7ToM7sSOnHPhQXUkZrK9FDKWdTgbFfHOGQM2BjnRbmPbKjGu71WnJhlNL/URmzJZc4AYSiI3eOfs4sVgSDH3i5z4v1m4iCQ9euFYSAkbhSc5TBxAXU2lSLkTOYs4mSJSrfSr8Y0uessXf1mgBCccQ4M2zzYL8Hy6Zl8bHMttjQU4tymEsmfGwAMWgV0Kjn6rS54/UG0DdmSntQYaWO9CTaPP5yJiKZ9yA6PP4g11G92mnMai9FncaEzzvI6MQvSEMcY/Ugrqgw4Pij9uOwxhxcquSypya5lBs2UNRVzpWPUAW9ov1zvePZNixSHpJQbU+s9zVMrUKpXoyM0sVEYo5/4+2iNSQdvIIhhW3yBtD8QxJAEPXNzSaWQoalMHy73jrTr1BhWVBrjXl/zX2srIZcxPLV/7gbOODx+OLyBpPfiie8FczUUpG3IBpvbn3i/2Z49wjj8RAaBEAAUnOU0q9OXNZMaRRvrTFDKGValMLhgLojj9LVKedZn+eYDrUqOEr0a3WPOtPWbAZMnSMf6J9A55sR6iUsaRWUGDf5y49bwXiGpMcZQWaDFgMWNtiEbfAGOlVXJ95uJNtYJb677umYeqR8eBkKTGk9zTigYfz3OqY0dow4U6JQwJVgKtDK0aFfqcdnjdmHHWTIXLCoi+jnnUkvoQkKZQT2vyxoB4aKhGNCLmbNEhSc2xpllHLZ5EOS5MUY/0opKYWJjZBbb4w/gQI8l5gj96Ur1GpzTWIy/HuiLWVEgpVF7cjvORI1l+ZDLWNTgNB32hFawxBWc3XPP5OCORx4RBoFUVQm3k7hRcJbDrC5fVvWbAcCiknwc+db5WX9iJ47TX1SSB5ksezKP81mNSYseszNt/WbA5AnSv44MAIDkw0DmkriIWmz8liJzVm3Sosygxp4YQ0He7bXCoFGgPoEhFgtFXVEeagt1ce876xxzxLV8eroV4Z4aaU++kllALSozaGB1+dIy4j+W1oEJKGQM25pK01rWGAxy3PLH/eHXp3gNTriRr1bEnamJpaEoD52jDtg9flhdvvDeskSIF4ziHQoyEAouKwpyJ3MGCK+H4w7vlAsG7/ZY4fUH4+o3i3Tp+moMWN1480TiewyTkewCapFGKUdjaX5al9VH2tNpRrlBE1+LwKZNwmTFZ58F/vQn4NxzgU9+UridxI2CsxxmcXlRoMuOMfqREt3bkQniOH2a1Dh3aguFRdTp6jcDJvs+Xjw2BIWEy6czodKoRZ/FjSP9VuSrFaiTIEvHGMPG+kLsizEU5FCvBaur01MOOh+c3ViMt0+OwuOfPUjpHHUm9XteX5QHo1YZ8+eUjDGHN6l+M2Dy39ZcZ89aB21YUpqPRSV5sDh9mHAntsogXr1mF549NIB/vJvY5L5BqxtlBmnWadQX52HM4UVrqFwtmaoO8WN64iwBzaUdZ5HCFzAiBufs7hAC60SDs/ctL4NJp8SfdndLd4AxhDNnKaxhWV45NxMbOefY0zGOjfWm+N4TxMmKH/sY4HQCb701dfIiiQsFZznM6vLlzF6SbKNSyPCNi5bh6q31mT6UBaO2UId+iwtvnxxNS78ZIIwIV8oZJtx+rKg0QKPM/gsFM6ko0GDU7sGBbguWVxgky/BurDOhz+IKDxuJ5PYFcHzQltNBbbpdvKoCDm8Aj77eEfNxbl8AfRZXUpkzmYxhU31heHy1VFLJnJWHd53NcXA2MIHmcn04I5ToguV4nRwRho60xujHjGZwwp3yGH2RWG7/5gkhyEimrFGjlKNUr477+yT+PHOtrHFZhQGMTZ3YuKtjHM3l+oQvWmuUcnxkQzVeODYU3pOZTmLmrFif/MX15RUGDNs84edKl16zC4MT7sQC3u3bhVJGALjlFgrMkkDBWQ6zOCk4S8X1Zy+SfMw6mVlNoQ5BDozavWnpNwOEzFCpXjhRWpfDJY2AsIgaEJZ/rpCg30wk9g3sjZKVOTYwAX+QZ31ZciaduaQYF64sx49fao+5FFncySWOSE/UloZCdI45wwMnpCBFcCbl8czG6vSh3+pGc4UhvI4j3oxQosTg7PigLaFJh0NWtyT9ZsDkoCqxvK46yX7oapM27nH6/RY3dCo5DJrEh8RkUp5agYbiPBwJlf76AkHs6zIn1G8W6WOba+EPcjy+t0fKw4xqxOaBjAFFCS6DjzRXQ0HEfjOxXzkuO3cCY2PAbbcBDz20oJZHS4WCsxwVCHLY3H4KzkjOqI0oy0tHv5lIPIlM1zCQuVIZcSVbin4zUXO5HjqVHHs7T8/KHOqxAABNapzFnR9cAaVchjv+dnTGsfodoZHoi4qTK53eEvo3skui7JnbF4Dd4094x5koE2WNrYPCiWdzuT488TXRBcvxEoMzu8ePvihZ5WiCQY5hmyflMfqiukIhONvfbYYqtFsuGTWFurj78wYnhB1nuVjGvKLSGC7tO9JnhdMbwOaG5C78LSrJx5mLi/Cn3T1pHwwyYvegME8NeQrVEMvT1Jc63Z5OM/QaRXgS96x27hR6zh5/HLjvPuH/V1xBAVqCKDjLURPiAmodBWckN4i7ztLVbyYST5TW1xak7XPMhcgGfSkmNYoUchnW15qiDgU51GtFiV4t2cnmfFVu1ODL72/Ca20jePbQQNTHiFP3ks2cLa8wIF+twK4EB1TMZNwhLKAuTPJqfZ5aAb1aMadljWKJYXO5AUadEnqNIm0TG08OO8IrBuLNRow6PPAHuWRljVqVHBVGDfxBjsoCTdKlzNUmLQasbvgDs69i6Lfk1o6zSCsqDeizuGB2eMMXMRLtN4t01ZY69FlceK0tvmmsyRqxeZIeBiIyapWoNmnTPhRkb+c4NtSZ4g8k9+yZ2mMm9qDt2ZO+g5yHKDjLUZZQcEaZM5IryvQaqBWytPWbiTbUmbCmpiDnVySImTO1Qib5Lr4NdSYcH5w4bbjCu70WrK4y5uRV9Ll2zdZ6rKoy4n+fPQar6/QhFZ2jDhTnq5Ke4qeQy7ChziRZ35kYnCU7EAQAyoyaOQ7OJlCgU4YHbtQW6tLac3ZecykYA1oH4us7G7IK/T5SXswQexRT2RVaY9IhEOThSYyxDFhdOTcMRCQOBTk2MIHdHeNYVJKXUtDzvuVlKM5X4bFdXVIdYlQjdm/KwRkgfP0taQzOzA4v2oftie03u/3203vMtm8Xbidxo+AsR1kpc0ZyjEzG8NDVG/CV85em9fN86j0N+Nvnzsr5AEOrkqNAp0RzuR4KubQv1ZvqCxHkwIFuS/g2m9uHU6MO6jeLk1zG8N0Pr8KY3YMf/uf4afefGk1ujH6kzQ2FaB+2Y8yeetP/mBicJVnWCMz9rrOWARuay/Xhf8s1Jh164uylSoTZ4cWYw4vV1UbUFerC5ZSzEScdSpU5Ayb7zqoLkp/OujK0Z/Sfh6NndUW+0LLqihy9kCWWex/qtWJPxzi2JFnSKFIpZLhiYw1ebh2OOjBJKqM2D4pTuEgiWl5hRMeYAw6PX4KjOp3Yl5zw8mmSMgrOcpTFKbzRGrXZN0qfkJlsX1qatsXN89Fl66vxkY01kj/v2toCyBiwL6Lv7EjfBDgHVlO/WdxWVRtxzdZ6/GFXFw6G+vVEnaOO8Il2ssTezD1R+gMTNe4QArxkB4IAwq6zuRoIEgxyHB+0obl8sqS3plCLnnHnjH1+yRL7zRaX5KO53BD3xEbxeyFl5kyc2JhK5mxllRHnNJXgkddOxTxxH7Z5wHnujdEXFeapUGHU4Kn9vbB5/EkPA4n0sc214AD+vCc9g0E455KUNQJC5oxzxH0xIVF7Osehkstoem8GUHCWo6xU1kjIvHfHB5bj6jPqJH/efLUCyysNU/rODvVaAABrKHOWkC+/vwmlejW+/vThcI+Pw+PHsM2Tcm/lqqoCaJQyvHMq9eBszC5mzpI/KSw3aDBs86R9YAIAdI874fIFsKxichBBbaEOHn9Q8vHhkcHZsgoDOscccHpnz0YMTrghlzEUpbCvarpwWWOK2axbdzRi3OHF79+ZuURvMEd3nEVaUWnEiWHh57dFgkFTNYU6nNNYgr/s6Y6rZy9REy4/vIFgSjvOROIU33T1ne3pHMfqamNOr6TJVRSc5SgqaySEpGJjXSEO9ljgC52AHOq1otqkTSmzshDpNUrc9cEVaBmYwK/f7AQwOQwk1eBMpRCGt0jRdzbu8EIhYzBokx+ZXmbUIBDk4SW66TQ5qXEyc1YtjtOXeGLjyREHVAoZqkxaNFfowbkwUn82g1YPSvWpTd2bblN9Ic5uLMbWxamV6G2oM82aPeu35OaOs0hi31ltoU6yr+OqLbUYmvDgpdZhSZ4v0ohd+J5LkTkrN2hg0imnLOKWissbwOFeKzZSSWNGUHCWo6xOypwRQpK3sd4Ely8QHkX9bq+FsmZJumBlOc5rLsW9L7Shz+JC52hox1mKPWcAsKWhCC2DE+HX/GSNO7ww5alS6sUMj9Ofg6EgLQM2MAY0lU1mzsRx+lJPbDw5bMei4jzIZQzLQsFgPKWNQxIuoBaZ8lT4/ae3hPccpmK27Fl4AXVBLmfOhJ9XKlMapzuvuRTlBg0e29Ut2XOKhkNZXymCM8aYsE4gDbvODvZY4A9ybG7I7ZU0uYqCsxxlcfmQp5JDKfGgAELIwiAuFd3bZcaY3YNes4t6C5LEGMO3/msFODju/NvRlMfoR9rcUAjOU+87G3N4UxoGAkyWv83FUJDjgzY0FOVBq5osqaoO9WFJvYj65Igdi0MTUatNWuSp5GiN44R3wOrK6rUTs2XP+q0u5Knk0KtzawF1pLW1BVArZNjRXCrZcyrkMly5qQavtY2ge0zaCwGjofLiUgmCM0AITo8P2sIVEFLZ0zkOxoANtZQ5ywQ6s89RFqePsmaEkKSVGzWoNmmxt3Mch/qERaY0qTF5NYU6fPG9TXixZQh/2t2NMoMaOlXqJ73ragugksuwO8XgbNzhTblktWwOM2etgxNorpi6+FajlKPMoJZ0nL7HH0D3uBOLS4XgTCZjWFquR0tcmTNP+HuSrWJlzwYsblQUaHN6sm2pXoN9d7wPF6wsl/R5P7q5BjIG/GmPtNkzsV8y2QXj0y2vNMAbCIb77qSyp3McS8v0MFLrTEbMGpwxxmoYYzsZYy2MsaOMsVtDt3+bMXaIMXaQMfY8Y6wy/YdLRFaXD0Yd9YYQQpK3sc6EvV1mHOqxgjFpl10vRJ96TwOay/XoNbskKWkEhIBkTY0x5WXUUgRnRXkqKOUs7Zkzh8ePrnHnlH4zUY1JJ2lZY9eYE0EOLC6Z/HktqzCgdWAi5lRIu8cPu8cveVmj1GJlzwYm3Dk9DESUr1ZIHmBWGLXYsawMT+ztgdcvXVZqxOaBUs4ku7ge3vUm4VAQfyCI/V1mbKynksZMiSdz5gfwZc75MgBnAPgcY2w5gP/jnK/mnK8F8CyA/5e+wyTTWV1eGFNo7CaEkI31hRixefDsoX4sKs5LemEyESjlMtz94VVgDFgk4eLwLQ1FONI/AXsK+4xG7Z6Ur9bLZAyleg2G0pw5axuygXOguVx/2n21hTr0SrjrTMw4LI74eTVXGDDh9qM/xtcpZg+zuaxRNFP2bMCSuwuo58LHt9Ri1O7F88cGJXvOEZsHJflqyYLJhuJ8aJQySSc2tg7a4PAGaL9ZBs0anHHOBzjn+0N/tgFoAVDFOY/8TcgDkP7ZuiTM6vKhgHacEUJSIF4ZbR+20zAQiWyoM+HRazbi5m2LJXvOzQ2FCAQ59nWZZ39wFF5/EDa3X5JJnOVzsIhaHMaxrOL0zFl1oQ4DVpdk2YyToeBsUWTmLBQUxuo7E3ecZXtZIxA9e+YLBDFi9+T0pMZ0O6exBNUmLR57R7rSxhG7NDvORHIZQ3O5AccGrJI9pzgdloKzzEmo54wxVg9gHYBdob/fzRjrAXAVKHM2pyxOH43RJ4SkpKlUD71GyMDTMBDp7FhWJumy9Q11JshlDLs7kittNDuFIQSSBGeGOQjOBiaQr1ZE3fVVY9IiyIF+izTZs5MjdlQVaKf0BzaJwVmMvrPwpMMcyTxNz54NTbhzegH1XJDLGD62uRZvnxoL78JLlVQLqCOtqDTgWH/sMtxEvNo2groinSQTQ0ly4g7OGGP5AJ4CcJuYNeOc/w/nvAbAYwBumeHjbmCM7WWM7R0ZGZHimAlCPWc0EIQQkgKZjGFDnZA9W11TkNmDITPKUyuwssqIXUkuo55cQJ16cFZm0GDQ6pbsRDCalkEbmsryIYuyP6xW4l1nJ0ccU7JmAGDQKFFt0qIlRuZMDFCzvedMND17NjlGn07AY7l8YzUUMoY/STRWf1TizBkgDAWZcPslKfe1On1488So5ANWSGLiCs4YY0oIgdljnPOnozzkjwAui/axnPNHOOcbOecbS0pKkj9SEub2BeDxB2mKDiEkZduXlsKkU2J5lBIykj3OaCjEu70WuH2BhD923CFh5syohtMbgC2F/rdYOOdoHZhA8wy/j2JGUopx+pzzKWP0Iy2rMMyaOTNqldAo5TM+Jtvc9t7J7JnYT1eZI8FlppTqNTh/RTme3N+b1L+9SIEgx5gEvZ/TragUqh6k6Dt7oWUI/iDHRSsrUn4ukrx4pjUyAL8E0MI5vzfi9saIh/0XgFbpD49EY6EF1IQQiVx9Rh3e+tqOnDrJXIi2LCqEL8CxvzvxvrMxhzC+uyhfiuBMyLSkayjIgNWNCbc/3Pc1XZlBA6WcSTKxcXDCDac3gCWlUYKzcj1OjdhnPCEfnHDnxDCQSOtrTTg3lD0Te+1yJfOXSR/fUguL04d/HRlI6XnGHV4EuTQLqCMtLdNDxoBj/an3nT13eABVBVoqc8+weDJnZwG4GsB5obH5BxljFwH4PmPsCGPsEID3A7g1nQdKJlldQnBGA0EIIamSydiURb8kO22oKwRjk836iZjMnKV+UigGJOnqO2sdFK7+z5Q5k8sYqk06ScoaTw4Ly8KjZc6aKwwIcqB9KHqv0dCEG2U5GNjcGsqe/erNDujVCprQGoeti4qwqDgP3362BU/s7UEwmFxJr7jjrETizJlWJcfikvyUM2cTbh9ebx/BhSvLc3r33XwQz7TGNzjnTBybH/rvOc75ZZzzlaHbP8g575uLAyaAJdTcTZkzQghZGIxaofQ0mb6zcYcXMgYUSPCeIQZnA2nKnLUMCKWES2fInAFAtUmLXgkyZ+KQh8Wlp++kE8f4twxGP+EdtLpRbpD2JHsuiNkzmzv7d7RlC5mM4eGrN6C+SIevPHkIVzz8dlJ7xUbsoeBM4swZEBoKEqNHMh4vtQzBF+C4cBWVNGZaQtMaSXYIZ86o54wQQhaMzQ2F2N9thsefWO/LmMMLk04VdcBGokpDAUm6yhpbB22oKtDCECOjU1MozSLqE8N26DWKqJmMuqI8aJQytA6c3ncmjqEvz9Ex9Le+V+hKoWEg8Wss0+PJz56Jez6yGqdGHfjAT17Ht/5xFBNuX9zPEc6cpSE4W15pwIDVHc6SJ+O5w4OoMGqwjoZDZRwFZznI4qKeM0IIWWi2NBTB4w/icG9ivSVjdo8k/WYAoFHKYdIp01fWODCBZRUzZ80AYWKj2elLaSk3gPAwkGglXHIZw9JyQ7jMMtKIzQPOc2MBdTTra0248ZxFuGRNZaYPJafIZAxXbKzBy18+Fx/fUovfvNWJ8374Kp450BvX9NLRUOZM6oEgwORQkGQyegBgc/vwatsILlhZLslFHJIaCs5y0IQYnFHmjBBCFozNDcJS2F0J9p2NO7ySTGoUlRu14SXMUnL7Ajg16kBzeezJoTUmcWJjatmzmSY1ipaV69EycPr+qMkx+rlX1ij6+kXLcNmG6kwfRk4q0KnwnQ+twt8+dxaqCjT44l/exZWPvIPjMaZ7AkJQr1PJkadWxHxcMsRpu0eTHArycuswvP4gLqKSxqxAwVkOsjh9kMsY9Gn4B04IISQ7Feap0FSWn3BwNubwokiCYSCicoM6LZmzE8N2BIIczbNkzmoKhXK8VEobbW4fhiY8UfvNRM3lepidPgyHytFEYklnWY5mzog0VlcX4Jmbz8J3P7wKbUM2nH//a3jfva/i608fxlP7etE95pwS2KdjAbXIlKdCpVGT9FCQfx0eRKlejQ21JomPjCSDzu5zkNXlg0GjoGk6hBCywGxuKMQz+/vgDwShkMd3fVX6zJkGh/tSH9s9nbhXbLbMWXgRdQrB2amRmSc1isSJkS0DE1MCsXDmjIKzBU8mY/j4llpcsLIcf9rdjT2d43j2UD/+tFtYWl2iV2NTvQkb6gpxYtgu+aTGSMsrjUkNBXF4/Nh5fBhXbqqhksYsQcFZDrK4fCjQ0Rh9QghZaLY0FOEP73TjaP8E1sTRuO8PBGFx+iQNzsoMGozavfD6g1AppCvAaR2YgFohQ32RLubjjFol9GoFes3JL6IWJzVG23EmWhYKElsHbdi2tDR8++CEGyq5TNLvKclthXkqfG77EgBAMMjRNmzDnk4z9nWOY0+nGc8dHgQAfGB1+soGl1ca8HLrEFzeQELrUV45PgIPlTRmFQrOcpDF6YWBhoEQQsiCsyXcdzYWV3Bmdgo9ylINBAGAitAI9mGbG9Wm2IFUIo4P2dBUpp81I8gYQ3WKExtPjtihkLFwFi4ao06JSqMGrdOyEUNWN8qMaqpeIVHJZAzN5QY0lxtw9Rl1AIABqwsHuy1YWZW+5c4rKoXdfC2DE1ifQHnic4cHUJyvwqb6wrQdG0kM9ZzloAmXT5J9NYQQQnJLqUGDhuK8uJdRTy6gljZzBkDyoSAtA7bwfrHZ1BZqUyprPDFsR12RDspZAsHmCkN495powOqmkkaSkAqjFheuqkBNjIsBqVpRKWR6E5nY6PIG8HLrMM5fUQ45lTRmDQrOcpBQ1kjBGSGELERbGgqxu2McgeDs47vHHMIwC6l7zgBpF1GP2DwYtXtiLp+OVGPSocfsjGuEeTQnRxwx+81EzeV6nByxT9ktNzThpmEgJOtUFWhh1CoTGgryatswXL4AlTRmGQrOcpDV5aMdZ4QQskBtbijEhNs/6+huYDJzJu20RiEwGZQwOBO/lmUVsYeBiGoKdXD7hGXQifIFgugac2BxjH4zUXOFAf4gx8lhYYAI5xyDE5Q5I9mHMYblFYaEhoI8d3gQhXmqcLk0yQ4UnOWYYJDDSmWNhBCyYG1ZVARA6DubzZg9FJxJ2HNm1CqhUcokLWsUlz3HX9YoTmxMfChIz7gTvgCPK3O2LHQ84vFNuPxw+4Lh7CEh2WRFpQEtAxPoHpu95NftC+ClliGcv6Is7smvZG7QTyNLPLG3J/ziH4vN4wfnoIEghBCyQFUVaFFVoMWuU7P3nY05vGAMMEk44ZcxhnKDBoMTiWetZtIyYEOJXo2iOEeNi7vOes2J952dDI/Rn3nHmaihOA8qhSw85l8co09ljSQbfWxLLbRKOa7+1S4M22JfPHmtbQQObwAXrqSSxmxDwVkWONJnxVeePISfvHRi1sdaQ5O3aJQ+IYQsXGcsKsLbp8bg9gViPm7c4UGBVil5s3+ZQYNBa3xZK4fHP+tjWgcn4s6aAQhPiYwnQzCdOEY/nrJGhVyGprJ8tIRKxcTgrIIyZyQLLS7Jx68/uQkjNg+u+eXu8DljNP86MgijVomti4vm8AhJPCg4ywL3v9gGANjVMT5rc7PVJfxDo54zQghZuC7bUAWry4en9/fFfJzUC6hF5UZNOFCJ5YVjQ1h513/w+T8dmHG6oj8QRPuQPe5+MwDQKOUo1avRk0zmbNiOUr0aBk1876PN5ZMTG8WAlDJnJFutrzXh4as34OSIHZ/67R44vadfHPH4A3jx2BDev7xs1omlZO7RTyTD3u2x4MWWYTSW5mPU7sGpUUfMx1tcQv8ATWskhJCFa+uiIqyqMuLR108hGGNq45jdK+kwEFG5QYOhCU/MC4qcc9z7QhsKdSq8cGwQO+59FT/4dyts7qlX8ztGHfAGggllzgBhKEgyPWcnRuxx9ZuJmsv1GLV7MGLzYNAqlHJScEay2dmNJXjgo+twoNuMm/6wH15/cMr9b54Yhc3jx0VpXIpNkkfBWYbd/2IbCnRK/OiKNQAw6+4ai5MyZ4QQstAxxnDDOYtwatSBF1qGZnxcOjNnXn8wvOQ6mp3Hh9EyMIGvXdiMl7+8DRevqsCDr5zE9h++gj/u6oY/IJwwtoT6uZrL48+cAUCNSZvwImrOOU4O27G4dPZ+M5GY0Ts+aMPghBtFeSqoFHT6RLLbRasq8N0Pr8KrbSP40uMHp6ze+OehQeg1Cpy1uDiDR0hmQq8uGXSg24ydx0dwwzmLsKrKiOJ8NXadij19SyxrpGmNhBCysF24shzVJi0eee3UjI8Zd3hRKOGkRtFs4/Q55/jpyydQVaDFh9ZVobJAi/uuXIu/fe4sNBTn4RvPHMbFP34Dr7ePoHVgAgoZSyhgAoSJjQNWF3yB4OwPDhm1ezHh9iecOQOEvjjacUZyyUc31+LrFzbj2UMD+H9/OwLOObz+IF44Noj3LS+jiwxZin4qGXTfi+0ozFPh2q31YIxhS0PhrH1nYnBG0xoJIWRhU8hl+PR7GrCvy4x9XadXXQSDHGanF0VpyJyVhQZiDE5ELyt8+9QY9ndb8NlzF03paVlTU4DHb9yKn1+1Hk6fH1f/cjd+9WYHFpfkQ62QJ3QM1YU6BDkwYIl/pH94GEgCwVlRvhqlejVaBmwYtLppGAjJKTeeuxifPXcxHtvVjR8+fxxvnRzFhNuPi2hKY9ai4CxD9nWZ8VrbCG48ZxHy1AoAwJZFhRiwutFrnrmG3uryQaOUQaNM7E2MEELI/HPFxhoYtcqo2TOLy4cgR3rKGsOZs+jj9H+28wRK9GpcvrHmtPsYY7hoVQVe/NK5+MZFzVDKZNiyKPEluDXixMYEShsTmdQYqblC2B81NOEOB6aE5IqvXrAUH9tcg5/tPIlv/vUI8tUKnN1EJY3ZSpHpA1io7n+xDcX5Kly9tS582+bQhvZdHeOoCS3YnM7i9KJAS2P0CSGEAHlqBa4+ow4/e+UETo3YsSgiIzRmFwKneHeHJaJEr4aMIerExv3dZrx5Ygz/c9GymBcS1Qo5bjhnMa47swHJTPqvLQotok5gYuPJYQd0KjkqEixNXFaux69OjsIX4OHAlJBcwRjDdz60ChMuP/55eAAfWluZcKaazB3KnGXAns5xvN4+ihvPWQydajI+birVo0CnjNl3ZnX5aBgIIYSQsGvPrIdSJsMv3+iYcvuYQ5jum46yRqVchuJ8NYai9Jz97OUTKNAp8fEttXE9l0ohgyKJcd7lBg2UcjbjiP5oTo7YsagkD7IEo8HmCj18AR7+vITkGrmM4d4r1+C29zbiCzsaM304JIYFH5zd+/xx3PdC25x+zvteaENxvhqfOKNuyu0yGcOm+kLs7px5YqPF6YORxugTQggJKdGrcen6Kjy5rxej9skyw/FQcJaOskZAmNg4MC1zdqx/Ai+1DuNTZzWES/bTRS5jqCxIbGLjyQTH6Isid7BRWSPJVWqFHLe9t2lKhp1knwUfnJ0cceCPu7tj7omR0q5TY3jr5Bhu2rYYWtXpKeUtDYXoGnPOOAGLMmeEEEKmu/7sRfD4g/jd213h29KZOQOEXV/TM2c/e+UE8tUKXLu1Pi2fc7raQh16YvRpR3J5A+izuJIKzhYV50MpF7JtlDkjhKTTgg/O3re8DCM2Dw72Wubk8933YhtK9WpcNUO5x5aGIgDAro7opY1Wl4/G6BNCCJliSWk+3rusDL9/uxMubwAAMG4XgjNTmoKzCqNmSs/ZyRE7njs8gKu31s1ZhUe1SYfeODNnp0bt4Pz/t3fvwVFe5x3Hv8/qfrGugARIgITBWPiOuDSXYmxwHE9dN60v2Bnb06RjO3XH8TTpxElm3D86/aNtepk0cRvXbeOknoDr2LXb2q4ZG4/jCyDsgI2BGIQBgQ0CCQmQhK6nf+wrtMi77Oqy7Fnt7zOzo+Xd99337PugOXr2nPc5Y6vUOCw3O3T2uGqNnIlIEmV8crbqkhlkhYwNO2Mv4jlZ3m4+zqZ97Xzj2vkxb5JumFVCcV42m2MsRt3R3U+ZpjWKiMgo96+s50R3P8+82wJAe1cvJfnZ55Syn0xVJfl09vSfTQYf29hMXna4vP+FUltRQFtXH129A3H3bT7WBTDm9dSGNcwsoTA3i5J81VITkeTJ+OSstDCH5XUVSU/OnHP8w4Y9VJXkceey2DdJZ4WMxnnlbImSnPUODNLTP6hpjSIi8hmNc8u5qraMJ978mMEhR1tXX1IqNQ47W07/5Bla2rv5r22HWbt0DtOSeM7R5lQkXrGxufU0IYN5leNLzh66fgE/uutqzMZRWlJEJEEZn5xBeGrj3tbTfHy8K2nneLu5jS3723lw1cVx1yhbXlfJ3tbT59zYDSMLUJcWqpS+iIicy8y4/7frOdDWzf99eIT2rr6kFQOBkel9RzrP8JM3mglZePTuQhpe66ylPf59Z83HTlNbUTjudULnTSviukVV4zpWRCRRSs4IJ2cAG3YeScr7O+f4+w0fMbM0nzuWfnZBztGG1ztrGjV6dnI4OdPImYiIRHHD4mrmVRbykzf2JT05qwpGzj443MHTWw9x65IaZpYWJO180QyvCZpIxcbmY13jut9MRORCipucmVmtmW00s11m9qGZfTPY/jdmttvM3jez58ysLOmtTZKa8kIunVmStKmNb+1tY+uBEzy46uKEFv27fHYpBTlZn7nvrKM7nJypIIiIiESTFTK+/sV6trd08NHRU0mr1AgjI2c/3tjMwOAQD6ycn7RzxVJemENxXnbctc6Ghhz7jp1m/vTxTWkUEblQEhk5GwC+5Zy7FFgBPGhmDcAG4DLn3BXAR8B3k9fM5FvTUMW7B07QNmoq4WT4+ab9VBblcltjTUL752aHuGZu2WeSs06NnImISBy3XlNDRVEuQw4qi5OXnBXnZXNRXjadPf387pWzmDvOe7kmwsyoKS/gUJx7zg539NA7MKSRMxHxXtzkzDn3qXPuveD5KWAXMNs594pzbrg80iYgsczDUzc0VDHk4NXdrZP6vq2nzvDqrlZuXVKT0KjZsOV1lew+cpLOYLQMIkbOVK1RRERiKMjN4u4VcwGoKEpucY7hBZn/eNXFST3P+dRWFMad1rj32GkA5s9QciYifhvTPWdmNg+4Gtg86qWvAS9NUptSYvGsEmaV5k/61MZfvnuYgSHH7QncaxZpWV0FzkHT/pHRM42ciYhIIu793DyurC1jydzypJ7nukUzuOe35rKw6qKknud85lQU0tLeg3Mu6ust7d38PFicu36apjWKiN8SXqzDzIqBXwIPO+dORmz/PuGpj0/FOO4+4D6AOXNil5BPNTNjdUMVT29toadvkILc8VVziuScY33TQZbVVYx5KsVVtWXkZoXY/HEbq4OCJR09/ZjBRflKzkREJLaKolyef/DzST/P9266NOnniKe2vICe/kHauvrOKeN/pPMMP9q4h/VNLZgZD69ekNSlBUREJkNCyZmZ5RBOzJ5yzj0bsf1e4HeA612Mr6ycc48DjwM0NjZG/1rLE2saqvjZOwd4a+/xswnRRGza187+tm4eun7BmI/Nz8niqtqyc9Y76+zuoyQ/h6yQ1lgRERGBcys2TivO49ipXv7p9Wb+Y/MBhoYcdyyt5U+uu/iCV5IUERmPuMmZhVdb/Fdgl3Pu7yK23wh8B1jpnItfwzYNLK+r5KK8bDbsPDopydm6poNclJ/NTZfPHF976it47PVmTvcOUBzcdK0pjSIiIiOGF6LecbiTDTuP8tO39tM7MMgfXFPDQ9cvOJu8iYikg0RGzj4P3A18YGbbgm3fA34I5AEbwvkbm5xzDySjkRdKbnaIaxfN4NXdRxkcchMaoero7uOlHUdYu7R23AteLqur4B9f28u7B06wcuF0Onr6VQxEREQkQk2wEPWjz3+IGdx8xSy+uXqBKjOKSFqKm5w5594EomUpL05+c1Jv9aUz+O/tn7Ct5QRL5laM+32e+/Vh+gaGWLt0/PfZLZlbTnbI2LyvjZULp2vkTEREZJSC3CzWNFSRHTIeXr2QS6pTV5xERGSiEi4IkimuvWQG2SHjlZ1Hx52cOedYt6WFK2pKaZhVMu62FOZmc9ns0rP3nXV29zO7THPmRUREIv3LPY2pboKIyKQYUyn9TFBakMOK+soJldTf1tLBb46emtCo2bDl9RVsP9RBT9+gRs5ERERERKYwJWdRrGmoYt+xLpqDRSvHan1TCwU5Wdx85fgKgURaXldB/6Dj1wdP6J4zEREREZEpTMlZFMOVGsczena6d4AXtn/CzVfOnJT1yBrnVWAGr+1uZXDIUVaQO+H3FBERERER/yg5i2J2WQGLZ5WMKzn7n+2f0N03yB2TMKURoCQ/h4aZJbwStEXTGkVEREREpiYlZzGsaajivYMnOHaqd0zH/aKphYVVxVwzp2zS2rK8rpKD7eGl5Eo1rVFEREREZEpSchbDmoYqnIPXdic+erbr05Nsb+lg7dI5BGu/TYpldSNVIzVyJiIiIiIyNSk5i6FhZgmzywrGNLVxfVMLuVkhvnL17EltS2RypoIgIiIiIiJTk5KzGMyMNQ1V/GrPcbr7BuLuf6Z/kGffO8SNl1VTXjS5RTsqinJZWFUMaORMRERERGSqUnJ2HmsaqugdGOLNPcfj7vvyjiOcPDPA2qW1SWnL8rpKAFVrFBERERGZorJT3QCfLauroCQ/mw07j3LD4urz7ruu6SBzKwtZUV+ZlLbcv7Key2tKKcjNSsr7i4iIiIhIamnk7DxyskKsWjSDV3e3sv94F2f6B6Pu9/HxLjbta+f2xlpCockrBBKppryQ2xuTMyonIiIiIiKpp5GzOG5cXM3z2z7h2h+8DkBlUS7VpfnMLC1gVlk+1aX57DjcSVbIuG1JTWobKyIiIiIiaUvJWRxfWlzNuvtW0NLezaedZ4JHD4dOdLPl4zZOngkXC/nyZdXMKMlPcWtFRERERCRdKTmLIxQyVtRXxryXrKt3gCMnzzCrtOACt0xERERERKYSJWcTVJSXzfzpxaluhoiIiIiIpDkVBBEREREREfGAkjMREREREREPKDkTERERERHxgJIzERERERERDyg5ExERERER8YCSMxEREREREQ8oORMREREREfGAkjMREREREREPKDkTERERERHxgJIzERERERERD5hz7sKdzOwYcOCCnTBx04DjqW6EnEMx8ZPi4h/FxE+Ki38UEz8pLv5RTJJvrnNuerQXLmhy5isz2+qca0x1O2SEYuInxcU/iomfFBf/KCZ+Ulz8o5iklqY1ioiIiIiIeEDJmYiIiIiIiAeUnIU9nuoGyGcoJn5SXPyjmPhJcfGPYuInxcU/ikkK6Z4zERERERERD2jkTERERERExANplZyZ2Y1m9hsz22tmj0RsX29m24LHfjPbFuP4CjPbYGZ7gp/lwfavRhy/zcyGzOyqKMc/FZx/h5n9m5nlBNvNzH4YtOt9M7smOVfATx7HZZGZvWNmvWb27eR8ej95HJOvBr8j75vZ22Z2ZXKugJ88jsstQUy2mdlWM/tCcq6Af5IYkxwze9LMPjCzXWb23RjH15nZ5uD49WaWG2xXv+JnXNSv+BcT9St+xiVj+5UJc86lxQPIApqBeiAX2A40RNnvb4FHY7zHXwOPBM8fAf4qyj6XA/tiHH8TYMHjF8A3Ira/FGxfAWxO9fVSXBzADGAp8JfAt1N9rRQTB/A5oDx4/mX9rngTl2JGprlfAexO9fVK95gAdwHrgueFwH5gXpTjnwbWBs//Wf2K93FRv+JfTNSv+BmXjOxXJuORTiNny4C9zrl9zrk+YB1wS+QOZmbA7YT/6IjmFuDJ4PmTwO9F2efOWMc75150AWALUBPxvj8LXtoElJnZzIQ/WXrzNi7OuVbnXBPQP6ZPlP58jsnbzrkTwW6bGPkdygQ+x+V0sA2gCMiUm5GTGRMHFJlZNlAA9AEno7z3dcAzUY5Xv+JhXNSveBkT9St+xiVT+5UJS6fkbDbQEvHvQ8G2SF8Ejjrn9sR4jyrn3KcAwc8ZUfa5g9j/gYHwUC9wN/DyGNo2Vfkcl0yVLjH5OuGRgUzhdVzM7Ctmthv4X+Br5zt+CklmTJ4BuoBPgYPAD5xz7aOOrQQ6nHMDUc6vfmWET3HJVOkSE/UrHsUlQ/uVCUun5MyibBudhcf8xjihE5gtB7qdczvi7PoY8IZz7ldjaNtU5XNcMpX3MTGzVYQ70e+Mtw1pyOu4OOeec84tIvyt51+Mtw1pJpkxWQYMArOAOuBbZlY/hvOrXzmXL3HJVN7HRP3KWd7EJUP7lQlLp+TsEFAb8e8a4JPhfwTDrr8PrI/Y9u/BjYgvBpuODk8LCX62jjrHWuJ/4/znwHTgTxNt2xTnc1wyldcxMbMrgCeAW5xzbWP4XOnO67gMc869Acw3s2mJfKg0l8yY3AW87Jzrd861Am8BjaPOf5zwdMXsKOdXvzLCp7hkKq9jon7lLK/iMizD+pUJS6fkrAlYEFSFySX8R8gLEa+vJnyz4aHhDc65P3TOXeWcuynY9AJwb/D8XuD54X3NLATcRni+blRm9kfAl4A7nXNDES+9ANxjYSuAzuEh4gzgc1wylbcxMbM5wLPA3c65jybwGdORz3G5OLh3AAtXBcwFMuEPnGTG5CBwXdAvFBEu6rE78uTB/RgbgVujHK9+xc+4ZCpvY6J+xdu4ZGq/MnHOg6okiT4IV6/6iHBlmu+Peu2nwANxjq8EXgX2BD8rIl67FtgU5/iB4NzbgsejwXYDfhy89gHQmOprpbg4gGrC3yqdBDqC5yWpvl4ZHpMngBMR27em+lopLg7C04A+DLa9A3wh1dcq3WNCuFLZfwbXdSfwZzGOrydcnGVvsH9esF39ip9xUb/iX0zUr/gZl4ztVyb6GC5xKSIiIiIiIimUTtMaRUREREREpiwlZyIiIiIiIh5QciYiIiIiIuIBJWciIiIiIiIeUHImIiIiIiLiASVnIiIiIiIiHlByJiIiIiIi4gElZyIiIiIiIh74f551MUjqi2vDAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACI4klEQVR4nO3dd3ib1dk/8O+RLO+994pH4iSO4yTOHk4Im4ZNIWWVUaCMUjpoeftC39JfW7qhjFLKTqEEEsIKkARnJ850duIR7733lM7vj0cy3pZkyZLt7+e6fNl+JD060mNLup9z3/cRUkoQERERERGRbalsPQAiIiIiIiJicEZERERERGQXGJwRERERERHZAQZnREREREREdoDBGRERERERkR1gcEZERERERGQHGJwRERERERHZAQZnREQTlBCipc+XTgjR3uf39bYenzmEEAVCiEtsPY6RCCF2CiHutdK+E4QQW4QQ1UKIOiHEV0KIxAHXiRVCfCaEaBZC1Aghnutz2cNCiCNCiE4hxJtD7H+NEOK8EKJNCJEhhIjqc5kQQvxBCFGr/3pOCCGs8TiJiGhoDM6IiCYoKaW74QtAEYBr+mzbYOvxDSSEcJgM92Fl3gA+AZAIIAjAIQBbDBcKIRwBbAPwDYBgAOEA3u1z+zIAzwJ4feCOhRD+ADYB+BUAXwBHAPy3z1XuB3AtgDkAkgFcDeAHlnhQRERkHAZnRESTjBBCJYR4UgiRp58B+UAI4au/LFoIIYUQdwshioUQ9UKIB4QQC4QQJ4UQDUKIf/TZ111CiH1CiBeEEI36WZc1fS73EkL8WwhRLoQoFUI8K4RQD7jtX4UQdQCeEUJME0J8ox9XjRBigxDCW3/9dwBEAvhUP/v3MyHEKiFEyYDH1zu7JoR4RgjxoRDiXSFEE4C7RhlTnBBil/6x1Agh+gYnfe/DWb/PWv1zclgIESSE+C2A5QD+oR/jP/TXny6E2Kaf7boghLi5z77eFEK8or+8WX//UUPdr5TykJTy31LKOillN4C/AkgUQvjpr3IXgDIp5V+klK1Syg4p5ck+t98kpfwYQO0Qu78ewBkp5UYpZQeAZwDMEUJM119+J4A/SylLpJSlAP6svz8iIhonDM6IiCafR6HMgKwEEAqgHsCLA66zEEA8gFsA/A3AUwAuATATwM1CiJUDrnsRgD+ApwFsMgR7AN4C0AMgDsBcAJcCuHeI2wYC+C0AAeB3+nHNABABJUiAlPJ29J8BfA7GWQfgQyizThtGGdNvAHwNwAfKrNMLw+zzTgBe+vH5AXgAQLuU8ikAewA8rB/jw0IINyizWf/RP85bAbwkhJjZZ3/r9fftDyBLP05jrABQIaU0BFuLABQIIbbqg8udQojZRu5rJoAThl+klK0A8vTbB12u/7nvYyAiIitjcEZENPn8AMBT+hmQTijBz40DUv5+o591+RpAK4D3pJRV+hmTPVCCGoMqAH+TUnZLKf8L4AKAq4QQQQCuAPAj/SxOFZSZnu/2uW2ZlPIFKWWPlLJdSpkrpdwmpeyUUlYD+AuUIHIsDkgpP5ZS6gB4jjKmbgBRAEL1j3/vMPvshhKUxUkptVLKo1LKpmGuezWAAinlG/rHeQzARwBu7HOdz6WUu/XH4ykAi4UQESM9KCFEOJSg+sd9NofrH8vzUALczwFs0ac7jsYdQOOAbY0APIa5vBGAO+vOiIjGz0TPzSciosGiAGwWQuj6bNNCqWEyqOzzc/sQv7v3+b1USin7/F4IJTCIAqABUN7n87sKQHGf6/b9GUKIQCiBxXIoQYEKyszeWPS9j9HG9DMoM1iHhBD1UNL4BtVnAXgHyqzZ+/q0y3ehBLzdQ1w3CsBCIURDn20O+n0MGqOUskWf5hk6YOy9hBABUGb4XpJSvtfnonYAe6WUW/XX+xOA/4EyC3li0I76a4ESvPblCaB5mMs9AbQMOPZERGRFnDkjIpp8igFcIaX07vPlrJ8VM0fYgNmTSCiNJ4oBdALw73M/nlLKvqlwAz/Y/06/LVlK6Qnge1BSHYe7fisAV8Mv+tqxgAHX6XubEcckpayQUt4npQyFMsP4khAibuAD1s8S/lpKmQRgCZTZsTuGGWMxgF0Dnm93KeWDfa7TO0smhHCH0pCjbOD96i/3gRKYfSKl/O2Ai08Ocf/GOgOl2YfhftwATNNvH3S5/uczICKiccPgjIho8nkFwG8NTSeEEAFCiHVj2F8ggEeFEBohxE1QZmm+kFKWQwki/iyE8NQ3Ipk2oF5tIA8oMzQNQogwAD8dcHklgNg+v2cDcBZCXCWE0ECZJXIabuejjUkIcZM+XRBQZuwklFnFfoQQ6UKI2fpgsAlKmqPhegPH+BmABCHE7frnSCOUBisz+lznSiHEMn364W8AZEopB82aCSE8AXwFYJ+U8skhHuK7ABYJIS7Rj+1HAGoAnNPf3kEI4QxADUCtb2xiyJLZDGCWEOIG/XX+F8BJKeV5/eVvA/ixECJMCBEK4AkAbw4xBiIishIGZ0REk8/fobRj/1oI0QzgIJTGHObKhNI8pAZKU48b+zSouAOAI4CzUIKdDwGEjLCvXwNIhVLP9DmU1u59/Q7A/+g7JP5EStkI4CEArwEohTKTVoKRjTSmBQAyhRAtUJ6jx6SU+UPsI1h/uyYogc8ufNuy/u9QavjqhRDPSymboTQd+S6U2bAKAH9A/yDyP1CaqdQBmAelQchQrtOP8W7Rfx27SACQUl6AMtv4iv6xrQPwHSlll/72/wMl9fFJ/fXa9dugr/G7AcoxrIfyN9G3PvCfAD4FcArAaSjH55/DjJOIiKxAMJWciIiGI4S4C8C9Usplth7LRCWUxaBLpJT/Y+uxEBGRfePMGRERERERkR1gcEZERERERGQHmNZIRERERERkBzhzRkREREREZAcYnBEREREREdkBh9GvYjn+/v4yOjp6PO+SiIiIiIjIbhw9erRGShkw1GXjGpxFR0fjyJEj43mXREREREREdkMIUTjcZUxrJCIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7MK41Z0Pp7u5GSUkJOjo6bD0UmmScnZ0RHh4OjUZj66EQEREREY3K5sFZSUkJPDw8EB0dDSGErYdDk4SUErW1tSgpKUFMTIyth0NERERENCqbpzV2dHTAz8+PgRlZlBACfn5+nJElIiIiognD5sEZAAZmZBX8uyIiIiKiicQugjNb++1vf4uZM2ciOTkZKSkpyMzMBADce++9OHv2rEXuIzo6GjU1NSNe5//9v/9n8n7ffPNNPPzww/22vfHGG0hJSUFKSgocHR0xe/ZspKSk4MknnzR5/+Phb3/7G9ra2mw9DCIiIiKa6J57DsjI6L8tI0PZPgFM+eDswIED+Oyzz3Ds2DGcPHkS27dvR0REBADgtddeQ1JS0riNxZzgbCh33303srKykJWVhdDQUGRkZCArKwu///3vLbJ/U0kpodPphr3cnOCsp6dnrMMiIiIioslmwQLg5pu/DdAyMpTfFyyw7biMNOWDs/Lycvj7+8PJyQkA4O/vj9DQUADAqlWrcOTIEQCAu7s7fv7zn2PevHm45JJLcOjQIaxatQqxsbH45JNPAAyexbr66quxc+fOQfd57bXXYt68eZg5cyZeffVVAMCTTz6J9vZ2pKSkYP369QCAd999F2lpaUhJScEPfvADaLVaAMrMWEJCAlauXIl9+/YZ/Vj/+Mc/YsGCBUhOTsbTTz8NACgoKMD06dNx7733YtasWVi/fj22b9+OpUuXIj4+HocOHQIAPPPMM7j99tuxevVqxMfH41//+teo+50xYwYeeughpKamori4GA8++CDmz5+PmTNn9l7v+eefR1lZGdLT05Gent77XBt8+OGHuOuuuwAAd911F3784x8jPT0dP//5z5GXl4fLL78c8+bNw/Lly3H+/HmjnwsiIiIimoTS04EPPgDWrQPuuksJzD74QNk+EUgpx+1r3rx5cqCzZ88O2jaempub5Zw5c2R8fLx88MEH5c6dO3svW7lypTx8+LCUUkoA8osvvpBSSnnttdfKtWvXyq6uLpmVlSXnzJkjpZTyjTfekD/84Q97b3/VVVfJjIwMKaWUUVFRsrq6WkopZW1trZRSyra2Njlz5kxZU1MjpZTSzc2t97Znz56VV199tezq6pJSSvnggw/Kt956S5aVlcmIiAhZVVUlOzs75ZIlS/rd50CG+/3qq6/kfffdJ3U6ndRqtfKqq66Su3btkvn5+VKtVsuTJ09KrVYrU1NT5d133y11Op38+OOP5bp166SUUj799NMyOTlZtrW1yerqahkeHi5LS0tH3K8QQh44cKB3LIbH3dPTI1euXClPnDgx6LkZ+Dxs3LhR3nnnnVJKKe+880551VVXyZ6eHimllKtXr5bZ2dlSSikPHjwo09PTBz1+W/99EREREdE40+mkdHOTEpDyV7+y9WgGAXBEDhMv2byVfl+//vQMzpY1WXSfSaGeePqamcNe7u7ujqNHj2LPnj3IyMjALbfcgt///ve9szUGjo6OuPzyywEAs2fPhpOTEzQaDWbPno2CggKTxvT8889j8+bNAIDi4mLk5OTAz8+v33V27NiBo0ePYoF+Cra9vR2BgYHIzMzEqlWrEBAQAAC45ZZbkJ2dPep9fv311/j6668xd+5cAEBLSwtycnIQGRmJmJgYzJ49GwAwc+ZMrFmzBkKIQY9t3bp1cHFxgYuLC9LT03Ho0CHs3bt32P1GRUVh0aJFvbf/4IMP8Oqrr6Knpwfl5eU4e/YskpOTTXrubrrpJqjVarS0tGD//v246aabei/r7Ow0aV9ERERENAm98QbQ2gpccw3w8svKrNkEmTmzq+DMVtRqNVatWoVVq1Zh9uzZeOuttwYFZxqNprf7n0ql6k2DVKlUvfVPDg4O/WqrhmrjvnPnTmzfvh0HDhyAq6srVq1aNeT1pJS488478bvf/a7f9o8//tisLoRSSvziF7/AD37wg37bCwoKeh/LSI8NGNz9UAgx4n7d3Nx6f8/Pz8ef/vQnHD58GD4+PrjrrruGbXPf934GXsewT51OB29vb2RlZY320ImIiIhoqsjIAB59VPn5H/8A8vImVGqjXQVnI81wWcuFCxegUqkQHx8PAMjKykJUVJRZ+4qOjsZLL70EnU6H0tLS3nqtvhobG+Hj4wNXV1ecP38eBw8e7L1Mo9Ggu7sbGo0Ga9aswbp16/D4448jMDAQdXV1aG5uxsKFC/HYY4+htrYWnp6e2LhxI+bMmTPq2C677DL86le/wvr16+Hu7o7S0lJoNBqTHt+WLVvwi1/8Aq2trdi5cyd+//vfw8XFxaj9NjU1wc3NDV5eXqisrMTWrVuxatUqAICHhweam5vh7+8PAAgKCsK5c+eQmJiIzZs3w8PDY9D+PD09ERMTg40bN+Kmm26ClBInT5406rkgIiIioknq8GFg9mygpgaIjFS+PvhA2c7gzP61tLTgkUceQUNDAxwcHBAXF9fbpMNUS5cu7U0RnDVrFlJTUwdd5/LLL8crr7yC5ORkJCYm9kv7u//++5GcnIzU1FRs2LABzz77LC699FLodDpoNBq8+OKLWLRoEZ555hksXrwYISEhSE1N7W0UMpJLL70U586dw+LFiwEo6Zzvvvsu1Gq10Y8vLS0NV111FYqKivCrX/0KoaGhCA0NNWq/c+bMwdy5czFz5kzExsZi6dKl/R73FVdcgZCQEGRkZOD3v/89rr76akRERGDWrFloaWkZcjwbNmzAgw8+iGeffRbd3d347ne/y+CMiIiIaCr78Y+BZ58Fbrvt220TKK1RKDVp42P+/PnS0P3Q4Ny5c5gxY8a4jYHM88wzz8Dd3R0/+clPbD0Uk/Dvi4iIiGgKOXAAWLIE2LgRuPFGW49mSEKIo1LK+UNdNuVb6RMRERER0SSxYwcgxISZKRtoyqc1knGeeeYZWw+BiIiIiGhk27cDKSnAgE7oEwVnzoiIiIiIaOJra1PSGtessfVIzMbgjIiIiIiIJr69e4GuLgZnRERERERENrVjB6DRAMuX23okZmNwRkREREREE9+OHcDixYCbm61HYjYGZwDUajVSUlIwa9Ys3HTTTWhrazN7X3fddRc+/PBDAMC9996Ls2fPDnvdnTt3Yv/+/b2/v/LKK3j77bfNvm+DgoICzJo1q9+2Z555Bn/6059M2o+lxkNEREREZFV1dcCxYxM6pRFgt0YAgIuLC7KysgAA69evxyuvvIIf//jHvZdrtVqTFms2eO2110a8fOfOnXB3d8eSJUsAAA888IDJ92EtPT09djUeIiIiIqJhZWQAUk744GzUmTMhhLMQ4pAQ4oQQ4owQ4tf67X8UQpwXQpwUQmwWQnhbfbTPPac88X1lZCjbLWT58uXIzc3Fzp07kZ6ejttuuw2zZ8+GVqvFT3/6UyxYsADJycn45z//CQCQUuLhhx9GUlISrrrqKlRVVfXua9WqVTAsuv3ll18iNTUVc+bMwZo1a1BQUIBXXnkFf/3rX5GSkoI9e/b0m93KysrCokWLkJycjOuuuw719fW9+/z5z3+OtLQ0JCQkYM+ePSY/xpH2/ctf/hIrV67E3//+997xlJWVISUlpfdLrVajsLAQhYWFWLNmDZKTk7FmzRoUFRUBUGYPH330USxZsgSxsbG9M4lERERERFaxYwfg7g6kpdl6JGNiTFpjJ4DVUso5AFIAXC6EWARgG4BZUspkANkAfmG1URosWADcfPO3AVpGhvL7ggUW2X1PTw+2bt2K2bNnAwAOHTqE3/72tzh79iz+/e9/w8vLC4cPH8bhw4fxr3/9C/n5+di8eTMuXLiAU6dO4V//+le/NEWD6upq3Hffffjoo49w4sQJbNy4EdHR0XjggQfw+OOPIysrC8sHFC7ecccd+MMf/oCTJ09i9uzZ+PWvf91vnIcOHcLf/va3ftv7ysvL6xdQvfLKK0btu6GhAbt27cITTzzRuy00NBRZWVnIysrCfffdhxtuuAFRUVF4+OGHcccdd+DkyZNYv349Hn300d7blJeXY+/evfjss8/w5JNPmngkiIiIiIhMsGMHsGKF0hBkAhs1rVFKKQG06H/V6L+klPLrPlc7CODGMY/mRz8C9OmFwwoNBS67DAgJAcrLgRkzgF//WvkaSkoK8Le/jbjL9vZ2pKSkAFBmzu655x7s378faWlpiImJAQB8/fXXOHnyZO8sUGNjI3JycrB7927ceuutUKvVCA0NxerVqwft/+DBg1ixYkXvvnx9fUccT2NjIxoaGrBy5UoAwJ133ombbrqp9/Lrr78eADBv3jwUFBQMuY9p06b1pmoC3y4iPdq+b7nllmHHtW/fPrz22mu9s3UHDhzApk2bAAC33347fvazn/Ve99prr4VKpUJSUhIqKytHfLxERERERGYrKQGys4FJUJJjVM2ZEEIN4CiAOAAvSikzB1zl+wD+a+GxDc3HRwnMioqAyEjl9zHqW3PWl1ufTi9SSrzwwgu47LLL+l3niy++gBBixP1LKUe9jimcnJwAKI1Menp6LLZfoP9j7qu8vBz33HMPPvnkE7i7uw95nb6P0TBGQHn8RERERERWsWOH8n2C15sBRnZrlFJqpZQpAMIBpAkhelsBCiGeAtADYMNQtxVC3C+EOCKEOFJdXT3yHf3tb8DOnSN/Pf20svr3r36lfH/66ZGvP8qsmbEuu+wyvPzyy+ju7gYAZGdno7W1FStWrMD7778PrVaL8vJyZAysiQOwePFi7Nq1C/n5+QCAuro6AICHhweam5sHXd/Lyws+Pj69M1TvvPNO70zXWJmz7+7ubtx88834wx/+gISEhN7tS5Yswfvvvw8A2LBhA5YtW2aRMRIRERERGW3HDiAgABjQrXwiMqlbo5SyQQixE8DlAE4LIe4EcDWANXKY6REp5asAXgWA+fPnj20KxVBj9sEHQHq68tX3dyu69957UVBQgNTUVEgpERAQgI8//hjXXXcdvvnmG8yePRsJCQlDBjoBAQF49dVXcf3110On0yEwMBDbtm3DNddcgxtvvBFbtmzBCy+80O82b731Fh544AG0tbUhNjYWb7zxhsUei6n73r9/Pw4fPoynn34aTz/9NABlxvD555/H97//ffzxj39EQECARcdIRERERDQqKYHt24HVqwHVxF8lTIyWciaECADQrQ/MXAB8DeAPUGbL/gJgpZRylCkxxfz586Whe6HBuXPnMGPGDONG+9xzSvOPvoFYRgZw+DDQp96JyMCkvy8iIiIimljOnQOSkoBXXwXuu8/WozGKEOKolHL+UJcZM3MWAuAtfd2ZCsAHUsrPhBC5AJwAbNPXGh2UUlq3Cm+oAMwwg0ZERERERFOLod7skktsOw4LMaZb40kAc4fYHmeVERERERERERljxw4gJkb5mgQmfmImERERERFNPVqtUuI0Cbo0GthFcMZW62QN/LsiIiIimsSOHgUaGxmcWZKzszNqa2v5QZosSkqJ2tpaODs723ooRERERGQNhnqz1attOw4LMqmVvjWEh4ejpKQEo66BRmQiZ2dnhIeH23oYRERERGQNO3YAs2cDgYG2HonF2Dw402g0iJkkBXxERERERDQOOjqAffuABx+09UgsyuZpjURERERERCbZv18J0CZRvRnA4IyIiIiIiCaK555TOjTu2AE4OAArVii/P/ecrUdmETZPayQiIiIiIjLKggXAzTcD/v5AWhpw5Ijy+wcf2HpkFsGZMyIiIiIimhjS04HXXwfOnwfU6m8Ds/R0W4/MIhicERERERHRxNHWpnzfs0dpCDJJAjOAwRkREREREU0kL70ECAE89RTw8stKzdkkweCMiIiIiIgmhi++AHbvBr7zHeDZZ5WUxptvnjQBGoMzIiIiIiKaGN57T/n+ox8p39PTlQDt8GGbDcmS2K2RiIiIiIgmhu5uICAAWL78223p6ZOm7owzZ0REREREZP/a24HPPgOuv17p1DgJMTgjIiIiIiL79+WXQGsrcNNNth6J1TA4IyIiIiIi+/fhh4CfH7Bypa1HYjUMzoiIiIiIyL51dACffgpcdx3gMHnbZjA4IyIiIiIi+/b110BzM3DjjbYeiVUxOCMiIiIiIvv24YeAjw+werWtR2JVDM6IiIiIiMh+dXYCn3wCXHstoNHYejRWxeCMiIiIiIjs1/btQGPjpE9pBBicERERERGRPfvwQ8DLC7jkEluPxOoYnBERERERkX3q6gI+/hhYtw5wdLT1aKyOwRkREREREdmnjAygoWFKpDQCDM6IiIiIiMhebdwIeHgAa9faeiTjgsEZERERERHZn+5uYPNm4JprAGdnW49mXDA4IyIiIiIi+7NrF1BXB9x0k61HMm4YnBERERERkf3ZuBFwcwMuu8zWIxk3DM6IiIiIiMi+9PQoKY1XXw24uNh6NOOGwRkREREREdmXPXuA6uop06XRgMEZERERERHZl40bAVdX4MorbT2SccXgjIiIiIiIbO+555R1zbRaYNMmJTDLzFS2TxEMzoiIiIiIyPYWLABuvhl44QWgshKYMUP5fcECW49s3DjYegBERERERERITwfef1+ZMVOrgZdeUtIb09NtPbJxM+rMmRDCWQhxSAhxQghxRgjxa/12XyHENiFEjv67j/WHS0REREREk9bOnUBXl5La+NBDUyowA4xLa+wEsFpKOQdACoDLhRCLADwJYIeUMh7ADv3vREREREREptu4EXj2WcDZGfif/wFeflmpQZtCRg3OpKJF/6tG/yUBrAPwln77WwCutcYAiYiIiIhoksvKAm6/HXBwAD7+GPjNb4APPlBqzqZQgGZUQxAhhFoIkQWgCsA2KWUmgCApZTkA6L8HWm2UREREREQ0OVVVAevWKTNm778PXHaZsj09XQnQDh+27fjGkVENQaSUWgApQghvAJuFELOMvQMhxP0A7geAyMhIc8ZIRERERESTUVcXcMMNSoC2dy8wb17/y9PTp1TdmUmt9KWUDQB2ArgcQKUQIgQA9N+rhrnNq1LK+VLK+QEBAWMbLRERERERTQ5SAo88ogRlr78+ODCbgozp1hignzGDEMIFwCUAzgP4BMCd+qvdCWCLlcZIRERERESTzcsvA6++Cjz5JHDrrbYejV0wZuYsBECGEOIkgMNQas4+A/B7AGuFEDkA1up/JyIiIiIiGuy5575t7pGRATz2GLBoEeDlZdtx2ZFRa86klCcBzB1iey2ANdYYFBERERERTTILFijdF//+d+DRR4HQUCAnB1i40NYjsxtGNQQhIiIiIiIak/R04L//VboxqtWATgd89NGUavgxGpMaghAREREREZktIADo6QE6O4GHH2ZgNgCDMyIiIiIiGh9//rPy/fHHlYYgU2iBaWMwOCMiIiIiIuvLyADefReYNQv4y1+UBaZvvpkBWh8MzoiIiIiIyPq+/BLQaoHvf1/5PT1dCdAOH7btuOwIG4IQEREREZH1BQQo36+77ttt6emsO+uDM2dERERERGR9mzYBqalAdLStR2K3GJwREREREZF1lZUBBw70nzWjQRicERERERGRdX38sfL9+uttOgx7x+CMiIiIiIisa/NmIDERmDHD1iOxawzOiIiIiIjIeurqlHb5118PCGHr0dg1BmdERERERGQ9n36qtNBnvdmoGJwREREREZH1bNoEhIcD8+fbeiR2j8EZERERERFZR0sL8PXXTGk0EoMzIiIiIiKyji+/BDo62KXRSAzOiIiIiIjIOjZtAvz9gWXLbD2SCYHBGRERERERWV5nJ/DZZ8C6dYBabevRTAgMzoiIiIiIyPK++QZobmZKowkYnBERERERkeVt2gR4eABr1th6JBMGgzMiIiIiIrIsrRb4+GPgqqsAJydbj2bCYHBGRERERESWtXcvUFPDlEYTMTgjIiIiIiLL2rxZmTG74gpbj2RCYXBGRERERESWI6VSb3bppYC7u61HM6EwOCMiIiIiIss5ehQoLmZKoxkYnBERERER0dg89xyQkaH8vHmzsq6Zt7eynYzG4IyIiIiIiMZmwQLg5puVAG3TJiA5GbjvPmU7Gc3B1gMgIiIiIqIJLj0d+OAD4IYbgPp6pdbsk0+U7WQ0zpwREREREdHYpacDV1+t/HzPPQzMzMDgjIiIiIiIxi4jA9i6FfjVr4ANG76tQSOjMTgjIiIiIqKxychQas4++AD4v/9Tvhtq0MhoDM6IiIiIiGhsDh9WAjJDKqOhBu3wYduOa4IRUspxu7P58+fLI0eOjNv9ERERERER2RMhxFEp5fyhLuPMGRERERERkR1gcEZERERERGQHRg3OhBARQogMIcQ5IcQZIcRj+u0pQoiDQogsIcQRIUSa9YdLREREREQ0ORmzCHUPgCeklMeEEB4AjgohtgF4DsCvpZRbhRBX6n9fZb2hEhERERERTV6jBmdSynIA5fqfm4UQ5wCEAZAAPPVX8wJQZq1BEhERERERTXbGzJz1EkJEA5gLIBPAjwB8JYT4E5T0yCWWHhwREREREdFUYXRDECGEO4CPAPxIStkE4EEAj0spIwA8DuDfw9zufn1N2pHq6mpLjJmIiIiIiGjSMWqdMyGEBsBnAL6SUv5Fv60RgLeUUgohBIBGKaXnSPvhOmdERERERDSVjWmdM33g9W8A5wyBmV4ZgJX6n1cDyBnrQImIiIiIiKYqY2rOlgK4HcApIUSWftsvAdwH4O9CCAcAHQDut8oIiYiIiIiIpgBjujXuBSCGuXieZYdDREREREQ0NRndEISIiIiIiIish8EZERERERGRHWBwRkREREREZAcYnBEREREREdkBBmdERERERER2gMEZERERERGRHWBwRkREREREZAcYnBEREREREdkBBmdERERERER2gMEZERERERGRHWBwRkREREREZAcYnBEREREREdkBBmdERERERER2gMEZERERERGRHWBwRkREREREZAcYnBEREREREdkBBmdERERERER2gMEZERERERGRHWBwRkREREREZAcYnBEREREREdkBBmdERERERER2gMEZERERERGRHWBwRkREREREZAcYnBEREREREdkBBmdERERERER2gMEZERERERGRHWBwRkREREREZAcYnBEREREREdkBBmdERERERER2gMEZERERERGRHWBwRkREREREZAcYnBEREREREdkBBmdERERERER2gMEZERERERGRHWBwRkREREREZAdGDc6EEBFCiAwhxDkhxBkhxGN9LntECHFBv/056w6ViIiIiIho8nIw4jo9AJ6QUh4TQngAOCqE2AYgCMA6AMlSyk4hRKA1B0rWJ6WElIBKJWw9FCIiIiKiKWfUmTMpZbmU8pj+52YA5wCEAXgQwO+llJ36y6qsOVCyruNF9Vj+XAZ+t/WcrYdCRERERDQlmVRzJoSIBjAXQCaABADLhRCZQohdQogFVhgfjYP3DhXhln8eREl9OzYdK4VWJ209JCIiIiKiKcfo4EwI4Q7gIwA/klI2QUmJ9AGwCMBPAXwghBiUDyeEuF8IcUQIcaS6utpCwyZL6OzR4smPTuIXm05hYawv/m/dTNS2diGruMHWQyMiIiIimnKMCs6EEBoogdkGKeUm/eYSAJuk4hAAHQD/gbeVUr4qpZwvpZwfEBBgqXHTGJU1tOPmfx7E+4eL8cP0aXjz7jSsSwmDg0pg+7lKWw+PiIiIiGjKMaZbowDwbwDnpJR/6XPRxwBW66+TAMARQI0VxkgWdiCvFte8sBd5VS145Xvz8NPLpkOtEvBy0WBhrC+2n2VwRkREREQ03oyZOVsK4HYAq4UQWfqvKwG8DiBWCHEawPsA7pRSsljJjkkp8dqei/jevzPh7arBxz9cistnBfe7zprpQcipakFhbauNRklERERENDWN2kpfSrkXwHC91b9n2eGQtXT16PDExhP49EQZLpsZhD/dNAcezppB17tkRhD+77Oz2H6uCvcsi7HBSImIiIiIpiaTujXSxLXxaDE+PVGGJ9Ym4JXvzRsyMAOASD9XJAZ5MLWRiIiIiGicMTibArQ6iVd3X8SccC88vDoOQzTV7GfNjEAcKqhDY1v3OI2QiIiIiIgYnE0BW0+Xo7C2DQ+umjZqYAYAlyQFQauT2JnNdcWJiIiIiMYLg7NJTkqJV3blIdbfDWuTgke/AYCUcG/4uzti+zkGZ0RERERE44XB2SS3N7cGp0ubcP+KWKhVo8+aAYBKJbBmehB2XqhCt1Zn5RHScL48XY773j4CNkElIiJ71NGtxYPvHsWJ4gZbD4Vo0mBwNsm9sisPgR5OuC41zKTbrZkRiOaOHhzOr7PSyGg0Hx4twbazlSipb7f1UGzuhR05uPetI7YeBhER9bH9XCW2nq7ApmMlth4K0aTB4GwSO1nSgH25tbhnWQycHNQm3XZZvD+cHFTYdo5dG21BSomjhfUAgBMlDbYdjI1JKfHeoSJkXKhCZ4/W1sOhCUSnk6hr7bL1MIgmrU3HSgEAhwrqbTwSosmDwdkk9squPHg4O+C2hZEm39bV0QHL4vyx/VylRdPq9uXW4BBn40aVV92Ken23zKyiBtsOxsbOVzSjrLEDWp1EXhUXRyfj/XV7NlY8l4GmDnaeJbK06uZO7MquhqezA85XNKGxnf9nRJbA4GySyq9pxdbTFfjeoqhh1zQbzZoZQSiua0d2ZYvFxvXU5lP4xaaTFtvfZHWkQAlgAzycpvzM2Y4+s7cXKptsOBKaSOpbu/D63ny0dPZg14VqWw+HaNLZklUKrU7ip5clQkrgWBFnz4gsgcHZJPXq7ovQqFW4e2m02ftYMyMQgJJTbgmNbd0oqG1DXnUriuvaLLLPyepIYT18XDW4OjkEp0ob0TOFG7PsOF+FpBBPOKpVOF/RbOvh0ATxxv4CtHZp4eaotthrGBF9a9OxUswJ98IN88LhoBKsUSeyEAZnk1BVUwc+OlqCG+eFI9DD2ez9BHk6Y064l8U+2Jwua+z9eecFtukfydHCesyL8kVKhDc6unUWnb2cSGpaOpFV3IDLZgYjNsANFyZ4cPbCjhys/vNO1s5ZWVNHN97Yl4/LZgbhytkhyDjPzrNElnSuvAlny5twfWo4XB0dMDPMC4cLGJwRWQKDs0no9X0F6NHpcP/y2DHva82MIGQVN6CquWPM+zpVqgRn/u5O2Mk0o2FVN3civ6YV86N9kBLhDWDqNgXZeaEaUiqzuNODPZA9gYOz53fk4M/bsnGxuhU5UzTYHi/vHChEc0cPHlkdj7VJQWjq6GGtK5EFbTpWAo1a4Jo5oQCAtGgfnChuREc3TzwRjRWDs0mmqaMbGw4W4orZIYj2dxvz/i6ZEQQpgYzzY5/pOlXSiAhfF1w5Oxj782r5Ij4MQ5fGBdE+iPR1hberZsquIbPjXCWCPJ0wM9QTCcEeKGvsmJBF5y/tzMVftmVjebw/AOBsGWvnrKW1swev7bmI9MQAzArzwvL4ADhrVNh2lqmNRJbQo9Xh46wypCcGwtfNEQCwINoXXVpd70lYIjIfg7NJZsPBIjR39uDBldMssr8ZIR4I83bB9nNjD85OljYgOcwbqxID0N6t5ZnsYRwtrIOjgwqzwrwghMCccG9kTcHgrKtHh93Z1Vg9PQhCCEwP9gAAZFdOrNmzV3fn4bkvL2BdSihev2sB3BzVOFPGDzDW8p/MItS3dePh1fEAABdHNZbFBWDbWct2niWaqvbm1qC6uRPXp4b3bpsf7QsAfF8nsgAGZ5NIR7cWr+/Lx7I4f8wK87LIPoUQuGRGIPbkVI9ppqu+tQvFde2YHe6FxbH+cHRQMbVxGIcL6pEc5tW7Nt2cCG9kVzajravHxiMbX4fy69DapcWa6UpjmsRgTwCYUE1B/r03H//vi/O4OjkEf75pDjRqFWaEeOIMZ86soqNbi1f3XMTSOD/Mi/Lp3X5pUhBKG9pxtpzPO9FYbTpWCm9XDdKnB/Ru83VzRFyge2+nYSIyH4OzSWTTsVJUN3fiwVWWmTUzWDMjCB3dOuzLrTF7H4ZUh+QwL7g4qrEo1g87s63TFOTdg4X4+/Ycq+zb2jq6tThT1th7FhIAUiK8oJPA6VL7+2DZo9XhxYxcbMgstPi+d5yvhJODCkvjlFTAUC9neDg5TJi6s7cPFOA3n53FFbOC8ddbUuCgVl5uk0I9ca68CTodZ3Es7b+Hi1Hd3IlH9LNmBqtnBEIIMLWRaIyaOrrx1ZkKXJMc2nsC0WBBtC+OFNZDy9c2ojFhcDZJaHUSr+7Ow+wwLyyZ5mfRfS+M9YW7k8OYujYagrOZ+hm9VQkBuFjdiqJay7bUl1Li5Z15eHV33oRsP3+iuAHdWon5fc76J4d7915mTyoaO3DbvzLxx68u4K/bsi2aMialxI5zVVga5w8XR+UDgBACCcEeE6Jj44bMQvzvljNYmxSEv393LjTqb19qZ4Z6orVLi0IuJ2FRXT06vLIrDwuifbAwxrffZf7uTkiN9GFLfaIx2nqqHJ09OlyfGjbosrQYHzR39EyI12hbya1qRllDu62HMWa7sqvx/qEiWw9j0mJwNkl8daYCBbVteGDlNAghLLpvJwc1ViYEYMe5KrPP9p8qaUS0nyu8XJQFsVclKukQlp49y69pRWlDO1q7tBMyhemIvhlI35Qsf3cnhPu4IMuOOjbuzq7GVc/vwemyRlyaFISaFiVt1VLyqltQVNeG1fqURoPEYA+cr2iy69qh/x4uwlObT2P19ED847a5cHTo/zI7M1Q5QcG6M8v66FgJyhs78Mjq+CFfA9cmBeF0adOk+GBEZCsfHStFbIBbbyfhvuZHKSdF2FJ/eD945yh+svGErYcxJlJK/PrTM3j6kzNo72JjN2tgcDZJfHO+Cn5ujrh8VrBV9r9mRiCqmjvN7sR0qrQRs/UzQAAQ4++GKD9Xi9ed7cn5NvVyIhYmHymoQ1ygO3z0HbAM5kR428XMmVYn8ZevL+DONw7B390Jnzy8DI9doqSQHS+ut9j97NA3oBkYnE0P9kBTRw8qmzotdl+WtPl4CZ7cdAorEwLw0vrUQWk/ABAf5A4HlWDHRgvq0erw0s5czAn36u2IOdDapCAA4OwZkZmK69pwKL8ON6SGD3kCJNzHBSFezgzOhtHRrUV+TSsy8+smZNdhgzNlTbhY3YrOHh0OXDS/3IWGx+BskihraEeUnyvUKsvOmhmkJwZCJcz7YFPT0onShnYk92lSIoTAqoQA7M+rsWhL/T051Yjyc0WEr4vZbxBSSjy04Sie2nwKFY1jX9/NWDqdxNHC+n4pjQYp4d4oqW9HTYvtgpKq5g5877VMPP9NLm5MDcfHP1yKuEB3JAZ5wNVRjWOFFgzOzlchKcQTod4u/bYnBikdG89X2F9go9NJ/Pbzc0iN9ME/b58HZ83gwAxQZqLjAt3ZFMSCtmSVobiufdhZMwCYFuCO2AA31p0RmWnTsVIAwLVzB6c0Asr7+oJoXxwuqLPr7AZbuVjdCp1UTnLuyp64DdG2ZJVCoxZw0ah7T6SSZTE4myTKGzsQMuCDrCX5uDlifrSvWS31DbNts8P7d5BclRiIjm4dMi00w9XVo8OBvFosj/dXCpML6s16g8itasEXpyqwIbMIK/6YgWc/O4vacQiKcqpa0NTR068ZiMEcfQrJSRulNu7PrcGVf9+L48X1+NNNc/DHm+b01oI5qFVIDvfCcQvN7DW0deFoYT3WzAgcdFmivp2+PdY0nClrQk1LF763KHLYwMxgZqgXgzML0eokXtyZixkhnkP+zfS1NikIBy/WoqljfM9a51Q2c11HMll+TSsa2rqseh/PfnYWP/4gC62dI3cDllJi0/ESLI71Q9gInzUWRPugsqnTomnuk0VOlfK+5aAS2DFBZ/C1OolPTpRhZUIgViT445vzVQzErYDB2SQgpURZQztCvZytej+XzAjEufImlJpYs3G6pBFCKI0Q+loU6wcnBxV2XrDMmZdjRfVo7dJieXwA0qJ9UdvahbzqVpP3Y0iNfO++RfjOnFC8vi8fK57LwF++vmDVD3VHCpUgdaiZs1lhnlAJIKt4/OqUdDqJCxXN+ONX5/G9f2fC21WDTx5ehhvnhQ+6bmqkD86WNVnkA+iu7GpodXJQSiMAeLs6IsjTyS6DM8Pf8fL4gFGuqfwv1LR0oqp5/GZmJ6svTpXjYnUrHk6PG7Xe9tKkIHRr5bgu49Hc0Y2rnt+Lf+66OG73OZQTxQ14ZVceg8QJQqeTuOmVA3jiA+vVJ0kp8eGxEmw6VorrX9o/YoOuY0X1KKxtG7IRSF8LYlh3NpzcqhaoVQJXzg7BzgvVE7Jp2aH8OlQ2dWJdSihWTw9EeWPHhFreZqJgcDYJ1LV2obNHhxAv682cAcDq6UrNxjfnTQumTpY2IsbfDR7Omn7be1vqW+iD0p6caqhVAkum+Y3pDWJfbg2i/VyxeJof/nTTHHz9+EqsSgzE89/kYvkfMvDyzjyrrDl2tKAe/u6OiPJzHXSZq6MDEoI8rFp31tWjw9HCeryyKw/3vHkYc3+zDZf9bTdezMjDtSlh2PLDpUjQpxUONDfSBz06aXZNYl87zlXB390Rc/rUKPaVGOyJC3a4EPWu7Gokh3vB391p1Osm6U9UcPZsbHQ6iX98k4u4QHdcYUS9bUqED/zcHMc1tTG7sgVdWh2+sdBJKHO9tjcfv996Hje8vB/5NaaftKL+Dl6sxZGCOqu1jc+pakFNSye+uVCFYit1dq1u6URDWzeuSg5BRVMHvvPiXuwfZsmcj46VwkWjxhWzQ0bcZ0KgBzydHRicDSGnsgVRfq64YlYwGtu7cdSCpQDj5ZMTpXB1VOOSGUFIT1ROoJr6mZBGx+BsEijX10UNrM+xtGkBShOPDBP/EU+VNParN+trVWIA8mtaUVg79g8Le3JqkBrpDQ9nDWL93eDv7ojDJqZMdmt1OHixFsv6NBWIC3THi+tT8dkjy5Aa6Y0/fHkeK57biY+Pl455zH0dLqzD/CjfYc/+p0R440RJg0VTCM6WNeEv27Lx3VcPIPnXX+GGl/fj91vPI7+mFZfPDMafbpqD3T9Nx19uSYGbk8Ow+5kb6Q0AY64769HqsPNClVLjOEz95PRgD+RUtdjVWcfGtm4cK6rHyoTRZ82Ab4MzNgUZm+3nKnGhshk/TJ827N9LX2qVwJoZgdh5vgpdPePz95OrT2U6WdJg9RS1kRTWtiLC1wUl9e24+vk92JJl2devqaSrR4c7/n0IN75yAAv/33b8YtNJZJyvsuisZGZ+be/P7x60/DqSAJBd0QIAWJ8WiS0/XAp/dyfc/vohvLW/oN/7TEe3Fp+dKMPls4LhPsL7AACoVALzo31xiMHZIDlVzYgPdMeyeH9o1AI7JlhQ09mjxRenKnDZzGC4OKoR6OmM5HCvCZuiac8YnE0ChtbQod7WTWsUQiA9MRD7cmuMbp9a1dyBiqaOfp0a+zKceRnr7FldaxdOlTb2ppQJITA/yvQ3iONFDWjt0mJZ3OCOb7PCvPDG3Wn48IHFCPN2xk8/PGGxtLSqpg4U17VjfvTglEaDORHeaGjrRtEYz6I2tHXh7QMFuPqFPbjy+T34xzc5aOnswa1pkXh5fSoOP3UJvvnJKvzhxmTcOC8ckUPM5A3k7+6ESF9XHC9qGNPYjhTWo6mjZ8TaoYQgD3T16FBg4TXyxmJvbg108tslIkbj6axBpK8r2+mPgVYn8bftOYjyc8U1yaFG325tUjCaO3vGrZtrdqXyAVhK5e/EVgpr27AyIQBfPLYc00M88dj7WXjyo5NshW2G4vo2dGl1uGV+BBbF+uHTE+W4+83DmPebbfjhhmPYklU65m58mRfrEOrljMtnBuO/R4qtko6arc9AiA/yQLS/GzY/tATpiYF4+pMzePKjU+jsUe5zx7kqNHX0jJrSaLAg2hcXq1vHpVZ7ojC8Z8UHesDDWYNFsX4TLqjZnV2DxvZufCfl29fb1dMDcby4gcfawhicTQKG4MzaaY2A0lK/s0eH/XnGfcg4rU9zSw4feuYs2t8N0X6uyBhjys++3BpIiX5ttBfE+KKkvh3ljcbXyO3NrYFKAIunDd2OGwDmR/vir7ekoFsr8V5m8ZjGbTDU+mYDGdL8ssxIbdTqJHZnV+Ph/xxD2v/bgf/dcgZSAs9ck4Sj/7MWnz2yHE9fMxNXzA5BgMfoaXlDSY30xrEi85qwGHxzvgoatcCyEeq2ptthU5CdF6rg6ewwbCrmUJJCPDlzNgbvHy7C2fImPHFpIhzUxr+VLYvzh7NGhW1nK6w4um/lVLVgerCS6rXbRh3aGtq60NjejWg/N4R5u+D9+xfhoVXT8P7hYqx7cS9y7DBN2J7l62uZb0mLwD9uS8XRX12CN+5egO+khCEzvw6PvZ+Feb/Zhmc+OWPW/qWUyMyvRVqML25fHIWGtm58eqLMkg8BgDKT4+vmCH93ZekWD2cNXr19Hh5ZHYf/HinGbf/KRHVzJzYdK0GwpzOWjPC+2FdajPI+drhg4qXtWUtBbSu0Oon4IHcAwJrpgcirbkXBBEox3pJVCl83x34nr1dPD4SUmNDdJ+0Rg7NJoLyxA44OKvgNWBvLGtJifOHqqDY6x/ikvhlIUojnsNdZlRiIA3m1YzozuCenGp7ODkju8+E4Td/10JQz5HtzqpEc7t27WPZwYgPcsTIhABsyCy2SHnWkoB7OGlXvAsVDSQhyh7NGZVJwVtHYgb98fQHL//AN7nj9EPbm1uC2tEh89sgyfP7octy1NGbQmmrmmhvpg6rmTpSNYfmBHecqsSjWb8TUmbhAd6gE7KbuTEqlLfLyhACTgoSZoZ4oqG1D8zh3DpwM6lu78MevLmBxrB+uSR65BmYgF0c1lscHYNvZynHpMpZb2YwZIZ5YFu+P3dk1NulsVqifZY70VWbBNWoVfnb5dLz1/TTUtnThmn/sxQdHitl1zUgF+jT8GD83AMryGOmJgfjd9bNx6Jdr8NGDS7AqMRBv7i8wa/mTvOpW1LR0YWGsHxbH+iE+0B3vWCG18UKFkmbXN5VepRJ44tJEvHhbKs6WNeGaF/ZiZ3Y1rp0bZvRSPbPCvODkoGLdWR+5VcoMelygPjibMbHWXWzp7MH2c5W4anYINH3e52aFeiHAw2nCpWjaOwZnk0BZYwdCvJyNqrkYKycHNZbHG98+9VRJI+IC3EesV1qVGIDOHqXWyxxSSuzJqcGyeP9+bx4zQjzg5qg2+g2iqaMbJ0oah0xpHMpdS6JR1dyJL8+M/Qz8kcI6zAn3hqPD8P+SDmoVZod5Gd0UpFurwy2vHsALGbmID/LAi7elIvOXa/DMd2Zi1jA1gGORGqmcLTW37qygphV51a1YM0SXxr6cNWpE+7vhgp2sdXauvBlVzZ1G15sZzAzz7L09mea5ry6guaMHv143c9QOjUNZmxSEssYOqzdkae7oRlljB+KD3LE8PgAVTR29H9LGkyGYiPZ367d9ZUIAtj62HHMjfPCzD0/ixx+cQLcd1XLaq/yaVni5aIY8saVSCcyL8sEjq+MAKCcOTWU4obgwRqlBvn1xFE6WNJqVNTEcKSVyKluGbfJ0VXIIPnxwMdQqAa1OGp3SCCifE+ZEeOMIg7NeOZUtEEJZbxEAInxdkRDkPmGaaWw7W4GObh3WpfRPIVepBFYnBmL3hWq+dlgQg7NJoKyhHSFWbqPf15rpQShv7Bj1Q6WUEidLGwetbzbQty31zZsWz6tuQXljx6AW5g5qFVKjfHA437hg4WBeLbQ62a8ZyEhWJgQg2s8Vb+0vMHXI/bR19eBMWdOI9WYGc8K9cbqsyagXwc3HS1FY24Z/fm8e3vp+Gq5KDoGTw8jrb43F9BAPOGtUZtedGc68GbqCjiQxyMNu0hp3ZivjXmVqcKafJT1rYt3Zbz8/ix+9fxw6K3WJs3cnSxrw/uEi3LUketgPlqNZMz0QQsDqXRsNgVh8oAdW6P8+bJH+M3DmrK9AT2e8e+9CPLRqGjYfL7VZ6uVEkl/TipgBge5As8O84OvmiF1mvK9l5tciwMOp9z6umxsGN0c13j5QYM5wh1TR1IHmzh4k6NPshjIz1AufPbIM/71/kcn/a2nRvjhd1jTq+mlTRU5VMyJ8XPutgbl6ehAO5deN+7qL5tiSVYYwb5fek7B9rZ4RiObOHhxhGqvFMDibBMob2q3eqbGvVdOVDxmj1YlVNnWiurlz2E6NBs4aNRZP8zN7vbNd2Ur921AzXmnRvrhQ2WxUl7S9uTVw0aiHfPEZikolcPviaBwtrO+trTNHVnEDtDo55OLTA82J8EZXj27UwKRHq8OLGbmYFeaJtUmjBzuWoFGrkBym1J2Z45vzlYgPdDeqAUlisAcK69rsopnBrgvVSArxRKCnaSdIAj2c4OfmaNLsTXuXFu8eLMLHWWV4aWeuqUOd8HQ6iV9tOQN/dyf86JJ4s/fj5+6EeZE+Vg/OcioNwZk7wrxdMC3ADbtzxr8pSGFtG4I9nYddHF2tErh/RSwAsM2+EQqMCM5UKoEV8f7YnVNj0okUKSUyL9b1zpoBSi3Y9anh+OxkOepaLdPx09CoZrSgy8fNEQtj/Uze/4IYX2h1csxNoiaL3KoWxAf2D4QvmRGIHn09uD2rbenEnpwafCcldMgMrWVx/nBUq/DN+YmRojkRMDib4LQ6icrmToSOQzMQg0AP49qnGta8Gq5TY1/piYEoqG0zqzh2T041Yv3dEDHEWWHDemfGnNHZm1ODhbG+I6YWDnTT/HC4Oqrx5hhmz44U1EMIGBUUpkR4Axi9KcgnJ8pQWNuGR1fHm5X2Za65kd44W9bU2+XLWM0d3ci8WIfVI3Rp7Gt6sAekVM5GGmtLVim+OlNh0bqa5g5lrZqVRnZp7EsIgaRQT5OCs13Z1Wjv1mJGiCf+si0b+2zY/c8WPjhSjBPFDfjlldMHrZtoqrVJQThb3oSSeut1/cypaoaTg6r3tWlFQgAyL46tvtYchbWto5708HZ1hJeLpjcFkobW0a1FWWMHov1GDs4ApZ7a0EnYWEV1baho6hgUEN2+OApdPTr897BlmlBl60/wmTv7PJrUSG+oBBejBpSTpRerWxE3YJZybqQPfFw12HHOvlMbvzhVDq1ODkppNHBzcsDCWF/WnVkQg7MJrqq5A1qdRIiV2+gPlJ44evvUUyUNUI3SDMTA0ILc1Nmzzh4tDl6s7U0ZGiglwhsatRj1DaK0oR0Xa1qNrjcz8HTW4PrUMHxyoszsVrJHCuuREOgxahMSAAj3cYGfm+OIdWda/cK8M0LGb9bMYG6kD7q0OpwuNa2WZ09ODXp0EpfMMG68icHK39R5I1Mbq5o68OMPTuAH7xzFtS/us1hQsy+3Fj06aXJKo8HMUC/kVDUb3VTmy9Pl8HHV4L8/WIRpAe549L3jqBhDA5aJpKGtC3/48jzSon1xbYrx9S/DMfxvbLfi7Fl2ZQumBbj31sKuiFfqa8erjb9BYV0boo2YkY72d+tNgaSh9TYDCRg9OFse7w8hTEtlzbz4bb1ZXwlBHlgU64t3DxZaZOHr7Mpm+Ls7Wawh1EAezhrMCPFkcAYl4O7S6hAf2D8QVquU5YkyLlTZ1bqdA23JKkNikAemBw//WW7N9EBcnGDdJ+0Zg7MJ7ts1zsZv5gxQWuqP1j71ZGkjEoI84OI4ep1TlJ8bYvzdkGFifv7Rgnp0dOv6tdDvy1mjRnK496jrne3TpxoNrFszxp2Lo9HVo8P7ZpzR1OokjhfWG1VvBiizLXP0i1EP57OTZbhY04pHV8eN66wZoJwtBYDjJqY2bj9XCW9XDebqZwZHE+nrCmeNyui6s4+zSqHVSfzk0gRUN3di/WuZWP/aQaObqwxnV3YVPJwckDrCEggjSQr1RLdWGjUD2NmjxY5zVVibFARPZw1e/l4q2ru1ePg/xyZkIfbHx0vx2PvHjV7q4k9fX0DTGJqADBQb4I5pAW7YbsWz1rlVLf1qehbG+sJRrTKrSYS5Wjt7UN3ciSgjZnqi/VyZ1jgKw4fPGCOeTz93JySHeZl00vFgfi183RwHpcABwB2Lo1Ha0I4MC8xQZFe1IDF4+HozS1gQ7YvjRQ0T8vXJknKqvk1vHmjNjCA0tHXjuAWbvVhScV0bjhTW91vbbCiGWvGJ0uDE3jE4m+DKGpSz5uOZ1giM3j5VSolTJY2YbUJXwFWJAThoYsrP7pwaaNQCi0bIiV8Q7YtTJY0j1iftya1BgIfTiMXRw4kP8sDSOD9sOFho8tmvCxXNaO7sMTo4A5SmIDlVLWgZotBaq5N44ZtcJAZ54LKZwSaNxRICPZ0R5u1iUp1Bt1aHnReqscqEVvRqlUB8oEfvIqojkVLio6OlSInwxsOr4/HNT1bhV1cn4Vx5M9a9uA8PvHMUuSakR/bd764L1Vga59+vtbApZoYqZyKNSW3cn1uL5s4eXDFLaR0fF+iBP9yQjCOF9fj91vNm3b+t7M2pwRMbT2BLVhku++tufDLKGk6nSxuxIbMIty+KwgwjZuKNtTYpGAcv1o55weChtHT2oLShHfF90sZcHR2wIMYHu7PHLx3VsGh9lBEzZ1F+bihraDc5LXkqya9Rns9o/9GfT0BpHJVV3GBU3TOgdGpMi/Yd8gTE2qQgBHk64e0xttXX6SRyKpsHzeRY2oJoX7R3a0d8fZNS4u0DBbjh5f2ot1A9nb0xNAaaNkRwtiLBHw4qYbct9T89qbw2f2fOyMFZpJ8r4gInTvdJe8fgbIIznHUe77RGlUogPTFg2PapZY0dqG3tGnbx6aGsSlQWuD5gQkv9PTnVSI30GbFVf1qMD3p0EseLh57N0ekk9uXWYFmcv9ln5O9cHI2yxg6TGwwcLVRm9OZHjd4MxGBOhBekVJYpGGjr6XLkVrXgkTVx47K0wlDmRnqbNHP29ZlK1LV24erkkV/8B0oM9jAqrfFMWRMuVDbjhnnhAJTZ1HuWxWD3z9Lxo0visSenGpf+dTd+uvEEShuMX7A8p6oFZY0dZtWbGUT7ucHVUW3UYtRfnq6Ah5MDlsR9eyLimjmhuGtJNP69Nx9fnCo3exzjKa+6BQ9tOIq4AHd89sgyTAtU0jMffe84GtsGB0lKE5DT8HNzxONrEyw6lrVJQejRSXxlgeUwBsod5mz5ivgAXKhsHrd01EJDG30jZ850EiipN/7/YKrJr2mBv7uT0TWPKxMDoJNKw6nRlDa0o6S+HQtjh34/0KhVuDUtEruzq8c0w1na0I62Lq3V6s0MFhgWox4mjbelswcPv3cc/7vlDI4W1mPr6fFZGH685VQ2I8zbZcj1Oz2cNUq9lp3WnX2SVYZ5UT5D1vQPtGZ6IDLza7l2pwWMGpwJISKEEBlCiHNCiDNCiMcGXP4TIYQUQphWrEMWUdbQAXcnB3iOsTjeHKunBw3bPtUQOBjTDMRgYYwvnDUq7DTyzEtNSyfOlDUNW29mMC/KF0Jg2Jb65yqaUNfaZXK9WV9rZgQh3MfF5MYgRwrrEeTphHAf42c+5+if04GpjTqdxAs7chEX6N47u2ILqZE+KGvsMPrD59sHChDm7YL0UdY3G2h6sAeqmztH7V724dESOKpV+M6A4M/dyQE/uiQBu3+WjruXxmBLVhmuen4PqpqNG7ehRbap65v1pVYJTA/2GDU469Hq8PXZCqyeEThoOYRfXjkDKRHe+NmHJ3GxenzW0Grq6MZ7h4pMbpPd0NaFe986Ao1ahdfunI9ZYV7Y+IPFeGJtAr44VY7L/rYbewd0M/zwWAmOFzXgyStmGFWXaYq5Ed6YEeKJl3fmWbzmI0c/qxs/4AOw4fVq9zilNva20Tdy5ky5DVMbh1NQ04YYI2fNAOX12stFY9RSMZn6E5MLY4bPBLktLRIOKoF3xzB7ZkijNidTxBSBHs6I9nMdsqzgXHkTvvPCXmw9VY6fXZ6IGH+3CXOCyVQ5VS29i08PZc30IORWtdjd/935iiacr2gethHIQKunB6JbKwe9hpPpjJk56wHwhJRyBoBFAH4ohEgClMANwFoARdYbIo2krKEdoeM8a2awLH749qmnShvgoP/gaSxnjRpLpvljp5HF03t768RGDqq8XDRIDPIYtjDZsB9j1zcbilolcPuiKGTm1+FcufHNMI4U1GN+1NApLMPxcXNElJ/roHqpr85U4EJlMx5ZHddvMe7xNteEurMLFc3IzK/D9xZFmTxmw1nf8yMsRt3Vo8OWrFKsTQqCl+vQH+z93J3wq6uT8Okjy9DWpcWvPz1r1P3vzK5CQpD7mOs9Z4Z64Wx504jttg/l16G+rRtXzBqcqurooMKL61OhUQs8tOGY1ZcXaGzrxvdey8QvNp3C9S/tN/oDRbdWh4c2HENpfTteuX1e75lYB7UKj6yJx6aHlsDNSY3v/TsTz3xyBh3dWjS2deMPW89jXpQPrp879iYgA6lUAo+tiUd+TeuoqZWmyqlqgaODatDaYtODPRDg4YQ94/QBpqC2Db5ujkadwDM0DSmoYVOQ4eTXtho1C2ngoFZhWbw/dmVXj9opNvNiHTydHUZ83wz0dMZls4Kx8Uix2f/rFyr0s7pWnjkDgPnRvjhSUNfvsX9wpBjXvrgPzZ09+M99i/DQqjhcMSsYBy7WWmypAHuh1ckh2+j3tUbfpdjeZs8+ySqDWiVw5WzjTvbOi/KBp7MDUxstYNTgTEpZLqU8pv+5GcA5AIZ3yb8C+BmAqbkaqh0ob+xAyDjXmxm469unDvWPeLJEaQYy3Lo6w1mbFKQsnLwrb9Tr7s6pho+rpncx35GkxfjiWFH9kGfH9+bWID7QHUEmrlM10C0LIuCsURm9UGh5YztKG9oxz4xmEnPCvfsFZzqdxN935CDW383k9EBLmxnqBUcHlVHrnb17sBCODircsiDC5PsxfIDJHiG1MeNCFerbunHDvNE/2CcGe+CR9Dh8frJ81GUiWjt7cDi/HqsSTZvtG8rMUE+0dPb01gYN5cszFXDWqIadJQ7zdsHfvzsXFyqb8dTHpyy6XEBf9a1duO21gzhf3ozHL0lARVMHrnlh76gND6SUePqTM9ifV4v/d/1sLBhiTb/kcG98/uhy3LUkGm/uL8DVL+zFzz86ifq2Lvz6OzOtlqZ72cwgJIV44oVvci06e5ZT2dyvU6OBEALL4/2xN6faIl33RlNU1zrk4tND8XVzhIeTg92dwbcXzR3dqG7uNKpTY1+rEgJQ3dyJs6OcuMvMr0VajO+of+t3LIpCU0cPPjlRatI4DHIqmxHs6WzxmeihpEX7or6tG3nVLWjv0uKnG0/gZx+exLwoH3zx6PLeevErZ4dAq5P42gopxrZUWt+Ozh4d4keYpYzyc7O7ei0pJbZklWFZnD/83Z2Muo2DWoWV+u6TpqztR4OZVHMmhIgGMBdAphDiOwBKpZQnrDEwMo4tZ84AZRo7b0D7VCklTpU2mlRvZnDz/AhcnRyC3209jw9G6H4opcSenBosjfM3asZlQbQv2roGFyZ3dGtxKL9uTLNmBt6ujrg2JQybj5caVfxtSAcd6oPqaOZEeKOssQNVTUoK3vZzlThf0YyHbTxrBigzObNCPUdtCtLc0Y1Nx0pwdXIIfM1o5xzg4QQfVw0ujNAU5MOjJfB3d8IKI7tw/mDlNCQEueNXH58esuGKwYG8WnRpdWa30O/LcHJhuA9uOp3El6crsCohEK6Ow9dWrkgIwGNr4rHpWCneO2SZtZD6qmvtwm2vZSKnqgX/vH0eHrskHp8+vAyh3i64+83DeGln7rBB4Zv7C/CfzCI8sHIabtTX/g3FWaPGM9+ZiXfuSUNLRw++PFOB9QujMMuExkKmEkLgsUuU2bMtWZabPcuuHP5s+cqEANS3dY9p8XpjFdQY10YfUJ6LaH83FLCd/pAMKaLGdGrsy5D6PFJ348qmDhTUto2Y0miQFuOLxCAPvH2g0KwTMdlVzSMGC5ZkWGt045ESXPfSPmw8WoJHVsfhnXsWIsDj2w/9M0M9Eenrii8mWd2ZIYU0bpTmK2tm2Fe91rGiepQ2tBud0miwZnogalq6cHIcXtsmM6ODMyGEO4CPAPwISqrjUwD+14jb3S+EOCKEOFJdbd+roE80Hd1a1LZ2jXunxr5W6+uE+p7xKalvR0NbN2abEZypVQJ/uTkFy+P98eSmk8MW6l+obEZ1c6fRH7rT9G8QA1MbjxbWo7Nn+Fb8prpzSTQ6unX44MjoH46PFNTB1VGNGSGmp5akRCjP7YmSRkgp8fw3OYjycx21o9J4SY30wcnSxhHX79p8vBStXVrcvijKrPsQQiAhaPimILUtncg4X4Xr5oYa3QXS0UGF312fjPKmDvzpqwvDXm9ndhVcHdWYZ0KXzeHEBymzK2fKhn4zO15cj6rmTlwxe/Tum4+ujseKhAA888kZo1vUG6OmpRO3/esgLla34LU75vfWB0b6uWLTQ0tw1ewQPPflBTz8n+OD6tB2XqjCbz47i0uTgvCzyxKNur/l8QH46kcr8H/rZuLnV0y32OMYzqVJhtmzHIvMnrXqOzUOV9NjqG/dbcL6V+bo7NGirLEdkSYEE1F+rlyIehiGJhzR/qYFZ4GezkgK8eytUx3KQUO92TDNQPoSQuD2xVE4U9aEYyZ0xgW+TbNLHIeURkBJlfV3d8I/d19EZVMH3rx7AZ64NHHIGeUrZ4dgf26N0Z0tJwJDG/2Ras4A4JIZQejWynHt5DqSLVllcHJQ4VITuz6vTAiASrCl/lgZ9YlFCKGBEphtkFJuAjANQAyAE0KIAgDhAI4JIQYdRSnlq1LK+VLK+QEBYz/LTN8yNFwIGec1zvqK8nPDtAA3ZPRJazqlP2NiShv9vhwdVPjn7fMwJ8Ibj7x3HPvzBr9Y7dG/gC1PMC6oCvJ0RqSv66DFX/fk1MBBJYw6W2mMGSGeSIvxxdsHhl8otKmjGx8cLsaXZyqQEuFtdODQ18xQL6hVAieKG/DN+SqcLm3CD9PjzNqXNcyN9EFXj27Y+jspJd45UIjZYV5IMXJts6FMD/ZAdkXzkCkUW7LK0KOTvV0ajTUvygffWxiFtw4UIGuItWeklNh5oRpLpvkPas5hDmeNGvGB7sO2m/7ydAU0amFUwxSVSuA362aiS6vDpmPmpTwNVNXcgVtfPYiC2la8fteCQamVro4OeOHWufjFFdOx9XR5vzq0nMpmPPKf40gM9sRfb0kxKTXRy1WDOxZHD9nhzNKEEPjRJfEoqG2zyOxZbu8HsqE/APu5O2FWmKfV685K6tshJYyeOQOUro4l9e1Tfm2qofQGZybOnAFK18ajhfXDzowcyq+Du5MDkoxcKuK6uWHwcHLAO0am0RsU17Who1tn9U6NBkII3DQ/HMvj/fH5o8tHTAW/cnYwenQSX1txYfjxllPZgiBPp1FTSOdGeMPbVYMdQ9Twj7durQ6fnyzHJTOCTH799XFzRGqkz5C9CMh4xnRrFAD+DeCclPIvACClPCWlDJRSRkspowGUAEiVUk6u+Wg717sAtZft0hoBpVPhwYu1vWlgJ0saoVELJJrQDGQgV0cHvHHXAkT7ueL+t48Oahu/O6ca8YHuJtXbLYj2xZHC+n5pIPtya0ZtxW+qu5ZEo6S+vd+Zo45uLbaeKscD7xzF/Ge342cfnYSzRo2H0+PMug9njRrTgz2QVdyA53fkIMLXBddZoWGCuVKjvAFg2LqzgxfrkFPVgtsXR41pQeHEYE+0dmmHbIH/0bESzArzxPRg09fF+tnliQjycMaTH50c9CH1Yk0rSurbx9RCf6CkUM8hgzMpJbaersCyOH+jO7JG+bkhLdoXHx0rGXPtWWVTB7776kGUNrTjjbvSsHSYjqZCCPxg5TS89f00VDR14Dv/2IctWaW4560jcNKo8dqd8y36P2YNay04e2Y4Wz5SN7wV8QE4VjT8h3VLMATJxqxxZhDl5wqtTqKU7fQHKahpRYiXM1wcTT8psyohAD06iX25Qy8Vk5lfh/nRPkafYHNzcsD1qWH44lSFSV1Ts3u7iI5PWiMA/Pzy6XjnnoWjNk+aHeaFcB8Xq3RtlFJarRZ3JLlVxq0n56BWIT0xEDsvjE8t6ki2na1EbWuXUbXaQ1k9IxCnS5vGbbmQyciYV4GlAG4HsFoIkaX/utLK4yIjlOn/8MfaLW6s0hMN7VOVlI1TpQ2YHuw55lkFb1dHvP39hfBy0eDONw4hT98m3FAnttzIlEaDtBgf1LV29e6nvrULp8saLVJv1telSUEI8XLGm/vzsS+3Bj/deAILnt2OBzccw5HCeqxfGImPf7gUO3+yCkvG0L5/ToQ39ufV4ERJI364Ks7shZCtIcTLBcGezsPWnb1zsABeLpoxp2EaTgBcGJDaeK68CWfKmnBDqmmzZgYezhr837qZOF/RjFd3X+x3mSE1yRL1ZgZJIZ6obu4c1Mb/TFkTSurbcfkQXRpHcsO8MFysbsXxIWb+jFXRqARmlY0dePPuNCyeNvrs8vL4AHz68DKEeDnjsfezUNHUgVfvmIcwG79GGaPv7NnHY5w9y6lshqN6cKfGvlboP6zvzzN+XUdTGWqkokyY6TGk7DG1cTBTOzX2lRrlAw8nB+zKHpzuVdPSidyqFpMzOC6bFYwurQ77jFhDzcBw4mA8OjWaypDauC+3Zsg1D0fyl23ZmPX0V0j63y8x/VdbkfA/WxH/1BeY9ssvEP3k54j5xReY8b9fjtjd19KklKO20e9r9fRA1LV2mbROqDVsyCxEmLcLViaY1/BqzfQgAOiXUUWmMaZb414ppZBSJkspU/RfXwy4TrSU0j4SZaeQcv1sQbCNZ87mR/vAQ98+VUqJUyWNZtWbDSXYyxnv3rsQAsAd/z6EsoZ2HC6oU+rEjExpNDA03jikX+9sX14NpBxbC/2hOKhV+N6iKOzLrcX61zKx9XQFLpsVjHfuScPBX6zG09fMREqE95hmjAAgJdwbOql06rvezCDEmlKjvIdc+LuisQNfnanEzfPDTe7mOZBhZmJgU5CPjpZAoxZYl2L+bOKlM4Nx+cxg/H1HTr8FX3dmVyM2wM2oRTmN1dsUZMDs2ZenK6BWCaxNMi04u3J2CJw1Knx0tMSs8ZQ1tOOWVw+gurkTb9+T1luzaQxDHdp9y2Pw8vpUpEaOvS5vvKxNCsLM0LHPnuVUtSA2wG3EWZDUSB+4OaqtWndWWNsGdycH+JnQcMcwy1bIpiCD5Ne0mtyp0UCjVmFpnD92XRjcUt+Qbm/K/xkAzI/yhbuTAzKMWEPN4ELF8Asi24MrZ4egWyuxbZSOuX2VNbTjlZ15mBHigfULI3Hn4mh8f2kM7lseiwdXTsOjq+Pw2Jp4AMBb+81fH85UZY0daOvSGj1LuTIxAA4qgR02rNfKr2nFvtxafHdBhNnNxRKC3BHm7cK6szGwz/9OMkpZYwf83BzH/AF3rDRqFVYmBOCb89UoqG1DU0cPki3YXS3G3w1vfT8Nt756ELf/OxNzI33gqFZhoYlvZDH+bvB3d8ThgjrctjASe3Nq4OHsYNGxGty+OAp1rV2YF+WD1dMDrXKM5kf7QAjg4dVxcHSwn1kzg7kRPvjiVAWqmzv7deV671ARdFLie2Y2AunLw1mDMG+XfjNnPVodPs4qQ3pioFldIPv69bqZ2PfnGjy1+RQ23LsQnT06ZF6sxfqFYx97X0mhSurlmbKmfjUZW0+XY2GMr8mPw8NZg8tmBuPTE2X41dVJJv/9/WTjCdS1dOGde9Iw14zgytXRAU9dlWTy7WxNmT1LwH1vH8Hm46W4ab7pSzwASoe2lIiRnzdHBxUWT/PH7hzlw/pYT9YMpbBWaaNvyr4D3J3g5qjmzNkADW1daGjrNrlTY18rEwPw5ZkKZd2rPjNXmRdr4aJRm9zh2NFBhWVx/th5ocrov6HsymarLz49FnPCvRDm7YKtp8pH7Oza1z8yciEh8ddbUhDuM/xJs7KGdmzJKsUvr5wODyPTxMeidyF6I9IaAcDTWYO0GF/sOFeJn19u/UZIQ3nvUBHUKmHW8jYGQgisnh6ID4+WoKNba/PPqBOR/X2iI6MpbfTtI11o9fRA1LR04j+ZylkpS7e+nhXmhX/dOR/F9e348GgJ5kf7jNhWfChCCMyP8sVh/YKYe3JqsDjWzypNNDydNfjV1Un6GQzrvDDFBrhj389X47tjeBG1JkPdWd8UjW6tDu8dKsLKhACTUq1GMj3Yo19wtjunGjUtnUa/sY8kyNMZP79iOvbn1eLDoyU4cLEWnT06i9abAcpC6RG+Lv3a6edUNiOvutXklEaDG+eFo6mjx+SFTY8X1WN/Xi0eXRNvVmA20V0yIxCzwjzxjwzz1j1r6+pBcV37iIvOGqxI8EdxXbvVZqkKa9sQ7W/aDK8QAlF+bjabOXt1dx7eOTh+sxvGMrdTY1+Glvo7B8x0ZebXYV6Uj1mp6aunB6K8sWPYrrV99Wh1uFjdOm7NQMwhhMAVs4KxJ6cGTUbUYxbXteGDw8W4ZUHEiIEZANy2MBJtXVqLLpkxEkNjIGNeCwzWzAhCdmULimzw/9fZo8XGI8W4NCkIgWNc9/XSmUFo79bikxPj81xPNgzOJrDyxnaE2Dil0WBVYiCEAN7RLypsjRf/RbF+ePG2VKhVApeZ2N7VYEGML0rq23HwYh1KG9ot1kLfVkK9Xaxyxt0SZoZ6QaMW/Vo9f3WmAlXNnbhjseVmnhKDPZBX3dLbtv/DoyXwdXO0yALRAHBbWiTmR/ng2c/PYdOxUjhrTJ+1NUZSiGe/tMat+vV+zP1bXzLNH8GezvjwqGlrnr20Mw9eLhrcujDSrPud6IQQ+NGaBBTWtmHTcdM7XuZVKR/ijZmdMCwFsjvH8qmNWp1EcX0bIn1NDyai/V37rV05XnQ6iX98k4t/77k4+pXHmSE4ixlDcBbq7YKEIPd+6501tHXhfEWz2a8phhNFxtT3FNS2oUs7fp0azXXF7BB0aXXYYURq4wvf5EClEng4PX7U66ZEeCMpxBMbMovGpTlITmUL/N0d4WNC5sPaGUq91tdnx7+/3penK1Df1o3bLPDavyzOH8nhXvj79hx09mgtMLqphcHZBFbe0GE3M2e+bo6YG+GNjm4dZoR4Wi3Nbm1SEA4/dYnZH+7T9HVnf92eDQBYZmJTETKes0aNpFCvfjNnbx8oRLiP+YXGQ0kM9kCPTuJiTQsa2rqw/WwVvjMn1GJ/gyqVwO+un422rh58eqIMi2P9rDIbOjPUC/k1rb1dT788XYF5UT4IMvMMplolcF1qGHbn1AxqNDKc7MpmbDtbiTuXjE8Le3u1xjB79k2uyS3lDd3wRlt0FlBmYSJ9Xa1Sd1bW0I5urTSpjb5BlJ8biuvbLLLmmynOVzSjqaMHBbVtqGu1r7WuCmpaoRIYscmLMVYmBOBQfl1vh0VDvdnCWPOWcwnydMbMUE/sPD/635Ahzc7eg7O5Ed4I8XLG5ydHDlAKalrx0bFSrF8YaVTtvRAC6xdF4lx505iaJRkrp6rZ6GYgBpF+rpge7GGT5QQ2HCxClJ8rlk4b+0lrIQR+cmkiShva8f4h004QEoOzCaupoxvNnT0I9baPmTNAmY4HYJUarr583RzNni2aEeIBN0c1DuXXIczbxawPLmS8uRHeOFnSiB6tDhcqmnEovw7fWxRldqHxUPp2bPz0ZDm6tDqLpDT2FR/kgYdWKcserLRgl8a+Zurrzs6XN6Gotg1ny5twuZmzZgY3pIZDq5PYcty41JJXdubBRaPG3Uuix3S/E51h9qyorg2bTZw9y6lqgUYtjH5tWZHgjwN5tSMu2G4OQ1pipBmvcdF+rujWSpSPcyvszPxvO1dmDdFMyFJe2ZWH33x21qTb5Ne2IczHZcwnfVYlBqJLq+tddDozvw5ODirMiTD/fTM9MRBHi+pH7XCYXdkCIUZfENnWVCqBy2cFY3dO9YhLTTy/IwcatcCDq6YZve91KWFwc1Rjw8EiSwx1WIZOjcbWm/V1aVIQjhTUjesJipzKZhwqqMNtaZEmrUc5kuXx/kiL8cUL3+Sircv45R6IwdmEVd6gX4DahHW+rG1tUhCEUBpV2CsHtQqpUcr4lsX5221K4GSRGuWD9m4tzlc0452DBXB0UOFmM5ssDCfW3x0OKoELFc348GgJpgd79AY6lvRQ+jQ8c00SbrTw+A36NgXZelpZ58fcejODuEB3pER448Ojo695VlzXhi0nynBrWqRJaTiT1ZoZgZgd5oUXvskxafYsp7JZ+Zs0sn5oeXwAWru0w64JaK7COvMXTDbUg453U5BD+XUI9HCCWiWQNcwyHJbwn8wivHOwEB3dxqdb5de0IMZ/7EGNUi+t7k1tzMyvxdxI7zEtPZM+PRBanRw1PTa7qhkRPq5mrdM23q6cHYKuHt2wHf9yq1rwcVYp7lgcjUAP409Suzs5YN3cMHx2sszkdv2mqGruRHNHj1nrya1NCoZOwqi0TkvZkFkER7XKoic2hRD46WWJqGnpHNcumZMBg7MJqqxRvwC1Hc2cJQR5YNvjK3FN8tjWrrI2Q2qjpVvo02BzI7wBKDU1m4+V4prk0DF3UBzI0UGFaQHu+OpMBU4UN+CG1HCrBN1ODmrctTTGaul+wZ7O8HVzxJmyRnx5pgKzwjwt0q7/hnnhuFDZPOQi1339a89FqARw34qYMd/nZGBY96y4rh2bjxk/e5ZT1WLSB7Il0/zgoBIWT20srG2Do4MKwWakxUb3Bmfj15RASolD+XVYFu+PxCAPq6WdVTV3oKiuDV09OhwtNC4gllKioKYNMRbItHByUGPJND/svFCNpo5unC1rQpqJ65sNlBLhDW9Xzah1Z9kVzXaf0mgwL9IHgR5Owy5I/bft2XDWqPGDFbEm7/u2tEh09ujw0THzlhoxhqEZiDmzlLPCPBHi5Yxt45Ta2N6lxaZjJbh8VjD83J1Gv4EJFkT7Ij0xAK/sykNju/WC4cmGwdkEVaZf48yeZs4A5YXIUlPi1rIuJQxXzArGKgt33KPBwn1cEODhhJcy8tDapcXtFmwE0ldCsAfyqluhVgmsm2vfJweGI4TAzFBP7MmpwfGihjGnNBpckxwCR7UKH46w5ll1cyf+e7gY180Ns7vXFFtaPV2ZPXtld55RDQTau7Qorm8zKZXJw1mD1Egf7Mmx7FKhhjb65rweB3o4wVmjQuE4NgXJrWpBbWsXFsb4Ym6kN7KKGqDTWb5pw9GCbwMyYxdvrmnpQktnz5g6Nfa1MiEARXVt2HikBDoJLBpjgyG1SmBlQgB2Xage9jnr6tEhv6bVrtvo96VSKV0bd16o7q3PMzhf0YTPT5Xj7qXRZgUTs8K8kBLhjQ2ZhVZrDGJqG/2+hBBYmxSE3TnVaO+yfjONz06WoamjB+ut1ATqiUsT0djebZeNfuwVg7MJqryhA2qVQKCHZc9yTAWRfq54+XvzxmWdk6lOCIG5Ed5o6exBcrjyhmgN0/V1ZysTAkxKcbE3SSGevXU+l88Kscg+vV0dsTYpCJ+cKBu2rumNffno0urwg5XG125MBUII3LUkGherW3HgYu2o18+rboGUMDmVaUmcH06XNVo0zaqwts3smlqVSiDaz21cZ84yDY0xYvwwN9IHzZ09yKtusfj9HC2sh6ODCnPCvYwOzizRqbEvQ0OkFzNyoVELiyxZkZ4YiNrWLpwsbRzy8oLaVvTo5ISZOQOU1MbOIVIb/7YtB+6ODrhvuemzZgbrF0Yir7q19+/O0nKqWuDlooG/u3mZIpcmBaOjW4e9Rv6NjsWGzCLEBbqbvAi6sWaFeeGq2SF4bW8+alo6rXIfkw2DswmqrLEdQR5OVlmji8iSDDV+t1tg0enhGOq1LN0IZLwZHkd8oLtFi/ZvmBeGutYu7Bwi7ampoxvvHCjEFbOCMS1gYpxVH09XJYfAy0WDDZmjNxDIqTJ0wzPteVwc6wcp+zfEGAspJQprzWujbxDl5zquNWeZ+XUI8nRClJ8r5kZ6A4BVUhuPFNZjTrgXViYG4lRpo1GpVgUWDs4i/VwR6++GutYuzAn3tkgN2MqEAAgBZAxTo2VYC9KcGihbmR/tC3/3/qmNp0uVtO/vL4uBt6v5KfJXJ4fCw9kB/zHi/9ocSjMQd7NT7BfG+sLD2QHbrNxS/0xZI7KKG3BbWqRVa/AfX5uAjm4tXt6ZZ7X7mEz4yX6CKmtoR4idtNEnGsn1c8PwwMppuGaO9dINV8YHYMO9C3HFGBto2Jph8faxNgIZaEV8APzdnYZMbXz3YCGaO3t6u1FSf84aNW6cF46vTleMuiRBdqXSqdHUBdZTIr3h5KAyanbOGNXNnWjv1pq8AHVf0X5uKKptg9YKqYUDKfVmtUiL8YMQAjF+bvB0dsBxCzcF6ejW4kxZI+ZF+WLpND/oJHq7Jo4kv7YVDiqBMAu+5xrWJ1sYa5nZCh/9cjZDnYABlDQ7lcCEOgGj1qc2Zlyo6u3299dt2fB0dsA9y8dWG+viqMYNqeHYerrcKrM5uSbWng6kUauwenogdpyrsur/4H8yi+DkoMINqdY9sRkX6I7rU8PxzsFClOt7JtDwGJxNUOWN9rPGGdFIAj2d8eQV062yNpiBSiWwdBJ035wW4I4Xb0vF/WYUuY/EQa3CtSmhyLhQ1a89c0e3Fq/vzcfyeP/ewJAGu21hJHp0EhuPjNxAIKeyBTH+btCYmNHg5KDG/GgfHMizTHBWWKdvoz+GhjJRfm7o0upQ0WT9dvqFtW2obOrsXYhZpRJIifTpt0aiJZwobkC3VmJ+lA/mRvrARaPGfiPSxvKrWxHp52rRTBXDYsPLLbjWZnpiIE6UNKK6eXCwkV3Zgmg/N6u+DlvDFbOV9L6M89XIKm7AjvNVuH9FLDwtUJawfmEkurVyxHpcc9S2dKKutcuotQ5HsjYpCLWtXRbv5GrQ0tmDj4+X4urkUHi5Wr/M47E18ZBS4vkduVa/r4mOwdkEJKWy/kyoEYsuEtHEclVyiFXqIW+YF45urcQnWd92Htx4pBg1LV2cNRvFtAB3LJnmh/9kFo14FjunqtmsBgCAktp4vqIZ9RZY28iQhmdOG30DQ73aeDQFMaRzLuozizQ3whvZlc2DmkGMxVH9h9zUKB84OqiQFuNrVE1PQW0rYsbwXA5lSZw/vnliJRaZufj0UNKnK7Vsu4bo/Jld2TyhUhoNFsb4wc/NEV+cLsdftmXDx1WDu5ZapqNsfJAH0mJ88d6hIos2n8nRd2qMH2Nq+sqEADiqVfj6jHVSGz/JKkNrlxbrF1mnEchAEb6uuDUtEhuPFPe+RtHQGJxNQLWtXejq0SGEwRkRGWlGiCdmhnriI31b+B6tDv/cfRFzI737fSimoX1vURRKG9qxK3votLGObi2K6trM/gBs+JBuibqzoro2qFUCYT7mZ1dE+Y9fO/3M/Dr4uTn2S7mbG+kNnQROlgzd4MIcRwvqERvg1rucx9I4P+RVt6JihMW2dTqJgtpWi3Vq7CvWwimGM0M9EejhNKilfke3FgW1rUicQM1ADNQqgctmBePrMxXYnV2NB1ZOs+hyJusXRqKwtg378izXeKM3OBtjMOzhrMHiaX74+mylxbtKSimxIbMQM0I8e5e8GQ8Pp8fBQS3wt+3Z43afExGDswnI0EafaY1EZIobUsNxqrQRFyqa8enJMpTUt+OhVXETPh10PKxNCkKAhxPePTh0A4HcKn2nRjNnzpLDveGiUVsktbGgtg1h3i4mp1f2FeLpDEcHFQrHoSlI5sU6pMX49vs7NHR2PV5smZQunU7iaFE95kd92xlxaZyy1uX+ET6YVzZ3oKNbZ7FmINYkhMCqxADszq5GT5+F0y9Wt0InlZmiieiq2SHo1kr4uztafDmWy2cFw9fNERuG+b82R25lM9ydHMxaY3CgtUlBKKxt6w34LOVkSSPOlDXhtoXWbQQyUKCnM+5cEo0tJ8p6m9TQYAzOJqCyBuUsH4MzIjLFupRQOKgEPjxajJd35iEhyB1r9KlQNDKNWoXvLohAxoUqlNQPnk3KHePZckcHlVJ3ZoGmIIW1rYga44LJKpVAlK/1OzaW1LehtKF9UBtvb1dHxPq7WawpyMWaFjS0dWN+1Lf3MyPYE75ujiOmNuZXW7ZTo7WlJwaiuaMHx/o8b992EZ2YwdnCGF/Mj/LBk1fMgKuj5WbNAKXe86Z54dh2rhKVFqqvzKlqQdwYOjX2tTZJqU209ILUGzIL4eqoxrUp478u6AMrpsHd0QF//vrCuN/3RMHgbAIydLphWiMRmcLP3Qnp0wPx5v4CZFe24MFV0+x+0Xh78t20SAgA7x8qHnRZdmUzHPTrg5lr8TQ/ZFe2jLl7XGFt25iDM0BpClJQY920xkN91jcbKCXSG8eLGiyS0nW0UJmBmxf97cyZSiWwONYP+3Nrh72PfH1wao20RmtYFu8PB5XotzbYhQrlb3OiBJgDOahV+PDBJVZbKuXWtEhodRIfHB78f20OQxt9SwjydMacCG+L1p01tnfj0xPlWJcSapP1Xn3cHHHfilh8fbYSWVZYLmMyYHA2AZU1tMPJQdWbN09EZKwbUpXGIOE+LrgmefzPmk5kYd4uWD09EO8fLh60oHdOVQui/d3g6GD+2+pifd2ZMe3dh9PQ1oXG9u4xBYkG0X6uKKxrtWizhIEyL9bB09mhdyH5vuZGeKOmpROlDWNvvX2koB4+rhrEDghQlsb5o6KpAxeHaVBQUNMKJwcVQiyQojYePJw1WBDt26+lfra+i+hY/jYns2h/NyyP98d7h0Zu+GOMhrYuVDd3WrT5yqVJQThR0jhibaQp/pNZhPZuLdYvtN7ao6P5/rIYfTppoc3GYM/4nzoBlenb6LNOhIhMtXp6IOZF+eBnl0/nIvZmWL8wCjUtnYPSjHIqm01efHqg2WFecHdyGFPdWWHt2NvoG0T5u6GjW4eqIVqzW0pmfi3SYnyHnMGdG6nMclkitfFoYT3mRfkMet9cGqcExPuGSW3Mr2lFtJ/bhJphTp8egPMVzb316TlVzRM2pXG83JYWibLGDmzILDRqYfLh9KY3j7GNfl+XGlIbz409tbGhrQsv78zF6umBNl0+xd3JAe/dtwi/u362zcZgz/jOPAGVN7QzpZGIzOLooMJHDy7Bd6y4KPhktiIhAOE+Lni3zxlfQ6fGsa5r5KBWYcEY684KLJiGZ2inb626s8qmDhTUtg2Z0ggAicEecNaoxhyc1bZ04mJNK+ZFDe5KGunrijBvl5GDszEs5m0L6YlKHWnGhSq0d42ti+hUcUlSEGL83fC/W85gzq+/xqo/ZuCR947jX7sv4uDFWrQYuaSDoXFHnIXSGg37ivF3s0jd2Us789Dc2YOfXZ5ogZGNTWKwB08QDsOylZU0LsoaOnq7TBER0fhRqwRuTYvEH7+6gFx94b+hG95YZ84Ape4s40I1Kps6EGRGKl2RBWfODKmRhbWtFl2PyyDTUG82zFIOGrUKyWHeY+7YaGiOMb9PvZmBEAJL4/zw5ekKaHUS6j4zZFqdRFFdG9YmBY/p/sdbXKA7wn1ckHG+Gslh3pASE7KN/njSqFX49JFlOFZYj1OljThV0ohjhfX49EQZAEAIINbfDQuifXHT/AikRnoPmb2UU9kCF40aYRZs2CaEwNqkILyxLx9NHd1mL8Bd2tCON/cX4IbUcEwP9rTY+MjyGLJOMD1aHaqaOxDmzZkzIiJbuHl+BDRqgf9kKu23Dd3wLJHKtGiMdWcFtW0I9nSGs0Y95rGEeDlDoxZWW+ss82It3J0ckBQy/AfFlEhvnClrQmeP1uz7OVJYB41aYPYwaVxL4/zR1NGD06X911QrrW9Ht1YiZoLNnAkhkJ4YiH25NThdpjymidpGfzy5OzlgRUIAfpgeh1dun4d9T67Gkf+5BG/cvQCPX5KAGH83fHqiDDe8vB+X/W033tiXj8a2/imQOVXNiAt0t3ga7KVJQejWSuy6MHiBcWMZuiM+vjbBUsMiK2FwNsFUNndCJ4EQttEnIrKJAA8nXDYzGB8eLUZHtxY5lS1QW6gb3sxQL3g4O5gdnBXVtSLSAp0aASXNMsLX1WprnR3Kr8O8KJ8RU5vmRnijq0eHc+Xmr4l0tKAes8K8hg1Yl0xTMlEGLkTc26nRAs1Vxlv69AC0d2vxzoFCOKpVvSmqZBp/dyekJwbi0TXxeO3OBch86hL87vrZcNGo8etPzyLt/23Hj/+bhUP5dZBSIteCnRr7mhvpAz83R7NTG8+VN2Hz8VLcvSTaorN6ZB0MziYYQ4Eva86IiGzne4ui0NTRg09PlCG7shnRfq4W6YanVgksjPE1uylIQW2bRT+IR/u5Id8K7fRrWzqRU9UybEqjwbdNQcxLbezs0eJkaWO/xacHCvBwQmKQB/bn9n/OC/QdHGMCJl5wtjjWH04OKpwtb0JsgBtreyzE3ckBt6ZFYsvDy/DZI8tw0/xwbDtbiZv/eQCX/GUXyhs7EGeF+j61SuCSGUHIOF81qFOsMf7w5Xl4ODngoVVxFh8bWR7/WycYQ3DGMx9ERLazMMYXcYHu2JBZpD9bbrm0sUWxfiiobetd09JYrZ09qG7uRJQFZ3qi/JSZM0usNdbX4QLD+mYjB2fBXs4I8XI2uynI6dImdPXohmwG0tfSOH8cLqhDR/e36ZP5Na1wc1QjwN3JrPu2JRdHNRZPU1Jk2anROmaFeeHZa2cj86k1eO7GZHi6KLVgqZHDnwgYi7VJQWju7EFmvmknbvbn1WDnhWr8MD0OXq7jv64ZmY7B2QRTrl/ngmmNRES2I4TA+oWRyCpuwMWaVos0AzEwfKg2dfasqE6Z4bLEAtQG0X5uaOvSotqIhbErmzrw+clyowK5gxfr4KxRYXaY96jXTYkwvynI0UIlCJw3wswZoLTU7+zR4Vjht/ejdGp0m7DL1hi6Nlryb5MGc3V0wM3zI7D5oaU4+cylVmmeAygLjLto1Pj6jPGpjVJK/H7reYR6OePOJdFWGRdZHoMzO7D1VDnS/7TTqLz+8oZ2eDg7wN2JjTaJiGzp+rnhcNYob6NxFpydmBHsCW9XjcnBWaEVaqQMgV6hEU1BnvzoJH74n2N4fV/BqNfN1NebGZMKOjfSG8V17agxIkAc6EhBPaL8XBHgMfLsV1qML9Qq0a/urKC21SJ1hLayNikI/u6OWDyN3Z3Hi7mdFI3hrFFjRYI/tp2tNHom+/NT5ThZ0ogfX5pokSZBND4YnNnYieIG/Oi/WcivacXbB0ZfKb20oYMpjUREdsDLVYNrkpX14iw5O6Ey1J2Z2BSkdwFqC8+cAd/WXw3ndGkjMi5Uw9/dCc9+fhY7Rlgwt7GtG+crmpAWbdwMg6HuLMvE1EYpZe/i06PxcNYgJcIb+/R1Z109OhTXtU3o4CzU2wVH/metUY+fJoZLk4JR0dRh1GtDV48Of/zqAqYHe+C6uWHjMDqyFAZnNlTW0I573z6CAA8nLI/3x4dHS/rluw+lvJELUBMR2YsfrU3Ao2vikWDBmjMAWBzrh5L6dhTXGd+Mo6C2Db5ujhY9ex/m4wK1Sow6c/aPb3Lh4eyALx5dhlmhXnjkveM4W9Y05HUPF9RByuHXNxtoVqgXHFTC5NTGwto21LZ2Yf4o9WYGS6f54WRJAxrbu1Fc3wadnJidGmnyWjMjEH5ujrj934fw9JbTqG/tGva67x8uQmFtG35++fR+6/eR/WNwZiOtnT24560j6OjS4vW7FuDBVdPQ2N6Nz0+Wj3i78sYO1psREdmJMG8X/HhtgsXXNVpkqDszYfasqK7VIotP96VRqxDh44KCEdLusyub8eWZCty1JBqBns547c758HTW4J63DqOqqWPQ9TPza+GoViElwtuoMbg4qjE9xMPkpiBH9PVjxs4cLYnzh04q669N5E6NNHl5uzriq8dX4LsLIvDOwUKs/GMGXttzcVAHx5bOHvx9ew4WxvhiVWKAjUZL5mJwZgNancRj72fhQkUTXrhtLhKCPLA41g+xAW7YkDl8amN7lxZ1rV1MayQimuQSAj3g6+Zo0npnBTWWbaNvEOXnNmJw9lJGLlwd1bh7aQwAIEgfoDW0dePet4+gvat/Rsih/DqkRHibVAMzN8IHJ0saodUZ3zXyaGEdPJ0djF53am6kN5w1KuzPq0W+ITjjzBnZGX93J/z2utnY+tgKzInwxrOfn8Nlf9uNr89U9Naivbr7Impbu/CLK2dM2IY2U9mUD85aOnustsDmcJ778jy2n6vE09fMxCp9NyWl81cUjhU1DJsKYmirzLRGIqLJTaUSWBTri4N5tUYV/3f2aFHe2I5IKwQT0X6uKKxpG3IchbWt+OREGdYvjISvm2Pv9llhXnj+1rk4VdqIH3+QBZ0+qGrp7MHpsiajUxoN5kZ6o6WzB7lVLUbf5khBPVKjfIye1XRyUCMtxg97c2uQX9MKLxcNfPo8JiJ7khjsgbe/n4Y37l4AtUrg/neOYv1rmdidXY3X9lzEVbNDjJ6dJvsypYMzKSVu+ecBPP7fLIuv4TKc/x4uwj93X8Tti6IGtTW9ITUMTg6qYWfPetvoe3HmjIhoslsc64eyxo7eFvkjKalv19dIWWfmrLmzB3VD1Le8vDMPDmoV7lseO+iytUlB+OUVM7D1dAX+9PUFAMCRgjpodRILY0xrN27qYtSNbd3IqWoZcfHpoSyd5ofcqhYcyq+b0M1AaGoQQiA9MRBbH1uO/1s3E+fKm3DH64fQ1aPDTy5LtPXwyExTOjgTQuC2hZE4VtSAnReqrX5/B/Jq8dTm01ge74+nr0kadLm3qyOuTg7Fx8dL0dLZM+jyUv0C1KHenDkjIprsTFnvrKjW8mucGUT7K/ssGNAUpKyhHR8dK8F3F0Qg0HPo96V7l8fg1rQIvLQzDxuPFONQfh0cVAKpUd6mjcHPFd6uGqPrzo7pg7hUU4OzOKXtfE5VC4MzmjA0ahXuWByNnT9Jx0OrpuF/r0ni3+8ENmpwJoSIEEJkCCHOCSHOCCEe02//oxDivBDipBBisxDC2+qjtYKb5kUgwtcFf952waqzZ/k1rXhww1FE+bniH7elwkE99FO/flEkWru02JJVOuiy8gZl5iyYaY1ERJPetAB3BHg4GdUUxFATFmWFtEbDPgeWALy6+yKkBH6wctqwtxVC4P/WzcLSOD/8cvMpfHy8FLPDveDqaNpanUIIpER4I6u4wajrHymsg1olTE7rSgpR1pgD2KmRJh4vVw1+dvl03LE42tZDoTEwZuasB8ATUsoZABYB+KEQIgnANgCzpJTJALIB/MJ6w7QeRwcVHluTgNOlTfjKhFXXTdHY1o173jwMAeD1uxbAy2X4NsdzI7yRFOKJdw8WDQoWyxvb4e/uBCcHLiRIRDTZCSGwKNYPB4yoOyusbYO7kwP8rFAjFeHjCpXoP3NW1dyB9w4V4frUsFGbVGnUKrx02zxE+LqirLHD5JRGg7kRPsiuakZzR/eo1z1SUI+ZoZ4mB4EqlcAS/YwlOzUSkS2MGpxJKcullMf0PzcDOAcgTEr5tZTSkHt3EEC49YZpXdemhCLW3w1/2XbBpE5QxpBS4omNWSiub8M/b58/6llNIQTWL4rEufImHB9whrC0oZ0pjUREU8jiWD9UNXfi4iiLQBfWKm30rdGZzdFBhTAfl34LUf97Tz66tTo8uCrOqH14uWrw+p0LMC/KB1cnh5g1jrmR3pASOFnSOOL1urU6nChpMHvx5WVxSuvxaQzOiMgGTKo5E0JEA5gLIHPARd8HsNVCYxp3DmoVfrQ2AdmVLfjsZJlF970lqwzbz1Xh55dPR1qMcd2p1qWEwc1RjQ0Hi/ptL2/sQCibgRARTRmL9F0NR6o7q2zqQHZlS29tmDVE+7n1pjXWt3bh3YOFuGZOqEl1LdH+bvjowSWYFeZl1hjm6FMUR2sKcrasCR3dOrODs5vmh+P1u+ZjZqh54yQiGgujgzMhhDuAjwD8SErZ1Gf7U1BSHzcMc7v7hRBHhBBHqqut33TDXFfPDkFikAf+vj0HPVrd6DcwQnVzJ5759AxSI717138xhruTA66dG4bPTpahoU3pjiWlRHlDO0I4c0ZENGXE+LshyLN/3Vm3VocDebX4/dbzuPxvu7Hw/+1AaUM75oR7W20cUX6uvWmNb+wvQGuXFg8ZOWtmKV4uGkwLcBu17syw+PT8KNPa9Rto1Cqsnh5k1m2JiMbKqGRsIYQGSmC2QUq5qc/2OwFcDWCNHCYhXkr5KoBXAWD+/Pnj06/eDCqVwONrE/DAu0ex+XgpbpofMeZ9PvPJGbR1avHcjclQG7nOisH6hVHYkFmEj46V4p5lMWjq6EFrl5YzZ0REU4gQAotj/bAnpwb/ySzCzgtV2J9Xi5bOHjioBOZH++DJK6ZjVWIAEoM8rDaOaD83NLZ3o7iuDW/uy8dlM4OQGGy9+xvO3Egf7DhXiYzzVQj1dkGItzM8nfvXcR8trEOYtwubZxHRhDRqcCaUBPZ/AzgnpfxLn+2XA/g5gJVSytEXYZkALpsZhFlhnnj+mxysSwmDo4P5Kw1sPVWOz0+V46eXJSIu0PQ3sKRQT6RGemNDZiG+vzQaZb1t9BmcERFNJUum+ePjrDL8cvMphHm74DspoViZEIClcf5wdzKt4YW5DPXSz35+Fk0dPXg4PX5c7neg5fH++PBoCe5+83DvNncnB4R6OyPEywWh3s7Yn1eLlQkBNhkfEdFYGfOqvhTA7QBOCSGy9Nt+CeB5AE4AtukLkA9KKR+wxiDHixACT1yaiLvfOIyNR4uxfmGUWftpaOvCr7acwcxQT9y/YvDCnMZavzAKT2w8gQMXa9HRrQUApjUSEU0x6+aGwkEtMDvMC3GB7lZp+jEaw+LWX52pxKrEAMwOt0091rqUMCyK9UNJfTvKG9tR1tCOsoYO/c8dOFPWiKb2bqyeHmiT8RERjdWowZmUci+Aod4JvrD8cGxvVUIAUiO98cKOXNyQGg5njelt6//vs7NoaOvCW99fAM0w65kZ46rkEPzfZ2exIbMIi2OV1r5MayQimlqcHNS4PtW2DZEjfF0hBCAl8HD6+NaaDRTk6YwgT2cAQzf80OqkyaUERET2wvzIYZISQuAnlyaioklZw8VUGeersOlYKR5aNW3MnZ6cNWrcNC8cX52uwMmSBjioBAI8nMa0TyIiIlM5a9SI8nXFolhfzI82r9HGeGFgRkQTGYOzISyJ88fiWD+8mJGHtq6e0W+g19zRjV9uPoX4QHf8cLVlzizeujASPTqJTcdKEeTpzDcdIiKyibe/vxAvr59n62EQEU1qDM6G8cSlCahp6cTbBwqNvs3vtp5HZVMHnrsxGU4OpqdDDmVagDuWTPNDj05yAWoiIrKZSD9X+Lg52noYRESTGoOzYcyP9sXKhAD8c1cemju6R73+/lylzfG9y2MxN9K8hS+HY2hMwk6NRERERESTF4OzEfx4bQLq27rxxr6CEa/X1tWDn286iWg/Vzx+SYLFx3HpzCDEB7oj1cJBHxERERER2Y/xWSBlgpoT4Y21SUF4MSMX289VwstFM+RXZn4diuva8d/7F8HF0TLpjH1p1Cp8/fgKm7RPJiIiIiKi8cHgbBTPfGcm/rotG9XNnWhs70ZJfTsa27vR2N4NrU72Xu+uJdFYqG93bw0MzIiIiIiIJjcGZ6MI83bBn26aM2i7lBKtXVo0tnejo1uLWH83G4yOiIiIiIgmCwZnZhJCwN3JAe5OfAqJiIiIiGjs2BCEiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgNCSjl+dyZENYDCcbtD4/kDqLH1IKgXj4f94TGxLzwe9oXHw/7wmNgXHg/7wuNhe1FSyoChLhjX4MxeCSGOSCnn23ocpODxsD88JvaFx8O+8HjYHx4T+8LjYV94POwb0xqJiIiIiIjsAIMzIiIiIiIiO8DgTPGqrQdA/fB42B8eE/vC42FfeDzsD4+JfeHxsC88HnaMNWdERERERER2gDNnREREREREdmBCBWdCiMuFEBeEELlCiCf7bP+vECJL/1UghMga5va+QohtQogc/Xcf/fb1fW6fJYTQCSFShrj9Bv39nxZCvC6E0Oi3CyHE8/pxnRRCpFrnGbA/dnxMpgshDgghOoUQP7HOo7c/dnw81uv/N04KIfYLIeZY5xmwP3Z8TNbpj0eWEOKIEGKZdZ4B+2LF46ERQrwlhDglhDgnhPjFMLePEUJk6m//XyGEo377lHwfsePjMSXfQwC7PiZT8n3Ejo/HlHwPGRdSygnxBUANIA9ALABHACcAJA1xvT8D+N9h9vEcgCf1Pz8J4A9DXGc2gIvD3P5KAEL/9R6AB/ts36rfvghApq2fLx4TBAJYAOC3AH5i6+eKxwNLAPjof76C/yN2cUzc8W1qezKA87Z+viby8QBwG4D39T+7AigAED3E7T8A8F39z69M5fcROz8eU+49ZAIckyn3PmLnx2PKvYeM19dEmjlLA5ArpbwopewC8D6AdX2vIIQQAG6G8gFkKOsAvKX/+S0A1w5xnVuHu72U8gupB+AQgPA++31bf9FBAN5CiBCjH9nEZbfHREpZJaU8DKDbpEc0sdnz8dgvpazXX+0gvv3fmezs+Zi06LcBgBuAqVCAbM3jIQG4CSEcALgA6ALQNMS+VwP4cIjbT8X3Ebs9HlP0PQSw72MyFd9H7Pl4TMX3kHExkYKzMADFfX4v0W/razmASillzjD7CJJSlgOA/nvgENe5BcP/gQNQpoIB3A7gSxPGNhnZ8zGZiibK8bgHygzBVGDXx0QIcZ0Q4jyAzwF8f6TbTxLWPB4fAmgFUA6gCMCfpJR1A27rB6BBStkzxP1PxfcRez4eU9VEOSZT5X3Ero/HFHwPGRcTKTgTQ2wbGKUPe/bYqDsQYiGANinl6VGu+hKA3VLKPSaMbTKy52MyFdn98RBCpEN5U/25uWOYYOz6mEgpN0spp0M5E/obc8cwgVjzeKQB0AIIBRAD4AkhRKwJ9z8V30fs+XhMVXZ/TKbY+4hdH48p+B4yLiZScFYCIKLP7+EAygy/6Kdlrwfw3z7b3tAXKn6h31RpSBPRf68acB/fxehnn58GEADgx8aObRKz52MyFdn18RBCJAN4DcA6KWWtCY9rIrPrY2IgpdwNYJoQwt+YBzWBWfN43AbgSyllt5SyCsA+APMH3H8NlHRFhyHufyq+j9jz8Ziq7PqYTMH3Ebs+HgZT6D1kXEyk4OwwgHh91xhHKB9IPulz+SVQihFLDBuklHdLKVOklFfqN30C4E79z3cC2GK4rhBCBeAmKPm8QxJC3AvgMgC3Sil1fS76BMAdQrEIQKNhCnmSs+djMhXZ7fEQQkQC2ATgdill9hge40Rjz8ckTl9PAKF0BnQEMNk/7FjzeBQBWK1/H3CD0tTjfN8719dnZAC4cYjbT8X3EXs+HlOV3R6TKfo+Ys/HYyq+h4wPaQddSYz9gtLNKhtK55qnBlz2JoAHRrm9H4AdAHL03337XLYKwMFRbt+jv+8s/df/6rcLAC/qLzsFYL6tnyseEwRDOePUBKBB/7OnrZ+vKXw8XgNQ32f7EVs/Vzwm+DmAM/ptBwAss/VzNZGPB5TOZRv1z+lZAD8d5vaxUBqz5Oqv76TfPiXfR+z4eEzJ9xA7PyZT8n3Ejo/HlHwPGY8vQwtMIiIiIiIisqGJlNZIREREREQ0aTE4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI7wOCMiIiIiIjIDjA4IyIiIiIisgMMzoiIiIiIiOwAgzMiIiIiIiI78P8Bc94xSZoe6CYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAE/CAYAAAAUrGGzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAC5JUlEQVR4nOydd5ycZbn+r2d6L9tbNpuQBFIJKRQVIWJHRVFADxZEbMdejvWoeH56VPSIx3NUrNiwgAIqx4JoUHpCQkhIJ8mWbJ8t0/s8vz/eeWZnd6e878w7bff+fj75wM7OvPPM7O687/1c931djHMOgiAIgiAIgiAIovHR1HoBBEEQBEEQBEEQhDpQgUcQBEEQBEEQBLFEoAKPIAiCIAiCIAhiiUAFHkEQBEEQBEEQxBKBCjyCIAiCIAiCIIglAhV4BEEQBEEQBEEQSwQq8AiCIAiCIAiCIJYIVOARBEE0KIyxQNa/FGMsnPX19bVeXykwxvoZYy+s9ToKwRh7kDF2U4WOvY4x9jvG2CRjbJox9hfG2LkL7rOaMXYfY8zPGPMwxm7JcZy1jLEIY+znC26/gjF2jDEWYoztZoytzPoeY4x9hTE2lf53C2OMVeJ1EgRBEJWDCjyCIIgGhXNuE/8ADAJ4ZdZtd9R6fQthjOmWwnNUGBeA3wM4F0A7gD0Afie+yRgzAPgrgL8D6ADQA+Dni44CfAvA3uwbGGMtAO4G8BkATQCeBPDrrLu8A8CrAZwPYAuAVwB4Z9mviCAIgqgqVOARBEEsMRhjGsbYJxhjp9JKzJ2Msab09/oYY5wx9lbG2BBjbIYx9i7G2E7G2EHG2Cxj7H+zjnUDY+wRxtj/MMa8afXniqzvOxljP2SMjTLGhhljX2CMaRc89lbG2DSAmxlj5zDG/p5el4cxdgdjzJW+/88A9AL4Q1qF/Bhj7HLG2NkFry+j8jHGbmaM/YYx9nPGmA/ADUXWtIYx9o/0a/EwxrILnOznMKWPOZV+T/YyxtoZY18EcCmA/02v8X/T9z+PMfbXtOp2nDF2bdaxfswYuy39fX/6+Vfmel7O+R7O+Q8559Oc8ziAWwGcyxhrTt/lBgAjnPOvc86DnPMI5/zggrW/HsAsgL8tOPzVAA5zzu/inEcA3AzgfMbYeenvvwXAf3HOz3LOhwH8V/r5CIIgiAaCCjyCIIilx/shKTGXAegCMANJ0cnmIgBrAVwH4BsAPg3ghQA2AriWMXbZgvueBtAC4HMA7hYFI4CfAEgAWAPgAgAvBnBTjse2AfgiAAbgS+l1rQewAlKhAc75mzBfiVzUepiHqwD8BpL6dUeRNf0/APcDcENSv/4nzzHfAsCZXl8zgHcBCHPOPw3gIQDvTa/xvYwxKyRV7Rfp1/kGAN9mjG3MOt716eduAXAgvU45PB/AGOd8Kv31xQD6GWN/SheoDzLGNos7M8YcAP4DwEdyHGsjgKfFF5zzIIBT6dsXfT/9/9mvgSAIgmgAqMAjCIJYerwTwKfTSkwUUgH1ugXti/8vrf7cDyAI4Jec84m0cvMQpMJIMAHgG5zzOOf81wCOA7iSMdYO4GUAPphWkyYgKU6vz3rsCOf8fzjnCc55mHP+LOf8r5zzKOd8EsDXIRWi5fAY5/xeznkKgKPImuIAVgLoSr/+h/McMw6psFvDOU9yzvdxzn157vsKAP2c89vTr3M/gN8CeF3Wff6Pc/7P9M/j0wAuYYytKPSiGGM9kArzD2fd3JN+Ld+EVCT/H4DfpVs3AamI/CHnfCjHIW0AvAtu8wKw5/m+F4CN5vAIgiAai0afVSAIgiAWsxLAPYyxVNZtSUgzXYLxrP8P5/jalvX1MOecZ309AKm4WAlAD2A0qwbQAMguLuYVGoyxNkjFyaWQCgsNJIWxHLKfo9iaPgapCNrDGJuB1JL4oxzH/Bkk9e5X6RbSn0MqmuM57rsSwEWMsdms23TpYyxaI+c8kG5Z7Vqw9gyMsVZISuO3Oee/zPpWGMDDnPM/pe/3NQD/DmB9uhB7IeYX59kEIBXA2TgA+PN83wEgsOBnTxAEQdQ5VOARBEEsPYYA3Mg5f2ThNxhjfSUcr5sxxrIu9HshGYEMAYgCaOGcJ/I8dmFx8KX0bVs451OMsVcD+N8C9w8CsGStXwugtcBzFFwT53wMwNvTx3oegAcYY//knD+74H5xAJ8H8Pn0e/ZHSMrlD3OscQjAPzjnL1r4fFlk1DrGmA2SyclIrjsyxtyQirvfc86/uODbBwE8N89zXA6gD8Bguri1AdAyxjZwzrcBOAyp9VQ8jxXAOenbkf7v+ZCMXZD+f/E9giAIokGgFk2CIIilx20AviiMPBhjrYyxq8o4XhuA9zPG9IyxayDNzv2Rcz4KqRD5L8aYg0nmLucsmN9biB2SUjTLGOsG8G8Lvj8OYHXW1ycAmBhjVzLG9JDUKmO+gxdbE2PsmnTrIyAphxySujkPxtguxtjmdEHpg9SyKe63cI33AVjHGHtT+j3SM8m0Zn3WfV7OGHteupXy/wF4IlcbZXqG7i8AHuGcfyLHS/w5gIsZYy9Mr+2DADwAjgL4HqSCbWv6322QWjhfkn7sPQA2McZeyxgzAfgsgIOc82Pp7/8UwIcZY92MsS5Ic3w/zrEGgiAIoo6hAo8gCGLp8d+QFLb7GWN+AI9DMjsplScgGbJ4IBmlvC7L9OPNAAwAjkAqmH4DoLPAsT4PYBuk+a7/g2Tbn82XAPx72rnyo5xzL4B/BfADAMOQFL2zKEyhNe0E8ARjLADpPfoA5/xMjmN0pB/ng1Q8/QNzcQT/DWmmcYYx9k3OuR+SkcvrIalyYwC+gvmF6C8gGdRMA9gOyXQlF69Jr/GtbH7OYS8AcM6PA3gjpOJtBpLBzKs45zHOeYhzPib+QSqkI+lZR6T/+1pIP8MZSL8T2fOS3wXwBwCHADwD6efz3TzrJAiCIOoURq31BEEQRD4YYzcAuIlz/rxar6VRYYz9GMBZzvm/13otBEEQxNKHFDyCIAiCIAiCIIglAhV4BEEQBEEQBEEQSwRq0SQIgiAIgiAIglgikIJHEARBEARBEASxRKACjyAIgiAIgiAIYolQ1aDzlpYW3tfXV82nJAiCIAiCIAiCqBv27dvn4Zy3Vur4VS3w+vr68OSTT1bzKQmCIAiCIAiCIOoGxthAJY9PLZoEQRAEQRAEQRBLBCrwCIIgCIIgCIIglghU4BEEQRAEQRAEQSwRqjqDRxAEQRAEQRD1Qjwex9mzZxGJRGq9FGIJYjKZ0NPTA71eX9XnpQKPIAiCIAiCWJacPXsWdrsdfX19YIzVejnEEoJzjqmpKZw9exarVq2q6nNTiyZBEARBEASxLIlEImhubqbijlAdxhiam5trog5TgUcQBEEQBEEsW6i4IypFrX63qMAjCIIgCIIgiBrxxS9+ERs3bsSWLVuwdetWPPHEEwCAm266CUeOHFHlOfr6+uDxeAre5z//8z8VH/fHP/4x3vve98677fbbb8fWrVuxdetWGAwGbN68GVu3bsUnPvEJxcevBt/4xjcQCoVqvQxVoRk8giAIgiAIgqgBjz32GO677z7s378fRqMRHo8HsVgMAPCDH/ygqmv5z//8T3zqU58q+zhvfetb8da3vhWAVFju3r0bLS0tZR+3VDjn4JxDo8mta33jG9/AG9/4RlgsFtnHTCQS0Onqt4wiBY8AAEz4Inh6aLbWyyAIgiAIglg2jI6OoqWlBUajEQDQ0tKCrq4uAMDll1+OJ598EgBgs9nw8Y9/HNu3b8cLX/hC7NmzB5dffjlWr16N3//+9wAWq2mveMUr8OCDDy56zle/+tXYvn07Nm7ciO9973sAgE984hMIh8PYunUrrr/+egDAz3/+c1x44YXYunUr3vnOdyKZTAKQFLp169bhsssuwyOPPCL7tX71q1/Fzp07sWXLFnzuc58DAPT39+O8887DTTfdhE2bNuH666/HAw88gOc+97lYu3Yt9uzZAwC4+eab8aY3vQkveMELsHbtWnz/+98vetz169fjX//1X7Ft2zYMDQ3h3e9+N3bs2IGNGzdm7vfNb34TIyMj2LVrF3bt2pV5rwW/+c1vcMMNNwAAbrjhBnz4wx/Grl278PGPfxynTp3CS1/6Umzfvh2XXnopjh07Jvu9qDiiqs33D8AKALsBHAVwGMAHsr73PgDH07ffUuxY27dv50T9kUql+DW3Pcov+I/7a70UgiAIgiCIqnHkyJGaPr/f7+fnn38+X7t2LX/3u9/NH3zwwcz3LrvsMr53717OOecA+B//+EfOOeevfvWr+Yte9CIei8X4gQMH+Pnnn8855/z222/n73nPezKPv/LKK/nu3bs555yvXLmST05Ocs45n5qa4pxzHgqF+MaNG7nH4+Gcc261WjOPPXLkCH/FK17BY7EY55zzd7/73fwnP/kJHxkZ4StWrOATExM8Go3y5zznOfOecyHief/yl7/wt7/97TyVSvFkMsmvvPJK/o9//IOfOXOGa7VafvDgQZ5MJvm2bdv4W9/6Vp5Kpfi9997Lr7rqKs4555/73Of4li1beCgU4pOTk7ynp4cPDw8XPC5jjD/22GOZtYjXnUgk+GWXXcaffvrpRe/Nwvfhrrvu4m95y1s455y/5S1v4VdeeSVPJBKcc85f8IIX8BMnTnDOOX/88cf5rl27cr4HuX7HADzJi9RN5fyToy0mAHyEc76fMWYHsI8x9lcA7QCuArCFcx5ljLWpXHsSVeLRU1PYc2YaAOCPxGE3VTergyAIgiAIotZ8/g+HcWTEp+oxN3Q58LlXbsz7fZvNhn379uGhhx7C7t27cd111+HLX/5yRjUSGAwGvPSlLwUAbN68GUajEXq9Hps3b0Z/f7+iNX3zm9/EPffcAwAYGhrCyZMn0dzcPO8+f/vb37Bv3z7s3LkTABAOh9HW1oYnnngCl19+OVpbWwEA1113HU6cOFH0Oe+//37cf//9uOCCCwAAgUAAJ0+eRG9vL1atWoXNmzcDADZu3IgrrrgCjLFFr+2qq66C2WyG2WzGrl27sGfPHjz88MN5j7ty5UpcfPHFmcffeeed+N73vodEIoHR0VEcOXIEW7ZsUfTeXXPNNdBqtQgEAnj00UdxzTXXZL4XjUYVHauSFC3wOOejAEbT/+9njB0F0A3g7QC+zDmPpr83UcmFEpWBc45b/zr3hzk8G8Z5HVTgEQRBEARBVAOtVovLL78cl19+OTZv3oyf/OQniwo8vV6fcWTUaDSZlk6NRoNEIgEA0Ol0SKVSmcfksud/8MEH8cADD+Cxxx6DxWLB5ZdfnvN+nHO85S1vwZe+9KV5t997770lOUNyzvHJT34S73znO+fd3t/fn3kthV4bsNiRkjFW8LhWqzXz9ZkzZ/C1r30Ne/fuhdvtxg033JA3viD7eRbeRxwzlUrB5XLhwIEDxV56TVA0HcgY6wNwAYAnAHwVwKWMsS8CiAD4KOd8b47HvAPAOwCgt7e33PUSKvPQSQ+eHJjBa7f14Lf7z2J4JozzOhy1XhZBEARBEERVKaS0VYrjx49Do9Fg7dq1AIADBw5g5cqVJR2rr68P3/72t5FKpTA8PJyZX8vG6/XC7XbDYrHg2LFjePzxxzPf0+v1iMfj0Ov1uOKKK3DVVVfhQx/6ENra2jA9PQ2/34+LLroIH/jABzA1NQWHw4G77roL559/ftG1veQlL8FnPvMZXH/99bDZbBgeHoZer0xQ+N3vfodPfvKTCAaDePDBB/HlL38ZZrNZ1nF9Ph+sViucTifGx8fxpz/9CZdffjkAwG63w+/3Z4xg2tvbcfToUZx77rm45557YLfbFx3P4XBg1apVuOuuu3DNNdeAc46DBw/Kei+qgewCjzFmA/BbAB/knPsYYzoAbgAXA9gJ4E7G2Op0X2kGzvn3AHwPAHbs2MFB1A2cc9z6wAl0OU348IvXSQXebLjWyyIIgiAIglgWBAIBvO9978Ps7Cx0Oh3WrFmTMT5RynOf+9xMu+OmTZuwbdu2Rfd56Utfittuuw1btmzBueeeO6+F8R3veAe2bNmCbdu24Y477sAXvvAFvPjFL0YqlYJer8e3vvUtXHzxxbj55ptxySWXoLOzE9u2bcuYrxTixS9+MY4ePYpLLrkEgNSa+vOf/xxarVb267vwwgtx5ZVXYnBwEJ/5zGfQ1dWFrq4uWcc9//zzccEFF2Djxo1YvXo1nvvc58573S972cvQ2dmJ3bt348tf/jJe8YpXYMWKFdi0aRMCgUDO9dxxxx1497vfjS984QuIx+N4/etfXzcFHltQj+W+E2N6APcB+Avn/Ovp2/4MqUXzwfTXpwBczDmfzHecHTt2cOEGRNSeB49P4Ibb9+KLr9mEN+zsxXmf/TPe+pw+fPLl62u9NIIgCIIgiIpz9OhRrF9P1z31zs033wybzYaPfvSjtV6KYnL9jjHG9nHOd1TqOYvGJDCpEfWHAI6K4i7NvQBekL7POgAGAIUTFIm6QczedbvMuGb7Cmg0DN0uM86SgkcQBEEQBEEQDYucFs3nAngTgEOMsQPp2z4F4EcAfsQYewZADMBbFrZnEvXL7uMTePqsF1++ejMMOqnO73aZcXaGCjyCIAiCIAiifrj55ptrvYSGQo6L5sMA8tnlvFHd5RDVQFLvTmJFkxmv3d6Tub3bZcbfjpEZKkEQBEEQBEE0KkVbNImlxwNHJ3Bo2Iv3vWAt9Nq5X4FutxmeQBSRePFhWYIgCIIgCIIg6g8q8JYZYvZuZbMFV1/QPe973S4zAGCE5vAIgiAIgiAIoiGhAm+Z8ZfD4zgy6sP7X7AWOu38H3+3WyrwKCqBIAiCIAiCIBoTKvCWEakUxzceOIFVLVZctbVr0feFgjdMRisEQRAEQRBVQavVYuvWrdi0aROuueYahEKhko91ww034De/+Q0A4KabbsKRI0fy3vfBBx/Eo48+mvn6tttuw09/+tOSn1vQ39+PTZs2zbvt5ptvxte+9jVFx1FrPcsR2UHnROPzl8NjODbmx63Xnb9IvQOADqcJGkYKHkEQBEEQRLUwm804cOAAAOD666/Hbbfdhg9/+MOZ7yeTSUWB4IIf/OAHBb//4IMPwmaz4TnPeQ4A4F3vepfi56gUiUSirtbTaJCCt0yQ1LuTWN1qxavO7855H71Wgw6HiRQ8giAIgiCIhdxyC7B79/zbdu+WbleJSy+9FM8++ywefPBB7Nq1C//yL/+CzZs3I5lM4t/+7d+wc+dObNmyBd/97ncBSN4K733ve7FhwwZceeWVmJiYc0O//PLL8eSTTwIA/vznP2Pbtm04//zzccUVV6C/vx+33XYbbr31VmzduhUPPfTQPJXtwIEDuPjii7Flyxa85jWvwczMTOaYH//4x3HhhRdi3bp1eOihhxS/xkLH/tSnPoXLLrsM//3f/51Zz8jICLZu3Zr5p9VqMTAwgIGBAVxxxRXYsmULrrjiCgwODgKQVMz3v//9eM5znoPVq1dnFM3lBBV4y4Q/PjOK4+N+fOCKtdBq8qVeSHN4FHZOEARBEASxgJ07gWuvnSvydu+Wvt65U5XDJxIJ/OlPf8LmzZsBAHv27MEXv/hFHDlyBD/84Q/hdDqxd+9e7N27F9///vdx5swZ3HPPPTh+/DgOHTqE73//+/NaLgWTk5N4+9vfjt/+9rd4+umncdddd6Gvrw/vete78KEPfQgHDhzApZdeOu8xb37zm/GVr3wFBw8exObNm/H5z39+3jr37NmDb3zjG/Nuz+bUqVPzirLbbrtN1rFnZ2fxj3/8Ax/5yEcyt3V1deHAgQM4cOAA3v72t+O1r30tVq5cife+971485vfjIMHD+L666/H+9///sxjRkdH8fDDD+O+++7DJz7xCYU/icaHWjSXCd/9x2msabPhFVsWz95l0+0yY2//TJVWRRAEQRAEUSd88INAulUyL11dwEteAnR2AqOjwPr1wOc/L/3LxdatwDe+UfCQ4XAYW7duBSApeG9729vw6KOP4sILL8SqVasAAPfffz8OHjyYUaO8Xi9OnjyJf/7zn3jDG94ArVaLrq4uvOAFL1h0/McffxzPf/7zM8dqamoquB6v14vZ2VlcdtllAIC3vOUtuOaaazLfv/rqqwEA27dvR39/f85jnHPOOZm2U2AuqLzYsa+77rq863rkkUfwgx/8IKMaPvbYY7j77rsBAG9605vwsY99LHPfV7/61dBoNNiwYQPGx8cLvt6lCBV4y4BIPInDI168d9eaguodICl4fzg4ikQylXNOjyAIgiAIYtnidkvF3eAg0NsrfV0m2TN42Vit1sz/c87xP//zP3jJS14y7z5//OMfwVjhazvOedH7KMFoNAKQzGESiYRqxwXmv+ZsRkdH8ba3vQ2///3vYbPZct4n+zWKNQLS619u0BX8MuD4mB8pDmzochS9b7fLgmSKY9wfrcLKCIIgCIIg6oRvfAN48MHC/z73OSAUAj7zGem/n/tc4fsXUe/k8pKXvATf+c53EI/HAQAnTpxAMBjE85//fPzqV79CMpnE6Ogodi+cEQRwySWX4B//+AfOnDkDAJiengYA2O12+P3+Rfd3Op1wu90ZpexnP/tZRnErl1KOHY/Hce211+IrX/kK1q1bl7n9Oc95Dn71q18BAO644w4873nPU2WNSwFS8JYBR0Z9AID1nTIKPPdcVIKITSAIgiAIglj2iJm7O+8Edu2S/mV/XUFuuukm9Pf3Y9u2beCco7W1Fffeey9e85rX4O9//zs2b96MdevW5SyWWltb8b3vfQ9XX301UqkU2tra8Ne//hWvfOUr8brXvQ6/+93v8D//8z/zHvOTn/wE73rXuxAKhbB69Wrcfvvtqr0Wpcd+9NFHsXfvXnzuc5/D5z73OQCScvnNb34TN954I7761a+itbVV1TU2OqyasuWOHTu4cPMhqsdnf/cM7t4/jIOfezE0RVo0n50I4IVf/wduve58vOaCniqtkCAIgiAIovocPXoU69evl3fnW26RDFWyi7ndu4G9e4Gs+S+CyCbX7xhjbB/nfEelnpMUvGXAkREf1nfaixZ3AIWdEwRBEARB5CRXESeUPIKoI2gGb4mTSnEcHfXJas8EALNBi2argcLOCYIgCIIgCKIBoQJviTM0E0IwlsQGmQUekM7CIwWPIAiCIAiCIBoOKvCWOEdGJIMVOQ6agm6XmRQ8giAIgiCWBcvRRp+oDrX63aICb4lzZNQHDQPWtdtlP6bbZcbIbJg+8AiCIAiCWNKYTCZMTU3RNQ+hOpxzTE1NwWQyVf25yWRliXN01IdzWm0w6bWyH9PtNiMST2EqGEOLzVj8AQRBEARBEA1IT08Pzp49i8nJyVovhViCmEwm9PRU35WeCrwlzpERH3aualL0mB63BYDkpEkFXvWZ8Efw7d2n8KmXr4dBRyI7QRAEQVQKvV6PVatW1XoZBKEqdPW4hJkNxTDijch20BRkohJoDq8m7D42gR8/2o/jY/5aL4UgCIIgCIJoMKjAW8IcGU0brCgt8NyUhVdLJv1RAMBUMFrjldQWzjnuOziCaCJZ66UQBEEQBEE0DFTgLWGEg6ZSBc9p1sNu1JGCVyM8gRgAYCr93+XK4REf3vuLp/C3oxO1XgpBEARBEETDQAXeEubIqA+tdiNa7crn6CgLr3aQgicxNB0CAEwFl3ehS8jHH4mj3xOs9TIIgiAIoqZQgbeEOTrqV9yeKaAsvNoxV+At78JG/P55Q8v7fSDk87W/HMfrbnus1ssgiCXHmDeCf54gl0mCaBSowFuixBIpPDvhVxRwnk2324zhmZDKqyLk4AmkC7xl3qIpCrzZULzGKyEahaeGZuEJROEN0+8MQajJbf84hbf9ZC+SKcqKI4hGgAq8JcrJCT/iSa54/k7Q7TLDF0nAF6ELpWojFLzp5a7gpVuEZ+linZBBPJnCsbTzLBlEEYS6nJoMIJ7kmAos79EBgmgUqMBbohwdlS50Sm7RrICT5rExH56dCKh2vKVIOJaEP5oAgGV/Ih3xkoJHyOfUZACxRAoARbwQhNr0T0mzreO+5X1eIohGgQq8JcqRER9Meg1WtVhLenwmC0/FAu+Tdx/C537/jGrHW4qI9kythmXcNJcr4nfPG17e7wMhj8PDvsz/U3s5QahHNJHMfB6P+yI1Xg1BEHLQ1XoBRGU4OurDuR0OaDWspMdnFDwVd8InfNGS17NcmEwXeKtbrMvaxTQUS2AmrdzRPBUhh8PpTS3OScEjCDUZmg5BjN6N+6nAI4hGgBS8JQjnHEdGfSW3ZwJAi9UIg06j6oXSdDCGMW8EKRrSzouYvzu3w45wPIlQLFHjFdWGkfTvncWgpRZNQhaHR7w4r8NBDsAEoTJnPHOK+LiXCjyCaASowFuCjHgj8IbjJTtoAoBGw6QLJZVUpHAsiXA8iVgyBc8yz3crhCjwzuuwA1i+TprDs9JFxPpOB2bDcXBOmwJEflIpjiMjPmzscqQdgKnAIwi1ENmSFoOWZvAIokGgAm8JcnREmkXZ0Gkv6zjdLjPOqrQTnh3aPTpLO4D58ASiYAxY254u8Japk6ZQ8DZ0OhBLpBCJp2q8IqKeGZoJwR9NYFO3kxQ8glCZ054gXBY9zmm1UYsmQTQIVOAtQY6M+sAYcG5H6QoeAFUVvJngXJvdqJcuvvIx6Y/CbTGg3WECAEwvU7VzeCYMrYZhXVrJnG1goxXOObUlV5jD6U2tjV0O9LjN8ARiiMSTNV4VQSwN+j1BrGqxot1hJAWPIBoEKvCWIEdGfOhrtsJmLM9Dp9tthicQVeVCKVvBGyEFLy+T/ihabUY0Ww0AsGydNEdmw+hwmNCSfh8aeQ7vW7ufxYu/8c9aL2NJc3jEK20ItNsrYhBFEMuZ/qkgVjVb0eYwYYJcNAmiIaACbwlydMyH9WW2ZwJzUQkjKlwoZYd2q3G8pYonEEWr3Yhmm1TYLNcZvLOzYXS5THBa9AAat8CLJVL48aP9eHYigHiS2kwrxeERH9a22WDSa9HtsgCgsHOCUINwLIlRbwSrWqzocJgwFYwhmiB1nCDqHSrwlhj+SBwDU6GyHDQFau6EiwKvxWbAKLlw5WUyEEWLzQCLQQezXrtsWzRHZsPodpnhMkuFbqNGJfzt6HhGhW3UIrURODziy5hKkYJHEOohAs770i2awJwZGEEQ9QsVeEuMY2N+ACjLQVOgZtj5dDAGXbqFaoRm8HLCOZdaNO3SSbTJaliWCl4yxTHmjaDLZc4oeI0adv6rvUOZ/58JNeZrqHcm/BFM+qPY2OUEALTbjdBqGCl4BKECwkFzVYvUogmA5vAIogGgAm+JcXRUMhtYr4KC1+E0QcPUU/DcVgO6XGZq0cxDMJZEJJ7KFHgtNsOydNGc8EeQSHF0u81wmRu3RXN4Nox/npzE9pVuAMDMMvxZVoNsgxUA0Gk16HCYSMEjCBU47clS8OxSgUdzeARR/1CBt8Q4MuKD26JHR3qnrRz04kJJhZ3wqWAMzekCb8IfpXmkHIi2l3kK3jJs0RS/b10uMywGLfRahtkGbNG8M63evfP5qwGQglcpDg97AczvWqAsPIJQh35PEK12I2xGXaZFc5wKPIKoe6jAW2IcGZVmURhjqhyv261OFt5MMIYmqwFdThM4pxNELkSB12KTTqLNNuOybNEUykuPywzGGJxmQ8MpeMkUx11PDuF5a1qwuUdqHZxpsNfQKBwe8WFlswUOkz5zWw9l4RGEKggHTUDadNRrGcaoRXPJ89TgDD7x24MU8dPAUIG3hEgkUzg+5sf6MvPvslErC0+0aHam5/rIaGUxCxW85nSLJufL6wNWxGh0pX9XXBZ9w83g/fPkJEa8Ebzhwl64LZJRzDS1aFaEwyO+THumoNttxpgvggR1ChBEWZxJZ+ABAGMMbXaKSlgO3HdwFL/aO0QbZQ0MFXhLiDOeIKKJlCoGKwK1LpQyLZpOqXWU5vAW4wmkCzyh4FkNiCVSCEQTtVxW1RmeDcFl0cOaznF0mfUNp+D9es8Qmq0GvHB9O0x6Lcx6LWapRVN1fJE4BqdDGYMVQbfLLJn10IUoQZSMPxKHJxBDX7rAAyCFnfvp72qpMzgdAgA8Oxmo8UqIUqECbwlxJG2womqB57IgmeIYL8MWOZFMwRuOoylLwaOw88VM+qPQalhG8Wm2SoXeclN+RmYj6HKaM19LCl7jFHiT/igeODqO127vgUEnfcS6LXpMBxvnNTQKR0Zyf+ZlohJoDo8gSqbfI13kr2qxZG5rd5jIRXMZMDiVLvDGqcBrVKjAW0IcGfXBoNXgnFabasfsUeFCScweNVkNsBl1cJh0GKWohEVM+qNothqg0Ujzk03psHPPMpvDG54JZy7QAcDRYAreb/efRSLFce2OFZnb3FYDKXgVYKGDpiAT8UKdAgRRMqc90sX9qpa5awqpwKMN2qUM53xOwZugAq9RoQJvCXFkxIe17Tboter9WOdCg0MlH0MoUE1WqWChqITceAJzGXgA0JJW8KYCy2u3VIScC1xmQ8MoeJxz/HrvEHb2ubGmbe6iyG0xkItmBTg84kWr3Yg2+3zX4C4VMzwJYrkiFLyVzfMVPH8kgVBseY0OLCcmA1GE40kAwMkJf41XQ5RK0UqAMbaCMbabMXaUMXaYMfaB9O03M8aGGWMH0v9eXvnlEoU4OurDBhXy77JRI+w8d4FXmR3A4dkwwrFkRY5daSYD0YyDJiCZrAD126JZCQMLbzgOfzQxv8Cz6BGIJhoiWuOJM9M44wni9Tt7593usujJRbMCHMlhsAIAJr0WLTYjKXgEUQb9U0F0OU0w6bWZ2+aiEpbXxuNyYiit3nW7zHh2IrDsjN6WCnKkngSAj3DO1wO4GMB7GGMb0t+7lXO+Nf3vjxVbJVGUCX8EnkBMlYDzbKQLJUNZF0oLC7xOp6kiLZqcc1z5zYfwvX+eVv3Y1WDSP1/BE+9XPYade0NxPPcrf8fPHh9Q9bhC2e1aUOABaAgV71d7BmE36fDyzZ3zbm+ykoKnNpF4EicnAjkLPCCdhUcFHkGUzGlPEKtarfNua09n7FKb5tJlID1/d8X6NvgiCUwusy6ipULRAo9zPso535/+fz+AowC6K70wQhn5zAbUoNtlxtmyFDzpwyFbwZsJxVVX2qaDMcyG4hiYCqp63GrAOV/UomnSa2Ez6uoyC++2f57CuC+KY2ljH7WYCzmfa7lzmqUCr97n8LyhOP74zBhevbUbZoN23vdcFqnNNEmZQqpxfMyPZIpj0wIHTUGPShEvBLEc4ZzjzGQAfc0LCzwKO1/qDEyFwBiw69w2AGS00qgoGtZijPUBuADAE+mb3ssYO8gY+xFjzK324gj5CAdNtRU8oPydcOEeKNwhO0VUgsoqnsjWmyjD8bNWeMNxxJN8XosmIBXFU8H6ej0Tvghuf+QMgLloB7UQvxPZJiuu9O9NvWfh3fPUWcQSKVy3c8Wi7zVZ9OC8MVTIRmHOYCV3gSc+t6i9iCCUMxOKwxdJZDLwBG1pBW+CWjSXLEPTIXQ6TBnBgKISGhPZBR5jzAbgtwA+yDn3AfgOgHMAbAUwCuC/8jzuHYyxJxljT05OTpa/YiInR0f96HaZM2qHmnSnTVFKvVCaDkbhMOky5i+i/W5U5Tm8sXSBN9mABd7CkHNBs81QdwreN/9+EokkR1+zRfW1Dc+EYdBqMgYzgJSDB9S3gsc5x6/2DmFztxObuhcXHG5rfc9TNiKHR7ywm3RY0WTO+f1ulxnRRGrZudAShBqc8UidMAsLPLtRB4tBSxmTS5iB6RBWNFnQZjfCbtThJCl4DYmsAo8xpodU3N3BOb8bADjn45zzJOc8BeD7AC7M9VjO+fc45zs45ztaW1vVWjexgCMj3oq0ZwLShVIknip5FmwqGENzljIlMs5UV/DSJ5xG7BfPFHgLFLxmq6GuZvAGpoL41Z4hvOHCXmzqdqqu4A3PhtHlMmWiIoC5Fs16Vr+ePuvFsTF/TvUOmFOvKSpBPQ6PSKZSjLGc36eoBIIonf50gde3oMBjjFFUQhFOjPsbwhQsH4PTIaxstoAxhjXtNopKaFDkuGgyAD8EcJRz/vWs27NdBF4D4Bn1l0fIIRxL4ownqLqDpqDbLVkklzrPMh2MZebvAKDdKRUxakcljKULxulgDLFEY324iqJ0kYJnNdZVTMLX/3oCOi3D+16wBi02o+oK3shseJ7BCjBnslLPCt6v9w7CrNfiqq1dOb8vCjxS8NQhmeI4NubL254JUNg5QZTDGU8QGgascFsWfa/NbqQWzTxMBaJ42X8/hHv2D9d6KSURiiUw6Y+it0n6ua9pteEkFXgNiRwF77kA3gTgBQsiEW5hjB1ijB0EsAvAhyq5UCI/o94wUhzoa1n8QawG5e6ETwdjmQtcADDqtGi1G1Vv0RQzeADqbm6tGHkVPJsB08FYXcwRHRnx4XcHRnDjc1ehzWFCi80AfzSBSFw9s5zhBRl4AGA36cEYMFunCl4wmsDvD4zgyi2dsJtyt0i7rfVfpDYSpycDiMRTeR00AXUyPAliuXJmKogVTRYYdIsvE9sdJoz7ScHLxag3gmSK41SDzq0NTUvXeb1pc5217TZ4AlHqPmlAdMXuwDl/GECuHhiKRagTQmk3Squh6I+zJMrdCZ8OxnB+j2vebV1Ok+otmmNZBd6kP4pOZ+7ZnHpkMhCFQauBwzz/Z9hkNSCR4vCFE3Ba1J+vVMLX7j8Oh0mHdz7/HADIGMJMBWOLirJSiCVSmPBHFyl4Wg2Dw6SHt05PMPcdHEEwlsQbLszdngnMKXgUlaAOGYOV7vwFnsOkh92kIwWPIEqg3xNc5KApaHcYMeaNgHOet0V6uSJGKs42aGu4cCHPKHhtNgDAsxMB7Ohrqtm6COUoctEk6pNgNAEAsBorU+A5zXrYjTqcnVG+E845x0wohiabYd7tnU7zPMVNDca8kYzhQqO1j3j8MbTajYtOlqKI8tRYkdzbP42/H5vAuy9fkyk0xVylRyVTG+mCYb6DpsBl0detgvfb/cNY02bDtt78RsIWgxYGrQbTVOCpwuERLww6Dc5ptRW8X7eLsvAIQimcc5zxBBcZrAjaHSZEEyn4wokqr6z+ESMVjbqxNJgOOV+ZLvDWttkBgObwGhAq8JYAoXSLnGVB9paalBqV4I8mEE9yNFsXFHguU1nOnAvhnGPUG8GWbheA0o1WpgJR3PXkEFJVziubDETRsqAIBuayA2s5u8U5xy1/PoY2uxE3PKcvc7tYr1pGK+L3K5ca6DLr67a98dREADv73AV3shljcFv1mA3W52toNJ4Z9mF9hz3jzJuPHnd5GZ4EsRyZ9EcRiiULFngAqE0zB2IuvVE3lganQ7CbdJnZ926XGSa9hgq8BoQKvCVAKCoKvMooeEDpYefT6Q+77Bk8cbxQLKnaDqAvnEA4nsxY1JcalXD3/mH8228O4nsPnVZlXXKZ9EcXGawA0gwegJoarTx4fBJ7+2fw/ivWzgvwzrRoqmS0UqjAc1oMdangReJJTAVjstqB3RYDKXgqwDnH4REvNhQwWBF0U9g5QSjmTB4HTUGmwCMnzUWIDc9Jf1TV+fRqMTAVQm+TJbNhqdEwrG4ho5VGhAq8JUAwJhVJ9ajgiX70XC2agHpRCaO+9GBwkwVuix4TJe4sivV89S/H8fjpKVXWJgdPIHeBlz3nVgtSKY5b/nIcK5stiyIAxNrUiqUQrqodTtOi77nMevjqsMATc5+dOda8ELfFQIPqKnB2JgxfJFHQYEXQ7TbDH03UdcQGQdQbmQy8AjN4ADDeYKMQ1SA7d1PtMZRqMJSOSMhmLUUlNCRU4C0BwsJkpUIzeIC0E+6PJOCLKLtQmkkXJrlaNAH1ohLEB2mH04RWu7FkBW/MG0G3y4yVzRa875dPYaIKO5TJFMdUIJopmLIRymetws7/cHAER0d9+PCL1i1qhzMbtLAatOopeDNhtNiMMOkXb1Q4zfq6LI7EhsBCY5hcuK16iklQgYzBipwCz1VexAtBLEfOTAWh17Kc89AAKXiFmApGIbr1S/EtqCXJFMfQjBRyns2aVhuGZ8MZvweiMaACbwlQLQUPUH6hJC5oc7VoAsCISjtc2UpKm92EiVILPF8EfS0WfOf67fBH4njfL59CosKBpdPBGFJ8cQYeABh0GjhMupq0aMaTKXz9ryewvtOBV27Jne/WbDOqNoM34g3nvaBwWfTwhuNVn40shoj6kK/gkZJULkdGvNAw4LwOeQoe0LjzMARRC/o9QfQ2WaDV5J4rNum1cJr1VODlwBOIYm3aebLRNpbGfBHEkxwrm+Yrt2vbpddzejJYi2URJUIF3hIgFE1CwwBjjrwatcgUZAovlERrYfOCFs0WmxE6DcOoigqehklFUrkKXrvDhHM77PjP12zGE2em8V9/PaHKGvMhCqSFGXiCZpuxJi2av947hIGpED72knOhyXOib7EZVMscHJ4Jo9uVu1BymvVIccm0p54YTSt4cmfwZkKxuitSG43DIz6c02qbNw+aj0yGZ4PtpBNELSnkoClodxipwMvBVCCGjV1OaDWs4TaWFkYkCERUwskJf9XXRJQOFXhLgFAsCatBV9E8mlILvJlQDCa9ZpEBjFbD0O4wqdajPuYNo9VuhF6rQVu6wFPq0JlMcUz4oxk15uptPfiXi3rxnQdP4YEj46qsMxeZkPMcCh4gtbdWu0VzJhjDN/92Ejv73Lj83Na892u2GeHxl782znnOkHOBK60Ae+tMARvxRuC26GUVG26rQSpSI/VVpDYah0d8stozAWkDwqjTNNyFFkGoCeccP3r4TGZDqhCpFMfAVEhGgWeiGbwFcM4xFYihzWFEh8PUcArekIhIWDCDt7LZCp2G0Rxeg0EF3hIgFEvAYqxceyYgKW56LcPwrLKCbCoQQ5Nlsf0/AHS5TKpdeI16I+hIqyitdqOU0aPwQnoqEEUyxdHhmFORPvuKDdjU7cCH7zyQ+fBTG1Hg5ZrBA6SohGrNbqVSHL/cM4gX/NeDmArG8ImXnVdw46BFpRbN6WAM0UQq7yybyyxZNs+G62uGbXQ2LEu9AwB32naanDRLxxOIYswXwUYZDpqAFE9BWXjEcmfCH8V/3HcEX/nTsaL3HfVFEE2k8jpoCtrspqrMqDcS/mgCsWQKrTaj5DzeYJ87A1Mh6DRs0ciBXqtBX4uVnDQbDCrwlgDBWLKiEQmAZJXb6TQrVvCmg9FFDpqCLpdZ1o6iHMa8EXSmCzOhhClt05wzapm7YDfptfjO9dsBAO++Y19FbI+FC2VeBc9mVK0NshBPD83iNd9+BJ+8+xDWttlx3/ueh+0rmwo+ptUmWf8ny2w7LBSRACCTyVNvM2yj3gi68rSVLkTMoc5QgVcySgxWBN1uikogSscfiWfMwhoVsUF438HRzLx6Ps5MFnbQFLQ7jJjwR6nlPAtP+pqj2WZoyM+dgekQut1m6HLki65pteEUFXgNBRV4S4BQNFFRgxVBt6uUAi+GJmvuwqXTacaYN6LKCWLMG8nY65da4I2ldyOzFTwAWNFkwX9duxXPDPvwH/cdKXutC/H4o7AYtHldUFtskoJXqRPpdDCGT959EK/+9iMY8Ubwjeu24tfvvBjrO4tfRDfbjOC8/CB28XuVV8ETBV6d2d2PKFHw0k6y9egG2igcHvECgGwFDwApeERZfOqeZ/Dybz7U0H+3YlMpkeL42eP9Be97Jj2Htaq1cIHX4TQhkeI1i/CpRzKeA1YjetxmjPkiFTdpU5Oh6dCi+TvB2nYbBqZDiCYaL9tvuUIF3hJAzOBVmq4SLpSmQzE0pS/OFx/PhHiSl93i54/E4Y8mMm0FbekCT2kW3lhW1MJCXrShHe+67Bz84olB3L3/bFnrXchknogEQVN6dkvt4iaZ4vjZ4wPY9bUHcdeTZ3HT81bh7x+5DK++oFv2POdcTl95P8Oz6Z3Onjwumo50i2Y95ZkFown4IolM5EcxMi2awfp5DY3G4REfetxmOPN8puSi22WGJxBryNBhovaMzoYx6o3g3+99RvFcd70gOh9Wt1pxxxODmWilXPR7gjDpNWi3F/5ca7NTVMJChNt1S7pFM5nimY3jRkCEnOdiTZsNyRRHv4cMqxoFKvCWAKFYQpbJQ7l0u0wY90UQV7AjNR3Ir+B1ZcLOy/sAFCeYjIJnk/5bioKn17JFmX2Cj754HS5a1YRP3XMI/R717IIn/blDzgXNoohSMSrh2JgPV33rYXzm3mewodOBP33gUnz6yg2wm+RfOEtrk96rco1WRmYjsBgk6+1ciNu9dbSLLtqLu0jBqxrPDHsVtWcC1Y9KmAnG8Nipqao8F1F5fJE4DDoN7js4it8dGKn1ckpCdFh86IXrMBuK456nhvPe94wniL5ma17nZIEIO1e6kbqUmUybobWkWzSBxolK8Ibi8IbjiwxWBMJJk4xWGgcq8JYAwVgS1gqbrACSgpfi8nfsIvEkgrHkoogEgVA+yo1KGM1k4EkfqA6zDgadJjPbJpcxbwRtdlPeE5tOq8HXrjkfkXgKfz82Udaas/EEonkjEoC5kHi1WmH2D87g2tsew7gviv95wwX4xdsvwtp2e0nHUkvBG54NodtlzqscGnVaWAzauprBG1GQgQcAdqMOOg2jsPMS8QSiGJgKYVuvW9Hj5qISqnOh9dPHBvDGHz6BUIzcUpcCvnACr9zShe0r3fjM756pyEbBnU8OYW//tOrHFYhNpRdvbMembgd+9MiZvGpkv4yIBCA77JycNAViE9ZtNcx97jRIe/hg2kQun4J3TqsNjFFUQiNBBd4SIFwFkxVgbid8RKaTpuj7b8qjiKml4I16519oM8bQajNiUuGJJ3uOLx8rmixoshpwYly9D7lJfxQt9tzvETCnkqkRlfD46Sm86QdPwG014J5/fQ5eeX5XWfEaLem1lZo7KBiZjeSdvxO4zPq6msHLKHhF1i1gjMFlMWCmjorURmL/wAwAYPtKhQVelRW8kdkwkineMDv3RGG84TiarHrceu1WpFIcH7nzgOrz0F+47wi+tftZVY+ZzUwoDqtBC6NOi7c9bxWenQjgnyc9i+6XSKYwOB0q6qAJSLPujKGoactyYioQg8uih16ryZwXGuVzYK7Ay/2zN+m16HGbScFrIKjAWwIEY9UxWelSmIUnChJ3npgEl0UPk16j2LhlIeIE0+aYU8Fa7UblCp6veIEHAOvabaoVePFkCjOheKatNBfN6RbX6TJVsgePT+AtP9qDLpcZd73zEvS4c+/UKcFp1kOvZfCUWXwOz4YzF+J5n8tiqDsFj7G5nWw5uC36hnfkqxX7Bmeg1zJs6pZvsAJIpklaDavahZZoWTvbIBd2RH5iiRTC8SQcJj16my343Cs34vHT0/jhw2dUe45QTJrlfWbYW7EZv5lgLJMleuXmLrTZjTlfw9mZMBIpLkvB02s1aLYaqUUzi6ng3Dy9Sa9Fi83YMArewHQ65DxPiyYArG2zU4HXQFCBtwQIRauj4AnFTe4HlmhFy9eiyRhTJSph1BtJBxrPFbki7FwunHNJwZNxsb6u3Y6T4wFVTsaiCC40gyfMOcopov78zBje/tMnsabNhl+942K0KShKCsEYQ7PVWNZ8YDiWxHQwljciQeAy6+Gtoxy8UW8YLTYjDDr5H6Nuq4FiEkpk/8AMNnU7YdIr28zSaTVS6HCVLrQm0p87Z2fIjKDR8UWkDSVh6nPNjh68eEM7vvqX4zg66lPlOcQGpScQy3SjqM1MKAa3VXoNBp0Gb75kJf55YhInF2xUZhw0ZRR4gDSHRy2ac3j8sXkz/N1uc8Ns9AxOhdBsNcCWx80bkObwTnuCDeUMupyhAq/BiSdTiCVTsFZBwTMbtGiyGmRfKBVr0QSkolFuy2c+xrzhRcpbq92YudCSgy+SQDielF3g+aMJVU7GoggtVODptBq4LfqS59x+d2AY7/nFfmzqduIXb784Y9qiFs02Q1lOqCOZVsfC773Loq8rBW/UG0GXzPk7gduipwKvBGKJFJ4+68V2hfN3gm5X9TKp5gq8xriwI/LjS7eEO9LmU4wxfOnqzXCY9fjQrw+o4sya3eJ4aNhb9vFyMROKz+uk+ZeLVsKo0+BHj/TPu58wD+srkoEnaHeYyEUzC09wviN2j7txIloGp0MF1TtAKvBiiRSG6LOtIaACr8EJpe2OLQV2XdSky2VS3KLZlKdFE5Dm5spt0Rz1RtDhmK/+tNqNmA7GZDt+FopIWMi6tCHJcRXaNCcD0vO25FE5BU1WQ0nmHL/eO4gP/voAdva58bO3XZTXpbIcWmzGsgxgxIV3t6vwycVp1tdVTIKSDDyBm2bwSuLwiBexRErx/J2gu0oXWskUz6jZVOA1Pr6IZJTjMM+dX5ttRnz1dVtwbMyP/7r/eNnPkb1ReOhspQq82LwCr8lqwNXbunH3/rPzzitnPEHYjbqi5yMBKXjzmQrE5r13PeloqUYIgy8UkSAgJ83Gggq8Bkc4tVVjBg9QFnY+HYxBq2EFi4oulxmTgShiidIl/zFfZJGTocjokassjfmUFHjSh9zC9pZSkKPgAdJFhdIWzdsfOYOP//YQLlvXih+/9cKCrRfl0GwzwFOGycpcyHnh995pkUxW6iGLinOOUW9EdgaewG01YDYUq4vX0EjsSxusbCu1wHNVJ3R4KhiFuJajFs3GR2woLTyH7TqvDddf1IsfPHwGj55abFaiBHHuWdVixcFKKXjBWKbVX3Djc1chmkjhl3sGM7ed8QTR12KVbbzVZjdhKhhVFJ20VIklUvCG4/M6ZLrdZsQSKXjKnJ+vNLFECqPeMFZSgbekoAKvwQlG0wpelQq8rnSrk5wL1OmQdFIplKfT5TKBK4heWEg4lsRsKJ6zRROQ7+44lm4TlNOi6bIY0GY34vhY+R9ynkxuTuECr8WmTMG7/ZEz+PwfjuAlG9vx3TdtVzy3pIRWmxGeYOlFy/BsGBpW/L13mQ2IJVKIxGt/MeELJxCKJWVn4AncFj3iSY5AlCz0lbB/cAY9brMiQ5tsut3VCR2eSKsZTVYDKXhLgIUtmtl8+sr16Gu24qN3Pl1WZ8GYNwKXRY+dfe6KGK0kkin4IolMDqdgbbsdl65twU8e7c9ssPZPBWU5aAo6nNL5u1wX5aVALs+Bake0lMrwbBgpLrmEF8Jh0qPdYaSohAaBCrwGJ5xu0bRWwWQFkD6wgrEkfOHiF6jTgVheB02BaHErdZ5NXLAtVPCUF3jS/eReQJ7bYVflQ27SH4XdpCtagDVZDYqMTL73z9O4ZHUzvvUv2+aZz1SCZptUePlLLFqGZ8PocJig0xb+OHKld6Bn68BoRcwNKlbwLCLsnNo05cI5x76BmZLbM4HqXWiJz5ttvS5MBWOUhdfg5FPwAMBi0OHW67Zi3B/FZ3/3TMnPMZo299rc48J0MKZ6K7GIlsl1Ln7b81Zhwh/FHw+NIppIYngmLNtgBZgLO6c5vLluIeF6DVQ/oqVURETCShmzl2vabDhFCl5DQAVegxOscotml4LwzulgrKDBinQ86QK51Dk84cC5UMFrSxd4co1WxnxhtNgMsh0R17ZJTprl9tZP+qNF2zMB6aQxE4rLajHzBKIY9UZwxfq2okWTGgj1sdQ2zeGZ4hEJgOSiCdRHcSR+70qZwQNAYecKGJ4NY9wXLa/Aq9KFlrCMvyBtBlPvO/dEYYSLpiPPmMHWFS68/dLV+N2BkZJVrPF0PM+WdPyH2nN4IuTcZVn8Gp6/thXntFrxw4fPYHAqhBQHVrXIj88RoxA0h4fMHHqrfbGCV+9q/mDaPbXYDB4wF5VAYwb1DxV4DU5mBq9qJivys/CmQ7G8EQmCzkzYeWkfgGOZkPP5F9rNCgO4x7wRRe1f53bYEI4ny/7gngxE0SrD1VK8HjkGHc+k5zg2dinLCysVUeCVarQy4g3LCgsXVuX1UOAJ59dic4MLEW1SSp00nxn2IrhM2zoz83clOmgC1VPwRIvmBb0uAPV/YUcUxhdOwKDVwFhg429nn/R7WerM5ahXmiE/t8MOnYap7qQpzhm5Nls1GoYbn7cKh4a9uGvfWQDyHTSBuY4XUvDmNjizFTy7SQ+HSVf3Gz2D0yEYdZrMxnghzmmzIRhLVizSg1APKvAanFCmRbN6JiuAvIJsOli8RdNq1MFp1mO0xKgE8SGzcH7LqNPCZdHLL/B80UVtnoVYq5KTpscfRYtMBQ+ArKiEwyNSPtPGbkdZa5OLKD5LUfCSKY7R2UjRDDxAmsEDUBdZeKPeMLQaltnBloswOlBS4EXiSVz97UfxnQdPKXqupcL+gRlYDFqc12Ev+RhS6LD8iJdSmfBH4TTrsaZVMiMgo5XGxhuOw2HWFzQdKUcdjiVS8ASiaHeYYNJrcW6HXfUCT3QL5DsXX31BD1wWPW5/RAo+V9Ki2Ww1QKdhVOBh7ty8cFO7x22p+xbNgakQVjRZCvolCMRn20lq06x7qMBrcEJpkxVzlQq8ZqvUxljsAyuZ4pgJzQ/9zEc5UQliQD3X62+zGzMtU8WPE1ak4K1Nu0mdKLPAm/TLU/DE7uu0DCfNQ2e96Gu25DQGqARi/Z4SFLxJfxSJFFek4NVDVMKoN4J2uxFaGSfEbMTPcSYo/zWcnQkjlkxhT/+0oudaKuwbnMHWFa6y2427XZWPSpjwR9BmN6LFZoRBq6mpgucNxRGOJamVqgx8kfi8iIRclNOGJ85PYnNxS48TB8+qa7RSqEUTkK4d/uXCXsSTHG6LHq4im7LZaDQMbXaKSgCkiASjTrPIrbrbXb0MzlIZnA4VddAUrG0nJ81GoTp9fUTFEDN41TJZ0WgYupymoh9YkhV84ZBzQbfLjJES5X4xoJ6LVrtRloIXiScxE4rLctAU2E16dLvMZRV4kXgS/mhC1gyeyNaRU0Q9M+LF1hWuktelFNF2WIqCNzwrKRwNN4M3G0GnjKJ0IQ6THhqmTMEbSqtAB8/OIp5MQV+Fucp6IRhN4OioH/96+TllH6vbbcax0cq6v036o2hzGKHRMHS7zTUr8P5yeAzv/Nk+AIBOw2Az6WAzSv8cJj1sJh3cFgP+7SXnyoqGWa74wvGi2aHltOHN5a9KnyWbup345Z4hnJ0JF3U0lEuhFk3Bmy/pw/f+eVqRg6agzWGSvZG6lJkMSCHnC9XebpcZj52aAudcdvxENeGcY3A6hEvOaZZ1/2arAS6LHs+Sk2bds3yuFJYoc0Hn1VHwAGkOr5jiJi5gF1oz56LTZcqYVihlzBfO21rZajNiUobz5LiCDLxs1rXbcGK89F2sTAaerBm8dItmkdczE4zh7EwYm7qrM38HAHqtBm6LXlb76EKG0625clo0LQYt9FqWcYWrJaPe/L93hdCkcyEVFXhph7NIPFXxAqXeePrsLJIpXnL+XTZCwaukojXhj2badnvc5pq1aJ6elEwTPvridXjnZavxqvO7cGFfE1Y0WaDVMIzMhvHb/Wex+/hETdbXKPjCcVmdEN0ltuEtHDHY0u0CABxU0WhlJhiDQaeBuYBTc4fThE9fuR5vfe4qxceXws6pwJsK5PYc6HGbEYgmZDmP1wJPIIZQLCnLYAUAGGNY22YjBa8BIAWvwQnFEtBpGAxV3NXvcpnx8MnC4a5T6VbC7IHjfHQ6zZgNxRGKJWBRqESOeSPYnD4pLqTNYcKEL1p052xuF1VpgWfHI89OIZFMldQ+JopPOQqeyywpP8XcF8X83aYqGawImm1GePzKWzTnQs6LF3iMMTjNhporeCLk/MUbO0p6vNtqUNSiOTQdgoYBKS7lwW3uqe7PtpbsFwYrK9Qp8KKJFDyBmKy/OaVwzjGR5Yrb4zbj/vTfY7WZDcdg0Grwnl1rcn72hWIJbPjsX+qi3bme8UUS6JVhOtLtMmc2YpSw8NyzrsMGg1aDg8OzuHJLp+Lj5WImnUdbTD0qpbgDJKOVx05NlfTYpcRUMPe4hdi8HJoJwWmpv8/uuYgE+YrxmjYb/vTMWN2qkoQEKXgNTjCahNmgreofWbfLjHF/BPEClv2iEJHTojkXlaBsFzCaSMITiBVU8KIy8tnyZekVY127HbFkCgMlnNiBuZZGORebGg1Dk9WQCUbPxzMj0s7vpioZrAhabIZMDpAShmfCcJr1i+YW8uGy6BWZrBwb8+GvR8YVr6sQ08EYoolUSQoeIJkdKFPwwuhrsaLDYco4Si4X9g3MYG2bLTN/WQ7dbukCplJzeL5wArFEKuNE1+O21CwLzxeOw1ngot6sl9RwKvAK4w3H4SwygwdIxXwp6vCYLwKLQQuHSXoOo04yWnlGRaOVmVC8qNlZObQ7TPBFEplM3uXKVCCWcZTOpt6z8Aan5UckCNa02TEbipfsnE1UByrwGpxQLFG1+TtBt8sMzud2H3Mxnb6ALRaTAABdmbBzZR+AwpI8n/ImN+xcvA4lJiuAVOABwImx0trmlCh4gFQsTxdpgzw07EWP26xoUF4NWmzGkj7sR2blRSQIXGa9IgXv1r+ewDt+9iQeOjmpeG35GPWWtiEgkAo8BQreTAgr3BZsW+nC/sHlU+ClUhz7B2fLyr/LptJRCWIOKVvBq+TzFcJbZHZMUsP1VOAVgHMuv0XTVVob3phXysDLLsQ3q2y0MiPDzbocxHlzOc/hcc7TLZr5Fbx6NVoZnJLW1eNWpuABZLRS71CB1+CEYsmqzt8B8sLOhdtjPueuXMdTGpVQ7EI7E3ZexOFrzBeBzaiDXaHr5Jo2GxhDyXN4ovCUo3ICUrvrVBEF7/CwF5urOH8naLEZSzRZCcuavxO4LMoKvNOTQXAOfPBXB1SbExFtpUpDzgVuix4zCorhoekQVjSZsa3XjbMz4WVzIXXaE4A3HFdl/g7I3kmvzFzcRPr3P3sGD6hNFl6xAg+QwrupwMtPKJZEIsWLvo/A3O/WWYW/W6Pe8CJzry3dTvgjCQxMqfN7OhOKwW2tnKNyu0M6zxZz0owlUrjuu4/hj4dGK7aWWuGLJBBLpjJmaNk0WQ0w67V1q+ANTAfRkY7pkIso8Cgqob6hAq/BCcWSsFQpIkEw11KZ/wNrKhiD3aiDUVd8be0OExhT3sIgFL+8LZpCwSvSOiiFnCufyTEbtOhtspTspDnpj6LJapDtithsMxRUyXyROPqnQlU1WBG02AzwRxOIxJW16UgFnnwlTMlFaTLFMTAVwgvXtyEUS+J9v3wKiQJtxXLJbCwoDDkXNFmlFk05O/TecFyaA2qy4IJ00Pf+gdmSnrfREO2oail4TrMedmPlQodF4d3mmGvRBICzNbiwmw0VL/CcZj18VODlxReR3huHnAKvRJVm3Bdd1IEiPr/VysObDcUr2tEhN+z8T8+M4okz06p2U9QLwvwsV4smY6yuoxIGp0LoVTB/BwBdThOsBi1OUYFX11CB1+AEo8qNScpFKG6FCryZUAxNMtozAcCg06DVZlTcornQYnohYid9osiJZ8wXKVmNWdduLzns3BOQl4EnaLYaCrpoHh5OB5x3VXf+Dshy+VSgTPkicfgjCVkRCQKX2SC7wBuZlfLjXri+HV98zSbsOTONWx84Ifu58h7XG4Zey9Aiw0AoFy6LAdFECmEZxbAwbljhtmBTtwMGrQZPLZM2zX0DM3BZ9FhdgnV7PrrdlcvCm8woeNLvRWsmC6/6TprecDwTK5IPpe3Oyw3RbimnRbOnhDmrZIpj3BdZtEG5rt0Og06jSoGXSufRNlWywLPLK/Buf6QfQG0U7UojZuPzjaRUI4OzVJRk4AkYYzinzYaTFJVQ11CB1+CE40lYq6zgmfRatNgMGYv7XEwr7PvvdJkzyohcRr0R2NPZTrlwmHUwaDUyFbzS1Jh17Tb0e4KIJpQPmE/6o2ixy3+Pmm1GqRUkkVuFOpwxWKlNiyZQPMYhGyUOmgKXRY9ANFHQ4Edw2iMNj69qseLqbT24bscKfGv3KTxYpjX86Kw0N6NRGHIuaEq3S8mZwxPFwYomC4w6LTZ2O5bNHN6+gRls73WraiDVU8FsuglfFGa9NvN5VMssPG84XlR5ohm8woj3Rk6LZpPVAJNeo0ilmQpEkUjxRS2aBp0G6zsdOHh2VtF6c+GPJJDi8kYlSsVh1sGo0xQs8J4anMGBoVkYdJolWeCJ814+1/DuGkamFCIcS2LCH1VksCJYQ1EJdQ8VeA1OLRQ8QLooL7QjNRWIoVnmbBkgSf7FsvUWIgbU88EYKxp2nkxJ1uYdztLUmHXtdiRSHGfSxYQSJhUqeGJWL58D46FhLzqdppxtIpUmE8SuoMATF0NKZ/AAyLowPTMpnXxWtUoK0Oev2ojzOuz40K8PlJy7CIgMvNIUXwCZdik5c3hD09I6V6Tb/bb1unHwrDdvkV/PHB7x4h0/fVLWz24mGMOpyaBq83eCblflWqVEREJ2QVrJgjIfyRSHP5KQ1aJJBV5+RPuqQ4aLJmNMsUoz5svfgbK524HDwz6kUuUZrWTyaCuo4DHG0OE0FZzB+8mj/bAZdbh2Rw+GZ8Jlv656w5P+LM81gwdInzsz6SioemIoXXQqbdEEpAJv3BfNtDIT9QcVeA1OLWbwAMn5smiLppICz2XGyGxEkXPYqK9wgQegaIHnCUSRTPG8bZ7FyDhpKjRa4ZzD41eWx1WsiHpm2FsT9Q6YU/CKxThkIy6GlBR44qJVTmvZGU8QNqMuU0Sb9Fp86/ptiCVSeN8vnpKlAuZiZDaCrhIdNIG5iy05UQlDMyHYTbpMTMC2XjeiiRSOjtYmX60cvvPgKdx/ZBxf+fOxovd9akjd+TtBt9sMfzRRkcJmwh/JtGcKetxmDFd5594nU3lymvXwReJL7mJbLZQoeIDysPNCJmFbul3wRxPon1K+cZiNcLNWci4uhXa7Ka+CN+GL4P8OjeKaHT04t8OBWDJVtKum0RAKXr73uZaOuoUQRj4lKXitktHKsVFq06xXqMBrcILRBKwyM8TURCrIcuf+cM4xFVRW4HU6TQjHk4ouvMa84aJW9cUKvMwcX4ktmqtbrdBqmOKohGAsiXA8qUhty8y55SiiAtEETnuCVQ84FzSXoOCdngzCatAqKnKF+iUnC++0J4jVrdZ5iso5rTb859Wb8eTADL52/3HZzyvIzM0oKEoXIlo0i4XWA2kHzSz76m0rXQDQcG2a08EY7j88DrdFj188MYi9/dMF779vYAZaDcP5PS5V19HtShufVKDomvBHMwYrgh63BZ5ArKoZYeIztFhbnsOsB+comhO6XMmYrMh0V1aqDheK59nco47RymxIvpt1ObQ5jBkX2YXc8cQgEimOt1zSlyl0SgmFr2c8gSjcFj10eQzTMo66dTaHNxdyrnzOeftKNxwmHT73+8PLPgOxXqECr8EJx2uk4LlMCMVyF2TBWBKxREqxggfIDzuPJ1Pp1srCF9rFCrxyM82MOi36mpU7aU4qCDkXiPczV2FwdNQHzqsfcC6wGHSwGLTw+OUreCfG/VjTblc0Y+VSqOCtymHQcdXWbvzLRb347j9O429HlYWge9JzM+UoeKJIlfMahmbCWNE09zve6TSj02nC/sHZkp+/Fty9/yxiyRR+dMNOdLvM+OTdhwrOre4bmMHGLgfMKn+2rW2Xdp1Ldb4txKQvmjF2EvRUOJohF3KVp8xmCRmt5ESYrNhN8jZQe9xmTAXlF/Oj3gj0WpZzlGFtmw1GnQaHzpZX4M0EpZ9tJVs0AalIHfMu7sCJJpK444lB7Dq3DX0t1sxm1VKbw8uXgScQG0v1puANTkldLu4SNgCabUb89+svwLExHz5590HVchsJ9aACr4GJJVKIJ3lNCrxCrmEiA0+pggcUdubMZtIfBefFC7M2uxTAna8dT7SVlGqyAgDndtgVXzB6FIacA8i4NuZSyZ5J7/TWIgNPIIWdy1fwTk4EsC6dpyMXuS2akXgSw7PhnAUeAHz2FRuwodOBj9z1tKK2qnIz8IC5IrVYiybnHGdn5it4gNSmuX+gcRQ8zjl+uWcQF/S6cEGvG194zSY8OxHAbQ+eznn/eDKFp4e82NarbnsmAKxuscKg0+Coym1F4VgS/mhi0d9zRrGo4oWd3AJPfJ/m8HLjDcdhM+ryqjIL6ZaRD5vNuE8y98pl1qTTarChy4GDZSp4mRm8SrdoOowIx5OL1OA/HhqFJxDFDc/pA5CdDbm0FLypQCzv/B0gXYfotazunDQHpkPobbKUbGS167w2fOiF63DvgRH8+NF+dRdHlA0VeA2MGNitlckKkHtHqpS+f3FylGt+MZqJSCjeognkbmsEpEH3fLuoclnbZsfAdEhRBlwpCp7DrINOw3IqeIeGvWi1G9FWRqFaLs02g+wWzdlQDJP+aEZRkYtck5WBqRA4R94CT8zjJZIc7/3Fftn5eOVm4AHSxZvDpCtqsjIZiCIST2HFgvmIC3pdGJ4NqxbcXmmeHJjBqckg3rCzFwCw69w2vOr8Lnxr97M5XdiOjfoRjidVn78DpPd+XbtN9RnGhREJgp4aKBazVOCpgi8Sh0OmegfMhZ3LvYgfLTJisKXbicPD3rJmJGdCMWg1TNHrKAWxQZodScQ5x+2P9OOcVisuXdsCQDhwG5ecgucJRAsqeBoNQ6ezNo66hRhMF3jl8N5da/DC9e34wv8dxROnp1RaGaEGVOA1MKF0K4jVWIsWzfxZeNPBwgPHuWixSTtcIzKjEsZktlYKg418bZpj3gja7KVb3gOSgsc5FFkGi/UomcFjjKHJashZrB4e9tVUvQPSCp5MkxVhSrM2bVIjF7tJD8bmLmLzccYjHX91S/4CclWLFZ95xXo8NTgru+UxE+1QhoIHiLDzwq8h46DZNP+5hLNko6h4v9wzCJtRh1ec35m57TOv2ACzQYtP3XNo0QXsvgFpPq8SBR4ArO9wqF7gzYWcz/88qkUWHil46iAnaiIbpWHnxeJ5NnU7EYwlM3EvpTATkvIQ1YwaycVc2PncefapoVkcPOvFDc/pW+QsO7TEFDxPIIqWItc70oxm/bzuZIrj7HQYK0tw0MxGo2H4+nXnY2WTBe/5xf6yHKoJdaECr4ERCp65Bgpes9UAg06TsyATF/n5MmFyodEwtDtMGFWw+wkAnY7CF9rigktcgC1kzLs4aFYp60qY65n0R6HVMMWzEU1Ww6I2yHAsiZMTfmyqQcB5Ni02o2wFTwSkrlNY4Em70Xp4i7Q3iouivpbCJ6+XbOwAY8Bjp+TtPI56IzDpNWWbFrgshqItmpkMvAUtmhu7pMDzahqtJFMcr/rfh3HrX5UFxXvDcfzx0ChetbVrXqdBq92IT738POw5M4279g3Ne8y+wVl0Ok2K8hGVcF6nA55ALO9nQilM5FHwapGFN2fvTwVeOfgUFnjtDhN0GiZr3pJzjrEcIefZbEkbDB0anpW9hoXMBGMVb88Esgu8ub+pHz/SD7tRh6u39cy7by2iQypJLJGCL5IoqOABksJbTy2a474IYslUSREJC3GY9Pjum7YjHEvi3T/fX1IuMKE+VOA1MMFoWsGrwQxeodyfub5/ZRfBIipBDmPeCMx6bdGMItECmVfB80XQXmaBt7LZCoNWg+MKCjxPIIpmqwFahcqhNOc2vzA4OuZDigMba67gGTAdjCEpo6Xo5HgAVoO2JLMSl0VfXMGbDKLVboS9iAOey2LA+g4HHjvtkfXco94wupzmsnfEJQWvcIEnnOZ6FhR4Rp0Wm3ucVTVa+fuxCRw8683bVpmP3x0YRiSeyrRnZnPtjhW4aFUTvvh/R+f9fe4fmFE9/y6b9Z3SpoKac3iiNS1Xy3W1L2i94ThMeg1M+sLnBbFJMSvDkXY54oskZDtoAtLmU4fTJEvB84bjiMRTBU3Czmm1wqTX4GAZRiszoVhJBhpKERsbIttv3BfBHw+N4tqdKxa5fK9osmBkNizrPNEITGcy8IoUeC4zJvzRuskwLSciIRdr2+342jXn48DQLG7+/RFVjkmUBxV4DYxo0azFDB4gfWDlatGcCsZg0GpgUxjf0OU0YUTuDF5697PYhbYYfM5V4HHOpbD0MufW9FoNVrdacVJBFt6kP1pSIHmzbXGL5uE6MFgBpBNcisvLdzs5odxBU+Ay64uarORz0MzFJec0Y//grKwZypHZSFnzdwKXRZ9xuMvH0HQYLTZjTifJbb0uHBquXuD5Tx/rR6tdWsv/u++ILMc0yVxlCBu7HBnb92wYY/jPqzcjEk/hP+6TLghGvWEMz4axvQIGK4INnZLSrWab5oQ/Cp2GoSmHIl/tLLzZUExWdptJr4VBpyEFLw++cFx2Bp5Abtj5qIx4Hp1Wg41dzoyBVinMhuIZt9RKYjXqYDfqMJFu0bzj8QEkOcebL1m56L49bjPiSa6qgl5LRNdKcwGTFUB63ZzL9xmoNGIDcWWT8oiEfLxscyfeffk5+OWeQfxqz6BqxyVKo2iBxxhbwRjbzRg7yhg7zBj7wILvf5QxxhljLZVbJpGLOZOV6it4gBSVkNNkJSBl4Cm9eO92mzHmjSAoI5dpzFs85ByQ1A6XRZ8zo8cXTiAcT5bdoglIrYbHFWThTQaiigxWBE1WwyKTlUPDXjRZDaq8jnJQkoV3YjyAtQodNAVOi0HGDF4Qq+UWeKubEUuk8JQMRUwyRii/ddAto0VzaCa0aP5OsK3XjVgihcMj5bnsyeH0ZAAPnfTgjRetxAeuWIt/nJjE349NFH3cwbNeHB314fUXLlbvBOe02vDeF6zBH54ewe5jE9g/MAugcvN3gKTadjpNqhd4LTZjzlneamfheRUUJk6zPtPSScxHatFUtknZ7ZaXhTcm0yRsc7cTzwz7Sla7poOxnJsOlaDdKYWdi2iEK85ry5mvJjoSxIxxoyPOd4VcNIE5E556aU8dmA5Cq2GqbFhm89EXn4tL17bgs787jKcaLK91qSFHwUsA+AjnfD2AiwG8hzG2AZCKPwAvAkCleg0I1tBkBZBaKif80UX91jMhZSHngsvPbUMixfHnZ8aK3ldugQdIRge5FLwxFSISBOvabRieDSMgMzTY4y+twGuxGRGIJuapTc8M+7Cp21nxQfpitBQIYs9GOGiuU+igKXCaC8/geUNxTAVjshW8C1c3QcOAx4o4gInsxXIy8ARNVgNCsWRB1XAoR0SCIGO0UoU2zTueGIROw/CGC1fgLc/pw5o2G/7jviNF5yx+tXcQZr0WV23tKni/d112Dta02fDv9z6Dh05OwqSXLOIryfpOdY1WcoWcC6qdhecNx+Eyy/v8dZr1pODlIJni8EcTihW8HpcZY75I3lgegTj3FNuU29ztRDiexKlJ+d0hAs65pOApHJUolXaHEeO+CO57ehRTwRhueM6qnPdbalEJ4nxXrCOnp86y8Aanw+h2maGXGQMiF62G4ZuvvwBtDiPe/fP9BXOIicpS9CfLOR/lnO9P/78fwFEA3elv3wrgYwCWRjN1gxGK1i4mAZhz0hz3zv8DngqWVuDtWOnGiiYz7n7qbMH7JVMc40UG1LNptRtztoPIPcnKQZiFnJQxh8c5x2SgtBZN8b6KObxIPIkT47U3WAHmdjCLKXgnJ0pz0BS4zIVn8M5MSQYrq1vlFZAOkx6bup14vIjRyrgvImUvqmD+kZl/ytNqmkimMDIbyavgtTtM6HaZK260Eo4lcdeTQ3jppg60OUzQazX47Cs2YGAqhB893J/3ccFoAr8/MIIrt3QWnWMy6DT40tWbMTwbxq/2DmFLt0v1i46FrO+049RkUFG0SSEm/dFFBiuCamfhecMJ2eYgVODlxh9JG9UomMEDJJUmxecUunyMeiNgrHhMzpZ0a3MpgeehWBKxZKriIeeCdrsJ474ofvxoP9a02fDcNc057yfcRutFySqXuRbNwj/LDqcJjAFn68RoZXAqqNr83ULcVgO++6btmA3HcNNPn5TVlUWoj6KzKGOsD8AFAJ5gjL0KwDDn/OlKLIwoTiYmoYYzeMDi3J/pEgs8xhiuvqAHj56aKhh4PhWIIpHiBQfUs2mzGzGZo+gYS/fCq6PgiQKv+E6rNxxHPMlLUvBEXp8Ikz8x7kcixbGpxvN3wNwOpqeIgifcRktt0XRZpLayfPlQIiJBroIHSG2aTw3NFGyjG5UZzSEH0TaVr01z1BtBMsXzKniAlIf3VIWjEn53YBi+SAJvvqQvc9vz17Xihevb8b9/P5k3i+8PT48gGEviDReukPU8O/ua8C8XSa2clTRYEazvdCCZ4ooMYwox6Y+g1Z7796LaWXhKZsecMuZZlyO+sHRBqsRFEwC6hUpT5CJ+zBtGq81YdCNjdasNFoMWh0qYwxOt/NVq0WxzmDA8G8ah4cXRCNmY9Fq02Y0lKXgzwRh+u+9sZn6sHpgKxmDUaYqa3Rl0GrTb5ZnwVIP+qVDZEQmF2NjlxP+8YRueGfbiXT/fR86aNUB2gccYswH4LYAPQmrb/DSAz8p43DsYY08yxp6cnJwsdZ1EDuZiEmrTotmdJwuv1AIPAK7e1g3OgXueGs57n8yFtszCrNUutWguNIYYSyuPahR4K5osMOnlOWmKHb+SCjxRRKWjEp4ZltrMam2wAkgXizoNK67gpR00u0tUwpxmPVIc8OfZFTwzGYSGKXMHu/icZsSTHPsKFEyZDDxVFLx0gZcn7FzkRC0MOc9mW68bI95IUbWgVDjn+OljAzivw46dffOLrs+8Yj3iSY6v/OlYzsf+cu8Q1rbZsE2BWcrHX3oeXr65o2hLpxqsTxutHFGhTTORTGEqGMur4FU7C0+uyQogqeGk4C1GbpbgQuTOWY35orI2irQaho1dDhw8O6toHcBcd0C5kS5yaU+3KNtNOly9rbvgfUt1lv3Z4wP4yF1P49JbduOl3/gnvvaX4zgwNFtWGHy5eNLdOHJGJKSohNoXp95QHN5wvKIFHgC8aEM7vvLaLXjopAcf/vXTS8Y5tVGQVeAxxvSQirs7OOd3AzgHwCoATzPG+gH0ANjPGOtY+FjO+fc45zs45ztaW1vVWzmBYCwJvZbBoKuNGaqYgcverYwlUvBHEiUXeCubrdjZ58bd+8/mdeoblTmgLmi1GxGJpxYVBGO+MFpsBlXeP62GYU2bTVYW3oRf3lB2LhYqeIeGvXCa9Zk2sFrCGEu7fBZr0SzdQROYK468eZSHU54gVjRZFP1cd/Y1QathBeMSVFXwrELBy/0azoqQ8wIK3twcXmVUvP2DMzgy6sObLlm56Ge1stmKmy5dhbufGl70/EdHfXh6aBavv7BX0c/Yadbj29dvzxRflaSvWbKgV2MOzxOIgfP8GzbVzMKLJ1MIxpKyL+odVODlxJdp0VTWHSM+G4qpNGPesOyNxc3dLhwZ9SFRZK5vIXNxRdVR8IQj6Ot3rig6NtLjtpQUdn5szIcupwn/fuV66fPiwWfx6m89gou+9Dd88u6DeODIeNXMjARTgZjsc7lcl9VKMzAtjTH0quigmY/Xbe/Bv1+5Hv93aBT/fu8zshyYCXWQ46LJAPwQwFHO+dcBgHN+iHPexjnv45z3ATgLYBvnvLg7BqEa4ViyZvN3gNRq0WIzzlPwxEml1AIPAK7e1oNTk8G8+T+itVLuhXZbunVq4bCvEqMWOaxrt8sq8CbzhCLLQThVirDzwyNebOp21NxgRSCFnRdr0SzdQROQVAcgf37XmUn5EQkCm1GHLT3OgoHno7Nh2I26otl6chDZVNN5WjSHZkLQMBR0ONvQ6YBRpymoOpbDTx8bgN2ow6u35t6Nf8+uNWh3GHHz7w/P20H/1Z5BGLQaXH1B4V38WqLVMJzb4cAxFbLwxHxvob/namXh+RQqT06zHv5IgnbWF5BR8BSqXya9Fq12Y1GVZtQrf4Z8S48TkXgKzyo0WskUeFVq0dze58auc1tx4/Nym6tk0+M2Y3Q2orhoPT7mx6ZuJ266dDV+/c5LsO/fX4RbrzsfF/Y14Q9Pj+Kmnz6J7V/4a1nREkrxBKJF5+8E4nXX+u9NZOBVWsET3HTpavxrOj7ha/cfr8pzEvIUvOcCeBOAFzDGDqT/vbzC6yJkEIwmahaRIOh2mebtSAlHqeYyCryXb+6EQafB3ftzm62M+iIwaDWyi8h8YeejKmTgZbOu3Y5xXzSvsiQQBVCrTflz24w6GLQaTAVjiCVSODbqx6au2rdnCpptxoItmuU6aAKFDUo454oy8LK5ZHUzDp715h0IH/Gqk4EHzKmQs/laNKdD6HQWdjgz6DTY3O2siILnCUTxx0OjeO32nkVBxQKrUYdPvmw9Dp714jf7pL/VSDyJe54axks3dVRNOSiVDZ12HB3zlb2jLLK/2gp8llQrC09pa6G4nzAVISREoazUZAUortIEown4IwnZM+Rivlpp4Llo/65G0DkgbaTe/tYLZcXIrGiyIJHiGFfgsBiJJ9E/FcK5HXPmXG6rAa+5oAffun4b9n/mRfjem7YjFEviyf7pkl5DKUwFYrKvd7rdZul155ldrhaD0+qGnMvh315yLt5wYS++tfsUfvDQ6ao973JGjovmw5xzxjnfwjnfmv73xwX36eOc5+9tIipCKJaseYHXtSDsXI22EKdZjxdvaMfvnx7JGeQslDe5qpUo8BZm4Y37IqrM3wnOTRutnJgorApM+qMwaDWKM5aA7DbIGE5O+BFLprCxDubvBC05gtizyThotpXmoAnMXZTmctIc90URjidlZ+Blc8k5zUikOPbmuThQKwMPkIozm1FXQMEL53XQzGbbSjcOD/tUH2D/9d4hxJMcb7x4cVBxNldt7cL2lW7c8pdj8EXi+OOhUfgiCbxeprlKLVnf6cBsKJ5x0y2VCRmKfLWy8GZLLPDIaGU+mRZNhTN4QPEsPKXuzatbrLAatIpVKdH+rXSOsBpkohIUmKWcngwimeIZQ7OFGHQavGhDOywGLQaqZMLCOcdUMIoWmd04+Yzpqs3AVBAtNmPezbuyueUWYPfueTexBx/EF0/+ES/f3IEv/N/RzKYgUTlqM7xFqEIolqjcH6hMul1mjMxGMrvgwr6/HAUPAF67rQczoTh2H18cqDyqsLWyLYeCF4knMROKqxoOvjatShVq03x6aBZ3PTmEVS3WktsqxZzb4ToyWBG02CTH0nyqiHAZXVuGgifapnJl4Z3OOGgqP/72lW7otSxvHt7obARdKobCuiz5HQyHpvNn4GWzrdeFWDKVMdtRg0QyhTseH8Bz1zRjTZFWWsYYbn7lRkwFY/jmAyfxqz1D6Gu24JLVuS3S6wkx61fuHJ5o0SwUe1KtLDylrYVCDac5vPl4w3FoNayoM2IuetzSOTGf8YcwRZK7uajRMGzqdipX8NJmO7oKR46UQibsXEHbsjiv5ivwAOnzqLfJgsGp6hR4vnAC8SSXfb2T+RyosZPmQIUdNLFzJ3DttXNF3u7dwLXXQnPhhbj1uq340rN/wj1f/xn+emR87jG7d0uFIaEa9feXT8gmWCcKXjhdLAHAdLo9r5wZPAC4dG0LWmzGnG2aYwrmFwBpB1OvZfMKvHEVQ84F3S4zrAYtTozlLvD+fmwcr//e47AYtfj2G7eV/DxNViOmgzEcGvbCZtRhZRXbLIrRYjMglkjlDXw/Me4vy0ETmNuRznVResYjDY+valWu4FkMOpzf48LjpxcreJF4ElPBmGoKHiD9jUznaNGMxJOY8EcLOmgKhEvlUyq2af7t2ARGvBG86eI+Wfff3OPEdTtW4PZH+7GnfxrX7VRmrlIrzku3eh0tcw5v0h9Fk7WwWVO1svBKmcEDqMBbiC+cgMOkK+n3uMdlRiyZytuqXopZ0/pOB56dCChqJ54JxavWnqmULlc6E05B2/KJcT90Gla0/X5lswX96SzUSiPcrOVm2nbViYI3OB2q7HXDrl3AnXcCr3oVcOWVwFVXAe99LxCJwPjoI7j6svW47d4v4f8+/XU8cXQkUwBi587KrWkZUlv5hyiLUCyRMRCpFV1ZUQlNVgOmQ3EwNjdjVCo6rQav3tqFnzzWj5lgLNPyyTlXbI7CGEOrbX7Y+VjmJKveBTtjDGvb7TmjEn65ZxCfvucQNnY58aMbdpYUkSBosRpwaiKAZ0a82NjlgEZTPxfT2Vl4ucxITk74sabNVlYBYNRpYTFoc6pfZyaDMOo0siM0FnLJOc349oOn4I/E561/TEUHTYHLYsBsDhVSmHHIadFsq0Dg+c8eG0Cn04QXrm+T/ZiPvuRc/N+hUYRjSbxue49qa6kkdpMeK5rMZUclTBQIORdUKwuv1Bk8KvDm41WQJbiQTFTCbDjnXKbYXFRyDlvRZEEgmsBMKC5783Q2FCv7PFwpjDot2u0mRX8PJ8b9WN1qLeqOvLLZit3HJ5FK8YqfGzOeAzJdNC0GHZqshpqGvEfiSYx6I1jZXGEHzV27gHgc+GN6ouvmmzPfMqb/fePeW+B54PvgJi3YnXdKjyFUgxS8BiYUrb2Ct7CnfDoYhcush1aFD9art/UgnuT4w8GRzG3TwRhiyZTiC/hWh2megjeWOcmWXmjl4tx2+7ywc845vn7/cXzy7kN4/rpW/OodF5dV3AGS8uMJRHF01FcXAefZCDexfFEJJ8cDWFugxUYuLrM+5wyeMFgp9cR+yepmJHPM4Y141cvAEzRZ9Dln8DIZeDJaNAFpDm//wKwqazo1GcDDz3rwLxf2KmrtarEZ8V/XnI/PvnJD2b/f1WR9h0OFFs1o0ddcrSy8WYVzV1Tg5cYXiZc0fwdkhZ3nuYgf9Ybhsuhh0ss/dwszDCUB3+Xk0VYDyVlW/us5Pu4v2J4pWNlsQSyRKnu2Vg7iPCdXwQOka6ZqZWLmQvwOVdxBc/duwGYDPvhBwO0Gvv994LHHgAceAH7/e+CXv0Tsgu1oCcyAvfKVVNxVACrwGphQLAlrDWMSAGRmkkYyBZ56J5UNXQ6c12HHb/fPhZ7PZeApu9ButRnnF3glHqcYa9ttmArG4AlEEU+m8NG7DuKbf38W1+1YgR+8eYcqM5PNNiOiiRQi8RQ2dVc+M0wJIg8oV3uSNxTHRJkOmgKnxZBbwfMEsbqE9kzBtpVuGLSaRXEJo7MVUvCCi1+DMB6Q06IJSHN4Y77IPLOjUvn54wPQaxlef2Gv4se+eGMH3nxJX9lrqCbrOx3o9wTLMj+Z9EWKFnjVysLzhuOwGrQF3VezcVCBlxNfOF6SgyYwp+Dla8MbK8G9WRR4gwoKvNlQvGoh56WgJDokGE1gaDqcMTIrxMp0tttAFebwxHlOroIHpB11a9iiKd6X3koWeKLl8q67gFtvBX77W+CTnwTCYeCKK4BXvhJob4dhsB/Q6YBf/nKRKQtRPlTgNTDBWALmGit4TVYDTHrNvAKv2areDv7rtvfg6aFZPJt2Xyy1Va7NMb/AG/VGYDPqYFPZpEZYOD81OIsbf7wXv91/Fh964Tp8+bWbVRt2zx7orieDFWBuJ3Myh5OmcBctx0FT4DLr4V2QgxdPpjA4HSopIkFg0mtxQa9rkdHKaCZ7Ud0ZPH80gfiCLKihmTAMOg1aZe4Kizm8cts0Q7EEfrPvLF62qbOhVLhyWN/pQIojZ1u1HDjnmAxEZbXKVyMLT2lroUmvhUmvoQJvAeW0aNqMOjjN+rwK3phP2Qw5MNeuraTAmwnFqpaBVwo9bgtGvfKy8IT78roOeQoeIDlFVhpPIAbGgCYF73N32nm8VoHfwmG0ojN4e/dKM3hClRMzeXv3Sl9nF4BvfCPAGHDNNVTkqQwVeA0K51xS8Iy1LfAYY+jKyv2ZDsbgtqq3a/iqrV3QMGTMVkYVWkwLWm1GTIdimYvpcZ+6IecC0ULyvl/ux6OnpnDL67bgAy9cq6rphNgttBi0JblFVhKh3uZq0VTDQVPgNC92oDw7E0Yixct+Ty45pxmHR3zz8gxHvBG4LXpVN1SEAcLMgjbNoekQetxm2W2m69OB5+W2ad771Aj8kQTefEnhaISlxIYynTRnQnHEk7zoDB5QnSw8b1h5a6HTrC+a3bnc8EUSJcXYCApl4SmdIQek2a0Wm0F2i2YknkQolqz7Fs1kime6cgohjMvkKHidThN0GlaVqISpYBRui0HR5m2324xIPJVxHK82g1NB2Iy6yv5ufOxji1sud+2SbgfmF4A33igpe29/+1wBSKgCFXgNSiyZQjLFYalxiyYgTmbSh7TUoqne7n+b3YTnr2vFPU8NI5XiGPOGodOwzKyXXFrtRnA+NxQ95lM35HxuvUY0WQ3QMIYfvmUHrt2hfh6YeO0bOh2qzDqqiV6rgcuiz9mieWLcD4tBiy4VVDCXZfEM3ulJEZFQ3vD4JaubwTnwxJk5FW90Vr0MPIEwDlpYqA7KjEgQGHQabOlx4qmh0hU8zjl++lg/1nc6sH2lu+TjNBo9bjNsRl3JBZ4wbmpzyCnwKp+F5w0pV56cZj0peAsopVDOJl8WXjSRhCcQQ4dD+WfJiiaLbAVPfKbUc4umaEGXo2ofH/fDpNfIalvXaaX7VSMqweOXH3IuyPgW1MhoZWA6hN4mS22djrMLwOc9D1izRprPEwUgoQpU4DUooah0kVBrkxUA6HJKLQepFMdMKF52Bt5CXrutB6PeCB4/PYVRrxROrrSwWZiFV8ouqhxYurD7w/ueh8vPle9CqATx/tabwYqgxWbMGXb+7EQAa9tsqjibOS3SRWl2m4uISCgl5Dybrb0uGHWaeW2ao151M/AAZNqnFkYlDE2HZDloZrOxy4njY34k82RvFePIqA/Hxvx448WNEXGgFhoNw3kd9pILvMlMyLm8Fk2gshbppbQW1rLAG5oOIZYo3qJXTSLxJGKJVMkzeMCcgrewDW/CJ/2+lDLL26ugwBNdAfXdopl2G5Whap8Y92Ntm132eb+3qTpRCVPBqKL5O6D4jGalGax0Bp5SGJNUvH/8A3j22VqvZklBBV6DEoxJOWO1NlkBJGfBSX8UnkAUyRTPKBNq8aIN7bAbdfjt/uGSCzMxUzQZiCCZ4pjwRyui4AHABb1unNNaudbJDqcJl65twcs3d1bsOcqhxWbIq+Cp4aAJAC6zlLcXic9dHJ72BOGy6Mv+/TPqtNjR555ntDJSAQVP7K5nRyV4w3H4IglFCh4gqbmhWLLkuZND6RDl557TUtLjG5n1nQ4cG/WXNBMjLtjltmgCyrK/lOINKzfWcOZxpK00gWgCL/z6P3DXvqGqP3chfBHpvShHwetxmxGIJuALz88DHSshIkHQ2yTNrC2c2c3FTLD+C7xOpxmMycuGPD4mz0FTsLJZUvAqPec2FYgp7ibqcQnlsvpOmskUx9BMqPIRCUp585sBjQb48Y9rvZIlBRV4DYpo87HUeAYPmNuROjwi7YKrreCZ9FpcuaUTf3pmFGc8wbIKvAnfXCHaXgEFrxrotRr87G0X4cJVTbVeSk6acyh4wkFzbZs6hW+mOMoyWjkzGSy7PVNwyepmHBvzYzoYQzCagC+SQKfKCp6YgZjOctIcUuigKdjQJc2SlZrpdnjEB5tRl3HrW06c12mHP5ooyQBlIq3gyTGl6XbJb0krlVIUPIdZnwlIryZj3jCiiZQi45BqoDQsPheiDe/s7PzXNucCrfyzZEWTRZpZmy0+szaTbtFUcx5ebQw6DTocpqKFzkwwhgl/FOd2yD93rGy2wp/ODawknkBUthmWwGGWzN1q0aI56g0jnuT1peABQHc38NKXSgVesnIt7MsNKvAalGC6wKsPBU86WR1MqwCVGN597fYehGJSQGcpIdatWS2aGSfOCil4y51WmxGTCxS8k2kHTSW7sIVwmYX6NXcCFxl4anDJOc0AgD1nprIcNCvTopltsnJWYQaeYE2bDToNK7nV8PCIFxs6HRUPBq5H1neWXhxP+COwGrSy4k/a7EbotaxiBV40kUQ4nlRcmLjMhpq0aI6n1c9c7dy1xJtW3RymMkxW3LnnrMbSnyWlKniAPCfNRmjRBKTPuWJ/DyfGlZ87hENkJZ00o4kkfJGE4g1txlhBE55KIiISKuqgWSo33ggMDwN//WutV7JkoAKvQQlFpZNQrWMSgLndymdGKlfg7VjpzswllXJyNOq0cJr1mAxEy9pFJYrTbDXAH0kgEp/biTuRdtBco5KC57TML/CC0QTGfJGy5+8EW3pcsBi0eOzUFEYyGXjqtmia9FqY9dpMOxUADE1LJ32lM3gmvRbntNpwZER5kZJMcRwd9WdUwOXGeR12MFaak+aEP4o2mRtFGg2raMixt0TlyWnWIxBNyLKrV5PxdLtiLsfdWqKmgrfwIn7MG4XVoIW9hHieFUoKvPRnSj2brADCWbZIgZeOSDhXRkSCYC4qoXLqsJidVtqiCUib4iMylFi1qUoGXqm88pVASwvwox/VeiVLBirwGpR6UvBEofTMcOUKPMYYrr6gB0DpF9qtdiMmfNHMhQUVeJWhJa2WZpuHnJyQHDTFhU+5ODMBzdJziIF6tWIj9FoNdvQ14bHTcwqeGu6fC3Fb9PPaiIZmQrCnc7SUsqHLgaOjyvPc+qeCCMeTy7bAsxh06Gu24lgJ792kL6ooM7BHhmJRKpnCRKFq40zHAfgiiSL3VJeMglcju/h8qDGDJ/JhFyl4vjDanaaSjIw6HCbotUymgicF3ht1td8ALkSP25xuG8y/uXBizA+7UadoZn5FkwWMVbbAE8pzi0KTFQDodJkz55VqMjAdhF7LVN+sVAWDQcrEu/dewOOp9WqWBFTgNSihtMlKPczgGXVatNqNGWWsUvkqb7iwF5eta8WOvtJs3NvsxoyCp9cyReGkhHxEy0q20crJcfUcNAHAZZkfMZBx0GxVb3j84tVNODEewKH0xkW7U/3wb7fVMM9kZWg6hJ4SLazXd9ox5osoVkTE7OzGZVrgAdJ7d3SstBZNOQYrgkqGnZes4OUw+6kGcwpenRV46fexHBfNfG14o17lIecCrYahx23BkAwFeDYUy3xG1jM9bgtSHAXnCo+P+7Guw67oM9Gk16LDYcLAdOVaNMUYQkkKntOEmVC8opEpuRickiJ46i1eKcONNwLxOPCLX9R6JUsCKvAalFCsfmISgLmWFItBC5O+MmvqcJrwkxsvRHuJs3OtdiMm/ZKC1+4wLct5o2ogFLzsC7cT436saVNn/g7ImsFLX4ydmZRO5H0quoNdslqaw7vv4ChabMaK7Ia7LQZMZxd4M2H0KmzPFGzolGIzlKp4h0e80GsZ1qr482k01nc4MDAVQiCqTMWa9EdlRSQIetxmeALRee3LaiE2O0pp0QRQ9Tk8kSHoCUQr7naoBPE+lBN0DgDdbsuiAm/cGykpA0+woskiK+x8OhSr65BzQTFnWc45Towrc9AU9DZZ6lbB60pfL41UWcUbmArVZ3umYPNmYMcO4Ic/BOroM6FRoQKvQQmmL0TqIegcmCvw6vmk0mozYsIfwag3XLGIBAIZVzGxwykcNNe1qxcdYTFoodeyzMXYGU8QXU6TqjOpm7udsBl1mA3FVc/AE0gKnvQaOOc4O6Ms5Dyb9Z3SRZDSWbIjIz6sbbPDoFu+pwNhtHJcgYoXjCYQjCVlhZwLetyVc9IsfQbPMO/x1UK0aEYTqczIQT3giyRg0mvK3tDpds2fL0umOMb9UXSU0QnQ22SW3aJZ7/N3QPGw80l/FLOhOM4t4dzR12ytcIFXuoInWiTlOKKqBeccg9Oh+jRYyebGG4GDB4Gnnqr1Shqe5XtGb3DCdabgiQtgtSMS1KTNYUQknsKzE6VFLRDyEMGvYodTbQdNQGqBcprniqPTniBWqdieCQA6rQY70+3AajtoCtwWfWZWcTIQRSSeUhyRIGi2GdHuMCpyg+Sc48iIb1m3ZwLA+kzMhHz1c8IvPwNPUMksPFGguRpEwRv3RaBLd1HUk9GKN6Q8aiIXPW4zpoKxzLlaxPN0lDH/1NtkwWwoXvRnNRuK1b2DJiB15WhY/r+H48JBU4HBiqC32QJPIJrZDFebqWAMJr0G1hKuwcT1UjUVvOlgDIFoov4y8BbyhjcAJhOZragAFXgNSjCWhEGrgV5bHz9C0XKgdsi5mggzBE+gciHnhKQqWwzazAzeyQl1HTQFLose3nAMnHOcngyoFpGQjYhLqNRQuttigC8SRyKZKtlBM5sNnQ5FCt64L4qpYGzZF3hdThMcJp2i924iPUOmrEWz8gqeUnMQUcxUMwuPc44JXzTzmeCp0Bwe5xyPPOtR1ALqi8TLmr8TLHTSHFUhnkeo+8XaNKeDjdGiqddq0Ok05w07Pz4mFXjnlrA5KJw0K5Wz6PFH0Ww1lmaYk94wrKaCN5B+H+ouA28hLhdw9dXAHXcAkeo7jS4l6qM6IBQTiiXqwmBF0NUQLZpzJ1ZS8CpLs82Q2ZU/Ma6ug6bAZdZjNhTHdDAGXyShmoNmNpesbgGAyrVoWvTgXLo4LzUDL5v1nQ48OxGQPeN1OB1tsrHbWfJzLgUYY1ivsDhWEnIuqGQW3mwoDrtRp9hAwZkjU7LSzIbiiCVTGefWSil4+wZmcP0PnsCjp6ZkP8YXiZfloCnoXqDWjqkQzyPU/UIFXiKZgj+SaIgWTUB6n/IpeCfG/WixGUpqg1zZJG34VSoLzxOMlTR/B0jGdC02I0aqmIUn3oe6L/AAqU1zdlZy1CRKhgq8BiUUS9ZFRIJAXLzXe4umgAq8ytJiM2Z25U+OB7BGRQdNgTNd4GUcNCug4G3qduDzr9qI16QjOtRGKN4zoXjmoq2njAJvQ5cDiRTHs2nVtBjCQVPMoC1n1nc6cHzMj1RKntpTSotmJbPwfOHSChODTgOzXlvVFs3xtMHKhvTvXaWiEkQhLT4j5OANq9OiuVDBKyfkXCAMMgo5aQrjqUZo0QQKh50fHw+U3NrfW+EsvKlAFC0lFJ6CLpepqi2aA1MhMFbe+aVq7NoFrFxJbZplQgVegxKKJepm/g6Q5g00DCU7XFaD1qwPY2rRrCzNVmNWi6a/Ig6NTose3nAcpz0iA0/9Ao8xhrc8p0+RSqMEcRE2E4phaDqMFpuxLKMYccEsdw7vyIgPfc0W2EoIXl5qbOh0IBRLZlqZijHhj8Cg1ShWSiqVhecNl26s4Ur/LVULYbCSKfAqpOCJKAYl77cvnIDDVP7fQ7vDBJ2GZYxWRn3S70s58TwOkx4ui75g26EIOa/ncYlsetxmjPkiiCXmZ+GlUhwnS3TQBKQNQLdFL/vvWSmeQDQzb14KXU5zpm23GgxOhdDhMFXM5VxVvvY14PLLgQceAAYGpNt27wZuuaWmy2o0qMBrUILRZF0VeC6LAb94+8W4bueKWi8lLy6LHnqtpCKRgldZWu0GeAIxeMNxjPvUddAUuMxShtwZTxA6DcsYWDQSmQIvGMPQTKis+TsAWNlshVmvxZEReQXe4VEvNnYt7/ZMgVAx5bZpipBzpTM4lcrCK0d5cpqrXeBJF7Yrmiywm3QVm8ETKqsSxVStFk2thqHTZcooeOPeCNqdxrI7GXqbLBiczv/7MxMSCl5jtGj2uM3gHIvaFYdnwwjFkji3BIMVQW+ztSItmpxzTAViJbWOCjpdJozMhqsWETIwHUJvvTtoCnbuBP7wBykq4Sc/kYq7a6+VbidkQwVegyIpePW1637x6mbYVRhOrxSMsYyKp8QYgVBOi82I6WA0MyS/thIFnkWPYCyJk+N+9DZboKsTwyEluK3S38tMKF3gldk+o9UwnNdpl1WkeMNxDE2HM3NQy5217TZoNUx+gReIlqTsVioLb7aMAs9R5QJPGNS02o1osRkr1qKpVMFLpTh8KrVoAvOjEka9EVU6R1a4C2fhzaRzNRulRTOf8dCJ8fLdl/uaK5OF5wsnkEjxskZSupxmhGJJ+MKVcflcyMBUqDHm7wCpRfM3vwH0euDrX5eKuzvvlG6Xyy23SIVhNstMBWy8KyICQHoGr45MVhoFcUGxnDO/qkGz1YAUB/b2TwNARVo0RTvagaFZrK6AwUo1EBdhnkAMI7ORshU8QGp7OzLqK7ozLFS+5e6gKTDptVjdYpVd4E34oorm7wSVctJsLAUvCpdFD5Nei2aroWItmkLBWxg4no9gLIEUhyoumgDQ7ZoLOx/zRcqKSBCsaLLg7EwIyTyzoo3YogksVlkzEQllbA6ubLJgZDa8qP2zXDxB5QZLC+msYlRCMJqAJxCt/4iEbHbtAl75SsDrBV76UmXFHSCpfddeC/z979LXy1AFpKvcBiUUS8JcZwpeI7C23Y7zymj5IOTRkj7xPXZqqiIOmsCc+58nEMNqlTPwqoXFoIVBp8GRUR+SKV62ggdIrYb+SKJoASHm9KhFcw7JSVNeFt6EP6Io5FxQqSw8bzgOZ4ltebVo0WxPd1FIjruVUfAm0wXepF+eYlpqWHw+ut1mjKfny8a8EVXyNHubLIgnOcZ8uee3Gq1Fs9Npglaz2Fn2xJgf3S5zWV1Bvc1WpLj8Al8unvTvVbO1HJOVdNh5FQq8wUaJSMhm927gn/8EjEbgrrsWq3HF2LVLUv1e9jLg+c8vTQVscKjAa1CC0URJAZvLnS++ZhO+/+YdtV7Gkkec+J4cmK6IgyYgzX0KKmGwUg0YY3Bb9Dh0VoorKDXkPBvRcllMiTo84kWr3VgxA5lGZH2nA8OzYXiLRAbEEinMhOLzolfkIuzz1bzojMSTiCVSjaPg+aOZ4rjZZsRUsHImK6KNTs77LdrlHGZ1Nk97XGakOHBszIdoIqWKCVlvkaiE2VAs44zaCOi0GnQ6TYucQY+PB8pu7e9LFzT9Ks/hiZbick1WAGC4Cll4ok1VREfUPUJtu/NO4KabgFQKuOYa5UVeby8QiwEPPQS8+93LqrgDqMBrWMKxZN3N4DUCRp22LJdCQh6tdunEF4mnKtKeCczfZW/UAg+Q2jTFDqsaCt55HXYwVtxJ88iIj9ozF7C+U/pdPTpW+L2bTLcUlqLgtdkld0U1M7DKVZ5cZj1CsSTiSXVb2fIx4Ytkip0WqwHTwVjelsNSCUQTCMWSuKDXDUBeS6wvkg6LV6tFM13MP9k/AwCqKXhA/gDv6WAMTRZDSQHctWKh8VAimcKpiUBJAefZiKiEQZXn8ERLcTkxCa12I3QahtEqZOEJo5neRlHw9u6dU9tuvBGIx4E3vUm6XQmf/KT03w9+EPjOd5QXiA0OFXgNCOccwTqLSSCIbLJbVyphsAJIF6WCSmTgVQsxh6dhc3MZ5WAx6LCqufAsWSSexMmJABV4CxC2/U8Nzha8nzAJKWUGT6th6HCaMuYbaiBCyktW8NLtfNVQ8VIpjgl/FO1ZCl6KS8qTmgiDle0rRYFX/CJfvH41XDSBuSy8fYNSgaeGe3OnS2ppzKfgzYRKj8uoFVJ0yNzr6Z8KIZZMlWWwAkjRSBaDVnWjlclADIyV1war1TC0O0xViUoYmA7BZdGr1npccT72sTm17YILgPPPBx5+WLpdLn/6k2TUctllwK23SgXjtdcuqyKPCrwGJJpIIcUBC5msEHWK06yHLt2WWYmIBGDOZMVq0DZ0m6Fw0ux0mqFXyQl0fZejoIJ3YtyPZIrT/N0C2hwmXNjXhNsfOYNwLP/M1lzIeWkX7N0us6otmuUqeOJxs0VaU9VgKq3WCQVPtLmp7aQ5kc7a29TtgF67eMYrFz6VZ/DEhs2+tIKnhoumPt3SmE/Bmw3FGsZBU7DCbcG4L4poQvqbEw6a5UQkAFILfG+TRfWohKlAFG6LoWzn5q6sGI1KMjgVwspGiUhYCGOSivfkk8DBg/Ifd/vtUszCzTdLX4uZPKUqYANDBV4DEkpfeFipRZOoUzQalrlwq1SLpt2kB2PAqlZrQ7UjLURcjKnhoCnY0OnA0HQ403K2EOGgKRQrYo6PvfRcTPij+PGj/XnvI8w7SmnRBKQCb0TF2RtR4LnMpV3YC8WqGgreeEb9TBd4abXfo7KT5oRfep5OpwndLnnZg2oreEadFm12I8Z8EWhYea6L2UhZeHlaNEMxNDWIg6ZAGA+Jv4njY34wBqxpK39zcGWzRfWw86lArKyIBEGn01wVk5WB6SB6G8lBcyHXXw8YDFLRJgfOgdOngQ0bJAVPsGuXMhWwwaECrwEJRqVBcGrRJOqZZqsRZn1lHDQBqcXFadZjVYNGJAgyBZ4K83cCUbgdy+MIeXjEB5tR1zjBt1VkR18TXnBeG77z4LN5zVYm/FEwhpIv8rrdZoz5IkioNPOmloLnq0KBJwov0aLZIhQ8lZ00hYLXajctagHMhy+SAGOA3aje5qmYw2u1G1VT6HubLBjKE3Y+25AtmtJ7JNpOT4z70ddshUkFo5iVzVYMToeQUnHGcyoYLWv+TtDlMmPMG1F1bQuJJ1MYmY00roIHAM3NwFVXAT/7mWSaUoy9e4F9+4B//VdJAVymUIHXgAgFj0xWiHqmr8WCzT3OijhoCr589Wa8d9eaih2/Goi8KjUcNAXr0wXekRFvzu8fHvFiQ6ejoj+bRuajLz4XvkgC3/3nqZzfn/RH0Gw1ltyi1eUyI5nKb3WvFDG/Vo7JClAtBU8qvOZaNKULZbWz8Cb8ERh1GjhMukUmHvnwheOwGXWq/l2IDS41MvAEK5os8ASiCMXmh2SnUrwhWzR7muZnQx4f96vW2t/bZEEskcK4Xz3F3BOIleWgKehymRBP8kyuXiUYngkjmeKNFZGQixtvBKamgD/8ofh9v/UtwGaTjFmWMVTgNSDB9Ic6zeAR9cyXrt6C775xe0Wf46WbOsue06g1YlBfzRbNdocRTVZDzky3ZIrj6Kg/E6dALGZDlwOvOr8Ltz/Sn1Gcsik15FwgLvrVatP0heOS8mQqbdPPWYMWTdGu6DLroWEVmMHzR9HuMIExhh63WVYWnq+MsPh8CAWvo8R23lzMRSXML1p9kThSvHFCzgUdDslZ9uxMCJF4Ev2eYNkOmoK+dGtiv0e9Nk1PQB0Fr9Op7udALgYyGXgN3KIJAC96EdDdDfzoR4Xv5/EAv/418OY3A47lfY6jAq8BCdMMHtEAOM36hrvQqAU96dZMNWcVGWPY0JnbaKV/KohwPEkOmkX48IvWIZ5M4X///uyi7034o2XNU81l4alz0ekNx+Ew6UtWnhxVNFkZ90XRYjNk2hU1GoYmqxEelVs0x32RTBEu/saKGVr4InHVIhIEPelivlNFBS9fVEKjhZwLtBqGrvSc5KnJAFIcWKfSxp1Qrgan1TFaiSaS8EcSmdbichCxGZWMShhMG8w0vIKn1QI33AD8+c/A8HD++/3oR0A0KrVnLnOowGtAaAaPIJYOO/vceODDl2FTt7qOlus77Tg+7l8053VYGKxQgVeQvhYrrt25Ar/cM7goR2vCHylLwcuEHKsUleAtU3nSazWwGrRVUfAmfJFF7qMtNkMFWjSjmTZQMeNVrE2z3PcxFxkFT4WIBMGKvAWeVCQ3WosmIP2MhmZCODkeAADVFLxOp6QOqhWVIGZFm1VQ8DJKfgWjEvqnQjDpNWV9XtUNN9wghZ7/9Ke5v59MArfdJhmrbNxY1aXVI1TgNSBzM3hU4BFEo8MYU8UtbiEbuhyIJVI47Zm/c314xAu9llXM3XQp8f4XrIWGMdz6wInMbckUhycQK9lBEwDMBi2arQYMq9SaNatCYeI066vToumPZAxWBE1WQ0ViEloXKHjFjFZ84QQcZnU7Y1anTaD6VFRQ3BY9bEbdoiy8mfR72GgmK8Bc2PnxcT/0WoY+lbJNdVoNVjRZ1C/wVOhOcVn0MOk1GKmggjcwFUJvk6WhnaYzrFkjFW8/+pHklLmQP/8ZOHOG1Ls0VOA1IJmYBBWdvgiCWFrMGa3Mb9M8MuLDunY7DDr6+C9Gh9OEG57Th3sPDOPYmPQ+zoSkHLdSM/AE3W71svDUUJ6cFkPVTFbaF+TBNduMqip4oVgCgWgiU4S32Y2ysvAq0aLZ12LFfe97Hl68oUO1YzLGsKLJsrjAS7doNlpMAiAV4ZP+KA6encU5rTbVHEcBqaV1QKUWTWGIooaCxxhDV4WjEgang+htavD5u2xuvBF49lkp+Hwh3/420NEBvOY11V9XHUJn+AZEOGeZScEjCCIP57TaYNBqcDRrDo9zjiMjPpq/U8C7Lz8HNqMOX/uLpOIJ+/1yW566nGbVdu694TicZao2TrOu4jEJiWQKnkAUbQsLPKtB1ZgE8TNqTxfhGg2TlYVXiRZNANjUrb6bcG+TeVGLpnBTdTVgi6YwmdpzZhrrVGrPFKxslhQ8nkv1UcjJdAh7p0ott10qZ2JmwznH4HSo8efvsnntawG7HfjhD+fffvo08Kc/Ae94B6BvPAW7ElCB14AEo+kWTRUyYgiCWJrotRqs67DNM1oZ90UxFYxhY5e6835LGZfFgHc+fzUeODqOfQMzGVfNclo0gbSCNxNW5aJTDfdHp1mP2bC6bZIL8QRi4ByLWjRbbAb4o4miLpdyyYSpZz1Pt9tcsEUznkwhFEuqFnJeaUTYefbvz3QwBq2GwVGim2otEW208SRXLSJBsLLZCn8kUbaJEOccv9ozhO0r3ehSKd+102mqmII34Y8iEk8trQLPagVe/3rgrrsAX1Z3ym23ARqNVOARAKjAa0hC8QSMOk3JGUwEQSwP1nc4cGTEl7kIPJzOxSODFWW89bmr0GIz4JY/H8OEXyh45e3gd7nMCMeTmba6UuGcYzbUGDN4ovBqty9u0QSkAkUNcv2MelyWggqer8yw+GrT22RBNJHCpH+utXUmFIfbom/IeSthhANAfQUvbUrTP1Vem+ajp6Zw2hPEGy/uVWNZAIBOlxkT/ihiiVTxOytEzB02fETCQm68EQiFgDvvlL4OhyVF79WvlqIUCABU4DUkoWiS5u8IgijKhi4HpoKxzEXg4REfGJubzyPkYTXq8N5da/DEmWn8dt9ZACgrJgHIzsIrb/c+FEsikeKNVeDlaNEEoFqb5tzzzP2MimXh+SLS6IPaJiuVoieHk+ZsKNaQ7ZmAVIzrtVJhqna26VxUQnlGKz9/fABuix4v29SpxrIAAF1OEzif+51VkwERkdC0hBQ8ALjoImD9+rlMvF//GpieBt7zntquq86gAq8BCcYSMFN7JkEQRdiQLuQOp9s0j4z40NdshY02iBTzhot60e0y44kz07CbdDCV+Rks17q/GKIoc6lQ4EXiKUQT6rRJ5mI8vdGwsEVTKHjCwKJcJv1RGHSaeUVvT5PIHsz9fgsFT22TlUqRCTvPajudDsYaLgNPoE3PSZr0Gqxwq1uQiFiJcpw0x30R3H9kHNfsWFH23342otVztAJRCYPTIel9dauXwVgXMAa87W3AY48BR49K5irr1wOXX17rldUVVOA1IJKCRwUeQRCFOS9d4AmjlcOjXmrPLBGjTosPvWgdgPINVoC5C7tynTS9KrUWOtPKTyVVvAlfBBq22IFQhEarpeBN+KNosxvntSrORSXkfr/Veh+rRbfLDMaAwam51zMbijdkBp5gTZsdW7pdqhvSmPRadDpNZbVo/mrPEJIpjn+5UL32TADocklqdiWiEvqnQuhymVR1JK0bZmelmbv3vQ/Yu1eKRnjwQeCWW2q9srphCf7Ulz6heBIWA+3AEwRRGKdZjx63GUdGfPCG4xiaDmdUPUI5r7mgG+d12LGqpXwTCLdFD7NeW/aFnTCOUKNFEwC8Zc4EFmLcF0Gr3Qjtggt4UfCpFZUw7lscRD+nmOZWcXyRtILXIAWeSa9Fh8M0r+1wJhRr6ALvq6/bgm+/cVtFjt3bZMFgiQpeIpnCL/cM4tK1Larl8wk6nSLsXP0Cb3AqiJVLKSIhmxe8ANDpgL/9TTJe6esDrr0W2Lmz1iurG4oWeIyxFYyx3Yyxo4yxw4yxD6Rv/3+MsYOMsQOMsfsZY12VXy4BAKFogkLOCYKQxfpOB46O+jJ5eBSRUDpaDcOd77oEt153ftnHYoxlnDTLQShP5RYmmQKvggpergw8ALAatDDqNKqarCw0wREzXktFwQMwLwuPc46ZUAwua+OsfyFuqwEtKuTL5WJlswUDJc7g/e3YBMZ8Ebzx4pUqr0qa73Wa9RitQFTCwHQIvUvJQTObXbuAz35W+v/zzgPe+lbJdGXXrtquq46Qo+AlAHyEc74ewMUA3sMY2wDgq5zzLZzzrQDuA/DZyi2TyCYYIwWPIAh5bOh04LQniH0D0wBAEQll4jDpYVdpTqvLVX7YuZgdc5Wdg1eNAi+S032UMYYWmxEeFU1WFs75aTUMXQWy8HzhtMlKg8zgAcAKtyWj4AVjScSTHE0NrOBVkpXNVkz6o5kcYSX8/PEBdDpNuOK8tgqsrDJRCd5wHLOh+NIzWMnm4x+XlLx9+4B3v5uKuwUULfA456Oc8/3p//cDOAqgm3OeFUABK4Dyw3wIWYRjCZrBIwhCFhu6HOAcuPupYbTZjWW7PxLq0e0qP+xctRm8KhR4E/7oosJL0GwzYEoFk5VIPAl/JLEoTB2Q2jQLtWjqtQwmfeNMrvQ2WTDmiyAST2ImrX42cotmJRFOmkqNVvo9QTx00oPX7+ytWDSVtNGjroI3uFQjErJ56CHg4EHgM58BvvMdYPfuWq+orlD028oY6wNwAYAn0l9/kTE2BOB6kIJXNSQFjwo8giCKI2buTk8GqT2zzuhxmzEVjCEcK925cjYshVuX64zqqnCBF00kMR2M5WzRBKSoBDVMViZ8IgNvcSFZKAvPmw6Lb6QMud7mOaOemZD03pWr5C5VxCya0gLvF3sGodUwvP7CFZVYFgDJaEVtBW9gOh2RsFRbNHfvlmbu7rwT+I//kP577bVU5GUhu8BjjNkA/BbAB4V6xzn/NOd8BYA7ALw3z+PewRh7kjH25OTkpBprXvZIM3jUokkQRHF63GbY0xf/5KBZX2Qc9Mq4uPOG43CYdGUXJmKGb7ZCJiuTeSISBM02oyomK+N+SQnJp+Dly8LzheMN1Z4JzEUlDE6HMJP+uTVZScHLRW8mC0++k2YknsRdTw7hxRva825MqEGn04zZULyk9tF8iEK2d6m2aO7dO3/mbtcu6eu9e2u7rjpCVoHHGNNDKu7u4JzfneMuvwDw2lyP5Zx/j3O+g3O+o7W1tfSVEgCkQepQPAkrKXgEQciAMZYJNqf5u/qi2yVdfJVjtOINJ1QJt9ZqGOxGXcUUvHGhrOVT8GwGeIIxcF7etEdBBa9AFp43HG8YB02ByHcbmg5hNqPgUYGXC6dZD7dFj34FCt6fnhnFTCiO6y9S31wlm7moBPXaNAenQmixGWFdqpmnH/vY4pm7Xbuk2wkA8lw0GYAfAjjKOf961u1rs+72KgDH1F8esZBIPAXOActS/aMlCEJ1hHJHLZr1hbiwK8doRc3CxGHWZ0xb1GbCJ128tucwWQGAFqsRsUQKgWh5Ksa4eJ6cCl7+LDxfJNFwBV6rzQiTXoPBqVDGgbRRg86rQW+zVVFUws8fH8SqFiuec05zBVc1F5WgZpvmwHRw6bZnErKQUyU8F8CbABxijB1I3/YpAG9jjJ0LIAVgAMC7KrJCYh7BtIRPM3gEQcjlmh090GnY0m3XaVA6HCZoNawsoxVvKJYJKS8Xp1lfQQVPFF75TVYAKey8HJfSCX8Uei3LWegUysLzh+NYkf5+o8AYyzhpWow6MNZYMQ/Vpq/Zgv2DM7Lue3TUh30DM/j3K9erHry+kG5XusBTUcEbmArhktWVLUyJ+qZogcc5fxhArt/uP6q/HKIYoag0O0AzeARByGVjl5PaM+sQnVaDDoepzBbNOHpVcspzWSpY4GUKr9zFaCbsPBgtK0x6wi9FMeSaSSyUhSdMVhqN3iapwOtwmuAw6Svm9LgUWNlkwR+eHkEskYJBV/h9+vnjAzDqNHjd9p6Kr6vdYQJj6oWdB6IJjPkiS9tBkygKfRI0GKG4pODRDB5BEETj0+Uy4WyZLZpOszobfk6zHrMVVPDa7Ka8akhz2hyk3Cy8CV80bxRIviw8zjl8kcabwQOkObyzM2FMB2PUnlmE3mYrUrx4S3QgmsC9Tw3jFVu6qjLTaNBp0GIzlh2ZIniyfxqcA9tWulQ5HtGYUIHXYATTCp6ZCjyCIIiGp5wsvFSKwxuOw2Wu/xbNCV8UbXnaMwGgRSh45RZ4/khOgxVBriy8cFwKCW9UBS8QTeD0ZBBuctAsyFwWXmEnzXueGkYwlsQbL+6txrIASFl4o151WjT3nJmGTsOwfaVbleMRjQkVeA2GsNFdss5IBEEQy4hutxlj3giSKeXukYFYAimu3txVpWfw8hmsAHP2/uVGJYz7ogUt7XNl4fnC0nm10WISgDkb/OPjfgo5L8LK5rlYiXxwznHH4wPY2OXA1hWuKq0M6HKaVFPw9pyZxqZuJ43yLHPop99ghGJiBo8UPIIgiEany2VGIsUx7ougy6XM5MObzj5Tq8BzmPWIJVKIxJMw6dU9x4z7IgXdCA06DRwmHaaCpSt4kXgS3nC8qIInsvDEa/RFpPfRoVKrazUR+W7JFKeQ8yK02oywGLT42l+O47f7h9FuN6LdYUK7w4g2hwkdDhNmw3EcG/PjS1dvrmrofafTjAePT4JzXtbzhmNJPH12Fjc+b5WKqyMakcb7NFvmhDIumvSjIwiCaHSEg97IbFh5gRcWhYl6Cp44rpoFXjiWhC+SyJuBJ2ixGeEpQ8ETYeqFWkGzs/DOabUBmHsfG7FFsyfL+bOJFLyCMMbwn6/ZjEee9WDcH8XAVAh7+qcxG5qvWtuNOrzq/K6qrq3LZUI4vUFRztzfU0MziCc5LlrVpOLqiEaEqoQGQ8zgkckKQRBE4yMKvOHZMHYofKzIrFNLuRHHmQ3FC7Y5KmXCnz+bLptmm6GsGTzxPIUKyewsPFHgifexEVs0LQZdpjCmGbzivPqCbrz6gu55t0XiSUz4ohj3RzDui6DHban6GExXZqMnUlaB98TpaTAG7OijAm+5QwVeg5FR8GgGjyAIouHpds8VeEqZVVl5ylbw1GTcJylr+TLwBM1WI057AiU/z0T6eYq1aAKYF03RyAoeAPQ2meEJRKlFs0RMei16my2Zdtda0OmUNiVGvWFs6HKUfJw9Z6axodPRkJsVhLqQyUqDIWbwzCrPRxAEQRDVx2LQwW3Rl5SFp3ZhUrkCrzoKnpznmcvCmzPa8Knc6lpthNEKtWg2Ll1ZrdqlEkuksH9wBhdSeyYBKvAajlAsCZNeA22eLCGCIAiisehymUtS8BquwCvgoglIYefToVhJjqIAMOGPQqdhBQudXFl4vojUGWM3NWZnjCjwqpHZRlSGVpsRei3DSBlRCQfPziKaSOGiVfnNjIjlAxV4DUYwmoCVDFYIgiCWDKVm4XnDcei1TDVXZVHgzYbKy6JbyIQ/CqNOU9SlssVmAOfATInPP+GPosVmzBumLliYhecNx2E1aKHXNuYlUV+LFQDQaqcCr1HRaBjaHSaMlqHgPXFmGgBIwSMA0AxewxGOJWExUnsmQRDEUqHbbcYjz3oUW6R7w3E4zXrV7NztJj0Ym2tZVItxXwTtDlPRdTZb58LORfC58ucp/rgelwW7j09kvvaF4w3bngkAV27phMWgw5o2e62XQpRBl9OMkdnSFbwnzkxjXbstkylJLG8ac7tqGROMJWDRU11OEASxVOh2mRGMJRW3RnpD6hYmWg2D3airSIumnMKr2VZe2PmkP4rWIm2ggFRQT6Sz8IC5QrlRMeq0eOmmjlovgyiTLpcJI97SFLxEMoV9/dOk3hEZqMBrMEKk4BEEQSwpsqMSlFCJwsRp0ate4E34okUz8ACpRRMAPCWGnU/4o/IUPPd8QwtfJE6ug0TN6XSZMe6LIFXCDOqRUR+CsSTN3xEZqMBrMEKxJM3gEQRBLCGEg55SJ01vOA6X2gWeWf0Cb9wXKWqwAmS3aCpX8GKJFKaDMbTJeJ7sLDwA8IUTRecDCaLSdDlNiCc5PCX8/j9xmubviPlQgddgBKMJ1QbqCYIgiNpTahZeRRQ8sz6Tr6cGgWgCwVhSlrLmNOuh1bCSohIm0xfFbQoUPFHgeRt8Bo9YGnQ6S8/EfOLMNPqaLUWjSIjlAxV4DUYolqQCjyAIYgnRbDXAqNModtKcDcVUL/BcZoOqCp7cDDxAchJsshowFVSuYMw9T/ECr91hgk4zl4VHLZpEPSCU/FGFUQmpFMfe/mlqzyTmQQVegxGKJWAxUisJQRDEUoExhm6FWXipFIc/mlC9wHOY9aq6aIrCS46yBkjFrqcEBW/Cl1bwZLRoZmfhJVMc/oj67yNBKKXLJf3uKt3oOT7uhzccp/ZMYh5U4DUY0gweKXgEQRBLiW63GcMKLNL9kQQ4B5wqh1uLGTzOSwsbX4govOS2jrXYjCXN4E3604WkXV4hKbLwAumQc2rRJGqN06yHWa9VHJWwJ51/d9FqKvCIOajAayBSKY5QLAkzmawQBEEsKbpdZkUmK6KNshIzePEkRzgdIVAuSlo0ASkqYaoEF81xXxQaBjTLzM+TCrwwfBHpfXSY6LxK1BbGGLpcJowqjEp44swUul3mjHkQQQBU4NUFR0Z8ePz0VNH7iRMuKXgEQRBLiy6XGZ7AXDZbMWbDUhFUiQIPAGZD6rRpjvuisBq0sMkcLWi2/v/27j24rfO88/j3BQmCJMCLeNOFtCSK5FqxJCrxyjfJTmxnJ7HjbZ2k6WWTJt0mnWycttPdJqmddibb2Uw7s8mm7WZ2O6nHqZtO0zh1nHRaS2ma7TaOI9lWXUcSLdmWSEmWKFEEL6IIEiRIAG//wAEJ0biShHAI/j4zHJIH5+Ac4Bnp8MHzvs/rW1aTlWBolpaAjwpPfou+d2yoJRiKEHQqfxqiKW6wpbGGywXMwbPWcvTcOHdoeKYsoQTPBX7nmeN85m+O59wvPJe48WsOnohIeWkvsMFCMSt4qc+/UsOh2YI6+zUHqpiKRPNOdBfOMxkp6DzJTpqvDYUADdEUd9jcUM1QAXPwBkamGZ2a0/w7eQsleCV2fnSaVy9NcmlihulINOu+4bnE47VeVfBERMrJwlIJeQ7TLFaC11i7uglecHI27wYrsLjYeaHDNIOhSN7z72BxLbyTlycBVfDEHbY01jAyFWEuGs9r/+T8OyV4spQSvBI72De08PPAyFTWfacjzhBNnxI8EZFykqzgXZoI57V/MgFLJmSrZdUreAVW1pa72PlIqLBEMlnBOzWUSPBUwRM32NJQg7WLc1dzOXpujNY6H50t/iJfmaw1SvBK7OCJoYVPHc8MZ0/wZuadCp6arIiIlJVNDdUYQ96dNJNz5Eo1RHM+FmcinL3KZq1leLLwIZpAQfPw5mNxRqfm8loiISm5Ft7ryQRPTVbEBTYXsFSCtZaXzo1ze2cTxuQ391TWDyV4JXR2ZIpTQ5N84u5OvBWGM0FV8ERE1iNvhYeNddV5D9GcnJmnqtJD9SoP2U9Wsq7laLLyuaeP864v/4grWeYMTs5EiUTjBQ2dbHG6YI4WUMFL7ltIBS+5Fl4kGsdjyLsJjEgxbW5IVJYv59FJc/DqDEPXZrlTwzMlDSV4JXTIGZ75s2/fwvZmP/05ErzkHLwar25EIiLlJrEWXv5DNIsxb6zOV4kx2St450an+bvjl7k2M89j3z2Rcc284VBhSyRASgWvgDl4w8m19gqo4MHiMM36Gq8qIOIKi4ud567kJ7uv397ZXNRrkrVJCV4JPXtiiH3bNrC5oYaejQH6g6Gs+6uCJyJSvtoba/Je5PjazDyNRUjwPB6zsNh5Jo//+CyVFR4+fW8XP3pjhO/862Da/QpdAw8SUxBqvBUFzcELOucppIIHiwmeGqyIW9RWVdJY681rLbyj58ZprPXS0xa4AVcma40SvBLpD07x+pUQD/VuBqC7rY4L4+GsraHDzmOagyciUn62NNYwdG2GeDx9RSzVRLg4FTwga4IXDM3yzCuD/NytHXz2PTdze2cT/+PZU2mHai5U1gpMvJoDVQXNwQuGnCGaBVfwEp0066uV4Il7bG6oYSiPD3qOnh/n9u1NePJc+1HWFyV4JXLwxBDGwIO7kwlegLhNDH3JJBxJNllRBU9EpNy0b6hhPmYZyaN6VawhmpA9wXvy8HmisTj/5Z078HgMX/5QL9GYTTtUM1nBKzTxag74GC1giGZwchZjFpdYyNfiEE19aCru0d5YzaUcTVauXJvlzbGwlkeQjJTglcjBvsvctq2JTQ2JG1+yxJ6t0cq0s9B5jdbBExEpOx3OUgmDeTRaKXaCN5EmwZucneevXniTB3dvZrvTln1bs59HH7iZH70xwtNLhmoGJ2epr66kpsAPJVv8VYUN0QxFaPb7qKwo7E+aZAVPQzTFTTo21DIwMsUfHnotYzfNl84l5t/duUPz7yQ9JXglcHo4xOnhqYXhmQCdLX48hqyNVmbmotRWVagcLyJShrYsrIWXO8GbnJmnYZXXwEuqr/EymSbB++uXLhCKRPnUu7qu2/6xu7Zze2cTX/z7U9fNHSp0DbykQodoDk/OFtSpM2mhgqchmuIij9zbxXt3beKJ58/yzi/9M//t28c4efnadfu8dG6cOl8lb9tcX6KrFLdTglcCC8Mz92xa2FbtrWBrU23WRivTczENzxQRKVNb8lwDKxqLE4pEi1Z5akwzRHN2PsbXf3KOu7tb2NPRcN1jC0M145bHnulbGKo5HCpsDbykJr+PselIxu6cSwVDkYLn+UGi+UuNt4LWZSSHIsWysb6a//PhW3nuc/fxsbu284OTV3joqz/hI0+8yI/eCGKt5ei5cfZt30CFPvCXDJTg3WDWWg72DXFHZ9Nb5iV0t9VlXew8HImqwYqISJmqq/ZSX12Zcy28ydnEfOxiz8FLTbC+99NLjIQiPHJvV9pjkkM1nzs9wtMvJ4ZqBicjBXe2hMRcuvmYXXiduQRDkYLn+UFiLbzvPHIXv3b3joKPFSm2m5pq+cLP3MILn383jz24k/7gFP/5yX/hPX/8Y/qDU1oeQbJSggdEopk7V66208NT9AeneKh3y1se624LcH5smvlYPO2xYVXwRETKWvuG2pxDNJPVtWImeLG4XZj3HYtb/uy5Afa0N7C/K/MflR+7azt3dDbxxWdPcWlihuAyK3gLa+HlMQ8vGoszOrW8Ch7Ari0NRRvqKrIaGmq8fOpdXTz/O/fzlZ/fS4XHYAzc09NS6ksTF1v3Cd4vP/ESn/6rV27Y+Q6euIzHwAO7Nr3lsZ62APMxy5tj6Re6Dc/F8PtUwRMRKVeJtfDyS/Aai5SYJBPHiXBiHtwPTl7h/FiYR+7tyrogeGKo5l6icctv/PUrzMcsG5cx/LHZnzgmn8XOx6bnsBZal5FIiqwlVZUefu7fd/D937qHo7/7H9jd3pD7IFm31n2C11bv4/jgtbzH+q+EtZZn+4a4c0dz2jH/PRsTnTQzNVqZdpqsiIhIeWpvrM45RDOZeBWzggcsDNP82nMDdLb4eW+aDyaX2tpcy2MP7uSnFyaAwhY5Tyqkgre4FIPm0cn6YIzRvFHJad0neHs7GhmdinBlMveikiv12lCIsyPT13XPTNXVmkzw0jdaCUc0RFNEpJy1b6ghFIlmXIcObswQzeR5jgyMcWLwGp985468Gzp89M5t3LkjsT7X8ubgJY4ZzaOTZnBhMXVV8EREktZ9gtfrdAM7fvFajj1X7mDfZSo8Ju3wTAC/r5L2xpqMa+GF56P41WRFRKRstTcm1mbLNkwzuYRBfbESPGfo5+TMPF97boDWOh8feEd73sd7PIav/MLb+fiBzmUNI9tQm6zg5ZHghRIJnip4IiKL1n2C97bN9VR6DCcGJ4p6HmstB08Msb+rmeZA5htRd1sg4xDNcCRW8IKxIiKydiSXSsg2TPNGVfB+0j/K82dG+cTdnVR7C7v3tDfW8IWfuQVfZeH3rKpKDw01Xsam8x+iqSFrIiKL1n2CV+2t4OZNdfRdKm4F7+TlSc6PhXloT/rhmUnJBC8Wf+ucwOm5qJqsiIiUsXZn8e3Bq+mbbQFMhOep8VYsK3nKRzLBe+roRep8lXz4jq1FOU82+S52HgxFaPZX4a1Y93/OiIgsULZAYpjmob4rWGuzdghbiYN9Q1R4TM5J6j1tASLROJeuzrC1uXZheyxumZ2Paw6eiEgZa/H7qPFW8Pt/f4qv/PA0rXU+2up8tNZV0xrw0Vrn4/jgRNGqdwABXyUVHkM0bvnlu7ZRX33jlxFo8fsYzaPJykhoVtU7EZEllOABvR2NfOvoRS6Mh9nW7F/1508OzzzQ3cIGf1XWfRc6aY6ErkvwZuYT6xEpwRMRKV8ej+Hrv7KPn16cYCQUIRiaZSQUoW8w8Xtybbp92zYU7RqMMdRXVzI9F+NXD2wv2nmyaQ5UZZyPnmp4MqIGKyIiSyjBA/Y4k8CPD14rSoL36qVJLoyH+Y37unPu291aB8CZ4Snu37lxYXs4EgWgVk1WRETK2v7uFvZ3p1/EeDoSZXQqkvPDwpW6bXsT3W0B2upKkzw1B6p48WzuCl4wNMvOTXU34IpERNYOZQvAzZvq8FV6OHFxgp/du2XVn//ZvstUegzv2bUx574NtV5a63xvabQSdj619ftUwRMRWa/8vsobMhf78Y/tK/o5smn2+7ganicai1OZYX5dLG4ZCUWWtRSDiEg506xkwFvh4ZYt9ZwoQqMVay2H+oa4u6eFxtr8PnHtbg28ZWjK9JwqeCIisj60OIudj4czN1oZm44Qt1oDT0RkqZwJnjHmJmPMPxtjXjPGnDTG/Jaz/cvGmNeNMSeMMd8zxjQW/WqLqLe9gVcvXUvbvXIlzo+FuTg+w7vflrt6l9SzMdFJ09rFa0lW8DQHT0REyl1yOaFsnTSTi5xrDTwRkevlU8GLAp+x1r4NuBP4dWPMLcAPgd3W2l7gNPD54l1m8fV2NBKei3F2JPek7kIc7h8F4EBXc97H9LQFmIpEGZ5cnH8wrTl4IiKyTjQ7cwzHp7MkeKHEGnhtquCJiFwnZ4JnrR2y1r7i/BwCXgParbX/aK2NOru9CHQU7zKLr7djsdHKajoyMMrmhmo6W/Jv3tLVluikeSYYWtg2ozl4IiKyTiQreNmWSlAFT0QkvYLm4BljtgPvAF5a8tDHge+v0jWVxI7WAP6qCvoGJ1btOeNxywsDY+zvailofb2etsVOmknJ1ti1XlXwRESkvCXn4KUbojk5O89TRy/w5OHzAFoHT0RkibyzBWNMAHgG+K/W2smU7b9HYhjnNzMc90ngkwBbt25d0cUWU4XHsKu9YVUreKeGJrkanudAd/7DMyFxY2us9dKfMlw0nGyyogqeiIiUufpqL5Uew9h0okoXjcV5vn+U775yiX88eYVINM6OVj9ffHgXvkrdF0VEUuWV4BljvCSSu29aa7+bsv1XgP8IvNumdgRJYa19HHgcYN++favbwWSV7e1o4BsvvMlcNE5V5cobjB4ZcObfZVjPKBNjDN2tAfqHUxM8Z4im5uCJiEiZ83gMTf4qXr00yR8cPMXfHrvMSChCY62XX7ztJj54awd7OxoKGh0jIrJe5MwWTOJ/z68Dr1lr/yhl+wPAo8C7rLXh4l3ijdPb0chc9Bynh0PsdhY/X4nD/WN0tfqX1cK5Z2OAH5wcXvg9HIliDFR7tbKFiIiUv5aAj+dOj3C4f5T7d7bxwVs7uG9nqyp2IiI55FMOOgB8FOgzxhxztv0u8FXAB/zQ+QTtRWvtp4pxkTdKstHKicFrK07w5qJxjp4b5+f3La/3THdbHd86epGxqQjNAR/TczFqvRX6tFJERNaFz79vJ+dHp3modwtN/vzWkRURkTwSPGvtT4B0WcWh1b+c0traVEtDjZe+SxPAyuYLHrs4wcx8jP1dhQ3PTOpe6KQ5RXPAR3guRq1PwzNFRGR9uKenlXt6Wkt9GSIia47G+6UwxtDb0cDxiytvtHK4fxSPgbt2FNZgJanHSfD6g4l5eOG5KH4tci4iIiIiIlkowVuit6OBN4ZDzM7HVvQ8RwZG2d3eQEOtd1nHb26oxl9VsZDgTUdi1KjBioiIiIiIZKEEb4k97Y3E4pZTQ5O5d85gOhLlpxcmlj08E5xOmm2BhcXOVcETEREREZFclOAtsfcmp9HKxYllP8fR8+NE47bg9e+W6m6rSxmiqTl4IiIiIiKSnRK8JTbVV9Na5+PEpeXPwzvSP0pVhYd925pWdC3dbQGGJyNMzs4TnotS61UFT0REREREMlOCt4Qxht72Bk4MLj/BO9w/xq3bGqlZ4ZDK1EYr05EYtT4leCIiIiIikpkSvDR6OxoZGJliKhIt+Njx6TlODU1yYAXz75J6NjoJ3vAUM/Mx/GqyIiIiIiIiWSjBS6O3owFr4dVlDNN8YWAMgP3dK0/wOjbUUlXp4UwwxHQkSq2arIiIiIiISBZK8NLY0+E0WhmcKPjYwwOjBHyV7HWeYyUqPIau1gBvDE8RicapVQVPRERERESyUIKXRkvAR3tjzbLm4R3pH+WOziYqK1bnre1uCywkmn7NwRMRERERkSyU4GXQ21F4o5VLEzOcHwuvyvDMpJ62ABPheQBV8EREREREJCsleBn0djRyYTzMRHgu72MO948CrHj9u1TJTpqA5uCJiIiIiEhWSvAy6F2Yh5d/Fe9I/ygtgSpu3li3atfRrQRPRERERETypAQvg93thTVasdZyeGCMu7paMMas2nVsa/ZT6Uk8n9+nIZoiIiIiIpKZErwMGmq8dLb4867g9QenGAlFONC1esMzAaoqPWxv8QOseOF0EREREREpb0rwsiik0cri/LvVa7CS1N2aGKaphc5FRERERCQbJXhZ7Glv4MrkLMHJ2Zz7Hh4Y46amGm5qql316+jZmEjwNAdPRERERESyUYKXxd6bGoHcjVaisTgvnh3jQNfqV+8A3rtrE/fd3MrG+uqiPL+IiIiIiJQHJXhZ7NpSj8fkbrTy6uVJQrPRVV3/LtXu9gae/NXbqapUuEREREREJDNlDFnUVlXS01bHiUvZK3jJ+Xf7V7nBioiIiIiISCGU4OXQ29HAv56/yp/8v9Mc6huiPxhiPha/bp8jA6Ps3FRHS8BXoqsUEREREREBtWXM4f3vaOfo+XH+9z+dwdrENm+FobPFT8/GOv5dWx0vn7/KR+7YVtoLFRERERGRdU8JXg4Hult47nP3MTMXY2BkitPDIU4PT9EfDNE3eI1DfUNYC/fvbCv1pYqIiIiIyDqnBC9PNVUV7G5vYHd7w3XbZ+ZijIQibG1e/eURRERERERECqE5eCtUU1Wh5E5ERERERFxBCZ6IiIiIiEiZUIInIiIiIiJSJpTgiYiIiIiIlAkleCIiIiIiImVCCZ6IiIiIiEiZUIInIiIiIiJSJpTgiYiIiIiIlAkleCIiIiIiImVCCZ6IiIiIiEiZUIInIiIiIiJSJoy19sadzJgR4M0bdsL8tQCjpb4IARQLN1Es3EXxcA/Fwj0UC/dQLNxF8XCPdLHYZq1tLdYJb2iC51bGmJettftKfR2iWLiJYuEuiod7KBbuoVi4h2LhLoqHe5QiFhqiKSIiIiIiUiaU4ImIiIiIiJQJJXgJj5f6AmSBYuEeioW7KB7uoVi4h2LhHoqFuyge7nHDY6E5eCIiIiIiImVCFTwREREREZEysaYSPGPMA8aYN4wx/caYx1K2f9sYc8z5Om+MOZbh+CZjzA+NMWec7xuc7R9JOf6YMSZujHl7muO/6Zz/VWPMnxtjvM52Y4z5qnNdJ4wxtxbnHXAXF8djpzHmBWNMxBjz2eK8endxcSw+4vybOGGMOWKM2Vucd8A9XByLh504HDPGvGyMubs474B7FDEWXmPMN4wxfcaY14wxn89wfKcx5iXn+G8bY6qc7bpnuCseumcsbi91LHTPWNxe6ljonrG4vaSxSHn8NmNMzBjzoZwvxlq7Jr6ACmAA2AFUAceBW9Ls9xXgCxme40vAY87PjwH/M80+e4CzGY5/H2Ccr28Bj6Rs/76z/U7gpVK/X+s8Hm3AbcAfAJ8t9Xu1zmOxH9jg/Pxguf/bcHksAiwOy+8FXi/1+7VWYwF8GHjK+bkWOA9sT3P83wC/5Pz8Nd0zXBsP3TPcEwvdM9wTC90zXBKLlOv7/8Ah4EO5Xs9aquDdDvRba89aa+eAp4CHU3cwxhjgF0j8UZPOw8A3nJ+/Abw/zT7/KdPx1tpD1gEcBTpSnvcvnYdeBBqNMZvzfmVrk2vjYa0NWmv/BZgv6BWtXW6OxRFr7VVntxdZ/DdTrtwciylnG4AfKPcJ2MWMhQX8xphKoAaYAybTPPf9wHfSHK97hovioXuGq2Khe4Z7YqF7hkti4fhN4BkgmM+LWUsJXjtwMeX3QWdbqnuAYWvtmQzPsdFaOwTgfG9Ls88vkjlwQKLUCnwU+IcCrq3cuDke681aicUnSFQtypmrY2GM+YAx5nXgIPDxbMeXgWLG4jvANDAEXAD+l7V2fMmxzcCEtTaa5vy6Z7grHuvNWomF7hkJJYuF7hnuiIUxph34AImqXl7WUoJn0mxb+mlCxk+18zqBMXcAYWvtqzl2/VPgx9ba5wu4tnLj5nisN66PhTHmPhI360eXew1rhKtjYa39nrV2J4lPBb+43GtYI4oZi9uBGLAF6AQ+Y4zZUcD5dc9IcEs81hvXx0L3jOuULBa6Z7gmFn8CPGqtjeV7wrWU4A0CN6X83gFcTv7ilD0/CHw7ZduTzoTIQ86m4eQwGOf70jLnL5H7U/H/DrQCv53vtZUpN8djvXF1LIwxvcATwMPW2rECXtda5OpYJFlrfwx0GWNa8nlRa1QxY/Fh4B+stfPW2iBwGNi35PyjJIZeVqY5v+4Z7orHeuPqWOie4Z5YJOmeUfJY7AOeMsacBz4E/Kkx5v1ZX411wcTGfL6ASuAsicw3OflxV8rjDwDP5XiOL3P95McvpTzmcYK7I8vxvwYcAWqWbH+I6yfMHy31+7We45Hy+O+zPibMuzYWwFagH9hf6vdJsaCbxQnztwKXkr+X41cxY0GiqvCk83++HzgF9KY5/mmunzD/aedn3TNcFI+Ux3XPKHEs0D3DTbHQPcMlsViyz1+QR5OVkr+hBb757wNOk+hy83tpXvCnchzfDPwTcMb53pTy2L3AizmOjzrnPuZ8fcHZboD/6zzWB+wr9Xu1zuOxicQfwZPAhPNzfanfr3UaiyeAqynbXy71e7WOY/EocNLZ9gJwd6nfq7UaCxLd5Z523s9TwOcyHL+DRKObfmd/n7Nd9wx3xUP3DPfEQvcM98RC9wyXxCLNdeRM8JKZuYiIiIiIiKxxa2kOnoiIiIiIiGShBE9ERERERKRMKMETEREREREpE0rwREREREREyoQSPBERERERkTKhBE9ERERERKRMKMETEREREREpE0rwREREREREysS/Acrmgpr1PKoiAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3AAAAE/CAYAAAAHeyFHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADABElEQVR4nOy9d5gkV3X+/97OOUxOu7M5J+0qCyStBCJIKIEAWyaZbDLYgMF8Jf9som1MNCKZKBsrgCSEACFYgUBpFVa72pxndnLqnLvv74/qW9Mz06GquzrNnM/z7LO7Pd3V1TM9Xffc95z3ZZxzEARBEARBEARBEI2Prt4nQBAEQRAEQRAEQSiDCjiCIAiCIAiCIIgmgQo4giAIgiAIgiCIJoEKOIIgCIIgCIIgiCaBCjiCIAiCIAiCIIgmgQo4giAIgiAIgiCIJoEKOIIgCIIgCIIgiCaBCjiCIIgmhTEWyvmTYYxFc/5/a73PrxwYY2cYYy+r93kUgzH2KGPsHVU69jrG2P2MsQnG2DRj7LeMsfXz7rOKMfYgYyzIGJtkjH0p52uheX/SjLGv53z9asbYEcZYhDG2hzHWn/M1xhj7ImNsKvvnS4wxVo3XSRAEQZQPFXAEQRBNCufcIf4AGADwmpzb7qz3+c2HMWZYDM9RZTwAHgCwHkAngKcB3C++yBgzAfgdgD8A6ALQB+Cn4uvz3hOdAKIA7s4+tg3AzwF8BkALgGcA/F/Oc78LwI0AtgPYBuA6AO/W/iUSBEEQlUAFHEEQxCKDMaZjjH2SMXYyq6TcxRhryX5tBWOMM8bexhgbZIzNMMbewxi7gDG2nzHmY4x9I+dYb2WM/YUx9nXGmD+r3lyd83U3Y+z7jLERxtgQY+xfGWP6eY/9T8bYNIDbGWOrGWN/yJ7XJGPsTsaYJ3v/nwBYDuCXWfXo44yxKxlj5+a9PlmlY4zdzhi7hzH2U8ZYAMBbS5zTGsbYH7OvZZIxllvA5D6HJXvMqez3ZC9jrJMx9lkALwXwjew5fiN7/w2Msd9lVbOjjLHX5xzrh4yxO7JfD2afvz/f83LOn+acf59zPs05TwL4TwDrGWOt2bu8FcAw5/zLnPMw5zzGOd9f4K3wOgDjAB7L/v9mAAc553dzzmMAbgewnTG2Ifv1twD4D875Oc75EID/yD4fQRAE0UBQAUcQBLH4+CAkJeUKAD0AZgB8c959LgKwFsAbAHwFwKcBvAzAZgCvZ4xdMe++pwC0AbgNwM9FQQjgRwBSANYAOA/ANQDekeexHQA+C4AB+Hz2vDYCWAapkADn/E2YqyR+Ccq4AcA9kNSrO0uc078AeBiAF5J69XXk5y0A3NnzawXwHgBRzvmnIRVE78+e4/sZY3ZIqtj/ZF/nXwH4L8bY5pzj3Zp97jYA+7LnqYTLAYxyzqey/78YwBnG2K+zBeijjLGtRV7DjznnPPv/zQBeEF/knIcBnMzevuDr2X/nvgaCIAiiAaACjiAIYvHxbgCfziopcUgF0uvmtRf+S1a9eRhAGMD/cs7Hs8rLY5AKH8E4gK9wzpOc8/8DcBTAtYyxTgCvAvDhrBo0DkkxemPOY4c551/nnKc451HO+QnO+e8453HO+QSAL0MqNCvhCc75fZzzDABXiXNKAugH0JN9/X8ucMwkpMJtDec8zTl/lnMeKHDf6wCc4Zz/IPs6nwNwLyQFTPArzvmfsj+PTwO4hDG2rNiLYoz1QSq8P5pzc1/2tXwNUhH8KwD3Z1srcx+7HNL39Uc5NzsA+Oc9jR+As8DX/QAcNAdHEATRWDT7rABBEASxkH4Av2CMZXJuS0OaiRKM5fw7muf/jpz/D+WoOABwFlLx0A/ACGAkZ42vAzCYc9/cf4Mx1gGp+HgppMJBB0khrITc5yh1Th+HpIQ9zRibgdQy+N95jvkTSOrbz7Itnj+FVBQn89y3H8BFjDFfzm2G7DEWnCPnPJRtKe2Zd+4yjLF2SErhf3HO/zfnS1EAf+ac/zp7v38H8E+Q1Mxc9ezN2fudzrktBKnAzcUFIFjg6y4AoXk/e4IgCKLOkAJHEASx+BgE8CrOuSfnjyWrrpVD7zwVZjmA4ezzxAG05TyPi3Oe23Y3f/H/+ext2zjnLgB/A6mtstD9wwBs4j/ZWbb2effJfUzRc+Kcj3LO38k574GkVP4XY2zN/BecVRv/mXO+CcClkFS2Nxc4x0EAf5z3/XZwzt+bcx9ZbWOMOSCZiAzPf97s172QircHOOefnffl/XmePx9vxlz1DQAOQjIoEc9jB7A6e/uCr2f/fRAEQRBEQ0EFHEEQxOLjDgCfFUYZjLF2xtgNFRyvA8AHGWNGxtgtkNSehzjnI5AKjf9gjLmy5imr583PzccJSenxMcZ6AfzDvK+PAViV8/9jACyMsWsZY0ZIapO50MFLnRNj7JZsayIgKX8ckjo5B8bYbsbY1mzBGIDUUinuN/8cHwSwjjH2puz3yMgkU5iNOfd5NWPsJdlWx38B8BTnfIH6xhhzAfgtgL9wzj+Z5yX+FMDFjLGXZc/twwAmARzOOcalAHqRdZ/M4RcAtjDGXssYswD4fwD2c86PZL/+YwAfZYz1MsZ6AHwMwA/znANBEARRR6iAIwiCWHx8FZIV/cOMsSCAJyGZiZTLU5AMTyYhGZG8LsdU480ATAAOQSqI7gHQXeRY/wxgJ6T5ql9BsrXP5fMA/inr/Pj3nHM/gL8D8D0AQ5AUuXMoTrFzugDAU4yxEKTv0YfmtRkKurKPC0Aqjv6IWbv+r0KaKZxhjH2Ncx6EZJTyRkiq2iiAL2Juofk/kAxgpgHsgmRqko+bsuf4NjY3z205AHDOj0JSLe/IvrYbAFzPOU/kHOMtAH6ePS+Z7MzhayH9DGcgvSdy5xW/DeCXAA4AeBHSz+fbBc6TIAiCqBOMWtsJgiCIQjDG3grgHZzzl9T7XJoVxtgPAZzjnP9Tvc+FIAiCaH5IgSMIgiAIgiAIgmgSqIAjCIIgCIIgCIJoEqiFkiAIgiAIgiAIokkgBY4gCIIgCIIgCKJJoAKOIAiCIAiCIAiiSTDU8sna2tr4ihUravmUBEEQBEEQBEEQDcOzzz47yTlvL/fxNS3gVqxYgWeeeaaWT0kQBEEQBEEQBNEwMMbOVvJ4aqEkCIIgCIIgCIJoEqiAIwiCIAiCIAiCaBKogCMIgiAIgiAIgmgSajoDRxAEQRAEQRCNQjKZxLlz5xCLxep9KsQixGKxoK+vD0ajUdPjUgFHEARBEARBLEnOnTsHp9OJFStWgDFW79MhFhGcc0xNTeHcuXNYuXKlpsemFkqCIAiCIAhiSRKLxdDa2krFG6E5jDG0trZWRd2lAo4gCIIgCIJYslDxRlSLar23qIAjCIIgCIIgiDrx2c9+Fps3b8a2bduwY8cOPPXUUwCAd7zjHTh06JAmz7FixQpMTk4Wvc/nPvc51cf94Q9/iPe///1zbvvBD36AHTt2YMeOHTCZTNi6dSt27NiBT37yk6qPXwu+8pWvIBKJ1Ps0VEEzcARBEARBEARRB5544gk8+OCDeO6552A2mzE5OYlEIgEA+N73vlfTc/nc5z6HT33qUxUf521vexve9ra3AZAKxz179qCtra3i45YL5xycc+h0+XWrr3zlK/ibv/kb2Gw2xcdMpVIwGOpXRpECRyCZzmDPkXFwzut9KgRBEARBEEuGkZERtLW1wWw2AwDa2trQ09MDALjyyivxzDPPAAAcDgc+8YlPYNeuXXjZy16Gp59+GldeeSVWrVqFBx54AMBCNey6667Do48+uuA5b7zxRuzatQubN2/Gd77zHQDAJz/5SUSjUezYsQO33norAOCnP/0pLrzwQuzYsQPvfve7kU6nAUgK27p163DFFVfgL3/5i+LX+m//9m+44IILsG3bNtx2220AgDNnzmDDhg14xzvegS1btuDWW2/FI488gssuuwxr167F008/DQC4/fbb8aY3vQlXXXUV1q5di+9+97slj7tx40b83d/9HXbu3InBwUG8973vxfnnn4/NmzfL9/va176G4eFh7N69G7t375a/14J77rkHb33rWwEAb33rW/HRj34Uu3fvxic+8QmcPHkSr3zlK7Fr1y689KUvxZEjRxR/LypGVKWF/gBYBmAPgMMADgL4UM7XPgDgaPb2L5U61q5duzjReHxzz3He/4kH+fMDM/U+FYIgCIIgiJpx6NChuj5/MBjk27dv52vXruXvfe97+aOPPip/7YorruB79+7lnHMOgD/00EOcc85vvPFG/vKXv5wnEgm+b98+vn37ds455z/4wQ/4+973Pvnx1157Ld+zZw/nnPP+/n4+MTHBOed8amqKc855JBLhmzdv5pOTk5xzzu12u/zYQ4cO8euuu44nEgnOOefvfe97+Y9+9CM+PDzMly1bxsfHx3k8HueXXnrpnOecj3je3/72t/yd73wnz2QyPJ1O82uvvZb/8Y9/5KdPn+Z6vZ7v37+fp9NpvnPnTv62t72NZzIZft999/EbbriBc875bbfdxrdt28YjkQifmJjgfX19fGhoqOhxGWP8iSeekM9FvO5UKsWvuOIK/sILLyz43sz/Ptx99938LW95C+ec87e85S382muv5alUinPO+VVXXcWPHTvGOef8ySef5Lt37877Pcj3HgPwDC9RNxX7o0T7SwH4GOf8OcaYE8CzjLHfAegEcAOAbZzzOGOsQ+PakqgB/mgS3/7jKQDA2akwdizz1PeECIIgCIIg6sA///IgDg0HND3mph4XbnvN5oJfdzgcePbZZ/HYY49hz549eMMb3oAvfOELsuojMJlMeOUrXwkA2Lp1K8xmM4xGI7Zu3YozZ86oOqevfe1r+MUvfgEAGBwcxPHjx9Ha2jrnPr///e/x7LPP4oILLgAARKNRdHR04KmnnsKVV16J9vZ2AMAb3vAGHDt2rORzPvzww3j44Ydx3nnnAQBCoRCOHz+O5cuXY+XKldi6dSsAYPPmzbj66qvBGFvw2m644QZYrVZYrVbs3r0bTz/9NP785z8XPG5/fz8uvvhi+fF33XUXvvOd7yCVSmFkZASHDh3Ctm3bVH3vbrnlFuj1eoRCITz++OO45ZZb5K/F43FVx6qEkgUc53wEwEj230HG2GEAvQDeCeALnPN49mvj1TxRojp8/7FT8EeTAIBzM9E6nw1BEARBEMTSQq/X48orr8SVV16JrVu34kc/+tGCAs5oNMqOhjqdTm651Ol0SKVSAACDwYBMJiM/Jp99/aOPPopHHnkETzzxBGw2G6688sq89+Oc4y1veQs+//nPz7n9vvvuK8tZkXOOf/zHf8S73/3uObefOXNGfi3FXhuw0NGRMVb0uHa7Xf7/6dOn8e///u/Yu3cvvF4v3vrWtxa09899nvn3EcfMZDLweDzYt29fqZdeFVRN3zHGVgA4D8BTAP4NwEsZY58FEAPw95zzvXke8y4A7wKA5cuXV3q+hIZMhxP4/p9P49qt3Xji1BSGfFTAEQRBEASxNCmmlFWLo0ePQqfTYe3atQCAffv2ob+/v6xjrVixAv/1X/+FTCaDoaEheX4sF7/fD6/XC5vNhiNHjuDJJ5+Uv2Y0GpFMJmE0GnH11VfjhhtuwEc+8hF0dHRgenoawWAQF110ET70oQ9hamoKLpcLd999N7Zv317y3F7xilfgM5/5DG699VY4HA4MDQ3BaDSqen33338//vEf/xHhcBiPPvoovvCFL8BqtSo6biAQgN1uh9vtxtjYGH7961/jyiuvBAA4nU4Eg0HZaKWzsxOHDx/G+vXr8Ytf/AJOp3PB8VwuF1auXIm7774bt9xyCzjn2L9/v6LvhRYoLuAYYw4A9wL4MOc8wBgzAPACuBjABQDuYoytyvZ1ynDOvwPgOwBw/vnnk0tGA3HHH08imkzjIy9fi8G7IqTAEQRBEARB1JBQKIQPfOAD8Pl8MBgMWLNmjWwsopbLLrtMbkfcsmULdu7cueA+r3zlK3HHHXdg27ZtWL9+/ZwWw3e9613Ytm0bdu7ciTvvvBP/+q//imuuuQaZTAZGoxHf/OY3cfHFF+P222/HJZdcgu7ubuzcuVM2NynGNddcg8OHD+OSSy4BILWO/vSnP4Ver1f8+i688EJce+21GBgYwGc+8xn09PSgp6dH0XG3b9+O8847D5s3b8aqVatw2WWXzXndr3rVq9Dd3Y09e/bgC1/4Aq677josW7YMW7ZsQSgUyns+d955J9773vfiX//1X5FMJvHGN76xZgUcm1dv5b8TY0YADwL4Lef8y9nbfgOphfLR7P9PAriYcz5R6Djnn38+F246RH0ZD8Tw0i/twbXbuvHl1+/A3935LI6MBvGHj11Z71MjCIIgCIKoCYcPH8bGjRvrfRpECW6//XY4HA78/d//fb1PRTX53mOMsWc55+eXe8ySMQJMagT9PoDDonjLch+Aq7L3WQfABKB4QiDRMHxjzwmkMxwfvnodAKDXY8XQTJSiBAiCIAiCIAiigVHSQnkZgDcBOMAY25e97VMA/hvAfzPGXgSQAPCW+e2TRGNybiaC/316AK+/YBmWt0qhhX1eG+KpDCZCcXQ4LXU+Q4IgCIIgCIKQuP322+t9Cg2FEhfKPwMoZDfzN9qeDlELvvb742CM4QNXrZFv6/NaAQBDM1Eq4AiCIAiCIAiiQSnZQkksLk5NhHDvc0O49aLl6HZb5dv7vJISR0YmBEEQBEEQBNG4UAG3xPjKI8dh0uvwd1eumXN7b1aBowKOIAiCIAiCIBoXKuCWEEdGA/jl/mG89bIVaHea53zNYTbAYzPi3EykTmdHEARBEARBEEQpqIBbQnz54WNwmAx49+Wr8n69z2ulMG+CIAiCIIgaotfrsWPHDmzZsgW33HILIpHyN9Pf+ta34p577gEAvOMd78ChQ4cK3vfRRx/F448/Lv//jjvuwI9//OOyn1tw5swZbNmyZc5tt99+O/793/9d1XG0Op/FiOIgb6K52X/Oh4cPjeEjL1sHj82U9z59HhtOTOQPKyQIgiAIgiC0x2q1Yt++fQCAW2+9FXfccQc++tGPyl9Pp9OqAq8F3/ve94p+/dFHH4XD4cCll14KAHjPe96j+jmqRSqVaqjzaTRIgVsi/PvDx+C1GfG3L1lR8D59XivOzUQoC44gCIIgCGI+X/oSsGfP3Nv27JFu14iXvvSlOHHiBB599FHs3r0bf/3Xf42tW7cinU7jH/7hH3DBBRdg27Zt+Pa3vw0A4Jzj/e9/PzZt2oRrr70W4+Pj8rGuvPJKPPPMMwCA3/zmN9i5cye2b9+Oq6++GmfOnMEdd9yB//zP/8SOHTvw2GOPzVHJ9u3bh4svvhjbtm3DTTfdhJmZGfmYn/jEJ3DhhRdi3bp1eOyxx1S/xmLH/tSnPoUrrrgCX/3qV+XzGR4exo4dO+Q/er0eZ8+exdmzZ3H11Vdj27ZtuPrqqzEwMABAUiE/+MEP4tJLL8WqVatkRXIxQQXcEmDvmWn86dgE3nPFajgtxoL36/VaEUtmMBVO1PDsCIIgCIIgmoALLgBe//rZIm7PHun/F1ygyeFTqRR+/etfY+vWrQCAp59+Gp/97Gdx6NAhfP/734fb7cbevXuxd+9efPe738Xp06fxi1/8AkePHsWBAwfw3e9+d05LpGBiYgLvfOc7ce+99+KFF17A3XffjRUrVuA973kPPvKRj2Dfvn146UtfOucxb37zm/HFL34R+/fvx9atW/HP//zPc87z6aefxle+8pU5t+dy8uTJOUXXHXfcoejYPp8Pf/zjH/Gxj31Mvq2npwf79u3Dvn378M53vhOvfe1r0d/fj/e///1485vfjP379+PWW2/FBz/4QfkxIyMj+POf/4wHH3wQn/zkJ1X+JBofaqFcAjx0YAQWow5vvmRF0fvlRgm0OcxF70sQBEEQBLGo+PCHgWwrY0F6eoBXvALo7gZGRoCNG4F//mfpTz527AC+8pWih4xGo9ixYwcASYF7+9vfjscffxwXXnghVq5cCQB4+OGHsX//fllN8vv9OH78OP70pz/hr/7qr6DX69HT04OrrrpqwfGffPJJXH755fKxWlpaip6P3++Hz+fDFVdcAQB4y1vegltuuUX++s033wwA2LVrF86cOZP3GKtXr5bbQoHZIO5Sx37DG95Q8Lz+8pe/4Hvf+56s+j3xxBP4+c9/DgB405vehI9//OPyfW+88UbodDps2rQJY2NjRV9vM0IF3BLg4HAAG7tdsJqK90/nhnnvWOapwZkRBEEQBEE0EV6vVLwNDADLl0v/r5DcGbhc7Ha7/G/OOb7+9a/jFa94xZz7PPTQQ2CMFT0+57zkfdRgNkub/Hq9HqlUSrPjAnNfcy4jIyN4+9vfjgceeAAOhyPvfXJfozhHAItyNIhaKBc5mQzH4eEANve4St53NguOogQIgiAIglhifOUrwKOPFv9z221AJAJ85jPS37fdVvz+JdQ3pbziFa/At771LSSTSQDAsWPHEA6Hcfnll+NnP/sZ0uk0RkZGsGf+jB6ASy65BH/84x9x+vRpAMD09DQAwOl0IhgMLri/2+2G1+uVla6f/OQnsmJWKeUcO5lM4vWvfz2++MUvYt26dfLtl156KX72s58BAO6880685CUv0eQcmwFS4BY552aiCMZT2NzjLnlfl8UIt9VIYd4EQRAEQRDzETNvd90F7N4t/cn9fxV5xzvegTNnzmDnzp3gnKO9vR333XcfbrrpJvzhD3/A1q1bsW7durzFUHt7O77zne/g5ptvRiaTQUdHB373u9/hNa95DV73utfh/vvvx9e//vU5j/nRj36E97znPYhEIli1ahV+8IMfaPZa1B778ccfx969e3HbbbfhtttuAyApj1/72tfwt3/7t/i3f/s3tLe3a3qOjQ6rpax4/vnnc+GGQ9SGXx8YwXvvfA73v+8ybFfQFvnqrz6GTpcZP3jbhdU/OYIgCIIgiDpy+PBhbNy4Udmdv/QlybAkt1jbswfYuxfImb8iiFzyvccYY89yzs8v95ikwC1yDg4HoNcxrO9yKrp/n9eKM1PhKp8VQRAEQRBEk5GvSBNKHEHUEJqBW+QcHPZjTbsDFqOyAMg+rw3nZqKLcuCTIAiCIAiCIJodKuAWOQcVGpgI+rxWRBJpzESSVTwrgiAIgiAIgiDKgQq4RcxEMI7xYBybVBRw5ERJEARBEMRSgrqOiGpRrfcWFXCLmEMjAQBQ5EApyM2CIwiCIAhi6ZBMZ5ZcMWOxWDA1NbXkXjdRfTjnmJqagsVi0fzYZGKyiDk47AcAbOpW00JpAwCKEqgDmQzHN/acwBsvXIYOp/a/7ARBEARRiFQ6g+u/8RdcvKoFt71mc71Pp2b09fXh3LlzmJiYqPepEIsQi8WCvr4+zY9LBdwi5uBwAH1eK9w2o+LHuK1GOC0GaqGsA6cmQ/jy747BYzPizZesqPfpEETDc/czg3j06AS+eevOep8KQTQ9D+4fweGRALwq1gyLAaPRiJUrV9b7NAhCFdRCuYg5rNLARCCcKInaMh6MAwAmQ4k6n0l9OTEewrNnZ+p9GkQT8Ivnh/DQiyNIpjP1PhWCaGrSGY6v/eE4AGl+niCIxoYKuEVKOJ7C6amwqvk3Qa/HSgVcHRAXzanQ0r54fvE3R/AP97xQ79MgGpx0huOFQR84n938IAiiPH51YASnJsLo9Vjp94kgmgAq4BYph0cC4BxlKnBWDPkoC67WzBZwS1uBG5yOYDq8tL8HRGlOjIcQTqQBACM+2nAiiHLJZDi+/vvjWNfpwC3n98EfTSKeStf7tAiCKAIVcIuUg8OSA6WaCAFBn9eKUDwFf5Sy4GqJXMCFl/bu59BMFP5oEpkMbSAQhXl+YLbNdtgfq+OZEERz8+sXR3F8PIQPXLUWXS7JQGupt/ITRKNDBdwi5eCwHy12k/xhrAZyoqwPpMAB/mgSwXgKnAOBGG0gEIV5fsAHu0kPgBQ4giiXTIbja78/jtXtdrx6azfanWYANAdHEI0OFXCLlEMjkoEJY0z1Y/sozLsuTISEicnSvXDm5g/6IlTAEYXZN+jDBStb4DQbMEIKHEGUxcOHRnF0LIgPXr0Weh2TC7jxAP1OEUQjQwXcIiSZzuDYaKis9kkgt4DTblf74YOj+N2hMc2OtxgZD0iFWyCWQiK1NF31cjcNfNTCSxQgGEvi2HgQ5y3zosttwYifFDiCUEsmw/HV35/AqjY7rtvWAwByBunEEt5IJIhmgAq4RcjxsRAS6UxZDpSAlAXnMBs0LeC+secEvvr7Y5odbzEyEYrDpJd+JZeqiceQL1eBW5rfA6I0+8/5wTlw3nIPuj1WUuAIogweOTyGwyMBvP+qNdDrpG6dVocJALVQEkSjQwXcIuTgsB8AsKm7PAWOMYY+r7ZRAlOhBEZ8tMgqRDKdwXQ4gTUdDgBLt42SWigJJQgDk+3LPOhxWzBMny0EoQrOOb76++NY0WrD9dt75NuNeh1a7CaKEiCIBocKuEXIoZEArEY9VrbZyz6GVMBpNwM3FY5jKpxALEnWxPkQxiUbs0X3ki3gfFF4bUYApMARhdk36MPqdjvcViO63VZMhuJLtu2YIMrhD0fGcXA4gPftXgODfu5SsN1hJgWOIBocKuAWIQeHA9jY7ZRbIsqh12Od085WCZFECrGktLgaJre4vIwHJQVhY7cTwNJ1ohzyReXZTZqBI/LBOcfzAz6ct9wLAOh2SzM7Y2S6QBCKEOrbshYrbjyvd8HXO1xUwBFEo0MF3CIjk+E4PBwoe/5N0Oe1IRjTJgsutxihVqf8iIvlhi6peFmqWXDnZqLob7XDaTFQCyWRl8HpKKbCCZy33AMA6PZIBRxtDhGEMh49NoH95/x4/+41MOoXLgNJgSOIxocKuEXG4EwEwXgKm8t0oBRoGSUwFc4t4GiRlQ9xsVzZbofJoFuSClwkkcJ0OIFejxUem7GpWyhPT4bx+8PkuloNnh+U5t92LPMAALrd0mcVGZkQRGk45/jqI8fR67HipvP68t6n3SkVcJzzGp8dQRBKoQJukXFwOAAAZUcICLQM857OUZO0astcbIiB8TaHCe0OMyaXYAEnivs+rxUeq6mpWyg//YsD+PDP9tX7NBYlzw/4YDXqsb5TajcWLZRUwBFEaR47Pol9gz68b/camAz5l4DtTjMS6QwC0VSNz44gCKVQAbfIODQcgF7HsC67uCmXXg2z4ISapGOkwBViIhiHx2aE2aBHq8O0JFsoxXttVoFrzgLu9GQYj5+cQjCeItOeKvD8oA/b+tyy8YLdbIDLYqAsOIIoAeccX/v9cfS4LXjdrvzqGwA5zHsiRJsiBNGoUAG3yDg47MfaDgcsRn1Fx/HajLCZ9HNs3ctFZJqtbndgmBZZeZkIxtHukC6arXbTkmyhFOpsr9cKj83UtC2UP3t6QP53sxahjUosmcahYb9sYCLo8VhpvpYgSnBkNIhnzs7gnZevKqi+AbMF3Hhg6W0kEkSzQAXcIuPgcKDi9kkgNwuu8hm46XACJr0O6zqdtMgqwEQojg5XtoBzmDG1BGMEhmaiMOgYOpwWeKzGpmyhjKfSuPvZc3CaDQCAmSYtQhuVQyMBJNNcnn8TdLstpMARRAnu2zcEg47hhh0LnSdz6XBKbckTS/A6RBDNAhVwi4iJYBzjwXjFDpSCPq9NmxbKcAKtDhN6vVI0AQ1GL2Q8GJtV4BwmTIYTS+77dG4mih6PFXodg8dmhD+aRCbTXN+D3x4cw3Q4gTdd0g8AmAlTAaclzw/4AEB2oBR0e6wYpRk4gihIJsPxy33DuHxdO1rspqL3lVsoyYmSIBoWKuAWEYdGsgYm3ZUrcIB2Yd5ToTha7Cb0uC1IpDJzXCkJaS5hIhiXL5ptdjMSqQyC8aU1QD7ki6LXI81eemwmcA4EYs2lwv3PU2exrMWK63f0AACmSYHTlOcHZtDrsaLTZZlze7fLgqlwgmYOCaIAe89MY9gfww3Zz6ZiuCwGmAw6KuAIooGhAm4RcXDYD6ByB0pBr8eKQCxV8SJ6OpyQCrjs4pyMTOYSiktB56KAa3VIu6NLbQ5uaCYqm+d4rEYAzTVDdnIihCdPTeONFyxHq136WZICpy3PD/iwY576BkgKHABS4QiiAPe/MAyrUY+Xb+oseV/GGNodZtkdmSCIxoMKuEXEweEAlrVY4c4ufitFRAlUamQyFU6glQq4gohdTjF30JptpVxKc3CJVAZjwViOApct4JpoDu5nTw/AoGO45fw++fynw81z/o3OeDCGIV8U582bfwOAnmyUAJkkEcRCEqkMHjowgms2d8JmMih6TIeLwrwJopGhAm4RcWg4gM3d2sy/Ablh3pUtiiQFziwvzofIyGQOYpdTVuCy8wlLKQtu1B8D57PxFR6b9D1oFifKWDKNe549h5dv6kSH0wKjXgeXxUAmJhqyr8D8G0AKHEEU40/HJuCLJHFjCfOSXNodVMAtdn75wjDCS2xUYzFBBdwiIRRP4fRkGJs1ap8Ecgu48ufgYsk0Iok0Wh0meGxGWI16UuDmMTGvgGsTCtwSyoI755PeY33zFbgmaaH87cFRzESS+OuLlsu3tdhNcoQGUTnPD/pg1LO8Jk1dLgrzJhqf+/cN4f59QzV/3vv2DaHFbsJL1rYpfky704zxIP0+LVaOjwXxgf99Hnc/M1jvUyHKRJmWTjQ8R4SBiYYFXIvdBItRV1ELpTAsabWbwBhDj8dCBdw85AIuW7gJh7ClNAMnVF7Rtjs7A9cc34M7nxrA8hYbLls9u0Dy2k2kwGnI8wMz2NjtyptxaTXp4bUZ6bOFaGi+99hppDK8pI2/loTiKTxyeAy37FoGo175nn2H04KZSBKJVKZoZhzRnBwdC875m2g+Sv5WMsaWMcb2MMYOM8YOMsY+lL39dsbYEGNsX/bPq6t/ukQhDg5LBZxWEQKAyIKrLEpAzHGJokQK3K3OIqtZHejGg3EY9UxWnUwGHdxW45KagRuaiYIxoCs7yyTmOJthBu7EeBBPn57GX124HDodk29vsZECpxXpDMf+c/6882+CbreVFDiioZkOJzA4HalpRMzDB0cRS2YUuU/mIjpCllInyFLi2Fhozt9E86FkWyUF4GOc840ALgbwPsbYpuzX/pNzviP756GqnSVRkoPDfrTaTejMhkFrRZ/XKre3lYOswGWdFXs91qrMwJ2ZDGPLbb/FC4M+zY9dbSaCcbQ7zGBsdvEvsuAajRPjIVz9H4/ixLi2H/pDvig6nRZ5p9eg18FpMTRFC+X/Pj0Io14yL8nFazeRC6VGHBsLIpJI47zl3oL3kcK8qYAjGhPOOSZDcYTiKczU8HPtvn3D6PNasau/8O9OPigLbnFzYlxS3o6NBZdc5uxioWQBxzkf4Zw/l/13EMBhALXT/wlFHBwOYFOPa04RoAVSFlz5itl0tg2wJWur3uOxYjIU11wtOzIaRCrDcXS0+doBJkKzGXCCNru5IRW4L/z6ME5OhHFgyKfpcXMjBAQem7HhWyhjyTTufe4crtnUJc8uClrsJsqB04hCAd65dHssGCEXSqJBiSTSiKcyAICzU+GaPOdEMI6/nJjE9dt7VK8NxDVpPNB41yGicoTyFoylMBqgja9mRFVjM2NsBYDzADyVven9jLH9jLH/Zoyp294hNCORyuD4WEjT9klBn9cGXySJUJlORaKFLLeFEtDeLW40u3BrxqHr3BBvQavD1HAzcE+fnsYjh8cBAJNBbc8tN8Rb4LGaGr6F8tcvjsA3z7xE4LWZEEtmEE00Z2tvI7FvcAYtdhOWt9gK3qfbbYUvkqTvN9GQ5H6eD0yX39Wihl/tH0Y6w3Hjeer33DuEAteAG4lEZSRSGZyZDOP8rCpLbZTNieICjjHmAHAvgA9zzgMAvgVgNYAdAEYA/EeBx72LMfYMY+yZiYmJys+YWMCJ8RAS6YymBiYC2fq/TBVuKpyAUc/gskh+OT2e6uQ1idapZgwenQjG0J7NgBO0OkyYbKALJ+ccn//1YXS6zDDpdZqeWzrDMeLPr8DVstWoHP7nqQGsaLXhklWtC77mzc40kpFJ5Tw/4MOOZZ6iKkK1PlsIQgtyZ8kGa1TA3f/CMDZ0ObGu06n6sWLsgVooFx9npsJIZTiu3dYNADjWhJ1LhMICjjFmhFS83ck5/zkAcM7HOOdpznkGwHcBXJjvsZzz73DOz+ecn9/e3q7VeRM5HBz2A4CmEQKCSqMEpsNxtGQdKIHZgnBY4zm4YVHANVm7RyqdwVQ4sVCBs5sxE0kilc7U6czm8tuDo3h+wIePvnwd2hwmTXdlx4MxJNNcfq8JPDYT/A1c/BwbC2LvmZkF5iUCb1Z1JiOTyvBHkzg+HipqYAIAXS7KgiMal9zPgbNT1S/gzk6F8fyAryz1DQDMBj08NmNTdrUQxTmeVdwuWNGCdqcZx8iJsilR4kLJAHwfwGHO+Zdzbu/OudtNAF7U/vQIJRwcDsBm0mNlq13zYwtb93Ln4KZCCXn+DZh1GdTaiVK0UDZbu8d0OAHOsXAGLrv72QgzVMl0Bl/6zVGs7XDgtTv70OY0axoyLtTdhS2UxoZuofzfpwdg0uvwul19eb8u2oZJgauM/ed8AFDUwATIUeAoSoBoQEQLZbfbUpMWygf2DQMAXrNdnftkLh1OCvNejBwbC4IxYE2HA+s6HVTANSlKFLjLALwJwFXzIgO+xBg7wBjbD2A3gI9U80SJwgz5oljeYsurAlRKm8MEs0FXtgI3FU6gNbuQBaRdvXanWfNFllD0mm23ULR8diyYgctaODfAHNxdzwzi1GQYH3/lBhj0OrQ5zJjU8KI+5BMZcAtbKP3RJDKZxnPIiiXTuPfZc3jFli75ZzUfr40UOC3YN+ADY8C2ZcVnfMXmEDlREo2IcGTescxT9RZKzjnu2zeEC1e2LNgYU0M7FXB5yWQ47to7iESqMTpk1HJiPITlLTZYjHqs7XDi+HioIa+zRHFKBnlzzv8MIF9lQLEBDUIkkYLdXJ1MdsYYer1WeZGtlulwYoHxQI+n/OPlI53hGAvMtlByzjV346wWcoj3ghbKxgjzjiRS+Mojx3HBCi9etrEDgFTUvzjk1+w5hLrbM1+Bs5nAORCIJeGxmfI9tG78av8IArEU/urCZQXvIytwVMBVxPODPqxpd8BlMRa9n9mgR5vDRE6UREMyFYrDatRjfZcTvzk4ingqDbNhYSi9FhwcDuDkRBh/+5KVFR2n3WHGswMzGp3V4uG5gRl8/N79cFoMeNXW7tIPaDCOjQWxtkOai1zf5UQkkcaQL4plRUyiiMZDlQsl0ZiE42nYTNW5EACoKMx7OpyQF7KCXo9FUwVuKhRHKsPR32pDPJVBIFaeY2Y9kAu4eSpOW4OEqH7vsdOYCMbxyVdtlIviNocZU+GEZjt2Q74oWuwm2ExzNyE8Isy7AY1M7ts3VNC8ROC2GsEYMN2A598scM7x/MBM0fiAXLooC45oUKbDCbQ6JCdVzssfS1DC/fuGYNQzXFthcdHhssibosQsonOmVm6iWpJMZ3B6Moy1nQ4AwLrs39RG2XxQAbcIiCRSsJuqo8AB5WfBxVNphOIpeZ5L0OO2YtgX0+yiIAxMtvd5AEiujuXwo8fP4MH9w5qck1LEzF6+HDgAms6aqWUyFMe3/3gSr9jcOScEts1hRjrDNZvtOjezMEIAkFooATTkHNyZqTC29RV3RdTrGDxWIylwFXB2KoKZSBI7lilLqel2WzGisUESQWiBGCfob5VUjmot/tMZjgdeGMYV6zoq7lxod5gRT2UQLDNGaLEiMloHyxwtqSdnJiUHSlG4rc06lB6lAq7poAJuERCOp2EzV1OBs2I6nEAkoe5DfDYDbm5x0uOxIppMa6asjGTVvO1Zl7pynSi/uecEPvyzfXjmzLQm56WE8UAMLosBFuPcn5/LaoBBx+oa5v2NP5xALJXBx1+5Yc7totjUqrgcmokUKOAa0wQkk+EY9ccWtHzmw0th3hWxb9AHoHiAdy49bgvFCBANyVTWkVm0qQ1UyYnyqdNTGAvEccOO8s1LBOKznubg5jKRvfZVU0WtFsfHJQdK0ULpshjR7bbIzpRE80AF3CKg+gqcdMFRmwUn5rfmt1CKha9Wc3AjsgInmRyUkwWXTGcwkW3F/Ls7n6uZGcpEaGGINyDNHtYzzPvsVBh3PnUWb7hgGVa3O+Z8rc0hCrjKL+qccwz5ogsMTIBZBc7fYC2Ik6E4kmkuux4Wo8VmIgWuAp4fmIHNpFecY9XtsSIYSyFEigHRYEyHEmh1mNHuMMNi1FVNgXtg3zDsJj1etrGz4mOJa1OzxfNUG3Htq1Wen5YIB8rc6/q6TieOUhZc00EF3CIgnKiuAifUEbW7TcJ1q9UxfwZOZMFpVcBFYTbosK5LWuSVU3yNBWLgHHjrpSsQiCXx/jufR7IGGWwTwfwFHCBlwdUrzPvffnsUBp0OH7567YKvtTuln6cW5zYdTiCWzCwI8QZyZ+AaqwASGw89boUKHBVwZbPvnB9be93QK3TY7c46UY7WUIU7OxWu2+8pUTsCsSTe+J0ncOCcegMnzjkmsy2UjDEsb7FVpYCLp9J46MAIXrG5C1YN5uKFO3KzxfNUG+HCfG4m2nTzgcfHQ1jmtc15f6zrdODERAhpcqJsKqiAa3KS6QwSqUxVFbhlZYZ5T2cNOBYqcNrmNQ1n29mcZgMsRl1Zu4Ui/Hf3hg588bXb8PSZaXz+oSOanF8xpAIuv5LT6jBhsg6L//3nfHhw/wje8dKV6HAtPDehwGnRViOKoXwtlG5rY87ACcVXSQtli83UcC2gzUIqncGRkQC29haPD8il2y02h2o3B/funzyLz/7qcM2eLx+kOFafXx8YwZOnpvHkqSnVjw0n0kikMvK1cHmLvSrqzcHhAAKxFK7Z3KXJ8aiFMj9iczqeyjRdcXt8LCjPvwnWdTqRSGVwdipcp7MiyoEKuCYnkkgDQFVdKNscZpj0OpxTWXCJ9r+2eTNwLXYpW25YI7e4UX8M3W4LGGPocFrKaqEUi/JutwU37OjFWy9dgf/+y2ncv29Ik3MsxHgwviADTtDmMNd8Bo5zji/8+gha7Ca86/JVee/jthph1DNNZuDkEO88CpxBr4PTYmg4F0qx8aCkhdJrN2Emkmy6XdpG4OREGPFUBpt7XYof0y1nwdVOgRsLxHB6sn4LH18kgZ3/3+/w0yfP1u0clgIPvCAZXJXT4TEdEt0o0me9UOC0/lwQ3QqdrvzXFLW4rUaY9Doq4OYxGYrDaZE2zQenm2cOTjhQrumY25IuWtSP0RxcU0EFXJMjjEWqlQMHADodQ7fHonoGbjqcgEHH4LLOPTfGGHo1zIIb8UXlEN8Op7msC6xQ4MRxPn3tRlywwotP3nsAR0YDmpznfMLxFCKJdJEWytrOwMWSaXz198fx+MkpfPCqNXAWyN1ijGnW3inacvs8+fNnPDZjQ7ZQ2kx6WSEshtdmRCKVkTdaCOUcHJZa1bb0KFfgOl0WMFY7BY5zjkAsJX9+1IOxQByJdAZf/t0xBGONtdmxWBgPxPD4SUl5K2eDcDLbjdIqK3BWRBJpzV2G/dluBSWfTUpgjKG9zGvqYmYyGMeOrGma2s6kenJ2Koxkmi9Q4NZSlEBTQgVckxOOV1+BA1BWwTUdTsCb7fmfT4/HqkkLZTrDMRaMy/NI0sWmPAXObtLDmS2EjXodvvnXO+GwGPCenzyLQBUWRoUy4AStDjOiybRq90+1cM7x8MFRXPOff8JXHjmOV2/twl9f1F/0MW1OkyYF3JAvCofZsKDIF3ispsZrofRJLbtKwuK92QUbzcGp5+BwABajDqvmmegUw2TQoc1hrllBFYqnkM5wjAdjSNVgZjb/OUi/H9PhBL79x1N1OYfFzoP7R8B59vpSRov+rAInfR70t9oBaB8lIAyftCrgACmTlBS4WaKJNMKJtBxb1ExOlEJhWztPgbOZDFjWYqUCrsmgAq7JkRW4Ks7AAdkCTuUH1WQoIe84zqdHozDviWAc6QxHt2dWgZsoZwYuIKl4uYvyDpcF/3XrTpybieKj//eCZsHVAtE731Gg3UVc7Kupwh0fC+LN//003vWTZ2E26PDTt1+E/7p1F0yG4h8NbQ7tFLg+b+FiyGMzYqbRWij9UblVrxQtDRqF0Ay8OOTHhi6XYgMTQS2jBITikeHAWJ0WuYGYdA1Y1WbH9/58CmMBUku05oEXhrGx24ULVngxVk4LZXiuI7McJTCtbeutPyq9F1waFnDtDirgchHXvWUtVrQ5TE3lRHl8LATGgDUdCzfF1nc6KUqgyaACrsmRFbgqulAC0ozSeDCOeEp5K9h0NvcmHz0e6XiJVGW71mKhJhbUHS4LgvEUoipb1kb8MdkAIZcLVrTg09duxCOHx/Bfj56o6FznI3ZyC7VQtmto1z8ffzSJf/7lQbzyq4/hhUEfbnvNJjz0oZfiJWvbFD2+zWHGZFCDGThf/hBvgcdmgr/Bip/hEuecCylw5cE5x6GRADb3KJ9/E3S7rfJMa7XJnc8c0aglXC2hbAH3T9dtRDrD8ZVHjtXlPBYrA1MR7Bv04frtPehwWsraIJxtoZQ+06VNK2BgStv3jD+ahN2kh1Gv3dKuw0UFXC7ietzmMKPPa2uqMO9j40H0ea15HUrXdjpxajJUE/dtQhuogGtyaqnAAVL7mFKmw4miBRznqHi3WJxPd04LJaDeNWvUH5Pn3+bz1ktX4IYdPfiP3x3DH49NVHC2c5nI7uQWbqHUXoFLZzj+56kB7P73R/HDx8/gDRcsw56/vxJvu2ylqou+UOAqVSWHZiJ5DUwEHquxoVooY0lpbkWJAyUwu+NOCpw6BqejCMZS2Kxi/k3Q7bFgxFcbe+9AznuzVkXjfIQD5cZuF/7m4n78395BHKdWKM345X7JvOQ127vR7jSXtUE4HUrAZtLLC2eLUY8ul0X7FspoUtP2SUC6Pk1HErSwzyKbsznM6PNam6qF8sRYCOs68mdqrut0IJnmOFNHQyZCHVTANTnh7IXEXgMFDlAXvj0VTsiW8wuOp1GYt3CbEzNwwtFRzdB1Kp3BeDBesC2OMYbP37wVa9od+NcHD1V0vrlMhOIw6Bi8tvxFrnAsmwprs/sZTaTx9h/txad+cQCr2+345ftfgs/dtFV+HjW0O81IZbjcQlYOgVgSgViqqJrltRnhjyY1b18tl1EVEQLAbAvldLhxitBmQDYwUeFAKeh2WxBOpBGsgbW+f04BV5+FnDAucZgN+MBVa2E3GfDF3xyty7ksRu7fN4Tz+73o89rKur4A0rVw/mbmshZbFVook3AXuJ6US7vTDM6pi0AgK3BOM5a12DDsizZFfloyncGpyRDWdhYq4KTbj9LmT9NABVyTE80qcLYqK3DCJVDpHFwilUEwliqqwAGVZ8GN+GOwGvWyCUZHNlNNjZHJZCiBdIYXVOAA6fv7qq3dODkRQiypjaPgeCCONocZugIzPmJ+UAunMn80iTf/91P447EJ/MsNm3HXuy/BFhX5WvNpc1Qe5l0sQkDgtpnAOapiIlMOcoSAwhk4p8UAvY5hhhY/qnhx2A+9jsmLCjUINV5Nt0C55BZwtcyeyyUUS4ExqQujxW7Ce65cjUcOj2Hvmem6nM9i4shoAMfGQrh+Rw8AyLmYao2ypsKJBRtl1QjzDkSTcBcwhCoXyoKbi7jmtdpNWOa1IZnmGG2CudOzUxEk0xxr88y/AcDqdgd0jKIEmgkq4JocMQNX7RZKyeADirPg5g9tz0eoXZUXcFF0e2bNR4QhyLiKD9T5c3SF2NDlRIYDJ8a1+YCbCMULzr8BUpuNw2yoeAZuMhTHX33nSewb9OEbf7UTb7pkhSIHxWKIts9KQkzlAq7YDJwI824QI5NhlQqcTsfgtRkxTS2Uqjg4HMDaDgcsRvWdBSKfrxZGJqKA63Fb6qfAxVNwmAzyRtDfXrYSnS4zPvfQYcofrJAH9g1Dr2N49dZuALP5ampb/6fD8QWGXv0tNowF4pptCALVaaEsV3VcrEyGEnCaDbAY9ejLbj6eawIjE9FWXWhTzGLUY0WrHcdGSYFrFqiAa3LEDFy+oVQtMRl06HQqz4Kbmpd7Mx+LUY82hwlDFe5aj/hjcvskILWsGXRM1Q6pnAHnKr4oFx98RzT6gJsIFi/gAGkOrpIZuCFfFK+/4wmcmgzhu28+H9du6y77WLm0OYXBSmXnBgB93vwZcIDkQgmgYebgxIZDMbV2Pl6biRQ4lRwcDmBTGQYmQO0VOL2OYXWHo25ZcMFYCg7L7Aae1aTHR1++Ds8P+PCbF0frck6LAc45frl/GJeubpVHAeQOD5VGJlOhhS2Uy1ulzz0tXQyrMgNHCtwcJkNx+fon3EQHm2AO7nh243l1h73gfdZ2OnBsnAq4ZoEKuCYnnEjDpNeVtH3Xgl6v8uy2UgocIC20KlbgfHPNR3Q6hjaHuiy4EVlVKb4oX9Fqg8mg0ywrZSIYL2hgImi1m8qegTs5EcIt33ocE6E4fvL2i3Dl+o6yjpMPsaCZrOCiPuSLwmzQye2Y+fA0mA3/sC+KNodJlTLktZtofkQF44EYJoJxVQHeuXQ4zdCx2syk+aNJuCwG9Hqssjpba0KxFJyWuR0Yr93Zh7UdDnzpt0fJfKJMnh/0YXA6iht29Mq3eW1GGPXqNgg559kWyoUzcIC2WXDVKODEZz0VcBKToVk1tccjdSY1Q5TAsbEglrVYi47brO904sxkWFNVmKgeVMA1OZF4quoRAgI1Yd5iwVrMIKPSLDjJfCS2YB6pw6WugBv1R2Ex6kpe+Ax6HdZ2ODRR4NIZjslQvGAGnKDVYS5LgXtxyI/X3/EE4qkMfvaui3HBipZyTzUvHqsReh2reAaut0QgtlDg/A3UQqm0fVLQYjM1TAtoM3BwOAAAZUUIANLvaYfTUhNXSLFg7nJbMBmqPBalHELxFBzmuYsyg16HT7xyA05PhvGzvYM1P6fFwAP7hmEy6PCKzZ3ybYwxtDvMqtoJQ/EUEqlM3hZKQLsCLpHKIJpMa17AWYx6uK1G1XN/i5XJ0Kw5m9mgR6fT0hROlCfGQwsCvOeztlMaEzk1QU6UzQAVcE1OOJGu+vyboNdrxYg/qsgRUBQdhVooAWmOaLgCu+/xYBwZDnTPW1B3OM2qZuBEBpySubD1nU5NesSnwwlkeOEMOEGbw6S6TfHp09P4q+88CbNBh7vfc0lZVuyl0OkYWu2migq4c75oUQMTIHcGrjEUrGFfdE7LrhK8dhPNwKlAOFCW20IJZKMEaqTAua1G9Li1iUUph2AsCYdl4aL96o0duHBFC776yDE5aoBQRiqdwYP7R3DV+g44531v210WVWqUvJlpn/tZ32I3wW7Sa1bAiXlMrQs4QLpOkQInMRWKo805u65Z1mJt+Cy4VDqDUxNhrO3Mb2AiWN8lFXhadRkR1YUKuCYnkkjBVuX5N0Gvx4pkmivaiZsOJ6DXsaIXk16PFeFEGoFoeYsLsUCbP4/U7lR3gR31x9DlUjbTtL7LidFArGJFSJxf6RZKM6bDyvPWHjs+gTf/91Nod5lxz3svxar24h/YlSBlwVUwAzcTKRmILd4/jTADxznHsE8yzVGD12bETDhBhhIKOTgcQH+rbcHCWQ09bmtNZuAC0SRcVqP8nqhHFlwwvrCFEpDUon989QZMhhL47p9O1fy8mpknT01jMhSX3Sdz6XSaVRXqU2KcYF4LJWNMihKY0qqAk57HVY0CzkEFHCBZ8c9EknOK8WVeW8ObmJydjiCRzpRU4Fa02mHQMSrgmgQq4JqccDwNm7l2ChwADPlKf1hNhePw2owFLfKBWSe/crPghG33fEWkw2nGVFh58KikwClblK/rEkYmARVnuhDh3liqhbLNYUKGKy9gvvDrI+hxW3HXuy9R3eqnljanuWwFTgRilyrgDHodnBZDQ7QgBqIpRBLpkuc8nxa7CakMr0ku2WLg4HCg7Pk3QZfbgmF/9cO8hQInG6fUwYkyFEvBWeAacN5yL169tQvffewUuQiq4IEXhuAwG3DVhoVzw2pb9It1o/S3ahclUE0FrsNlrshxeLEg1NS2nM6ZPq8Vo4FYXdqnlTLrQFl8Q9dk0GFVu50KuCaBCrgmJ5JIwV4jBa4vu3BV0u+dz3VrPpVmwYnF0nxFRBRFSoqLTIZjLBBT7Cq4QaMWA9Hi2e4o/rxymLeC1xJLpnF0NIhXbe0qGKCuJZXsysoOlC2liyGPzdgQLZTinNUWxiKonZwoS+OPJjEwHamofRKQIkFiyUxFQfNKmC3gRCxK7YukfDNwufzDKzYgnsrgp08O1PCsmpd4Ko1fvziKazZ35jUr6nBa4IskEU8pM3qYFo7MeT6TRRacFhsNVW2hdJgxHogv+S4CsaZoz1FT+1psyPD6bN4o5Xg22221go6ctZ1OyoJrEqiAa3LC8XTVQ7wFahSz6bCSAq6yvKYRfwx2k37B7rMaq+fJcBypDFeswHW5LHBaDBUbmYjdzNxe+ny0yoHZpRf/R0aDSGU4tvZ6Kjo3pbQ5pYiDci7qsxlwhSMEBB6rqSFaKEcU5gXOR/weqHWiPDIaWHILpkMVGpgIZjeHqldQcc4RiKXgsRlhNxvgshhqvohLpTOIJNJF201XttnR7jBjtIEXmI3Eo0cnEIylcP32he2TwGwumtLNq8kiCtzyFhviqYwmBiHVnoGLJtMIJ5a2O6H4WeZukC7zijiIxv39OjYeQp/XCruCbq31nU4MTEfkiCqicaECrsmJJFKw18iF0m42wGMzKsqCmw4nijpQAkCb3QyTXld2C+WIL4buPC6Gai6wcgacQmMKxhg2dDkrVuAmgnE4zIaSxbds169AgTtwzgcA2NqnvWlJPtodZiTSmbJmGMXPvJSJCSApcDMN0EIplGK1LZReu/oohBeH/HjlVx7DH46Mq3quZkcYmFRqvCOK7GoWVKF4CukMlxfMPR5rzWfgwnFpQe3IMwOXi8NiQDBGCzIlPPDCMFrsJly2pi3v1zvkMG9lRdd0OAGbSZ9XzdMySkDMZVergAMoSkDE5uSubeQw7wY2Mjk+FsTaDmXz8KLN8sQ4qXCNDhVwTU44UTsFDlAeJTAVThR1oAQkJ8Nuj6XsXfIRfzSvGiIuNkp2NcVzq1FV1nU6cWQ0WJE6Mh6My4VmMcT3UEkL5f5zfrTaTQtiFaqFnA9UxmzEuZkI9DqGTgXfA4/NBH9DtFDGYNQz1e2pLTahwCkvQsXF84mTU6qeq9k5NBxAp8tc0p21FGImrZrZbPMVjy53bZwvcwnGpXMoNAMncFIBp4hwPIXfHx7Dq7d2wajPvzwSHR4TCmcKp/NkwAn6W6VQZS2MTPzZjbRqmJjMdrWUfs1PnJzCR/9v36LsHhCZrLnZpd1uC/Q61rBOlMKBcl1ncQMTwdrs/Y5q4LZNVBcq4JqcSLx2M3BAtoArocAl09LsSakWSkAyICl/Bi6/+YhYYCsZ2h8t4GRZjA1dTgRjKYxWYBk+EYzPGYQuhMdmgo7NOpkV48CQH1t63YriELRAjTo4n6GZKLpcFhgKLJJy8ViNDdNC2eW2FDXmyYfXLi2o1MzAiR35Z87OqHquZufFYb8msRftTjMMOlbVtsH5BVx3jZwvcxFFWT4XylycFiOCsfr/DjU6vzs0hlgyg+u39xa8j1DglLY9TobiaLHn/6yXcjAll8BK8UeTsJv0BQvPSpAVOAWf9f/9l9P4+fNDiq5ZzcZkKAGzQTdn5tSg16HHY2nYFsqBrAPlGoUKXH+LDSaDDsdJgWt4qIBrYjIZjkiydi6UgNTyNlQiu20mXDoDTiCy4NSSSGUwEYrLO+25mAw6tNhNii6wI4EYTHqdrJIoQexkVTIHNxmMK1IZ9DqGFnvpLLhoIo3j4yFsq1H7JDA7v1dWAacgA07gtRnhjyYVRylUi3Iy4ADAYTbAqGeqsuBEAXdw2I9YcmnMncSSaZycCFc8/wZIvzedLktVCypRwAnFo8dtwVQ4UdOfl8h3K9VC6bQYyAVVAQ+8MIwetwXn93sL3qfVboaOKZuxBiQFrq3AtdBk0KHHbcWgRgVcNdonAeUtlLFkGo8dnwBQvjlZIzMZjKPNYV6wSdrnsTVsC6UwJFGqwBn0Oqxud5ATZRNABVwTE0ulwTlqrsBFEumitu5y7k2BXce5x7NgLBBDSqHlv2AsEAPns0Yo85HCvJXNwHW6zapUlQ1d0gKzkkDviWC8ZAacoNVuLtlCeWgkgHSGY2tvDQs4ocCVMRcxNBOVZwdK4baZwDkQqLOCMOyLqZ5/A6S5Sa/NpEqBG5yOwKBjSKY5Xhj0qX7OZuTIaBDpDNekgAOk1qZyDZKUEJivwGXfG7UM8w5lFbhiLpQA4KIWypLMhBP407EJvGZ7T9HrgV4ntVErjWUo5cgsnCgrxR9Nwq1iI1INHqsRRj0rWcD95cQkYknpWr4oC7hwYk77pEAK827M13tiXFqnKFXgAGB9p6Oi9Q1RG6iAa2LEAHstFbg+OQuu8IfVtFzAKVPgMhwYU1kEiPbFQuYj7U6zohkFqQ1T3aLcbTOiy2Upu0c8mkgjGE+VzIATtDpMJdtRXhySzB9qZWACSPb4OqbMITOXZDqD0UBMjqUohUeEeSs0MpkOJ/DZXx2qOGw9l3SGYzQQUx3iLWixm1SZmAxOR3D5unYAS6eNUisDE4E0k1a7Gbh6RAmITY1SLZQOs4FaKEuw98w0UhmOazZ3lrxvp8uiyMSEcy45MheYgQOkAu6sBjNwgWgSbmt11gI6uWgt/pofOTwGk0FaVg7VIVKj2ggFbj7LvDZMBOMN2S1xbCyEXo8yB0rB2k4nhv0x+sxocKiAa2KEzWttFTjJNatYFpwoNvLtVM2n3Cw4cf9Chh0dTouiFspRFSHeuazrcpbdQil2MRUrcI7SCtz+c360OczoctXGwAQQ7Z3qw7xH/TFkuDIHSkByoQSUh5n//vAYvvvYaXzkrn2atV2OB2NIZ3jZ4eiSAqfs/OOpNEYCMWztdWN1ux3PLpkCLgCXxaBYmS2FcIWslplCoQKulkYmooWyWIyA+HosmUFSZafDUkJssChxJO5wKgvzDsVTSKQzaCvSjbK81YbJULxi2/ZqtlACYlO08GvOZDgeOTyOl23sgM2kX5wKXCie15BG5JkqycitNcfGgiUDvOezvlPk3dIcXCNDBVwTIytwtXShVKLAZRf0ShU4QH0BJ3bWuwssqDtc0sWm2AKec45Rv/IQ71w2dDlxYiKkuvUTACZC2RBvhU57rXYpb60YLw75sbXXVTMDE0Gpi3o+zqnIgAMkIxdAuQ3/qckwAOAPR8bxrT+eVHVuhRguM8Rb0GI3KZ6BG5qJgnNpZ/78/hY8e3am7vN/teDgkGRgotV7uNttQSKVUZ2/pxR/NAm9jsnti0LJr2WUgNIWSqHQhaiNsiAiqsSjoAiSri+lf87ic7tUCyVQeY5Y1Qs4R/HP+gNDfkwE43j5ps6yZ9sbmUyGYyqcKKjAAWg4J8pUOoNTk2HZWVIpYl7uOM3BNTRUwDUxsgJXoxw4QDKUsBr1RZ0op8MJMDa78C6GmGFTmwU36o/BaTYUXLh0OM1IZXjRRf90OIFEOoPuMlSrdZ1OJFIZnCmj9UVW4BQWcO1OM4LxVMH2jEgihePjQWzt86g+l0ppc5hUK3BqMuCAWQVOaUvkqYkQVrfbcf32HvzHw0fx5+OTqs4vH6ItrhwTEyCbZaewkBDzMMtbbdi1wgt/NImTE4t7JzSVzuDIaFCz+Teg+gWVP5qEy2KQC06rSQ+vzVhTBS4YS0HHAFuJLgyh0NEcXGF8kSRMel3J7yUAtDslw5pSG3iiG6VQjAAwW8BVOgdX7QKuw1VcdXzk8Bh0DLhyXceiLOD80STSGZ6/gMv+DM9pMMuoJQPTESRSGcUZcII+rxVWox5HqYBraKiAa2LCidorcIyxrBNl4Q+qyXACXpsJegXGIDaTAV6bsawWymLzSHJuTZELzojKEO9cNnSJFgP1H3DinMQ5lkLOgitQABwaDiDDgW01NDARtDvMqmfgRPGvtHV1dgZOoQI3Ecaqdgc+f/NWrG534IM/e77iRfWsAlfZDJwSJU040kkKnOSGt9jn4E5OhBFPZbC5V8sCTsykVWch6Y+mFiyYu2ocJRCKp+AwG0qqlmKjq95GQI2ML5KA22ZUpAB3OM3gvPT8r2h9by3WQpld/J+dCqs427nEU2lEk+mqK3DT4TjSBT7DfndoDOevaIHXbkKvx7LoZuDERmW++J92hxkmg67hWihFFIBaBU6nY1jb6cBxaqFsaKiAa2Ii8dorcIDkRFlsUH+6hOvWfHpKHC8fpcxHlGT1jIo2zDJaKNd0OKBj5UUJTATj0DFlLaaANAMHFA7zPlAHAxNBm9OMiVBc1ZzRkC+CDqcZFqOy961YlCiZgUtnOM5ORbCq3Q672YBv/c0uxJNpvO/O55BIlT//M+yLwmkxlJw1KoTXZkJGoZPm4EwUZoMO7Q4zVrbZ0Wo34ZkzzVfAheIp3Pq9J/H06emS9xUGJls0MjABIG/wVJLXWIx8ikeP21LV8PD5BGMpRe9JV7aFkhS4wvgiSXhtyn6/O7NdG6UcR2VDryIKnMdmhNNiqChKYP48ZjVod5qR4bNh1rkMTkdwZDSIl2+UDGB63FZMhhrT1KNcRAZevkgInY6hz2NtuBZK0QKpxoFSsK7TSQpcg0MFXBMjFDh7DRU4YDYLrhDT4YSiDDhBOe0WhUK8BR3ZXbLxIhdYocqUU8BZjHqsaLWXZbU7EYyj1WFWpFACs+03hebgDpzzo8NplhcVtaTNYUIilVGVMaUmAw6QcmmcFoMiF8pzM1Jo6eo26YK1psOBL75uG54b8OFzDx1W/JzzGfbHym6fBGaLdSXzWANTEfR5rdDpGBhj2NnvxTNnSxdBjcbDB0fxlxNT+Id7Xii5kHtxKACLUYdV7eoXGoVos5th1LOquUL6o0k5A07Q7bHUuIUyWXL+DchtoSQFrhAzkQQ8VmXXLfn6UmL+d0pBJipjrOIogcC8TMJq0J7tGMk3B/f7w2MAgJdtyhZw2Vnh0RpuZlQbcf3Np8ABQF+LreHCvI+PSw6USj4j5rOu04GJYFxV/A1RW6iAa2LEDJySnn0t6fVYMR1OFHTNmgrnd2oqdjw1M3DxVBqTBUK8BUpbKA06Jitcail3h2o8GJcXAEoQDmaFZs0ODPlrGuCdSzlZcAPTEfR5lRmYCDw2o6IWylMTUhvSqna7fNt123rwt5etxA8fP4MHXhhW9byCYV+07PZJAPDalRuxDExH5LYqADi/34uzUxHVZjGVMh1O4I/HJsp+/K/2j8BpNuDsVARf/8Pxovc9OOzHhi6X4k0NJeh0LBslUJ1FVSCPAtfttsIXSSKaqI3yEIqnSkYIADkmJhTmXRB/NCnP25ZitsOjeIEyFUrAbtKX7DZY3mLD2SZQ4ID819TfHxnHqnY7VrZJn7vlmpM1MnILZYH1Qp/X2nBh3sfGQlir0oFSsK6z/DERojZQAdfECBdKNfkeWiBsvgt9OE+H1bZQWhCMpRTPZ4z5pQ/SYjNwVpMeTrOh6KJ31B9Dp8tS9qJxfZcTZ6bCqhdrE8G4YgMTIEeBy7MTFo6ncGIihC11mH8Dcgo4hXNwkUQKg9NR1UPVXptJUQulMPuYr+T846s3YFe/F5+8d78cbKoGqYCrQIGzCQWu+GvgnGNwfgG3QpqDe7bGKty//fYI3vLfT+PMpPrZHH80iT8dn8AbL1yGm3f24tt/PFVwIcA5x6GRgKYGJoJuV/Vm0vK1UNY6SiAUT8GhooCjFsrCzEQSigu4NocZjAHjJbLgpsPxou2TguWtNpybjpbtNluLAk5sOs6/pgZiSTx5akpunwSkTVlAvTlZIzMZikOvYwVdSpd5bZiJJBtmkySd4Tg5EVJ9rRXIBdw4zcE1KlTANTGRhORAZjbU9scoFrL5BnZT6Qx80SRaigxtFzqe0oWW0tbHdldx2+ORMiMEBOu7nOAcOKHyA24iGFecAQdICqvFqMs7A3dwOADOUX8FTqETpfherVM5VO22GmWb72KcmgzDYzMu2EAw6nX45l/vhNWox7t/8qyqi2w0kcZMJFlRAee1Sxf9Uu0ovkgSwXhKdjUDgC29bpgMuprOwcWSaTy4fwQA8PPnzql+/MMHR5FMc1y3rQf/dO0mOC0G/OPPD+RdoA5ORxGMpaqyCdHtsWAkoP0iknNeoICrbZRAMJZS1B7lkAs4aqEshDQDp2zj0ajXocVmKq3AhRNFDUwEy1tsSKQzGFMQTZCPWipw86+pfzo2gWSay+2TANDplgrcWobaV5up7Gy/rsCG77JsFlwls4xaIjtQqrzWCrrdFritRjw/0Hzz10sFKuCamHA8DbuptAOZ1hTbXZuJJMF58Z7/+ahtt5Az4ErMJElhq4UvIKOBygs4ADgyGlD8mEyGYzKkToFjjKHVbs47AycMTOqmwDmln7PSAu5odmZQbbCox2aCX1ELZQir2ux5v9bltuDrf3UeTk+G8cl79ys2Xhn2V+ZACeTMwJV4DWIIPleBMxv02NbrrqkT5e8PjyMYS6HDaca9zw2pVgZ+dWAEfV4rtvW50WI34VOv3ohnz87gZ3sHF9z3xayBSVUUOLdVCo7XOEcvnEgjneELTUw8QoGrXQGnxMTEbNDDZNCRAleAaCKNeCoDt0IFDgA6XJaSCtxUSNk8+KwTZXmLfxGxUs0CzmLUw2lZ2NXyyKExeG1G7FzulW8zG/Rod5gXXQtlofZJAPJYQKM4UYrN0nIMTABp3fHyTZ343cGxRWVGs5igAq6JiSRSsNZ4/g2QHLgMOpY3C0523VJRwKlttxhWqMB1OC0FZ+A45xjxR8vKgBOsaLXDZNCp6hGfiSSQynBVM3BANm8tj3pz4JwPXS6L4kgCrWm1m6Fjymfgjo0FYTLo0N+av8gqhMdqVNRCKSIECnHpmjb8/SvW48H9I/jtwVFFzy1HCFRgYmI16mE26ErOwAkjg1wFDgB2rfDi4LC/ZhfSnz93Dp0uMz597UYM+aJ48tSU4sf6Ign8+fgkrt3WLW8uvW5XHy5e1YLP//rwgk2Vg8N+6HVMtSqrhB6PBck0lx3ktKKQ4iGMhEZqtHANxZOKZuAAyYkyQAVcXnxR6fdSqQIHiA3CUi2UCUXz4JVmwfmj0s+1miYmgKTC5RZwqXQGe45O4KoNnQtGEXo8VvlavRiYCCXQVuRnuczbeAocAKxUea3N5frtPQjGU3j06LhWp0VoCBVwTUw4ka75/BsA6LPmAPkKLmExrMbEpN0h3OKUfdiP+mNwWQwlX3u704zxQH6Le380iVgyg+4K2uL0Ooa1HQ5VUQJiIdmusuBqdZjztlAeGPLXJT5AoNcxtNhNihfIx8ZCWNPuUD136LUZ4Y8miyopwVgS48H4HAOTfLz78tVwW434/WFlFyXR2ltJCyVj0vepVAtloQLu/P4WJNMcLwz6yj4HpUyG4nj02ARuPK8Xr9jcBafFgHtUtFE+fHAMqQzHdVt75NsYY/jsTVsRT2bwLw/OdQM9OBzA2g6H4lgJNYii8PCIcpVcCYUUD4tRj1a7qSZRAsl0BrFkRrHDnNNibJj5nEZjJjubWmi+KR+lOjw455gKxxWNE/R4rNDrWNmLf380CbtJD6O+uku6dsfcAu6ZszPwR5N42caOBfdVa07W6EyVUOBa7CbYTPqGiRIYnI7AYTYonuvMx6WrW9HmMJVt/kVUFyrgmphIPFVzB0pBr8daVIFT0vcvEG5xSgu4YV9M0WK6w2lGNJnOu2gZqSADLpf1XU5VCpy4+KlpoQQkBW5+C2UwlsSpyTC21ql9UtDmMGMiqMzE5NhYUG49VYPbZgIvkaN2Omu2saqteMuIXsdwyapWPH5ySlEb5ZAvCsZQcUyD12YqaWIyOB1Bq920YFG+q4aB3g/sG0Y6w3HzeX2wGPV4zfYe/PrAqOLF/4MHRrC8xYYt80K5V7c78L7da/DLF4bn7OgeHA5gs4b5b7lsyrZlHhzWuIArMnNUqyiBUFZNU6rAOS0GmoErgFDgPGoUOJcZk6FEwWDrYDyFZJoraqE06nXo8VjKb6HMM49ZDTpcljmbdY8cGoNJr8NL17UvuG+PR7qmq8kIbVQ459kWyuJxEJITZWMUrQPTESxrsVU0YmPQ63Dt1u5sSz19djQaVMA1MeFEquYZcIJCWXDltFACUnua0oHnEX9UUeFVLMxb5NNUMgMHAOs7nRgLxBVZ3APlF3CtDjOmwnPVRGFgUk8FDpAKOCUzcIFYEiP+WFmtcmJnvFgWnIgQWF1CgQOAS9e0YsgXVdSyNOyLosNphqlCs6AWu0lRC+V89U08dnW7Hc/WoID7xfND2NLrkgvt1+7sQzSZxkMHRko+djqcwF9OTOK6nPbJXN5z5SqsbrfjM/e/iGgijfFADBPBeFXm3wDAZTGiv9WGF7OzolrhL5K7Jebuqo0oqJUqcA6zgWbgCiA+V9SoFR1OC9IZnjfYGgCmsxtuSrtRKsmC80eTcKsoPsul3WGWs1U55/jd4TFcsro173uwx2NFLJlRZD7V6IQTacSSmaIKHCA5UTZSC+XylvK7RgTX7+hBPJXBwwfHNDgrQktKrkgYY8sYY3sYY4cZYwcZYx+a9/W/Z4xxxlhb9U6TyEckkYbNXB8Frs9jxVgghmQ6M+d2oRJ5Vcr2vR7lGSqj/hi6FMwjyVlweQbNtVTggFlzjlKIYlLtDFyr3YRkmiMQnV2AiUVp/RU4k6IC7vhYeQYmwKyLY7E5uFMTIeiYZMldiktXSx9Xj58sPdslhcZXfiH02IwlWygHp6NzDExyOb+/Bc+endHckCOXY2NBHBjy46bz+uTbdi73YFWbHfc8W7qN8rcHR5HOcFy7rTvv180GPT5301YMTkfx1d8fl5WxahVwALClx625AhcopsCp6CaohCApcJohCjg1M3CdYoOwgJGJKOyUbmYub7GXvfiXMgmrv5nb7jQjnEgjHE/h5EQIZ6cic9wncyk3Cy6SSOGN33kCT5+ubWxKMcSMd6nM2GUtNpybqb/qmC+Oplx2Lveiz2tV10b5pS8Be/bMvW3PHul2QjOUbCmnAHyMc74RwMUA3scY2wRIxR2AlwMYqN4pEoUIx+urwGU4Fuw0T4Xj8NiMMKjsxd++zINhf6zkrEosmcZUOIEeJQqcHDy6cDd81B+FjkGVnX8+5AJOYRvlRDAOm0mvenZRtuvP2e3df86PHrel5K5gtREKXKmL1tHR8iIEAMBtLR2EfXIyjGUtNpgNpTc1Vrfb0eE0Kyrghn1R2WinElrspqIulKl0BkO+wgXcrhVe+KNJOeuuGvz8uSHodQzXb587v/baXX14+vQ0Bkq0eP1q/whWttmxqbtwQXbRqla8/vw+fPexU7g3O1u3qYoF3OZeFwamI/LcmhbILZR5Nqq63VYEYimEqzxvJooxJS6U4n6kwOVHfK6oUeDEHHOhqBqxman083l5iw1T4URZc4o1a6F0zsbGPJKdIb56w8L5N6D8LLhDwwE8eWoan/rFAaTmbRDXC1GMF2uhBKSM3FA8JX8+1IuJYBzxVEaTAo4xhtds78GfT0zmncPPywUXAK9//WwRt2eP9P8LLqj4fIhZSq6yOecjnPPnsv8OAjgMoDf75f8E8HEAzd/k3IREEuk6zsDlt8ydDiuzTZ7P9dt7YNSzkrv8omBUYj7SUeQCO+yPocNpUV1ozqfLZYHLYlBsZKI2xFsgh3nnzMHV28BE0OY0I5bMIFwi0PzYWBB2k76sYkgsrIotwk9NhAtGCMyHMYZLV7fiiZOTRQtPzjmGfNGKIgQEXpsJ/miy4KJkxB9DOsPlPKH5nF/lObh0huP+fUO4Yl37gvfozTt7wRjkgisfU6E4Hj85iWu35m+fzOUfX7URbqsRD+4fQX+rTXERUg5bsvN1B0e0a6P0R5PQMcCRZwNtNkqguiqc2hZKp8Ugz80Rc/FHk7AYdaqMdIptEAJSBhygRoHLOlGWMQdXqwKu3Tk7lvDIoTFs7nEVnEcvV4ET9vcnxkP4n6cbQxsQM96linERJTA4Xd85uEJmWOVy/fYepDNcURs9AGD3buCuu4CbbwauuEIq3u66S7qd0AxVq1fG2AoA5wF4ijF2PYAhzvkL1TgxojTheKouLpSApMABC3fXpNwb9QWK127CyzZ24r7nhxa0ZeaiNEIAAFxWA0wGXcEZuErn3wCpEFjf5cQxxS2UMdXtk8CsKYzYAQvEkjjdAAYmQI46WMJS+9hYEGs6nQWDUIsxOwOXX8HKZDhOT4aKRgjM59I1bZgMJXBsrLCiNRNJIp7KaNJC2WKXjFgK7c6WuuiubLOj1W6qWqD3k6emMOKP4eadvQu+1u224iVr2nDvc+cKtnD+5uAoMhwF2ydz8dpN+Mx1GwHMFljVQrRnHhzSro3SH03CZTXmfS/XKsxbLuAUt1AaEUqkqtqC26zMhBOq2ieBnGKmQAul2nnw/tbyowR80URNC7gjo0E8OzCDl23M3z4JSGMUFqNOdQF3fDwEs0GHi1e14Mu/O6apcl4uYkSgdAGXjRKosxOl1gXchi4n1nU61LVR7t4NrF8P/OlPwJo1wJVXanIuxCyKCzjGmAPAvQA+DKmt8tMA/p+Cx72LMfYMY+yZiYmJcs+TmAfnvK4KnCig5jtRTocTqg1MBLec34epcAJ7jhS2dx9VMbvGGJOsngMLF1JKjVCUsL7LiaNjQUV97+UqcKJ1Q2TByfNvfR7Vx9Ia+dxKtFccGwtifRnzb8DsrFGhGbiRQAyxZKZkhEAul65uBQD85cRkwfvIGXAatFB67cXbQMVFt1DbC2MMO/u9ePZsdWZD7n3uHJxmQ8FF2et29eHcTBRPFZhNefCFEaxut2ODQpfRG3f04gNXrcHfXNxf9jkrodVhRo/bIgeGa0ExxUN8rowoNGUql4DaGTizAZwDoQSpcPPxlaFgWYx6eGxGjBVS4EIJOMwGxaqeWGyrnYOLpySDjVq2UN61dxCcAy8vMP8GSJ9XPR7l5mSCE+MhrG534P9dtxn+aBJf+8Pxis5ZC6YUGtKIn6HSef5qMTAdAWPQpPUfkH6W12/vwd4zM8pbYvfsAU6elNomn3wSeN3rgEXgSNpIKCrgGGNGSMXbnZzznwNYDWAlgBcYY2cA9AF4jjHWNf+xnPPvcM7P55yf396+0GqWKI9EOoNUhtdNgbMY9Wh3mjHkm/tBNR1OoEVFBlwul6+VWrfuLtJGOWs+ouyDKV/YqhTirY0CB0hOlMFYStGO+0QwXtbcnVj8CwWuUQxMgNld2WIF3FQojslQouywZoNeB6fFUNCF8lR2LqxUhEAufV4b+lttRefgxMVKkxm47A5/oSiBwekIDDpW9L19fr8XZ6YiBeduyiWSSOE3L47i2m3dBRec12zqgsNsyNtGOR6M4anTU7h2W49i22rGGD52zXpcki2kq8mmHremTpTFCrhOlwWMoeohxnKMgFnpDJx0raA5uIX4IuoVOCB7fSliYqJmM9NtNcJtNeLsdFjVORSLtNAar80EvY7hwJAfXS5LSfOhcrLgToyHsKbDgU09LrzxgmX40eNn5M/3ejEZkmb7S+Xsua1GuCyGhmih7HJZNM3WfE12LvqXSlQ4MfN2113AU09JxdvPfw7cdBOQaYy5xsWAEhdKBuD7AA5zzr8MAJzzA5zzDs75Cs75CgDnAOzknI9W9WwJmUhcmjeqlwIHLPxwTmc4piPlzcAB0iL95vN6sefIeMFiYNgXhcdmhFXh6+5wWhYsdoPxFCKJtIYKnHQRK+VEGUumEYilylLgjHodPDajvBO4/5wfvR5r2WqnloiCdCJU2KBDtCmWW8AB0hxcoRZKNRECuVy6uhVPnZoqPJcmK3AazMBlnTSnCzhRDkxH0Oe1Fg05P3+FNAendZzAbw+OIpJI4+adfQXvYzXpcd22bjx0YGSBQcdvX5TaJ69T0D5ZD7b0unBqMqyZsUgxxcZk0KHNYa66AheKJ6HXMViMyhppxJwhOVEuxBdJlhV43OG05G3RB7Lz4Co3M/tbbRhQufgPFIm00BqdjskdF1dv7Ci5WSPFAyl/PZFECkO+KNZ0SBtxH335eliMenzuocPln7QGTIbiitc1fV5b3Vsoz01HNWufFPS32rF9mQcP7FNQwO3dOzvzxpj07ze8Abj/fuA976EiTiOUfPJfBuBNAK5ijO3L/nl1lc+LKEE42wZTLxdKQJqDy22P8EUS4Fx9Blwur9vVh1SG477nh/J+fVSlpXuHa6ECN5sBp017wfpOZU6UE3KEQHnFQKvdJLthHRjyY1sDGJgA0s+bscJubADksPNyQrwFXpupYAvlqYkQHGaD6uL40tVtCMZTeLGAzfywPwazQadJoSyOUagIHSyQAZfLll43TAad5m2UP39uCMtarLJRSiFet6sPkUQav35x7l7dg/tHsLbDUVGBXk229LjBOXBkVJs5uEB2Bq4Q3W4LRvK0bmtJMJaCw2xQrHgKBY6MTBYyE0mqCvEWdDjNBT/3JkPqNzOXtajPEaulAgfMdlwUig/IpcdjxXgwjniquMGVQGzEiQKu3WnG+69ag0cOj+Ox4/UbwZkKJRS7iS5rqX+Y94BGEQLzuWF7Dw6NBHBivMTM/8c/PtewhDHgf/8X+PSnge9+F3j724G0svcEURglLpR/5pwzzvk2zvmO7J+H5t1nBee88CAJoTmRrONfvXLgACkLbsgXlYfihbJQKiulGGs7ndi+zIN7nj2Xd6Zs2B9TFCEg6HCa4Y8mEUvOfliIVkc1xymG22ZEl8tSUoGbCJUX4i1oc5gxGUzAH0ni7FQEWxqgfRKQlFOvrXgW3LGxINxWY1kGLgK31VgwFPbUZBir2u2KF7OCS0rMwUkOlFbVx82HaNEqFCVQKMQ7F7NBj229bk2dKEf9Mfz5xCRu2tFb0mBmV78XK1ptuOfZQfm28UAMT5+ZVmReUi/E78qLGhmZlHL963ZbZPW2WoRiKcXzb8Cs2Qm1UM6Fcw5/NFGWAtfuMmM8GMt7rZpW2UIJSCYYQypzxGpdwHU4LbCZ9LhkVenWZ9G5MOZX1vItHChFAQcAb7tsBZa32PCvDx6uW6zAZCiONoXXrmVeG87NROqWBRdLpjEaiGGZV/sC7rpt3dAxKFPh5sMY8C//Atx+O/DDHwKvfCWQyvksopw41VTmoU7UDdEKVE8FrsdjRSKVkbPJhG1yuS2Ugtft6sOR0WDe8N0Rf1TV7Fq+KIHR7GyKVjNwgKQsFYsSCMaS+M/fHQOgLGg6H20OMybDcdmMoVEUOCAb5l1CgVvX6aioEPLYTPAXaaFUGiGQS5vDjA1dTjxRYA5uRKMIAUCaG7WZ9HnDvAOxJGYiSUW7prtWePHikH/OpkQl3L9vCJwDNxVpnxQwxvDanX148tS0rBQ8dGAEvIHbJwEpdLnNYdJkDk5a8Jcq4KxVd6EMxlOKIwQAwJUt4ALUQjmHcCKNZJrDW0YB1+m0IJnmCzaWOOfZFkp1G1ZdLgsS6UzBNut81LqAe/flq/CF125TNF+lNgvu+HgQeh3DitbZz3KzQY9PvXoDjo4F8bO9g0UeXT0mQspn1/u8VsSSGXnDttYI9W95qzYdRrl0uCy4eFUrHnhhuLwClTHgttuAv/1b4JFHgGuukYo4yokrCyrgmhRZgavzDBww60Sp1ja5ENdv64HJoMPdz8z9sI4m0vBFkqocAdtds7k1ghF/DIyV38qYj/VdTpwcD+XdIRz2RXHLHU/g8ZNT+MLNW7FahdV9Lq0OE6ZCCRzILkKrbb+uBhHmnQ/OOY6OBitur/NYjXlbKKOJNIZ8UVURArlcsroVe89M5y2Ihn3qWnZL4bWZ8pqYDJZwoMzl/P4WJNMc+89pU4zc+9w57FzuwUqFBfDNu/rAmNR2CQC/OjCCDV1OrOlozPZJQCo8N/e4C7bKqiGcSCOd4UUXzD0eC0LxVFWLpWAsqUqBm52BIwUuF9HS7LGW0UIpX1/mFuuBWArJNFe9mdnlkq5Joyrab4XNfq0KuItWteL6rKFFKdRmwZ0YD6G/1QaTYe7S9BWbu3DRymysQI1DsuOpNIKxlOKf5aybaH3aKNVcS8rhhh09ODMVkdchZfH97wPvepdUuG3bRjlxZUIFXJMiK3B1cqEEFmbBaaXAuW1GXLOpE/e/MDynd35ERQacQLTsTeRcYEf9MbQ5zAsuEpWwvtOJRDqDM1NzHcReHPLjxm/+BUMzUfzwbRfgjRcuL/s5Wu1SO+izZ2ewrMUqO1M2AlIBl3/XeDwYRyCWqmj+DZByhfzRJNLzcqxOT0rfczURArlcuroN8VQGzw/45tyeTGcwFoxpEiEgaLGb8sYIiIu9IgVODvSufA7u4HAAx8ZCRc1L5tPrseKSVa2457lBjPij2HtmBtdubVz1TbCl14XjY8GKlUslioeYrx2togoXiqdUBaCTC2V+hLNtuSYmwMIsuHI3Mzuz17YxNQVcVPp51sLERC2iy0VNAbcmz0YcYwyfuW4TZiIJfKPGsQLCOExxC2WdowS0zoCbzys3d8OoZ7i/nDbKXL79balgO3wYeNnLqHgrAyrgmpSGUOC8cxU4YXGvRWFxy/nL4Isk8fvDs5lwI7L5iPICTg5bzVHghv0xzRwoBaI4OTo6a3f8+8NjeP23n4BBx3DPey/FS9dWFqMhHM0ePzGJbb2eio6lNcUUODEbuLZChcZtk4Kw57vonZpUHyGQy0WrWqBjwBMn587BjQVi4Bzo1aiFEpAWifnao8SuqZK5hRa7Cava7XhWg0Dvnz83BJNep7r98XW7+jA4HcU/P3AIAPDqBm6fFGzpcSOV4bKhTrkoUTx6VC5cyyEUU9dCaTXqodcxhOLUQpnLbAFXnokJgAVGWeJaqLaFUlyXRhXOjAHShoLdpC9pcV8PLEY92hxmRZEayXQGZ6cic+bfctnS68brdy3DDx8/I2/a1QKlId4C0ZlULyOTwekILEZdWXFFSnDbjLhiXQce3D+8YDNVFXv2AAcOAA4HcO+90v8JVTTebzyhCNmFso4KnMtihNNikBW46XACbmvprBQlvGRNG7pcFtyTkwk3az6iXBFptZuhY3N3SEf9UblVRSvWdDigY8DRrMvdj584g3f++BmsbnfgvvddVrH6BMwGZocT6YYxMBG0OU2IJNKI5AkJFgvmdWWGeAs8Isx73ryJcC5T2gI4H5fFiK19Hvxl3hyccFjVsoWykAI3MB2By2KAW6EKcH6/F88OzMgGQuWQSmfwwAtDuGpDh+rF6yu3dMFu0uM3B0exsdtVdltwLdnco42RiRIFrju7iKvmHFwwlpKNSZTAGIPDbCAFbh7i97GcGTjRQjlfMSu3G6XdIV2vRlVkCJaax6w3vR4LhhREapydCiOV4QULOAD42CvWwaTX1TRWQGmIt8BuNqDVblLtJqoVwoFSC+OtQtywowdjgTiePl1mF0huTtw//AOQTAKvfS0VcSqhAq5JaYQcOCCbBTcz20JZafukQK9juHlnLx49Oo7x7MVRuLqpUeD0OoY2h3nOjMJIFRQ4i1GPFa12HBoJ4l8ePIT/d/9BXLWhA//37ovRoVGxmLub20gGJsBsFtxkcGFxcmwsiDaHuSJ3UmA2R23+HNypiRB6PVbF2YD5uGx1K14Y9CGUkxM2LGfAaT0Dl7+AU2Nuc35/C3yRpKw+lsNjxycxGUrg5p29qh9rMxnw6mzbZCObl+SyrMUKp8WAg8OVzQ4qKeA6nNJCvJpOlMG4OhdKQGqjpAJuLuLzROnmSS42kwFOs2FBlMCsI7O666FBL2UIqpqBiybhLkM9rBU9HmVZcPkcKOfT4bTg73avwe8OjeHxAs7BWiO7R6u4fvW12OqmwA1MR6riQJnLyzZ2wmbS44EX8sc9lSQ3J+7d7waMRuDKK6XbCcVQAdekCAXOVkcXSiBreywUuFBC02Dp1+3qQ4YDv8hmwg37Y2ixmxS5X+WSmwUXiqcQjKU0y4DLZX2XE48cHsP3/3wab710Bb79pvM1/fnkFseNZGACzM4H5HPeOjoWqlh9AwB31mRgvoIlIgQq4dLVbUhlOPbm7CiKth+tXCgBSYELxlJIzjO7GVSZ27MrG+j9TAVtlL/cPwyPzYgr13eU9fi3XLoCq9rtuPE89QVgPWCMYYsGRiYBBQWcUa9Du9NcNQUunkojkcrAqbIDw2kxUpD3PHzh8k1MgNkogVxEC2U518MutwWjAeUtlIFoEm5rfdcBxRAFXCnXwuNjUgFXSs1/+0tWwm01Vj6DpZBJuR1W+c+yz2utS5g351xRnmilWE16vHxTJx46MIpEqoxoh9ycuM5OKeT7kUekkG9CMVTANSmRRBoWow76ErlN1SZXgZsOa1vArWp3YFe/F3dnM+FG/dGylLMOp0VuoRSmAlorcABw3nIPdAy47TWbcPv1mzX/2QgFq7/VVtZucTWRFbh5BVwmw3FirHIHSmDWZMCf00LJOS87QiCX81d4YdLr8HjOHNywLwqPzahpES7mQ3OL0EyG49xMVNVFd1WbHU6LoSInsP3n/Di/v6VsM58tvW784WNXyjMfzcCWXhcOjwQWFNBqEApcKdOIakYJhLMdGGpm4ABS4PLhy86Qlft70OE0LzAxmQon4DAbYDao7wroclkwpuJ944smGrqFssdjRSSRLukeeSLbSVFqLMRi1GN1ux1np2szBzcZTMBm0qu6Dizz2jDsi1Y2I1YG0+EEwol01Rwoc7lhRw/80aQ2Aesf/CAQDAI/+lHlx1pCUAHXpEQSqbpmwAl6vVYE4yn4o0mphVJly0gpXrerDyfGQ9g36Mu2PqpfLHY4ZxW40TKMUJTyt5etxF8+eRXedtlKzY8NSDlOJr0OWxts/g2YHfCe30o05IsinEhrUsCJIGxfTvEzEYwjFE+VHSEgsBj12NnvwV9OzM7BDftiquYtldCSfQ0zOVECY8EYEumMqosuYwybul15sxKVEE2kcWoihE09rrIe36xs6XUjkcrg5ET5raf+aBKMoaT61eOxKDJvKAehoqlxoQSkzxAq4OYyE0mUZWAi6HBa8piYlH8tlBQ4lS2UDVzACROoUllwJ8ZDWF2kfTKX/lY7BqZqo3BNheOKDUwEy1qsSKa5KjdRLRiocoRALi9Z0w6PzYhfvqCBEnrBBcBFFwHf+AaQqU9YezNCBVyTEomnYTPXd/4NAHo9IvMkgpmItgocAFy7rRsWow73PHsOw75yFTgzpsNxpDO8rCgCpRj0Ok0NL+bDGMP/e80mvOvyVVV7jnIRi5X5CpwwMFnfVXkLpQgizg3NPTlRWYRALpetbsOhkYActD3si2o6/wbMzvHlzsGJhYjauYXNPW4cGQ2Utct7ZDSADAc2dS+tAk4LIxN/NAmXxQhdCYW9y2XFiC9WXuBtCUQRpsbEBJAUuyC5UM7BF0mWFSEg6HCas461sz/nSrpROl0W+KNJRBPK4i4avYCbzYIrXMxkMhwnJ/JHCORjeYsNI4HYnJihajEZissGYkrp886ui2rJoBziXf0CzmTQYXufR74GV8wHPgAcOwY8/LA2x1sCUAHXpIQbSIEDgMMj0kKy1a6tda3LYsQrN3fh/n3DCMRS6C5jHqndZUGGS3MJQoHr1NiFslb8zcX92NbnqfdpLMCo18FjM+Yp4CSlY60GCpxBr4PTYpjTiiNHCGjggnjpmlYAwBOnJBVOKuC0fZ+IRV2uiljurummHhdiyUxZltqHRqQCZvMSU+BWttlhM+nxYgWtp0oXzD0eC6LJNAJR7RUvYbZT3gwcKXC5+CIJWd0vh06XBfFUBoGc76tk6FXetVBNmHc8lUYsmWmSAq6wAjfkiyKWzBQ1MMmlv9UGzmsTlj0ZTKhX4LLrosEaG5mIgrHPW5u29lZ7flOusrjlFqCrC/j617U53hKACrgmJZJI192BEpjNPBGzOFq3UAJSJpxYsJTT0pab1TMSiKG1DCMUojRtDvMCF8pjY0F0uy1wqWz1KoTHZpxT/JyaCMNi1KFbg4J8W58HdpMej5+cRCieQiCW0lyBEy2U0zmvYXA6Ah1T73Yp1LNyXBUPDQfgtBhqdqFvFPQ60Xpa/QJOqPHVaKMURZjaFkoxA1cNVbAYk6E4bvjGn2vW9qYGXyRZ0UyxiBKYyDEymQrFy3Zk7pKz4EoXcEocUetNq90Ek0FXtIA7MVHagTKX/qzCdHaq+nNwU+G4agdlsbFd6zDvgakI2hzmmpnbtWhZwJlMkiPlQw8Bx2sb1t6sUAHXpITjqbpmwAnaHCaYDTrsPyctiLRuoQSAS1a1yoViObNrswVcDKP+WFXm3wjpvTBfgTs6qo2BicBrM82JETg1EcLKNkfJdjYlGPU6XLiyBY+fmJLt37Uu4DzyDFxOATcTRbfbqtpEYU2HAya9TlbT1HBoJIBN3a6qZgU1Kpt7XDg0HCg7Q09xAZdVb0eqUMCJMG61LZROixHpDEcsWds5kwNDfrxwzo/nBysPn9caXzRZVgacoF1cX7JGJpxzqYWyghk4YGG2XD4CCg116gljTDI7K1bAjakt4KSW+bNV3hBIZ6SfZbvKn6XZoJdcaBXk32mJlAFXu025FocJ0WRacbtvSUSkwDe/qc3xFjlUwDUpjaLAiQ9nsYisRgGn0zG8NptVVY5iIHLYxgPxsufoiNK0OcxzCrh0huPEREiTEHOB22qcMwOnRYRALpeubsOpyTCePSstNHs0fq+YDDo4zQZM55iYDKiMEMg91tpOBw6pNDJJZziOjASXnIGJYHOvG+FEGmfK3L0PRJUpNuJzptjsT7mExAxcGS6UAGoeJTCRLW7mmxzVm0yGwxdJlB0hAEgmJgBkI5NANIVUhpevwLlE4b84FDgga+hTrIAbD6HVblK8fmi1m2A36eX282oxHU4gw2djctTQU6JorQblXkvKRbzHp8Ia/V53d0utlD/4geRKSRSFCrgmpVFm4ACpXUBkgWg9Ayd475Vr8MO3XSAPB6tBWNyPB+MYDZACVy2kAm5WWTo7FUYilcFahbuqSvDYTPBn2w/jqTQGpyNYXWGEQC5iDu7e584B0F6BA6QogZl5M3DLytw1FWqSmpa4M1NhRJPpJWdgIhAZiuXmwSlV4DqcFuh1TFErnFoCcgtleQVcoMZzcEJNyv18aASC8RQyHBWZmHRmWyjFaxSL2XLHCexmKRxciQLXNAWc21p0I+PEhHIHSkDaOF7eaq96C6X8syxjXdNbomjVmmQ6gxF/tKYFXEv2+6JZGyUgmZkEAsCPf6zdMRcpVMA1KY3iQgnMnUurhgIHSMGR5QYOmww6eG1GDExH4Iskq+oUuZRpd5oRiqcQS0rtFMLAREsFzmszyi2UA1MRZLg2BiaCjV0ueG1G7D0zA72Oye23WuK1GeULXjSRxkQwXvZFd1O3C1PhxAIb82IIxW6pKnBrO6XW04NlGJlwzhUXcHodQ6fTXJUZuFA8BaOewayy7bZeCpx4f85vsa43Yp62khgBh9kAq1Evv0bxu13JZman27JoZuAAaSNsLBjLm7/IOceJ8ZDi9klBf4sNZ6uswImZbrUulIC0LhpSEGCuFcO+KDIcVQ/xzqVFVuA0LOAuukiKFfjGN4Aaz+o2G1TANSmNpsAB0uKg3DDUatPhtGD/OR+A2RYVQlva52XBHRsLgjHlcw1K8FiN8EeTSGe4phECAp2O4ZLVkgrX6TTDoNf+/ZyrwA1mh9zLvehuyqpJakw5Do0EYNQzrO3QrrBuJox6HTZ0O/FiGUYmkUQaqQxXvGDu9lirMgcTiqXgMBtUzzAK05NaO1HOKnCNVsBJBVAlM3CMMXS4zDlFqvS7XclmZrfCLDh/pDkKuF6PFZznN2aZDCXgjyYVRwgI+lttODdd3bBs8X4tt4Uynspoq04VQbST1qOAm9ZSWWdMUuGOHAEeeUS74y5CGnO1TRRFDKHXymmoFMJgpNye/1rQ4TLjxLikCNEMXHVoc0o//4nsRe/oWBDLvDZN36dumwmcSwqCiBBYqWELJQBcsroNQHXaJwHJiVJc1IUrX7kK3MZuqQhTMwd3aDiANR3Oht1sqQWbe9x4cUhd6ymgXvHocluqYmISjCVVG5gAswqccPWtFWPZ4maqwVooZ2QFrrICqMNpxni24JIVuAocmTtdFoUtlNLPsZFNTIDiUQLiuqx2o295qw2JdEZV6Lla5AKunBZKb+n8Oy2pZYi3QC7gtC5SX/96oKMD+NrXtD3uImPpXsGbmEhC+tC2N0gLpfigqlb7pBa0O80QG3U0A1cdRFbOZHaxdnxMWwdKQFLgAGnn/NREGB1Os2or9VJcllXgqlXAee0m2YVSKHDlXnSdFiP6W22qnCiFA+VSZkuvC/5oEudU5jSpLeB63BaM+LUP8w7FU3Ca1b/vZxW4WpuYVF+B+8ojx/D+/3lO1WPEz7OSFkpA6vCYbaGU/q7ketjlko5XSl3yR5Owm/QwVqFTQEtEnma+duIT45JZhfoWSuFEWb05uMlQAia9Di6r+s0SsbFdKyOTgekITHpdTTNuXRYDjHqmbQslAJjNwNatwIMPAqdOzd6+Zw/wpS9p+1xNTGP/1hN5iWQtWxtNgWupkoGJFrTntEBQAVcd5AIulEAilcGpiTDWd2nXPgkAXnu2gIsmcWoipGn7pGBlmx0vXduGy7KGJlrTYjchnEgjlkxjYDoCm0lf0WJPyjVTVsCNB2OYCMaX7PybYIvceqrOyERtAdftltqocp1TtSAYS5WlwAnXylq2UGYyXC5upkKJqs0EPX16Go8dn1T1GLGR4qlQwepwzSpwk6EEnGYDzIbyN1g73RakM7xkwat0HrPezCpwC9WoE+Mh2E161Z0xs1lw1ZuDmwzF0eowlRW3oiTAXEsGpyPo81qh1yBSRymMMXhtJnnTQlPe/W7p7098Qvp7zx5JmbvgAu2fq0mhAq4JCccbS4HrclugYw3eQpm1enZbjQ1T+C42RMvQZCiO05NhpDJccwXOnbX7nokkshEC2haIgHRR+snbL8IbLliu+bEBKcsOkFTEwaztcyV5bJt7XDg7FVGkqhwekXa7l7oCt77LCb2OqQ70Vl/AiSgBbRdxwVgKzjJyQEUBV0sXyplIAqkMR5/XikQ6g0C0Os89EYzDH03K10cl+DQyAelwWhBOpBGOpyrKgBOIOe1SRib+aALuCtXDWmAx6tFqN+VVo05MSAYmaj8DezxWGPWs6gVcm8oQb4HXZoTFWDzAXEsGp6M1nX8TSGHeVVD0b7kF2L0buPde4EMfkoq3u+6SbiMAUAHXlDSaAmfU6/Chq9fhxvN6630qBRFugjT/Vj3MBj1cFgMmQ3EcG5MKBc1bKLOzKqcnwvBFklil8fxbLWjJqogzkUQ2QqCyi65Q046Mls7NkR0ol3gBZzHqsbbDgRdVOlGqLuCyu/BKMr3UEIqnVEcIAJIzpsNsqGkL5Vg2A25z9n06UaU2SnFcNTOHvkgSTouhYrMicX0ZD8YxFY5XvJkprlOl5rskBa4x1gGl6PFYC87AqYkQEOh1DH1eGwamq9dCORVKlD3LyBiTXnMVZmDzUUkcTSW0OqqkwAHAF74g/f21r0ltlXv3AidOSLd96UuSKpfLEmuxpAKuCZEVuAYI8hZ86GVrZfe+RkRcYKl9srq0Oc1yAafXMc1bHIV69dyAFLS9ugoKXLURr2E6nMDgdOW5PZtFO6CCYuTQSAC9HquiIOrFzuYet+osuEC2gFNqGiGC4Ec1XsSF4uW1UAKSkUmohgrcWFAqQjZ1S+/TqSoUcPFUWnaUVGMa4Ysk5N/HSujIZsGNB2KYCiUqHifoVKzANUcLJZA/zDsQS2IsEC/bqXh5i61hFThAGi8ZUjlnWw7+SBL+aLKmBiaCFru5ek6b4TDg8Uiq29iY1E65di2wbRtw8CDw2tcCf/iDdN8l2GJJBVwTIitwZbTQLFU6shdEyoCrLm0OMyaDCRwdDWJFq62iOZB8uLKL1ucHfAC0jRCoFWLe7fhYENFkuuKLbofTjFa7SZGRyaFh/5KffxNs6XVhIhiXZ5eU4I8mwRgUty+2Ocww6BiGtVbgYik4yjAxAZBV4GpXwE1kFTjxvqtGmHeuu6WalrWZSLKiCAGBaNEfC8YxHU6UlRuWS6vdBKOeKVTgmqWAk4qZ3BnIk8KBssyNuP5WGwamIlWZq+ScYyqUqKiAk7Lgqu9CWakZViW02k3am5gAswXZvfdKRdrDDwMtLcDf/Z1U1P3kJ8DMDPDylwPveMeSbLGkAq4JCScaT4FrdDpdZhj1rC4tBkuJ9qwCd3w8pGmAt8Cg18FpMWDIF4VJr0Oft/YXrErxZgu4F85JilmlF13GGDb1lDYyiSRSODUZXvLtk4ItvZIipCYPzh9NwmUxQqfQKECnY+h0WTCi4RxMLJlGIp0pq4USkBS4YLyWLZRZBU4u4LRX4CZyguzVFHC+aFKTGbLOHAVuOpyo2JFZp2PocFowtogUuF6PFeFEes785fEyIwQEy1tsCMZTmpsEAdKcaCKdqagY7/VaMRmKI5ZMa3hmC6lHBpygxW5CMJZCIrUwpL0i9u6dW5Dt3g3ccw/Q3w/86U/AyAjw7W9LrZXf/z7w3vcuqeINoAKuKYnESYFTi81kwN3vuRRvvmRFvU9lUdPuMGPEH8PZqbDm828CMQfX32qrqeOWVgjHuxcGfQCgyabCph4Xjo+Fil5Ej44GwfnsLNJSZ2O3C4wBLw4pb6MsZ8Hc47FoqsCJDLfyCzhjTRW48WAcHpsRXS7J7KrqBZyK77XUQll5AeS2GmEy6HBiPIRUhmsSqdNVIsw7nkojlsw0TQGXz5Xx5HgIJr2u7E2sFa3VixKQM+AqUeCyr7lUK2yl1LOAExuSIlNRMz7+8YUF2e7d0u0A0NkptVNyDhiNwLe+tXAmbpFDBVwTQgpceexY5pFd2Ijq0OYwIZpMI8O1NzARiJmVZmyfBCQV0W014tSktOjQQkXc1O1CIp3ByYlQwfuIFktqoZRwmA1Y2WZX5URZTgHX7bZqGuYt5tfK/SxzWmrbQjkWiKHTaYFex9BiN1WlhVIYmPS4F85ZFcMXSVYcIQBIKni7w4zDWSOhShb9gi6XpejCX62hTr3JV8CdGA9hZZu9bBOZakYJiDzTygq46rjQzmdwOgKvzQiXxpmoShCGPVNV+L0uimixvP12IJkEPvpR6f9LqIijAq4JaTQXSoIQ5F7sqlXAiQVLNSIEaoXY9e90mWExVr4Rs1lBrtnB4QBcFoOc20hIeXDVVuC6PdJCPFMilFkpovgqN8C+1grcWDAum3y02s1VVeC29rkVO36mMxyBWLLiEG9Bh8uMo6PSe0kLBa7TJSlwhea71Brq1Jt8xYyIECgXoThVo4ATc13lulACtQvz1sLNuFzEe71qRiaFEC2WH/kI4HJJgd933SXdvkSgAq4JCcdTMOoZTAb68RGNhSjgTHodVrRW54IiFlzNGCEgEG0nWg2dr2yzw2LUyTEB+Tg0HMCmHldFmXOLjc09Lgz5onKgcynKaqF0W5FMc0xqZLUt5tcqU+BqNwM3EYjJJh9tTlPVCjivzYj+VjuGfFFFphaBaBKcz7ZkV0qH04xYUmphrmTRL+hymxFJpBEskGvXbApcm90Mk14nm3rEkmkMTkfKihAQWIx6dLksOFuFKAEtWii75BzI6rZQDtaxgJMVuGpFCRRCtFiaTMCrXw088ABw+eWzLZZLAKoAmpBIIk3qG9GQtGXjGla1l98WUwqhXjWzAteSLUK1uujqdQwbulw4NJK/HTCd4TgyGpCt3AkJYWRSygBGEIgmVSseonVsRKNFXChW4Qyc2YB4KqO96UAeMhmO8WBcNvloc1RPgWt3mtHttiCRyihyxRMzO1rECACz1v+ApDRqdbxCRibNVsDpdAzdOVECpyfDyPDyDUwEy7NOlFozGYxDxypTU80GPdqd5qq2UKYzHOdmKo+jKRfx/VG6CVYVbrwRGB8HnniifudQB6iAa0LC8RTNvxENiXDsqoYDpUAocKubdAYOmFXglmnoorm5x4VDw4G86sPpyTBiyQzNv81jQ/Z9emS0dAHHOS9zBk7bOZhgpQVc9nG1UOGmIwmkMlzO4RQxI1ozEZIKODXFsk8UQBoqcAKvvfJjisibQkYmzVbAAZIaLX4PTlQYISDob7Hh7HQVCrism2ilRlnVDvMe8UeRyvC6FXAemwmM1aGFMpdXvUpS4u67r37nUAeogGtCIok0OVASDUm70wyn2YDzlnmq9hxvvGAZ/vMN2zWbXakHLRq3UAKSOUkglsK5PMGxsoEJRQjModVhRpvDjKNZ84liRJNpJNO8DBfKrHmDRk50woWy/BZK6fxrMQc3ns2AE2pSm8OMaDKNSELb554IxtHuMKuaOfJprMCJNlGnxaBJ/mVX9ntWaKbPH2nCAs4zW8AdHw9Bxyo3o+pvtWEiGNf8PTUZjGuipPZ6LFUN8xYOlPUq4PQ6Bq+tSllwSnG5gKuvBn7xC8mVcolABVwTEk6QAkc0JmaDHnv+4Ur8zcX9VXuOHo8VN53XV7Xj1wKxaFyu4ZygKM7ytQMeGg7AqGcVtystRjZ0OXF0rHQBV67i4bUZYTboNMuCkwu4ChW4UIHZKi0ZC0rFh2xiklXotVThOOdzWigBZWqnL1sAaeFCCQDtslGLdqYoQLEWSunn1ywmJoBUzIwGYkilMzg5HsKyFlvFJk792SiBAY1VuMlQHG3Oyn+WvR6r4rnMcjg3Lb3XtezmUEuL3VRfBQ4AbrpJMjJ58cX6nkcNoQKuCYnEaQaOaFzaHOaqzb8tFla1S6YjqzWc49vQ5YKOzaptuRwaCWBth5OMj/KwvsuJY2NBpEu4RJZbwDHG0OuxKnZHLEUgloTJoCtb5RGFX6AGLZQTWQVOqFPtWUOICQ3n4MKJNKLJNNqdZrTYTVKxrKBlTYQ/a6fASa9NCwdKQDLo8NqMRVso7SY9jE30WdvjsSLDJWfSE+OhitsngepFCUyGEprEQfR4rIinMlUrcAamI9Bn5wvrRYu9zgocALzmNQBjS6qNsnl+8wmZcCIFu5kUOIJoVq7Z1ImnP/0yzRZ7AGA16bGq3ZHXiVI4UBILWd/lRCyZKbmDX0nLWrfHopmVeCiWgrOCFnpXDVsoxwJzFTixINbSyERECLQ7zXKxrMT1zx9JQMfKnyWcj2gTbdVg0S/oclvl7+F8fNFEU7VPArPtxANTEZyeDGvSEdDfUp0w76mQNi2Us/l31XGiHJiOoMdjqWsh39oIClxXF3DJJVIb5RKBCrgmhFwoCaK5YYxVJXRVMjKZ60Q5HoxhMhSn+bcCrM/mFZaag6vENELLMO9QPFV2+ySQa2JSmxZKj80oq4WiJa0qBZxDKqC6PRZFphEzEcmQRlehSYWgxWaCQcc0a6EEgC6XuaByG4gm4W6yOWBRzDx1egqJdKaiCAGB22aE22rUVIGLJtIIJ9KatVAC1cuCG5iO1G3+TeBthAIOkNoon38eOHu23mdSE6iAa0LC8RRsNANHEMQ8NnW7MOyPzbF0FoocKXD5WdfpBGOlCzhfBQVcj9uC8WAcyXTl1v3BWKpsAxMg18Sk+i2U44E4Op0L7fWnQtot9nIVOGCu02ExfFHtQrwBySb/469cj1vO124+t8ttKajASY6ozbWRK8K8/3RsAkDlEQKC/labpjNwWmTACWYVuOoUcIMNUMC12k2YiSRKtqFXnRtukP6+//76nkeNoAKuCSEFjiCIfIgi7XDOHJyYidtIClxerCY9+ltsODpWPEogUEkB57GCcxRcjKshFEtV1PYnir9QTRS4uNw+CQAmgw4ui0FjBU76nooCrttjxXgwXjLnzhdJaBbiLXjX5auxq79Fs+N1uiyYDCXyvpZyIi3qjc1kgNdmxL5BHwDtCrjlLTZNFbjZAq7yAt9rM8Ji1FWlgAvHU5gKJ+oW4i1osZvA+ayza91YuxbYvHnJtFFSAddkcM5pBo4giLzkc6I8NBxAn9fadIu9WrK+y4kjClooWZkzU90in0wDI5NgPAWHufyfpWSAokOwBi6UE4GYbGAiaHNqG+Y9EYrDoGOym2Svx6KoWPZFkpo5UFYLESUwHlz4WpqxgANmjUw6XWbN2sj7W20Y8kU1UbgBycAE0EaBY4xVLQtucEYqWuvpQAnMGvc0TBvln/4ETE3V+0yqDhVwTUYsmQHnIAWOIIgFtDrM6HJZ5jhRHhoJYDO1TxZlfacTZybDiCXTBe/jjybhNBvKmpnq0TDMOxhLVmy84bQYq95CmclwjAfj6HTNXQRrHeY9EYyjzWGWfy5KW9ZmIgnNHCirRVf2fZOvGG3mAg7QTn0DpCiBdIZrpnIJQxRhTFMpUpSA9iYmA1P1zYATiNbohijgbrwRyGSAX/6y3mdSdaiAazLC2bBKUuAIgsjHph4XDmaNTCKJFE5PhrGp213ns2ps1ne5kOHAifFQwfv4o0m4y2y569bQiS4Ur6yFEgBcFgMCVW6hnI4kkMpw2V5f0O4wYzKsrYlJe85zdLuVqZ3+SPk/z1ohCrj5ryWeSiOWzDRlASdMPbSIEBD0t2gbJfDg/hFs7HZpW8BVIcy73iHegoZS4HbuBJYtWxJxAlTANRmRuLRDTAocQRD52NzjwskJSU06MhoE52RgUor1XaWdKCtRPBxmA1wWQ8VOlJxzhCo0MQGkNtBqz8CNZzPg5i+C2xwmTAa1baHMLeCEUUYx179kOoNgPNX4Clz2ezc6r4CrxBG13oifj9YKHKBNlMCZyTD2Dfpw446eio8l6PFYMRmKF1X4y2FwOgKn2aD5LKdaWrOzgnXPggOkLLgbbwQefhiIaJsN2GhQAddkyAocuVASBJGHTd0upDMcx8aC5ECpkBWtNpgMOhwdq04BB0iLuEoVuHgqg1SGVxQjAEhh3tVuoRwLigy4uQVcq8OMQCyFeEqbxexEMC4HhAPS5qbHZizaTicKoHovfEvhthphNugWtFAKQx1XExZwvR5JLVrT4dTsmB1OM8wGnSYK3P37hsEYcL3GBRywsBCvlIHpCJa12MCYNlEY5SI2QhpCgQOkAi4aBX7723qfSVUpWcAxxpYxxvYwxg4zxg4yxj6Uvf1fGGP7GWP7GGMPM8a0e7cTBYlkCzhbhTuwBEEsTjb3SO2SB4cDODQSgNtqlGewiPwY9Dqs7XAUNTKptIDrdlsqntEJZIsuZ4XmD06zseo5cOMixNu5cAYO0CZKIJPhmAwl5ihwgBQlUKyFUrjlaRkjUA0YY+h2WzAamKtYNrMC97JNHfjCzVtx0Urt3Dp1OiY5UVYYJcA5x/37hnDRyha5FVcLhOqotRPl4EwUy1q0O89yMRl0cFoMjVPAXX454PUu+jZKJQpcCsDHOOcbAVwM4H2MsU0A/o1zvo1zvgPAgwD+X/VOkxCEsy2UpMARBJGPPq8VTrMBh4YDODQcwKZuV913aJuB9Z1OHCtSwAUqLeA8lYd5i7ZHpwYtlNUv4KSio2OBiYl2Yd4ie2pBAecpngXni2QVuCYogDpdFozOe980cwFnNujxxguXaxagLuhvtcmmHuVyYMiPU5Nh3LijV6OzkqhGmHcmwxsiA07QYjc1RgslABgMwGteIxmZJKufd1kvShZwnPMRzvlz2X8HARwG0Ms5zw3NsQOoc4Lf0kBW4GgGjiCIPOh0DBu7XTgw5MeR0QC1TypkfZcTo4EY/JGFF3zOOfzRZEUta70eK2YiSUQT5bcOhrLW/5XPwFXfhXIsGIPHZoTZMHezsc2pnQI3EZob4i3o8ViKLpZnsj/jRp+BAyQjk9HA4pmBqxbLW+wYmI6A8/KXor94fggmvQ6v2tqt4ZnNmtFoYWIkmAjFEU9lGqqAm9bQnKhibroJmJkBHnus3mdSNVTNwDHGVgA4D8BT2f9/ljE2COBWkAJXE2QFjlwoCYIowKYeF/YN+hBLZuRsOKI4wsjkyOjCQO9oMo1kmlfcQgmgIhVOqGaVxwgYEE6kkc5Ub991PBBHp3Nh666YV5vQQIGbCBYq4KwIxlIFi9TZFsrGL4C6XBaMBeJzChOxyUAF3Cwr2myIJtPye0ItqXQGv3xhBLs3tGv+fTUb9Gh3mjVtoRQOlPUO8Ra02k2abMpoxjXXAFbrom6jVFzAMcYcAO4F8GGhvnHOP805XwbgTgDvL/C4dzHGnmGMPTMxMaHFOS9pSIEjCKIUuaobKXDK2NAlfZ/yGZlooXiImZpKduFFAVepiYkoAENVDPMeC8YXtE8Cs451WrRQygWcY2EBBxSOEpBbKJuggOt0WZBIZWTVEAB8TWxiUi2EElXuHNzjJ6cwGYpr3j4p0DrMu1Ey4ASSAtdABdw3vgGcd55UwInNjz17gC99qa6npSWKCjjGmBFS8XYn5/znee7yPwBem++xnPPvcM7P55yf397eXv6ZEgCAcIIUOIIgiiNUN5Neh9Ua5i0tZjpdZrgshrxGJloUcLKRQQWLOFFwOc0VmphkC7hqtlGOB2LoyKPA2UwG2Ex6TcK8CypwJYLTfdEEDDpWcStqLRDKba6DoT+ahN2kh1FPRuKC2SiB8gq4+/YNwWkxYPeGDi1PS6bPY9V0Bu7UZAh6HUOvt/4mJgDQYjdjJpKoqIVVUy64ADhwABgcBJ57TireXv966fZFghIXSgbg+wAOc86/nHP72py7XQ/giPanR8wnEk+BMcBioAKOIIj8rOt0wqhnWNvpgMlAizwlMMawocuV18hEi5Y1OZS5IgVOuFBWPgMnHa86ClwmwzERjKMzjwIHSE6UWilwNpMe9nmFWE+J4PSZSBIem7EpzH06RQEXmF38V+qIuhjp9VihY+VlwUUTafz2xVG8aksXLMbqrK16PJILrVYFzguDfmzoci6YMa0XrXYTkmmOYBVVfVXs3g38+MfSvz/8Yal4u+su6fZFgpIr+2UA3gTgqmxkwD7G2KsBfIEx9iJjbD+AawB8qJonSkiEE2nYjHrNHZwIglg8mAw6vHxTJ67Z1FXvU2kq1nc5cXQsuGCRpYUCZzbo0eYwVzQDJ1wo5xcsaplV4Kqz2JqOJJDK8AUh3oI2hwlTGhgezA/xFnQ4zdCxIgpcJNE0BdBsmPfs9ysQTcLdBAYstcRk0KHHYy1LgXvk8BjCiXTV2icBaVMhlsxo0maYznDsG/ThvOWeyk9MI1rs2Sy4RpqDu/FGYN064M9/Bt773kVVvAFAyasA5/zPAPJVCw9pfzpEKSKJFGXAEQRRkv+6dVe9T6HpWN/lRDCWwrA/Jlt/A9q5/pVyRyxFKJ6C2aCrWFUVClwoXp0WSjlCIE9xBUgKnBahy/NDvAUGvQ5dLkvBdlVfJNkUDpSA1B7KGOY4UUoKHK0D5tPfWl4W3P37htDpMuOiVa1VOCuJXFW4Nc97Vg0nJ0IIxVM4b5lXi1PThJbsbOtUOIEVbfY6n02WPXuA6WngM58BvvUtqYBbREUc9dY0GeF4mjLgCIIgqsCGrBPl0XlOlFoVcN1uS9GA6VIEYqmKQ7yB2RiCailwY8FsiHcBBa5VwxbKfAocUDwLTrRQNgNGvQ7tDjPG/PMLuOY4/1qyvMWOAZUtlDPhBB49OoHrt/dAX8XOJi2z4J4fmAEA7GggBa5VKHCNYmQiZt7uugv4//4/6e/Xv166fZFABVyTEUmkyIGSIAiiCqztFFECc+fgAlExe1apAmfFSAVzMKF4quL5NwBwZY8RqFIBN55ViwopcO0Ok9Rmmc5U9DyFWigBEZyev1j2RxLwNIkCB0jzkyMLFDgq4OazotWGmUgSARXmPL86MIJUhuOGKrZPArkKnBYFnA9uqxErWxtE6UJOC2WjZMHt3Tt35m33bun/e/fW97w0hAq4JiMcT5MDJUEQRBVwW43ocVsWGJn4o0k4LYaKd+h73FaEE+myC6dQLKmJc+KsiUmVWygLmZg4zeAcc6zx1RJPpeGLJPO2UAJSu+qIL4ZMnqy7mUgS3iZR4AApSoAUuNL0t0qW+gMq2nPv3zeENR0ObK5y3IrXZoTFqNOsgNuxzNNQXgiigJtqFAXu4x9f2C65e7d0+yKBCrgmI5JMkwJHEARRJdZ3ORcocP6oNi133Z7i9valCMZSmhRwFqMOBh2ragul12Ys6JDXli26KmmjFKHBBVso3VYk0hlMzlMEYsk0osl0cylwLos8AxdPpRFLZqiAy8PyFnVRAudmIth7ZgY37uipuiMpYwy9GmTBBWNJHBsPNpSBCSDFg1iMusYyMVnkUAHXZETiKVLgCIIgqsT6LhdOToSQzGnv00rxEGHe5TpRatVCyRiD02KQXS21ZiwQz5sBJ9CigCuUASeQw7znRQmIecZmmYEDpBZKfzSJaCKt2TzmYmR5VoE7o3AO7v59wwBQ9fZJQY/HiqEKYkQAYP85PzgHzlveOAYmgla7uXFm4JYAVMA1GZEEKXAEQRDVYkOXE8k0x+nJ2UWgVgVcb4l8slIEYyk4NCjgAMBhMVSvhTIYL9g+CQCtWce66hZw+dVOX7Zt02NtLgUOkJwoxTymiwq4BTjMBrQ5TIpaKDnnuH/fEHb1e7GsxVaDs5N+/yttoZQNTPo8GpyRtrTYpdlWojZQAddkhBMpcqEkCIKoEuvyGJloVcC1O80w6FhlCpxGMTJOs7FqLZTjgVjBDDggR4ELlr/YmwiVKODc+V3/ZrILzGaagRMh8KP+GClwJVjeYsPZ6dIK3OGRII6NhXDjjp4anJVEj8eKiWAcsWS67GM8P+DD6nY73A34/m2xm0iBqyFUwDUZkXiacuAIgiCqxOoOO/Q6NsfIxB9NabJg1usYOl2WshQ4znm2hVKbhZvTYqhKAZfJcEwE4wUdKAHJBdOk1y2YT1ODUOBa7fmfx2MzwmrUL3CiFApcIy6ACyGK4bEAFXCl6G+1K1Lg7t83BIOO4dpttS3gAKkQLwfOOZ4f9DVk+yQgRQlM0QxczaACrolIpDJIpDOkwBEEQVQJs0GPVW12WYHjnCMQTWrWstbttpTVRhVNppHOcM1aKJ0Woyq7daVMRxJIZXhRBY4xhjaHqTIFLhiH12YsGGrOGEOPZ+H32icrcE3UQumebaGUC1Aq4PLS32rDSCCGeKqwypXJcDzwwjAuX9cuuyfWgkJtvUoZmI5gOpxoOAMTASlwtYUKuCYimpA+kGgGjiAIonqs73Li6JgU5h1LShtnWi2Ye4rkkxVDGI5o4UIJSApcKK69AjdWIgNO0OasLMy7WIi3oMdjxfB8Ba4JTUwcZgOcZgO1UCqgv9UGzoHB6cJF0lOnpzHij+GGGrZPApWHeT8/4AMAnLesMRW4FocJ0WRaXqsS1YUKuCYinJAutuRCSRAEUT3WdzoxOB1FKJ7SfMHc7bFg1J8/n6wYIjtOCxdKcZxqtFCOB0UGXGEFDpDarSoq4IqEeAt63AtNI2YiCZgMOliNzXUd7XRb5hRwZGKSHxElMJBnDu7QcAD/dN8BvPPHz8BpNuDlmzprem5CSS3XxOj5gRnYTHqs63RoeVqa0SpnwTVImPcih6ScJiKSLeBIgSMIgqge67skI5NjY0HYs5+3milwOflkxaz25yPUMi0LuFA8Bc65phlY41kFrrOICyUgGZkcHgkWvU8xJoJx7CzRStbtsWAiGEc8lZYz6fyRJDxWY9Vzv7RGZMF1eyywm/Qw6mn/PR8izPvMpDQHF02k8eD+YfzP0wN4fsAHk0GHa7d24x0vXVnztZTZoEeH01x2C+Xzgz5s63PD0KA/e9GWPB1OoM9bG2fPpQxVAk1EOC7J0qTAEQRBVI8NXS4AwLHRIFa1S7vdmilw2V34EV9MXQEnt1BqZWJiRDrDEUmkYdfQGGs8UNwdUtDmNGMqHC+rgOScK26hBIAxf1zOCJuJJJpq/k3Q6bLg5MlJzRxRFyutdhPsJj2eOj2FgekI7n3uHIKxFFa12/FP127Ea3f2wVvDubf59JQZ5h1LpnFoOIB3Xr6qCmelDSIeZIrm4GoCFXBNRJgUOIIgiKrT57XCZtLjyGgQrVnLey1n4AApzHv7Mo/ix4nMNi0VOOm4KU0LuLFgDF6bUVa8CtHmMCOZ5vBHk/CoLKjCiTSiyXTJAi535kgUcL5IsqkcKAVdbjPGg3HMhBNwN2EBWisYY+hvteO3B8dg0uvwyi1d+OuLluOilS0Nobr2eqw4PBpQ/biDw36kMhznqfjMqDUtWUfYaXKirAlUCTQREaHAUQFHEARRNXQ6hnWdThwdDWJLrxuA9gWc2jmYYFxbExNxnFA8CUC5EliKsYCy1tC2nDBvtQVcqRBvgax25igevkgSK9qar72ry21FOsNxajIsvy4iP5941QacGA/hpvN6a+oyqYQejwW/PzKmWnkWBiY7GtSBEoD8vZ6hMO+a0JiNtEReZAWOWigJgiCqyvpOJ46OBTU3MZHUKZ3qOZiQxiYmrmyeXEBjI5PxYBwdJebfAKA9q2xOlBElIBdwjuKFzGyxnFPARRPwWBtrUa+ErqwpzMB0hFooS3DFuna8/SUrG654A6T3ZCyZUW23//yAD31eq6q261rjshhg1DNqoawRVMA1EZEEKXAEQRC1YH2XE/9/e3ce5MZ93Qn8+8M9A2CAuU+SEskZiiI5I8mSJVmUZclrW5Stw7HLduxyba1317VxKputtbOWK1WJN9rUVpz1ZmsrzqZcdhIn5bW98RVTlhRLviTqtCPepMQZkjI5B+ckZnAM7t/+0d0YcIijgUED3cD3U8XSEIMGevDTsPHw3u+9lWgS5xcjAFCzAdrKfLLKRwmEDRgjkP+4tbKwFi85A06jlaZW07FObwbO47Sjy+vCjJrtlFLiaiyFoNd6AZAWwEnJEQJWVm0G/uilq6Yd4K0RQqCz3cUSyjphAGch0QQzcERE9XCT2onyVxdX4Pc4YLfVbv/MUNBTcSODSCKFNqe9Zh3otIA0rGOY98/emMcTT54pe79sVmkuUm4GHJBXQhmuJoBT3vyWC+AA5bXWSijjqSyS6awlM3D9gY2flQGcdVUzC+7Kahyzq3FT73/TdHldzMDVCQM4C9EycO0Wm19DRGQ12iiByYVIzd8wDwbaMFfhJ/CRRBq+GpVPAhsZuIiODNz/ffUSvn7kIqYWIiXvtxJLIp2VujJwne0u2G0CS1V8Wr8YScBhEwjqWJf8WXDa3pxOCzYx6fG64VA/RGAAZ12FynrLOXb5KgDgVhPvf9N0+1xY4Ry4umAA12DxVAaPfuVFPHtmvux9o8k03A6baWeAEBE1i26fGz017kCpGQp4MB+OI5XJ6j5mLZ6u2f43ALlgUE8J5cmZVQDA4eOzJe83r3MGHKA0iumqcpj3YjiBHp8bNh1Z0aFgW65cLRRTso1BCwZwNpvIBcYM4Kyrs92JNqe9ogDu6KUQXHYbbh7qMPDMaqPL6654fx9Vh5FAg/3izUUcvxzCz95YKHvfWKK283qIiKi4PQO1nQGnGQy2QcqNgEePSDwNfw3//fe5HBCifAnlQjiO+bUEhFACOClliftqe9P0NVro8bmrDuD0lE8CSgllJJHGWjyFkJqBq7TrpVlogXEHAzjLUvbAVlZCffRSCPuGO8qO5jCDbpZQ1g0DuAY7fEL5RHNyPlz2vtFkGu0u8/8CExE1gz39yifeNc/A5WbBVRDA1biE0mYT8LkcZbtQnp5RZlY9dsswLixFcXq2+AyrhQoycICyD67aEkr9AdxGyVpo3boZOAAYCDAD1wyGgm25xjrlpDJZnJgJ4RYL7H8DlNLocDyNZFp/dQFVhwFcA0UTafz0rFI6ObkQKfnJJqBm4NiBkoioLrRGJkaUUAKV7YMJx1Pwu2t7Hn6Po2wJ5cmZVQgBfPa9Y3DYBH5Uooxyfk1fd0jNljJwPn3PMRhQg+VQPG8PnDUzcAMdys/CAM7ahoNtun/337wSRjyVNX0HSk2Xj7Pg6oUBXAM9d3Ye8VQW7z8wiNX1VK41cjHRZJodKImI6mSPQQHcYBWtxCPx2mbgAKUTpTLIu7iTM6u4sceLkc52vHOsF08en0U2W/jDxoVwXJ1zp+86pWTgEmU/vMyXzUosRZK6g8T8rn/aHjirBkADAWP2ZFJ9DQXbsBhOIJHOlL3v0UtqAxOLZOC61dl7yxwlYDgGcA10+PgsBjo8+O23bwegZOFKiSWZgSMiqpfRfh/8bge2dbXX9HF9bgf8Hkeuvb0e4US6ZjPgcuehIwN3emYV+4cCAIBHJoYwuxrHv6hvKjebX0vo6kCp6fG5EU9lEU2WfyOruRpLIpOVugO4Xr/SvXE2tI5QLIk2px0ei3ZyfvfefnzotpGa//9I9ZUrodbxAc7RSyH0+NwY6Wwz+rRqQhuezgyc8RjANchqLIVfnlvEB8YHc5/yniuzDy6a4B44IqJ6aXc58Mv/cj8+dse2mj/2cF53xHKklIgkatuFEihfQrkcSWB2NY4Dw0oA956b++Fx2vCjY4XLKBcqaC4CINflc7mCMsrFSGVlmna1e+PcahyhWMqy+98AYFevD1/+yASc7ERtaUNB/SXURy+HcOv2IISo3RxKI+UycGxkYjj+K9Ag/3z6ClIZiYcnhtDjcyHY7sS5eR0ZOHahJCKqmy6vy5DRLYMBj+4MXDSZgZQwIIBzluxCqY0P2K8GcF63A+++qR9PnZxDusAIhIW1eEUZuG5tmHclAVy4sgAOUILlmdA6rsZSlu1ASc1D7zDvq9EkLi5FLTH/TaNl4Faq2NtKlWEA1yCHT8xiR3c7xkcCEEJgrM+PqYXSGbgYu1ASETWFwWCb7i6U2rBtX52bmJxSA7h9wxvzpx6eGMJyNImXzi9fc99sVmIxnNDdgRLYyMAthvV/Wp8L4HQ2MQGAwaAHs6F1rK4ndQ3/JjLSQMADIcrvgT12OQQAuHWbNRqYAMqIDiHAWXB1wACuAZYiCbw4tYSHx4dyafHd/T6cmy/diTLKOXBERE1hKODBSjSJdR37v7RGIzVvYuJ2IJwoFcCt4YbudnR4NoKed+3phd/tuK4b5UosiXRWok/nDDhgI4tmdAZuKNiG+bU4lqNJdHoZwFFjuR129PrceGFysWSgc/TSVdgEMD4SqOPZbY3dJtDZzllw9cAArgGePjmHrFQ+ydSM9flKdqLMZCXWUxlm4IiImsDGLLjyZZTarDYj9sAl09mi3fBOzqzmyic1Hqcd7903gH8+deWa4+YrnAEHbJRbVRrAtbvsFX2YORTwIJWRuLQcQ6CNJZTUeL/zrl04djmEB778C3zrtUsFO7sevRzCnoEOy31w3+V1MQNXBwzgGuDw8TmM9ftyzUsAYKxf+bpYJ8r1lHKhZBdKIiLry80n01FGqZVQ+mv8Rs6vZtYKlVFejSYxE1rPNTDJ98gtQwgn0vjFm4u52xZymTH9GTin3YbOdmdFLccrGeKt0YLldFai08JNTKh5/Jt7bsTTv38v9vT78YXvn8Rv/Z+XciXLgFKSfExtYGI1XczA1QUDuDqbDa3jtbdW8PD40DW37+73ASjeiTKmlrlwDhwRkfVV0okuov77X/s5cMrjFQrgTs0qbyYLBXD37OpGl9d1TRnlQhUZOADornCYdyVDvDVaAAfA0l0oqbmM9vvx7U/fhb/46ASmr8bwyF8ewRd/dBpr8RQuLEUQjqctM/8tHzNw9cF0DpRPOmy2+rRo/fGJOQDXlk8CyobsYLuzaAZOm5PDDBwRkfUNBLQArnwGTusU6ffUuomJloG7vhOl1oFy39D1AZzDbsNDBwbw3X+ZRjSRhtftwPxa5XvTgI1h3nothhPY3eer6DmGAvkBHEsoyTyEEPjgrSN44KZ+fPknb+IbL7+FH5+cw907uwEAt263TgMTTZfPhZW3GMAZreUzcP/+73+Nz3zz9bo93+ETsxgfCeCGHu81t2udKCeLZOCi6iewbdwDR0RkeW6HHT0+t649cOFcF8oaD/JWHy9SKAM3s4rtXe0IFMlYPTIxjHgqi+fOzgMAFsJxdLY74XZUdo3q8bmxZHAJZUebA1712tnJAI5MKNDmxJ88uh//9Lv3YDDgwY+Oz6LD48DOTe8VraDb60IolkSmwL4+qp2WD+B8bgdev3S1Ls/11lIUJ6ZXryuf1JTqRBljBo6IqKkMBT2Y1bMHLmFMAKeVUK4VDODWCpZPam7f0am80VSHes+vJSqaAafp8bmxVKR512aJdAahWKriEkohBAbVMkqWUJKZjY8E8YPP3IMvfWgcf/Lo/rpVh9VSl9eFrARW14vPmKSta/kAbmIkgIVwAld0zuPZiidPKBe6948PFvx+rhNlgXKSaJJ74IiImslgwIM5HXvgwvE0vC477DV+M9dRpIRyNZbCpZXYNfPfNrPZBB6eGMLzk4sIxZJYWItXnBkDlJLLcCKNeKr8OAWt2Uk1z6Ptg2MTEzI7u03gI3dsw2O3Djf6VKqSG+Yd5TBvI7V8ADeubhDVBiYa6fDxOdxxQ+c1G6rzjWqdKOev3wcXSzADR0TUTAYDbZgNrZec/wkoJY61bmACFG9iUqqBSb6Hx4eQykg8c+oKFsLVZeC61Td7errWaWN2eirMwAHAsNo0hmMEiIzV7VV+PyvpLkuVa/kA7ubBDjhsAsenQ4Y+z5tXwnhzPnxd85J8oyU6UeYycNwDR0TUFIaDbYgmMwVLGPNFEumal08CG10tNwdwWgOT/QUamOTbP9yBG3u8+OGxGSyGExV3oAQ2gjE9ZZTVDPHWjPb54Xc7WEJJZLCNDBwDOCO1fADncdqxd7ADxw3OwB0+PgubAB46ULh8EijdiVIbI2C1gY5ERFTYoJoVKtfIZC2eqnkHSkCZw+Zx2hBJXFtCeWpmFSOdbej0ls5WCaGUUb5yYQXprERfBTPgND1qMKanE6W2vaCaAO6Td+/ATz93H5z2ln/bQ2Sobp/+rDpVj/+SAZjYFsCJ6VVkDeqYI6XE4ROzuGd3T8nSDyEERvt8BTtRamMEmIEjImoOuWHeZUYJRBLpXLljrfk9zutLKGdWy2bfNI9MbHwoWV0GTn2zp6PcSsvAaW8QK+G026oKMImoMlqnV2bgjMUADsDESBCRRBoXlgrPYNuqkzOr+M1yrGj3yXyj/f6CnShjyTTsNgG3g0tGRNQMtGHeM2UamUTixpRQAso+uPwAbi2ewlvLMRwY0RfA7e7zY++g0uykr8oulAAKNu/abDGcQLCKUQVEVD8uhw1+t4MBnMEYDQC4RW1kcvzyqiGPf/j4LJx2gfftGyh739EinSijiQzaXXYIYb2WskREdL0+vwd2myhbQhmOG5uBW8vrQnl6Zg0AsL9MA5N8j90yBCGUPX2V8jjt8Lkd+koow4mKRwgQUf11+VwsoTQYAzgAO3t98LrshjQyyWYlnjwxh/vGeosORM03VqQTZSyZZgdKIqImYrcJDHR4dJVQ+tzGNN/o2JSBO5VrYFJ8hMBmnzp4I37wmXuq6kIJKGWUeoZ5VzPEm4jqr8vrwlUGcIZiAAflInpgJGBII5Nj0yHMrcZLdp/Mp3Wi3LwPLprMcAYcEVGTGQx4MFsiA5fNSiWAMygD53M7coPCAaXkfyjgQXcFmS6n3ZarZKmG3mHei2EGcERW0O1lBs5oZQM4IcQ2IcTPhRBnhRCnhRC/r97+50KIN4QQJ4QQPxBCBA0/WwNNbAvizNwaEunyw0Qr8cK5JQgBvHO0V9f9e31uBNqcOLepE2UswQwcEVGzGQy2YbZEBk4bIeM3dA/cRgnlqZnVisona6HH58ZymaG/UkqWUBJZRJfXxUHeBtOTgUsD+KyUci+AuwD8rhDiZgDPAtgvpRwHcA7AF4w7TePdMhJEKiNxdu76DpBbcWRqEQeGA2XbMWuEEBjrv74TZTSZYQdKIqImMxT0YDa0jq+9cCHXZTGfVt5Yjy6U4XgKF5aiZQd411qPv3wJZTSZwXoqwwwckQV0ed1YiSava8hHtVM2gJNSzkkpX1e/DgM4C2BYSvkTKaVWd/EKgBHjTtN4E7lGJqGaPWYkkcbRSyHcs7unouMKdaKMJdOcAUdE1GQemRjC3sEO/Lcfn8Vd//2n+NTf/QpPnphFPKVUg2jljUaVUPo9DsSSGaQzWZyZrbyBSS10e924GksinckWvc9WhngTUX11e11IZSTCiXT5O1NVKroiCCFuAHArgFc3fetTAL5T5JhPA/g0AGzfvr3yM6yTwYAHvX53TRuZvHphGemsxL2VBnB5nSi1uTWxRAbt3czAERE1k31DARz+vYOYnA/je6/P4IdHZ/CzNxbg9zjwgfEhjKn7oo0bI6A0R4kk0jipNTCpewbODSmVuVHFRhEwgCOyji616mwlkkSHx5gGTK1O9xVBCOED8D0A/0lKuZZ3+x9CKbP8ZqHjpJRfBfBVALj99ttNm0sVQmCixo1MjkwtweO04bYdnRUdl9+JUgvgouxCSUTUtEb7/Xj80E34g/ftwcvnl/H916fxw6MzWFczcYaVUKqBYTiexunZNQx0eOoeJPWqg7kXIwkGcERNoEv9nV6OJnFDj7fBZ9OcdF0RhBBOKMHbN6WU38+7/V8D+ACAd8smKHSdGAniubMLWIunavKJwZHJJdxxQxc8zsoyZ6N9G50otfLLWIJdKImImp3dJnBwtAcHR3vwxGNpPHPqCk4a2FhECwzD8bShz1OKNsx7ucQ+uMWw0uiFTUyIzK+rXc3AsROlYfR0oRQAvg7grJTyf+bd/iCAzwN4REoZM+4U60fbB3dyeusDvefX4phciODe0crKJwHlE8b8TpRSSsRSGWbgiIhaiNftwIfeNoIvPrIPbocxH+BpJZTz4TjOL0awf1j//Lda0QK4UsO8FyMJ2G0Cne36GoIRUePkSijZidIwerpQ3gPgkwAeEEIcU/88BOAvAfgBPKve9tdGnmg9jI8onzweq0EZ5ZHJJQCouIEJsNGJckod5p1IZ5HJSmbgiIioprQM3KsXViAl6t6BElD2wAHAXzx3Dk88eQbPn1vMNXHRLIYT6PG5YLOJup8fEVWm26cFcKky96RqlU3pSCmPACj0L+ZTtT+dxgq2u3Bjj7cm++COTC2h2+vC3oHqPs3c3efH06fmlOxbUrmQMQNHRES1pHW3fPnCMoDGBHA+twN/9qEDePLEHP7hld/g60cuwu2w4a6d3XjnWC/uG+vBAod4E1lGu8sBj9PGDJyBGBFsMj4SwKsXVrb0GFJKHJlawjt291T9aeFYvw/fek3pRJlIKa2VOQeOiIhqScvAnZwOoc/vLtpExGgfvWM7PnrHdqwnM3jl4jKeP7eIX55bxBNPnsET6n3u39PbkHMjosp1e91Y5h44wzCA22RiJIh/OjaLK6txDASqu5Cdm49gMZyoeHxAPq0T5dR8BN3q/gDOgSMiolrSGnZlZf3HBxTS5rLj/j19uH9PHwDg8koMz08u4qWpZRw6MNDgsyMivbq8LjYxMRAjgk1yA72nQxgIVHexODKl7n+rooGJRutEeW4+jHE188YMHBER1ZLbYYPTLpDKSFMEcJtt62rHJ+7cgU/cuaPRp0JEFWAAZyw9TUxayr6hDjhsYkv74I5MLmJnjxfDwbaqHyO/E2Usoe6BYwaOiIhqSAiR60TZiP1vRNScur2ukqNBaGsYwG3icdpx06Afx6dDVR2fTGfx6sUVHNxC9g1QLqqjfUonymgyDYAZOCIiqj2f+uFgI0YIEFFz2tHtxdzqesnxIFQ9BnAFTIwEcWJ6Fdls5bPJj166ilgyU9X4gM1G+/04txBGNKEEcOxCSUREteb3ONDjc2GgQQ1MiKj5vOfmfmQl8OyZ+UafSlNiAFfAxEgQ4XgaF5ejFR97ZGoJNgHcvat7y+cx1u9DKJbCpRVlTjrnwBERUa3dtr0T79s3ACE4Y42IamPvoB87utvx9KkrjT6VpsSUTgG5RiaXQ9jV66vo2CNTS5jYFsx19tqK0T6lE6U2WJwZOCIiqrUnHtvf6FMgoiYjhMCD+wbw9SMXsRpLIdC+9ffFtIEZuAJ29/nQ7rJX3MhkdT2F45dDWxofkG+sXwketfNoczIDR0RERETm9+D+AaSzEs+dZRllrTGAK8BuEzgwHMCx6dWKjnv5/DKyEjg4Wptho71+Nzo8DlyNpdDuslc9FJyIiIiIqJ4mRoIYDHhYRmkABnBF3LItiLOza0ims7qPeXFqCe0uO25RSzC3SgiRG+jdzvJJIiIiIrIIm03gffsG8PzkYq4hH9UGA7giJrYFkcxk8caVNd3HHJlawl07u+Fy1O5lHVUDOC8bmBARERGRhRzaP4BkOoufv7nQ6FNpKgzgihgfUQaa6t0HN301hotL0ZqMD8g32qfsg2MGjoiIiIis5PYbutDjc7GMssYYwBUxHGxDj8+FY5f17YN7cWoJAHDvFgd4b6aVUHo5xJuIiIiILMRuE3jvvgH8/I0FxFOZRp9O02AAV4QQAhMjQRyfDum6/wuTS+jzu3MZs1rROlG2u5mBIyIiIiJreXDfAGLJDJ4/t9joU2kaDOBKmNgWxPnFCNbiqZL3y2YlXjq/jIO7e2o+CFXrRNnOEQJEREREZDF37+pGoM2JZ1hGWTMM4EqY2BaElMCpMuMEzsytYSWaxMEal08CSibw8UN78fE7t9f8sYmIiIiIjOS02/Cv9vbj2bPzFXV3p+IYwJUwPqw2MikTwGn732rdwETz8Tu3451jtZktR0RERERUT4f2DyAcT+Ol80uNPpWmwACuhE6vCzu628t2ojwytYSxfh/6Ozz1OTEiIiIiIos4ONoDr8vOMsoaYWeMMiZGgnj61Bwe/cqL2N3rw2i/D6N9Poz2+THS2YZkJovXLq6wxJGIiIiIqACP044H9vbjJ2fm8acflLDbatszotUwgCvjP757NzrbnZhajOCFyUV87/Xp3Pc8ThuGAm1IpLM1Hx9ARERERNQsDu0fwOHjs3jt4gru3tXd6NOxNAZwZezu8+O/Pro/9/fV9RSmFiKYWghjcj6CyYUI+js8uGsn/0ckIiIiIirkvrFeuB02PHNqjgHcFjGAq1CgzYm37ejE23Z0NvpUiIiIiIgswet24L6xXjxz+gr++OF9sLGMsmpsYkJERERERIY7dGAA82sJHC3TIJBKYwBHRERERESGe+CmfjjtAs+cmmv0qVgaAzgiIiIiIjJcoM2Je3b34OlTVyClbPTpWBYDOCIiIiIiqotD+wcwfXUdp2fXGn0qlsUAjoiIiIiI6uI9Nw/AJoCnWUZZNQZwRERERERUF11eF+68sRvPnLrS6FOxLAZwRERERERUN4cODOD8YhRTC5FGn4olcQ4cERERERHVzcPjQ3jbjk7s6vU2+lQsiQEcERERERHVTafXhU6vq9GnYVksoSQiIiIiIrIIBnBEREREREQWwQCOiIiIiIjIIhjAERERERERWQQDOCIiIiIiIotgAEdERERERGQRDOCIiIiIiIgsggEcERERERGRRTCAIyIiIiIisggGcERERERERBYhpJT1ezIhFgH8pm5PqF8PgKVGnwRxHUyC62AeXAtz4DqYA9fBHLgO5sB1MIdq12GHlLK32ietawBnVkKIX0spb2/0ebQ6roM5cB3Mg2thDlwHc+A6mAPXwRy4DubQqHVgCSUREREREZFFMIAjIiIiIiKyCAZwiq82+gQIANfBLLgO5sG1MAeugzlwHcyB62AOXAdzaMg6cA8cERERERGRRTADR0REREREZBGWCuCEEA8KId4UQkwJIR7Pu/07Qohj6p+3hBDHihzfJYR4Vggxqf63U739E3nHHxNCZIUQtxQ4/pvq858SQvyNEMKp3i6EEP9bPa8TQojbjHkFzMPEa3GTEOJlIURCCPE5Y3568zDxOnxC/V04IYR4SQgxYcwrYA4mXodH1TU4JoT4tRDioDGvgDkYuA5OIcQ3hBAnhRBnhRBfKHL8jUKIV9XjvyOEcKm3t9Q1wsTr0FLXB8DUa8FrBEyxDrxGoPHrkPf9O4QQGSHEh8v+MFJKS/wBYAdwHsBOAC4AxwHcXOB+XwbwR0Ue40sAHle/fhzAnxW4zwEAF4oc/xAAof75FoDfybv9afX2uwC82ujXq4XXog/AHQD+FMDnGv1atfA6vANAp/r1oWb+nTD5OviwUSo/DuCNRr9eVlwHAB8H8G3163YAbwG4ocDx/w/Ax9Sv/7oVrxEmX4eWuT5YYC14jTDHOvAaYYJ1yDu/nwF4CsCHy/08VsrAvR3AlJTygpQyCeDbAB7Nv4MQQgD4CJQ3MIU8CuAb6tffAPBYgfv8drHjpZRPSRWA1wCM5D3u36vfegVAUAgxqPsnsx7TroWUckFK+SsAqYp+Imsy8zq8JKW8qt7tFWz8rjQjM69DRL0NALwAmnnTs5HrIAF4hRAOAG0AkgDWCjz2AwC+W+D4VrpGmHYdWuz6AJh7LXiNyNPAdeA1Ik8DrxEA8HsAvgdgQc8PY6UAbhjA5by/T6u35bsXwLyUcrLIY/RLKecAQP1vX4H7fBTFFw6AkioF8EkAz1Rwbs3EzGvRSqyyDv8WSvahWZl6HYQQHxRCvAHgxwA+Vep4izNyHb4LIApgDsAlAP9DSrmy6dhuACEpZbrA87fSNcLM69BqrLIWvEY0cB14jbhGQ9ZBCDEM4INQsnK6WCmAEwVu2/xJQdFPqHU9gRB3AohJKU+VuetfAXheSvlCBefWTMy8Fq3E9OsghLgfysX589WegwWYeh2klD+QUt4E5ZO+J6o9Bwswch3eDiADYAjAjQA+K4TYWcHzt9I1wszr0GpMvxa8RuQ0bB14jbhGo9bhfwH4vJQyo/cJrRTATQPYlvf3EQCz2l/UtOVvAfhO3m1/q25IfEq9aV4rW1H/uzlN+TGU/4T7jwH0AvjPes+tCZl5LVqJqddBCDEO4GsAHpVSLlfwc1mNqddBI6V8HsAuIUSPnh/Kgoxch48DeEZKmZJSLgB4EcDtm55/CUpppKPA87fSNcLM69BqTL0WvEYoGr0OGl4jGroOtwP4thDiLQAfBvBXQojHSv400gQbC/X8AeAAcAFKZKttPtyX9/0HAfyyzGP8Oa7dfPilvO/Z1MXdWeL4fwfgJQBtm25/P67doP5ao1+vVl2LvO9/EU2+Sd3M6wBgO4ApAO9o9OvU4uuwGxsb1G8DMKP9vdn+GLkOULIDf6v+G+8FcAbAeIHj/xHXblD/jPp1y1wjzLwOed9v+uuD2dcCvEaYZR14jTDBOmy6z99BRxOThr+gFb74DwE4B6WLzB8W+IH/Q5njuwH8FMCk+t+uvO+9C8ArZY5Pq899TP3zR+rtAsBX1O+dBHB7o1+rFl6LAShvdtcAhNSvOxr9erXgOnwNwNW823/d6NeqRdfh8wBOq7e9DOBgo18rK64DlE5t/6i+lmcA/EGR43dCaSIzpd7frd7eUtcIE69DS10fTL4WvEaYYx14jTDBOhQ4j7IBnBZ1ExERERERkclZaQ8cERERERFRS2MAR0REREREZBEM4IiIiIiIiCyCARwREREREZFFMIAjIiIiIiKyCAZwREREREREFsEAjoiIiIiIyCIYwBEREREREVnE/weJR7GKm+kIIgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACk5klEQVR4nOydd3xb5dn+r0d7y3vvkR3HWeyQhFBGgUIHdFAKbWkLnXS8nb8W+r7dfd/uAXQPuiijlAKlQBIIkD0h0068t+WhPZ/fH0dHkW3JOpKOLCm5v59PPmDp6OixLUvneu77vi7GOQdBEARBEARBEASRXRTZXgBBEARBEARBEARB4owgCIIgCIIgCCInIHFGEARBEARBEASRA5A4IwiCIAiCIAiCyAFInBEEQRAEQRAEQeQAJM4IgiAIgiAIgiByABJnBEEQBEEQBEEQOQCJM4IgiDyFMeaI+hdijLmjvr412+tLBcZYF2PsymyvYz4YY9sYY3dm6NyLGGP/YIyNMsZsjLF/M8YWR91//6zfu5cxZo+6v4gx9hhjzMkY62aMvWvW+bcwxo4zxlyMsa2Msfqo+xhj7NuMsfHwv+8wxlgmvk+CIAgiNiTOCIIg8hTOuUn8B6AHwA1Rtz2U7fXNhjGmOheeI8MUAHgCwGIA5QB2A/iHeCfn/K5Zv/c/A3g46vE/BeALP/ZWAD9njC0HAMZYCYBHAXwZQBGAvQD+GvXYDwK4CcAqAG0ArgfwIdm/Q4IgCCIuJM4IgiDOMRhjCsbY5xljneEKyN8YY0Xh+xoYY5wx9l7GWC9jbIIxdhdjbD1j7DBjbJIx9pOoc93BGHuZMfZjxthUuOqyJep+K2PsV4yxQcZYP2Psa4wx5azHfp8xZgNwH2OsmTH2QnhdY4yxhxhjBeHj/wCgDsA/w1WhzzLGNjHG+mZ9f5HqGmPsPsbY3xljf2SMTQO4I8GaWhhj28PfyxhjLFqcRD+HLnzO8fDPZA9jrJwx9nUAGwD8JLzGn4SPX8IY+0+42nWCMXZL1Ll+G654/YcxZg8/f32s5+Wc7+ac/4pzbuOc+wF8H8BixlhxjDUaAbwVwO9mff1lzrmDc74DgtC7LfyQtwB4nXP+MOfcA+A+AKsYY0vC998O4P84532c834A/wfgjljrJAiCIDIDiTOCIIhzj49DqIBsBFAFYAJCRSWaCwG0Ang7gB8A+BKAKwEsB3ALY2zjrGNPAygBcC+AR0WxB0EYBAC0AFgN4CoAd8Z4bBmArwNgAL4ZXtdSALUQRAI457dhZgXwOxK/3xsB/B1C1emhBGv6HwDPAigEUAPgx3HOeTsAa3h9xQDuAuDmnH8JwEsAPhpe40fDoug/AP4U/j7fCeBnYsUqzK3h5y4BcDC8TilcDmCIcz4e4763AhgF8GL460UAgpzzk1HHHILwO0X4v4fEOzjnTgCd8e6f9ViCIAhiASBxRhAEce7xIQBfCldAvBDEz9tmtfz9D+fcwzl/FoATwJ855yPhislLEESNyAiAH3DO/ZzzvwI4AeA6xlg5gGsB3MM5d3LORyBUet4R9dgBzvmPOecBzrmbc97BOf8P59zLOR8F8D0IIjIdXuWcP845DwGwJFiTH0A9gKrw978jzjn9EERZC+c8yDnfxzmfjnPs9QC6OOe/CX+f+wE8AuBtUcf8i3P+Yvj38SUAFzPGauf7phhjNRBE9afiHHI7gN9zznn4axOAqVnHTAEwp3j/FAATzZ0RBEEsHPnem08QBEHMpR7AY4yxUNRtQQhzSCLDUf/vjvG1Kerr/igBAADdECpf9QDUAAajrt8VAHqjjo3+fzDGygD8CEJroDl8/ISk7yo+0c+RaE2fhVDB2s0Ym4DQxvfrGOf8A4Sq2V/CbZd/hCB4/TGOrQdwIWNsMuo2Vfgcc9bIOXeE2zyrZq09AmOsFEKF72ec8z/HuL8Wgqj9QNTNDgjiNBoLAHuK91sAOGb97gmCIIgMQpUzgiCIc49eANdyzgui/unCVbFUqJ5VPakDMBB+Hi+AkqjnsXDOo1vhZl/YfzN8Wxvn3ALg3RBaHeMd7wRgEL8Iz46Vzjom+jHzrolzPsQ5/wDnvApChfFnjLGW2d9wuEr4Vc75MgCXQKiOvSfOGnsBbJ/18zZxzu+OOiZSJWOMmSAYcgzMft7w/YUQhNkTnPOvxzomvJZXOOeno247CUDFGGuNum0VgNfD//96+GvxeYwAmuPdP+uxBEEQxAJA4owgCOLc434AXxdNJxhjpYyxG9M4XxmAjzPG1IyxmyHMij3FOR+EICL+jzFmCRuRNM+aV5uNGUKFZpIxVg3gv2bdPwygKerrkwB0jLHrGGNqAP8PgDbeyROtiTF2c7hdEBAqdhxCVXEGjLHNjLGVYTE4DaHNUTxu9hqfBLCIMXZb+GekZoLBytKoY97IGLuMMaaBULnbxTmfUzVjjFkA/BvAy5zzz8f7PiGIs9/O+t6dENwY/5sxZmSMXQphHk+s4D0GYAVj7K2MMR2ArwA4zDk/Hr7/9wA+xRirZoxVAfj07OcgCIIgMguJM4IgiHOPH0Jw6XuWCRlYOyEYc6TKLgjmIWMQTD3eFmVQ8R4AGgBHIYidvwOonOdcXwWwBsI8078giIlovgng/4UdEj/DOZ8C8GEAvwTQD6GS1of5mW9N6wHsYow5IPyMPsE5PxPjHBXhx00DOAZgO4TWRkD4+b6NCU6XP+Kc2yGYjrwDQjVsCMC3MVNE/gmCmYoNwFoIBiGxeHN4je9lM/PM6sQDGGMXQzAzeTjG4z8MQA9hTvDPAO7mnL8OAOEZv7dC+B1OQHhNRM8HPgDgnwCOAHgNwu/ngTjrJAiCIDIAo1ZygiAIIh6MsTsA3Mk5vyzba8lXGGO/BdDHOf9/2V4LQRAEkdtQ5YwgCIIgCIIgCCIHIHFGEARBEARBEASRA1BbI0EQBEEQBEEQRA5AlTOCIAiCIAiCIIgcgMQZQRAEQRAEQRBEDqBayCcrKSnhDQ0NC/mUBEEQBEEQBEEQOcO+ffvGOOelse5bUHHW0NCAvXv3LuRTEgRBEARBEARB5AyMse5491FbI0EQBEEQBEEQRA5A4owgCIIgCIIgCCIHIHFGEARBEARBEASRAyzozBlBEARBEARB5Ap+vx99fX3weDzZXgpxDqLT6VBTUwO1Wi35MSTOCIIgCIIgiPOSvr4+mM1mNDQ0gDGW7eUQ5xCcc4yPj6Ovrw+NjY2SH0dtjQRBEARBEMR5icfjQXFxMQkzQnYYYyguLk66KkvijCAIgiAIgjhvIWFGZIpUXlskzgiCIAiCIAgiS3z961/H8uXL0dbWhvb2duzatQsAcOedd+Lo0aOyPEdDQwPGxsbmPeYb3/hG0uf97W9/i49+9KMzbvvNb36D9vZ2tLe3Q6PRYOXKlWhvb8fnP//5pM+/EPzgBz+Ay+XK9jIi0MwZQRAEQRAEQWSBV199FU8++ST2798PrVaLsbEx+Hw+AMAvf/nLBV3LN77xDXzxi19M+zzvfe978d73vheAIAq3bt2KkpKStM+bKpxzcM6hUMSuSf3gBz/Au9/9bhgMBsnnDAQCUKkyI6MSVs4YY7WMsa2MsWOMsdcZY5+Iuu9jjLET4du/k5EVEhln5+lxTDh92V4GQRAEQRDEecXg4CBKSkqg1WoBACUlJaiqqgIAbNq0CXv37gUAmEwmfO5zn8PatWtx5ZVXYvfu3di0aROamprwxBNPAJhbxbr++uuxbdu2Oc950003Ye3atVi+fDkefPBBAMDnP/95uN1utLe349ZbbwUA/PGPf8QFF1yA9vZ2fOhDH0IwGAQgVMYWLVqEjRs34uWXX5b8vX73u9/F+vXr0dbWhnvvvRcA0NXVhSVLluDOO+/EihUrcOutt+K5557DpZdeitbWVuzevRsAcN999+G2227DFVdcgdbWVvziF79IeN6lS5fiwx/+MNasWYPe3l7cfffdWLduHZYvXx457kc/+hEGBgawefNmbN68OfKzFvn73/+OO+64AwBwxx134FOf+hQ2b96Mz33uc+js7MQ111yDtWvXYsOGDTh+/Ljkn8W8iGoy3j8AlQDWhP/fDOAkgGUANgN4DoA2fF9ZonOtXbuWE7nF88eGeP3nnuTfevpYtpdCEARBEASxoBw9ejSrz2+32/mqVat4a2srv/vuu/m2bdsi923cuJHv2bOHc845AP7UU09xzjm/6aab+Bve8Abu8/n4wYMH+apVqzjnnP/mN7/hH/nIRyKPv+666/jWrVs555zX19fz0dFRzjnn4+PjnHPOXS4XX758OR8bG+Occ240GiOPPXr0KL/++uu5z+fjnHN+991389/97nd8YGCA19bW8pGREe71evkll1wy4zlnIz7vv//9b/6BD3yAh0IhHgwG+XXXXce3b9/Oz5w5w5VKJT98+DAPBoN8zZo1/L3vfS8PhUL88ccf5zfeeCPnnPN7772Xt7W1cZfLxUdHR3lNTQ3v7++f97yMMf7qq69G1iJ+34FAgG/cuJEfOnRozs9m9s/h4Ycf5rfffjvnnPPbb7+dX3fddTwQCHDOOb/iiiv4yZMnOeec79y5k2/evDnmzyDWawzAXh5HLyWsx3HOBwEMhv/fzhg7BqAawAcAfItz7g3fNyKPXCQWiqEpDz7z8GEAwNGB6SyvhiAIgiAIInt89Z+vy349tKzKgntvWB73fpPJhH379uGll17C1q1b8fa3vx3f+ta3ItUaEY1Gg2uuuQYAsHLlSmi1WqjVaqxcuRJdXV1JrelHP/oRHnvsMQBAb28vTp06heLi4hnHPP/889i3bx/Wr18PAHC73SgrK8OuXbuwadMmlJaWAgDe/va34+TJkwmf89lnn8Wzzz6L1atXAwAcDgdOnTqFuro6NDY2YuXKlQCA5cuXY8uWLWCMzfnebrzxRuj1euj1emzevBm7d+/Gjh074p63vr4eF110UeTxf/vb3/Dggw8iEAhgcHAQR48eRVtbW1I/u5tvvhlKpRIOhwOvvPIKbr755sh9Xq83qXPFI6lmScZYA4DVAHYB+C6ADYyxrwPwAPgM53xPjMd8EMAHAaCuri7d9RIyEQxx3PPXA3D7glhXX4gTQ/ZsL4kgCIIgCOK8Q6lUYtOmTdi0aRNWrlyJ3/3ud3PEmVqtjjj/KRSKSBukQqFAIBAAAKhUKoRCochjYlm4b9u2Dc899xxeffVVGAwGbNq0KeZxnHPcfvvt+OY3vznj9scffzwlB0LOOb7whS/gQx/60Izbu7q6It/LfN8bMNf5kDE273mNRmPk6zNnzuB///d/sWfPHhQWFuKOO+6Ia3Ef/TyzjxHPGQqFUFBQgIMHDyb61pNGsjhjjJkAPALgHs75NGNMBaAQwEUA1gP4G2OsKVyqi8A5fxDAgwCwbt06DiIn+NnWDuw8bcN339YGm9OHbz59HFMuP6wG6QnmBEEQBEEQ5wrzVbgyxYkTJ6BQKNDa2goAOHjwIOrr61M6V0NDA372s58hFAqhv78/Mq8VzdTUFAoLC2EwGHD8+HHs3Lkzcp9arYbf74darcaWLVtw44034pOf/CTKyspgs9lgt9tx4YUX4hOf+ATGx8dhsVjw8MMPY9WqVQnXdvXVV+PLX/4ybr31VphMJvT390OtTu6a8x//+Ae+8IUvwOl0Ytu2bfjWt74FvV4v6bzT09MwGo2wWq0YHh7G008/jU2bNgEAzGYz7HZ7xLSkvLwcx44dw+LFi/HYY4/BbDbPOZ/FYkFjYyMefvhh3HzzzeCc4/Dhw5J+FomQJM4YY2oIwuwhzvmj4Zv7ADwaFmO7GWMhACUARtNeFZFRdp+x4fvPncSN7VV429oabD8p/MqOD03jwqbiBI8mCIIgCIIg5MDhcOBjH/sYJicnoVKp0NLSEjHpSJZLL7000iK4YsUKrFmzZs4x11xzDe6//360tbVh8eLFM9r+PvjBD6KtrQ1r1qzBQw89hK997Wu46qqrEAqFoFar8dOf/hQXXXQR7rvvPlx88cWorKzEmjVrIkYh83HVVVfh2LFjuPjiiwEI7Zx//OMfoVQqJX9/F1xwAa677jr09PTgy1/+MqqqqlBVVSXpvKtWrcLq1auxfPlyNDU14dJLL53xfV977bWorKzE1q1b8a1vfQvXX389amtrsWLFCjgcjpjreeihh3D33Xfja1/7Gvx+P97xjnfIIs7YrELX3AOE2t7vANg45/dE3X4XgCrO+VcYY4sAPA+gbnblLJp169Zx0XWGyA6TLh/e+MOXoFYp8OTHLoNZp8bQlAcXffN5/PeNy/GeixuyvUSCIAiCIIgF4dixY1i6dGm2l0Ek4L777oPJZMJnPvOZbC8laWK9xhhj+zjn62IdL6VydimA2wAcYYwdDN/2RQC/BvBrxthrAHwAbp9PmBHZh3OOz/79MEYdXjxy9yUw64Syb7lFC6tejeM0d0YQBEEQBEEQWUOKW+MOAPEm/94t73KITPKHnd149ugw/t91S9FWUxC5nTGGxRVmMgUhCIIgCIIgco777rsv20tYMBKGUBPnBkcHpvG1fx3D5sWleN+ljXPuX1JhxskhO6j4SRAEQRAEQRDZgcTZeYDLF8BH/7wfBXo1/vfmVVAo5hZCF1eYYfcG0D/pzsIKCYIgCIIgCIIgcXYecO8/XseZMSd+8PZ2FJu0MY9ZUiHYhFJrI0EQBEEQBEFkBxJn5zinRx14eF8fPnR5My5pKYl73KJyQZyRKQhBEARBEARBZAcSZ+c4L50aAwC884LaeY8z69SoLtCTOCMIgiAIglhAlEol2tvbsWLFCtx8881wuVwpn+uOO+7A3//+dwDAnXfeiaNHj8Y9dtu2bXjllVciX99///34/e9/n/Jzi3R1dWHFihUzbrvvvvvwv//7v0mdR6715BuSQqiJ/OWlU2OoLdKjvtiY8NglFWacGJpegFURBEEQBEEQAKDX63Hw4EEAwK233or7778fn/rUpyL3B4PBpMKaRX75y1/Oe/+2bdtgMplwySWXAADuuuuupJ8jUwQCgZxaz0JClbNzGH8whJ2nx3FZS6mk4xdXmHF61AlfIJThlREEQRAEQeQZ3/kOsHXrzNu2bhVul4kNGzago6MD27Ztw+bNm/Gud70LK1euRDAYxH/9139h/fr1aGtrwwMPPABAyLD96Ec/imXLluG6667DyMhI5FybNm3C3r17AQDPPPMM1qxZg1WrVmHLli3o6urC/fffj+9///tob2/HSy+9NKO6dfDgQVx00UVoa2vDm9/8ZkxMTETO+bnPfQ4XXHABFi1ahJdeeinp73G+c3/xi1/Exo0b8cMf/jCynoGBAbS3t0f+KZVKdHd3o7u7G1u2bEFbWxu2bNmCnp4eAEL18OMf/zguueQSNDU1RSqJ+QKJs3OYQ72TcHgD2NAaf9YsmsUVZgRCHJ2jjgyvjCAIgiAIIs9Yvx645ZazAm3rVuHr9etlOX0gEMDTTz+NlStXAgB2796Nr3/96zh69Ch+9atfwWq1Ys+ePdizZw9+8Ytf4MyZM3jsscdw4sQJHDlyBL/4xS9mtCmKjI6O4gMf+AAeeeQRHDp0CA8//DAaGhpw11134ZOf/CQOHjyIDRs2zHjMe97zHnz729/G4cOHsXLlSnz1q1+dsc7du3fjBz/4wYzbo+ns7JwhqO6//35J556cnMT27dvx6U9/OnJbVVUVDh48iIMHD+IDH/gA3vrWt6K+vh4f/ehH8Z73vAeHDx/Grbfeio9//OORxwwODmLHjh148skn8fnPfz7J30R2obbGc5iXTo2BMeCS5mJJxy+psAAQHBuXVloyuTSCIAiCIIjc4p57gHB7YVyqqoCrrwYqK4HBQWDpUuCrXxX+xaK9HfjBD+Y9pdvtRnt7OwChcvb+978fr7zyCi644AI0NgrZtM8++ywOHz4cqQJNTU3h1KlTePHFF/HOd74TSqUSVVVVuOKKK+acf+fOnbj88ssj5yoqKpp3PVNTU5icnMTGjRsBALfffjtuvvnmyP1vectbAABr165FV1dXzHM0NzdHWjWBsyHSic799re/Pe66Xn75Zfzyl7+MVOteffVVPProowCA2267DZ/97Gcjx950001QKBRYtmwZhoeH5/1+cw0SZ+cwOzrG0FZtRYFBI+n4plIj1EpGpiAEQRAEQRCxKCwUhFlPD1BXJ3ydJtEzZ9EYjWf9Ajjn+PGPf4yrr756xjFPPfUUGJubXxsN5zzhMcmg1QqxTEqlEoFAQLbzAjO/52gGBwfx/ve/H0888QRMJlPMY6K/R3GNgPD95xPU1niOMu3x42DvJC6T2NIIAGqlAs2lJjIFyQK/e6ULW0+MJD6QIAiCIIjM8IMfANu2zf/v3nsBlwv48peF/9577/zHJ6iaSeXqq6/Gz3/+c/j9fgDAyZMn4XQ6cfnll+Mvf/kLgsEgBgcHsXX2TByAiy++GNu3b8eZM2cAADabDQBgNptht8/dkLdarSgsLIxUqP7whz9EKl3pksq5/X4/brnlFnz729/GokWLIrdfcskl+Mtf/gIAeOihh3DZZZfJssZsQ5Wzc5SdneMIhrhkMxCRxRVm7Dljy9CqiHh87z8nsba+EJsXl2V7KVljzOFFkUEDhUK+3T2CIAiCkA1xxuxvfwM2bxb+RX+dQe688050dXVhzZo14JyjtLQUjz/+ON785jfjhRdewMqVK7Fo0aKYQqe0tBQPPvgg3vKWtyAUCqGsrAz/+c9/cMMNN+Btb3sb/vGPf+DHP/7xjMf87ne/w1133QWXy4Wmpib85je/ke17Sfbcr7zyCvbs2YN7770X9957LwChYvijH/0I73vf+/Dd734XpaWlsq4xm7CFLPWtW7eOi64xRGb58uOv4e/7+nDw3jdAq5Juv/qzbR34zjMncOjeq2DVqzO4QkJkyuXHqv9+FovLzfj3Jy/P9nKywqjdi0u//QK+d8sqXN9Wle3lEARBEOcJx44dw9KlS6Ud/J3vCOYf0UJs61Zgzx4gat6JIKKJ9RpjjO3jnK+LdTxVzs5RdnSM4aKmoqSEGSBknQHAyWE71jfMPzBKyEPvhBA22Tfhkr0vPF84OjgNXyCEjhFyCiUIgiBylFgCTKygEYRM0MzZOUjfhAtnxpy4rDW5lkYAWBx2bCRTkIWje1wQZ05fEFNuf5ZXkx1Ohl9vw9PeLK+EIAiCIAgie5A4OwfZcWoMACTnm0VTZdXBrFPJagoSCIYo2HoeemyuyP/3TbizuJLscWJYEGcj054sr4QgCOLcp3vcCY8/mO1lEAQRAxJn5yAvdYyh3KJFa1lsq9H5YIxhcbkZJ2SsnH32kcP40B9o1jAePTZn5P/7J89PcXYyLM6G7STOCIIgMsmI3YM3fO9F/P7VrmwvJWfIN6t1In9I5bVF4uwcIxTieKVjDJe2lKQ8u7S4wozjQ3bZ3qxe75/G3q4JevOLQ4/NhYZiA4Dzs3IWDPGz4ozaGgmCIDLKU4cH4QuGcGyQxhcAQKfTYXx8nK5RCNnhnGN8fBw6nS6px5EhyDnG6wPTmHD5U2ppFFlSYcZDuwIYnPKgqkCf9poGJt2wewMYmvag0pr++c41emwurK4txPC0F/3noTjrtbng8YdQadVhaNqDQDAElZL2jQiCIDLBE4cGAACdo2TABAA1NTXo6+vD6OhotpdCnIPodDrU1NQk9RgSZ+cYL3UIby6XtqQuzkRTkBND9rTF2bTHD7tXSI8/NewgcTYLfzCEgUkPbmo3oLpQj/5JV+IHnWOI82YbWkvwt719GHP4UGFNbpeJOD/oGLFj24lR3LmhKdtLIYi8pNfmwv6eSejUCpwedZ63DsHRqNVqNDY2ZnsZBBGBtqfPMV46OYYlFWaUmVO/uF1cLtjpy+HYOBA1QyW2rhFnGZh0IxjiqCsyoKZQf162NYpOjeKGwkiezp09dWQQn/zrwWwv45zme/85ia/96xiGyTiGIFLiycODAIDbLqqHwxvAqJ1ayQki1yBxdg7h9gWxr3sirZZGALAa1Ki06mRxbIwWZ5RhNRfRqbGuyIDqAv15aQhyYtiO2iI9mkoEA5t8nDubcvvxpceO4LED/XD7yAEtE9g9fjx/bAQAcKRvKsurIYj85IlDA1hdV4DLFwlRO52jzgSPIAhioSFxdg6x68w4fMFQSvlmsxFNQdKlf1LY4W4sMVLlLAZixlldsdDWOOnywxFuAz1fODlsx+JyM8otWgDIy6rIj58/hQmXkFE3OHX+CeyF4NnXh+ENR3Ic7idxRhDJ0jFix7HBadzQVoWmUmEz7PQYbZoSRK5B4uwcYsepMWiUClzQUJT2uRZXmNE56oA/mF4+2cCkG2olw8XNxTg14iA3pFn02lzQqBQoN+tQUyg4Np5PpiC+QAinR51YXGFGsUkLBcu/rLMzY0787tWuSHTF0FR+rT9feOLQAGoK9VhUbsKRvslsL4cg8o4nDg2CMeD6tkpUWnSRuTOCIHILEmfnEDs6xrCuoRB6jTLtcy2pMMMf5Dgzlt4b98CkGxVWHZZUmGH3BPKyZS2TdI+7UFuoh0LBUB02XzmfTEFOjzkQCHEsKjdDqWAoNWvz7jXyjaeOQaNU4BtvWQkAGCRxJjvjDi92dIzhhlVVaKspwJH+KdroIYgk4JzjyUMDuKixGGUWHRQKhsYSEzk2EkQOQuLsHGHE7sHxITsuS3PeTGRxueDYmG5r48CkG1VWPVrCVYVTI9TaGE2PzYX6YiMAoKYwLM7Oo8qZGHa+uEIwoSkz6/IqiPqVjjH85+gwPnJFC1ZWWwEAQ3lW+csHnjoyiGCI48b2KrTVWDHm8JEIJogkeH1gGqfHnHhTe1XktuZSI1XOCCIHIXF2jvByxxgAYENL+vNmANBcZoRSwdI2BRmY9KC6QI9FYQfIk8O0SyfCOUevzYW6IqGdsdSkhUapOK8cG08O26FSsIgZSLklfypnwRDHfz95FDWFerzv0kbo1EoUGtQ0c5YB/nFwAIvKTVhSYcGKsAg+TKYgBCGZJw4NQKVguHZFReS2plIT+iZc8AbIxIggcomE4owxVssY28oYO8YYe50x9onw7fcxxvoZYwfD/96Y+eUS8Xjp1BgKDWosr7LIcj6tSommEmOkspEKgWAIQ9NCkHWxUYNCgxodVDmLMOESMuBqw+JMoWCoKtCh7zxybDwx5EBjiREalfBWVGbR5c3M2d/29uL4kB1fuHYpdGqhlbjCqsfgZH6sP1/om3Bhb/cEbmyvBgAsq7RAqWA40j+Z3YURRJ4QCgktjZcvKkWBQRO5vbnUiBA/a0xFzMTjJ9FKZAcplbMAgE9zzpcCuAjARxhjy8L3fZ9z3h7+91TGVknMC+ccO06N4ZKWEigU8oVJpuvYOGL3IhjiqCrQgzGG1nJzRipnoRDHuCM/qi3RiDb69WFxBkAIos7RylkwJP+Mz8lhOxaFWxoBoNysw7jTB18gPSOaTDPt8eN//30C6xsK8caVZ3eiK606areTmX8eEnKZ3rRKaMfSqZVYVG6myhlBSGRfzwQGpjyRvyERsWPhNM2dzWFwyo22+57FztPj2V4KcR6SUJxxzgc55/vD/28HcAxAdaYXRkjn5LADI3YvLpdp3kxkSYUZfRPulK3dxYyzqgIhELu1zIRTw3bZB/kf2d+Hy769FVNuv6znzTSRjLPis+KspsCQk1lnv3n5DNr/+1lMunyyndPpDaDH5sKS8ihxFrbTH81xsf3TrR2wuXz4yvXLwdjZDZEKq45mzmRGzGWqjdrEaKu24jUyBSEISfzz0AC0KgWuXFY+4/bGUmHembLO5nJ61AlfMIQDPZPZXgpxHpLUzBljrAHAagC7wjd9lDF2mDH2a8ZYodyLI6Tx0qlRAJAl3yyaxRVCi2SqrY2iyBBdCBeVmzHtCWDULu+F98HeSbj9wbSdJReannFhvbWFMytno3ZvTrVT7Omy4Wv/Oga7JyCrs9epcCj5jMqZRRDyuZx11jPuwm92dOGta2qwssY6474qqw42py+nfn/5zKlhIZfpxlk7/itrrJhw+c+r+UyCSIVAMISnjgziyqXlMGlVM+4zaVUot2jJFCQGI2Fjqq48u66I5g+vduHDD+3L9jKIFJAszhhjJgCPALiHcz4N4OcAmgG0AxgE8H9xHvdBxthextje0dHR9FdMzGFHxxiaSowRESQXS8IXzamKs4Hw7E1leF1iDpTcrY0d4Yv87vH8ehPtsblQZtbOiD4Qf4cDOVI9G7V78ZGH9sOiEz7Ue23yreuk6NQYVTkrC1fORnLYFOSbTx+DSsnwX1cvnnNfhVX4/eWyuMwnnjg0AAUDrmubKc7awqL4CIVRE8S8vHp6HGMOH25YVRnz/uZSstOPhbiJnG+bvtH8fX8/njoyhL4JminMNySJM8aYGoIwe4hz/igAcM6HOedBznkIwC8AXBDrsZzzBznn6zjn60pL5a3sEIA3EMSu0zbZLPSjqS7Qw6hRpuzYODDphlWvjuzWtYYvwuW20xdbMvJtqLl7/KxTo0i1aKefA+IsGOL4xF8OYMrtx6/uWA8Asr7Jnxi2Q6dWzGhXEytnIzlqp7/z9Diefm0Id29sjqw1mkqrcNsAmYKkDecc/zg4gEtbSlBq1s64b3GFGWolo7kzgkjAEwcHYNaqsGlxWcz7m0qNOD3qoBbhWYgbhKfzVJy5fUG8Ht682naCCiP5hhS3RgbgVwCOcc6/F3V79DbMmwG8Jv/yiEScGnbA7Q/igsYi2c+tUDAsSsMUZGDSjaqoal6JSYMCg1rWytmUy4+x8HxSvomzXptrxrwZcDbrLBfatb7/n5N4pXMc/3PTCqypK0SJSStv5WzYjtYyIXxapMiggUrBcrLyFAxx/M+TR1Fl1eEDlzfFPKYiLM6GprP/+8t3DvVNocfmwg2zWhoBwU12SYWFHBsJYh68gSCeeX0IVy2viDjKzqapxIRpTwDjTvnmic8FRsKVszGHF3ZPfs2zA8ChvkkEQhyMAdtOjGR7OUSSSKmcXQrgNgBXzLLN/w5j7Ahj7DCAzQA+mcmFErGZdAlvGqUmbYIjU2NJhRknUjTx6J90o7rgbHWBMYZFZWZZ7fQ7wu0YSgVDjy1/dri8gSAGpz1zKmcVFh2UCpZ1x8YXjg/jJ1s78PZ1tbhlXS0AoLZIj145K2dD9kj+nYhCwVBmzs2ss0f39+H1gWl8/o1L417oiJUzcmxMn38c7IdGpcA1UblM0aysseJwH5mCELnHhNOHXTng8rf9xCjsnkDclkZAqJwBoLmzWUTPxneN5dfGLwDs7bIBAK5vq8LLHeOUZZdnSHFr3ME5Z5zztmjbfM75bZzzleHb38Q5H1yIBRMzER0KrQZ1Rs6/uNyMSZc/souUDLMrZwDQUm7CyWH5Wig6w/Nma+sL0ZVi5cwbCOJn2zoWtFrTN+EG55gjzlRKBSosuqy2NfbaXPjkXw9hWaUFX71xeeT2mkKDbBW9CacPI3ZvZK4xmlKLLicrZ8+8NoTGEiNuaIt/oWPQqGDVqzFE4iwtgiGOJw8PYvPiUlh0sd/b2qqtsHsCeVcxJ859frXjDN71y11wpuh0LBdPHBpAkVGDS1vijz00l5KdfixG7J6IcD2TZ/PsALC3ewKtZSbc1F4Ftz+I3Wds2V4SkQRJuTUSuUdEnOkzJM7Cjo3JtjbaPX5MewJzxNmiMhOm3H7ZrNI7Rh3QqBS4rKUEo3YvXL7kPwxfPDmG7zxzAm/52SsLNhgdyTib1dYICHNn2Rrg9QaC+Mif9iPEOX7+7jUzKkS1hXoMTLplyTs7MSy8nhbFEGflZm1OGoKcGnFgeZVlhnV+LCqtOpo5S5Odp8cxavdGgqdjITplHiZTECLHOD3mQDDEI2ZVmSDRBqfLF8Dzx0Zw7YoKqJXxL/WqCvTQqBR5O1uVKUbtXqyvF8ZFzuRZVTEU4tjXPYF1DYW4uLkYGpWC5s7yDBJneU6mxdlZx8bkTEHEtq7Z4ixiCiLT3FnniANNJUY0lAg7XKLoSeocYUHm9gfxtp+/gv09E7KsbT56w+usLZorzmoKshdE/T9PHsXhvin8382rUF9snHFfbZEBgRDH4FT6azs5PNepUaTcosNwjhmCuH1B9E640Fo2d72zEbLOaOYsHZ44OACTVoUrlsQ2MQCEaA6NSoEjfZMLtzAAL54czXpUArVy5jZiNVd8n5ObXpsLK+79N974w5fwjaeO4cWTo3D7Zr4m/3N0GG5/cE7w9GyUCoamEmOkC4UAPP4gpj0B1BbpUV2gR1eeVc5Ojthh9wSwrr4IBo0KFzYWYSvNneUVJM7ynCm3H2olgz7ODEy6FBo1KDNrk66cnc04m+lo11outFCckulDq2PUgeYyExrCFahUWpw6RxwoNWvx2IcvgUWvxrt+sRMvHB+WZX3x6B53Qa9WxpwVrC7UY2jaA38wlNE1zObxA/34484efGhjE65aPnfOR8xjk8MU5MSQHRadKhI6HU25RYtJlz/rF8DRdI46wPnZ1+98VFp11NaYBt5AEE+9NoirlpfHne0DALVSgWWVlgV1bByYdOM9v96Nh/f1LdhzzuZLjx3Bu3+1a8HfHwhpcM7RE/4cOpUhwfNa/xScviAUCuC3L3fhPb/ejVVffRbvfHAnfrq1Awd7J/GPgwOosOiwviGxWVhTqZEqZ1GI82ZlZh0aS/LvZ7O3S9hgXtcgxA9vXlyG06POyOuSyH1InOU5U24/rHp1wlardFhcYU660iXmdM2unJWatLDq1Tgpw4eWxx9Er82FllIT6ouEKk8qWWedow40lxpRX2zEI3dfgtYyMz7w+334297etNcYjx6bYKMf6/dWU6hHiGPBLvBDIY6tx0fwhUeP4ILGIvzXVXPzu8R1AfLY6Z8ctmNxhTnm918WtqiXO6w8HcT2JDGrbz4qrXqMOXw0gJ0ioolBoh1/QMg7e31gGiEZWm2lIHYEnEzRwVYODvVN4uWOcXznmeNZWwMRn0mXH/bwrFnGKmfh9+CH7rwIh+69Cr973wW449IGTLn9+O6/T+Cmn76MF46P4Pq2SigUia8NmkpM6LG54AuQ4AfOOjWWWrRoKDHgTJ5FDezrnkCJSRuZad8c7kDYdpKqZ/kCibM8Z9rthyVDLY0ii8rNODViT2rWaGDSDaWCocw8s3LGGENrmQkdMrQ1do07EeJAc5kJVoMaVr066coZ5xydo87IUHSJSYs/f/AiXNJcjM/+/TB+urUjI2/KPeOumC2NAFBdINyeaTv9CacPv3jxNK74v21472/3oMiowU/euRqqOPMJVQV6MAb0prkuznlMp0YRMT8sl0xBTo3YoVKwOa2esRDt9HNxbi4f+MehARQnMDEQWVlthcMbWLCBfXHDIJuhvRNOoVviFy+dwbOvD2VtHfnMa/1TeLVzPCPv7d3hlnWLTiVb+/5s+ibcMOsE8yG9RomNi0rxxTcuxVOf2IB9/+9K/Oidq3HnZY14/4ZGSedrKjUiGOIpjQWci4yG2+pLTVo0hqMGJlz5Y6e/t9uG9Q2Fkc3PxhIj6osNNHeWR5A4y3PEylkmWVxuhscfisxJSWFg0hOxhZ9Na7kZJ0dSs+ePRqxmtISFVUOxIekPF5vThym3H02lZysiJq0Kv7p9PW5qr8J3/30C9z3xuiwmGCKcCx+CscxAgMwGUXPOcaBnAp/+2yFc+M3n8fWnjqHUrMUP39GOFz6zMVK1ioVGpUClRYe+ND/Ah6e9mPYEYjo1Aoi0OuaSnf6pYQcaSozQqBK/ZZ4Noqa5s2RxeAN4/tgw3riycl4TA5G2mgIAwJEFam0UjYwyafSQCJvTh3ddUIeV1VZ8+uFD1KqUAl987Aje+YudePevduE1mQ1lxO6NTYvL0D/phiMDjo29NlekzXw2xSYt3rSqCv/v+mWotOpjHjObJnJsnEGkrdGiRWOJ8HM+M5YfP5vhaQ96bW6srS+ccfvmxWV4pXMsp8YFiPiQOMtzFkKciY56J5Jo0RAyzmJ/MLSWmTDp8mPMkV7oZceIA4ydzWmpKzYmPbjbGXZhai6dWRHRqBT43i3t+ODlTfjdq9342J/3y9amNubwwe0PzrHRF6kKz+nJaQri8Qfxl909uP7HO/Dmn72CZ14bxC3ravDMPRvw8F2X4Mb2amhViecWawoNaWedHQ+by8StnIWrrSM5ZArSMeKQ1NIInBVnQzlU+csX/nN0CB5/CDe2J25pBIS/W51asWBzZ+JF24jdi+ksBNO6fUG4/UGUW3X42a1rAAAf+ZN8703nCyPTXrSUmXB0YBrX/3gHPvGXA0ltPs6HeJ4tS4VWskwI+d4JN2qLpAkvKUSyzvJstipTjNi9UDCg2ChUzgDgTJ5knZ2dN5s5a7hxcSk8/hB25kD+HpEYEmd5zkKIM/GiNBkTDyHjLHYVZlHEsTG9fvzOUSdqCvUR04D6IgMGJpMz0hDbk5pL5154KxQMX3zjUnzpjUvx1JEhPH6gP631iohh2fHEmValRJlZK5ud/qud47jq+y/i848eQTDE8T83rcCuL12Jr920EkvCUQlSqSnSp91uKc5hxBNnBQY1NEpFzlTOvIEgusadksVZRXi3moKok+fJQ4OoLtBjTV1h4oMh5AIur7LiSP9kZhcWJnoOMhvudjaXsKFVZNCgtsiA/7t5FY70T+Hr/zq24GvJVzjnGHd6ceXScmz/7GZ8ZHMz/v36ELb833b89z+PYsKZ3qZh97gLZWZtpKor99wZ5xx9E/ErZ6lg0alRYtKSY2OYkWkvik1aKBUMNYV6qBQsbypne7tt0KkVWF4187P94qZiaMlSP28gcZbnLIQ4M2pVqC3S44TE/vlgiGNoyjPHDEQk4tiY5gdBx4gj0tIICJlhwRBPquLUOeKAVqWIW+UDgDs3NKLEpMUrnfLsOImtl3Vx2hoBobUx3bZGhzeALz/+Gt75i51gDPjD+y/A05/YgNsuqodJq0rpnLWFBgxNe9LaqT8x5ECZWYtCoybm/YwxlJq1GMmRytOZMWG2sSWOmJyNSauCWacix8Ykmfb48dKpMVy7okKSiYHIymorXuuflrX1OB6jdi+MGmEzqDML2UeicCgK/+1ctbwCH9jQiN+/2o1/HhpY8PXkI9OeAPxBjhKTBhadGv919RJs+8xmvHl1NX77yhlc/p2t+OnWjjnW9FLpDres1xUZoFEpZHMmFhlz+ODxhyIGTXLRTI6NEUYdXpSZhfZ6tVKB2iIDzuTJz2Zv1wTaawvmtIXr1Epc3FyMbWSpnxeQOMtjQiGOaU/mxRkgzJ1JdSgbtXsRCPG44qzMrBWGpUdS/9AKhThOjzpmVLxEs4ZkWhtPjznRWGKc92KQMYYLm4qw67RNlgHynnE3GMO8grCm0JCWOHvp1Ciu/v6L+OOubrzv0kY8/YkN2NBamrarZ22RAZwjrZBl0alxPsot2pzJOhOH+qVWzgChtVGOPLjzieeODsMXDOGNbZVJPa6txgq3P7ggJh2jdg/a6wqgVrKszJ2NzxJnAPDZa5ZgTV0BPv/IYZoZkoAtxs+wwqrDt9/WhmfuuRwXNBbhu/8+gY/8aX9K5xfNnpQKhuZSE07KbAoitpXHM5RKlaZSE71+wozYPSg1n415aSwx5kVbo9MbwNHBaayrjx2fsHlxGbrGXXkjNM9nSJzlMXZvAJxnLoA6mtZyMzpHHZKsds9mnMUWH4wxwRQkjQ+t/kk3vIEQWspmVs6A5IKoO8M5aYm4qLEIQ9MeWdysum1OVFh082Y4VRfoMTDpTtoifNrjx+cfOYzbfrUbWpUCD3/oYnzlhmUwaFKrlM0mXTv9YIjj1Eh8p0aRcosuZ9oaT404oGDCB7RUKqx6amtMkqeODKLKqsPq2oKkHtdWYwWABZk7G7V7UWnVo6HYmBXHRrFyFl11VisV+Mm71kCjUuDDD+2ngf8EjIdNXYpjZEwuKjfjV3esxzsvqMPO08m7OXr8QQxNeyLRLovKTbJXzsSZNrnFWXOpERMuf9ptnecCo/azlTMAaCg2omvMmfN2+od6JxEMcaxtiN0WvmlxKQBQ9SwPIHGWx0y7hYH0TFvpA0LlLBDikqpS8TLOollUbkpr51l8bLSwKjNroVMrJNvpizlpsebNZnNRUzEAYNdpWwqrnUlvOONsPqoL9fAHeSRvRQpbj4/gqu+9iL/t7cWHNjbhqU9smDMUnC7iBUGqQdS9Nhc8/pCEypkuZ6z0O0bsqC82ziumZ1Np0ZE4S4Jpjx8vnhzDtSsrk67uNpaYYNQocaRvMjOLC8M5x6jDi1KzFs2lpqzM54iVs+JZLcFVBXp8/+3tOD5kx73/eH3B15VPiEZUs3+G0SyvssDlC2Igyb9hcdNK3ChcVG7GwJQHdhnNY8SZX7nbGs+agpzf1bNgiGPM4ZsRA9RYaoTbH8yZDcN47O2eAGOIO7NbX2xEU4mR5s7yABJnecxUWJwtROVMrHSckNDaeFacxbdlbykzw+b0YcyR2puduGsdPXPGGEN9kVFyEHX3uEvISStNXBFpKTOh2KjBzjPpz531SBBnNRE7fWlC84HtnXjvb/fArFPh0Q9fii9cuzQpMSGVCosOaiVL2bHxePj1szhB5azMooXdE4DLJ78NdbKcGnbMqNBKocKqw5jDS6GuEnn+WLilcWVyLY0AoFQwLK+24rDMluizmXL74Q9ylJq0aCkzoTsLob0TTh+UCgaLbu57/qbFZfjo5hb8dW8v/r6vb0HXlU+IbY3FpvjiLBUTLACRjUFxnjhyHhmFfN+EC8VGjWzdECJNYVfCbMxS5hI2pw/BEJ/R1thUkh/CdU+XDYvLzfNeE25aXIZXT4+nPFNJLAwkzvKY6QUUZ02lRigVTNKH1cCkEJBpjnEBIbJINAVJsbWxY8SBYqNmjqlEXbFBcuVsPqfG2TDGcEFjUdqVM0949y2hOCsQ2wcTV6g45/j9q924qKkIT378MrQn2RaWDEoFQ1WBPmXbadG5TDSFiUfETj/LO5X+YAhnxqQ7NYpUFejAeW7FAeQy/zo8hMoUWhpF2qqtODownZRTa7KITo2lZi2ay4TQXqkbQXJhc/lQaFDHnZG958pWtNcW4CcvnFrQdeUTYltj0TyVs9bw5lGy3R0Rs6eis5UzAOiQce6s1+ZGjcwtjYCwIahWMpw+z8VZJOMsuq0xLM5yeVYrGOI40DM5J99sNpsWl8IXIEv9XIfEWR6zkJUznVqJhmKDpKyz/knPvGYXANBaFrbTT9EUpGPEEVNUiUHUUma1xOHnJgmVMwC4sLEI/ZPutCzueyU4NQJng6iliLPOUQf6J924YVWVpKyydKkpTN1O/8SwHXVFhoS7vuXhMOxstzZ2jzsRCPGEYnI2op1+Mo6NI9MefOOpY+fdjqbd48eLp0Zx7YrKpFwao1lZY4U3EEp5s0cK0eKspTS1i/d0sTl8KDTEFxUqpQJr6wuTaoc+3xh3+mDWqeZ9rywyalBs1CT9euoed8GoUUZaJmuLDNCqFLLa6fdOuFArc0sjILx2sjVLmUuIG2rRlbNKiw5alQJdOSzOTgzZ4fAGsD7BKMMFjUXQq5XYSnNnOQ2JszxmagFnzgBhF1CKiYeQcTb/h0e5RQuzTpXyxVQ8I4+6YiO8gZAkp7/OUSeqrDrJ7SEXyjB3Fml7SbDzadCoUGhQS3Js3Hpc6B/ftLgs5XUlQ22hIWWBenIosRkIILw+AGA4yxeZZ50apdnoi4hB1MnMrDx5eBAPvngav3zpdFLPle88f2wEvkAI17VVpHwOMVPqtQy2No46zoozcUNnoS9kbS5f3AgKkSKjBi5fkIxB4jDu9M07bybSUmZKevOwx+ZCXbExMjcZcWyUScQHQxwDk27ZzUBEmkqN571j40ikcnZ2LEOhYGgoNuZ05Wxvt3BdkqhyplMrcUlzMbadGM15g5PzGRJnecxCVs4AQZx1jTsTfugPTMUPoBZhjKG1zJTSjuK4w4sJlz/mHFB9+ENLSmujVKdGkcXlZhQY1Gm1A4htL6Lt/3zUFBokZbZtOzmC1jJTwmqlXNQWGTDm8CU9D+YNBHFmzIklCcxAAKDMIrY1ZrdydmrEAcaktb5GUxEWZ0NJ2OkfG5wGADzw4ulI69X5wL+ODKLCosPqWmnB07GoLzLArFPhcAbDqKMrZ0atClVW3YJXziYkCAvx/nFy3YvJuMMb06lxNq3lJpwacSR1Ads97ox8BonI6dg4PO2BP8hlNwMRaSo1ocfmQkBCe3AgGDonL+6j/86jEez0c1icdU2g3KKV9NrYtKQMPTYX5drlMCTO8pgptx9KBYuEomaaxRVmcD5/K4/TG8Cky5+wcgYIYi+VixtxYDmWkUdDWPT0JBBnnHN0xmmNjIdCwbC+oQi7zqReOeuxuWDSClWxRFQX6BNWqJzeAPacmYhY5C4ENUm0XEZzZkxoEVwkQZxZdCro1Iqst2edGnGgplAPfZJ/Y2atCkaNMinHxqOD02gOu4L9+IWOZJeal9g9fmw/OYprVyYXPD0bhYJhZbUVRzJopz9q90KrUsAcDnBvLjMtuHmCzSmtcgYILZDEXMYd0ipnrWVm2D0Bye9BoRBH74R7Tst6a7kZg1MeTMvg2Bix0S/MUOWsxAh/UPg+5iMY4njzz17BV/95NCPryCajdi/MWtWc9/yGEqNk4ZoN9nVPYF19kSS3202LREt9cm3MVUic5TFTbiGAOt1gYalIcWwUg3elVHFaykwYd/qSrhKIgi5W5ayqQAeVgqHbNv9F04jdC6cvKHneTOTCxiL02FwpBwz32ISAUim/s+pCPfon3fPuTr7SOQ5fMLRgLY2AUNEDks86OyHRqREQKqtl5uTs9B/Y3ol/HhpIak2JODVsT7qlERDWX1mglzxz5gvPS71hWQXevr4Wf9zZndPzDXLxwvFwS2MKLo2zWVljxbFBe8YcFEftgo2++LfbXGpC56gj6SzCVAmFOCZcPhTNM3MGnHUhHHeeP9XXZBh3+uZ1ahQ569gobQNx2O6BLxCa07Iufm7KMQ8piqbMtTUK33Oi1sYnDvXjSP/UOWkqMWr3otQyt7IqClcpowYLzcCkG/2TbqyLk282m9oiA1rKTJR3lsOQOMtjRHG2UDQUG6BRKnBynj78/knhYlRq5QxI3ma4Y8QBvVqJKuvc51ApFagu1KMrQeVMzChKtl0t3byzHptrTttLPGoK9fD4QxHr51hsOzECo0Yp+U1ZDmqLhJ97sllnJ4bsUCmY5DDncotWsjhzegP49jPH8bE/H8D92ztlabcJBEM4nYJTo0ilVXrWWeeoA75gCMuqLLhnSyvUSgW+++yJlJ43n/jXYaGlMV4uTzK0VRfAFwzJar4QjZhxJtJSZoLLJ4QOLwTTHj9CfH6XQQAoMgprnO9943wlFOKwOb0oNiZua2wRHYUlzp2JrfT1xXPbGgEhLzFd+iZcYGz+mJp0ELtR5nNs9AdD+MFzghto56gjow6p2WDE7kFpjLbXxtLcdWzc2z0BAFhXLz3XdNOiUuw6bcuJuBpiLiTO8pgpt3/BzEAAQfg0lRpxcp7KmZQAapHW8tSyZDpHHWgqNcZtg6ovNiZsa0zGRj+apZUWmHUq7Eoh7ywU4kIAdQKnRpHqBHb6nHNsOzGKS1pKFsSlUaTUpIVWpUjaTv/ksB1NpUZoVNLedsosOslW+of7phDiwJIKM7719HF846ljaVc0eifc8AVCSWeciVRYdJIrrEcHhHmzZZVmlFl0+MCGRvzr8CAO9U6m9Nz5gMMbwLaTo7hmRXotjSJtNVYAwmshE4zavTMu2sT3joWaOxNnyBKLs3BbI4mzOUy6BYErpXJWatLCqldL3jwUP3Pqi2ZuPtUWGqBTKySZaSWi1+ZGuVmXsff7AoMGRUbNvEY3j+zrQ/e4CzesqoI/yHNSrKTDiN0bmXmORhyZyMXvd1+XDQaNEksrpXd5bF5SBl8whFc6zr3q57kAibM8ZnqBK2eAMHc234fMwKQbCgaUmxPvTFZYdDBrVSlVzua7YK4vMqBr3Dlv9aRz1AmjRhlxBZSKUsFwQUNqeWcjdi+8gZDklpTqSBB17At80UJ/IefNAKFlLxU7/RPD0pwaRcqTaGs8GBYxf7zzQtx+cT1+8dIZfObhQ2nt6p6KZLIl39YICJWzEbtX0hqODk5Dp1agMRwE+8GNzSg2avCNp47l1dB956hDcjvm88eGwy6N6bc0AkKl2apX40iGTEHEtkYR8T1ooRwbJ8JiK9HMmUWnglrJyBAkBjZn4owzEdG0SmpGWY/NBaWCoXJWVUuhYGhJ0fxqNr0TrkjnQqZoLjXGrZx5A8I8bHttAe7e2AwAOD7PZm0+Mmr3zsg4EykxaWDWqnKy3Xxv9wRW1xVApZR+Sb+uoRAGDVnq5yokzvKYhW5rBIRWxP5JN+xxhpv7J92osOgkvUkwxtBSntyHlssXQP+ke96KV32xAXaPYEwSD9GpMZV5vQubinB6zJm0k2DEqVFyW6NwXDzHRnGYdyHnzURqiwzoTWLmzOkNoNfmluTUKFJu0cLpC8LhTdx2cbB3AvXFBpSYtLjvTcvx6TcswqMH+vHB3+9NOTfs1DyzjVKosOrB+Vn3r/k4OjCNxRUWKMMVJJNWhU9c2YpdZ2x58+Hp9Abw9gdexQ0/2SGpGv7UkUGUW7RYK0NLIyC8n7TVWDNSOfMHQ7C5fDPEWYlJA4tOtWCVM7ESlsjMgjGGQoOGDEFiMBb+mZRIcGsEhO6OkyN2SRsk3TYXqgv0UMf47GstM8syc9Znc2XMDESkqcSE02Ox1/rXPb3on3Tj01ctQnOZEUoFw4mh6YyuZyFxeANw+YJznBoB4e+qocSYcw6HDm8AxwansTaJlkYA0KqUuLSlBNtOjC7Y3CwhHRJneYwgzqRldMmFaOYQr3omJeMsmkVlyTk2ijt681bOwu0H3fO03Z0edaJJ4uzTbC5sDM+dJena2D0urD1RxpmIVa+GWauKa7yx9cTCWuhHU1toSKqt8Xj4AzypypnEIGrOOQ70TGJ1bQEA4UP0Y1ta8fU3r8D2k6N49692YdKV/IVqx4gDVVYdTNrU/sbEHfREc2eccxwdnMaySsuM2995QR0aig349tMnEMyDD89f7ziDMYcPCsZwx2/2RMJcY+H0BrDtRHrB07FYWW3FiSG77BlfNqcPnM+012ZMqIgsVOXMJrFyBgiVIaqczWU8LM6ktDUCQEuZGZMuv6SfZc+4c868mUhruQlD055I/E0q+AIhDE17UJMhMxCRplIjxhy+OWv1+IP4yQsduKCxCJeFW+mbSozzGoTlG6ORjLPY4j0X7fQP9EwgxIF1CfLNYnHDqir0T7rx9GtDGVgZkQ4kzvIUzjmmPYGstDUC8efEBiY9SYmz1nITxhw+yfMRUmbFxA9IUQzNRkr1bT6WV1lg0iY/d9Zrc0HBzrYrSkF0bJxNNiz0o6kp1GPaE5B8sbH7jDCwnCggM5oyMYg6gTgbnPJgxO5Fe1icidx6YT1++q41ONI3hVseeFWyc6LIqRE7WlJsaQTOBlEnet6BKeGibVnVTHGmVirwX1cvwYlhOx7Z35fyOhYCm9OHB188jauWleMP778ANqcP7//t3rjD5s8fH4E3EMIbZXBpjGZdQyECIY7dacRdxCKSfTSr4tJcakLHyMJcrNnCGwyJ3BoBQXzYyK1xDsm0NQLJOTaKTryxWBR2fE3HFGRwyo0QR8YyzkTiOTb+cWc3RuxefPoNiyIdJ4srzDiRIQOebCB2w8SqnAGCOOufdMMbyJ2A971dE1AwYHVdQdKPvW5lJVrKTPjBcyfzYgPwfILEWZ7i8AYQDPEFF2fVBXro1cqYb8ihEMfgVHKVs9by+cXebDpHHFAwoKEk/u5hXYIgarH6lkwAdTQqpQJr6wuTnjvrsblQFaftJR7xZruyYaEfjXgRItVOf/eZcbSUmSSFv4qUR4Ko57/IFOfN2mO0x127shK/fd96DEx68Nafv5LQIlokFOLoGHGk7NQIAJUW4e8gkSnIWTMQy5z73riyAqtqC/C9Z0/KXg2Sk59v64DTF8Bnrl6MtpoC/Pidq/H6wBQ+/ucDMT/0nzo8iDKzNqXd3vm4pLkEOrUCzx8blvW88YJpW8pMGHN4MTVPC7Vc2Bw+6NVKSZl7hQYNJhZgTfmG2NYoReACZyv9iUTVtMePCZc/bsv6ogQdJ1IQ3XEz3tYYw7HR6Q3gZ9s6saG1BBeGHYsBoZOm1+aW1HqeD4xEKmex3TAbS4zgPHGO6kKyr3sCSyosMOuSvxZUKhg+saUVp0Yc+NeRwQysjkgVEmd5ilixWGhxplAwLIozJzbm8MIf5KhOwuY3sjMpsbWxY9SB+mLjvG5VOrUSFRZdXHGWqlNjNBc2FeHUiANjSWS0ddtcklsaRaoLYlfOtp0YgWGBLfSjES8QpNjpB0Mce7smcEFjcj3xUtsaD/ZOQqNUxHWquqS5BH/54EVw+4P4/KNHJD1334QbHn8oLXFm0augVycOoj46MA3GEHMejzGGL167BEPTHvz65TMpr0UqI9OepE1UBibd+N2r3XjLmprIReiVy8px35uW47ljI/jvf74+Y2bH6Q1g64kRXCuTS2M0OrUSl7WU4LljI7IaqcQTZxHHxgVobbS5fJIrPsVGTdL5kecD404vCg1qycYJ5RatJNOqnjg2+iI1hcKmZjpzZ+KMb6YNQeqKDFAp2Ix23d++0gWb04dPvWHRjGPFTppMxVcsNFLaGoHccWwMBEPY3zOR1nXAdSsrsajchB9S9SynIHGWp2RLnAHCLuCJobkfMv1J2OiLVIZneqRWzjpGHJEslvmoKzagJ04QdeeoE4zF/yCVgjh3lkz7VK/NlfRzVhfqYZ/VPiha6F+6wBb60YgXCFIqZ8cGp2H3BnBhkuLMpFXBqFFiOFHlrGcSy6st8/4sVlRb8f7LGrH7jE3SrJyYbSTGPaQCYwyVVl3CtsZjg9NoLDbCGGe27cKmYmxZUoafb+uMOPbJjT8Ywg+fO4VLvvUCPvj7vUl9SP/wuVMAB+65snXG7e+5uAF3XtaI373ajV/tOCssX8hQS6PIlqXl6J90y9puJc7PzTaSWEjHxgmndHFWZNRi2hM45zKo0sWWxM8QOGtalUhUiRuBdUWxP5tEx0apmWmx6JtwQaVgqIhh8y4naqUCdcWGSOVsyu3HA9s7sWVJGVbP6k5YUiFU+1OZO/vFi6fx4Yf25ZQb7YjdC7WSocAQ+7qqIcfE2fEhO1y+YFLjArNRKBjuuXIROked+OehARlXR6RDQnHGGKtljG1ljB1jjL3OGPvErPs/wxjjjLGSzC2TmI14sb6QOWciiyvMGHN45+zMDiQRQC0iDtVLqZwFgiF0jbkktSMKdvrx2hod4eyZ1IVNW40VerUSu05LmztzegMYc/gk2+iLxHJszJaFfjRWvRomrUqS0BEF7PqG5MQZEM46m8dYwh8M4XD/5Jx5s1jctLoajAGPHehPeGzEqbE09ZkzQDAFSdjWODiNpVVzWxqj+dy1S+D0BvCTrR1prScWp4bteOvPX8H3nzuJthortp4Yxf9JDMDuGHHg4X29uO3i+shrNZovvnEprl1Rga8/dQxPh9tmnjoyiFKzFutSeD1IYcsSodX3+WPyuVyO2r2w6FRz3jNqCvXQKBWRUPtMYnP6JJmBAEBR2PAiU2I+Xxlz+JJqrQaE7o6ElbPw++B8GZatadrp99rcqCyQ5oScLtGOjb/acQbTngA+OatqBgivf4NGmZI4e2R/H546MoQnckgQiFmG8VycrXo1io2anBFne7tS/2yN5prlFVhSYcYPnz+FAG3o5ARS/soDAD7NOV8K4CIAH2GMLQME4QbgDQB6MrdEIhbTWa6cAXP755MJoI5meZUFB3snE7bh9E644QuGJLUjNpQYMWr3xjQk6Bx1Sqq+zYdanDuTWDmLfHin0NYIzMw6y6aFvkgyWWd7umyoKdQn/boAhPaS+WbOBGe+kCRxVl2gx8VNxXh0f1/C3dpTww6UmbWwxtlBlUqFRT9v5Wza40ePzRVz3iyaReVm3Ly2Fr9/tSvyd5YuoRDHL186jet+vAO9Nhd+dusaPHL3JXjnBbX42bZOPHk48UXT/z17AgaNCh/e1BzzfoWC4ftvb0d7bQHu+etB7Dg1FmlpVMrc0ihSZtGhrcaK52ScOxt1eGOaBKiUCjSWGBekcmZz+VAk8fUo2u2TY+NMbE4fSiQ6NYq0lgmbkfMJ3R6bE8VGzbzOrq3lZgxPe1N2bOydyLyNvkhzqRFd4y6MObz49Y4zuHZFBVZUW+ccp1AwtJabkxZndo8/Utn+1tPHU447kZsRuyeuGYhILjk27u2eQJVVl9JnazQKBcMn37AIZ8acePxg7ojl85mE4oxzPsg53x/+fzuAYwCqw3d/H8BnAeROXfo8IdttjQDmtGj0T7ph0qpg0SVnPf6+yxrhDYQSVgU6ksidEkVQz6zKTijEcXrUkda8mciFjUU4PmSXtDt9NuMsOVEoOjtGtw9uOzGaNQv9aKRknXEuOOclO28mUm7RYXieyploBrK6Vlpbx1vW1KBr3IX9PRPzHtcxYk+rpVGk0qrDsN0bt03w+KDwN5RInAHA+zc0wh/keLljLO119Yy78I5f7MTX/nUMl7eW4tlPbsQbV1aCMYb73rQca+sL8V8PH46YlcTiUO8knn5tCB/Y0DRvNUKnVuKX71mHCqsOt/9mNzz+zLU0imxZUo6DvZNJzYTOx+wA6miay4wLknU24fSjyCit6iO27kl1wT1fGHd4k2prBICW8sRzhd3jrnmrZgCwqFx0fkytetZrcy+YOGsqNcIXCOHef7wOpy921UxkSbng2JhMe+Kh3ilwDnzsihYMTnnwwIudciw7bYS/8/nbRhtySJwd6ptEewoujbG4alk5lldZ8OMXTlE7dA6QVH2cMdYAYDWAXYyxNwHo55wfSvCYDzLG9jLG9o6Ojqa+UmIG2RRn5RYtLDrVnN0yIeNMl3Swc3OpCTevrcFDO3vmbZNLxshDnO3qGpt5PsEGNxSxC06Hi5rDc2ddiatnPeOpVc6KjRro1IpIW6PTG8DuM7astjSKCFln7nk/lDtHnRh3+pKeNxMpt2gxPO2J+xwHeiZRbNRIHpK/ZkUF9GolHtkfv7WRc45TIw60lqXX0ggAFVYdgiEeN4j66IAQmDzbRj8WLaUmGDVKHOlPPWSZc44/7erBNT98EccGpvG/N6/CL96zdobw0KqU+Pmta2DRq/DBP+yNu/nwnX8fR7FRg/dvaEz4vMUmLX5zx3qYdSqUmrVpt+EkYsvSMnAuzLfJwXwXbS2lJvTYXBl10/QGhDD2IiNVzlIlEAxhwuVHsUSBKyLFTr973BXXqVEkHcdGjz+IMYc34zb6IuLn47+ODOLGVVXz5lMurjDD5vRFnDClsL9nAowBH7i8Cde1VeL+7Z2ydQSkw6jdG4lwiUdjiREjdi+cWXaotDl96LW50VZTIMv5GGP45JWL0D3uwmPzfD4SC4NkccYYMwF4BMA9EFodvwTgK4kexzl/kHO+jnO+rrQ0+xeU5wpTbj+UCpZyQG46MMawuMI8p39+IEkb/WjuuXIRGAO+/9zJuMd0jDhQatZKEqRihWq2Kcjp8I5Xum2NgDB3plUpJFnq99hcsOhUSbfJMcZmODZm20I/mppCPdz+4Ly78+K82QWNxXGPmY9yiw4efwjTntgfhAd7J9BeWyB5Q8CkVeGaFRV48tBA3IvpgSkPXL6gbJUzIL6d/tHBaRQbNXHdwaJRKBhWVFtxuC81cRYKcXzoD/vwxceOYHVdAZ755OV429qamD+7MosO9797LUamvfjon/fPmUN46dQoXu4Yx0evaJH8HtRUasITH7kMD915YcZaGkWWV1lQadXJZqk/avfG/R01l5kQ4vGjO+RgwilsxkmeORMrZ+TYGEGMFki2rbHKKsxVxTPz8AVCGJxyJ9x4E2NoUpk764s4NS5Q5SxsfKFUMHziyvhVM+CsY2MyrY37uifQWmaCRafG569ZghAHvv3M8dQXLAP+YAjjTt+cLMPZ5Ipj4+G+SQDCdYhcbFlahrYaK35E1bOsI0mcMcbUEITZQ5zzRwE0A2gEcIgx1gWgBsB+xlhFphZKzGTK7YdFp0q6SiUXi8J95tEVjWQDqKOpsOpwx6UNeOxAP44PxW6l6hx1oEVixctqUKPAoJ5zwSQO7qeacRaNVqXEmrpCSWHUPTYX6otTE4TVhYbIbFe2LfSjES8UeueZO9t9ZhylZi0aUnTGLItknc1tbZxy+9E56pQ0bxbNW9ZUY9oTiFtVEduO5KicVVqFv4d4c2dHB6exrMoi+e+4rcaKo4PTKX1wnhpx4Nmjw7h7UzP+8L4LE7bFrq4rxNfevAIvd4zjm0+fvXAKhTi+88wJVBfo8a4L65JaQ12xYd5deLlgjOGKJWV46dRY2hUtpzcApy8Yv61RtNPPYGujuAFSLFGcFRg0YIzaGqMZjwRQJ1c5E50W4/1++yeFcOi6BO/vwnxW/PPMRyTjLMM2+iJFRg1qCvV4+/raiBiJhyjO4n1uzyYU4jjQM4E1YefH2iIDPrihCf84OIB93fO3m2cSsQVaSuUMyAVxNgXGgJUxZgFTRaye9U248fd9fbKdl0geKW6NDMCvABzjnH8PADjnRzjnZZzzBs55A4A+AGs450MZXS0RYcodyEpLo8jiCjOmPYGIzbnbJ1RQ0pmDuntjM8xaFb77zFynOM6FUODmMukCp77IMGfmrHPUEXFckoMLm4pwdHB63iFvzjm6xp1JtzSKiJUz0UL/kubsWehHI14ozNeKuiecb5bqJkJ5+II4lp2+uHM42945EZc0l6DcosUjcT58xIundDLORM5WzuaKM38whJNDDknzZiIrawrgC4RS2n0X5+zevq5Wcr7YLetqccclDfjVjjN4dL/w83r6tSEc6Z/Cp96wKCdeh/G4cmk5XL4gdkp0VI2HeNEWb0ddDO3NpCmIKLIKJYYnKxUMhQYNtTVGMR5uuytOsnIGCHPO8doau8eFi3QpMSmtZXM7TqQQyThboJkzxhj+fc/l+O83LU94bIlJixKTRnLl7PSYA9OeANZE2b/fvakZZWYt/vvJowhlKWtrNEEAtUhDWIR3ZV2cTaKpxJhS+PR8bFpcivbaAvzkhQ74AlQ9yxZSKmeXArgNwBWMsYPhf2/M8LqIBEy5/VkVZ2JVQfygGZgSnRpTz2ApMGhw16ZmPH98BHtmzXGN2r2wewKSK2cAUF9sRNf4zDfQzlEhJ02uiuOFjcXg/Kyl7WxODNnx9gd3onvclXSFR6SmUA+b04cj/VPon3Rj85LcaA8WrdPjmYL0TbjQP+nGBWnMF80XRH2gZxKMAW21ye0cKhUMN62uxraTozENI04NO1Bi0khuIZuPAoMaWpUiZltj56gDvmBI0ryZSFt4l/RICq2NB3omUGhQJ52196XrluKipiJ8/tEj2N8zgf999gQWlZtw0+rqxA/OIhc3F0OvVqZtqR8vgFrEoFGhukCf2cqZSxAWyZhZFBk1VDmLQhSqybY1AsLn3dC0B9OeuZtwZ82eJIizchNG7F5MuZJzbOybcEOjUszJ2cskRq1Ksm1/rDGHeOzvngSASOVMfK7PXbMEh3on8fjB7Mw7ia7Aidwa9RolKq26rFbOOOc41DeFVTLNm0XDmODc2D/pxt/29sp+fkIaUtwad3DOGee8jXPeHv731KxjGjjn6VuIEZKZcvuzknEmIjpPRcSZaKNvTa/t4r2XNKLcosW3nz4+o2VSdMpqSaLVrL7YgIFJz4wWsM5RpyxmICKr6wqgUSrmWOo7vQF886ljuO5HL+HksB3ffutKvP+yxMYJsRCHwP+0S0isyIV5M0CY3yo0qOPa6Z+dN0tdnIktJrEcGw/2TqK5VJhbSJa3rqlBMMTxRAzb4FMjdkmOoFIQg6hjVc5EJ8RkKmf1xQaYdSocTsEU5EDPJFbXFSa9MaFWKvDTd61BqUmLdzy4E2fGnPivq5dkfG4sXXRqJS5rLcHzx4bTCrpNJM4AoU06o5Uzh9iSl5w4o8rZWcYdqbU1AvObgvSMu6BTKxJe1ANRn5tJhlH32lyoKdRLrngvNIvKzTg57JBU9drXPQGrXh2ZaxN58+pqrKotwLefOZ4Vs41Rsa1Rwu+xscSIM+PZE2fD016M2r2yzptFc3lrCdbWF+KnWzvgDeRGzMH5RubTDImMMJ3lylmxSYsSkzbSypBqxtls9BolPrFlEfZ2T8zY8T47Kya9rbGuyIBgiEecDqc9fozavbLY6Ivo1Eq01xZEwqg553jmtUFc+b3teODF03jrmhq88OlNePv6upQ/WMVW0X8cHMgJC/1oaosMcdsad5+xwaJTYXEaM0YGjQpmrWpO1hnnHAd7pYVPx2JRuRkrq6149MDM1kY5nRpFKq2xs86ODU5Dq1IknOmIhjGGthpr0pWzKbcfp0YcWJOi7XKxSYsHblsLBQPW1hfiyqW5sUGQiCuXlmFgyoNjg6mH/4oXbfNdfLeUCuIsUy1ZNpcfjCXnzltMlbMZjDt8UDCgIIXPTdEcqCOGqOq2uVBXZJC06TG740QqC5lxlgpLKsxw+4Nzxghisb9nAmvqCuZ8HioUDF+5fhmGp724f/vCW+uLnzFSqpPZttM/FG7pX5mByhkgfM586g2LMDjlwV/3UPUsG5A4y1Oy3dYIAIsrTJEPmf5JDxgTjD3S5eZ1NWgsMeI7/z4eyYfqGHHApFWhwiL9/A3hi16xtfH0qHxOjdFc2FSE1wam8frAFN772z2464/7UWDQ4JG7L8a339aWdK7ObMT2Qbc/mBMW+tHURpmVzEbMN0t3t7csbKcfTa/NDZvTh9VpZLy8ZU01XuufnjErMRJun5XDqVEkbuVscBqLK8ySW4dEVlYX4PjQdFI7mofEPLgk5/OiWVFtxTOfuBy/vn191oyIkmXzEkFEpuPaOGr3Rma44tFcZoTHH4q0d8vNhNMHq16d1GuF2hpnMu70ocioTen9qKbQAK1KEbdyVicxv7K6IOz8mKSdfq/NvWBmIKmwuEKo/h9PMHd2dpMo9vvQ2vpCvGlVFR588fSMbM+FYMTuQaFBDY0q8d9YU4kRky6/pIzTTHC4bxIqBcPyJFrik+WS5mJc0FCEn26l2bNsQOIsD+Gc54Q4i25lGJh0o9ysgzrJC81YqJUKfOaqxTg57MDjB4T+885RZ9KzYvWzgqjldGqM5sLGYgRDHNf/eAf2dk3gK9cvwz8/einW1suT5VRm1kKtFL7vXGlpFKkp1KN/wj2nYjBi9+D0mDOtlkaRcosOI7Nywg70CuYWqVbOAOCGVVVQKdiM6pl40SRXWyMgbFgMT3tm/Iw45zg6MJ1US6NIW40V/iBPyrpazBValcbPCxA2PJKNg8gmZWYdVtUW4Lk08s5G7V4UGzXztnG2ZNix0eb0Jb3JU2zUYMLlixuAfr4x7vCmbASlVDA0l5pwatbvl3OOnnDlTAoKBUNrmSmuLX8spj1+TLn9kU26XERs+0xUETwY3iSKNgOZzeevXQLGgG89vbDW+kJchrTNX9EUJFutjYf7prCo3AydOnOGTIwxvPviegxPe1MysSHSg8RZHuL0BREM8ZwQZ25/EH0T7kgAtVy8cWUFVlZb8b3/nIQ3EBScGpNsRyw1a6FXKyN2+p2jDqgULGXXxHisrS9EU4kR17dV4flPb8T7LmtMuhoyHwoFQ2U4aycXLPSjqSkywBcMzRFPe7sE8SRH2HC5RTencnagZxJ6tTKtlskSkxabFpfi8QP9kQtY8aJJ3rZGHQIhPsN8ZGjagwmXPykzEBHROjmZvLMDPZNYXG7OSi5itrlySRkO9U5iJMbcohSEAOr5W53EDZ/O0cxcrNmcPhRJdGoUKTJqwDnmdZI9nxh3+lJyahSJZYM/6vDC7Q8mZbLTGt7UlEqfaKOfw+LMqFWhrsiQcMNoX/cEFAk2iaoK9PjQ5c148vDgHGOwTDIi4e9cpDHcfXMmQ3/v88E5x+G+KaxK0ggrFcTPmtcHUsvWJFKHxFkeIn7Y5oI4A4TdMkGcydd2wRjD565Zgv5JNx7YfhpD056kK16MMdQXGyJWx52jDtQVG2Sp7kWj1yjxwmc24cfvXB1xF5SbjYtKcfPampyzLq8Nm5XMdmzcfcYGvVqJFTJksJRZtBiZ9s4wdTjYO4mV1da0RfBb1tRgeNqLlzsEP6NTIw4UGNQpObrFoyJskhPd2piKGYhITaEehQa15LkzMVconRbQfGbL0nIAwNYUq2ejjsQXbcVGDQoM6oxVziZcyVfORLdRm5OCqAFB4Ban4XbYWmZC/6Qbjiizip7wxl9dMuKszIRRuxeTLmktcREb/RxuawQEx8ZEWWcHeiawuMKScJPoro3NqLTq8LV/HZNzifMyX9D8bGoLDVAq2Bw36IWge9yFKbcfbRmaN4umvsgAo0aJ1wekZdgR8kHiLA8RbXizL84EsXR8aBoDUx7ZjSouay3BZS0l+NHzpwAgJSOPuiJDpHJ2etQpqxnIQvI/N63AV29cke1lzCESRD1rEHzXGRvW1hfKIoTLzTr4giFMhl/33kAQRwemZREbVywpg0WnimR4dQw70FpmknWmKlbWmSjOlqQgzhhjWFlTINmx8fSYE9OeQFrzZvnM0kozqqw6PJeipf6o3Rs340yEMaHtLVOOjeMptTUKaxbzvRaKcYcXd/9xX9bmceIxlkZbI3DWKbgzSoCLny1SbPRFzm5qSnutiO+tuVw5AwRTkK5xV9zQ92CI42DPpCRTIr1Gifdd2ohDvZMxY0jkhnMuqUIuolEpUFOox+ksmIKIZiCZcmqMRqFgWFppiXxeEQsHibM8JFcqZ2adGtUFerx6ehy+QEjWypnIZ69ZjEC45SyVOaD6YiGI2hcIoWs8f8VZriIK8mhTkCmXH8eHpmWZNwOiss7CbWlHB6bhC4bSmjcT0amVuGFVFZ55fQgObwAnR+xJxTVIQRRnQ1EXGUcHp9FQbEi5zbCt2oqTw/a4F0LRHAiHT6fq1JjvMMawZWk5dpwak/TziiYUbkeVctHWUmqaceEuF5xzTDh9SefuFUUqZwsrkl7uHMfTrw3NiRfJJt5AEHZPIC1xJpoERc+d9dhcYAyoLpT+2ddaLm0+S6Rvwg2jRomCHJ/1XFRuRjDE425QnBqxw+4NxDUDmc3FzcUAgF2nM/86mnL74QuGJIszIGynn4W2xiN9U9CqFBGRn2mWV1lwbHA6a+Hg5yskzvIQUZxlM+dMZFG5KZJnlQlx1lZTgOvaKqFXK5MOzwWEIGpvIIS93Tb4g1x2p8bzHZ1aiTKzdkblbG+3DZynl28WTbmYdRa2OhaHyttlEhtvWVMDjz+EP+7sxqTLHxlul4siowYapQKDUXNzRwenU5o3E1lZY0UwxHF0MPGO5v6eSVh0KjSVnL8bE1uWlsHtD+LVzvGkHjfl9sMf5JIu2prLjBh3+mSvGNm9AQRCPGlhIc5XLXTWWXe4mrDQbnvzMeEUPjPTaWusLzJArWQzzDx6bC5UWfVJtZtXF+hh1ChxSrI4c6FWolV/NllSIYiFeHNnYvj02nnMQKJZWmmBWafCrjPJ/c2mgphlWJaMG3SxEV3jzrQyFFPhcN8UllVZZB/PiMeyKgucviC6JcQkEPJB4iwPmc6Ryhkg7Jb5g8Kbk5yGINF8561tePwjl6b0ZiQKOnHeRM4AakKgtsgwY+Zsd5cNGqVClsoWEFU5C4ubg72TKLdoUZlm4LnImroCNBQb8LOtHQAgq40+IFRuKqw6DE4K67d7/Oged6U0byYitrRImTs70DOB9rrCnA2wXQguaiqGQaPEc0la6o9ICKAWaYmYgshbPbOF2xLns/KPhXj8QlfORAe7eBEb2WAshRDv2aiUCjSVmNAxHN3W6EzaYIoxhpYkTEF6be6cdmoUaSgxQqNUxBdnPRMoMmokb7IqFQwXNhZh5wJUziJ/50mI96ZSI1y+4BwzrEwSDHG8NjCFVQswbyayvIpMQbIBibM8JNLWmANtDtGl9UyFIxu1KiyuSK2EXx/On3khLM6ociY/NYV69NrOXojtPmNDW41VNptf8cJ4JEqcra6Vb36KMYa3rKnBtEcY9JfTqVGkwqqLBFGLWUDpVM4qLDqUmLQJHRsd3gBODtuxWiahnK/o1EpsaC3BC8dHktrpHk3iok1smZZdnIWNI5IVFhqVAmadasHFmTiHlUuVM7F6mK7RT0u5aU5bYyodHYvK5tryx4JzLgRQ57gZCCBE4DSXmeJmnYnh08lUAC9sLMaZMecct165OVs5S66tEcCChlF3jDjg8gUXZN5MpLXcBJWCkSnIAkPiLA+ZcvuhYIBJk31bbFE0GTTKnKjkzaaqQAeVgqFz1IkSkwYFSe4+E4mpLTRgaNqDQDAEly+AI31TsrU0AsKFtVWvxvC0F+MOL7rHXbK1NIq8eXU1AMCsVUXaKOWkyqrD4LQgYMXh6qVpVM4YY2irseJI/+S8xx3unUSIz58rdL6wZWk5Bqc8SV1kjDqEi0IplbOaQgM0KoXsjo1im2QqVZ9io2bh2xoXoHL2ub8fxvaTo5KPFx0r02lrBASnxd4JF9y+IJzeAMYcvogpUjIsrjBjzOFF/+T8P6MJlx8uXzAvKmcAsLjcFHOWbsLpw+lRZ9KmRBc1CXNnO09ntrVRjNlIZuZMzDo7vYBzZ2fNQAoW7Dm1KiVaykxkCrLAkDjLQ6bcfph16pxoU2opM4ExYd4sF3viVUrBVQmglsZMUVukRzDEMTjlwYGeSQRCXFZxBghzZ8PTnsiHk1wtkyK1RQZsaC3BqtrkdnalUmHVY3jKi1CI49jgNAoNalSkGbuwstqKjhEHnFHW3rM5IM7nLeCHea5yxZIyMAY8n4Rr42gSbY1KBUNTiVF2cTaehjgrMmoW1Erf7vFjzOGDSsHQa3NlZB5n2uPHX/f24omDA5IfIzpWptPWCAhVdc6F6mhPeAYnlcrZ1csroFQw/GbHmXmPO+vUmPuVMwBYXGHB4JQn4igtcqBXMCWSOm8msqzKArNWlXFzmZFpL3RqBcxJGDRVF+hh0qoSxgfIyeG+SZi1KjSVLGwH0PIqK1XOFhgSZ3nIlNufM1UqnVqJxhJjTn941IV3uKilMTOIFs+9Nhd2nbFBwZL/EE5EuUWHYbsXB3smoWBnwzHl5IHb1uKB29bKfl5AcGz0BUMYd/oiZiDpisC2GitCHPOaguzvnkBLmSknWqCzTYlJi/baAjx/XPrc2ahduGiT6qrZXGaSPYharJwl69YIAEVG7YJa6YstjavrCuD0BSPxF3IiZoudHpMugsccPqiVDBZdet0m4jxqx4gjykY/+c+V2iIDbmirxJ9298ybd3Y24yw/KmcRU5BZ1bP93ZNQKljS7XhKBcP6xqKMV85GHV6UmXVJvScLNvPmBa0oHe6bwopq64JvzC+rsmDM4Y1UGInMQ+IsD5n25I44A4Afv3M1vnLD8mwvIy4N4Z1NstHPDGLLTe+EC7vPjGN5lRVmnbyvzzKzDqPTHhzoncTiCguMKVrQz4dBo8rIeQFh5gwQ5nCOD9nTMgMREQVqvLkzzjkO9E6e9/Nm0Vy5tByH+6Yi84uJELOPpF60NZcKbW/JWvbPh83pg0algFGT/AxnsVGzoDNnYijvZS2lADLT2ihWk06PSnfKszm9KDZK/z3Go6HYCKVCcGwU15FMAHU0d21qhssXxB9e7Y57jDjLW5PDm5/RLIo4Ns4ULPt7JrC00gxDCqMYFzYW4fSoM6PCYGRaesZZNMsqF85m3hsI4tjg9ILOm4ksD89HU/Vs4SBxlofkUuUMEErejQtcZk8G0U2LxFlmqCzQQcGEsOMDPZOytzQCQlvjiN2Lg72Tsrc0LgRi1tkrnUImYDpmICJlFh0qLDocCbd6zqZ73AWb03fehk/H4rKWEgDAnq4JScePOhIHUEfTUmYC5/KaBNicPhQZNCkJiyKTBhMu34LZfYvVpEtbhFmh3gyYgojthFNuv2ThOe5IPsQ7FhqVAg3FBpwadqDb5oRVr075s3hJhQWbF5fiN690we2LLeb7JlwoMKhl3+zKFFVWHcw61YzKWSAYwsHeSaxN8X3owqbM552N2D0oS0WchW3mexbAZv7EkB3+IF/QeTMRcT6a5s4WDhJneUiuibNc56KmYjSVGLOy43Q+oFYqUGnV4+kjQ/AGQljfkAlxpkMgxGH3BPKyEiTa/j8ftnJfVinPa3FljRWH+2NXzsQ5jzX1BbI817nA0koLNCoFDvZKFGf25HbUxdZpOefOJlzJB1CLFBs18Ad5xIk005wZc6LcokVr2MU3E46N0RfCpyWK4DGnL5L7li6tZeZIW2Mq82bR3L2pBTanDw/v6415f++EO9I2ng8wxrC43DzDTv/EsB0uXzBlU6IVVRYYNcqM5p0l+3cuIr6PS8mbTJdD4Q6JbFzHWPVq1BbpSZwtICTO8pBptz8nAqjzhRXVVrzwmU1pO3UR8akt0kcumtY3yF+piXZQXC2zU+NCUGzUQK1kONA7CY1KgSaZ5h/bqq04PeqE3TN3tmd/9ySMGmVGogHyFY1KgRVVlkiQeSKSF2eCQZKc4mzc6Us6gFpErBYtVGtj97gT9cVGWPVqWHSqjLQ19thckZ/HaYmxBTanFyUyvf+3lpvQNe5Ex4gj6Yyz2axvKMTa+kI8+OJpBIKhOff32fLDRj+axRVmHB+yR6q1+3smAQBrUqycqZQKrGsoyljlzOMPYtoTSKly1lpuglLBFkS0HO6dRJFRk7UW1+WVVso6W0BInOUZnHOqnBE5hzh31lpmyogILgs7G5q1qrxsT1UoGMotOnAOLC43pxSoHouV4V3U1/rnXhwc6J3AqtoCKHPA1TWXaK8txOG+KfhjXAxH4wuEMOHyo8ws3VVTp1aiplCPDhmzziacqVfOzoqzhXFs7Bp3RWZ8awoNkbksOem1uXBhUxE0KoVkG3O52hoBoXU1xIHBKU/a4owxhrs2NqNvwo1/HRmccV8oxNGXZ5UzQBBndk8AQ+G5zgPdEygxadMSFRc1FePUiCMSJi4nkYyzJP7ORXRqJVpKTQtSOTvcN4W2GmvWXLGXVVnQNe6CYx53YEI+SJzlGW5/EP4gJ3FG5BTiBUQm5s0Aoa0RANpqF96pSi7EuTM5zEBERFOQ12a1Nrp9QRwbtKe8W30u015XAG8gNKP1KhbjTuk2+tG0lpnRKWPlzJZG5azYKKx9IRwbHd4ARu1eNITnj2sK9bJXzoJhwdJQbERDsUGSM6bbF4TLF5S1rVEk3bZGANiypAytZSb8fFvnjNnAUYcXvmAob8xARBaHW1rFMOp9PRNYW59eRMmFTcLnyu4MWOqPJBGXEYtlVZaMV85cvgBOjdizMm8mIpqCHFsAIUqQOMs7ptxC+xKJMyKXEFtvMiXOSk1aGDRKXNBQnJHzLwQV4bmzpZXytRkWm7SoLtDPmTs73DeJYIjnZQtophFnFg8kaG2MZJwlWQluKTPh9KgzZptasviDIUx7Aig0pFg5CwuSiXns2uVCDJ8Ww3lriwzom3DLakYyMOlGIMRRV2RAU4lJkp2+KLJLjPJU9JtKjRD3h+pSsNGfjULB8KGNzTg+ZMe2qGBtsepYkyc2+iKLI46Ndow5vOged6W9SbSy2gqDRpkRS/3RFAKoo1lWacHQtAfjGajqibzWP40QF9rYs4VoYkVzZwsDibM8g8QZkYtsaC3FW1ZXY/OSsoycX6NS4KmPb8CHNjZl5PwLQZVYOauS9wO2rcY6x7FRFB7k1DiXmkI9SkwaHAzPwsQjmQDqaFrKTPAFQ+iVoWokiqoiY2rv90VhUTe+ADNnkdyvSFujHm5/UNbnjtjXFxnQVGpEz7grYXuqXAHUIjq1MtLOKEflDADetKoKVVYdfr6tM3JbJOMsz9oaCwwalFu0ODFkxwFx3izN3Eu1UoG19YUZmTs729aYeuUMAI4Nzl+JT4fD4ff3ttrsibMKiw5FRg3NnS0QJM7yjCkXiTMi9yg1a/G9t7fDkkHL54YSI3Tq5LOecoVlVRZY9WpZK2eAMHfWNe6KvDcAQvh0Q7FBtgvScwnGGNprCxI6NqYjzgDg1HD6F2sTTuF3WpRi1UevUUKvVsK2AG2NYnxAfbHY1iiICjlbG0XTodoiA5pKTQiEeMK5NrFyJldbIwC0lJmhUSoi7dbpolEp8P4NTdh9xoZ93cLrsi/PMs6iWVxhwYkhO/Z1T0CtZJH263S4qKkYJ4btspvbjNi9UDCkPCsdsZkfzJxoOdw3hUqrLqW5OLlgjGF5lWVB5usIEmd5B1XOCCI/edOqKuz50pWyZxa1VRcAAF4L72hGwqepahaX9toCdI46Zwja2YjiLNmLelGcyWEKIgqLwhQrZ4BQMVoIt8bucSdKzVqYwkHuYquznHb6PTYXVAqGSqsu4niayBRErJzJ5dYIALdeVIePXtEiq9nOO9bXosCgxv3bhepZ74QLpWZtXm5ILakwo2PUgT1dNiyrssryPVwUmTuTt7Vx1O5FsUmb8u+yyKhBpVWX0Xa/w32TOREFtKzSgpNDjoTVaiJ9SJzlGSTOCCI/YYxBo5L/LVfclT4czsHpn3Rj1O7FGpo3i0t7rSBcD8UJ8AYEQ4YCgxpaVXIXlhadGuUWLTqG0xdnZytnqVd9ik2aBWlrjHZqBIDqAkGc9drkrZzVFOqhUirQXCKI4ERzZ+L3LmcVefPiMnx8S6ts5wMAo1aF2y9uwH+ODqNjxI5emxu1eVg1AwRTEF8ghH3dE7K9D62sLoBercROmVsbR+zJBc3HYlll5ipKUy4/usZdWTUDEVlWZYEvGMIpGd7biPkhcZZnkDgjCCIaq0GN+mIDjvRPAjibK0SVs/i01VrBGObNOxtN46KttcwsS+XM5kpfWCxU5axrzBlpaQQAs06NAoNa1spZr82F2vC8l9WgRrFRI6Fy5oVOrYBBk/sVqNsvaYBOrcD920+jd+Ls95pviKYgALA2zXkzEY1KmDuT2xRkxO5BmSVNcVZlQeeoEx5/UKZVneVw+H19VQ6Is+VVCxe6fb5D4izPmHb7wRhg1qmyvRSCIHKEldXWSOXsQM8EdGoFllRQ+HQ8LDo1WkpNicVZiiYBLWUmdIw4EAql51Qozoql6tYILIw4c/kCGLF70Vgy072wttAg+8xZdLZYU6kRnQlEsBDirc1aPlQyFBk1eMf6Ojx+oB8Dk+68nDcDhNe/2CUoZ5zHRU1FOD5kx4SMr+dRuzdlMxCRZZUWBEMcJ2WYM52N+L4ux9xeujSWGKFXK8kUZAEgcZZnTLn9MGtVeZv1RBCE/LTVWNE34YbN6cP+nkm01RRAJVPQ9blKe20BDvRMxLV6H0lTnLl8QQyGg3hTZcLlg1mnSiu0vNioicyuZYrZTo0iNYX6iOtgukx7/Jhw+WeKsxKTpJkzOc1AMs2dGxrBAYR4/jk1iujUSjSUGFFh0aGqQD6BeWGTEKWyu0ue1sZgiGPM4Uv571wkkzbzh3on0VBsgNWQ/W4ppYJhSaWZ7PQXgITv+IyxWsbYVsbYMcbY64yxT4Rv/x/G2GHG2EHG2LOMsarML5eYcvtz4o+UIIjcYWXYFGRvlw1HB6Yo30wC7XUFmHD5Iw6A0XDO02prlMuxcTyNAGqRIqMWHn8ILl8grfPMx+yMM5GaQj36Zco6i7bRF2kqNWLc6ZvX2GXc6U37Z7iQ1BQacOMq4XIqX9saAeBDlzfhY1taZD1nW40VOrVCttbGCZcPwRBP2wWxttAAk1aVkXa/I/1TOTFvJiLO18mZX0jMRcp2XADApznnSwFcBOAjjLFlAL7LOW/jnLcDeBLAVzK3TEJkyu2neTOCIGawolrYuf3Lnl74g1zWVqJzldVhU5BYrY1OXxBufzDlHfVW0bFxJL25swmnD4VpCgtRmIxn0E7/zFjsylltkQHeQAijMgT09oyftdEXaSoVfs6d85iC2By+lG3Ss8U9Vy7CdSsrsSocmJ6PvH19HW69sF7Wc2pVSqypky/vbGQ6tbiM2SgUDEszUFEasXswOOXJCadGkeVVVtg9AVnblYm5JBRnnPNBzvn+8P/bARwDUM05j34VGgGQjF4ASJwRBDEbs06NplIjtp4YAQCqnElgUbkJerUyEpQbTaoZZyLFJi0KDeqE81CJsDl9kSDpVBHNRDI5d9Y97kSJSTMnJkKcmZLDsVGscNYVz6ycAfHt9DnnGJOh+rjQ1BUb8NNb10RiCYizXNhYjGND0/NWS6UyYhfajtOdOQOEitKxwem050yjOdwrzHblkkhfHm7hpLmzzJJUIztjrAHAagC7wl9/nTHWC+BWUOVsQSBxRhBELNqqreBcuCDOZlhpvqBSKrCyxooDMSpn6YozQHBsTNdy2ub0pW0BX2TKvDjrGp/p1ChyNog6/bmzHpsLBQb1jKD7uiIDVAqG03FEsMMbgC8QyquZM2J+LmoqAufyzJ2Jf+dyvF8uq7LA6QvGbJNOlcN9k1Cws4IoF1hcYYZSwfA6zZ1lFMnijDFmAvAIgHvEqhnn/Euc81oADwH4aJzHfZAxtpcxtnd0dFSONZ/XTLkDJM4IgpjDyvBcAlnoS2d1bQGODUzDG5hpgS2HOGsuM+HUiCPl2QzOOWyu9MVZpK0xk+JszDWnpRE4WzmTowVqtlMjAKiVCtQVG+JWzkRBWmzMr7ZGIj6ragugUSmwS4a5sxEZ/s5FMmEzf6hvCovKzTBocqeCqlMr0VxqJFOQDCNJnDHG1BCE2UOc80djHPInAG+N9VjO+YOc83Wc83WlpaWpr5QA5xzTbj8sJM4IgpiFOJewOodaYHKd1XUF8AVDcy40RsPtTumE07aWmTDl9mMsxVkvly8IXyCUfuUs0taYGcdGty+IoWkPGmNUzgwaFYqNGlkqZ9EZZ9E0lZjiBlGLP/siqpydM+jUSqypK8DOM+mLs1G7F2atCnoZMvBaykxQKZhsosXpDWDn6XFc2Fgky/nkZFmlhSpnGUaKWyMD8CsAxzjn34u6vTXqsDcBOC7/8ohoPP4QfMEQVc4IgpjDmrpC/L/rluKta2uyvZS8oT2OKciowwulgqWVL9aSpimIWPVJ1xDEpFVBo1RkrHImtnHVl8wVZ4BQPUu3chYMcfRNuFEfQ5w1lxrRNe5CMMasz3jYiKSEKmfnFBc2FuPowDSm3OnNnaWTZTgbnVqJljKTbJWzF46PwBsI4Y0rK2U5n5wsr7JiaNoT+fsi5EdK5exSALcBuCJsm3+QMfZGAN9ijL3GGDsM4CoAn8jkQglE3ohInBEEMRulguHODU30/pAEFVYdKiy6OaYgo3YvSkyatPIkW8tFcZaanb4oztI1BGGMociokTW4N5ozY6KNfmzb9xoZgqgHp9wIhPictkZAMAXxBULoj/EckbZGqpydU1zUVIwQF6JD0mHE7pFNnAFhm3mZKkpPHRlEqVmLdQ25VzkTZ+AyER1ACEhxa9zBOWeibX7431Oc87dyzleEb7+Bc96/EAs+nyFxRhAEIS/ttQVzK2cy7KhXWHQwaVWpV85c8rXkFRk1GTMEETPOYhmCAEBNkZB1lo6LXU+MjDOR+ez0xWphuq2hRG6xuq4AGqUCu86kJ85G7V6UWeQzT1pWZZGlouTyBbD1xAiuXVEBZRobRJliWcSxkcRZpkjKrZHILiTOCIIg5GV1XQF6bK4ZF1SjjtQDqEUYYxFTkFSwOeSpnAGCOMlUW2PXuAtFRk3cz6WaQgN8wVDEfCEVYmWciTSVxLfTH3N4YdKqoFOnP1NE5A46tRLtdQVph1GPpBE0H4tllfJUlF44PgKPP4RrV+ReSyMAFBg0qC7QkylIBiFxlkeQOCMIgpCX9rCByqG+ychtcs2itJSaUq6cTbjkmTkDMls56xpzxnRqFDnr2Ji6KUiPzQWVgqHSOrfKIQrDWHb6NqePWhrPUS5tLsHhvinc9qtdePrIIPzBUFKPd3gDcPmCKLPIJ86WiuIsTdHy9JEhlJi0uCAHzUBEllZaKOssg5A4yyNInBEEQcjLyhorlAoWmTsLhTjGHD5ZxFlruQkjdm9KxgU2pw8qBYNFl76NdpFRE6nEyU33uBMNcVoaAaA2nHXWm6Y4qy7UQ6Wce8nCGENTqTFm5WzckX4UAZGbfGhjE+65shUdIw7c/dB+XPKtF/Ddfx9Hr8ScsUhchoyVs0KjBlVWXVqVM7cviBeOj+CaFeU52dIosrzKgtNjTrh8gWwv5Zwkd8ITiISQOCMIgpAXg0aFReXmyNzZhMuHYIjLEkzbUnrWsXFtfXL5czanD4VGDQTD5PQoNmpg9wbgDQShVcnX4ufxBzEw5ZlXnEUqZ7bUTUF6Y2ScRdNUYsKOjrk5qmMObyQImzi30KmVuOfKRfjYFa3YdmIEf97dg59v68TPtnViQ2sp3nVBLbYsLYc3bBbTN+FC34Qb/ZPC/3eOCGJezsoZIMxjpVM523piBG5/MCddGqNZXmUB58DxITvWULam7JA4yyNEcWbWkTgjCIKQi9V1BfjnoQGEQhyjDvmCaaMdG1MRZ3LMmwFnTUUmnH5UWOUTZ2KVoqEkvgDSqZUoMWnTcmzssblw7TwXq02lRjyyvw8ObwAm7dnLGpvTF2lbJc5NlAqGLUvLsWVpOQYm3fjb3l78dU8v7vrjfmiUCvhmtTtqVArUFOpRXaDHxc3FWFcvb+vgskpLeGYsmNKs47+ODKLYqMEFOejSGI1oCnJ0YJrEWQYgcZZHTLv9MOtUOV3qJgiCyDfaawvwp109OD3mPNvuJIM4qyk0QKNSpDR3ZnPK15JXHD7PuNOLihhzW6ki2ujHc2oUqS3Sp9zWOO3xY8Lln7dy1lwqPP+ZUSdWhsPYQyEu68+QyH2qCvS458pF+OjmFmw/OYodHWMoM+sEMVaoR02hHiVGbVoRGYlYVmVBiAMnhuxYleTGgNsXxNbjI7hpdXXMFt5corpAD6teTY6NGYLEWR4x5fZTSyNBEITMrA5fRB3omYhsfskxi6JUMDSXpubYaHP5sLTCkvYaAKAoHMIstylId9hFsTGBOKspNODQrLgCqYjVuVgB1CKinf7pMUdEnE17/AiEOIplnCki8gOVUhGppi00yyqF19/Rwemkxdn2kyNw+YK4LsdbGgFh1lPIdSNTkEyQ29KcmAGJM4IgCPlpLjXBrFXhYO+krJUzAGgpS82xccLpQ6FRnvd7sXoktzjrGneiwKCG1TD/OmsK9RiYdCOYQtaZKM5i2eiL1BcboGBAZ5QpiBgdUEJujcQCUlOoh1mrSmnu7F9HhlBk1ODCHHZpjGZ5lQXHh+wIJOmUSSSGxFkeMeX2w0LzZgRBELKiUDC01VpxsHcSI3YvDBoljFp5Gktay0zom3An5WoWDHFMuv2Rile6RNoaZXZs7Bp3JmxpBATHxkCIY2jak/RzRAKo57Hr16qUqCk0oDPKTl/8XqmtkVhIFAqGpZWWpB0bPf4gnj82jKuXV+R8S6PI8moLvIHQjE0RQh7y4xVAAKDKGUEQRKZYXVuI40N29NhcslXNAKFyBsQOSY7HpMsHzoGiBBUpqVj1aigVTFLlLBAMYWhKmojqGnOhYR7RJHLWsTH5ubPucRcKDOqEG5Oz7fTFUPFimQQuQUhlWZUFxwanEUqiUrztxChcviDeuLIigyuTl7aaAgBIuWWZiA+JszyCxBlBEERmaK8tQDDE8UrHmKzZR61hcXZqxC75MWIAdZFM61AoGAoN6kir33z89pUuXP6dregam19MegNBDEy557XRFzkbRJ28Y2NPAht9kaYSE86MOSIXxNTWSGSLZZUWuHxBdCexGfH0a4MoNKhxcVNxBlcmL43FRlh0KhwgcSY7JM6yzIjdg/u3d0raYZly+xP29hMEQRDJ015XAABw+oKyVs7qi41QKlhSc2eRljyZrPSBcBC105vwuP8cHYYvGMLPtnXMe1yvzQXO57fRF6kOi7NUHBt7ba55581EmkqN8PhDGAy3Too/w0JqayQWmGibeSkILY0jedXSCAibPqtqCyIZkYR85M+r4Bzl20+fwLeePp5w58HjD8IXCFHljCAIIgOUmLSRCo+c4kyjUqCh2IBTw9LFmVg5k8sQBBDF2fyVM7vHj33dEzBqlHh0f3/EjCMWXWNhF0UJlTOtSolyS/JZZ8EQR9+EW1rlLGynfzo8dzbu9MKqV0OdRxe7xLlBS5kJKgXD0UFpToYvnhyFwxvI+eDpWLTXFuDksD2pmVoiMfSulUV6xl14/GA/AGBvl23eY8UAaguJM4IgiIywOhymKmdbIxB2bByVLs5sTuH9Xs55qWKjNmFb46ud4wiEOL7+5pVQMIafb++Me2zXuND2mMhGX6Sm0IC+JCtng1NuBEJckjhrKZ052zfu9KGYWhqJLKBTK9FSZpJcOXvqyCAKDGpc3Jw/LY0iYjv4a/2UdyYnJM6yyM+3d0DJGMrMWuyRKM6ockYQBJEZ2sO5RHJWzgCgtcyM7nEXfAFpltNi+2GBjG3sRUYNJhKIs+0nR2HUKPHGlZW4eV0N/r63D4NTsatd3eMuWHQqyWusLdQnXTmLODVKEGelZi1MWtXZypnDG3GpJIiFZlmVNMdGbyCI546N4Kpl5XlZ5RXfMw/2TmR3IecY+fdKOEfon3Tj7/v6cMv6GmxaXIq93RPzzp1NkzgjCILIKGK+UEOJtGqQVFrKTAiGeKTalAib0w+jRgmdWinbGoqMGky6/XGzxjjn2H5yFJe0lECjUuDuTc0IcY4Htp+OeXzXuBMNJUYwxiQ9f02hAYNTnqQykXqTEGeMMcGxMWxkMu7wkVMjkTWWVVowPO3FmGP+Oc+XTo7lbUsjABSbtKgt0tPcmcyQOMsSD2zvBOfAXRubsb6hCJMu/4yMltlQ5YwgCCKzrKi24qXPbpY9BFa005c6dzbh8qFI5pa8YpMGnJ+dZ5vN6TEn+ibc2LioFIAgpt66pgZ/2t2DkRj5ZFIzzkRqCvUIhjgGJdr0A0LlTKVgqLTqJB3fVHLWTt9GbY1EFhFNQY4lqJ49dWQQVr0al7aULMSyMkJ7bSEO9kxmexnnFCTOssDItAd/2dOLt66pQU2hAesbhAuB3fO0NpI4IwiCyDy1RQbJ1SCpNJeawBgkOzaOO32yOjUCQGH4fPFMQbafGAWAiDgDgA9vbkYwxPHgizOrZ75ACP0TbjRKyDgTER0Xk2lt7LG5UV2ol+xg11RqQv+kGw5vADaXj9oaiayxrFIQZz947hQe2deHyRibIt5AEP85Opy3LY0iq2qsGJjyxNzEIVIjf18NecyDL55GMMTx4c3NAID6YgNKTFrs7Yrfs0vijCAIIj/Ra5SoKdRLNgWZcPpkt4AXhYpoMT+b7SdH0VRinGFbX19sxI3tVfjjru4Z7Vm9Ey6EuDSnRpGaFOz0e8adkloaRUTHxoM9k+BcaLkiiGxQYNDgC9cuwcCkG59++BDWfu05vOsXO/G7V7owMClsULzcMQZ7Hrc0iqwOx5BQ3pl8kDhbYMYdXjy0qwc3rqqKfLAxxnBBY+G8piARt0adakHWSRAEQchHS6kJp4alBVHbnD4UySzOxDbJWJUzjz+InafHcXlU1UzkI5tb4A2E8MuXzkRu6w7PzknJOBOptOrBWLKVM2kZZyJNJUL7qNiFQm2NRDb50MZmvPL5K/CPj1yKuzY2YcTuxb1PvI5LvvUCbvjxDnzvPydh0anyuqURAJZXWaFSMBwicSYbJM4WmF/uOANPIIgPb26Zcfu6+iL0TbjjOmNNuf0waVV5FVBIEARBCLSWm3F6zBnXkCMaWwbaGkWxFyuIevcZG7yBEDYunivOmktNuL6tCn94tSvi9ihmnDUkUTnTqBSotOgk2+lPe/yYcPmTqpw1ho1c9pwRxJncApcgkoUxIaj5v65eguc+tRHPf3ojPnfNEqiUDK/1T+P6VVXQqPL7uk6nVmJppYVMQWQkv18RMvD/Hj+Ce//x2oI816TLh9+/0oU3rqyMDIiLiHNne+K0Nk65/dTSSBAEkae0lJrgC4TmDXYGALcvCLc/KHtbozhzFivrbPvJUWhUClzUGDtn6WNXtMDpC+LXLwvVs65xJ8xaVdLip6bQgD6btMpZMk6NInqNEtUFehwI23qXUFsjkWM0l5pw96ZmPPbhS3Hgy2/AfTcsz/aSZKG9tgCH+6YkbT4RiTnvxZnTG8QThwYW5AX165e74PQF8bErWubct7TSDKNGGdnxm820208B1ARBEHlKS7mwIZfIFMQWNg6Q28xCrVTAqlfHbGvcfnIUFzYWQa+Jbd2/qNyMa1dU4Lcvd2HK7UfXuAv1Jckbp9QU6iVXzlIRZ4Awd+bxC3b9ZAhC5DKFRk3eV81E2msL4PAG5nUdJ6Rzbrwq0mDL0jJMuPw40JPZAL1pjx+/efkMrlpWjiUVljn3q5QKrKmPP3cmVM5o3owgCCIfidjpJxBnYuug3JUzQBArsytnfRMudIw4Zrg0xuKjV7TA7g3gty93oXvcmVRLo0hNkQFD0x5JYdxiAHUyM2eAYKcPAIwJpgwEQWSeVWIYNVnqy8J5L842tJZCpWB4/vhIRp/n9690we4J4GNXtMY9Zn1DEU4M2yPmH9FQWyNBEET+YtGpUW7RJq6cOTNTOQOEGSzbLLfGF0+OAUBCcba8yoorl5bj1y+fQd+EOzVxVqhHiCPubHU0PTYXrHp10p97TaWCCC4yaKBUyBuJQBBEbJpKjDDrVOTYKBPnvTiz6tVY31CEF45lTpw5vQH8ascZbF5cipU11rjHrWsoBOfA/u65VTwSZwRBEPlNS5kJHSPzOzbaMlg5KzJq5rQ1bj85giqrbs4cdCw+vqUFU24/giGO+iQyzkREO30pjo09NndKzyHa6ZMZCEEsHAoFQ3ttAZmCyMR5L84AobXxxLA94aB2qvxxZzcmXH58bEv8qhkArK4thErBYrY2kjgjCILIb1rLzOgYcYDz+DPOoniS260REKzlo9sa/cEQXukYx8bFpZLmx9pqCrAp7OjYUJJ85ay2UAyiTvxZ2zPuTLqlEThbOSMbfYJYWNprC3By2A6XL5DtpeQ9JM4AbFlaDgB4IQOtjW5fEL946TQuaynBmrrCeY/Va5RYUW2dE0btDQTh8YdInBEEQeQxzWUmOH1BDE554h4z4fJBwZCR9/siowYTLh9CYQOsAz2TsHsDCVsao/n8tUtw1bJyLK+aOzudiEqrDkoFQ28Cx8ZgiKNvwp20GQgAVFp00KkVFEBNEAtMe20BgiGO1/qns72UvCehOGOM1TLGtjLGjjHGXmeMfSJ8+3cZY8cZY4cZY48xxgoyvtoM0VhiRFOJMSNzZw/v68WYwxfToTEW6xsKcbBvEt5AMHKbOING4owgCCJ/aS1L7Ng47vSh0KCBIgPzUkVGLYIhjmmP8Jmy/eQIlAqGS5IIwV1SYcGD71kHgyZ5gyqVUoEKCVlng1NuBEI8JXGmUDB85qrFuGVdbdKPJQgiddpFU5DezBrsnQ9IqZwFAHyac74UwEUAPsIYWwbgPwBWcM7bAJwE8IXMLTPzXLGkDDs7x+H0yluO/cvuXqyotuDCptj5MbNZ11AEXyCEI31Tkdumw+KMrPQJgiDyF3Gu6+WOMQxPeyIVrGgmnL6MzJsBZ01GxNbJ7SdHsbauEBbdwn221BbpE86c9aRooy9y54ampKqBBEGkT7FJi9oiPc2dyUDCrS/O+SCAwfD/2xljxwBUc86fjTpsJ4C3ZWaJC8MVS8vwyx1nsKNjDFcvr5DlnK8PTOHo4DS++ibpIYPr6oXWxz1dE1gXDqamyhlBEET+U2zUoNKqwwMvnsYDL56GVqVATaEedUUG1BUZUFtkQMeII2NmFkVR4sys8+K1/ml85qpFGXmueNQUGvDSqdF5j0k144wgiOyyqqYgpqkdkRxJ9SUwxhoArAawa9Zd7wPw1ziP+SCADwJAXV1d8itcINY3FMGsU+H5Y8OyibOH9/ZBo1TgxvYqyY8pNmnRXGrEni4b7kYzABJnBEEQ5wKMMTzx0cvw+sAUeifc6LW50DPuQo/Nhb1dE7CHOzfesro6I88virNxpy9Sndq4qCwjzxWPmkI9hqe98AaC0Kpih1732FxQKhgqrboFXRtBEOnRXluAJw8PYmTagzIL/f2mimRxxhgzAXgEwD2c8+mo278EofXxoViP45w/COBBAFi3bl18i6oso1YqsHFRKV44PopQiKfd7+8LhPCPg/14w7LypIMw1zcU4akjg5F1kDgjCII4Nyg1a7Fp8VxBxDnHlNuPXpsb9SWZqRiJDoY2pw+7To+j2KhJydgjHUTHxoFJDxrjOD722NyoLtBDpSTPMoLIJ1bXFQAADvROylboOB+R9M7HGFNDEGYPcc4fjbr9dgDXA7iVz+cNnCdsWVqGMYcXR/qnEh+cgOePDWPC5cfb1tUk/dj1DUWY9gRwMpyHM+UicUYQBHEuwxhDgUGDlTXWjM2AFYY3CsfsXrx4agyXLyrNiPHIfIhZZz/f1oFnXhtC/6R7TrRAj81FLY0EkYcsr7JCpWA4RHNnaZGwcsaE8JNfATjGOf9e1O3XAPgcgI2c88wEhC0wmxaVQcGA54+PYFXYdSZVHt7XhwqLDpe3Jj+UvD48a7anawJLKiyYcgutLmQIQhAEQaSKTq2EUaPEi6dGYXP6smKasazKgtV1BXhkfz/+trcPgNBuubLaipXVVqyotqJ73IlrV1Qu+NoIgkgPnVqJpZUWMgVJEyltjZcCuA3AEcbYwfBtXwTwIwBaAP8Jh1fu5JzflYlFLhSFRg3W1hfi+WPD+NQbUh+SHp72YNuJEdy1sRnKFHYla4v0KDNrsbfLhtsuqseU2w+jRgk1tXgQBEEQaVBk0mBP1wQYAza0SrfQlwuzTo3HPnwpPP4gjg1O47X+KRzpn8Lhvins6BhDMOxg2Zih1k6CIDJLe20BHjvQj2CIp3QNTEhza9wBINZP9yn5l5N9rlhSjm8/cxxDUx5UpDiM/Oj+foQ48La1ybc0AkJ7y/rGIuw5YwMgGIJQSyNBEASRLkVGLXptbqyosmY1qFmnVmJ1XSFW1xVGbvP4gzg6OI3OEQeuWkbzKgSRj6yqLcAfdnajc9SBReXmbC8nL6FSzCy2LBUGtV9IMZCac46H9/ViXX0hmkpNKa9jfX0hBqY86J90Y8rtp5ZGgiAIIm3ErLNczAHTqZVYU1eIm9fVwmqgzzyCyEciYdQ9k1ldRz5D4mwWrWUm1BTq8cLx4ZQev79nEqdHnbg5BSOQaNY3CnNne7tsmKbKGUEQBCEDop3+xsW5J84Igsh/mkqMMOtUOEBzZylD4mwWjDFcubQcOzrG4PEHk3783/f1Qq9W4ro26dlmsVhSYYFJq8LuMzZqayQIgiBkobXMhEqrLrK7TRAEIScKBUN7bQGZgqQBibMYXLGkDB5/CK90jiX1OLcviH8eGsS1Kytg0iaV7z0HpYJhTX0h9nZNkDgjCIIgZOEDG5qw9TObyGCKIIiM0V5bgJPDdrh8gWwvJS+hd+cYXNhUBINGieePJTd39szrg3B4A7hlXa0s67igoRAnhu0Yd3pJnBEEQRBpo1Aw6NTKbC+DIIhzmPbaAgRDHK/1T2d7KXkJibMYaFVKbGgtwQvHR+aEY87Hw3v7UFdkwIXhebF0WRfOO/MHORmCEARBEARBEDmPmBV8sHciuwvJU0icxWHLknIMTnlwbNAu6fhemwuvdI7jbWtrEM59S5v22gKolcK5qHJGEARBEARB5DolJi1qCvU0d5YiJM7isHmJYKn//DFpro1/39cHxoC3pphtFgudWomV1VYAJM4IgiAIgiCI/KC9toDs9FOExFkcSs1arKotwPMS8s5CIY6/7+vDpc0lqC7Qy7qO9eHWRhJnBEEQBEEQRD7QXluAgSkPRqY92V5K3kHibB62LCnDob5JjNq98x638/Q4+ifdaWebxeKy1hIAQHWhvKKPIAiCIAiCIDKB6JvwXJLmegSJs3m5YkkZOAe2nZj/hfXwvj6YdSpcvbxC9jVsaC3FS5/djEXlZtnPTRAEQRAEQRBys6rGipXVVjz4YieCIenmegSJs3lZXmVBhUWH377ShV/vOINnXhvE4XAlTXRxnPb48fRrg7hhVVXG7IlriwwZOS9BEARBEARByA1jDHdvakbXuAtPvzaY7eXkFeklJZ/jMMZw28X1+PELp/DfTx6dcZ9GpUClVQe9WgmPPyRbthlBEARBEARB5DtXL69AU4kRP9vaietWVsrmZn6uQ+IsAR/Z3IIPb2rGpMuP/kk3Bqc8GJh0Y2DKjYFJDwYn3bhhVRVW1VizvVSCIAiCIAiCyAmUCoa7Njbjs48cxounxrBxUWm2l5QXkDiTAGMMhUYNCo0arKgmEUYQBEEQBEEQibhpdTW+95+T+NnWDhJnEqGZM4IgCIIgCIIgZEejUuDODY3YdcaGfd0T2V5OXkDijCAIgiAIgiAIefjOd4CtWyNfvvOCOlw5/DrOfPYrWVxU/kDijCAIgiAIgiAIeVi/HrjlFuCFFwAAxldewo8e+xYeUVThxJA9y4vLfUicEQRBEARBEAQhD5s3A1/9KvCGNwB33QXccgtCf/4LDrWuxv3bO7O9upyHxBlBEARBEARBEPLxtrcBnAMPPADcfTdM116Fd11QhycODaDX5sr26nIaEmcEQRAEQRAEQcjH668DKhVgtQI//zmwdSvev6ERCgY8+OLpbK8upyFxRhAEQRAEQRCEPGzdKsycffrTwNQU8JWvALfcgsr9O/GW1TX4295ejNq92V5lzkLijCAIgiAIgiAIedizB/jb34AvfhHQ64Hjx4Wv9+zBhzY2wRcM4Tcvn8n2KnMWxjlfsCdbt24d37t374I9H0EQBEEQBEEQWeId7wCefx4YGADUagDARx7ajxdPjuLlL1wBi06d5QVmB8bYPs75ulj3UeWMIAiCIAiCIAj5ede7gLEx4LnnIjfdvakZdm8Af9zZncWF5S4kzgiCIAiCIAiCkJ9rrgEKC4GHHorctKLaig2tJfj1ji54/MEsLi43IXFGEARBEARBEIT8aDTAzTcDjz8OOJ2Rmz+8qQVjDi/+vq8ve2vLURKKM8ZYLWNsK2PsGGPsdcbYJ8K33xz+OsQYi9kzSRAEQRAEQRDEecy73iUIsyeeiNx0UVMRvvO2NrypvSqLC8tNpFTOAgA+zTlfCuAiAB9hjC0D8BqAtwB4MYPrIwiCIAiCIAgiX9mwAaipAf70p8hNjDHcsq72vDUEmY+E4oxzPsg53x/+fzuAYwCqOefHOOcnMr1AgiAIgiAIgiDyFIUCeOc7gWeeAcbHs72anCepmTPGWAOA1QB2/f/27j3Gjvo64Pj34Afh0QhI1mmIaRKXKAYScNN1cMGN2EUgQqMSWrqNbVmR0opHCcLURjiBkEpVpdZAAgjixCIPUBBgAghQgIJgwQ6v7DoywY4ppsRQCsJ2eDiFpBj79I+ZldfurvfB7s7ce78faXRnfjOzc+4crX8++5vHuEQjSZIkqbnMnw/vvgu33lp1JLU37OIsIg4EbgMWZea2Eex3ZkT0RkTvli1bRhOjJEmSpEZ1zDFwxBG7XdqogQ2rOIuIKRSF2Y2ZeftIDpCZKzKzPTPb29raRhOjJEmSpEYVAQsWwOrV8OKLVUdTa8N5WmMA3wc2ZOa3xj8kSZIkSU1l3rzi86abqo2j5oYzcnY8sBDojIi15XRqRJweES8Bfwb8NCL+fVwjlSRJktSYZsyAOXO8tHEIk4faIDN/BsQgq+8Y23AkSZIkNaUFC+C882DdOvjUp6qOppZG9LRGSZIkSRqVri6YNMnRs72wOJMkSZI0/qZNg5NOKoqzzKqjqSWLM0mSJEkTY/58eOEFePzxqiOpJYszSZIkSRNj0yaYOhVuvHFXW3c3LFtWWUh1YnEmSZIkaWLMnVu89+zHP4bt24vCrKsLZs+uOrJasDiTJEmSNDE6OuCSS2DbNjj8cPjCF+D882HmzGL9smVFwdZfC42sWZxJkiRJmjhLl8Jxx8GLL8Lvfgff+AYceihMnw533VUUbFdcATt3ttzI2pDvOZMkSZKkMbN6NTz7bFGULV8Ol14KO3ZAT08xvf02LFkCd98N69fDypXFiFsLsDiTJEmSNDH6RsL6Cq6Ojl3LixYV27z+ejFS9sgjxShbixRm4GWNkiRJkiZKT8/uI2EdHcVyT8+ubdauha1bi/lrrvn/96A1scgJfAFce3t79vb2TtjxJEmSJDWQvpG1W26BxYuLUbS33mqqSxsjYk1mtg+0zpEzSZIkSfXQN7LW2QkXXFC8sPrCC3cfWWtijpxJkiRJqp933oGPfhRmzYJ77606mjHjyJkkSZKkxjJ1Kpx7Ltx3H2zYUHU0E8LiTJIkSVI9nXUW7LsvXHll1ZFMCIszSZIkSfXU1gYLF8INN+x6gmMTsziTJEmSVF+LFsHvfw/f+17VkYw7izNJkiRJ9XXUUXDyyXDttcVDQpqYxZkkSZKkervgAnjlleIx+03M4kySJElSvZ18MsycCd/+Nkzgq8AmmsWZJEmSpHrbZ5/i3rNf/AJWr646mnFjcSZJkiSp/hYuhEMOKUbPmpTFmSRJkqT6239/OPtsuPNOeP75qqMZFxZnkiRJkhpDRDFdffWutu5uWLasupjGkMWZJEmSpMZw4okwZUrxzrM33ywKs64umD276sjGhMWZJEmSpMbQ0QFXXVW8lLqrq5hWrizam4DFmSRJkqTGcdZZMG0a3H8/nHNO0xRmYHEmSZIkqZF0d8NvfwuTJsHy5cVykxiyOIuIwyKiOyI2RMT6iDi/bD8kIh6IiI3l58HjH64kSZKkltV3j9nXvw47dsDFFxfLTVKgDWfk7F1gcWYeAcwBzo2II4GlwIOZ+QngwXJZkiRJksZHT09xj9lXv1q8mPqNN4rlnp6qIxsTkZkj2yHiTuCacjohM1+JiA8DD2fmJ/e2b3t7e/b29o46WEmSJEkCiic07rcfrFpVdSQjEhFrMrN9oHUjuucsIj4G/AnwJPChzHwFoPycNsg+Z0ZEb0T0btmyZUSBS5IkSdKAOjvhiSfgrbeqjmTMDLs4i4gDgduARZm5bbj7ZeaKzGzPzPa2trbRxChJkiRJu+vshO3b4dFHq45kzAyrOIuIKRSF2Y2ZeXvZ/Gp5OSPl5+bxCVGSJEmS9jB3Lkye3DQPA4HhPa0xgO8DGzLzW/1W3QV8uZz/MnDn2IcnSZIkSQM44AA49lh46KGqIxkzwxk5Ox5YCHRGxNpyOhX4V+CkiNgInFQuS5IkSdLE6OyE3l54882qIxkTQxZnmfmzzIzMPDozZ5XTPZn5m8w8MTM/UX6+NhEBS5IkSRJQFGc7dzbcExsHM6KnNUqSJElSbcyZA/vu2zT3nVmcSZIkSWpM73sfHH9809x3ZnEmSZIkqXF1dsJTT8HWrVVH8p5ZnEmSJElqXJ2dxecjj1QbxxiwOJMkSZLUuNrbi8fqN8GljRZnkiRJkhrXlCnwuc9ZnEmSJElS5To74Zln4OWXq47kPbE4kyRJktTYOjqKz4cfrjSM98riTJIkSVJjmzULDjqo4S9ttDiTJEmS1NgmTYITTrA4kyRJkqTKdXbCr38NmzZVHcmoWZxJkiRJanx99511d1cbx3tgcSZJkiSp8R11FLS1NfSljRZnkiRJkhpfRHFp40MPQWbV0YyKxZkkSZKk5tDZWbzrbOPGqiMZFYszSZIkSc2h776zBr200eJMkiRJUnM4/HCYPt3iTJIkSZIqddllcOSRxRMbd+4s2rq7YdmyauMaJoszSZIkSc1h9mx47DHYuhXWry8Ks66uor0BWJxJkiRJag4dHbBiRTG/ZElRmK1cuetetJqzOJMkSZLUPObNg4MPhvvvh3POaZjCDCzOJEmSJDWT7u7iPWeLF8Py5cVyg7A4kyRJktQc+u4xu/12uPzy4pLGrq6GKdAsziRJkiQ1h56e3e8x6+golnt6qo1rmCIzJ+xg7e3t2dvbO2HHkyRJkqQ6iYg1mdk+0DpHziRJkiSpBizOJEmSJKkGhizOIuIHEbE5Itb1azsmIh6PiKcj4u6IeP/4hilJkiRJzW04I2c/Ak7Zo+06YGlmfhq4A7hwjOOSJEmSpJYyZHGWmauA1/Zo/iSwqpx/APjrMY5LkiRJklrKaO85Wwf8ZTn/N8BhYxOOJEmSJLWm0RZnXwHOjYg1wB8A7wy2YUScGRG9EdG7ZcuWUR5OkiRJkprbqIqzzHwmM0/OzD8FbgL+cy/brsjM9sxsb2trG22ckiRJktTUJo9mp4iYlpmbI2If4BLgu8PZb82aNVsj4oXRHHOcfRDYWnUQLc4cVM8cVM8c1IN5qJ45qJ45qJ45qN545eCjg62IzNzrnhFxE3ACRXCvAt8EDgTOLTe5HfhaDvWDaiwiegd7S7cmhjmonjmonjmoB/NQPXNQPXNQPXNQvSpyMOTIWWbOG2TVVWMciyRJkiS1rNE+EESSJEmSNIYszgorqg5A5qAGzEH1zEE9mIfqmYPqmYPqmYPqTXgOhrznTJIkSZI0/hw5kyRJkqQaaKjiLCJOiYj/iIjnImJpv/ZbImJtOW2KiLWD7H9IRDwQERvLz4PL9gX99l8bETsjYtYA+99YHn9dRPwgIqaU7RERV5dx/TIiPjM+Z6AeapyHmRHxeET8b0QsGZ9vXw81zsGC8nfglxHxWEQcMz5noHo1zsFp5flfGxG9ETF3fM5A9cYxB1Mi4vqIeDoiNkTE1wbZ/+MR8WS5/y0RMbVsb5k+ocY5sD+oPgf2B9XnoGX6A6hvHvqtnx0ROyLijL1+kcxsiAmYRPGy6xnAVOAp4MgBtrsCuHSQn7EMWFrOLwX+bYBtPg08P8j+pwJRTjcB5/Rrv7dsnwM8WfX5atE8TANmA/8CLKn6XLVoDo4DDi7nP9+svws1z8GB7Lpk/WjgmarPV6PlAJgP3FzO7w9sAj42wP4rgS+V899ttT6h5jmwP6g+B/YH1eegJfqDuuehX3wPAfcAZ+ztuzTSyNlngecy8/nMfAe4GTit/wYREUAXxX9UBnIacH05fz3wxQG2mTfY/pl5T5aAnwPT+/3cG8pVTwAHRcSHh/3NGktt85CZmzOzB9g+om/UeOqcg8cy8/VysyfY9TvSbOqcg/8p2wAOAJr1xuLxzEECB0TEZGA/4B1g2wA/uxP4yQD7t0qfUNsc2B/sUmEO7A9KFeagVfoDqHEeSucBtwGbh/oijVScfQT4r37LL5Vt/f058GpmbhzkZ3woM18BKD+nDbDN3zJ40oBieBNYCNw3gtiaRZ3z0CoaJQd/RzF60IxqnYOIOD0ingF+Cnxlb/s3sPHMwU+At4BXgBeByzPztT32/QDwRma+O8DxW6VPqHMOWkWj5MD+oKIctEh/ADXOQ0R8BDidYjRtSI1UnMUAbXv+BWDQvzIP6wARxwJvZ+a6ITb9DrAqM1ePILZmUec8tIra5yAiOig644tGG0PN1ToHmXlHZs6k+KvdP482hpobzxx8FtgBHAp8HFgcETNGcPxW6RPqnINWUfsc2B8AFeagRfoDqHcergQuyswdwzlYIxVnLwGH9VueDrzct1AONf4VcEu/th+WN//dUza92ndpSfm559Dilxj6r9TfBNqAfxxubE2mznloFbXOQUQcDVwHnJaZvxnB92oktc5Bn8xcBfxxRHxwOF+qwYxnDuYD92Xm9szcDDwKtO9x/K0UlytOHuD4rdIn1DkHraLWObA/qD4HfZq8P4B656EduDkiNgFnAN+JiC8O+k2yBjfxDWcCJgPPU1SsfTf6HdVv/SnAI0P8jMvY/Ua/Zf3W7VMmdsZe9v974DFgvz3a/4Ldb/7+edXnqxXz0G/9P9HcN4DXNgfAHwHPAcdVfZ5aOAeHs+sG8M8A/9233EzTeOaA4i/8Pyz/TT8A+BVw9AD738ruN3//QznfEn1CnXPQb739QXW/B/YH1eegJfqDuudhj21+xBAPBKn8ZI7wxJ8KPEvxNJaLB/iyZw+x/weAB4GN5ech/dadADwxxP7vlsdeW06Xlu0BXFuuexpor/pctWge/pDiP7TbgDfK+fdXfb5aLAfXAa/3a++t+ly1YA4uAtaXbY8Dc6s+V42WA4onnN1ansdfARcOsv8MioexPFduv2/Z3jJ9Qo1zYH9QfQ7sD6rPQcv0B3XOwwBx7LU466umJUmSJEkVaqR7ziRJkiSpaVmcSZIkSVINWJxJkiRJUg1YnEmSJElSDVicSZIkSVINWJxJkiRJUg1YnEmSJElSDVicSZIkSVIN/B/Beb1Qj6G1fQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACvO0lEQVR4nOydd5xb1Zn+n6Pep2h6t417xaYTgulJgEAKaSSBbBrpdTdt9we7m942m0pCCGmkh5YENhBiOtjYYMDdxtP7jGbUu87vj6uj0cyo3CtdaSTP+/18/AGrXsmS7nnO+7zPyzjnIAiCIAiCIAiCIJYWzVIfAEEQBEEQBEEQBEHijCAIgiAIgiAIoiIgcUYQBEEQBEEQBFEBkDgjCIIgCIIgCIKoAEicEQRBEARBEARBVAAkzgiCIAiCIAiCICoAEmcEQRAEQRAEQRAVAIkzgiCIKoUx5kv7k2CMBdP+fv1SH18hMMb6GGOXLvVx5IIx9ghj7D0leuw1jLF7GWOTjDEXY+zvjLG1adffuuDfPcwY86Zd/2vG2ChjzMMYO7bwOBljlzDGjjDGAoyxXYyx7rTrGGPsa4yx6eSfrzPGWCleJ0EQBJEZEmcEQRBVCufcJv4AGABwddpldy718S2EMaY7FZ6jxNQCuA/AWgDNAPYAuFdcyTm/acG/+28B/DHt/l8B0MM5dwB4LYAvMsZ2AABjrAHAXQD+A0A9gL0Afp923/cBuBbAVgBbAFwF4P3qv0SCIAgiGyTOCIIgTjEYYxrG2GcZYy8nKyB/YIzVJ6/rYYxxxti7GGODjLEZxthNjLEzGWMvMsZmGWPfT3usGxljTzLGvscYcyerLpekXV/DGLs9Wa0ZZox9kTGmXXDf/2GMuQDcwhhbxRj7Z/K4phhjdzLGapO3/xWALgB/SVaF/o0xtpMxNrTg9aWqa4yxWxhjf0pWjDwAbsxzTKcxxh5NvpYpxli6OEl/DlPyMaeT78mzjLFmxtiXAFwA4PvJY/x+8vbrGGMPJatdRxljb0p7rJ8nK14PMca8yefvzvS8nPM9nPPbOecuznkUwP8AWMsYc2Y4RiuANwD4Rdr9D3LOw+KvyT+rkn9/PYCDnPM/cs5DAG4BsJUxti55/Q0AvsU5H+KcDwP4FoAbMx0nQRAEURpInBEEQZx6fBRSBeRCAG0AZgD8YMFtzgawGsCbAXwHwBcAXApgI4A3McYuXHDbkwAaANwM4C4h9iAJgxiA0wCcDuByAO/JcN8mAF8CwCBVd9oArAfQCUkkgHP+DsyvAH5d5uu9BsCfIFWd7sxzTP8N4EEAdQA6AHwvy2PeAKAmeXxOADcBCHLOvwDgcQAfTh7jh5Mi6SEAv0m+zrcC+CFjbGPa412ffO4GAPuTxymHVwIY45xPZ7juDQAmATyWfiFj7IeMsQCAIwBGAdyfvGojgBfE7TjnfgAvJy9fdH3y/9NfA0EQBFFiSJwRBEGcerwfwBeSFZAwJPHzxgWWv//mnIc45w8C8AP4Led8IlkxeRySqBFMAPgO5zzKOf89gKMArmSMNQN4NYCPc879nPMJSJWet6Tdd4Rz/j3OeYxzHuScn+CcP8Q5D3POJwF8G5KILIanOef3cM4TABx5jikKoBtAW/L1P5HlMaOQRNlpnPM453wf59yT5bZXAejjnN+RfJ3PAfgzgDem3eZvnPPHkv8eXwBwLmOsM9eLYox1QBLVn8xykxsA/JJzztMv5Jx/EIAdUoXvLgCikmYD4F7wGO7kbTNd7wZgo74zgiCI8kHijCAI4tSjG8DdSTveLIDDAOKQepgE42n/H8zwd1va34cXCIB+SJWvbgB6AKNpz/VjSNUjwWD6gTHGmhhjv0vaDT0Afg2pmlQM6c+R75j+DVL1bg9j7CBj7F+yPOavAPwdwO8YYyPJcAx9ltt2AzhbPF/yOa8H0JLpGDnnPgAuSO9hRhhjjZAqfD/knP82w/WdkETtLzPdPykon4BUHfxA8mIfJPGajgOAN8v1DgC+heKPIAiCKB0kzgiCIE49BgG8mnNem/bHlKyKFUL7gupJF4CR5POEATSkPY+Dc55uhVu4sP9K8rItydCKt0MSS9lu7wdgEX9J9o41LrhN+n1yHhPnfIxz/l7OeRukCuMPGWOnLXzBySrhf3LONwA4D1J17J1ZjnEQwKML3m8b5/wDabdJVckYYzZIgRwjC583eX0dJGF2H+f8S5lukzyWpzjnJ7NcL9BhrufsIKSwD/E81uR1BzNdn/z/gyAIgiDKBokzgiCIU49bAXxJhE4wxhoZY9cU8XhNAD7KGNMzxq6D1Ct2P+d8FJKI+BZjzMGkIJJVC/rVFmKHVKGZZYy1A/jXBdePA1iZ9vdjAEyMsSuTlat/B2DM9uD5jokxdl3SLghIvXgcUlVxHoyxixhjm5Ni0APJ5ihut/AY/wpgDWPsHcn3SM+kgJX1abd5DWPsFYwxA6Tes92c83lVxeTzOiBV7J7knH822+uEJM5+vuC+TYyxtzDGbIwxLWPsCkj9b/9M3uRuAJsYY29gjJkA/D8AL3LOjySv/yWATzLG2hljbQA+tfA5CIIgiNJC4owgCOLU438hxbE/yKQZWM9ACuYolN2QwkOmIIV6vDEtoOKdAAwADkESO38C0Jrjsf4TwHZI/Ux/g9QTlc5XAPx70h74ac65G8AHAfwUwDCkStoQcpPrmM4EsJsx5oP0Hn2Mc96b4TFakvfzQLKFPgrJgglI7+8bmZR0+V3OuRdS6MhbIFXDxgB8DfNF5G8gham4AOyAZHvMxOuSx/guNn+eWZe4AWPsXEh2xT8uuC+HZGEcSr7ub0LqvbsXAJI9fm+A9G84A+kzkd4f+GMAfwHwEoADkP59fpzlOAmCIIgSwMhKThAEQWSDMXYjgPdwzl+x1MdSrTDGfg5giHP+70t9LARBEERlQ5UzgiAIgiAIgiCICoDEGUEQBEEQBEEQRAVAtkaCIAiCIAiCIIgKgCpnBEEQBEEQBEEQFQCJM4IgCIIgCIIgiApAV84na2ho4D09PeV8SoIgCIIgCIIgiIph3759U5zzxkzXlVWc9fT0YO/eveV8SoIgCIIgCIIgiIqBMdaf7TqyNRIEQRAEQRAEQVQAJM4IgiAIgiAIgiAqABJnBEEQBEEQBEEQFUBZe84IgiAIgiAIolKIRqMYGhpCKBRa6kMhTkFMJhM6Ojqg1+tl34fEGUEQBEEQBLEsGRoagt1uR09PDxhjS304xCkE5xzT09MYGhrCihUrZN+PbI0EQRAEQRDEsiQUCsHpdJIwI1SHMQan06m4KkvijCAIgiAIgli2kDAjSkUhny0SZwRBEARBEASxRHzpS1/Cxo0bsWXLFmzbtg27d+8GALznPe/BoUOHVHmOnp4eTE1N5bzNl7/8ZcWP+/Of/xwf/vCH5112xx13YNu2bdi2bRsMBgM2b96Mbdu24bOf/azixy8H3/nOdxAIBJb6MFJQzxlBEARBEARBLAFPP/00/vrXv+K5556D0WjE1NQUIpEIAOCnP/1pWY/ly1/+Mj7/+c8X/Tjvete78K53vQuAJAp37dqFhoaGoh+3UDjn4JxDo8lck/rOd76Dt7/97bBYLLIfMxaLQacrjYzKWzljjHUyxnYxxg4zxg4yxj6Wdt1HGGNHk5d/vSRHSJSUgekADo96lvowCIIgCIIglh2jo6NoaGiA0WgEADQ0NKCtrQ0AsHPnTuzduxcAYLPZ8JnPfAY7duzApZdeij179mDnzp1YuXIl7rvvPgCLq1hXXXUVHnnkkUXPee2112LHjh3YuHEjfvKTnwAAPvvZzyIYDGLbtm24/vrrAQC//vWvcdZZZ2Hbtm14//vfj3g8DkCqjK1ZswYXXnghnnzySdmv9Rvf+AbOPPNMbNmyBTfffDMAoK+vD+vWrcN73vMebNq0Cddffz3+8Y9/4Pzzz8fq1auxZ88eAMAtt9yCd7zjHbj44ouxevVq3HbbbXkfd/369fjgBz+I7du3Y3BwEB/4wAdwxhlnYOPGjanbffe738XIyAguuugiXHTRRan3WvCnP/0JN954IwDgxhtvxCc/+UlcdNFF+MxnPoOXX34Zr3rVq7Bjxw5ccMEFOHLkiOz3IidCTWb7A6AVwPbk/9sBHAOwAcBFAP4BwJi8rinfY+3YsYMTlUMwEuMXfO2f/OJv7lrqQyEIgiAIgig7hw4dWtLn93q9fOvWrXz16tX8Ax/4AH/kkUdS11144YX82Wef5ZxzDoDff//9nHPOr732Wn7ZZZfxSCTC9+/fz7du3co55/yOO+7gH/rQh1L3v/LKK/muXbs455x3d3fzyclJzjnn09PTnHPOA4EA37hxI5+amuKcc261WlP3PXToEL/qqqt4JBLhnHP+gQ98gP/iF7/gIyMjvLOzk09MTPBwOMzPO++8ec+5EPG8f//73/l73/tenkgkeDwe51deeSV/9NFHeW9vL9dqtfzFF1/k8Xicb9++nb/rXe/iiUSC33PPPfyaa67hnHN+88038y1btvBAIMAnJyd5R0cHHx4ezvm4jDH+9NNPp45FvO5YLMYvvPBC/sILLyx6bxa+D3/84x/5DTfcwDnn/IYbbuBXXnklj8VinHPOL774Yn7s2DHOOefPPPMMv+iiizK+B5k+YwD28ix6KW89jnM+CmA0+f9exthhAO0A3gvgq5zzcPK6CXXkIlEubnvsJAZcAeg0DLF4AjottSASBEEQBLE8+c+/HMShEXXdRBvaHLj56o1Zr7fZbNi3bx8ef/xx7Nq1C29+85vx1a9+NVWtERgMBrzqVa8CAGzevBlGoxF6vR6bN29GX1+fomP67ne/i7vvvhsAMDg4iOPHj8PpdM67zcMPP4x9+/bhzDPPBAAEg0E0NTVh9+7d2LlzJxobGwEAb37zm3Hs2LG8z/nggw/iwQcfxOmnnw4A8Pl8OH78OLq6urBixQps3rwZALBx40ZccsklYIwtem3XXHMNzGYzzGYzLrroIuzZswdPPPFE1sft7u7GOeeck7r/H/7wB/zkJz9BLBbD6OgoDh06hC1btih676677jpotVr4fD489dRTuO6661LXhcNhRY+VDUVmScZYD4DTAewG8A0AFzDGvgQgBODTnPNnVTkqouQMzQTwg0dOwGHSwROKYXg2iG6ndakPiyAIgiAIYlmh1Wqxc+dO7Ny5E5s3b8YvfvGLReJMr9enkv80Gk3KBqnRaBCLxQAAOp0OiUQidZ9MEe6PPPII/vGPf+Dpp5+GxWLBzp07M96Oc44bbrgBX/nKV+Zdfs899xSUQMg5x+c+9zm8//3vn3d5X19f6rXkem3A4uRDxljOx7Va59a1vb29+OY3v4lnn30WdXV1uPHGG7NG3Kc/z8LbiMdMJBKora3F/v378710xcgWZ4wxG4A/A/g459zDGNMBqANwDoAzAfyBMbYyWapLv9/7ALwPALq6ulQ7cKI4vvjXw2Bg+K9rNuHjv9+P3ik/iTOCIAiCIJYtuSpcpeLo0aPQaDRYvXo1AGD//v3o7u4u6LF6enrwwx/+EIlEAsPDw6l+rXTcbjfq6upgsVhw5MgRPPPMM6nr9Ho9otEo9Ho9LrnkElxzzTX4xCc+gaamJrhcLni9Xpx99tn42Mc+hunpaTgcDvzxj3/E1q1b8x7bFVdcgf/4j//A9ddfD5vNhuHhYej1ekWv795778XnPvc5+P1+PPLII/jqV78Ks9ks63E9Hg+sVitqamowPj6OBx54ADt37gQA2O12eL3eVGhJc3MzDh8+jLVr1+Luu++G3W5f9HgOhwMrVqzAH//4R1x33XXgnOPFF1+U9V7kQ5Y4Y4zpIQmzOznndyUvHgJwV1KM7WGMJQA0AJhMvy/n/CcAfgIAZ5xxxjzhRiwNjx2bxP8dHMO/XrEW562Sytj905UTIUoQBEEQBLEc8Pl8+MhHPoLZ2VnodDqcdtppqZAOpZx//vkpi+CmTZuwffv2Rbd51atehVtvvRVbtmzB2rVr59n+3ve+92HLli3Yvn077rzzTnzxi1/E5ZdfjkQiAb1ejx/84Ac455xzcMstt+Dcc89Fa2srtm/fngoKycXll1+Ow4cP49xzzwUg2Tl//etfQ6vVyn59Z511Fq688koMDAzgP/7jP9DW1oa2tjZZj7t161acfvrp2LhxI1auXInzzz9/3ut+9atfjdbWVuzatQtf/epXcdVVV6GzsxObNm2Cz+fLeDx33nknPvCBD+CLX/wiotEo3vKWt6giztiCQtfiG0i1vV8AcHHOP552+U0A2jjn/48xtgbAwwC6FlbO0jnjjDO4SJ0hloZILIFXfecxJDjH3z/xShi0Gmy8+e940xmduOW15d8xIgiCIAiCWCoOHz6M9evXL/VhEHm45ZZbYLPZ8OlPf3qpD0UxmT5jjLF9nPMzMt1eTuXsfADvAPASY2x/8rLPA/gZgJ8xxg4AiAC4IZcwIyqDnz3Zi5NTftzxrjNh1Em7Ct1OK/qn/Ut8ZARBEARBEASxvJGT1vgEgGydf29X93CIUjLqDuK7Dx/HZRuacdHaptTlKxosODzqXcIjIwiCIAiCIIjM3HLLLUt9CGWDstOXEV++/whiCY7/d9WGeZd3O60YdAUQiyey3JMgCIIgCIIgiFJD4myZ8PTL0/jLCyP4wIWr0FlvmXfdCqcVsQTH8GxwiY6OIAiCIAiCIAgSZ8uAaDyBm+87gI46Mz6wc9Wi67udkljro8RGgiAIgiAIglgySJwtA375dD+Ojfvw/67aAJN+cWTpigZpvlnfFIWCEARBEARBEMRSQeLsFGfCG8J3HjqGnWsbcdmG5oy3abQbYTFo0UvijCAIgiAIoqxotVps27YNmzZtwnXXXYdAoHAn04033og//elPAID3vOc9OHToUNbbPvLII3jqqadSf7/11lvxy1/+suDnFvT19WHTpk3zLrvlllvwzW9+U9HjqHU81YasIdRE9fLdh48jHEvg5qs3QhpZtxjGGMXpEwRBEARBLAFmsxn79+8HAFx//fW49dZb8clPfjJ1fTweVzSsWfDTn/405/WPPPIIbDYbzjvvPADATTfdpPg5SkUsFquo4yknVDk7xXn8+BQuWteYsi5mY0WDhXrOCIIgCIIgsvH1rwO7ds2/bNcu6XKVuOCCC3DixAk88sgjuOiii/C2t70NmzdvRjwex7/+67/izDPPxJYtW/DjH/8YAMA5x4c//GFs2LABV155JSYmJlKPtXPnTuzduxcA8H//93/Yvn07tm7diksuuQR9fX249dZb8T//8z/Ytm0bHn/88XnVrf379+Occ87Bli1b8LrXvQ4zMzOpx/zMZz6Ds846C2vWrMHjjz+u+DXmeuzPf/7zuPDCC/G///u/qeMZGRnBtm3bUn+0Wi36+/vR39+PSy65BFu2bMEll1yCgYEBAFL18KMf/SjOO+88rFy5MlVJrBZInJ3CTPvC6J8OYHtXXd7bUpw+QRAEQRBEDs48E3jTm+YE2q5d0t/PPFOVh4/FYnjggQewefNmAMCePXvwpS99CYcOHcLtt9+OmpoaPPvss3j22Wdx2223obe3F3fffTeOHj2Kl156Cbfddts8m6JgcnIS733ve/HnP/8ZL7zwAv74xz+ip6cHN910Ez7xiU9g//79uOCCC+bd553vfCe+9rWv4cUXX8TmzZvxn//5n/OOc8+ePfjOd74z7/J0Xn755XmC6tZbb5X12LOzs3j00UfxqU99KnVZW1sb9u/fj/379+O9730v3vCGN6C7uxsf/vCH8c53vhMvvvgirr/+enz0ox9N3Wd0dBRPPPEE/vrXv+Kzn/2swn+JpYVsjacwzw/MAgBOlyHO0uP0u525q2wEQRAEQRCnHB//OJC0F2alrQ244gqgtRUYHQXWrwf+8z+lP5nYtg34zndyPmQwGMS2bdsASJWzd7/73Xjqqadw1llnYcWKFQCABx98EC+++GKqCuR2u3H8+HE89thjeOtb3wqtVou2tjZcfPHFix7/mWeewStf+crUY9XX1+c8HrfbjdnZWVx44YUAgBtuuAHXXXdd6vrXv/71AIAdO3agr68v42OsWrUqZdUE5oZI53vsN7/5zVmP68knn8RPf/rTVLXu6aefxl133QUAeMc73oF/+7d/S9322muvhUajwYYNGzA+Pp7z9VYaJM5OYZ4fnIFWw7C5vSbvbdPj9EmcEQRBEARBZKCuThJmAwNAV5f09yJJ7zlLx2qdW49xzvG9730PV1xxxbzb3H///VkzBdLvm+82SjAajQCkIJNYLKba4wLzX3M6o6OjePe734377rsPNpst423SX6M4RkB6/dUE2RpPYZ4fmMX6VjvMhvxNpBSnTxAEQRDEsuY73wEeeST3n5tvBgIB4D/+Q/rvzTfnvn2eqplcrrjiCvzoRz9CNBoFABw7dgx+vx+vfOUr8bvf/Q7xeByjo6PYtbAnDsC5556LRx99FL29vQAAl8sFALDb7fB6vYtuX1NTg7q6ulSF6le/+lWq0lUshTx2NBrFm970Jnzta1/DmjVrUpefd955+N3vfgcAuPPOO/GKV7xClWNcaqhydooST3C8MDiL12/vkHV7EaffR4mNBEEQBEEQixE9Zn/4A3DRRdKf9L+XkPe85z3o6+vD9u3bwTlHY2Mj7rnnHrzuda/DP//5T2zevBlr1qzJKHQaGxvxk5/8BK9//euRSCTQ1NSEhx56CFdffTXe+MY34t5778X3vve9eff5xS9+gZtuugmBQAArV67EHXfcodprUfrYTz31FJ599lncfPPNuPnmmwFIFcPvfve7+Jd/+Rd84xvfQGNjo6rHuJSwcpb6zjjjDC5SY4jScmTMg1d953H8z5u34nWnyxNor/7fx9HiMOKOd51V4qMjCIIgCIJYeg4fPoz169fLu/HXvy6Ff6QLsV27gGefBdL6nQginUyfMcbYPs75GZluT5WzU5RUGEinfC/0igYLDo8uLm8TBEEsBYkEx/ODs9jRXXxPB0EQRNFkEmCigkYQKkE9Z6cozw/MoM6iTwV9yIHi9MvPwRE3frdnYKkPgyAqkgcOjOENP3oKR8do04ggCIJYHpA4O0V5fmAWp3fVKUrnSY/TJ8rDL5/qx3/ce6DqkoQIohwcGHEDAHqnfEt8JARBEARRHkicnYK4g1Ecn/Dh9M5aRfdLj9MnysOoJ4RonGMmEF3qQ1kS9vW78IW7XyJxSmTkWLJiNuiiDSOCIEoHnYOIUlHIZ4vE2SnIC4OzAOQNn06H4vTLz5hbWnROeENLfCRLw337R3Dn7gF4QurOSSFODY4kxdnQDG0YEUQh9E/7EaVWhZyYTCZMT0+TQFsCZgMR+MOn7vmfc47p6WmYTCZF96NAkFOQ5wdmwRiwtTP/8Ol0KE6//Iy6JVE24QljXcsSH8wS0O+SFt0ufwQ1Zv0SHw1RSXhD0ZTFenCGKmcEoZQZfwSXffsx/Pe1G/HmM7uW+nAqlo6ODgwNDWFycnKpD2XZMeoOwqTXos5iWOpDKRkmkwkdHfJS0wUkzk5Bnh+cwZomO+wmZYtdxhi6nVaqnJUJXzgGb7JiNO5ZnpWz/mkhzsKpyi1BAMDxCanPzKzXUuWMIAqgd9qPSDyBExPUs5kLvV6PFStWLPVhLDtm/BG8+r8fwhdesx7v3bFyqQ+noiBb4ykG5zwZBlJb0P1XNFhSC2aitIy55wTZhDe8hEeyNMTiCQwmK2fTvsgSHw1RaYiExlesbsCgK0iWI4JQiPh9HZldnpt/RGVzYlLaNDitybbER1J5kDg7xeid8sMdjBYszrqdVgyoGKf/531D+Mbfj6jyWKca88TZMqycjcyGEEtIC26Xn8QZMZ+jY15YDFqcs9KJYDROnxGCUMhAcqN1iBKYiQpEVHRJnC2GxNkpRmr4tMIwEIHacfp/eXEEv3q6X5XHOtUYTYaBmPSaZVk5S+9tnKaFN7GAY+NerG62o6teSpGlvjOCUMZAqnJG3x2i8jgx4YNJr0F7rXmpD6XiIHF2ivH84AzsRh1OayxsJ0LtOP1JbxieUAyzAVp8L0RUzja21SzLnrP+NHFGVRFiIUfHvFjbbENHnXTipr4zglCGEGeT3jDCsfgSHw1BzOf4hA+rGm3QaOTP410ukDg7xXiufxZbO2sL/rCrHac/mawIiZMEMceYJ4R6qwFd9ZZlWjkLpHbNSJwR6Uz5wpj2R7C2xZESZzTrjCCUMTQThEErLfPSbfQEUQm8POHDarI0ZoTE2SlEIBLDkTFPwf1mgLpx+vEEx5RPEh0UMrKYMXcILQ4TmuxGTHjDyy7woH86gO56KxpsBrI1EvMQw6fXNkups7UWPVXOCEIBkVgCI+4gtnXWAgCGyRZMVBD+cAzDs0HqN8sCibNTiBeH3EhwYHuB/WaAunH6Ln8EybwHqpxlYNQdQmuNCY12IyKxBNzB6FIfUlnpn/aj22lBvdUAl786K4dDMwH85LGXl52wLjVi+PSaFunE3VlnoZ4zglDA8GwQnAPnrKxP/Z0gKoWXKakxJyTOTiFEGIjYKSsUteL0J9OsegNUOVvEmCeElhoTmh3S5PjlZG1MJDj6XQH0NFhRbzXCVaVR+l++/zC+fP8RjHuWz79dOTg27kW91YBGmxEA0FFnpsoZQShAbIietcIJgOL0icpiLqnRvsRHUpmQODuFeH5gBisarKizFjdpXa04/QmvdDIwaDVUOVtAKBkN3loj2RqB5TWIeswTQiSWQLfTAmfS1lht1afeKT8eODAGACn7LqEOR8e9WNNsA2NS72xnvQVDM0EkEtX1GSGIpUKcc09rsqHJbqTERqKiOD7hg07DUiF0xHxInJ0icM7x/OAsTi+yagbMxekXu9MmKmebO2pInC1ACLGWGvNc5WwZVV9ET2N3vRX1VgPCsQQCkepKE7vt8ZMQepLEmXokEhzHxrxY2zy3o9pRZ0YklqD3mSBkMugKwKDToMluRFutmWyNREVxYsKHngYr9FqSIZmgd+UUYXg2iElvuKgwEIHYyegtMhRE2PTO6K7DiDuISEydwdanAqPJ5KzWGhOaHMnKmXf5VM6EbVb0nAHVFac/6Q3jT/uGcP5pkmVoqkptmZXI8GwQ/kgca1scqcs668SsM9rkIQg5DLoC6KwzQ6NhaK81U+WMqCgoqTE3JM5OEYodPp2OWnH6k94w7EYd1jTbwTnNKUpHxBq31JhgMehgM+qWVeWsfzoAvZahrdYMZ1KcVVNi48+f6kU0nsDnXr0eAFXO1OTYeDKpsWXuxD0364wWmAQhhwFXAJ3JAe5ttaZkQAjZgomlJxyLo2/aT2EgOSBxdorw3MAMTHoN1rYU31ypVpz+pC+MRrsxVYkja+MconLWkrQ0NjmM8wJUTnX6p/3orLdAq2FplbPqeP2+cAy/erofr9rYgk3tNTDrtZhaRv92pUYkNa6eZ2tMVs7oN4Qg8sI5x8B0AF1JcdZea0Y4lqgqdwJx6tI3FUCCU1JjLkicnSI8PzCLLR21qvh31YrTn/SE0WA3pk4QJM7mGHMHYTfpYDXqAABNduOyCgTpmw6gxylVaJ1WydY5XSXWwN/tGYAnFMP7XrkSANBgN1DlTEWOjXvRXmuGw6RPXWY2aNFgM1DljCBk4A5G4Q3HUufetlqp8kx9Z0QlcHxC2oAjcZYdEmenAOFYHIdGihs+vRA14vQnfWE02Y1otBth0msoTj8NMeNM0OwwLZsofc55asYZANTbqqfnLBJL4PYnenH2ivqUhbjBZqSeMxU5OiYlNS6ko85CPWdERRFPcHzlgcMpm3qlIDZCOxeIM+o7IyqBExM+MAasaiRxlg0SZ6cAB0c8iMQTOL2z+H4zgRpx+pNeydbIGENXvQX9VDlLMe4JoaXGnPq7qJwth56ASV8YgUg8VTmzGrQw6DRVIc7+8sIIRt0h3LRzVeoySZwtD2FdaqLxBF6e9M0LAxFIs85ocUlUDicmfPjxoyfxfwdGl/pQ5jHokr4n6bZGABimWWeL2Nvnwmyg8s89pxInJnzorLPApNcu9aFULHnFGWOskzG2izF2mDF2kDH2seTltzDGhhlj+5N/XlP6wyUyMRcGUqvaYxYbpx+IxOALx9Bkl6pDXfVW6hdJY9QdQqtjfuUsHEvAE4ot4VGVh/SkRkCy0TqthooPBOGc48ePvYy1zXbsXNOYupzEmXr0TfkRjfN5YSCCznoLRmaDiNOsM6JCEH3CleZ6WFg5q7XoYTFoqXK2gHiC42237cZPHju51IeyrDgx4SNLYx7kVM5iAD7FOV8P4BwAH2KMbUhe9z+c823JP/eX7CiJnDw/MIP22rl5WWpQbJy+OGk1Jgcsd9VbMOAKqF4Z+vZDx3DdrU+p+pilJhpPYNIXRkuarVG8T5MVFqf/+2cH8Paf7lb13030MnYnK2cAUG81VHzlbNfRCRwb9+H9F65MDUcGgEabdOwkGornaDKpcU3z4mCjjjozonG+rHozicpm0id9FscrLGl3wBVAvdUAW7KnmTEpGXeYKs/z8ASjiMQT6C2yv56QTzzBcXLKTzH6ecgrzjjno5zz55L/7wVwGEB7qQ+MkM/zA7PYpmLVDJiL0+9XSZx1Oy0IROKq9+bs63fhhUE3ElW0MJ7whsE55vWciQpjJZ3kh2eDuOW+Q3jixBS8YfUqegOuALTJ2TuC+iqonN366Em01Zhw9da2eZc7bUYkeHX0zFU6R8e80GpYxl4EMeuMrI1EpTBXOausDYPBtBh9QVutGSNu+u6kMxuMAqCwsnIy6AogEktgFYmznCjqOWOM9QA4HcDu5EUfZoy9yBj7GWMsY8MTY+x9jLG9jLG9k5OTxR0tsYgJTwjDs0Gc3lmr6uOKOP1Cd5SEzaMprXIGAAMudXeoBl1BROKJil/YpzOWPEG2zAsEkd6nSjnJc85x870HEIzGAUifM7Xomw6gvdYMg27u58dpNVR0lP5zAzPY0+vCuy9YuSgRtcEm/duRtbF4jo550ePM3IsgZp2RPZqoFFLirII21QBJbHQtEGfttSayNS5A9JoNTKvv6iEyc3zCB4CSGvMhW5wxxmwA/gzg45xzD4AfAVgFYBuAUQDfynQ/zvlPOOdncM7PaGxszHQTogieS/abbe9WLwwEmIvTLzSxcWHlrLMEcfrxBE+dbCotLSsXYsZZa3ogiKOyKmd/PziOfxyewCXrmgAAY271jis9qVFQbzXCVcGJhz9+9GXUmPV4y5mdi65rSKZNVssogErm2Lg366zGdhpETVQY4jw3XiGbagAQiycwPBtEV7153uXttWZM+SIIJTfciLnKmTccgzv5/0RpOUHiTBayxBljTA9JmN3JOb8LADjn45zzOOc8AeA2AGeV7jCJbDw/OAODVoONbYvTzYplRYOl4FlnE96QNGDYIi1cO+rMYAxFx/OnM+oOIpa0M1aTXUMIyfTKmc2og9WgrYgdWF84hlvuO4h1LXZ87jXrAEC1Ph/OOXqn/KmkRoHTZoA/Eq/IhcPLkz48eGgc7zinOzWXLp0GO1XO1CAQiaHfFcDa5sy/ZUadFs0OI8XpExXDZPI7PxuIVsxv16g7hHiCL6qcUZz+YjxpgoysjeXh+IQXzQ7jvDmWxGLkpDUyALcDOMw5/3ba5a1pN3sdgAPqHx6Rj+PjUuqNUad+JGkxcfqT3jAabAZoNFJwgkmvRYvDpOoPoIgLBoDRKjrhjLpDsBi0cJjmL/SbHKaK2IH91oNHMe4N4cuv34z2WukEP6aSOJsNROENxTJUzpLVpwq0p/708ZPQazW48fyejNeTrVEdTkz4wDkyJjUKOussGCJxRlQI6ZtpkxWS2Chsv6JHUzAnzpb+HFMpzAbmxJmaG8dEdl6e8GF1U2Z3BDGHnMrZ+QDeAeDiBbH5X2eMvcQYexHARQA+UcoDJTLjDUVRaynNDkQxcfpixlk6XfUWVQdRp++gj1ZRgtuYO4SWGtO8xD9A6s+bXOLK2UtDbvziqT5cf3YXtnfVwZwUkWpVzvqSATMLK2dCnFWatXHCE8Kf9w3juh0dKRG2EIdJB4NWk9pFJwrj6Fj2pEZBR5153qYMQSwlk74wOpP2wUrpF14Yoy9op8rZItLFGVXOSg/nnGL0ZbLYo7MAzvkTAFiGqyg6vwLwhmKL7AtqkR6n3+VU9hwT3vCiaP+uegsePaZeKMyQKwANA1ocJowWsRuYSPBUha8cjLqD85IaBU0OE14ami3bcSwkFk/gc3e/CKfNiH+9Yl3q8pYak2riTOxO9jTM/zyl+rYqLBTkLy+OIhJP4D0XrMx6G8YYGmwGTHkrS1hWG0fHvDDqNPNGLCyks96Cv7w4ilg8AZ1WUZ4VQahKOBbHbCCKc1c6MegKVky/8IArAJ2GLTrHSBuCUgovITEbjMBm1MGk11LQUBkYdYfgj8QpqVEGdHarcnzhGGymvBq7IIqJ05/0htG4oNLQ7bRgwhtGMKKON39wJojWGjM66y0YLbDn7Pv/PI5Lv/1oWWcnjblDGWfSNdmNGPeElyw16pdP9+PAsAc3X70BNea5amyzw4QxlRYe/dMBMAZ01C0OBAEqL46+d8qHGrM+9V3IRoOdBlEXy9FxL1Y326DNsVHSUWdGPMFToToEsVSIACDR761mom0xDLgCaK8zL9q80Gs1aLabSJyl4Q5EUWPWo6veTJWzMiDCQGjGWX5InFU5vnAsNWhSbQqN048nOKb9kUW2RmGzUKuhf9AVQEedGa01poIXa/v6Z3Byyo8bfrYHnlDp05riCY4Jbzhj5azZYUQwGodPxZlichl1B/GtB4/iwjWNuHJz67zrmh0m1RYe/dN+tDpMi6LSU7bGChNnA66grMp0g43EWbEcG/fmtDQCc300FApCLDWix2xNsx06DcN4BfWcZfvNaqM4/XnMBqW2kK56C/WclQFKapQPibMqhnMOfwnFWaFx+i5/BPEER5NjYeVMqj6o1Xc2OCMN2mytNWPcEypoEPXgTBA9TgtOTPjw3l/sLXni1rQvjFiCo6XGvOi6pRxEfct9BxHnHF+8dtOiXrhmhxET3jDiKgz67pv2Z7StOUw66LWs4gJBci100mmwGUicFcFsIIJxTxjrssToC0TFdYj6zoglRoizZocp6XqojMrZ4ExwUb+ZoK3WTOIsDXeaOBt1BxGJKQ8/I+RzfMKHWosezuRmLJEdEmdVTDiWQDTOS2ZrBAqL00/NOLMtDgQBgH4V7AOhaBzjnjA66yxoqzEhGueKF8eccwzNBHDp+mZ887qt2N3rwid+v18VEZKN1IyzTLbGJRpE/dChcfz94Dg+esnqjCf1FocpWQ0tXnz0TwcW9ZsB0kZAncVQUYEg8YT0+ci20EmnwWbEtC9S0AYBIS8MBABaa03QMCybxEZ3IIpP/n4/Cf8ScmDYXVgicfLfpMlhRKPDVBFpjd5QFC5/ZFFSo6C9zowRd2Ebmacis4EIas0GdNZbkOAUllJqpKRG26INYGIxJM6qGGF/s5eocgYAXfVWDM4EFAmW9JNWOnUWPexGnSqNt8I331lvTlWhlFobp/0RhKIJdNSZce3p7fj3K9fjgQNjuOW+gyXr+xrNMONMICpn5TzJ+8Mx3HzvAaxttuO9WUIvUgOyixxE7QlFMe2PZA18qLcaKqpyNuYJIRpfPC8oE06bEbEEp0GmBXJsXBJn2QZQC/RaDVprzBhcJoOonxucwV3PD+P3zw4u9aGckuzrn8FV33sC/3dwTPF9xe+002pEc4VUzkSSabbfrPZaMyKxBKYqLHhpqXAHo6ix6OdcPdR3VlKOT3jJ0igTEmdVjC8kibNMg3HVosdpQTTOFe0oif6kRtt8AcIYQ2e9paCAkYUMpsUFi/4tpaEggwsih99zwUq875Ur8atn+vH9f54o+hgzMZY8xsxpjZKYLcdJnnOOfx4Zx5t/8jRG3CF8+fWboM+SfteSFGfFzjoTdtaeLMmfTpsBrgpaNIjjXTiTLRMibZIqHIVxZMwLh0mX+qzloqPOvKwqZwBw7/7hJQsKOpW5c3c/ACh2hwCSw6HOoodBp0Gzw1QRaY1CXGTtOauhWWcCzjlmU4Eg0vtF4qx0TPvCmAlEcRrNOJMFibMqRlTOStVzBiAVoa/kR0tUzhYGggDSQleNH0Cxc95ZZyl4uOZQ8jHSkwM/+6p1eP3p7fjWQ8fwuz0DRR/nQkY9IRi0mlQARjp2ow5mvXbeYFO14ZzjkaMTuPaHT+Fffr4X7mAU33vr6djRXZ/1PqLKV6xo7E+JnWyVM2NFBYIM5lnopCMsvDTrrDCOjXuxtsUuy+7SUWdZNrPORCX22LgPR5LWT0Id3IEo/vbiKABgpIBAqfRZnk12I9zBaMl7lvOR7zerjWadpfBH4oglOGrNejTZjTDoNCTOSgiFgSijdKt6ouSkxFkJe87EsOC+aT/OP61B1n0mPGFJaBi0i67rqrfg4SMTRc8WG3IFYNBp0GQ3gjHAqNMoruzMibO5cA6NhuFrb9yCaX8En7/7JThtRly2obng41xItgHUgFRZbHIYS5L6xTnHkyem8e2HjuK5gVm015rx1ddvxht2dGStmAmcVgM0rHhxJgZQZ6tEOSvM1tjv8kObYV5QJhqSi7SpCuqZqxY45zgy5sVrt7bJun1nvRnj3hDCsTiMusW/MacSYkiuTsNw7/4RrG91LPERnTrc9fwQwrEEasx6jBYgVtLFmRiNMukNy+pRLRWDMwE4TDrUWPQZr2+vI3EmEBsftRY9NBqGzjqzamFlxGKOkzhTBFXOqhhha7QbM/8Qq0GLwwSDTqMosXHSF85YNQOkSlwklsB4kaEXgzMBdNSaodEwMCYtoJWecAZnAqi3GhbZQvVaDX54/XZsbq/Bh3/zHPb2uYo61nRGk+IsG8129WLrBU+9PIU3/fhpvP323Rh1h/DFazdh16d34i1ndeUVZgCg02rQqEJPRf+0H012IyyGzJsJ9VYDvKFYxSRmDbiCaK9dPC8oEw3Jytk0Vc4UM+YJwRuK5U1qFHTUWcB5eaxZx8a92PHfDy2ZjdIdjMJm1OGC1Q24b/8wBTmoBOccv90zgK0dNThrRX1Bo1gmfXOzPMtpSc/FgCt3gJHDpIPNqEttTC5nZgPSRlqNWXKxdNWr4+ohMnNiwgerQYs2GZudBImzqqYclTONhiVngMj35E96w6lKwkJSiY1F7lANuoLoSDsJtdaYFZ9gh2aC86pm6ViNOvzsxjPRVmvGx363X7V+jzF3KGclpjEZW68GwUgcH/vd83jbbbsx4Argv67ZiEf+dSfefk43DDplX301BlH3TQdy9m8Jq+dMoDKqTwMyY/QBoNash1bDqOesAOQmNQo6k9/ZcgimF4fcmPZH8NKQu+TPlYnZYAQ1Zj2uPb0dI+4Q9vbPLMlxnGrs65/BsXEf3nZ2F9pqlA9m5pwvsDVKv+lq/XYLQtE4rvre43jqxJSs2+f7zWKM0ayzJKKfszZZZex2WjHoClBvZ4l4edKHVZTUKBsSZ1WMNywCQUpr7elxKhvQOOkNoymLOOuuVycVaXAmkFqkAVLAxphicRbIKs4AKYHvhnO7MTwbVKXZm3OesjVmQ63K2fBsEG+89Snc98IIPn7pajz6rxfhnef2FGwDU2MQdX+WGWcCMftkukKsgYN5dqHT0WgYnFYDpryVcezVhBBn+ZIaBWJTphx9Z6ISosb4j0LwBKXAgkvXN8Os1+Ke/cNLchynGr/ZMwCbUYertrShtdYMbyiW2uyUgy8cQyiaSImy5hJVzgZdARwY9uBXz/TnvW0iwTHkCubdUGqrNWNEYXjWqchscL4466y3wBuOpazE1cLPnujFvn713D2l4vi4jyyNCiBxVsX4w6W3NQJSnH7/tPwdpfQdxYW01pqg1bCivN3eUBSzgei8hXNrrQljnpDsyP9EgmNoJph1Hoxgc0cNAODFodmCj1fg8kcQiScyzjgTNDmM8EfiihYKC9nT68Jrv/cEBqYDuP2GM/DxS9fApC9OwLc4TEWlNQYiMYx7wlmTGoG5ylklhIKIeUFyK2eAZG2kyplyjo570ewwotYibzBpi8MEnYaVpXImNiSWyu4k0uSsRh0u39iM+18arRjbb7UigkCuPb0NVqNuLu1XQTUpNcszeZ6rsxig1zLVExtFwNCuoxMIRHKfE8a9IUTiibwbSu21ZkprxFw/Z41ZWj+pOYe1XPRO+fFffz2Ez931UkVbnr2hKMY8IRJnCiBxVsX4QjFoNQwmfWn/GXsaLAhG47LmbwUi0g6k2FFciF6rQXutuajFjtgxTxdWrTVmxBNc9oywKV8YkVgiZ+UMADa01kDDpEGlxSLETa7Kmag4Flql+vUz/Xjbbc+gxqzH3R86HxevUyfMpNlhxGyg8DQy8e+ds3KWjKNXY9h1seSbF5SJBjuJs0I4Nu6VbWkEAK2Goa22PLPOxGJ7qYIC3MFoamf/mm1tmA1E8dixySU5llMFEQTy1rO6AKQlGCpwXkwsEGcaDUOT3YSJInupFyLOZ6FoAruO5P53F59ROZUzlz+SV+yd6qQCQdJ6zoDqitP/w15p/uGxcR8ePjKxxEeTnVRSYyOJM7mQOKtifOEYbEZdyT284kerT8YCZeGOYrbHK2Z3anBGzCebE1ZttZLgkWvXGMwQo58Js0GL1U12vKSGOEsNoM4uCEXql9LehUgsgc/f/RL+/Z4DeMXqBtz9ofNV3aVKHVeBO8P9qRln2cVZvVX6zFRC5WxOTCqpnBkorVEh8QTH8XEf1ioQZ4D03S9H5UwEFy3Vgs2dtDUCwAWrG1Fn0ePeF0aW5FhOBTjn+M3uAWztrMXGNskVoUblTPy/2mNQxPPYjTrcf2A0523FOS2fOGsvcPTMqcZsMAKDTpPa3BbricEqEWexeAJ/2jeEnWsb0Vlvxg92najYfjkhzlYr/J1fzpA4q2K8oVhJZ5wJxIJaTiiILHHmtBT1A5gaHp0mrFoc0g+r3L6zoQwCLxub2mvw0rCn6B8+EViSKxBEVM6U9C5MesO4/qfP4De7B/CBnatw+w1nphZ0atFc5CBq8dnpyiF2as16aFhliLOFA8rl0GgzYtIXrtgTZCXSP+1HOJaQ3W8m6Kgtz6wzsdgeng0iGi+/nXA2TZzptRpcuaUVDx0aS1naCWXs65/B8Qkf3nZWZ+qyZocJjCmrnKXOc7a581yzo/hE24VM+SIwaDW4elsb/nl4AsFIdufCgCsAxuYqgdmgWWcS7kAUtWZ9anPbYtCh0W6smjj9XUcnpXP/2d143ytXYf/gLJ4+Ob3Uh5WRE5M+GLSaeTkBRG5InFUx/nB5xFl7nRlaDZMVCiIqPtkCQQBpZ8/lj8AbKqzxdmgmCJtRl7L7AGmVM5knHBEl3F6bf/G9ud2BKV+4qJ4rQBKOWg1Lxa5noiltXo4cTkx4cc33n8BLw27871u24TOvWgdtEfPjslHsIOq+aWlsQS7RqNEw1FkqY9ZZv8uPGrNekch12gyIxBKpoB4iPwdGPADkh4EIOuvNmPKFSzr0N5HgmPCG0GAzIp7gGC1zpSEUjSMSS8ybWXXNtnaEogk8eGisrMdyqvCb3VIQyNVpM/X0WmlepqLKmS8MvZbN+31odphUT2sU/dtXbm5FMBrHo8eyW9cGXQG01ZjzJvHSrDOJ2UB03hoCqK44/d8/O4hGuxEXrW3EdTs60GAz4kePvLzUh5WRE+M+rGiwyhpLQ0jQO1XF+MKxksboC0SfmBwropzKWXeR3u5Bl5SymG7nrDHrYdZrZcfpD80E0GAzZByUvZDNHbUAUHSc9qg7hGa7Mad4cph0MOo0skXQjx45CW8ohj/ddB6u2dZe1PHlotlenDiTkhrzC+F6qwGuCrAGDshIPVuIEN1TJRgifqry94NjaLAZsEHhcGVhRy7lvKaZQATROMeZPXUAJMFeThYGFgDAjq46tNeace9+sjYqZTYQwV9fkoJAFs5aVDqKZdIbRoPNCE3ab3mT3Qh3sPC+3IzP4wujwWbA2SvqUW814G8vZRfl0oyz/JWJZrsRGgbF4wNONcSYinSqRZyNe0LYdXQCb9zRAZ1WA5Nei/dcsAKPH59SJbxMbU5M+nBaM/WbKYHEWRXjLVPlDJB6b+TaGrUahvocyWvCKlaofWBwZnHEuRhELd/WGER7nn4zwYZWhyqhIGOeYM4wEEB6HUp2YPf2u3DuKic2tdcUdWz5cJh1MOnli8aF9E0FUqI8F/VWQ8XYGgsWZxUgLquBYCSOfx6ewBUbWxTvqKb6Q0rYdybCQM7sqQdQ/r6zhYEFgFRdfu22Njx+fIrCZxRy13PDiMQSeNtZ3Yuua6s1KYqXz5RI3FRkX24mppLPo9NqcMXGZvzz8HhW8Sd3LqNOq0GLQ/lst1MNKQl1/jqls96CEXew4hNR/7RvCPEEx5vOmLPnXn92FxwmHX64q7KqZ6FoHAOuAIWBKITEWRXjC0XLUjkDhDiTY2sMocFmmLejuBDRd1TIYodzjkFX5gj8VgUn2EFXQLb/Wa1QkFF3CK05wkAETTIbyye8IfRPB3BGcme/lDDGknH6yhce4VgcI+5gzqRGgdNmWPK0xniCYyjDBkA+5sSZ/ON/5uQ0rv7eEwVbfKuZXUcnEIzGceXmVsX3LUflTISBbOmogUGnKXsvymxyGPvC3f1rt7UjnuC4/6XcARHEHJxz/HaPFASyoW1xlba1xozR2ZCicTELrftzYU7q2V8nfXMi8DWbW+GPxPFohrTOYERKU5a7odRWa172tkZPMLOtkfPKripyzvGHvYM4e0U9VjTMnVPtJj1uOK8Hfz80lgrgqAROTvrBObCaKmeKIHFWxfjCMdgM5RFnPU4r3MFoasGQjVwzzgQOkx51Fn1BiY3T/giC0XhG+4Y4weYjkeAYng3mTWpMp9hQEDkDqAVNDmNqYZiLfX0zAIAzkjv7pabJYcK4wkHfgBRLz7k0kiEflVA5G/OEEI1z5ZUzu7QLq0ScPXpsEi8Nu/H3g+OKnutU4G8vjaLBZsBZK5R/fhttRhh0GgyVsJo1kTb6orOuuPEfheBeMCRXsLbFjnUtdrI2KmBvMgjk+mR8/kJaa0wIRuOp9zwfE5kqZ6kwJ3U2l+IJjmlfOLXpc85KJ2otejyQQZTPBVzJ+81qr6NZZ7NBKRAknWqI03/mpAv90wG8+czORdfdeF4PjDoNbn20cqpnJyaTMfo040wRJM6qGH84XrbKmdw4/UlfOOuMs3mP57QWlNiYKalR0FojzZmJ5UlVm/CGEY3zvDPO0tnSUVNUKIgnFEMgEs+Z1ChospswKeMEv7d/BkadBpvaSmtpFLQ4TLJE40IGkr06cipn9VYjZoPRvP+GpUTuvKCF1FsMYEyZrfFk8sR17/5hRc9V7RRjaQQke19Hrbm0lTPPXP9sV70854CazAYX95wJrtnWjn39M1UT+73U/Hb3AOxGHa7amrlK26YgXj6e4HD5w/OSGoG5yplaiY0zgQgSfK5/W6/V4IoNLfjH4QmEY/OtjQMK02Xbas0YdQcrenBxKQnH4ghE4os2PrqLcPWUiz/sHYTdpMOrNy3+LDttRrz1rC7c8/xwxVT/Tox7oWGYV+Uj8kPirEpJJHhqzlk56GmQF6c/4Vl80spEoYsdMcsl00motcaMBM8/I2xQ4S4jgFRPV6GhIHMzzuRVzrzhWN4hoXv7Z7C1szZvOpdaNDuMGHPLt/4I+qbyzzgTOK0GcA7MBJbO5jdYwIwzQOrlqLcYFFXOeqek79NTL0/LTug8FUhZGrcotzQKOuotJe45C6HeaoBRp0W304oBV6CsYxI8QpxZFouzq5Mi4z6aeZaXuSCQ9kVBIILUrDMZtvhpf3ieaBLUWfTQa5lqiY2Z4vpfvbkFvnAMjx+bmndbISaU2BqjcY7JZdq36E59t+b3nDXajDDqNBiQ0V+/FLiDUdz/0iiu3daeNczsvResBGPAbY+dLPPRZebEpA/dTiuMuvzha8QcJM6qFH9y4W4vc+Usl6CKJzim/ZG8tkZASmwcng0qrpCIhXOmqldrrbwTrLCAKKmcFRsKIo5JTuVMJCPm6jsLRuI4OOzGGd2l7zcTNDtMCMcS8ASVRcX3T/thN+lQl2GRuZB6q3SyVGJtVHvB3O/yQ6thsv6tFtJgM8pOa4wnOPqmA7h4XdOy6yH624ujyRQ6Z8GP0VFX6spZKGVV66y3wBeOlXXTYDYQhYYho3W9o86CM3vqcM/zwzRXLw8iCOStWSyNQFrlTIZtO1siMWMMTXZTyg5bLOJ5GtKe5/zTGlBj1i8aSD3gCsBi0MJpzR7ElU578lxZKdWVcuPOkIQKSBX5zgpObLxv/zDCsURGS6OgrdaMa7e143fPDlREaNCJCR9WURiIYkicVSm+5Cwla5kqZya9Fi0OU05xNhOIIJ7gaHLIq5zFE1yx731oJgCn1ZDxdc/tfuZ+zCGXmHEmX5wVGwoynupfkREIknz/cu3A7h+cRSzByxIGIhBVP6XWzr7pAHqc1nmjD7LhtEmLC7mhIPc8P4xzvvIwTkx4FR1TLgZcQbTXmguy2zXY5VfOhmekVLArNjYne4iWh7UxGInjn0cm8KpNLUXN5Ousk+Yllmog87gnnLKqdac2p8q3o+5ODqDOFq50zbZ2HJ/w4fCoep/9Uw3OOX6zZwDbsgSBCBpsRug0TNass1zjYuT2C8shU+VMr9Xgsg3NeOjQ+Dxro0iXlfMbC8zN91yuoSBzSaiLNwylOP3KfF9+9+wgNrY58qYz37RzFcKxBO54srdMR5adUXdI0UY4IUHirErxhaQFSblsjUD+OH1R6ZFlayzQ2z3oCqIji3VDJCHmCwUZnAmgyW6ESa+szL65owYvDbsL2qkedYfAWO7h3AI5vQt7+1wAgB1d5QkDAeaOS6k4kzvjDACcVun9kVs5e+LEFMY9Ydzws2dV6/WQG0mdiQabUXbP2ctTUr/ZykYbXrutDc8NzC6LHiJhaXxNASmN6YgTfqmqZ+OeEJqTGyXFJMwWymxSnGXjNZtbodOwZSPqC6F3yo8TEz68cUdHzttpNdIIEzmzzuZE0+LKerPdpFqUvtjkWSgCX7O5Bd5QDE+dmE5dNugKKrLpt4nKWQkrz5WMmCG4sOcMkMTZYJktzHI4MOzGwRFPzqqZYFWjDa/e1IJfPt2/pEnA4Vgc3lAMDTZ5FV1iDhJnVYqonJUrEASQxFmuQBDhX5dbOQOUD3YdnMkege8w6WA1aPPG6Q/NBAvaydncXoMpX6SgUJAxdwgNNiP0MqoxQsDlqpzt7Z/BmmZbxn6UUtFSQMN7NJ7A0ExQtjhTams8Nu7FigYrZgMR3HjHs6qciAZdymP0BZI4k7c4OzkpffZXNFhx9ZY2AMujh0gNSyMw1zNaCkEbiycw5ZurnIkAonLG6buD0UU9MenUWw24cE0j7nthZNkGO+RDCCk5YQRttSZZlaTJLKIJSFbOVLQ1mvXaRS6R809rgN2kw9+SNmjOuTSAWkH6sN2kh92kW7aVs9kMMwQFXUtgYZbD758dhFGnwTVb22Xd/oM7T4M3FMOvnxko8ZFlR5zHnTI27In5kDirUoQ4s5e1cmbFlC+c1UYkvPaZdhQX0uwwwaDVKNqJlmyQ2XcIGWNokTGIWhJnyhffxYSCSDPO5PUw1Zj1MOg0WXsX4gmO5wZmyhahLxCLESVx+iOzQcQSXFZSI4BUX9q0jOpTPMFxbNyLi9Y24Ydv34Hj417c9Ot9RQ0Q9YaicPkjBVfOnDYDApF43jAXAOid8sFh0sFpNaCz3oId3XX4yykuzgKRmCqWRiC9cqa+YJr2S0l5QpyZDVo02Y1lrZy5A5GclTMAeO22Noy6Q3hhaLY8B1VliMVhXQ6RK2itMcuqnE14wrAbdRkDGZodJnhCsayDopWQPuMsHaNOi8vWN+PBg2OIxBKY8knjZboyjJfJRXutGcPLNE4/NUMwS+UMKK+FOR+haBz37B/Gqze1yN6Q3dReg1euacTtT5xU5fNYCOI8Xi+zF5KYg8RZlZKyNZa5cgZkDwXJtaO4EK2GoaPerGgnWsyfyrVD2FZrztnUPSfwlFfOigkFGXOHUpWnfEiN5caslbNj4154Q7GyhoEAUt9hnUWvqKdCfFbkJDUCUuJhrUUvq3I24AogFE1gXYsdF65pxFffsAVPnpjGZ/78YsGWlMFkr0ExtkYAmPLmP/6Tk36sbLSl+kSu2daGI2NeHB2rnh6iSCyBp05MyX6/dx2ZVMXSCEjJnma9NpXgqiai+tGc9p3tdloKms1YKO4Mc5gWsrbFDkBeBPxyZDq1c59/cdhWa8aYO5S3CplNNAFprgcVrI1TOZ7nNZtb4QnF8NTLU3NJjQrTZduX8SBqdzAKxjJvbi+FhTkfDxwYhTcUw5vPzB5qk4kP7lyFKV8Ef9w3VKIjy434/pGtUTkkzqoUrwgEKdMQamBugT2QxYo46c2+o5iJLoWpSKkZZzmEVWuNKWdT95gnhFiCF1Q5Mxu0WNNsx4sFiLNRd1BR+l+TPbs9Zm9/cvh0d3krZ4C0WB1zy194iN3HHgULB7mDqI+OeQDMLVDfuKMDn758De5+fhhf//tR2c+XjtJI6oWIfks5EdWSOJsTra/Z3AqthuG+F6qnh+j7/zyOt/10N371TL+s29//kjqWRkDaxJASG9VfRIkZZ81pFu3OZC9KuXDn6TkD0m3AS5/KVokoqZy11ZoQiSdSC8psTHrD8xIU00n1C6sQCjLpDWdd1L5idQNsRh0eeGks9ZlU+pvVVmtetmmNs4HsYTti87eS+n9/t2cQ3U4Lzlmp7Jx/9op6rG914L4l6kudTp4HRS85IR8SZ1WKsBaWK0ofmNtRytZ3NuHNvtOXie56Cwam5Tfe5hpALWipMWPSF0Y0S0T/UI4ofjlsaq/BAYWhIP5wDJ5QTFZSo6DZYcpaOdvb50KT3VhQ9a9YpOOSv/A4Nu6D3ahT9LlwWg2y0hqPjHnBGLCm2Z667EMXnYbrz+7Cjx55Gb98uk/2cwoGC9yFFqQqZ3nEmT8cw5gnNC9iuMFmxPmnNeC+F0Yqrhk9E55QFHc81QethuFLfzuM4+O5K36BSAwPHxlXxdIo6Kgzp6qdapKxclZvxZgnVBaLUCLBZYkzITryCYrlissfgd2kkzULMhUoladneSrHeU70W6vRdzaZ43lMei0uXd+Evx8aw8nkrESlG45ttWa4g9FUi8RyIldV2mzQorHMFuZc9E75sbvXhTed0Sk7jVPAGMPlG5qxr38mJZTKibA1yqlcE/MhcValCFtjuaL0AcBh0qPeashua8yxo5iJznoLvOFYKjkpH4MzQTA2N5MmE201JnCe/eSYGmJdQOUMKCwURNxWaeUsW8/Z3r4ZnNFTp/iHWg1aHPl7+tI5MOLGxnaHomOVXznzorveMq9SyxjDf12zCZeub8bN9x3E/x0Yk/28gBRQU2PW510UZ6PBLp2E8okzMXx65YKggtdubcOgK4jnB2cLev5y8qun++ENxXD7DWfAZtTho7/bPy/eeyG7jkwiFE3gys1tqh1DZ72lJJWzCU8IGoZ5c6O6nGZwXrp0yHR8kRgSPHOaXDp6BTbg5YjLH5Hd7yJ+n/NZ/Sa94ayJxHJmVMohGk9gJhDN2b/96s2tmA1EcddzQ2h2KE8fFomNcsYHnGrM5gnb6a635BwbVE7+sHcQGoa8iaPZuGxDMxIcePjIhMpHlp8pfxgGnaasqeKnCiTOqhRfOAaTXiMr/U9NcsXpT3nDsqLi5x5LWpjK7eMYcgXQ6jDl3AVtrRW7n5kFxNBMAIzNDaxWSiGhIELMtCgRZ1kay0fdQQzPBpfE0ghINq8pX1jW8PBYPIHDox5sass9k2Uh9VajbHEmLI3paDUM33vr6djWWYuP/e557Ot3yX7uAVewYEsjMGffyNdzJna7VzTOF2dXbGyGQafBffsrOxgkEInhp4+fxEVrG7FzbRO+/sYtODzqwTdz2EklS6MRZ61Q77PbUWeGJxRLzS1Si3FPWJp9lfb72lWf29atJmJIrkPGJkG91UCVsywoEWepQdQ5+veCkTi84VjWilatRQ+DVlO0rVFUHMRmTyYuXNMIq0GLoZlgQZuNwj2yHK2N7kAkZz9nV5ktzLm45/lhXLS2aV4VXwkb2xxorzXjoUPjKh9ZfqZ9ETithiXZSK52SJxVKd5wbEl2I3LtKCm1NYpFsFz7wOBMIOuMM0Fbnt3PoZkgmu0mGHXKdhkFG1od0GqYomHUQigqrZwBi3dg9/Yl+83KOHw6neYaExIcsmZ5vTzpRyiayDswcyFOqwEzgWjOxvxQNI6+aT/WNi8WZ4BkTbn9hjPRVmvGe36xV1Z6IjA3zLVQDDoNasz6vLbMk5M+MLY4KMVu0uOSdU3464sjsgTwUvGb3QOYCUTx4YtXAwAuWd+Mt5/Thdse78UTx6cW3X7O0tismqURKF2y2rg3tGgxlPq9KsOOeq4huQtxWg1wyZytt9yY9kfmVT9zUWfRw6jT5LQ1Zps9JmCModFuLLpylmkA9UJMei0uXt8MoLAeWSFGl6M4mw1Gc1alO+stGPWEcjoBysGMP4JRdwjnrCy8R5cxhkvXN+Hx45MIRsr7elz+CFkaC4TEWZXiCy2ROHNaMeIOLvrRCkRi8IVjaLLLFyBzix15C6tBV/4dQlGdyma9k2ZYFd6rZTZosbrJpkicjSVP9kp2vpqyNJbv65+BWa/F+laH7MdSE2HbkWPrFKmWm9qVHWu91YB4sucmGycmfEhwYG1L9seutxrwX9dsxEwgOm9gazbiCY6hmcJnnAkabIa8tsaTk36015ozWpGu2daGKV8ET5/Mf8z52Nc/g53f2IW33fYMbrnvIO7c3Y9n+1ypykwhhKJx/OSxkzhvlRM70hJDv/CaDVjVaMWn/rgfMwsqOaWwNALAuuS//6ERj6qPO+4JzwsDAaR/V4tBW5bERmH1lmOvlWsDXo7MKKicMcbypv2KPuBcDpFmh1FRX24m8olAwWs2tQBAQb9ZTXYTtBq2LBMbRSBINrrqLeB86Yd0907PzcIshss2tCAUTeCJE4s3zkrJtC9MYSAFQuKsSvGHY2WN0Rf0NEg/Wgub8IWNS0nlTEnjbTgWx7g3lFdY2U162I26HLbGwmacpaM0FGTME0K91aCoJ0AsDBfuwD7b58LpXbVlt7MKhPiV0/B+YMQNi0GLFQ22vLdNR+y05bJqHUnGzWeyNaZz9gonbEYdHj6S39IhRjUUUzkDkoOo89oafVjZmPl92bm2CXajDveqYG188sQU+qYD8Idj+MPeQXzh7gO47tansfW/HsRZX/oH3v7T3fjWg0cV7RD/cd8QJrxhfPji0+ZdbjZo8b9vOR0ufwSfv/uled+Pv700orqlEZAWUXajDgdVFmcTnlBqg0TAGCub3SlVOZORMlhvNcoK0FlucM6Ttkb556R8ab+TSdGV6zzX7DCl0j4LRVTOGvIM771oXRMuXd+Ei9c1KX4OrYahxWEq+RgGbyhaUQFHiQSHJ5R7TEWlxOn3Tma2vyvl7JX1sJt0eOiQsh7sYpnyUeWsUPKu8BhjnYyxXYyxw4yxg4yxjy24/tOMMc4YayjdYRILWSpbY7a+iwkZJ61MyG28HZ4JgnN5QR6ttaaMu4GxeAJjnlDBSY0CpaEgSmacCUQFMl0E+cIxHB71lH2+WTqpqGgZr/3gsCdlA1XCXDx4doFzdMwDg06TN6LfoNPglWsa8PDhibwLBGFXK1qc2Y05K2ecc/RO+heFgQhMei2u2NSCvx8YKzoZsG/Kj9YaE+798Ctw4JYr8Pi/XYSf3XgGPvvqdXjF6ga4g1F8758n8B/3HJC1gIrGE7j1kZexvasW52aw2mxqr8GnL1+LBw6MpWbriMHTr1YxpVGg0TCsb3PgwIjy8RbZiMSkOPXmDC6ArjIFBcwGk0NyZdoa89mAlyO+cAyReAL1VvnhPvkGUafshjnOc7nGoMhF7sxQk16Ln95wJrZ21hb0PO11pY3T94VjOPcr/8R//fVQyZ5DKd5QDJwjbyAIUAHibMoPrYYVfU7SazW4aG0THj48gXiZfic455j2h2Xbion5yNl+jwH4FOd8PYBzAHyIMbYBkIQbgMsADJTuEIlMSLbGwhLlikEshvum5v9oTcqwe2RidbMNB0c8qdEA2UilLMr4kWqpMWcUTqPuEOIJXrw461AWCjLqDinqNwOk/ge9ls2L098/MIsEB87oWZowEEBaCOo0LO/iI5HgODjiVtxvBsib3XRkzIvVTbZ5gQ3ZuHhdMya8YRwYzl1dKXRe0EIarIacc84mvGH4I/F5M84Wcs22NnjDMTxytLiErd5pf6qvTaNh6Ky34OJ1zbjpwlX49pu24S8feQU+cvFp+MPeIdzxZF/ex7v7+WEMzwbxkYtXZ23yfu8FK3HuSiduue8g+qb8KUujGoOnM7GprQaHRz2qLTrEv91CWyMwN5ux1JWAucqZPFtjPhvwckRs7iipnLXVmjDuCWXt95z0hpMpnjnEmcMEbyhWVH/PpDcMu0mnOIFRKaUeRP3C4Cx84RjueLIPf3txtGTPowSx8ZGrctZoN8Ko05SlvzQXJ6d86Kq3qOKUuWxDM6b9ETw/MKPCkeUnEIkjFE3Amaf6S2Qm778453yUc/5c8v+9AA4DaE9e/T8A/g0AbdmVGV84BpuxtD/cmai3GmAz6hY14E/I2FHMxBt3dMIXjuHPz+WeYC9nALWgrSazVWNwJv+cNDkoDQUZc4fQrFCcMcbQZJ8/U+zZPhc0DDi9q1bRY6mJRsPQZDfmHUTdO+2HPxLHxjblvXFi4ZPL1pgtqTETF61tBGPIa20ccAWg1bBUxHShNNiM8GZI2hS8POkDAKzMYfc8d6UTDTYD7nuhOGtj35QfPXn6FT5x6RpcvqEZX/zbITx2bDLr7eIJjh898jI2tjmwc21j1ttpNAzfetNW6DQMH//9fty7f7gklkbBpnYHQtEETibf12LJNONM0O20IBxLZJ1BqBbuQBQGnUbW4lyODXg5It4PJTv3rTVmJDiy/vtO+sKotxpzVoDF56aYvrNJX/a4fjVpq5VGo5SqmvJcvyQENrY58Jk/v4i+qdInneZD9HPm2vgQFualrpydnPQX3W8m2Lm2EXotK1tqo6uA7x8xhyI5zhjrAXA6gN2MsdcCGOacv1CKAyNys1Q9Z4wxKU7ftbhyptUw1MvokUhne1cttnbW4udP9uW05QzOBGDQajJajRbSWmPGlC+8qI9GzCcqtufMpJcfChKKxjHtj6C1gBjchalf+/pnsLbFAbup/BXTdJocpryVs7kwEOWVs7qkDSlbAt2MP4IJbxjrZIozp82I0ztr8fDh3FWoflcA7bVmWdW4XIhZf9kWyyeTfQS5Kmc6rQZXbWnDPw5PwBsqrCLiDkQxE4hiRUPuz7tGw/A/b96GNc12fPg3z2UVOX97aRS9U3585OLT8kYjt9Wa8ZXXb8H+wVk8eGi8JJZGwcbkqAa1+s7EfMGmDJWzzjLZnXINyV2I2MygUJD5zKQqZwrEmZj9lSWxMddgaIFwjxTTd6Z0ZmihtNWaEUvwogNMsrFvYAZrmm348Tt2QKth+OCdz5VliHsuZoPywnaWWpwlEhx90+qJM7tJj3NWOssmzoS1P1/fJJEZ2asQxpgNwJ8BfByS1fELAP6fjPu9jzG2lzG2d3Iy+64soQyp52xpFunSrLPF4qzBZoBG4QKMMYZ/Ob8HJ6f8ePR49s/HkCuI9jqzrMcXFsKFYRpDrgA0Rcw4S0duKIg4BiUzzgTpqV+xeALPD8zgzCWK0E+nRYY4Ozgi9YSd1qQsDAQAjDot7EZdVnEzFwYivyp3yfpmvDTsznncA0XG6AvEyWgqy+77yUk/zHpt3j7Eq7e2IRJL4MGDhZ1MRdLXwrj+TFiNOtz2zjOg02rwnl/uXWSRSyQ4fvDPE1jdZMPlG1pkPf+VW1rxhu0dqf8vFasarTDqNKkNgWIRi+rMlbPkbMYS253ypcmlI8cGvByZLkCctdXknnUmR5wp6cvNxpRP2ViaQmlPzXZT39qYSHA81z+D7V116Kiz4Ntv2opDox789xL3n80GkrbGPJbhzmT4z1KFmYx5QghFE6qJMwC4fEMzTk75cWJCHZdBLsSsPiXfP2IOWeKMMaaHJMzu5JzfBWAVgBUAXmCM9QHoAPAcY2zRWZtz/hPO+Rmc8zMaG7NbYQj5hGNxRGIJ2JegcgZIC5ShmcA8X/6EN1TwyeTVm1rRZDfm7HkZnAnI7hUT4mvhCWdoJojWGrMq/u0tHfJCQcQObGuN8j63Jvtc6teRMS/8kfi86PKlotlhzPu6Dwy7sb7FXvB7XW/LHg9+bFwSZ3IrZwBwyXopzWzXkezVM2nMghriTDoZZQsFOTnlw4oGa96Nhu1dteioM+PeAq2NwkIk9+TeWW/BD6/fjoHpAD762+fnWZ0eOjyOo+NefOii0xRtwHzpdZvw03eegbNLZGkEpCrjulb1QkHGPSHotZldAO21ZmhYmSpnMvrNALI1ZsNVospZvr7qVNJuEdbXSW95bI3tqVln6lfOXp70wROKYXvynHXJ+ma8/8KVuHP3AO7dP6z688nFk6qc5f5cdDst8EfiS/a96p3K77BQyqUbpLl45aieiQRZSmssDDlpjQzA7QAOc86/DQCc85c4502c8x7OeQ+AIQDbOeflzelcpvjDki3Aaih/zxkghYJE43xeqtWkL6xoxlk6Bp0G7zinG48dm8y6o6Nk4SyE0MLUraEZqfqmBsKu92KeUBAhYgqtnLmDUYSiceztcwFY2jAQQXON1PCebbAz5xwHhgsLAxHkmt10ZMyLGrNeUfjM2mY72mvN+EcWa6M3FIXLH1G3cpZFnPVO+WWdcBljeO3WNjx5YqqguWS9U34wpmwG0jkrnfivazbh0WOT+OoDhwFI/57f/+cJdDstuEphBcyk1+LSDc15bZDFsqnNgYMjHlV2ucc90m9ZJhFq0GnQWmOWPZuxUNxB+ZWzuqSIpEHU83H5IzDqNLAoOE86THrYjLqMlTPOudQLlud3p8ash0GnSdljlRKKxuENxcpSOeuos8Ck1+Cfh9VfrD+XDJ5I31D89OVrcUZ3HT5/10up3ttyI3eGYNcSJzaelNGbrJTWGjM2t9eUJVJ/rueTbI2FIGdb+3wA7wBwMWNsf/LPa0p8XEQOfCFpUWxbot4jEaffl7ZAKXan721nd8Gg0+DnT/Uuus4XjmEmEJUd5CFsjYvFmfzqWz5EKEg+K5U4hkLEmRC7k94wnu2fQVuNKbXTuZS0pGw7mcXHoCsITyhWlDhzWg1ZdyyPjnmwtsWuaMHPGMMl65vw5ImpjD0PYm6fGuJMLKqmMiyWw7E4Bl2BrDH6CzlrRT3iCY4jY8r7qfqm/WiryTzoOhdvO7sLN5zbjdse78Wf9g3hseNTeGnYjQ/uXFV0P16p2NhWA28otmj+YiGMe0IZ+80E5ehFkcSZvB1ng04Duym7DXi54vJH4LQaFG8MtNaYMlbOZgNRROM873lOCnMqPE4/NYC6DJUzs0GLG87rwb0vjKQcCWqxr38GtRb9vN86vVaD773tdBj1WnzozueKSrQslNlgFFaDFgZd7t8ycS4ox1zDTJyckuzvmVJji+GyDc14fnA2lbBdKqZ9EVgNWpiXqIhQ7chJa3yCc84451s459uSf+5fcJseznl5R48vY3zJ2PmlmHMGSIOogbm+i3iCY8oXKWqnz2kz4pqtbfjzvuFFVQIlSY2A1D/jMOnmnWAjsQRGPaGikxoFckJBXp704U/7huBMJlwqpSlljwlhX98MdlRA1QyY66kYyzIPSNjLNrUVWzlbfPLgnOPYuE+RpVFw8bomBKNxPP3y9KLrBlSK0Qekz4bNqMt48huYDiDBkXUA9ULWNEuv81gBPQJ9U4U3k//7VRtw3ionPn/XS/jPvxxEW40Jrzu9o6DHKgeb2qX+w4MqWBvHPaGcwUPdznKJM/mbb7k2M5YrLn8E9QVYqlprM886kzt7DJB+Iwu1NaYGUNvLYwe76ZWrYDXo8O0Hj6n6uPuS/WYLxXFrjRnfftNWHB334ub7Dqj6nHKYDURlDXcXwWFLFaffm/z9Vtt1cNmGZnAOPFyCamk6074wxegXQWVugxI5EeJsqXrOmu0mGHSaVJz+TCCCeILn3G2Ww7vOX4FgNI7f750/Ni8lzhQIq7Za8zxryqhbGmKtVuUMkIZRZwsFuXf/MK7+3hOY9oXxnbdsK+jxReXs+YFZjHlCFREGAuSPij4w7IZOw7CmpXA7Rr3VCJc/sui9HZoJwheOyY7RT+eclU5YDNqMkfpqzTgTNNgMGW2NL8tIakyntcYEu1GH4wp3tTnn6J3ypzZSlKLXavCDt21Ha60JJyf9uGnnqrw7zUvJmmY7dBqmSt/ZuCeUc7e6s96CKV8k9TusNtF4Ar5wTJE4y7aZsZyZ9kdSlk8lZBvFImcAtaDZUXjlLPU8tuKDq+RQZzXg3a9Ygf87OCZ7dmc+ZgMRvDzpz9ojvXNtEz60U5qv+Od9ucfoqI07GIFDxnfLbNCiyW5cMltj75QfK1TsNxOsa7Gjo85c8r6zaX+EwkCKoHLPtkRWfGGpsrRUlTONhqG7fi6xUSQSFmvD2NDmwNkr6vGLp/rnhY0oGUAtaKkxYcwzVzlTK0Y/nc3JUJD0XdZQNI7P3fUiPva7/djY5sD9H7sAF6wuLAhHiN2/vSQN76yEMBBgruE9W+XspWE31jTbYdQVbmdwWg2Ixjk8ofkL4KNjysNABCa9Fq84rQH/PDyxSPQNuAJwmHSokRnCkI8GmzGVVpXOySmpAia3osUYw2nNNsWWo5lAFJ5QTFZSYzbqrAbcceOZ+NBFq/CmMzoLfpxyYNJrcVqTLe+g8XwEI3F4QjE05UjS7HaW1u7kUTCAWlBvzfx5W864/OGCZixlG8WiRJw12U2L0oLlIuzQ5eg5E7z7ghWotejxrYeOqvJ4zw/MAgC2d2U/Z3380tU4e0U9/v2eAzgxoa6lMhdKxlRkGhtUDiKxBAZdAaxSMalRwBjDpeub8cSJqax942ow5YukwrEI5ZA4q0K8yQWrdYnEGTA/Tl+J3SMf7zp/BYZng/hHWsl90BWA1aBFnYLFSmuNGaNpu59KrZFyED1Vwtr48qQP1/7gSfx2zyA+uHMVfvvecwpKaRTUWwzQaRieH5iFzajDOgXR8aXEbtLDatBm7DnjnOPgiAebi+g3A+YSnhaGghxNihRh91PKpeubMeIO4fDo/MVAvyuQiklXgwabMWPlrHfSjya7UdGsujVNdhwbV2Zr7FWY1JiNlY02/OsV6xT3rS0Fm9prcHAk/3iLXIhqcKYYfYGorpYqTl/uHKZ0nDkCdJYrLl8E9QWEEYjExnH3/O+vInHmMMIbzh6alAvxPOVMuXOY9Hj/K1fhkaOTqfCpYtjXPwOthmFrZ/bzgE6rwffeejpiiQT+WMbqmWRrlPfdEnH65WbA5UeCoySVM0CK1A/HEnjsWOm6kaTNEbI1FgqJsypkqW2NgBSn3+/ySwlWyZNJoWmN6Vy2oRkddWb8LC1Wf2hGSmpU4r1uqzFh2h9JhT8MzQSh1bC8s6WUkB4KImyM454Qfv6uM/Fvr1pXdHiCRsNSC4HTu2pLNsS3EJprMs86G3WH4PJHUj1AhZJtdtORMS/aa80FD+LeuU6qYi702w+qNONM4MxiazxZQB/Y6mYbXP5I1vTHTIgY/Z4S7LxWKhvbHJjyRYqKMJ+bcZZ9UdGdDEQq1aJNzJhTUsV12gyYCSy2AS9XQtE4/JF4QQInNetsQSjIpC8Mo04Du4xNUdGzWEj1bNIXQp1Fr8rIFyXccF43GmxGfPPBo0V/jvb1z2B9qx0WQ+73qslhwqpGW8oRUQ5mFYyp6Kq3JOeNlTe45OSk2FxTL6kxnTNX1MNh0pXM2sg5x7QvQjH6RUDirArxL3EgCCDF6YeiCUx4w6ndZjUqZ1oNww3n9mBPryvV3D/oCiq2I4p0RCEghmYCaK0xqZo2J0JB7niyb56NcefaJtWeQ9irzuiujDAQQbM9szgT6ZUbi62cJXfcFlq1jo15C7I0CprsJmztrMXDafPO4gme2gBQiwabETOBKKJp9lxAikeWGwYiSIWCKLA29k37oWHK+jSrHVHJLiYURHymc1XOaix6OEw69LtKE6fvlhn1nU59FhvwcmUmOWi4kJ6zbLPOJpIpnnI2CYUlvZC+sylvceFahWIx6PDhi1bhmZMuPHlicWiSXGLxBF4YmsWOHJbGdNa12MsmzjjncAfkJ6F21VvAOTBcgiHduUg5H1R0c6Sj12pw8bom/PPI+LwWErXwBGOIJTj1nBUBibMqxBeKgTEomt+iNl3JH42+KT8mvWHYjTrVIlPfdGYnLAYt7niyD5xzDM4EFNsR25KR86Kxe3AmWJKF6vbuOvjCMXxABRtjJsQsr0oJAxFIPX0ZxNmIBxoGrC/SglmfwdYYiSXw8qQPa4oQZwBwybomvDA0FyU85gkhGueqVs4akv9u6cc/449gJhDFKoVWFRF+clyBtbF3yo+OOktFh3iozfpWBxhDUX1nKXGWxwXQ7bRiQIXY/kyIypncvhgguw14uSI2dQpZHKYqZwtCQSZ98sfFzIUmFVI5C6dmJZabt57dhbYaU1HVsyNjXgQi8dTw6XysbXFg1B0qaJajUoLROCLxhOyNj6WaddY75YfTalCtBzoTl21owUwgin39M6o/9lTS8bJUn+NTgeVz5j6F8IZjsBl0JR/smoueZFN8vysgzThTcaevxqzHG7Z34L79Izg+4UMgElcsrOZmnUkLKDVnnKXzmSvW4e8ffyU+o4KNMRMtDlPSu1+r+mMXQ5PDiAlPeNEJ/MCwG6c12YoW6qKRPz0e/OSUD7EEL6pyBgCXrG8C58Cuo1L1TEQlqynOGpOL5fQ4fREGIjepUdBkN8Jh0imunC0nSyMgOQlWOK1FVc4mvJJ1zWHO7UroqreUbBD1bLLqo6xyJirNlNgIzInUQmxVZoMWtRb9osqZkvOcEPeFVM7UPp8qwajT4qOXrMb+wVk8fHgi/x0ykGn4dC7E7/lRleesZUIMoJZta3QuTZz+ySm/4vOEUi5c2wiDVoMHS2BtLOb7R0iQOKtCfKEYbEvYbwZIlSmthqF/2o8JbzhVKVCLG8/vQSSewNceOAJAWVIjgFQFa9QdQjgWx7gnrGpSo6DGoi8o1l0u77lgBX50/fYlDX/JRIvDhEg8gZkFu50Hht1FDZ8WmPRaWAzaeZUAYX0p9v3e0OpAi8OEfyYXH2rH6ANzO4bpfWKpGH2FfQSMMaxptsuunHHO0TcVwArn8rE0Cja21xRdOWt2mPJufHU5LRiaCSKeUL/Hyx2UrIlKA0EAlH3WWSgax833HsBMhVXsxO9Gobaq1hrz4sqZAtHkMOtg0GkKqpxNKajQlYI37OhAj9OCbz54FIkCPt/7+mfQZDeivVbeZqj4PT86VlzSqhyUVqUbbUaY9JqyV85OThY+o1IuNqMO565y4qFD46r3qopNIgoEKRwSZ1WIPxJb0n4zQPIsd9SZ0T8dwJQ3nLLfqcWqRht2rm1M9QYptTWm734Op6L41a+clZpupxWXb2xZ6sNYRKZB1BOeECa84aKGT6dTvyCB7siYFzoNUyxuFsIYw8Xrm/D48UmEY3EMuALQaliq10QN5sTZ3PH3Tvmh17KCKrirm+04NuGVdRIVM7iWW+UMkEJBhmeDBYuFfDPOBF31FsQSHCMl6EWZDUZgM+oUVeLnAnTKK5L29c/gF0/344kTpUt9K4TUzn2B4qy91jTv3zYSkzai5M4eY4yh2WHEhMLKmT8cQyASV32zUwl6rQafuGwNjox5cf+BUcX3f25gBju6Fw+fzkZrjQl2kw5HytB3Jipncu2CjDF01pU3sdETimLKFy5ZGEg6l21oxoAroDgNOB/ivEdR+oVD4qwK8VZA5QyQFij90+rbGgXvOn9F6v8L6RcTcfqlmHG23BHibDxtEPXBEWnnU43KGSAtrKYXVM5WNdpU6aO6dH0T/JE4dp90od8VQFutSdV0NLG4Sq+cnZz0oaveUpD9dU2zDbOBaGpsRS76ppdfUqNAbAwcGi1sF37CE84540zQXV+6WWfuYFRR1QxYOnEmNr6UJIkqIRZP4Pv/PA5PSFk/kssfgVbD4Cgw1bW1xjxvfuW0X/m4GCk0Sdn7MjeAemkrDldtacOaZhu+/dAxRYERE54QBl1BRTM5GWNlCwVxB6XvR63MQBAgaWEuozjrU2kMihwu29AMAPNGF6mB6Pmso0CQgiFxVoX4wktfOQOAHqcVJyZ88IZjqsToL+SVqxuwqtGKequhIFtfW40JI+50cVZ9lbNKJZWGmbaAEUmNG9rUmccmVc7mFjdHx7yqWUjPW9UAk16Dhw+PY8AVSMWjq4XVoIVJr8FUes/ZpF9xUqNAJDbKsTaWOumrktmY/OyJz6JSxj2hvGEgwJzNuhQDaj0FiDOTXgurQVv2QdQixa5U4uylYTe++eAx/P3AmKL7TfsjqLPooSlw/EhrrQnuYDQ1p0zJjDNBk8M4b/NKDmrODC0GrYbhk5etxclJP+5+flj2/US/mdwwEMHaFjuOjstzBhSD0p4zQPquD80EyzamQvx+l7rnDJA2WVc0FNenm4lpfxg15vKPgziVoHeuCvGFKkOcdTstCCbnf5TiZMIYwzeu24r/vmZTQfdvqTFhzB3E4EwAei3LGY9NKEPs7KbvDL807MbKBqtqn816qxGu5GLTG4pieDaomjgz6bV4xWkN+MfhCQy61I3RB6TPbvog6niCo386UPAJd3WzJOrkhIL0Tfmh0xRmn6x26qwGtNeaU1VcJfjCMfgjcVm2xrZaM3QaVpIddSVDctNx2oyL5gKWGiHOSiUKhW06vYolB5c/XFSM98LERjGvTIl9v8luwqTCypnYzKmElLsrNjZjc3sN/vfh44jE5FXPnhuYhUGrSW2SyGVtiwPeUAwjCv+dlVLIgPfOegt84dii/upScXLSD8bU7YHORbfTgr4pdX/Hpv0046xYSJxVIZVSOetO25kv1U7f9q46XLmltaD7ttWaMROI4vi4LxVgQqiDQadBg80wL07/4IhHNUsjICU9TfulwbpClBSb1JjOxeuaMTwbhMsfKcmJUBJn0qJ1aCaASDyBVQX2ETTajKi16GX1BvRN+9FZoH3yVGBDmwMHCtgJljPjTKBNit9SpLgVYmsEpEpzuQNBRkpcOROiTGlv34w/WpQ4W5j2W0hFq9lhgjccS80llUOlVM4AaYPpU5evwdBMEL97dkDWffb1z2BzRw2MOmVpvevKFAriDkah1zJFY4g6k5tc5bI2npzyo6PODJO+PKOSupO2TTUrg9O+MBooDKQolufZu8rxhSuj56wnLQ1O7UAQNRAn2H39rmVZRSg1TWmDqF3+CIZng9jUro6lEZAWm+FYAoFIPNUsrmYy5sXr5oaFl06cSYutk0VaVURio5zKWe9UYN53c7mxqa0GvVN+RYtiQJk4A6RZjyWpnAULrJwtCNApB3PirDTPK/5NlA4BnvaHi0qKE3MyR5OVM2FrVFINEOdEJYmNk94wNKzwlEm1uXBNI85ZWY/v/CN/3184FsdLQ25F/WYCYdsudSjIbHIAtZIxRCJOv1yhIL1TvrKEgQi6nFb4wjFVfzumfZGK+QxXKyTOqgzOOXzhGOwVUDlLt4JVwk7fQkRf1Ewgio7a5btYLRUtNXPiTHjW1UpqBOaHHBwd88Jm1MmOZ5ZDS40pJSZLI84MqUXrycnim7zXNNtwLE9fBucc/ctwxlk6m9od4Bw4rDAURFjX5NgaAaCr3ox+lWedcc7hDkbhKLRyVsaes0SCp2x/lVY5c/kjqLMWPsBXGqcAjIjKmTeMWoteUUUoNYhaQWLjlC+MequxYlwejDH8+5Ub4PJH8KNHXs552wPDHkTiCWzvqlX8PDVmPdpqTCUPBXEHI4o3PkQYWTkqZ5xz9E76sbKMv99iI69PRRcA2RqLh8RZlRGIxME5KmLulUmvRWuNNCS53lJ5X0TRNwBUZ4x+pdPsmBNnLyUDGDaqKM7SZzcdGfNiTbNN9cHrV2xogV7LUrujatKQ7AGKJzhOTvpQY9YXtZu4ptkObyiWMwFuwhtGIBIvS9JXpSI+g0pDQcRnWU5aIwB011vhCcXgVrEXJRRNIBJLFGZrtEmVs3IFF0z5w4jEE7AYtJjyLR5IrwbpPWdyHz+e4JgNRlODuQtBsm0b51XOlCYoCpE/rrByVmkbnZvaa/D609tx+xO9OSuYz4swkC7llTMgGQpShsqZ3BlnAqtRB6fVgKGZ0ouzSW8Y/jL/fneLQdsudTaa4gmOmUAEzgrom6xmSJxVGb6kVacSbI2AVHFosBkKTsUqJaJyBlCMfilodkg9VdF4AgeHPeisN8ueHyOHucpZOJnUqJ5lUvD+C1fhrx+5oKDFcD4abAYkODATiCSTGq1FicvVTZL1J5e1USR99SzDpEZBs8OIBptBcSjIuCcMm1Enu593LrFRverZ3JBc5SLeaTUgEk+kzhGlRsTob2qrQSgq2Y/VRvS0BiLx1HuTj5lABJwXPuNMIKX9zvWcKRVNTQVUzipRnAHAp69YCwbgG/93JOtt9vXPoLPeLHtzYyFrWxx4edKHqILofqVItkblv/WdZYrTP1nGGH1BR50FjEG1UBDx/aMZZ8VB4qzKSImzCqicAcCbzujEW8/qWurDyIhJr00t8KnnTH1axOLDG8aBETc2qxgGAiDVM3J41At3MKpqGIjAoNOo2seWTvqss5NTvqKHZ6+RkdhYzhk5lQpjDBvaanBAqTjzhtAk09IIpO84q7dom03OYSosEEQ69nL1nQlL45YO6XuvtrWRc44xTyhlOZbbdyYGkBfb85I+66wQ0eQw6WDUaRT1nE35IhW5qG2rNeM9F6zAPftH8OLQ7KLrOefY2z+DHQVWzQApFCQa5ykLeClwB6MFbSB21lsw6FJ/4PxCxGsvR4y+wKTXotVhUu13TFirqeesOEicVRm+kCTO7BVSOXvDjg58/NI1S30YWRGhIGpHpRNzPRXHx73onw6oamkEJJsWADz18hQAdcNAyoGIw+6fDmDcEy76hOu0GeG0GnLOOuud9sOg1aQCDZYrm9ocOD7uRTgmv5ozIXPGmSBVOVOxV8NdwBwmQboNuBwMz0qve0tnLQD1Q0FmAlFEYnM9TEIM5mNaLXFWa8LorDTfqhBbI2NsnvU7H6nnqcDKGQDcdOEqNNgM+OLfDi+ymA7NBDHpDSueb5aO+H0/UsLERncwWlBVuqvejOHZoKKB3IXQO+WDQaeZ15JRDrqdVtX6Z6eTmzTFBPIQJM6qjrnKmfo2rFOR1hozDFqN4hMrkR8hznYdmQAAVWP0AWmQs0Gnwd4+qZehFJWzUiLE2d4+FwBglQq7oaubbTg2kbty1llPYyM2ttUgluA4NpZ/9IBgzBOSHQYCSO6FBptB1RS3QuYwCUQDvqtMoSAjsyHYjbrUsHO1K2cixl4s+MXf8+FSSZy11Zjhj8Qx6g4hGI0rqqoKmh1G2eLME4whEk9U7LnKbtLj45euwZ5eFx48ND7vuueK7DcDgFWNNug0rGR9Z9Gk5beQjY/OOgviCa543p5Seqf8WOG0lr1NpNtpUW2TaSr5/avECnA1QeKsyvAmK2dWY3lmYFQ7l65vwmu3tVVkT1y1Ixay/zgsiTOlg0fzwRiDMxmn3+wworYCQ2dyIRZZe3olcaZGPPKaZjtOjPuyhiP0TQWWtaVRIFI45c4745xj3BNWPKi+s169RQ0w13NW6JwzoHy2xqGZINrrzGiwS8+rtjgTomZjWw0MWo1sW6OonBXbc9ZaK30WXhicBVBYInGT3STb1lhJM86y8ZYzO3Fakw1ffeDIvN6w5/pnYDFoi9pAM+g0WNloLZk4S/VzFiDOhLW21HH6J6f8S/L73eW0YNofgTfPuAQ5uETlrEI3GaoFEmdVhqic2alyJou3nNWFb163dakP45Sk3mpILZpaa0ypSpHazwGgJGEgpcZh1sGg1eDAiAeMzfUoFcPqZju84VjGHdxEgqNv2r+sw0AEXfUW2E261IiHfLiDkoVOaZhBt8pBAcLWWEhfjLARlcvWODIbRFutee55Va7Yic94W60JrbUm2bZG0XNWp0LPGQC8MCR9hhptyoMumhzG1IiGfIhZapVaOQMAnVaDz79mHXqn/Ljzmf7U5fsGZrCts7bowfdrWxwlm3U2Gyh840NYmAdLmNgYiycwMB3AijL2mwnEOUONjaZpfwQaBsWpmMR8SJxVGf4KS2skli+MsZTVR+1+M0FKnDWXbyinWjDG4LQZEE9wdNSZYdIXX+1e25w9sXHME0I4lljWM84EjDFsaHXgwLC8/pVxhTPOBF31Foy4g4jE1OlFcQej0GpYQXMszQYtzHptquej1AzPBtFea4ZBp4HDpFO9cjbmDkHDJLHSWmOSPevM5Y/AYdJBX6RQaEtWzkQARiEVrWaHCb5wTNZA9GqonAHARWubcN4qJ/734eNwB6MIRGI4POotytIoWNdix/BsUJUKzkLcRYTtiJFBpUxsHJoJIpbgZZ1xJhCVQTVe31RyADW5lYqDxFmVISpnZGskKgFhA1M7qVHgrOLKGTDXd1ZsUqNAJDZmCgWhpMb5bGqvwZExj6wmfmGhU2pr7HJawTlUm4HkDkbhMOkKHrlQbzWUxdboC8fgDkZTwTMNdqPqlbMxdwhNdhN0yYCbUQW2RjWS4prs0oL8JVE5K8jWKN1HjrVxylsd4owxhi9cuR6zwSh+uOsEXhh0I57g2FFEGIgg1+ZTsczZGpV/NqTPoAkDJUxsPDkl/aaXM6lRIFwdqlTOfGEKA1EBEmdVhjcUg0GrgVFH4oxYekScvujxURsRD15tYSACEdKg1gm31mJAo92IoxkWL73JtC2qnElsbHMgFE2kZgflIiXOFKQ1AuouagApEKSY3kqnzVAWW6OoYrUnR5Q0WI2pyo9ajHlCaE6m7bbXmjHmCckS2i5/WBVxptUwNNuN8IZj0GlYQTYtIfblhIJM+sLQa1lJZi6qzca2Grz+9A7c8WQf7nthGABwejJVsxjmEhvVF2fC1lio3a6r3lLSnjMRo69Gb7JS7CY9nFaDKomN0/5I6rxHFA6JsyrDF46SpZGoGIStUe2kRsFpTTbUWvQ4ran6bI1AeuVMPcG0ptmG4xnEWd+UH0adBq0FDoE91RCfyQPD+fvORGVDaSLfnDhTJ4baHYzCUcTivFyVMxHO0Z60/jXYDSWxNYrPclutGQkOjMuoQE37IqlNnWJpFZVBm7Egm5awyY7JSPmb9IbRYDMWNai+nHz6ijXQaIDf7hlM/k4XvyDvqDPDZtSVJBRktogxFUDpxVnvlB81Zj3qCjy+YulSKbHR5Y9QGIgKkDirMnyhWMUMoCaIa7a14wM7V6XsO2rz5jM78cRnLlalX2spSImzRvXE5eomO45P+JBIzE9s7J0KoNtpIa9/kpUNVhh1GhyUMYx63BNCjVmv+HPWaDPCYtCiT6XKmTsQKaqRvmzibEaIM0mcNthKY2tsSVbOxLxKOX1nM4FI0UmNAvG8hcToA1KQhNWgxZ7kOI1cTPkqd8ZZJlprzHjvBSsBIDWLrlgYY1jTbCtN5SwYBWNSlagQOuqkREM5/YOF0JtMalwqcd6j0qyzKV9Yte/fcobEWZXhC8dJnBEVw7bOWnzmVetKdkLRalhVf97bak1gDKpW/tY02xGIxBdFi1NS43x0Wg3WtzpkVc7GFc44EzDGVB3g6g5Gi7K1Oa0GTPtLHwgyMhuETsNSYsJpNaYSL9XAF47BG46lxFl7soKVT5xxzuHyR4pOahSInrpCExSNOi1euaYRDx8ezzr+QiAqZ9XE+y9chfNWOfHare2qPebaFgeOjnnzvl9KcQcisBt1Bc+A7CpxYmPvlH9J+s0EXfUWjHpCCMfiBT9GOBaHNxQjcaYCJM6qDLI1EkT18MYdHfjde89RHDSRi1QoSNow6niCSzHM1G82j03tDhwa8SyqMi6kkBlngh4VB7hKPWdFiDObEaFoAoFIaXb3BcOzQbTWmlILXTHrTK2qnbABip7W1pQ4y20P9IZjiMa56pWzYipal6xvxrgnnDc5dNIbrugY/UzYjDr85r3n4BWrG1R7zHUtdriD0VSCqlq4i+znTMXplyAUJBCRxqMsRVKjoKfBAs6Le33i+0+2xuIhcVZl+MJkaySIasFi0OHslU5VH3N1KtFsLrFxZDaISDyBbqqczWNjWw284RiOTyxOt0xnwhMqXJw1WDE4E5AVVpGLRILDU2TlTARhqG0xXMjIbBBtyTlgwNyMNbX6zlLiLCmObEYdHCZd3sqZK/m61QgEAeZmnRUjzi5a2wgNAx46PJ71NokEx7Q/UlW2xlIxFwoibwyGXIrd+FAzbn4hvVNLFwYi6KoXs84KdwGI3x0KBCkeEmdVBvWcEcTypsasR7PDOC9uui+V1Fj8oOtTiUvWNcFi0OKbDx7NeptEgmPCGy7I1ghIlbNonGccDK4EbziGBC9sDpNAVIxKndg4PBNMJTUCQGOycqaaOEumG4rKFSBZDEfdecRZICnOVFocillnxYgmp82I7V11eDiHOJsJRBBPcDTQojaVzKt2KMhsoLiNjzqLHlaDtiShIL0VMAalR4XkWfG7Q5/j4iFxVmX4wnGyNRLEMmdNs33erDOacZaZJocJH71kNR46NI5Hjk5kvI0rEEEswQuunIlqZV+RfWee5BwmNSpnrhL2ncXiCYx5Qqk+MGAu+GZKpYrdWFKEpf+btNeaMZzH1igqZ2rZGte22PH609tx4ZrGoh7n0g3NODjiySou5wZQU9JqrcWAZodRdXFWrK2RMYbOEiU29k4u/eZavdUAm1FXZOUsnHwsqgAXC4mzKsMXjsJOlTOCWNasabbjRFpiY+9UACa9RvGcruXAv5y/AisbrPivvxzKGFghZlA1Ffje9aTEWXGLNhH1XVzlTFoUldLWOOYJIcExT5w5bSrbGj0h1Fnmp2e21Zrz2xqTO/d1KsS6A1Kgx7ffvK1ou/Cl65sAAP84nHmDYMorHTfZGiXWtjhUT2ycLTIJFZD6zkoRCNI75UdbjQkWw9Kt7Rhj6Kq3oL8I8Um2RvUgcVZFROMJhKIJWEmcEcSyZk2zDcFoHEPJSHOR1Egx+osx6DT4f1dvwMkpP372ZO+i6yeSwQOF2hqb7EaY9Br0yxh2nQt3UMxhKnxhI+x8pYzTF6EcbWnizGrQwqTXpHbOi2XMvbgHsLXWBHcwmjPKfNpfmYvDVY02dDstWa2Nkz7pPSU7mMS6FjtOTPqK7uMUJBK86CRUQOo7G3AFVE+SfHnKjxVLmNQo6GmwYKCITaYpfxgGrYYKCCpA4qyKECcl6jkjiOXNXCiItLvcN0Ux+rnYubYJl65vxncfPr5oILConBVqa9RoGLrrrcVXzoKSsChmAWk1aGHQaUoqzoZnpdeZ3nPGGIPTalTP1ugJzes3A+Yqdbn6zlz+MEx6zZJWIDLBGMOl65vx1InpjOJy0itsjVQ5A4C1zXZEYomircICX0Tq5ywmEAQAOuvMCEUTKRuqGnDO0TvpqwhLele9FG4Uz5Numw2XLwKnzVA1g9QrmbzijDHWyRjbxRg7zBg7yBj7WPLy/2aMvcgY288Ye5Ax1lb6w13eeENJcUY9ZwSxrFmdnJt2dNyLWDyBAVcAPRVwcq9k/t9VGxBLcHzlgcPzLheR3cUsjLudlqJnnc1VzgpfQEoiyVDSQJBU5SwtrREAGuxGVdMaWxaIM1Gpy9V35vJHU9bOSuOS9U2IxBN4/PjUouumfBGY9BraeE0yl9iojrXRrYJlGAC6nOrH6bv8EXhCsSVNahSIcCM5w94zMe2PqJaUutyRUzmLAfgU53w9gHMAfIgxtgHANzjnWzjn2wD8FcD/K91hEgDgT86uoZIxQSxv7CY92mpMOD7uxfBsELEExwpKasxJl9OCm165EvfuH8Huk9Opy8e9ITTYDNBrCzeS9DRY0e8K5J2nlgu3CoEggGTpK2XlbGgmCKfVALNBO+/yRptBlcpZOBbHlC+CFsd88dcmYxC1yx9GnbW4969UnNlTD4dJh39ksDaKAdRUcZA4rckGrYapFgoi+jmLsQwDaYOoVQwFEUmNSznjTNBVZGLjtC9MM85UIu/ZiHM+yjl/Lvn/XgCHAbRzztOHUFgBqGvCJRbho8oZQRBJVjfbcWzclzq5k60xPx/YeRraa824+b6DqX6WCU+o4DAQQbfTgkgsgVFP4XH67kAURp1mXghGIdRbjSWunAXn9ZsJJFtj8ZUz0QPYUjN/kddsN0LD8omzSMUmxem1Guxc24RdRyYW2cYmvWGyNKZh0mvR47SoVjkTluFibY0ddeqLs5MVlLQrgm/6XYW5AKZ8ETRQ5UwVFG0VMsZ6AJwOYHfy719ijA0CuB5UOSs53qRXnQJBCIJY02zDy5M+vDxZOSf3Ssds0OILV67HkTEvfrNnAIBkayw0DEQghHExoSBqBBYAUoy8WsEcmRieDc5LahQ02KWKXTHVQ2BuxlnLAtukTqtBs8OUslVmYtofUS1GvxRcuqEZ0/4I9g/Ozrt80htGI1Uc5rGuxaF65azY75dJr0WT3ajqIOqTk37otQwddYu/U+Wm1WGCQacpOBRk2h+uuDCeakW2OGOM2QD8GcDHRdWMc/4FznkngDsBfDjL/d7HGNvLGNs7OTmpxjEvW0TljGyNBEGsbrYjHEvg8eOTsBq0tPMuk1dvasF5q5z45t+PYtoXxphncTKgUkS/XzGhILOBaNE7+4A0r6hUtkbOec7KWTzBMZu0ZxaKCGxZGAgC5I/Td1V4z8uFaxqh07BF1sYpXxgN9P2dx9oWOwZcgZzpnHJJ9XOqsPmhdpx+75QPXfUW6IqwVauFRsPQWWcuKIglEIkhFE2QrVElZH0aGGN6SMLsTs75XRlu8hsAb8h0X875TzjnZ3DOz2hsLG6Q43InldZItkaCWPasTSY2PnViGt1OK/WryIQxhlteuxH+SBxffeAIpnxhNBUpzsSOczGhIGpVzuqtBgQicYSi8aIfayGzgSgCkfi8pEaBEBfFVu2EOMskmNtqzRjJktYYisYRiMQrWpzVmPU4a0X9vEj9aDwBVyBClbMFiFAQkUhbDEKcOVT4fnXVW1QNBOmd8ldEGIigx2ktqOdMzDir5O9fNSEnrZEBuB3AYc75t9MuX512s9cCOKL+4RHp+ChKnyCIJKclExsj8QRZGhWyptmOG8/rwR/3DYHzwmecCTQaaYBrMdHfs8EoaszFL2yEra8UfWfDyapVe+1i4SRmdBUbMz7mCcFi0MKRYROyrcaE0dlQRuukqBZW+uLwkvXNODbuS1nHXP4IOKcY/YWsS4ozNayNs4EIzHpt0f2cgBSnP+oOZhxor5RQNI6+qQBWNVXO73eXs7BZbqLflGb1qYOcytn5AN4B4OJkbP5+xthrAHyVMXaAMfYigMsBfKyUB0rMRelbK2yGC0EQ5cdq1KX6FHooqVExH7t0NRqS1YrmIgNBACmGutCUMwDwqFg5A6SZQ2ozkhJniz9v4r0sNrFxzB1Ci8OUsRLcVmtGJJ7IKDyrRZxdur4JAFLWRjHjrIEqZ/PorLPAYtCqEgqilmUYkGyNCZ47mEYu+wdnEYkncGZ3vQpHpg49TisCkbjiTRZROavUURbVhpy0xic450zE5if/3M85fwPnfFPy8qs558PlOODljC8cg9WghUZD9iWCIKQKEEBJjYXgMOnxhSvXgTFgZWPx71+304q+ab/iHWfBbCCiTiCITVTO1A8FEZWztoyVM3VsjaPu4KIZZ4JccfpCsFVyIAggfU5WN9nw8JGkOPPRAOpMaDQMq5vt6lTOVNr4ACRxBkCVvrPdJ11gTBqzUCmIOH2loSBic4QCQdRh6TsQCdn4QjHqNyMIIsXqZsnaSLbGwnjd6R147t8vw8rG4ns+epwWhKIJTHiVi5NoPAF/JK7K7r7YuS5FKMjIbBAmvSZjdarWrIdWw4qO0x/3hNGSpQdQiMJM4mymSipngGRt3H3SBU8omqqcNZE4W8S6ZjuOjnsL3vAQuAPqiTMx60yNxMY9fdNY1+JAjUpVPTXoTr4+peFGU8nNIKqcqQOJsyrCF4lRvxlBECkuOK0RLQ4T1iT7Mwjl1Km0mBczgvoKiNNXawA1ANQnd65LIc6Gk0mNmSyHGg1DvdWQsjcVQiLBMe4JZa+cJeP1R9yL4/Snq0icXbahCbEEx6NHJ9N6dWhRu5C1LXa4/JGi+xjdQfVsjc0OEwxaTdHiLBJLYF//DM5eUTlVM0Ca5aZhwIDC/tlpXwQWg3bRcHqiMEicVRFS5axydlgIglhaXrG6Ac98/hI46HdhyUnNOiug7ywV9a3CAtJu1EGvZUX3fmVieDaUccaZoMFW3CDqKX8YsQTPGKMPSO+PWa/NWDlz+cPQalhVfBe2ddah3mrAPw6PY9Ibhs2oo0VtBtQKBZkNRlCrQtgOAGg1DO11ZgwVmdj40vAsQtEEzllZWeLMoNOgrdasuHI27aMZZ2pC4qyK8IVjsBnpB5wgCKLSaKs1QadhBSU2iiG5akR9M8aSs85K0HM2k3kAtaDBZsBkEaIwV4w+IL22tlpTFnEWQZ3FUBU92VoNw8XrmrDryATG3CHqN8uCiNO/67lhxOKFpyOqGQgCSH1nxVbOdve6AFRWv5mgx2lFv8LXJw2Ap8+xWpA4qyJ8IbI1EgRBVCI6rQZd9YUlNnpUHJILAPVWo+q2xlA0jilfOG/lrJhAkLkB1NmfI9sg6mlfpOLDQNK5dH0TPKEYHjs2SfHjWXDajLjpwlW4+/lhvPsXe+EJKR9wHorGEY4lVO3r6qwzFx0IsvukC6ubbBU5tLnLaSnI1lhN379Kh8RZFSFVzirfskEQBLEc6XZa0FtAz9lsUBJSaoUWOK0G1eecjSaFU1sOcea0GjDlCxcc4DDmSVbOarIvWNtqzBl7zmYCkaroNxNcsLoRBq0G/kicKmc5+Oyr1+Err9+MJ09M4fU/fEpxiqCoSqv13QKkUJDZQLQgsQgAsbjUb3ZWhfWbCbrrLZgJRFN2azlM+8nWqCYkzqoIXzgGO6U1EgRBVCTdTiv6C4jTdwdEz5k6ixvJ1qiuOEvNOKvLUTmzGxGKJhCIxAt6jlF3CDoNQ0MOe1RbrRmT3jDCsfnPMe2vLnFmNepw7ionAKCxAqsnlcRbz+rCL999Fia9YVzzgyew++S07Pum+jlV6jkD0uL0C7Q2Hhr1wBeO4eyVTtWOSU1EuJFcIcw5lypn9DlWDRJnVQLnXJpzRj1nBEEQFUmP0wJ/JK44jMMdjAEAHCptvtVbDaoPoR6eEQOoc9saARQcCjLuDqHZYcrZNybi9McWVM9cVSbOgLmB1JTUmJ/zVjXgng+djzqrAW+/fTf+sHdQ1v1mA9L3QM2es64ixdnuk1K/WaUlNQq6nSJOX54LwBOMIZbgZGtUERJnVUIomkA8wcnWSBAEUaF0N4jERmXWxtlgBHajDjqtOqfkBpsB3nBsUXWpGIZng2AMWWPugbkBtIWKs1F39hh9gbBVDqf1ncXiCcwGotUnzjY0w6TXpOYVErlZ0WDF3R88H+esdOLf/vQivnz/YcQTuavUsyqOqRB01glxVlhi4+5eF3qclqzBN0uNEGdyQ0/EwHvaZFAPEmdVgjcs/cDQEGqCIIjKRMTpK42hdgejqiQ1CupLMIh6eDaIZrsJ+hwCsjFVOSvsecc9oawDqAVCnI3OzlXOxAK82npeWmvMePYLl+KKjS1LfShVQ41ZjztuPBPvOKcbP3nsJN7/q73whWNZbz9nGVbv+1Vj0cNh0hWU2JhIcDzb58LZKyrT0ggAFoMOjXaj7E2mapoxWC2QOKsS/GFpB9ROaY0EQRAVSXutGVoNU1w5c6sc9S0WScUMhF7IyGwwZSnMRjGVM865rMqZmIGWntjoquLFod2kzzjUm8iOTqvBf1+7Cf91zUbsOjqJd9y+O2s4hwjbUaufU9BZbykosfHouBfuYLRiw0AEPU6L7E0mkdBabZsjlQyJsyrBF5J2hihKnyAIojIx6DRoL2CAqzsYVdV2JRZJalfO2pN2rqzPm6zYFSIKPaEYgtF41gHUApNeiwabASPuOXEmnq9e5QU4Udm889we/OBt2/HSkBvvvH1PRoE2G4hCq2Gwqjzku6vAWWcizOTsChs+vZCueqvsQBBRKSdbo3qQOKsShK3RSuKMIAiiYul2WgroOStN5UwtcZZIcIzOhvJWzgw6DWrM+oIqZ/kGUKfTWmPGcJqtMVU5o537ZcerNrXgh9dvx8ERN97x092L4t/dwShqzepXJ7vqLRiaCSKRp+dtIbt7XWivNaMjz0bHUtPttGDME0Iomr9vVWyO1NHmiGqQOKsSROWMovQJgiAqlx6nFb1TyuL0Va+cCVujSuJsyhdGJJ5AR46kxtRz2wwFibPRZCUsX+UMkBIbR+fZGqXnq0ZbI1E8l29swY+u34FDox68/ae7U31mgLTxoeYAakFHvQWRWAITXvmfdc459vS6KjalMR0loSAufxgOkw4GHUkKtaB3skoQDa9kayQIgqhcehqs8IZiqeG3+eCcwx1QNxDEYdJDq2Ep0VIsIhkx1wBqQYPNWFAgyLhHfuWsrdaMkdlgSgC7/NJ7TTv3y5dLNzTjx+/YgaNjXlx/+zOpCH13QKqcqY2I01dibXx50odpf6TiLY3A3KyzfhnWxil/hCyNKkPibIk5OubFgWF33tv5hTijyhlBEETF0qNwRlAomkAknlB1SK5Gw1BnUW8Q9bCMAdSChoIrZ/LFWXutGf5IHJ7kfDixc58rSZI49bl4XTN+/M4dODbuw9tu240ZfwSzwYjqYSAA0Jn8LiiZdfZMcr7ZWRWc1CgQv2NyLNrTvjCFgagM/ZItIZxz3PTrffjkH/bnva2XKmcEQRAVj5IdZ2AuTU5NWyMgWRvVSmscUVg5K+R5xz0hNNgMsqxRrTXScYhQkGl/BE7auScAXLS2Cbe98wycmPThrbc9gzF3WPXvFiBtVDCmrHK2p9eFJrsxJXwqmVqLAQ6TTtbv2LQvkgoDItSBxNkS8sxJF3qn/Dgx4UMwkrvp0heKQadhMJKnlyAIomLprJcWbXIrZyLAQM1AEEDq/VKr52x4Jgi7SQeHKf8xNtiMcAejiMQSip5DToy+QASTCNHo8keo34xIceGaRvz0nWegd8qPKV9pxJlRp0WLwyQ7Tp9zjt290zh7pbNqRid0O63olyE+pc0R+v6pCa30l5Df7hkAACQ4cHjMk/O2vnAMNpOuar7UBEEQyxGjTou2GjP6puSJM9GbpvYCst6qpq0xhHYZVTNgLsZ/WmG/25g7hBaHvOcQx0LijMjGK9c04vYbzoRJr0FnfWkqVZ31Ftm2xgFXAOOecMXPN0tHTvJsPMExE4ikQogIdSBxtkTM+CP4vwNjuHR9MwDg4IgMcUaWRoIgiIqnp0H+AFdROSuNrVG9QBC54kwEAyi1No55QmipkWeNarAZodeyVJy+y0+LQ2Ixr1jdgD1fuBTvOq+nJI/fWWfBoCuY/4YAdif7zc6pMnE2PBNENJ69Cj4TiIBzkK1YZUicLRF3PT+MSDyBT12+BjVmPQ6N5A4F8YVInBEEQVQD3U6r7FlnpRJn9VYjPKFYzoWVLxzDdx8+jsk8ceAjs0FZ/WaAFAgCAJMKhGEoGsdsIJrqJcuHRsPQUmPCqFtKbJwJRFBH4ozIgMOkh0ZTGsdRV738WWDP9E6j3mrAaU22khxLKeh2WhFL8FSFOhNiE4ZsjepC4mwJ4Jzjt3sGsK2zFutbHdjY5qDKGUEQxClCj9OCmUB03rylbIjbqN1zJgYyz+SwNv5g1wl8+6Fj+NCdz2UVcb5wDO5gVFZSI1BY5UzJAGpBW40Upy8JUE6VM6LsdNZL34nhHOJFsKfXhbN66quqNaW7XiQ2ZncBiOo8BYKoC4mzJWBf/wxOTPjwtrO6AAAb2xw4MubNu8NJMfoEQRCVTyqx0ZW/euYORqHVMNU33/INoh6ZDeJnT/RiTbMNe/pc+PL9h7PeDpCX1AjMiTMlcfoiRl/OAGpBe60ZI7OhVF8d9ZwR5UburLPh2SCGZoJVMd8snbnfsRzizE+Vs1JA4mwJ+M2eAdiMOly1tRUAsLGtBpFYAi9P+rLeh2yNBEEQ1UFPclEjp+9sNhhBjVmv+o66ECvZQkG+9eAxcAA/u/FM/Mv5K3DHk3245/nhRbcbnknOOJMpziwGLUx6DabyWCXTUTKAWtBWa8aYJ5QSgSTOiHIjxFm+UJDdJ6cBoKrCQACgyW6ESa/BQ4fG4Q1ldgHMVc7o+6cmJM7KjDsQxd9eHMU129pgMUhia2ObAwBwcDi7tdEXjsFOlTOCIIiKp1sMcJWR2OgOxkoS9Z2rcnZoxIO7nh/Cu87rQUedBZ97zTqctaIen73rRRxaYLFPDaCWKc4YY9KsMwVJkaJyJjdKHwBaa02IJziOjErHS+KMKDeNdiMabEb87z+OY9eRiay329PrgsOkw7oWRxmPrng0GoaPXLwaTxyfxOX/8xgePjy+6DbT/gg0DCUZ9L2cIXFWZu7ZP4xwLIG3Ji2NALCy0QaTXpOz78wXjsFqIHFGEARR6Zj0WrTWmORVzgKR0oizVO/X4grWVx44DIdJjw/uPA0AoNdq8P23nY4asx43/XrfvF654dkg9FqGJrv8nhKnzajI1jjuCcFu1Clyhwib5UvDUpgWiTOi3DDG8Jv3no1GuxHv+vmzuOW+gxnDQXb3unBmTz20JQomKSUfuug03PXB8+Ew6fHuX+zFR377/Lzv9pRPGmNRja+tkiFxVkZEEMjm9hpsaq9JXa7VMKxrceBglsTGeIIjEIlTzxlBEESVIGdGEAB4gtGSiLNasx4attjW+NixSTx+fAofufg01KSFkDTZTfjh9Tsw6g7iY79/HokEByD1nLXUmBQl3jXaDJhSEAgy6g4qqpoBc5W8l5KOEwokIJaCNc123POh8/Gu83vw86f6cM33n8TRMW/q+glPCL1T/qrrN0tnW2ct/vKRV+CTl63B3w+M4dJvP4o/7xsC5xzTvjBtjJSAZS/O7npuCH/aN1SW59o/OIsjY1685azORddtbHPg0KgHnPNF1/nCMQCgnjOCIIgqocdpldlzFlU9qRGQLEl1FsM8e2E8wfGVB46go86Md5zbveg+O7rrcPPVG/HI0Ul85+HjAKSeM7mWRkGDwsrZmDukWJyJ8JDj416Y9VqYDVpF9ycItTDptbj56o34+bvOxLQ/jKu//wR+8VQfOOfY3SvNNzt7hXOJj7I4DDoNPnrJavzto6/AqkYbPvXHF3DDHc/i5JSfNkZKwLIXZ/fsH8Ftj50sy3P9bs8gLAYtXru1bdF1G9tq4A3FMg409CfFGfWcEQRBVAfdTiumfOHU5lo23CWqnAGS1c+VVsG65/lhHB714F+vWAujLrOYuf7sLrxxRwe++/Bx/OPQuKIZZwKnzQCXP5KqvuVjzBNCi4IwEACwm/Swm3SIJTjt3BMVwc61TXjgY6/E+aucuPm+g3j3L/bi7wfHYDVoU9kC1c7qZjv++P5z8Z+v3Yh9fS6cmPBRUmMJWPbi7OwV9Tg67s05C0YNvKEo/vLiCK7e0ga7afGJOBUKksHaOFc5K80JnCAIglCXHhEKksPamEjw0ouz5LktFI3jWw8exZaOGly9ZfEGoYAxhi9euwmb2h34xO/3Y8wTQkcBlbN4gmM2mH/OWyyewKQ3rChGXyAqeiTOiEqh0W7Ez248E7dcvQFPnJjCX18cxY6eeui0p85yW6NhuOG8Hjz4yQvxhu0duDpDwYEojlPn01IgItr02T5XSZ/nvhdGEIjE8dazuzJev7bFDq2GZQwF8YYkcWY1km2DIAiiGkjNCMphbfSGY+AcJRNnTpsB037JXnjHk30YcYfwuVevz9s/ZtJrcevbd0CnZUhw+TPO5p5X/qyzSV8YCQ40FyDO2kicERUIYww3nr8C9334fJx/mhNvOXNxK8upQHutGd9601ZcsbFlqQ/llGPZi7MtHTUw6DQlF2e/2zOIdS12bO2oyXi9Sa/FaY22nJUzsjUSBEFUByJOvzdHnL5IRSx15czlj+CHu07gknVNOHeVvN6XjjoLvvfW7bCbdPMCrOTQkLQ5yRFnhQygFoj70IwlohJZ1+LAne85B6/Z3LrUh0JUGctenBl1WpzeWYs9vaUTZweG3Xhp2I23nd2Vc9DoxjZHxsqZL0S2RoIgiGrCatSh0W7MaWsUVa1SzQiqtxoxG4ziO/84Bn8khs++ep2i+79idQNe+H+XKxZnjanKWf52gXG38gHUAqqcEQRxKrLsxRkgWRsPjHjyNm4Xym/3DMCk1+Cabe05b7ehzYEJbxiT3vm7jSIQhKL0CYIgqocVWRIbB10BfPGvh/DO2/cAkD/gWSkNNgM4B371TD/efGYnVjfbFT+Gkgh9QcrW6FVSOVP+Hoj3rY7EGUEQpxAkziCJs3iC47n+GdUf2x+O4d79I7hyc1te68rGNml3cqG10SvEGQ2hJgiCqBoWzjrb1z+DD935HC78xi7c8VQfLlrXhPs+fD42lCjJTVSUTDotPn7pmpI8RyZqzXpoNSxVGczFmCcEg06DugLGCYjKGdkaCYI4laDVPoDtXXXQahj29LrwyjWNqj72314chS8cw1szzDZbyIZUYqMHO9c2pS73USAIQRBE1dHTYMUf9w3hrueG8Ktn+vH8wCwcJh3e+8qVuOHcHsVBG0oR9sL3XrCiINtgoWg0DPVWA6a8+W2NY24pRj+X5T8bG9ocuGB1QyrYiyAI4lQgrzhjjHUC+CWAFgAJAD/hnP8vY+wbAK4GEAHwMoB3cc5nS3isJcNqlBqeS9F39qfnhnBakw07uuvy3rbGrEdXvQWHFvSd+cJRmPXaUyqKlSAI4lRHhIJ88g8voMdpwX++diPeuKMDVmN59kXP6KnH19+4JeNszVLTYDPKq5wVMIBaYDPq8Kt3n13QfQmCICoVOWeIGIBPcc6fY4zZAexjjD0E4CEAn+OcxxhjXwPwOQCfKeGxlpSzV9Tj50/2IRSNw6RXp0Ll8kewt8+FD1+8WvauoBQKMt/W6AvHqN+MIAiiyrhgdSPednYXdq5pxCXrm6EtoH+rGLQahjedsTQx3g02AyZlBIKMeULY1llb+gMiCIKoEvKWYjjno5zz55L/7wVwGEA75/xBzrlI0HgGQEfpDrP0nNVTj0g8gRcGZ1V7zIcPjyPBgcs3NMu+z8Y2B/qmA/CE5oZ3+sJx2Mu000oQBEGoQ41Zjy+/bjMu39hSdmG21DTYjHkDQTjnGPOECorRJwiCOFVR5JNjjPUAOB3A7gVX/QuAB1Q6piXhzJ56MAZVrY0PHRpHW40JGxU0e4tQkMNp1kZfKFo2GwxBEARBFEtDcgA25zzrbWYCUURiibL2wxEEQVQ6ssUZY8wG4M8APs4596Rd/gVI1sc7s9zvfYyxvYyxvZOTk8Ueb8moseixttmOPSoNow5F43j8+BQu3dCsqNF5Y1ooiMAXjsFG4owgCIKoEpw2I0LRBPyReNbb7E2ebzvrLeU6LIIgiIpHljhjjOkhCbM7Oed3pV1+A4CrAFzPs2yPcc5/wjk/g3N+RmOjukmIanP2inrs659BNJ4o+rGeOD6FYDSOyxRYGgGgyWFCg804T5x5Q9RzRhAEQVQPDcmkyGlfZmtjLJ7A1/9+FCsarLhQ5ZRkgiCIaiavOGNS2ed2AIc5599Ou/xVkAJAXss5Xzxlswo5a4UTgUh8njAqlIcOjcNu1OHsFU7F910YCvL/27vzILuqOoHj39NL1k4CnYVsIAkIWQBnsJMwCpq2QCVSIIhRRKtAxQ0pxxWB0plysMoBnXKmQBAZIJYUMQG1HEE0FbsGAwodhgiaRAghbEk6nQWS7qydPvPHvU064XV673tfv++n6lW/d+523u9239e/d5bbvL/FMWeSpKIxriq599jWDpKz++pfZt2WJq47fwZDKpyJWJLadOWK+E7gE8B7Qgir0scC4BZgFLAsLbu9Pys6EOZMS6a7f+KFbb3aT2trZPnaBubPmNCjD53Zk0ezbksT+1qS7iBNe1sccyZJKhptLWdbC8zYuHPvAX647FnmTavudu8SSRrsOv2PP8a4Aig0aOqhvq9OtiaMGsb0cSN54oUdfOZdPd/PUy+/xtam/Zw7c0LnKxcwe/IYWlojz25u4rQpo51KX5JUVA4lZ29uOftR3fNsa97PPR+Y1aObT0vSYGZfgiPMnVZN/YbttLZ2PMNUZ5atbqCiLDD/1J4mZ22TgrzOvpZWDhyMTggiSSoa1SPTbo27Dm85e3n7bu569AUuOXMKp08dk0XVJCnXTM6OMHdaNa/vOcCzW3b1eB/LVm/mrOljGTO8skfbn1A9gqqhFfxt406a9iW3khtly5kkqUgMqShjzPBKtjUf3nJ28+/+TlmAr7/v1IxqJkn5ZnJ2hLnTqoGe3+9sfWMTzzc296offVlZYNakZFKQ5jQ5s+VMklRMxlUNOaxb41Mv7eDXf9nIVedMZ9KY4RnWTJLyy+TsCFOPHcHkMcN4vIfJ2bLVDQCc28tBzrMmj2bNpl28vucAgBOCSJKKytiqoW9MCBJj5MYH1zCuaiifffdJGddMkvLL5KyAudOqeeKF7XRw67ajWra6gdmTRzPlmN59Kzh78mj2HDjIM68mU+o7lb4kqZiMrxr6RsvZQ89s5skXd/C1955iTxBJOgqTswLmThtL4659bNjWvdu3bW3ax5Mv7eiTqYFnT04GSrd1r3S2RklSMRlbNYStu/axr+Ug33t4DTMmjuLDNcdnXS1JyjWTswIOjTvr3v3O/rB2CzHSJ8nZW4+rYkh5GY+vT5Mzv2mUJBWRcVVD2bm3hTv/+AIvb9/D9QtmUl7m1PmSdDQmZwWcNH4kY0cO6fa4s2WrG5hyzHBmTRrd6zpUlpdxysQqNu/cC5icSZKKS9u9zv5z+XPMP3U87zplfMY1kqT8MzkrIITwxrizrtqz/yB/fK6Rc2dO6LObas6edOgeMHZrlCQVk7FVyb3OWg62cv2CmRnXRpKKg8lZB+ZOq+aVHXt49bU9XVp/xbqt7D3QynmzJvZZHU6bkrTAlQUYXlneZ/uVJKm/jR+VtJx9dO4JnHLcqIxrI0nFweSsA23jzuq72Hq2bPVmRg2rYN706j6rw6x0UpCqoRV91honSdJAOGPKGG5YMJNr3zcj66pIUtEwOevAjImjGTWsokvjzg62Rpav2ULtqROoLO+7kM6cNIoQYNSwyj7bpyRJA6GivIyr3jWdMSP8DJOkrnIgUwfKywJzTqymfkPnydlTL+1gW/P+Ppmlsb0RQyqYPm6ks1tJkiRJJcDk7CjmTqvmD2u3sLVp3xuzThWybE0DleWB+af2/UxUl809gZ17W/p8v5IkSZLyxeTsKNrGna3csJ33nzapw/WWrW7grOlj+6X74afPmd7n+5QkSZKUP445O4rTJo9heGU5//P0JtZu3sme/QfftM7zjU2sb2zu8y6NkiRJkkqLLWdHMaSijHeePJYHn97Eg09vAuC40UM5cexIThw7kreMG8H6xmYAzp1pciZJkiSp50zOOnHr5Wfy7OYmNmxr5sVtzbywdTcvbmtmeToWDeBtxx/D5GOGZ1xTSZIkScXM5KwTQyvKOX3qGE6fOuZNy3btPcCL23YzccywDGomSZIkaTAxOeuFUcMqOW3Km5M2SZIkSeouJwSRJEmSpBwwOZMkSZKkHDA5kyRJkqQcMDmTJEmSpBwwOZMkSZKkHDA5kyRJkqQcMDmTJEmSpBwwOZMkSZKkHDA5kyRJkqQcMDmTJEmSpBwwOZMkSZKkHDA5kyRJkqQcMDmTJEmSpBwwOZMkSZKkHDA5kyRJkjQ43HQT1NUdXlZXl5QXgU6TsxDC8SGEuhDCmhDC30IIX0rLP5y+bg0h1PR/VSVJkiTpKObMgYULDyVodXXJ6zlzsq1XF3Wl5awF+GqMcSZwFnB1CGEW8FfgEuCRfqyfJEmSpGKRdctVbS0sWQIXXghXXJEkZkuWJOVFoNPkLMa4Kcb4f+nzXcAaYEqMcU2M8e/9XUFJkiRJRSIPLVcTJsDu3bBoEXz+80WTmEE3x5yFEE4E/hF4vF9qI0mSJKl4tW+5uvLKgW+5OngQLr0UYoSvfAVuu+3NLXk51uXkLIRQBTwA/HOMcWc3tvtMCGFlCGFlY2NjT+ooSZIkqVicfXaSHN1zT/J61SrYti153t/dHq+5Btauheuugx/8IEkM27fk5VyXkrMQQiVJYnZvjPEX3TlAjPGOGGNNjLFm/PjxPamjJEmSpGKxYgUMGwYXXACvvZa0YE2eDJddBuXl/dft8fnn4Sc/gXnz4MYbk7K2lrz6+t7vfwBUdLZCCCEA/w2siTH+R/9XSZIkSVJRaku2li5NEqO6OvjQh2D+fHj4YVi8OEnULrgArr4a7r67b7o9xghXXQUjRsD990MIh5bV1hbNuLOutJy9E/gE8J4Qwqr0sSCEcHEI4RXgn4AHQwi/69eaSpIkScq3+vrDk63aWnjgATjrLNi4EX72M3jrW5MJO26+ue8m7LjzziQRvPlmmDq19/vLSIgxDtjBampq4sqVKwfseJIkSZJypq4uaTnbvRuqq5OWrt4kaK+8ArNnw9vfDsuXH95qlkMhhCdjjAXvE92t2RolSZIkqcfauj3efXcy/uy883o3YUeMSevbgQPJeLOcJ2adMTmTJEmSNDDauj0uXAiXXAK//z389Kc9n7Bj8WL4zW+SCUBOOqlv65oBuzVKkiRJGniPPALvfncyXuxTn+r+9o2NMGtWkpQ9+mjSElcE7NYoSZIkKV/OOQdOPx1uuSXpntgV7e+T9qUvweuvw2c/m9zTbBAwOZMkSZI08EKAL34xuUn1Y491bZs5c5Iukd/9Ltx3H1x+OXzjG31zn7QcsFujJEmSpGw0N8OUKXD++Umy1RW//jVcfDGMGwetrX1zn7QBZLdGSZIkSfkzciR88pPJdPqbNnVtm6VLk26QW7b03X3ScsLkTJIkSVJ2vvAFaGmBO+7ofN1f/Sq5kfXw4fCtb8Ftt/V8Gv4cMjmTJEmSlJ2TT066Nd5+O+zf3/F6W7fClVcmszL+8pfwne8cmpZ/kCRoJmeSJEmSsnXNNbB5M/ziFx2vc/XVsHMn/PjH8N73JmW1tUmC1tP7pOWME4JIkiRJylZrK5xyCkycCCtWvHn5kiXwkY8kszRef/3A168POSGIJEmSpPwqK0taxh59FJ566vBlDQ3JuLQ5c5Jp8wcxkzNJkiRJ2bviChgxAm699VBZjPC5z0FTEyxaBBUVmVVvIJicSZIkScrescfCxz8O994L27cnZffem8zQeOONMHNmptUbCCZnkiRJkvJhxAjYuxfuugtefTWZKGT27GSq/RJgciZJkiQpHy68ECor4fvfh6uugt27YeNGmDcv65oNCJMzSZIkSflQW5vMxtjQAL/9bZKoPfBAUl4CTM4kSZIk5ccNNyTjzwC+/OWSSczA5EySJElSnqxYkUytf8MNcPvtUFeXdY0GjMmZJEmSpHyoq4OFC2Hp0mSGxiVLktclkqCZnEmSJEnKh/r6JCFr68pYW5u8rq/Ptl4DJMQYB+xgNTU1ceXKlQN2PEmSJEnKkxDCkzHGmkLLbDmTJEmSpBwwOZMkSZKkHDA5kyRJkqQcMDmTJEmSpBwwOZMkSZKkHDA5kyRJkqQcMDmTJEmSpBwwOZMkSZKkHBjQm1CHEBqBFwfsgF03DtiadSVKmPHPlvHPlvHPlvHPnucgW8Y/W8Y/W1nF/y0xxvGFFgxocpZXIYSVHd2lW/3P+GfL+GfL+GfL+GfPc5At458t45+tPMbfbo2SJEmSlAMmZ5IkSZKUAyZniTuyrkCJM/7ZMv7ZMv7ZMv7Z8xxky/hny/hnK3fxd8yZJEmSJOWALWeSJEmSlANFlZyFEN4fQvh7CGFdCOGb7cp/HkJYlT42hBBWdbB9dQhhWQjhufTnsWn55e22XxVCaA0h/EOB7e9Nj//XEMJdIYTKtDyEEP4rrdfTIYQz+ycC2cvxOZgRQvhTCGFfCOFr/fPus5fj+F+e/u4/HUJ4LITwtv6JQLZyHP+L0tivCiGsDCGc3T8RyFY/xr8yhLAohPBMCGFNCOG6DrafFkJ4PN3+5yGEIWl5SXwG5Dj+Xv+zjb/X/2zj7/U/w/i3Wz4nhHAwhHBpr99sjLEoHkA58DwwHRgC/AWYVWC9HwDf7mAfNwHfTJ9/E/j3AuucDqzvYPsFQEgf9wGfb1f+27T8LODxrONVgudgAjAH+C7wtaxjVYLxfwdwbPr8/MH4N5Dz+FdxqJv6GcDarONVTPEHPgYsTp+PADYAJxbYfgnw0fT57aX0GZDz+Hv9zzb+Xv+zjb/X/wzj365+fwAeAi7t7fstppazucC6GOP6GON+YDFwUfsVQggBWEjyT0shFwGL0ueLgA8WWOeyjraPMT4UU8ATwNR2+/1puujPwDEhhEldfmfFI7fnIMa4JcZYDxzo1jsqLnmO/2Mxxh3pan/m0N/GYJLn+DelZQAjgcE4mLg/4x+BkSGECmA4sB/YWWDf7wHuL7B9KXwG5Db+Xv8TGcbf6z+Zxt/rP5le/wGuAR4AtnTzfRVUTMnZFODldq9fScvaOwdoiDE+18E+josxbgJIf04osM5H6PjEAkkTKPAJ4OFu1G0wyPM5KAXFEv9PkbQiDDa5jn8I4eIQwlrgQeCTR9u+SPVn/O8HmoFNwEvA92OM24/YdizwWoyxpcDxS+EzIM/xLwXFEn+v/xnE3+s/kFH8QwhTgItJWtP6RDElZ6FA2ZHfDnT4jXOXDhDCPGB3jPGvnaz6I+CRGOMfu1G3wSDP56AU5D7+IYRakg/na3tahxzLdfxjjL+MMc4g+Tbv33pahxzrz/jPBQ4Ck4FpwFdDCNO7cfxS+AzIc/xLQe7j7/U/u/h7/Qeyi/8PgWtjjAd7cOyCiik5ewU4vt3rqcDGthdpc+QlwM/bld2dDhB8KC1qaOtqkv48svnxo3T+jfW/AOOBr3S1boNIns9BKch1/EMIZwB3AhfFGLd1430Vi1zHv02M8RHgpBDCuK68qSLSn/H/GPBwjPFAjHEL8ChQc8Txt5J0V6wocPxS+AzIc/xLQa7j7/U/H7//Xv8ziX8NsDiEsAG4FPhRCOGDvXivRTUhSAWwniSrbRsMOLvd8vcD/9vJPm7m8MGAN7VbVkZy8qcfZftPA48Bw48o/wCHDwZ/Iut4ldo5aLf8Xxm8A8JzG3/gBGAd8I6s41Si8T+ZQwPCzwRebXs9WB79GX+Sb/rvTq/hI4HVwBkFtl/K4QPCv5A+H/SfAXmOf7vlXv8ziD9e/7OOv9f/HFx/0vJ76IMJQTIPeDdPzgLgWZIZW24oEJDPdbL9WGA58Fz6s7rdsvnAnzvZviU99qr08e20PAC3psueAWqyjlUJnoOJJP/Y7gReS5+PzjpeJRT/O4Ed7cpXZh2rEov/tcDf0rI/AWdnHatiij/JbGdL0xiuBr7ewfbTSSZiWZeuPzQtL4nPgBzH3+t/tvH3+p9t/L3+Zxj/AvXodXLWlmlLkiRJkjJUTGPOJEmSJGnQMjmTJEmSpBwwOZMkSZKkHDA5kyRJkqQcMDmTJEmSpBwwOZMkSZKkHDA5kyRJkqQcMDmTJEmSpBz4f6G+Ackej+/vAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAC1+klEQVR4nOydd5xjV3n+n6PeNdL0vr0379rGXuOyNrEBQww2NgEHbIIpDgQI+VESAjYJEAIkoQWMgVCCgZhiiik22Ove1mW99vY2vWtGvUvn98fV0WhmVK6kqzbzfj+f/eyupLm6o9Honue87/s8jHMOgiAIgiAIgiAIoraoan0CBEEQBEEQBEEQBIkzgiAIgiAIgiCIuoDEGUEQBEEQBEEQRB1A4owgCIIgCIIgCKIOIHFGEARBEARBEARRB5A4IwiCIAiCIAiCqANInBEEQRAEQRAEQdQBJM4IgiAaFMaYP+NPkjEWyvj/jbU+v1JgjA0wxl5V6/PIB2PsIcbYLRU69gbG2K8ZY9OMsVnG2H2MsY0Z99+x6OceYYz5Fh3jrxhjRxljAcbYacbYxRn3XcEYO8YYCzLG9jPG+jPuY4yxf2eMuVJ/vsAYY5X4PgmCIIjskDgjCIJoUDjnFvEHwBCA12fcdletz28xjDHNcniOCtME4DcANgJoB/AMgF+LOznn7130c/8JgJ+J+xljfwHg3wG8A4AVwCUAzqTuawHwSwCfBOAE8CyA/8t47ncDeAOAnQB2AHgdgPdU4HskCIIgckDijCAIYpnBGFMxxj6eqpq4GGN3M8acqftWMcY4Y+wdjLFhxtgcY+y9jLHzGGOHGGNuxtjXM451M2PsccbY1xhjnlTV5YqM++2Mse8yxsYZY6OMsc8wxtSLvva/GGOzAG5njK1ljD2YOq8ZxthdjLGm1OP/F0AfgN+mqkIfZYxdxhgbWfT9patrjLHbGWM/Z4z9iDHmBXBzgXNaxxh7OPW9zDDGMsVJ5nMYUsd0pV6TA4yxdsbYZwFcDODrqXP8eurxmxhjf0pVu44zxm7IONb3UxWvPzHGfKnn78/2vJzzZzjn3+Wcz3LOYwD+C8BGxlhzlnM0A7gOwA8ybv40gH/hnD/FOU9yzkc556Op+64FcJhz/jPOeRjA7QB2MsY2pe6/CcB/cM5HUl/zHwBuznaeBEEQRGUgcUYQBLH8+ACkCsilALoAzAH470WPeQWA9QDeDODLAD4B4FUAtgK4gTF26aLHngHQAuA2AL8UYg+SMIgDWAfgHABXArgly9e2AfgsAAbg31LntRlALySRAM7527CwAvgFmd/vNQB+DqnqdFeBc/pXAPcDcADoAfC1HMe8CYA9dX7NAN4LIMQ5/wSARwG8P3WO70+JpD8B+HHq+3wLgG8wxrZmHO/G1HO3ADiYOk85XAJggnPuynLfdQCmATwCACkBei6AVsbYKcbYCGPs64wxY+rxWwG8KL6Ycx4AcDp1+5L7U//O/B4IgiCICkPijCAIYvnxHgCfSFVAIpDEz5sWtfz9K+c8zDm/H0AAwE8451OpismjkESNYArAlznnMc75/wE4DuBqxlg7gNcA+BDnPMA5n4JU6fmrjK8d45x/jXMe55yHOOenOOd/4pxHOOfTAP4Tkogshyc557/inCcB2AqcUwxAP4Cu1Pf/WI5jxiCJsnWc8wTn/DnOuTfHY18HYIBz/r3U9/k8gF8AeFPGY37HOX8k9fP4BIALGWO9+b4pxlgPJFH94RwPuQnADznnPPX/dgDa1PNeDGAXpJ/jP6futwDwLDqGB1L7Y7b7PQAsNHdGEARRPUicEQRBLD/6AdyTasdzAzgKIAFp8S6YzPh3KMv/LRn/H80QAAAwCKny1Q9JDIxnPNe3IFWPBMOZJ8YYa2OM/TTVbugF8CNI1aRyyHyOQuf0UUjVu2cYY4cZY3+T45j/C+A+AD9ljI2lzDG0OR7bD+AV4vlSz3kjgI5s58g59wOYhfQaZoUx1gqpwvcNzvlPstzfC0nU/jDj5lDq769xzsc55zOQxO9rU7f7IYnXTGwAfDnutwHwL/rZEwRBEBWExBlBEMTyYxjAazjnTRl/DBmzR8XSvah60gdgLPU8EQAtGc9j45xntsItXtj/W+q2HZxzG4C/hiSWcj0+AMAk/pNq3Wtd9JjMr8l7TpzzCc75uzjnXZAqjN9gjK1b/A2nqoSf5pxvAbAXUnXs7TnOcRjAw4tebwvn/NaMx6SrZIwxCyRDjrHFz5u63wFJmP2Gc/7ZbI9JncsTnPMzGec8B2Aky/kJDkMy+xDPYwawNnX7kvtT/z4MgiAIomqQOCMIglh+3AHgs8J0gjHWyhi7pozjtQH4AGNMyxi7HtKs2O855+OQRMR/MMZsTDIiWbtoXm0xVkgVGjdjrBvARxbdPwlgTcb/TwAwMMauTlWu/hmAPtfBC50TY+z6VLsgIM3icUhVxQUwxvYxxranxKAXUpujeNzic7wXwAbG2NtSr5GWSQYrmzMe81rG2CsZYzpIs2dPc84XVBVTz2uDVLF7nHP+8VzfJyRx9v0st38PwN+lKpQOAB9KnR8A3ANgG2PsOsaYAcCnABzinB9L3f9DAB9mjHUzxroA/EOO5yAIgiAqBIkzgiCI5cdXINmx38+kDKynIBlzlMrTkMxDZiCZerwpw6Di7QB0AI5AEjs/B9CZ51ifBrAb0jzT7yBZu2fybwD+OdUe+P845x4AfwvgOwBGIVXSRpCffOd0HoCnGWN+SK/RBznnZ7McoyP1dV5IbaEPQ2rBBKTX901Mcrr8KufcB8l05K8gVcMmINnZZ4rIH0MyU5kFsAdS22M23pg6x3ewhXlmfeIBjLELIZmZ/CzL1/8rgAOQRO1RAC9A+pkhNeN3Xer/c5DeE5nzgd8C8FsALwF4GdLP51s5zpMgCIKoAIxayQmCIIhcMMZuBnAL5/yVtT6XRoUx9n0AI5zzfy70WIIgCGJlQ5UzgiAIgiAIgiCIOoDEGUEQBEEQBEEQRB1AbY0EQRAEQRAEQRB1AFXOCIIgCIIgCIIg6gASZwRBEARBEARBEHWApppP1tLSwletWlXNpyQIgiAIgiAIgqgbnnvuuRnOeWu2+6oqzlatWoVnn322mk9JEARBEARBEARRNzDGBnPdR22NBEEQBEEQBEEQdQCJM4IgCIIgCIIgiDqAxBlBEARBEARBEEQdUNWZs2zEYjGMjIwgHA7X+lSIZYbBYEBPTw+0Wm2tT4UgCIIgCIIgClJzcTYyMgKr1YpVq1aBMVbr0yGWCZxzuFwujIyMYPXq1bU+HYIgCIIgCIIoSM3bGsPhMJqbm0mYEYrCGENzczNVZAmCIAiCIIiGoebiDAAJM6Ii0PuKIAiCIAiCaCTqQpzVms9+9rPYunUrduzYgV27duHpp58GANxyyy04cuSIIs+xatUqzMzM5H3M5z73uaKP+/3vfx/vf//7F9z2ve99D7t27cKuXbug0+mwfft27Nq1Cx//+MeLPn41+PKXv4xgMFjr0yAIgiAIgiAanS98Adi/f+Ft+/dLtzcAK16cPfnkk7j33nvx/PPP49ChQ/jzn/+M3t5eAMB3vvMdbNmypWrnUoo4y8Y73vEOHDx4EAcPHkRXVxf279+PgwcP4vOf/7wixy8WzjmSyWTO+0sRZ/F4vNzTIgiCIAiCIJYb550H3HDDvEDbv1/6/3nn1fa8ZLLixdn4+DhaWlqg1+sBAC0tLejq6gIAXHbZZXj22WcBABaLBR/72MewZ88evOpVr8IzzzyDyy67DGvWrMFvfvMbAEurWK973evw0EMPLXnON7zhDdizZw+2bt2KO++8EwDw8Y9/HKFQCLt27cKNN94IAPjRj36E888/H7t27cJ73vMeJBIJAFJlbMOGDbj00kvx+OOPy/5ev/jFL+K8887Djh07cNtttwEABgYGsGnTJtxyyy3Ytm0bbrzxRvz5z3/GRRddhPXr1+OZZ54BANx+++1429vehssvvxzr16/Ht7/97YLH3bx5M/72b/8Wu3fvxvDwMG699Vace+652Lp1a/pxX/3qVzE2NoZ9+/Zh37596dda8POf/xw333wzAODmm2/Ghz/8Yezbtw8f+9jHcPr0abz61a/Gnj17cPHFF+PYsWOyXwuCIAiCIAhiGbJvH3D33cA11wA33ywJs7vvlm5vBDjnVfuzZ88evpgjR44sua2a+Hw+vnPnTr5+/Xp+66238oceeih936WXXsoPHDjAOeccAP/973/POef8DW94A/+Lv/gLHo1G+cGDB/nOnTs555x/73vf4+973/vSX3/11Vfz/fv3c8457+/v59PT05xzzl0uF+ec82AwyLdu3cpnZmY455ybzeb01x45coS/7nWv49FolHPO+a233sp/8IMf8LGxMd7b28unpqZ4JBLhe/fuXfCcixHPe9999/F3vetdPJlM8kQiwa+++mr+8MMP87Nnz3K1Ws0PHTrEE4kE3717N3/HO97Bk8kk/9WvfsWvueYazjnnt912G9+xYwcPBoN8enqa9/T08NHR0bzHZYzxJ598Mn0u4vuOx+P80ksv5S+++OKS12bx6/Czn/2M33TTTZxzzm+66SZ+9dVX83g8zjnn/PLLL+cnTpzgnHP+1FNP8X379i35/mv9/iIIgiAIgiCqTDLJudnMOcD5Jz9Z67NZAoBneQ69VHMr/Uw+/dvDODLmVfSYW7psuO31W3Peb7FY8Nxzz+HRRx/F/v378eY3vxmf//zn09UagU6nw6tf/WoAwPbt26HX66HVarF9+3YMDAwUdU5f/epXcc899wAAhoeHcfLkSTQ3Ny94zAMPPIDnnnsO56VKsKFQCG1tbXj66adx2WWXobW1FQDw5je/GSdOnCj4nPfffz/uv/9+nHPOOQAAv9+PkydPoq+vD6tXr8b27dsBAFu3bsUVV1wBxtiS7+2aa66B0WiE0WjEvn378Mwzz+Cxxx7Ledz+/n5ccMEF6a+/++67ceeddyIej2N8fBxHjhzBjh07inrtrr/+eqjVavj9fjzxxBO4/vrr0/dFIpGijkUQBEEQBEEsQ378YyAQAF77WuCb35SqZg1SOasrcVYr1Go1LrvsMlx22WXYvn07fvCDHywRZ1qtNu3+p1Kp0m2QKpUqPf+k0WgWzFZls3F/6KGH8Oc//xlPPvkkTCYTLrvssqyP45zjpptuwr/9278tuP1Xv/pVSS6EnHP84z/+I97znvcsuH1gYCD9veT73oCl7oeMsbzHNZvN6f+fPXsWX/rSl3DgwAE4HA7cfPPNOW3uM59n8WPEMZPJJJqamnDw4MFC3zpBEARBEASxUti/H7j1Vunfn/88MDPTUK2NdSXO8lW4KsXx48ehUqmwfv16AMDBgwfR399f0rFWrVqFb3zjG0gmkxgdHU3Pa2Xi8XjgcDhgMplw7NgxPPXUU+n7tFotYrEYtFotrrjiClxzzTX4+7//e7S1tWF2dhY+nw+veMUr8MEPfhAulws2mw0/+9nPsHPnzoLndtVVV+GTn/wkbrzxRlgsFoyOjkKr1Rb1/f3617/GP/7jPyIQCOChhx7C5z//eRiNRlnH9Xq9MJvNsNvtmJycxB/+8AdcdtllAACr1Qqfz4eWlhYAQHt7O44ePYqNGzfinnvugdVqXXI8m82G1atX42c/+xmuv/56cM5x6NAhWa8FQRAEQRAEsUw5cAC49FLg0UeBrVsBlUoSZgcOkDhrBPx+P/7u7/4ObrcbGo0G69atS5t0FMtFF12UbhHctm0bdu/eveQxr371q3HHHXdgx44d2Lhx44K2v3e/+93YsWMHdu/ejbvuuguf+cxncOWVVyKZTEKr1eK///u/ccEFF+D222/HhRdeiM7OTuzevTttFJKPK6+8EkePHsWFF14IQGrn/NGPfgS1Wi37+zv//PNx9dVXY2hoCJ/85CfR1dWFrq4uWcfduXMnzjnnHGzduhVr1qzBRRddtOD7fs1rXoPOzk7s378fn//85/G6170Ovb292LZtG/x+f9bzueuuu3DrrbfiM5/5DGKxGP7qr/6KxBlBEARBEMRK5qMfBX7wA2DvXkmYAQ3V1sikmbTqcO6553Lhfig4evQoNm/eXLVzIErj9ttvh8Viwf/7f/+v1qdSFPT+IgiCIAiCWEHMzgLNzcBnPgN84hO1PpusMMae45yfm+2+FW+lTxAEQRAEQRDEMuHJJ6W/X/nK2p5Hiaz4tkZCHrfffnutT4EgCIIgCIIg8vPYY4BG0zCh04uhyhlBEARBEARBEMuDxx8Hdu8GTKZan0lJkDgjCIIgCIIgCKLxiUSAZ55p2JZGgMQZQRAEQRAEQRDLgeeflwRahit4o0HijCAIgiAIgiCIxufxx6W/SZw1Nmq1Grt27cK2bdtw/fXXIxgMlnysm2++GT//+c8BALfccguOHDmS87EPPfQQnnjiifT/77jjDvzwhz8s+bkFAwMD2LZt24Lbbr/9dnzpS18q6jhKnQ9BEARBEARBVJzHHgPWrQPa22t9JiVDbo0AjEYjDh48CAC48cYbcccdd+DDH/5w+v5EIlFUWLPgO9/5Tt77H3roIVgsFuzduxcA8N73vrfo56gU8Xi8rs6HIAiCIAiCIHLCuVQ5u/rqWp9JWTRW5ewLXwD271942/790u0KcfHFF+PUqVN46KGHsG/fPrz1rW/F9u3bkUgk8JGPfATnnXceduzYgW9961sAAM453v/+92PLli24+uqrMTU1lT7WZZddBhG6/cc//hG7d+/Gzp07ccUVV2BgYAB33HEH/uu//gu7du3Co48+uqC6dfDgQVxwwQXYsWMH3vjGN2Jubi59zI997GM4//zzsWHDBjz66KNFf4/5jv1P//RPuPTSS/GVr3wlfT5jY2PYtWtX+o9arcbg4CAGBwdxxRVXYMeOHbjiiiswNDQEQKoefuADH8DevXuxZs2adCWRIAiCIAiCICrCiRPAzExDm4EAjSbOzjsPuOGGeYG2f7/0f4VyDOLxOP7whz9g+/btAIBnnnkGn/3sZ3HkyBF897vfhd1ux4EDB3DgwAF8+9vfxtmzZ3HPPffg+PHjeOmll/Dtb397QZuiYHp6Gu9617vwi1/8Ai+++CJ+9rOfYdWqVXjve9+Lv//7v8fBgwdx8cUXL/iat7/97fj3f/93HDp0CNu3b8enP/3pBef5zDPP4Mtf/vKC2zM5ffr0AkF1xx13yDq22+3Gww8/jH/4h39I39bV1YWDBw/i4MGDeNe73oXrrrsO/f39eP/734+3v/3tOHToEG688UZ84AMfSH/N+Pg4HnvsMdx77734+Mc/XuRPgiAIgiAIgiCKYBnMmwH11tb4oQ8BqfbCnHR1AVddBXR2AuPjwObNwKc/Lf3Jxq5dwJe/nPeQoVAIu3btAiBVzt75znfiiSeewPnnn4/Vq1cDAO6//34cOnQoXQXyeDw4efIkHnnkEbzlLW+BWq1GV1cXLr/88iXHf+qpp3DJJZekj+V0OvOej8fjgdvtxqWXXgoAuOmmm3D99den77/22msBAHv27MHAwEDWY6xduzbdqgnMh0gXOvab3/zmnOf1+OOP4zvf+U66Wvfkk0/il7/8JQDgbW97Gz760Y+mH/uGN7wBKpUKW7ZsweTkZN7vlyAIgiAIgiDK4vHHgeZmYNOmWp9JWdSXOJODwyEJs6EhoK9P+n+ZZM6cZWI2m9P/5pzja1/7Gq666qoFj/n9738Pxlje43POCz6mGPR6PQDJyCQejyt2XGDh95zJ+Pg43vnOd+I3v/kNLBZL1sdkfo/iHAHp+ycIgiAIgiCIivHYY8DevYCCa+5aUF9tjV/+MvDQQ/n/3HYbEAwCn/yk9Pdtt+V/fIGqmVyuuuoqfPOb30QsFgMAnDhxAoFAAJdccgl++tOfIpFIYHx8HPsXz8QBuPDCC/Hwww/j7NmzAIDZ2VkAgNVqhc/nW/J4u90Oh8ORrlD97//+b7rSVS6lHDsWi+GGG27Av//7v2PDhg3p2/fu3Yuf/vSnAIC77roLr2zwHl+CIAiCIAiiAZmelmbOGrylEWi0ypmYMbv7bmDfPulP5v8ryC233IKBgQHs3r0bnHO0trbiV7/6Fd74xjfiwQcfxPbt27Fhw4asQqe1tRV33nknrr32WiSTSbS1teFPf/oTXv/61+NNb3oTfv3rX+NrX/vagq/5wQ9+gPe+970IBoNYs2YNvve97yn2vRR77CeeeAIHDhzAbbfdhttuuw2AVDH86le/ir/5m7/BF7/4RbS2tip6jgRBEARBEAQhCzFvtgwKBayaLWfnnnsuF+6FgqNHj2Lz5s3yDvCFL0jmH5lCbP9+4MABIGPeiSAERb2/CIIgCIIgiMbjIx8BvvpVwOMBDIZan01BGGPPcc7PzXZfY1XOsgkwUUEjCIIgCIIgCGLl8fjjUgGnAYRZIepr5owgCIIgCIIgCEIuoRDw7LPLYt4MIHFGEARBEARBEESj8uyzQCxG4kxJyGqdqAT0viIIgiAIgljmPPaY9PfevbU9D4WouTgzGAxwuVy0kCYUhXMOl8sFwzLoPSYIgiAIgiBy8PjjUvB0S0utz0QRam4I0tPTg5GREUxPT9f6VIhlhsFgQE9PT61PgyAIgiAIgqgEySTwxBPAddfV+kwUo+biTKvVYvXq1bU+DYIgCIIgCIIgGomjR4G5uWUzbwbUQVsjQRAEQRAEQRBE0Yjw6ZUkzhhjvYyx/Yyxo4yxw4yxD2bc93eMseOp279Q2VMllOaxkzPY96WHMBeI1vpUCIIgCIIgCKI4HnsMaGsD1q2r9Zkohpy2xjiAf+CcP88YswJ4jjH2JwDtAK4BsINzHmGMtVXyRAlliSeSuO03L+PsTABHJ7zYu3Z5DFESBEEQBEEQK4THH5eqZozV+kwUo2DljHM+zjl/PvVvH4CjALoB3Arg85zzSOq+qUqeKKEsdz87gtPTAQDA8GywxmdDEARBEARBEEUwPg6cOQO88pW1PhNFKWrmjDG2CsA5AJ4GsAHAxYyxpxljDzPGzsvxNe9mjD3LGHuWHBnrg0Akjv/80wns7muCWsUwROKMIAiCIAiCaAS+8AVg//6F82b790u3LwNkizPGmAXALwB8iHPuhdQS6QBwAYCPALibsaU1Rc75nZzzcznn57a2tip02kQ53PnIGcz4I/jE1VvQ3WTE8Gyo1qdEEARBEARBEIU57zzghhuAn/4UMBgAj0f6/3lZ60QNhyxxxhjTQhJmd3HOf5m6eQTAL7nEMwCSAGhwqc6Z8oZx5yNn8NrtHdjT70Cf00SVM4IgCIIgCKIx2LcPuPtu4Ne/lsxAbrxR+v++fbU+M0WQ49bIAHwXwFHO+X9m3PUrAJenHrMBgA7ATAXOkVCQ//rzScSTSXz0qk0AgF6niWbOCIIgCIIgiMZh1y4gHgeGhoBbb102wgyQVzm7CMDbAFzOGDuY+vNaAP8DYA1j7GUAPwVwE+ecV/BciTI5OenD/x0Ywo2v6MeqFjMAoNdphCsQRSASr/HZEQRBEARBEIQM/vu/pb/f/nbgm9+UZs6WCQWt9DnnjwHI5U/518qeDlFJPv+HYzDrNPjAFevTt/U5TQCA4bkgNnXYanVqBEEQBEEQBFGY/fuBz30O0OmAO+8EnnhCmjlbJq2NRbk1Eo3Lk6ddeODYFG7dtxZOsy59uxBnQy5qbSQIgiAIgiDqnAMHgI4O4JJLAL1+fgbtwIFan5kikDhbASSTHJ/7/VF02Q34m4tWL7gvLc5o7owgCIIgCIKod97xDuDsWeDyy+dv27cP+OhHa3dOCkLibAXw20NjeGnUg3+4ciMMWvWC++xGLax6DZmCEARBEARBEPXPQw9Jfy+DFsZskDhb5kTiCXzxvuPY3GnDG87pXnI/Ywy9ZKdPEARBEARBNAIPPghYrcC559b6TCoCibNlzg+fGMTIXAj/9NpNUKuy+7r0OU0YnqMgaoIgCIIgCKLO2b9fmjfTFPQ1bEhInC1jPMEYvvbgSVyyoRUXr2/N+bi+ZinrLJmkJASCIAiCIAiiThkdBY4fX7YtjQCJs2XNQyem4A3H8cEM6/xs9DqMiMSTmPZHqnRmBEEQBEEQBFEkIs8s0wxkmUHibBlzaMQDvUaFHT32vI/rJcdGgiAIgiAIot7Zvx9wOICdO2t9JhWDxNky5qURD7Z02aBV5/8xp4OoSZwRBEEQBEEQ9cqDDwKXXQaolq+EWb7f2QonkeQ4PObBju78VTMA6HYYwRhVzgiCIAiCIIg65exZYGBgWbc0AiTOli1nZ/wIRBPY3tNU8LF6jRodNgOJM4IgCIIgCKI+EfNmy9gMBCBxtmw5NOIBgILzZoJep4naGgmCIAiCIIj65MEHgbY2YMuWWp9JRSFxtkw5NOKBUavG2laLrMf3OU0YnqWsM4IgCIIgCKLO4FwSZ5dfDrDsub3LBRJny5SXRj3Y2mXLGTy9mD6nCRPeMMKxRIXPjCAIgiAIJQlFE5RVSixvTpwAxseXfUsjQOJsWRJPJHF4zIPtMlsaAaDXaQQAjMxR9YwgCIIgGoV4IomLv/AgfvT0YK1PhSAqx4MPSn8vczMQgMTZsuT0dADhWFL2vBlAdvrVJpZI4tuPnEEkTpVKgiAIonTG3GHM+KM4Ou6r9akQROXYvx/o7QXWrq31mVQcEmfLkEMjbgDA9u4m2V8jgqiH50icVYOnz8zis78/isdOztT6VAiCIIgGZnA2AACY8oZrfCYEUSGSSUmc7du37OfNABJny5KXRj0w69RY02KW/TWtFj0MWhWGXCTOqsFE6iI67YvU+Exqw/2HJ/DswGytT4MgCKLhGUxdtydInBHLlZdfBmZmVkRLI0DibFlyaMSDbd12qGSagQAAYwy9DhNlnVWJKd/KFmef/u0RfOOh07U+DYIgiIZHXLcnvSvzekKsAFZIvpmAxNkyI5ZI4si4t6h5M0Gfk8RZtZhKXURn/CvvYhpLJDHuCWE2EK31qRB1RjiWwLXfeBxPnXHV+lQIomEYdEltja5ABLFEssZnQxAV4MEHpVmzvr5an0lVIHG2zDgx6UM0nsT2nqaiv1YEUXNOdryVZlK0Na5AcTbmDiHJgbkgiTNiIccnfHh+yI0nTtEsJkHIRbQ1cr5yuzGIZUwiATz88IppaQRInC07XhrxAAC2d5dWOQtEE5gLxpQ+LWIRQpzN+FaeQBFh53NUOSMWcXxScpsbcVOkB0HIgXOOodkgVjVLpl6TNHdGLDdeeAHweFZMSyNA4mzZ8dKoB1aDBv0p98ViEHb6SrU2+iNxsubPwVRqd3MlVs6EI6g3HEecWnCIDE5MpMQZ5S0ShCym/REEowmcv9oJgMQZsQwR+WYkzohG5aVRD7YXaQYi6FVYnH39wVN44zeeoDbJRXDO52fOVmALSqZgd4eoSkvMIypnoyTOCEIWwmH5/NXNAMgUhFiG7N8PbNkCdHTU+kyqBomzZUQknsDRcS+2l2AGAgC9TiMA5YKoh2eDmPFH4A3FFTnecsEdjCGaSKLFoocvEkc4trKCqIczFt5umjsjMjiREmcT3jBVVQlCBmLebFdvEzQqRnb6xPLgC1+QRFk0Cjz6qFQ1279fun0FQOJsGXFiwo9YgmNHEeHTmZh0GrRY9IqJM+FESMHWC5lM2ehv7bIBWHkD3EOzQWjVUmV3NkCVM0LCHYxi0hvBmlYzEklOi0yCkMHgbBAqJo0ltFn11NZILA/OOw+44QbgW98CAgGgtVX6/3nn1frMqgKJs2XEoVE3AJRkoy/ocxoVa2sU4myUhvsXINpOtnWnxNkKmzsbmQ1iU4f0vZNjIyE4MekHAFy+sQ0AzZ0RhByGXAF02o3QaVRotxtInBHLg337gLvvBj7+cen/X/ua9P8VMndG4mwZ8dKIB00mLXocxpKP0atg1pkr5cZHi6yFTHlF5UwS0Stp7iwQicMViKY3EMixkRCIebPLN0vijObOCKIwg7NB9KecGtutBpo5I5YPgQAQT43F/O3frhhhBpA4W1YIMxDGijcDEfQ5TRhzh8oOsowlknCnLPlHqK1xAcKpcUvnyqucCaGeFmcNGNvg8kfwqV+/jECEZimV5MSED1aDBrv7HACo4k4QchhyzYuzDrsBkx6qnBENTjIJ/Mu/AK9/vfTvD3wA+OY3pZmzFQKJs2VCOJbA8QlfSflmmfQ6TUhyYNxd3gf8bEZFhCpnC5n0hmE3atGdqnCupKwzMc+4od0KvUbVkIYg333sLH745CCeG5yr9aksK45P+rCx3QqDVo1Wq542dQiiAL5wDK5AFH1OMwCgzSaZTNHGEdGweL3AtdcCt90G6PXAb38LfOUrUkvjDTesGIFG4myZcGzCh3iSlzVvBiiXdSZMLtQqRuJsEZPeMNptemjVKjhMWkz7V85OpzCH6XWa4DDpFoj4RiAcS+CnB4YBoOHOvZ7hnOPEpA8bOqwAgB6HkSpnBFEA4dQoAqg7bAYAlHVGNCjHjgHnnw/cey/wl38J/P73wKtfLd0nZtAOHKjtOVYJTa1PgFCGl0bcAIDtPU1lHUeprDMxb7apw6rYDNtyYcoXQZtVuoi2WPQrrHIWglGrRrNZB4dZ13Btjb99cSwtylwkzhRj2heBOxjDxnZJnHU3GfHSqKfGZ0UQ9Y24tvaJmbO0OItgTaulZudFEAX5whck50UxR/ab3wB/9VeASgU88ABw6aVLv2bfvhUzd0aVs2XCoREPms06dNkNZR2nw2aAVs3KFlTC5GJXbxN84Tg8FDacZsobQZtNDwBotepX1MzZ8FwQvU4jGGNwmLQN5dbIOcf3nxjA+jYL1CqG2cDK+blVGmEGsqFdVM5MGHeHkUxSgD1B5EJUzvqbpbbGdqqcEY2CsMp/4AHg9tuBa64BYjHgu9/NLsxWGCTOlgkvjXqwvac8MxBAakPscZjKzjpzpRauO3ubAJDzmiCZ5JjyhdMX0RaLPh05sBIYng2i1yHt8kqVs8YRZ88NzuHwmBc3X7SqIVsy65njE0KcSbv93Q4joonkitq4IIhiGZoNoNmsg0UvNUG1pzb9SJwRdY9oU3z964FPf1qaL7v3XuDNb671mdUFJM6WAaFoAien/NhRphmIoNdpKjs4esYfhV6jwqbUDAkN90vMBaOIJTjarRmVsxVipc85l8RZqnXWYdI2lJX+958YgM2gwRvP6UazWQeXv3HOvd45MelDi0WPZov0e9HTJJnl0OcGQeRm0BVMtzQCgEWvgUmnJjt9ojHYvXveKv8jHwGuuqq251NHkDhbBhwZ9yKR5NimlDhzlB9EPeOPoMWiT1dJyBREQlw0MytnwWhiRbhrzQVjCEQT6Rw+p0kHTyjWEK1rE54w/vjyBG44txcmnQZOM1XOlOT4pB8bO+ZnZMR7hD43CCI3g64g+p3z4owxhg4bBVEvN14cdpcdb1SX/NM/Sa2Mt9wC3HHHinFilAOJs2WAMAPZUaYZiKDPaYI7GCtrTmzGH0WLRYcmkxYmnZoWWSmmfNJFM3PmDMCKaG0UrbLCEbTJpEOSA95w/c8j3vX0IBKc4+0XrgIAOC06MgRRiGSS4+SkLz1vBiAdM0GfGwSRnWg8iXFPCH2peTNBm01P4mwZMeoO4Q3feBx3Pztc61NRlgcekATZ1q3At7+94qzyC0HibBlwaNSDVqs+3W9eLmLxXM7cmcsfQbNFD8YYehxGak9KMZWqnM27NeoArBBxlmGjDwAOsxZA/VvSR+IJ/OSZIVyxqS3dQtRi1sG1An5m1WDUHUIwmkg7NQJIVyfJTp8gsjMyF0SSY0HlDJBMvSZInC0bjo17wTnw0sgyc6/90Y+kgOl//mfp/yvMKr8QBcUZY6yXMbafMXaUMXaYMfbB1O23M8ZGGWMHU39eW/nTJbLx0ogHO7rLNwMRiMVzOYJKamuUhEePw0Q74CnEjubiytn0CrDTH56V3gPzM2fS+6Pe7fR/d2gcM/4obtq7Kn2b06yHNxxfnq0mVSZtBtJhXXB7d5ORjIQIIgeDqc3TVS0LxVm7zYApbwSc13+7OFGYk1N+AMDR1OfksmF8HOjqAq67bv62ffuAj360dudUR8ipnMUB/APnfDOACwC8jzG2JXXff3HOd6X+/L5iZ0nkJBCJ49S0H9vLDJ/OpNysM845XP7o/HB/hQJlT035MOgKKH7cSjLpC8Nh0kKvUQMAWlOvUb250oWiCUwpvPs6PBeEw6RNO4ulxVkdV86Eff7aVjNeua4lfbvTUv/n3igIG/31bQtzmbqbqOJOELkYnJGufX3OhW2N7TYDoolk3W96EfI4OSmJs+MTkrfAsuD4ceC++4D3vhfQamt9NnVJQXHGOR/nnD+f+rcPwFEA3ZU+MUIeh8ekkvcOBcWZ3aiF3agtWZx5QjHEkxwtGeLME4opPlv09//3Im77zWFFj1lpJr3zAdQA4DTrwNh8Lly98Ld3PYcbvvWkosfMdGoEpO8dQF3b6b8w7MahEQ9u2rtqQWW6OXXuNHdWPicmfehuMsJqWHiRFps6VAEgiKUMzgZh0qnTHSoCyjpbXpyalsRZOJZsuM3onHz964BOB7z73bU+k7qlqJkzxtgqAOcAeDp10/sZY4cYY//DGHMofXJEYV4alfqQlXJqFPQ5TRiaLa3aNZOyGM9sawSUzzobcAUaru1pyjcfQA0AGrUKTpOuripn+49NYf/xaQzNBhXdqRuZC6XdOwGgySQtxutZnP3giQFY9Bpcu7tnwe1CWNb7vFwjcHzCh42LWhoByRQkHEuSACaILAy5guhzmpaMM3TYpesLzZ01PpxznJr04dx+aXl9dHwZtDZ6vcD3vy/lmbW31/ps6hbZ4owxZgHwCwAf4px7AXwTwFoAuwCMA/iPHF/3bsbYs4yxZ6enp8s/Y2IBL4240WEzLKjGKEGf04SREitnwtxCVM66m5R3XvOGY/CF4w13AZryzgdQC1os+rqpnEXjSfzr744AAJJcOfGRSHKMzoXQ4zSmb7PoNdCqWd2230z5wvj9S+O4/tyedCumQFTOVoKRSyWJJZI4Mx1Y4NQoqNSmDkEsBwZng+hvNi25XawFlG5LJ6rPuCeMQDSBV2/rgFrFcHTcW+tTKp/vfx/w+4G/+7tan0ldI0ucMca0kITZXZzzXwIA53ySc57gnCcBfBvA+dm+lnN+J+f8XM75ua2trUqdN5Hi0KhH0XkzQY/TiJG5UEmVExHO25yunCkfKDuWmmHzheMIRhsjIyyZ5JjyRZa4arZa9XVTOfvhkwM4Mx3Am8/tBTBv/V8uk94woolk2gkUkDJ5mkw6uOu0cvbjp4cQS8zb52ci5impclYeg64AoonkgowzQSU2dQiiVP50ZBLfeOhUrU8DgHQtGZoNon+RjT4wbzY14amPawpROsIMZFu3HWtazDg20eDiLJmUWhovuAA477xan01dI8etkQH4LoCjnPP/zLi9M+NhbwTwsvKnR+TDF47hzHQAOxRuaQSkylk0kSypb31x5cxp1sGoVTbrbCzDYEQEO9c7rkAUiSTPUjnT1UUFxuWP4CsPnMSlG1pxw3lSG9+UQhU9EcuQ2dYIAA6Tti4FTjSexF1PD+Gyja1Y3bJ0AdRk1ELFSJyVy/EJafGRrXImss5G3WQKQtSenz83jG/uP10XM5CTvjCi8YWbXQK9Rg2nWYdJhTbWlgPfevg0Pv6LQ7U+jaI5lRJn69ss2NRpa/y2xvvvB06epKqZDORUzi4C8DYAly+yzf8CY+wlxtghAPsA/H0lT5RYytmUW1O2eY1y6SvDsdHlj0DF5t34KpF1ltnq1CiDz+kAamuWypmv9tbH//GnEwhFE/jk6zanW2OmlRJncwtt9AUOk64u2xr/8PI4pn2RBfb5mahUDA4TBVGXy/FJH1QMWNu6tHJmN2phNWiorZGoC6Z9Efgicbjr4PNq0CVdS7O1NQKSKcikpzGui9XgkZPT+MPLE7U+jaI5NeWD06xDs0WPzZ1WjLpD8IRq//4rma9+FejoAN70plqfSd2jKfQAzvljALIFaJF1fo3xh6V2PrtReSvSTHF2wZrmor522h+F06yDWjX/tlHaTn/UPX/haRhxJgKos8ychWNJBKKJJbNN1eLImBc/fWYIN+1dhXVtVoRjCQAKirPZIBgDupoWfu8Okw6nU25U9cT3nxjA6hYzLl2fuxXbadZh1k/irBxOTPiwqsUMg1ad9X7JTp/EGVF7hNHV0GwQDrOuwKMry5AQZ86lVX0AaLfpqXKWwbQvAk8oBk8wBrupcazbT076sS61cbW50wZACqV+RZFrsrrg5EngD38Abr9dcmok8lKUWyNRX/gjkjgzV2BB39VkhIqhJFMQlz+CZvPC6pDSQdRj7lDaMa9RxJk4z8VtjfNB1LVpbeSc41/uPQy7UYsPXbEBAGDQqmE1aBSsnAXRYTOk890EDnP9Vc5OTfnxwpAbb7ugHypV7mB3p1lHbY1lcmLSh41ZWhoFPQ5TRTISCaJYROt5qREzSjI4G4BGxZZsdgnarQaaOctAtOcPN1BuIuccJ6f8WNeeEmcdkjhrWFOQr39dyjR7z3tqfSYNAYmzBiYQrZw406pV6LQbS7oQzfgjaLEu3BnpdhjhDsbgUyjrbNQdwoZ2C8w6dckXoX/+1Uv4xXMjipyPHMRsnAieFojZvFrNnd13eAJPnZnFh6/cuGBXsdWqV8wQZGQ2tGTeDJBmztzBaM1bOjM5k6rk7enPnw7SbNFhJkALoFIJxxIYcGV3ahRI7dCUdUbUlkAkjmBU6iaoC3HmCqLHYYRGnX0J1243wBWIIJZIVvnM6o9IPJFuRa2Hn51cZvxReEIxrG+TxFm7TQ+HSYtjEw04d+bzAd/7HnDDDVJbI1EQEmcNTCAiXSzM+uwtQeUiZZ2VUDkLRLNUzsRwvzK74GPuELqbTFJvfQkCIpaQDB8++otDePRkdSIeJn1hOM066DQLf+1qWTkLxxL4zO+OYmO7FW85r3fBfW2pWTglGJ4LLrDRFzjNOsSTHL5I/ThuiveoeM/motmsp8pZGZya8iPJ88/MdjcZ4Y/E4Q3Vz/uDWHlkbpwNV2iB7wnFEEoJwEIMuoLoy+LUKGi36cE5RX0A8+7RQGOJs5NTkghb3yZ9PjLGsKnD1jiVsy98Adi/X/r3D38oCbS9e6XbiYKQOGtgAqkFbaXmlEoNop7xRdLVIIHILBopMdg6k1jKRbK7yVDy4POkNwzOARUD3nfX8+lqSSWZ8kaWmIEAta2cffexsxiZC+FTr9+yZBe21WpQxK0xEk9gwhvOWjlrSpnGuAP109o4MheCQatKt83mwmnWwR2MIU670yVxYlJafBSqnAHACDk2EjVEbFIxVrkF/tu++zQ+8vMXZT120BVAfxanRkFHqnV+gkxBFmwwNpI4Szs1ts+bJW3utOH4pK+kiKOqc955UqXsgQeAr30N2LQJuO02stCXCYmzBiYQiYMxwJhjmL5c+ppNmPFHisoRC0UTCEQT6YwzgZJZZxOeMJJcapUsdfB5LGUo8i/XbINWrcI7f/AsPBWefZryLQ2gBqRFvopVv3I26Q3jv/efwpVb2nHRupYl9ytVORudC4FzZLV9dqTaKGfrKOtsdC6EHocJUopIbsR7vN5m5hqF45M+6NQqrMrhOAfM2+lXyxSEc163uXtE7RAbZ+vbLBVb4J+dCeC+wxMF33/uYBTecDynUyMwP9fcKDEzlURsMOo0qopVPSvByUk/rHrNgg3dzZ1WhGNJDLgCNTwzmezbB9x9N3DddcDx48DoqPT/fftqfWYNAYmzBsYfScCs0xRcRJZKTwkLI3ERWzxX1WzWwaBVKbLIEm1nXU1GtNsNmPQWb0MvctLOX+3EHW/bg5G5IP72x89VtEd/0hteEkANAGoVg9Osr3rl7At/PI54guMTV2/Oen+rVY9gNJE2nimVXDb6ANKuZ3N1tCAecQfTAcj5EJU1am0sjeMTPqxts+ScmwHmK+7VstN/4OgUzv/cAzUz5yHqE/F+2NPvwJg7pPh1IhJPwBeOI5bguPfQeN7HChv9bJtdgnlxRpUz8bPb2WNvuMrZunbLgvXdvGNjg8yd7dsHrF8v/fv97ydhVgQkzhqYYDResXkzYH5hVMxuk8h9Wlw5k7LOlHFeG8sUZ1YDovFk0dkzaYFnN+K8VU587o3b8fgpF/7lt0fKPr9sJJIc075I1soZMJ91Vi2eODWDXzw/gr955Wr055hdEDt2U2Ve4NMB1FlmzkQW3lwdCZyRuVDBeTNgXpy5yBSkJE5M+LCxfWm+WSYOk1bxAPt8nJzyIxpPVqXNmWgcpv1RMAbs7GlCks9fg5Qic4PnnhdG8z52cFZknOWeOWs266BRMRJnmBdn5/Q5MDoXapg29JNT/rQZiGBdmwVqFWucubP9+4GBAeADHwC+/e35GTSiICTOGhh/JF4Rp0aBWEwXI85mUh+Ei2fOgHnntXIRu+jdTUZ02FO99UVehIQVv1Enidvrz+3Fey5Zg/99ahA/fHKg7HNcjCsQQZIvDaAWtFh0mK5CZtbIXBAf+ukLeOt3nkZ3kxHv27c252OVCqIengtCp1ah3ZqlpdNUX62B/lTIbE+W+bjFCNMbqpwVjzccw5gnjA15zEAAaVOn22HEaJVmzsR7nbLViExm/BE0m3VY3SIJIqUrMMK0YndfE54bnMNgnra1odR9+SpnKhVDm1Vf9HVxOTLtD8Nh0mJtqxnxJMd4A8zhzQWimPFH0mYgAoNWjTUt5sYQZ/v3SzNnd98NfOUr0t833EACTSYkzhqYQCQOs65y4qzVoi+6FVG05rVkESFSoGz5F7UxTyjVJqlOtwkWu0M45g4tyYj56Ks34YpNbfj0b48o7uCYK4Ba0GrVp4VtJfAEY/jc74/i8i89jD+8PIH37VuLP3zoYlgNuQM5hYtkuaYgI7MhdDuMWTPDrAYNVAx1M+eTFv4yKmeiOuyiIOqiOZkyA8mXcSZQOsA+H9Opzy/KViMymU6ZXPWl5ryUFmfiuvnOV64BY/mrZ4OuINqs+vTGYi7abIb0dWclM+2LoM1qSLfVN8Lc2alU5X5d29LOgs2dtsaw0z9wYOGMmZhBO3CgtufVIJA4a2AC0URF2xpFK2IxwY3ptsYsTnc9DhPmgrGyZ5hG5kLpxXOpvfVj7jA67QsX4GoVw1fecg7WtVoUd3DMFUAtaLXoMe0vfnauEJF4At959Awu+eJ+fPvRM/jLXV146COX4SNXbYItjzAD5qt8SlTOcrUJqlQMDlP9hDmLCo2ctkaHSQfG5t/zhHyOT0i/W/mcGgXSpk6VxFnKXKhaM26Ecpya8uEff/kSwjF5dvTFMOOPoNWqR7vVAJ1aVbHK2bZuGy5c04x7XhjNeS0YnA1iVZ6WRkGHzUCVM0ibi61WfbrS2AhzZ8KpMZc4G3WHKm5gVjYf/ejSGbN9+6TbiYKQOGtgApF4xWz0Bb0OI4aLsL+f9kVg1WtgyOIgmc46K3PhM+YOoSslrETrXbGuVGOeUFbTB4teg+/cdK7iDo7i/LIZggBSlSoaT8IbVibPKZnk+PXBUVzxHw/jM787il29Tfj9By7Gl67fuUSU5qLJpIVWzcqunA3PBrOagWQ+T7Ezg5VCiIAeGYYgahVDk1GLWZo5K5oTkz6YdWpZxis9DhPcCmzqyEFsRFDlrPF46Pg0fvLMEH75fP6ZrVIQlTOViqHHaVS8+iLmVpsterzhnG4MuoJ4fsid9bFDrmC6gpePdpueZs4g/exarXp02o3QqFhDiLOTk34Ytdk/Hzd1ShtaxyYaoLWRKBkSZw1MIBKHqYJtjYDksFds5WyxGYhACTt9zjlG3fOVM51GhWazrqgdQm84Bl84vqStUdDrNOGOt+3BoCuA7z1xtuRzzWTSGwZj2WfxAGWzzsKxBN734+fxwZ8ehM2gxY/e+Qr84G/OTzs9yYUxJlX0yhBn/kgcc8FY3vmIuqqczYWg06hy/pwW4zTXz7k3EscnfFjfbs3a6rqYboU2deRQa3EWSySLii4h5hEbPHc+clrRHCjOOWb8EbSkrmtS/qfylTO9RgWzTo3XbOuAXqPCPS+MLHlcOCZlRubLOBO02w3wheMr+v3EOU+LM7WKocdhbAxxNuXDujZL1s/HLanreEPMnRElQ+KsgfFHEhU1BAGAXocJvnBcdgUpWwC1IB1EXcYiay4YQziWRFfGjpLUWy9fnI2nMs668uzan7fKibWtFrw8qswH4JRPGijX5rANb1WohXA2EMWN33kafzw8gX967Sbc+3evxCvXL80wk0urVY+pEnLkBGmnxjwGGw6zrm6s9EfmpIqqHNEASKYgNHNWPCcmfbLmzQCkd48rbQoSjiXgDcehVjGMukNI1iDo9VO/Poyrv/oYQlHlW/OWO+6Q9Hs44ArivsMTih03EE0gHEumP6P7nCYMuZSeOYuixaIHYwxWgxZXbu3AvYfGEY0vdBYUwkJW5azErpLlhC8SRySeTLfo9zpNjTFzNuXP2tIISOMGDpO2MebOiJIhcdbABKNxWCo4cwbMV7vkVs9cgUjOylmLRQe9RlXWrnSmU6Ogw1acK1WmFX8+NnfaFNudmvKG0y2Y2VCicjbkCuK6bz6Bl0Y9+O+37sa7L1krW2TkotVqKEswDuWx0Rc4TNr6EWdueTb6AqqcFc+MPwJXIFrQqVHQW6XKmfjd29huRTSexEwN2lWHZgM4OxPAlx84UfXnbnTcwRj6m01Y1WzCHQ+fVmx+d3qRA3Gf0wRvERuWclh83bz2nG64gzE8dHxqweNExlk+G32BmG+eaAB3wkohDFEWCOs6F2e+cAzjnnBOccYYU3RtQtQnJM4alGSSIxitQuWsSIcjsQOYDWGLXU5boxB2meKs3WYoancw2zGysaVLucHbSV/2AGpBuZWzg8NuvPEbj2MuGMWPb3kFXru9s6TjZDuvcsSZ/MpZTHEzlFIYnZMXQC1otujIEKRITkzId2oEpEWxTq1MgH0+xPt8V18TgNqYgnhC0mfNdx49S4uvIvGEYnCadXjXJWtwaMSDJ0+7FDmuEO2tGdUXQFljCWHVL7h4fQtaLLolro3CYl9OW2OHXbjtrlxxJn6nWzOE9VwwBm+4Pmacs3F6WvoZL844y2Rzpw3HJ32Ktu8S9QWJswYlkOojr6SVPjC/qJazMIonkpgLRtGcZ16nx2Eqa5GVFlaOhW2NM/4IYjLDJcfcIWhUrOBckZjROqrA4O2kN3cANQA0GbVQq1hJlbM/H5nEX935JEx6NX5x616cu8pZzqkuoM2qhysQlf3aLmZkLgSLXoMmU25nSIdJh2g8iVAFXNaKIRxLYMYfLapy1pxqyaSLpHyOp2z0N3TkD6AWqFSpTZ0Kz4GlxVlvE4DazJ15QjFctrEVTUYt/vGXL9H7qgg8oRiajFpct7sHLRY9vvnwaUWOm61yBigrzlz+hddNjVqF1+/swgNHpxZsDg7NBmE15P88FbRR5SwdjZFZOQPq205fxIysz7N5tanDinAsiYE8eXhEY0PirEEJRKSFbKUrZ3aTFlaDRlZb42wwCs6B1hxtjUD5QdRj7hAMWhUcGRenDpsBnMtvCRz3hNFhN0BdoOVvc8oV6chYeeIsnkjC5Y/kDKAGpAVoi0VXdJXqf58axLv/91lsaLfil7dehLWt8ha8cmlLVftKnasanpVs9BnL/VqLIOpatweOFJFxJnCadeC8fnLaGoETkz44TNr0brYcqmGnLxZy5whxVoPKmTsYQ7/ThE++bgsODrtx19ODVT+HRsUdjMFu1MKgVeMdF63Coydn8PKop+zjprM7LQsrZ4OzyiyMOecpcbbwunntOT2IJpL43Uvj6dsGXUH0N5vyfp4KrHoNTDr1ip45S1fOFlU961mcnZryQ6dWpdu5s7GZTEGWPSTOGpR05azCM2eAVD2T82EmFvD5K2dGzAaiCJRoiz3mlgwbMi9Ool1Q7g7hqDtUcN4MkGz6Wyz6sj8AXYEokjx3ALWgxaLHjEwRlExyfP4Px/DJX72MfRvb8NN3X5C+ACmJWECX2hozPJffRh9Aehe41nb6olLSk6cFczHO1OtTa2HZSByf8GFDu1XWAlPQ3WSs/MyZT/oZrmoxw2rQVL1ylkhy+MJx2E06XLOrCxevb8EX/nh8RVc+isEdjKIptdHz1xf0w6LX4FuPnCn7uNO+CFRM2ogBpLiVZrNOsQW+LxJHNJFEi3nh5/e2bhvWtVkWuDYOzQbR7yw8bwZIYwTtNgMmV3Bb45QvDJ1aBbtRusZUKkRcSU5N+bGm1QxNDvMwQMo/U6sYjo2TKchyhcRZgyLETaVzzgDJzGFYxsJo8Q5jNsTCt9SFTzZhNR9ELW+HUAg8OWzutOJImeKsUAC1oJj5rt8eGsMdD5/GW1/Rh2+9bU/FIhWEoCxl7oxzjuHZUF4bfUCaOQNqL3DELGRRM2epc6e5M3kkkxwnJ/3YKNMMRNDjMGLGH6lIwLBg2h+GM+WoWg0xuBhfag7GbtSCMYbPvGEbYokkPv3bw1U9j0YkkeTwhuPpRbjdqMVbX9GH3x0aK9tZccYfgdOsX9Bp0augscT8pubCyhljDG88pxsHBuYwPBtEIskxMidVzuTSbtNjUoa4D0TieP+Pn8fAzPJqkxM2+mIjyGbQosmkrWtxdjKPU6PAoFVjbauZKmfLGBJnDYoIZK10zhkgVc5G5oIFDRtyXWQyKTfrbCyLm968OCt8EUokOSY84ZwZZ4vZ0mnDyUl/yTNX0nnlD6AWSJUzeSLoqTOzsBo0+Mw12/LusJWLqMaVEkTtCkQRiiXytmcA0swZgJo7No7OSbOIhUR0Js46EZaNwgvDc/BF4tjT7yjq69JZZxWsZk37IulKcY/DWPXKmTADEQKjv9mMD1yxHn94eQJ/PjJZ1XNpNLyp1y5zFutvLloNtYrh24+WVz2b9kWXdCUo6frn8s8HUC/mml1dAIB7XhjFmDuEWIIXKc7kVc7+fHQS9x4axyMnp2UfuxGY9kXQkvVnV58h86FoAsNzQaxvK7x5RY6NyxsSZw2KmDmrRuWsx2FEOJZMz2TkQl7lrHRbbGHY0GVfuNhvNuugUTFZ4mzaF0E8yWW1NQKSY2M0kcSZ6dJ3FIupnM34I7JcC18cdmNXb1PZVvmFEMGrpVTO0k6NhSpnqQXVXM0rZyF0NhWeRcxEbES4ijByCUbjeOLUTNHntxz448sT0KoZ9m1qK+rr0hX3ClazpIWc9POsReVssTgDgHdfsgYb26341K9fLrkVfCXgySLOOuwGvPGcbtz97HBZESXTGQHUgj6nCWPucFmbdgLRyp7p1ijocZjwitVO/OqF0bSNfp/MtkZAmsee9Ba+ptx/WBL/tQpfrxSZGy6Ces46Oz3tB+fA+vbCs+ObOmwY84QVjXQg6gcSZw1KsJozZ+kh2vwf3DP+KHRqFWyG3IKxxayHTlOaLXaufDKViqHNKi/rbFRmxplADN4eGS99sHzKFwFj2S++mbRY9IgleHqhkYtQNIHjk760q1wl0WvUaDJpS5o5G5IpzqQ2LilgvJaMzAXR0yR/VxqYr/oV09b4fweG8dbvPI0z0/6inqvR4ZzjvsOTuGhdC2yGwm5zmXSnK+4VFGf++YVct8MIXyRe8HdRSbKJM61ahc9dux3j3jD+437KPsuFW4gz48LP2HdfshbRRBI/eGKg5GPPpFrjMulzmpBIcoy7y5/ncgXyb2peu7sbZ2YC+O2LYwBQVOWszWZANJ7MO88bjiXSeWpjCnw/9cSMP5I2tRL0OaVOoHp0Qj2duiYUamsE5g3LlHCTJuoPEmcNimhrrLRbIzC/uC7Uijjjl4I08w36q1QMPSU6r2Wz0Re02w3pwMl8pAWeXZ44W9Nihk6jwtEyBm+nvGG0WPQF2w/FAqDQLu9Lox4kkrwq4gyQ7PRLqZyJn3Eha3qNWgWbQVtzx8NRd6gop0ZAWjzbjdqi2hrFBfgJhXKYGoWj4z4MzQZx1daOor+23SrN/Iy6K7PjzTlPz6cAQHdT5St1i8kmzgBgT78DN76iD99/4ixeGinffXA5Ij47bIteu3VtFvzF5nb88MnBkiqPnPMFol2gZNaZGAdw5ti8e832Tug1Kvzi+RHoNCp0FNF2LR6bb+PyydMuBKIJGLXq9PVxORBPJOEKRJf87PqcJsQSXNZmbrU5OemHWsWwSkbIuNg4PkatjcsSEmcNSqCK4qxH5q61KyXOClFqEPVYnvDodqtB1oftuEdUzuRd4DRqFTa2W8vq7Z705g+gFojWmULzXQeH5wAAO6skzlqt+pJmzoZng2ix6GTNRTrNOszWsHIWiScw6Y0UlXEmaDYXF0Qt2pOUCsltFO47PAHGgFdtbi/6azVqFTrthopVzvyROMKx5Lw4q8KM22JyiTMA+MhVm9Bs0eMf7zmEuAKtdMuNbG2NgvdethaeUAw/eWao6OP6InFE48klVS0lXf9c/gjsRi10muzLMZtBi1dtaUc8ydHrMBbVyi6uO/la/u87PAGLXoNXbWlfVuLMFUhF+2SpegIo2yimEpyc8mFVsynneyGTNqseTrOurI1jon4hcdagiJkzk7bybY0mnQYtlsLWwTP+aMFgZ6D0IOrRuRAYk2YJFtNhN8iaORtzh2E1aGAtoq1qc6cVR8a8smbBsjHpjaDdWlgMtqUrZ/kX+geH3ehxGGW91krQZjWUNnM2F5RtS99kqm3lTLQnFePUKHCadZgtIgcuLc7OuJCsw9aaSnHf4Qmc1+8sOfKhknNgi/OQxPtgtETjolLIJ87sRi1uf/1WvDzqxQ+epOyzxYi2vaYsr93uPgfOX+3Edx49i2i8OGG7+H0h6LAZoFUzRcTZTGBpxtlirj2nG4BkElMMhcyyEkmOPx+dxL5NbVjdbMKkN7xsxH+un109B1GfnPLLMgMBJDfPzZ1WHKO2xmUJibMGJRCJw6xTV9wQQtDjMBUMonb5I2g2yxFnRrgC0fTcnFxG3WG0Ww3QZmkPbLPp4QvHCx5ztAgbfcHmThtcgWhJAgWQslYW971nQ4itQs9zcMhdtZZGQBKNUz55RiWZDM+GCs6bCRwmXVGtgf5IXFFhM9+CWdzMGZASZzLPPRpPSrNtqby/YxMrY9dz0BXAsQkfrtxafNVM0F1BB8X0Qs4iLWZbLDroNaqqV850ahUM2uyX5ddu78DO3ibce2isaufUKAhxlk3YAsCtl67FhDeMXx8cLeq4M77s82BqFZOuiQpVzhZnnC3mkg2t6G4yYnu3vahjt6UrZ9mvKS8MzWHGH8WVW9rR1WREkgOTJV7n6g3xO922SJx12iXTp3qz04/Gkxh0BWXNmwk2ddhwfNJXl/NzRHmQOGtQAtE4TFVoaRRIDke5Fyqcc6lyZi3c1liqY+OoO5hzJqhDZtbZmMwA6ky2pE1Bit+hiqX63ttkVM7sRi20apZ35mzKG8aYJ1xVcdZq1SMaT8Ibki+mE0mOMXcIfU55r7XDpJMdQp1Mclz2xYfwwf87WHI1czFilqmktkaLPj3UX/h5Qkhy4M3n9gIAnji9Mlwb7zs8AQAlzZsJehwmTHjDRVc/5CCcaMUuO2NMqtRVUZx5QzHYUhln2WCMoc9pqnlYez3iCcVg1WtyzvVetrEVmzqsuPORM0V9ZoguhmzVXqWyzlz+wpUzrVqFP3/4UnzgivVFHVuvUcNh0uZs+b//yCS0aobLNraiM3VdXC6tjcLEavHPTpPKMaw3cTbgCiCR5LKcGgWbO20Ix5I4u8zy6QgSZw2LP5Koio2+oMdhxJg7lHOHxheJI5pIFtwBFMcCgJEiLwJj7nBOYSXaNyYKBG5K4kz+QDUAbCpDnEnW+IVt9AFp8dViyW++cXDYDQA4p6+p6HMpFXFxm/bLH6Ae94RSMxJyK2fyTTVG3SHM+CP47Ytj+PqDp2SfUz5G5kJQ5WiZLUSzWYe5YExWJW/AJV1EL1zbjNUt5hUzd/bHlyewtcsmu5KajZ4mIzgv/DteCtlaoLod1bXT94RisBvzf6Y3GbU1zwOsR9yh6BIzkEwYY3jTnh6cnPIXNR86nVrgL7bSB4B+pcSZjLZGADDq1EXFfAjabQZMZRFnknvqBPaubYHVoEV36rq4XMTZdI6qJ6BsTp1SnJyU79Qo2NQhtUBSa+Pyg8RZgxKMxKtioy/odZgQT/K0ocZi0u0fsipnwv1R/kUgmXruXC2JQvzks3wPRROYC8bQKdOpUWA3atHdZCxp8FZuALVAZJ3l4uCwGxoVw9au4tpbyiEdRC3DDVMgqqyy2xrNOoRiCYRjiYKPPTUlXcS2dtnwH386gT++PCH7vHIxOhdCp92YtWW2EE6zDolk4QgEABhM7XD2N5tx4dpmPH12dtnMeORiyhvG80NuvLqMqhlQfoB9PqZ9EWhUbMHMUrUrZ+5gDE2m/J+fDpMWnpC8jYCVhCcYy2oGksnaVmnRO+iSX2WY8UehVrF0ZEYmfU4TPKFYWTlT8UQSc8GorHGAUmm3ZTfLOjnlx6ArmG41FtfF5ZJ1Nu2LwGbQwJBlLr8es85OTvnA2Pz7VA7r2y3QqBiFUS9DSJw1KP5IHGYZLnhK0evM79godiPlXGRaLXro1KqiFlnT/ghiCZ7e3VuMED/5dtXHPLndHguxpctW0geg3ABqgZzK2eZOW9YLTqUQLZmFQsgzEfOJ8itn0uJHTsvWySlJJP/PzedhZ48dH777YNk7hyNzxc8iCtJB1DJ25AdcQZh1arRYdNi7thn+SBwvjS5ve/T7jkgBt1dtK0+cdZdYcZfDjD+CFot+wQxvd5MRM/6orA0DJZAqZ/kFRpNJB84Bb5haGzNxhwqLM+GwODBTxHXHF0GzWZd1tjud/1nGZsFcMAbOs1fmlEIEUS/m/lSr8V+k3FPNeg2aTNrlUznzL82nE/Q5TXAFoulIonrg1JQfvQ5TUdd2vUaNta0WHCPHxmUHibMGJRCNV8VGXyAW2bl2m3INTmdDpWIpO335FwHx2FwzZ1aDFmadOq+dfq4Qazls7rThzLS/6IXaVI6h5Fy0WnJXzhJJjkMjnqrOmwGlVs6CUDGgU2YLqdMsLazktDaemvKjxaJHu82Ab73tXFj0Gtzyg2eLMhRZzKg7VNK8GTCfTyTn+Ydmg+hvNoMxhgvXNANY/nln9x+ewOoWM9YX0a6TjU67EYxVJntsOkvQcLXt9OWJM+n+Wge21xvuYHRJAPViehxGqFixlbNIzmtanwJZZ2JWtbmCzrvtNumaEltUob//yCTO6WtCW8bGYZfduGyCqKd9kZyz3vXo2Hhqyl/SZ+SmzvKifoj6hMRZgxKIJKoqzrqapIXRcI6F0UxqYSp3B7CnSHEmR1hJvfW5BcT8MYqfK9rSaUWSA8eLdNeb8oahYvIvvi1WHWb80axtS6en/fBH4lXLNxPYDBroNariKmezwaLaBJvSlbPCAufklB/r2iRL6Q67Ad962x5M+SK49UfPLVmAyCGWSEots2WLs8Kvz4ArgFUt0sKg2aLHpg5rw82d3X94Ij37WAhPMIYnT7tw1daOvOH0ctBpVGi3VibrLNsu+7ydfv2IM0cRvycrCU8oBnuBypleo0ZXkxEDReRb5au+iG6SssSZX3ScVK5y1m43gHMs2PQbc4dwaMSDK7csrGZ3NRmXTeVsKsuGi0AJYa0k8UQSZ6YDWFeEGYhgc6cNY55wWe21RP1B4qxBCUTisFRx5kynUaHTZsBIgcqZU+ZFpsdhLCpDKF8AtSBXb71g1C0JJbkthpls6ZRmvIrdoZr0htFq1cse5G6x6JFIcrizzC+JBXG1K2eMMSmIWkaOnGDAFUR/s3zzB7HonC2w6OScp3YY57Ngzulz4PPXbsfTZ2fx6d8elv2cgglPGElemlMjMF8tLpRPl0hyDM8G0eeczyrau7YFBwZmq9Y6Vy6+cAx/95MX8M7vH4BLhlh/4Ngk4kmOq8qw0M9EstOvzMxZ66INlJ7UAq4albNEksMXjuc1tQDmK2fk2DgP59K8Z7aMs8WsajYXVznz5a6cWQ1aOM26shb4QjBVtHJmXWqW9eejUqvx4miL7ibDshFn2arhAiGs66VyNjQbRDSRlJ1xlokwBTlKpiDLChJnDUogEoepijNngLRYydVf7wpE4DBpc1oZL0bMc4Si8halo+5QwfDodps+bxD1mDuEdlv2nLRC9DiMsOg1RTs2TnojRYnBtDNilrmzg8NuWA0arGkpLohUCdqsetmVs2SS48SkDxs75F9oHGZ57VpTvgh84fgSR6trd/fgPZeswY+eGsL/PlVcSG+6ZbapNCfBtLAs0NY45g4hluBYlSFa965tRiSexAtD7pKeu9r84aUJROKSicEn7nm5oC35H1+eQIfNgJ09TYo8f7EVdzkkk1IMyOKFXHtqU6UalTNfOH9OlyBdYQ5R5UwQjCYQS/CCrx0A9DebMChzQS7iYfKFppdrLCE2dCo6c2ZfGjNz/+FJrG01LzGf6GoywhuOp9+PjUogEkcwmsj5s7MbtbAaNHVTORMmV6W0NQpzsJeX+ezySoPEWQOSTHIEotVtawSkhVGurLMZX1TWvNn8sYrblR6TER7dbpfaGnMtGMfcIXSWYJUOSHNymzqK7+2e9IZlz5sBmVWYLOIsFT5dreDxTKTKmTxxNjQbRDCawOYOm+zji3mRuQICR1zEstkNf/TVm3DZxlZ8+jeHi2oVFO/BUitnOo0KVoOmoDgbTLVT9TfPi+vz1zihYsCTDZJ39ovnR7CmxYyPvnoT/nh4Ar8+mDsQORiN45GT07hya7ti79nuJiMmPGFFQ1fnglEkknzJAlmjVqHDZqhK5Uw4fRZua0xtYgQae/GsJKLLoJAhCCBVztzBmKy2UG8oFQ+TRziVa8nu8ksuobY8m47lIoKohZOxJxjDU2dcuDKLe6rIOhuvQFxFNckVQC0QmYH1Is5Opq5ra0sQZ61WPTrthmVvLLXSIHHWgARTLVDVbGsEJFOQSV8YkfjSapcrEJGV1SIo1hZbjpteu9WAaCKZs/pSSgB1JpJjo68oG+tpX2TBwHUhclXOQtEEjk/6qt7SKGizGtLmJoUQzombO+WLM51GBateUzDD6eSkNPOXbYdRrWL46lvOQV+zCX9713Oyd7TFe1CueUk2ms26gm6NIuNMzJwBgM2gxfaepoYwBRmeDeLps7O4dnc33nXxGpzb78Cnfv1yTofUR05MIxxLlhU8vZhuhxHxJM9bIS+W+QDqpT//amWdyRVnNoMWjNHMWSbitbAXMAQBkG61HpQxd7Y4mDwbfU7p/VFqHIbLH4UzhxukUrSYpQqw+D198LjUanzllqWtxsINudHt9Key5BYupp7E2akpP7rshpKza7d120mcLTNInDUgwZT9a7UrZ71OEzjPPiA/4y+tcia3RUmOsBLtG9kWi5xzjHnCJdulA5LY8Efiss85Gk/CFYime/7lkKty9tKoB4kkr6E408MTimUV5os5Mu6DikkZLMXQZNYWnKU5Ne2H1aDJedG1GbT47k3nIRBJ4AdPDMh63tG5ENpteug1pW92OM26goYgg64A9ClTi0z2rm3GwWE3AgrZOv/46SG85iuP4l0/fBb/eu8R/PDJATx0fApnZwKIxkvPVPvVC6MAgDec0w21iuFL1+9ELMHx0V8cylqtvu/wJJpMWpy/2lnycy6mlIzEQmQLoE4/X5WyzuSKM5WKwW7UZp1JXakIIwRZlbNUS/iAjLmz9Psiz3WtzynyP0vbLJA2NSs3bwZI75k2qz7d1nj/4Um02/RZW43FNbbR587y/U4L+pwmjMyG6iIz8OSUD+vai583E+zotuPMdKDh21GJeUicNSAim6OaOWcA0JuudmUTZ7kHp7PRZtVDq2ayFlm+cAzecLygm57IOpvMEkTtCkQRjSfLqpyJSpDcuTOx8yo3gBqQnBF1GtWSytnB4TkAqLpToyDfLNxijo17sbrFXHQWm9OkK9gaKOyG8zn/rW4x49xVDjx6Ul6rYDkZZwKnWZ92XsvFYMokZfEu+UVrWxBPchwYmC3rHAR/eHkco3NBDMwE8KOnBvGpXx/Gzd87gH1fegibPvkHXPT5B/H1B08WdUzOOX75wiguWONMC6RVLWb802s34ZET0/jxM0MLHh+NJ/HA0Ulcsam9pBnPXIjPIDmLa7nkW8h1O4yY8IYrHhQuV5wB0owjWenPU0xbo3Dpk1M5ExtkLQVmzoDSjSWkTc3KzZsJ2m0GTHrDCMcSePjENP5iS/ZW4zarAWoVWwbiTFoD5BPWvU4Toolk1vVCNUkmOU5PBcqKGtneI+bOyBRkuUDirAEJRKTqRS0qZ8DS0M1wLAFfOF7URUalYuhuMspqaxS5K4WElTDemMyyi1lOxplgY7sVKibfsbHYAGog5YxoWWq+8eKwBz0OY1ECWEnE3IIccXZ0wltUS6OgyaQr2K51asqfdd5sMZdsaMXxSV/eUHLBiDuYFhyl0mIp3NY46Fro1CjY0++ATq1SzFJ/0BXEpRvb8KcPX4pj//pqPP1PV+Bn770QX7p+J96/bx26m4z4jz+dwKkp+bEQLwy7cXYmgGt39yy4/a8v6MfF61vw2d8dXeCC99QZF7zhOF5dZvD0YvqbzTDp1DgyptwiJK84azIikeR5XWCVwFOEwGgyaamtMYP0ayejrdGgVaPDZlC0cgaUbsnuCkQqaqMvEGZZj5+aQTCaWGKhL1CrGDpshobPOptOzfIJs6ZspH92RUQrVIJxbxihWAJrWks3+treTaYgy42C4owx1ssY288YO8oYO8wY++Ci+/8fY4wzxloqd5pEJoGoaGus7syZ5HTIlpiCiGpHse0ZPQ5Tzty0TIR1dqHqhgicnMxiXFFOxpnAqFNjdYtZduVMGGjka63IRotVn6Vy5q5ZSyMAtFqk163Q3JkvHMPwbKgkceYwafNa6c8FopjxR2XZDV+yvhUA8OjJ6byPSyQ5xt3hkjPOBE6zDnOBaE4zmmSSY3A2sMCpUWDUqXFOXxMeV8AUJJ5IYtQdQl/KKpoxhnabAeetcuJNe3rw4Ss34o637YFRq8ZXHzgl+7i/fH4EBq0Kr1kkthhj+PfrdkCtYvjIzw6ljTruOzwBk06Ni9cre1lQqxi2dNoUXYRM+yIwatUw65Z+nqaDqCs8dybaeeVUzpqMhdt/VxLFvHZAyrFRZuVMk2ojzUWn3QiNipUuzvzRirc1AvMxM/cfnoRVr8EFa5pzPrZ7GWSdTXmlTp58s3z1knU2MCNtFKwuw4W52aJHd5MRh0icLRvkVM7iAP6Bc74ZwAUA3scY2wJIwg3AXwAYyvP1hMKI2ZRSh0dLRZ2qdi2unKXbP4q8yGzutOLomLdgXtJoahevkDjTaVRoNuuy7nLLPUYhNnfaZFfOhDtWsblqrRbdgsysKV8Yo+5QTcWZ3MrZiZRhx6YibPQFDrMO7jwudKemczs1LmZThxUtFj0eKdDaOOkNI57kJTs1CpxmHeJJDm8o+9zYlC+CcCyJ/hwX4L1rW3B4zFt2RWQ85WQoFh65zvWmvavw20NjaYOVfETiCfz2xXFctbUja5RFV5MRt79+K54ZmMX/PHYWySTH/UcmcdnG1qJbW+WwrduOI+NexRwbRdBwtlbZdBB1hRer3lAMOo1K1usltTVS5UzgDkVTr528RiC5WWeiVT/fAl+tYuhxGEta4Aejkt17Nboh2m0G+MJx/PHwBPZtaoNOk/u16moyYMzT2OIsX3i4oKvJCBWrfdbZmZQ4W9NSelsjAGzrVnbTiqgtBT/NOOfjnPPnU//2ATgKoDt1938B+CiA2k9UriDEzFm1c84AqbVxcRC1mLUpxq0RAG44txfRRBK/eH4k7+NG50LQqpksS/o2myFrWPKYOwSjVi17dzUXW7psGJkLpVtp8jHpDUOtYkW3rbQuqpwdTGVgndPXVNRxlKTZrANjhStnR8alxX5plTMdfJF4TtOKfDb6i1GpGC5Z34LHTk7nHfgelRFuLgfx3nflMAVJOzXmCObeu64ZnANPnSlv7kxUBLK1T2byrovXSNWzBwtXz/Yfm4InFFvS0pjJtbu78Rdb2vHF+4/j7meHMe2LKOrSmMnWLhuC0QTOzvgVOV6+sFrRBl3pypknFJP92SS1/1LlTOAJSgHU+eZQM+lvMWHGH01fR3Mx7YugxVr4s7vUrLNSr5ulIDYIPaHYkuDpxXSVEFfBOcfLKdOqeiDf77RAp1Gh016asFaSgZkAjFp1UbPp2djR04SzMwFZaxOi/ilq5owxtgrAOQCeZoz9JYBRzvmLlTgxIjdi5qzalTMglXW2aKGSthwucgdwfbsV561y4CfPDOcNsx1zh9BhN8iyG+6w6bNWzsY9IXQ1GWRfwHMhRMcxGdWzSW8Ebdb8O6/ZaLHoMRuIpC90B4fd0KhYOmyyFmjUUlWyUOXs2LgXNoOmpDw5hzl/wO7JST+MWrVsIXXJhlbMBWN4eSz3bqKYeSx35sxplt77uQxNBtPiLLto2tnTBKNWXXbemVho9OUQgQJRPbtXRvXsF8+Pos2qx0Vrc7dCMcbwuTduh0WvwT/e8xK0aoZ9m9qK/wZkoPTw+4w/kvOzy6BVo8Wir3jlrDhxpoU/EkeswiYljYI7GJM1qycQv4OFqmdyHYhLtWQXM6rVMATpSIkznVqFSze05n1sZ5MRsQTPmrWZi4dOTON1X3sMV3/1UTxyIn8reTWY9uX+nc6kHuz0z84E0N9sKnttIubODlP1bFkgW5wxxiwAfgHgQ5BaHT8B4FMyvu7djLFnGWPPTk/X/pd2ORCs0cwZIC1iZwPRBbbf5ewAvvUVfTg7E8CTZ3KbIYzKCKAWSK5USy8qo+5wWWYggi0pcSantbHYAGpBq1WPJJ9f6B8cdmNzp60iLWLF0GLRp12wcnFswodNnbaSLjQiYDdXVeDUtB9rWs2yxe4rU/NO+RYLoiJSblujqI7mMgUZcAWhVbOcolWnUeH81c6y886GZoPQpcKTC/Gui9fAVKB6NhuIYv+xKbzhnG5oCrgutlr1+OwbtoFzqU2zUsG661ot0GtUirXwFNpl73ZU3k6/GHFW6PdkpeEORWWZgQjkZp0Vs8CfC8bgLdLGXLTzN5ur0dYoPcfedc1ZW5MzKSXr7NCwB4xJ8/Bv/59n8Pb/eSadd1ltEkkOVyCabsXPhyTOatvCOTATKMsMRCDEGeWdLQ9kiTPGmBaSMLuLc/5LAGsBrAbwImNsAEAPgOcZY0v6WDjnd3LOz+Wcn9vamn/HhpBHrdsagYV2+jP+CEw6dUnn85ptnbAbtfjx07nHFosJj263GeAKRJbsKo8VIfDy0WbVo9msw9HxwrM6xQZQCzKzzpJJjkMjHuzsrV3VTNBmyx9EnUxyHBv3pgVssThTzlq5qk+nJn1F2Q23WPTY2mXLO3c2MhdCi0VXtvBNtzXmsNMfcgXR6zDlFTh71zbj5JQ/PatYCkOzAfQ4jFDLELByqme/OTiKeJLj2t3dWe9fzGu2d+Kzb9yGj1y1sajzLgaNWoVNnTZFFiHRuBRan0+c9TRVPoi62LZGgIKoBZ5QHPYiKmf9zYWzzjjncAUieW30BX0l2ulXs62xx2FCh82AG87tLfjYUrLOjk14sarZjD9/+FL889Wb8eKwG6/9yqP42M8PKRoYL4fZQBSJJJdlxNXXbMKMP5Le8K428UQSQ7PBnB0VxeAw69DjIFOQ5YIct0YG4LsAjnLO/xMAOOcvcc7bOOerOOerAIwA2M05n6jo2RIAJEMQo1YtawGmNCJnKPNC5PJHSr7AGLRqXLe7B/cdnshqDBJLJDHpDaOnCHHG+ULjikg8gWlfRJHKGWMMmzttshwbJ73hkvrIMzPFTk/74Y/EsavXUfRxlKYti4tkJiNzIQSiiZLMQID8i05/JI4xT1jWvFkml2xoxfODcznDOUfdIXSX2dIISEIHQM4g6gFXoGCr4d61UqWvHEv9odlgegNFDrcUqJ798oVRbOm0YVOHfMF94yv6sa27spsJ27ttODLmLTtAVswIyqmc5Wu9Lpdi2xoBUBB1Ck8wWtQssUWvQYtFj8GZ3GLKE4ohluCyKmelZp3NBKpXOTPq1Hjqn67Aa7d3FnxsaeLMh43tVug1atxy8Ro8/JHL8DcXrcYvXxjBZV98CP/1pxMLum0qiZwIBEG2zeZqMjIXQjzJy3JqzGR7tx0vjZA4Ww7IqZxdBOBtAC5njB1M/Xlthc+LyIM/kqh6xpkgW9aZ3N78XLz1Fb2IJTh+/txSY5AJTxhJLj+frMMunUfm3JnIulJCnAGSy+TxSV/eYNpIPIG5YAzt1vIqZy8MuwGgpk6NAmFUkmtBLARrKWYgAOAwSwus2SyOjafTZiDFCb+L10sBz7mMNkbmQrKFfz70GjUsek3WtkbOOQZdhXdHt3TZYDNo8MSp0sSZeJ7+AiIwk8zq2YlF1bOTkz4cGvHIrppVk21ddvgi8bLnReQs5LqbjIjEk0uyB5WkuLZGaSNgrkCu3krBHZIMQYqhv9mUt3Im3heyKmfNpVmyu/xRmHVqGLNEONQSm0ELq14jO+ssFE1gwBXAps75z+Ymkw7//Lot+POHL8Xlm9vwlQdO4sr/eqSgCYsSpGfgi6h61irr7KwCNvqZbO+xY2g2CA+1PDc8ctwaH+OcM875Ds75rtSf3y96zCrOefkhPYQsgtE4LDWYNwOk2RqjVr0g62zGHylr929dmxXnr3LiJ88MLdmdFrt3cnOoRNZZpmOj6J3vKsGkIhtbumyIxpPpD9ZsPHNWEgNy+t4Xk1k5OzjshtWgwRqFPrzLoc2qRzzJc+7YH5vwgjFgQ3tplbP0ojNL5awYp8ZMzu13wqRTZ507SyY5Rt2hsufNBE6zLmtLpisgOcMVEk1qFcMFa5rxxJnSPko9oRh84XheG/1spGfPHji54PZfvjAKtYrhL3d1lXQ+lURU5vKZvcghXwC1oLvCjo2JJIcvHIet2MoZLcAQiScQjCaKMgQBCmedTafjYQp3hNgMWjSZtCWIs0hVMs5KoauIrLMTkz5wjqzV9f5mM/77rbvxH9fvxKg7pGh4fC7E73SbjI3RWmedKS3OdnQ3AaC5s+VAUW6NRH0QiMRrMm8GSG19vU7jkspZqwzL4Xy85RW9GHAFl7R0pYWV7MqZ9IEsqmUA0juAylXOpItQrtbGnz4zhL/5/gH0N5tKcqwz69QwaFWY8UdwcEgKny7W8bESiAVsrpmoY+M+rG42l7wTbNCqYdSqs1YETk37oVWzoqpCgGS0ceGaZjySJYx6xh9BNJ4sO4BakEucFXJqzGTv2mYMz4ZKsuYWC4xi2hoBaVbh5otW4XcvjaerZ4kkx69eGMUl61tkLXKqzYZ2K7RqVvYiRJY4E0HUFTIFES23Rc+c5XA1XUkI23C7qbjrz6pmMya8YYRjiaz3zy/w5YmnUowlXIFoVebNSqGYrDNh/JGvnf381U4AwOlpZeIv8iGuT3JiEBwmLSx6TU3FmdWgSbfFl8u2bmltQuKs8SFx1oD4I/Ga2OgLehzzuS7JJMdsoLzKGSAZgzSZtLjrmYXGIGNF5lA5TTpoVAyTGbNR46ljdChUOVvbaoFOrVoizmKJJD7165fx8V++hAvWNOPX77uopIUtYwytVj2GZoM4Pumri5ZGYH4nMtfc2dEJb8ktjQKnWYe5LBWBk5N+rGo2Q1vAMTAbF69vwaAruMQ6e8StjFOjoMWiy2oIMpCabZEjLPeuK33uTFQCihWwAHDLKxdWz54648K4J5w326yW6DQqbOyw4nCZdvrivZxvkZwWZxWqnAmBIbc1z6xTQ6tmWX9PKs2gK4BIPLugqQWifauUtkYgd8Vkxi9s7uVd10rJOpvxR6syb1YKUuVMXlvjsQkfjFp13op9d5MReo0KZ6ogzqZ9EVj0Glkb2NJmc2k5dUow4ApgTYu5bBt9QZNJhz6nCS+NuhU5HlE7SJw1IMFooiY2+oJehxEjc9KA/FwwiiQvP6tFGIPcf3hiQb7KqDuEZrN8Nz2VSgqrnsysnHlCaLHoFbOi16pVWN9uWeDY6PJH8LbvPo0fPjmId128Gt+7+bz0DncptFj0ePyUC4kkrxtxlq6cZYkqCETiGHQFSzYDETSZtFkNQU5P+7G+vbiWRsElqVyfxa6NYgi8u6l8QxBAEpbZQqgHXQGomLwstfVtFrRY9HiihLyzdOWsBIOTxdWzXzw/Aqteg7/Ykj+wtpZs67Lj5TFPWUYd0/4I7EYt9Jrcnw02gxZWg6ZilbN09UemwGCMpYKoq1s5C0UTuOrLj+D/DgxX9XnzUexrJxBV7IEcrenTvgi0aib7uH1OE0bmgkWFMLv8kapknJVCV5MRs4EoQtHCQvzYuA8bO6x5uztUKobVLWacns6fLacEcgKoM+lz1i6I+sx0AKsUHlnY3mPHITIFaXhInDUg/ki8ZoYggLRL6I/E4QnF0gYISvTOv+X8pcYgpeSTtdsNmPRlzpyF09ktSrG505bunz885sFffv1xPD/kxn+9eSc+cfWWgplQhWi16NPD0zvrRJyJFp9sxgjHU+1wmxSonM0uWnSGYwkMugJY11qaOFvdYkZ3kxGPLpo7E5UQ5doa9ZgNRJeIhcHZILodRug0hd8TjDHsXduMJ067ihYdw7NBtFh0JX823PLKNTDrNPj3PxzDH1+ewNU7OmuerZePbd12uIOxspzW5C7kuitopy9mx4qxg28yaqs+czbjjyAcS9bMPCEb4jUoduZsPog6V+UsghaLXnZFo89pQizBMS6zFVDqOKnvtkYABVsbOec4NuGVtSm3ttVStcpZceJMCqKupBtrNsKxBMY8IcXmzQTbu+0YmQuRYVCDQ+KsAQlE4jDXaOYMmK8ADM+GMCNcrRQQZ+varDh/tRM/fWYo7Qg4OhcsOp+s3WpYNHMmPydNLls6bZjxR/DDJwfwpm8+iUSS42fvuRBvPEeZNjDhEtbjMCry2iqBWa+BSafOWjk7mnZqLLdypluy6BxwBZDkwNoizUAEjDFcsqEVT5x2Lci/G5kLoik1c6AEzWYdYgkO3yJHsgFXEP1O+Rfgc1c5MOWLLHAclcOgK1i0GUgmDrMON+9dhQeOTSEYTdRtS6NAmIIcLsMURG7QcE8Fg6hLqf44TLqsxjmVRMxT5sohrAXudEtocSLHbpJMPHI5Ns74i1/gA/KNJTyhGOJJXr9tjXZ5dvrTvgjmgjGZ4syModlgxdtip0v42UXiybwxMZVAEoTKmYEIdlAY9bKAxFkDEqihlT4A9DpTWWdzwaJcreTw1vP7JGOQM1LlYKyEylmH3ZAWENIxQui0KyvOxGzVp359GJs7rfjN312kaIVLLBjrpaVR0GbVZzUEOTbug1WvKTvo22HSLln8nZyUdlvXF2mjn8mlG1rgj8TxwpA7fZuSTo1ARtbZormzQVegqDkw8d46JiPoPJOh2fLEGQC885WrYdFr0Os04tz+2mfr5WNThxVqFcPLZcydyV3IVbJyVoo4s5uqXzkTv5cz9STOUgK1mKqjoL/ZnLNyNu2LFLUpVmwQtWh/rt/KmTxxdnRCfsfEmlYLkrzytvXTXnkbLoLeGjk2Ku3UKNhK4mxZQOKsweCcI1BDK31gYeimq8jB6UK8elsHmkxa/PjpIcwFYwjFEkW3nbXZ9PBF4gikWi+D0US6TUMptnXb0GbV46/O68VP3n2B4o52onJWf+LMkHWH8ei4F5s6rWUPNjtMOnjDsQUZcqem/GAMWNNa+kXswrUtUKsYHs1wbRyZC5UtJjNxphZamVln7mAU7mBMllOjYGNqF/rohHzREY0nMe4Joa+I58mGw6zDN/96N/7zhl114RCaD4NWjfVtlrIWITNy2xodRvhSnydKU1rlrHbizFXBvLdi8YRiUDHAWsJm5ao8WWczRc6DddoNUKuY7AV+sYYj1abDbgBj0khAPo6NF3ZqFKxNtaVX0rExFE3AF4lXtOqpFEKcKT1zZjdqsarZRGHUDQ6JswYjFEuAc8BUw8qZzaCF3ajF8FwQM/4I1Cr5g9OFEMYg9x2ewIsjbgAoel6swyY9ftIbTrciKbkIBwCrQYun/+kKfP66HXnNBEpFVHTOXeVU/NjlIIKoM5HmDnxlOzUC0qKTcyxYBJ+a8qPPaSpr/slu1GJXb1M674xzjpG5oCyTDrm0pFqUMit/pTgo2gxadDcZi6qcjbpDSHKUXTkDgIvXt+K8Onvf5WJbtx0vj5ZmChKIxBGIJmRWzqTXtRLVM28oBp1GVdT7u5ZtjdkcSWuFOyiFd5eykdDvNGHMHUI0nlxwezLJU/Ew8hf4GrUK3U1G2Xb64jWs18qZVq1Cu9WQdjrOxfEJHzpsBlnmV6tTm2uVNAWZKSKAWtDtMIKx6ouzgZkAWiw62AzKrJ0y2d7TRJWzBofEWYMhTCJq2dYISOJheDYElz+KZrNO0V32t5zfh3iSp229i3XTa0+JswlvGOMKZ5xlopT9bTYuXd+Ke/52b91VzrKJs5G5EPyReNYQ0mJxmEUQ9UJxVqoZSCaXrG/FoVEP5gJRzAaiCMeSFamczWY4Noqd+WJ3Rzd3WtNzfHIQCwslxFkjsa3LBlcgisksc5CFSC/kZFQvKpl15gnFit7cspu0iMSTstz0lEIY9bgCkaqbJ+SilNdO0N9sRpJLs6eZuEMxJJK86KpWf7Mpp/vjYtJtjXU6cwbIyzo7OuHDJplzxha9Bh02Q0UrZ1NF5tMBgF6jRqfNUHVxdmYmUFRHRTFs77Zh1B2qqyo3URwkzhqMQES6GNeyrRGQ7LpF5Uzp1ox1bRacv9qZng8qtiVRiLMpbyR9camEOKskKhXDOX31N/PTapVaRjMXhUqZgQBSRQCYnyWJJ5I4M+PHuhJt9DO5eEMLOAceOzWTdvhTcuasOSUsZ/xLK2fFiqbNnTacmQnkDMldzFBKBJaScdbICFOQl0vYJZYTQC0QIn50TvkFXCkCw1GDIGoxSxlLcHjD8QKPrg7uUKzoAGrBqhbpd2Xx3Fkx74tMNnfacHzSt6QSl40ZfxSMSZ0C9UqhrLNYIolTU750G7Yc1rRW1k5/OjUPXezPrsdpqroL6cBMQPF5M8H27iYANHfWyJA4azAConJWQ7dGQDIFGZ0LYcYfqUhrxo2v6AMAGLSqtNGCXNpt0gfzRKqtUadRpRfORHmk7fQzqmfHJnxgDNjQXr44S5tqpFqohmaDiCW4IpWznT1NsBu1eOTE9Hy7q4LizKBVw6RTL2lr7LAZim7J3NRhQyLJcWpK3i7z0GwQeo2qqEH45cCWLhsYK20RUswivMWig16jqpvKmVjUzwWqN3eWOUtZLzvynmC06ABqQb/IOls0dzaTNrkq7ndpe7cd0XgSJyYLtyO7/BE4TbqyI1cqSXeT5FCaq0p6ZjqAWIJjcxEdE8JOv1KV11KFda/DVDE31mz4I3FM+SKKz5sJtnVLPxOaO2tc6veTgchKoE7aGntT9rMnJv0VWRBetbUDDpMWXU3GotsHrQYtzDo1Jr1hye3Rbqh7c4NGIR1EneHYeGzCi36nSZH3pMgrEmYHJ1PiZL0Cwk+tYnjluhY8enIm3cqk5MwZkMppWyDOinNqFIhWoWMT8ubOhmaD6HWaVtz73KTTYG2rpSQ7/eki5lMYY+nFqtKU1NZoXFhhrgZzwSjUqfeXq04cG92hWNEZZ4Jmsw4WvWZJ5ayUuSUA2NEj3yXP5a/fjDNBp92AaDyZ82d9LGVYVEzlbG2rGb5wPGtWphJM+yJQseLbRXscRkx4w7Kqnkog2l/XVEicWQ1arGkxU+WsgSFx1mAEonUizlKL2lAsUZGLjEGrxr9csw3vu2xdSV/fbjOkxJnyNvorGeFKmVk5OzqujBkIMN+uJeZbROVobRlOjZlcvL4FE94w9h+bhtWgUczIRtBs1i1YzAy4giXNFaxqNsOgVcmeOxt0BdG/wubNBNu6bCXZ6U/7JDMjh8y2uG5HZez0PaFY0dUfhzm1iVEB98hczAaiWJXaaKiXypk7WPxrJ2CMSXNiiypn0yVmd/Y5TbAZNDgko1rhCkTqet4MKGynf2zCB42KpV0Y5bAm9dgzFWptnPZH0GzRpzcR5NLjMIJzyA4RL5dKOTVmsr3HTuKsgSFx1mD462XmzDkveCplB/z6nV24bk9pQbiSOItUJIB6JTNfOZMWMMFoHAOugCJmIABg0qmh06jSTnSnp/zotBtgVcjR6pINrQCAJ8+4FHfwBIBmiz5tCOKPxDHjj6C/pXjRpFYxbGy3pnen88E5x3CqcrYS2dZtx4Q3XHSI7LQvgmazTvZCrlJB1J5QDLYSZ86q6djo8kfSrcszdeDYmExyeMOlz5wB0ibIkpkzfwQ6tQo2Q3EboIwx7Ohpwkuj7oKPbYTKWUFxNu7FujYLdBr5y8i1bZW1058qMuNMIDooRiqUZbgYUTmrlCEIILXZjnuK/1wk6gMSZw1GsE7aGjPbwZrrcM6l3abH6FwIk95w0Vb8RG6cqcWsaGs8PuED55Dt2FUIxhgcJi3mUtWnk1N+rGsrf95M0NVkTB9P6ZZGINXWmFq4DrrKuwBv6rDh6Liv4HyGKxBFIJpYcU6NgrQpSJGtjdMyM84E3U1GzPijsk1a5JBIcvjC8RLaGhe2/1aaWCIJbzie/t2pBzt9XzgOzovLh1tMf7MJw7PBBbmK4n1Rihvvjh47jk/4Cr5HKmGkpTTdaXGW3RTk+ERxZiAA0GkzwKBVVbRyVmw7KjBvDLXYubNSnJ0JoNNugFFXuU327WWYJRG1h8RZgyGs9E01NgQxaNXpi0sxYZ3Vot1uwIQ3jCRvPKfGekatYmg269K7cWImaotCbY2AyHCKIZnkOD3tL6ptRg4Xr28BoKxTo6DZrMNMIArOeUkZZ5ls6rRiNhAtOJ8hLKBXmlOjYEuX9N47XOQiZLrIBXIl7PS9JQRQA9Lnr1GrrtrMmajQtVn1aDJp01bwtUQ4VZba1ghIGyfxJF8gQGb80ZKvaTt67IgleN5Z0WhcErr1blLVZNLCqFVnrZx5gjGMecJFd0yoVAxrWiwVq5wVu+EiECHi1aqcnXVVzkZfsLXbDsYgq82WqD9InDUYwkrfXMEdF7mI1sZ63AFst85Xy0icKUubTZ9uazw27oVFr1G0RdBh0sEdjGLME0IwmsB6BWz0MxGtjZUQZ06zDtF4EoFoIj3L0l9G5QxAwTDq4RWacSawGbRYXcLwe/GVM+WDqD0lijNAcmycq1LlTJjcOM16aa6yApWzaDyJ7z9+FrGEPFMGUTUs1RAEAPpSGxqDs/OVnFIX+IAU/gsAL424cz5GvJb12HGSCWMsZ9aZaLcupWNiTau5IpUzKTw8UlTGmUCjVqHDZqieOJsJpEO5K4VFr0mZgrgr+jz3vDCCy//joaqZqawUSJw1GMFoHAatqi4seIUpSD2Ksw47ibNK0WY1pCtnR8d92NRhVdQlUDgeCjMQJWz0M9m7thlvPrcXV2xuV/S4QEYUgD+KIVcQLRbJEa4URG5cIVMQUaFbqTNnALC1SFMQzqWFXFHirAKVs3LEmT21iVEN5sWZDs0WfdrRUEkePTmN2397BI+dmpH1eGGGUo44W5W2059vZyun5bDLbkCzWZe3WiFeu3qfOQOka+dolrbG46m4gE1FtjUCkp3+8FxQ0fZgQPpdiiV4ycK6x2GsSlvjXCAKdzCG1RWunAFIzUBWtnL28+dGcGY6gCMyzasIedR+hU8UhT8Sr3nGmWBNqxk6TfE5ZNVAZJ0BxYdYE/lptUiVM845jk54FZs3EzSZtHAHY2lxpoSNfiZ6jRr//qYdFQkAFQsuVyCCAVeg5KoZADSZdOi0Gwra6Q/NBtFu0xedpbac2NZtx6g7lJ5VLER6IVfEIrzdKrnAVaRyVoLAcKR+T6pBpjhrsegqYqU/5pFEgNwwYCFMRaxAKbRZ9TBoVRhMGTQkkhyzgWjJ4owxVtAlT7x29TgOsJjuJmPWtsaj4z7YjVp02Iq/tq5pNYPzpeHf5TJVYsaZoMdhqkrl7Gyqo6JSAdSZbOu2Y9IbwZQ3d5h4OfjCMTx9ZhYA8NzgXEWeY6VC4qzBCETiNTcDEbzzlavxi/fuLcqtqVq0py4aTSZtzefzlhttNj1c/ghG5kLwheOKOTUKpJmzKE5M+uA06+pS/OdC2GPPBqKSvX2Zc2CbOqwFK2dDs8EV29IoEMPvh8fk7d6WElYrWp/qpXImfk+qwVxm5cysr4iV/mRKnMldtJfz2glUKoZ+pzldOZsLRpFIll59AYAd3XacmPQhFM1eGRKvXb1b6QNAp92IaV8EkfjC7+XYhBebOqwlmaaIGWKl587Sv9MlCutqZZ0NVMFGX1BM9l4pPHZyBvEkh0bF8DyJM0Wpv1U1kRd/JFE34sxq0GJ76pe/3hB5XF2UcaY4rVY9khx4PNV+pFTGmcBh1iHJgeeH3Io6NVYDISTH3CGMe8JlD31v6rTh9LQ/74JhyBVEn7PyF/p6ZmvKFETuIqQUcQYon3VWXltj9SpnotrTZNLCaZYMe+IyZ8PkMi4qZ7MyxVmwfHEGSEY6wllVtByW06q/vacJSQ4cGc/+XhTzeo3R1ihdRyc885WXZJLjxISvpJZGQKqcAcAZpcWZXzrHctoaq5F1dnYmABWrzozwlk4bVBU0BXnw2BRsBg2u2tpBlTOFIXHWYASj8ZpnnDUCOo0KzWYdzZtVADFw/cjJaQAo2k65EI5Ui9cphW30q4FYcL0w5AZQvoPipg4rYgmOMzPZFzLhWAIT3vCKr5w1mXTocRhl2+kLB8xiF3I9TcpmnZVrCOIOxQpGLSjBbCAKu1ELrVqVbsebVbhqN+GVXtehWXlmEe5QDOZULmI5rGoxY3A2iGSSlyzaMxHVilwL4plABDqNquRZ1GoijJ4y3/MjcyEEoglsKnFTzqTToMtuwGmFTUHEz66thFZLoHpZZ2dnAuhxmKrScWTWa7C21VKRylkyybH/+DQu2dCK81c7MeEN58zEI4qHxFmDEYjEqU1PJv9w5UbcvHdVrU9j2SEWLo+dnEGf06T4IsOR0ca4vsHEmUmngUGrwgvDbgDlh4yKqmSu1kYxwN7XTJsQ27vtsu30y6mcTXjDilWNvKEYdBpVSfOCDpNOyklLxatUktlANG39LlwGZxWeO5vIqJzJEZzuYAxNZQRQC/qbTYjGk5jwhjMqZ6Uft91mQJtVj5dyiDOXP4oWs66klsBqIzY3xzNMQY4Kp8YyNuXWtFoUr5xNeSMwatUlO1lXK+vs7EygKvNmAjEDqfQmzkujHsz4I7hicxv29DsA0NyZkpA4azD8kXhD7LjVA299RR9emcq0IpRDtIx6w/G0o6CSODIWXI1WOQOkWZKzM8JGv7yK1poWM3RqVU47/aG0jf7KbmsEpOH3AVcQ3nDhVr9pXwR6jQrWIj9Lu5qMSCQ5Jn3KzFx5QrGSc7rSQdSByrc2zgai6U0TIdKUttOf8IRh0KoQjiXT4jkfnlC07JZGYH4DZdAVxIxP+p7KqZwBkkveizns9F3+SN3b6AuE63FmReR4yqBoQxlGTWtbzTg9HVBUMIgA6lJFbzWyzjjnGKiyONvRbce0L4JJr7Jzog8emwJjwKUb2rCpwwqjVk3iTEFInDUYgUgCZmprJGpI5sJFaTMQAHA2uDgTc2d2o7bsnX2NWoX17RYczeHYKJztVnpbIzA/d3ZYhqW+yLIqdiHXaRczOMos4DyhWMkCQ2xiiDDmSjIbiKbf10JYKGmn7wvHEIgmsLtP2oEflDF3JlXOyhdn4ndn0BXAtF8S7eVugO7osePMTAC+LBsFM/5oQ8ybAVLYeYtFvyDr7NiEF/3NprJm39e0WuCPxNMOi0pQTj4dUJ2ss2lfBIFoosqVsyYAwMFhZYXT/uNTOKe3CU6zDhq1Cjt77Xh+iMSZUpA4azAC0fpxayRWJgatGlaD9B6sROWsySwtuCx6TUlWzbVGLLxWlVk1E2zqsOFYjrbGwdkgTDp1Q9hyV5ptacfGwq2N00VmnAk6UwZDY1myn0qhLHGW+j2pRhB1ZlujeK8pWTkTLY3nr3YCkGen7y7jtcukq8kIrZphwBXEjE/KOCu35XB7jx2cZ3cPdfkjDeHUKOhuMizIOjs2XroZiKASjo3TvtICqDOpdNbZ2So6NQq2ddugU6vwfGoOWgmmfGEcGvHg8k1t6dv29DtwZMyb06WUKA4SZw0E51yy0qeZM6LGiIug0k6NAGDVa6BRMaxtszTEXMZiRIWhnIyzTDZ3WjHli2S1Lx9O2eg34uukNC0WPTrtBlnD79O+SEmW251Z3OvKwR0sXWCIfK9KB1FzzjEXnG9rtBm00KgYXAHlqh7CqfHcficYk1c584SUqZypVQy9TlO6clZuSyMwH+2weO6Mc46ZQLShNlO6MrLOQtEEBlwBbCyzY0I4NippCjJVZuUMqHzWmRBna6oozvQaNbZ12xS1un/omGQGdvmm9vRte/odiCc5DuVo5yWKg8RZAxGOJZHkoMoZUXNarXqYdWr0OpRvp2OMobPJkG5TazREhUHJyhmArGHUQ7NB9FJLY5qtXXa8LFeclbCQsxm0sOg1C9q8yqG8tsbUzFmFK2fecByxBE+/r1UqBqdZp2zlLBWS2+c0octuxHABccY5hycYKyuAOpNVzVLW2XSqclYuLRY9upuMOLToveiPxBGNJxV5jmrRaZfEGeccJ6d8SHJgc5mVsw6bASadWjFTkEg8AU8oVnLGmaDSWWdnXQHo1Kqqu0jv7nPg0KhHse/rwWNT6LQbFnTOnNObMgWh1kZFIHHWQASikisXWekTteZVm9tx3Z4eqFSVqdjc9c4L8LFXb6rIsSuNM9WypGTlDFjq2Mg5pwDqRWzrtuHMTACBPA6GsUQSs8FoybvsHXbDAve6cvCGYrCVaQhS6SBqEUCdadTTbNFjpgJtjW02Pfqc87ljuQjFEogmkopUzoD5rLNy55Yy2d5tx0uLqgiNlHEm6GoyIBiVxI8wJirVRl+gUjGsSZmCKIF4L5ZfOats1tnZ6QD6mk1QV+i6mYs9/Q5E40lZLd+FiMaTeOzUDC7b2LagY8Nh1mFNq5nCqBWCxFkDIRYcZKVP1JpbLl6Df7lmW8WO39dsUmSepBakK2ctyoimZoserVb9ksrZtC+CcCxZtiPkcmJ7tzTr88zZ2ZyPmQ1EwXnpQcOddgPGveWLM2GDX+r7XKNWwWrQVLxyJgKonRmCosWiU7yt0WnWwaBVo7/ZVDCIWnzPpTpdLmZVsxnBaAKuQBStCgmn7T2Se6gn4+cjXrNGcWsEFmadHZvwwaBVKbIhtKZFOTv9+Yyz8tsagcplnQ24AmXHq5TCbgWt7g8MzMIfieOKjHkzwZ4+B54fclcle3G5Q+KsgfCnxBm1NRJE/XLZplbcvHdV2qBCCTZ1WHFsYmHlTMzlUFvjPHvXtqDHYcRnf38UkXj2wfRyg4a77EaMKxC26i0jgFrgMOkqPnMmKmfNGfmDzQq3NU56w2nzn16nCTP+aN7qZ1qcKVg5EyhVORNh1JnB6KLCk/la1juZWWfHJrzY2G5VpPKzttWCUXcI4Vj5BhLp32lLeQZSlcw6SyY5BlzB9LxdNWm3GdDdZMQLCpiCPHB0CjqNCnvXNS+5b0+/A7OBKAZkGPoQ+SFx1kAEItKHGOWcEUT90mY14Pa/3Aq9Rrn2482dNpyY9C8IPxaOdv0kztIYdWr86xu24dSUH996+EzWx0z7yxNnHXYDpv2Rsuc3PIqIM23F3Rpnc7Q1ZjOoKZVxTzgdUyCEUr7qmXjtSm0JXUxmNUOpebAd3U0AsCDvTAjaRpo561pUOVMqPmVNqxmcz5tklMOUT6pklyusK5l1NuYJIRpP1qRyBkjCSYnK2f7jU7hwTXPWDi4Ko1YOEmcNhJg5o5wzglhZbOqwIhpPLljIDM0GwRjQ7ajucHm9s29jG163oxNf338qa9vU/C57iZWzJgM4n18QlooS4sxehcqZaGvMnJNqtugQiCYUs82e9IbRnhJnomUuvziTzqlJIUOQbocxXQ1qUahyZjdp0d9sWuDYKASts4EqZ81mHXQaFV4ccWM2EMXGMs1ABEra6Yvf6XJn+SqZdSY+u6uZcZbJ7r4mTHjDCwLFi+XsTABnZwILLPQzWdtqgc2gIXGmACTOGogAtTUSxIpERBZkhlEPzQbRaTMoWqFbLnzq9Vtg0KjwiXteXjL/UG5bY0cq62y8TDv9tDgrozXPYdLCHaps5WwuGIVBq1qwU96SMr1RYu4sHEtgNhBFZ6qtsd8pLV7zZZ0p3daoVavSs1XlOv5lsr3bjkOZ4iwQhc2ggU7TOEsvlYqhy27AQ8cl+/RNCmVbCpFyRgFTkBOTPrRY9NCqy39dK5V1NlBjcbanX8oQLEc4PXhsCgByijOViuGcPgdeIMfGsmmcTwiCxBlBrFDWtlqgUbEFYdRDs0H0kRlIVtqsBnz8NZvx5BkXfv7cyIL7pn0RWA0aGLSlidquVIWnnB1oYF6clWNq4TDp0jNhlcLlj8JpWliRaFYwiHoyZa4iKmd2kxZ2oxaDs7kX7UKQKiXOgPl2SqUqZ4A0dzbqDqUrZjN+Zaz6q01XkzHd3qpUW6NRp0Z3k7HsytmoO4T7Dk/iml1dipxXpbLOzswEYNSq0V6maUmpbOq0wqBV4fkyhNODxyaxvs2Sd855T78Dxyd98IYru2m03CFx1kD4xcwZuTUSxIpCp1FhXZtlgWMj2ejn56/O68W5/Q589vdHF8xHlRs03JmqsJQbRK1IW6NRC284vmAWUWlmA5EFTo3AvNugEpUz8TqKmTNAam0cms29QHYHY9CpVTCWKLCzsa5Nasky65Q75vbU3JkIRnf5ow1loy/oTFWL26x6RVsy17Say66c/c9jZwEAf/PK1UqcUsWyzgZmAljVYl5gP19NtGoVdvY0lWx174/E8czZ2ZxVM8HuPgc4Bw4qYD6ykiFx1kAEhZU+zZwRxIpjU4c1nXUWjMYx7YuQOMuDSsXwb9duRyASx2d+dzR9+7QvUlbrmkWvgVWvUaytsRxTCxFE7Q3ndjYsl9lgLJ3dJxBug0pknYkA6gXirNmEoTxZZ55QFDajVtGF7gcuX4+fvPsCRY+5rVuqMom5M1cggmZz41XOupukn025+WaLWdsq2emXar3uCcXw02eG8Lodnem21HIRWWflVsYXc3YmgDU1amkU7O534PCYtySHzMdOTiOW4AXF2c5eO1SMTEHKhcRZA+GPxqHTqBTpqyYIorHY3GnDuCcMdzCK4VRVoa9Gzl+Nwvp2K9576Vrc88IoHj0pzczMKBA03NlkUKStUa9RldxeCUjBr0Blg6hnAxE4F7UPKtnWKERuu21h5WxkLoREMvui3ROKKdrSCEiv5dYu5eIvAMBq0GJNqxmHGrxyJhwbNytkBiJY22pGIJrApLe0CuyPnx5CIJrAuy5eo9g5VSLrLJZIYngupFj2Zans6XMgnuQL5iDl8uCxKdgMmrQjYy6sBi02dtjKap8kSJw1FIFInGz0CWKFInatj034MJiqKlDlrDDv27cOq1vM+OdfvYxwLCFVzsq23DamKz6l4gnGyg5aF19fScfGWX90SeXMpNPAqFUrYqc/4QlL1UjD/GvR7zQhnuQ5BbA7GFMsgLrS7Oi246URDxJJjtlgtKECqAVCnCnl1Cgox7ExGk/ie4+fxUXrmhXNlKxE1tnwbBCJJK+Zjb6g1DDqZJLjwWPTuGRDKzQyigN7+ptwcMidc3OFKEzBV5kx1ssY288YO8oYO8wY+2Dq9n9ljB1ijB1kjN3PGFNmGpPISSCSIBt9glihiF3rY+PetM04ibPCGLRqfPYN2zDoCuILfzwOXySuSB7SmLv8tsZyxZnIHnNXKOssHEsgEE3AaV56ns0WXdokohwmPGF02BeGB/cVyDpzB5WvnFWK7T2ShfnxCR84B1oasHJ2/monbr1sLf5iS7uix11Thjj79cFRTPkiePclaxU9p0pknQ2kNtNqEUCdidOsw+oWc9FVrZfHPJjxRwq2NAp29zngi8RxcspX+MFEVuRUzuIA/oFzvhnABQDexxjbAuCLnPMdnPNdAO4F8KnKnSYBSJUzM5mBEMSKpDU1jH9swofh2SCsek165ojIz951Lbhudw/+53HJPKBcu/ROuxEz/ggi8dJzvpQUZ5UKohbtkosrZ4BkCjKjhDjzhtFhWyTOCmSdSa9dY4icnT1SVWf/ccmGvBFnzgxaNT726k0LqptK0G7Tw6xTF20KwjnHtx89g00dVlyyvkXRc5rPOlOucia+v1pXzgBJOD0/OFfUnN+Dx6bAGHDZRnnijMKoy6egOOOcj3POn0/92wfgKIBuzrk342FmAFS/rDCBaJxs9AlihcIYS5uCDM4G0es01cz5qxH5xNWb02JWiZkzAJgqcVYGUEaciYy0SrU1ispYNoe+FrNOsbbGxZWzTrsRWjXDYI6sM3cw2jCVsy1dNqgY8JAQZw1YOasUjDGsabUUXTl76MQ0Tkz68a6L11TkM1DKOlO2cmYzaOoifHx3fxNcgWjekPfF7D82hXN6m2Sff5/ThBaLDs8Puks8S6KomTPG2CoA5wB4OvX/zzLGhgHciByVM8bYuxljzzLGnp2eni7zdFc2/kiCxBlBrGA2d9pwfNKHgZlAOpeJkIfTrMPtf7kVahXDmhZLWcfqVCDrTAlxZjNooFaxirU15hNnzRZd2YYg8UQSU77wAqdGAFCrGHocJgxnWUDGEkkEoomyX7tqYdJpsL7Nmq4iNGJbYyVZW4Kd/rcfOYMOmwGv31mZaRqls87OzgSwuoY2+pkUW9Wa8oXx4ohHdksjIInu3X0OMgUpA9nijDFmAfALAB8SVTPO+Sc4570A7gLw/mxfxzm/k3N+Luf83NbWViXOecUSjMRhoZkzglixbOqwIhxLYsBFGWelcM2ubrx0+5Vlh3eL3Kdy7PS9oVhZNvqAtAhqMmor5taYX5zp4QpESrZBByQr/iRf6NQo6HOasgZReyoQQF1ptvfYIbwRGrGtsZKsabVg1B1CMCovDuLlUQ+eOO3COy5aBZ2mMp52PQ4jJn3hstqWMxmYCWJ1jW30BevbrLDqNbKF030vTwAA9hUhzgDJfOTsTECR6vpKRNY7mzGmhSTM7uKc/zLLQ34M4DolT4xYSiASh4lmzghixbI5I2eol8RZSSjxGSoqPaWKs0SSwxeJK1L9sZu0Fa+cNWcTZ2YdYgleVsbauEeqTiyunAFAf7MJg67gEvEnvtdGqZwBwI7U3JlGxRrqvKuBcGw8OyOvenbnI2dg0Wvwllf0VeycRNbZeJmmP4DkyjrqDmF9u7JOl6WiVjHs6mvCczJaDqPxJO54+Ax29TZhS5EZd6JC9zyFUZeEHLdGBuC7AI5yzv8z4/b1GQ/7SwDHlD89IhM/WekTxIpmXZsFqlRnDLU11g6zXgObQZMWF8XiVbD64zDp4A5VrnKmYtmFUEvKVKWcnfGJLBlngj6nCb5wPF0pE3hS32uTqXHaA7enrN6dZh1Uqtq3ttUTwsHwtIzWxpG5IH730jjecn4vbAqbk2SiZNbZwRE3AGBXb1PZx1KK3X0OHJ/wwh/Jv7Hyi+dHMOoO4UOvWl90S+b2bju0akatjSUip3J2EYC3Abg8ZZt/kDH2WgCfZ4y9zBg7BOBKAB+s5ImudDjnCETJSp8gVjIGrTptP01tjbWlq8lYsp2+EBxKVFEcJi3mApWpnLkCUThM2QVFOoi6DMdGkRWXrXIm3t+LTUFE5axRcs4AqeKtUbGGzDirNNIsFnBGhinI/zw2AAbgHRetrug59TqVyzo7OOQGY/PV03pgd78DSQ68OOzO+ZhoPImvP3gKu3qbcOmG4keSDFo1tnbZybGxRAqWYTjnjwHIJpl/r/zpELmIxJNIJDkZghDECmdzpw1nZwLpYFiiNnTaDZjwlrazrqQ4sxt1ODLmLfzAEpgLRHM6tInZqXIrZzq1KutzZGad7cyoOqTFWQPNnBm0amzrtqerjcQ8Bq0aPQ5jwcqZJxjDTw8M4fU7uyr+2ddhUy7r7ODwHNa1WhSPISiHXb1NYEwyBbloXfYogp8/J1XNPvvGbSUbmezuc+CupwcRSyShlRFeTcxDK/0GIZAqP1POGUGsbG7euwo7e+x0sasxHXYjDo14SvpapStn7lAFK2c5xJlwHZwpw7FxwhtGu12fdfGXK+vMreBrV03u+Os9UNGvbFbWtFgKVs7uemYQwWgC77p4TcXPR6NWodNeftYZ5xwHh9141WZlw7vLxW7UYn2bJWfLYTSexH/vL71qJtjT78D/PH4WR8a8CzZYiMLQSr9BCEQk1yCqnBHEymZPvyM9bE3Uji67Aa5AFOFYAgZtce3mSgoMh1mHYDSBSDwBvUbZtvfZQBTr27LHDgjRVo6d/rgnjE5b9iqISadBq1WPQdfCioonFANjqKtKhBwWZ7kR86xtteCpMy7c+chptFkNaLPq0WbTo81mgFWvQTSRxPceH8DF61uwpas4Y4pSUSLrbNAVxFwwhl19TcqclILs6Xfgd4fGkUzyJW3Lomr2uWu3l2X/v7u/CQDw/NAcibMioZV+gyAGN8lKnyAIovZ0plqrJr1h9DcXZ5OtbFujCKKOod2m7PVhLk/lTKtWocmkhStQXltjPqOEPqdpSeXME4zCZtBCTcYay4aLN7Tg/w4M4XO/X+orZ9CqYDdqMe2L4D9v2Fm1c+pxmPDYyZmyjnEwNdNVT2Yggt19DvzkmWGcmfFjXdu8k6Somp3T14RL1mdveZRLp92I7iYjnhucq/ic4HKDxFmDIDJAyEqfIAii9swHURcvzoRbY7k5Z4Dk1ggIcaZcdSaZ5JgLRrPa6AuazaUHUXPOMeEN560o9TtNeOqMa8Ft7lCsoebNiMLs29iGlz99FXyROKa8EUz5wpj2RdL/nvJF4DDp8Moc81GVIDPrrNSK9MFhN4xaNTbWiY1+JrszwqgzxdnPnhtWpGomOKevCQcGZrNW6Ijc0Eq/QRCVM2prJAiCqD3zWWfFtz55QjHoNaqi2yGz4UgJFaWDqD2hGJI8ewC1oNmix0yJhiBzwRii8SQ68gjKXqcJ9xwcXbBAdgdjDeXUSMiDMQabQQubQYt1OVppq0mPw5TOOltVYoD0C8NubO+2Q1OH88FrWsxoMmnx/KAbbz5PyoyLxpP47weVqZoJrtragXsPjePPRydx5dYORY65Eqi/dwyRFTFzRjlnBEEQtafTLrU1lhJE7QnGFDO0sJtEW6Oy4kxY5OcTZy0WXclW+vkCqAX9zdICOXP2xx2Kwd5AGWdEY9LjEHb6pc2dReIJHB3z4pw6nDcDJDG8u8+B5zJMQe5+dhhjnjA+9KoNilTNAOA12zrQ3WTEnY+cUeR4KwUSZw1C2q2RZs4IgiBqjlGnRpNJW3LlTClxltnWqCSzMsRZs1lfspX+ZCrjrL2AOAOAoYysM08w2nBOjUTjMS/OSnNsPDLmRTSRrMt5M8GefgdOTfnhCcYQiSfwjf2nsFvBqhkgOV++85Wr8ezgHGWeFQGJswYhECUrfYIgiHqi027EeAlB1JUQZ3MyxNlb7nwK33zotKzjyhJnFh3mgjHEE0lZx8xEVBzzVc56s9jpe0LU1khUnnKzztJmIHVaOQOQruo9PzyHnz07onjVTPDm83phN2rxbaqeyYbEWYMQoJkzgiCIuqLTbiitrVFBUwuDVgWdRlWwrXFkLognz7iw//iUrOPKq5xJ982W0FI56QlDxYDWPMHMrRY9jFo1BlOVs2SSK/raEUQuys06OzjsRrtNn25/rkd29jRBrWJ46owrXTW7WMGqmcCs1+CvL+jDfUcmMDCTP2yckCBx1iD4Iwno1NJFmCAIgqg9kjgrra1RCadGQJodcZi0BdsanzgluR4en/CBc17wuLMpi/xChiDSY4sXZ+OeMFqt+rxmCYyxBXb6vkgcSd54AdREY1JO1tkLQ+66bmkEJNG0udOK7z0+ULGqmeCmC1dBq1LhO49R9UwOtNJvEILROM2bEQRB1BFdTUbMBWMIRRNFfZ1XwbZGQGptLOTW+PhpKbPJE4ph0lt4Tmw2EINFr8lrI95cRhC1ZKNfuKrQ12zC0Ky02+5JCdAmMgQhqkCPw1SSOHP5IxiaDWJXr6MCZ6Usu/sciMaT2NPvqEjVTNBmM+CN53TjZ8+OlDynupIgcdYg+CNxyjgjCIKoI4QN/IRXfmtjIsnhi8QVFWd2Y/7KGeccj59yoTsVnH1swlvwmLOBCBzm/OcoKmel2OlPeMLosOVuaRT0pypnnHO4Q5IIpMoZUQ0ys86K4cURN4D6DJ9ezAVrmgEAH3rV+opVzQTvumQ1IvEk/vepwYo+z3KAxFmDEIjEyUafIAiijuhsSmWdueXvrosAaqUrZ0K4ZOPEpB8z/gjefmE/AKm1sRCuQBROc37x1GIpo3LmCcuax+lrNiEcS2LaF0kLUJo5I6pBZtZZMRwcckPFgB099gqdmXK8emsH/vzhS3Dx+taKP9e6Niuu2NSGHz45WHS3wUqDxFmDEIgkqK2RIAiijugqIevMXQlxZtbmdWt8/JTU0nj1jk602/SyxNlcMApnARFkM2ihUTG4AsVVzvyROHyRODryODUK+lKOjYOzQXhSrx25NRLVoNSssxeG3djQbm0IAzeVimFdm7Vqz/fuS9ZgNhDFz58fqdpzNiIkzhqEQDTeEL/oBEEQKwUhLooxBfFUQJzZjTq4g9GcRh9PnJ5Bf7MJPQ4TNnbYcEyGOJv1F66cqVQMTrOu6MrZRErMirbQfAhxNuQKzgtbqpwRVaCUrLNkkuPFYXfdhk/XmvNXO7Gzx47vPnoGiWRhY6KVComzBiEQiVPGGUEQRB1h0KrhNOswVkTlrBLizGHSIpbgCGZpFYonknjqzCz2rpWG/Td1WHFq2l8wm2w2GEWzpbDxRrNFj5lSxZmMylmPwwQVS1XOgjRzRlSPUrLOzroC8IbjDTFvVgsYY3j3JWsx4AriT0cman06dQuJsxoSjSfxdz95Ac8PFU5Nl9oaSZwRBEHUE512Q1psyKEy4kwEUS8VSS+OeOCPxHHROmnwf2O7FdF4EgOu3HlDwWgc4Vgyfdx8tFh0Rbc1CgOVfAHUAp1GhU67EUOuANzBGEw6dV4HSYJQilKyzg4OuQGgIZwaa8VVW9vR6zTiTgqlzgmJsxry8Ilp/PbFMdz74njBx/ojcVho5owgCKKu6LQbMFaEIUhF2hpTbX7ZHBufSM2bicrZxg5pviRfa6NoU2zOk3EmaC6prVF6vdpltDUCSGeduRWOICCIQhSbdXZw2A2zTo11bZYKnlVjo1GrcMsr1+D5ITeeHZit9enUJSTOasgvUwORxycL2xoHo3GYqHJGEARRV3TajUUZggi3RqVCqIH5ylk2cfb46Rls6bSlw6TXtVmgVrG8piCiApcvgFrQbNEXnVs07gnDYdLCoJW34djfnBJnQRJnRHUpNuvs4LAbO3qaoFZV1pa+0bn+3B40mbT4FlXPskLirEZ4gjE8cHQKjAHHxvMPZ0fiCcQSnKz0CYIg6ozOJgM8oRiC0bisx3tCMRi0KtnCRA6OVOVscVtjKJrA84PudEsjIM3JrWo25a+cBaTjOGSJMx0C0URR1tiT3rDsqhkA9DpNmPFHMe4JkY0+UVWKyToLxxI4Ou7FLjIDKYhJp8HbLujHn49O4vS0v9anU3eQOKsR9740hmgiiTee0w1XIIppX+6dx0BE+lAw66itkSAIop7oTDs2yqueeSpQ/Zlva1wozg4MzCKaSGLvupYFt2/qsOWtnM0W0dbYknJ0LGbubNwTljVvJuhvlhwbj0/40GQsfE4EoRTFZJ29POpBPMlxDpmByOLtF66CVq3Cdx49W+tTqTtInNWIXz4/ig3tFly3uwdA/lDQQETakaW2RoIgiPpCBCnLDar1VGBuSgiWxW2Nj5+egVbNcP4q54LbN3ZYMTQbTF9bFpNua5Tl1lh8EPWEJ4wOGQHUgn6nGQAQT3KqnBFVpZiss4PDbgCgyplMWq16XLe7G4+enEbs/7d359FxXuUdx793RhrJGo0WS5ZG3pTYSSSH2IkVA8GBJmwlBErWFsrWlgKHwuFA2cJ2oC2FlvVQDoWSQ5tCD3sI7Skk7DgpcRJIbGe1JS94t/Z9JI000u0f8448lmc0M/KM3lczv885Opbfed+Zq8fynXnee+9zM1SPLTVKzlxwtD/CY8eGuLVjPe3zi7PTrzuLONNlNK1RRMRbzm5End26lEIkZ4EyH8GA/7yNqHcfGmD7hvrzKv0mioJ09aS+KTgQmabcbwhl8Z7TUJ3byFk0NstAZDqrPc4SEnudgfY4k+WVy15ne08Ms65uFU2h7H+3S90dN7Tzq/deR7lf6UgyRcMF9+w9hTFw01VraaiuoLG6YtH5/4m7myqlLyLiLc218eQk62mNBao4WFcVOGda4/DENE+dHmFn0nqzhMRNwXQzNgbHp6mvCmBM5qIGiamP2e511jsaT+JymdZYW1U+HzMVBJHllMteZ/uOD2t/sxzVVQW0NUYKSs6WmbWWH+09ybWbG+enw7SHQ4tOaxx31pyplL6IiLdUlPlprA7kNHKWz0qNCfXBcoYnz46cPXR4AGvh2gXrzQA21FdRFfCnvSk4ODGdVaVGyH1aY2KPs2w2oE6WWHemNWeynBJ7nT1xagRrbdrz+sainBqeVHImeaHkbJk9emyIE4OT3Nqxbv5YezhEV88Ys3Op/+NPJNacBTRyJiLiNbmU0y/YyNmqwDnVGh883E8w4E/5YdHnM1zanP6m4GAk++SsKlBGVcCfdTn9RJxyTc42OFMbteZMltttHet5oKuPf/jxM2kTNK03k3xScrbM7tlzklXlfl72rPD8sbZwiGhsjqMDkZTXjEe15kxExKvCtZVZFQSJzc4xHo0VaFpj+TkFQXYfGuA5F69Ou5ajvTlEZ89Yyg+bQzkkZxAfPRuMZDly5oww5jxylkjONK1Rltm7X3Ipf3XtRdz14FE++ZP9Kf/P7DsxhN9nuGJtrQstlGKj5GwZTc3M8uMnzvDyK8LnrB9rD9cA6ef/a82ZiIh3ra2t5HQW0xpHp+J9eSGSs/qkNWenhyc50h9JOaUxoS0cYjAyTV+KEa+BHJOz1cEK+rNOzqIEA/6sio0kS0xrVEEQWW7GGD72ysv5y50X8fXf/oF/vu/AeQnavhPDtIdDrNKWR5IHJf9p31pLZHp2WUalfrW/l7GpGLc65fMTLm2uxmfgQPcYN25tOe+6iLO5Z1BrzkREPKelbhVjUzHGo7FF30tGnDVhhRo5G5mcYW7O8uChfgB2bk6fnCUXBUmuLjczO8fI5ExOyVljMDC/liyT7tFJmmsrsyo2kuzGrS2MTsbY4tzMFFlOxhg+/ieXMztn+doDR/D5DB94WRvGGGbnLI+fGOHm7WvdbqYUiZIfOXv1nQ/zzm/vWZbXumfPSZprKnje5nOrZ1WW+7moMciBM6nL6UeiMcp8hoBKjYqIeE6i8mB3htGzwiZnAeYsjE7NsPvwAKuDgfkELJW2NBUbE1Mjs9mAOqGhOpB1QZBcN6BOCFWW85Y/2oTPl1tSJ5Ivxhj+/lXP4rXP3chXdx3m8z/vwlrL4b5xxqMxrtpQ73YTpUiU/MjZpsYgP326G2ttznfyctE/HmVXVx9vfsHF+FO8ubSHQzx9On1yFqwoK2j7RERkaRKVd08PT3FJU/qEKJGcFaKoRb3znEMTMzx4qJ+dmxsWTWTSbeOSWDtWn1NyVsFAJJrV+2jPyBTXbD6/vL/ISuDzGf7xpiuw1vLl3xzC5zOsr4v//1elRsmXkh+K6dhYz/DEDEf6UxfjyJf/ffw0s3OWW7evT/l4W3MNxwcnmHA2nE42Hl2eaZciIpK7syNni0/tK/S0RoBHjw7SOxZddL1ZQqptXBKbSedUECQYYGbWzq+pS2d2ztIzFl3SyJmIV/h8hk/evJVX79jAl351kC/8ootQZRmbGoNuN02KhJKz1joAHjs2VNDXuWfPKa5YVzM/lWSh9pYQ1kJXz/h5j0WiMaq0yFRExJOaayoxhoxFQRLJWSH2OauriidTP3nyDADXLrLeLKEtxTYuQ5HEtMaKrF+7sTp+bqZy+gPjUWbnLGFnpFFkpfL5DP9061Zuv3o93aNTXLWhTlNuJW9KPjnb1FhNTWUZe48XLjnr6hnjyVMj3JJm1AzOLs5Ote4sMh1TpUYREY8KlPlorK7IWE5/tIAjZ/VOcvbbg/2sr1/FRqe64WIS27gcS9rGZdAZOasPZt/G+Y2oM1RsnN/jrEYjZ7Ly+XyGT9+2jfe/rI23X3+J282RIlLyn/h9PsP2jfXsOTZcsNe4Z88p/D7Dq65MX8lnQ30VVQH/efP/IT5ypmmNIiLe1VJbyZkMFQtHJmeoLPdRUZb/mRCJ/b9ic5bnZzGlEc6t2LhpTTUAg87IWSLZy0ZilC3TyFkiOdO0RikWfp/hHS9UYib5VfIjZwBXt9bT1TvG6NRM5pNzNDtn+Z99p7jusjWsCaWfJuLzGS5rPn/+P0AkOqsy+iIiHtZSW8mZ4fTTGkenZvjZ091sXJ15RGspalaVk6jFsTPL5OzSphDG2cYlYTASpaayLO3m1ak0OiNn/RkqNvY4yWuuG1CLiJQSJWfEi4JYC4+fGM77cz98ZIAzI1Pcsn1dxnPbwyEOdI+et7lhZDpGMKCRMxERr2qpXTU/MrSQtZY77n6Ck0OTfOqWrQV5fb/PzE+X3JllNcRVAT8XNQTPuSk4EJmmoTr79WZwtrJjpnL6Z0amKPcbVucwKiciUmqUnAFXbqjFmMIUBfnhnpOEKsp46eXNGc9tC4cYmpihb+zcqSGJUvoiIuJNLbWVjEdjjKWYgXHXg0e576lu7rihjR0XrS5YG+pWldMeDs0X6MhGW3OIzp6zydnQxHROlRoByv0+6qrK5ys9ptM9MklzTaUKJ4iILCJjcmaM2WCM+Y0xZr8x5mljzLuc4581xhwwxjxhjPmRMaau4K0tkFBlOW3NIfYcH87r80Zjs/zsqW5u3NpCZXnmaYmJSo4L153FpzUqORMR8aoWZ6+jhaNne44P8al79/PSy5t5yws2FbQN73rJpdxxQ3tO17SFQxwdiDA5PQvER79yWW+W0BDMvBF19+jSNqAWESkl2YycxYD3Wmu3ANcA7zDGXA78ArjCWrsN6AI+VLhmFt72jfXsPT7E3JzNfHKWfveHQSLTs/zxszKPmgG0h2sAONB9tmLjdGyO6dk5qrXmTETEs9Y6ScfppHVnQ5Fp3vntvYRrK/nc7Vdm3KD5Qt2yfT0vbG/K6Zr2cHwbl4O98ZuCg5FpGnIcOYP4RtT9GQqCdI9M0axKjSIii8qYnFlrz1hr9zjfjwH7gXXW2p9baxM7Tj4MpK8TvwJc3VrP2FSMw33n7zO2VLs6+wj4fTwvy/n/q4MBmkIV54ycJTalrtKaMxERzwov2Ih6bs7ynu/vo28sylde10FtVf7L5+dD8owNa218WmN17slZY3Vg0VL61lqNnImIZCGnNWfGmIuA7cAjCx56E3Bfntrkio6NdUB+153d39XHczetzimxagufW7FxPBpPzlRKX0TEu85uRB1Pzr72wBF+09nHR1+5hW3r69xt3CJaG4JUlvvo7B5jLBpjZtYuqWBHQ7Bi0VL6I5MzTM3MaeRMRCSDrJMzY0w18EPg3dba0aTjHyE+9fFbaa57qzHmUWPMo319fRfa3oK5uDFIfVU5e/K0GfXJoQkO9Y5z3WVrcrpuS0sNB3vHic3OAfH1ZoDWnImIeFi530dTqIIzw5M8cmSAz/28k1dsa+EN17S63bRF+X2GS5viNwUHnTVjuRYEgfhG1EMTM/PvXclODE7w0f9+CoANBdpKQESkWGT1id8YU048MfuWtfaepON/AbwSeLFdWP/dYa29E7gTYMeOHflb0JVnxjibUeepKMiuzngien1bbslZW3OI6dgcRwciXNIUmh85q9KaMxERTwvXruKZM6O88zt7aV1dxadv21bwdWb50BYOsauzj8GJC0nO4hUiByemaQrFR8eGItN8+TeH+K+HjmEMvO26zbxkS3ZrsEVESlXG5MzE31n+Hdhvrf1C0vEbgDuA66y1E4Vr4vLp2FjHrw/0MjIxc8HrA3Z19rGubhWb11TndF3y/P9LmkLza840rVFExNvW1lZy31PdVJT5+MabnrNi+u32cIi7HzvJoZ74muulJGeNzjWDkWlCFeXctfsPfHXXYSLRGLd1rOdvX3oZa52KliIikl427xzXAm8AnjTG7HOOfRj4ElAB/MK5M/iwtfZthWjkcunYWA/A3hNDXN+WW8WrZNHYLLsP93PL9nU53zW9pKkav8/Q2T3GK7fF9zgDtAm1iIjHJZKPT9x0BVtaalxuTfYSNwUfOjIALC05S1zzzYeO8ev9vXSPTvHi9iY+cEP7/POLiEhmGT/xW2t/C6TKMO7Nf3PcdeWGOnwG9hy7sOTssaNDTEzPLuk5Ksv9XNwYZP+ZeFGQcWfN2Uq5AysiUqre+LxWtrTUcFvHOrebkpP55Ozw0pOzxLTGbz9ynCs31PHF11zFNZuyq1QsIiJn6RN/kmBFGe3hmgted7arK15Cf2eWJfQXaguHeOJkvA3zpfS15kxExNNaG4K0NgTdbkbO1lRXsDoYoHt0iooyH1WB3N9vLm4M8tY/2sRVG+p4+RXhFbHWTkTEi3IqpV8KOlrr2HdimNkL2Ix6V2cvz764fskVFtubQ5wYnGQ8GlMpfRERKShjDG3N8dGzhmBgSYmV32f48I1buHFrixIzEZELoORsgY6N9YxHYxzsHct8cgqnhyfp6hnn+suWPi2y3Vmr0Nk9RiQaw+8zVJTpn0pERAojMbWxfglTGkVEJH/0iX+BRFGQPceGl3R9ooT+dTmW0E/W7rxJxpOzWYIBv+5EiohIwSTed5ay3kxERPJHydkCrQ1VNAQDPHZsaZtR7+rsZW1tJZc25VZCP9m6ulUEA346u0eJRGPagFpERAoqMXLWoORMRMRVSs4WSGxGvfd47snZdGyO3YcHuK6t6YJGunw+Q1s4xIHuMSLTSs5ERKSwLmsOYQysDla43RQRkZKm5CyFjtY6jvRHGIpM53TdY8eGGI/GuP4CpjQmtIVrONA9xnh0VsmZiIgUVLCijM//6ZW8/pqNbjdFRKSkKTlLIXkz6lzs6uql3G+49pLGC25DezjEyOQMR/rGCS6hrLGIiEgubu1Yz6Y1S5+SLyIiF07JWQrb1tfi95mci4Lc39nHjtbVeSl7n5j/f3JoUiNnIiIiIiIlQMlZClWBMi5vqcmpKMiZkUkOdI9dUJXGZInKWaA9zkRERERESoGSszQ6Ntbx+MlhYrNzWZ1/v1NCPx/rzQDqqgKEayoBCFZoWqOIiIiISLFTcpZGR2s9E9OzdPZktxn1/V19hGsqaWsOZT45S4mpjcGARs5ERERERIqdkrM05jejPj6c8dyZ2Tl+e7Cf69vW5HWz6PYWJznTtEYRERERkaKn5CyN9fWraKyuYG8W6872HBtiLE8l9JMl1p0pORMRERERKX5KztIwxnB1ax2PZbEZ9a6uPsp8+Smhn2xLSw0ANZVKzkREREREip2Ss0V0bKzn2MAE/ePRRc/b1dnH1a31hCrL8/r6bc0h/uU1V/HyrS15fV4REREREfEeJWeL6Gh1NqNeZN1Zz+gU+8+M5q2EfjJjDDddtU6l9EVERERESoA+9S9i67paynyG7/3+BH4fbF5Tzfr6Kvy+s0U/7u9ySuhf1uRWM0VEREREpAgoOVtEZbmfF7U38fNnevjl/h4AAn4frQ1VbF5TzaY1QR75wyDNNRVsaclfCX0RERERESk9Ss4yuPONOxiKTHOkf5zDvREOO3929Y7xy/09xOYsr79mY15L6IuIiIiISOlRcpaF+mCAq4Orubp19TnHZ2bnODU0Sbi20qWWiYiIiIhIsVBydgHK/T4uagy63QwRERERESkCqtYoIiIiIiLiAUrOREREREREPEDJmYiIiIiIiAcoORMREREREfEAJWciIiIiIiIeoORMRERERETEA5SciYiIiIiIeICSMxEREREREQ9QciYiIiIiIuIBSs5EREREREQ8wFhrl+/FjOkDji3bC2avEeh3uxElSrF3j2LvHsXePYq9uxR/9yj27lHs3ePV2Ldaa9ekemBZkzOvMsY8aq3d4XY7SpFi7x7F3j2KvXsUe3cp/u5R7N2j2LtnJcZe0xpFREREREQ8QMmZiIiIiIiIByg5i7vT7QaUMMXePYq9exR79yj27lL83aPYu0exd8+Ki73WnImIiIiIiHiARs5EREREREQ8YEUlZ8aYG4wxncaYQ8aYDyYd/54xZp/zddQYsy/N9auNMb8wxhx0/qx3jr8u6fp9xpg5Y8xVKa7/lvP6Txlj/sMYU+4cN8aYLzntesIY01GYCLjLw/FvN8Y8ZIyJGmPeV5if3l0ejv3rnN/5J4wxu40xVxYmAu7xcOxvcuK+zxjzqDHm+YWJgHsKGPtyY8w3jDFPGmP2G2M+lOb6i40xjzjXf88YE3COF32f7+HYq793L/bq792Lvfp7l2Kf9PizjTGzxpjb8/hjp2atXRFfgB84DGwCAsDjwOUpzvs88LE0z/EZ4IPO9x8EPp3inK3AkTTX3wgY5+s7wN8kHb/POX4N8Ijb8Sqx+DcBzwY+CbzP7ViVWOx3AvXO9y8vtt99j8e+mrNT07cBB9yO10qJPfBa4LvO91XAUeCiFNd/H3iN8/2/lUqf7/HYq793L/bq792Lvfp7l2Kf1L5fA/cCtxc6Hitp5Ow5wCFr7RFr7TTwXeCm5BOMMQb4M+IfYFK5CfiG8/03gJtTnPPn6a631t5rHcDvgPVJz/tN56GHgTpjTEvWP9nK4Nn4W2t7rbW/B2Zy+olWDi/Hfre1dsg57WHO/p8oFl6O/bhzDCAIFNsC4kLG3gJBY0wZsAqYBkZTPPeLgLtTXF/sfb5nY6/+3tXYq793L/bq793r7wHeCfwQ6M3x51qSlZScrQNOJP39pHMs2QuAHmvtwTTP0WytPQPg/NmU4pxXk/4fHogPkQJvAH6aQ9tWOi/Hv9itlNj/NfHRhGLi6dgbY24xxhwAfgK8abHrV6BCxv5uIAKcAY4Dn7PWDi64tgEYttbGUrx+sff5Xo59sVspsVd/n1rBYq/+3p3YG2PWAbcQH01bFispOTMpji28c5D27nNWL2DMc4EJa+1TGU79CvCAtfb/cmjbSufl+Bc7z8feGPNC4m/Wdyy1DR7l6dhba39krW0nfofvE0ttg0cVMvbPAWaBtcDFwHuNMZtyeP1i7/O9HPti5/nYq793J/bq712L/ReBO6y1s0t47SVZScnZSWBD0t/XA6cTf3GGK28Fvpd07C5nAeG9zqGexNQT58+Fw5OvIfPd648Da4D3ZNu2IuHl+Bc7T8feGLMN+Dpwk7V2IIefayXwdOwTrLUPAJuNMY3Z/FArRCFj/1rgp9baGWttL/AgsGPB6/cTn65YluL1i73P93Lsi52nY6/+3v3fe/X388eWK/Y7gO8aY44CtwNfMcbcfAE/a2bWAwsBs/kCyoAjxLPexGLBZyU9fgNwf4bn+CznLhb8TNJjPuK/HJsWuf7NwG5g1YLjr+DcxeG/cztepRT/pMf/juJcIO7Z2AMbgUPATrfjVIKxv4SzC8Q7gFOJvxfDVyFjT/yO/11Onx0EngG2pbj+B5y7QPztzvdF3ed7OfZJj6u/X+bYo/7ezdirv3e5z3GO/yfLUBDE9X+QHP/xbgS6iFd0+UiKgL0tw/UNwK+Ag86fq5Meux54OMP1Mee19zlfH3OOG+BfnceeBHa4HasSi3+Y+AfcUWDY+b7G7XiVSOy/DgwlHX/U7ViVUOzvAJ52jj0EPN/tWK2U2BOvfPYDJ37PAO9Pc/0m4kVYDjnnVzjHi77P93Ds1d+7F3v19+7FXv29S7FP0Y6CJ2eJLFxERERERERctJLWnImIiIiIiBQtJWciIiIiIiIeoORMRERERETEA5SciYiIiIiIeICSMxEREREREQ9QciYiIiIiIuIBSs5EREREREQ8QMmZiIiIiIiIB/w/4Bdge6yeEnsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADAeklEQVR4nOydd5xjV3n+n6Pepelt+2z1Fq/XXuNurw0YYsD0ZgyGUAOhhxJCgPxCTQIEktAhBBwIYMCEGFPMGnd7bbNu22d3tkzVaKRR7+f3x73njmZG5V7pqs28389nP7sraa7uaDS65z3P8z4v45yDIAiCIAiCIAiCaC6GZp8AQRAEQRAEQRAEQcUZQRAEQRAEQRBES0DFGUEQBEEQBEEQRAtAxRlBEARBEARBEEQLQMUZQRAEQRAEQRBEC0DFGUEQBEEQBEEQRAtAxRlBEARBEARBEEQLQMUZQRBEm8IYixb8yTPGEgX/v6nZ51cNjLFRxtizm30e5WCM3c0Ye3Odjr2ZMXY7Y8zPGJtljP2WMbal4P6vL/q5pxhjkYL7tzHG/sgYm2OMnWCMvWTR8a9jjB1hjMUZY/sZY2sL7mOMsc8zxgLyny8wxlg9vk+CIAiiOFScEQRBtCmcc5f4A+AMgBcW3HZrs89vMYwx03J4jjrjA/ArAFsA9AF4BMDt4k7O+dsX/dx/BOCngPK93w7g1wA6AbwVwA8ZY5vl+7sB/BzAx+X7HwXwPwXP/VYALwZwPoBdAF4A4G11+j4JgiCIIlBxRhAEscxgjBkYYx9hjI3ICshPGGOd8n3rGGOcMfZGxthZxliQMfZ2xthextiTjLEQY+zfCo51C2PsfsbYV2U15ghj7LqC+72Mse8wxiYYY2OMsX9kjBkXfe2XGGOzAD7JGBuWlZ0AY2yGMXYrY8wnP/4HANYA+F9ZFfoQY+waxti5Rd+foq4xxj7JGPsZY+yHjLEwgFsqnNNGxtif5O9lhjFWWJwUPodNPmZAfk0OMMb6GGOfBnAlgH+Tz/Hf5MdvZYz9Xla7jjLGXllwrP+UFa/fM8Yi8vOvLfa8nPNHOOff4ZzPcs4zAL4EYAtjrKvIOToBvAzA9+WbtgIYBPAlznmOc/5HAPcDuFm+/6UAnuGc/5RzngTwSQDnM8a2yve/AcC/cM7Pcc7HAPwLgFuKnSdBEARRH6g4IwiCWH68G5ICcjWkxXoQwL8vesyzAGwC8CoAXwbwMQDPBrAdwCsZY1cveuxJAN0APgHg56LYg1QYZAFsBHABgOcCeHORr+0F8GkADMBn5fPaBmA1pCIBnPObsVAB/ILK7/dGAD+DpDrdWuGc/h+A3wHoALAKwFdLHPMNALzy+XUBeDuABOf8YwDuBfAu+RzfJRdJvwfw3/L3+RoA/8EY215wvJvk5+4GcFA+TzVcBWCScx4oct/LAPgB3CP/v5gFkQHYIf97O4AnxB2c8xiAEfn2JffL/y78HgiCIIg6Q8UZQRDE8uNtAD4mKyApSMXPyxdZ/v4f5zzJOf8dgBiAH3HOp2XF5F5IRY1gGsCXOecZzvn/ADgK4AbGWB+A5wN4L+c8xjmfhqT0vLrga8c551/lnGc55wnO+QnO+e855ynOuR/AFyEVkbXwIOf8l5zzPABPhXPKAFgLYFD+/u8rccwMpKJso6xCPcY5D5d47AsAjHLOvyd/n48DuA3Aywse83+c83vkn8fHAFzKGFtd7ptijK2CVFS/v8RD3gDgvzjnXP7/EUg/q79hjJkZY8+F9No65PtdAOYWHWMOgLvE/XMAXNR3RhAE0Tja3ZtPEARBLGUtgF8wxvIFt+Ug9TAJpgr+nSjyf1fB/8cKCgAAOA1J+VoLwAxgomD9bgBwtuCxhf8GY6wXwFcgWQPd8uODqr6r0hQ+R6Vz+hAkBesRxlgQko3vu0WO+QNIqtmPZdvlDyEVvJkij10L4FmMsVDBbSb5GEvOkXMelW2eg4vOXYEx1gNJ4fsPzvmPity/GlLh9ZaC42YYYy+GpAZ+GFJP2U8ApOSHRCEVr4V4AERK3O8BEF30sycIgiDqCClnBEEQy4+zAJ7POfcV/LHJqlg1DC1ST9YAGJefJwWgu+B5PJzzQivc4oX9Z+XbdnHOPQBeh4V2vMWPj2Fe+YHcO9az6DGFX1P2nDjnk5zzt3DOByEpjP/BGNu4+BuWVcJPcc7PA3AZJHXs9SXO8SyAPy16vV2c83cUPEZRyRhjLkiBHOOLn1e+vwNSYfYrzvmniz1GPpcHOOcnF533k5zzqznnXZzz6wFsgBQqAgDPQAr7EM/jBDAs377kfvnfz4AgCIJoGFScEQRBLD++DuDTInSCMdbDGLuxhuP1Ani3bJV7BaResTs45xOQioh/YYx55CCS4UX9aotxQ1JoQoyxIQB/s+j+KUgFheAYABtj7AbGmBnA3wGwljp4pXNijL1CtgsCkmLHIamKC2CM7WOM7ZSLwTAkm6N43OJz/DWAzYyxm+XXyMykgJVtBY/5C8bYFYwxCyTl7mHO+RLVjDHmAfBbAPdzzj9S6vuEVJz9Z5Gv3yWHmTgYYx8EMFDwuF8A2MEYexljzAbg7wE8yTk/It//XwDezxgbYowNAvhAsecgCIIg6gcVZwRBEMuPf4UUx/47Js3AeghSMEe1PAwpPGQGUqjHywsCKl4PwALgEKRi52eQCoJSfArAHkj9TP8HKdq9kM8C+Ds5IfGDnPM5AH8F4NsAxiApaedQnnLntBfAw4yxKKTX6D2c81NFjtEvf10YwGEAf4JkbQSk1/flTEq6/ArnPAIpdOTVkNSwSQCfx8Ii8r8hhanMArgQUkBIMV4in+Mb2cJ5ZmvEAxhjl0IKM/lpka+/GcAEpN6z6wA8R+5zg9zj9zJIP8MgpPdEYX/gNwD8L4CnADwN6efzjRLnSRAEQdQBRlZygiAIohSMsVsAvJlzfkWzz6VdYYz9J4BznPO/a/a5EARBEK0NKWcEQRAEQRAEQRAtABVnBEEQBEEQBEEQLQDZGgmCIAiCIAiCIFoAUs4IgiAIgiAIgiBaACrOCIIgCIIgCIIgWgBTI5+su7ubr1u3rpFPSRAEQRAEQRAE0TI89thjM5zznmL3NbQ4W7duHR599NFGPiVBEARBEARBEETLwBg7Xeo+sjUSBEEQBEEQBEG0AFScEQRBEARBEARBtABUnBEEQRAEQRAEQbQADe05IwiCIAiCIIhWIZPJ4Ny5c0gmk80+FWIZYrPZsGrVKpjNZtVfQ8UZQRAEQRAEsSI5d+4c3G431q1bB8ZYs0+HWEZwzhEIBHDu3DmsX79e9deRrZEgCIIgCIJYkSSTSXR1dVFhRugOYwxdXV2aVVkqzgiCIAiCIIgVCxVmRL2o5r1FxRlBEARBEARBNIlPf/rT2L59O3bt2oXdu3fj4YcfBgC8+c1vxqFDh3R5jnXr1mFmZqbsYz7zmc9oPu5//ud/4l3veteC2773ve9h9+7d2L17NywWC3bu3Indu3fjIx/5iObjN4Ivf/nLiMfjzT4NBeo5IwiCIAiCIIgm8OCDD+LXv/41Hn/8cVitVszMzCCdTgMAvv3tbzf0XD7zmc/gb//2b2s+zhvf+Ea88Y1vBCAVhfv370d3d3fNx60Wzjk45zAYimtSX/7yl/G6170ODodD9TGz2SxMpvqUUaScrWAOjM4iFE83+zQIgiAIgiBWJBMTE+ju7obVagUAdHd3Y3BwEABwzTXX4NFHHwUAuFwufPjDH8aFF16IZz/72XjkkUdwzTXXYMOGDfjVr34FYKmK9YIXvAB33333kud88YtfjAsvvBDbt2/HN7/5TQDARz7yESQSCezevRs33XQTAOCHP/whLr74YuzevRtve9vbkMvlAEjK2ObNm3H11Vfj/vvvV/29/tM//RP27t2LXbt24ROf+AQAYHR0FFu3bsWb3/xm7NixAzfddBP+8Ic/4PLLL8emTZvwyCOPAAA++clP4uabb8a1116LTZs24Vvf+lbF427btg1/9Vd/hT179uDs2bN4xzvegYsuugjbt29XHveVr3wF4+Pj2LdvH/bt26e81oKf/exnuOWWWwAAt9xyC97//vdj3759+PCHP4yRkRE873nPw4UXXogrr7wSR44cUf1alEVUk6X+AFgNYD+AwwCeAfCegvv+GsBR+fYvVDrWhRdeyInW4PhUmK/7yK/5v/z2SLNPhSAIgiAIoikcOnSoqc8fiUT4+eefzzdt2sTf8Y538Lvvvlu57+qrr+YHDhzgnHMOgN9xxx2cc85f/OIX8+c85zk8nU7zgwcP8vPPP59zzvn3vvc9/s53vlP5+htuuIHv37+fc8752rVrud/v55xzHggEOOecx+Nxvn37dj4zM8M559zpdCpfe+jQIf6CF7yAp9Npzjnn73jHO/j3v/99Pj4+zlevXs2np6d5KpXil1122YLnXIx43t/+9rf8LW95C8/n8zyXy/EbbriB/+lPf+KnTp3iRqORP/nkkzyXy/E9e/bwN77xjTyfz/Nf/vKX/MYbb+Scc/6JT3yC79q1i8fjce73+/mqVav42NhY2eMyxviDDz6onIv4vrPZLL/66qv5E088seS1Wfw6/PSnP+VveMMbOOecv+ENb+A33HADz2aznHPOr732Wn7s2DHOOecPPfQQ37dvX9HXoNh7DMCjvES9pEaPywL4AOf8ccaYG8BjjLHfA+gDcCOAXZzzFGOsV59ykWgE/7F/BJwDZ4OJZp8KQRAEQRBE0/nU/z6DQ+NhXY953qAHn3jh9pL3u1wuPPbYY7j33nuxf/9+vOpVr8LnPvc5Ra0RWCwWPO95zwMA7Ny5E1arFWazGTt37sTo6Kimc/rKV76CX/ziFwCAs2fP4vjx4+jq6lrwmLvuuguPPfYY9u7dCwBIJBLo7e3Fww8/jGuuuQY9PT0AgFe96lU4duxYxef83e9+h9/97ne44IILAADRaBTHjx/HmjVrsH79euzcuRMAsH37dlx33XVgjC353m688UbY7XbY7Xbs27cPjzzyCO67776Sx127di0uueQS5et/8pOf4Jvf/Cay2SwmJiZw6NAh7Nq1S9Nr94pXvAJGoxHRaBQPPPAAXvGKVyj3pVIpTccqRcXijHM+AWBC/neEMXYYwBCAtwD4HOc8Jd83rcsZEXXnTCCO258YBwCMh6g4IwiCIAiCaBZGoxHXXHMNrrnmGuzcuRPf//73lxRnZrNZSf4zGAyKDdJgMCCbzQIATCYT8vm88jXFItzvvvtu/OEPf8CDDz4Ih8OBa665pujjOOd4wxvegM9+9rMLbv/lL39ZVQIh5xwf/ehH8ba3vW3B7aOjo8r3Uu57A5YmHzLGyh7X6XQq/z916hT++Z//GQcOHEBHRwduueWWkhH3hc+z+DHimPl8Hj6fDwcPHqz0rWtGUycbY2wdgAsAPAzgnwBcyRj7NIAkgA9yzg8U+Zq3AngrAKxZs6bW8yV04Ov3jMDIGPZu6MAYFWcEQRAEQRBlFa56cfToURgMBmzatAkAcPDgQaxdu7aqY61btw7/8R//gXw+j7GxMaVfq5C5uTl0dHTA4XDgyJEjeOihh5T7zGYzMpkMzGYzrrvuOtx444143/veh97eXszOziISieBZz3oW3vOe9yAQCMDj8eCnP/0pzj///Irndv311+PjH/84brrpJrhcLoyNjcFsNmv6/m6//XZ89KMfRSwWw913343Pfe5zsNvtqo4bDofhdDrh9XoxNTWF3/zmN7jmmmsAAG63G5FIRAkt6evrw+HDh7Flyxb84he/gNvtXnI8j8eD9evX46c//Sle8YpXgHOOJ598UtVrUQnVxRljzAXgNgDv5ZyHGWMmAB0ALgGwF8BPGGMbZB+lAuf8mwC+CQAXXXQRB9FUpsJJ/OzRc3jZhavgc5jx2Okg8nkOg4FmfBAEQRAEQTSSaDSKv/7rv0YoFILJZMLGjRuVkA6tXH755YpFcMeOHdizZ8+Sxzzvec/D17/+dezatQtbtmxZYPt761vfil27dmHPnj249dZb8Y//+I947nOfi3w+D7PZjH//93/HJZdcgk9+8pO49NJLMTAwgD179ihBIeV47nOfi8OHD+PSSy8FINk5f/jDH8JoNKr+/i6++GLccMMNOHPmDD7+8Y9jcHAQg4ODqo57/vnn44ILLsD27duxYcMGXH755Qu+7+c///kYGBjA/v378bnPfQ4veMELsHr1auzYsQPRaLTo+dx66614xzvegX/8x39EJpPBq1/9al2KM7aolir+IMbMAH4N4Lec8y/Kt90JydZ4t/z/EQCXcM79pY5z0UUXcZE6QzSHf/z1IXzvgVHs/8A1+NOxaXz89mfwyN9eh16PrdmnRhAEQRAE0VAOHz6Mbdu2Nfs0iAp88pOfhMvlwgc/+MFmn4pmir3HGGOPcc4vKvb4ilH6TDJefgfAYVGYyfwSwLXyYzYDsAAoP92OaCqzsTRuffgMXnT+INZ0OTDoswMAxueKe24JgiAIgiAIgmgcamyNlwO4GcBTjLGD8m1/C+C7AL7LGHsaQBrAGxZbGonW4j/vP4VEJoe/umYYADDglYuzUAK7V/uaeGYEQRAEQRAEUZxPfvKTzT6FhqEmrfE+AKUakl6n7+kQ9SKSzOA/HxjF9dv7sKlPamwc9ElWRkpsJAiCIAiCIIjmU9HWSCwPfvDQaYSTWbxr3yblNq/dDIfFiPEQ2RoJgiAIgiAIotlQcbYCSKRz+M69p3DV5h7sXOVVbmeMYcBrw8QcKWcEQRAEQRAE0WyoOFsB/M+BMwjE0nin3GtWyKDPToEgBEEQBEEQBNECUHG2zEln8/jGPSexd10HnrWha8n9g1479ZwRBEEQBEE0CaPRiN27d2PHjh14xStegXg8XvWxbrnlFvzsZz8DALz5zW/GoUOHSj727rvvxgMPPKD8/+tf/zr+67/+q+rnFoyOjmLHjh0LbvvkJz+Jf/7nf9Z0HL3Op91QPYSaaE9+8edzmJhL4rMv3Vn0/kGfHf5ICqlsDlaT+kGABEEQBEEQRO3Y7XYcPHgQAHDTTTfh61//Ot7//vcr9+dyOU3DmgXf/va3y95/9913w+Vy4bLLLgMAvP3tb9f8HPUim8221Pk0ElLOljG5PMfX7h7BjiEPrt7cU/QxA3Ji49RcqpGnRhAEQRAE0V584QvA/v0Lb9u/X7pdJ6688kqcOHECd999N/bt24fXvva12LlzJ3K5HP7mb/4Ge/fuxa5du/CNb3wDAMA5x7ve9S6cd955uOGGGzA9Pa0c65prrsGjjz4KALjzzjuxZ88enH/++bjuuuswOjqKr3/96/jSl76E3bt34957712gbh08eBCXXHIJdu3ahZe85CUIBoPKMT/84Q/j4osvxubNm3Hvvfdq/h7LHftv//ZvcfXVV+Nf//VflfMZHx/H7t27lT9GoxGnT5/G6dOncd1112HXrl247rrrcObMGQCSevjud78bl112GTZs2KAoie0CFWfLmP97agKjgTjeec1GSLPElzKkDKImayNBEARBEERJ9u4FXvnK+QJt/37p/3v36nL4bDaL3/zmN9i5U3I7PfLII/j0pz+NQ4cO4Tvf+Q68Xi8OHDiAAwcO4Fvf+hZOnTqFX/ziFzh69CieeuopfOtb31pgUxT4/X685S1vwW233YYnnngCP/3pT7Fu3Tq8/e1vx/ve9z4cPHgQV1555YKvef3rX4/Pf/7zePLJJ7Fz50586lOfWnCejzzyCL785S8vuL2QkZGRBQXV17/+dVXHDoVC+NOf/oQPfOADym2Dg4M4ePAgDh48iLe85S142ctehrVr1+Jd73oXXv/61+PJJ5/ETTfdhHe/+93K10xMTOC+++7Dr3/9a3zkIx/R+JNoLmRrXMZ8975T2NjrwvXb+0s+ZsBLs84IgiAIgiDw3vcCsr2wJIODwPXXAwMDwMQEsG0b8KlPSX+KsXs38OUvlz1kIpHA7t27AUjK2V/+5V/igQcewMUXX4z169cDAH73u9/hySefVFSgubk5HD9+HPfccw9e85rXwGg0YnBwENdee+2S4z/00EO46qqrlGN1dnaWPZ+5uTmEQiFcffXVAIA3vOENeMUrXqHc/9KXvhQAcOGFF2J0dLToMYaHhxWrJjA/RLrSsV/1qleVPK/7778f3/72txW17sEHH8TPf/5zAMDNN9+MD33oQ8pjX/ziF8NgMOC8887D1NRU2e+31aDibJmSyeXxzPgc/vKKDTAYSs0QBwa8knI2QYmNBEEQBEEQ5enokAqzM2eANWuk/9dIYc9ZIU6nU/k35xxf/epXcf311y94zB133FHSHVX4tZUeowWr1QpACjLJZrO6HRdY+D0XMjExgb/8y7/Er371K7hcrqKPKfwexTkC0vffTlBxtkw56Y8hk+PY2u8u+zi7xYhOp4WUM4IgCIIgVjYVFC4A81bGj38c+NrXgE98Ati3r+6ndv311+NrX/sarr32WpjNZhw7dgxDQ0O46qqr8I1vfAOvf/3rMT09jf379+O1r33tgq+99NJL8c53vhOnTp3C+vXrMTs7i87OTrjdboTD4SXP5fV60dHRgXvvvRdXXnklfvCDHyhKV61Uc+xMJoNXvvKV+PznP4/Nmzcrt1922WX48Y9/jJtvvhm33norrrjiCl3OsdlQcbZMOTIp/bJtqVCcAZK1kYozgiAIgiCIMojC7Cc/kQqyffsW/r+OvPnNb8bo6Cj27NkDzjl6enrwy1/+Ei95yUvwxz/+ETt37sTmzZuLFjo9PT345je/iZe+9KXI5/Po7e3F73//e7zwhS/Ey1/+ctx+++346le/uuBrvv/97+Ptb3874vE4NmzYgO9973u6fS9aj/3AAw/gwIED+MQnPoFPfOITACTF8Ctf+Qre9KY34Z/+6Z/Q09Oj6zk2E9ZIqe+iiy7iIjWGqC+fv/MIvnXPSRz6h+fBYiqf+/KW/3oUZ2fjuPO9VzXo7AiCIAiCIJrP4cOHsW3bNnUP/sIXpPCPwkJs/37gwAGgoN+JIAop9h5jjD3GOb+o2ONJOVumHJ2MYLjHVbEwA4BBrw0PnQw04KwIgiAIgiDalGIFmFDQCEInKEp/mXJ0MqLK0ghIg6gjySwiyUydz4ogCIIgCIIgiFJQcbYMCSczGAslVBdnAz5KbCQIgiAIgiCIZkPF2TLk2GQEALBtQKVyRrPOCIIgCIJYobRb1DrRPlTz3qLibBlyWC7OtvR7VD1+UFbOxkOknBEEQRBEq/LY6SAOTyyNPieqx2azIRAIUIFG6A7nHIFAADabTdPXUSDIMuToZBhum0lRxCrR67bCwICJOVLOCIIgCKJV+chtT2LQZ8f333Rxs09l2bBq1SqcO3cOfr+/2adCLENsNhtWrVql6WuoOFuGHJ2MYEufW/U0eJPRgH6PjZSzBvGDB0exrtuJKzf1NPtUCIIgiDaBc46zwThMRjI96YnZbMb69eubfRoEoUC/4csMzjmOaEhqFAz47NRz1iD+9a7j+O+HzzT7NAiCIIg2IhjPIJnJYyaaavapEARRR6g4W2ZMzCURSWaxdUBdv5lg0GcnW2MDyOU5ZmNpBGLpZp9KU7jz6UnEUtlmnwZBEETbMRaUrtGzsTTyeeqPIojlChVny4wjk1Kj8FaNytmg14bxuSQ1xNaZYDyNPAeCK7A4OxOI4+0/fAy/fnK82adCEATRdozJ7pZcniMYX3nXEIJYKVBxtsw4Iic1bu7TWJz57Ehn8ytW0WkUwo4yuwJf53OhOADQe4xYwAMnZvDgSKDZp0EQLc9YQevBTJQ+RwliuULF2TLj6GQEg14bvHazpq8boFlnDSEgX1CD8ZVnS5mQA2fmEpkmnwnRSvy//zuMz995pNmnQRAtj7A1AoA/Qn1nBLFcoeJsmXG0ijAQgGadNQqhnOX5yitSRE9jeIV930Rp8nmOUzNRTM7R5w5BVGI8lIBFTmqkUBCCWL5QcbaMSGfzGPFHNYeBAPPFGYWC1JdCK8rsCusZGJ8j5YxYyGQ4iWQmD380hWwu3+zTIYiWZiyUwHmD0vWdijOCWL5QcbaMODkTRSbHNYeBAECHwwyryaCbrXEunsH9J2Z0OdZyovCCutL6zibk9xYVZ4Tg1EwMgBRwQD00BFGe8VAC2wbcsBgN8FNxRhDLFirOlhFH5TCQamyNjDEM+eyKulErtz5yGjd/52GEk7QQLySwkoszUs6IRZz0R5V/T4bJ2kgQpUikcwjE0hjy2dHlsmAmsrKuHwSxkqDibBlxZDICk4FhQ7erqq8f8Nl0U878kRTyHNRLsoiZaBodDimsZaXF6Y+TckYs4qSsnAHAJFmqCaIkIqlxqMOObpeVbI0EsYyh4mwZcXQygo29LlhM1f1YB712JVGvVkThMUHF2QIC0RQ2yWMOVlKkfCyVRTiZBWOS5ZUgAMnW2O+RkmJpI4cgSiM2t4Z8DnS7LFScEcQyhoqzZUS1SY2CAZ8dU5EkMjo05gflBfgULbgWMBNNY1WHHXazcUUpZ6JIX9PpQCSVXXFjBIjinPTHcOG6DpiNDJNhWmwSRCmEcjbos6HHTcoZQSxnqDhbJswlMhgLJWoqzga9NnAOTOnQ+xGMk3K2GM45ZqIpdLus6HRaVlTPmUgB3drvBudAJJlt8hkRzSaVzeFcMI7hHhf6PDayNRJEGcZDCRgY0O+xodtlRSC68mZlEsRKgYqzZcKxKSkMpJqkRoGes85E4TEZpgWXIJrKIpXNo9tlkYqzFRSlL+yyW/ulGOh27DujhZC+nAnEkefAhm4n+j02CgQhiDKMBRPo99hgMhrQ7bIim+dt+TlKEERlqDhbJhxRkhq1zzgTDPqk3g89Zp2FZFsjKWfzBOSo8C6nFR0rTDkbn0uAMWCz3G/XbouKuUQGF3/mLvzqifFmn8qyQYSBrO92os9rwxTZGgmiJOdCCQx1SBuo3W4rAJp1RhDLFSrOlglHJ8Nw20wY9NqqPsaAVx/lLJ3NI5qSbGvU5D+PuJB2u63oWmHF2UQoiW6XFd0uC4D2K85+/eQ4ZqIpHJM3QYjaETPO1vc4MeCxYWIuAc5JnSSIYoyHEhiS3S3ic5RmnRHE8oSKs2XC0ckItva7wRir+hhOqwleu7nmOP2QbNezGA1kVSpgRlHOLOhwrKzibHwugQGvDV55jEC7FWc/e+wcACCUWDk/s3pz0h9Ft8sKj82Mfq8NyUwe4QT1IhLEYnJ5jsm5pNJ60OMSyhl9HhHEcoSKs2UA5xxHakxqFAz67DXbGkUv1cZeF0LxDBLpXM3ntRwQylmP24oulwXxdA7JzMp4bSbmklJxZm+/4mzEH8Wfz4QAzKeQErVzaiaGDd1OAEC/rPjTZg5BLGU6kkQ2z+dtjaI4i5ByRhDLESrOlgHjc0lEktma+s0Eg14bxmq0NQpFaNuAdD604JIQPWedsnIGYEWoZ5xzTIQSGPDa27I4+/nj52Bg0hgAmtGmHyf9MWzokYszj379rgSx3BgLihh9qTjz2s0wGRjZGglimULF2TLg6GQYQG1JjQI9lDMRBnLeoFycUd8ZACAQS8HnMMNsNKDTuXKKs3Ayi1g6h0GfDXazEWYjQzjZHkVOLs/x88fHcNXmHmzqdSkjIojamItnEIilsV5Wzvrk4kyPMR4EsdwQM85WycWZwcDQ5bKQckYQyxQqzpYB80mNtRdnAz4bQvEM4unqez9EwXGeopzRbjgg2Rq75KJsJRVnojgf8NrBGIPXbm4b5ezBkQAm5pJ42Z5V8DrMysYDURunAlIYyIYeF4D54ozSXQliKfMDqO3Kbd0uGkRNEMsVKs6WAUcnIxjy2eGxmWs+1qAOiY0iEEQUZ7TgkpiJppVeAVGcrQQlZnxOLCykBbinjYqz2x4/B7fNhOec14cOh0V5bxO1cdIfBQBFObOYDOh2WUg5I4gijAUT8DnMcFpNym1ScUafRwSxHKHibBlwZEKfMBBgfmeuFmvjbCwDp8UIr8MMj81EtkaZmWhqSXEWWAEXVzGAWoxq8NrNCLdBcRZNZXHn05N44fmDsJmN8NnNiKVzSGfzzT61tufUTAxGA8OaTodyW5/HRp8VBFGEwhh9ASlny4d0No+P/vwpnJ2NN/tUiBaBirM2J53NY8Qf1a04G5BT02qJ0w/G0+iQi48Br50WXDKBaFqZT+O1m2FgK0M5m5hLwMCAXnlwarvYGu94agKJTA4v27MKAOCT39MUp187J2diWN1hh8U0fwka8NpIZSeIIoyFEgssjQDQ7bYgEE3TbMBlwKGJMH70yBnc+fRks0+FaBGoOGtzTs5Ekc1zXcJAACnSmrHabI3BeFpJI+z32iitEVIRPZfIoEtWzowGBp/DgsAK6DkbDyXR67bBZJQ+btqlOPvZY+ewvtuJPWt8AACfSJqkvrOaOemPKZZGQZ/HRrZGglgE5xxjwaXKWY/LinSOZgMuB0ZnpB7cE9PRJp8J0SpQcdbmHJXDQLbqEKMPAGajAb1ua23KWaxQOaPdcGA++EPYGgHJ2hhcAcXZxFwCA3K/GdAexdnZ2TgeOTWLl+0ZUga7++QB2qEWP/dWJ5/nGJ2JKWEgggGvDcF4ZsXM/iMINYQTUtrtqo5FxZnsRKA4/fZnVA5IGvFTcUZIVCzOGGOrGWP7GWOHGWPPMMbeI9/+ScbYGGPsoPznL+p/usRijkxGYDYyZV6QHkhx+tUXVLPxNDrkhWyfx4aZaAqZnL59OhNziZoSJRuN6A3okm2NANDpsLRcWmM+z5HP62uTmZhLKkEzwHzPmd7Poye3PX4OjAEvkS2NABQ1eCUU1PVkMpxEIpMrqpwBFKdPEIWcC0l9SEtsjWIQNRVnbc/pgPQzPuGPkk2VAKBOOcsC+ADnfBuASwC8kzF2nnzflzjnu+U/d9TtLImSHJkIY7jHBbNRPxF00GuvSTkLxTLKQnbAawPnwLTO81he/O/349/+eELXY9YTcQFdrJy1WnH20Z8/hdd86yHdjsc5x3goofQyAlJxludAtEWL63ye47bHz+Gy4a4FViIxQJuUs9o4JVt4Niwqzvrl9wj1qBLEPKLFoFggCEDF2XJAfCaG5PmPBFFxRc85n+CcPy7/OwLgMIChep8YoY6jk/olNQoGvDaMzyWq2sFJZ/OIpLJKGuH8gku/WWexVBZT4RROt1GykYg87i5QzjqclpYKBDk+FcFPHjuLo1MR3Y4ZjGeQyuYxULCwECMfWrV368DoLM7OJpQgEIGw6lKcfm2cnFk440wgCnjqUSWIecaCpZQz6fOIBlG3P6cDMazulH6+I9R3RkBjzxljbB2ACwA8LN/0LsbYk4yx7zLGOvQ+OaI8c4kMxueSuvWbCQZ9diQzeQSrWDyLJDthaxTx6Xr2nQnbUztdlAJFlLMupwXBeOvY+/71ruPgXNq9y+pkQxUjGQYLlDOPCNZoUQXqtsfPwWkx4nk7+hfc7rQYYTIwGkRdIyf9UdjNRvR5rAtuF7ZGUs4IYp6xUAJWeQ5gIR0OC4wGRrPO2py5eAbBeAbXbe0DIFkbCUJ1ccYYcwG4DcB7OedhAF8DMAxgN4AJAP9S4uveyhh7lDH2qN/vr/2MCYVjUyIMRF/lTAwLrsbaGIxJC1ehMvTXYcEldtbbyc4xE03BZjbAYTEqt3U4LcjlOcLJ5i/2j01F8H9PTSg/r1md1CFlxlkRe2ArzjpLpHO446lJ/MXOATgspgX3MSYlbFazaUHMc2pGSmoUQSsCt80Mp8VIyhnRdNLZfMv0/oyHkhjy2Zf8vhgMDJ1OS1tdB4mliDCQS4e7YDcbKbGRAKCyOGOMmSEVZrdyzn8OAJzzKc55jnOeB/AtABcX+1rO+Tc55xdxzi/q6enR67wJSGEgAHS3Nc4Pota+SBI9VJ1yz5nHboLdbKyPctZGO4aBaBpdTuuCC2yXGETdAh7zf73rOBxmI/76uo0AoFsvXDHlzNvCytlvn5lENJXFyy5cVfR+n8OMOZpzVhMn/bGSAUb9XhpETTSXTC6Pyz53F37y6NlmnwoA4FyRGWcCGkS9kOlI+312iOJsQ7cTw71OjPhjTT4johVQk9bIAHwHwGHO+RcLbh8oeNhLADyt/+kR5TgyEYbbZloQtqAHwopYjXIm+nF8cnHGGMOAzrPOpsLSxWgukUEq2x6x2/5oCt3uhTYuoS42O/3v6GQEdzw1gVsuX4dhuQ8ooFPhOz6XhMnAFtg5vY7WLc5+9tg5rOqw4+J1nUXv73CYFXWY0E4qm8O5YHxJGIiA5iISzSYYS2MmmsbTY+FmnwoA6Tq8OAxE0O2ywN9G9v56ctIfxbM+cxceOTXb7FPRxOhMHIwBqzsd2Njjop4zAoA65exyADcDuHZRbP4XGGNPMcaeBLAPwPvqeaLEUsZDCaztciyxO9RKl9MCi8mA8SpCPIQdTgSCAPrvhhceS68iot4Eoml0Oxf2DAh1sdnK2VfuOg6nxYQ3X7FB6WvQ65wmQgn0eWwwGObfo62qnI2HErh/ZAYv27NqwfkW4rVbKK2xBs7OxpHnS8NABP0eO6ZIOSOaiLiG1ZJYrBfJTA7+SKqkctbjsraVg6SenJ6Ng3Pg6GRrFNVqOR2IYcBjg81sxHCPC2Oh9hoTRNQHU6UHcM7vA1BspULR+U0mns4t6YvRA4NBUrtEhK8WRFiCGNgLSH1nD+u4m1VoXZiJlr5wtRIz0RR2DnkX3Nbpar5ydnRS6jV7176N6HBaILosZnWyyozPJZUeRoHTYoTRwFquOPvFn8fAOZakNBbic5hxaHyugWe1vBCWncUzzgT9XiumIink8hzGEgUyQdSTWbnYGW+BTQLRDjDUUUI5c1vhj6bAOdd9k7bdCLTQz00LpwIxrJM/Dzf2SptWJ/0x7Fi0XiBWFvoNxyIaTiKTWxAwoSeDXjsmqtg5nI2l4bAYYTPPn1e/14apcFK3VMLJuSSc8vfdDn77fJ5jNpZeMIAaaA3l7F/vOgaX1YQ3X7keAOCzm2FgOipncwnFJitgjMFrN7dccfa/T4zj4nWdWNPlKPmYDoeZAkFqQMzzWV+q58xjQy7PlXRTgmg0raSciXMoZ2sU42tWOrMx6TOjFX5uWjgdiGNtl/R5OCwXZxQKQlBx1sbEUtm6FWcDPluVaY1pZQC1ciyvDdk8x0xMnwXXVDiF7YPSrtJMRHsRkcnl8d8Pn0Ei3Zh+tblEBtk8X9B3BQB2ixF2s7FpytnhiTDueGoSb7x8ndIjKBLA9CjO8nmOybkkBnxLeyJbrTjjnOOkP4YL1vrKPs7nsCCRySGZaY9ex1bjlD+GbpdVmXW3mH65kKe+M6JZiM/juUQGsSYXPWPBSsWZPIia+s6Ua9ZEFY6fZjGXyGA2lsb6bmlDcF2XE0YDwwjF6a94qDhrYxLpHOxm/W2NgKScCXuRFoLxNDqcCxdeyoJLB7tBPs8xHUnivEFptpu/ih32h04G8Le/eAqf+FVjMmwCclG6WDkDpN48vZIRtfKVu47DbTXhL69Yv+Sc9FAuArE0MjmOQe/ShYWnxYqz2Vga6VxeGSVQCl8Lh5m0AydnoiXDQID50Rt6prsShBYKN6Ymqui71pOxUAKMSe6TYijFGfWdKXbUsTZSzk7LSY1CObOYDFjb6SDljKDirJ2JZ3JwWutka/TZkZMLIS3MxjNFlTNAnwXXbFxa8K/rcsBlNVVlaxRF4k8ePYdfPTFe8zlVwi+rez2LlDNALs50mimmhUPjYfzm6YWqmaDLadWlYBQLm2Jpol67GeFk61hxhFJTKfnUZ5deKxpEXR1ixlkpxCJ0ipQzokkUOhnG6qDCHBoP419+d1TVHLWxUAK9bisspuJLtfnijJQzcc2aDCc1byo3i9FAHICkmAk29LioOCOoOGtn4ukc7HW0NQLa/dvBWHpBUiMA9Ok4iFos2vo8NnS7LFXtGE7LFpDzV3nxsZ8/hbOz8ZrPqxzzytnS4qyjScrZvGq2Ycl9nS59bI0iUKZYYIvXbm6pIdTivdlXQTnrkJWzYBMK6nZnLpHBTDRdcsYZICXFmo2MlDOiaQRiadjlnul69C/975Pj+OofT+DQROVUwbFg6Rh9AOhxU3EmENesXJ63zXiB0RmhnM33OW/sdWE0EEM2l2/WaREtABVnbUouz5HO5uGok61RXBC07hwG40t7zsSCS48+EqU489qkAZxVfAhPhZPw2s34t9fuARjw7h//GZk6fhCKc+wuYmvsakJx9sz4HO58ZhJvvGK9MnOskG6nRZcRBeWVM1NLWQPnlbPyyZ/i9SLlTDtKGEgZ5cxgYOh12xoWp5/K5vDQyUBDnotoD4LxNDb3uWBgqCoUq+Lx5c/73z4zVfGx43MJDHWUDijqdFpgYNRzBkjKmRjT0i7WxtFADANe24IAteEeJzI5jjN13jQmWhsqztoUMQejXoEgwl40qcFzn8nlEUlmlxRnBgNDn0efWWdiALWknFmr2jGcCifR57FidacDn3vpLvz5TAhf/sOxms+tFIFYGgaGJfZBAOhwNL44+9c/HIfbtrTXTNDptGIukam5YJ2YS8JiMixRUoH5QBA11p5GMDmXhIEVL6ALEe/tEClnmjk1I1l1Ss04EzRyEPWvn5jAq7/5EM4FaSFESASiafS4bej32OpiaxSq+++emSz7uHyeYyK0dBRJIUY5wMlPPWeYjaWxY0jqRW+XxMbRmdgCSyMwH6cvxo4QKxMqztoUkTRYL1ujx2aGy2rSNOtMqAmLA0EAST3Ro7laFHi9biu63ZaqAkGmwinFvnbDrgG8eu9q/MfdI3jgxEzN51eMmWgKnU5r0blNXS4L4unGpf89fiaI3x2awpsuX6/sMi5Gr/lr46EEBry2ovN3vHYzcnmOWIMSMysxOZdEr9sGk7H8R6IIBKFB1No56Y/BwIA1naWVAEAKBdFzaH05RBF4Ltgeizmi/gTjaXQ6zRjw2euyyBejOI5MRpRAiGLMRFNI5/JYVWGOZ7WblMuJZCaHaCqrzAZrdpCLWk4H4ljXvfDzkOL0CYCKs7YlLi9q66WcAVJBpWWRJHYEFytnAHRTzqYjSXS7LDAbDehx2RCKa1d4psPSQlzw9y88Dxu6nXjv/xysi4o1E02XVGTEa1XvHqZUNod//cNxvPobD6HbZcGbSqhmgGRrBGqfdTYxlywZsCEKw1axNk6Gk+irEAYCAHazERajgXrOquDkTAyrOx0lww0EfR5JOWuEqirsuxRAQgDSSI1gLIMOpwWDPntdFvmheBrb5bTh35ZRz87JhWGxnt1CqDibDwNZ2+mEW+OmcrMIJzMIxNJKUqPAYzOj122l4myFQ8VZm9KI4qxfo9olPiCL2dgGvPosuCbnkorq1e2WiwgNlg4pij+FPs98OIfDYsJXX7MHoXgGf/PTJ3RfFAaiqSUzzgTitdKjx6sUj5yaxQ1fuQ9f+sMxPGd7H+5495UlVbPCc6q1UJ0IJYrG6AMFxVmL9G5NziUxUCEMBJAGaPsc5pY573bilD9WNkZfMOC1IZ7ONWSwrhhc2yiljmhtoqks0rk8upwWDPpsGJ9LIq9z8t9sLIOdQ16cN+Ap23emzDjrqFScWag4K1h7DNZJ8dSb0zNLkxoFG3tdNOtshUPFWZuSyEgLF7ulPoEggDTrbFzDokX04fiKhEz0e+1IZvI1KyVT4ZQyC6maGOHZeBrZPF+SynfeoAd/+xdbcdeRaXz/gdGaznExM9F00RlnwHwhVA8lZi6ewUd//iRe+Y0HkUjn8L1b9uLfX7sHvRWKkC4d4plzeY6pSKroAGoAyhDillHO5pIlZwktxucwUyCIRvJ5Lsfol+83A6AomI0omAIF8dtE+xCKp3F0MqL7cYMx2ZrvsGDQa0c6m9cluVbAOUconobPYcH12/vx+JlgyXE1osAol9YISNdBfyTVMv27zUD8jLpcoqhu/eJsVLa0LrY1AnJxNh1d0T/TlQ4VZ21KLNUAW6PPJvnes+psg7Pyha2UcgbUPutsKpxUigtRnGnpO5uP4l+qZL3hsnW4bmsvPnPHERwarxxzrBY1ypmedkrOOX71xDiu++Kf8JNHz+EtV67H799/FfZt7VX19V06nJNfHmBeKv3Q00K2xmgqi0gqq6E4s5CtUSNTkSQSmVzZGH3BQAOLM/FzJFtje/G1P43gRf92n+429PmxJxbFTqintTGayiKb5+h0mnH9jj5wDvz+UHH1bCyUgNtmgttW2uUAAN1uK5KZfMv07zYDoYB3Oi1yr2Dr/z4rMfqdSz8Th3tciKSyytgfYuVBxVmbImyNdnN9e844V79wqdRzBtS24EplcwjE0opyJoY6a4kRni5Ie1wMYwz/9Irz4XOY8dc/elyXeP1EOodYOldROdNrkeGPpPDG/zyAd//ozxj02XD7Oy/Hx244Dw4NCqvXbobRwGqyWoqdy1JJY8LW2AqzzsR7sl+FrREAfHLSJKGek3LymBpbY7+OcxErMSu/x8nW2F74Iymksnnc9tg5XY9beA0brHLWZzmE4u5zWLClz421XY6S1sbxUPkZZ4LuKq6Dyw1xrepyWjDks2M2lm5YyFa1jAbi6PfYioa6KYmN1He2YqHirE0Rtsb6BoKInUOVxZk8vNNWpGBUdsNr2KEWgyWF6iV6zrQMoi4cYl2MTqcFH37eVoz4Yzg+VfsHo7AGllLOvHYzDEyf4mwmmsJrv/UQHjoZwN+/4Dz84q8uV9KrtGAwMHQ4ahtEPREqPzdMzAtrhSJHvCfUKmcdpJxp5qSYcaZCOeuVf7/rbTXknCvvcTGio9E8cGKm5lTUlUgkKV3//vuRM7pav+YX+ValX1bPOP3C4o8xhuu39+PBkRmEk0s/B89VGEAtEGFTK7nvbDaWhtHA4LGZlbVGq/edjQZiC4ZPFzIsjxs5QX1nKxYqztoUoZw5rXXsOfMJK6K6D7nZeLqopREAetxWaahnDTvUhQOoASnIw2ExarooiUVYj7t4sQQA2+VZKXp8MM4XZ8VfF6OBwafDrLOAXJidDcbx3Vv24k1XrC8a3a8WaTh29Rf7cgOoAcBlMcHAWqM4m9CqnFHPmWZO+WOwm42qXmOryYgup6XuxVk8nUMqm4fFZMBUWP/gh0pkc3m8/ruP4G9+9mRDn3c5EE5kYGDSYPMHR/QbIq4UT04zfA4z7GajroOoxed8h7w5df32PmRyHPuPTC957FgoUTEMBKiu93q5MRuT1h4GA1PsqK1ubTwdiGF9CSdBn8cKl9VEytkKhoqzNqXec84AKcQDUF9QheKZomEgAKToe7dV01DrxSgDqAti8LXGCE8VRPGXYn23Ewamz5wRsRNbSjkDJLWuluJsNpbGTd9+GKcDcXz3DXtx2XB31ccSdLkstdkaQ0nYzcaSqZAGA4OnReyBWpUzn8OCVDav/A4SlTk5E8X6bmfRmXfF0Gv0RjnE79yWPjeyea5r8IMaIkmp/+gPh6fw8En9CoyVQCSZxWXD3fA5zLj14TO6HXc2loHZyOCymsAY0z1cotDWCAAXrO5Aj9u6JFI/nMwgksyqUs7ERuNKHkQ9E00rvdLiNWvlUJBIMoOZ6NIYfQFjDMO9LlLOVjBUnLUpSpR+HXvOXFYT3DaT6p1DsXtVin6vvSblTOkN8hYWZ9pihBfPOCuG1WTEmk6HLrtW4ty6yhVnNShnwVgar/3WQzg1E8N33rAXl22svTADai8YJ+YSGPAVH0At8LZIcTYxl4DPYS5qxy3G/CDqlbsY0sqpmZgqS6OgX+OMxWoQxdi2ATeAxoeCCGseAHzmN0comU0D4WQGPW4rXr5nFX77zGTJxEOtzMZS6HRalM+tQZ+9LrZGcZ00GBiec14f7j7qX9AjNa5yxlnhsVZyz5n4uQHSxg5jrW1rPB2QYvTXF0lqFAz3OGnW2QqGirM2JZ7OwWI0wFRGAdKDQQ0FVTCeLhoGIuj3WGtaAE1FkrAYDYolBJiPEVZ9jHCqaFLjYjb2unF8uvaoZiXit0zRWm0hFJQVs5MzMXzr9Rfhik36FGaAdL612GTG55IlZ5wJWqU4m5xLqbY0AlIgCDAfu02UJ5XN4exsHMMqwkAE/V5b3Ysl0et13oBkY250KIjoM3r2tj48cTaE/3tqoqHP385Ekll4bCa85llrkM1z/PRRfYJBZmOZBdewQa9dV1tjMJ4BY1jgKLh+ez/i6RzuOz6j3KbE6KuwNZrlayLZGqWfm8VkQI/LqvQ9tyIiRr+UcgZIoSBT4RQiRfoRieUPFWdtSiKdraulUSANolYfCNJRwtYISOEQNfWczSXR67EuUGN63FbNgSClwkAK2djrwqmZGLI1Jjb6Iym4raayqkyHU3vARCiexuu+8zBO+KP41usvwlWbe2o6z8V0uawIJ7OqxygsZiKUKNlvJmiZ4iycUG1pBOYtSaScqePsbBx5ri4MRNDvsSEQSyOVrZ91VGycnDcoheY0etaZUM7ecNlabO134wt3Hq36920lwTlHJJmBx27GcI8Ll27owo8eOYOcDj2Ds7HUgmTdQZ8d05GUbu/DYCwNj828oB/40g1dcNtMC6yNygBqFcoZoN3ev9wIxNILNkAHfPaWtjUqMfolAkGA+VCQETnpllhZUHHWpsTTubomNQoGfTZVgSDZXB7hZBYdZW2NNkSSWURT2ZKPKUfhAGpBt8uKYDytqojK5vKYiaYqDmEGpOIsk+M4Mxuv6lwFgVjpAdSCTqcZwXhGdSDBXDyD133nYRyfiuIbN1+Iq3UuzKRzqn44diaXhz+awkCFhYXHbm6RKP1UxUKyEGFrnKNQEFXMx+hXHkAtEMXydB1TFEXgzZY+N4wG1gRbo/T+8drN+Mjzt+LMbBy3Pny6oefQjsTSOeQ54LZJYVg3XbIG54IJ3HPcX/Oxg/GFytmAHIo1NafP+1BylyzcwLSYDLh2ay/+cHhKuY6dCyVgMRqUcTGV0LpJuZxIZ/OIJLPodM6/VkM+G8Za2NY4Goijz2MtO+JGxOmTtXFlQsVZmxLP5BqinA147ZiJVt7BDiVKD6CeP1Zt84uKqV7dbis4VxdFH4ilkefFB1AvRq8PxplI6QHUgk6nFbk8LxqnvJhUNoebv/swjk1Khdm+LeoGS2tFpEtWEwoyFU6Cc2CwDZSzdFYq2NWoqQKxeAtScaYKEaO/ToutUcw6q2PBFIilYTEa4LGb0OOyNtzWKDap3DYzrt7cgys2duMrdx1v+u9EqyM2dDzycObnntePbpcFtz5UezDI7CIFRu9wiVA8U3QD8/rt/QjGMzgwGpSeL5TEgM8Gg8rEXS3KWTCWXlb9jUofn2uxHTXZst/n6EysrKURANZ0OmA2MoxQKMiKhIqzNiWeyjZEORM72JV2DkX/hq9Mz1ktg6g555gsUpz1yB/IfhUXJiWKv0IgCDBfnB2vsTgLLLLJFKPTaZYfW7kQemw0iCfPzeHTL9mBfVvrU5hJ5yQVlNX0wgnraiXlzGs3I5zMNPUCKoIEqlHOyNaojqOTEXS7rCWTO4shPndqsUFXYjaaVsIf+ry2ptka3TYpGfAjz9+KYDyDr/9ppKHn0W7Mv27S+8liMuCVF63GH49M1RQCkcnlMZdYWDzpPTOrVF/21Zt7YDEZFGvjWDBesWe3kG6XVVUgyFgogWd99q4l6ZDtTOEAasGAz45EJteyI09GA3Gsr1CcmY0GrO2iUJCVChVnbUo8nYPDXL8ZZwJxgai0cygW8Z1lirNaBlFHU1nE07klqtf8jJfKC2VRFKpRSVxWEwa8tpoTG2eiaVXKGQBVw2gPTYQBoK6FmXROsnJWxawzsZBR03OWyXEkMs2LpNfynhDYzEbYzIaWvfC3Epxz3HdiBpds6NT0dfObQnUszgpCBPo9jVfOhK1R2PN2DHnxkguG8N37TrV00lyzEQ4Dj33++veai9eAA/jxgbNVH1f8Phe6P+ZnZumnnBUbN+O0mnDVpm78/tAUOOcYDyVVhYEIut0WxNK5iuM9/nTUj3Q2j+NTy2fBP1skdGtItqO2orUxmspiJprC2jJJjYKNPS5SzlYoVJy1KYkG2Rr7VVoRg8r8ltK74/PKmfYPzFKzqJTiTMWu4ZT8GDW2RkBSz2qZM5LN5RGMp8vG6APzBa0a5ezQeBh9HmvFgq9WarE1KsqZiuIMaO4garFRMKBhlxoAfHYLQhr68eLpLG4/ONayNpt6cXgiAn8kpTmwxm2VBszXUzkr7Aft9zRHObOYDLCa5j/HP/DczeAc+OLvjzX0XNoJYWsUyhkArO504KpNPfifA2eqDnFSNhgLFvk2szQQfVyn9+FsrHSi8XO392MslMCfz4YwFUmqitEXqB1Efa/clzel0+iBVkBsIBY6VAY0zmhtJCIMZF0F5QyQ1iCnA3EKClqBUHHWpsTTOTitjQkEASorZ4vntxTDZjai02mp6gNTDKBePKOs263uogRIM84MrPzMsUKGe1w4MR1VHdSxmNl4GpzPWy9LIbzyapUzEf1dT0SiWDXK2UQoAbfVtGDxVIyWKM7E7DwNyhkgbUJo6Tn79RMTeM+PD+KJc3OanqfdESENV23SVpwxxtDvqW+cfqHFrE8OK4qnqwsrqoawHAdfyKoOB265fB1ue/wcDo2HG3Yu7YSwNS5+7W561hpMhVO468h0Vcct5f4Y8Nl0Uc6SmRwSmVzJa+Szt/XBwIDvPzAKzoFVGoozERwyXWaTMpfnuP+EFNc/VcegnUYjNhALA0H0Vjz1RMw4U1OcDfc6kctznA5QYuNKg4qzNiWRzsHeAFujw2KC126uqJyJC1u5OWeApJ5VYx8qNoAaAJwWyWKmpjibCifR47YuiDEux6Y+F+LpHCaqXCAqXnidlLNkJocT01GcN1j/4sxgYFXPXxufSyopZ+VQirMm2gMn55Kwm40LLFJq8DnMms5bpH4+djqo6XnanXuO+bGlz61pVIGgv859YKLnDCgIIGngTnskmSm6gfHOazbCYzPjc3ceadi5tBPh5FLlDACu3dqLfo8Ntz5cXTCIUpwt2kwb9Np1WeSHKrhLOp0WXLy+E//3pDTvTpOtUYVy9uS5EMLJLEwGhukGq8T1ZDaWhoHNz58EJIujxWRoyTj9+RlnamyNbgAga+MKhIqzNiWebkwgCCDZ08YrDHQMxdOwmQ0VrZYDVS64hA1jsSWRMaZ6ELU0gFr9InFjT22JjeJCWcmCaLcYYTcbKypnJ6ajyOY5tjVAOQOkC1x1tsaEKpugSFtrpnI2EU6i32tbMDtPDT67ttl0ovfh8RVUnMXTWTw6GsRVm6sbjt5f5UaOGlLZHCKprNKn0oh0yMVEklml36wQr8OMv752I+455ldsaMQ8hUEqhZiMBrz64tW455gfZwLaR6DMxosrZ4M+uy4DjcXnRbkNzOu39yMrOzU02Rrd0jHLFWf3Hp8BY8A1W3qWl3ImW0ULky0NBqZq3dIMRmdi6HVb4bRW3hDcIM+GpFCQlQcVZ21Ko+acAVJBVWnW2WwsUzYMRNDvrW7BNTWXhNtmKjoXRIoRrrxQngonl9giy1FrnP68clb5del0WpTFQSlEGEgjbI2AdE5q+uAWMxFKKnbYcrSCrXFqLqnZ0ggAHU6zMj5CDeeC0mLx8TMrpzh76GQA6Vy+6gHp/V7J1litrbgcwZgc/uCatzUCaOisM0k5K75Au/nStVjVYcdn7zhSl++/nQknMrCYDLCZl17/XrV3NQwM+NEB7eqZ2BxbHHU/6LMhksqqGnWi5vjl+rKfu71f+beWBNkup+i9Lv15fe9xP3YMerG13wN/NKXL0O5WYDaWKmoV1Uvx1JvTgbgqSyMgBcUMem1UnK1AqDhrQ3J5jlQ235BAEECKpa1UUIXi6bIDqJVjeWwIxNJIakzoKzaAWqB2xst0JKU6DASQ7IgdDjNOTEdUf00hapUzAKoshIfGw3BYjBXno+hFl8uq2daYzOQQiKVVKWetUJxNzCWrstx55UAQtQEfY8EETAaGiblkSy4Y6sE9x2ZgMxuwd522pEZBv9eGbJ5XtUFQCSVEYImtsXGKQiSZhdtafKFuNRnxweduwaGJMP5E6tkCpF694q/bgNeO67b14ScHzmoOUZiNpeG2mWA2LlwW6dW/JHpUyylnQz47dg550e2yFi0+S2ExGeC1m0teByPJDB4/E8KVm7rR57Uhl+dV9RO3IoWpq4VIimfrfdaeCsRUWRoFw70ujPip52ylQcVZGyKixxumnKkoqGZLzG9ZjNihntZoqyg240zQ465cnKWyOczG0ppsjQCwqdddg61RHnJbYne8kA6npaKt8dBEGFv73ap75mqly2lRPdhUMKWkH1Z+naX5TvPpa5WYiabwPwfO6KYk5PMc05HqirMOhzQGIF4huhqQ5idNhpO4YpNk71spfWf3HPPjWeu7NC0yC6llLmIl5pP5pI0Tp9UEt9XUUOUsmipuaxRcsqELAHSx1C0nwslM2R7Rm561BoFYWvMsr3KLfKD2n4Oa0CwA+PgLzsMnXnie5uN3u0p/Xj90cha5PMeVm3rQJ4doab0GtyqFqauFDPqkFopq0zvrQSyVhT+Swrpu9Rusw3KcPinoKwsqztoQkShmL2LxqwdimHC5RVIwplI5q3LW2VS54swlqU7lbBp+jTH6guFeV009Z10ui6p+pq4KFkLOOQ6PhxsSBlJ4TpFkVtMOtPD4q1HODAYGt9WkWjn76aPn8OHbnsL3HhhVfT7lCMTSyOR4VbbG+UHUlc99ci6JPJfS2Gxmw4qwNp6djePkTKxqSyNQ21zEShSLTe+r0nJdLZFkFq4yxZkoQGq10y03pF690tbAqzb1YFWHHT997Jym45YszuTPslpnZonRG+VsjQBw8fpOvPD8Qc3HL+cgufe4Hw6LEXvW+pTraCM3IurJbCyt2DoLGfTZkefzI3RaAREGotbWCEjtFfF0ruGjPojmQsVZGyIGTTqq3JHWyqC8SCoXgR+MZ9BZ4aIDzC+4KvWwFSIpHKUtid1uK/IcZS14ShS/xoX4xl4XgvEMAhoVJAAIyMWZGjoc5ZWzc8EEIqkszhvwaj6PalEi/jUEX4ifq5q0RkAKP1BbnIn5MJ//zRFdYsZLzc5Tg8+hfvzBuaD0mqzrcuL8Vb4VEQoiIvSvrjIMBKhvSEexwbWNnHWWy3NZOSv9mWk3G2EysKbafluRcCJT1o1gMDBcvL4TJ6a02dFnY+mifdM9bitMBqaLrdFhMS6Ya6cn3e7Svdf3Hp/BJRu6YDUZC4qz1ilaqiWTyyMUzxQtqpW1RgtZG5UYfRUDqAXDNQaTEe0JFWdtSCzVWFtjf4WCKpvLYy6RURas5Y9VWYVbzExMal4utYhWEyMsooP7NASCAPOhIMer+GCciaZVD4vuclkQS+dKWkdFGMi2Abfm86gWsXDVYm0UBfygyqHOXruG4iwQw+Y+F7wOM97z4z9r7ltcTLUzzoD52GY15y523Ic67LhwbQeeGQ/XfO6tzj3H/Bj02pSFRTV0uaSxF9UMra+EiN/2FsRv99V5rloh0VTxWV2FMMbgsZtV235XCpFkpmTPmWCVz47JcBIZDZa2YLy4cmY0MPR7bTUPNA6WGUCtBz0uK2aKqERnZ+M4NRPDlbKtuttlAWPLQzkTG4fFNkGHfPoonnoyH6OvTTkDqDhbaVBx1oYkMsLW2Ki0RtlzX+LiJBaolbz0AOCSezu0XOiEN76UrVFNcSYuRFptjZtq+GAMRFNF7RbFEBftUirVofEwDAzY2t9AW6P8umoJBRkPJeBzmFW/N7UUZ6cDcewc8uGLrzwfx6ej+PT/HVZ9XsWY0NAftxhfhZ9XIWOycjbgteHCtR3I5jmeXMbDqDO5PB44EcBVm3s0jygoxGhg6HNb6xLSUSx+u99rxXSkMSl2EWVWV3lrutduRjjZuMHY7UA4ma04l3CoQ7K0qd0E5FwKnil1DRv02mte5AfjaXQ4K7tLqqXHbUUklV2y8XPvcWnw9JXyIHiT0YBulxXTkfYvzorZkwWiHaPWolpPRmdi6HZZ4VIRoy/odlngtZtp1tkKg4qzNkSEEBSLla8HdosRHQ5zSeUsqNJLL+jzatuhFhfY0sVZZYVnKpKC2cg071wOeG1wWoyaizPOOWZiaWX+TCXExaXUXLFDE2Gs73Y2rCBXc07FmJhLquo3E6gtzhKy5359twNXburBm69Yjx88dBp/ODSl+rkWMzWXhNHAKg4JL0aH6DlTMYh6LBRHr1tKX7tgTQeA5R0KcvBsCJFUtqZ+M0Gf14bJcB2Us+jShXi/R06xq8LCrJX5WV3lPzM9NhMpZ4soNby7kCGfZBsTluJKxNM5pLP50sWZz6aLrbGeylmp6+C9x/0Y8Now3DOv1vR5rMvC1jgbLV2cuawmeGymlkrHHQ3EsV6DpRGQFPThHicpZysMKs7akPnirHEL9X5v6UGcszH1yhkg5qapL87EAOqSUfruyjNexIwzg8akQ8ZYVaEgkZQUpNGtUjkTr1055ey8wcb1mwFQzl1LlPl4KKH0KKpBKs4qKwOnZxfaQf7meVtw3oAHH7rtScWyqpWJuST63Naq0i+9SnGmrudsqEMqWDudFmzodrZdcaYllOKeY34YGHD5cPX9ZoKBOoV0FAt/6GvgIOpSg5QX49GgLK8EUtkckpl8xQTcVR3aLG1CgSkVajXos2MqnKxJVQ3F06qs/9Uy7yCZ/0zK5TnuPzGDKzd1L1Cx+9yNs/DWk4DSO1r8Ojvoa61ZZ6MzsapG4WzsdZFytsKg4qwNSTShOBv02jBeYpEkCgq1u4L9Hm0Lrqm5JAxsfmdwMW6rCRaTAf6yPWcp9Gq0NAo29mgvzoTapFU5K2YhnItnMBZKNGz4tMBjN8FkYJjVMA9nYi6pOgxEeg6pp6bSvLDRGbmRWr6wWU1GfOU1uxFPZ/GBnz5RVczwVDipjHbQitVkhMNiVKmcJZT+BwDYs7YDfz4TVD0jrdncf2IGuz/1O9wn26Mqcc8xP3av9ikFbC1IfWD1sDUuDesRPa2NSGyctzVWUs7MlNZYgFrFUXwGieHvlVDscSWuYQM+OzI5rnm0yOLn6NDhd6IUSnFW0Hf25LkQwsmsYmkU9Nbp96rRlLM1AqI4a40iNJ7OYjqSwnoNMfqCjb0uzETTqjYDieUBFWdtSKNtjYB0sSvVmB+ssOu45FheG6Yj6uePTIVT6HZZYTIWf7syxko2Q88fI6k5DESwsc+FyXBSWVCpQVzE1faclSvODk9KYSCNjNEHpNe1w2lRbWucjaUxl8hoign22s1I5/JIZsq/F07LjdRrCoZ3bux14+9uOA/3Hp/Bd+8/pfo5BRNziar6zQQ+u1kZLFuKfJ5jIpRUlDMA2LOmA4FYWknuanVuPziGPAf+/ldPVxyrMBtL48mxOV0sjYC0kRNNZTX97qmhmHLW38CIcS3KWViFsrxSEK9bpZ4zq8mIXrdV6feshLLIL7EBOCQXe9X2nWVzeYST2foqZ+6lvdf3Hp8BY8DlGxeq2H0eKwKxlKbAlFZEKGelit5Bnw3jdQgUqgaxwahlALWAQkFWHlSctSHzc84ap5wNeO0IxjOKalfIbLz8ruNi+rw25DlKxv4uptwAakG3y1JWOZPmpFWvnAHAiD+m+mtE34ratEav3QwDK16cidj4RiY1CirNXytE2C60JPR5VaYejgbi6HRaFqTrAdLA2eec14cv3HkUz4xrC9mYCqc0DyUvxOewYC5R/rXxR1NI5/JY1TF/Qb5wbfv0nWVzefz+0BQ2dDtx0h/D9yoUwfedmAHn0K848+pfMOXyHKFERhlALVDSIRtSnKkLBPHYTaqU5ZWC6L9zWysrUEMd6kM8KilntQ6iVkKz6qiciXRdf6SwOPNj55C3qIWXc21JvK3IbCyFDoe55MbtoM+OUDyjrJmayekqZpwJNvdJ1/4jk9rGQxDtCxVnbUgzbI3l5pOF4hnYzAbVxaLWWWflBlALpAGcxRfKiXQO4WRW84wzgRKnr2Fujl/YGlXOOTMaGHwOS/HibCKMbpcVvVUqf7XQ5bKoDkgYma6+OKtk3TodiBXdcWSM4fMv2wWfw4x3/+jPRTcPihFJZhBNZWtTzhzmirZGYataVWBr3NTrgttqaoth1I+MziIYz+BDz9uCZ2/rxVfuOl7W9nfPMT+8djPOX+XT5fmVWWc6JjaG4mlwvnShbDQw9NYpHXIxESVKv7KtMZ3LI6VhEPxyZl45q1zkrOpwqC7OhDW/lHImQo6q7V8SCrtad0k12MxGuG0mpeCKJDN4/ExIidAvRGxUNnLoej0IFAn2KWRQ+bk1//scDVSvnA357HBbTThKxZl6vvAFYP/+hbft3y/d3gZQcdaGxDM5mI0M5hK7RfWgXD/GrMb5Lf0ebbPO1KhePW5ryV1AERlcrUqyptMBi9GAExoackVBozYkBZCsGaWUs0ZbGgVdTqvqKP0RfxRWk2GBha8SapWz04F4yR3HTqcFX3zlboz4Y/jMHeri9edHK1RfnHU4LBWj9EVaXOFrYjAw7F7jawvl7LdPT8JmNuCqzT34+xdsRybP8dnfFH+NOee497gfV2zsripkpRiVZixWw7yFbelnSqNmnUWSWZgMDFZT+c9wZfOCQkEAzG/iVLI1AtKCdjyUUNWPGoilYTYyuEtEnHtsJrispqptjfOJxvUrzgB51pm8MfjQyVnk8nxJvxkAZaOv3fvOArF02dYBoXi2QiiIFKNvqdgvWQzGGDb3u6k408LevcArXzlfoO3fL/1/797mnpdKqDhrQxLpHOzmxqlmQMEOVJGCKhTXVpzNK2eVF0HJTA7BeKbioOBul1REFLsQTylz0qqzNZqMBqzvdirKkBpmouXtFsUoVgils3kcn440PAxE0KnB1nhiOor13U5NC3OlOCujQCUzOYzPJcruOF6xqRuvuXgNfvTIGVXqmXjvaYn9X4zXUTlJTxlA7Vv4PBeu7cDRqYhuvVSfv/MIXv61B/Dhnz2Jb94zgj8cmsKpmZjqvs5i5PMcdz4zias398BhMWFNlwNvv3oYtx8cx8MnA0sef3QqgqlwCldtrj2lUdBXhz6w+YS3IrORvLaG2RrdNlPFOXAelcrySkFtkAogbYhkchzTZXqRBWJAdKmfB2MMgz5b1ZsEwQq9UXrR7bIq9v57j/vhsBixRx7fUYj4vWr3WWfFekcL0erSqSejgVhVlkbBln43jkyGyeKsln37gJ/8BPiLvwCe/WypMPvJT6Tb2wAqztqQWCrb0DAQoGAHu8gO1GxM23BNn8MMi8mgahEk/POVUvW6XRbk8ryokqGHSrKx14XjGoqzQDSteX5Wh3OpcnZiOopMjjdRObMgkswila1c8Iz4Y4oFVC1qlLNzwTg4R8WUq+ec14tsnuPPZysrUkK1rVT0l8Nnl2yN5S6WY8EEOhxmOBftyF+4tgOcA0+c1WcY9W2PncOpmRjuOjKFz9xxBG/+r0ex75/vxra/vxPP/uKf8PYfPKZ51/XguRCmwik8b0e/cts7rh7GkM+OT/zqmSWF3z3H/AD06zcDJKtWp9NS8wDgQsolvPVpTJKtlkgyq6rAEJHxFKcvIcJRKkXpA4Vx+pWDd8oNoBYMeKtP/hP253rOOQOkdOAZpTibwSUbumApos52OS0wGljbx+nPxtIlraiAtG5hDBhrCVtjdTH6gq39boST2YZsHi0b9u0DzGbgrruAd7yjbQozgIqztiSeyTW03wyYXyRNFPlg0DpckzGmen7RpMrCaj6pqkxxVkPP1nCvC2dn40hm1PU0zURTqvvNBJ1O65Li8vCEnNTYJOVMFJjBWPnFYTKTw9lgXFO/GTDfc1Nu8XlKSbkqf2G7cG0nGAMeOTVb8XnFe6/a8QqAtNDK5jmiqdLN5oUzzgrZvdoHxvQJBUllc5iOpHDzpWvx6N89Bwf//jm47R2X4Z9evgt/ecUGrO924v4TM/j47U9rOu5vn56EycBw7dY+5Ta7xYiPv+A8HJmM4AcPnV7w+HuOzWBTr6smNbIY1YyyKEc55azfK6VDlvuZ6oFUnFUuMBTljBIbAUjKGWOAU8XmpOjzVDOIOqjCml/LzCxl3Ewde84Aufc6ksLZ2ThOzcSK9psBkrW6193eg6jFZmyx32OB2WhAn7v2AeK1kszkMBVOVdVvJthCoSDa+eMfgUgEuPRS4GtfW9qD1sJQcdaGJNK5hiY1Cga8tqLKWTBeeddxMWpnnYnCSo2tESiePjUdScFqMqjqUyjFxl4X8hw4NaMusbEa5azTKUWzF1ozD02EYTMbqpqNogfi51op1evUTAycQ7Ny5lGhnM2nXJW/sHntZmzr9+DAqIriLJxEp9MCWw324PlB1KXPffGMM4HbZsaWPjce0yEUZEoOsBD9FT6HBReu7cArLlqNjzx/K771+ovw7us24ZFTs3h6TJ1Sx7lkabxsY/eShMzrt/fhyk3d+OLvjinKdiKdwyOjs7qqZoLN/S4cnYzoZueZjZZeKM8HkNR3d1rYGiuhNjBnpRBOZuG2mmBQYZ0WmyJqirNKCgwgxekHYmnVG3SFBOMZmI0Mzjpft7tdVoSTWdx1eAoAivabCXob1F9ZL5Rgn0qKZw12VL0Q78HVndVvXG3tlzZoqe9MJaLHDABe+lLJ0ljYg9biVCzOGGOrGWP7GWOHGWPPMMbes+j+DzLGOGNMv0YDoizxdLbhyhkg2ToW94nl8hxziYzmRudBnx2nArGKCy6xSKrULyaKM3+R/gKR9lipv6McmzTOGfFHU+jRXJxZkcvzBQuxQ+NhbOn36BawoBWh/lUKBakmRh+QEvLcVlPZ4mw0EIPXblb1Hrt4fScePx2qOL9ncq5yAmglxE57qeKMc46xYAJDvuJFpRhGXc0A7UJK9bUV8sq9q+GwGFXPgzsyGcHpQBzP296/5D7GGD75ou1IZnP4wp1HAAAPnQognc3XpTjb0ifZefTa5Q/G0/DYTEUDlerR41YM9bZGCgQpJJzMqA5UcFhM6HCYVVliZ+PpiqNghCKspld6McFYGr4yPW16Ia6Dvzw4jkGvDcM9pTf1+txWTLexclZpALWgFQZRn5VTe1d3VK+ceR1m9HtsVJyp5cAB4Mtflv7d0zPfg3bgQFNPSy1qlLMsgA9wzrcBuATAOxlj5wFS4QbgOQDO1O8UicUk0rmG95wBsnK26MI0l8gUjaWuxJWbuuGPpCrGiQvVa/Hu/WJ6yihnU+FkTb1FgNTvZGBQ1XeWyuYQSWbL2i2K0Sn37YmLDucchybCTbM0Suekrjg7MR0FY8CGMouBUkiDdsspZ/GKqpng4vWdSGRyFRWiyXCyphh9QOqdBFAysTEYzyCRySm9L4vZs6YDkWRWUwpoMYRlZ7BMcea1m/GKC1fh109MqAoBuPPpSTAGPOe8vqL3D/e48KYr1uOnj53D42eCuOeYH1aTAc9a31ndN1GGTbKd56iGURblKNdfVC6VVk/U2xqp56yQcCKrKkZfsKrDUXEQdTaXx1wio2qRD1SX/BdUUfzpgdhMO3g2hCs39ZQtBvs8Nky1cSCIsCdXmiU66JVsjc0M0jg3KxdnndUXZ4AIBaHiTBUf+hAwPCz9u0feNNy3T7q9DahYnHHOJzjnj8v/jgA4DGBIvvtLAD4EgOJjGkg83fieM0CyB8wlFg50FIt2rV76527vh9VkwO0Hx8s+TigclVPNTLAYDUUHUU+HUzX1FgFSz93qToeqxMaAmHHm1q6cAfOv6fhcEnOJTNPCQAAoMcWVbI0j/hhWddirsgl67eVTD7U0Uu9dJxUHlfrO9FHOZFtjiXMXM85KjRbQaxi1WCxWKjZvuXw90rk8bn2o8l7ab5+ZxN61negp8x5+97Wb0Oex4u9vfxp/OubHxes7a7KJlkIMYD2m06JkNpYqXZwJW2OdlbNwMlNxxhkAWE1G2MwGhJPUcwYI5Uz9xuSQz678HpYiJDYYK1zDhmoozkLxjLKZU08Kf1+vrJCa2uexIhTPaLJpBmNp3Prw6ZYY6iyus2qK6lQ2r3okTD04F0zAYjJodtMsZmu/GyPT0YrOEELGL4VUKcVZG6Gp54wxtg7ABQAeZoy9CMAY5/yJepwYUZp4k3rOig10VBqdNe4KuqwmPHtbH+54aqJs3PekStWLMYYulwUzkeKBILUuxAH1wQTioqFZOXMsVKkOjzc3DASQil6TgalSzrRaGgXlirN0No+xYEK1ctbjtmJDt7NscZbK5hCIpWtWzrx2YWss/tqIHftSdsN1XQ50Oi14vNbibC6Bblfl/rn13U5cu7UXtz58umz65qmZGI5MRnD9jqWWxkKcVhM+dsN5eHosjJP+GK6ug6URkBZfPW4rjumlnEXTykbIYuwWIzw2U11tjXk5REZtkeGxlVeWVxKRZFZVUSsY6rBjrIJqElRpj+vzSu+ZaixyQY3jZqpFqEiMAZcPly/OeuVrYrFWgFL89yNn8LFfPI3nfPEe3H10uvoT1YHZmHTela6z84pn81TCs8E4Vvnsqnoly7Gl3410Lo9Rlb3vK56VUJwxxlwAbgPwXkhWx48B+HsVX/dWxtijjLFH/eKFImoi0YS0RqC45Uftha0YL9o9iJloGg+MLJ2ZJJgOJyvG6Au6XUsHUUdTWcTSuapnnBWysc+lanaUOAfNytmi/q5DE2EwJu2WNQvGmDTrrEgKpiCf5zjpj2JjHYqzc8E48hxYpyEQ5eL1nTgwOluyl0v0WdRqdfVVCAQRvS6lbI2MMexZ46s5FGQslCxraSzkTZevx0w0jf99YqLkY377zCQAKfijEi/cNaBYGevRbybY0ufWrTibjZVPeOtXmSRbLfFMDpxDfXFmN1MgiEw4kVEVoy8Y8tmRzJRXTQIqr2FWkxE9bmvVtkYt42aqRShnO4e8Fd0s/VX0V45MR+FzmGEzG3DL9w7gPT/+c0VXRb0IqHTtzM9obV4oyNnZBFbVaGkEpOIMoMRG1Sz34owxZoZUmN3KOf85gGEA6wE8wRgbBbAKwOOMsSVbrZzzb3LOL+KcX9TThi9QKyIFgjS+56zYh5xQzqqxbFyzpQdum6mktZFzjslwEn0qi5we99LiTI8ZZ4KNPS6kc3mcmS1vk1GKsxK786VQlDP5NT00Hsa6LueSGVmNpstlLTuIeiyUQCqbx7DGpEZBueJsVE5q1DIfZu+6ToST2ZI9SsKy1l+jcmY2GuCymkoWZ+eCCbisprL9knvWduCkP6ZsclTDeCih/G5W4vKNXdjc58J37ztVUk248+lJ7BzyYpWK5nXGGP7llefjH27croTm1IPNfW4cm4rWHJ7CuRS/XS6Zr6/OKXZaBikD0kwv6jmTiCQzGnvOxKyz0gtzLRuMgz675kU+51y2NdZfObOZjdjY68ILdw1WfOx8+I364mpkJoYdg17c8Z4r8Z7rNuGOpybw7C/+CT977FzDe7pmY6WDfQoZ9EnfZzPj9M8F4yU36bSwsdcFo4FRKIha/H7A4QCczUm7rgU1aY0MwHcAHOacfxEAOOdPcc57OefrOOfrAJwDsIdzPlnXsyWQy3MkM3nY69DbUQlh65gosAfMyvOvqlHOrCYjnr+jH799ZrKo7z2czCKZyateRHe7LCWLs94aZpwJNqpMbJxRes60vSZ2ixF2s1GJ+m52GIigy2lBIFb6Ai4CLbTG6Au8jjLFmTzjTK2tEZCUMwAlI/VFqE2txRkgFZalbI3nglKMfrl+yQvXSH1nagZnF4NzLhVnKpUzxhjedPl6HJoI4+Ei1s+JuQQOng0tGDxdiVUdDrz+0nV1TaLb0u9CIpNTFYtejnAyi0yOl1fOPLa69pxF5P4xl8pNF6/dTHPOICn0kVRWm3KmIk5fbIapKs682mdmRVJZZPO8IYEgAPD7912FN1+5vuLjhJtE7UYE5xwnp6MY7nHCajLifc/ZjDvefSU29rjwwZ8+gdd95+GG2u0CMXXjajqdFlhNhqYVZ9FUFsF4pqakRoHVZMT6bicpZ2qZnm5L1QxQp5xdDuBmANcyxg7Kf/6izudFlCAhFzHNsDVaTUZ0uyyYDM9/yIXiaVhNhqqLxRedP4RoKov9R5b615XCSqXq1e2yIhBNL9hdFxY2PWyNQhmqlK4XiKZgNxurUjc7nRbMxtOIJDM4MxtvahjIgnMqo+yIkJRaes5S2XzRAv10IAa31aSp+F/VYceA11a0+ACAKR2Lsw6nuWQgyFio+ADqQnat8sFkYFWHgkgBPTlld1gNL75gCB0OM75739JY/d89I81Hur5IhH4z2axTYqMalaTfa4M/kqpoX66WeeWMbI1aiKWzsh1Ug3Imj7Eol9goNsPUuD9ELLsWlSgkb2A2IhAEkDZg1GyUeO1mWEwG1YmN/kgKkVR2gUNiU58bP3nbpfjHF+/Ak2fncP2X78GtD58ucxT9mI2qm6/KGJMVz+b0nJ1VkhprV84Aydp4dCqsy7GWPX7/8i3OOOf3cc4Z53wX53y3/OeORY9Zxzmfqd9pEgKRktSM4gyQZr2ML1DOpEbnanfNLx3uQrfLil89sdTaqHYAtaDbZUVWnru2+BhqC7xyeGzSnJETU5WUs5Rm1UwgCiGxM9YSypnLoixgijHij6LDYa5KPQXmB1EXCz0YDcSxttuh6f3FGJP6zk7NFl1ETcwl4bAY4dbBLuqzW0pG6Y+psLLYLUacN+ipujhTM+NsMTazEa991hr8/vAUzgQWWnTvfHoSG3tdVaug9ULE6dfad6amv6jPY0OezyvgeiOSF9XbGsunma4UxOsmxguowWM3wW01lbU1zsbTcFtNsJoqX1MHfXYkMjlNP49qQ7PqDWMMfR71s85OlJhlaTAwvO6StfjDB67GrlVe/L9fH2qIxXG2zEiMxQz6tCueeiFUWzU2cTVs7XPj7GwC0RSp6RXx+4He3mafRVVoSmskmk8iLakL9ib0nAFSXPeCQJB4RnOMfiFGA8MLdg3griPTS3aH1Q6gFogAjsI4/alwCi6rSbWFqBIbe11llbOHTwZw1+FprNPQI1VIh9OCYCyNQyKpsQWUsy6nBZFUtmTC38h0rKbFvOjJKrbgOa0hRr+Qi9d3YjqSwunA0v7AqXAS/d7ahpILfA4z5or0nIWTGYSTWVVF0541HXji7FxVSo3YKFFraxTcfMk6GBnD9x8cVW6bjaXx8KlA0cHTzcZlNWHIZ6+510LN4Np6x+kLW6Nae55XngPYzDlNrYDWXj1AKkCGOsrH6c/G0qqvYYOy2q5msLVyfFGcNSAQRCt9bvX9lSN+ybJYapZln8eGF50/iGQmrykBsloCsbQy160SA177gnaMRqIoZzr0nAHzoSB6BSQta5azcka0FvF082yNgFScLQ4E6azxovOi3YNIZ/OKpUqgNcxDfFDPFFwYpiLJmmecFbKx14WR6WjRhdIfj0zh9d99BL0eK77w8l1VHV/q75KKsy6nBb0aEx/rgfD1l7I2nvBXH6MPlC7OMrk8zmmI0S/k4jLzzibmEjUnNQp8DnNR5UyJ0VdxQd6ztgOJTK6qPgI1A6iL0e+14YZdA/jJgbPKDuwfDk0hz6Gp36yRbOmvPbFRxG9XsjUC9RtErTkQxG5CngOxtPp5VMsR0XenJUofELPOyihnmhQY7bHsoRZVzgBt4Tcj01E4LMayn51r5I200xVCs2oln5eDfTT83KYiyabMBzsbjMNhMVbtLFnM1n5pw5ZCQSrAORVnRONoenHmsyOSzCoLumAsXXMK1QWrfVjdacftB8cW3D4VTsmxveq+VzHgsVA5mw4n0adDGIhguNeFWDqnhEoIbj84hrf+12PYLHvwB1Sm5y2mwyErZxNhbBvw1DVkQS3iolIsTn82lsZsLF0X5Ww8lEA2z6tSzjb2utDptOCRIqEgU+GULv1mgPTzmktklqQIVppxVkgtw6jH56Thplpn6gHAGy9fj0gqi589ehYAcOczkxjy2bG9BdTaYmzuc+OkP1bTAkvYGrvKJKn2VRExroWIYmtUP+cMKG77rSfHpyI41ULzlLT26gnErLNSVFOcTWhIbAzKPWetWJz1arA1npyJYbjHVfaatEaOi19sl9abuUQGuTwvOa9wMYNeGziv34ZLOc4FE1jVUT4YSgurOuxwWIxUnFUiGgWSSSrOiMaQUIqz5tkaAWBSvjgF4+maU6gYY3jR+YN4YCSwwA4xqbGwEgM4C3tFpsIpXcJABCIu/HhBYuMPHjqN9/7PQVy4tgP//ZZnqUqQKkWXy4JYOocjk+GWsDQC80M+i8Xpj5ToQ9BCqeJsVL7Ar9cw40zAGMNFazuWKGf5PJdsjTopZ167GXk+v+AWzM84q6z6DXpt6PfY8HgV887GQ0kMem1VDTfdvdqHPWt8+N4Do5hLZHDf8Rk8b0d/S2wIFGNLvzTK4nSg+oJhNpqG3WyEvczmVpfTArOR1dHWmIHRwFRvsHnK2H7ryYdvexKf/NUzDX3Ocgjbu5YofUBazEaS2ZKvX1BDcdbltMBiNGiyNYbiaTCm/bwbQZ/Hhkgqi5iK/qUROamxHEM+Owys/srZ/CaL1qK68cXZ2dm4LkmNAoOBYXOfG0cmKRSkLG084wyg4qztaIVAEEBaFObyHKFEBh06pFC96Pwh5PIcdzw1PxxXywBqQFoomwxMidPnXFqI6zHjTFAYp885x7/vP4GP//JpXLe1F99/08Wa+iGKIXZXMzneEmEgQKGtcekOq0hq1EM5W6wMiFjmtVXYGgGp7+zMbHzBbulMLIVsniubDLUifl6hxMLCdSyUgNVkUNUTwRjDhWs78OhoNcWZ+hj9YrzpivU4HYjj729/GulcvmUtjUBBYuNk+UCecqhRSQwGhl63TUn11JtIMguX1aS6CC71+1FvZqLphvQOqUXYGjUrZxUSG2c12OMMBoYBn02TrXE2nobXboaxig2UeiM2Lqcr/JwT6RzGQomKm3AWkwEDXrvSZ1Uv1PSOFjJvR21sKAjnHOeCCazWYQB1IVv73Tg6GVnxfahlEcUZBYIQjUBE6Zfb+a0nYlE7MZeQm9RRUyCIYEu/G1v73QtSG7UMoAakC2eXy6L0nIUTWaSyeV2SGgVdTgt8DjNOTEfw2d8cwT/99ihevHsQX3vdhartl+UovNi0inJWztY44o/CajLUVCCIxdbcollOo4EYHBajYlfViph3VmhtnA+Z0a/nDMCSQdTngvGKM84K2bnKi7FQQrM6Umtx9rzt/Rj02nD7wXF0u6zYI89da0WGe1wwsNri9GfjaXSpKJj7PNa6KWfRZFZTgaHYGpONTWcLxdMlZ/g1g1psjUDxEI94WpqlqcVyOOC1YULDIj8YzzRsxplWhDOlkoX35Iy0IbJBhUNiTaejJnVbDWp6RwsRo0a0KJ56MJfIIJrK6jKAupAt/W4E45mW2jxpOUg5IxpJs3vO+jw2MCbZA7QM71TDC88fxGOngzg7G0cuz+GPaO8N6nZZFeVMzG/R09bIGMOmXhd+9tg5fPOek3j9pWvxxVfuhtmoz6+SeC0tJgM2VGHnqwcemwlmIytqazwxHcX6bmdNu8JmowFOi3FJYXI6EMfaLmfVNrvzBjxwWow4cGppcVZtT+BiRHG2OBRkLFh5xlkhG+VFz0iFGXqFZHJ5TIWTNRVnJqMBr79sHQDgudv7WnJ3X2AzG7Guy4ljNfRaqO0v6vfWbxB1OJnVpLCL6PhGKme5PEc4mVU+41uBcDILq8mgKvK+ENH3OVYksXFWoz0OELPOtNkaGzXjTCu9KvsrRVLjcG/la9LaLgfOzNa3CFJsjSrTGh0WE3wOs6ZeQT04O6tvjL5AJDbSMOoyUHFGNBKlODM3p+fMYjKg22XFRCipDHStNRBE8KLzBwEA//vkOGaiKeS59vlkPW6r0nOmNe1RLZv73MjkON597UZ86kXbq+r3KYVIvtza74ZJp4KvVhhj6HRaEIgWsTX6a4vRF3jtS2c5jQZiVSU1CkxGAy5c17mg70wsuPu8+hTs4r2/+NzHQglNu6VisOvItPribCqcRJ4DQxoGUBfjNXvX4MpN3bjpWWtqOk4j2NxXW2JjIKquR7bPU09bY0bTjD2hnDWy50wUgslM8eHwzSCSzFTVt9XtssBqKt4nJoozLe6PIZ8dUxqGlAdjmZYMAwEKbI0VQkFO+qNgDKpGxKzudGAmmlLVx1YtYu6mlo3hwUUzWhvB2aC+A6gFlNiogulp6W8qzohGEJc/8JplawSkAIPxuQSCspVLL8vG6k4H9qzx4VcHxzUPoBYsUM7kC46eaY0A8J5nb8IP//JZeP9zt+geniDSp7b1t4alUdDptC6J0k9mcjgbjNcUBiLwLCrOcnmOs7PxqpIaC7l4XQeOTkWUjYTJuSRMBoZulSlflfDJi8VgwWuTzOQwE01rGgy9usMOi9Gg7FCrodoZZ4vxOsz4wV8+C9sHvTUdpxFs7ndjNBCrumBQrZx5bIilc4qVTk8iGm2N4rGL50DWk1DB72KpIeuNJpzQ9roJ5medlS7OtCzyB7x25PK8Yp+WQFLOWrM4c1lNcFiMqpSz1R0OVdZ90SN8tsxsuVoJxNQPDhc0YxC1mK+nt3LW6bSgx20l5awcfj9gswHO1nAgaYWKszYjnsnBZGCwmJr3o+uXB1EHlV1H/SwbLzp/EEcmI7j3+Iz0XFUWZyIMBICuc84AoNdtwxWbunU9psBnN+O6rb24YddAXY5fLd0uyxJb46mZGDivLQxEIAbtCsZDCWRyvCblDAAuXt8FAHhUjqmfnJMCYvRSO0VYQ+Fi9pyGGWcCk9GAdd0OnNCgnFU746yd2dLnRp5rs38KEukcEpkcOlVYoeo56yySymgqMkxGA1xWkxKI0QgKe81EFHyzCSczmmecCYZ8xeP0qynORP+S2oX+bDytS2hWPWCMoc9T2cKrJqlR0Ig4/UAsrer3uBCtdlQ9ODubgMdmUq4TerK1342jU5TYWBK/XwoDadH04UpQcdZmJNK5pqpmgLRzWNhzpqdl44ZdgzAw4D8fGAWgvV+s22VBJscxl8hgKpyE165+TlorYDAwfOeWvbhqc2tJ8ZKtcWFxpkeMvmCxrfG0fGFfV2Pf3a5VXliMBjxyKgBAsjXqNeMMkBbObptpQSCIWASKlDi1DPe4cFJD0SGeZ1Cn/rl2YEu/9F6rxtoYkEME1PQXiU2hevSdRTT2nAFS32cjbY2Fmw2tEgoSTmarjqNf1WEvmtZYTXEmVJDTKoqPZCYnBY7o1JddD3rd5Wed5fMcJ2eiqsJAAGBtp/SZfaaOiY2zsZTmXvcBrx3hghmtjeBsMK57UqNgS58bx6eiyOUpsbEobTyAGqDirO2Ip7NNCwMRDPpsiKayODMbh8Vk0PV8etxWXL6xG/5ICkYD0zwzrMctZp2l5Bh9fVWzlUqn07LE1nhiWupD2KByR7Uci4uzU3Lal5oeh3LYzEbsXu3DI6PzypleM84EHQ7LggWsWARqTeja2OvC6dk40ll1vSzjoQQ6nZamb9Y0krVdTliMhqri9OcX4pU/E+qlnHHONdsaAcn220hb41y80NbYGspZJKlNcSxkVYcDgVhaGUUjCMbTMBoYPBqOu67LAYvJoCo1NFiHDUy96fPYlPCsYozPJZDM5FVvwnkdZnhsproWZ4FoWlOICzCveGpJ2qyVc8GErjPOCtnS70Yqm8donZMx25bpaSrOiMYRT+eaNoBa0C/v1B8aD6PDYda970oEg/S4rJrT48Qgan8kLQ+g1nchvlLpdlkRTWUX9PqM+GNY1WHXRZlcopzNxGAzG9CrYZRCKS5e34mnx+YQS2V1V84AKbExuEA5i8NkYJrfe8M9LuTyHGdm1V1sx0MJ3ea1tQtmowEbepxVKWdaVJI+lSl2WklkcsjluXblbJHtt94ssDW2inKWyNZkawSWWhFnY2l0OCyarmEmowGbel2q+n2EJbRVbY2A5E6ZCidLzsxSkho1bMKt7XKqUharRW3vaCEiobdRg6ilGWdx3WP0BRQKUgFSzohGkkjnmq+cyQvCo5ORuuwIXr+jHxaTQdMAaoEozmaiKUyHk+jVOQxkpSIuhIXq2YnpqC6WRkAqzhKZnKIajQbiWNvp1KU3bO/6TuTyHH865kc8ndNdOfM5LAtsYGPBBPq9Ns0bC+K1VNt3Nh6qLUa/Xdnc565qQaIlNt1mNsLnMOtua4wkqxuk7LGZGzrnbEEgSJERGs0gksxoUrgKEf2fi0NBZmPaFRhAUi2OTFTu9xGFbasGggDSRkQyky/5/hJW62ENvcVrOh11G0TNOUcwnlalgBcyUMc+0mL4oykkM/m62Ro39UlzHykUpARUnBGNJN4CxdmAvCBMZHK6zTgrxGMz4137NuIluwc1f2233CQ8HUlhOpIiW6NOdC0qzvJ5jpP+qDKfq1a8joVx4acDMSX1q1YuXNsBAwN+dVAacK67cmY3L1AazgUTmpIaBcIeqjaxcTxU3fO0O1v63RgLJTT3jmiNTe/32DA5p++Q12oHKXvspgYrZ5KF0GkxtoStMZnJIZXN19RzBiwdQjwbS1cVaLWt34PpSKpi4RrUeRZoPRDjaqZLbESM+KPw2s2aitg1XQ6cDcbr0g8VTmaRyXHNRbUIBqvX/MLFiBlnesfoC8Tcx6OTFAqyhFgMSCSkQJA2hYqzNiOeycHeZFtjr9uqBODUy0v/7us24ZbL12v+ug6HBUYDw/GpCLJ5TrZGnRDDPsWYgrFQAqlsXtNuajlEmtVcIoN8nuP0bLzmMBCBy2rC9kEv/nhUmntSD1vj4kCQaqKTnVYTBr02VbPOwskMIqms0kexktjcJw1gPa7R2hiIpWE2qu8v6vPYdLc1CuVMqz1vcZppvZlLZOBzmCVVuAVsjdUqjoJetw0mAyuhnGnfwFM7BFgUti1ta5St41MlQkFGpmPY0OPUZP1c0+lAJsfrUghVE+ICAFaTEd0uS8NsjfWK0S9kS391LoJlT5sPoAaoOGs7EuksHE1OHzQb53uB9IzR1wODQRqY/My4tJtEypk+CAuJuDCekK0uesToA1B2xOcSGUyGk0hn87opZ4DUdyYsk/WwNYaTGeTyHJlcHlPhpKYY/UKGe13Ka1uOlRijL9giF2da+85mo9r6i/pVRIxrpRZbYySVbVgyWyiehs9uQafT0hI9Z0JxrLbnzGhgGPDZliQ2BuOZqq5hWwdEcVZetQjF2sPWCJTurxzxa7evizj903UIq5gVqasao/QBMQaoMYEg56oMhtLCln43Ts/GlwTdrHjafAA1QMVZ29EKtkZgvrlWrwHUetLtsiq7Sb2knOmCuBCKOH2h7ujZcwYA4URGSZ+qNamxkIvXdyr/1ltN9dnN4Fw698m5JPIcWFVl0TTc48LIdLRkc75gJRdnqzrssJuNmhMbAxpDBPq8NsxEU8jk1KVnqkEUZ64q0hoBINqgvrOQopyZW8LWGK5ROQOWzjrL5avrXQKksKpOp6WiahGMZ+C0GJs6l7QSSnFWJLExksxgOpKqujirR9/ZTFT0jmr/ufV7bA1Tzs7OxtHtstQ1wG1rvxucA8entKfXLmtIOSMaTbwF5pwB8821rbgj2OO2Ii0vqMjWqA9uqwlmI1MGUY/4o+h0WnTrpSi0Neo146yQveuk4qzbZdF9oSR23kOJDM7KVpZalLNYOlfSYiQYC0kLjJXYc2YwMGzqc2lXzmIpTbvt/R4bOAf8Ef36zuZ7zrTbGgE0bNbZXDwDr928ZExEs1CUsxqG+a7qcChWM0B6LTkHOquwHDLGsLXfjcMVi7N0S14jC7FbjPDYTEVnnZ2sIqkRkNYHJgOrS2KjYmusVjlrUM/ZuWACQ3W0NALAlgYlNs5EUwuSmlseUZxRzxnRKFphzhlQoJy1YKNzd8GHdo/GOWlEcRhj6HJaFUvJyHRM8wW7HIWLz9GZGCwmAwZ0LKw7nRZs6nXp3m8GAD679H4LxtNVzzgTDCuhIOV3QsdDCZiNbMW+vzf3uVXNmSokGM9oUkn6vfoHCFRva5Qe36hZZ0I566iTchZNZfHJXz2jFF2VCCf0Uc6mIynF3iw+y6odEL2l341jkxHky1hNJWWu9a6RiynVXzlSRVIjII0bWNVhr8usMy2pq4sZ8NoRimeQSNe/0DgbjGN1HS2NgKRQ2syGuiY25vMcL/jKffjsHYfr9hy6Q8oZ0UjyeY5kJt/0QBCgUDlrrZ4zYL4g63Lqr5KsZDqdFsXWeKKKPoRyiF6SOdnWuKbToUuMfiGfunE7Pvr8bboeE5j/HZiLZzAWSoCx+c0LrWxUGac/HpLi+vV+jdqFLX1u+COpJYPRyxGIpjQt6BS7l442qEgyA8YAl8bPcE+B7bfe5PNc6TkT/ZRZHa2dAPDIqQD+84FRPDgSUPX4WnvOAEnN5hyYkHuOZuUZZNXY4wDJUpbI5MoWIMF4piWvkYspV5yZDEyxKWphdZ3i9APRNBwWY1XzNUW/cb3Vs1yeYzyUqFuMvsBoYPJGVf0SGw9PhjEZTmL/UX/dnkN3/H7AagVc+q1RGg2tXNuIhCwrt4JyJj50WnGOmJh1Rv1m+tLlsiAQS2NW/qNXGAgAWEwG2M1Gxda4TscwEMFlw924fGO37scVtiWhnPW6rVVvCvS4rXBbTaqUs8EqC8DlwOZ+baEgmZw0x0mLilGPhVw4mYXLYtJcVBduXtSbaDqLPIeinHGu//MKq+jiaPtShPWwNcoWYKFuzytn1R1TDAEup1qE4um6JRrrSa/HWtRKPTIdw5ouB8xG7Z9na7scOF0X5SxVtRopNpUn6hwKMhVOIpPjWF1nWyMgbVTV09YoNlDOzMbrNrtOd6anJdVMQ8Joq0HFWRsRT7dOcfbsbb343hv3YpucWtVKdLulD25KatSXLqcFgVhqfiipjsoZIFkbhXK2VscwkHojYrJD8UzVM84EjDEM97pUFGfJFdlvJtiiMU4/qHHGGSApxRajQXdbYzXWPDEHsBG2xjnZxui1m5XXS29royjOxlUWZ5FkFgYGOGu49olI83NBfZSzzX1uMFa+32c2lm7pGH1Bn8eG6UhySRBRNUmNgjWdDoTiGd0L+0CVg8OB+TEq9R5ELYqYeiY1Crb0uzETTStjbvTmwZEAXFbpM+vBk+qU7qbT5gOoASrO2grhk7Y3OUofkDzl+7b0app90iiEctbXgqpeO9PptGI2mlYsd3oqZ4C0GDw+HUUyk6+LclYv3DYzGJN2yaudcVbIcI+rrK0xm8tjMpxckUmNgj6PFR6bSXXfWaCKPhXGmKQo6Gxr1BoGAhT0nCXqn9YoZvb5HBZF9dE7FGS+OFP32oYTGfn3rPrrTb/XBsaAc3JBKEYEVKuc2S3SEOBScfrZXB6RZLbqnrZG0ue2IpPjC4rwbC6P0UCshuJM2mDTW22Z1Zi6Wki/opzVuTgLigHU9b+Oba1jKEg2l8fDp2bxot2D6HJaVNuQm47f39ZhIAAVZ21FPCNdmJ3W5vectTJKcUbKma50uSyIpXN4ZjwMq8mge3HgtZtxWJ5P107KmdHA4LGZMRtPY2IuUXVSo2C414mpcKpkWMJ0JIVcnq/o4owxJgcyqIuQrnZwrd6zzqKp6pQzp8UEA2uMchZKiNlcZqU40105i2qzNVarOBZiMRnQ556fdRaIpuGymmA1Vb/ZWc5SFkqIAdRtUJwVmXV2LphAJserDn4SfWp6h4LMxtLoqjIIyWExwWs36z5cfjHngnEwBgz66r9BrHYgejU8PR5GNJXFZcNduHS4Cw+MzFQc89ISkHJGNBJha2yFKP1WZtBnh8NiVPpSCH0QqsOB0Vls6HHBqHMYhcduVkYgrNcxRr8RdDjMODYVRSbHa7YbilAQEWO9mPkZZytbGd4kJzaqWSxUo5wB0qyzSmMNtFBtkWEwMLht5ob0nCnKmd2shFnoPYhaq60xnMzUFAYiWNVhV+L0g/F01aqZYOuAG6cCsaLpf0JtbIdAkN4ixZmwVm+oVjnrEoOo9SvOOOcIRKu3NQJS31ndlbPZBPrctpoKf7X0uK3oclpwtMJA9Gp4YGQGAHDJhi5cvrEbU+EUTs7oP1hcd0TPWRtDxVkbIS4AjhawNbYyXrsZD370Otywc6DZp7KsEKrDkcmIrjH6AhGnbzYypXG7XfA6LDgkq361K2fSYqhU35lQG1ZyzxkgqRZzCWlIbiWCtShnc0t7caqlWlsjIP1+NCKtUSg+Xsd8z1m9bI3TkRRS2cqx5uFE7coZIP1uit+fQCyNzhpVLWUI8PRS1UKoje2hnElKVOGsMyVGv8rPepfVhC6nRVflLJrKIp3L1zSeoN9rq3/PWTCO1Z2N+3ze0l+fUJAHRwLY0udGt8uKy4a7AAAPtLq1MR6X/lBxRjSK+UAQsjVWwmuvrT+BWEqhlUTvMBBgvjhb3eGAqYp0sGbS4TAjmpJsx7XOtlnT6YDJwEr2nYk+nYEVXpxtlkNB1CxKArE0GIPmgcB9HisSmZzys62VWux5HrsJ4WT9e87m5ELMazfDaTHCbGR1CQQRv+9qFsrhZKampEbBkM+OybkkcnmOYA29SwIxBPjIxNL3YLVW2mbQ45Y+2xcoZ9MxdLssNQ3RXt3pwJlZ/ZQWPV7TRihnY8FEQ5IaBVv63Tg2FUWuzMw9raSzeRwYncWlclG2ptOBIZ8dD8pqWsuyDGacAVSctRXxtHRhJlsj0QwKrSR6h4EA88XZ2jYKAxH4ChaOtfaCmY0GrOt2llTOxkMJeO1mJUFrpbK5T3oPqonTn42l0OGwaLbiilEhatQ5NUSSWbiqLc5sDVLO4hk4LEZYTUYwxuBzWBTlUQ9iqSxi6Rx2rfICUNd3pkfPGSApZ9k8x1Q4KSUp1lg4rel0wG42Fu33aSdbo9VkRKfTgqnIQltjtZZGwdouh67KmWJPdlX/c+vz2DATnR9GrjeZXB4Tc4mGJDUKtg14kMjkMBrQrxA+eDaEZCavKGaMMVw63IUHRwJlB683HVGcUSAI0ShaKUqfWHkUXhDro5xJi692CgMRiN3lTqdFF2V7uMeJkTI9Zys5DETQ5bKi22VVWZxVF2ne615q96qWZCaHdC5fde+UGDVRb0KJzILNhg6HWdeeM2FpvGC1D4C6xEb9es7m4/Rna4hkF0hDgF1FhwC3k60RkN7rhf2VJ2eqT2oUrOl0YDyUREanIeazUaGcVR/2JSzz9QoFGQ8lkOfAqgYkNQp2DEobHU+Pzel2zAdGZsAY8Kz1Xcptlw13IRjP4HAd+tt0g5QzotFQcUY0E5fVBIvRAMaADfXoOZMXz+0Uoy8Qu+N69YEN97gwOhMruqgZCyUwtMLDQARb+l04OlU5sVEKEdC+oOsVvTiR2hdyEdmSWLWt0WZuTFpjPANvQUHhc1h0tTWKpMZdq3wAKoeC5PMc0VRWGSdQC+L3c8QfRSKT0yXmfmu/p6itMRhPw2I0tM31us9jw7RcsMzG0piNpWvuLV7T6UAuz1UHv1Ritspgn0L6vdJ7QM8U1kLEHL1G2ho39blgMRrwzLh+RdODIwHsGPQq12UAisWxpSP1p6elv6k4IxpFgmyNRBNhjKHTacGqDjtsdQil8dmlC+7aNktqBOZ3x/Wysgz3uJDN86KWIFLO5tnU68bxqUhFm021s5F6ZFujXwdboxiNUFPPWQPmnM0l0guUs06HRddAEPFaDnXY0eO2Vly4R9NZcA7des4A4ClZYahVOQOkfp9ALL3kPRKMpeFztE/vc59nXjk7qYSB1K6cAfrF6Qd06jkD6jfrrJEDqAVmowFbB9y6KWfJTA5/PhNSLI2CAa8dG7qdrR0KQsoZ0Wji6RyMBgZLm4UlEMuHNV0O7Bzy1uXYl23swt/dsA1XbOyuy/Hrid7KmejpG1kUChJJZhBOZqk4k9nS70Y8navYtzQbS6Ozij4Vj80Eq8mgS8+ZopxZqysyPDYzEplc3XplBKF4ZkGfVIfTrK9yJr+WPW4rBn32ij870Wenh63RbjGiy2nBU+ekRawelsOtA2LO1ELVIhjPtEUYiKDPY4M/Ks1QHNGpOBMWdb3i9GdjKdjMtamRYhD15Jw+at5izgbjMBoanzi8Y8iLp8fmdEmWfex0EOlcHpcsKs4A6Tr98MmAblZV3fH7AbMZ8HiafSY1Qav8NiKezsFhNrbNThyx/PjG6y7E5162qy7HtpqMePOVG2Buw80HEWZSa4y+QNhGF/edid1eKs4k1CQ25vMcwXh1/UWMMfR6rIrdqxZqtTUKe1G9rY2hxMLizCcrZ3qNE/BHUjAaGDocFgz5bBWLs1pft8Ws6rArhZQexdNWObFx8XswFE+3RRiIoNdjQy7PEYimMOKPwWIy1Px51uu2wmIyKGpSrQh7ci1rILfVBKfFWDfl7FwwgUGfreGJwzsGvQgnszg7W3vR+cDIDEwGhr3rOpfcd9lwN2LpnKI+txx+vxQG0ubr5PZbBa1gEukcHFayNBLNo8Np0WUHe7khLCybevUZfO62mdHnsS6J05+fcUY9Z4CknFlMBtzx1ETJx8wlMsjz6hfivW6bLspZNCVsjdUrZwDqmtjIOcdcPAOvff616nCYkclxxIoMWq4GfySFLqeUnDnotWM8lChb+CnKmQ62RkDaQMnkpOfTozjrdFrQ67bi8KK+s2A80zZhIADQp8TppzAyHcWGbqfmdNPFGAwMazoduilnAR3GHzDG0O+11S0Q5OxsvKH9ZoIdQ9ImwdPjtRdND4wEsGuVt2gi8CUbWrzvzO9ve0sjQMVZWxHP5GjGGUG0IBt73fjD+6/G5RuX2kCqP6ZrSZy+6M8h5UzCZTXhjZevwy8OjuGZEouSWvtUet1WXYqzcK2BIHKaaT1nnSXkRMnFyhkA3eL0/dGUMldrqMOOZCZf1japt3JWaD3Wy3a4pd+9JLFR6jlro+LMM59ieHImplvo05pO/eL0q+0dXcyA116/nrNgY2P0BZv73DAZWM19Z9FUFk+em8Nlw8XbCzqdFmwb8OD+Ey0672x6moozorEk0lnY6xDEQBBE7WzsdelqOR7ukYqzQlVhIpSE0cCU+VsE8FfXbITXbsbnfnOk6P21Dq7tdetra6wlSh9AXeP0Q3KRtDBKXy7OdAoF8UfmizOxyVAuFETYOPVS7EVxZjQw3Y65VR4CnJX7cDjnCCUy6HS2j8tAFGdng3GcmY3rNi5FFGd62GL1GH8ASH1naoafayWZycEfSTVFObOZjdjU58bTNSY2Hjg1i1yeLwkDKeSy4S48ejqIZEYfNV1XSDkjGk08nWubWF6CIGpjuMeFSDK7IAVuPJRAv8dWs91oOeG1m/HX127CvcdncM8x/5L7Z2PS61d1ceaxIZzM1rwQEWmNtQyhBupra1SKs8JAEPnfeoWC+CMp9Lhk5UwulMr1nYnvV7+eM2nh3OEww6DT79HWfg/S2TxGZfteOJlFLs/bytbY7bKAMeDAqLQ417M4i6ayurx/ArGUTsqZZFXO6hxqocToN3DGWSE7hzx4psZQkAdGZmAxGrBnbUfJx1w23IV0No/HzwSrfp66IXrO2hwqztqIWDpHMfoEsUIQiY0nCqyN0owzsjQu5nWXrMHqTjs++5sjyC2K1Q8os5GqG1wrVJ5a4/QjySwcFmPVhbXouapnIEgoIb1WhT1nwpqnR5x+Ps8xE12qnI0FSxdn87ZG/XrOAP0sjYBkawTmQ0HEa9VOtkaT0YBul1XpJdKzOAOA04FYhUeWxx9JIZnJo9td/QBqQb9XCj+Zieo3IgKQVEegsTH6hewY8iIQS9dk2XzwZAB71vrKjsu5eH0njAbWen1nySQQjZJyRjSWRDpLyhlBrBDE4qgwsXF8LoEBCgNZgtVkxN9cvxWHJ8L4xZ/HFtwneqU6qrSY9br1GUQdSWZqUn/mlbP69ZzNFVHORBGjR89ZKJFBNs+V4qzDYYbNbKhoa7SZDbCY9FmuiOJMT1VrY68LRgNTUiCFStTRRmmNANDvsSnnrlfP2doufWad/fzxcwCAZ2+rXRXp94hZZ/rG6TdbOds+KI25qbbvLBRP45nxcMl+M4HbZsauVd7Wm3e2TGacAVSctRWSrZECQQhiJdDnscJpMSqzznJ5jsm5JIWBlOAFOwdw/iov/uV3RxdYEAOxNNxWE6ym6ja2RCExHa5dOatF/bGZDbAYDfXtOUssLc68djMY08fWKApc0TPJGMOgz47xMovkSDKra0Ksx2aGx2bSVTmzmY1Y3+3EEVk5E4VsOylngPSZA0jFi7NIUl81iEKlljh9zjl+fOAs9q7rwEYdEnHnZ53p23d2bjYOi8mg2HYbzbYBNwwMVfedPXRyFpwDl5bpNxNcNtyFJ86GEE3Vb7NIM9PT0t9UnBGNJEG2RoJYMTDGMFyQ2DgTTSGT41SclcBgYPjoX2zDxFwS37t/VLm92gHUAlFI1JrYKBVn1S94GWPw2E31tTUqgSDzr5cIztDD1lg4gFow5LNjLFR6kRyuUXEsxnufvRmv2rta12Nu7XcXKGe1hdA0i15ZURru1Uc1A6TCtc9jrSlO/6GTszg1E8Or967R5ZwGvNJnqN6JjWeDcazy2XXrZdSKw2LCcI8Lz1SpnD10MgC72YjzV/kqPvay4W5k8xwHRmereq66QMoZ0QzEEGqCIFYGG3tcinJGM84qc8mGLjx7Wy/+Y/8JJaWx1vhtMZNLH1tjbQqQx2aubyBIIg2LyQCbeeHSoMNh1kU5K1WclbM1RpJZ3WacCd50xXpcs0Xf0ICt/W6cnU0sCL9oN1tjn7wRoVe/maDWOP0fPXIGHpsJN+wa0OV8OhxmWEwGTOo86+xcMIFVTbI0CnYOeauedfbAyAwuWtehykJ84doOWIyG1uo7E8UZBYIQjSKf50hkKK2RIFYSw70ujM8lEUtlacaZSj78vK2IpbP46h+PAwAC0dritw0Ghm6XRSdbY20KkMdurqutcS6egc9uXjISwuew6BKlX6w4G/TZ4Y+kkMoWT8MMJzJtMfh+a780BPjoZASheBoGpl/8f6MQtkb9izNn1cVZMJbGnU9P4iUXDJUNqdACYwwDXpv+ytlsHKubFAYi2D7kxVQ4pXkzyR9J4dhUtGK/mcBmNmLPWl9rzTsj5YxoNEn5wmWnnjOCWDEMy035J/0xKs5UsqnPjVftXY0fPnQapwMxzMbSNYc/9LpttdsaU1l4dCjO6jmEOhTPLOg3E0jKmT7Fmd1shLNgk1G8nydKWBv1KGobQWFi42wsDa9dv6j+RiF+Fpt69VfOJsPJqsZR3Pb4OaRzebzmWfpYGgX9HhumdCzOhGK6qgkzzgrZMShtEjwzpq3v7KGTkgJWbr7ZYi4b7sahibBuA+prZnoaMJsBr7fZZ1IzFYszxthqxth+xthhxtgzjLH3yLf/P8bYk4yxg4yx3zHGBut/uiuXeFr6UHNaSTkjiJWCiNMf8UcxHkrCbTW13W58M3jfszfDZDDgC3cerbnnDJAHUdfcc6aHrdGESJ1tjYX9ZoIOhwXBmA62RjlGv1CZG5RtuqWsjeFkRndbYz1Y1WGHy2rC0ckwQvEMOtqs3wwALt/YjW/cfKGqQAgtrOmyg/P5NEO1cM7xo0fO4II1PkWZ1IsBrw0TYf3SGs/JMfqrO5u7eXaeXJxpTWx8YCQAt9WE7YPqX+fLN3aBc+DhUy1ibfT7ge5ugLXXpkgx1ChnWQAf4JxvA3AJgHcyxs4D8E+c812c890Afg3g7+t3mkRCLs7s1HNGECuGNZ1OGA0MI/4oxkIJUs1U0uux4S1XbcD/PTWBdC5fk61ROp4V/hp6zjK5PJKZPNw1JuBJyll9A0GKFUIdTotugSA9i+ZUrfJJSkOpQdThNlHOGGPY0u/G4ckIgvHa1dpmYDQwXL+9f4mttVbWdEoOAK2JjY+eDmLEH8NrdAoCKaTfa8fUXAr5fPUDmws5OyvH6DdZOXPbzFjf7dTcd/bQyQCetaETJqN6Q92uVT44LMbWidT3+5eFpRFQUZxxzic454/L/44AOAxgiHNeqJk6AejzDieKIpQzitIniJWDxWTA2k4HTkxHMR5KKCoDUZm3XrUB3XKkdWeVA6gFPW4bArE0srl8VV8/P0i5ts9vr9xzxnl9LrdzidK2xlg6h3S2uu9f4I+klsSM93mtYAwYL2JrTGak52wXtXhLvxtHJyMIxjNtFwZST6odRP2jh8/AZTXhBefrEwRSyIDXhnQuj1kdNh2A+cKzWTPOCtkx5MXTGmyN46EETs3EcMkGbYqp2WjAxes7W6s4WwZhIIDGnjPG2DoAFwB4WP7/pxljZwHcBFLO6ko8LV3cKRCEIFYWIk5/nJQzTbisJrz32ZsAzAcdVEuv2wrOgZlodQu5iKx26ZHWmMlxJDO1FUmlCMmBIIsR87pqVc+ErbEQq8mIHpe1qK1RqIS19uo1im39bswlMhjxR9tuxlk96XZZ4LAYcWZWvY1wLp7B/z01gRt3D9ZlU1rvWWfnggk4LMaWKMp3DHowFkqo7gUTiYtqw0AKuWy4Cyemo5jWOfmyKpaRcqb6Hc8YcwG4DcB7hWrGOf8YgI8xxj4K4F0APlHk694K4K0AsGaN/tL0SkEoZzTnjCBWFsM9Luw/Mo1snmacaeW1F6/Bqg57VYuOQnrFIOpIUlnUaUEoZ66aA0Gkrw8nM7pfC5KZHBKZXAnlTCo0gvGMMgtLK6lsDqF4ZklxBqDkIGrxurVDzxkAbJH7otLZfNvNOKsnjDE5Tl+9cvaLP59DKpvHay6uz7pxQP49nphLYsdQ7QESZ4NxrO5w6G4JrQbx/TwzHsYVmyp/9j0wEkCHw4yt/doHfIvP1hf+230l0zQ9NjP+5ZXnY3Nf7QPEyzI9vWyKM1XKGWPMDKkwu5Vz/vMiD/lvAC8r9rWc829yzi/inF/Us0xetGYwb2uk4owgVhLDPU5k5b6IISrONGEwMFyzpRfGGlPzREFSbZx+WFHOaizOZOWtHrPOxDG9RRQfoQbM1pDKFpBVx2LF2ZDPjrEiYRHinNqh5wyYT2wEULTIXclomXXGOcePD5zFziGvLoVTMfo9QjnTJxTkTCDe9DAQgQj1eEpFKEg0lcXvnpnENVt6q0oXPW/Ag7ddvQGXbujCBat9Rf+cDcbxsV88VTc7NgAglQIikWVTnFX8xGPSNsB3ABzmnH+x4PZNnPPj8n9fBOBIfU6RAMjWSBArleGCWGtSzprDvHJWXXGmKEA12hq9soJUj1lnIfmY9bI1iteut6hyZsMfDk+Bc75AedDrdWsUXrsZg14bxueSbRkIUk/WdDpwz3H/kp9xMf58NoQjkxF85iU763Y+XS4rTAamy6yzVDaHEX8U121rjX4nn8OCVR12VaEgP3v0LCKpLN5w2bqqnstgYPjo87eVfcyPHzmDj/z8Kdx+cBwvvmCoquepyDKacQaoU84uB3AzgGvl2PyDjLG/APA5xtjTjLEnATwXwHvqeaIrHSWtkQJBCGJFUTgQlgJBmoMIFtE62FWgVyCIsPfVI7ExFJeLs2K2Rqd0WzBe/fMWG0AtGPLZkcrmlyhzYZ169RrJ1gFJtWiF3qNWYm2XA8lMXnkflOPHj5yBw2LEi3bXb0KT0cDQ57Hp0nN2fCqKbJ4rMfatwM4hL56poJzl8xzfe2AUe9b4sHu1r27n8sqLVuP8VV58+o7DSv+t7ojibKUEgnDO7+OcMxGbL/+5g3P+Ms75Dvn2F3LOxxpxwisVxdZIUfoEsaLw2s3ocVthYEBflf0+RG1YTAZ0Oi01KGd6BYLIPWcJ/QdRC1Ws1JwzADUNoi5XnAlFeHFi43zPWftsSgprIwWCLESkGFayNoaTGfzvExN40fmDcNU4eqIS/V6bLsrZoQkpGXH7YOsMP94x5MVoIF52I+ePR6ZxOhDHm65YX9dzMRgY/uHGHZiJpvCVu45X/oJqWIHKGdECJDIUCEIQK5XhHif6PDaYNcygIfSl122tuucsqmOUPlAfW6M4ZjHlzGY2wm421mRrFMVZV5GxBqI4WzzrTPSctYutEQB2r/aBMeoPXczaLmnW2elA+eLs9oPjSGRydQsCKaTfa8OUDimDh8bDcFiMWNsCMfoC0Xd2aLx0pP73HjiFAa8N12/vr/v5nL/ah1ddtBrfu38Ux6ci+j/B9LT0NxVnRCOJp7MwMMBqoh8ZQaw03nb1MN737M3NPo0VTY+7+kHUkVQWNrOh5uLaXcdAkDklEKR4IdThMNdma4wm0eEww1LkGjZUojiLJLMwGlhb9Vo/97w+3PX+q1ti3lUrMeSzg7HyyhnnHD96+Ay2DXiwa1X9VagBj6Sc1RpUcWgijG0DnqoCNeqFUPGeLmFtPDIZxv0nAnj9pesatun3oedthdNqwid+9Yz+4SCknBHNIJ7OwWkxtURMK0EQjWXfll68cu/qZp/GiqbXbavJ1qhH35TFZIDdbKxbz5nRwOAuYSXzOSw1K2fFLI3Ssc2wm41LZp2Fkxm4be113WOMYUNBnyghYTEZMOi149BEGP5ICvn80sX5U2NzODQRxmsvXt2Qn3m/14ZEJleTTZhzjsPjYZw30Dr9ZoC0mdTvsZUszr533yhsZgNec3HjriudTgs++NzNeGAkgDuemtT34H4/YDIBPp++x20S7WPkXuEk0jmyNBIEQTSJXo9VWVRq3SEPJ7O6xcF77Kb69Jwl0vDazSUXxR1Oc01R+uWKM8YYBn22JcVZRMfXjWg+G3td+P2hKfz+0BQsRgP6vFYMeO0Y9Now4LPjqXNzsJkNuLFeiX6LGPBKiu1EOFFSMa7EuWACkVS2pcJABDuGvHi6iK0xEE3hFwfH8IoLVzW8N/K1z1qLHz1yFv/4f4ewb2uPfgPG/X6guxswLA/NaXl8FyuAeDrXVtYOgiCI5USv24psnlcViiEVGfr0TXnt5vpE6cczRWP0BZJyVoutMYUeV/HiDACGOhxLlbNEpq36zYjyfOlVu/Gt11+Ef7hxO950xXrsWdMBcODR00F8+96TuO/EDF5ywaqG/cz7CwZRV8szcvHTasoZAOwY8mDEH1VGMQn+++EzSGfzeOPl6xp+TkYDwz/cuB0Tc0n82x9P6HfgZTSAGiDlrG2Ip7MUo08QBNEket3yIOpICl1lioxiRJKZknZBrXhs5rrYGucSmbLqgdRzVp1yxjkvq5wBwJDPtiS8gJSz5UWn04LnnNdX9L58niMQSzd0BMGAVwyirr44OzQRhoEtHEDeKuwY9IJz4PBEGBeu7QQApLN5/NdDp3HV5h5s7K3zOX/hC8DevcC+ffO37d+Piw4cwEv3PBffuvckXn7hKn1swH7/sirOSDlrE0g5IwiCaB69nuoHUetZZHjs9SnOKilnHQ4L5hKZor1ClYimskhm8mWLs0GvHTPRFJJyMjEg9ZyRcrYyMBgYetxWmBqYSCtGlNSinB0aD2O4xwVbC4452jEkQkHmNz3ueGoC/kgKb2qEarZ3L/DKVwL790v/379f+v/evfjI87fCZjLiU/97SJ9wECrOiGZAxRlBEETz6JULi+kqorcjcrCFHnjt5rr1nJXrP+lwWJDn1Q3AFjH6Qn0shojTL1wohxP6BKkQRDHMRgO6XVZMziUqP7gEhyfCLdlvBgB9Hiu6XRYlFIRzju/efwrDPU5ctakBhcy+fcB3vws8//nABz8oFWY/+Qmwbx963Ta89zmb8adjfvz+0FTtz+X3L5sB1AAVZ21DIp2DvQV3ZgiCIFYChbZGrejZc+axmerWc+Ytp5w5pfuqidMvN4BaMD+Ien6hHElm22oANdF+DNQwiDoUT2MslGjJfjNACtrZMeTFU3Jx9tjpIJ48N4c3Xr6+cbH/nZ1ANgv8y78Ab3zjAovj6y9di819LvzDrw8tUMw1k04Dc3OknBGNJ57JknJGEATRJOwWI9xWk1JoqCWX54inc7raGiPJyvbC3x+awkv/435kc/mKx8zm8ogks0UHUAuEqlZN39m0iuJs8ayzXJ4jktKvqCWIYvR7bVX3nB2akMNAWlQ5A6S+s+PTUSQzOXz3/lPw2s146Z7GpGECkAonp1NKUfzSl4A77lDuMhsN+NSLdsBiMiwJA9LEMptxBlBx1jZIUfq0g0gQBNEsejxWTGscRB1NShZE/ZQzM/IciKXLWxt/9cQ4Hj8TKjv0VxCWz7FSzxmAqmadKcpZmSCVfq8NjM0rZ9GUdE4eCgQh6siA147JKqzKAJQAm20tqpwBUmJjLs/xxyPTuPPpSbz64tX6xddXQvSY/fKXwP/8D5DLAS9+MXDnncpDLh3uwu/fd3VtoSBUnBHNgnrOCIIgmkuv24rpsDblTPRo6dlzBqCitfHx00EAwEl/rOIxRcFVvudMet7ZWBW2xmgKZiMra5u0mAzodVuV4iwsf38UCELUk36vDZFkVtkM0MKhibDc16UtvbWRbB+UQkH+4X8PgTGG11+6rnFPfuCA0mOGl78c+P73gUwGeO97JUVNxlirxZKKM6IZcM6RyOTgpOKMIAiiafS6bZp7ziJJfRUg0YNVLhRkYi6h2ANPzkQrHjMkF0LlovR9NSpn3S5rxT6XQZ8d4yFJxVBeN+o5I+pILXH6h8bDLdtvJljVYYfXbsZkOInn7ehX7MMN4UMfWhijf/PNwNe/Dhw9Crz2tVIvmh6I4owCQYhGkszkwTnI1kgQBNFEet2SrVFL9HNEUc70szUC5VMTH5NVMwAYma6snM3JIR/lbI0emwlGA6uq56zSjDPBoM+uFJXi+yPljKgn/Z7qirNUNocT09GW7jcDpFCQnXKk/psuX9/kswHwtrcBX/wicNttwF/8BZAv6Indv1+ajaYVUs6IZiCmu5OtkSAIonn0eqxIZvKIaLBARZSeM/0CQYB5218xHh0Nwm424oI1PpXKWWVbI2MMPru56rTGcv1mgiG5OOOcF7xuVJwR9WPAK0Y4aAukOD4VRTbPcd6Atx6npSuvuGgVXr13Nfas8TX7VCTe9z4pufH3vwduvBHgfMEMNM1MTwNGI9DRof+5NgmSYtqAeFqKGLVTcUYQBNE0lDj9cEq1ohNJScWMy9q4nrPHTgdx/mov1nU5Vc0QCqlQzgCgw2mpztYYTWHXqsqL2CGfHelsHoFYer7njGyNRB0Rw+W1KmciDKTVlTMAuHH3EG7c3cCERjV85ztAMgn86EfApZcCIyPz/Wla8fuBri4pEXKZsHy+k2WMKM5IOSMIgmgeyiBqDYmNeitA87bG4updPJ3FoYkwLlzbgQ09TgRiacW2WApRnHkqFWcOM4IaA0FyeY5AVL2tEZASG/W2gxJEMWxmI7qcFkxoTGz8/+3de3hc5X0n8O87d82MZnSb0c03jQzYWJibjYlzdbIpbMiGlPIQQh6SZ+myDaQb8jQtSZZNtk8v2y1Nu01Kk242F9iWNhCSdPs8CRDSGkgDNtiOC5Yv2JJtbEuyRveRZkZze/ePc440kuZyjjSjczT6fp7Hj6WjM5qjF3NGv/ld3uODU/C67Njc5K3SldU4IYAnn1QyZQcPArfdtrzADFCCsxoqaQQYnK0JLGskIjKf9i67kb3OKl3W6PdoA0EKB0lHL0wgm5PYtbkJkRZlPHVfmdLGyUR6rqeslAavy3DP2dhMCjlZeo8zTUeDkpkcmEjMBZ+VWjeiYloDxvc6Oz4whe3tgdXbzLkWvfgicPYs4PEoGbT9+5f3faLRmhoGAjA4WxMSWlmjky9SRERmCeWVNeo1lUzDZbfB46zMm2t2m0C9x1F0IMjhc8owkBs2NaI7rAZnw6WDs4l4qmS/mabR6zQcnGmBbFhHcDa/EXUSU4k06px2OO38NYWqqz3owaCB4CyXkzg+aP1JjZam9Zg9/TTw2c8qI/bvvHN5ARozZ1RJU8k0njl8sezkL5Y1EhGZL+BxwO2wGSprnE5mKp79CXicRXvODr89jivCfgS9TmxsrIPTLtA/Unpi40QijYYSY/Q1jV4XxuNpQ9Mqo9PqBtQ6grNgnRNelx2XxhOIJTPsN6NV0Rb0YMjAQJCL4wlMz2bWRL+ZZeXvgfaZzyj9Yh/8oHLcqOHhmgvOeOcz0Xf/9Sz+8uensXNDEFe21hc9L55mcEZEZDYhBMIBt6G9zmLVCM7qnAX3OcvlJI6cH8dtO9sBAA67DZuavOiPlsucpUtuEK1p8LqQyuSQSGfh1bm1i5Y5C/k9Zc8VQqh7nSUgBPvNaHW0Bz0Yj6eRTGd1ZbiPD04CADNnK/Hww/Mfb9oE3HEH8PzzyqAQI9JpYGKi5oIzZs5M9HyvMkWrXMlJQu0547RGIiJzhes9hsoaY8l0xYOMQJGyxjPRaUwlM7hxc9PcsUjIj/5o6czZZCKtu6wRgKFx+lqWsaW+/PcHlNLGgUk1c8Z+M1oFbeo4/cs6h4IcH5iCTQBXtRV/U50MeughJcj627819riREeVv9pxRJZwfncGJQWUUa7mSk/myRr5QERGZSduIWq9qZM6Cdc6CA0EOqf1mN26e3+8nEvLh3OgMMtnckvM1E/FU2TH6gDJKHwDGZ/T3nUVjs/C7Hbpfv7TM2VQVglqiQtqDSlZXb9/Z8cEpdIf8FesjJQB79wI33gh87WsLN6YupwY3oAYYnJnm+d4hAIDPZS+bOWPPGRGRNSjBmRXKGgsEZ+fH0OxzYUvz/Hjv7pAf6azExfHCPTW5nFQzZ/p6zoD50ft6RGP6xuhrOhs8GJlOIRqbLTvan6gS2tTgTO/ExuMDU+w3qzQhlOzZyZPK5tR6DQ8rfzM4o0p4vvcyejoDuG5TA/rKZM4SqSxsAnA7+J+LiMhM4YAHsWQGSbUXuJzqlDU6C+5zduT8OG7c3Agh5sd7d4d8AID+IuP0Y7MZ5CR09ZzNlzUay5yF/PqDM22vs8HJJMsaaVW0BfRnzsZnUhiYTLLfrBruugtobVWyZ3oxc0aVMjyVxOHz47jl6jZ0h/zoH54uOf1qJpWB1+VY8IJLRESrT8sC6e07q1ZZ4/RsZkGpYjQ2i3Oj8QUljQDm9jor1nembVCtp+esYS5zZiA407kBtUYLzgAOBKHV4XM7EPA4dE1s1NpRdnQEq31Z64/bDTz4IPDss8CpU/oew+CMKuX548ogkFt72hBp8SE2m5kbN1xIIpXlMBAiIgvQ9uvS03eWy0lMpzKod1e6rFH5frG87Nnh80q/2a4tC4OzRp8LjV4n+opMbJxIKIGWnp4zrfRxbKaaZY3zwRlH6dNqaQ/W6cqcHVeDs+3tHAZSFb/1W4DLBfzVX5U+79FHlT3RolFlDH9Tk/L5o4+uznVWGYMzE/ysdwiRkA9bw/68TUKLlzbGU1n2mxERWUBY24haR9/ZdCoDKSufAQqo3y9/YuORt8fhstvQ07n0Hf3ukB99RTJnE3OZs/LX6LTbUO926C5rTKaziCUzhoKztqAHWpEIM2e0WtqCHgzpmNZ4fGAKbQEPmg2U6pIBra3Axz8OPP64Mr2xmN27lTLIo0eB5mbg5ZeVz3fvXqULrS4GZ6tsIp7Cq32juHVHG4QQiITUkpMi/QCAEpzVcSoQEZHpwgGtrLH8L3JaZqsaA0EALNjr7NC5MVyzIQi3Y+lrRSTkK1rWOJHQH5wBQIPPqbuscW6PMwPBmdNuQ6saALPnjFZLW8CjO3PGYSBV9tBDwMxM6T3P9u1TetOefVb5/K675je1rgEMzlbZP58YRiYnccuONgBAe8CDOqe95D40iXSGmTMiIgto8rrgsAl9mbO54KyyGSBteIeWOUumszh2aQq7FvWbaSIhP0amZzFZYMLjpBpoBev07UPW6HXp3udMK9c3EpwBQEeDFpwxc0arY1t7PaKxWXz/tbeLnpNMZ3FmeJrDQKrt+uuBd78beOwxIFtk8NJTTwEPPAA4HEpp4wMP1ExgBjA4W3XP9Q6hPejBzg1K6YnNJtDV4ivaDwBoZY18B5GIyGw2m0CL3z2XFSolpgZPlc+cKd9PC7aOXZpEKpvDDcWCsxZ1YmOB1xmtrFHPtEZACc4MZ84MloBpQ0HYc0ar5d6bN+O9V4bwyD8ewy9ORwuec/ryNDI5yczZavjc54Bz54B/+qeFx2dmgPvvB+6+G+jsBHw+4MtfBr75TaXnrEYwOFtF8VQGL78VxS1qSaOmO+wvnTnjQBAiIssIB/TtdVa1skat50wNzg6dX7r5dD6tt7nQ68xEIg2fyw6Xzq1aGr1O/ZkzdY3CBjNn2lAQ9pzRanHYbXjsnutxRdiPB//uCE4NxZacc3xwEgCYOVsNb721dKz+t78NdHUp5Y733KNkzJ55BviDP1BKGu+6q2YCNAZnq+ilU1HMZnJzJY2aSIsPF8bjRffN4UAQIiLr0LsR9dRc5qzCA0EWlTUePj+OrhYfWopkqDY1eeGwiYK9zRPxtK4x+poGr0v3QJDh2CyEAJp8+r8/AGxp8cG2jMcRrUS9x4nv/cfd8LrtuO/x15f0lR4fmILPZcemJm+R70AVs2cPMD0NvPQS8KtfKX1o99+vlDm+8AJw7bULe8z27VM+f/11c6+7QhicAUhlcuVPqoDneofQ5HNh96JRx91hP6QEzo/GCz6OwRkRkXWE6j2I6hilr2XOKj3Ywueyw24TmEpkIKXEkfPjuGFT4awZoAzZ2NTkLZg5m0ykdJc0AkpZYyyZQTpb/nUzGptFs88Fh93Yrxp33NCJHz6wt2iwSVQt7cE6fOdTuzEeT+E3nziEeGp+6M7xwSlsbw/AZuOes1W3bx/w93+vfLx3L/D1rysB28mTwAc+ADz88NIes337lOM1YN0HZ/d+5yA+/XeHq/48qUwO/3JiGB/c3rrkhUrrByjWd5ZQN6EmIiLzhevdGJ1JLdgEupBYlQaCCCEQ8DgwmUjj3GgcozOpJfubLRYJFe5tVjJnBoIzn3PuceVEY7PLCrDcDjuuLxFsElVTT2cQj91zPXoHJvHZfziKbE4il5M4MRhjv9lq+shHgJtuApJJ4Nd+DXj11ZrbbLqYdR+cherdOHZpsurP80rfCGKzGdzS07rka5FQ8WZtKSXiaWbOiIisIhxwQ0pgZLp0eV8smYbDJuBxVv6lNlDnxFQyjUPnxgCg6KRGTXfIj3OjcWRzcsHxiYSx4EwrgdQzFCQ6bWwDaiKreP+2Vvz+R3bg5ycu449+chwXxuOYns2w32w17d8P9PcDn/88cOQI8OKLZl/Rqln3wVlPRxDDsVlde9asxPO9Q/C7Hdjb3bLka16XAx1BT8FNQpPpHKQEB4IQEVnE/EbUpV83YskM/B7HggFQlRKsc2Iqkcbh8+MIeBzoVvfMLCYS8iGVyeHSeGLB8Yl4WvcYfUAZCAJA11CQkRiDM1q7PvmOLbjvnV343i/P4Sv/rxcAmDlbLfv3z+9d9tWv1tzAj3LWfXC2Q/0frXdgqmrPkc1J/Kz3MvZtC8NTZDNpZWLj0syZVu/s5SbURESWoE0fHJ4qPRQklkxXfFKjJuBxYlINzm7c3Fi2DyaiBm99eUNBpJSYTKSMlTWqmbNyQ0GklIgyOKM17pHbtuODV7fipbeisNsErmytN/uS1ofXX6/pgR/lrPvgTHsXpJqljYfPj2N0JoVbdiwtadREWnzoi85AyoUlJ/GUMsGRPWdERNYQDqjBWZmJjbFkBvXu6oyDD9Q5cGE8gdPD09i1pans+XO9zcPzwVk8lUU6K9FgZCCIT19Z41Qig1Q2Z3iPMyIrsdsEvnb3dbh2QxA9ncGib7BThdX4wI9y1v1v/PUeJ7pafFXNnD13bAguhw3vuypc9JxIyI/p2QyisVmEA5654wl1vD7LGomIrKHF74YQOsoaZzNVzZxp+4iVmtSoafK50OB1on9kvnx+Qt0nzVjmTF9ZY3RaWZv81zOitcjrcuDpT78DmawsfzJRBaz7zBmglDYeG6hO5kxKied7h/CeK1rgdxd/kdb6Bc4sKm2cz5wxOCMisgKn3YYmr6ts5mwqka7aRsra+HuHTeC6jQ1lzxdCINLiW1A+r2W/jPSc1TmVDavHZ0pnzrS1YeaMaoHbYYevxO9wRJXE4AzK2NSL4wld06eM6h2YwqWJxJKNpxebn9i4cCiI1nPGzBkRkXWE6t0le85e6RvByaEYrm6vTo+KthH1jo6A7teHSMi/4DVmMm48cyaEQKPXWbbnTMvqseeMiMgYBmdQJjYC1RkK8tyxIdhtAv9ue/F+MwBoC3jgddmX7EOTYM8ZEZHlhAPFN6KOpzL44g/fxOZmLx5439aqPL+2sfUNZUbo54uEfBiOzSKWVIKy5ZQ1AspQkLJljQzOiIiWhcEZ5ic2VmMoyHO9Q9jT1TTXRF2MzSbQ1eIrkDljWSMRkdWE691Fyxoffe4U3h6L49Hf2Fm1qgctc7Zrc/lhIBqtfF57ndE2km4wUNYIKMFcuUqT6PQsXA7bXBBJRET6MDiDMn2qs6EOxyqcOeuPTuPM8DRu7Sld0qjpDvlLZM4YnBERWUW43o1obBa5RZs6v3Z2DI+/cg6fesdm7Ik0V+35d29pwi07WvGuK5bunVlMt1Y+r47Tn0goAVZVMmdTswj53VXZ442IqJaVDc6EEBuFEPuFECeEEL1CiIfU438mhDgphHhDCPFjIURD1a+2inZ0BNBb4aEgv+wbBQC898qQrvMjIR8uTSSQVCc0AsCMts8ZyxqJiCwjXO9GJicX9F4lUlk8/My/YWNTHR6+dVtVn7+joQ7/+95dc4NB9NjU5IPdJuYyZ5PxNNwOm+Hx4I0+l67MGUsaiYiM05M5ywD4vJRyO4CbAXxGCHE1gBcA9EgpdwJ4C8CXqneZ1dfTGcTZkRlMz2Yq9j0P9I+iPejBpiavrvO7Q35ICZzNG3XMskYiIuvRRsTnlzb++c9O4dxoHH96x05LTnZzOWzY2Fg3V6ExEU8bzpoByjj9iXh6yb6c+bgBNRHR8pQNzqSUg1LKI+rHMQAnAHRKKX8mpdQimQMANlTvMquvpzMAKYETg5UpbZRS4mD/GG6ONOsu6yg0sTGRykIIwO1gBSoRkVWE6xduRH34/Bi+88uz+MSeTdi7VX+p4WrrzpvYOJFIGe43A5SyxkxOIlbizUwGZ0REy2PoN34hxBYA1wM4uOhL9wF4tkLXZAptYmOlhoL0RWcwMj2LPV36m7UjLX71sfN9Z/FUFl6nnXX7REQWEq5XM2dTSSTTWfzeM2+gI1iHL31ou8lXVlok5MPZkRnkchIT8TSCy8icNXiVgK7YXmeZbA5j8RT3OCMiWgbdwZkQwg/ghwA+J6Wcyjv+CJTSxyeLPO4/CyEOCSEORaPRlV5v1YQDHoTq3Th2qTKZs4NnlX6zmw00hNe57OhsqFuwSWginUEd+82IiCwlHJjPnP2vn7+F/ugM/uSOa+C3YDljvkjIj9lMDpcmEphMpNFgoGdN06gGdIWGgvRHp/HJ774GKYGtYf+Kr5eIaL3R9SoihHBCCcyelFL+KO/4pwB8GMAHZJHicynltwB8CwB27dpVvEDdAnoqOBTkQP8YWgNubG7W12+miYR86Isu7DljvxkRkbV4nHbUexzYf3IYR94ex8d2bcR7dA5/MlOkRSmf74tOYyKexs4NK8ic5Q0Fmc1k8c0X+/CN/X1wO234w4/24LZr2itz0URE60jZ4Ewo9XTfAXBCSvkXecdvBfAFAO+VUsard4mrZ0dHEC+fHkEynTU8vSqflBIH+kext1t/v5mmO+THDw5dgJQSQggGZ0REFhWud+PQ+XG0Bz145MPWLmfURPL2OptMpOcCLSO0zJk2sfGVvhH8tx8fQ//IDP7DtR348oe3z5V9EhGRMXoyZ+8EcC+AN4UQR9Vj/xXA1wG4AbygBiAHpJSfrsZFrpaezgCyOYlTQzFcu7Fh2d/n7MgMorFZ7OkyvsdNd8iHmVQWl6dm0Rb0IJHKVm0TUyIiWr5wvQd90Rn8jzuuQcBjPANlhha/CwGPAyeHppBIZw2N4tc0qgFd3/AMfuepo/jRry5hU5MXT9x3k+6tY4iIqLCywZmU8l8BFEr//LTyl2OuHdpQkIHJFQVnB/rHAAA3R/QPA9HMv6s5jbagB/FUhpkzIiILuvumjXjXFS3Yd1XY7EvRTQiBSMiPI29PADC+ATUABOqcsAngsf1n4LQL/Pa+rfjt929dUcUJEREprN25vMo2NNYhWOdc8VCQg2dHEap3o0ut7TeiOzQ/sXHv1hbEU1k0+TjxiojIam6/rtPsS1iWSMiHHx25BADLGqVvtwns3NAAt8OGP/poD65ora/0JRIRrVsMzvIIIdDTubKhIFq/mZH9zfK1BtzwuexzQ0HiqSx8br4bSURElaG9CQgsL3MGAP/4mXdW6nKIiCgPdzZepKcjiJODMaSzuWU9/vxoHJenjO1vlk8rOdH2OuNAECIiqqTu0HxVx3J6zoiIqHoYnC2yozOIVDaH05eny59cwIF+4/ubLRYJ+dCvZs4SqQzqnExwEhFRZUQqkDkjIqLqYHC2yI6OAAAsu7Tx4NkxtPjdC96ZNKo75MeliQQSqSziaWbOiIiocjY3e2FTq+6XM0qfiIiqh8HZIl3NPvhcdvQOGB8KovWb7Yk0LavfTBNRA7sTQ1OQEhylT0REFeN22LGh0QuHTcDH1xciIkthvdwiNpvA1R0BHLtkPHN2YSyBwckkbl5mv5lGa9buVa+BmTMiIqqk7pAP8VRmRW8kEhFR5TE4K2BHRxBPH7qAbE7CbtP/wlWJfjMA6GrxQQjgTQZnRERUBZ98xxacGV5ebzUREVUPyxoL6OkMIp7K4uzIjKHHHTg7imafC1vD/vInl+Bx2tHZUDe331qdizE0ERFVzr5tYdz/nojZl0FERIswOCugp3N5Q0EO9o+tuN9MEwn58dblGADA62TmjIiIiIio1jE4K2BryA+3w2ZoKMiFsTguTSSwp2tlJY2a7pAPmZwEwLJGIiIiIqL1gMFZAQ67Ddva6g0NBalUv5kmfx8aTmskIiIiIqp9DM6K2NEZxLFLk5BS6jr/4NkxNHqduGKF/Waa/H3SfG72nBERERER1ToGZ0X0dAQxlczg4nhC1/kH+kexp6sZNgPTHUvpzs+cseeMiIiIiKjmMTgrQhsKoqe08eJ4HBfHE9gTWdn+ZvnC9W741YwZe86IiIiIiGofg7Mirmyth8MmcEzHxMaD/WMAKtdvBgBCCETU0kYvR+kTEREREdU8BmdFeJx2XNFar2ti44H+UTR4nbiqtb6i19Ad8kMIwOPkfyYiIiIiolrHlEwJPR0B7D81DCllyb3LDp4dw01bmirWb6b58M52CIGK7JtGRERERETWxpRMCTs6AhiZTmE4Nlv0nIGJBN4ei2NPBUsaNR/Y3oq/uOu6in9fIiIiIiKyHgZnJfR0BgGUHgpy8Ky2v1nlhoEQEREREdH6w7LGEra3ByAE8H9+0Y+BySS2tdXjqrZ6BDzOuXMO9I0h4HFgW1vAxCslIiIiIqK1jsFZCT63Ax/btRE/eWMQB9SJjADQ2VCHq9RA7eXTUdzU1Qx7hfvNiIiIiIhofWFwVsb//I2d+JM7rsHAZBKnhqZwciiGU+qfX5yOIp2VePB93WZfJhERERERrXEMznQQQqCzoQ6dDXV4/7bWueOpTA6DkwlsaPSaeHVERERERFQLGJytgMthw+Zmn9mXQURERERENYDTGomIiIiIiCyAwRkREREREZEFMDgjIiIiIiKyAAZnREREREREFsDgjIiIiIiIyAIYnBEREREREVkAgzMiIiIiIiILYHBGRERERERkAQzOiIiIiIiILIDBGRERERERkQUIKeXqPZkQUQDnV+0J9WsBMGL2RaxDXHdzcN3NwXU3D9feHFx3c3DdzcF1N8daXffNUspQoS+sanBmVUKIQ1LKXWZfx3rDdTcH190cXHfzcO3NwXU3B9fdHFx3c9TiurOskYiIiIiIyAIYnBEREREREVkAgzPFt8y+gHWK624Orrs5uO7m4dqbg+tuDq67Obju5qi5dWfPGRERERERkQUwc0ZERERERGQBayo4E0LcKoQ4JYQ4I4T4Yt7xp4QQR9U/54QQR4s8vkkI8YIQ4rT6d6N6/BN5jz8qhMgJIa4r8Pgn1ec/JoT4rhDCqR4XQoivq9f1hhDihuqsgHksvPbbhBCvCiFmhRC/W52f3jwWXvdPqP/W3xBCvCKEuLY6K2AOC6/77eqaHxVCHBJCvKs6K2COKq67UwjxhBDiTSHECSHEl4o8vksIcVB9/FNCCJd6vKbv8RZed97fzVl33t/NWfeavr8D1l37vK/vFkJkhRB3VvDHNk5KuSb+ALAD6AMQAeAC8G8Ari5w3p8D+EqR7/EogC+qH38RwJ8WOOcaAP1FHv8hAEL98w8AHsg7/qx6/GYAB81er3W09mEAuwH8MYDfNXut1tG67wXQqH7872vp37zF192P+XL0nQBOmr1ea2HdAdwD4Pvqx14A5wBsKfD4pwHcrX78N+vhHm/xdef93Zx15/3dnHWv2fu71dc+7/r+BcBPAdxp5lqtpczZTQDOSCn7pZQpAN8HcHv+CUIIAeAuKL/MFHI7gCfUj58A8NEC53y82OOllD+VKgCvAdiQ933/r/qlAwAahBDtun8y67Ps2ksph6WUrwNIG/qJ1gYrr/srUspx9bQDmP9/oRZYed2n1WMA4ANQS03D1Vx3CcAnhHAAqAOQAjBV4Hu/H8AzBR5fy/d4y6477++mrTvv7+asey3f3wELr73qvwD4IYBhgz9Xxa2l4KwTwIW8zy+qx/K9G8BlKeXpIt+jVUo5CADq3+EC53wMxf9RAFDSpwDuBfCcgWtby6y89rVsraz7b0LJKtQKS6+7EOLXhRAnAfwEwH2lHr/GVHPdnwEwA2AQwNsAviqlHFv02GYAE1LKTIHnr+V7vJXXvZatlXXn/X2pqq17Dd/fAQuvvRCiE8CvQ8mmmW4tBWeiwLHF7yoUfSda1xMIsQdAXEp5rMyp3wDwspTyFwaubS2z8trXMsuvuxBiH5QX7y8s9xosyNLrLqX8sZRyG5R3/P5wuddgQdVc95sAZAF0AOgC8HkhRMTA89fyPd7K617LLL/uvL8btuJ1r+H7O2Dttf9LAF+QUmaX8dwVt5aCs4sANuZ9vgHAgPaJmsq8A8BTece+pzYX/lQ9dFkrRVH/Xpy6vBvl38n+7wBCAH5H77XVACuvfS2z9LoLIXYC+DaA26WUowZ+Lquz9LprpJQvA+gWQrTo+aHWgGqu+z0AnpNSpqWUwwB+CWDXoucfgVKu6Cjw/LV8j7fyutcyS6877+/m/nuvwfs7YO213wXg+0KIcwDuBPANIcRHV/Czroy0QJOgnj8AHAD6oUTEWiPhjryv3wrgpTLf48+wsJHw0byv2aD8w4mUePx/AvAKgLpFx2/Dwmbx18xer/Wy9nlf/33UXsO4ZdcdwCYAZwDsNXud1tm6b8V8w/gNAC5pn6/1P9Vcdyjv/H9PvUf7ABwHsLPA43+Ahc3iD6of1+w93srrnvd13t9Xcd3B+7tZ616z93err/2icx6HyQNBTP+PZfA/7IcAvAVl2ssjBRbz02Ue3wzgnwGcVv9uyvva+wAcKPP4jPrcR9U/X1GPCwB/rX7tTQC7zF6rdbT2bVB+0Z0CMKF+HDB7vdbBun8bwHje8UNmr9U6WfcvAOhVj70K4F1mr9VaWHcoU9B+oK7dcQC/V+TxESgDWM6o57vV4zV9j7fwuvP+bs668/5uzrrX9P3dymtf4DpMDc60CJ2IiIiIiIhMtJZ6zoiIiIiIiGoWgzMiIiIiIiILYHBGRERERERkAQzOiIiIiIiILIDBGRERERERkQUwOCMiIiIiIrIABmdEREREREQWwOCMiIiIiIjIAv4/i7GhWTZIcREAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACxiUlEQVR4nOy9d3hjZ5n+f7/q1bIluffpvU8q6SEJhNBDC4FkN5QsvXyBLWzCb2GXtgsLC4TQS5ZeAlkgITCppMwkUzI9M2OPe5Ft9S69vz+OXlm2VY6kI9myn8915cpY5fi1LOuc+72f534Y5xwEQRAEQRAEQRDE4qJa7AUQBEEQBEEQBEEQJM4IgiAIgiAIgiCWBCTOCIIgCIIgCIIglgAkzgiCIAiCIAiCIJYAJM4IgiAIgiAIgiCWACTOCIIgCIIgCIIglgAkzgiCIAiCIAiCIJYAJM4IgiBqFMaYP+O/JGMslPH1LYu9vlJgjPUzxq5d7HXkgzH2CGPsjgodex1j7H7G2CRjbJox9iBjbH3G/Ywx9mnG2DBjzJNay+bUfXrG2HcYY+cZYz7G2EHG2MvmHf8axthJxliQMbaPMdY979ifY4xNpf77PGOMVeLnJAiCILJD4owgCKJG4ZxbxH8ABgDclHHbfYu9vvkwxjTL4XtUmHoAvwOwHkAzgGcB3J9x/80A/g7AZQDsAJ4C8KPUfRoAgwCuAGAD8EkAP2eM9QAAY8wJ4Nep2+0ADgD4Wcax3wng1QC2A9gG4BUA3qXoT0cQBEHkhcQZQRDEMoMxpmKMfYIxdjblgPycMWZP3dfDGOOMsdsZY4OMsRnG2LsZY3sZY0cYY27G2P9kHOs2xtiTjLGvppyak4yxazLut6XcmtGUm/Npxph63nO/xBibBnA3Y2w1Y+yvqXW5GGP3McbqU4//EYAuAL9PuX8fY4xdyRgbmvfzpd01xtjdjLFfMsZ+zBjzAritwJrWMMYeTf0sLsZYpjjJ/B6G1DGnUq/JfsZYM2PsM5CE0f+k1vg/qcdvYIz9OeV2nWKMvSHjWN9njN2Tut+X+v7d2b4v5/xZzvl3OOfTnPMYgC8BWM8Yc6Qe0gvgCc75Oc55AsCPAWxKPTfAOb+bc97POU9yzh8A0Adgd+q5rwVwjHP+C855GMDdALYzxjak7n87gP/knA9xzocB/CeA27KtkyAIgqgMJM4IgiCWH++H5IBcAaANwAyAr817zIUA1gJ4I4AvA/hnANcC2AzgDYyxK+Y99hwAJ4C7APxaiD0APwAQB7AGwE4A1wG4I8tzmwB8BgAD8B+pdW0E0AlJJIBzfivmOoCfl/nzvgrALyG5TvcVWNO/AXgIQAOADgBfzXHMt0NynzoBOAC8G0CIc/7PAB4H8N7UGt/LGDMD+DOA/039nG8G8HVRbpjiltT3dgI4lFqnHC4HMMY5n0p9/VMAa5hU/qhNrfNP2Z7IGGsGsA7AsdRNmwEcFvdzzgMAzqZuX3B/6t+ZPwNBEARRYUicEQRBLD/eBeCfUw5IBJL4ef28kr9/45yHOecPAQgA+AnnfCLlmDwOSdQIJgB8mXMe45z/DMApADemLv5fBuCDKddmApLT86aM545wzr/KOY9zzkOc8zOc8z9zziOc80kA/wVJRJbDU5zz33LOkwDqCqwpBqAbQFvq538ixzFjkETZGs55gnP+HOfcm+OxrwDQzzn/XurnfB7ArwC8PuMx/8c5fyz1+/hnABczxjrz/VCMsQ5IovrDGTePQvr9nAIQglTm+KEsz9UiJVQ55ydTN1sAeOY91APAmuN+DwAL9Z0RBEFUj1qvzScIgiAW0g3gN4yxZMZtCUg9TILxjH+Hsnxtyfh6mHPOM74+D8n56gagBTCacf2ugtT3JMj8NxhjTQC+Aqk00Jp6/Iysnyo3md+j0Jo+BsnBepYxNgOpjO+7WY75I0iu2U9TZZc/hiR4Y1ke2w3gQsaYO+M2DWZ7weaskXPuT5V5ts1bexrGWCMkh+/rnPOfZNx1F4C9qbWNAXgrgL8yxjZzzoOp56pS3zsK4L0Zz/VDEq+Z1AHw5bi/DoB/3u+eIAiCqCDknBEEQSw/BgG8jHNen/GfIeWKlUL7PPekC8BI6vtEADgzvk8d5zyzFG7+hf1/pG7bxjmvgyQuWJ7HBwCYxBep3rHGeY/JfE7eNXHOxzjn7+Cct0FyGL/OGFsz/wdOuYSf4pxvAnAJJHfsbTnWOAjg0Xmvt4VzfmfGY9IuGWPMAimQY2T+903d3wBJmP2Oc/6ZeXdvB/CzlCsa55x/H1KJ5qbUcxmA70AS4q+bJyaPpZ4vvo8ZwGrMlj3OuT/172MgCIIgqgaJM4IgiOXHPQA+I0InGGONjLFXlXG8JgDvZ4xpGWM3Q+oV+wPnfBSSiPhPxlhdKohk9bx+tflYITk0bsZYO4D/N+/+cQCrMr4+DcDAGLsxVar3LwD0uQ5eaE2MsZtT5YKA5NhxSK7iHBhjVzHGtqbEoBdSmaN43Pw1PgBgHWPs1tRrpGVSwMrGjMe8nDH2EsaYDpJz9wznfIFrxhirA/AggCc555/I8iPuB3BzKpxExRi7FZJTeCZ1/zcg/X5u4pyH5j33NwC2MMZexxgzAPhXAEcyyh5/CODDjLF2xlgbgI8A+H6WNRAEQRAVgsQZQRDE8uO/IcWxP8QY8wF4GlIwR6k8Ayk8xAUp1OP1GQEVbwOgA3Acktj5JYDWPMf6FIBdkPqZ/g9StHsm/wHgX1IJiR/lnHsA/AOAbwMYhuSkDSE/+da0F8AzjDE/pNfoA5zzvizHaEk9zwvgBIBHIZU2AtLr+3omJV1+hXPugxQ68iZIbtgYgM9hroj8X0glidOQ0hNzzaF7TWqNt7O5c+y6Uvd/DlJQxyEAbkj9Zq/jnLtTYvxdAHYAGGPzZt6levxeB+l3OAPpPZHZH/hNAL8H8AKAo5B+P9/MsU6CIAiiAjAqJScIgiBywRi7DcAdnPOXLPZaahXG2PcBDHHO/2Wx10IQBEEsbcg5IwiCIAiCIAiCWAKQOCMIgiAIgiAIglgCUFkjQRAEQRAEQRDEEoCcM4IgCIIgCIIgiCUAiTOCIAiCIAiCIIglgKaa38zpdPKenp5qfkuCIAiCIAiCIIglw3PPPefinDdmu6+q4qynpwcHDhyo5rckCIIgCIIgCIJYMjDGzue6j8oaCYIgCIIgCIIglgAkzgiCIAiCIAiCIJYAJM4IgiAIgiAIgiCWAFXtOSMIgiAIgiCIpUIsFsPQ0BDC4fBiL4VYhhgMBnR0dECr1cp+DokzgiAIgiAIYkUyNDQEq9WKnp4eMMYWeznEMoJzjqmpKQwNDaG3t1f286iskSAIgiAIgliRhMNhOBwOEmaE4jDG4HA4inZlSZwRBEEQBEEQKxYSZkSlKOW9ReKMIAiCIAiCIBaJz3zmM9i8eTO2bduGHTt24JlnngEA3HHHHTh+/Lgi36OnpwculyvvY/793/+96ON+//vfx3vf+945t33ve9/Djh07sGPHDuh0OmzduhU7duzAJz7xiaKPXw2+/OUvIxgMLvYy0lDPGUEQBEEQBEEsAk899RQeeOABPP/889Dr9XC5XIhGowCAb3/721Vdy7//+7/jn/7pn8o+zu23347bb78dgCQK9+3bB6fTWfZxS4VzDs45VKrsntSXv/xlvPWtb4XJZJJ9zHg8Do2mMjKqoHPGGOtkjO1jjJ1gjB1jjH0g4773McZOpW7/fEVWSFSEYXcIR4c9i70MgiAIgiCIFcvo6CicTif0ej0AwOl0oq2tDQBw5ZVX4sCBAwAAi8WCj3/849i9ezeuvfZaPPvss7jyyiuxatUq/O53vwOw0MV6xStegUceeWTB93z1q1+N3bt3Y/Pmzbj33nsBAJ/4xCcQCoWwY8cO3HLLLQCAH//4x7jggguwY8cOvOtd70IikQAgOWPr1q3DFVdcgSeffFL2z/qFL3wBe/fuxbZt23DXXXcBAPr7+7Fhwwbccccd2LJlC2655RY8/PDDuPTSS7F27Vo8++yzAIC7774bt956K66++mqsXbsW3/rWtwoed+PGjfiHf/gH7Nq1C4ODg7jzzjuxZ88ebN68Of24r3zlKxgZGcFVV12Fq666Kv1aC375y1/itttuAwDcdttt+PCHP4yrrroKH//4x3H27FnccMMN2L17Ny677DKcPHlS9muRF6Emc/0HoBXArtS/rQBOA9gE4CoADwPQp+5rKnSs3bt3c2LxicYT/Jr/fIRf8h9/WeylEARBEARBLBrHjx9f1O/v8/n49u3b+dq1a/mdd97JH3nkkfR9V1xxBd+/fz/nnHMA/A9/+APnnPNXv/rV/KUvfSmPRqP80KFDfPv27Zxzzr/3ve/x97znPenn33jjjXzfvn2cc867u7v55OQk55zzqakpzjnnwWCQb968mbtcLs4552azOf3c48eP81e84hU8Go1yzjm/8847+Q9+8AM+MjLCOzs7+cTEBI9EIvySSy6Z8z3nI77vgw8+yN/xjnfwZDLJE4kEv/HGG/mjjz7K+/r6uFqt5keOHOGJRILv2rWL33777TyZTPLf/va3/FWvehXnnPO77rqLb9u2jQeDQT45Ock7Ojr48PBw3uMyxvhTTz2VXov4uePxOL/iiiv44cOHF7w281+HX/ziF/ztb38755zzt7/97fzGG2/k8Xicc8751VdfzU+fPs055/zpp5/mV111VdbXINt7DMABnkMvFfTjOOejAEZT//Yxxk4AaAfwDgCf5ZxHUvdNKCMXiUrzg7/148yEHwAQjiVg0KoXeUUEQRAEQRCLy6d+fwzHR7yKHnNTWx3uumlzzvstFguee+45PP7449i3bx/e+MY34rOf/WzarRHodDrccMMNAICtW7dCr9dDq9Vi69at6O/vL2pNX/nKV/Cb3/wGADA4OIgXX3wRDodjzmP+8pe/4LnnnsPevXsBAKFQCE1NTXjmmWdw5ZVXorGxEQDwxje+EadPny74PR966CE89NBD2LlzJwDA7/fjxRdfRFdXF3p7e7F161YAwObNm3HNNdeAMbbgZ3vVq14Fo9EIo9GIq666Cs8++yyeeOKJnMft7u7GRRddlH7+z3/+c9x7772Ix+MYHR3F8ePHsW3btqJeu5tvvhlqtRp+vx9/+9vfcPPNN6fvi0QiRR0rF0UVSzLGegDsBPAMgC8AuIwx9hkAYQAf5ZzvV2RVRMWY8Ibx5YdfRJ1BA284jvNTQaxvsS72sgiCIAiCIFYkarUaV155Ja688kps3boVP/jBDxaIM61Wm07+U6lU6TJIlUqFeDwOANBoNEgmk+nnZItwf+SRR/Dwww/jqaeegslkwpVXXpn1cZxzvP3tb8d//Md/zLn9t7/9bUkJhJxz/OM//iPe9a53zbm9v78//bPk+9mAhcmHjLG8xzWbzemv+/r68MUvfhH79+9HQ0MDbrvttpwR95nfZ/5jxDGTySTq6+tx6NChQj960cgWZ4wxC4BfAfgg59zLGNMAaABwEYC9AH7OGFuVsuoyn/dOAO8EgK6uLsUWTpTGZ/94EtF4El98w3a8/ycH0T8VIHFGEARBEMSKJ5/DVSlOnToFlUqFtWvXAgAOHTqE7u7uko7V09ODr3/960gmkxgeHk73a2Xi8XjQ0NAAk8mEkydP4umnn07fp9VqEYvFoNVqcc011+BVr3oVPvShD6GpqQnT09Pw+Xy48MIL8YEPfABTU1Ooq6vDL37xC2zfvr3g2q6//np88pOfxC233AKLxYLh4WFotdqifr77778f//iP/4hAIIBHHnkEn/3sZ2E0GmUd1+v1wmw2w2azYXx8HH/84x9x5ZVXAgCsVit8Pl86tKS5uRknTpzA+vXr8Zvf/AZW68Lr5Lq6OvT29uIXv/gFbr75ZnDOceTIEVmvRSFkiTPGmBaSMLuPc/7r1M1DAH6dEmPPMsaSAJwAJjOfyzm/F8C9ALBnz545wo2oLgf6p/Hrg8P4hytX44p1kh3d7wos8qoIgiAIgiBWJn6/H+973/vgdruh0WiwZs2adEhHsVx66aXpEsEtW7Zg165dCx5zww034J577sG2bduwfv36OWV/73znO7Ft2zbs2rUL9913Hz796U/juuuuQzKZhFarxde+9jVcdNFFuPvuu3HxxRejtbUVu3btSgeF5OO6667DiRMncPHFFwOQyjl//OMfQ62W31pzwQUX4MYbb8TAwAA++clPoq2tDW1tbbKOu337duzcuRObN2/GqlWrcOmll875uV/2spehtbUV+/btw2c/+1m84hWvQGdnJ7Zs2QK/3591Pffddx/uvPNOfPrTn0YsFsOb3vQmRcQZm2d0LXyA5O39AMA05/yDGbe/G0Ab5/xfGWPrAPwFQNd85yyTPXv2cJE6Q1SXRJLjpq8+gZlgFH/5yBUw6TTY9W9/xvWbW/Afr9262MsjCIIgCIKoOidOnMDGjRsXexlEAe6++25YLBZ89KMfXeylFE229xhj7DnO+Z5sj5fjnF0K4FYALzDGDqVu+ycA3wXwXcbYUQBRAG/PJ8yIxeV/nx3A8VEv/uctO2HSSb/2HoeJnDOCIAiCIAiCWCLISWt8AkCuzr+3KrscohJMB6L44oOncPEqB27c2pq+vcdhxtPnphZxZQRBEARBEASRn7vvvnuxl1A1Cg6hJmqfLzx4Cv5IHJ961eY5CTTdDjNGPGGEY4VrhQmCIAiCIAiCqCwkzpY5R4bc+On+Adx2SQ/WNc9Nm+lxmgAAA9PBxVgaQRAEQRAEQRAZkDhbxiSTHP96/zE4zHp84Nq1C+7vcUizGqjvjCAIgiAIgiAWHxJny5hfPj+EQ4NufOJlG1BnWDjzIS3OpkicEQRBEARBEMRiQ+JsmeIJxfC5P57Erq56vHZne9bH2ExaNJi06J+iskaCIAiCIIjFQK1WY8eOHdiyZQtuvvlmBIOlX5fddttt+OUvfwkAuOOOO3D8+PGcj33kkUfwt7/9Lf31Pffcgx/+8Iclf29Bf38/tmzZMue2u+++G1/84heLOo5S66k1ZA2hJmqPXz8/hKlAFN+//QKoVLnCNoEep5nKGgmCIAiCIBYJo9GIQ4cOAQBuueUW3HPPPfjwhz+cvj+RSBQ1rFnw7W9/O+/9jzzyCCwWCy655BIAwLvf/e6iv0eliMfjS2o91YScs2XKc+dn0GYzYGuHLe/jehxmnCfnjCAIgiAIIj+f/zywb9/c2/btk25XiMsuuwxnzpzBI488gquuugpvectbsHXrViQSCfy///f/sHfvXmzbtg3f/OY3AQCcc7z3ve/Fpk2bcOONN2JiYiJ9rCuvvBIHDhwAAPzpT3/Crl27sH37dlxzzTXo7+/HPffcgy996UvYsWMHHn/88Tnu1qFDh3DRRRdh27ZteM1rXoOZmZn0MT/+8Y/jggsuwLp16/D4448X/TPmO/Y//dM/4YorrsB///d/p9czMjKCHTt2pP9Tq9U4f/48zp8/j2uuuQbbtm3DNddcg4GBAQCSe/j+978fl1xyCVatWpV2EmsFEmfLlIMDbuzsaij4uB6HGSOeEMXpEwRBEARB5GPvXuANb5gVaPv2SV/v3avI4ePxOP74xz9i69atAIBnn30Wn/nMZ3D8+HF85zvfgc1mw/79+7F//35861vfQl9fH37zm9/g1KlTeOGFF/Ctb31rTpmiYHJyEu94xzvwq1/9CocPH8YvfvEL9PT04N3vfjc+9KEP4dChQ7jsssvmPOdtb3sbPve5z+HIkSPYunUrPvWpT81Z57PPPosvf/nLc27P5OzZs3ME1T333CPr2G63G48++ig+8pGPpG9ra2vDoUOHcOjQIbzjHe/A6173OnR3d+O9730v3va2t+HIkSO45ZZb8P73vz/9nNHRUTzxxBN44IEH8IlPfKLI38TiQmWNy5AJbxjD7hBuv7Sn4GN7nCZwDgxOB7F2XtQ+QRAEQRDEiuGDHwRS5YU5aWsDrr8eaG0FRkeBjRuBT31K+i8bO3YAX/5y3kOGQiHs2LEDgOSc/f3f/z3+9re/4YILLkBvby8A4KGHHsKRI0fSLpDH48GLL76Ixx57DG9+85uhVqvR1taGq6++esHxn376aVx++eXpY9nt9rzr8Xg8cLvduOKKKwAAb3/723HzzTen73/ta18LANi9ezf6+/uzHmP16tXpUk1gdoh0oWO/8Y1vzLmuJ598Et/+9rfTbt1TTz2FX//61wCAW2+9FR/72MfSj331q18NlUqFTZs2YXx8PO/Pu9QgcbYMOTjoBgDs7Kov+NjudGIjiTOCIAiCIIi8NDRIwmxgAOjqkr4uk8yes0zMZnP635xzfPWrX8X1118/5zF/+MMfwFjubAHx3EKPKQa9Xg9ACjKJx+OKHReY+zNnMjo6ir//+7/H7373O1gslqyPyfwZxRoB6eevJUicLUMODrihVTNsbsvfbwYAvTTrjCAIgiAIoqDDBWC2lPGTnwS+8Q3grruAq66q+NKuv/56fOMb38DVV18NrVaL06dPo729HZdffjm++c1v4m1vexsmJiawb98+vOUtb5nz3Isvvhjvec970NfXh97eXkxPT8Nut8NqtcLr9S74XjabDQ0NDXj88cdx2WWX4Uc/+lHa6SqXUo4di8Xwhje8AZ/73Oewbt269O2XXHIJfvrTn+LWW2/Ffffdh5e85CWKrHGxIXG2DDk4MINNrXUwaAsn+9hMWtSbtDTrjCAIgiAIIh9CmP3855Igu+qquV9XkDvuuAP9/f3YtWsXOOdobGzEb3/7W7zmNa/BX//6V2zduhXr1q3LKnQaGxtx77334rWvfS2SySSamprw5z//GTfddBNe//rX4/7778dXv/rVOc/5wQ9+gHe/+90IBoNYtWoVvve97yn2sxR77L/97W/Yv38/7rrrLtx1110AJMfwK1/5Cv7u7/4OX/jCF9DY2KjoGhcTVk2rb8+ePVykxhCVIZ5IYuvdD+GNeztx9ys3y3rOq7/2JMx6Ne6746IKr44gCIIgiEKcHPPiwaPjeP81axQtRyMWcuLECWzcuFHegz//eSn8I1OI7dsH7N8PZPQ7EUQm2d5jjLHnOOd7sj2e0hqXGafGfQjFErL6zQQ9DhP6XRSnX2mi8SRG3KHFXgZBEASxxPn5/iF86eHT8IRii70UIpOPfWyhQ3bVVSTMCEUhcbbMODjgBgDs7JTfoNrjpDj9avCTZwdw7X89Sq8zQRAEkZc+lx8AMOoJL/JKCIKoNiTOlhkHB9xwmHXotBtlP6fHYQbnwNAMuWeV5MyEH8FoAuPelXWyDccS+MMLo4u9DIIgiJqhLxXSNeqhaguCWGmQOFtmHBycwc6u+qJq1HucUmJjH5U2VhSxAzrhiyzySqrL7w6N4B/uex5nJ/2LvRSCIIglTzSexOCMJMrIOasOtRa1TtQOpby3SJwtIzzBGM5NBrCzq7iZGz0OEwDgPCU2VhThmK005+xcagd4wruyRCmRnSNDbtzw5ceol4YgcjA4E0QiKV3QjbpX1vliMTAYDJiamiKBRigO5xxTU1MwGAxFPY+i9JcRh4bcAICdnfVFPa/epIPNSHH6lSbtnK0wkTIwLb2vpgPRRV4JsRT4y4kJnBzz4eSoFxeuciz2cghiydE3OXsuJues8nR0dGBoaAiTk5OLvRRiGWIwGNDR0VHUc0icLSMODsyAMWBbkeIMkEobKbGxckTjSbj8kihbaWWN4n01HVhZPzeRneOj0sDTwZkQLlzktRDEUkRslK5qNFPPWRXQarXo7e1d7GUQRBoqa1xGHBxwY32zFRZ98Zq7x2FSzDmb8kfwnw+dQjyRVOR4y4HMUsaJFVTWyDlPl8tOkXNGADiREmcD07QZRBDZOOcKoMGkxcaWOoyRc0YQKw4SZ8uEZJLj0KC7qPlmmfQ4zBhxhxCJlx/z/ufj4/jqX8/ghWFP2cdaLoxlirMV5Jy5/FEEotJ7isoaCU8ohqFU0MEgiTOCyErfZAC9TjNabQaMeELUC0UQKwwSZ8uEvqkAPKFYUfPNMulxmpDkwOB0+SUUkynxQTvjs4jdz1VOMyZ8K2cnVPSbAeScEcDJlGumU6vo84EgctDnCqDXaUGLzYBwLAl3kMJzCGIlQeJsmSCGT+8owzkDgH5X+aWNk6neKtoZn0WIs20dNoyvoEAQ0W/mMOsw7SdxttIR/WaXrnGQOCOILAQicYx5w1jVaEZbvTSvlEJBCGJlQeJsmXBwYAZWvQZrGi0lPT8tzhToOxNphOen6OJLMOoJw6xTY3WjBZ5QDOFY+eWjtcD5qQBUTBKlVNZInBj1wmHWYXd3AyZ9EYSiK+PvgCDkIs7BvU4zWmxS/DaFghDEyoLE2TLh4IAb2zvroVLJHz6dSYNZuTh94ZzRzvgsY94Qmm0GNNdJJ9vJFdJ31j8VRHuDEc11hposa3z8xUk8c25qsZexbDg+6sWmtjp02qXZioMz9BlBEJn0uWbFWZuNnDOCWImQOFsGBKNxnBzzlhwGIuhxmBRxu4TwoLLGWUY9YbTaDGis0wPAiuk7Oz8dRI/DDLtZh5lgFMlk7TS2+yNxvOe+5/HFh04t9lKWBbFEEqfH/djYWoeulDgbIHedIOYgZpz1OMxotOqhVjFyzghihUHibBlwZMiDJEf54sxpTu/alQrnHBO+MBgDRr1hRdIflwNjnjBa6oxotkrO2UoZRH1+KoBuhwl2sw6JJIc3XDuN7T99dgDecBwu6pVThHOTAUTjSWzKFGe0gUMQc+hzBdBmM8CoU0OtYmi26sk5I4gVBomzZUA6DKTEpEZBtwJx+v5IHOFYEuubreAc6djslUwiyTHhi6DVZkBT2jlb/uLMHYzCHYyh226Gw6IDUDtx+rFEEt95og8A4FoBv6tqIOabbWytg92sg1mnprJGgpjHOVcAPU5z+uvWeiNG3STOCGIlQeJsGXBwYAY9KXeiHHocUpx+OYJKlDTu7paEIpUtAS5/BIkkR4vNALtJB42KzRlKvVwRJbKScyaJ0loRZ78/PIJRTxh7exrgi8RXTIBLJTk+6oVOo8KqRjMYY+i0m6j0mSDm0T8lzTgTtNgMc+ZkEgSx/CFxVuNwznFw0I2dXeW5ZgDSu3XlxOkLcbanJyXO6OIrXZLSajNApWJotOpXhHN2PvW773Ga4UhtHNRCKAjnHN989BzWN1vxul0dACSBTZTHiVEv1jVboFVLp50uu4k+Hwgig5mAVG2QKc7abAaMuGkQNUGsJEic1TjD7hAmfZGy+82AzDj90i+YhOjY1GqDQUuDZgFgLNXMLZIam1aKOEuJ/C77rKtbC87ZI6cncWrch3devgqNVsnxo76z8uCc4/iIF5ta69K3CXFGF50EIXEu9Zm5qjHTOTMiEk9ihgZRE8SKgcRZjSP6zXaW2W8GAA0mLeoMGkWcsyarHl12ZdIfa51M5wwAGq0GTKyAMpX+qSBa6gwwaNU1Jc6++ehZtNoMuGl7GxwWSZxNkXNWFpO+CKYCUWzMFGcOE8KxZHr0BkGsdGZj9GfnlbbRrLNlQSLJ8Xff349HTk0s9lKIGoDEWY1zcMANvUaFDa3Wso/FGEOP01zWrLNJfwRaNUO9SYsuu5l6SiAlNerUqrRAaa5bIc5ZKqkRAAxaNcw6NaaWuAN1aNCNp89N4+9f0gudRgVnKsiEyhrL41gqDCTTOetsSM06o88IggAA9Ln80KgYOhqM6dvSg6gpFKSmGZgO4q8nJ/DAkdHFXgpRAxQUZ4yxTsbYPsbYCcbYMcbYB1K3380YG2aMHUr99/LKL5eYz8HBGWzrsKX7OMqlx1GeOJvwRtBo0YMxRmVLKca8YbTYDGBMGhDeZDVgOhBFNJ5c5JVVFjHjTGC36DAdWNoi597HzsJq0OBNF3QBAJwWKmtUApHUuCFTnFGcPkHMoc8VQJfdNOd83lafGkS9AqotljMnU5+BR4c9i7wSohaQc0UfB/ARzvlGABcBeA9jbFPqvi9xznek/vtDxVZJZCUST+DYsFeRMBBBj8OE4ZlQycJh0h9J9+l0O0wIxRKKly2dGvPVVHreqCec3v0EkI7TX0rlXNF4EoFIXLHjBSJxTPoi6Eo5ZwBgN+uXdCBIvyuAPx4dw60XdcOi1wCQHD+rXpMu1yVK4/iIFx0NRtiM2vRtwh0YmKJyLYIApFmAmWEggLRBpFExjLrp76SWOTnmAwC8OOGvqesXYnEoKM4456Oc8+dT//YBOAGgvdILIwpzfMSLaCKJnZ31ih2zx2lGkqPk+UOTvllxJgbNKlm25AnF8IqvPo6fPjug2DErzZgnnO43A6SyRgBLpu+Mc453/ugA3vytpxU7pug1zHTOHGbdku45+9bj56BVqXDbpT1zbnda9VTWWCYnRr1z+s0ASfi21BnIOSMIAMkkXxCjD0AaRF1nwBgNoq5pTqXEWSLJ00KNIHJRVC0cY6wHwE4Az6Ruei9j7Ahj7LuMMeXsG0IW6TAQBZ2z7tTF9PkSSxszxZkoW1IyFGRgKohYgpeVKFlNOOcY84TRUpfhnFmlfy+VvrPfHR7BI6cmcWbCr1gJqnj/dM9xzpauOJv0RfCL54bwut3t6d+PwGnRkTgrg1A0gT5XYE6/maDLbqJB1AQBqfw9HEvOGUAtaLUZMEKBIDXNqXEftrRLn4FU2kgUQrY4Y4xZAPwKwAc5514A3wCwGsAOAKMA/jPH897JGDvAGDswOTlZ/oqJNAcH3Wi1GeaUzJVLT+piut9V/AVTPJHEVCCCxtTFbUeDEYwp21MiLuRqJblqOhBFNJGcW9ZoXTrOmScYw789cByMAcFoAj6FShvFjLNMceYw6zAViC7JHsQfPtWPWCKJOy5bteA+h1lPPWdlcGrchyTHAucMAA2iJogUIiV5VRZx1mIj56yWCUUT6J8K4OoNzag3aXFshMQZkR9Z4owxpoUkzO7jnP8aADjn45zzBOc8CeBbAC7I9lzO+b2c8z2c8z2NjY1KrZsAcHBgRpH5ZpnYzTpYDZqSQkGmA1FwjrRzVomyJXEhN1ojJ6r5MfoA4LDooWJLwzn73IMnMR2I4p0pUaKUYDw/FYDDrIPVMNtjZDfrpN626NKqtw9E4vjhU+dx3aZmrG60LLjfadVRlH4ZHB+RGuE3t2V3ziTHYGm9J4iVwckxLy797F8xvgQ2ysSMs97GheKsrd6IUU94SW5sVRt/JL4kfl/F8OKED5wDG1qs2NJmwwvknBEFkJPWyAB8B8AJzvl/ZdzemvGw1wA4qvzyiFy4/BEMzYQUmW+WCWMsldhYvKASYqMxlXAHSDvjAwqWIM46Z7Xx4SxOIi222WhktYrBadFjwru4F/zPnZ/B/z4zgNsv7cVVG5oAAOMKranfFZzjmgGYnXW2xFyon+0fhCcUw7uuWJ31fqdFj5lgDLHE8k7XrBQnRr2w6jVz4sEFXQ4jOAeGKeyAWAQOD7ox7A7h8KB7sZeCPlcARq0azdaFlTAtdQZE4sklWxZeTb744CncfM9Ti72MohA9ZhtarNjcXodTY75ln9ZMlIcc5+xSALcCuHpebP7nGWMvMMaOALgKwIcquVBiLiOpi5n5F8BK0OM0lzSIWiTaCecMALpTcfpKMTgt/dwuf6QmPtyyOWeAlNg47ls8gRlLJPHPv3kBrTYDPvzSdemeOKVKZ85PBeaEgQCAIzUzbGoJxenHEkl854k+XNBjx64cvZsiTp8ujErjeCoMRIySyETMOqNQEGIxEBtk5YyPUYo+VwA9TjNUqoV/J231YhB1bWxKVpI+VwAD00H4FUwXrjSnxnwwaFXodpixtd2GWILj9DiFghC5kZPW+ATnnHHOt2XG5nPOb+Wcb03d/krOOU3WqyLigymzbEwpehwmDM0EixY/Qpw1ZYizLrsJE74IQgqVsg3OBMEYwDlqorRhzBNOO2WZNFsNi+qcffeJPpwc8+HuV26GWa9Bc0qcKSEYw7EERr3hdLiMwG5eeiLnDy+MYtgdwruuWNhrJhC/O4rTL55kkuPkqBcbW61Z769EoitByEVUe/SV0GOtNH2uQNZ+M2C28oLE2ex5v5QN5MXi1JgPa5usUKsYtrTZAID6zoi8KDO5mKg6/rAQZxrFj93jkOL0h4pMURNzuzKdMzHnSolEtmSSY2gmhPXN0oVeKSeqwekg7j80XLXa/VFPGE1WPdTzdkOb6vSL1nM2OB3Elx4+jWs3NuP6zS0AAKNOjTqDBuMKnPyHZoLgfKGr6zAL52zpiLOnz02j3qTFVeubcj6m0SqtmxIbi2dgOohANIFNWfrNAOmzQq9RKVr6TBByWSoX+rFEEgPTwQUx+oI2m6hsoPJfcd5UMgW60pwc82F9i3Td0mU3warXUN8ZkRcSZzWKcM7EsFwl6XGWFoE/6YvAatDAoFWnbxM740pcfIlSxgt67QBKS2z87pN9+MBPD+Gbj50rez1yGPOGsqZpNloNmApEEK9yHxPnHHf97hhUjOFTr9o8577mOoMiPWci6TNnz9kSEmeD00H0OLKXEgkcKcePEhuL58SoFAaSLakRkHpcuxQufSYIucxe6FdGnMndBBycDiKR5DnFmSM1iHpkhTtnkXgiff5YCqWocpjyR+DyR7AhJc5UKoZNbXU4Ouxd5JURSxkSZzVKICXOzJUQZ6lytL4idxMnfOE5JY3ArDg7r8DFl3Df9vYIcVaKcyYJus/+8SR+9dxQ2WsqxOi8AdSC5jo9OK/+Bf+fjo7hrycn8OGXrkN7/dyAhhabAWMKlIqKk+b8njOTTg29RrWkxNnAdDD9Hs2FM/WepsTG4jk+6oVaxbCuOXtZIwASZ8SiIUqVRzzKJ4Ymkhwv+dw+/Oip/oKP7cuT1AjQIGpBZitAsdcni4UYPi2cMwDY2m7DiVFv1TdnidqBxFmN4otUrqzRbtbBqi8+Tj9zAHXmsSx6jSI9JUJYbWy1wmrQYLSEhLehmSAuX9eIl6xx4uO/OoJHTk2Uva5czA6gXphSNzuIunonW184hrt/fwybWutw2yU9WdekRJT+wHQQdQYN6k1z+yEZY9KssyXiQMUTSQy7QwXFmVmnhkGrorLGEjgx6sUqp3mOmz6fTrsJQzOhqpUar/QLXEKCc44JXzi9SaV0mdx0IIphdwjffqKv4Hs7Lc4c2cUZIIWCjKzwVFNxvlSrWMXcTqU5mUWcbWm3IRJP4sykf7GWRSxxSJzVKP5wHBoVg16j/K+QMYZup6mkssbGeTHAjDEpTl8RcSYdo6PBhDabsegSD845hmdCWOU04xtv3YX1LVbc+ePncahCMcq+SBzBaCKrcyYcRqWi6+Xwnw+dxoQvgn9/7VZo1AvfNy02qQ8umSzvIrl/KohuhzlrOp/dosP0EklrHPWEkUjyguKMMSnQhcoai+f4iDdnv5mgy26CPxLHTDBW8fU8fW4KF3/2LzgzQUlpKx1pPAZPl8kr7cRMZvRGPX1uOu9j+1wB1Ju0aEiVfmejxWZUpLKhlhHnyy1tdUsixEUOp8Z8sJt1c0YMbWmXPhOptJHIBYmzGsUficOs12S9AFaCbru5aEE14YvM+QCaPZZJkV2uwZkgGq16abi1rfgSD08oBl8kjo4GI6wGLb53+144rTr83ff3V6REQqyvOWtZY/Wcs2SS4zcHh/DDp/rx1gu7saOzPuvjmusMiCd52YEd56cCOUc82M36JVPWKN7fnQXEGYCUOFsaorJWcAejGPGEc/abCdJ9qVUobTwz4QfnwKkx2rFe6YjPXiHOlHZiJjM+L362fyDvY/tcgZz9ZoI2m2HFD6IWAS4X9Nrh8kfgC1d+Q6dcTo77sL7ZOudarddpgUmnxlEKBSFyQOKsRvFH4hUJAxF0O0wYnA7KrokOpFyiprqF4qzLYcLgTKhsR2ZwOoTO1CDbtnpD0YEgQzPS48Uw3CarAT/8uwsBAG/77jOKC6VcM84AwGnRgTFUNE4/meT44wujeNl/P44P/ewwNrTU4f/dsD7n49Nx+mXszsYSSQzNhBb0mwkcZt2SSWsUYqBLxqxAp0VPUfpFcjwVBrKpkDhzVE+ciQAI6nEjxGfvmiYL7Gad4gET4vPiinWN+MPRMbiDuT/35IizFpsB0XhyyXx+Lgbj3gi0aoadqZmUSz2xMZnkOJ2R1ChQqxg2tdZRnD6RExJnNYo/HK9Iv5mg22FCPMllh26kB1Bncc467SZE48myZ2gNzgTTLkdLnREufxSRuPwmbjEaoKNh9mK812nG927bC5cvitu+u1/RnTgReywGPGeiUavgMOsq4pxxzvHQsTHc+NUncOd9zyOWTOIrb96J37/vJajLMxdPCXE24g5JpYI5nTPdknLOtGqW9fczH6dFR2WNRXJiVCodLOScic2Sasw6Ez2VSoz2IKpDNJ6EJ6S8QyI+55qsevQ4TBUra3zf1WsQjSfx24PDWR8XjMYx6gnnnHEmaE3NOlvJPZMT3jCarIa0kF3qiY0D00GEYol0UmMmW9ptODbiRaLMTWtieULirEapvHNW3Idfthln6WMpEKcfTyQx6gmjMyWsWutTQsIj380Qzllnw1zhsL2zHt946y6cHvfh3T9+rijBl4+x1Nqac1z8Nyk8iJpzjn0nJ/DK/3kS7/zRcwhF4/jSG7fjzx+6Aq/c3rZg1tp8hEgpp6+hP/U7zuWc2c06BKMJxZPRSmFgOoiOBlPB1wWQnLPpQPn9eCuJ4yNeNFr1WT8TMjHpNHBa9FWZdSYuyGnode3wnw+dwnVfehTBaFzR4woXtclqQI/TrLgL4/JHYNapsafHjq3tNvx0/2DWkkQxeqTXacl7PFGBsZJDQca8YTTX6dNl84s9n64Q2cJABJvb6hCMJmomdZKoLiTOahTRc1YpxIef3BOWEBlZyxoV6CkR4Q1il70ttYtYTGnj4HQQVr0GdcaFr9uV65vwuddtw5NnpvDv/3ei5HVmMuYNwWnRQ5cjtEXJQdT9rgBe+42/4fbv78dMMIrPv34bHv7wFXjNzg5Z4gOQ3CEVKy+k5Hw6Rj+7c7aUBlEPTgdl9ZsB0muT5MBMntIkYi4nRr0FXTNBl91YlVJD8d4mcVY7nJ8KYtwbwY+eOq/occVcTqNOjR6HGaOeMEJR5TaNMtOL37i3EyfHfDgytLCMLZ3UWMg5qy9/86zWGfeG0VxngEmnQXOdPr0ZuFQRMfrZRols7bABAJU2ElkhcVaj+CNxWCpY1thsNUCvUclukp5MledlK2tsbzBCxcoTZ6IMKV3WmNpFLGbW2dBMCO0NxpwhKq/b3YGXbWnBwyeUidfPNeNM0GTVl1VCKHjs9CRe+T9PoM8VwH+8div2ffRKvGFPZ9ZExnxo1Co4LXqMl1E20+8KwqhV53RL0oOol0CJoDTjbOGYg2yIWWdU2iiPaDyJFyd8BfvNBNWadSbKiIdT5bfVZMIXxi3ffpqSIotEbIh887Fz6fmeSpA5l7MnJYzOTyvnYmSKs1ftaINRq8ZP9w8ueFyfy59aQ4F5i2Y9tGqGEffKFWcT3ki6EqXHYV7yztmpcS+6HaasG+lrGi3Qa1QUCkJkhcRZjeIPx2GtoHOmUjF02eXH6U/6I1CrGBpMC6OAtWoV2urL2xkfmp5bkpgu8SjCORuaCc3pN8vGjs56DLtDivRFjXnCOUsaAanc0eWPlHyRyDnHtx8/h9u+9yza6o34/Xtfgjdf0AVtkaJs/prK6Q0cmJaSGnMJYHvaOVvccA1PKAZ3MFYwRl/gtAhxRqEgcjg76UcswbGxNffw6Uy67CaMekKIVXAoaywhhSk0WfWIJXjVHYijwx48eWYKH/rZ4Yr+nMsNdzCGTrsR04EofvS0cu7ZuDeSnjcp5ospebE/6Y+kPzesBi1u3NaK3x0aXiAwz7kCaLVJblA+VOlB1CuzrDEQicMXic8VZ0u85+zkmJTUmA2NWoUNrXV4gcQZkQUSZzVKpXvOAKnvrJiyRqdFB1WOErpyd8YHZ4JQsdnSDrNegzqDRnZzNOccQzPBdFlkLra2S6UGSnxgynHOkrw0oRKOJfCRXxzGp//vBF66qRm/uvMS2SV6+ZBO/uX1nOWK0QcynLNFLmsUZW0kzirD8REpqXFzgRlngk67CUle2X4alz8CzoG9PVJ0ejV63DJxp+a4vTDswdf3na3q965lpoNRXLraiSvWNeJeBd2zCZ/UvwQA3SnXSskyuUznDADetLcTgWgC/3dkdM7j+lyBnD268yllvudyQbQAiN9Zj9MMlz+6ZOP0w7EE+l2BrGEggi1tdTg27KVeZmIBJM5qkESSIxhNVLTnDJD6zs5PB2TNVZn0z+5C5jpWORdDg9NBtNqMc1yhtnqj7BIPdzCGQDRRUMBsFuJsyF3yWgEgFE3AE4qlyy+zIQZ2FxsKMu4N4433Po1fPz+MD167Ft+4Zbdi74XmMvrgEkmOgalg3gsNh1k6sS4VcVZMzxkAitOXyYlRL/QaleyLzmrMOhP9Zru7pRjuaic2CnF25fpGfPWvL1I5kww453AHo6g36fDBa9diOhDFDxXoPeOcY8IbQVPKhakzaOEw6xRzziJx6fM/s8x/d3cD1jRZ8NN5M8/6XQH0Nsr7OyllvudyQbQACOes11lcX3y1OTPhR5ID61tyb1BtbbfBF4lTeiyxABJnNUgglVpVySh9QBJU4VhS1sX6/F3C+XTaTZgKROEvcddzcCaEznn9Qa02A8a88nbaB9Mx+vmdM5tRi26HqWznTJRM5XPOxA5gMXH6BwdmcNNXn8CL4z7c89Zd+OC163K6laXQUmfAdKC4EQWCMW8Y0UQynfSZjTqjBhoVW/RAkGIGUAPS+0KrZtRzJpPjo15saLHK7nusxqwzcXG3o6seKlb9UBB3MArGgP96ww7YzTp85OeHFUuGXa4EognEEhwNJi12djXgyvWNuPexsyWfRwTecByReDLdcwZIToxSyXlTqc+JzHMiYwxv2tuJ5wfcOD0u9R3OBKKYCcYKxugLWuslcbYSnZZZcZZyO1PnmaWadpgvqVGwRcFKHWJ5QeKsBvGHpRNTNcoaAXk7U5O+SNYwEEFXmXH6g9PBBRH4LTYjRmU6Z/MHUOdja7sNR4e9xS8yA5Eimc85E7u2cp2z+w8N443ffBp6rQq//odLcMOW1rLWmI3mIteUiQiPyVfWyBhDg1m36IEgA9NBNJi0eee+ZcIYg8OsxxSVNRaEc15UUiMgBRDp1KqKijMx46yj3ohWm7H64iwUQ51BC7tZh8++bitOjfvw5YdfrOoaao2Z1CaO6GX+4LXrMBOM4YdP9Zd1XPFeyBRPSvYwped+ztuwfM3OdmjVDD9LBYP0TclLahS01hkQTcgbRC2n4qWWSM+lS52jZhOll6Y4OzXmhU6jyplcDABrmy3QqlnZ1xvE8oPEWQ0idg0rmdYIzM4nK/Thl0hyuPyRrDH6s8eSTj6lXHyFYwlM+CILXI42mwFTgaismVnZBlDnYmu7rexQEFF6km/AsRCzcqLrI/EEPvbLI9jaYcPv3vMSbMhTKlEOzbbSB1ELEZ9PnAFSnP5ScM7k9psJnFYd9ZzJYHA6hJlgDJtk9psBUthBR0NlBdOELwIVAxwWfdXSITOZCcbQYJI2A67e0Iw37OnANx89i+cHZqq6jlpCJDU2pHpVd3TW46r1Uu9ZOe7ZbP/S7Odzj8OEcW9EkXlqQpw5521YOix6XLepBb9+fgiReAJ9k0WKs3p5g6jjiSSu+c9H8b0n+4pd+pJl3BuBUatOB6GJOP0+19IsCTw55sPaJkve6gG9Ro31LVaK0ycWQOKsBhEnpUr3nLU3GKFWsYLO2XQgiiTPPoBaIC6ES7n4yuV6tRQhJIZmQqgzaGAzFnZKlAgFERH/+ZwznUYFu1knq6zx6LAHkXgS77hsVfpCpRKIkpFSZp31TwWgU6vQasvvTtrNOkwvclpjMTPOBE6LnsoaZfDHo1LgwVXrm4p6XmeFBdO4N4xGqx5qFUOn3YjBmeqm3rmDUdgy0mw/+YpNaLUZ8dGfH1Z0vtZyYibVpydELQB84Np1cAdj+MHf+ks+rvjMnV/WCCjTwzTpz+6cAdLMs5lgDA8dG0efK5B6P8r7LJKbUvzUuSmccwXw/IC7uIUvYca9YbTYDHOSgJdyYuOpMV/ekkbBljYbjg57lp3TSZQHibMaRJQ1VjJKH5Ai8NvrjThf4IIpXcKRp6zRZtLCZtSWNEdm/owzQVtqF1FOKIicGH2BCAUpp2F/zBOGzagtGI/cZJUXwHGgX9pd39PTUPKa5NBsLX3Q6XlXEJ12Y8Gh15I4WzyRk0hyDM2EinfOLPqinLNxbxiv+tqTVU8FXGx+f2QE2zvrixa/XfbyQoMKMZ4xI6mzwYRJX6SqosgdjKE+Y3PIatDi86/fhnOuAL7w4KmqraOWcKecs/oMUbujsx5Xb2jCtx4/V3JSn9h8aspwzoR7pUQoiCv1me6wLNxIe8kaJ9rrjfjZ/kH0uQLosptkjz8RG1+FnLMHDksbJEPLKGhiwhuZI6YB6Xe2FMsaZwJRTPgieZMaBZvbbZgJxjBcwaRaovYgcVaDVKusEUglNhb48BO7kPmcM0DE6Rf/ASScs4U9Z0JIFD7m4HThGH1BOhRkqDznLF8YiKDRqk/3P+TjwPkZ9DrNC8pklKbepIVOo5K1pvmcnw7mDQMRLHZZ46gnhHiSFy3OHBYdpvxR2Tucz/RN4/CgGw+8MFLKMmuSc5N+HB324qZtxfdDdtlN8Ibj8AQrE4097p0dOiwCSKp58eoORec4QABw6Ron3nZxN777ZB+eOjtVtbXUCrM9Z3Nftw9csxbuYKzk5MYJbwRmnXpO37Yox+5T4GJ/0h9BvUkLvUa94D6ViuGNezvxxBkXnu2fll3SCEifnTq1Kq9zFksk8adjYwBmz53LgXHfwrmh3Y6lGac/GwZSuLR7S6r8m/rOiExInNUg1QoEAYQ4k+ec5YvSB6SLr5LKGqeD0GlUC3bN2mzynDNpxpl85wyQUpTKKWsUJRiFaK4zFHTOOOd47vxMOgK8kjDG0FynL9o545zj/FSgYL8ZANjNevjCcUTjizOId6DIGWeCRose0UQS3pC8npRzk34AwKOnJotbYA3zwJFRMAa8Yltb0c/trHCc/oRvNjpdfBZUM8LaHYjNcYAEn3jZBnQ7TPh/vzxcdgrhcmM6GANjWFCOvr2zHtdsaMK9j5Xmnk34wnNcM0ByMp0WHc4r0MNUKCDr9bs7oGLS44oRZyoVQ7NNn9c5e+KMC55QDDs66zHpi8jqyV7qcM4x7p2dSycQcfr9S6zv7NSYJLTkOGcbW+ugVjHqOyPmQOKsBkk7Z1UQZz0OMzyhWLq8JBuivt5pzd8L1eUwYWgmiESRMcCDM0F01BsXRMYbdWrUm7TpZMRcTAeiCMUSsp0zYDYUZKZEh0euc9Zk1WPSF8kbjXzOFcB0IIo9VRBngBRiUmwgyKQ/gmA0IWuulT1V6jOT5z1VSYqdcSZID6KW2S93LtXs/9z5mRVz0f3AkRHs7bHL2piYT7ovtQKCKRpPYjoQTZftlpseWyyxRBK+SBz1poU9ryadBl+8eTuG3SH8+x9OVGU9tYI7GEWdQZs1VOED166FJ1Ra79lEjtEvPQ6zMs6ZL5K3yqGt3ogr1jUCkB8GImgtkFL8f0dGYTVo8JYLugAsD/fMG4ojHEsucM5En+BS6zs7OeZDvUm7YEM5GwatGmubLBSnT8yBxFkNUq1AEGD2Iiafezbpi8Ci1xTsr+qymxBL8IJiaj6D0yF05LiQbqkrPJQzXRZZxMV4OaEg0XgSLn9kwYkkG01WPeJJjuk8QuW5KvWbpddUZyg6EERuUiMgleYAs7OAChGJJxBPKOeyDUwHoVExWeI5k7Q4kzmIus8VQJ1Bg3iSr4iStVNjPpwe9+Om7cW7ZgDScwwr4ZyJDSSx8+606GDUqqsWCuINSe5OfY5Aor09drzlgi785NmBZeF0KEVmwuV8tnVI7tm3Hu+Dt0j3bCKjxDWTHqdZkZ6zSX/+uZ8AcMuF3QCAja2F3ZVMWm0GjOYo5Y/EE3jw2Biu29SCVanB1suh72xcBLjML2u0K9cnqCQnx3xY32ydE16Sj80UCkLMg8RZDeKPxGHQqmQ3EZeDnJ2pCd/CRt1sdJe4Wz04E0RnDterrd5YsKxR7gDqTLa0lS7OxmUMoBbImSt24Pw06k1arHJail5LKQjnrJgTxaw4k+GcpcSZ3FCQt377Gbzhm08pFt4wMB1Ce4NR9oBkgXCG5SQ2cs5xblISKiadGo+enihprbXE7w+PQK1ieNmWlpKeb03NAKuEOJsdYCv9vTEmJTZWK04/nTqYJ2l1S7sNnMv/u1gJuIPRrKWggg9euw6eUAw/LNI9m/Bl3zzrcZgw4Ss/Tn8yhzOXybWbmvHnD12O3d32oo7dajPmHET9xIsu+MJxvGJ7a7p0dzk4Z+m/33mvqVGnRkudQRG3UymSSY7T476i5jxuba+Dyx+VFQ5GrAxInNUgvnAcFr284bnlIqf8Z9IXgVOGOCulp8QXjsEdjOV0vVpshoL9UeLk1F6EOLOZSg8FEetpKRApDyA9Gy5fnP6B8zPY092woKyzUjTX6RGMJuArohTv/JQUCd1eX/hnTjtnMsoDY4kkDg268fyAG+/7yUFFHLRSZpwBGc6ZjMTGCV8EgWgC61usuGS1A4+enlzWu6Kcc/z+yAguWe0oK7Sms0KzzibSA2xn19bZUFoPbCl4QpLgyjfKQwxaJnE2y3Qgmt7MycbWDhu2d9jw5Bn5zrQ/EkcwmsjpnAHl9TAFUscvJM4AYG1zca4ZIG36xRI8a3n1A0dGYTNqcelqJ5qseujUqmUizqSfNVu5dI+zcF98NRmaCSGY+uyXyxYFEqKJ5QWJsxokEInDol+YAlUJDFo1muv06M/z4eeSsUsISCcVjYoVJc4Gp7MnNQrabAZMFxhEPTQThM2oRZ2hOEFbaiiImHEmr+csv3M25Y/g3GSg6N3Vcph18+T3nfVPBdFeb4ROU/gjpRjnrN8VQCzBcekaBx4+MY67f3+sbJFTyowzQLp4VjF54kz0m61yWnD5ukYMTofy/g3VOi8Me3B+KoibSggCyaRSs87S0ekZoUWdqYCiaojmmYCY15VbaIi/i8XqxVyKuIOxrH16maxpsuKcyy/7mONZhLpA9MyW08MkPh/yBYKUgzivzC/nD8cS+PPxcVy/uRk6jQoqFUN7g7GqoTeVIv07yxI61uNQphRVKU6mwkCKEWcbW+vAWHmzVYnlBYmzGsQfiVclRl/Q7TBjIM98sokCyVQCjVqFjobCc9MyKVSSKGfui5TUKN81E5QaCjIuYwC1QIjaXM7Zc+er228GzIqzMY/8Egu5SY2ANLOIMXniTEQS/9PLN+LdV6zGj58ewNcfOSt7XfPxhWOYDkRLcs7UKga7WSdPnKUuFlc1mtON/4+dXr6pjb8/PAKtmuH6zaWVNAq67CYMz4QU7TEEpIs7tYqlXVtAEmeBaCJdclhJ3KLnLI/QKLbcdyUwE4zmFbSA9Dc27o3IDt2ZyCLUBcI56yvjYl+kF8upJimF1hwpxY+enoQ/Ep+TlNrRYFwWztmEN4w6gwZG3cJN6R6nGVOBaNF9h5XiVOqcta4IV9Ss12CV00xx+kQaEmc1iD8cr0pSo6Dbbsq56x+MxuGPxLPuQmajs8g4/ULJemIXMd/cl6GZUE7nLR+lhoKMesIw69SyhoQbtGrYjNqctebPnZ+BTq1Kr6UatKTEWTGJjeengrLFmVrF0GCSN+vs1JgPahXDmiYLPnb9erx6Rxu+8OAp/Pr5Idlry0Q4saWIM0AMoi687nOTARi0KrTUGdDtMKPbYaopccY5l+0oJZMcDxwZxRXrGmEr4HIUostuQjzJ0+6zUoi+2MzS4K4KR/dnkh6mbJThnJE4AyCFWwSjiZyBIIJVRQ6PFhth82PZASkB2WnRlzXYWIizijln9WLzbO457/+OjKLBpMXFqx3p2zoajBheFs5Z7oAt4XYqMQJBCU6O+9BpNxZ9jba13UZx+kQaEmc1iC9SXXHW4zRjMkeTtMsnXUjIPRF1FVm2NDQTglmnznmCbk31OOWKFpZmnMkfQJ1JqaEgY94Qmm0G2UlNTVZ9TiF04PwMtrTXwaCtThkrkOGcyRRnM4EoPKGYrBh9gd2sw7QMkXNyzIdepxl6jRoqFcPnX78dl6x24GO/PILHXyxe7JQ640wgibPCzlmfK4BepyUtBq5Y14i/nZ1CJF4bSXyf/dNJvO4bf5MVwvLcwAxGPeGSUxozScfpKyyYxr0L51qJdMhq9J25gzGoGGDNU/FgM2olR7kKTl4t4JYRogIAqxqloKSzk/JKG9PiKcdczl6nqayeM5EMKqfUvxTEIOrMDYxQNIGHT4zjhi2tc4LCOhpMcPmjioUpLRZj3oUDqAU9TuWGhyvBqTEf1jfLDwMRbGm3YdQTlnV+IZY/JM5qkECVxVm+OP1Jv3SCkHsi6naY4A7G4AnJuwAZmpH6g3IJnZYCQsLljyIcS5YkzmwmLbrspqKbdOXOOBPkGkQdjiXwwpAHe3uq128GSAlYdQaN7J4zUXq4pkl+mqTdrJNVvnV6XIokFug0Ktxz626sabLgzh8/X/ROY6kzzgROi8yyxkl/OsoaAC5f24hQLJEei7CUEbOjnh9w41O/P1bw8Q8cHoFBq8K1G5vL/t6VGkQ94Y0sSHoTbno1nLOZYBQ2ozZvqI9axVBv1GJa5hy95Y74fChU1tjtMIGx2T7PQox7w9BrVKjLIZTLnXXm8kWgYsgbZFIOjDG02AxzxNkjpyYQjCbwim2tcx4rznu1Hqc/4Q3nrM4Rcfrnl0DfWSSeQJ8rIGv49HxEKEgpIWTE8oPEWQ1S7Z6zdNlAFnGWr34/G8XujA9Oh9KRwNkwply1EXf2ssahdM9aaRfjW0sIBRnzhNFSJ18MNln1WQNBXhj2IJpIYneVhk9n0lxXOAVTIATSliJKLx1mXcG0xkAkjoHp4ILG6jqDFt+7fS+sBg1u/97+oi48zk8HYDNq86bm5cNp0afd4lxE40kMzoTS5VYAcPFqB7RqhkdLcPuqzf2HhhGOJXHdpmb8dP8gfnd4JOdj44kk/u+FUVyzoVmRuYsiNEjpEINx38KLO7NeA4dZV5ULV3coVlBkAJJLJMJDVjoiGKVQIIhBq0Z7vVF2n5iI0c+14ScqRUodHD/pj8Bh0UNdwXTdVpthzrzQB14YhdOiw4W9czfylkOcfjLJc44+AKRrgFbb0ojTPzPhRyLJiwoDEWxtt0HFgIODbuUXRtQcJM5qEH8Vo/QBoMshdpgXfvgVW8LRZc8t9ObDOZdmnNnzCx0x9yUb4qTUUeAYudjSbsPQjPxQkETqRFKMc9ZYp8ekL7Kgx+dAymVZDHHWYpM/iProsAetNkNREepynLPT45Ijl+1E12oz4vu3X4BQLIHbvrcfHpmlYAPToZJLGgHAYdEjFEsgkOfCbWA6gESSz3HOzHoN9nTb8eippS3OOOf432cGsKW9Dl+7ZRd2dzfgn379Qs4enGf6puHyRxfs2JeKRq1Ce4MRA9PKXUyGYwm4gzE0Z9lAqlQ65Hw8wZisfjy7SZ6jvBJIlzXKELWrGi2yExsnvPnncs5uRpZ2sT/pi5Q1TkIOrRnOWTAax19PTOCGLS0LZjd2LgPnbDoYRTzJ01Uy2eh2mJZEYqMIAynFOTPrNVjXbMXBgaVfXUFUHhJnNUYknkA0kaxalD4g9UI0mLRZQ0EmiyzhEEJLzgXRdCCKYDRRMMyj1WbASCFxVoZzBgBHZZbPufwRJJJcVlKjoNlqQDSRTF+MCJ47P41VTjMcFT7RZ6PJapAdCHJ0xIvNbcUFljjMOrhDMSSyDFIVCHGW60S3vsWKe2/dg3OTfnznyT5Z33ewxBlnAqdFDKLOLVwzY/QzuXxdI06O+YoKWsnHP//mBbz9u8/in3/zAr7xyFn8/vAIDg264fIvFPpyOTzkwckxH958QRe0ahX++007oGLA+35yENH4wgTF3x8egVmnxlUbmsr9cdIU25daCNFjlG3nXQooqryrICd1EEg5ZxSlD2DWOZMlzpxm9E0GZL3vs7momYgeplL7zuQMoC6X1nojxr3SIOq/npxAKJaYk9IocFr00Glqe9bZ7AD53K9pr9O8JGadnRrzQadWpVM/i2VnVwMOD7qzDhgnVhYkzmqMQERq7K1mzxkAdDnMWQdRT3iLK+GwGrSwm3WyLr4GUyeUQv1BrfVzSzzmHiOIBpO25NdrS7vU2Cu3tLGYGWeC2UHUsxf8ySTHc+dnFsU1A4AWmx4TvkjBk0QwGsfZSX/6dZKL3awD5/lnOp0c88GoVecV5xevdmBXVwP+enK84PdMJHm6h7FURDx2XnGW2sHtbZx7gr58nROAMpH6oWgC9z0zgOOjXvzhhVF87k8n8b6fHMSrv/Yk9nz6YWz81z/hxq88nha4cvnpswMwatV4ZSrco6PBhM+/fhuODHnw+T+dnPPYaDyJPx4dw3WbWxQNrOmym3Bu0q/Y/DGRzpftgrzLbsSwW/no/vm4gzHUyyildcjsxVwJiGqFQmWNALC60YxANCHL7Z/0RvKW4XeXOetsUuZomXJID6L2R/DA4VE0WvVZe5NVKoaOGp91lm6dyOOc9TiWRpz+yTEfVjdZ5oSyFMPOrnp4w/H0OYRYuZA4qzH8YamcylLkQOVy6XGYsp6sJv35S0SyIe2MF/7wEX1phcI8Wm1GuIOxrIlU0oyz0i/G6026okJBRLxxrvr4bIgLhUxH5ZzLj5lgrOphIILmOgMSSQ5Xgb6wE6NecD6bbCkXe+riJd+F6KkxH9Y1W/KGKADA1RubcHTYm3fWHSCFxsQSvCznTFx05YvTPzfph9OiXzD0fFNrHRqtejz2oqvk7y8Qf4v/+opNOPiv1+GFu6/Dnz54Gb79tj24+6ZNeOuF3RiaCeH/+/1x2cf0R+L43eERvHJ7G6wZa79hSyvednE3vv1E3xwR/MSZSXhCMdy0XZmSRsHWdht84bhiQ7vFBXtW56zBhEQFovvn4w5GUV+Ec1aNwdhLnZlgDCadWpbw70251IVKG0PRBHwFRr9Y9Bo0WvUlzTrjnMPlj1beOUvNOjsz4ce+UxO4cWtrzg3SjgbTMnHOZAjqRRY1Zyb8WNcsPxhrPru66gGAShuJwuKMMdbJGNvHGDvBGDvGGPvAvPs/yhjjjDFn5ZZJCHwRaWeo2s5Zt92EEXdoQWlTKSUcXXaTrBIUsdtX0DlLuVTZ3LNSY/QzKSYUpBTnrDmLc5buN6vi8Om5a5LWny2oJBORLFVMGAiA9DDgqTwi59SYT1ZjtUgJ/OvJibyPE85veWWNhZ2zPldgTr+ZgDGGy9Y68cSLk3nLOeUgLkJ6U+UzVoMWG1rqcO2mZtx2aS/+5RWb8P5r1uKJMy7ZIwd+d2gEwWgCb7qgc8F9//TyjdjQYsVHf3EkLYJ/f3gUNqMWL1nTWNbPMp/tnfUAgMMKNcaLi7tsm0jpgKIKOgvReBKBaEKWA2Q36RBL8JLDKJYTcktBAaT/3golNqZd1AIBVr0Oc0k9Z95QHNFEsgriTFr/j585j0g8iRvz9HzW+iBqEUyVz40Un4NKbeiUQiASx7A7hDWNpYuzVU4LrAYNDlEoyIpHjnMWB/ARzvlGABcBeA9jbBMgCTcALwUwULklEpksZlljki9sLC6lhOOiVQ6MeMI4cD7/7tDgdEhWSaLo75rvnHDOMTwTKlucbWm3YXBaXijImCcMnVpVVIyyuFAQFw6ANN/MbtbNSfyrJulZZwUchaMjXjgturz9ANkQr08u58zlj2AqEMX6lsLlkmubLOhoMBYsbRwsc8YZMLvufImN5yYDOX9vV6xrxEwwVnQC6HxEMlm+3oa3XtSFjgYjPvvHk7J6GH7y7AA2tFixIyWOMjFo1fift+xCKJrAB392EIFIHA8dG8PLtrRAp1G2AGNtkwVGrVqxC5RxbwRaNct6od9ZoblqmbhD8svzGgr8Xawk3MGYrNcMkEaqGLXqguJsPJ0unP/zqsdpQl8JPWditIzoTa0UQpz96egYWuoM2N2VexOvo8GI6UA0b4jRUmbcG5Fmu+X5nOl2iD7BxXPOhNNazEiZ+ahUDDs663FwwK3QqohapeBZlXM+yjl/PvVvH4ATANpTd38JwMcAUA1GlfAL56yKUfqAVNYIAOczLmKSSanmPV+JSDZevbMNNqMW33+yP+/j5PYHtaVKPOaHgkz6IojEk2X1GAHFhYKMecNoKWIANSBFAVv1mjku1XPnZ7Crq6Go4yiJSMYa9xUQZ8MebG6zFb1OR/oiNLsDJVKvMmec5YIxhms2NOGJMy6EY7mHrQ5MB6FWMbTWy3c156PTqGAzanM6Z55gDFOBaFbnDAAuW9sIxsrvO+t3BeC06PNuXOg1anz0uvU4NuLF74/kjsMHpN/jC8MevPmCrpy/yzVNFvx/r9qMp89N4/bv7Ucgmj2EoFw0ahW2dtgUE2cTvjCarIas5bGtNgPUKlbRUBCRJCqnrNFulsQIiTPpNZC7yaVSMfQ4zegrUNYoNsAKlZ13O8xw+SPwFdnDNJEecF1Z58yeEitJDrx8a2ve0m/RszucY9xMNk6P+/Dhnx3Cgf7pstdaLhNZBsjPx6CV4vQXU5ydmZDee6vLEGcAsLOzHifHvAhGa1NME8pQ1JYnY6wHwE4AzzDGXglgmHN+uMBz3skYO8AYOzA5ubRjpGsBn+g5q7pzlhJnGR9+M6mI22KdM5NOgzft7cSfjo3lnE8GSP1ihZIagVnnbHTesQbTSY3lOmfyQ0FGPeGikhoFTXX69IWDyx9BnyuAPYtU0ghIO78qBozncc7CsQRenCg+DATIdAiyX/yIwdZy58VcvbEZ4VgST52dyvmYgekg2uoNJTdrC/INohY9L/OTGgV2sw5b2214tExx1ufK7c5l8srtbdjUWocvPHgKkXhu4fqTZweg16jw6p3tOR8DAK/f3YHX7GzHs/3TcFp0uGhVZXoid3TW4/iIN2tCZLFMeHNvIGnUKrTVGyoap+8OpcSZjEAQ4e5RYqP8Pj3BqkZzwSCFCZnOmSiTKzYBUCSDFtuHXSyMsbR7lq+kEZg9/xXjDv/quSH8+uAwXn/PU3j7d59VrMS4FMZ9YbTI2ADucZhLDnFRgrOTfqhVLO3ilcqOrnokOXCEhlGvaGRfpTDGLAB+BeCDkEod/xnAvxZ6Huf8Xs75Hs75nsZGZXsTViKiF8FaZees0aKHSaee45zNzjgrXozcenE3OOf44VPns96fTKZKEmXMJzNo1bCbdRidF1Fe7gBqQb1Jh067UVYoiDSAugRxZjWkLxxEv9neRRRnGrUKTos+b/rZqTEfEkledBgIAGjVKtQZNDmds9NjPjjMOtk70BetssOkU+PhE7lLGwemg+i2l18m6rToc4uzyexJjZlcsa4Rhwbd8IRKTxbrcwXTkd/5UKkYPvGyDRiaCeF/n8lefR6MxnH/oRHcuK214HBuxhj+7dVbsLG1Dm++oGvBXCWl2N5Rj2giiZNj3rKPNe4NZ51xJuhsMFW050yUQ8vpn3KYRVAODaKeCcbQILOsEQBWO80YnA7m3YQY90ll54XKJXtKTGwUQUGNltLdebl0NpjQXm9Mh0jkopRB1MdGvNjQYsU/vmwDjgy58aqvPYk7fnAAx0fK/3sslnFv7gHUmfQ4zYvac3Z20o8uuwl6TXnJtTs6pfM+9Z2tbGSdWRljWkjC7D7O+a8BrAbQC+AwY6wfQAeA5xljLZVaKCEh6sbNVXbOGGPospvm7CQKMVFKCUdHgwnXbWrBT/cPZE1ZHPeFEU0kZTlnQGoo5zznTJyM2uvLc84AeaEgnHOMecJFhYEImur06RLC585PQ6dRFR2yoTTNdYZ0M3Y2RJlnqet0WPSYylG+dXLch3UyShoFeo0al6114q8nJ3IGzQxOlxejL3Ba9TmDTM65/NCoWN6+tsvXNSKR5PjbmdJSG33hGFz+iOxZOpetdeLSNQ589a9nspZpPXB4FP5IHG+5oEvW8Sx6Df7w/pfgI9etL2rdxbC9U3pPKbFjP+4N5+2J7LKbKtxzJsoa5fScSY+RO/R+uRJPJOENx4pyznobpb7obCNfBJNeKcCqUBl2qT1Mk74IdGoV6oyVPz/f/crN+Pbb9xT8WZwWHQxalexB1JxzHBvxYHtHPd51xWo89rGr8JGXrsMzfVN4+Vcex3v+93mcmShuREepxBPJVOuEDHHmMGE6EC1r06sczkz4sTrPppxc7GYdehwmSmxc4chJa2QAvgPgBOf8vwCAc/4C57yJc97DOe8BMARgF+d8rKKrJeAPx8EYYFJwrpBceuYlWJVbwnH7pT1wB2P47aHhBfeJHhC5F9OtNsOCOOyhmRDsZp0iQlaEgrjzlBtNB6KIJpIllTU210nOGeccB87PYFu7rewduHJprss/iProsBd1Bk3JZaP2HDOdkkmOF8flJTVmcs2GZox6wjgxuvDCwR+JYyoQLSsMRNBo0add4/n0uQLospvylk7u7KyH1aApubRRbJD0OuRdCDDG8IkbNmI6EMW9j51bcP9P9g9gTZOlqJl6le6FbK83wmnR42CZ4iwcS8Abjue9uOu0m+DyRyvW4yE+M+SIM4teA62aYXqFlzV6QjFwDtiLcM5WpeP0cwuqCZ+8HmmzXoMmq77oUJBJXwROi64qvcJrmizY2Fq4pJwxVlSc/ognjJlgLF2ubjVo8b5r1uKJj12N9129Bo+cnMB1X3oMX374dFnrl4PLHwXn+QdQC3rSpajVL22MJ5LodwXL7jcT7OxqwMEBN43UWMHIcc4uBXArgKsZY4dS/728wusicuCLxGHRaQrOfqoE3Q4TBqdD6Rjw2bLG0sTZBb12bGqtw/ee7FvwISR2sjtlXvi32oxZxFlQ9vMLkQ4FGc5d1vFs33RqLaWUNeoRiScx6Yvg6LBn0SL0M2mu0+cVZ8dGPNjSXnwYiCCXOBucCSIYTWBDkeLsyg1S2XS21EYlkhoFDrMOvnA8a/jIuclAul8lFxq1CpeuduKx05MlnXxFKphc5wwAtnbYcNP2Nnz78T5MZPxOT455cXDAnTcIZDFgjGFHp61s50xOj9FsYmNlQkHcwRg0KiarT5gxKVVypTtnM6kQlYYiUm/lxOlL4TDyzlc9zuLj9Cf9xY+WqQbFDKI+lqoQ2TSvXN1m0uIj163H4x+/GpesduJ7T/ZXXDyIyo18ZckC8blbyny6chmcCSGaSGJ1GTH6mezorMeEL1Lx+YvE0kVOWuMTnHPGOd/GOd+R+u8P8x7Twzkvf7IqURB/OF71pEZBt8OMaCKZ/sCc9EVg0qlLdqYYY7jt0h6cHvcvCHIQJ5I2mSWJrfUGeEKxObvf5Q6gzkSIs2yljckkx1f/8iLe87/PY1WjGRetchR9fHFC//OJccQSHHu6F2f4dCYtdQbMBGNZezhiiSROjvrKKr10mHVZyxpPFRkGImiyGrC9w4a/ZJl3NqCgOHOmflfz155M8pwzzuZz+bpGjHjCODuZP10uG6LUqkemcyb46HXrEE8m8eW/vJi+7afPDkKnVuG1BYJAFoPtHfU4OxmAt8jEvEzGZaTzdZYQmFAMM6lIeLni157j72IlMes2yhdnVoMWjVY9zuX5mxr3RgrOOBP0lhAwUcrcz2pQzKyzYyNeMAZsbM3++Ws363DtxiZ4QrF09UylkDOAWiA+2/tLGIFQLmdTSY3lxOhnsjM9jNqtyPGI2qMy3dxExQhE41XvNxN0z0tsnPBFyk6leuX2NjjMOnx3Xqz+4HQIzXV6GGSWb84OopY+zNOBIgo5Z7lCQab8Ebz9e8/iP/98Gjdtb8Pv3vuSoi4oBOLk88cXpMrgYkrMKkW+QdQvjvsRTSSxua34pEaB3Sw5BPN3X4U4W1tEz5ngmo3NODToXhDYoaRzlh5EPe/CZNgdQiSexCoZu6eXr3MCAB45VXxpY99UQJrrpCuu7LXbYcYtF3bjZ/sHcXbSj3AsgV8/P4SXbW0pyqGoFmIY9ZHB0lPL5FzcifdEpRIbPaFowaCVTBbDOfOGY3j4eP45gdUk7ZwVUdYISO5JLuckHEvAE4rJPmd1O6Vy12Li9F1L1jkzwR2MyfpZjo14scpphkmX+zpD9AOfHi9+c6kYJtJ/v4VfU4NWjTabYVHKGs+kNgSUcs42tNRBr1FR39kKhsRZjeELx6seoy/onjfrbNIXLvtEZNCq8ZYLu/CXk+NzPlSlkkT5F9KtqVlno+6Uq+ePIJpIKibOgIWhIM/2TePlX3kcz/RN499fsxVffuOOkn834oLhqXNTWN1oLmqIdaVoTgnebKWN5YaBAJI4iyc5vKG5vT4nx33otBtLei2v3tAEzoF989yzgekg6gwa2Iq82MuGGDA7XwCKi8JCZY2AdLG0utGMx14svuCg3xWQldSYjfdevQYGjQpf+NMp/OGFUXjDcbxpr7wgkGqzvaMeAHB4yF3yMUTaaL6LO7tZB5NOXbHExplAccEWdrOu6j1nv3puCHf88EB6nMdiI0YJyEm4zGR1njh94fLIcWGA2Z5OuU5MIskx5Y8UPVqmGojzoJxZZ6JcPR9rmiUR8mKFg0HGvRGoVQwOma9pj9OMvkUQZ2cn/Gi06ovahMmHCAQrt+eWqF1InNUY/ki86jH6glabEVo1SwcSKFXC8daLuqFmbE6s/tBMqKhkvVnnLJR6vjIx+plsabdhYDqImUAUX9t3Bm/+1tMw6TT47T9cirdcWF7PjggsSCSXRkkjMHtBmy1O/9iwB2adWnYoRTYcKZEzNS9O//SYD+ubS3PkNrfVoblOj79mEWddZc6fEaSds3niTJRTySlrBKTSxmfOTeWN/s5G/1RQlgDMhtOixzsvX40/HRvDfz50Gr1Oc8VmlZWLzaTFKqe5rEjpCW84PTg8FyKJtlJlje5QcZHwwlGuJuJvPJtLvhikxw8UuUm1ymnBdCCaNbhJCM9GGS4MMNvTKbe0cToQRZLPlj0vJcRGZ6G+yulAFKOecMGKiEaLHvUmbcWds3FvGI0WPdQye+y7HeZFGUR9ZlKZpMZMdnbW4+iwR5FZj0TtQeKsxvCH4zDnKTeoJGoVQ2eDKe1wTfiU2SVsrjPg5Vtb8fP9g/BH4oglkhj1hIoK82iZV9Y4m/aorHMGADd/8yl84cFTeNmWFvzuvZdiUxmlfQKLXgNzqkxtKYSBAEjPa8sWp390xIvNbbaygmnErnhmKEgknsA5V6DoMBABYwxXb2jGY6cn55zUBqaDipQ0ApnibO4F4DlXAFa9RvbfxJ5uOyLxJF4s4gLHE4phOhAtut8skzsu64XTosewO4Q37e1cUkEg89neWY9Dg6Wnlo17pQCIQj9jR4OpYoEgnmAUNqN8kdFg1sEdiqWDl6rBVGqjodI9RHKZCcagVbP0Z6JcxKbF2SyhIHIHUAuKjdMXr91Sds4KxekfS1VEbC4wu5IxhnVNVrw4XmHnzBeRVdIo6HWaMBOMwROsXpw+5xxnJ/yK9ZsJdnY1IBJXZtYjUXuQOKsxApHFCwQBpBPW+akgwrEEfAUiqovh9kt74IvE8avnhjDiDiHJgY4iLqb1GjWcFl1anImTUHu9cs6ZEGcDU0H826u34Ktv3gmrQZkyBmDWPduzBPrNAMBm1EKnUc1J9wMkd+/4iBeb28sTpWLgbmb4wdmJABJJjnUlijMAuHZjEwLRBJ7pk0JmkkmOoeninNh8GHVqmHXqrGWNvY1m2WJH7E7LGW4u6C8hqXE+Zr0GH79hPRpMWrxud0fJx6kGOzrrMVlGatmET94A2y67CQPTwYqkzxU7TNlu0oJzVHVek3gv5xoRUW3cwSjqTcVH0gvXOlvf2USRZY0mnQbNdXrZZXLlphdXErtZB6NWXTAU5FhqyLScXuI1zRa8OOGvaGLjhDdc1DVGqcPDy2HSH4E3HFes30xAoSArGxJnNYYvsng9Z4BUNnB+KqD4LuHOrgZs76zHD/7Wn27ML6bnDJDcs9myxhCcFl3RoQn5qDfp8LW37ML9770Ut17Urbjj0GjVw2HWlVyypjSMMbRkGUTd5/IjFEtgS4Hd1ULYLQuds1Pj0sVBqc4ZAFyy2gm9RoW/nJBKG8VAc6WcM0AqXVrgnE0GsKqI312X3QSrXpPu35ODuOgo9z1y855OPP/Jl6ZdwKWKCAUpNVK/0ABqQafdiFAsoXhKYjiWQCiWkDXjTCBK+aYD1RNK4udeOs5ZtOgwEEAai6BRsayJjRO+MDQqBnsRfWw9RZTJiYCgpSjOpFlnxoLO2dFhD9rrjbJ6JNc1WSqe2Dgm8+9XUGwpqhKcnZC+l9LirNVmQJNVX1ZZN1G7kDirITjnCCxizxkgOWeBaAInU4l6Sp6I/u7SHpxzBXDf0wMAii9JbLUZ04EgQzMhtCvYbya4cVurrMGfpfCOy1bhH1++cUmVmWWbdSZmvZUTBgJIUfrAPHE25odWzcoSH0adGpeuceIvJ8fBOcfAlHJJjQKnRT8nrTEUTWDYHZKV1ChQqRg2tdXlnZ03nz5XAIwp87MspfdZLja2WqFVMxwqMRRkQmZ0eqUSG4X7VWwgCABMB6rnnE35l5g4C8SKDgMBAK1ahS6HKeuss3FvBE6LvqhS7F6nGf1T8hxV4Zwt1Q2PTnvh0t3jI17ZCbyVTmwMxxJwB2OyZpwJuuwmMFbdOH2R1Kh0WSNjDDu76imxcYVC4qyGCMUSSHIsWpQ+MFuHf6BfGrispDh72ZZWNFn1+NOxMahVLN3zJJfWDOdsUMEB1NXipZua8folVmbWXGdYEAhydNgDvUZVdgO0QauGSadOXxgCwKkxL1Y3WqBVl/fRdPWGJgxOh3B20q/ojDOB06KbU9ZYqqO1pd2Gk2NexBPymr77XAG02YyyR0zUOnqNGpta60pyzgKROHyRuKwyttlB1Mpe1LmDQpwVF6UPIOuA9krAOU+/l+eX6i4WknNWWmLtqhxx+hO+CJqKcGEAycGfDkQxIqOstty5n5WmkHPmj8TRNxUo2G8mqHRiY7HpmoCI0zdW2Tnzw6RTp0PJlGRnVwP6p4JV+ywglg4kzmoIf1iKHF/sskYA2J8SZ+XOOctEp1HhrRd1AwDa6g3QFHmB3mozwhuOwxeOYcSt3ADqlYwkzsJzdo6PjniwsbWu6N9PNuxm3ZzyrVNjvqKHT2fjmo1NAIC/nJjA4HQQKiZ/oLkcnBb9nAtZsVMvN6lRsKW9DuFYMmf893z6XYElU/ZaLXZ01uOFIU/RARmix0jOZ9Rsmp2y4qyUSHjhnM1UKU7fH4kjkgrPWTLOWTCGBnNp/byrGi3omwoseL9MeMOyB1ALdqX6f+W4F0t1ALWgo0E6P+bqZTwx6gXn0meSHCqd2CgqNooV1F12U1VnnZ2d9GN1o6UilQg7UmXdhwbJPVtpkDirIXwRSZwtZlljR4MRjAEvDHvAGBSfx/WWC7ugU6uK7jcDZuP0Dw96EEtwRWecrVRa6gwIRhPp914yyXFs2Cv7BF4Ih1mX7nfxhmMY8YQVEWetNiM2tdbhLycmMDAdRFu9sWw3LhOnRY+ZYCzteIkel6Kds9QutZxQEM45+sqYcVarbO+sRyCawJmJ4i4CJ2QMoBYYdWo4LXrFExuFc1bM/CN7lnLfSiKca8aWRiAI5zwdCFIKq5xmRONJjMyb6TVZknMmhgG7Cz52UqH04kohNiuHc4SCHBuWl9QoqHRio6jYaCnSkep2mDBQoeTVbJydUD5GX7CtwwYVAw5RKMiKg8RZDbEUnDO9RiobiCU4HGadIu5JJk6LHp97/Vb8w5Vrin6uEGfPplw9EmflIy5mxIXu4EwQvki87DAQgeScSReHp1N9jOWEgWRyzcYmHDg/jSPDHkVLGoHZQdRi7edcAbTaDDAVOeZiVaMFBq1KVt/ZTDAGbzheVox+LVJqKMh4uixK3gVzl92o+CBqT0h6fxRT1ijKfas160zMGexxmOf0US4Wvkgc8SQvKrgjk9k4/VkxH40nMRWIFl3podOosLXdJss5c/mXtnOWdodzvMePjXjhMOuKCuCoZGKjcM6K6TkDpBJllz+CQGpDsZIEInGMeMKK95sJTDoNNrTU0TDqFQiJsxpCfNgsdk276DtrLPJDUy6v2dmBl6x1Fv08Uba2v0+Is5XlMFSC9Kwzj3TRplQYiMBu1qcFjgiZEY3m5XL1hiYkuVRyqLw4ky5ghNNwzhUouqQRkGYHbmqtk5XYKPpoVlpZY6/DDKtBU/QFykS6LEre51RnKk5fSWZSzlmx/VMNJh2mq1TWKFJH1zdb4Q3HEY4VNxRdadyB4vv0MhGhPJl9Z6IEuZj+JcHOrnocHfEWHBY/ucTF2eyssxzO2YgXm9rqiirPq2Ri47gvDJ1aVfT7QFyfKL3Rkg1Rzq50UmMmO7vqcWjAjWQV5x4Siw+JsxpClJYtpnMGZIqzpXUiEi7PwVR9Njln5SMuZsQu5tERD7RqhrXNypyMHBaprJFzjlNjPlj1GrQr1Bu2vaM+7XApNeNM4LTODqLmnOPcpB+rnKW9JlvabTg+4i148lVixlktolIx7OisL94584Zh0KpQJ7MMvMtuwqgnjJjMcBY5uFPDlE1FjvTIdJQrjRAuG1qtc75eLErp08vEadHBatDMSWwspv9wPru6GhCNJ3F8JLe7HYlLyYJLNakRkMSuWafOGgoSiSdwetxX9KZbJRMbxz1hNNUVHiA/H7ERd36q8uLsbIWSGjPZ0VkPXySOc67K9PYRSxMSZzWEKGtczJ4zYDYUZKnV10uDqPUIx5JotOpXTKJdJRHiTMw6OzrswbpmK/QaZV5bu1mHaDyJQDSBU+M+rGuxKtZYrVIxXLVeCgaplHPm8kXg8kfhC8dLdrQ2t9XBH4njfAHXpn8qABUrfv7fcmB7Rz1OjfsQisp3dcZTMfpy30+dDSYkkjw9jkMJSh2m3GDWVa+sMeWciXLi+fP7lKCYsre0OCsxEIQxhlVO85yL2XS4RAnVHju7RCiIO+djxGu41DYsM5FmnZmyOmcvjvsRT3LZMfqCSiY2jnvlDZCfT7dd+hxWOtwnG2cm/FCrGLoclftMFu+/5yvYdxZPJPHjp88X9flKVBYSZzWEf6k4Z6kL3WKbq6uB6Dsj10wZjDo16gwaTKQSG48OexTrNwMywg/8UcWSGjN5+dZWAFD8uMKRc/kj6fKpUsoagdkG/EKhIH2uADoaTNBpVt7H9vbOeiSSHMeKGNg94StugG06Tl/Bcih3MIb6IsJABHaTtmpljVP+CGxGbbosXOkStZlAFFvuehCPvzgp7/FB0adXetjUqkYL+rI5ZyWcs1psBrTaDHnLasVrttQ2LOfT0WDMKlrE35XcMBBBJRMbx4v8+xXYTFrUGTRVc8667CbFNiuzscppRp1BIyuUplQePjGOf/ntUfx0/0DFvgdRHCvvLF/D+JdMz9nSdM6ATHG28tyFStFiM2DMG8aIJ4yZYEyxpEZgdhD18VEvPKEY1ivUbya4akMTnvzE1Yr1sQkseg30GhWmAtF0UmOpfQfrmqVBy4X6zvqnAiuupFGwvVO6aDxURGnjhDciu98MmB16r2TfWanzuiTnrDpDqF2BKBwW3WwfpcLi7OykH4FoAgf65cWBi5+71EAQQLqgHfGEEYxK58xJbxgqNvt5UyyFhgGLUtCl7JwB0gbE8ExogZN5bMQLi16T3niVi0hsPFMB50zuAPlsdDvMBSsRlODMhL+i/WaAVAGyvbO+qM++Ynnw2Hjq/2MV+x5EcZA4qyH8kTi0agb9Iu+cr2u24I6X9OK6zc2Luo5siN1fcs6UQwyiFs7OZoXCQIBZ5+ypsy4AyjtcABTrYcuEMSbNOvNFcM4VgE6jKnmOmk6jwvoWa96eFs45+l1B9FawfGYp02Q1oL3eWNQFyrg3XFTSW6vNCI2KKVoO5QnFYCsh2MJh1qXmj1W+zMjli8Bp1sOR4QYryXAq0l7uYGB3MArGgLoSHEfB/FCQCV8EDou+5HThXV0NGJoJYcKXveQ17ZwtcXHW0WCELxKHNzQ3yfDosAebWuugUhVfUr6m2YLT48omNvojcfgj8aJj9AVddlPFyxrjiST6pwJY3VT5DbOdXQ04NeatSAJlLJHEX06MQ6tmeLZvGlNLYJwGQeKspvCH47DoNRUZdlgMGrUK//KKTUvSnRIf5iuxL6dSiEHUx4Y9UDFgY4uSzpl0MfPUuSkAUNw5qyROiw6T/gjOTQbQ4zBBXcKFjWBLmw1Hhz05L3Bc/ij8kfiKdc4AyT07POSW9Vh/JI5ANFFUWZRaxdDeYKyAc1a8yGhIbVqIOWmVZCrlnOk1atSbtIo7ZyOpHr4+mYPWZ4Ix2Izasv6eRP+nCAUZ94ZLCgMR7OyqB5C770y8ZkLgLlXEpmVm6W4iyXFi1IdNRfabCSqR2Dg7o7C031mXw4ShmWDRg+uLYWA6iFiCY02FnTNAev8lOXBkSH5Zt1yePjcFbziO91y1BkkO/OXEhOLfgygeEmc1hD8Sh2WRw0CWOtRzpjzNdXpM+CI4MuzBmiYLjEUmz+XDnrqYOT3uR5NVn74orQWcFj1c/ijOuUpPahRsbrdhJigN4c6GcB1WtDjrqMfgdEjWzm46AKLIi7vOBhMGc0SNl4I7GCupd0qU9FUjsXHKH0mXNDot+gqIM+n17HMFZLkrpZaCZiLEWaZzVkq4hGBzmw1aNcstzlJ9e5XsPVICsaGaGQrS5wogFEsUHQYiECXjLxY5JD4fYgB1sTPOBF12E2IJjlFP5YZRnxUx+hVMahTs6KgHMJtErSQPHhuDSafGu69YjY4GI/5EpY1LAhJnNYQ/Eoe5yCG3K43L1zbirRd1YU9Pw2IvZdnQUmdAIsnx9LkpRcNAAMCsU6cDLipR0lhJnBY9xr1hDEwF0VtiGIhgS+rCKFcoSHrG2QobQJ3JDjGMWoZ7NlHixV2nguVQ4VgCkXgSthLK88QmRaXFWTyRxEwwlnZ8Gi16xcsaxQWyLxyX9fOU6jZmYtSp0V5vTPeDTvgiZTlnBq0am1rrcvadTfqW9owzQWdanM2+x0sNAxGIxMbT48r1nY0XOaNwPqJ3bqCCoSBnJsrrNS6GBrMOvU4zDikcCpJMcjx0bBxXrGuEQavGDZtb8MSLLvjC1el3JXJD4qyG8Ifjix6jv9RpMOvw6VdvhYlErGKIE2Q4llS03wyQerdEk/6GWhNnVmkWVTzJsapMR2tjax3UKoZjecSZRsVWtCO8pd0GFQMODRYu7RG9QcVe3HU0GDEdiKaDJMqhnHld9iqJM3F8R8o5a7Tq04PVlWLYLc2bA+SVNs4EYmU7Z4Dknp1zBRBPJOHylyfOAKnv58iQB/Esc/Bc/siSDMiaT51RA6teM8c5OzbihU6tKnl2ZSUSG8fLLGsUyatKD5XP5OykH41WfUmbL6Wws7Mezw+4Fe3tOzjoxoQvgus3twAAbtjSgmgiiX2n5CWrEpWDxFkN4Y/EFz1Gn1h5tGRc4G4psfQlH+JCdL2CvWzVIHPg7Koyd08NWjVWN5pxNEcoSL8rgC67qeRAg+WAWa/BumarrGHUpV7cCfE7rEBpo+gXqy+l5ywlTmYqHKcvZpo5U3+DlSpr3NtjByBPnInZcOWyqtGMvslAasg90FhGWSMg9f2EYgmcHFvoENWKc8aY1Fc53zlb32KFtsTPlkokNo57IzDp1CVf77TVG6FVs4omNp6Z8Fel30ywq7sBLn8Eg9PKlWo+dGwMGhXDVRukeaC7uhrQaNXjwaNU2rjYrNwzfQ0i9ZxVZ5eGIASZvRqlNo3nIy3OaigMBJh1GwBgdZlljcBsKEg2+lwrN0Y/k+0d9Tg8VHj3uNSLO5HsKRIGy2F2Xlcp4kx6TqWds6mAJMSc1lnnLBhNKJYK54/E4QnFcGGvHRoVk+ecBWNllzUCUpy+LxJPp6A2lymedolh1Fk2ByZ9kTmbNUuZzEHUnHMcG/GW3G8mUDqxUZpxJn+A/HzUKmngdqWcM845zk76q5LUKLiwV9rgeLpvSpHjcc7x4LExXLLGmXb/VCqG6zY1Y9+pCYRjNJB6MSFxVkNIztnSbjgmlh9Oiw4qJl3sWCuwOeAwS8cvtaxmsRCDqBtMWkV2+je32zDhi6STygScc5yfCqJnBfebCXZ01cMdjBUcMDvuLe3irr1BOXHmEc6Zsfj3hkatgs2oxUylxVnKOROlxcL9UarvbDT1OnbaTeiymwrG6YdjCYRiCUWCgYSbLZJgS+1fEnQ0GOG06Bb0nQVSyaC14JwB0jy/wekgOOcY8YThDsbKLldXOrFxwlvaAOpMOu2mivWcTfoj8IXjVXXO1jRZYDfr8GzftCLHOzXuQ/9UENfPG4l0/eYWBKMJPPGiS5HvQ5QGibMaQkTpE0Q10ailGV7bOpTtNxO8bGsrbr+0FwZtbW08iB6TcksaBaJk9Ni80sZxbwShWAK9ThoPsT2VWlYoFGTCW1qZWZPVAI2KKVLWOJMSZw3m0jY07GYdpiscpS9EmCOd1iiJIqUuskX6aHu9ET1OM/pc+S+Wy+nTm49IbHxaiLMyxRNjDDu7GhaEMtTKAGpBR4MJgWgC7mBsdnZlmc7ZWoUTG8e95aVrAlIoyHmZs/WKJR0GUoWkRgFjDHt7GhQTZw8eHQdjwEs3zRVnF61yoM6godTGRYbEWY0QTyQRiiVg0VNZI1F9vnfbXvzzjZsqcuzrN7fgk6+ozLEriShjKjcMRLApLc7mljaKUjAqawTWNVtg1Krx3Pn8kdITqbKoYlGrGFrrDYo4Z+5QqqyxBOcMkBzZ6UBlB8K6/FHo1CrUpYKmlHbORIx+W70RPQ4z+gvE6c8EUoJWgbLG9noj9BpVWoAoUXa4s6se51yBOY5m7YkzyR0emgnh2IhXkdmVaxVMbOScY8xb2t9vJl12E7zheNrBVpJ0jH4VnTMAuKDXgYHpoCIjAh48NoZdXQ1ompdoq9OocO3GZjx8YhyxLOE3RHUgcVYjBKJS/a+ZyhqJRWBts7VmLj6qhc2oxY7Oely+rlGR41kNWvQ6zTg6PNc5S884o7JGaNQqXL2hCT/bP4izk9l36Tnn0s57ie/XNptRsUAQvUZV8lxAu1mH6UBlnbMpfwQOiy5d/in+xhVzztwhqJjkWvU2mhGKJdIzrLLhTvfple+cqVQMvU4zklwq2xQjO8phZ6fUd3Yoo+9MvFa1kNYIZIqzII6PeLCqsfzZlUomNnpCMUTjybKdzi6HVGlwflp59+zshB8mnTo9V7VaiL6zct2zwekgjo96cUMqpXE+129pgTsYU8ylI4qHxFmN4E81aFOUPkEsDVQqht++51LctL1NsWNubqvD0XnOWb8rAF2qtJQA7rppEwxaNT76i8NZY819kThCsUTJO+/tDUZlnLNgtKQwEEGDSVfxnjNXSpwJ7CYdGFNOnA27Q2ipM0CjVqVn9OULBZkWZY0lloLOR5Q2KrWxtK1DGueQ2XcmXiuntXxBWQ3EIOrBmSCOjXgVSeBljGFtk0WRxMb0AGoFnDOgMnH6Zyf9WN1oKTmwpFQ2ttbBoteULZoeTJUsXp9DnF2+thFGrRp/otTGRYPEWY3gD0vijMoaCWL5sqXdhqGZUNpBAKSL2S6HCWpVdS8ElipNdQb8f6/ajIMDbtz7+LkF90+kB9iWdkHeUW/EuDdcdkmPOxgruaQRED1nUUXnGs1nKhCFwzz7OmnUKjjMOkz6lRGFI+5QelOhJ9UzmU+ciT49uwLOGSDF6QPlh4EIzHoNNrTUzUlsnPRFoGKY8zouZWxGLeoMGhwe8mDUEy55+PR81jZbFUlsnB2DoYw4KxQeVApnJvxYU8V+M4FaxbBHgb6zB4+NYUOLNe0uzseoU+PK9Y148NgYksnKff4QuSFxViP4I9JJy0LOGUEsWzZnCQXpnwpQSeM8Xrm9DS/f2oIv/fk0To4tDFABsKCXQi7tDUYkOTDmCRd+cB7cwVhZzpndrEM0nkQwWrlI6yl/dEEvlpKzzkbc4bQ4a7MZodOo8iY2ugPKlTUCwCqndAFdbox+Jju76nFowJ2+aJ30R2A362tq86SjwYRHTk4AKD8MRJBObCyzX/GFVI9gW3154sys18Bp0WFQYefMH4lj1BNWZHxKKVzQa8eLE35Mlfg6T/oiOHB+JqdrJrhhSwsmfBEcKhC+RFQGEmc1gj8inaApSp8gli9iF1uEGCSTUow+JTXOhTGGf3vVFtiMWnz4Z4cRjc+6XBO+0gZQC9rrpdd6qMy+M3eozLLGVJx8pWadcc7h8kfSCY2CRqu+7AtsQHrvjnlmxZlKxdDjMBV0zsw6tSL9YQDQm3bOlBRnDfBF4umex1oZQJ1JR4Mx3ceu1OzKdGJjGX1noWgC332iD5etdabLL8uhy25S3Dk7l/q9L4ZzBsz2ne3vzx+KlIuHT4yDc0l85eOqDU3QqhkNpF4kSJzVCFTWSBDLH7tZh/Z6I46mnLNRbxiReJKSGrPgsOjxmddsxfFRL/5n35n07WnnrIyeM6D8WWfSMOUyyhpTz50JVkac+SNxROLJOT1ngBTu4FLAOXMFIogmkmjPcEB6neYC4iyqmGsGAGubLLDqNVhfZhphJju76gEAz6f6zib90RoUZ6bU/42Kvd5KJDbe98x5TAWieP81axVZU5dd+UHUQpRXO6lRsLW9HgatquTSxgePjaHLbsKGFmvex9UZtLhktRN/OjZW0dJqIjskzmoEKmskiJXB5rY6HEs5Z/2pC9leKmvMyvWbW/DaXe342r4zOJIqvxn3hmHRa0qeCSkS2MpJbOScwxOMwaaAczZVIedsdgD1XGEhnLNyL8hG3JKD2WqbDbLpcZoxMBVEIkcfy0wwCrsCA6gFVoMW+//lWty0rVWxY65ymmEzanEwNe/M5VvoPi51Ou3S70SpkkZgNrGx1Fln4VgC33zsHC5e5cDeHrsia+pymDHqCc1x1svlzIQfahVD9yJ9Jus0KuzqasAzfVNFP9cbjuHJMy5cv7lZVpjJDVtacH4qiJNj5Qe9EMVB4qxG8KWdMxJnBLGc2dJuwzlXAP5IHOeEOFuk/oZa4K6bNqPRoseHf34Y4VgCE95IWWVsBq0ajVY9ht2l77gHowlEE8nynLOUSKlUYuNUQKQMLhRn0XgS3tQ5p1QyZ5wJeh1mRBPJ9H3zmSmzTy8bBq1a0VQ9aRh1PQ4OuME5r9GyRsk5UyoMBJhNbHyxROfsZ/sHMemLKOaaAZJzluTS2AClODsRQLfdpFjpbSlc0GvH8VEvvOHiRm3sOzmBWIIX7DcTvHRTMxgDpTYuAgXfXYyxTsbYPsbYCcbYMcbYB1K3/xtj7Ahj7BBj7CHGmHJ50sQCAqmeM3OZ80gIgljabGmXdrNPjHrR7wrAoFWhucRwi5WAzajF516/DWcm/PivP5/GuDdc9uvVXl9enL47JF001RvLCAQxVbbnzJV2zuYKSBEQUu4gaiHA2jPFmTN/nL47GC1L0FaLnZ0NOD3hw7A7hGgiWTMzzgQbW63QaVS4dI1D0eOWmtgYiSfwjUfOYm9PAy5apYxrBgDdDuXj9M9M+rFqkUoaBRf02sE58FyRfWcPHRtHo1WPXV0Nsh7vtOixt8eejt4nqocc6R8H8BHO+UYAFwF4D2NsE4AvcM63cc53AHgAwL9WbpmEPxKDUauGRk1mJ0EsZ7ZkhIL0u6SkRlUNJcEtBlesa8RbLuzCtx4/h+Oj3rIDINobjOmyvFJQYpiy1aCBWsUq1nMmxNf8tEalBlEPu0Mw69SoM85WewhxliuxcSYQRYPCzlkl2NlVD86Bv5yQEg9r0Tk7/qnrsbtbOSEElJ7Y+MvnhjDmDeP916xV1OVUetZZLJHE+anAooWBCHZ2NkCrZnimiL6zcCyBR05N4KWbmos6n9ywuQUnx3zpEnuiOhS80uecj3LOn0/92wfgBIB2znlmfrEZAHUMVhB/JE79ZgSxAmiqM6DRqsfRYS/6KEZfNv/08o3oaDAiGC19ALWgI+WclTrjx52a11VOiZ5KxdBg0mE6UFzpklxEz9n8Hi+lxNloKkY/82K70aqHWafGucmFF3rxhFRK2aBgz1ml2NFVD8aAh45LjkKtiTMAFdnoLSWxMRpP4uv7zmJnVz1essap6HqarHoYtCoMKJTYODgdRCzBFy1GX2DUqbGtox7PFtF39uQZFwLRhOySRsH1qVRHcs+qS1F/nYyxHgA7ATyT+vozjLFBALeAnLOK4gvHYaV+M4JYEWxuq8PhITcGp4OU1CgTi16DL7x+Oxib3TEvlfYGI6LxJFyB0gSKEuIMAOxmbeV6zvwR2IzaBb0zipU1ekJozShpBKS+pB6nOatzJkpBa6Gssc6gxZpGC54+JzkXtVbWWClKSWz8zcEhDLtDirtmgPR+67KbcF4h5+zMxOLG6GdyQa8dR4Y8CMmcg/ino2OwGjS4eFVxpazt9UZsbbfhTyTOqopsccYYswD4FYAPCteMc/7PnPNOAPcBeG+O572TMXaAMXZgcnJSiTWvSAKROMwkzghiRbClzYYzE37EEpxmnBXBRasc+OtHrsQb9nSWdRzRJ1VqYqMoRSxXaDSYdJiuVFljILogRh+Q+uQ0Kla2czbiDs2J0Rf0OM1ZS6RmS0GXflkjIJU2itTJWnTOKkGxiY3xRBJf23cW2zpsuHJdY0XW1GU3KTaI+mzK8V29RMRZPMlxcKBw31kgEsefT4zj6g1NJQWZ3LClBQcH3GlxSlQeWb8lxpgWkjC7j3P+6ywP+V8Ar8v2XM75vZzzPZzzPY2NlfnjWwn4I3FKaiSIFYIIBQFAZY1F0us0l52kVu6sM0/KBbKVEQgCSCWHFQsE8UXgNC8UFSoVg9OiL0uchWMJuPxRtNmMC+7rdZgxOBNCLDE33nwmWDvOGSANowYArZqV/XteLhSb2Hj/oREMTAfxvquVd80EXXYzBqaDiszqOjrsQXu9EXWGxf997+lugIpBVt/Ztx/vgzsYw9sv6Snpe71xbyeMWjW+ljFPkqgsctIaGYDvADjBOf+vjNsz805fCeCk8ssjBL4w9ZwRxEohM+K6l8oaq05buc5ZIAqjVg2Dtrx03QazroJR+tmdMwBwWnVllTWOeqQwlbb6LOLMaUYiyRe4GUKEKjnnrJKIxLtGi75iwqIWkZvYmEhy/M++M9jYWodrNzZVbD1ddqkPVaSTlgrnHPv7p7G7W17SYaWxGrTY3GYrOIza5Y/g3sfO4mVbWmSnNM7HadHjrRd14f5Dw3mHyBPKIWd78VIAtwK4OhWbf4gx9nIAn2WMHWWMHQFwHYAPVHKhKx1/hHrOCGKl0NFghM2ohVmnppKpRaDOoIXVoCnZOXOHlJnXZTfpMBOMlhxMko8pf2RBUqOg0aIvOnEvk9EsM84EPTkSG2utrHFNkwUWvYb+PuchN7HxgSMj6HMF8IFr1lRU3Iph0QPT5YmKoZkQJnwR7O1ZGuIMkEobnx+YQSSeu+/sq395EeF4Eh+9fn1Z3+sdl6+CVq0qzj37/OeBffvm3rZvn3Q7kRc5aY1PcM6ZiM1P/fcHzvnrOOdbUrffxDkfrsaCVyrUc0YQKwfGGHZ11WNdi5V25ReJ9npjyc6ZOxgtK0Zf0GDWIclR9LDZQsQTScwEYzmds0ZreWWNw1lmnAmEEzw/sbHWyhrVKoZX72zDpQonDNY6chIbk0mOr/71DNY3W3HdpuLSA4ulMxUOdL7MxMb9/ZJDpfT4gXK4oNeOSDyJF4Y8We8/PxXAfc8M4E17O7G6zNlsTVYD3nJhF35zcFh++uXevcAb3gA8/DAQDkvC7A1vkG4n8kJDs2oAzjlF6RPECuMLN2/HPW/dvdjLWLF0NJQ+iNodjJU1gFogBkQr3XcmjufI4Zw5LXq4/KU7dmJGXLNt4fEbTFrYjNoFztlMMAqdWgWTrrxS0Gry6Vdvxcdu2LDYy1hSiMTGI0MexOf1FQr+eHQMZyb8eO/Vayo+w7GjwQjGyp91duD8DKx6Dda3WBVaWfns7ZGEYq6+sy88eApatQofuGZt1vuL5d1XrIZaxfD1R2S6Z1ddBfzwh8ANNwDXXisJs5//XLqdyAtd7dcAkXgSsQSnQBCCWEHkKjkjqkN7vRHPnJM/5DUTdyiGdc3lJ7qJmV9KD6IW/TfOHP1djVY9EkkOdyhWUg/YiDuERqsees1CoSXi9Of3rswEoqg3ackprnEaLXo4zDp87k8n8fkHT8Ju0sFp0aPRqofTIv37LycnsLrRjJdvba34egxaNVrqDGXPOjvQP42d3Q1QV1hMFoPdrMO6Zgue7ZvGe+bpnSNDbjxwZBTvu3oNmsqc+yhorjPgzXs7cd8zA3jv1WvQ0SAjSfhlLwM2bQKefBK4804SZjIh56wGCETiAEDijCAIokq0Nxjhi8TTyYvF4A5GYTOWX55nNwnnTNmyxqnU/DZnjn6pcgdRj3hCWfvNBL0OE/pdcy+WZ4KlCUFiacEYww/+7gL826s2431Xr8X1W1rQ7TAhEI3juYEZ/PiZ8+hzBfDhl66vmtDpspvKcs48wRhOj/uxd4mEgWRyQa8dz52fmeNScs7x2T+ehN2swzsvX6Xo93v3lauhYgzfeOSsvCfs2wcMDwN6PfDtbwN//aui61mu0NV+DeAncUYQBFFV2uulXeHhmVBRUemcc6msUYFgiwazdIzpEodh50IkMTpyiCHh2k76IiWVcQ27Q9iQ53m9TgvuPzyCcCyRTrSU+vRqIwyEyM+Wdhu2tNuy3sc5RyzByx53UQxddhMeOV36nN3nU7PEdi+hMBDBBb0O/PjpAZwY9WFrh/SaP/aiC387O4W7btoEq8Kx/602I27e04GfHxjEe65ak3cTJt1j9stfAseOAe97H/DqVwP3308OWgHIOasBfOGUOKOeM4IgiKpQ6qwzfySOeJKjQYm0RnOFnDN//p4z4ZyVEqfPOceoO5x1xpmgx2kC53NDGmaCsZoJAyFKhzFWVWEGAN0OEyZ9EYSiuVMN87G/fxoaFcOOznplF6YAF6T7zqYASGErn/3jSXTajbjlwu6KfM87r1wNzoFvPlrAPdu/f7bH7M47gZ07AZ0OeOKJiqxrOUHirAYQzhlF6RMEQVQHkTQ4UqQ4c6dSB+sVKGs0atXQa1Syes5iiaTsQbsuvxS+UZdjw6+cskZ3MIZQLJG/rDGV2JjZdyb1nJE4I5RHJDaWWtp44PwMNrfVwaRbetdgLTYDuh2m9Lyz+w8P48SoFx+9bn3FRHBHgwmv392Bn+wfxLg3nPuBH/vYrEOmVgNf/zowNQV4sqdLErOQOKsBRM8ZRekTBEFUB6dFB71GVbRzlhZnCjhnjDE4zLqCaY3xRBJXffERfKPQTnaKKX8EDosuZ/iGVa+BXqMqadbZcHrGWe4QgvmzzjgX4SNU1kgoz+yss+LFWTSexOFBN/b0LJ0I/flc2GvH/v5phGMJfPHB09jSXoebtrVV9Hv+w5VrkEhyfPPRc/KfdNFFwB13AF/+MnD0aMXWthwgcVYDpHvOqKyRIAiiKjDGSpp15g6JYcrKuEANZh1mCoizw0NuDM2E8NTZKVnHdKXEWS4YY1KcfgnO2UieAdSCOoMWTosOfalZZ95wHIkkp7JGoiJ0p2edFT+I+uiIB5F4EnuWYBiI4IJeB2aCMdx1/zEMu0P4xA0bKz6ioMthwmt2tuO+Z85jwpfHPZvPf/wHYLMB73kPINPpX4mQOKsBRM8ZlTUSBEFUj/YGI4ZKdM6U6DkDpL6z6QJljY+eksIOjo14ZZU2TgWicJjzj2potOpLcs7kiDMA6HGY0Ze6WHYHlRW0BJFJvUkLq16DwRKcswNi+PQSDAMRXNgruXo/OzCIy9Y68ZK11RmM/p6r1iCWSOLbj/fJf5LTCXz2s8BjjwE//nHlFlfjkDirAcg5IwiCqD4lOWcpoWFTSJw1mAqXNYokuulAFOPewoJqyh8tOEev0aovqedsxBOGTqPKmQQp6HWa0Z/qOZtRWNASRCaMMXQ5TDhfkjibQbfDhCarMrPCKkFHgxGtNml9H6/iUPRepxmv2tGOHz11HlPFbOT8/d8DF1wAfPSjgNtdsfXVMiTOaoBAJA4Vk5rDCYIgiOrQXm+Eyx9BOCY/5U3JQBAg5ZzlEWcufwRHhjy4fF0jAODYSP5me845XP4InHnKGgEpTr+UtMYRdwjt9caCw6R7nGZM+CLwR+Lpss0GmnNGVIguu6noQdScczx3fgZ7upduvxkgic+/f0kv3n/1mpwjDCrFe65ag3A8gW8V456pVFI4yOQk8MlPVm5xNQyJsxrAF47DrNcUPNkRBEEQytFWQmLjTDAGs06tWFJag0kHXziOWMaQ2Uwef1Fyzd59hTRs9viIN+/x/JE4IvFk3p4zQHLOpgLROcNt5TDiDuUNAxGsEqEgrkA6jZJ6zohK0eUwYWgmhERSfp9TnyuAqUAUe5ZwSaPgjstW4cPXra/6913TZMG1G5vxu0PDxT1x924pIORrXwOef3729n37gM9/XtlF1iAkzmoAfyRO/WYEQRBVppRZZ+6QspHwIsEwV5z+I6cm4TDrcFGvAz0OE44VEGfpGWcyes44R8GSyvmMuMNozTPjTNCTEadPZY1EpemymxBNJDGWL/p9HgfOS8On99aAOFtMdnc3YMQTTpd0y+YTn5D+f8stQDI5O7R6717lF1ljkDirAfzhOPWbEQRBVBkx66yYvjN3MKZIjL7AnhJRM1kGUSeSHI+dnsTl6xqhUjFsbrPh+GgBcRaQShWd1gLiLOWsFRMKEkskMe4LFwwDAaRAEEByztzBKFRMSnEkiErQbU/F6RdR2nigfxr1Ji1WOS2VWtayYEOLFQBwcsxX3BNf+UppFtrJk8Cb3iQJMzG0eoVD4mwR+fmBQXznicJ1uoFonGacEQRBVJkWmwEqVqRzFowqKs4aUs5ZNgfrhWEPZoIxXLle6jfb1FaHgekgvOGFQk7gSjtnhcsageIGUY95wuAcaJdR1mjUqdFqM6BvKoDpQBQ2o7bi8d/EyqUrPYhafpz+gfMz2NPdQO/LAmxqrQMAnCiwMZSVT38a0GqBX/wCuPNOEmYpSJwtEuFYAv/+hxP4+r4zBaOPfeE4LCTOCIIgqopWrUJLnaEE50zJskbpWNnKGh89NQnGgMvWzoozIH/fmQj5KJjWaJEEVjHibNQjlYzJcc6AVJy+KwB3MEZhIERFaas3QK1isgdRT/kjODcZwO4lHgayFGi06uEw63BytEjnDAAefzx1kEbgG9+QShsJEmeLxYPHxuAOxjAViGKiwMnPH4nDSmWNBEEQVafYWWfuUAz1RgXLGlNCbyqLc/bI6Qls66hPC7jNMsSZ6DmzFxBDTqt0v3Da5CB3xpmgJxWnPxOMUhgIUVE0ahXa6404L7Os8TnqN5MNYwwbWq04MVakcyZ6zN72Nim58Vvfkr4mgUbibLH4ybMD0Kmll79Q9HEgQs4ZQRDEYlDMrLNkksOtsNAQLtzMPHE2E4ji8KAbV6Yi9AGgyWqA06LPGwoy5Y/AZtQWTJM06TQw69RFOWei/LNNRiAIICU2zgRj6HcFKAyEqDjdDpPsQdQHzs9Ap1ZVPZq+VtnYUodTY77i0l3375d6zG6/ffa2n/9cun2FQ+JsEehzBfD0uWn8/WW9AIBjwwWij8PUc0YQBLEYtDcYMeYNy4rg9kXiSHIo2nOm06hg1WsW9Jw9fsaFJAeuWN845/bNbXV5Q0FcgWjBGH1Bo1VfVCDIiDuEBpMWRp28mZwisXHEE1a0FJQgstFplz+I+kD/NLZ12GCg+bKy2NBah0g8if5iZsl97GNSj9mePYDBADz2mPT1xz5WuYXWCCTOFoGf7h+AWsVw+yU9BaOPk0kOf5Si9AmCIBaD9noTEkmOcRkR3J5UJLxNwbJGQBrOPL/n7NFTk6g3abG9o37O7Zva6vDiuA+RePbB2S5fBM4CMfoCp0UPVxHOmTTjTJ5rBgC9TlP634XKLAmiXLrtJriDMXhCuQNzACkT4IVhD3ZTSaNsNrZKiY0lhYLo9dLMs8ceU3hVtQuJsyoTjSfxq+eGcM2GJjTVGbC5zYZjo7nLGoOxBDgHRekTBEEsAsXMOqvUMGW7WTfHOUsmOR49PYnL1jZCPS9JbnNbHeJJjhfH/VmPNVVR50xejL6g026CWL6SbiNBZKPbIW0GFCptPDLkQSzBsZfCQGSzpskCjYrhZLF9Z4LLLwcOHgS8JT5/mUHirMr85cQ4XP4o3nxBFwBpl3NwOpRzJycQiQMAlTUSBEEsAsXMOnOnPseVFhr2ec7Z8VEvXP7InH4zgYi1zhUKMuWPFExqFDRa9UX1nI14QunXSw56jTotfikQhKg0nak4/T5X/jj9A+enAUjDlQl56DVqrG604EQpiY2AJM6SSeBvf1N2YTUKibMq85P9g2izGXB56qRaKF3LF5bEGQWCEARBVJ+0OJPhnLlTAkrp/qkGk27OEOpHT08CQPo8kkmPwwyzTp01aCqWSGImGJPvnFn08IRiOUskM/GGY/CF42iTMeNs/noBUCAIUXFWOS2wm3X4zP+dwJmJ3CLiQP8M1jRZaLxDkWxstZZW1ghIZY0aDfDoo8ouqkYhcVZFBqeDePzFSdy8pzNdirK5TUoCytXA7U85ZxSlTxAEUX2MOjUcZh2G5DhnwUo5Z1pMBWYdrEdOTWBLe116UHQmKhXDxtbsoSAi8dEh0zlzpo4/JSNOf9Rd3IwzwSqnEGd0IUxUFqNOjfvuuBDxJMcbvvk0jg4v3MBIJjmeSw2fJopjY2sdRj3h9CZVUZjNUjAI9Z0BIHFWVX5+YBAA8Ia9nenbGq16NFn1OeP0/WnnjHYVCYIgFoP2BmNRPWdKzjkDpECQcCyJUDQBTyiG5wfcuHJdU87Hb2qrw/ERL5LzEibFzDKnTEegMSXi5JQ2ihlnrTJj9AUisZFcCqIabGytwy/efTGMWjXefO/TeLZves79Zyb98IRi2NND/WbFsiFVUl1yaeMVV0gx+sEiEh+XKStenPkjcQwUE/1ZIvFEEj8/MIgr1jUuqMnfnDqR5lofAJj1FOdKEASxGLTZjBieKXyecAdjsOo10KiVPbWKQdTTwSiePONCIskXROhnsrmtDoFoAgPzgg+E++bM4rhlQzhzLhmhIEK8FtNzBgCv3N6GD127DmsaLUU9jyBKpddpxi/vvBhNdXrc+p1nsO/kRPq+A/3S8GlyzoqnrMRGQOo7i8WAZ55RcFW1yYoXZ2+69yn842+OVPz7PHJqEuPeSDoIJJNNbXV4ccKPcGxhXX+6rJGcM4IgiEVBOGec55915gnFUG9W/rNaxMzPBKJ49NQkrAYNdnbW53z8plapXH7+mBYhshwyXSoh4uQ6ZxoVy1pqmQ+HRY8PXLsWqnmpkwRRSVptRvz8XRdjbbMF7/jhAfz+8AgAab6Z06JPJzsS8mm06OEw60pPbLz0UoAxKm0EiTPs6bbjufMziMaLmGpeAj/dP4BGqx5Xb1hYirK5zYZEkuP0+EIr2B+WehgoSp8gCGJxaK83IhxLLhgEPZ+ZYBT1RuXL84Q4mwpEUxH6zrzu3NpmKdb6+LwxLaJ3THbPWSo4RI44G/WE0WIzLIj2J4ilisOix/++4yLs6mrA+396ED95dgAHUv1mjNH7uFgYk/pdSy5rtNmAHTtInIHEGS7stSMcS+Jojp4vJRjzhPHXkxO4eXcHtFlOqCKxMdswaiprJAiCWFzkzjpzB2MVmdcl+rGePjeFMW84b78ZABi0aqxpsmRxzqLQqVWok7nZp9eoYTNqZZc1FhsGQhCLTZ1Bix/83QW4Yl0j/vHXL2BgOog9NHy6ZDa2WnF63Id4okTD4/LLgaeeAqIlhIosI1a8OBNNn/vnNYUqyS8ODCLJgTdmBIFk0tlgglWvyRoK4o8koFOroNeQOCMIglgM5M46cwejisfoA7M9Z/cfHAaAvP1mgk1Zepmn/BE4LLqiXAGnRSdrEPWIu7gZZwSxVDDq1Lj31j24cVsrGAMuXu1Y7CXVLBta6hCJJ9E/lX+WXE4uvxwIhYADB5RdWI2x4sVZo1WPVY3mBYk9SpFMcvzswCAuXeNAd2qey3xUKoaNbXU5nLMYlTQSBEEsIh1ynbNQTPGkRgCoM2qhYsCIJ4wNLVY01xWeJba5zYYJX2ROSaIrJc6KQc4g6kSSY8wTRqutuBlnBLFU0GlU+MqbduLRj16VHnFEFM/GVGLj8VJLGy+7TPr/Ci9tXPHiDJBKG5/tn0Yimb/ZuxSeOOPC0EwIb9q7MAgkk81tdTg56luwBn84TgOoCYIgFhGbUQuzTp131lmfKwBPKJbuD1MStYqlHbkr1+cvaRRsahXl8rMVGVOBKBzm4gI7Gq2GdAR/LiZ9EcSTnMoaiZpGrWLooiCQsljdZIZGxXCy1MTGxkZg0yYSZ4u9gKXABb12+MJxnBorUenn4SfPDqDBpMV1m5vzPm5zmw2hWAJ9rrlWsD9C4owgCGIxYYyhvcGYnuU1H284hjt+sB/1Ri1ev7ujImtoSPWyXbGucEkjIJU1ApgzjHrKH4VTZhiIwGnRFXTORjylxegTBLG80GukfteS4/QBqbTxiSeAxMIE85UCiTMAe0XfWb+ypY2Tvgj+fHwcr9/dUbBnbDYUZG7fGYkzgiCIxae9Pvsg6kSS44M/PYTzU0F8/Zbd6LRXZufdYdbDotdgt8z5SzajFh0NxnS5POccLn8kncAol0arHv5IHKFo7gslIVrJOSMIYmNrHU6WY3Zcfjng8wGHDyu3qBqjoDhjjHUyxvYxxk4wxo4xxj6Quv0LjLGTjLEjjLHfMMbqK77aCtHRYEJ7vVHxvrP7Dw0jnuR4Y4GSRgBY02SBTq1a0MDtj8Sp54wgCGKREbPO5vOFB0/hrycncNcrN1c0SOD1uzvwwWvXQqeRv6e6ua0OJ1LnFH8kjkg8WXzPmaXwIOpZcUY9ZwSx0tnQYsWoJwx3sMTEReo7k+WcxQF8hHO+EcBFAN7DGNsE4M8AtnDOtwE4DeAfK7fMynNBrx3P9E0XHDJaDA8dG8fG1jqsabIUfKxWrcK6loXRx9RzRhAEsfi015vgDsYQSI03AaQNuHsePYu3XNiFWy/qruj3f8PeTtxx2aqinrOp1Ya+qQACkfjsjLMie87EIOqJPKWNI+4wrHoNrAblw1AIgqgtZkNBSixt7OgAVq0icZYPzvko5/z51L99AE4AaOecP8Q5F2eppwFUptC+SuztscPljyzo+SqV6UAUB85P46Wb8veaZbK51YZjI545AtEfSZBzRhAEscjMn3V2ZMiNj/3yCC7otePumzYv5tJysrmtDpwDJ8e8mApI4kqILbkI5yxf3xnNOCMIQiDE2clSExsBqbTxsceAZInz0v7/9u49OK7yvOP479HV1l2y5Ytsy5YcS5ZNjK2RDSEUIsckhCSQkNQhoWlnkhbCJQNtEqAloZ3p8EdpC4VJSYcmzWVCYpyEZKYJpLGLBpMQwMY2EFv4im/YlmRHsmwZW7L27R9n1xKuZO2uzu6ePfp+ZnZ29+yec959LL/Ss+d9nzfLJTTnzMzmSVom6eULXvqCpGd9alNGrKjzd97Zc292KuKkDyWSnM0qU/fpAR05ceb8tlNnB7hyBgAZNnyts87eM7rlB69qakmhvnVzc0JDDdNp8azYXObe8xUXpyRYTXJa6cWHNUYiTgeOn2ZIIwBJ3jzVqSUF4y8Kcvy41N7uX8OySNy/UcysRNLPJN3tnOsdtv1+eUMfnxxlv1vMbJOZberq6hpve1NmfnWxphQX6GWf5p2t235UM8snnS/0EY+hoiBeeAcGIzozECE5A4AMiyVne4/16dYfvqoT7wzoP/+8RVMSrH6YTjPKJqmyKF/bD/eeT64SrdZYVVwgs/9/5SwScfrl64d17aMbtKPjpJbOia9QCYDwG3dRkKuv9u4n6NDGuJIzM8uXl5g96Zx7etj2v5D0MUk3u1EmaznnnnDOtTjnWqqr4ysBnAlmphV1Vb4UBTkzMKgNO49pVdN0mVnc+y2cUSazoYqNsbkNJGcAkFnTSguVn2t6+Dc7tOVAjx5efen5cvVBZWZaXFOubYd7z885S3QdtrzcHFUVFagrmtxFIk7PvHFEH3n0Bd35oy0ajDg99tllunPle3xvP4DstHBGqXZ0nNS5wSSHJdbVSbNmkZyNxrzs4juS2p1zDw/bfq2keyVd75w7nbomps/yeVU61P3OqGvZxOvFPcf0zsCgViUwpFGSigvzVDe1+HzFxlOx5Iw5ZwCQUTk5ppnlk9XXP6i7PrhAH3nvzEw3KS6Lasq04+hJHe09o/LJ+UkNwawuLVRn71k9+8YRXffYC7r9yc06F4no0ZuW6jd/fbWuv7RGuTnxfxEJINyaZpap/1wk+ToOZkPzznws1Jct4vmr//2SPi/pDTPbGt32d5Iek1QoaV306tBLzrkvpaKR6TJ83tkNS2clfZx12ztUUpiny+urEt53cU25Nu/vljQsOePKGQBk3Kqm6Tp5ZkB3fXBBppsSt8U1ZeofjOiVt/6YcBn9mOrSQq1v79D69g7VVxfr0ZuW6mNLSMgAjCxWFKT96EktmF6a3EGuukr68Y+lvXul+fN9bF3wjflXv3Put5JG6oGf8b85mdU0s0ylhXl6+a3kk7NIxGl9e6eubqwec+HpkSyuKdN/v3ZYPaf7deoMyRkABMUDH1+U6SYkbFH0j6Tdnae0Yl7iXxhK0vvmT9GxU/269ap6fZyrZADGML+6RPm5pvYjvbr+0prkDnLVVd79hg0TLjkLZompDMnNMbXMqxzXvLPXDvWo6+RZXdOU2JDGmFhRkO2He3WSYY0AgHGory7RpHzvV32yV85u/8B79Oxdf6JPLJtFYgZgTAV5OZpfXaI3k63Y+NBD0tGj0tSp0vPPe9va2rztEwDJ2QWW11Vpd+cpHR+lbPBY1m3vUG6OqbVxWlL7x77l3Ha4l4IgAIBxyc0xNc7wfq8kWqkRAJLVNLNM7cmudbZ8ufSZz0gLF3pXztrapNWrve0TAMnZBS47P++sO6n9123v0Ip5VSovyk9q/yklhZpRNknbDp9gWCMAYNxiIzKSvXIGAIlqmlmqo71n1N3Xn/jOra3S2rXSli3SW29JN97oPW9t9b+hAURydoH3zqpQYV5OUkMb9x3r067OU7omwSqNF1pcU6Zth3up1ggAGLeh5IwrZwDSY6goSJJDG1tbpdtu8x4XFw+tfTYBkJxdoCAvR8tqK/TKvuMJ77u+vUOSfEnO9nSdOr+uTHEByRkAIDmXzq6QJM2OLqQNAKm2MDqcOumhjW1t0ve+J11/vfT229LXvuZf4wKO5GwEK+qmeAU5zgwktN+67R1aOKNUc6qKxnX+RTXlijhp8/5uFRXkMgEbAJC0S2aV65dfvlJXN1RnuikAJojq0kJNLSlMrihIbI7Z2rXSL34hLVkiPfKI9PTTvrcziEjORnBZXZUiTnp1f/zzzrr7+rVx3x/HfdVMGhqC8trBE8w3AwCM2yWzypXDF30A0qhpZmlywxo3bhyaY2YmrVkj5eRIDz7ofyMDiORsBMtqK5SXYwnNO3vuzU5F3PiHNErS7MrJKp+cr/7BCPPNAAAAkHWaZpZpZ8cpnRuMJLbjPfe8u/hHU5N0333S5s3Sc8/528gAIjkbQVFBni6ZVZ5Qcra+vUPTywp1SU35uM9vZudL6pdy5QwAAABZpmlmqfrPRfTWsb7xH+z++6X6eq9IyNnklrvKFiRno7isrkqvHerRmYHBMd97ZmBQz+/s0qqm6b4NG4kNbSwmOQMAAECWiRUF2Z7sYtTDTZ4sPf64tHNn6BejJjkbxYq6Kg0MOm092DPme3+/57hO9w9qlQ9DGmMWRZMz5pwBAAAg28yvLlF+riVfsfFCH/6wtzj1gw9Ku3b5c8wAIjkbRcvcKpkprqGN69o7VFyQqyvmT/Ht/IujwyOZcwYAAIBsU5CXo4UzyvT6oR7/Dvrww1JhoXTHHZJz/h03QEjORlFelK/G6aVjJmeRiNP67R26urFahXm5vp1/fnWxigpyVVlU4NsxAQAAgHRprq3Qawd7NBjxKZGqqfGKhaxbJz311ND2trbQDHckObuIy+qq9Or+bg1cpMrM62+fUOfJs1rV5N+QRknKy83Rj/7qct16db2vxwUAAADSYVltpfr6B7XjqE9DGyXpzjulvDzp9tulnp6hddGWL/fvHBlEcnYRK+qm6J2BQW07PPpExvXbO5SbY1q5cJrv5186p0LTSif5flwAAAAg1ZprKyVJmw/Ev3bwmFatkr75Tam7W7rmmqEFq4eX389iTGi6iOV13g/UHU9uVtPMMtVNLdK8qcWaN6VY86YWa2bZJK3b3qGWuZWqYPghAAAAcN6cqsmaWlKgLQd69GeXz/XvwLfe6lVv3LRJ+vrXQ5OYSSRnFzWtdJK+8bFFemnvce0/3qcXdnXp7LmhIY4FeTnqPxfR1z/alMFWAgAAAMFjZlo6p1Jb/LxyJnlDGffs8R4//ri0cmVoEjSSszF88co6ffHKOkle8Y+jvWe073if9h07rf3H+3S8r183Ns/OcCsBAACA4GmeW6H17R3q7utXZbEPI81ic8weeEC6917pG98I1dBGkrME5OSYaiomq6Zisq6Yn+nWAAAAAMEWm3e25WC3Vi70oYDexo1eIlZf7yVnRUXe840bSc4AAAAAYDRLZpcrN8e05UCPP8nZPfd495GINGmStGOHdMstoUjMJKo1AgAAAEiRooI8LZxR6m/FRknKyZEWLPCSsxAhOQMAAACQMs21ldp6wMfFqGMaG6WdO/09ZoaRnAEAAABImea5FerrH9TODh8Xo5a85GzvXqm/39/jZhDJGQAAAICUOV8U5ECPvwduaJAGB70ELSRIzgAAAACkTG1VkaqKC/yfd9bY6N2HaN4ZyRkAAACAlDEzNddWpC45C9G8M5IzAAAAACm1rLZSe7v61HPax/lhFRXStGlcOQMAAACAeC2rrZAkbTnY4++BGxtJzgAAAAAgXpfOrlCOSVv2+zy0saGB5AwAAAAA4lVcmKeFM8q02e+KjY2NUleX1O1z0pchJGcAAAAAUq55boW2HvR5MeqQFQUhOQMAAACQcsvmVOrU2XPa3XnKv4OGrJw+yRkAAACAlGue6y1G7WtJ/bo6KTeX5AwAAAAA4jVvSnQxaj+LghQUSPX1Eyc5M7M5ZtZmZu1mts3M7opu/9Po84iZtaS+qQAAAACylZlp2ZwULUY9UZIzSeckfcU51yTpckl3mNkiSX+QdKOkDSlsHwAAAICQWFZboT1dfTpxesC/gzY2Srt2SZGIf8fMkDGTM+fcEefc5ujjk5LaJc1yzrU758KRogIAAABIueZab97ZloM+Xj1rbJTOnpUOHPDvmBmS0JwzM5snaZmkl1PSGgAAAAChtWSOtxi1r+udNTR49yEY2hh3cmZmJZJ+Julu51xvAvvdYmabzGxTV1dXMm0EAAAAEAIlhXlqmF6qLX7OOwtROf24kjMzy5eXmD3pnHs6kRM4555wzrU451qqq6uTaSMAAACAkGieW6mtB3sU8Wsx6unTpbKyUCxEHU+1RpP0HUntzrmHU98kAAAAAGHVXFupk2fOaXeXT4tRm4WmYmM8V87eL+nzklaa2dbo7Toz+6SZHZL0Pkm/MrP/SWlLAQAAAGS95toKSfJ3vbOQJGd5Y73BOfdbSTbKyz/3tzkAAAAAwqxuarEqivK15UCPblpR689BGxqkH/5Q6uuTiov9OWYGJFStEQAAAADGIyWLUceKguza5d8xM4DkDAAAAEBaNddWalfnKZ14x6fFqGPJWZYXBSE5AwAAAJBWzXO9xai3Huzx54ALFnj3WT7vjOQMAAAAQFotmV2u5fMqRy1skbCiImnOnKxPzsYsCAIAAAAAfiqdlK+ffOkKfw8agoqNXDkDAAAAkP1iyZnzaXHrDCA5AwAAAJD9Ghulkyeljo5MtyRpJGcAAAAAsl+sYmMWD20kOQMAAACQ/RoavHuSMwAAAADIoNpaadIkkjMAAAAAyKicHG+9syxeiJrkDAAAAEA4ZHk5fZIzAAAAAOHQ0CDt3Sv192e6JUkhOQMAAAAQDo2N0uCgl6BlIZIzAAAAAOGQ5eX0Sc4AAAAAhEMsOcvSoiAkZwAAAADCoaJCmjaNK2cAAAAAkHENDSRnAAAAAJBxWVxOn+QMAAAAQHg0NkpdXVJ3d6ZbkjCSMwAAAADh8NBD0tmz3uNYUZC2Nm97FsjLdAMAAAAAwBfLl0uf+pT3eMcO6fRpafVqae3azLYrTlw5AwAAABAOra3SmjXe4yeeGErMWlsz2644kZwBAAAACI8PfUiqqpJ+9zvpttuyJjGTSM4AAAAAhElbmxSJSHffLX3rW97zLEFyBgAAACAc2tq8oYxPPy098og3pHH16qxJ0EjOAAAAAITDxo3vnmPW2uo937gxs+2Kkznn0naylpYWt2nTprSdDwAAAACCxMxedc61jPQaV84AAAAAIABIzgAAAAAgAEjOAAAAACAASM4AAAAAIABIzgAAAAAgAEjOAAAAACAASM4AAAAAIABIzgAAAAAgANK6CLWZdUnan7YTxm+qpGOZbsQEQ8zTj5hnBnFPP2KefsQ8/Yh5+hHz9AtrzOc656pHeiGtyVlQmdmm0VbpRmoQ8/Qj5plB3NOPmKcfMU8/Yp5+xDz9JmLMGdYIAAAAAAFAcgYAAAAAAUBy5nki0w2YgIh5+hHzzCDu6UfM04+Ypx8xTz9inn4TLubMOQMAAACAAODKGQAAAAAEQFYlZ2Z2rZntMLPdZnbfsO1PmdnW6G2fmW0dZf8qM1tnZrui95XR7TcP23+rmUXMbOkI+z8ZPf8fzOy/zCw/ut3M7LFou143s+bURCAzAhz3hWb2ezM7a2ZfTc2nz4wAx/zm6M/462b2opldmpoIpF+AY35DNN5bzWyTmV2ZmgikXwpjnm9m3zezN8ys3cz+dpT968zs5ej+T5lZQXR7aPv0AMc8tP25FOi406enP+b06WmO+bDXl5vZoJl92seP7T/nXFbcJOVK2iOpXlKBpNckLRrhff8q6YFRjvGQpPuij++T9E8jvOe9kvaOsv91kix6+7Gk24Ztfza6/XJJL2c6XhMk7tMkLZf0oKSvZjpWEyTmV0iqjD7+SFh+1gMe8xINDUFfIunNTMcr6DGX9DlJa6KPiyTtkzRvhP3XSrop+vg/wt6nBzzmoezPsyDu9Onpjzl9eppjPqx9z0l6RtKnMx2vi92y6crZCkm7nXN7nXP9ktZIumH4G8zMJK2W94fNSG6Q9P3o4+9L+sQI7/nsaPs7555xUZJekTR72HF/EH3pJUkVZjYz7k8WbIGNu3Ou0zm3UdJAQp8o+IIc8xedc93Rt72kof8D2S7IMT8V3SZJxZLCMlE4lTF3korNLE/SZEn9knpHOPZKST8dYf+w9umBjXmI+3Mp2HGnT09/zOnT09+nS9KXJf1MUmeCnyvtsik5myXp4LDnh6LbhvsTSR3OuV2jHGO6c+6IJEXvp43wns9o9B8aSd7lVUmfl/TrBNqWrYIc97DKlph/Ud7VhTAIdMzN7JNm9qakX0n6wsX2zyKpjPlPJfVJOiLpgKR/cc798YJ9p0jqcc6dG+H8Ye3TgxzzMMuWuNOnv1vKYk6fnt6Ym9ksSZ+UdzUt8LIpObMRtl34bcOo30rHdQKzyySdds79YYy3Pi5pg3PuhQTalq2CHPewCnzMzaxV3i/ye5NtQ8AEOubOuZ875xbK+xbwH5NtQ8CkMuYrJA1KqpFUJ+krZlafwPnD2qcHOeZhFvi406cnZNwxp09P2Hhj/m+S7nXODSZx7rTLpuTskKQ5w57PlnQ49iR6qfNGSU8N2/bd6OTDZ6KbOmJDU6L3F17avEljf6v995KqJf1NvG3LckGOe1gFOuZmtkTStyXd4Jw7nsDnCrJAxzzGObdB0nwzmxrPhwq4VMb8c5J+7ZwbcM51SvqdpJYLzn9M3nDFvBHOH9Y+PcgxD7NAx50+/fy2tP+s06enLeYtktaY2T5Jn5b0uJl9YhyfNbVcACa+xXOTlCdpr7yMOTbRcPGw16+V9PwYx/hnvXui4UPDXsuR94NVf5H9/1LSi5ImX7D9o3r35PFXMh2viRD3Ya//g0I0gTzIMZdUK2m3pCsyHacJFPP3aGjyeLOkt2PPs/mWypjL+/b/u9E+uVjSdklLRtj/J3r35PHbo49D2acHOebDXg9Vfx70uIs+PRMxp09Pc8wveM/3FPCCIBlvQIL/8NdJ2imvGsz9IwT7S2PsP0XS/0raFb2vGvbaByS9NMb+56Ln3hq9PRDdbpL+PfraG5JaMh2rCRL3GfL+4O2V1BN9XJbpeIU85t+W1D1s+6ZMx2oCxPxeSdui234v6cpMxyroMZdXDe0n0bhtl/S1Ufavl1d8ZXf0/YXR7aHt0wMc89D25wGPO316+mNOn57mmI/QjkAnZ7HMHQAAAACQQdk05wwAAAAAQovkDAAAAAACgOQMAAAAAAKA5AwAAAAAAoDkDAAAAAACgOQMAAAAAAKA5AwAAAAAAoDkDAAAAAAC4P8ArEVgIV2WyVsAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACrnklEQVR4nOydd3hj5Zn271e9S7Yk9z69eSoMJcAACSSBhEBCkl1CSCFt08tu2iaQL8mmJ6RslvQCbLIpQAgQQoCBUKYwA9O77XHvstW73u+PoyPLtspRsyX7+V3XXAwqR681ss553vt+7odxzkEQBEEQBEEQBEEsLrLFXgBBEARBEARBEARBxRlBEARBEARBEERZQMUZQRAEQRAEQRBEGUDFGUEQBEEQBEEQRBlAxRlBEARBEARBEEQZQMUZQRAEQRAEQRBEGUDFGUEQBEEQBEEQRBlAxRlBEESFwhjzJP2JMcb8Sf9/y2KvLx8YY+cZY69c7HVkgjH2NGPs9hIdezVj7C+MsXHGmIMx9nfG2Jqk+xlj7CuMsUHGmDO+lg1z1hZI+hycnnP8qxljpxhjPsbYbsZY65xjf4MxNhn/803GGCvFz0kQBEGkhoozgiCICoVzbhD/AOgD8Lqk2+5b7PXNhTGmWAqvUWIsAB4CsAZALYD9AP6SdP/NAN4F4DIA1QD2ALhnzjE+lPQ5SC7sbADuB/CF+HMPAPi/pOe9F8AbAGwG0AngegDvK9LPRRAEQUiAijOCIIglBmNMxhj7DGOsK66A/IExVh2/r40xxhlj72SM9TPGphhj72eMXcAYO8IYm2aM/SjpWO9gjD3PGPthXKk5xRi7Oul+M2PsF4yx4bia8xXGmHzOc7/HGHMAuJMxtoIx9lR8XROMsfsYY5b44+8B0ALgr3HV5z8YY7sYYwNzfr6EusYYu5Mx9ifG2L2MMReAd2RZ00rG2DPxn2WCMZZcnCS/hiZ+zMn4e/IiY6yWMfZVCIXRj+Jr/FH88WsZY/+Iq12nGWNvTjrWrxljd8fvd8dfvzXV63LO93POf8E5d3DOwwC+B2ANY8waf0g7gOc4592c8yiAewGsl/TBAG4CcJxz/kfOeQDAnQA2M8bWxu+/DcB3OOcDnPNBAN8B8A6JxyYIgiCKABVnBEEQS4+PQFBArgDQAGAKwH/PecxOAKsAvAXAXQA+D+CVADYAeDNj7Io5j+0GYANwB4D7xWIPwG8ARACsBLAVwDUAbk/x3BoAXwXAAHwtvq51AJohFAngnN+K2QrgNyX+vDcA+BME1em+LGv6MoDHAVQBaALwwzTHvA2AOb4+K4D3A/Bzzj8P4FnMqFMfYozpAfwDwP/Gf85/AfDjZLshgFvir20DcCi+TilcDmCEcz4Z///fA1jJBPujMr7Ox+Y852vxwvN5xtiupNs3ADgs/g/n3AugK377vPvjf0/+GQiCIIgSQ8UZQRDE0uN9AD4fV0CCEIqfN82x/H2Zcx7gnD8OwAvgd5zzsbhi8iyEokZkDMBdnPMw5/z/AJwGcB1jrBbAawB8jHPu5ZyPQVB63pr03CHO+Q855xHOuZ9zfo5z/g/OeZBzPg7guxCKyELYwzl/kHMeA2DKsqYwgFYADfGf/7k0xwxDKMpWcs6jnPODnHNXmsdeD+A85/xX8Z/zJQB/BvCmpMc8wjn/Z/zf4/MALmaMNWf6oRhjTRCK6k8k3TwM4d/nNAA/BJvjx5Pu/zSADgCNAH4KQYVcEb/PAMA552WcAIxp7ncCMFDfGUEQxMJR6d58giAIYj6tAB5gjMWSbotC6GESGU36uz/F/xuS/n+Qc86T/r8XgvLVCkAJYDjp+l0GoD/pscl/B2OsBsAPIFgDjfHHT0n6qdKT/BrZ1vQfEBSs/YyxKQg2vl+mOOY9EFSz38dtl/dCKHjDKR7bCmAnY2w66TYFZveCJdbIOffEbZ4Nc9aegDFmh6Dw/Zhz/ruku+4AcEF8bSMA3gbgKcbYBs65j3O+L+mxv2GM/QuA10JQCD0QitdkTADc8b/Pvd8EwDPn354gCIIoIaScEQRBLD36AbyGc25J+qOJq2L50DhHPWkBMBR/nSAAW9LrmDjnyVa4uRf2X4vf1sk5N0EoLliGx3sB6MT/ifeO2ec8Jvk5GdfEOR/hnL+Hc94AQWH8MWNs5dwfOK4Sfolzvh7AJRDUsbenWWM/gGfmvN8GzvkHkh6TUMkYYwYIgRxDc183fn8VhMLsIc75V+fcvRnA/8VV0Qjn/NcQLJrp+s44Zt7f4/Hni6+jB7Aifvu8++N/Pw6CIAhiwaDijCAIYulxN4CviqETjDE7Y+yGAo5XA+AjjDElY+xmCL1ij3LOhyEUEd9hjJniQSQr5vSrzcUIQaGZZow1Avj3OfePQrDliZwBoGGMXRfvsfpPAOp0B8+2JsbYzXG7ICAodhyCqjgLxtiVjLFN8WLQBcHmKD5u7hofBrCaMXZr/D1SMiFgZV3SY17LGHsFY0wFQbnbxzmfp5oxxkwA/g7gec75Z1L8iC8CuDkeTiJjjN0KQSk8xxizMMaujYeZKJgwTuHy+PEA4AEAGxljb2SMaQB8EcARzvmp+P2/BfAJxlgjY6wBwCcB/DrV+0wQBEGUBirOCIIglh7fhxDH/jhjzA1gL4RgjnzZByE8ZAJCqMebkgIq3g5ABeAEhGLnTwDqMxzrSwC2QehnegRCtHsyXwPwn/GExE9xzp0A/g3AzwEMQlDSBpCZTGu6AMA+xpgHwnv0Uc55T4pj1MWf5wJwEsAzEKyNgPD+vokJSZc/4Jy7IYSOvBWCGjYC4BuYXUT+LwRLogPAdggBIam4Mb7Gd7LZc+xa4vd/A0JQxyEA0xD6zd7IOZ+GUKR9BcA4hH+rDwN4A+f8NADEe/zeCOHfcArCZyK5P/AnAP4K4CiAYxD+fX6SZp0EQRBECWBkJScIgiDSwRh7B4DbOeevWOy1VCqMsV8DGOCc/+dir4UgCIIob0g5IwiCIAiCIAiCKAOoOCMIgiAIgiAIgigDyNZIEARBEARBEARRBpByRhAEQRAEQRAEUQZQcUYQBEEQBEEQBFEGKBbyxWw2G29ra1vIlyQIgiAIgiAIgigbDh48OME5t6e6b0GLs7a2Nhw4cGAhX5IgCIIgCIIgCKJsYIz1pruPbI0EQRAEQRAEQRBlABVnBEEQBEEQBEEQZQAVZwRBEARBEARBEGXAgvacEQRBEARBEES5EA6HMTAwgEAgsNhLIZYgGo0GTU1NUCqVkp9DxRlBEARBEASxLBkYGIDRaERbWxsYY4u9HGIJwTnH5OQkBgYG0N7eLvl5ZGskCIIgCIIgliWBQABWq5UKM6LoMMZgtVpzVmWpOCMIgiAIgiCWLVSYEaUin88WFWcEQRAEQRAEsUh89atfxYYNG9DZ2YktW7Zg3759AIDbb78dJ06cKMprtLW1YWJiIuNj/uu//ivn4/7617/Ghz70oVm3/epXv8KWLVuwZcsWqFQqbNq0CVu2bMFnPvOZnI+/ENx1113w+XyLvYwE1HNGEARBEARBEIvAnj178PDDD+Oll16CWq3GxMQEQqEQAODnP//5gq7lv/7rv/C5z32u4OO8853vxDvf+U4AQlG4e/du2Gy2go+bL5xzcM4hk6XWpO666y687W1vg06nk3zMSCQChaI0ZVRW5Ywx1swY280YO8kYO84Y+2jSfR9mjJ2O3/7NkqyQKDqRaAxPnRpFLMYXeykEQRAEQRDLluHhYdhsNqjVagCAzWZDQ0MDAGDXrl04cOAAAMBgMODTn/40tm/fjle+8pXYv38/du3ahY6ODjz00EMA5qtY119/PZ5++ul5r/mGN7wB27dvx4YNG/DTn/4UAPCZz3wGfr8fW7ZswS233AIAuPfee3HhhRdiy5YteN/73odoNApAUMZWr16NK664As8//7zkn/Vb3/oWLrjgAnR2duKOO+4AAJw/fx5r167F7bffjo0bN+KWW27BE088gUsvvRSrVq3C/v37AQB33nknbr31Vlx11VVYtWoVfvazn2U97rp16/Bv//Zv2LZtG/r7+/GBD3wAO3bswIYNGxKP+8EPfoChoSFceeWVuPLKKxPvtcif/vQnvOMd7wAAvOMd78AnPvEJXHnllfj0pz+Nrq4uvPrVr8b27dtx2WWX4dSpU5Lfi4yI1WS6PwDqAWyL/90I4AyA9QCuBPAEAHX8vppsx9q+fTsnFp/v/eM0b/30w/z5c+OLvRSCIAiCIIhF48SJE4v6+m63m2/evJmvWrWKf+ADH+BPP/104r4rrriCv/jii5xzzgHwRx99lHPO+Rve8Ab+qle9iodCIX7o0CG+efNmzjnnv/rVr/gHP/jBxPOvu+46vnv3bs45562trXx8XLjum5yc5Jxz7vP5+IYNG/jExATnnHO9Xp947okTJ/j111/PQ6EQ55zzD3zgA/w3v/kNHxoa4s3NzXxsbIwHg0F+ySWXzHrNuYiv+/e//52/5z3v4bFYjEejUX7dddfxZ555hvf09HC5XM6PHDnCo9Eo37ZtG3/nO9/JY7EYf/DBB/kNN9zAOef8jjvu4J2dndzn8/Hx8XHe1NTEBwcHMx6XMcb37NmTWIv4c0ciEX7FFVfww4cPz3tv5r4Pf/zjH/ltt93GOef8tttu49dddx2PRCKcc86vuuoqfubMGc4553v37uVXXnllyvcg1WcMwAGepl7KqsdxzocBDMf/7maMnQTQCOA9AL7OOQ/G7xsrTrlIlJJzYx78eHcXAKBrzINLViyezEwQBEEQBFEufOmvx3FiyFXUY65vMOGO121Ie7/BYMDBgwfx7LPPYvfu3XjLW96Cr3/96wm1RkSlUuHVr341AGDTpk1Qq9VQKpXYtGkTzp8/n9OafvCDH+CBBx4AAPT39+Ps2bOwWq2zHvPkk0/i4MGDuOCCCwAAfr8fNTU12LdvH3bt2gW73Q4AeMtb3oIzZ85kfc3HH38cjz/+OLZu3QoA8Hg8OHv2LFpaWtDe3o5NmzYBADZs2ICrr74ajLF5P9sNN9wArVYLrVaLK6+8Evv378dzzz2X9ritra246KKLEs//wx/+gJ/+9KeIRCIYHh7GiRMn0NnZmdN7d/PNN0Mul8Pj8eCFF17AzTffnLgvGAzmdKx05GSWZIy1AdgKYB+AbwG4jDH2VQABAJ/inL9YlFURJYFzjs8/cBQapQwyGdA17l3sJREEQRAEQSxr5HI5du3ahV27dmHTpk34zW9+M684UyqVieQ/mUyWsEHKZDJEIhEAgEKhQCwWSzwnVYT7008/jSeeeAJ79uyBTqfDrl27Uj6Oc47bbrsNX/va12bd/uCDD+aVQMg5x2c/+1m8733vm3X7+fPnEz9Lpp8NmJ98yBjLeFy9Xp/4/56eHnz729/Giy++iKqqKrzjHe9IG3Gf/DpzHyMeMxaLwWKx4NChQ9l+9JyRXJwxxgwA/gzgY5xzF2NMAaAKwEUALgDwB8ZYR1yqS37eewG8FwBaWlqKtnAid/54YAD7ehz4+k2bcM/eXnRPUHFGEARBEAQBIKPCVSpOnz4NmUyGVatWAQAOHTqE1tbWvI7V1taGH//4x4jFYhgcHEz0ayXjdDpRVVUFnU6HU6dOYe/evYn7lEolwuEwlEolrr76atxwww34+Mc/jpqaGjgcDrjdbuzcuRMf/ehHMTk5CZPJhD/+8Y/YvHlz1rVde+21+MIXvoBbbrkFBoMBg4ODUCqVOf18f/nLX/DZz34WXq8XTz/9NL7+9a9Dq9VKOq7L5YJer4fZbMbo6Cj+9re/YdeuXQAAo9EIt9udCC2pra3FyZMnsWbNGjzwwAMwGo3zjmcymdDe3o4//vGPuPnmm8E5x5EjRyS9F9mQVJwxxpQQCrP7OOf3x28eAHB/vBjbzxiLAbABGE9+Luf8pwB+CgA7duygBIpFYsITxFcfPYkL26rx5h3NeL5rEof6pxZ7WQRBEARBEMsWj8eDD3/4w5ienoZCocDKlSsTIR25cumllyYsghs3bsS2bdvmPebVr3417r77bnR2dmLNmjWzbH/vfe970dnZiW3btuG+++7DV77yFVxzzTWIxWJQKpX47//+b1x00UW48847cfHFF6O+vh7btm1LBIVk4pprrsHJkydx8cUXAxDsnPfeey/kcrnkn+/CCy/Eddddh76+PnzhC19AQ0MDGhoaJB138+bN2Lp1KzZs2ICOjg5ceumls37u17zmNaivr8fu3bvx9a9/Hddffz2am5uxceNGeDyelOu577778IEPfABf+cpXEA6H8da3vrUoxRmbI3TNf4Cg7f0GgINz/rGk298PoIFz/kXG2GoATwJomaucJbNjxw4ups4QC8vHfv8yHjk6jL999DKsrDHiu/84gx8+dRYn/9+roVFK/8UgCIIgCIJYKpw8eRLr1q1b7GUQWbjzzjthMBjwqU99arGXkjOpPmOMsYOc8x2pHi9lCPWlAG4FcBVj7FD8z2sB/BJAB2PsGIDfA7gtU2FGLB7Pnh3Hg4eG8IErVmBljSDNrrDrwTnQ5yifoXsEQRAEQRAEsZyRktb4HIB0nX9vK+5yiGITCEfx+QeOocOmx79duTJxe4dNmOHQPe7B6tr5XlqCIAiCIAiCKAfuvPPOxV7CglGa0dZE2fCDJ8+iz+HD/75n5yz7YptNmIJOoSAEQRAEQRAEUR5IsTUSFcqpERd++s9uvGl707x5ZkaNEjVGNbopTp8gCIIgCIIgygIqzpYosRjH5+4/CpNWic+/NnWja7tNj+7x1Ak0BEEQBEEQBEEsLFScLVHu29+Hl/qm8Z/XrUOVXpXyMR12A3rI1kgQBEEQBEEQZQEVZ0uQaIzjO4+fxiUrrLhxa2Pax3XY9JjyhTHlDS3g6giCIAiCIAgRuVyOLVu2YOPGjbj55pvh8+WfpP2Od7wDf/rTnwAAt99+O06cOJH2sU8//TReeOGFxP/ffffd+O1vf5v3a4ucP38eGzdunHXbnXfeiW9/+9s5HadY66k0KBBkCXJqxIVpXxhv3tEMYUxdajrsegBCKMj2NOoaQRAEQRAEUTq0Wi0OHToEALjllltw99134xOf+ETi/mg0mtOwZpGf//znGe9/+umnYTAYcMkllwAA3v/+9+f8GqUiEomU1XoWElLOliAHzk8BALa3VmV8XId9Jk6fIAiCIAiCyMA3vwns3j37tt27hduLxGWXXYZz587h6aefxpVXXol//dd/xaZNmxCNRvHv//7vuOCCC9DZ2Ymf/OQnAADOOT70oQ9h/fr1uO666zA2NpY41q5du3DgwAEAwGOPPYZt27Zh8+bNuPrqq3H+/Hncfffd+N73voctW7bg2WefnaVuHTp0CBdddBE6Oztx4403YmpqKnHMT3/607jwwguxevVqPPvsszn/jJmO/bnPfQ5XXHEFvv/97yfWMzQ0hC1btiT+yOVy9Pb2ore3F1dffTU6Oztx9dVXo6+vD4CgHn7kIx/BJZdcgo6OjoSSWClQcbYEOdA7hTqTBk1V2oyPa6rSQiFjFKdPEARBEASRjQsuAN785pkCbfdu4f8vuKAoh49EIvjb3/6GTZs2AQD279+Pr371qzhx4gR+8YtfwGw248UXX8SLL76In/3sZ+jp6cEDDzyA06dP4+jRo/jZz342y6YoMj4+jve85z3485//jMOHD+OPf/wj2tra8P73vx8f//jHcejQIVx22WWznvP2t78d3/jGN3DkyBFs2rQJX/rSl2atc//+/bjrrrtm3Z5MV1fXrILq7rvvlnTs6elpPPPMM/jkJz+ZuK2hoQGHDh3CoUOH8J73vAdvfOMb0draig996EN4+9vfjiNHjuCWW27BRz7ykcRzhoeH8dxzz+Hhhx/GZz7zmRz/JRYXsjUuQQ6ed2B7W1VGSyMAKOUytFh16KE4fYIgCIIgljsf+xgQtxempaEBuPZaoL4eGB4G1q0DvvQl4U8qtmwB7ror4yH9fj+2bNkCQFDO3v3ud+OFF17AhRdeiPb2dgDA448/jiNHjiRUIKfTibNnz+Kf//wn/uVf/gVyuRwNDQ246qqr5h1/7969uPzyyxPHqq6uzrgep9OJ6elpXHHFFQCA2267DTfffHPi/ptuugkAsH37dpw/fz7lMVasWJGwagIzQ6SzHfstb3lL2nU9//zz+PnPf55Q6/bs2YP7778fAHDrrbfiP/7jPxKPfcMb3gCZTIb169djdHQ0489bblBxtsQYnPZjyBnAe7JYGkU6bHp0T5CtkSAIgiAIIitVVUJh1tcHtLQI/18gyT1nyej1+sTfOef44Q9/iGuvvXbWYx599NGsm/Gc86yPyQW1Wg1ACDKJRCJFOy4w+2dOZnh4GO9+97vx0EMPwWAwpHxM8s8orhEQfv5KgmyNS4wD5x0AgAvaMu+KiHTYDTg/6UM0VlkfXIIgCIIgiKJy113A009n/nPHHYDPB3zhC8J/77gj8+OzqGZSufbaa/E///M/CIfDAIAzZ87A6/Xi8ssvx+9//3tEo1EMDw9j99yeOAAXX3wxnnnmGfT09AAAHA7hWtFoNMLtds97vNlsRlVVVUKhuueeexJKV6Hkc+xwOIw3v/nN+MY3voHVq1cnbr/kkkvw+9//HgBw33334RWveEVR1rjYkHK2xDjYOwWdSo61dUZJj++w6RGKxDA07Udzta7EqyMIgiAIQiQQjuJV33sGn3/terx6Y91iL4fIhthj9oc/AFdeKfxJ/v8Scvvtt+P8+fPYtm0bOOew2+148MEHceONN+Kpp57Cpk2bsHr16pSFjt1ux09/+lPcdNNNiMViqKmpwT/+8Q+87nWvw5ve9Cb85S9/wQ9/+MNZz/nNb36D97///fD5fOjo6MCvfvWrov0suR77hRdewIsvvog77rgDd9xxBwBBMfzBD36Ad73rXfjWt74Fu91e1DUuJmwhpb4dO3ZwMTWGKA2v/f6zqNIrcd/tF0l6/L7uSbzlp3vxm3ddiCtW20u8uuUJ5xzffvw0btjSiNW10opmgiAIYulzfMiJ637wHN57eQc+99p1i72cZcnJkyexbp3E9/6b3xTCP5ILsd27gRdfBJL6nQgimVSfMcbYQc75jlSPJ1vjEsIdCOPUiAvbW6VZGgGK018Ixt1B/PfuLjx0aGixl0IQBEGUEV3xQK7Baf8ir4SQxH/8x3yF7MorqTAjigoVZ0uIl/umEePABW3Sm1NtBhWMagW6KbGxZAw5AwCAEVdgkVeysNyztxdv+O/nF3sZBEEQZUvXmLAxOjhFxRlBEAJUnC0hDvROQcaArS3SizPGGDrsevTQrLOSMRzfER1dZsXZC+cmcKh/GqFIbLGXQiwyD7w8gEP904u9DIIoO7rirpUhUs4IgohDxdkS4mCvA2vrTDCoc8t56bAbyNZYQkS7yohzeRVnYsHv8IYWeSXEYhKJxvDZ+4/iJ890LfZSCKLsEG2NY+4ggpHoIq9m+VJpUetE5ZDPZ4uKsyVCJBrDy33T2JGDpVGk3abHkDMAf4hODKVgOF6ULSflLBbjieJswhNc5NUQi0nXuBeBcAy9k77FXgpBlBWxGEf3uAfVehUAYNRJ35WLgUajweTkJBVoRNHhnGNychIajSan51GU/hLh5LAbvlAUOyTON0umwy4M/OuZ8GJ9g6mgdURjHL/b34ebdzRBrZAXdKylgmhXcQUi8Iei0KqW/vsy7AogGLczUnG2vDk26AQA9E56iz4IlSAqmcFpP4KRGK7dYMNDh4cwMO1Di5VG2iw0TU1NGBgYwPj4+GIvhViCaDQaNDU15fQcKs6WCAd6hYGCO1rzU84AoHvCU3BxdrB3Cv/54DFYdEpc39lQ0LGWCkNJdsYRVyDxfi9lepICZiY9ZGtczhwbEoozbyiKCU8IdqN6kVdEEOXBuXg7wWWrhOJsaHr5uCvKCaVSifb29sVeBkEkIFvjEuFA7xQazBo0WLQ5P1csFnqKkNgoJhKep4CRBEPTfjRVCf8uy6XvrGcyqTjzknK2nDk+6IJCJqhlvZP0vUAQImJS42WrhBmjFApCEARAxdmSgHOOA+cdeVkaAUCnUqDerEF3EQqqMbE4o/4SAEAwEsW4O4ht8QTN5dJ31jPuhVYph1ohwwQpZ8uWWIzj+JATl660AaDvBYJIpmvciyqdEnVmDexGNRVnBEEAoOJsSTAw5ceoK5hXGIhIh11flOJslJSzWYgN3ltbLACWz6yzngkP2m162Axq6jlbxvRMeuENRXHthjrIZYyUM4JIomvcgxV2AwCgwaKlQdQEQQCg4mxJcLB3CgCwPY9+M5EOmxCnX2ha0ZhbuBCnHXKBIadwsl1VY4ReJV8+ytmEF+12PawGVcX1nB3un8Yn/3AY0RgldxWKGAaytcWCRouWvhcIIonupOKs0aKh4owgCABUnC0JDvQ6YFArsLYu/zCPdpse7kCkYAuaWHxMeILwBCMFHWspINpUGiwa1Jo1y6I4C0Vi6J/yoyOunFVSzxnnHF/663H8+aWBZaNylpJjg06oFTKsqjGg1apDHylnBAEAmPaFMOEJYWWNWJxpMTTtpzh3giCoOFsKHDg/ha0tFshl+UdUJ8fpF8KYKwi1QvhYkbVxZsZZvVmLOpNmWQSC9E/5EI1xtNv0sOorSzl7oWsSL/VNAwDG3ZVTVJYrxwZdWFtvgkIuQ6tVR8oZQcTpiic1rqgRzr0NFi0C4RimfOHFXBZBEGUAFWcVjtMfxulRN3a05hcGItJhE3bvuuMnjHwZdQUS/VU0dFaYY1OlU0KrkqPOpMGoa+lf8Iupn+02PawGNSY9oYrZDf7Bk2ehlAubHFScFQbnHMeGnNgYH8/RZtXD6Q9j2lc5xTpBlIquMeF7MrnnDAAGp8jaSBDLHSrOKpyX+6bAOQoKAwGAxiotVApZQcqZJxiBNxTFhfHUyPNkYcLwtD9x0hVtjbEl3sskfoaEQBAVQtEYXIHyt7ju73FgX48D77pUmHdDxVlh9Dl8cAci2NRoBgC0WgWFgNQzghCUM5VchqYqYeh0o1icUd8ZQSx7qDircA72TkEuY9jSbCnoOHIZQ5tVh64CZp2JMfrtdj3sRjXZGgEMTQdQbxZOunUmDSIxjknv0lYOeiaFeGiLTgWrQQUAmKyAxMYfPnUWNoMKH7pqJQBgzL30Lail5NigCwCwMV6ctVmFi1BKbCQIoThrt+kT7QhicUZx+gRBUHFW4bx43oH19Sbo1YqCj9Vu06NnIn9bo2jZqzFq0G7Vk60RQlpjo0UDAKg1Cf9d6qEgPePexGBzm0ENAGVfkL7cN4Vnz07gPZd1wKhRolqvIuWsQI4NOaGUM6yqFWxbzdU6MAacn6DvBYLoGvcm+s0AwKJTQquUU3FW4ezvceDAecdiL4OocKg4q2DC0RgO9U8XFKGfTIfdgD6HD5FoLK/ni0pDrUmNVqsOPct8h9wdCMMdiKBetDWahEJlyRdnE160x3sYrfp4cVbmytmPnjoHi06Jt13UCgCwG9RUnBXIsUEnVtcaoVbIAQAapRz1Jg0pZ8SyJxiJos/hS/SbAQBjDA0Up1/xfP6Bo/jCX44v9jKICidrccYYa2aM7WaMnWSMHWeMfTR++52MsUHG2KH4n9eWfrlEMieGXAiEYwX3m4m02/QIRzn682xIHhOVM5MGbTY9xt1BeJdxnL6Y1Cj2nNWZBeVsKUe0e4MRjLgCifRPW9zWOF7GiY3HBp148tQY3n1pe0KBthvVGC/zgrKc4Zzj2KAz0W8m0mrVUy8qsezpmxQSbZOLM0A4V5ByVrkEwlF0jXtwZtQNfyi62MshKhgpylkEwCc55+sAXATgg4yx9fH7vsc53xL/82jJVkmk5MW4dF5oUqPIikScfn7WxlFXAFqlHEa1Am2J5v/iXoiNu4MVk/wn7oA2xIsyu0ENGQNGyyhOn3Ne1IAS8d9btDVW6cu/5+xHT52DUaPAbZe2JW6rMZJyVghDzgCmfGFsmFOctdl0ZHcmlj3nxoRzrDjjTKSpSovB6fI5PxC5cWbUjRgHojGO40POxV4OUcFkLc4458Oc85fif3cDOAmgsdQLI7JzsHcKTVXahCJTKDNx+vkVVKPuIGpMajDG0Jpo/i/ehdjgtB8Xf+1JPH16vGjHLCXD07OVM4VcBptBXVbK2eceOIY33v1C0Y6XnNQIAEq5DFU6ZdnOOjs94sZjx0fwzkvaYNIoE7fbjWqMVdBGQLlxdEC4MBFj9EVarXpMekNwB2iWE7F8EWecid+TIg1mLSY8QQTCpLpUIieGXIm/Hx6g4ozIn5x6zhhjbQC2AtgXv+lDjLEjjLFfMsaK460jJME5x4HeKewoUr8ZIKgcFp0S3XmmLI65Aqg1CoVim634ytmZETciMY5TI+6iHbOUDDv9kDFBhRGpM2swUiazzp46NYrf7e/D0QEnokVSz8QZZ6JyCkCYdeYtj595Lj/afQ56lRzvekX7rNvtRjVCkcoYAVCOHB9yQi5jWFc/pzirLv6mDUFUGl3jXjSYNfOCvMSNvOEyclcQ0jkx7IJBrUCtSY0jA9OLvRyigpFcnDHGDAD+DOBjnHMXgP8BsALAFgDDAL6T5nnvZYwdYIwdGB+vDMWjEuh3+DHuDmJ7W3EsjSIdNn3eg6jH4soZABjUCtgMxY3TF4MEKsWTPzjtR51JA4V85tes1qRJjBxYTFyBMD53/zEwBiHev0i2w55JL+rNGmhV8sRtVr0KE+7yU866xj14+MgQbr24DRadatZ99nhBTdbG/Dg26MSqGgM0Svms28VZZ1ScEQsN57xom1CF0jXuwYo5lkZgpjirlHMcMZuTwy6sqzdic5MFR0g5IwpAUnHGGFNCKMzu45zfDwCc81HOeZRzHgPwMwAXpnou5/ynnPMdnPMddru9WOte9oj9ZhcUKQxEpN1myMvWyDnHqCuAGuOMxbLdpivqwNleh3CsSkmzGp4OJJIaRepMmrKwNf7XIycx5g7gQ1cKM72KtVMrJDXOturYDGpMlKFy9t+7z0GtkOH2y9rn3Wc3UHFWCMeGXNjQYJ53u2h3plAQYqH544EBXPS1JxGK5JdGXCw45+ga88wLAwGEnjOgcs5xpeTogLOiitRYjOPksBvr6k3Y3GxBz4QXTh/Zt4n8kJLWyAD8AsBJzvl3k26vT3rYjQCOFX95RDpe7p+CUa3A6hpjUY/bYddjzB2EJ8eURU8wAl8omoiLB+LJbEVUzvrihV6lfGEPOf2JnVCRWpMa077wovYUPHt2HL9/sR/vubwD126oA1Da4sxqUJVdz1nfpA9/OTSEf72wNTGLLRlRAabExtwZdQUw7g5iY6Np3n16tQJ2o5ri9IkF59iQE+PuIPqnFle1HXUF4Q1FEwFcydSaNGCscs5xpeS99xzANx87tdjLkEz/lA+eYATr603Y3GQBABwZnF7UNRGVixTl7FIAtwK4ak5s/jcZY0cZY0cAXAng46VcKDGbMVcQjVVayGSsqMdNJDbmqJ6NxRUGcdAyALRZdRhzB+ELFadvp5KUs1iMY9gZSCQ1iiz2IGpPMILP/PkoOux6fPyVq2fi/Z2Fv6dT3hCmfeGUypnTH170Hetkfvz0OchlDO+7oiPl/XaD8L6UgwW10jg2KNh55sboi7RZi6uoE4QURuIbUPkGXhULMQwklXKmUshQY1RjMM9xNkuFUCSGEVcAZ0bza7FYDMQwkPUNJmxqEr77yNpI5Isi2wM4588BSFUBUHT+IuIJRmDUZP3nyxlxeHD3hCfxBSMFsdioSVLOxFCQ3knfvGCAXInFOPocPqgUMrgDEbgC4VnpeuXGpDeEUCQ2TzmbKYYCif6bheQbfzuFIacff3r/xdAo5VDJZVDJZRguQhEiBsl02OcrZwAw5QvNKt4Xi2lfCH9+aQBvvaAl7XpMWgVUchkpZ3lwbNAFxpD2d77VqsezZ6n/mFhYRuMbiEJPde2irUMszubG6Is0WLQYKsJmWSUz5g6Ac8GJwTmHYOAqb04OuyCXMayuNUKjlKPdpsfh/unFXhZRoeSU1kiUD+5ABAZ18YuzVqsOjOW+u5gYQG1MVs7iiY1FsDaOuYMIRWLY1mIBkJ/t4ysPn8Cn/3QEkWjpFZzh+Mm1fo5yVmdavEHUe7sncc/eXrzzknZsj8/Gk8kYas3qxK5yIczE6M++6LDqy6t/6+yYB+Eox9XratI+hjEmDKIukzVXEkcHneiw6ecl0Ym0WXUYdRVPUScIKYyWiXJ2bswDY9zem4pGixZDy3zWmXg+8oejZdGjLYUTwy502PSJEKTNTWYcpsRGIk+oOKtQBOWs+MqRRilHo0WbuNCWyphb+AKd3XMmNv8XbmESe1Qu7rAByK84+9uxEfzfgX585v6jRR28nApxffN6zsyiXW5hL/r9oSg+/ecjaKnW4VPXrp51X71JW5Ses54JDxQylmhqF7HFlbNJb3n0nYmbBW1ZlEsbFWd5cXzImdbSCMwkNvY5yNpILAzRGE+o4N0TxbfKjbkDuG9fr6S5iF3jHnTUGNKqQY0WLQan/ct6xmJyQbbYxbRUTgy5sD5prmNnkwWjruCitTAQlQ0VZxWKOxCGoQS2RgDosBtyPoGNuoLQqeSz1DyjRgmbQVUU5UzsN7tkpRUAMJjjzmIoEsOw04/mai3+dHAAd/71eElPfkNzBlCLGNUK6FTyBd8N/Pbjp9E76cM33tgJnWr256bOrCmactZSrYNSPvtrxRoP3ChWXH+h9E76IJcxNM4pIudSQ8VZzkx4ghh2BrAxQ3E2o6hTcUYsDBOeIKIxDqWcleRi/4GXBvH5B45hT9dk1sd2jXlThoGINFi0CEVimCizEKWFJPl8lO9on4Vk2hfCkDOA9UlW7s3NwncgWRuJfKDirEJxBUrTcwYIs856xr05FS+jrkA8aWr2bmCrVV+U2Oy++AX15iYLlHKWc8P00LQfMQ585KpVeO/lHfjtnl58/bFTJSvQhqb9UCtkqNLNVjcZY6hd4Dj9g70O/PL5HrztohZcvMI67/76eHFW6HvRM+FL9Bkmk1DOyuRi4/ykF01V2nlF5FzI1pg7YhhIqhh9kRarOIi69Dvi/lAUt//mQKLPh1ieiOrF1uYqTHpDRY84H407IX67pzfj4zzBCEZcgZRhICI060xID9YoZdCp5OiqAOXsxPBMGIjI+noz5DJG1kYiL6g4q0CCkShCkRiMJeg5A4B2mx7eUDSnC9MxVzClh77Nqi/KwNlehw8NFg1UChnqzdqcT1yiharVqsdnX7MWt+xswU+e6caPnjpX8NpSMewMoNGiTWldqTWpE/0PpcbpC+Pf/3QEDWYtPvOadSkfU2fWIBSNwVGA7TAW4zifIkYfEAaSqxSyspl11jvpkxTGYjeo4fCFEF6AHsWlwvF4YtmGFDH6ImatEtV6VUINLyWnRlx44uQodp8aK/lrEeWLqMSIm1NdRbY2jsZt/f84OZroN05Fd4akRpFGKs4w4gqgwaxFu02fc4vFYiAmNSaHIGlVcqypNVJiI5EXVJxVIJ6A0Ehfip4zAIkL7Fy+FMfcgZTJd21WHUZcAfhDhc316pv0orVaWFeDRZPziUu8EGyp1oExhi/fsBE3bW3Ed/5xBr94rqegtaVicNqPekvqJMCFGEQ97g7i6387hUu/8RTOT3jxtZs2pQ2QEUNLCuk7G3UH4A9HUxZnjDHY9CpMuBdfOeOc4/ykF21x9SYTdqManKOgonW5cWzQiTarLmuSaku1bkGUM1ExKcYGEVG5iJ+DS+LFWbGtjeOuIJqrtYhxjt/t70/7uJmkxvSbQ2JxVgkjY0rFiFO4nsinxWIxODHsQo1RPW9m5uZmM44MOJd1/yCRH1ScVSDigOhSpDUCuRdnnHOMuoKoTaWciXH6jsJOhn0OX8IO1WDJXTnrj8fw18TXKJMxfPNNnXjNxjp8+eET+N3+voLWN5dhpx8N5tQ9TbVmDcZcwZJ8YQ9N+3HnQ8fxim88hZ/8swu71tjxyEcuw+Wr7WmfUx9fZyF9Z+JcvI4UxRkg9J1NloFyNuULwx2ISFPOjOWVMlkJHB10YkOGfjORNqtuQXrOxM90MazVxMJQirCmEVcAchnDlhYLFDJW9D6mMXcAm5ss2LXajt/t70urtneNeSGXMbRUp//+MWkV0Kvky744qzdr0GHTY2DKj0C4sM3dUjM3DESks8kCpz9Mm0NEzlBxVoG4E8pZaYqzBosWKrlMcnHmDkbgD0dnzTgTKUacvisQxpQvjNZqoThrsmgx4grkZDfrm/Shec7QboVchu+/dSt2rbHjcw8cxV8ODea9xmRCkRjG3EHUW1IXZ3UmwUY4VcS+h/MTXnz6T0dwxbd24969vXj95gY8+Ykr8KN/3ZZ1xlxCOStAzRNnnLWnaXS3GlRl0XMmXqRLUc5qqDjLiWlfCANTfmzM0G8m0mrVY8jpRzBS2osu8TNNyZCVwW9eOI9d334a3mBxxyyMOIOoMaqhVsjRYtUVXTkbcwdRa9Lg1otbMe4O4vHjoykfd27Mg1arDipF+ksvxlheG5BLhViMY9QVQJ1Zgw67HpyXt/IdisTQNe6ZFQYisrnJAgDUd0bkDBVnFYi7xLZGuYyhxaqTXJyNucQY/fk2vlZb4XH6fZNiv9iMchbjyCmits/hQ0v1/AtylUKGu9+2HTvbq/GJPxzGwV5H3usUGXUJAzQbM9gagcKUKhFXIIxP/uEwrvrO03jg0CD+5cIWPP3vu/CtmzejI0NfQzJWgxoKGcNIAYNPeya80CrlqDWm/pltBnVZpDWKVrpclDNxTASRGbHfLFOMvkibTQfOgX5HaS9Axd7OgSk/9Q5WACeGXOhz+PDLIlvNk233HbbiWuU8wQh8oShqjGpcsboGTVVa3LP3fMrHdo17MvabiTRWLd9ZZxPeICIxjjqzJvFelXNi49kxN8JRnnITdHWtARqlDIf7qe+MyA0qzioQd0BQXEqlnAHIqRE31QBqEZNGCateVVB/ibhr1lw9U5wBkHzy4pyjP01xBgiz3X5+2wWQyxj+nmbHMxfEHc/6DLZGILfiMhUnhlx43Q+fw18ODeL2yzrw3KevxP+7YSOaqrKrQsnIZUKCZCE9Zz0TXrTZ9LOUyWSsBhUmvKFF996fn/BBxoDm6swx+gAS/QOknEnjaCKpMbNSC8wUx6XuOxN7O6MxvuBKxKH+afzLT/fS5ycHxFmIP/lnd1F7PYUeJuH3eYVdj/OTPkSLZJ8Uv8drTGrIZQy37GzF3m4Hzo66Zz0uEo3h/KRXUnG2nJUzcdOyzqRJtEV0l3EoiBgGksrWqJDLsKHBjCOknBE5QsVZBSL2nJW6OOt1SDuBjaYYQJ1Maw4qXCrEfjXxgk6cTzU4LU2Nm/aF4Q5GEsVdKgxqBTY0mHCobzrvdYqIRc7cGWci4g5uIaEgfzjQjxt//DwC4Sh+/96L8LnXrktZHEul0FlnQlJj+vfXplcjFInBXWS7Uq70TnrRYNFCrZBnfaxGKYdJo6CLa4kcG3Si0aJFlV6V9bEJu3OJ7UojzkDCnlrq15rL/p5J7OmexKf+eLjkQ++XClO+EJqqtPCFIvjx7uIl6Y64AgnHQrtNj1AkVrTiZ+7m5FsuaIZKIcM9e2fH6vdP+RGO8owzzkQaLVpMekMFB2lVIuL5s96shUGtQK1JXdaDqE8Ou6FVyhPfaXPpbDLj2JATEVLuiRyg4qwCEW2NpQoEAXI7gYkzXmpS2BoBIRSkEM94v8MHq16V+HnFoA2pyllyjH4mNjdZcHSw8C9RsZG7IY2tscaoBmP52RoD4Sg+/acj+I8/HcH21io8/OHLsKOtuqD1AoUVZ+FoDH0OX8qkRhFrmcw6Oz/pS3sSTYXdqMZ4GdgxK4HjQy5szBChn0yVTgmjRlFS5YxzjhFXABe2C78ffQscCiL2lD5zZhy/fuH8gr52pTLlDWFLswVv3NaE3+7tLUoohi8UgTsQSTgWRLt3sWbfibZncROgWq/C9Zvqcf9Lg4mNVADoGovH6NdIUc6EtQ4VYDWvVEQlstYsvJ/FtqEWmxPDTqypM0KexjWypdmCQDiGM6Pl+zMQ5QcVZxVIIq2xxMoZIC3lbMwVhF4lT1sstln1GHbmH6ffOzmT1AgI80Oq9SrJJ+6+pBj9TGxtscAfjuLsWGFfosNOPyw6JXSq1O+HUi6DVa/O2dbYO+nFTT9+Af93oB8fvHIF7nn3zpSz5fKh3qTBkNOfl+1wYMqPSIyj3Zb+okO0CC5231nvpDfRuyiFGqOGlDMJuAJh9Ex4JfWbAULoQZtVX1I1y+kPIxCOYXOTBRqlbMFDBaa8IdgMarxyXQ2+/rdTCfsTkZ5JbwjVehU+9qrVAAe+/8SZgo8pbh6KyllHXLkqlhojfj8kb06+7eJWeIIRPPjyTMiUWAyuyPA9KdJoEb6jlqO1cdgZgELGYNPHizO7Ht3j3kW3xKeCc542qVGkMx4KQtZGIheoOKtAXIEwVAqZJGtWvuQSpz+aZsaZiOgbzzcxrXfSl0hqFMll1pn4utn6jBLJSv3TOa8xmeHpQNp+M5E6c27F2ePHR3D9D5/DwJQPv7htB/792rVpd+ryoc6sQSAcg9Ofe4JkT3xXU4pyNrGIypnTJ6R+5qycUXGWlROJ4dPSijNAsDuXUs0SbcP1Fg1aqnULbmt0eEOw6lX45ps2w6JT4iO/f3lZ2tSkEokK3z9VOhUaLVrcenEr/nRwAOfG3NmfnAHRESCeo6x6FUwaRdHUmDF3EGqFDKakzdKtzRZsaDDh3r29iaKia9wDm0ENsy57kFdCOVuGxZk440zsX+6wG+D0h8ty3uTgtB+uQCRlUqOIMPdRgcM0jJrIASrOKhB3IDLrRFAKaoxq6FRyScXZmCuQUcERY8vzmTUUisQw7PSjZc4FdaNFi8EpicXZpA82gzqtkiXSatXBrFUWHHs7OO1Pm9QoIgyilnbRf+/eXrz3noNoterwyEcuw9XragtaXyrEYjKfUJDuLDPOgBnlbGIRlbPziaRG6cqZ3ajGGBVnWTkWDwOREqMv0mbVlzRFMTlYoNWqR1+BsxZzZdoXhkWnRLVehe+8eTPOjXnw1UdPLOgaKgnRBipu5HzwypXQqRT49t8LU89G56QJM8aE4cZFUs5GXQHUmNRgbGazjDGGWy9qxakRNw70TgEQYvQzDZ9OptakgYxB0jnu7KgbL/dN5bf4MkSccSaSUDrLMBTk5LCwcZBJOWOMobPJQsoZkRNUnFUgnkCkpP1mwIztSJJy5gpmVM5aC5h1NjDlQ4zPtySKaVZSrA5CjH72dD7GGDY3W3CowNjbYWd25azWpJGsnN27txebmy340/svyRhqUgh15vzj/XsmvLDolBmDIKp0i99zlphxlqGInIvdqIYvFC363KWlxrNnJ9BUpc3JZtti1SFSwhTFZMWktVqH3knfggZzOHyCRQ8ALltlx3sv78C9e/vw+PGRBVtDJTHlE74bxO+Kar0K7728A48dH8GhAtwMooJaN+eCv1jF2ZgrmDKM6YYtjTBqFLhnj6CedY1LS2oEBOt7rUmDQQl91R/7v0P45B8P57zucmXEFUj0BwIzm37lGKd/YsgFxoC1dcaMj9vcbMapEXfZD9MmygcqzioQdyBcshlnybTbsxdnnPP4DJn0F2VmrbB7nI+tqNcxe8aZSKNFC28oCpc/+0VzuhlnqdjSZMaZUTd8ofwuxr3BCJz+cNqkRpFakwYObyjrEN5pXwinR9145doaaJSls7EmBlHnWZxlsjQCwjw5s1aJSe/iqVBiz5HUzwIA2POI03/q1ChcgeINGC93xtwBPHt2HK/f3JDT80qd2DiSpJi02vQIxofDLxTTvhAsupkNi09dswYbG0349J+PFDxGYyki2taqkzZ53v2Kdlj1Knzjb6fy7jkacQZgUCtmbWiusBsw4goUZdNlzD2TCJqMViXHzdub8bdjwzg96obTH5ZcnAHCOS7bxsXZUTeOD7nQLzFZudzhnGPY6Ud90mZvU5UOKrmsLJWzE8NOtFv1WV05nU0WRGM8MQuSILJBxVkF4gmWXjkDhB2rgSk/QpH0tiNXIIJAOJZROQOE4iof5axfLM5SKGcAsoaCJGyREi/INzcX9iU67Myc1CgiNqePZbE27u9xgHNgZ4c1r/VIxW5UQ8aQ1yBqKcUZANgMqkVXzurNmpyKXFEJkprYOOYK4F2/PoD/eborrzVWIg8dGkKMAzdta8zpeaLduVSJjaOuAGwGFVQKWeL7Ix9rdT5wzjHlC6NaP7OJplLI8P23bkUgHMMn/nCI4vXnkKo406sV+PBVK7GnexLPnp3I67hjbsF2mExHDj3V2Y+f3jlyy0UtCEc5vvrISQDSkhpFGizarGmNDx4SAkfCUZ4491QyLr9wPZGscsplDK1WXVnG6Z8YdmGdhLmOmykUhMgRKs4qEHcgUtIZZyJtVj2iMY7+qfQ722PxHeBsdqZ2qz6vi7DeSR+0Svm84zdKLM6Gpv2IcUi2A3YWGAoi2lCy2hpFG2GWHfR9PQ6oFDJ0Nknv5ckHpVwGu1Gds3LmD0Ux7AygXULIhtWgXtSes95JX079ZgASF3VSlTMxLvmpk2O5La6CeeDlQXQ2mbGyJrO1Zy52oxpapRznJ0qjnA07Z4KKRJWub4FCQVyBCKIxnrDoiaywG3DH69bj+XOT+Nmz3QuylkohVXEGAP+yswVNVVp88++n8ipoR5wzM85EihWn7w9F4Q5E0p7/VtgNeMVKW6KwlDLjTKTBosXwdCDtzxyLcTz48hAs8YCRfAO3yolhl3A+Ty7OANGGWl62RlcgjH6HP2MYiEidWYMaoxpHKBSEkAgVZxWIUJwtjK0RyNwrJtqEsitnegw5Azl7rnsnBUticrM1MKOcZbN9SI3RF7Eb1Wi0aPFynsXZcJYZZyLixUI2e9P+Hge2NltKamlMrMmszXkwtqhEtEu46LAZVItcnHlzSmoEZmyNYxLfFzFZ7vSoGwMZNjWWCmfitqobt+ammgFCj2erVVcy5Sw5WKDBooFCxhZMOZvyzu6fSuYtFzTjNRvr8K2/n6ad9CTE98wyJ81QrZDjE69ajWODLjx6bDjn4466gvOKs1arDowVHqc/d8ZZKm69uBUAoFHKEjM6pdBo0SAUjaX9zjzQO4XBaT/efWk7gBmXSSUzM4B6fjHd5/CV1SDnU2IYiITiDBBcOYUmQRPLByrOKhCh56z0ypmohmSyfsxNwkpHm00ojnLd3etzeGfNOBOx6gW7ktTiLNsA6mS2FPAlOjTtB2PZ3w/xYiFTAIcrEMbxIWfJLY0iDWZNzsqZ+NmQYmu06tWYXKQ4ZHcgjAlPKKfPASBcXMtlTLKt8dy4B4p4BPTuU0tfPbv/pUHIZQyvy7HfTESYdVY6W6P4e6iQy9BUpU30sJaaRLiFfv4mGmMMX7tpE2wGNb7+t1MLsp5KYNIbglGtSDki5oYtjVhTa8R3Hj+TU7pnLMaFz8Gci32NUo6mKm3BtsaxFDPO5nL12hrUmzVYYTck4uGl0FiV2R3y4KFBaJVy3HZpGxQytiSUs0TC6pwitt2mRzjK0S8xoXkhODEkqGCZkhqT2dxkRveEN69xNcTyg4qzCoNzDk9wYWyNVXoVLDplluIsfnLKYmtsyyOxkXOeNsxDJmNotGgxkKU463f4oFLIsq4vmc3NZgxM+fNSeYacAdQaNVDKM/9qmbQKaJSyjMrZwfNTiHHgovbqnNeRD3VmTc5pjeJnQ4oiZTWoMO0LS7q4GnMFcMnXnpw1xLUQxDCQthxtjTIZg82gkmxrPDfmwaYmM1qtOjy5xIuzaIzjwZcHccVqe2JUQq602nTod/iLHmYQCEcx5QvPUkxa8rRW58Pc5MG5WHQq7OyozmgZX25M+UJpE1/lMoZ/v3YNeia8+OOBAcnHdPhCiMT4POUMANpthoJnnY1JOP8p5DLc/bbt+OqNm3I69ow7ZP53cigSwyNHhnHthlqYNEo0VmnR5yifwiVfRpwBMDb//VxhL7/ExhPDLlj1KsnXFmLLhDh2hCAyQcVZheELRRHjWJBAEABZ4/RHXUISlj7LemaS2aRfHI27gwiEY2n7hKQMou6d9KG5SpvTjuWW5ioA+TXvDk37UZ/F0ggIu+fZZp3t7ZmEUs6wtaUq53XkQ71ZA08wAncOSYPd417UmTRZ//2BmVlnUxLUswO9UxhyBvDJPx4uSvS4WJzlqpwBuQ2iPjfmxUq7AVetrcELXZN5p35WAnu7JzHiCuRlaRRps+oRisaKHmYwmiI+vc0qxOnnm/qXC1Ne4XcoXXEGCL1VjkUMyCk3HN7QvH6zZK5eV4OVNQY8fkL698HMOIX5F9AdNj16xr0FfR5EW2M2p8TmZgu2NFtyOvZM6NX8Av7p02Nw+sO4If6711KtWzLKmc2gnre52WETegSLEeBSLE4Ou7G+wTSv5SIdYt94oXNUieUBFWcVhjsgXOwtRM8ZIJzAMqld4+7gvCSsVJh1SlTplDnFZvdm6RdrMGePGs4lRl9kY6MJMoa85p0NOwNZY/RFakwajGZQqvb3ONDZZIFWVfp+M2DGSpKLetYz4ZFkaQSEnjMAmJBwQXpy2AW5jGFjgwkf+t+X8fy5/JLaRPIZQC1SY9RIsjU6fWFMeIJYWWPA1WtrEYrE8MK5yZxfr1K4/6VBGNUKvGp9/kPRxX+PYgd1zNijkpSzah3cgQimfaW3Fc3YGtMXGzaDGt5QlGYfxclWnDHGsK7ehHNj0tWTTLb7FXY9vKFowv2RD2PuIJRyhipd8c/HJo0SRrUipXL24KFBWPUqXLbSBkAIvFoSPWeuwLx+M0D4ParSKdFVJomN4WgMp0fdWCex3wwQ1PI2q476zghJUHFWYXiCwoWFYQFsjYDg9R5yBuAPpb6AGHUJNj4ptOZoK8qmdjRYtBhzB9NG/XPO0Z9HcaZTKbC61pjzlyjnwkDdhhQnl1QIylnqQsgXiuDogBM7F8jSCOQ366xnwispDAQQ0hoBSLKLnhhyocOmx2/edSHabXq857cH8HLflOR1zaV30gu7US1J4ZuL3aDOOvIAAM6NCw3iK2sMuLC9GnqVfMlaG/2hKB47NozXbKorKKymVLPOEoOHTcnKWe7qfb5M+UKQyxhMGb6nxUJksfowy40pbyij0ggAK+0GDE77056P5pJqALWImNhYiFVu1BWA3aCWrJ7kSmOVdl7PmSsQxhMnx/C6zQ1QxBWmlmodHN5QTq6HcmQ0RbKmSIfdUDa2xu5xL0KRmOQwEJHOJgslNhKSoOKswnAllLMFsjXaMl/QjKaYIZOOdps+p9jsvkkvZGwmNn8ujVVacJ5e6Zn2heEORiTH6CezpdmCwwPTOVlehKHSMcnKWZ1Zg1FXIOVrHOydQiTGceECFmdSQkqSmfaFMOULS4rRB4QQFwCSBlGfHHZhXb0JFp0K97z7QtiNarzjVy/i1Eh+8+fOT/py7jcTsRuFIJNsfVHijv7KGgNUChkuW2XH7lNjC2KjKwYOCT+jyOMnRuANRXHj1qaCXrPOpIFKISt6L1gq5Syh0i2AwuDwhlGlU2a8aBeLM7I2Chtbk94QrIYsxVmNAZxLj8Afjfcw2VP0RHbEN5W6CrDKjbuDsGexNBZCQ4pB1I8dHUEoEsMbkuzE4gZkpVsbh53+lIU0ILh4ymUQ9Ynh3MJARDqbzBh2BhJ2WIJIBxVnFYZHLM4WqOdMtKylsjZyzjHqSj+Acy6tVh2GnH7JNp5ehw8NFi1UitQf02yzznKN0U9mc7MF075wTie7IYkzzkRqTRoEI7GU6U37exyQyxh2tC1ccSb+O0pVzkSLiWRbY7xxOtsg6mlfCEPOQOLEV2PS4N5374RWKcetv9if1zDz3klvXv1mgFCcRWM8YVVLx7kxD1QKGZqqhM/bVWtrMOIK4MRwfgXlQuIOhHHVd57GO361X1KBdv9Lg2i0aAtWdmUyhpZqXdHVrBFXAHqVfJb9u7laiE8v1Vy1ZKZ92VUg0eYrZbNiqeMPRxGMxLIrZzW5zScbdQVhM6gTClMydSYNdCp5QWrMmCuYU9hUrjRYNPPObw+8PIh2mx6bk2Zfiue4SrY2+kIRuAKRtMVZu12PcXewLNTBk8NuqBSyxDBzqYh9h4fzaJkglhdUnFUYC91zJipnqXasXP4IQpGY5JNTm1UPzqWfQMQZZ+nINussUZzloZhsjicrHcrB2jgUDzVIp/TNJaFUpbA27ut2YGODacGCXwBApZDBZlBjxCUtnEFMnZK6e2hUK6CSy7L2nInFTLKfv7lah3tvvxCRaAy3/HxfTgESvlAEo65gQcoZkH0Q9bkxDzpsesjj4TO71toBVEak/v0vDWLaF8azZyfwvX+cyfjYMXcAz54dxxu2NuQUtJMOMaijmIw4U8en15k06HWUfvfdIcGiV62XtlmxHJgZQJ35vNZm00HGILnvbMSV3ibHGEO7TV/QrLMxdyBl2EixaLBoMe0LwxsUzvvDTj/29kzihi0Ns1TZ5iWgnI2kmXEmIoaCFDqbrhicGHJhTa0xZdGfiQ0NZihkrCCLPrE8oOKswljonjODWoEaozqlWjEqMalKZMYiKe0E0u/wZQxwEL/ES6Gcra41QKOU5bTDJRaJUtIaAaDOLJzU59oIA+EoDvVPL6ilUaQ+h1lnhwemYTOo055M58IYg1XCIOqTaYZ7rqwx4rfv2gmnP4y3/XwfJiWOOshn1l0yNVKLs3FPYmdfeJ4Gm5vMZd93xjnHb/ecx+YmM96yoxk/2n0OT5wYTfv4hw4NIcZRsKVRpDU+66yY9s+RNMECLdXFLwRTMe0Lp5xxlkzC1kg9Z0nFWeZCR62Qo9Wql1ycJc+6S0WHPf84/WBEGNdQI7HnOh/EjT5xM+qhQ0PgHHjDltkJqWatEhadckkUZ+n+vcQ4/cVObOSc48SwK+d+MwDQquTY0GDCgV4qzojMUHFWYbgXuOcMEIqqVF+IYhKWdOVMKJKk9Jd4ghFMekNoqU5/Qa1RymEzqNMqZ/0OH2wGNXSq3N8rhVyGTY1mHOqX/iU67AxApZAlequyIZ6E5s46e7lvGqFoDDvbF2b4dDJ1Zg2GU6SDpeLIgBObm8w5NcNbDaqsRdWJIRdsBnVCsUpmU5MZv7htBwam/HjXr19ETIIFT7SxSZnFlgpxHWMZirNAOIqBKf+s4gwArlxbg0P905ILyWz0THhxYsgFpz9ctGLmha5JdI178faL2/ClGzZgY6MJH//DobT20QdeHkRnk3nez5ovbVYdAuFYxvc3V0adqS/K26z6BSnOHBJsjSaNAko5o0AQSFfOAGCF3ZCbcmZOf37qsOkxMCXdap+MuFlTSlvjjHVf+E5+8NAQtjRbEhudyQhx+pU762zYmbktoMUqqKaLHQoy5g7C4Q3l3G8msr21Gof7p9MGmREEQMVZxSEWZ4Y8Co586bDpU/aEiAl2UpUziy77UGuRXonR540pPPkiQoy+NIthKjY3WXBsyCVpaDKARFKj1GJF3HEdcc6+KN3f4wBjwAWLppxlP8F7ghF0jXsSgzWlYtWrs16MCmEgxrT37+yw4o7XbcDhAaekmTGJz5ItP1ujOJ8tk3LWPe4F55hXsFy9thacA0+fHs/rtZMJRqJ47fefxWt/8Cw2f+lxbLrzcVzzvWfwzl/tx+cfOIr/3n0urwCS3+45j2q9Ctd11kOjlON/btkOuYzh/fcenJeKd2bUjeNDroJmm81FVDSLtSMejXGMuoMp7WwtVh0mPEF4gqWbP8c5F3rOsmzSMMZQrc++WbEckKqcAcLv2PlJLyJZvpcD4Sim5wwin0uHXbDa51Owi5sJUgOx8iEx62zKj9MjbpwcTv+7V+lx+qkSVpNRK+RortYVFOBSDE4Mzbfd58KOtioEIzEcH6K+MyI9VJxVGO5ABAa1oii9HlJpt+kx4QnNC64QbY25nJxaJe5ci3OPslkSU6VZiWTrWcvG5mYLQpEYTo+4JT1+aNovOakRQEJlG52T3LSvZxLr6kwwaxemrzCZOrMGrkAk0eOQjqMDTnAOdDabMz5uLjaDOmOPTSgSw7kxT9Zdyes21UMhY/j78fT2O5Hzkz5Y9SqY8uzT1KsV0KvkGYuzc+MzSY3JbGgwocaoxlNFsDb2TvrgD0fxzkvb8PnXrsObtjehzarHmDuIR48O41t/P413/vpFPHhoUPIxB6f9+MeJUbzlguZEJH5ztQ53vWULTo+68fkHjs4q9u5/aRByGcPrNjcU/POIrKkTCvHjQ8UJTpn0BBGN8ZS2RlE9LfZctWQ8wQjCUS5p9lW1Xk22RiQVZ1nURkD4HQtHeWIOZjrEzcOaDMXZCrs43Dh3NSZx/BLaGmuMashlDEPTfjx4SPjdu66zPuVjW6p1GJjySU5cLTdGnAGYtcqMcz07CuwRLAZiT/TaDBuImdjRWgVASGQmiHRkLc4YY82Msd2MsZOMseOMsY/Ouf9TjDHOGLOVbpmEiCcYXlBLI5DUKzZnx2rMFYRRrcjJNthu1UlTziSGeTRahDkwc9WCUCSGYae/oOJMTFaSGgoy7AxITmoUqZ0ziDoUieGlvqlF6TcDZvr40s1fEzkSV6w256ic2eI9Z+nUna5xD0LR7PNjzDolLl5hxePHR7IqRUJSY/6fA0CwNmYaRH1uzAMZm59cKZMxXLmmBv88My5ZgU2HaOd547YmvOfyDtz5+g346dt34JGPXIaXv3gNjn/pWmxqNOMbfzsNX0iaMvS/+3oBALfsbJl1+641Nfjo1atw/8uDuHdfHwAgFuP4y6FBXLHanlATi0GtSYNGixYvFeliZSTD4OHWHKzV+SIOuc5mawSE3weyNc7MhZNybhM3QLJZG7MpMcDMuS2f4cbjeWxO5opCLkOdSYOBKR/+8vIgLl9lS/u711KtQzjKcwpLKieE82fmQrfdZkDPhEeSnb1UnB11o8GsyXuzr8akQXO1FgfOU3FGpEeKchYB8EnO+ToAFwH4IGNsPSAUbgBeBaCvdEskkhGVs4WkI82ss1GX9BlnIusbTBic9uPsaGY1qnfShyqdMusXYINFi0A4hinfbFVvaNqPGEdeM85Emqq0sOpVkoZRR6IxjLoCaJQYBiJSZ549iPro4DQC4Rgu6lic4qzOJBSX2WadHRlwoqlKmwg1kIrVoEIwEktrKzsZ35WU0mx9zfpadE94s8Zq90768u43E6kxahIXY6noGvOgpVoHtWL+ru9V62rgDkbw4nlHQWvINrpAr1bgi69bjxFXAHc/0531eMFIFL/f34+r19Um4v+T+chVq3DlGjv+31+P46W+KeztnsSwM1BUS6PIttYqvFSkBLPhFDPORMTNnmyqSyGIKpCU4qxar6IofcykW0pxhIjBEJKLswwX/Aa1ArUmdV5qzJg7CBkTrNqlpNGixZMnxzDkDMyabTaXSp91NuJKP+NMpMOuRyAcw3CWzcNScmbUg1W1+almIjtaq3Ggd6piZmASC0/W4oxzPsw5fyn+dzeAkwDEb4jvAfgPAPQJWyDcgciCK2fifKC5J7Axt/QZZyI3b2+GVinHT/+Z+eKx3+FDi4QL6nRx+oUkNYowxrA5Pow6G6PuIGIcqM/B1gjElbOkE83ebuEC/oIFnG+WjLhzmS2x8fDAdM6qGTBzIZPO2nhy2AWVQiZpdtqr1tcBQEZrYyAcxZDTn3dSo4jdqM4YWHFuzJM2IOMVK21QyWV46mRh1saucQ/qTBroM2zOXNBWjes66/GTZ7rS9mKKPHp0GJPeEN5+cWvK+2Uyhu+9ZQtqTRp88L6X8Mvne2BUK/Cq9bUF/Ryp2N5iwbAzkNainAujGS7KTRolqvWqkoaCOOLz8LL1nAFCcUZDqIXiTEoYCCCMkakzadCVpTgbzZL+J9Jhyy+xcdQVgM2gTozOKBUNFg3cwQh0KnnG3718Zp35QhH8/NnusuhVG3EGsypn4uDwnkWyNkZjHF3jHqyuLSwMaXtrFSY8wYotpInSk1PPGWOsDcBWAPsYY68HMMg5P5zlOe9ljB1gjB0YHy+8KX654w5GYFigGWciGqUcjRZtSuUs1+KsSq/Cm3c04cFDg/NSCpPpdXjRKqGwaqpKPYi6kBlnyWxusuDsmCdrgEAiRl9irLxInUmDCU8okdy0r8eBVTUGWItoG8tpPaKtMYM1ZtITxMCUH51NufWbAYJyBqQfvHtiWPr8mDqzBluaLfj78ZG0j+l3+MC5MB+pEOxGddqes0g0hp4JL1akKc70agV2dlTjqdOFFWfd497ExUkmPvuateAAvvG3Uxkf95sXetFh1+PSFekd6RadCne/bTsc3hCeODmG12yqS/SmFZNt8T6MYqhnI84AFDIGWxpFo9WqK7GtUVTOsn9P2wxqeEPRvNIClxJT3rAkpVFkZY0h0eeZjlFXABqlDKYsm5kddn080Ce3PeYxd7CklkYRcQPy1RvqMrYQ1Js1UMhYThf8Dx8exlceOYld334an/zD4UVLQgxFYpjwZN/sFXsE8x1/UCh9Dh+CkVjhylmb8H1H1kYiHZKLM8aYAcCfAXwMgtXx8wC+mO15nPOfcs53cM532O32fNdJxHEHFr7nDBCsVMm9YpxzjLmCecUI335ZB6Ixjl89fz7l/eFoDEPTAUl9QslpVsn0O3xQKWSoLbBZe3OzGZwLARiZEIszqQOoRcQBpmPuACLRGA6ed2DnIlkaAaEQr9arMipnR+LDp3NNagRmkg9TDaLmnOPksDun+THXbKjFkQFnWsVFnKlXDOXMHYikvIjun/IjFI0lLhxScfXaGnSPe9PG02eDc2HHNtNriDRV6fDeyzrw0OEhHOxNbaU8MjCNQ/3TuPWi1qxWso2NZnzlDRuhVsjw1gtbMj42X9bVm6BRyorSJD/iDKDGqE77c7WWeNaZwytYrKVYfsXHLPe+s0lvMLFxI4WVNQZ0jXkyFlTiAOps6bkddgOc/nDOwSzC+a90YSAiouX4hix2YoVchsYqbU5x+ocHpmFUK3DbxW145OgQrv7uM/jw717GqZHihPNIRdyozba5WWNUQ6+SL1ooyJl4O8aqAseIrK4xwqhR0LwzIi2SijPGmBJCYXYf5/x+ACsAtAM4zBg7D6AJwEuMsbpSLZQQ8AQiMC5wzxkwU5yJJ0OnP4xQNJYxCSsdzdU6vGZTPe7b2wt3IDzv/sEpP6IxLsmSWKVTQqOUpbQ1NldpC061FK172ayNQ/E5NDnbGs3irLMgjg+54A1FF2W+WTJ1Jk3GnrMj/U4wJswcyxWxOEtlaxx1CfNjMsXoz+XaDcJXzj/SDE0WFZK2QgNBMsTpi70vmeZ+XbVWsCPlm9o44QnBHYhIUs4A4AO7VqDGqMb/++uJlM3zv93TC51KjjdulzZI+uYdzTh8xzXY1lKV07qlopTL0NlkwUt90wUfS5htlf57qdWqx5DTj2CkNGrVtC8EGYOkwIDEIOplbm2c8uWmnK2oMcAbimbcRJLq7BB/p7pz3DgRbP2lV86u66zH12/ahMtWZs9cE2adSd94ODroxKYmM774uvV47tNX4f1XrMBTJ0fx6ruexXt/eyDrpmSxmLEiZz5/MsbQYTdk7TMuFeJ3faHKmUzGsK2lKu3mGUFISWtkAH4B4CTn/LsAwDk/yjmv4Zy3cc7bAAwA2MY5T+8vIorCYvScAUJx5g5EEju8o4kZZ/mdnN53eQfcwQh+v79/3n29OfSLMcaEOH3n/OKskH4zkSq9Cq1WHQ5luWgcdvph0ihyDmupSxpEva9nEgCwc5GSGkWEWWcZirOBaaywG/IKphEvRidSJB+KYSC5zI9ZYTdgZY0hrbXx/KQXZq0Slhwu/FJhj3/OUyU2SinOWqw6rKwx5F2ciXajDgnKGSBYKf/j1WtxeMA5L1rf4Q3hocNDuHFrY06JY6WwMyazvbUKxwedBVv8shdnOnAODEyVJtXO4Q3BIjHcwpbF5rsciMY4pnwhWHMIF1ppz57YmO1zILLCFrfK5XDBH4nGMOkNwr4AyplZq8RbL2yR9HlqrtahT6JlNxiJ4uSwK7HJZjOo8elXr8Xzn7kKH3vlKuztnsTrfvQcvviXYwWtXwqJEB8JxXT7Isbpnxl1o9GiLUoo247WKpwZ9cDpm79BTRBSlLNLAdwK4CrG2KH4n9eWeF1ECiLRGPzhKAzqhZ9/NTdOX9zpytfW0dlkwcUdVvzy+Z5Ev5WIuPMn1YrWaNHOsjVyztFX4IyzZDY3ZQ4FGXUFsLd7MqcZZyLiyWjEGcC+bgfabfq81MhiMjdBMhnOOQ4POPPqNwOE2W4mjSLl4F1xfsy6LDPO5nLN+lrs63FgKoUtSUhqLPxzICpn4myjZM6NeVBjVGctdK5aW4N9PZN5DUAWd/VXSFTOAOCmrY3Y3GTGNx47NWtu3R8O9CMUieHtF7flvI5Ssq2lCpEYx9HB/HfrOecYcWZWTMTvlVL1nU37wrBI6DcDZoYuZ5r9t9Rx+sPgXFqAiki2OH3OOUZdqQeRz6WxSguVQpbTBf+EJwTOkZetv5S0VOsw5QvDlcKRMpczIx6EoxydjZZZt1t0Knzslavx/Geuwms21uH3+/sLHgOSjZEMCatz6bALyvdi9GkKSY2FWRpFtrcVr8+WWHpISWt8jnPOOOednPMt8T+PznlMG+d8onTLJAAkLuoWQzkT4/S75xRnhdg63ntFB4adAfz18NCs2/smvVArZJJPfMKss5liYtoXhjsYKShGP5nNzUKSXKoAk78fH8Gr7/on+hw+fPiqVTkf26JTQqWQYdjpx/7zjkVXzQBBOXN4QylPfsPOACY8wbySGkVsRjUmUhRSJ4ZdaKrS5jw/5toNdYjGeEpV6vykt+B+M2DmIiylcjaePqkxmavW1iAc5XjubO7BSF1jHmiUMjTkMEdPJmP44uvWY9QVxE+e6QIgqBT37OnFzvbqxPDncmFbiwVAYcNZ3cEIfKFoxt6VmVlnpek7c3hDkoYpAzMBOct5EHViAHUOxZnNoIJZq0wbCjLtCyMUkWa7l8sY2qy6nGadjYkzzsqwOAOkJTYeGZwGgLQbbUaNEtdsqEUoGsu7V1Yqw84AdCp51vAWQHAPcD5/tE+pmUlqLM735pZmC+QyRsOoiZTklNZILC7uwOIVZ40WLRQylggFEWPFC2mI3rXajjW1Rvzs2e5Zjd29cdVLar9Yg0WLCU8wUUwUI0Y/mS3Nwskred6ZLxTBZ+8/ivfdcxANFi0e/vBluK6zPudjM8ZQZ9Lg6dPjcAciixoGIiL6/lMVo+Lw6XyVMwCw6dUplbOTw66cwkBEOpvMqDdr5lkbQ5EYBqf8RVHOqvUqMDa/54xzjq4MMfrJbG+tgkmjwJN5ROp3T3jRZtXn3EO5vbUar9vcgJ/8sxsDUz7sPjWGwWk/brukLec1lBqrQY02q66gYdRS4tOtehUMakXJirMpX0iyCmRUK6CUswUPBPnO46fLpt8ln+KMMSYkNqZRzqQMoE4m1zh9UUFfbJfDXHIqzvqdqNIpE4nHqVhTK3wfnxrJPJe0UEbjFtRs4S1A0kbxAlsbeye9CEViBYeBiOhUCmxoMOFAmfweEuUFFWcVxGIWZwq5DC1WXWIHbcwVgEmjgFaVfx8KYwzvubwDp0bceObMjJrQ5/BJSmoUEe2EojWiWDH6IhsazFDIWMLaeHTAiet/8Bx+/2If3ndFBx74t0slXZyno86kwdn4RcaFixwGAmSedXZ4wAmFjOXUFzYXq0E1z8blC0XQM+HN67iMMVyzvhb/PDsOf2hG7RuY8iHGC09qBITPv1WvmlecjbqC8AQjkv79lXIZLl9tx+7T4ylDOjLRLTGpMRWfec1aAMA3HjuN3+w5j1qTuiSzyoqBOIw63+GsUnpXGGNoqS5dnP6ULyQpRl9cS7VelXKzolSEIjH88KlzePDloewPXgByGdqdzEq7Ie2ss5kB1NKUrQ67Hn2TPsn2PXFzciECQXJBPOdJCQU5MujEpiZLxoJoRY0echkreXrjsNMvvZAWA1wWOBTkzKjwesVSzgBhw+5Q/3TJbaNE5UHFWQUhJhsaF3jOmUi7dSZOf9QVLMqu4es3N6DOpEkMpeacx8M8pF9Qi/H14qwz8cTUXFWc4kyjlGNtvREv9U7jf57uwo0/fh6+UBT33b4Tn33NOqgUhf0aibNymqq0OUfxl4KZWWeplbO19caCwiGsBtW8QJDTI25wnlsYSDLXbKhDIBzDP5Msg6IyUuiMMxG7UTOvOEuEgUgsnHatqcGEJ4gzY9J3ooORKPocvpz6zZJptGjxvss78NfDQ3j27ARu2dkKpYQ5covBtpYqTHhC6M8hDjyZkUQkd+bfozabLhE8VEw450LyYA4qkFWvXlBboxg+IlrzFpspX+7KGSD0nU16Qyl7TaUOoBZpt+kRiXHJITFj7gAYm0mfLRdMGiUsOmXW4iwQjuLMqBudjZkdEGqFHB02PU6XWDkbcUoLbwEExanerFlw5exsPEa/kI3YuexorUYgHMOJoYUdXUCUP+V5hiZSIvacFSMpKB/abXqcn/QiFuMYdQeKsmuoUsjwzkvb8ELXJI4OODHuCcIXiqKlWnqRMrc463f4YDOooC/i+7S5yYI93ZP4xmOncO2GOjz2sctwSYbhvbkg7hgudoS+iLieucpZLMZxZMCZ13yzZKx6NaZ8YUSSdgtPDgsnvg05hoGIXNheDbNWOcvaKPYkFEM5A8RB1LPfk3NjuZ2wt8b7qo70Sw+96JsUFECpSY2peP+uFag1qaGUM7z1wua8j1NqtseHUR/sy8/qI16UZxsO3FKtR7/Dh2iOCmY2fKEoQpFYTiqQ1aBaUFujuMEwlmao+kKTj60RSAoFSaGgiGnCUm334u+WVDVm1BVEtU5VlpscQpx+5iLzxLAL0RiXNA5lTZ2xpLbGaIxjzB3MOuMsmXabHl0l7oOby9kxDxot2qJeVySGUVPfGTGH8vtmIdKymLZGAGi36xEIxzDiCmDMFSx4wLPIv+xsgVGtwE/+2ZXwyudyQS141WcGQRcrRj+ZV62vhc2gwrfe1Ikf/evWgqPZkxF3DMshDAQQYthNGgVG5ownOD/phTsQweYC+s0AIRAEABy+mQvSE8NOGNWKjP0PmVDKZbh6XQ2ePDmWsIj0TvpgUCtyiujOhN2gnq+cjXtg1ChglxgM0G7Vw6hWZJ2bl4wYVCB1xlkqdCoFfnzLNnz75s0LMjg3X1bXGmFQK/BS73Rezx92BeKzDzMru21WHcJRjmFnceP0EypQDt8P1XrVgkbpJ4qzFMmji4HDG4JOJc9Zjc+U2DjiCsCqV0l2Nayw59bHNO4OSP6dX2ikxOmL88uk9A6vqzdhYMqfV8qsFCY9QURiXLKtERC+C3vGMw8hLzZnRt1YXaSkRpFakwaNFm3Z9H8S5QMVZxWEW1TOFqs4ixdMPRNejLkDRWuGNmmU+NedLXj06DCeOyvM+sqlX0wVT3YU4/RLUZztWlODA//5Kty8o1lS03IurG8wQauU4xWriqPEFYN6s3aecnYkcUK3FHRsW7xYSu47Oznsxrp6U0Hv7TXr6+D0h/Fij3CiE5IadUX797Ib1Rj3BGddEJyLh4FIfQ2ZjGFTkznxXkpBDCpotxWmAG5vrcYNWxoLOkapkcsYtjRb8k4wG3UGsg6yBWa+X4odCjLlFaznUqP0gbitcQGj9EVL8bg7uKAXt+lweEM5q2aA4JjQKGUpizOpA6hFLDoVqvUqyaEgY+7i2PpLQUu1DgNT/oyq8OGBadgMakkF0Zp4j1WprI2JPtEckmg7bAa4kuaulppINIbucW9R+81EdrRV4cD5/PtsiaUJFWcVhNhzlmvUeLFoj+8uvtw3hXCUFzVG+J2XtkMuY7j7mS4whpwVFHEQdTgaw9C0v+jFWSm5ZIUNR++8Jq85aaWiLsUg6sMD09AoZQWnVVnjfRriRWIsxnFq2IV19YWd+K5YbYdGKUtYG4UZZ8WxNAJCcRaOcjj9MzOEzo15JfebiWxqMuPUiAvBiLQ5PV1jXtSa1IvWa7rQbGux4NSIa9ZsNqkMOwOok2C3bkvMOitycZZH/5TVoII3FF2wuU2ichaKxmZ9lheLfIszmYyhw5Y6sTGXHiaRVTUGyb0/gnOkPJWzlmodIrHMqvDR+KxKKZtK4siNUoWCzPSJ5qacAQuX2Njr8CEUjWFVKYqz1iqMuYOS+x2J5QEVZxWEJxCBQsagLjCAIl9qjRpolDLsiysTuexMZqPOrMHrNzfCH46iwayFWpGbxaXBosXQdACDU37EOIo242yhUJRZ70J9iuLsyIATGxvMBa9VnO0kKmd9Dh+8oWhBCZAAoFXJcfkqOx4/MYpwNIb+HFM/s5GYdRa/uHX6wpjwBHNuEN/cZEE4ynFqWNpOdPeEBx224tppypltrVWI8dmjK6QiRHJn3+SoM2mgUsiKntgoFme52J7FwmShVICJJJWuHPrOhHTL/KzH6eL0x/Loid7eWoXjQ65Zia+piMU4xj3BrH2Ni4W4MZkuFMQbjODcuEfyOJSmKi0MakXJlLORHMNbACS+D3tyGH9QCGIYSLFtjYDgaABAkfrELMrripDIiDsQgVGjKLqtTioyGUObVY8D5wXLUbFjhN97eQeA/OaTCYOo/YkEtkpSzsqROrMGE54gQhGhfysSjeH4UOFhIIAw5wyYUc5ODgs7suvzDANJ5toNdRh2BvDYsRFEYrzoyhkwU5ydG88vvUu8KDoioe+Mc47ucW9B/WaVxtZmoUn+pb7crI3BSBST3pAkq5ZMxtBcpS2BrTEP5Sz+2IWyNib3TaaaZbjQTHpCefeFrqwxYHDaD19oRmUNRWKY8IRy3jy8oK0akRjHoSybApPeEKIxXra9m9lmnR0fcoFz6bMqGWNYXWsoWSjIsDMApZzl9BlosGiglDOcL9GswrmIMfr5jjPJxJo6I4xqReK6iiAAKs4qCk8wsmj9ZiLtNj38cftNsU9Oa+qM+OCVK3Dzjqacn9to0SIUieHl+AVdsWacLVca5gyiPjPqQSAcw+bmwsJAAMCknT1498SwCzJWnPkxV6+rgVzGEqMZiqmcicWZqDYkYvRzLM4aLVpY9SocltB3NukNwekPl+SioFwx65RYVWPIue9MDLiQOtuqzapPJHoWC4cvDMYAszaHnjNRSV6gUJBxTzCxsVYOoSC5DO2ei/i7l2xvE0cE5BIwAQhjHBgDDpzPrGCIxy+mrb+Y1Js1UMhYWuVM3BTamCVGP5k1dab4uJPi90WJ/YEymfRNZ4VchuaqmbmrpebMqBtNVcVNahSRyxi2tOTfZ0ssTag4qyDcgTCM6sXtO0kOJSiFrePfr12Lm7blXpyJ/Vp7uyehksuKliS5XEnMOosXZ+IJvRjKGWMMVr06MXj35LALK+yGgmaniVh0Kuxsr8bRQaHwaSswRCOZecrZmAcqhQxNOc7TY4yhs8ksSTnrLkJSYyWyraUKL/dP5zSse2bwsLTezRarDn0OX1EvOKd9IZi1SshzuNCsjivJcwezl4oJdxDr4xbixbY1BsJR+ELRvHrOgNSJjeKGUm2OPWdmnRKra4x4MctFsvielautUSGXobFKmzZO/+igE/VmTU6bq2vrjHD6w4kRBcVk2OnPqd9MpM2mXzDl7NyYpyRhICI7WqtxetRdFj2gRHlAxVkF4Q6Uh3IGCDvDxbiYLhYNFuHL/aW+aTRVa3PahSPmI54sxb6zwwNOmDQKtBVJiRIGUQsXo2JSY7G4dkMdAECrlBd1d9uoVkCtkGHcM1Ocddj0OV2Ii3Q2WXBuzJM19EKcu7SclDNA6P+Z9oXRncPOuNi7IlUxabPq4QtFE/+excDhzb1/SlTOFmoQ9bg7iFarHnqVfNEHUec740ykzSr8/iUXZyPOuIKaR0/0jrYqvNw7lTHpcDzHGWqLQUuGOP0jA05sykE1A4TiDChNKMiIM7dkTZFWqw69k96SpxyKSY2rStBvJrKjrQqcI+H8IQgqzioIdyACU5kUZ8XuNyuUJotQNIQiMbRSv1nBJJSzeOLXkYFpdDZZitbvaDUIytm0L4TBaX9Ri7NXra8FgKLG6AOC4lVjUif1nHlytjSKdDaZEeNC/0cmuie8UClkZZXkuRBsa7UAyK3vLNfiTLQ+9xVx910It8jN3WBUz7b5lpJAOAp3MAK7UY0ak6YkytmEJ5g1VENELM7yDQRRKWRordalVs7yLM7cwUjG8AuxoC3XOWdAfNZZCluj0x9Gz4QXm5stOR1vbZ3w/VzsvjPOOYadgbyUs3ZbfHOlxOrv+UkhqXF1TemUsy3NFshlrKTWxnF3EN987NSCpcIShUHFWQXhDoYXPU5bLM7KbdfQpFVArxKUPAoDKRyjRgmDWoFhZwCBcBSnR9ySG8ilYIsrZyfjiYXFCAMRabBocelKK7a2VBXtmCLiIOpAOIqBKX8BxZkFQPZQkK4C1LlKpsNmgEmjwEs5XKyMuALQKuUwaaVtYJUiTn/KG8650GCMCYOoi6jgpUO8kLUb1MLcvhLY1G788fP47j9OS3qsWJyJ6mE+rKgx4Nz47OJMpZDlXCQDgr0MQMahwKOuYNk5R+bSUq3DlC8MV2C2Te543O6dq3Jm1ilRZ9IUPbHR6Q8jGInlNONMpDVp7mopmUlqLF1xplcrsK7eWNJQkHv29uLHT3fhHydGS/YaRPGg4qyC8AQiMJSgITUXqvUqWHTKvHa6SgljLKEuVFqMfrlSZ9ZgxBnAiWEXIjFelH4zEZtBjUlvECfiSY2Fzjiby2/ftRP/dePGoh4TEHbLx9wBdI17wHnuYSDJx2kwa7KGgnRPLK+kRhGZjGFba1VuyplLmG0lVS1ttGghYyhqnH6+4RZWvXpBbI1iQqrNqEJN/LNcTHyhCPod/kTPZzbE0QP5KmeA8Dt4fsKLcFRIlh1xCTH6+ajmTVVa1JrUeDHDRfKYO1C2YSAirWkSG4/kWZwBQmBXsZWz4RzV7mTa48VZsUN95pJIaqwp7ffwjtZqHOqfTnyOiwnnHI8cGQIAPBz/L1HeUHFWIXDOE1H6iwljDD97+w585OpVi7qOVIjFGSlnxUGcdXYkHi1djKRGEatehUA4hoO9DtgMqqIrsXIZK8nICbtRUM7yTWpMprPJklE5C0Vi6HP4ltWMs2S2tVThzKhHcpO80Lsi/aJZpRCCE3rTpNrlQz62RkBQjhbC1jijnAmBEMW2NQ7GB+l2SRwOXGjPGQCstBsQifGEAjriDOR1sQ8I57cdbdUZ7WVj7vKdcSbSnKY4OzrgRHO1Nq8NhLV1RnSNeYpaPCSsyHls9i5UnP6ZMTeaq7XQqUp77bW9tQr+cDQxWqaYnB51o2vcC7tRjd2nx+HJ0utMLD5UnFUIwUgMkRhf9EAQQJgHU47qVGNVvDijGP2iUGcSlLMjA07YDOq8L3hSYTUIFzfPn5ssar9ZqbEbNJjyhXFqxA0Zm51emiudzWb0Tvow7Ut9Ud7n8CIa48tSOQOEixUAWedOiYw4A6jP0R7VWl28xDd/KIpAOJbXhW+1XrUgUfpiCI/dqEatSQ1fKFrUC7WBeHE27g7Os9SlwuENQZbj6IG5zE1sFIqn/L+rdrRWYXDaj6Hp1GmHY65g2acBJ/op5xRnhwem0dloyeuYa+qMCEVjRY2vFxNW83HiLFSc/tlRd0n7zUR2tAnfd6WwNj5yZBgyBnz5ho0IRWJ4gqyNZQ8VZxWCeKJb7J6zcmal3QCNUvjCJgqn3qzBmDuAl/unsbnJXFQlSuwxcfrDiVjvSkDcMd/bPYmWah3Uivz7TjYn+s5SW8BE9WG5JTWKbG62QMYgqUk+FuMYc+ee+tZqTZ9qlyuFWPSsevWCDKEWlTOrQZX4LI8VcRD1wNRMMdAtQT1zeEOw6FQF9VSuiBdngtWYF6ScAcLmIwAcSPG545xj3B2EvcyVM5NGCYtOOas4c3hDGJjyY1OevcOlCAUZdgbAWP7hKqWO0w9HY+iZ8GJVCfvNROrNWjRatEUPBREsjcO4ZIUN16yvRZ1JQ9bGCoCKswrBExB2N42L3HNWztxyUQse/9gVJRkUuRypM2sR40LDdTH7zQAhkECkmGEgpUZc95EBZ0GWRmBmCGy6/pzlOuNMxKBWYE2dSVK89KQ3hHCUoy7Hi+ZWqxCcUIz5QoUkD1oNKnhD0ZInqY17AqjSKaGUyxJW4mJaGweS1KbupJCOdORrA03GoFag3qzBuTEPXIEI/OFoQcXZ2joj9Cp5ymHU074wQtFY2QVipaKlWjcr7Eb8nsk32GlFjRBMVMw4/RGnH3aDGkp5fpeipY7T7530IhzlWF3CGP1ktrdW4UCvo6g/z8lhN7onvLiusx4yGcN1nfX455kJmqlW5lBxViG4xeKsDGyN5YpaISdLYxFJtpp0FrHfDJidzlZRtsb4Dm80xgtWtMxaJdptehxOY9vrHvfAblQva7V8W4sFh/qmM86dAmbi03NNfRNV9mTFJ1+mfcLFTj79U+JzSt13NuEOwRbfYBBDLYpanE350WjRQiFj6JJQnE16QrDqC1ehVtYYcG7Mk/cA6mQUchm2tlSlDAVJDKAu80AQQOg7S+45Oxrvb92YRxgIIJxfO2z6oiY2jriCBYWLlTpOXwwDKWVSYzIXtFVh1BVEf5oB4vnwyNEhyGUsMf/zus56hKIxSm0sc6g4qxDEvoDFTmsklg/JTdqbi6yciRejKoUMHQX0bS00yfabFQUqZ4Cwi53e1ujBimWqmolsbxXmTp0dy3xBmG+wwExwQuEXQ46ErTGPQJD470OprY3jnmDiM5xQzopoaxyc8qPdpkeLVYeusey2RiHdsvDNhxV2A7rGPQWl/yWzo60Kp0dc8/rmxHTLSijOWqp1GJjyJzY2jgw40WHTw1TAZk+xExtHnP68wkBE2kocp39m1A3GFs5aflGHFQCwp3uiKMfjnOPhI8O4ZIU1cc7d2mxBo0VL1sYyh4qzCsFNPWfEAiPuaDZVaQtKU0uFWiGHUaPAmlojFHlaWhYDW5Ids1BbIyAkNo64AikvkIUY/eXZbyayLT6r7qXe6YyPG3bld1HeFA8RKo5yFi/O8onSN4jKWWlDQSaSijOTVgGVQlYS5WyF3YDuiezKmcMbQnWRlDNfKIpDfdMAkFNqZyp2tFYjxoGX48cTGYvPhctnwPVC01qtQyTGMewUNh6ODDjz7jcTWVtnxMCUv2ghMsMF9ge2lThO/+yoB81VOmhVCzPTbmWNATaDGi90TRbleMeHXOid9OH6zvrEbYwxXN9Zj+fOTqQNoyIWn8q5KlrmuMjWSCwwZq0SWqW86KqZyNaWKlyx2l6SY5eK5OG2xSjONscvlubOO3N4Q5j2hStKVSwFrVYdrHpV1ib5UWcAchnLOVjArFXCqFYkUgYLQew5s+SRPCgWKJOlVs7cwcQGA2NMmHVWJOUsEI5iwhNEU5UWHXY9zk/4MtpRYzGOKV8Y1UVQzsTfxee7BMWh0OJpS4sFchnDwTl9ZwlbY5kHggAzI2X6HD6MuQIYcQXymm+WzJp4KEgxrI3eYATuQCSvAdQipY7TPzPqXrB+M0D4nbxkhRV7uiaL0nf28JFhKGQM16yvm3X7dZ31iMQ4/n58pODXIEoDFWcVgoeKM2KBYYzh2zdvxkdfWZqZdr9914X41LVrSnLsUmI3qlFjVBdkDxLZ0GCGXMbmzTsT+3WWa1KjCGMMW1uqcDBLk/yIKwC7QZ1z6h9jDE1zenPyZdoXhkmjyEsJFpWzUg6i9gYj8IWiswpYYRB1cZSzwXgYSGOVoJyForGMiqQ7EEE0xgsaQC0iFmcv903BolNCoyxM6TCoFVhXb5zXdzbqCsCgVpR85lUxSJ51JoaBbG62FHTMtXVC71UxQkEKidEXKWWcfiiycEmNyVyywooxd1DyrMB0cM7xyNEhXLrSNk/N39RoRku1Dg8fGS7oNYjSQcVZhSAGglDPGbGQXNdZv2DN0JXCxkYzLl5hLcqxtCo5VtUY5vWddVNxluCqtTU4P+nDHw8MpH3MiDOQdwhEc5UW/UWwNTq8obwsjYCQwquUs5IGgkx4hCIs2ZpbzEHUovrYVKVL9EpmCgURLZzJ4UD5YtWrYNEp44mdxbEc7mitxqH+6VlDl8fdwYroNwOEokchY+hz+HBkwAkZQ8FjS5qqtDCoFUVRzsQ+0UJVzlLF6Z+f9CISW7ikRhHx3LKnq7C+s6ODTvQ7/LguydIoIlobX+iaxKSn9PMVidyh4qxC8ATD0CrlFdWfQxBLke++eQu+/9atRTueEAoyPUsZ6h73QqWQJQarL2feekEzLllhxR0PHU97sT/iCqA+z4u8piod+h3+gm1EQix8foUGY0yYdVbCnjMx0W6WcmYqnq1xMFGcadFhEy5oM806K2Qu3FwYY1gZ38goZAB1MjvaquAPR3FiaEYlGnMH8p7JtdAo5ML3R++koJytrDEUPGaGMYbVtYaihIKI4S2FKGdA6eL0z8aTGlctwADqZFqqdWi0aAvuO3vkyDCUcoZr51gaRa7vbEA0xvEYWRvLErrSrxDcgQhZGgliCdLZZMGULzyr76lr3IM2q66g4bxLBZmM4btv3gK1UoaP/v5lhCKxeY8ZdQbyTn1rrtbCH44WbCksdGZXtV5V0p4zUTmzG2bbGl2BSFHmqw1M+aCQMdSaNKjSq1CtV2VUzhze/EcPpEK0NuY66y4dO1qFYdQvJvWdjbmDFREGItJSrYsrZ9PY1GgpyjHX1JlwesRdcDE0M/6isPdTjNMvZrANMJPUWIze4lxgjOHiFVbs6Z5ELMsIkXSIKY2vWGmDOc130rp6Izpsejx8mKyN5QgVZxWCOxiBgYozglhyiIErh5P6zrrHvQn1gRAu4L7xxk4cG3ThO4+fnnWfJxiBOxjJ+6JZnHXWX2AoyJQ3nLetERDsfaW0NYrKmc04s0YxTr8Yc6IGp/2ot2gSGwor7PqMcfqiSlj84qw4xVOdWYOmKm0ijIZzjjFX5dgaAaHv7OSwCxOeUN7Dp+eyts4Ipz+MUVdhn5k9XZOoM2kK7g9MJDYWue/s7JgbLdW6gteXD5essGLaF85boTw84MTgtB/XdTakfYxobdzXM5kYEUGUD1ScVQiCckYx+gSx1FhTZ4RKLkv0nYWjMfQ5fFhRs7yTGudy7YY63LKzBT/5ZzeeOzvTjzFSoD0qOTihEAqxNQJC31QpA0HGPSHIGGYNfbabxEHUhV+ciTH6Ih22zHH6xVbOxLmDhQygnssFbdV48fwUOOdwByPwh6MVkdQo0lqtQzgqqC+FxuiLrClCKMje7kk8d24C735Fe8HrKVWc/plRz4JbGkXEvrMX8uw7e+TIEJRyhletr834uOs3NyDGgceOkbWx3KDirELwBMIwUhgIQSw5VAoZ1jWYEomNfQ4fIjFOylkK/vO69VhZY8An/nAo0cgu2qPyVc7EWWeFhIIEwlH4QtGCCo1qvbqkzfnj7iCq9apZVtnaxCDqwl93YMqHprgKCQAravSY8ITg9IVTPt7hDUKjlBUt+XBbcxV2tFZhZ3txwnoAoe9swhOMx9HHY/SNlWVrBACFjBUcBiIyk9iYn6rDOce3/34atSY1br24teD1lCJOPxSJ4fyEd8HDQETqzVp02PTYk0ffGeccjxwZxuWr7DBnGeuxutaIVTUGsjaWIVScVQjUc0YQS5fNTWYcG3QhFuPoGhPUhg47KWdz0ark+MFbt2LaF8an/3wEnPNEsEC+vSt6tQLVelVBs86m4wWIpYCeM6tBBW8oWpT+r1QkzzgTqUkoZ4UVZ8GI0PPTlBRgIyaNdqVRzxzeMKqLEAYiYtYp8acPXFLUHqGZvrOphLpYabZGQLgIL5Y9z6JToc6kyTux8enT4zjQO4UPX7WqKGsqRZx+z4SY1Lh4ScUXrbBiX48Dkej8HttMvNw/jSFnIGVKYyqu72zAi72OhAOBKA+yFmeMsWbG2G7G2EnG2HHG2Efjt3+ZMXaEMXaIMfY4Yyy9uZUoGE8wQjH6BLFE2dRohicYQfeEB93xi4wOitFPyfoGEz7zmrV44uQY7t3bOxMsUECvUXOVtiBbo2hHLKTYsOpLO+tswhOclzRYrVNBIWMF2xqHpwPgHLNtjWJxNpa6OJvy5T96YKFYVWOASaPAwV5Hoi+vWGmQC0GLVSjOitVvJrKmzpiXchaLcXz78dNortbizTuai7aeYsfpnxkVfrZVi6ScAULfmScYScyok8ojR4ahksvwyiyWRpHrN9eDc+DRo6SelRNSlLMIgE9yztcBuAjABxlj6wF8i3PeyTnfAuBhAF8s3TIJ6jkjiKWLOBz2cL8T3eMe2AzqrJaU5cw7L23DrjV2fOWRk3ju7ATMWiW0qvx34ZuqdQUqZ0JBZSmgOBMtkaVKbBx3B2clNQJCEqbNoC443EEcQJ1sa2yu0kIpZ4nNhrlMekNF6zcrFTIZw/bWKkE5E22NFdRzZtIo8elXr8XbL24r6nHX1hnRNeaZNQNOCo8dH8HxIRc+dvVqqBTFM261WfVFjdM/O+aBjC3unMmLOsS+M+nWxliM49Gjw7h8tR0mideLK+wGrKs34eEjQ3mtkygNWX87OOfDnPOX4n93AzgJoJFzntwNqgdQ3CETRIJojAvKGdkaCWJJssJugE4lx5GBaXSNe8nSmAXGGL5982YYNUrs6Z4sOKGvqUqLwSl/3tHVjnhxVkixIQ5jnizBrDPOeUrlDIjPOivQ1jgQ79dLtjUq5DK0WvXplbMKKM4AYEdbNc6NeXB61A2NUlZxvd8f2LUC6xuK028msqbOiFA0lpOVMBrj+O4/zmBljQFv2NpY1PW02XRFjdM/O+pGq1W/KEmNIjaDGmvrjNjbLb04e7l/CsPOAK6XaGkUub6zHi/1TSc2WYjFJ6etC8ZYG4CtAPbF//+rjLF+ALeAlLOS4Q1FAAAmKs4IYkkilzFsbDTj8ICgnK2g4iwrNoMa3765E0DhCX3NVTqEojGM5mnvm4r3nBUy50xMUSyFrdEdjCAYic3rOQOEHqpCB1EPTvkhY/P7/lbY9WlnnU15C0u3XCh2tFYBAP5xYhQ1Rg0Yo9mDa/IIBXnw5UGcG/PgE69aXfT5jcWO0z8z6l7w+WapuHiFFS+edyAYkdaH+vCRYagUMly9rian1xGLuUePkLWxXJBcnDHGDAD+DOBjomrGOf8857wZwH0APpTmee9ljB1gjB0YHx8vxpqXHe6AUJxRIAhBLF2EUBAnpnzhRbXTVBK71tTgm2/qxPsv7yjoOGJwQr7WxilvEWyNhtLZGsV+qVTKmd2oKXjO2cCUH3UmDZTy2ZcUHXYD+hy+efa3YCQKdzCS6LMrZzY3W6CUMzj94YoKAyklK2sMkMuY5Dj9UCSGu548g42NJrx6Q13R11PMOP1gJIrzk75FS2pM5uIOKwLhGA71TWd9bDgaw6NHh7FrtT3nFphWqx6bGs34K1kbywZJxRljTAmhMLuPc35/iof8L4A3pnou5/ynnPMdnPMddrs9/5UuYzzx4sygph4UgliqdDZZEInb6sjWKJ0372jGJSttBR0jEaefZyjIlC8Eo1pRUB+NUa2AUs5KMoh6QhxAnUY5m/SGcu4fSmZgyj+r30xkhd2AcJTPe1/FdMtyDwQBAI1Sjo2NQqBGvuMalhpqhRwdNr3kxMY/HOhHv8OPT16zBrIiq2ZAceP0z4x4EI1xrKkrrhU0H3Z2WCFj0vrOhHCkIN56YX5BKzdsacCRASfOpbEhEwuLlLRGBuAXAE5yzr+bdPuqpIe9HsCp4i+PAAB3QDiRkXJGEEuX5EQ1mnG2sIgpg/2O/JUzi76wzTPGGKx6NRwl6Dkb96RXzsSAi4kCZqwNTvtn9ZuJiJsM3eOzFQ1RHawE5QwQhlEDqd+/5YrUxMZAOIofPnUWO1qrsGt1aTboixmnv69HKIQujP+bLyZmrRIbG81Z551NeUO464mzeMVKG65ck5ulUeT1WxogY8ADLw/k9XyiuEjZ5rsUwK0ArorH5h9ijL0WwNcZY8cYY0cAXAPgo6Vc6HLGHYwrZ1ScEcSSpaVaB4tOCaWcpbzQJUqHRilHrUmd9yDqKV9xZnZV61UlsTVOZLA11hQ4iDocjWHY6Udjis/sivgmw9y+s6l4gEolKGcAsD3ed1ZJSY2lZm2dEQNTfnji1yfpuGePoOh86to1Je3XK1ac/t5uB1qturznJhabi1dY8XL/FPyh9H1ndz1xBu5AGF+4fn3e73GNUYPLV9vxwEuDeQcjEcVDSlrjc5xzJsbmx/88yjl/I+d8Y/z213HOBxdiwcsRseeMAkEIYunCGMP2liqsqjFCIS9ezDQhjeYqXSJ1MFemfKGC+s1ErAZVSWyN454g5DIGS4rxDGIfVb5JdyPOAGIcKTcUzDolbAb1POUsMReuQoqzne3VaLRosaXJsthLKRtE218ma6MnGMH/PNOFy1bZEtHwpaIYcfqxGMeL5x3Y2b74qpnIJStsCEc5DvQ6Ut5/ZtSNe/f14ZadrYmglny5aVsThpyBnBIiidJAVwAVAPWcEcTy4Gtv3ISfvn37Yi9jWdJUpc3f1ugrTiy8Va8qSVrjhDsEm0GVst9HVIPyHUQthqg0Wub3nAGCtXGuclZpxZlFp8Lzn7mq4N7GpcTaeCHwzzPjGJz2IxCer+z88rkeOLwhfOqaNSVfTzHi9E+NuOH0h7GzvbSFZC5c0FYFhYyl7DvjnOPLD5+AXiXHx1+1uuDXumZ9LYxqBf78Emktiw1JMRUA9ZwRxPJAtJgRC09ztQ4PHR5COBqblzqYjSlvGJYCYvRFqvVqTBbQ+5WOcU8wZRgIIISEMJa/rTHVjLNkVtgNeOzY7IhusThLpeQRlUGjRYsqnRLff/Isvv/kWQCAQa2A1aCCVa+C1aDGnq5JXLO+FpubLSVfT3Kcfr7BLWK/2c6O8lHOdCoFtjRbUhZnu0+P4dmzE/jC9euLstGhUcpxXWc9Hjo8hC+/YQN0KrrmXCzona8APMEIZAzQqRZvICJBEMRSprlKhxgHhqcDaLGmVoFSEYrE4AlGitJzZjWo4A1FEQhHizoAd9ydegA1ACjlMlTrVHkrDuLg2npL6gviFXY9pnxhOJKGTk/5QjBrlWTfrWBkMoaHPvQKnBpxY9ITxKQ3hAlPEJOeECa9QfQ7fLAZVPj3a0uvmgGz4/R35mmh3NftQKNFmzJ5dDG5ZIUVP9p9Dq5AGKZ4TH4oEsNXHj6JDrseb7+4tWivddO2Jvz+xX78/fgIbtzaVLTjErlBxVkF4A5EYFAraPglQRBEiWiqFpSfgSlfTsXZdDzcwlIkWyMgKEsNluKFwkx4ggkbWipqTBqMF2BrrDWpoVakLibFmX3d4x5U6wVFYtIbqpikRiI9zdW6xIzAxabQOH3OOfafd2DXmvIb+XTxCht+8NQ57O924JXrawEA9+ztRfeEF798x46clf5M7GitQnO1Fve/NEjF2SJC21YVgCsQznmoIEEQBCGd5vhuea6JjVPxmV3FSmsEijuImnOOCU8Qtgwx8DVGNUbztDUOpplxJpIqTn/KG6qYpEaiMlDIZWiuzj9O/+yYBw5vCBeVUb+ZyNYWC9QKGfbEgzoc3hC+/8QZXL7annd0fjpkMoYbtzbhuXMTGHHmt2FDFA4VZxWAJxChfjOCIIgSUm/WQC5jOYeCiP1TVUXoObMa4sVZlllnrkAYv36+R1LktdMfRjjKYU/TcwYIxVnegSDTvsScuFQ0VemgkstmhYIkWxwJoli0WfXoybM429ddfv1mIhqlHDvaqhJ9Z9/7xxl4Q1F84bp1JXFU3bS1EZwDDx6iYJDFgoqzCsBNxRlBEERJUchlqDdrclbOpos4s8uqFwqobImN9+3tw51/PYGDfVNZjzke7yXLqJyZ1JjwhBDNcb5RNMYxPB3IOJdPLmNos+nQlaScObyhoiiNBJGMEKfvyytOf2+PA3UmDVrKxKY5l0tW2HBy2IU9XZO4b18v3razBatqC4vOT0ebTY/trVX488GBgkYTEPlDxVkF4AkKPWcEQRBE6RBmneWonInFWTFsjQZptsYnT44CAI4OOLMeczye/phZOdMgGuM5x/iPugKIxHjKAdTJrLAb0B1XzjjnmPKRrZEoPm02Hfzh3OP0OefY1+3Azo7qsu3tF+fEfeC+gzBqlPjYKwuPzs/ETdsacXbMg2ODrpK+DpEaKs4qADf1nBEEQZQcYdZZrsqZ0HNWjCh9o1oBpZxlHETt8IbwUlwxOzoooTiLX6jajemLoZlB1LlZG8VCNlu63Qq7Ab0OH0KRGNzBCMJRToEgRNFJjtPPhe4JLyY8wbKabzaXziYz9Co5pn1hfOyVq0q+uXH9pgaoFDL8+aWBkr4OkRoqzioATzACA9kaCYIgSkpztQ5j7mDKgbrpcHhD0KnkRYm+Z4zBqlfDkaHnbPepMcS4MGcqp+LMkH7208wg6twUh8FpoZDN1HMGCKEg0RhHn8OHKW/xbKAEkUxynH4u7Ot2ACjPfjMRpVyGK9bYsabWiLddVLzo/HSYdUq8al1tYvYjsbBQcVYBuKjnjCAIouQ0J+L0pVsbp3yholgaRar1qoy2xidPjaLGqMabtjeha9wDbzCS8XgTnhBUchlM2vTnEHH4+XiOiY0DDlE5y25rBICucU/COlmtJzcIUVzyjdPf1zMJm0GNDpu+RCsrDt998xY88MFLihqdn4mbtjXC4Q3hmdPjC/J6xAxUnJU5wUgUoUgMRuo5IwiCKClinP5ADqEgQix88QoNq0GV1tYYisTwzzMTuHpdDTY3m8E5cHwoc0/IuDsIm0GVsZfGnqetcXDaD5tBnVU1TI7TnynO0vfAEUQ+5BOnXwn9ZiIapRw61cJdC16+2g6rXoX7XyZr40JDxVmZ4wkIu6LUc0YQBFFamhKzzqQrZw5fuKjKmVWvShvMsa9nEp5gBFevrcXGRjOA7H1nE55govhKh0Yph0mjyNnWODDlzxoGAgjnrxqjerZyRmmNRAnINU6/z+HDiCuAi9rL19K4WCjlMrx+SwOeODEGZ7y3llgYqDhbJGIxjjsfOo6Xs0Qhu+PFGaU1EgRBlJYaoxoqhQwDOYSCTPuKO7OrWq/GpCd1kfTkyTGoFTJcutKGGqMGdSYNjg5MZzyeoJxlV6lqTBqM5WprnPJltTSKdNj16E4uzgxUnBHFJ9c4/Zl+s/INA1lM3ritCaFoDA8fHVrspSwrqDhbJP55dhy/fuE8/nCgP+PjPEFROaPijCAIopTIZAxNFm1Os84c3uL2nFkNKnhD0XmhJJxzPHlqFJeutEGrEmyEGxvNWZWzcQnKGZD7IOpYjGNoOoCmLGEgIivsBnTFbY0quQx6VeEBKgQxl1zj9Pf2TKJar8KqGkOJV1aZbGgwYXWtAfe/VLqB1JFoDO4AKXPJUHG2SNyzpxdAdkuKK/6BpbRGgiCI0tNUrUO/Q5qtMRyNwR2IFN3WCMwfRH12zIN+hx9Xr6tJ3Lap0YzuCW9iE28u4uwy6cWZdOVs3BNEKBrLQTkzwOkP49yYB1V6Zdn39xCVSa5x+vu6Hbiwrfz7zRYLxhhu2taEg71TOY8oyIQ3GMFjx4bxiT8cwgVffQJ3PXG2aMdeClBxtgj0O3x46vQYjGoFTo+4M8Y2iz1nJuo5IwiCKDlNVVrJgSDijLNiBoKIFsm5iY1PxAdPX722NnFbZ1M8FCTNJt+UL4RojOdka5RqB5M640xkRTwU5GDfFIWBECWj3SY9Tn9gyofBaX9ZR+iXAzdubYSMoeCZZ2OuAP53Xx/e+av92Prlf+D9976EJ0+OYdeaGly+2l6k1S4NSI5ZBO7d2wsZY/j4q1bj/z18AqdH3NjcbEn5WHeAbI0EQRALRXOVDlO+sDBfMkuv77QvPrOrqLZGoXCZnDPr7MmTY9jYaEKdeWZeWXIoSKqemQmPOIBamnIWisbg9IdhkfDziAWslEAQYCZOf9oXxoYGk6TnEESu1Julx+kn+s3KePh0OVBr0uAVq+y4/6VBfPyVqyGT5aYyHjjvwJcfOYnD/dMAhJElb9vZiletr8UFbVVQLNBogEqC3pEFJhCO4v8O9ONV62pxzQZhB/RIBmujaFehQBCCIIjSI84665cQCiJaD0tta5z0BPFS39Qs1QwQiq56syatPV4cQC1VOQOkD6IWlbNsA6hFGi1aqBXCJUcx3y+CSCaXOP19PZMwa5VYW2dcgJVVNm/c1ojBaT/29kzm9DzOOb74l+MYcfrxqWtW4+8fuxz//Pcr8cXXrcfFK6xUmKWB3pUF5q+HhzDtC+Ptl7Si0aJFtV6VMW3LTT1nBEEQC4Y460xKcTZVClujYb6tcffpcXAOvHJd7bzHZwoFyVU5AyA5sXFw2o8qnRJ6iRuHMhlLWM6sRUy3JIi5SI3T39fjwAVt1TkrQcuRazfUwahW4E8Hc7M2Hh5w4sSwCx+6ahU+dNUqrKkzUn+fBKg4W2Du2duLVTUGXNxhBWMMmxrNODqYfoioOxiBSiGDWkHJVgRBEKVGDLgYkDDrbKoEtkajWgGVXDZrEPWTJ0dRa1JjY+N8O2Bnoxnd496UaWeicpZTcSYxsXFgyi+530xEtDZWUXFGlJB2m1CcnRl1p33MiDOA3kkfLqJ+M0lolHJcv7kBfzs6kjaAKBW/29cHnUqON2xpKOHqlh5UnC0gh/qncWTAiVsvbk3sHGxqNOPMaPpQEHcgAhOpZgRBEAtCtV4FnUouKU6/FMUZYwzVehUc8Z6zYCSKf54Zx1Vra1LuOG9sEvrOjg/N3+QbdwehUUqLrc/V1jg45ZNsaRQRQ0FIOSNKyS07W2DWKvHG/3kBe7pS2/D2xe151G8mnTdtb4I/HMWjR4clPd4VCOOhw0N4/eYGGCnULieoOFtAfrvnPPQqOW7c2pi4bVOTGdEYx4nh1OqZJ5C9KZ0gCIIoDowxNFdJi9Of8oagUcoSc8eKRbVelbA17u9xwBuKzus3E9kkhoIMzLc2TniEGH0pNiKDWgGdSi7J1sg5x+C0X3KMvkgHKWfEAtBhN+CBD16KOpMGt/1yPx46PH+A8t5uB4xqBdZTOI1ktrVY0GHTS7Y2/uXlQfjDUfzrzpYSr2zpQcUZIDk6uBAc3hAePjKMm7Y1zdpB6GxKf2IFhJ4z2nEgCIJYOJqrpcXpT/nCqC5BuIXVoErYGp88OQa1QoZLV9pSPtZmUKMhTSjIuDsoKQxEROog6klvCIGw9BlnIttbq9Bo0WJ9PV0QE6Wl0aLFn95/Cba0WPCR372Mn/2ze9a13r6eSexoq4Kc+s0kwxjDG7c3YX+PA31Z0jA557hvXx82NJgSG0iEdJZ9cfZv9x3ER35/qOSv838v9iMUieHWi1tn3V5n0sBmUONI2uKMlDOCIIiFpKlKh4Epf9aNuylvSFLsfK5Y9So4vCFwzvHEyVG8YqUtozqXLhRkwhOEPafiTCPJ1phIasyx56y5WofnP3NVQkEjiFJi1inx23ddiOs66/HVR0/iS389gWiMY8wdQPe4N+X4CSIzN25tBJMw8+xQ/zROjbjxrztbKAAkD5Z9caZTKfDc2XHEYqVTz6Ixjnv39uKijmqsrp0d2coYQ2eTGcfSpG15ghGacUYQBLGANFVp4QlGEkOm0zHlCyWGRheTar0ak54gzox6MDDlx9UpUhqT6Wwyo2fCC9ecUJBxd1BSGIiI3aROhIhkQlQVc1XOCGKh0Sjl+OFbt+L2V7Tj1y+cx4f+9yU8e2YCALCzncJAcqXBosUrVtrw55cGMl43/+++PuhVctywpTHtY4j0LPvi7OIOK6Z8YZwaSZ/qUyhPnRrD4LQfb7+4LeX9GxvNODvmhi80PwHHHYhQjD5BEMQC0lwdj9PPYm2c8oVh0RXfdm41qOANRfFIvPH+6nU1GR8vDqNO3uSLRGNw+EK52xpd2W2NgwnljIozovyRyRj+8/r1+ML16/HY8RF85v4j0Knkid8bIjfetL0JA1N+7OtxpLzf6Q/jr0eG8PotjeT8yhMqzlYIsvae7twG6+XCb/ecR61JjVetT7372dloRowDJ1KkbbkDYZio54wgCGLBmJl1ljkUpFTKmZhm+OeDA9jUaEZtPEkxHZtSFGeCLVJajL5IjVEDbyiaNSp7YMoPk0ZB5yaionj3K9rxo3/ZBsYYLuqwQkkDkPPimvWZZ549+PIgAuEY/vVCCgLJl2X/yWywaNFm1WFP10RJjt897sGzZydwy87WtF8Em+KhIHP7zjjnZGskCIJYYJqqxVln6ZWzaIzD6Q+XpOdMLPgGp/1ZVTMAsBrUaLRoZ51DxN6xXJUzAFnVs8Fpf879ZgRRDlzXWY8nP3EFvvmmzsVeSsWiVclx/eZ6/O3YMLxzNnI45/jd/j5sajQnrm2J3Fn2xRkgqGf7ehyIlqDv7N69fVDKGd56YXPax9SaNKg1qef1nflCUcQ4SBYmCIJYQEwaJcxaZUZb4wtdEzkrU1KxJhVU6SL057KpcXbv8oRH+gBqkRqTOIg6c9/ZwJSP+s2IiqW5WpfTpgUxnzdua4IvFMXfjo3Muv2lvpkgECJ/qDgDcFGHFe5ABMeHUody5IsvFMEfD/bj1RvrUWPMbks5Mqc4cweEHQmK0icIglhYmqu1aW2NZ0fd+Lf7XsLqWgNu2NJQ9NcWbY21JjU2NkqLnd/UZMb5SR+cfiEURAz2yDWtEchcnHHOMTCV+4wzgiCWDttbq9Bm1eFPB/tn3S4Ggbx+c/G/F5cTVJxhpu/shTST5PPlL4eG4A5E8PY58fmp2NRoQde4Z5bX3xMUTrIUCEIQBLGwNFl0KZWzMXcA7/jVi9Ao5fjlOy4oSd+V1SAUZ1etrZUcQy2GGxyPb/JNxIdY24zSbZe1puy2xmlfGL5QFI0WKs4IYrnCGMObtjdhb7cD/Q7he9LpC+PhI0O4YWsj9OT4KoisxRljrJkxtpsxdpIxdpwx9tH47d9ijJ1ijB1hjD3AGLOUfLUlosaowcoaA/YUuTj7w4F+rKk1YkdrVdbHdjaZwfnMiRUAXAnljD7kBEEQC4kwiNo/Ky7aF4rg9t8cgMMbwi9vuwBNJeq7MmqU+OabOvHhq1ZKfo4YCiLOOxt3B2FQK6BTST9/mLVKqBSyjHH64oyzUv3sBEFUBjdua5o18+z+lwcQjFAQSDGQopxFAHySc74OwEUAPsgYWw/gHwA2cs47AZwB8NnSLbP0XNxhxYvnHQhHY0U53rDTj5f7pvH6LQ2Sdj43zjmxAkm2RtqBIAiCWFCaq3UIRWKJ3q1ojOMjvzuEY4NO/PBftpa82f3NO5rRkIM6Va1XCaEgYnHmCcJmyC2shDEGu0Gd0dY4OE0zzgiCABotWly6Ymbm2e/292Fzk5lGFBSBrMUZ53yYc/5S/O9uACcBNHLOH+ecix68vQCaSrfM0nPJCit8oSiODEwX5XiPxZskX72xTtLj7UY1GsyaWcWZh3rOCIIgFoVEnH7c2viVR07giZOjuON1G/DKNGNRFpvOpplQkIkcB1CL1JjUGHOntzXOKGdUnBHEcueN2xvR7/Djf57pwplRDwWBFImces4YY20AtgLYN+eudwH4W5rnvJcxdoAxdmB8fDyvRS4EOzvi886KZG3827ERrK41YIXdIPk5GxvNODqQrJxRzxlBEMRiIBYf/Q4/fvlcD371/Hm8+xXtuO2StsVdWAY2NprRO+mD0xeOK2d5FGdGNcZcqZWzF8878OChQRjUCpi1tGlIEMudazfUwaBW4DuPn4ZBrcD1nRQEUgwkF2eMMQOAPwP4GOfclXT75yFYH+9L9TzO+U855zs45zvsdnuh6y0Z1XoV1tWbijKMetwdxIvnHXjNxvqcntfZZEb3hBeueFEmhoNQzxlBEMTCIvZU/e/+Pnz5kRO4dkMtPvfadYu8qsx0xq2Wx4acmPDkqZwZNbNsjZxz7D49hpvvfgE3370HQ9MB3PG69ZKDSgiCWLroVApct6keMQ68YWsDBYEUCUnvImNMCaEwu49zfn/S7bcBuB7A1Zzz4g8JW2Au7rDivn29CEaiUCvkeR/n78dHwDnwmk3SLI0im5osAIBjg05cssKWCATR59DQTRAEQRSOViWHzaDG/h4HNjdbcNdbtkIuK++CZGODUJwd7J3CtC+cU4y+SI1RDac/DH8oiidOjuJ/nu7CiWEXGswa3Pm69XjLBS3QqvI/PxIEsbS49eJW7D49htsublvspSwZsl71M2F77BcATnLOv5t0+6sBfBrAFZzz9JM6K4iLV1jxy+d78HLfNC6K2xzz4bFjI2i36bGm1pjT8xJpWwNCceYJRGBQK8r+goAgCGIpsrrWAI1Shp+/fUdFFCRVehWaqrR4+vQYAMCWZ88ZAFz1nacx7Aygw67Ht97UiRu2NEKloOk7BEHMZmOjGfs//8rFXsaSQookcymAWwEcZYwdit/2OQA/AKAG8I+4vWEv5/z9pVjkQnFhezVkTJh3lm9xNuUNYU/3JN57eUfOtg8xbUsMBXEHwmRpJAiCWCR+fMs2MMYqqr+qs8mMv8UDqfJRzlbWCH3SNoMaX7x+Pa7ZUEcbhARBEAtI1it/zvlzAFJ9Mz9a/OUsLmatEhsbzdjbNQn8//buPsiusj7g+Pe32SRsErOQEDAm4S1qFUMwuqsEcGTTgQIdJaJGDEEdWplS7MiIQrCj4ktn2rSotQN0HFBRoEl4qXWmkCkDq6AIZFEkgaC8iLwYkgAJCQRCsvv0j3OXbMLd7N3N7jnn3nw/M3f23Ofcc8/v/nLnyf72Oc9zThzae9z60Dq6exKnDnK+Wa/Z01tfL85e2paNnEmS8rf/uMEtRV8Gs6a1cvOqrDgbysjZew+dxK8vnsebJ+7nvDJJKoDXKOxm7hGT+e1TG3nlte4hHX/L6rVMP6CFWdMmDun4o6bvXG1ry6s7HDmTJNVs9rT9X98eyoIgAFNbWyzMJKkgFme7mTtzMtu7E11/emHQx25+dTu/fPQ5Tn7Xm4f8H1vvf6yrnnmRLdt2MMF7nEmSatT3D4ODvQm1JKl4Fme7aT9sEs1NMaT7nd2+Zj3bu9OgV2nsq3dRkAee2eScM0nSoOw/bgyHTBrHxP2a92rVYUlSMSzOdjN+bDOzp7cO6X5nN69ay8ETxzJnxgFDPn/ruNEcMmkcq595Mbus0TlnkqRBeP/hkzhiyoSiw5AkDYG/+Vdx7MwDueIXjw1qQY6Xt+3gF3/YwBntM2jay5Wtjpreyu+e2sRLzjmTJA3SN06bxfaenqLDkCQNgSNnVcydOZnunsTKP9Y+7+znv9/Ath09nDzEVRr7mj2tlac3vsIr27uZMNY5Z5Kk2rWMGcVE5ytLUl2yOKvivYcewJhRTdz12HM1H3PL6rVMHj+G9x0+aa/Pf9T01te3HTmTJEmS9g0WZ1XsN3oUcw7Zv+Z5Z69u7+b2h9cP2806Z03bWZxNsDiTJEmS9gkWZ/2YO3MyD/55My9u3T7ga+/4wwa2vtbNKbOGvkpjXxP3G83hB46vbFucSZIkSfsCi7N+HDvzQFKCu/848OjZitXP0toymrkzJw/b+XuX1H+T8wYkSZKkfYLFWT+OntHKfqObBrzf2Ws7erh1zTpOPPJgRo8avnTOrsw7q3W1SEmSJEn1zd/8+zG2eRRth07i7gHmnf3qsefY8uqOYbuksdcpR01l1TMv8vaD3zSs7ytJkiSpnBw524O5Myfz8LNbeP6lbf2+ZsWqZ5kwtpnj33bgsJ572v4t/PsZc2gZM2pY31eSJElSOTlytge9c8g+d91vOWp6K4dMGschk8Zx6ORxvGX/FgL4v4eeZd47DmJss0WUJEmSpKGzONuD2dNaOX3ONH739CZ+dNdGXtvR8/q+poApbxrLxq3bOfWo4b2kUZIkSdK+x+JsD5pHNfHtT7wbgJ6exLotr/Lk81v50wtbeeqFrTz5wlZ29CRO+IuDig1UkiRJUt2zOKtRU1MwtbWFqa0tvP+I4VsyX5IkSZLABUEkSZIkqRQsziRJkiSpBCzOJEmSJKkELM4kSZIkqQQsziRJkiSpBCzOJEmSJKkELM4kSZIkDZ8lS6Czc9e2zs6sXXtkcSZJkiRp+LS3w4IFOwu0zs7seXt7sXHVAW9CLUmSJGn4dHTA8uVw+ukwdy6sXJk97+goOrLSc+RMkiRJ0vDq6IDDD4dbboGPftTCrEYWZ5IkSZKGV2cnPPkktLTAVVfB7bcXHVFdsDiTJEmSNHx655hdfz1873uwYwfMn//GRUL0BhZnkiRJkoZP3zlmZ58NxxwDTU1wxx1FR1Z6LggiSZIkafhceOHO7aYmuPxyaGuD9euLi6lODDhyFhEzIqIzItZExIMR8flK+8crz3siom3kQ5UkSZJUd+bMgfPOgyuugPvuKzqaUqvlssYdwAUppXcCxwDnRcSRwGrgdMDxSUmSJEn9++Y34aCD4Nxzobu76GhKa8DiLKW0NqX0m8r2FmANMC2ltCal9PuRDlCSJElSnWtthUsvzeajXXll0dGU1qAWBImIw4A5wD0jEo0kSZKkxrRwIZxwAlx8MWzYUHQ0pVRzcRYRE4AbgfNTSpsHcdw5EdEVEV0b/EeQJEmS9k0RcNllsGULLF5cdDSlVFNxFhGjyQqza1NKNw3mBCml76eU2lJKbVOmTBlKjJIkSZIawZFHwnHHwQ9+AHfdtbO9sxOWLMm2lyx54z3R+u5vYLWs1hjAVcCalNK3Rz4kSZIkSQ3rwguzJfbPOiu7QXXvTavb27P97e3Z894Cbff9DSxSSnt+QcTxwJ3AKqCn0vxlYCzwH8AUYBNwf0rpr/b0Xm1tbamrq2svQ5YkSZJU177+dbjkEpgyBTZuhEMPhZaWrFjr7s4ufdywAc45B66/fudNrRtARNyXUqp6K7IBi7PhZHEmSZIkiZTggx+EO++Et741u9yxuRlGjdr587rroKcHvvIV+MY3io542OypOBvUao2SJEmStNd+/nNYsyYrvDZtgvPPhxtvzEbIrrsOzj47K9LGj89uXr37HLQGZXEmSZIkKT+9c8iWL89GxJYvrz7H7Mtfhpdfzuao9d3fwCzOJEmSJOVn5cpd55B1dGTPV67cdf9FF2U3r169etf9Dcw5Z5IkSZLK6bOfhaVLYd06GDeu6GiGhXPOJEmSJNWfRYvgpZfgZz8rOpJcWJxJkiRJKqcPfABmzIBrrik6klxYnEmSJEkqp6YmWLgQVqzI7nvW4CzOJEmSJJXXokXZjamXLSs6khFncSZJkiSpvGbNgqOPhmuvLTqSEWdxJkmSJKncFi2Cu++GRx8tOpIRZXEmSZIkqdw++UmIaPjRM4szSZIkSeU2bVp2s+prroEc79OcN4szSZIkSeW3aFF2WeO99xYdyYixOJMkSZJUfqefDvvt19CXNlqcSZIkSSq/1lb48Idh6VLYvr3oaEaExZkkSZKk+nDmmdnNqG+9tehIRoTFmSRJkqT6cPLJMGlStjBIA7I4kyRJklQfvvtdOP54+OlPYcuWrK2zE5YsKTKqYWNxJkmSJKk+tLfDHXfAK69kBVpnJyxYkLU3gOaiA5AkSZKkmnR0wI03woknwiWXwObNsHx51t4AHDmTJEmSVD/mzYPjjoPHH4czzmiYwgwsziRJkiTVk85OePBBaGqCK6/MnjcIizNJkiRJ9aF3jtkNN8CnPgUpwcc/3jAFmsWZJEmSpPqwcuXOOWZf+AJs2wbz52ftDSBSSrmdrK2tLXV1deV2PkmSJEkN7KSTYPVqeOIJGDOm6GhqEhH3pZTaqu1z5EySJElSfbrgAli7FpYuLTqSYWFxJkmSJKk+nXQSzJoFl16azT+rcxZnkiRJkupTRDb37IEH4Lbbio5mr1mcSZIkSapfCxfCwQdno2d1zuJMkiRJUv0aOxY+9zlYsSK7/1kdsziTJEmSVN/OPRdaWuA73yk6kr0yYHEWETMiojMi1kTEgxHx+Ur7pIi4NSIeqfw8YOTDlSRJkqTdTJ4Mn/kM/OQnsG5d0dEMWS0jZzuAC1JK7wSOAc6LiCOBxcBtKaW3AbdVnkuSJElS/s4/H7Zvh8suKzqSIRuwOEsprU0p/aayvQVYA0wDTgOurrzsamD+CMUoSZIkSXv29rfDhz4El18Or7xSdDRDMqg5ZxFxGDAHuAc4OKW0FrICDjho2KOTJEmSpFpNnQrPPw8//vHOts5OWLKkuJgGoebiLCImADcC56eUNg/iuHMioisiujZs2DCUGCVJkiRpYAsWQHMzfOtb0NOTFWYLFkB7e9GR1aSm4iwiRpMVZtemlG6qNK+LiKmV/VOB9dWOTSl9P6XUllJqmzJlynDELEmSJElvNG8eLF4MTz+d3f9swQJYvhw6OoqOrCa1rNYYwFXAmpTSt/vs+hnw6cr2p4H/Gf7wJEmSJGkQvvY1mDgRli3Lltivk8IMahs5Ow44C5gXEfdXHqcC/wycGBGPACdWnkuSJElSce68E5qa4EtfgiuuyC5trBPNA70gpfRLIPrZ/ZfDG44kSZIkDVHvHLObbspGzE45pa4ubRzUao2SJEmSVForV+5aiHV0ZM9Xriw2rhpFSim3k7W1taWurq7czidJkiRJZRIR96WU2qrtc+RMkiRJkkrA4kySJEmSSsDiTJIkSZJKwOJMkiRJkkrA4kySJEmSSsDiTJIkSZJKwOJMkiRJkkrA4kySJEmSSiDXm1BHxAbgT7mdsHYHAs8VHcQ+xHzny3znz5zny3zny3zny3znz5zna1/M96EppSnVduRanJVVRHT1d5duDT/znS/znT9zni/znS/znS/znT9zni/zvSsva5QkSZKkErA4kyRJkqQSsDjLfL/oAPYx5jtf5jt/5jxf5jtf5jtf5jt/5jxf5rsP55xJkiRJUgk4ciZJkiRJJVBXxVlEnBwRv4+IRyNicZ/2ZRFxf+XxRETc38/xkyLi1oh4pPLzgEr7mX2Ovz8ieiLi3VWOv7Zy/tUR8YOIGF1pj4j4XiWuByLiPSOTgfyVOOfviIhfR8S2iPjiyHz6/JU432dWvtsPRMRdEXH0yGQgXyXO92mVXN8fEV0RcfzIZCBfI5jv0RFxdUSsiog1EXFxP8cfHhH3VI5fFhFjKu324fnn3D68+vEjlW/78OrHj1S+7cOrHz8i+e6zvz0iuiPiY8P4sfOXUqqLBzAKeAw4AhgD/A44ssrrLgW+2s97LAEWV7YXA/9S5TVHAY/3c/ypQFQe/wWc26f9lkr7McA9RedrH8j5QUA78E/AF4vO1T6Q72OBAyrbpzTCd7zk+Z7AzsvOZwMPF52vMucbWAgsrWyPA54ADqty/HLgjMr2f9qHF5pz+/B8820fnm++7cNzzHef+G4HbgY+VnS+9uZRTyNn7wMeTSk9nlJ6DVgKnNb3BRERwAKyX3KqOQ24urJ9NTC/yms+2d/xKaWbUwVwLzC9z/v+uLLrbmD/iJha8ycrr9LmPKW0PqW0Etg+qE9UbmXO910ppY2Vl93Nzu9+PStzvl+qtAGMBxphcvBI5jsB4yOiGWgBXgM2V3nvecANVY63D8855/bhuefbPry6kcq3fXh1I9WHA/wDcCOwfpCfq3TqqTibBjzV5/nTlba+PgCsSyk90s97HJxSWgtQ+XlQldd8gv6/VEA2/AqcBawYRGz1qMw5b0T1ku+/IRtlqHelzndEfCQiHgb+Fzh7T8fXiZHM9w3Ay8Ba4Eng31JKL+x27GRgU0ppR5Xz24fnn/NGVC/5tg/facTybR9e1YjkOyKmAR8hG02re/VUnEWVtt3/EtHvX6hrOkHE+4GtKaXVA7z0cuCOlNKdg4itHpU5542o9PmOiA6y/9gvGmoMJVLqfKeU/jul9A6yvwx+c6gxlMhI5vt9QDfwFuBw4IKIOGIQ57cPH7y9zXkjKn2+7cNrttf5tg8flL3N93eBi1JK3UM4d+nUU3H2NDCjz/PpwJ97n1SGQk8HlvVp+2FlcuLNlaZ1vZeqVH7uPvR5BgP/hftrwBTgC7XGVsfKnPNGVOp8R8Rs4ErgtJTS84P4XGVV6nz3SindAcyMiANr+VAlNpL5XgisSCltTymtB34FtO12/ufILldsrnJ++/CdbXnlvBGVOt/24cV8v+3Dc8l3G7A0Ip4APgZcHhHz9+KzFiuVYOJbLQ+gGXicrKLunYj4rj77TwZ+McB7/Cu7TkRc0mdfE9kX74g9HP+3wF1Ay27tf82uk8nvLTpfjZ7zPvsvoXEmk5c238AhwKPAsUXnaR/J91vZOZn8PcAzvc/r9TGS+SYbBfhhpQ8eDzwEzK5y/PXsOpn87yvb9uE557zPfvvwHPKNfXje+bYPzzHfu73mR9T5giCFBzDIL8apwB/IVov5xyr/GH83wPGTgduARyo/J/XZdwJw9wDH76ic+/7K46uV9gAuq+xbBbQVnat9IOdvJvvFdzOwqbI9seh8NXC+rwQ29mnvKjpXDZ7vi4AHK22/Bo4vOldlzjfZymjXV3L2EPClfo4/gmzhlUcrrx9babcPzz/n9uH55ts+PN9824fnmO8qcdR1cdZb1UuSJEmSClRPc84kSZIkqWFZnEmSJElSCVicSZIkSVIJWJxJkiRJUglYnEmSJElSCVicSZIkSVIJWJxJkiRJUglYnEmSJElSCfw/hM0WFBuO9K4AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAC+cElEQVR4nOydd3xkV3n+nzO9z0ga9e19vcXrde9rDNhgiGkGEtNbKCYJJYGQ8AOSkNASCARwCCUEHJoBm2oMYd3r2iy2t692tatVn6bp/fz+uHOuRtKUe2fuNOn9fj77saVpV6PRvec9z/M+L+OcgyAIgiAIgiAIgmgtulYfAEEQBEEQBEEQBEHFGUEQBEEQBEEQRFtAxRlBEARBEARBEEQbQMUZQRAEQRAEQRBEG0DFGUEQBEEQBEEQRBtAxRlBEARBEARBEEQbQMUZQRAEQRAEQRBEG0DFGUEQRIfCGIsW/cszxhJFX9/a6uOrBcbYKGPs+a0+jkowxu5jjL2tQc+9hTF2N2NsljEWYIz9hjG2teh2xhj7J8bYOGNsrnAsO4puX8cY+xVjLMgYm2KM/QdjzFB0+/WMsaOMsThjbD9jbO2i5/40Y8xf+PcZxhhrxM9JEARBlIaKM4IgiA6Fc+4Q/wCcBfDSou/d0erjW0xxkdDJr9FgPAB+BmArgH4ATwC4u+j2WwC8BcDVALoBPArgO0W3fwXADIBBAHsAXAvg3QDAGPMC+AmAjxYeewDAD4oe+w4ALwNwPoDdAF4C4M81+8kIgiCIqlBxRhAEscxgjOkYYx9mjI0UFJAfMsa6C7etY4xxxtibGWNjBYXlnYyxixljzzDGQoyx/yh6rjcxxh5mjH2poNQcZYxdX3S7mzH2DcbYZEHN+SfGmH7RYz/PGAsA+DhjbCNj7PeF4/Ixxu5gjHkK9/8OgDUAfl5Q//6GMbaPMXZu0c8nq2uMsY8zxu5kjH2XMRYG8KYqx7SJMXZ/4WfxMcaKi5Pi17AUntNfeE+eZIz1M8Y+Cakw+o/CMf5H4f7bGGO/Lahdxxhjry56rv9mjN1euD1SeP21pV6Xc/4E5/wbnPMA5zwD4PMAtjLGegp3WQ/gIc75Kc55DsB3AZxX9BTrAfyQc57knE8BuAeAUNZeAeAQ5/xHnPMkgI8DOJ8xtq1w+xsB/Cvn/BznfBzAvwJ4U6njJAiCIBoDFWcEQRDLj7+ApIBcC2AIQBDAlxfd51IAmwG8BsAXAPwdgOdDWsi/mjF27aL7ngLgBfAxAD8RxR6AbwPIAtgE4AIALwTwthKP7QPwSQAMwL8Ujms7gNWQigRwzl+PhQrgZxT+vDcDuBOS6nRHlWP6RwD3AugCsArAl8o85xsBuAvH1wPgnQASnPO/A/AggNsKx3gbY8wO4LcA/rfwc/4pgK8U2w0B3Fp4bS+Ag4XjVMI1AKY45/7C198HsIlJ9kdj4TjvKbr/vwN4LWPMxhgbBvCiott3APijuCPnPAZgBPPF24LbC/9f/DMQBEEQDYaKM4IgiOXHnwP4u4ICkoJU/LxqkeXvHwvqyr0AYgC+xzmfKSgmD0IqagQzAL7AOc9wzn8A4BiAmxhj/ZAW/3/FOY9xzmcgKT2vLXrsBOf8S5zzLOc8wTk/yTn/Lec8xTmfBfBvkIrIeniUc34X5zwPwFXlmDIA1gIYKvz8D5V5zgykomwT5zzHOX+Kcx4uc9+XABjlnH+r8HM+DeDHAF5VdJ9fcs4fKPw+/g7A5Yyx1ZV+KMbYKkhF9fuLvj0J6fdzDEACks3xfUW33w+poAoDOAfJunhX4TYHgLlFLzMHwFnm9jkADuo7IwiCaB5UnBEEQSw/1gL4acGOFwJwBEAOUg+TYLro/xMlvnYUfT3OOedFX5+BpHytBWAEMFn0Wv8JST0SjBUfGGOsjzH2/YLdMAzJludV/yMuoPg1qh3T30BS755gjB1ijL2lzHN+B8BvAHyfMTZRCMcwlrnvWgCXitcrvOatAAZKHSPnPAogAOk9LAljrBeSwvcVzvn3im76GICLISl6FgCfAPD7glKmKxzzTwDYIb2vXQA+XXhsFFLxWowLQKTM7S4A0UW/e4IgCKKBUHFGEASx/BgD8CLOuafon6WgitXC8CL1ZA2AicLrpAB4i17HxTkvtsItXtj/S+F7uznnLgCvg1Qslbt/DIBNfFHoHetddJ/ix1Q8Js75FOf87ZzzIUgK41cYY5sW/8AFlfATnPPzAFwBSR17Q5ljHANw/6L328E5f1fRfWSVjDHmgBTIMbH4dQu3d0EqzH7GOf/kopvPB/CDgiqa5Zz/N6QC7LzCc64G8B8FZdIP4FsAXlx47KHC48Xr2AFsLHx/ye2F/z8EgiAIomlQcUYQBLH8uB3AJ0XoBGOslzF2cx3P1wfgLxhjRsbYLZB6xX7FOZ+EVET8K2PMxaQgko2L+tUW44Sk0IQKPVF/vej2aQAbir4+DsDCGLupoFz9PQBzuSevdkyMsVsKdkFA6sXjkFTFBTDGrmOM7SoUg2FINkdxv8XH+AsAWxhjry+8R0YmBaxsL7rPixljVzHGTJB6zx7nnC9QFQuv64Kkfj3MOf9wiR/xSQC3FMJJdIyx10NSCk9yzn0ATgN4F2PMUAhaeSPm+8h+CmAnY+yVjDELgP8H4BnO+dHC7f8D4P2MsWHG2BCADwD47xLHQBAEQTQIKs4IgiCWH/8OKY79XsZYBMBjkII5auVxSOEhPkihHq8qCqh4AwATgMOQip07IcW4l+MTAPZC6mf6JSQLXjH/AuDvC/bAD3LO5yBFwX8dwDgkJe0cKlPpmC4G8DhjLArpPfpLzvnpEs8xUHhcGJIt9H5IFkxAen9fxaSkyy9yziOQQkdeC0kNm4JkJSwuIv8XkiUxAOBCSLbHUry8cIxvZgvn2K0p3P5pSMXWQQAhSP1mr+Schwq3vwLAjQBmAZyEFIzyPgAo9Pi9EtLvMAjpM1HcH/ifAH4O4FkAz0H6/fxnmeMkCIIgGgAjKzlBEARRDsbYmwC8jXN+VauPpVNhjP03gHOc879v9bEQBEEQ7Q0pZwRBEARBEARBEG0AFWcEQRAEQRAEQRBtANkaCYIgCIIgCIIg2gBSzgiCIAiCIAiCINoAKs4IgiAIgiAIgiDaAEMzX8zr9fJ169Y18yUJgiAIgiAIgiDahqeeesrHOe8tdVtTi7N169bhwIEDzXxJgiAIgiAIgiCItoExdqbcbWRrJAiCIAiCIAiCaAOoOCMIgiAIgiAIgmgDqDgjCIIgCIIgCIJoA5rac0YQBEEQBEEQ7UImk8G5c+eQTCZbfSjEMsRisWDVqlUwGo2KH0PFGUEQBEEQBLEiOXfuHJxOJ9atWwfGWKsPh1hGcM7h9/tx7tw5rF+/XvHjyNZIEARBEARBrEiSySR6enqoMCM0hzGGnp4e1aosFWcEQRAEQRDEioUKM6JR1PLZouKMIAiCIAiCIFrEJz/5SezYsQO7d+/Gnj178PjjjwMA3va2t+Hw4cOavMa6devg8/kq3uef//mfVT/vf//3f+O2225b8L1vfetb2LNnD/bs2QOTyYRdu3Zhz549+PCHP6z6+ZvBF77wBcTj8VYfhgz1nBEEQRAEQRBEC3j00Ufxi1/8Ak8//TTMZjN8Ph/S6TQA4Otf/3pTj+Wf//mf8ZGPfKTu53nzm9+MN7/5zQCkonD//v3wer11P2+tcM7BOYdOV1qT+sIXvoDXve51sNlsip8zm83CYGhMGUXK2Qrk2XNzmJqjVCKCIAiCIIhWMjk5Ca/XC7PZDADwer0YGhoCAOzbtw8HDhwAADgcDnzoQx/ChRdeiOc///l44oknsG/fPmzYsAE/+9nPACxVsV7ykpfgvvvuW/KaL3vZy3DhhRdix44d+NrXvgYA+PCHP4xEIoE9e/bg1ltvBQB897vfxSWXXII9e/bgz//8z5HL5QBIytiWLVtw7bXX4uGHH1b8s372s5/FxRdfjN27d+NjH/sYAGB0dBTbtm3D2972NuzcuRO33norfve73+HKK6/E5s2b8cQTTwAAPv7xj+P1r389nve852Hz5s34r//6r6rPu337drz73e/G3r17MTY2hne961246KKLsGPHDvl+X/ziFzExMYHrrrsO1113nfxeC+6880686U1vAgC86U1vwvvf/35cd911+NCHPoSRkRHceOONuPDCC3H11Vfj6NGjit+Liohqstw/AKsB7AdwBMAhAH9ZdNt7ARwrfP8z1Z7rwgsv5ERr8UWSfNvf/5q//wcHW30oBEEQBEEQLeXw4cMtff1IJMLPP/98vnnzZv6ud72L33ffffJt1157LX/yySc555wD4L/61a8455y/7GUv4y94wQt4Op3mBw8e5Oeffz7nnPNvfetb/D3veY/8+Jtuuonv37+fc8752rVr+ezsLOecc7/fzznnPB6P8x07dnCfz8c559xut8uPPXz4MH/JS17C0+k055zzd73rXfzb3/42n5iY4KtXr+YzMzM8lUrxK664YsFrLka87m9+8xv+9re/nefzeZ7L5fhNN93E77//fn769Gmu1+v5M888w3O5HN+7dy9/85vfzPP5PL/rrrv4zTffzDnn/GMf+xjfvXs3j8fjfHZ2lq9atYqPj49XfF7GGH/00UflYxE/dzab5ddeey3/4x//uOS9Wfw+/OhHP+JvfOMbOeecv/GNb+Q33XQTz2aznHPOn/e85/Hjx49zzjl/7LHH+HXXXVfyPSj1GQNwgJepl5TocVkAH+CcP80YcwJ4ijH2WwD9AG4GsJtznmKM9WlTLhKN5BsPnUYik8NYsH28tQRBEARBEK3mEz8/hMMTYU2f87whFz720h1lb3c4HHjqqafw4IMPYv/+/XjNa16DT33qU7JaIzCZTLjxxhsBALt27YLZbIbRaMSuXbswOjqq6pi++MUv4qc//SkAYGxsDCdOnEBPT8+C+/zf//0fnnrqKVx88cUAgEQigb6+Pjz++OPYt28fent7AQCvec1rcPz48aqvee+99+Lee+/FBRdcAACIRqM4ceIE1qxZg/Xr12PXrl0AgB07duD6668HY2zJz3bzzTfDarXCarXiuuuuwxNPPIGHHnqo7POuXbsWl112mfz4H/7wh/ja176GbDaLyclJHD58GLt371b13t1yyy3Q6/WIRqN45JFHcMstt8i3pVIpVc9VjqrFGed8EsBk4f8jjLEjAIYBvB3ApzjnqcJtM5ocEdEw5uIZ/M+jZwAAE6FEi4+GIAiCIAiC0Ov12LdvH/bt24ddu3bh29/+9pLizGg0ysl/Op1OtkHqdDpks1kAgMFgQD6flx9TKsL9vvvuw+9+9zs8+uijsNls2LdvX8n7cc7xxje+Ef/yL/+y4Pt33XVXTQmEnHP87d/+Lf78z/98wfdHR0fln6XSzwYsTT5kjFV8XrvdLn99+vRpfO5zn8OTTz6Jrq4uvOlNbyobcV/8OovvI54zn8/D4/Hg4MGD1X501ajqZGOMrQNwAYDHAXwWwNWMsU8CSAL4IOf8yRKPeQeAdwDAmjVr6j1eog6+/egooqks9m3txcMnfcjlOfQ6io8lCIIgCIKopHA1imPHjkGn02Hz5s0AgIMHD2Lt2rU1Pde6devwla98Bfl8HuPj43K/VjFzc3Po6uqCzWbD0aNH8dhjj8m3GY1GZDIZGI1GXH/99bj55pvxvve9D319fQgEAohEIrj00kvxl3/5l/D7/XC5XPjRj36E888/v+qx3XDDDfjoRz+KW2+9FQ6HA+Pj4zAajap+vrvvvht/+7d/i1gshvvuuw+f+tSnYLVaFT1vOByG3W6H2+3G9PQ0fv3rX2Pfvn0AAKfTiUgkIoeW9Pf348iRI9i6dSt++tOfwul0Lnk+l8uF9evX40c/+hFuueUWcM7xzDPPKHovqqG4OGOMOQD8GMBfcc7DjDEDgC4AlwG4GMAPGWMbCj5KGc751wB8DQAuuugiDqIlxFJZfPPh07h+Wx+u29aH+47NwhdNod9lafWhEQRBEARBrEii0Sje+973IhQKwWAwYNOmTXJIh1quvPJK2SK4c+dO7N27d8l9brzxRtx+++3YvXs3tm7dusD29453vAO7d+/G3r17cccdd+Cf/umf8MIXvhD5fB5GoxFf/vKXcdlll+HjH/84Lr/8cgwODmLv3r1yUEglXvjCF+LIkSO4/PLLAUh2zu9+97vQ6/WKf75LLrkEN910E86ePYuPfvSjGBoawtDQkKLnPf/883HBBRdgx44d2LBhA6688soFP/eLXvQiDA4OYv/+/fjUpz6Fl7zkJVi9ejV27tyJaDRa8njuuOMOvOtd78I//dM/IZPJ4LWvfa0mxRlbVEuVvhNjRgC/APAbzvm/Fb53DyRb432Fr0cAXMY5ny33PBdddBEXqTNEc/naAyP4518dxU/efQVC8TTe8t8H8JN3X4G9a7pafWgEQRAEQRAt4ciRI9i+fXurD4Oowsc//nE4HA588IMfbPWhqKbUZ4wx9hTn/KJS968apc8k4+U3ABwRhVmBuwA8r3CfLQBMACpPtyNaQjKTw9ceOI0rN/Vg75ouDHmsAIDJEMXpEwRBEARBEES7oMTWeCWA1wN4ljF2sPC9jwD4JoBvMsaeA5AG8MbFlkaiPfjhgTH4oil86TopyWbQLRVnFApCEARBEARBtDsf//jHW30ITUNJWuNDAMqlRrxO28MhtCadzeP2+0Zw4douXLahGwDgshjgMBswTsUZQRAEQRAEQbQNVW2NRGdz1x/GMTGXxG3P2yRHgzLGMOSxYHKOijOCIAiCIAiCaBeoOFvGZHN5fOW+k9g57MK+Lb0Lbht0WzFBPWcEQRAEQRAE0TZQcbaM+eWzkxj1x3HbdZuWDO4b8lip54wgCIIgCIIg2ggqzpYp+TzHl/efxOY+B1543sCS24c9FvhjaSQz1WdTEARBEARBEI1Br9djz5492LlzJ2655RbE4/Gan+tNb3oT7rzzTgDA2972Nhw+fLjsfe+77z488sgj8te33347/ud//qfm1xaMjo5i586dC7738Y9/HJ/73OdUPY9Wx9NpKB5CTXQW9x6exvHpKL7wmj3Q6ZbmuYjExsm5JNZ77c0+PIIgCIIgCAKA1WrFwYMHAQC33norbr/9drz//e+Xb8/lcqqGNQu+/vWvV7z9vvvug8PhwBVXXAEAeOc736n6NRpFNpttq+NpJqScLUM4l1SztT02vGT3YMn7iFlnZG0kCIIgCIJQwGc+A+zfv/B7+/dL39eIq6++GidPnsR9992H6667Dn/2Z3+GXbt2IZfL4a//+q9x8cUXY/fu3fjP//xPANKa77bbbsN5552Hm266CTMzM/Jz7du3DwcOHAAA3HPPPdi7dy/OP/98XH/99RgdHcXtt9+Oz3/+89izZw8efPDBBerWwYMHcdlll2H37t14+ctfjmAwKD/nhz70IVxyySXYsmULHnzwQdU/Y6Xn/shHPoJrr70W//7v/y4fz8TEBPbs2SP/0+v1OHPmDM6cOYPrr78eu3fvxvXXX4+zZ88CkNTDv/iLv8AVV1yBDRs2yEpip0DF2TLkgRM+PDs+h3fv2wiDvvSveJiKM4IgCIIgCOVcfDHw6lfPF2j790tfX3yxJk+fzWbx61//Grt27QIAPPHEE/jkJz+Jw4cP4xvf+AbcbjeefPJJPPnkk/iv//ovnD59Gj/96U9x7NgxPPvss/iv//qvBTZFwezsLN7+9rfjxz/+Mf74xz/iRz/6EdatW4d3vvOdeN/73oeDBw/i6quvXvCYN7zhDfj0pz+NZ555Brt27cInPvGJBcf5xBNP4Atf+MKC7xczMjKyoKC6/fbbFT13KBTC/fffjw984APy94aGhnDw4EEcPHgQb3/72/HKV74Sa9euxW233YY3vOENeOaZZ3DrrbfiL/7iL+THTE5O4qGHHsIvfvELfPjDH1b5m2gtZGtchvz+yDTsJj1efsGqsvfpd5sBgBIbCYIgCIIgAOCv/goo2AvLMjQE3HADMDgITE4C27cDn/iE9K8Ue/YAX/hCxadMJBLYs2cPAEk5e+tb34pHHnkEl1xyCdavXw8AuPfee/HMM8/IKtDc3BxOnDiBBx54AH/6p38KvV6PoaEhPO95z1vy/I899hiuueYa+bm6u7srHs/c3BxCoRCuvfZaAMAb3/hG3HLLLfLtr3jFKwAAF154IUZHR0s+x8aNG2WrJjA/RLrac7/mNa8pe1wPP/wwvv71r8tq3aOPPoqf/OQnAIDXv/71+Ju/+Rv5vi972cug0+lw3nnnYXp6uuLP225QcbYMOTIVwdYBJ0yG8sKo2aBHr9NMyhlBEARBEIRSurqkwuzsWWDNGunrOinuOSvGbp/PBOCc40tf+hJuuOGGBff51a9+tSSRezGc86r3UYPZLG3w6/V6ZLNZzZ4XWPgzFzM5OYm3vvWt+NnPfgaHw1HyPsU/ozhGQPr5OwmyNS4zOOc4NhXB1gFX1fsOuS2YoEHUBEEQBEEQksJ1332V/33sY0A8Dnz0o9J/P/axyvevopop5YYbbsBXv/pVZDIZAMDx48cRi8VwzTXX4Pvf/z5yuRwmJyexf3FPHIDLL78c999/P06fPg0ACAQCAACn04lIJLLk/m63G11dXbJC9Z3vfEdWuuqllufOZDJ49atfjU9/+tPYsmWL/P0rrrgC3//+9wEAd9xxB6666ipNjrHVkHK2zJgKJzGXyGD7oLPqfYc8VhyfXvpHSRAEQRAEQSxC9Jj98IfAdddJ/4q/biBve9vbMDo6ir1794Jzjt7eXtx11114+ctfjt///vfYtWsXtmzZUrLQ6e3txde+9jW84hWvQD6fR19fH37729/ipS99KV71qlfh7rvvxpe+9KUFj/n2t7+Nd77znYjH49iwYQO+9a1vafazqH3uRx55BE8++SQ+9rGP4WMf+xgASTH84he/iLe85S347Gc/i97eXk2PsZWwZkp9F110ERepMURj2H9sBm/+1pP4wTsuw6Ubeire9x9/cRjfe+IsDn3iBk3lboIgCIIgiE7gyJEj2L59u7I7f+YzUvhHcSG2fz/w5JNAUb8TQRRT6jPGGHuKc35RqfuTcrbMODopKWHbFNgaB90WxNM5zCUy8NhMjT40giAIgiCIzqVUASYUNILQCOo5W2Ycmwpj0G2B22asel8Rpz9OoSAEQRAEQRAE0XKoOFtmHJ2KYNtA9X4zYH4Q9STF6RMEQRAEQRBEy6HibBmRzuYxMhtVlNQIAIMeCwBQYiNBEARBNBhfNIVHTvpafRhECTotap3oHGr5bFFxtow45Ysik+OKkhoBwGs3w6TXka2RIAiCIBrMNx46jTd88wlkcvlWHwpRhMVigd/vpwKN0BzOOfx+PywWi6rHUSDIMuLYlBQGslWhrVGnYxj0WMjW2EAeP+XHU2eDePe+Ta0+FIIgCKKFnPXHkc1zBGJp9LvULdaIxrFq1SqcO3cOs7OzrT4UYhlisViwatUqVY+h4mwZcWQyAqOeYYO39OT0Ugy6LZgg5axh/Oipc/jZHyfwrms30rgCgiCIFYxwqcxGUlSctRFGoxHr169v9WEQhAzZGpcRx6bC2NjrgMmg/Nc65LFScdZAfNEU0tk84ulcqw+laTx1JogHT9AOJEEQRDFycRZNtfhICIJoZ6g4W0aoSWoUDLmtmI6kkCUPfEPwR9MAgEAs3eIjaR6f+80xfPKXR1p9GARBEG1DMpPDbEQqynwRKs4IgigPFWfLhLl4BpNzScVJjYIhjxW5PMcMXSwagq+wQ+pfQcXZxFwCc4lMqw+DaCEToQQ+dOczSGZWjmJMEJWYnJvv7fZFV871gCAI9VBxtkw4OhUGAGxTmNQoGBJx+mRt1BzOuaycBVdIccY5x+RckoqzFc5vDk3hBwfG5JAigljpjAfnr7E+sjUSBFEBKs6WCUcLiyDVtsbCIOqJOUps1JpwMot0wS66UpQzfywt99hRXPTK5dRsDMBCtYAgVjJiA9Sk18n2RoIgiFJQcbZMODoVgdtqxIDKBKhBNylnjaJ4d3SlKGfFYxlIPVu5nPZJxdkUDbgnCADAuVACjEnuFlLOCIKoBBVny4SjU2FsHXCqjmt3WoxwWQyaFGf5PMff3/UsDk+E636u5YC/qK9gpShnE0WL8VCcirOVyqnZKABgKkyLUIIAJFtjv9OCQbeFijOCICpCxdkyIJ/nOD4VwXaVlkaBFKdfv/3IF03hu4+dxT2Hpup+ruVA8QU4EFsZF+PJoiKflLOVSTydlW3SpJwRhMR4KI7hLiu8DjMFghAEUREqzpYB54IJxNI5bBtUl9Qo0GrWWSAuXXBoQSYhijOvw4xAbGUUKsU9RmEqzlYko764/P9TYeo5IwhAmnE27JGKs2A8TT25BEGUhYqzZYBIatxas3JmWWBHq5VgoQChEAAJXzQNxoCNvfYVo5xNzCWh10nWWlLOVianfJKlcVOfA1N0LiAI5PIck6GkpJw5zeB8Zc2+JAhCHVScLQNEUuPW/tqKs0G3FaF4BvF0tq7jCMrKGS3IAEk567aZ0Os0r5gL8WQogY29dgBUnK1URFLjZRu6MRVOgnPe4iMiiNYyG0khm+cY9ljR6zDL3yMIgigFFWfLgGNTEazptsFuNtT0+GERp19n35koQKg4k/BHU/A6zOixm1ZOcVY0CJ2Ks5XJaV8MQ24L1nsdSGby9DkgVjzjIcnqO9xlRa/TBIBmnREEUR4qzpYBR6bCquebFSPi9CfrtDaKuPhIKotIkhZkvmgaPQ4TuuwmhJPZZd9jkMtzTIWTWNNthc2k76hFOeccX7nvJEYLEfBE7ZyajWJDr6PovEKbNcTK5lxhALXoOQNAoSAEQZSFirMOJ5nJYdQXq6s4kwdR1xkKEiyKTp+mIAD4ipQzYN72uVyZjaSQy3MMuq3wWI0dVZw9ORrEZ+45hp//caLVh9LRcM5xyhfDhl47+gszFykUhFjpjIeWFmdkayQIohxUnHU4J6ajyHPUnNQIAANuCxgDxuu0NRYXH7RbLs058zrM6CoUZ8vd2igWIEMeC1wdVpzd+dQYACDUQcfcjviiaUSSWaz32mXljGzOxEpnPJiAx2aE3WyA3WyAzaQnWyNBEGWh4qzDqTepEQCMeh36nOYFM6pqIRBLo8tmBEDFWTKTQzSVRY/DhG5RnC1zG4uwxQ66rXB3UHEWT2fxy2cmASx/dbPRiOHTG3od6HWawRgVZwQxUYjRF0izzqg4IwiiNFScdThHpyIwG3RY12Ov63mGPNa64/SD8TS2FcIgVvqCTFhWeh1m9NglG0tgmS/8JwvK61ChOOuUOWf3PDeFWDoHs0GHULwzjrldOV3o2dvgtcOo16HXYV7x5wKCGF9SnJmoOCMIoixUnHU4x6Yi2NLvlGdL1Yo0iLp+W+OA24Ieu2nFK2f+goVRCgSR1MTlbmucmEvAZtLDZTV0lHJ251PnsLbHhgvXdiG0zAvoRnPKF4PJoJP7WAfcFkxSzxmxguGcYzyYwHDXQuWMes4IgigHFWcdztE6kxoFQ24LJkKJumYSBWMZdNlMGHBbMKXBUOtOxle48HodZnTZJFujf7nbGkNJDHmsYIx1THF2LhjHIyN+vGrvKnTZTaSc1cmp2SjW99jlzaIBlwXTK3yjhljZzCUyiKVzC5Uzp5nSGgmCKAsVZx3MbCQFXzRdV7+ZYMhjRSqbr1ndSWWlHqtuuxGDbsuKV86EZcXrNMOo18FtNS77fqbJuYQcAuG2GhFP59p+fMBPnh4HY8ArLlwFj9VIgSB1csoXw3rvvMVaOhes7I0aYmVTHKMv6HWYEYynkW3z8yNBEK2BirMO5thUBACwvY6kRsFQnYOoheLQZZeUs5UepS/bGgthIN12k/y95crEXBJDbulz5C4Ew7SzesY5x51PncPlG3ow7LGiy2ZCKJ5GPl+7erySyeTyOOuPY0PvfHHW77YgnMwins628MgIonXIMfpdC5Uzzpe/1X25Eoilcfv9I3StIBoGFWcdjBZJjQKxqK41FERcZLpsJgy6rQjGM0hmcnUfV6cyG0nBaTbAYtQDkIqz4DK+EKezefiiKQx65pUzAG1tE3xyNIizgThedeEqAIDHZkSeA5EkFRK1MBaII5vn2NDrkL9HcfrESmciVEo5kzbtZikUpCO5++A4PvXrozg8GW71oRDLFCrOOpijUxF4HWZ5qGU9DBUW1bUOohaWvS6bCQMuWpD5Y2l4nfO/ly6baVnvkk6Hk+B8vsh3WdtfObvzqTHYTXrcuHMAAOAp9AaGEsv399RIRFJjsa2RBlETK53xYAIWo04eqQKABlF3OKOFc91IYXQIQWgNFWcdzLGpiCZhIICk7JgNutqLs1hGfh6xW76S+858kZRsaQQke+NytjWKz81i5axd4/TFbLObdg/CZjIAgDyjL9jGal87c2pWWrBs7C3uOZOK9ZW8UUOsbESMPmPzicq9hY07CgXpTE774wCAkzNUnBGNoWpxxhhbzRjbzxg7whg7xBj7y8L3P84YG2eMHSz8e3HjD5cQZHN5HJ/WrjhjjBVmndW2iBIzvLrsRgwIK1NY2yCAI5PhutIkm4kvmlqgaHY7JFtjuxw/5xyprHa2U1GIi8W4u82VMzHb7FUXrpa/57EJKyYtmGrhlC+GbrtJViAByCr6St6oIVY246GE3NMtENcGmnXWmZzxSxtRVJwRjUKJcpYF8AHO+XYAlwF4D2PsvMJtn+ec7yn8+1XDjpJYwqg/jlQ2r0m/mWDIY6lDOZMWtB6rSS7OtFyQPXtuDi/69wfx5GhQs+dsJP5YGj2O+UVqt82EbJ4j3Cb9TJ+79xj2ffY+zYpF0as4tEg5a9fi7M6nzmFNtw0Xr+uSvyfbGkk5q4lTs9EFlkYAsJr0cFuNKz4giFi5jAcTWNW1sDizmw2wGvXyyBWic8jk8nICJxVnRKOoWpxxzic5508X/j8C4AiA4UYfGFEZLZMaBYNua109Z06zASaDDjaTNIRYSyvT6cJO1dlAXLPnbBTZXB7BeHqhclawOLZDKMhMOImvP3gak3NJxNPaqGeToSTcVqNsEWzn4kyebXbhqgVWI4+VlLN6OOWLYcOi4gyQ1DNSzoiVSDKTgz+WXhAGIvA6TRQI0oGMBeLI5Tn6XWaM+mM0DoFoCKp6zhhj6wBcAODxwrduY4w9wxj7JmOsq8xj3sEYO8AYOzA7O1vf0RIyR6fC0DFgU5+j+p0VMuSxYiaSqmk2VTCWRldRj5XWs87EINtOsIEEYmlwjgWBIN0FFa0d+s6+ev8IUlnpd6xVSMlEaH7GGQAY9TrYTPq2LM5+8vQ4AOAVexfuMYmCknrO1BNJZjAbSS1IahTQaA1ipVIqRl/gdZg74npGLGS0sFF8/fZ+ZHK8IzaMic5DcXHGGHMA+DGAv+KchwF8FcBGAHsATAL411KP45x/jXN+Eef8ot7e3vqPmAAgJTWu99rlqHYtGPZYwHltzfuBeGZBcTbgtmiqnInFXSfYQESTt9e+0NYItH6uzdRcEnc8fla22Wi1OJiYSy7pq3BbjW1XnHHO8eOnz+GKjT1Y1WVbcJtBr4PLYiDlrAZKJTUKaCg90WwiyYzcF9RKxuUB1LYlt/U6zPBF6FzTaYz6pGLsBdv7AZC1kWgMioozxpgRUmF2B+f8JwDAOZ/mnOc453kA/wXgksYdJrGYo1NhbBvQztIIzIc51LKQCsbSctqd9FzaLshEFHcn2EBEwbNAOWsTW+NX7zuJfJ7jwy/aBkC7YnFyLiH3mwnasTg7cCaIM/44Xrl3VcnbPTYTQm12zJ1AqaRGQb/LAl+0NkWeIGrh9vtH8LIvP9zyAKaKypmTlDMAeOyUv+2uE5UY9cfgtBhwUaFf+STF6RMNQElaIwPwDQBHOOf/VvT9waK7vRzAc9ofHlGKWCqLsUBC0zAQALLyUUvfWTCeltUhABhwWeGLppDOarMgk5WzDriY+WOF4qxEz1krbY0ToQS+98QYXnXhKuxZ7ZGOR4Mo50Q6h1A8Ixf3gnYszu48cA52kx4v2jVQ8vYum5FsjTVwyheDjgFrepYqBINuSZGf6QDVm1genAsmEIxnWh7uMx5MQK9j6HcunUXqdZgRiKdXdM9SPJ3FrV9/HP/zyGirD0Uxp30xrOuxw2kxYsBlIeWMaAhKlLMrAbwewPMWxeZ/hjH2LGPsGQDXAXhfIw+UmEeoHcU9PloglI/xWoqzEj1nADTrNZmSbY3tbwMRx1ic1mgz6WE26BCItW6B+pX7ToKD4z3XbUKPvRDlrMHxLE5qFLitxraacxZPZ/HLZyfx4l3zs80W47aZMEe2RtWcmo1iVZcNZsNSm3W/GK0xp+1oDYIoh7hG1nIt05LxUAIDLgsM+qVLrV6HCZy33ureSvzRNHJ5jrFg5/RtnfHHsa5g397YZ8cIFWdEAyi9QimCc/4QAFbiJorObxEiYa/cArNWbCYDPDYjJlUuopKZHGLpnKwOASiadZbE6u6lu+lq4JxjOiwVEZ2gnPmiKZgMOjjN878fxhh67CYEYq0pVsZDCfzgyTHcctFq+fdhM+kR0EA5mwwtnHEmaDfl7DeHphBNZfGqC0tbGgFJORv1tb5XpdM4NRvDhhKWRmB+o2Zqrv3/donlgSh4JueS2DnsbtlxiAHUpRCDqGejKfS5tN1o7RSEk2Qi1Bk9qelsHueCcbxszxAAYFOvAz9+ehyc8wXJvwRRL6rSGon2IJ6WZmXZTNqFgQiG3FbVJ0phHfEs6jkDtJl1FopnkM7m4bIYOsIG4oum4bWblpysu+ymliln//H7k2BgeM91m+Tv9ThMmtgsZeWszYuz3x2ZwaDbgovXdZe9j8dqRJCUM1VwznHaF8MGb+nk2PlB1KScEc0hKC/6W6ycBRMl+82A4kHUK/d84y9strb696SUsWAceQ6s7ZE2ojb1ORBNZWVnD0FoBRVnHUiioJxZG1Gc1TCIWuxSLug509DKJE58O4bcNdlAOOd4wzefwE+ePlf3sSjBF00tCAMRdNtNCLSgB2IsEMePDozhNRevXrCL2203a1KcCeWs373wZ3ZbjYinc20TBDERSmBDrx06XfkdTo/NhEgy2/YbAO3EVDiJRCaH9WWUM7fVCItRR3H6RFPgnBcpMq1b9GdzeUyFk2WVM7k4W8G9mP4i+2mrw1uUIBJA522N0oYU9Z0RWkPFWQcSk22NjSjO1A+iFtHjxT1nTosRDrNBE+VMFGc7h6V0SrWJjcF4Bg8cn8WHf/Isjk6F6z6eaviiqQVhIIKeFiln//H7k9DpGN593cYF3/faTfLOZT1MziXgdZiX9Bu5be01iHp6LokBV+mFkqCrzY65EzgtkhpLxOgDkqWXBlETzSKezslzHBvRc5bJ5ZHM5KrebzqSQi7PyytnRbbGlYrYaE1l8x0RxHS6EKMvRoZsouKMaBBUnHUg87ZGbXvOAKk4CyeziCSVnygDheKsuOcM0G7W2YxcnEm9A2ptIOIY0tk8bvvfP8jKY6PwR9PoWfReAAVbY5MtLGf8Mdz59Dn82SVrlvSEddtNmjSjSzPOlvZMiKHOrU5MA4BcnmM6kqoaouMpqL8Up6+ckUKPXqkB1AIaRE00i+JzWiOUsw/88I9427cPVL2fmHG2eP6jwG7Sw2LUrWjlrNG/K60Z9Ukx+mITr9dhhstioOKM0BwqzjqQRAOVs1p6xYS/v7jnTDyXJspZIUhgx1BBOVN5MZuOSMfwvudvwcmZKP7hF4fqPqZySJaa0rbGHrsJsXRO0a6rVnzp9ydh0DG8a9/GJbf1OMzwR9N120kmQ4mSRY/L2j4qlC8q7WL3Vy3OREG5cvtA1HJqNgqbSY9+19LPvGDQbSXljGgKYsHfZTM2JGjilC+Kh076qm42jIcklaWcrZExht4VPuus+GdvdbKmEkb9Maz32uV+csYYNvU5qDgjNIeKsw4k3mBbI6BuF0skEHbZFilnLm2Us6lwEl6HCQMF5UftxUwob6+8cBjv2rcR33tiDD//40Tdx1WKuUQGmRwvaWsUts9mBU6M+mL46R/Gceula9FfIg2sx25COpdHNJWt63Um55JLVDlgXjlrhzh98TkcrJKKJitnbaD2dQqnfQsXLKXod0nKWT7f+L6Sv/jeH/DDA2MNfx2iPRFOjp3DbkxHkpr3vAYL17t7D01VvJ8oDMsVZ4DUd7aSA0ECsbT8/nSEcuaXZpwVs6nPgREaRE1oDBVnHUgi07hAkJqUs3gaTosBxkWzXAbdFsxEknWHK0yHk+hzWmA36WE16lXbQEQMf6/TjPe/YAsuWOPBR37yLMYC2s9WERdar2OprVFYHbUY/KyEL/7+BIx6hnfu21DydjGHrZ7jCScziKayFW2N7aCcic/zQBXlTNhVOqH/oV2QYvTLWxoB6VyQyXF54dwoOOe457kp3H9stqGvQ7Qvwjq+c1gKkNJig7AYsbn2m0PTFe93LphAj91U8TrtdZhVO0GWE4FYGpv6HDAbdG1fnKWzeYwHE1jXs3A00KY+B3zRNLktCE2h4qwDiaez0OsYTCUGW9ZLv8sCxiSrmlKC8fSSfjMAGHBbkef1NzxPh5MYcFvAGIPXaVKtnE2Hk+i2m2A26GHU6/DF114AAHjv9/6g+a6qOLZSyll3YfBzo5WzZCaHf7v3GO76wzhef9la9DlLFyTid+avI6REXFArKWftUJyJ1NBqxdm8ckYXWiWksjmcC8blBvlyCOVW64XyYqKpLNK5PMX2r2DE+XXnkNSjrKWdNpnJIZ7OwWrU49FT/ornifFQ+Rh9gaScrdzizB9No8dhkoLI2tz2LGL013mXKmcASD0jNIWKsw4klsrBZtI3ZOihUa9Dn9Os6kQZiKXlRW0xA4Vo9XovjtPhpLy48zrMqos9SXmbL5ZWd9vwL6/chYNjIfzrvcfrOrbFCBWqp4Ry1m2XihUtQjjK8fBJH1707w/ii78/iZv3DOMvn7+l7H1FAVmPciZi9Es1vbdVcRZOwaTXLRj3UAqn2QAdI1ujUs76pQXLxjIx+oL5QdSNXYCJvy2hlhMrD38sDaOeYeuAtGjWUpER54WXnj+IXJ7j/47MlL3veDBe0dIIAL0OU0fM7mwU/lgKPXZTTSN8ms2ob2GMvmBTrxMAJTYS2kLFWQeSSOca0m8mkJr3VSpni8JAAMix5fUsyNLZPHzRtDzI1uswwxdRV0xMh1NLFJOX7B7Cay9ejdvvH8GDJ7SzQClRzhpRnPmjKbz/Bwdx69cfB+cc333rpfj8a/bAYS6f6CnbGus4HnkAdQlbo1Gvg82kb4/ibC6Bfre54owzANDpGDw2Ew2iVshIIUa/3ABqgfj7m2xwYqNfLs6a099G1EcjfkfBWBpdNpO8YaRl0IQ4L1y7pQ+DbgvuKdN3xjnHeChRNqlR0Os0S7M7V+D5Jp7OIpnJo9tuxpBb/QifZnNaFGeLes6Gu6wwGXRUnBGaQsVZBxLP5BoSoy8Y8qhLWQzGMgtmnAlq6V9bzEwhaVEkwdWSbjUdTqK/hLXvYy/dgU19DrzvB3/UzPfvi6agY0vDUQBJSdIxbYuzfJ7jB0+exfX/dj9+/swE3vu8Tbjnr67BVZu9VR8rbI31HM9kKAm9jpW1TrqtxrYozibnkhisMuNM4LEaKUpfIad80oJknddW8X5ehxl6HcN0o5WzggqczXNNBqwTjeOB47O44B9/q3lKnz8m2extJkMhsVH74qzLbsQNOwbwwPFZebTNwvtlkMzkqypn84OoV95ntdhlMuSxYiaSQjrbvgriGX8crqIYfYFex7DBa6fijNAUKs46kEQ6C6uxwcpZKKk4Yl1SzpYWIx6bEWaDTu73qQVhTxIR6F6HWZUNJJvLwxdNlYz5tpr0+I8/uwCRZAYf+NEf646UB6RAkG67CfoSCo2+oMpotWgcmY3itV97DB/68bPY3OfAr/7ianzghVthUfjZMBv0cJoNdfU8TMwl0O80l/x5gfYpzqbCyaox+gKPzUg9Zwo5PRtDn9MMp2Wpcl6MVMCbGx6nX7zR0GgLJVEfJ2eimEtk8P0nzmr6vIHYfA/0kEdbRSZYlEz8wh39SGXzJcNnxIyzqj1nK3gQtbgO9thNGPZYwTnaehbi4hj9Yjb1OXCSes4IDaHirAOJN9zWaEEik1O0qBYN0qWUM8ZY3bPOxMla2Bp7HSbJBqKwwPHH0shzoK9MhPq2ARf+6vlb8MDxWYz6609v9EVTJS2Ngm67SZ4LVw/Pjc/hFV95BMemI/j0K3fhB++4HJv7naqfp9tR3yDqyVASgxV2h11tUJxxzjE1l6w6gFrgsZmo50whp3wxbKjSbyYYcFswFW6sdal442OqyQu9dDbfEbOa2oVwUvob+/6TY5oGMwWXFGfafQ6EctZtN+GSdd3oshlLWhurzTgTzCtnK684CxSCqLrtjbGgas1pXwxre0qf6zb1OXAumGjqDFNieUPFWQcSS+caEqMvEMl7Si5qss2jTNDCgNtS126Y2P0u7jkDlO80Ln58KS7b0A0AODEdqfk4BVWLMw2Us+fG53Dr1x+Hw2zAL957FV5z8ZqqvVTl6LGb6gsEmSs9gFrgsRpbPucsFM8glc1X/AwUIylnVJwpQZpxVrnfTDDo1mbuYSUCRcmjzS7O7nj8DPZ9dj+ltikknJDsgLORFH57uHIsvRr8sbQ8tmTIrW3QhFDUPTYjDHodXnBeP35/ZGaJHe9cQTlbVUU56y0oZysxsVG2NdrNGPSIFoj2LM5S2RwmQoklYSCCTX0OcE6JjYR2UHHWgSTSWdgb2HOm5kQpVBeRRLjkudzWupUzk0EHT8HnPX8xU1ZQiMKw1BBmgYjCPaGBZ1xEA5ejXuWsuDD7/jsuw+ruyr0+1ei21x7lzDnH5FyyYtN7O9galc44E3RRIIgiQvE0ArF01aRGQb9GQ+kr4Y+l0e9qTn/bYqbmksjkOD7966NNfd1OJZLMoM9pxqouK7772BlNnjOby2MuMd8DPeSxIpLKyipdvQRiGdhNepgN0uboDTsGEEll8ciIb8H9xkMJ2E16ObG2HHaTHhajbkUWZ2Lt0OMwYUjFhnArGAskpBj9ntLXW7GGoL4zQiuoOOtAGm1rlE+UChY3QmGoppzVmsolxeibZZ+3rJwptIFMF+5XqudM4LQYMei2YESDE2tV5awOG6HWhRkgDcuu9XgCsTRS2XxF5awdijPZGqvU1mg1Ip7OIZUli0ol5KRGhcXZoNuCWDqHiEYL5VIEYmn0Os1N6W9bTDgpKUH3Hp7GE6cDTX3tTiSczKDLZsKfXrIGj4z4NVEdxPD4nqLiDJgf+VEvofjCsTFXbvLCbtIvGUg9HpRmnFUbd8MYW7GDqP2xNMwGKdHXatKj225qW1tjuRh9wXqvHToGTdYQBAFQcdaRJBpsa+x1mmHQMUVBHmJhX6rnDJAWZJlc7clpU+HkAjuaV6UNZCachI4BPRUKJkDa+apXOYuns4inc1VtjcF4WnWx2ojCDJCUvEAsXVMYilj8lhpALXAXCh2th32rYf44FRZnhc/yHFkbKyKipZXaGpsxiFoKgzCj31WfnboWIskMBt0WDLgs+OdfHdEkYGg5E05k4bQY8OqLVsOoZ/jfx+sPBplPU1xYnGllbQzG0+gqcolYjHrs29aH3x6eQq7onD4xVz1GXyANol55Sr0/KtlPRQHbzrPORv2Fc12ZnjOzQY813TYKBSE0g4qzDqTRyplex9Dvsijabazac1bngmw6nFpgSbSb9LAa9YobqKfmkuitkCYo2NTnwMmZaF1zdyoNoBZ0203Ic3WDmZ8bn8PrviEVZt97u3aFGSAVrdk8l/s/1CAupKVmnAncttYPop6aS0DHgN4qBbrAU7AiUZx+ZU7NRmHUM6yu0lcjEEV8IxUtseAbcFma3nMWSWbhdZjx/hduwcGxEH757GRTX7/TiKQycFmN6HWaccOOAdz51Lm6AxXEOVgEggxrHDQRiGeWXOtu3DEAXzSNp88G5e+NBxNVw0AEUnG28pSzQCy1YNO0nWedjfpjcFkMcntFKcQagiC0gIqzDiOf50hkcrA2sOcMkFSGCRXKWbmT1vyCTP1JV6TsFRdnjDF4nSbFF7PpSEpREMSmPgcSmZyin7kcIqSkUhGgdvCzKMzsJqkwW1PG814r3sLx+GLqFwdKlTMALQ3YmApLBbpBr+x0JxZfWqRqLmdOzcawptum+H2VN2oaWDSJGPUBt6XpPWeRZAZOiwGv3LsK2wac+Mw9x8gaW4FwIguXRbqO3XrpWswlMvjFM/UVtPM90NLfsHCBaLXoD8XTS4qzfVt7YdLrcM9zUmpjPJ1FMJ6pGqMvqGV253LAX5SqCWifrKklo7542Rh9wcY+B0Z9ccVjfgiiElScdRiJws6ivYHKGSD15yjZ4Q7FM3BZDDCWWaCJPp9aFmSRVBaJTG5JceV1mBWnNc6Ek2Vj9IvZ3CfF0NdjbVSinIkLu5I+r7P+eEMLM6C+QdQTcwmY9Dq5v6MULmvrlbPJuSQGKhSQixEbDUGyNVZETVIjAPQV+j4bZWtMpHNIZHJycRZJZRFNqVeEayWSlGx6eh3DR168HWcDcXznUW2CLpYjUjEr/a1dtqEbG3vtdQeDBOILizO9jmFAw8TGYCy9ZAix02LEVZu9+M2hKXDO52ecKVTOegt9v7kqrg3OOY5rkCjcLgiVWzDksSCqYXiLlpz2xcr2mwk29jqQzuUxFmxP9Y/oLKg46zDiaak4a6StEZB2sSbnqg+iDsTSZfvNAKkx26hnNVmZxM734uHBXocZvojytMZKYSACkbZUT0Ov2P2sNucMUFYM3XNoEqF4Bt956yUNKcwAKcYYAPw17NxOhJIY9FgqxvgL5ayVcfpTc0kMKPgMCDyyFZOUs3Ik0jmc9sXkvxslWIxS03+jlDN/Qf0VtkaguYOopeJM+uxcs6UXV2/24ku/P0m9iyXgnCOczMJllZQzxhhuvXQtDo6F8Nz4XM3PG4gutdlrpchkc3mEk9mS17sbdvTjXDCBQxNhnAspi9EXeJ1m5Pn857ccvz08jRd+/gEcmQyrP/g2JFBCOQO06w/UilRWctSUm3EmoMRGQkuoOOswEoXirBm2xnQ2X9V+Fyxh8yhGV+hfq2WRNLVoALVAqQ0klc0hGM+g31ldOeu2m9BjN+HEdB3FWaEPrlrPGaCsODs8Ecag24INvcoXwGpRa7MsZjJUecYZMF+ctbTnLJysaL1cjGxrpEV1WR477Uc6l8cVG3tUPW6ggXH6xZY2YYVuZiiIsDUKPvLi7QgnM/jyfSebdgydQjydQy7P4bLMq1Cv3LsKFqMOd9QRDBKMp5c4OYY9Vk16zkQPaqnr3fO390PHgHsPTcnFxbBH2Yba/CDqyufg3x+dAQCcKYRTdDLxtOSKWdBz1qbF2VggDs6B9d7Kv08qzggtoeKsw4hnJJtOo5UzsZittpBavPtV+rksNfWcidderHx5HWYE4umq3u6ZsIjRV5bSt6nPUVfakj+WhtNikGfglEK8V0rmaB2eDOO8QVfNx6MEsdCoZRD15FxSHrtQjlYXZ9FUFpFkVnGMPiD9bRn1TFWf3A8PjOH3R7UbpNvu3H9sFmaDDpes71b1uEYOovYXzU0SmwbNUs5yeY5YOicrZwCwfdCFV+5dhf9+eBRjgXhTjqNTiBTGDhS/X26bES/dPYS7D47XPG7BH0svSeYddEvhMNVsg9UIVuiv7nGYcfG6btxzaArjwQQMOibP5KyGkkHUnHM8cHwWgBSS1enMD6CeXzvMh7e0V9/ZaZ/0t7uuinLmshjR5zRTcUZoAhVnHUZcVs4abWuUFjfVdrFCJdKrFjPgtta0SJqJlC6ueh0mcF5dfZIHUCtcmG/qc+DEdKTmCOzZaKpqIqDFqIfdpK9aDCUzOYzMxrBjqLHFmcmgg8tiUG1rzOW5pEhVSGoEWl+cic+dklAYAWMMHpsJIRWDqD//2+P49/9bOQrJAydmcdmGHliM6s5D/e7GpSgG5KQ+c129rrUQLRQbLstCR8MHXrgFOh3wuXuPNeU4OgXRVyRsjYLXXbYW8XQOd/1hvKbnLdUTNuSxIpfndc8SE0p6uc3IG3cO4Ph0FA+d9GHQY6maECyQlbMK5+CR2Zg8d7TZIyIaweLgFkB6H7QMb9EKoVRWK86A+jd4CUJAxVmHIWyNNpWLIrUojb2WlLPy8bLSc1kU9a8tZmouCY/NuGQBKA+irlJQTMvKmbIdzM19DoST2Zov4v4qA6gFXXYTAlX6C45PR5DLc5zX4OIMkN5PtbbG2UgKuTyvahc06qUho60qztQOoBZ4rEbFylk6m8dUOIlD43N1R4F3AmOBOE7NxnDNll7Vjx10WRCIpRvyPhUv+CxGPdxWY9OUM1FsOBcVZ4NuK9561XrcfXACz5wLNeVYOgHRg1psawSA3avc2Dnswh2Pn61pk8xfmHNXjFZx+tXGxrxwxwAA4Jlzc4rDQID5xNxK150HT0iqmcWoWxbKWSC2NDxLhLdMtllxdtoXg9tqrNhbL9jU58DITJRmHBJ1Q8VZhxErpI/ZzY3tORNBHpWi5UU6mqeacuayIJXNq45TXzyAWjBvA1GonCnoOQOATYXExlptCb5oumK/maDHbkKgyntxeEJq+j5v0F3Tsaih225SbWsUn4tKM84EbquxZcWZ2gHUgq7CsHAlTM0lwTmQzXM8c672MINO4YHCQvHaGoozoWLPNGCB6Y+lYdQzWb1q5qyzUjY9wTuv3Ygeu4kGUxcx/34tvI4xxvC6S9fi6FQET50JlnpoRQKx1JLNQq16mYStsdwifdhjxe5V7sL/Kw9wcpgNMBt0FZWzB47PYr3Xjm0DrmWhnImftWdRId2Ocfqj/upJjYJNfQ5EU9llUUATrYWKsw5DROk32taok3exyp8og/Gl1oRSiIWx2sTG6TIx+PMN1FWUs0gSJr2u4uDIYjb3Sw29tcbp+xQqZ90KlLNDE2E4zQbFiV/10FOIclaD+FwoCdpoZXE2VSgilfYdCjw25crZueB8P1EtC8pO4/5jsxj2WLGxV9mCpZj5c4H2u+OBWApdNpM8i6jfbWnaQjZSRjmTvmfEXz1/Mx47FcD/HZlpyvG0O/O2xqXn5j/ZMwSn2aA6GIRzjmAss0Q5U2rRr4awNS62TRZzQ0E9UzrjDCjM7nSYy242prI5PHYqgKs3e9HvMi+L4kxWuRdtZmoV3qIlo7441ilMS97US6EghDZQcdZhNCtKH5AW3pUWUeIEW73nTPR/qDvpTodLR6B7nQptjXNJ9LnMFQdHFtPnNMNpNtR0Ys3kJGVQiXLWZTfJ/THlODwZxvZBV8WYeq3otpurxjgvRnwuqgWCANICrGXFWTiJrhLW2Gp4bEaEFEbpi+hsh9mw7IuzTC6PR0b8uGZLr+K/q2IaOYh6cTjRYAOTIRdTSTkDgNdesga9TjN+/sxEU46n3SlnawQAm8mAV+wdxi+fmVS1aRRNZZHO5ZcoZ06LEU6Loe7iLBRPw2TQwVrhXPKinQPQ6xg2qxgxAVROIH7qTBCJTA5Xb+5Fv6t5Gw6NJBCT3svF81qHPNqEt2hFMiPF6CvpNwOKExuXzzw6ojVQcdZhyMWZsbG2RgAYclsqWgxCVRqkBUr714rJ5vKYjaRK2hrtJj2sRn115Sxc+vHlYIxhU78DJ2o4sYpFhBLlTLI1ll905PMcRybDTek3A6Seh0AsjbyKC+JEKAmbSb+kob8UbqtR8Zyzew9N4WVffli2ENXLlMoB1ALJ1phRZEMbDyagY8Dzt/fh6bPBZW1de/pMENFUFtdu8db0+IEGpihKSX3z56J+twWz0RQyVVJdtSCSKq+cAVLv5aDbotravVwJl7E1Cm69bC3SuTzufGpM8XMGY+J6tPQcLCky9X3mArE0uouU2VJs6HXgvg/uw4t3Dap6bq/DXLbn7METPhh0DJdv7EG/y4JwMiv3nncq/lgaXvvS91KEt8xE2qMAnY/RV1ac9TrNcFoMFApC1A0VZx1GIi1d1BptawSAQY8V0+Fk2UV7QG6Qrmwb7HWaodcxVQsyXzSNPC+dtMgYg9dpqjrrbDqSVG1n29znwMkZ9XNkxIVVaSBIMpNHvPC7XMyZQBzxdK5pxVmP3YQ8n5/jo4TJOWnGmRL1RI2t8YETszg4FsKHf/KMJkXO5FxSdb8ZIMV6p7N5JDPVF/bnggn0uyy4bEMPArE0Tvs6fw5ROR44MQu9juGKTbUVZ06LEXaTvoHK2fzf34DLAs4rBy1oRbkeqmJaae9tN8LJDEwGXVlFe0u/E7tXufE7FTbQ4iHki5F6meq3NSqxyK/utilOahT0VriePXB8FnvXdsFhNsjXs3YpXmrFH00tsTQC806MdklsHPVLlvW1Cm2NjDFs7HWQrZGoGyrOOoxYOgeDjsFkaPyvbshtQTbPy140qjVIC/Q6hj6nWZVyNlUlzKOSR18wE06hT2FSo2BTnwO+aEq1cuOXlTNlgSBA+VEA82EgzSnOugsFpZo4/Ym5pNxoXw2PikXpqC8Og47hN4em8b0nlO+al2NqTn2BDhQPoq7+ORgPxbGqy4oL13YBWN59Z/cfn8XeNZ6SdjSlDDRo1lkgml6wMB9wS5/rZoSCROQo/fLvi8tilHutVjrhRLbqZ2hTrwPjQeWLdDlNsWRxZqkYbqWEUDxd1cJfK16HGYFYeomdzxdN4dBEGNdsljZDRPJws+y6jWLxRopgPrylPX6+0cJGm1LlDCgkNs4u3w06ojlQcdZhJNK5pvSbAfN2xIkyFwJRXHhKNHUvRu2CrFoEeiUbCCD1H0RT2RqUs0Jio0pbgk+FciYuSmWLs8k5GHRMDihpNN7CYkZNnP5kKKGo3wyQFIN4OqfIXjbqj+FFuwZx9WYv/uEXh+ry7qeyOfhj6ZqUM6EGKynOzgUThYAMB1wWA54+uzyLM180hefGwzWlNBYj9bJqu/hKZXOIpLILLNYDLunzOd2EhWw4mYFRz2CusGnmshoRTpRWy1cakWRmyUy4xQx3WTEVTiKr0JZaarCxYNBtRSieKetWUEIgnq5q4a+VXqcZ+RKzOx8+6QMAeWyFuJ5NN0ENbiT+WLqMwqlNeItWnPbH4LEZqyZSF7Opz4HZSIpUcqIuqDjrMOLpLGymxvebAfOFUbm5I6F4Gm6rEQZ99Y+RNOtM+QlXjsEvU1xVaqBe+Hj1yhmgPm1JHIsIK6mEaFgvVwwdnghjU58DZkNzinBhL1Eap5/O5jEbTVUdQC1w25QNok5lc5gIJbDea8e/vvp82E0GvPd7B2ueiSXi2tXOOAMAt1V6T+aq9Ahlc3lMzSWxqssGnY5h79quZauciVlLtcw3K6YRoQbz/UbFylltKbG1EElm4bQYK9p8XVYDwgllfYzLnXAyC2eVTb1VXVL/kdLfX6CCk2NYA0UmpNDWWAvlBlHff3wWXTYjdgxJEf3CSTLT4aEggTLFmVbhLVpxxh/DWoVhIAJKbCS0gIqzDiPeROVMthiUU87imar9ZoIBl1XVIOqpuSQMOlbyBA4UbCDxdNld1WrFXTmGPVZYjDqcmFZ3YvXH0jCXSJ8qhVDOylknD000LwwEmJ81Uy3eXzAdluZ6qVHOAFQNQxgLJJDnwHqvDX1OCz57y24cmQzjM/ccU/Q6ixGLOjWhMIIuu1DOKh/zdCSFbJ7L0dkXrunC8enostw1feC4D912E3YO1Td7b9BtwUxhiLlWlOo36rIZYTLompJuF0lmqypBLosR6VweqWzjA0ranXBCgXJWmBWmNFo9EC+dAAjUP+ssn+cNtzUCC/sjOed48IQPV27yyj1sLquhMIi6c4uzRDqHeDpXsucM0Ca8RStGfXGsV9hvJhAbvCNUnBF1QMVZh5FI55oSBgJIixuzQVdWOQvG0lX7zQSDbgviacl6pISpcBJ9TnPZKPlehwmco2zqoVBN1BZnOl2hobcGW6PXoSy2v7tCz9lsJIWZSKpp/WbAvIWvWg+fQCxwlCpnYpZRtYLljF/y6Yudyudt68ebrliHbz58GvuPqZ8PJXqNarE1egrKWbU4fdETI+bRib6zP3SAtXEukcHbvn0Ax6aqW0fzeY4Hjs/i6s3eusc79LstyFXoZa0FeW5S0fmIMYZ+l7lJPWeZsjH6ArFJoTS5dDkj2RqrK2eAZBtWQiBaPk2xXrtcOJlBnlfvr64V0atc/DdxbDqC2UhqgVItfaYtHT3kuFJwCyCdr9tBOZNj9FX0mwFSIIzJoKPERqIuqDjrMJqpnDHGMOSxYrLM4kZECytBbYT2TDhVMqlRUGqnsZhalTOgkNg4ra7XyRdLKwoDAQCXxQCDjpUszo5MFsJAmqicGfQ6dNmMimcKnQ1ICVarupTtKCpdlIqUw+KZMh9+0TZsG3Dir3/0R9Wpe2IAdS22RmFfqqb2iQHUwjZ1/moPdEyKnG93fv3sJH53ZBp/+5Nnqo5RODwZhj+WrrvfDJDmjwHa2g3FZ3fxnMFBl7Up4QmSrbGKcqZwk2IlEE5mq47hEJs/SkNBghV6wvpdFuhY7cWZkgHU9SDs8MXF2QPHJRvx1ZsXJqP2Oy1N2XBoFPLfaolAEEBSORsxpF4tIkZf6YwzgV7HsMFrxwmVawiCKIaKsw6jmT1nQKFXrELPmRrlDFC+IJsKJyva0Xrli1npgmIqnITdpIfDrP692tzvxMRcElGFKh8wr5wpgTEmDaIuUQwdLhRnOwbrs46ppdtuUjyIemQ2BpNeh9Vd6myN1ZWzOFwWw4IFkMWoxxf/9AJEkll88Ed/VDWLbXJO+gxUUzRKYTFKs/RCVQJBxMJR2KbsZgO2D7rwVAcoZ79+bgpGPcPTZ0O48+lzFe97v7xQrL84a8SsM9EvuTgBrt/dnIWspJxVPtfImxSU2FiwNVb+uzQb9Oh3meUNkGosnnNXjFGvQ7/LUrNdrlISpBY4zQaYDboF17MHT/iwuc8hB3MJ+lzmju45k/9Wy/yuhjxWBOsMb9ECebNQpXIGSKMgjqtsjSCIYqg46zCaqZwBlZPVAvG04p1EoWBNKdwRm64SgS43UJdRU2bCqZpUMwDY2KveM+6LKi/OAKDbZioZCHJ4Ioxhj1UO0WgWPQ6z4kCQkzNRrPPaFAXBAMqLs1F/DOu89iW2pC39Tvz9S87D/cdn8c2HTyt6TUBST2tRzQQem7Fqz9m5YAK9TvOCeU0Xru3CwbMhxSlzrWAukcEjIz686Yp12LvGg0//+mjF8JP7j89ix5BL3hSph/niTLvd8UAsDR1bmhw74DJjSkWva62IQJBKiB6rla6cpbI5pLL5qsUsIPqPFCpnsco9YfXMOpPHxjSo54wxtiCBOJnJ4fHTgZLhOwMFW2OnBsv4Y+VTNQFtwlu0YLRgs1+vUjkDgK0DToyHErQRQ9QMFWcdRryJPWeA5NWfLhFnnEjnkMzkFe8kzhdn1dWZWCqLSJUY/FI2kGKmw7XNtwIgR9ifUFic5fNcSp9SaGsEJKWqVCDI4cnmhoEIvI7SxWIpRmajctOzElQVZ2UuhK+7dA1ecF4/Pn3PUTw3PqfodaUB1MrUvVJ4bKbqylkoIffGCC5c24VYOodjbWxr+f3RaWRyHC/aNYh/uHkngvE0/u23pYNXIskMnj4TrDulUdBtM8Gk15W1S9eCv7AwX9wP1++yIJXNN7wgUmNrXOlx+vJMOAUjWFZ12RT3nPljlaPuhzzWmmedNdrWCEjXNHE9e/x0AOlsfomlEZA+04mM8v7tdkMET5X7XdUb3qIVo/44PDZjTRul2wakkTzHFfTzEkQpqDjrMBKZ5ipnA24L8hyYWaRQiSAOpT1nJoMOXocZU+HqJ9z5GWfld+ntJsl2VrbnLJJUHaMvWNttg1HPFEfhziUyyOa5OuXMsdTWmEjncGo22tQwEPl47CZFQ6hT2RzO+GOyuqgEo14Hm0lfcYGczuYxHkxgXZlkLMYYPv3K3XBZjPjy/pOKXrfWAdQCj9WoqOds2LO0OAO06zv77G+O4u/vehbfevg07j8+i3PBuCp7ZynueW4KAy4L9qzyYOewG7deuhbfeewMDk0sLXwfGfEjm+ea9JsBUuhOn8us6fyxQCxVcrEnivNGWhtzeY5oqrpyRrZGCdF7qkg565L6j6ole6azeUSS2crFmduCyblkTX87wQox/VrR6zDJ17MHj8/CZNDh0vU9S+7XV7iuNWN+XyPwx6RUzXItB+0y62zUV36zsBrbCtfwI1ScETXSvOYlQhOa3XMm4tIn5xLyjhZQ28VqsHBxrMaUgjAPxhi8TlNJ5Yxzjuk6bI0GvQ7rvXbFA5DVzDgTlLI1Hp0KI8+bGwYi6LGbEUpkkM3lK9oVz/jjyHOoUs4AaWFaqTgbC0rPW2mmTLfdhH1b+3DfsRlwzismY+byHDORVE1JjYIuu7FikmE+zzERSuKGnQMLvj/ssaLfZcZTZ4J4/eXran59QFrIf3n/CAw6hmzRotJi1GG914ENvXZcsq4br79sreIUxXg6i/uPz+I1F62WH/PBF27FL5+dxMfuPoQfvfPyBe/t/cdnYTfpsXdNV10/SzFSIpu2gSClFuZig2dyLoltA435uxK9qdWi4UUxUm123nJHVs4U9IKu6rIik+OYiVRWwYXCXU05S2fz8MfSqu25wXgaBh2Ds4YeZqX0Os04OCZtjjx4wodL1nWXdMnIg6jDKWzudzbseBqFPyrNOCt3/u53WcDqCG/RilFfDJduWFocK2HIbYHTYsCxqbDGR0WsFEg56yByeY5kJg+rsYk9Z/Iu1sKFlNwgrcKDP+C2KAoBUJq06HWYSwaChOIZpLN59NWhmmzqcyhWzsQxeFUUqt12k6S4FdlFRRhIK5SznsJogmo9VuI9UaOcAdWLMxGjX635+tL13fDH0hiZjVW8ny8qzdGqp+fMbTVVPObZaArpXH5JaiVjDBeu7dIkFEQEjnzhtXvw5N89H99/x2X455fvwq2XrsWAy4w/joXwsZ8dwn3HlY8auO/YLJKZPG7cOSh/z20z4sM3bsOBM0H85Olx+fucSxH6V2zywmTQ7nKxwSuNq9Cqb6ZcGIS8kG2gyhBJKlOCzAY9LEYdKWeFn1+JrVGo0tUSG/0lRiksph67XLAwgFrJqJRa8TrMCMRSmAglcGw6UtLSCBQXZ52pnJXbSBEY9Tr0Oy1l56s2g1Q2h8lwEmu61c04EzDGsLXfqWhMCUGUgoqzDiKRyQEA7ObmBoIAS5PV5ucKKfdjK1bOCn1p1YYHFzdQFzMdEcVd7eEFm/qcOBuII1l4zytRi3ImFpLFxdDhiTBcFsOSHqZmMD+IunKPVa3FmatKcTbqkxLZytkaBZes7wYAPHE6UPF+4nNWl3Jmk2yN5QoI0QuzyrP097V3TRfGAom6U9XEQnLYY0Wv04zLNvTgzy5dg4++5Dx8682XYP8H92HQbcE3HlIelHLPc1Potptw8bqFStirLlyFPas9+JdfH5F/V6d8MZwLJjTrNxNsGXAiEEsrnq1XjXILvj5node1gQtZoQQpSQWttkmxEhA9d0psjWLjo1rfWVBRcVa7Xa5a2IgWeB1m5Dlw98EJAOWTUcV1TVznOg1pI6XytXLI09pZZ+PBBDhHzcUZAGwbdOLoVKRjg1uI1lK1OGOMrWaM7WeMHWGMHWKM/eWi2z/IGOOMsdLbPIRmiGhZaxNtjS6LAXaTfkkjdS3pVYNuK+YSmaoFwHQ4CafZAHsVC0lvUQP1wscrK+4qsbnPgTyfj9OthOjVKpc+VQrxvgWLAidEGEgjd2fLIRY11frORmajGPZYVYfSuK3GinPORv0xOM2GiosrAFjbY0Of04zHT/sr3k9sJtTTc9ZlMyGb52Ub70XEd6liWvSdPVVn31lxcVYKo16HN1y+Dg+f9Msz8iqRyubw+6MzeOF5/Uvsqzodwz/evBP+WBqf/+1xAPOzlq7VIEK/GLlhXoPQlGwuj1A8syRGH5jvdW2kyjBfnFU/L7ssRgoEEcqZgmJWVs6qLNSrJQCqea5SBOPNKc4A4Kd/OAevw4ztg6UtizaTAU6LATMdOojaH01VvVbWk6ypBWOFzYDVdRRnWwdciCSzLVUAic5FiXKWBfABzvl2AJcBeA9j7DxAKtwAvADA2cYdIiFIpCUVx9ZEWyNjDIMeKyYX2RoD8QwYm29yV8I1W6T6/Z7npirebzqcrDiAWuB1mBGIp5ckSdYzgFogeqqUJDb6omnodUzVxbtHLoakRUUuz3F0MoLzmjzfTCAGaFdLbDw5oy6pUVBNMRj1x0vG6C+GMYZL1nfj8VOBijuSIqa9HuVMpHSV6xESi7zhEsXZjiE3TAZd3cXZeCgJk15XMWzmTy9ZDatRj28pGDPw8Ekfoqnskj45wa5VbvzZJWvwP4+O4shkGPcfn8V6rx1rqiiaatlS6JXRwvYj1OdyC74Bt1nTgdeLmbc1KlPOyNao3NZoNenhdZiqzjpTMofMbTXCZtLX1OsYimfQpcIlUgviHHx8OoprNnsrngv7XcpaBNqRarZGQCqkJ2oMb9GCsYD0eVvdXbuLRWxAUd8ZUQtVizPO+STn/OnC/0cAHAEwXLj58wD+BgDptk0gLoqzJqY1AsKOuHAXKxRPw2UxKp51BUi9VJv6HLj74HjF+02FlSUt9hb6pAKL4s6FlayemUzrvXboGHBSwc6+LyolxSkNZADmFxFCRRz1x5DI5FoSBgIoU87yea46Rl9QtTjzxbBWYQFw6fpuTIWTFa1Ok2GpqKm2CKhEKXWzmPFgAt12U8mAHpNBh/NXuevuO5sIJTDosVT8bHlsJrzywmHcdXCi7GgJwa+fnYLTbMCVG8sbHf76hq1wW434u58+i8dO+TVLaSzG6zCh227SRDkLVLG0DTR4IatKOSNbI8KJLHRMStxVwrDHWtXW6I+mwUrMuSuGMVazIhNognJWfL26ektlI1K/y6zK1sg5xzcfOl33ZlG9JDM5xNO5quflQbdFDm9pBWPBOIx6Jtuia2FroTg7Sn1nRA2o6jljjK0DcAGAxxljfwJgnHP+x0YcGLEUUZw1c84ZUEhWK9FzpnbhyxjDzecP4YnRQMULZLUB1AKhJizuO5sKJ+GxGRcMBlaLxajHmm4bTs4qU87UWBqB+V1+UVgemmhdGAggLfB1rHLP2cRcAslMXnW/GSAtmuLpHDIlBjOns3mcC8axvkoYiOCSQrz04xX6zqbnkuh3m+uyiHoKylm5OP1zwURZuyEA7F3bhefG5xT1LZZjPJSQE1Mr8eYr1yOdzeOOx8qbGLK5PH57ZBrXb++rGO7hsZnwoRu34emzISQzeVnx1hLGGLb0OzSZBeePVbYV97ssDbY1Ko+Gd1kMK145iyQzcFqUh2sMd1mrBoIE42m4rdU3C2uZdcY5RyiehqfRtsai4uyqTZU3RPqdFlW2xrOBOP7hF4fxqtsfwd/f9WzLPoOi2PJWmQkqwlsWbwo3i3MB6dyuV7HhuhiXxYhhjxVHJ6k4I9SjuDhjjDkA/BjAX0GyOv4dgP+n4HHvYIwdYIwdmJ2drfU4Ccz3nFXrxdKaQbcVvmgK6ez8wlry4Ku3efzJniFwDvzimYmSt+cLEehK+sV65UHUCwuK6XAK/XXseAk29TlxYlpJcZZSrdLJylnh2A9PhGHUs5pUKS3Q6xi67Sb4KhRnIgykJuVMWARLqAbjoUTVGP1iNvc54LEZ8USFvrPJuSQGXfUFq4jPd1nlrMQA6mIuXNOFTI4rHppdionQwhEW5djY68B1W3vxncfOIJUtXQw+fjqAUDyzIKWxHK++aDXOX+2ByaDDZTXGSVdja78Tx6cidVuXZOWszIJv0G1BMJ6pq0iuRFhFNLzUe7mye87CySxcVuXXsFVdNoyHEhVtzNUGUAuGPepHOMTSOWRyXFX4VS04zQaYDDqcN+iqej3pd1swE1Fu+xspbDJev60P//v4WTz/X+/Hr5+dbHpYhXBmlOoPLabVg6jHgvG6+s0EWwcosZGoDUXFGWPMCKkwu4Nz/hMAGwGsB/BHxtgogFUAnmaMLWlk4Jx/jXN+Eef8ot5e7e0xKwlZOWtizxkgJSdxvjC6NxDL1GQZW9tjx57VHjmRajH+WBpZhRHoQjnzLVLOZhT2rFVjU58Do/5YSbWnGF80pWoANSAFOTgtBgQKu/6HJ8PY3OfUNK5cLdUGUddVnFnLq1CjhdCVakmNAp2O4eJ13RUTG6fCybpi9AHIO+WlCkrOeckB1MXUGwqSyeUxHU5i2KPs53jLVevhi6bw8z9Olrz9189NwmrUK7Ip6nQM//m6C/Gdt1zSsLmKWwaciKVzNQU0FFPN1tjo6PFIMgujnsGs4G/XVeg5a1UvTTsQTmTgNCsvdIY9VqSyecxWODcFoml0K1C2xEajmkJdhF81WjljjOGmXYN43WVrq96332lGJsfLbhwtZmRGOsd+7pbzcdd7roTXYca77ngab/+fp5paACkZeQAUh7e0pq9uLBBfMiKlFrYNODEyG12wsU0QSlCS1sgAfAPAEc75vwEA5/xZznkf53wd53wdgHMA9nLOKyc9EHWRaFnPmbAYzJ8o67F53LxnCIcmwiWHPIsFlBKvt1dWzhZetCXlrPZ+M8HmPgcyOY4z/srN6P4abI2AZMMKFIqVwxNh7GhRv9n88Zgr2hpHZqPoshlrKspF83+pQmdU4YyzYi5d341Rf7zkgptzjsm5+oszUVAGY0uPORBLI5nJV1TOehxmrPfaay7OpsNJ5DkUKWcAcNUmL7b0O/CNh04v2RHP5zl+c2ga+7b2KrZFD7gtNQ9hVYJWiY0iVKdcT5D4HDSq70yNTc9tNYJzIJpeuepZRLVyVn3WWTCuTDkTf0tqPgu1zPSslc+/Zg/+7NI1Ve8nNhyUjogYmY3C6zDBYzNh9yoPfnbblfjIi7fh4ZM+vODf7sc3HzqNXBM2DIRTpNr10mMzwmrUt0Q5i6ayCMYzdYWBCLYOOJEt9GoThBqUbNNfCeD1AJ7HGDtY+PfiBh8XUYL5QJDm2hrFfBjh/+ac19RzJrhp9yB0DCXVM3HRVLKwtpv0sBr1C3rOcnmO2WiqrqRGweZ+SSGqNIw6lsoikcmpmnEm6LKbEIilMBNJwhdNtSwMRNDtMMkL3VKMzMRqtl2KQqdUnP6oLwaH2aCqwK0070wMIa9nlAJQUDfNhpK70yKgYLjK7ureNV14+mywJvuQsF8pLc4YY3jLletxZDKMx04tfF+ePhvEbCSFG8ukNLaCzSKxsc7iLBCT+o2MZfqNBlQuZNUSSWYV9ZsB89bHcgmgK4FwMqPIAioQaaiVQkGU2hprmXUm0kAbbWtUQ1/hM6207+zkTBQbinqFDXod3nHNRtz7vmtw0bpu/MMvDuPWrz/WcEVXbP6VGhhfjBTe0ppZZ3JSoybKmXRNJ2sjoRYlaY0Pcc4Z53w353xP4d+vFt1nHefc17jDJIDiOWetUc7EYjGRySGVzde8k9jntODKTV7cfXBiyaJVJFApWVgzxuB1mhYoZ/5oCrk8r2sAtUAEX5RS+ATCklWzchbL4HCLw0AEXrupYjrWyRqTGoH54qy0chbHOq9NVXjHeYMu2E36ksWZFgOoBW5b6XQ98XuvNjD8wrVd8EXTOBuorL6WQixMlBZnAPCyC4bRbTctGUp9z3NTMOl1eN62PtXH0ShcFiOG3BYcr3PhEohVVq6FxblxtsaM8uKsoBit5FAQqZhVZ2sEys8n45wjqLjnTP2ss2bZGtUwoPIzPTIbLRnktLrbhv9+88W47bpNeOxUAJMNDM4BAF8sBZNeB4eCvvlWzTo7p8GMM8GGXjuMekaJjYRqWtfgQqimVbZGu9kAl8UgK2fzPR617yT+yflDOBuI4+BYaMH3p+eS0LHqaU4Cr8O8IBBEDKDu00A5s5sNGPZYyypnY4E43v4/B2A16uX+IjV0F5QzkdS4vdXKmd2MuUSmZI9dIJZGIJauKakRqFycnfHHFIeBCAx6HS4s03c2FZY+p1r0HXbZTGWUM6nYKjXjrJh6+s7GqwygLoXFqMetl67B/x2dlnv5OOf49XNTuGqzV9WiuBlsGXDimILQnUr4Y6mKC3On2QC7Sd+wWWeRZFZxD5VLVpBXrq0xnMiosjU6LUa4rcays87CySyyea6oOBNFjZpQkGbaGpXSW+hxnlagnAViaQTjGWzsLX2OZYzJoT9nChbzRhGISkW0ko24Ibe1JQOc55Wz+m2NRr0OG3sdOEqzzgiVUHHWQcTSOZj0urL2nUYy6LbKFzQR6lDPTuINOwdgMuiWWBunwkl4HWbF89Ok4mz+AiV2Euu1tAk29jlKDqI+NhXBK7/6CELxDO54+6ULLCNKkWyNaRyeCGN1t1WV1acRCKtJsIR6JjzzGzVWzjK5PMaCCcVhIMVcur4bx6YjS453ak76PGihnHlsxpIhJuPBBJwWQ9Xf2eY+B5xmQ83FWbfdpFopf/1la2HQMfz3I6MAgOfGwxgPJXDjjvaxNAq29jsxMhNdMkheDdUs1owx9LsbF6dfk61xhc46y+U5Iqms6nPdqgpx+kGFIRMAYDbo0es0q7Y1MjZ/DmsHTAYdeuwmRVZdJeduMWPybJX+6noJxNJVLY2CIY8Vs5FU2fTZRjEWjMNm0tc1I7OYbZTYSNQAFWcdRCKdbbqlUTDosZRQzmo/ebksRly/rQ+/eGZywcJsKpxSFeTQ6zQv6DkTtkgtes4AaXE9Mhtd4MV/+mwQr/7PR8EY8KN3Xo69a9SrZoBka8zkOJ4YDbTc0iiOB1g6mgAoSmqsUTkz6nWwmfRLFqXjwQRyeY51KpUzYL7v7MnRherZ1FwCOja/u1wPHpsJoTI9Z0rSvHQ6hgvWdtVUnEkx+uo/x30uC166ewg/PDCGuUQG9xyahF7H8Pzz+lU/V6PZ0u9EOpeXQ2FqQcmCr5GDqEUgiBLk3ssm2hqfPTeH99zxdF0FsFZEU8oHdhdTaRC10gRAgdpZZ8FCT2M9M68aQZ/LghklxZmCc/eg2wKDjtVkv1aDT0Wvujj3NXKAfCnGAgms7lJns6/EtkEXJueSK7rPlFAPFWcdRDyda7qlUTDotsonSa1sHjfvGYIvmsKjp+bnVc2ElQ2gFngdZgTiaXnhMT2XBFNhi6zGpj4Hkpm8bDF74Pgsbv2vx9FlM+LOd16BLYVQg1oQs15mIynsGHJrcrz10FMoZsRQ32JOzkRhMepUWewW47Yu7d+qJalRsHuVGyaDbom1cXIuiV6ncvW1El02oxwIUMx4qPIA6mIuXNOFY9MR1QvyCYUDqEvxlqvWI57O4YdPjuHXz03h0vXdmu0Ea8nWQmLjsanarI35PEcwXn2sx4DLosgCVguqlLMKwTiN4oETs/jls5OYjjTm51eD+LldKlWoSrPO1G4WDqsMmgjGlcX0N5t+l1nejKzEyGwUZoOuYu+qQa/DcJcVZxpcnAViKcX92bX0B2rBuWBck6RGgTjHkbWRUAMVZx1EPJNrmXI25LbAH0sjmclpopwBwL6tfXCaDQusjVPhpCpLYq/DBM6BQKFgnA6nVNkiq7G5YAU5MRPBL5+ZxFu//STWee340TuvqLthuLhnrx2UM/H7LBWnf3Imig1eB3R17B6XLM7kGWfqizOzQY8LVnvwxGLlLJzEQI1FzWI8hblUxTHT0oyzygOoi9m71gPOgWfGlA+j5pxjPKhsAHUpdg67cen6bvzH/pM4NRvDi9oopbGYTX0O6FjtiY1zCel3U22o7UDB1qh1Gl0+zxFNZ+FSWJw5zQYw1tziTPzNlbIrNxuxQaHW1jjcZUU8nSu5UaLG1ggUeplCScUJqqF4Bh5b+1gaBUo3HEZmY1jvtVdV/tZ02xpva4ymq/6tCgY9C4PImgHnXLMZZwIxMqTeVFpiZUHFWQeRaKVyVjQfJhhLa+LBtxj1uHHnAO55bgrJTA7JTA6heEZV0uL8IOpCcRZJapLUKBDphF/ZP4Lbvvc09qz24PvvuAy9GsxRK75ItTpGH5hXG0vZGkfqSGoUuEoqZ3HYTfqalc5L13fjufE52S4FSJ/RQY1srR6bVPwXL6bDiSyiqazi4kzEKZ+okPq5mHAyi1g6V5dS+Zar1svv9wvbsN8MkM4B63rsNSc2Cktbtd34AbcF2TyHr4QqXA/RdBacQ7GtUadjcJoNCCebFwgibLlKBxY3kkjh51ZazAoqzTpTa2sc9FiRKFxrlBCIpdsqDETQ57LAF01VtasqPXev7bE11NaYzOQQS+cU95wNyuEtzVPOgvEMYumcJkmNggGXBW6rkRIbCVVQcdZBxFLZps84EwyJE+VcAsF4RjMP/s17hhFNZbH/6IzcsK/G1iiKpNlCKMh0OKVZGAggLc69DjMOnAniuq19+J+3XKpZY7iwynhsRk3CK+rFZTHCoGMILFrAJtI5jIcSdRdnbqtxiWIwWkhqrNXff8n6HuT5wjTEKQ0GUAvEjnmo6LjHCqlxSoszr8MEt9VYcV7eYsblOWq1F2fP396PdT02XLKuW7MezEawpd9Z8yBqpSq++Pmn57QtzkSxoaaHqtQmRSMRRUgp1anZ1GprFJsUpRIbg/E0LEad4mvjcKGXSaldLhRPo6sNLcH9LjM4n7/2lSKZyWEsEFeUsrum24a5RKZhvVFKN1IEFqO0aTepoj+wXkRSo9JzuxIYY9hKoSCESqg46yASmdYpZ2KxOxlKIqChB//yjT3wOsy46+C4bNFQs7CeV86kx86Ek5rE6BfzZ5esxpuuWIf/fP2FmtpKuws7iOcNujRrPq4HnY6hy750EPXIbBSco+YYfUEpW+MZfxzra+g3E+xd64FBx/DEaalvMZrKIpLKalaciR3zYtVhPuJe2e4qYwwbe+1yapoSaplxthi9juEHf345vvK6vTU/RzPYMuDEqD+GZEZ9KpvYSFDScwZoP4g6UrDpqRlR4LIs3aRoJGJjoVSwTbMJy8qZuuJMDAQuVVD5o2n0KLTKAfN/U0oVmUA8ja42tDX2O8Wss/LF2Rl/HHmuLGV3Tbd0Hj4TaEycfiCqvh1iyGPFeBNtjWLjTYsB1MWIxEalVlqCoOKsg2h1IAgATM4lEIxpt5Oo1zG89PxB7D86K++eqwoEKShnvqgUueuPpeWLlla8/4Vb8fE/2aH5CAN7Ia631rTHRtBTYhC1KCq0UM6Ki7NsLo+xQFyOca4Fm8mAncNuORRkSsMB1MC8cla8myxS49Tsrm7qc+DkjPJFj0iTqyWtsZh+l0XewGhXtvY7kedQpSwK5N34KlYp8XnQvjhTr5yV2qRoJLKtMdZ65Wy+mFXnAHFZDXCYDSUTG4PxNLpUzNxUU5xJdvt8Ww2gFigZRC3+psrNOCtGjtNvkLVRBE0ptTUCoj+wmcqZGECtnXIGSNb2aCpbNnGUIBZDxVkHkUjnYDW2xtZoNenRZTNici5Z8OBrt5P4sj3DSOfy+J9HRwGoK87sJj2sRj180ZQcqa9lz1kjYYzhl39xFW573qZWH4pMj8ME/yKbzMhMFDoGrPPWt5vothoRT+fkIdfjoQSyeV5TUmMxl67vxh/H5pDM5OTiTCtrq6eUchZMwGbSqwoJ2NjrgC+aUmwZGg8lYNLr4FWhCHQq84mN6m0/Snfjexxm6HUMUxpbpGopNlxWQ1Oj9OdtjW2gnCVqi9JnjGFVV+k4fX9MecgEIG1AmQ06RQtl8Z61Y9JpX+E6VylOX2ysbfAqszUCktrWCIQjQ43KOVhI1myW4jQWjMNjM6pSwpVQzzmOWJlQcdZBxNPZlilngKSeTc4lEYpnNG2Q3r3KjXU9NhyfjsJq1KtqFmeMwes0YTaSku0d7dxfs5hBtxUWY+t+p4vpsZuXpDWenI1iTbcNZkN9x7l4EPVoYRFQS1JjMZes70Y6l8fBsZCsjGhna5SOubhfZzwUx6ouqyorqlAdTyq0Nk6Ekhj0WOpKx+wU1vXYYNLrauo788fScJgNVT+beh1Dn9MsDyjXinnlTPliTuq9bE4gCOdctjW2RXGWzMBu0teUpjvssZa0NQZiKXSr2ChhjGFTnwPHFSi14lzYjrbGHru04VDJ1jgyG8Wwx6rIjm83G+B1mBqW2Cj3h6pQzoY9Ukpns5Tmc8GE5pZGgOL0CfVQcdZBtNLWCEgWq4lQQuo503AnkTGGP9kzDEBaVKvtv/I6zPBF0/IOYicVZ+1Gd4mes5Mz9Sc1AkXhGoVCZz5Gv76L4UVru8EY8MTpgKyMaPUZcFqMYAyYK1rYngsqn3EmEO/fiELrXj0zzjoNg16HjX2OmqKmAyqG2va7LBUtYLUQriF90GVpnq0xmckjnZWU6nYIBFEzsHsxknJWIhAkllGlnAHSYvnoZPWFsjhXtaOtUa9j6HWYK1p1R2ajivrNBGu6bQ3rOfPH0jDqpbRSpcy3UzSn7+xcQNsZZwKH2YDV3VZKbCQUQ8VZh5DLc6Sy+ZalNQLSifK0L4Z0Nq95etWfnD8EAOirIaJeKs5SRWmPy98K1ii8DhMiqSxSWSmcIZvLY9QXV3WBL4driXIWg82kr3ssgdtmxLYBF544HcDkXBLddpNmaqRex+C2GhcpZwnVc3BWddlgMugUh4KMBxN1JTV2Glv7HTXF6aspzgbdlvYIBLEakcjk5KKpkYQS85sKbTHnLJGFy1rbNWy4y4pIMrugsE1lc4imsgtmRiph+4ALM5FUyZmOxbSzrREoDKIu85nO5zlGZmKK+s0Ea3vsct+V1kgDqM2qNl+FA2KqCcVZPs8bppwBwNZ+F9kaCcVQcdYhxNPSDm1LbY0eC1KFBYXWNo9NfQ5cu6UXF6/rVv3YXqdUnE2FUzDqWVvOpOkUxA60WLSMBRNI5/LYVGdSIzBvaxRJdWf88bpi9Iu5dH03njoTxLlgQnPl1GM1ytawaCqLUDyjunDS6xg2eO2KQi8yuTymI8m6kho7jS0DTkzMJVX3YvljacXR3P0ui+aLvEgyC4OOwWJUfikVfweRJvSdCeXHatS3ja1RbVKjQGyIFM86EyEnapWzbYPKbGaioG3HIdSA9JmeKWNrnAonkcjkVKXsru62YWIuIW/OaYk/qt5xI4J8mqGczURSSOfyWKXhjLNitg04ccoXa8h7Syw/qDjrEBJp6Q9ayyh3tRQn4DWiAPr2Wy7BB2/YqvpxXocZ/lgaE6EE+pwro0+nUYgkLWFtlNO+NFDOlvSc+WJYX2fIiOCS9d1IZHJ49JRf85lxHptJTryT54/VUDht7HUoUs6m5pLgfH4e00pga7+0WD6h0toYiKUUL/gG3BZEU9kFA8vrRbLpGVRtMAjlqBnWRlGcrfPaFQ9dbiSRZFZ1GIhA/M0V9535FY5SWIwYDH90svLnTSjm7brh1++yYDpSunAR5xo1xdnabhs4R0NSBf2xtKqkRkDaeNUxaB7kU4r5GP3GbIptG3Qil+c1pdISKw8qzjqEeKE4a3UgiKCdbB69DhM4l3ZBydJYH15RnBV2jLWK0QcWFmfZXB5jQUk50wKhuKazec3CQARdNqOsOpxTOYC6mI19DpwNxKvO89JixlmnMd8wr7w445xLtkaFCz551pmGu/BSsaFOVZEV5GTjQ0HmCrbG9V4boqlsU6yUlQgnM6oHUAvE31xx39m8cqZ+0d9jN1VXzuJpOM0GzceoaEW/y4xQPFPynDIib6ypsTU2Lk5fjQVZYNTr0Os0N0U5EwOoVzdQOQMosZFQRnuecYgltENxVhxQoHXPWT2IOU4nZ6IUBlInwh4k4vRPzkTR5zTXbEUqprg4mwglkcnxusNABL1OMzYUeiu0itEXSMqZtAiUB1DXUpz12pHn1aOq52ecrZzibNhjhd2kV9V3FkllkclxxbZGJXOh1FKLEiT+lpqqnBU2QVo9iDqcyNSsnEm9pLoFtsZalTNAUjKqLZSDsTQ8KvvZmklf4VxXyto4MhuDy2JAr4o5hyJOvxGJjYGYumHhggG3VfNe0VKIXrtaXBFKWNdjh8mgo1AQQhFUnHUIoufM2sJAkH73/Im1nWweIlAizympsV6E7UT0nJ2ciaqyxVTCqNfBZtJjLpHBqF8kNWqjnAFS3xmgXYy+wGMzyovcc8EEzAadqgWPQI7Tr2JrmQhJC5GVktYISImtWwacqhIb52ecKftdiKJdy114YWtUg2tR72UjEba89YVZgq1MbOScI5LM1rzRI806sy2w3Mnx7LUUZwMuHJuOIJcvP0MrGM+gu42udYsRn+lS1saTM1JSoxrLba/TDKtRr/mss2RGCm5Ra2sEgCG3pTnKWTCOfpe5YaNtDHodNvU6Glqccc5lBZDobKg46xCEcmZvoXJmNujhdZjB2LwK0g54ixbKfWRrrAvJwsPgi6bBOceIRjH6ArdVihE/I4qzOgdQF3NJoTjTvOfMakI0lUUml5dSFD3qZpwJNngdYKx6cXYumECP3dTS/tJWsLVfUjKUDpwV1tvWK2e12hqboJwl0jDpdbIaoHUoyEMnfPjaAyOK7pvI5JDN85ptjcDSWWfBWBq6Gq9H2wacSGby8rmoFKF4ui1j9AViM7LUZ3pkVv3GGmMMa7ptmtsa6ymiB9zaB/mUYiwQb1hSo0BSaxs36+w3h6ZwzWf3k3VyGUDFWYcQb4NAEECadeaxGqFvo9ANb1EUe7+TlLN6YIyhx26GP5rCbCSFSCrbkOLstC8Oq1Ff0+iEcrxo5yA++pLzcNmGHs2eEwC67PPz2c4F4zVH3FtNegx7rFVDQSZCiRVlaRRs6XciGM/AF1VWQKhd8FmMeritxgb0nLWvrXEunoHbZpQLDK1tjT84MIZ/++1xRQW1GLxdq60RWDrrzB+TiqdarkdyKEiFhWwgnm7LAdQC0WO9eBB1OJnBTCRVk+thTY8NZzWedRZQuZFSzGAhyKfRmxnngomG9ZsJtg04MR1ONWysxf6js+AcuP/4TEOen2geVJx1CImMiNJvna0RkOwxg21mt7Kb9LAWrAhaW9pWIt12EwKx9HxSo0a2RkCydAnlbG2PTZMYfYHFqMdbr1qvefO+WNjOJdKFGWe1f/439TkU2BoTGFpBSY0CEQpyXKG1MVBDv9GAS9tZZ7VEw1uMOhj1TC5WGkkonoHHapQ3GAIxbRe4s5Ekkpm8IrukGB1QT//qcJcVwXgGsULiZjCuPmRCsLnfAR1DxWHUoVimrfqrF+O2GmEy6JYoZ6dmpeJKzYwzgVDOlCrYSvAVephrsTUOFNYbjVTPMrk8JufqO7crYauCDYF6eOSUT/rviL8hz080DyrOOoR2CAQBgP/3kvPwtTdc2NJjWAxjDF6ndNKntMb66XGY4IulcVLDpEaB22pEOJHBaX9M036zRuIpWKYm55LwRdOqB1AXs7HXgVO+KPJl+lw45ytWOVOb2CjbGlUs+LS0SOXzHNGUeuWMMSYryI0mlEjDYzPKPcJa2xpnI9KieyJUPepcKB/12BrlWWeF16tldpbAYtRjvdde9vOWyeURSWXbqr96MYyxkoOoR+oYgbK2x4ZkJi//brVgXuVWf31uxqyziVACeY6G2xq3y4mN2lsbxwJxjAUScFoMeOJ0oOXJrER9UHHWIbTDnDMA6HGY61qcNgrRd9ZHgSB102M3IRBLYWQmCofZoGnB67YaEYilMRaIa9pv1kjE4uy5cemCWk+a16Y+B5KZ/IK+mWLCiSxi6VzDEsPaGa9DijdXmtgYiKZhMepUuQm0VM5i6Sw4r82m57IYm9NzFs/AYzPBYpTcBVrbGsUCXslcLC1sjfKss8LrBePpugI7tg26yhZnopBtZ+UMkD7TS4qz2SgMOianL6pBPOaMhn1ndfWcySMwGjfrTHx+V3U39rzb6zSjy2ZUFXyklEcLatk7rt6AeDqHP54Laf4aRPOg4qxDiKUKylmDkoQ6Ha9DSplymltr+1wO9DjM8Ecl5Uxt2lc13FYjZiIpTWP0G42n0HPy3MQcgNpmnAmERfRkmb6z8RU446yYLf3KExtriebud1vgi6aQydW/qxxJimJDvRLkKijIjWYukZGVX2len3avmczk5FltqpSzOmyNqxfNOlMz564U2/qdOBuIlxxMHpIHULdvzxkgbUgujtIfmY1ibY+tJou3XJxpmNjoj6Vh1DO4aijM+xuQsroYecZZgzeeGWPYOuDEkSrDz2vhkREfvA4TXn/5WjAGPHKSrI2dDBVnHUI8k4XJoIOhTYdhtpqrN3vxwh39mhYSK5UehwnxdA6HJsI19SxUojhVTasB1I1GFGeHxqXirNZAEGDeIjpSpu9MnqO2QouzrQNOnJiOlLV9FuOvYajtgMsCzqGJZWu+OKtBOWtScSYpZ9Ln12MzaRpEUPwellOCixGFnMta+waa12GGSa/DuVAC+TyvO+p+26DUA1Qq3U6oPe1sawSkEKylylms5l7hVV026Ji2g6j90RS67aaars8mgw5eh7mhPWdjwTj0OqZ50m8ptg24cFzhOU4pnHM8MuLH5Ru98NhM2DnkxsMjPs2en2g+tNLvEBLpXMv7zdqZN1y+Dv/+2gtafRjLApGoFYpnNO03AxYWZ+s7xNboMBtg0DGM+uMw6hn66kgE7bab0GUzlk1snCDlDLF0TtFiP1BLcVaY1aiFtVEEXNSknFkMcrHSKJKZHBKZnBxo0203adpzNhudL84UKWeJ+pUznY5huMuKc8EEwskMcnlec88ZIKXnAaWLM2EBbfvizGVGLJ2TP4+ZnDQeoJZ+M0AqhgbdVpytMGJALdLfau32+MEGzzobC0ghTM3Y/N424EQ8nVNkBVbKyGwMM5EUrtwoJRVfsbEHfzgblOfjEp0HFWcdQjydI0sj0RSKrWKbNExqBOaLM4tRp2mMfiNhjMnqw6DbWvcYiU19DozMlF74TIQSMBl0NUVOLwe2DkifNyWJjZKtUd37JArrxTawWqhHOWtGIIh4fvE3VzxMXQvEe9hjNykqziLJLEx6HcyG+pYdwx4rxoMJORCmnuJsVZcVDrMBR0sENAgLqEi6bFfmZ51Jv4+xQByZHK8rZXdNt03TnjN/DX+rxTR61tlYsPEzzgRCrT1cISVULY8WVLIrNnql/27yIpPjODAa1Ow1iOZCxVmHkEjnWh4GQqwMins4at19LYe7UOSs67FD10az8qoh1Act7Iab+hwVe86G3JaOem+0ZHN/QclQUJz5YynVC3MxpH42Uv9Cb76HqnZbo5Zx5YsRhZjYWOiyNUY5O3+1R6GtMQOX1VC39XxVQTkLalCciR6goyV6gDrG1ugSGw7SZ1qM6qjH9bC2xyb3YWmBP5quKUZfMOS2YLKBgSBjgUTTirOt/U7oGHC40MOsBQ+f9GPYY8XqQqDJxeu6YNQzsjZ2MFScdQjxdLblM86IlYG3oJwZ9QxrNR7KKXbx13ZIGIhAhCpoMQdnY68DgVhaXvwVs1Jj9AUuixHDHmtJm1kx8XQWyUxedRhEj90MHVs6tLcW6gkEcVuNyOY5Eplc3cdRDmHL81il96jLZkQoIVkBtWA2kgJjwK5hN3zRNJJVfpZwIlPTe7WYYY8VvmgKEwUlpZ7iDJBsZkemwksK5VA8DatRD0ubO1bkQdSFDYeRwoyzDXX0C6/pscEXTZcMSqmFWizIxQy4rQgns/J8Oy1JpHPwRVNyYdNorCY9Nvc58dyENspZPs/x6Ck/rtjYI2982EwGXLC6S05wJDoPKs46hBj1nBFNQix41/XYNffgi+KsU2acCWTlTIviTISClFDPJkLJFV2cAcCWfkfV4swfLcw4U7ng0+sYvA4zZjRQzuoKBCkUKY20NoYSi5QzuwmcQ7MgktlICj12k7zRUs3aGElma1IZFyPizp8rBPTUXZwNuhBJZpf0NAXjmbZPagTmx8dMzUkbDiOzUfQ5zXX19q3tls7PZzVIbExlc4imsnXZGhs560wkf67WeCOyEjuGXXh2XBvl7PBkGHOJDK7Y1LPg+1ds6sGz43OY09DKTDQPKs46BAoEIZqF3aSH2aCrq2ehHP0uC5wWA/au7dL8uRuJWOBqMeNP9PGdXJTYmM7mMR1JrtikRsGWASdOzcYqxt3XM9S2z2XGjCZpjRnodQzWGpQVkVgoZn81grkStkZAu0HUs5EkvA6zvJkwEaq8cJZsjVooZ9Lf4DOFOU71Fmfb5eHnC5WMYCwtb8q0Mw6zAQ6zQU5sHJmN1n3uFnH6WiQ2BuRh8bX3GA+4RQGqfXE2VijOmjm/ddewG7ORlGxFrQehjl2+wbvg+1ds9IJz4NFTpJ51IlScdQhkaySaBWMMf37tRrz2ktWaP7fDbMDB//dCvPC8fs2fu5GIHXQtCqdhjxVmg25JnP50OAnOV26MvmBrvxPpQuJcOeoZatvnXDoXqhYiySycltp6qISC3MhB1KFEwdZYKDBEkaZdcZZCr9Msf16VKGf1DKAWCGvxc+Nh2Ez12w63FIqzxbOngvH6rHjNpN8lqcGcc4zMRLGxrz5nwpoeUZzVn9goVO563st55Uz7vrOxgPSczbI1AsDOYTcAaKKePTLiw4Zeu1zACvas9sBq1MthIURnQcVZh0CBIEQzef8LtmDf1r6GPLdexzpuHp1Y4GrRc6bTMWzoXRoKstIHUAu2FEJBnj4bKnsfkdRXi1WqX0PlrNZiQ7Y1NtByFIpnYNAx2AvXDVk5i2lna+xzWjDgtoAx4FyV4iycyNRltRP0uyww6BiiqawmxZPoczy6yEpbPCOu3el3WTAdTsEXTSOczNatnLmtRnhsRk0GUdfztyrodzVQOQvEYTbo0FuHsqeW8wZdYEzaYKiHTC6PJ04HcMXGniW3mQw6XLK+Gw9T31lHQsVZhxDPkK2RIFrFDTsG8I5rNmimam3qcyzpOZufcdb4QajtzPZBF7b0O/CV/SeRzpa2NgZiUnGlNhAEAHqdFvhjKWQr2CaVEElm4TTXtnh3NUU5k4oLsREiChktlDPOOWajknJm1OvQ77RUVc60sjXqdQyDhb8RrZSt7YNOHFtkawx0lHImDaIW5xQtLOlrum0a2RoLf6t1vJcWox7ddhMmNbABLuZcMIFVXdambhjazQZs8NrrVs6eOTeHWDonR+gv5oqNPTg5E9XEPkk0FyrOOoR4Kke2RoJoEZv6HPjIi7drFnG/sdeOc8HEgoS7lT6AWqDXMfzti7Zj1B/H/z5+puR9/LE0jHoGp1n9ObHPaQbngC9aX5FSj01P2BobGQgyF88sGPouVCAtZp2F4hlkchy9hVmFw13WisVZOptHMpOv6fdVCrFJolXxtG3AhZHZGFJZ6e8xl+eYS2Q6oucMKPRRhlNyH6sWI1C0Ks7k8J46lakBV2NmnY0F400NAxHsGnbjUJ1x+sKyeNmGpcoZAFy5SSraHiH1rOOg4qwDyObySOfypJwRxDJhU58DnAOnZud7OsZDSfTYTW0f3d0M9m3txRUbe/Dv/3eiZAETiEqqRi273WL4eb2JjeFk7dHwoqhrZCBIML4w0MJhNsCgYwhooJyJGWeiOBvyWCvOOouImXAaKGfAfHhDt0bF09YBJ3J5Lhc30gw6dERaIwD0Oy1I5/J46kwQVqMeg6761fe1PTaMBxN1K8xiI6XepM5Bt6UhaY1jgeYNoC5m57Abk3NJ+KK1W6wfGfFj+6Cr7CbF9kEX3FYjHj5JfWedBhVnHUC8sLtOxRlBLA/EgNjivrPxUEKTqP7lAGMMH3nxdoQSGXz1vpElt0tzk2rbie+Th/bW13dWTzS8Ua+D3aRvrK0xnpHn8wHSe9plN8nzz+phttCz1ycXZxZMhpLIl5mhFi6MHRAplfWitXK2fbCQ2FgIBREFbKfYGkUYhAiH0ELhX9ttRzbPq6ZwVmM2kkKXrbaNlGIGPRZMaRwIMpfIIJzMNjUMRCBCQZ6r0dqYzORw4EywZL+ZQK9juHxDDx4Z8Td04D2hPVScdQCJtFScUSAIQSwP1vXYoWML4/QnQgkMuak4E+wcduPle4bxzYdPL1Fl/LF0zQED88pZvcVZ7YEggKQiNdTWmMjAvUj56bIZNQkEEcWZUM5WeaxI5/JlVQChnNXao7cYEcxTS89hKdb12GEy6HBsWirO5AHeHWJrlAdRh1OajUBZrUGcfjqbx/6jM7hgjafu4xl0WxGMZ6oOO1fDWOFna4Vydt6QC0DtxdnTZ4NIZ/MVizMAuHJTD8ZDCU0sqkTzoOKsA4inSTkjiOWExajH6m6b3MDPOZeKsxXeb7aYD9ywFQDwud8cW/B9STmrbeHsddRva+ScI5rK1mxrBKSUQK0GQpciFE/LCY0Cj82kSSCIeO+KbY0AylobhX1TK1ujUJi1sjUa9Dps6XfgyKQUCiIK2E6xNfY5522MmzToNwMgDxc/U0ec/r2Hp+CPpfGnl6yp+3gGGpDY2IoB1AKXxYj1XnvNiY2Pjvih1zFcsr674v0uL4SFPHyS+s46CSrOOoB4WrqwWY0UCEIQy4WNvQ551tlcIoN4OrfikxoXM+yx4q1XrcdP/zC+YIe5nuLMZNChx26qSzmLpXPIc9SlnLkbqJyls3nE0rkFtkagoJxpZGs0G3RywIcolspZ4MJyz5k217Adg27sXuXWdJj91n6XHKcvbI2Li9t2pc81b/HVSjkbcFlg0utwto44/e89cRbDHiuu2dxb9/GIWWcTGlob5RlnLVDOAGDHkKvmxMZHRvzYvcpddYNoY68d/S4zHqF5Zx0FFWcdgFDO7GZSzghiubCpz4FTvhhyeS4rDit9AHUp3rVvI7rtJnzyl0fAOUcqm0M0la1rblKv01xXvLRs06tHObMa5F4srRFF3+I5Xd12E4IapDXORlLoc5nlPqJ55az0Ql6L96sYt82In912lTwTTwu2DzoxG0nBH03JtsauDuk5Mxv08mZFvQOoBTodw6pua812uFFfDA+f9ONPL1mtSQ+c6KvTUjkbC8bhtBiW2H+bxa5hN8ZDCQRj6jZMoqks/jgWqmppBKRe0ys2evHoiL9sTyjRflBx1gGQrZEglh8be+1IZ/M4F4zLigPZGpfishjxl9dvxqOn/Nh/bAaBwkKmnn6jPpelLuUsUiiq6u05a5StcS4hvUfuErbGUDxddzjAbDS1YGivy2KE02wor5wJW2OdiX2NZNuA1AN0bCqCQCwDo35+gHcn0Oc0gzGpf04r1nbbah5E/b0nz0KvY7jlotWaHIsozrRMbGxVUqNADgVRGan/5OkAsnledr7ZYq7Y2AN/LI3jM5HqdybaAirOOoAE2RoJYtkhekNGZqMYL/Q+UFpjaf7s0jVY77XjX351VA6jqEc563Oa60prnFeC6ijOGthzJmaZlbI1ZnIcsXR9oQoz4ZTcbyYY7rLiXLBMz1kyAx0D7G08q3NbIbHxyFRE7tdr5mDiehl0W7Cm26bpKI61PXacDcRVF/PpbB53HjiH52/vQ78Gsf4AYDMZ4LYaNVbOEi1JahTsHJKKM7XWxkdGfDDpdbhQoa33ik3Ud9ZpVC3OGGOrGWP7GWNHGGOHGGN/Wfj+PzLGnmGMHWSM3csYG2r84a5MSDkjiOWH6A05ORPFxFxS7oUilmLU6/ChG7fixEwUt98vRevXGqUPSMWZL5qq2eYTlpWzemyNRkRSWeQaYDWSi7NFdi2RPqjWRrWY2ejS4mzIU34QdSSZhcNs0GyIeyPwOszwOkw4OhlGsESYSrvzoRdtw7/ecr6mz7m624ZoKqvaCvvbw9OaBYEUo+WsM845zgVbq5y5bUas6bbhkMpQkEdG/Ni71qO4EB/2WLGux4ZHaN5Zx6BEOcsC+ADnfDuAywC8hzF2HoDPcs53c873APgFgP/XuMNc2VBxRhDLD4/NBK/DhJMzUWnGmcfaUTv1zeaGHQO4aG0XfvXsFID6ZlD1Oc3I5nnNA5mFrbEem567oGpFG9B3JkI/PNaF75FIN6wnFCSVzSEUzyxICASkBWC5sIZwIqNZUmMj2TYghYIEYxl02dv/eIvZNuDCResqJ/epZW0hxfCMX11i4/8+cQbDHiuu1iAIpJgBtwVTYW0CQXzRNJKZfEuSGovZOawuFCQYS+PwZFixpVFwxSYvHj8dqHuoONEcqhZnnPNJzvnThf+PADgCYJhzXlzq2wFQp2GDkNMaqTgjiGXFxl4HRmZjhRh9SmqsBGMMH7lpu/x1PSpjf52DqDUJBCkUdo1IbBTPuWTOWaHgqCcUxB+VCrtSylkonkEstbTYDCczmoWBNJJtA04cn47AF0t1nHLWCEScvppQEBEE8tqLV0OvsVI66LZqZmsck2P0W2sl3znsxtlAHHMK/yYfP+0H51AUBlLMFRt7EE1l8UyN6ZBEc1HVc8YYWwfgAgCPF77+JGNsDMCtIOWsYcwrZ+3r1ycIQj0b+xySchakAdRK2LumCzftHoTNpJeVp1oQ0ePTNc460yIQRBy/iJnXklBc6vESUfcCYWsM1aGciSCV4kAQAPLmQilrYziZbeswEMG2QRdS2TxO+2IdM4C6kciDqFWEgnz/yTHodQyvvlibIJBiBt0W+KJppLL1D6IWA6hXtdDWCMz3nR1SGAryyIgfNpMeu1d5VL3O5RukYo6sjZ2B4uKMMeYA8GMAfyVUM87533HOVwO4A8BtZR73DsbYAcbYgdnZWS2OecWRSOdgNug034UiCKK1bOp1YC6RwUwkRUmNCvncq87HXe+5sq7+JWHJm61DOdPrWF1Wc2Hza4RyFkqk4bGZlrxHQg0K1NFzJgJZFitnqwphNudKFWcdY2uUQkE4B7o7zNbYCCxGPfpdZpxRqJyls3nc+dQYrt+mXRBIMSKxsZ4wH4EIr1nV4hAmNYmNnHM8dNKHi9d1w2RQl+fX4zBj+6CLQkE6BEW/XcaYEVJhdgfn/Ccl7vK/AF5Z6rGc869xzi/inF/U26ut/3ilEE/nqN+MIJYhG/vmB8ZSUqMyrCZ93fOtRGExU4dy5jAb6uoRdBVsfo1IbAzFM0uSGgFJrWOsPlujKM6KBx8D82MgSilnkWS2LpWxWWzqc0DUs2RrlFjbbVesnP328DR80TT+9FJtg0AEgxrG6Y/6YvA6zC13JHXbTRj2WPGsglCQp84EcWo2hhec11/Ta1292YunzgRLWo+J9kJJWiMD8A0ARzjn/1b0/c1Fd/sTAEe1PzwCEMVZ+1/YCIJQx6bi4oyUs6ZhMerhshhqnnWmRbEh+sEaYWucS2RKDtbV6xjcVmOdtkZpYdyzKC2zz2mBQcfK2BozcjHazliMemwopKiSrVFiTY9Ncc/Z9544i2GPFddoHAQimC/O6g8FOTwZxvZB7YaY18POYRcOKegF+8ZDp+G2GvGKvcM1vc41m3uRzuXx2ClSz9odJcrZlQBeD+B5hdj8g4yxFwP4FGPsOcbYMwBeCOAvG3mgK5lEJkthIASxDBl0WWAtxCGTrbG59LksdQWC1Btw0chAkHLKGSApQvXaGrtsxiW2Kr2OYcBtwfiiWWf5PEc0le0IWyMAbC1YG8nWKLGm24apcBLJTOU+rzP+GB466WtIEIhgoNCXW69yls7mcWI6ivOGXFocVt3sHHLjlC8mBw2VYiwQx28OTeFPL1lT82b9Reu6YDXq8cBxajFqd5SkNT7EOWciNr/w71ec81dyzncWvv9Szvl4Mw54JRJL5WCn4owglh06HcPGPjuA+V1hojn0u8w12xrDGihndpMBOgaEE9pbjETPWSk8NqM8B60WZiOpJTH6AmnW2cL3NJLKgvP6xg40k+2F4oyUMwmR2DhWRT373hONCwIROMwGOM2GuhMbR2ajSOfy2FEI42g1O1dJx3F4ory18duPjIIxhjdesbbm17EY9bhsQzfup+Ks7VHXUUi0hEQ6R8oZQSxTtg24MOi2KB4oSmhDn9OC6ZqVs/rTB3U6BpfV2DDlrFyaZbfNVNecs1IDqAWrPFaML7I1CjWgE2yNALBvax829NqxwWtv9aG0BWu6q8fpNzoIpJgBt6VuW+OhQhF03mD7KGcAys47i6ay+MGTY3jxrkEM1pnqe+2WXoz646pn1xHNhYqzDiCeyVLPGUEsUz504zZ8+y2XtPowVhx9TjNmIylwrn5Epxa2RkAqWLTuOcvm8ogks/CU6DkDJEWoHuVsJly+OBvyWDEVTi4YdCuUQZe1M65hO4fd+P0H9pFyVmCNPIi6fHH2uyONDQIpZsBtqVs5OzwRhtWox/o2KcB7nWYMuCxy0biYHx0YQySVxVuvWl/3a12zReoH7Hhr42c+A+zfv/B7+/dL318GUHHWAcRJOSOIZUuv01x3+iChnl6nGelcviblSqv0QbfVqHlao/h5yvecGWvuOeOcV1TOhjxW5PJ8QdBKWIOB3UTr6Lab4DAb8NM/jONL/3cCdz51Dg+f9OHUbBSJwgzW/328sUEgxQy5rXX3nB2amMO2QWdbjSfaOewqqZzl8hzfengUF67twp7VnrpfZ73XjtXdVtx/vMPnnV18MfDqV88XaPv3S19ffHFrj0sjOmMra4WTSOdgI8sTQRCEZvQV7FczkZQqlYRzKeBCi+LMZTVobmsMFZ6vy176Z+qym5DI5JDM5FRbacPJLNLZPPrKFGdiHMR4KCEH3IiB3Z1iayQWwhjDK/cO4xfPTOJff3t8ye2ih/H9L9jSlGJnwG3BbDSFTC4Po169vsA5x+HJMP7k/KEGHF3t7Bx24/+OziCeXuiU+t2RaZwNxPGhG7dp8jqMMVyzuRd3/WEc6Wxe9by0tuG664Af/hB4xSuA4WFgelr6+rrrWn1kmkDFWQdAc84IgiC0RRQYM+GUKuUyns4hl+ea2Rpr7Xsrh7Aslus5E/O7QvEMBtzqrivlBlALhj1SwVscpy+UwU6xNRJL+cTNO/GJm3cimclhOpzERCiJybkEJuek/0aTWbzustqDKtQw6LaAc2lTpZbxI+eCCUSS2bZJahTsHHKDc8lyedG6bvn733zoNIY9Vtywo7bZZqW4dksv7nj8LJ46E8TlG3s0e96mc911wOAgcOiQVKQtk8IMoOKsI4ins7CZ6VdFEAShFX01DqIWSpBWtkatlbO5hGRZLKcGdhV60YLxNAZUJoSK96rXUd7WCGBBKAjZGpcPFqMea3vsWNvTul4t8ZmdmkvUVJyJvq52SWoU7Fo1HwoiirPnxufw+OkAPvLibTDUoBKW4/KNPTDoGO4/PtvZxdlvfgMcOSL9/89+Jlkbl0mB1qF65sohk8sjk+NkayQIgtAQYWtUq1xFNCw2XA3oORPKWbmeM1G0BWvoO6umnNlMBnTZjAtmnWlZzBLEYJ2zzg5PhqFjwNY26/Ptc5rhdZjx3Ph8KMg3HzoNm0mP11ysbdCK02LEhWu7OjsURPSYAcANNwDZrKSeLQ4J6VCoOGtz4oWGWwoEIQiC0A6H2QC7Sa9aOQtrrJylsvmqA37VIBdnZdIau+xCOVNfFIrirNycM0DMOltoa7SZ9DX1BxHEYoRyNhmqsTibCGNjr6Pt1lSMMewaduG5QijITDiJnz8zgVdftLqsRbkertnSi8OT4ZpnPbacJ58ErrkGsNuBb39b+u+ll0rfXwbQ2bLNEWlIFKVPEAShLX0uy4JkQSXMz+3SIBCk8BzV4vSfPhvEPc9NKnrOUCIDxsore91COath1tlsNAWTXlexf2x40ayzcDJDqhmhGS6LATaTvnblbGKu7frNBLuG3TgxE0EincN3HjuDbJ7jTVesa8hrXVuI1H+wU1MbP/hB4KmngBtvBPr7gTe8AbjvPuDNb271kWkCFWdtTjwt7dJSIAhBEIS29DrNmFVtaxTKmTa2RmB+Flg5PnPPUXzkp88pes65eBoui7Fscp5HDgSpoTgrzDhjrHwq35DHivFgQp4fJw3spn4zQhsYY9Kss7D6QdTBWBoTc8m2GT69mB3DbuQ5cHAshDseP4vrt/VjXYNmsZ036ILXYcIDJzrU2njgADA5CbzsZdLXt90GpFLA17/e0sPSCirO2py4rJxRcUYQBKElfU5zSwNB5OKsgnKWyeVxcCyEQCytqE8slMiUtTQCgMmgg92kRyBWg60xmoK3TL+ZYFWXFbF0TrZ/hpMZ+eckCC0YdFtqUs4OT7ZnGIhg17B0XP/y6yMIxNJ4y1XrGvZaOh3D1Zt78eAJH/J53rDXaRh33QXo9cCLXyx9fd55wPXXA1/9qtR/1uFQcdbmxMnWSBAE0RD6nJKtUag8StA0EKTwHJUSGw9PhJHM5AEAp3zRqs8ZjGeqzm3z2Ey1KWeRVNkZZwI5sbEQCqLVwG6CEAy6rZiqpTgrJDW2q61x0G1Bt92EZ87NYfugC5dvaGyS4rVbehGIpfHcxNLh123P3XdLPWfd82MH8N73AmNj0m0dDhVnbY6wNbZb8ypBEESn0+8yI57OIZpSvtMaSWahY4Bdg3Oyu9C7VSmx8cCZoPz/I7Oxqs85F0+XTWoUdNtNtfWcRVJlkxoFojgToSDhRIZsjYSmDLqlTZVsLq/qcYcnw3IB1I4wxrCzoJ699ar1Fe3DWnDVZi8A4P5jHWZtPHkSOHwYuPnmhd9/yUuAdeuAL32pJYelJVSctTkJsjUSBEE0hD6XmHWmvO8skszAYTZosnCa7zkrX5w9dSaAIbcFRj3DyGx15ayarRGQkhzVpjVmcnn4Y+myM84EYvbUxFyhOEtmaQA1oSkDbgtyeQ5fVN0Gw6GJubbtNxPs29KLDV47Xnr+YMNfy+swY9ewu/P6zoQytrg40+uBd78buP9+4Jlnmn9cGkLFWZtDPWcEQRCNQUTCz6gIBZFsetooQUJREv1Zi+Gc48BoEJes78baHjtOKVDOQvFMVeWsy6ZeOfMXFsLVlLMeuwkmg04OBYkkMzSAmtCUQRGnP6c8FCSZyWFkNta2lkbBW65aj//7wLUwG5qz5rtmixdPnw1VTYxtK+66Czj/fEklW8xb3wpYrcB//Eezj0pTqDhrc+IZmnNGEATRCET/lJpQkLCGPVQWox5mg66scnYumMBMJIUL13VjY6+9qnKWy3OEkxm4q/ScddtNqodQz884q1yc6XRMjtNPZvLI5DjZGglNGXBJ6qyavrPj0xHk8hw72rw4A9BwO2Mx127pQy7P8cjJDonUn50FHnlkqWom6O4Gbr0V+O53gUCgucemIVSctTnxQi+EnQJBCIIgNEUoZ7MqbY1aFhsuq7FsIMiBM9Li4qK1XdjQ68BZfxyZCn02kWQGnKOqcuaxGRFOZlX17MxGpYVwNeUMAIY8FoyHEvJuPNkaCS2ZV86UF2eHRBjIYHsmNbaKC9Z44DAbcP/xDrE2/uIXQD5fvjgDpGCQRAL45jebd1waQ8VZmyNsjVYjKWcEQRBa4rIaYDLoVPacaZs+6LIYylqKDowG4TQbsKXfiY29DmTzHGcD8bLPFSr0kVXrOesSs84q9LotRlg/FRVnbismQglNky0JQuCxGWE26FTZGg9PhOE0G7C629rAI+s8jHodrtzUgweO+1Sl1raMu+8GVq8GLrig/H1275aSHL/8ZSCXa96xaQgVZy0ins7iu4+dqTpfIpHJwWLUQVdmoChBEARRG4wx9LvMmA4r34GPpDKaFmfuCsrZU2eCuGBtF/Q6hg290jDaSn1nothSEggCqBtELdRFb5VAEAAY7rJiJpKSAxtcFKVPaAhjTPWss0MTc9g+5GqqZbBTuGZLL8ZDCUWBQy0lHgfuvVdSzar9Ht/7XmB0FPjlL5tyaFpDxVmL+N/Hz+Lv73oOT58NVrxfPJ2lGWcEQRANos9paVkgCCDZGsOJpYEgc4kMjk1HcNHaLgDARq8DACouoESx5bZW7zkDoCqxcTaagttqhEWBi2PIYwXnwInpCADQEGpCcwbcFsU9Z7k8x9GpSNsnNbaKazb3AgDuP97mfWe//a1kV6xkaRScPAl4vQtj9ffvBz7zmcYdn4ZQcdYi7nluCkDlCy0g2RrJ0kgQBNEY+pxmxYEgUvqgtrZGt9VY0tb4h7NBcA65OHPbjPA6TDhVsTiTnqdLoa1RTSiIkhlnglWFOP0jU4XijJQzQmOG3FbFytkZfwzxdK4jwkBawepuGzb02tu/7+zuuwG3G7j22ur3vfRSSWn73e+AI0ekwuzVrwYuvrjxx6kBVJy1gJlwEk8VFLNqQ0XjqRzsZirOCIIgGoFUnClTzhKZHHJ5rq1yZilta3zqTBB6HcOeNR75ext6HRWvGUI581RJaxS2RjVx+jORVNUZZwIxiPrIpBTCQGmNhNYMuC2YDiertoYARWEgVJyV5dotvXj8lB/JTJv2aOVywM9/Dtx0E2BUcD657jopsREA3vAGqTD74Q+l73cAVJy1gN8cngbngNNiqLgLCkhR+layNRIEQTSEPpcFkWRW0aIkUphHpmkgiNWAcCKzpBn/wGgQ5w26FtjaN/baKytnhSKvmlIlK2dqbI0qlLOBQpresSmyNRKNYdBtQTbP4YtV31g5PBmGUc+wuc/ZhCPrTK7Z0otUNo/HT7dp/PwjjwA+nzJLo+DlLwf27QMOHADe9a6OKcwAKs5awm+em8KGXjuu2uStqpwl0lnYyNZIEATREETBoaTvbD59UFtbY54D0dR831kml8fBsRAuLFgaBRt7HQjGMwiUsSOG4lJYiUFf+dJuM+lhMugUK2ecc8xGUlVnnAksRj16nWbE0zkY9QxmAy01CG0ZcCufdXZ4IozNfU6Y6HNYlsvW98Bk0OH+Y21qbbz7bkkxu/FG5Y/Zvx947jngox8FvvpV6esOgT6pTSYUT+PRU37cuGMAm/ocOBuII5Utv2MbT+dgowHUBEEQDUEUHNMK+s7CBeVM0zlnhecSzw1IdsBEJoeL1i0szuYTG0urZ3OJTNWkRkBKu+uyGRGKKVPOoqksEpmcYuUMmLc2uixGSsgjNEfNrLNDE2GyNFbBatLjsg09uO/YTKsPZSmcS8XZ854HuBT+HkWP2Q9/CPzDP0j/ffWrO6ZAo+KsyfzuyAxyeY4bdw5gY68DuTzHWX/5uTWJdA5WKs4IgiAaQr9LWuQpU860tzW6C5a/cFHf2YFRqSf5orXdC+67sbdyYmMonoanSlKjoMtmQkChciZi9NUUZyIURMv3iiAEwjpbTTmbiSThi6YoDEQB+7b04pQvVnFN2hKOHJHSF1/2MuWPefLJhT1m110nff3kkw05RK2h4qzJ3PPcJIY9VuwadhddaMtbG0k5IwiCaBxCOVOS2NiIocqiH6s4FOSpM0EMe6zyAlSwqssGk15XdtZZSKFyBkihIErnnNVSnA15pGOnfjOiEXTbTDDpdVWVs//f3r3Hx1nWeR//XJPJ+dg0k6ZNW2gCDT2iECi4gC2HtvKILAqsu6jPs+ijux5Wdznp6squrvoScV+uizys6youugKyHngUK6AUykIpBQtN0xMNPdA2adqkOZ/n2j9m7nSSzCQzyRzumXzfr1deTe7c98yVX/O6J7+5ftfvGm0Gojb6U1pbF2ipv3mfS2bP7rknMNP1i18Evn7Pe6Jvh3/nnRPXmK1bFzieBpScJVH3wDDP7T/JhhVVGGNYEixRmaydfo/2ORMRSZg5BTl4PSaqjo0JaQiSN3bmzFrL9kNtE0oaAbI8hrMrCiK+ZnT0Do3OxE2lvDAn6oYgrd2B2FQW501x5hmhZY0i8ebxGOaV5vLGia5Jz2sMJmfLNHM2pSUVhSwuL2CzW9adXXRRoBTxoYcCn+/dm1bt8GdCyVkSbd57gsFhPxtXVgFQlOulqiRv0uSsTzNnIiIJ4/EYfMW5KW0IAmfWnL3V3kdL58Do/mbj1fqKJp05mzNFG31HWUFO1DNnTmximTmrVlmjJNi1K+fz9O4T/GjroYjnNB7vZHF5gd4kiIIxhrV1Pl44cNIdLfXXrYOvfhX27IGiorRrhz8TSs6S6DcNzVQU5Y7pwFVbWRixrHFw2M+w3yo5ExFJoGg3ou7qH8YYKIxjNUNJfuCxnLLGVw4F1ptdOG69maPGV8ihtl4Gh/1jjvv9NrDmLMqyxjkF2bT3TmzhH05r9wBej6EshhJFzZxJot2xoY4rz6vki79s4Jk94UvxGo91qqQxBmvrfPQP+dkWj5b6TlliqGjLEgH8fnjwQSgoCFyXZu3wZ0LJWZL0D43wzJ4TrF8xjyzPmc5VgXdBu8O+QPYNBt650D5nIiKJ4yvOG11XNZmu/mGKcr14PPHrPlg8rqxx+6E2inO91FWF35NptJFU29hF+10Dw/gtUZc1zinIYcRvx3SJjKS1a4CKotyYfm5n5sxJPkXizZvl4V/+9O0sm1/CJ/7zVRqOdoz5fvfAMAdP9agZSAwurakgx+uJT2mjU5boJGhOB8VoyxJ/9KPA/mYeT1q2w58JJWdJ8vz+k/QOjrBxRdWY4zUVhXT1D4/W9IfqHQq8aGrmTEQkceaV5NLSGU0r/aG4zwRleQzFud7RmbPtB9t52+KyMW/ihaqJ0LGxI7h+rCzKskan/DGa0sbWrgEqS6IvaQyMI5trV1XxjnMqYrpOJBaFuV6+/38uoiw/m1sffJmjp/tGv7fneCfWojb6McjPyWLNkvL4NAVxOiTefDNcdVVsZYkdHfCZz4DXG2gIkobt8Gdi1idnD287zMPbDif8eTbtaqYkz8slNXPHHK+tDL7QnphY2tgbnDlTciYikjiVxXm09w5NKBUcr6t/OCFrqErys+nsH6Kjb4i9LV0TWuiHOrPX2djXjNN9gSQr2tLDOYWB86JpCnKiawBfUWzJmTGG+2+5kHV1lTFdJxKreSV5/ODPL6ZvcIRbf/AyncG1oY3Hg50alZzFZG1dJU2tPRxpi0NL/XXrYO1a+P3v4ayzAp9H4+67ob0d7rsvkNg5j5VG7fBnYtYnZ080NPMfL0ZeTBoPQyN+nmps4erl8ybsUD/ZvjW9A05yprIQEZFEcWaFwlUwhOrqH0pcctY3zB8Ot2MtYTs1jp6bl42vOHfCa8bp0ZmzaFvpB2bO2nuimzmLpRmISLLVVRXz/z5wIQdau/n4j15laMRP47FOygtzqCqJvsuowDqnpX48NqR+5hnYvBkuvRReeQU++cmpr9m5M5CUfexjgY8xg0ufdvgzMeuTs5ULStjX0pXQzjQvNbXR0Tc0oaQRoKokj4KcrPDJ2aDKGkVEEm10r7MpShsDM2fxb3BRkuels2+IVw61k+UxvG1R2aTn1/oKaRqfnPXFlpw5ZY3tU5Q1jvgtbT1KzsT9Lju3gq++dxXPv3GSz/98J7uCzUCMid8a0dkgbi31nTVmjz4Kzz8Pl18O998PX/lK5GushU98AkpLJz8vwyk5qy5l2G/Z1zL5XhkzsWnXcQpysrhiqW/C9zweQ42vMGxr5N4hpyGIkjMRkURx9u+aaq+zRJc1bj/YzrL5xRTmTv4cNb4iDrT2jGkk1RFMskrzo1tzVj6anE1e1niqZwC/PZPAirjZzfWL+Ksrz+HR7W+x82iHmoFMw5mW+qdmNnHx8stn1ph5PLBpEyxdCv/wD/CHP4S/5ic/gS1b4Gtfg7lzw58zCyg5W1AKQMPRzoQ8vt9v+e2uFtbVVZKXHT7JqqkoCjtz1qc1ZyIiCeeUNU6dnCWmrLE0P5tTPYPsOHJ60vVmjlpfER19Q7SFlCTGWtZYnOfFY6Yua5zOHmciqfTX1yzlvW+vBrTebLrW1vnoGxrh5YMzaKl/551jm38UFARKHKuq4Lrr4OjRsed3dsLtt0N9PXz4w9N/3gww65OzReX5lOR5aTjWMfXJ0/Dq4XZauwbYsHJiSaOj1lfE0dN9o8mYY7QhSLbWnImIJMrcwhyMmbys0VqbwLLGbFq7BugbGhmzD2YkTlOQ0D0yT/cNUZTrJTsrupd1j8dQVpAzZVmjsw5PyZmkC2MMX3vfKr5x42o2hFlOIlOLa0v9UPPnw69+FejGeN110B0yMfGlL8Hx4/Cd70DW7J6UmPXJmTGGldWlE/bHiJdNDc3kZHlGF1iGU1tZiLXw5smxpY2ja85yZ/cvqYhIInmzPFQU5Y7OEoXTP+Rn2G8TNnPmmKwZiOOcYCOp0HVn7b2DUe9x5igryB6dcYvE2f/NV6SmCpI+cr1Z3FS/KGLFkkxutKV+PJqCjLd6NTzyCOzYARs2wMgINDbCP/8zvOtdgdm1WW7WJ2cQWHe253gXQyOTt1GOlbWWTbuauezciknfbXU6NjadHFvaqFb6IiLJUVmcy4muyDNnTzY2A2c2V44nZ6Pm6rJ85pdO/fgLyvLJ8XrGlMN39A5FXdLoKI9m5qxLM2cis9HaukoOxKul/njXXhvo3PjCC/D+98OnPgW5ubBtW/SbVGcwJWfAigUlDI742d8ycd3XTOw61slb7X1snKSkEQKdcYyZuNeZk5zleZWciYgkUiA5Cz9z1to1wN2P7+Jti8p49+oFcX9uZ2PraEoaIbBxdU3F2EZSp/tiT87KCnLGrFsLp7VrgOJcrxpTicwya52W+vviXNro+Pa34YYb4LHHAvugGQM//Wl0m1RnOCVnBGbOgLivO9vU0EyWx3D1snmTnpeXnUV1Wf6EpiB9g8PkZ2fh8agNrIhIIlUW54VNzqy1fOEXO+kdHOHem1aTlYD7sVOOGE1Jo6PGVzjmNeN07yBlUXZqdMyJsqxRs2Yis09NRSGLyvN5NhGljY5HH4VlywKff/rTSsyClJwBS+YWUpiTxa44rzvbtKuZNUvKKS+c+gWz1jexY2Pv4IhKGkVEkqCyJJdT3QMMjytv//+vH+e3u1r4m2uWck5lcUKee0V1CasXlnLVFG/khar1FXGkvY+B4UCFRUffEKWxljUWRlfWWKHkTGTWMcawdmklLxw4NXqfibstW6C1Fb7wBfjXfw3sjSZTJ2fGmEXGmGeMMbuNMbuMMZ8OHv+GMWaPMeZ1Y8zPjTFlCR9tgng8hhULStkZx+SsuaOfN050s66uMqrza31FNLX24Pef2bemb3BEpSQiIklQWZyL38KpkDK/1q4B7v5lA+cvKuMjly1J2HPPL83n8U9eFtN6thpfISN+y+FTvVhrOd07RFnMDUFyGBj2T+gUHKq1e0B7nInMUmvrfPQOjvDym+0Rz3ntyGmuvHcz33p6X2wPHrpJ9Ze/HPj35puVoBHdzNkwcJu1dhlwCfAJY8xy4ClgpbV2NbAP+Fzihpl4K6pLaDzeyUhIcjQTL715CoBLa6PbRK/GV0jf0AjNIa2cewaHKcxRG30RkUSrLAluRB3s2Git5e9+0UDP4AjfvGk13ihb1CeL00jqQGsPPYMjDPttzGvO5gTPb5tk9uxEZ7/KGkVmqUtr55KT5YnYtfEn2w5z0wMv0nSyh0dePoK1MfwNHbpJNQT+ffTRwPFZbspXG2vtcWvtq8HPu4DdQLW19klr7XDwtK3AwsQNM/FWLiilf8g/pjXxTGxtOkVxnpdl86PbAPHMC+2Z5+/VzJmISFI4s0NOx8ZfvX6cTbua+eurE1fOOBNLKpy9zro5HUyuygpiW3PmnB9pI+qegWF6BkeUnInMUgU5XtbUlPPMuOSsf2iEux57nc/9bCdrasr5/LXLON7RT8PRzugffPwm1RD4+s474zDy9BbTW4HGmLOBtwMvjfvWrcBv4jSmlFi1ML5NQbY2tbFmSXnUi8drK4MvtCfOJGd9WnMmIpIUozNnXQOc7B7gi8Fyxv97eeLKGWeiOC+beSW5NLX2jDb1iLWs0VkPHakpSEuwksNXpORMZLZ651LfmJb6R9p6uemBF3lk+xE+deU5PPjnF/O+CxfiMfBUcMsRmZmokzNjTBHwX8BnrLWdIcc/T6D08ccRrvuoMWa7MWZ7a2uC2nHGQU1FIXnZHna+FUPWH0FzRz9vnuzhkproShoh8OJXnOflQEhrZDUEERFJDicBOdE5EChnHBjh3hvdV84YqqaiKDhzFkzOYpw5c8oawzUF+d3uFj7479sAoq4AEZHMszbYO2Hzvlae29fKdfc9z8FTPXzvQ/Xctr6OLI+hvDCH+rPLebKxJcWjzQxRLWgyxmQTSMx+bK39Wcjx/w28G7jKRig0tdZ+F/guQH19fXwWdCWAN8vDsvklcZk5c9abxZKcGWMCTUFCNqLuGxohX2vOREQSLsfrYU5BNo+9eoQjbX3ctfE8zp3nvnLGULWVhTy+49hocjWdfc5gbHJ2vKOPv398F7/d1cK5lUU88tFLRrebEZHZp9YXaKn/nd+/QUtXP3XzinngAxdydrC02rF++Tz+8de7OXyql8VzC1I02swQTbdGA/w7sNta+08hxzcCdwHvsdYmYPvw5Fu5oJTGY51jOiZOR6zrzRw1vsIxG1H3DAxTqJkzEZGkqCzO40hbH+cvLHVtOWOomooiOvuHR9cqx96tMThz1jPE8Iif721p4upvPsuz+1q5c2Mdv/6ry1kTw5uMIpJ5jDGsq6ukubOf95y/gJ99/B0TEjOA9curAHhSpY0zFs20zB8BHwR2GmN2BI/9LfBtIBd4KpC/sdVa+xeJGGSyrKwu4aGthzjU1ju62Ho6Yl1v5qj1FfGzV4/SPTBMUa5XrfRFRJJoXmkeb57s4d6bznd1OaOjtjLQSOrVw6cBKIkxOcvO8lCc52X7oTauu6+Z3cc7WVfn40vXr2RRud75FpGA266p4+pl87j83AqCf/NPsHhuAedVFfNkYwsfubwmySPMLFMmZ9ba54Fw/xNPxH84qeWUbjQc7Zh2ctbSGVhvdsuaxTFf63RsbGrtZlV1Kb1DWnMmIpIsd6yvo7130PXljI5aX+B16g+H28nPziIvO/bXizkFOWzZf5Kqkjwe+MAFbFhRFfGPLxGZnUoLsrliqW/K89Yvn8d9z7xBW8/gaMMhiZ373xpMonMri8nJ8tAwg82otzbFvt7McU6wY2NTaw+DI35G/JYCrTkTEUmKVQtLo/oDxC0WlOaTl+2hq3845vVmjg9dehZ/ubaWp297JxtXzldiJiLTtn5FFX4baCgk06e//EPkeD3UVRXPqCnI1qa2aa03A1hcXkiWx3CgtZu+wREA8qfxTqiIiGQ+j8ewpKKI3cc7Y+7U6FD5kYjEy4oFJSwozePJxhZuql+U6uGkLc2cjbOyuoSGo52x7XIe4qWmU9NabwaB5HBxeQEHWrvpDSZnKmsUEZFIaoKljbE2AxERiTdjDNcsn8eW/a2jkwwSOyVn46xYUEpH3xBvtffFfG1LZz9NMe5vNl5tsGNj7+AwAAW5mtwUEZHwnLXK0y1rFBGJp/Urqugf8rNlv3v3NnY7JWfjrAppChKrmaw3c9T6injzVA/dA8GZM5U1iohIBE5TECVnIuIGFy8ppyTPqw2pZ0DJ2Th1VcVkecy01p3NZL2Zo9ZXxOCwn30tXYDKGkVEJDJn5qw0X53RRCT1srM8XHleJb/b3cLwiD/Vw0lLSs7GycvO4tzKIhqOdsZ87UzWmzmc9QPOzJ32ORMRkUhqfIUU5XpZrH3JRMQl1q+oor13iFcOtad6KGlJyVkYK6tLaTjaEVNTkHisN4Mz74I6yZla6YuISCQFOV4237GWm+sXpnooIiIAXLHUR06Wh6dU2jgtSs7CWFVdyqmeQVo6B6K+Jh7rzQDmFOZQXphD4/HAzJ3KGkVEZDIVRbl4s/RyLiLuUJTr5Y/OmcuTjS3T7n4+m+luHsbK6sCasZ0xNAWJx3ozR62vkP6hQJ2ukjMRERERSSfrV1RxuK2XvcEeChI9JWdhLJtfgjGxdWyMx3ozR01F0ejnKmsUERERkXRy1bJKjIGndqm0MVZKzsIoyPFS6ytiV5QdG531ZmuWzKyk0VFbGWgKYgzkZeu/SERERETSR2VxHm9fVKaW+tOgv/wjWLmgJOqOjfFab+ZwmoLkZ2dhzMxn4kREREREkuma5VXsPNrBsdN9qR5KWlFyFsHK6lKaO/tp7Zq6KcjWpjaKc70sXzDz9WZwJjnTejMRERERSUfrV8wD4Ondmj2LhZKzCFZWlwJEtRn1S02nuDhO680AFs7JJyfLo/VmIiIiIpKWan1F1PoKeVLrzmKi5CwCZxZs1xRNQeK1v1kob5aHs+YWaOZMRERERNLWNcur2Np0io7eoVQPJW0oOYugJC+bs+cWTLnuLN7rzRwbVlSxZkl5XB9TRERERCRZ3r16PsN+yw9fPJjqoaQN1c1NYkV1Ka8dOT3pOfFeb+a4fUNdXB9PRERERCSZVlaXsn75PL77XBO3rFnM3KLcVA/J9TRzNolV1aW81d5He89gxHPivd5MRERERCRT3LGhjt7BYe7ffCDVQ0kLSs4msXJBoCnI3/2ygYe2HuLlg2109J2pmU3EejMRERERkUxx7rxi3nfBQh568RBvtfemejiup7LGSVxwVhmXn1vBs3tb+dXrx0ePLyjNY2lVMTlZgdxWyZmIiIiISHifuWYpv3ztGN96ej/33nR+qofjakrOJlGQ4+WhD6/BWsuxjn72Nneyt7mbvc2d7Gnu4kBrN1UleXFfbyYiIiIikimqy/L50CVn8f3/fpOPXlHD0nnFqR6SaxlrbdKerL6+3m7fvj1pz5doQyN+RvyWvGy1vBcRERERiaS9Z5Ar7nmGS2rn8m8fqk/1cFLKGPOKtTZsELTmbAayszxKzEREREREpjCnMIePvbOGpxpbeOVQW6qH41pKzkREREREJOFuvWwJFUW5fP03e0lm9V46UXImIiIiIiIJV5Dj5dNXncO2g21s3tua6uG4kpIzERERERFJij+5aDGLywv4+qY9+P2aPRtPyZmIiIiIiCRFjtfDbeuXsqe5i8dfO5bq4biOkjMREREREUma61YvYPn8Er751F4Gh/2pHo6rKDkTEREREZGk8XgMd26s40hbH//50qFUD8dVlJyJiIiIiEhSvXOpj0tqyvm3LW8yorVno7ypHoCIiIiIiMwuxhi+csMqCnKyyPKYVA/HNZSciYiIiIhI0tX6ilI9BNdRWaOIiIiIiIgLKDkTERERERFxASVnIiIiIiIiLqDkTERERERExAWUnImIiIiIiLiAkjMREREREREXUHImIiIiIiLiAkrOREREREREXEDJmYiIiIiIiAsoORMREREREXEBY61N3pMZ0wocStoTRq8COJnqQcwSinVyKd7Jo1gnj2KdXIp38ijWyaNYJ49iPdFZ1lpfuG8kNTlzK2PMdmttfarHMRso1smleCePYp08inVyKd7Jo1gnj2KdPIp1bFTWKCIiIiIi4gJKzkRERERERFxAyVnAd1M9gFlEsU4uxTt5FOvkUayTS/FOHsU6eRTr5FGsY6A1ZyIiIiIiIi6gmTMREREREREXSKvkzBiz0Riz1xjzhjHmsyHHHzHG7Ah+HDTG7Ihwfbkx5iljzP7gv3OCx28JuX6HMcZvjHlbmOt/HHz+BmPM940x2cHjxhjz7eC4XjfGXJCYCCSXi+N9njHmRWPMgDHm9sT89Mnl4ljfEvydft0Y84Ix5vzERCB5XBzr64Nx3mGM2W6MuSwxEUiuBMY72xjzQ2PMTmPMbmPM5yJcv8QY81Lw+keMMTnB4xl333ZxrHXPnnh9omKdcfdscHW8M+6+7dZYh3z/ImPMiDHmxjj+2O5irU2LDyALOADUADnAa8DyMOd9E/hihMe4B/hs8PPPAl8Pc84qoCnC9dcCJvjxE+AvQ47/Jnj8EuClVMcrw+NdCVwEfAW4PdWxyvBYvwOYE/z8Xen+u+3yWBdxptR8NbAn1fFyc7yBPwMeDn5eABwEzg5z/aPA+4OfP5Cp922Xx1r37OTFOqPu2WkQ74y6b7s51iHj+z3wBHBjquOVqI90mjm7GHjDWttkrR0EHgauDz3BGGOAmwn8wRPO9cAPg5//EPjjMOf8aaTrrbVP2CBgG7Aw5HH/I/itrUCZMWZ+1D+ZO7k23tbaE9bal4GhmH4i93JzrF+w1rYHT9vKmd/5dOXmWHcHjwEUApmwIDiR8bZAoTHGC+QDg0BnmMe+EngszPWZdt92bax1zw4rUbHOtHs2uDvemXbfdm2sgz4F/BdwIsafK62kU3JWDRwJ+fqt4LFQlwMt1tr9ER5jnrX2OEDw38ow5/wJkX/hgMDULPBBYFMMY0s3bo53pkmXWH+YwExDOnN1rI0xNxhj9gC/Bm6d7Po0kch4Pwb0AMeBw8C91tq2cdfOBU5ba4fDPH+m3bfdHOtMky6xzoR7Nrg83hl233ZtrI0x1cANBGbTMlo6JWcmzLHx71BEfLc6qicwZg3Qa61tmOLU+4HnrLVbYhhbunFzvDON62NtjFlH4IX+rumOwSVcHWtr7c+ttecReKfwy9Mdg4skMt4XAyPAAmAJcJsxpiaG58+0+7abY51pXB/rDLpng8vjnWH3bTfH+lvAXdbakWk8d1pJp+TsLWBRyNcLgWPOF8Fp0vcCj4Qc+0Fw4eITwUMtTtlK8N/x06LvZ+p3u+8GfMDfRDu2NOXmeGcaV8faGLMa+B5wvbX2VAw/lxu5OtYOa+1zQK0xpiKaH8rFEhnvPwM2WWuHrLUngP8G6sc9/0kC5YreMM+fafdtN8c607g61hl2zwaXx9uRIfdtN8e6HnjYGHMQuBG43xjzxzP4Wd3LumDhWzQfgBdoIpBtO4sUV4R8fyPw7BSP8Q3GLlK8J+R7HgK/lDWTXP8R4AUgf9zx/8XYheXbUh2vTI53yPf/nsxYXO7aWAOLgTeAd6Q6TrMg1udwZmH5BcBR5+t0/UhkvAnMCPwgeN8tBBqB1WGu/yljF5d/PPh5Rt233RzrkO/rnp3gWJNh9+w0iHdG3bfdHOtx5zxIBjcESfkAYvyluRbYR6CTzOfD/Ef9xRTXzwV+B+wP/lse8r21wNYprh8OPveO4McXg8cN8J3g93YC9amOVYbHu4rAH8CdwOng5yWpjleGxvp7QHvI8e2pjlUGx/ouYFfw2IvAZamOlZvjTaBL2k+DMWsE7ohwfQ2BxitvBM/PDR7PuPu2i2Ote3byYp1x92yXxzvj7ttujXWYcWRscuZk+yIiIiIiIpJC6bTmTEREREREJGMpORMREREREXEBJWciIiIiIiIuoORMRERERETEBZSciYiIiIiIuICSMxERERERERdQciYiIiIiIuICSs5ERERERERc4H8AFEp8X9iAZIkAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACuD0lEQVR4nOydd5RjV5X191UupaqSVDl3ztkJ4wzYYIPBYLIJg0mDCUNmgMF8AwxpgDEzYGwYchhMxthgjN0O2Ljd7W63O6fKOSjncL8/nq5KVaXwJD2VpK7zW6uX2wpPt9QqvbfvPmcfxjkHQRAEQRAEQRAEUVlUlV4AQRAEQRAEQRAEQeKMIAiCIAiCIAiiKiBxRhAEQRAEQRAEUQWQOCMIgiAIgiAIgqgCSJwRBEEQBEEQBEFUASTOCIIgCIIgCIIgqgASZwRBEARBEARBEFUAiTOCIIgahTHmS/uTYIwF0/7/DZVeXzEwxgYYYy+o9DpywRjbyxi7tUzHXscY+z1jbJoxNscY+wtjbH3a/XrG2NcZY2OMMSdj7FuMMW3a/bcxxvYzxsKMsR9kOP41jLETjLEAY+xhxlhP2n2MMfYlxths8s+XGWOsHD8nQRAEkRkSZwRBEDUK59ws/gAYAvDStNt+Wun1LYYxpjkfXqPMNAD4A4D1AFoA7APw+7T7Pw5gD4AtANYB2AXgU2n3jwH4HID/XXxgxpgDwG8AfBqADcB+AP+X9pB3AHg5gO0AtgG4AcA7S/6JCIIgCNmQOCMIgjjPYIypGGMfZ4ydTTogv2SM2ZL39TLGOGPsrYyx4aT78i7G2AWMscOMMRdj7L/TjvUWxtjfGWPfZIy5k67LNWn31zPGvscYG2eMjTLGPscYUy967tcZY3MAbmeMrWaMPZRc1wxj7KeMsYbk438MoBvAH5Pu30cZY1cyxkYW/Xwpd40xdjtj7FeMsZ8wxjwA3pJnTWsYY48kf5YZxli6OEl/DUPymLPJ9+RpxlgLY+zzAC4D8N/JNf538vEbGGN/TbpdJxljr0471g8YY3cm7/cmX78n0+tyzvdxzr/HOZ/jnEcBfB3AesaYPfmQlwK4I3n/NIA7APxT2vN/wzn/HYDZDIe/CcBRzvk9nPMQgNsBbGeMbUje/2YA/8k5H+GcjwL4TwBvybROgiAIojyQOCMIgjj/eB8kB+QKAO0AnAD+Z9FjLgKwFsBrAHwDwCcBvADAZgCvZoxdseix5wA4AHwGwG+E2APwQwAxAGsA7ATwIgC3ZnhuM4DPA2AA/iO5ro0AuiCJBHDOb8FCB/DLMn/eGwH8CpLr9NM8a/p3AA8AaATQCeCbWY75ZgD1yfXZAbwLQJBz/kkAjwG4LbnG2xhjJgB/BfCz5M/5OgDfYoxtTjveG5Kv7QBwKLlOOVwOYIJzLsQWS/5B2v93MsbqZRxrM4Bnxf9wzv0AziZvX3J/8u/pPwNBEARRZkicEQRBnH+8E8Ankw5IGJL4edWikr9/55yHOOcPAPAD+DnnfCrpmDwGSdQIpgB8g3Me5Zz/H4CTAK5njLUAeDGAD3DO/ZzzKUhOz2vTnjvGOf8m5zzGOQ9yzs9wzv/KOQ8nnZ+vQRKRpfAk5/x3nPMEAGueNUUB9ABoT/78j2c5ZhSSKFvDOY9zzg9wzj1ZHnsDgAHO+feTP+czAH4N4FVpj/kT5/zR5L/HJwFcwhjryvVDMcY6IYnqD6bdfD+A9zPGmhhjrZCEOAAYcx0riRmAe9FtbgCWLPe7AZip74wgCGL5qPXafIIgCGIpPQB+yxhLpN0Wh9TDJJhM+3sww/+b0/5/lHPO0/5/EJLz1QNAC2A87fpdBWA47bHpfwdjrBlSKd5lkESBCpKzVwrpr5FvTR+F5GDtY4w5IZXxLenPAvBjSK7ZL5Jllz+BJHijGR7bA+Aixpgr7TZN8hhL1sg59yXLPNsXrT0FY6wJksP3Lc75z9Pu+jwkh/AQgDCAuyEJ6alMx1mED5J4TccKwJvlfisA36J/e4IgCKKMkHNGEARx/jEM4MWc84a0P4akK1YMHYvck25IwRPDkASCI+11rJzz9FK4xRf2/5G8bRvn3ArgjVhYprf48X6kuULJ3rGmRY9Jf07ONXHOJzjnb+ect0NyGL/FGFuz+AdOuoSf5ZxvAvA8SO7Ym7KscRjAI4vebzPn/N1pj0m5ZIwxM6RAjrHFr5u8vxGSMPsD5/zzi9YV5Jzfxjnv4JyvgtRbdoBzHs90rEUchRT2IV7HBGB18vYl9yf/fhQEQRDEskHijCAI4vzjTgCfF6ETyRK4G0s4XjOA9zHGtIyxmyH1it3HOR+HJCL+kzFmTQaRrF7Ur7YYCySHxsUY6wDwkUX3TwJYlfb/pwAYGGPXMyky/lMA9NkOnm9NjLGbk+WCgOTYcUiu4gIYY1cxxrYmxaAHUpmjeNziNd4LYB1j7Jbke6RNBqxsTHvMSxhjz2eM6SA5d09xzpe4ZowxK4C/APg75/zjGe7vYIy1M4mLISUvfibtfg1jzABADUCdDDYRVTK/BbCFMfbK5GP+DcBhzvmJ5P0/AvBB8RoAPgTgB0vfZYIgCKJckDgjCII4//gvSHHsDzDGvAD+ASmYo1ieghQeMgOprO5VaQEVbwKgA3AMktj5FYC2HMf6LKT4dzeAP0GKdk/nPwB8KpmQ+GHOuRvAPwP4LoBRSE7aCHKTa00XAHiKMeaD9B69n3Pen+EYrcnneQAcB/AIpNJGQHp/X8WkpMs7OOdeSKEjr4Xkhk0A+BIWisifQRJRcwB2QwoIycQrkmt8K1s4x647ef9qAE8k34cfAvh4sm9Q8ClIZakfh+RKBpO3Idnj90pI/4ZOSJ+J9P7A7wD4I4DnAByB9O/znSzrJAiCIMoAo1JygiAIIhuMsbcAuJVz/vxKr6VWYdIw6BHO+afyPZYgCIJY2ZBzRhAEQRAEQRAEUQWQOCMIgiAIgiAIgqgCqKyRIAiCIAiCIAiiCiDnjCAIgiAIgiAIogogcUYQBEEQBEEQBFEFaPI/RDkcDgfv7e1dzpckCIIgCIIgCIKoGg4cODDDOW/KdN+yirPe3l7s379/OV+SIAiCIAiCIAiiamCMDWa7j8oaCYIgCIIgCIIgqgASZwRBEARBEARBEFUAiTOCIAiCIAiCIIgqYFl7zgiCIAiCIAiiWohGoxgZGUEoFKr0UojzEIPBgM7OTmi1WtnPIXFGEARBEARBrEhGRkZgsVjQ29sLxlill0OcR3DOMTs7i5GREfT19cl+HpU1EgRBEARBECuSUCgEu91OwoxQHMYY7HZ7wa4siTOCIAiCIAhixULCjCgXxXy2SJwRBEEQBEEQRIX4/Oc/j82bN2Pbtm3YsWMHnnrqKQDArbfeimPHjinyGr29vZiZmcn5mC984QsFH/cHP/gBbrvttgW3ff/738eOHTuwY8cO6HQ6bN26FTt27MDHP/7xgo+/HHzjG99AIBCo9DJSUM8ZQRAEQRAEQVSAJ598Evfeey+eeeYZ6PV6zMzMIBKJAAC++93vLutavvCFL+Bf//VfSz7OW9/6Vrz1rW8FIInChx9+GA6Ho+TjFgvnHJxzqFSZPalvfOMbeOMb3wij0Sj7mLFYDBpNeWRUXueMMdbFGHuYMXacMXaUMfb+tPveyxg7mbz9y2VZIaEo7kAU/zg3W+llEARBEARBrHjGx8fhcDig1+sBAA6HA+3t7QCAK6+8Evv37wcAmM1mfOxjH8Pu3bvxghe8APv27cOVV16JVatW4Q9/+AOApS7WDTfcgL179y55zZe//OXYvXs3Nm/ejLvuugsA8PGPfxzBYBA7duzAG97wBgDAT37yE1x44YXYsWMH3vnOdyIejwOQnLF169bhiiuuwN///nfZP+tXvvIVXHDBBdi2bRs+85nPAAAGBgawYcMG3HrrrdiyZQve8IY34MEHH8Sll16KtWvXYt++fQCA22+/HbfccguuvvpqrF27FnfffXfe427cuBH//M//jF27dmF4eBjvfve7sWfPHmzevDn1uDvuuANjY2O46qqrcNVVV6Xea8GvfvUrvOUtbwEAvOUtb8EHP/hBXHXVVfjYxz6Gs2fP4rrrrsPu3btx2WWX4cSJE7Lfi5wINZntD4A2ALuSf7cAOAVgE4CrADwIQJ+8rznfsXbv3s2JyvK2H+zjqz7xJ+4LRSu9FIIgCIIgiIpy7Nixir6+1+vl27dv52vXruXvfve7+d69e1P3XXHFFfzpp5/mnHMOgN93332cc85f/vKX8xe+8IU8EonwQ4cO8e3bt3POOf/+97/P3/Oe96Sef/311/OHH36Yc855T08Pn56e5pxzPjs7yznnPBAI8M2bN/OZmRnOOecmkyn13GPHjvEbbriBRyIRzjnn7373u/kPf/hDPjY2xru6uvjU1BQPh8P8ec973oLXXIx43b/85S/87W9/O08kEjwej/Prr7+eP/LII7y/v5+r1Wp++PBhHo/H+a5du/hb3/pWnkgk+O9+9zt+4403cs45/8xnPsO3bdvGA4EAn56e5p2dnXx0dDTncRlj/Mknn0ytRfzcsViMX3HFFfzZZ59d8t4sfh/uuece/uY3v5lzzvmb3/xmfv311/NYLMY55/zqq6/mp06d4pxz/o9//INfddVVGd+DTJ8xAPt5Fr2U14/jnI8DGE/+3csYOw6gA8DbAXyRcx5O3jeljFwkysXDJ6bw4HHpn2lwNoBN7dYKr4ggCIIgCKI6+Owfj+LYmEfRY25qt+IzL92c9X6z2YwDBw7gsccew8MPP4zXvOY1+OIXv5hyawQ6nQ7XXXcdAGDr1q3Q6/XQarXYunUrBgYGClrTHXfcgd/+9rcAgOHhYZw+fRp2u33BY/72t7/hwIEDuOCCCwAAwWAQzc3NeOqpp3DllVeiqakJAPCa17wGp06dyvuaDzzwAB544AHs3LkTAODz+XD69Gl0d3ejr68PW7duBQBs3rwZ11xzDRhjS362G2+8EXV1dairq8NVV12Fffv24fHHH8963J6eHlx88cWp5//yl7/EXXfdhVgshvHxcRw7dgzbtm0r6L27+eaboVar4fP58MQTT+Dmm29O3RcOhws6VjYKKpZkjPUC2AngKQBfAXAZY+zzAEIAPsw5f1qRVRGKE47F8dk/HoXVoIEnFMPArJ/EGUEQBEEQRIVRq9W48sorceWVV2Lr1q344Q9/uEScabXaVPKfSqVKlUGqVCrEYjEAgEajQSKRSD0nU4T73r178eCDD+LJJ5+E0WjElVdemfFxnHO8+c1vxn/8x38suP13v/tdUQmEnHN84hOfwDvf+c4Ftw8MDKR+llw/G7A0+ZAxlvO4JpMp9f/9/f346le/iqeffhqNjY14y1vekjXiPv11Fj9GHDORSKChoQGHDh3K96MXjGxxxhgzA/g1gA9wzj2MMQ2ARgAXA7gAwC8ZY6uSVl36894B4B0A0N3drdjCicL47mP9GJgN4M437sK7fvIMBmb9lV4SQRAEQRBE1ZDL4SoXJ0+ehEqlwtq1awEAhw4dQk9PT1HH6u3txbe+9S0kEgmMjo6m+rXScbvdaGxshNFoxIkTJ/CPf/wjdZ9Wq0U0GoVWq8U111yDG2+8Ef/yL/+C5uZmzM3Nwev14qKLLsL73/9+zM7Owmq14p577sH27dvzru3aa6/Fpz/9abzhDW+A2WzG6OgotFptQT/f73//e3ziE5+A3+/H3r178cUvfhF1dXWyjuvxeGAymVBfX4/JyUncf//9uPLKKwEAFosFXq83FVrS0tKC48ePY/369fjtb38Li8Wy5HhWqxV9fX245557cPPNN4NzjsOHD8t6L/IhS5wxxrSQhNlPOee/Sd48AuA3STG2jzGWAOAAMJ3+XM75XQDuAoA9e/YsEG7E8jDmCuK/HzqDaze34LotbWiy6DE4Uz2RoQRBEARBECsRn8+H9773vXC5XNBoNFizZk0qpKNQLr300lSJ4JYtW7Br164lj7nuuutw5513Ytu2bVi/fv2Csr93vOMd2LZtG3bt2oWf/vSn+NznPocXvehFSCQS0Gq1+J//+R9cfPHFuP3223HJJZegra0Nu3btSgWF5OJFL3oRjh8/jksuuQSAVM75k5/8BGq1WvbPd+GFF+L666/H0NAQPv3pT6O9vR3t7e2yjrt9+3bs3LkTmzdvxqpVq3DppZcu+Llf/OIXo62tDQ8//DC++MUv4oYbbkBXVxe2bNkCn8+XcT0//elP8e53vxuf+9znEI1G8drXvlYRccYWGV1LHyB5ez8EMMc5/0Da7e8C0M45/zfG2DoAfwPQvdg5S2fPnj1cpM4Qy8dtP3sGfz02iQc/eAW6bEbcfOcTYIzhl++8pNJLIwiCIAiCqBjHjx/Hxo0bK70MIg+33347zGYzPvzhD1d6KQWT6TPGGDvAOd+T6fFyhlBfCuAWAFczxg4l/7wEwP8CWMUYOwLgFwDenEuYEZXhibMzuPfwOP75yjXosknzG3rsJgxSWSNBEARBEARBVBVy0hofB5Ct8++Nyi6HUJJoPIHb/3AUXbY6vPOKVanb+xwm/OrACAKRGIw6mkNOEARBEARBVC+33357pZewbMhxzoga5UdPDuLUpA+fvn4TDNr52tseu+SgDc5S3xlBEARBEARBVAskzs5Tpr1hfOOvp3DFuia8cFPLgvt67VIMKJU2EgRBEARBEET1QOLsPOVLfz6BUCyOz7x005K5EMI566fERoIgCIIgCIKoGkicnYccGHTiVwdGcOtlq7CqybzkfotBC4dZR84ZQRAEQRAEQVQRJM7OMzjnuP0PR9FqNeC2q9ZkfVyv3YT+GRJnBEEQBEEQlUStVmPHjh3YsmULbr75ZgQCxVc2veUtb8GvfvUrAMCtt96KY8eOZX3s3r178cQTT6T+/84778SPfvSjol9bMDAwgC1btiy47fbbb8dXv/rVgo6j1HpqDYrqO88YngviuVE3bn/pJpj02f95e+wm/P3MzDKujCAIgiAIglhMXV0dDh06BAB4wxvegDvvvBMf/OAHU/fH4/GChjULvvvd7+a8f+/evTCbzXje854HAHjXu95V8GuUi1gsVlXrWU7IOTvPODjsBABc2GfP+bheuxETnhCCkfxT3QmCIAiCIFY8X/4y8PDDC297+GHpdoW47LLLcObMGezduxdXXXUVXv/612Pr1q2Ix+P4yEc+ggsuuADbtm3Dd77zHQBSxdRtt92GTZs24frrr8fU1FTqWFdeeSX2798PAPjzn/+MXbt2Yfv27bjmmmswMDCAO++8E1//+texY8cOPPbYYwvcrUOHDuHiiy/Gtm3b8IpXvAJOpzN1zI997GO48MILsW7dOjz22GMF/4y5jv2v//qvuOKKK/Bf//VfqfWMjY1hx44dqT9qtRqDg4MYHBzENddcg23btuGaa67B0NAQAMk9fN/73ofnPe95WLVqVcpJrBVInJ1nHBxywahTY13L0l6zdHodycTGOSptJAiCIAiCyMsFFwCvfvW8QHv4Yen/L7hAkcPHYjHcf//92Lp1KwBg3759+PznP49jx47he9/7Hurr6/H000/j6aefxt13343+/n789re/xcmTJ/Hcc8/h7rvvXlCmKJiensbb3/52/PrXv8azzz6Le+65B729vXjXu96Ff/mXf8GhQ4dw2WWXLXjOm970JnzpS1/C4cOHsXXrVnz2s59dsM59+/bhG9/4xoLb0zl79uwCQXXnnXfKOrbL5cIjjzyCD33oQ6nb2tvbcejQIRw6dAhvf/vb8cpXvhI9PT247bbb8KY3vQmHDx/GG97wBrzvfe9LPWd8fByPP/447r33Xnz84x8v8F+islBZ43nGwWEXtnXWQ6POrbtFnP7ATAAbWq3LsTSCIAiCIIjq5QMfAJLlhVlpbweuvRZoawPGx4GNG4HPflb6k4kdO4BvfCPnIYPBIHbs2AFAcs7e9ra34YknnsCFF16Ivr4+AMADDzyAw4cPp1wgt9uN06dP49FHH8XrXvc6qNVqtLe34+qrr15y/H/84x+4/PLLU8ey2Ww51+N2u+FyuXDFFVcAAN785jfj5ptvTt1/0003AQB2796NgYGBjMdYvXp1qlQTmB8ine/Yr3nNa7Ku6+9//zu++93vpty6J598Er/5zW8AALfccgs++tGPph778pe/HCqVCps2bcLk5GTOn7faIHF2HhGKxnFszI1bL1uV97E9DilOf4ASGwmCIAiCIOTR2CgJs6EhoLtb+v8SSe85S8dkMqX+zjnHN7/5TVx77bULHnPfffctGZm0GM553scUgl6vByAFmcRiMcWOCyz8mdMZHx/H2972NvzhD3+A2Zy5Oiz9ZxRrBKSfv5YgcXYecXTMg2icY0dXQ97HWg1a2E0Up08QBEEQBAEgr8MFYL6U8dOfBr79beAznwGuuqrsS7v22mvx7W9/G1dffTW0Wi1OnTqFjo4OXH755fjOd76DN73pTZiamsLDDz+M17/+9Quee8kll+A973kP+vv70dfXh7m5OdhsNlgsFng8niWvVV9fj8bGRjz22GO47LLL8OMf/zjldJVKMceORqN49atfjS996UtYt25d6vbnPe95+MUvfoFbbrkFP/3pT/H85z9fkTVWGhJn5xEHh6SGyp0yxBkgDaOmOH2CIAiCUJZJTwh1OjWsBm2ll0IoiRBmv/ylJMiuumrh/5eRW2+9FQMDA9i1axc452hqasLvfvc7vOIVr8BDDz2ErVu3Yt26dRmFTlNTE+666y7cdNNNSCQSaG5uxl//+le89KUvxate9Sr8/ve/xze/+c0Fz/nhD3+Id73rXQgEAli1ahW+//3vK/azFHrsJ554Ak8//TQ+85nP4DOf+QwAyTG844478E//9E/4yle+gqamJkXXWEnYclp9e/bs4SI1hlCe9/zsGRwacuHvH19ab5yJD/7yEJ48O4snP3FNmVdGEARBECuHF3ztEezpacQXX7mt0ksh8nD8+HFs3LhR3oO//GUp/CNdiD38MPD000BavxNBpJPpM8YYO8A535Pp8ZTWeB5xaMiFnd0Nsh/fazdh3B1CKEpx+koTiSVwy/eewoFBZ6WXQhAEQSwjoWgcZ6d9ODdNlSnnHR/96FKH7KqrSJgRikLi7Dxh0hPCqCuInd3yG1N77FIoyOBs8ZPoicwMOwN47PTMihr0HY7FEY0nKr0MgiCIijI0FwDnwJg7WOmlEARRg5A4O084OOQCgIKcs77krDNKbFSeCXcIADDlDVV4JcvH236wH//2+yOVXgZBEERFEY7ZpCeERKK2UuIIgqg8FAhynnBw2AmdWoXN7fJnlvWkZp2ROFOacSHOPOEKr2R54Jzj2WEXlciuYO5/bhxxznHDtvZKL4UgKooI2orGOWb8YTRbDBVeEZEPpaPmCUJQTLYHOWfnCQeHXNjUboVeo5b9nPo6LWwmHQaorFFxJpLlLJPelSHO5vwReMMxzPkjlV4KUSG+/uApfPNvZyq9DIKoOP0zvtTfx10rp3qiVjEYDJidna25WVhE9cM5x+zsLAyGwjZoyDk7D4jFE3huxI3XXNBV8HN77EaadVYGhHM27VkZJ2Yh8GdJnK1IpAAEP3RqFe1AEyue/hk/LHoNvOEYxt0hbC/81EwsI52dnRgZGcH09HSll0KchxgMBnR2dhb0HBJn5wEnJ70IRuMF9ZsJeu0mPHVuVpF1PD0whxaLAd3JoJGVzGRSlE37wkgkOFSq8/tidWhOEvjuYBTReAJaNZnyK4nTkz7EExzBRBwzvgiaLPpKL4kgKkb/jB8XrbLjweOTGKdQkKpHq9Wir6+v0ssgiBR0BXUeIMJAdhWQ1CjotZswplCc/nt++gy+9teTJR/nfEA4Z9E4hzNw/rtJAzPzpbEr4eclFnJs3J36+9AclUkTKxdPKIoZXwS7ehqg06hS4VAEQRByIXF2HnBwyAWHWYfOxrqCn9vrkFyuUi+oYvEEpn1h9FP/GgAprbHBqAUATK2AvrP00ljqO1t5HB/3pv4+TOKMWMGIgK1VDjPa6g0YI3FGEESBkDg7Dzg47MSOrsai+jx6FUpsnPNHwDldmAFS/82sP4JtnQ0AVoY4G5gNQK+Rvk7mfCTOVhrHxjyppFhyzoiVjEhqXNVkQlu9IRUORRAEIRcSZzWOKxDBuWl/Uf1mwLw4K3UQtRAgc/4IvKFoSceqdUR8/vbO+uT/n/87p0NzAWxL/rwUCrKy4Jzj+LgHO7sb0GLV0wYNsaI5N+0HY0C3zYi2+jqMUVojQRAFQuKsxjk07AJQ2PDpdOqNWjQYtegvMbFxOs0dWuk75xNJMbZSnDN3MIo5fwQ7kz2PtVTWeHLCi4dOTFZ6GTXNiDMIbziGjW1WdNuMK/73n1jZ9M/40dFQB4NWjbZ6Aw2iJgiiYEic1TgHh1xgbF4IFEOv3VRynH66OFvpO+cinavPYYTVoDnvnbOhpOu6PfkZrBXnjHOOD/zfIXzknsOVXkpNc2zcAwDY1GZFl8244n//iZVN/4wffQ6pIqWt3oBYgmPGd35v0BEEoSwkzmqcg8MurG+xwKwvfipCr924IG2vGKZ95JwJRDpXi9WAZqvhvHfOBpMx+qubTWgwauGsEXH2+JkZHB/3YNYfQSyeqPRyapbj4x4wBqxvtaCr0YhxTwjhWOnprwRRa3DOMbBAnEkhXeMUCkIQRAGQOKthEgmOQ0POoksaBT12E8bcwZLi9Ke9YVgMGjQatSX3r9U64+4QzHoNLAYtmi361Myz8xXx791tM8Jm0tVMWeN3HjmX+nutrLkaOTbmQZ/DBKNOg26bEZwDo04KQSBWHjO+CLzhWEqctdYbAIBmnREEURAkzmqY/lk/PKEYdnYVPt8snT6HCZwDI87iRdWUN4Rmi556TiA5Z+Kk3GzRn/fO2cCMH80WPYw6DewmHWb91f/zHhl14/EzM9jR1QBgofNLFMbxCQ82tklJjWIA/Ur/DiBWJiKpUYiz9gZyzgiCKBwSZzWMGD5dunMmXVD1l1DaOO0No8mip54TSIEgbUlx1pIsa+T8/G0IH5wNpFI/a8U5+86j52DWa/C+a9YAkHa8icLxhKIYngtikxBnNum7ZJicM2IF0j/jAyDNOAOARqMWeo2KxBlBEAVB4qyGOTjkhEWvweomc0nHEbt8pYSCSOLMgB67ESPO4Iru4Zlwh9BqlcRZk0WPSCwBd/D8HS8wOOdPCXybSV/14mx4LoD7nhvHGy7qRl/yImrmPHc3y8WJ5PBpIc6azHroNaoVv0FDrEzOzfihVTN0NEqOGWMMbfUGEmcEQRQEibMa5uCQCzu6G6BSFT58Op0Gow71ddpUSUYxTHvDaDJLZY2xBF+xJ6NYPIEpb1pZY1Kkna+ljYFIDJOecEqc2U06OAPRqo6O/t7j/VAx4K2X9sFh1gFATZRiViPHxtwAgE3JAdQqFUOXzZhK8CSIlUT/tB89dhPUaefk1noDxl3kJNcib/rfffjyn09UehnECoTEWY0SiMRwYsKDncmemVLptRuLDvLwh2PwR+JotkpljcDKjdOf9oWR4PON4C0WPYD5wdTnG6K3qCetrDGe4FXrFM75I/jF00O4cUcHWusNMOs10GlUVNZYJMfHvbCZdGhOfs4BUN8psWLpn/GnSrwF7fV1K3azspYJx+J44swMHjoxVemlECuQvOKMMdbFGHuYMXacMXaUMfb+5O23M8ZGGWOHkn9eUv7lEoLDI24kOLCjxH4zQa/DhIEiyxrFjDPhnAHA4Aq9OBMn4bZFztn5mtgoBL24ILGnnKjqFDs/fnIQoWgC77h8FQCp7KjJrKeyxiKRwkAsYGzeKehqrMPwXOC87rMkiMXEExyDcwGsaloozlqTg6jjVVxNQCzl7JQfsQTH6SlfSUnWBFEMcpyzGIAPcc43ArgYwHsYY5uS932dc74j+ee+sq2SWIIIA9lRYlKjoMduwpgrWNR8IpF012TRo62+Dlo1U3TnPBiJ4zuPnEW0BvrYJpPirNUq9RwIR6Fayhq9oSgePDap2PFEn2J3qudMEmfV2HcWisbxwycHcM2GZqxrsaRud5h1lNZYBLF4AicmvKl+M0GXzQhvOAZXoDrdU4IoB2OuICKxRKqHW9DWUIdYgmOWvmNqipOTHgCS6D454a3waoiVRl5xxjkf55w/k/y7F8BxAB3lXhiRm4NDTvTajamL4VLpcxiR4MDwXOG18SnnzKKHWsXQ2ahsWdNDJ6bwH/efwNP9c4ods1wsds5Meg3Meg2mvNXhnH3iN8/h1h/tV8zJG5gNoNGoRX2dFkC6OKu+C5F7Doxgzh9JuWYCh1lPZY1F0D/jRySWSMXoC4R7TqWNxEpicYy+oC1ZPTFGpY01xYk0QXYk2VtLEMtFQT1njLFeADsBPJW86TbG2GHG2P8yxpSxcIi8cM5xcNiFnd3KveWiZ2igiFCQqeSFvnCJlA4EEBd5tXBym/CEoNOo0GDUpm6rlllnj5yaxr2HxwFIu7xKMDQbSH12AMBukj4D1VbWGE9w3P3oOezoasCFfbYF9znMetrVLoJj49LOsggDEQgXdbiEuYkEUWsIcbZqiXMmibMJGkRdU5yc8GJDqwX1dVocGSVxRiwvssUZY8wM4NcAPsA59wD4NoDVAHYAGAfwn1me9w7G2H7G2P7p6enSV0xg1BXEtDdc8nyzdETPUDF9Z9O+MNQqhkaj5Jr0KBwIIIZj10Li1bhbmnGW3oPTZNGnBGylCEXj+PTvjsBi0AAAJhUKKBmYnY/RB4BGkyRK56rMifrzkQkMzQXwritWLfi3AQCHRYdZf6SqEyarkWPjHujUqiWjPLoayTkjlg93MIrjyY2CStI/44dJp0ZTWjgOALTVSyXuY67q31wk5hHibEuHFUdGK//5IlYWssQZY0wLSZj9lHP+GwDgnE9yzuOc8wSAuwFcmOm5nPO7OOd7OOd7mpqalFr3iubQsAsAsFOhfjNAGpZpNWiKE2feMBxmXSrSv9tmhDsYhVuhnhMx0Ha8BkI1JtzB1IwzgRhEXUm++dBpDM0F8IVXbAWgTEBJOBbHmCu4wDnTa9Sw6DVV5ZxxznHXo2fRazfihZtal9xvN+kRT3C4qjRhslo5NubB2hYztOqFpxGTXgOHWbdiE1uJ5eXuR8/hpm89UfHZmudm/OhrMi3Z/JkfRF39m4vlgnOO/3n4TM2M2HAHohh3h7C+1YotHfU4OeFFJFb9Pe/E+YOctEYG4HsAjnPOv5Z2e1vaw14B4IjyyyMycWRU2rHe0GbJ/2CZMMbQ6zAVFac/7Q2j2TIvSLoU7jkZmasd52zCE0r1mwmaLXpMecIVS687PenFXY+ew027OnD91jZoVEwRcTbiDCLBpTEM6djMuqoKBPnHuTk8O+LG2y9ftWD+kMCR3OmeodLGgjg+7l3SbyZQuu+UILIx7AwgGI1jtMLnh/4Z35IYfYAGUQNSINZX/nISvzowXOmlyOLkpNRvtqHVgi3t9YjEEzg9RaEgxPIhxzm7FMAtAK5eFJv/ZcbYc4yxwwCuAvAv5VwoMY8rEEGDUbtkx7pUeu3FxelPecMLSjlEmZsSF2eJBMeIcM6q/OSWSHBMusNoTZaxCJqtegSjcXjDsYqs6ZO/PQKTXoNPvmQjVCqGZoseEwqIM7EL2rPogsRmqi5x9p1Hz8Jh1uGVuzoz3i8GUVOcvnymvCHM+MJZxRnNOiOWCzFDsr+IfmmlCMfiGHUGl/SbCdpW+KwzsRnYXyPO2ckJqYxxfasFWzrqAYD6zohlRU5a4+Occ8Y535Yem885v4VzvjV5+8s45+PLsWAC8IZjMOs1ih+3127EqDNYsH0/7Q2jyTwvzpR0zqa8YUTiCeg0qqo/uc0FIojEE2i1Luw5EK5iJQZR/+rACPYNzOETL94Ae/LfqKXeoMhahJDvWeSc2U26qilrHHMFsffkNN50SS8MWnXGx4jPLsXpy+f4uLSLvDhGX9BtM2LMFaqJ8RdEbSOScIsJs1KK4bkAEhzoa8omzgyYqPLzVzkRPc6DRc5SXW5OTHhhMWjQVm9Aj80Is15DfWfEsqKs9UIsC/5wDGaD8uKsx26S4vQLSFmLJzhm/ZEFzplZr4HdpMPQXOlfxGItO7oa4A5GEYgU5j6NuoK45D/+hj8fmSh5LfkQJ99MzhmAZY/Tn/WF8YX7j+OC3kbcvLsrdXuLxaCIczY4G0j9W6cjOWfVIXTOTUufwcUJjek4kuJstspCTKoZEcCQS5zFExzjFIJAlBnRzztQQVdGfM/0OcwZ729rkL5zV+og6pRzNuOvieH0IgyEMQaVimFzu5Xi9IllhcRZDeILlck5cxQep+8MRBBP8JQAEXTblSlrEkmNFyUvrgt1z46MujHuDuF9vziIp87NlryeXCyecSaolHP2hftOwBeK4fOv2JoKawGA1nqDIj1ng8mkxiUN8Mmyxmo4CYvPoJi9lYn6Oi3UKkY9ZwVwbMyDjoY61KeNjEhHuOcUp0+Uk2AkDm9I2rArpiQ/H789OIKjMi7KUzPOMvScAdKGXTzBV+x3jEgr9oZiVVXyngnOOU5OerG+db6nf0tHPY6PeyoeOkOsHEic1SC+MpY1AoXtQArBkV7WCCjXcyKGYu/ukZIpCy0NEYlxLVY9bv3RfpyYKF9pgnCjloizCjhnT56dxa+fGcE7Ll+FdS0Lg2OarXp4Q7GCXcjFDM4GlpQ0AlJZYzTOK9Jjt5ihuQB0ahVaFiVopqNSMdhNuhV74VQMx8c92JgjkKhbwb5TgsiG+E5Vq5jiZY2cc3ziN8/hs384lvex/TN+2E26rJsV7clzglLzJWuN9NEtlXQ45TDmDsEbimF963xVwJYOK0LRBM5O10ZZJlH7kDirQcolzmwmHSx6TUEnOdGns3i2i1I9J8NzATRZ9OhLunqFntxGnEGY9Rr8/O0Xo06rxlv+9+mypXpNuIPQqFiqt0tg0WtQp1Uvm3MWjsXxyd89hy5bHd579dol94uo/1JmncXiCQw7A0vCQADAlhxE7ayCHdLhuQA6G+sypjSm4zDrMUNljbIIReM4O+3LWtIISJ8xrZotizh74OgEvvKXE2V/HaL6ECWNm9utGHEGFe1x9IVjCEUT2Dcwh7PTvpyPPTfjT1WeZKK1XgyiXpllvpPeUGrGZiV7A+UgwkA2pDtn7RQKQiwvJM5qEF+Zes4YY+hxGDFYwAXVtDe7OIsneMk7hcPOALoa61LOR6FljSPOIDob69DZaMQP/+lC+MMxvPl/98EVUP5CfNwdQrNFv0QIMMbQbNVjcpnSAL+99yzOTfvx7zduQZ1uaQiGeC9LuVAYd4cQjfMlMfoAUj1o1RAKMjQXSJXY5cJh0ZNzJpNTk14kOLImNQKSk9HRULcs4uz3h8Zw96P9NER8BSI2vC7stSGW4Bh1KrfxNp32ff3Lp3NHwA/M+FMbiJloF4OoV6g4m3CHsKu7ESpW/aEgJyaksKP0ipNVTWbUadXUd0YsGyTOagzOedl6zgCgx2bCUAFfnqKsJJM4A0ovaxqeC6LLZoRBq4bdpCtCnEnOCSBdTN71pj0Ymg3gbT/cj1A0XtLaFjPhDqV2SBcjzTor74n5mSEnbvneU/jGg6dxw7Y2XLm+OePjhDgrpcxSzMPrtmVyziRxNlcFTtTQXCBnv5nAYdZRIIhMjo1JO8u5xBkg9Z0txyDqKW8IkXgCk8scuENUHtE7KwJ/+hW88BfizGHW4dfPjGRNMfaFY5jyhnOKs4bkIOqJFTqIesobTm2SVnuc/skJL9rrDaivmy9RVasYNrVbcZQSG4llgsRZjRGOJRBLcJjKJc7sRow4g7IbX6e9YZj1Ghh1C9cjek6KGWotiMYTGHcH0dUoHautwYDxAk5unEs7qZ2N8xfnl6y24+uv2YFnhpy47WcHFW3wnXCH0LYoqVHQbDUs2IlVksMjLrz1+/tw07eewNExDz75ko346s3bsz6+JdkDV4pzJprvex1LhU9KnFXYOXMHonAHozLFmR7TvsoNCq8ljo97YNKp876vyzXrTJTniv5UYuUw5Q1Dq2bY0d0AABhUsGROlDnfetkqzPgieOjEZMbHiTK9bDPOAKl6or2hbkU6Z+FYHHP+CFqsBvTYjTVQ1rgwDESwpd2Ko2NucuiJZYHEWY3hS4YsWMpQ1ghI4iyW4BiTGYE9vWgAtaDFYoBOoypp53zCHUKCA102SfC0WusKEhSeYAzecCzlnAmu39aGz9ywCQ8en8Snf39UkQtyzjkmPHmcM4XF2dExN2794X687L//joPDLnz0uvV47KNX4e2Xr8o60wsALAYtTDp1ST1ng7N+6DUqtFiW/rx2c3WUNYqkQFlljWYdIrFEVYSYVDvHx73Y0GZdkACaiW6bEa5AFJ5QtGxr4Zyn3JPlcOmI4ghG4nj1d57EgcE5RY875Q2h2WJAk1kPk06taNjEdNKJvWlXB1qtBvx8X+bSxnMiqTHLjDNBq3VlzjoTm5ItVql3fGC2euP0o/EEzk77FoSBCDZ31MMfiSvqzhJENkic1Ri+ZGxwucoaRZnaoMwZZdnEmUrF0NVYWs+JuNgSzll7g6GgHjZxcZ7unAnecmkf/vnK1fj5viF8a+/Zotco8IRiCETiS5IaBc0WA3zhGPwKXPwPzwXw7p8cwPV3PI59/bP40AvX4bGPXoV/vnKNbEe1xWooqQxscFYqF8x0gW7UaWDQqio+60xOjL5AzDqbWaa+wFqFc47j456cYSAC8b6XUzR5gjGEk+VmlAxZvQzM+rGvfw6f/9NxRS/MxfmHMYZehykVaa/IsX1hqFUMDpMer97TiUdPT2cMk+pPJvj1ZonRF7Q1GDC+AtMaxSZgs9WAHrupquP0z037EY3zBWEggq0dFApCLB8kzmoM4ZyVS5yJMjW5O5DZxBkgXZyVUta4WFy11dfBE5IvcEZSz89caviRa9fjyvVN+P7fB0q+YBA7otki21tScfqlXfw/cXYGL/vvx/HoqWm875q1eOxjV+O916yFxZA5wjkbLVYDJkvYxZVi9LNfjNhN+oo7Z+JiXTivuUiJM+o7y8mIMwhvOJa33wxIm3VWRtGU3je53DPVBmf9uOvRs1TmJANnMoDpmSEXHj09o9hxJz1SCBMgzelUctbZtDcMh1kHlYrh5j1dAIB79i91z/pnfOhoqMtZrQBII1YmveEVN4ha9Fq3WAzoS11fVKf7JEbtZCprXNNshk6jwtEx6jsjyg+JsxrDW2bnTJQjyg0FmfaGl8w4E/TYTRieCxQtfIbnglAxaccRmJ8fJjcUZCSZ3NWVwTkDpD6AK9Y1YcYXLqnET1pTcMEaFzM/iLo4QcQ5xw+fGMAt39sHu1mPP73vMnzwhesWNC0XQotVX7RzxjnH4Jw/Y1KjwJYcRF1JhuYC0ngIGcJViLNZSmzMibgw2dQuX5yV09ESv7c6dWkl1MXw24Oj+MJ9J/CjJweW9XVrEVdAKm01aFX4xoOnFHPPprzh1BzJPrtJ0Tj9GV8ktfHYZTPi+WscuGf/yBJx1T/jz9h7u5i25CDqcvUeVyui7LjFqk+5iwMz1elyn5zwQqNiWN1kXnKfVq3CxlYLnhsh54woPyTOagzhGpUjSh+QyhF7bEZZzlkwEoc3HMvqnHXZjPCGY3AGius5GXYG0FZfB61a+pi2FTgrZsQZhEWvgbUu+3slShWeK7FUQawpa89Z8gKimDj9SCyBT/zmOXzmD0dx1fom/Pafn5dzpo4cWuoNmPQUF4Ax5Q0jFE2gJ8caqkGcDcuM0QcAh0Xqk6M4/dwcH/dAxYD1LdkHUAvq67Sor9OWWZxJv3fbOuuXPRBECI4v/vkEzuWZg7XSEd8F77x8NQ4q5J6FY3G4AtFU32uPXRrfMqJQnP7ijcfXXNCFUVcQj5+ZXzvnHP15YvQF85uLK6u0cTIZ2tJo1KGz0QgVq17n7OSEF6uaTNBpMl8ab+6ox5Exd9X2zBHnDyTOaoxylzUC0kluSIY4ExeyzTnKGoHid86li+v5krS21KwYeSe3EWcAnTYjGMseXLCp3QoVU0CceUJgbN4hW4x4jwp1zqa9Ybz+7n/gF08P47ar1uCuW/YUXMKYiRaLAZFYInWBWQgibasnh/CxmyofTS83Rh8AbEYdGAOmqawxJ8fGPeh1mDLOz8uElNhYvotR4f7u7m3EhCek+HiMXLgCETQatdBr1PjwPc+uuHK1QhBzJd9++Sp0NNTh638t3T0TDlTKOXMIV0aZC3+prHH+3PbCTS2wmXT4v6eHUrfN+SPwhGLocyx1WhYjzl+FjoOpdSbdUmiLSsWg06jQ2Shv87cSnJjwZgwDEWztqIc3FKNkWKLskDirMbxlds4AqRxxcC5/olK2GWfzxylNnI04gwtKElvqpdcZl5kkKQZQ58Ko02B1k7nkJt8Jdwh2kz7rjlt9nRY6jaqgkpbnRtx42X8/jiNjbvz363fiw9euz5uQJ5fUIOoiyixFH2GuBvhKO2exeAKjziC6ZfSbAYBGrUKjUUfOWR7khoEIuss862zKE4ZFr0k5eZkCG8qFKxhFZ6MRn33ZZjwz5MJ3Hzu3bK9dazgDURh1apj1GrznqjU4NOzCI6emSzpmKmgiuSEmqgmUcGUSCY4Z38J+ar1GjZt2duCvxyZT3xP9MmL0BYWW5Z8vTHpDKQENJHsDqzBO3xuKYtQVzBgGItjSngwFoWHURJkhcVZj+JfJOQtFE3nDK4TQyFrWmBRWhQy1FoSicUx5wwvK0vQaNRxmHSY8+S/AOOcYngvkFWeAtBtWqnM27g5l7TcDpP62Zos+VYaVjz8+O4ZX3fkEVIzh1+9+Hm7Y1l7S+hbTmhS6cteTzsCsHxoVQ3tD9p/XZtYhGI0jGFk+JyOdcXcIsQSX7ZwBUpw+pTVmxx2MYsQZlBUGIuiyGTHqDJbNVZpKXvgtR3/bYpyBKBqMWty4ox3Xbm7Bfz5wCqcmvcv2+rWEMxBBo1EqHX7V7k50NNThGw+eLsk9m160OWg36WDWaxS58HcHo4gl+JJz22su6EI0zvHbZ0YBpMXoyxBnDUYtDFrViktsnPSE0ZoWlNWbnHVWbaWB4nc3V8n2ulYzNCpW8vUCQeSDxFmN4QvFoGJAXZ5kqFIQF7T5khbzibM6nRpNFn1RF0yib2CxuGqrr5M1g80ViMIfiWeM0V/Mlo56THvDRQkVwYQ7+4wzgdxZZ55QFB/85SFs6ajH72+7FJuTu3VKInabi/mZB5OiV6PO/vVhN4lZZ5URO6kxDAWJs8onTFYzR5MXJIU6Z5F4oqTfrVxMesJosRpS31kjyyjO3IEIGow6MMbw+VdshdmgwYd++axigRTnE05/BI0mqRxbp1Hhtqsl92xvCe7ZVGp+lvRdJsXpG9GvQMnctC/zuW1tiwW7exrxi6eHUv1mGhWTtQnIGEN7fR3GZfwufPD/DuGL958obvFVxqQntCDFuNdugjdcfXH6JyaS4iyHc6bXqLGuxUJx+kTZIXFWY/jCMZj1mpx9VKWSSlTK43hNe8NQMSk2PRs9NmNR4izbAOHWenmDPLOJu0xs7UyGgpSQwjTuDuZ0zgDpIkKOOHtm0IlonOODL1y3oOdBSVIBJUWkVA7O+nPG6AOALfmZqNQJuJAZZwKHWU9ljTn489EJGLQqXNhnk/0c0TNaLkdLXPg1maWS4mGFwiDk4AxE0ZBMS3WY9fj8y7fguVE3vq3A3MTzDWcgmnLOAOCVu0p3z6Y80hwysREESOeuQQXKGsXGY6bv39dc0IWz034cGHSif9qPbrsx50ZVOq31+WedTXlD+N2hUTx2urSyz2ogEInBG4otKmuszjj9kxNemPWavNcMWzvqcXTMU3XOH3F+QeKsxvCGYmUtaQSAjsY6qFUsbyjIlDcMu1kPdY4+qG6bvHCRxYwsGkAtaK83yAoEyTfjLJ1NbVawEkJBApEYPKGYPOdMxq7pgUEn1CqGHV0NRa1HDnqNGjaTruCeM845BmcCOWP0AannDEDFnKihuQA0KpZqwpeDvcCyxvufG8e7f3JgRZykY/EE7ntuHFdvaJY96BwoPRQoF5xzTHnCaLbo54feL1PQQDzB4QlF0WicD+d58dY2vGx7O+7422kcpZ6UBbiSLqNAp1HhvVevwbMluGeTnlBqDpmgV6E4/VxVITdsa4NZr8Evnh6WkhrzbFSl01Zfl7fn7M9HJpDgUCx1spJMJTf/WiwLnTOg+uL0T0x4sa7FnHfje0uHFXP+yIrrHSSWFxJnNYY/HCtrGAggzfPoaKiT5Zxlm3Em6LIZMe4JIRwrrPdo2BmETqNakgTZ1lAHbyiWSq3Mxrxzlt85MelLCwVJxehnGUAtaLYa4AnF8ibK7R9wYlObtaCL4GJosRoKTo90BqLwhmPoznNBInaz5yqUfjiULL3MtXGwGIdZD39Efp/c/UcmcP+RCZyZOv9j1P9xbg4zvgheWmDvY3tDHVSsPIOo3cEoIvEEmpO/d10247INovaGouAcqE8THADw/27cjEaTDh/65bMFf+edz0jO2cKU2Vfu7kRnY/Hu2ZQ3vCQdt9dhQjzBS/685RJnRp0GL9vRjnsPj6F/Vl6MvqCtXqqeiOUQj/ceHgcgfb49oeLG0FQL8zPO5v+dOhuNUKtYVTlnnHOczJPUKNis0PgdgsgFibMaQ5Q1lpsee/5yxGlfeEG5QrbjcA6MFrgLOOIMoLOhbkk64fyss9zHG3YGYDVoZA9pLiUUJN+MM8F8nH52dyYaT+DQsAu7exqLWkshtFj1BZc1ihNqXufMnBRnFXLOCplxJhAbDXJLG0VSW6mpc7XAvYfHYNKpcdWG5oKep1Wr0N5QVxbnTHx2W5LfQd1FllAXg5jduFhwNBh1+OJNW3Fiwos7/nZ6WdZS7cTiiaTLuFDIatVp7tnJwn+Hprzh1L+9oM8hr186HzO+MPQaFSxZzrWvvaALoWgCkVgCfU0FiLMGgzSIOst3zKQnhKcH5lKJgSM1Htk+6V34OwpIrmlHQ13q+7MamPSE4Q5GcyY1Cja2SuN3jpI4I8oIibMawxuOwazAnKt89NiNsgJB8jlnqXCRAi+ahueC6MxwcS13VowUoy//4nxLRz2mvOGCnaT0teQroRM7/GIEQSaOj3sQjMaxp7f84qzVaii4rFH0c+TrObPoNdCqWUXLGgvpNwMKG0TNOU8NHj7fxVkklsD9Rybwos2tMBQRRFQu0bR4V76r0QhvKAZ3kUPvC0HM7WowLv0uvmZjC27e3Ylv7z2LQ8Ousq+l2nEHJZdxsZAFgJt2Cfes8Lln094QmhY7Z8nvpVIv/MWMs2wlbls76lOppYU6Z0D289d9z42Dc+CdV6wCMF+eX6uI82mzdanDWaqAVpITEx4AucNABHU6NdY2W3BkzFPuZRErGBJnNYY/HINZX76kRkGPzQR3MJq6CFlMIsElcZYlqVEgLpALLTMZdgbQlaFfLHVyy5PYOOKUF6Mv2FpCqYIQOHnLGi35QzieHnACAPb0yA9dKJZmqwEzvtwlNosZmAmAMSwYDp4JxhgajTo4ZYozpz+imMvmCUXhDEQLF2cp5yz/Oqa8YfgjcVgMGuzrn1vW4cfLzeNnpuEORvHS7W1FPV+adaa8AyDEmfi9Ws44fTG8vWGRGyT49Es3oU6rxq8PjJR9LdVOymU0LX2vUu7ZiLsg9ywaT2DGF1lS9m4z6WDRa0oumZv25T63Mcbwpkt6oFOrsC5H9PpiUpuLWc5f9x4ex4ZWC65YJznUtd53NuEOwaBVwbqoFaOvyuL0TyaTGuU4ZwCwucNKiY1EWSFxVmP4liEQBAC67bnLQ1xZ5sAspsmih0GrKqhR3xuKwhWIZnS+xC55rlAQznnBztnm9uJDQSbcITQYtajT5RbNqbLGHM7ZgcE5dDTU5S2RVIJWqwGcI2uJTSaG5gJor6+DXpN/g8Bm0sl2zt73i4N48X89ijEFZgANF5HUCKSLs/zvx7lp6eLvtRd0IRxL4B/nZgtcZe3wx2fHUV+nxfPXNBX1/C6bETO+MAKR3H2ihSKST0XfkdgwWI6+M1cw6ZxlKZu2GrRorTdUXVx4JZh3GTML2Zt2daLLVodvPiS/DFT8ji4uq5fi9E2KOGf5zm2vvaALT37i6oISdeeds6Xfc2OuIA4MOnHDtjY0GrUw6dQ1L84mvdKMs8UOZE8yTr9aRpecnPCixarP+hldzJb24ittCEIOJM5qDKnnrPxljfni9KcXXRhlgzGGbpuxoLJGscueyZ3RaVRwmPU54/SdgSgCkXhBzplJr8Eqh6mo3bBxdyivawYAjUYdtGqWNU6fc479A85lKWkE5vsACuk7G5j1oydPv5nAbtZhTsacM845Do+4MekJ4y3f3wd3sLSytGJmnAHzCZNyEhvPzUglja+9sBt6jQqPnpopcJW1QSgax1+PTeK6za3QaYo7XXSl3HNlLzSnPCFYDZrUpkhXkS59MTj9uZ0zQPo8kTjL3p8n0KpVuHF7B54dcSMSk+fiZ0oBFChRMjeTxzkDpHObvcBRJ/V1WtRp1RnLGu97TgoCuX5bOxhj6GxcvoCbcjHpCS0paQTmS0GVGHugBCdkhoEItiQrbY5QKitRJkic1RCJBE+Ks/KXNaYisLOc5PINoF58rEIumFIzzrI4X+0NBozlEGcjWWak5aPYUJAJT1CW06VSMTSZ9VkH8o44g5jyhrFnGcJAgHkXUs7cOMHgbCBvv5nAZtLLujgVzdjXb2tD/4wf7/jR/pKS7oaKFGcGrRoWg0a2c2bQqtBnN+HCPhsePQ9mEmVi78kp+MIxvHR7YSmN6ZQrTl8MoBZYDVo0GLXLU9aY3EDIFTjUaCRxBiBV2rw4ECSdVU1SyqLcf7tUSWuGQKpeuxEjzoBsobeYWDyBWX+kLDMmGWNoyzKr897D49jcbk0Jl87Gupp3zqYWDaAWiA2+/iqI04/FEzgz7ZNd0ggAm5KVNkdGqe+MKA8kzmqIQLKvpdxR+oDU9Npi1WMgizgTpXnyxJkJQ3MB2fXl4oSU7eK61WrImdYodugLcc4AYGtnAyY94Zxlh5mYcIfyDqAWNFkNKWG7mP2DcwCA3cvQbwbMizO5P68nFMWcPyLfOZNZ1iiasW+5uAdfvXk7nuqfw4fvOYxEorh+hKG5AOrrtLKTOtNpMusxI2PN/TN+9NpNUKkYrljXhDNTPowqUJJZbfzx2XE4zDpcvKr4z2TZxJl36YVfV6NxWQZRuwMRWA2anKMabCYd5rL07K4knMn3IFPPmWBVkxkAUiE7+Vhc0ppOr92EBC++vHXOHwHn8s5txdDWsHRW5/BcAIeGXbh+23xfpyTOKi9eioVzLm2gZHgfu2xSnH41OGcDs35EYgmsL6B30KzXoK/IShuCkAOJsxrCF5J6NpajrBGQQkGG5nKXNcoTZ3UIROKyghYA6URl0qmzlsG0N9TlDAQRJ7SOQsWZKFUo4As3EpMa01ut8l6rxaLPGqW/f8AJi14jKzFKCewmHTQqJts5Ey5qvhh9gc2kgzcUy7uDfWpSasZe32LBjTs68PEXb8Afnx3DF/98QtbrLFnnXLDgfjOBw6yXV9Y47cPq5AXlFeukXqxHayC1kXOOM1NeWRslvnAMfzsxiZdsbYNGXfypotGohVmvUbzcUAygTqdQl75YnIFoTrEBSGLE6Y9UTehBpXAGotCqGUw5enKFWyS3V2zKGwZjgMO89N+gt8SSOSH88iURF0urtW7Jd+79R6SSxhu2zjvUnSJ9tMQy70rhDccQjMYzOmdatQqdjdURp38iGQZS6Hl3S3s9iTOibJA4qyF8YelLejmcMyB3nP60NwyjTi0rnESEi8jdOR9xSjOqssUYt9Ub4A3H4M0yoHPEGUR9nRbWAkcOpEJBRuSXKojyGrnOWbNVj8ksTtWBQSd29jQWNDi5FFQqhmaL/Fln52bkxegLRA+XM497cGLCi2aLPnWx+87LV+HNl/TgrkfP4ft/75f1WukMFxGjL3BYdHnLGiOxBIadwdQF5ZpmM9rqDTUhzn62bwgv+NqjuGd//hTBvx2fRCiawA0FDp5eDGNMGhCtoGjinGPKu7SfpdNWh1FnEPEiXVe5uILRrGEgAptRh1iCwxtWNgil1nAFImgw6rJ+nwNSeajDrEsF7eRj2huSNpcybBr0llgyJwKSyuWctTcYMOkJLUjJvffwOLZ11qfOlcB8z3WtumdTOUpPAek8Ug2DqE9OeKFWMaxpNhf0vC0dVoy5Q5gtIFCLIORC4qyG8IWTZY3L0HMGSOJsyps5ZS1f1HA63TbpIlbuxdnwXDBnSWJrfe5eqUJj9AUiFKSQvjMRo98iV5xZDHAFokt6qtzBKE5Oepet3yy1Hqshaw/cYo6NeaBVM6ySOXTVnhRbs3kc05MT3gW7lowx/NtLN+NFm1rw/+49hvuTjfJyiCd4StwXg92kz+vwDs0FEE/w1PvAGMPla5vw+JmZgsYSLDecc/z4yUEAwGf+cBRnprw5H//HZ8fRajUo8pnstik7iNoZiCIa50uGEHfbjIjEE7I/08UiBEcuUpsTK7zvbM4fgU1GCt4qhzkVtJOPSU84axiVzaSDxaDBQJGuzEy5nbN6AxJpKblDswEcHnHj+q0LR1WItOFyjKFYDuaHxGf+d+qzGzE4I7/doVycmPCi124seIbj1o4GAMBhcs+IMkDirIZY7rLG7qRDkumiasqTfwC1QAglOQlanHMMOwM5Y/DbG3IPopZi9AsXZ4BU2lhIqcL8AGp54kxcTC7uO3tmyAnOsezirLUAcXZ0zI11LRZZMfrA/MVprlCEeILj9JRvSb2/WsVwx+t2YmdXA97/f4ewf2BO1mtOeEKIxnlJZY3uYDRnKaboi0kfPnv5uiZ4Q7GqHjr87IgbJya8eN81a2HUqXHbzw5mnc/mDkTxyKkp3LCtDSoFnNyuRmNBfaf5WDyAOv11gPInNroC0YwDqNOR8/lfCch5rwDp90l+WWMoqyPDGEOfo3hXRogmMZReadqTs87GkqX59z43BgAL+s2A+fNmrTpn2X5HBb2O6ojTPznhxYYCkhoF2zrroWLAwSGX8osiVjwkzmqIVFnjMsw5A+bLQwYylIcU4pwZtGq0Wg2yds7n/BEEIvGczoeIrc80K0bMOMuW9JiPLR31mPCEsoZ2LEYEk8idSyZ2exfH6R8YcEKtYtjR3SB/sQrQYtWn3L9ccM5xZNSNLe31so9tT/aDzOaI0081Y2eo9zdo1fjumy9AZ0Md3vbD/bICN0RfXClljUDuC2pxASlCDADg+WscUDHl+s6c/ggmPaGiQ1Ey8Yt9Q6jTqvH2y/rw1Vdvx4kJLz7/p+MZH/uXYxOIxnlJKY3pdNuNCMcSsn+v8jF/4bfwOygVp1/mUBBXIJK3rLFRZlnv+Y4zEMmZ1ChY1WTCjC8iq8cqU79hOr0llMxNe8Mw6zUw6spznl1c+fGnw+PY0dWwZEOyvk7q1azVxMaJLL+jAjGup5KhIP5wDENzgaL6vE16Dda1WKp6Q46oXUic1RDelHO2TD1nNuGcLf3ynPbmPjkuptsur+ckldSYw/lqsRrA2PzOYzqz/giC0cJmnKVTaCjIhDsMk04Ni8x/EyFoFw+v3D84h01t1rJdEGSjpd4AbyiWd0DwmDsEZyCKLR3ydxhtJulnzSV0TiabsbPtXNpMOnz3zXvgDkbxh0NjeV+z2AHUAjmDqM9N++Ew6xakQdYbtdjR1YBHTpc+74xzjhf/12O46At/w4ZP/xlXfXUvbvneU/jEbw7jfx4+g98fGsWZKXnlXwJfOIY/PDuGl25vg8WgxVXrm/GOy1fhx/8YzFg2+sdnx9BtM2Jbp3wxngshmgqZd5gLEaqzuLSto6EOjCmfDJlOLJ6AJxTLX9ZoFEK/NgMdlEIKT8nvnInNjnzuWTzBMePLXtYISBuLo85gUXH6cgZQl4JwzsbdQfTP+HF0zIMbFrlmAJKzzmo3Tn/KE4bFkF3k9qZCYCrnDKbCqIoM4drZ3YhDQ05FN9EIAiBxVlP4k43lyxUIUm+U5gYtjtMPx+JwB6MFncCkQdT5d8iGZcwoyzWIWpzIcpVF5mJzR70UCiJXnCVnnOVqdk9nPr5+/uI/Gk/g0LALu5e5pBGYH+KaLUFSIMTq5g75F+sNdVqoWH5xxhhyNmOvajJjS4cVD52YzPuaQ3MBqFUMbQ3ynMzFCHE2nUuczfgWlDQKLl/XhMMjrpLL2Ob8EUx4Qrh+axve+vxebGq3whOK4a/HJvGVv5zE+39xCNd+49GCym//cGgMgUgcr72wO3Xbh1+0Hts76/HRXx9esHEy6wvjibOzuGFbm+zPdT7WJC+8hRgvlWyjPHQaFdqsBoyUUZx5kptk+Ur1hCBZyT1nnHNZ/XnAfJlwvjj9WV8YCZ7dkQGkC/9i4/RnfOGMKZBKYa3TpAZR/+mwtOH0kq1LxRkgncdquawxW0kjIJVtqlWs6N5AJRDirJAZZ+ns7GqAJxRLhWURhFLkFWeMsS7G2MOMseOMsaOMsfcvuv/DjDHOGHOUb5kEIO1+A4BpmQJBAKDHZlwyiLqQGH1Bt82ISU84a4+LQDQ/5wt0aK9fOisGmK/P77QV55yJ+SVyxdm4OyS7pBGQQjLUKrZADB0b8yAUTWBP7/KLs1SJTZ7SxqOjbqgYsLGA2nyViqHRmHvW2ckJL3rtJtTliNkGgKs3tODAoDPvhe7QXADtDQZoi4x+F32UueL0+2f8WOVYKiavWNcEzoHHz5Tmngnn4FW7O/GJF2/E/7x+F37/nkux/1MvxLH/dy3ue99lsBo0+FIBowZ+vm8IG1ot2NnVkLpNp1Hhm6/bBXDg/b84iGgyzOT+IxOIJ5QraQSkCzG7SadYCdCkJ4wGozZjE3+XzVhW5yw1tyuP4DDrNdCqWcV7aiqJNxxDLMFlBYJ0J2df5UtsTEXd53LOkkKvmAv/cjtnjEmbR+PuIO49PI7dPY2pPurFCOes0qEZxSCJs+zvo4jTr2Ri45kpH/QaVdGbuTuTbQhU2kgojZwrmBiAD3HONwK4GMB7GGObAEm4AXghgKHyLZEQeMMx6DQq2YEMStBjNy1xvKZzDADNhpgJle9LbNgZSM1FykVrvaEszhlQWCjIhDske8YZIAkWh1m3IIRj/6ATALBnmYZPpyNOnvlCQY6MebCm2ZxXRC3GZtJhLkf64clJr6zhn9dsaEaCA3tPTeV83FAJMfrAfJ9ctsRGdzCKGV8kY2Llts4GNBi1JfedCXHWm8GdM+o02NRuxW1Xr8Vjp2fw2On8r3Vk1I3nRt147QVdS5ywbrsRX7hpK54ZcuHrfz0FQCppXNNsLno3OROMMWzvasCziomzUMr1XUyXzVj0AGI5uAJSmWJ9HueMMWlzYiU7Z65kSaecQBCdRoVumzFvWaNwTbMFggDz/UzFzNGa9soPuyqWtnoD9vU7cWLCm7GkUdDZWAdfuDZnnUkDqHNfI5TSG6gEZ6f96HOYih5fs7rJDIteg4NDToVXRqx08oozzvk45/yZ5N+9AI4D6Eje/XUAHwVQe9s6NYgvFFu2fjNBT4ba/WKcs6s3NKO+TosfPTmQ83HDc7mTGgVt9XUZ0xpHZIq7XGztqMe4O5R33lU8wTHlDctOahQ0WwwLyhr3D8yhs7GuIAdOKUTZSV5xVmAYiMBm0mUt8wtF4xiY9WOdDBGwtaMeDrMefzueW5yVMuMMkJq867TqrLNrMiU1CtQqhkvXOPDoqemSdroHZv1Qq1jOvsk3XtyNjoY6fPH+E3n7HX7x9BD0GhVesbMz4/0v3d6O113YhW8/cha/OjCCfQNzeOm2dsVKGgXbOxtwZtqXdT5hIUx6w1kvzuW69MXikumcAcnP/woOBJHrMgr6HCaczVPWON9vmP3802jUwmrQFHzhH4rG4QnFyuqcAdL5a8YnDdJ+8ZZc4kz6Liuk78zpj2QdM7NcZJtDuJheuxEDFYzTPzPlw+oC55ulo1JJm07knBFKU1DtD2OsF8BOAE8xxl4GYJRz/mw5FkYsxR9efnHWbTMiwbEgKa+YIZ11OjVee2EX/nJ0Mmfq3ogzmBq+mYv2BgN8GQZRSzPSir84B6TERiB/39mML4x4ghcsqlqs+pQ445xj/6Bz2SP0BVIqmTrnIOopTwhT3nBB/WYCu1mXNa3x9KQPnMur91epGK7e0IRHTk2nyu8W40vGMhc740yQaxB1pqTGdK5Y24QpbxgnSuitGpgJoKuxLmdppl6jxoevXYejYx788XD2oJRAJIbfHRzD9Vvbcjo9/3bDZqxpMuPD9zwLzoEbtme/YCyW7V314Fx+P2cupjyhrM79/PDe8gQpCOcsX1ojIImzleycpcSZjEAQAFiVjMDPteEgvqtynX9EnL6c8S3pzJR5ALVAbOhd0GPLef4oJk7/X355CJd+6SF87FeHK9avlm0O4WJ6HabU9/ZyE4rGMewMpPphi2VndwNOTHjzhmoRRCHIFmeMMTOAXwP4AKRSx08C+DcZz3sHY2w/Y2z/9LQyMdMrFV8FxFmqdj9tB3LKI+34iSHDcrnl4p4Fg3AXk0hwjMqMwW9NJV4t3CEsdgB1Opvbpb6qIyO5LyILnXEmaLIYUmmNw3NBTHvD2N27/CWNgHQR02o15Ow5OzrmAQBsaS98Fkwu5+zEhHRcuUlZV29ogTcUw/6BzCUkpSY1Chzm7IOoz01Lrla217h8XROA0iL1+2f8GUsaF3Pj9g5sbLPiqw+czJpKd+/hcfjCsQVBIJmo06nx36/fBb1GhU1t1lQZspJs72wAADw7XJo4SyQ4pr3hrBd+3ak4/fJcmLqC8kv1Gsk5AyDfOVvVZEYomsB4ju+jKW8IjUZt3vL+Hrv8uWkC8XvvKHtZo3SOyrcJIjaa5G40cM7xzKATHQ11+O3BUVz11b349O+OlH0o+2LyzTgTlNIbWCr9M35wjpKcMwDY0dWAeILjuTzXCwRRCLLEGWNMC0mY/ZRz/hsAqwH0AXiWMTYAoBPAM4yx1sXP5ZzfxTnfwznf09TUpNzKVyDeUGzZkhoFPcmTQ3ooyLQvDLtJB02BoQudjUZcu7kVP983hGBkacnRlDeMSDyBThkX1+31YtbZ/ElHzDgrVZxZDFqskhEKImac5TsBLabZosesP4JoPIH9g9Jw5Uo5Z4DUu7E42j8d0X+3qShxpocrGEU8w074qUkvdBpV6jOWj+evdUCnVmVNbRxSVJxlKWuc8aGrsQ46TebPfmu9AetbLHhURi9YJjjnGJj1p3pmcqFSMXz8xRswPBfEz57KvOHx831DWN1kwgUywmbWt1rws7dfhK+9ZnvB65ZDo0mHXrsRh4ZL68+YC0QQS/Csv3flHkTtCkTAGGA1yHDOVnjPmTPZc1ZIWSOQO7Fxyps7Rl/Q6zBhzBVEOCa/vLWYkv1iuGS1Hc9f48AN23KH7tTXaWExaGR/lkecQXhCMbzzilXY+5ErcfOeLvx83xAu//LD+Pd7j+Ut1VeKCbnizC42f5ff4RPls6U6ZzuSIUtU2kgoiZy0RgbgewCOc86/BgCc8+c4582c817OeS+AEQC7OOcTZV3tCscfWX7nrMmiR51WvcA5m/aGi95ZfMvzeuEORvG7Q6NL7kvF6MsQV6IUZDytRHLGF0E4lii5rBGQShvzhYIU65yJE9aML4z9g05YksMsK0U+5+zImBt9DhMsMi5GF2MzasH5fJ9OOicmvFjbbJYt8s16DS5aZcPfTmTuO1POOcte1nhu2p+1pFFw+ToHnu53FlXmMu0NIxCJZ+xpy/haax143mo77njozJIS35MTXhwccuF1F3bL7h/b3WPLOnNOCaRQkNJ2mLMNoBY0WfTQa1RlFGdR1NdpoZIRItBo0mXdnFgJpISsjBJQAFjdJMRZdidlKke/YTp9DqkkXyQAy2G5xFmfw4Sf3HoRbDKqT6Q4fXk/gzhnbWmvR3tDHb7wiq146ENX4qXb2/H9v/fj8i8/jC//+QRiWUrDlWIqz++ooJJx+men/GAMGcOdCsFu1qPHbsTBIZcyCyMIyHPOLgVwC4CrGWOHkn9eUuZ1ERmoRCAIYww99oVx+lMlRA1f2GfDpjYrvv/3/iVNwOJiSk7PUGoQdZpzlorRL9E5A6QAijF3KGswBACMOoPQqVWyTrDpiEb2SU8YBwac2NnTWHRalBK0WA2Y9ISzNmUfGfWkSj0LxWbOPoj65IS34OGf12xoxrlpf8ZypaG5ACwGzYLh0MXgMOsx548suaBOJCRXa1Ue4XTFumZE4gn849xswa+dK6kxE4wxfOy6DZjzR3D3o+cW3PfzfUPQqVW4aVfmIJBKsL2zAROeUEmBBVOpnqPMmyKMsbLG6TsDEdlOkNicqMW0PSVwJoWs3O+3JoseZr0mZzlirn7DdHrshZfMCXFmN5VXnBVCIYOoj455oFaxBd+r3XYjvnrzdvz1g1fgqvXN+Nbes/jL0fwzI0tBTl8gMB+n31+BxMYz0z50NtZlHMdRKDsoFIRQGDlpjY9zzhnnfBvnfEfyz32LHtPLOS9tuA+RF194+csaASmxcTDtQmemBHHGGMNbL+3FqUkfnji78OJV7HB2ZJn5ko5WrUKTWZ8qLQTm6/JLDYQAcoeCcM5x96Pn8IMnBrC9q77gVDux63tmyodTU96KljRK6zEgEkukgg7ScfojGHUFU+9HoYi+xMUN305/BFPesKwY/XSu2dgCAHgog3smYvRLTRl0mPVI8Pl+GcGYO4hQNIG+PDute3obYdCq8Oipwr8ShUPdJ6OsUbC9qwHXb2vD3Y/1p2LGQ9E4fvPMCK7d0lrw5kE52Z4sAXp2xFX0McTPmGtXvquxriDHpBDcwajsDYDG5Hs/lyUU53ynECELzAd5ZEtsFP2Gspwz+9J+6XzM+KT5ednKliuBJM7kJRoeHXNjTZM5o+BY3WTG116zHWoVS/X7lotJTwg2k07W2J9euwmDFRBnZ6d8ivXW7uySNp3GM8xeJYhiqJ5vICIv3go4Z4C0Azk0F0AiwcF58uRYwIyzxbx0ezvsJh2+//eBBbcPOwNotuhl72S1NSyM0xdlkXLEXT42d0hO0eImX3cgirf/6AA+f99xXLOxGd998wUFH1uUNf75yAQ4R0WGT6fTKuL0vUvdjPkwkOLEmS11cbpQ6JyclNIMC3XOumxGrGsxZ+w7K3XGmUCU7C4ubUwlNWYYQJ2OQavGxavsRYWC9M8EoFUztDcU9vv1kRetRzSewB1/Ow0AuP/IODyhGF53QVfBaygnm9ut0KhYSfPO5OzKd9uMGJ4rT0S3MxCRFQYCpH/+l88584VjVZMcJ4mzwpzsVU2mrGWNzmS/Ya4YfUGjSYf6Om1B4mw5ZpwVSlejEf5IHM4Mm2eLOTqWu8pBr1Gjx27Eqcni02TlMOkJy/o3AqQSz+WO008kOM7NKCjOuqVzOJU2EkpB4qxGiMYTCMcSFRFn3TYjIrEEJjwheIIxROKJkmryDVo1Xn9RN/52YnLBjtmIM1CQ69VmNSwQZyPOIGwmHUwKvEdWgxZ9i0JBDg278JI7HsPek1P49A2bcOcbdxdVQmc36cAY8OjpaahVLNVQXCnmB1Ev3d0/Mib9/MWWNWZzzk4mo+aL6W+6ekMLnjo3t6DHKpHgGJkLKiTOkoOovQvXLC4YV8voUbhiXRPOzfgL7nsamPGjy2YsOGyn12HC6y/qxs/3DePctA8/f2oYPXYjLl5lL+g45cagVWNjm7WkEiA5u/JdNiO8ZRre6wpEZbtB4nHZEkvLwbt+fACf/O2RZXu9XDj98t8rwSqHOelSZw6NAiB7c7A3eeEvl2lf8VUh5UJunP6UVxp5ki+4aW2zGaencs+SK5Upb0h2UFaP3QhfOJY1IbccjLqkKog1JSY1Cja2WaHTqKi0kVAMEmc1gj8s7YRWQpz1ppWHiJKiUk9gb7y4B2rG8KO0WP3huaCsMBBBW4MB465gasdNiaTGdEQoCOcc3/97P26+8wkAwD3vugRve35f0eVzGrUKdpMekVgCm9utMOqW/980ndQg6gx9QEdG3ehoqEuVZxVKqqxr0Yn3xIQX9XXavA3jmbhmYzNiCb6gbHDSG0IknlCkpNWexTk7N+2DSaeW9dkXkfqPFOieDcz6CyppTOe9V6+FXqPCh+55FvsG5vDaC7plhVYsN9u76nF4xJ13eHY25OzKi89BOfrO3AH5ZY32pNBfXCJbTs5N+/IOcl4uXIEIGgoUZ31NJnCeuRxRhMHIKWsEpCHHhcTpT5dQsl8u5A6iTlU55ClBX9diweBsoKAUy0KZ9IRkf7eL/trlLG08k/z9UMo502lU2NJuxcGh0pJoCUJA4qxG8IaS4qxCPWeAFKc/ndq5LO0E1mI14CVb2/DLp4fhC8cQjScw7g4WdHHdXl8HfyQOb1K4KjHjLJ2tHVaMuUN42w/347N/PIYr1jXhT+97fqqEoRTEiWt3hfvNgPkLnUyzcI6OebClo/j0Pq1aBatBs6Tn5tSkF+tbLEUJ3J1dDWgwavG3tNJGEVijhHPWlE2czUhJjXLWvMphgsOsL2gnVQSOyA0DWUyTRY+3X7YKB4dc0KgYXrW7eoJA0tne2QBfOIZzM8UJiClvCM15duXn4/SV7QGJxhPwhmNV65xxzjHjj2DGWx09bs5AtPCyRkf2xEbhnLXIdc7sJoy55cfpl5JEXC46ZDpnx5LiLJ9ztqbZjHiCFzwDTi7x1BxCef9GYjOqXOvJxNmkc6iUcwYAO7oacXjEjWiZkzCJlQGJsxrBH6mcc9ZWb4BWzTAwG8C0T7mo4bdc2gtvOIbfPDOCcVcICQ5ZA6gF83H6IXAuDbBWIkZfIHYgHzk1jX99yQbc/aY9Be8CZ0OI2z09lRk+nY5eo4bNpFsSp+8NRdE/4y+630xgN+sXlDVyznGqiKRGgUatwpXrmrD35HQqUVGpGWcAYK3TQKdWLSmzOTftlx1xzxjD5nZr3nEM6Ux6QwhFE0WLMwB4++Wr0GTR49otrVXnAAjm5wIVF6k/5QmjJa9zJl3QKj2I2l3AAGpAKuM06tTLNuvMG44hEktg2pc9fXW5CEXjCEbjBbvu4ncs08V6anNQpivT55BcODnlxf5wDMFovOp+b+rrtLAaNDKcMze6bca88/fE2JZTk+VxV2d9YSS4/PmfHck4/cFlnHV2dtqPRqNW0bCknd0NCMcSqZJ9gigFEmc1gi9UOXGmUavQ2WjE0Jxf0Tkwu7obsb2rAT/4+0Dq4rrTJt/5EqEJ4+4gpr1hhGOJgsoi87Gnx4a3X9aHX77zYrzj8tUlpwCmI3omKh0GImi26Jf0nB2TWSaTD5tJt8A5GHUF4Q3HihZnAHD1xhbM+SMpZ2p4LgAVA9oVCINhjMG+aNZZKBrHmDtY0EycLR1WnJ7yZeydyYS4GC22rBGQvh/+/P7L8JVXbSv6GOVmdZMZZr2mqFCQeIJj2pd/V95i0KLRqFW8rFHM65MrzgDJPZtbprLG2eSGQjTOKx7fL0o5C+05M+k1aLUaMpZmTnlCsBg0skOjRNVHv4y+s9S5rcqcM0Aq080nMPOFgQhWNZmgYsDpMoWCyB1ALdCqVeha5jj9s1M+RV0zQBJnAKi0kVAEEmc1gijdq0RZI5CM058NYMobhl6jgkUhkfhPl/bi3IwfP31K6j0rzDmTLsTH3SEMJ3cVlXTOdBoVPnn9Juwug7v14q2tuOXiHtknsHLTWm9YUtZ4JCnONpdQ1ggsFWenikxqTOeKtU1Qq1gqtXFoLoC2+jrFIrAdZv0CcTYw6wfnyDuAOp0t7fWIJ7jsZDQRXNDrKO0zbDfrK97HmAuVimFbZ31RzfOz/jDiCS6rn0XOBW2hiHEThTjoNpNu2Zyz9LmM2QapLxfOZEJloWWNgCQgMjlnhaQAAvMunJxZZ0pWhShNvllnnlAUg7MBWeJMr1Gj127C6TI5Z2KTr5B+4h67aVkHUZ+dVi6pUdDRUAeHWY+DFApCKACJsxqhks4ZAPTYkuLME0KzVa+Yi/TiLW1otuhx/5EJqFUMbfXyxUqzRQ8VA8ZdQUUHUC8HV65vxr+/fEull5GixbJUnB0ddaPZoi9pbAIgJTamlzWeSJZ9rCtwxlk69UYt9vQ04m/HpXlnSsXoCxyLnDPR/5JvAHU6wnE8MipvptDArB86jQrt9bXxGS6F7V0NOD7uke0qCvINoE6nrOKsgJTWRpMOczJi0JUgvRR3qsJ9Z/MuY+GlYyJOf3FpZiEpgOK1W6x6HB3LX0IrnLNq6zkDpE3HEWcwa6nqsdRGmrwqh7UtZpyaKo9zNlmgcwaIOP2l/97lwOmPYNYfUVycMcaws7sBhyhOn1AAEmc1QiXTGgFpZ8sXjuHkpE/Rsg+dRoU3XtwDQOptKyRCXKtWocmix7g7lNpV7KgRcVZttNQbMOMLI5bWzHxkzF1ySSMw7xyIE+/JCS/a6w1FjSFI55qNzTgx4cWoK4ghhWL0BXazfkGUfqrksABx1tlYB6tBkxpHkI/+GT967caqTFhUmu2dDYglOI6NFzYMV84AakFXoxGjrmCqL1EJiinVsxm1yzaEOn1DYbrC4kzM5Wo0Ff573ucwwx2MLglSmfIW5pwBwM6uRlluxkyVO2fBaDxrsIxIapQ78mRtc/kSG6c8IajY/BgVOXTbpFluyxGcI8pllS5rBKR+2nMz/tTGBEEUC4mzGsFXBWWNAHBiwqP4yet1F3ZDp1YVVNIoaKuvS4kzu0lX1eVc1UyLVY8En995D0biODPlw5Yi55ulYzPpEEtweILSZ/jkhBfrSihpFFyzsQUA8KfDY5jxhdFtV9I502PWPx+qcHbah1aroaAZeowxbOmox1GZoSCSOCu+36yWEKEghfadzZdM5d+V77YZEY3zJUE3pSD6uOoLKNWzmfSpEr9yM5vmnC3n3KhMiD47W5HOGbAwFIRzLomzAkvBd3Y3YHA2sKDkMxPT3jBUDIqGRChFvjj9o2NuNBVQ5bC2pXyJjZMeKfGykI1WcX0xWIbRF4s5q3CMfjqi74zmnRGlQuKsRhBR+qYKiQ/x5cm58juLTRY9/uOmrXjXlasLfm5bvQHj7qDiMforjdbkBY+4kD0+4UGCyy+TyYWY9TTrDyMaT+DstK+kfjPBKocJvXZjalaeEjPOBA6zDtH4vKAsJKkxnc3tVhyf8OaNV44nOIZmA0W9Ri3SWm9Aq9VQ8EWMKJmS8x2USmxU8ILPGYhArWKwFrBJZjNp4QvHyjpXSjDrD6O+TgudWlVx58zlL76scbVDunBOj9N3B6OIxBKFO2fJ0Sf5PmvT3jDsZj3UVehc50sfPSYzDERQzsTGyQJLT4H5lF2ly5AzcWbKB71GVZYqm22dDVAx4CCVNhIlQuKsRvCHYzDq1BU7cXQ2GiHazErtQcrEK3d34ork4N5CSHfOOhW8OF9ppAZRJy9+hdujTFmjdDE154+gf8aPaJxjgwLijDGGqze0pHaTlSxrFBf/IpL83LSvoKRGwZaOekRiibxDgcdcQUTipcXo1xrbu+qLcs4cZh20Mnbly3HB50oOoC6k51ZEybuWoe9s1heBw6yDw6yruDhzBqIw6dRFhfR0NNZBp1bhbNosvKlUjH5h55+tHfXQqFjeC+ZqnHEm6GgQs86WOmehaBynp3wFibM+h5TYeKYMiY2TnnBBYSDA/MbacsTpn01utJXjWsqs12Bdi4VCQYiSIXFWI/jCsYr1mwHSvJ625Emxmmry2xsMCETiGJz1k3NWAosHUR8d86DRqEV7AQEt2RC9B7P+iCJhIOlcs7E59XdlA0HmB1HP+SPwhGIFJTUKNrfLCwUZSMZIr5SyRkAKBRmYDRTUnzHlCckKAwGksQoqprw4KyRGH5gv61uOfpppn+T+NFn0FU9rdAUiRc+FVKsYeuxG9Kc5ZyIMplDnrE6nxsY2K57JE3E+4wtX1bktHYtBiwajNuMg6pMTXsQTvKB5lAatlNhYDudsylO4c2bQqtFi1Ss++iITZ8oQo5/Ozu4GPDvsQkLBXldi5UHirEbwhmMV6zcT9CQvHKtpDowYRJ3gysborzQcJqmcR4gzEQaiRCqn6OGY80dwasILtYopdnK8oNcGs14Ds15TVGR3NkQp5owvjHMzhSc1CvocJhh16rzDqAeKCBypdXZ0NgAAnh2RP4x6yit/V16rVqGtvi41ZkMJXMFIQUmNwLxzthxx+rO+cNI505fFOZsqoH9vLhApKgxEsKrJlPrdA+bDYAoVZ8D8BXOucJhpb7iqzm2LyRanPx8GUliVw5pmM04rnNgYiSUw648UNSKmx2bCUJmds1A0jmFnoCz9ZoKdXY1wB6Nlm9sWisbxnw+cXJbNHqJykDirEXyhmGKzxYpF9J1V0+5iW1rsODlnxaNSsdQg6kgsgZMT3oJP9tlIF2cnJrzoc5ig18gbIpsPnUaF67e2YVunMkJSIJyzWV8ktXtfTFmjWsWwqc2aN8q7fyaAuuTu8Upha2c9GCssFGTSE0JLAWXVXbY6RXfjJeesMDco9flfhgS3WX8EjqRzNq2wc3Z22oeL/uNveOLsjKzHOwPRggdQp9PnMGNw1p9KkBVhMIWWNQKSOPNH4lnFCOfScPNqOrctprPBmEWcuWExaFJ9aXJZ12LBgMKJjYWkqS6my2Ysu3PWPyPNq1xdRudshwgFKVPf2QPHJvHNh87g5/uGynJ8ojogcVYj+MOxgpLiyoFwzqplcDKABXPRukiclUSLVZp1dmrSi2icY0uJw6cFBq0aJp0as74ITk56sF6hkkbBF27aih+/7SJFj9lo1EHFJOfs7IwPWjUr2pnd3G7FsTFPzjKXgVk/euxGRQVmtWMxaLGmySw7FCQWT2DGV1g/S1ejsrPOiilrFAKl3M5ZNJ6AKxCF3SSJszl/RNExAqcnfeAceV1ggSsQKUmcrWoyIRrnGHVJgmTKG4JJpy6qvH9nlxQKkq3vzB2MIhrncJirL6lR0GWrw4gzsGQW2NExDza1WQv+7ihHYmMpArrHbsSEJ1Tw7MNCSMXol9E5W9NkhkWvwcHh3GW0xfKXoxML/kucn5A4qxEq3XMGAK+5oAtfedW2VClhNSAGUQNARwOVNZZCi1WPSU8o5fIU0sOQj0aTDiPOAIbngookNaajVjHFm7vVKgabSerbOTftR4+9+AbyzR318Efiqb6yTAzMFJcGWets75LKzeQMn531R5DghV34dduMmPKGFbvgcwUiaKgr7AJeiLm5MsfpizIne7KsMZ7gqblsSjCWFEn9M/LErtMfKanUeHXSqRaJjcXE6At67EY0GrU4mKXvTJSAVrVz1mhEKJpYMCIhFk/gxISnqCqHtc3S9/BpBfvORNlrIe62QPQMZ+qrU4qzU34wVlwVhFxUKoZtXfVlSWwMRePYe2IKRp0ah0fcqY0L4vyDxFmN4A1VvufMZtLh5j1dFV3DYjRqFZotBjjMetTplCmVW6m0Wg2YcIdwZNQDi16j7FBnkw77BuYAQHFxVi6kxDspYbKYfjOBELlHxjKHgsTiCQzNBVZUUqNge1cDZv2RrPOb0hH9kIX0HHUpeMEXiSXgj8QLFhxatQr1deUfRC0CQBxm3XzaqIJ9Z+Nu6d9oQIbTEosn4AnFig4EAaSyRmDe7Zj2FF92yBjDzu7GrBfM01U8gFogyvbTP8vnZvwIRRNFVTmsapISG08rmNgofkeLKWsUcyrLmdh4ZtqHzsY6GLTlvVbY2dWIExNeBCPKuoBPnJ2BPxLHR65dDwB4gNyz8xYSZzWCP1J556xa6WysQ3eB9fbEUpqtBnhCMTw9MIdN7VaoFHSjbCZdKkpc6bLGctFk0WPKG8LgrL+opEbB2hYzdGpV1mHUo64gYgmOvhWU1CiYDwVx5X3sVAEDqAVdqTj90neYXUExt6twN8hm0mGuzFH6YgC16DkDoGhi45hLuvCWUwbnSg7rLmWgs82kQ4NRm3q9SW+oqDAQwa7uBpye8qUGiacjRGwpxy83mQZRiyqHYpwzkdh4eko552zSG4ZWzYoqZxWbgeXsOzs75StrGIhgZ3cD4gmO52SWAMvlL0cmYdZr8PqLurG+xYI/HyFxdr5C4qwG4JzDFyJxlo1/f/kWfP4VWyu9jJpHDKI+MeFVZL5ZOmLWWZ1WragjV07sJh2Oj3sQjfOSnDOtWoUNbRYcyRIKIi4+V6Jztr7VAp1GJSsUZDIVNlBYIAigzAWfOymu6ou48Gw0asveczabdObsZn0q0EZJ50yUUE14QnkdATEeoRghm84qhwnnpv3gnGPKEy5pxqYYRp3ps5YqazRXT8n+YuadszRxNuqBXqNKlYAWyppmM04p7Jw1WwxFbezZTTqYdOqyOWeJBMe5GV9Z+80EO7oaAACHFOw7iyc4Hjw+ias2NEOvUePazS14emAOsxUemUGUBxJnNUA4lkAswSte1litbGyzYmObMuEVK5n0i16lwkAEIpp+XYtZUUeunDjMekTjUi9UqT0Km9vrcWTUk7G3aiAlzmpDtCqJTqPClnarrFCQSU8YjKGg0AaHSQ+dRqVIb4YzKc6K6aOymXRlj74Wzpm9TGWNY65gKjE4V/8kkP5elRaw0ecwo3/GD184hmA0XlKa6bZkOmim0sZpXxg6tQrWuuo9x5r0GthMOgynlTUeHfNgQ6sFGhlD2TMhEhsjsYQia5wqYgC1gDGGLpuyAT7pjLqCCEUTZU1qFNjNenTbjHhm0KXYMfcPzGHWH8G1m1sAANduaUWCAw8en1TsNYjqgcRZDeANxQCg4lH6xPlNa/38SVXJMBBgvrxJqeHTy4EjrcSp1LCOze1WuIPRjCJhYDYAk05d1TOWysn2rgY8N+pORaZnY8oTgt2kL+hCVKVi6Giow6gCs85SblCBgSCAJFKUDOfIhBAYFr0GJp0aBq1KsbLGSCyBaV8YF62yA8jfdyZcwlLF2aomEyY8IQwkQ0iaSxBnFoMW65otGVP0ZrwROMy6qk9LTZ91xjnH0TE3NpXwXa10YuNkEQOo0+mxGzFYJnEmeheXo6wRAPb0NGL/4JyssCM5/PnoBHQaFa5c3wwA2NRmRZetjkobz1NInNUA/rAkziodpU+c34gkNINWVVKPVSaEOKuVMBBgftZZfZ22pN4ZAKky0SOjS0NB+mf86HWYqv7CsFzs6GpAKJrAqTypcYUMoE6no6EOIwo4Z6JnsuieM39EsQu1TMz6IrAnBQZjTJp1ppBzNukJgXPg0jWSODuXT5wpVNYoyvWe6p8FgJLKGgGpF+jg0NJ00GqfcSaQxJkkXkacQXhCsZKqHERio1KljRMlirPupHOWa+xIsZxJ9tatWQbnDAAu7LNhxhfJ+7siB845Hjg6icvWOFLtLYwxXLe5FX8/MwtPqLz9rMTyQ+KsBvAlxRn1nBHlxKLXwKhTY1ObVfFoenHC3lRD5aeifG5VU+nCaUOrBWoVyziMemDWvyL7zQTbZYaCFLsrr5hzVkIgSKNJh3AsgWAZZzjN+sKpDQUAaDIrN4haOL5rmy1osujzO2eB0gNBgPnExn+cE+KsNAG1s7sB7mB0iVM07a0VcWbEqDOYcs2A4sJABKnERgVCQQKRGLyhWEnuZrfdhHAsgSkFy3EFZ6f9aDSWvtEmlwv7bACAff1zJR/r6JgHo64grt3cuuD2aze3IhJP4OETUyW/BlFdkDirAURZI/WcEeWEMYYXbGzB9dvaFT/289c4cPeb9uCS1XbFj10uxIWuEvPHDFo11jablwzwjcYTGHEGV2RSo6DHbkSDUYtDeeYCTRbZz9LRWIcZX+mzzpyBKDQqVtQmmS1Z3lfOvrNZfyTV2wlIn98ZrzKvJ2actTcY0Gc3yeg5i0CnVsFY4ngTaTD7/AVusXPOBCIUZHHf2bR3obCtVjob6xBOlpgeHfNArWLYUEI1gkGrRo/dpEicfipNtQR3s5yJjWenfMvmmgHSeaPJosdTyY2FUvjL0QmoGHDNxuYFt+/qbkSTRY8HjlLf2fkGibMagJwzYrm443U78bbn9yl+XLWK4YWbWmqqdE/s0ivVo7C5vX7JrLPhuQDiCb6inTPGGHZ0NeDR09MIRGIZHxONJzDrLy6tr6NBSrkbd4dKWqcrEEWDUVvUZ1js1pdTnM14w7Cb0pwzi3LO2bw4q0Ofw5S3R8nlL/69SsegVaOjoQ6eUAx6jQrWEjco1zSZYdFrFvSdxRMcc/7acM66GudHQxwd82B1k6nkmV1rm82KOGfzM85K6DmziVlnyvTApXN2enli9AWMMVzYZ8NT/aX3nf3l6AQu6LXBvmgDQaVieNGmFjx8cqrkzSeiuiBxVgP4SZwRxLLTbDXgP2/ejtdd2K3I8Ta3WzHtDWPKMy8SxEWuEu5cLfOuK1Zj3B3Cl+4/kfH+GV8YnBcXCNGRjCAvtbTRHYygvq64HqrGMoszzjlm/JEFSZZNFj3m/BFE8wStyGHMHYLdpJNmYzlMmPFF4M3R5zIXiJQcBiIQ/a/NVn3JYk+lYtjR3bAgRW/OH0GCV/cAakH6IOqjY+6SShoFa1vMGJjxl5zYOOkVcwiLfx/bG+qgYlA8sdHpj2DWH1lWcQYAF/XZMO4OLRh/UCj9M36cmvQtKWkUXLu5FYFIHI+dnin6NYjqg8RZDeANU1kjQVSCV+7uVKxHQYSCHE1zz0icSVy8yo63XtqLHz45iL+fWXqRUUrJlHDORl2lXfA5/dGiBYf4DJUrsdEXjiESSywozRN/V0IQjrmCaGuQ3vu+5MgHkaCYCVcggkZTaWEgAjFjsNQwEMHOrgacmPCkXNr5GWfVL87ERsOhYRcmPWFsbi+9h3ddiwUxBRIbxaZTKaWnOo0K7Q11iic2iqTG5SxrBJTpO/vLUSmN8UXJCP3FXLzKDqtBQ6mN5xkkzmoAXypKX5mTHUEQy8+m5IVUet/ZwKwfVoOmqNlZ5xsfvXYDVjlM+OivDi9xZUopmWqtN0DFSnfOXMFo0emD8z1n5UlVS59xJlBy1tmYK4j2ekkYiJCOczPZS+GcgeKF7GLEjMFSHJl0dnY3IsGBwyPS76Eo/XTUgHNm1GlgN+lSPUaKOGfJxMbTU6X1nY26gqjTqksuPe22GRXvOVvuGH3BumYL6uu0JYuzLR1WdDZmnoOp06jwgo0t+NuJSUVccqI6IHFWA/jDMaiYFHFOEERtYtZrsMphwpG0xMaBmQD6VnCMfjp1OjW++urtGHcH8bl7jy+4r5SSKa1ahRaroeQ4fVcggoYiBYfFoIFaxVLzv5RGzDNL70lRVpyF0J50IHvs8pyzYt+rxaxKikGlnLMdXQ0A5kNBask5A6TSRpGeuUkB50wkNuYbZZGLYCSOPz47hj29jSV/l/XYjRiaVVacnZnyQa9RpZzH5UKlYrig14Z9A8WJs0lPCAeHXLh2U+aSRsG1W1rhCkQVSYYkqgO62q8BfOEYzHoNXcARRI2zuaN+wawzMeOMkNjV3Yh3XrEa/7d/GA+dmE8gm/KEoGJY0hAvFyXi9F2BKBqK7DlTqRgajVrMlamscUY4Z2kluEJslBoK4glF4QvHUuWhBq0a7fWGrImNnPOkc6aMG7y6OVnWqJBz1mjSoc9hwsEhKRRECNta6DkDgM5kaEaXra7oHsh0RGLjmRKcs5/vG8KML4L3Xr225PV02YyY9UdSQWhKcHbajz6HSfERMXK4qM+G/hn/gl5juTyQLGm8bktucXb52iYYtCoqbTyPIHFWA3hDMVgMVPZEELXOlnYrRl1BuAIRhKJxjLmD6F3BMfqZ+MAL1mJ9iwUf+/VzcCXFzJRHijov9uKqI81tKIZQNI5gNJ4K9iiGRqOubM7ZrH+pwBA9Z6U6Z+lJjYK+puyJjZ5QDPEEV6yssa2+Dv9583bcvLtLkeMByWHUw9Iw6mlvGEadGqYaCdwSoSBbFChpFKxpNhftnIWicdz5yFlcvMqW6rEqhR6b9H2opHt2Zplj9NNJ9Z0V4Z795egkVjlMeddep1PjynXN+MvRibIM8CaWHxJnNYAvHKWkRoI4DxA9IkfHPBieC4BzCgNZjF6jxn++ejuc/gg+84ejAIBJb3EDqAUdDXWYcIcQL/LCxR2UesVKcSoaTbqypTWKnrN0QVSnU8Oi16ScoWIR4kwEggBArz27OBOCuhQhu5hX7u5U1Nna2d2IaW8Yo65gzcw4E4jeIyXCQATrSkhs/OX+YUx5w3ifAq4ZoPyss1A0jmFnYNn7zQSb260w6tQFlxy6A1H849wsXrS5VVbV1HVbWjHlDePQiKvIlRLVRF5xxhjrYow9zBg7zhg7yhh7f/L2f2eMHWaMHWKMPcAYU35yLQEA8IfjMOlLm2VCEETl2ZwWCiIubqmscSlbOurx3qvX4veHxnDfc+NFD6AWdDTWIZbgqWCRQnEFJHFWbCAIIJUcliutccYXRn2dFjrNwlO6w6Iv2TkbdUnvWUe6c+YwwR2MZnQCncn3qppDbnYm+86eGXJh2lsbM84EvcmeP5H+qgQisTHfcPHFhGNxfHvvWezpacQlq+2KrKXbLsSZMrPOBmb94BxYXSHnTKNWYXdPY8Hi7G8nJhFLcFybJaVxMVdtaIZWzfAXKm08L5DjnMUAfIhzvhHAxQDewxjbBOArnPNtnPMdAO4F8G/lW+bKxhuOwUxljQRR8zSadOhoqMORMU/qQqiPyhoz8s9XrcbWjnp86ndHMDIXKCmiWwiLsSJLG4WoKqVUr9zOWXpSo6DJXLo4G3cFoVWzBYEZwu3tz3AxL94rpQJBysGGVgsMWhUODjkx7QvXTBgIAFy62oHvvmkPrljXpNgxRdncqcnC+s5+fWAU4+4Q3nvNWsV64uvrtKiv0yrmnJ1JDtheUyHnDJD6zk5MeFOushz+cnQCLVY9tnc2yHp8fZ0Wl6x24M9HJ0oeek1UnrzijHM+zjl/Jvl3L4DjADo45560h5kA0KehTPhCUViorJEgzgu2dFhxdNSN/pkAGo1a1Fexw1BJtGoV/vPV2+ELxeANx9Bcgrsh+nSK7TsTzlkpZY02ow7OQLQsPSEzvjAcpqXvj8OiU6SssbXeAFVav59we/unM4gzvxCy1fu51qhV2NbZgINDLsz4ass5U6kYXrCpRdGAsNVNZqgYcLqAvrNoPIFv7T2D7V0NuHytQ7G1AFJi46BCPWdnp/xgbH4kQyW4sE9yFZ8ecMp6fDASxyOnpvGiTa0Lfu/ycd3mVgzOBnBiorSxCETlKajnjDHWC2AngKeS//95xtgwgDeAnLOyQWWNBHH+sKW9Hv2zfhwbc1NJYx7WtVjwoRetAwC0luCciTCLkSITG5Xoo2o06RBPcHhDyqXQCWb9ETgs5XHOxlwhtNUvjCDvajRCxZCxDE6UNSo1vL1c7OxuwNExN1yBaE31nJUDg1aNbpuxoFlnvz04ihFnEO+/Zo3iSdJdNiOGlXLOpn3obKyDQVu5a6htnfXQaVR46tysrMc/enoaoWgC127OndK4mBduagFj84OridpFtjhjjJkB/BrAB4Rrxjn/JOe8C8BPAdyW5XnvYIztZ4ztn56eVmLNKw4pSr96dyEJgpDPlo56cA48O+KmkkYZ3HrZKnzlVdvwkm1tRR/DqJMGfRftnCUDQYqN0gcAm0l6bjni9Gd8YdgzOGdNFj08oRhC0XjRxx51BRf0mwHS4NsumzFjKIgrEIGKAdYqL8Xf1d2IaFxyMWvJOSsXa1ssshMbY/EEvvXwGWzpsOKq9c2Kr6XHZsSIM4iYAkOVz075KhYGIjBo1djR1SA7sfFPh8dRX6fFRasKS79ssuhxQY8N9z9H4qzWkSXOGGNaSMLsp5zz32R4yM8AvDLTcznnd3HO93DO9zQ1KVcjvVJIJLgkzgxU1kgQ5wPpKWvknOVHrWK4eU9XyRf7HY3FzzpzBaLQqVUw6orffRf9akr3nUXjCbgC0Yw9Z8IRmi3yNeMJjglPCO0NS13LbImNzkAE9XXagsqxKoEIBQFInAGFJTb+8fAYBmYDeO/VyvWapdNtMyKW4Bh3FxfgIwjH4jgz7cO6FotCKyuei/psODLqzju/7cyUF/ceHsOrdndCqy48UP3FW1txctJb0tw6ovLISWtkAL4H4Djn/Gtpt6fnpr4MwAnll0f4I9IvMvWcEcT5QbPVkLoYJHG2fHQ0FD/rzBWIoN6oLelCVJT5KT3rTBwv04Bu8TkrtrRx2htGPMEXzDgT9DlMGJjxLwkfkAZQV3dJIyD9HgpHkMQZsLZZXmJjPMHxzYfOYEOrBS/cKC9JsFDmExtLK208MupGJJbAru5GJZZVEhf22ZDgwIHB3H1nX/rzSZh0GrznqjVFvc5LtraBMeDew+NFPZ+oDuTI8ksB3ALg6mRs/iHG2EsAfJExdoQxdhjAiwC8v5wLXan4w1I5Sq0MyCQIIj9bku4ZlTUuHx0NRow6g0UlmbkC0ZJKGoE050zhssaZ5IyzpkxpjSWKs9EMA6gFfQ4T/JE4phcFjjj9kZJGDiwnO7sbAACODO/dSmNti1T6ly8U5L7nxnFu2o/3Xr22bO6omHVWaijI/mQAx57eyouzXd2NUKsY9vVn7zvbPzCHvx6bxLuuXF10z2aL1YALem249/A4pTbWMHLSGh/nnDMRm5/8cx/n/JWc8y3J21/KOR9djgWvNHxhqdeByhoJ4vxhe1cDNCqGXoex0ktZMXQ01iEYjacCKwrBGYiU7AaJskOlnbNZfzh5/Axpjcnbik1sFKMH2uuXijPh+g7MLLyAdgaiVR8GInjhpha01xvQbCk+bOZ8QSQ25orTTyQ4vvnQaaxtNuPFWwoLqyiEtvo6aNWsZOfs6QEn+hymqgh8Mek12NJRn3XeGeccX7z/BJoterz10t6SXuul29pwZsqHkwWORiCqh8ILWollRSR7UVkjQZw/3HrZKvzyXZfAUuWhCecTooStmL4zdzBa8siDOq0aeo2qDM5ZUpxlEERCEBbrnKXEWYaeM+H69s8sdFpcgUhVzzhL58YdHXjiE9csGd69EhGJjcfHPVmDOB44NoFTkz7cdvWasvYUqlUMnY3GkgZRc85xYHAOe3oq75oJLuqz4dlhd8aAngePT2H/oBMfeME6GHWlXe9dt6UNKgbc+yyVNtYqdMVf5VBZI0Gcf5j1mqrog1hJpM8629pZX9BzXYEotnWWJs4YY7CZdJjzKeyc+bL3nOk1ajQYtUWLs3F3CBaDJuMmQkej5G70L3HOIlU944zIzoZWK/58dAJrP3U/bEYdHGY9mix6OMzS3x86OYVVDhNu2NZe9rV024wlOWdnp/1wBqJVUdIouLDXhrsePYdDwy5cvMqeuj0WT+DLfz6BVQ4TXr2ns+TXabLocclqO/703Dg+9KJ1ZQltIcoLXfFXOamyRhJnBEEQRZNyzooIBXEq5AY1GnVwlqHnTKdWwZql9N1h1hdd1pgpRl+gVjF024wYSEtsDEbiCEUTNeOcEQv51A0bcekaO6Z9EUx7w5jxSX8GBv2Y8YURiiZwx+t2Qr0MSZzdNiOeGXKCc16UuDgwKJUP7u4pLI6+nFzQawNjwL7+uQXi7NfPjOD0lA93vnEXNEUkNGbihm3t+MRvnsPRMQ+2dBS2GUVUHrrir3JSZY3Uc0YQBFE0DUYtjDp1wWWNoWgc4VgC9SUGggBSYqPSUfqzvjDsZl3WC9hSBlGPuYJoq8/ej9XnWBinL4RnrfScEQvpbDTilkt6M97HOUcknoBeszzDnHvsRnhDMbiD0aLE/v4BJxqNWqxuqp7QpXqjFutbLAv6zoKROL7+19PY2d1Q8NDpXFy7uRWf+t0R3Ht4nMRZDUKF1lWOmIlBzhlBEETxMMaScfqFlUoJwaFEPHyjSVdUIEkuZpLiLBtNFv2SREW5jLmCGZMaBX0OEwZm/UgkpFS4+feKyhrPNxhjyybMAKCrxMTG/YNO7O6xVV1J38Wr7Dgw6EQ02df3gycGMOEJ4ePXbVB0rTaTDpeuceDew2OU2liDkDircvxJcUY9ZwRBEKXRXsSsM1dSTCkRD28zamU5Z7O+cOq7P+9j/RHYTdnT6BxmPWaKcM6CESnZMpc463WYEI4lMOGRhgXPv1fknBGl0VPCrLMZXxj9M35cUEX9ZoIL+2wIRuM4MuqGKxDBt/aewTUbmnFRWpmjUtywrQ0jziAOj7gVPzZRXkicVTnecAw6jYrSpAiCIEqko7Gu4LJG4QYpIc4aTTq4g9GsaXiAVD5207efwL/fe0zWMWd9kZxR4U0WPfyRuGyxJxhzS+9Ttp4zYD6xUfSdKekyEiubrsbixVk1zTdbzAW9Ug/cvv45/M/DZ+ALx/DR6zaU5bWu3dQKrZrh3sNjZTk+UT7oir/K8YViFKNPEAShAB0NdXAGoghE5AsVt3CD6koXHCLu3hXMXtp4ctKLwdkADgw68x6Pc44ZXzjnEGUxiLrQUJCxHAOoBX3Jfp5zQpz5qayRUAaTXgOHWY+hIsoaDwzOQadRVWWvVZNFj1VNJvzx8Bh++MQgXrmrE+tbLWV5rXqjFpevbcKfDo+nSo+J2oDEWZXjC8doADVBEIQCpOL0C3DPhJBqNCnjnAG5B1E/cnIaAHB22odgZOk8pHR84RjCsUTOnjMh3IoVZ7kCQVosBhi0qjTnjMoaCeXottVhsIhZZ08POLG9s35Ze+QK4aI+G46MegAGfPCF68r6Wtdva8OYO4SDw/k3e4jqgcRZleMPx2AqcSAhQRAEMV+iN1JA31mqrFEB58yWFC2zOcTZ3pPTYAxIcMlFy0VqxlmOnjPhnBWa2DjqCoExoDWHOFOpGHrtUigIIL1XZr2GyvAJReixmzA8V3i66tExd1VF6C/mwj5pbW99Xm9OZ1oJXripBTqNCn+kgdQ1BX2DVjneEDlnBEEQStCRdM7GChBn7kAUOo0KBm3pp8t8zpkvHMP+wTm8ZGsbAODoWO5G/lm/JLhypjWaixNn464gWiwGaPPMXepzmFJlja5AVJHePIIApMTGMXcQ4VhuBzmdZ4ddiMZ5VYaBCK7d3Ir3X7MWt129puyvZTFoceW6Jtz3HJU21hIkzqocX5h6zgiCIJSg2WKARsUKKmt0BiJoNGoVibkW87/msgyifuLMDKJxjjdc2A2rQYNjY56cx5tJOme5AkFsJh0YA6Z9hc1XG3MH0d6Q3TUT9DpMGJ4LIBZPYM4foTAQQjF6bEZwXlgZ8v5kr+bunuoVZ0adBv/ywnWwGJZnI+OG7e2Y8obx9MBc/gcTVQGJsyrHH45RjD5BEIQCqFUMbQ2GguL0XYGoIiWNwHziYzbn7JFT0zDp1NjTa8OmdiuO5hVnkhuWS5xp1CrYTbqCnbMxVwhtMkqu+uwmROMcY64QXIFIyh0kiFLpTsbpDxaQ2Lh/YA5rms3U95jGNRuaYdCqcO9hKm2sFUicVYh4giMSyx6nLKBAEIIgCOXoaCgsTl/JUj29Rg2zXoM5/9K0Rs459p6cxvPWOKDTqLC5vR4nJjyI5yhFEj1ntjyCyGHWFyTOOOcYcwVzxugL5hMbfXAGopTUSChGT3IQ9bBMcZZIcBwYdFZ1SWMlMOk1uHpDM+4/Mp5zjAdRPZA4qxC3/+EoXvGtv+d9nJei9AmCIBSj0EHUrmBE0T6qRpM2FTKSztlpP0ZdQVyxrgkAsKnNilA0gf4ZX9ZjzfrCsBryB3A0WfQFpTXO+SMIxxJozxEGIuhNm3UmlYCSY0EoQ5NFD4NWhUGZcfqnp3zwhGJVHQZSKW7Y1o4ZXwRP9VNpYy1A4qwCuINR3HNgGEfHPHDnmHcTjScQjiVgJnFGEAShCJ0NdZj0hBCVuYPsCkQVFRw2kx5zGcoa956cAoCUONvcYQWAnKWNM/4IHJbsJY2CpgKdszFXCEDuGWcCh1kHs16DM9M+eEMxCgQhFIMxhm6bUfYg6v2DkvAg52wpV61vhlGnptLGGoHEWQX4w6FRhKLShUGuhm9/WBqUSj1nBEEQytDRWIcEBybcobyP5ZzDFYiiXkHBYTNmds4eOTWN1U0mdCVLuVY3maHTqHKeI2Z9YThyxOgLHBY9pn1hcC4vrW1UxgBqAWMMfQ4TDg65AICcM0JRum1G2YOo9w844TDr0Z38HSLmqdOp8YKNLfjzkXHZG1NE5SBxtsxwzvHzfcOpL49cUcnekCTOqOeMIAhCGToapO/eERl9Z8FoHJF4QrFAEECK01/snAUjcTzVP4cr1zenbtOqVVjfYsGx8RzOmS+SM0Zf0GTWIxJLwJvc8MvHWAHiDJASG09MSDPZKBCEUJJumwlDcwFZGwv7B+ewp6dRkWTV85Hrt7XBGYjiibOzlV4KkQcSZ8vMc6NuHBv34O2Xr0KzRZ9zV9SXPJFSzxlBEIQyiFlncvrOnAGp7FzJkAubcak4+8e5WURiiVRJo2BTm5TYmO3CdNYXlifOChxEPeYKwqBVyf65++zGVHAJBYIQStJtq0MwGsd0np7JSU8Iw3NB7KGSxqxcsa4JFoMGvz80WumlEHkgcbbM/HzfMOq0aty4ox2b2605d0WprJEgCEJZ2pIhF3IGUbuS5YfKBoLoEIjEEYrOD9bde3IKBq0KF/YtDDLY3GHFnD+CCc/SEsxYPAFnIJozRl/gKHAQ9bg7hPaGOtkOhEhsBKiskVCWnmTgTL7Exv0D0nyzPb0UBpINg1aNF29pxV+OTCAYkT/Ym1h+SJwtI/5wDH84NIrrt7XBatBiU7sVp6d8C07S6YgSFCprJAiCUAaDVo0mi15WnL476ZwpOTNJxN6n9509cmoal6yyw6BVL3jspjYpFCRThYUYZG2XIc6EcyY3sXFUZoy+QCQ2AsoKWYIQPZj5EhufHpiDQavC5nbrciyrZnn5jg74I3H87cRkpZdC5IDE2TJy7+Ex+CNxvO7CLgDA5vZ6xBMcpya9GR/vC1FZI0EQhNJ0yIzTd6bEmYLOWVLoidLGgRk/BmYDC/rNBBvarGAsc2LjjFd6vkNGj1cxZY1tMmL0BX2OeXGWb+YaQRRCl60OahXDvYfHc86GPTDoxI6uBmjVdFmbi4tW2dFi1eN3B8cqvRQiB/QpXkZ+tm8Ya5vN2NUt1USLHZ5sUck+cs4IgiAUp6NRnjhzBZNljQoGgqScs+Qg6kdOTQPAkn4zADDrNei1mzI6Z7N+SWjJcc4a6rRQq5gscRaJJTDtC8sOAwEkZ7HBqIVOo0LdIvePIEpBr1HjEy/egIdOTOGdP96fsRzPH47h2LgHe2i+WV7UKoaXbmvHI6emUmXbRPVB4myZOD7uwbPDLrz2wu5UHX9XoxEWvSZrYiP1nBEEQSiPcM4SidwJcK4yOGdCnImyxL0np9BrN6I3zX1KZ1O7FUfHl54jZn1J50xGIIhKxeAw62SVNU56QuBcflKjoM9hQqNRS0l5hOLcetkqfOEVW7H31DTe/P198IYWzoc9NOxCPMEpDEQmL9/ZgWic477nJiq9FCILJM6WiV/sG4JOrcJNOztSt6lUDBvbrVkTG0WUvklH4owgCEIpOhrqEIklMOPPLVZcgQgMWtWSXrBSmHfOIghF43jy3GxG10ywqc2K4bkg3MGFF6RCaMlxzgApFESOcyYcxUJ6zgDg6vXNuHS1o6DnEIRcXn9RN/7rtTvxzKATr7/7qQWJp/sHnGAM2NVD4kwOm9utWN1kwu8otbFqWfHi7IO/PIQP3/NsWV8jFI3jtwdHcd2W1iUzYDa1WXF83JuKIU7HF47BpFNDraKdSIIgCKUQwiNfKIgzEFU8fbC+TgvGpJ6zff1zCEUTGfvNBKL8/fiiZN8ZXwRaNYNVZtl7k0WPGV/+MqZCZ5wJ3nvNWnztNTsKeg5BFMLLtrfjrjftxqlJL179nSdTg+T3D85hfYsFVgOF0ciBMYYbd3RgX/+crPJuYvlZ8eIskeDYe3Ja1oDDYrnvuXF4QjG8NhkEks7mdiuC0Tj6Z/xL7vOHY9RvRhAEoTByZ525AlHU1yl7wadWMTTUaeEMRPDIqWnoNCpcvMqe9fGb2jMnNs76wrCb9LLLCJtkOmdCnBUSCEIQy8XVG1rww3+6EBPuEG7+zhPon/Hj4JCLShoL5MYd7QCAPz5LwSDVyIoXZxf22THjC2cUR0rxi33D6LUbcUmGE/Dm9noAyNh35g3HqN+MIAhCYVLiLI9z5g5GyjK3q9Gkw6w/gr0np3BRnw11uuxlk80WA5os+iXBUbP+iKwB1AKHRY8ZXzhvn92YOwS7SadoKSdBKMnFq+z42dsvgi8Uw8u++Th84RiFgRRIj92End0N+N1BKm2sRkic9Um7LU8PzJXl+GemfNg3MIfXXNCdcYdzbYsZOrUqY9+ZLxSjGH2CIAiFsRq0sBg0eQdROwPRssztshl1ODLqxtlpf85+M8GmNiuOjS91zuQMoBY0mfWIJfiS3rXFjLmCBZc0EsRys62zAb985yUw6qVNhN3Ub1YwN25vx4kJL05OZB7nRFSOFS/OVjeZYTPp8FR/ecTZ/z09BI2K4VW7OzPer1WrsK7VnDFO30dljQRBEGVBzqwzV5nEWaNJlxqqm6vfTLC53YrTk16EY/Mx4jO+wpyz1KyzPImNkjijkkai+lnbYsFv//lS3P2mPalh1YR8btjeDrWK4fcUDFJ1rHhxxhjDhb027CuDOAvH4vj1M6N4wcaW1IkxE2JXdHHfmz8co6RGgiCIMtDZWIeRHGWNTn8ErkAEDWUoa7Qlj9nRUIfVTZkj9NPZ1G5FLMFxetIHAOCcY6ZA50w8NlffGecco84g2urJOSNqg/aGOrxwU0ull1GTOMx6PH+NA78/NJa33JlYXla8OAOAC/psGHEG85a4FMpfj01izh/JGASSzub2esz5I5jwhBbc7g2Rc0YQBFEOcjln0XgC7/nZM1AxhpdsaVP8tW1Jx+vK9U2yAj1Eb7Iof/dH4gjHErCbCnfOcs0684Ri8EfiBcfoEwRRm9y4ox2jriAODDkrvRQiDRJnAC7qkxpJle47+8W+YXQ01OGytbl7CkRU8tHRhaWNvjD1nBEEQZSDjsY6eEMxeEJLe7A+/6fjeOLsLL5w01Zs7axX/LWFcyan3wwAemxGmHTqVN/ZbFJgFdRzZsnvnI27i4vRJwiiNnnR5lYYtCoqbawy8oozxlgXY+xhxthxxthRxtj7k7d/hTF2gjF2mDH2W8ZYQ9lXWyY2tllh1msULW0cdQXx+JkZvHpPV945ZRvbrGAMC/rOOOfUc0YQBFEm2rPMOvu/p4fwgycG8Lbn92XtFS6Vi1bZcNlaB56/Vt7QZpWKYWObNZXqOz+AWr5zZjVooFOrcoqz+Rln1HNGECsBs16DF25qxZ8OjyMaT2R9XCyewP3PjcMVyD8rkSgdOc5ZDMCHOOcbAVwM4D2MsU0A/gpgC+d8G4BTAD5RvmWWF7WKYXdPo6Li7IGjEwCAlyVnSeTCpNegz25aEKcfjiUQT3CK0icIgigDmQZR7x+Yw6d+dwSXrXXgEy/eULbX3tbZgB+/7SIYC+gp3tRuxbExDxIJnhomXYhzxhhDk0WfMxBk1CWV1lNZI0GsHG7c3g5nIIpHT01nvP/EhAev/PYTePdPn8FHfnV4mVe3Mskrzjjn45zzZ5J/9wI4DqCDc/4A5zyWfNg/AJRni3GZuLDPhtNTPsz5ldkVePD4JNY0m9HnyN/sDUgn3nTnzBuS3loqayQIglCexYOoR11BvOsnB9DZaMR/v24XNOrqqvrf3G6FPxLH0FwAs0lxVohzBkizzvI5Z1o1K0j0EQRR21y+rgkNRi1+f2jhQOpwLI6v/fUUbrjjcQw7g7h+Wxv+emwSD52YrNBKVw4FnX0YY70AdgJ4atFd/wTgfoXWVBGU7DtzB6N46twcXrBRfoLQpnYrRl1BuANS/4MvLIkzKmskCIJQHodJD51GhTFXEMFIHO/40X6Eognc/abdqC9DfH6pbGqTet+OjnlSPWd2U2EiqsmsyyrOOOfon/ajtd4AVZ5SfIIgzh90GhWu3yoJL3/y2vPgkBMv/ebjuONvp3HDtjY8+MEr8PVX78DqJhNu/8MxhKLxPEclSkG2OGOMmQH8GsAHOOeetNs/Can08adZnvcOxth+xtj+6enMlmk1sLWzHjqNSpHSxr0npxBL8ILiXUUa19FxqbRR/IJQlD5BEITyqFQMHQ1SnP5HfvUsjo17cMfrdmBNs6XSS8vI2hYzNCqGY+NuzPojUg+ZpjB3r8miT5VECjjneOTUNF7xrSfw56MT2NVNw3wJYqVx444OBKNx/P7QGP793mO46dtPwBuK4X/fsgffeO1O2Ew66DQq/L8bt2BoLoA7Hzlb6SWf18i68meMaSEJs59yzn+TdvubAdwA4Bq+eEhXEs75XQDuAoA9e/ZU7SAFvUaNnV0Nioizvx6bhMOsw46uBtnPEYmNx8Y8eN5qR6qskZwzgiCI8tDRUIcHjk0gGuf42HUbcPWG6p2XZNCqsabZjKNjHpj0mqJKD5vMesz5w4gnOFQMeOz0DL7x4Ck8M+RCR0MdvvCKrWULQSEIonrZ09OIjoY6/OtvnwMAvPHibnzsug2wGBZWEVy6xoEbtrXhW3vP4qadnei20/DvciAnrZEB+B6A45zzr6Xdfh2AjwF4Gec8UL4lLh8X9tlwdMydKikshkgsgUdOTuOaDS15UxrTcZj1aLHqU31nYg0WffWV1xAEQZwPdDTUIRrnuHFHO951xapKLycvIhRk1hcuuN8MkHrOEhy49/AYXnXnk3jT/+7DhDuEz79iCx7+8JV4/UXdBbtxBEHUPioVw62X9WFLhxX/946L8bmXb10izASfun4TtCqG2/94FFl8GaJE5HwLXwrgFgBXM8YOJf+8BMB/A7AA+GvytjvLudDl4MI+GxIcODBY/DC+p/pn4Q3H8IIiJtZvbq9PJTb6wlLvGTlnBEEQ5eG6La146fZ2fOmV22QNg640m9qsmPKGcXrSV7RzBgDv/8UhjLmC+NzLt+Dhj1yJN1zUQ6KMIFY4b720D/e+9zJctMqe83Gt9QZ84AXr8NCJKTx4fGqZVreyyHvlzzl/HECms9Z9yi+nsuzqboRaxbCvf1b2cNDFPHhsEgatCs9fI29+TTqb/n97dx9lVVkvcPz7wAzvDDIMoyAooCnKxesLg5rWdUxupq1Al1LUMr1SrateVyZe8va+atW6catV1rVSqahYCpqWmTfzZTS9Jg62SAU0vYKB0IAiDiIgMM/9Y5+RAWaYF845e58z389aZ80+zz777N/5cdbD/ObZz7NHVfHIXzeyfedu3tyRTLYc3L9vj+KQJB1Y/cRa6ifWph1Gl7XOTX5t69s9Gjk7Zdxwzjy6hvdPOpSZdWPpX+H/L5K677IzxnH7U2v4yt3LOfPoGgb2sy/JJ/9U1sbg/hX8w+gqGlf1bOQsxsj9K5p4z7tG9uiLOml0FbtbIs//fQtvbveyRknSHsePqnpnu7srNQLUDh3ALz9xKpecPs7CTFKPVfZNFgd5ZfM2bnz4xbTDKTsWZ/uYOr6aZWs292iZ0BXrm1n3xnamdWMJ/bbeWbFxXTNv7thJ3z6BAZX+E0mSYNigSsbk7s9W04ORM0nKl9MmjGDGiaP58SMvserVrWmHU1ac0LSPqeNHcPOjq/jLms2dXne7r/tXNBECnH1czy6TGVs9kKEDKli+7g0q+/ZhSP+KkpgHIUkqjuNHVbH29W2M8EbRklL2ufOO44GVG/jy3ctZ8C91+/3Oun3nblasb2b5umY2btlB87adyWP7Tpq37cr93Enz9l0s/cI5DKh0RB8szvYz5cjkHi+Nqzd1uzh7YGUTJx8xvEcTtQFCCBw/qorl65o5auQQhvT3n0eStMek0cP4w4qmHv8/I0n5Uls1gM9MO4av3bOCu/+yjiNHDOaZV97gmbWbeXrtG7yw4U12tyQrOoYAQ/tXUDWwkqoBlVQNrOCI6kEMG1hJ1cBKWlz58R3+9r+P4YP7ceyhQ1myahP/1o3j1m3exrOvNHP9ByYe1PmPH13FrU/+jZoh/S3OJEl7ee8xNSxc8jITRg5OOxRJ4tLTj+T2pWv49G3L3mkbPqiSyWMO4ZzjDmXymGFMPnwYh1UNoE83bjHVm/nbfzumjq/mzj+vZdfuFir6dm3O14MrmwA4p4fzzVpNGj2M7TtbeOaVzYwZ7s39JEl7nHTEcJ78/DlphyFJAFT07cMNs07inqfXc9xhQ5k8ZhiHHzLQaTkHwdUm2lE3vpqtbyfXyXbVH1Y0MaFmMEfXDjmoc08anazG1dS8g8GOnEmSJCnDjjl0KNdOO4YPTB7FmOGDLMwOksVZO6aOqwbgyVWbuvT6Ldt38sRLr/XoxtP7Orp2yDs3Ax1qcSZJkiT1GhZn7Ths2ACOHDGoy8XZI3/dyM7dkWl5KM4q+/bh2EOHAjjnTJIkSepFLM46UDeumsbVm2hp6Xz1mAdWNFE9uB8nHzE8L+duvdHokAEWZ5IkSVJvYXHWganjq3n9rZ28uPHNA75u5+4WHnpuA2dPrKVvnlahmXR4Upw550ySJEnqPSzOOnDq+K7NO2tcvYnm7bsOepXGtloXBXHOmSRJktR7WJx14IjqQdQO7d9pcXb/iib6VfThvcfU5O3ck0YP48yjazhlXH4uk5QkSZKUfQ7NdCCEwNTx1Ty5ahMxxnaXBY0x8sDKJs48uoZB/fKXygGVffnlJ07N2/tJkiRJyj5Hzg7g1PHV/L15O7c8uopHX9jImk1vsbvNAiHPN21hzaZteVmlUZIkSVLv5sjZAZx1bC1VA57n6/eufKetX98+jK0eyLgRg3lzxy4A3jexNq0QJUmSJJUJi7MDGFs9iGVf+mc2bNnBqle38vJrW1n12lZefvUtVr+2ldWvbeWfjhlJbdWAtEOVJEmSVOIszjrRp0/gsGEDOGzYAE4/asRe+2Ls/B5okiRJktQVFmcHob1FQiRJkiSpJ1wQRJIkSVJ+zZsHDQ17tzU0JO3qkMWZJEmSpPyqq4OZM/cUaA0NyfO6unTjyjgva5QkSZKUX/X1sGgRfOhD8PGPw+LFyaO+Pu3IMs2RM0mSJEn5N3ky7NoFN94In/ykhVkXWJxJkiRJyr9nn4V+/ZLt7353/zlo2o/FmSRJkqT8ap1j9utfwxVXwLZtcMEFFmidsDiTJEmSlF+NjXvmmH372zBpEvTpY3HWCRcEkSRJkpRfc+fu2R44EG69NVmp8amnIEbwfsHtcuRMkiRJUmFNnpyMoN17L9xwQ9rRZJbFmSRJkqTCu/LKZGn9uXNh2bK0o8kkizNJkiRJhRcCzJ8PNTUwaxZs3Zp2RJljcSZJkiSpOGpq4Pzz4bnn4DOf2dPe0ADz5qUXV0ZYnEmSJEkqnlmzkkVCbr4Z7rhjz7L7dXVpR5Y6V2uUJEmSVDz19fCb38B558Ell8DgwXD77Ul7L9fpyFkIYWwIoSGEsDKEsDyE8Olc+8W55y0hhCmFD1WSJElSWZg2DS6/HLZvhxNOsDDL6cpljbuAOTHG44DTgKtCCMcDzwIXAn8sYHySJEmSyk1DA9x5J0yYAA8/DPfdl3ZEmdBpcRZjXB9j/HNuewuwEjg8xrgyxvh8oQOUJEmSVEZa55gtXpzMO4sRLrooae/lurUgSAhhHHASsKQg0UiSJEkqb42NSWFWX588TjkFDjkEllhidLk4CyEMAX4FXBNjbO7GcZ8KISwNISzduHFjT2KUJEmSVC7mzt0zxyyE5PnatXDssenGlQFdKs5CCJUkhdnCGOOd3TlBjPGmGOOUGOOUkSNH9iRGSZIkSeXqwguTuWff/GZyiWMv1pXVGgMwH1gZY/xO4UOSJEmS1GtUVMCcOclljY89lnY0qerKyNkZwCXA2SGEZbnHeSGEC0IIa4HTgd+FEFxiRZIkSVL3XXYZ1NTAvHlpR5KqTm9CHWN8DAgd7L4rv+FIkiRJ6nUGDYKrr4YvfxmWL4dJk9KOKBXdWq1RkiRJkgriqquSIu1b30o7ktRYnEmSJElK34gRMHs2LFyYrN7YC1mcSZIkScqGa6+Flhb43vfSjiQVFmeSJEmSsmHcOJg5E378Y9i8Oe1ois7iTJIkSVJ2jBwJW7YkBVqrhoZesZKjxZkkSZKk7JgxAyork5tS79iRFGYzZ0JdXdqRFZzFmSRJkqTsqK+Hb3wDXn8dLrooKcwWL07ay5zFmSRJkqRsmTMHamvhnnvgiit6RWEGFmeSJEmSsubhh2Hr1mT7+99PLm3sBSzOJEmSJGVH6xyzhQuhf38466zkeS8o0CzOJEmSJGVHY2Myx2z6dLjwwmQU7Re/SNrLnMWZJEmSpOyYO3fPHLPZs5P7nW3alLSXOYszSZIkSdlUXw/jx8P8+WlHUhQWZ5IkSZKyqU8fuPxyeOgheOmltKMpOIszSZIkSdl12WVJkfaTn6QdScFZnEmSJEnKrjFj4Nxz4Wc/g927046moCzOJEmSJGXb7Nnwyitw331pR1JQFmeSJEmSsu2DH4SRI+GWW9KOpKAsziRJkiRlW79+cOml8NvfQlNT2tEUjMWZJEmSpOybPRt27UpuSF2mLM4kSZIkZd/EiXDGGcmljTGmHU1BWJxJkiRJKg2zZ8Pzz8Pjj6cdSUFYnEmSJEkqDRdfDEOGwPz5aUdSEBZnkiRJkkrDkCEwaxYsWgTNzWlHk3cWZ5IkSZJKw7x5cOKJ8NZbSYEG0NCQtJeBirQDkCRJkqQuqauDmTNh3Di4+WY46ij48Idh8eK0I8sLR84kSZIklYb6+qQQe/VVaGyEadNgxoxkJUdIRtAaGvY+poRG1izOJEmSJJWO+nq45ppke8yYZGn9sWNh+nTYuTMZWWst0Boakud1damF2x0WZ5IkSZJKR0MD/OhH8MUvJnPPFiyA666DJUvgC1+AlhY4/3y4+uqkMFu8OCnoSoDFmSRJkqTS0DoStngxfPWryc85c+D974c1a+Cuu+D002HbNvjBD+CKK0qmMAOLM0mSJEmlorFx75Gw1jlojY1QWZnMP5szB6qr4cor4Yc/3H8OWoaFGGPRTjZlypS4dOnSop1PkiRJUi/SdmStvn7/5xkQQngqxjilvX2OnEmSJEkqDwcaWSsBnY6chRDGAj8HDgNagJtijN8LIVQDi4BxwGpgZozx9QO9lyNnkiRJknqzgx052wXMiTEeB5wGXBVCOB64Hngwxvgu4MHcc0mSJElSD3RanMUY18cY/5zb3gKsBA4HpgMLci9bAMwoUIySJEmSVPa6NecshDAOOAlYAhwaY1wPSQEH1OY9OkmSJEnqJbpcnIUQhgC/Aq6JMTZ347hPhRCWhhCWbty4sScxSpIkSVLZ61JxFkKoJCnMFsYY78w1N4UQRuX2jwI2tHdsjPGmGOOUGOOUkSNH5iNmSZIkSSo7nRZnIYQAzAdWxhi/02bX3cClue1Lgd/kPzxJkiRJ6h0quvCaM4BLgGdCCMtybZ8D/hNYHEKYDfwNuLggEUqSJElSL9BpcRZjfAwIHex+X37DkSRJkqTeqdObUOf1ZCFsBF4u2gm7rgZ4Ne0gegHzXDzmujjMc/GY6+Iwz8VhnovHXBeHee6eI2OM7S7GUdTiLKtCCEs7uku38sc8F4+5Lg7zXDzmujjMc3GY5+Ix18VhnvOnW/c5kyRJkiQVhsWZJEmSJGWAxVniprQD6CXMc/GY6+Iwz8VjrovDPBeHeS4ec10c5jlPnHMmSZIkSRngyJkkSZIkZUBJFWchhHNDCM+HEF4MIVzfpn1RCGFZ7rG6zc2y9z2+OoRwfwjhhdzP4bn2j7U5flkIoSWEcGI7xy/Mnf/ZEMJPQgiVufYQQrghF9fTIYSTC5OB4slwrieGEP4UQtgRQriuMJ++eDKc54/lvstPhxAeDyH8Y2EyUDwZzvX0XJ6XhRCWhhDOLEwGiqOAea4MISwIITwTQlgZQviPDo4fH0JYkjt+UQihX67dfnr/4wuVa/vpvY8vVJ7Lqp/OcJ7Lqo+G7Oa6zf66EMLuEMJFefzYpSPGWBIPoC/wf8AEoB/wF+D4dl73beBLHbzHPOD63Pb1wDfbec1k4KUOjj+P5IbcAbgVuKJN+//k2k8DlqSdrzLOdS1QB3wduC7tXJVxnt8NDM9tf8DvdEFzPYQ9l5ifADyXdr6ymGfgo8Btue1BwGpgXDvHLwY+ktv+kf10Krm2ny5Onsumn854nsumj856rtvE9xBwL3BR2vlK41FKI2dTgRdjjC/FGN8GbgOmt31BCCEAM0l+8WnPdGBBbnsBMKOd18zq6PgY470xB3gSGNPmfX+e2/UEcEgIYVSXP1n2ZDbXMcYNMcZGYGe3PlE2ZTnPj8cYX8+97An2fNdLVZZz/WauDWAwUMoTgQuZ5wgMDiFUAAOBt4Hmdt77bOCOdo63n95fQXJtP72fQuW5nPrpLOe5nPpoyHCuc64GfgVs6ObnKhulVJwdDqxp83xtrq2t9wBNMcYXOniPQ2OM6wFyP2vbec2H6fjLCCTDtsAlwO+7EVspyXKuy0mp5Hk2yYhDKct0rkMIF4QQngN+B1x+oOMzrpB5vgPYCqwH/gZ8K8a4aZ9jRwCbY4y72jm//fT+CpXrclIqeS71fjrTeS6jPhoynOsQwuHABSSjab1WKRVnoZ22ff960eFfrbt0ghBOBd6KMT7byUtvBP4YY3y0G7GVkiznupxkPs8hhHqS//Q/29MYMiLTuY4x3hVjnEjy18Ov9TSGDChknqcCu4HRwHhgTghhQjfObz/ddQeb63KS+TyXST+d6TyXUR8N2c71d4HPxhh39+DcZaOUirO1wNg2z8cA61qf5IZQLwQWtWn7aW5S4725pqbWy1hyP/cdMv0Inf/V+8vASODarsZWgrKc63KS6TyHEE4AbgGmxxhf68bnyqJM57pVjPGPwFEhhJqufKgMKmSePwr8Psa4M8a4AfhfYMo+53+V5HLFinbObz9dvFyXk0znuYz66UznuVUZ9NGQ7VxPAW4LIawGLgJuDCHMOIjPWppiBia+deUBVAAvkVTirRMYJ7XZfy7wSCfv8V/sPYFxXpt9fUi+sBMOcPwngMeBgfu0n8/eE82fTDtf5ZrrNvu/QulPNM9snoEjgBeBd6edp16Q66PZM9n8ZOCV1uel9ihknklGBX6a62cHAyuAE9o5/nb2nmh+ZW7bfrpIuW6z3366gHmmjPrpjOe5bProrOd6n9f8jF66IEjqAXTzC3Ue8FeSVWY+384/4r92cvwI4EHghdzP6jb7zgKe6OT4XblzL8s9vpRrD8B/5/Y9A0xJO1dlnOvDSH4JbgY257ar0s5XGeb5FuD1Nu1L085VGef6s8DyXNufgDPTzlUW80yyYtrtuVytAP69g+MnkCy48mLu9f1z7fbTxcu1/XRx8lxW/XSG81xWfXSWc91OHL2yOGv9S4AkSZIkKUWlNOdMkiRJksqWxZkkSZIkZYDFmSRJkiRlgMWZJEmSJGWAxZkkSZIkZYDFmSRJkiRlgMWZJEmSJGWAxZkkSZIkZcD/A+x3pgcYcUM1AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAC1V0lEQVR4nOydd3xkV3n+nzO9N/Wu7b14vTbu3rVxwxDTDCSmGDAEAoGEnmqThISWhEAA00L1LwTTOzZ43evussWr7bvqdSRN7zPn98edMxpJU+7M3JFmpPf7+ehj75Q7V9Jo7nnP877PwzjnIAiCIAiCIAiCIJYX1XKfAEEQBEEQBEEQBEHFGUEQBEEQBEEQRE1AxRlBEARBEARBEEQNQMUZQRAEQRAEQRBEDUDFGUEQBEEQBEEQRA1AxRlBEARBEARBEEQNQMUZQRAEQRAEQRBEDUDFGUEQRJ3CGAtkfaUYY+Gsf9+13OdXDoyxfsbYS5f7PArBGHuUMXZPlY69kTH2M8bYFGNshjH2O8bYpqz79Yyx/2SMjTLGZhljX2KMaXMcZwNjLMIY+96C229kjJ1ijIUYYwcYYz1Z9zHG2KcYY9Ppr08zxlg1vk+CIAgiN1ScEQRB1Cmcc4v4AjAI4BVZtz2w3Oe3EMaYZiW8RpVxAPg5gE0AWgA8D+BnWfd/DMBeANsBbASwB8Df5zjOFwG8kH0DY6wRwI8B/AMAF4CDAP4v6yHvBPBKALsA7ATwcgB/Xtm3QxAEQZQCFWcEQRArDMaYijH2McbY+bQC8gPGmCt9Xy9jjDPG3soYG0qrL+9ijF3GGDvGGPMwxv4761h3M8aeYox9gTHmTasuN2bdb2eMfYMxNsYYG2GM/QtjTL3guf/JGJsBcB9jbB1j7JH0ebkZYw8wxhzpx38XQDeAX6TVv48wxvYxxoYXfH8ZdY0xdh9j7IeMse8xxnwA7i5yTusZY4+lvxc3Yyy7OMl+DUP6mNPpn8kLjLEWxtgnAFwL4L/T5/jf6cdvZow9nFa7TjPGXpd1rG8xxu5P3+9Pv35PrtflnD/POf8G53yGcx4H8J8ANjHGGtIPeQWAz6fvnwLweQBvW3DubwDgAfCHBYd/NYATnPMHOecRAPcB2MUY25y+/y0A/p1zPsw5HwHw7wDuznWeBEEQRHWg4owgCGLl8T5ICsj1ANoBzEJSUrJ5CYANAF4P4HMA/g7ASwFsA/A6xtj1Cx57AUAjgHsB/FgUewC+DSABYD2ASwDcDOCeHM9tBvAJAAzAv6XPawuALkhFAjjnb8J8BfDTMr/fOwD8EJLq9ECRc/pnAA8BcALoBPCFPMd8CwB7+vwaALwLQJhz/ncAngDw3vQ5vpcxZgbwMID/l/4+/xTAlxhj27KOd1f6tRsBHEmfpxyuAzDOOZ9O/5ulv5D1707GmB0AGGM2AP8E4IM5jrUNwFHxD855EMD59O2L7k//f/b3QBAEQVQZKs4IgiBWHn8O4O/SCkgUUvHz2gUtf//MOY9wzh8CEATwv5zzybRi8gSkokYwCeBznPM45/z/AJwGcDtjrAXAbQD+inMe5JxPQlJ63pD13FHO+Rc45wnOeZhzfo5z/jDnPJpWfv4DUhFZCc9wzn/KOU8BsBU5pziAHgDt6e//yTzHjEMqytZzzpOc80Occ1+ex74cQD/n/Jvp7/MwgB8BeG3WY37FOX88/fv4OwBXMsa6Cn1TjLFOSEX1B7Ju/g2A9zPGmhhjrZAKcQAwpf/7zwC+wTkfynFICwDvgtu8AKx57vcCsNDcGUEQxNJR7735BEEQxGJ6APyEMZbKui0JaYZJMJH1/+Ec/7Zk/XuEc86z/j0ASfnqAaAFMJa1flcByC4M5hUJjLFmSK1410IqClSQlL1KyH6NYuf0EUgFzPOMsVlIbXz/k+OY34Wkmn0/3Xb5PUgFbzzHY3sAvIQx5sm6TZM+xqJz5JwH0m2e7QvOPQNjrAmSwvclzvn/Zt31CUgK4REAUQBfg1RITzLGdkNSP7ML62wCkIrXbGwA/HnutwEILPjdEwRBEFWElDOCIIiVxxCA2zjnjqwvQ1oVK4eOBepJN4DR9OtEATRmvY6Nc57dCrdwYf9v6dt2cs5tAN6I+W16Cx8fxJwqhPTsWNOCx2Q/p+A5cc7HOefv4Jy3Q1IYv8QYW7/wG06rhB/nnG8FcBUkdezNec5xCMBjC37eFs75u7Mek1HJGGMWSIYcowtfN32/E1Jh9nPO+ScWnFeYc/5eznkH53wtgGkAhzjnSQD7APQCGGSMjQP4EIDXMMYOp59+ApLZh3gdM4B16dsX3Z/+/xMgCIIglgwqzgiCIFYe9wP4hDCdSLfA3VHB8ZoBvI8xpmWM3QlpVuzXnPMxSEXEvzPGbGkjknUL5tUWYoWk0HgYYx0APrzg/gkAa7P+fQaAgTF2O5Ms4/8egD7fwYudE2PsznS7ICApdhySqjgPxth+xtiOdDHog9TmKB638Bx/CWAjY+xN6Z+RlkkGK1uyHvMyxtg1jDEdJOXuuVyth+mZsd8BeIpz/rEc93cwxtqZxBWQnBfvTd/9VUjF1u701/0AfgXglvT9PwGwnTH2GsaYAcA/AjjGOT+Vvv87AD4gXgPS3Nq3Fp4DQRAEUT2oOCMIglh5/BckO/aHGGN+AM9CMuYol+cgmYe4IbXVvTbLoOLNAHQA+iAVOz8E0FbgWB+HZP/uhVQ4/HjB/f8G4O/TDokf4px7AfwFgK8DGIGkpA2jMIXO6TIAzzHGApB+Ru/nnF/McYzW9PN8AE4CeAxSayMg/XxfyySny89zzv2QTEfeAEkNGwfwKcwvIv8fpCJqBsClkAxCcvGq9Dm+lc3PsetO378OwNPpn8O3AXwsPTcIznkorQyOc87HIRXBkfRsH9L/fQ2k3+EspPdE9nzgVwD8AsBxAC9C+v18Jc95EgRBEFWAUSs5QRAEkQ/G2N0A7uGcX7Pc51KvMMa+BWCYc54rj4wgCIIgMpByRhAEQRAEQRAEUQNQcUYQBEEQBEEQBFEDUFsjQRAEQRAEQRBEDUDKGUEQBEEQBEEQRA1AxRlBEARBEARBEEQNoFnKF2tsbOS9vb1L+ZIEQRAEQRAEQRA1w6FDh9yc86Zc9y1pcdbb24uDBw8u5UsSBEEQBEEQBEHUDIyxgXz3UVsjQRAEQRAEQRBEDUDFGUEQBEEQBEEQRA1QtK2RMdYF4DsAWgGkAHyVc/5fjLH/A7Ap/TAHAA/nfHeVzpMgCIIgCIIgCGJFI2fmLAHgg5zzw4wxK4BDjLGHOeevFw9gjP07AG85JxCPxzE8PIxIJFLO0wkiLwaDAZ2dndBqtct9KgRBEARBEARRlKLFGed8DMBY+v/9jLGTADoA9AEAY4wBeB2AG8o5geHhYVitVvT29kI6FEFUDucc09PTGB4expo1a5b7dAiCIAiCIAiiKCXNnDHGegFcAuC5rJuvBTDBOT9bzglEIhE0NDRQYUYoCmMMDQ0NpMgSBEEQBEEQdYPs4owxZgHwIwB/xTn3Zd31pwD+t8Dz3skYO8gYOzg1NZXvMXJPgyBkQ+8rgiAIgiAIop6QVZwxxrSQCrMHOOc/zrpdA+DVAP4v33M551/lnO/lnO9tasqZtbbsfOITn8C2bduwc+dO7N69G889JwmD99xzD/r6+hR5jd7eXrjd7oKP+dd//deSj/utb30L733ve+fd9s1vfhO7d+/G7t27odPpsGPHDuzevRsf+9jHSj7+UvC5z30OoVBouU+DIAiCIAiCIJYVOW6NDMA3AJzknP/HgrtfCuAU53y4Gie3FDzzzDP45S9/icOHD0Ov18PtdiMWiwEAvv71ry/pufzrv/4r/vZv/7bi47z1rW/FW9/6VgBSUXjgwAE0NjZWfNxy4ZyDcw6VKvdewOc+9zm88Y1vhMlkkn3MRCIBjWZJM9QJgiAIgiAIoqrIUc6uBvAmADcwxo6kv16Wvu8NKNDSWA+MjY2hsbERer0eANDY2Ij29nYAwL59+3Dw4EEAgMViwUc/+lFceumleOlLX4rnn38e+/btw9q1a/Hzn/8cwGIV6+UvfzkeffTRRa/5yle+Epdeeim2bduGr371qwCAj33sYwiHw9i9ezfuuusuAMD3vvc9XH755di9ezf+/M//HMlkEoCkjG3cuBHXX389nnrqKdnf62c+8xlcdtll2LlzJ+69914AQH9/PzZv3ox77rkH27dvx1133YXf//73uPrqq7FhwwY8//zzAID77rsPb3rTm3DDDTdgw4YN+NrXvlb0uFu2bMFf/MVfYM+ePRgaGsK73/1u7N27F9u2bcs87vOf/zxGR0exf/9+7N+/P/OzFvzwhz/E3XffDQC4++678YEPfAD79+/HRz/6UZw/fx633norLr30Ulx77bU4deqU7J8FQRAEQRAEsbzMBGP43rMDGPWEl/tUagehaizF16WXXsoX0tfXt+i2pcTv9/Ndu3bxDRs28He/+9380Ucfzdx3/fXX8xdeeIFzzjkA/utf/5pzzvkrX/lKftNNN/FYLMaPHDnCd+3axTnn/Jvf/CZ/z3vek3n+7bffzg8cOMA557ynp4dPTU1xzjmfnp7mnHMeCoX4tm3buNvt5pxzbjabM8/t6+vjL3/5y3ksFuOcc/7ud7+bf/vb3+ajo6O8q6uLT05O8mg0yq+66qp5r7kQ8bq/+93v+Dve8Q6eSqV4Mpnkt99+O3/sscf4xYsXuVqt5seOHePJZJLv2bOHv/Wtb+WpVIr/9Kc/5XfccQfnnPN7772X79y5k4dCIT41NcU7Ozv5yMhIweMyxvgzzzyTORfxfScSCX799dfzo0ePLvrZLPw5PPjgg/wtb3kL55zzt7zlLfz222/niUSCc875DTfcwM+cOcM55/zZZ5/l+/fvX/T9L/f7iyAIgiAIgsjN0+fcvOejv+RPnp0q/uAVBICDPE+9VFN9YR//xQn0jfqKP7AEtrbbcO8rtuW932Kx4NChQ3jiiSdw4MABvP71r8cnP/nJjFoj0Ol0uPXWWwEAO3bsgF6vh1arxY4dO9Df31/SOX3+85/HT37yEwDA0NAQzp49i4aGhnmP+cMf/oBDhw7hsssuAwCEw2E0Nzfjueeew759+yDm917/+tfjzJkzRV/zoYcewkMPPYRLLrkEABAIBHD27Fl0d3djzZo12LFjBwBg27ZtuPHGG8EYW/S93XHHHTAajTAajdi/fz+ef/55PPnkk3mP29PTgyuuuCLz/B/84Af46le/ikQigbGxMfT19WHnzp0l/ezuvPNOqNVqBAIBPP3007jzzjsz90Wj0ZKORRAEQRAEQSwf4z5JMWuzG5b5TGqHmirOlgu1Wo19+/Zh37592LFjB7797W8vKs60Wm3G/U+lUmXaIFUqFRKJBABAo9EglUplnpPLxv3RRx/F73//ezzzzDMwmUzYt29fzsdxzvGWt7wF//Zv/zbv9p/+9KdluRByzvE3f/M3+PM///N5t/f392e+l0LfG7DY/ZAxVvC4ZrM58++LFy/is5/9LF544QU4nU7cfffdeW3us19n4WPEMVOpFBwOB44cOVLsWycIgiAIgiBqkFGPtM5rsxuX+Uxqh5oqzgopXNXi9OnTUKlU2LBhAwDgyJEj6OnpKetYvb29+NKXvoRUKoWRkZHMvFY2Xq8XTqcTJpMJp06dwrPPPpu5T6vVIh6PQ6vV4sYbb8Qdd9yBv/7rv0ZzczNmZmbg9/vxkpe8BO9///sxPT0Nm82GBx98ELt27Sp6brfccgv+4R/+AXfddRcsFgtGRkag1WpL+v5+9rOf4W/+5m8QDAbx6KOP4pOf/CSMRqOs4/p8PpjNZtjtdkxMTOA3v/kN9u3bBwCwWq3w+/0Z05KWlhacPHkSmzZtwk9+8hNYrdZFx7PZbFizZg0efPBB3HnnneCc49ixY7J+FgRBEARBEMTyM+6NwGHSwqhTL/ep1Aw1VZwtB4FAAH/5l38Jj8cDjUaD9evXZ0w6SuXqq6/OtAhu374de/bsWfSYW2+9Fffffz927tyJTZs2zWv7e+c734mdO3diz549eOCBB/Av//IvuPnmm5FKpaDVavHFL34RV1xxBe677z5ceeWVaGtrw549ezJGIYW4+eabcfLkSVx55ZUApHbO733ve1Cr5f8xXH755bj99tsxODiIf/iHf0B7ezva29tlHXfXrl245JJLsG3bNqxduxZXX331vO/7tttuQ1tbGw4cOIBPfvKTePnLX46uri5s374dgUAg5/k88MADePe7341/+Zd/QTwexxve8AYqzgiCIAiCIOqEMW8YrTZqacyGSTNpS8PevXu5cD8UnDx5Elu2bFmycyDK47777oPFYsGHPvSh5T6VkqD3F0EQBEEQRG1y++efQIvNgP+5+7LlPpUlhTF2iHO+N9d9skKoCYIgCIIgCIIglGTMG0ErmYHMY9W3NRLyuO+++5b7FAiCIAiCIIgVQiSexEwwhnYqzuZByhlBEARBEARBEEvKuFdyamwlp8Z5UHFGEARBEARBEMSSMpYuzkg5mw8VZwRBEARBEARBLClj3nQAtYOUs2yoOCMIgiAIgiAIYkkRyhlZ6c+HijMAarUau3fvxvbt23HnnXciFAqVfay7774bP/zhDwEA99xzD/r6+vI+9tFHH8XTTz+d+ff999+P73znO2W/tqC/vx/bt2+fd9t9992Hz372syUdR6nzIQiCIAiCIIhsxrxhOCmAehHk1gjAaDTiyJEjAIC77roL999/Pz7wgQ9k7k8mkyWFNQu+/vWvF7z/0UcfhcViwVVXXQUAeNe73lXya1SLRCJRU+dDEARBEARBrBzGPBEyA8lBfSlnn/40cODA/NsOHJBuV4hrr70W586dw6OPPor9+/fjz/7sz7Bjxw4kk0l8+MMfxmWXXYadO3fiK1/5CgCAc473vve92Lp1K26//XZMTk5mjrVv3z6I0O3f/va32LNnD3bt2oUbb7wR/f39uP/++/Gf//mf2L17N5544ol56taRI0dwxRVXYOfOnXjVq16F2dnZzDE/+tGP4vLLL8fGjRvxxBNPlPw9Fjr23/7t3+L666/Hf/3Xf2XOZ3R0FLt37858qdVqDAwMYGBgADfeeCN27tyJG2+8EYODgwAk9fB973sfrrrqKqxduzajJBIEQRAEQRAEILU1khnIYuqrOLvsMuB1r5sr0A4ckP59mTKp4olEAr/5zW+wY8cOAMDzzz+PT3ziE+jr68M3vvEN2O12vPDCC3jhhRfwta99DRcvXsRPfvITnD59GsePH8fXvva1eW2KgqmpKbzjHe/Aj370Ixw9ehQPPvggent78a53vQt//dd/jSNHjuDaa6+d95w3v/nN+NSnPoVjx45hx44d+PjHPz7vPJ9//nl87nOfm3d7NufPn59XUN1///2yju3xePDYY4/hgx/8YOa29vZ2HDlyBEeOHME73vEOvOY1r0FPTw/e+9734s1vfjOOHTuGu+66C+973/syzxkbG8OTTz6JX/7yl/jYxz5W4m+CIAiCIAiCWMmMecMUQJ2D2mpr/Ku/AtLthXlpbwduuQVoawPGxoAtW4CPf1z6ysXu3cDnPlfwkOFwGLt37wYgKWdvf/vb8fTTT+Pyyy/HmjVrAAAPPfQQjh07llGBvF4vzp49i8cffxx/+qd/CrVajfb2dtxwww2Ljv/ss8/iuuuuyxzL5XIVPB+v1wuPx4Prr78eAPCWt7wFd955Z+b+V7/61QCASy+9FP39/TmPsW7dukyrJjAXIl3s2K9//evzntdTTz2Fr3/96xm17plnnsGPf/xjAMCb3vQmfOQjH8k89pWvfCVUKhW2bt2KiYmJgt8vQRAEQRAEsXqIxJOYDcXRTk6Ni6it4kwOTqdUmA0OAt3d0r8rJHvmLBuz2Zz5f845vvCFL+CWW26Z95hf//rXYIwVPD7nvOhjSkGv1wOQjEwSiYRixwXmf8/ZjI2N4e1vfzt+/vOfw2Kx5HxM9vcozhGQvn+CIAiCIAiCAMipsRC1VZwVUbgAzLUy/sM/AF/+MnDvvcD+/VU/tVtuuQVf/vKXccMNN0Cr1eLMmTPo6OjAddddh6985St485vfjMnJSRw4cAB/9md/Nu+5V155Jd7znvfg4sWLWLNmDWZmZuByuWC1WuHz+Ra9lt1uh9PpxBNPPIFrr70W3/3udzNKV6WUc+x4PI7Xve51+NSnPoWNGzdmbr/qqqvw/e9/H29605vwwAMP4JprrlHkHAmCIAiCIIiVy1zGGRVnC6mt4qwYojD7wQ+kgmz//vn/riL33HMP+vv7sWfPHnDO0dTUhJ/+9Kd41atehUceeQQ7duzAxo0bcxY6TU1N+OpXv4pXv/rVSKVSaG5uxsMPP4xXvOIVeO1rX4uf/exn+MIXvjDvOd/+9rfxrne9C6FQCGvXrsU3v/lNxb6XUo/99NNP44UXXsC9996Le++9F4CkGH7+85/H2972NnzmM59BU1OToudIEARBEARBrEzGPJJy1kZujYtgS9lytnfvXi7cCwUnT57Eli1b5B3g05+WzD+yC7EDB4AXXgCy5p0IQlDS+4sgCIIgCIKoOl88cA6f+d1pnPrnW2HQrr6cM8bYIc753lz31ZdylqsAEwoaQRAEQRAEQRA1z6hHCqBejYVZMerLSp8gCIIgCIIgiLpm3BuhlsY8UHFGEARBEARBEMSSMeqNoI0yznJSE8UZWa0T1YDeVwRBEARBELXHuDdMTo15WPbizGAwYHp6mhbShKJwzjE9PQ2Dgf7wCYIgCIIgaoVwTAqgprbG3Cy7IUhnZyeGh4cxNTW13KdCrDAMBgM6OzuX+zQIgiAIgiCINJmMM2przMmyF2darRZr1qxZ7tMgCIIgCIIgCKLKjHuljLNWKs5ysuxtjQRBEARBEARBrA5G08VZO7U15oSKM4IgCIIgCIIgloTxdFsjKWe5oeKMIAiCIAiCIIglYdQbgcusowDqPFBxRhAEQRAEQRDEkjDujaDVRqpZPqg4IwiCIAiCIAhiSRj1hNFOGWd5oeKMIAiCIAiCIIglYdwXoYyzAlBxRhAEQRAEQRBE1QnHkvCE4mQGUoCixRljrIsxdoAxdpIxdoIx9v6s+/6SMXY6ffunq3uqhBIMTocQT6aW+zQIgiAIgiCIVYYIoKa2xvzIUc4SAD7IOd8C4AoA72GMbWWM7QdwB4CdnPNtAD5bxfMkFODYsAf7PnsAPzw0vNynQhAEQRAEQawyxkQAtY3aGvOhKfYAzvkYgLH0//sZYycBdAB4B4BPcs6j6fsmq3miRGVwzvFPv+hDigOnx/3LfToEQRAEQRDEKkMUZ6Sc5aekmTPGWC+ASwA8B2AjgGsZY88xxh5jjF1WhfMjFOIXx8ZwcGAWahXDwHRwuU+HIAiCIAiCWGWMeaS2xhay0s9LUeVMwBizAPgRgL/inPsYYxoATkitjpcB+AFjbC3nnC943jsBvBMAuru7FTtxQj7hWBL/9uuT2NZuQ6fTiLMTgeU+JYIgCIIgCGKVMeqNoIECqAsiSzljjGkhFWYPcM5/nL55GMCPucTzAFIAGhc+l3P+Vc75Xs753qamJqXOmyiBrzx+HmPeCO59xTb0NpoxNBtCMsWLP5EgCIIgCIIgFGLcGyanxiLIcWtkAL4B4CTn/D+y7vopgBvSj9kIQAfAXYVzJCpg1BPG/Y+dx+072nD5Ghd6XGbEkzzjlkMQBEEQBEEQS8GYlzLOiiFHObsawJsA3MAYO5L+ehmA/wGwljH2IoDvA3jLwpZGYvn51G9PIcWBj922GQDQ22ACIFnqEwRBEARBEMRSIRVnpJwVQo5b45MAWJ6736js6RBKcmhgFj87Moq/vGE9ulxSUdadLs76p0O4av1ynh1BEARBEASxWgjFEvCG42gjp8aClOTWSNQPqRTHP/3iBFpserzr+nWZ29vsRmjVDAMz5NhIEARBEARBLA3CRp+Us8JQcbZC+fEfR3B02IuP3roZZv2cQKpWMXS5TNTWSBAEQRAEQSwZYx5RnNHMWSGoOFuBBKMJfPq3p7Cry4FX7u5YdH+Py4R+Ks4IgiAIgiCIJUKY0ZFyVhgqzlYgX3r0HCb9Udz7iq1QqRaPC/Y0mDE4HQT5txAEQRAEQRBLgWhrpADqwlBxtsIYmgnha09cxCt3t2NPtzPnY3oaTAjGkpgOxpb47AiCIAiCIIjVyBgFUMuCirMVxref7gc48NG0dX4uetKOjQPTZApCEARBEARBVJ8xb5icGmVAxdkK4/DgLHZ22gsOW3a7zACAAZo7IwiCIAiCIJaAcW8ErTYyAykGFWcriHgyhRdHfdjd5Sj4uC6XEYxRcUYQBEEQBEEsDaOeMNpJOSsKFWcriNPjfsQSKewqUpzpNWq0243U1kgQBEEQBEFUnWA0AV8kgVZyaiwKFWcriCNDHgAoqpwBQLfLhIEZUs4IgiAIgiCI6iKcGtsp46woVJytII4MeeAy69DpLP7G722kIGqCIAiCIAii+oiMM1LOikPF2Qri6JAHu7scYGxxttlCul1mTAdj8EfiS3BmBEEQBEEQxGqFlDP5UHG2QvBH4jg3FcCuToesx8/Z6ZN6RhAEQRDlkEimcN/PT9AMN0EUYcyTDqC265f5TGofKs5WCMdHvOAc2NVll/X4bpdUnA3S3JniBKIJDNHPlSAIYsVzdjKAbz3dj9+dGF/uUyGImmbcF0ajRQe9hgKoi0HF2QpBmIGUqpz1026f4nzpwDm86ktPLfdpEARBEFWm3y1dQ8e90WU+E4KobUY9kYIZvMQcVJytEI4OedDbYILTrJP1eKtBiwazjkxBqsBFdxDuQAzBaGK5T2VJePzMFM5N+pf7NAiCIJac/vQ1dNwXXuYzIYjaZtwbITMQmVBxtkI4OuQtmm+2kO4GE82cVYFxn9RXPelfHTup7//+H/Hfj5xb7tMgCIJYcoRyJswOCILIzag3jHYqzmRBxdkKYNwbwbgvIrulUdDbYKaZsyowkb5IT62C4swbjmM2FMd0MLbcp0IsMeFYEvs+cwAP900s96kQxLJxMT0aMEHFGUHkJRBNwB9JoJXaGmVBxdkKIDNvVqpy5jJh1BtGNJFU/qRWKakUzyhmk/6Vf7EWxiczVJytOk5P+NE/HcIL/TPLfSoEsWwIl8YJfxTJFF/msyGI2mQ8nXHW7iDlTA5UnK0Ajg57oFExbGu3lfS8ngYTOAeGZqhXXincwSgS6Qv0alDORFvsLBVnq45TYz4AIGdSYtUSiiUw4YuizW5AMsXhDqz8z3yCKAfR9ttqo+JMDlScrQCODnmwpc0Gg7Y0e9KeBjMAYHCmcsfGXxwdxXefHaj4OPXORJZj12qYORNtsdPBGDinXePVxKlxyQRmaJaKM2J10u+W3vtXrm0AII0YEASxGJFx1u6gtkY5UHFW56RSHMeGvbLzzbLJ2Om7K19cPfDcAL7y2PmKj1PvCDMQYHUoZ6KwjyZSCMepPXY1cTKjnJHyTqxORBTNFenijExBCCI34m+j2UYB1HKg4qzOueAOIBBNlGwGAgANZh3MOrUipiBT/ihGPWHEk6mKj1XPiOKs1WZYFcpZttsnzZ2tHjjnODXuh1rF4A3H4YvEl/uUCGLJEcXZS9a6AMzN1RAEMZ8xbxiNFj0FUMuEirM654+DHgDA7hLNQACAMYaeBnNmoLkS3IEYUnxOul6tTHgjUKsYtrRZMelb+T+LwZkQrHoNACrOVhPjvgi84Tgu75UWpcOknhGrkH53EE1WPbqcJujUKoz7Vv6GHEGUw6Q/imYrqWZyoeKszjk67IFFr8G6JktZz+9RIOssmkjCG5Z2zlf7/Mm4L4Imix6tduOKHw6PJVIY9YSxM91SS8XZ6uHUmDRv9tKtLQDo755YnfS7Q+htMEGlYmi26Uk5I4g8eEIxOEza5T6NuoGKszrn6JAXOzvtUKlYWc/vbjBhaDZUkQXwdGBuUb7ac9MmfBG02A1osuoxHYwhsYLbPEc9YaT4nGo7G6qP4iwST+K+n58gl8EKODkuzZvdtCVdnNHPkliF9E8H0Zs21mqzG2jmjCDy4A3HYTdScSYXKs7qmEg8iZNjvpLzzbLpbTAjnuQYq2DHL9v4YrUv0sa9EbTa9Gi26sE5VnQ480D6d727ywlgfpFey/zkjyP41tP9eOTU5HKfSt1yasyPDocRXS4jLHoNhmdJMSBWF8FoApP+KHobpeKs1W6cZwhFEMQc3nCClLMSoOKsjjkx6kMixcsyAxH0uCTHxkpaG7Pb94ZW+SJt3BdBq82Q6a2eXMEzCIPpWcXtHTaoVawulLNUiuMbT14EAEyv8LbTanJq3IctbVYwxtDpNK76TRli9SHMQNaI4symx7g3QpEiBLEAzjl84ThspJzJhoqzOubokAcAcEm3o+xjdDdUXpwJ5Wxto3lVtzWGYgn4I4lMWyMATAVW7k7q4EwIeo0KLVYDnCYdZoK179j32NkpnJsMAADcK1jVrCbRRBLnp4LY3CqF3ne5TDRzRqw6RASNiKRptRsRTaTgCdX+5yBBLCWReAqxZIraGkuAirM65uiwB602A1oqSFxvsxuhVTMMVBBELZSz3d0ODK/i4kwEkLbaDGhO/05WsnI2MB1Cl0sahneZtZitg2LnG09cRItNj7WNZlLOyuTcZADJFMfmNisAoMtpwvBsmBQDYlUhlLPsmTOAss4IYiHCMI6KM/lQcVbHHB3ylBU+nY1axdDlMmGggiDqKX8UNoMG65stmA7GEIwmKjqneiU746zRogOwsoOoB2dCmbZYl1lX826NfaM+PHnOjbuvWoNWu6FuZuRqDeHUOKecGRGKJWv+908QStLvDqLZqoc5HSUiNkknaO6MIOZBxVnpUHFWp3hCMfRPhyoyAxH0uEwZc4dycAdiaExnvQCr11ZbXJRb7AboNWo4TNoVG0TNOcfgTCjTFusy6zBT4zNn33jyIkw6Nf7s8m40WPQrPuqgWpwa90GvUaE3/bvvzPzdr+55U2J1ke3UCJByVs+kKnCrJopDxVnpUHFWpxxJz5uVEz69kJ4GMwang2W3JU35o2iy6NGdVlGGVmkg7bhXWuy3pndQmyx6TPpX5oXaHYghFEtmfudOk66m2xonfRH8/OgIXre3C3aTFg1mHSlnZXJq3I+NLVZo1NLlo8tlBEBOrcTqon86hN5GU+bfTVY9VAyUdVZnDE6HsOUff5tZUxHKQ8VZ6VBxVqccHfKCMWBHR2VtjYA00ByMJeEuc7E6FYhKylmmOFudi7QJXwRWvSbT5tJs06/YtsbB9IxiT5ZyNhuK1ewO5HeeGUAixfHWq3sBAI0WHfzRBCLx5PKeWB1ycsyPza3WzL9Xu2JOrD4C0QSmsmz0AUCrVqHRoic7/Trj0OAMookUnjk/vdynsmKh4qx0ihZnjLEuxtgBxthJxtgJxtj707ffxxgbYYwdSX+9rPqnSwiODnuwvskCq6HyN7tYYA+WaQriTitnTpMWZp161To2jnulAGqBpJyt1OJM+h13u6TFicusQ4rPfQjXEqFYAt97bgA3b21BT7oNqcEiuWnSnFRpTPmjcAei2Nxmy9xm1mvgMutWrWJOrD763Wkb/ay2RoCCqOuRMxOSe++JUe8yn8nKhYqz0pGjnCUAfJBzvgXAFQDewxjbmr7vPznnu9Nfv67aWRLz4JynzUAcihxPLLDLsdOPxJPwRxNosurBmGQuMqzgDnoolsC3nrpYs4pMNiLjTNBsM2DKH60JF7tEMoVHTk0o9nMcmA6BMaDTKbW0ucySAUotzp396PAIPKE47rl2bea2hvT5UmtjaZwel8xAtmQpZwDQ5TQq+ndPELWMcGrsWVCctdoNGddeoj44k/5M6xv1LfOZrFxEcaaEmLBaKFqccc7HOOeH0//vB3ASQEe1T4zIz/BsGNPBmCLzZoA0M8KY1ENfKqJtrymtRHS5TIruoD90YgL3/aIPR4Y9ih2zWkz4Imi26TP/brbqEU2k4Issv3vlVx6/gLd96yBe6J9R5HiDMyG02gwwaNUApJkzoPaUqFSK43+evIhdXQ7s7XFmbhfKmTu4MpXNanFqXFrAZCtnANDpkuz0CWI1IDYys2fOAGnemNoa64vTE1JxdnE6uGqdpquNLxyH1aCBWsWW+1TqhpJmzhhjvQAuAfBc+qb3MsaOMcb+hzHmzP9MQkmUNAMBAL1GjXa7EYPTpbc1TqUd70TocpfThMGZkGJqkZhfq/XdyGSKY9IfnaecZYKol7m1ccQTxhceOQsAGFVoWH1wOpQxAwGylLMaK84eOTWJi+4g7rlmDRibuzCIqANSzkrj5JgfLTZ95vct6HQaMTIbrguFmyAq5aI7iBabHiadZt7trXYj/JEEArTIrwuC0QSGZ8PY3eUA53ObT4SyeMNxamksEdnFGWPMAuBHAP6Kc+4D8GUA6wDsBjAG4N/zPO+djLGDjLGDU1NTlZ8xgaNDHug0Kmxa0FpUCd1l2um704VHY0Y5MyIcT2JaoUW62I2v9T7+6UAUyRRHq31xcbbcjo3//Is+iFp5QqFQ7IGZ3MVZrTk2fu2JC+hwGHHb9tZ5t4v3K9npl8apcV8m3yybLqcJsWQKEyvUnZSoDRLJFAbL6PBQmn73fBt9gbDTr/XNRELi7KQ0b/bqPVIz2AlqbawKVJyVjqzijDGmhVSYPcA5/zEAcM4nOOdJznkKwNcAXJ7ruZzzr3LO93LO9zY1NSl13quao8MebG+3QatWzmyzt9FU1kVvoXLWrbBj47BHOk6tB3uKVpaW7JmzGlDOHj09id+eGMf7btwAi16DSQWKs3AsiSl/NGMkA8wVZ0oV5UpwfNiL5y7O4O6rejO27wKTTg2DVoVpKs5kk0imcHYigM1tizeFulZ5jAaxNPzi2Chu/I9Hl31TpX86lLM4oyBq4LcvjtVEAS0HMW923YYmOE1anBih4qwaUHFWOnLcGhmAbwA4yTn/j6zb27Ie9ioALyp/esRCOOc4PuLFzk6HosftdpkxHYzBHynNbc/tlxbjDek2MbFIU8qxcaROlDOxUzq/rVH6/+UqziLxJO79+QmsbTTjnmvXoNmqV0TZyDg1Zi1ODFo1TDp1TSln33jyAix6DV5/edei+xhjaDDrqa2xBC66g4glU9iSUzmjrDOi+lx0hxBPcpxPKx7LgT8Shzsw30ZfsNqDqJMpjvf+vz/ia09cWO5TkcWZCT8MWhW6XCZsa7fjxBg5NlYDKs5KR470cjWANwG4YYFt/qcZY8cZY8cA7Afw19U8UUIiHE8iEk/Na59TAqGClOrYOBWIwGnSZlQ84d6nhDlAKsUx4pGOU+vBnmKnNPv3YjNooNOolq04+9rjFzAwHcLH79gGvUaNZpsekwrs6A6kZxOz2xoByRSkVtwax7xh/PLYGF5/WRdseRyiGi06uGuomKx1TqZ3mXMpZx1OyVSIss6IajKV3lwqx1lYKcRrr1lgBgLMff7X+vWqWkwHokikeMbNstY5PeHHhmYr1CqGbe02nBkPIJ5MLfdprTioOCsdTbEHcM6fBJDLYoWs85cBMWgsgo6VYi7rLITtJQRbu/2xzPwOAJh0GjRa9IrsoE/6o4gnORhDzTtgjfsiUKvYvJ8FYwzN1uXJOhuaCeG/D5zD7TvacO0GqZ24xWbImMlUglDOehYUZy6zrmYMQb7//BBSnOPuq3rzPqbBol/V7UelcmrMB62aYW2jZdF9eo0aLVYDOTYSVUVsdC3n4v+iO7eNPiB1EDhM2pq/XlULMdNcL1mnZyb8uHp9IwBga7sNsWQK5yYD2NK2uDuAKB8qzkpHuaElYkkIpG3ZLXq1oscVF5pSL3pTgWhm3kzQ5TIq8uEscpM2t9ow4Y2W7AR3YtSLd3zn4JIoV+NeKYh7oVVsk1W/LIYg//TLPqhVDH//8i2Z25qtUjFSqZPm4EwIVoMGDtP8D1uXWVczbY2nxn1Y12TJtNnmosGso7bGEjg17se6Jgt0mtyXjU6nkdoaiaoiNrrKMa9SCtE5kGvmDEjb6a/StkZxrRueDde8AuUNxTHhi2JTi9QJsK1dKsjIFERZIvEkYokUbFSclQQVZ3VGMJoEAFj0yr7RLXoNGsy6kgd5p/zReWoRIDm3KdHeJHbh9/Y4EUumSm6Ze/T0FB7um8Dbv/0CQrHqWhtP+iNoydFq2mzVL3lb4yOnJvBw3wTed+MGtNmNmdtbbAZE4pXnrg2kbfSzremBtHJWI22NQzPhTIttPhosekwHayMkvB44NeYruKPcRVlnRJURn6UDVVDODg/Oysq5uuiWMh6NutwbpG12w6qdORPFczLFMeqp7c+CM5NSm/bGtOv1mkYLjFo1TozS3JmSiABqUs5Kg4qzOmOurVFZ5QwAuhtMJffyu/MoZ6OeCBIV7pwJ5WxvrxShV+pu5IgnDJ1ahRdHvHjf//4RySpmMI17I2i16Rfd3rTEbY2ReBL3/bwP65steNvVa+bd12wTBiWVLRyGZkLznBoFTpMOMzWiRA3NhgqqZoA0cxZP8poICa91vKE4Rr0RbC4Q39HlNGLMW/s75kR9kkrxrOJMuSxNQPrcfP1XnsFnfne66GP7p4OLwqezabUbVm27dPb33V/jjo2n0zO0G9PKmVrFsLnNij5SzhSFirPyoOKszhDFmUXhmTNAatMoZUcyGE0gFEsuUs66XSYkU7zi3cPh2TAaLfpM+0jJxdlsGJtarbjvT7bh9ycn8U+/OFE1lWTcF5nn1ChothrgCcURTSSr8roLuf+x8xicCeGf/mTbovYzYe1fSdZZMsUxNBtCt2txS0+DRYdgLIlIfGm+13x4Q3H4Iwl0OYsVZ5R1JpeT6XDWzQWUs06XCSmOqu+YJ5IpfPvp/iX7myJqA084jkSKo8slBT3PhkpzFi7EVHq++adHRoq+rwamc2ecCVptRrgDsVX5/pz0R6FJt/YP1rgpyNkJPyx6DdqzOl62tdvQN+ajbgoFoeKsPKg4qzOCVTIEAaSiaswXkX1RcS/IOBOIRXGl8yfDs1JrWsaeuMTdyOHZEDocRrz5yl6849o1+PYzA/jGkxcrOqdchGIJ+COJvG2NAOBeAkVpcDqELz16Hq/Y1Y6r0kPO2SiRwSMpI3yRUyMgKWcA4FFw0VQOoqW2y1WsrTGdzVYjal8tc2pMKs62FFTOlibr7ODALO79+QkcODVZ1dchagsxz3RZjwuAsq2NIq/TE4rj933531eSjX4sp42+QFyvlMiUrDcmfVGsb7bAoFXVvnI24cfGFsu89vytbXb4IwnKa1QQb4iKs3Kg4qzOEMqZtUrFGedz2WLFEC0mi9sa04u0CufORjxScdaQNtooxZ6Yc8mGvyM9d/Q3t23By3a04hO/PonfHB+r6LwWkivjTNC0BEHUnHM83DeBu7/1PLQqhr972ZacjxOFYiVtlhmnxhxtjS6z9OE7HVzeRYnYFOgsopw1mKWfBwVRF+fUuB8us27R33o2ohgerrKdvthcoAXU6kJ8hu7tFcWZcu8zd/rYGhXDDw4O5X1cv1t6zULKmdikW42OjZP+CJptBvS4SuvCWQ7OTAQyLY2COVMQmjtTClLOyoOKszqjWlb6gDRzBsh3whLKWWNagRC02Q1Qq1hFjo2pFMfIrFRcqVUMLVY9xr3yF9EzwRgi8VTGFEKlYviP1+3GJV0O/NX/HcGhgZmyz20h4iKcr60RgCL5Yrl4+pwbr/rS03jHdw6Cc+BLb7w0bwaeWa+BRa+pSDkThjG5lDNXutiZDdaKclZ85gwAZZ3J4OS4H5tbrYtMYLJptUl/99XOOhOKRLWLQKK2EL/3S3ucYExZO33R2fDKSzrwxNmpvC30F4VTY4GZs9UcRD3pi6LZqi9rfn0pcQeimAnGFhVnm1qlzLO+MZo7UwoqzsqDirM6IxhNgDHAlMcpqhJEbpXcdsR8yplGrUK7w1DRzvZUIIpYMpVRP1rtBoz75B9PhFd3OOZa2wxaNb7+lsvQZjfgnm8fzOTVVIoodnK1NWaUM4XVmSNDHrzx68/hz77+HCZ9EXzqNTvw8F9fh+s3NhV8nhREXZlyplGxzAIkG6GcLbdj49BMGDaDpujFwGkWbY2knBUimeI4M+7H5tbC2T9K/N3LQbS3DZEzZM3y1Dk3nrswregxxWdop9OINpuhZGfhQoiNxj+/bi1SHPjR4eGcjxsQGWc5Zm4FqzWIOpXicAeiaLHp0dtgwsBMqOT4m6XiTNoMZNOCNm2DVo11TWay01cQUZyRlX5pUHFWZwSiCVh0moI72OXSZNVDr1HJvuhNBWJgDHCZdIvuq9ROX+yKC+WrtUR7YmHp3bHATt1l1uFbb70cAPDWbz6vSGiyUPRyKWcNFh0YU27+4MyEH+/8zkG88otP4eSYD//48q145EP78PrLuqFRF/9zbrEaKspdG5gJodNpzPlaYuZsZpmLHTlOjQCgVavgMGlp5qwIgzMhhONJbG7LP28mUCpGoxCiLZeUs9rlX399Eu/5f4cRjilnijHpi8KsU8Os16Cnwayocjblj8Ju1GJDixWXr3Hhh4eGc5pCXJwOos2e30YfkEYOTDp1SZ0eK4GZUAyJFEez1YDuBjNiiRQmliHjUw6nJ6TibEOLZdF929rt1NaoIN5wHFa9ZlEGLFEYKs7qjGA0UZWWRgBgjKHbZZLd1jjlj6LBrMu5UO92mSoyBBHFVZcozmxGjHvlByiLublOx+JFem+jGV9/y2UY9UTw34+cK/scBRO+CKx6Tc7fi1atgsukq1g545zjm09dxK2fexzPnJ/GB2/aiMc+sh9vu2YNDFr5KmqzTV+RW+PgdP7Cx2GSCtGZ5TYEmQkVdWoUNJh1yz4jV+vMmYEUVs6AdHFWbeUs/f4dmgkvqaua5EC7utSQcpkNxuAOxPC/zw8qdsyprNiWngZTRW3zC3EHopk25zsv7cRFdxCHBmYXPa7fXdipEZCuo6V2eqwERAdJs1VSzoC5Gb1a48xEAE6TFk2WxTO029ptmPBFycVXIXzhOKlmZUDFWZ0RiCaqknEm6GmQX1RJF7TcBgFdLhPcgVjZ4c8Z5StdXLXZDQjFkvDLCAkFpLZGi14DmzF3IXtpjxO7uxw4Ouwp6/yyGffmDqAWNFkrayWMJ1P4+5++iI//og8v3dKCJz66H39544ay4hRabFIGT7mL2sE8GWeAlBPjMGoxu4wzXJxzDM+Gizo1Choterj9pJwV4uS4HyqWe5d5IV0uI9yBqKKKyUKE8huOJxVRvuXy2xfHcdUnH8HT591L9pr1irC5/8rj5xWzlJ/0RTIzvD0NZrgDMfgjymwEZV/LXrajDSadGg8eXNzaODAdKjhvJliNQdRC0RaGIAAwOFObpiBnJvzY2JJ7hnZr2hSE8s6UwRuO07xZGVBxVmcEoklYDNV7o3e5pB1JOYv3Kf/iAGqBaEccLnMuZHg2hEaLLtM+knHAknnBEzb8hdo/t7bb0DfqqzicOl/GmaDJqi87+NkbiuPubz6PB54bxLv3rcP9b7wUjhxtpHJptuoRTaTKCl72huLwhuMF5y2cZt2SLpgXMuWPIppIyWprBNLFGSlnBTk15sOaRrMshVb83Ec81dsxn/RHM7Ok5X6+lMOIJwTOgY/96HjZm06rgUg8iXA8iSvWujDhi+YscsohWzkTyoxSphPuQAyN6WOb9RrcvqMNvzw2Ou/37IvEMR2MFVXOgPQm2CorzqbSG5DNVj3aHQZoVKwm7fQ5l2ZoF5qBCLa2CcdGKs6UgIqz8qDirM4IRhOwVFE563aZEIolZeVyTfnzK2fdJZqLLGR4NoyOrNa0thKLsxFPeJ4ZSC62d9gRjicrNgaZ8EUyGWK5aLYayrLSv+gO4lVfegrPX5zBZ167Ex+9dTNUFfZtN9vKd48cSO+CFip8Gpa5OMs4Ncpta7ToaOasCKfG/QXDp7MRmzLVam2MxJPwRxK4tMcpvc4Szp15QnEwJqnHn/3dmSV73XpDGADcvrMdl3Q78OVHzyOeTFV83CnfXHEmnIWVam10+6PzWtzu3NuFYCyJ3xwfz9zW7xZOjcWLsza7ARP+aMUbf/WEaGtssuqhUavQ6TQqatqiFOO+CPzRBDbmyWx0mHTocBhp7kwhqDgrDyrO6oxAJAGzrjozZ8BcflWxix7nkjNTPuVMLODLvXiOzIbRmVVcCWVKvnIWWmQGshAlMk2SKY5JfxSt9vz5T802PaYC0ZJaCZ85P41XfvEpzIZieOCeK3Dn3q6yzzGblvTvq5y5s0IZZwKnSYfZZXRrFEWB3LbGBrMe3nAcsUTli8eVSCCawOBMqGD4dDaZIOoqFU2iPXhPtwPA0ipnnnAcLpMOb7myB998+qKicRwrCfH37zRp8b4bNmDEE8ZP/jhS0THD6Zb2uZkzqUBSwhQkEpeOnR0Jc1mvE70NpnmZZ2ITb42M4qzVbkQy7V64Wpj0R+EwaTMKu9KmLUpxWjg15lHOAGltQG2NykDFWXlQcVZnBKIJWAzVK87kKl7+aALRRGpRxpmgwayDUasuawc9leIYTgdQC4QyJaeP3xeJwx9JFFXO1jdboNOoKmpfmA5Iu6MF2xotesSTHB6ZRhnff34Qb/rGc2iy6vGz91yDy9e4yj6/hYifYzmOjQMFMs4EruVWzmQGUAsa0u/f5SwoaxmxkClmoy8Qjq+VmAEVQrxv1zRZ4DBpq/Y6ufCG47CbtPjIrZvRbjfiwz88hki8erN19Yr4nHOadNi3qQnb2m340oFzFalIovOgOV2cWfQaNFp0iigzc3mdcxtsjDG89tJOPHdxJvMacj7/BG0lbiauBCb9kczvB0ibtkzLG5FYSs6knRo3Fpih3dpuw8XpIIIyZ9yJ/IjPTaI0qDirM4KxRFlGEHIRi9pivfzuPBlnAsYYulzGsnbQ3YEoYonUvOJMp1Gh0aKT5YA1ksdGfyFatQqbW60VKWcigLpgW6NN+hlNymht/M4z/fjYj4/jynUN+PFfXJVp31EKcS5lKWfT0hxgIbdQl1lSzpbrgjw0G0KTVS/bwTITRL2KdrhL4dS4tHEhx0YfkP7uO53GqrU1TmYt0judxiVVzryhOBxGLcx6DT71mp24MBXE535/dslev17wpDc67EYtGGP4yxvWo386hF8eGy37mFOBuZY5gVLKjGjhX9ii/5pLO8EY8MNDknrW7w6i3W6Q9dnSKjOIOpXi+OGh4RVR5E/4ohnDFkD6/fijiWXdrMvFmYkAmq36grPb29rt4Hzu848oj0g8iWgiRcpZGVBxVkdwzqW2xioWZwatGq02Q9F2xEwAtSV/UVKunb4Il12ofrTaDbJ2IkfyPD8X29rteHHEV3YxIc6ntZBbY/qiL2fu7EeHR7Cz045v3n0ZbFUwfjHpNLDqNZn5gFIYnAkV3TV2mXWIJ7lsV02lGZoJZ+IX5NCQ/t3Q3Flunr0wgwazrqgKnU2Xq3pZZ5NZdt1LkamWjSccyyzortnQiDdc1oWvPn4eR4c8S3YO9UBGOUuHvN+8tRUbWyz470fOlR1KPJkxm8he/JsUMQQRG42NCzYa2+xGXLuhCT86PIJUiuPidFDWvBkgP4j6kVOT+NCDR/FQ30QZZ15bTPmjmc0/IMu0ZQnVbTmcmfAvCp9eyNzIAxVnleBLz59ScVY6VJzVEdFECokUr6pyBsgrqjK7jdb8u0+dTuk4pRY+CwOoBa02o6y2xhGPsOEvvqDc1m6DNxzPPKdURJFTqK2xWWYrYSSexIkRL65e3ygrULpcmm36sgxKJBv9wosTEUS9XHb6cgOoBWK3vBTl7GD/TNmLzHoiEk/iDycncMv21pJC77ucpqopWpP+KDQqBqdJh06nESOzS5d15kkrZ4K/vX0Lmq0GfOSHx2hmMYvZTFuj9LNSqRjes389zk4G8LsT44WemheREzlPOXOZMeaNVKw6zbU1Lr6W3XlpJ0Y8YTx9fhoD08U//wQukw46tQrjRToUfv3iGIDyjbNqBc55uq1xfvEMAAM1NHeWSnGcnQhgQ3Ph4qzNboDTpMWJESrOKsFLxVnZUHFWR4j+56oXZw2mjDNfPoQ1fK4QR0GXy4RgLJm5WMtlOE9bYqtdn2kjLPz8EPTpNshibO+wAwBeLPNDeNwXgVrFMgpMLsSColhBdHzEi0SKY0+3s6xzkUuz1VCychZLpDDqDRctfFzp3fLpZSjOEskUxrwR2U6NwNzMmVzl7PiwF6+9/xn88vhYWedYTzx6ehKhWBK372gr6XmdTiO84Th8CmVQZTOZju9QqRi6XCZEE6myNhrKwRuaH6ZqM2jxiVdtx+kJP754oPIw+5WCJxSDTq2CMav97+U727Gm0YwvPHKurGJ60heFWsUyny8AMnljlRY2uWbOBDdtbYHNoME3nryAmWAMa2RknAFSQdps0xdUzmKJFB5OK2ZL2Z5bDWZDccSTfN7MWafTBMaUiztQguHZMMLxJDa1Fs5sZIxJUTtjVJxVgoeKs7Kh4qyOCKSLs2q2NQKScjbhixbckXQHYlCnd7ALHQco3bFxeDaMBrMOpgWulG12IzyheNGdUmGjL2e3f3OrFWoVQ1+Zc2fj3iiarXqoC1jcW/QamHTqojNnhwZmAcw50VWLFpseEyUaggzPShlPPTKLs+VQzsa8ESRTXLZTIwBY9Rro1CrZWWen08Pkj52eKusc64lfHR+Hy6zDS0o0pOmqMEajEJP+aGYBmLHtX4KFbTyZgj+agGPBYPuNW1rwqks68MUD53CSFnIA0gqjSTvv81etYviLfevQN+bDgdOTJR9zyh9Fg1k373NWXF8qXfy7AzFY9Zqcs2QGrRp37O7AgfTfu5yMM0GxIOqnz7vhjySgUbGyOzdqBdEVkj17bdCq0WYz1FRxJj6/NxRwahRsa7fj9LhfkRiI1Yo3RMVZuVBxVkcEMspZ9XLOgLmL3nCBeQ5xsSyUuyUWyaUu0kY84ZxmHnLt9Edmcz8/FwatGuubLHixzN7yCV8k07ZYCCmIunABcHhgFr0NpoIqnBK02AyY9JVm7T8gw0YfmCvOlmMIXLzPSlHOGGMlZZ2JrKMnz03VnAuZkmRaGre1ltxim7HTr4IpyKQvgqZ065R4nUKfU0ohZiccORYZ//jyrXCYtPjwD48iQQs5zIZiOTftXnlJBzqdRnz+D6WrZ5P+yLx5JmCuUKrUFGQqEF00b5bNnXs7M/8vx0Zf0Go3FuxQ+M3xcVj1Gly3sQkjSzg7WQ0yM4ELfkc9DeaaamsUTo0bmgsrZ4A08hBLpnBuMlDt01qxUFtj+VBxVkcEo5JiZNFX943e3VB8R9IdyB9ALSg382h4NrRo3gyYC6IuNnc2ssCGvxjb2m1lOzaO+yJotRUvppqt+oIzZ5xzHB70VL2lEZAKxWgiBV9YvmmHKHyKGYI4l7M4EwHUJcycASKIWp5yJrKOJnzRFX3RfvT0VFktjcDcpkw1iqZs0wGxAbMULWGiPSeXw5vTrMM/37EdL4748L1nB6p+LrWOJ5TbOlurVuHd+9bhyJAHT52bLumYU4HoohZ6h0kLm0FTuXLmX3zsbHZ02LG51QrGSvtsabXpMeaN5CxE48kUftc3jhu3NGNNoxkjnqWbnawGE1lGPdkoZdqiFGcm/OhwGGGVYbZFpiCVQ8VZ+VBxVkcEotIb3bxEylmhdsSpAgHUArNegwazriTljHMuBVDnUD9ahANWATv9cCwJdyBWkrvctg47JnzRsmZXJryRgmYggiarvmBb49BMGO5AFHt6ql+cidaTUlobB6ZDMGrVxX/nOjV0GhVmZOaGfeupizg8OCv7PAoxNBOGWsUyRbxcGsx62TNyF93BTD7OE2fdJZ9jvfDr42NwmXW4Ym3pGXt2oxZWvUbxtsZ4MoXpYCyzADTppKyrpVDOMouMPHk9t+1oQ7vdgGMj5cdyrBQ84VjGDGQhr720E602Az7/SGkRBJO+xdcbxpikzCgwc1bI2Ioxhg/evAl3X9UrO6IDkJSzaCKVM9/yuQsz8ITiuG1HGzqdRkTiqWWZ01WKuYiL+Z+9PQ1mTAdj8Fdh/rQcTo/7C+abZbOm0QKDVkVh1BUgPjdtVJyVDBVndUQgo5xVd+aswayDWacuXJz5iytnANDpMpXU3jQViCK6IONMMNfWmL/IyTg1lqicAShZPQtGE/BHE5misRDNVkPB4k8UKEuhnGWCqEvIOhuYlmz0i83xMcbgMulkzZyFY0l8/Jd9eMv/PI9zk37Z55KPodkQ2uyGktvw5LY1cs7RPx3E1esbsabRjCfOrsy5s0g8id+fnMAt21rKcg1ljEl/9worWsK4IXsB2OEs7fOlXMTsRK62RoHLopMdNL+SmQ3F884i6zVqvOO6tXj+4gzOTsj7m0+meLooX/w5KykzlbXNuQOxoteym7a24N5XbCvpuG2ZzcTFm2C/fnEMJp0a129symwkjtSxKciUPwqrQQOjbn7x2iOjC2epSCRTuDAVxMYiNvoCtYphc2v5XTWEVJxZ9ZqCM/lEbqg4qyMybo2G6hZnUoC0CYN5PlA553DLUM4AoMtZWhD1cCajbHFxZdZrYDNoCjpgzdnoy28/2Vpm+8K4DBt9QZNVD38kkdfM5PDgLMw6ddH8FSUQykMpjo1DM/It6p1mnay2xnOTAXAuva/f+q0XKg6CHpoJlTRvJmi06OEOFJ/Bm/RHEYolsbbRjGvWN+K5izMr0kJdtDS+rIyWRoEUEK3sgmwik3U197nTVYXXyYUnLL2fCwXXOk3y3vcrGc45PKFYXoURQMZg5qzMtuCZYAzJFM95velpMGFkNly2aUMskYI3HJe10VgqLXlmpJMpjodOjOOGzc0waNWZjcR6NgWZ8EUWtTQCc8VZqaZg1aB/OoRYMoVNMsxABNvSjo313HK6nPjCcVLNyoSKszoiuERujYDU2pjvA9Ublmxz5VjVd7mki2dSZi7UcJEA6dYiDlgjBYq7fNgMWvQ0mEreIZvwllacAfnt9A8NzGJ3t2NJdpjEzI7ctkbOeTrjTF7h0yCzOBPOWZ+9cxem/FG84zsHK8osGpoNl+TUKGi06BBNpDKGO/m4MCXt0Pc2mnHNhkaEYknFWjJriV8fH4PTpMWVaxvKPkZXWtFSclGTCaDOmvHsdJow4pH/+VIuHhnKmdOkg0dmO+9KJRRLIp7kBV18RZCzmN8sxpR/cVEu6GkwI5HiGC2zsJkO5rfRr5R8M9Iv9M/AHYjhtu3S5kdneiOxnpWzSX90nlOjoEch0xYlEGYgG0sozra22+CPJJZEnV+JeMNxmjcrEyrO6gh/JF2c6apfnPU0SMVZrrBdd45A0Hx0u0xIpDjGCqhd2Yhd8HwzY8UcsEY8IWhULOeFohDb2+0lZ50J5UxeW6P0s8plChKKJXBq3L8kLY2ANKtjNWhktzVO+aMIx5OyizOnWScr2+7shB86tQp/sqsd//m63Tgy5MEHHzxaVsBzJJ7ElD9alnLWYJZ+N8VaG8UCY02jGVeua4BaxfDkCps7Ey6Nt24v3aUxmy6XEeF4UtE5mlxzLV0uI+JJXjTgvVJEcVZoF9hp0q565Ww2XZwWKmIteg2arXrZxZn43ea63sw5NpanzLj90vnK2WgslSarHiq2uK3xN8fHYNCqsG9TEwDAZtTAqtcsiQJcLaQA6sW/H4temgvN14WzlJwe94MxYL0Mp0bBtnYpB7VvjFoby4GKs/Kh4qyOCEYTMOnUS6KudIuA1xytZmKRVMjhSlCqrfbwbBgusy6vOthmK6ycDc+G0Wo3lPwz2tpuw+BMKDPAKodS2xqB3MrZ0SEvkksQPp1NMffIbISCKret0WXSynI/PDPhx7pmCzRqFW7b0Ya/uW0zfnVsDJ996LSs18lmuEynRiAriLpI1tlFdxA6jQrtdiNsBi12ddrxxLnaL84mfRF879kBWUXvY2emEKywpRHI/rtXblE26Y+CsfkL6c4q2vZn4w3HYTUUnp1wmnXwRRKr2k4/ozAWUM4AST3rL1k5yz1zBgCDZSozUwHpM7CQlX65aNUqNFrmB1GnUhy/eXEc+zY2Z65xjDF0OI1129bIOceEL5o3UqbbZaoJ5ezspB+9DeaSTF1EDio5NpYHFWflQ8VZHRGMJZakpRGYW+Tmam10pxUGWTNnJWadjcyGCzotttgNmApE884YFHt+PrZ3pHfISvgQnvBGYNVrZP1OxMIil2OjaI27pMrh09m02AyZGZ5iZNr5ZAawusx6+CKJonMgZyYC85yz3nHtWvzp5d340qPn8YMXhmS9lkAszstra5Tex+4iytlFdxC9DaZMtt+1G5pwfNiTMYuoVT7zu9P4+5++iK89caHoY391rPKWRiAriFrBVq0pfwQNZt08Ra8zY6df3Z15Tyi2KIB6IaKVz1PCBs9KQxRn+dwaBWsbzSUoZ/k7NZqtehi0qoqVMzkbjeWwMIj6j0OzmPRHcduO1nmP63AYlyQSohr4wgnEEqmcyhkgXTdqRTmTk2+WjUGrxromMxVnZULFWflQcVZH+COJqjs1CkSveC6XpakCF8uFtDuMUDH5WWf5Ms4EbXYDOM8/uyVlnJWunpTj2Djui8hqaQSkcGYVy33ehwdmsa7JXHS3WUlabAbZylnfmA8mnRo9cpUzs/RhXMi5LhBNYMQTntf/zxjDP92xDdduaMTf/uQ4nipBlcpknJXT1iiUM1nF2VyBeu2GRqQ48PT52lXPAtEEfnV8DDqNCp996DReLGD1Xknw9ELE37CiypkvmgmgFoiNmKVQzhzGwn+fIuNPjlPpSiXT1ihDOZsOxmR1Kkz5o7DqFzsBAmk7fZe5bDdA0RlSjZkzQJqRzm7D//XxcejUKtywuXne4+pZORPXkbzKWYMJY75IRfPElRJNJNE/HSrLcGt7hx3Hhr1kClIG3nDuzEOiOFSc1RHB6NIVZx3poiq3chaFVs1k7Yho1Sq02Y2yFmmccwzPFg6Qbi0QRB1LpDDhi5Rkoy9otOjRajOUtEM27ovKamkEJFveRot+0ZyXFD49i0uXIN8sm2arHhO+4g6FgKQmbmmzZRSjYsgJoj6bZzhbq1bhi3ftwbomC971vUOyLfaHZkLQa1SyNgwW4jKL4iy/kphMcQxOh7Cmaa4429XlgEWvweM1PHf2q2OjCMWS+PJde9Bg1uN93/8jQrHcxidKtTQCkmmRy6xTVA2Y9EcX7c4btGo0W/XVV87C8aLKmStdkMiZt1ypCNWwmHK2Jm0KIqe1ccpf2Bm4Ejt9dyAKs06ds/BTgtasNnzOOX5zfAzXbWxcFILc4TDCH0mU1FZfK+RyUc2mt8EMzquvbhfiwlQQyRQvyQxEsLvLAXcgitEC4xTEYiLxJKKJFClnZULFWR0RjCarHkAt0GnyF1Ui46xY5pWgy2WUZaXrDsTSGWf51Y9MdkyOD8pxbwQpDnSW0dYISOpZKcrZhDdSkvFIU445r4vuIGZD8SWdNwOkXU5hI12IVIqjb8yXURbl4JJRnM05Zy1uM7EZtPift14Gg1aNt3/7oCwnvqGZMDqcRtnvyWz0GjWsBk1B84pRTxixZAprspQzrVqFK9Y24MlzyuSdnZv04w8nJ3Bmwp+3gCqVHxwcxromM27Y3Iz/eN0uXHQH8S+/Opnzsb8+PgaHSYsr11XW0ihQ2uY+n+lAl8tU9ZYwb6h4e44o3lazKYgn/b0X2y3PFGcyiqpixVlvoxREXY6RkDsQq8q8maDVLhVdwWgCR4e9GPVGMi6N2YhrXj06NoprWr5rYXd6LrDfvXzFWTlOjYJdnQ4AwNEhj4JntPLxUQB1RSyNDEMogj+aQIejNBfCSuh25d6RdAfkBVBnH+fA6eILWLGQK6ic2YRytvgiNuxJOz2WoZwBwLYOOw6cnkQ4liy6k5pMcUwFomi1y/85NFv1iwxWDg96AAB7llg5a7EJ98howRakodkQAtEEtraVXpzNFrAVPzMRgEGrytuG2OEw4u9v34L3f/8Ijgx5iiqLQ7PlZZwJmiyLfzfZiPkYsagUXLuhEb8/OYGB6WCmFbhc/uKBwzgzMZf91GjRodNpQpfLhC6nETs7HbhlW4vsAvTcZACHBmbxN7dtBmMMV61vxDuvW4uvPHYB+zY24eZtc3MvkXgSv++bwMt3tkNbYUujoNNlKthGWQrJFIc7EJtno595HacRhwaqG2kgSzlLv+9Xs53+bCgOk04Nvabw56cUaD83z1qISX8kMxOc71ixRAoT/gja7KV99rv9pV3LSiU7iPo3L45Bq2Z46ZaWRY/LzjrbWsJGWC0wWSDqAJibVR5Yxqyz0+N+aFRs0ee3HDa3WaFTq3B0yKNIV8FqQWz8knJWHqSc1RHB6NIZggAi62xxEVRsJ3MhXU6TZMceK9xzXizjDJD+0A1aVU47fbHrWI4hCCApZykOnBov3troDkSRTHHZbY2AZAqysK3x0MAsrAYN1jeVNqhcKcKgpFgQtWjzFJbCchDtXYWUqDMTfmxothZsldy3sRlqFcOjpyeLvqYUkl3e7x2Q5s4KtTXmK86u2dAIAHiiwtbGZIrjojuIV+5ux3+9YTc+fMsmvHRLC8x6NY4OefCVxy/gXd87hIf6JmQf88GDQ1CrGF69pzNz2wdv2oTtHTZ89EfH5v3uRUvj7TuVW3xsbLZicCZUND9ODiKIOJdjX5fThDFvpGouiamUFKxcdOYs/b6fWcXFmSccK5hxJjBo1Wi3G2UrZ7l+74KMnX4Zyoy00Vi9WV+hJo15IvjN8XFcta4xp6oorlkjdWinP+GLwKxT512bOE1aWA2asltPleDsZAC9jWboNKUvefUaNba023CElLOSoOKsMoq+UxljXYyxA4yxk4yxE4yx9y+4/0OMMc4Ya6zeaRLA0s6cAVI7gjsQXdRiJbU1yr+gCee2Yi1OojgrpHwxxtBmN+acORvxhMEY0Famuih2Z1+UMXcm2ipLbWucTi8yBX8cnMUl3U7Z81xKIZSzYo6NfaM+qFUMG3K0H+ZDjjHCmQl/0WPaTVpc2u3EgSLFmTcchy+SqEg5azDrCxqCXHQHYdapF21KrG00o8NhrDjvbNQTRjzJccXaBtyxuwPv2b8en3zNTjxwzxV4/CP7cfKfbsXaRjP+/aHTsto848kUfnR4BDdsbp53zjqNCv/1hksQjifxoaxMOaVbGgFgZ6cdnEMR9WyudSq3cpZM8YIRG5UQiCWQ4sUXGUadGgatqqARzkrHEyquMArWNhV3bAxGEwjGkkVnzgBgcKb0xX+pXSClIpSzP5yawOBMCC9b4NIoaLTooNeo6tIUZNKf30YfSJu2NJjKNm1RgvNTgYo2QHd32nF8xFv1sPuVBBVnlSFnGyEB4IOc8y0ArgDwHsbYVkAq3ADcBGCweqdICPxLXZzlsNNPpTimg7GSlDMR+vh8/0zBxw3PhuAwaYt+jy02fc6Zs5HZMJqt+qItNflotxvgMGnRJ2PuLJNxJtOtEQCabXokUzwzk+KPxHF6wo89S2ihnzmXjLV/MeXMiw3NlpKyYbRqFawGTd7ZG28ojglfVFb///WbmvDiiA+TBRS+oRJz2HLRYNEVVPr6p4PobTQvailkjOGa9Y14+ry7ogu3WLjka43UaVT4wM0bcWYigJ8fHSl6vEdPT8EdiOJ1e7sW3beuyYJ/fPk2PHHWjf956mLapXESt2xtVaylEQB2dEqbHceHlSjOhENsDuUss/lTnYWtiEqQ4zrmNOlW9czZrIzIAUFvg1ScFTIlmirSMgdIBZBWzUq2048nU5gNxatanInrw4MHh6FWMdy0NXdxJrLO6tFOf8q32KhnIT0N5mVTzuLJFAanQ1jbVH7b+a4uB0KxJM5NBoo/mABAxVmlFL0Sc87HOOeH0//vB3ASQEf67v8E8BEAtJ1QZeLJFGKJ1JK3NQKYl1EyG5KUn1IuaNvabdjSZsN3nxkoeCGWbPCLt6a12Y2Z4iib4TIzzgSMMWxvt+PFkeLK2UQJAdQCkaUjFhxHhjzgHEvu1AhIu/xWg2ZRm+VC+sZ8Jc2bCVzm/IvUM2kHxk0yirP9myTL6UfP5J9ZHK7ARl/QYNFjNhTL2xp30R3MO69wzYZG+CIJHBv2lP36or2rtzH/9/Cy7W3Y2mbDfz58FrFE4Ra+/3thCE1WPfZvasp5/59e3oWbtrbg0789jfsfO49ANIGXKdjSCEgOqB0OI45W8HMRTBVwhMvY9lepJUwsMhwyFhlOk25Vz5x5Q3HZkSBrGs3wRxIFN0UKZZwJNGppdrXULC3x+VRNQxCDVg2HSYtANIEr1zZk5hJz0eEozU6fc45nL0wvq0U9AEz4IwWVMwDoSZv2LEdA+9BMCIkUx9oKlLNdXQ4AZApSClScVUZJ26SMsV4AlwB4jjH2JwBGOOdHq3FixHyC6bmNpVTO5tpF5i56pQRQCxhjePOVPTg17sfBAoP7w7NhdDqKL7BFdsxCd64RTxgdFSzQAamQPD3uLxqgPO6NQK1iaCihSG3OmHBIhd3hAQ8Yk6x6lwMpiDq/IuUORDHhi5Y1oO4y6/IaggjnLDmtklvarGix6fFYAUOZSgKoBY0WHTjPbYMeS6QwPBvOW5xdvb4RjFU2dzYwHYReo0JLgdkalYrhw7duwuBMCD84mD+ke9IfwYHTk3j1no68eWWMMXzqNTvhMGnxud+fhcOkxVUKtjQKdnZKGUGVIv5mcn3utNml2I9qqQ6iTVFO0eE0a1e9clbMRl8gx04/o5zlaGfNprvBJGt+Ldexm6o4cwbMbeAtDJ5eSKfTWJJb4+Nn3XjDV5/FDZ99FD94YWhZCh/OOSZlKGe9DWYkUhyjnqW3oxemM5UoZ2sazLAaNDiiwEbTakEUZzYD+Q6Wg+zijDFmAfAjAH8FqdXx7wD8o4znvZMxdpAxdnBqShnL6dVIYBmKM7tRGuTNLs7EBa3UVpA7drfDatDg20/357xfyjgrHEAtaLUZEE/yeTuuqRTHmFee8laIbR12xJIpnJ0o3L4w7pNsvdUlzIo1WaSLtPgZHhqcxcZm66LMm6WixaYvWJz1pWfvyirOCrR3nZ0IwKxTy1I5GWPYv6kZj5+dylswD82GYNVrKtqhazBL7+fp4GIlcWg2hGSK5y3OXGYdtrXbKpo7658OoafBVHT2cN/GJlzW68Tn/3A27475jw+PIJniOVsaF573v79uFwAo3tIo2NnpwOBMqGI1adIfTZsBLW6v1WlUaLUZMFwlNzhPWAQry1XOVufMWSrFZYV1C8Tf04UCxVmmKC9yveltkIKoSwkKdgeKq3JK0GY3gDHg5jwtjYIOhxHTwVhR4yzBsbSK02jV4yM/OoZbPvc4fnN8bEnDkgPRBMLxZM5Z0GyEnf5AGXOBlXJ+SrqWr2ssXzlTqRh2dTpIOSsBbzgOi16Td4OQKIysnxpjTAupMHuAc/5jAOsArAFwlDHWD6ATwGHG2KJPH875Vznneznne5uacrfYEMURxdlStjUyxtKOjdnKWXkXNJNOg9ft7cJvXxzPOT80HYwhEk/JK87si50GJ/1RxJO8orZGAJk8r2J5ZxO+0jLOgLmf2aQ/ilSK44+Ds0tuoZ9Ns9WQaRvKhXBqLKet0WnW5TUEOT3ux4YWq2xL+H2bmuGPJHA4j+o6NBNCp8tUVsaZoMEigqgXn7PY2e8tYMN8zfomHB6cLduZUK4VP2MMH75lMyb9UXznmf5F93PO8YODQ9jb48Q6GW08125owvffeQU+cuumck67KDvTc2eVqmfFduc7ndXLOssoZzLbGlerW6M/IhmnyJ0563QaoVGxosqZRsWKOkB2u0wIRBMlqZaiC6SaM2cA8MpLOvDu69cVvWZmss488jYZTo770NNgws/eczXuf+OlYIzh3Q8cxiu/+BSeOleZQZFc5gKoC18LM46ay2AKcmEqiEaLTtbMaCF2ddlxaty/7G2k9YI3XDwbksiPHLdGBuAbAE5yzv8DADjnxznnzZzzXs55L4BhAHs45+NVPdtVTKatcYkl4p4GU07lrJzdxjde0YNEiuN/n1/ckiXHRl8gHLCy3dlGKsw4E6xpMMOsU2cKk3xM+KIlzZsB6TkvvQZT/ijOTwXgjySWxQxE0GzTY9IXzbvT2jfmQ4fDKHuGJJsGs2SwkevYZyf9OcOn83H1+gZo1SxvVt7QbBhdFf7exQLNncNOXzjKrS1QnF23oRGJFMdzF6ZLfu1UimNgOoTeBnktuZevceH6jU340qPn4Y/MV2kOD87iwlSwqGqWzRVrG0pqzy0F4YB6vELHxkl/pGBrW6dL2cDrbLwlhKk6zTp4w/FV6eom2pjlfl5o1Cp0u0wFHRsn0zlkxRRlMatZyuJf/K1Xuzi7Y3cHPnLr5qKPE9cuuZsMfaPSPDBjDLdub8Vv338tPv3anZjyR3HX15/DXV9/NqMaVQuhbBZra5SMulQYXAZTkAvuANZWoJoJdnU6kEzxohu3hIQvHKcA6gqQo5xdDeBNAG5gjB1Jf72syudFLCAQlXZrLPrynAjLpctlwvBMOLPYcAei0GlUsJah4K1pNOO6jU34f88PLGpRywRQy5gbEsrZeFYQdaa4q1A5U6kYtrTZCn4Ap1IcE95ISU6NgiabHlP+aCY0dzmVsxarAbFkKm8b1olRb9mBqE6zDtFECuEFu4zTgSjcgZgsp0aB1aDFZb2unHlnoh22EqdGAJloCHcO5eyiOwiHSVtw0XlprxMGraqsubMJfwTRRKqkEOsP3bwJnlAcX3/i4rzb/++FIZh0akXzyirBbtRiTaO54nagySJZV51OE8Z8kaJGKeXgCcVg1KplOZY6TVpwPlfQrSY86e9Z7swZIKnRhYqzKX+06LwZMOdyWoqdvtsfhVGbP59rqclknckwBQlEE+ifDs3ratCoVXjd3i488qF9+IeXb8WxIS/+6Rd9VTtfIHsmsPC1UKWS7PSXSzmrZN5MIGbDjwxRcSYHSTmrjb+tekSOW+OTnHPGOd/JOd+d/vr1gsf0cs6XRkdfpQQiS9/WCAA9LjNiyVSmhXDKH0WTRV92C9mbr+jBhC+Kh07MD9MdLiFAutGsh0bF5ilncjLS5LK9w46+Ud8iwxFAciO75zsH4Y8mMqpAKTRZ9Jj0R3B4cBYOk7agGlNt5gxKFqtFoVgCF93BTJtnqYgg6oVtRmfSs3ylFGcAsG9TE06N+zG6YOHiDkjtsJUqZzaDFhoVyxlEXcipUaDXqHH5mgY8WUY7kQjP7S2hONvRacfLdrTi609cyJxzMJrAL4+N4eU722pmwQlUbgrCOU8XZ/kX6V1OIzgHxrzKtzZ6QvLbc4QbXz4znJVMqcoZIG3Y9U8Hc37WAtJnU7F5M0BqkWSstCBqdyCKRmt1zUBKocVmgEbFZJmCnBqTOju25Gg5N2jVePs1a3DT1hacHvcrfp7ZiHWBnAK622Uu2VGzUjyhGKaDMUWKs2abAW12A82dyYTaGiuDJvXqhOVwawQWZ51NBaIVWQ/v39yMDodx0bzMyGw4bUBS/I9ZpWJosRnm2emPeMJwmXUw6Sr/+WxttyEYSy5y/3pxxIuX//cTeOLsFP7pjm14zZ6OPEfIT7PNgCl/FIcHPdjT7axoTqpSxMxcLlOQk2N+cF7evBkwt0hdWJydTdvol1qcZSz1F7Q2Cvv0SpUzlYrBZdblnTlbI6NwunZ9I85NBkouEMRuf4/MtkbBB27aiHA8iS8/eh4A8KvjYwjFknj9ZfJbGpeCnZ0OjPsiBbPqCuELJxBLpAq2Uot2aOHcqSSesPxgZVGYFApgV5pIPLmkJhD58ITkG6cIehvNiMRTmMiTtyhXOdNr1Gi3G0vK0nIHYlVvaSwFtYqhzWGQ1dZ4cqy4WdP6FgvGfZFFrc9KMumLwqCV10nT22DCwEzhXDulOZ92apQzfyuHXZ0ORaJBVgNUnFUGFWd1wnK4NQKLs86mZO5k5kOtYnjTlT147uLMvF09uU6Ngla7YV4Q9UiFGWfZbG+XFLEXs+bOfnBwCK/58tOIJzj+78+vxJuv7C2rsGq26jHqieDcZGBZ580AZGzbcxVnIoh7WxnqICC1NQKLi7PT437YDJqi7l4LWd9sQYfDuKi1UYkAakGDRb/IrTEcS2LUGymqnAFS3hmAkl0b+6dD0KoZ2kt8/65vtuLVezrxnWcHMOYN4wcvDGFtkxl7upevVTYXlZqCZOZaCrROiRiFasydlbLIEIpxrkiGahCIJnDZv/wev3lx+ce9RXt0MfOObETnwMWpxUVVIpnCdFD+9aanwYSBEhw73YFoTRVngPyss74xHxwmbWb+Ohfr0wVJNYOTJ/1RtNgMsq6FPQ0mROKpgiZUSnMhPXNXScZZNru6HBiYDi3p5ku9QsVZZVBxVicsh1sjALQ7DFCrWEY5cweiaKqwFeR1e7ug06jw3Wf7M7cNz5Zmg99qm1+cDc+GFCvONrRYoFOrcGLUi0g8ib/58TF85IfHcGmPE7983zUVLX6brHrE0vN2yzlvBhRua+wb88Fu1KK9jLk6IH9719mJADaW4NQoYIxh/+YmPHXOjWhibo5tzkim8t99o0W3aOZMWD8XcmoUbG61otGiL3nubGA6iC6nqaRYBsH7b9wAzjk+/OAxHByYxev2di2rGpuLbe02qBhwrExTEPH+LNTW2GqTPqeqEUQtBSvLVc6kxy3V4m3cG4Y/msCpKrevyUEUpKUsyMTf1cUcitdMMAbOgSaZxks9aTt9udRmcWaS1daYbQaSj/XN1S/OJtKRMnIQc4GF3DmV5oI7CK2aVdz2LtjVJW00kXpWmGgiiUg8RcVZBVBxVicEownoNaqqZBEVQqNWocNhxMCMlPU0E4xVpJwB0sL9FTvb8ePDI/BF4mlTh7Asp0ZBq11qa+Scg3OeDqBW5gNYq1ZhU6sVT51z4877n8H/Pj+Ed+9bh++87fKKL+biQqZiUovEcmLQqmEzaHK2m50Y9WFbe+GLfyFEcZbdJsg5x5lJyUa/HPZvakYwlsTB/jlL/aGZEBotyrSzSg6T8wtVsaMvRzljjOEla1w4UuJMQr87VHJLo6DLZcJdL+nBk+fcUKsYXl1Gq221Mek02NBsxbEyFzRyHOE0ahXaZbaElYonHJOd3bXUM2diMyGXy+hS4wnFYDNoStpkaLMZoNeocipnk5mQaHmfub0NJswEY/DJaOOTVLlY1QOoS6XDacSEv7CxTSKZwqlxf855s2y6XSbo1Cqcq6Jj41QRo55sejJZZ0s3d3ZhKoBul0mxrK0dHXYwBhwlU5CCCEMkKs7Kh4qzOiEQTSx5S6NAZJ1NB6NIcVQ0cyZ485U9CMWS+PGhYcwEYwjHkyWpH212A0KxJHwRKdsmEk8pppwB0m7/iyM+9LuD+OqbLsVHb92syAe8mJvZ3GqrCdOGFpshk1UjEBf/cufNAGQWadmL1Cl/FJ5QHJtKsNHP5sp1DdBpVDhwaq61cWg2VFJRX4hGix5u//xFtdjRl6OcAdIMyOBMSNYCEZAKVrkZZ/n4i/3rYNSqccPmZtkLpaVGmIKUM28y6ZPnCNfpMGXaXJXEU4JyZtKpoVOrlizrTLQNu5ewVSwfnlA8084sF5WKobfBvGi+Fyg9tkUs/uWYTsyEJFVOiWuZknQ6ihvb9E8HEU2kin4+a9QqrGk049xEddsa5cwEAlLLpkbFSpoLrJTzU0HF5s0AyTl4fZOFlLMi+EqIHyFyQ8VZnRCIJpZtMd/dIC16xMK1UuUMkHq3d3U58N1nBzBUQsaZYM5OP5Lp0VeitU3w6j2deOmWFvz8L6/BzdsWZauXjVg8X7rMLY2CZps+o0wIzk8FEUuksK2j/OKMMSk4diY4V6SU69QoMOk0eMkaFw5kzZ0NzYQVmTcDpJmzcDyJUGwuSPriVBBNVr3sjRExoH+ySE6ewB2IIRhLys44y0Wz1YCfvudq/Nurd5R9jGqzs8uBmWBM1jzNQib9UZh06qK/gy6XUXHlLBJPIppIyQ6wZYzBadbCE1yamTPh1FkLytlsKFZWJuKaPHb6cjO0BJm2ORmLf3Etq7W2RnENK9TaKDI45cScrG+2VE05C0YTCEQTsjeENGoVOp3GklpPKyGRTGFgOqjYvJlgV5cDR4c8NWHCU6uQclY5VJzVCcHlLM5cUruIuIAqtdv45it6cH4qiB8clEKpS505A4BxXyRzIVOqrRGQgn6//pa9strZSqHbZcKmFitu26FcwVcJLdbFylnfmNSysbWtPDMQgcusxUxWm+CZCWkupty2RkBqbTw/FcTgtNRmO+qpPIBa0GBZ3IrZP13cRj+bbend7L4xecWZ2EXuqfB9tik971ar7Owo3xSkmI2+oNNpwqQ/isiCbL1KECYXctsaAckQY6mUs2mhnOVwGV1qPKE4HGUsxnobzRicCSGxIPuyVOVMmFfJWfwvVQB1qWSCqAtsYvSN+aBTq2QpQuubLRiaCSn6NyGQMwu6kO4S5wIrYXg2jHiSK2Kjn82uLgemg7GqtFCvFERxVs5mDSFBxVmdEIgmygp+VoKe9EXv8KA066OEcgYAt+9sg8usw/+9IBVnpRRX2UHUcwHUyigo1cSoU+N3f30drlrXuNynAmDO2j97F/DEiA86jQrrKryoucw6zM5TzvxwmXWZwOdy2L85bal/ZhJj3jASKa6YcjYXRD1XUF6UaaMvaLYZ0GjRo0+mciZCWUvJOKtHNrdZoVWzstqBJn0RWbvzGdWhDHUuH55w6fbwTpNuyQxBxEZCrny+pcYTjpUUQC1Y22hGPMkx6pmv4E/6o7AZNLLCvwHJLKvdbpCV7TVXnNXW4rHNLuW1FVLOTo75sb7ZAp2m+PJtfbMFKS4FMSuNmFVukWnYAkhzgXKUTSW44JYUw0qvYwvZnZ4Vp9bG/JByVjlUnNUJwWgSZr28i5TSiMXvoYF0caaQcmbQqvG6vV1IpjhsBg1sMjLOBM1WAxgDxtJtjRa9BjZKoy+Z5rR7pCfL+rtvzIfNrdaKZ+xc5vkKwpkJPzY0WypyE1zTaEZvgwmPnp7KZFp1KTRz1mCW3tdiweuLxOEOxLCmxIv71nZbpvWoGAPTQahVTNF5yVpEr1Fjc6sNx8tQzqb8UTTJmGsRn1NK7mh7y3AgdJq1S2YIIgxsgrEkwjHl1ZFS8ATjZe2Ui3lOsZgWTPmjJV9rdnXJy6HKFGc1NnOm06jQbNUXfA/3jfpktTQCWY6NVWhtnBDKWQmxKN0uE/yRRObvqpqIgnRto7JtjZtardBpVBRGXYByPjeJ+VBxVics98wZAJwY9cKoVSt6Hne9pBuMlTZvBkgXsQazHuPeSMaGv9YsxOuBTBB1er6Dc55xaqwUaeYsljmusNGvlH2bmvH0eXdmwSEyriol09aYXvAKy+dSVa2tbTacnfQXdFwT9E9LERBydsHrnZ2ddhwf9iKVKm1WQ35bo/Q+UNIUxFPGDrDTpFuynLPsFtzlnDuLJ1PwRxMlKYwC0Ta80GJ9sgQnQIHIoVqYr7gQdyAGnUZeePJS0+k0YcST+z086Y/AHYjKNmta02iGilXHTl8oZ6W0NYoNlMElcGw8PxWAy6wr2aSmGDqNCtvabeTYWABvWJrbthlq7++rXlj5K4IVQiCagHWZ3ug2gxZOkxbxJFdMNRN0uUx4+9VrcPvOtpKf25a20x/xKBdAvdoQYdBi7mzUG4E3HK/IqVHQYNbBE4ohmeIY80bgjyawsbXy4mz/5mZE4in88OAQVAwlhzfnQyhnYn5HzFiWOrOwrd2GeJLj7GTx9irJqbH223GVYFenA/5ooqS2plBMvulAi9UArZpVRTkrpehwpd/3pRah5TAdjMGYbvubWsbiTLQxlRJALWi06GDRaxaZgpSjnO3ucgAo3nLm9kvh1rW4oVcoiLqvBDMQQOpO6XaZcE7GZ1GpTPmj0GlUJW1ciC6HauQRLuT8VDATcq40uzodOD7iXTQnSUh4w3FY9BrFIgxWI/STqxOC0QTMCmQ5lYsYtq5Gj/7fv3wr3rN/fcnPa7VLQdQjsyFFzUBWE2LRK3ZBT6SDgre2V2YGAgBOsw4pLtnqCjOQjc2Vt5i8ZI0LBq0KR4e9aLMbFcv+M+rUMOvUGQWi3x0CY3PvfbmIhVOxuTPOOS66gyt+3kywo7N0U5CMjb6MRboq3R6q5MJvbuZM/ueew5R+38uMU6iEmWAMG9PRFMtpp+8JlT6bJ2CMSY6NWUYRnHNM+uUHHAt2dNihYsCRQU/Bx00FojXX0ijocBox5okgmaO4PzkmfY5uaZW/eba+2VIV5UwEUJdS4Iouh6VQzi5MBRU3AxHs7nIgHE/ibBUDvusZbzhOLY0VQsVZHZBMcYRiyWXNxRLtCEorZ5XQajPgojsIXyRBylmZiHkB4bzVN+YDY8BmBRSuTBB1MIazFdroZ2PQqjOGKkrGJwDSDMp0RjkLoN1ulG1IIOhtMMOoVRd1bPSE4vBHEqtGOdvQbEkX1R7Zz5ksca6ly2VSVDnzhOLQqBjMOvnvAZdZWpRUu7UxmeKYDcWwKf23upyOjRlXyzLd2XobzbiYNXMWiCYQiadKvt6Y9RpsbLEWV84CtRdALehwGJFIcUz4Iovu6xvzocNhlB3tAADrm6246A4qrvLIbTfOxpruwqlGHmE20rxwVHEbfcEuodDS3FlOvOE4ZZxVCBVndUAwnbu0XG2NwFzAZy1ZD7faDYim53pIOSsPg1YNu1GbWQicGPVhTYNZkY0AUZzNhmI4PeFHk1WvWP///k1NAKCYU6OgwazLzJxdnA6VFaWgVjFsabMWNQUR7X2rRTnTqFXY1m4vyRRkLutK3uxRp9OIYYVnzhwmbUnqgChQis09VcpsOkhZbHgs58yZKETLcWsEpNmokdkwognJ1KTUojybXZ3Fc6jcgWhNXcuyKeQ62jfqld3SKFjfbEE8yTGgcEE06Y+W5NQo6HaZqq6cCTMQJQOos+ltMMFm0FTVsXFwOrQk6ns18IXjsJNBW0VQcVYHBKNScbacyll3DSpnbfa5C0OphiLEHC02faZ9rBQnsGI4sxapZyf8mfYrJdi3SbLUryS8ORcNFkk545zj4lSg7Jy7re02nBz1FVwgiryf3sbV897d2WnHi6PyZzVKaWsEpM+B6WBsXpB4JXhDpbfnuNLve0+VHRuFwttqN8Bm0ChenH3jyYv47O9Oy3qscKcsJQ8umzWNJqT4nJlLJuPMUvrif3e3A7OheN48rVSKYyYYq/3ibIECHI4lcdEdLHkeOOPYqHALnmhrLJVOhdXtXJxPf6/VamtkjGFXlwNHqmQKEk+mcMcXn8R9Pz9RleNXG2prrBwqzuqAQKQWijPpQ66WLmitWcUZtTWWT7PVgAl/BJ5QDCOesGLFWaatMRDDGYWcGgVdLhO+/bbL8cYrehQ7JiDNVLoDMcyG4vBFEhmb71LZ2maHP5oouAgZmA6V5VRaz+zstCMST8m29p70R6FTq2TPMomFrVKLP084VnKrnnOJlDORbdZg1qPRqle8OPvlsVE8eGhI1mMzxinmcpUzqYC46JYKqkqVMyC/Kchs2qSo1jLOBMLgaKFydnrCjxQHttRAcRaJJ+GPJNBcpnI2PBvKOVOnFBfcAWhUrOR54VLY3eXAmQm/YhtB2Tx/cQazoTge7ptAvA5NR6g4qxwqzuqAQFo5W07b320dNlza48Tla1zLdg4LaU1fGPQaVc1eaOuB5rRyJmaktilgBgLMFWfHRzwIx5OKFmcAcP3GprJnXPLRYNZjJhjF+XTxUK7bl4giODGaf2d1YDpY1kxbPbMzvXA+JnPHedIfQVMJpgNzWWfKtE2Vs8hwpgsUT5VnzqbTxV+jRYdGix5uv7LF4JgngglfVNbiczYUg1rFyr5GiaB3MXc2p5yVXpxtbLHAqFXjj3lMQcRsXq0agph0GrjMukUbDMJgqNSYE4tegza7QdHirFRFO5supwnxZO6ZOqW4MBVEt8ukmFlULnZ1OpBMcdmZlqXwcN8EAMAfSeC5CzOKH7/aUHFWOVSc1QHBqNSHv5zKmc2gxY/efZXiC+xKEMpZh4MyziqhxWbApD+CEyNpm2YFbPQBaZ7NpFNnLi5KtjVWiwaL5LQn3N7KVc42tVqhYoUdG/ung1Xd2a1F1jSYYdXLn9Uo1U5dceUsFIejxEWGRa+BRsXmBbBXA6Gcucw6NFmUVc4SyVRm3k/OfNBs+udU7uew3aSFy6zLUs4i0KpZWe6PGrUKOzrsed9jmQDqGuoCWUin07hog6FvzAurXlOWCZLSjo0iF7Nc5QyormNjNZ0aBTu7pE1MpU1BOOd4uG8C16xvhEGrwsN944oev9rEEimE40kqziqEirM6IBCVdmDN+tWzwy4Hk04Du1FLZiAV0mzVI57keOq8G81WvaJzhU6TDhfS+UUbaqiwz0dDesH2Qv8MNCpWthukQavGuiZLQcfGgenQqpo3AyS7++0ddhwfkamc+UpzhGuy6KHXqBRzg/OG4iU54wHSPIoznXVWTWaCMaiYZEDSaNEpmnM24Y9CdJ31u4v/LL3hWFmFVDa9DaZ5ylklOWS7ux04MerLGQRfD8VZrqyzvlEftrTbyvqZrG+24PxUQLHsvYqUM5fyYfHZJFMcF6eDVTMDETRbDehwGHFE4eKsb8yHEU8Yf7KrHdesb8LDfRMFZ5drDZF5SMVZZVBxVgcE0sqZVU9v9oW86pIO3La99ABrYg7huPXM+WnF5s0EDel20za7ATZD7b9/G9OtmIcGZtFVYVvMtnZb3pYXXySO6WAMPavEqTGbnV12nBzzZZz5CjHpj5Q0d8SYVFAPzVSunMWTKfijibJMLpwmbdVnztzBGJwmHdQqhkaLHv5IApF48Z+pHMayCgM5oeGzwXhZAdTZrGm0ZArBKX8UTWWoMoJdnQ7EEimcGl/891dJy+RS0eEwYtQTzizKUymOU+P+srsa1jdbEIolMepVRlEWqmo5bo3tDiNUrHrF2chsGLFEqurKGQDs6sqv0JbL7/smwRiwf3Mzbt7WglFvpCqtk9XCm86GJCv9yqDirA6Yc2sk5Wwh9/3JNvzZS7qX+zTqmpb04jeaSJU8z1AMsWCrB9UMmJtDmQ7GynZqFGxtt2HMG8m5SB8UTo2rJOMsm50dDsSTHKfH/QUfF0ukMBuKy7bRF3Q6TYosQn1hkd1V+iLDadJVPedsJhDLbH5kv2+VYNQ7Nw80IKc4C1WunK1pNGHcF0EolsgoZ+WyK91ylkvVcAdi0KlVsNWw1XeH04hIPJX5fQ7MhBCKJcsuzjY0S5+/SrU2Tvii0KpZWdEJWrUKbXYjhqrk2HjeLZwaq99Gv6vTgaGZcKbFWAkePjmOPd1ONFn1uHFzM1QMeCg9g1YPkHKmDFSc1QGBGrDSJ1Yu2YvfrW3KmIEIhCnIpjqYNwOknDNBpflj4md5Mkdro1AjVqVy1pme1SiSdyba9EptnWpPqw6V4qm0OKu2W2Mwmvn7Ei16br8yi0ShnG1otshsa4xXbM4jHBv73SEp4LgMp0ZBh8OIRos+Z3E25Y+iwaKr6Tll4T4sZifF7Gq5nQ1KOzZO+iMVtZ1WM+tMZJyVa+ZUCrvTYdT5zGdKZdQTxosjPty0tQWA1GZ/aY8zYxBSD1BxpgxUnNUBgWgCGhWDXkO/LkJ5smfMlFbOxOKxXpQzh0kHVXq9sabCtpitBRwbRQZTzypUzjqdRrjMOhwrMqsx6ROmA6Ut0jscBrgDsYpb/ITbYjmLDKe5+srZdCCWmZEUbrVKmYKMeSOw6DXY0WGXrZyVG0AtEPOXZyf9mAnGKlLOGGPY3WXPo5zVbgC1QMRriKyzvjEvNCqWKbJKxWXWwWXWKVacTfmjZZmBCLpcxqq1NV6YCsBu1GauPdVkV5cDWjXDCwPKOCr+/qRUhL10S0vmtpu3tuLkmK9qPy+loeJMGWi1XwcEowlYDJqa3ukj6heDVg2HSQuLXqO4e6C4QNaSy2ch1CqWOec1FapaLrMObXZDTsfGfncQzVY9TLrVp4YzxrBDhilIJuuqxLZGkRM15q3MqnuurbG8mTNPKFbVQf7pYCwzI5lRzhQqzkY9YbTZDehpMGPUGylY6EbiSUTiqYqVM6FUv9AvLXQrUc4ASdW4MBXMLBYFUnFW29ErwuRqxCMtyE+O+bGuyVJR7IaSjo3lBlALul0mTPqjis1IZnN+KoB1TeYlWS8ZtGrs6LDjYP+sIsd7uG8CaxvN84pwoaLVi3rmrWBTi5iDirM6IBBNwLwKF3HE0tFqM2BLmxUqlbIXtEt7nNjVacfm1voozgAp6wyoXDkDpFiCXI6NA9Ohitsm65ldnfaiAa5zxVnpbY0AKm5t9KQH28tZZLjMOiRSHP6o8gG1gGRW4g3H4Uq/V4X6LTK8KmXMG0Gbw5hRswq1oAmFsdKZM7NegxabHs9flIqzSg07dqVbzo4tMGyoB+XMbtTCqtfMKWejvorNmtY3W3B2MqDIhkGlbadK5xFmI9noL10b/WW9Lhwb9lRcaPoicTx7YTpTjAl6G83Y0Gypn+IsLH3mkSFIZVBxVgcEIglYaN6MqCKfeNUOfPxPtit+3CvWNuBn772mroKWGyw66DUqtFXQtiPY1m7D+angogt3/3RwVbY0CnZ0OpDiKOhCNuWLQMXm4g3kIuZ1FlqRl0qm6ChjkSFUpGrNnYnjCkMQg1YNi16jaFtje1o5AySlN++5pCMDKnVrBIA1jWacmZDUnUra5oC5wPPsHKpUimM6EKvZAOpsOpxGDM9KZhPjvkjF+ZPrmyzwhuMVF/DRRBKeUBwtJSra2Yi2TaXnzvyROCb90SVxahTs7XUhnuQ4VmSGthiPnZ5CPMnx0gXFGQDcvK0Fz/fPVD2eQwm84TjMOnVVA8BXA/TTqwOCMamtkSCqxaU9TsVt9OuVLW027Ol2KqIibm23IZma70wYiiUw6Y+WHXC9Eri0xwmjVo0vHTiXdyd/whdFg0UPdYm/hxabAYwpoJyli7NydoBdZuk51Zo7EwvsbAObBotOEeUsmkjCHYiizW7MtPaKGclcVFLELiTbIbXSvEW7UYu1TeZ5c2fecByJFK955QyQZjNHPGGcHJM+Oyr9fN7QoowpSCbjrALlTLTPKxF5kc1FtzADWTrlbG+PE8BcO265/P7kBBrMOuzpdi6676atrUimOB45NVnRaywF3nCcWhoVgIqzOiAQTZJTI0EsEX9/+xY8cM9LFDmWcGzMVohWsxmIwGXW4cO3bMKB01P4yR9Hcj5m0l/eXItOo0KzVV9xceYNx2EzaEouDoHqK2czGeVs7ufTaNEr4tY44ZWO0eYwwG7SwmHSFsw6E7v5lc6cAfOLMyXmwnZ3OXBkyJvZABDKYqWF31LQ4TBiZDaccXvdUqlyJhwbpyoszsqcBc2m0aKDUatWXDkTTo3rm5du48tp1mFDs6Wi4iyeTOHAqUncsLk55+fNzg47mq36umht9Ibj1NKoAFSc1QGBSBwWyjgjiCWBMabY7F2XywirXoO+sbmWF+F+t5pnzgDg7qt6sbfHiY//oi/jzJjNpD9atumAZKdfmSGIJxQru+BwpZ9XrSDq6aC0QM52pGu06BRpaxQZce12qT20p8FcUDmbVWjmDJj7m3CYtNBrKr/m7e5ywB2IZlpcRTxDrRuCAFJboz+awLMXptFqM1TsPthqM8Ci1+DcROF8wWJM+ctzUc2GMVYVx8bzUwGoVQzdrqX9bN3b68KhgVkkU+XN8z1/cQa+SGLRvJlApWK4aWsLHjszVRUTFSXxkXKmCFSc1QHBaJJmzgiiDmGMYUu7bZ5jo1jodq9i5QyQFhyfeu1OROJJ/P1PX1zU3igVZ+XtziuRdeYJx8suOMT81WyVZkRE+2J2kdFo0StSnI2li7M2h/Sz720wZdrFciGMU5SYOROzQpU4AWYjcqiODkmbI+LnVqnZyFLQ4ZA+H54451ak5ZwxhnXNloqVs9Pj0vNbK5wJ7HIqn3V2YSqILqcRuiWOHbqs1wl/JIEzZRa+D/dNQK9R4ZoNjXkfc9PWFoRiSTx93l3uaS4J1NaoDFSc1QHBaILaGgmiTtnaZsPJMX9mV7V/OoQGsw42A13A1jVZ8IGbNuKhvgn88thY5vZkimM6UL4jXLvdgBFPuCJnOk+o/EWGNd0OWa3ibCYYhUbF5r2HGi16zIbiiCdTFR1bKI5tdmnxLdnphxFN5N6x94Ti0GtUMOoqV7q6XCaomHJth5tbbdBpVDgyJFmdi7bPepk5A4BYIlWxGYhgfVNldvqReBLffbYf125oLNmoZyFdLhOGZyv7G13I+anAkjo1Ci7rdQEADpbR2sg5x8N9E7h2Q2PBaJUr1zXAotfUfGsjFWfKQMVZjcM5RyBGbo0EUa9sa7chHE9m5nYGVrlT40Lefs0a7Oq0496fn8B0WvmZDkSR4uUrKO0OI6KJVEVthb5wvOy2RpWKwWnSVs0QZDoQg9Osm9d+KxwIK22lHPOGYTdqMwvFNY0mcJ7fvGE2GFOkpREA9Bo1NrXasE6hBbZOo8K2dluWciYVtfWweBRZZ0Dl82aC9c0WTPii8EXKe1/+4OAQ3IEY3rN/fcXn0uUyIRBNKPY3kkpx9E8HsXYZjJY6nUa02PR4oYy8s5Njfox4wnlbGgV6jRrXb2rCw32TSJXZPrkUUHGmDFSc1TihWBKcg4ozgqhTREuSaG0cmA5lLMoJQKNW4dOv3QV/JI77ftEHYM50oKmCtkYAFc2decLxihwIHSZd1QxBpoOxeU6NANCUbnGcqtAUZMwTyahmADLv1YE8piCecFyRlkbB9995Bf72ZVsUO96uTgeOj3iRSKbgDkTRYNEpnudYDRrMOhi00hJNKSfdDc3lOzbGkyl85bELuLTHiZescVV8LnOOjcq0No56w4jEU1jXvPTKGWMMl/W6ylLOHu6bAGPADZsLF2cAcPPWFrgDUfwxy4G0loglUgjHk1ScKQAVZzVOMB1iSm2NBFGfbGi2QqtmODHqQySexKg3TMrZAja1WvG+GzbgF0dH8bsT45is0HSg0qyzVIrDE4pVtMhwmXRVa2ucThcZ2YhWvUrnzka9kUxxC8yZdPTnMQWRjFOUW4zZjVpFcxEv6XYgHE/izEQA7kCsLloaAWnB3+4wwqRTo8elzOfF+gqKs58fGcWIJ4z37F8Hxiovbrtc0ntMqbmz81PCRn95Nr4u63Vh1BspOVj79ycncEmXQ1Yr775NzdCoWM22NnrDkgpqV/DzYLVStDhjjHUxxg4wxk4yxk4wxt6fvv2fGWPHGGNHGGMPMcbaq3+6qw9/ujgj5Ywg6hOdRoUNzVb0jfkwPBsC5+TUmIt37VuHrW02/P1PX8RZEURcQVsjUH7WWSCWQIpX5kDoMGkxG6xOW+NMMIYG8/yfzVxxVnlbY7Zy5jRpYTVo8ipns6E4HMbadT/clQ6jPjLkgTsQrZviDAC2t9tx+RqXgu6xJug0qpKLs1SK40uPnsPmViv2b2pW5lzSQdRDJRYz+biQNjpZjpkzANjbK+WTHSyhtXHMG8bxES9u2toq6/F2oxYvWevCw33jZZ1jtckUZ6ScVYwc5SwB4IOc8y0ArgDwHsbYVgCf4Zzv5JzvBvBLAP9YvdNcvQSpOCOIumdr2rGx300ZZ/nQqlX4zJ07MRuM4XO/PwugfGMIp0kLg1ZVdnHmDVW+yHCZq6mcxRZZq4uZs0qUs3AsCU8oPk85Y4yht8Gc17HRE4rDaa7dxVhPgwkOkxZHhzxw++urOPvsnbvwlTddqtjx1CqGtY3mkouzh/rGcX4qiPfsX6+IagZI3UANZp1ibY0XpoKwGjTLFpOwudUGi15TUt7Z79MKWLF5s2xu3tqK81NBnK/QdbMaiOKMcs4qp2hxxjkf45wfTv+/H8BJAB2cc1/Ww8wAandCsY4JUFsjQdQ9W9tscAeimQs3KWe52dZux7v3rUM4nqwo60q0hInMrlLxZLK7yl/oOdJtjUq60QFANJGEP5pYtAg169QwaFUVBVFnbPTt82f9ehtzZ51xzivKg1sKGGPY1elIK2cxNFpr91wXotOoFMl7y2Z9c2mOjZxzfPHAefQ2mPCyHW2KnkuXy5TXaKZULrgDWNdkUax4LBW1imFPj7Mk5eyhvgmsaTRjXZP868FL04VcLbY2+kg5U4ySZs4YY70ALgHwXPrfn2CMDQG4C6ScVYVgVLIvJuWMIOqXbemB/l+/OAabQaPojM5K4703rMemFmvGMKBcOhxGjJRpCCKyuyr5PbnMWsSTHMGYsqGxwo1xoZU5Y6zirLMxr7DRN867vbfBhOHZEGKJ+Tb9wVgSiRSvyDhlKdjd5cDpCT9iyVRdZJxVk/XNFgzNhmSHGT9x1o3jI1686/p1UCtspNLlUi7r7MJUMJOTt1xc3uvE6Ql/RnkvhD8Sx7MXpnHT1paSCsoOhxHb2m01WZxRW6NyyC7OGGMWAD8C8FdCNeOc/x3nvAvAAwDem+d572SMHWSMHZyamlLinFcVgaj0Zjfrld09Iwhi6diSLs6GZsLobTQv2+5uPaDXqPH9d15RcTtXu738IGqxyKjUrRGA4o6N0+mZsoVtjYAIoi7/9cTPq90xXznraTAjxRcbrIjvTUm3xmogwqiB+sg4qyYbmq3gHLLb4r544BxabQa8ak+H4ufS7ZL+RhMVZvMFowmMeSOKRTCUy16RdzZQvLXxdycmEE/ykloaBTdvbcXhwdmMcVKtQMWZcsgqzhhjWkiF2QOc8x/neMj/A/CaXM/lnH+Vc76Xc763qamp/DNdpQSEcmYg5Ywg6hWbQZtxJyMb/eI4zbpF6k2ptDuMmPJH84YnF0K0NVbiOuYSxZnCc2fT6YIo12yNUspZi21BW2N6RrJ/gSnIXPtnbS/GdlFxlqEUx8ZDAzN47uIM3nHdWsXbKwHJFCSR4pn3Xbn0jUlTNhtbrEqcVtns6nRAq2ZF887iyRS+8MhZbG614tJuZ8mvc+v2VnAuFXi1BBVnyiHHrZEB+AaAk5zz/8i6fUPWw/4EwCnlT48gQxCCWBlsa7MDmFvoEtVFqD/jZSz8lFhkCJOMSkOhFyKCul3mxUVGk1VXYXEWTudrzV+Iiw2F/gWmIHPtn7WtnLnMukybbD3NnFWD3kYTVExecfalA+fhNGnxp5d3VeVcMllnFTo2Hh6QiqE93Y5KT6kijDo1tnfYi+adPXhwGAPTIXz4lk1lOXFubLFgbaMZv31xrNxTrQrecBxmnRpaNaV0VYqcn+DVAN4E4Ia0bf4RxtjLAHySMfYiY+wYgJsBvL+aJ7paCUQSUDHAqGDuC0EQS48IkiXlbGmoJOvME4rBqFVXpBaIVj+PjPmTUpibOcutnM0EY0imyjMhGfVE0OZYHPzdaNHBotcsMgWZTX9vzhpXzoC51sbVrpzpNWr0NhR3bOwb9eEPpybxtqvXwKSrzuZwl0JB1IcGZtHbYFo0h7kcXNbrwrFhb96Zvkg8ic//4Sz2dDtww+byYgkYY7h1eyuevTBTtaD7cvCG46SaKYQct8YnOedM2Oanv37NOX8N53x7+vZXcM5HluKEVxuBaAJmvYZmVAiiztmTbl/Z3Lq8rTerBWEHP1aGKYgnFK+4VU8UZ0orZ+5ADFo1gzVHN0WjRY8UL/81pYyzxe2kjDH0NJhytDVKr1MPobO372zD5b2uTLvpamadDMfGLz92HmadGm++srdq59FmN0CtYhU5NnLOcXjQgz09pbcHVoPLel2IJVM4PuLNef/3nh3AuC+CD9+yuaJ13W3b25BM8ZoyBvGG42SjrxCkPdY4wWiCWhoJYgVw9foGPPzX12F7h325T2VV0Jq2gy/HFMSjwA6wzaiFis0VMEoxHYiiwazPubATqtB0sLzWxjFPBO32xcoZIMU/LFTOMjNnNRxCLbhlWyt+8K4rFQt0rmfWN1tw0R3EhC+SU2W96A7iV8dG8cYre6paeGvUKrQ7DBU5Ng7NhOEORHFpjRRn4jyev7i4tdEfieOLB87h2g2NuHJdQ0Wvs73Dhk6nEb+podZGUs6Ug1b9NY5QzgiCqG8YY9iwzAPrqwmDVo1Gi76srDOvAsqZWsVgN2oxo3BxNhOM5WxpBOZMQtz+GNBa2nH9kTj80QTaHLmNWHoaTPjdiXEkkilo0jMls6EYLHoNdBra560ntrTZkEhxvORf/wAVk+YXm6zSV7NVj353EBq1Cm+/Zk3Vz6XbZapo5uzQoFQE7SnDWKMauMw6rG+25Jw7+58n+zEbiuNDN2+q+HUYY7hteyu+9XR/zRRFvnC84ggUQoI+UWucAClnBEEQZdHhMJSVdeYJxxRRg5xmXWYuSyncwVhOG30AaLRKylk5piBzGWf5lbNEis+b4fOEamNRSJTGbdtb8bU378U/37EN792/HjdtbUaHwwBvKIanz7lxbNiLt17di2Zr7veCknQ5TRXNnB0e8MCi1yy7U2M2l/U6cXBgFqksVXI2GMPXnriAW7a1zHMPrYRbt7chnuR45FRttDbWSpG4EqBVf41DbY0EQRDl0e4w4qwMV7qFeMOVK2eANHem9MD+TDCKtY25TWVEW2MlxVl7HuWsN/2a/dOhjKmNJxTLuFIS9YNWrSqYr8U5X7I59y6XCe5ADKFYoizjkUMDs7ik26F4QHYl7O1x4X+fH8KZST82t0pGUPc/dh7BWAIfVEA1E1zS5UCLTY/fHB/Hqy7pVOy45ULFmXKQclbjSG2N5NRIEARRKu0OKeSW89LcCz2huCKzNk6T8srZdCC/cmYzaKBTqzBVTnGWVsTyK2dSu9JAlinIbChe8wHUROkspQHZnGNj6e3HgWgCp8Z9uKRGWhoFl6+RwqhF3tmEL4JvPd2PV+3uUFThU6kYbt3WisfOTGVil5aLeDKFUCxJxZlCUHFW4wSjSVj09GYnCIIolXaHEaFYMpNbJodIPIloIqVMW6NJK0s5mw3GkEimij4uHEsiFEvmnTljjKHBopNmzkpk1BsBY4sDqAVNVj2MWjX63XMtaLRTTlRKdwV2+seGPEhx1IwZiKDTaUSLTZ+ZO/vCI2eR4hx/fdNGxV/r1u1tiCZSePT0lOLHLoVMNmQdOLfWA1Sc1TjSzBkpZwRBEKXSkc7sKiXrTDgQKlF0uMw6zIRiBZW7UCyB6z9zAN948mLR4wkXxoY8yhkgtTaW1dboCaPJos8bICvs9OcrZzFSzoiK6HJKbbTlODYeSodP71ZohkspGGPY2+vCCxdnMDgdwvefH8IbLuvOqIRKcvkaFxrMumV3bRSfObUeSF8vUHFWw3DOya2RIAiiTMT81GgJpiCesKQ6KTFz5jDpEEukEM4TSAsAz12YgS+SwMH0QrMQ04F0ALU5f9huo0VX9sxZPqdGQW+DOZN1lkxxeMPxugigJmoXl1kHs05dlmPjocFZbGyx1KR6e1mPE6PeCD76o2PQqBn+8ob1VXkdtYrh5m2teOTUZN7g66Xg9LgfALCh2bJs57CSoOKshokmUkimOCwGKs4IgiBKZa44K105cyiinEnHKBQK/fhZqR3p5Jiv6PHEcfK1NQLlK2ej3nDejDNBb6MZQzNhJFMc/kgcnAN22iknKoAxhi5X6Y6NqRTHHwc9NdfSKNjbK82dPXNhGm+5qhfNedqFleC27a0IxZJ4/MzytTaeGvdDq2ZY10TFmRJQcVbDBNIDnuTWSBAEUToNZh10GlVZxZkSsxOixcdTwBTkibNuAMDwbBi+SOHZOFF0FVTOrHpMB2LzbLyLwTnHmCeCNnsx5cyEWDKFUU84Y3RCyhlRKVJxVpohyAV3AN5wvObMQARb2myw6DWw6jV413XrqvpaV65rgN2oxW9fHK/q6xTi5JgP65oslHmoEPRTrGGE+465DHtZgiCI1Q5jDB0OY0kzZ770YLsSsxPCVTGfcjbqCePcZABXr28AAJwa8xc8nlzlLJFuOZSLNxxHOJ5Eu6Pw7r6w0B+YDmE2Ha5NM2dEpXQ5TRicCZXkqirmzWpVOVOrGD5y6yb866t3wFlgRlQJtGoVXrqlBQ+fnEAsUdxYqBqcGvNjS5ttWV57JULFWQ3jj6SLM1LOCIIgyqLdYShNORMzZwq0NYrCRRQyC3ki3dL4zvTOerHWxulgDHqNCiZdfpOoxnThVkpro5jJK6qcNUqGBv3TQXgVVBiJ1U23y4hwPInpEjIBDw944DBp82b+1QJvvrIXr9jVviSvddv2VvgjCTx93r0kr5fNbDCGcV8Em1trJwi83qHirIYRypmVZs4IgiDKot1uLM0QJBSHVs0KFkByES1/+ez0Hz/rRotNj+s2NMJp0hYvzgIxNFr0BXOomtJB1KVknY150xlnRZSzFqsBeo0KA9NBUs4IxRAuhqU4Nh4anMWebueSZrLVMtdsaIRFr1mW1saT49LnFilnykHFWQ0TjJFyRhAEUQntDiMm/BHEZeSIAYAnHIfdqFNk0Wc3asEYcgZRJ1McT55149oNTWCMYUubTYZyFs0bQC1otErFmTsgX4UY80rFa3sR5UylYuhtMOOiO0QzZ4RilJp15gnFcG4yULMtjcuBQavGDZub8bsT47IyE5VEtGNvbiPlTCmoOFsGOOf48+8exA9eGCr4ONHWSDlnBEEQ5dHhMIJzYNwrTz3zhuKwG5XZENOoVbAZtDnbGo+PeOENx3HdxiYA0q7z6Qk/kgWMPKYDsYLzZoA0cwYAbn9pyplaxdBkzW80IhBZZ95QDIwBVgMVZ0RldDpLK87+OOQBAFzS7ajSGdUnt21vxWwojucvzizp654a96HBrMuo9kTlUHG2DBwe9OB3Jybwi2OjBR8XjEqZFRY9XfwIgiDKoVQ7fU84pmiQqsusy6mcPXFmCowB16xvBCAVZ5F4ChfdwUWPFcwEYwWdGgFpVk6tYiXNnI15Imix6qFWFVcLexvNGJgJYToYgz39WgRRCUadGk1WvWzHxsMDs1CrGHZ1Oqp7YnXG9ZuaYNCq8Jslbm08mTYDoRZT5aDibBl48KCkmJ0s4syVcWsk5YwgCKIshAPhqFdmcRaKK2IGInCYtDlnzh4/O4Xt7fZMm+KWdEtQvtZGzjncgWhR5UylYmgwlxZEPeoNFw2gFvQ0mBBLpHBq3K/oz4lY3XQ5jbJnzg4NzGJLm5VGPhZg0mmwb6PU2lhKlEYlJJIpnJnwkxmIwlBxtsSEYgn84ugojFo13IEoJv35W238ZKVPEARREXPKmcy2xnBcUQdCl0m3qK3RH4nj8KAH121szNy2vtkCjYrlLc5CsSSiiRQaZNhyS0HUpc2ctRUJoBb0pu30XxzxKqowEqubbpcJQ7PFi7NEMoWjQx7sqdF8s+Xmth2tmPRHcXhwdkler386hGgihc1kBqIoVJwtMb8+Po5gLIl37xPWyfnVs2A0AbNODRW1jRAEQZSFQatGg1knO+vMG4rDYVSu6HCYdIuUs2fOTyOZ4rh2Q1PmNr1GjfXNlrzF2XS62CpmCAJIpiBylTPOOca8kUwRW4yeBmk+KJpIkRkIoRhdLhNGPeGixj2nJ/wIxpJkBpKHGzY3Q6dW4ZfHxpbk9cTn1RYyA1EUKs6WmB8cHMKaRjPedEUPgMK5NsFogmR7giCICml3GGXNnMWTKfijCTiUVM7M2kUzZ4+fnYJZp160+y85NubesJsOSsVWo4yh+0aLLlPMFWM6GEMskZKtnLXbjdBppKUDKWeEUnQ5TUhxaf6xEIfT4dOknOXGatBi/+Ym/Or4WEFzIaU4Ne6DWsWwvtlS9ddaTVBxtoRcdAfx/MUZ3Lm3E06zDu12Q8HizB9NwELFGUEQREW02eUFUfvCUhGlZHHmMOkQjicRiScztz1x1o0r1zVkihzBljYrxn0RzOSYUStFOWuy6DEViILz4ouzMZkB1AKVimWsz5X8ORGrG7lZZ4cHPWiy6tHplPd+XY3csbsDU/4onr0wXfXXOjXmx7omM/Qa8kZQEirOlpAfHhqCigGv2dMJQNol7RstrJxZKICaIAiiItodRozMhosWK550cWZX0OhCFFNi7mxgOoiB6dC8lkaBCHHNtWknlLNihiCApK7FEqnM3HIhhFFKe5EA6mx6062NFEBNKEWXSyq2To0Xzvo7NDCLSyl8uiA3bG6GRa/Bz46MVP21To75KHy6ClBxtkQkUxw/PDSMfZua0WKTLoJb2my44A7O21HNRpo5o+KMIAiiEjocRgRjSfgihYsVT0goZ8oVHWIuS6hhj591AwCu3dC46LGFizPp+cWs9AGg0Sqdv5yss7G0oihXOQOAnrQpCClnhFK0243Y1WnHp397Gg+dyG0FP+WPYnAmhD09jqU9uTrDoFXjlm2t+M2L43nXl0rgDcUx6o1gcysVZ0pDxdkS8fjZKUz4onjd3s7MbVvbbUimOM5OBHI+JxBN0swZQRBEhcjNOvOGpQJISeVMqEui8HvizBQ6nUasaTQvemyjRY8mqx59uYqzQAwmnRpGXfH2oUwQtYy5szFvBDq1SpYLpEAoZzRzRiiFSsXwnbe9BFvabfiLBw7jVzkMLYQDIZmBFOeO3e3wRxJ49PRU1V5DqJybyQxEcag4WyIePDgEl1mHGza3ZG4Tu6R9Y96czwlE47BQxhlBEERFZLLOihRnGeVMyeIsXfTMBGOIJ1N45vw0rt3QlLctK58pyEwwJqulEcguzmQoZ94IWuz6klyB1zdLi7Fma3EVjyDkYjdp8b23X45Luh34y/89jJ/8cXje/YcHZqFTq7Ct3b5MZ1g/XLWuAY0WHX5+tHqtjULh30ptjYqz6ouzJ85O4Q8nJ6r6GjPBGB7um8CrLumYNwDe4zLBpFPndecKRpM0c0YQBFEhHUI58xZ2gvNWwRBkTjmL4ciQB/5oAtflaGkUbGmz4tykH7HEfEtxdyAKl4yWRmBuLk1ecRYuqaURAK5Y68J33345XrLGVdLzCKIYVoMW337b5bhibQM+8IOj+L8XBjP3HRqYxbYOGwxa2rQuhkatwu072vCHk5PwR+LFn1AGp8b9cJq0tElTBVZ9cfbFA+fwud+frepr/PSPI4gnOV63t2ve7SoVw+ZWa84WFgAIkJU+QRBExTRa9NCqmSzljDFpgagUjszMWRxPnJmCigFXrc9fnG1tsyGe5Dg/Nb/dfSYYQ6PM1kOXSQfG5M2cjXoiaJdpoy9gjBVU/wiiEkw6Df7n7stw3YYmfPRHx/GdZ/oRS6RwbMSLS8lCXzZ/srsD0UQKD52ojgBxctyPza02+hyoAqu+OLus14W+MR+CMlytyoFzjh8cHMKuTjs2tS7uy5VaWHyLXMRiiRRiiRQsZAhCEARRESoVQ5u9eNaZNxyHzaCFuoQWv2Jo1SpYDRrMhmJ4/Kwbu7scBWfatuYxBZkOxGTZ6APSrrnLpMNUkZmzZIpjwhdBm8wAaoJYKgxaNb765ktx09YW/OPPTuBjPz6GWCKFPTRvJps93Q50Oo342dFRxY+dTHGcHienxmqx6ouzvb0uJFMcR4Y8VTn+iyM+nBr3484Fqplga7sN/kgCw7PzFw2iWKS2RoIgiMppdxTPOvOEYlVxIHSadLjoDuLYsCenhX42axrN0GlU84ozzjmmg1E0yAigFjRa9EXbGt2BKBIpXrJyRhBLgV6jxpfu2oPbd7bhx4el2SkyA5EPYwx37G7HU+fc+P/t3Xt01OWdx/H3N1dyJYQESBAIqEgQuZmoq1YNtqvSFapVqLXoKdvtrruntbv12lq7Xbd7obveu7audLdWzyputfVUq7U13m8EF4uaIIhcDRAIJCEQcnv2j98MmYRJMpPMZC75vM6Zk5nf/H7ze/Jl+E2+8zzP92kIoRc9HNv2t9LW0a1iIFEy6pOzBVMLMIO1Wxuj8vpranaQmZbCpfNKgz7fX+nkQ77kTMMaRUSGr7Qgi08PDjzn7OCRjogWA/Ebl5PB65v30e3gvJkDJ2dpqSmcMjGv11zklqOddHQ5ikIsCAJeOf3BkrNPh1BGX2QkpaemcM/y+Xz5zKmcN7P42FJEEpol8ybT1e14dsPx1S+Ho263d30qVxn9qBj1yVn+mHRmTcqnZuuBiL92W0cXv16/i0vmTOp3GMusSXmYcdy8M39ylqvkTERk2CYXZLG7uY3Oru5+9zl4uIOxUSgPPy47nc5uR96YNOadMHilufKSvF7D3ff7hieGOqwRQus5q/cVSCkJYwFqkZGWlprCP112Gg+vPCPWTUk4p0zKY9akPJ6O8NDG2vpmUgxOnpgb0dcVz6hPzgAqy8bx7vYDA35oD8XzH+ymua3zuEIggbIz0pg+Pue4nrNWJWciIhFTWpBFV7djbz/De2rrm6nb3czkKCQqhb6E79yTikhLHfxjt7wkn/2t7ceGIjW2ej/DHtbYMvCcM3/PWal6zkSS1pL5pazbdoAdjYcj9pq19S3MKM5V5cwoUXKGN+/scHvXsW7aSHmiZicnjMvirBnjB9wv2Lo2GtYoIhI5Ay1EffBwO3/5i3WMzUrnbz83M+Ln9i/WPNh8M7+eNTC9L+38i0mHs1B0UW4mRzq6Bix2Vd/Uxpj0lKjMsxOR+HDpXG9aTSR7z+p2NzMrSJE7iQwlZ3g9ZxDZeWc7Gg/z+sf7uPL0KYMu7jm7NJ/tjYd7rUWhYY0iIpHj7xHb1Sc56+p2XP/YeuqbjvDAV05nQl7ke86K8vzJWf8l9AP553H4v7RrbPUlZ+HMOQthrTP/GmcqhS2SvKYUZlMxbRxPr49Mctbc1sHOA0dUqTGKBk3OzGyKmVWbWa2ZfWBm1/u2/8jM6szsj2b2lJkVRL21UVIyNovJBVkRnXf2zIZ6nIPLF04edN9yX7WbwJ47VWsUEYkcf9GLvkVB7nrhI17+qIEfLJnDwiitofSlyqmsvraCKYXZIe0/NjudyQVZx4a77/clWGHNOfMtDDtwctZGiSo1iiS9pfNL2binhbrdwdfVBa8qbM3WRto6ugZ8rY3+YiCq1Bg1ofScdQLfds6VA2cBf2Nms4EXgDnOubnAR8Ct0Wtm9FWUjWPt1sbj1hsbqhdr9zK7JD+kD+NgFRsPHfX+c2idMxGR4cvJTKMgO73XsMbnP9jN/dWbWV4xhavO6H9u8HAV5mRwYfnEsI7xFwUBb1hjXmYamWmhz+8o9s1Paxhg3ln9wTZVahQZBRafVkJqivXbe/b+riaW//QtrvjJm3z/1x8M+Fp1vuvSLFVqjJpBkzPnXL1z7l3f/RagFpjsnPudc84/mP0t4IToNTP6KsoK2dtylB2NA6+DE4qDh9up2dbIheUTQtp/Uv4YxmWn8+GnPclZ67E5Z5psKSISCaUBC1Fv3nuIb695j3knjOUHS0+Nu6F95SX5bNnXSltHF42t7WENaQRvzhn033PW2dXN3pY2SlWpUSTpjc/N5NyTivj1+k97dULsP3SUW5/cwKX3v8bmhkOcN7OYx2t2sG5b/yPJane3MDYrXb3uURTWnDMzKwMWAG/3eWol8Nt+jvm6mdWYWU1DQ8OQGjkSIjnv7KWNDXQ7Qv6m1Mx8RUECe846GZOeElJlLxERGVxpQRa7Dh6hpa2Dr/+ihsy0FB74yulxWXGsvCSfrm7Hpj2H2N96NKwhjdAzP81fhj+Qc45nNtTT7bTGmchosXR+KbsOHuHd7Qfo6Opm9WufcMG/vcQTNTv46tnTqb7hAh64eiElY8dw26/e77eCeW19s28ZqAh8obVqFVRX995WXe1tH8VC/svfzHKBXwLfcs41B2z/Lt7Qx0eDHeece9A5V+GcqyguDq1SVSzMnJBH3pg0agb4tiBUf6jbS1FuBnMnD76ejV95ST51u1uO/Wc4dLRTxUBERCJocsEYdh08wrfXvMe2/Yf58dULj1VxjDc9FRub2H+oPawy+uAt3luQnd6r58w5xysfNfCFH7/O9Y+tZ0ZRTsgjPEQksf3pqZPITEvh7t9v4pJ7XuWO33zIgqnjeO5bn+H2S2czNiudnMw0bv+z2dTWN/Pwm9uOe43ubsfG3S2RKwZSWQnLlvUkaNXV3uPKylGduIWUnJlZOl5i9qhz7smA7dcCfwZc7SI1WStGUlKMimnjqBlmz1lHVzcvb9xL1SkTBq3SGGh2ST5HO7vZur8V8IY1qoy+iEjklBZk0dLWye8+3MN3FpcPusxJLE0rzCY7I5Xa+hb2t7aHVUbfL3Ah6nc+aWT5T9/imp+9w75D7ay6Yi6/+9vzmJivoUkio0FuZhqfnT2RVzfto6Orm4euqeDnX63kpAm9C3tcPGcS588s5s4XPmJvc+8CSjsOHOZwe1fkioFUVcHq1bB4MSxcCJ//PFx+OXz8MRw5ApddBg89BO3tvRO3JDfoX//m9VuuBmqdc3cGbL8YuBk43zkXuZXtYqiirJDqjRs50NrOuCF8EAKs23aA5rbOsL+N7PmWtIWTJuRxqK2THBUDERGJGH8v2dL5paw8pyy2jRlESopxyqQ8Pvy0mQNDmHMGXjn9jbtbuOZn7/DKRw1MyMvkjqWnsrxyKhlpGjIvMtrcesksLphZzJL5pf0WGDIzfrDkVP707lf4x2dqufeqBceeq41GMZC33oK2Nvi//4OUFHjwQe/m9xd/AXfcAYcPw5o1XkKX5EK5Op8DrAAWmdl6320xcD+QB7zg2/aTaDZ0JFRM8+adDTQRcjAv1u0lIzWFc0NcbNTvpAm5pKfasTf+oaOdKqMvIhJBVbMmcNvny/mXy+fGXQGQYMpL8lm/4yCd3Y7CnPCGNQIU541hy75WNuw8yHcXl/PyjVWs+JMyJWYio9QJ47K5smLKoJVfy4pyuO78E3n6vU95Y/O+Y9tr61tIMZg5MUI9Z/v3w113QWYmfO97UFgIzzwD27fDe+95vWXnnus9Pv/8UZGYQQg9Z86514Bgn2LPRr45sTVvSgHpqcbabY18dnZ4ZY/9fl+7hzNnFIY9XywjLYWTJuQdq9jY2t4ZlcVQRURGq9zMNL72mRmxbkbIZpfk0+6bh1w0hJ6zr39mBgunFnBlxRTNYRaRsFx3wYn8av0ubvv1+zx3/XlkpKVQt7uZsqIcsjIiVETp+uu9XrPVq2HlSi/5Wrasp4esuhrq6mDCBHjqKXj+ebjoosicO47p67MAY9JTOW3yWNYNcTHqT/a1sqWhlQtnDW2CdeC6NofaNOdMRGQ0C5x0H261RoDTThjLV8+ZrsRMRMI2Jj2Vv19yKlsaWvnPV7cAXs9ZeaSGNDY2whNPeD1iK1d626qqvMRs7dqeOWZr1sAjj0B3N3zxi8cXCUlCSs76qCwr5I87mwZdIT2YF+v2ArBo1tB63WaX5LO35Sj7Dh3l0NEufaCKiIxiXrlq7/74IQxrFBEZjqpTJnDxqZO478VNbNzdwvbGw8yaFKEhjXfd5RX6uO++Pietgptu8hI0fw/a5z4HF1/sPf/yy5E5fxxTctZHRVkh7V3dbNjVFPaxL9bt4eQJuUwdnz2kc8/2fUtaW99M69FOcrUAtYjIqJWTmca0Qu/zZCjDGkVEhuv2S2eTYsZfPbIOIDJl9A8cgHvv9XrCTjst+D433dR7jtmPfuRVcGxuDr5/ElFy1sfp04a2GHVLWwdvb2kMeeHpYPxv+A27mjjS0aVhjSIio5z/c2GoFYRFRIajtCCLb154Mp/s85Z6mhWJMvp33+0lWbffHvoxc+Z4wx/vvx+2bBl+G+KYkrM+CnMyOLE4h5ow5529umkfnd1uWAt6jsvJoGTsmGNz3jSsUURkdFsyr5RL55WSnqqPaxGJjZXnTOfkCbnkj0ljsm9JkiE7eBDuucdbw2zu3PCO/Yd/gPR0uPXW4bUhzulqH0RlWSE1Wxvp7g59Xe3f1+6hIDudBVMKhnXu8pJ8arYpORMREbjktBLuC1hnSERkpGWkpbD62koeurZy+MuQ3HMPNDWF12vmV1ICN97ozUV7883htSOOKTkLoqKskOa2TjY3HApp/65ux0sbG7hgZjFpw/x2c3ZJPk1HOgA0rFFEREREYm7q+GzOmF44vBdpavKGNC5dCvPnD+01brgBJk3yfrrQO1ESiZKzICrLwpt3tn7HQRpb21k0jPlmfoETLbUItYiIiIgkhXvv9YY1fv/7Q3+N3Fy44w544w148smINS2eKDkLYmphNsV5mSHPO3uxbg+pKcb5M4uHfe7ygImWGtYoIiIiIgmvqckrn79kCSwY5lDtffugrAxuvtkrxw/e+merVg27mfFAyVkQZkbFtHEh95z9oXYvlWXjGJuVPuxzTxufQ7Zv5fWcDCVnIiIiIpKAVq3qWTT6vvu8EvqLFw8/iTrzTG8R648/hgce6FmwurJy+G2OA0rO+lFRVsjOA0fY3dQ24H47DxymbncLFw5x4em+UlOMU3wL/OVpWKOIiIiIJKLKSi9p+s1v4M474ayz4Lbbhp9EVVXBU095lRtvuQWuvLJnweokoOSsH/55ZzXbBu49q67bC8CiYZTQ78s/70wFQUREREQkIVVVeUnT8uVer1ldXeSSqEWLYMUKaGvzkr4kScxAyVm/Zpfkk52ROui8sz/U7WV6UQ4nFudG7NyL55RwzknjIzJMUkREREQkJqqqYNYs7/43vhG5JKq6Gp5+GoqK4Pnne4ZPJgElZ/1IS01hwdSCAeedHW7v5I2P97NoVuR6zQDOPbmIR792Fqkpw1xLQkREREQkVqqrYft2+M53euaHReI1ly3zeuFuuAE6O+GLX0yaBE3J2QBOn1ZIbX0zz71fz6Y9LRzt7Or1/Oub99Pe2c2FEU7OREREREQSWmAS9cMfej+XLRt+ErV2bc/wyKuvBjO49FJvexIwN4ILuFVUVLiampoRO99wvbv9AFf+5E26ur0YpRiUFmQxvSiH6UU51O1uofbTZtZ973NkpCnPFREREREBvKqMlZW9hzJWV3tJ1E03Re48n/0sfPIJbN7sJWoJwMzWOecqgj6n5GxgzW0dfNLQyif7jr8dOtrJ5Qsmc+fy+bFupoiIiIjI6PPww3DttfDaa3DOObFuTUgGSs5UDnAQ+WPSmTelgHlTCnptd86xv7Wd/DEq2iEiIiIiEhOXXw7XXeclaQmSnA1EY/GGyMwoys3UcEYRERERkVjJzfUKgjz+uFdaP8EpsxARERERkcS1YgU0NXkLXic4JWciIiIiIpK4Fi2C0lJvaGOCU3ImIiIiIiKJKzUVvvIV+O1voaEh1q0ZFiVnIiIiIiKS2Fas8BakfuyxWLdkWJSciYiIiIhIYpszBxYsSPihjUrOREREREQk8V1zDdTUwIcfxrolQ6bkTEREREREEt9VV3nzz37xi1i3ZMiUnImIiIiISOKbOBEuuggeeQS6u2PdmiFRciYiIiIiIsnhmmtg50546aVYt2RIlJyJiIiIiEhy2LwZsrN7FwaproZVq2LXpjAoORMRERERkeRw9tnekMbHH4fWVi8xW7YMKitj3bKQKDkTEREREZHkUFUF//zP0NbmLUy9bBmsWeNtTwBKzkREREREJHl885swdiz86ldw3XUJk5iBkjMREREREUkmL78MZnDjjfDAA97QxgSh5ExERERERJKDf47Zk096RUDWrPEeJ0iCNmhyZmZTzKzazGrN7AMzu963/Urf424zq4h+U0VERERERAawdm3vOWZVVd7jtWtj264QmXNu4B3MSoAS59y7ZpYHrAO+ADigG/gpcINzrmawk1VUVLiamkF3ExERERERSUpmts45F7RzK22wg51z9UC9736LmdUCk51zL/hePJJtFRERERERGZXCmnNmZmXAAuDtMI75upnVmFlNQ0NDmM0TEREREREZHUJOzswsF/gl8C3nXHOoxznnHnTOVTjnKoqLi4fSRhERERERkaQXUnJmZul4idmjzrkno9skERERERGR0SeUao0GrAZqnXN3Rr9JIiIiIiIio8+gBUGAc4AVwAYzW+/b9h0gE7gPKAaeMbP1zrmLotJKERERERGRJBdKtcbXgP5KMj4V2eaIiIiIiIiMTmFVaxQREREREZHoGHQR6oiezKwB2DZiJwxdEbAv1o0YBRTn6FOMR4biHH2K8chQnKNPMR4ZinP0KcaRM805F7SM/YgmZ/HKzGr6W6VbIkdxjj7FeGQoztGnGI8MxTn6FOORoThHn2I8MjSsUUREREREJA4oORMREREREYkDSs48D8a6AaOE4hx9ivHIUJyjTzEeGYpz9CnGI0Nxjj7FeARozpmIiIiIiEgcUM+ZiIiIiIhIHEio5MzMLjazjWa22cxuCdj+uJmt9922mtn6fo4vNLMXzGyT7+c43/arA45fb2bdZjY/yPGP+s7/vpn9zMzSfdvNzO71teuPZrYwOhEYGXEc51lm9qaZHTWzG6Lz24+cOI7z1b738R/N7A0zmxedCERfHMd4qS++682sxszOjU4ERkYU45xuZj83sw1mVmtmt/Zz/HQze9t3/ONmluHbnjTX5jiOsa7LvY+PVpx1Xe7ZL1ox1nW59/FRiXPA85Vm1mVmV0Tw104OzrmEuAGpwMfADCADeA+YHWS/fwdu7+c1VgG3+O7fAvxrkH1OA7b0c/xiwHy3/wGuC9j+W9/2s4C3Yx2vJI3zBKAS+CFwQ6xjlcRxPhsY57t/SaK+n+M8xrn0DCufC9TFOl7xGGfgy8BjvvvZwFagLMjxa4Av+e7/JNmuzXEeY12XRybOui5HP8a6Lo9AnAPa9yLwLHBFrOMVb7dE6jk7A9jsnNvinGsHHgOWBu5gZgYsw/sjKJilwM99938OfCHIPlf1d7xz7lnnA7wDnBDwug/7nnoLKDCzkpB/s/gSt3F2zu11zq0FOsL6jeJTPMf5DefcAd9ub9HzPk808RzjQ75tADlAIk/+jWacHZBjZmlAFtAONAd57UXA/wY5PlmuzXEbY12XjxOtOOu63CNaMdZ1ubdoXZcBvgH8Etgb5u81KiRScjYZ2BHweKdvW6DPAHucc5v6eY2Jzrl6AN/PCUH2WU7/b1TA69IFVgDPhdG2RBHPcU4miRLnP8freUhEcR1jM7vMzOqAZ4CVAx0f56IZ5/8FWoF6YDvwb865xj7HjgcOOuc6g5w/Wa7N8RzjZJIocdZ1OUox1nW5l6jE2cwmA5fh9aZJEImUnFmQbX2/1ej3G+yQTmB2JnDYOff+ILv+B/CKc+7VMNqWKOI5zskk7uNsZlV4fwTcPNQ2xFhcx9g595Rzbhbet4l3DLUNcSCacT4D6AJKgenAt81sRhjnT5ZrczzHOJnEfZx1XR7QsGOs63JIhhvnu4GbnXNdQzj3qJBIydlOYErA4xOAT/0PfN2rlwOPB2z7L9+Ex2d9m/b4h7T4fvbtTv0Sg38D/n2gGPi7UNuWYOI5zskkruNsZnOBh4Clzrn9Yfxe8SSuY+znnHsFONHMikL5peJQNOP8ZeA551yHc24v8DpQ0ef8+/CGK6YFOX+yXJvjOcbJJK7jrOvyyL2XdV0GohfnCuAxM9sKXAH8h5l9YRi/a/JxcTDxLZQbkAZswcvS/ZMbTw14/mLg5UFe40f0nty4KuC5FLw384wBjv8a8AaQ1Wf75+k96fydWMcrGeMc8Pzfk/gTz+M2zsBUYDNwdqzjlMQxPomeiecLgV3+x4l2i2ac8XoH/st3bc0BPgTmBjn+CXpPPP9r3/2kuDbHc4wDntd1ObrvZV2Xox9jXZdHIM599vlvVBDk+NjHugFhNdarvPURXgWa7wb5B/6rQY4fD/wB2OT7WRjw3AXAW4Mc3+k793rf7XbfdgN+7HtuA1AR61glaZwn4f0x3Awc9N3Pj3W8kjDODwEHArbXxDpWSRjjm4EPfNveBM6NdaziMc541dOe8MXqQ+DGfo6fgVdwZbNv/0zf9qS5NsdxjHVdHpk467oc/RjrujwCcQ7SDiVnfW7+bwhEREREREQkhhJpzpmIiIiIiEjSUnImIiIiIiISB5SciYiIiIiIxAElZyIiIiIiInFAyZmIiIiIiEgcUHImIiIiIiISB5SciYiIiIiIxAElZyIiIiIiInHg/wHbpQh3xWpfCwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAE/CAYAAAAdR8HJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACljklEQVR4nOzdeXicZdU/8O89eyYzk32yr02adN8LtCwtoKigIAqovCwqKryiqLi+yg993XEXFwSXFxUXEAREEQRaoLR0JS1t07RNm32yZ7bMPnP//njmmU6SWZ7ZMpnkfK6rV9tZ7ySTmec859znMM45CCGEEEIIIYQsPLJsL4AQQgghhBBCSGZQwEcIIYQQQgghCxQFfIQQQgghhBCyQFHARwghhBBCCCELFAV8hBBCCCGEELJAUcBHCCGEEEIIIQsUBXyEEEIIIYQQskBRwEcIITmKMWYP+xNgjDnD/n9jtteXDMZYN2Ps8myvIxbG2E7G2G0ZeuyljLGnGGOjjLEJxthzjLHWsOvVjLEfMcYGGWOTjLFfMMaUYdfbZ/zxM8buD7v+MsbYCcaYgzG2gzFWH3YdY4x9lzE2HvxzH2OMZeLrJIQQMnco4COEkBzFOdeJfwD0Anhn2GWPZHt9MzHGFAvhOTKsEMDTAFoBlAPYB+CpsOu/CGAjgJUAlgJYD+Ar4pUzXhPlAJwAHgMAxlgpgCcA3AOgGMABAH8Ne+yPArgGwBoAqwFcBeBjaf76CCGEzDEK+AghZIFhjMkYY19kjHUFMzWPMsaKg9c1MMY4Y+yDjLG+YJbodsbYJsbYEcaYmTH2s7DHupUx9hpj7H7GmCWYHbos7PoCxthvGGMmxtgAY+wbjDH5jPv+iDE2AeCrjLEljLGXgusaY4w9whgrDN7+DwDqAPwjmJ36PGNsG2Osf8bXF8oCMsa+yhj7G2Psj4wxK4Bb46ypmTH2cvBrGWOMhQc84c+hCT7mePB7sp8xVs4Y+yaAiwD8LLjGnwVv38YY+08wK9fJGLs+7LH+jzH2QPB6W/D56yM9L+d8H+f8N5zzCc65F8CPALQyxkqCN3kngJ8Grx8F8FMAH4ryUngvgBEArwb/fy2AY5zzxzjnLgBfBbCGMdYWvP4WAD/gnPdzzgcA/ADArVEemxBCSI6ggI8QQhaeT0LI1FwCoArAJICfz7jNeQBaANwA4McAvgzgcgArAFzPGLtkxm3PACgFcC+AJ8QAEsDDAHwAmgGsA/BWALdFuK8RwDcBMADfDq5rGYBaCIEHOOc3YXqm8j6JX+/VAP4GITv2SJw1fR3A8wCKANQAuB+R3QKgILi+EgC3A3Byzr8MIYC6M7jGOxlj+QD+A+BPwa/z/QB+wRhbEfZ4NwafuxRAe3CdUlwMYIhzPh78Pwv+Qdj/axhjBVG+ht9zznnw/ysAHBav5JxPAegKXj7r+uC/w78GQgghOYgCPkIIWXg+BuDLwUyNG0JA9d4Z5Y5f55y7OOfPA5gC8GfO+Ugws/MqhEBJNALgx5xzL+f8rwA6AVzJGCsH8HYAn+KcT3HORyBkpN4Xdt9Bzvn9nHMf59zJOT/NOf8P59wdzFD9EEJgmoo9nPMnOecBAIY4a/ICqAdQFfz6d0V5TC+EQK+Zc+7nnB/knFuj3PYqAN2c898Fv85DAB6HkGET/ZNz/krw5/FlABcwxmpjfVGMsRoIgfpnwi5+FsBdjLEyxlgFhOAeALQz7lsH4fv6cNjFOgCWGU9jAaCPcr0FgI728RFCSG7L9b0OhBBCZqsH8HfGWCDsMj+EPV2i4bB/OyP8Xxf2/4GwLBEA9EDI0NUDUAIwhcUEMgB9YbcN/zcYY0YIZYgXQQg0ZBAykKkIf454a/o8hEzbPsbYJIQSxt9GeMw/QMju/SVYcvpHCEG0N8Jt6wGcxxgzh12mCD7GrDVyzu3BEteqGWsPYYyVQchE/oJz/uewq74JIZPZDsAN4CEIwfnIjIe4GcAuzvnZsMvsEALicAYAtijXGwDYZ/zsCSGE5BjK8BFCyMLTB+DtnPPCsD+aYPYuGdUzsjx1AAaDz+MGUBr2PAbOeXgZ4Mxg4dvBy1Zzzg0A/gvTSxRn3n4KYdmr4F68shm3Cb9PzDVxzoc45x/hnFdByIT+gjHWPPMLDmYzv8Y5Xw5gC4Qs3s1R1tgH4OUZ328d5/yOsNuEsnmMMR2EpimDM583eH0RhGDvac75N2esy8k5v5NzXs05bwIwDuAg59w/42FuxvTsHgAcg9CQRXyefABLgpfPuj7472MghBCS0yjgI4SQhecBAN8UG4MEy/+uTuHxjAA+yRhTMsaug7D37l+ccxOEwOQHjDFDsFnMkhn7/2bSQ8gkmRlj1QA+N+P6YQBNYf8/CUDDGLuSCeMHvgJAHe3B462JMXZdsFQSEDKLHEL2cxrG2HbG2KpggGmFUOIp3m7mGp8BsJQxdlPwe6RkQhOcZWG3eQdj7ELGmApChnEv53xWdo8xZgDwHIDXOOdfjHB9NWOsignOh9Bx894Zt9kCoBrB7pxh/g5gJWPsPYwxDYD/B+AI5/xE8PrfA/iM+BwA7gbwfzPXQAghJLdQwEcIIQvPTyC09n+eMWYD8DqE5inJ2guhwcsYhJLC94Y1EbkZgArAcQgB1N8AVMZ4rK9BGCVgAfBPCGMCwn0bwFeCnTE/yzm3APhvAL8GMAAh49eP2GKtaROAvYwxO4Tv0V0zyh5FFcH7WQF0AHgZQlknIHx/38uEDqc/5ZzbIDSGeR+ErN0QgO9iemD6JwiB2QSADRCauETy7uAaP8imz9OrC16/BMDu4PfhYQBfDO7DDHcLgCeC6woJ7pl8D4Sf4SSE10T4fstfAfgHgDcBHIXw8/lVlHUSQgjJEYxK8wkhhETDGLsVwG2c8wuzvZZcxRj7PwD9nPOvxLstIYQQkm6U4SOEEEIIIYSQBYoCPkIIIYQQQghZoKikkxBCCCGEEEIWKMrwEUIIIYQQQsgCRQEfIYQQQgghhCxQirl8stLSUt7Q0DCXT0kIIYQQQggh88bBgwfHOOdlc/V8cxrwNTQ04MCBA3P5lIQQQgghhBAybzDGeuby+aikkxBCCCGEEEIWKAr4CCGEEEIIIWSBihvwMcZqGWM7GGMdjLFjjLG7gpevYYztYYy9yRj7B2PMkPnlEkIIIYQQQgiRSsoePh+AuznnhxhjegAHGWP/AfBrAJ/lnL/MGPsQgM8BuCfRBXi9XvT398PlciV6V0Ji0mg0qKmpgVKpzPZSCCGEEEIIyYq4AR/n3ATAFPy3jTHWAaAaQCuAV4I3+w+A55BEwNff3w+9Xo+GhgYwxhK9OyERcc4xPj6O/v5+NDY2Zns5hBBCCCGEZEVCe/gYYw0A1gHYC+AogHcFr7oOQG0yC3C5XCgpKaFgj6QVYwwlJSWUOSaEEEIIIYua5ICPMaYD8DiAT3HOrQA+BODjjLGDAPQAPFHu91HG2AHG2IHR0dFoj53wwgmJh15XhBBCCCFksZMU8DHGlBCCvUc4508AAOf8BOf8rZzzDQD+DKAr0n055w9yzjdyzjeWlc3ZfMGEfPOb38SKFSuwevVqrF27Fnv37gUA3HbbbTh+/HhanqOhoQFjY2Mxb/Otb30r4cf9v//7P9x5553TLvvd736HtWvXYu3atVCpVFi1ahXWrl2LL37xiwk//lz48Y9/DIfDke1lEEIIIYSQXHfffcCOHdMv27FDuHyRktKlkwH4DYAOzvkPwy43Bv+WAfgKgAcytchM2rNnD5555hkcOnQIR44cwQsvvIDaWqE69de//jWWL18+Z2tJJuCL5IMf/CDa29vR3t6Oqqoq7NixA+3t7fjOd76TlsdPFOccgUAg6vXJBHw+ny/VZRFCCCGEkIVm0ybg+uvPBX07dgj/37Qpu+vKIikZvq0AbgJwKWOsPfjnHQDezxg7CeAEgEEAv8vgOjPGZDKhtLQUarUaAFBaWoqqqioAwLZt23DgwAEAgE6nwxe+8AVs2LABl19+Ofbt24dt27ahqakJTz/9NIDZ2barrroKO3funPWc11xzDTZs2IAVK1bgwQcfBAB88YtfhNPpxNq1a3HjjTcCAP74xz9i8+bNWLt2LT72sY/B7/cDEDJ4S5cuxSWXXILXXntN8tf6ve99D5s2bcLq1atx7733AgC6u7vR1taG2267DStXrsSNN96IF154AVu3bkVLSwv27dsHAPjqV7+Km266CZdeeilaWlrw0EMPxX3cZcuW4b//+7+xfv169PX14Y477sDGjRuxYsWK0O1++tOfYnBwENu3b8f27dtD32vR3/72N9x6660AgFtvvRWf+cxnsH37dnzhC19AV1cX3va2t2HDhg246KKLcOLECcnfC0IIIYQQsgBt3w48+ihw9dXAxz4mBHuPPipcvlhxzufsz4YNG/hMx48fn3XZXLLZbHzNmjW8paWF33HHHXznzp2h6y655BK+f/9+zjnnAPi//vUvzjnn11xzDX/LW97CPR4Pb29v52vWrOGcc/673/2Of/zjHw/d/8orr+Q7duzgnHNeX1/PR0dHOeecj4+Pc845dzgcfMWKFXxsbIxzznl+fn7ovsePH+dXXXUV93g8nHPO77jjDv7www/zwcFBXltby0dGRrjb7eZbtmyZ9pwzic/73HPP8Y985CM8EAhwv9/Pr7zySv7yyy/zs2fPcrlczo8cOcL9fj9fv349/+AHP8gDgQB/8skn+dVXX8055/zee+/lq1ev5g6Hg4+OjvKamho+MDAQ83EZY3zPnj2htYhft8/n45dccgk/fPjwrO/NzO/DY489xm+55RbOOee33HILv/LKK7nP5+Occ37ppZfykydPcs45f/311/n27dtnff3Zfn0RQgghhJA59tprnMtknAOc33NPtlczC4ADfA5jMClz+ObM1/5xDMcHrWl9zOVVBtz7zhVRr9fpdDh48CBeffVV7NixAzfccAO+853vhLJKIpVKhbe97W0AgFWrVkGtVkOpVGLVqlXo7u5OaE0//elP8fe//x0A0NfXh1OnTqGkpGTabV588UUcPHgQm4LpZ6fTCaPRiL1792Lbtm0Q90PecMMNOHnyZNznfP755/H8889j3bp1AAC73Y5Tp06hrq4OjY2NWLVqFQBgxYoVuOyyy8AYm/W1XX311cjLy0NeXh62b9+Offv2YdeuXVEft76+Hueff37o/o8++igefPBB+Hw+mEwmHD9+HKtXr07oe3fddddBLpfDbrdj9+7duO6660LXud3uhB6LEEIIIYQsMD09wJVXCv/+7GeBX/5SyO4t4gzfvAr4skUul2Pbtm3Ytm0bVq1ahYcffnhWwKdUKkNdH2UyWagEVCaThfaTKRSKaXvVIo0E2LlzJ1544QXs2bMHWq0W27Zti3g7zjluueUWfPvb3552+ZNPPplU90nOOb70pS/hYx/72LTLu7u7Q19LrK8NmN31kjEW83Hz8/ND/z979iy+//3vY//+/SgqKsKtt94adWRC+PPMvI34mIFAAIWFhWhvb4/3pRNCCCGEkMXAbgcuvRSwWIDf/ha49VbgHe9Y9GWd8yrgi5WJy5TOzk7IZDK0tLQAANrb21FfX5/UYzU0NOAXv/gFAoEABgYGQvvfwlksFhQVFUGr1eLEiRN4/fXXQ9cplUp4vV4olUpcdtlluPrqq/HpT38aRqMRExMTsNlsOO+883DXXXdhfHwcBoMBjz32GNasWRN3bVdccQXuuece3HjjjdDpdBgYGIBSqUzo63vqqafwpS99CVNTU9i5cye+853vIC8vT9LjWq1W5Ofno6CgAMPDw3j22Wexbds2AIBer4fNZkNpaSkAoLy8HB0dHWhtbcXf//536PX6WY9nMBjQ2NiIxx57DNdddx045zhy5Iik7wUhhBBCCFlgAgHgppuAs2eBb39bCPaAc3v69u+ngG+xstvt+MQnPgGz2QyFQoHm5uZQI5VEbd26NVQeuXLlSqxfv37Wbd72trfhgQcewOrVq9Ha2jqt5PGjH/0oVq9ejfXr1+ORRx7BN77xDbz1rW9FIBCAUqnEz3/+c5x//vn46le/igsuuACVlZVYv359qJlLLG9961vR0dGBCy64AIBQyvrHP/4Rcrlc8te3efNmXHnllejt7cU999yDqqoqVFVVSXrcNWvWYN26dVixYgWampqwdevWaV/329/+dlRWVmLHjh34zne+g6uuugq1tbVYuXIl7HZ7xPU88sgjuOOOO/CNb3wDXq8X73vf+yjgI4QQQghZjL7yFeDJJ4Ef/xi4667p1y3ykk4m7BucGxs3buRi10tRR0cHli1bNmdrIMn56le/Cp1Oh89+9rPZXkpC6PVFCCGEELLA/fGPQnbvIx8BfvUrIIntT3OJMXaQc75xrp5P0uB1QgghhBBCCJkXwoerv/46cNttwOrVQEPDvA/2smHRl3QSab761a9mewmEEEIIIYScG67+s58J5ZvFxcDAABDcYkSmo4CPEEIIIYQQkju2bwcefhh417sAuRzIzwcef3xR79OLhUo6CSGEEEIIIbnD5QJ+8AOhM6fHA9x5JwV7MVDARwghhBBCCMkNXi9www3ASy8BOh1wzz3CcHVxTx+ZhQI+QgghhBBCyPwXCAjz9Z5+Wgj2nnoK+N//FebsXX89BX1RUMAHQC6XY+3atVi5ciWuu+46OByOpB/r1ltvxd/+9jcAwG233Ybjx49Hve3OnTuxe/fu0P8feOAB/P73v0/6uUXd3d1YuXLltMu++tWv4vvf/35Cj5Ou9RBCCCGEEJISzoGPfxz405+At71NCPrEMs7w4epkFmraAiAvLw/t7e0AgBtvvBEPPPAAPvOZz4Su9/v9CQ0oF/3617+Oef3OnTuh0+mwZcsWAMDtt9+e8HNkis/nm1frIYQQQgghixTnwBe+ADzwAPDFLwLf/vbs2yzy4eqx5FaGL3zmhmjHDuHyNLnoootw+vRp7Ny5E9u3b8cHPvABrFq1Cn6/H5/73OewadMmrF69Gr/61a8AAJxz3HnnnVi+fDmuvPJKjIyMhB5r27ZtEAfN//vf/8b69euxZs0aXHbZZeju7sYDDzyAH/3oR1i7di1effXVaVm49vZ2nH/++Vi9ejXe/e53Y3JyMvSYX/jCF7B582YsXboUr776asJfY6zH/p//+R9ccskl+MlPfhJaz+DgINauXRv6I5fL0dPTg56eHlx22WVYvXo1LrvsMvT29gIQspyf/OQnsWXLFjQ1NYUynoQQQgghhMQ185j/W98Cvvc9YezCt76VvXXlqNwK+MSZG+ILYMcO4f+bNqXl4X0+H5599lmsWrUKALBv3z5885vfxPHjx/Gb3/wGBQUF2L9/P/bv34+HHnoIZ8+exd///nd0dnbizTffxEMPPTStRFM0OjqKj3zkI3j88cdx+PBhPPbYY2hoaMDtt9+OT3/602hvb8dFF1007T4333wzvvvd7+LIkSNYtWoVvva1r01b5759+/DjH/942uXhurq6pgVpDzzwgKTHNpvNePnll3H33XeHLquqqkJ7ezva29vxkY98BO95z3tQX1+PO++8EzfffDOOHDmCG2+8EZ/85CdD9zGZTNi1axeeeeYZfPGLX0zwJ0EIIYQQQhat8GP+++8HvvIVQK0Gvv51GqyehPlV0vmpTwHB0sqoqqqAK64AKisBkwlYtgz42teEP5GsXQv8+McxH9LpdGLt2rUAhAzfhz/8YezevRubN29GY2MjAOD555/HkSNHQtkqi8WCU6dO4ZVXXsH73/9+yOVyVFVV4dJLL531+K+//jouvvji0GMVFxfHXI/FYoHZbMYll1wCALjllltw3XXXha6/9tprAQAbNmxAd3d3xMdYsmRJqEwVODc4Pd5j33DDDVHX9dprr+HXv/51KKu4Z88ePPHEEwCAm266CZ///OdDt73mmmsgk8mwfPlyDA8Px/x6CSGEEEIICRH35F19NWCzASoV8MwzwGWXZXtlOWl+BXxSFBUJwV5vL1BXJ/w/ReF7+MLl5+eH/s05x/33348rrrhi2m3+9a9/gcU508A5j3ubRKjVagBCsxmfz5e2xwWmf83hTCYTPvzhD+Ppp5+GTqeLeJvwr1FcIyB8/YQQQgghhEi2fTtQUiIEfHffDVx+ebZXlLPmV0nnj38M7NwZ+8+99wIOhzBzw+EQ/h/r9nGye1JdccUV+OUvfwmv1wsAOHnyJKampnDxxRfjL3/5C/x+P0wmE3ZEaAd7wQUX4OWXX8bZs2cBABMTEwAAvV4Pm8026/YFBQUoKioKZdL+8Ic/hDJyqUrmsb1eL66//np897vfxdKlS0OXb9myBX/5y18AAI888gguvPDCtKyREEIIIYQsci+8AHR3Axs3Ag89RCMXUpBbGT5xz96jj57rxBP+/wy67bbb0N3djfXr14NzjrKyMjz55JN497vfjZdeegmrVq3C0qVLIwZPZWVlePDBB3HttdciEAjAaDTiP//5D975znfive99L5566incf//90+7z8MMP4/bbb4fD4UBTUxN+97vfpe1rSfSxd+/ejf379+Pee+/FvffeC0DIbP70pz/Fhz70IXzve99DWVlZWtdICCGEEEIWqR07AHHL0ac/LVT3zdEx/0LE5rLcbuPGjVzsWinq6OjAsmXLpD3AffcJmzjDf9A7dggzN8L2jxEiSuj1RQghhBBCsu+++4DBQeAnPwHOnAEaGxfUMT9j7CDnfONcPV9uZfgi/YBp5gYhhBBCCCELx+c/D9x0E1BRATQ0CJfRMX/S5tcePkIIIYQQQgjZs0eYu0djGFJGAR8hhBBCCCFk/hgZAbq6gC1bsr2SBWFeBHzUtp9kAr2uCCGEEEJy0J49wt8XXJDddSwQWQ/4NBoNxsfH6eCcpBXnHOPj49BoNNleCiGEEEIIScTu3YBSCWzYkO2VLAhxm7YwxmoB/B5ABYAAgAc55z9hjK0F8AAADQAfgP/mnO9LdAE1NTXo7+/H6OhoonclJCaNRoOamppsL4MQQgghhCRizx5g/XqATtynhZQunT4Ad3PODzHG9AAOMsb+A+A+AF/jnD/LGHtH8P/bEl2AUqlEY2NjoncjhBBCCCGELDQejzB+4Y47sr2SBSNuwMc5NwEwBf9tY4x1AKgGwAEYgjcrADCYqUUSQgghhBBCFoHDhwGXi/bvpVFCc/gYYw0A1gHYC+BTAJ5jjH0fwl5AaqNDCCGEEEIISd7u3cLfFPCljeSmLYwxHYDHAXyKc24FcAeAT3POawF8GsBvotzvo4yxA4yxA7RPjxBCCCGEEBLVnj1AbS1AfRjSRlLAxxhTQgj2HuGcPxG8+BYA4r8fA7A50n055w9yzjdyzjeWlZWlul5CCCGEEELIQrV7N83fS7O4AR9jjEHI3nVwzn8YdtUggEuC/74UwKn0L48QQgghhBCyKPT3A319VM6ZZlL28G0FcBOANxlj7cHL/gfARwD8hDGmAOAC8NGMrJAQQgghhBCy8IkD1ynDl1ZSunTuAsCiXE3TEAkhhBBCCCGp27NHmL23Zk22V7KgSG7aQgghhBBCCCEZs3s3sGkToFJleyULCgV8hBBCCCGEkOxyuYBDh2j/XgZQwEcIIYQQQgjJroMHAa+X9u9lAAV8hBBCCCGEkOwSG7ZQhi/tKOAjhBBCCCGEZNfu3cCSJYDRmO2VLDgU8BFCCCGEEEKyh3Mhw0fZvYyggI8QQgghhBCSPd3dwNAQ7d/LEAr4CCGEEEIIIdlD+/cyigI+QgghhBBCSPbs3g3odMDKldleyYJEAR8hhBBCCCEke/bsATZvBhSKbK9kQaKAjxBCCCGEEJIdU1PA4cO0fy+DKOAjhBBCCCGEZMf+/YDfT/v3MogCPkIIIYQQQsjcuu8+YMcOYf8eAJx/vvD/++7L7roWICqUJYQQQgghhMytTZuA668HmpuBtjahrPP664FHH832yhYcyvARQgghhBBC5tb27cBf/wrs3QtoNOeCve3bs72yBYcCPkIIIYQQQsjca2gAOAfa24E77qBgL0Mo4COEEEIIIYTMvd//Xvj7wx8GfvlLYQ8fSTsK+AghhBBCCCFzS2zQIpMBP/uZUM55/fUU9GUABXyEEEIIIYSQubV/P7BiBbB6tbCHb/t2Iejbvz/bK1twKOAjhBBCCCGEzK3PfQ7o7gbWrz932fbtwOc/n7UlLVQU8BFCCCGEEELmVl8fMDYGbNiQ7ZUseBTwEUIIIYQQQubWoUPC3+EZPpIRFPARQgghhBBC5tbBg4BcDqxZk+2VLHgU8BFCCCGEEELm1qFDwLJlQF5etley4MUN+BhjtYyxHYyxDsbYMcbYXcHL/8oYaw/+6WaMtWd8tYQQQgghhJDcxrmQ4aP9e3NCIeE2PgB3c84PMcb0AA4yxv7DOb9BvAFj7AcALJlaJCGEEEIIIWSBMJmA4WHavzdH4gZ8nHMTAFPw3zbGWAeAagDHAYAxxgBcD+DSDK6TEEIIIYQQshBQw5Y5ldAePsZYA4B1APaGXXwRgGHO+ak0rosQQgghhBCyEB08CDAGrF2b7ZUsCpIDPsaYDsDjAD7FObeGXfV+AH+Ocb+PMsYOMMYOjI6OJr9SQgghhBBCSO47dAhobQV0umyvZFGQFPAxxpQQgr1HOOdPhF2uAHAtgL9Guy/n/EHO+UbO+caysrJU10sIIYQQQgjJZdSwZU5J6dLJAPwGQAfn/Iczrr4cwAnOeX8mFkcIIYQQQghZQIaHgYEB2r83h6Rk+LYCuAnApWFjGN4RvO59iFHOSQghhBBCCCEhYsMWyvDNGSldOncBYFGuuzXdCyKEEEIIIYQsUGLARw1b5kxCXToJIYQQQgghJGkHDwItLUBBQbZXsmhQwEcIIYQQQgiZG4cO0f69OUYBHyGEEEIIISTzxseBnh4K+OYYBXyEEEIIIYSQzKOGLVlBAR8hhBBCCCEk88SAb9267K5jkaGAjxBCCCGEEJJ5Bw8CjY1AcXG2V7KoUMBHCCGEEEIIyTxq2JIVFPARQgghhBBCMstsBrq6aP9eFlDARwghhBBCCMmsN94Q/qYM35yjgI8QQgghhBCSWQcPCn9TwDfnKOAjhBBCCCGEZNahQ0BtLVBWlu2VLDoU8BFCCCGEEEIyixq2ZA0FfIQQQgghhJDMsdmAkyepYUuWUMBHCCGEEEIIyZz2doBzyvBlCQV8hBBCCCGEkMwRG7ZQhi8rKOAjhBBCCCGEZM6hQ0BlJVBRke2VLEoU8BFCCCGEEELS6777gB07hH8fPChk93bsEC4nc4oCPkIIIYQQQkh6bdoEXH898K9/ASdOAEVFwv83bcr2yhYdRbYXQAghhBBCCFlgtm8HHn0UuPZaIBAAnnoKePJJ4XIypyjDRwghhBBCCEm/7duB888X/v3BD1KwlyUU8BFCCCGEEELSb8cOYP9+4OabgUceObenj8wpCvgIIYQQQggh6bVjh7Bn77HHgIcfFso7r7+egr4soICPEEIIIYQQkl779wtBnljGKe7p278/u+tahBjnfM6ebOPGjfzAgQNz9nyEEEIIIYQQMp8wxg5yzjfO1fNRho8QQgghhBBCFqi4AR9jrJYxtoMx1sEYO8YYuyvsuk8wxjqDl9MUxXnOH+Dw+gPZXgYhhBBCCCFkjkiZw+cDcDfn/BBjTA/gIGPsPwDKAVwNYDXn3M0YM2ZyoSQ1gQDHbQ/vh9Xlw+N3bMn2cgghhBBCCCFzIG7Axzk3ATAF/21jjHUAqAbwEQDf4Zy7g9eNZHKhJDUPvnoGOzpHoZAxeHwBqBRUzUsIIYQQQshCl9BRP2OsAcA6AHsBLAVwEWNsL2PsZcbYpgysj6TBG72T+P5znSg3qOELcHSN2rO9JEIIIYQQQsgckBzwMcZ0AB4H8CnOuRVCdrAIwPkAPgfgUcYYi3C/jzLGDjDGDoyOjqZp2UQqq8uLT/7lDZQbNPjZB9YDADqHbFleFSGEEEIIIWQuSAr4GGNKCMHeI5zzJ4IX9wN4ggv2AQgAKJ15X875g5zzjZzzjWVlZelaN5GAc44v//0oBs0u/PT967C2thBKOcMJCvgIIYQQQghZFKR06WQAfgOgg3P+w7CrngRwafA2SwGoAIxlYI0kSY8d6Mc/Dg/iM29Zig31RVDKZVhSpsPJYQr4CCGEEEJIdnHO8fE/HcK/jw5leykLmpQM31YANwG4lDHWHvzzDgC/BdDEGDsK4C8AbuFzOcWdxHR6xIZ7nz6GC5pKcPslS0KXt1boqaSTEEIIIYRk3eF+C/55xIRJhyfbS1nQpHTp3AVg1t68oP9K73JIOri8ftz5pzeQp5Ljx+9bC7ns3I+vtUKPp9oHYXV5YdAos7hKQgghhBCymD1xqB8qhQxXrq7M9lIWNOrNvwB9+18dODFkw/evW41yg2badW0VegDAScryEUIIIYSQLHH7/Hj68CDeuryckhAZRgHfAvP8sSE8vKcHH9raiEvbymddv7RcCPiocQshhBBCCMmWHSdGYXZ48Z4NNdleyoJHAd8C4vL68YXHj2BFlQFfeHtrxNtUF+ZBr1bQPj5CCCGEEJI1TxzqR5lejYuaZzX5J2lGAd8Csr97ApMOLz771laoFfKIt2GMYSk1biGEEEIIIVkyMeXBjs4RXLO2Cgo5hSOZRt/hBWTXqTGo5DKc11Qc83atFXp0DttATVUJIYQQQshc+8fhQXj9HNeup3LOuUAB3wLy6qkxrK8vhFYVu/lqW4UeFqcXw1b3HK2MEEIIIYQQweOH+rGs0oBllYZsL2VRoIBvgRi3u3HcZMVFLWVxb9saatxizfSyCCGEEEIICTk1bMORfgves74620tZNCjgWyBe6xoHAGyVsPG1NTiagfbxEUIIIdLRVghCUvfEGwOQyxiuXksB31yhgG+B2HVqFAV5SqyqLoh720KtCuUGNQV8hBBCiEQnh21oveffODlMn52EJMsf4Pj7oQFcsrQMZXp1tpezaFDAtwBwzrHr1Bi2LCmBXMYk3ae1wkCz+NIsEOC45uev4Z9HTNleCiGEkDTbe3YCHl8A7X3mbC+FkJy1p2scQ1YXrqVyzjlFAd8CcGZsCoMWFy5skT7HpK1Cj9Ojdvj8gQyubHEZsrrQ3mfGnjNj2V7KnHiqfQDHBi3ZXgYhhMyJDpOw77133JHllRCSux4/1A+9RoHLl5VneymLCgV8C8CuU0KAcVFz/IYtotZyPTy+ALrpgytteieE72X/pDPLK8k8f4Dj8387gt+8ejbbSyFzyOsP4D/Hh2kfE1mUTgQDvp4J+twkJBl2tw//PjqEq1ZXQaOMPC+aZAYFfAvArtNjqCvWoq5EK/k+1Lgl/cSAb2ARBHw941Nw+wIYsdFoj8XkyTcG8JHfH8DhfsrsksUlEOChbRC941NZXg0huenfR4fg9Prx3g1UzjnXKODLcT5/AK93jUvqzhmu2aiDjAGdNJohbcQynwGzc8FnQMSmBcNWV5ZXQubSge5JAMBJOlFEFpneCQccHj/yVXLK8BGSpMcP9qO+RIv1dUXZXsqiQwFfjjvcb4bN7cNFCezfAwCNUo6G0vy0NG555eQobv/DwQUf5MQjZvgcHj/MDm+WV5NZnUN2ABTwLTYHe4WA7/SoPcsrIWRuiXNrt7cZYXZ4YVng7/GEpFv/pAN7zozj2nU1YExag0GSPhTw5bhXT42BMWDLkpKE79tWoUdnGtpLv9gxjH8fG8KgZXEf/PdOOCA2SR0wL+yyTjHDZ3X54PL6s7waMhfMDg9OjwiB3ilqS08WmeMmG2QMeMtyodFEzwSVdRKSiCffGAAA6s6ZJRTw5bhdp8awuroAhVpVwvdtLTcEy1R8Ka1BDPQW+0Fg34QDK6qEOYj9kwu75Kdz2AbxBN2IlfbxLQaHgtm9ygINTo1Qho8sLh0mKxpL87G0XNj/3kMNzwiRjHOOJw4NYHNjMWqLpfebIOlDAV8Os7m8eKPPnNA4hnCtFXpwDpwcTu3gbTCYzTqV4uPkMrvbh/EpTyjTupA7dbp9fpwdm8LqmkIAwLBtcWd2F4sD3ZNQyBiuWVeNAbMz5RNFhOSSE0NWtFUaUBc8WO2lfXyESNbeZ8aZsSm8d31NtpeyaFHAl8P2npmAP8BxYQLjGMKJnTpTbcAQCvhGFm+GT2zYsqqmAPkq+YIu6TwzOgV/gOPi4ImGXNnH9+tXz+Ajvz+Q7WXkrIM9k1hRZcDq6gJwLrwOCFkMbC4v+iacWF5pQL5agVKdGj3UqZMQyf59dAhKOcPbVlVkeymLFgV8OWzX6THkKeVYX1+Y1P3rirXQKGUpNW5xeHyYDG5eX8xlXuLZ3vrifFQX5S3o0Qzi/r0Lm8WAb/6XdPZPOnDfc5146cQIfP5AtpeTc7z+AA73m7G+vgjNRh2AxX2Chywu4viiZZXCSdL6Ei2VdBKSgJdOjGBzYzEMGmW2l7JoUcCXw149NYrNjcVQK5IbXimXMSwt16NzOPnRDINmIbtTpFXi9LB90Xbq7AsGfHXFWlQX5i3oDF/nkA0KGcO6uiKoFDKM5ECG77v/7oTHF4A/wDFm92R7OTnn+KAVLm8AG+uLUV+SD4WMhRq4ELLQdQQHrrdVGAAIAR+VdBIiTd+EA6dG7Njeasz2UhY1CvhylMniRNfoVMLjGGZqLdenNHxdLOe8qKUMNrcPQzlw8J8JvRMOGDQKFGiVQoZvAQd8J4dtaCrLh0ohQ7lBPe9LOg/2TOIfhwexpkZoqGOyLNyfTaYc7BEatqyvL4RKIUNDaf6i3rNLFpfjJhsK8pSoLNAAECo5TBYXdSgmRIIdnSMAgEvbKODLJgr4ctSrp8YAIOmGLaLWCj3G7B6M2ZMryxMDvouXCvsIF+tBYM+EA3Ulwmb+6kItzA4v7O6F2dSic9gW6lRXrtdgxDZ/SzoDAY6vP3McRr0a91y1HAAwtMjHhyTjYM8kqgvzUFmQBwBoLtNRho8sGieGrGir0Idmh9UH3+v7KMtHSFwvnRhBQ4kWTWW6bC9lUaOAL0ftOjWGMr0arcED72SJJSrJZvkGzU4whlCmcbHu4+ubcKC+OB8AUF0kHBQvxH18U24f+iacodedcZ5n+P5xZBDtfWZ87opWLAl+2Cz2eZGJ4pzjQM8ENtQXhS5rKdehZ8IBt48yHGRhCwQ4OodsWFZpCF0mntyjfXy54+iABXc/ehhe2sM9p5weP/Z0jWM7ZfeyLm7AxxirZYztYIx1MMaOMcbuCl7+VcbYAGOsPfjnHZlfLgGED6DXTo/hwubS0BnHZC2tEA6Ckw74LC6U6zUoN2hQkq9alLP4/AGO/klHaLZMjRjwmRfewYAY0C8Ndng16jXzdg6f0+PHd589gZXVBrxnfQ0KtUqoFTIMUUlnQgbMTgxb3dMCvmajDv4AR/fYwnuNExKuZ8IBh8eP5WEBX33wvb6HMnw5428H+/H4oX4cHbBkeymLyu6uMbh9Adq/Nw9IyfD5ANzNOV8G4HwAH2eMLQ9e9yPO+drgn39lbJVkmhNDNoxPebC1ObVyTgAo06lRnK9KKcNXVSjsa2g26hZlhm/I6oLXz0PzmWoKF26GTxzhIWb4yg0a2Nw+TM3D8tVfv3oGgxYX7rlyOWQyBsYYKgs0MFGGLyHi/r1pGT6j8POnTp1koTshNmypPFdNU5yvgk6tQC+NZsgZ7X1mAMC+sxPZXcgis6NzBFqVHOc1FWd7KYte3ICPc27inB8K/tsGoANAdaYXRqLbdXoUwLm2+KlgjKG1XI8TSWbmhIBPCHBaynU4NWxLW6fOw31mnPetFzA6j/eIAQjNYxIDvlKdGiq5DP3zoHHLiNWF9/xyN3Z3jaXl8TqHbdAoZaFsZrlBLTzPPPsZDVtd+OXLXXjbigqc11QSuryiQEN7+BJ0qGcSWpUcbRXnDnibyvLB2OLds0sWjw6TFTKG0L5lQPjcrCvWUoYvR7h9fhwfFAJ3CvjmDuccO06MYmtzadLd5En6JLSHjzHWAGAdgL3Bi+5kjB1hjP2WMVYU/Z4knV49NYYWow4VwY5hqWqt0OPUsA2BQGKBWiDAMWhxoToY8C0t18Pq8qXt4H/PmXEMW904Nji/SzDEjfviRn6ZjKGqUJP1DJ/PH8An/vwGDvZM4rXT6Qn4Tg7b0GLUQy4TSonLDcJrcL6NZvjec53w+Tm+9I62aZdXFuRRhi9BB3omsa6uEAr5uY8LjVKOumItTo9SwEcWtuMmG5rKdNAopx+w1pdo0Ut7+HLC8UErPP4AjHo19nVPwJ/gsQ5JzslhOwbMTurOOU9IDvgYYzoAjwP4FOfcCuCXAJYAWAvABOAHUe73UcbYAcbYgdHR0dRXvMi5vH7sOzuRcnfOcG0Vejg8fvRNJvbhNT7lgccXCGX4QgOZ03TWX+wCON83xvdOOCCXsVDLbkBo3NKf5YDvB/85ib1nJ6CUM/RNpGctnUO2aWe6jXohwzc8jzJ8RwcsePxQP27d2oD6kvxp11UUaDBsdSV8cmOxmnL70GGyYkPd7PN5LUYdTlOGj2QI5xz/PGKCx5fdJhtih86Z6kvy0TfpoOAhB7zRawYAfHBrI2wuX0qjqIh0L50QxjHQ/r35QVLAxxhTQgj2HuGcPwEAnPNhzrmfcx4A8BCAzZHuyzl/kHO+kXO+saysLF3rXrQO9kzC7QukPH8vXGvww+xEgm+C4kiGUElnmvf1dI3mSsDnRHVh3rQMSE2hNquz+F7sGMYvd3bh/ZvrsLG+GP0JBvORTE55MGJzo7XiXGtl4zzL8HHO8b/PHEeRVoU7L22edX1VgQa+AMfY1PwJUOez9j4zAhzY0DB7/8USow5nxuzwUdc7kgFvDljw8T8dwj/fHMzaGqwuL/onndM6dIrqS7Tw+vminev5kxdO4acvnsr2MiRp7zOjwqDBO9dUAgD2d1NZ51zYcWIEyysNaatGI6mR0qWTAfgNgA7O+Q/DLq8Mu9m7ARxN//LITGId+voIZ9yT1RLM2CR61utcwCf8MpfqVCjSKtPSuIVzHsrw9U7M743xveNTof17ouqiPIza3FkZzNs34cCn/9qOFVUG3PvO5agtzkNfGrKNJ4P7PMMzfAaNAhqlbN6MZnju2BD2nZ3Ap9+yFAaNctb1FcE5crSPT5qDPZNgDFhbWzjruhajHl4/Ry/tYyIZIL6uOkzZy8aIn4nLKiNk+IoX92iGpw4P4G8H+7O9DEna+8xYV1eImiItqgvzaB/fHLA4vDjYO4ntbZTomS+kZPi2ArgJwKUzRjDcxxh7kzF2BMB2AJ/O5EKJwOz0QC5jKMibfTCbLJ1agdriPHQm2LhFzGCJe/gYY2gx6tMymmHU7obNJXR+nO8fqL1hQ9dF4vdkrveLuX1+/Pcjh8AB/OLG9dAo5agt0qYl+BQDvtaK6c0Lyg0aDM+D0Qycc9z3704sLdfh/ZtqI95GLLulfXzSHOiZxFKjPuL7TYtYwr0IO/OSzBP3QCdaeZJOHcEOnZEyfIt5Fh/nHAOTTvROOGCfhx2aw43b3eidcIROWm1uLMbesxNpay5HInv51Cj8AU779+YRKV06d3HOGed8dfgIBs75TZzzVcHL38U5N83Fghc7i9MLg0aR8vy9mVrLDUlk+FzIU8qnHQw2l+twctie8pupmN1rq9Cjd8KR8J6rxw704V0/24WzY5nNDlpdXkw6vBEzfMDcj2b4+jPH8eaABT+4bk1o/1pNsbCWVPcUdg7boNcoUGGYXp5RrtdgxJb9AGp8yoMzY1O4YVPdtPLacGJpCWX44gsEON7omcSGhsjVBEuCAd9pCvhIBognFDuHrFlbQ4fJikKtctZ7HiA0gFLKGXrmeQVKJoza3XAH91aenOezd8VxDOuCVVGbG4sxZndn/NhgsdtxYgRFWiXW1lI/x/kioS6dJPssTl9as3uitgo9zo5Nwe2TngUyWYQZfOHBZ4tRB4vTizG7J6X1dI0Kb8aXLTPC7Qsk3PnzhY5hHOm34L2/3I0j/eaU1hKL2KFzVsBXKAZZc3f296n2Afzx9V589OImvHVFRejy2iJhbYk25Znp5JAdreX6WScbygzqeTF8XWwWtLRcF/U2xVoVVHIZBhfpvptEnBqxw+b2RWzYAgiVAVUFGgr4SEaIJ8uGrW5MTqX2eRIuEOD4yO8PYEewoUQsHSYb2ipmv+cBgFzGUFu0ODt1hp88nO8NUN7oNUMuY1hVXQBACPgAGs+QSf4Ax8snR3HJ0rJQR2+SfRTw5RiL05uRgK+1Qg9/gCd08BY+g08k7u9Ktayza8SOfJUcmxuFGWrdCQ647RqdwpqaAuSp5Hjfg6/jlZOZ6RAbLeCrKNBAxjBnjVtODdvwpSfexKaGInzuitZp19UEA75UMnycc3QO27A0Qre6cr1mXuzhE0cEiM2DIpHJGMoL1JThk+BAj3BAtDFKhg8Amsv1czJ8vXPIRoHlItM/6YROrQCQ3rLOMbsb/zk+jK//83jMDpv+AEfnkC1iOaeorkS7KEs6+8L27c73gK+9z4y2Cj3yVMJYjabSfJTqVBTwZdDhfjMmpjzYTuWc8woFfDnG4vTCkKGAD0isPGPAfG4Gnyhd+3q6Ru1YYtShIbhPIpGzqD5/AD3jU7hgSSmeuGML6kvy8aH/248n3xhIaU2RiB/2tTMCPqVchsqCvDkp6bS5vLjjkUPQquT42QfWQzmjnNGoV0OlkKE/heYaIzY3LE4vWssjBHwGNaY8/qzv5Tg9bINerQgNg4+m0kCz+KQ42DOJUp1q1smMcM1lOpwesWd8zMXnHz+CLz1xJKPPQeYPzjkGzM5QN+p0lnUOBn/3z4xO4dmj0Xei9IxPwen1xwz46ou16J1wLLr9YOLJw9ZyPU5kseQ2nkCA43CfeVrTKcYYNjUI+/hIZuw4MQIZAy5ZSg1b5hMK+HKMNUMZvoaSfCjlDCclztVyef0Ys7tnZfjK9GoYNIqUz/qfHrGjuUyHqsI8yGWJ7ZPom3TC6+dYUpYPo0GDv37sfGxsKMKn/tqOX796JqV1zdQ74UChVhnxZ1JdmIf+DGb4ukbt+N9/HMfW77yEM6N2/OR960KD0MPJZAw1hanNBRTP4i6NGPAJz5ntLN+pEeEkQbz9rRUFGsrwSXCwZxIb6otifj9bynVweQMZz2T3jk+lZW8wyQ1Wpw92tw/r64pQqFUm3FAsFrG7tE6twM93dEV9TYlZxWUVsTJ8+bC7fZhIY8lpLuifdKIkX4V1dYXoHLLN29/LrlGhLH3djLL0zY3FGDA7szo6aSF76cQINtQXoVCryvZSSBgK+HJMpgI+lUKGxtJ8nJRYniEeMM8M+BhjWFquT2n4ut3tg8niwhKjDkq5DNWFeQmVzZwJlvaJTSUMGiX+74Ob8Y5VFfjGPzvw7X91pC0j0TvhiJoBqS5Kf4bP5w/g30dNuPHXr+OyH7yMP7zejUtajfjbHVuwtTn6bMbqoryU9vCdG8kwe3+cMZhRy/Y+vlMj9lCGOZbKYMA3Xw9S5oNRmxs94w5sqI+94b5lDhq32N0+TDq8sDi9GLVnf68omc7rD+DogCWtj9lvFt6rqovy0FahT2tJpxjwferyFnSYrKHh0DN1mKyQMeGkRjRiBUrPIhtN0j/pQE3wZzPp8GI0wT32c0UcuD5zrIy4j28/ZfnSbtjqwrFBK7bRsPV5hwK+HMI5z9gePkDI3pyUmJmbOYMvXEu5LqWSzlDAViZ80NaXaBOa9SUObF9Seu6DWqOU4/73r8dN59fjV6+cwWcfOwxvGgZG9004ZpVziqoL8zBkdaVlMPWI1YUfv3ASF353B27/4yGcHZ3C565oxe4vXob7378u7lzG2mLttH0XieocsqFUp0aJbna5pFEfHL6exU6dZocHozZ3zIMzUUWBBh5/YNGdlU/Eod5JAMCG+tkD18M1h0q4M7ePJ/ykCe3jm39eOD6Mq+7fhWffTF+jbvFnXl2Yh7YKA04O2dJ2ks5kEbpL37KlATVFebj/pdMRT/50mGxoKtNBo5RHfaz60GiGxdXxcWDSiZoiLVqD2c9sjs6I5Y0+MwwaBZpK86dd3lZhgF6joLLODBCbIdE4hvmHAr4c4vD44QvwjOzhA4R6/L4JJ6Yk7MWaOYMvXLNRj4kpD8aTPBsvBmzNRuFNuj7BjfFdI1Mo1alQoJ3+fZLLGP736hX41OUteOKNAfzzSGoHKD5/AP2TzpgZPn+AYyiFUsdAgOOPr/dg+/d34scvnEJrhR4P3bwRr37hUnx8ezPK9LH3q4lqivIw6fAmvc/u5LANrRWRgylxz1w2SzrFQCBWwxZRZUF2ZiTmkoM9k1DJZVhZHb2cDQAKtSqU6tQpZfTjGTCf+93vmsOAz+cP4E97e7O+N3W+Ez8LvvqPY2n7XoU+X4ry0Fqhx5THn/JYGZHJ4kRloQZKuQy3X7IE7X1m7O4an3W7DpM15v49QGiIxdjimsUXCHD0m52oKRYyfMD8bdzyRu8k1tQWQjajU6RcJuzj23d29s+dpOalEyOoLNCEXhtk/qCAL4dYnF4AyFiGr0XssCnhoGrQLBwsi3PNpj1Oio1bukamIJcx1BUHA77ifFicXpgd0jIyZ8bsaCqLHJwwxvDJS1tQkKfE7q6xpNYnMllc8AU46mNk+IDkZ/H1TTjwX7/Zi688eRTr6orw0t2X4OEPbcZblpcn3Oq4NtSpM/EDk0CA4+SwPeL+PUDYC6NVybM6fF18rTVLLOkEaBZfLAd7JrGqpgBqRfTshqjFqAt1SM0E8UBfLmNzmuE71GvG//z9TXziT4didnNc7EZtbsiY0Njph8+fTMtjDkw6oVHKUJKvCjUUS1dzkAGzC1XBkz7v3VADo16Nn710etptLE4vBsxOLKuMfdCqUcpRYdAsqtEMo3Y3PL4Aaoq0KMpXwahXo2MeNm6ZcvtwctiGdTPKOUWbG4vRNTqFMSoTTxu3z49dp8ewvc2Y9lnRJHUU8OWQTAd8iXTqNFmcKNWpIx4Qpjqa4fSIHfUlWqgUwsuzLlQ2I+1DtWt0CkvK8qNeL5Olp0tXtJEMohpx+HqCG8MDAY7f7+nGFT9+BUf6Lfj2tavwhw9vjhrESiGupX8i8eCzf9IJp9cfsUMnIATR5YbsjmY4PWJHnlIeMeM8kxjwmebBKIn5yOX1481+CzbG2b8najbqcDqDDVX6J51QK2RYWWXIaGA5k1iivKNzFN95tmPOnjfXjNrcqCzIw43n1eH/dp9Ny36+geDIH3FPOJC+LJLJ7AxtRdAo5fjoxU3Yc2YcB3vOfR50SmjYIqor1i6qPXziSUPxM6W1Qj8vM3xvDlgQ4JjVsEW0qYH28aXb/rOTcHj8uJT2781LFPDlkEwHfHXFWqgVMkmNWwbMTlRH2L8HCCV+erUi+QzfqD20fw8I2ych4UN1csqDiSnPtPtHcn5TMXrGHSllecR9hdH28FUlkeHrGZ/C+x96Hf/vqWPY2FCM5z59Md6/uS7ls2XiGpNp3CJ2yIs0g09k1KsxksWN+6dG7Gg26maV7kRSolNDIWMwUYe2iI4NWuDxB7BeYsDXUq6Dze3LWIa3f9KB6qI8NBtTawaVqHG7UFHwrjVVeOjVs/jr/t45e+5cMmp3o0yvxueuaENxvgpf/vubKWdEhc8X4f1Tp1agtjgPJ9LQqdPjC2DU7g6VdQPAB86rQ3G+alqWr8MkZKzilXQCiW85yHVixr02GPC1VehxasSelr3q6SQ2bFkTJcO3qroAGqWM9vGl0UsnRqBSyLCluSTbSyERUMCXQzId8MllDM1GnaQW2JGGrosYY2gu1yV1cObzB9A9PjWtNE/MoPVK2Bh/Zkx4zqYYGT4AOC840H1vCjX8PRMOKGQslDGaSaOUo1SnlpTh45zjd6+dxRU/fgXHTVbc957VePiDmyRlrKQoyVchTylHXxIZPjHjG6sDptGgwUg2M3zDNknlnIDwOi830GiGaA50iw1bpGf4gMw1VBmYFA7+m406jNjcsLq8GXmemcbsQqni969bg4taSvGVJ49i7xna8zPTqE0I+ArylLjnquU43G/Bn/alFhz3TzpDGSRAaLKRjizSsNUFzqc3G9OqFPjQ1gbs6BwNZSc7TFYUaZVxZ3oCQH1JPsbsbkl73xeC/lBDHeFzubXCAI8vgO55FvS2902ioUSL4vzIowFUChnW1xXRAPY02t89gY31RdCqFNleComAAr4ckumADxAat8QL1DjnGDS7ogZ8ALDUqE8qw9c74QjO0Dt38K5VKVCmV0s6i9o1IgSF8TJ8y6sM0KtT69LVOyG0plbIo/8aVRflSQr4dneN42v/OI7zm0rw/KcvxvWbatNaA88YQ01RXlJ7+DqHbKguzINeE/11V65XY9jqzsqoA5vLi0GLS3LABwh7T6lpS2R7zoyjoUSL0ggdWSPJdKfO/mBHwEwHljON2d0ozldDpZDhZx9Yj9piLW7/48FFtV9LijG7O/RaedeaKmxtLsF9/z6RdNdeh0eYaxd+squtQo+zY1Nwef0prfVcd+npn103b2mAXqPAz3cIWb6OIRvaKgyS3oNDJyTjVKA8eqAPF933Ejy++ZUJS1T/pAOlOjXyVMJ2jvnYuIVzjjd6zbPGMcy0ubEYHUPW0LEVSc2g2Yn6ktgn20n2UMCXQ6zBN6VMdekEhMYtQ1ZXzDdAs8MLp9cfM+BrKddhzO7GZIKt709Hab7RUCJtn0TXmB0quQw1RZHLLEVyGcPGhqKUztjHGskgkjrw/IWOYagVMjzwXxumlRulU22xFn1JNJAROnTGbl5QbtDA6fXDloWz3F2jQpAvZQafqKJAk1D31LNjUzBZFn4JaN+EAy+fHMVVq6sk36dMJ2R3UhnFEo3D48P4lAc1RXlZCPg8KNUJ2YGCPCV+c8smBDjw4Yf3wzZHWcb5zh/gmJjyhLoFM8bw9atXwu0N4Jv/TG7foxiUhb+Ht1bo4Q/wlH/24kmeme+xBo0St1zQgH8fG0LnkA2dQ/E7dIoagge4sUYzBAIcv9zZhb4JJ3oncnuEw8zsa7NRBxkDOudR4xaTxYURmzvq/j3R5sZicA4c6pmco5UtXC6vH+NTnqgVTyT7KODLIRanF4wBenXm0uVi6/1YDVfOjWSI/ovdnGSnTvHgfWZJZl1xvqRZR10jU2go1UrqYnleUwm6RqeSHhoba+i6SMzwxZsh9XLnKM5rKok58ylVyWT4vP4Aukajd+gUnRu+PvdZM/G12hJnjeEqDRqYLE7JGcnb/3AQn/jTG0mtL5f8cW8PZIzhA+fVSb4PY0zo1JmBQEzc/1pTlIfaojyoFLI5G80QnrkCgMbSfPzyv9bj7NgUPvHnN6hzJ4DxKTcCHNPGwzSV6XDHtiV4qn0Qu04l3gk5VDJYND3DB6SeRRq0RJ8f+6ELG6FRyPGlJ47A5Q3E7dApktJUbNfpMZwdEz6/To/kdsDXF6xsEWmUcjSU5s+rWXzRBq7PtK62CEo5o318aSA2baOAb/6igC+HWJ1eGDRKSY0pkhXqiBYj4ItWFhPpcRIt8zo9Yke5QQ3DjPLB+hIthq3uuCU9Z2Y0fInlvEahS1cyNfzCmAhv3ICvpigPHl8AY1PRg8recQfOjE1h29KyhNeRiNoiLWwuHywO6dmJnvEpeP086gw+UWj4ehZGM5wesUOlkIWaCEhRUaCByxuQVMrj8PhwcsSGAz2TSZXE5gqX14+/7u/DW5eXx/zdjqSlPDMBX39YwKeQy9BUmp+RTGIkQsA3ff/PliWl+NrVK7CzcxTf+hd17hRPlpXN+D7dsW0JGkq0uOepowmXYUaa8dpQkg+VQiZpf3ksg2YnCvKUEfcYFeercON5dTgUDBakZvgK8pQo1CpjVqD84fUeFAbnwor7zHNRIMAxYHbOqqBpq9Cn/LNJp/a+SagUsrg/wzyVHKuqC2geXxqIo7oS/ewgc4cCvhxicXozun8PED5k81XymJ06pQR8lQUa5KvkCTdumdmhUyR26oy1T8LrD6B3wiE54FtZXQCtSp5U45Z4IxlEUmbxvXxyBACwrTXDAV+xsJZEOnV2Dgk/v3gZvtDw9ST37aTi9IgdTaX5MfdSziS+dqXs4+scskFMBP7ziCmpNeaCpw8Pwuzw4pYtDQnfd0mZDhNTHoyneaZV/4zyviUZyiRGMmbzRNzHeON59bh1SwN+s+ssnjjUPydrma9CAZ9++vdJo5TjG9eswtmxKTzwcldCjzkw6YQi2FhJpJDL0GLUpZxFMsXZe/6Ri5ugkstCDcykqi/WRt3bOWB24sWOYXxgcx3KDerQPvNcNGJzw+vn0zJ8gNBUp3fCMW8a17zRa8bKKkNotFMsmxtLcKTfAqcntf2hi92QVXivjjSbmcwPFPDlEIvTC0NeZrsfMcbQUq7HyRiB2qDFBZVCGIob63Gay/UJZfg45+gaiRzwiYFVrLKZnnEHfAEet0OnSCmXYUN9cl26xMBTLOeJplrCLL6dnaOoK9aisTSzm51rkhi+3jlsg4zFb4JjDB6cSWnN7/UH8MPnO0Otz1N1asSeUDkncO5DSUqnzg6T8BquLNDgH0cGE19gDuCc4+Hd3Wgt14cy34kQv//pDsb6Jx1QyWUoCwZezWU69E06Um7eEY/D44PT60dJlMY1X7lyGZpK8/H04YX5epBqLDi6okw3+yDvwpZSXL22Cr/Y0RUqZ5RiwOxERYFmVlm+MO8ttfeMQYsLVTEOSMsNGnz04iZc2mZMqLy+riQfPVH25v1pbw8AYfzDkjIduuZwlmS6zZzBJ2qt0INzaTN8M83rD+DNAUvc/Xui8xqL4QtwvNFL+/hSIWb4qKRz/qKAL4fMRYYPEDp1xnrjHgzOSIrXwazFmNhohlGbGza3L+KZ1XoJG+PFD1KpGT5AeLM/MWRLuLlMvBl8ongZPpfXj91d49jWWpbWrpyR1AYDvkRGM5wcsqGhND/uwY9OrYBOrZA0fP1QzyR++tJpXP/AnpTb3Ds9fvRNOtCc4FD60PB1CQHfcZMFerUCH76wEUcHrDiTwwds0RzqncSxQStu3lKf1OuwJck9u/H0TzpRXZQXKmNvNurAOXBmNLNZkjGb8H4ws6RTpJDL0FCan/T+34VC/PpL9ZG/T1++chlkMuDh3d2SH1McwzFTW4Uew9bEG4GFGzQ7URlj7zkAfPaKVjx088aEHre+WItBswveGbPo3D6hTPrStnLUFGnRVJaPM6P2rHQzTofQDL7i2SWdwPzo1HnCZIPbF4i7f0+0oaEIjIH28aVoyOKKWi5N5gcK+HLIXAV8LeU6jE95MBalPGvQ7JR0FmdpuTA3S+qeMTE7EClgK9IqodcoYpZ0nonS8CWW85qEeXz7uhN7s++dcKBIq5y113AmvUYJg0YRtVPn/u4JOL1+XJLh/XsAYMhTQK9WJJThOzlsQ6vE7JnRoJa0h6+9zwwAKNGpcPNv9+E/x4clr2emrlE7OBdes4ko06khY5DUebPDZMOySgOuXF0JAHhmAZZ1Pry7B3qNAtesrU7q/mIJd/ozfNMP/sWf8+kMB92jdjGQiT6awqhXY4QCPuSr5FEP8ox6DVZWFeDYoEXyYw6YndMatohaK4T9WMmWdTo8Plic3ox0Qa4r0cIf4LNO7P376BDG7B7cdEE9AOGzzeryhTKjuUb87JgZkNcWaaFVyedF45b2PiFTt66uUNLtDRolllcaaB5fikwWaceFJHso4MshFqdvbjJ8wbN10bJ88WbwiVqMiTVuETN0kTJ8jDHUl2hjDnftGrXDqFfHnBc30+qaAqgVMuw9k2DANx6/Q6eoukgbtaRzZ+coVHIZLlhSktDzJ4MxhpoERjO4vH50j0/F3b8nEg6A42fM2vvMqC3OwxP/vRVtlQbc/seDeOxAn6TnmEkMMBIZyQAIGRqjPv4svkCAo8NkxfIqAyoL8rC5oRj/WGBlfCNWF/71pgnXbahFfpIdgBkT9jylexbfwIwW8I2l+ZCxzI9mEPcilsWYRWjUqzFudy/qbp1jdves/XszLas0oMNki9upGAA8vgCGrC7URMnwAcm3/xdLziJlD1NVL245mHFC8g97etBQosVFzaUAhA6mAHK2rLNvwokyvXpWxYdMJmwFmQ8Zvjf6zCjVqRP6OW9uLMah3smcn5GYTVKPC0n2UMCXIzjnQpfOOQj4xAP8SI1bvP4Ahm3SfrETHc3QNToFnVoRagAyU31xPnpjlHQm0qFTpFbIsb6uKOHGLb0TDtRJHDBaU5QXtaTz5ZOjOK+peM7KIGqL8kINZ+I5PWJHgCPuDD5RuUEjaQ9fe58Za2uLUJyvwp9uOw9blpTgc387gl8l2NwBEE4mKGQsqWGvFQWauHv4eicccHj8WB7s9vbONZU4NWKfFwc2sbT3mXHvU0clNSL4874++AI8lIVIVrNRn9ZAzOX1Y8zunhbwqRVy1BVrcTpDQ95FYgamJEpJJyA0KglwpL1RTS4ZtbkjNrYJt7zKALvbJ2ke6ZDFBc4RMcNn1KtRpFUm3Q1SzOZnIgsRacvB8UErDvRM4r/Orw+VJC8JVp9kuiQ5U/rNjln790Rt5UKnzmyXq7YHB64nUpq+uaEYbp+w948kZ8jqooYt8xwFfDnC5Q3A4w/MSYbPqBcGKZ+McPAW+kCOsw8CEM6kahPo1Hl6xI4lZflR36jrSrTon3TC5599Fo5zjq7RqYTKOUXnNRXjuMkqqUU/APj8AQyYnagrlnY2q7pQmMU384Owf9KB0yP2OSnnFNUUCd9DKR/KR/qFDz+p7cmFgM8V87GHrS6YLK7Q/op8tQK/vmUjrlxdiW8/ewLf/ldHQgcMp4btaCjNl9SNbabKAk3cks7jwcYy4vfg7asqIWOY11k+zjm+/Pc38fCeHtz5p0MRf19EXn8Aj+ztwSVLy1JuGtRs1GHY6pb8exTPuZEM0zPpzXPQqVMsZy/Jjx7MlImjSBZxWeeoxAwfcO53KZZ+s1gyOLt6gjGG1gp90mWDUrpLJ8uoV0OjlE1rKvaH13ugVsjw3g01ocuqCvKgUcpyNsMnDF2PXNnSWqHHxJQnVA6dDWaHB2fGpiSXc4o2BRtVvZ7invLFyuX1Y2LKE7MhEsk+CvhyhHgQNRcBH2NMaNwS4YM1kQ9NmSyxMq9oIxlE9cVa+AI8Yhne+JQHFqc34QwfIJRzcA4c7JFW1mmyuOAPcMklnTVFebC7fbA6p7es3tk5CgDY1mpMbMEpqC3Og9Prx7iExgf7zo6jTK9GQ5xOpCKjXg23LzDr6wwXaSCuWiHHT9+3Dv91fh1+9coZfP5vR2IGKeFOj9oTLucUVRQIJZ2xAszjg1bIZSy0d6xUp8bW5lL848hg1s9kR7OjcwTHBq3Y3lqGF0+M4H/+/mbUtT53bAgjNjdu2ZJadg84V1abrmAstF9oRkZhiVGHs2NTkl8jyRi3u1GQp4x5IsEYrERYzI1bpJR0tpbrIWPSAr6BsLmLkbRVGHBySFp56EyDZhcYw7RxD+kikzHUFWtDAZ/V5cWTbwzg6rVVKNSqpt2usTQ3O3X6AxyDZmeMn032G7eI+8PXSWzYIirVqdFWocdrp8fSv6hFQKyUqcjA/liSPhTw5Qira+4CPkBojhCpPGPQkthZ0maJnTrtbh9MFheWxDh4F0cgRBrNIJbIxLp/NOvriqCSS9/HJz5/vA6dInEvwcz5dzs7R1FdmBcq85kL50YzxC+v2t89ic0NxZJLY8QDqViz+Nr7zFDKGVZUTc8aymUMX796Je66rAWPHezHPU8di/t8bp8fPeOOpAO+ygINHB4/bDFmR3WYrFhSNr1L6VWrK9Ez7khL+c+ZUTv+8HoPnjs2hPY+M0wW56xOf4ngnOOnL55GdWEeHrx5Iz55WQsePdCP7z/fGfH2D+/uRl2xFpcsTf2kgxgUd6Up4BswRz74bzHq4fXzmA2cUjVm98Qs5wSEExwAJO1bXYjcPj/MDm/cks48lRxNZTocH5QQ8AV/5tE6abZW6DHl8ccccxONyeJEmU6dVDWAFHXF+egNjmZ44mA/nF4/bjq/YdbtlpTl52RJ54jNBa+fh7o9z9Q6TwI+xoDVCQZ8AHBhcykOdE/SPL4khI4LKcM3r1HAlyPmMsMHCG/eNpdv1p4sceN7lcQzOUvL9RiyukIBazRnJIxUaBD3SUSYdySeMW1KoixNo5RjTW0BXpfYpUs80JS6byzSLD63z4/dXWNzMo4hXGj4epyD5f5JBwbMTmxOYCZb6AA4xj6+9r5JLKs0RBzzwBjDp9+yFB84rw6PH+yP2921e8wBf4CjOcEZfCLxbGSsfXzHTdbQ/j3RFSsqoJSztJR1fvvZE7jnyaP42B8O4pqfv4YLvv0Sln7lWWz8xgu46v5XceefDiUUULx2ehztfWbcsW0JlHIZPn15C96/uQ4/39GF3712dtptjw1asL97EjedXz9r5lkyaoq0UCtkaevU1z/phFLOYNRPP4hoTnMmMZJRe/y9aWUSXu8L2bg4gy9Ohg8QG7dIy/AZ9WqoFZHHwIhBRTIzPE0WFyoz2FSivkSL3gkHAgGOP7zeg7W1hVhVUzDrdkvmaJZkuvXHyb6W6NQo1amz2qnzjV4zlhr10CXRfGprSyk8/gD2J9ixmwAms5jho4BvPosb8DHGahljOxhjHYyxY4yxu2Zc/1nGGGeMlWZumUQ8+J2rgE9s3DJzg/yg2YnifBXyVNKG0kot8xKvbzZGD6IqDBqoFLKIGb6uETvUClnSHdjOayzB0QEL7DGyPaLeCQeUcoYKiaVBkWbxHeiehMPjn9NyTkB6hk9sUb2pQXrAF8rwRZnF5w9wvNlviTsf6QOb6+DxB/DMm7EDKrFUONEZfKKqOLP4Jqc8MFlcWD4jG1moVeHiljI8c8SUVGlZuA6TFZcvK8czn7gQv7llI7717lX45KUteMtyI4x6DZ4/Poz/eeKo5PLRn750ChUGDa7bKOwbYozhG9esxBUryvG/zxyfFqT+YU8PNEoZrt9Ym9LXIJLLGNbWFibcACma/kknqgrzZgWjYkY83TP/wo3b3TE7dAJCKXJBnjKre5ayaUxCJ1PR8koDBszOuCdxoo1kEIU+l5IIKgbMzoxmIOpLtHB5A3jq8AC6Rqdw0/mRy6SbyvLBeeRKlflMPEkYLeADhLLOE0l2UU0V5xxvDliwOkKQLcV5jcVQyhmVdSZhyCoOXaeSzvlMSobPB+BuzvkyAOcD+DhjbDkgBIMA3gKgN3NLJMC5DF+8uW/pIn6wnooQ8FVJaNgy83HilUt2jdrjdluUyRhqi/IiDl8/MzaFpjJdqBtaos5rKoY/wHGwZzLubfsmHKgp0krOihTnq5CnlE/L8L18UhjHsGUOxjGE06kVKNIqZ5WXzrS/ewIGjUJyh07g3J6maCWdp0ZsmPL44wZ8K6oMWFquwxOHBmLe7tSwHTKW2NzFcOLZyKEojVs6ZjRsCffONVUwWVw41Bv/9RKN1eVF/6QT6+oKsbK6AJctK8cHzqvDp9+yFN++djV+e+smfP6KVrzQMYyn2uNnE/eeGce+sxP42CVN0zIkchnDT963DpsaivGZR9ux69QYzA4PnmwfwLvXVaNAm773lK3NpThusqY0HFvUP+mIeAJHr1GiwqBJW+loJFJKOoHgKJJFmuE7N3RdQsAXPGnSEScYGDBHHrou0qkVqCvW4kSCnTo55zBluG28uKf7+8+dRJFWGZrbOdOSHB3NIJ4kjPU9bKvQ49SwPSujSkwWFyamPBGzqlJoVQqsryvCq6co4EvUoNmJIq1SciKAZEfcgI9zbuKcHwr+2wagA4A4nfdHAD4PYH52L1hA5rqkszhfhVKdetaZ1EGzK6GzOLXFWlzUUoqHXj0DW4yyztMjdtSVaKGUx35J1pfkR87wjdqTPvAHgA31RVDIGPZK6NLVO+GQvH8PELIs1TNGM+zsHMGmxqKk556lorZYG7ekc+/ZCWxqKE6o1E+rUkCvUUQ9AG6P0LAlEsYYrl1fg4M9k+gei77X5fSIHXXF2ojloVIY9RowFj3DN7NDZ7jLl5dDrZClVNYpNkVqixFUf3BrI9bXFeLep4/FLe28/6XTKNWp8f7NdbOu0yjleOjmjVhSpsPH/nAA3/hnB1zeQMQ9RqnY2lwCzoE9aeh21z8ZvUFEs1GXseHrHl8AFmf8vWmAcJJjse7hEwM+aSWdwms81j6+QEAIymJl+AChrDPRDJ/F6YXT68/oYGjxZOWA2YnrN9VGfV8SP6cSOWFxqHcSf9nXG/MzNNP6Jx3BbqTR329bK/Rw+wLojjE+KVOOBV9bK6qSC/gA4KIW4YTVYh61kowhi4satuSAhPbwMcYaAKwDsJcx9i4AA5zzw3Hu81HG2AHG2IHR0dHkV7rIhTJ8cxTwAcDSct2s4euDcc7ARvL5K9owMeXBQ6+ejXqbrtEpSaV5dcXCPonwEje3z4++CUdSHTpFWpUCK6sLQqWMsfSMT0keySASRzMAwvfw5PDcjmMIF2suICCUap0ZnQq1qk6EOJohkvY+MwrylJLa/1+zthqMAX9/I3qW7/SIHc3G5PbvAYBKIUOpTh3afzDTcZMVRr064oG/Tq3ApW1G/PNNU9LdIsW9Lm0xxl7IZQzfu24NXF4/vvz36KWdh3onsev0GD56cWPUA7KCPCUe/tBmFGpV+NvBfmxuKJ5Vrpqq1TWFyFfJsbsrtbPkLq8fozZ31BbwzUYdukbsGemUOhHMTkoK+PSaRTuWQSzpLJWUCdWgVKeO2alz1O6Gxx+IOHQ9XFuFHmfHpuD2Sd8DN5DBkQyi6sI8yBjAGPBf50XveqtVKVBVoMGZGCezZvra08fwxSfexPnfehH3PHl01ufyXOifdMY90dlWIbyfZKNxy9EBC2Ts3MmFZGxtFnYmvdZF4xkSMWhxUcOWHCA54GOM6QA8DuBTEMo8vwzg/8W7H+f8Qc75Rs75xrKy7BzgLgQWpxd6tSItzRWkWlqux6kRe2ifktXlhc3tS6ikEwBW1RTgytWV+PWrZ0IHCeG8/gC6x6YkddisL9HC4fGHBiMDwl6IAEfK3S7PayrG4X5zzC5dFocXVpcP9cWJPVd1UV6ozXw2xjGEqw3O4ou2/2x/MOhNpGGLyKhXRz0Abu8zY43EgbgVBRpsXVKKJ97oj3hQ7/MHcGbMHuoMmazKAg1MUQLU44PWmAHRO9dUYczuwV6JzX5mOjFkhV6jiPtBuaRMh8++tRX/OT6Mp6NkFO9/8RSKtErcGONAExAC8t9/eDNWVRfgrstbklp3LEq5DJsbi7H7dGoHTINROnSKmo06THn8UbOzqQjN4JMQyJQFX+/zdURHJo3a3DBoFFEbrMy0rFIfs9lKtDEcM7VW6OEP8ISa9ogndTKZ4VMpZGg26nBZW3ncwGiJUfpoBofHh6ODVrxzTRXetrISfz3Qh7f+6BXc8Ks9+OcRU0pdfRMRK+MuainXQcaQlcYtxwYtaCrTQatKvmpmdU0h9BoFXqOyzoSYLE5q2JIDJAV8jDElhGDvEc75EwCWAGgEcJgx1g2gBsAhxlhFpha62Fmd3jnN7gHCB6sjrAV2KoNr737LUrh9AfzspdOzruudcMAX4JIyfGKnzt6wTp1iaUwqGT4AOL+xBF4/xxsx9mWJHToTKekEhLO/kw4vHB4fdnaOoKpAk/Q4gVTVFOXB4w9EbTaxr3sCGqUMK5MojYmW4Zty+3By2Ba3nDPcteur0TfhxIEI+yp7Jhzw+nnK38MKgybiHj6PL4CuUfusDp3htrcaka+SJ13WecJkQ1uFXlIA/KELG7EuSmnnm/0W7OgcxYcvbJRUIrykTId/fOLC0NnsdNvaXIozY1Nxh9rHEm3ouiiTnTpHQ5krKRk+NTy+AKyu+M2eFhopQ9fDLa8y4NSwPWqAIv7MIw1dDyeWQJ8wSQ8qxNdisk29pHrktvPx4/etjXu7JWXSM9Rv9JrhD3Bcu74aP7h+DV7/0mX44tvbMGB24uN/OoQLv/sSfrHzdEZPOsSbwSfSKOVoKMlHZxYatxwdsGJlihULchnDliUl2HV6bFGexEmG0yOMZ8lk9pykh5QunQzAbwB0cM5/CACc8zc550bOeQPnvAFAP4D1nPOhjK52EbM4vXO2f0+0NJg9EcszUgn4msp0uH5jLR7Z2zNr/5h40CYlwyfO4useO/cYYmmMlFLBWDY2FEHGEHU8A+ccr5wSsnNSh66LxA/K7jEHdneN45JW45yOY5i2luDao+3j23d2QphNmMS8KqNBaGIx88PySL8FAZ7YQNwrVlRAq5LjiUP9s64TZzu2pFDSCQQzfBGyRKdGbPD6ecT9e6I8lRxvWV6OZ48OweNL7Cw75xydQ7ZQCVQ8chnD9967Bg6PH1+ZUdr5sx2nYNAocPOWhoTWkClblgTLolLI8oUO/mNk+IDMdOocE/emSQj4xIBndBHu4xuzeRIL+CoN8PgDUTNb4onFeBm+hpJ8qBSyWR2kYxm0uKCUM0lBfCrK9GpJIwGayvIx5fFLKgfed3YCjAn7zAFhf/3tlyzBy5/bjt/euhHNRh3u+3enpO0IyRqyuuAL8KgnYMIls8cyVWN2N4asLqysTn7/nujCljIMmJ3ozrEuqtkinkzJZPacpIeUI7qtAG4CcCljrD345x0ZXheZIRsBX0uww+bJYPv7gWBZTLJnSe+6rAUyxvCj/5ycdnlXaAZf/ICtpigPjAkZntD9R+yoLNCk3ABFr1FiRVVBxMYtZ8emcPNv9+F7z3VifV1h6IBTKjHge/rwIOxuX9b27wEIDc6N1KnT6vKiw2RNaBxDuHK9Bh5/AOYZ7dfb+8wAgDUJBHz5agXetrICzxwxzZpZdTr4mlwSY4yHFBUFebC5fLPGcXQEswfx9ri9c00VLE5vwq28B8xO2Ny+hLqgNht1uPstS/H88WH844gJgFAW+tyxYdy6tXHOOvjG01ahR3G+CrtTaG8+YHZAIWMojxJQlOSrUKhVZiTDNx7cwyetS6dwkLMYO3VKmVUYTsyWR2vcMjDpRKFWGTdgUshlaDHqEiobHDQ7UW7QJN3FOd1CnTolvH4P9ExgWYVh1u+3XMZwaVs57n//egDA4X5z2tcp6pcwkkHUWqFHz4QDDs/cZb3T0bBFdFGw8mHXKeo5IYU4x5ZKOuc/KV06d3HOGed8Ned8bfDPv2bcpoFzTkXPGWR1zX3AZ9AoUVWgCXUTNJmFQchSznxHUlGgwa1bG/D39oFps3q6RqZQblBDL+GAVa2Qo6ogD71hXcC6Ru0pl3OKzmssxht95lCA4fL68cP/nMQVP3oF7b1mfO1dK/DY7VsSzn6JZUqPHeiDQsawtXluxzGEEz+0+ydml9wd7JlEgAvfh2REG83Q3jeJ+hItivPjH0SHu3ZdDWwuH17sGJl2+akRO6oL81LarwGcOys5c/j68UErNEpZqIQ4motaymDQKBIu6xTL0RJtMHDbRU1YW1uIe586ilGbGz976TTyVXJ8aGtDQo+TSTIZwwVNJdjdNZ50WVT/pBOVhRooonTtZYyhJdi4Jd3GbG7kKeWSTiCJr/e5atzSN+HAu362K9QhM5tGbYmVdDaW5kOtkEUP+BJoCCZkkaSXDZrMLlTNoy6CUkczeP0BHOoxY1NDUdTbFOerUFOUhyP9lrSuMVy8EutwbRV6cH6uCmMuHB0QvvZ0NKGqL9GiujAPu2genySDwc/O+fT7RSJLvGaLZEU2MnyAkOU7GXzjHjQLG3NTOUv635c0Q69W4PvPdYYuO51gwFZXrA1l+DjnODM6lXLDFtF5TSXw+AI40m/ByydHccWPX8FPXzyFt6+qwIt3X4JbtjQk1TjHqFdDKWcYn/JgY0ORpOA2UzRKOcr06ogZvn1nJ6CQMayri36AEYs4fH1mxqO9z5zQ/j3RBUtKUGHQzCrrPDWcesMWIEbAZ7KgrcIQ92etUsjwtpUVeP748KwsZCxiOZo4p1IquYzh+9etxpTHj/9+5CD++aYJN29pQKE2sUA607Y0l2DI6kqoE2G4/kknauLs5crUaIYxuxulemnfTzHgmavRDAd6JnCk34LDwYx5tjg9ftjdvoQCPoVchrYKfdRZfAOT0gO+tgo9hq1umB3S5j0OWhKbH5tp5QY18lVydI3G/v04PmiF0+uP2zF5dU1BxgM+xiDpe9gaLFOfywHsxwYtqCvWpuUYiTGGi1pKsbtrPOkOzIuJuAeeMnzzHwV8OcLi9KZ1QLJUrRV6nB61w+cPYDANZ0kLtErcvm0JXugYwYHuCSFgG7EnVCJZX6JFb7C+ftTmhs3tQ1OaMnybGorAGPDpv7bjlt/ug5wxPHLbefjJ+9bBaEj+DU0mY6H5hdnqzhmupigvdNY23P6zE1hVU5D0ANXyYIlbeOMWk8WJYas7qYBPLmO4Zl01dp4cDXVP9Ac4ukbtaWl6I/5MwhuMcM7RYbJJPlt8+bJy2N2+hA64OkxW1BTlJRX4Nxv1+MxblmJ/9yQ0Cjluu7Ax4cfItK3BfXzJlnX2Tzri7uVaUqbDxJQn7TOzxqc8kksV9WoFNErZnGXcxP2mqTTESYexBBrbhFtWacDxQeuszC/nXMjwSSgZBMKDivhlnf4Ax7DVhcp51FSCMYamsvidOvd3C/vy4pXYr64pRO+EQ3IAnKj+SQfK9RpJHVmF2aiyOe3UeXTAipXV6Rsxs7W5FDaXD28OZC6IXigGLS4U56uSnodL5g4FfDnA7fPD5Q3AoJn7Id0tRh08vgB6JhwJldzE8sEtjTDq1fjuv09gJBiwJZLhqy/Jx/iUBzaXN3SGNF0lnYVaFVZXF2DM7sbdb1mKZz91Udq6GYrfu22t2R9PUluknZXhc3n9ONxvTmocgyhSiZvUgevRXLu+Gv4Ax9PtQtnkwKQTbl8g5YYtwLn1hmf4Bi0uWJzemA1bwokHY/vOSm9SkkjDlkhuu7ARV66qxGevaEVJhhtRJEMsi0qmcYvbJzSziLdfKFOdOkdtbpTkS/ueMsbmdBbfcPB1OpiBcRSJGElg6Hq45VUGTDq8GJ5RAWB2eOHw+BPK8AHAiRhjHkRjdje8fj7v5oQtKcvHmTgZvn1nJ1BXrA1VTkSzOtisJFNZPikjGURyGcPS8rlr3GJxetE74UjL/j3R1tA+PirrjMdkdlLDlhxBAV8OEIeuZ6OkszWsBfaQ1YXKNJTF5Knk+ORlLdjfPYmHXjkDAAln+ABh/l6o4UuKzTvCPXTLRrz6+e34xGUtkmdMSbGs0oDG0ny0JljGlwm1xXkYNLumlay095nh9XNsTrJhCyCUixbkKadl+Nr7zFDJZUnvr1harsfKagOeeEMo6zwVbNjSnIaSTo1SjpJ81bQD6I7gHqNYIxnCFeWrsLRch33d0cd5hHN5/TgzNhU6aE2GQi7Dz29cjw/Pw+weIARCW5aUYM+Z8ajzHqMxmV3gPP5+oVDAl+ayzjG7B2USSzqB4OzJOWraMhT8vTKZ50eGL9H93OJJlOOm6YHJQJy5izMZ9WoUaZWSOnWK3aUr59keo6YyHQbMzqhzXznnONAzKamB1soaIdjJVEaqb9Ih+WcDCAH5XAV84p7QdHToFBXnq7CiykD7+CQwWVwU8OUICvhygDUY8M31HD5AOKhiDNh1ehT+AE/brJUbNtWivkSL37x2FkBiGTpxJELvhBDwaVVyVKRQbjmTUa9JqXwzmi++vQ1P37k1a+MYwtUUaeEP8NABJHCu/ffG+uQDPkA4GAsP+N7oM2NZlSGl4PnadTU4OmDFyWFbqBV/op1So6komD6L77jJCsaQUEC2qaEYh3omJe35OD1ihz/A0ZZgw5Zcs6W5BBanF8clZGHCnWsQEfu9pqogD1qVPK0ZvkCAY2Iqse6TwvD1ucm4Dc2TDN9okhk+8XdqZuOW0ND1OPs2RYwxrKwuwKEec9zbimWw821OmPiZd2Ys8uu3a3QKE1OemA1bRAaNEk2l+RnZ2+nzB2CyuCQ1bBG1VhgwPuWZk1LnY4NCkLsiDQ1bwl3YUopDvZOYci++GZuJEAK++fW7RSKjgC8HZDPDp1UpUFukxc5OoUVxuj40lXIZ7n5rKzgHdGoFyg3SDxzCM3xnRqfQVJY/L4KoeFQKWVabtYQLjWYI69S5v3sCreX6lPeKlhvOlbj5/AG82W9JaP5eJO9aWwW5jOGJQwM4NWxHhUGTtjEEM2fxdZisaCjJT2jMx+bGYtjdvtA4h1jEM9+plHTmgnPz+BI7S37u4D/2e41MxrCkTJfWgG/S4UGAC2MfpDLq1XO2hy+U4cvyHr5RmxuMIeGuu3qNEvUl2lm/J/HmLkaytbkUncM2jFhjB7/n5sfOryxEU7DRWLSyztD+PYkl9qtqCjKS4RuyuuAPcNQWS//ZiDN8TyUwKzFZRwcsqDBo0j5j8cLmUnj9HPu6MzffMNc5PD5YnF5q2JIjKODLAdkM+AChpE48IE7HHj7RVasqsbqmAMurDAkFbHqNEsX5KvROTKFr1I6m0vRkehaT0GiG4MG11x/AwZ7JpMcxhBOHrwPAyWE7nF4/1tUVpvSYpTo1ti0tw5NvDKBz2Jq27B4QzPCFHTQeN1kll3OKxH2PUg4OTgxZoVLI0FAi/Yx5Lio3aNBs1OG1rsT28fVPOiGXMUllQs1pHs0wZheaXpQmkLkyGjSwunwJdWlNhs8fCAVaQxZXwqWy6TRmd6NYq4IyytiMWJZVGGZlfQfMTuQp5ShK4GTTheI+qzgnFAbNLuQFS83nk8bSfDAWfTTD/u4JlOSr0FQqbbvC6ppCmCyutGebExnJIBK7D5/KwNiUmY4Nprdhi2hTQzFUChnt44vhXPacAr5cQAFfDsh2wNdace7gOp212jIZwx9vOw8P3rQh4fvWFWvROWTDgNmZtoYti0lVoTDAvi/4YX5s0AqHx4/NjanPBxQyfMIBqThwPdmGLeHevb4aQ1YXjg6kN+CrLMiD2eGF0+OHzeVFz7gj4fl4lQV5qCnKw/6zUgI+G5aW66LOmFtIti4pwf6zE/D4pLc3HzA7UWGIPoMvXLNRh0GLC/Y0lV2NJ9F9UixrzHSWb9TuRoADreV6eP08tI8uG0ZtiZW9hlteZUD3+NS0UrmBYFOQRE78La80oCRfhVfjHJCbLMJMx/lWBaJRylFTlBd1NMP+7glsbCiSvO7V4j6+NDdukVpiHc6oV0OvUeBkhjN8Do8PXaP2tDZsEWmUcmxuKE64QmExMZmDQ9cNVNKZCxb+EccCYHUKH4zZzPABgEGjSHtJokGjTGqGWEOJFu19ZnCe3oYti4VKIUOFQYP+4DxDMVDZ1Jjc/L1w5Xo1vH6OSYcH7X2TKM5XhfZdpuLyZeXQBzvVpmMGn0jc/zlkdYXKLZNpMLO5sRj7g6NGYjmRYofOXHLBklI4vf5Q4C9FfwINIkIDrNOUSRgNBXyJlXQCmZ/FJ+7fE2dkZnMf36g9saHr4ZZXGsD59JEKiYxkEMlkDFuaS7Hr9FjM37lBiyutlSnp1FSqw5kIGb4hiwt9E05JDVtEK6oMkDHgcNoDPgcYS6zpDWNCp85MZ/g6TDYEePr374m2NpfixJBtzvbo5hqxtJwyfLmBAr4cYMli0xbgXMA3nza915XkQ6xoopLO5NQWaUNnb/eenUBjaT6M+tTfuMWGN8NWN9r7zFhTU5CWs+sapRxXra4EgLSMZBCJnWdNFmeo1EzqSIZwmxuKMT7liTlMeczuxqjNnVKHzlxyQVMJZCyxfXz9k9IP/sXAP137+EIlnUlk+DLdqfNcwFcIIL2dOjnn+N1rZzE5JW2O21gKAd+yKrFT57myzmRH/lzUUopRmztmt87Bedw2fkmZDmdGp2aV50qdvxdOq1KgxajHm/3mdC4RfRNCxl2lSOxwscWow6lhW9wTYKkQG7aks0NnuItaxHmiiY+XkeJfb5pw469fhzdHB7yLJZ3xxoaQ+YECvhxgcXqRr5IntV8iHZrK8iGXsXl1lrQ+mDFiTNgLQRJXU5yHvkkHAgGOAz0TkrrBSSE24DkzZsepETvW1qbncQHgwxc24cpVlViVxg948cz1kMWFDpMVRVplUl1fxX18+2Ps41ssDVtEBVolVlYXYHeXtIDP4wtgyCq9I2B9sRZKOUvbaIZxuxsKGUuomkI8STKa4RJLcZ/p+gxk+DqHbfjaP47jbwf7496Wcx4s6Uy8MgMAqgo0KMhToiMY8E25fTA7vAln+IBzB+TR9ll5fAGM2d3ztovgEmM+nF4/TDMaz+zvnoBWJU84c7W6pgBH+i1pDbISybiHaynXY9LhxbjEkwjJODpgQXG+KmMB/fJKA4q0yrhlw8ngnOP+l07jtdPjeLFjJO2PPxdMFhdKaOh6zqCALwdYnN6sbjhXK+S4ek0VtrcZs7aGmcROndWFechT0ZtNMmqKtBiyunDcZIXZ4U3L/j3g3AHwC8eHwTmwNsWGLeGajTr8/Mb1af2Zi8GdyeLC8UFrwk2ERI2l+SjVqbAvxj4+sYytdZFk+AChW+cbvWZJ7c2HLOIMPmkHmAq5DA0l+WnM8LlRolMl9PMvyVdBLmOZz/BZXVDJZWgqzYdGKUtrhq97TMhKn5AwO83u9sHlDSSd4WOMYXmlITSaQZzBl8wJxcqCPCwpy496QD5sFV5P8+lkZTixOmVmWef+7kmsrytKeJ/v6poCjE950noyoH/SGerqnIiW4D7rTO7jOzZoxYok36+lEMuGX4tTNpyMowPW0EmPv+7vTetjzxVxfyzJDRTw5QCL05u1ck7RD29Yi/86vz6rawhXFwz4mqhhS9Jqi/LAOfDkGwMAkNLA9XDGYIbvxRPCWcu1NYVpedxMyVPJUahVon/SiRNDNixLMvvGGMOmhuLYAZ/JilKdKumD5Vy0tbkEvoC09uZi19hEMgrp7NQ5Zvck3IxEJmMo1anmZA9feYEaMhlDVUHetFEiqTo7JnzfTwzFn5kolr2m8hpeVmnAiSEr/AGOgSSagoS7qKUMe8+OR+ySKgaT8/WgVNx/Hv76tTi9ODFkxcYkKi5WB99rj6RpHp/PL2bcE//ZiFtB0jk2JZzb58fJYVvGyjlFFzaXYsjqitpNNVl/PdALtUKGWy6ox8snR0PjQ3KJyeyihi05hAK+HDAfAr75pkynRqlOjZUZ2qy9GIhlc0+2D6LCoElozlIsaoXQXt3m8qGpND/luX5zocKgwZ6uMbh9gaQatog2NxZjwOwMHWjO1Dm8eBq2iDbWF0Mll2GPhPEMoY6AEgdwA0LA1z0+Bbcv9bEIY/bkuk8Kw9czv4dPzEZXFmowmMZZfD3jQobv1LAdvjj7icRupKnMPVteZYDLG0D3+BT6Qxm+5Bo7XdhcCpc3gEM9k7OuE5tKzNeSzjKd0M3yzNi5fb+HeibBeXIn4Noq9VDKGY6kaR6fySLM4EtkJIOo3JDZTp2nhu3w+nnGGraIQuM/0ljW6fT48dQbg7hyVSVuu6gJHMCjB/rS9vhzxWRxUsOWHEIBXw6wZrmkcz5ijOGfn7wQn7ysJdtLyVligDdmd2NzY3Fay2LEss50jGOYC5UFGnSPC1mOZBq2iMQmC5HGM/gDHJ1DtkVVzgkIGdR1dYWSGrf0TzogY0hokG+zUYcAB3qCP79UjNs9KElib5pRr5mTks6KYOBSWZAXaomeDmeDAYfHHwj9Oxox4Estwyf8DhwftKJ/0gGlnIW6nSbq/CUlUMgYXo3w+ho0z+85YYwxNJXppmWP9ndPQCFjSZXCqxVytFUYcCRNjVuSGckgYowFG7dkJsN3NBjUrszASIZwtcVa1Jdo4857TMS/3jTB5vbhhk21qC3W4sLmUjy6vw/+LM7WTNSU2weryzdvT6aQ2SjgywHZ3sM3X5UbNLRZOAUVBg0UMiHI25SGgevhxLLOdO7fyyTxQFoll6U013FZpQF6tSJi+aKQhQosmg6d4bY2l+K4yRq3C2S/OfGOgGLTpniBSjycc2HcQBKZK6NendGmLZzzYIZPWFtVgQbDNlfauvt1j0+FMiUdcfbxifP/kvk+iVqMQiaqw2TFwKQTlQV5kMmSO+GkUyuwvq4oYgbGZHGiUKuEVqVIeq2ZtqQsH10j5167+7snsKK6IOk1r0pj45a+UIl1ctnXTI5mODZohV6tSMvIn3gubinD7q7IZcPJ+Ov+PjSW5ocafb1vUx0GLS68emo0LY8/F8SS8vnaAZfMRgFfDqCAj2SCQi4L7W05L80Bn9imOZcyfIDQ5j/R9uPh5DKGDQ1FEffxiR06U8kg5qqtzSXgHNhzJnZZZ/+kM+GDy3QFfDa3Dx5fIKlSRaNejXG7O2Nn6C1OL9y+QOj3qrJQ2H87bE09y+fw+DBsdeOyNiMUMoYTptj7+EZtbshlDEVJzE8VqRQyNBv1OG6yJj2SIdyFLaU4OmiZdUJh0Oya9xmIJWU6DFldwWY4fhzus2BzCh2TV1cXwObyhSoWUtE/6YSMJb8Hstmow8SUB+MZOBlydNCC5VWGpE8UJOLSZUY4PH7sjbE/W6quUTv2dU/g+o21oaqatywvR3G+Cn/ZlztlnefKpSngyxUU8M1zXn8ADo+fAj6SEbVFWhRqlWhOc/ObZqMORVplzuxXE0sI0xGMbWooxukROyZmHHyeMFkhY8L3ZrFZXVOIfJU87niGgUlnwuVjeo0SZXo1zsaYfyjFuDiDT594IFNm0CDAkZEDWyD8bLpY0qmZdnkqxFLYlnI9mo26uJ06R21ulOSrUj7QXlapx/FBa1I/85kubCkF58BrM15fg2Ynqub5AemSsuAJi9EpvDlggccfwMYUGmiFGrekoayzf9KByoK8pEdCiY1bTqa5rNPnD6DDZMWKDJdzii5oKkGeUo4XO4ZTfqxH9/dBLmN4z4bq0GUqhQzvWV+NFzqGQyXT893M9yQy/1HAN89Zg0PXKeAjmXDn9mZ8/eqVaT9L+uELG/HS3dtSypbNJfEAenkaAr7zoszj6xiyobE0f1GWISvlMmxuLMYrJ8eiliF6/QGYLNKHrodrLM1POcMnliqW5CfRtCWYFcxU4xZxBl9FgfA8YkYsHZ39xJEMjaX5aKvQx83wpTJ0PdzySgNGbG6M2NxJ/czDra4ugF6jwKsnpwd8Jotr3nboFIkl5F2j9lBlQCID12dqKddBrZDhSH/qjVv6J5P7fQxfCwCcHklv45YzY1NweQNYWT03JxQ1Sjm2NpfixY6RlEplPb4AHj/Uj8vajKF97qIbNtXBF+CSZmHOB+Ie4vKCxdNxOtflxtHYImahgI9k0JbmUrxzTVXaH1cpl6EoP/mSr7m2qroAmxuKcWkaZk2uqimASiGbVdbZObT4OnSGu35jLXonHLj36WMRD5qGLC4EEpjBF66pNB9nxlLLIoyl0H1S3LOaqbPzQxYx4Atm+IIBXzoyfGLpX32JFm2VBgxaXLA4vFFvP5pkJ9OZwrvhplrSqZDLsHVJKXaFzUubcvtgcXpRNU9n8InqSrSQyxjOjNpxoHsCzUYdilN471TKZVhRZcCbaQj4Us2+Vhg00KsVac/whRq2ZHgkQ7jLlxkxYHaiM4Wuoy+dGMaY3YP3ba6ddV2zUYfNDcX46/7etM/8ywSTxYlSnRpqxeI7gZmrKOCb5yjgIyTzCrUqPHr7BWgI7gdLhVohx9rawmkZPrvbh94Jx6Js2CJ6+6pK3H7JEvxpby8e3t096/pzHQETb8LQWJqPMbsn9H6ZjLGp5Es6xQ6TmZrFN2RxgbFzz6NTK6DXKNIyfL17bAqlOhX0GmXo9RlrHt+oLX0ZPlGqGT5AKOscMDtDmV5xj1HVPC85UyvkqC3Kw8lhOw70TGJTCvv3RKtrCnF00JLSnlIx455swxZA6NTZXK7DqTRn+I4NWqFRytCUhvdrqcSTgS92jCT9GH/d34cKgwYXt5RFvP6GTbXoHnfg9TOp7xXMNJPFRfv3cgwFfPOceABDc/gIyR3nNRbj2KAVdrcPAEKzqNoWYcOWcJ+/ohVvWV6O/33mOHZ2Tj9wSmboukhs3NKdQlnnmM0NxoDiJJqRiAFQpkYzDFtdKMlXT9tLVVWQh8E0ZPjOjk+hoUT4/ol7WKPt4+Ocp62ks1CrCu2vS2TuYjQXtQTnpQXb54sjGXLhoHRJmQ6vnBqFzeVLqZxTtLqmAA6PP6Vh4UcHLAhwoDbFYHypUZ/24etHByxoqzBAkeTewmQYDRqsrinASyeSC/gGzU68fHIU122sibrud6yqhF6jwF/296ay1Dlhsjhz4neLnEMB3zx3LsM3f9tKE0Km29RQDH+Ah4ZBnzAFA75FnOEDAJmM4cc3rEVrhQGf+NMb0/b29E86wVhyTQCaylLv1Dlmd6NIq0rqIFKtkKMgT5mxPXyRzqZXFmpCWaxU9IxPoT4Y8Bn1ahRplVEzfBanF14/T0tJJyAEmCzBuYvR1Jfko7Y4D68GxzOEMnzzvKQTEF6/Do/Q8j9dAR8AHO4zJ3X/QIDjf585jlKdCm9dUZHSWlrKdRize2Y1sUpWIMBxfNA6Z/v3wl3aZsSh3smkmjP97WA/AlwobY8mTyXHu9dV49mjQzA70vP9yhTK8OUeCvjmOStl+AjJOevriyBj5xq3nBiyQqdWpLxXaSHIVyvw61s2Qq2U4cMPHwi10u+fdKJcn9gMPlFtsRYyJjRzSNa43YPSJIaui4x6dcZKOoetrtBIBlFlQV4oi5UscSRDY6mQYWOMoa3CgA5T5AxfOoauh3v3+mpct6Embc2dLmopw56ucXj9AQyYhTLYmd+3+Uhs3FJh0KTcsRQAmkp1yFfJ8eZAcvv4HjvYhzd6zfifdyxLeTtJS7BT56kU9r6F651wwOb2ZXzgeiSXLysH58DOzsTm5QUCHH/d34cLm0tRG2du4A2bauHxBfD3NwZSWWpG2d0+2Fy+0F5ikhvivssyxmoZYzsYYx2MsWOMsbuCl3+dMXaEMdbOGHueMZb+zg+E9vARkoN0agVWVheEGrecGLKhtUI/JzOjckF1YR5+ddNGmMwu3P7Hg/D4AhgwO5I+2FUr5Kgp0qac4UumQ6fIaFBnrGmLyeIKdegUVRVoMDHlSWkYdPeYUEYbvne1rVKPziEbAhH2f42mYeh6uKtWV+G+965Jy2MBwEXNpbC7fTjcZ4bJ7ESZTp0TnYKXBEe1bGosDs1mS4VMxrCyugCHk2jcMjnlwXeePYHNDcV497rq+HeIoyX4tZ1MU1nnsUEh+zyXDVtEK6oMKDeo8eKJxMYzvNY1hgGzEzdsip7dO/ccBVhdU4C/7Oubt81bxL3DlOHLLVLeCX0A7uacLwNwPoCPM8aWA/ge53w153wtgGcA/L/MLXPxsji90Chl1AmJkByzqaEYb/SZ4fb5ccJkResiL+ecaUN9Eb773lXYe3YC9z59FH0TqXUEFEYzJH9QOWZ3ozSFzJVRr8lISafL64fF6Z1V6pqOTp0940KALO7hA4BlFQY4vX70Tswe3H0uwzc/O/BuWVIKGQNePTUWHMmQGxmIpUY9tCo5ti2N3MwjGatrCtBhssLjizwGJZrvPd8Jq8uH/71mRVqCz8oCDXRqBU6nKcN3dNACpZyFRj7MJcYYLm0z4pWTYwl9X/+yvw+FWiXeuqJc0u3ft6kOncM2vJFkSW6m0Qy+3BQ34OOcmzjnh4L/tgHoAFDNOQ8v8s8HMD9PReQ4i9NL2T1CctCmhmJ4fAE8f2wYVpcPyyjgm+Xd62rw8e1L8Od9fRgwpzbzq7E0H2dHp5I+Kz6WlpJOd9rPyosjGWaWJlYF58ul0qnzrBjwzcjwAZE7dYYCPt38PLNfoFViVU0hdp0ew6DFiep5PoNPVKBV4vX/uQzXrk89oyZaXVMIjy8QahglxeE+M/68rxcf3NKQthEyjDE0G3VpG81wdMCCFqM+ayfBL2srh93tmzV2J5qJKQ+ePzaEa9fVSF7zO9dUIk8px1/39aWy1IwR98dShi+3JFTrwBhrALAOwN7g/7/JGOsDcCMow5cRVqePAj5CcpDYXv0Pe3oAUIfOaO5+SyuuCJ75rk6hW2NTWT6mPP6kyipdXj/sbl9KzUjK9Gp4fAFYnb6kHyOSc2fTZwR8wbPrqXTqFEYyqKFTn2sK1mLUQ8YQcR/fmN0DlVwGwzxuInZRcyna+8zon3TmVAbCoFGmJaMmEhu3SB3A7g9wfOXJoyjTqXHX5S1pWwcALC3X4VQaSjo55ziWpYYtoq3NpVArZJLLOp841A+vn0sq5xTpNUq8c00l/nFkMNTpeT4xWXJnfyw5R3LAxxjTAXgcwKfE7B7n/Muc81oAjwC4M8r9PsoYO8AYOzA6mthGV0IZPkJyVYlOjWajDvuCjVuWllOGLxKZjOFHN6zFXZe1SC55ikQczZBM45Yxuzh0PfkMX1mGZvENWyNn+MTOlqlk+LrHHaGGLaI8lRwNpflRM3ylOlVaA5N0u6ilFP4Ah8cXWNQZiLpiLQrylDjSb5Z0+z/t68WbAxZ85arl0GvSe8zRYtRjzO4ONWhKlsniwsSUJyv790R5Kjm2NpfixY6RuNl8t8+PR/b2Ym1tYcIl/e/bXAeHx4+n2udf8xaT2YXSHNkfS86R9NNijCkhBHuPcM6fiHCTPwF4T6T7cs4f5Jxv5JxvLCtLX336YkEBHyG5a3Oj0GK9ujCPfo9j0KoU+PRblqaUYRMDvmQat4zZg0PXU3h+o14ILtLduEXM8M0cXaBRylGSr0o5w1dfMnt49bIKQ8RZfKNpmsGXSevqiqBVCaVzuTCSIVMYY1hdUyApwzdud+N7/z6BC5pK8M7VlWlfi7jfLtUs3+tnxgEAa2sLU11SSi5tM6J3whF3zuH9L57G2bEp3HVZ4hnTdbWFaKvQ4097e+dd85ZBmsGXk6R06WQAfgOgg3P+w7DLw1/B7wJwIv3LIxanl0YyEJKjNgdnalHDlsyrKsiDSiFLKuAT52qVpBLwGcQMX3oDvmGrC3q1YlrZpSiVWXxTbh9GbO5QoByurUKPnnEHpmaUk43Z5n/Ap1LIcH5TCYDFHfABQlln57AtbifX7zx7Ak6vH19PU6OWmcTRDInsJ4xkZ+coSnWqrIxkCHfZMiMA4IWO6EPY3+y34Jcvd+G9G2qwvc2Y8HMwxnDj+fU4NmhF+zxr3jJEM/hykpQM31YANwG4NDiCoZ0x9g4A32GMHWWMHQHwVgB3ZXKhi5WVMnyE5KxNwQzfYh+4PhdkMobGknycGV1YJZ1DFhfKoxxcCbP4kgv4esaDIxkiZPjE/aadMw7QR+3utA1dz6TLlhmhlDPUxZl5ttCtqi6EP8Bx3DS7PFd0oHsCjx3sx4cvbEKzMTPvU1UFGuSr5DidQobPH+B45dQoLm4py/p4m8qCPCyvNOClKAGfxxfAZx87jFKdCvdcuTzp57lmbRW0Kjke2dub9GNkgjB0fXGfTMlFcXdec853AYj02/Wv9C+HhPMHOGxuHwxprqcnhMyN6sI8/OLG9dgUzPSRzGoszcepkcSzCOko6dSrFdAoZRixprmk0xr9bHpVgQavd40n9bjdwQ6d9SWzgyLxBMUJkw3r64TmQ/4Ax3gOlHQCwPs31eHiljIU58/P8RFzZU2tkAl7dH8fJqc8KNSqUKRVokirgiFPCc6FRi2VBRp84tLmjK2DMYbmcn1KGb7D/WaYHV5sSyJblgmXLTPi5ztOw+wQvq/hfvbSKXQO2/DbWzeiQJv88Zteo8Q166rx+MF+3HPl8pQeK11sLi/sbh9l+HLQ/G21RWCloeuE5Lx3rEr/nhgSWWNZPl48MQyfPwCFXHpDgTG7OxiwJd/qnTEGo14TGk6eLsMWF1qMpRGvqyzMg83tg83lTbjRhlj62hChpLOmKA86tWJa45ZJhwcBjpwI+GQyhtpFnt0DgAqDBk2l+fjL/j78Zf/0Fv+MATqVAja3D7+8cT3yI5QMp9NSow47TybfuG9n5yhkDLi4JfLvwly7bFk57n/pNHZ2juKasAH1Rwcs+PnOLly7vhqXtiXfhEr0gc11+NPeXjx+qB8furAx5cdLVahr8CIvl85FFPDNYxYK+AghRLLG0nx4/RwDZmfEZiTRjNk9KEmhnFNk1KvTmuHz+QMYsblQEaX9eVXY8PVEA77usSmU6dUR9wYyxtBWoceJsNEMYjOaXCjpJALGGP5110UYtrow6fBi0uGB2eHB5JQXZqcXZocHRr0ab1tZkfG1tJTr8NjB/ogZMSl2do5gbW1hUvfNhNXVBSjVqfHiiZFQwCeWcpbkq3DvVSvS8jwrqwuwtrYQj+ztwQe3NmS9Q260MTFk/qOAbx6jgI8QQqRrChvNkFDAZ0vP3jSjQY3OCN0tkzVmF7JqMzt0iqqClw+anQmP/egZd6AhQjmnqK1Sj6faB8E5B2Ps3ND1HMjwkXM0SjnqS/JRX5LddYiNW06N2BMucR+zu3Gk34LPvGVpJpaWFJmM4dK2Mjx7dAhefwBKuQw/23EaJ4Zs+PXNqZVyznTjeXX43N+O4PUzE7hgSXZ/kOIYGAr4cg8N0ZjHQgHfPKjbJoSQ+S40miHBxi3jU+kJ+Mp06rhdOjnnePxgv6TmLkPBGXzRMnyVYRm+RJ0dn4rYsEXUVmGAzeULjX0QG9uUUYaPJKHFKIxmSGYf3yvBUtBtrfNrtNelbeWwuXw40D2JowMW/GLHaVy7rhqXL0+9lDPcO9dUwaBR4JG9PWl93GQM0tD1nEUB3zxmdVGGjxBCpCrOV8GgUSQ8miFtJZ0GDWwuX8w2+EcHrLj7scP43WvdcR9vKDhyIVqGr1yvhowlPnzd7vZh1OaOuH9PtKxSyMh0BvfxhUo6KcNHklBdmId8lRynhhPv1DlfxjHMdFFLKVRyGZ47NoTPPnYYRfkq/L93Jt+VMxqNUo73bqjFc8eG0j7nM1FDFifKdGooE9gjTeYH+onNY1TSSQgh0jHG0FimSyjg8/kDmHR40pPhCwZDsQ7Knj48AAA42D0Z9/GGogxdFynkMhj1moSHr/cEO3RGmsEnEktEO4L7+EZtbuQp5chXJd/YhixejDE0G3UJd9ENjWNYmv1xDDPlqxU4f0kJHt7TjRNDNnz73asytsfwA+fVwevnePRAX/wbZ5DJ4qKGLTmKAr55jAI+QghJTFNpPs6MSs8iTDg84Dw9mStjnFl8gQDHPw6bAADt/Wa4fbEHYpusLijlDMUxDiIrCzUJz+LrHhNm8EUaySDSa5SoKcrDieCexLHgSIZsN40guaulXJ9whi80jqF1foxjmOmyNiM4B96dgVLOcM1GHS5oKsGf9/XCH+AZe554TBYXKqmcMydRwDePWZxeqBSylFqFE0LIYtJUmo9BiwtOT+xgSjRmC87gS8PMttDw9SidOvd1T2DI6sKVqyrh8QVwdMAS8/GGLS6UGzQxMxtVBXkJ7+ETZ/DF2sMHCPv4TgSHdgtD1+dHh0SSm1qMOozY3LA4vJLvs/PEyLwaxzDTNeuq8bGLm/DVd6anK2csN55fh/5JJ145lfx4i1RwzmEyO1FZSAFfLqKAbx6zOr2U3SOEkAQ0lglBjBjUxCM2I0lPhk84EIrWuOXpw4PIU8rxxbe3AQD2xynrHLJGH8kgqiwQMnycSz/r3z02BaNeHXf22rJKPc6MTcHl9WPUlhtD18n8tTTUqVN6WefOk6PzahzDTAV5SnzpHcvmpLneW5dXoFSnwiOv92b8uSKxunyY8vipQ2eOooAvS6R8OFucXhg0NDmDEEKkCnXqlLiPLxTwpWEPX0m+CnIZi1jS6fEF8K83Tbh8eTlqi7VoLM3HgXgBn8WF8jgHV1WFeXD7AphMIGvSHadDp6itwgB/gOP0iB1jdg8FfCQlzaFOndLKOsVxDNvnaTnnXFMpZLh+Yy1eOjGccBl3OvSOC6Xg1YXRS8HJ/EUBXxYcG7Rg5b3Pob3PHPN2FsrwEUJIQsRARmrAN24XSjrT0aVTJmMo1akiNm3ZdXoUZocXV6+pAgBsrC/CwZ4JBKLsx+GcY8gaf79MVeG5WXxSnR1zoKE0/kFbW7BT59EBCyam0tPYhixe1YV50KrkkjN858YxUMAnev/mOnAAf9k391m+17rGAACbGorm/LlJ6ijgy4KfvHAKUx4/XjoxEvN2FPARQkhi8tUKVBg0OCNxFt+Y3Q2VQgZ9nPJGqYx6TcSSzqfbB1GQp8TFS4VZYpsaijHp8OLMWORsh9Xpg8sbiNqhU1RZkNgsPrvbhzF77JEMooaSfKgVMuw6LRzoUYaPpEImC3bqlJjhE8cxrKgyZHhluaO2WIttS8vwl/198PoDc/rcr5wcRVuFHkZq2pKTKOCbYyeGrHj++DAA4ED3RMzbUsBHCCGJayzNx9kogdRMo3Y3ynTp6z5ZplfPatri9Pjx/PFhvH1lBVQK4WN3Y/AsebR9fCZr7Bl8IrGBgskiLcPXPSatYQsAyGUMrRV6vCYGfJThIylqMeolZfjm8ziGbLvxvHqM2Nx4sWN4zp7T4REGzIsnrEjuoYBvjv18Rxd0agXeva4ab/SaY56hsTp9FPARQkiCGsvyEyrpTEc5p8ioV8/K8L14YhgOjx/vCpZzAkJQWpKvirqPLzSDL87Z9NJ8NZRyhkGztAyf1A6dorYKfWh/IA1dJ6lqKddh2OoOjZ2Kpr1vfo9jyKbtbUZUFWjw+z09c/ace89MwOMP4OIWCvhyFQV8c6hr1I5njgzipgvqcfmycji9fhwbtEa8bSDAYXVRho8QQhLVVJqPSYcXk1OeuLcds7vTujfNqFdjYso9bVbWU+2DMOrVOK+pJHQZYwwb6otwoCdypYcY8JXHCfhkMoaKAumz+HqCjRek7OEDhMYtIsrwkVQtLRcat5yOk+V7uXN+j2PIJrmM4ZYtDdjdNY4j/eY5ec6XT45Co5SFKhNI7qGAbw79YkcX1AoZPnxhY+iXJlpZp83tA+eAgQI+QghJSKhTp4TRDGNpni9XZtAgwIHxYPdPi9OLlztHcdXqKshnlKZtaihGz7gjYlfPIau0gA8Q9vFJLek8GxzJoFVJ27MoNm4BaA8fSV2LUXg9nRiKHfDtPDmKdXVF83YcQ7Z94Lw66DUKPPBy15w83yunRnFeYwnNhc5hFPDNkd5xB55sH8CN59WjVKdGuUGDumIt9kcJ+KzBcgfK8BFCSGJCAV+cxi2cc4zb09t9UsyCiWWdzx0dgscfwLvWVs26rXji72CEss5hqwulOlVoz18sVQUa6SWdY1OSGraIxAyfXq2ggz2SsurCPFQX5uHb/zqBZ980RbyNOI5hG+0Xi0qvUeKm8+vx7NEhnBmVtl85Wf2TDpwZnaL9ezmOAr458suXuyCXMXz04qbQZRsbinCgezLiTD4LBXyEEJKU2mIt5DIWdx+fxemFL8BRks6SToMY8AkB2NOHB1FfosWamoJZt11RVQCNUhaxcYvJ4orbsEVUVZiHYatrWhlpNN3jDjRK3L8HAMX5KpQb1JTdI2khkzE8evsFaDbqcMcjh/C1fxyDxze9lwGNY5Dmg1sboZTL8NCrZzL6PK+eEpo2UXltblv0AZ/XH8CIVdqZ0WQNmp3428E+3LCxdlp5zqaGYoxPeSIelFDARwghyVHKZagr1sYN+M4NXU9v0xYAGLG6MWJzYXfXGN61pipiF1CVQoY1NYUR9/ENWVxxG7aIKgvz4Avw0NcTjc3llTySIdzWJaVYTq3xSZpUF+bh0Y9dgA9ubcDvXuvGDQ/uwUDYHtQdNI5BkjK9GtdvrMHjBwcwnMHj2FdOjqKyQINmoy5jz0Eyb9EHfO/95W589m9HMvocD75yBpwDH7ukadrlm0L7+Gaf3RUDPtrDRwghiWsszceZuAGf0NQlnc1IxEzYqM2Nfx4xIcAxrTvnTJsainFs0Iopt2/a5UNWl6T9e4BQ0gnEH74eathSIq1hi+gH16/Bzz6wPqH7EBKLSiHDve9cgV/cuB6nhu248qevYkfnCPwBjldpHINkH71oCXyBAH6762xGHt/nD+C102O4uKUsbaNrSHYs+oBvc2MxXu8an/Vhmy4jNhf+vK8X166vRk3R9A/ZJWU6FGmVEffxUYaPEEKS11iaj+6xKQRilDmKGbF0lnSqFXIUapUYsbnx9OFBtFXo0VKuj3r7jQ1F8Ac4DveZQ5e5vH6YHV5USizplDp8PTSSIcEMHx3okUx5x6pK/OMTF6LCoMEHf7cfd/3lDZgdXmynck5J6kq0uGp1Ff74eg8sjtijLpJxuN8Cq8uHi5ZSOWeuW/QB36Vt5fD4A9gVHCybbr9+9Sy8/gD+e1vzrOsYY9jYUIwDPdEzfBTwEUJI4hpL8+H0+jEcoQOmaMyW/pJOQMgYHuyZxBu95ojNWsKtry8CY9MHsA8n0KETAKoKpWX4xKHr9Qlm+AjJpMbSfDz58a24YWMtnjligowBF9F+Mcluv2QJpjx+/HFv+ufyvXJyFDIGXNhMP49ct+gDvo0NRdBrFHipYyTtjz0x5cEfX+/Bu9ZURT2juqmhCGfHpma15bY4vVDIGLQq6opGCCGJapLQqXN8ygMZA4rS3PrdaFDjuEmYsfrO1bEDPoNGidZy/bR9fGKmTmrTloI8JfKU8ridOs+OOVBukD6SgZC5olHK8d33rsZP3rcW/++q5TSOIQHLqwzY1lqG3+46C5fXn9bHfvXUKFbXFNLPYwFY9AGfUi7DJUvL8FLnSMzSn2T8dtdZOL1+fHz77OyeaGNDMYDZbbmtTmHoOpXSEEJI4hrLhIAv2j4+m8uLHZ0jKDdo0r5XyKgXArUN9UWoLY6fTdvUUIxDPZPw+YVuhWKGT2pJJ2MMlYWauLP4esan0JBAh05C5trVa6tx69bGbC8j59xxyRKMT3nw2IG+tD2mxeFFe5+ZunMuEIs+4AOAy5YZMWpz4+igJW2PaXF68fDubrx9ZUXM/Rsrq/5/e3cfHVV953H8/Z0kJCGEJBAChAAhoAZQHkKgPm3F0FXXrU8tulZW7bHdrU97ds9qV7vdo9v27B/Wbbunq671FKvdstWKbU+7RV1EK1blIXiQZwERJDyEp5AASUhIfvvH3MCIk2QmyU3uXD6vc+ZkcufeuXc+DL/Md373/n55ZKZ/dljueq/gExGR5I3MzSI7Iy3uSJ3Hmlu589lVbNl3jEevm9Ln++4YqbOrwVpiVZYWcKKl7fRk1B09fIme0glQnJfN3gSu4ZuQ5PV7IhJ8cyYMo2JcPj9ZvuP0F0e99c5Hh2h3aP69kOi24DOzsWb2ppltNrONZvb33vLHzWyLma0zs9+YWb7vR+uTK84vImKwrA9P6/zFil0cO3mqy949iI5UNWPsZ4flrm9q1QidIiI9FIkYpYU5n5mUuKG5lTueXcW6mnqeuG0m11w4us/3PaloCDmD0rj2osSee7Z3pke1N4DX/vpmhmSmk5uV+N+A4vws9nVxDV90SoYWxquHTyR0zIx75k6ipq6JP3QyoX2y3t52kNysdGaMze+T55OBlUgP3yngAefcZOBi4D4zmwIsBS50zk0DtgLf8u8w/TUsZxAV4wp4Y0vfFHzt7Y5frvqEyyYNZ2rxZyfbPVu8Ybkb1MMnItIrZYU5n+rha2hu5Y6Fq1hfU8+TCyp8KfYAvlxRwnv/PC/hycqL87MpzstitTeAV21DMyOHJjdy6Oi8bA4eP/mZSaw7dEzJMKFQA7aIhNG88iLOKxrCf/3xI5zr/BKlo40ttHVzCZNzjuVbD3HZxELS03QyYBh0+6/onNvnnHvfu38M2AyMcc79n3Ouo0JZAZT4d5j+q5pcxPo99X0yeeWKjw9TU9fELZVjE1q/Y1jutTHDcuuUThGR3plQmMPuuiZaTrVT39TK7QtXsXFvPU8tqODqqaN8228kYgxNoncOotdzV+88gnOOffXNCQ/Y0qE4Pwvn6PRvWEfhm+yUDCKSGiIR4+4rJrJl/zH+uPXg6eUNza28vqmW7/x+I1f/aDkzvruUexet6XLcio8OnmDP0SZNxxAiSZXtZlYKzARWnvXQXcArnWzzt2ZWbWbVBw8ejLdKIFSVR+d8ebMPevkWV9eQm5nOVVMS+0Axa3wBEeNT8/Gp4BMR6Z0JhTm0tTs27K3n9oUr2bS3nqcWzOIqH4u9nppdWkBtw0lq6pqobWhm1NDspLbvbC6+5tY2Xl5Tw5NvbidiMH6YCj6RsLp+RjHFeVn8aOlWHn9tCzc++Q4zv7uUr/+8mv9Z+QlFQzOZP6uE1zbW8tirWzp9nre3RT+vf/48Xb8XFgmPzWxmQ4CXgX9wzjXELP820dM+F8Xbzjn3DPAMQGVlZd8Og9mHLhiZy5j8bJZtOcCtc8b1+HmONbeyZMM+bppZQnaCUyrkZmVQPmoo1d7ALc45GppPMTRbQ2eLiPRUx0iddz23msaTbTz917OYN3nkAB9VfB0jNq/8+AgHjp1kVF5yp3R2zMXXMVLnx4dOsGjFLha/X8PRxlbKCnP44S0zEv67JCKpJyMtwt98vozv/H4TG/c2ML0kj3vnTuTSiYVUjM8nMz36/3/woDR+snwHEwpz4n7mXb71IGWFOQmNMiypIaGKwswyiBZ7i5xzv45ZfifwRWCe6+qE4RRgZlSVF7F4TQ3NrW1kZfTsj+KS9ftobm3n5srkznCdXVrAS2tqONXWTlNrG23tTj18IiK90DEXX+PJNp6+vYKq8mAWewDnj8wlNzOdVzfsp63dMSqvZz18S9bv41fVu3ln+2HSI8bVU0ex4OJxXFI2XNP8iJwD7ryklIvG5HHBqNxOB3565ItT2HW4kX/57QbGDhvMZTETq5881caKHUe4JcnPsRJsiYzSacBCYLNz7ocxy68BHgKud841+neI/adqchFNrW2s2HG4x8/xUnUNE0fkMDPJUY0qS4fR2NLGpn0N1De1AqjgExHphfzBg7jvyok8+9XZgS72ANIiRsX4ApZ7196MSmJKBoCczHTyB2fw2sZadh5q5MGrzufdh6t4ckEFl04sVLEnco6IRIzK0mFdjvKbnhbhidtmMnHEEO7+xRq2HzgzmvGanXU0tbZpOoaQSeQavsuA24EqM1vr3a4FngBygaXesqf9PND+cEnZcLIz0no8WufHh05QvauO+bPGJv3HtbK0AIDVO+toaIqOhaOCT0Skd755dTmXp8jEwbNLC2jx5tBKtuAD+PGtM1l4ZyXL/+lK7q86j6IePIeInBtyszJY+NVKMtMj3PXcao6caAHgrW0HyUgzLi4bPsBHKH0pkVE6/+ScM+fcNOfcDO+2xDk3yTk3NmbZ3f1xwH7KykjjskmFLNt8oMshbTuzeM1uIgZfqhiT9Laj87IpKcimeueR0z18modPROTc0XEdH5D0KJ0QnSB53uSRpEXUmyci3SspGMwzd1Syv6GZb/x3NSdPtbF86yFmjS8gJ1PjSISJJtc4y7zJRew52sTW2uPdrxyjrd3x8po9XHH+CEb28FvV2aXDWL2zTqd0ioicg6aX5JMeMTLSjOE5gwb6cETkHFAxroAf3Dyd1TvruG/R+2ze16DTOUNIBd9ZrrwgOj1Dsqd1/mn7IfY3NDN/VmJz78VTWVrAoeMnWVdzFFDBJyJyLskelMaFY/Ioys0iol46Eekn100v5oE/P5/XN0c/+2o6hvBRf+1ZRuVlceGYobyxpZZ75k5MeLvFa2rIH5zBF6YU9Xjfc7zTeZZ5/+FU8ImInFu+efUFHPaupRER6S/3V01id10jq3fWMWX00IE+HOljKvjiqCofyRNvbKPuRAsFCZxWU9/Yymsb9/OV2WNPz3HSExNHDCF/cAYf1h4jLWIM0fnTIiLnlNjh0UVE+ouZ8diXp9Hu0BkGIaRTOuOYV15Eu4O3vOGxu/O7dXtpOdXOzZU9P50TvKF0x0dH6xyala5htEVERESkX5iZBn0KKRV8cVw0Jo/CIZksS/A6vsVraigflcvU4t53gXeM0qYROkVEREREpLdU8MURiRhV5SN468MDtHpzInVmW+0xPth9lPmzSvqkR262Nx+frt8TEREREZHeUsHXiarykTQ0n2LNrrou13tpTQ3pEeOmmcnPvRfPhWPyGJQeUcEnIiIiIiK9poKvE5efV0hGmnU5PUNrWzu/fn8PVeVFDB+S2Sf7zUxPY8HnxjH3gp6P9ikiIiIiIgIq+Do1JDOdi8uG8/rmWppa2uKus3zrQQ4dP8n8WSV9uu9Hr5vK1y6f0KfPKSIiIiIi5x6N+9+FL0weyaO/28jkR16lYHAGo/OyKc7PZkx+FqPzs3lj8wEKhwziynL1xomIiIiISPCo4OvCrXPGUpAziN1HGtl7tIm9R5uoqWtk5ceHOdZ8CoBvXFFGRpo6SkVEREREJHhU8HUhMz2N66cXx33sWHMrB46dZGzB4H4+KhERERERkcSo4Ouh3KwMcrM0kqaIiIiIiASXzkUUEREREREJKRV8IiIiIiIiIaWCT0REREREJKRU8ImIiIiIiISUCj4REREREZGQUsEnIiIiIiISUir4REREREREQkoFn4iIiIiISEip4BMREREREQkpFXwiIiIiIiIhZc65/tuZ2UFgV7/tMHGFwKGBPoiQU8b+Ur7+U8b+U8b+Ur7+U8b+U8b+Ur7+KwRynHMj+muH/VrwBZWZVTvnKgf6OMJMGftL+fpPGftPGftL+fpPGftPGftL+fpvIDLWKZ0iIiIiIiIhpYJPREREREQkpFTwRT0z0AdwDlDG/lK+/lPG/lPG/lK+/lPG/lPG/lK+/uv3jHUNn4iIiIiISEiph09ERERERCSkUqrgM7NrzOxDM9tuZg/HLH/RzNZ6t51mtraT7YeZ2VIz2+b9LPCWL4jZfq2ZtZvZjDjbL/L2v8HMnjWzDG+5mdmPveNaZ2YV/iTgvwBnXG5m75nZSTN70J9X3z8CnPEC7/27zszeNbPp/iTgrwDne4OX7Vozqzazy/1JwH8+ZpxhZs+b2Xoz22xm3+pk+wlmttLb/kUzG+QtV1t8Zj2/Mg5FWxzgfEPRDkOgM1ZbfGY9XzKOeXy2mbWZ2fw+fNn9Jqj5mtlcM6uPOYZHun0xzrmUuAFpwEdAGTAI+ACYEme9HwCPdPIc3wce9u4/DDwWZ52LgB2dbH8tYN7tl8A9Mctf8ZZfDKwc6LxCmHERMBv4N+DBgc4qpBlfChR49/8iFd/HAc93CGdOo58GbBnovIKWMXAb8IJ3fzCwEyiNs/2vgFu9+0+rLe7XjFO+LQ54vinfDqdAxmqLfc445vjeAJYA8wc6rzDlC8wF/jeZ15NKPXxzgO3OuR3OuRbgBeCG2BXMzIBbiH7IiucG4Hnv/vPAjXHW+Upn2zvnljgPsAooiXnen3sPrQDyzWx0wq8sOAKbsXPugHNuNdCa1CsKniBn/K5zrs5bbQVn3t+pJMj5HveWAeQAqXoBtZ8ZOyDHzNKBbKAFaIjz3FXA4jjbqy0+w5eMQ9IWBznfMLTDEOyM1Raf4VdbDPB3wMvAgSRfV1AEPd+kpFLBNwbYHfN7jbcs1p8Btc65bZ08x0jn3D4A72dRnHX+is7/4YBoVyxwO/BqEseWCoKccVikSsZfI9pTkmoCna+Z3WRmW4A/AHd1tX2A+ZnxYuAEsA/4BPh359yRs7YdDhx1zp2Ks3+1xWf4lXEYpEq+qdoOQ8AzVlt8mi8Zm9kY4CaivVKpKrD5ei4xsw/M7BUzm9rdi0mlgs/iLDv7W5lOv3VPaAdmnwManXMbuln1KWC5c+7tJI4tFQQ547AIfMZmdiXRDxoP9fQYBlCg83XO/cY5V070W7rv9fQYBpifGc8B2oBiYALwgJmVJbF/tcXd623GYRD4fFO8HYaAZ6y2uFu9zfg/gIecc2092HdQBDnf94HxzrnpwH8Cv+1uh6lU8NUAY2N+LwH2dvzidYt+CXgxZtnPvIsZl3iLajtO7/F+nt3NfCvdf2v/KDAC+MdEjy2FBDnjsAh0xmY2DfgpcINz7nASrysoAp1vB+fccmCimRUm8qICxs+MbwNedc61OucOAO8AlWft/xDRUzXT4+xfbbH/GYdBoPMNQTsMAc+4g9pi3zKuBF4ws53AfOApM7uxF691IAQ2X+dcg3PuuHd/CZDR7XvYBeDCyERuQDqwg2gl3HHx5NSYx68B3urmOR7n0xdPfj/msYj3j1vWxfZfB94Fss9a/pd8eqCAVQOdV9gyjnn8X0nRgQKCnjEwDtgOXDrQOYU030mcGSigAtjT8Xsq3fzMmGhvxs+8tjQH2ARMi7P9S3z6QvZ7vftqi33OOObxlG2Lg5wvIWiHUyBjtcU+Z3zWOs+RmoO2BDZfYFTMe3gO0dNCu3wPD3igSYZ/LbCV6Kg5347zhrq7m+2HA8uAbd7PYTGPzQVWdLP9KW/fa73bI95yA570HlsPVA50ViHMeBTRD9oNwFHv/tCBzitkGf8UqItZXj3QWYUs34eAjd6y94DLBzqroGVMdPS8l7ycNgHf7GT7MqID4mz31s/0lqst9j/jULTFAc43FO1wwDNWW+xzxnGOI+UKviDnC9zvbfsB0cGduv2CqKM6FBERERERkZBJpWv4REREREREJAkq+EREREREREJKBZ+IiIiIiEhIqeATEREREREJKRV8IiIiIiIiIaWCT0REREREJKRU8ImIiIiIiISUCj4REREREZGQ+n8mi6OCkYzI1QAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAE/CAYAAAAOkIE9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACpHklEQVR4nOzdd3xkdbk/8M93eqakT3rPJtv7six9lyIIKIhUFUFEFEURvfbrD/TqVbFjAUHEhoh04QoCsnS2977ZTTa9TTK9z3x/f5w5k0ky5UzLTJLn/XrxYjeZnJxkk5nznKcxzjkIIYQQQgghhMw+slyfACGEEEIIIYSQ1FBARwghhBBCCCGzFAV0hBBCCCGEEDJLUUBHCCGEEEIIIbMUBXSEEEIIIYQQMktRQEcIIYQQQgghsxQFdIQQQgghhBAyS1FARwghsxRjzB7xX5Ax5or4+0dzfX6pYIx1McYuzPV5xMMYe50xdmuWjl3OGHuHMWZijJkZY+8xxs6a8pi7GGODjDELY+wPjDF1xPtKGWPPMMYcjLFTjLGPTPnYCxhjRxhjTsbYZsZYY8T7GGPsR6HPbWKM3csYY9n4OgkhhGQOBXSEEDJLcc714n8AugF8IOJtj+b6/KZijCnmwufIMjuAWwAYAZQA+BGA58WvizF2MYCvA7gAQBOAFgDfifj43wDwAqgE8FEA9zPGloY+thzA0wC+DaAUwA4Aj0d87G0ArgSwEsAKAJcD+HTmv0RCCCGZRAEdIYTMMYwxGWPs64yxE6FMyz8YY6Wh9zUxxjhj7BOMsR7G2Dhj7DOMsdMYY/tCWaFfRxzr5lDG6FehjNARxtgFEe8vYow9zBgbYIz1Mca+xxiTT/nYnzPGxgDcwxhrZYy9FjqvUcbYo4yx4tDj/wKgAUIAY2eMfZUxtpEx1jvl6wtn8Rhj9zDGnmSM/ZUxZgVwc4JzWsAYeyP0tYwyxiIDmsjPoQkdU8yUbWeMVTLGvg/gHAC/Dp3jr0OPX8QYe4UxNsYYO8oYuzbiWH9kjD0Qer8t9Pkbo31ezrmbc36Ucx4EwAAEIAR2paGH3ATgYc75Qc75OID/AXBz6PPoAHwYwLc553bO+dsA/gngxtDHXgXgIOf8Cc65G8A9AFYyxhZFHPunnPNeznkfgJ+KxyaEEJK/KKAjhJC55wsQMi3nAagBMA4hcxPpdABtAK4D8AsA3wJwIYClAK5ljJ035bEnAZQDuBvA02KACOBPAPwAFgBYDeB9AG6N8rEVAL4PIUj5Qei8FgOohxBYgHN+IyZnGu+V+PVeAeBJAMUAHk1wTv8D4GUIQVIdgF/FOOZNAIpC51cG4DMAXJzzbwF4C8AdoXO8IxRIvQLgb6Gv8wYAvxUzYyEfDX3ucgB7QucZE2NsHwA3hIDs95zz4dC7lgLYG/HQvQAqGWNlANoBBDjnx6a8f2m0j+WcOwCciPX+KR9LCCEkT1FARwghc8+nAXwrlGnxQAiYrp5Sjvg/oWzQywAcAB7jnA+HMjNvQQiERMMAfsE593HOHwdwFMBljLFKAO8H8EXOuSMUdPwcwPURH9vPOf8V59zPOXdxzjs4569wzj2c8xEAP4MQeKbjPc75s6GsVmGCc/IBaARQE/r6345xTB+EQG4B5zzAOd/JObfGeOzlALo454+Evs5dAJ4CcHXEY/6Pc/5m6N/jWwDOYIzVx/qCOOcrQl/LRwBEnqMegCXi7+KfDVHeJ77fEONjE73fAkBPfXSEEJLfZnuvASGEkOkaATzDGAtGvC0Aoa9KNBTxZ1eUv+sj/t7HOecRfz8FIcPWCEAJYCDiml8GoCfisZF/BmOsAsB9EMoWDaHHj0v6qmKL/ByJzumrEDJl2xhj4xBKDP8Q5Zh/gZCd+3uoJPSvEIJkX5THNgI4nTFmjnibInSMaefIObeHSlBrppz7JKGyyMcYY4cZY3s453sh9NgVRjxM/LMtyvvE99tCf072/YUA7FP+7QkhhOQZytARQsjc0wPg/Zzz4oj/NKHsWypqp2RpGgD0hz6PB0B5xOcp5JxHlulNDQZ+EHrbCs55IYCPQSjDjPV4BwCt+JdQL5xxymMiPybuOXHOBznnn+Kc10DIZP6WMbZg6hccykZ+h3O+BMCZELJwH49xjj0A3pjy/dZzzm+PeEw4G8cY00Poieuf+nljUEIYfgIAByEMLRGtBDDEOTcBOAZAwRhrm/L+g9E+NlQq2hrr/VM+lhBCSJ6igI4QQuaeBwB8Xxy8wRgzMsauSON4FQC+wBhTMsaugdD79i/O+QCEfrSfMsYKQ8NYWqf0301lgJAJMjPGagF8Zcr7hzARvABCkKJhjF3GGFMC+G8AasSQ6JwYY9cwxupCDx+HEJwFph6HMbaJMbY8FEBaIZRgio+beo4vAGhnjN0Y+h4pQ0NmFkc85lLG2NmMMRWEDOFWzvm07BxjbIP4OMZYAWPsaxAyq1tDD/kzgE8yxpYwxkpC348/hr52B4Qplt9ljOmYsO7gCkxkCp8BsIwx9mHGmAbA/wOwj3N+JOLYX2KM1TLGagB8WTw2IYSQ/EUBHSGEzD2/hDBM42XGmA3AFgjDSVK1FcIAlVEIg02uDmWEACFrpQJwCEKA9CSA6jjH+g6ANRD6s/4PQgAS6QcA/js0WfK/OOcWAJ8F8HsAfRAydr2IL945nQZgK2PMDuF7dCfnvDPKMapCH2cFcBjAGxDKLgHh+3s1EyaE3sc5t0EYvHI9hKzbIIR1A5GB598gDJQZA7AWwpCUaNQQBtiYQl/vpQAu45z3AwDn/CUA9wLYDKH09VTouKLPAiiA0Pf4GIDbOecHQx87AmEK5vdD35fTMbnf8XcAngewH8ABCP8+v4txnoQQQvIEo9J4QgghsTDGbgZwK+f87Fyfy2zFGPsjgF7O+X/n+lwIIYTMPZShI4QQQgghhJBZigI6QgghhBBCCJmlEpZchvbk/BlCP0EQwIOc818yxlZBaLzXQFjg+lnO+bbsni4hhBBCCCGEEJGUgK4aQDXnfBdjzABgJ4ArAfwCwM855y8yxi4F8FXO+cbsni4hhBBCCCGEEFHCxeKhEdADoT/bGGOHAdRCGPUsLiAtgvR9OoQQQgghhBBCMiCpKZeMsSYAbwJYBiGo+zeEhbAyAGdyzk/F+/jy8nLe1NSU6rkSQgghhBBCyKy2c+fOUc65MVPHS5ihEzHG9ACeAvBFzrmVMfY9AHdxzp9ijF0L4GEAF0b5uNsA3AYADQ0N2LFjR2bOnBBCCCGEEEJmGcZY3CRY0seTkqFjjCkBvADg35zzn4XeZgFQzDnnjDEGwMI5L4x3nHXr1nEK6AghhBBCCCHzFWNsJ+d8XaaOl3BtQShYexjAYTGYC+kHcF7oz+cDOJ6pkyKEEEIIIYQQkpiUksuzANwIYD9jbE/obd8E8CkAv2SMKQC4ESqrJIQQQgghhBAyM6RMuXwbwuCTaNamewI+nw+9vb1wu93pHoqQSTQaDerq6qBUKnN9KoQQQgghhGSF5KEo2dLb2wuDwYCmpiYI1Z2EpI9zDpPJhN7eXjQ3N+f6dAghhBBCCMmKhD102eZ2u1FWVkbBHMkoxhjKysoo80sIIYQQQua0nAd0ACiYI1lBP1eEEEIIIWSuy4uALte+//3vY+nSpVixYgVWrVqFrVu3AgBuvfVWHDp0KCOfo6mpCaOjo3Ef87//+79JH/ePf/wj7rjjjklve+SRR7Bq1SqsWrUKKpUKy5cvx6pVq/D1r3896ePPhF/84hdwOp25Pg1CCCGEEDLb3XsvsHnz5Ldt3iy8fY7KeQ9drr333nt44YUXsGvXLqjVaoyOjsLr9QIAfv/738/oufzv//4vvvnNb6Z9nE984hP4xCc+AUAIJDdv3ozy8vK0j5sqzjk455DJot8/+MUvfoGPfexj0Gq1ko/p9/uhUMz7H19CCCGEkPnn3nuB004DNm2aeNvmzcD27cLbr70W+Mc/hPdv3jzx9zlq3mfoBgYGUF5eDrVaDQAoLy9HTU0NAGDjxo0QF6Hr9Xp87Wtfw9q1a3HhhRdi27Zt2LhxI1paWvDPf/4TwPRs2eWXX47XX3992ue88sorsXbtWixduhQPPvggAODrX/86XC4XVq1ahY9+9KMAgL/+9a9Yv349Vq1ahU9/+tMIBAIAhAxce3s7zjvvPLzzzjuSv9Yf//jHOO2007BixQrcfffdAICuri4sWrQIt956K5YtW4aPfvSjePXVV3HWWWehra0N27ZtAwDcc889uPHGG3H++eejra0NDz30UMLjLl68GJ/97GexZs0a9PT04Pbbb8e6deuwdOnS8OPuu+8+9Pf3Y9OmTdgU+qXU6/XhYz/55JO4+eabAQA333wzvvSlL2HTpk342te+hhMnTuCSSy7B2rVrcc455+DIkSOSvxeEEEIIIWSWEoO2P/wBeP11IcC78krA5QKGhoBbbwU++EHgxhsnB3dzlZg9mYn/1q5dy6c6dOjQtLfNJJvNxleuXMnb2tr47bffzl9//fXw+8477zy+fft2zjnnAPi//vUvzjnnV155Jb/ooou41+vle/bs4StXruScc/7II4/wz33uc+GPv+yyy/jmzZs555w3NjbykZERzjnnJpOJc8650+nkS5cu5aOjo5xzznU6XfhjDx06xC+//HLu9Xo555zffvvt/E9/+hPv7+/n9fX1fHh4mHs8Hn7mmWdO+pxTiZ/33//+N//Upz7Fg8EgDwQC/LLLLuNvvPEG7+zs5HK5nO/bt48HAgG+Zs0a/olPfIIHg0H+7LPP8iuuuIJzzvndd9/NV6xYwZ1OJx8ZGeF1dXW8r68v7nEZY/y9994Ln4v4dfv9fn7eeefxvXv3TvveTP0+PPHEE/ymm27inHN+00038csuu4z7/X7OOefnn38+P3bsGOec8y1btvBNmzZN+/pz/fNFCCGEEEKy4L77OAcS//ftb+f6TKcBsINnMMbKq5q17zx/EIf6rRk95pKaQtz9gaUx36/X67Fz50689dZb2Lx5M6677jr88Ic/DGeFRCqVCpdccgkAYPny5VCr1VAqlVi+fDm6urqSOqf77rsPzzzzDACgp6cHx48fR1lZ2aTH/Oc//8HOnTtx2mmnAQBcLhcqKiqwdetWbNy4EUajEQBw3XXX4dixYwk/58svv4yXX34Zq1evBgDY7XYcP34cDQ0NaG5uxvLlywEAS5cuxQUXXADG2LSv7YorrkBBQQEKCgqwadMmbNu2DW+//XbM4zY2NmLDhg3hj//HP/6BBx98EH6/HwMDAzh06BBWrFiR1PfummuugVwuh91ux7vvvotrrrkm/D6Px5PUsQghhBBCyCz1yitAQYGQlbv5ZuCznwVUKuG/nTuBO+8EbrkFuP9+ITs3hzN0eRXQ5YpcLsfGjRuxceNGLF++HH/605+mBXRKpTI8NVEmk4VLNGUyGfx+PwBAoVAgGAyGPybayPzXX38dr776Kt577z1otVps3Lgx6uM457jpppvwgx/8YNLbn3322ZSmN3LO8Y1vfAOf/vSnJ729q6sr/LXE+9qA6VMjGWNxj6vT6cJ/7+zsxE9+8hNs374dJSUluPnmm2OuFIj8PFMfIx4zGAyiuLgYe/bsSfSlE0IIIYSQueTAAeD55wGtFvj2t4Wg7eMfn+iZu+su4Mknhb9feumcL7vMq4AuXiYtW44ePQqZTIa2tjYAwJ49e9DY2JjSsZqamvDb3/4WwWAQfX194f6zSBaLBSUlJdBqtThy5Ai2bNkSfp9SqYTP54NSqcQFF1yAK664AnfddRcqKiowNjYGm82G008/HXfeeSdMJhMKCwvxxBNPYOXKlQnP7eKLL8a3v/1tfPSjH4Ver0dfXx+USmVSX99zzz2Hb3zjG3A4HHj99dfxwx/+EAUFBZKOa7VaodPpUFRUhKGhIbz44ovYuHEjAMBgMMBms4UHt1RWVuLw4cNYuHAhnnnmGRgMhmnHKywsRHNzM5544glcc8014Jxj3759kr4XhBBCCCFkFvvSl4T/P/qo0Du3adNE0LZ9++TgbdOmibdTQDc32e12fP7zn4fZbIZCocCCBQvCg0qSddZZZ4XLF5ctW4Y1a9ZMe8wll1yCBx54ACtWrMDChQsnlSTedtttWLFiBdasWYNHH30U3/ve9/C+970PwWAQSqUSv/nNb7Bhwwbcc889OOOMM1BdXY01a9aEh6XE8773vQ+HDx/GGWecAUAoNf3rX/8KuVwu+etbv349LrvsMnR3d+Pb3/42ampqUFNTI+m4K1euxOrVq7F06VK0tLTgrLPOmvR1v//970d1dTU2b96MH/7wh7j88stRX1+PZcuWwW63Rz2fRx99FLfffju+973vwefz4frrr6eAjhBCCCFkLjt1CvjPf4APf1gI5oDJQdtXvzr9Y+Z4ySUT+vJmxrp167g4NVJ0+PBhLF68eMbOgaTmnnvugV6vx3/913/l+lSSQj9fhBBCCCFzyJ13Ar/9LXDyJFBfn+uzSQljbCfnfF2mjjfv1xYQQgghhBBCZoHRUeChh4CPfWzWBnPZMO9LLok099xzT65PgRBCCCGEzGe//rUw1TJaWeU8Rhk6QgghhBBCSH6z24Ff/Qq44gqA2mkmoYCOEEIIIYQQkt9+/3tgbAz4+tdzfSZ5hwI6QgghhBBCSP7yeoGf/Qw491wgYkI8EVAPHSGEEEIIISR/PfYY0NMD/O53uT6TvEQZOgByuRyrVq3CsmXLcM0118DpdKZ8rJtvvhlPPvkkAODWW2/FoUOHYj729ddfx7vvvhv++wMPPIA///nPKX9uUVdXF5YtWzbpbffccw9+8pOfJHWcTJ0PIYQQQgghKQkGgR/9CFixArjkklyfTV6igA5AQUEB9uzZgwMHDkClUuGBBx6Y9H4pi7uj+f3vf48lS5bEfP/UgO4zn/kMPv7xj6f0uTLN7/fn1fkQQgghhJB54t57gc2bhT+/8AJw+DBw+eXAj3+c2/PKU7MroIv8xxVt3iy8PUPOOeccdHR04PXXX8emTZvwkY98BMuXL0cgEMBXvvIVnHbaaVixYgV+F0r5cs5xxx13YMmSJbjsssswPDwcPtbGjRshLlJ/6aWXsGbNGqxcuRIXXHABurq68MADD+DnP/85Vq1ahbfeemtSFm3Pnj3YsGEDVqxYgQ996EMYHx8PH/NrX/sa1q9fj/b2drz11ltJf43xjv3Nb34T5513Hn75y1+Gz6e/vx+rVq0K/yeXy3Hq1CmcOnUKF1xwAVasWIELLrgA3d3dAIQs5Re+8AWceeaZaGlpCWcsCSGEEEIISei004BrrwVeew34wQ+AykrgwQeFt5NpZldAJ/7jikHd5s3C3zP0j+v3+/Hiiy9i+fLlAIBt27bh+9//Pg4dOoSHH34YRUVF2L59O7Zv346HHnoInZ2deOaZZ3D06FHs378fDz300KSMm2hkZASf+tSn8NRTT2Hv3r144okn0NTUhM985jO46667sGfPHpxzzjmTPubjH/84fvSjH2Hfvn1Yvnw5vvOd70w6z23btuEXv/jFpLdHOnHixKQgLDLrGO/YZrMZb7zxBr785S+H31ZTU4M9e/Zgz549+NSnPoUPf/jDaGxsxB133IGPf/zj2LdvHz760Y/iC1/4QvhjBgYG8Pbbb+OFF17A12kaESGEEEIIkWrTJuAf/wCuugrYsgVwOIS/b9qU6zPLS/k1FOWLXwT27In/mJoa4OKLgepqYGBA2EPxne8I/0WzahXwi1/EPaTL5cKqVasACBm6T37yk3j33Xexfv16NDc3AwBefvll7Nu3L5xtslgsOH78ON58803ccMMNkMvlqKmpwfnnnz/t+Fu2bMG5554bPlZpaWnc87FYLDCbzTjvvPMAADfddBOuueaa8PuvuuoqAMDatWvR1dUV9Ritra3YE/G9FBeDJzr2ddddF/O83nnnHfz+978PZwXfe+89PP300wCAG2+8EV+NWPJ45ZVXQiaTYcmSJRgaGor79RJCCCGEEDLJpk1AQwOwfz9wxx0UzMWRXwGdFCUlQjDX3S38I5eUpH1IsYduKp1OF/4z5xy/+tWvcPHFF096zL/+9S8wxuIen3Oe8DHJUKvVAIRhLn6/P2PHBSZ/zZEGBgbwyU9+Ev/85z+h1+ujPibyaxTPERC+fkIIIYQQQiR76SUhmFu9WthB9773UVAXQ34FdAkyaQAmyiy//W3g/vuBu++ekX/ciy++GPfffz/OP/98KJVKHDt2DLW1tTj33HPxu9/9Dh//+McxPDyMzZs34yMf+cikjz3jjDPwuc99Dp2dnWhubsbY2BhKS0thMBhgtVqnfa6ioiKUlJTgrbfewjnnnIO//OUv4YxaulI5ts/nw7XXXosf/ehHaG9vD7/9zDPPxN///nfceOONePTRR3H22Wdn5BwJIYQQQsg8Jl7vA8IgFJlM+DuVXUaVXwFdIuI/rviPuWnTjP3j3nrrrejq6sKaNWvAOYfRaMSzzz6LD33oQ3jttdewfPlytLe3Rw2OjEYjHnzwQVx11VUIBoOoqKjAK6+8gg984AO4+uqr8dxzz+FXv/rVpI/505/+hM985jNwOp1oaWnBI488krGvJdljv/vuu9i+fTvuvvtu3H333QCEzOR9992HW265BT/+8Y9hNBozeo6EEEIIIWSe2r5daJs6dgzYuBGQy4Xr/e3bKaCLgs1kOdy6deu4OPVRdPjwYSxevFjaAe69VxiAEvkPuXmz8I8b0b9FiCipny9CCCGEEJJ7VitQUQHcdhtw3325PpuMY4zt5Jyvy9TxEmboGGP1AP4MoApAEMCDnPNfMsYeB7Aw9LBiAGbO+apMnVhU0YI2MVNHCCGEEEIImf2eew7weIDrr8/1mcwKUkou/QC+zDnfxRgzANjJGHuFcx4eh8gY+ykAS7ZOkhBCCCGEEDJPPPYY0NgInHFGrs9kVki4h45zPsA53xX6sw3AYQC14vuZMNrwWgCPZeskCSGEEEIIIfPA6CjwyivAddcBGZwSP5cltVicMdYEYDWArRFvPgfAEOf8eKonQWPtSTbQzxUhhBBCyCzz1FOA3w/ccEOuz2TWkBzQMcb0AJ4C8EXOeeSs/RsQJzvHGLuNMbaDMbZjZGRk2vs1Gg1MJhNdfJOM4pzDZDJBo9Hk+lQIIYQQQohUf/87sHAhsHJlrs9k1pC0toAxpoQQzD3KOX864u0KAFcBWBvrYznnDwJ4EBCmXE59f11dHXp7exEt2CMkHRqNBnV1dbk+DUIIIYQQIkVfH/DGG8KeaSq3lEzKlEsG4GEAhznnP5vy7gsBHOGc96Z6AkqlEs3Nzal+OCGEEEIIIWQueOIJgHOabpkkKSWXZwG4EcD5jLE9of8uDb3vetAwFEIIIYQQQki6HnsMWL1aKLkkkiXM0HHO3wYQNefJOb850ydECCGEEEIImWdOngS2bQN+9KNcn8msk9SUS0IIIYQQQgjJuMcfF/5/3XXxH0emoYCOEEIIIYQQkluPPQaceaawUJwkhQI6QgghhBBCSO4cPAjs30/DUFJEAR0hhBBCCCEkd/7+d0AmA665JtdnMitRQEcIIYQQQgiZWffeC2zeLKwp+PvfgU2bgMOHhbeTpFBARwghhBBCCJlZp50GXHst8LvfAR0dwrqCa68V3k6SknBtASGEEEIIIYRk1KZNwD/+AVx2mVBu+cgjwmLxTZtyfWazDmXoCCGEEEIIITNv3Trh/8Eg8NnPUjCXIgroCCGEEEIIITPvrrsAlwu45Rbg/vuFnjqSNAroCCGEEEIIITPr+eeBP/wBOP104OGHhfLLa6+loC4FFNARQgghhBBCZtavfiVMuPzNb4S/iz1127fn9rxmIRqKQgghhBBCCJk54+PAtm3AFVcAa9dOvH3TJuqjSwFl6AghhBBCCCEz5+c/BywW4DvfyfWZzAkU0BFCCCGEEEJmhskE/OIXwNVXAytX5vps5gQK6AghhBBCCCEz4yc/Aex24J57cn0mcwYFdIQQQgghhJDsGx4WhqFcfz2wdGmuz2bOoICOEEIIIYQQkn333ivsnft//y/XZzKnUEBHCCGEEEIIya6BAWFFwUc/CixalOuzmVMooCOEEEIIIYRk149+BPh8lJ3LAgroCCGEEEIIIZl3773A5s1AXx/wwAPATTcBPT3C20nG0GJxQgghhBBCSOaddhpw7bXAWWcBgQBwwQXC3//xj1yf2ZxCGTpCCCGEEEJI5m3aJEy1fO45YMUK4M47hWBu06Zcn9mcQgEdIYQQQgghJDve/37g3HOBXbuA22+nYC4LKKAjhBBCCCGEZMeuXcChQ8C3vw3cf7/QU0cyigI6QgghhBBCSOZt3jzRM/fd7wr/v/ZaCuoyjAI6QgghhBBCSOZt3z65Z27TJuHv27fn9rzmGMY5n7FPtm7dOr5jx44Z+3yEEEIIIYQQkk8YYzs55+sydbyEGTrGWD1jbDNj7DBj7CBj7M6I932eMXY09HZaKJHHvP4gnt7VC68/mOtTIYQQQgghhGSIlD10fgBf5pzvYowZAOxkjL0CoBLAFQBWcM49jLGKbJ4oSc/PXz2G+18/Aa1KgUuWVeX6dAghhBBCCCEZkDCg45wPABgI/dnGGDsMoBbApwD8kHPuCb1vOJsnSlK389Q4fvfGCQBAx7ANAAV0hBBCCCGEzAVJDUVhjDUBWA1gK4B2AOcwxrYyxt5gjJ0W42NuY4ztYIztGBkZSfuESXJc3gD+64m9qC4qQIVBjePD9lyfEiGEEEIIISRDJAd0jDE9gKcAfJFzboWQ3SsBsAHAVwD8gzHGpn4c5/xBzvk6zvk6o9GYodMmUv3opSPoHHXgx9eswJKaQhwfooCOEEIIIYSQuUJSQMcYU0II5h7lnD8denMvgKe5YBuAIIDy7JwmScW7HaP447tduPnMJpzZWo62Cj1OjNgRCM7cZFNCCCGEEEJI9kiZcskAPAzgMOf8ZxHvehbA+aHHtANQARjNwjmSFNjcPnzlyX1oLtfha5csAgC0VRjg8QfRN+7K8dkRQgghhBBCMkFKhu4sADcCOJ8xtif036UA/gCghTF2AMDfAdzEZ3KpHYnrey8cxoDFhZ9csxIFKjkAoLVCDwA4PmzL5akRQgghhBBCMkTKlMu3AUzrjQv5WGZPh2TCa0eG8PiOHty+sRVrG0vCb18QDujsuGBxZa5OjxBCCCGEEJIhSU25JPlv3OHF157aj4WVBnzxwrZJ7ysqUKKyUE2DUQghhBBCCJkjpCwWJ7PI3f88iHGHF4/cfBrUCvm09y+o0KNjhAI6QgghhBBC5gLK0M0hLx8cxD/39uMLF7RhWW1R1Me0VRjQMWQDtTsSQgghhBAy+1FAN4c8vasPNUUa3L6xNeZjFlTo4fAGMGBxz+CZEUIIIYQQQrKBAro5Ihjk2NppwlkLyqGUx/5nbYsYjEIIIYQQQgiZ3SigmyOODdsw7vRhQ0tZ3MeJky47KKAjhBBCCCFk1qOAbo7YcsIEADi9pTTu48r0apTqVOigXXSEEEIIIYTMehTQzRHvnTShvrQAdSXahI9dUKGn1QWEEEIIIYTMARTQzQFC/9wYNjTHL7cUtVXocXzYTpMuCSGEkCgCQY6XDw7S6yQhZFaggG4OODpkg1lC/5xoQYUeFpcPo3Zvls9s/vAHgugdd+b6NAghhGTAK4cGcdtfdmLnqfFcnwohhCREAd0csOWktP45UVuFAQBwnProMuapXb04/6dvwOL05fpUCCGEpOnwgPD62GWiG3WEkPxHAd0csCWJ/jkAaKukSZeZdnTQDq8/iJ55kKX72ctH8eqhoVyfBiGEZM2xISGgo8oLQshsQAHdLCf2z50hsdwSACoMahg0ChqMkkHii36/2ZXjM8kuXyCI375+As/u6cv1qZAZ0jPmxAv7+nN9GoTMKDGg6xmb28/phJC5gQK6WS7Z/jkAYIxhQYWeMnQZ1DsuvOgPWNw5PpPs6h5zwh/kGLF5cn0qZIbc/8YJfP6x3XB6/bk+FUJmhMcfCJdazoeqC0LI7EcB3Sw30T8nPaADJiZdkswIZ+gsc/turngTYMROAd18safbDM6BzlFHrk+FkBlxcsSBQJBDq5Kjb3xuP6cTQuYGCuhmuS0nTWgo1aK2uCCpj2urMGDU7sG4I71Jl8NWNz75x+0YS/M4s5nF5YPVLWQvBsxzO0MXDugoQzcvuLwBHA2Vnp0coYCOzA9iueU5beUYsLjgCwRzfEaEEBIfBXSzWHj/nMTplpEWiINRRtLL0m3pHMN/jgxjayhTOB9F3sEdmOMZuhOhgM7m9sPtC+T4bEi2Hei3IBAU9nBRQEfmi2NDNshlDOe2GxHkc783mhAy+1FAN4sdGUy+f060wJiZSZdDoZ6xk/O4HEsst2wp16F/rmfoIm4AUJZu7tvbYwYAGDQKnBylEm0yPxwbsqO5XIeWcuF1kgajEELyHQV0s1iq/XMAUFtcgAKlPO1Jl+IQkBNpZvpmM3EgymlNpRiyusMZjbmGc44Tw3Y0lgnrMaiPbu7b02NGbXEBVtUXUw8dmTeODdnQXqlHfanQykCrCwgh+Y4Culks1f45AJDJhEmX6S4XH7QKwcyJeVyO1Wd2oUApx7LaQviDHKNzNNAZsLjh8AbCKzJmQ4aOc44H3jgR7okhydnTY8bK+iK0lOtwcsQBzufmzQpCRC5vAN1jTrRXGlBVqIFcxmjSJSEk71FAN0ulsn9uqrYMrC4QM3QnR+zz9mKvd9yJupICVBcJgfVc7bcQf1bOaJ09Ad1/Dg/jhy8ewRM7enJ9KrPOqN2D3nEXVtUXo8Woh93jnxX/5oSk48SIHZwD7ZUGKOQy1BRrqOSSEJL3KKCbpY4M2mBx+bChNfmBKKLWCj0GLG7Y3L6UjzFocUPGhCEZo/b5Oemyd9wlBHTFGgBzdxedGNCd3lwGxvI/oAsGOX7y8lEAwJA1v881H4n9cyvritFi1AGY35l4Mj8cHRSy+e2hwWH1JVoquSSE5D0K6GapcP9cc3oZOiD1i7RAkGPY5sHy2qLQceZnH50Q0GlRM9czdCN2FBUoUVmoRqlWlfc9dP/c248jgzaoFTIMWedmkJ1Ne3vMkDFgeV0RWkJDlGgwCpnrjg3boJLL0Fgm3MSoKylAD+2iI4TkOQroZqktJ01oLNOiJoX+OVFbpQEAcDzF/qJRuweBIMeZC8oBzM+x5la3DxaXD3UlBSjWKqFRyuZ0hm5BhR6MMRgN6rzO0Hn9QfzslWNYXF2ICxdXYjiPzzVf7em1oL3SAK1KgepCDTRKGTrn4e84mV+ODdrQYtRBKRcuj+pLtBixeWhNCyEkr1FANwuF98+lkZ0DgPqSAqgUspT76MTAZXV9MTRK2bzM0Ik76GpLCsAYQ01RwZzdRXdi2B5ed5HvAd3jO3rQPebEVy5uR1WRBkNW97zt8UwF5xx7e8xYVV8MQBii1FSmm9frScj8cGzIjvbQzU4AqC8VpvpS2eXsEAhyOL3+XJ8GITOOArpZKBP9cwCgkMvQUq5LOaAbDAUuNcUFaC7X4+Q8DOjElQV1JcKLfnWxZk7uoht3eGFyeLEgVKZr1OdvQOfyBvCr/xzHusYSbFpYgapCDZzeAOweepGXqsvkhMXlCwd0ANBqnJ+/42T+sHv86DO7wv1zgFByCYDKLmeJ+1/vwPk/eWPOrg8iJJaEAR1jrJ4xtpkxdpgxdpAxdmfo7fcwxvoYY3tC/12a/dMlQGb650TC6oL0MnTVRRq0GOfn3Xvxrq34ol89RzN04kLxcEBnUGPE7snLrNcf3+3CsM2Dr16yCIwxVBSqAYD66JKwp2ccALAyIqBrMerQM+6C1x/M0VkRkl1i+0HUDN0YZehmg3c6TBi0umlVDZl3pGTo/AC+zDlfDGADgM8xxpaE3vdzzvmq0H//ytpZkkney0D/nKitwoCecSdc3uT7AwYtbqjkMpTqVGg16tEz5oTHn5k+A845hmfBBXjfuAsapQxlOhUAoKZIg2GbB75A7i96fYFgxgIuMYsbGdB5/UFY3fmV9bK4fHjgjRPYtNCI9c1CBruyUJg+SpMupdvbY4FWJZ90Ydti1CEQ5Ogem383bsj8cHxIeJ6L/Lk36tVQKWSUoZsFgkGOA/0WAMCu7vEcnw0hMythQMc5H+Cc7wr92QbgMIDabJ8YiS4Y5NiWgf450YIKPThPbULloNWNqiINGGNoNeoQ5MApU2buYr55fBQbfvAfnDLl98WjOOGSMQYAqC4uAOe5zwY5PH5cdt9b+O4LhzJyvI5hOzRKWXiJvdEgZL3yrezywTdPwOLy4b8uXhh+20RAl/83CPLFnh4zltUWQS5j4be1lKc3FZeQfHd0SJiKK2blAKF/tK6kgHroZoFTY07YQjcZd56igI7ML0n10DHGmgCsBrA19KY7GGP7GGN/YIyVZPrkyHSHB62wuHzh5c7paqsUL9KSD+gGLG5UhS6WxYu9TPXYHOizIMgn7pjmq16zM1xuCQjlp0Dud9F99/lDODZkx4E+S0aO1zFsR0u5HrLQBX4+BnTDNjf+8HYXPrCyBktrisJvrzCIJZf5c675zOMP4FC/Fasjyi0BoDm0i65zHpZWk/nh2JANbZX6STcyAKFHmpaL57/9ode7hlItdnebc3syhMwwyQEdY0wP4CkAX+ScWwHcD6AVwCoAAwB+GuPjbmOM7WCM7RgZGUn/jOe5LSfHAACnt6Q3EEXUVKaDXMZSCpwGLUKGDkDGFw+LKxB68vyuqLhUXCSWweZyF92L+wfw+I4eaJSyjA1oEVcWiMQgKZ920f36tQ54A0F86aL2SW/XqRUwqBWUoZPoyIAN3kBwUv8cABRqlCjXq2kwCsmKrSdNOf/ZOj5kR3uFYdrb60sK8v61iAD7e81QKWS4dl0dOkcdMOXR6xMh2SYpoGOMKSEEc49yzp8GAM75EOc8wDkPAngIwPpoH8s5f5Bzvo5zvs5oNGbqvOetLSdNaCrToroo/f45AFApZGgq0+L4cHINxJxzDFrc4YyUTq1AVaEmY6sLukKllvl8V9Tm9sHs9IUnXAK5z9ANWFz4+tP7sbKuCDed2YRBqxv+NPv5nF5h8ltkQGfUC19nvmToesaceGxbN65dV4/mct2091cWaTBso4BOij09ZgCYFtABwo2b+bhvkmTfnX/fgx//+2jOPr/F5cOg1Y32qigBXakWZqcPNrcvB2eWW9u7xnDzI9vyoi88kX29FiyuLsTpLUIF0y7K0pF5RMqUSwbgYQCHOec/i3h7dcTDPgTgQOZPj0x1eMAa9UIrHalMuhxzeOENBMMZOkC42MtUhk4s68rnu6J9oSxcbcRwGoNGCYNagYEcZOiCQY4vPb4XvkAQv7h+NRpLhSEWQ2kGXeIFfKtxIqArLFBAJZflTZD081eOQcYY7rygLer7KwvVVHIp0d4eM4wGNWoifrdFrfN0mi3JLq8/iCGbG0dzOJlwYsKlftr7xCqM3nk4GOX1o8N4/ehI3t/ICQY5DvZbsaK2CMtri6CQMRqMQuYVKRm6swDcCOD8KSsK7mWM7WeM7QOwCcBd2TxRIrC4fCjRqjJ6zLYKA06ZnEmNI49cWSAS91SlO1nR4vRhzOEFkN8voL1j4g66ydnS6mIN+nOQoXvorZN476QJ93xgKZrLdagtyUz559QJlwDAGMub5eIdw3Y8s6cPN53ZNOkGQ6RKgwaDOe5rnC329Jqxsq44POgnUku5HmMOL8xObw7OjMxVQ1Y3eGioVqYmJSdLDCbbopZcClUYPfNwdYFYtp9sFc9M6zQ5YPf4sby2CBqlHEtri2gwCplXpEy5fJtzzjjnKyJXFHDOb+ScLw+9/YOc84GZOOH5LBjksHv8KCxQZvS4bZV6BII8XOYohdiPVBVR+tli1MHm9mPUnt7FXmfoPGqLC9A75kw6QPz7tm589/lDaZcaJjKxg0476e252EV3oM+Cn7x8FO9fVoVr1tUBAGqLheAm3YDuxIgdMgY0lU/+OsvzJKDbctIEzoEbNzTGfExFoVBymY978/KJxenDyREHVjcUR31/pntlCQEmnqMCQY6u0dwETceH7NCp5JMqLkTi1Mv5uLpArETJ9wFl4gCw5XXCQKy1DSXY12ueFaWihGRCUlMuSW7ZvX5wDhRqFBk9rph5SeYJW8zQiVMugYmSvHT76DpHhY8/t90Im8cPiyu5voW/b+/BH97pxOcf253VJch9ZhfUChnK9ZMzpjXFBRjI0DASKZxeP77w990o06nxg6uWhzMr4oCWdLOcHcN2NJbpoFbIJ73dqM+PgK5z1DFppUI0lYVq+AIc48751wOTjH19ZgDAyrriqO9vCf2O06RLkkmRPceZzgQ9ubMX+3sTT/s9OmjDgkpDeJJvpBKtEjqVfF6uLhCD7Y4k2zJm2r5eC9QKGdpC1zNrGovh9gVxeMCa4zMjZGZQQDeLWEOBTaEmsxm6VqMejCX3QjpocUMuY+Hx9cDE3ft0a+07RxyQMeDM0GqGZAejdJkcqC0uwIsHBvHZR3dmrYRHnHA5tTStpkgDk8MLt29mSoe+93+H0TnqwM+uW4niiHJcrUqBEq0yIyWXkf1zIqNBjdE8mCJ2csSO5oiVCtHQLjpp9oSGCKyoL4r6/rqSAihkLOfTCMnc0h+qaGAss5kgzjm+9cx+fO2pfQmz88eHbVgYpX9OOC82L1cXBII8XKqe7yWX+3stWFJTCIVcuKxd2yhs0qKySzJfUEA3i1hdwsLMwoLMZug0SjnqS7RJ3YEbsLhRYVBP2tdTU1QAjVKW9sVep8mJuhJtOEBM5q6o2emF2enDzWc24btXLMWrh4dx2593ZiW4EpeKT1UdyhTNRM/Wvw8O4m9bu3HbuS04s7V82vtrigvSCuj8gSC6TI5J/XMio0ENk8Ob9dLWRE6OOsI/K7FUFoq76Cigi2dvrxmtRl3Mm0ZKuQwNZdqsD0joGLZh0bdfDA+qIHPbgNmNogIlGkqTex1KxOz0weMP4tCAFe+dMMV8nMnuwajdi/bK6f1zovrS+bdcfMTmgT/IUaxVonPUkbfli4Egx8F+C1bUTtyIqi4qQE2RhiZdknmDArpZRByZnOkMHSBMr0vmhXTQ6po2gEImY2gu12ek5LKpXBfRtyD9RbTLJDy2qVyHj5/RhB9etRxvHh/BLX/cDqfXn9Z5TdU77pw2EAVAeDpgfxb76Ny+AP62tRtfe2ofltUW4ssXLYz6uNrignAPRCpOjTnhC/CYAR3nCA+wyQWPP4CeMSdao6wqiCRm6IZp0mVMnHPs6bEknKLbUq7HydHsZugO9Fnh9gVpOfA8MWBxobpIg7YKfUYzQYMRN3B+/3ZnzMcdC2UF2+IEdHUlWvSOu+ZVH6742nFumxG+AMcpU34GtJ2jdji8ASyfUiq+urEEuyhDR+YJCuhmEatbCEgMWQjoFlTo0TnqQCAo7cVqIGIHXaSWNMeac87ROeJAS7mQJSgqUCZV5tIV+tzNoQEe169vwE+vWYktJ0246Q/bMrZHyO7xY3zKDjqRmKHLRh/dsM2Nn758FGf84D/45jP7UV+ixa9vWAOVIvqvck1xAfrSuAiJNuFSZNSrQ+eUuyCp2+REkE/0dsUilgYPUoYupj6zC6N2D1YnCOhajTp0mZySnytSId4MoRUJ80O/2Y2a4gIsqDBkNBMk/r6f227Ea0eG0REjWBSDyIVxA7oC2D1+mOdRH65Y3XFeu7BDONb3L9f2hXokl9dOLhVf21CCPrOLJhyTeYECulkk3EOX4ZJLQLhg9/iD6JMwQENcKl5VOD071VquQ89Y6qOnR+weOLyB8HLo+tKCpDJ0naNC/52Y3QOAq9bU4ZfXr8aubjNufHhb0kNWohG/T9EydBPLxTOXoTvUb8WX/7EXZ/3wNfx6cwfWNZXi8ds24J93nIWmONmp2uICOLyB8M2AZIkBXWuUkkYxSBrJYR+dOG0xUcmlWiFHqU5FJZdx7O0RLooSZuiMOnglPlekSryQpF69/PO7N07g79u6M3rMyAxdJjNBQ6EL+f96XzvUChkejpGlOzpog0GjCJdmR5NKxchsJ/4entMmlPPn66TL/X0WFCjl016n1oT66GgfHZkPKKCbRaxZLbkUMhwdI4nvwNk8fji9AVQVTX/xa63QIxjaJ5SKztAFuhik1BVrk9r902VyoKa4YNpExg+srMFvPrIGB/st+Njvt6Y9/VLspaiNEtBplELw0JeBDN3eHjM+8tAWXHrfW/jX/gF8ZH0DNn95Ix76+Dqc3lIWdVdYJPH8Ur34PjFsR1WhJmpWuEIM6HKYoRNL/5oTlFwCwvnScvHY9vSMQ6WQYVFVYdzHNZcLzxXZLLsUs9s0TTP//HXrKfy/fx7M2E42lzeAcacPNcUFaAsNJclUJkicnrmoqhBXranDU7v6og5yOj5kx8JKQ9zn04lddPNnMEq/2QWDRoGKQg3qSgpwPE8nXe7vtWBpxEAU0ZLqQqgVMhqMQuYFCuhmEVu45DLzGbrwyoHhxBdQYvlC5A46UYt4sZfinXXxAq4lIkOXTN9C16gDTWXRL+4vWVaF739oOfb3WbA7zTt2vXEydICQpUsnQxcIcvxmcwc+fP+7OD5sx9cuWYQt37gA37liWdyM3FTi6oJUB6N0jNijllsCQLk+DwK6EQcqDGpJZciVoV10JLq9PcJFUazyXVGmptnGI/bunMpyaedUn39sN57b0zdjn282Mtm98PqD+MGLhzNyPPF5srpIE34dylQmaMjqRrleDZVChk+e3QyvP4i/vHdq0mM45zg2bIvbPwcAdaXiGpj5k6HrM7vD62CE/sb8C+iEgShWLKudPplXpZBhZV0xZejIvEAB3SxidfmgVcmn3YXKhBKdCmU6laTBKOJdz1g9dEDqi4c7TQ6o5LJwIFJfqoXHH5RU1sc5R+eoY9oC7EgXLq4EAOxI846duINO7CObqroo9V10veNO3PDgFvz430dx8bIqvHrXebh9YyuKtMlnZmtCy8VTGYzCOceJ4dgBXYFKDoNakeOAzp6w3FJUWaimkssY/IEg9vdZsCpBuSUAlOlUKNQospqh6ze7oFPJ4Q1kt7QzkssbwPN7+/GVJ/ZhX695Rj7nbOP0CtUZlYVq/Gv/ILacjD05UqqJ15MC6NSKjGaCBq3ucCXJggo9zl9Ugb9uOTVp6vGIzQOz04f2GCsLROGe7nkU0PWbXeHX4rZKA06M2Gf0BosUJ0bscPkCWFEXfdXK6sZiHOizzNgaobnutSNDePjtTri89P3MNxTQzSJWty8r5Zai1gppEyoHQ3dUI5eKi3RqBaoKNSlPuuwccaChTBtehyBmwKSUuYw7fbC6/TEzdABQqlOhxahLe/JV77gTtVF20IlqijUpTbn8595+vP+Xb+FgvwU/vWYlfn3D6pQCOVG5Trg7nUqGbsDihsMbQGuMgA4Q+uhy2UMnrCyIfyEmqirUYMTmybsLknxwbEi4KJIS0DHG0GLUZy1DZ/f4YXX7cXqLsIcy2xM1RSaH8HPsDQRx+193YTyH01vzlckufE8+t2kBaoo0+O7zh9L+fRKfm8SbT5nMBAm93hOvU7ee0wyTw4tndk9kYcUJl/EGoojqSwvmV8mlxRX+d1lQoYfXH8xYqW2mxBqIIlrbUAJfQFhrQNL381eO439eOIRzf7wZf3mvK+32FZI5FNDNIlaXPysDUUQLKvToGLEnLG8U76hWRgnogNCky1QzdKOOSf1QYt+ClDKXzvCEy/gZm3WNJdjZPY5gGhcisXbQiaqLCmBz+2H3SBtGYnP78KXH9+ALj+3Gggo9/nXnOfjw2rqEPXKJyGQMNUWalDJ04QmXcQKmcoM6Zxm6MYewc7BFYglqRaEGQY68WIaeb/aGMlIrp4z9jiWd3/FEBkI/q2ctEAYxzFQfnbh+4/PnL8CIzYM7H99Dwf8UptD3qK6kAF+/dDEODVjxxI6etI45EC7hDwV0GcwEDVrdk16nzmgpw9KaQvz+rZPh5/+joV2HiUouAeH1aL6UXDq9wkTPmoiSSwB5V3Z5oM8CrUoe88beGlownlH9ZhfOaClDc5kO337uIC782Rt4ZncvPVfmAQroZhGbx5eVlQWiVqMeZqcv/KIdS2RfQqzjnJAQGE4VCArTzSIv0OvCAV3igERcWZCox2xtYwnMTl9aI9GFgC56/xwwcbd5QEIgtbfHjEvvewvP7unDnRe04YlPn4HGOFnGZNWkuIsu3soCkdGgxmiOAjqxT7NVYoZOvLCjssvp9nSbUaxVorEs9k2KSK1GPQatbjgk3rBIRn/oAn95bREMGkXWl5iLxOe9jQsrcPcHl+DNYyO47z/HZ+Rzzxam0M2QMp0aH1hRjXWNJfjxv4+GB3alYsDiQrleFR5klalMkNsXgNnpm9QawBjDp85pwYkRB14/NgwAOD5kQ6lOhXK9KuEx60qk9XQHg3zW76vrD7UMiD10C8IBXX6tLtjXa8aymqJwVc9U5Xo1Gsu0FNBlgNsXgMnhxdlt5Xj80xvwyCdOg16twF2P78Wlv3wLrxwamvU/97MZBXSziNXlR2EWBqKIxCfsEwnuwA1Y3FEnXIpajDrY3H6M2pMrWeo3u+ANBCcFZAUqOcr1akkv7l2m0MqCOJkzAFjbWAoA2HlqLKnzEzk8fow5vHEDuurQwJh+Cftv7vrHHgQCHE985gzcdVF7xnska4sLUiq57Bixo1CjiHuhY9TnLkMnXuhLmXAJIDySnCZdTsY5x7auMaysK5acERa/59nInkWW4LUY9TOXoQs9X5XpVPjI+gZ8eE0d7nvtODYfHZ6Rzz8biNntMr0KjDHc/YGlGHN68evXOlI+Zr/ZHX6+BDKXCRJv3EytJLlsRTWqCjV46E1hhcGxIRvaKvSSfvbDPd0JnvP++7kD+MhDW1M88/ww8Xso/NsYNEpUF2nQkUerC/yBIA4NRB+IEmltQwl2dZsp2EhT5HMzYwybFlbghc+fjV/dsBreQBCf+vMOfPwP2yhblyMU0M0iVrcPhQXZy9CJAV1Hgv63WDvoRGLpQ7J9dLFKJutKpO2i6zI5UVeiTTylr1yHYq0y5Tt2YrYrfsmltAxd77gTJ0cc+OQ5LeFAM9NqigswbPMkXeveERqIEu9Cx2hQw+bx56RB+sSoHUo5ixtYR0o2Q+cPBHF4wJry+c0Wu7rH0TnqwKXLqyR/THjSZZYCOhkT/r1aynUzXnJZGgpWvnflMiyqKsQX/74n7/qGcmU0HPQKN0eW1xXh6jV1eOSdzpT/ncQddKJMZYIGp5RyipRyGW4+qwnvnTThQJ8Fx4fsaJdQbglErC6I83pkcfrw5M5e7EqzrD/XpgZ0gPBvk08llx0jdrh9wZgDUUSrG0swYvNIqvQhsYlZ25qIGzAyGcMHVtbg5bvOxSfOasJbx0epCiZHKKCbRWxuf1aHolQXalCglCecdDlgcUedcClqTXGs+dSVBaL6Uq2kRvSuUYekkf4yGcPahpKUJ12KPRTxAomqIg0YS5yhe7dDmBJ3dqhfKBtqiwvA+cQFjlTxJlyKxOXiuehLOzniQGOZTnJGs0yngowBwxJfbJ7fJwyoOdQ/t4O6x7b1QKeS4/IVNZI/pqlMB8ays/i73+xGhUEDpVyG5nId+syuGblhYHJ4oZQzGNRCFUSBSo4HPrYGQc5x+6M7aUoehKEoOpUcBaqJPZ9fuWQhVHIZvv9/qa0xGDC7JwUNYiYo3dUFg9bY05hvWN8AnUqO7/3fIdg8frRXSQvoxOf8eIHBs3v64PUH4fEHMTCLL2zDN1YME9U4bRUGdAzb8yZQDQ9ESRDQrW2gBeOZ0GcWrn0if19FSrkMpzcLN6XHnTRQKhcooJslOOewunxZ2UEnkskYWit0cVcOOL1+WFy+aXc9I9UUFUCjlCV9sdc56oBOJQ8HCaL6EqFkMF4an3OOrlEHmiX2AK1tKsHJEUf4rnwywjvoojypiZRyYaVBogzd2x2jKNerE47MTkd4uXgSZZfjDi9MDq/kgG44B2WXJ0fskgeiAIBCLoMxieXi+3uFQO6lAwMpnd9sYHX78MK+fnxwVS10aunPLRqlHLXFBVnpbxNGpQvPL2ImsMuU/Sydye5BqU41KSPdWKbDz69dhQN9Vtz93MGsn0O+Mzk8KJuyqqXCoMHnzl+AVw8P4a3jI0kdz+b2webxTwu6hExQZjJ00YZ3FRUoce1p9dhyUii7b0/wPCeqCy8Xj52he3x7DzRK4dLq1Axll7OhzyxMCI28YdZWqYfLF0ipJzsbDvRZoFcr0Jyg53xhlQE6lZz66NLUZ3ZDxqZnvUXFWqE9w+xMvaeWpI4CulnC5QvAH+RZLbkEhImG8XroBuPsoBPJZAzN5dJWIETqDGXYppb41Zdq4Q/y8B3XaEwOL2wev+RhIuE7dik8wfeNu6BSyMKLtWOpLi4IT3CLhnOOd0+M4qwFZWlPs4wnleXiYtltwoAuR8vF/YEgusecklcWiCoLNXF/jiIdC02/e+ngYNLnN1s8t6cfbl8Q159Wn/THthj1WVkpMGCZ2H2VzV69qcYc3nApYaQLl1Tic5ta8fiOHvxje3oTHWc7k92Lsig9tbec1YyGUi3+54VD8Aekl3aHd9BNuTmWiUzQoNUNnUoec5DYLWc1Q5yjIbXkcqKnO/pz6YE+Cw4NWPGJs5oBCHtVZ6vIHXQisb9Ryr7ambCv14KlNYWQxRiIIpLLGFY10ILxdPWbXagsFKonoikJBXSUocsNCuhmCatLmCaXzZJLQJhe12d2xZxeJ14Mx8vQAaGx5klehE1dWSCa2EUX+65ol8SVBaKV9cVQyBh2pvAE3zvuQl1xQcIXkZqi+Lvojg7ZMGr3hsezZ4sYfCdzV3ViZUH8C52KUIZO6uL3rSdNSV3wxdIz7oIvwCUvFRdVGDSS6/uPDNqgUcpwbMie8l7FfPf49m4sri5M2IMSTUu5Dp0jjowOGuCco9/inhbQZaO0cyqTI3qwAgBfumghVtUX43dvnsj6eeSzUbsnatCrUcrxzUsX49iQHX/b1i35eOE+rSmvJ22Verh9wbQyQUNWNyrjvE7Vl2px+YoaNJZpUaJLPOFy4uMK0GuO/lr0+PYeqBQyfPrcFqgVsvDr0mzUb5ke0OXTpEtfaCCK1OeutQ0lODxgy8pk3vkiWpAfqSS0M3ecMnQ5QQHdLGELjYXO5h46YOIJO9Yd8XCjeYwddKLWch16xpzw+KX1nXj9QfSOO6MGZPUSylw6Ja4sEGmUciytLcLOrlQCOme4jDGe6qICDJjdMS943z4+CgBZD+g0SuGuclIZumE71ApZwq9TKFGTlqF7/dgIrntwC77w993wpRnUTawsSC6gqyxUSyoPNdk9GLV78JH1jQCAf8/BLN2BPgsO9Flxw/r6lDLELUYdHN5ARsttTQ4vvP5g+AJfq1KgukiTleErU405vCiNcWEvlzGsqi/OSWlxPjE5vDGn3l68tBJntJThF68elzzlLnaGLv3AIVGvNwDce/UKPH37mUkdt64kek+32xfAs3v68P5lVSjWqtBUpkPn6OwcphMM8mm9jYBQUmc0qNPub8yE40N2eP3BhBMuRasbSxAI8vDOTZK8RAFduOQyhVYWkj4K6GYJcc9PNvfQAUBrgpKKqUtg4x0nyIFTJmkvaN1jTgR59AxbTXEBGIvfiN5lckAukz7xEBAWjO/tNSc9/THRUnFRTbEGLl8AFlf0u1XvdIyipVwX3vOTTbXFyS0X7xi2o8Woj7nbR6SQy1CmU0kK6HZ3mwEA/9o/iDv+tivp73sksXerpTz5kssxhzfhjYZjoQuWjQuNWFlXhH8fHErtRPPYY9u6oVbIcMXK2pQ+XvzeZzJ7Kd50iLzAby7P3hLzSPECOgAo16tgc/vn7XCUYJALZakxAjrGGD60phZjDq/kqaADUQZvAELJJYC0Aochiztq/1wkjVI+rScwkVg93S8dGITN7cd1ofLlpnLtjPR+ZsOowwNvIIja4unfv7Y8mXS5v88MAFhRVyzp8WvqhTYL8XWIJCcYFKsnYv9OqRQy6FRyytDlCAV0s8REyWV2M3RNZTrIZSzmRdqgxY2iAiW0qvjnIV7sSS2VirWyABCeJKoLNXFHRXeNOlFfUhCztjuatY0l8PiDONhvkfwxTq8fpgQ76EThXXTm6SV+vkAQWzvHsp6dEyW7XLxDwoRLUbnEXXQH+ixor9Tjng8swb8PDuGzj+6SnMGd6uSoHSVaZVKlUsDELrpE53t0UBiIsrDKgIuXVWFvjzmlXX75yun14597+nHZ8moUaVO7SdSS4jTbeMTvce20gM6e1R1SHn8Ado8fZXEDutxNdM0HFpcPgSCPWnIpWhjqRTsyKC2z1m8RJppOnVRbpFWiwqBOOXAIBjmGbZ6ElSSpEHu6B6aU0z++vQcNpVpsaC4DIFSLdJucs3InV3g8fZSbjW0VenQMZ/f3UYr9fRYY1Ao0lkobhFakVaKtQk+DUVI06hBWHyW6AV2sVcFMPXQ5QQHdLGENl1xmN0OnUsjQWKqNm6FLVMYCAM2hi714EzMjJeqBqyvRojfO6oJOiSsLIq1tFO7YJfME3ydOuJQS0IXuZE194QeAPT1mOL0BnLWgTPLnToe4XFzKi7DLK0wxWyBx4IjRoE7YQ8c5x75eC5bVFuHms5rxP1csxauHh3D7X1ML6k6MOJIeiAIAFeFddAkCuiE7ikMXlZcsFfazvZznZZecc1gk3hn9v30DsHn8uH59Q8qfryq05iSzAd30C8kWox5Wtz+rd33DO+jiBCsTKzrm58WKyTGxVDyWtko9GJsYKJTIoMUdfp6MdqxUA7pRhwf+IE9YSZKKaKsLTpkceO+kCdeuqwv3VjeX6eANBGfljaBoO+hECyoNsHv8kodLZcv+0OtJol72SGsaSrCrezznwehsJD43JwroSnRKGoqSIxTQzRJWt5Chy+baAlGLUR8zoBu0uiS9SOrVClQVaiSXY50cdaBEqwzXYE9VVxp7uTjnHF0mB5okTrgUVRZqUFdSkFRAF15ZIKXkUszQRZl0+fbxUTAGnNEycxk6ty8o6aI4PBBFYobOaFBjNEHGa8gq9KQtD/U73HhGE77/oWV47cgwPv2X5Hd8nRxxJLWyQFQlcbn4sSEb2isNYIyhxahHe6U+76dd/uq1Dpz2/Vex9aQp4WP/vr0HLUYdTmsqSfnzCdNsdRmddNlvdkGtkIWb64GJvZTZHIxisosBnYQM3TztoxMD2XjTfbUqBRpKtTgqMaDrn7JUPFJbhQEdQ7aULr6l9nqnIlpP9xM7eiFjwNVrJ6bFihOXZ2PZZbyALtzfmMM+Oq8/iMMDtqSHOa1tLIHZ6ZN8o5lMiPczEalEq6KSyxyhgG6WsIb6sLI95RIQLuS7TI6o0wgHLR5JGTogNOlS4hNn56g97oTK+hItBq3uqH1XIzYPnN6A5AmXkdY1CgvGpV409JqlZ+iMBjUUMhZ1F907HaNYUVuUcrlbssQn4b44fYiiPT1CgCv1xbLCoMGIzRP3e7i/zzLtmB89vRE/vGo53jg2gk/9eYfkoM7q9mHU7kkpQ1cpIaDjnOPYoC1cPgYAFy+twrbOsZT2Fs4Ep9ePh9/uhDcQxGf+uhOn4lxEHhuyYeepcVx/WmrDUCI1G3UZXSkwYHGjtrhg0nmFJ11mcTCKKfTvGi/7VG6Y3yWXYtAb73sECCsAjkooueRcGLwhlqZPtaBCD4c3EHf1SyyDEnu9UyH2dPeEnksDQY4nd/bivHbjpM8n/tzOxkmXfWYX9GpF1BaPiYE1uQvojg3Z4A1IH4giWhu6gbWjaywbpzWnJRfQ5efr5FxHAd0sYXX7oFLIoFHKs/65FlTo4QtwdE9pbPf6gxi1exI2motajcIuOinBUteoM27JZH2pFpxH36XWFRq8kmzJJQCsbSrFiM0Td+BKpN5xJ1ShpeGJyGUMlYWaaRckdo8fe3rMM9Y/B0wEoFL66HZ1m1GuV0seMGM0qOENBMN9ntHs77NAxoAl1ZNfgK9f34AffXgF3u4YxSf/tB0ub+KgLjwQJckJl4AwVlkpZ3FLLvstbtg8fiysmhzQBTnw6qH8HI7yxI5eWFw+/PSaleAAbvnj9pjDeB7f3gOlnOGqNXVpf95kp9km0md2TSvBqyspgFLOsrqLbkwsJ4yToRPfN28DutD3KNH+zUVVBnSOOhL+TFhcPrh8gTgZutQDB/GGTTYydCqFDFWFGvSGKkbePDaCQas7PAxFVFmoRoFSPisnXQrTDDVRb/iU6dUo1anQkcPVBdFuEErRUq6D0aDGFglVDGSyeEF+pBKtEuN5euNzrqOAbpawuvwzkp0DJkbBTy27FF8kk8nQ2dz+hD0njlA9frwSuvAuuihll+H+uyRLLoGJBeM7Tkm7Y9c77kJtSeIddKLqIs20IHRbpwn+IMfZMxjQJbNcfFf3ONY0FEvO3hjDu+hi30nf32vGggo9ClTTb0hcu64eP71mJd47YcJPXz6a8POlurIAECbxVRg0GI6ToTsWyi5EBnRLawpRV1KQkbLLjmE77vjbLvy/5w7gt6934JndvXjvhAldo46UJigGghy/f/sk1jQU48Nr6/DAx9aie8yJO/62a1qW3eMP4OldvbhoSWXCC3MpWozCNNtuidNsExmwuMKlyiKFXIaGUu2MlFzGG/ihUcph0CjmbQ/dqN0LxiaWB8fSXmlAIMgTVmfEG7wBAG2V4qTL5AOHQasbchlLeoKlVPURPd2Pb+9BmU6F8xdVTnoMYwyNZbNz0mV/lJUFkRZU6HNacrmv14JCjVDemwzGGE5vLsWWk2PUR5ekvvHYQX6kYq0KVrc/I/tmSXIooJslbG5f1idcisTVBVPrzCeWikvL3IglcYkuxMQXvOY4I+jrS8W+hekBSafJAYWMxR2nG8vCKgP0aoXkPjphZYH0NQPVxQXTMnRvHzdBrZBhTWPq/UvJKtEqoVHKEmboRu0enDI5wwNjpBCzlbF2dHHOsb/PGrc85qo1dbhoSSWe29ufcCrcyRFhRUVDafIBHSDcOR+yxQ7oxAl97RUTAR1jDJcsrcLbx0fDOyFT9fzefrywbwDP7enHvS8dxV2P78UND23Bxp+8jkXffgnrvvcq3jg2Ivl4Lx0YRM+YC7ed2woA2NBShu9/aDneOj6Ke54/OOnC5d8HhzDu9OH601IfhhJJ7LOUOtUwHq8/iGGbZ9pOMkB4Lsluhs4LhYwl3PNp1CceADRXmewelGpVCVeZiDdCEpVdisOiYt0gLNWpUKZTxeznjn9sNyoN6oTnmiqxp3vU7sGrh4dw1ZpaqBTTL6eay3WzsuSy3+yKWQoLTKwuyFVQdKDPguV1RSmVjG9oKcOg1T2tAonE129xSVqxJPY/x6oQIdmTMKBjjNUzxjYzxg4zxg4yxu6c8v7/YoxxxtjMpRvmIavbD0OWJ1yKCjXCdL+pL6ThJbASM3StEidddo2KJZOx77ZVFWqglLNwmcvkj3egoVQ7bfS1FHIZw+qGYuyQuGC8b9yZVEBXU6TBoMWNYESQ8k7HKE5rKp2R8lkRYyw86TKeXaHANplgM5yhixHQiQNRViTod7h8RQ1GbB5s64yfLT05akd9SUHUCygpKgs1cUsujw3ZUF2kmdbfePGyKngDQbx+VHqwFc3xYRuayrTYe/f7cOi7F+O1L5+Hv916On56zUp85eKFKNQo8LUn98HuiV3CKuKc48E3T6CpTIuLlkxkCK5dV49Pn9eCv27pxp/e7Qq//e/bulFXUpCx7PDCKgO0KnlGelKGrG5wjqi7r1rKdejK4gj4MYcXJTpVwgvEcn3iAUBzlckeewddpOZyHZRylnAwijgsKmEmKMWSy8os9M+JxJ7ux7f3wB/k08otRU3lOnSPOWdVtsLtC8Dk8Eb9PRS1VehhcflycnPDHwji6JANS2uSK7cUbWgRJktT2WVyEmVtReIqIRqMMvOkXBH5AXyZc74YwAYAn2OMLQGEYA/ARQC6s3eKBBCGosxUhg4QXkinTqgcDN1RldpoXlNUAL1aga2d8Z84O0NT8uJNqZTLGGqKC8KN6JM/PvmVBZHWNpbg6JAtYebF5Q1g1O6VNOFSVF2kgTcQDA9dGLa5cXTINqP9c6IaKQFdtxkKGQtPo5QiUUAn9jssT9DvcMHiChQo5XhhX3/cx51McWWBqLJQg6E4gxaODgoTLqda01CCcr067bLL40N2LAhl/7QqBVqMepy5oBwfXluHz21agJ9cuxJDNjd+/sqxhMfa3jWOvb0WfPKclmnZiK9dvAgXLanEd184hM1Hh3HK5MC7J0y4bl19UqO+41HKZVjbWIKtCYJwKeI13TeX6+D1Z28EvMnhjds/Jyo3qOZ1D128klSRUi5Dq1GfOENndkEhY3FLf9sq9TiewqTLQYs7K/1zorqSAnAOPPSWUOq8oGL68wUgtAH4gzypHaC5JmX4hVgO25GDssvOUQe8/iAWV0f/nifSatShXK/GlpM0GEUqlzeAMYdXUkAnTiqnXXQzL2FAxzkf4JzvCv3ZBuAwgNrQu38O4KsAqBg5y2xuX9Z30EVaUKHHiSklFYMWD7QqOQxqaYGlTMZww/p6PL+3P2651MlRB6oKNdAlOG5dScGkUdGAkKE4ZXImvbIg0trGEnAO7O42x31cn9kZPg+pxPIxsbzovRNCcDuT/XOiWgnLxXedGsfS2qKksoeFGgVUClnsgK7XHHUgylRalQIXLK7AiwcGY97RDgY5OkdTW1kgqizUwObxwxElA+YPBNExYp/UPyeSyxjet7QSm48Mp9TrBghlhZ2jDrRXxg5I1zSU4CPrG/DIO5040Bd/6f2Db55AqU6Fq6MMOJHJGH5x3SosqirE5/+2Gz966YgwWn1d+sNQIq1vKsXRIVvaL+D94RK86CWXQPYmXY45vHFXFojK9ep520MnNUMHSJt0OWBxo7JQE7cssq3CAKvbH/O5JZYhqycrEy5FYguA2emLmZ0DJgZ1JVMu/OTOXrx1fCRn5YyJehuB3E66PDRgBQAsqipM6eMZY9jQUootJ03URyeR+NycTMklZehmXlI1S4yxJgCrAWxljH0QQB/nfG+Cj7mNMbaDMbZjZCS9UqX5zOr2z2iGrtWoh83jn9QXJe6gS6Zu/bZzW6GUy/Dr1zpiPqZr1BG33FJUX6KdVnI5ZPXA5QugWcLHx7KqvhgyBuxI0EfXk8RScVF4F13oRfLt46Mo1iqxpCa1F6N01BYXYNTujRmM+AJB7OszY01DcVLHZYwJvUVxMnSxBqJMdfmKGow5vHj3RPSsbp/ZBY8/mGaGLnbPX5fJCa8/OGllQaRLllbB6Q3g7eOjKX3uUyYH/EGOtjgBHQB89eJFKNWp8K1n9scsM+wYtuPVw8O4cUNjzO+tTq3Awzevg1Ylx7/2D2LTwoq4vTGpWN9cCs4huWw5lokLyekX4uII+M4sDUYx2T2SAzqLyxd1fcpcN2r3SB6ks7DKgD6zK27VgzhJMR4xcDiWRCbI5vbB7vFnNUMnBnQ6lRyXr6iJ+TjxdU1qH92gxY3/emIvbnx4G97/y7fwxI6ejE2QlUrM0MW7eDca1CjUKHA8B5MujwzaoJQztKbxGrChpQwDFuqjk0rqygJgYmgSrS6YeZIDOsaYHsBTAL4IoQzzWwD+X6KP45w/yDlfxzlfZzQaUz3PeU8ouZzZDB0AnIi4AzdgcUvunxMZDWp89PRGPLunL+ZurM5RR9yBKKL6Ui1G7d5Jo+3FO5/plFwaNEosrCoM94/F0pfEUnGReMEyYHGBc453OkZxRktZ1pr145+LmC2MXm54eMAKty+INQ3JD2sxGqIPixAHoiyvLZZ0nI0LjdCrFTHLLsUMTSorC0TxdtEdG5o+4TLShpYyFGoU+HeKZZfihWlbjBItUZFWiW9fvgR7ey3429ZTUR/z8NsnoVbIcOMZjXGPVV1UgN/ftA6NZVp86tyWlM47npX1xVApZAlLqxPpN7tQrFVCq5p+46pcr4JBrchahk5yyWUooBFH+M8XXn8QVrdf0vcIQPiGSLxATHg9iX+BuKBSzARJDxzCKwuymKGrKtRAq5LjAytr4laWGPVq6FTy8GqdRHZ1C69Bn93YCs6Brzy5D2f/aDN+/drxGRsF32d2gTHEXU/EGENbpSEnky6PDFjRatSn3EMNABtaSgFQH51U4rWPlMFzxaEMHZVczjxJvxGMMSWEYO5RzvnTAFoBNAPYyxjrAlAHYBdjrCpbJzqfefwBePzBGS+5BICOiDviQl9C8nf3P3NeCxQyht9snp6lMzu9GHf6JJXQiZmxyCydOCEznZJLQFgwvrt7PG7zeu+4S/IOOlGpTgW1QoYBixudow70W9w56Z8DEi8XFyd9JjPhUmQ0RM/QiQNRltdKy0hqlHK8b0klXjowGDULIk5MTS+gU4fObXpAd3TQBhmb+PmfSqWQ4YLFlXjl8FBKgw6OD9vAGCTdXf7gyhqcvaAc9750FMNTpnKO2Dx4alcfPry2TlLWZEVdMd74yqbwQIBM0ijlWFVfnHCYTSL95ukrC0SMMbRkeIm5yOsPwub2SxpxXx4qOUy2BHC2GwsvXpeeoQMmbpBMFQxyDFrc03YOTmXUq1GsVSZV2jdoEf5tpO5LTYVcxvDMZ8/Cf1++JO7jGGNoKpf+c7u7exwqhQxfvLAdL33xHPz5lvVYVGXAT14+hjN++B98+9kDWe/H6ze7UGFQJwyY2ir0KU0gTdfhARsWV6dX4dJq1KNcr8JW6qOTpN/sgoxJ2+uoVyugkDEqucwBKVMuGYCHARzmnP8MADjn+znnFZzzJs55E4BeAGs45+kvaSLT2NxCr49hBksuKwxq6NWK8BO2PxAaKZ7CXc+KQg1uWN+Ap3f1TeuBSybDJmbGInfRdY06oJLLJJUCxLO2sQQObyDuZLbOUTtqijVJDZRgjIV30b3TIZTp5aJ/DpgIiGMNltjVbUZVoSal72WsgG5frxlA4oEokS5fWQ2r24+3jk8v0T454oBBrUgqqJ6qIvSiNBxl0uXRQRuaynRxewgvXloFs9OXUgBzfMiOhlKtpPJTxhj+58pl8ASC+J8XDk9635/f64IvEMStZzcnfQ7ZcHpzKQ70WyVN5oxlwBJ/ilpzuS7hbrNUiKVBUkouxQFA820wivj1Su2hqy0ugE4lj9lHZ3J44Q0EYwbwIsaYEDgkkQkaTHJfaqrElTeJNJXrYlanTLWr24zltUVQKWRgjOHcdiP+8snT8e8vnosPrKjB49t7cMffdqV76nH1W1ySXgMWVOhhcnhhmsHfhXGHF4NWd8oDUUSMMZzeUkZ9dBL1mYUhQ1ImiTPGUKxVUYYuB6Rk6M4CcCOA8xlje0L/XZrl8yIRrKF9HjNZcskYQ2vEpMtRuxeBIE+5jOX2ja2QRcnSiQFds4SArr40tFw8Yhdd56gDDWXatEsYxaxUtH10Yw4vPv/Ybvz74BDWNpYmfezqImEX3TsdJtQWF6CxLPV+v3RUFmrAGGLe4d11ahxrGotTOrZRr8aY0wvflKzVgT6LpIEokc5eYERRgRIv7BuY9r6To3a0GHUp7R8SGdQKaFXymCWX0SZcRjqv3QiNUpbStMvjw7ZwX5AUzeU6fHZjK57f2483Q7vpnF4//rLlFC5aXJlWL2EmrW8uRSDIE5Ytx9OXoKequVyPPrMr5YE0sUwsFZdecjlqm18XK2JAVy4xoJPJhJK8WAFdoh10kRZUGHBsWPqkS3EaczYzdMloLtOhZ9w17blxKq8/iP19lqg9zAurDPjxNSvxyXOacaDPktUeTqnj6cOTLmcwSyfuu0x1IEqkDS1l6Le4o+62JZMJ/a7Sb/SWaJUYd1CGbqZJmXL5Nueccc5XcM5Xhf7715THNHHOU5sSQBKyhjJ0iZbeZtoC40RJRXipeIovkpWFGtxwWj2e3Nk7KUvXOeqAjAENpYmDHKNeDbVCNqnkMt0Jl6K6kgJUFqonBXScc7ywrx8X/ewNvHRgAF+6qB0//PDypI9dXaxB77gT754YxdkLytMKRtKhUshQadBEDeiGrG70mV0p9c8BQuaC84nSLNH+PgvaKgySMlKR53nJ0iq8cmho2sV7uisLAOFmRWWhJvwzLXL7AugyOdAeo39OVKCSY2N7BV4+ODRpv2AivoAw4bItQcA41e0bW9FSrsO3nzsAty+AJ3f2wuz04bYs9MOlak1DCeQylnLZpc3tg83tj3vRIJbZdknMdkgl/swmk6Gbqf1bYw4vHt16KudZhImgV3pmfGGlIWbJpZRJiqK2Cj3MTl949Usig1Y3irXKGd3zGU9jmRaBIEdvjFJ30aEBK7z+IFbHeQ5eWlMIX4DH/L6mi3NhxYKUaYa5mHR5WJxwmWaGDgDOoD46yaRmbUUlWhUNRcmB1LtKyYzJRYYOAFordBiyemB1+5LeQRfNZza2QsYYfvv6ifDbOkcdqCvRSmpwZoyFVhcI5xIMcnSZHGjKQMaLMYa1jSXhSX3DNjc+89eduONvu1FXUoAXPn8OvnBBG5QpLC+vKSoIfR/9OHNB5nuYkjqXYk3UkstUFopHiraLThyIsiyJnXaiy1dWw+7x4/Wjw+G3Ob1+DFjcaa0sEFUY1NNKLjuG7QhyYFGCgA4ALl5WiUGrG3tDJaVSnDI54AvwpDJ0AKBWyPG9K5fhlMmJX712HL9/qxOrG4pT6nXMFp1agWW1RSkPRhEH9cTL2IhZ/EyXXYoDTqSUE2qUcujVihkruXx2dx++9cyBnGcRkvkeiRZWGWByeKN+r5LJ0IkTYaUO4Bi0eLI64TJZ4s9tokmXu0MDUeLdVBOXaR/qt2bo7CYzObzw+oOokfDvUl2kgU4ln+EMnRXlehUqDOn/+4p9dBTQxRcMcgxIzNqKirVKmKmHbsZRQDcLTPTQzWxAt0Dc/TTikHTBlUh1UQGuPa0OT+7sCWeJhAmX0i/Q60u14R66QasbHn8wrQmXkdY2lqLP7MJDb57ERT97E5uPjuDr71+Ep24/M+bUQykiG//PbM1N/5wo1nLxXaFm/KUprlOIFtANWt1JDUSJdEZLGcp0KjwfUXYpXshnosywslCDoSmDRsTysEQllwBw/qJKyBiw+aj0VSzixD8px5/qzAXl+NDqWvxm8wl0jznx6XNbcpbpjWVDcyn29lhSKomUMiq9OYWdXlKI2adSidmncr1qxnbRiWXBYgCUKya7FyqFTFLPmEh8zoxWdjlgcUOtkEnKiooTYTskTrocsrqzOuEyWVJ30e3uNqO6SBP33BtLtdCp5DjYH38/ZaoGksicMsawoNIwo6sLjgzaMlJuCYT66Jqpjy6RUbsH3kAQtUmsa6IMXW5QQDcLWEO7fGa65LJVnHQ5bMegxQ2VXNoLcDy3b1wAALj/9Q5wzpMP6Eq04ZLNriT676QQMx7f/9dhLKjQ48U7z8FnzmuV1Agcj9j4v6jKEA58cqW2pAD9Zve0UkGxGV+tSK1MSRxSEhnQ7e8VLjqW1xUnfTyFXIb3L6/Ca4eH4fQKNzQysbJAVFmoxpDVPemF/NiQDSqFTFLGt6hAWHUh3lWX4viQXfKEy2i+eeliFGoUaCzT4qIl+TdQeH1zKbyBIPb0mJP+WLEErzrOhaROrUBVoSbjGboxhxcyBhRLnCJcrldjdIamXIoB3dTy4Jk2aveiXKdK6iaCeOMiWkDXb3ahWuJO08pCNQxqheTSvgGLO68ydGU6YeVGolLhXd3jWJ1gB6hMxrC4uhAHs5Sh60ti3xgglF3O1OoCfyCIo4M2SRUUUm1oKUW/xZ2wHHY+6wvfbJP+O1WsEzJ0FCjPLAroZoFclVw2lmqhlDOcGLELL5JJLhWPpra4ANesq8c/tvdib68FTm8gyQxdAaxuPywuHzpN6e+gi7S0phAfXFmDuz+wBP/49BlpLS6NJGbocjXdMlJtcQG8gSBGI/ZoefwB7O+N3owvVbTeoomBKKndUb18RQ1cvgD+c1gouzw5IgREmQjgKws1cPuC4f5UQLj7u8ColxzAr2koxp5us+Q+umPDNtSXSJtwGY3RoMbTnz0Tf7nl9JzsMUxkXWMpGENKfXTiWOzKBDc8mst1ODma2QtIk8OLEq1K8vTacr16xkouh0OBY7QBPjPJ5PBIXlkgMhrUKNOpovZ7SdlBJxIyQdICB18gCJPDkzcDUQBpqwuGbUJQIaWHeWlNIQ4PWJPq35VKSqY8UluFHsM2DywzUF7XZXLC4w+mvbIgkrjG5T0qu4wpmX5XUalWBW8gCKc3swOsSHwU0M0CVrcPchmDNsULwVQp5DI0lenCGbpMlbF8dmMrODi++fR+AMldoIurC3rHnegadUCtkKE6Qy/eSrkM992wGp84qzmjF8ytRj2uXluH69c3ZOyYqRKzheKTNAAc7LfCGwim1ZOlUcph0CgmZ+hSGIgS6bSmUlQY1Hh+r7Bk/OSIAzVFBRkZdjCxumDi+3BsyJZUae3axhLYPH7JmYOOIXvS/XNTLagwoCFHU1ITKdIqsaiqMLWAzuKSNBY7G7voxhyepHrDyg2qGQvowhk6S27XJJjs3qS+R6L2SkN4MmGkAbMr4Q66SG0VehwbSjzpctjmAefZXSqeiqZyXdwM3e5uMwAkzNABQh+dwxvI+HAgQAjoCpTy8HLoRMT+xo6R7JddHhnM3EAU0YIKPcp01EcXT3+SWVtAKLkEpg9JI9lFAd0sYHP7YdAoctIz02rU48SwHYPWzJWx1JVocfXaOhwKTaxKtuQSEFYXdI460VimTWovXC4o5TL85JqVMZdVzySxDj5yuXh4IEqKEy5FkbvohIEolpQGoojkMoZLl1fj9WMjsLl94ZUFmSD+LIulbBaXDwMWd1L9beL3a5eEsktfIIiTo/akJ1zONqc3l2LnqfGEI9qn6je74pZbiprLdTA7fRjP4IXCmMObVCl5uV6Ncacv6a8xFXmTobN7kppwKVpYZcDxIdukbFIgyDFk8yTcQRdpVX0JTA5vwmB+MNTrnW8BXXOZFn3jrpjrBnZ3m6GUs/DQk3iWhPqcs1F2KUwzlF6Js8AoPJ/NRNnl4QErFDKW0ddRYR9dKbaeHKPywBj6zC4Y1IqkKsTEGwI0GGVmUUA3C1hdvhkvtxQtqNDj1JgTgxZ3Rhe1fnbjAihkDCpFckvBxV10vePO0ITLzFzgzxfi9zpyMMqu7nHUFheEs1apMuonAjphIIoXK5JYKB7NB1bWwOsP4uWDQ+gccWSsDLayULg4HQpNuhTLwpLpz2gs06JUp5K0e+2UyZnShMvZ5vTmUrh8AezvS25oQ6Kl4iIxoM9k2aXJ4U0qWBF30WX77rPLGwgPxMplDx3nHKMOr+QddJEWVhng8AYmrUoZtrkRCPKkMnQbwiPm42d/wwFdHpVcAkKGLsiB7oiVPZF2dY9jSU2RpOqD9koDlHIWviGaSX1JTjOsLSmASiEL9zdn05EBG1qN+pT7vGPZ0FKGPrOL+uhi6EtyBx0AlIRukNFglJlFAd0sYHX7Z3wgimhBhR6BIIc3EMzoXc/6Ui1uPrMJZy8oT6q8sahACYNagVMmJ7pNzowNRJkvCjUK6NWKSRdYu06ZMzIC32hQh3voxIEo6WToAKFPrba4AH94pxMObyBjGTpx7LWY+QhPuEwioGOMYU1DMXZKyNAdH5I+QXM2O61ZuPBOpuwyPBZbwvNLS/nE5N1MSSVDB0weAJQNw6EprAoZCwcquWD3+OH1B1MuuQQmD0YJD8BJ4vWkuVyHykJ1wl6ndPelZktTnNUF/kAQ+3rNknuYVQoZ2ioM2cnQSdxBJ5LLGFrKdTgxA6sLDg9YM1puKaI+uvj6za6kJlwCwmJxgAK6mUYB3Sxgc+cuQxeZEclkhg4A/vvyJfjDzacl9TGMMdSWFGB71xi8gcytLJgvGGOoLS4IB3T9ZhcGre60BqKIIksu0x2IImKM4bIV1eGLF/GCPl0FKjkKNYpwD92xIRsMaoWkoCLS6oYSnBxxwJzghUvss2utmNs/r+V6NVqNuqQCOpPDC28gKOkucF1JARQylrGMgD8QhNnpSyqgMxqEx2Z7ubiYPV5UbcCQdfpk2pmSylJxUXuox+poxGCUiR100i8SGWPY0JJ4xPyQVViHILUHbKY0hypJovW9HRm0we2Lv1B8qqU1hTjUb8lomaDHH8CIzZN0NqbFqMt6hs7i9KHf4s7YyoJIbRV6lOpU2Jog+ztf9ZuFMtxkFId66KjkcmZRQDcLWF1CD10uRGZEqpJ4Ac6m+lJtuNG+MU8HROSzyOXiO9NcKB7JaFDD7vHD6fWnPRAl0gdW1IT/nKkMHRDaRRe6aD4yaEN7lSHpPlWxj04cahDLsSEb6ksLoFXl5vd4Jq1vLsP2rjEEJAYgyTTdK+QyNJRp0ZmhDN1YKBBPaihKKEOX7dUFYoZuRV0x/EEOU44GDKSyVFxk0ChRW1wwadJleNdZkq8nG1rKMGLz4EScf/vBDE1jzrQSnQpFBcqoPYATC8WLJR9vSU0hRu3ecI9lJohZ4GQDulajHt1jzpj9gZkgDkRZnIUMnXCzoJQGo0Th9Pox7vQl/TMhroChDN3MooBuFrDmMEOni8haZDpDlypxMAqQuR1080nkcvFd3ePQKGUZGQUduYtuf58Fy9PsnxMtqy1EY5kWBUp5RkupxOXinHMcG7KlVA65sr4IchlLOBilY9geXpA8153eXAqb2x++CEtE/FmU+vzSUq7P2KRLsQ8ulZLLbC8XF282rAz9HmVyMMqgxY3Ht3dLeqz4dZYnubZAtLDKMLnk0uKCViVPuo3gjFBpXLwL70GLO69WFkSKNelyV7cZRoM6qVJHcXhKJheMT+ygS+7712oU2jK6x7KXpTs8IAZ0mc/QARN9dD0xehzTEQxy3PSHbXh6V2/Gj51tYnl0Mj+bgHDjzaBRUIZuhlFANwtYXT4USlx6mw2tFXrIZSzlF/RMEwejaJQyVBry88U7n9WWFGDc6YPT68eubjNW1BVDmebydGBiF93+PgtG7V4sT7N/TsQYw5cuasenzmnO6ETTykINhixujNg8MDt9WFiZfDmnVqXA4mpD3IDOHwji5IgjPOJ7rlsf6qOTWsLUb0nuoqHFqEOnySE5AxjPmD35gE6nVkCrkmd9dcGwzQ2VXBa+0ZDJPrrHtnXja0/tD5c/xhMuuUwhQwcIfXQnRuzhqaADZrfkpeKRGsu0qCrUxO11yuQ05kxrLtOia3R6wLC7exyr64uT+n6ImaqDfZnro0v14l2smugYzl5Ad2TQhhKtEhUJ9lSm6vTmxDcLUrW1cwxvHBvB/a+fmHWTNFNZWSAq0aooQzfDKKDLc/5AEA5vIGcllwCwaWEFzkpyeEk2ibvomsp0eb+yIB+JL9gnRxw42GdJe12BSAzoXjsiLAJPdyBKpCtW1eJL71uYseMBwqTLYZsnPC1uYYr9GWsaSrCn2xwzwDg15oQ3EJw3Gbqa4gLUlxZI7qPrN7ugUUrve2ou18HrD06a1JoqsYwx2ZtVM7FcfNjqgdGgDveaZXLSpTht8ZiEcfOm0NeZTNAbaVGVAb4ADw8EGbAkPzUPEG7snNFahq0x+ug45xi0ZnYacyY1lunQb3HB7ZtYtjzm8KLL5Ey65N2gUaKpTJvRwSji71Oyw89aQn32J0ayNxjl8KANi6sLs1ZKK/bRJZqimopndguZuePD9qwMssmmviQXzUcq0SoxThm6GUUBXZ6ze4Sx1bkquQSAW85uxp9vWZ+zzz+VmKGjlQWpES+m/n1wEP4gz8iES2AioHvj6AjkMpb2QJRsqyzUwB/k4Rfx9hQzaGsaSuDwBib1CUWamHA5PzJ0ALC+qQzbuqTtdhIv8KVerLWEyqwzUXaZSsklAJTrs79cfNjmRmWhGuV6FWQssyWXYkB3PMbPbCSTwwuDRpHyuHgxwyj2PfensQJnQ0spRu1edESZqmh2+uD1B/O25LK5XAc+ZXWB2D+3ur446eMtrSnCwYHMlVz2m10o16uT/nfWqxWoLFRndPJspECQ4+igNSsDUUQyGcPpzZnvo3P7Anhx/yAuWlIJlVyGp2ZZ2WW/2QW5jKWUGS3WqhIOCyOZRQFdnrO6QgFdDksu8019iRaMZXZAxnwi3m17fm8/AGB1BiZcAsIUPBkTLgDbKvQZGYiSTeIuureOj6Bcr0ZZiiXFYoZzZ4x9dOLS3Uzt0JsNTm8uxZjDK+mufZ/ZndSAjGZxF10GMgImhxeMCeVBySjXqzFqy34PXYVBA4VcBqNBndGSy4kMXeKAbtTuSavcvrVCB7mM4diQDV5/EKN2T1ITLiOd0VIOIHpp3ECeLhUXRVtdsLvbDLmMYUVdcdLHW1JTiJ4xFyyuzGRB+swu1CbZPydqNeqzlqE7ZXLA7QtmZSBKpGz00b1yaAg2jx+fOLMJFyyuwD/39IdLj2eDPrMLVYXCc1CyhAwdBXQziQK6PGd1C0/WhTksucw3OrUCf7jpNHzirOZcn8qsVGFQQy5j6DI50VSmzVhvpFzGUBoabZ7JcstsERepH+y3JrVQfKr60gKU61Ux++iODdtRV1IAnXr+/A6H++gklF0mOxbbqFdDr1ZkKEPnQXGBMuly8nLDTJRcusM3HaoKNRkruXR5A+H1Iscl7A8z2VNbKi5SK+RoLtfhyKANQ1Y3OE9+8IaovrQANUWaqKVxYgYzbzN0UVYX7Ooex+Lq1KYBL60RMlaHM7RgvD+FBdKiVqMeJ0fsWekREzO72RqIIhL30Ul5zpLqmd19qC7SYENLGa5aUweTw4s3j41k7PjZlsrKAlGxVgWzg0ouZxIFdHlODOgMOSy5zEebFlWES/xIchRyWXhwQKb650Tiv0mmBqJkU+SFXzoLvxljWN1QEnN1wfEhG9oq5k92DhAGWFQY1An76FLZfcUYQ2OZFqcycCfdZE9uqbioXK/GmNMLf5butrt9AVjd/vBNh8pCTcYydD3jwvetVKdCx1Dii3CTw5PSDrpICysNODZki5homlrgEG8fnRjw5msPXZFWiRKtEp2hwSiBIMfeHnPKz8FLQgFdJvqyOOfoN7tTDuhajDpY3f6sTH49PGCFXMawIMvPoWIf3bsdoxk53qjdgzeOjeCKVbWQyRjOazeiVKfC07v7MnL8mZDOz0SJVgWbxz+rMpKzHQV0eW6i5HL+3N0n2SeWXa7OUP+cSKy1z9TKgmwyRmQmF1ald7GwpqEEnaOOcE+WSJxwmU7AOBsxxnB6Sxm2nozfRzdkETJFye4kayzT4pQpAwGdw5tSsGLUq8D5xB67TBsOrSwQf5+qizKXoesOfd/OX1QBm8cfLlWMxWT3pjzhUtReaUD3mDO8gDrVu/4AsKG1DCaHd1p2cdDiBmPI6xt9TeW6cMnlsSEbHN5AyiXvFQYNjAZ1RlYXmJ0+uHyBtDJ0QGbKoKc6PGBDS7kOGmV2S/hlMoazFpTjrY7RjGQan9/bj0CQ46o1tQAAlUKGD6yoxiuHhjJWJptNwSBPeYARAJTohCQErS6YORTQ5bmJkkvK0JHMES+o1mYhQzcbBqIAwgusWEqW6oRLkThYZveUssvu0ITLbN9dzkfrm0sxaHWjZyz2NMp+S2pjsRvLdOgdd6a9umDMkXqGDkDW+uiGQkvFwxm6Ig1sbj+cXn/axxYzmxcurgAQv48uEOQYc3pT7i8VLawygHOEy81SzdABE/vo3jsxuY9u0OJGuV6dkRUs2dJcNrGLTszop1MlsbSmEIcykKGbmGaYWqAt9rPHW/qeqiODViyaodeTc9vKMWLz4PBA4t7SRJ7Z3YelNYWTbuZdtaYOXn8Q/9o/kPbxs23E7oEvwFOacAkIJZcAaDDKDMrfZz4CQNhBB9BQFJJZy2qLUFWowcI0eseiuWF9Pb516eKs303NlIrQHsN0SyJX1BVBEWXBuDgWfr5l6ABhMAoAbO2MPTkuXIKX5IVkY6kWvgBPe3XBmMOL0hSyT+UGcbl4dvroxAxdZA8dkJlddD1jTujVCqwP7d46Hmd1wZjDC86RVg8dgPDzzNvHR1GoUaTVT1pfqkVtccG0wSj5vINO1FSuw4DFDZc3gF3d4yjVqdBQqk35eEtrCnF82D5pFUIq0tk3BggZdo1SlvHBKFa3D73jrrR6nJNxbrsRAPBGmn1uHcN27Ou14EOraye9fUVdEVqNulmxZDydlQWAMBQFAK0umEEU0OU5m1u4I6ufRwMVSPbdclYz3vjqxozvFlzbWIpbzp49w2pqijVoLNOmPbBEo5RjSU3htEmXHcPCnd75mKFbYNSjTKfCEzt6Y/aaieV+yZdcChmBdMouA0GOcacX5Wlk6MThIpkmDvgQbziEA7oMlF12jzlRX6pFqU6Fcr0Kx4djZyNMDuHrS7eHrqFUC41SBpvHn3LQEEnsowtGZGiHrO68nXApEiddnhpzpLRQfKqlNUUIBLmkaaXxpBvQyWQMzeX6jJdcHg0NRJmpio/KQg0WVRnSHlzyzO5eyBjwwVU1k97OGMNVa+qwvWs8XPqcr9L9mRAnB9Oky5lDAV2es7p9MKgVebPUm8wNMhlLea/UXPKNSxfjvutXZ+RYaxpKsLfHMil4OTZkR23x/JpwKZLJGL5x6WJs6xrDT14+FvUxfWYXSnWqpKf8NZYJWY1TY6mXeJmdQvYptZJL4WOylqGzeaCUs/Bd7spQoJKJXXTdY040hHZ5tlUY4i4XN4WGXKTbQyeXMbRVCFmWTAwtOaO1DONOH45FBKOzIUMnTrrc22PGiRFH0gvFp1qaocEo/RY3VAoZylJcHg8ArUZdxksuj4QmeC7K8sqCSOe1G7Hj1BgcntTKm4NBjmd39+OcNmP4hkykK1fXgjGhJDOfTQR0qf1OlYR+lsYdFNDNFAro8pzV5adyS0KypNWox8oUlvpGs7qhGC5fIDxmGxDGwrfNo4XiU129tg43rG/AA2+cwL8PDk57f7/ZldIFflWhBiqFLK0MXXipeAr9YXq1AhqlLIsll25UGDTh7M1EyWV6ny8Y5OgZc4bL/Nor9egYjj3pUvz60i25FD5XKKDLQIZOLOcV++jcvgDMTt8syNAJ33fxYj6VheKR6ku0MKgVaffRCTvoCtLKFrYa9egdd6Zd/hnp0IANRQXKGQ3Uz203whfgKS8Z39o5hj6zKzwMZara4gJsaC7D07t7s7LmIVP6zW4YNIqUJ6xTyeXMo4Auz9ncPhhoBx0heU8cbiAORgkEOU6M2Odl/1ykez64BCvrivBf/9g7bXfcQIpjsWUyhoZSLU6ZUs8ImEIBXSpZCcaYsFw8C2PaASFDV1E4EWjq1AoY1AoMWtLrGRyxe+DxB8MBXVulAXaPH/0xevPCGbo0Sy4BhPugajIQdNWXalFXMtFHJ/YW5nuGzqBRolyvwpaTY5AxYEWaAZ1MxrC4ujCtSZcubwA7usbQHCoHTVWLUYcgT68Meqojg1YsrjakFWgma11TCQqU8pTLLp/Z3QudSo73LamK+Zir1tTilMkZc3dpPugdd6XcPwcABUo5VAoZDUWZQRTQ5Tmr20cTLgmZBepKCmA0qLErNL2ue8wJr39+TriMpFbI8duPrYVCzvCZv+ycNKmx3+xK+QK/sTS91QVisJJKySWAUECXvR66iinj9yszsLpA/H41hEr/xGFAx2P0YJkcHshlDEUZqBJprxJLLtPP0AHCtMutnWMIBnn4+5LvGToAaAp979srDRnpjV9SU4jDA7aUJ74++OZJDFk9+Mx5rWmdh7i6IFODUYJBjqODNixKcwJxstQKOTa0lOLN48nvo3P7Anhx/yAuWVYdt4z8/curoVHK8NSu/C277DenF9AxJpSMUw/dzKGALs8JJZeUoSMk3zHGsLahJHzXVRxUMN8zdIBQZvTL61fj2LAN33x6PzjnsLp9aQ3JaCzToXvMmXLZ0lh44EfqAV22hqIM2zyTFt8D4i669D5fd2hlwUTJpfCzGWvSpbh4XZaBHu7Tm0vx8TMasXGhMe1jAcJgFLPThyODtnBv4dTvWT4SB/qk2z8nWlpTCJcvMC37LcWQ1Y0H3jiB9y+rwvpQGWuqxNUFmRqM0j3mhNMbwOIZ7J8TndtuROeoI+nBJa8cGoLN449ZbinSqxW4ZGkVXtjbD48/cyWqmdSfxg46UYlWRSWXMyhhQMcYq2eMbWaMHWaMHWSM3Rl6+/8wxvYxxvYwxl5mjNUkOhZJHmXoCJk91jQW45TJiVG7J5z1mO8ZOtG57UZ86cJ2PLunH3/ZcgoDZuEiPNWeqsYyLZzeAEZSzJKJJZclKQZ0RoMqKyWXbl8AFpdveoauUIOhNNcWdI85wdjEKPISnQrlenXMKYmjdm9agzIiaZRyfPeKZWnvtBNtaA3toztpCk9LnQ0ZuuZQH126/XOipTVFAJBS2eVP/n0U/mAQX3//orTPQ6tSoKZIk7HBKEcGhb7AxTnYaRpeX3A8ubLLZ3b3oapQgw2hXYnxfGhNHaxuP147PJzSOWaTw+OH2elLO6Ar1iqp5HIGScnQ+QF8mXO+GMAGAJ9jjC0B8GPO+QrO+SoALwD4f9k7zfnL5vZTDx0hs4TYR7fr1DiOD9tRU6ShlSMRPrdpAS5YVIH/eeEQ/i+0XDfVZcbhSZcpll2OObwo1ChSXkRdrldjzOFJe7n5VGLWr2JKtqmqUIMRe3qfr2fMiZqiAqgUE19ze6Uex4ZjZOgcnvCKhnxTW1yAhlIttpw0YdDihkGtmBW/a6sbSqCSyyRd9EvRVqmHSi5LejDKgT4LntzVi5vPbApnDdPVWpG51QWHBmyQMYSno86klnId6koKkuqjG7V78MaxEVyxukbSVPKzWstQYVDnZdnlgCW9CZciytDNrISvZJzzAc75rtCfbQAOA6jlnEc+e+gA5O+4nlkqGOSwuX005ZKQWWJZbRGUcoZd3WYcG7KjjcotJ5HJGH527SpUFxXgvv8cB5D6nqN0d9GZHN60skXlejWCPPN7loZt4g666T10gSBPq29P2EE3+fvdXmlAx5Ataumqye5Ne2VBNm1oKcW2zjEMWFzh1Q757qwF5dhz90WoT2OheCSlXIb2Kn1Sqws45/j+/x1GcYESd5zflpHzAIRA6MSIIyPTG48MWNFUrkt6pUkmMMZwbrsR750wwRdjh+ZUz+/tRyDIcdXqOkmPV8hluHJ1LV4/OgxTlnpxU9UXqp5Ip4cOAIq1KsrQzaCkbk0yxpoArAawNfT37zPGegB8FJShyziH148gB5VcEjJLCAvGi7CjawwnRuzhoRNkQpFWifs/tgZqhQxyGYu6q0mK2uICyGUs5UmXY2mWE4qZq0wPRhkK9clN7QebWF2Qetlld8TKAtGCCj0c3kDUSZcmuycjEy6z5YzWMlhcPrx7wpT3Ey4jaVWZzSQurS7CwX6L5EDq1cPDeO+kCXdd1J6RgTei1go97B5/RnpLjwzaclJuKTq3zQi7x49dp6RNonxmdx+WVBdiYZX0m3hXramFP8jx/N7+VE8zK/rGhQxdbUm6PXRKmJ2+vF7PMJdIDugYY3oATwH4opid45x/i3NeD+BRAHfE+LjbGGM7GGM7RkZSGwM7X1ndwjQ4GopCyOyxpqEYO06Nw+sP0kCUGJbWFOG+G1bjtnNbJJUnRaNSyFBTrEmr5DLVCZdAxHJxW4YzdNboGToxYBlIMaBzeoUL7anldeLP6NQ+Opc3AIc3kOcZOqFs0eb2z4qBKNmypKYQ406fpCmoXn8Q//uvw2g16nDD+oaMnkdLuXADqyPNskub24fuMScWJxEcZdqZC8oglzG8KaGP7uigDft6LQmHoUy1qKoQS6oL8XSeLRnvN7vSutkmKtGq4A9y2FJc0k6SIymgY4wpIQRzj3LOn47ykL8B+HC0j+WcP8g5X8c5X2c0Zma61Xxhcwu1x6kudiSEzDyxjw4AFszjpeKJXLy0Cl+7JL1hDI2lupQzdCaHJ61gpdyQpQydzQOlnKFEO/ncKouEzzeU4uqCnjHhrvvUUr/2yuirC0yOzC0Vz5bqogI0hXopU1lQP1csrREyWQf7EpddPrr1FDpHHfjWZYtT7h+NpbVCuFmQ7mCU/b3CgBdx4EsuFGqUWNNQjDcS9NFxzvGd5w/CoFHgQ6uTC+gAIUu3r9cSczBRLvSbXagq1KR8s01UHFoubnZQH91MkDLlkgF4GMBhzvnPIt4eWXj9QQBHMn9685vVFcrQUUBHyKyxNmIcOZVcZldjmRanxpLP0AWDHONOX5oZuuwEdMNWD4x69bRVAeU6NRQylvIuuqkrC0TFWhWMBjWOTVldkMml4tkkZulmSw9dNiyuLgRjSNhHZ3Z68YtXj+PsBeXYtLAi4+dRVaiBViVPezDK2x2jUMgYTktzlUK6zm0z4kCfNe7v+LN7+vDuCRO+esmilHpyr1xdC4WM4amdvemcakb1pbmDTiTelKJddDNDyu2ZswDcCOD80IqCPYyxSwH8kDF2gDG2D8D7ANyZzROdj6wu4a4GlVwSMnvUFBegqlCD6iINZdezrLFMC7PTB0uSk9QsLh8CQY7SNIKVQo0CKrks47vohm3uaRMuAWGgTDqrC2IFdICQpTs+ZdKlmKHL55JLQOijAzCreugyTadWoLlMl3B1wa9e64DV7cO3LlsM4V59ZjHG0GLUpZ2he6djFKsbinM+tVRcX/B2jCXjFqcP33vhMFbWF+MjKZavluvV2LSoAk/v7oNf4gCWbBN20KX/+1SiE17/KKCbGVKmXL7NOWfiioLQf//inH+Yc74s9PYPcM7zqwh4DrBSySUhs9KNZzTimrXSpp2R1IUnXY4ldwEp7qBLZygKYwzlelXKe/BiGbZ6pvXPiSoL1Sln6HrGnNCrFSjRTn89aauYPulS3LGXr2sLRO9bUoW7LmzH2QvKc30qObWkpjBuhq5z1IE/v9eF69bVZ3XYSKsxvdUFZqcX+/osOCsP/j2X1RahRKuMub7ghy8dgdnlw/9+aFla5YlXr63DiM0jqV8v2wJBjkGLO+0ddICQ/QcAM60umBGU+sljNnEoCu2hI2RW+dymBbk+hXkhchfdirpiyR83Fgro0im5BACjQZ3x5eJDNjfWxyg1qyrS4Mhgar02wsoCbdTMTFulMOmyz+xCXYnwPQ2XXOZ5hq5AJcedF2Zu9P5stbSmCC/sG8D5P3kdJToVSnUqlGpVKNGpUKZT4bUjw1DKZfjS+9qzeh4t5Xr8c28/XN5ASisH3jthAufIiwBdLmM4p82IN4+PIhjkk8qgd54aw2PbunHr2c1p9/ptWliBUp0KT+7sxfmLKtM97bT0jbvgC/Dwc2s6qORyZlGkkMfEkkvK0BFCyHRi+WCyg1HGQuWE6QZ05Xp1ylMno/H4AzA7fXEydBq8fnQEnPOkS+ZOmRxYEKOnU5x0eXzIHhHQeVCglGd8xD7Jjg+vqcWQ1Y0RuwfjDi96xpzY22PGuNMLX0DIvH71koVpTy5MpLVCB86FjOCSmuQzgW93jEKnkmNlfXHmTy4F57Yb8c+9/Tg8aA0Hbr5AEN965gCqizS466L0A2SVQoYrVtXg0S3dGHd4UZLm81I6xLLdJdXpD6QpKlCCMdBy8RlCz9R5zOr2oUAph0qR2UlUhBAyF2hVClQY1EmvLhBLLtMtJyzXq7G/L37fUjKGY+ygE1UVauD0BmDz+JMalhUMcvSMu3DB4uh3/8XhPceGbNi0SBiWISxez+/sHJlQUajBPR9cOu3tnAtj421uP6pnoM9QXF1wctSeUkD3TscoNrSUZXwCZ6rObRMyhW8cGwkHdI+804kjgzb87sa10GWoz+/qtXV45J0uPL+vHx8/oykjx0zFoQEr5DKGtgxMaJbLGIoKlLRcfIbkx28Micrq8sNA5ZaEEBJTY5k26YBuLFROKDbtp6rcoILJ4UUwmJnFucOhASvGwuiBZlVokmOyg1GGbR54/cFpKwtE4qTLyMEoo3ZPSlP7SH5hjKFQo0RtccG0yanZ0FyuA2PAieHkB6P0jDnRZXLi7Lbcl1uKKgo1WFRlCPfR9Y478fNXjuPCxRV435LMlUcurSnC4upCPJnjaZeH+q1YYNRDo0y+XDaaEq0qXOJOsosCujxm8/hQWEDlloQQEktjmS6loSgGtQJqRXoXLeV6NQJBDrMrdklRIMjx5X/sxc5T4wmPJy4Vr4xRFidm7pIdjBJvwqWovVI/aRedye5FeQ5Lv8jsVKCSo6aoACdHkx+M8u4JYZpkPvTPRTqv3Yidp8bh8Phxzz8PAQDu+eDSjE8KvXptHfb1WnA0xT7ZTDg0YE0psxpLsVZJQ1FmCAV0eczq8tNAFEIIiaOxVIshqwcub0Dyx5gcXpRmoJxQyi66bZ1jeGpXr6Q772KGriJGhk5cnj2YZIZOSkDXVmHA8WF7ONuY7uJ1Mn+1VuhxIoVJl28dH0WFQR2z1zNXzm03whfg+O7zh/Dq4SF88cK2cK9pJl2xqkbYSbcrN1m6MYcXAxY3lmRwCmqJVkVDUWYIBXR5zOqmDB0hhMTTWC6sLuhOYsH4mMOT9kAUICKgi7OL7qUDAwCA3d2JM3RDVjcUMoZSbfRzEzN0Qylk6BhD3GXB7ZUGOEOTLoNBDpPdSyWXJCWtRh1OjjgmrcFIJBjkePeECWcvKM/Kjrx0rGsqQYFSjsd39GBRlQG3nN2clc8T3km3Kzc76Q6F1l5Qhm52ooAuj9ncfppwSQghcTSmMOnSZPemtYNOZDQIx4i1iy4Y5Hjp4CAAYeCIw+OPe7xhmwdGgzpmr5NGKUexVpl8yaXJgZqigrgDttpDQxA6hu2wun3wB3ne76Aj+anFqIfTG0jq5/TwoBVjDm9e7J+bSq2QhxfYf/9Dy7I6sOXqtXUYtedmJ92hAXHCJWXoZiMK6PKY1eWjkktCCImjSVwunsRglDGHN7MZuhi76Hb3mDFk9eBDq2sR5MC+3vgTMYesblQkmERYVajBoCW5ZebdY8645ZaAUHIJCIHnxFJxKrkkyWs1Cr+TyQxGeadD6J/Lx4AOAL52ySL8+iOrsbYx+o7ITIncSTfTDvVbUVOkyejahBKtEk5vAB6/9JJ4khoK6PIU55xKLgkhJIEirRJFBUrJg1E45xh3elGqSz/7VFSghFLOYvbQvbh/ACq5DF8K7ara3RO/7HLE5om5g05UWajBoNWV1Hl2j7kSBnRFWiUqDGocG7LDFPp6yjLwPSLzT6txYnWBVG93mLCgQh+e5JpvFlYZcPmKmqx/HnEn3auHhjE+w9MhMz0QBRAm6AKgsssZQAFdnnL7gvAFeFK7hgghZD5KZnWB1e2HL8Azkn1ijKFMp8ZIlB46zjlePDCIs9vKUV+qRXO5Dru7zXGPN2R1ozLGQBRRshk6p9ePUbsHDWWJhzi0VxpwfNgW3tNHQ1FIKioMaujVCpwYlhbQefwBbOs05d10y1y5em0dvIEg/rm3f8Y+p9sXwIkRR0bLLQGh5BIAlV3OAArocuCFff24/sH3EIizu8jmFu5m0B46QgiJr7FMJzmgE7NPmSi5BIRddNEydAf6rOgzu3DJsioAwOr6YuzpMcccFOHxBzDu9KEixsoCUWWRBiaHBz6JQxN6xoRsXqwddJHaKvU4PmQPB6gU0JFUMMaEwSij0rLmO0+Nw+0LUkAXsrSmCEtmeCfd0UEbAkGe8QxdiVZISow7KEOXbRTQzbBAkOPH/z6KLSfH0BHn7pU1FNBRySUhhMTXWKpFn9klKcgRl9xmLKDTq6MGdC8eGIBcxnDRYmH58KqGYozYPOgzRy+XFIMoKRk6zidWHCQiZWWBqL3SAJcvEO71izVtk5BEWox6yRm6dzpGIZcxnN6S3f602eTqtXXY32fBkUHrjHy+QwOhCZfVRRk97kTJJWXoso0Cuhn2yqGh8J3keGOsLS5hGhoNRSGEkPgay7QIBDn6xhP3loXLCTPUH2bUqzFqm3yxIpZbntFSFh4wsLq+BABill2Gd9AlyNAlu4tOnP4pJaBrC+3/2nLShBKtEoosTvMjc1urUYd+ixtOb/zJroDQP7eqvpimekcI76SboSzdoX4rDGoF6kpirzZJRYkulKGjHrqso2frGfbQWydRX1qAYq0ybj+FNVxySU9whBAST6M46VLCLrpwhi5D5YTlBjVMDs+kUsqjQzZ0jjrC5ZYAsKjaALVChj095qjHGQ6NeI+1VFyU7C66njEnDGpFuPQpnrZKYdJln9lFO+hIWlrEwSgj8csuLU4f9vea83a6Za6U6dU4f1EFntndL7m8Oh2HBqxYXFMYc2VKqqiHbuZQQDeDdp4aw85T47j17Basri+OO/HM5hbuahUVUIaOEELiaSqTvotuLJyhy1zJpS/AYXFN3IF+cf8gGAPet7Qy/DalXIbltUUxKzOkZuiqkszQdY85UV+qlbSsuahAGS75zNT3h8xP4qTLEyPxyy7fO2lCkIP656K4Zl09Ru0evHpoKKufJxjkODxgzfhAFEDYnalRyqjkcgZQQDeDHnqzE0UFSlyzrg6rG0pwPLTANRpr6OKAplwSQkh8RoMaBUq5pMEoJrsXWpUcGqU8I59bnJYZ2Uf30oFBnNZYOi04W91QjAP9Vnj90++4D1ndkMtYwkCqRKuESiGTvLRZyg66SO2hLB0tFSfpaCzTgrHEGbp3OkahVcmxqr54Zk5sFjl/UQVqiwvwx3e7svp5To054fQGMj4QRSQsF6eSy2yjgG6GdI068O9Dg/jYhgZoVQqsbigG58C+nuiLZmkoCiGESMMYQ0OpVmKGzpOxgSiA0EMHACOhPrqTI3YcHbLh/curpj12VX0JvP4gDg9MH3QwbPXAqFcnLHlijKGyUC0pQxcMcvSMuyStLBAtCPXR0YRLkg6NUo76Ei1eOzI8KXs91Tsdozi9uRQqBV2OTiWXMXz8jEZs7RzDof7sDUc52C9ch2YjQwcIg1EoQ5d99Bs0Qx5+uxNKmQw3ndEEAFhZXwzGYg9Gsbr8UMoZ1PQkRwghCUndRWdyeDPaH1YeWgQuZuhePDAIAJP650SrG4oBRH/eH7J5Ek64FFUVaiRl6IZtHnj9QUkrC0Riho6WipN0femidhwesOJDv30HJ6OUXvaZXTg56sDZbcYcnN3scN1p9dAoZfhTFrN0h/qtUMgY2ir1WTl+iVZJGboZQNHCDBh3ePHEzh5cuboGFaGG9kKNEguMeuyO0SBvc/tQqFFK6nsghJD5rrFMi+4xJ4Jx9nsCQsllJvvDxNJEMaB76cAgVtUXo7po+rS46iINKgvVUZ/3h61uGBP0z4kqCzWShqIkM+FS1F5JGTqSGVeursWjt54Os9OHK37zDl4/Ojzp/e8cHwVA/XPxFGtV+NDqOjy7pw/jjuxkuQ4NWLGgQg+1IjNl6FOV6FQ0FGUGzPuAblvnGN44NpLVz/HXLafg9gVx6zktk96+uqEYu7vHoy6atbr9VG5JCCESNZbp4PEHMWSLH+iMObwZLbksLlBCLmMYtXvQM+bE/j4L3h8lOwcI5ZKrQgvGpxpONkNnccdcUi4Sd9A1JhHQLa8txk1nNOL8RRWSP4aQWE5vKcNznzsLtcUFuOWP2/HQmyfDP7dvd4yiXK8O30Qg0d18ZhM8/iD+vr0nK8c/1G/F0prM7p+LVKJVZi0YJRPmfUD3k5eP4t6XjmTt+G5fAH96rwubFhrDpSyi1Q0lGHf6opYJWV0+2kFHCCESNYYnXcYuu+ScY8yR2QydLDTIZNTmxUuhcsv3L6uO+fjVDSU4ZXLCFDFExesPYszhDa8kSKSqSAOPPxi3NwkQVhbIGFBTLH23lEohw3euWJbUxxAST32pFk9/9kxcvLQK3//XYXz5ib1w+wJ4p2MUZy8oo0qkBBZWGXBmaxn+8l4X/BleYTBi82DY5snaQBRAGIpicfkSVk+Q9Mz7gO7ctnIc7LdOmlCWSc/u7sOo3YtPndsy7X3hfooo6wtsbh/toCOEEImaxF10cQaj2D1+eAPBjGboAKHscsTuwYsHBrCkujDuEJLVoWl+e3vN4beN2MWVBRIzdOLqggRll91jTlQXFdDACZJzWpUCv/nIGtx1YTue3tWHS+97CyaHl/bPSXTTmU3ot7jxSoZXGBwKDWjK1kAUQCgbDXLEnOpOMmPeP8uf2y40474dquXOpGCQ46G3TmJZbSHOaCmb9v62CgN0KnnUBeNCySVl6AghRIrqIg0UMhY3QxdeKp7pgM6gxuEBK3Z1m2OWW4qW1xVBLmOTnvfFpeKSM3Shxw0kmHSZ7MoCQrJJJmO488I2PPCxteEprRTQSXPh4sqsrDAQp2dmM6Ar0QrJCRqMkl3zPqBbVlOEEq0Sb2ahj+71Y8M4MeLAp85piVpSIJcxrKwvjh7QuXy0g44QQiRSyGWoKynAqbHYAZ1JXCqe4YEf5XpVOLiKtq4gklalwMJKw6Tn/SGrkKEzSszQiYHfUMKAzkUBHck7lyyrwnOfOwu//shqKu2VSC5juOnMzK8wODRgRW1xAYq02bveLNEKz7c0GCW75n1AJ5MxnN1mxJvHRxM2mCfrwTdPoqZIg0uXx+unKMbhAStc3sCkt1vdPhioh44QQiRrLNPFLbl8cf8AAKCqMLMXkWIgtqBCjwUVhgSPFp739/aYwz0lI7bkMnTi4+KVXDo8fozaPUntoCNkprRVGnD5ippcn8asct26BhQo5RldYXCo35LV/jkAKA4Fi7SLLrvmfUAHCH10o3YPDg/YMnbMfb1mbDk5hlvOboZSHvvbvLq+BP4gx4H+iQXjXn8Qbl+QMnSEEJIEcRddtJtzD7xxAg+91Ykb1jdgcXXioCsZ4nLxROWWolX1xbB5/DgR2s01ZPVAHhquIoVKIUOZThV3dUHPuJCppAwdIXNDkVaJD62pzdgKA6fXj5OjjqyWWwIRGToHlVxmU8KAjjFWzxjbzBg7zBg7yBi7M/T2HzPGjjDG9jHGnmGMFWf9bLNE7KN783jmyi5//1YnDGoFrjutPu7jVkVZNGsLNY7S2gJCCJGusUwHm9s/rVfj0a2n8MMXj+ADK2vwvSuXZXyqXmOZDjIGXLYidjVGpNUNJQAQLrsctrlh1Kshk0k/r8rQ6oJYuk0U0BEy12RyhcHRQRs4B5ZmOUNHJZczQ0qGzg/gy5zzxQA2APgcY2wJgFcALOOcrwBwDMA3snea2VVZqMGiKkPG+uisbh9eOjiID6+tSzipslyvRkOpdlI/hdXtBwAaikIIIUkQ961Fll0+t6cP//3sAZy/qAI/u3Yl5EkETVJdsKgCb3xlExZVSbswainXoVCjCC8YH7J6UCFxB52oqkiDQWvs6cziDjoK6AiZO9or468w4JzjP4eH8OH738UnHtkWd83BQXEgSpYDOoNGARkDzDQUJasSBnSc8wHO+a7Qn20ADgOo5Zy/zDn3hx62BUBd9k4z+85pK8eOrnE4vf7ED07gpQOD8PqDuHJ1raTHCwvGzeG/W0O7hQxqytARQohUTeWTd9H95/AQvvyPvTitqRS//eiauOXv6ZDJGOqTCJxk4YFYQmXGsM2DCoO0/jlRVZEmfsnlmBMGtSLcv0IImRtujrLCIBjkeOnAIC7/1dv45J924JTJic1HR3D/6ydiHufQgBWFGgVqszyYRiZjKNaqKEOXZUm9ujHGmgCsBrB1yrtuAfBihs4pJ85tN8IbCGLrybG0j/XPPf1oLNNiZV2RpMevri/GoNWNAYsLAGALZ+johZgQQqSqK9GCMSGge++ECZ99dBcWVxfi4ZvWQaOU5/r0JlndUIJjQzY4PH4MW93JZ+gKNRhzeOH2Baa9r2PYjq2dY6gv1dLSZkLmmAsWV6KupACPvNuFQJDjhX39uPS+t/CZv+6Ew+PHvVevwHvfOB9XrqrBL/5zfFJLT6RD/VYsqSmckeeIYq2SMnRZJjmgY4zpATwF4Iucc2vE278FoSzz0RgfdxtjbAdjbMfISOZXA2TKaU2lUCtkeCPNssthqxvvnhjFFStrJP+STO2nsIZ76KjkkhBCpNIo5agq1OC1I0O49U/bUV+qxZ9uWZ+w9D0XVjcUI8iBXd3jMDm8qEw2QxeadDkcKrvknOPNYyO4+ZFtuPBnb+DkqAMfOf3/t3fvwXGV9xnHn58uK0uypJUsyVa0wsYXaoytCxEYCLG5JC0BBkMKhHBLJ8lk0pQ0DUkG0nYo0zZ/NAmUJjSTMJCETkmgIYQwwUmBpokJN8cNko1tLgYcLBlfZCzLlmXJst7+sUdiMbrsSnt2zzl8PzM7Wp09R+fdxzvv+Lfve95zQtbbDSC/CgtMnzhzgda//pbOv+03uuFHz+vosRHd8bFWPXHjal3Z3qTiwgL946XLNa9ylr5wf4cODb5z9tmxEacXd/VpWUN6Aw8zVc0Ine/SKujMrFjJYu4+59xDKds/IeliSde4Cdb8d87d5Zxrd86119XVZaPNvphVXKiVC+foyRkujPKLjW9qxEmXtKY33VKSTm6oVKyoYOxblNEpl6xyCQCZmT+nTJ1dB1RdHtN/fmpl1m8ini2tibgk6bHNyWlTmY7Qza1KFnTb9/Xrx+vf0J/+6zpd//31eqG7Tzd++CQ9ffN5uvaM+VltM4BguLK9SdVlxSopKtSdV7fpsS+u1qVtjSpKmVZeOatYd1zVqq79h3XrI5vfcfzrPf06cnTE9+vnRlWXFXNjcZ9NOQRkyWGmeyRtdc7dnrL9Akk3SVrtnJv4Tq4hsmpJrf750a3q7h2Y9pzin3fu1PLGSi2un532MbGiAq1orHrXCB33oQOAzDQn4nq9p1/3fXql5lVlNuqVS9XlMZ1YW67HtuySJM2dxpRLSfrkD3+v4RGnZQ2Vuu2KFl3c0qCSomBNLwWQXVVlxXrmq+crVlgw6eq4py2o0Q3nLta3fr1N5/xJ3di9/zZ7t8rye4XLUfGy2NgiLPBHOiN0H5B0naTzzKzDe1wo6U5JFZIe97Z918+G5sLq0dsXTHPa5faefnXu6NWalvRH50a1NcW1qfuAhoZHdPDIsApMKo9R0AFAJm6+YKl++5VzNX9Oeb6bMqW2prh2e1MmM10U5YSaMi2pn63zltbrgc+coUf/+mz9+fsTFHPAe8Ss4sK0bnXy+fOXqLUprr99aJN29ibXatjyZp9ihQVaVJf+4MNMJEfomHLpp3RWufydc86cc83OuVbvsdY5t9g515Sy7bO5aLCfFtfPVkPVrGkXdI907pSZdHFLevciStV2QrUGh0f04q4+9Q0cVcWs4ozuSQQASK6oFrQFUCYyeh9SKfMpl6WxQj1+42rddX27Vi6cw+InAMZVXFigf7uqVcdGnL74QIeOjTht2dmnJXNnK1bkz8q/x4uXxXTk6IgGht69iBOyIzf/kiFhZvrgklo9ta1n0nt3jMc5p4c7urXyxBo1VGU+XbNt7Abjveo7Msx0SwCIuLam5IJYBSbNKc+soAOAdM2fU65bLzlFz73+lr637tXkCpcNuZluKWnsWmZG6fxDQXecVSfVqe/IsDq7DmR03OadfXptb7/WZLAYSqqGqlmaW1mi59/Yr4NHjrIgCgBE3NKGCpUUFaiuosSXG54DwKjL35/QRSsadNtjL2tf/1DOFkSRklMuJQo6P1HQHefsxbUyy/w6up93dKu40PSR5fOmdV4zU1tTtZ7f0au+gWFuWQAAEVdcWKDWprjvN/YFADPT1y5brvqK5GyAXI7QxcuSI3Tci84/FHTHiZfF1JyIZ3T7gmMjTo907tTqk+rHPrTT0XZCXH/cd1jb9/UzQgcA7wHfvKJFt1/Zmu9mAHgPiJfF9O2Pt+n8pfVq9m6dkgvVZUy59BsF3ThWL6lVx45eHUjzm4T1r7+l3X2DWtP6vhmdd/QG43sODgbyRrgAgOxqqinTgtrgr8gJIBraF9Tonr84TaWx3C0eNXpblq79Azk753sNBd04Vp1UpxEnPfVqT1r7P9LZrbJYoT508twZnXdFY9XYdRRMuQQAAEDYxctiaqop1aYM16dA+ijoxtHSFFdFSVFa19ENDh/T2k279GenzJvxtx2lsUKd3FAhSUy5BAAAQCQ0J+Lq7OrNdzMii4JuHMWFBTpr8Rw9+UqPnHOT7rvu5R4dGDiqS2Y43XLU6DLWlaUUdAAAAAi/lkSVuvYPaN+hwXw3JZIo6Caw6qQ6dfcO6NW9/ZPu93BHt2rKYzp7cW1Wzjt6PzruQwcAAIAoGF2EZSPTLn1BQTeBVUvqJE1++4JDg8N6YstuXbSiQcWF2YnyrEW1qp1doqXzKrLy9wAAAIB8Wt5YJTMx7dInFHQTaKop04m15ZPevuCxzbs0ODwy49UtU82rmqUNf/+hnC4nCwAAAPhldkmRltTPZoTOJ8zrm8SqJbX60fo3dO3dzylRXeo9ysZ+PtyxU43xUp3q3W4AAAAAwLs1J+L6zUt75JyTmeW7OZFCQTeJ689aoH39Q9qxf0BPbN2tnkPvviHi585ZpIICPpQAAADARFoSVXrw/7rU3TugRHVZvpsTKRR0k1hUN1t3Xn3q2O+Hh4a1s3dAO/YPjK3Uc+0Z8/PYQgAAACD4UhdGoaDLLgq6DJTFirS4vkKL61mwBAAAAEjX0oYKFReaOrt6deGKhnw3J1JYFAUAAACAr0qKCrWsoVIbd7AwSrZR0AEAAADwXXMirk3dBzQy4vLdlEihoAMAAADgu+ZElQ4NDuu1nkP5bkqkUNABAAAA8F1LU1yS1Mm0y6yioAMAAADgu0V1s1UeK9TGrt58NyVSKOgAAAAA+K6wwLS8sUqdXYzQZRMFHQAAAICcaGmKa8vOPg0Nj+S7KZFBQQcAAAAgJ5oTVRo6NqKXdh3Md1Mig4IOAAAAQE60JOKSpE6uo8saCjoAAAAAOZGoLlVNeYyFUbKIgg4AAABATpiZmhNV3Logi6Ys6Mysycz+18y2mtlmM/uCt/0K7/cRM2v3v6kAAAAAwq45Edcrew7q8NBwvpsSCemM0A1L+pJz7mRJZ0j6KzNbJukFSR+VtM7H9gEAAACIkJZElUac9EJ3X76bEglTFnTOuTedc3/wnh+UtFVSo3Nuq3PuJb8bCAAAACA6mr2FUbiOLjsyuobOzBZIapP0nC+tAQAAABBpdRUlaoyXqmNHb76bEglpF3RmNlvSTyX9jXMu7fFRM/uMmW0wsw179+6dThsBAAAAREhzokobu1gYJRvSKujMrFjJYu4+59xDmZzAOXeXc67dOddeV1c3nTYCAAAAiJDmRFxvvHVY+/uH8t2U0EtnlUuTdI+krc652/1vEgAAAIAoa0lUSZI2djNKN1PpjNB9QNJ1ks4zsw7vcaGZXWZmXZLOlPSomf23ry0FAAAAEAnLE1UykzZyHd2MFU21g3Pud5Jsgpd/lt3mAAAAAIi6ylnFWlhbrk5WupyxjFa5BAAAAIBsaEnE1dl1QM65fDcl1CjoAAAAAORcc6JKew8OalffkXw3JdQo6AAAAADkXHNTXJLUuYOFUWaCgg4AAABAzi1rqFRRgXEd3QxR0AEAAADIuVnFhVraUKGNFHQzMuUqlwAAAADgh29c3qI55bF8NyPUKOgAAAAA5MXJDZX5bkLoMeUSAAAAAEKKgg4AAAAAQoqCDgAAAABCioIOAAAAAEKKgg4AAAAAQoqCDgAAAABCioIOAAAAAEKKgg4AAAAAQoqCDgAAAABCioIOAAAAAELKnHO5O5nZXkl/zNkJ01crqSffjYgw8vUX+fqHbP1Fvv4iX3+Rr7/I1z9k66908p3vnKvL1glzWtAFlZltcM6157sdUUW+/iJf/5Ctv8jXX+TrL/L1F/n6h2z9lY98mXIJAAAAACFFQQcAAAAAIUVBl3RXvhsQceTrL/L1D9n6i3z9Rb7+Il9/ka9/yNZfOc+Xa+gAAAAAIKQYoQMAAACAkApVQWdmF5jZS2a2zcxuTtn+gJl1eI/tZtYxwfE1Zva4mb3i/az2tl+TcnyHmY2YWes4x9/nnf8FM/u+mRV7283MvuW1a6OZnepPAv4KcL5LzewZMxs0sy/78+79F+B8r/E+txvN7Gkza/EnAX8FON81XrYdZrbBzM72JwF/+ZhvsZnda2abzGyrmX11guNPNLPnvOMfMLOYtz30/W+As6Xvla/50vfK13zpe+Vfvimvn2Zmx8zs8iy+7ZwJar5mdo6ZHUhpwy2TvhHnXCgekgolvSppoaSYpE5Jy8bZ7zZJt0zwN74u6Wbv+c2S/mWcfVZIem2C4y+UZN7jx5L+MmX7L73tZ0h6Lt95RSzfekmnSfqapC/nO6sI5nuWpGrv+Uf4/GY939l6e3p7s6QX851XkPKVdLWk+73nZZK2S1owzvH/Jekq7/l3o9L/Bjxb+l5/86Xv9Tdf+l4f801p368lrZV0eb7zilK+ks6R9It030uYRuhOl7TNOfeac25I0v2S1qTuYGYm6Uol/zM1njWS7vWe3yvp0nH2+fhExzvn1jqPpPWSEil/9z+8l56VFDezhrTfWTAENl/n3B7n3O8lHc3oHQVLkPN92jm339vtWb39uQ6TIOd7yNsmSeWSwnjhsp/5OknlZlYkqVTSkKS+cf72eZIeHOf4sPe/gc2WvneMX/nS9yb5lS99b5Jffa8kfV7STyXtyfB9BUXQ801bmAq6Rkk7Un7v8ral+qCk3c65Vyb4G3Odc29Kkvezfpx9PqaJ/9EkJYdRJV0n6VcZtC3ogpxvFIQl308pOdoRNoHO18wuM7MXJT0q6ZOTHR9Qfub7oKR+SW9KekPSN51zbx137BxJvc654XHOH/b+N8jZRkFY8qXvVfbzpe+V5FO+ZtYo6TIlR5XCKrD5es40s04z+6WZnTLZGwlTQWfjbDv+25YJvz1P6wRmKyUdds69MMWu35G0zjn3ZAZtC7og5xsFgc/XzM5V8j8VN023DXkU6Hydcz9zzi1V8pu3f5puG/LIz3xPl3RM0vsknSjpS2a2MIPzh73/DXK2URD4fOl7JzTjfOl7JzXTfO+QdJNz7tg0zh0UQc73D5LmO+daJH1b0sOTnSxMBV2XpKaU3xOSdo7+4g1pflTSAynbfuBdSLjW27R7dCqO9/P4IeKrNPW37/8gqU7Sjem2LSSCnG8UBDpfM2uWdLekNc65fRm8r6AIdL6jnHPrJC0ys9p03lSA+Jnv1ZJ+5Zw76pzbI+kpSe3Hnb9HyamUReOcP+z9b5CzjYJA50vfKykHn1/6Xl/ybZd0v5ltl3S5pO+Y2aUzeK/5ENh8nXN9zrlD3vO1koon/fy6AFyUmM5DUpGk15SsckcvXDwl5fULJP12ir/xDb3zwsWvp7xW4P3DLpzk+E9LelpS6XHbL9I7L8pfn++8opRvyuu3KrwX5gc2X0knSNom6ax85xTRfBfr7QvzT5XUPfp7WB5+5qvkqMQPvP6zXNIWSc3jHP8TvfPC8c95z0Pd/wY525TX6Xv9+ezS9/qbL32vj/ket88PFc5FUQKbr6R5KZ/f05Wctjnh5zfvYWYY/IWSXlZyRZq/G+fD9Nkpjp8j6X8kveL9rEl57RxJz05x/LB37g7vcYu33ST9u/faJknt+c4qYvnOU/I/032Ser3nlfnOK0L53i1pf8r2DfnOKmL53iRps7ftGUln5zurIOWr5Ep0P/Ey2iLpKxMcv1DJxWa2efuXeNtD3/8GOFv6Xn/zpe/1N1/6Xh/zHacdoSvogpyvpBu8YzuVXDRp0i9+Ris/AAAAAEDIhOkaOgAAAABACgo6AAAAAAgpCjoAAAAACCkKOgAAAAAIKQo6AAAAAAgpCjoAAAAACCkKOgAAAAAIKQo6AAAAAAip/wcJ3pu4MQTksAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAE/CAYAAADVKysfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACqX0lEQVR4nOydd3ykZbn+r2d6pmWSTCa9bra3bKUsbSmCgAIqNkRBUVE5lmNvBzzH7u9Yz1FEsYIHBWkiCIhL3WUb2zfbssmmTXqm95nn98c772SSTHmnJZPk/n4++4FM3nnnSTLlvZ/rvq+Lcc5BEARBEARBEARBFCeyuV4AQRAEQRAEQRAEkRwq2giCIAiCIAiCIIoYKtoIgiAIgiAIgiCKGCraCIIgCIIgCIIgihgq2giCIAiCIAiCIIoYKtoIgiAIgiAIgiCKGCraCIIgCIIgCIIgihgq2giCIOYpjDFX3L8IY8wb9/Utc72+bGCMdTPGrpzrdaSCMfYiY+yOAp3bzBh7jTE2xhizMcZ2Mca2TTvmM4yxQcaYnTH2G8aYOu57DzDGrIwxB2Ps1PR1MsauYIydYIx5GGM7GGNNcd9jjLHvRR97jDH2fcYYK8TPSRAEQWQGFW0EQRDzFM65XvwHoAfAW+Jue3Cu1zcdxphiITxGgXEB+CCASgBlAL4H4G/iz8UYuxrAlwBcAaAZQCuAb8Td/zsAmjnnRgBvBfBNxtim6H3NAB4F8HUA5QD2Afhz3H0/AuBGAOsBrANwPYCPFuBnJAiCIDKEijaCIIgFBmNMxhj7EmOsM6qY/IUxVh79XjNjjDPGbmeM9TLGJhhjdzLGtjDGDkfVnf+JO9dtUeXnZ1Fl5wRj7Iq475cyxu6Pqjv9jLFvMsbk0+77I8bYOIB7GGNLGGP/iq5rlDH2IGPMFD3+jwAaIRQpLsbYFxhjlzHG+qb9fDE1jjF2D2PskajC5ABwW5o1tTHGXor+LKOMsfiiJf4xNNFziorXXsZYFWPsWwAuBvA/0TX+T/T4FYyx5xlj44yxk4yxd8ad63eMsXuj33dGH78p0eNyzn2c85Oc8wgABiAMoXgrjx7yAQD3c86Pcc4nAPwXgNvi7n+Mc+4Xv4z+WxL9+m0AjnHOH+ac+wDcA2A9Y2xF3Ln/m3PexznvB/Df8ecmCIIg5g4q2giCIBYen4SgmFwKoBbABID/nXbMeQCWAngXgB8D+CqAKwGsBvBOxtil0449C8AM4G4Aj4pFIIDfAwgBaAOwAcCbANyR4L4WAN+CUIh8J7qulQAaIBQP4JzfiqmK4fcl/rw3AHgEgAnAg2nW9F8AnoNQCNUD+FmSc34AQGl0fRUA7gTg5Zx/FcArAO6KrvEuxpgOwPMA/hT9Od8D4OeMsdVx57sl+thmAAej60wKY+wwAB+AJwH8mnM+HP3WagCH4g49BKCKMVYRd9+fM8Y8AE4AsAJ4OtF9OeduAJ3R25OdO/5nIAiCIOYIKtoIgiAWHh8F8NWoYuKHUBS9Y1rr4H9FVZ3nALgB/B/nfDiqsLwCodgRGQbwY855kHP+ZwAnAVzHGKsC8GYAn+acu6OFxY8AvDvuvgOc859xzkOccy/n/Azn/HnOuZ9zPgLghxCKy1zYxTl/PKpOGdOsKQigCUBt9Od/Nck5gxCKtTbOeZhzvp9z7khy7PUAujnnv43+nG8A+CuAd8Qd83fO+cvRv8dXAVzAGGtI9gNxztdFf5b3Aohfox6APe5r8f8Ncff9ePTriyG0Q/qT3Fe8vyHJ9+0A9DTXRhAEMffM995/giAIYiZNAB5jjEXibgsDqIr7eiju/70JvtbHfd3POedxX5+DoJQ1AVACsMZd18sA9MYdG///YIxZAPwUQkFhiB4/IemnSk78Y6Rb0xcgKF57GGMTENoBf5PgnH+EoLI9FG3ffABCIRxMcGwTgPMYY7a42xTRc8xYI+fcFW0XrZ229ilEWxj/jzHWwRg7yDk/BGHmzRh3mPj/zmn3DQN4lTH2PgAfg/A7n35f8f7ifROd2zXtb08QBEHMAaS0EQRBLDx6AbyZc26K+6eJqmjZUDdNbWkEMBB9HD8Ac9zjGDnn8S110y/4vxO9bV3ULON9EFomkx3vBqAVv4jOplVOOyb+PinXxDkf5Jx/mHNeC0GR/DljrG36DxxVFb/BOV8F4EIIatr7k6yxF8BL037fes75x+KOialqjDE9hBm1gemPmwQlBMMRADgGwShEZD2AIc75WJL7KjA50zblvtG2ziXR25Od+xgIgiCIOYeKNoIgiIXHvQC+JZpdMMYqGWM35HA+C4BPMsaUjLGbIcyiPc05t0KYD/tvxpgxaoCyZNo83HQMEBQdG2OsDsDnp31/CJMFCgCcAqBhjF3HGFMC+BoANZKQbk2MsZsZY/XRwycgFGDh6edhjG1njK2NFokOCO2S4nHT1/gUgGWMsVujvyNl1NhlZdwx1zLGLmKMqSAofbs55zNUNsbY+eJxjLESxtgXISiku6OH/AHAhxhjqxhjZdHfx++i97Uwxt7NGNMzxuRMcJp8D4B/Re/7GIA1jLG3M8Y0AP4DwGHO+Ym4c/87Y6yOMVYL4LPiuQmCIIi5hYo2giCIhcdPIBhYPMcYcwJ4HYIhSLbshmBaMgrBTOQdccrO+wGoAByHUAQ9AqAmxbm+AWAjhHmpv0OYuYrnOwC+FnVs/Bzn3A7g4wB+DaAfgvLWh9SkWtMWALsZYy4Iv6NPcc67EpyjOno/B4AOAC9BaJEEhN/vO5jgvPlTzrkTgtnJuyGoZ4MQrPrji8s/QTBxGQewCYIxSSLUEExjxqI/77UAruOcDwAA5/wfAL4PYAeENtVz0fMCQgH6MQi/nwkA/w/CbN8T0fuOAHg7hL/hBITnRPz84S8B/A3AEQBHIfx9fplknQRBEMQswqhVnSAIgkgGY+w2AHdwzi+a67XMVxhjvwPQxzn/2lyvhSAIgpifkNJGEARBEARBEARRxFDRRhAEQRAEQRAEUcRQeyRBEARBEARBEEQRQ0obQRAEQRAEQRBEEUNFG0EQBEEQBEEQRBGjmM0HM5vNvLm5eTYfkiAIgiAIgiAIomjYv3//KOe8MpP7zGrR1tzcjH379s3mQxIEQRAEQRAEQRQNjLFzmd6H2iMJgiAIgiAIgiCKGCraCIIgCIIgCIIgihgq2giCIAiCIAiCIIqYWZ1pIwiCIAiCIIhiIRgMoq+vDz6fb66XQixANBoN6uvroVQqcz4XFW0EQRAEQRDEoqSvrw8GgwHNzc1gjM31cogFBOccY2Nj6OvrQ0tLS87no/ZIgiAIgiAIYlHi8/lQUVFBBRuRdxhjqKioyJuKS0UbQRAEQRAEsWihgo0oFPl8blHRRhAEQRAEQRBzxLe+9S2sXr0a69atQ3t7O3bv3g0AuOOOO3D8+PG8PEZzczNGR0dTHvPtb3874/P+7ne/w1133TXltt/+9rdob29He3s7VCoV1q5di/b2dnzpS1/K+PyzwY9//GN4PJ65XkZaaKaNIAiCIAiCIOaAXbt24amnnsIbb7wBtVqN0dFRBAIBAMCvf/3rWV3Lt7/9bXzlK1/J+Ty33347br/9dgBCsbhjxw6Yzeacz5stnHNwziGTJdaqfvzjH+N973sftFqt5HOGQiEoFLNbRqVV2hhjDYyxHYyxDsbYMcbYp+K+92+MsZPR279f2KUSuXBy0ImuUfdcL4MgCIIgCIKIYrVaYTaboVarAQBmsxm1tbUAgMsuuwz79u0DAOj1enzxi1/Epk2bcOWVV2LPnj247LLL0NraiieffBLATNXr+uuvx4svvjjjMW+88UZs2rQJq1evxn333QcA+NKXvgSv14v29nbccsstAIAHHngAW7duRXt7Oz760Y8iHA4DEJS0ZcuW4dJLL8Vrr70m+Wf9wQ9+gC1btmDdunW4++67AQDd3d1YsWIF7rjjDqxZswa33HIL/vnPf2Lbtm1YunQp9uzZAwC45557cOutt+Lyyy/H0qVL8atf/SrteVeuXImPf/zj2LhxI3p7e/Gxj30MmzdvxurVq2PH/fSnP8XAwAC2b9+O7du3x37XIo888ghuu+02AMBtt92Gf//3f8f27dvxxS9+EZ2dnbjmmmuwadMmXHzxxThx4oTk30VWiNVnsn8AagBsjP6/AcApAKsAbAfwTwDq6Pcs6c61adMmTsw+Q3YvX3v3P/h77ts110shCIIgCIIoGo4fPz6nj+90Ovn69ev50qVL+cc+9jH+4osvxr536aWX8r1793LOOQfAn376ac455zfeeCO/6qqreCAQ4AcPHuTr16/nnHP+29/+ln/iE5+I3f+6667jO3bs4Jxz3tTUxEdGRjjnnI+NjXHOOfd4PHz16tV8dHSUc865TqeL3ff48eP8+uuv54FAgHPO+cc+9jH++9//ng8MDPCGhgY+PDzM/X4/v/DCC6c85nTEx3322Wf5hz/8YR6JRHg4HObXXXcdf+mll3hXVxeXy+X88OHDPBwO840bN/Lbb7+dRyIR/vjjj/MbbriBc8753XffzdetW8c9Hg8fGRnh9fX1vL+/P+V5GWN8167Ja1/x5w6FQvzSSy/lhw4dmvG7mf57ePjhh/kHPvABzjnnH/jAB/h1113HQ6EQ55zzyy+/nJ86dYpzzvnrr7/Ot2/fnvB3kOg5BmAfT1M3Tf+XVtfjnFsBWKP/72SMdQCoA/BhAN/lnPuj3xvObzlJ5APOOb7y2FE4fCGcGnLO9XIIgiAIgiCKkm/87RiODzjyes5VtUbc/ZbVSb+v1+uxf/9+vPLKK9ixYwfe9a534bvf/W5M3RFRqVS45pprAABr166FWq2GUqnE2rVr0d3dndGafvrTn+Kxxx4DAPT29uL06dOoqKiYcswLL7yA/fv3Y8uWLQAAr9cLi8WC3bt347LLLkNlZSUA4F3vehdOnTqV9jGfe+45PPfcc9iwYQMAwOVy4fTp02hsbERLSwvWrl0LAFi9ejWuuOIKMMZm/Gw33HADSkpKUFJSgu3bt2PPnj149dVXk563qakJ559/fuz+f/nLX3DfffchFArBarXi+PHjWLduXUa/u5tvvhlyuRwulws7d+7EzTffHPue3+/P6FyZklEzJmOsGcAGALsB/ADAxYyxbwHwAfgc53xvgvt8BMBHAKCxsTHX9RIZ8uShAfyzYwitlTqcHXHD5gnApFXN9bIIgiAIgiAIAHK5HJdddhkuu+wyrF27Fr///e9nFG1KpTLmRCiTyWLtlDKZDKFQCACgUCgQiURi90lkNf/iiy/in//8J3bt2gWtVovLLrss4XGcc3zgAx/Ad77znSm3P/7441k5InLO8eUvfxkf/ehHp9ze3d0d+1lS/WzATCdGxljK8+p0utjXXV1d+H//7/9h7969KCsrw2233ZbUij/+caYfI54zEonAZDLh4MGD6X70vCG5aGOM6QH8FcCnOecOxpgCQBmA8wFsAfAXxlhrVPKLwTm/D8B9ALB582YOYtYYcfpx95PHsKHRhI9f1oYP/2EfOkdc2NRUPtdLIwiCIAiCKCpSKWKF4uTJk5DJZFi6dCkA4ODBg2hqasrqXM3Nzfj5z3+OSCSC/v7+2DxYPHa7HWVlZdBqtThx4gRef/312PeUSiWCwSCUSiWuuOIK3HDDDfjMZz4Di8WC8fFxOJ1OnHfeefjUpz6FsbExGI1GPPzww1i/fn3atV199dX4+te/jltuuQV6vR79/f1QKpUZ/XxPPPEEvvzlL8PtduPFF1/Ed7/7XZSUlEg6r8PhgE6nQ2lpKYaGhvDMM8/gsssuAwAYDAY4nc6YWUpVVRU6OjqwfPlyPPbYYzAYDDPOZzQa0dLSgocffhg333wzOOc4fPiwpN9Ftkgq2hhjSggF24Oc80ejN/cBeDRapO1hjEUAmAGMFGSlRMb8xxNH4QmE8YN3rINSLnjOnBmmoo0gCIIgCKIYcLlc+Ld/+zfYbDYoFAq0tbXFzEEyZdu2bbFWwzVr1mDjxo0zjrnmmmtw7733Yt26dVi+fPmU9sGPfOQjWLduHTZu3IgHH3wQ3/zmN/GmN70JkUgESqUS//u//4vzzz8f99xzDy644ALU1NRg48aNMYOSVLzpTW9CR0cHLrjgAgBCW+gDDzwAuVwu+efbunUrrrvuOvT09ODrX/86amtrUVtbK+m869evx4YNG7B69Wq0trZi27ZtU37uN7/5zaipqcGOHTvw3e9+F9dffz0aGhqwZs0auFyuhOt58MEH8bGPfQzf/OY3EQwG8e53v7ugRRubJozNPEDQCH8PYJxz/um42+8EUMs5/w/G2DIALwBonK60xbN582YuuuAQheXvh634xJ/ewBeuWY6PX9aGcIRj5X/8A7dd2IyvXLtyrpdHEARBEAQx53R0dGDlSrouKnbuuece6PV6fO5zn5vrpWRMoucYY2w/53xzJueRorRtA3ArgCOMsYPR274C4DcAfsMYOwogAOADqQo2YvYYc/nxH08cxbr6Unzk4lYAgFzG0GrW4cxw4t0CgiAIgiAIgiCKEynuka8CSDZx+L78LofIB/f87TgcviD+9I7zoZBPRvEtsehxtN8+hysjCIIgCIIgiMy455575noJc07acG1ifvHssUH87dAA/u3ypVhePXVwsq1Sj95xD3zB9L3HBEEQBEEQBEEUB1S0LSBsngC++thRrKox4mOXLZnx/SUWPSIc6Bp1z8HqCIIgCIIgCILIBiraFhD/+bfjsHkC+MHNk26R8bRV6gEAnSM010YQBEEQBEEQ8wUq2hYIww4fHj3Qjw9d3ILVtaUJj2mt1IExkBkJQRAEQRAEQcwjqGhbIOzuGgcAXLumJukxGqUc9WUl6Byh9kiCIAiCIIhiQC6Xo729HWvWrMHNN98Mj8eT9bluu+02PPLIIwCAO+64A8ePH0967IsvvoidO3fGvr733nvxhz/8IevHFunu7saaNWum3HbPPffg//2//5fRefK1noWCpHBtovjZ0zUOrUqO1bXGlMctqdST0kYQBEEQBFEklJSU4ODBgwCAW265Bffeey/+/d//Pfb9cDicUQi1yK9//euU33/xxReh1+tx4YUXAgDuvPPOjB+jUIRCoaJaTzFAStsCYU/XODY1lU2x+E9EW6UeZ0dciEQoUo8gCIIgCEIy3/8+sGPH1Nt27BBuzxMXX3wxzpw5gxdffBHbt2/He9/7XqxduxbhcBif//znsWXLFqxbtw6//OUvAQCcc9x1111YtWoVrrvuOgwPD8fOddlll2Hfvn0AgH/84x/YuHEj1q9fjyuuuALd3d2499578aMf/Qjt7e145ZVXpqhhBw8exPnnn49169bhpptuwsTEROycX/ziF7F161YsW7YMr7zySsY/Y6pzf+UrX8Gll16Kn/zkJ7H1DAwMoL29PfZPLpfj3LlzOHfuHK644gqsW7cOV1xxBXp6egAIauMnP/lJXHjhhWhtbY0pj/MdKtoWAOPuAE4OOXF+a0XaY9ssevhDEfTbvLOwMoIgCIIgiAXCli3AO985Wbjt2CF8vWVLXk4fCoXwzDPPYO3atQCAPXv24Fvf+haOHz+O+++/H6Wlpdi7dy/27t2LX/3qV+jq6sJjjz2GkydP4siRI/jVr341pd1RZGRkBB/+8Ifx17/+FYcOHcLDDz+M5uZm3HnnnfjMZz6DgwcP4uKLL55yn/e///343ve+h8OHD2Pt2rX4xje+MWWde/bswY9//OMpt8fT2dk5pdC69957JZ3bZrPhpZdewmc/+9nYbbW1tTh48CAOHjyID3/4w3j729+OpqYm3HXXXXj/+9+Pw4cP45ZbbsEnP/nJ2H2sViteffVVPPXUU/jSl76U4V+iOKH2yAXA3m5hnm1rS3naY5dYBAfJMyMuNJRrC7ougiAIgiCIecOnPw1E2xSTUlsLXH01UFMDWK3AypXAN74h/EtEezvw4x+nPKXX60V7ezsAQWn70Ic+hJ07d2Lr1q1oaWkBADz33HM4fPhwTDWy2+04ffo0Xn75ZbznPe+BXC5HbW0tLr/88hnnf/3113HJJZfEzlVenvp60W63w2az4dJLLwUAfOADH8DNN98c+/7b3vY2AMCmTZvQ3d2d8BxLliyJtXwCk+HY6c79rne9K+m6XnvtNfz617+OqXu7du3Co48+CgC49dZb8YUvfCF27I033giZTIZVq1ZhaGgo5c87X6CibQGwp2scaoUM6+oTu0bGE7P9H3Zh+3JLoZdGEARBEEVN96gbb//FTvz5oxegLbqxSRBJKSsTCraeHqCxUfg6R+Jn2uLR6XSx/+ec42c/+xmuvvrqKcc8/fTTYIylPD/nPO0xmaBWqwEIBiqhUChv5wWm/szxWK1WfOhDH8KTTz4JvT7x6zT+ZxTXCAg//0KA2iMXALu7xrCh0QS1Iv2QaplOhXKdisxI8siP/3kKD+3pmetlEARBEFmwp3scY+4ADvfZ5nopxFzz4x8DL76Y+t/ddwMeD/D1rwv/vfvu1MenUdmkcvXVV+MXv/gFgsEgAODUqVNwu9245JJL8NBDDyEcDsNqtWLH9Jk7ABdccAFeeukldHV1AQDGx4UOLYPBAKfTOeP40tJSlJWVxRStP/7xjzFlLFeyOXcwGMQ73/lOfO9738OyZctit1944YV46KGHAAAPPvggLrrooryssVghpW2e4/AFcXzAgbsuXyr5Pm2VegrYziN/2t2D1kod3r21ca6XUlB6xjzQquUw69XpDyYIgpgniJuYfRM0602kQZxh+8tfgO3bhX/xXxeQO+64A93d3di4cSM456isrMTjjz+Om266Cf/617+wdu1aLFu2LGEBVFlZifvuuw9ve9vbEIlEYLFY8Pzzz+Mtb3kL3vGOd+CJJ57Az372syn3+f3vf48777wTHo8Hra2t+O1vf5u3nyXTc+/cuRN79+7F3XffjbvvvhuAoDD+9Kc/xQc/+EH84Ac/QGVlZV7XWIyw2ZQMN2/ezEUXGyI/7Dg5jNt/uxcP3nEetrWZJd3ny48ewT+OWnHgP95U4NUtfPyhMJZ/7R9ortDixc8X9g17rrn8v19Ee70JP3xX+1wvhSAIIm/c/ts92HFyBO/cXI/vv2P9XC+HmGU6OjqwcuVKaQd///uC6Uh8gbZjB7B3LxA3T0UQ8SR6jjHG9nPON2dyHlLa5jl7usahkDFsaDRJvs+SSh0mPEGMuwMo16kKt7hFgNXmE/5r9+W9Z7yY8AXD6Bp1w6wjlW0x8O2nO9BhdeCPHzpvrpdCEAXnNClthFQSFWai4kYQBYZm2uY5u8+OYV19KbQq6fW3OGhNc225I0Yn+EMRTHiCc7yawtE16gbnwKjLP9dLIWaBFzqGsLtrnPIciQWPJxCKFWtUtBEEUcxQ0TaP8QbCONxnx9aW9Pls8SwRHSTzMNd2dsQFfyic83nmK/1xH/JW+8L9wBefKyNUtC14nL4gzo66EQhFMLCAn9MEAUxuXraadbDavQjTRgVBEEUKFW3zmAM9EwhFOM6TkM8WT52pBBqlLGelze0P4c0/eQV/3HUup/PMZ/riQsoH7b45XElh6Rx2AwCcvhB8wcVbpC8GjvTbIY46d42653YxBFFgTg8Jn4OXLbcgGOYYdi7c93EiOQvFEp4oPvL53KKibR7zetc4ZAzY1JxZRohMxtBq1udctFntPvhDEXRYZ9rFLhb6J7xQKYSX0cACLtrOjk4+V6hFcmFzpM8e+/9uKtqIBc7pYReUcoZtbULHCrVILj40Gg3GxsaocCPyDuccY2Nj0Gg0eTkfGZHMY/Z0jWFVrRFGjTLj+7ZZ9HijZyKnxx9yCEVK1+jinY3rt3mwqsaII/12DC7gVrLOEeHCJhjmGHUFUF+mneslEQXicJ8d9WUlmHAHcJaKNmKBc2bYiVazHs1mIdC3b8KDLc2Zda8Q85v6+nr09fVhZGRkrpdCLEA0Gg3q6+vzci4q2uYp/lAYB3psuOW8pqzu32bR42+HB+ANhFGiSh/KnQixHXAxt1D127zY0FCGYYcP1gWqtEUiHJ3DbqyrN2H/uQmMOOeH0raQ3TwLyaE+G9bXm9A95l7Ur21icXB62IU1daWoM5UAAPrGF+7mG5EYpVKJlpaWuV4GQaSF2iPnKUf67PCHIjivNbsdwSWVenA+te0tUwajStuEJ4gJdyDr88xXwhEOq82HurISVJdqFuxM26DDB28wjPOjz7X50B75/PEhbP32C7B5Ft/zMhfGXH70TXixtr4ULWYdFW3EgsYXDKNn3IOlFj00SjnMenXMEZggCKLYoKJtnrK7axwAsm7jyIftv9geCWBRtlENO30IRTjqTCWoMZUs2KLt7IjwtxVdSkeLXGkLhSP4ztMdGHH6qejIkMP9wjzbuvpStJp16JvwIhCKzPGqCKIwnBl2gXNgqcUAAKgvK6GZNoIgihYq2uYpu7vGsaxKn3U4drNZCxkDOkeyv6gdtPugjbZWLsaL44HojmxdWQlqjBoM2L0LcpBZtPtfWWOAUaMoetv/xw8OxDYRhhzFvdZi43CvHYwBa+tK0WzWIRzh6J3wzPWyCKIgiJuWS6uETUyhaKPnO0EQxQkVbfOQUDiC/d3jOC/DfLZ41Ao5Gsu16MxRaWtvMEEuY4vSjETcka03Ce2RvmAEdu/CC9juHHHBoFagUq9GpUFd1O2RwXAEP33hNBrKhfmUEbLvzojDfTa0mnUwaJRoiRozdOWwsUMQxczpYScUMobmCuG5Xl+mRb/NS6HyBEEUJVS0zUOODTjgDoSxNcN8tuksqczN9n/Q4UN9WQkay7WLUmnrj1faSoUiYSGakXSOuNBq0YMxBrNeXdRGJI/s70PPuAf/cf1qyBgpbZnAOcehPjvW15sAYLJoW4SvbWJxcHrIhWazLhbbUldWEs1qo/cNgiCKDyra5iF7ovNsmYZqT6fNokfXqBvhLHYVQ+EIRpx+VBs1aDHrYnNPi4n+CS/KtEpoVQrUmIQMjoU419Y57MaSSuEC3mxQY9RVnOYe/lAYP3vhNDY0mnDlSgvMejUF5WbAoMOHUZcf6+pLAQAmrQplWiW6xhbfa5tYHJwZdmFpdL4bENojASHKhShuhp0+vH52bK6XQRCzChVt85DdXeNoMetgMeYW1rfEokcgHEHveOYfUCMuPyIcqCrVoDXqMrfYWkr6bV7URT/ka0qFv8VCU9pc/hAGHT4sqRQubCr16qI1InloTy8G7D589qrlYIyhyqihHfMMONQbNSFpMMVuazHrqD2SWJD4Q2F0j7mnFG0N0fdzMiMpfv7nX2dw6/274QmE5nopBDFrpC3aGGMNjLEdjLEOxtgxxtinorffwxjrZ4wdjP67tvDLJSIRjr3d49iah/BP8UJcNJrIBFFRqjZq0FKpgz8UgdWxsAqWdPRPeGPZPpV6NWQMsC6wgG3xgj1WtBnUcPpD8AXDc7msGfiCYfzvjjPY2lKObW3CrKfFoKb2yAw43GeDQsawqsYYu63FrKf2SGJBcnbEjQgH2qoMsdvqTFoAVLTNBw732REMcxzps8/1Ughi1pCitIUAfJZzvhLA+QA+wRhbFf3ejzjn7dF/TxdslUSMk0NO2L3BnOfZAKCtMnvbf9HuvyraHgnkz7AgFI7gH0etRe3EyDkXlLboh7xCLoPFoCkKpc3uDeY0qxiPWNCL7ZGVejUAFN1c2wOvn8Ow04/PXrUsFqhtMWrIiCQDDvfZsbzaAI1SHruttVKHQYePdrOJBcdp0TkyTmkrUclh1qvIQbLICYUj6LA6AAAHem1zuxiCmEXSFm2ccyvn/I3o/zsBdACoK/TCiMTE5tmyDNWOp1SrhFmvzk1pK9XEVJhcgrrjee74EO584I2ifjO2eYLwBMKx9kgARRGwHQpH8IHf7MF7fvV6Xs7XOeKCXMbQWCEUp2aDEDFRTA6Sbn8IP3+xExcvNeO81klHVUt0/i4YppyxdHDOcbjPhnVRExIR0VWve5QuYomFxZkhJ2RM2JiIp85EWW3FzpkRF/zR/MgDPRNzvBqCmD0ymmljjDUD2ABgd/Smuxhjhxljv2GMleV7ccRM9nSNo85UgvoybV7O12bRZaXKDDr8UMoZyrUqWAxqaFXyvJmRnI0WkdnM2s0WMedI02TRVmvSzHl75M9f7MTBXhtGnP68qCOdIy40lmuhVgjqi7kIlbbf7ezGuDuAf79q2ZTbLUZhrcVUYBYr3WMeOHyhmAmJCDlIEguV08MuNFfoYu9tIvVlWvRT0VbUHO0XVLY1dUa80WMr6q4cgsgnkos2xpgewF8BfJpz7gDwCwBLALQDsAL47yT3+whjbB9jbN/IyEjuK17EcM6xu2ssL62RIm0WwfY/0ze9IYcPFoMGMhkDY0wwLMjThV1XdFe/mHc7Yxlt8UqbsQRWu2/OPkCO9Nnx0xdOo9IgFCsDttxVv7Mjk86RAGLnLhYHSYcviPtePovLV1iwoXHqvlGVQTCHobm29BzuswHAjKKt2SxsDi3GHEaicJwZduFnL5ye04vt08MutMW1RorUl5Wgj7Laipqj/XaUKOV4+8Z6jDj9GCiCsQSCmA0kFW2MMSWEgu1BzvmjAMA5H+KchznnEQC/ArA10X055/dxzjdzzjdXVlbma92LkrOjboy6Ajlb/cezpFIPhy+U8UX4oN2H6tJJ98p8Fm3dUYvxYp4rSKS01ZRq4AmE4fDN/vyPLxjGp/98AGa9Gt++aS0AYMCWW9EbjnCcHXXH2l8BoEJXXOrVb17tgt0bnKGyAZNK2/AiM8jJhkO9dqgVMiyLM2UAAK1KgWqjJraRQhD54LEDffjv509hcI5em4FQBN2jbiytSly0BUKRonmPmy1C4Qgu+8EOPPpG31wvJS3HBuxYVWvE5ibhWohaJInFghT3SAbgfgAdnPMfxt1eE3fYTQCO5n95RDyi0cfKOHe3XBF3GjNtkRxy+FAdFznQWqlH34QH/lDuroLnYkVb8Spt/RNeaFVymLTK2G1iETsXc23ffeYEOkfc+MHN67CiWrjwzrVVs3/Ci0AoMmXmQ6WQobREWRTtkTZPAPe/0oWrV1dhTV3pjO9XRZ+fZPufniP9NqyuNUIpn/mRIGzIkNJG5A9rtAsgX4ZJmdI95kYowrHUYpjxPXFOubeIP38KwbDTj+4xD3Z2Fnf2WSTCcWzAgTW1RqyoMUCtkOFAj22ul0UQs4IUpW0bgFsBXD7N3v/7jLEjjLHDALYD+EwhF0oIrWAAUFqiTHOkdLKx/eecY9Dhi10UA0CrWYcIB3rGctuRd/qCMdWvqIs2mwd1ppKYUyEgzLQBs2/7/+rpUfxuZzc+cEETLl5aiepSDRgD+nNsj5x0jpy6G11pUBfFLvTvdnbDFQjhMwlUNgCo0KnAGClt6QiFIzja75hhQiLSUpk/FZ0ggMk8y845KtpOD0WdIxMqbaLt/+JSl8XPrbkqpKVydtQNTyCMNXWlUMplWFdfSkobsWhQpDuAc/4qAJbgW2TxP8s4o213Bk3aP5tkako10KrkGb1RO/0heALhWKA0MGlYcHbUjaVVM3cvpXIuWvQ1VQjD4JEIh0yW6OmXmHuePIZQJIJvvHUN5BncL1Pig7VFqkuFr2dTabN7g/j8I4fQWqnDl968EgCglMtgMahhzbE9MlnRZtariqJoe6PHhlU1RqyoTqw8K+QymPVqUtrScGbEBW8wjPUNM9VKQNiQmfAEYfMEYNKqZnl1xEJEbIs8k4VzcT44PewEYzPf24DJlvf+HN8/5xviDHRndMY9fkOymDg2IOSyid0VGxrL8Lud3fCHwjNMZQhioZGReyQxtzijSptBkz+ljTGGJZX6jJS2oWhRUhVftFXmx2VOvP+2NjMC4cznCp46bMUDr/fgcw8fQriAg+TxwdoiFoMajGFWh6LvfuIohp1+/Oid7ShRTX5g1ZpKMJCj4tc54ka5ToUy3dQLdbNeXRTtkV2jLrQmuOiKRwjYJqUtFYd7hYugZEqbaPtPahuRDzjnBVN1njlixV/3p5/JOj0suOLGZxKK6NQKlOtURd3pUQjEv4nTHyrqja6j/XaoFLLYaMeGBhMCoQg6rM45XhlBFB4q2uYRDl8IGqUMKkV+/2xtFn1GbSriLmn8TJtRI2S+nc1x57RbLNqWmAFkNlfg8ocw6vJjWZUejx3oL1jh5gmEMOEJzlDalHIZKvVqDM5Se+TfD1vx+MEB/NvlbVjfYJryvdrSktjcSLZ0jrimOEeKVEbzz+YSfyiMvglvTOFNhsVASls6DvXZYFAr0FKR+HeZrw2ZdITCEQRClKm30LF7g/AFI5Ax4Mxwfp9T971yFl97/CjsnmDK484MuaaEak+nvmzxZbXFuw3PVduqFI72O7Cy2hCbv21vNAEgMxJicUBF2zzC6QvmVWUTWVKpw4DdJznXKxasHVe0AUIbVa4Xdt1jHlQZ1VgWnTXIZK5ANDD59JXL8Pmrl+OxA/347F8O5r1wEzN8pittgNBuap0FpW3Y4cNXHz+C9fWl+MT2thnfrzVp0G/z5mSpfXbElbB9yKxXw+UPwRvI3XQmW3rGPOBceM6losqoIcv/NBzus2NtfWnSNuSGMi3kMlbwou0/nzqO992/O/2BxLxGfH9cW2/CqMuftsDKhCG7D95gGA/t7Ul6TCgcwdlRF9oSmJCICAHbi2+mTTTWmqu21XRwznF0wI7VccZTNaUlqDZqyIyEWBRQ0TaPcPhCeZ1nExEvzKWGY4vtZqKlukg+bP+7x9xortDFVKxMdjvj5+E+sb0Nn796OR4/OJD3wq3PNjOjTaSmtKSgM22cc7x8agQf+v0++IJh/PBd7Qkd/2pKS+APRTCR5QWRzRPAqCswxTlSpFI/97b/Z6PPMylK25jbj1CYFJxE+ENhnBh0YG194nk2QHAMrS8rKXjRdrTfjkO9NsrHWuCI748XtwndFGdG8tPWFonwmKr++53dSV/z3WMeBMM8rdLWP5Hbptd8w2r3YV29CXq1omjNSHrHvXD6Qlg7zS14Q6MJB3pJaSMWPlS0zSMc3sIoba0ZOkgOOnwo0ypnzAO0Vuow6grA7s1+5/TcmBstZh20qsznCsR8t6Zom1ehCrdJpU0743vVpZqCFG3BcASPHejDtT99Fe//zR4MOnz475vbEyphgDDTBmSf1dYZLeATnV8M2B6Zw6JNbKNtTle0GTXgHBhzF0cYeLHRYXUiGOZYn2SeTSSfOYzJGLT74A9FYKUZxAWNOGu7TSza8lQgjLkDCEU4Ll5qxoDdh2ePDSU87sywUCROzySMp75MC38oMudt4LPJgM2HOpMGSyz6oi3ajvRHTUhqZxZtvePeopi1JohCQkXbPMLpC8FYAKWtqUILGZOutA3a/VPs/kVE1SPbizvR7l8suoS5ggzaI0c9MOvV0Ksnf0fxhdu/56lw67d5oZQzWAzqGd+rKdXA6Q/FTGNyxeUP4devnMWl39+Bz/z5EILhCL7/9nV49Yvbcd26mqT3E+MHsi3aziZxjgSE9kgAGJ3DD8iuUTcqdKq08Rfi34jMSBJzpM8GAFiXQmkDJou2QikP4QjHUPT51E2GJ0WD0xfEJ//vAHrH89cqOGj3QcaAjU0mqBSyvBUI4mv8vVsb0ViuxW9f60p4nGj3v8SSfMOnPtbpsThaJP2hMEZdftSUlqCtsniLtqMDdihkDMuqp34ubWgsAwAc7LXNwaoIYvagom0e4fQFYSyA0qZRylFfppWstA05fLEg6XhaY4YF2b3hd48KH5AtZkHBqi8rych2+dy4G00VM9UvsXB74uAAvvzo4azWFk//hBc1pSUJZ4DyFbDtC4bxg2dP4ILvvIBv/r0DDeVa/Oa2zXju05fgnVsa0lob50NpU8llCVtAzQbBTXIulbazo+60rZFAXMA2zbUl5FCfHRU6VcL5zHhazTp4AuGCmboMO32xDZWzVLQVDUf67Hjy0AD+66njeTun1e6DxaCBWiFHq1mX96KtxlSC2y5sxr5zEziU4CL+9LAL9WUl0KqSb4Bm054/nxE/r2pKNWiz6DHs9MdyYYuJo/12LKsyzPj8W1NbCoWMkRkJseChom0e4SzQTBsgmJFIVtocvhkmJADQWK6DjAFdEs8zHbG9UWx5qy/TZjRXcG7Mk7BoA4TC7dbzm/Dw/r6cP4z6bTPt/kXEYikXM5JTQ07c8D+v4X93dOKSpZV44hPb8OePXoDLV1RJzqyr0KmgUsiyXkfniAvNZi0UCeblKnSi0jZ3rUNdEos2ce5yyElKWyIO99mwrr40bSZTc44qejrinetmU2l7eF8vvv10x6KaXcoEsa34ueNDeP3sWF7OOWj3oSbaCbDEoo+1YueKaDhUZVTj5s310KsVCdW208OpnSOBSZOpxVK0ia+/WlNJzDG42BwkOec4NuDAmrqZuZwlKjlW1hjJjIRY8FDRNo9w+IIwpmkHy5bWSj3OjrrSmgAEo9lpidojVQoZGsq1We+UixdrTeWT7ZH+UESSouMLhmG1+2KZUom4alUVOEfC3ddM6J/wxoqz6YjFbDZKG+ccf9rdg7f+z6sYc/vx+w9uxf/esnGGnb8UGGOoKdVkHRDbOeJCqznxhY1KIYNJq8SIa24KIacviBGnP2ZFnwqzXsjOI6VtJm5/CGeGXUnz2eLJtfU5HeLrRaWQzWrR9uShAdz38ln8Yde5WXvM+cRY9L23TKvEt/7ekReTGKvdi5poR0JbpR69Ex74grk70Q46fGBMMEoyaJS4eXM9/n7EOqU1Ohzh6BxxYWmKeTZAyEI1aZWLpj1SzGgTlTYg/xl6uWK1+zDuDsRCtaezodGEQ322guazLhbODDvxh13dcPulOYoTswcVbfOEYDgCXzACg7pQSpsevmB6E4ARpx+cI2F7JCBc3ElV7KbTPeZBtVETC4muz6BFpWd80jkyGe2NJjAGvHHOltX6ACAQimDI6ZuR0SYiFrOZKlx2bxB3/ekAvvLYEWxpLsfTn7oYly6rzHqdQDSrLYviMRiOoGfMk3Lmo1KvnjOlTWyjTWf3DwjZeRU6FWW1JeBovx0RDqxvSD3PBgjPJZVCVrCiTbxo3NxUhq6x2SvaxqJGE9/8+3Ecjs73EZOMuwOQMeCr163CkX47njjUn9P5hGBtH6qNwvtnm0UPzqXPU6di2OGDWa+OdQfcdmEzQhGOB16fLMh7xj0IhCJplTYg8/b8+Yw11h5ZgsZyLVRyWdHZ/sdMSFIUbZ5AGKeGKGQ7V+57+Sz+44ljuPQHL+KB188hSO7LRQMVbfMEp0/Y8ShUe2SrxJaIRMHa8eRiWNA9NnUmTXRnlFK0xdwEUyhtRo0SSy16vJFD3/ug3QfOgfokSptKIYNZr45dhEph/7kJXPuTV/DssUF88ZoV+P3tW2ExJP79ZkKNSZPVTFvPuAehCE/qTAkICtZcWf6fjc5MtiRRAqdTadBgmIxIZnC4T7gIkqK0yWQMLRWFc5AcsPlQopRjfYMJPWOeWYtomPAEcOVKCyr1anziT2/k5Hy7EBl1B1CmVeFtG+qwtq4UP/jHyZxUMac/BE8gPKm0iapOHgqE6W37TRU6XLmyCg/u7omt+XT0gj6d0gYA9SbtImqP9KJMq0SJSg6FXIZms7bo2iOP9dshY8DK6pntkQCwoYHMSPLFgM2HxnItWs06fO3xo7j6Ry/jH0et1EZeBFDRNk9wRC8mCtUeOZnVlvqNeii6I5eoPRIQ2iy9wXBWgcbd0+aU6jJw8BIz2lIVbQCwsbEMB3omsm7z6bN5pqwtEbUmaQHbkQjHz188g3f+chcYA/5y5wX42GVLJM+tpaPOVIIhhy/jC2Dxwzpl0WZQz5kRSdeoG4ylVlXjqTKqSWlLwKE+G+pMJTE30HQ0m7UFVdpqTBq0mHUIRfisKBycc4y5A2it1ON/btkIq82HLzxyiC5M4hh3BVCuU0EmY/jqdSsxYPfh/lcTuzJKQWyDFTs1WszCHHQ+WvGGHH5UTcsOvX1bM8bdATx5cACAMM8GTBaLqaiLuhcvhueD1e5DTenkZ1pbHmcN88XRAQfaLPpYJ850miq0KNMqyYwkDwzYvVhTZ8SfP3o+fv3+zZDLGO584A28/Rc7sbd7fK6Xt6ihom2eMKm0FaZoM+tVMGgUad+ordM+dKcjtqydzdBB0uELYswdmJK7pVcrUKZVxnLRUnFu3I3SEiVKtal/Pxsby+DwhTJen8hkRlvyoq3aKC2r7dljg/j+P07imtXV+PsnL8bGqG1xvqgpLUGEI2alLhXxOZAoWFtEaI+cm0Koe9SN2tKSGTmBybAY1GT5Pw3OOQ702NJa/cfTYtbj3Ji7IDMjVrsPtaUlBZ+di8cTCCMQiqBcp8LGxjJ86c0r8OyxIfzmte6CP/Z8YcztR4VecIs9v7UCV62qws93nMk6D0tU/kWlTaOUo6E8P6rOkMM3YzPxgtYKrKg24DevdYFzjjPDLtSWaqbEwiSjvqwEvmAkbcbjN/52DN/6e/7cNeeCAZs3FhMDCBt258bc8IdynzXMF0f77TPy2eJhjGFDYxmZkeQI5xwDNsEhmzGGK1dV4ZlPXYzvvX0t+m1e3HzvLnz8wf2z1g1BTIWKtnmCmPtVqPZIxhiWRM1IUjHk8EGlkKEsSXEkXnRlOqNwblRUyqaqJ/Vl0lpUzo15Ztw3ERubTACAN7J8YxcVgBpT8vbFmlKNpPbIl06NwKhR4Kfv2ZA2bywbxA9ha4aqReeICxaDOuUGgdmggjsQhicw+4PKUp0jRaqMGoy6/JKLDX8ovOA/kPafm0C/zYvtyy2S79Nq1iEY5pI2UTLFaveiulQTU8pno2gbj16Ml2uFouRDF7XgqlVV+M7THbRbH2XMHYi5xQLAl9+8Av5QBD/656mszjddaQOEAiFXpc0fCmPcHZhRtDHG8MFtLTgx6MSus2M4PexEm4TWSED47AFSt+ePufz4465zeO544iDv+UIipS3CJ+eH55phhw/DTj9WJ5lnE9nQYMLpYRe1OeeAzROELxiZYramkMvwri2NePFz2/HBbS14+sggDtEM8JxARds8wVHgmTZAUFY6h1NfLA06fKgyqpNahFcbNShRyjO+6Jpu9y8iNWBbmIdLfyHfatbDqFFkfVHWP+GFxaBOmZNWXVoChy+U1nlp19kxnNdaAXme2iGnI77pZtpqdnbElbI1EogP2J5dMxLOueSMNhGLQY0In3TCS8c7frEL/5nHXKpi5C/7eqFVyVMGtE8nZvufZ6OQYDiCYacftaUamPUq6NWKWXGQjBVtOqFoY4zh/71jPapLNbjrTwdg88xdpEWxMO4OxJQ2QGh/f9/5TXhoT09Whg9Wu+DwGF9ctVn06Bp157RRIrrDJpq1fmt7Lcp1Ktz/ShfODLuwTEJrJDBphJVqk+KJgwMIRTj6Jrzz1qzB7Q/B7g1OuUgX3/+LxUHy2IADALCmNvE8m4gYsk2mQtkzEN1wrk3QTVWikuM9WxsALJ44jGKDirZ5gpgtVohwbZEllXoMOnxwpSg2Bu2JM9pEZDKGZnPmhgXT7f5FhKItdVZbIBRB/4RXktImkwktFNk6SPbbvCnn2YDJ1p9Uc219Ex6cG/PgwiUVWa1DClLWMR3OOTpH3CmdIwGg0iAUbbM91zbmDsDpC2VUtFVGTV2kzLV5A2EcHbDjb4cGFqza5vaH8NRhK65fVwNdBm60sdbFPLvKDTkEc58ak9CO02LWoWus8Dv8YtFWppssSkq1Svzvezdi2OnDZ/9yKC8W9/OVYDgCmycYK2pFPnnFUujUCnz76Y6Mzzlo96FSr4YyLv+xrVKPQDiC3hwuAoejOYwW48z5TI1Sjved14gXTgzDF4xgaZW0ok3KTPUj+/sACFEChVCgZwOxK2R6eyTL06xhPhCdI9MpbesaSsEYqEUyB8TMvpokIyCLLXi+2KCibZ4gzrQVtmgTL8qSF1yJ5gam05pF0dY15p5i9y9SZxKy2kZdyXe9+yY8iHBIUtoAYa7t1LAzq5DtVMHaImKxlGqubVenEFR74RJzxmuQikGjhEGjyMhBcswdgN0bTKu0VYpK2ywXbeLzSkpGm4hoTjAsIWD7zLALnAMTniD2nVuYLXJ/P2KFJxDGOzc3ZHQ/s14Fg1qR99bFwZjduPC6aTbrZlVpq5hWlKxvMOGr167ECyeG8atXzhZ8HcXKhCfx76dcp8InL1+KF0+O4JXTIxmd0+rwxf7OIkuiylcuc22D9qjSlmTW+n3nN0EpFzoa2izS2iONGiWMGkXSi9NjA3YctzrwlvW1ACa7ReYbsYv0uPbIEpUcdaYSdBaJ7f/Rfjtazbq0s4iiQzS1N2dPoiI+Hq1KgXKdioq2OYKKtnmCONOmL2h7ZNRBMslcG+d8hq1yIlrMulgejlTOjXnQbJ6plE3OFSTf7Yw5Rya4fyI2NJqyCtmORDistuQZbSLih1+qubZdnWOo0KmwTOKub7bUmUpiH8pSkOIcCUy2R0o1JMhXSKe4oSAlo03EEn2+SnE0jW/5en6ez6kk45F9fWg167CpKTPjG8YYWip1OJvngmrAPvWisaVCi76JzN4/siGR0ibygQubcc3qavzg2ZMpOw8WMmKGXUUCd9H3X9iExnItvvX3joyMaQajs4vx5MP2XzQaqkoSlWIxanD9ulowJs05UkSYqU782fPX/f1QyWX4t8vbAEx+Ds034oO142mz5D5rmC+ODTjSqmwiGxrKcKDXtihcPwvBgM0HpZzBrJv5uhdZTBmGxQYVbfMEhzcEvVpRsPknQLDMlbHkO54Obwi+YCTpbqZIa6UO4QhHr4RZNJHuUXdCu/768vRzWeIOp1SlLduQ7RGXH4FwJGlGm4jYopNMaeOcY2fnGC5YUpF0NjBf1JRmltUmxTkSQGzORYrS9kLHENZ94zk8cTC3YF4AODvqhlLO0qqd8Yiq4LCUom3YCZVchkuWVeK544ML7oP/7IgLe7rHcfPmhqyee80VurwrCtZp5j4tlTpEuJAXWEjGPQEo5QzGBBthjDFcs6YaoQhftM6j02f+4lEr5PjiNStwYtCJxw9If11PN7wAgNISJSoN6pwKBNEgy5TCPfjr16/Cb27bkpHpk9ieP51AKILHD/bjylUWLLXooVXJ57XSxthMlVI0JpvrFuFxdwD9Nm/aeTaRDY0m2DxBdM/TInquGbAJGyupooekeg0Q+YeKtnmC0xcsqAkJIHwQN5Rr0ZlkJ10M1k7XHjk5+yLtQyyR3b+IeHGeSoo/N+aBTiWf0caTjGxDtsU1pFPaNEphLQNJirauUTcGHb6CtkaK1JpKMgr6PjvigkYpQ21p6p9RKRccRKUUbbu7xhGOcHzmzwfx1OEByWtJRNeoC43lWijk0t+6VAoZynUqDElojzw16ERrpQ5vXlON3nEvTmZhtlDMPLK/DzIGvG1jXVb3bzHr0DfhzasVuNXug16tiLV+i5s3hW6RHHcJwdHJitfYxsQizfgTre7N+sTvq9eurUa1UYNXz4xKOp/LH4LTF0q46deWo4PkUBqDLEAoPjNxSwUEpa3fNnOmesfJYYy7A3jHpnowxtBUoZvXStv0OUNAUNp8wcicKyrHBoR5tjVSlbaoGQm1SGaH1e5N+/lfZypBfxqvAaIwUNE2T3D6QgUv2gBhdy2Z0iYWbWmVNnPqNsvpJLP7B4S5LJNWmaY9UnCOzEQ5yCZkW/zwqjOlb8OsMWkwmKRY2hmbZyucCYlIrakEE54gvAFpF9mdIy60mvWSAr7NerWk9shjA3Ysq9JjU1MZPvXQQTxzxCppLYnoHvWgxZx5S6nFoJamtA25sLTKgCtWWsAY8NyxhdMiGQpH8Nc3+nDZckvajZdktFbqwDnQk8cLVKvdO6U1S9z0KbRyMe4JJFSRRMQW4HQ5XQsV0W21PEmbFGMMy6oNkl0kB5O04QHRMOdhV9YXgVLa9rOhrqwEnkAYE56p88+P7O+DWa/GJUsrAQifXefmqdJmtfsSmk7E2lbnuEVSNCFJldEWT5tFD71aQWYkWTJg801xEk1EfZkW/lBk1o3ICCra5g1Of7BgwdrxiCYiiYqZITFjJ82HY6lWiQqdSrJhQVcSu3+RZC0qIsnm4VIxGbIt/YO2X6LSBgDVxpKkro27OsdQW6pBkwS3y1wRh4kHJKptgnOktKKo0qBOaRADCK2gR/sd2NRUht/evhXtDSb82/8dwLPHBiU9RjyRCEfXmBstGf6tAWGmJZ0RidsfQr/Ni2UWPSwGDTY0mBbUXNsrp0cx5PDjnZvrsz5HIXLUrHbflI0gk1YFk1aZ99m56Yy7UxdtmbQAL0TG3QHIGGBK0U64LDr3JGWuzZri86PNoofTH5Lk8JqIYYc/NruaT+oTOEiOuvzYcWIYb9tYF1P8myp06B33FiR4vtAM2LwJ7d3bonPNc21GcqzfgYbyEpSmaH2NRy5jWN9QigO9pLRlSjgi+BYk2liJR0ocBlEYqGibJzi8oYSzF/lmiUUPfyhxS4SotCWyVZ5Oi1knOWD7XBK7f5E6U/KiLRSOoHfCI3meTWQyZFv6G3u/zYPSEmVaBytA2E0eTDALE4lw7Do7hvNnYZ5NWIfw5iplrs0XDKN3whNzEU2HWa9Oe0HbN+GF3RvE6tpS6NUK/O72LVhTV4q7/vQG/plhQTRg9yIQihRMaTsd3VFeGg3ffdPqahzpt2c0EzjbvNEzgVvv3y2pBfbh/b0o16lw+YqqrB8vltWWx4JqwOab0Y7TMgsOkuPuQEITEpFyrQqMIe3GxEJl1CUUtalU92XVBvhDEUnzh9ZphjPx5KLqSDXIyob6BPbmYjbbOzZNbn40V2gRCEcyakUvBjjnCecMAcGgp0KnmnOl7eiAXbLKJrKhoQwdVqfkDhNCYMTpRzjCJSltANn+zwVUtM0ThJm22VHaACTc5R50+FCuU6UMlhZpycD2P5ndv4jo4JWodcZq9yEY5pIy2uLJJmS7fyK93b9IdakGtgRtiSeHnBh3B2Zlng2YnAm0SnCQPDHoBOfA8ipplthS2iOnzyMYNEr84UNbsarGiI8/+AZ2nBiW9FhAnN1/Bs6RIlVGNUZc/pTtsGKb1/Jq4ee/apVQ3Pyzo3jVtv9+7iReOT2Kj/5xP3zB5Bco4+4Anj8+hJs21EGlyP5tv7RECbNeuoqejkAoglGXP2ZCItJSMTtFW6o5WIVchjKtSnIo+0Jj3O1PqUQCwLLoe4WUFknRmKmqdOamXy5hzi5/CJ5AOBbtkU+muxdzzvHwvl6sry+N/ezApAnWfJtrc3iF310ye/clOc4a5ordG8S5MY/keTaRDY0mhCMcBzN0iF7sDKSx+xehrLa5g4q2ecKszbSlyMwZShOsHU9LpQ7DTn8sqiAV3aPulO2N9WUl8AUjMTezKffN0DlSJJuQbSnB2iKTwdZT39TEebYLZmGeDRBMYxhL7b4pIhaw4iB3OioNangCYXgCyS3Rjw04IJcxrKievMAxapT4wwfPw7JqPT76x/146ZS0rCexUEjnbJkIi0GDcISnnE86PeSEWiFDY7nwXFxSqUdrpa5o59o6rA68dmYM25dX4ki/HV/86+GkM0GPH+hHMMwzzmZLRIs5f7b/ojPjdKWt2azDgN1XsJ3yYDgCuzeIMm3qosSsVy3a9sgxVwAVKWy/AWBp9PPitISizWr3waxPvOlXZVRDr1ZkVSAMSTTIyobSEiHrUmwDOzbgwIlB5xSVDZiMm5lvDpLi50IyZWWJRY8zI9nPGubK8QEHAGC1ROdIkc1N5WAM2Ns9XohlLVjErpJEyms8erUCJq0S/bb5tUmxEKCibR7AOYfDF4QxA6vibKnQqWDUKBKaiAw6fGlNSEREM5Lu0fQv6nNjnoR2/yKppHhxZzOb+bANjSbJIduc84yUNvFNb7rt/67OMTRXaDOyrM8FlUKGSr1aUtvOgR4bako1kv/G5pi7XvJC6Gi/HW2VemiUUy/USrVKPPCh89Bm0ePDf9iHI332tI93dsQNrUoOiyHzHXUpAdunhlxYUqmfEqvxplXVeP3sGOzezIPYp3OgZwIHeiYw5PDlZfblN692oUQpx4/ftQGfe9NyPHFwAPe+NDMMmnOOv0TVgeXV0lTUVDTnUQUTLxKmP+fENsxz44W5CLZFjSUqkjgjilTo1LG8ssXGuDuA8jS/H51agTpTCU4NpS+2EmW0iTDGsMSiz2p+SsxfLETRBkxtz39kfx9UclksUFukyqCBSiGbd0pbsow2kTaLHjZPcM7MeDJ1jhQp1SqxvMqAPV1UtGWC2JGTrj0SSO81QBQGKtrmAf5QBMEwnxWlLfbhOTzzYkmwVZZYtFWKbZapP4RT2f2LJJorEDk35oZaIUsaqpqKjY1lkkO27d4g3IFwbC3pmFTaJouEUDiC3WfHcMEstUbG1iIxYPtgrw0bGk2Sz1sZLZ5GXMnPfXTAgdV1iXdJTVoVHrzjPKjkMjzw+rm0j9c16kaLOTOX0Mm1Cn+PVHNtp4ecM8LOr1pVhVCE48WT0ts4E9Ez5sFNP9+Jm36+E+d9+wUs/9oz2Pbdf+Edv9iJf/u/A/jO0x0ZXbCOOP144uAA3rGpHqVaJT5+2RJcv64G33/2BF6Y1s55tF9QB27Og8oGZKaip0N8fUxvxxHbtAvVIhkL1k6jtFUsZqUtTfuoyLIqvaT2SKvdh2pj8vfPbG3/ByUaZGWL0J4vzNM+cbAfV62ugmna80YmY2gq1xa8pTffDNhTX6S3pei8mQ2O9NtRU6qJOblmwnkt5dh/bgLBcKQAK1uYDNi90KnkkvwTUnkNEIUjbdHGGGtgjO1gjHUwxo4xxj417fufY4xxxtjsXokuIkQlaDZm2gBBJZtebAmzJwHJH4yN5Vowlt6wYNLuP3nRVpfAwUuke8wjhIJnETqeSch2LKMtg5k2AFPMSI4NOOD0h2bF6j+eOpMmrXvkqMuPnnEP2htMks8rfpCOJFHahh0+jDj9KYfIy3QqXLnSgmePD6b9cBWLtmxIp7Q5fUEM2H0xExKRDQ0mmPVqPJeji2THoNDm8/XrV+G/blyDj1zSiq0t5ZDLGA712vCb17rwwd/tTTmXFs8Dr59DIBzB7duaAQibLT94x3qsrjXiUw8dxJnhyYvov+zrhVoxUx3IltXRv+dhCepoOpKZU0wanhRGuRCLtnRFiVm/OJU2sX00XXskIMy1nR1xI5Tm9SsYXiT//Giz6DHs9EvqfIhHzF8slNImBgn/68QQJjzBGa2RIvMxq81q80IhY0mLophBzBw5SB4fcGBVTWatkSJbWyrgDYZxtD/396nFwoDNixpTiaSN0foyLWW1zQFSlLYQgM9yzlcCOB/AJxhjqwChoANwFYCewi2RcPqEmaHZcI8EgCUWHYYcU3fSxYvd6gRD5InQKOWoLyvB6TRtM5N2/8nbG40aJYwaRVKlLdN5tvjzSg3ZjmW0SVTaNEo5yrTKKW2J4jzb+a2zW7TVlJZgIEFAbDwHo5k2UufZgHilLbEScSw6j5CuteXNa2tg8wTx+tmxpMcEQhH0TXhiCkymiGtNprSJzpHLphVtMhnDVasseOnkSE6B0qKC8K4tDbj1/CZ84ZoV+NG72vHnj16Al7+wHb+5bQvOjXnwq5dntjdOxxcM44HXz+GKFRa0Vk4qgyUqOe67dTM0Sjnu+P0+2DwB+IJhPHGwH9esqUZpntqrNzaaIGPIS+uR1e6FUaOAbpojq16tgFmvRpfErMdMiSltaYs2FZz+kORieqEwEf39pGuPBAS31UA4gnMpHCQ9gRDs3mDK1utsHSSH7D4YNYqkRla5Ul9WAncgjF+/0gWLQY2L2xLvTzdXaHFu3D2vLmKtdqF7Rp5k07PGqIFWJZ8TMxJ/KIyzo26sqMmupXtLi/BZRi2S0rHa02e0idSXlcAbDCf0GiAKR9qijXNu5Zy/Ef1/J4AOAHXRb/8IwBcAzJ93qXmIIzpPY5xFpQ2YqpJlM+x9UVslnu8YSjlH1J3G7l9EdJCMJxLh0Xm47PPONjaW4WCvLW3Idn+GShsgFEvxro07O0exvMoQKyBmi1qTYORi8yTfwT7Ya4NCxjKyVi7XRS3RkzhIijucq9IMkV+6rBI6lRxPpwjd7hn3IMKF1rxsUCvkMGmVsV356YhGCtPbIwFhrs3lD2FXZ/KiMh1nhl2oKdUkjYu4eGklrltbg//ZcQa9aezTnzw4gDF3AB+6qGXG92pNJfjlrRvRb/Pirj8dwDNHrXD4QnkxIBExaJRYWWPEvnO5XwwN2BLbjQNCi6SUmdhsGPdIV9qAxRewLcYcmCW2RwKpzUgGY4pqAYo2h79gKhsw2Z6/79wE3raxPpbNNp0msw6+YCTrrLm5YMDmTekUKJMxtFbq5qRoE/P/lldnp7RZDBq0mnVUtGWAEL8i7bVEtv9zQ0YzbYyxZgAbAOxmjL0VQD/n/FAhFkZMIiptszHTBgBtlug8WlzO2qBd+CCSalIBAB+9pBWhcAT3v9KV9JjuMTdqSpPb/YvUl5XMcEAccvrgD0WyVtoAoWize4Np3fD6bV5olLK0Ftjx1JRqYu1fgVAEe7vHZ801Mh7xTTiVg+SB3gmsqDFktFutjFqiJ5v5OTpgR4tZlzbXTqOU44qVVXj22FDSFitxAyFVG206qgyapErbqSEXNEoZGspmbgBcsKQCWpU8p6DtM8Ou2EVpMr52/UrIZQz/+dTxpMdwzvGb17qwotqQ9Lm0qakc37pxLV49M4ovP3oEdaYSXJBndXdLczneOGfLeV7EavfOsPsXaTZrY0p8vhmPFiXTZ5OmUyEWbYtsrk3cPZfyfic+r1OZkQymyGgTaSgrgUouy3h+KhODrGyoj3tPeMemuqTHiZuHUufaTg46sexrz+DDf9iH/efmJgg6WUZbPG2V+jmZaTs5KGwCrMjBPGlrSzn2dI/Py9Dz2cYfCgvxK2meDyLiBjYVbbOL5KKNMaYH8FcAn4bQMvlVAP8h4X4fYYztY4ztGxmRZu1NTGWyaJsdpa2xXAe5jE0xRhBnszIZ9m426/CW9bX44+vnYu020+kedUtyfhSHweNbT3JxjhSRGrItOkdmYoJRHRewfbDXBl8wMjdFm5jVZk+sMoUjHId67djQIL01UsSsVyXNajva75Bs1Xzt2hqMuwN4/WziXVGxTS7bmTZACIUfSrLWU0NOtFn0CWcjNUo5Ll1WieePD6VVZBMRiXBJRVtNaQk+ecVSPH98CP86kbhAfO3MGE4MOvGhi1pSPhffuaUBt29rhi8Ywc2b67Oa+UzFluZyeIPhmCV3tgymuGhsNusw4vTD5U8eKZEtE54ADBpF2sy6mEPqIivaxtzCz1shwQBCq1KgobwEJ1MobVYJSptCLkOLOXNVZ9jhgyULIyqpiEpbe4MJbZbkBURzhlltr5weQSAkmFO9/Rc7cfO9O/HPLN9jsiES4cLrL00mV5tFjwG7D+4CvA5TcXLQCaWc5fSev7WlHE5fKFYAEskZTGIKlQxxVIRs/2cXSUUbY0wJoWB7kHP+KIAlAFoAHGKMdQOoB/AGY6x6+n055/dxzjdzzjdXVlbmb+WLCHEw21gyO0qbKppVFa+0DTl8UCtkGc/FfGJ7GzyBMH67szvh98+NeSS9KdeXlcATCGMirsXv3Fju6ovUkG0hoy2z4rCmVINxtzBXtLNzFIwB57fMftEmfigPJFHazgy74PKHMnKOFKk0qBNe0E64A+i3eSVbNV+2XGiR/HuSFsmuUTfKdaq0ykgqLAYNRhzJ2iNdWJbiguxNq6sw7PTjcBZD7QN2L7zBcNqiDQA+uK0FSyp1uOfJ4wnnqO5/9SzMejXe2p7eVOSr167ET97djo9esiTjNadjc7NQ4OeSg+QLhjHmDiRtx2mpKJyD5Jg7IElFEtsjRxeZGYloviLFPRIAllkMqdsjxU2/NIpYWzQXTCqRCMew0y951jobSkuUuGlDHT51xdKUx9WUaqCUM8lZbQd7bagzlWDXl6/A3W9ZhQGbD3f8YR/e9OOX8Zd9vTnN0EphzB1AIBxJ2/Ivvm/FXw/MBicGnVhSqYcySTuqFLa2lAMA9nRl39q+WBjIwO4fEF4XybwGiMIhxT2SAbgfQAfn/IcAwDk/wjm3cM6bOefNAPoAbOScDxZ0tYsU5yy7RwLCPMkUpc0utKBkare+rMqAq1dX4Xevdc2wCBft/qW0N9YncJDsHvNAKWcpd2/TIZMxtEsI2e63Sc9oE4nPatvZOYY1taUo1c7e31DErFNDKWdJHSQP9mYWqj3l3Hp1wgva49aoCYnEGTmNUo7LV1bhuWODCVskz45k7xwpYjGqMez0z9jJtnuDGHTMdI6MZ/tyC+QyhueOZf4WJyoHbZXpizaVQob/vGENesY9+OW0zLUzwy7sODmCW89vShhQPB2FXIYb2usKYtBQZdSgsVybU9EWs2pPVrRVig6S+b9YnJBYtFUsUqVt3B2AXMYkb9ItrTKga9SdtF3WaveiTKuckdc4nSWVOvSOeyQbv4y5AwhFeEFn2hhj+NG72rF9hSXlcQq5DPVlWslK28FeG9obTNCpFbh9Wwte/Pxl+Mm726GUy/CFRw7jku/vkBRHky1Sg5QnHSRnV606OejMqTUSEDp06kwl2EMh22mZfD5Ify3VRTugiNlDyhbGNgC3AricMXYw+u/aAq+LiMPpC0HGAF2B3LESscSiR9eoO9YLPphBRtt07tq+FA5fCA+8PtVktDuDOaW6BFlt58bcaCjTJh0Ml8rGNCHbL3QMYdwdkJzRJiK++XWNunGgZ2LWrf5FZDIWdZBMrDId6LHBpFVmZehi1qsTtkeKJiRS2yMB4No11RhzBxIOjudi9y9SZVAjFOGY8EwtMlOZkIiYtCqc11Ke1VybWLSlKgrj2dZmxvXravDzF8+gJ+4C8LevdUGlkOGW8xszXkMh2NJcjn3dE1m75YmbCMl2dkVzokIpbVJUJK1KAa1Kvuhs/8fcfpRpVZLbapdV6REM86R/K6vNh2oJszJLLHpEOCSrVdkYZBWSpgqtpLWPuvzom/BOiVhRRjdZnv7kRfjDB7fC7Q/job29BVtrumBtEXFcYjbNSOweYSMtWxOSeLa2lGNP1/i8cvWcC6xp3o8TUV9WEjNpI2YHKe6Rr3LOGed8Hee8Pfrv6WnHNHPORwu3zMWN0xeCQaPMKlQ4W1rNOvhDkdjuy6Ddl3V46dr6UlyyrBK/fuUsvIHJHdTu6AWptPZIoaCIf4PoHvXkNM8mkixk2+EL4nMPH8KHfr8PK6oNeNvG5EPoiRAVhL8dHkAwzOdknk2kplQDa5L2yAM9wo5vdqHVaniD4RnzDkcHHKgzlaS1VI/nsuUWlChntki6/CEMO/15UNqiAdvTikzRQGG63f90rlpVhdPDroyVnzPDLpTrVBmZ2HztulWQyxi+8bdjAARl6K9v9OGm9rqsgmYLwZbmMoy5A2lNfJKRzlGwRCVHTammYEpbumBtkQq9atEZkYy5pBW1IuJrJ5kZSbqMNpFMHSSLrWhrjma1pSsQxIiV9QlyMRljuGRZJdbWlaLDmtvMaCqktsOpFDI0VWhntWg7Ec21zFVpA4SibdSV/fvUYmHA7kO5TpVWDY9HzDCkgnj2yE2iIGYFhzc4a86RIkuiH56dIy5wznN26LprexvG3AE8tHdSbRN3ZRvL0xdepSVKGDSKWHsk5zynjLZ4EoVsv3xqBFf/6GU8dqAfd21vw5N3XSTZVUlE/H394+ggFDKGLc3lOa81W+pMJQln2lz+EE4NO7MyIQHiZ36mXtQe67dnpLIBwkX65SstePbY4BS3L/F5km1Gm4glGrUwNG2u7dSQE1qVPG3761WrqgAAzx/PrEXyzLBLUmtkPNWlGnz6yqV44cQw/nl8CH/a0wNfMIIPJrD5nyu2ROdF9mXZepQsWDue5gpd3h0kOecYdwckZZAByVuAC8FLp0bwlp+9ikAoN1fOXBlzB2KtoVJos+ghY8JrKRFSPz+WVOrBmPSiLRuDrELSVKGFyx9KGxFxsNcGuYxhbYqZ35U1RpwYdBTM+dBq90KtkKFMQst+W6UenbM40yaa2izPU9EGUF5bOgZs3oxHTepMQoZhqjghIr9Q0TYPcESVttlEvEDuHHHD5gkiEIrktJu5taUcW1vKcd/LZ2MXJN2j0uz+Rerj+qdHXQG4A+GcMtpExJDtA70TcPtD+OpjR/D+3+yBViXHXz92IT539fK0LnOJ0KoUKC1RwhMIx2YX5ooakwZDTv+MebHDvTZwLhSu2SC668W3SLr8IXSNuSWbkMRz3doajLoC2B03OC4qLdlmtIlUJVHaTg87sTSJc2Q89WVarKox4rlj0lskOec4PexCW4rWy2Tcvq0FSy163PO3Y/jDrm5cvNScl4uYfNFq1qFCp8KeruzsygdsXpi0ypSv/5ZKXd7bI13+EALhCMqlKm26xGY7hWBv1ziO9NtjrUpzxbjEmT8RjVKOxnItTg/PLNp80QDeGgmfHxqlHPVlJRkobX7I2OT70Fwz6SCZ+jl7sNeG5VWpI1ZW1RrhC0Ykt4pmykA0SFlKh0WbRY/uFDOL+ebEoBMGjSKneXWRVrMOZr2KirY0WG3Sg7VFKKtt9qGibR7g9M2+0lauU6G0RImzI6687Wbetb0NVrsPj77RB0CYW8ikvVGQ4oU3h57xaCh3HpQ2QGiR3Nc9gWt+8jL+tKcHH764BX//5MVTZg6yQfzQmat5NpFaUwnCUae1eA5EW0Lb601ZnVcMCo+/qO2wOsA5sKYu83mE7dEWyfig7S6JAexS1zo8Q2lzSZ43u2RZJQ712SQbJYy6ArB7gxkrbYAw4/KNG1ajb8KLIYe/qFQ2QGjj2txclnXItpSMqJYKHSY8Qdg8+VO6JtzCrrDUoqTSoJo1pW04Gv4+lCRPcLYYc/kzao8EhJnNRO2RorJdI/GCsK1SL71os/tg1qtznmvOF02xrLbkZiSRCMehPlvajbKVNcJ7Uq6xGsmwZqCstFn0CEW4ZJOVXBFNSPIxEsIYi821EckZsHslB2uL1JPt/6xTHO90REocvhCMs6y0McawpFJwkJy0a85tlubipWasqy/Fz1/sRCgcQbdEu3+ROtNk/7T4oZiPmTYA2NhUBpc/BBlj+MtHL8BXr1uVUW93MsQPxQuWmHM+Vy7UlopZbVN3xA70TGBJpS5rV8vKaHvkSNxFrWhCItU5Mp4SlRyXr7DgH0eHYm1BXaNu1GagyCZDo5SjtEQ5pXC1eQIYcfpTmpDEs6HRhGCY45jEC6mYc6QEu/9EXLjEjJs31WNtXSkuXVp8kSlbmstxbswzoxCWgtXuS3uR0GzOv4OkmEEmtWir0Kkx7p7pOloIxOfm9Bbe2SQQisDhC0nKaItnWZWgxkxv7ZSS0RZPm0WPs3EmWKkYcmZvkFUI6su0kDHg3Hjyi9izo244faG0G4JLLQYo5axgc21SNk1EMp01zAXOOU4NOrEiDyYkIluby9Fv805xnyYmcfqCcPpCkjdWRBpIaZt1qGibBzh9QRhnWWkDgNZKPc6OuDFkz8+wN2MMn9jehp5xD/5vTw/G3YGMMtbqyyb7p8+NuSFjk/J8rtzYXoefvLsdz3zq4rzOntWXaaFRyrLKQMsnYttDf5yDJOc8ajud3TwbIFz4Mja1PfJovwNmvTpm/JEpb15bjVGXP2Ynf3bUnXNrpIjFoJ5yQSwqA1KVtg3RC610uX4iYuZUtkUbAHz/Hevw5F3b8h6QnQ82R18re7szb5G02r1p55xazFHlIo8tYqJ7qNSizaxXIcIxw3W0EAw75r5oy/T3I7KsyoBQhM8osNNFO0ynzaJHIBSRdIE9aC+uok2lkKGurCRle+TBaHfDhjRFm0ohw5JKfSw+JZ+EwhEMOXySg5RbKydn3AtNv80Lpz+U11bwrdF8VFLbEmONBWtnVrQZSxTQqymrbTahom0eILhHzn7RtqRSj2GnP7a7ZjHk/uF41coqLK8y4Pv/OAkgs/bGmIOkzYvuMQ/qykqymjVLhEoh2C1rVfn9Pd91eRsevOP8vKh2uSAGbMc7SPZNeDHqCuRUUCrkMpRrVVPaI48N2LNqjRS5fIUFGqUMTx+xgnOOrhFXzs6RIlVGzRSl7VTM7l/aBYLFqEGdqSR24ZWOM0NO6KIuiNnCGJtV59hMWF1rRIlSnnFemze6+ZLuIqGhXFAuulK0m2WKaN8vWWmLKk7pzCXyQTEobeJrOdM5saUW0UFy6lybGO0gtb1e3EDpsKbPBRt2+lFlLA43VZGmcl3MGTkRB3snoFcrsERCy/SqWmNBlLZhpx8Rnj6jTUSvFubLOmdBaTs5KPzd8+EcKbK82gCjRkFFWxJEk7JM2yMZY1PGVojCQ0VbkcM5F5Q2iSGn+aQ1qm7s7ByDWa/KS4EkkzF8fPsSOKMW8ZlcjMcHbJ8bc2ek0s0VVUYNNjVlr2TlC6NGCYNaMcVB8o0eMVTblNO5zXo1RqMXm75gGKeHXVm1RopoVQpsX27BM0cHMeLyw+ELocWcvVIVj8WgjqkZgJDRplcrMvqwam8w4UDUsjsdZ0ZcaLPoi7boyhWlXFCRMy3apGZEqRVy1JWV5NWMJFMlabYCtsMRjnG3WLTN3UzbuFv8/WRWDLVW6hI6SA7afTBqFJKNmFbXGqFWyNI+p/whweCkWJwjRZoqtGmVtnX1pZKU81U1Rgw5/HmPnIhdpEtU2gBBAT0zC0rbiWjRtiyPRZs86t5MRVtixPiHTNsjgUnbf2J2oKKtyHEHwohwzJnSBgDHrY68tqBcv6425vooxe5fJL5/unssPxlti4kakwYD9skd/IO9NpQo5VguUWVKRqVBjZHoRcXJQSfCEZ6T0gYA166twYjTj0f2C6Y1udr9i1QahTBwMVfm1FDmRdWGRhP6bd6YaUQqzgy7YvEZC5UtzeXosDrgTBJOnwgpdv8izRW6PM+0BaCUM+glFhGVsViLwiptYy5B/QAmrezngkyVSBGNUo7mCt2Moi2T2SlAKNQ3NJqmOMgmQtx8Kab2SEB4vtqSmOf4gmGcsDolG1ytqhHeR6WojpkwkEU7XItZeB0WOpPr5KATdaaSvM/xb20px9lRt6T37cWG1e6FjAFVhsxV6zqTELBNWW2zAxVtRY54ITTblv+AUFDJo7uB+dzNlMsY/uvGNfjYZUsyMpcwlihgUCtwtN8OuzeYs5vgYqN2WlbbgR4b1taX5uy8ZtZPtkceHRBMSFbnoLQBQoukWiHD/a90AchMkU1FlUGDQDgSy5U5PeyUbEIiIiqTB9OobQ5fEEMOf6xtbKGypbkcEQ68IVF9BCZ3+qW0jbaaBdv/fF0UTETt7KUW6rH2yAIrbWJrZIlSnpWxS74Q20CzsdFfWqXH6WkOkoP2zDM+t7ZU4PiAA44UGwGxYO082MLnE3EzMZHT4tF+O0IRLrloWxkt2o5b7XlbHzDZJp9J23arWQenL1TwzYuTg86CRJuc1yrMte3NMqJkITNgE2ZDs7kWqC/TwukPweENFWBlxHSoaCtynD7hhTAXSptKIUNTVAnL9wfjxUsr8cVrVmR0H8YY6spK8FqnsANLSltm1JSWxBQOfyiM4wOOvBikmPWT6tWxAQdKS5SxVtZs0amFFskxdwAKGcv5fCKW6PzLkNOHMZcfo66A5Hk2kdW1pVDIWNq5tlydI+cLGxpNkMtYRiHb1gzMKZrNOjglBBZLZdwdQJnEjDYAMJUoIZexgrdHigrA6lojBh2+Odu5Hnf7IZexrJSOZVUGdI+5p0RiWO3SDS9Ezm8RNgL2pzC4GYopbcU10yY6niYyzxHfM6TmYpbpVKgp1eRdabPafTCoFRltBrdEO2/yqXpPJxCKoHPEVZCibXWtEVqVHHvSKLiLkWyCtUViYytk+z8rUNFW5Di8wk7jbFv+i4hzbcUyN1BfVhJzKmzOk/qyWKgzaTDuDsAbCOPYgAOBcAQbcnCOFKk0qOELRuAOhHGs347Vtca8zHBdu64GANBYoc1bDlMsYNvhz9g5UkSjlGNVrTHtXNtiKdp0agVW1xozmhex2n2o0KkkGfTk2/Z/3B2IzalJQSZjKNepYm2DhUJs91tTVwpfULDdnwvGXIISmY1b6dIqAyIcODsi/K0CoQhGXX5UGzPbdNnQWAalnGF3iudUvvJD843Y8p9IaTvYa0OdqSQjU6+VNca8Z7UN2LwxcyqpiC3qZws413Z21IVQhOfVhEREKZdhU1NZyudUrkjN7yw2rHZvxs6RIhSwPbtQ0VbkzKXSBkzOtRXLB2O8xX8m83DE5PyQ1e6NtfblS2kDgEG7Fx2DTqypy601UuTyFRaoFDK05NFwxiIGbDv9OD0sOkdmXlS1N5hwuM+WMkvqzLALKrkMDXlSCYuZzU3lONhrm5HRlQyrXfpFo/j3z2fRlonSBkTNdgqstImbUeLrJ58tko8f6Mfvd3ZLOnbMHcg4WFtEfC2Jr61YsHaGu/glKjnW1aeeaxty+KBSyFA6ByZdqdAoBbfYZEqb1NZIkZU1BnSOuPJaEGQ6ZwgI7fUqhaygSpvoHFkIpQ0Q8tpODjkTzhvmymtnRrHunudwYrAwuXqFgnOOAbsv66KtLmYQR0XbbEBFW5HjmMOZNmBSaSuWuQFRiq8p1cy5jf58Q3xTHrD5cKDXhtpSTV6G+M3RQmhX5xgCoQhW1+YnFFWvVuCH71yPuy5vy8v5gMnYiiGHD6eGnDBoFFltSGxoNMEdCMcuThNxZtiF1kpd3lTCYmZrSxn8oUhspjEdVptPsvpSX1YChYzlzUFyPIuiRJjbLLDS5vTDpFXGivx8mpH8flc3fvFip6Rjx1z+jJTIeFrMOshlLGZGElPDsvj8OK+lHEf67PAEEiuOQw4fqo2aonRmbarQomea0jbq8qNvwptx0baqphShCM9rsLWgrGT2N5HLGJortOgcKVzRdmLQCYWMoTVPbsHT2dpSDs6BfVnkSqbjob29CIQjeGRfX97PXUjG3AEEQpGs2yPLtEpoVXL0U9E2Kyz8q4l5jqi0GUvmRmm7ZFklrlhhQXu9aU4efzpi0UbzbJkjfkgP2L040DOBDY35iSIQ3fVeOjUCAHlT2gDBaTRf6wSEHXyDRoERp9AeuazKkNVFnxhInqpFcjE4R4psaoqGbEtsPRrI4KJRIZehsVybl4DtYFhoO8zUzr5Cp8KYu/AzbZV6dazAyaftf++4F4MOnySHz3F3IOPfj4haIUeLWRdrPc7EcGY6W1vKEYpwvHHOlvD7QrB2cc2ziSTKahO7G9ZnobQByFvItj8UxqgrkLHSBgCtZj26RgvXHnly0Ikllfq85a9OZ32DCSq5DHsyjChJh9sfwvPHBwEATx4aSNmBUWxYbdkFa4tMZrXRTNtsQEVbkSMqbXM101ZTWoL7b9uCUm1xtKCI7ZHkHJk54sXgkT57Vju+yTAbhF35186MQauS57WdsRBYDGoMOXw4PZS5c6RIc4UWJq0yqYOkLxhG74QHbRICdBcClQY1Ws067JWwg+3yh+D0hTK6aGw262JzUrkwmdGW2fuZkEVYeKXNYlRPUYPzgTcQjrV2SlFrcmmPBIQWydOi0paB4cx0NjeXQ8aQtEVSCNYujg6Q6TSZtRh1+eHyT6qEB3ttkMsY1ma4qdVUoYNWJc/bXNugPbuWVQBoqdShZ9yDUFhaG3SmFMo5UkSjlKO9wZT3ubbnjg/CF4zg9m3NGHb6satz/pidDNjFYO3s2/jrTBSwPVtQ0VbkOH0hKOUM6gLtPM03Gsq0UMgYlmZ5sb2YUSvkMOvVeOaosCOYj3k2ACjXqsAY4A2GsarGmJWBwWxSZdTguNWBCU8wazt+xpgQst2buEjpHHGBcyyq5+nm5jLsOzeOSJpd5kF75sG+zRU6nBvz5OyomG1wdIVeDW8wnLRVLx8MO/ywGDQoUclh1CjyVrTF74CnK9r8oTCcvlBORdtSiwHnxj3wBcOw2n3QZ+hSKKJXK7CmrjThBTbnPKq0FWfR1hzduIoP2T7Ya8PyKkNGMTeA0Ja4vNqAjjwpbf1R9bMuC2Wl1axDMMwLcoHu8AXRb/MWtGgDBAX3aL8dbn/+XstPHBxAnakEX7h6BfRqBR4/2J+3cxeamBqeYbtsPPVlWlLaZgmqBIocpy8Ig0ZZlH37c0GpVonHP7EN7zu/aa6XMi+pM2kw6vJDIWN5a2NUyGWxi7x8tkYWCotBHXN2y9TuP54NDWU4PexK2HK2WJwj49nSXA6bJ4jONO5yA7bMXf9azFp4g+GcWwbHo3NpZRkrbcLzu1BqG+ccIy5/zCinulSTt6KtZ1x60TbhFp7L5VnOtAHCa4pz4bGyyWiL57wWweBmugmH0x+CNxguGoOs6UzPaotEOA712SRb/U9nVY0Rx62OvMRAiO1wNdkUbdEZ97MFaJE8FTUhKYRzZDxbW8oRjnC80ZOfubZRlx+vnB7FW9trUaKS481rqvGPo4PzxknSahcMfXLZqKkvK4HDF0qZq0jkByraihyHNwTjHDlHFitr6krJhCRLxJa0lTXGvP4ORQfJfJmQFJL43fls2yMBQankHDjcN9N8o3PYBRnLXyj4fGBLszDXlm5exBpT2qRfNDZGlYv4AiQbxqPtkRUZKm3i83u0QHNtDm8IgVAEldGircqoydtMW2/0d2bWq9MWbWIbZaa/n3jE19SpISesDl/WBgeAELIdCEVwaFom4lC0xc9SrDNtFVOz2s6OuuH0hbJuSV9ZY4TTF4qpZLkgvv6y+buIBiH5aFWezokCO0eKbGwqg1zG8tbC+PQRK8IRjhvaawEAN26og8sfwgsdw3k5f6EZsHlRW5qboY/oIElmJIWHirYiR1TaCCIfiBfK+WqNFBEvaueD0iZeGJeWKGP/nw2ioUCikO3Twy40VeigViyezYWmCi3MenVaZzar3QfGkFFrW1M03iPnos2drdIWLdqchSnaxGBt8floMeRPaeud8KJEKcd5LeU4naZoE38/2bpHAsL8oVLOcGrIhUF79qG9gGDRzhhmtEhOBmsXp9KmVytg1qtxblR4vorvERuyLNpWRTfD8jHXNmD3oVxiRuJ0ynQqmLRKnC2A7f+JQQcMakVWbZuZoFcrsKHBhFfPjOblfI8f6MeKagNWVAt/o/NbK2AxqOdNi6QQrJ3b75yy2mYPKtqKHKcvNGcZbcTCQ5wjynfRVmlQQ6WQzYt2QPFCb1mVPqfdxdISJZZU6nAgQZvNmWFXLONwscAYw9aWMuxNp7TZfDDr1Rk5xNWaSiBjQE+ODpKxoi3DnDaxiBlzF6Y9cjhaDIomJNWlagw7/WnnA6XQO+5BQ3kJllbp0TvhSdm2JTpklufQKqWUy9Bi1qHD6sCw04/qHC4IS7VKrKieGdxerMHa8TRXTDqeHuydgF6tyPo9YUW1AYwBHdbkESNSsdpyK6RbzTp0FUBpOznoxLLq7Nx8M+WipWYc6bdjIsfXc8+YB2/02PDWqMoGCDOIb11fixdPDhckDy7fWHPIaBOpjyltNNdWaKhoK3IcvuCcOUcSC4919SZoVXKc11KR1/N+4MJmfPPGNVDOg0wycW5oaQ7zbCLtDWU42GubMmsSDEfQPeaeFwVsvtncVI6+CW+sBSsRA1moLyqFDLWmkrwobUaNIuPnaaxoK1DAthisLbb7VRk1CEd4Xtoxeye8aCjTos2iB+dIOXM4Fp35M+fQHgkIr609XePgPLs2vHjOaynH/nMTCMY5FooqZLEqbYDQIinOtB3stWFdfWnWJk1alQItFToct0rLQUxFNsHa8bSY9XmfaeOc40SBnSPjuXhpJTgHdubYIvnkIUFNe+v62im337ihDsEwx9NHBnM6f6EJhSMYcvgyzuybToVOBY1SRkrbLFD8V1iLHFLaiHyytaUcR++5Ouedtem0N5jwzs0NeT1noRB/9nwMvG9oNGHUFZjyYXVuzINgmC/Kou28VmGu7c97e5MeI1w0Zn6R0Fiuxbk8FG0V+swLErVCyPcrVMC22B5piZtpAwRHyVzgnEeVNm3MKTXVXNu4OwCFjOWcC7rMYoA3qujlYkQCCEWbNxieMjs65PDBqFFk7MQ4mzRXaDHo8MHmCeCE1ZlzxMrKGmNelLYBW+bB2vG0Vuow5PDn1X3RavfB6QsV3IREZH19KQwaBV49M5L1OTjnePzgALY0l8XaA0VW1xqxpFKHxw8Ud4vkkNOPCEfO7ZGMMbL9nyWoaCtyhKKNlDYifxS7JX+haSjX4lfv34ybN+VeZIoXYgfi5trEi+Kli7BoW1VjxA3ttfjpC6eTDvoPZrnT31iujZlqZMu4O4CyLDMnzXp1zKgj3ww7/NAoZdCrhWJJLNpynWuzeYJw+UOoLytBs1kLGUtdtI25AijXqXJuUYs3+MlVadvSEjW4iWuRHHIUr92/SGPUQfLpI4MIRXjORduqWiN6xj2SAtKT4faH4MgwI3E6rVFzpa48zrWdFE1I8tD9IAWFXIYLWivw8qnRrB05O6xOnBl24Yb2uhnfY4zhxvY67OkeL2orfKst8/iVZNSXadFnK96fdaFARVsRE45wuPyhnHc9CYKYylWrqvKyS7+i2gCNUjZlrk1sP1uyCIs2xhi+fdNatJh1+ORDB2JtfyIOn1BEZHOR0FihxagrkNMO/7g7kHFGm4hZrypc0eYUMtrEYqkq2iY5mGPR1hu9YGws10KtkKO5QofTQymKNncgp3k2kfjW4xpjbrv4Zr0abRb9lJDtQYc/ZwWv0IhZbU9EDSmytfsXWVkj/E5Fl8VssGaRkTid1uhcXj7NSE7E7P5nz3344qVm9Nu86B7LrtB44mA/FDKGa9fWJPy+WMw9eWgg6zUWmoGoC2s+Om/qy0rIPXIWoKKtiHH5hIsTUtoIojhRyGVYV2ea4iB5ZtiFmlJNTDVZbOjUCvz8lk1w+oL41EMHEI4z0xAzorIxp2jMg4OkULRl935aoVPHZr7yzbDTF2uNBIBKvRqMIWfb/95x4SKqIfq7a7PocSbVTJvbn5NzpEhzhRYquQwlSnleNh3PaynHvu6J2HNp2OGLmbYUK2LRtrtrHHWmkpzXu6pGcObNxUFSVL/FSIJsaKrQgjHgbJo8xkw4OehAtVGD0ixV8Gy4aGklAODV05m3SEYiHE8eGsAlyyqTbnI0VmixqakMTxwo4qLNln38w3TqykowEVX2icJBRVsRIwYV0kwbQRQvGxpNONbvgD8kzPCcHnYuynm2eJZXG/CfN6zBzs4x/OSF07HbYzv9WVwkNJXnltXGOceEJwelzVA4pW3E6Z+SOaaQy2DWqzGcJ6UtvmjrHnUjEIokPH7cHcgpo01EIZehtVKHGlNu+U8iW1vK4fKHcHzAgXCER10pizOjTaRUq4QpWoTk2hoJCOprmVaJDmt2RZvbH8JPXjiDLc1lWF+ffTSLRilHbWlJXtsjZ9OERKS5Qos6UwleOZ259f+e7nFY7b5YNlsybmyvxckhZ9Z/s0JjtXlh0CjyIgyIc32kthUWKtqKGGdUaaNwbYIoXjY0mhAIR9BhdSIS4egcXpzOkdN55+YGvGNTPX72r9N4JbqbbY2249Rk0Y4TU9qybGdy+kMIhjkqsmz/q9CpMeEJIhROXPDkgtgeGU+VUZ1ze2TPuAdlWmVM9V1apUcownEuSXSCONOWDz54UQtuu7A5L+cS3W53d41hzO1HOMKLfqYNmFS08lG0McawqtaI41kWAL965SxGXX585dqVORfSrZW6vBVtwXAEnSOuWTMhEWGM4ZJlZuzqHMv4Nf3EwQFoVXJctaoq5XHXrauFQsaKNrNtwO5DbY4mJCIx23+aaysoaYs2xlgDY2wHY6yDMXaMMfap6O3/xRg7zBg7yBh7jjGWesuByBhRaSPLf4IoXtobygAAB3omMGD3whsMU9EW5b9uWIOlFj0+/dBBDNp9sNq8kDFMaQWUSqlWCaNGkbXSNhEL1s6uKDFH1zye5+wlXzAMpy80I+i92qjJQ3ukJ6ayAUBbZXIHSX8oDJc/BHMe2iMBoWh//wXNeTlXdakGTRVa7O4ax5C9uIO142mOmpGsz0PRBgArq404OejMuMgYdvpw38tncd3aGmxoLMt5Ha1mHc6OuLM28Yina9SNYJjPutIGABe1VcLpD+FQn/QohUAogqePWPGmVVXQqlJvqJfrVLhkWSX+dnAgL5mL+WbA5kVNHkxIgMmijRwkC4sUpS0E4LOc85UAzgfwCcbYKgA/4Jyv45y3A3gKwH8UbpmLEyfNtBFE0VNdqkFNqQYHe204Hb0YbltkwdrJKFHJ8fNbNsIbDOOT/3cAvRNeVBrUWef5NVXosrb9F4Oxs1XazNH7jTrzW7SJtv7TizaLUZNze2TfhHdK0bbEIig/pxMUbWLweLbto4XmvJZy7O0ej7XYzoeibUW1ETqVHGvrsm9HjGdVrRH+UCRjlesn/zyNQCiCz1+9PC/raK3Uw+UPYSQP7cJzYUIicuGSCjCGWCeAFF46NQK7N5jQNTIRN7TXYsDuw57u8fQHzzL5CNYWMevUUCkoq63QpP3k5JxbOedvRP/fCaADQB3nPF6j1wEovm2EeY6TZtoIYl7Q3mDCgR4bOkW7/1myrp4PtFkM+PZNa7GnexxPHhrIyW48F9v/XJU2Md9tLA+B1/FMz2gTqTJoMOYOxGYlMyUS4eiPBmuLaFUK1JeVJFTaRJOVfLVH5pvzWipg8wTx6hlhBql6HhRtH7yoGc//+6V5y5NbWSMUNpm0SJ4ZduGhvb143/lNaDZnb0AST0v0PGdHcm+RPDnogFzGYhsKs0mZToW1daV4NYO5ticO9qNcp8JFS82Sjr9qVRW0KnnRZbb5gmGMuwNZzRcnQiZjqDeVFHXEwUIgo+1OxlgzgA0Adke//hZjrBfALSClLe/EZtpKSGkjiGJmQ6MJPeMe7O4aR7lOVbQXvnPFjRvq8J6tjQhHeE52440VWvRNeKY4UkolZ6Ut2jaYbzMSMRZh+kybaLQxPTZBKkNOHwLhCBrKpxbJbRZ9QqVN/P3kqz0y32yN5rX9/bAVMla864xHrZDnTckAgCWVeqjksoyKtu//4wRKlHL82+VteVtHa2X+stpODjrRatZBrZiboPSL2sw40GuTlH/n8ofwz44hXLe2RnK3gFalwDWrq/H0EWvWGzCFYNI5Mn/Pzzqy/S84kos2xpgewF8BfFpU2TjnX+WcNwB4EMBdSe73EcbYPsbYvpGR7NPnFyMOLyltBDEfEOfadpwYptbIJNz9llW4bHklLltmyfocjeVaBMM81iKXCXlT2vJs+z/sTN4eCWQfsC0atsQrbYAQ+n52xDWj8B2LFqPFuuHQUC64/Y25AzDr1VBk2WI7n1EpZGiz6NFhlZbVtrd7HM8dH8LHLlsSe/7mg9rSEqgVsrzY/s+Fc2Q8Fy01IxzheP1s+vbFZ48OwheMpHWNnM4NG+rg8IWw40TxXANb85jRJlJfVkLtkQVG0rseY0wJoWB7kHP+aIJD/gTg7Ynuyzm/j3O+mXO+ubKyMvuVLkKc/hA0SlnW8x8EQcwOa+tKIZcxhCIcbVVUtCVCo5Tjd7dvxTu3NGR9jqYcstrG3QGoFDLosmxVM2oUUMlleZnjiWfY6YNcxmYogFUGsWjL7vF6J6ZmtIm0WfTwhyIz2pjEmbZ8XtznG1Ftmw/zbIViVa1RUlYb5xzffroDVUY1PritJa9rkMkYWsy5O0jaPAH0TXhjbZ9zwaamMpQo5Wnz2nzBMH76r9NYUqnDpqbMzFy2LamAWa/GYwf6cllqXhGVtlw6H6ZTX6bFmDsAT4Cy2gqFFPdIBuB+AB2c8x/G3b407rC3AjiR/+Utbpy+IJmQEMQ8oEQlj1lWk9JWOBpysP0fcwdQrlVlbXfOGEOFXpV/pc3hh1mvgkw2dV3Vpbkpbb3jHjAG1Jmmt0cKz9PTQ1NVkjF3AEo5K+qImfOoaMPKGiNGXf7YLGQy/nF0EAd6bPjsVcvzNlMXT0vUQTIXXj8rhH2LxfhcoFbIcV5rOV45k3qu7Vcvn8W5MQ/ufsvqjN9DFHIZbmivxb9ODMOWZ/fZbBmwCc+f6jzNtAGTDpJiQUjkHykSzjYAtwK4PGrvf5Axdi2A7zLGjjLGDgN4E4BPFXKhixGHN1TUH6AEQUyyodEEAGT3X0BqSjVQyFhWStuEO/cMMrNeHWsjzBeJMtoAoEyrhEouyzqrrXfCgxqjBirF1I958fl5Zlpr25jLj3Jd9kXtbHBeq5DXVmUsXjWw0KyKqlKpWiSD4Qi+948TWFalx9s31RdkHa2VOvSMexDMIbdwZ+cYtCo51teb8rewLLiozYyzI270Jyk2esc9+J8dZ3Dt2mpcsiy7jrGbNtQhGOZ46rA1l6XmDavdC7NenddZQnGDqJdaJAuGFPfIVznnTLT3j/57mnP+ds75mujtb+GcF5c1zgLAQUobQcwbLl1mQYlSjlW1c9fqs9BRyGWoLyvJyvZ/LA9FW4VehdE8K20jTn/C3DrGGCxGdSwSIFN6xz2on9YaCQClJUpYDOoZStu4O1C0dv8izRVa3NheiyvThBovZCaLtuQtkv+3pwfdYx58+c0rIZcVpghvMQtB7dm6uQJC0baluXzGxsJsc/FSoRBL1iL5n08dh4wxfO26VVk/xupaI5ZXGfDoG8XRIjlg9+W1NRIQZo4B4ITEmUsic2hYqohx+kJkQkIQ84SrVlXhwH9cBXMRzwQtBBqytP2f8BSv0jbdhESkyqjJoT3SO8OERGRplX6G0jbqCmTtrDlbMMbw43dvwPbl2ZvZzHdKtUrUmUrwyP4+fOfpDvzypU48vK8X/zoxhIO9NpwZduIn/zyNC1orcNnywvkI5OogOezw4cywCxcuqcjnsrJiWZUeFoMarySw/v/XiSE8f3wIn7xiaU6mHYwx3LSxDm/02NCdB9fNXOkd98xonc4Vi1GDLc1leOD1cxkHwBPSoKKtiHH6gmT3TxDzCI1ybmyrFxNNFVqcy2KmbdyVP6WN8/zEkobCEYy5EyttgNAGmE17pD8UxpDTN8PuX6StUo/OYdeUn2PcHUDFPLDRJ4CbN9fD5Qvht6914zvPnMDnHzmMD/5uH27839dw5Q9fxpg7gC9fu6Kgra6tOWa17ewU5tkuXCIt76yQMMZwUZsZOzvHEIlzVfUFw7jnyeNYUqnDhy7K3czlhvZaMAY8NseZbd5AGN1jbiwrQJ7ohy9uRb/Ni2eODub93ARAMk4R4/DRTBtBEEQ8jeVa2L1B2D1BlGqlbWoFQhE4/aHclTadGoGwcC5jHlrXx9wBcA5UJjHWqDJq8PIp6cG/Iv0TXnA+2a40nbYqA1z+EAYdvlhOkzjTRhQ/n75yGT595TJwzuHyhzDuDmDMHcC4K4BxdwBlOhXWFXhOzKRVoUyrxNksVaOdnaMwahRF005+8TIzHj3Qj+NWB9bUlQIAfvnSWfSMe/DgHeflpYWzprQE25aY8diBfnz6yqVzNj96csgJzlEQ184rV1ah1azDfS+fxfXraop6RnY+QkpbEUPukQRBEFNpLBd2+HsnpKttE57cMtpEzIZowHaWgdfTmQzWTt4e6fKH4PJnZqGdzO5fZGnUjESca/MFw3AHwtTaO89gjMGgUaKpQoeNjWW4clUV3rmlAVfN0sxfa6U+66y2nZ1juGBJRcFm7jJlW5ug+Iktkj1jHvz8xTO4fl1N7Hv54KYNdegZ92D/uYm8nTNTxHnIVQUo2mQyhjsubsWRfruk7DsiM6hoK1ICoQh8wQgMalLaCIIgRET1KJMWyVgGWa7tkVGjjjF3ajOSPV3jGLSnb2sUbdtTtUcCmdv+i+6ayWbaRAfJ08PCBbf4+yGljciEbLPaesc96JvwFkVrpIjFoMGKagNePSOYkfznU8cgl+VmPpKIa9ZUo0Qpx6Nz2CLZYXVAr1bELPrzzds21qFCp8KvXjlbkPMvZqhoK1KcviAA0EwbQRBEHI0VmQds56soEZWoVGYkDl8Q7/v1bvzw+ZNpzyc6Q6YyIgEyL9r6xj1QKWRJi8EKndDadiZatInZc1S0EZnQWqnDsNMfu16Rys5OQc0qBhOSeC5qM2Nv1wSeOjyAf3YM49NXLs1rjhkA6NQKXLOmGk8dGoAvGM7ruaVywurE8mrDjGzIfKFRyvH+C5rxrxPDOD1ETpL5hIq2IsXpE9phyD2SIAhiEr1agQqdCj3j0nf481e0CfcfSWH7v+PEMALhCA722tKeb9hZmKKtd8KDelNJ0osyxhjaLHqcGRYuqMbcwjrMZERCZIBoRtI9mpkx0GtnxmDWq4su0/KipWYEwhF87uFDWGrR4/ZtuZuPJOKmDXVw+ELYcWK4IOdPBeccHYMOrKzJvwlJPLde0ASNUkZqW56hoq1ImSzaSGkjCIKIp6FcOydKm3j/VErbc8eGAAith+lm0YadPpi0yqQBt5NFW2YzdL3j3qTzbCJtFgNORx0kJ5U2mmkjpNNaKRRdZ0elz7VxzrGzcwwXLqkoOpOK81oqoJLL4AtG8J83rIFSXphL5G1tZlgM6jlpkeyb8MLpCxXEhCSecp0KN29qwOMHBjCcZWwJMRMq2oqUWHskKW0EQRBTyNT2XyzaTDm2myvkMpRplRhNUrT5gmG8eHIYTRVacA4c6bOnPF+yYG0RvVoBvVqRldKWzO5fZKlFD5snKLgOijN/pLQRGdBYrgVjmdn+nxl2YdTlx7a24mqNBIASlRxv21iHD1zQhAsK2LoplzHcuKEOO04Mx157s4VoQlLoog0APnRRC4KRCH6/q7vgj7VYoKKtSHFEizZS2giCIKbSWK7FgM2LoMQA13F3ACatEoo87JxX6NUxZWo6r50ZhTsQxmeuXAYAONRnS3muVMHaIhajOqOizeELwuYJJjUhERFb084MuzDq9kMpZ2R8RWSERilHfVlJRmYkxZTPlojvvn0dvnHDmoI/zk0b6hCKcDx1eKDgjxVPh9UJxoDlBchom06zWYdrVlfjgdd74M7QAZdIDBVtRYqDZtoIgiAS0lCuRYQDAzavpOPHPQGUa/OjIpn1qqRK27PHBmFQK3Dt2ho0lmtxKM1c27DDD4shtdFBlUGTUXtkr+gcmaY9cmnVpIOkGDxebO1qRPHTYtZn1B65s3MU9WUlaZ+fC52VNUasrDHi0Tdmt0XyxKADTeVa6GZpg+bDl7TC7g3iL/t6Z+XxFjpUtM0BHVZHWkcdcaYtHwGuBEEQC4mmDG3/xaIkHyRT2sIRjn92DGP7CgtUChnWN5hSFm2c87TtkQBQXarJSGnrHY9mtKVR2qqNGujVCpwZcmLcHYjFGRBEJrSadegacYNznvbYcIRjV3SejQDetqEOB3tt6Mwy6y4bOqyOWWmNFNnYWIbNTWW4/9UuhCR2RhDJoaJtlgmEIrjtt3vw+UcOpzzO4RXaI/WktBEEQUwhU9v/cXcg52BtkUq9OqHStq97HOPuAK5eXQ0AWF9figG7L+kQvt0bRCAckdQeOezwS7ooBoC+CVFpSz3TxhjDEoseZ0ZcGHUHaJ6NyIrWSh3cgXDMCTUVxwcccPhCRdsaOdvc0F4LGQMenyVDErc/hHPjnlkt2gDgI5e0om/Ci38cG5zVx12IUNE2yzx9xIohhx/HBxzwh5JndDh9IejVCsgLlKNBEAQxX6kyaKBSyKQXbZ5AzsHaIhU6FRy+0Iz372ePDUGlkOHS5ZUAgPYGEwDgUBIzkpHoRa7FmLo9stqoQSAcwYRHWhZW77gHBo0CpRJMV5Za9Dg95MK425+33w+xuGg1Rx0kJZiRFGs+21xhMWpw0dJKPHagH5GItE2ZXDgx6ATns2NCEs+VK6vQYtbhVy+flbz5RCSGirZZhHOO+1/tglzGEAhH0GFN3iLp9AVpno0gCCIBMhlDQ1kJeiS0R3LOMZFHpc0cVcbiXd8453j22CAuajNDH50VWV1bCrmMJW2RjGW06VMrbZlmtfWMe9BQppU0n9Zm0WPY6ceg3Ud2/0RWtFQKWW1S5tp2do6hzaJPu1GxmHjbhjr0TXixt3u84I816RxZeBOSeGQyhjsubsGhPjt2dxX+51zIUNE2i+w7N4Ej/XZ87NIlAJBy3sHpC9E8G0EQRBKaKnQ4J0Fpc/hCCEV4XpU2ABh1ThZtxwYc6Ld5cfXqqthtJSo5VlQbkjpIDjuFIsxiTFe0Cd8flFi09U5407ZGiiyNOkgGw5zaI4msqDFqoFHK0JVGaQuEItjbPU4q2zTetLoKWpUcf32jr+CPdWLQAYNGgTqTtPeHfPL2jfWo0Knwo+dPkdqWA1S0zSL3v9KF0hIlPr59CSwGNQ6mKNocpLQRBEEkpbFci95xT9oLAFERK8uTe2RFVBkbdU/O8Dx3fAgyJrQBxSOakSRqfRqOOkKmMyIRlTYpAbWcc/RNeNKakIiItv8AqD2SyAqZjKG5QoezaWz/D/XZ4AmEqWibhlalwFvX1+Jvh6ywe6W1QGdLh9WJldXGOXGJ1Sjl+OyblmN31zge2V/4AnWhQkXbLNE77sFzxwfx3vMaoVUp0jqLOX0hKtoIgiCS0FCuhcsfSjvrJRZt5XlSksR2xtE444Xnjg1ic3N5rKATaa83weELoWts5gXtsNOPEqU81k6Z9PGiRd2gPb3Rw4jLD18wItlOvb5MC7VCuAzIl7smsfhordSlzWrbeWYMjAHnt1LRNp33nd8EbzCMvxawmIlEOE5YHbPeGhnPu7c0YHNTGb71dAfGksSmEKmhom2W+N3ObsgYw/svaAIgDKmfHXXDnuSCw+kLwihhkJwgCGIxMmn7n/piMVa05U1pE84zFj3vuTE3Tgw6Y66R8awXzUgSbNCNOP2wGNVpd73VCjnKdSoMOdMrbaLdf6PEok0uY1hSKaht0wtOgpDK2joTukbd+O/nTiY11NjZOYrVtUaY8vQ6XEisqSvFxkYTHnj9XMEMSXonPHAHwrNuQhKPTMbwnbethdsfwrf+3jFn65jPUNE2Czh9Qfx5by+uXVuDmlKhl3jSWcyW8D4OUtoIgiCSItX2f0Is2vKkJOnUCpQo5bGd4mejNtZvWlU149g2ix5alTxh0Tbs9KU1IRGpMmoktUdOBmtLn1kRWySpPZLIlg9d1IJ3bW7Az/51Bnf93xvwBqY6q3oDYRzosZHVfwpuvaAJZ0fdeC3qsJlvROO7uSzaAGBplQF3XroEjx7ox6unC/OzLmSoaJsFHt7XB5c/hA9d1BK7bW19KRhLvAPLOY+6R5LSRhAEkQhxbiudg6SoiOXTaKNCr8JoNGD72WNDWFVjTNiSKJcxrK0rxcEEtv/DUaVNClVGtSQjErFoq5c40wYIF3EKGYu5YhJEpqgUMnz37Wvx1WtX4pmjg3jXfbumbDLsPzeBQDiCC2ieLSnXrq1BhU6FP+w6V5Dzd1gdkDFgWdXctUeKfGJ7G1rMOnz18SPwBZNHXxEzWfRF238/dxI/fO5kwc4fjnD8dmcXNjeVxVplAMCoUWJJpT6hGYk/FEEwzElpIwiCSEKJSg6LQZ1eafMEoFbIUKKU5+2xzdGA7WGnD2/0TCRsjRRpbzChI0Eu54jDD4tBmvV5lUGDIUf6GZDeCQ8qDWpoMvhZb7uwGY9+/MK0s3UEkQrGGD58SSvuu3Uzzgy7cMP/voaj/cJmxWudo1DIGLY2l8/xKosXtUKOd21pwAsdQ+i3efN+/g6rA81mHUpU+XsfzBaNUo5v3bgG58Y8+Nm/Ts/1cuYVi75o6xxx4eH9fQWzIH3++BB6x734YJzKJtLeYMKhPtuMx3b4hDk3svwnCIJITlOFNq3t/5hLCNbOp2OaOaq0/fP4MDgHrl4zszVSZH2DCYFwBCficjm9gTCc/lDMZCQdVaUajLr8CIUjKY/rHfeioSwzO+8SlRzr6k0Z3YcgknHVqio8cueFYABuvncXnj02iJ2dY2hvMEFHGwMpee95jQCAP+3Ov9rWMeiY89bIeC5sM+PtG+vxy5fO4uRg8sxiYiqLvmi7qK0SVrsPnWkyRrLlN691oc5UknDeYX2DCaOuAPompu6qOLwhACCljSAIIgUNUdv/VEx48hesLWLWqzHm8uPZY4NoqtBieYqWo/UJ5pdHxGBtqUWbUQ3OBXfIVPSMeySbkBBEoVhVa8Tjd23DsmoD7nxgPw732cjqXwL1ZVpcvqIKD+3pnaHM54LTF0TvuBeriqhoA4CvXrcSBo0CX3nsSMEMWBYai75ou3ipMBj76umRvJ/7aL8de7rGcfu2ZijkM3/V7dHdzelmJE5S2giCINLSWK7FoMOXci5izB3Iu519hV6FMXcAOztH8aZVVSlVvNpSDcz6qbmcsWBtqUVbtI0yVYtkMByB1e6VbPdPEIXEYtDgzx85H9eurQHnwKXLLXO9pHnB+y9owpg7gGeODObtnKKSNZd2/4ko16nwtetWYf+5CfxpT89cL2desOiLtoZyLRrLtXj1zFjez/2bV7ugU8nxzi0NCb+/osYAlUI2w4zE6ROUNmMJKW0EQRDJaKrQgnPM6FaIZ6IQRZtOjXCEIxjmKefZAGHWp31aLuewUwzWljbTVl0qFm3JzUisNh8iHJKDtQmi0GiUcvzs3Rvwyhe2Y1NT2VwvZ15wUZsZzRVa/GFXd97O2WF1AABWVBeX0gYAb9tYh21tFfjeMydSvr8RAou+aAOAi5aa8frZMQTTzAtkwrDDh78dHsDNmxuSKmZKuQxrao0zzEjEmTZyjyQIgkiO2AqYrEXy0Tf60DPuQatZn9fHFZ0WzXo1NjamvxhtbyhF54g79t4uOutJdY8Uj0t1UdM7EXWOzMDunyAKjUzGSP3NAJmM4X3nN+GNHlvMyCVXjludKC1RoqZU2ibRbMIYwzdvXAt/OIJv/O3YXC+n6KGiDcDFbWa4/KGE9vvZ8odd5xCKcNy+rTnlce0NZTjSb58yYC4qbTTTRhAEkZzGch2AxAHbO04M4/OPHMaFSypw52WteX1cc1S5u2pVFWSy9AYn4lzbkaj1/4jLD7mMSQ78NuvUkMtY6qJNzGgjpY0g5jU3b2qARinDA6/nx5Ckw+rAyhpDXs2Y8kmLWYdPXt4Gq90Htz8018spatIWbYyxBsbYDsZYB2PsGGPsU9Hbf8AYO8EYO8wYe4wxZir4agvEBUsqwBjwSp6C/vyhMB7cfQ5XrqxCU4Uu5bHrG0rhC0ZwcmjSPcdJShtBEERazHoVSpRy9IxPbY/cf24CH3twP1bWGPDLWzdBrcivzXWbRY8KnQrv2FQn6fh1dSYAiHVVDDv8MOtVkgo+QNh9txjUGLQnn2nrGfdAIWNFuZtOEIR0SrVK3LC+Do8f7IfdE0x6HOccNk8g5bnCEY6Tg86ico5MxJ2XLsFf77yQHEbTIEVpCwH4LOd8JYDzAXyCMbYKwPMA1nDO1wE4BeDLhVtmYTFpVVhXV4rXzuSnaHvl1CgmPEG8d2tj2mPbRWex3kkZ3OkLQcYAXRHkaRAEQRQrjDE0lmvRMz6ptJ0ecuKDv9uLaqMGv71ta0E2vyxGDfZ//SpsapKWO1WqVaLVrIt1cww7pWe0xT+maGCSiN4JL2pNJQlNrwiCmF/cekETfMEIHt7fO+N7nHO8cnoEb//FTmz8r+ex4+Rw0vP0jHvgDYaxsgjn2eJRyGWSN7EWM2nf3TnnVs75G9H/dwLoAFDHOX+Ocy7qmK8DqC/cMgvPRUvNONBri6lcufDU4QGYtEpcFHWmTEVjuRZlWiUO9k7EbnN4gzBolEUrZRMEQRQLjRXaWMB2v82L9/9mD1QKGf74ofMkW+rPBuujuZyAWLRltrZqozpte2QDzbMRxIJgTV0pNjaa8ODunpgdPuccr50Zxc337sKt9++B1e5DfZkWX3jkMCbciRU30YSk2JU2QhoZbckxxpoBbACwe9q3PgjgmST3+QhjbB9jbN/ISP5t9fPFRW2VCEc4Xj87ntN5fMEwnj8+hDevqYZSwo4nY0z4MJ+mtNE8G0EQRHoEpc2DMZcf779/N1y+EH5/+9aiMz9YX1+KIYcfVrsXI06fZBMSkSqjBoP2mUVbMBzB4wf6cXrISfNsBLGAuPWCJnSNuvHqmVHs6hzDu375Om759W70TXjxXzesxoufvwy/eN9G2DwBfO3xo+B8ZtZZh9UBuYxhaVV+zZiIuUFyZcAY0wP4K4BPc84dcbd/FUIL5YOJ7sc5vw/AfQCwefPmok3P29hkQolSjtfOjOKqBEHYUtlxYhjuQBjXr6uVfJ/2BhNeOnUaLn8IerUCDl+IMtoIgiAk0FShhS8YwXt+9Tp6J7z44we3YlVt8e0qi2Yk+89NYMwdQGWG7ZFVRg0cvhC8gTBKVHI4fEE8tKcHv32tG1a7D20WPd5/QXP+F04QxJxw7doafPOpDnz8wTfg8odQZVTjG29djXdtaYBGKYzPrK4txaevXIYfPHsSVx2swo0bps7ZdlgdaDXrYscT8xtJRRtjTAmhYHuQc/5o3O0fAHA9gCt4ohJ/HqFWyLG1pRyv5Biy/bfDAzDr1Ti/tULyfdY3mMC54Cx2wZIKOHxBUtoIgiAkICpqZ4ZduPd9m3BeBu+9s8nKGiOUcoZ/dQyDc2TculllFIq8A70T+FfHMB7a2wuXP4QLWivw7ZvW4tJllTQTQhALCLVCjo9c0oo/7DqHz75pGd6ztTFh8XXnpUvwrxPD+PoTR7G1pRy1psk26Q6rkzLyFhBS3CMZgPsBdHDOfxh3+zUAvgjgrZzzxCE584yLl5rROeKG1Z48qDUVLn8I/zoxjGvXVkOewYfn+noTAMTmHYT2SFLaCIIg0rG6xohynQrffds6vClN0PVcolHKsbLGiH9FTQMynWmrirZTvvdXu/Hbnd24YqUFT/3bRfi/j5yP7SssVLARxALko5cuwWtfuhy3b2tJqpbJZQw/fOd6hCMcn3/kUGwGzu4Not/mxYoaw2wumSggUuScbQBuBXCEMXYwettXAPwUgBrA81HDjNc553cWYpGzxbY2wTjk1dOjuHlzQ8b3f6FjCL5gBG9ZL701EgDKdSo0VWhxsMcGQLD8N2roRUYQBJEOi1GD/V+7cl4YN62vN+FwNKst06JtdW0p1tWX4ryWcty2rQV1JjIdIQhCoKlCh69etxJffewofr+rG7dva8EJMiFZcKQt2jjnrwJI9Gn4dP6XM7esqDbArFfj1TPZFW1/O2RFtVGDTY2ZS9Hr603Y2y2YoDh9IRhLSGkjCIKQwnwo2ABhfvmP0cBcizGzmbZynQpP3nVRIZZFEMQC4L1bG/HP40P47jMncPFSc8w5chUVbQsGCnSJgzGGi9oq8NqZ0Zi8LBW7N4iXTg3j+nU1WbWptDeYYLX7MGj3wUkzbQRBEAsO0YwEEILBCYIg8gVjDN97+zpoVXJ85s+HcLjfjnKdKmNVnyheqGibxkVLKzHqCuDkkDOj+z13bBDBMMf1GbZGiogf5js7RxHhoKKNIAhigdFq1sGgVsCkVUKtIDc3giDyi8WowbduWosj/XY8fqAfK2sM86YTgUgPFW3TuChuri0T/nbYiobyEqyvL83qcVfXGqGQMbwSfVyy/CcIglhYyGQM7Y0mmkcjCKJgXLu2BjdtqEOEAyuqqTVyIUFyzjSqSzVos+jxyplRfPiSVkn3GXcH8NqZUXzkktasdzREZzGxaCP3SIIgiIXHd9++Dt5AeK6XQRDEAuaet66G3RvEtWuL11GXyBwq2hJwUZsZD+3tgS8YlhRI+MxRK8IRjrdkEKidiPUNpTjSLziLUXskQRDEwoNUNoIgCk1piRK/uW3LXC+DyDPUHpmAi5ea4QtG8EbPhKTjnzpkRWulDitzzMJob5h0nST3SIIgCIIgCIIgACraEnJeawUUMiZprm3Y4cPrXWN4y7ranIc92xsm5+FIaSMIgiAIgiAIAqCiLSF6tQIbGk149Uz6ou3pI1ZwDrxlfU3Oj9tq1sOgFoo1KtoIgiAIgiAIggCoaEvKRW2VONJvh80TSHnc3w5bsaLagDZLbq2RgOAsti6qtpF7JEEQBEEQBEEQABVtSbloaQU4B3Z2jiU9pt/mxf5zE3hLltlsidjWZobFoIZaQX8agiAIgiAIgiCoaEvK+noTDGpFzII/EX8/PAAAuH5d7q2RIh+5uPX/t3f3sXaUdQLHv7+2vBXtC9CKlIrAGqC8tt5LuWqFW8PGpUZqC1dqNRLYmK3uRrNgxfiym5A1u3XXbFZXDAERI1puLazL6yp4IqIFbuktUCi0WF1Fa6kIFKhIX579Y6bb23Lfe+bOnHO/n+TkzDwzc+Z3fj150t+deZ7h3ivO9WGIkiRJkgCn/O/TuLFjOOfEI/nh479n0viDmD55PMdOPozpR4znmEmHcsi4sdz2yGbOOHYixx15eF3P+8ax1tKSJEmSMhZt/fjQ7LewcctLXPfTTezYlf6/PQKOnnAom198lc9dcEqJEUqSJElqdhZt/Wg/aSrtn57Krt2JLdte5Td/3M5vnv9T/r6dl17dyYJZ08oOU5IkSVITs2gbhLFjgmMmHcYxkw5jdtnBSJIkSRpVHDwlSZIkSRVm0SZJkiSp/pYtg1pt37ZaLWvXkFi0SZIkSaq/1lbo6NhbuNVq2Xpra7lxNSDHtEmSJEmqv/Z2uPlmmDcP5syBNWugszNr15B4pU2SJElSMebOhalT4Yc/hCVLLNiGyaJNkiRJUjFqNXjuuWz5a197/Rg3DYpFmyRJkqT62zOG7frrs/X58/cd46ZBs2iTJEmSVH9dXdkYto4OaGuDtWuz9a6usiNrOE5EIkmSJKn+li7du7xwIVx5JRx3nOPahsErbZIkSZKKtWBB9n7LLeXG0aAs2iRJkiQV6/jjYeZMi7ZhsmiTJEmSVLyFC2HVKvjtb8uOpOEMWLRFxPSIqEXE+oh4PCI+mbdfnK/vjoiW4kOVJEmS1LD23CJ5663lxtGABnOlbSdwRUrpFOAc4BMRMQNYBywA7iswPkmSJEnN4JRTspe3SA7ZgEVbSmlzSmlNvvwSsB6YllJan1J6qugAJUmSJDWJhQvhJz+BrVvLjqShDGlMW0S8FZgJPFhINJIkSZKa14IFsHs3/OAHZUfSUAZdtEXEG4CVwKdSStuGcNzHImJ1RKzeakUtSZIkjV5nnZXNJOktkkMyqKItIg4iK9huSikNKcMppWtTSi0ppZYpU6YMJ0ZJkiRJzSAiu0XynnvghRfKjqZhDGb2yACuB9anlL5SfEiSJEmSmtaCBbBjB9x+e9mRNIzBXGl7J/ARYG5ErM1fF0TEByLiGaANuCMi/qfQSCVJkiQ1vtmz4ZhjvEVyCMYNtENK6X4g+tjsQxYkSZIkDd6YMdnVtuuvh1degcMPLzuiyhvS7JGSJEmSdMAWLIA//QnuvrvsSBqCRZskSZKkkTVnDhx1FKxcWXYkDcGiTZIkSdLIGjcO5s/PJiP585/LjqbyLNokSZIkjaxly+DEE+Gll7Lp/wFqtaxdrzPgRCSSJEmSVFetrdDRkU1CsnIljB+frXd2lh1ZJXmlTZIkSdLIam/PCrSdO2H58r0FW3t72ZFVkkWbJEmSpJHX3g7nn5/NIvnBD1qw9cOiTZIkSdLIq9XgZz/Llr/97WxdvbJokyRJkjSyarXslsgVK2DiRDjvvGzdwq1XFm2SJEmSRlZXVzaG7T3vgdmz4de/zta7usqOrJKcPVKSJEnSyFq6dO9yWxtcfTW0tDiurQ9eaZMkSZJUnrY22L3bq2z9sGiTJEmSVJ7Zs7P3VavKjaPCLNokSZIklWfSJJgxw6KtHxZtkiRJksrV1gYPPAAplR1JJVm0SZIkSSpXWxs89xxs3Fh2JJVk0SZJkiSpXG1t2bu3SPbKok2SJElSuU4+ORvbZtHWK4s2SZIkSeUaMyabRfJAi7Zly6BW27etVsvaG5hFmyRJkqTytbXBY4/Btm3D/4zWVujogO98B155JSvYOjqy9gZm0SZJkiSpfG1t2eyRDz00/M9ob4fOTrj0Upg1KyvYOjuz9gZm0SZJkiSpfLNnQ8SB3yJ59tmwaxds2ABLljR8wQYWbZIkSZKqYOLE+jxk+4YbsveODrjmmtePcWtAFm2SJEmSqmHPQ7Z37x7e8bUafPaz2fKXv5zdGtnR0fCFm0WbJEmSpGpoa4Pnn89ubRyOri5497vhiCNg+vS9Y9y6uuob5wizaJMkSZJUDQf6kO2lS2HLFpg5MxsfB1nhtnRpfeIriUWbJEmSpGo46aQDe8j2jh3ZYwNmzqxrWGUbsGiLiOkRUYuI9RHxeER8Mm8/IiJ+FBEb8/fJxYcrSZIkqWmNGQPnnDP8om39enjttdFXtAE7gStSSqcA5wCfiIgZwFXAvSmltwH35uuSJEmSNHxtbfD44/Dii0M/trs7e581q74xlWzAoi2ltDmltCZffglYD0wDLgRuzHe7EZhfUIySJEmSRosDech2dzeMHw9ve1v94yrRkMa0RcRbgZnAg8CbUkqbISvsgKl1j06SJEnS6HIgD9nu7oYzz4SxY+sfV4kGXbRFxBuAlcCnUkrbhnDcxyJidUSs3rp163BilCRJkjRaTJgAp5469KJt925Yu7bpxrPBIIu2iDiIrGC7KaV0S968JSLenG9/M/Bsb8emlK5NKbWklFqmTJlSj5glSZIkNbPhPGT7l7+EbdtGZ9EWEQFcD6xPKX2lx6b/Bj6aL38U+EH9w5MkSZI06rS1wQsvwFNPDf6YPZOQjMaiDXgn8BFgbkSszV8XAP8MnB8RG4Hz83VJkiRJOjDDech2dzeMGwennVZMTCUaN9AOKaX7gehj83vqG44kSZKkUW3ZMnj722Hy5Kxou+wyqNWgqwuWLu37uO5umDEDDjlk5GIdIUOaPVKSJEmSCtXaCpdckk3bv2pVVrB1dGTt/VmzpilvjYRBXGmTJEmSpBHT3g6dnfC+98H27XDxxbBiRdbel82bYcuWpi3avNImSZIkqVra27OrawBz5vRfsEFTT0ICFm2SJEmSqqZWg9tvz57Zdscd2Xp/9hRtZ51VeGhlsGiTJEmSVB17xrB1dsLHPw67dmW3SPZXuHV3w4knZkVeE7JokyRJklQdXV1ZwdbeDosXZw/YXrQoa+9Ld3fT3hoJTkQiSZIkqUp6Tut/2mlwxhlZwfbVr/a+/4svwqZNcPnlIxNfCbzSJkmSJKm6Fi+GBx+Ep5/uffvatdl7E19ps2iTJEmSVF2LFkEEfPe7vW9v8pkjwaJNkiRJUpVNnw7nngs33QQpvX57dzccfXT2alIWbZIkSZKqbfFi2LABHn749duafBISsGiTJEmSVHUXXQQHH5xdbevp1VfhiScs2iRJkiSpVJMmwbx5sHw57Ny5t33duuw5bhZtkiRJklSyxYvh97+HH/94b9somIQELNokSZIkNYJ582DixH1vkezuhgkT4Pjjy4trBFi0SZIkSaq+Qw+FhQvhlltg+/asbc8kJGOau6xp7m8nSZIkqXl8+MPw8stw223ZWLZHH236WyPBok2SJElSozj3XJg2LbtFcsOG7IqbRZskSZIkVcSYMbBoEdx1F9xzT9Zm0SZJkiRJFbJjRzbt/5e+BIccAiefDLUaLFtWdmSFsWiTJEmS1Dje/34YOzab/v/00+H++6GjA1pby46sMBZtkiRJkhrH3Llw6aXZ8q5dWcHW2Qnt7aWGVSSLNkmSJEmN5QtfyK62dXfDkiVNXbCBRZskSZKkRrNpE0yaBJ//PFxzTTamrYlZtEmSJElqHLVadkvkihVw9dXZrZEdHU1duFm0SZIkSWocXV37jmFrb8/Wu7rKjatAkVIasZO1tLSk1atXj9j5JEmSJKlKIuLhlFLLUI4Z8EpbRHwzIp6NiHU92s6MiFUR8VhE3BYRE4YTsCRJkiSpf4O5PfJbwHv3a7sOuCqldDpwK/DpOsclSZIkSWIQRVtK6T7gj/s1nwTcly//CFhY57gkSZIkSQx/IpJ1wPvz5YuB6fUJR5IkSZLU03CLtsuAT0TEw8Abgdf62jEiPhYRqyNi9datW4d5OkmSJEkanYZVtKWUnkwp/WVK6e3A94Bf9LPvtSmllpRSy5QpU4YbpyRJkiSNSsMq2iJiav4+Bvg88I16BiVJkiRJygxmyv/vAauAkyLimYi4HFgUERuAJ4HfATcUG6YkSZIkjU4j+nDtiNgK/O+InXDwjgL+UHYQTcrcFsfcFsfcFsfcFsfcFsfcFsfcFsfcFudAc3tcSmlI48ZGtGirqohYPdSnkmtwzG1xzG1xzG1xzG1xzG1xzG1xzG1xzG1xysjtcGePlCRJkiSNAIs2SZIkSaowi7bMtWUH0MTMbXHMbXHMbXHMbXHMbXHMbXHMbXHMbXFGPLeOaZMkSZKkCvNKmyRJkiRVWEMVbRHx3oh4KiKejoirerTfHBFr89evImJtH8cfERE/ioiN+fvkvH1xj+PXRsTuiDirl+Nvys+/LiK+GREH5e0REf+Rx/VoRMwqJgPFqXBuT46IVRHx54i4sphvX6wK53Zx/nt9NCJ+HhFnFpOB4lQ4txfmeV0bEasj4l3FZKA4Beb2oIi4MSIei4j1EfHZPo4/PiIezI+/OSIOztvtb4vLrf1tcbm1vy0ut/a3BeW2x/bWiNgVERfV8WuPiKrmNiLOi4gXe8TwxQG/TEqpIV7AWOAXwAnAwcAjwIxe9vs34It9fMYy4Kp8+SrgX3rZ53RgUx/HXwBE/voesKRH+115+znAg2Xnq4lyOxVoBf4JuLLsXDVZbt8BTM6X/8rfbV1z+wb23n5+BvBk2fmqSm6BDwHL8+XxwK+At/ZyfCdwSb78DfvbEcmt/W1xubW/LS639rcF5bZHfD8G7gQuKjtfzZJb4Dzg9qF8n0a60nY28HRKaVNK6TVgOXBhzx0iIoAOsv889eZC4MZ8+UZgfi/7LOrr+JTSnSkHPAQc2+Nzv51vegCYFBFvHvQ3K19lc5tSejal1AXsGNI3qo4q5/bnKaXn890eYO/vuVFUObcv520AhwONNni4yNwm4PCIGAccBrwGbOvls+cC3+/lePvbgnJrfwsUl1v72+Jya39bXH8L8HfASuDZIX6vKqh6boekkYq2acBveqw/k7f1NAfYklLa2MdnvCmltBkgf5/ayz4fpO9/OCC7JAp8BLh7CLFVWZVz2+gaJbeXk129aCSVzm1EfCAingTuAC7r7/gKKjK33wdeATYDvwb+NaX0x/2OPRJ4IaW0s5fz298Wl9tG1yi5tb+tc27tb4vJbURMAz5AdoWoEVU2t7m2iHgkIu6KiFMH+jKNVLRFL237/zWlz7+ID+oEEbOB7SmldQPs+nXgvpTST4cQW5VVObeNrvK5jYh2sv9EfGa4MZSk0rlNKd2aUjqZ7K9qVw83hpIUmduzgV3AMcDxwBURccIQzm9/27cDzW2jq3xu7W97dcC5tb/t04Hm9t+Bz6SUdg3j3FVQ5dyuAY5LKZ0JfBX4r4FO2EhF2zPA9B7rxwK/27OSX55cANzco+2GfHDfnXnTlj230eTv+1/qvYSB/6L+D8AU4O8HG1sDqHJuG12lcxsRZwDXARemlJ4bwveqgkrndo+U0n3AiRFx1GC+VEUUmdsPAXenlHaklJ4Ffga07Hf+P5Dd9jiul/Pb3xaX20ZX6dza3xb/u7W/rXtuW4DlEfEr4CLg6xEx/wC+60irbG5TSttSSi/ny3cCBw34u00VGCg4mBcwDthEVs3uGUx4ao/t7wV+MsBnfJl9BxMu67FtTP6Pe0I/x/818HPgsP3a57HvwPiHys5Xs+S2x/Z/pDEHxlc2t8BbgKeBd5SdpybM7V+wd2D8LOC3e9Yb4VVkbsmuMNyQ95eHA08AZ/Ry/Ar2Hbz98XzZ/rag3PbYbn9b/9+t/W1xubW/LbhPyNu/ReNNRFLZ3AJH9/jdnk12i2W/v9vSEzrE5F8AbCCbCeZzvfyY/maA448E7gU25u9H9Nh2HvDAAMfvzM+9Nn99MW8P4D/zbY8BLWXnqolyezTZf5y3AS/kyxPKzleT5PY64Pke7avLzlUT5fYzwON52yrgXWXnqiq5JZvpbUWenyeAT/dx/Alkk7s8ne9/SN5uf1tcbu1vi8ut/W1xubW/LSi3vcTRUEVblXML/G1+7CNkkxMN+AedPRWeJEmSJKmCGmlMmyRJkiSNOhZtkiRJklRhFm2SJEmSVGEWbZIkSZJUYRZtkiRJklRhFm2SJEmSVGEWbZIkSZJUYRZtkiRJklRh/wfMD6YMD1XBTQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADFqUlEQVR4nOy9d5gkV3X+/97OuSf0hM0zm7TSalersCuBEEqAwCJnG4PIwQaMjW0wNl/Ez2ATbIPBAZMzNklgiwxaCYRyWK3CRmlndnby9HTO4f7+qLrVPT0dqqqrZ6pnzud59Eia6amu6emuuu99z3kP45yDIAiCIAiCIAiCWF0sq30CBEEQBEEQBEEQBIkzgiAIgiAIgiAIU0DijCAIgiAIgiAIwgSQOCMIgiAIgiAIgjABJM4IgiAIgiAIgiBMAIkzgiAIgiAIgiAIE0DijCAIgiAIgiAIwgSQOCMIguhSGGPJqn/KjLFM1f+/ZrXPTw+MsTHG2LNW+zyawRi7nTH25g4dO8QY+z1jLMwYizLG7maMXVnzmD9njM0wxmKMsS8zxpw13381Y+wYYyzFGHuSMXZV1feuZ4wdZ4ylGWOHGWPbqr7HGGMfl587zBj7BGOMdeL3JAiCIOpD4owgCKJL4Zz7xD8AzgJ4QdXXvrXa51cLY8y2Fp6jwyQBvBHAAIBeAB8H8H/i92KM3QDg/QCuBzACYDuAD4sfZow9W/6ZNwDwA3gmgKfk74UA/BDABwH0AXgAwP9UPfdbAbwYwEUA9gN4PoC3deKXJAiCIOpD4owgCGKNwRizMMbeL7smYcbYdxljffL3RhhjnDH2BsbYBGMswhh7O2PsIGPsqOzW/FvVsV4vOzmflZ2a44yx66u+H2SMfYkxNs0Ym2SMfYQxZq352U8xxhYB3MwY28EYu00+rwXG2LcYYz3y478BYCskMZJkjP01Y+waxti5mt9PcdcYYzczxr7PGPsmYywO4PUtzmknY+wO+XdZYIxVi5Pq53DJxxQO1v2MsSHG2EcBXAXg3+Rz/Df58XsYY79ijC0yxk4wxl5ZdayvMsY+J38/IT//tnrPyznPcs5PcM7LABiAEiSR1ic/5CYAX+KcP845jwD4ewCvrzrEhwH8f5zzezjnZc75JOd8Uv7eSwE8zjn/Huc8C+BmABcxxvZUHfufOefn5J/555pjEwRBEB2GxBlBEMTa492QHJCrAWwEEAHw7zWPuRzALgCvAvBpAH8L4FkA9gJ4JWPs6prHPgUgBOBDAH4oxB6ArwEoAtgJ4GIAzwHw5jo/Owjgo5AExz/K53U+gC2QRAI456/FUgfwEyp/3xcB+D6AHgDfanFOfw/gl5AEz2YAn21wzJsABOXz6wfwdgAZzvnfAvgdgHfK5/hOxpgXwK8AfFv+Pf8QwH8wxvZWHe818nOHAByRz7MhjLGjALIA/hfAFznnc/K39gJ4pOqhjwAYYoz1ywL0MgADjLHTjLFzjLF/Y4y56/0s5zwF4En5642OXf07EARBEB2GxBlBEMTa420A/lZ2QHKQxM/La0r+/l52aX4JIAXgO5zzOdkx+R0kUSOYA/BpznmBc/4/AE4AuJExNgTgeQDewzlPyQLiUwBeXfWzU5zzz3LOi5zzDOf8NOf8V5zzHOd8HsC/QBKR7XA35/xHstsUaHFOBQDbAGyUf/87GxyzAEmU7eSclzjnD3LO4w0e+3wAY5zzr8i/50MAfgDg5VWP+Qnn/Lfy3+NvATyNMbal0S/EOd8v/y5/BKD6HH0AYlX/L/7bD2AIgF1+3qsAHID0d/y7Bj8rft7f5Ng+6jsjCIJYObq9Np8gCIJYzjYAtzDGylVfK0FavAtmq/47U+f/fVX/P8k551X/Pw7J+doGSQxMV63fLQAmqh5b/d9gjA0C+Awk8eCXHx9R9Vs1pvo5Wp3TX0NysO5jjEUglfF9uc4xvwHJNftvuezym5AEb6HOY7cBuJwxFq36mk0+xrJz5Jwn5TLPjTXnvgS59PA7TAr3OMI5fwRST1qg6mHivxMAxN/7s5zzaQBgjP0LJHH2t3V+Vvx8Qv7vesdO1vztCYIgiA5CzhlBEMTaYwLA8zjnPVX/uKp6j7SyqcY92QpgSn6eHIBQ1fMEOOfVpXC1C/t/lL+2n3MeAPDHkEodGz0+BcAj/kcu3RuoeUz1zzQ9J875DOf8LZzzjZAcxv9gjO2s/YVll/DDnPMLADwdkjv2ugbnOAHgjprX28c5f0fVYxSXjDHmg9RDNlX7vA2wQwr+AIDHIQV2CC4CMMs5D8s9aOfqnJ9gyc/K5Zg75K83OvbjIAiCIFYMEmcEQRBrj88B+KgInWCMDTDGXtTG8QYBvJsxZmeMvQJSr9hPZXfmlwD+mTEWkINIdtT0q9Xih+TQRBljmwD8Vc33Z1ERIgBwEoCLMXYjY8wOyQVyogGtzokx9grG2Gb54RFIQqZUexzG2LWMsX2yGIxDKnMUj6s9x1sB7GaMvVZ+jexMClg5v+oxf8AYewZjzAHJubuXc77MNWOMXSEexxhzM8beB8nxvFd+yNcBvIkxdgFjrFd+Pb5adYivAHgXY2xQ/v575PMDgFsAXMgYexljzAXg/wE4yjk/XnXsv2CMbWKMbQTw3ppjEwRBEB2GxBlBEMTa418hBUn8kjGWAHAPpGAOvdwLKTxkAVKox8s552H5e68D4ADwBCSx830AG5oc68MALoHUz/QTSNHu1fwjgL+TExL/knMeA/AnAL4IYBKSk3YOzWl2TgcB3MsYS0J6jf6Mc36mzjGG5Z+LAzgG4A5IpY2A9Pq+nElJl5/hnCcghY68GpIbNgMpzr5aRH4bUpjKIoBLIQWE1MMJKbwlLP++fwDgRs75FABwzn8O4BMADkMqLx2Xjyv4ewD3QxK1xwA8DOlvBrnH72Xy/0cgvSeq+wP/C8D/AXgUwGOQ/j7/1eA8CYIgiA7AqJScIAiCaARj7PUA3sw5f8Zqn0u3whj7KoBznPO/a/VYgiAIYn1DzhlBEARBEARBEIQJIHFGEARBEARBEARhAqiskSAIgiAIgiAIwgSQc0YQBEEQBEEQBGECSJwRBEEQBEEQBEGYANtKPlkoFOIjIyMr+ZQEQRAEQRAEQRCm4cEHH1zgnA/U+96KirORkRE88MADK/mUBEEQBEEQBEEQpoExNt7oe1TWSBAEQRAEQRAEYQJInBEEQRAEQRAEQZgAEmcEQRAEQRAEQRAmYEV7zgiCIAiCIAjCLBQKBZw7dw7ZbHa1T4VYg7hcLmzevBl2u131z5A4IwiCIAiCINYl586dg9/vx8jICBhjq306xBqCc45wOIxz585hdHRU9c9RWSNBEARBEASxLslms+jv7ydhRhgOYwz9/f2aXVkSZwRBEARBEMS6hYQZ0Sn0vLdInBEEQRAEQRDEKvHRj34Ue/fuxf79+3HgwAHce++9AIA3v/nNeOKJJwx5jpGRESwsLDR9zD/8wz9oPu5Xv/pVvPOd71zyta985Ss4cOAADhw4AIfDgX379uHAgQN4//vfr/n4K8GnP/1ppNPp1T4NBeo5IwiCIAiCIIhV4O6778att96Khx56CE6nEwsLC8jn8wCAL37xiyt6Lv/wD/+AD3zgA20f5w1veAPe8IY3AJBE4eHDhxEKhdo+rl445+Ccw2Kp70l9+tOfxh//8R/D4/GoPmaxWITN1hkZRc7ZOqBQKuP2E3OrfRoEQRAEQRBEFdPT0wiFQnA6nQCAUCiEjRs3AgCuueYaPPDAAwAAn8+H973vfbj00kvxrGc9C/fddx+uueYabN++Hf/7v/8LYLmL9fznPx+33377sud88YtfjEsvvRR79+7F5z//eQDA+9//fmQyGRw4cACvec1rAADf/OY3cejQIRw4cABve9vbUCqVAEjO2O7du3H11Vfj97//verf9ZOf/CQOHjyI/fv340Mf+hAAYGxsDHv27MGb3/xmXHjhhXjNa16DX//617jyyiuxa9cu3HfffQCAm2++Ga997Wtx3XXXYdeuXfjCF77Q8rjnn38+/uRP/gSXXHIJJiYm8I53vAOXXXYZ9u7dqzzuM5/5DKampnDttdfi2muvVV5rwfe//328/vWvBwC8/vWvx1/8xV/g2muvxfve9z48+eSTeO5zn4tLL70UV111FY4fP676tWiKUJON/gGwBcBhAMcAPA7gz6q+9y4AJ+Svf6LVsS699FJOrDz/cfg03/a+W/nx6fhqnwpBEARBEIRpeOKJJ1b1+ROJBL/ooov4rl27+Dve8Q5+++23K9+7+uqr+f3338855xwA/+lPf8o55/zFL34xf/azn83z+Tw/cuQIv+iiizjnnH/lK1/hf/qnf6r8/I033sgPHz7MOed827ZtfH5+nnPOeTgc5pxznk6n+d69e/nCwgLnnHOv16v87BNPPMGf//zn83w+zznn/B3veAf/2te+xqempviWLVv43Nwcz+Vy/OlPf/qS56xFPO8vfvEL/pa3vIWXy2VeKpX4jTfeyO+44w5+5swZbrVa+dGjR3mpVOKXXHIJf8Mb3sDL5TL/0Y9+xF/0ohdxzjn/0Ic+xPfv38/T6TSfn5/nmzdv5pOTk02Pyxjjd999t3Iu4vcuFov86quv5o888siy16b2dfje977Hb7rpJs455zfddBO/8cYbebFY5Jxzft111/GTJ09yzjm/5557+LXXXlv3Naj3HgPwAG+gl9T4cUUA7+WcP8QY8wN4kDH2KwBDAF4EYD/nPMcYGzRGLhJGUiiV8fW7xwAA5yJpnDfsX90TIgiCIAiCMCEf/r/H8cRU3NBjXrAxgA+9YG/D7/t8Pjz44IP43e9+h8OHD+NVr3oVPvaxjylujcDhcOC5z30uAGDfvn1wOp2w2+3Yt28fxsbGNJ3TZz7zGdxyyy0AgImJCZw6dQr9/f1LHvOb3/wGDz74IA4ePAgAyGQyGBwcxL333otrrrkGAwMDAIBXvepVOHnyZMvn/OUvf4lf/vKXuPjiiwEAyWQSp06dwtatWzE6Oop9+/YBAPbu3Yvrr78ejLFlv9uLXvQiuN1uuN1uXHvttbjvvvtw5513Njzutm3bcMUVVyg//93vfhef//znUSwWMT09jSeeeAL79+/X9Nq94hWvgNVqRTKZxF133YVXvOIVyvdyuZymYzWipTjjnE8DmJb/O8EYOwZgE4C3APgY5zwnf4/q5kzIzx+bwXRMivCcidOARYIgCIIgCDNhtVpxzTXX4JprrsG+ffvwta99bZk4s9vtSvKfxWJRyiAtFguKxSIAwGazoVwuKz9TL8L99ttvx69//Wvcfffd8Hg8uOaaa+o+jnOOm266Cf/4j/+45Os/+tGPdCUQcs7xN3/zN3jb29625OtjY2PK79LsdwOWJx8yxpoe1+v1Kv9/5swZ/NM//RPuv/9+9Pb24vWvf33DiPvq56l9jDhmuVxGT08Pjhw50upX14ymTjbG2AiAiwHcC+CTAK5ijH0UQBbAX3LO76/zM28F8FYA2Lp1a7vnS2jky78/g239HkwspjEbI3FGEARBEARRj2YOV6c4ceIELBYLdu3aBQA4cuQItm3bputYIyMj+I//+A+Uy2VMTk4q/VrVxGIx9Pb2wuPx4Pjx47jnnnuU79ntdhQKBdjtdlx//fV40YtehD//8z/H4OAgFhcXkUgkcPnll+PP/uzPEA6HEQgE8L3vfQ8XXXRRy3O74YYb8MEPfhCvec1r4PP5MDk5Cbvdrun3+/GPf4y/+Zu/QSqVwu23346PfexjcLvdqo4bj8fh9XoRDAYxOzuLn/3sZ7jmmmsAAH6/H4lEQgktGRoawrFjx3Deeefhlltugd+/vOosEAhgdHQU3/ve9/CKV7wCnHMcPXpU1WvRCtXijDHmA/ADAO/hnMcZYzYAvQCuAHAQwHcZY9vlOkoFzvnnAXweAC677DIOYsV46GwED5+N4sMv3It/P3yanDOCIAiCIAgTkUwm8a53vQvRaBQ2mw07d+5UQjq0cuWVVyolghdeeCEuueSSZY957nOfi8997nPYv38/zjvvvCVlf29961uxf/9+XHLJJfjWt76Fj3zkI3jOc56DcrkMu92Of//3f8cVV1yBm2++GU972tOwYcMGXHLJJUpQSDOe85zn4NixY3ja054GQCrn/OY3vwmr1ar69zt06BBuvPFGnD17Fh/84AexceNGbNy4UdVxL7roIlx88cXYu3cvtm/fjiuvvHLJ7/285z0PGzZswOHDh/Gxj30Mz3/+87FlyxZceOGFSCaTdc/nW9/6Ft7xjnfgIx/5CAqFAl796lcbIs5YjZaq/yDG7ABuBfALzvm/yF/7OaSyxtvl/38SwBWc8/lGx7nsssu4SJ0hOs87v/0Q7jg5j3v+5nr84RfuQY/Hga+/8dBqnxZBEARBEIQpOHbsGM4///zVPg2iBTfffDN8Ph/+8i//crVPRTP13mOMsQc555fVe3zLKH0mFV5+CcAxIcxkfgTgOvkxuwE4ADSfbkesGFPRDH722Az+8NBWeJ02DAVcVNZIEARBEARBECZGTVnjlQBeC+BRxtgR+WsfAPBlAF9mjD0GIA/gptqSRmL1+Prd4+Cc43VPk+qWhwMu3HdmcZXPiiAIgiAIgiC0cfPNN6/2KawYatIa7wTQKJblj409HcII0vkivnPfWTz3wmFs7pWmnQ8HXYhlCsgWSnDZ1df3EgRBEARBEASxMrQsayS6jx88NIlYpoA3PWNU+dpQwAUAmKVQEIIgCIIgCIIwJSTO1hjlMsdXfn8GF20O4pKtvcrXhwLSzIgZ6jsjCIIgCIIgCFNC4myNccfJeTw1n8IbnzG6ZIjesOycUZw+QRAEQRAEQZgTEmdrjC///gyGAk4878INS74+FKSyRoIgCIIgCLNhtVpx4MABXHjhhXjFK16BdDqt+1ivf/3r8f3vfx8A8OY3vxlPPPFEw8fefvvtuOuuu5T//9znPoevf/3rup9bMDY2hgsvvHDJ126++Wb80z/9k6bjGHU+3YbqIdSE+Tk5m8DvTi3gr244Dw7bUt3td9rgcVgxE8ut0tkRBEEQBEEQtbjdbhw5cgQA8JrXvAaf+9zn8Bd/8RfK90ulkqZhzYIvfvGLTb9/++23w+fz4elPfzoA4O1vf7vm5+gUxWLRVOezkpBztob4yu/PwGmz4I8ObV32PcYYhgMucs4IgiAIgiD08IlPAIcPL/3a4cPS1w3iqquuwunTp3H77bfj2muvxR/90R9h3759KJVK+Ku/+iscPHgQ+/fvx3/9138BADjneOc734kLLrgAN954I+bm5pRjXXPNNXjggQcAAD//+c9xySWX4KKLLsL111+PsbExfO5zn8OnPvUpHDhwAL/73e+WuFtHjhzBFVdcgf379+MlL3kJIpGIcsz3ve99OHToEHbv3o3f/e53mn/HZsf+wAc+gKuvvhr/+q//qpzP1NQUDhw4oPxjtVoxPj6O8fFxXH/99di/fz+uv/56nD17FoDkHr773e/G05/+dGzfvl1xErsFEmdrhMVUHj98aBIvvWQzer2Ouo8ZCrio54wgCIIgCEIPBw8Cr3xlRaAdPiz9/8GDhhy+WCziZz/7Gfbt2wcAuO+++/DRj34UTzzxBL70pS8hGAzi/vvvx/33348vfOELOHPmDG655RacOHECjz76KL7whS8sKVMUzM/P4y1veQt+8IMf4JFHHsH3vvc9jIyM4O1vfzv+/M//HEeOHMFVV1215Gde97rX4eMf/ziOHj2Kffv24cMf/vCS87zvvvvw6U9/esnXq3nyySeXCKrPfe5zqo4djUZxxx134L3vfa/ytY0bN+LIkSM4cuQI3vKWt+BlL3sZtm3bhne+85143eteh6NHj+I1r3kN3v3udys/Mz09jTvvvBO33nor3v/+92v8S6wuVNa4RvjhQ+eQK5bxxitHGj5mOEiDqAmCIAiCIOrynvcAcnlhQzZuBG64AdiwAZieBs4/H/jwh6V/6nHgAPDpTzc9ZCaTwYEDBwBIztmb3vQm3HXXXTh06BBGR6WxSL/85S9x9OhRxQWKxWI4deoUfvvb3+IP//APYbVasXHjRlx33XXLjn/PPffgmc98pnKsvr6+pucTi8UQjUZx9dVXAwBuuukmvOIVr1C+/9KXvhQAcOmll2JsbKzuMXbs2KGUagKVIdKtjv2qV72q4Xn9/ve/xxe/+EXFrbv77rvxwx/+EADw2te+Fn/913+tPPbFL34xLBYLLrjgAszOzjb9fc0GibM1wqOTMWzqcWPXkL/hY4YCLswlsiiXOSyWRnPFCYIgCIIgiLr09krC7OxZYOtW6f/bpLrnrBqv16v8N+ccn/3sZ3HDDTcsecxPf/rTJenc9eCct3yMFpxOaTyT1WpFsVg07LjA0t+5munpabzpTW/C//7v/8Ln89V9TPXvKM4RkH7/boLKGtcIp2aT2DlY/80qGA44UShxLKbzK3RWBEEQBEEQXcKnPw3cfnvzfz70ISCdBj74QenfH/pQ88e3cM3UcsMNN+A///M/USgUAAAnT55EKpXCM5/5TPz3f/83SqUSpqencbi2Jw7A0572NNxxxx04c+YMAGBxUaqi8vv9SCQSyx4fDAbR29urOFTf+MY3FKerXfQcu1Ao4JWvfCU+/vGPY/fu3crXn/70p+O///u/AQDf+ta38IxnPMOQc1xtyDlbA5TLHE8tJPG0Hf1NHzcsx+nPxLII+ZxNH0sQBEEQBEFUIXrMvvtd4NprpX+q/7+DvPnNb8bY2BguueQScM4xMDCAH/3oR3jJS16C2267Dfv27cPu3bvrCp2BgQF8/vOfx0tf+lKUy2UMDg7iV7/6FV7wghfg5S9/OX784x/js5/97JKf+drXvoa3v/3tSKfT2L59O77yla8Y9rtoPfZdd92F+++/Hx/60IfwoQ99CIDkGH7mM5/BG9/4Rnzyk5/EwMCAoee4mrCVtPouu+wyLlJjCOOYWEzjqk8cxsdeug+vrpPUKHj4bAQv+Y+78KWbLsP15w+t4BkSBEEQBEGYj2PHjuH8889X9+BPfEIK/6gWYocPA/ffD1T1OxFENfXeY4yxBznnl9V7PDlna4BTc5Il3bKsUThnlNhIEARBEAShjXoCTDhoBGEQ1HO2Bjg9lwTQWpwN+JywMGA2RuKMIAiCIAiCIMwGibM1wOm5JEI+J3o89eebCWxWC0I+JzlnBEEQBEEQBGFCSJytAU7NJbFzsH70aC3DQRdm4rkOnxFBEARBEER30G1R60T3oOe9ReKsy+Gc4/RcErsGG883q2Yo4KKyRoIgCGLdcuvRKcQyhdU+DcIkuFwuhMNhEmiE4XDOEQ6H4XK5NP0cBYJ0OfOJHBLZYst+M8FwwIX7zix2+KwIgiAIwnxMRjN457cfxs0vuACvv3J0tU+HMAGbN2/GuXPnMD8/v9qnQqxBXC4XNm/erOlnSJx1OadUhoEIhgJOxDIFZAsluOzWTp7amidbKOEff3oMf/as3ejzNu/3IwiCIFafqWgGALCQzK/ymRBmwW63Y3SUhDphHqisscsRSY27VIszyVqdpVCQtnl8Koav3T2O352i3TaCIIhuYFou6w+nqPeaIAhzQuKsyzk1l4DfZcOA36nq8cqsM+o7a5uwvPMaTa/t3oUnpuI4PhNf7dMgCIJom5mY5JyFyTkjCMKkkDjrck7PJbFz0AfGmKrHDwdoELVRRNL5Jf9eq/zdjx7F//d/T6z2aRAEQbSNcM4WU2v7uk0QRPdC4qzLOT2XUl3SCABDQSprNIpwan04Z1PRLCJr/HckgPvOLOL3pxdW+zQIoqPMkDgjCMLkUCBIFxNN57GQzKkOAwEAv9MGj8OKmRjV27fLolLWuHZv8qUyx3wyB6tFnTNLdC//+LNjyBfL+Mm7r1rtUyGIjlHpOVu7122CILobEmddzGmNSY0AwBjDcMBFzpkBLCpljWvXVQoncyiVORLZtfs7EhLj4TQsKsujCaJbEc5ZLFNAoVSG3UoFRARBmAu6KnUxlaRGdQOoBUMBF/WcGcBiau07Z7NxyWFN5Iool2lA51olkS1gMZVHOJVDsVRe7dMhiI5QLJUxl8iix2MHsPb7hQmC6E5InHUxp+aScNkt2NTj1vRzw0GXIWmNx6bjeGo+2fZxupWIEGeZtesqCRHPOZDKF1f5bIhOMR5OA5D+zlTuRaxV5pM5lDlwwYYAAOo7IwjCnJA462JOzyWxY8AHi8Z+oKGAC3OJbNtOyPt/cBQfXscpfmIRG1nDN/jq8td4lsTZWuXsYlr577k49aMSaxPRb7Z3oyzOKE6fIAgTQuKsixEx+loZDjhRKHGlZ0ovC8k8puWZMesRIcri2eKaLQWbqxJn1He2dhHOGQDMJajkmVibiIqRCzcFAQALa3hjjSCI7oXEWZeSyhUxGc1g54AOcWbQIOpoOo+5xPrcZc8WSkjlS8rw79gaLW2s7k2MZ8g5W6uMh1NKIud6/UwTa5/lzhm91wmCMB8kzrqUp+ZTAIBdQ9rF2VCg/Vln+WIZqXwJ0XQB2UJJ93G6FdGrsGPAC2Dt9p3NxnOwyYt2cs7WLuPhNM7fIAULUVkjsVaZiWXgtFkw0u8FY9RzRhCEOSFx1qWcmksA0BajL1CcszbEWbVTNL8Od9rFTX277Fyu1cTG2XgWoyFJgMZJnK1Zzi6msXPAh16PncoaiTXLdCyLDUEXbFYLetx2Cr8hCMKUkDjrUk7PJWGzMGzr92r+2QGfExYGzLZR1hjLVG5q63Exp4gzWbhEUmtTuMzGs4o7m+iCQJBymYNzivzXQq5YwlQsg239Xgz6XVTWSKxZZmJZZXOyz+sg54wgCFNC4qxLOT2XxEjIq2uAps1qQcjnbMs5i1YNXl6PZVBiPs4O2Tlbi/NysoUSIumC0tcY74LSzff/8Cje8vUHV/s0uopzkQw4B7b1ezAYcJI4I9YsknMmjZ7p9zrJOSMIwpSQOOtSTs8ldYWBCIaDLsy0IaqqyxrX42IunFwqztZiIIgoV93c54HLbjG9c5bMFfHjI1M4MRtf7VPpKs7KSY3b+j0Y9LswTwPqiTVIucwxGyfnjCAI80PirAvJF8sYX0zr6jcTDAVcbZU1Vjtn7QSLdCuRdB5WC8OmXjesFrYmnTPhrA4FXPC77KbvOfv1E7PIFcuIpc19nmZjPCyFC23t82Iw4MR8MkelocSaYyGVQ7HMsUGIMx+JM4IgzAmJsy5kLJxCqcx1JTUKhgJtljXKTpHPaVufzlkqj16PHVYLQ9BtR2QNCgIhuocDLgRcNtMPob716BQAIJErtj1gfT0xvpiGx2FFyOfAoF+agbgW38/E+kaMjhmW04pDXgci6TxKdK0gCMJkkDjrQk7NJgFUSur0MBxwIZbRH4MfS+dhYcD2Ae+6dM4Wk3n0ehwAgB6PfU26NbNy2etQwCk5ZyYu3YylC7jj5Dx8Ths4lwQaoY7xcBpb+zxgjGHQLy1c12PID7G2ETPORM9Zn9cBztdmvzBBEN0NibMu5PRcEoy1J87anXUWzRQQdNsxFHCtzyj9dB59Xkmc9Xoca/IGPxvPwmGzIOi2I+C2m7rn7BdPzKBQ4njxxRsBdEd4iVkYD6ewrd8DABgMSEPV12PID7G2Ec7Zhh5R1ii916m0kSAIs0HirAs5NZfA5l433A6r7mMos8509p1F0wX0eKQyqPVY1riYqhZna7escTjgAmMMfpfN1D1ntx6dxtY+D67aNQBgbQa0dIJymWMiklFGcgz6pQXrenTDibXNdCwLh9WCPrnioV++fotwJ4IgVo9csYRCqbzap2EaSJx1Ie0mNQKVunu9fWfVztliKo98cX19qCJV4izodqzJIdQzsSyGZCcl4DKvc7aYyuP3pxdw4/4NCLrtAEicqWUmnkW+WK44Z0pZ4/rbcCHWNjOxDIaCTlgsDACU6zc5ZwSx+vzk6DR2/93PMLaQWu1TMQUkzrqMUpnjqYUUdg352zrOULC9ssZYOo8ej13ZaZ9Prp/FXLnMEUkvdc6ia9A5m0vklPLXgMtm2lLBnz82g1KZ4/kkzjQzLmL0+yTnzO2wwu+0rctSZWJtMx3LYkPArfx/vyLO6L1uZp6cT+KDP3oMRXJV1jST8rxNUdW13iFx1mVMLKaRL5bbds78Ths8DitmYvpuTNFMAT1uu9Kjsp7KoGKZAsq8svPa63UgUyjpDlcxI5xz2TmTxZnbjlyxjFzRfL/jrUensD3kxQUbAiTONHJ2UdqlFM4ZAAwEnBQIQqw5ZqpmnAHSdRsADaI2OT89Oo1v3DOOM+SorGkmoxmEfA647PrbddYSJM66jNNzclJjGzPOAIAxhuGAS38giNJzJpdBraMAAXEzF+KsxyMJgrXkniVyRWQKJaX81e+ySV83WWnjXCKLe54K4/n7N4AxRuJMI+PhNGwWpsx+AqS+s/X0eSbWPpxzyTmrep/brRYEXDYqazQ5Zxcld5/E2dpmMprBph536weuE0icdRmn5yVx1s4AasFQwKWr56xU5ohnpZ4zJd1tHe20i2RGRZy5HUu+vhaYk98Xg1U9Z4D5xNnPHp1BmQPPv0hKafQ4rLBZmGlLMM3G+GIam3vdsFkrt4JBv4t6zog1RSRdQL5YXlYy1e9zknNmciYikjgbC5M4W8tMRjLY1EviTNBSnDHGtjDGDjPGjjHGHmeM/Zn89ZsZY5OMsSPyP3/Q+dMlTs0mMeh3Kg5BOwwHXbrSGhPZAjgHgm47+r1OWC3M0J32J2UBalZEuld1zxlgDufMqIGqotx1qMY5M5voufXoFM4b8mO33IMp3DNyztQxHk5hq5zUKJASWLPgnIbzEmuD6VgGAJY4Z4DUd7ZIaY2mZmJR+tudWUiv8pkQnYJzTs5ZDWqcsyKA93LOzwdwBYA/ZYxdIH/vU5zzA/I/P+3YWRIKp+eThrhmgLTwnktkUda4oBcipMdjh9XCEPI5DHPOHjobwfX/fAeOnosacrxOsLisrFH692onNt55agF7P/RzTCy2fxMT5a7DVT1ngLmcs+lYBvePRfD8/RuWfJ3EmTo45xgPp7Gtz7Pk64MBJ7KFMg3yJtYMYhNyOLh08dfndSBMgSCmpVAqK8L6zIK5N20J/Swk88gVyyTOqmgpzjjn05zzh+T/TgA4BmBTp0+MWA7nHE/OJbHLIHE2HHCiUOJY1CgqopmKOAOkMqhZg5yzcbl0QeyWmRFRvtjrEYEgdvnrqysIPnPbKWQLZUPKP0S56zLnzESzzn5ydBpApaRR4CdxpopouoBEtrgkDATAuuwjJdY202IA9bKyRgf1nJmYqWgGZQ44bBaMkXO2ZpmMSuu9Tb2eFo9cP2jqOWOMjQC4GMC98pfeyRg7yhj7MmOs1+iTI5YyE88imSsa5pzpHUQtHKKg3Gs1FDBuELWI8DZzvHE4mYfXYVVShUTPWTSzejf5h85GcN+ZRQDGzO2Zi2cRcNmUQeeVnjPziJ5bj05j78YARkNLy/KCbrvpyi/NyLjssG6rU9YIrK8+UmJtMxPLylUeziVf7/M6EEkXNFePECuD2KS9fLQPM/EsMnnzpQUT7TMZkcUZOWcKqsUZY8wH4AcA3sM5jwP4TwA7ABwAMA3gnxv83FsZYw8wxh6Yn59v/4zXMSKpcedgezPOBMIV0ZrYGKtxzgb8LiVAol3Ebr2Zm7Qj6Tz6fA7l/90OK5w2y6r2nH3+jqfgsksfZyPOYyZeidEHqnvOzFHqNrGYxpGJKJ6/f+Oy71FZozqES73MOZNDYGjWGWEU+WJ5VQXQdCyLIb/UH11Nn9eJUpnT9cKkiDCQq3aFAFAoyFplMir9nSkQpIIqccYYs0MSZt/inP8QADjns5zzEue8DOALAA7V+1nO+ec555dxzi8bGBgw6rzXJadmjUtqBKqcM43CSuk5k/uQhgJS4lXBgCGRYpi1mUtNwqk8+jyOJV/r9TgQWaVzPrOQwi+emMFNTx8BY8a8drPx3JJkM6/DBgszj3N2qyhprOk3A4Cg20aLLRWclQdQb63pORugskbCQDjnuPqTh/H1u8dW7Rxm4pm6w2371+mss2KpbOp7rODsojTq44rt/QCAMYrTX5NMRjLwO22GBN2tFdSkNTIAXwJwjHP+L1Vfr14VvQTAY8afHlHN6fkkgm47Qj5H6werYMDnhIUBs5rLGqWFr/ggiR6VhWT7izmxW2/mm2UklVfCQAQ9Hvuq9Zx94XdPwW6x4E3PGEXAZTckmGQ2nlX+rgBgsTD4nDbETRIIcuvRKRzY0oMtfctr1INuO+LZIqUNtmB8MY2hgHPZ0M+AywanzUJljYQhpPIlTMeyeHwqvmrnIM04W74rL67j3SBUjOTb953FNZ88jHyx/Q3VTjKxmMamXje2D0gb0k+ROFuTTEYpRr8WNc7ZlQBeC+C6mtj8TzDGHmWMHQVwLYA/7+SJEpKI2tzrhqSX28dmtSDkc2p3zjJ5+J02ZTbSkFwGZUQoiOhdM3O88WIqjz7v0t6FHo8dsVXoOZtP5PD9B8/hZZduwqDfhT6vA4ttisRymWMukcNwcOnvGHDbTREIcmYhhcen4nVdM0ASZ6UyR5LSBptyNpzGtj7vsq8zxjBoYB8psb4RFQV6ZmoaAeccM7FsXeesIs7W13t9bCGNeLZo+g2YiUgGW3o98DltGPA7yTlbo5yLUIx+LbZWD+Cc3wmgnhqg6PwVJp0vweOwtn6gBqRB1NpuTLF0AUFPxX6upLu1f6GvOGfmvVmGUzn0eZfa770eB07NrXzU79fvHkOhVMabr9oOQHbw2twFDqfyKJX5kp4zAPC77KboObv1kSkAwI1NxBkAxLNF+F1UJtGIsXAKz9xdv9R80O+iskbCEESlhdbeZqOIZ4tI50vLkhoBKAEhZq7U6AQicXg2nsVmEyfkTSymccPeYQDAaL+Xes7WKJPRDA6N9q32aZgKTWmNxOqSKZTgdrTU05oYCri0lzVmCkoYCFAJEJhtc6c9VywpvUJmLTPJ5EvIFsp1nDPHis85S+WK+Prd43j2+UPYIZd99Hkcyo1XL2IRVV3WCEjlbmboOfv54zM4ONJbt0wJqIizmAmGgpuVTL6EuURu2YwzgZTAau5ddaI7ECm2WlOBjaIy42y5OBNjUMxcqdEJxD1iJmbeDZhUrojFVB5b+qTr/GjIS4Oo1yDxrDTShZyzpZA46yKyhRLcdmP/ZMNBHWWN6bwSHw9ITdUWBsy3uTMqXLOQz6kr3vi247M4NZto6xxaIRy9Wuesx2NHNF1Y0T6n7z4wgVimgLddvUP5Wq+3/WASZQB1sI5zZoKes/FwGhduCjb8vhiYTaEgjTkrx+hv7a8vzgb9LiprJAxB9OJKDtbKXz/EEON6zpnTZoXfaVuHzpn0N1mtUlM1iKTGLbKzNxLyYiGZM8UGIWEcSow+9ZwtgcRZF5EplOC2G1vWOBxwIZYpIFtQPz8kmlla1mizWtDvc7bdcybE2Z5hv6544/d+9xG84av3I9XBXqNISjqnWues12NHcQX7nAqlMr74uzM4ONKLS7dVRgz2GhBMUhlAXdtztvrOWSpXRDJXXObqVSNmspE4a0wlRn95zxkADPidSGSLmq4LBFGP6oqC1XDPKs5Z/cVfn8+x/sRZqlLWaFZq02RHQ9K/x8Pknq0laMZZfUicdRGZfEkZCmwUemadxTMFJUa/cpz2y6CqxRmgrQ8gVywhki7gXCSDj/3seFvn0YzGzpk8iHqFSul++ug0JqMZvO2ZO5Z8vdfrQKZQamtY52w8B8akNM9qAq7VH+4s3BwxKLkeSs8ZibOGCOdspKFzJg+ipr4zok2qr4lGOjWn55L4+M+Pt6ywmI5lwVjja0af17HuAkFEWeP0KpWaqmFCXrSLRN6RkLSRRImNa4vJKDln9SBx1kVkCqVlsdftosw6U3mR5pwjml7acwYYUwYlfn7PhgAAbX1nC3LPwKYeN75xzzjuenKhrXNphLipLXfOHEu+30k45/ivO57CjgEvrtszaPh5zMayCPmcShqnIOCyIZkrruowWRE6MxhoIs485Jy1YjycRsBlUzYVahmUN22o74xol+prkZFOzc8fm8Z/3v4kjk7Gmj5uJpbFgM8Ju7X+cqff60B4HfWcFUplJOTydK395ivJxGIaXocVvfL1XCTLUmLj2mIymoHDZkHI2/ievh4hcdZFZPKdKWsE1O9opvIlFMt8Sc8ZIO1KGlHWyBiwe0gKt9Cymylct7/5gz0Y6ffgfT842pHyRnETrzfnDFgZ5+zO0wt4YjqOtz1zByyWpUGqhoizRFZ5X1Tjd9lR5kBqFfpGBBXnrHFZo08emE3irDHji+mGJY1AlXPW4b6zh89GTDGegegc0XRBuV4aGUAhrrWHj881fdx0PFu330wgOWfrR5x1ysk0monFNLb0eZTRQW6HFRuCLhJna4xJOUa/di2z3iFx1iUUSmUUy9xwcTYUFDH46m6aon8gWOucBVwIp3IolvQPtZxP5tDncSgLby1ljQvyInJrnwefePlFOBfJ4BM/N768cTGVh83CEHAtTc0Uu3sr4Zz91x1PYdDvxIsu3rjse8p5pPQveGfjuWX9ZoDUcwZA2XVdDYRYqHd+AouFIeC2kzhrwtlwqmEYCFARZ53sSckVS3jlf92Nr9811rHnIFafaDqPjT0u+J02Q99PUfnzffuJ5uJsJpapm9Qo6PM6EUnn183QenEP3xh0YSaeNe3vPRFJKyWNgtGQF2coTn9NcS5KM87qQeKsS8jIjflG95z5nTa47VbVN02x61bbczbod4LzSnmhHuYTOQz4nUq8sZZSk/lkJenx0GgfXv/0EXzt7nHc/WRY9/nUI5LOo9frWDYIfKV6zo5MRHHn6QW84cpROG3L3wtih7ot5yyeXTbjDIAyM2w1nY65RBYOm0XpK2tE0CQDs81IsVTGuUimYYw+IDmwNgvrqHMWSRVQKHGl54BYm0TSBfR6HBgKugwNBBGbL4+ciymVE/WYjmUbjt0AgJDPgUKJmyKJdiUQgVHnbwggXyyvWJ+0FjjnmFjMKEmNgpGQl5yzNcYkDaCuC4mzLiGb74w4Y4xhKKA+Tl/cEGt7VYYM6FGZk8WZiDfWUmoibs79Pum8/uqG87Ct34O//sEjhsY3h5N59NXp0xFitVPOGecc3773LP7oC/eg3+vAH12+te7jetsUZ7liCYupfF1xJlIQV9U5i+cw4HMuE8e1BMk5a8hUNItimWNbE+fMYmEY8Ds7Gggi3qMUOrK2iabz6PE4MBxwGVpGF6vqff7tyfm6j0nmikhkiy2cM+mauV5KG8XvuWeDFLxlxtLGhWQemUIJW/uWLtpH+72IpAsrPlOU6AzZQgkLyRyFgdSBxFmXoDhnBpc1AlJJovqyRiHOljtnANrqO1uQxRmgPd54PpFDj8euuEkehw2fVMobT+g+p1oi6fyyfjNAGifgd9o6sgs5G8/iDV+9Hx+45VFcvLUH//euZzR0joRI1LvQEO+DemWDfrmUczVTEOcS2aZhIAISZ40ZX5R2nrf2Ne45A6TPdCcDQYQ4E643sTaJyum+QwHjnbODI30Y8DtxuEFpo3i+Vj1ngLYe525GCJs9w1LwlhnFmTLjrG+5cwYAZ8g9WxNMRSlGvxEkzrqEToqz4YALsyoXYdGMdGFfHqXfnnPGOVfKGgEpQUtrIEht9Puh0T7c9LQRfPWuMdzzlDHljeFUfXEGAD1eu+E7ev/3yBSe86nf4p6nwvjwC/fiG2+8HBubXMhsVgsCLv0iUfz96jpnbnM4Z81i9AXUc9YYMSeomXMGAAN+V9NysXYR71FyzsxDPFvAE1Nxw44n5lX2euwYDjoxn8yhZFDaazSTR6/HjmvPG8BvT87X7XdWZpzVuZ4J+uWUuPWS2Fhd1giYM7FxYrG+OBOzzsao72xNQDH6jSFx1iWIuVUug8saAcklmVXZGCwWVIEacRbyOcCY/oVWLFNAvlRWBFaf16m552ygzqL9r58rlTe+7wdHDSlvjDQRZ70eR9sDoAXRdB7v+s7DeNd3HsZIyIufvPsq3PT0EVWJRr1tpI+JNLX6PWeyc7aqPWe5pkmNAjPMZDMrZxfTcNgsTResgDSuoKM9Z/JGxkIyt6rjGYgKX77zDF7073caJsrjmQI4h1LWWCpzLBjklMYyBfR4HLj2vEHEs0U8PBFd9pjpmLT4a9Zz1ieXwq+XQdSRdB5Om0UZ7mxK50wWZ5trFu1b+jywMODMAg2iXgvQAOrGkDjrEoQ464RzNhRwIVsoq2qIjmUKcNuty+at2awW9Hsdup0zsRgQ85X6NQqMhQbizOOw4RMv24/xcBqf+tVJXecmKJU5opmC0tdVS9BtjHN2z1Nh3PDp3+Jnj07jvc/ejR+8/WnYMeBT/fOSSNR3HiIYpn6U/uqmNWYLJcQyhaZJjQJR1mjWJLLVZDycwtY+T0uhP+h3YjGVR76oP4G1GWKjp1jmWKQeElMQTuZRKHH8+MikIccTiYq9XjuGZYFkRGljtlBCtlBG0G3HlbtCsFlY3Uh98VzNSqH711nPmdhgdNgsCPkcHU1k1cvEYgYhnxMex9JUZKfNik29bgoFWSNMRjOwMDTtCV2vkDjrEkRZo6cDzpkQRGou0tF0vmG/06Bffe9aLUKcKc6Zz6Ep3ng+kUPIV/8GfPn2fjzr/CH8+ljzyOVWSOdTuZnX0utxKIsRvRyZiOKNX70fXqcNP/rTK/Gu63ctGwbdij5ve+LMYbMs6ykEpBuj02ZZNUdqXsWMM0HQbUehxJXPDVFhPJxumtQoEK+zUU5HLZGqxXAnyyerKZTK+PUTs+TUNSApz4b8wUPGiDNxHepxOzTP1GyGKFkOuu0IuOy4bKQXt9URZ9PxLPq9jmWbidW47FZ4HNZ1VdYoAr2GAi5Mm7GsMZLGlr76bspIv5d6ztYIk5EMhgOuhgPi1zP0inQJne45A9SKs0LdhTsg7U6q7V2rRZRPVfecqY03TuWKSOdLdZ0zwZ5hP84uplFoYw6bWEw2Lmu0L1lwauXJ+STe8JX7EPI58d9vvQIXbgrqOk6Px657zpkUo984DTHgtq9a5LRwZQdUOmcADaKuhXOOs4vppjPOBJ0eRF1dAtzpYdeC352ax5u//gB++LAx4mOtIVzxY9NxQ3rPRCVBj8eOoaBxs/MqqcHS5/za8wZxfCahlDEKZmJZVbvyfRp7nLuZSDqvzMMcNjikxSgmIullMfqCUTlOn6oiup9z0Qz1mzWAxFmXoPScdaSsUX3SYjRTaOicDRngnInyEyGAwip27Wtdt3qMhrwolblSy66HcAtx1uNxIJ4t6hrEPRPL4nVfug9WC8PX33hIlTvUiL62yhpzGGry3H6XbdV6zsR7S00giHiPxjPrY3aRWuaTOaTzJXXOmfxZnOtQ2VM0nYffaevoc9QiNi0+e9spXZ/TtU4yV8DuIR/sVoYfPHSu7eOJ0tVejwMhrxM2CzNEDIjjis/5tXsGAQC3n1gaqS/NOGt9Le33aksH7mbErE5AKiczW1ljsVTGVDSr9MTVMtLvRSJXXDd/r06RzBXxr78+tWJVC/WgGWeNIXHWJWQ7NIQaqJQvqblIx1o4Zws607jmkzk4bRZlsaZl9oyI4m7mnIkI3nZSnlo5Z+J10eosxdIF3PTl+xDLFPDVNxxSzlUvvV4H0vmS8p7RQqMB1IKAy75qPWdzGssaAXLOajmrJDW2fo+J17lzzlkeu4Z8HX2OWkTZ3ng4jR8dmVqR5+wmEtkitvR6cN2eQfz4yGRblQZAxR3t8dhhsTAM+p2GiDPFOXNL1+Jdgz5s6nEv6zubiWVUOWf9Pue66TmLpgtLnLNIuqDrXtEppmNZlMq8YVnjqLiXU2ljW9zzZBif+vVJvOjf7sRjk7EVf/5iqYyZeJacswaQOOsSOlnW6HZYEXDZ1JU1ZvLKDbGWwYALZa7O7aplLp7FgL9STqfEG6u4YS4kWouz7fIF/al5/Rf0Vs5Zr0f7AOhsoYQ3f/1+nFlI4fOvvVR3KWO989ATp99KnPldtlXrOZtLZGG1sIY9f9WQOKuPiNFXU9aoJLB2sKxxY48bPqdtxXZvhTg7b8hP7lkdkrkifC4bXnbJZiwk8w2HO6slms7DwioD7IeCxgyiFuWS4nPOGMM15w3g96cXkCtK98psoYRIutA0qVHQ10bCbTdRLnNE03nlHjEkC1czjbNQYvQblDXSrDNjECFM6UIJL//cXbj16MpuVs0mpI38TT2t70XrERJnXUK6g2WNgNQY3HbPWRs9KvPJpfOr+n3anbNGgSCA5Cb1eOxtXdCFcyZubLWI10VtYmOxVMY7v/0wHhiP4F9edRGevjOk+9yqEbuiWhcbiWwBqXypaRpiwG1HYhXLGkM+h6pxAiTO6jO+mAZjyyOq6yESWOc7NIg6Ii8SB/3OFRVndivDe5+zG+PhNG6h3rMlJLNF+F02XHPeIPq8jrZLGyNygJT4zG4wSJwpgSBV96JrzxtEKl/CA2MRAOpmnAlEWeNa72OKZwso88o9zMiQFqM422DGmWBzrxs2C6NZZ20i1ik/+pMrceHGIN757YfxT784sWJhSefkvzM5Z/UhcdYlZAolOGwWWFUsTPUg1Z43XyBlCyXkiuUlN8RqhLjSU8NePYAa0FjWmMjBwho7WoLRUHspT+GU1CPjsNX/2CjOmYowDs45/vaWx/DrY7P48Av34vn7N+o+r2Xn4RXOmTZxJv7+zcqAAi7bKgaC5Jq6etWQOKvP2XAKG4NuOG3qNnkG2ugjbUb1cOIBv1P3CA6tJLNF+Jw2PPuCIezdGMC/HT5N7lkViVwRPqcdDpsFL7xoI379xFxb40GiVcmAgLwJaFBZo4VBKYMHgKfv7IfDZlFKG0UKoZqesz6vA/liGam8ecr7OoEoM+31ymWNQfOJs4lIGlYLa/h3s1st2NLnIeesTRZTBditDNv6PfjWWy7Hqy7bgn87fBpv++aDSoVBJ1EGUFPPWV1InHUJ2XypIzH6AikGv/kFWpTJNSprFAtnXc5ZjThz2a3wqow3nk/k0O9zthSuo/3eturUI+m8MrC0HopzpkIQfPa20/ifBybw7ut24nVPG9F9TvVQhK1mcSbPBGrS0yX1nK2O4JmNZ1WFgQCAT57JRuJsKeOLaWxTUdIoGOrQIOrq4cSDAdeKOWepXBFepw2MMbznWZJ7RsmNErliCfliWZln+PJLNyNfKuP/jk7rPmZtpcVwwIVUvtT2NSSaLiBQ5cgB0kzLK7b34/AJSZzNxKXFn9q0RqB1SX4mX1LCuboRsdlZHaUPwBDBbBQTixls7HE1HSEz0u+hQdRtIspbGWNw2qz42Mv24eYXXIDbjs/hpf/xe4x32JmkAdTNIXHWJWQKpY70mwnEIqyZpR3NVGKR6yHKCrU6Z/liGZF0AQO+pTfRPp+6eOP5RK5pUqNgNOTFVCyr++a6KA/vbESPR71j9fW7x3HdnkH8+bN36zqXZoi/j9ZYf2UAdZPFjN9lQ7ZQ7thg4mZIAl6dc2a1sFXtjzMj5TLHU/MpVWEggsEOuVqiL7PXa8eArzMCsB6SMySJj2edP4gLNwXwb7edbjv4Yi2QlB1x8frs3RjAeUN+/OBB/aWNkar+JqBybWk3ITCWKaCnTmrwtecN4Mn5FM6G04pzpi4QRBZnLa6Z7/rOQ3jntx/SccbmQNyb+uS/ScBlg9tuNZVzdnYx3TCpUTAS8mI8THH67bCYWvrZZIzh9VeO4utvPITZeA4v+vff4/RcsmPPPxnNoN/r6EjI3VqAxFmXkCmUOyzOXCiWedObU8U5qy/OHDapR0XrQksMuR2s6XXq8zrVBYIkc03DQASjA+0lNoaTeeWmVo+AywarhbUMBFlM5bGQzOHpO/obzhNrh0owiTZhIsoaW/WcAVhx96xQKiOcyqt2zgCptJGcswrHZxKIZQq4bFuv6p8Z9LuwkMzrSmBtRiXFz4HBgBPpfGlFSmlETxUgLUbec/1unF2k3jOgEpYixBljDC+7dBOOTETx5Ly+RVo0vVRECaem3cHHjUa6XHueHKl/cg4zsSyCbjs8Dtuyx9XSJwdQLTap1MgWSvjdqQWc1vlamIFI1WgDQPobDxvUB2gU55rMOBOMhrxI50srtqmzFommC0p5azVX7gzh+29/GqLpAm4/sXywu1FM0oyzppA46xIy+VLHwkCAqvKGJhdpZbZMA+cMkBITtfaoNJpT1u91qC5rbBYGIhhtM+Upkm7unDHG0OO2txRFJ2cTAIDdQ35d59EKu1UaSaA1EGQ2noXfZWu6mBEL25XuO2sk4JsRdNtVO2fZQgk/enhyTe/E3v1UGADwtB39qn9mMOBEqcwNT7ITO/giEARYmVlnqbxU1ii4XnbPPnvbqXXvnokRGeIzDgAvPrAJFgbd7lk0nV/Sc6YEULQpzmLpPIJ1NspGQl6Mhry47fic6hlnAJQE2Gbv80cmosgVy0o6cDciqil6vNWC2ZjxBkaQzhexkMw3DAMRjPRTYmO7LNa42tXsHPTBZmEdTTClGWfNIXHWJWQLpY7av8ItaVbCFMssrVevx2DApbkMaq5BFL6aeGPOOeZVOmftXNA5l1zFVqEjQY8dsVUWZ4AUCqI9EKR5jD5QicReaeesMoBa/XBuLc7Zzx+bwXv+5wgeOhvRdX7dwN1PhrGt34ONGm6IlQRWYxdvlR18u/I3XYm+MxEIIhDu2cRiBrc8tL7dM8U5qxJngwEXnrl7ALc8PKnZPRUBG73VPWcdLmsEgGvOG8DdT4ZxZiGlqqQRUFfWeO+ZRQBAKl9CagVc3k4QSedhs7AlQSrDAZdpxNnEotSH1EqctbvRSsg9Zw3WM4wx9HZwvATnXHLOSJw1hMRZl5DOFzte1gigaWJjq7JGABhqwzmrdUX65YtDMzcjlimgUOKqxJnXacNQwKnrgp7OS83yrcRZr8fRsqzxxEwCAZetaflgu/R6HVjUWNY4E8+2PCe/LM7imZVdnAgBr+U10yLORHLUkYmVH8a5EpTKHPeeCeNp29W7ZgCUHj+jy4cU58zrUD67K1GilMwtFWeA5J7t2xTEZw+vb/dMcc6cS6/vL7tkM6ZjWdz9ZFjT8er1KLvsVvR47G2X0TUqawSk0sZcsYzTc0nVzpnHYYPLbmna43zPU5Xff0HHLE8zEJHTM6vL6YeDbswlsisWod6Myoyz5ov2jT1uOKwWGkStE845IlXDyOvR30FxtpDMI1csU1ljE0icdQmZQrmjzplYIDXbQYtlpOjVZqmRgwEn5pM5TbusQpyJwdOCfp8D+VK5aS/KvIoB1NXojdMXF6lGO02CXo+6ssbzhv0d6TerPg+tztlcvHVUfcAtLWxX3DlLtE6SrEWLOJuSxdnRc1HN59YNPDEVRyJb1FTSCFScs3mD4/Srd/DbmY+olXriTEpu3IWJxQx+2OZcr24mmZM+K9XOGQA8+4Ih+F02zTPPolV9hdVITo3+v3W5zBHPNJ63eWi0T9nIHA6oX/z1N+lxzhVLeHA8gp2DPgAr4/J2gkgqv2xBPhxwolDimtN9O8FEpPmMM4HVwrC1n+L09RLPFlEq84ZljYC00dwpcUYx+q0hcdYlZDuc1mi3WhDyOZqWL0m7lY6momIo4NLcozKXyKLXY182P0xp0m5yLDGAWk1aIwCMhnxtibP+FuKsx+NArMlNjnOOk7PJjpY0AlIal5a/QbnMVZU1Ks7ZCouz2XgOjAGhJqMMatEizkRAwaPn1qZzdvdTCwCAKzQ7Z/pnFzYjIkesM8bQ47HDYbV0fNZZqcyRzpeWiQ8AuG6P7J6t4+TGZJ2eM0Byu56/fyN+/tiMptAW0d9UuwAcCrjaej8lckWUORo6Zy67FVfulN7nap0zoHkZ/SMTMeSKZbxAnkfZteKsTimbMuvMBKWNZxfT8DisLe+zgNSmQIOo9dHos1lNn8/RMcEuYvQ3twh+Wc+QOOsSMvnOijNA3DQb33Ri6ca7lQI9PSrziVxdR0RcoJv1AVScM3WL9u0hLxZT+ZZ9YbWIm3arssZWgSBziRximULHxVmPx6EpSn8xnUexzJWG/UYEXMI5W9myxvlEFv1eR9PZN7UE3HbkimVkC61HJwhx9tRCak0mPN79ZBjbQ17VQ7wFLrsVQbfdcFcrkqoERTDGMOB3dnzBm8ovTSOshjGGP7t+F85FMvjNsdmOnodZSeQavz4vv3QTMoUSfvqo+plnYt5j7T1jONBeOqAI+WkkzgDgGjm1UW3PGdBcnN3zVBiMATfuHwbQvWWN0TqlbGrCwFaKicUMtvR6VFWVjIY8GAunTVGO2W1UjzJphNYNXi1MRiWHlMoaG0PirEvIdDgQBGi9oxnN5Jv2mwFSAzkATX1njQI9lGHKTRIbK0mP6m7CI6KRWOOOW1ilOOv1OpAplBoKghMznQ8DAYA+rx2pfAm5orqZbmLXtFVPl9dhA2NQlYK4mMrjf+4/a8jNcy6ufsaZQMT+qznX6VhGGc782OTacs+KpTLuH4vgCo0ljYJOzDqT5l9VriWhFRBntXO8arlEHjHQbsx7t5LIFmG3Mjhty5cFl2ztxWjIqym1UZRV14qzoaALC8mcbodSSQ1uci968cWb8J5n7cKh0T7Vx22WDnzPU2GcPxzAaMgHC+te56xeQp/inJlAnJ2LpLGlT92CfSTkRb5YxlQs0+GzWntE0iqcM68D0XQBxQ5UEkxGMvA7bU0/w+sdEmddQqbQ2Sh9QFqYtwoE6YRzJi28G4uzcJMm7flkDg6rRemFakUl5UnbrJqIWudMfn2iDdyzSlKjT9Pza6UyEFudCyT+Xq2cFYvcJ6QmSv+HD53D+37wKL5177iqc2h+fjlNM86AyuKtlROWyZcQTRfwnAuGAACPrLG+s0cnY0jmiprDQASDAeOHREflYALlOXQECWmlXhphNUK0rbQrbBZEkmU914IxhpdevAn3nllU7bDUztQSDAdc4Fx/j2FURWqwz2nDe561W9M9s8/rqHuvEf1mV2zvh9XC0Od1KuX03QTnvG5C34DPCQsDZld5U4JzjrOL6Zb9ZgJxLx9bSHfytNYkkVT9z2Y1IsE02oFKEppx1hoSZ11AqcyRL3Z2CDUghS2EU413NKNpqeesGZUeFXU3LxGFX2/hrSbeeD4hCTu14Rpb+zywMODMvHbnzG5lDXfdBT1ucUGrf84nZhII+ZzoV9kjpxchIlslRwoqA6hbu1N+l11Vz9lZOXnrYz87jnOR9m6gc4nWSZK1qBVn0/LO6/kbAtja51lzfWdivpnWfjPBoN9luHCqdc464c7VIsSZt8Fn2GGzwGmzrHjYjVlI5ooNhStQcRafUnntjKbrB0htaLPHKdagXLJd+nwOZAtlpPNLxbnoN7tiu+TCrUQJbidI5UsolPiyskab1YKQz7nqztliKo90vtRyALVgVGcVDFFd1tg8EARo3vOvl3M046wlJM66gIxcIud2dPbPNRyUdjQb3XhiTRKyBE6bFb0eu+qFVjxbRL5YruucKfHGLcoaQxocFYfNgi19HpwJaxMLEXnGWSsRKG58YmeqlpNzyY67ZtJ5aLuwzsSyYExd6mXAbVflLkwsppWF2N/88FHdA55LZY6FZF5TUiNQEWethKQoY9sQdGP/5iCOrjVx9mQYuwZ9qhNNaxmUF6NGDeiuxDhXO2cuRNIF5IudC+NQAi+abLD4Xere22uRRLa4LEa/mkr5m7oyMjGAuvaa2W6Pk5qyRj0oPc419xvRbyZKJLtVnCkDqOu4JcNBF2Y67Fy3YiKibsaZYMjvgstOcfp6iKTzsFqY0kNeDzWD2fVCzllrSJx1AZm8EGfqSvf0IpyJejfNghxp36rnDJAWWmqds1ZR+P1eZ9OLw0IyjwENCX6AlPKktawxnFpeq1+PSjnh8nMulzlOzSY63m8GVBp9G4nEWuYSWfR7nbCrCNzwu2yq+rgmIhns2xTE+563B787tYDvaehXqSackkYz1M7Ba4V650yIMxcu2tyDyWimaxv+aymUynhgLKI5Qr+aAb8T+VLZsKCUTEGaGVi9SBSf/06+7qkWzhkgBd6sV3GWzBWaOmdio2UqqrascXlsO9B+OmBMRSCIHvobpAOLfjPxfh3wdak4k+9JfXXuY0MBF2ZWuXdLzDjbqlKcWSxMSmwkcaaZxZQUDNNss7m3Q+Isni0gkS2Sc9YCEmddgAiXWImyRqB+SaJyQ1RRSqKlR0U4bI2i8Pt9DlVljVoYDXlxZj6lyQmIpPNKmWUzFFFUp9drMppBOl/CecOdF2fiBqy2rHEmpr5sMKDCXeCcy83dHvzx5dtwaKQPH7n1CV275aKkTnfPWYu+u2l55spw0IV9m4MA1s68s6PnosgUSrr7zYCqkB+DFqSVXqSlZY1GPkc9mqURCvwu24qPiTALknPW+LXxOKQGfrWiKpouKGXe1YixKXqds1imAKfNYngPdp9v+WI0VyzhobORJSXBIb8DC8m8YU7ySqF87uok9G0IulY9Sl+UwW/W4KiM9HuprFEHwtVuhpq0bD2IGH1yzppD4qwLyKyQOBtSFmHLL9JaSkkG/S7Mq7zxih3IRq5Is3hjaZ5aTvWMM8H2AS9S+ZKm3c9Ftc5Zk56zlUpqBCoOnto4/dl4rmWMviCgYgE7n8whWyhjS68bFgvDx1++H7liGX/3o8c0L2oq7qrGtEbZBYhlmgvJ6bgU0++yW3HhpiAYg+lLG9UKiLuflPrNLm9HnAnhZFDZU73yKvH5n+tg30ujOV7V+F12TbO81hKtes4AaRE/rdJhaRQgxRjDUEB/j5O0sDQ+5a3eYvTouRiyhUq/GSBtJOZLZcRbXFfMRrOyxqGAC/FsUanSWQ3ORdLo9zqaOtu1jIS8OBtOdyRRcC2zmMrXdVCrEc6ZlpE8alDEGTlnTSFx1gVUyho7++fq9zpgs7C6O2gxFQlZAuGcqYlQbxWF30ychVM5lLm6PqlqKomN6nfcwsmcqsGYbocVTpulbkriyTlJnO1agZ4zh80Cn9PWdOZaNbPxrOKQtEJNz9nE4tL+gdGQF+99zm786olZ3HpU/awkoLJZoNU5s1ml16BlWWM0o5Ra+Zw27BzwmVqcPTC2iAMf/iXuODnf8rF3PxXGnmF/y5TRZuhJYG2G+GxUn5Nw7TuZgqemrNG/nssas8WmwhUANva4NZY11n/fDQdcukcWxDL1Hbl2UUa3VCU23vPk0n4zoHK/mU+ufvS8FpqVNYqNudUMBZlYzKjuNxNsD3lRLHNMRilOXwtqkrftVgv8LpvhZY3ib0XOWXNInHUBwjnrdJS+xcIw6K8fpy8WVGp6zob8ThTLXFVJ3XwiB4etcRR+vxxvXM9tadWv1oiRfm3irFAqI54tos+r7nl6GwyAPjmTwMagCwHXysz26PXaVf0Nkrkiwqm86vky0gK20NQBE+mM1TfbNz1jOy7a0oMP/e/jCGtYhAvHRk+gRcClQpzFstgQrPzu+zf34Oi5qGnLln766AzKHPjHnx5DqckGSK5YarvfDOhEWaOYsVP5HPT7HGDMOHeuHslcEU6bpWlfpXhvr0cSuSJ8TQJBABEc0XoBzzlHNFNAT4Mht61majZDSg02/hrqc9rgsFqWOGf3nAljT1W/GVC5DnWyBLcTRNIFMFaZ/1hNu32ARqAlRl8wOiDdy5+ivjNNRNJ5VRt2/U02x/UyGc3AYbMgpHI9tV4hcdYFKM5Zh8UZIC3EmpU1qiknGQw07l2rZT4hlSU2akzt8zrleOPl5RYLcqqW1kX7xh43HDaLanGm7Dg2WGjU0uOx150NcmI2id0r0G8m6PU4VIkz0VA9KovWVgRcdpS5FM3ciIk6/QNWC8MnX74fiWwBH/6/J1Q9FyAtgno8dl2bEwG3XaU4q7iG+zcHsZDMY8qkw4gPn5hDr8eO4zMJ/PChxiErR85GkSuW2+o3A6RFq8dhNUw4VYYTVxYHdqsFfR5Hx3vOWjlD6zWtMVeUQlpaOmdBFxZTeaUPuhFK6EsDh0v0OOnZAIllCqp6n7XCGJMqNeT7SmW+2dJB1sJJ7rZQkEgqj6DbDqtl+b223QTNdimVOaaiGWzR6KbsGJCqUJ6c0xbwtZ6R0nJb95wBUmmj4eJMjtG31HkfEhVInHUBwjnzdDitERCDqOuIMzFbRkU5iQiWUFMGNZ9sHujRLM5V3BxDGnvOrBaGkX6P6t02kXio1jnr8diXpTUWS2U8OZfEeSvQbyZo5ODVMiY3VI+E1IkzsYBrltg4sZhByOdc9p7dPeTHu67bhf99ZAq/emJW1fPNxrOaSxoFQbe96Xmm80XEMgVs6FkqzgDgUROGgpxZSOHMQgrvedZu7N8cxL/86mTDhfLdcgT45aPtiTPA2DlkkQYbPVJEeecWh6lcsWU/i99lQzpfWnc9LKIfr9UcR+EwtypJrBf6Us1QwIVcUV8CaCzTGecMEIOopWtmpd9s6edHlOB3nThLN+4zqoxJWB1xNh3LoFjmqpMaBX1eB/q8DpwmcaYaMe9OzWZzv7d5IJsezkVpxpkaSJx1ASvpnEmRunV6ztJ5MNa8mV4g+kfU7ILPxZuLs74miUF6xRkg9UCpjeANyz0I9VKu6iE5VksXHeOLaeRLZexaUXFmx6IG52xbv7oboyiLaeYwTETSDcsk33HNDpy/IYC/veVRVcEWc4mc5hlngqC7+cDs6hh9wfkbArBZGB4xYd/ZbcfnAADX7RnE+5+3B9OxLL5611jdx979ZBh7NwYMcRkkR92YxehiKg+/07asvHAw4OrogjeZLbYUH+L76y0UJKkiyRKofE5ahYI0C58A2hMDUgpkZ8RZdTqw6De7fHSpcxZwS+WPC03mb5qRZn1GPqcNPqdt1coaRVKj1rJGANg54CNxpoFWn81q1G7wamGSBlCrgsRZF6D0nHU4EARonNoUlXcr1VjRSk2+ihvvfDLX1BXp9y1v0lZ+NpGD12HVlO4kGAl5MR5ON+3ZEQjnrF+1c+ZY5pydlJMaV9Q58zoQVTHn7MxCGkOB5S5XIxTnrInoObuYxpbe+jdau9WCv3/RXswlcvjNsdbu2Xyi+XukGcEWZY3T0coAaoHLbsWeDX5D4vT/5Zcn8IrP3YUP3PIovnbXGO56ckFTv10th4/PYdegD1v6PHj6jhCuPW8A/3H49LL3W7ZQwsNno22XNAoGDRy8G03n6/YiDfjUj+DQg9RT1fw9LvpB11tpY0JFkiUAbJAXVdMtQkHEZ66RGFACKDSKgVyxhEyh1JG0RkD02EjvwXr9ZoBU/hjyObrOOWuVONyoamYlOCcCpBrcM5qxY9CHU3NJ0/YIm41mwTC19PmkskajXttsoYSFZI7CQFRA4qwLWKk5Z0DjOH0tu5UuuxVBt73lQqtQKmMxlW9R1ih9L1xnl7JVSWQztoe8yJfKmFKR8rSo2TmzI5peGphxYjYBxoCdg51PaqychwOJXBH5YvMSrbFwSglJUUNlAVtf9BRLZUzHsk0DRi7e2guvw4qHz0abPhfnXOpL1DiAWtBKnE3JDsDG4NJz3bepB0fPxVQljjbjliOTODWXxE+OTuND//s4/ugL9+LSj/wal/79r/Dqz9+N/77vrOpjJXNF3HsmjOv2DCpfe9/z9iCRK+LfD59e8tiHxiPIl8pth4EIhKNuxE06ki7UXSQOBiQB2O5r3oiUCnGmZuNhLaI4Zy3EmdpUv0roS/0FoN4ep04NoBb0eZ1YTOYb9psJBvzOjiaLdoJoOq/Eo9dDbdhLJ5iIpGG1sCXl5WrZOehDLFPoOidztRAtImrWM/1eB/KlctP+ci2I9RY5Z60hcdYFCBer02mNQKVfrDbMI5opIKhip0UgpT42v9AvJFun8NUbDKr8vI4B1ILRkCSS1PSdiTIXNXPOAGm3uFjmS0qjTs4msK3PA7ej839DgbgR15u5Vs3YQkoZL6CGSs9ZfXdhOpZFqcyb7oJaLQwXbelpKc6i6QLypXJbZY3pfAmFBj1EYud+KLj0fXTR5iAS2aLSj6cHzjlmYzm86uAWHPl/z8a9H7ge33jTIXzw+RfgWecPYT6Rw9/+6DHV7sGdpxZQKHFcWyXO9gwH8LJLNuNrd40rCZmA1G9mtTAcHKm/uNTKSMiLTKFkyOKt0QDUQQ0pr3pQM8fLL288JNerc9YirdHtsKLXY2+5qaWm5wxo3btWi+gf1XIv0kK/z4FUvoT7z0Tq9psJBgx0klcKaVOk8d+3UUvDSnAuksFwwNU0SbURu+QNTyptVEcl3E1dWSMAJSSnXShGXz0kzrqAdKEEu5XpunBppdGOZiyd11TnP6SiR6Uy46yxwPI6rHDYLPUDQZI5Xf1mQNWss/nWF3SRcqX29RcXvepZZydnkyvabwZUyhYiTUob49kCwqm86jAQoLrnrP5xJ1T2D1y8tQfHpuNNB5+K99CQXudMXow0cs+mYxmEfA44bUtF8/7NPQCARyf1950tpvLIl8oYDrjkwbsuXLVrAG96xig+/vL9+PLrD6JU5vjuAxOqjnfb8Vn4XTZcuq13ydf/4tm7wRjwL788qXzt7ifDuHBTUBEb7bJDjqx+cq79yOpGi8ROzzpTGwgCrL+yxmRO+ny0Eq+AVALcSlTFZIHdqN/RYbOg3+vQ7JyJa2onA0EA4KePTdftNxN0mzjLFkQ5aOMF+YagdM9WU+pvNJNthESIapTTKu7lRGWjW01Zo2grCddpK9EDDaBWT8vVJmNsC2PsMGPsGGPsccbYn9V8/y8ZY5wxFurcaa5vMvnSirhmADDkry/OopnWQwuXHCfgwsRipmkZlLi5NRt+zBhrmBg034ZzFvI54HPaMBZOt3xsOKVuJohA7DYJByBXLOHMQmpF+82k85D+Xs2icEUYiJayxkrpV/0F7ISYcdaif+CSrb0olnlTASTeh+04Z0BjcTYVzSrhBNXsHvLBabPgkQn94ky4TBvqHB8AtvV78YydIfzP/RMtF0TlMsfhE/N45u6BZZsEG3vceMOVo7jlyCQen4ohnS/ikXPG9ZsBUtM9ADxpwAKo0XDiSq9qZxa9iWwRfrXiLLfOyhpV9pwB0vtZTVqjx2FdtulRzXBQu1Oj9LJ1WJz94rGZuv1mggGfE4up1REyemhVZgpIJaulMm+rJ1YvU9EMNuooaQSk96PXYaU4fZVE5XC3evPuaqldy7TLZDQDC0Pdey6xFDVWQBHAeznn5wO4AsCfMsYuACThBuDZANQ3ThCayRZK8KxQOVzAbYPLblkuzjQmZF2xvQ8LyVzThbfaIdJ9XseyG0auWEIsU2jqujWDMYbRkFdVWaPagY0CIWLFLu9T8ymUynxFZ5wBVWWNTS6sYtablrJGp80Kp83SsC9nYlG6ALfqHziwpQcA8PDZSMPHCOdMbyCI6I9rJM5magZQC2xWC/ZuDLQVCqKUTDbZfPjDQ1sxGc3gt6fmmx7r8ak45hM5XHfeYN3vv+OaHQi67fjYz47jgbEICiXesF9GDwN+J/xOW9virFgqI5Et1t3oGezgcN9CqYxcsayi52ydBoKoTGsEpM91y7TGBgK8muGACzMahbiWeZt66K9KB272+Qn5nSjz5htfZqIyDqZ5WSOw8nH6pTLHTCyLjTrdFMYYdgxSYqNaFuUqqHrz7mpp1vOvh8lIBkM6y1fXGy1fIc75NOf8Ifm/EwCOAdgkf/tTAP4aQHdsH3UpmUJpRcJAACjlV9U9Z6UyRzyrrefsWecPwWph+PljMw0fM6dE4Tc/bl+dQYh6B1BXMxry4sxC6wt6ONl6oVGNcKzEbtPJ2ZVPapTOQ64XbyLOxhYkl0ttjL7A77I37DmbiKSxIehueQHu9zmxrd/TtO9MBNMM6ixrDLRyzmIZbGywi7d/cw8em4rpnnlVcc4aLzqefcEQQj4HvnNv8/2t247PgTHgmvMG6n4/6LbjndfuxO9OLeBff3MKNgP7zYDKAqhdcSbmJTYKBAHUzUfUSkoWH1TWWJ9Etgi7lcFpa71o2hB0I5ouNC1HjqVbzyIbCrq0lzV2PBCk8r5s1G8GVErx1ZY2JnNFfOveceV9uNJE6gx+r0UZb7DCfWfziRyKZa5bnAEUp6+FRoFM9RA9/0Y6Z1TSqA5N8pUxNgLgYgD3MsZeCGCSc/5IJ06MqLCSZY2AVNpYfdNMZAvgXFspSa/XgSu29+HnjzcWZ/OJHHo89qalL0D9QYgLKl23ZoyGvJiMZJArNk8iiqTzyo6qGmp7zk7OJmCzME3ulBHUOnj1GAunsDHo0vz+CrhtTXvOmiU1VnPJ1l48dDbSsPx1Lp6Dz2nTPYBdLOLqDaJO5opIZIsYbiCeLtoSRLZQ1t3LMBPLwsKabz44bBa8/NIt+M3xuaYL1dtOzOGizT3ob+IUv/Zp27Cpx40HxyPYvzmoa8REM3YM+NruORMubr3UOI9DmrXUiV4eIbZa9VS57FY4rI1d4bWKmAHHWOvddDWzziLpfMs0uOGAC4upfMMh6vWIZQryvM1OOWfS56tZvxlQue+o7Y/84UPn8Le3PIY/+Mzv8OB440qBTqG2rBHQnqDZLiIxt51F+45BH2bi2XX3udVDJNU8tbMar0O6Hho1iHoqlmlLhK8nVIszxpgPwA8AvAdSqePfAvh/Kn7urYyxBxhjD8zPNy/dIeqTKZRWNOVvsGbeSauZNY147t5hPDWfwum5RN3vzydyqsoS+33OZc5ZOwOoBaMhL8q8EmBRD865NB9GizhzLxVFJ2aSGA154VCxK20kLrsVXoe1aenNmYWUpjAQgd9lb9JzllE9r+birT2YS+Qw1WC3tp0ZZ0BzcTYjYvQblF+KUJCjOvvOZmJZDPidsLVwEF99cIsUDHJ//WCQhWQOR89Fl0To18Nps+KvbjgPAAyL0K9mx6AXM/FsWwOaW6X4Dfg7M+tMnHOrnjNAcs/Wm3OmJslSIJzgZn1n0sDj1mWNgLYew1haGmCupiRLDwG3DTYLa9pvBlSJM5Xv1afmU3DZLSiWOF7xubvwz7880TBBthMon7smgrnf54TVwla8rFEkf7azaBeJjdR31ppWqZ3VMMakyiUDyhpLZY7paJaSGlWiarXIGLNDEmbf4pz/EMAOAKMAHmGMjQHYDOAhxthw7c9yzj/POb+Mc37ZwED9khyiOdkVLGsEpJvmbDynuBl66/yfs1d6OzQqbZxLZFU5X31eB9L50pId1nkVMfytEE7WU/ON3YBErohCiWtyzmxWC/xO25KyxpXuNxP0eBxNSxLGwvrEWcBV3znLFkqYT+RaJjUKLt4iJQ826jubS2R1lzQCzQNBpuRBusMNesJG+73wO214RGff2Uw829CVq2Yk5MWVO/vx3w2CQW4/MQ/O0VKcAcALL9qIm19wAW562oieU27KjoH2F0CRFmMpBvxOzHcgEERtWSMguWvrTZxJYSnqru8V56yJOMu07lEeCmrvcYplWou+dmCMYe+mIJ534bKlzBJCGssax8MpbA/58PP3XIWXXrIZn73tNF76H3c13Lg0GvG563E3fu2sFoZBvxMzsZUNBKmIM/0hETspTl81kRbDyGvp9TZfQ6jFiPLV9YSatEYG4EsAjnHO/wUAOOePcs4HOecjnPMRAOcAXMI5b1zDRugmnV9ZcTYUcCFTKClN4pU6f203xaGAC5ds7WlY2jifVOeKVDdpKz8r3xT7W/SrNUOIkjNNQkGUxaQGcQYAPV47ouk80vkizi6mV7zfTNDndSi/Qy3RdB7RdAGjGpIaBQG3va4bJWZtqS1r3LPBD5fd0rDvbDae053UCEhlg267ta44E70VjW4WFgvDhZuCOHpOv3M2rFJY/tGhbZiMZvC7OsEgh4/PYdDvxN6NgZbHsVgYXn/laNMEVL3sMCCxsdL7Un/hPuh3dqTnLKFyyDIgnLP1VR6VzBVUO2eiN2m6wayzcplLA49bLAA36BBn0UzrXrZ2+fGfXol3Xbez6WO8Thu8Dqsyq7MVY+E0RkNe+F12/NMrLsLn/vhSTEYzuPEzd+Irvz/TscHrgkg6D5/T1rJ6Q+o3X2nnLAu/y9ZWqerWPg8cVgvF6beAcy6XHKtfzzRKy9aKmHG2mcSZKtQ4Z1cCeC2A6xhjR+R//qDD50VUsRpljQAwJ1+koy0WVM147oXDeGwyvqx0kHOuOgpfNGlXW+tq+9WaEXTbEfI5moozcVHS4pwBkjMQSReUnbzdQz7d59kOPR47Fhv0nInfW79zttxdmFiULsBqyxrtVgv2b+rBQ3WcM8655Jy14Y4C0t+5rnMmlzU2S1PcvyWI4zPxln2J9ZiJ10+CrMezLxhCv9eBb9cEgxRKZfz25DyuPW9QVT9QJ9nW74HNwtoUZ40DQQBpZEInes6UqHg1ZY1O+7ocQq3mtQGkcul+r6NhKXIiW0SZt75fKDM1NQRQSOWSnRVnAFR91kIqZ50VS2VMLKaXhC4998Jh/Pw9V+HKnSF8+P+ewOu+fB/S+c6956LpQsseQEAkaK6sODMiJMJmtWAk5KGyxhZkCiXkimVNzlmzDV4tTBpQvrqeUJPWeCfnnHHO93POD8j//LTmMSOc84XOneb6JrsKzhkAJbGxndkyN8iljb+occ8SuSKyhbIqcVZvEKLafrVWSImNrZ0zLVH6gFROGM0UcGJGKlvZvYrOWaMo/bGwiNHXltQISBH19ZqvlRlnKssaAanv7PHJ5QJIvEfaKWsEGouzmVgWIZ+z6W7yRZt7UChxHJ/WVn6UksNGmgm/ahw2C15+2eZlwSAPjEWQyBVxrYqSxk5jt1qwtd/TVihIJJ2Hw2ppOBpkMOBEKl8yPNVOS1kj9Zy1RppRVt85i2ZaJwMC0gaP227VJAbiK+CcqWXAp06cTUYzKJb5sk2wQb8LX7rpMvzdjefjztML+M2xuU6dqtQ3rWJBrmf2XLtMRTMNZ0FqYSfF6bekVc9vPfoMcs6MKF9dT9CwgS5gpZ0zZd5JTDhn+uOLt/V7sWfYv0ycKQOoVZSs9dWZtbGQzLUVBiIY6W8szjL5Er505xlYLUzzbk+PWyprPDmbgMNmwTYdpYNG0OtZPoZAcGYhDQvTJqQEfpcN2UIZ+eLSpvaJxTQcNosm4Xzx1l7kS2U8MRVf8nURFNBOWSPQzDnLtrxR7N8cBADN885aDaCuxx8e3IpSmeN7D1SCQQ6fmIPdyvCMXSFNz98pdg60F6cfTUnORyNnQrxvjA4FSWoqa7Svv7JGOa1RLRuC7oY9Z2oXgIwxSQyYrKxRLQN+p6q0xrGwtGE1UucewBjDqw9tBQCcizSfHdcO0XReVa/ecNCFZK7YVuiPVqQB1O27KTsHfDi7mNaU/rne0NOm0ed1IJEtLrvXa2UqmkGgzfLV9QSJsy5gJeecAcCQ7FTMJirizO+0tUyda8RzLxzGA+ORJbuMagdQA1VljdU9Z0l1JZGtGB3wYi6RW3YzyhZKeOs3HsDdT4XxT6/Yr/m5ej12RFJ5nJhNYtegr2PpYq3PQ7qw1ksGG1tIYWOPW1dpqJgfVruInVjMYEuvGxYNv+/FW3sAAA/V9J0pM87a/DsH3DbE6sxkm45mGoaBCDb1uNHndeARjX1nagZQ1yKCQb5z34TSg3Lb8TlcPtqvaeHcSXYM+jAWTume/dZqOHFtSbVRiM+3V8VIhvXonCVyRU2Lpg1Bl7ITXouamVqCoYBTdVkj51wOBDHH4m5AZVnjuFyhMNJglqTPaUOPx67063aCSLqAPhWv23DNxmynSeeLiKQLxoizIT/KvHkP+XpHzUiFWoSQa1SBo5bJCMXoa4HEmckplzmyhfKKzjnzOGzwu2yKcxHN5JXFuB6ee+EwOAd+9cSs8rU5DeIs4LLBbmXLAkGMEGfb5VKTsaoLeq5Ywtu+8SDuPL2AT7xsP15y8WbNx+3xOBDPFnF8Or5qJY0A0OdtPOtsLJzSPXut0bDeiUhasxM3FHBhU497WWKj4q62WdbYKLxkJpZtebNgjGH/5iAe1SnOhjWW6/zhoa2YjGbw21PzOBtO4/Rc0hQljYIdAz4UShwTOnf5W/UMCZdU7fwotSSzRXgcVlWbJAGXDcl8seMhDYC0OL3z1Op2BOSKJeSLZeUzrYYNPS7Es8W65acxDem+wwFX09THapK5Ikplbh7nzOdELFNo2Y96ZiEFj8Pa9H61qcet9OR0gkhKnXM2tMKzzkRirhGDiXcOUGJjKxaVNg31n6F6gWx6mIxmsJli9FVD4szkZOUL/0qWNQJLU5tibTZhnzfkx0i/Z0lqo+KcqSh/U2ZtyD1nqVwR6XzJGOcsJF3QxW5bvljGn3zzIdxxch7/+JJ9eMVlW3QdV5T0zCVyqyrOxA25NgqXcy7NONNZbhmQd9lr+87OLqZVh4FUc/HWnmWJjUpZY5vJg8E64iyRLSCRK6oqO9y/uQen5hKaGvZFqVYrZ66W51wwjH6vA9+57yxuOy5tZqiJ0F8pdgxI7xe9jfctnTO/cM6ML2tU6z76XXZwDiQ7GNAg+NHDU/jjL93bkRAUtYjwEy3u7MYms8607M4PBV2YS2RVCeFK73PnovS1IO4/4RYzoMbDaWzr9zYNGdnc6+5YWWOhVEYiV1TdcwasnHNmxIwzwfYBLxgjcdaMylgkDc6ZWEMYIM7IOVMPiTOTk8nL4mwFnTNALjcRaY1tlpIwxnDDhcO46/SCcoOdT+RgtzLVx+3zVgZRaxF2rRAJWmcWUiiUynjntx/Cb47P4SMvvlDpBdBD9cXvvOHVSWoEKiWhtRfWxVQeiWxRV1IjAKUEKl5VLhhLF5DIFlXH6Fdz8dZeTEYzS8rZZuNZuOwW1SlyjQi67UjIu+4CLc7WRZuDKHPgscl4y8dWHz/otmveVBHBIL8+NofvP3QO20Ne3e5mJ9gudqd19p1FWqTG9XjssFtZR3rO1Iuz+q5wJxBR7M0GxXcapR9Pw+es2SI+ki6AMXU9yhsCLhRKHIsqSqaU3meTlDWqnXU2tpBqGbq0udeDyUhGmS1qJOJ1U+OWKGWNK+acGRcS4bJbsaXXQ3H6TVhU5t1pcM587Ttn8ay0NiBxph4SZyYnU1hN50wua0zn296tvGHvMIplrrgBIm1RbTx49awNsaAJGeCcuexWbOpx4+RsAu/+zsP45ROz+PAL9+KPr9jW1nGrRefqOmfSedQ6Z+0kNQJSHxewtOdMSWrU6ZwBS/vO5hLSjLN2I+TFIrHaPZtqMeOsmgvk+WInZtUnNkox+voWHK+Wg0Eem4ybqqQRkF7LAb9Tl3PGeev5V4wx1Sl4WtCSRig2HlYiFES8J9vt52gHIUK1lDUK52yqTmJjNJ1HwGVXVUKqxamJZfQHU3UC4Zw1e68WS2VMRNItA6E29biRKZQ6ItK19AC6HVYEXLaVK2uMZWFh2npzm7Fz0IfTsyTOGiF9NrXlB9Tr+dfKtIHlq+sFEmcmRyQPrbxzVik3iWUKbe9WHtjcg6GAE794TBJnc4msprJEqazReOcMkOL0bz06jZ89NoMPPv8C3PT0kbaPKRagXod1VS9IinNW03N2ZqFxgpga/HXKGsUsOz3pj3s3BuCwWvDwRKXvzIgZZ0BlMVed2CgG6KopOxzyu+CyW5b0JbZiJpbVveAYDXnx9B39AMxV0ijYMeDVldiYzBVRLPOW5VUD8rXHSLSkEfpW0DkT78l6aaIrhZYkS8FQUPpcikVXNVpmkWnpcVLKGk3inCnirEl/5FQ0i0KJY7TFdVb04nSi70xJ6FNZyraScfpT0QyGAi7YdYaN1bJz0IczC/oDi9Y6i+mC9rFA8v2zHXE2GZXWBuScqYfEmcnJ5KWLzIqLM79TKTeJpgu6ZpxVY7Ew3LB3GLefnEMmX5IDPdQvXvu8DmUItbgZGtFzBki16gDwgT/Ygzc9Y9SQY4oFxK4h/6oODxY35NoL69hCClYL0yWkACk0AVi6gG3HOXParNi7KYCHx6PK1+YSubbDQIAG4iyWBWPqyhotFoaRfq82cRbPau43q+bd1+/C9XsGcXCkT/cxOsXOQR+enE9pLsGKqgyKGFSZgqeFZK6oasYZUHGQVmIQtdjciK6iOFOcM6f6a7zTZkXI58BMfLmYiKiMbQeqnDMV4qydkS6dQJR7NXuvigqFbQ2SGgWbZHHWib4zZbSByhCI6n7zTmNUjL5g56AP+VJZd2DRWkftSIVqbFYLejz2NsUZOWdaIXFmclazrBGQerGKZW7IbuVz9w4jWyjjjpPzWNAYhd/vdSCRKyJXlISdhWkfDN2It1+9A1+66TK89Zk7DDkeUCkhOW8VSxoBqWzTbbcuK5s6E05hc69b946l12EDY0tLBScWM/C7bLpd1ou39OLoZFSJ/Z+P59qecQY0EmcZDPicqn//kX4vzoTVibNCqYyFZE5zUmM1V2zvx5def7DpgOzVYseAD7FMQXMPgtqgiAG/syM9Z2p7F8XGQ70h60Yj3pP10kRXimROem4tzhkgzTqbauCcqR1yO+BzwsKgKk7fbIEgTpsVPR57U3GmxOi36BvdLG9oTXZEnGl0zgLaZs+1QyfEGUChII2QhpFrvz/3eRyq+kIbMRXNwG5lhlTCrBfMd+cnliDE2UpG6QOVhLzjM1KfjRE3xEOjfejx2PGTR6cRTuW1lTX6Kg7QfCKHfp/TsNlhG3vcuP78IUOOJQi4bHjW+UN47r5hQ4+rB6kkdOnib6yNpEZAcpP8ThviNc6ZHtdMcMm2HmQLZZyYkZIRE7liR50zLT1hIyEvJhbTqspl5hI5cK49Rr9b2CGHgmjtO1tUBqC2ds4WU/m6s/n0ktLknImesxVwzuRAnXqjLlYKPWmNQOPyt2gmr7rSwma1IORzqorTj2bycNgscNnNs2wJ+ZxKD3Q9ziyk4bZbWy5Kg247/E5bR2adaRVnG4IuzCdyHS8NLJc5pmJZQ8JABCTOmhNNFzQNoBZUVy7pYTKSwXDQpWn+6XrHPFc5oi4ZOc55pcsaxcLypCzOjEjIslktePb5Q/j5Y9PgXNtwYWXWRjKPhWROScoyK4wxfPGmy3DteavfM9TjsS8JBOGcywli7aUA+l32ZT1nepIaBRdv7QUAPHQ2UonRN8A5CzQUZ+rPdaTfg0KJ13UKapmRQxLWrDiTF0BPzmsb9qo2xln8zZsterXAOdcYCLJyPWfi87OaPWeJnPZAEADYGHTVDwRJFTSVTm1UOeMrli4g6Lavapl4La3Ca8bDKWzr96g65029nZl1Fk0X4LJbVFffDAVdKHPjZw3WEk7lkS+WlXAZIwi47Bj0O0mcNaDVKJNGVPf862EqmqGSRo2QODM5wjnzrHBZowjbEAl17facCZ574TAKJalXRVNZo3w+wjkzqt9sPdDndSwRZ/PJHFL5EkZa9EG0IuC2KwtYzjnORTJtOWcbgy4M+p14+GxUKWszMhBELIQ555iOZjSJJ1GWpKa0cSYmnXs7PWdmZkPABbfdqjkURO0OvtGzznLFMgolrtoZctulYdUrkdYoRNlq95zZrQxOjSW0G3rcSGSLSqAIoG2mlmDnoE/VYjqWab/32WgG/M6mIuZMWP0mWKdmnUmlbOr/HkqcfodDQYyccVaN9H5Sn6y7XsgWSkjnS7raQfq87ZU10owz7ZA4MzlKIMgKizOHzYJ+rwMnhTjTsdtSjyt3huCVfxetaY1AlTgzuXNmJno8jiVzzsZEUmPbzplN6ZWZT+SQK5Z1B4wAktt4ydZePHw2oqT1GVHW6LJb4bBZlIVwIldEKl/SVE4jFljjasSZ3K+hN0rf7FgsDNsHvJp3p9XOvxLXBaP6zlIa53gxxuB32TrunJXLXBE2q5rWKCdZanWkNigx+BVBoSdRceegD3OJXMvXICo7Z2ZioEl4TanMMbHYOkZf0KlZZ1pDIIRzbXTfZy1GzjirZpfOwKK1jtpApnr0eaU1hJ7XtFAqYzaeJedMIyTOTM5q9ZwBUt9ZOx/oerjsVlwjx4NrEViirHEhmcO8xjCR9U6fx74kSl+kDrZb1hhwVZwzJamxjbJGQJp3NhZO44RcTmtEWSMgCQIhJEX8t5ayxkG/Ex6HFWdUJDbOxDJw2iymW0gayY4Bn2bnTO38KyHIjUps1DNkWRJnnRVMiWwRYq0TW8U5Z1pKPqsRn5/qUt+oMlNL/Xt/l8o+oVhGfUT/SjHgdyKdLykbANVMRTNSjL7KWZKbetxI5IpKH6JRRNIFVQOoBUMBYzdHGiFKOI1etO8c9CGZK65YqEm3IMoS+3SWNRbLfEmPuVpm41mUOSU1aoXEmclZrTlnADBc5VoYudB845WjeO7eYU3OgljUnVlIoVDiJM400Ot1IJYpKA3eZ8Ip2Cys7YtlwGVTSgUnFqUbbTtljUCl7+wXj8/AbmW6kqXqEXTblZ35aXmnX8v7jzGGbSrj9GfiUlKjmXpjjGbnoA+T0Qwy+ZLqn4moTPEL+ZxgDIbNOhMbCFoEiN9p77hzVt2vuao9Z9miphh9gfj8TFc5Z0psu8ayRgAtS9FimYLSP2oWxAZjvf7ISoy++rJGADgXNTYUJJLS5pz1ywmacx0WN1PRLDwOq+GbWDsoFKQuUQ3DyGtpZxC1SCClskZtkDgzOZl8CVYLg9268gs9EafvslsMde4u3daLz732Uk1T6i0Whl6PQ3FUSJypRyyURF/L2EIKW/s8ml7/elT3nIkB1JvbFGf7NgVhszCcnE1i0G+cwFkqzmTnTOPNYjTkwVi49cJpJpZZs/1mgh0DPnAOVU6iQG15ld1qQZ/HsWpljYDsnNVxQ4xEvB+HA65V7TlL5gq6nLOhgAuMYUnSop5Ki829HjhtFpyabb6YjqbzponRF4T8jV1eca1Qm4orrp1G951JIRDq/x5WC0PI5zSs57MRIkbf6E0sSmysj+gZ09tzBgCLKe3vCREaROJMGyTOTE46X4Lbbl2VXXgRp2+WG2K/16EElIR85jinbkBE54qdszMLqbb7zYBK6RfnHBORNAb8zrZ7I90OK87fEABgrABfIs6iGTCmPWxkpF9dnP5MPLtmkxoFOwal94+W0sZIOq96YTDgN25xqL+sscPOmfx+3NrnQTxTQLm8Oj0yknOmXZw5bHIMflVZo9bYdkASA9sHfDjd5L1UKJWRypfMV9boayLOFlJw2S1KmWArxCBqI2edlcocsUxBcynbUMCFWYOc60ZMxzoTEjHgcyLgspE4q6HiauvrOQOwbCSPGqZoALUuSJyZnEyhtCr9ZkCl9twsN8Q+r0NZMNEwQ/WIi/FiShJS4+F0WzPOBAGXHWUOpPIlTCxmsKXXmIvvxVt7ABj7N651zgb96gdQC0ZCXhTLvOnONuccs7H2BlB3AyP9XjCmUZyl1PcMtUrB04IizrSUNbrsHe85E+/HLX0elDk67tQ1Qm/PGSCVNk7H2+s5A6S+s2bOmXitzNbHKTaQ6r1Xx8Mp+XOibmO112OHx2E11DmLZwooc+2lbIMGbo40YjKaxSaDw0AAqQR956APp0icLUGEgrVX1qj9PXEukkGf17HioXbdDokzk5MtlFY8Rl8wJIcxmOWG2Ffllg341vbi10jELnYkncdsPIdMoaS6Sb0ZYi5SPFPA2cV0W0mN1Vwi950ZkdQoCLrtiKUr4kxLGIhACNpmcfqLqTzypfKaL2t02a3Y0uvRNOssqmHGzqDfhXmDel5M65xlK84ZUHHSVhqR1qiHDUEXpqtmc0XTBdgsTPPxdsk9jOl8/ddcTwrkStDndcDC6jtnZxZSmjbBGJP6gI0cRK04mRoCQQCpasaons96ZAslLCRzhs44q2bXoB9Pdkic5Yqljr42nSKSzsPntMGhcWQG0K5zRjPO9EDizORk5LLG1UDs/pvlhhiSLxAOqwUBt77FxHpEXFgjqbzSI2REWaNozl9M5TEda2/GWTXCORsyKKkRkMJLErkiymWOqVhGV8z9iCxom4WCiISwtS7OAGCHhjj9XLGEVL6kuqRmMCA5Z0bEYSez+sRZMlfsaBy3EBxb+6WFSzRtnDj7xj3j+P3pBVWPTeSK8Lv0XeM3BN1Les4iackd1VqGL/qEnpyr/9kSr43ZAkGsFob+OoOopRj9DLZp3ATbbPAgaj0BLYDknC0k8yi0KOHWi5ih1qk+pJ2DPoRT+SUjZIzi3w8/iWf98x3IFdWHIZmBSCqvWaQLPA4bXHaLvp6zaMbwcQnrARJnJidTKMG1Ss6ZcC7M0nPW55XOZ8DvXNNJeEZTcc4KSoKYEWWNwjk7OZtAmbcfoy/Y2ufBP7xkH15+2WZDjgdIizoul47N6HTOBnxOeB1WjDcJBRGLjrVe1ghIoSBPzSdV9UpVgiJU9pz5nCiU+JIREHpJ5YpgDJoqEPwuO0pljrSGNEqtxDNFWC1MeS8amdj4qV+dxDfuHm/5uFyxhHyxrHyWtbIh6EIyV1RKQLXO1BLsGpJDHObrJzYKV9FsQ6gB6b1am9Y4Fc0gXypjVON1dpPBg6iFONEqzkQYWL0USiPo1ABqgRIKonHchxruPDWPeLaIxyZjhh+7k0hpufrXcn0eB8IaxS7nnAZQ64TEmcnJFEpw21fnz9TvdcJpsyDkN4k4k8saKQxEG26HFS67BZF0HmMLKTisFkMulgF5t/3xqTiA9mP0BYwx/NHlW3UJqEaI0tyJxTTS+ZIu54wxhpGQt2lCoeKcrQNxtnPQh1yxrGqnX2tQhJGzzhK5InwObUOWhVjpZGljLFNAwGWrSlM1Zpe/WCojks4v6QVrhB5XsRqReCrcs2i6oEtAbev3wmZhDfvOxGujR/h1mlCdQdRiA0dtjL5gc68HsUzBsH5HPQEtQKXfd7ZDfWeTHRpALehUYmO2UMKjsii770zE0GN3moiGsvJ69Pkcmp3IWKaAdL5EZY06IHFmcrKF1StrtFoYvv2WK/CmZ2xfleevRQyiphh97fR6HFiUyxq39ntaDgJWg1jAPiHEmUE9Z51AiLPj8iiGDToXBSMhr+I+1mMmloWFaRuw3q2IeUJqQkEiKW1JYWL4uBG9Hcms9sALUebXyVCQeFaa2yXKxo1yziLpAjgHZmMqxJmOfrxqxCaHcEIiOp0zu9WCkZC3YYiDcF7N0v9czUCdskalQkFjWaNYxBpV2iheN63lbMI569SsM5Hg16lNrE09brjsrcczaOWRiSgKJQ7GgAfGFg09dqfROlKhlj6vU/OcM+ECkzjTDokzk5POl1Y15ebSbb265mJ0gj4SZ7rp9TgQTecxFtbWpN4M0f/xxHRcLs8yr1skFnUnZiQhqdeVG+334lwk07AXYyaWxYDf2fYMuW5gx4AQZ61DQbQOQBU790YkxqXyRXg1ig8l7KaDzlk8U0DQbVfem0b1nIXlvpC5RLbl2AfhDLZT1ghUynmjKgeN12PXoK9hiIMQrgGd59lJRLJodX+iEqOvsW92s8Fx+ovpvK6AFuFczxo0a7CWqWgGA34nnLbOrG0sFobtoebjGfTwwLjklt1wwTAeGI+s2vgLPURSBWWsjh76PHZlVppaOl2+upZZ+yuILkcKBDHfDWk1UJyzdeBKGE2v146FZB7j4bQhSY1AZUEXyxSwIegytSAJemqcM51CciTklZv96/edSTPO1seNqM/rQK/Hrs4507iDLzZgjBhEndCRRihEQLKD8fZSWaMdLrsVTpvFsLTGcFJaQJV5/Yj3avSMGahGDKKeEuIsk9cdILVz0IexcKpu0EI0XYDfaTPlNWbAL/VHVjufY+E0tvV5YdFYoSBmnRnVdyZ6ALX2aPeLFMpOOWcdmnFWza6hxmJfL/ePLWL3kA/PumAIsUyha+L688Uykrlie2WNXicWk/rE2SaDxuysJ8x3pSOWkC2U4HbQnwmQSiC8Dit2DvlX+1S6jl6PAydnE8gVy4YkNQKA0yYtKgHj+s06hXAnjk0nYNExgFoghG2j0saZWBbDBo4AMDs7BtQtgLT2vnidNngdVkN6zpK5omZnyOdcibLGovK+DLrthjln1SEOMy1KGxXnzKlPUNmtFgz4nJiJZZAtlJAtlHX3he0c9KHMgbGF5Rsf8UxB2WAxG8qss6r36lg4pbmkEZA2Hp02i2FljZFUAX06EvpsVgv6fc6O9px1YsZZNTsHpPEMKYM2WEpljgfHI7hspA+HRvoAAPd1SWljVBmp0I44syOVLyFbUB+SNBnNwGmzKBvrhHpo1W9yMqvYc2Y2/C477vqb6/H8fRtW+1S6jj6vQ0me05og1gzRm2NUUmOnEIvghWQOg379Lp8y66zOAhKQnbN1EKMv2DHgU13W6LJb4NJwLTNq1lIqV4TXoa+sseOBIPJIkB6P3bCes3DV7nYrcZbMSc+p1zkDpFCQ6VhWd/iEQIQ4nJpbntgYzagfYL7SiEoO4VKWyhxnw2ld5eOMMTmx0ZhZZ4s6ewABYCjg7Mg8L865FK/e4QoD8X56SsMsxmacnE0gkS3i4EgvtvS5Meh3dk3fWWWkQns9Z9Kx1LtnU9EsNvW4KV1bByTOTAznnMRZDUG3XXOpCLG018co5wyAsrg0u3Pmtltht0rvG71hIIAkcv1OW91ZZ6lcEYlscd2UNQLAjkEvFpI5ZcB3I/TEOId8DkOivPUFgghx1kHnLFNQ+jaDbrthaY3hqllEMy3K0tpNawSADQEXpqIZJfRFr4jaMeADY/UT9qLpvCnDQABgQE4zFs7ZdEyK0dd7nd3U4zas5yzaRgjEoN/VEecsmi4gWyh3vKyxmdjXgxBil23rA2MMB0f7cP+Z7hBnizpHKlQjev7DGkobKUZfPyTOTEyuWAbnWLU5Z8TaoU++QTttFkOdnYpzZm5xxhhTov/b2bEVcfr1yhorMfrrq6wRaD1PKKojxjnkkwbhtksyp73nzOuwgbHOOWfZQgm5Yll5TwbdDsQyxjxXOJlHyOeEw2ZpXdaYay8QBJA2O6Zj2arQF31iwGW3Ykuvp24fTyxTMM28zVoGfNL1VIizSoy+vmvi5l6PYT1nkXRBd6CX5JwZL84mVygkYiTkhd3KcNKgxMb7xyIYDriU0JaD23oxFcsa5nJ2kmibrjZQEWdanLNJGkCtGxJnJkbU9pJzRrSLqDUf6dfepN4MEZxg9rJGoFLa2G58c0NxJgZQB8z/WhjFTpVx+pF0QXOcd6jOcF+tcM51iTOLnHDXKXEWlx25aucspjEJrRELyTxCPgeGAy5l/lgjEtki7Fam9I7qYWPQjXS+hAl5kdrOAnDXoA+n6yymY1Uuo9kIuG1wWC1KWaOYg6g3FXdzrxvhVB6ZNgegc84RSekvaxzwuxBO5VomfmpFCYnosDizWy3YMeDDcTmht10eGFvEZSO9SonewdE++evmn3e2qPSctVPWKL2P1Mbp54olzCdy2NRj7o1bs0LizMSIHiESZ0S7iAWTnib1Zoidf7OXNQKVhXC7kf+j/R5MRjLIF5cuWhRxZuKRAkazudcDh9WiQpxpXySGfE5E04WGYwvUkCmUUOb6eqoCLrsiooxGJDOKDQNDe85SOYR8TgwHXarKGn1ObQO6axHvdzHvsB1xtnPIhzMLqSWCgHMpCdGsPWeMMSlOX3HOUm1VKChx+tH2HJlkrohimesuaxwKOME5DHGvq5nq8ADqas7fEMDx6fbLGiejGUzFsjgoB4EAwJ7hAPxOW1eEgijz7gxwztSKM3E/JOdMHyTOTExGOGdU1ki0ibiwGtlvBkiCx2W3dMXsuaAiztrbsR0JeVHmwNmaOH2lrHEdBYJYLQyjIS+enGvedB9Jae99Cfm19zjUIqLitc45A6RSv045Z6KEUTjPQbeUhNaOEBWEk3n0+xzYEHSpCATR3o9Xi1h8HZMXwe2IqJ0DPuRL5SWfrXS+hEKJo8ekzhkAhPyVEtyxcBrb+j26KxSEo9RuaWO7C3IxCH7W4Dj9qVgWTptlRean7hn2YyaeRUTj8ORalH6zkV7la1YLwyXbersiFGQxlYfbbtUUyFRL0G2HhakXZ5M0gLotSJyZmAw5Z4RBDAddsFkYLtgQMPS4b7xyBJ965YGuSGNSxFmbO3lC4NaGgszEsgi67etuM2XHoBdPNXHOymXJ+dC6SOyX08HaKW1MKlHxesXZyjlnAAxxz8LJHPq9TgwHJOesejhyLdIMuPZEjwjAOTYd15zIWcsueUxKdShItOa1MiMDvopzNraQ0l3SCEhuNNC+OGs3BGJIDKI2WJyJkIiVuGfske93Yr6lXu4fW4TPacOe4aX3z4MjvTg5m2xb/HWaSDrfthi2Whh6PA6E1YozmnHWFiTOTEyWnDPCIEI+Jw7/5TV4wf6Nhh5315Afz+uS0QZBw8oaZXFW03e23mL0BTsGfBhfTC8r8xTEswWUOTSXNYoUvLbEWU5/GqHfZe/YEOp6PWcA2p51lsmXkMqXEPI7MBx0IV8sKzHa9UjmCm2FgQDAkN8JC5PCRdopmwKAHQPSZ6s6FEQkgZq1rBGQ3qvziRzKZY7xxXRbFQqDfifsVtb2rLNIm31GQ/K1zOhQkKkVDIk4f1gS+yfa7Dt7YCyCS7b1wlrjhooyxwfHzd13JvUetv/56fM6VAtR8f5dT2X+RkLizMRkKBCEMJAtffpLbdYCG3vc8DttylwivfR6HQi67Urjv2Amll2XN6K9GwMolTl+e3K+7vf1ztgJ+YRztvbKGmudM/Hvdp0zEaMf8jqVTYjpWONFfiJb1OUqVmOzWpQSuHbdLb/Ljg1B15LB5mLEgFkDQQDJOVtM5TAZlXpR23HOLBaGjT3uVS9r7Pc6wBgwZ3RZ4wrMOBMM+J3o8zracs5i6QJOzCZwcFvvsu9dtKUHdivD/SYvbWwntbOaPq9652wqmsGg3wmnjdaveiBxZmJEWWM7ZSIEQUi84coR/Ow9V+keQF3NSL9HicwWrFfn7Przh7C1z4N//c2puiV0eocTV8SZAWWNOtyhTqY1ChFWidIX4qy98ijRn9fvcyjOR7OyNCN6zoDK7ni7zhkgJYBWO2dCyJo1Sh+QRECZAw+dlRyUEZ0x+gJp1ll7gSDtljXarBaEfMbG6eeLZcwlcis2+4oxhj3DfhxrQ5w9dDYCzoHLqsJABC67Ffs395henEXbGEZeTZ9HvXM2Fc3SjLM2IHFmYigQhCCMw2W3Kv0c7TIS8i5xzgqlMhaSuXXpnNmtFrzrup14dDKG3xybW/Z9vfOvvE4b3HYrFtpYHLZb1pjIFpr2bOklni3CbbfCIUfYi4WTUc5Zv8+pBN80i9MXaY3tIsrU2onqFuwc9OH0XBLlsvS6CwcoaOqyRmkjQSzSt7UZvLS51wjnLA/G2nMcB/1OQ3vOZuNZcL6yIRF7hgM4OZNAqazvc3zf2CJsFoYDW3rqfv+ykV48OhlT2lDMyGIqr8w6bYc+n0N9IEg0Q2EgbUDizMQI58xD4owgTMVIvxdTsYxyQ55L5MD5+q2vf8nFm7Ct34NP/+bkMjETSekvrwr5HW05Z6k2yxoLJY5cg166doilCwi4K+dkVM+ZKAHt9zoQ8jlgYWia2JjIFZVB8u0gZvsFDXC3dg36kSmUMCWXY8YU58z84uyBsQgcNgs2tOmgb+71YC6Ra2vBH0kX0OO2L+uT0sJQwGWoc7ZSA6ir2TMsvZ9q03XV8sDYIi7cFGy4SX5opA+FEseRiWgbZ9k5iqUy4tmicc5ZOq9snDSCcy6JMwoD0Q2JMxNDPWcEYU5GQ15wDkzIN/zKAOr1Kc5sVgvedd0uPDYZx69r3DO9ZY2AGEStv9QvkdNf1ihi7jsx6yyeLSzpzxLP1bZzVlXWKHrBGomzXLGEfLHcdiAIUOWcGbA7Lwabi9LGaKYAu5WZepNSlOCemE1gmwG9vcJxaDVEvBmT0UzbfUaSc2acOBP9jys5+2rPBikU5Pi09lCQbKGERyZiODiyvN9McKnci3b/GXOWNoq0U6N6zsq89XUqnMojXyxj4zrdrDQCEmcmRogz6jkjCHMh0thEaeN6HEBdy4sPbJTcs18vdc+i6QKsFqZLBPR7nW07Z1YLg9Om/VYnHKVO9J3FMgWl3wyQxK3faWvbOQsnc/A4rPA4pNe62SBq0Y9nRFmjKKE0oudslyzORChINC0JWTOP6xDijHNjZkmKQdTndPadxdIF3HlqAVftGmjrPAYDLoRTuSVDwdthKioGE6+co7Jr0A8Lg66+s8cmY8iXynX7zQQ9HgfOG/LjfpMmNuotK69Hv0+ePdmitFHMOKOeM/2QODMx2XwJjEHXwoIgiM5RG6e/HgdQ1yLcs8en4vjlE7PK1yPpPHrcdl1uwoDf0V5ao9xTpWdhL8RkJ8RZrXMGSD1V8Tads4VkTllAAdL7sZH70k4/Xi1iU8KIvrBerwP9XgdOzUriLJ5Z/lqZDa/TBq/s7LUbBgJUZkNN6uw7+8mj08iXynjpJZvaOo9BvxOct5eYWs1kNIN+r2NFN5zdDitGQl5dztn9Y5LguqxOUmM1l4304qHxiO6+tk6ymDLOORObL6IaohFTNOOsbWjVb2IyhRLcdqupdwwJYj0S9NjR67HjzIIoa8zAabOYehbTSvDiAxsx0u/Bv/66ktwYTRd0vy4hOaJc76InkdMfeCGcs2SnnLNacea2KyVIegmn8srwbkASTbMNxJkQnUakNV64KYDXXL4VV+9uz6kR7Bz04fS8KGvMm16cAZW+MyOcs+GAC1YL0x0KcsvD57BjwIt9m4JtnUdl1pkxoSBT8gDqleb84YCuOP0HxhaxfcCL/hbjVw6N9iGZK+KYDgHYadopK69FCLxwC7GuDKAm50w3JM5MjBBnBEGYj5GQF2OirDEuJTWu940U4Z49MR3HLx6X3LNIOq97YRDySRHlrXZqG5FqS5wJ56wDPWeZotJnJujx2NvuOVtI5hGqds6CLiRyxbrDtJNt9OPV4rRZ8dGX7FMW8+2ya8iHU7MJcM4RyxQMCTPoNIo4a2PGmcBmtWA44NI1iHpiMY37xyJ46SWb274eDcq/k1F9Zys5gLqaPcN+nF1MaxoqXy5zPDAewcFtjUsaBaLs0YyR+iL6vtegnjMALRMbJ6MZeB3WrthUMSskzkxMOl+ifjOCMCkj/V6My2WNs7H1OeOsHi86sBGjIS/+9TenUC5zLKb0z9hpd9ZZO3O8OlXWWC7z+mWNbrvSH6KXcDK3xDkTg6jrhYKI38vvNN8CaueAD/FsEfOJnOS8dsEiT4izbQaUNQIiTl97z9ktD08CkD6H7WKkc8Y5x2Qko/QnriR7NgQAACc0uGen55OIZQq4rEkYiGBTjxubetzmFGfKMHIDovS96ssaN/a41/1mZTuQODMx2ULJ1AlVBLGekeL0s8gWSpiOZ9Z1GEg1Nnnu2bHpOH75xAyi6YLuhYFwgRYS+kRLO3O8RFmj0WmNyXwRnC+fPxV0OxDL6BeCQgjX9pwB9cVZMif9XkaUNRrNriEpYe/0XFIeO2B+cTYccMNttxomPjb1ujX3nHHOccvDk7h8tM+QmY4hnwOMGeOcxbNFpPKlVSl12zMsJzbOqC87FELrYJMwkGouG+nF/WORjsxFbIdIOg+nzWJIFZbLboXXYVVV1khhIO3RUpwxxrYwxg4zxo4xxh5njP2Z/PW/Z4wdZYwdYYz9kjHW/jYNsYRMvkQDqAnCpIyEpMXPWDiF2ViOnLMqXnjRRmwPefHpX5+Syhp1ltSE/AY4ZzrFmfg5o52zmLyTXa/nLJbJ617cxbMFFMt8SX+M2DAQEebVGJnWaDQiTv/4TAKJXLErejnffvV2fPPNh9qaK1bN5l4PZuJZFDQkJR6ZiOLMQqrtIBCBzWpBv9eJOQMGUU+twowzweZeN3xOG45Pq3fOHhiLIORzqnZCD470YT6Rw3hYX8Jmp4ikpLJyo1ysXq9DhXOWpTCQNlHjnBUBvJdzfj6AKwD8KWPsAgCf5Jzv55wfAHArgP/XudNcn2QKVNZIEGZlVG78f/hsFPlSmZyzKmxWC951/U4cn0kgVyzrDwTxrp44s1oYvA6r4eJMOHGBmuHPPR47CiWujFDRikjUq+45E2Vps3UW1+3MgOs0g34n/C4bHjwrpeV1Q+/KYMCFS1X0J6llc48bZd58iHgttzw8CafNguft22DYeQz6nYYMoq6Is5W/TjLGsGfYr9k5OzjSq1rUHDRp31kknTd0c6Pf62gapZ/Jl7CYylMYSJu0FGec82nO+UPyfycAHAOwiXNe/S73AjCXl7sGyBTKFAhCECZFpLLd/WQYwPqO0a/HCy/ahO3ya6Q3ECTgtsFhteiO8k5m9fecAVJpo9GBIHG5dLFezxkA3bPOwrKAre45c9mt6PXY68bpJ7NF2K36ZsB1GsYYdg768KAcZd4NzpnRiFlnEyr7zvLFMv7vkSk864KhZcK/HYYCzrriXitTq5zgt2eDH8dnEqqc6elYBucimabzzWrZNehD0G03oTgrGBKjL+j1OrCYaizWKanRGDRdlRljIwAuBnCv/P8fZYxNAHgNyDkznGye0hoJwqwEXHb0ex245ylZnJFztgSrheHd1+8CUEl90wpjDP0+hy7nrFzmSOVL8LZRtud32Ywva8yIssaatEZZnOlNbBS72dU9ZwAwHHQ3DATROwNuJdg16FPmB/a4zZ/WaDSiZ0xt39kdJ+cRSRfw0ouNKWkUDAVcxjhnsSzsVqaE/Kw0e4YDSGSLmFLhRD4gbwocVBEGIrBYGC7b1qv8rFkQZY1G0ed1IJJqfI1azfLVtYRqccYY8wH4AYD3CNeMc/63nPMtAL4F4J0Nfu6tjLEHGGMPzM/PG3HO64Z0oUg9ZwRhYkZCXmXhQuJsOS86sBFfe+MhPLON+Vchn1OXOEvlRRphm+IsZ7BzJjtxHXPOasTZhqBLETnVtJNkuRLsGvQr/90NgSBGI43mgOpZZz96eBL9Xkdbn7V6DPqlz19RQ+9bPaaiUlKjnmH0RnD+BjkURMUssvvHFuFxWHGBnPKoloOjfXhqIYV5A8SsUUg9v8Z9fvo8DoSbOGerWb66llAlzhhjdkjC7Fuc8x/Weci3Abys3s9yzj/POb+Mc37ZwICxF421TiZfJnFGECZGzDSyMGBglXaEzQxjDFfvHoDdqr90LqTTOUvlpN6t9pwzu+FDqOOZBoEgnvacM1H62VezSz4UcDVxzswrekQoCLA+yxodNvWzzmKZAn51bBYvuGhjW5+1egwGXOAcTfuM1HAusjozzgS7h0RiY/NQkGKpjF88PoOnbe+HTeNrKfrOHjBJaWOpzBHNFIx1znwOZAtlZPL1e2MnoxlYGJX5t4uatEYG4EsAjnHO/6Xq67uqHvZCAMeNP731TZaGUBOEqRmVExsH/E7NN3JCHSGfU1eUvhFR8Z0oa4xnCrAwwOdYel5BpaxR3yI4nMqh12Nf9j7cEHQhnMojV1y6mErmCqYMAxFUi7NuCATpBJt61M06+9mj08gXy3iJwSWNQPUgav19Z5xznJpNLPmbrjR+lx2be9041sI5u+34HGbjObzq4BbNz7FvUxAuuwX3njGHOItnCuBcf89vPfrl/rVG7tlkNIPhgIvuh22i5tW7EsBrAVwnx+YfYYz9AYCPMcYeY4wdBfAcAH/WyRNdb3AupXaROCMI87JNds5ol7BzhPxOhFM5zRHzlSHL7Tln8Q70nPld9mXlXWJQt+6es2R+SYy+QLw352pmVSWyxbZem06zqcet3P/Wqzjb3OtW5Zz98OFJbB/wYv/moOHnMNTg/aOF2XgO8WwR5w35Wz+4g+wZDrR0zr5z31kM+p24bs+g5uM7bBZcsrUX95lEnC3KkfdGljUKobdY46SWyxxfv3sMP3t0BjtX+e+8FlCT1ngn55yJ2Hz5n59yzl/GOb9Q/voLOOeTK3HC64VCiaNU5lTWSBAmRsTpU79Z5wj5nCiUuGbRYkRZY8BlMz6tMVtcFgYCAF6HFVYLa6PnLK/saldTmXW21Pkwe8+ZxcKwY9ALr8NqeKlet7Cp143paBalcuONiYnFNO47s4iXXrypI+EugwHZOUvod85OzEqCaPcqL9rP3+DHU/NJZBuMqzgXSeP2k/N41cEtup2fQ6N9ODYT173JYiRRIc6MdM58y8XZxGIar/nivfh/P34ch0b78ImX7Tfs+dYr6/OK1wWIWTc054wgzIuI0yfnrHOIuV1a4/SVssY2A0FyxTLyxfbCEKqJZQp1nSDGGHrcdv09Z6lc3SS8DbI4qw0FSWb1z4BbKfZtCq7r1LfNvR4Uy7xpSeGPj0j74i86YHxJIyBtjjDWnnN2csYc4mzPcABlDpyeS9b9/nfvnwAAXSWNgkOjfeAceHB89d2zRTlV0UhxVu2ccc7xrXvH8dxP/xaPTsbw8Zftw1ffcJA2Kw3A3FfmdYzY2aGyRoIwLz6nDX/93PPwzF0UdtQphOBYSOY09awoZY1tuENCvCSyhbolg3qIZwoN51AF3XZE2yprXL4IGxLiLLa0PC6RK8Jv4DysTvCBPzi/YfDAekDMipLCNJaLVM45fvjwJA6N9mFLn6cj52C3WtDvdWCuTeds0O9Er4HztvSwR05sPDYdx4WblpaAFktl/M8DE7h694AyxkAPF2/phd3KcO+ZRVy3Z6it822XiOycGTnnTMxRfGwyjh8+NIk7Ty/gyp39+PjL9rf1uhFLIXFmUtLyDcntIHOTIMzMn1yzc7VPYU1TLc60kMpJ4qzdtEZAEnpGibNYptBQZAY9diXNUQv5YhmxTKGuc+Z32uB1WDETq7x+uWIJ+WLZ1IEggPT6m11AdhIxiProuSj2bgwsey8fPRfDU/MpvPWq7R09j0G/qz3nbDaB84ZXvw9ppN8Lp81St+/s8Il5zMZz+P9etLWt53A7rNi/uccUfWei9NBIURxw22C1MHz592fgcVjxkRdfiNdcvtW08xK7FXNfmdcxYrfQbac/EUEQ6xelrFHj7KCkIs70Vx8I8WJkYmM829g563HbNZdvApUd8nrOGWMMQ0EXZuIV50yMBzB7WeN6Z2OPG06bBR/5yTF85CfH0Od1YFOPG5t7pX+OzyTgsFnwvH0bOnoegwGn7p6zcpnj5GwCr7l8m8FnpR2rheG8YT+OzyxPbPz2veO6g0BqOTTahy/89imk80V4HKv3GZuKZuB32Qz9nDPGcOk2yR382Ev3d8yxXe/QldmkiJ4zCgQhCGI90+txwGphOnrOSnBYLXDa2hFnwjkzrrk/nikqM81qCbrtOD1fvx+mGcJVFCVHtWwIupYEggjhSuLM3LjsVvzk3Vfh8akYzkUymIxmcC6SwcnZBG47PoecHJ/f6TTLIb8Lj0+1Ht5cj4lIGtlCedWTGgV7hv349bE5cM4Vt2cymsHtJ+fxzmt3GhI+c2i0D/95+5N4+GwUV+4MtX08vUxGMkpprJF8921PM/yYxFLoymxSqOeMIAhCSu3r82ofRJ3MFdpOI1Scs5wxzlm+WEamUEKgwXn1eByI6UhrDMvCNVTHOQOA4YAbdz+5oPy/cALNnNZISOwc9NUtg+WcI5zKr8iYgcGAE+FkDsVSWXOK4Qm5hHDX0OrNOKtmz3AA333gHOaTOQz6pX7M/5GDQF55mf4gkGou3dYLCwPuPbO4quLsXCSDLX3rN1Cnm6GGJpNSKWskcUYQxPom5HNqF2cGpBEGqnrOjCAuO3CNFtQBtzRXrVl0ej3EQNhGfXHDQSdmEznluMI5M3vPGdEYxhhCPueKjBkYDLhQ5kA4pb3k9uSsEGcmcc7kUBAhGoulMv7n/rN45q4Bw0r0Ai47LtgYwH1nwoYcTw+cc0xGO+OcEZ2HxJlJqZQ10p+IIIj1Tcjn0FXW2E4YCFDdc2ZMWaOIyQ80EGc9bn1llMI5q9dzBgDDQTdKZa4I3MqA7vUbtkGoZ9AviX49oSAnZpPY3Os2TQntnuEAAOD4tCTORBDIH13eXhBILYdG+vHw2ShyxdVJG41nikjmitjUS+KsG6GVv0kRzhnNOSMIYr2jyznLFeBvc0HoMzgQJN5CnAlHTesg6vlkDg6rpeHvuyEg4vSlvjNlBhw5Z4QKhuT3T7N5a404OZMwTb8ZIMXKDwWcOCaHgnznvrOGBYFUc/n2PuSKZTx6LmbocdVyLpoGAGzqocCOboTEmUkRztlqJv0QBEGYAck5y4Fz9eV+yVyxbfFht1rgtltbOlkf/r/H8fGfH295PMU5a5TWKAeFaB1ELWacNYqzFkNhRSgIpTUSWhgKyM6ZxsTUfLGMJ+eT2G2CGP1q9gwHcHw6IQWBnJjDKy/bYnh56MGRPgBS39lqMBmR0lnJOetOSJyZlAwFghAEQQCQnLNsoYyUhoHEKQPKGgGptLGZc8Y5xw8fmsSvnphteay4fJxGPWeKc6ZZnOUaljQCFXEmnI8E9ZwRGgj5nGBMu3M2Fk6hWOamcs4AKbHx9FwS3753HBzAqw4aEwRSTZ/Xgd1DvlWbdzYZlcTZZhJnXQmJM5MiyhqdNvoTEQSxvlEGUWvYuU8YEAgCSKV/zcTZeDiNWKaAs+F0yyCPSs9Zo7RGnc5ZKt8wRh8A+jwO2K1siXNmtzK6vxCqsFst6Pc6NDtnInRjt9nE2QY/8qUyvnTnGUODQGo5NNqHB8cjKJbKHTl+MyYjGbjs0t+N6D7oymxSsoUSXHYLLBaauk4QxPomJAcSaOk7S+YKhjhDfpddSVmsxyPnogCAfKmMmRbOQrxFWaPoRYultYWfiLLGRlgsDEMBF2Zi0m66EK6NyiAJopYBvwtzGp2zk7MJWC0M2we8HTorfYhQkGyhjD88ZGwQSDWHRvuRzBVxTA4fWUkmoxls7HHTZ7xLIXFmUjKFEpU0EgRBoDK/S604K5bKyBbK8BrQsxto4Zw9MlFp+B9fSDU9VjxTgNNmaRj0JMoatThnnEspjKEGMfqCDUGXIh6N6Mcj1hdDAacu52yk32O6YLMdAz7YLAwDfieuP9/YIJBqDil9ZysfqU8x+t0NiTOTksmTOCMIggAqZY3zKuP0UzmpLNwIAeJ32ZS5YPV45FxUWQSNhdNNjxXPFhomNQKA02aF227VlNaYypeQK5Zbli9Jzpncc5Ytwkcx+oQGBv1OzT1nJ2cTOM9kYSAA4LBZ8MdXbMNfPmd3R+fEDQdd2NbvWZW+s8lIhvrNuhgSZyYlXSjB5SBxRhAE0ScLj7BK5yyZF2mE7V9D/U57w7TGQqmMxyZjePYFQ3DYLBgPN3fOYplCwzAQQY/Hrsk5E69JowHUgg1BF6ZjWXDODSv5JNYPQwEXFpI51QPSM/kSxhfTpus3E9z8wr141cHOlTQKDo304f6xRZQ1DpZvh0y+hHAqT85ZF0PizKRk8yV4SJwRBEHAbrWg12NXXdZYiYpv3x1qltZ4cjaBXLGMi7f2YFufB2MtxFk8U0SghSgKuu2a0hoXWgygFgwFXMgVy4hlCkhki23PgCPWF4N+J8pc/QbJ6bkkOIfpkhpXmkOjfYikCzg9n1yx5xRJjRSj372QODMp1HNGEARRIeRzYiGhrqzRyCHLfpcd6XypbuKa6Dc7sKUH2/o9GFdR1tjKOQu69TlnoSZpjQCwISgt1KZjWeo5IzQzqAyiVifOTszKSY0mLGtcSS4f7QewsvPOFHFGA6i7FhJnJiVTKJmuiZYgCGK1CPmc6p0z0XNmRFmjLGLq9Z09MhFFj8eOrX0ebOv3YiycajooO5Zp3nMGyOJMQ89ZOKXOOROzzmbiWSQNGjNArB8G/WIQtbq+s5OzCThsFmzrUEx9t7Clz43hgGtF+85oAHX3Q+JsFbj16BTmW6QeUSAIQRBEhZBfgzgzuKwRQN3SxkfORbF/cw8YYxjp9yBbKDdNtIt3sOesr0UgiCLOYlkkyDkjNDKk1TmbSWDngA+2DgZudAOMMRwa7cN9Z8JNN26M5FwkDauFYcjf3E0nzMv6/tSsAk/NJ/HObz+Mb9073vRx2UIJbuo5IwiCACDF6S+oTGs0tqxROkbtrLN0voiTswkc2BwEAGzrl2Y5NSpt5Jwjni02nHEmkHrO1M85W0jm4XfaWlZaDPqdYAw4u5hGvlhueR4EUY1ITFXrnJ0yaVLjanBotA+z8RzOLjYvezaKyWgGwwHXuhfG3Qz95VaY247PAQDOtJiHkybnjCAIQiHkcyKZKyJbKLV8rFLWaMCcM78sYmqds8cm4yhzYP/mHgDAiCzOGoWCpPIllMpchXPmQLZQVvV7AlJZY6uSRkAKVQn5nDg1KwUTUFkjoQWHzYJ+r0OVcxbPFjAVy5o2qXGluXxUzDtbmdJGitHvfkicrTCHT0jirNU8nAw5ZwRBEApaBlGLskavkT1nNeLs6LkoAGD/Fsk529jjgs3CGsbpi1LFgLu5KBI9aXGVpY3hZK5ljL5gQ9CF03NSUAOJM0IrA34n5lU4Z6fkMJDzhn2dPqWuYOegD31ex4r1nU1GM9Rv1uWQOFtBkrki7juzCMbQch5OltIaCYIgFERZlZrSxlS+CLfdakhZj+Kc5ZaKpSMT0vDpQb/Ui2OzWrClz9Nw402IrZbOmfx9tX1n4WS+5QBqwXDApZRWUc8ZoZWhgEuVc3ZiRnJnyTmTYIzh4EjvioizQqmM/7+9ew+Ps67zPv7+JZlkcpgkbZIm6SmhpW2gUJC2iIC1hfUBEUWERdB13dUVEAVddREuH/G4115bn+dZLkVZeTygrj7Cuh5AARc1a0UEetgWKE1bKD0fk+Z8mpnM7/njnjuZJDPJTDKTuSf9vK4rV5J77sn88m16J9/79/t+fye6BlioPc5ympKzGfTM3lZCQ5YrVsyjoy9ER1/8PzJCQxFCQ1bJmYhI1HByNkkzJXCWIJamaWYoUUMQpxlIxahjTjv9SWbOkqg5A5Le66ytd5DqJAv/6yr8uHvhahNqSdW8QFFSNWd7TnRTWpivTZBjXHxWFQdP93Gssz+jr3O8c4CIVafGXKfkbAY1t5wk4C/ghtULgcSF426tgZY1iog43AQkqWWNg+G0JR/xkrPTvUEOne7ngkWVo85trCrlQGtf3K5sXcPLGifv1ggk1U5/KGI53RukOtmZs2jHRoBAGjpZypmlttzPqe5BhiITdx3cfbyb5XUBjDEzNDLvc+vOntvXltHXOdyuPc5mAyVnM8RaS/Puk6xbVsPZ85x12IkKx/ujyZn2ORMRcbhL95JJznoHw2mpNwMoKsinsCBvVLfGHdF6swuizUBcDVUldA+GOd07flVEZ5LLGlOZOevoCxKxJF1zVlc+kpxpWaOkqra8iIh1ZmsnsudENyu0pHGUc+rLmVPi4497WjP6OsMbUGvmLKcpOZshO492cbJ7kA1N81gc3ZQx4cxZMAKgZY0iIlF+Xz4Bf0FSNWfp3mS53F8wauZsx6EOjIHzxyxrHOnYOP7a3hV9/mTLGiuLnSQ0mZqzZDegdsXOnKkhiKSqJlpfeXKCurPWnkHaeoOqNxsjP89w+bIaNu1tJTLJzON0uBtQ18f8X5fco+RshjRHW+i/ZXkNfl8+9RX+hDNnfSHnl7iWNYqIjKgpK+JUEjNn3YPhtGxA7Qr4faOSsxcPd3J2Tdm4BGdxlXvjbfy1vas/hDGT13oF/AUYA50JapJjubOIVaXJdmscuZuumjNJVW355Hud7TnudmpUcjbWumXVtPYMsut4V8Ze40hHHzWBIq28ynFKzmbI73ef5IKFFdRE6yYaqkrYn2Cvs/6gas5ERMaqKiukLclljWVpWtYITiLTHV3WaK1lx6GOcfVmAAvnFJNn4s+cdfaHKCsqIC9v4jqcvDxDud+X3MxZdBaxOtmZs+iyRl++oahAv/4lNQ1VpRTm5/HwswcS1p3tjrbR18zZeOuW1wDwx72ZW9p4pKNfjVhmAV2dZ0BbzyDbD3WwoWne8LHGqtKEyxrdmjMtaxQRGVFdVpTcssbBcFprqsqKRpY1Hunop603yAVjljSCU582v7I4/szZQGjSejNXRbEvqZqz4ZmzJGvOigvzqSj2UVZUoGYNkrK5pYV84Z0r2bTnFP/y9J645+w50c3c0sKkbxicSWrL/TTVBdi051TGXuNIu/Y4mw2UnM2AP+w5hbVwRWxyVl1KW29wVJG5a0DJmYjIOE5yltwm1Old1lgwvAn1jkOdAHFnzsC58Ra35qw/NGm9mauyJPmZszwzsjdaMuor/GoGIlN2y8WLeM+aRTzQ/Cr/ufP4uMd3H+9meW2Zkv8E1i2vYcv+dvqC4clPTlEkYjnaoT3OZgMlZzOgefcpqsuKOG/+yJ3WxmhtwsE4v8T73YYgWtYoIjKsuqyIjr4QoaFIwnMGw0MEhyJpXtboG17WuONwB4X5eTTVlcc9t6GqhINxa87Cqc2cJdFKv613kLmlRZMulYy1eG5J0jVqImMZY/jidStZtbCCTz66g9dO9Qw/Zq1lz4kedWqcwJuXVRMcimSkpf6pnkGCQxEWauYs5yk5A4LhxL/opys8FOEPu0+yfkXNqF+gDcNdvcb/EteyRhGR8aoDzlKptgmWNvYOOtfPdHYjDMR0a9xxqINz5pdTmKBmq7GqlPa+0Lh9yjr7Q5QXJzemimLf8L5oE2ntCaa8fOxL153H125+Q0rPEYnl9+Xz4F+tprAgj9t/uJWeQef/xtHOAXoGwyxXM5CE1jbOxe/LY1MGWuoP73Gm5CznnfHJ2V99+3lu/7etGfv62w520DUQHrWkEZy7qxC/nX5/dLpb3XZEREZUl02+EXVv9A/F0rQmZz56gmFCQxFeOtLJhXHqzVzD1/bTo2+8ZaLmrK1nMOk2+q66Cv9wV0mRqVpQWcwDt7yB1071cPdPdzizZm6nRs2cJeT35fPGs6oyUnc2vMeZNqDOeWd8clZdVkjLscy1Nf19y0kK8gyXL6sedbyksIB5gaK4HRvdmbMSLWsUERnmJmcTtdN3Z7jS2Sq+3F+AtfDi4Q76gkMJ683AqSeG8R0bO6dQc2btxPshtfUGtURRsubSs6u5521NPPHScR7atG+4U+MyJWcTWre8hn2tvRw6Hb8p3FQd0czZrHHGJ2cr6so52jmQVPH1VPzX7pOsaZwT95dyoo6Nbs2ZZs5EREa4S/hauxMnZ+4Sq3Q3BIGRFtirFlYmPHfx3OjMWcyNt9BQhL7gEOVJzpxVFhcyFLHD30sibT3BlGfORNLpw29ewtvPr+efn2rhZ9sOU1/hT3qG+Ez1luXOzfp0t9Q/0tE33I01Z2zcCM3No481NzvHz2BnfHLWVO/c4dkdnY5PpyMd/bQc7x63pNHVUFXC6wlqzgoL8shPochbRGS2c2fO2nonqjlzlzWmtyEIwDN7WwkUFbAkOjsWj9+XT32Ff9TMmVs/lsqyRmDCm4YDoSF6BsPDMRHJBmMMG29cxdKaMvac6NH+ZklYWlPG/Ap/2pc2HmnPwT3O1q6Fm25yErK+Puf9TTc5x89gSs6ihastGdixvbnlJEDC5KyxupRT3YPDf0y4BkJDagYiIjJGaVEBxb78CWfOugfTv6zR/VrbD3WwalHFpN0RF88tGbXXWVd0qWXSDUFKnORsoo6NboJaVaqZM8mu0qICvvX+1ZT7C7hwgiW/4jDGsG55DX96rZXwBJ1nU3WkIwf3ONuwAX78Y7jmGqiogBtugEcfdY6fwc745Kyu3JmCb8nAzFlzy0kWzS1maU1Z3Mcbox0bxy5t7A8qORMRiac6UDhhQxB3P7L0Lmt0vlY4YrlggiWNrrF7nXVOceZsoo6NbSluQC2SSUtqynjmniu468pl2R5KTli3vIbugTDbD3Wk5etZa3Nz5qy3F+6/HwYGIByGZcvO+MQMlJxhjKGpLpD2piADoSH+9ForG1bMS7gZ40jHxtFLG/tDQ9rjTEQkDmcj6sTLGnsGnYQmncsaY2s4Jqo3czVUl9DaMzhcM+YmWak0BAEm7NjobiegmjPxinK/T+UYSbpsaTV5hrQtbezsD9EbHMqtPc5aW+HKK+HJJ6GsDM4/HzZvhl/9Ktsjy7ozPjkDZ2nj7uPdRCITd8ZKxXP72hgIRdiQYEkjjCRnY7t69QWH1AxERCQOJzmLP3MWHorws21HWFBZTGlhers1upJZtjWyKsK58dY1kP6aMzcG1erWKJJzKkp8XLCokk1pagoyvMdZrsyc7d8Pl10G27ZBIACPPQbf+Q5YCzffPL5JyBlGyRnQVF9Ob3BoeI+IdGhuOYnfl8ebllQlPCfg91FdVjhu5mwgNKQ2+iIicUyUnD387H5ajnfzuWvPnbQuLBXussba8iLqKvyTnj92H0s3yUqlWyMkWXOmmTORnLRuWQ0vHu6goy/xSoBkuX+/LpzjwT3OxnZk3LEDLroIDh6ED30IfvELZynj2rVwySVQWQkvvJCt0XqCkjNgRbQpyK40LW201vL73Se5bGn1pDNgDVWl7I+3rFEzZyIi49SUFXK6N8jQmJUOJ7oGuP+3e3nL8hquWlmb1tf0+/IoyDNJLWkE57oOI8lZV7+zvDHZmTO/L4/C/LwJZ87aegbx+/J0I08kR61bXkPEwjOvTn/2zNN7nMV2ZGxuhksvhc5O+OY34cEHR9eY3XUXHDniLHE8gyk5Y2Q3+3S103c2F+xn/QRLGl0NVSXsbx3fEETLGkVExqsqKyJioX3M3eav/HoXwaEIX3znyoR1vlNljOGv39TIey9enNT5ZUUFVJcVDa+K6OwPUZifR1FBcr9yjTFUlPjo7E98R72tx9mAOt3fq4jMjAsWVlDuL0hL3dmRjn6KffnMKfHgHnMbNjgdGK+7Dv7iL2Bw0OnQ+Ld/O/7cG26A+nr42tdmfpweMulvCmPMImNMszFmlzFmpzHm49HjXzXGtBhjXjTG/NwYU5nx0WZIaVEBDVUlaevY+MLrpwG4bGniJY2uxqpSjncN0B8cGj42oIYgIiJxuft6xS5tfPbVVh7fcZTb37KUxgn2IJuO+95x7oQ1xGM1VpUMr4roGghRXuxLKZGqKPZNXHPWGxzelFtEck9Bfh6XL6tm055WrI3f82AgNMRXf9PCz//78IRf63B7HwvmFHv3Zs2GDc6MWSQCf//38J73xD+vsBDuuAN+8xtoaZnZMXpIMrfxwsCnrLXnAJcAHzXGnAs8DZxnrV0F7AHuzdwwM29FbYBdadrrbOuBduaWFnJWEn8kuH9IHDw9MnvmLGvUpKaIyFhuQtLa7cwqBcMRPvfLl1k0t5g71i/N5tBGaagqHVVzluweZ67KYt/ENWc9g9qAWiTHrVtWw/GuAfae7Bn32IG2Xm548Fm+0fwa9/1yJ90Dia8HRzo83ka/uRm2boXPfhYefnjihh+33uokaQ88MGPD85pJMwBr7TFr7bbox93ALmCBtfY/rbXu7snPAQszN8zMa6ovZ39rLwOhoclPnsS2A+1ctHhOUncwGoc7No7UnfVpnzMRkbiqA6Nnzr7zzOu8dqqXL75zpaeWgzdWlXCsc4CB0BBd/aGk681ck82ctfUE1QxEJMetW14DjG+p/9TLx7n2689wuL2ff7hqBd0DYX7ywqGEX+dIu4c3oG5udmrOHn0UvvIV571bgxbPvHlwyy1OEtfZOaND9YqUpmeMMY3AG4Dnxzz0QeDJNI0pK86pCxCxsPfE+LsXqTjdG2Rfay+rG+YkdX7D3NEtl8Hd5yx9baBFRGaL2GWNRzr6+drv9vLWc2u5oim9TUCma3H0xtvB03109YeS3uPMVVGSeObMWktb76A2oBbJcfMrizl7XtlwS/1gOMKXf/UKt//bVpZUl/KrOy/noxvO5pIlc/nun14nGI6M+xp9wTDtfSHvzpxt3uwkZG7jD7cGbfPmxM+5805ng+rvfW9mxugxSSdnxpgy4D+AT1hru2KOfxZn6eOPEjzvVmPMFmPMllOn0rPZXiYMd2yc5tLGbQfaAZJOzipKfMwp8Q3vdTYUsQTDEc2ciYjEUe4voDA/j1M9g3z58VewWD7/jnOzPaxx3L3O9rf20jUQTrqNvqui2De8eXWstp5BPvrjbYSGLGdVZaa+TkRmzpuXVfP8vjZeb+3l5of+zHeeeZ2/ubSRR29/E4vmOjd5bnvLUo51DvD4jqPjnu92avTsBtR33z26IyM4n999d+LnrF7t7IP29a/D0PRXtOWapJIzY4wPJzH7kbX2ZzHHPwBcC7zPJqhmtNY+ZK1dY61dU1NTk44xZ0RDVSl+X960OzZuPdgebblckdJruzNn7rLK4kLVnImIjGWMobqskKdePs5TO49z5xXLPLm3T2NMO/3O/hAVKdecFdI9GCY8NHKn/Dc7j3PV/Zv47SsnufvqFdywOqerCUQEZ2njYDjCVfdvYs+JHh547xv4wjtXUlQwcpN+/fIaVtQGeGjTvnHNQw535NgG1Mm66y7Ytw+ezOmFeVOSTLdGA3wH2GWt/T8xx68GPgO801rbl+j5uSI/z7C8NkDLNGfOth5oZ+WCipRqHxpj2un3u8mZZs5EROKqKiviQFsfS6pL+bs3n5Xt4cRVUeKjssTH6229U1vWGE3mugbCdPaH+OQj27nth1upLffz2J2Xccf6s8lP40bbIpIdl5xVRbm/gCXVpTz2scu4dtX8cecYY7h13RJ2n+jmv8bUp3l6j7PpuP56WLDgjGyrn8z0zGXA+4ErjDHbo2/XAA8AAeDp6LF/zeRAZ0JTXWBaM2ehoQg7DnWwenFySxpdDVWlHO3sZyA0NNxS30uF7SIiXuJ2bPzSdeeNurvsNQ1VpbQc6yIcsSk3BKkscb7Hx3cc5ap/2cQvdxzlriuX8fM7LqOprjwTwxWRLCguzOf3n17PYx+7nCU1ZQnPe8cF86kr9/PQH/aNOn6ko5+CPMO8gD/TQ51ZPh+cdx48/TS88srI8eZm2Lgxe+OaAcl0a3zGWmustaustRdG356w1p5trV0Uc+z2mRhwJjXVldPaE+RU9+DkJ8ex82gXg+EIaxpTS84aq0uw1tmnYmRZo3f/4BARyaab1iziU29dzuXLqrM9lAk1VpWw86izGmMqNWcAn39sJwF/AT+/41I++dblFCa5kbWI5I7qsqJJ/28XFuTxwcsb+fO+Nl483DF8/Eh7P/Mri2fnTPpttznv743u1uV2fly7NntjmgG6ysdoijYFmerSxq0pNgNxjRSO99EX1LJGEZGJvO38eu68clm2hzGphqpSBqPd1VKdOTt7XhmVJT5uW7eEx++8nFULKzMwQhHJJbdcvJhAUQHf2jQye+b5Pc6m4/rr4eqr4bHHnBo0tyX/2AYjs4ySsxhux8apLm3cdqCdBZXF1JanNrU8nJy19Y7UnGnmTEQkp7n7WAIp15wtmlvC9vv+B/dec46WuYsIAAG/j/despgnXzrGwWiXb0/vcZYOGzdCfr7TubG2FgKBbI8o45ScxagqK6ImUMSuY6knZ9Zathw4nfKsGUBliY9yfwEH2vrUEEREZJZoiGl1n+rMmYhIPB+87Czy8wzffmYfwXCEE90Ds3fmDKC1FSoq4I1vdGrP1q6FdevgAx+A3/529LmzpB5NydkYTXVT69h4tHOAE12DU0rOjDE0Vpeyv62XgaBmzkREZoNRM2cpttIXEYmnttzPuy5cwKNbDvHKsS6snYWdGl1ujdlPfwrPPecsbywthT174Ac/gKuugo9/HILBWVWPpuRsjHPqy9l7smfU3jLJmGq9mcvZ60wzZyIis8Xc0kLKipykTDNnIpIut65bwkAowj89sQuAhbN15mzz5tE1ZtdeC48/Dp/4hHN8+XKn1f66dbOqHk238sZYURsgGI6wv62Xs+clv65124F2Sgrzh5uKpKqxqoRfv3iUrv4QoORMRCTXGWNoiHZsDKRYcyYiksiy2gBXNs3jdy0ngVk8c3b33eOPbdgwkoD95V/ChRfC8887M2izIDEDzZyN01TvdmxMre5sy4HTXLiokoL8qYW0oaqUiIW9J3sA8GtZo4hIzmusKiVQVDA721yLSNbcum4JAMZAfcUsTc4m09wMhw45QfjWt5zPZwElZ2OcPa+M/DxDSwpNQXoHw+w61j3lJY0wUpuw65hT76aZMxGR3HfLxYu5ff3SbA9DRGaZi8+ay4WLKplfUXxm7n8YW492660QDsONN86KBE3LGscoKshnSXVpSk1BdhzuYChiuWg6yVm109Vr9/FufPkG3xRn4ERExDsuX1bt+c2yRST3GGP4xvsu4nRPMNtDyY7YerSlS+G734VLL3WO5/jyRiVncTTVl/PfB9uTPn9btBnIRYumnpxVRQvHewbDBPz6ZxERERGRxBZUFs/uNvoTia1HW7wYPvxheOghZz+0HKfpmTia6gIcbu+nayCU1PlbD7SzbF4ZFSVTL/h2C8dBSxpFRERERJJ2773OZtVf+Uq2RzJtSs7icDsu7kmiKUgkYtl2sGNa9WauxuiGpdrjTEREREQkSQsXwm23wcMPw2uvZXs006LkLI6m+nIguY6N+1p76OwPTavezKWZMxERERGRKbjnHvD54MtfzvZIpkXJWRzzK/wE/AVJNQVxN59ek8aZM7+SMxERERGR5NXXwx13wA9/CHv2ZHs0U6bkLA5jDE11gaTa6W/Z386cEh9nRbstToc7c1aiZY0iIiIiIqm5+27w++FLX8r2SKZMyVkCTXXl7D7ejbV2wvO2HmxndcMcjJn+BqNuO30taxQRERERSVFtLXzsY/DjH8OuXdkezZQoOUtgRV2A7sEwRzr6E55zujfIvlO9aak3A5gXKKLYl49fM2ciIiIiIqnz+6GoCL74xZFjzc2wcWP2xpQCJWcJnFPvdGzcPUFTEHcvtNWL05OcGWN43xsXs2HFvLR8PRERERGRM8r69WAMPPIIvPSSk5jddBOsXZvtkSVFux0nsLzWSc5ajndz5Tm1cc/ZeqCdgjzDqoWVaXvd/3ntuWn7WiIiIiIiZ5QNG5xlje9+t5OUtbbCo486x3OAZs4SCPh9LJxTzK5jiTs2bj3Qzsr55dqXTERERETEK971Lrj+emhpgY98JGcSM1ByNqGmunKe23ea/7tpH8++2kpnX2j4sdBQhB2HO1jdMDeLIxQRERERkVGam2HTJvjc5+DBB53Pc4SWNU7g+jcsYOfRTv7xiZFuLwvnFLNyfjm15X4GQhFWp6kZiIiIiIiITJNbY+YuZdywYfTnHqfkbAJvX1XP21fV09YzyM6jXew82sXLRzt55WgXv9l5Al++YW2jkjMREREREU/YvHl0IrZhg/P55s05kZyZyfbxSqc1a9bYLVu2zNjrZVL3QIiewTD1FcXZHoqIiIiIiOQIY8xWa+2aeI9p5myKAn4fAb8v28MQEREREZFZQg1BREREREREPEDJmYiIiIiIiAcoORMREREREfEAJWciIiIiIiIeoORMRERERETEA5SciYiIiIiIeICSMxEREREREQ9QciYiIiIiIuIBSs5EREREREQ8QMmZiIiIiIiIBxhr7cy9mDGngAMz9oLJqwZasz2IWUhxzQzFNTMU18xRbDNDcc0MxTUzFNfMUFwzI9NxbbDW1sR7YEaTM68yxmyx1q7J9jhmG8U1MxTXzFBcM0exzQzFNTMU18xQXDNDcc2MbMZVyxpFREREREQ8QMmZiIiIiIiIByg5czyU7QHMUoprZiiumaG4Zo5imxmKa2YorpmhuGaG4poZWYuras5EREREREQ8QDNnIiIiIiIiHpBTyZkx5mpjzG5jzKvGmHtijj9ijNkefdtvjNme4PlzjTFPG2P2Rt/PiR5/X8zztxtjIsaYC+M8/0fR13/ZGPNdY4wvetwYY74WHdeLxpiLMhOBzPFwbJuMMX82xgwaYz6dme8+czwc1/dFf1ZfNMY8a4y5IDMRyAwPx/W6aEy3G2O2GGMuz0wEMiODcfUZY75vjHnJGLPLGHNvguefZYx5Pvr8R4wxhdHjOX2N9XBcdX3NTFx1fc1MXHP6+grejW3M42uNMUPGmBvT+G1nnFfjaoxZb4zpjBnDfUl9Q9banHgD8oHXgCVAIbADODfOef8buC/B19gI3BP9+B7gn+Occz6wL8HzrwFM9O3/AR+JOf5k9PglwPPZjtcsiu08YC3wj8Cnsx2rWRTXS4E50Y/flks/sx6Paxkjy8VXAS3ZjpcX4gq8F/hJ9OMSYD/QGOf5jwI3Rz/+19lwjfV4XHV9zUxcdX3NTFxz9vrq9djGjO/3wBPAjdmO12yIK7Ae+FWq31MuzZxdDLxqrd1nrQ0CPwGuiz3BGGOAm3D+WIrnOuD70Y+/D7wrzjm3JHq+tfYJGwW8ACyM+bo/iD70HFBpjKlP+jvLPs/G1lp70lq7GQil9B15g5fj+qy1tj162nOM/CznAi/HtSd6DKAUyKWi3kzG1QKlxpgCoBgIAl1xvvYVwE/jPD+Xr7GejauurxmLq66vmYlrLl9fwcOxjboT+A/gZIrfV7Z5Pa4py6XkbAFwKObzw9Fjsd4MnLDW7k3wNWqttccAou/nxTnnPST+xwOcaU7g/cBTKYzNy7wc21yWK3H9EM6sRK7wdFyNMdcbY1qAXwMfnOj5HpPJuP4U6AWOAQeB/2WtPT3muVVAh7U2HOf1c/ka6+W45rJciauur2mMaw5fX8HDsTXGLACux5n1yTWejWvUm4wxO4wxTxpjVibzDeVScmbiHBt71yThne6kXsCYNwJ91tqXJzn1m8Ama+0fUxibl3k5trnM83E1xmzA+ePhM1MdQxZ4Oq7W2p9ba5tw7px9eapjyIJMxvViYAiYD5wFfMoYsySF18/la6yX45rLPB9XXV/HmXZcc/j6Ct6O7f3AZ6y1Q1N47Wzzcly3AQ3W2guArwO/SOZFcyk5Owwsivl8IXDU/SQ65fhu4JGYY9+LFuA9ET10wl0KE30/dur2Zia/U/55oAb4ZLJjywFejm0u83RcjTGrgG8D11lr21L4vrLN03F1WWs3AUuNMdXJfFMekMm4vhd4ylobstaeBP4ErBnz+q04yxUL4rx+Ll9jvRzXXObpuOr6mtmf1xy8voK3Y7sG+IkxZj9wI/BNY8y7pvG9ziTPxtVa22Wt7Yl+/ATgS+pn1nqgmC+ZN6AA2IeTuboFfytjHr8a+MMkX+OrjC742xjzWF70H3jJBM//O+BZoHjM8bczulj9hWzHa7bENubxL5B7BeuejSuwGHgVuDTbcZplcT2bkYL1i4Aj7udef8tkXHFmDr4XvUaWAq8Aq+I8/98ZXVR9R/TjnL3GejmuMY/r+pren1ddXzMT15y9vno9tmPOeZjcagji2bgCdTE/sxfjLI2c9Gc260FN8R/gGmAPTleWz8b5Ybp9kudXAb8D9kbfz415bD3w3CTPD0dfe3v07b7ocQN8I/rYS8CabMdqFsW2DucP5S6gI/pxebbjNQvi+m2gPeb4lmzHapbE9TPAzuixPwOXZztWXogrTpe1f4/G5hXgHxI8fwlOg5VXo+cXRY/n9DXWw3HV9TUzcdX1NTNxzenrq5djG2ccOZOceTmuwMeiz92B0xwoqRs2bjYnIiIiIiIiWZRLNWciIiIiIiKzlpIzERERERERD1ByJiIiIiIi4gFKzkRERERERDxAyZmIiIiIiIgHKDkTERERERHxACVnIiIiIiIiHqDkTERERERExAP+PxI2rUQDjasjAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADIGElEQVR4nOydd5xbV5n+n6PeNaORNGPP2B73JC5xHDuVEDthSZaEDQQSSgiEToClLmXZZQm/XVgI7NIXNqEusLCBkNB7bEhxEjux4xSXuIw9vWjUezm/P67OHY3qbRppRuf7+fDBmZGurjTS1XnO+7zPSyil4HA4HA6Hw+FwOBxOa9G1+gQ4HA6Hw+FwOBwOh8PFGYfD4XA4HA6Hw+G0BVyccTgcDofD4XA4HE4bwMUZh8PhcDgcDofD4bQBXJxxOBwOh8PhcDgcThvAxRmHw+FwOBwOh8PhtAFcnHE4HA6Hw+FwOBxOG8DFGYfD4SxSCCGxkv8VCCHJkv++pdXnpwRCyBAh5EWtPo96EEL2EkLe0qRjewkhDxNCAoSQECFkHyHk8rLbvJ8QMkEICRNCvk0IMZf87lxCyAPF350ghLy87L5XE0KOEkIShJA9hJBVJb8jhJDPFh87QAi5kxBCmvE8ORwOh1MdLs44HA5nkUIpdbD/ATgL4KUlP/thq8+vHEKIYSk8RpOJAXgTAB+AbgCfBfBL9rwIIdcA+CiAqwEMAlgD4JPF3xkA/BzArwB4ALwNwA8IIRuKv/cC+BmAjxd/fwDA/5U89tsAvAzA+QC2ArgewNub9UQ5HA6HUwkXZxwOh7PEIIToCCEfJYScLFZA7iGEeIq/GySEUELIGwkhw4SQICHkHYSQnYSQw8VqzVdLjnVbsZLzlWI15igh5OqS37sJId8ihIwTQkYJIf9GCNGX3fcLhJBZAHcQQtYWKzsBQsgMIeSHhJCu4u2/D2AlBDESI4R8mBCyixAyUvb8xOoaIeQOQshPCSE/IIREANzW4JzWEUL+UnwuM4SQUnFS+hiW4jFZBWs/IaSXEPIpAFcA+GrxHL9avP05hJA/EkJmCSHHCCE3lxzru4SQbxR/Hy0+/qpqj0spTVFKj1FKCwAIgDwEkeYp3uQNAL5FKX2WUhoE8K8Abiv+7hwAywF8gVKap5Q+AOBhALcWf38jgGcppT+hlKYA3AHgfELIOSXH/g9K6QildBTAf5Qcm8PhcDgLABdnHA6Hs/R4D4QKyJUQFutBAF8ru83FANYDeBWALwL4JwAvArAJwM2EkCvLbnsKgBfAJwD8jIk9AN8DkAOwDsAFAF4M4C1V7usH8CkIguPfi+d1LoAVEEQCKKW3Yn4F8E6Jz/cGAD8F0AXghw3O6V8B/AGC4BkA8JUax3wDAHfx/HoAvANAklL6TwAeBPDu4jm+mxBiB/BHAP9bfJ6vAfBfhJBNJce7pfjYXgCHiudZE0LIYQApAL8A8E1K6VTxV5sAPFVy06cA9BJCeiC8thWHArC52n0ppXEAJ4s/r3Xs0ufA4XA4nCbDxRmHw+EsPd4O4J+KFZA0BPHzyjLL378WqzR/ABAH8CNK6VSxYvIgBFHDmALwRUppllL6fwCOAbiOENIL4G8BvI9SGi8KiC8AeHXJfccopV+hlOYopUlK6QlK6R8ppWlK6TSA/4QgItWwj1J6f7Ha5GpwTlkAqwAsLz7/h2ocMwtBlK0rVqGeoJRGatz2egBDlNLvFJ/nkwDuBfDKktv8mlL61+Lf458AXEoIWVHrCVFKtxafy2sBlJ6jA0C45L/Zv50AjkL4W32IEGIkhLwYwmtrq3Ffdn9nnWM7eN8Zh8PhLByL3ZvP4XA4nEpWAbiPEFIo+VkeQG/Jf0+W/DtZ5b8dJf89SimlJf99BkLlaxUAI4DxkvW7DsBwyW1L/w1CiB/AlyFYA53F2wclPavalD5Go3P6MIQK1uOEkCAEG9+3qxzz+xCqZj8u2i5/AEHwZqvcdhWAiwkhoZKfGYrHqDhHSmmsaPNcXnbu8yhaD39ECDlCCDlEKX0KQk+aq+Rm7N9RSmmWEPIyCNXAj0DoKbsHQLp4m/L7svtHa/zeBSBW9rfncDgcThPhlTMOh8NZegwD+FtKaVfJ/yzFqpgS+suqJysBjBUfJw3AW/I4LkppqRWufGH/78WfbaWUugC8DvPteOW3j2Ou8oNi75iv7Dal96l7TpTSCUrpWymlyyFUGP+LELKu/AkXq4SfpJSeB+AyCNWx19c4x2EAfyl7vR2U0ttLbiNWyQghDgg9ZGPlj1sDI4TgDwB4FkJgB+N8AJOU0kDxvA9TSq+klPZQSq8p3u/xavct2jHXFn9e69jPgsPhcDgLBhdnHA6Hs/T4BoBPsdAJQoiPEHKDiuP5AbynaJW7CUKv2G8opeMQ+rf+gxDiKgaRrC3rVyvHCaFCEyKE9AP4UNnvJzEnRADgOAALIeQ6QogRwD8DMKMGjc6JEHITIWSgePMgBKGVLz8OIWQ3IWRLUQxGINgc2e3Kz/FXADYQQm4tvkbGYsDKuSW3eQkh5AWEEBOEyt1jlNKKqhkh5BJ2O0KIlRDyEQgVz8eKN/kfAG8mhJxHCOkuvh7fLbn/1mKYiY0Q8g8AlpX8/j4AmwkhryCEWAD8C4DDlNKjJcf+ACGknxCyHMAHS4/N4XA4nObDxRmHw+EsPb4EIUjiD4SQKIBHIQRzKOUxCOEhMxBCPV7JKjUQqkkmAM9BEDs/hSAIavFJANsh9DP9GkK0eyn/DuCfiwmJ/0ApDQN4J4BvAhiFUEkbQX3qndNOAI8RQmIQXqP3UkpPVzlGX/F+EQBHAPwFgrUREF7fVxIh6fLLlNIohNCRV0Oohk1AiMAvFZH/CyFMZRbAhRACQqphhhDeEig+35cAuI5SOgYAlNLfAbgTwB4I9tIzxeMybgUwDqH37GoAf1Psc0Oxx+8VEP6GQQjvidL+wP8G8EsATwN4BsLf579rnCeHw+FwmgDhVnIOh8Ph1IIQchuAt1BKX9Dqc1msEEK+C2CEUvrPrT4XDofD4bQ3vHLG4XA4HA6Hw+FwOG0AF2ccDofD4XA4HA6H0wZwWyOHw+FwOBwOh8PhtAG8csbhcDgcDofD4XA4bQAXZxwOh8PhcDgcDofTBhgW8sG8Xi8dHBxcyIfkcDgcDofD4XA4nLbhiSeemKGU+qr9bkHF2eDgIA4cOLCQD8nhcDgcDofD4XA4bQMh5Eyt33FbI4fD4XA4HA6Hw+G0AVyccTgcDofD4XA4HE4bwMUZh8PhcDgcDofD4bQBC9pzxuFwOBxtyWazGBkZQSqVavWpcJYgFosFAwMDMBqNrT4VDofD6Qi4OONwOJxFzMjICJxOJwYHB0EIafXpcJYQlFIEAgGMjIxg9erVrT4dDofD6Qi4rZHD4XAWMalUCj09PVyYcTSHEIKenh5eleVwOJwFhIszDofDWeRwYcZpFvy9xeFwOAsLF2ccDofDUcWnPvUpbNq0CVu3bsW2bdvw2GOPAQDe8pa34LnnntPkMQYHBzEzM1P3Np/+9KdlH/e73/0u3v3ud8/72Xe+8x1s27YN27Ztg8lkwpYtW7Bt2zZ89KMflX38heCLX/wiEolEq0+Dw+FwOBrAe844HA6Ho5h9+/bhV7/6FZ588kmYzWbMzMwgk8kAAL75zW8u6Ll8+tOfxsc+9jHVx3njG9+IN77xjQAEUbhnzx54vV7Vx1UKpRSUUuh01fdTv/jFL+J1r3sdbDab5GPmcjkYDHwJwOFwOO0Gr5x1AM+OhTEWSrb6NDgczhJkfHwcXq8XZrMZAOD1erF8+XIAwK5du3DgwAEAgMPhwEc+8hFceOGFeNGLXoTHH38cu3btwpo1a/CLX/wCQGUV6/rrr8fevXsrHvNlL3sZLrzwQmzatAl33XUXAOCjH/0okskktm3bhltuuQUA8IMf/AAXXXQRtm3bhre//e3I5/MAhMrYhg0bcOWVV+Lhhx+W/Fw/97nPYefOndi6dSs+8YlPAACGhoZwzjnn4C1veQs2b96MW265BX/6059w+eWXY/369Xj88ccBAHfccQduvfVWXHXVVVi/fj3uvvvuhsc999xz8c53vhPbt2/H8PAwbr/9duzYsQObNm0Sb/flL38ZY2Nj2L17N3bv3i2+1oyf/vSnuO222wAAt912Gz7wgQ9g9+7d+MhHPoKTJ0/i2muvxYUXXogrrrgCR48elfxacDgcDqdJsB25Wv8DsALAHgBHADwL4L0lv/t7AMeKP7+z0bEuvPBCyllYIskM3fQvv6Pv+/HBVp8Kh8NpAs8991xLHz8ajdLzzz+frl+/nt5+++1079694u+uvPJKun//fkoppQDob37zG0oppS972cvo3/zN39BMJkMPHTpEzz//fEoppd/5znfou971LvH+1113Hd2zZw+llNJVq1bR6elpSimlgUCAUkppIpGgmzZtojMzM5RSSu12u3jf5557jl5//fU0k8lQSim9/fbb6fe+9z06NjZGV6xYQaempmg6naaXXXbZvMcshz3u73//e/rWt76VFgoFms/n6XXXXUf/8pe/0NOnT1O9Xk8PHz5M8/k83b59O33jG99IC4UCvf/+++kNN9xAKaX0E5/4BN26dStNJBJ0enqaDgwM0NHR0brHJYTQffv2iefCnncul6NXXnklfeqppypem/LX4Sc/+Ql9wxveQCml9A1veAO97rrraC6Xo5RSetVVV9Hjx49TSil99NFH6e7du6u+Bq1+j3E4HM5SA8ABWkMvSfE05AB8kFL6JCHECeAJQsgfAfQCuAHAVkppmhDi11g3cjTgJwdGEEvnMBrklTMOZ6nzyV8+i+fGIpoe87zlLnzipZtq/t7hcOCJJ57Agw8+iD179uBVr3oVPvOZz4jVGobJZMK1114LANiyZQvMZjOMRiO2bNmCoaEhWef05S9/Gffddx8AYHh4GM8//zx6enrm3ebPf/4znnjiCezcuRMAkEwm4ff78dhjj2HXrl3w+XwAgFe96lU4fvx4w8f8wx/+gD/84Q+44IILAACxWAzPP/88Vq5cidWrV2PLli0AgE2bNuHqq68GIaTiud1www2wWq2wWq3YvXs3Hn/8cTz00EM1j7tq1Spccskl4v3vuece3HXXXcjlchgfH8dzzz2HrVu3ynrtbrrpJuj1esRiMTzyyCO46aabxN+l02lZx+JwOByO9jQUZ5TScQDjxX9HCSFHAPQDeCuAz1BK08XfTTXzRDnyyRcovrdvCAAwEeFRyBwOpzno9Xrs2rULu3btwpYtW/C9732vQpwZjUYx+U+n04k2SJ1Oh1wuBwAwGAwoFArifapFuO/duxd/+tOfsG/fPthsNuzatavq7SileMMb3oB///d/n/fz+++/X1ECIaUU//iP/4i3v/3t834+NDQkPpd6zw2oTD4khNQ9rt1uF//79OnT+PznP4/9+/eju7sbt912W82I+9LHKb8NO2ahUEBXVxcOHTrU6KlzOBwOZwGR1Q1MCBkEcAGAxwB8DsAVhJBPAUgB+AdK6f4q93kbgLcBwMqVK9WeL0cGe45O4UwggVU9NoyHU6CU8lhkDmcJU6/C1SyOHTsGnU6H9evXAwAOHTqEVatWKTrW4OAg/uu//guFQgGjo6Niv1Yp4XAY3d3dsNlsOHr0KB599FHxd0ajEdlsFkajEVdffTVuuOEGvP/974ff78fs7Cyi0SguvvhivPe970UgEIDL5cJPfvITnH/++Q3P7ZprrsHHP/5x3HLLLXA4HBgdHYXRaJT1/H7+85/jH//xHxGPx7F371585jOfgdVqlXTcSCQCu90Ot9uNyclJ/Pa3v8WuXbsAAE6nE9FoVAwt6e3txZEjR7Bx40bcd999cDqdFcdzuVxYvXo1fvKTn+Cmm24CpRSHDx+W9FpwOBwOp3lIFmeEEAeAewG8j1IaIYQYAHQDuATATgD3EELWFH2UIpTSuwDcBQA7duyg4CwY3374NJa5Lbjl4pX49G+OIpTIottuavVpcTicJUQsFsPf//3fIxQKwWAwYN26dWJIh1wuv/xy0SK4efNmbN++veI21157Lb7xjW9g69at2Lhx4zzb39ve9jZs3boV27dvxw9/+EP827/9G1784hejUCjAaDTia1/7Gi655BLccccduPTSS7Fs2TJs375dDAqpx4tf/GIcOXIEl156KQDBzvmDH/wAer1e8vO76KKLcN111+Hs2bP4+Mc/juXLl2P58uWSjnv++efjggsuwKZNm7BmzRpcfvnl85733/7t32LZsmXYs2cPPvOZz+D666/HihUrsHnzZsRisarn88Mf/hC33347/u3f/g3ZbBavfvWruTjjcDicFkPKtFT1GxFiBPArAL+nlP5n8We/g2Br3Fv875MALqGUTtc6zo4dOyhL7uI0l6MTEVz7xQfx4Ws3YpXHjnf975P43fuuwDl9rlafGofD0ZAjR47g3HPPbfVpcBpwxx13wOFw4B/+4R9afSqy4e8xDofD0RZCyBOU0h3VftcwSp8IPrhvATjChFmR+wFcVbzNBgAmAPUnhHIWjO8+PASLUYfX7FyJXpfQ/zAR5n1nHA6Hw+FwOBxOuyLF1ng5gFsBPE0IOVT82ccAfBvAtwkhzwDIAHhDuaWR0xpm4xncd3AUN24fQLfdhN60BQAwyUNBOBwOpyXccccdrT4FDofD4SwCpKQ1PgSgVorE67Q9HY4W/Ojxs0jnCnjj5YMAAH+xcjYZ4THJHA6Hw+FwOBxOu9LQ1shZXGTzBXx/3xm8YJ0XG3qFhC6zQQ+P3cTj9DkcDofD4XA4nDaGi7Mlxm+fmcBEJCVWzRi9Lgsmec8Zh8PhcDgcDofTtnBxtsT49kOnMdhjw+6N/nk/73OZMRnl4ozD4XA4HA6Hw2lXuDhbQhw8G8Sh4RBuu2wQOt38NsFelwUTYd5zxuFwtEev12Pbtm3YvHkzbrrpJiQSCcXHuu222/DTn/4UAPCWt7wFzz33XM3b7t27F4888oj439/4xjfwP//zP4ofmzE0NITNmzfP+9kdd9yBz3/+87KOo9X5cDgcDqdzkDyEmtP+fOfhITjNBrxyx4qK3/W6LAjE08jmCzDquSbncDjaYbVacejQIQDALbfcgm984xv4wAc+IP4+n8/LGtbM+OY3v1n393v37oXD4cBll10GAHjHO94h+zGaRS6Xa6vz4XA4HM7igK/SlwgT4RR+8/Q4bt65Ag5zpebuc1tAKTAd5dUzDqdjufNOYM+e+T/bs0f4uUZcccUVOHHiBPbu3Yvdu3fjta99LbZs2YJ8Po8PfehD2LlzJ7Zu3Yr//u//BgBQSvHud78b5513Hq677jpMTU2Jx9q1axcOHDgAAPjd736H7du34/zzz8fVV1+NoaEhfOMb38AXvvAFbNu2DQ8++OC86tahQ4dwySWXYOvWrXj5y1+OYDAoHvMjH/kILrroImzYsAEPPvig7OdY79gf+9jHcOWVV+JLX/qSeD5jY2PYtm2b+D+9Xo8zZ87gzJkzuPrqq7F161ZcffXVOHv2LAChevie97wHl112GdasWSNWEjkcDoez9OHibInw/UeHkKcUb7h0sOrvxUHUPLGRw+lcdu4Ebr55TqDt2SP8986dmhw+l8vht7/9LbZs2QIAePzxx/GpT30Kzz33HL71rW/B7XZj//792L9/P+6++26cPn0a9913H44dO4ann34ad9999zybImN6ehpvfetbce+99+Kpp57CT37yEwwODuId73gH3v/+9+PQoUO44oor5t3n9a9/PT772c/i8OHD2LJlCz75yU/OO8/HH38cX/ziF+f9vJSTJ0/OE1Tf+MY3JB07FArhL3/5Cz74wQ+KP1u+fDkOHTqEQ4cO4a1vfSte8YpXYNWqVXj3u9+N17/+9Th8+DBuueUWvOc97xHvMz4+joceegi/+tWv8NGPflTmX4LD4XA4ixVua1wCUErx48eH8aJze7Gyx1b1Nr2u4iBqntjI4Sxd3vc+oGgvrMny5cA11wDLlgHj48C55wKf/KTwv2ps2wZ88Yt1D5lMJrFt2zYAQuXszW9+Mx555BFcdNFFWL16NQDgD3/4Aw4fPixWgcLhMJ5//nn89a9/xWte8xro9XosX74cV111VcXxH330UbzwhS8Uj+XxeOqeTzgcRigUwpVXXgkAeMMb3oCbbrpJ/P2NN94IALjwwgsxNDRU9Rhr164VrZrA3BDpRsd+1ateVfO8Hn74YXzzm98Uq3X79u3Dz372MwDArbfeig9/+MPibV/2spdBp9PhvPPOw+TkZN3ny+FwOJylAxdnS4DxcAqBeAYv3OCreZs+Js545YzD6Wy6uwVhdvYssHKl8N8qKe05K8Vut4v/ppTiK1/5Cq655pp5t/nNb34DQkj5XedBKW14GzmYzYKTQK/XI5fLaXZcYP5zLmV8fBxvfvOb8Ytf/AIOh6PqbUqfIztHQHj+HA6Hw+kMuDhbApyYigEA1vmqf+EDQLfNBKOeYCLCe844nCVLgwoXgDkr48c/Dnz968AnPgHs3t30U7vmmmvw9a9/HVdddRWMRiOOHz+O/v5+vPCFL8R///d/4/Wvfz2mpqawZ88evPa1r51330svvRTvete7cPr0aaxevRqzs7PweDxwOp2IRCIVj+V2u9Hd3Y0HH3wQV1xxBb7//e+LlS61KDl2NpvFzTffjM9+9rPYsGGD+PPLLrsMP/7xj3Hrrbfihz/8IV7wghdoco4cDofDWbxwcbYEEMWZv7Y40+kI/E4Lr5xxOJ0ME2b33CMIst275/93E3nLW96CoaEhbN++HZRS+Hw+3H///Xj5y1+OBx54AFu2bMGGDRuqCh2fz4e77roLN954IwqFAvx+P/74xz/ipS99KV75ylfi5z//Ob7yla/Mu8/3vvc9vOMd70AikcCaNWvwne98R7PnIvfYjzzyCPbv349PfOIT+MQnPgFAqBh++ctfxpve9CZ87nOfg8/n0/QcORwOh7M4IQtpl9ixYwdlyVsc7fjYfU/j14fHcehf/qau9ecVX38EZoMO//vWSxbw7DgcTjM5cuQIzj33XGk3vvNOIfyjVIjt2QPs3w+U9DtxOKXIeo9xOBwOpyGEkCcopTuq/Y5XzpYAJ6ZiWOd3NOzJ6HWZcXQiukBnxeFw2o5qAoxV0DgcDofD4bQcHqW/BDg5Favbb8bodVl4WiOHw+FwOBwOh9OmcHG2yAnGMwjEM3X7zRh9LgvimTxiaW3TyTgcDofD4XA4nLbgzjvn5nky9uwRfr4I4OJskXNiunEYCIPNOpvg1TMOZ0nBo9Y5zYK/tzgczqJj504h7OqBB4T/ZmFYO3e29rwkwsXZIkdKUiOjl88643CWHBaLBYFAgC+iOZpDKUUgEIDFYmn1qSjmsVMB8XuSw+F0CLt3CynE114LXHzxgqUSawUPBFnknJiKwWLUob/L2vC2fW5eOeNwlhoDAwMYGRnB9PR0q0+FswSxWCwYGBho9Wko5gP3PIVtK7vwtddub/WpcDicheTSS4F8Hnj8cWGu5yIRZgAXZ4ueE1MxrPE6oNPVT2oEhLRGAJiMcnGmlqeGQ3joxAzetXtdq0+F0+EYjUasXr261afB4bQd+QLFRCSFmWi61afC4XAWmrvvBgoF4KabgK9/fVElE3Nb4yKHxehLwWYywGkx8MRGDbjv4Cg+9/tjyBe4lYzD4XDakZlYGvkCxWw80+pT4XA4C8mePcA//qPw7698RbA03nxzZUhIm8LF2SImkclhNJSULM4AIbFxgvecqYZ92YeT2RafSfM4E4jjiTPBVp8Gh8PhKGK8uBHJxRmH02Hs3w9s3w6sXg309s71oO3f3+ozkwQXZ4uYU9NxANLCQBh9bgsmI9zioRb2ZR9KLN0v/c//4Tg+cM+hVp8Gh8PhKGIinAQABBMZFLjLgcPpHD70IeDECaHvjLF7N/DhD7funGTAxdkiRk5SI8PvtPC0Rg1g4iyYWLqVs/FQEkG+47yk2XcygH0nA60+DQ6nKbDwqwIFQkvY5cDhcMo4exYYH58vzhYRXJwtYk5MxaDXEQz22CXfp89txlQ0zXulVDJna1y64mUikkIsneM7zkuYT//mCD7zu6OtPg0OpymMl2xEzsa5Y4TD6Rj27RP+/7LLWnseCuHibBFzYiqGVR4bTAbpf8Y+lwX5AkWAf1EphlKK2aKdMRhfmruxlFJMRdIoUCCeybX6dDhN4kwgjmleSecsUUrHxgRiS3cjjcPhlLFvH2CzAVu3tvpMFMHF2SLmxHQMa2VYGgHAzwZRh7k4U0oik0cmVwAg9DIsRUKJLDJ54TlGU1ycLUVCiQwiqRymY2k+wJqzJBkPp+A0CxODeCgIh9NB7NsH7NwJGBbnxDAuzhYp2XwBQzNxWf1mgFA5A6A6sXE6msbjp2dVHWOxUvolv1TTGktn4UVSS/M5djpnAgkAQDZPl3TvJKdzmYykcO5yFwCIbgcOh7PESSaBgwcXbb8ZwMXZouVMIIFcgWKdT6Y4cxcrZyrF2bcfPo3XfeuxjuxdKxVnS7VyVproyStnS5Mzswnx31N8MD1niUEpxXg4hfOWFcUZtzVyOJ3BgQNALsfFGWfhUZLUCAA9dhN0RL04m4mmkckVOtIqUvqcQ0u04lD6/ojyytmSZLhUnPHxGpwlRjCRRSZXwEqPDU6zAYEO/K7icDoSFgbCxRlnoTk5LYgzuT1nBr0OPqd5XqO0EpidrxN33Jk467Gblq44K3l/RJK8crYUOROIQ0eEf09HuTjjLC3GizPOlrkt8DhMHbmRyOF0JPv2AevWAT5fq89EMVycLVJOTMWwzG2Bwyy/2bHPZcGkysVYSBRnnbeoY1bG1V47Qks0Sn8ymhIX7rxytjQ5E0jgnD7B8tWJn2PO0oZV//vcFnjsXJxxOB0BpYI4W8RVM4CLs0XLiamYbEsjw++yzKuMKCFcrBhNd6AdKhDPwKAjWOmxLdko/clIGquK8/MivOdsSXJ2NoFzljnhMBs6sgLOWdqMF7/jlrmt6LGbuK2Rw+kEhoaAyUkuzjgLT6FAcXI6hrUyw0AYfS6L6rRGVjHqxEVdMJ5Bt92ELpsJoSUaCDIVSWFFcYbeYkhr5IOy5ZHK5jERSWGVxw6f08wrZ5wlx0RYqP57HaZi5Yy/xzmcJc8S6DcDuDhblIxHUkhk8oorZ31uC8LJLFLZvOJzYL1Wkx1YOZuNZ+CxmdBtMyJeMvNsKTEZSaPXaYbLYmj7tMZMroArP78H39831OpTWTSMBJOgFFjZY4XPae7ICjhnaTMeTsHvtMCg18FjN2M2nuHz/Dicpc4jjwAOB7B5c6vPRBVcnC1ClCY1MvxOMwDliY2pbB7poiDpxMrZbDwDj92ELpsRAJZc31m+QDEdS6PXZYHLYmx7cfbwiRkMzyZxfDLW6lNZNJydjQMAVnrs8DvNHfk55ixtJiMpcXRMj92EbJ4imm7vaxmHw1HJvn3ARRct2uHTDC7OFiFqxRn7wlKa2Fg6eLkT7VCzCSbOTADm+u+WCoFYGvkCRa/bAqfFgEibD9r+5eExAEt3IHgzYAOoV/XY4HdaeFojZ8kxHk5hWfG7zmMXrtV81hmHs4SJx4Gnnlr0lkaAi7NFyYmpGLpsRvQUv3Dk0ucqDqJWuCBjlkarUd+R85Fm4xl0243oLoqz4BITZ8yq2us0w2kxtnVaYzqXxx+fnQTAxZkczgQSsJv06LGb4HeZEc/kEedVBc4SYiKcQm/xu87jEK7VPBSEw1nCHDgA5PNcnHFaw8mpGNb5HCCEKLq/n4kzhZUzFoKxzu/AdDTdUT7+XL6AcDILj908Z2tcYqEgzO7a67LAZTW0dVrjX4/PIJrOwWbSc3Emg+HZBFZ4bCCEwOcQbM6dWAXnLE2iqSxi6ZxYOWMbmTxOn8NZwrAwkEsuae15aAAXZ4uQE9PKY/QBwGUxwGrUK05sZDPO1vc6kCmKlU4hnMyCUsBjM5aIs6X1/Cejc+LMaW7vytmvD4+hy2bEFeu9iyJVsl04M5vAqh4bAMDvKoozlQmuHE67UDrjDMCcy4GLMw5n6bJvH7BhA9DT0+ozUQ0XZ4uM2XgGs/GMKnFGCEGfW3mcPhNjG3qdADorsZHtvHaX9JwttUCQyUhajKB2tnFaYyqbxx+fm8S1m/rgsZvbvjeuXSgUKM7OJsQ5dn6nsIDllTPOUqF0xhkA9HBbI4eztKFUSGq87LJWn4kmcHG2yDg5LYSBrFUhzgAhsVHpTjkLwNjQK5xDJyW9MXHWYzfDbtLDqCdLr+csnILXYYZBr4PLakQik0c2337jAvYem0Y8k8f1W5fDbTUWq5qdY7FVymQ0hUyugJWeYuWsmN7KQ0E4SwUmzlh/tc1kgMWo47POOJylysmTwMzMkug3A7g4W3SISY0KB1Az1FTOQskM9DqCweLOeyeFggQTrHJmBCEEbuvSG0Q9GZ1rpHdahDjaWBtWz3799Dg8dhMuWeOB22pENk+RyrafiGw3SpMaAaDLZoRJr+OVM86SgSURM8suIGyo8cpZ+5LM5PHhnz7F7dUcZSyR4dMMLs4WGSemYrAa9ejvsqo6Tp/LgsmIsjCPUCKLLqtRXMB30qIuUFI5A4Bum3Hp9ZxF0ugtLmqcFqGvrt2sjclMHn8+MolrN/fBoNfBbRXOs5P6H5VydlYQZ6xyRgiBj8864ywhJiIp9NhNsBj14s88dhMPBGljDg4Hcc+BEfz56FSrT4WzGNm3D3A6gfPOa/WZaAIXZ4uME1MxrPHZodMpS2pk+F0WZHIFRcIinMzCbTPCbjbAYTZ01KKONZSzMJAum1Gspi0VpiIpMdHTVayctVvYxp5jU0hk8rh+6zIAgMsqnCcXZ405G0hAryNYXrLB43Waua2Rs2SYCM8NoGZwcdbejMwmAQBDgXiLz4SzKNm3D7j4YkCvb3zbRQAXZ4uME1PqkhoZzIuvxNoYTgqVM4D1rnXOoi4Qz8Bu0os7sl0205KqnGVyBQTiGfQ6ma1R+Du3mzj79eFxeB0mXLxaSGXilTPpnJlNoL/LCqN+7vLfaZ9jztJmPJwSv+MYPXYTAnwIddsyHBQq+kMzXJxxZBKLAYcPL5kwEECCOCOErCCE7CGEHCGEPEsIeW/x53cQQkYJIYeK/3tJ80+3s0lkchgNJVX3mwFAn1uwrSkRZ6FEVlwMa22HOjkda+tQh2A8Iw40BdrH1pgvaPOaTceKA6iLtkZWkWonW2M8ncOfj07ibzcvg75YQWbvR57Y2JizgbjYb8bwc1sjZwkxEU7yytkiY3iWibNEi8+Es+h4/HGgUFgy/WaAtMpZDsAHKaXnArgEwLsIIczU+QVK6bbi/37TtLPkAABOTQs7SlpUzsT4bCXiLJkRY+T9LotmPWcnpqK4+j/+gn0nA5ocrxnMJrLw2ObEWZfN1PIo/Xg6hys++wC+98iQ6mOxRvpeN7M1tp/oeeDoFFLZgmhpBHjlTA5niwOoS/E7LQgmssjkeKAKZ3GTyuYRTGTFAdQMj8OEZDaPZCbfojPj1GM4OGdrLGi02chZ4tx5J7Bnz1wYyMUXC/99552tPS8NaCjOKKXjlNIni/+OAjgCoL/ZJ8apRExq1ECcsTCPibB8YVVaOest2qG0qHaxFDkWWNCOzMbT6LaXijMjUtkCUtnWfeHfc2AYY+EUjk1GVR+LifU5W2P7Vc5+dXgMfqcZOwY94s+YiOTirD6RVBbBRBarysVZsVI6E+PWRs7iZm4A9fzQrB47m3XG3+PtyPBsAkY9QTpXUJwkzekwdu4Ebr4Z+OUvgXPPBQ4dEv57585Wn5lqZPWcEUIGAVwA4LHij95NCDlMCPk2IaRb65PjzOfEVAx6HRGHx6rBZNChx26SfRHMFyiiqZwYiOF3mZHM5hFLq1+8s0CCdo47Dsaz8JSKM6vw71aFguTyBXzrodMAoEmkP1vYMFujw9xe4iyWzmHPsWm8ZMucpREAXLxyJomzZTH6DJ9D+Ht3UvIqZ2lSPuOM4Skm7HJrY/uRyuYxFU3jwlXCMpL3nXEksXs38KEPAY89BpjNgjC75x7h54scyeKMEOIAcC+A91FKIwC+DmAtgG0AxgH8R437vY0QcoAQcmB6elr9GXcwJ6ZiWNVjg8mgTY5Lr8si29bI7G1uMRBEuzh9Js7a+ctzNp6ZZ2vsLorUVvWd/faZCYwEkzAbdJq8bpPRNIx6gu7iczTodbCb9G0TCPLnI5PI5OZbGgFAryNwmg1tc57tCqtOr/TM3+BhlTM+Y4ijFkop0rnWOQmYNbuy50y4Vrfz90unMlK0NF6x3gcAOM0TGzmNSCaB97wH+MhHAJ9PqJrdfvuSEGaARHFGCDFCEGY/pJT+DAAopZOU0jyltADgbgAXVbsvpfQuSukOSukOn8+n1Xl3JCemY5qEgTB6XWbZlbNQUZyJlTOnsKib1GBRx8Iogm365ZnM5JHM5ucFgriLr0MrKmeUUtz111NY7bXjivVeTQTiZCQFv9Myb1SD02JEtE1Ezy+fGkefy4LtKysL9S6rkVfOGnBmVlj0rKwIBOm8mYWc5vCH5yax41//1LKNkolILXHWmZWzSCrbUtu9FFhS485BD8wGnbiJxOFU5dAh4MILga98BbjxRoBS4OMfB77+daHnbAkgJa2RAPgWgCOU0v8s+Xnp1vXLATyj/elxGNl8AUMzcU36zRh9botsUcWsc8zOx3bctZiR1O62xtnic59fORP+HW5B5ezRU7N4ejSMt1yxWrMksslISrQ0MlxWAyLJ1tsaI6ks/np8GtdtXVZ1zp/Lamyr4JJ2ZHg2gR67SbSrMrwOEwjR5nPM6WxOTMUQTefE9L2FZiKcgtNiqHiPMzt6p4mzW7/1OP7t18+1+jTqMjI7Z7de1WPDaW5r5DBY6AcA5PPA5z4H7NgBjIwAn/0s8Ne/ClbG//f/hP+/+eYlIdCkVM4uB3ArgKvKYvPvJIQ8TQg5DGA3gPc380Q7ndl4BrkCRX+3tfGNJdLrsmAmlkE2Lz2hjVXOWMXIJ6Y+Ln1b42xxRk55IAgABFsgzu5+8BR67Ca8YvsAuu3CvDW1wSyTkbQYFsNwWoyIplsvev747CQy+QKuK7M0MtxtIiLbmTOBREXVDBDsqz12E6+ccVTDNvBaNTdvPJys6DcDAJfFAKOetO3mX7M4E4jj+GSs1adRl+FgEiaDDj6HGYM9dt5zxpmDhX78+MfAi14EfPjDwqDp//kf4felPWa7dwv/vX9/685XIwyNbkApfQhA5TY1wKPzFxAW/2szaTf9nC3Cp6Jp9HdJE32sMsGGULssBliMOk1mJDFbY9uKs+Kio8deWTlb6Dj95yejeODoFN7/og2wGPXotpmQyReQyORhNzf8WNdkMpLCC9Z55/3MaTG0xd/k10+Po7/LigtWdFX9vdtq5DNyGnAmkMDOwerZTT6nBdN81hlHJWyjqlWJexPhVIWlEQAIEXppZztoEHW+QBFOZjVpO2gmw7MJDHRbodMRrPbasff4NAoFWtUhwekwdu8GvvQl4LWvBQwGwOEAfv5z4Kqrat9+CfSdaZMswWk6yaJn3GrUTpz1iXH60i/crK+JBYIQQuB3ajPrbM7W2J6796wXrrRyZjHqYTHqFjwQ5O4HT8Fi1OHWS1cBmLNaqhFRiUwO0VROtKoyXJbW2wUTmRwefH4aL9nSB8FpXYnLwnvO6pHJFTAeTmJljbRXYaB8e372OIsHdi2U872iJRORVMWMM4bHbuqoylk4mQWlwqabFuNumsVwMIEV3UJFf1WPHZlcAWPhZIvPitMW5HLA174GGI1ANgu8//21hdkSgouzRUKiWDmzaCjOxMqZjF21cnEGCKEganfm4ukcEpk8PHYTUtkCEhl59rTfPj3e9B4H9qVe2nMGCP13CxliMhVJ4f6DY7jpwhViH0WXBqmRzIbEZpwxnBZDy6P0x0JJZPMUm/vdNW/j5oEgdRkJJlCgwEpPpa0RED7HrbKicZYOzNbYimpNNl/AVDRdMeOM0eMwYbZNN/+aAQuqSmULbW35Hp5NYoVH+JsNeoXrE3dBcAAAn/oU8MgjQlT+Egv9qAcXZ4sElrZkMym3rJXDgh/k2E9CyQycZgMM+rm3jt+lfsed3X9jrxMAEJBhPckXKN79o4N46/8cQCYnvX9OLsF4BjoyX5gCgjAKLaAo+O4jQ8gWCnjLFavFn7Fq3qyK1Mi5GWdVes5SuZbuvDLR4HdW3xEHhL9LMptv6ntgMXN2tvqMM4bfacZMLI1CoX132DntDxMErbA1TkfToLRyxhnDYze3hUV7oSidfdmug50jqSzCyaxYOVvtFSr7QzxOn/PII8AnPykIs5//fMmFftSDi7NFAus509LW6LGbYNLrZF20w4msGAbC8DstmFa5484sjRv7BHEm5ws0EE8jX6A4OhHFf+09oeo86jGbyKDbZqrwwXfZjJoMgJZCLJ3DDx49g2s39c0bRi72vqk4j7kI6sq0xky+gHQLRQ8T7z6nueZt2CBqPuusOqI4q1M5yxVoywaqc5YGrHqtpa2xUKD4998cwanp+sEWbAB1LVtjT4fZGoPxuWthu4oz5nhZUbwu9TotsBh1PBSk04lEgNe9DujqAn7ykyUZ+lEPLs4WCWLPmUm7PxkhRKh6yRBW4WRWtNAx/C4zoumcKCCVoEaczUSF2/a5LPjqAydwZDyi+DzqMRvLiDbCUrptpgXrObtn/zAiqRze9sI1ZedQTI1UsfAQq1NVKmdAa0UPC5wp74crhVU0ubWxOmcCCViN+poC118SEMThKIFSKl4LtbQ1TkZT+O+/nsJ3Hxmqf7saM84YHrsJ0VSuY6rrpRstky3qAWzE8KzQW8YqZzodERIbeeWss3n3u4EzZ4Bf/Qp46Uvn/273biG1cQnDxdkigYkzLXvOAMHCJisQJJmtsPXNDbBVfvFnKXFMnMnZ3WQpj//6ss3oshnxoZ8+JWs8gFRmE5l5YSCMLptxQaL0c/kCvvXQaewc7MYFZUOY3VYjCAFmVZzHZCQFq1EPZ1nao8si/Hcr+86mImlYjLqKcyuFi7P6nAkksNJjqxmowkRbM8VZvkDx8ImZph2f01pi6RxyBQqXxYBgQrvhx0zw7Tk2Vdde3ahyxjbXOqU6XLpp2K6Vs5Egq5zN9QkO9tj5rLNO5kc/Ar7/faHH7LLLWn02LYGLs0VCqglpjYBQbZqUIapCiYw4gJrh12BRNx1Lw6AjWOsThmzLadpmVbcNvQ786w2b8cxoBHf99ZTic6nFbDxTEQYCAF02E8LJTNN7sn7zzARGQ0m87YVrK35n0OvgsqizV05G0+h1mSsW7y5WOWuh6JmKpuF3WmoKC6DE1sjFWVWGZxOidaga4ue4iYu4vx6fxi3ffAzPjIab9hic1sHEwDl9LgDazTpjGy7Ds0mcqrNonwgnYTHqKjYQGUycyelpXszMJjIw6Ai6bca2FWfDswk4zYZ5f7NVXhuGZ5PI8/7XzmNoCHjHO4BLLwX++Z9bfTYtg4uzRYLYc6bhnDMAimyNFT1nRauZGhvLdDQNr8OsaFDoTLFy5nWY8bdbluG6LcvwpT89j+cno4rPpxrBeAYeRzVboxHZPEVcha2zEdl8AXf99STW+Oy4+hx/1dt0q6zgTUZSFZZGQEhrBFpcOYumRPFQC7dVOE9eOauEUoqzs4maYSBAaQW8eZUzVl0fC/GY7KWIKM6WCQ4IrQRBaQVoz9GpmrcbD6fQ56q9idN5lbMMumwm9LosTd10UcNwMImBsor+6h47MvkCv050CnfeKQR85HLArbcClAq2xv/8z1afWcvg4myRINoaDdrbGmPpHGLpxgtv1k/QVcvWqGKXdDqahs8pVG08dnmDQqejadhMenH48idv2AS7WY8P/fSwZjtvhWJQQtXKmVV9GEc9TkzFcON/PYJnRiN41651NQdzdtvVRfpPRVJVU87aIWhjKpqu228G8MpZPaajaSSz+brizGoSLK3TTRRnbPOA97UtTZjoYfZ0rfrO2GfaZTHgL8ena95uMlJ9ADWjh1XOOiQUJBjPottmRJ/b0taVsxXd80cfDPLExs5i504hgfFtbwMeekgQZu99r/DzDoWLs0VCMpuH2aCruTBXCovTl7KrlsjkkSvQikCQbpsRRj1RbWtkPS9y445nYkLVjeF1mHHH323CoeEQvv3QacXnVEo4mUWBombPGaBuxlg1CgWK7z58Gtd9+UGMBBP4+i3b8YoLB2revttmUrwjTCnFRCQlvh9KaYfK2XQkXTdGH5jrOYu0eCZbO3KmmIhWa8YZw+cyN1mcCe/PZj4Gp3WwkSLM1qiVOGPV8Ou2LsNjp2ZrzsEcD6ewrMaMM2CucjYb64z3X7CYMNznsmAi3H7PmVKKkWCywm4txunzvrPOYPduoXr2ne8AmzYBd98tJDKyhMYOhIuzRUIqk9fc0gjMDRyelFD1Yl+85X5+Qgj8TovKQJA0fEWBJTfumFXdSvm785fjRef24vN/ONYwflkKbH5YT1Vxpr1VZiKcwhu+8zju+OVzuGxtD37/vhfib7csq3ufbpvyylkklUMqW6iYcQbMpTVGW1Q5S2byiKZzdWP0AcBs0MNi1HFbYxXOBKSJM7/TrOpz3IhQnFfO2onRUFIMZNAC5h5Y4bHCatRrFqcfSmag1xFct2U5MvkCHjkRqLhNoUAbVs66bCYhOKlDKmehRBbddiN6XRYE4ummBGWpYSaWQTKbr6ic+Z1mWI16nOaDqDuHP/4RMBqBZ58Fbr+9o4UZwMXZoiGZzWseBgKUxmc3/hJlX7xua6VA8TmV77gXChQzsUxJ5cwk68uzVNgxCCH49Ms3w2zQ4SP3HlY9WJeJnmqVs26NK2e/fGoML/7CX3BgKIhPvXwzvn3bzqq9YNXOQ2nPGaucVnscu0kPHQEiydZUpNj7qlHPGSCEl4QXaKzBYuLsbAI6Agx0N6icOS1NFU68ctZefPTew7jtO/s1CzNi18Auq0lTK124mBK8c3U3bCY99h6v7DsLxDPI5mnNAdQAoNcRdNs6Z9aZWDlzW0Bp+22KDAfnzzhjEEKwqsfGbY2dwrFjQkKjwSAkNH7960t+yHQjuDhbJCSzhaaIs14ZYR5s0VtuawSEhbNSC0swkUG+QBWLs5lYGl5npWjyuyz4l5duwv6hIH74+FlF58ZgX+bVKmduUZyp+8JPZfN4748P4u9/dBBr/Q785r1X4JaLV9VNKCyl225CMptXFF/NKqe9VQQQIQROi7FllbO5GWeNBarbauSVsyqcDcSxzG2FyVD/ku93CgFBzUoeZYv36SZW5zjSCcQyODEVw+ERbdIzg4kMHGYDTAYdel3KvxPKCSUEcWY26HH5Oi/2HJ2ueI82mnHGkPv9slgRe8SLtkZA28HgWlA+gLqU1V47tzV2Cu95j/D/P/gB8P/+n2BpvPnmjhZoXJwtEpKZvOYzzgDAYTbAZtJLsjWyRW9VceYyK96VY3PKmDjrsZsQS+eQzjUWGdl8AcFEFj5H9S/kV2zvx3q/A38+Mqno3Bj1KmdzgSDKRUEuX8C7//cgfvHUGD7wNxvwk7dfKvrupdKtwl7JFjbVbI2A0HfWqp6zKRmVM7fV2NLgknblTIOkRobfaUYym5cUEKQE9t5cyB38p0fC4iKQMx/2d/7ZkyOaHC+cmJuD2evStnLGAn92bfRhNJTEyTK7eqMZZwyPTNv8YiWeySOTL6DbZhTDlNotsXEkKKQxDnRX9gkOeu04O5tArs2smByNOXlSsDS+8pXAjTcKP9u9WxBo+/e39txaCBdni4RUtjk9Z4QQ9LosknY4a/WcAUJiYyiRlSSoymEpj2zxzeLqg/HGi2w2r6Za5QwQnt+GPqfqHTj2ZV4trdFk0MFu0iu2FFJK8fGfP4M/HZnEJ64/D++5ej0MevkfTWavlPK6lTPRQJy5LK0TPWxB0ajnDBASG3nlrJKzAYnirLiIa5btkH1GZmJp1VZjqbz3xwfxtu8/sWCPt5hg4uwXT40hk1O/CA4mMui2C9ehPpcFkxpVYcPJuZTgXRuFUSJ7js5PbZwICwv9RpWzng6pnIkbiqWVszYTZ8OzCXgdJthMhorfre6xI1egGAu11zlzNObf/x0wmYAvf3n+z3fvBj784dacUxvAxdkioVk9Z8CclakRpf0E5fSqWNSx+5RWzgAgIGEQtXhfR+2F++oeO4aDSVXN0MF4BlajvqZA7rKZEEoq+8L/4p+ex48eH8Y7d63FbZevVnyO3Spm+ExFUnBZDDWfn9NiaFkK4lRUGFBeTRiXw22NlcTSOQTimboDqBnNnHUm2KwysJn0yOapuNnTbIKJDI6MR/BHldXzpUgslcM5fU4EE1nsPVZ7fphUQsmsWMHvdVmQyRVUzV5ksJ4zAOjvsmJDr6Oi72w8nIJBR+C119/E6RRbY6ikDcFjN8Gk17WfOAsmavbBsjj907zvTBW/fGoMezT4bDeFM2eA730PeOtbgWX1A886DS7OFgnNsjUCwpfopJRAkGQGJoMOFmPl20bNom66ZIg0IETpA9IStaZjjasqg1478gWqyto0m8iIMczV6LYbFdkaf/jYGXzpz8/jlRcO4EPXbFR8foBaW2O6ZtUMQLHnrHXizOswSxoj4bYa+ZyzMs4WkxpXeRrbZNnnqBniLJbOIVegWN8rzMBaqFAQVh368p+fb1ov3WIknRNsby/Zsgxehwn3amBtDJXYGlkFS4s+p3AyO89Ov3ujH4+fnkW8xH4rjAKxNLxO9NhNYp/zUoZ9D3TbTUKissuMybbrOauM0WcMeoWf874zdXzmt0fxxu/sb8/r32c/CxDS0RWyWnBxtkhINsnWCMyFeTT64IaLA6irBVSIizoFg6ino2nYS4ZIi7NoJIizmWjR1livcqbBQMvZ+JxdpxpdVvkzxn7/7AQ+fv8z2L3Rh3+/cYvk4I9aiLZGBSJxMpqqK85cVkPLRI+UAdQMl9WIaDrHLWwlnJ0V3vdSe86A5vSmsM2LDX6H8BgLEAqSzuWRzVOs8zvw7FgEfzrSpjvILSBW3Gzpshlxw7Z+PHB0StUQe0AIRSqtnAHqZ50VCnRe5QwArtzoQzZP8fCJGfFnE+H6MfoMj90EStUHOLU7ojgr/j36NOwB1IJ8gWIslKyI0Wf4HGbYTXqc5uJMFcFEBm6rEf/5x+N4948OIpmR33rSFEZHgW99C3jTm4AVK1p9Nm0HF2eLhGQmD2uVipUW9LosSGULDW1r5buXpYgNxwoWXOVzykRbY0xK5Wy+JbIaTJydmlZ+kQ/GM2JFrxpdNnkR7vuHZvGeHx3EloEufO2W7TAq6DGrPAfWq6fE1lhfALlamdYYSUkKAwEAl8UASls7MLvdEGecSRBnbqsRJoOuKVUtJs429i1c5YwJkFfvXIGVHhu+9Ofj7bd73CJYRdFhNuDG7f3I5il+dXhM8fGYiGLfEUwoqRVn0XQOlM7vdd6xygO7SY+9x+f6zqSKMzX278UE+7yxTbtet0VS8NdCMR5OIlegNStnQpy+ncfpqyCdyyORyeOtV6zGR//2HPzm6XHc9N+PYLzYn9lS7rwTKBSAj3601WfSlnBxtkhIZvNVm2a1YC4EoP6XaKllpZweuxk6orxyViqu3FYj9DoizdYYTcNpNtS1fHbbjHBbjeoqZ4kMPDWEKSCIM6lf9scno3jzd/ejv8uK79y2U7O/q8mgg8NskL3oKBQopqKpuvOBnBYDYi2qSAnvj8aLLmBuAcf7zuY4M5tAl80Il6X2+5dBCIHPoXxmYT3Y+5LZGhcisTGeFnaJu2wmvHv3OjwzGsEDR3n1DJjbwHCYDThvmQvn9Dlx75Ojqo5XoHObRH6nGYSoD6Fgm16l3z0mgw4vWO/F3qNToJSCUorxcP1rGKOnuMkmZfNvMcO+P8X0TKcFE+HGDpmFYnhWEAgr6sxe5HH66pjrOzThHVeuxTdfvwNDMwn83VcfxpNng607sYkJ4K67gFtvBQYHW3cebQwXZ4uEZLa5PWcAGu6qhZLZqgOoAWG4p89pVlY5i80XZzodQbfNKCnuuPy+1SCEYNBrV2WPmI3Vr5x120wIJ7MNxUsglsYbvv04zEY9vvemi+r2sSmh226UXTmbTQjDW+vaGi1GFCgQzyxsRSqbLyAQz0iunLGFCI/Tn2N4NoFVEsJAGGrGYtSDibP+LitsJv2CVM6iaeF94DDr8fLt/VjhseJL7dh70QLEypnFAEIIbtzej0PDoYqIeqmwvy9LVTTqdeixq591Fq6RErxrox9j4RSen4ohksohmc03jNEHpNvm07nmjZRYCEKJDFwWg5j82+cWxmRE2+Q5zQ2grm5rBIS+M7VhXp0Me4+z9/zV5/biZ++8DFajHq++61HNRmjI5vOfBzIZ4GMfa83jLwK4OFsE5AsUmVxzhlAD0nsDwolMTVsjIISCKAoEiaYr0haFRK3Gx5qJpuGVsHBf3WPD0IyyQJBUNo94Jg9PnZ4zt1UQL43sdH8+MoXxcArfeN12Sel5cum2mWT3nM3NOKv9OjotQnVvoe2CM0XbqpyeM4BXzhiUUpyYimFVj/SZeX6FmyyNKE2PEx5j4SpnDrMRRr0O79q1DodHwth7bLrBPZc+zPLpNAufmZdt64eOAPcprJ6x9M3S3txel1l1IAhLwe0qS2vdtdEHANhzdEp8DCm2xh4HSwOuL84++cvn8Oq79sk+33YhmMjOm8spfs+3SSjIyGwCOgIs76ojznqEMK/RYBvY8BYh4oZJybptQ68TP3/X5di+sgsfuOcpfPPBU80/kTvvnBsoPT0NfP3rwFVXAT/7WfMfe5HCxdkiIJUVFhhWU3P+XKwqIaVy1lXD1siOI9fWmM7lEU5mK6pf3TZpccfTsUphV43VXgdGQ0nxtZRDaepVLVjTdaM4/eOTUZgNOmxb0S37PKTQZTPJbnQX58w1SGsEFr4iNS0OoOa2RiWMBJMYD6ewY1D6+83XJOFUWlnxOc0NbdRaECtWzuxmYWPrxu0D6O+y4ou8ejZXVSxuvPhdFlyx3of7Do4qsi+zv2+pu0IIoVD3XqpVOVvmtuKcPif2HpsWe2ikVM7Ytbre9wulFHuOTuHkVHzRvk+Cicw8Qdtus86Gg0ksc1vr9lvzOH11zPUdzl+7dNtN+P6bL8a2FV24/5ByK7Nkdu4Ebr5ZEGhf+AKQSABPPCH8nFMVLs4WAUkmzppUObObDXCaDXUrZ5lcAYlMvn7lzCV/x32m6PsvF2c9DpM0W2O0sa0RmIvlZeEIcmBf4j0NovSBxkmJxyajWOd3QC8hFl4JHpsRszLF2WSDAdSAkNYILHzlrHxAeSPkirNnRsN4eiSs7OQWAftOBQAAl6zpkXwfNQPl6xFKZOEs2qyUVtnlEitWzljl12TQ4V271+Gp4RD+cryzq2exkp4zxo3b+zEaSuKx07OyjxcuC6AAWAiFNrbGat89V2704cCZWZyYEqyY9a5hDJNBB6fFUFecnZ1NYDycQrLomliMhBLZeX3SWo420ILh2QQGaiQ1MgaLFX/ed6YMtmFSrX3CqNdhrc+B2YXovdy9G7jnHuCmmwRLo9kM3Huv8HNOVbg4WwSw6NNm9ZwBjYVVrd3LUnxOCwLxDHIy/OHlA6gZUgaFprJ5RFM5eB2N+7bWeIX4biV9Z8F49d2nUthucaMwjucnY9hQDERoBl02E0JxubbGxoO8WeVsoRMb2QJeqq1R7DmTKM4+8Ytn8eF7Dys7uUXAoycD6LGbsL4YXy8FJoRnNP7SDpbErAuVs4VLa7SXCJBXXihUzzq994z1HjHhCgAvPq8PDrNB0cyzOQvV/GrNbDyjSuiHqgSCMHZv9CObp7j3yVEQIr3C3mOvv/n32Kk5cbpQ8/i0pvTzBmg32kArhoOJhtZ+r8MEh9nAxZlCWP95rU31HodJ9mauYnbvBq6+Gshmgdtu48KsAVycLQLmbI3NE2e9rvoxu+GiXc9dR6D4nWZQKm9RJ4ozx/wvVY/djFAiW1fozUiI0WewypkScRYo9r7VHUJdvPjVi9MPJ7OYiKSaKs48dhOi6RwyOekCeTKagtdhgslQ+3LAFnCR5AJXzoobBj11wlhKsZn00OuI5MrZaDCJ45PR9pn9oiGUUjx6KoBL1vTImqEnjsXQeBEXTGTFz4nPaUY0lVNkM5ZDPF1ZHTIZdHjn7rU4eDaEB5+fqXXXJU8slYNBR2Au+dxbTXq8ZEsffvv0OBIyw3+qiShmpVOS4suIJLMwG3RVNycvXNUNp9mAI+MReB3mutewUhr1ND96OiD+m33PLDZCiew8oWwx6tFlM7aFrTGVzWMykq6b1AiwMC8bTitwvHCEa67NpIfZUH3t2G0zIZUtLMz33549wAMPAB/8oFA1Yz1onKpwcbYIaLatEWDirPZFW2zmr1M5YztzcqyN0zUqIz3iLJrai+xalshqOC1GeB1mRTtwwXhtawBDnDFWZxfq+ckoAGBDr/QqhlzY4rdR71spk+FUwx1nVwsrZx57feFYCiEEbqtRkjjL5QuYiqaQL1A8Nx5Re6ptx9nZBMbCKVyyxiPrfuy9oLXtMFTSA8M+s82uSrDqkL1sXMVNF67Acrelo6tnsXROTGos5cbtA4hn8vjDs5OyjsfSAUst271u9X1O9Ua4GPVCpD4grd+M4bGb60bpP3ZqVpyPuRgrZ5lcAbF0bp7FFGBx+q1/PqOhYox+naRGxmAPj9NXSnn1tBxxpqyE8DVV7Nkj9Jzdc49ga7znnrkeNE5VuDhbBLBdjWaKM79LCPOotVApTVqreQwn23GX/kGfiqZASKXwkRJ3zL40vRICQQBgtdemqHI2m8iCkMq0sFLY4iFUR0wenxT6Ippta2x0HuVMRlN1kxqBkspZC3rOpPabMdxWo6TznIqmwXIPnh4JKTi79ubRYr/ZpWul95sBc8JJa3EmLBSEz4l4rWhyKEg8nYPdpIeurMfTZNDh9t3r8MSZIB4+Eahx76VNLJWbZ2lkXDToQX+XVba1MZTMVoQmiSEUKvqcwsna4gyYS22U0m/G6Kljmx+eTWA0lMT1W5cBWJyVMxYK1VX29+h1W5r+mZPC8CyL0W+cWLzaa8dIMCHLDcIRCMYz89JTyxEHsstshZDN/v2CIGNWRtaDtn9/cx93EcPF2SKAVc4szbQ1Oi3I5As1F/VSes5EO5SMRd10NA2PzVSR2CRlR6dWv1otBnvsilKfZuNpdBUHY9dCryNwWQx1kxKPT0ZhM+nRXyc6WC1SZ/iUMhlJN1zYWIx6mAy6FqQ1piT/fRkuiZWz8ZIF4+HRpRcK8uipWXgdJqz1yavU9thNIASY1tj+FIpnF7xyFkvlxDTCcm7eMYA+lwXffeR0U8+hXYmmc3CYK6/nOp0w8+zhEzOyRFUwUZnm26dBn1MoWX+Ey66NfgAyK2cOE4KJTNXNSBaGcu3mPujI4qycBauEswBAnwajDbRAFGcNbI0AsKrHjgIFRoLc2igXwUpee1OZjQdqeuXswx+u7DHbvVv4OacqXJwtAlILZGsEhCpKNdgMm64aQ6gBoYJFiLwv4lppix5HY5HBdjSl9iOt9tkxHU3LHiwajFfuCFej224SX6dqHJ+MYr3fUbGLryVsESM1Tj+XL2Amlq4bo89wWQyS0hoDsTTu2T+sKI67nKloWnKTP8NlMUgSZ2yR0t9lxeEllthIKcW+kwFcLLPfDAAMxeHBWlbOsvkCoumcuFBolnWynFgmNy8MpBSzQY9Ny13zRHonEUvl4Kzx2ty4fQAFCvxcRsx2uCy6HRBSXi1GnSpxFk7m6m4K9ros+NTLN+OWi1dJPqbHZkI2T6tW2B87FUCXzYhz+1zocSxMcI3WiONfbJWVzJlYWlZoVzMYDiZhMugkuSJWF/vFh3icvmxCVT6TpXiKa6dGQWachYeLs0XAwvSc1Z91Fk5kQAiq2mAYRr0OHptJXuUsVkOcSbQ1dtmMkvuRViuM5Q3EhepeI7qsxro9cscnY1jfREsjUPq6SatwzcQyoLT+AGqG02KUJM7ufXIEH773MP7vwLCkc6hFoUAxHU1LTmpkuK1GSWmNbDbSNZv6cHI6Jlu0tzNnAglMRFK4VEaEfil+jdMUw2UDij12E3REXVCEFOoJEECY8bXQ4yHaBdZzVo3VXjsuWNmFXzw1Jvl4wUS2osJFCEGvyllnkWR23uy0atxy8Sps7JN+bfWIdq7K75dHTwdw0aAHOh2B12Fe1LbGcnHW67agQIXv3VYyPJvAQJdV0kYli9M/PcMrZ3KZjWfmjVMox2OTt17gLBxcnC0Ckhlhl6vZaY1A7apXqOj7b3Qx9bsssobLTkerD5FmXyr1mrZnJA6gZqz2sYu8PHEWjGfrhoEw6g2Ano1nMBNLY2OTxVm3hGCSUlijfp/EypkU0XO2aFn59K+PqLLQBBMZ5ApUWc+ZRFuj1ajHC9b3gFLg2SVkbVQy36wUYbSGdgu4UFnMur648G12VSKerl05A4TNpqUkyuUQS+fmpViWs31lN07PSB/CHKoRPtDrsmBSxXUglMjUrZwpgTkzyuP0x0JJDM8mxc/NQo180BrR1mivbjNttbVxOJjAgIR+M0AQ0k4Lj9OXSy5fQCSVq1s5c1mFAJ96yaWc1sDF2SJA7DlrYuVMDAGoIc7Cycp+gmr4ndIXdZTSmrZGo14Ht9VYV2RMR9OSw0AAYJVHmTibTWQkibNum7Fmz97xYlLj+iYmNQLCe8Ri1Em2NUoZQM0QKmeNRc/wbBLL3BZkCwX88/1PK07DE2ecybU1FnvOGj3uRDiFZV0WbOnvAgA8vYTE2aOnAvA5zVhb3JCQi/A51m4BV60HxqfxY1SjkQBh7+lOTGyM1unHA4QerkQmL2l8BlsIVhNRfS6L4rTGbL6AeCZft+dMCT01nBmPFSP0Ly4mnHodJs3n/S0E7HlVVM7aZNbZ8GwSKxoMoGYQQrDaa+e2RpmIboU6nx1CCLptJl45a0O4OFsELETPGZuBUsvWWC/OuBS/0yzZqhRN55DOFWoGPjQaFFrLElkLq0mP5W6LrB04Smkx8Uha5ayWmGQx+nKsN0rxyLjYMjEuxTrotBgkpSAOBxM4f6AL//DijfjTkSn86vC4pHOpODeZA6gZbqsRuQJFosHslrGwICJ9TjOWuy14aon0nSmdb1aKz2nGTCyDvAZ9g0DJMNQSe5rfaW66vaqxODMgm6dId2ASXCydrWv57CsGbIxHkg2Pxa4L1RaCfW5BnCkRwFKCqJQwZ/+e//579OQsXBYDzulzAZirnC028R5KZGAxVs6GmxNnrauURFJZhJNZSUmNjMEeLs7kIvYdNli7eOxGXjlrQ7g4WwQkMjnodQRGffOCJAAhsbGurVFC35XfJSy4pCzqGqUteuwmzNazNcqsnAHAoFdeYmMklUOuQMWd1np02YSerGrN1scnY3CaDZLsg2qpZ68sZzKShl5HJIWquCRUzgoFipFgEis8Vrzx8tU4f0UX7vjFs7LSIxniDDwFtkYADZMlJ8Ip9LmE3dutA11LJk7/9Ewck5G07PlmpfidFuQLVNHfrRrVRnH4ZGzkKKVeXxUAUZwsdAppq8nmC0hlC3WF6zK38NmQEpgSLLOtltLrsiCTq50EXI9miTN2vSvf/HvsdAAXre4Rk3l9DjMy+YKk6mE7USulr8duglFPWjqIWk5SI2Owx4bRYJLH6ctgzq3QSJyZmh+lz5ENF2eLgGSmAJtRr3gXXCp+lxmTNSyJ4URGoq1R+qJOFGc1BJanziyaRCaHeCYvO2Z90GuXZWsM1rCHVIO9PtWSAo9PRrG+19H0vyFQvNjKsDX6HOa6YwIYTgnhCTOxNDK5AlZ4bNDrCO58xVZEUln866+ek3Q+pTDLm1xbo7vO34EhDKBOY3mXcOwtA24MBRIIK1hALhQRifa7R08JUeBKw0CAOUGsVb9NtV1cv9OCQFy76lw5lFIJPWfCeyXWYaEg7Pk2sjUCwHio8UK+3hxMsc9JgSBgx3VrbGu0mvSwGvXzNv8mwikMBRLzNjXEkQ+LLBSkVkqfTkfgd6rrAVTL8Kz0AdSMQa8Qp8/6mTmNkbp28dhNmOVpjW0HF2eLgGQ239QZZ4xel6Vmz1koWZnEVf0Y0ofLNqqc9Thq2xpnopm6963FGq8doUS2akpXNdjjswbyerCFZ3mcPqUUxyejC2JpBIQFUr3UyFImIo0HUDOcFiMSmTyydWKYh4Pzd0U39jnxzl3rcN/BUew5OiXpcRhTkTScZoPsIBxXccFdT2ix6i6zbm0dcAMAnhlrT2vjTCyNiz/1Z3zrocYzuR49FYDfacZqr7J+M6B0ZqE2i7hgIgujnsBe8rf0Oc2aVufKSecKyOZpQ1sjgI5LbGQhKPVeG7/TDB0BJsKNbY3lgS+l9LmF95IScRZpUuUMqNz8E/vNVs9tarCNw8UWCiJUzqq/Zr0uc0srZ2xe2Uo5tkavsqTlTqbehkkp9TbBOa2Di7NFQCqbb2q/GaO3mNBWPp+qUKCISAwE8cmYXyTF1hhMZKrOy5qOCV8uXgmiqRQxlleitZGJOClR+mwBUW4pnIllEExksd6/MOKsu07vWznDs9JTs1xWYSFXr8rAdkUHSpq937l7LTb0OvBP9z0tKVCEUSssphFSKmfMqsWqA1uLoSBPtam1cc/RKSSzeXzpz8/XtaxSSrFPZb8ZoP0cMraTX3pOWlfnyolLECCsctZp4ow933qjUQx6HfxOiyRbY6jG0GNgrs+p1sZfPcLifE3txVn55t+jp2bhNBtw3nKX+DNv8T262OL0g4nafdKsB7BVDM8m4DQbZAnu1WKcPhdnUmHVsEZhZp5iG0SzHAwcZXBxtghIZhZKnAmWxPJqVTSdQ4EKKXiNEBdcEnpJpmNpmIqpjNXw2IWd9Wr9INMKK2csTl/qDhzbUZKW1lisnJVVbFgYyIYmx+iL52E3IZzMNrzYZvMFDAeTGOyRJs6kLGRZP8FAST+B2aDHZ1+xFeORFO783TFJjwUIVRs14qxeeMmEKM4EEem2GbGqx4an2zQUZO+xaTH2/b/2nqx5u1MzcUxH07h0rXJLI1Bi59LQ1li+cNe6OleOlOoQ+52cTYOlAHtt2Ge6Fn1uaeJM7DmrMo+MCf2JsPz3EtuIWKjK2c7VnnkW78VaOQvVrZy12NYYTGLAY5O1edRtN8FjN+HkdKyJZ7a0CCYyMOl1sDVwnnTbTSjQ+puZnIWHi7NFwELZGtmXaHkoSFgsjzcWKGIkv4QF11REqIzUukizEI5q1kbWAyBnzhkg2O10RPoOnNTdJ2DOPlBuKTzGxFlfc2P0Gd02I6iEi+1oMIl8gYrVxEawXfZ64QkjwSS8DnOFFfGCld140+Wr8f1Hz+Dx07OSHm8qmoZfQYAKq/DVe/5jIaHCxypnALCl343DbSjOsvkC/vr8NF6yeRluvGAA331kCKOh6lazfSfVzTdjWIx6OC0GRdWOaggDiud/hnwO4bVv1sKXCZBGc84AYQOqk4ilhc9GPeEKCJ+PcQm2xnAyCx2pXokzGXTosZsUVWvCxSCOZouzqWgKp6bjuHj1/BAdt9UIo54sqp6zQoHWnDkHCD2A8Uy+ZRsSw7MJyTH6pazzOXBiioszqYTiQitKIxHsqTFWgtNauDhbBCSzeViNzf9T1eoXCyXZrmjjL0iLUQ+3tXYkfynTsbRoG6lGd52LxnQ0DUKkiaZSTAYdVnhsksVZMJ6BydB49wmYE6/ltrPjkzF02YyyhaRS2GvSyNrIrJ1Se5NYL1c9cTYcTNRs9P7gizdghceKj9x7WBwPUQtKKaYiadlJjcBcNaCeOJsIp2Axzq/abh1wYzSURKDNFmJPnAkimsph9zl+fODFGwAAX/zj8aq3ffRUAH0ui+RqaD3kzCxsRKhK5WxuI6dJ4kyCdc/V4bbGeoEggFBZHg83jsEPFgdF62oEC/W6aicB1yOUzMBhNsCg1/77z2MzIVCMEH+sGKJzcdmmhq6YZDuziCpnkVQWBVp7M7WVcfqUsjRf+dentX4HTkzHFt1Yg1YhdT6r1PUCZ2Hh4mwRsHA9Z9Uv2lIbSxlSB9hOR9N1BYtYOasSpz8TS6PHblL0pS1nZkognoGnrFemFi6LAXodqWpr3OB3LkhSIzD3pdwo9IRZO1fJrJzVtTUGE/MsjaXYTAb883Xn4fRMHI+eCtR9rFg6h2Q2r0ic6XVEmMlWr+csksJyt3Xe32TrQBcA4LDKYdQHzwZxw9cexrv/90l85c/P4/fPTmBoJq7Y07/n2BSMeoLL1/Wgv8uKN1y6Cvc+OYJjE9F5txPmm83ikjUeTd5rfqdFs6pWqEq0t9Wkh9NsaF7PWaZx5cxh6XBbo4TKWSKTbzjfsNrft5Q+t0W0EsshnJQ2X1MJHocJqWwByUwej50OwG7SY3NJvxnDtwDz+LSk2sD3Ulo5iHomlkEym1dWOfM7EEpk684+5cwh9Pk2/ux46qyzOK2Di7NFQDKTl51YpwS2k11ha0zKE2e9LovkQJB6PUX1yu3TCmacMVZ77Tg9HZe0AxeMS9t9AgBCCNxW47wdKEopjk1GF8zSCMx9KTdKbDwTSMBhNkgOVRErZzVETy5fwFgoVfeL97K1PSAEODQcqvtYSgdQM9xWY31xFkqKSY2MTctdIASq+84een4GTw2H8NRICP/xx+N4+/efwK7P78V5//I7XP+VB3HHL55tWDksZe/Raewc9IgVwXfuWge72YDP/f7ovNudnI5hJpZWbWlk9LrMkvqNGkEpRaiKrREAfC5z08SZWB2qI0D0OgKbSd9xlTMpUfoAsKyL9YvVfx8If9/a3w9KK2eRJoqzOdt8Go+dmsWOQU/VzT6vw7SoAkHEsRW1bI1uaX/TZiCm+SqonK3zC9+hJ7m1URK1Zt2Vwytn7QkXZ4uAZDYPywJUzox6HbwOU2XlrLjIlRIIAhQrZw0sE0KEtlRxVnmsmZiyJD9AEGfxTF7SbqhUawCjy2acF6U/GUkjmsotWBgIMPel3KhydnomjkGv9MZs1stVayE7EUkhX6B1v3idFiM2+J2NxVmEDaBWNrTbZTE2tDWWizOnxYg1XrvqvrOJSAoeuwkPfvgqPPvJa/Dzd12OO1+5FbdesgpuqxHffWQI9z45IulYo6Ekjk1GcdU5fvFn3XYTbt+1Fn86MjWvf28fm2+mMgyEMei1YyyclCUkq5HI5JHJF6ru5PsczRNn8bRw3o36qpwWQ+fNOUvnoCNo6MhgPZljDfrOQsnqc7UYfS5hpl06J++9FEo0sXJWHET9/GQMz0/FcHGNoe0+Z/Peo80gVGWmYClq5s6pZTQovI/6FVTO1hbDvE7wUBBJBOO1EztLYesF3nPWXnBxtghYKFsjICyGy0MAwjITs9hueL3KVCCeRoHWT1u0GPWwm/TVA0FUVM7YzJTT042tjbMyKmeA0JdX2nN2fIGTGoG5L+VGO2FDgbhkSyNQmmxXfSErDhetYWtkXLCyCwfPhuq+P+YGUCuvnNUSZ/kCxWQ0jeXuygXC+QNdeHo0pOgxGZORlGgdspsNOH9FF27esQL/fP15+MGbL8Y5fU78+PFhScdis+F2bfTP+/kbL1uNXpcZn/ntEfF1fPRUAMvcFlnzg+qxxucApZBsAa6FmORXRZz5XZYmpjUWQy8aVIecFiOi6c6yNUZTOTjMhoYbM33Fz0ijKkswXr9yxmadNdq0Kycscb6mEth1/XfPTACoHaLjc5oxE6s+0qUdCcbr2xqtJj1cFkNLbI0siKm/S744W+62wmrU81AQCVBKEUrWTuwsha2zuDhrLxqKM0LICkLIHkLIEULIs4SQ95b9/h8IIZQQ4m3eaXY2CxWlDwhWpsnyQJBEFjaTHmaDtHPoc1mQyRfqNhyLM84aCCyPo3JAIqVU8QwsQBhEDUhbdMoVZ90207yes1aIM7tJD5NeV9fWmM0XMBJMivNjpGDQ62A36WsGgjDLykCDXdELVnYhnMzWDWVh7w+llTO31VjzPKej8wdQl7JlwI3JSFrVwmU8nEJfDTsmIQSvuWglnh4N4xkJvW17j01hhccq7hozrCY93v+iDXjybAh/fG4SlFI8psF8s1LYY56cUifOQnXSXptZOYsVK2e2BtdOp8XQcbbGaCrXMEYfmBtE3cjeGk5mq8boM5T2OYUWwNb4++cmYDPpsaXfXfV2Xocw0iW0SKLGg3UGgjOU9gCqZTycgtNskPTeK0enI1jrt3NxJoFIKod8gUqyNQLChm4jpw1nYZFSOcsB+CCl9FwAlwB4FyHkPEAQbgD+BsDZ5p1iZ0MpFdIaF6DnDGC9AZW2RjlDQNkO5J5jUzVv02gANcNjN1eIs1g6h3SuoDj9cHmXFSa9DqdnEnVvl8kVEE3lJF/gAGFeVrk48zpMslMl1UAIQZfNWPdiO1KM0V8lM9XPaTHWDE8YmU2AEOH1rce2Fd0AgINnQzVvMx1Nw2TQiVZKudSrnLFo8GVVxNnWAWGBpsbaOBmptEyW8rIL+mE26PCjx+tfNlPZPB4+EcBVG/1VBdcrLxzAWp8dd/7+GI5ORDETy+BSjfrNAGCNt9jjodJGVK8Hxu8yI57JiwOjtSRWrA7VShBkOMyGhoEXS41YOtvQ7gkIVnef04zxGqMbAOE6GUvn6u7Si31OMsQZpVQIBGlW5cwxN5fywlXdMNYIl9J65l+zCSYy0OsIXHUqxkp7ANUyGko2/H6oxzqfg/ecSSAkQaCX0mM38aCVNqOhOKOUjlNKnyz+OwrgCID+4q+/AODDABZHvX8RkskXUKBYkJ4zQLAZzcTSyOUL4s/CyazkfjMAOKfPiZUeG37/7ETN28xVRuoLrB67qSJFiN3X61QmePQ6gpU9NpyeqX+RZxc4j8TADEBYgAbn2RpjC1o1q3Ue5bCkRqkx+gwhBbH6QnYkmMQylwUmQ/3Lyjq/Aw6zAQeHgzVvMxUVYvSVVoFcVkNNcVY+gLqU85a5odcRPD0SUvS4mVwBM7GMWCmohttqxHVbl+Hnh8aQyNQWBY+dnkUym8euc/xVf2/Q6/Dha8/BiakYPnbf0wDUzzcrxWrSo7/LilOqxVltmxXbYGlGnH48nYPd3Pi66aqz4bBUiaVzDe2ejD63ta6okhIY1SvO0JT+d05lC8jkCk2rnDnNBhj1wvWlfL5ZKV6Zg6jDySx+9PhZJDPqejWVEkwIm6n1rp3VNmEXgvFwEsu7lLkhAOG7YyycaspmzlKCbWh77NI+O932+usFzsIjq+eMEDII4AIAjxFC/g7AKKX0qWacGEcglRFE0kLaGikVIm8Z4QZJXOUQQnDNpl48ciJQc9HDwjga9Y2VDgplsHNjQ2yVMNhjx1CDypk4gFpG5azbZkQik0c6lwelVIjRb4U4sxvri7OipXNQpjhzWWv35wwHExiQ0O+k1xGcv8Jdt3I2FU0ptq0CggBKZQtVAwjGRHFW+f6xmvRY73cojtNn/VN9DYZnv+ailYilc/jVU+M1b7Pn6BQsRl3datiLz+vF9mIPX3+XteaMOaWs8dlxUkJvZj3q7eKyNM5mVCVi6Zyk6lBHBoKkpL02ALDcbalra5SyS99lM8Jk0Mmq1jDR1yxxRggRHQ31NjXYdUhqYuM9+4fxjz97Gtd/5UFJ1mWtkRKh3ueyYDqWVjzeQyljoRSWqaicrfUJ1fxTKq9JS516VvJqeGyVm+Cc1iJZnBFCHADuBfA+CFbHfwLwLxLu9zZCyAFCyIHp6Wml59mxJItJaQtma3RW9gaEkpm6/QTVuGZTHzL5AvYcq/43n46m4TQbGj6vnqI4Kw2PUFs5A4DVXhuGAvG6Td6zMZZ6JX1x4C5eDMOJLEZDScQzeazvXbgYfYZQOatdDRiaicNhNoh9F1Kp158zPJts2G/GuGBFN45ORGvuLisdQM1gC7pqVb6JcBJmg67mAmbrgBuHR8KKhp2yz009WyMA7FjVjXV+B360v7q1kVKKPcemcNlab92qOSEEH7n2HADC7r/Ws/TW+hw4qXLwKwsoqPZ6zw2i1t5iJUecdVzPmazKmQXjoWTN90BIQuWMEII+l7w+J7EiJ/O7Rw4euxkWo06ccVgNubbG04E47CY94uk8Xva1h/G1PScWVAQF440j1HvdFuQLdEFHBCQzeczGM4rCQBgsTv/EdLTBLTubRuMUyvHwylnbIUmcEUKMEITZDymlPwOwFsBqAE8RQoYADAB4khDSV35fSuldlNIdlNIdPp9PuzPvEERxtmCVsyriTGblDAC2r+yG12HG75+pbm2UGujhsZuQyRcQL1nETxcXckp7zgBgtdeBdK6A8To7uaxy1mOX/jjMuhVKZvH8pGAH29iSyplpXmpkOacDCVkx+gynpfr8sHQuj8loqmFSI+OClV3IFyierrGzLNgalVdGmQ23mrVxPJzC8i5rzee+ZaALs/EMRuv02dRiIiwsdhqJM0IIXr1zBQ6eDVUMkwaEMQdnAgns3tj4mnnxmh7c+cqteNdV62SfbyPW+h1IZPKqYreDiUzRQlb5dcP+xk2rnEkQIA6zEclsHtkSK/dSJ5bK1e1JKmWZ24J4Jo9oDSsZ621ttBDsc1lkvY9CMlOClbB5uQtXn9tb14rtNBtgMugkC5kzgTg29Dnxu/ddgWs29+Fzvz+GV9+1D8Oz9Z0aWhFMNI5QF+P0FzAUhPX6qrE1ruqxQ68jPBSkAaKtUUYgSCKTVz02haMdUtIaCYBvAThCKf1PAKCUPk0p9VNKBymlgwBGAGynlNZuMuIogvWkLFTPWW/RZjRZslhS0pSt0xH8zXm92HtsquoHfkqGOAPmqliAYGvU64isoI5yBr2CiBiqkxgoLjpkVM7YLm8wnsGxYlLj+pb0nBkRTGRr7nafCcQxKCOpkeGqUWUYDSZBqfThottWdAEADp6t7DtLZfMIJ7OqKmeNxFk92+HWYmqbkmHUbAHSyNYIADduH4BJXz0Y5IEaEfq1uHnHCtHyoyUssVGNjSiUyKCrxmeoy2qEQUea13NmklY5A9BR1kapVUVgrjez1kI+JNF+2OuWF0IhpZdNLZ+76Xx89TUX1L0NIURWqujQTAKDPXZ02Uz46msuwBdedT6Ojkfxt196ED99YkRVFVoKoUTjCPVWzDobC9Xu9ZWKyaDDqh4bF2cNCCWy0JG5a1sjesSZsrx61i5IqZxdDuBWAFcRQg4V//eSJp8XpwgTNrYFsjX2OIToZDbrLJXNI62wKfuaTb2IZ/J4+MRMxe9mJIqznmIYR6BkEPV0NI0eu6lhCls9WBLdqTriLCBxR7iUrpLK2fHJKPpclqbu/Nai22ZCvkCrptCxGH0l4kxIa8xVLDBGgmzGmbQv3h6HGSs9tqp9Z2JYTI04eimItsYqPY8T4VTVfjPGOcucMOqJor6zyUgKZoNO0t/cYzfh2s19+NmTIxUbGHuPTWO93yFZ7DYLJvjUJDYK83aqf4Z0OtK0Ib/RlLTKmSjOOiRkIF+gSGTycJilXZfEQdQ1KsmNhh4z+lxmTIRTksWJVNGnFinuAa/TLPZJ1yOdy2MsnBRTcAkhePkFA/jt+67Aectd+IefPIV3/+/BeYFbWkIpxWwiI8HWWNyEXVBxpnzGWSmC1Zr3nNUjmBCGwktdI3VzcdZ2SElrfIhSSiilWyml24r/+03ZbQYppZUrcI5qkiwQZIHEmb64WGIXbbGxVIHv/7K1XjjNhqqpjdJtjcJtSi8aMzHlM84YvS4zrEZ9w8qZy1LdjlULUZwlMnh+MtaSfjNgTlBWi9Mfnk0gX6Cyw0AAYSGbyReQzs1fXIgzzmSIiQtWdlVNbJxSOeMMKO05my/O8gWKyUgKy+pYa8wGPc7pc+GwgsTGiUgafW6LZLvoqy9agUgqh98+MxcMEk/n8NjpAHbXSGlcSPxOMxxmg6r46mAiW7cx3ec0N6dylpHac1ZbyC9FmAiV03MG1KmcJbIw6AjsDb6jel0WpHOFmimq5bDPbrOi9OUgtXI2PJsApajY+BrotuFHb70E79y1Fr9+ehxPnKmdVKuGZDaPTK7QMAjCazdDryMLK87CSRCCukm2Uljnd2BoJt5RNmS5BCWEwpTi4eKs7ZCV1shZeBa65wyYH7MbSrIkLvlfkCaDDrvP8eNPR6bm7RQmi/0LkipndlY5m7toTMfSDVMeG0EIwaDXXnMQ8qnpGH7zzARWypwDxkRRIJ7B81OtSWoE5qyY1Zp8zwQEIbXaK78q46pRkRqeTcKoJ5LsfIwLVnRhMpIWrYAMsadQja3RUt3WOBNLI1eg6GtgrdmiMBRkMpyStfi4dE0PBnts+NHjw+LPHjoxg2yeYrdES2MzIYRgrcrExlAiU9dm5W9C5YxSKjmRkFXOOiUUhIkzp0RbY6/LAlJnEDUT3402JOTOOmPWLIcEa2qz8TnNknrOWAJwtfmReh3BKy8cADDnNNCaemMrStHpCPxOs9gjuxCMhZLwOcwNR600Yp3PgVyBit9jnEqC8ayslGkmzngoSPvAxVmbw8TZQvWcAULForJypmz38ppNfZiNZ3CgZKeQfclJCfSotqMjterWiNVeW9XK2dlAAq+9+zEUChRfuHmbrGPaTHoY9QTPjIaRyhZaEgYCzInEUJXERiZIVynsOQMqF7LDwQSWd1mhl2E1vWBl9WHUUxraGsNlz58tMJc1EFDnD7gRTeVkLwAmIvUtk+UQQvDqi1bi8dOzYh/F3mNTcJgN2DHYLeuxm8Van0PVrLNgPFP3+iHYGrXdwU/nCsgVKOxcnFXAeuukVs6Meh18DnPFJgojnJS2Sy83hILN11RjX9cKn0NIDW6UuiiOKKlxbWUDmJWEDUmBOSWkRKgv9CDqsVBK1QBqhpjYyPvOasJsjVJhQo5XztoHLs7anFRmYaP0AcHyxxbIYZXWkl0bfTAZdPOsjezYUgSWzaSH2aATLxqUUk1sjYDwBXp2NjGvqjcSTOA1dz+KVC6PH7zlYtlhHoQQdNlMePy0IEZbbWusdrEdCsThVBCjD8wtZMvtgiPBpOSkRsa5y1wwGXQVoSBTkTR0RF5KZjkmgw5Wo76iwjdRXGDWszUCwJb+LgCQ1XdGKcVEpH7YSDVesX0ABh3B/+0/K0ToH53GFeu9suy0zWSNz6548GsuX0AklWtga7QgEM9o2ocjVock9ZwZi/dpvq0xX6B44Ohk00Mh6sFmT0oNBAGEvrOalbN44wAKoHoScD3CyaziTUGt8TnNKND5vc/VOBNIwGUx1BSrFqMePqcZo02qnIUkVs4A+emZahlTOYCasdavvg92qSMlFKYUt9UIHeHirJ1oj29/Tk1aZWucjWeQzuXFyoPSpmy72YAr1nnxh2fnFiTTMsQZIQQ99rkBieFkFtk8VW1rBIDVXjtyBSpaTCbCKbz27scQSWXxgzdfjHOXuRQdt9tmFKuDrUhqFM6htk1hKJDAoNeuaCYWswuWVxlGZhOyByCbDDpsXu6qqJxNRwXbqpwqXNVztRoqbI1SE8PW9zpgNuhweDhU93alhBJZZHIF2T0VPqcZf3NeL+59chSHR8KYiKTaot+MwUJBalmA68Fe/3oLBZ9TGHwf0HBhwISknLTGhaic/fX4NN703QN4dizS9MeqRVRmzxkgfF5q2xozcEvoSWaVcGaZb0QomW1JmFI1pM46GwrEG15b+7usGAk1x5LHrvceCRtvfW4LJhcoSp9SirFQEstVJDUyHGYD+lwWVX2wSxkWCiPlPcDQFdOvuThrH7g4a3NaI87mvojmes6Ux9Zfs6kPo6GkuCBhqVdSq1/ddhNmizuWMzLvW4/VxUCM04E4pqIpvPbuRzEbz+B/3nQRNhfj1JXAwlP6u6yydqe1xGkxQK8j1cXZTLxqT4S041aKs3g6h0A8gwGZlTNAsDY+PRqe19w9FU2psjQy3FZjhTibKKYpNtpVNOp1OG+5C4dlxOmzxWujGWfVeM1FKzEbz+Cf738GALBrQ/vMhFSzUy32wNRZKPhlDvmVQlSGdY99RhdCnLHr10IO/y2H2Rql9pwBwnu6lh0xnJS2S2826OGxmyRXa4QRLs0bQC0Hthk4E6u/eD0TSDRMwe3vtjatcsau91JtjdF0TlFFXC6hRBapbEETWyMgWBtP8MpZVaSGwpQjrLO4OGsXuDhrc5JFW6NZZROtHPyi/SQtOYmrHlef64eOQLQ2Tkfl2dY8JRcNZon0OtR/aTNx9sRQELfc/RgmIil85407xV4opTBLy4YWWRoBYSesy2oUF8eMTK6AkWBCfO5yEW2NJXZBVnkckBijX8oFK7uQzhVwdHxuEPNUNK1qwDijmjgbCyWxTGKa4nnLXDg+VTkguhbMrqUkjewF67wY6Lbi6dEwNve7xM9gO7CqxwYdgaJQkJCExSLbaJnSsO+MLTilbI5YjHqY9LoFSWtk70epiYXNQG5aIyDYGmPpnGiJLEVOMlyvS3q1JpzILKrKGbu2DjbY+BrosmIslEKhQf+aEoJx6bPh+opx+gthbWQ9dlrYGgFBnJ2cirXUHtyuSA2FKcfDxVlbwcVZm5PK5mEx6ha0Kbq3GGE+FUkhlMyiy2ZUZIFj9DjMuGi1Z54489il29Z67CbR8sR2LtUMKGZ47CY4LQZ8dc8JnJ1N4Jtv2IGdgx7Vx50TZ62xNDK67SZxccwYCSZQqBL1LBWW1hidJ84Ei46SmVxiKEhJpP5UNK0qRp/hthoRSc7fFZ4IpyRXtlZ77QglshWvYS3YIkdJ5UynI3jVjhUAgKvaIKWxFLNBjxUem7rKWYO0RkDbyllMhjgDhE2HhRhCzeYOtlScpeS9NgCwrFjxKLc2prJ5pLLSd+n7XGZZlbN26Tmbq5zVfo+OhpIo0MZBS/3dVmTyhaZUT4OJDJxmaeNf2Pf8QoSCjIniTJvK2Vq/A/FMvqbVtpOREwpTisdm4mmNbQQXZ21OMptfUEsjMGdrnIqmBWuJBl+Q12zqw/HJGE7PxGWnLXrsZnFHR+xXc6hfvBNCsMbngEmvw92v34HL1npVHxOY6/dquTizGSt2wsQ0MQUx+gBgN+mhI5gneoZni+JMga1xudsCv9Ms9p3lCxSBWFoTW6PLUlk5Gw+nGvabMdgia0hiYuNEOAVClG8cvPqilbh8XQ9evn1A0f2byVqfQ1GPB/uyrzcUly18pyT2IkmBiTMpaY2AIM4WwtbIgnTKU0QXkmg6B0Kk9eMxWAJp+WJYTPOVuEvf55aWEFgoUM2+e7TAbjbAZtLX3UCQem1lDoORJiQ2hhIZdNklVjHdCyfO2PtGM1ujjyc21kJO32EpHgevnLUTXJy1OcnMwouzbpsJRr0woDKc0OYL8sWb+gAI1sZpmWmLPQ4TEpk8Utk8pqNpmPQ6uKza9HL92w2b8X9vvwQv1LDHx90mlbMum6kiSv90cQ6P0soZIQROi3Fe5Ww4mITFqFNkNSWECMOoi4mNgVgaBapNZdRlNc5LlRQHUEuunAmLrHqDykuZjKTgdZgVpyz6nGb88C2XKLacNpO1PmEmoFwr1pytsfY1xGLUw201ir2oWiAnrREQLH7VLHtaE2kHW2MqB4fJIMuNMReDP19QsJ7keuK7lF6XBTOxDDK5+smcsUwOBao8iKoZ+BrM4zsjcURJf5dwXWnGrLNgIiv5bzH3N21+/+NYKAmTQacoIbgaa/3Ca8wTGytRbGu0mRBMZJtit+XIh4uzNieZzcOygDH6ABtQKQyiDiXlzcuoRX+XFVv63fjdMxOYjqRkLb49JYOoZ2JpeB2NB55KZcuAW3WPWTmXrOnBFeu92NDXup4zoLpN4UwxRl/urlop5VWG4dkEBrptiv8m21Z0YyiQwGw8UzJmQRtbYzSdE2cTBYoDqKWKM+E5ze2IN0JJjP5iYa3PgXSuIHs+E+tZbWSh8znNmlbO4nIrZ2bjwlTOigIw1NKes6ysfjNgbhA1SztliD1OEkUU+3w06i8UU4IVjnBpBl5H/UHUQ4EEHBJGlPQXK2fNCAURBr5Lu7bbzQY4zYYFqZyNhpJYLrHXVwo+hxkui4FXzqqg1NbYbTchX6AL0nvLaQwXZ21OqgW2RkCIPZ6KphBKaOf7v2ZTLw4NhzAp29ZYnNkVywgx6xpUVZrJ9pXd+P6bL4bZsPB/t1K67EYE49l5TdOnZxpHPTfCaTFWBIKsUBAGwrhgZRcA4KnhkLho0yqtEZjrj5tLU5R2rhajHsvdVsmVs4lwSlEYyGJgjU9ZYmMwkUWXrfFmit9p1jQQJJYSrHs2iddOp8UgVtuaCbMDtzoQRG6KrMmgg9dhrkhsDMtM82W9a42EiThfs50qZ476lbOhgJCC2+i97jAb4LYaMdqEOP2gzPlWvXVSOLVEjp1cCoQQIbGRi7MKghLcCtVgmwrc2tgecHHW5rSi5wwQmoVFW6NGu5fXFK2N+QKVlcbXI1bO0sIAag2S/DoBj82ETL6ARDHxE5ibw6MGl8UgBhsAwHAwoSgMhLF1wA0dAQ6eDYrVE61sjcDcQm+cDaCWEdgx6LVJ7zmLpMQEtKXGWh+zEclLbBR28htfP3xOs8a2xjzsMqx7glW3+eKsHdIao6mc7MoZIPSHjpdVWYIye87Y+6hRDDp7fdolEAQAvE5T3cqZlBh9xkCT4vSDcXlOl4UaRD0WSmrWb8ZY53dwW2MVQoksnBZpoTClsHEnPBSkPeDirM1JZvKwLrCtERAqF2OhFKLpnGa7l+v8DqwpCgNFlbN4RnaYSCfD7C1sJyyTK2A0mGwY9dyI0oVsOJFFNJVTFKPPsJkMOKfPhYPDoRJbo3aVszlxxgZQyxBnPXZJtsZUNo9QIrtkbY0euwldNqOCypk0m5W/aGvUKho7ls7Kqg45LYYFsfOwx2hlIIiSyhkghHmMl9laQ2J/izRBsNxthdWob1jxCLWhrdHnsCBYHDRfTi5fwPBsQvL8yP4uq+Y9Z9l8AdF0TvLfAhA+d1qmpFYjly9gMpJCv0Yx+ox1fgdmYhnJabqdgtRrbjme4n0CDWb5NaJQoLLt75xKuDhrc5LZAiytqJy5LKLNR6vdS0KIGAwiKxCkOA8tEMsgEM+I6W6c+rDdbLbQGVYZo89wWQxisMFwUHlSYykXrOzCobMhTERS6LIZNbGEMnHGrGQT4RRMBp2sfrvBHmlx+pMReZbJxQYhBGt9DpySKc5CEivvPqcZ6ZywuNSCeDoPu1n6e4jZGpvdDN8OgSDRVE5yUEopy9zWCgtcKJGByaCDxShtKaHTEaz12xuKs7a0NRa/swLxSjEzFkohV6CSr6393VaMhpKazukShbLEtEYA8LkEcdbMeWGTUSHkaZnGlbO1Cq3WS53ZeEasgsnB49CmcvbTJ0ew+3N7xd43jjK4OGtzkplca3rOSsSTFoEgjFfvXIErN/hw3nKX5Pu4rAYYdAQnp2OCJZJXziThKbMpsN4p1bZG61xao5oZZ6VsW9GFaDqHR08FNLE0AhATPdlCbyyckjyAmsFeq0bWRrZoXaqVMwBY47XLtjUGJdoa/eJsRW128aPpHBwW6YtUp8UASoFENt/4xgrJ5guIFy3GLU9rVFA5W+a2IFo2iDpU7HGS85la73c2rpyxXjardt89amFptDPRykUnq67LqZwlMvmKNF01SBn4Xk6v04JMvqDpeZSj9Ywzxjo/j9OvRkhm3yFDrJypFFWPnJhBJi8/PIozHy7O2pxkNg9bC2yNpcEGWlpLBr12fO9NF8ElY+FECEG33YRjk1EA4JUzibAvaVGcBViMvlpb41yVYXhWuACrr5wJiZmnpuOaDKAGKm2NE+GkbPHEXqtGoSBzA6iX7ntzrd+B6eLsQylQSiVHe/s0HkQdT+fgkFU5qxyurjXMCux1mJHM5pHONU8I1kOwNcq/prPh6qXVMyUWqnV+B8bDqboBLOFkFia99IrcQiC+R2OVPVpniuJM6hiMgeL1UssFrJIIdX/JTNNmwcSZ1rbGgW4bTAYdF2dlKLU1Wk16WI161RWvJ4szS5ttl13qtM+Vj1OVZCbfMlsjox2asnvsJhyfEMQZr5xJQ6ycxecqZ06Luhh9QBBnBQrEMzkMBxNwmg2q586t8drhKlqttPr7Vus5k9NvBggVQSlx+szWuFTTGoE5G5FUa2Mym0cmV5C0k8+qpVolNsqtDrHbNjMUhFkaV3qECkIrqmeFAhXEmUJbIzB/EHVIwaBo0Y5WZ1EdSQp2WK2i17WAbQpWr5wlYDXqJV+7xEHUGvadSRn4Xg7bCGtmnD4bv6BlWiMA6HUEa7yNLbKdhhAKo2zN5rGbMBtXfl2ajqZxdjYh/pujHC7O2pxUttCSQJDekijzdvD9e+wm0RLExZk03FYjCAFmizuqQ4E4VquM0QcgVj2jqZww48yjfMYZQ6cj2Fasnmlla7Qa9TDqCSIpYbDmZCQlu+9Bapz+eDgFu0kvVmCWIixp75REa6OcnXytK2exdE7yjDNgblh1MytnLAxkZdECHGmBOItnisO5FdoagfmVMzlztRhS7GihhHzR12zmKmeV79EzEmP0Gf1dTJxpF6fPNuHk9Bv1LlDlzG01yvo8SmWd39Ew+bOTyOQE67RHYStKt92I2So9lVJ58mxQ/LeWo1E6ES7O2phcvoBMvtCSnjO31QiTQXh7aNlzppTSag/z/nPqo9cRuCxGsRdBmMOjrt8MmLOARVJZ1TPOSrlgRRcA7cQ3IcLzDyezmImnkc1LH0BdipQ4/clICr0Kjr2YWOGxib2fUpAzDJVdb7QUZ3IEiLNkw6FZsEoZ689sZp9PLZiVUEnljFWFx8Jz1Z5QIit7l35Vj/A+qreoDie1m6+pFRajHk6Loep7dEhGjD4ghDXZTPrW2xpZr2cTF9Lj4aSi664U1vocGAkmkWpCr2gik1t0M7/EvkOF7hiP3Sxu5irhybNBGPUEdpOeV85UwsVZG5MqRva2QpwRQsRdNZeCL3KtYbPOLEadomb2TsVjN4nxz6PBJFar7DcD5qoMkWROEGcqw0AYbBi1ltZAt1UQZ2oCO1ZJiNOfCKeWdBgIABj1OqzqsUkWZyEZi0VCSMMhv1KhlCIus3LmsiyErVE4Nvu8aGlr/Prek3hqONTwdrHi81OS1lg+iJpSWhRn8haCRr0OqxvY0dqxcgYUB1GXVc7yBYqzgQRWeaVfBwkh6O/SdtYZS86Us16wmvRwmg2aBfFUYzSUEiuFWrPO7wCl0qv5cvh/v3wON/7Xw01NstSaWdHaqtDWaFNXOTt4JoTzlruxrMuq6dzKToSLszYmWbTxWVpgawSEJCenxQCDzGGGzcBTjNP3Osxt1YfQ7nTZjAjGMzg7W4zRV5nUCMwNdx6aiSOZzauacVbKC9Z58U8vORdXnePX5HiAcK6RZFbse1CSGLZaQpz+ZCQtBiYsZdb6HJITG1ninlSblc9p1sRelc4VkCtQWdUhx0KIszJbo1biLJcv4LO/O4qfPDHc8LZsVIHSDa7lXRaMFcVZMptHJl9Q1N+yzu+oK87CCnrZFgJvlblg4+EkMvmC7BElA8U4fa1gyahyvx99LnNTK2fNGEDNEC2yTbA2Pvj8DIYCiUWVOhgs9osptTV67GbxGHLJ5gs4PBrC9pVd8DnMTRX8nUDrV92cmrBSfSsqZ4Awi8XXJsmIbAYH7zeTh8dmQjCREdPEtLE1Cgu758YjANQnNTIMeh3e+sI1mvYmuIvibKJoxVIioFg8di1rI+tnW+qVM0BIbDwTiCOXrxzEWw6zWUldvGs1EDemQIAsRFpjs2yN7HWeCDd+7dRUzgCh8sw+S0psdIx1xfdRrcRKFgjSbvgcZsyUVQTOFK8LUmP0Gf3d2g6ilpqMWk6v09K0hXQ8nUM4mcUyjZMaGau9duiI9nH64+GkKMoODAUb3Lp9UDJOoRSP3YhYOqcoSfbIeASpbAHbV3bD56ysMHPkwcVZG5NssTj78LXn4CuvvaAlj10OszW2i1hcLHTZTAjGMzg9Iy/quR6iOBsrijONbI3NwFW0NY5HUjDpdYp2FNlrdqaGtTEQzyBXoB1ROVvjtSObpxiWsKgMsZ4zibOqhMqZ+h18JkDkiDO7SQ8dQd14d7VEklkYdAS9xQ0mrSpnbCjyRKTx32ROuCoTPsvcFjGtkS0E3Qpmka3zO1CgwNBM5YZHLi8MI2/HypmvygYCszzLrZz1d9kQTmY1e8+FEspS+vwuMyabVDkbD7MY/eZUzixGPVZ4bHWTP5VQKsj2D81qeuxmElQwiLyUbjHhWf616ckzwmu2fVU3/E6hcraYLKHtBhdnbQyzNVpNrfkz9XdZsWm5uyWPXQ7bEfTyypksum1GBBNZDAWEGH2lXvRSWFrjkWLlTCtbYzNwWw2COAul0Oe2QKeTb4llcfqnayQ2dkKMPmOtv3EMOiOYyMJhNojBQo3wOy1if6Qa2GJXTgWWEAKH2dB0W6PbaoRBr4PTYtBOnMUEkSSncqYkEAQAlnVZEU3lEEvnZPUUlsPi9KtVPCLFc2y3QBBAEGfRVG5eAMWZQAImg0525by/eN3Uqu8smMgqGpPSzIW0Gju5VASrtbbi7IkzQdhMely+rmdRVc6UjFMohW2CKwlCefJsCL0uM5a7LfA5hVmOLGGbIx8uztoYVjlrxZyzdqPHwStnSui2m5DM5nFsIqpJjD4gvB9Neh2i6Rw8dlNTIpK1wm01IpLKYTycVFzZahSnP64ibGSxsdZbFGcSFkOhREZW9YNZlsttY3Jh4kxuXLzTYhT7wppBOJkT+zVZUI0WsNcrEE83FLbs+SntOZuL00+K4kyJhWqtzwFSw44mVuTa0NbIkoJL36NDM3Gs8thkb/ywTa3RkDZx+sJ8KwW2RpcF6VxBFMVawgZQNyutERCqsKdm4sgXtBOX+4dmccHKLlyyugfHJqMItyBZVQnBeAZWo17xmpGJOmXiLIjtK7uFcCeNR6N0IlyctTGttjW2E31uC2wmPdb3Olp9KosKdrF9ejQs23ZTDzZ0WqsY/WbhshiRL1CcnI6rWiDUi9OfKFbOOsHW6LYZ4XWYJaWjBRMZWfYav0Zf6HEFlTNAsOs2ewg1S4XUUpyxyhmljSPRlfTjlcI2IMbDqZJdevkiymrSY6DbiuenohW/Y6+LVDvsQlJt0XkmkFDUyzsgzjpTXzmjlCKUzCr6W7DnNNWEQdRjoSR0pLmugnU+BzK5AoZntRG5sXQOR8YjuHCVBzsGPQCAJ84uDmuj0HeofFODbYLP1gm/qsZUNIWRYBLbxVmlxRENTRxuvtTh4qyNSYm2Ri7OXBYj9v3j1XjJ5mWtPpVFhae4OE5lCxjUIEafwQIUBtq43wyYG6A+G89gmVu5kKwXpz8ZTkGvI/B2SFV3jc8uqXImN6BAXCSqFGdKZ3k5LQbR9tcMIqmsWDnrshnrpn/KIVASfT3ZYDEUS+VgM+mhV2DvBebsaeOhlCiilFa41vmqJzaGisd1taGtkX3GZ4qCuFCgODMbx2oZMfqlxzLpdZrYGiOpHPIFqsjONjfrTPsqx1g4hV6XBcYmJj6vlTDUXA4HzwZRoMDOwW5sW9EFg45g/yKxNgYTyqqnDPb+CcqsnD15JgQA2L6qC0D9ge0caXBx1sbwytl83Fajop6hTqb0Qq1FjD6DhYJoldTYLEptdWoqZ/Xi9CciKfidZsUL3sWG1B6PkMyFgldjW6Pc6pDTYkQ03dy0xmbYGkstSI36zmLpnKo5kf7i7MvxcArBeAY2kx5mg7Lvp1p2tAgTfW0ozsorZ1PRNFLZgqLKmU5HsLzLghENotrVpPSxv2kz4vTHQs0bQM1Y59M2Tv/AUBA6AlywshtWkx6b+904sEhCQYKJjKK+Q0aXzQRChJArORwsDp9mGQVauSA6GS7O2hguzjhq6W6SOGOhIO0cBgLMX+CpsR3Wi9OfjKQ6IgyEsdZnRzCRbdiXINdiw5rRA2rFmYK0Rnb7Zg+hZp8bQZxp81gzsYy4AGbpeLWIpnOKw0AAwGzQw+swYSKSRCiZVRXasc4v2NFGgvM/U6KtsQ17znrs8xedSpMaGQPdNk0qZ2rGGrBrVzPi9Js544zhthnhd5pxfLLSIquEA2dmce4yl3j92DnYjaeGw/NCYNoVYSi88s+NXkfQZTXKr5ydDWLTcrfY6+a2GmHUk6ZUYzsFLs7amFYPoeYsfkp7frTsORMrZ21uayy1Ri1XYWusF6c/Ee6MGWcMZiM6VWenOl+giKSysnbyLUY9nGaDaBlTSjydAyGATeZ1s+k9Z6ms2KvptpoQTmY0ScgLxNJY47PDbNBJsjXKDUopZ5nbirFQSnZltJx1fieASjsaCxppx8qZyaBDl80oVnfn5kcquw72d2kziFrs/1NQNXGYDbCZ9JjUWJxRSjEWTjVdnAHAxj4njk2oF2e5fAEHz4awY1W3+LMdgx5k8gU8MxpWffxmMxvPKE5qZHTbTbICQTK5Ag6PhMV+M0CoCnsd2syt7FS4OGtjWj2EmrP4YU31Lo1i9BlztsbOqJzVi9OfCKc6IgyEISWxMZzMglL5O/leDYaXRtM5OEwG2cmkTouxaT1nqWwemVxBfD+6rUZk81R0R6ghEM/A6zCjr2QGWS1i6ZzYL6qUPrcFE+GU6l36dUWR/3yZOAsns7Cb9E3tU1KDr2TReXomAaOeKBYg/d1WTEfTqqsyrNKhdGHu12jGYCmBeAaZXAHLF+DaeO4yF56fiiGXVzeG48h4FIlMXgwCASAKtXbvO2MbYkoEeik9MsXZkfEI0rmC2G/GEN5TXJwppT2vfhwAQCKTh1FP2vZLitP+mAw6OM0GzWL0GW6rEYTMzeppV1jlzKgnom1OCSxO/0yZrTGeziGaznWUrbG/2wqTQYeTdRIbQwrn7XgdJtW2xng6p2i8g9NiQCZfaIp9ifVRldoaAW0GUQdiGfTYzehzWSRVztT0nAFsEHVSSONUsUvvthrhc5qrVs7asWrG8DnN8ypnKzw2xf2mbDjzmMrqmRpbIwD4XRbNF9LjCzDjjLGx14lMrlAztEkqB84IvWU7BueqQD0OM9b47HjiTHv3nSndECun22YSK7FSePJscfh0SeUMqD6wnSMdvupvY5LZPJ9xxlHNgMeGc5e5ND3mLRevwhdftU1xGMBC4TQbQAgUD6AuZVWPraJyxmL0m9303k7odQRrvPa6g6iDCWV9Qz12s2pbY0xhXxWrBjfD2sjmi5WmNQJzFj6lpLJ5xNI59DhMQkWrkThT2XMGCLZGYXZgSvUssmqJjeFkFm6V1qxm4nXMVXeHAglVdvG5WWfqxFkokYGOzIl/uQiDqLWtnLHntBDi7JxlgkX2yLg6a+OBoSD6u6wVyb47V3lw4EwQBQ1nqWmN2gHUDI/dJCsQ5MmzIfS5LBV/Z5/TwsWZCrg4a2NS2Ty3NHJU8/03X4R/vv48TY856LXjhm39mh6zGeh0BE6zActc6hcIg97KOP3Joo2skypngBCnf6rGUG5AReXMadIgrTGvuHIGANEmDKJm4R+ltkbh5+oeiy2ivA6TUDkLp+v2sUVTWU0qZ4Dg7FC7S7/O78DJqdi8cw4nM3Bb23ewPasIUEpxJhBX3G8GzDkP1IaCBIsD35VuQPmd2lfOxhZQnK3zO6DXEVV9Z5RSHDgzO69qxtgx2I1QIisppbZVMGur2iAdj92EYFx6P+yTZ4IVlkZA+JwE4mnVVtNOhYuzNiaZyfMZZxzVeB1m1QuyxczyLivW+NSHoQz22Cri9DtpAHUpm5a7MRSI15wtNGezkmtrNCOUyCKr4gs9lsoqCr1wmoVFDYvi15I5W+PcEGpAvTibLVYZPXah5yyTL9TsF6GUFnvOtBFngPpB0et7HYimc/OEQTjZ3rZGr8OMRCaPM4EEEpm8qspZn8sCvY6oHkQtd6ZgOb0u4Tlp+d4fDydhMeo07XWuhdmgxxqvHUcnIoqPMRJMYjKSntdvxmA/a+e+M3bNVROlz+6fK1BEJDgIpiIpjIaSFZZGQBBnlEJW/xpnDi7O2pgkr5xxOKr5nzddhI9dd67q47BFWGmcvijOOqxy9uqdK2Ax6PHVB56v+nsmYOXa3nqKQ37VfKHH03nYzfKvmwtpaxTFmUpb40xxAHVPsXIGoKa1MZnNo0Dljxgop9TypXaXXpxRVSLyw8msatHXTNisswNnhIW6msqZQa9Dn8uiia1Rzd+CzTpr1LMoh7FQCsvdVk17neuxsc+JoyoqZ2K/2apKoTHYY4PXYWrreWda2hoBaYOoWb/ZBVXEGZt1xkNBlMHFWRuTzBZ4zxmHoxK/y6K4F6OUwSpx+pPhFFwWQ8dVuHscZrz+0lX4xVNjVa0+wUQGeh0RK0VS8TmEhYGaXgVh0LL8v7ejibbG8sHKTLSqtjUWK2deuxm9xYrWRI3ERiY61fac9brN4r/VROkDJYmNJTOqQoms6l62ZsLEGQuIUDuipL/Lqt7WGM+qqpj4ndrPOhtdgBlnpZy7zIWRYFLx53f/UBBOiwEbep0VvyOEYMcqD/a3cSiIVrZGlvY4KyEU5MmzIZj0Omzur+xpLx/YzpEHF2dtTCrDK2ccTruwskqc/niHxeiX8tYXroHZoMdXHzhR8btgQhhQLHfX3FusnMlpSC9HEGfyr5tMwEux88iFiTBWnXOYDNARLcTZXOWM2Q1rVc6iCodzl8MGUQPqk+F8TjOcFgNOFAV+KptHumTkQDvCnvv+oSAMOiKGeihloFv9rLOgyplzc1UO7Spn4+HkggYlbSyKKqXDqJ8YCmL7yu6ayZs7BrsxPJusufnRaoKJLIx6ovrz7Sm+j2YlBDM9eSaITf2uqsFgPgcXZ2rg4qyNSWZ5zxmH0y5YjHosc1nmxelPRlLoUzHcejHjdZjxuktW4ueHRisGUiu1WTFb44zCL3TWV9V+aY05WIw6cRGj0xG4rUaEkur6MQLxDCxGHWwmPXwOM3RkLqSmHNZPpLbnDJjrsVS7S08IwTr/XGJjONm+A6gZrCJwYiqGgW4rDCpH3fR3WzEeTirus0xl8wjEM6pGhfiLllitFtKZXAFT0fSCVs7UJDaGE1kcm4xWtTQydhb7zg60afWMDYVXayP1SKycZXIFHB4NV+03A+Y+J1rPz+sUuDhrY3jPGYfTXgx67fMqZxORFPpc5jr3WNq87YVrYTLo8NU986tnwbiygAJWlQjElS0SU9kC8gWqKK2R7Tg3YxB1JJmtsNa6rUYxxVEpM7E0euxmEEJg0OvgdZhrDqKOiZUz9cKnr5h+qtbWCADr/Q6cmBI+U0ycqRV9zcRjM4Gtf1eptDQCgq2xQGvbURvx5yNTyOQKeOEGn+JzcFkMMBt0mvWcTUZSoHRujttC0N9lhdNsUJTYyHqnqoWBMM5b7oLVqMeBNg0FmY1nNAlfEcVZA/fCc+MRZHIFXFhD0FqMergsBl45UwgXZ21MMsPnnHE47cSqHrvYc5bLFzAdTXdcGEgpPqcZr7t4Fe4/ODpPtCq1WTnMBpgMOsWzzsTqkAJxZtDrYDXqm9NzlqpMIBTEmcq0xngGPY6513lZnVlnsbTwWFokty7vEt7zWlS41vkdmImlEUpkxLlv7Vw5M+h1YpVqUEUYCKNf5ayz+w6OotdlxiVrehSfAyEEfpdZs/AGFqO/rGvhro2EEGzscyoSZ/uHZmHQEWxb0VXzNka9Dhes7ML+Ng0FCSWymmyW2Ex6mA26hoEgT56pPny6lGYMN+8UuDhrY1LZPKwm/ificNqF1V4bgokswoksZmIZFCjEIIZO5W1XroFRr5vXexZKZBXt4hJC4HOYFdsamThTUjkDBMtfM2yN4WRWTGpkuG0mhCU03dcjEJtvZ+t1WWpWP9jz0sLW+PIL+vGeq9fDqNLSB8yFgpyYii0KWyMw1xupReVsoFsQeEpCQWbjGew9NoUbtvXX7JWSSq/TolkgyFh44WaclbKxz4kjExHJM7oYB4aC2NTvbthGsmPQgyPjkaZs4KglmMiI/WJqIITAYzc1rJw9eTaI5W5L3Z5rn8PMK2cK4Sv/NobbGjmc9mKVGKcf79gY/XL8Tgted8kq3H9oFEPF6lkwkRFTv+TidZgwozAQJJ5WF3rhtBgQTTcjrTFXkVypReUsEEuLfXqA0AtW09aoYc/ZBSu78YG/2aD6OACwzif0CpWKs3aO0gfm+mkGveorZyw0Q0nl7NdPjyNXoHjZtn7V5+F3mTGpUX/QWEg4zvIF7sc9Z5kL0VSu5megGulcHk+NhOr2mzF2DnajQIGDZ0MqzrI5BBNZdNu12dTotjUWZwfPhnBBg9fM5zRjOsbFmRK4OGtTKKVcnHE4bcZqb4k4K+4O93a4OAOAt1+5BgYdwVf3nBAT95T2DfWoqJypTSR0WoxNm3NWaWs0qBJnlFLMlNka+9wWRFM5JDKVz4H1nCmtKjaL/m4rzAYdTkzF5ubjtXnlzKdh5cxi1MPnNGMkmGh84zLuPziKjb1OnLusMv5dLn6nBdNaVc5CSXTbjAseaHZOn/A6yBlG/cxoBOlcATsHG4uzC1Z2Q0fQdvPOKKViIIgW9DhMdQNBJusMny7F7zRjKpKWXcnkcHHWtqRzBVAKWHhaI4fTNqz0CDvlp2fiYgP/QsZFtyt+pwWvvXgl7js4ikPDIQDKh6F6HSbMKNxtFStnCqtDC2lr7LKaEE5mUSgoW7jE0jlkcgV47SWVMzaIukrlIJYWEiO1sCJqiV5HsMbnwInpGCLJLAjRprrXTPrcFhj16mP0Gf1d8uP0zwYSeOJMEC+7oF+TQc8+pxnRdHVhL5exBZ5xxtgoijPpfWdsXt2Fq2qHgTAcZgPOW+7C/jYLBYmmc8gVqCa2RqBx5Wyu36yr7nF8TjOS2Tzimbwm59VJNLxKE0JWEEL2EEKOEEKeJYS8t/jzfyWEHCaEHCKE/IEQsrz5p9s5pLLCm5lXzjic9sFi1GO5W4jTn4ikYdLrVA1/XUrcfuVaGHQEn/7NEQDKZ2B5HWbMxjOKRIs2PWfa2hoppTXTGgsUiClcDLMB1OWVM6C6OIsqHM69EKwvxumHiq+TTmX/VLN58wtW4wdvvrjqfCclDHTLH0R9/6FRAMAN27RZejEHgBZ9Z+PhVEvEmctiRH+XFUdlxOnvHwpisMcmWlUbsWOVBweHg4pHHzSDUFzblNNGPWc/PzQGm0mP85ZXDp8uxe/is86UImULLQfgg5TScwFcAuBdhJDzAHyOUrqVUroNwK8A/EvzTrPzSHJxxuG0Jat6hDj9yUgKfpdZk13rpYDfZcFrLlqJwyNhAMpj1nscZuQKVJHlT01ao3A/7W2N8UweBQq4rJU9Z4AwY0kJbFB36eaAWDmrEgoSS+XatiK1zu/ASDCJ8XCqrWP0GT0OMy5WkY5YTn+3FWOhlOQNCUop7j84ikvWeDQTQXODqNUvpEdDSSxvkaPgHBmJjZRSPHEmKKlqxtg56EEqW8CzY9Ktk82GWRCVuhXK8dhNiKZyVQXoX49P43fPTuCdu9Y23JzwOZjg57PO5NJQnFFKxymlTxb/HQVwBEA/pbT0nWkHwE2lGpIoloH5EGoOp70Y9Apx+hPhVMeHgZRz+y5h7hmgfBeXzTpTYm3UonLGjqEVtRII3cXXR2nfWaD4+njLAkEAVA1EiKaymsToNwOW2HjwbKjt+82awUCXFZl8QXJ4wuGRME7NxPHyC9QHgTBYlUPt0OBoKotoKteSyhkgWBtPTseQyTWubJ2aiWM2npHUb8bYUbxtO/WdBZk40yoQpLjhUx6nn87lcccvnsVgjw1vfeGahsdh1UgeCiIfWeZzQsgggAsAPFb8708RQoYB3AJeOdOUZIZXzjicdmSwR4jTf34q2vEx+uX0uix47UUrAcwXDXJgYQtKZp3F0zkQIszqUYLDYkAik0dOQ8tSpCi+qtkaARXiLF5pa7SZDHBZDFXj9GPpXNuLs5lYuiPFGZt1NiLR2njfwVGYDDpcu3mZZufQ69TG1sg2Bpa1SJyds8yFXIHi5HSs4W2fGGLDp6WLs16XBSs9trYaRh3SuHLGxnOUh4J888HTODUTxx1/t0mSpVesxmoUNNNJSBZnhBAHgHsBvI9VzSil/0QpXQHghwDeXeN+byOEHCCEHJientbinDsCseeMV844nLZisJjYOBPL8MpZFT5y7Tn437dcrFic9YjiTP4XejSVg8NkUGw1dRYFlJbVM1GcVRlCDaivnJX3PPa5LdV7zlI5xUEpzWawxy7O6epIcdZVnHUmIRQkmy/gl0+N4UXn+jV9rbpsRpj0OtVx+uw59C/gAOpS5CQ27h+aRbfNiLU+h6zH2DHYjf1Ds22TQjhb7DnTSpyx48yWbJCNhpL46gMncM2mXuza6Jd0HLfVCKOe8MqZAiSJM0KIEYIw+yGl9GdVbvK/AF5R7b6U0rsopTsopTt8Pp/yM+0weM8Zh9OeDJbEZ/OkxkqsJj0uW+dVfH9mawwo+EKPp9UJENaTpWXfWS1bI7N9hhT2nM3EMnBaDBU72L0uS/Wes3ROcS9eszEZdFjVIwiUjhRnxcqZlFCQh07MIBDPaDLbrBRCiDCXSmWVgz2HVtkaV3vtMOl1DRMb07k8/nRkEpet9crezNk56EEgnsGp4lzHVhNKZEBI5QaQUlg1vrRy9m+/eg4UFB+//jzJx9HpCLx8ELUipKQ1EgDfAnCEUvqfJT9fX3KzvwNwVPvT61yYrdHCxRmH01awRSTAZ5w1g26bCTqizNao1rrnaoI4ixSP1QxbY7Xq5LIalbOYSuHabNYVqxeLIRBEaxxmA7psRoyGGs86u//gKLpsRsnVCzn4XWbVgSAnpmKwm/QtcxUY9Tqs9TsaJjb+4dlJBBNZ3LxzhezHuGi1ECCy/3R79J0FExl0WY1i9VktrHLGes7+enwav31mAn9/1XoMdMsbvO53qn9PdSJSKmeXA7gVwFXF2PxDhJCXAPgMIeQZQshhAC8G8N5mnminkeS2Rg6nLWFx+sBcAANHO3Q6Ao/drDgQRM2QZRY1r2Wc/pytcf55WY16mPQ6hJLyRSgAzMbTVcc49LksmI6l5yWtUUoRS7Vvzxkw13fWiZUzQJh11qjnLJbO4ffPTuD6rcvE4B0t8TvNVfsV5XB8Mor1vc6WptieKyGx8UePn0V/lxVXKKjyr/Ha4XWY8HjbiLOsZpZGYG6DJBDPiCEgq712vOWK1bKP5XPyypkSpKQ1PkQpJSw2v/i/31BKX0Ep3Vz8+UsppaMLccKdAp9zxuG0L6uK1kbec9YchEHUyipnauLim2FrjBSFnrOsckYIgctqFMWbXAKxjNi4X0qv2wJK588WSucKyBVoe1fOiuKsy9qZcwP7uxrPOvvDsxNIZQuapjSW4ndaVFc5jk9GsaFXXg+X1mzsc2IikhKDMso5E4jjkZMBvHrnCkUz9Qgh2LHKg8fbJLExGM9oWnE26nVwW40IxjNiCMgnXnqeorl+PqcF0yr7GDsR7bdeOJrA0xo5nPaFhYKw+GmOtvicyipn8XQOdpMG4iytXeUsnMzCaTZUtRy5rQbFtsaZWEYMTymF9UGW9p0xsVkuENuJzf1uAK3rVWo1A902jIaSdUMm7js4ihUeK7avlJ4uKAe/04xwMituDsslEEtjJpbBhl6nxmcmj3OWCcORa/Wd/Xj/MHQEuGmHfEsj46LVHowEkxiTEOLSbIKJbNUquho8dhOeGYvgKw88j2s39Sm20fqcZgTiGU0TcDsBLs7alGRWeCNzWyOH03689qKV+Mi15yjaSeQ0psduUmZrVJlIKKY1alk5S+ZqNup32UyKAkEKBYrZeFoMTymF9UFOlvSdqR3OvRBs6HXigQ9eicvXaTfceTHR321FIpOv+X6YiqTw8IkZvHxbf9Msg+y9o9SGdnxSiK9vuThjiY3jlYmN2XwBPzkwgqvO6VVlSxf7ztqgehZKZNCloa0REMTZE2eEcQEff6n0EJByfE4zKAVm48rs250KF2dtCus5MzfBV87hcNSxZcCN23etbfVpLFm8DjMCLQgEYZWziMa2xlpWS7fVqKhyFkpmUaCoamtkVtvSQdRMbLZzzxkArPE5Wtqr1Er6ixXDg8NBpHOVlatfPDWGAgVuaJKlEQB8KgdRH58UKlUb+1orzvxOM7ptRhybrKyc/fnIJGZiabzmIuVVMwA4d5kLDrOh5X1nlFIE4hnNK2esh+3vr1ovvjeVIM46431nsmjvK3UHk8rmYTXqO/aLisPhdC5epxnJbF6wKUoUFJRS1eLMbNDBqCeaR+nXCrlwW43iglYObMxANVujx24S5lWV2hqLNs127jnrdNb6BKv0m757AIQIi9qBbhsGuq0Y6Lbit09P4PwBt+yZXHJQOzT4+GQULotBPE6rIIRgY58TR6okNv7v48Poc1lw5QZ1o530OoILV3W3XJwF4hlkcgXNx7ps6XdjLJRUFAJSiq/4XuChIPLgV+o2JZnJc0sjh8PpSFhFaCaWlizOUtkCChSq0hoJIXBajJqnNa7wVI+fdluNCCuwNbKwlGqVM0IIet3mqj1n7V4562TW9zrx83ddjhNTMYwEkxgJJjASTOLJs0H86vA48gWKT718c1PPgdkalVY5jk9GsbGvtUmNjHP6XLjnwDAKBSqGfgzPJvDg89P4+6vWw6BX70q6aLUHn/v9Mcw2oXIllWbNlXvvi9bjPVevU/239DnUVWM7FX6lblOSxcoZh8PhdBre4m7rTCwjJmM2QqvqkNNiEHu0tCCaylXMOGO4rUZE0znkC1TWjCLWv1GtcgYI1sZqtkY1SZac5nP+ii6cv6Kr4ue5fAHBRLZqj6GWeGwmGHREUZw+pRTHJ2O4fuuyJpyZfM7pcyKRyWMkmMTK4mzKnxwYBgDcvGNAk8co7Tu7ZlOfJseUy2gxkESN9bAWWohsXjlTBm9oalOS2TwsRv7n4XA4nQfbbZUTChJPC306DrO6TS2nxbCgtkYAsuP0A3Fma6y+WO9zW+ctsJnY5JWzxYlBr4PPaW56RUqnI/A6lA0NnoqmEU5mWx4GwmCJjUcmhFCQXL6A/zswjCs3+GQPUq7F1gE3TAZdS4dRs7TIge72TDm1GPVwWQxcnMmEr/7blBS3NXI4nA6FiQ45oSBzoRfq4uIdZoNmtsZcvoBYOlcxgJrBZhOFZIqzmVgGhKDm4Nk+lxkT4ZQYyy6KM1454zSg16VMnLGhz+0izjb0OkDI3HntPTaNyUgar965UrPHMBv02Laiq6WJjSPBJOwmfVsPb/e71M/P6zS4OGtTuK2Rw+F0Kj12+ZUzJkDsqitnRs0qZ+yc6tkaAchObAzE0vDYTDWtkH1uK9K5ghjLHk3lYNLr+OgHTkN8TgumFNgaWbBNqwdQM2wmA1Z5bDharJz9eP9ZeB1mXH2usnldtbho0INnxiKIa2iFlsNoKIn+bmtb9PnVwucw88qZTLg4a1MEWyP/IuVwOJ2HyaCDy2JQJM6cKitnUmyNPz80itfe/WjdgcHAnOhqZGuUL87qBxCwOH0WChJLZ3nVjCMJv8LK2fHJKLwOU80+yFawsc+JoxNRjIeTeODoFG7eMQCjBkEgpVy02oN8geLJs0FNjyuV0WCy7Qe3+5xmTCuYW9nJcHHWpiQzvHLG4XA6F69T3qyzuEaVM5eEtMZfHR7HIycDDQerRpLFylnNIdRFW2NC3ky3QDxds98MAPrcwgJZFGcpdSMGOJ2D32nGbDGeXQ7HJ2NY728PSyPjnD4Xhmbi+P6+MyhQ4FU71c02q8b2Vd3QEbQsUn80lGxKGIiW+J1mTEXSDTezOHNwcdamJLN52HjPGYfD6VC8Dnm7rVGN+qocZiGtsd5C4vBICAAwFEjUPVakKPJcNc7JpTgQJFO3QtHnFhZrE2FWOcvxpEaOJFicvpzPHqUUzxdj9NuJc/qcKFDgWw+dxuXreiQnv8rBYTZgc7+7JeIsls4hnMyiv03DQBg+NrcyUzlcnVMdLs7aFD7njMPhdDJeh0lmWqM2iYROiwEFipoLiYlwCpPFIb1nZ+N1j8VEV63KmRpbo7eOrdHv/P/t3Xt4XGd9J/DvO3fNTdLMSJZkWZLtyBZOsBPHMeTikLDQhJAmgWah3FtguW1p+yy0IfDA0qbdfUK3yz7bwkNT2CwtlFsh8AAByrM4de4hdmznZtmOY9mSbd1nNJJmNLd3/zjnjEbSXM5IZzTnaL6f5/Fj+WguR6/ko/nN7/K6IcRicBZn5ox0WtyIWn/f2Ug0gblUFv0m6TfTaBMbFzI5vGu/cYNAlrumL4TnzkexkFnf4ONCDcfoG6k9WP3PVKNjcGZS7DkjokYW8VdX1jibzMAmsOZy8IA6vGO2RN/ZMTVrBgBnJ8pnzir1nLkddjQ57fnBHXqkMjnEEumymTOn3Yawz83MGVWtPVD9RtTaMJCdJpnUqOkJeeFx2hDyufDmXZtq9jz7t4aQyuTw/HCsZs9RjLYBtVnH6Gva/Go2lkNBdOPV2qSSnNZIRA0s4ncjlkgjlcnB5aj8PuLsQgY+t2PNU8u0ICaeTKOj2bPi88eHo7DbBFq9Lpyb0lnWWGbMdXOTs6rM2fS8tgF1+Q2JO5s9BQNBmDkjfTZpWY6qgrNZAEC/yYIzu03g/df2oSfkremk0mv6lM2onzk7hX3qx+thWM2cWWEgCFBdqWyjY+bMhNLZHNJZyeCMiBpWfq+zOX2/0GcXMggYEIBoPWszJTJnx4dj2LEpgB2b/Dg7WamsMQO7TcBXpkS92uBMK/UMlylrBJTeIW0j6ngyw2mNpEvY74ZNVFeCdvJSHB1Bjyn32vrsba/Be1/fW9PnCPlcuKzdv+59ZxeiCThsIp/tNKvFUlkGZ3oxODOhZFqpW2bPGRE1qohatqe3tHFOzZytVbAgc7aclBLHh2O4ckszesNeDFUYCBJLpBH0lM/mNXudVW1Cra1HpZHlHc1uXIwVTms03wtnMh+7TSDsd1f1QnpwNI4dJhsGst72bw3h8NlpZHPrN5FwZDqBzhZPyf0OzaK5yQmnXTBzVgUGZyaUUIMz9pwRUaPSgjO9v9BnF4zJDuV7zopsKjs0OY9YIo3d3S3oDfswNZfKly4WM5NMly1pBJQXLtVMa9TG91fKnHU2NyGWSCulodkce85It/aAG2NxfZmzbE7i9NgsdrSbaxjIetvfF0J8IYOXL86s23NaYYw+ANhsApEqA/5Gx+DMhJIpZX8RljUSUaOKqGWNEzp7X4zqq1rsOVsZnGnDQHZ3N6M35AUAnCuTPZtJpBH0VA7OVlXWWCFzpo1EPz2m9AOx54z0Ukpi9f2/Ozc1j4VMjpmzrUqv2W/Prl9poxU2oNa0cyPqqjA4W2fJdBbf/+155MqkvhMsaySiBpcva6yw0bPGqI2WtccoVtZ4fDgGt8OGHZsC+T2TypU2xhLpin04LU3OqqY1Ts6l4LSLknunaTrywZkySY/BGemlZM70vZDWJjXuMNkwkPXW1dKEzS1N69Z3lsrkMBpPotsiwVlbwM1pjVVgcLbOfvDsefz5D4/jufPTJW+TD86YOSOiBuVzO9DktOvOnBnVc+ZzOSBE8czZ8eEoLu8Kwmm3oTesZM7KDQWZSWYQbCp/Ts1NTiTSWaQyOV3nNzm7gLDPXXEqpTZpMp85Y1kj6dQecGNybgGZbOWfyZOXlOCsv8HLGgHgdVtD+O3ZqbIb2BtldCYJKWH6Dag1bQEPxnWWyhKDs3V3cHAcAPBqmf1xEin2nBERhf0u3ZmzuEFljTabgN/tWBGcZbI5PD8Sw+7uFgBK8Bjxu9de1uitbiPqydkUQhX6zYCVwZkRkyypMbQHPZASmNAxjOfk2Cy6W5sMeWPE6q7ZGsLEbAqvTpSf4mqE4WltA2pvzZ/LCG0BNybnUroCfmJwtq6S6SyeeGUCADBU5t1WTmskIlJKGyd09ClIKTFn4F5eQY9zRXB2amwWyXQOe7Y054/1hb1lM2exhL6BIMpt9QWhE3OpinucAUoZY8DtwClmzqhK+dHnOjIdJy/FTbf5dL3k9ztbh9LGEXWPM+tkztyQUn+ZeqNjcLaOnjwziWRaedfgbJl3W1nWSESkBGd6+hQS6Sxy0rgARMmcLc1kHVeHgexRM2cA0BP2ltyIOpnOYiGTq9hzthic6cucTc0t5PvxKtnU7Mm/iAtUyOARadrVfsVK0/XS2RzOTMyabvPpetne5kPY58Iz6zAUZETNnHU2m3uPM40W8LPvTB8GZ+vokRNj8Dht2N8XKps508oaGZwRUSOL6Cxr1MbeG1VaFfCsLGs8NhxDwONAnzoIBAD6wj5cjCXz1Q6FtPtXGtyhBWd6h4JMzqYqjtHXdKjlaQAHgpB+m4Ja5qz8C+mzE3NIZyV2drDfDACEELimL7ROmbN5RPxuy7S/tDE4qwqDs3UipcTBwXFcvz2CHR3+shO+8vucufjtIaLGFfG7MTWXKjvdFlAmNQLG9VUFPI4V+5wdH45id3czbAUbvmpDQYplz7T9zyqVNbZ4lUBLT+ZsPpXBfCpbcYy+pqPgXXXuc0Z6RfxuCKEMnShncFQbBsLMmWb/1hCGpxP5jHWtXIgmLVPSCFRXKksMztbNmYk5nJuax00D7egL+xBLpBGdL/6OcJJljUREiPhdyOYkpktcKzVzC8o107jMmXNJWWMyncWJi/H8MBBNuXH6WrClv+escnA2qQ5o0NNzBiyO03fYBNwO/ronfZx2G0JeV8XM2cnRWdgEcBknNebd0B8BADx2arymzzMSTVhmjD6wuDUKM2f68Gq9Tg6eGAMA3LSjLf8LvVTf2TzLGomI8hmiSqWN8QUlsDGqdM+/rKzx5YszyOQk9nQ3L7ldn5o5K1amPqMFZxV6vbSyRz1ljdo66C1r3KRmzvweR8XR+0SFlH2pymc5Tl6Koy/ss0xp3Xrob/ejI+jBoZMTNXuOXE5iJJqwVObM47Qj6HEwONOJwdk6eWRwHP3tfmwJefOlMKX6zhLpLFx2Gxx2fnuIqHFp77ZW2utMy5wZFZwt7zk7PhwDgBWZsxavC0GPo2jmbEa9f3OFfc4cdhsCbofOzJmyDnrLGjvVzBn7zaham4IejFYYCHJyLI7+TcyaFRJC4EB/BI+dnkC2Qjn2ak3MLSCVyaHLIsNANO1Bj+7NzRsdX/2vg7mFDJ5+dRI3D7QDAHpCWnBWPHOWSGXhcfJbQ0SNrS2gZIjGK4zTn9UyZwb1VQU9TqSyOSxklKDv2PkoIn530clofRFf0XH6MZ2ZM0ApfZyppqxR70CQZgZntDr97X68dHEGT5+ZLPr5ZDqLsxNzHKNfxIEdbYgl0nh+JFaTx78QVTKam1utsceZpk3n9F1icLYuHj89gXRW4qadbQCU9G5ns6fk/jjJdJZ7nBFRwwv71LLGCpvhzuZ7zoy5bmrDM7Ts2bHhKK7c0ly0NLAnVHyc/ozOnjNA6TuL6gnO5qrrOdukZs44DISq9cdv6kdvyIs/+s5zGCsyGOTM+BxyEhyjX8QNl0UgBPDoydr0nY3kN6C2TlkjoJTKMnOmD4OzdXBwcBx+twP7ekP5Y71hb+nMWTrLfjMianjNTU44bKLiRtSL0xqN2ctLyzTFkxnEk2mcmZhbUdKo6Qv7MDydQDqbW3J8JpmGy2HT1Y/T4nXqLmv0uuzwuvQFW2GfC067YOaMqhb0OPG1912N2WQGn/j2kRU/3yfVSY07OxicLRfyuXBFVzMePVWbvrORqPLa0Uo9Z4AysXE8vgApa1PuuZEwOKsxKSUeGRzDDZdF4CqYltUX9pXuOUtl2WBLRA3PZhMI+VwVM2dzCxnYBAwrB9c2bI4nldIkKYHdy4aBaHrCXmRzMv9utmYmkdZV0ggoQaiu4GwupTtrBijrtyXk1d2jRlRox6YA7r97N54dmsZ/e/jlJZ8bHI3DYRNL9v2jRQf6IzhybnrFZvZGGJlOIOB2VNzg3mzaAm4k0lnMpVbuC0lLMTgDkMrkKt9olQZH47gYS+LmgbYlx3vCXkzMplbspQOomTOWNRIRIeJ3V86cLWTgdxs3kbCwrLHUMBCN9uJ0aFlp40wiU3EYiKa5yalrWuPE7AJCvuoCra+/fx/+/NadVd2HSHPHni588PqtePDxs/jJ0ZH88VOjcWxr8y1505kWHehvQyYn8eQrxXv21mIkmkCXxUoaAaBd3dy80v55xOAM7/360/joPz9bs8c/eEKpOb5pZ/uS4/lf6EWyZ0mWNRIRAQAiAf3BmVGWBmdRbAk1IVRiCEepcfozybSufjMAaPYqA0EqlftMzqYQ0TkMRLOtzY/2gLWmupG53HvbAK7pa8Vnfvg8Bi8p5YyDo3H2m5VxdW8rvC57TUobRyy2AbVmV2czhAD+5elz9T4V02v44Czsd+UvNrVwcHAMl3cF843ZmsVx+iv7zthzRkSkiPhcmKg0ECSZMWxSI7DYuxZPpnHsfKxk1gxQSnWanPYV1/JYlWWNqWwOyXT5Ko7JuYWqyhqJjOC02/CVd++F3+PAx751GKMzSZyfSnBSYxkuhw3Xbgvj0RpsRj0yPW+5YSCA0p/4rv09ePDxV/FCjSZZbhQNH5zt7AjgQiyJmI6SkmrFEmkcHprGzcuyZgAKNqJemTlLpLLwsKyRiCifOSuXVZpLZeCrQeZsaHIeI9HEis2nCwkh1AFPyzJnibTunpCWJiXgiiZKB6FSSkzNpdg/RnXRHvTgq+/Zi/NT83j/N54BAOzgHmdlHeiP4OzkPM6VGP62GvFkGjPJjCUzZwBwzy0DCPlc+NxDz9dsH7iNoOGDswF10tDgqPHZs8dOKZsQLu83A5RpYBG/G0MTK//TJtM5Zs6IiABE/C4sZHJF+3M18aSxZY1aFu6x00pJ0p4ymTNAGae/PHM2k8wgWEXPGYCyQ0Fmkhmks1L3HmdERrumL4TP3vaa/OulHcyclXVgh/La75CB2bORqDJ4yIo9Z4BSwv3523fh2HAM//L0UL1Px7QaPjjb2REEAAxemjH8sQ8OjqHF68SVW1qLfr437C2eOWNZIxERAH17nc0Z3HPmtNvQ5LTj+HAUNgFcsbl05gxQNqIemppHTn0nWEpZ9bRGAGUrOCbVvrsIM2dUR394fR/uvLILrV5nvgKIitsW8WFzS5OhpY1W3eOs0B17unDDZRF86ZeDRffQIwZn6Gr2IOBx4ITBfWe5nDJC/8b+NthtxSeI9YaLb16aSHFaIxERoJQ1Aig7FMTogSCAkj3LSeCydn/FksmekBepTA6jceWFxnwqi0xO6h4I0uJVblduI2ptA+pSg0mI1oMQAl9+x5V45M9uLvnahhRCCNy4I4InTk8ikzVmKvgFNXPWbdGyRkBZl/vuugIL2Rz+8mcv1ft0TKnhgzMhBAY6AoYPBXnhQgwTs6miJY2avrAPF2NJJNOLez5IKZFIc58zIiJAKWsESgdnUkrMJo3tOQMW+87KDQPRaNN3z6pl6jPq3kZ6e870lDVqmTMOBKF6s9mE5fbYqpcD/W2IL2RwbDhqyOMNRxNw2W1os3gGfWvEh/9802X42fGL+PeTxg9NsbqGD84AZSjI4KW4obuWHzwxDiGAG/tLB2faxMbC7NmCuucayxqJiBbL+EpNbPzVi5cQX8jk+4eNom1EXW4YiKZ32Tj9mYTSH6e3rFHLsM2UCc60r59ljUTWcd32MGwCOHTSmJH6I9MJdLZ4YNsAWcuP3bQN29p8+PyPX1iSpCAGZwCUvrP4QibfaGmEg4Nj2NPdUnay1uK7rYt9Zwl15/QmJ781RERaGV+xzNl8KoP7fvYyBjoCuPvqbkOfN1hF5qyz2QOnXeQ3otYyYHoHggTcDtgEym5EPaWWNbZ6mTkjsooWrwu7u1sM6zsbiSbQ1WzdksZCbocdf3XXFTg3NY+//83pep+OqTACQMHERoNKGydnF3BsOFp0hH6hYnudJdR3D9hzRkSkDOdo9TqLBmdfOXgaI9EE/vLOK+CwG/vrzO92wGkXGOisnJFz2G3Y0uotyJxVV9ZoswkEm5wVyxqbm5xwOfhrm8hKbuyP4Oj5qCFbNl2IJiw7Rr+Y67ZH8Pa9m/EPh17B6bHa7TlsNbzKQylrBGDYUJBHT01ASpTtNwOUd1Sam5wYmlrMnM1rmTOXsf0TRERWFfa7V0xrPDM+i3889CredtVm7N8aMvw5b3ttJz5643a4HfreKOsJL47T13rO9JY1AkogVy44m5hLsd+MyIIO7GhDTgJPvLK20sZUJoex+IKlJzUW89nbXgOvy4HPPvSCoe1FVlYxOBNCbBFCHBRCvCyEeFEI8Sfq8b8RQpwQQhwXQjwkhGip+dnWSNDjxOaWJsMyZ8+cnULA48AVXZV7FfrCS/fH0epu2XNGRKSI+F1LMmdSSnzxpy/B7bDh3tsGavKcv7unC5++Zafu2/eFfRianIeUsqCsUX9w1tLkLD+tcXaBe5wRWdCVW1oQcDtw6FTp4Oz0WByf+v4xDE+X3rD6YiwBKbGhMmeA0kd771sG8MyrU/jJ0Qv1Ph1T0JOeyQD4lJTyiBAiAOCwEOLXAH4N4F4pZUYIcT+AewHcU8NzramdBk5sPDI0jat6WnU1bPaGfXju/HT+3wkGZ0RES0T8brx0YXEvyl+9OIpDJ8fx+dt3oT3gqeOZLeoJeTG7kMHUXKpgIIj+CojKZY0pbG/zr/k8iWh9Oe02XLs9jEMnxyGlhBBLXxv+5OgI7v3R85hPZeGwCdx/9+6ij6Ptcda9wTJnAPCOfVuQTGfx5l2b6n0qplAxcyalvCilPKJ+HAfwMoDNUsp/k1Jm1Js9BcDYbux1trMjgFfGZ5HKrG0vingyjcHROPb2tOi6fV/Yi5HpRP558wNBXKw4JSIClOBsXM2cJVJZ3PezlzDQEcAHru2t85kt6osoPcRnJ+cxk0zD57JX1QfX3OQsO61xkmWNRJZ1YEcbRqIJnJ0snM6dxRd+8gL+5LtHsasziNt3d+Kh50YwFi++MfOwOrSuawMGZzabwB9cv9XwLVGsqqoIQAjRB+AqAE8v+9QHAfzCoHOqi4GOADI5iVfGZ9f0OEfPRyElcHVvq67b94R9yEnkU9la5oz7nBERKSJ+F+LJDJLpbH4IyF/ccbnhQ0DWoiekTN8dmpzDTCJdVUkjoGxEHZ0vvl1ANicxPZ8qO/2XiMzrxv4IAOCQuqfX8PQ83vEPT+GfnhzCfzqwFd/5yOvx6d/ZiXQuh28+cbboY2gbUHe2mKNagGpH9282IYQfwA8B/KmUcqbg+OeglD5+u8T9PiKEeFYI8ez4uHk3mhvoCAJY+8TGI0NRCKHUGOvRp01sVEcws+eMiGgpbW+vI0PTeODQGdx1ZRdety1c57NaakuoCUIo03djiXRVw0AANXOWzKxoiJ+YXcDHv3UYUgLbIj4jT5mI1klv2IeekBePnhrHwcEx3P53j+HM2Cy+9t69+Nxbd8Fpt6Ev4sMtuzrwrafOYW4hs+IxRqYTaA+4dQ8pIuvSFZwJIZxQArNvSyl/VHD8AwBuB/AeWWLEipTyASnlPinlvra28tML62lbmw9Ou1jzxMbD56axc1Mgv4FpJb3qXmdD6l5ni2WN/M9HRAQgnzG650fH4XLY8NnbXlPnM1rJ7bCjq7lJyZwl07rH6Guam5zI5iRmC16U/erFS7jly4fwyOA47n3LAH53T5fRp01E6+RAfwSPDI7jDx/8LTqbm/DTT96AW6/oXHKbj7xhG2KJNL7/7PkV9x/ZYGP0qTQ90xoFgG8AeFlK+T8Ljt8KZQDIHVLK0uNlLMJpt2F7mx+Dl2Yq37iEXE7iuXPT2KuzpBFQynV8Lnu+DpkDQYiIloqovVbnpxL40zf1oz1ozrKe3rAXQ1PzmElkdG9ArWlpUr7G6HwaM8k0PvX9Y/joPx9GR7MHP/3kDfjoG7bDrmPIFBGZ0+9c3oFMTuKd+7bgoU9ch74imfC9Pa3Y19uKbzz2KjLZpTMQRqKJDTdGn4rTkzm7HsD7ALxRCHFU/XMbgL8HEADwa/XY12p5outhrRMbT4/PIp7MYG+P/uBMCIHesC+/eSl7zoiIltLKGnds8uMD1/XV92TK6FXH6a+mrFHrUfvVi5dw65cP4cdHR/DJN16Ghz5xfX4vTiKyrjfsaMNT9/4H3H/37rKv8T5y4zYMTyfwyxcv5Y/lchIXo0kGZw2i4lt7UsrHABR7u+5h40+nvgY6gvjJ0QuIzafR7K3uFysAHB5SRuLrHQai6Q1780FhMpWFEIDbYZ5GdyKieupqacK79m/Bu/f3wmmiISDL9Ya9mJpLwWW3VT0QRCuD/Kufv4xtER9++PHrdPcuE5E1dDRXzvq/6TWbsDXiwwOHzuCtr+2EEAITswtIZXMsa2wQ5v0tVwcD6ruTg6Ory54dGZpGyOfKD/nQqzfsw/npeWRzEol0Fk1O+4p9MIiIGpXdJvDf374br+1urveplKVd+1PZXNXB2fY2H0I+F/7guj78/I8PMDAjalA2m8CHD2zF8eEYnn51CsDiGH1mzhoDg7MCWunIavvODp+bxt6elqoDq76wF+msxIVoIh+cERGRtWjj9IHqNqAGgPagB0c+/2Z88Y7LORCKqMH93t5uhH0uPHDoDIDFDaiZOWsMDM4KdDZ7EPA4VjWxcXouhTPjc7iqin4zTX5i4+Q8Eqkc+82IiCyot6BqotppjUREGo/Tjvdf24ffnBjDqdE4RjbwBtS0EoOzAkIIDKxyKMhz51fXbwYAfRHlF/rZyTkk01m+a0pEZEE+twNtAWV4SbVljUREhd53bS88Thv+8dEzuBBNIOBxVD1oiKyJwdkyAx1BDF6Kr9gItJLDQ9Ow2wT2dLdU/ZybAh64HDYMTc6xrJGIyMJ6Q8qbbXwRRURrEfK58B+v3oIfP3cBR89H2W/WQBicLbOzI4D4QiafQtbryFAUuzqDq8p62WwCvSGvWtbI4IyIyKq0MvVq9zkjIlruQzdsRTqXw/HhGLrZb9YwGJwtk5/YWEVpYyabw9Hz0VWVNGq0/XES6Sw8LGskIrIkre+MPWdEtFZ9ER9u2dUBgJMaGwmDs2V2qMFZNUNBTlyKI5HO4qqellU/b1/Yi6GpOcynMvAyc0ZEZEm37+7E+17fi85mvpAiorX7yBu2AQC2hKrbpomsi3UXywQ9Tmxuaaoqc3bk3OqHgWh6Iz4k0zmcm5rH5V3m3suHiIiK29bmx313XVHv0yCiDWJvTyu+9aHXYc8WvjZsFAzOiqh2YuPhoWlsCrrXlHLWmsiTaY7SJyIiIiLFDf2Rep8CrSOWNRaxsyOAV8ZnkcrkdN3+yLlp7O1prXrz6UJ94cXNSzkQhIiIiIio8TA4K2JnRwCZnMQr47MVbzsWT+L8VGJNJY0A0NXigcOmBHdNLn5biIiIiIgaDaOAIgY6ggD0TWw8MhQFAFzVs7bgzGG35Zs9mTkjIiIiImo8DM6K2Nbmg9MudE1sPHJuGi67DVdsDq75ebURzOw5IyIiIiJqPAzOinDabdje5sfgpZmKtz08NI0rNgfhdqw9oNKGgqxmI2siIiIiIrI2Bmcl6JnYuJDJ4vmR2Jr7zTS96lAQljUSERERETUeBmcl7OwI4kIsidh8uuRtXrwwg1QmZ1hw1hdhzxkRERERUaNicFbCQEcAADA4Wjp7dmRI2Xx67xqHgWj29rTi+svCeG03NxokIiIiImo0DM5K2KkFZ2X6zo6cm0Z3axPagx5DnrPF68K3P/x6dLd6DXk8IiIiIiKyDgZnJXQ2exD0OEpObJRS4vDQtGFZMyIiIiIiamwMzkoQQmCgI4hHBsfx4OOv4plXpzC7kMl//kIsidGZBcP6zYiIiIiIqLE56n0CZvZ7V2/G3/7bSfzFT18CAAgBbA37sKsrCIdNADCu34yIiIiIiBobg7My3nlND955TQ/GZpJ48cIMXhiJ4YULMTx3LoqRaAKtXicGOgP1Pk0iIiIiItoAGJzp0B70oD3owc0D7flj03MpZHISTjsrQ4mIiIiIaO0YnK1Sq89V71MgIiIiIqINhGkfIiIiIiIiE2BwRkREREREZAIMzoiIiIiIiEyAwRkREREREZEJMDgjIiIiIiIyAQZnREREREREJsDgjIiIiIiIyAQYnBEREREREZkAgzMiIiIiIiITYHBGRERERERkAkJKuX5PJsQ4gKF1e0L9IgAm6n0SGwzXtDa4rsbjmhqPa1obXFfjcU2NxzWtDa6r8eq5pr1SyrZin1jX4MyshBDPSin31fs8NhKuaW1wXY3HNTUe17Q2uK7G45oaj2taG1xX45l1TVnWSEREREREZAIMzoiIiIiIiEyAwZnigXqfwAbENa0NrqvxuKbG45rWBtfVeFxT43FNa4PrajxTril7zoiIiIiIiEyAmTMiIiIiIiITsFRwJoS4VQgxKIQ4LYT4TMHx7wkhjqp/zgohjpa4f0gI8WshxCn171b1+HsK7n9UCJETQlxZ5P7fVp//BSHE/xFCONXjQgjxv9XzOi6E2FubFagNE6/rgBDiSSHEghDi07X56mvDxGv6HvVn9LgQ4gkhxJ7arEBtmHhd71TX9KgQ4lkhxA21WQHj1XBNnUKIbwohnhdCvCyEuLfE/bcKIZ5W7/89IYRLPW7Z66qJ19Sy11TA1Otq2euqideU11SD17Tg89cIIbJCiLsN/LJrzqzrKoS4SQgRKziHL6z5i5VSWuIPADuAVwBsA+ACcAzAriK3+1sAXyjxGF8C8Bn1488AuL/IbV4L4EyJ+98GQKh/vgPg4wXHf6Eefz2Ap+u9XhtkXdsBXAPgrwF8ut5rtUHW9DoArerHb+HPqmHr6sdimfhuACfqvV71XlMA7wbwXfVjL4CzAPqK3P/7AH5f/fhrVr+umnxNLXlNtcC6WvK6avI15TXV4DUtOL/fAHgYwN31Xq+NsK4AbgLwMyO/XitlzvYDOC2lPCOlTAH4LoA7C28ghBAA3gHlRVMxdwL4pvrxNwHcVeQ27yp1fynlw1IF4BkA3QWP+0/qp54C0CKE6NT9ldWXaddVSjkmpfwtgHRVX1H9mXlNn5BSTqs3ewqLP8NWYOZ1nVWPAYAPgFWaeWu5phKATwjhANAEIAVgpshjvxHAvxa5v1Wvq6ZdUwtfUwFzr6tVr6tmXlNeUxVGXlMB4JMAfghgrMqvq97Mvq6GslJwthnA+YJ/D6vHCh0AMCqlPFXiMTZJKS8CgPp3e5HbvBOlv7EAlBQogPcB+GUV52ZWZl5Xq7LKmn4ISmbCKky9rkKItwkhTgD4OYAPlru/idRyTf8VwByAiwDOAfgfUsqpZfcNA4hKKTNFnt+q11Uzr6mVWWVdrXRdNfWa8ppq7JoKITYDeBuUrI/VmHZdVdcKIY4JIX4hhLi8iq+rKCsFZ6LIseXvpJR8x1vXEwjxOgDzUsoXKtz0qwAOSSkfreLczMrM62pVpl9TIcTNUF5E3LPac6gDU6+rlPIhKeUAlHfT7lvtOayzWq7pfgBZAF0AtgL4lBBiWxXPb9XrqpnX1MpMv64WvK6aek15TV1hrWv6vwDcI6XMruK5683M63oEQK+Ucg+AvwPw41WcwxJWCs6GAWwp+Hc3gAvaP9R05NsBfK/g2INqc97D6qFRrSxG/Xt5Wvf3Ufkd8/8KoA3Af9F7biZn5nW1KlOvqRBiN4CvA7hTSjlZxddVb6ZeV42U8hCA7UKIiJ4vqs5quabvBvBLKWVaSjkG4HEA+5Y9/wSUckVHkee36nXVzGtqZaZeV4teV029phpeUw1b030AviuEOAvgbgBfFULctYavdT2Zdl2llDNSyln144cBONf8sypN0Oin5w8AB4AzUKJarRnw8oLP3wrg3ys8xt9gaTPglwo+Z4Pyzd9W5v4fBvAEgKZlx9+KpY3rz9R7vTbCuhZ8/ouwUPO6mdcUQA+A0wCuq/c6bbB1vQyLzet7AYxo/zbzn1quKZTswYPqddEH4CUAu4vc/wdY2mT9CfVjS15XzbymBZ+31DXV7OsKi15XTb6mvKYavKbLbvN/Ya2BIKZdVwAdBT+r+6GURq7pZ7XuC17lN+c2ACehTGz5XJEftI9VuH8YwP8DcEr9O1TwuZsAPFXh/hn1uY+qf76gHhcAvqJ+7nkA++q9VhtkXTugvFieARBVPw7We70svqZfBzBdcPzZeq/VBlnXewC8qB57EsAN9V6req8plGlrP1DX5SUAf1bi/tugDFc5rd7erR637HXVxGtq2WuqydfVstdVE68pr6kGr2mR87BMcGbmdQXwR+p9j0EZCLTmN2m0SI+IiIiIiIjqyEo9Z0RERERERBsWgzMiIiIiIiITYHBGRERERERkAgzOiIiIiIiITIDBGRERERERkQkwOCMiIiIiIjIBBmdEREREREQmwOCMiIiIiIjIBP4/oSjmugeO3NMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2cAAAE/CAYAAADCCbvWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADIg0lEQVR4nOy9d5gkV3X+/97OuSfPbJzZLGmDVtKuJBRQAgkQGUQwSTIiGRmwwQZj80PYxib4CxhsLJJFEhhEECCSAK1AQmlX0moVVpt3dmZ38nTO4f7+qL7VPT0dqqqru2umz+d5eNDO9NTUdKi6577veQ/jnIMgCIIgCIIgCIJoL6Z2nwBBEARBEARBEARBxRlBEARBEARBEIQhoOKMIAiCIAiCIAjCAFBxRhAEQRAEQRAEYQCoOCMIgiAIgiAIgjAAVJwRBEEQBEEQBEEYACrOCIIgCIIgCIIgDAAVZwRBEEsUxli05H95xlii5N9vavf5aYExdpIx9oJ2n0ctGGP3McZubtKx+xhjf2aMzTHGgoyxhxhjl5Z8fxtj7LeMsVnGGC/7WTtj7BuMsVHGWIQx9gRj7MVlj7mGMfYcYyzOGNvDGBsu+R5jjH268LvnGGOfYYyxZvydBEEQRGWoOCMIgliicM494n8ATgF4WcnX7mj3+ZXDGLMsh9/RZKIA/hJAP4BuAJ8G8IuSvysD4IcA3l7hZy0AxgBcAcAP4GMAfsgYGwGkwg/ATwpf7wGwD8APSn7+nQBeCeBcADsAvBTAu3T7ywiCIIi6UHFGEASxzGCMmRhjH2GMHSsoID9kjPUUvjfCGOOMsZsYY2OMsQBj7N2Msd2MsQMFtea/So51Y0HJ+RJjLFRQXa4p+b6/oNZMMMZOM8b+lTFmLvvZzzPG5gHcyhjbwBi7t3Bes4yxOxhjXYXHfwfAWkjFSJQx9veMsSsZY+Nlf5+srjHGbmWM/Ygx9l3GWBjAjXXOaSNj7I+Fv2WWMVZanJT+DkfhmELB2ssYG2SMfRLA5QD+q3CO/1V4/FmMsd8xxuYZY4cYY68rOdY3GWO3Fb4fKfz+4Uq/l3Oe5Jwf4pznATAAOUhFWk/h+4c4598A8EyFn41xzm/lnJ/knOc553cDOAHggsJDXg3gGc75nZzzJIBbAZzLGDur8P23Afh/nPNxzvlpAP8PwI2VzpMgCIJoDlScEQRBLD/eB0kBuQLASgABAP9d9piLAGwC8HoAXwDwjwBeAGArgNcxxq4oe+xxAH0APg7gJ6LYA/AtAFkAGwGcB+BaADdX+NkBAJ+EVHD8e+G8zgawBlKRAM75W7BQAfyMwr/3FQB+BKALwB11zulfANwDqeBZDeBLVY75Nkjq0xoAvQDeDSDBOf9HAPcDuKVwjrcwxtwAfgfge4W/840AvswY21pyvDcVfncfgP2F86wKY+wAgCSAnwP4Oud8WsHzUH6MQQCbUSzktgJ4Unyfcx4DcKzw9UXfL/x36d9AEARBNBkqzgiCIJYf7wLwjwUFJAWp+HltmeXvXwoqzT0AYgC+zzmfLigm90MqagTTAL7AOc9wzn8A4BCA6wuL/xcD+EBBtZkG8HkAbyj52TOc8y9xzrOc8wTn/Cjn/Hec8xTnfAbA5yAVkY3wEOf8roLa5KtzThkAwwBWFv7+B6ocMwOpKNvIOc9xzh/jnIerPPalAE5yzm8v/J2PA/gxgNeWPOaXnPM/FV6PfwTwPMbYmmp/EOd8R+Fv+QsA1c6xKowxKwqFKuf8ucKXPQBCZQ8NAfBW+X4IgIf6zgiCIFrHUvfmEwRBEIsZBvBTxli+5Gs5AIMl/54q+e9EhX97Sv59mnNeGj4xCkn5GgZgBTBRsn43Qep7EpT+NxhjAwC+CMka6C08PqDor6pO6e+od05/D0nBepQxFoBk4/vfCsf8DiTV7P8KtsvvQip4MxUeOwzgIsZYsORrlsIxFp0j5zxasHmuLDv3BRSsh99njB1kjO3nnD9Z7bGlMMZMhd+dBnBLybeikAq+UnwAIlW+7wMQLXvtCYIgiCZCyhlBEMTyYwzAiznnXSX/cxRUMS2sKlNP1gI4U/g9KQB9Jb/HxzkvtcKVL+z/vfC1HZxzH4A3Q7I6Vnt8DIBL/KPQO9Zf9pjSn6l5TpzzSc75OzjnKyEpjF9mjG0s/4MLKuEnOOfnALgEkjr21irnOAbgj2XPt4dz/p6Sx8gqGWPMA6mH7Ez5762CFcB6JQ8svE7fgFSIv6asmHwGUtiHeKwbwAYUbY8Lvl/470W9bQRBEETzoOKMIAhi+XEbgE+K0AnGWD9j7BUNHG8AwPsYY1bG2A2QesV+xTmfgNS/9f8YY75CEMmGsn61cryQFJogY2wVgL8r+/4UFhYihwE4GGPXF6x6/wTAXu3g9c6JMXYDY2x14eEBSIVWrvw4jLGrGGPbC8VgGJLNUTyu/BzvBrCZMfaWwnNkZVLAytklj3kJY+wyxpgNknL3COd8kWrGGLtYPI4x5mSMfRhSofVI4fuMMeYAYCv828EYK30+/gfS6/Myznmi7PA/BbCNMfaawjH+PwAHSmyP3wbwt4yxVYyxlQA+COCbi59lgiAIollQcUYQBLH8+E9IQRL3MMYiAB6GFMyhlUcghYfMQgr1eC3nfK7wvbdCKhSehVTs/AjAihrH+gSA8yH1M/0SUrR7Kf8O4J8KCYkf4pyHAPwVgK8DOA1JSRtHbWqd024AjzDGopCeo/dzzk9UOMZQ4efCAA4C+CMkayMgPb+vZVLS5Rc55xFIoSNvgKSGTUKKwC8tmr4HKUxlHlJ6YrU5dHZI4S1zhb/3JQCu55wLlW0Yku1UKFoJSD2AKBTj7wKwE8AkK5t5V+jxew2k1zAA6T1R2h/4FQC/APAUgKchvT5fqXKeBEEQRBNgZCUnCIIgqsEYuxHAzZzzy9p9LksVxtg3AYxzzv+p3edCEARBGBtSzgiCIAiCIAiCIAwAFWcEQRAEQRAEQRAGgGyNBEEQBEEQBEEQBoCUM4IgCIIgCIIgCANAxRlBEARBEARBEIQBsLTyl/X19fGRkZFW/kqCIAiCIAiCIAjD8Nhjj81yzvsrfa+lxdnIyAj27dvXyl9JEARBEARBEARhGBhjo9W+R7ZGgiAIgiAIgiAIA0DFGUEQBEEQBEEQhAGg4owgCIIgCIIgCMIAtLTnjCAIgtCXTCaD8fFxJJPJdp8KsQxxOBxYvXo1rFZru0+FIAiiI6DijCAIYgkzPj4Or9eLkZERMMbafTrEMoJzjrm5OYyPj2PdunXtPh2CIIiOgGyNBEEQS5hkMone3l4qzAjdYYyht7eXVFmCIIgWQsUZQRDEEocKM6JZ0HuLIAiitVBxRhAEQTTEJz/5SWzduhU7duzAzp078cgjjwAAbr75Zjz77LO6/I6RkRHMzs7WfMy//du/qT7uN7/5Tdxyyy0Lvnb77bdj586d2LlzJ2w2G7Zv346dO3fiIx/5iOrjt4IvfOELiMfj7T4NgiAIQgeo54wgCILQzEMPPYS7774bjz/+OOx2O2ZnZ5FOpwEAX//611t6Lv/2b/+Gj370ow0f56abbsJNN90EQCoK9+zZg76+voaPqxXOOTjnMJkq76d+4QtfwJvf/Ga4XC7Fx8xms7BYaAlAEARhNEg5W+YkMzk8cKT2bjNBEIRWJiYm0NfXB7vdDgDo6+vDypUrAQBXXnkl9u3bBwDweDz48Ic/jAsuuAAveMEL8Oijj+LKK6/E+vXr8fOf/xzAYhXrpS99Ke67775Fv/OVr3wlLrjgAmzduhVf/epXAQAf+chHkEgksHPnTrzpTW8CAHz3u9/FhRdeiJ07d+Jd73oXcrkcAEkZ27x5M6644gr8+c9/Vvy3fvazn8Xu3buxY8cOfPzjHwcAnDx5EmeddRZuvvlmbNu2DW9605vw+9//Hpdeeik2bdqERx99FABw66234i1veQuuvvpqbNq0CV/72tfqHvfss8/GX/3VX+H888/H2NgY3vOe92DXrl3YunWr/LgvfvGLOHPmDK666ipcddVV8nMt+NGPfoQbb7wRAHDjjTfib//2b3HVVVfhwx/+MI4dO4YXvehFuOCCC3D55ZfjueeeU/xcEARBEE1C7MhV+x+ANQD2ADgI4BkA7y/53l8DOFT4+mfqHeuCCy7gRGv5zG8O8uEP381PB+LtPhWCIJrAs88+29bfH4lE+Lnnnss3bdrE3/Oe9/D77rtP/t4VV1zB9+7dyznnHAD/1a9+xTnn/JWvfCV/4QtfyNPpNN+/fz8/99xzOeec33777fy9732v/PPXX38937NnD+ec8+HhYT4zM8M553xubo5zznk8Hudbt27ls7OznHPO3W63/LPPPvssf+lLX8rT6TTnnPP3vOc9/Fvf+hY/c+YMX7NmDZ+enuapVIpfcsklC35nOeL3/va3v+XveMc7eD6f57lcjl9//fX8j3/8Iz9x4gQ3m838wIEDPJfL8fPPP5/fdNNNPJ/P87vuuou/4hWv4Jxz/vGPf5zv2LGDx+NxPjMzw1evXs1Pnz5d87iMMf7QQw/J5yL+7mw2y6+44gr+5JNPLnpuyp+HO++8k7/tbW/jnHP+tre9jV9//fU8m81yzjm/+uqr+eHDhznnnD/88MP8qquuqvgctPs9RhAEsdwAsI9XqZeUeBqyAD7IOX+cMeYF8Bhj7HcABgG8AsAOznmKMTagc91INEgyk8P3HjkFADgTTGBll7PNZ0QQRDP5xC+ewbNnwroe85yVPnz8ZVurft/j8eCxxx7D/fffjz179uD1r389PvWpT8lqjcBms+FFL3oRAGD79u2w2+2wWq3Yvn07Tp48qeqcvvjFL+KnP/0pAGBsbAxHjhxBb2/vgsf84Q9/wGOPPYbdu3cDABKJBAYGBvDII4/gyiuvRH9/PwDg9a9/PQ4fPlz3d95zzz245557cN555wEAotEojhw5grVr12LdunXYvn07AGDr1q245pprwBhb9Le94hWvgNPphNPpxFVXXYVHH30UDzzwQNXjDg8P4+KLL5Z//oc//CG++tWvIpvNYmJiAs8++yx27Nih6rm74YYbYDabEY1G8eCDD+KGG26Qv5dKpVQdiyAIgtCfusUZ53wCwEThvyOMsYMAVgF4B4BPcc5The9NN/NECfX8fP8ZBOIZAMBkmKKQCYJoDmazGVdeeSWuvPJKbN++Hd/61rcWFWdWq1VO/jOZTLIN0mQyIZvNAgAsFgvy+bz8M5Ui3O+77z78/ve/x0MPPQSXy4Urr7yy4uM453jb296Gf//3f1/w9bvuuktTAiHnHP/wD/+Ad73rXQu+fvLkSflvqfW3AYuTDxljNY/rdrvlf584cQL/8R//gb1796K7uxs33nhj1Yj70t9T/hhxzHw+j66uLuzfv7/en04QBEG0EFXdwIyxEQDnAXgEwGcBXM4Y+ySAJIAPcc73VviZdwJ4JwCsXbu20fMlFMI5x+0PnsTqbifGAwlMhWlHlCCWO7UUrmZx6NAhmEwmbNq0CQCwf/9+DA8PazrWyMgIvvzlLyOfz+P06dNyv1YpoVAI3d3dcLlceO655/Dwww/L37NarchkMrBarbjmmmvwile8An/zN3+DgYEBzM/PIxKJ4KKLLsL73/9+zM3Nwefz4c4778S5555b99yuu+46fOxjH8Ob3vQmeDwenD59GlarVdXf97Of/Qz/8A//gFgshvvuuw+f+tSn4HQ6FR03HA7D7XbD7/djamoKv/71r3HllVcCALxeLyKRiBxaMjg4iIMHD2LLli346U9/Cq/Xu+h4Pp8P69atw5133okbbrgBnHMcOHBA0XNBEARBNA/FxRljzAPgxwA+wDkPM8YsALoBXAxgN4AfMsbWF3yUMpzzrwL4KgDs2rWLg2gJj56Yx8GJMP791dvx8Z8/g2lSzgiCaALRaBR//dd/jWAwCIvFgo0bN8ohHWq59NJLZYvgtm3bcP755y96zIte9CLcdttt2LFjB7Zs2bLA9vfOd74TO3bswPnnn4877rgD//qv/4prr70W+XweVqsV//3f/42LL74Yt956K573vOdhxYoVOP/88+WgkFpce+21OHjwIJ73vOcBkOyc3/3ud2E2mxX/fRdeeCGuv/56nDp1Ch/72MewcuVKrFy5UtFxzz33XJx33nnYunUr1q9fj0svvXTB3/3iF78YK1aswJ49e/CpT30KL33pS7FmzRps27YN0Wi04vnccccdeM973oN//dd/RSaTwRve8AYqzgiCINoMK6ulKj+IMSuAuwH8lnP+ucLXfgPJ1nhf4d/HAFzMOZ+pdpxdu3ZxkdxFNJd3f+cxPHxiDg995Bpc94U/4by1XfjPN5zX7tMiCEJnDh48iLPPPrvdp0HU4dZbb4XH48GHPvShdp+Kaug9RhAEoS+Mscc457sqfa9ulD6TzOvfAHBQFGYF7gJwdeExmwHYAFBmuwEYD8Rxz7OTeOOFa+G0mTHos2OKlDOCIAiCIAjCgMTTWSgRjDoBJbbGSwG8BcBTjLH9ha99FMD/AvhfxtjTANIA3lZuaSTaw3ceHgVjDG++WOr7GPA5dE9wIwiCIJRz6623tvsUCIIgDMvOT/wOb798HT78orPafSptR0la4wMAqkVbvVnf0yEaJZHO4f8eHcN1WwexqhCdP+RzYM9z0+Cca0opIwiCIAiCIIhmkMrmkM7l4bGryilcttS1NRJLi58+cRqhRAY3XrJO/tqgz454OodIKlvjJwmCIAiCIAiitcRSUiiT26Y8YGk5Q8XZMoJzjm8+eAJbV/qwe6Rb/vqgzwEAlNhIEARBEARBGIpYQTxwk3IGgIqzZcVDx+ZweCqKGy8ZWWBfFMXZZIhmnREEQRAEQRDGIVoozsjWKEHF2TLi9gdPosdtw8vOXbng60OF4owSGwmCaAZmsxk7d+7Etm3bcMMNNyAej2s+1o033ogf/ehHAICbb74Zzz77bNXH3nfffXjwwQflf99222349re/rfl3C06ePIlt27Yt+Nqtt96K//iP/1B1HL3OhyAIYjkjlDOPg4ozQMUQasLYjM3H8fuDU3jvlRvhsC707ArlbCpCxRlBEPrjdDqxf/9+AMCb3vQm3Hbbbfjbv/1b+fu5XE7VsGbB17/+9Zrfv+++++DxeHDJJZcAAN797ner/h3NIpvNGup8CIIgjEqEbI0LIOVsmfCtB0/CXBKfX4rTZobPYcFUiIozguhoPvMZYM+ehV/bs0f6uk5cfvnlOHr0KO677z5cddVV+Iu/+Ats374duVwOf/d3f4fdu3djx44d+MpXvgJA6pW95ZZbcM455+D666/H9PS0fKwrr7wS+/btAwD85je/wfnnn49zzz0X11xzDU6ePInbbrsNn//857Fz507cf//9C9St/fv34+KLL8aOHTvwqle9CoFAQD7mhz/8YVx44YXYvHkz7r//ftV/Y61jf/SjH8UVV1yB//zP/5TP58yZM9i5c6f8P7PZjNHRUYyOjuKaa67Bjh07cM011+DUqVMAJPXwfe97Hy655BKsX79eVhIJgiCWIzGyNS6AirNlQCyVxQ/2jeHF21dgyO+o+JhBnwNTYeo5I4iOZvdu4HWvKxZoe/ZI/969W5fDZ7NZ/PrXv8b27dsBAI8++ig++clP4tlnn8U3vvEN+P1+7N27F3v37sXXvvY1nDhxAj/96U9x6NAhPPXUU/ja1762wKYomJmZwTve8Q78+Mc/xpNPPok777wTIyMjePe7342/+Zu/wf79+3H55Zcv+Jm3vvWt+PSnP40DBw5g+/bt+MQnPrHgPB999FF84QtfWPD1Uo4dO7agoLrtttsUHTsYDOKPf/wjPvjBD8pfW7lyJfbv34/9+/fjHe94B17zmtdgeHgYt9xyC9761rfiwIEDeNOb3oT3ve998s9MTEzggQcewN13342PfOQjKl8JgiCIpQMFgiyEnoVlwC+fmkAkmcWNlyxWzQSDPgcmqeeMIJY3H/gAULAXVmXlSuC664AVK4CJCeDss4FPfEL6XyV27gS+8IWah0wkEti5cycASTl7+9vfjgcffBAXXngh1q2Txnrcc889OHDggKwChUIhHDlyBH/605/wxje+EWazGStXrsTVV1+96PgPP/wwnv/858vH6unpqXk+oVAIwWAQV1xxBQDgbW97G2644Qb5+69+9asBABdccAFOnjxZ8RgbNmyQrZpAcYh0vWO//vWvr3pef/7zn/H1r39dVuseeugh/OQnPwEAvOUtb8Hf//3fy4995StfCZPJhHPOOQdTU1M1/16CIIilTLQQpe+xUVkCUHG2LHj2TBgeuwXnr+2u+phBnwPHj8228KwIgjAk3d1SYXbqFLB2rfTvBintOSvF7XbL/805x5e+9CVcd911Cx7zq1/9akG6bCU453Ufowa73Q5ACjLJZvWd/1j6N5cyMTGBt7/97fj5z38Oj8dT8TGlf6M4R0D6+wmCIJYrReWM5pwBVJwtC45OR7Gh311z8TLos2M6kkI+z2Ey6bfIIQjCQNRRuAAUrYwf+xjwP/8DfPzjwFVXNf3UrrvuOvzP//wPrr76alitVhw+fBirVq3C85//fHzlK1/BW9/6VkxPT2PPnj34i7/4iwU/+7znPQ/vfe97ceLECaxbtw7z8/Po6emB1+tFOBxe9Lv8fj+6u7tx//334/LLL8d3vvMdWelqFC3HzmQyeN3rXodPf/rT2Lx5s/z1Sy65BP/3f/+Ht7zlLbjjjjtw2WWX6XKOBEEQS4loKguH1QSLmbqtACrOlgVHp6O4ZGNvzccM+R3I5jnmYmn0e+01H0sQxDJFFGY//KFUkF111cJ/N5Gbb74ZJ0+exPnnnw/OOfr7+3HXXXfhVa96Fe69915s374dmzdvrljo9Pf346tf/Spe/epXI5/PY2BgAL/73e/wspe9DK997Wvxs5/9DF/60pcW/My3vvUtvPvd70Y8Hsf69etx++236/a3qD32gw8+iL179+LjH/84Pv7xjwOQFMMvfvGL+Mu//Et89rOfRX9/v67nSBAEsVSIprIUBlICa6VdYteuXVwkbxH6EE1lse3jv8XfXbcF771qY9XH/ebpSbz7u4/h7r++DNtW+Vt4hgRBNJODBw/i7LPPVvbgz3xGCv8oLcT27AH27gVK+p0IohRV7zGCIAiVvP//nsD+sSD++HfNd3EYBcbYY5zzXZW+R2XqEufYdBQAsHGgcg+DQKQ4ToWTVJwRRKdSqQATChpBEARBtIFYKgs3hYHIkLlziXNsRirONvTXLs4GfZKVkeL0CYIgCIIgCKNAtsaFUHG2xDk6HYXFxDDc66r5uH6PHYyB4vQJgiAIgiAIwxBNZeFxUHEmoOJsiXN0OoqRPjesdRJuLGYT+jx2TFNxRhDLDopaJ5oFvbcIgmg2sVSOBlCXQMXZEufYjBSjr4RBn52UM4JYZjgcDszNzdEimtAdzjnm5ubgcDjafSqKmAglsOe56XafBkEQKpFsjTTjTEBl6hImk8tjdC6OF20bUvT4IZ8Dp4NUnBHEcmL16tUYHx/HzMxMu0+FWIY4HA6sXr263aehiG/cfwLfeugkDv3Li2meJ0EsISgQZCH0TCxhRufiyOZ53TAQwYDPgcdPBZt7Uh3A9x45hZVdDly5ZaDdp0IQsFqtWLduXbtPgyDazplQApkcRyiRQbfb1u7TIQhCAbk8RzxNtsZSyNa4hDmqMEZfMORzYD6WRiqba+ZpLXu+dO8R3PHIqXafBkEQBFHCREhyhszF0m0+E4IglBJLZwEAXgoEkaHibAmjNEZfIOL0pylOXzOcc8zH0gjFM+0+laYxH0vjvkPUt0EQxNJiqlCcBeJUnBHEUiGWkoozUs6KUHG2hDk2HcUKv0PxG3rQJzV1T0eo70wriUwOqWx+Wd/8v/3QSfzlN/cimSGFlSCIpUEuzzEVkTYe56LL9/pMEMsNKs4WQ8XZEuboTFSxpREoFmc0iFo78wW7TDCxfJWziWASeQ5Ektl2nwrRBPadnMf9Ryg8hFhezEVTyOWlxNJ5sjUSxJIhmpI2gimtsQgVZ0sUzjmOTUcVWxoBqecMACZDpJxpRS7O4ullG10+VVBWI8nlW4B2Mp/+zXP417sPtvs0CEJXJkrua8vZ2UAQyw1ZOaO0Rhl6JpYok+EkYukcNqhQzrpcVtjMJnnxTahHFGeZ3PJNFxLKKilny5PRuTgyuXy7T4MgdKV0hifZGgli6SDWGh4KBJEh5WyJIic1qlDOGGMY8NnlpmlCPaU7ssvV2jhdWOSESTlbdiTSOUxHUgjEM0hnqUAjlg/CEeK2mTEfI+s+QSwVhHLmWYab3Vqh4myJcqxQnG0YcKv6uSGfo+Ges3ye4zdPTyKfX562vlrMx4oFS2AZ9jWks3k5hpqUs+XHWCAu//dslBawxPJhMpyE1cywccBDUfoEsYQQUfrL0YmkFSrOlihHZ6LwOSzo99hV/dygz4GpcGPK2cMn5vDu7z6GR07MN3ScpUhpQRZahsrZTMmCnXrOlh+n5orF2XSEijNi+TAVSmLA60Cvx049ZwSxhIiScrYIKs6WKMemY9gw4AFjTNXP6VGczRb8/BOhREPHWYqU7sguxwVA6XuDlLPlx6n5YnE2Q8UZsYyYCCUx5Heg22XDPPWcEcSSIZbKwmxisFuoJBHQM7FEOToTVdVvJhj02RFL5xpSRYRi1Ik774FYGr5C02pwGQ6ini4pzsLLUBnsdE7NxyH2c2jeIbGcmApLxVmvx4a52PJN0yWI5UY0mYXHblEtNixnqDhbgoQSGcxEUqqSGgVD/sZnnYUKitF0B85Lm4+nsb5QFC9HW6N4XzAGhEk5W3acmo9jY78HjJFyRiwfOOeScuZzoMdtQyqbRyKTa/dpEQShgGgqR5bGMqg4W4Icm1Gf1CgY8IriTPuueVE567yd90AsjSGfAy6beVkGgkyFk7CYGIZ8DrI1LkNG52JY3+9Gj8vWkco3sTwJJ7NIZHJY4Xegx2UDQHH6BLFUiKWycNMA6gVQcbYEkWP0G1LOtBdWws7XiYu7QDyNbrcNXU7rsozSn46k0O+1w++0LolAkE5MDNVKPs8xFkhguNeNfq+9I5VvYnkiYvQHC8oZUJxJSRCEsYmls5TUWAYVZ0uQYzNR2MwmrO52qv7ZAa+U7tiIrVEUJZ1mi8rnOQLxDHrdNvhdtmXZczYVTmLA54DPYTW8cnZ4KoJtt/4Wz5wJtftUlgRTkSTS2TzW9LjQ77UvSOYkiKWMGEC9wu9Aj4eKM4JYSkRTWbI1lkHF2RLk2HQU6/rcsJjVv3xuuwVeu0UfW2ODqY9LjXAyg1yeo9ttQ7fLiuAyTGucDqcw6LXD67AYfgj1Tx4/jXg6h2MzsXafypJAxOgPi+Kswz6/xPJlspAcPOhzoJeUM4JYUohAEKIIFWdLkKPTUdXDp0sZ9DcWpx8qKEaxdE6e7N4JiJt9j9uKLtfytDVORZIY9DngdVgMrZxxzvGrpyYALM9glmYwWojRX9vjwoDXgZloihLtiGXBZEhSgQd9DnRTcUYQSwqp54yKs1KoOFtipLI5OXFNK4M+u2wD0UIwkYatMI+ik/rOxFyzbpcNXS7bslPOkpkcgvEMBn12eB3G7jl7+nRYntlFkf/KGJuPw8SAVd1ODHjtyOT4srTmEp3HZDiBPo8NNosJXrsFVjNbMJOSIAjjQrbGxVBxtsQ4ORtHnkNTjL5g0OdoKAwglMhgQ6E47CRr43xMWsj2iECQeGZZKQ+ih3CgRDkz6t/3y6cmYDExWEyMijOFjM7FsbLLCavZhP5C72knba4Qy5fJwgBqAGCMocdtW5ZpugSx3OCcI5bOUVpjGVScLTFEjP6GhpQzydaoJekumckhmcljU6E47KTFXUC2NdrQ5bIim5cuKssFYXUd9Dngc0p/XzKTb/NZLYZzjl8+dQaXbOxDt9tm+N44o3BqPo7hXheAYjBQp4X6EMsTMeNM0O2ykXJGEEuAVDaPXJ6TrbEMKs6WGCJGv5HibMjnQDbPMa/BlidUis2DnVeczS0ozqS+huW0OysSPCVbo3ShNGLh8/TpMMbmE3jp9hXwO63Uc6aQsfk41vZIxVlROesc5ZtYvkyFi8oZAPR6bJiPdc69iSCWKqK33UvF2QKoOFtiHJ2OYlWXE06bdgl40CctzMRsGDWIEIy1vW7YzKaOWtwF4mnYLSY4rWZ0Oa0AllcYhayceR3wOqS/z4h9Z3c/dQYWE8O1Wwfhc1iW1WvQLKKpLOZiaaztkYKEBgoqAylnxFInmckhEM8sUM563HYKBCGIJYAIlSPlbCFUnC0xjs1ENQ2fLmWwcBPTUliJAIFul7UQx905i7v5WBo9bhsYY3IiWGAZhYJMRZKwmU3ocllLlDNjJTaKlMZLN/ahy2WD32lFOGGsczQiIkZfKGceuwUum7mjlG9ieSI2lYb8xbmfvW4bFWcG5n8fOIHfPjPZ7tMgDECUirOKUHG2hMjnua7FmZZB1EKl8Dul4qyTFneBWBrdBTujUM6WU9rddDiFAZ8djDH4CsWZ0eL0nzodwth8AtdvXwEA8JGtURGn5qVZcKLnDJCsjaScEUudiYIDpLznLJzMIpMzXs8sAfzXnqP4zkOj7T4NwgAI5YzSGhdCxdkS4nQwgWQm31C/GSAtyhjTaGssKEVdThsGvPaOsjXOx9Po9UjFmd9VKM6WUWEwFU7KhbuvYGs0WhKiSGm8dusgAGmTwIh9cUZDjB1Y01Mszjrt80ssT4rKWYmt0bP8eoKXC7FUFvOxNE7Mxtp9KoQBiKVJOasEFWdLCJHU2KhyZjWb0OvWtjCTlTOXFQO+TlbOpP8PLqObv1ScSf2IxZ4z4yhnnHP88kDR0ggUirNERlPyaCcxOheH32mFv6D4Aug45ZtYnsjKWWkgiBhEvYxs58uF8UACAHAmlEAqu3zSjgltiDUGKWcLqVucMcbWMMb2MMYOMsaeYYy9v/D1Wxljpxlj+wv/e0nzT7ezKSY1uhs+1qDPrkk5CyUyYExK1hnwOhCMZ3S7wJ6YjSFn4EX2XKHnDABsFhPcNnPblbN8nutWmEyHUxjwSgscr2xrNI4q9dTpEMYDCVy/Y4X8NZ/Dijwv7r4RlSmN0RcMeB1kaySWPJOhJLx2y4LFndhEm49ScWY0xgoqPufF/yY6l1hKWj9ScbYQJcpZFsAHOednA7gYwHsZY+cUvvd5zvnOwv9+1bSzJAAAx2Zi6HZZ0euxN3ysIZ9DU89ZMJ6B32mFycTkWUmzOtwAp8NJvOBzf8Svn55o+FjNIJPLI5LMyjd9AOhy2doeCPLPdz+L1972YMPHiaWyiKSysq3RZTPDbGKGUs5+eaBgaTxnUP6afxmmZjaDU/PxBZZGQFLOIskskhnavSaWLpOhJAZLVDMAsv2cZp0Zj7FAsSA7OUvFWadTTGukIdSl1C3OOOcTnPPHC/8dAXAQwKpmnxixmGPTjYeBCAYKg6jVEkpk5DCMgYIFblrDccoZDyaQy3OMzScaPlYzEEVYj7toC+tyWRFqYyDIdDiJ7z1yCoenoo0fK1KccQYAjDF4HRbDKGfS4OkJXLapaGkEAJ9T2m2j4qw62VwepwMJDFcozgCK0yeWNpPhJFaUFWfC4UCJjcZjPJCA2cQAACfnqO+s05HTGm2knJWiqueMMTYC4DwAjxS+dAtj7ABj7H8ZY916nxyxkKMz0YbDQARDPgfmYmmks+rSrIKJjKxWCAucHn0rs4VjGHVwaCAmLf573EXVsstlbaut8VsPnUQ6l0c0lVX9OpYjCnXxmgKStdEoUfoHxguWxu0rFnzd5xTBJcY4TyMyEUoim+dyjL5ggAZRE8uAyVAxyEjQ5bSCMSrOjMjYfBzr+9zwOSxUnBGIpbJw2cwwFQp2QkJxccYY8wD4MYAPcM7DAP4HwAYAOwFMAPh/VX7unYyxfYyxfTMzM42fcYcyH0tjPpbWTTkTConahVkonoa/oFz0y4u7xguqmah0DKPaUMRNvnuBctY+W2M8ncV3Hz4Fm1n6CAcTjZ2HPIDaVyw+vXarYZSzXz01AauZ4dpzhhZ8XaRKknJWHZHUuLa3snI23UGzCgn9yebyyLYpsj6by2MmmlqknFnMJvidVirODMhYIIE1PS6s63OTrZFANJWlfrMKKCrOGGNWSIXZHZzznwAA53yKc57jnOcBfA3AhZV+lnP+Vc75Ls75rv7+fr3Ou+MQSY16KWfCo6+27yxUopz1um1gDJjRwdY4IytnxryZivMSdhlA2p1tl63xzn3jCCUyePPFwwCKyp5WxAJ9wGc85YxzjrsPTOCyjX3yCAOBeC9SnH51RssGUAuESio2RghCC+//wX78zQ+fbMvvno2mkcvzRcoZIF2rjXo/aRYzkRQ4N26oFgCMB+JY3e3EcK+blDOCirMqKElrZAC+AeAg5/xzJV8v9Re9CsDT+p8eITg2rU+MvmBQWBJVFlbBkp4zixzJr4NyVjiGUefSiEjmngWBIJKtsdU3w1ye4xsPnMD5a7twzdkDANCwgjcdScJhNcnDpwEpTt8IgSAHxkM4HUzgJWWWRqA4b85o89iMxKn5OKxmhhV+54Kv97htMDFSzojGODoVxbNnQm353ZOF+1e5cgZIm4edVJzNRVO49FP34rfPTLb7VKoSimcQSWaxptuFkT43zgQpTr/TiaWyNOOsAkqUs0sBvAXA1WWx+Z9hjD3FGDsA4CoAf9PME+10xE1oZZezziOVIexrkyqKs3yeI5zIoKtEvRjQaVaSKM6MamsURWNpGEW3y4ZcniOSam0Bc88zkzg1H8c7Ll8vp0cGGyzOpsIpDPockPZiJHxOiyGKnl9WsTQCgMdmAWNUnNVibD6O1d0uuQlfYDYx9HnsFAhCNEQwkdaU/KsHkyEpQKqSctbt6qzibCKURDqXxxEdAqKahUhqXNPjxEivC3kOw4aAEa0hlspRUmMF6parnPMHAFTq1KPo/BaSyORgt5gWLbC00uO2wWpmqm6qkVQWeY4Fg2ylQdQ62Bqjxrc1eh0W2CzF/Qw5xj2ekXufWsHX7j+OtT0uXLt1SH7uAw3aK6fCSVlNFfgc7e85E4OnK1kaAcBkYvA5rNRzVoPR+dgiS6NAr88v0blIsy7zbbEniVmdFZUzjw2Pnwq29HzaiXBPqNlwbTXjheJsdbcL6UKf4uhcTDdHELH0iKayWNm1+PPb6ahKayTaRzKdg9Om3+4CYwwDXnVx+qK/akFx5rXrYosSu/fxdM6Qc5cC8fSCfjOgOOi0laEgj43O4/FTQbz9snUwm5hu5zAdScmjEQRehwXRVLatPQzPnAlXtTQKfE4LFWc1ODUXr1qc9Xv0Ub6JziSRziFVSIrVMpqlUSbCSdjMpkXXZkDagAzE08jnjd2DpRdig65dKqYShEq2ptuFkV43AODELPWddTLUc1YZKs6WCIlMDk6rvtLvkF9lcZaoVJw5MBtNIdfADZBzjtloSu53Uque/Wz/aUyEmmuNmI+lFwygBiDbO4MtDAX52p9OwO+04oZdqwEADqsZDqupoV49zrmknJVZg7wOC/IciKXbVyyLMIvtq/1VH+N3Wg0RXGJEgvE0wskshnurKGdeB9kaCc2UpsROhVpfnE2Fkhj02xfYsQU9brtkO++Qa4OwtrejSFbKWCAOr8MCv8uKbpcVPodFvsYTnQn1nFWGirMlQiKT1704G/TZVVkgxI24tO9qwGdHngNzDcwni6aySGby2DLkBaCuOIskM3j//+3He+94vKECsR7zscXKmSjOWqWcjc7F8NtnJ/Hmi9fCVTKwscdla8jWGE1lEU/nFsToA8WY+nZaG4Xlrt9jr/oYsjVWR8Tor6mmnHntDW+uEJ1L6cbUVBvssROhJIYq9JsBQE9h7Ekj96alhEjsNbKtcWw+jjXd0rWIMYaRPkps7HRIOasMFWdLhEQ6B4fuxZlDlSVR3IjLA0GAxhLfxM795kGpOFMTCiJ+9vFTQXzrwZOaz6EegYrKmfTvVhUG33jgBKwmE972vJFF59FIIIiwwSxWzto/4HkmkoKlxL5ZCb/TSoEgVRC70lWVs8LmilF7PQljU7oxNRnSrwh68Ogsbv/zibqPmwonMeSvHJLV45buTZ3y3havxWw01ba5c/UYDySwurv4eo1QnH5Hk83lkcrmSTmrABVnS4RkRt+eM0BajEdTWUQVpg1WsjX2i1lJDVijxM+eJStnyo81G5VuSIM+Oz7720M41SSLxHw8jV7PwgJBPA+tsDUGYmncuW8cr9i5csEsMkAajN2IcibGKQx4F9sagXYrZyn0e+0w1QjC8TtJOauGrJx1V7M1ahtGTxAAFsx51NNO9/29Y/jkLw/WvPZwzgvKWWVVvbfgdDBqArDeiA06zo05u5BzjvHCAGrBSK8LpwMJpLPGLCaJ5hJLSS0TVJwthoqzJUJTes4Ki/xJhb0ClXvOGl/ciRvJliEfAGBexUDl2cLPfurVO2A2MfzDTw/oHmCRSOeQzOQXqTdWswleu6UltsY7HhlFIpPDzZevX/S9LpetoZ4zYUcqtzUWi7P2KWeiOKuFz2mlIdRVODUXR5/HXvXmJ57bZvadBeNpHBgPNu34RPsIFu4JHrtF1+IsGE8jm+f489HZqo8JJaSUyGrKWXehODPq7Ey9CSwolI1XnM1G00hkclhTqpz1uaU4/QD1nXUikZT0nvVScbYIKs6WCM2wNaotrEKJDBxW04Lz6NfR1rih3w2zialSzsTPbl/txz+85Cz8+egcfrB3TPO5VEIeQO1eHOXud1kX7B43g1Q2h28+OIorNvfLfXmldLusDRWI4kZersjJtsY2Fj4zkZT8Pq2G32lFMpOnYaYVODUfx9qe6rMRhVrazMTGbzxwAq/7ykMdk5rXSYjrzpYhr669TsKm/MfDM1UfM1HYVKzWc9aJypn4m5VuuLaS0hh9wXAhsfEkJTZ2JKScVYeKsyVCM2yNYjGudNc8GE8vUM0AKS3Q77Q2tLibiaRgNUt9Rd0uq6oegdloCiYmxdq/cfdaXLy+B5/85UFdb07zBetkpb6nLpdV3j1uFj96bByz0RTeUUE1A6RAkFAio3nxOxVOwmO3LGrK9Tnbr5zNRJKydbYaIuWTrI2LOTUflxdAlWiFcjYVTiKZybd05ATRGkLxDOwWE4Z7XbqmNYrP8n2HZqo6IUQxOFRhxhkg3ZtcNnMH9ZxlcNYKafPOiDblsUAhRr/E1riur1CcUWJjRyJaamgI9WKoOFsiSLZGfV8uYWNTakcJxjPoci4uUAa8jQ2ynY2m0OuW+op63DbMRdUFgvS47TCbGEwmhk+/Zgcy+Tz+6a6ndLM3FpWzxX97t8vWtEVnJpfHf/z2ED5219PYuaYLl27srfi4LpcNea5d4ZoOL55xBhTTGtulnGVzeczF0opsjUB7g0uMSDqbx5lQompSIyAtYL0OS1OLM2G3MmIfDNEYwXgGXS6rFC4VSemmjoYSGXjtFkyEkjg8Fa34GLEBV604AwqzzjqmOEtjfZ8HFhMzpHI2Ni+Us6KS3+2ywuuwkHLWocQKxRmlNS6GirMlQjN6zjx2C1w2s2J/eiiRWaScAVLiW6PKmViAi8GhSpmNLuxJGu5140PXbsHvD07j50+e0XxOpYibe6XizO9sjq3x6HQUr/7yg/ivPUfxmvNX47s3X1Rxlg8gBYIA0BwKMhVOVrQO2i0mWM2sbcrZbDQNzlHX1iiKM1LOFjIeiINzYLhGcQZI6lkzd9pFUIEew+oJYxGIp9HltGHI50A2z3WxEObzHKFEBtdtGwIA3HdouuLjJkNJMFb7+tDjtnWErTGbyyOSzKLHbcOAV92InFYxHoijx21bYGFjjGEdxel3LDFZOaPirBwqzpYIiXQODp1tjYwxDHjtipWzUCIDv2txcdbvsTeW1lhSYPW67eqi9KNp9JWlKN506TrsXNOFT/ziWczpsFs/X6M462qw36sczjm+/dBJvPRL92M8EMdtbz4fn73h3Jo7SyLSX6t9ZyqyeAA1IL0/vA5r29IaxXtKSc8Z0N7eOCMikhrXVonRFwx4G/v81kOkmdKw6/ZzdDqiq80vmCgqZ4A+iY3RdBZ5DmwZ9OKsIW/VvrPJUBJ9Hjus5urLmB63rSNsjcJa3+2yYtCvbkROqxgPJBaEgQiGKU6/Y4mQclYVKs6WAPk8Ryqr/xBqQOo7U6p6SbbGSsqZdAytNsKZSEoeMtztVtlzViHNz2xi+MxrdyCazOLWXzyr6ZxKCcTTMLGiza+U7gb7vUqZjiRx0zf34v/72TO4aF0vfvuB5+NF21bU/bmeQnGmZdYZ5xxT4VTF4gyQEhvbpZwJNac8qKQcuTgj5WwBwka0to5yNuBVfg3QAtkajcNN39yLj/z4gG7HC8m2RnUW+XrHBKTP9RVb+rH35HzFcS+T4SRW1LA0Ah1UnBWu/d1uGwa9DkMqZ2PzcayucC1aR3H6HQvZGqtDxdkSIFlIoWtGcSYNolahnFUqzrx2pLN5TT0/+TzHbDRdYmu0IxjPKBqiyTmXVDfPYmVl86AXf331RvziyTPY81xlW4xS5goDqCvN2vI7rcjz4g6QVu47NI3rPv8nPHRsDv/8iq345k276xYlAhFUosXWGEpkkM7mq6pTPkf7BjyLgqFuz5mDirNKjM7FYbeY6iqP/V47psPaN1dqwTmXF46knLWfuWga9z43rVvBItsaC0WSHkWBPLLFZcUVm/uRyXE8WCFSfzJUWfEvpcfVGcWZuPZ3uaTXQs+xBnqQy3OcDi4cQC0Y7qU4/U6FbI3VoeJsCZBIF4oznW2NADDotWNKwcIslc0hkcmhq5KtsYFZZ4F4Grk8L7E1FlQgBQvtSCqLdDaPvgrFGQC8+8oN8Dks+N3BKdXnteAcY2l5Zk453Q2oVoJHjs/hnd95DEN+J375vsvw1ueNVO0vq0SXWwzDVn8Oot/QiMqZWMxXKr5LEamS1HO2EClG31X3vTTgtSORySGW1n8UQTSVRbagKjdTnSslmcnh3uemmlJsLmVyeY54OodsnuMXOvTjcs4lW6Pbij6PHYxBl8TG0nmau4Z74LaZcV8Fa6Mi5cxjQyKTk++hyxXRF93tsmLAZ0ckmUU8bZyApOlIEpkcx5ruxcrZSCGxcZSsjR1HNJWDzWyCzUKlSDn0jCwBEhnpxqL3nDNACvNIZHIVbSOlFHczK6U1ap+VJKxOpYEggLL+qZk6yorVbML6fk/DSVDzsXTFfjMAcrEa1BjGcXgqgnd8ex/WdDvxvZsvwsaBxXPM6uG1W2AxMU07xGKH1YjF2XQkiW6Xte6F224xw2E1UXFWhhSjX9vSCJTOKtR/t730czHTonjv3x+cwl9+cx9+8/RkS37fUqH0Gv+TJ043fLxkJo90No8upw1Wswl9Hrsuw49LizObxYRLN/bhj2WR+ol0DqFEpq5yVpx1trxVW/E563bZ5LlvRkpsHJtfHKMvGClco07MknLWacRSWYrRrwIVZ0uAZKa5tkYAdW+qpX0A5YgYdi3K2WxEKiiE+iWKICVx+rOF4qyacgZIc1QaLc4C8bTc11WOKM60hIJMhBJ42/8+CofVjG/95YVV1bl6MMYKwSTqi5NicVb5OWxnIMh0eHE/YTX8TitF6ZfAOcep+XjNGH2B2Fxphu1QLBrtFlPLbI3ic/DFe4+SelaCKM42DXjw5FgQx2YqR9QrRVzzxDVwyKdPr1NpcQYAV24ZwOlgYsH5it9Tv+dMun4EYst746b0tRhSeE9vJaL/tVIgSI/bBq/dQspZA4QSGXzxD0eW3NiIaCoLj4MsjZWg4mwJkEhL/VdNCQQRqledm6qwGVYMBJF33rUoZ9Lv1aKczRYKuD5v9aJmpNeNM6GkXOBqYT6WqVo4iaREtapNKJHBjf+7F5FkFrfftBurK9g91NDtsmmyNU7LiYiVFzk+h7V9tsZoqup5leN3Wkk5K2E2mkY8nasbow+Ubq7ov5gTi8aNA56W2RpFH8PBiTB+f7CxftPlRLTwOf6Li9bCxIC7GlTPimqNdE8Y9ClP/lVyXFH0XbGlH4A0kFowEZKUmKF6PWcFy/dyV84C8QwsJgaP3SL3Khup72y8MIB6Zdfi4owxhpE+N07QrDPN/PnoLD73u8N4xX//GUemIu0+HcVEU1m4bVScVYKKsyWAsDU2o+dMLMym6qhetZQzj90Cp9WszdZYZk0UNpR5BYWGsEnV6kka6ZMWp6Nz2iwTnHNJOXMv/ruBYrGqxtaYyubwru/sw/HZKL7ylguwdaVf07mVonUY9nQ4CZ/DUvW95XVYEEllkdNpuKwapsOpumEWAp/DSlH6JSiN0QeKn59mKFviPbll0ItIMtvQJolSosksTExKqfziH46QelYgmpI+H+v7PbhsUz9++sTphlJmgwnptfU7pWv2oE+fIIpQIgOrmcmbkau6nNg04FlQnInfU2sANVBUzpZ7KEgokUaXywbGmPycGKk4GwvEMeizV23NGO51ab5HE8X3dzCexqu//CD2VJkNaDRiqSwlNVaBirMlQDN7zoStsZ7qJStnFQJBGGOaB1HPRFJwWs1wF4oDoVDNK7E1RtMwm5gcylGJdYVmY627cuGEVJhU+x2iWFVaGOXzHB/84ZN4+Pg8Pvvac3Hpxj5N51VOl8uqqe+tVow+IBVnAOr2JOoN53zBcPJ6kHK2kFPz0vt9bY+77mO7XFZYzawpypZ4TTYNSr2UrbA2RlNZuO0W3HLVRjx1OlQxTKITEQq4x27Bq89bhfFAAntPzms+XrnCNeRzIBDPNFyAi1Tg0iCbK7f049ET83LIxURIaXHW2AzIpUIglpEVTI/dArfNbKg4/bH5eMUwEMG6PjfGA3GK09eIcM38/JbLsLrHhbd/cy++8cAJw29MxQrXamIxVJwtAeS0xiYUZ+JCXs+fLj78Xc7KRcqA164pUEAswMWN2Go2weuwYF6BDWUmkkKPu3LEvUAkQWkdcikUvGqBIJbC+SotjP7tVwdx94EJ/MOLz8Irz1ul6Zwq0a0xMrraAGqBiKlvdd9ZKJFBOpdXXJz5nKSclXJqLgHGUDG6uhzGGPo9dk09o/UQvT4bBzwAWpPYKHZjX3X+KqzqcuI/f0/qGVDcYPE6LLh26yBcNjN+2oC1sTSEAihu9DVagIcrjGy5cssA0rk8Hjo2B0BKhfQ5LHDVsUT5HNrDkpYSgXh6wQbioMHi9McDlWP0BSJOf5zi9DURiGfgspkx0ufGj979PLzg7EH8y93P4qM/fcrQBW+UlLOqUHG2BEg20dYIFOwodRZm4UQGjBWVlHIGvA5NN+WZ6GJ1pNdtw5yinrPKM85K8Tms6HXbNIeCiJt6teIMEKpV/fP99kMn8fUHTuDGS0bwzuev13Q+1eh22xCMZ1QvQqfDKdnaWgnxere670y8l5TOevM7rbL1lgBG52MY8jkUq+39Pm2f33oE4ml47RY5uKFVypnHboHVbMJ7r9qI/WNBPFBhTlanES1Rzlw2C160bQi/fGpCs9IlbI1CORvUadZZMJFeVJztGumGy2aWrY0ToWRd1QyQNh66FQyi5pwvuTCFUoKFYeCCIZ/DMIEgmVweE6FEzXCidQ22H3Q6pcW5227BbW++AO+9agO+/+gY3vKNRwz73qbirDpUnC0BEk1MawSkfq8ZBbZGn8NaVaXq92q3NZYXWD1uZf1Ts9EU+hQoK400GwcUFGfdLpuiuWzfeWgUFwx342MvPUfVHDMldLusSOfyiKuY55PPc0zXU86cQjlrbXE2rXDGmcBX6I1rpIdmOXFsJoa1CsJABANee5PSGtPoclvl3kExOqOZREusMq+5YBVW+B2knqGonIl0tFeftxqRZBZ/0BiaEoxnYLeY5A0AvSLcQxWUM7vFjEs29OK+w9PgnGMqnMSQv74qDCjb7Pv+o2O47NP3Gmo2mBoWKWc+h2Gi9CeCSeQ5atoah3sbaz/odMqLc5OJ4e+uOwuff/25eGIsiFd++c+GtP3HUjmyNVaBirMlgLA1OqzNebmUKGehRKZiv5lgwGdHNKV+8OVsNL0obbHHbVcUpV+psKvESK+7YVtjrb42v7N+v1c6m8eJ2RguXNcDcw0bplbE+akJBQnE08jkOAZrFLhCOQu3+MIuLHa1VL1SfE4rOJcGk3c6sVQWz5wO4YLhbsU/09+s4iyRQbfLhl6PHSbWWuUMkBb177lyA/aNBvDQ8bmm/24jIzZYRDra8zb0YtBnx08eH9d0vOCigqAQLtWgclapOAOAK7YMYGw+gROzMUk5U3ht6HHb6ioH9z43jVg6Z5iCRg2cc2lxXhJaNehzYDqSNMSGxFjBqljL1thLcfoNUV6cC1513mp88Q07MToXxxOnAm04s+pwzhFLZ+GhOWcVoeJsCZDMNi8QBChGINe6kAfjlW+YgmIkv/LFVyaXx3wsjX7PQuWmx21VZEOpVNhVYl2fC1PhlKZdUSW2RiUx9ifnYsjmOTYPelSfgxLkeWsq5vkI20vtQJCCcpZqbXEm2xpVBIIAyovInz95Ro5cX248NhpANs9x8fpexT8z4LVjLpZGJqdvf0KgcN0wmxh63PaWDKIuTwB73a41GPDa8cU/HGn67zYyUmy1Wd4cMpsYXnneKvzx8AzmNCia5bv1fqcVdoup8eIsnpFHlJRy5WYpUv8PB6cxE00pVs7q2RrzeS4Ho7RqFp+exNM5pHP5RYVyJscN0Wsn+shq2RoZYxjuc+EE2Ro1Uf5ZLGXLkA+AtlmszSSezoFzkHJWBSrOlgDJdA6MSYNcm8GA14FkJo9wDetasMpuZvEY6mclCXWsvOesx21HIJ6uWSyGk1kpMEKJciZCQWbVX/gDsTRsFhNcNfr9ulzWurbGw4XZI5sGvKrPQQki5VLNBXhKVqfqpzW23NYYllI8lfrRhf1SiXXj5GwM7/v+E/j+o6caOkej8vDxOVhMTLVyBkhWYT0pVVeapc6VU26VcVjNePcVG/Dw8Xk80sHqWTS5eODrq89bjWye4xdPnlF9vPINOxHjPtlAr1MuzxFOZuXPcylrelxY3+/GnY+NgfP6M84E9WyNh6Yi8nVjVoFjw2gEZHfHwp4zwBiDqMfmEzCbWN2B4SO9blLONFJNOQOKG8tK3EitRGyOUnFWGSrOlgCJTA5Oq1n3PiWBsI7V2tWulKBVSr9cnCnfNS2fcSbodduQyfGaFrVqP1uJRuL052Np9LptNZ/7rkKMe61ZYEemojCxYmqd3mixNYp0zVrqVNuKs7IUz3qoUc7OBKWBqE+dDmk/QQPz8PE57FjtV3XTE8q33sVTIJaWF43N6msrJ5LMLAoueuOFa9HnseNL9x5t+u83KpWa77cMeXHOCp+m1MZgYvGCcNDbWEqgSIWtdq+5cvMADk9FAaDuYl/Q47YhlMhUVYVLC3a9NydaQXGkQfG1MNIg6rFAHEM+Byzm2svNkV43xgMJ3dX75U4uzxFKZOQN2nJ8DgvMJmY45SxSkh5LLIaKsyWAKM6axaCCXbZgPF2750wUZyp26maihSHSi5Sz+rPOxE20T2HPGaAtTr/WjpSgy2WT+p1qRLkfmY5gbY+radZUsQBWM+tMvN61+rrsFjPsFlPLe85mIsoHUAPFyH8lcfpiRtJT48uvOIunszgwHsJFKiyNQMnmio477UIF6SpRzpodpS/1MeTgLutjcNrMeNfz1+OBo7N4bNRYvRetIpLKwuNYfA1/9fmr8OR4CEeno6qOV8lK1WiEu1CwqhZnW/qLv0uhcibuJ9WujY+cmMdKvwNmE1uStsZAhb7oIZ2SM/VgPJDAmp76FtSRPjdyeY7xQKIFZ7V8CCUy4HyhcloKY6wwasdYgSCyclZnHEanQsXZEiCRzjdtUQ+UFmeVL+T5ws5MtRlngHRjsJjUDbKtpn7JMnwNK4r4WSXFmdtuwYDXrlk5q9VvBhT7vWoVRoenovIg3magdhg2IL3e3S4r7Jba7y2vw1rT8toMpiNJxWEgAOB3Kbc1ToSkm//x2diym42mpd8MQFPSFENlg+v7vXbMRlNNTdRMZfPI5XlF1fBNF69Fj9uGL93bmb1n0WQG3grPy8vPXQkTA376hPJgEBFC4S9bEA757JgMaQ+ikN8zVYqzC9f1yMFYapQzoPIgas45Hj0xj4vX96LXbVuSyllAnjdXfM7E59kQylmdAdSCkV7pMVrH3nQqlYrzcnrcVsPF6UfJ1lgTKs6WAMlMrmkzzoD6/WLRdBZ5Xn03E5CiW6WdcfW2xj5PeVpj9ZupQNxElQ4pHulza7roz8fSVe0CAjmMo0phlM7mcXI21rQwEEAahu1zWFRdgKfCKUW7zz6HpeVDqKcVJnEKfHKqZP0icqIkke2Z02H1J2dgHj4+B7OJYZeKfjOguMmhp3JWvmjo90ghBc2MdBb220pFiMtmwdsvW4f7Ds10ZGR3tZlCAz4HLtvUj7ueOKO4cE5kFodQANJGXyqbV/Q5rITY4Cov+gQOqxnPW98Lu8VU08lRSnGzb/F7+9hMFHOxNC5a34M+T2tst3ojwqhKbY1Wswl9Hlvbi7NkJofpSAqrlRRnfdodLp1M8fWv/nnodtnk5GmjEEtJQXc056wyVJwtAZpta3TbLfDYLVUv5KE6N0yB2p6S2WgaPodlkXIjbqa1Co3ZaApmE6u6w1rOOo1x+vOxNHrq/N3iplgtFOTErEhqbJ5yBkihIAEVtkZJnapfnHkdFkU9Z4FYGj/Ye6phZSSZySGSzCoeQA1IF3iziSla+E+GkvKu+1Ong1pP05A8fHxedb8ZANgsJnS7rLLVWA/KFw1CCW2mtbFek/l5a7sAND6LaylSKRBE8JrzV+F0MIFHC6mF9ZD7nMquv2KzR6udrp6tEQA+eO0W/OsrtynuR+11S++7Skm2Dx+X/t4L1/XKyu5SQ/xdiyymBhhELSyKSmyNvW4bPHYLKWcqEa9/LeWs11N/EHurKV6rKUq/ElScLQES6eYWZ4C0cKq2a17PaiLo9zpUFWczhdCHcno9ymyNvW5b1aHY5Yz0uTEbTatSgDI5KcGyx11bwRHPS7U4fZHU2KwwEEG3S9nwbsFUOFlzxpnA57Qqet7u2n8aH/7xU/juI6OKz6ESasJeBIwx+BwWhbbGJM5Z4cOqLicOLKO+M6nfLIiL1qmzNAoGvA5dlbNgfOGiQSihzVQn6lllvHbrgsd1EpEqyhkAXHvOENw2s+LUxkCV3fpGe52UFGfbVvlxw641io/ZXZj/NV9BOXvkxDwGvHaM9LrQ57Ev2bRGr90Ca1nghhEGUSuJ0RcwxjDS58JJitNXhRJbY7er/qy/ViMCQUg5qwwVZ0uARCYHRxNtjUDtlC3ZalKnOBvwqWv4r1acOa1SCEWlm6lgNppWtXhf1yf87Mov/OLv7nHX/rvFRbFaz9mRqQhMDNjQ3+zirP4wbEEuzzETUWZr9DosinrOTs1Lz+2nf/2cnIioBWGNVfP6AlIRqaSHbDKcxJDfgR2r/csqsfHx0SAyOY6L1/do+nm9AzsC8cU9ZwB0VefKEUVXJVsjUJo+urx6DevBOa9qawSkwJSzVvgU2z1DFRICAek+AmjvdVJSnKlFXJ/LN/s453jk+BwuWt8Lxhj6vDbMRFKGGNyshmA8vWAAtUBSztpbnI0J5UyBrREAhjU6XDoZWcWusU7pcUsbt83s91WLUM6qqfmdDhVnS4BkJgentbkvVa3CKphY7GmveAyvHfOxNNJZZVG4M9EU+r2LiwPGWN3ZNLPRlKIwEIHws59QceGXd6Tq9Jz5ZOWs8oLv8FQUw73upoa6AAVfucLdsbloCnkuDSuth9euTDkbDyQw4LUjz4F/uutpzYscod6oSWsEpAVdPeUsmclhPpbGCr8D21b5MToXlxeaSx2532xEW3Gmd9R9eS+MsKk2UzmrZ2v0tGk0RLsRA19rLYSG/MqVlmCispVOWFenNCo2oUQGdotJ12ul1WyC32lddG0cnYtjOpLCReukz0u/x450rva8TyMSiGcqqiZDPgfmVNyPm8H4fBw2s0nxtXwdxemrJhBPw2JiVTekAGltkOfK0oxbRSyVhYmh6a6wpQoVZ0uAZvecAcVdtkoLaqW7mWJWklLf/kyN0IceT20ZvprqVo3hHjGIWnlxJm7mPXWKUrNJstRVtTVOR7CpyZZGQFoEVzuHcoox+vr1nI3Nx7F9lR8fum4L7n1uGr84MKHoXMoRiYEDFQr3Wvgc1rqR/2InecjvxI7VfgDA02eWh3r28PE5bFvl12wT6ffZdVUOAvG0/NkAALfNDKfVrKt1spxond1YoZx1mq0xqsBCtMLnwITCpEXZ1liW4OuwmtHtssoD7tUSiteep6mVHvfijatHTkjzzeTizNt8220zkMbcLL5HDco9nu1Tz8YDCazqdipuPxjudVGcvkoChZEWtXowlYSstZpoKgu3zdK0+b1LHSrOlgCJdHPTGgFp17xaylYwXnmXtNIxAGUN//F0FtFUtmqB1eO2V72QcM4xF02rUs6cNjNW+B2airN6ypl4TKVAkFQ2h9G5eNPDQADJfhlL5xTtlIoiRVFao9OKeDqHbI3dTM45TgcSWN3txI2XjODc1X584ufPaPK5T4dTMDHUHWFQjhLlTCQ1rvA7sH2VVJwth76zRDqHJ8eDmi2NQIlyoDFpr5xgYaEtbr6MSYmuesb1l1OvCLFbzLBZTIbaQW4FcoplHeUskckpev1r3ROkXidtr3Eo0cLi7Pg8et02uRdYbBQutVAQSTmr8Dr4688vbTZjgThWd9cPAxGso8RG1QRi9WexGrE4i6WyFKNfAyrOlgCJTK7pljihoFTaZVNqNZHT2BT43Gcj0kWianHmsla1NYYTWaRz+UUR/PUY6XWrsjWKC1mvgiKhy1m53+v4TAy5PMemJsboy+cg977VvwCLAlqRrVGB2hBKZBBJZbGmxwWzieFTr9mBUCKDf/nls0pOvezckujz2GFWuNsq8Dnr98YJ29aQ34Eulw1re1yGTmxMKCy2Hz8VKPSbaQsDAWpfA7RQaUhxv87WyXKiyfqzc7x2i/y4TiGmRDnzS4voiXB91SKUyMBhrXxPaKTXKZRY/J7Rg8rK2TwuXNcjbx70eZdqcVZ5cd5o/58ejM3HFcXoC4Z71TtcOp1qr38pRizOoqksJTXWgIqzJUCyFbZGeWjl4huTUquJsKEpUc7E7nm1AquWciYCBdQGRqiddSZUn3q9duIxlYoikdTYCuVMXKCVxOlPhpNgTNkQb69Deu1r7agLG4rYJT17hQ/vuXIDfvL4afzp8Ezd31HKTCSlagC1wKdCORsqFCLbV/kNrZy95n8exPu+/0Tdx2mdb1aKUA70CgWptGgY0Dl0pJxYKgvGAFeN66VSm+5yQomtUSQtTijoFwvE0ossjYJBn11zQRBsknLWW1acjQfiOB1MyJZGoHgtXEq2xmwuj0gyW7GgHfK3tziLprIIxDOKYvQFfR4pTn+UEhsVU2kTrBzh/lGT5txsoqkcPA79P+vLBSrODE4ml0cmx1vScwZUvpAHE2lFu5l9HhsYU1ic1YlL7/XYEE/nkMzkKvxsQXVTYWsEpMTGQDyjOABivhBRbLPU/5h0uawVbY1HpqIwmxjW97tVnasWhLVFye7Y+HwcK3yORfHLlRDKWS0rmIhMLt0lfe9VG7G+342P/vQpeedeCdORlOp+M0CyNaaz+YrvGcFkKAGfwyIrK9tX+zEeSBguZhgARudieHYijN88M4m9deZPPXJ8HttW+uRCWguiINZrcRqsYLdqunKWysFts9TscfE6lAXcLCdEMVorEETM/lMSChKsoXAN+RyYjaZq2qCrEU5k5IAlPekupNWJfrpHSuabCbqcVlhMbEkpZ8EaY266XVbYzCbNYw0aRY7RV6GcMcYw3OvCcVLOFKNIOXMJ5cw4171YKgsPKWdVoeLM4IiFZtN7zkTKVhVbY7Vd0lIsZhN63TbMKLBFCeWses9ZdRleVt3UKme96hIbA7G0on4zQLo5VlrgH5mOYLjXtWjQdjNQY2s8MReTLST18CpIuBubXxyZ7LCa8enX7MB4IIHP/e6wot8FSMWZ2sIbkAJBANQMBZkIJWX7FgDsKPSdGTFS/75DkuLoc1jw6V8/VzWoIZHOYf9YsCFLI1D8LOpna0zDX3bd6PfYEUpkkMpWL6AbIZrK1A1E8dgtHRsIIua8VaLfa4eJARMKxmCEauzWD/odyHNo6i1Ueq9RS6/bhkyOy7bnR07Mwe+04qyhoqPBZGLo9diWlHIWrJEozBjDgM+uOTmzUcQ9QU3PGSCNnDk2HW3GKS07OOeSclZn3I/TZobDajKUchYrBIIQlaHizOAkCsVZs3vOXDYLvHZLxSS1YFz5bma/wkG2MxEp9KG3yoDnblf14mxWqG6qlTN1fvY5NcWZy4ZwMotc2RyRI1NRbB5ovqURKBa0SmyNo3NxjPQp29EURU8ttWE8EIfXboHPufBiu3ukB2++eC1u//MJ7B8L1v1duTzHXFSbrVHYoWpZGydCSdnuAwBbDVyc7Tk0jXV9bnz4xWdh32gAfzg4XfFxT5wKIJ3LN1ycee0WOKwm3RanlYIK9FbnyomlcnX7GDrS1lj47NZSzqxmE/q9dmW2xngNW6NXWxBFJpdHNJVtWiAIULyfPHJiHrtHehYprP3epTWIOlBl3pxgyOdoWyDI2LzyAdSlbBzw4HQwgUS6ORs4y4l4Ood0Ll9XOQOktdacgd7bteYuElScGZ5kWrKGtGIWhDTrrIpyprBJW+kg25lICj3u6qEPvZ7Kg0MBqWHbYmKqb+JrelxgDIoHrQbiaUVhIEAxtaxUtUlmcjg5F8PmFoSBlJ5Dvd2xUCKD+VhaVhLrIStStZSzQAKre1wVY3E//KKzMOB14MM/OlB3fs1cTJq/pnbGGVCcN1fLfikpZ8XizO+0Yl2fGwfGg6p/XzNJZnJ46NgcrtzSj9ftWoN1fW589reHFhX/gNRvZmLArhHt/WZAYafd69ClJyyZySGRyS3a3Gh2XLmSG76nE4szef5b7fvIkN+pyAYXTGTQXWW3fkiFPbKUsDyyRf8FW2lxNhlKYnQuXjHZtM9jX1K2RuHWqJTWCLR3EPV4IAGn1az4HirY0C/dL4/PknpWD3kWq4L1WbfbaijlLEppjTWh4szgJFpkawTEhbxCIIiKJm2p4V+BrbHOnDJZBapka4xIA6iVzk4ROKxmrPQ7Fcf0BmKVh3tWolJhdHwmhjwHNrUgDASQ/j6n1Vy3f2q08PertzXWVs6q2Ve8Dis+8uKzcGgqUlc9E6qr2rAXoL5yls7mMRtNLVDOAGDbKj+e0iEU5JbvPY43f/0R/PMvnsUP945h/1hQVa9dKQ8dn0Mqm8dVWwZgNZvwwWs349BUBHc9cXrRYx8+MY9tq/wN9ZsJ9OoJC1UZUtzvae4g6mgqW1MdAqTNho7rOUtlYbOY6tqrV/oddZUzznkhJKpaIIi2IAp5nmaT0hoBqTgrzjdbrDT3eZrbE6k3IiG42n2qncWZiNFXO8dqw4B0XzpK1sa6BOsop6V0uxYnlraTmIJrdSdDz4zBkYuzVihnXjseOxVY8LVUNod4Olex4bjaMWajaeTyvGYU+ky0dnEmdtuqKWd9Xm19Cev73YqVs/lYGj11vNwCud+rpDA4Mt26pEZBt8ta19Z4spCEpdTW6KnTc8Y5x9h8Apdt7K96jEs39gEA9p8KYvdI9VlcxaAY9YEgYthxtVRJsUhZUVac7Vjlxy+ePCO9rzT0ugFSUXD3gQn0eezYNzqPZKaoEK7tcWHzoBd/88JN2LrSr+h49z03DafVjAsLaXIv2bYC21Ydw+d+dxgvPXeFvMhOZnLYfyqIGy8d0XTe5Qz67HhuItLwcaoNKZaVsyapE7FUFr3u2u9rr0PqOeOcd8wA1GgyC6+CXeohvwP3H5mt+Rhhparmpuh122AxMc3FWTN6zorFWQpPjofgsVtw9orF12XJ1phaMu8N+XNWVTmzI5bOIZLM6LJ5o4ax+bhqSyMg9YabGHBshkJB6iHPYlVQnPW4bTg1b4wUzFQ2h0yOk62xBqScGRzhu252zxlQVM5Kgweq7YBXY8BrRy7P6+7QzEZSNeeU+RxWmE0M87HFi7hZlQOoSxnplYqzauEKgkS6si2rGqJ4LQ3jODwVgcXE5F63VtDtrhzpX8pooTgd7lF2XlazCU6ruaraMB9LI5HJ1Wz87vfasbrbWVc5E8WZFltjPeVM2LWG/AvPc/vqxvvOhIXrn64/G8984kW470NX4itvuQAffOFmbF/tx6Mn5vDxnz2j6Ficc+w5NINLNvTKn3uTieHDLzoLp4MJ3PHwKfmxj8v9ZtqHT5cy3OvGWCBe135aj0BM7OgvvG70ikTXJvXBRJIKbI12C/JcKjI6BSWKIiBtXERT2ZrKotiAqmalMpkYBrx21SmB4rjNSGsUvc1zsTQeOT6HXSPdsFRIqu3z2JHJ8bojOYxCIJ6BxcSqvufbGad/OphQHQYCSGudNT0uCgVRgCjOlWwiG0k5i6Wka6+7BY6wpQoVZwanVWmNgDSENp3NL7gxhVXeMJUMsuWc11XOTCaGbpe1clqjxjQ/QJp1Fklm616k5IueQltjt5yUWHzuDk9FMdLnVhTFrxfdLltdX/mJuRiGfA5V7ymfs3qfzlhhxlm9XdKda7rwRJkyW45432ixNfrqFGfCrrWyTDnbutIHxtCQtVEsfgZ9DphNDCN9bly3dQh/fc0m/PdfnI/3XrUR+0YDODpdX5U6MRvDqfk4rjxrYMHXL9/Uj0s39uK/9hyVF88PH58v9JvpU5xt6Pcgk+NyM79WgvKO/sLPj9VsQo/L1jzlLF2/CPHKATed03cWVVC0AsWNi1r9YuK1rWZrBKTERrUFQbHnTP/iTKTVHZ2K4thMrKKlESjO3VwqfWfBeBpdLltVla9oMW3t3xNJZhBJZhck46phY78Hx2aoOKuHGltjr9uGSDKLdLaxjTc9iMk9sKScVaPuqpExtoYxtocxdpAx9gxj7P1l3/8QY4wzxvqad5qdSyttjYMiTr/kQq7mwy8dQ7oZiBjdSoQLF4h6BVaPe/FOTz7PMRdLqY7RF6wrWPnq9Z2J39ujMhCktDg7MhXBpoHWhIGUnkc9W+PoXBzDversJl6HtWrQRnHGWe0b8Xlru3EmlMR0jUXbdCQFn8OiSSm2mk1w2cxVo/QnQ9J7srznzOuwYn2fu6Fh1GIxW35swWsuWA2LieH/Hh2re6w9hQj9Kzcvton+/XVnYT6WxtfuPwEAeOT4HLau9MuhLY0i5vEdb9BSJKsrFXZ0mzXrjHMuxTMrCAQBavdQLjciCpPRVigYRF28J1R/zw161acEhppYnAGSevb7g1MAgIuqKM3FwBpjKAz1qDRLsBRxP1YbztIo8kZYl3p7OgBsGPDg+GysYgASUaRoH1cSCKJ81E6zkecuUnFWFSVb+lkAH+Scnw3gYgDvZYydA0iFG4AXAjhV4+eJBhC2xtb0nC1WvUI1hlxWYtsqH9w2M/54uHLsN1B/ALWgUnEWSmSQyfGGbI0AcGK2tjKgtjjzOqxgrHjhS2ZyGJ2PtywMRKBEORudi6m2WtaKH1c6z2bnmi4AwBM1rI0zkZSsvmrB77TWVM48dkvF3ovtq/x46nT186qHbJmscu59HjteeM4gfvLE6bozvu47NI2NA56KSuS5a7rwku1D+Pr9xzEeiOOJsaBulkYA2NCnT1JatZ4zQHmiq1pS2byiPgY54KaDZp1Fk1n5767FkILFfL0QCkDapFA7XysUb25x1uOWxp04rWZsX1W591NsGDZL2dWbegOIB2vML20mZwqz8lZ2aVfO0tm8vPFHVCYYz8DrsFS06JYj910aoDiLpQvFGQWCVKXuK8o5n+CcP1747wiAgwBWFb79eQB/D4C2N5qEPOfM1nxrXC3lTOkN024x48qzBvC7Z6eq7nqpKc7KA0Fm6wyvrseaHhfMJlZ31lmgxnDPSpgL0f5CMTg6HQXnaFmMvqDbJRUn1Z77SDKD2WhacVKjQFLOKi9mxwNxdLmsdRvOt670wWpmeOJUsOpjtA6gFvhqKHyTZTPOStm+ugtT4VRNVa8WU+EkfA5LTavo63evwXwsjd8/W33jIp7O4pHj87hqS/VwlQ9euwWpbB5/dcfjSGcbn29Wit9lRZ/HhmPTDSpn8QzsFlPF56Pfa5dnFeqJsMrUK858CoaqLzeUzhQSSkst5axeCIU4TiSVVZVWGkxk4LKZm2YDF4vTC4a7Ya2ymBX3FaXvz3g6izseGW3bUPNgjWHgQGF+qcPS8kHUReVMW3EmEhvJ2libesV5KbVmx7aaKNka66LqKsgYGwFwHoBHGGMvB3Cac/5kM06MkEi2NK1xcfNwUGUgCABce84gZqPpqv1FYleyXuhDJeVM/GytMJFaWM0mrO524oRSW6PCCx8gqYvCUtiOpEZAKiY5R1Vr36hIalRpa/Q5LFVtYOMBZY3fDqsZ56zwYf9Y9b6z6UhS0wBqQT3lrDypUbCjwVCQWoWf4PJN/VjV5cT/7a1uNHjw6BzSuTyu3DJQ9TEb+j143a7VODAe0rXfTLC+z9O4charvmgQtsZ6oTxqkZvM6waCSNeyaKcVZwp2qW0WE/o8dkyGq9vSldgPixt9yosCNSNbtCCKs4vWVf+8+J1WWM1MsXL28/1n8I8/fRov+c/78dho7X7aZqBkcT7kc6gOZ2mUM8EETAwY1LiJKmadUZx+bQJ1bK2lFMcTtd/OrXQjrZNRXJwxxjwAfgzgA5Csjv8I4P9T8HPvZIztY4ztm5mZ0XqeHUsr0xqdNjN8DssC9UDciNXE8F511gCsZoZ7np2q+H1ZOfPUXsz2uO0IJTLIliTHFX9W+wJ+pNddXzmLpWFi6iw2Xa5iUuLhqSgsJqZ40LNeiBt1NWuj6LUbUW1rtFaNqB8LxLGmW1mxt3NNFw6Mhyoqe5xzydao8YYOSKEg1c5zMpSsajs8Z4UPJgbNfWdTkZSsOlTDbGK4Yddq3H9ktmrgxp5D03DbzHUHSr//ms2wW0w4Z6VP9wXt+n63Lj1n1TZ0+j12pHN53RPxIinpeIptjR3UcyYFgih7n6zwO3AmWDsQxGk117wnyfZIIxZnNZRmxhh63cqV3RNzMVjNDHnO8bqvPITP/+7wgvtVM+GcS8pZnaS+Ib/6/r9GORNMYsDrUGS3q0SXy6aLgr/cEYEwSigdJ9FuKBCkPoo+OYwxK6TC7A7O+U8AbACwDsCTjLGTAFYDeJwxNlT+s5zzr3LOd3HOd/X3V7fqEJVJZHKwmllVG4beDPgcC/pBQvE0fA5LzZll5fgcVjxvQx9++8xkxd3x2WgKNrMJPmftD2ZvQQUqnR02G5WKDq22RgBY1ycVZ7V27ucKO/9qBl13uYqqzZGpCNa1OKlRnANQvTgTypnaQJBqyhnnHKcVKmcAsHNtF+LpHA5PLU4tjKSySGbysoKrBZ/TUnHRn83lMR2prpy57RZs6PdoVs6mahR+pbxu1xowBvxw3+JgEM457js0g0s39tUdFjzkd+DLbzofH3/ZVk3nW4sN/R7MxdINNY5Li4bKi0bRU6h3KIhQzupG6XeYrTGVleaSKek5A6T3Vq2es0AdKx0gpTUC6kYmNLs4O2eFDyv9Dlklr4aYdaaE0Vlpltev3n85XnHuSvznH47ghq88hNE6zgw9EPPm6ilnA97WD6KeCCU0h4EI1vd7cJRsjTWRlFOls1ilx80bQDmTA0FsVJxVQ0laIwPwDQAHOeefAwDO+VOc8wHO+QjnfATAOIDzOeeTTT3bDiSRycFRZ6GmJ4M++yJbo9KdmVKuPWcQo3NxHJ5afHGdKcw4qzfks9u92CM9G03BamYN3cRHel2IpXM1rSuBeFpxv5lAsjVK53pkOtpySyNQopxVuQCfmI1hwGuHS+VF0euwIJXNL4rhnYmkkMrmFQ8bPW+NpAhVmncmFnKNFN5+Z+Wes5loCnm+eMZZKdtX+3FgPKTabpfLS6Mh6tkaAakH44rN/bhz3/iiHfaj01GcDiZqWhpLuebswZoDvbUiEhsbGQIr2W2q2BpF6ILOxVm0oJy57bWvlx6bBYx1TiBIVGUy2gq/AxOh6rbGYLx+ETWoRTlTcNxGeM0Fq/Hnj1xd14XS51E+6mF0Po6RXjd8Dis+9/qd+OIbz8PR6She8p/34859Y7pbd0uR+6LrLM6H/FIAT76FyYdnggms0NhvJtg44Cn0blOkQTUCMeXrM6vZBJ/DUjcwrBUULeg056waSrb1LwXwFgBXM8b2F/73kiafF1EgmcnD0cJBfeURyFp3M689ZxAAcM8zi+v1mUjtGWeC3kJxNBctXkykws5et7CrhbD0nayR2DgfS6vqNwOErTGDRDqHU/NxbGpxGAhQ4iuvqpzFNFkti7OhFhY+YsaZUuVsuNeFbpcV+yuEgoiU0IZsjQ4rIsnsItuksGlVU84AYMcqP2ajKdUWoNloCrk8V5wy+YbdazAZTuJPRxbavPcckoJCrqwRBtIKRL9HI834tew2cly5zol40cINv55CZDIxeGzVeyiXG1GV/R1DfgfCyephHqFE/T4nj90Cj92iKsK92coZAEX3DSmwpv4ClnOO0bnYAhfCy89did984PnYtsqPv/vRAdzy/SeaFgevdMzNoM+BXJ5jtkV2Ns45zoSSi+ZJqmVDvwehRMYQARZGJJ3NI5rKKk6UBir38beDWDoLh9Wk2fbaCShJa3yAc8445zs45zsL//tV2WNGOOezzTvNziWZybUkDETQ71vYrF8vDaoaAz4HzlvbVbHvTGlxVqnQmI2mNMfoC9bJxVl1ZSAQy1Sc0VSLLpdUGByaihSSGluvnFWat1bKybk4RvrUWRoByBbUciuYiDpW2nPGGMO5a7oqKmdCSWk0EEQ6z4V/f705ZICU2AgAB8YXn1st5GMrLM6uOXsQfR4bvl828+y+QzM4a8irOeFML1Z3O2E1M819Z3IvTFVbo/T6qrG8KUFNH4OnxmiI5YZsIVJoa1wpBlFXUb2U2BoByYUxrSLCvRXFmRL6PJKtsZ7SNBNNIZ7OYbjMNbCqy4nvveNivOfKDfjlgYmmBYUUlbP6xRmg/+etGnOxNNLZfMPXsQ0FBZ9CQSoTTChTTkvpNkhxpjQ9tpOhstXgJNKtLc4GvQ6kc3l5cR9u4IZ57TlDeOp0CKeDCy0yM1GVylmsXDnTltQoWNXlhMXEqiY23vPMJI7ORLFWoVVPIGbB7Ts5D6D1MfqAtGNtMbGKs0yiqSxmIinVMfoA4C2ECZRbBscLytkqhcoZIFkbD09HFhVQSoNiauErvAbloSDCplVLOTtnhQ9mE1Pdd1Zvxlk5VrMJr7lgNe59bloO34kkM9h7ch5XtFk1AwCL2YThXjeOa1TOoqkssnleddHgtVtgt5j0V85U2Pe8DkvHpDUK5cyrQjkDqs86U7phN+ir3btWSiqbQyKT07QRqDd9HjuyeV43sOaU6N+tEK5kNjG89oLVANC0WV0Bed6cQotpi+L0J2SXQuO2RqAxe/VyRqlyWkqvQYqzWCpLYSB1oOLM4CQyudbaGgsXcjG0MthAcXbdVsna+LsSa2MuzzEXVTbLSlx05qMLlbNGepIAafG5tsdVUTm779A0bvneE9i+yo/3v2CzquOKHrVHT8zDamaaiqBGYYwtSI0sRTSpa7M1VlbOxubj6PPYVPWw7VzbBc6Bp8qSEacjKdgs9YNiaiHeq+ULq8lQEg6rqeZ72WkzY9OAR3Vio+jRHPQrf1++ftca5PIcdz42DgD489E5ZHIcVynsN2s2G/rdmm2N9RYNjDE5Tl9P5Nk5Ct6LXodVTndc7kRVKmdiA6PSrDPOOUIJZQlxQz7lKYFK4vlbhTzrrM7mwUl5LEnl6+mqgnJ0Jli9f68RgvK8ufpR+oC6/r9GOFPYCFvVoHK20u+E02om5awKgZgy5bSUbpfNED1n0WRW0XW6k6HizOAkMjk4ra17mUoHUUs3Ym22RkBKW9o44FlgbZyPpZHnykIfbBYTvA6LHP2az3PMRdMN2xoBqe/sRFlx9uDRWbzrO49h44AH37rpQtWyu1hY7BsNYH2fp2UJm+V0u6wVA0HkGWcabI3Ves7GAwmsUmhpFOws2AefKLM2ihj9RvoJxWtQrvBNhJNY4XfWPfb2VX48dVpdKMhkKAmLiaHPrfx9ub7fg4vW9eCH+8aQz3P88fA0vHYLLhiuHaHfKtb3e3BqPq4pFlyJ3arfq87ypoRYKguXzawoYdVjb51y9qfDM/K8ynagtuesqLQsLipi6RwyOS67BGohJf8mFQVRiLmMPgMUZ30KA2tG52Iwm1jVIsRhNaPPY1vkHNELcY2vd3/u89hgYlgwIqeZiGJ0RYNpjSYTw/oGNomWO4G4ste/FNFz1u6QFaVzFzsZKs4MTqt7zkSM+XQ4iWhKClZoZDfz2nMG8ciJeXmXZ1YeIq1sIdvrtmG+cBEKJjLI5rk+xVmvG6Nzcfkite/kPN7+rX0Y7nXhuzdfBL+GglQsRudj6baEgcjn4a68OyZmnGlR9ISaFS5XzgJxxWEgAr/LivV9bjxRFgoyHUk2rIqK86yknCmxHe5Y7cd8LI0zKixAk+EkBrx2VWMXAOANF67B6FwcDx+fw57nZnDZpr62FfTlrO9zI5PjcuCLGoIKFg0DTVLOlBYg3hb1nJ0JJvDW/30Udx+YaPrvqkZEZXHmsJrR47ZVVM6Kak396+OQz45Mjle0WJcjPq9akoH1pt8rnUM92+3JuThWdjlqjktZ1eWUrd96E4in4bVb6l4zLGYxWLxFtsZQEjaLSW5LaIQN/R4qzqogPotqUqW73Taksnkk2rhZBEiBINRzVhtjrASIqiTSOThbaGuUm/UjqeIiy6n9Invd1iHk8hz3Picl0cl9RQoX4dJOj/QzorBrdAEPAOv6XEhkcpgKp/DkWBA33r4XQ34HvnvzRarSj0opXbC0IwxE0O2yVgwEOTkbQ5/HrumiWFTOigvaXJ7jTDChOAyklJ1rpVCQ0h286XBjA6iBEuWsQnFWq99MIIeCVAgsqcZUOCnPdVLDi7etgM9hwSd/dRCT4aRhLI0AsEH0e2iwFCmJ+G6WrVFNcVa+0dAM5ss2pdqBCEpRs1M9VKVfTE2fS73etVIMZWv0KJvDd0pB8u3KLmfTlLNgPF13ALWglYOozwQTWOl3NOSAEGzo9+B0MIFEur3FhBFR2nNYSk+FBOx2EEvlqOesDlScGZxEJld3LoueOKxm+J1WTIWTxRtmA03a21f5MeRz4J5npb4zLcWZuJDMRtSpbrUQcfq/emoCb/3fR9HlsuKOmy9qaAByaRHbjjAQQbfLVnG3+uRcHOs0WBqB4q57adEzHUkik+OqlTMAOG9NF2ajqQULl5loqqHnH5Ci9IGFylkuzzEVTiqy2Zw1JBXVlebzVUOpKleOw2rGq85bhWfOhAHAEGEggg190vv3+Kz64kzJAr7f40Agnlk0N68RoiqazL0OqzwXrZmIz0u9cIlmEk1mYWJQ5cCQZp3VKM4U2hoBKLKviuMaoTjzOS2wmU2YrbOAPTkXXxCjX4lVXU6cCSaaYiOrNUuwnFYOoj4TTDQcBiLYOOAB59quQ8udQDwNm8Wk6nMtxgO1u+9M2kijGWe1oOLM4LTa1ghIlqPpcEqX3UyTieGF5wzij4dnkCgZ/Ky0wOopsejNyMpZ43YJEaf/z3c/C5fNjO+/4+KGo3+9DguEs23jQPuUMxEIUr4gkGbyaAspMZsYPPaFVrCxeamwUjqAupSdZcOoU9kcgvFMw6qoy2aGxcQWLIbnoilk87zmAGqBw2rGCr9DDk9RwnQ4JffpqOX1u9cCkJIitR6jGfhdVvR5bDg2rT4pTXxeay3ghUKvp6IUU6Oc2S1IZvLIaOipU0PICMVZ4XlRo2QMVRlELeK7lQaCAMBkqP5rbCTljDGGPo+t5nszGE8jlMjUVc5WdTuRzOQXJA7rRa1ZguUM+Vtra2y030ywYYDi9KsRiKXR7bKq+lwLC2S7ExspEKQ+VJwZnFZH6QNSQ/hUJKmod0QJ120dQjKTx/1HZjATScFtMyve4e5x2+UGVj2i1gUr/U44rCb0e+244+aLNBUY5ZhMDH6nFTazCSN1dlSbSY/bikyOI1ZiBYmns5gKpxo6L6lPp7jIFBHRWpSzs1Z4YbeY5L4zecZZg8UZYww+p3VBIIhQAFYoLH5Get1yf149YqksIqlszflptThnpQ9vvHAt3n7ZOk0/30zW93k0K2deu6XmgNF+haELaoiqsMoIi1+zQ0HE+7CdxVkkmZVtyUpZ4ZeUzfIgk6AKK1W/1w7GlKUEiufHZ5CQgL46tluR1Fhv3IoICzndhL4zSTlTaGv0ORCs8HrqTTaXx1Q42XBSo2Ck1w0Tozj9SqhRTgWVZse2mlyeI5HJUSBIHag4MzCcS2/iVvacAdKutl7KGQBctL4HXocF9zw7pXgAtaDXbUMmxxFJZTEbTcNmbixqXWAyMXzlLbvw43dfgvX9+lkQu102rO9311yYNhuxmxoo2R0rJjVqj/f3OawVlTMtN2Kr2YTtq/yycqbHAGqB32lFqGTO2YSCAdSljPS55OerHmpnnFXi31+9Ha8pzEQyEuv73ZoGUSvphRHXAH2Ls4w88qEelXoom4GYtxeqMhS+FURTGdV9pkJlLu8XEyEESlIVrWYTet12RSmBSgr6ViIGUVdDHktS53oq5j82o+8sEE8rtzW2aBD1VCSFPG98xpnAYTVjTY9LU+/rcieo4vUX9MihZe27HsXS6gKKOhVjXAmJiqRzeeQ5WtpzBkjK2XQkWWJPasxGaDWbcM1ZA/jDwSlMhtQl8skyfDQtD6DWo9EYAK7Y3I+1OitcL9o2hFefv0rXY6qlu4KvvJEZZwIpRGGhcjbgtWt+f+5c04WnT4eQzuYxraMq6nNaF/TGTSoYQF3KcK8bc7H0ojj+SkwVFq96FJVGY0O/B3OxdMWZebVQsqMrrgHTOhZnUpO5svei3EOp4DVuBCMoZ1piq6vNOgvGM3BazYo/80rtdOFExhAx+oJ+T23lbFShcra6S/q+3spZNpdHJJlV7GoZKptf2iwmCkXoSp1sjQCwkRIbKxKIp9GtMBBG4HNaYDYxOWStHYiAIgoEqQ0VZwYmmZb6IdrRc5bJcZycjcFmMcGhw5y167YOIRDP4LFTAVWBHiKOdz6exmw0hT4dkhqbyd+/6Cy88/kb2noOwuoSKNmtPzErLSbqNbDXojx+fCwQb8gOet7abqSyeTw3GZYX6XoUOT6HZcFieCKchM1sUpzCKayfo7P11TM9lDOjsr5fKuTVWoqU9MIonSWlhmhSeSCIsM+JGWDNwiiBIOqVMzG4eGFREUwot9IBkoKipDAJJTKG6DcT9HltmIulq85oOzkXwwq/o26R6nNa4LFbdFfOgglhL1V2TSvOrmtucSZGkDTav13KhgEPjs/GkFMwL6+TCMYzqkdPMMakwLB2KmdUnCmCijMDI2ZRtNrWKC7kh6ej8DvVNZxW4/mb+2GzmJDLc1XKWc8i5czYxZkREBfsYJly1uexqe49KcXrsJb1nCU09ZsJdq7tAiCFgsyEk2AMuszG8Zf3nAWTGFIR7SxCU5T0ncnFmcaeMyMj7L5qd62DiUzdND+bxYRulxUzUX0Wi+lsHulcHl4VaY1AC2yNheO3tedMV+UsDb+KBeGGfg9OzsXqDjMPJTIN9zbrSb/Hjlyey0VQOaNz8bqqGSAthpsx60zNvDmgRDlrciiIPIBax+vhhn430tm83ONMSC0vajdKBD1u64KWh1YjrrmU1lgbKs4MjFyctdzWKBVAR6YiiiKTleC2W3D5xj4AxTAAJfSUpAvNRlOqfrZTkZt+Sy7AJxtIahSUKmfZXB4ToWRDxdlKvwP9Xjv2nwpiJppCr9uuS8/JYltjUlXxJNRFJYmNU6EkvA4LXMsweWpNtxNWM1PddyZSxOrRX0iF1QO1u7GiWIk029ZYeB+Gk5mqKkyziSaziotWgctmgd9prdBzVr/wLmXjgAeZHMep+doL66DhlLPayu7oXFyxRXxVt/6zzoozrpQVyj6nBTaLSffZguVMBBPwOiwNbQKWs3FA2ybRciaczCKX56p7zoDqo3ZaRSwlrWs9duN83o0IFWcGRgxebHXPmZg1FU/ndN3NvG7rEAB1Q6RFoTETTWEulkafDjH6yx1J7VxoaxxVMJOnHj6nFAjCOcdEKIlcnmsaQC1gjOG8NV14YiyI6bC6oJhaSIEgGXmUwEQ4oWon12WzYNBnlxPZajEZ1jbjbClgMZsw3OvGcRWLomwuj3Ayq8huM+B1yOMxGkXYE9UMoS79uWYhFDPOJQWrHagZzl1KpVlnwURGVZ/Lhn5lUeiGszV6qo96iKaymI2mMKxwZuSqLidO66z6iI03pYtzxhgGvPbmK2ehJFbqFAYi2FBQ8ClOv4h4/dXaGoHCeKI2KmdReSONlLNaUHFmYNplayxdJOt5w7xu6xCu2tKPi9b3Kv4Zl80Mu8WE4zOS55xsjfUxmxh8DqscCJJI5zARSmKdDspZOpdHKpvHmByj31jBt3NtF07MxnBkOtpwjL7A55BGCSQzeeTzHFOhlGrb4XCvW5FyNhlWf+ylxIZ+t6oda1GMKNnU6a8TV64GrcVZ822NxQ2SdiQ25vIc8bS22Oohv6NiWqNfRUDUhoLqcbTOe8hoxVmtNFG14Uqrup0IJ7O6qrRaxtwMeO26BvBU4kwwoduMM0GXy6Z55uJyRdzbtdkabW2dcxZTea3uVKg4MzDJNtkaHVazfNFXcyOuh99lxe03XSgPgFYCYwy9bhuOTEcAqFPdOplul1VWzoSlaLiBGH2g2KcTTmbkHoo1PY3tku5c0wVAOke9ijOxyAslMpiPp5HO5RXPOBOM9LrkEJVaTIWShhoerTfr+z04NR+v2zMkUBNU0F9YLJYPS9eCWluj3WKGzWxqSZS+UP/b0XemtmgtpVw545wXQgiULwh9DisGffaaqkcyk0M6m4ffQD1ntZQzpUmNAnnWmY7WRnlxrqJHd8DraHpxNhFK6hoGIlhPiY0LKBbnGpWzePWwm2YjovQpEKQ2VJwZGGFrbHVxBgCDBWujEXYzezw2HJ6SijNSzpTR5bLJTeMn5Z3eBm2NJWrDeCABxhqfZ7NjdRdMhZwOPW2NgFRETsozztSd53CvG7PRVE3bWy7PMRNNLVtbIwCs73Mjk+MYUxhooCaooN9jRzqbl0MzGkFYBtUoROVD1ZtBOJnBmkJfZjuLM6Xz30oZ8jkxG00hnZUK81g6h2yeq96t3zjgqTmnSiw0jXCvEfgchR6tGsWZUpu4mHV2RtfiLAOLicGtwlUjzS9tnq0xmclhPpbGyiY4CTb0e3B0JqrLRs5yQBTnShOIS+l22ZDnzR8jUo1iIAgVZ7Wg4szAFG2NrX+ZRKS5ERK0ul02JDPSAoGKM2WI3TEAODkrFWeNBoL4ShLuxufjWOFzwGZp7L3psVuwedALAPrZGgtDykOJjLzzrzY9TKi7tayNs9EUcnmOweVsaxTN+Ar7PQIx5cqZuMboYW3UYpXxlI2G0JtMLo94OofVBYWlLcWZvBBSfx0XnxnRpyT3uah0U0hzqmJVF9bieTFSccYYqzrrTG3y7WqhnOmY2CjGVahJUh7w2hFOZmVHjt4Ukxr1V842DngQjGfaasczEsVAGG22RgBtey5jqSwsJgZ7g2uH5Q49OwZGFGetDgQBiqEgRijOSuPVydaojC6XVV4on5yLo8dta3jx4y1JuJNi9PUZ4C2sjQM6KVCycpbIqB5ALSgmNla3Nk4t4xlngg19UnF2fFZhcaZSOQP0Kc5EEaLGKuN1WJoaCCIKPxGa0x7lTPqdWnvOgGKcvlxEqbwnbBjwIJrKYqpKMqcRizMA6PPYMBtdvIBVm3zb57HDZjZhXGdbo9qFubinNyuxcaIJM84ESoNltJBI5zCnUzBRqwjG0zCx4oapGoQVNtCmxMZYSppHqceIpuUMFWcGpl09Z0AxTt8IN8wet3QuNrNJttYRtel2FZWz0blYw0mNQEnPWSKLsUAcqxvsNxOcV5h3pmcgCFBUziwmplpxVTLrTLZMLuPizO+yotetvBm/GAiirOcMAKYjjVuttPRWee3WptoaxXMhepOCCf0WQ/+95yieGg/VfVwjFqLirDOpqAiqjG8XbKyTtie/Z3Tsb9aDaoE1p+biGFbYbwYAJhPDyi6HzspZRvXr0O/T7/NWCdFTt1LnQBCgNE5f/1CQf777Wbzqyw8uKctkIJ6G32mFyaS+wBGb3XMVNh5aQTSVI0ujAqg4MzByz1mL0xqB4iBqIxRnvR7pYtLvtdNui0K6XVbE0zmksjmcnI01nNQIFJWz+VgKk+GkbsrZS3esxEdfcpasoDVKaSDIZCGwQ+1NzGO3oM9jx2iNUBChnImNjOXKhn6PKuVMSgutf/PVcydfzM5R04PTbFujmHE24LXDZjHpppylsjl89reH8OPHx+s+tqGes0JxJjYh1KiipYiF9dFCqFM5ok/RCPeaUvo89kWBIMlMDmdCSdUWcb1nnakNZgGKm196zRYsZyIo+nv1L85W+p1wWs1NCQX589FZnJqP6z4ovJkENBTnAr2Usz2HpjVF8kvKGcXo14OKMwMj2xotrX8ji4QpI/R4iYtQn8dYO6tGRlyAp0IpTYuJSogF3qGpCDhHQwOoS3HbLXjn8zfoMoAaKJ5nOJHFRCip2tIoGOl14UQt5SychNnE0GuAz0gzWd/vVjyIOlAYUqxkE8XntMBmrhy6oJZoKgOn1azqPeRtdnFWUOV8Tiv8ZYPRG0H0ipTH3Fci2oBy5nVY4bFbZLtaUFa41BUF/V47vA5L1Th949oa7ZiPpZErSbUbKyTfjiiccSZY6XfqqpxJtkZ190OxGdKsxMaJUAJ9HjvsTVivmEwM6/vdutsapyNJOc143+i8rsduJlLPobbPS49L9Jxpvx49ORbETbfvxSu//GdVczABacOIkhrrQ8WZgUlkcrBbTJqk60a56qwB3H7jbmxd6Wv57y5HNLAaoVBcKogb95PjQQDqFxOVcNssMDHg2TNhAGhoAHUzsZhN8NgtknIWTmreyR3pqz3rbDKUwoDXDnMbPp+tZEO/B3OxtKxw1CIUzyjuSWKMSdYxHXbyo6mc6hu+197ctMZwQiqM/IXiTC/lTNiRJhUk70U1pFiWUjrrLCQULpWLQsZYIbGx8mcpnMiAMW3qXjPp99qRy/MFCsNJOalRvXI2HUkhlW08jEMeaaBiGDgg2dnMJtZUW2MzLI2CDU2I03/sZED+770l/2105mPalTOnzQyH1dSQcnbvc9NgTLJNv+rLD+KR43OKfzaaypKtUQFUnBmYZDrXFksjIA0yvuqsAUPYCEttjYQyxK7aE6eCAJQPTK2FycTgsVvw3KRkT9JLOWsGYjF8JphoSDmbCqcQT1dWV6bCy3vGmWB9oRlfSb+H2h39Pq9dF+UslsrCo9Iq43VYEU1lm9ZrUlTOLPoWZwXlbEpBcSaUQbdN22Johd+BCZHWGM/AZTNrUkZEFHolQokMfA5t/TPNpNKsM7FZo6bnDCg6UYT1rxHi6RzSubzqxbnJxNDnsTXP1hhKYmUTkhoFG/o9OB1MyO0eerBvNAC7xYTnre9dUKgZHZHWqZUeV2ODqPccmsbONV24668uRZ/Hhjd/4xH8RIHNGhDXairO6kHFmYFJZHJtCQMxGqScqUfcuPePSTccPYozQFrQxtM5mE1Mc9HTCrwOC07Nx5DK5lXPOBOI3XFheylnMpxc1mEggvWFQAcl9hWpF0L5jv5AldAFtURTWdXqkNdhQZ5Li91mIGyMPofeypn0fE1HUgssd5WIprJw28ya1d0VfoeceBosWFa1sHHAg5lIquJzEExkDGdpBIqbgaXvz9G5OHwOi2pLmZh1pkffmTyAWoOtbdDXnEHUnHNMBBNY0UTlbOOAB5wrT45Vwr7RAM5d04XnbejF4ekIQvH2zP5Si5a0zlJ6PNqLs+lIEgfGQ7h6ywDW9rrwk/dcil3DPfjbHz6Jz/3ucN3NrhjZGhVBxZmBSWTyVJxBuqG4bWZsGvS0+1SWDKI4e/pMGF0uq2orUjWE9WiF36Fbj1gz8DutOFRQ+LQrZ4XExiqhIFMh7ZbJpcSabiesZqZIOVO7o9vvteuyWJSKEHU3fE/JUPVmEE5mYDYxuGxmdDmtctphowhbYy7PFwVWlBNNqi9aSxnyS3a8TC6PUEL7bn2txMaQQYsz0eNc+hyfnIthpM+t2lGyuktS2vToOxPvIy2vxYBOn7dywoksYulcc5WzAX3j9BPpHJ45HcKu4W7sGu4G58Djp4yvniUzOSQzebmvXAvdDShnfzw0A0BqfQEkm/O3/vJC3HDBanzxD0fwNz/YX9O+S7ZGZdAzZGCSmRzsVJzBY7fgoY9eA49Ga04nInZ209k8zlmhX9+gr7CIMmq/mcDntCJcWHRrLaCGC316leL0Y6ksIqlsR9gaLWYThnvdipQztepKfyF0IZPLw9pAsR9NZlUX4WI0hDQLTP/XUbLrSfN8fE2wNQKQ00ir0ehCaIXfAc4l9SigISFQsLFkmPkFw90LvhdKaD9uM+krKGezkeLzPToXx7kaUmWH/A4wBl1mnRWVM/WL836vQ7a668mZkIjRb15xNtLrhonpF6f/5HgQ2TzHrpFu7FzbBbOJYd/ovFx0GJVGXn9Bj9tW1RFSjz2HpjHgtS/II7BZTPjMa3dgpM+Nz/72EE4HE3jVeasr/nyU0hoVQatdA5PM5OC0GledaCVahi12Mg6rGS6bGfF0DiM6zDgTiIh0I/ebAQuT37QqZz6HNOOrUiiICGMY8neG1XZ9n7tuM34yk0Mik1O1oysWwIFYuqEh5LG0NlsjALmI15twIitvZvidVkSSWeTyvOEAmdKBuZPhJM6t8dhIKgtPA9fO0kHUwXgaW4a8mo6zpscFm9lU8T0UimeauqjXitdugd1STBPN5PI4HUzg5eeuVH0sm8WEQa8+s84C8rw59a/rgNeOOR02Q8oRs/CaaWt0WM1Y0+PCMZ2Us8dGJZXs/LXdcNks2LrSh31LoO8sENP++gu0KmeZXB73H57FS7avWKQeM8bw3qs2Ym2PCx+688maASt6pEcvd6g4MzCJNgaCEEufbpcN8XRC1wuhUBvWqGyIbzWiODMxSZ3RynCvq6KtcSokZpwtf+UMADYMeLDn0DSyuXxVO2vRbqV80dBXKORmoqnGijMNfQzewuOjTbQ1+kuKMwCIJDMNNfIDknImBiTXCwWJpbLy36mF0kHUksKl7dzNJoZ1fZWj0I1qa2RMGl4/W7ABng4kkMtzDGvc7JJmnWlTK0oJyvPmNNgafcWQkxU6WhBPF4JOVjW5yN404MHhqcrz8tSy7+Q8Ng145OfxguFufO+RU0hn87BZjLsp3sjrL+hx2xBJZlUX6ftOBhBJZWuqiy87dyWuOmsAsVTl66qpkNJL1Ma470CCAkGIhhCL5HV9ehZnS0M5E0rrgLex3riR3spx+rJy1iHF2fo+NzI5jrEaO/9a7DZCORN9VFqJJNUXIWKjoWk9Z4UUQmDhYPRGmYulsWXQC7OJ1Z11Fk02aGv0FVMGGwkEASRrY3liI+fcsMUZIPVECuVM2JtHNF5PV3XpM4haKCdarKDyrDOdExsngglYTKzpoV1bhrw4PhtreCRBPs/x2GgAu0aKFtvdIz1IZfN45kyo0dNsKrJyqnKUQikiZE3tEOk9h6ZhNTNctqmv5uM8dgsGfY6K/6PCTBlUnBmYRCYHBxVnhEbEBVjrTm8lRHFmfOVMOs9GAzuGe904E0oimVm4GJgqLG46STkDUNNSJCtnKhbave7FoQtqyebySGXzqpWzYiBIcxLawsksfIX3oVhI6xEKMhdNod9rx4DXXnfWWaMDX31OC5xWM45OR5HN84Z6wzYMeDA2H1/wWYqnc9JxDVqc9XmKaaKj8owz7crZRDBZN2GzHoF4Gl67RZMtcaCwMNY7FGSi0PvY7JmPW4Z8yOV51Zl5Sjk6E0U4mcX5a4vF2a5CL6TRrY3zOvWclR5LKfc+N42L1vVSoEcLoOLMwCTTpJwR2hG2B71i9IGiAmB45axwno3G/Yvh3eXN01PhJLx2S8dEAm/oK8Tp14ix1mK30UM5i6Wkxb5qW2OhOItWsd80StOUs2gavW4bhvyOurbGSDLT0HBnxqSRGc9NSoPnG7FSbRzwIM+BE7PFhXWw8HwYVzmzYbbw3hydi8NlM2u2Sa/qciKb5w2PjgjG06oHUAuErVHvQdSng4mmWxoB4KxCz+OhqXBDxxEF2K6RHvlrAz4H1va4sG90vqFjN5tgTFxnG+s5A6Cq72xsPo6j01FcuaVf8+8llEPFmYFJZKjnjNDOmm4nVvgdDUXulvPKnavw76/ermu/QjMQi71GlbNinP7CndrJUBKDHRCjL/C7pHCU4zWS0rTYbbx2C2xmU0PKWSSVkY+lBpH+2qxAkFAisyAQRHytEeLpLBKZHHo8Ngz5HDVtjZxzXWKrh/wOHCr0+TRkayzE6ZeGgoi5UoYtzjx2zMekeXKjczGs7XGpjtEXFGedNdZ3Js0S1HZN7/PYwVgTbI2h5s44E6zrc8NqZnhusrG+s32j8+h12xaFZe0a7sZjo4GmDabXg0aGwQuKtkbl16M9h6YBAFcbPM1yuUDFmYGhnjOiEf766k342Xsv1fWYAz4H3njhWl2P2Qx0U84KxZmwNAk6ZQB1KRv6PTUTG0XPWZdT+cJRCl0oqhNa0KqcmUwMHrulKbbGZCaHVDYvp5vqVZwJhbHPbcegzyHbayuRyOSQ52hozhkgFWfJTB5AY8rZ+n43GFs4pypkcOWsz2tHnksKw8m5WEMuhNUFZWm8wcRGtbMES7GaTehx2XS1NebzHJOhZEs27KxmEzb0e+QZllp5bDSAC4a7FxXaF4x0Yzaaxsm5xoNbmkUwnm7I0ggUN9DmY8rfB/c+N42RXhfW99O82VZAxZlByec5kpk89ZwRmnHazA0l4C1lhnzSXKENDd5I/C4rulzWRbPOpsK150stR85Z6cOB8VBVW1YokYHdYlKt9vd67A0pZ9GCcqalCPE6LE1JaxQhI2KTwKdTcSZsSD0FW2M0la1qyxR/V6PKWekGRyPx3Q6rGau7nZWLMwPOOQMgB1xMhZMYm0/Isw+1UFTOGivOJOVM+/MlJX3qZ2ucjaaQyXGsaoFyBkjWxkaKs5lICqNz8QVhIILdBZvjvpPGtTYG4umGwkCAUlujsutRIp3DQ8fmDD8DbjlBxZlBSWWlnUqyNRKEetb0uPD7v71CFwvGcK97gXKWy3NMR1IdM+NM8NbnDSOTy+Pr9x+v+P1ATNuObq/HhjkVO7jlRAvKmUfDYFNJOdO/OAsnFypCDqsZdoupceWs8Dz1FmyNAKpaGyOFoq2RnjMAGCpRRBotojb2e8qKM6nYNKpyJpLlnj4dQjqXx3CPduXMZbOg22VteNZZoEHlZMDn0FU5O1N4/7XK6r5lyIeJUFK2xKrlsUJP2QXDPYu+t7HfA5/DIs9AMyKN2FoFVrMJPodFdjvU46Hjs0hl82RpbCFUnBmURCHRimyNBKGNDf0ezf0hpYz0uhYoZ3NRqQel02yN6/s9ePm5K/Hth0YXDEIWBOIZTU3qfR57g4EgUhGiJZzF67A0JRAkXCjCfCUDoLtcVs0LSoGwf/Z57LJyW60400s5W1minKmxrFZi44AHx2djcmKh4W2NBeVsX2GxXt6jpBZp1pn24iybyyOSzDYUBjHgtevac3am8Pe0apB4MRREm3q272QANosJ21b5Fn3PZGLYNdKDvQZWzhqxtZbS41Y+iPre56bhsplx4brFBS3RHKg4MyhUnBGEMRjpdeNMMCHP1hHx5Z1mawSAW67eiGQ2h288cGLR96RFg/pFY6/HhrloWnMTfiNFiNdhbUrPWVi2NRbPye+06m5rBFA1Tl8UnXoEggCA22ZueDjvxgEP0tm8rB6FEhmYC71/RkQoZ0JJGW5wZuRKv7Mh5UykWzainAz6JBtxvsFIf0GxOGvN9XCLKM4mtSU27hsN4NzV/qqBGhcMd+PYTExVkmEradTWKuh22xQpZ5xz7HluBpdu7GsohIRQBxVnBiWRlhaCDrI1EkRbGelzIc+BsXlpESKUikaTIJciGwe8uH77CnzrwZNydL4gmNBmt+n32JHO5TWnJjZShHgcTbI1VlDO9CjO5qIpOKwmuGxmWbmtFqcv/q5GA0GEXU2P3fqNhXl5R2ck1UMMoNZD4W4GbpsZDqsJJ2ZjsFlMWNHghoxQzrRuREwEpde6p4EE3gGvA9k8Vz3jquo5hZJwWs0tUz9X+B3wOiyaEhuTmRyeOROqaGkUiHlnRrQ2ZnN5hBIZfZQzl02RY+HIdBSngwmyNLYYKs4MSpKUM4IwBMNyYqNkbRSL4U6zNQred80mxNI5/G+ZeqbVbtPraWwQdbQBW6PPYZF7s/REFGE+p97FWRq9bjsYY3DazPA5LNVtjaLnzN5oeIAVNotJl8W3COgRfWfBeMawlkZApIlK6tmabidMDQ5ZXtXlRDyd0zyM/FdPT8BsYnjehl7N5yAGUdebkaeUM8EEVnY5WlZgM8Y0h4I8ORZEJsflAqwS567pgtXMDDnvLCQrp41/ZnoUKmf3PidF6F+1hYqzVkLFmUEhWyNBGAN51lkhFGQynITZxNCrcRjtUmfzoBcv2T6E2/98Ul4scM4R1Gi3EYtfrX1nsVQWdosJVrP621mzovRFIEipcubToziLpeViFpDU26q2xqT2FMtSxCDqRhPiAEl96/PY5OKsdBacURHWxkZi9AWrG0hszOc5fr7/DC7f1Cd/ZrRQHEStT9/ZmVCyZf1mgi2F4kytAvnYKUkNu6BGceawmrFtlR+PnTSecibPktSx56zec3jvc9M4e4WvI50i7YSKM4MibI1OG71EBNFOul1WeB2WEuUshQGvHeYGd9GXMrdctQmRVBbf/PNJAFIyYDbPtfWcuaXFYiPKmdaeJa/DimQmj0wur+nnqxFOZGEzm+CwFq/fXU6bLmmNve7S4sxZVQEpKoqNb/C954oNePNFww0fB5DUM1GchRPGVs6A4ubBsA7F2aouKVBEy6yzvSfncTqYwKvOW9XQOQx4pUX2jE6hIBPBRMPzJNVy1pAPkVRWdZH72MkANvS70V3HFrp7pAcHxkOyg8koCCt5I4Ewgm63DalsXhYCKhFKZPDYaABXn9Xf8O8j1EErf4MiPjA054wg2gtjDOv63DgxW7Q1dur8OME5K3249pxBfOOB44gkM3IKoRZbY59X+plKCZBKiKaymtUhETOv96yzcDIDn9OywOrld1oRTWWRbaAQnIumFyi2Qz57zSh9m8WkSxP/Gy5cixdvX9HwcQCp7+zYTAycc6l/xuDFmaycNTDjTNDIrLO79p+By2bGC88ZbOgcxN8zrcOss3Q2j5loquXKmZzYqMLamM9zPHYqgF01+s0EFwx3I53L4+nTIc3n2Ax0Vc7kWWfVHQv3H5lBLs+p36wNUHFmUKjnjCCMQ+mss8lQEkO+zrQ0lvK+azYhnMzi2w+Nyr0LWhYNYpEw04Ct0W3TVpwJxU3vUJBwIrPA0ggA/kJyo9bgE865ZGssVc58DsxGUxULvmgyC68BUxA3DngQSmQwG00juISUs7U9jRdn3S4rnFaz6sTGdDaPXz01gWvPGYRL43td4LBKvYp62BqnwklwLqVQtpLNheJMTSjI8dkogvEMLqgwfLocYXvcazBro7jONhIIIxDHqFWc3fvcNLpcVuxcU/85I/SFijODUrQ1UnFGEO1mpNeF8UAc6Wwek+Fkx4aBlLJtlR/XnDWAr91/XF5sauk5s5hN6HZZG1POGrA1AkAkpW/fWTiZhbes6BADnLVaG6OpLNLZ/IKes0G/A3kOzFR47hpRFJuJCAU5Mh1ZErZGYdlb3+dp+FiMsUJiY7z+g0u479A0QokMXtGgpVEw4HPoMuus1TPOBD6HFau6nKqUs30n6/ebCfo8dqzvc8sDq42C3rZGoHpxls9z/PHQDK7Y3N/RFv52Ubc4Y4ytYYztYYwdZIw9wxh7f+Hr/8IYO8AY288Yu4cxtrL5p9s5UCAIQRiH4V438lxaUEaSWQxSczQA4K+v2YRgPIP/2nMUgPZFQyODqBspQnyO5ihnoURGPrZAFCFaizOxiBI9ekAxMbSStTGa1F60NhMRp//kWAh5rs9Cs5m8YudK3H7TbqxtcAC1YFWX+kHUd+0/jV63DZdv7NPlHAa8dl1sjWdC0t+xokUzzkrZojKxcd9oAD1uG9YrnFV3wXA3HhsN6DYPTg8C8QwsOs0FFMpZtcTGe56dxFwsjWvObsxGS2hDiXKWBfBBzvnZAC4G8F7G2DkAPss538E53wngbgD/X/NOs/OgnjOCMA4jhYXZI8elnVRSziR2runCFZv78cwZaSCs1vk7vR6b5kCQWCqnKUYfKCYZ6l2cRSqkEIrirHw+nFJmC8VrT6lyVqM4izSgKDaTFX4H3DazrEoYPa3RZbPoGiO+qtuJM0HlhVE4mcHvD07jZeeuhEVDImklpOJMD+VM+jtabWsEpOLs2EwU6ayyHs7HRgM4f2234sj/3SM9CMQzOD4bbeQ0dUWMK9FjbEGx52zxZlEincO/3H0QZw158ZJtQw3/LkI9dT/pnPMJzvnjhf+OADgIYBXnvHQ8uxuAcbYXlgHJdA6MAXYLOU8Jot2MFHZbHzkxB4CKs1Led80m+b+1hjv0eeyYq9H7UItIMguPxkRCYWuM6m5rrNRzJi2GtCpnwvbZV6qcFRTcSnH60WRWDjwxEowxbBjwyEN+jW5r1JtVXU7Mx9KIp5VtCPzm6Umks3m8Yqd+5qQBnwPTkZTmYdiCiVBC6qNrQ/vFWUNeZPNcUfE0G03hxGwMuxT0mwlEb9o+A/WdzcfSusw4A6QwJLOJIVDhuvs/9x3F6WACn3j5Vt02BAh1qHrWGWMjAM4D8Ejh359kjI0BeBNIOdOVRCYHp9XcssGOBEFUp9dtg8duwaMnpN1+sjUWuWC4G5dt7EOP26b5Rt7nsWNW405+rAGFqBmBIJxzhBPZRUWH+He4QVtjqXLW47LBamaVizODKmcAsLHfIyfPdVpxJmadnVFobbzridMY7nVh55ou3c5hwGtHOptHONHY+/5MMIkVbVDNAEk5A5QlNoqNgFrDp8tZ3+dGj9uGfaPGKc4C8YwuSY0AYDIxdLtsizbFRudiuO1Px/HKnStx0Xrtw86JxlB8J2WMeQD8GMAHhGrGOf9HzvkaAHcAuKXKz72TMbaPMbZvZmZGj3PuCERxRhBE+2GMYbjXJS8oSTlbyOdfvxO337hb88/3eWyIpLKq5wrl8hyJjHZbo7cJtsZUNo90Lg+fU9+eszm556y4ODOZGAa8DkxV6jkzaCAIAGwYKIZrGL3nTG9WFcIzlMw6mwwl8dDxObxy5ypdN2r1itM/E0xgZRv6zQApoMViYooSGx8bDcBmNmHbKr/i4zPGcMFwN/adNE4oiGRr1O/z0uO2LlLO/vkXz8JqYviHl5yt2+8h1KOoOGOMWSEVZndwzn9S4SHfA/CaSj/LOf8q53wX53xXfz8NslNKIp2nfjOCMBAjhSG0XrtFczGwXOn32nFuAzv7YnaXWmujGLSsVSFyWM2wmU26FmdCGSu3NdosJjitZs3F2Ww0BY/dsui+MOR3VLU1euzGLHxEYiPQecqZmllnv3jyDDgHXqlTSqNA9Co20nfGOcfpYKLlSY0Cm8WEDf2euspZPs/xm6cnsWukW/WaavdIN07OxXUJT9EDPZUzQBp9Ml/SA/uHg1P4w3PTeP8LNsnvEaI9KElrZAC+AeAg5/xzJV/fVPKwlwN4Tv/T61ySmRzF6BOEgRguhIKQpVF/xCwptXH6sQaLM0AKBYkk9es5CxeOVSnowu+0NpTWWGm+0ZDfgamyWPRUNod0Lm/InjOgmNgIdF5xNuB1wGJiimad3bX/NM5d7cc6hQmDys+hceVsOpJCJJldUGi3GiWJjQ8dn8Op+Thev3uN6uPvHpEGVhuh74xzLilnbj2VM5usnCUzOfzz3c9i44AHN126TrffQWhDiXJ2KYC3ALi6EJu/nzH2EgCfYow9zRg7AOBaAO9v5ol2GmRrJAhjIUJByNKoP2J2l9o4fVGcNaJkeh0WWYHTg5CsnC0+py6XFcG41kCQ9IIZZ4IhnwOToeSCcIdYSrKHGrXnbLjXBYuJwWpmHXefM5sYVnQ56ipnR6YieOZMGK/Yqa9qBkiBIAAWFfVqODwlFUWbBttbnJ0OJmpuePzf3jH4nVZct1V96uDWlX44rCa517idxNI5ZHJcTlnUg263TY7S/9qfjmN0Lo5bX7YVVgoBaTt1r9yc8wcAVDI7/0r/0yEEiTQVZwRhJIStccBnr/NIQi0igbDSMOVaRIRy1oBC5LFbdLY1SseqpJz5GlDOZqMprO5ePGtryOdAIpNDOFkMIYkmG1cUm4nVbMJInxvBeKYjQ69W+p11lbO79p+GiQEvPXeF7r/fY7fAZTM3NIj68JSUkrh50KvXaanmrEIoyOGpiKxylTIfS+O3T0/iLy5aq6lNxGYx4bw13dhrgL4zoXDpaWvsddsQiGcwNh/Hf993FC/ZPoTLNukzS49oDCqPDUoik4ODbI0EYRjErDNSzvSnz9uYctZIEeJtkq2xkl2vUVtjbwVbo7DZTpX0nUUKowGMGggCANtX+bGqTWES7WZVd+1B1Pk8x8/2n8Flm/ox4G3Oc9ToIOojUxH0uG2yJbkdnLXCBwBVQ0F++sRppHN5TZZGwe51PTg4Edb1GqEFobjrGQjS7bIhl+f48I8PgIHhH68/R7djE41BxZlBSWZycNCMM4IwDP1eOz7wgk14lc7N+YQ06NdpNaseRC0UIretkeLM2pJAEEAqzrRE6XPOpeKsiq0RWDiIWjwvXoMqZwBw68u34utv057wuZRZ3eXEVDiJTK7yAOXHTgUwHkjglTrONitnwOtoKBDk8FQEmwbaZ2kEgJV+B7wOCw5Nhhd9j3OOH+w9hXPXdOHsQhGnhQtHepDnxTj+diGCO7orbNBoRfSwPnhsDrdcvVFOEiXaD63+DQoFghCEsWCM4QMv2IxNbbTxLGf6vDbVgSCiV6yR4Auv3rbGZPVz0qqchRNZZPNcTrUsRS7OSpSzqA52z2bjd1rlSPdOY1W3E3kOPDkWrFig3fXEaTisJlyroU9KKf0+O2Y0FmeccxyZirbV0ghI1+Qtg5VDQR4/FcThqSje2IBqBgDnre2C2cTabm1shq1RFHojvS7cfDmFgBgJ4165OxwKBCEIopPoddsxuwwCQcKJDOwWU8UeF7/TWmjsz6tqup+NSYvoSrZG0QO5QDnT4Xkhmsf6QsLha297CCYmFdiru11Y3e3E6m4nfvnUBF54zlBTewYHvHbcV2EEgxImQklEUllsHmr/RtWWIS9+/uQZcM4X9C/+YO8puGxmvPTcxtRHt92CbSt92NvmxMYzIckGu0LHtOAN/W74HBb88yu2wW6h9aaRoCu3QUmkczTnjCCIjqHPY8d4IK7qZ4pFiPZrpddhRTSVXbS400ookakYBgIU+0VCiYyqXh3Ri1fJ1uiwmtHtsi5QziJLwNbYyewa7saP3/M8HJuJYTyQwHggjvH5BB4+PoeJcBKcA6/btbqp5zDgdSCWziGWyqou4kVS4+Y22xoBKRTkjkeymAgl5ZlrkWQGv3hyAi8/d6UuBe7ukR58++FRpLK5thUxpwMJdLmsum64rO524cmPX9uRoTxGh67cBiWZyZOtkSCIjqHPY8P+saCqn4mmcrCZTQ0tmDwOC3J5jng6p8vCJ5zMVIzRB4ohIWqLs/mCclZpzhkgDRWeqqCcGdnW2MkwxnDBcA8uGF6cMJjO5hFJZipaWPWkOOsshXUq3/dHDJDUKNgyJPWTHZqMyMXZL56cQCKTwxsubMzSKNg10oOvP3ACT42HsKtCKmQrOBNMNKUnjAozY0I9ZwYkm8sjncuTrZEgiI6h12PDfCyFfJ7Xf3CBaCrTkGoGFHvD9LI2hhPZqsqZr6Q4U4Owe1Yr6Ib8joU9Z8ksTAx0D1mC2CymphdmQNEOO63B2nh4KoI+j13XcAqtbCkUiKWJjT/YewpbBr3YuaZLl9+xe6QbAPBoG/vOTgcTcvFJLH+oODMgyazUIEw3VoIgOoU+jx15DgRVFC6xVK5hdUjYnvSKyg4nMxVj9IGFypkahK2xWhjACr9jQZR+NJWFx26hXXGiKiKiX0ti4+HpKDa3cfh0KX6XFSv8Djmx8dkzYTw5HsIbLlyj2/u/12PHhn439rZpGDXnHKcDzVHOCGNCxZkBSaRzAEBzzgiC6BiEWqAmTj+ayjYUow8UI+/1SmwMJzIVY/SBYnGmNk5/PpaCz2GBrcp4lUGfA7PRNNKFjb1IMgtvlXMgCGChrVENnHMcnYoYwtIo2DLklZWzH+w9BZvFpPvIkwvX9WDfaAA5Fcq+XoQTWcTSOSrOOggqzgxIMiMVZ6ScEQTRKfQVwi5UFWfJbEMx+kDR1lirOJsMJfHCz/0Rx2aidY8XTmbhc1Y+p65CcSYGyiplNpau2aMm4vTFUOFoKtPUpD9i6dPlssJmNqkeRH06mEAsncMmgyhngFScHZuJIpLM4KdPnMaLtw2hS8fIeUAKBYkksxVj+5uNGFi+qpuKs06BijMDkqDijCCIDqNPVs6Ux+nH0uqT5srxKCjOHjg6iyPTUTxax9bEOa+pnGntOZuLpiomNQoGC/HawtoYTWUpDISoCWMM/V47ZsLqlDOR1LjFQMrZWUNeZHIcX77vGMLJLF7f4GyzSuwuBIHsG229tVEUZx3Zc/aZzwB79iz82p490teXMVScGRBha3Ta6OUhCKIzEMWZmkHUUQ0x4OUI+180Vb1gOjAeBACMztWO+o+nc8jmedVAEKvZBLfNrLo4m4+lqyY1AiWDqEPScxdNZkk5I+oy4LNjSqVydriQ1LjJQMXZlkEpsfEb95/AcK8LF6/r1f13rO52YoXfUXeDphmcEcpZJxZnu3cDr3tdsUDbs0f69+7d7T2vJkOrfwMilDOac0YQRKfQ5bTCbGLqbY2NKmf2+srZk+MhAMDoXKzmscKFUJFqyhkg9Z1pCQSpleAnF2cF5SxCyhmhgAGvHdMalLNBn71q6E072DDghtnEkM7l8frda2Ay6R+EwxjD7pEe7D05D85b23d2OpiQUjwNkI7Zcq66CvjBD4AXvxi47jqpMPvhD6WvL2OoODMgZGskCKLTMJkYetw2OZlQCVoG6JYjirNwleIsnc3j4ISUBFdPOQsnpGPUWrj6VBZnuTxHIJ5GX42FWZfLCpvFhMmQtMOuR9FKLH8GvA7VgSBHpqKGCgMBALvFjPV9UoH22vObN7x790g3psIpjM0nmvY7KnG6MOOsGUXnkqCrC0ilgHvuAbZtW/aFGUDFmSFJyrZGKs4Igugcet02xcpZPs8R02FwtNnE4LFbEK1SnB2eiiCdzaPfa8ep+XjNXXNZOasSCAIUlDMVgSDBeBp5Xn0ANSDt6g/5HJgsqCAiSp8gajHgtSOUyMghZPXI5zmOTkexacBYxRkAvOHCtXjPFRswUFCRm8HudVLfWavnnZ0OJLCyq3l/l+H59Kel/z/7bOC++4C//Mu2nk4roOLMgJByRhBEJ9LnsSsOBImlpWJKD4XIY7dUnXP2ZKHf7PrtKxBNZTEfq35+IiK/lq2xy6VOOZsr/L56g4mHfA5MhZLI5Tni6cbnvxHLHzGIekahejYeSCCRyRlmxlkpb79sHT503Zam/o7NA174ndaWzzs7E+zgGWd/+APwox8BF18MPPUU8MIXArffDtx0U7vPrKlQcWZAqDgjCKIT6fPYMBdTtlCMpaTrZKPKGSDF6UdTlZWzp8ZD6HJZcdnGPgDA6Hx1a2NROdOv50zYPOv1mwz6HZgMJ+W/g5Qzoh5qB1EfKiQ1GikMpJWYTAy7hruxt4XKWSqbw3Qk1ZlJjQBw551APg+8732A2Qz8+tfAtdcC3/wm8IlPtPvsmgYVZwaEhlATBNGJ9HrsmI0oU85EuqIeCpHXYakaCPLkeAjbV/kx0ucCUDsURNgVfTXOSXVxVihW6ylnKwrFmVAAG53/Rix/+r1COVOW2Chi9I2onLWK3et6cHw2piq4qBEmQ9Jr07HKGQC4XMDLXy79t9kM/OpXwI03ArfeCrztbQsfu0xi9qk4MyA0hJogiE6kz2NHIpNDPF09OVEQLShnnv+/vXsPj+uu7zz+/o1GGml0tW6Wb5Lt2JYT33CIAyExxCmbAtmnKQ2bQoDSAm0Jyz50tzRAL2xLl3abbvfpQwssFNoFCg3QQLrQwJZt7VxJcGKSOL5fYjuWr7pLo5Hm9ts/zhx5bM3lSDqSZjSf1/P4sXQ0l6OvlRN9z/f7+/5Cs79O1lVXZm1rjMaSHL04wraVTaxcEsaY/ENB3KEi9QWmNUbjSWKJlKdzm6yc5dnnDGBpQzWxRIqzA86wgrpQ8UzTk+LktjV6rZwduzjC8sbqvD/fi93kfmfzVD3rGSjjMfqxmFM5u/tuqK29cryiAr78ZXjLW+BrX7uSoC2iMftKzubZ6b4Iuw9fyvuYaDxJMGCorNA/j4iUDzcB8VI9i6Tb92qrfKqcZWlrPHh+mGTKsmVlI9WVFSxrqOZMvuQsGqemsoKqYO5rd+M0N6Lui8QwBpaE8ydn7jj945ecfai05kwKaakNETB4Hqd/9OJo2bY0urasaCQUDPDTVwbm5f3cDahXLCnD5Oxf/gX6++G++6Z+raIC/vmfryRod921qMbs67f/efanjx7m/m88TyqVe+JXNJZS1UxEyk5bunWv18O6M7cN0Ze2xlD2tkZ38+ltK5sA6GwJF1xzVmj/p4bJ5Mxb+2bf6ARLwlVUFBij3dHoxO7E5XRypjVnUkBFwNBaF+KSh7bGZMpy4vJoWbc0AlQFA7xmVdO8rTtzk7OOxjKc1vgP/wDNzc4as2wCASdBa2tzWh3vv39RJGag5GxexRIpnjzey3g8xcU8F8NoPKn1ZiJSdq5UzgonZxEfB184a86mVrL2nx2ivT40+YtRV3Nt3jVnw9FE3jH6AE3pCpjXyll/JOZp89ml11TOtOZMvGhvCHlqazzTP8ZEIlX2lTOAm9c0c+DcUM4hQn46NxilvT5EKFhmvxNGIvDII/COd0BVnuvfY4/B8DDU1cEXvuC0Ni4CSs7m0fOnByb/Y863bmE8nlTlTETKTmu6ctaXZ1y9y72W+jOtsZLxeIp48up1YC+eHWTrysbJzztbwvSOxnL+UjY8Hs87Rh9m0NY4Gsu7x5nLnbx34pIqZ+Jde321p7bGIxfcYSBKznasbiZlYd/puW9t7BmMluekxu9/H8bGsrc0utw1Zu97H4yOOuvQ7r13USRoSs7m0Z6jV9aa5bv7Go0pOROR8uMmIX0eJqH5OTLefY3MjahHxuOc7I2wNd3SCLC6xVmUnmvd2fB4PO8YfZh+ctYbmZhMWvOpCgZoraviXHq6m9aciRdLPVbOjrlj9NvLu60R4MauJQTM/AwFOTc4Xp7rzb75TVixAnbuzP2YvXudNWZvf7vzeVOT8/nevfNyinNJydk82nP4MjevaSYYMHkrZ2prFJFyVF1ZQX0o6Gkj6shEgmDAEMozfMMrtwUwsyL2cs8w1nJV5ayrxRmnf6Y/+821oWg87xh9yEjOxqbR1lhgUqPLbW0EfwalyOLXVl9NX2SCRDL/9NCjl0ZZuaTGl0p1qasLBdm0vJGfznFylkpZespxA+r+fvjRj+Bd73LWleXywAPOGrMtW5zP9+93Pn/ggfk5zzmk5GyenBuMcuTiCG++vp2VS2oKJmc1lfqnEZHy01of8rSH0OhEgrrqIMbkH5ThhZucDWesO3OHgWRWzjrTydmpXJWzaKJg5cxN3gY9VM7iyRSDY3FPbY1wZWJjbVVFwQEiIgDt9SGspeANkWMXR9TSmGHH6mZ+dmZwcuujudAXiRFLpMovOXv4YYjHneTMi+XLnarZyy/P6WnNJ2UA82TPkcsA3N7dTldLLadz3HkFrTkTkfLVUlvlOTnzqzrk7tuUObHxpbNDrFxSc1Vi1FBdyZJwZdaba6mUZcTDtMZgRYD6UNBTW+NAxN3jrHBbI8DS9OAStTSKV+317l5nuYeUJZIpTl6OsL7MJzVmum19CxOJFM/P4bozd1Jj2a05++Y3obsbtm/39nhjnOrZ/v1ze17zSMnZPNlz5BIrmmpY315HV0uY031jWJt9nH40lqRGbY0iUoZa60KTGy/nE5lI+Db0YrKtMTM567l6GIirs6U2a1tjJJYgZSk4EASccfpekjN3MEqrx8rZsnTlTMNAxKv29M9MvqEgp/rGiCVTbGhX5cz1ujUtVFYYnjjWO2fvcW6wDDeg7ulxJjDed5+TdHm1ZYtTOcvxe3WpUXI2D2KJFE8d7+VN3W0YY+hqqWVkPMFAjjUH0XiSalXORKQMtdR5r5z5VSFyk5mRCeea3B+J8Wp/9KqWRtfq9M21aw2nE7tCo/TBWXc27CU5SyepXtsar1TOCieIIpBZOcv935w7DERtjVfUhoLc2LmEJ45dnrP36Bkow+TsW99yEiyvLY2uLVuckfqvvjo35zXPlJzNg+dO9ROJJdnV3Q5AV7OzbiHXxEa1NYpIuWqtCzEwFi84oGB0IunbcAK3rdGtnF1Zbza1ctbVHObcYJRY4urzc5MtL5WzRs+VM+cXZq9tje6as3pVzsSjtvoQjTWVPLT3DBOJ7OunjlwcwRhYp0mNV9m5vpUD54Y93UyaiZ7BKHWhoKcbPovGN78JN90E69dP73mbNzt/L5LWRiVn82DP0ctUVQR4w3UtwJWJX7mGgozHU0rORKQstaYnE/YX2OtsdDzuWxJyZSCIk5ztPzsEwOYV2dsaUxbODlx9/XaTrUIDQWAayVm6cuZlE2pgcrPs2pD+/yHeVFYEePAdW3np7BCf/v7BrI85dnGUVUvCWm5xjZ3r2wB46vjctDY6e5xV+zL0qKg9+KCzN9nRo/D8805L4+7dznGvlJzJdO05cokda5ZM3uVd1RzGmOzJmbVWbY0iUrbcKlGh6XGRiaRvSUgoGKCywkwOBHnx7BBr22qzVsEmb671X339nm7lbNDDKP2+yAQVAVNwyIhr6eSaM7U1inc/v6mD33zTWr7x7Bkefv7slK8f1aTGrDavaKSxpnLO1p2dK5cx+jt2OJtH/8mfOOvMVq50Pt+xw/trNDXBqlWLZmKjkrM51jMY5ejF0cmWRnD28uloqM7a1hhPWpIpqztUIlKW3A2X3Za+XCITCd/aGo0x1FdXMppec7a/Z5BtWdabQcZeZ9fcXHOrbl4Sqaawt8pZfyRGc20VAY9j8RuqgzSFKyerjyJe/c6d3bx+bTO/98h+Dp0fnjweS6R4pTfCBk1qnKIiYLhtXStPHuvNOeBtNpzKWRkkZ7t2wVe/Cl//OnR2woc/7GwmvWvX9F5n82ZVzhaTa9cO+GnPkUsA3N7ddtXxrpbwlDuv4AwDAVQ5E5Gy5G64nG8dh7WW0VjC17VVdaEgI+MJLg6Pc3F4gi1ZWhoB2upChKsqpnQ+TFbOPKwPaaipZCKRKrhHUu9ozHNLIzhJ5rd/8xbuv/06z88RAWeLh7961400VFfyob9/fvLmwam+CImUVeUsh9vWt3JheJzjl0Z9fd3IRILBsTgrlpRBcjY4CJ/5DKRScPo03H//9BMzcIaCHDrk7JFW4so+OXvPl5/lN7/+3Jy9/u7Dl1nRVMN1bVffdepqrs1aOXP/Z601ZyJSjiYrZ3naGsdiSazFt8oZOOvORsYTvPjqIADbVmVPzowxdDaHp1y/3Q2svYyxd6trhSY29o1OTCarXm1YWk9TWJUzmb62+hCff/eN9AxE+dh3XsRay9H0pEbtcZbdbetaAXxvbSybMfq9vfBzPwfPPgsNDfAHfwBf+IKz5my6tmxxErNjx/w/z3lW9slZS10VRy6MzMlrTySSPH2il10b26Ys6OxqDdM7GmN0InHV8WgsnZxVlf0/jYiUoYbqIFUVAS7nqZy5102/k7PR8QT7e4aoCBhuWJY9OQOc5GzKmjNn37VgReFrt5ucFWpt7I/EaKn1NqlRxA83rW7mk2+7nh8fvMgXHz/J0QsjBAxTbjCLY1VzmDWttb6P1O8ph+Ts/Hl405ucVsTaWnjkEfj0p52WxnvvnX6CtoiGgpR9BtDdUc+5oXFP/f/T9dypAcZiSW7f0D7la13NtcDUcfpRVc5EpIwZY2ipq8pbOXOTs3qf9jkDZ4jG8HicF88Osb69Lu+639WttZzpHyOVurLOZHg8ToPH83GTs8GClbOY5z3ORPzy/ltXc9fWZTz4o8P84KXzdLXUaqlFHjvXt/LMyf6cWxHMhJucLdo1Z6dPw86dzt+/9mtOYua2Mu7a5SRoe/dO7zWvvx4qKpScLQYbO5w+aneTRT/tPnzJGaG/rmXK13ItKteaMxEpd4U2oo64lbMq/5KzhnRb40tncw8DcXU2h4klUlwcGZ88NhSNexqjD85AEIChPBMbJxJJRiYSGu4h884Yw5/ds5U1rbWc7I2wXvub5XXbulai8ST7Tg/69prnBqNUBMzkBNaS547LB6ftcOdOuHABfvVX4YtfnLrGbNcueOCB6b1HKAQbNig5Wwy6OxoAODwHrY17jl7mdWubCWf5BcJNzk5dk5yNx1Q5E5Hy1loXyl85S09GrPOzclYd5NxQlMGxOFtzrDdzTV6/e69cv4ejcU9j9MFbW6O7z5vXDahF/FQXCvLF976WulCQ7Z1LFvp0itot17VQETC+tjb2DETpaKimwuOk1qLnjsv/27+FN74RhoagshLuucff99m8eVGM0y/75Gx5YzX1oaDv685e7R/j+KVR3rShLevX66sraamt4kx/jrZGjdIXkTLVUhvKWzlz2xq9DN/wqr46iDsNe+uKpryPddvSM6/fw+MJz5UzL8mZm5yqrVEWyrr2ep7+5B38xhvXLvSpFLX66kq2r2riSR83oz43OL64JjXu2gV//dfwwQ/C6KjTfvjd785sKmM+W7bAyZPOe5Swsk/OjDFs6Kj3PTnbc9S5g7Jr49T1Zq7OlvBVd15Ba85ERFrTa85y7R00NwNBnISpqiJAd0f+seHLm6oJBsxV4/SHo3FPY/Qz3ytfcuYmp2prlIXUUF25eKo3c2jn+jb29wwxEMld8Z+OnsW4AfW99zrtjKOj8JGP+J+YgZOcARw44P9rz6OyT87AGQpy5OKIr5sIPnbkEquaa1jbWpvzMatbnEXlmdxpjVpzJiLlqrUuRCyZYuSaabbg7HH28L6zNNZU0uHjegy3Cnf98gaqgvn/1xisCLBySc1VExudgSDeKmcVAUN9ddBTW2OzpjWKFL2dG1qxFp46MfvqWSKZ4sLw+OJLzvbsgYMHZzcuvxB3YmOJtzYqOcMZCjIUjXNxOHcbzXRMJJI8dbyPXd3tU0boZ+psDnNuKHrVhJ9xtTWKSJmb3Ih6ZOo1+YcvX+Cp43187M4Nvl4n3cmPW3NsPn2tzpbayYFOqZRldMJ7WyM4rY1e2hqnu8+ZiMy/rSsaqa8O8sTR2SdnF0cmSKbs4prUuHu3Uzn79rdnNy6/kLVrIRwu+aEgSs6A7qVOC8vhC8O+vN5PX+knGk9ye3f29WaurpYw1sKr/dHJY2prFJFyN7kR9TUtQmOxBP/tBwe5YVkD972uy9f3nEzOVnpLzrqaw5zqi2CtZWQ8gbV4HqUPzsTGvMlZJEZVRYB6H1s3RWRuBCsC3HpdK08e7511F9bkBtSLac3Z3r1OQjbbcfmFBAKwaZOSs8XAXV/g17qzx45cpioY4Ja1rXkf19UydVF5NJYC1NYoIuUrV+Xs87tPcG5onE/fvcn3dTDbVjbx725YmnedcKauljAj4wkGx+IMjztJlr+Vswmaa6vydl+ISPG4bX0rPYNRTvZGCj84j54BdwPqRTJGH5yx+H6My/diEUxsLJicGWNWGWN2G2MOGWMOGGM+mj7+58aYw8aYl4wx3zPGNM352c6RpnAVSxtCviVne0/1s31VU8GWm2zjmKPxJFXBgBbgikjZaktXznozKmeneiN86fGT/NL2Fdy0utn392ypC/E3v3LTZNWuEPfm2un+sckkq9HP5CwSU0ujSAl543qnW+qJo7lH6v/44EX+4JGXiSdTOR+z6DegnmtbtsClS86fEuWlcpYAfttaez3weuA/GmNuAH4MbLbWbgWOAp+cu9Oce90dDRzxYSPq8XiSA+eGubGr8L4gLbVV1IWCVw0FGY8n1dIoImVtSe3Uytmnf3CQqmCAT7x140Kd1lXcm2un+yJXKmceB4KA1+RMw0BESkVnS5jO5nDWkfqJZIo//eEhfv1rz/H1Z07z6P7zOV+nZzDKknBl1j1yxQN3YmMJtzYWTM6steettfvSH48Ah4AV1tp/sda6o7SeAVbO3WnOvY0d9Ry7NEoiz90ML/b3DJFIWW70sGmjMYbO9LoFVzSm5ExEyltlRYAl4Ur6Ik5y9q+HLvJvhy/xW29eT7uPExpno7PZTc7GGI46/yv0OkrfeWwlQ2PxnOtT+kYnaNEeZyIlZef6Vn5you+qytjlkQne85Vn+eJjJ3n36zq5rq2WLz1+Mud/++cGo4trvdl8WwQTG6e15swYsxrYDjx7zZfeD/zQp3NaEBuW1hNLpDjVN1b4wXnsOz0AwPbOJk+PX90anpz4BU5boyY1iki5a6kL0TcaYzye5I++f5B17XW87w2rF/q0JlVXVtDRUO0kZzOonDXVVBFLphiPZ78h2DcaU3ImUmJ2rm8lEkvyszODADx3qp+7PvsEL7w6yF/8h2185u1b+ODOtRw4N8xPTvZlfY2egSjLG5WczdjSpdDaurgrZy5jTB3wMPBb1trhjOO/h9P6+I0cz/sNY8xzxpjnLl/O3Ye70Db6NBRk35kBulrCntctdDbX8urAGMmUcwclGk9qGIiIlL2W2ip6Ryf4m8dPcqZ/jD/6hU1UVhTXDKvOljBn+iMMR2c2EASmbkQ9NBbnow/9jGg8yZq23PtkikjxueW6VgIGnjh2ma88+Qrv/NIzhKsq+N6Hb+We1zoNZm/fvoKW2iq+/MQrU55vrVXlbLaMcVobF3tyZoypxEnMvmGt/W7G8fcB/x54t81Rn7XWfslae5O19qa2tvyj5RfSuvY6AoZZrTuz1rLvzKCnlkbX6pYw8aSdHJ3qrDkrrl9ARETmW2t9iBOXI3xuz3Hu2rKMW9fln367ELqaw+m2xjjGMK2x99mSsyeP9fLzf/k4P3jpPP/5zRv45ZtW+X7OIjJ3Gmsq2baqiS8+dpI//sFBdm1s558+chvXL2uYfEx1ZQW/cstq/u3wJY5fuvp3zqFonEgsufg2oJ5vmzfDgQOQmt1SpYXiZVqjAb4CHLLW/s+M428BPg78grV2dr2ARaC6soLVrbUcmcVeZ2cHolwemeBGjy2N4Nx5BWfdAqTXnKmtUUTKXGttFf2RGAbD7951/UKfTlZdLWEujUxwYXiculCQwDSm7GYmZ9FYkj/8Pwd4z1eepTZUwfc+/AY++ub1BIusUigihd15QweJVIpPvHUjX3rva7NOcX3P6zsJBQNTqmfupEYlZ7O0ZQtEInDq1EKfyYx4uc13K/BeYL8x5oX0sd8FPguEgB+n92F5xlr7obk4yfnSvbSeQ+dnnpztO+OuN5tO5cwdxxzhNlqJxpM0hb23xoiILEZua/hH7lhXtL+ouOP0X+4ZntYYfbiSnD15vJdPfvclTlyO8KtvWM0n3rpRre0iJew33riWe167gvb63MOLWupC3PPalfzj82f57Tu7aat3rnfuHmcaoz9LmRMb165d2HOZAS/TGp+01hpr7VZr7WvSfx611q6z1q7KOFbSiRk4m1Gf7h9jLJYo/OAsfnZmkHBVxeT6NS86GqqpCgauVM605kxEhDffsJR33byKD+5cs9CnkpM7Tv/oxZFpDQOBK8nZZ//1GGOxJH//gdfxh7+wSdd/kRJXETB5EzPXB25bQzyZ4us/OTV5zF3iojVns7Rpk/N3ia47U89Eho0d9VgLxy6Ozuj5+84MsHVl47RaUQIBZ5z+6fQ4/XGN0hcR4fplDfzpL20lFCze62FXs1M5S6TstMboA7Q3hFi5pIZffM1yfvTRN3Lb+uJbUycic+e6tjp+buNSvv7MaaKxJOC0NYaCAU1qna36eli9umTH6Ss5y9Dd4SzYnMlQkGgsycFzw9MaBuJyF5WDRumLiJSKxnDlZAVsupWz6soKnvz4HfzlO7fTqFZ2kbL06zvXMDAW5+F9ZwE4NzjOiqYa0suFZDZKeGKjkrMMnc1hqisDMxqn/9LZQc+bT1+rq6WWM/1jWGud5EyVMxGRkrA63do4nTH6IiIAN69pZtvKRr7y5CukUpazg1GtN/PL5s1w5AhMTCz0mUybkrMMFQHD+vb6GSVn+9IbDnrdfDpTV0uYsViSSyMTjMdTWnMgIlIiOtNDQaZbORMRMcbwwZ1reaU3wv87dNHZ40zJ2ew9+CAEApBMOgkawO7dzvESML0m+TLQ3VHPniPT3yx735kBVreEafG4+XSmzoxF5YDaGkVESkRXs3P9nu60RhERgLdu7mBFUw2f23OCyyMTqpz5YccOuOce5+P9+6GvD+69F7797YU9L49UObvGxo56ekcn6Bv1Xga11vKzMwMzammEK+P03Yqd2hpFREpD52Rbo+51isj0BSsC/Nqtq3nx1UFAkxp9sWsXPPSQ8/HnP38lMdu1a2HPyyMlZ9fYsNQZgz+doSCv9kfpHY2xvWtmydmKphoCBg6dd96zulL/LCIipcCtnKmtUURm6p03d1Jf7dzgWd5UeAy/eHDnndDWBk8/DfffXzKJGSg5m8Ldo2w6687czadvnMF6M4CqYIAVS2o4ctHZAFtrzkRESsO2VU28c8cqbl2nUfgiMjN1oSD33dwJOMPpxAe7d0MqBb//+/CFLziflwj1YVyjrT7EknDltJOzcFUF3Uu9bz59ra7mWn56qh9QW6OISKmorqzgv9+zdaFPQ0RK3G+9eQO3XNfCyiVKzmZt926nlfE733EqZnfcUVKtjaqcXcMYQ3dHPYenmZxtW9k0rc2nr9XVEiaWSAEaCCIiIiJSTmqqKri9u32hT2Nx2Lv36kRs1y7n8717F/a8PFLlLIuNHQ1857lXSaUsgUD+jQDHYgkOnR/hQ29aO6v37Gq5cqdElTMRERERkRl44IGpx3btKomqGahyltWGpfVEYkl6BqMFH/vS2SGSM9x8OlNXemIjaM2ZiIiIiEg5UnKWRXd6KIiX1kZ3GMj2WSdnGZUztTWKiIiIiJQdJWdZdE9ObBwu+Nh9pwdZ01pLc23VrN4zczqP2hpFRERERMqPkrMs6kJBVi6pKVg5czef3j7DEfqZwlVB2utDgJIzEREREZFypOQsh+6l9RwtsBH16b4x+iIxXjvDzaevtTq97kxtjSIiIiIi5UfJWQ7dHfWcvByZHG+fzZXNp/1JzjrT685CQf2ziIiIiIiUG43Sz6G7o55EynLi8ijXL2vI+ph9ZwaoCwXZMIvNpzO9bUsHKWsxJv/4fhERERERWXyUnOWwscNJyI5cGMmdnJ0eZNuqRioK7IXm1R0bl3LHxqW+vJaIiIiIiJQW9c/lsKa1lmDAcCTHurPIRILDF4Z9a2kUEREREZHypspZDlXBANe11fF/D1xgWWM1m5Y3csOyhslhHS+eHSRl/VtvJiIiIiIi5U3JWR737ljF53Yf51P/dACAgIF17XVsXt7IUDQO4MsYfRERERERESVneXzgtjW8/9bVXBgeZ//ZIV4+N8yBniGeOtHLxeEJbljWQFN4dptPi4iIiIiIgJKzgowxLGusYVljDXdu6pg8fmlknFBQ+5GJiIiIiIg/lJzNUHt99UKfgoiIiIiILCKa1igiIiIiIlIElJyJiIiIiIgUASVnIiIiIiIiRUDJmYiIiIiISBFQciYiIiIiIlIElJyJiIiIiIgUASVnIiIiIiIiRUDJmYiIiIiISBFQciYiIiIiIlIElJyJiIiIiIgUAWOtnb83M+YycHre3tC7VqB3oU9ikVFM/aV4+k8x9Zfi6T/F1F+Kp/8UU38pnv4r1ph2WWvbsn1hXpOzYmWMec5ae9NCn8diopj6S/H0n2LqL8XTf4qpvxRP/ymm/lI8/VeKMVVbo4iIiIiISBFQciYiIiIiIlIElJw5vrTQJ7AIKab+Ujz9p5j6S/H0n2LqL8XTf4qpvxRP/5VcTLXmTEREREREpAiociYiIiIiIlIESio5M8a8xRhzxBhz3BjziYzj3zLGvJD+c8oY80KO5zcbY35sjDmW/ntJ+vi7M57/gjEmZYx5TZbnfyP9/i8bY/7WGFOZPm6MMZ9Nn9dLxpgb5yYC/ivimG40xvzEGDNhjPnY3Hz3c6OIY/ru9M/nS8aYp40x2+YmAv4q4njenY7lC8aY54wxt81NBPw3hzGtNMZ81Riz3xhzyBjzyRzPX2OMeTb9/G8ZY6rSx0vyWlrE8dR11P+Y6jrqbzx1HfU5phlf32GMSRpj3uHjtz1nijWexpjbjTFDGefwqTn49q9mrS2JP0AFcAJYC1QBLwI3ZHncXwCfyvEaDwKfSH/8CeDPsjxmC3Ayx/PfBpj0n38A7s84/sP08dcDzy50vBZBTNuBHcBngI8tdKwWSUzfACxJf/zWUvg5LfJ41nGlNXwrcHih47XQMQXuAx5KfxwGTgGrszz/28A70x//r1K+lhZ5PHUd9T+muo76G09dR32Oacb5/RvwKPCOhY5XKccTuB34wXzGo5QqZzcDx621J621MeAh4O7MBxhjDHAvzi9Q2dwNfDX98VeBX8zymHfler619lGbBvwUWJnxul9Lf+kZoMkYs8zzd7Zwijam1tpL1tq9QHxa39HCK+aYPm2tHUg/7Bmu/PwWs2KO52j6GEAtUCoLeOcyphaoNcYEgRogBgxnee07gH/M8vxSvJYWbTx1HZ2TmOo66m88dR11+HkdBfhPwMPApWl+Xwul2OM5r0opOVsBvJrx+dn0sUw7gYvW2mM5XmOptfY8QPrv9iyP+WVy/8MDTokUeC/wo2mcWzEq5piWqlKJ6QdwKhTFrqjjaYx5uzHmMPDPwPvzPb+IzGVM/xGIAOeBM8D/sNb2X/PcFmDQWpvI8v6leC0t5niWqlKJqa6jPsRT11F/Y2qMWQG8Haf6UyqKNp5ptxhjXjTG/NAYs2ka39eMlFJyZrIcu/YOS867357ewJjXAWPW2pcLPPTzwOPW2iemcW7FqJhjWqqKPqbGmF04v1R8fKbnMI+KOp7W2u9Zazfi3GH745mewzyby5jeDCSB5cAa4LeNMWun8f6leC0t5niWqqKPqa6jk2YdT11Hp5htTP8S+Li1NjmD914oxRzPfUCXtXYb8FfAIzM4h2kppeTsLLAq4/OVwDn3k3S58peAb2Uc+7v04r1H04cuui0y6b+vLfe+k8J3z/8r0Ab8F6/nVsSKOaalqqhjaozZCnwZuNta2zeN72uhFHU8Xdbax4HrjDGtXr6pBTaXMb0P+JG1Nm6tvQQ8Bdx0zfv34rQrBrO8fyleS4s5nqWqqGOq6+jc/IzqOupbTG8CHjLGnALeAXzeGPOLs/he50PRxtNaO2ytHU1//ChQOec/o7YIFgJ6+QMEgZM4Wa+7WHBTxtffAjxW4DX+nKsXCz6Y8bUAzg/H2jzP/yDwNFBzzfG7uHoR+08XOl6lHtOMr/8hpbWQvWhjCnQCx4E3LHScFkk813FlIfuNQI/7eTH/mcuY4lQR/i59LawFDgJbszz/O1y98PrD6Y9L7lpazPHM+Lquo/79jOo66m88dR31OabXPOZ/UxoDQYo2nkBHxs/ozTitkXP6M7rg/yDT/Md7G3AUZ6LL72X5AfxQgee3AP8KHEv/3ZzxtduBZwo8P5F+7xfSfz6VPm6Az6W/th+4aaFjtQhi2oHzS/MwMJj+uGGh41XiMf0yMJBx/LmFjlWJx/PjwIH0sZ8Aty10rBY6pjiT176TjstB4HdyPH8tznCV4+nHh9LHS/JaWsTx1HXU/5jqOupvPHUd9TmmWc6j6JOzYo4n8JH0c1/EGQI05zdm3ExQREREREREFlAprTkTERERERFZtJSciYiIiIiIFAElZyIiIiIiIkVAyZmIiIiIiEgRUHImIiIiIiJSBJSciYiIiIiIFAElZyIiIiIiIkVAyZmIiIiIiEgR+P/K9jwzmCIOSQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" } ], "source": [ @@ -19101,12 +2294,13 @@ " print(f\"Timestamp {current_timestamp}\")\n", " \n", " u_1 = float(df_power.loc[df['time'] == (current_timestamp - 300 * 1), 'Heat'])\n", + " u_2 = float(df_power.loc[df['time'] == (current_timestamp - 300 * 2), 'Heat'])\n", "\n", " y_1 = float(df.loc[df['time'] == (current_timestamp - 300 * 1), 'SimulatedTemp'])\n", " y_2 = float(df.loc[df['time'] == (current_timestamp - 300 * 2), 'SimulatedTemp'])\n", " y_3 = float(df.loc[df['time'] == (current_timestamp - 300 * 3), 'SimulatedTemp'])\n", " \n", - " real_x0 = np.array([u_1, y_1, y_2, y_3])\n", + " real_x0 = np.array([u_1, u_2, y_1, y_2, y_3])\n", " iter_idx = (df['time'] >= current_timestamp)\n", " real_W = df[iter_idx].iloc[:N_horizon, [5, 2]].to_numpy()\n", "\n", @@ -19117,7 +2311,7 @@ "\n", " res = solver(p = real_p, lbg = real_lbg, ubg = real_ubg)\n", " \n", - " df_power.loc[df_power['time'] == current_timestamp, 'Heat'] = res['x'].reshape((N_horizon, -1))[0, 2]\n", + " df_power.loc[df_power['time'] == current_timestamp, 'Heat'] = res['x'].reshape((N_horizon, -1))[1, 2]\n", " \n", " power = np.array(df_power[['time', 'Heat']].dropna())\n", " eng.workspace['power'] = matlab.double(power.tolist())\n", @@ -19152,16 +2346,10 @@ " #plt.plot(df.index, df['InsideTemp'], label = 'Inside Temperature')\n", " #plt.plot(df.index, df['OutsideTemp'], label = 'Outside Temperature')\n", " plt.title(f'Temperatures step {current_timestamp}')\n", + " plt.ylim((15, 30))\n", " plt.legend()\n", " plt.savefig(f\"sim_{current_timestamp}.png\")" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -19180,7 +2368,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.2" + "version": "3.9.3" } }, "nbformat": 4, diff --git a/Notebooks/Images/gpr_X.JPG b/Notebooks/Images/gpr_X.JPG new file mode 100644 index 0000000000000000000000000000000000000000..715df2485a261a019d18ec562a12143f887df509 GIT binary patch literal 913818 zcmbTdcU)6X@HTovfB;gZCG;u?iUd>$Edit}y(u77>Agxz5Gm5DB2t3%qJYv-L3)uQ zMG%l)r1#$L;rssH_x^MLxc6=d?D=rA*_ku*%rmpQm!p@{0JW;3iXs4k06-l00xoAD z#0oyP&jH}kBR~KE01|)*avgwzJqY*$AWQ(!e|-Q@g)sl0zBYvaf9@dwfG}Ht@PF=k z0{*>f;K)~>{-3`j;3W*aA`})8LB>P=S06$E1rq%K>&t-uYsCNWdyvAyc*y@f13bb1 z9v$`^5B=YL0>K>O|G5YJ@Kuv_adCLYVXL77elsWw1b_qJ+yGYa%>ljvS-tzuUYJ`r z%K11ww7BPCA?EeKQB+&qOBHD=59*;2pdld;ggu8sXaE8l2$TkL*#fYGV-Z3AYga>D zHE`O5M8q%>QnG8{4VBaY0R##qAcPVT5rRs91YC(lNJDg;6Ddnft7Q)3a-|aqiq9h9 zmMi~3ul;L_N7TaYB`FyLBOJlRdxMYvroi2M_r=6f67mle6qS@!RCRRq^bHIjKe4oW z_T1XW*3R9-)63iEg>UeykkGL3*AWScNy%^Cro2o2ke!p8mtRm=^!ZCgWmR=eZCz7y zOKV$uM`zc-;Lz~zkYlv`ALi{8TR7a0T3-5K8P zE7AUw?Ejr$FaLi@_J0KXzvUVSJ8kB$lN(6;MiHM27ModC{)kw%l{%d6a)5!m8 zlvj=F|FlbR5KvMmAt50Q{Gq-^dX4)3bG!Ttn(6xG7(fn%fW`!+0nosC&emb*@1^E3 zhdI4(kAC-;KS&EP#`EyE177q^@%?tOa)pt2I*Hyf&m2mB=NT-r$xqo4WAWmT@iA9J?**LQfxH zV+;wCsLBcW-j8jHgk1A6yeW{HksW(-EPkPDXsPik%OSCDnhR|C)mq3Ulx&GD=U*5-p4Yq0?sv+&N;0v0vF4y7}NSLLE#$LXe zU}@MvRi~%43RUSC)p9EXf`4nmD(PZyC^qX<_QyGY*>x(iuDQiwPk6uYL?U<{wTJ4ni$M`z*01K3Do6<_oDlThbYlH9hg+-kFVr zyq+zk%&iXd6pUS0`$O(h{)cBF`CE89S0ctKKjdS=y=TLoELGx0!6Q2#8rioZOCg?q z(|>=|IH6U&AQ~YULJ9-T2?=ZtH9DCA(y$ewiXE}@p7uS@NxcOsZtL|;*Gqs_ZAUWR z9aQ6oMn!)CHS2Vz1F;MX=r!STr|n-o8&=O`%mCV%YeD^(SuLot(|jwg=Mc{A+qZCOq95*$F4M%)|QS} z^jx=t7EEPDf4s0t*>Gs1>cuRv5krAI_jayK9yn6ub+`m<|aw03VuZ zFKDcqFM*a3&1r03=Y`>iM)M<$=6K^HXZ0FKxf9V_9P2Rw;oloAb5$`Ow`UX#`VKy2 zWxPApaPBH`ZL!6trLGEZ2=;2FE|Lt1*cjToQa|CPVPneR zrKM6xcOga53S#e6W%XFg40Q=y_i-5?Gy1Y3_L-r+QjX27(J5I`iB-{!%2KI`dx`p!}`~Jbj&zJ=(a0?kZ^Xhg`@d}^x_W}3Vt}Ex^r&ps; z)9hHjNc`^!Lz`*RKHH_f?$Z>aI?^&@krE&!@^r-b1?233%3zt#VA7f$UB^~9yEr_3 zbb;+_DZ0PWuI?WDp7$&s zT?BDuD$HNvP+sd#fhpfxKMDWD_%xbs*G}m^UlqtNDpEz)dfg$>sdJ8tG%YiBP^Bq6 z8^e`=Bvl2=B_QBMaDVHa7qh3dZ1{!~Njo?k=<9Mk%_}3Pel#wBK;NT8_25OIqb9WI5WW1`IWNPUC9Fe&MI&Btr_3VjoffPK4BLF3ikto&P8(k?ZaAzFR7 zhQnhGsSx_u^x6YF!>}j))33(tTlr?p;4~^8j=wb+QoaOA6VSN~kh!Mrn0wL>E`jkM zS7HN`aQGz<_x*zsz7_=oy%g5;i~hJW0JBtZ3ZfO+EturTBfqtim`LUo@6SBdlnr<1 zKU?sjbYiIBC(n~#c?iyg#KB_qhTNAAg3|(Z*F?}qinR`QbqPUdGJe;woCe*C(8Q)4 zYNkg9nyihdDsc8>HOwP$USE}NNSkU+N-WODj?k4rsY2>60Xw^E8&0Gba*;shRuos- z{VxUNm%!kE6D6jI4b%FnRNQz^ZDv8qPQGNx-HGZj2Gu6Mx0u)H0fI{ttf$ECR)9k1 z>am`oyg{?7h>_k92DD|+7$eECXWWEBItD}7EuPqA1)TL6*XM^>ipAK(5i!^qe;MT^ z@XG9tiIJ9i^EuBFXzWx+3ggU*~7h# z#j8+{{H6j7X|Wx1m~+J?uwOU|qNEP5;>QB#Jw_g^>MhRv<_P3<(5R)i-CWSBw?K82 zSIMvVhOzH$fiZ{N`;054`$lnr{NC&o74N6G0SeU%?BsZq3d-s@PhmMG8^snz zocILti=8a))MB`jKm%K`cYbpemj7xr!AQSBoF(4vKd%aF%BnhM%KOkfIUg06WGE;0 zYPwT@*!hsHVVUp}P`!m@Y`O%R9gFO^FD6OYJG9Jr*cijfu@0tDpt3>jX_>PO_k}%p z%2!?`5q-FM`xCQI$|my@B+j*eDSj{4QPCr~sgWFvBRpQ0fC_p>y;1ncxcC_elF&;) z<4T((7mTol03*#Y4UGz9AE<8h3`2MsRk0n5M{B1z7^kQ}b(@4L|Mp~Hbv?MUOW=J| z7u?dI0mTA!bI65ATRYPFEe?8M_O$hL20H{kVNB1VPrF}xL|H% z9d>qe)EqRz>PH~l{psXh=i}S^&?H)EO1VC8=b599rrDdF`@d^=Rmfc6mhq~MHzH@+ z-l~1RU1*yBj?i((m^v~U23SU1M|}8BkD0r;k&1gN@~9VerogaE!*|9NSsr`v?Gj*n z%QGKHkp6N`r>Wzpx3FM|1)Bp}NI_XAc7_&l!^B9laXIoOHkW~h{ftYCVWKWCD}L2Q z3B(@v434dpR-w4)f~l^7$q)X!3B+2xx^tm(rFnKw5Wh07@ta4RYK=+6RPYp@$C;r`P2Li!hCa@5_s$>U^W-iv6(0*g zuz$`c$*4CJ=KnqewyfTWJQFgwu<(s@J(HWBV^7wOO`%{z#J{&#sSAQ`B5TZ#UFBm_ z7^p%y8x4jlX}|!ie4%%r8ryWcX8mGlh#6WsR&xb{rdyFhitCn|ASmSrpMVUcX)8a> zvhLS)%c999|J9%>R99)YXw)3*cH*WAhXiEC=f`oSqY_)D4H&@IphnF!^Dlh!KEMiV zQ0%!31hO-p&p~*r`T#2()3|~^SST~k{f`CHG3Ws>e4Eku^OqOyRyty=2c|E9TcFr| z3^umJLEZv(ZwHC4?Wl-~u%}VV5?r}m<~3@{^QUKQjm8<7$&x^DQ-p!@LFKVi!}g96 zd$J&DIcVfj=IS2{xDVKE`A&4oT4I}T9qazSN6>unzKs1HouPcg4DG{b`_h=qlVgx@ zXqm@=TG!Ikcw1x#oCJWT5yAj{KO`m7+>-j}i|G{l9qX@2Yu?cQOpk-!7yG$p5+EoU zNGcW<%)2!#^RaiO<6dl~DKyL@1A8t3Q_%DUZgHWc?o``-Di8eG&c3~K1vkPP*V-WR z#ZxaSsZM0uL4;S8x{Z)pW!$WAjRa}8p|b1NhoIWZXr)VlfO&5=l6=u408lGjMGEEn zX6Q8u&7kxhn!;{@p2x1L0=c4)JJFV!9qR{IoLw;Z=ph@U;gI-#EqX@b_Q=aP}BPYB9|RBXd}xNwFh3(|sB|8VoxB8;!CAdho@59Q;nN%P$~^HwfkpcW4-wN(*|4Am3gnv@CqRd z?f6)h*00>YqhW?chf`s=l03LWjN*djm)Q;HYqBDt7b8Q;%RPNZ5x2PCZ!Lu}`Ki6E zOP}X>YQjN^g3c$0DnkobG~87<)0up9S*X^dF( zWL_qdYq#%x%*+ab&uiOIjGhU%P#vYN5D3H0zNTHU==>Lzb!lon{dPnz0W_cZe=Lrh zrf^ArNc;*QK=UPZrf84;wNe)ou%V3Z&@w0G3yo>~Wj7XVT|K6P#(!v3Vh{V(#;iLO z|4rs9#UuYQgO6e}!+#wdf%&^F(aZjqK1XQisjCqR_R*K8AwHv4-FI2G{w}AjtsDUy0dBcSsG| z-#ZFg8WEP9#p#ib76(YV2P1C5q;rn^dPY1`E`f?W**mEdPPB3Bb;5y`F|OldxwkR@ z+C#DgD^?j7jINRky(@|;hvV`6lzj;V!Qi0qARBt6XBf{`8mM&c4dw{~w+J$?(FRi% z7ZC4>5rSL;kh;-wv8&slv*`xP3b2y`pPF@sL}2X8(g8MQ@A{6^n&l2LgZUS~zJ~n_ zQNQk1B#mn)NWgf&ni><(75nUGr08zCHRMv$Ht~<)eTvBukr6k0EG!_>L{*Rse3~O|6e=_8WzIE^8tMFl9xaZ`__j>G0@xI^4O(@quS5> z=PkGB43+MW5n8v#KLInU$@l|4#|zgfFk=XgN#9l-ivqQs2nL6BM~r*y(GgGJ%XD0_ z|4kZBFicYWpib4V*f7#xAVOK<6TTLVnpcm!k#nn%@bgMt*xY~m4QuMJqFbp8uGS_3 zlfw^4%1un2BZ-i}rTH45oxyEP zlfNk6II$NiK<5M~pMB22oa(vN_znZ>_U~L=%%Ff1hAg9D zGKauCcT6pfY6hU{{nU)YGIPh0tymS|IQ&nBRBT}KG;ui&0C&_}S-u&sAS0|U<3k)} zCr4BQ^LHXWoZ@@mBwY)?x!fDC?!kk@vpG&Lfs4A*px=sftuEY-JGL+e@#B@ui68z>dFlnZVN5&s4qgd4!@@Xh@IvR{ zH1VIzRt|3EkcEiQYVHykc}UE9%;BcwOMG8t5%e=%R$_^?ejcvsH|_j}zF^MjK@RcR zGV3&6T3kA_D2@+MZ@8zp}A|s8EJn8*Z+o+M4(eB8~E`GWs}bz3xlZ! z-pVa1sQOx;bVD)$uPOhMtz zod>nT8s{zvi4&BS56MNZnU&^W0#8$@5%Zdc3A&Vx)-p*O$R-sYZhqaW7wbp;98)1X z<4zjT7|}J~0ffMpHo4>p$&4C2@%KeZ9CQVC7t*y{y5N&^Tg!q zhz`ARJROP27K~@wMe?_vonkUd?@j0Z3niy(qy~uBxv%i0s7?jn&Od>-cBVquSp!-8 zpVBtZJYEPr8FfzR-G1N=k#N@2_k7l;UE&&FkD#BQ7B#+qe^{ zR&h03g=*#l$DF}^)$==+znp%^2oI`s_N4ztZ`Kr#tpxgb-sV9e`DM(O_w$(I^9wMiNP6x0!n*_wS&zhEQC>oQY0z zy6l$5xm(OD?vI8z2NZKyzH>9ZHypV$b^E0smFY({iWc$ZIFk8-Wo5{?lh~b&j&%$f ziDSLNJbMs(Gy!t|P1HZ%NMe(`NnAmgJ^?dT*zYH ztw{fa_vAgSkMd$kn+;-V{YXZe&RtghcId^1~A( ze3`uAQxZD0a$o3Iz+^)Ry3--+@7_sBesMRXhG3$Oo@0+7D1qTtrU!HnL{&6V(IsHk z*7MST^%Hu1R#nYBUA2>YK77ZZ!MQ0Vl-TPuCzNBJnjao`Za^-(*8@;+wc`FfcWN%c zL*mob|DgD?pj^IutP)w#&5jV?`2;(hA3nbN^E0KxM+A%w zDZ0e#psQKctN7OgR2Xzy5cMOG@Z1WXJZKkG#&`bF4<#2b8E z!rK$4QVH2iT4LBpU7~zhn26ndnHmm$H#k8j12}Gu)`T2UY~>`5 zPBclfahF(Pi=RMynXjt^8k7cxg4wSkwnm|#wK#xG+GoJbBm5K2p>ga5U89(YTEG9q zcAx1-K!GRfkG7a)4K%h5cVk>&-R7;G@I12f48|2imSuFiCf|%7zA4^BtlKr2Jx~bg zy4^&@th$zu{?j4syVPr^;UW>VO9?>gnJ^^jip{aTK~(3B*fiXE5X&Ik5y2ygRrR74 zxK*4GjGB(w3%#%0$t6;cSqf?;g>)UMd{C1tGqu0BKYDNp7!M`%Q@%^EyfJ|3d&u^; z2jHrW_HkU1JiLKpyC%l(g*NuW!-{GkWh$)hm@xBB-XtQK{8VE1r+1ru)O3HGmZ5iY z4xo#2!A@_+T9q?OjA~Ez3N(W*8 zlQq*la|!(62~2|ApmT>$j)Fum8gM)5*u8fNfK@EYr%TB^mq0h|s>%j;p%w>o%8ZhG z4>H_@xi)UU$@PK`!t=~PNS3o+%z5b%@Lp4GhadJGxTw@8Q1qVE&1$!hp!%px;q?wq zK-}Ak{bVDDa^#TodD}vfzFs#ziY=n!EvAS`Q1EnY;b$#Fr|X4E%R5OnjwxwrH{Nf{ z5m``2wsNr6Ow(q*9r7$LBYz>)FQX_Rn(3UYM*V&wn`Dl|Y(GadV@oG!=FuH*S%Lv0 z$iQ>Cb}t=oMV8@FlAp-UNrW2PMMWxsSqmhwz4Qr&t4uP59KXM*K8^g#sw^LChRUyD zDUH}V|T1*>{UMB8S1ow8NgjLk*~ESBI<$ix>wI+lM#H7(zsxtXV7skyhbRk;xM8-a z={u?xOn-Pn589*);8|`|KgIFHB2Go#U=PjgfeAvS$kTPFYQC?%U|a$TNR^Qy$Qt#%L7AVrPG%+Z`x)1xs3{*y`Yj# zIn3iM>A%j{E1-d)LMPiGdls7-gh-`D1Pmz+b_T_6)sI)XwsMl2J2Ss{{wQi9D5KI6 zr9rn2uH|TLo@Y5;0$KXn(DDgmiYbBp#T4=h-}yUvC_M3fBbo%Ieyjwb*yLu#6H~9K zG>4&#QsQ{tDSj}H3DL~ikcOFKdd*12+jfXy=_rYl;~u#QC2gq$N)ed+C|SN4b#L)7 z*wrRVS>JcHafw$KBab9AZ_OV^<}X^eutofd0%||}WRK0@>q}NuM>sA+`TcO$C`!UHJTv26REa%7wVA0b_N@ZsMIg$Lt z;U$oFBc_0|r0ld!VGJ#+-)N~?-^_RmSh8IaAXNVO31?Y)SOD)YTKT|dbKnWhDw1QS z*}1TN?S4F4V4ehXr*6yu*7xz0mP%v(k4oQk`yY&Qxc-#;veM#lwA1&Ohw^AY4@rlU z7o{H`vZlkiJ&0&iF#B=-0#EEpdxoQpN+a(l#1+8IxTW1Oles~6TmiBT3f8Y3RT#N-v2D&P>k7%SL4DLQHv=-*G^ zfLx#xC6M;jgrR0Zc#^G9S3Y&jXFvGkH}nm+{6tS9j#2Dg;6;KAaQn>$5x@c?)>g(-nuMD&H(9dpQYA_)#iDL{LW?G|k4_Hy z?lzip^LDdP27d$|eq5xKU;@GwTVs1d@G#uU8e;g%I4dmw2_Yo-Q6+{<$yihL?N+@K zeAwIaLQaeu9S#y{O=`CYfcu*;3!Cw=)2pEV2*UdhECL;T=U5hlqBLPsE$V*O9|2W> z1Hy6ZTfIKcee$MA_e{^@j+>u*{i8h3$GuDDi8E5CZ4Xvx%IEW0zyF)peD!!yK@)hb zv=uzEifL!?bo_}cnD)+tu$-oSx?dxe@$N*MKJ1ILgDOCPV=`nITT{MZ&BK*<9z`+! zz6)pu9lS;Kog+aKZLJwaM-rFZxp6Z{pj=a)9xAN>2qAjc5(4}*p(^j(lgYBPm-br; zC_eVbd3)25`{L&*WjB{GqDh0?%3lpWhH%1?t$W3nd4=$vR5kwnanib;&bxbgQ0PmS zKZvy#bO4d%P8xwP1Gtt2=>ARrZfhYeP6u=nT4*4{#o?S`bS>&UIyjX-qC>`S}lHJFv|Xl zIuvt120bYSCXj8a+0Po}kNQPI_S38K^Z(lVrV*&wk7ghe3vA}KOY%owDm<9ZXC!s# zjiAq$D-qQ8N_t{@VEb2emwUFak-~YJGBV3wa?)^4aI>DuzD)zP_=Pp;2q;Og6u5xW=Aw-$q#^B1GDa7Em=SK!xwy5e+F@X0Fu ztzI8nv5A*V&ym))n(9%lGv4P@kN(Y`^dYf0XeQSJ)9vLw6nTDKe1@Cg=I1pJWD@ri z$$gV|XRWQqlBQfgi_Gj+S?BI7M*cb33$)GHy|HL|I}94%es49C(Lzd9>8ERq;tTd@ z&WP|z`MNxJ9@Qd0 z0tg}4)T!8R$M8c1O@uuBwlr0VzBY(GYT*2b>RZBGKYEdPO4*7CzF8f~UC7RXR}3~I zPa|6UzDMqJ3uOg=n&W|o#hHlRWNX4PFO)5O$(VA+!OGnLCaa~WDaagrU3`LA^dZsT-74-e<ke@D}Z^avAtAs9B~7WcuMBe7FeLwlyuALovh;T6pBj^5uV?Y$M_Xqg?}Q76US z6c}A1WT95jc|Mjkjeby%JB_0qb!d_dNE`=E2wz{i*6vdy5Rw(X&F6bPbIDd&l9L zAm`i3Esm~s-sLvK?_?(n=3FFQ+#j`O-FUaZ8!+((tton(nh>MW<_6pPc40-)L{5o~ zww1=MQtDDu>c-ZO+(-#eTx`C{0S$%4N!M#4H_DDvc8;BAS<%S^wD$DJ@ro1E8AIgU zar{7BYt7sMjwM5N$ztAP=_3Kk%lf&&h1icm*%G=UM4s9?iEYFb!bFtn z$^v19y)W>jibiB9?IWM~0SLDx2eXp@A)Z)}lt=Of%QRaOa0&cXZT&2g?uv;ql}lvm z{jRzJF4@L5oD0X~k}p3Rvj3sjIel~PUfK1Hhd3=?&vxh-j#{l@L04b8U7hF#!N#p~ zMdh|ZO|Bcr&831hNllUH;0euuTg`ScDJVS2p`*5Fn&%pp3~<#;Oq!s>`knDZ-)tMo zJbi<3YZzmgu$~w&^W^tl2xpci$%8WS_Fm|+iL*?5;YnW$rRa?^kDPem2n-yVav%j`FV8{XUcOH%*UW9B2NEvtYE*I!Lmb zC@Fzu^>DzSU8neNByb2W1Fzs=VO67$xG$9NPq$*u-$&Le%d*BA@r?>OYUzmOtwZ@ZMRvcz=(74W=2QJMSjDCT$Cm%$#$8{XC?+isDnWZ zG9`0-Vaw4oCY$Cy3rUN0jgzV5;ID3uopkP)wubI3rb3ej9DaROnI+QS8NJuQU5X@Q zSfi|<3!CqBKMB0M0a(2r@8*ZBz%*@z`L1!#--NLSP3uO?sr_VuGGLkdEgv6Rahso( z?i83Q2)-eYc~wV=cd>=^_}rA;`jjHGxj~!pGGUbRqY-LiI({(qmoTH(Z=&3%zHFJl z6KUYddY!!QUDx}W;$!2oY2t)YsOf&rPf^W3BlLk7hGet zeF+St^j!{|w{BH2H!~@}jwq`PmPQ^Dx!#WM$)>vn{|g|`F#BhPxS}`X*Z4bFseFl* zX@a5qWtb?7`)#_rRhLw z2=eo&+h!}Th&Fc5dv!180MY*;Nl&QD4fYX9@#p4Sl45e?APhkBaZhh0GDwzJn$xJ zgTyd?NRyM%rMr-Kyta)9;1oCT7N2AB##`T+KI--{P~nc_co;RCFsh_UKf8iY+<1hH zNN8&bPCGH1+r`5q@~GfFz&$HuTn^D(P-hPyB{2=Suc1%&AYDGS6Qg7NP_Bc))r(qJ z?E`3$<~+;3w67k}#O~!iZJCEY83H~FBp9*!W=!P*C=-JOMGaLzg;M<|0Ze`XM?BUb zwAqV8>1+EtlA4~tRKSe)cEVdt30E?Nckr&S4rI=D$(aDhJ?iZQ*7@r+3F_7ONE(BN zyzztycTnno$n7(HR*z|TPr)K7DN}UccNAS5tK8QxNr3Wj*nsD}C_5PMCwYw<2(pIPB9QI*~U-tw}vrL@7aFe}TSWQLT%x!Q061%ZVi zz+*oPHyomq@KYTb^KAuC;F5b_y^)dQdX=LtMBj6SlviA<-be2=scN{gigbN0w|W@g z*rv3b2ZiYDbiCUePbC(5K0%3z&7(3M2%=(s&A;=Kii3%m-vfd6RC34Agd}~RnQD*) z1#!O*WYXK){~!>Qq4c%TxPlS7;7o2vJEk$hjLcf97lZz*)qZ?tJE5!-dI>y1R&P{+ z^#bLu1=JyOFFJqpnW|zaLeB>&va4j#b5F<(L|)R%C2y{3H!e!i>3zNZ9KxHVa^%0R z`O0Gd-Py1cDKH1i&+##tu?L}NE zu8`R6(56U=Xh-)35pYIX+B_kq?3x#(N;!O*8BM^y`a~wZbeXYEsGKCD?Sip7^+p>L ziugB+d&j+GRo6n8y4~`>-k&!FJ~4bn-sQFZk(c?rQfVRVhuUcaj=jQjs`*=>#og28 z-poZb^swb#&e1=ym-rK6)UxTDXP(dAKG$y24O|6xz|EWPPh9lPp0TnC%shGgn*seT zpDjT0wt&+7p#7PQ^(y1foK2IKfGOW|mkVA*ZFgLEzemTWCP3=3GqJW-fzu_v3+c3w zMq)xJm?^?t42C?<{vntVIzo8=Nw5x|9|}LNTXu~<$DjEfyAH@pOaOT@wTmhAzp5A~ zMEoF$vCA0RxkK}6&-KY5GEFfzi&r)lu0?;1)koV21y0p$r`W2C{{5fk<8Bm zSHW5bayDq8J8L=tTVc5zd%OfD6iOA8MWd?;ATX@FYkBqZ#p?3jN5F#aw0x(%U@121 zE`Tpan!K_+{fkxwn8xlcxoWN1BgvoZ9aE|Y)N6{quZT8n6I=O%{^vE?4nMxiC)9ZQ zVLM)%f7h_-$V|zL!KsR{VC=KfkP%Z_|7Xs;)4SPUK9>bG^}O&FQf(>uLq8LW zjo~A+75sN&Ps;f~{Jh?u;?#J|{teUfc)nL()$kws-1ChmK6c$JPXFNZoRsF7e$#g? zuj}9Bp^w^{)E6^p}ooM*{M`GhsIlX?`}H-xZV3t6v3Uw_#5e*JOy&dlJJ*Ihdi zlW@tmR_d0j4Th0^#$RV* z1S~AOt>6Fj(~G{7V>H>45fdxhytY^x?F2OVL=V_;lHbx*^c7w`x9g7uclgL# zIxs&f{PY;97Kx>>i)0CYnV{ydogI@FYNntKPGbRkc76Q7^N~?g14V;PG^1wZ!%WPu zl$K+$9M^53d`CY=qHh(?G0k@4-Rvn4inM8qv?)2Ry3D%V-hopp7`TObznE73&Gv`6 zro*2pDAIBG@$W=vvEqa)AEh52J9msZY}tw*o#M#3wHfkq#{|SHZ}`y zRaBz;62ILK7D{%g*5gmL|6FuoDN4>{?Q>LS@6h^0tl5qUrPROdb5oq%p(8rrL+Bo- zN8sCLyR{6gsx1@G69Vs_*&O}KJ^wN{^70axA>B3zD=oeCJcJ{443%wfZ~w}bqFMQ$ zoGO%Jef0;gT*4Q9!oE5Lo5FcBK|8_;EJyJtIYTX3TR?!U1&B!GO8p}UxfPkoqYPtG zmQVUc?(dSo$=FdS@%9BwSY5I3oc;cROgcZJ>)(q<)=xEE7FT3k+oZymIav)ULUz@6 z_t^7p;@+Fbio^F;Uf?bE2=o`e)imPev0fb}vU4LJp)3Uh)*R50Eimgj&vQ`crvlNs zi96&=%WeDw%EL|Tan><5(1dME#cUOX0HbELOhc=7eAVY05y*qO+!j0DG;)U8SW zD@*8%43XCTJe^L5U}^8mzPR>`_3Nx)LojV_xr6BaZ@WQj4Q4>5WAm!sTI1?OSVQQ;>A}knF=aRl4{ZVtvBvh{uMWt&dXsD>i)ZTFQtf zCo58Byz9j-eeod9+7SI{P{olveMeIf-4sXWHVrp|vN8iqgbyq##y$#3q8Pv?_GdPSYlg_x()=XNu|p|B5B2?Pr&GgfY67%KM#sOX zOZrRf(nCwavdko9G0NH=0{SE?2Mg(%iwbgw_uOzEM(G%AE&&^j%rU2n#PguEzGz)= z2T6(gwBr=~Zbnn>fZRVzlP-gx9$_Z`$)_UlJxyQBN`S|;`m927>bnFPF`GGzgzj7e z1UXU9@jX0@Tb=AR!CabU0bc2LF?^)u34jv!OG_M)xuTlI6DBwTs=4439e9z*PdzX9 zAAG^FZ9x>zOjF(n{aMDeV7$(vUuwu>$nS)4xkSP@YvwP2-#FEJK1iY@Y#RII4R`VY z4H`UaMtqi;I_f@huDMrW6f{hpEQo-PaHX^bRXAGYoJ1`K(L6|GkThofCOdbR+>gM> zubR882O#@JAkQM|%?j4DCLFCMyv=sOb%VZ_EgxrY-$ux4aH_jsV3T>vVp0@gKbsf! z@3vt+D=xi+L;JzCUoygng$p>#rz-PH4Re?uRkgba_ZZPsz@*?~V&mE)z@6<5*>8qd zR;A;P(qB#&3e7x5<(`PX{2s==Uqo=1$mJcfU=PLq>CqDcU2(WW8I0p3))!8p!u|GE z%M_3nuK<|mdOh66<18_j_O&FE-_-czaPdsTfpHt2>pI| z(O;#_*q^ETkn$r}Rd{%|$xq~AsN2o(_nkZ&R29L4Wq30=6d|?p3Kce24`(i$AXms@ z>21eEy%-hJp$D*>=tlVntnb9-`0k;jO>hgq_}mML`yP8d*m3;=zn~!z$%T&-HN!9R=>XLaGnezRlOR zfhKO1q0Q@`#U=Z#eutsXcRd#qpdTZI0}b0;hvrhvl=~|hZ{>VK%?24;#VJV?3cpl3 zY&h555H^d?PZF+K4jPEW%}1^22^oT0hA{4IcisGN7vXYoL2a&4t}1J=hmCMXFM??{ zML!)#Jy)Fb?KtqrYFa<1ONZFJ*Ys{Hl+7}_Zl>J~rfLfeLf!Nt2_$^=3<;6lanQ7k zY!<8p4i(@ChSpb+%`=9vsY?ZYXP@sH>B3YC0P^wd+wH99Dnb8)hK_qeEu z^@uw9}ZS-IG_N0MD!em4dp z$<(}H$|et9aSO1REkzUu@sk-~-^gW@NDfd(bp&&|Z=jZzF~mkdaeOKu^_#MQF2T=| zLsNu{B`ltJfLK^jX#vBs6wGSWl&ZbG(^yNmtKtAN42u1!!Iso$iqwiI2iJ~ibn0FB z2-)&EW^t@>xhisMl-X&TgyC8kzJ)_r1TgRaSn7_Y<9zaSqgAQ7i~8GYqe|KfHMUfy zGc0<*2h3`<)9+18o0C4Tfiwya(VQm0(?qdoLUCil3+mGU0GqEZ$Kf0vU|a@`PayW_ zk=etvbQ#(9bI+@sqs7{5frma1n$$6MQxiFfgARQ`&Ve;TlE__4*4@F~yTH)o&p*c_ z-!?}7a zk(f~Ki^J~dKVL?;x!EQLYg&8Hn{5?LohrZr!EM>Co_INLDp4GIIoq?)2r>eAu@%(J z(?q3OFl`fKicbBO5a_U6ZF!y-@PaX9yUqyRU6Sa0N^;kQjy*&nbQ(S0-0EyS6H9R< zfFO~GZh4znD*yS99EbCBThjKTk)^MC;gtd&j0V{H3zmxyTc)@4kSS?xYSR%B`-%0Z zNm$x{o7a4#{VBFInlG5N7CNn+&6i3w_Fh}7+(1V~4euY3qsy9fa{mNMHnf}xMu>{N zvlcIL+{hJk-ulRW2_)qBUeuN@%P$S4UcUu~>&g z9d^ahhWc=}@k8s;ZPQHszHP(T;?MTpo2+|Zs4cmlMBdpNywT0yPSXl+MWD-aK7128 zUq)|@FV!ykX10`$+hd*&-Lvtu3JJ94Qw^DgmfjF2(b|lEYP?;$fcCZ12LoyKd_XiM z`_>ZOw`7D)gT`bhI(ez^Unc1#;8_3u+f#~bvps3T@{%NN*$xQ8hd#tUDb?L89g65W z-&hSuOHYqZYtCEGlhW1xV&lkpRNBy(OjV-7?xSb@#`ZXV?o&DWz4M`fLJoa3 z1e09Ikqt77yIM)H>8cw`e8I>4A`iLK@G{^s%C&ORV?%P+L9iH1GmBAv-nil31Eojk z-A{~@JOuOjqXZ?WKktDXsx}Z2Z zt7QGNdzAmqA($y^!YJkmMprbB1`)@Cr-uLTgQp6n*1v7}9e60W9)wJb^KC1=p3|!1 zq^)=kw`Tjq^`QOGNpvdO@`FQIF&c?>xI=E@qjNz9o$U*og88d3hQ+oNmUz@3bHugM z*W1rRUQql{my^oxiKCiv@QoOdv{Re7hz}$_quyj-wouu+w?#N$UGo9PEo?!>8U1aNNkOEVamE8|fjts7mKBNcE z6>71E_D`&o&y~*;WY}7_@(*l}oTugCp&QK#m2Z~m%p&V6Paie%UDPY@r=^b$NIU=7 z!PNaky|Wv~!tYL997TSP zJ!0O>m*cWbw%zxZ*4j?w-5QJ>3q10J_q|kN_CL^OQnRYp!wZhSUn`^Lb06HU4XjZb z>H#qljAbcx-)RHF9;Xe{JfwvIiYMIi$~}LKjE!E}>jXeK%H2Nc+;@-&{utuCGE9uA z?O+ybMN7BF;I7r~LYc1%+?CW!Qber5T#OftX+-MZg8_>jiLYRfG*{Z?@F)B)+cb zD>l`4e#x$n+wW=^y@RFw5#%I#!l#(mht) z@#mR`+g?lKqvpW%z@~}0$cJQv$A9m1v;4K+sFSg9L?(Jg@O#Wnt)7`+3vV|hFIip< z-L|b=#dS|UNkeS7oT}B`wT~_U=p4mz?_gMaY^=^4ez`9#xOmI16?~%Go`%19P)2ox z&;`xutR3_h1i{$i9$$f+`p}65nqA!z0b1EU?d(JIABI;TaC={5rl^49G(+35uv(;6R0i`440m zM;Po55yw*e8AX)hu5pwD(oJ8!;m7DyZ$KOKtsnhR;(3Mj)oBokmr631-}Rx}0x*PG zqN|)UflmtnL(ntRko2bHIgD{o;Pr!a(BwVj^r!?;)N4jQU)l+~jS?Eo|2Qz9tV{XM zxKTr3nOTqfCAOAM6CWR+x?%aRR7XZ`NcS7?Cyj6jb_a!T(dJ`cl5gSwigT97^LoaL zlVf?%k0kMo@=G$6%<44J#DO!&q@}D+%b)HRNh+~<8!t_bnrKEb!2?MRi0B-^D|*5+ z=v7UQcnWl5rBB{1aTQ+6#7~!xACrJp42{fb-!@=Kosn$kdvMcAAkf0cWir zc$o&LD3kPj*{l}g!nC`@>1n0s6QeGEeud{cL=`eyx+g>MF?rgW#7Ta+4KO&O;nWWG z?(6DG&*ASO*=cEM`|-)SuQ!-&!5x4!6LzYXQrE%~wVMpsjcRGSmJKxNyoUBeNO6#z z>(l}g`&oS)aXtyM$bQ{myF^I}Ex&``swCrxX*`6nwk0`Heap^~)(!Qn{Ff;5=dPks z5b>F=mri=mla7hlW{PF^#)R9o2)*>kpoDurdX`++WIA@36 ze*`ePbv?kqJ-8}9Zg6hfS+M)d)+@>Fo zyRV2eROIBTlU={6OOT9%M4w^XS@zBXM)itTX<_xJPP4_>OsHHopei^@b>{)NGpivc zQ6x~G_4nrY+GCVTPGOEv5#=3#BS0_GRnk9soym|qv0=Vi1oKax$dC$8^$XM87o-7m zOLs^4+Wo)+HPw3Td(8fVo?|TTS7m4&RNX%0-y9%q*2#5H%@k4fZOr07E(*B^>IYA&b7Jgrax^yWdMXP*2H6WViXl_g zB2@pM#ggWol3afwNMz`zcgV)cJL@q$3WIKHwmiT1RRG7)F8cc;kJ{W0#1_x58we3-piFi2wKn3HPw-`0p?&puM(0&pV zB=AYxPVUK&a70~BA4um%6{4kRxtHg8Gg}6;;;Fd*c!f?yk)B{o2M^`5BN_L7?_uTp zUe=}A%mRo{_*fk2x&6jGxeH@HAjg95!g7#~5F1eDz@m?{oW!4B5tq8EMHyJNp2-Y^ z{&-qXx+6O20NQW2&45*XcNJ|8QlkG2F!J=I<(_hdiu_>(fBQu1IG+qGm~Fbr3@X;U zBd!D&b3pXQAkK8AvhP_WQ9HI9`}DnKXS%LjRv5c?L5(1HqmHX>H8k`6-ak9^|3L0` z$H6Ct8L~}UqV(7fO9e>ddS>7g^K2y( zl4L-fUZ&&mkipR<)KK^f^hWdrSI2){4aLf56@VPoX&qy~Gj^3EMTKS&>J4GZsDXs? zNQJ9pw}Z(%m;`Gku&~4dx2WP#N@4mT5o5IqNWm)X*WTc*{}ihS0|i=Vqpq~oW0A+y zReWzH&|1UKQNGfz436MqBISI-QS#+^>SbKmg$y1))f3n7TXIlB5w*=a5p6AWO7o?{ z3u)a!@Rx%e&;e3wm@@L(Iv#h;9?VooOF&>JsIQ*-5$de`94EE#bQ z*ArbgXxcweU1w}#tjmg^_UySATPtcEHT8C><8Og-bhi1Q`1r6x<)a*A;>$j@k6N+m zcdgY2PRk+jr2ogL1Dr&T46SWv&MeDN8U$b|(DI^`m~sEkXFvKx?v{&@@s zyP^aWa=TK`%R!}5$?xr2$JzNr`@Wy0-JkQ(Kotea@#* zg~Y~GgKjEaubJgB@tsfourG@-5(Y%|1|$Gk-^PhzGDfH&Rg`48K=h1-rG;K=kd$>< zT2q`&A4K z&@Yl}=bY8G|J4uW&9+&J`$eJsBsP&-SwhGYd8@A^N9<(c-qAY2S$G+azeyS8_d9f# z5Nd=)o8P&>agUGD542k0BvbYZe+Z$I2Cyp}C}%ImuWLPDXuY<5U3{bT>&tLG9zrGS{KsE&Z)zakZ3e1aHl(E+mL9h1?~wiV z8IU0&971Eptpw~Oi@qn9R=_s+THMlF=%;*cLX}OT|s;iqVY6 z{G36=Np!nILOiZk=+HvDF4gIt_Xv3!bhq_rWT)nN=vqTD@)2;J4YDRc{aS7}60Jq!XzF?z2WE)zwJ;$Ac|yd}{$p zZ8Fv!b`i{b1?Gm+Tn)9hYw&w%#-l5HbE0Y!&1 z;?~)=vqEn%gJM$pX?GYeoWb$#uD_MIm<#XUqSzS@;(Qe}BuY#_w>hB7hlBK_mwM~6 zM%jZ3A05vo58UZzYWhmkkCkL)hQImI1{c0KkUAt`*kZo}TF@uop)7+b(rF!PyU#Xq zu-s8JR4t1lB*|sNL;pZk@3mw+H^toPLohu7qxXv?CJy@6(^u#Xs>}*9A8i=d>493k zri=ed@7+$b1Ex~r=q{;FJj|j7 zw19BG;hjg5v@H5JwkV_4Cy7+_Vlbbr!Kk2Dh$eHk zx3KxVOpjpKOA0FGqymwVJuBI@EIfPDC0a0N;L{y$`5UdrEJ>e-Pl0C9%!mqj#;)0l zk=i`LNb`+uOypg-n?m-k8BV+$WA+n!$6qhK^});?f4Z(5`N2l}J6^&%BD@Nf3e8#4lGg>4XNt~J*fA7caZS$6 zybBJ()ZJ>?p{}?f*Pks64KdPck3S)w5+gV2G9xY8;QXJB`&J6U%SJ3kXdXTjBDK%& zG$S{MWQT_oyfL4?|CDhW^=OnDZ=*-$=S|#9& zXRb)xK4;YA@T0m*{(BJI`6+QZY}@P9$R!NLa=7TT$VEzP$nzw>uWAs@D)LbAd~jM; zi2Jqfr1RX)`|aQOr4vS+?FWxb$KoL~=On>lRepn_-vzM;Xw)mK5b~x|e+d*C@-;MT zTbt`UWLqnpS))_Ldf=(FNnHWjBnaCFsi08?JcMbrf$!6sw8z|bjU6!caZYBkNKEDA z%|h5qlgaS5r08#|zUc<9BMsI~us%M|57WD-f5Ee_bhZks?&_><9_$Q-&`F~o!F{z< z*W?VUe|}O`!mO}oegezxGTh4FPS?j%6dh(x_EF<=7(Ct>tX^fj@p{ZPSwbqqRal$I zm2=cWX@A}5QEN@JkzmnPs0@|X3gyHGkgp|9##;fZHmq(P5s$Go&{$>^>c%p^*7!3# z;2ZAXRwuk-mo4iwhyv1W2L5>GNyI!I$yzj<+{8t&PeLv?=kvd@w6f&oh)LFqj% z)v*Ha$EmyI`}x9?9Jbik0bt+@Xol&`c)iNlUN~P+$YB5GmhS1r%*XVV;z=$wOH+Yy zIX2QB>Oi`21_cv1|6gn zv@sDvoTWQUw9#ZoJ?8tJgic)9gacw{Oay87EAI139w?L68N&1u(nF{I8ZvUOwW=PJ z7Aaf4v2;Z9d7`>Z^(H_0PG6zvvm*{uvh4=;Kj2oR8dJ#$j918)@XHk9m- zIuDsfrrI3a?1%hSpWM%qN$0JpZo^Lk3*8Nd2<6l7(VMmJQ(zZSffC!l$ut(*IRgmG ziycU~ZkmPbxN1hph|-HZN7AKg95LkioDv6SlsBHECgqfxbLOQKz2ro*l1?!g3g%0? z@Z`!c@M|x$x+Iebx0P@HXRUiRfGrjEd9Tv1f-qK#G>-YtgMt18tE~YjbwFa_Y7b7kQWG*b27bjvNu8CoZn@+}q?&;m_L1cQYG@Ei{m|`ze12%i>b@+<|}x3z1PScUQCn`$DV> zf?uN}{MYn{=(-8ICQd^qc`@iaCc>vbzqpiWStv5aVcB?FK)#d^giQJh0y!;4W(yd% zPy6MT2(t}`|0tUH|7Ezgk1~`j$1*8G*%iA+TL zd(AS_-VU+vk?!kUIuB2vBWT8}>iJ3+8EFN(~-|D$mTRL1X?hvGmnYHPGq8= zDS<^s2Sq`D3$dOv*ILNB%!I_`&H;YgYJZU55MAKlda#)7lRy_7tA8NABXRG?OQ76S z?{T{t_?qY%piLaCJUI_ISA%r$-DDKEUDwk<-S$8XshEn2(Ds654^z zIJPYp?o8bsH&ex3_%+~L)pQql!|;a~oX-dTH~&}#yNH&QaN7FKgX=~6CY$@Ko?bSZ z9u5``TPV?c6ZS)ACq@c{4QTDh3V6mB4t+S(Zlmf4d|T`P_c#HzW~476(zU&x3X0;0OcA zkouHWYk?$+QHWAT;U5T>C?YnJ=6BiZ(0C67u44+?+D;?@So);jUnk8slu)ltLA8j~ zo_(!B{f3?IwsDZtIa3^>=yonNZ0&lnNo4yA@I>s_ycyrv-f2XeYG?CmmRihnh#21a zl|gdK(h#<2iI=OmHt?f6ycH{ar!;%p-+L}qg@+SX}>h3 zGo-N+1G4DJxDZ>&WKQPmcwSZO&?=eg23${}Fh$xNBgrF5^ZUDg`PI(B^|wPD4d78G z+Z{53iSB)6|AFe?dtys$K}dXqXjQXH=eRem0z6OJJWVP_`si%G0*?B(h2nZ}aHMVs zO=U9uU_K*awhgUv+XX+V@8nsP#H)M|qq9lTS2^=whF%I)5u z$?m5*ba_7Ah7f$Bo_7-9hi(i`qNLOhv5kEzdQ13O%Rlm;xG_NTDP_0{IABNrK>8Ic zyfXlikNCk8OxrKbpecO3;BLF%I{-G~36|e>c{&v2q&_W|u!uVhfX=cuv>8NVPZgF| zfJt@9|NcX?@#Bt{Q>=@gV%pkG{BpOnODa&F!>A`UzQdbZPNrzHywQ^UR1#jXk_G#| zlh>u5FQBj#U+eFT`t?>DA|ya>JEc4ta373;QfnfsgTcX_9G-AV1hm(>%=F{9N?z)L zQsSf+r3@RAg@Fd&;P}QlAP5D3MRA_U*ND;@3;ag&Qw_&h=CI}Jt1Ul;{O_c z{r}%3e)}_S`rL`I-C)uiIJCFy+aW$9u5VcHLI?G%W!qe3iourdtE-oF$xETW#Rb8h z*!|Mo=p9@^X|-Gz21Owt;)Nko#KjPF5K44-YKQGM!w#_XKsk zf^~z0D;%${X2JIqlrq@;3^W?qUaEqBfl1~Ed;pJr>6gdPZ*E48=+{CIWc zmahJ2!{shA;yQo`i^lm_?=Uzw5q5d^qbfMQU1O`JTfM?=MB?$AGz5Ok10-j@gtg#f zRobD6b+u@qIARM~%t;Z3>iW9%PuftA;DOjenspY~1YcW!;Q=b36fy0I223!e$hS*v zjfGN66Im!vQ?&8nZ32*Q4`=$ElMzu(8|781^A1Ozt>}b=R$B}GOW+T-LRsE~9Z5ov zx)OzCzzRfoyTCR1*#5s|pc&3(2{|{D0xW*Sy z&v8ZwA0Z|@71}rL`2w=V1{?cXc(M-x)-*n{r|U8}~PKM2?!y{{tyX(*y<} zT;LK4VOllwPJhqj?H&{&#-iz_rKK$}to#p(sxiH~hZu`C1tp~g@O1X^iIPw-mwi9JQ?BG~rL@d7L9$@8%2~<<_7((fW16K9r^Uml7 z?MZX35!)Bbr_OalQOpHr)^X6ROA-vvbA>=`{0}-Oqa?hw%@v)85Ov?~{L!Zw+M^$S zdtdBPiFWp{?q=Vs{ye#VdfY~reB5-UL@}D#Hyp10G%ke*gN<6~z8COMuqm&2RVAb@!VxF&D1@|5RsY?|4W5H>_&^f0jbm4TlEbDmWv6kIsZ+f*g{r7!Y%C?^Cr-nvMLuG00ZlK@EzOs z!N5h7G(Nm>EwR^}P@!rN@}!lrI@@V})^+tE!^Fx*B0DH+zr&n=aOc&WX3z9~+lCi{ zvDP({&=mzH;!=0Z;!u-tH&xWT@Z)ybg;xHRbl&NPHi!%~{{zLQ?-(=UACW?H=AFL{ z^!@{>-;945d=yF*+LXj{0;o3s@?nMz*t35i;h-Wyw#@{9zfV@AU;NQA56E>1{?!lO z!czLZ(7G?DkHy?^IZbt50l9{f!!)WxGn@&06g%%epzVT|PYn_{=ZkuMU%6j3v$o&f zF%l)fJ*2CSIq=ALSZr*37+-IgWjd^-_(M&N9D@jFonFp1JgN+=uVa!7(rLX({`RU% zS5pQ=7>xITQ`Y}#@J(Wm!+g0>@sIh`w1UcJ?+x#V)Y51q4`{VwWz&{v5&!}7`ik~+8cdf>QO{u`2duJ5$4W-oC;CZRI46%~yl4ekS#dl6$qk^o_4^qSZ>1@6 zU7k5i(>}7^I9l8a{1|5DdZzo4%iYi01laFQB*Ae7Ot=rrX79Z_%?>)ZgA^i1>Wgb! zHA}Vd^o*F#w`a_mQMS{!1-!7e_=d%qlMHXTOgwY=I5irvb?SsK^_jUg`vAXt>NI1* zbdgr0@^o=E`|FhR^=QUSC}CrHkZ90c65_z9#aKozDZ4OUg<4`kmq6D{_pgQOP>fA9f`TpBFGi;V`pweb| zH@j%)(eZk<2w|NpskW7ORbhBOAoBSe82;^$XuJaV@3`vCKJ%2*<2;~^3Dc@P$!Wclst$5sT_mC<>va>KFdqZqV%eHDj6e>EP|8= zS2D1-Byj(OgYQpi_S4+hf1u_JXySfQeJ`o+7*ue$2tF)VtPio}9QNzb5AYM*1uxx$ zi4bAi9j!YWRI0?C4bkUk>-K>)JkG_OOu+_N5{6&I20Ruq18oU57;{gXOvsj5$p7Phm@KQL9D;En%opmUdn+F z8h*X)skV`9-E^f&tQ)`bwJ5(FH2j_EBJ$`E^rWku%sh(UZ03hsuk6Fj#pBXlNA zItW(K1ej=X+ovxBUYc-0d?fBPxyrNKmMm{(`fR-xIk-O>I0LEge(34IVD3_-j=s5W zjPVI_X}$yKFYxz3xov-HEUmgRf+9V)y%=*#T9Li)$ybX-V3R=rjJn0EPw{w!Nm|`6 zo@Oe+-eU&6ge|Sr8#Kn*g5j6YQ2-_d`aOK~9aU_Gk=hGWPOT09B&rV~kJ-g6pkB%& z3wdY{5`rV&n(=juf3}`^$o~hDzct5oKh7$6k-*OD9cR6ImExv);Ej4`dn&i$9Rgd_ z?wogVI!h=omr$%zDI0iI^kywow)=B0?5C(%ZUU(`#2#f1)6f`@{KRSNSp)N*{a$^- zy4G<5&c2cN&FmEvCaiFz9`1b_ehA*wy}4Dos(k@$+=(MAjRn)Qlq6TcCXGJ0U5&3& z3~@A86t|e90FhVQn@H7RB`^aGdC_==>%TXPC zv<(J;&DZdPS1=fuwb4%8_7+Z;u#>7VWgxrlLdfIx)9{H@IQ$xU*oFp$r6Rm0Co5JM zAq|S1L(`s5xUKpa=$vS7UR?*g%`Z%T{|26#Qf%RoqDJr)_Zt98rw(sORLfQ>ib>cB zBrVEu(1uuJzve(-X}&fC3-guaka|}rQWGdBz+23)9#QkN0KJQ`L#5dZ0Da~Hkj}04 z+VPz~?heM)xI`h^wgy4}tbV=kq!obN^(xxX&bFcWJ0!;$js+-BKSsp0yqyyJHZQSn zkbDW17Y_4fb@HF$p}toMGH=mpu#^whOBw`!n3ExF(iqPIWH%l?Egq$BjeO*Y5UP^G z6T}V+UuBMM|AQOf4uLT2ltY=ooV_d;zapkP0C?pGzTc{P`PpcUY(5;G3E{|8H!Wkxf#*k$&T zAljl!6%P4N)~X+Ns4Xva06<1k64 z`5CV_#;Se;*w1fVQt^kea9A*`zPfgf>x{rb0YuZPCxV(wL(X5*3FwN(%TZ7VBV`1+-y zXb;VTX+Px@jCVQbrgs~Pr1&xbAr_KoSs9g?3zQEapBQ1XtGu;u8p9QRsAJ-tvW%8^ zqv~xW?>Ab7wJ?&g|+6DU+91!UJMmV+hy z;8*u^YiP)0JJgF<6mIi_pF`>&Mv*OW!dR|N)8nbz(V~`L)Cieasz&av&BH!d64Y>!Rv?m8oYMffT?w^{6tzJ{E88bgDXId8s53JtzqjXH5{ZN5xnNvN5Npoj2eZMh;RiY3L&>1TO-dF4 zgQl;~mPlk3;fHp(>0t`8`lBy~OCnSL_qls)DTl}TUu@c!y*GVu-ZPAy#6)2zp(JGI zfhbCRve!xaO4so32@dy9CzhDS2gQBn%jv+Kz14xIqCiwGs{oGpz(Omp#~8$BV|jFY z@XT?ili0Uf4NjPD>rph++>S~138pR7Lp|s9xdg!Ca7Sr z6}vPg@(qIi$zUJ!O9#*F)pSJP$gL6 zE4@n%iPICP^X7K=EG((JwOPzl`H`qRhZpr~ZjId6XCQH9bd$1+)`|6D+b8zJtg%7* zx8@j%j7z2E_;af!L+bYeBK#ohU;$-{x8@&&6HTU3FA$u4M!K0%lHhH6=?C@B2)5=N z&Zq)0%Oqz#?E+b>^i!$vr<3HqA025!9?KnDi(ElDk_Xt+<)&!)Th*j?!s~RiFLHGn z65cdL7}D7Fvg4p(l68}(>QTg7ZT|*=#w!d-3T6kP2LLNY1gwJ^*^d?WErj2;1(7SU zU!x=qw}z=meyo7}Q{AXg4W_{KYrsn01~gPKVJWP$hc_k(DGA3gQQ$a!kK-)T6B5?7 zn)Uj_Fu`ve3mrn8n%BjtbMKJnZI7{FhiVGOI>hWv|L>UT7O%RD-AIOrXP0XlJ2_Rp zH>{Jbe*&ceUCRTB4tv&I)L0=y0)?KVFSO?pE56ZKka~we z(ze>{d-@b3wF9_j@RZ<(gMdS35XQ7ZUz|x4Z)x)vw$!K(Ey}?+PZJ$FAOc)*VCtam zjasFc_7~*{b9LB2bm62QX0q|d@_5tvf>!6RY?I-PS4$Gc9810E1av5?I%xsmE#v|X z=aFLIzQpCp0sj=1&PX2VRSPrOCThw3=HCgzmePuDv_BFAOlvcQJkH-~EQg5nYhyc?h8kIl{`-;M!P- ze)xYBD!^o3;1A|GcvtmONe6xgUjPguc5EQufro>4`}G(+@i8a%>lY-8G?hzh#me{D z$%~zXe;|f$hiL7pTVeTa{onU@Shx7V|4~kRNWm(*Btui?w#Eihp}kpx+2Arr!`U_l_f>*czQ$yn;Ybgv6%wf(>dh?U-qIV`y;jh}LcDBv&Y5+F5 ziB8-8M}*RTp?5Eo7UM~PE0yjpCR z0!LgcS6)llf6RD>7c20LZ3^TL!BeZiSz};@wZzNLouN@3iQAS|*{^}%0AgjwX)7sX zL$o6%{(A+$Tb7EjPQMaz)U%q4-of|>lKXauok-zp?F{ho7SOv3Mt~;+t+T=E(e?Ej zsZUTzP^2!U%zs=jcOoLsh@(u(HW7;S2dMV-%57f4(dxrY5(nXNd=0nuXw8T<5)3v; z>lr5#TN$8;vta?8_h+o&qC;LA}E`;epZk@i&yG!cLCV5;A{+__Z0RE{U2z>JI1dIVD$dS&oULjzW?4@H77WV zbt_-(eeGK2X`jT$RIBwTNGDZ~dR8PxlK%zX%I|Lgw`lbb^s&?v9ZHI@*LHAx<_L7X z?0^9^17DgMRy%N}H;!s1`5yyK0f5?sm6DW#gULjsT^rg4fYsgd>Q3}x_~ZPh|GPv^ z3`&LwlPMTjem-|*18Fj9T?WE1ZM5EYA7V4#6t9N?XJ@Fi3xqQrXT%YSk^Luvgmd~r zdx?UDRQbCB3u4;Ne-Z-VhGm0wj`Zp_nz$u4uxUVmNs_?84qJAwu2^xRCxZUJ_J9Ep zPaJ;pl?K38`9HP;1nJS=N(bd@%{{WoLH=^^1n=ke`Ln|VeeBDP?kor15Y9fA8PI+4 z7Bg=1KZ2DJ$wGrQWo*mMR%3$BzXqyt_td1$^8*BS6t{g2iq)u8b8ME2^}O9c4A z!~QFE^!uf0KcrTy;NMR&{O=}KKs5sbc^PXV=zbpkM{RzAlKYx=?sM8h@6YpqLmot?ux-1r6je3%7WO00^dcFL3e`_dVxn?!m#)IQ4bC?lA{(QcJZQW0%%Pi8QSJtl{Y5|vM_I(x~1s^UXll@6EfpCD_mzKyfn!mW7 z)yhr1NVF{-kpE*WPjbM>vH7TgL2Q2`z{gE)OgT+%`x+hzX zXf#cluh(gN|$Hn@&d+%ao^`q9+~f$qu&jLF;@Dp zVM(!*i!qolmke-m1AG&dG+qTo29q1u51t#n5%3#x@I{tQ0Tia~Q3796?F*_2D-3X9 zp{>vkEvG0_usp3n`H#$jt8DUM6^B`ur`wU98tGle)Y**!g^bkCPjivR2K-002BKp!c4nD$Tx)suRh0d5T|{P=MLCLN2(?mqJsI_&>*C?@*7kA zC+){q)Z-`5?tS4{q47=(J-28zVc54y)H{u;f0R^jxVdEjs#>lCI95hSz-IO|)lE2A zJYkO#JQDmeSEHWI-SGSD2H=gx13{KO$BTq((M7uzCNB%+hOJ7^#)RD%&66QLA#u-y z-=H^Xh6Y_Zy-)0=o8qJ!NH1MsBz7$Opt!QIbcaUQCzz;GQ0S%lp|s}CiD^=!r9CKJ zo=HtmO>OkX^Pp80MGk`4+V?pT_qTYm3KilKW`79FHE3oCe+guvkZ?zY<(IoqPd+>a zu1i@u`th^UiBkQS4kOUCdlB~O6K&7Eb>#Xp?+_pUI5McmiB=QI+~+Uvun(HPfX{g# z>6(2s-nm1Lc8kZclSeW*3*!Df7EKXR*Si0`Sk%&TEn$+J;39t&xCA8eAl&u%V3z<{ zeh;*{h$T`OES1EU#XK?pyQ=9L_BGvOg2RAb!d^TuIsc|C>!Jo9l`f;$=A5K%8N;Up zJ2Qv<_w1JZO*o5714Jh=AcKZqL_1A!L^tUk$TD<|(^V|wa2 z-`kwE3 zbCrohyW0*H>m;yWxFpbiHqB2H(SsbqecIwmfJ2z0CeZgCZqKmktD{SOpQpQw#(U$P zWr?L~SM(uniyTGqjClC<8Xwxr)&9#%uy-p;2UOuydO2y2V}8HiIZ6H`>_K`A$jvV1 zqD^cmBF7(q^FS>-Xy)^|x8%6lm~dJ#U+j_q?ZTr3tm8kOh9g#}%Q<@%*mdUS@}p&p1q&e8)Iq*k6DCm?||Q%r{sQ zobIxMi_*aREsjOiC0_pnRZ3JswRd3;d^DYrJMc41q#qoS zkk9bN*|w*l$bROeCE0LzlYYl zD%vI;P*hmCkD(W7;j-}4dJV z%qW?j6_iA=u~C_T#F!sl2)91S&HIw zbk=lLur)10f}$SUJA3oOm`5QEqS37lshRzw&sOwQXnvbkowqI1NE0I-;Er3o@s;f& z@Ktqt&xa;+zCWvPQWa?FJ3O`Ce6^7Yf{of@q7xbS9*F*-_fqB4NWV3z7IGS^S4ZFa zbH!627-^lZd^WNg>)pwf>J$4}ctdCU-i4qlogcrc_QQZI&M#%DL5ll?e4?F?d8XL{ zM{Pc9ss?ZA7?a)J$vuXt07Jh>k?wwg=x^Z@VQ~w(mA=wE^ccZ=O)TDMUZmhw{Ijb* znoD_`??>?LkJ;b;P*9fll(Q{?-b&(4RH}HEx24mk{JH4bbffz7hA+$RN(XT1ZA@xR zA=-9sYGKy{zsoy&f%?%wnw{(?JHt?5+SrGX=N#{r#Lf%h=CsmGrK}4yais`IF4(6R zp%GO|A-PJg5_ZpuZEsrE$R zIB2}a+*KQJveCEBs?lrg0$(4%aNV|PV|Z)dcy*A8S_yFJNnE}>>GqjM#P$dA&mr~8 z`)EIDk8>=4_2PINkv|rW?rN~p@h4d6SMbPzoJxtqOkVqH^V(;P3E#{(*SmDKh%O6u z&F^R4MGQW+kZ2a0!|IuvHtDc{r(y=2hKePG?mvo{E~|^dY^>r=NuM4wcymGMu?xXs zymY=~3h>S_FTfAwHc026|Eq_doKtZyEy;?m2()zQ7S`{!T{GSHKA-y2^!aXUiAgnI zQPz7z`LKkKss6YrVUNhlguQEYZts9iGGI)**tO=dOse zYk@M%u(C7bCpVxD;|guc&qBLXJ2>J6z8p>=B<}o zA3@13j_D)2Zf$a#_h%H-JqQJS$%@9G(9O=xKfCZ)(fa{=Rqn7`yMYU&)*>vCcYU&1 zAwBBTQ_;kE@|}&6&$CKbzA5%??+*J`-=Lk7C}{wW{mB3V;Z>E#Up7q{uZhjOCW*UN zJW8$MvlmSI2k#Tvh$XJgA6$?a_f?e|E?ePFH#8dmKme>rRr+JbUo(657Z+c+tn$Fv zqrv*4FW}fN35vP_r%nI%`gWL;|7+F!=w{Zq>8TPkN7vc&P+59eP}ox3+z3g^UP_zz ztA%n!hZ1VhVJ{=;jf^k5;HVB-q~jyB-LZUpQ`LC*6OVlVlk4AwzYe7Nl?T67P1+c|udktT6M(E)6u4%0_DSA#0xu!o? z>KC>3w@Ock;o$B4_CO6d@t-3a>vQIo*54!RCjLL)4`1OYVDRB#uMx!QEpeq%#+RSD z>Bj^#|N5(OJ+(85lp7YnXPc|@qDd!hup$bTcB+(C)w^vx4=O`Ac6SiN62j~Y?P#op zn}qF1h@V@X8%B-tOJ;~MUpijLkh4#HFW1sjMzM~0(CK}ME)b*^;Yjgu0!#=jb*3Z@ z_om^=$c$;S0vv_SAl)gykCf4kM7Rh+xi&ak^!ih7@qUqUu9(i?_i^=PJ!QjeA>$s4 zmFn>#dKGm_rI~w(yk0VVRzgBu=F=2ZgR1w9s`jN|KTT&0z>>si+ON~qKd?lzavFpp zGcuHy{q|P}c5ZVE)QQO=ss|nCD|2^r>?_6ncrNZQ!R-Qn7|gqtF@J1Z=iR2Bh^;CQ z4uAT^IlQWUJ=nAU6m}67DEJ*=t6Hy7cQjQ@vPWLKBIYf+m$jF5%e;6h>QDSt<@JX; zJ#cuv1N^3JDSS&yMd(hJpKeGJ0KY!C zo@-w$VTJ;`{BrR%=pX3xjEnE73z_Ii8USnLa;3z~_Zp*DTW~tJWG1wGz4gF$i|;aq zUl`xwMJQp6#=*O^m$ahY zr*EvTf$mPJge-_}t)e$fhXa6l1F=%v30lk4!E~4aYQ+#SshKI9zJLzJ({;aKZlTRK%ctm7eGn<8g;)p}g=6gmGi{rR;JL zp^5gGYpq#l)c5u%YmpH+pt`%%h-V>ZhQU9X2Cg$j=p>=h#qC1PFddU5ra@}7#4-?5 z?g(gP(cvFziZH2mH{*0_#Amj<~`fkW^B$X5X(TorX&#cM^vH9_|Zp{Z=k)3pGrh0tX6 z(DT+K+CI7FQ!L{;o0tjS%uJOk=kDr9G*_#_F1CDP0wINnAYS4PUk~-xInv&jWUkzr zLxJknf9m4nDy!sOo7)Pq zOA7M<`WHkwg z@EP0v((umBI0)hEM2Z!2M8)>A(rqHVWs}ceJv|&U2F#R(S$f8L34-YcN%`rpv_oGX zSi2YedH@=>y20(-aQBtP?dl%Rp>|w2Mz8DYprg=_+yLXUv!-HPw$v*H=I5^xtT7|d z@M>`Dbk17U*+v%`8>-K)VTrvo(4LFLPP9@)2*r5u0(h0i^j9=Xj1K=rKrWSYWp-0u z;@ZH*I&Hn~C`0(#HJGDA7%Bf)n1Lw&3Yah#(CG)I;&ez4el8} z3o<@ptQ(9%0rXV2Qe_8spwx^O?-w(PnMP`__(~cDNB`-J456s}K2_J6u@)2bb1d|Q z_)=N{?#juzi_`z(=&Zw<`r9ym2pQ!71syqHQ%V|cY>8D~Lwmibq0 z9Fz_(nU%LY|FR!;sO^j@e`zAu(qN=^zcj+d=V{$!1agJP>xRkw9+@9J&U7~8i?i_x zT#a}>#QV{SJYH;QmfXo%_#g{UCb{p5dh;F*8tjMP{!}U6V&VJRG{)O;4gP4)uqxD@XP3M*S{L7Deh9?u2i=tcTF~;o`DmH<p&ygZK_T%5*>%Co5UI1CnNz(pGGC{%>4mMTS!a{j+sY3L(_rsZ zNE?UKSkaN0{=!vsx_L>Z9~hnc+&(O}-Vx!c1U*vwuS39JSPgIHS*OyOY0;edmc*Av zGPjbgp~BtW$AgD&6jSJ$1v^`^^in5#erML0e?|PsJG)o3W3zv$vj0xD2HWiu)tSro zlW+IEYV!GGE^j^#|AIQ76h=NB2lvv+c~brJ_aqK1g-XY=o;M?sfa|mexw5|!_RF7A ztyP}xR(-uL2XjI&nX+xDC_}-pLU|XA$W}A%wYSjR!jt~&JT|lPu(0$uJEmCG*}knm z0h(90!9gSF=d;gyD^c|4#ifR_h^b#?F0<&;5hIu-3w?4E;c;qO{+2zFIW)_chYeIL zx1#Qj;L(+TUMBb8VjOE%Td!*AHv*TcM1+F)oos_16}mMG z+)r8g5(7DV%?a;MCp{Gn4AC$O^B(FJ$B>1zJJUky!UNxFUuZ%4P)y&cL&m_oBG>k5;!t zIkB1qrvZz}F1M;>EE!J$@A%;Cf$Y?6Jh|`wVP^+No9vgkKNp(O-Z2@xOXHtK*3&gX zXirS78~v+B<=Oao^)jFw>*4GfWmSSWexZI{)oL?mJ#KD%rM+K@pj=wR&x4O~Z+4X_ zSkUgcWP`D&GS&K!fGn}T?iHgN(@J4Ga%+zTQX?kZf*Qco^^P$_hJ#wY9^i@>`(ICl(ciV+$BA#|kB#A&C2{^{MAh*UbR4Nvb}4 zr<;HQ^S`_6MPn9obWq$6y@*n$Kd3Gh{()%Tj8E(TWNL&Rm?HpHF}3TgB0fFi4q-gF zg-LoUVRUXj{m^E_A5;_70eP#U^%o|rL{0KxU_voy{VNwvtB-NorBMO|98cLg>&W8W zoAtnJi1gnN%B>Gb!oNS}EZp^t3nL~?FnO*u^x=WXCZ@PTiNazxL-va{iB)`a!4OjIC*|UXmLgVoxxNI#^9Tm(v4rP+u4j z0ChjEsxkD^5N{(GC}9JNpW?ynJ^h+A+mrRNr4PT4bCU>DZwTr@o``JUnY}Z55Acnp z$?GqM#PM}eADVQjZXR;Ne}}$3<#`zNunq}V9bZ1gC|YQa6}XhWpmwu;UbGE99vORjbWtv#>rmgFqVE4sz(YCyj~;HN?I*-_09Ev%a7Z3Hp+G1OA8qOdE6i z`n@_5m9IGL5|ebHjfuDD{_W#r=Va0Qc#kTdV=>GP7s+R@Kyo3Grx80S#nZ$+dNx&M+Ed`mSpa_K-AhSL zYjXKJIRESEl&c7UXS1HX#iXlo`>^t`8}R%GSk<`EcfE$4q8xf>F$fuFuUMT?oOk4a z2JT@U0#Ddl{E7H=rzXVNq~q>1tMIW1uvfJiwR&eH?U)oStw}Y(4kRIWo^6Yq|4d7; z(!n~r`vnEtmU^XTKbrnJ&%PkyHFMD?8+s5olCj^DXT!er+K8rpVHWTSYeU4pOJwF8 zdjL-&4BZ0@dU8wDzlrOf{jXt*afraMELB0QW@3OLy9qPNdU{e=L(0y?Ns;A^Mlte& z_4vj;9Ukb-w8_p@>2KH0DfIM#s_ihlVJ0u7wj>(^Ez^5};E-oqFSPHh$dbWicL3!$ z;{&EPf4dJcxg*_Dbt2NGwDv^xaMFd@T{3Xw4o&)_zR(u$xe<`o>7l~vs`b5T1->p9 z;b=3H@n$82WfDVd_*h^5s4_&t8ZEAR0FOfoGq-ym_ekPTN?y@VWH169-z}xT+8lKY z60Uos?5<;Ifr;Rf*#zzFJvr>%SFx%gt`hu;=OgT*=RKxUJ~GFY2|tv&_#(2Zm{1Y= zZEG#}Z8Ruq`Q$EN%?Gyz{UU{aQ&;|=df6Ga^F&cUi`;H8bojiRh_X4fVU tmTagjmVt8{i03Mb~nQeeTeIJsJd^z`C5jzwiP6 zwtZsP+H3G@pBtMFjlIpD6v4~!3`9bf5pX&A>92mf&~YR^75Ah|cWAYAB4B^;0Toh8 zir@8k*5*0gC%?oCQ0>j0E?=va1Y#t9h^R_69%_1xrib-gK3hJ_^r63PE%n-6T7Hm~ zrP=JNY^=H)5S9KZ=_ZTDkS92Kehs#c!jXbw73*;~Pg zpnZ#=0FkwCWU&7!HI?Hpx!8Yv=E}4T*T$XUlTU<+pM!pj5rMP=Wh#QGwE5W)!Wh4g zuC!?BXYv@5JYf)>2M4DJZg*>97zKx(?i7t(dxAK*ZE^?3x3Z(fH@FLeN`>Xf-ipsf z9Aia*M*CBlGZ3t-kV20H(Q?EJKmx* z6_U$khXa6jKS;To`ik6P$d@G6qPY+=yvPjEq44Sa0l}{jf$oAbI}sNdQuWhY>L%79 zh0jskS6*+oj+SXAlm~DD8dtpQ1$+ndurb zqi%*VQLImu#djE$X;f>Wm|bFZ80~HNSNF2=JpT|+lqxkGFX*?q?dBwQwes=%M(@mZ zUdY`u32d9}O)2v4MAttb@1h`HI(P-ln7a%(gW+?1|;WexX}!`fETTZV7%j-`NW0+hE~zVS_; z!;4Jx>qHIi{HDnh{*zQLmmQBF@H$&+)e85w&Y#3Ts?`5gCQ*f* z;PWu;w(6VGJB(7CFo1wVU2W=Z{oK?q&h!R8(F^@q1^kiUc^hm);veupZ<0)GngW`0 zf#O!EHW$q(U~AKkC&gH&67L=Mc?_G&<^b$hUCDxb(`YGgFhr80%YtmP%5PYy{?{Er zRuy*xTN347W3BRNDvTx1aF=D(S$d&486Fj~KDx@Jm}w{EIZ)PrcaAr&{P`I8$h?;S zzHSl5fl-tUMX#?Qw_`NC+!z#$3wT7T^Jxw3?OjcqaLJN}%k=dOsZ1}6t$s&O`%mKW zxae8XD$Egr~$%VK&AF8FdH;xPPZe3l;I)1wGUA_0ucjJ!Uun)t!(_d$#*i0Vs zHj7d8V$~I7Ze4%0j%k-=kzu?t#lE*5`;-%~914Sa{s^%9m~rqYb>F`$I8v4>b~8|R z`)6w-J`JayHytFLX-i>Tuuiw2^zrze%|9R%ZgKY0$MF^qVYz+%O7@EX!NlCRgth!) zC%rYnWEBh4>Ju`mbY&atz+}9KT(}((Wv{q20R}=x&`=PVeh`Zz2M+S0TN#7y?uR{f zYEgRi9j|wPK{GVWtUvIU1iM37J;cm*Kj>wMgCc}tJmB~_h_|@hWx!nx$W{!5N0b!p zJ-y<&T1cMwmR7VrK62%CU3H~GdHC3SfzqT`0UXqb=6_(#reDLF*{=Kp2y$nRM5?)LztPx1N*Y;Ypr&YH>Lt^Ue*L)fe6nwaU$X~I-Ahw% z3l9N7QW>yVgbQ$h)s-t}JyLO>#}MFYiB!E@c$zH@{sA)YDElUiN#2H(XVtp#<9rxk z(2=XL51SoK92X+b1FqW@CZ9hP`Dtf^4$<9?1>rG*p?cEtDI8uSUQfu3 z2)>;4ZOh#>_Ps@$ji((WFzPQUv6$6QAoN{T^?TOn7-LCpO!2xe7*TNNxhJsv|p&IotOm^7G`4RFpR2w^yeqe zVoI}}A)#}D`1$O-@m6NVQ2FTd9Ven^B@8{}oQyW{NG(m|>$&~gzV{HDLbpL6E4MOe zi$P}FoPZ@3$wU2_8wodO!Sq#dL49&7{tU8V0?hS$P1yQX^j zH(-k@*ArnGMdwSsyq3B+Av?dR;m%T!@a-sRqG(eI9j%;%`UUiZhfj)*pqbYZVZVx) z7zV1*gLRAKx1Oovd=hYdQgBN1iz~F)!qCZ1+ba)6I|1%81pdZMGBuPFI}c2PHy6tjD?sK9&96>daa@Y^R%u=DjnW z{z8JTT)e4{WQ*~KGNAQqGw$e0a1=}#+tO<0n%0zmVu@3O_j{_~I0;7O?nkR~Xd`t> zbOcCWA&9AGZD>al&?i)9_u+rMieEIC4ES-spl$IyG%iHNW?i(Sbj!vT^Q~g;vgOHsl5(tM;_^w zEcC6DFwZdSebcNAT1%;;UK2IazBb;7K5}5Gu)bfV2lZw6>bB{k<_=HEoZoWid(?jT z+3s>iC2P2bLr|N$Yel=oJWH;#fa@-t=q|m;&HF)cmrEF`T^G+{`sno)-GQj_F{@O1 z=0ukv8Ks9ei^(jv8WnRs5p(VDvP|Su{_eu0;wd4#mU6nN3-vZLn+0)}@L74JZvSrb zd=D98P#JAtrqWqW%G2J}0@A^J1?M<`SbH1x=j$ zU`h6GY-0lJZahg^Sv6ulNLKB=XRK_%Xei@(Cc8X5Q+E3N=iNmMtY*YTRJSI@W)e)~ zI`c>U}Au$B~`nFsG+gZ+~)D_KHJDKe5tGk7M$-y6P4E`!*EF`L#<-E;`{cEQC z6f<(RZ33!6S|L3FU;1(Z}yWH8VAk)6CbLX7Q&OB<@t3jexLIn zMx6|v>9OT-pF2b#q|d~zxIz)66Kj;x#WXOd^t1=$c`rlEkAWWSw|SEwkY;}sL3B?@ zOpKIX_8Z$SSxQ&tkvQj)hHLA|!1Q|qL=8{Gy^zf zf|PSDq5%n@B_NrTpoBeb>Q=4_?+n<`B7cM@O85=}ayHpLYoaUORA3KE+P<#^-+$|* zgr*O5x`!D`jeVj(nH*e9sKdxE@-%;ZjCz@-7>%@v&N$5WyhxHygk})X& zq)@1EET!>$GRbG|vM@nytbzc)(VHb~mJu4Sz@}woDgE}J_dg!A5RIRL2wRwePSHBx zGXo;{2<`M0(vb0fYiJg!HmJg-7Lno}T!Kz~XHY==E!}Y3$LVz0sZn1h{5hAYmV`lK z$vJwx9=r*?y1z6lt1#9)N-U)7vjJd^iV*97q>b+vfV-`Ricf+36iW+`CJ9IM1Q0qB zrS5;e{`wgpe@KzH#>FaOz4ckoK^k>2-u7?gdSJgaV*hjU&%E?PoVt-hOxC)gQFya-*yvo9#=~43TB9AtKWhiSpfM4^PVf<_CW`R!U-cdGFrX~9a{qq5} zgkCM;MS<>6WS;qJG>!fQG zj8jr3N34WHN|;~B-Sv=V^JJ`7(fnPAjRKI9)^DbU zH!U)&FuPrM$hF7A>;^e+`%T0RdCsZzU=iYIrsA8)`JW`<6-Lm$SQ_l*w+Kaok58xW zONHj8`xX$Ex2N+Q|IyUlk-L@Q!x@|p0Zo@47msm%3Ff};urKw33x5^B@SEBduBNQ` z;~s9<#}#U?VWKsRVvc^+8vXJFla^rgN7=06ok0Nk*+-DiXIaeRpvZ%U$Ij?w(6YFV zsy$U0{cyO*7wyp->)-BGea&I=%qQG3UH#LU>=f%I;s+5sr3E_5J9lwlIx541_@d1e zIdbYxKDJ?CrZ9weX=lN*&OC4PcTVeO&1fLOXiu9k=e^z@!^Tg9HKJrzjgOu{RhH$T zJPk|^Qec*#~Pa{~_e3VT)Ogv~4t26iF#zVB#>KQk^jYKpQu~YE!B-k&#ijmuCSS*9VoC=jDlk z+&PBVQ%CQB7F(8uRKRl{reswbVbhcE(JNisjf9xbP!P0ZgHR@x2G$y1OWHOFFF{}5 zB1282%_O1T4k*YShej!)C43>Hgl^4tbg#ivsxrn(J}my4|TTgil)R8Wd}v3 zOxoAy-MzS3rJFaW?C}pEpl!?MVQ&BUK&5#3VuTP!)a23D&P;mcNC0CYL>pb45Ta#i zzw<^O6zx1L+dK?8p5IQ~JUcm@<3(S+r#p+Zy1W|I-b1z`Q6J3&LHF+!qjKq3T1?)2 z_CG-PBx|X)vqE;MGV}`-$=1$Fa4}E2P+Sk$vUt3l*pP%kZ-26oaOSlyJS>u*iu?8` z=uE^jES6u?t7Pc@;4C}bm^f0}ZPlNe%F8ieVY)7tAscjAl%<-H$+vue>*3o_n{R0K zt@cdT1u1{xYD2&Q`Pox*-FwqPjCfZuoTDNJ$hw)hULhp6t4SydZ>E;RpztWAGp+cf^*v24dOU7r1qWd zFDujS^x=e$3+8*rG8FNCmp3d3YaWD}M60Q*8H?1%8l3LVRn`wK?A8=BiTz&dp+qTl(gL zNP#!k4zJ$h`zWDX?bWi95Tr|hlaK3dHeL8|^+G;UgLZ@JZ=iuS({L>#wqIO~z8m1k z&X6%fFOP)0qhx;1uH0|?3PFe#hm#D_HAL{*rvqows3eyU#X= z*&sri$*CvvBo(u;G=$U)*JR0Y1i0x?J}uB|N20;++*jg1 z@myzc?fuBl-!*1A{Wyrc6y3A2tW4fgG`V_7xi1E>xW$+c+``+ne=gw0oyI3YDMCf* zS`+V;TQm7z;h*Q^DRy~NvG~m>?pG9b=0&qGj*pquWRCupel|a?kt4H<%oRwXAEAzN zJnvl2eMZJD)pCdLn;78-_3QeKYmfjfoiX^EZfG?kRHR7A}&t7u(@uf zy~@rPr-pOat}vW`zVBFJu;4j$c;x%ld+E?ra=5 zjB!FQ!a4a|qWyn5lxPY*m)}W-N_q|289?3Lb)2sa)?J}30%vawa~?jt8)9re{CiL` zX!y?l-k;(96qWHAqt?++2lvZ(TmuKK?OS}^_9W^N9J8NZbmk{pF7i8Z9u2gB+vvCu z$VU1eb?vOuy{JNc?N4>u1@CT|KMfq%linyW&?;;Ze6zDepwF&F7}^F<0z4bH)QsWj z>YmxzYr6{uUWSCq2R=FD@S5i#rc0k1kelPMg$z&0qC!W)Wct@-q6^MwCb~D5Q}pYx zONj*blzMixV_yI^)pkl~up`0wJ0>*wwbwOwB1piD{?hZc%Y{fgrRdr-J|5@YKkaMC`e4EjzG6$uQR3k;Ecd z#(`kT#?8J$lU>{sERVTyi-ioaDF-FgfB9MTZ`-z9ylz)>{`<$lA5cpm*chzhJi$)< z=lkcl9oC~KB&sk#6)A{ksk_m|=+$5~>`5YrtpLc&=x1^zmVcw!Q+8x|lp@v>K^ld3pN&Qj+c_vvjxjz+4^j^ZWT}iu^k3hs z2Niee9P$0c4(TfG?J6er8r#R%EClc&Q05@{%tG&msHrt|#I8ysrD>u={&GkQ`F8_| zH0@Mn$v}rNxtl_DVfM3kz$o&hpwCU4*IPhIF&Jp-FdKwP;2jDKo(B5&%WOIWo-wgq zB3aHEZ``Y5bY+l_eNT@o!KzzQW<{=QNq7c~5J$r!$i}iWiADNWDQWF_&q7a*G1jDW zeV&~xSa*z}IEv0cl9#u(ZJf9I9}o=wRLttHYgL&wJ$kr8B}#=K0e^?wgTZdZy^}MF zcVf$tKwE?IJMHy|gg3^zB>o1s7_0Y&BO%gpg*f8n-#!e~PQ5aA)hrzJpm|cB^c|U2 zsy~1H>d9-B9~q>Q>qLj8jeXhvmX?cDPxRSn++IJHL`8j`M@hi2wyqR>bb$iW&Sdob z?F0^N8HYK$S9 zzI=;lkKDWn0i?O7zSMW&_HIJ9Wa+M#DMXd#j`ZA|Fy6+LD`hkjwX!%ezMug_*D=aG zacz?p@Q`ErT!Z#Y=)A;RWG<)5B<3FH;=K1fNLIu9(zb-3-0-))p|vwR8zR$zW~8WM zd?dQu1Ljf?x(pSqb9Xjk6d6R?D0=)sUYeHRBuz16@KLTKNVpdY(yXlCd-tV^^+fh7 zGZ$~$=0LIr4^2ZTn8*KE!1jD9Jr{G#a!kN?oll)=c|$OspHHFI<(R1QxC|Ij4KX}_ z|5?StIg;2@xY$i(m)IS0rUh~#Xnb@#zS_QQJ|GXps(VaAOD10{_X$D73fSRwW!6X+ z%&Bak$Vgv(?ctW%u{1YYXVs8+7oYnp{pJzC_`_c6m_3xKHRj%el}jVgaWR%)vA}=7 z@Q-l0f2@rwVM^?6J$6}XPeas?IgioM_*V&WgPrc21PAXDR?KdpzJl7iU=q~#)yW{h zc|CnJ{`Y=5Q}6)%?CFOAVR)4)$voA?YGJV4_D8GOa0H}Gi)bwoCw@cE*Zk9Kt>_Iy zlvW_k@Upz35ytJ^?kR?N@{ckOMI=XRbq|eP{tp@%k(&BYU;7Z;TboTVUrHt_xyiO@ z$}$Nmr$4Vd_d7t}59v_i$}anFsN{9~Xp;m2v!OXuIPj8VEKLNBe)^6E``yB);~yX| z_g3z0{eD}?m9SjraI`40u4y{pOo$0F4mdEGnd<8s?gQ!cCjf3F!RpNLj(*o2!t6#U#t(Wmy${mWYfN>xe&1pRDqCF#hgN-y@j*>W4W;vRK z&4Kru`}`-gxZ_moqG*cMkjOESOzsO0jbdiwb5&QpglF;>OJ&6*9j5-4@XO9C?l$L7 zrrzNPBP^+uBz*$6U{$ zF9s^#Bf{ASA9xpC3?17pCG$p8CZV|x9U?RyIa}X;aoBF?g08`&#t5%3^G~n7}D4AZp zE8B~KnyNUV7LgNg;esz*b7X&k>_o(;)M=WgF;*X@G1zgY$^aL$w8RMEt#b8pFn48S zDU{N(U!G5u2?xzT#Mlh%S<-nV{U6#<;5>QR1uwyXZS@PTMEE-Y8JLW{Ke&B}b3v_IHI2<_f0kU9nFB7loc+hzXmP%@^P)UINQ zgLp8k`y?XXBNJGqmpiEAhN_$fW&FL~`tKLvsO4_#4tco_PZgl9Vb$76o`Vo&j*tj6 z2)oXFeU`IjM8&N(+FNfrzOvbIc;f45LwL@-a|}|5_=rK)uvpifhDO+fe)f#U9NMTVpTNQ*H#OXv}Gt{8g%=2Q5fU$=$AXhuWsn* z+;m@>tNO)&H#`^K@Pu)#HL4Cc=um)h6)NkfKM(EPJPv%dnw#kF1U%mTJ~SqmcR}$m z#G+$glb&Om|48LjHuhDv5QDpgbGh!ZcGlIXtZ`5;AMM97evFiTtGR4MpF$ODO14c2 zJzO2|YG7?syghEK#nzlBsV{H8<&~`^oOXag$fYWhu)O;0&lG}}cmmDQwS)?pinP6~ zM(l5+gC#S8Wb5W=j{bF`Ok!kU70T1Ncg0NkiCeiVuIS+R02Jk3hu$z5~Bc%F>z5p zV;YjhkvgeGkg^ydX=@)IiERqUP?MDwU> zQS|m12#Eq}jJOZU*wF}MJuW5UN7jDWb-DD)2J%BeWPmq@H1lCPi=orSI=HAfGyxTP zswloRZN`$<<^gz?t@f$C**1{P^YX}B z9NvCn1HY#pYYE3j10L*p(0`%tY~i4^a9SAXy-^0GisT))T@bM^T3(6(fGF8Bzx{W`AF$2*t93g(-@W&4O}4)+~I( z@A5yAoK87S!Ve0X>|4TT*6ERVF3V|2I5;@qLulCFJB3#j1u2`E1wyLUv3FSW(ou9; zl>A3lq1cbU57XZosF6pJKYB!bi#u`1RPQ{<@S~+wOWDx!W%bBkIq$84!NwJvPpWIh zkkyQg8rsW!;K~_B&E8HLoX?FFrx%y4V7oW>eZOm3khLuEH>s; z?p|_3hVn*P#uHOn_gwSarDexe)Chj7cNHh@EPrSpKKjHiFq%4-8~l`rB|-FOG86cJ zyVIFWa(g3SqQlzP6AA$Y+oeE|XglSyKK_M|+QVKfZq@+F+=688!O zy#)?h9q#muMO#XrnNc$+j&Xb;gs_%okOX_k_3ZM*<#lgy5`2`4?ykyj1nX!Oo~3&0 zug_M+B_gWVi{=a3wzOo(FS1wmZwQ9R!24l2;8^Jh19@x81~JcljfRH(ZK*_oxe@>m zkFtB?I*4K-lreO|UBn-gt`f2P{Wh>eq8vD$fswJ!8Xh^SMuMr5A$ivU<0Mw>E(1p? z7s1Xj3cg=YGU%lhD3^~#&{pqy{gmyP`vAO|7ID}BvNx-NW^7W6P{o6^<1u;K7M1oM zI0o!+T^c&FocnsQS9$H@tm>enA;?u1IYfn^?RwZ7?)soRK`uZaL#w_T;#mJ$d|mvL zAYNUD{PR*viS!M7w&ZfNtcdm#dRof0D_dhJuF~Q@3$}AyJgBOA3#O4i0;tiRpp{2j z!$&gA#`on|6_hdb{Ml$AP1}_d=C=KaIyIHM_@EZyeS(*1Ue`;q7r)YJ>Ih~fuNOyh zGcZtH{TH=M%#fk3xHU7J4g9coG!Rog8Fv4=G~a2RqxuukYc`jnG*__6Vkk8heKbEz zJi==9MqEco0>ssb*Qb05wS@Z7l3LNU4n{&Y{4frJ`LCrkmmu~J3TB|F?Zo4P2DGd;hiM5^0GfTUkJ3&npV{y# z^9cx%NJ98&YCQOmkeC-?TThhlk{BA!CoK=c1xb_4_y@PQ1m${|BKermf!1iGfq|CZ zXDS`d0OE&=kA_rd#X#v0!m~7D-tjY`9}JhMqsLy0TKqSqk=WJpN$&Cj$+ zTCQ(9K5A30H`o3x+HU0-fdOG;Wr&)qN#JA$)W}-|`qe#hB|Jf>6cLe#TT^<~CRzdx z`aC}d4Kpc2`ekcZm{1e8h2zi<^%%}Dv8@{dEHKvjd~vw%H$d`-)aT#G^+G^-#;abp z(U&7OK#Q;!z4PFi5+H5-X1-te1OwIV7;JIwt@sBBQlunw>Bzl8_`w4qjWDo?9=-0` zuTJ!HQ=MbMxmdOnU592*FibIKtxSmPOV)4T`UhlXa6faw2AIXNF z`0Az}GI_OcZmRu3d^Akb*1+)rbgB^1Q#ji+THnaJ_!W`gPykE*NlD|IIlG(R?zL}t zj2&)1TV{~LHK#tQ$a~(}AA_EVyilg1%~h3FCb)j88tUCY_z=e2bRSJ^7I{ubDt!itzF{r5(-hx{eG;oBR9h>?rH zszDE<=J*1Z*7EeLo<_c(i2g=0R{7zgiItdIY99OH=|rHNO$e_dqOl1uNuT6Rf}mbc z=jUCpNkYM1-th^qSNm26`XL9vca+`^gD38ebkxx&wsu8P*g+rDh>$3CP8XqiHc=+< zE?#`23BYL)ivF>I87#*afulwJdD(C1e6WQk=)WbqC>ry^0e|n%2YXeo4x-7UO9z^a zUI$!`5$aeaMv_uMGfv7HZ#qy!PF)W7<^`k?84e|B&)DWE%Z3pg}Ey=~eQ z-VB4p9wc;tTg4P@qxGf3M+C)Y`+n>0>(T6p3c(20QXCu$&(V*(#h&!$P49L$D{O0% zQ*ZbgIM54cFLvO(*N5Mgtsr7*PLHr|<$no%3Rs_2q@Ot$JeUNl>}(sy^%d!jK=SSZ z0@{FAO`Y&LHt<#K9XM7W#>ajK-jtZ?tiaMc5Zia?i#*b|WH(NG#0nP>1&#|whI{g& zL~9eK`$wlA|ETth->A8OttK|ChFQGDErHg8QPdC^^ozorpBViEipMeoB&ZvP1RK^u zhF#wtmJ;UTzg)TuAI+{@J*IHJAOLK3o{{JN1DaAQGy*9%3BA$}sF_JO7EN zwibOMgdMVfq`MKu;)$vtx<3tf_1R&HjXl9Uc3CsKbI9o0`C7sr-Nb1q=?gXd4EAt* zo|#@Y-6r#fNUTHedfmIPv0Ex>Oy`ZmO5&f`Dny~Z?HpnpKs1SX8%2XV;;dSZgt?8n z3ek9iA*p5)?I$Jnya7D!LCy}`?}jg|pNL~_xlA5o0TAxe$iih|eetrtNaY?fk0F7FzyzP8(TIlrY zqfs~c!|^`oGO{^-ZpDF7ygS6D^LEj*FKXk-Ca-+9P|wfWqq?o##Y|u(I$7&3hus5? zGo}G~A8W3x&h%e;@yB{UMtt5;p7FT2d2*rnLm(#L=Rcq==_-rm&M?P5&bjq6O7>9j zGhQa>P7LFf&8J&M;u;00YvRoIwMKAc#-IN;XCL>SEp3t^?~KACBjM2w&pyjA^6c}k z$?K&Ugu~{Sr?yAsgkWe;*@5JTHYN?;DxIslYd@M$;P%}Vp1MEi8NrFE=_jyCw|*Ei zT(b)PO%w#L;vMvGDZ?cUb;kVgymvWB|I*-!^4qBSDE4`>KV_omouO4fHSMglI2E}U z^d3+P(1Zp0XA$)>cMcR6pzp6+sYaEv^XjA88s9t5&-bc$*M*?=D!ybbJ%RZCW%k(5 zdux7-Yu!1ypuZgghG&uF2lufQ39U<+vf@3-`wm1QmkYjEw`*jmJ#Np9S)3kSv)c_` zz6wI#JlqTz{~m5SlQ2F@K6vnq>fG)x|B)mDHy`x3Obs$z9T}ugv}d%cHy+ zg*v8|@CDf;5u@3MvN3PjuMvu1UbmeS9`4tp^dOJ0VyAUF?Gjv%B0srdzn|K=LB?;$ zk5`?hpEu9RqgFS6x6#_4B7T_=WiE!G*dKdbGwlEH?MTAqc`4PZkrXrP0ul{Ispf49 zj~C_H#RUB>|Hj#kH}ZnIMY2dGMQ1&QsL9N;MkQQs;nmx59?bdh%V5;ulj9Fv#wM4q zN>Q^dt?Gh|Zu|LIkGw3b$<2hzdG-bvSl1#&^3h%V=P1yF?^b!l9i)-=@E^c_F$x|o z{vp*WDvRLg_3Q+hJrm?G;*H|dDc5|9jBNs#w`VC$G@q#WoeVH4h@@;h3S-i_qc@cg3^7raA+h2~lH3oXCWzE0)MNN#2eOh%VSrHaD>t*qd~qZKE0%14=B-E964G`&%5+!5xg3Kll$Nl=PO zL=wE+1wf{4jiqRB+hLvh!Ajh3q0?}Tb(liZ&EdzIDP~yXA-LmtXKv{lc+UGNKnSV zBj}sq0!R8-ZF1$kYEx@uyFF#V`b5)^-Y{{w9Eg z+8Vqhm|R&uAEESTlY8r4*c>kq49WrBQpUzG0arZ!KS(ye?0y0^(fILSWALDS%f%b% zeXdhF;~u^a2@5;^MA+QXDEQhB$FD0FYE+W}kKHE#z>ahau<;?A4PfaAjh6cL@{vq| zw+QKq)C=&m>ktm^n*;UWjTdTvgv$JbOJ{d_+d&jlr{j@eOhPoswx{de% z*e|d5fN*^D4`}Vz;11p8!RXn zuDUeWBmm$(3vt56wJZXdKln{cz&k>jext)KZMsPNnnHfj%l=)GNFApiO%PNs(Xx>_ zQA7%c9p(ye%aP2X3I5&%*Jk1bC>sISKY=4`#XZX0=+F(h9!Gi$ZDYh3pNVEhOGDoY zZUlkoXhtnEjy^&S7cisOEy1?-XC`X(!c$O>dsD=LW`m0HFg!gXq`Qt9g*=l;wG=uBZ#!W`KF@*Bl}~t5lRXeB<{%O zIsxk2x8nNEZck?_hzC2!?kAlE3BMee#l?GErl?hD4aEv**9r1whsjZKDkEpIk2_h8 zfw-ozput*rXDleloILOSbRS!dQPj>_Q-k@3AJbC4_jn08_mGR%P_f|eGH2z(a-U)m zdFOWEI*`#vZ5Es-m8^-SvaO}hKy2>#C@l7#R9f2~3Ee6xf=Io%irHKgw;>_nJ+nXW zcEn{`hhoqb>)eY7K2mXHQZyfg2iF`pwiqn?We_=0uQ_r~D1YZi4qQW>mSl&ffL? z@31kvDX+#PG@Fccu_y2#8pCwg>VeRFI!83{G$I~16PPFmy5Ar#d0dBCy=j3TQkK=R z02P}fL7&GOJXKYDhNyzDy1yk}%87>TwfClU!o^DAxWg0J?hzpSNcRaDjq!JTL^SXO zcOK11zn+Kx21rj!7c@SonAnzk^V^W?FlUA3I)aGq4Smu`o?IQlfS+D5Lq30BvsTkG z(|^1yM4fiEK@bDDN;h_m-LJpf$)GaWUKhrJ2YBAT^ky{I32U@NpMpzj2$Ba`%DXKN zl~25;L*w~ARK>!M*V4&b1Kpn&c%m-wb)>YriS+Lr;DKVYschNU7*o8wou|raL_IhU zaU2U|l~Cemk%ti<fb|7`Ha#Ju*&Ro^Z zGvoS(XHECh$)Bs~C0^lMuLA%}qw!P~aj9caM>MvE`pr~zLg9EDs@@QeQ;!s%^@il2UK9wW#& zuh~8f2pe()=r30rs0QFUgbdL_6t>A;a(xV7jF`gm=Uq_93o`ezaz=&EPkYNAPdQ0P zdZT0iD9wR}Sq4ifk$a>>5vLdcAwVbqoPrCgR?Xyo2naY;Pa-VW*Xs$ULiM1L!Da2N z4R-g@;%VnWF3>|V{7?#JSjJOl3!-ICb6NlL(drY$Xo5p(+LONZD^7YNu3NhuqOwvK zuP~6NS4@~;4)Ay>komc0$pW-vNKMo}&hezMS2D^;B~%cK=aIj+{l)Y_`}%`dQl3XQ zXY8iIG*gsL|9X`;(RR1=J2KWxjMcpx&EhUvH3RSfMbi{&7C2(HnBSbOx zXJux6+Ezvoc?arUc*bAZ)CDHbWLle@gJFZr50{_IOnK^^t9oT8yK@~APO27k)JAD< z_rVu+*!7J@f-nLcl>v2vL)yx;#lw)Ri;=dgo~C`}4~q#i@&6;~y5ph#|M-W)AtNIz zvs3oY9(O7`do_qiM%kI+?kJ;dkyM+)IATcbG( zo2D;54n54dz*Fn>ZO_tV+wl35;I6_omcWqSnunFK5(LT@giAgv*XI)N74dYW234>} z{e%3nKo%1&M%3Q^2QlH@k7OMRoOXFwoD)B>()FjhF$PH_uF5R9ZD`Hid$McAEMLS^ z2XgDZJq3x#M-tvJ(pmN*jV z`?ZCR6xi;37yRHKr2Q>v0PT(@4@G|qlE~9vS?r*>jc4w#GMTOBdH5EOoK7e3kbh&v zKel51kc9v1d5Em2{h8a@k7vHl)Ji~=qo+mOkng?pUh<4&0UipvLA4-+s!`kpv=^!~ zRu_ed!)R8YYy7{6Tv1fZ7Rvecd*tkyo-EQfO-;nd?ms?-$DOu1y1!#x9C1ZE0j+Qo zqiV+{DGuL<{UyCN2WhDK9GinycZmr4e^6o<{$~d1mMqWQ!wU5N!Rz@CBX6ANGRCyb z2PGW)@scSOvGK=+2e-1QvwVB^cRbUbP9~os!;|au_8-(FH3jlCw^X6W`q3vh^-~PT zHck1gGr!!c1Sk?CqWb9j%J6$OMrDC_p;s2F4%dXnWzw2}LEEYv3z8+;a0?8r9Mu$)b?& zk$*qU+OS-iI@qi4U?5g|Tt?0~SnlTACByN$6#hBIIAu zpgI-PQ$Qv&LC*4fbR(x9oE7-aC7q%PXuAw1>zL7!mUC4)s~-ln2zS;_O#eX^1@&=^ z#HD{w2dLs0+{q1f*>74BYF;lG?(@eT&~NPx2kW)U57AGtEaw6hY{!q47H^MMD?kn# zdZWg%MdMB^1;bfAwj95Cj@XQ(m9-Wg1wTI|8@%h*9)*huu|UN1)#p6ozVKuJT|NDd zg20@b2a!hg@+#;89L)O;{)0YGHAecU>{_PA9j|z^B41o9>#MXUtM1ygnGYyaxj#$g zO0Cx~O?c3eLr6qA#_&3t?Ou5LW}h_mWV*<724Bv@GlyV1df$=^+5+y$%KxA@$=+M0 z2lD+o#J=j^2!KseEgP~T@;Jd|-*$Q33Nk<*UHk{hd{wcYrA1G-=5~gnPwk~Y_5oUb zu-LHni7};uP=Kd*#_7W3*C$`u&=QkVt3AW^D!L_K^Xk{zwRT@fFK$Qt75a!za6YiS zjQ(!#C$PFbP4s!${NVg3u;8&0eC)DA$mPMK0t4hBV;VlkJ87G>6*&XNTG3c zY?kl0?lZ2!OW$ZZI|Gcg>O61hNq5+nf#(`4+*h9Yp~m~?XnRAg%<*iHxfXI=_EdJH zd>t`kWn%x4p!S2F0RQ6S>C~=C`$#`m zkjUbPl{ympLi7onBSr)$$)jW}jN%+-}=b!+7On=@Qi8rmM+bcuh zZl&Aw%j!OFHs{&;yp8XP^1uB&;&jr{bW?Bl@$ZO(B*I4@rWkmGWGlVMfh+gUHMI<7 z`u@_}gU%8&eKvw!_#Pd9bmKt%q&ExD$i9vKirOM0bZ{~+5jd!TJ&{10L$I|UD4 zh>t+i09IEgkiB_Q|Fav2h_1iMcNsi59G&=+^EW};9yyx#+}`AS>oVtDqC);j>{H|m zSM=D_JkJ_y1akG8zs$H2zp`h6rhyx>$m8wQM;s{9baRKVE;rtfxn~+om^HP z=|nd)8Uk1Fv0g~Zju2XNTg0t;+aXo86ZEaKi%e$j^ad7gJkV=>N8O)JXLH18lO=nf zfGHVKZB0dLQ zEmmLGCa7|br7UGD0;^&iOm&**#<3|9iOo+9aL}*{GCFIYHhT;J7VK*|wtZz&29v8(oL)zY^rxv}b=h9xMj} z#^$jik6}o!%{PfwB<0cJ&F#2IenYz95w(>Wrcd9jG}Q^ev|nBs+^h;$!p4iNdPOH) z)M5bh-UliyzlYp$3Xy43NzpySUI(%p`F+nptOaDQEy438^WwwAcRlS9@CJ!Gzb z2#Qysf)5Iv8xwIrdym9CBJBbvX9;JpAS5^fvGCh+18QuQ1;UQ8sdB{vv#6pke!Qna zZr+;369fcQ6qN?r=`s&Ju7&rSAai)xK2<4tRnC!}0Y;fM7|yXDqs7kzxdnfQSP5>v zfbN^KnHx1c`AF&(o$wv1fbq;|)0td;No2aXpR{z}(G@eb+0_roVzC~6C2U0QRs7iQboh3elVZy~z`8aZh;BT4GQ!@6Tw()g(n zX^O!O*NP!T8g%29-o`{*{#BAr{|PNTqN3#`9TOM!co1N@zC??s-*{md0(b9B#qg7B zPD-_^3bJXp4{IFnwyM2?ULn6K;DJOD|#9?YCrFpG2UiU zjU6Z+`00Xz$7|Vi6&Zy;j|;h-nx37|4db|9Ic|MfGmgDUs2%SGWQMq?3wcK>0ysSZ z%MQnuldU28ONe)Oml_~vb=wTye@01F&Q0jUWP(IZBxqK|uAm;>lJv|tekde{SvE1J z9fs7l**?O|n+xMJw*vbhm2!St&sAw5ObmjLveI>Yj+4GMo~mj`{>Hi3hV8gOGB2W# z7ovX<1rhto71r>YN$i7s)O6#Vr{*LaI`NZt@>_U0Y3`<6zoN6A@B)f=4U(f^t*}R( zSKE=MBRyEwhc2}@Y*3ZGt@8%BuUY52ttRZug#hBK)fyPGUk$STJC$ATB)1OX@1Fjl zWCMy5w!UqF*ZFn^V2z5?O#K-C8-jA-)bBMZC;=*x5%vR`+i#KN%z5=tszT*y$k}2l zJAJEt2xx|WN5tcT^IQlPzE?t*h`5T34av zU)P>RAKMbq5xQg|Eu1+1{3PN~AO&^#TE(O2xN1R2JWG6BJ}504k@9C4{X=7Br&1ue zx9exNo7}nbNMY$Rp*7wK+EfV%S(kN2m6q^M3>SsJKHxfDPXJwqZ2ed& zG5jq+#)FlI%DdSXwgULl!V^u4ZSJ}e1ifn`T;M+nRX+Pg(Pp3{Z>#K8K>Qo-)>079 zD58tHthw2rdcL$r&2)#ZP1S`ADcTiH;Wmee3#712{XDJtQ_>6Ix&iEG^4vqB-3+E1uk_q z92F!urs+9=-p_-jY-4;rmsvbsJo!mL29-(N=d%1c?ugq^`a|uZlyRA&b$vKOQi04T6cByn&ap!y(?nwk5kJZ1cj-h7ruG} zY@p4%XX_JHwL(}v!Fh@}o1#Fvepud-2#33$I-|~ma#^R4+!sx6Mc8~5@p7NAz{()< z=%i9sy>Q8v6~CfsF3%yfww9>dqE=yYppaa@qQA(!X1T(Kx@b41APEL-g8cp->Oj zulLjgOwQ;OmooTX@RdBN>G0M+D1>h6puc$YGw0SHS>%!K{41xSyU$-pBv*4a-uUDf zjJL0_8j#Q9q5|*VcE3-&N7+3L{Hzfvt)HcdF?f}ZUg_(Aawu3IPfwf}q#O-GJ_#uS z56g+WPVv0}LeHxEW$15#EKAb}lC3rF6FKr-iQMzoA`X0*zPc7zZQs7NKN@@NZ%7;{ zG;DW7&UD+D#177N{Sv>z^SIj1e3ng2gfUlKk&E74_gTY=L4Cf|kE4*k7uF*Fdk((B z;?*2=L;4BZoe+P}h-!ZY{TcEpw>7=~yjVd7*@KkxT2E95q`J-t1#n*~Y%?v}y*^Bvhu0}2HFC1#ui=7VMOLstWMw5y`B zoI8d5{nYGu=avw$HNS$5dfu&7e`KzYD303SVML@?<*-LSuONPP_sAJvOFt~0f2lzUI#BwRA$ zw}=#>H+~J@Wlm{QGF
gXD`Vmp(4{$Y8opzVF`Tm%p+ez2dHbF_wiL;A&YUWw#
zAM*EetHBWni&=ss9kX0EY_HY7E2`Z8Z!_2l6-83eQOE*j`P}~>i;es8pMB@Yt|`GB
zvrvU^cVb_>ZhN+1Q&Li&?>@jb*ZCBgw<15gweL+qy+em@3Yab#GP*e2bjFQ`D&e>O
zLAM3jdAC{ev_)_et~~4ieJSbn5|?HSk>|VWkv|%oGUd~!7Wd1pp8Fa+$ph9ZoYvk#
zthNUEqWft+edq)-C!tbZhZ0kd61J&5R_ui(hm$wLm
zb5lV`yx03?(GXzw3mg~bPDp{>KY@x$R&S4jpPNXR-10zgEKDJ}ZM!vgmq6n6|BQ`LtsXjdY{9Ds)+G3R%;hIzSS8@a4;~PN~WaZN&a};$FQa!8v#aoqk
zf_~rK07@I^YaY1~sa6lIIe}J!u-WCW)%w|^-(QtlI*;5g|IV%N1v(JOSb6;gs}+_V
zuM6ZwvEu~ox4Tzr90~Q2L$^vm6%`sh8^Ym`=4_#d_pT=n+m46)tS?1JjqA^e`98&r
zKfF64KJ1v+RLN6xyo4qHd@lJBs5D@vhJ=Xy^B?pr&1>Dw
z!~4mBwWKYB>pa;S1>@lAdhi^f0cH5dDZ@eZ-MxFp1cNk*;mt-lnU%E=*%9I|Ax#^(
z9?2uk$Kn?vRUDIktFG0lh&{Jqo+obZsJYZfkNhmny7n&EEQ2`ydOGmo`%~c{zAuf{
zTL!ry$dxjp3vMD(B@*O6Qlh8z57N>8>sli+T}v$^meKU+BLBTl
zVvp_H@RSVJzZz$p3k!^G`2A&N@Jo!xjxP%Zh>G&Ti?Y<8M&zDI>KDK1voc|UWpqkTG{LaHUB_)lWxLd%no?khxR
z^qak_K^NMPbN0Nom!_6F9V*r<=3>l%`{Wi
zw|(djYkoHn=!S{{qTTC*o=3x;Q|^ta`)7S%^f<8$Y1QjkCK6QN9rHkq(};LQ
z<}Go`{cHn2YOQbPu{hAX6b(omSo!lrbZby79dL4fBRoNm>6h(
z^xkWgbV6>bjfWVOf0FW4b#;t52`~;Iuals2Les;$L0bguT8<2>;nBHMlQlU8JwOoG
z@479w9(HOn^E$uhd^}t+hY<7DaJB?=ZT0Xk?(uHv^GrKr9P0ub8!J{Jf;VT`2OX%#
zYr9>9ze)1M2&I0|W&C1FyzJf$I&=))0$IfM*Rnv$NNeY2g~RFjRm0P++K20}GZ}^(
z6i>>Q_KFZc(A{_cL7>YS>iuWCY+aA!aDc#!G|ej|M3rhcC_OtFnA&f@-G-l7D^L-+
zzHWw&z%#WJ&RN(2QPpRm`(EgI9}DD{`ld(s-1d6UPuLf)eV64qnl0Ha&f99Gb(<$X
z!pE_cMBl~}sh?!6u!nqgG<|d`g6A#=2E460Qo$_{+BBJ=%F
z&wBE$xp0=1$^7Wc*JHtwPQkrk<(b~5LeAjVGuDwJc+LKfRCGgX(#g+RfJef;=pw`APkUh?2n33X13sJM>8;;TYhGoiphlf6YYn`U%e
z!Ti>}(B1pPmTP$iuB(8S^@rV`kl~}dx7ITmLe|v`*tNL)=hF6se&re-dFcJ(4=NUr
zYPIue9()B1{0cxH`aLRf>68bx1M&%K{w#0U?p#*sbM>|)>!pv_Xp;XFKew|hoD_`F
z-Y3|GQedBqqeH+_>P}ztA>6dp$5}mx^F~AMLY@JuKC08drADBCqh~yo|Et
zkgW5Q!r|hp%E^SEm@5AeBeNY30=!Jm{WDe88b`E}exgREwa#f|`1IBc#<-p0=B^Iq
zZ=3TjKefT&`cb9(Grh!Uoc-O~1C6^{5gSKqZ+MCK99T){Bg-zIi=&?q54=BfmN`&*
zuT?jlw?tKg?o9;nBk6O8`W62`|)u{#W{
zzamuLEu|}Dw?27Pvc}6*O*>T4d-nN{q#%P_eGmptSQO{h7U+xCzoPUQDvR~=4_xB<
z{NF-R2(MMQqUT9`)z|)eV?h$8W{$kxWSsRJ;fM;vqh!Be%#FeQ^OJV|zJD3PskCX;
zO=0dKXA!9I?A+`JQme
zJa~y8>cyNSxCzJKL2PXV{D;lY3|!upQQ;F5f8A60>^#n&qM2%nbzh1{o2a{c7%VJ1({|Y&-V_VssHSN
zuV|Lb=)!f}#1ifzFv!{E%C_?FgGk#o4z-
z`lzA$#2a|l|4R-TdR#arGX)|`-@MhRvba%w?xM==pl2X$nXA)2=;nJ5ZByjgWYAB*
z8fN}GW-WQgH9GmtIa5uC>Vd&WfoJ(X6n&IP=%EPn%?zB$#3L7SSV^=ZWnEi7^tl~O
zd)C3uiU=^PGJf@MB{`T1
z{)19!!D?gwd%H>(-XR~2$MO*yhZzU|?E%y@D`r6IJ#+er$1(zR2q5*R#cP^9Pn2jo
zMKtl75s-b!NvAl4dqkP5jtVkYi{+({pq^7`b&c{ZGDwoVv9UmZ?0#CpqrigqMYxIA
zZeufT#ONFkZl7)^AsDLKcs%0lESTyaKxbLDg&oGp&wp9-2$aEXD^u<8Gn2ACMi0yT
zt7;x0uP>TWnh(i_`hE=aHS;;1KC^T>_hzM@T*2SZMpb`?Sntuumm;OeW+;YKGD1{W
zq~1%fom3*h`w%{#y>b8MXX+rG{G~4NVB*eu?9<628Sn0kkoLU;B*DJx35n(&uquolL77S@+^9p)iyTuzskt=%J=*XRvjg$
z3R=FeH>6TtdXQQu*Ab=Cm6k@6_hFtY8inQ8msv&U(z(G=ykpaD-&0#y$6k7_Ok{a$
zZa*>SGxJe|#ZHtp>2fle*Vf!NVS$&e?$RHuh8j=Rq?Ure2YTl+D@#^er0g?M!-x%x
zs^r#_GZ#Z+vraHaiT&q6KsgF|hg=-=VS8MhCdRR-@u(|hJcgb;$IfywBr7u;v&_@1
zv}XIBdc|`YEQe1K9+Qk$|0D_O$mQ6jAh77aUKO80y+_)zB{ieugT0Os2#^99qj^b6
zRudIk!K$Mxz@BjCRYufD%KF$LKZ|4brq2HIVNP-C0&ven&H=vH8dcakEaVfj!noLM
zxWEo`>cytJ1H*!7`iVpcMt}D2MH2I55qAcqxk}H~#H!(WBJid8B=uvX*)`xo%en$j
z#{i5#2nw?X?U<|Q>XbLn0tS{Y*w4ZcbEB}(
zrn`9gYgguYA;R#P1j~vH!%9R$+dXZdhxUus@3v(FC_a1j|La^?ybcaOSM2iPT3gf5
zE!CR#r|2==lm?4!itHx;KJgz(arI{oAe-0K&k`0xx=ix_{@1fRi)EEbnbu#q!-BYg
zTV*|uc3WN5!fT5+Z2sS+SN6CY47#^|FEU6|{q61~f2mYCiDBC9@^7F=fFz1L)@Ptw08T;4WN@J+4@L-!>B-r5zKew+sVog#nvMy>=&>
zoAWpBrDpYelMB?#+vM(^ui-p*^zOgS*ouF2IoTlU38kuhV=wUr*pEw~n{!!!D72R2
z?ic~ixQXilN!+aUP4Tuq@krqP2>kiyXw?vZZhMT<4$6!G$1(Sc#t+Ybr~Z28#JVco
z5h%bi`zYX%W!46I7afu`tDc?vZZY1=Fm7Sar^&fv2&*W%f(Qt@{z)VLiSoBzMSo>*
z`@Rw#cobpTGY{Hw!S~KK5xc)`jj{QAuEaf^4jg$1e(z5^I0BzyL-1$)N6a?GCoue!
z(4mH%2A<@@EXU}^*DSkbRvl1)o;|h^1^i$zuTJcR=ZA52jhDG8_r#h53j7>Hq{fP!
zeb{Rzc?UpOtDSV^F76n2_6`joGw|g@e=crZY5LCzlI%Q6tGrl0!(Gk3S;r01sD&I-
zU1wBGw$O$cyOblTbY;jVGkV$5{{J3F_!;`&AHdft{U#B!6fS;PZWl}1CEO4(@QW0NJ47;CD^VNGNT@~~cMa2Iy
zqO!>X$S}7Osery2%VQcyRT)U23^A>f70(Ut<$78z7-tZfZeNd<`u!UO)iOil_u5_!
zt(epK-J92NUKC!>KYNYak77876KYZ}jyzq&aCUnC*xUOUj=G$LRFbBfB6yqIayCYh
z^?t(>T-*R{_=4}3Dw7b4y6^l;Tvq_B&1CFPg9#^h_Q6Lo8PGDggAV)Hl+o}4N|PV|
zGiGv}p!h?Y0#*z-z5?WcD$nMrz%hCH^4^KutkzR#zBND8D}Hg8L$
zxgiNS`WgKN)5_iE_meObUV%&f@h$qjui7!_fyf}_Vsy-*B0M33{~+fN%}OX`2W6#ck2m&+
zx)3wBAhF5cmWw#)hZtLHK7_+#!G-4iw@7hmWtx!EJ~|E4&;qmk#tCy<2F&Eo^Avww
zPz$BOZOv&!|BFRcJ;;T~{JYpcGed;i6QzOMHz^Xwq;Ek1?Xwuf1EZ{;ZC?;qp?MPp
zQIe$>kPCh+&0(iua}7lnd57g(Y_L)vTyZ*!cdI;6ZhKzf-m8=bA6jzd5%n1cngI&?5A1
zTHNs72MkB=XBK{j-y;23M3Oy||D-4bHn%RAelsaYJWFY(N(_^Ono}`lpx|`Vp1&NI
zIk$C{=2h|3D;hw$?IR^@?rV9)QX*Vzu6AAF5Vnfx3uzMjnk#pCY)#b9lr(bD)iWvZhUDimkf#
z+C~=&+z@#~xzZ{K%h*QshL=4QH4qcv1VhxERWZLm4~vRro#L7^(YKla7(--m`;
z45nirXVg|Q@*i;er8?ZwdTsDdQP-(RA09?S
zZ=n>u7!z-q`8?~WjA{%3f+iXSl;}}C_xD$*>U3QTP|grYf4Keg3w5dFz;cU-;O{u$
ziSKor)~C1DZO15uxG%A-41`!&2J8y_nBu4t5BbeP6s+5-XzHb$9C1$h`uL?$Xv-$|
z47%>?1%LCqpGR-`DVAV=emVY7D16IBU&BZD@c1wK=2jfd)|0KP+g0UqjQN-S;IiaA
zSBkSoH=nA#Xc4rXdzGr{Ii`kr)QO}Z(CD1XXjcI&o_@QNIpA@8&l
zv*pWc{~)@0#QS-0$B>jFBK>NAlxpm^b_YPDOvz}}h@5)($Ajj{QI`HM1hOIgvdEs3
z>%2QYFmq;i^!tGEY5ffVb8&ccr~kS9=8E`IEw`u%nl)Y2lfI
zr#-x8ga-lomw)uRAC|p6MmIX>wcgpXs=P_YTi-l2|KW*m#^?GUPL!txIiIW|0$&+LvHcB+8d`s%j9WLrKt7
z^yB0aZq5d=*{N<~iVDZ1@b*;~VyU-rX*qk>8Fh$KNXhjJs{_B5wj9HbOEUVv$3O
zuthdNns1DREl6!FD{(-JLChC|By79ePI^G3*XKwCi1F4~3R9Ppy{ipIZ|S>tam%!%
z4CSHf(-|9J?#!PB+UHim0l4co>+9~vH2Xk+)S}g@9dRwWbvkJ6-o@AohJ*Y>_5t0o
z2NPj&MpfOAnmnUJyldMrU?@sS#bmo(CAr9A^Dd$EfJ+0Cc)LKeZl8`hF(S<>;bl1D
zoZG_Dnao$Dp=s|;ZcKg&MGxYtL3y(AZ_PZxn
zppZ2-7WZq9yFDmwuv-)zTi
z1ewGnSU!-urkWedkz_ml8uU~0FKZfPuZ>`vBfMSTv#d!4(aCHAT0s04kt%JjQvm#VDZ?j4)~>Ro(kH@b
zD;@2banFgZ)#>$u8vzjU#pX2aXA0LlLN6$`*}V4zL}Dvxe7uL&@Wr9`!PP#ve#Y23xTQnP#>E
zM8?MP${+jeL-ya_9vf3UK6g%#
z1k5c9mQwVRRD(
zn5bJ}tu;KdD)TrH-Z&swm2sN&Z)gL>v@VkYN>S_r8XB;{KE*{L3Ty|3OA)$Swu
zRwNp86m#M`ixE6BBx=M6O7;K}e;aI`(R`{qL=
zu^C0I=cO3D7orpzsHL^$wBaJ`o^@9&_CWkg-S(yz(Tn3nH~$#JwkiSvVKY~867kBF
zO>@sMSl3eW9)P-|WW2Vri|?u`0xlT!hj~&|J9jB0n*XJd?;v>t1rn!}dH-FD_2XdX2GA}guD-1e54?bsA=K&wlE#+XSSt5_R&1FlkT#rGJRCtjb`hj|E&Z3J#12h#LiFsr(i9Zb9FudLw0
zirzKrqYBEk!THe3S{;klUpO0(SIeq~kkQ
z-@thc+*8|r%Ur=WICb~9j}K$uKQ6~DS5h*FjY%B9__oVUhbm?C0x{+(a{jIveW9dR
zJIwF;@6s(9_1&%S>3X+C#opFmFw2I+QJdv)=O$^iiZ7dP&WZKr@Us4dEohK&YbxSU
zX2}Z%GVe&D&G}_gx1EgdJ8j2u9Q1|_5xn{n`{+_>>wV-By*#^lxk9IcUM)qZL8dhh
z*keO>l|Gn_AIV$igH0686C)24BX_fx6UmWq1l*IWx(|M3{AiGL?!HpcJEo}~UErsq
zANx)_!WB48Ni`K5l|i#43RL1jkC*BN6J^2q8Q$gJ=nCfxbf_neWJL
z^5rDq1(`RuU`+DW9E9S4Sk?Mr9CK<<&Ozmfz&IzQY)X1n{rqs1Ih?l-hVQ$@)WEe&
zvM_-C{%(mGYJv9W=?0+gNY=}Gfg~u-b{m=2?#71SNpYtxd)3%K?U~p~Y08F=unW}H
z-?`c_Pos&<5XGx+5Auxsxc~>Wt;?*zehBvwrIURn(2Mc
zl4sAN?EOlkgR3_|jbGet65o@bW?>~sO>aDy`s_B_gA4o_3#itDFQfAKtVAi)bE$B<
zTgjSSs!nWj9gSvotRIyCx^FSak-BBZRsRAgZzqVgLaL!lI;^j@#V0yZ>;ItDk79c4
zoIEqL*yy0p2jT_vMWpQU*)#-vimj68O*?YavM>)F_E!2e4NPi**5SML_1KK}e4M^z
zr$B`sNEg*Mv@0T4V+1OD%It52|4oVZ{YbKqCAW2s{(1{^@r_lg8MopZih9XUe57}4
zul?gQ5zSWprh2mU)V+dAD^&C+bKf`vT2zmXmH?5_I{5bWpuq`+mGjvZu>6iT1LbHA
zTVA8D0ma_wFHtlkUf>?C5U#+xbQRiK|L#@yX9K7i(jxpFyn5hQurUubtyi@nAo~bN
z#(%boUr*4S`<-_cluO)RGNe>?s?M0~9WG5OFwKhV<@pOQmQ?GDperLNNL>BkDm43r
zrjAZw`l%6IX12R1_m1R6t+65n03q)(1r(!OyvixpqpgBW!_>=W31eug~acHOL9%)^!e?!Sto{WNoPP3l9b8?jfcA$a~J3tN?f
zYJ-aT73FtJ&qk7cOti-cS)eX`p@UPhe?L~YWJhb>ppI#ChmSLvkcm+I?h>@`J?`ce
z`{ZwRK|ocXl=p%86;xHjlBxzwvc_EE?M%^K=MI)6g49Bqq3zYbYOZpB3@CS!;tXGz
zlJ=x4;g*XSgd+R=0nQ;Sg-nF(pdARlsVW(>zS!@^C(+{ORxSf6uGpRcIBp-63Q
z^K|>lZ0RU52Ci~+q4zJf<%Nq$Hqa+~(2wSJn5I@Pg6BP?(wduCDew-E_Bhuv_TS62
z0f_C@;|{*Jl|=X6cDITM{#y<7)I|An!+5tklRQ3
zJ`8^fAxRI2h*-Nx^1zQD=*>prC;~n;#b>rXUIJQu#n)-NuJkL@cpLoS=v>9(Mh&3j
zDx%pfGIC6lt^Dt}p7@?eKNf=4Jq;&`eM$8M=@*Hxye6gvd#aP!RLJ6Sse_+{`rvzv
zrfW9E%WZgKaMgzfl}lgoZN5*L+OJ~lJX#ROy;kY|I8E-#)ii@lro`L0SI^htUY!_8
zw?!P5$JhcXpoftpeS}7x#}v3*b3wc5sUJzhs!bYVY9opuT~ge+L!G~>%cN{wRCK+~
zNd&?3{~&R}uJcn*lTbZ(n>RRI>7Ds$uc`U}19OLbfeP1kmL%-X3)?HkB+8$?JktfC
zU61L46tOlH`a#Tv>oMDPq+o_7nbaPXw-)NewjPr*JYpghstj_(hsAZ014eWqZLXjR
zdB$!}4Zm&5pYK-N_))6Uj#}@$w#qJ$>D7rZIR7;XyN+TIW&HHKfyNLFi?}dDl_bn+
z|2tif)I-NyIP(^bm!=>?m%qHo%-+LB?%*NfD;=H3GC7U_OZ0|qPF3pW4Sm_t2M;X>
zQ{`wna@Z9n(E?q%yYY8pk(@@PGSy2$ZP&pmlu{_DgxEzZkWE`o7cy=Zlx*G`I*rnl8XmAOQ5JU>%TS
z(g|9L%quYd7Tz>-oh)Qyw?s7ykZkV&wW_--acegz$FoBIhPEqC5Ci)pBsF*f>|yXQ
z0A1*YAx7AbuMow(`!N?Owe?)BM?fv{+SewzoLj9v2J)(ARxgV?uO`pn4OlMiQvE0&
z+IS^K11}*=j_W*GSo-iD?oJeCjAfUJS&1T;`gqkfl*78&d#oe};qv`KSKm~mVuCROM|TwqFhIjj2g`IN->jkYR&{b
z5^6Vjve($Swpa%I#;M_?9s76tjD?$I#)vP{@t8ft7!Z3yaC%%{S4lw8IRbXby-Gv^
zDy+wmJ$l26NQz-D*XmK)Z)B!@m+{PavU5-HSbu#=pkgyEhh&fpu_%I3a;!CC=!{Zq
z9uZqdJ%`(Nbgr{C0==>n^$w&Ej`Uh?iNKjKp_&Yg$e?QeHqqAYEHO2{U`%P!jcs2B
zVuGR4{LUBO0kO)yFI?|{fF5*7;`MhJaDw1rUO|x$9Jsw<>EE45Hq7FgQxuj1O>fd!
zn)|+PzQ=Q1Iprl4ZGR{*7`~74k-l~-rnp{LloTt>N&5+!8%RURzUk%PBYk~E
z^{w{)RS5FZtFl$#v;$r|fA^*iwHN#tXbQRtU#{G~QoGCPUapq01NgX+t3NJn9%Ied
zZ<2Ex^9^}$N94fxX+w2d16rUPeiEGzP=+OekfyLaLdx9A787vwmij_mDig+1?G1iq
z*im-6RU0pmlfs|Dr?3plzb7}-y%!y*WfH>D?D$7PNBx!_#WJcJMi#|99}NayQOB;m
z$B+r+aS4+6OACor)hC<4lD8k#y1|c
zXE}j_RAR;}GOh4}*n7<-p44p2+UIPVX?g=^EEx3KvQ>V#HJFG%p?~qh1xnig
zd2uuBRO~J<;9iY!*95QLq|49Nf?>QH5oxw^w@JlUsG#j`NS`5GgH%OMX%WjnFBWHn
zn&0lnCPs<1&n+Nop)2Ox_RvhQk!uEWs{oc|GTL=?=
zP3~|m6Gz#ckkk%ksH3RAw367Ert7SrAkyofX@r)YpdGpC;N9_b5tJgDlKhl*v_!e2
zxHWK&N#6c;5oYyvly@R)c`%v-I(NU_INFvwun&%y-Hha>I6^zHG`Sj5vSGP{*r8E-;
zL=2-z&);TpbFxGaay^4a@0AO;IRx?LI|C%|An&6-X>&6bH_>2PQnob~%KN+Am>ofq
zpV0-GR-{r1rLMBt51d8ae3^Q!D|;8rNL|Hq(c|u>asA(5se>vdN7|*d3CXA-fi)l!
zvB&T`!VY%cmm3oZv?oLn8ymfuODBCKhx63Y>Ko*c2(Ja%%=_A>MiAG?gw@8mVP71)
z&{0$g)JdG_Nxe}%izeS+j*%qA9X}AFT%}1$c4$LXeU!E!uWEpg8
zSG1rRtg2@;n2HfU9abu5X#D#G)Lb5#4}W+ztO_!8`y;%L3~!2s(okVRw90jWB|~#n
zYy@Y_A4^AG>^Gq4qEHzJS8D*0ce-xpk`7IWm(n0(&KEipaV5;uOG2~1-YQ=k|6E(T
z48pNhjR_D8tI()-(wq!TxJfnQ$8{tOEmJLR;VA5n#sszOC$Utb&&}B@;d$J9G#&{9
zjA8RU%}yk3oe2QuDHk|Bi%}FB;JK(VU-3Fd4Jc#oosE&nzhNtBm2yIDE1N7Ivss2&
z*17{F+wqm>!~M#^#RA{L1DH$kIQjyKCpOHRU6^F)DoxC&*jTn*0f_NZGtt^X5zPRe3O3KH60K{n1=QSYK7vV8SQk^hh1iP~PBoF$x60O#pmach51U%7I}9m*ZVlf60(6ZWM1U>YX`^=p8pZXA=pUIKC)KorIiCoX4(do
zwHjy(uyf@>8u~|?q7%OJ@kkjIBN;<{qI~Me+z~n%l1x!(^)T=VAm{^CTq;I@?U8w4
z?%(_lpb<6KbtqRUO%$%tKSn>7N{ExD5O|72`oUh1-9FBE^fQaS9ZZ0T)?vG>>7~s5
zikTrH9u^G*+vqG?b6z*?if|H7#{NNCZ93TBV}+7@C;uS--J5X9UAAj@;
zRFEH+AgOUo<+!%HJ5c?Qp}h4N5eqtK*JvCxy*Hd-ufNj;*?(M$zGHO?ZraTNWz0_A
zifLyl-oN7`-^DKK1`1TIq#vaLe
z@5nnR>ttJyov3CXcTaI0cc^7xWMg4^o*qg
z{&%6MUww}DhRi(S#qd(@b_d9Vi|+cWdA1cvCI6UtQ9zsfF8$e38Kfd3ct4hT9!#UI
zP*WM`MK+}aEzujE$A1kwdQFoOjvitd5;%{a8>T9Gc^*H((K$9gr2k8%bMeuejrzT(
z2Oyy<5H{>Y@fb-4uSA=2(k8QsqF(|fYE3hS-tLO}kAmzxDG;fzAmMZKJdc|osn4~_
zgwzjoQgOsu(yGp*fw&`02{{kBOqC@?pLL-1l&9aScK(Y%Sbu6n=x~=-3eR&G-vj=L
zm^8k0O__H_mpb)C;$A(56#|K?^53Veoli-CbPN@uXGEwJyO{x6X-Jb754Y9AOZY^8
zP3->u8VE>uCWv%IMVDx8`;}D2s&;a^pT00&;u8pd%`eLqQ0ekWwJaQd9yxHex9#Al
z5c)Nlknd&-#7KTmdja$c(xWQZ0*@_($$vV=oy>6Q!t!pL=Lohb2Pkm4JQI=DDyuW=
zwN=DXe0KfhL22LE0fv0#_M$F2CDZf6LXjZ9T@km1b`JwFf~4Jm<
zP%@%GKle(%*iUBVUW&;$oi@2kGr>2I$m+2Nu5B$}SfDB?!@ll=5lbFsx8a?Eo}eqL
zf7(M~wl|kv3N;k3#~J~)x57z!vbL7uY*82YE42gJi*8zmwJX=z`-?3XUv2arK1B=T
zIJFmElhK9M@8pr>F6nPq+?x=h^rwcbn-In1FusZ@zK71wy52oGEv0-aLW02_uPXJy
zC2at0o+oM#&*?s?)Nk~CZ7<5>&)!2HL2=?_f}(8L?de0F
z3_uU68X)9NZf_K=J@ZY3pV870ybGVl_<4a+;pHMcA35JA^Li`6+aWMA;M8Y|=U}A3
zi0hg%`S>{b+~Soy^6}?86w0AUVaUFNv99AT`~1>a8D!9U<@zP^F(45%(9-pV>`D73
zs>i$4on$LL|J%Y9_}o_Z0W8bpC8Nj}2#XQIWQH+tNVOyHKndYgzU-=sIFc8wS+Ry}
zs)7tGb_u#91HNoTGn$ZL4A2pos)fALs^0`@;e?L=N7YxyMb&lT4h%4qlynUU(hW*8
zBfe77sUXrVA|fd;Aks0Ebc_N5Dk(^pq|%)V(nv@*KZ}?WCd*z-d#H9resdq%=y{L0Xfp^86zT$FKN5YJ=@tJ=M;2H`~3|N
z3H5;N8zFOEkY^aYXJo!3C+V+&Nx8|0Upr22V`+4H^g~T4&dNra=z0s=avK_2aJ&WlI((Ye6p11(Z=*0ajcS4(_hiI
z+DU=og*9zQI4If7;1Mf7b-Gc?A}eyMshbDqM9EuWznKI~m1*^b6t)7g6t56oy#m0|
zaXh#ryWp>InQ08Zz9nJ?CvBs4U2zAGm=#yLu}jBq1A2kRpuyj=8ob`&gg!0XjmU^P
zSlPuO%fC*OiIA7*A-^EIJ(w@9Ktuvm3D3zNqB0?p4!ZRr5I`Np+#2BPLKyBAEu%>e
zRe0(S7O29Y1qPgct6mXiF>3y~tkg^H0tZkc#(cViymH5qD3QE*0Gg)JB>bJbstV96
z-FoulWheuPX!>7*q4Tlm8MNYndTx@KCY>q3kBp~ym!jvJ6gRvt1rFE~JGTpLw>#oF
zIuyEz6pn9QR>W*Qu22=>e5=(2x_%9>)f061ocZz4zZfGTvpxab1=i?}Kr$}T&fdU|
zg$oTRr(hx*#$v+_8Kd0J{dA4L3VNnEU2@g|x_}?wU1})6m0S3k(rl2vi^Er!$A~blat$cru
zkpO8ZG568@P%gsUt&x&Xpg4@p7GQnroh=t4-F4%t+%gKz*8*ur%yHwXpNf9LkS~}W
zwjKv9kh5Zk5m&X^qAw4sTI5bs#pxE5HPbY~MMY<~nYG_@yiua`_@TJv))0Af^P7&L
zlEB4{?W%Li=bsyShW3A5U29^cQgIQCu)lk?-iWYV=`8Ia0RJAdbFW?hq7mr>5Ax+FiU_>0+Ac2X*
zLbMwiV^9C)I*SSSVBPZwh+9hO2TVc+sm}nLd6WnK^(J8-E9OCoPA|)>`h$0+F_uJI
z0?3H0_)^zw7pKGrK%3K5)(>(&Q4Y4-TFTm{F3x7rFQ?EN=oobiDIsJCL^-^6f99e=
zNfV?)i6u;a_X}sCNvVGC1@X?0x{s`&ud5^zdFtfi>2oTz&cz27DY+&zen)`yT|v8;k}SWrVp?gl`~A`(kN+>ss&8wsE}>?4SX5e^R5lm#}L
zcS!W-f1~a&HIJ)e5M1TKIo6$Silm10XWS%%9CU)^79ej-YI_5U1}Y+1W$4>0kf&1{
z@209k%Ui_qa;cB4C#h!n`PZhZDH{wtH9}6Th^OzaENEqN_ObHJ*4U24t-C6Tx6Tj
zvQk&vj7xFBQ9F_#eHQnkE@(qVLECo2Z-|JE`Y(B~A5S5*jjid1Xd%5|APA*Oal+`j
z#|z_#xdV~PiPt}GZ7KmT{8@y!>YG&a;~Z+jrFusi2_hm{qO_6VO>Cn=MM_`3b@2Hh
z`!u?B`z2!=B&8>!bFd{PP?7@35PXX(ZgXTS2}r`l
z&x}Uqs9PYU!T+SL-XdSr9H+8YYV&A*K3QAFbW!!wt$Mql49gU%|8Za>_Tg7zjr3W$?$k*INYQ>M&9L9}oeA8i8DroY1}Oy|Gy4&`^V@+EpW-?t(AF
z*qS@4IKu@`(@o3WT3X&h17jPx8FMLpHNI6=lJ;Rn;pMN5Rhw5n;
zatlDj(HT~K3c5X_uBK$342mWgwaf+VamC*_{BW(?7_`ekL0;p$eQU_qws^FhLNBvb
zWr3N7HJ&W`ChELs+g})Xp0-pH7EI&q*D2`x56}DVEx925oxX-b+@!sWc-C~wu1C+C
z%(`jzZn%y*+Gi%m?YX;-+I@=bTFA}ZB9W`heYE>vF}tt+@Yj1OCg*RFG(E95&um4i
zx0oEx*SLo3@8xi1MGd8Q_!L!4sXgp+VUO5>TV<4emikeab+Pv_TEOq#{k!@;5@n+n
zxs}QTj0z3;P9E6DSvgB*I~g#&Rpo<{{G5k0R$d?1c*cY8edn4d)RLO=lNUARR)OSc
zYFpG`2tG_$5_q7sL1HjcusL=KdIw!k#)Io}llx+FZF9yCa1VcqyS9_`=0gkJhDU1_
zD&~^6P3VnoqbAXzUXVILMN~bN;%~^ub_j1O67Ob9!cq0gCH3o4WHHX;h1ciy^sT$(
zX$X;1t4ds^MD?v1>ivbS0rA9bZ$XSQV}aEQu*TmIEh=3ToT06hl3u#xJ{*D+D$!S+
zJ+Bj^+`BMDv^NQk9hExGif@FO9pnd%QpYJOvTYJ-R0Y6@M%Hc=0(p8BWJL6Js
z#Z1!)@1wkw{pSM--vx)qvypkp`k;#-@)J~q(y%H=0?FR>QizW`!|4FKe(7i0ZZd_(
zsu(-&Hy=XpkB@T-Pvvxb{)Xs)jsH6`B|N7FWw((FzL%uCg)@;E+qXbnRNj(K*kIUW
zGLRY~lB7C@Bvj#LjX(l#33SbR7OWwuU2b25EYWnM1;21-Jn_QVqJk|@$4bwluA#^jifUN*j(dz2#!YSSYsaHXXtuG>K`MQ*
z{>0Ixps&n;#tg0A0-UaEaSV~hJZ&GvrP8MDe
zG=CGI5_X;{BKDkds97^^;RWHrN<=L4*Sx^~Z`e&XdJfg=-7BsK7`&_aCoD233I=M(
z?%g@uiS>9g9?GvysQMk&fTFC2EBSzWVIP$K4Ee8_IM`Yu8paBUhKbc)z!;i;@n66_HYn32fmNTu{C?c_@X{_jw
zhOZ|jKnrx$n46?qU=ilh3r`J_*m`n8+5z*Hr0=8>+Y=dW(I(Dff_X-T>R$&K$lk6<
z=hNr&0g%wljGzfXH)3c_bv#A^Ho;vAnwjW~Oc2w1tDlfrRMS8-Hw^KL>aw(2>Z)Jz
zLS*6+ZqgX!BpG@PS7Iul}O;`xlRhE=9<6?3^
zhE`q0!O2^}EQPfuAJb-dmFIIQi}b>YHeRE)zBHcjGB2S$SjeNZ~LPB)xq9S`e0~q`>T_Ss8b$Y_Hn#{GkiCPSo8e%c{h;3r&@o
z&C9s0?O#(oBYZ~yX}1vUrR|(iu})r2_5HM|eSaxSe#hrFXt#8&64K??m@Xyid|=sl
zm7y)}^}}cKuQoQHgVqhZfuXM%1@C6g-f!GIWd`
zI^UM_xTl|ml*DX>at(^1rfy`PPMTr;gd1L6gle5k)#>}0?35I*q)>v=>o-EkVoZB2w$1l1G7q3y3u
z^~}QWa^#Oa3aod2U+(QHU=NeS)%vONv_GP(#D-=U^}z^O+vb&z0he
zMFuOTk$32O?53)(w=qOj9wwa#?@D;v(uzgtdo~$iZP#`l)=Em(DV+Qxb-^#ZdESZj
z$C8}Kpf`HBcm0LWyT;p%*DmJ2-z1YF&NG78
zTTq{q50@=|Ll9;^u(z?jpj4TAnPfiG%eUK0)6YO_k9zERitx$vW8q!8LtF4uI;{2k
z`ER~fHl61zY9P4*ek4V_-a`BvHm1G7z
zXca$-FmNUuyx9;42`7IPvLUXYfBhpJ--cD?==eG3PJB<(s!JD`YI(Zvl?Fej=TY8W
zYb|4A@(8`xbe?Q(vZaVkMujqyliBaR7tx3%vnR8a4@B{Lx#9nP+&VFgH8_IQH&|8o
zvq9h91Hg5N4`aZfN)IJ|Ltgo{HBB)FFg;w>sjIC4ajCq>HdKG-QQ321v#!P;n)wBO
zqjf1(7axrdX0*;PlD~gBZGbPDJtb%wAxAt)$6_UqhffdrvHsn^A-I;OmE_<%FkslN
zkxEWe|fjKIM3RrmPoB^SnkyAzt!$=zn*yQyv9L
z*=uL9kp({sca=SP%uZKl7nH}#%=Qk=j<3@F`|WSYrs-XL+AX~p6*0-NXt7
zDG$96GMB4d_a{S-_FC@`#qMO=dv)%p~EUD9IIVwtEtHksS;ip?$1ZvIz{Ukj=4X_^}?e4kwpv
zbDznQoQK89>6PT)%|SoAeZg;#z0Ci|R>Hg={;?%1G_W=C$R0avDkx#PYJe@ZMeH2`
zYrJ~#>LpeSBvVuS))jch7Dt|WN}8k!F{9&P3VNr4B#0i=%C8^rUC}I)VBLttZ%2L&
znlF#5+MX+)J{(*tBS#$d!q*8dT@4Djnz*WeZ5Mp-LuiL?X9l{SGJHx5;7I&cNLf)d;CRc)p#5Ia49D^1=*u02H0Ap5dI06j
z(_(exM9UCP!~jWxb!6Bq3}EiAJxk{{3!}qxP8u{@T|}u(x;krC7|s5MKtkh`^R$}1
zccvGYyMv~C7XbZm5gnaE1!C9b7?ht`poaTfu|(I7cZEtEyEmBO7fF>5Ojs*W@MAo=
z2va_P`1W0rg*pa0F_W*bGfvdOd#@cEvWnR`>s^@!u5j|0XFUsDDZ+y&_jYxOc8G-0)UTPxVJE
zKI>k%;NPmOZ)K4(!}6gIN{G(m!OE0|`u9e$%R9@lt?Aw$_y70xIikmG0tAFEf9~zs
zftW(HG~qWgIiarBYvj*igOE)vvBR8Ec>Zs7w*+%);8{eh@npfF-ddSMZDRo|a&
zE?gnIU2cx*C99NWc1C!^7kuNiR$H0%q2$KfLrM#8`o);L{L}OF)4D$SrHUe?+~xURMQb>%y5X+;%oW${(5XmiR@^7&yh@L%zeK
zksL=y4?xz%8=#f0p)-O@+mlP17uMTFSlt+K9yoJ=&DVi8J8{Ni^#C6F-sp^v3$MG@
zk>q&s+Bffd0K$r;dS^;4QZt%;aFf|fUYxglm_X25h}m!mGw=(wWCy(Da$ke}w~QKn
zw6BR+eyecJY8?uUYa8q7xrX2W1az)MGbMFX84Y*<25uuful(B-QOmMr{byyTL(qcV
z`$pyu5{@D=^eEchgX_y1yqV**R*+v(L)Fc*db}|Nx#3+#Us!`c8hbkV!m8tGPDwFH
zG>Zh0HW$i&*$205J$807lSb_9!8NmgavT8K^3?1X3ah_jKyc5R^!4yE!-|}3AQ_LQ
z^;uC2VE5(`4LU4NUEe&`7Lzj;^6ziqj#s^w`OqUflS+ZOtwdYF=^j+dFggv
zLh^L_JyG-#tmt|vqhlZDwXkrHTWr%?QFRhdb&P}*vA1mPoHpB@W!$Hmsw@DM_IRFq
z8E@wcjG2)@q@6p1!8K%YE?yOT55PpUtG7!uOpw+_mo5yuuB(RqWN&ufYA;9eS+Phw
zKg{@{3_1e5!}yuAIs!xH2|Or}a~axr9Q?6Lw|?G%NEfM$
zte%ph4~mA8wUyO5Y-JZ^Lmy`h)9)?6{svj7zAPl;;!vrpx|{8?%frBQqmlG|HO+=B
z*4@Z7z)Oc0<^s#0QZ~y|A?FDqVPktf!0~E3g+r_EOB?EO{b}~>4K;=lj;^nsJX12P
z2S~zI@rLI9TfMkk5VFM#JJu2WuERDcT^Dpb&4d24MVuJfT!ZNN!JB3`1rbp=kz*0n
z)%HXaUI3RXQYTQF-}7<4fFzvDIl>u9=SwjJ&1$OM6AGP4&fC
z=|*{RF62ROP(<-EOb^Si1&W-dH&3o(z2AK1AkJUb3Cf5%$`v)u5=}%4$q3V*X4zAA
z+t;DPZyX``w?1`&x@pDu8M&CEyJF&Y%UJ!6n@BP;!pG;^_8^VOQ)76rexeO2t)5{n
zhNd8@{IWEfF2IlqR8z(S2f4SfP7^5sWKZhS(_+aDAIZGb)D|rW`
zmET(H>@nlZ%Var3Y4Jvs#VAUDX#u-oJk@a3RvsoFD^Pd^5Hh=&g}lJ>UxK`6r9v>;
zao06ljev`VV6_VnfC!6JMbAHq0+mlSou`YyyOUM@deMvvb5$qcNr9&`C}e_u5zc1}
z+*ev)aFAbNdSm^F!)4i?0uz;4G@juGn3(chtL(mU$AJhGnc3$!yE7Ad;u}oa7lgWs
zG9gY6erT%99lWJO{9$?R@Bfj>eyin70G`xx+3YeS8r#VpCg1WFw*s&kH{(BE+|K_V
zNWK)#b7HuL26>e?dW@DDo!rbj5fCCvXxZ27ADW;gWU1arBKTP;b@p+Ji4}{&0T)c)
zhRVVu>C}$81L5Si@f;^6YacSif}+-g@6EM
z42jm$e(C#x6K_GPrE?ugFGtR#y4;AEH-)n;U`=k=9zoyQkniOrK}$e97J!OTZNosn
zgqTU4bEoF#KxphcSR$dk=o%8YE2_qjIKND4Ie;;u%|)&X&vk4h@A`1
zEYNml2|6@2?-I~+yh|8MxuWY@^CF6jMpLQ?g5^Uw$3koU8bPt&JOL4rZlNb$|^&qJ|#&NeTm_)jJYF?t|iise4JvGM?ul?vE$zy@64=YgxOs9w(gmEA19a^R+^Ua#tyM8NL9b97a#qs%(p1
z2%C1No6wLwC?%K!^qi_xaeKI;Gui}_A$@WPtGK$OyPd8Ef_*;l*6^Av8RyfHOkCav
z+mj$0l^fL00OF!^pM0K!mKz!fWxoVYU~wUBtWV_oCt`@TH=`U`pSnl=ZBI;F$@dr&
zFvJT>#G**DlMq>)H6&EX->Mx#FWm)tL~&%j6Y@dr#FD<(Ya+|Z3V%>1IOtf*JiB|e
zbeeuvs=0|F%c|s739SBB=OH~GK&N1t5M>*{Fx}lJIxqkY84x3Lo0c1Z;0EsDoUcO3
z6$S7C-{de?|B8N}kD1eGIz|+hL7aez)~8ZtLqD#-VedG%c0&?~5OMkgnxrQ(AiF@C
z>Dn?_(u@an5tc`HIVLUNK!pk`Jt*JJsS3cA6cc7RWGSR$iE}w})MVn^|B`#pU77*(
zsF;h)K|mRv&|q}6^Z|x&GC~weDX$C3U_Xg@7tbON=;Y$
zjATMYC+q+tw(4qx@{e|iP>=5%=@AA(w~(a);Tp=neu5#Dz1h)Fxb^u((uLN?(Pz>N
z=c>L5r9pK_qVxPtKQ+$w(K)r%y_oJp-5suo91y4r
zE8g!_=)2C~o$u83c6U%&phGGnKzhFMW5^HR4yrZk>9e#8Epo|MrSYbw$@6}@&(5b8C
zIFu=^sYYSsVtM^Kea&6#=Wio(KcU}tK5nCfi^uwutz&7IW*|{v$
zqcz4alPTlFm>>Vn-*+#=sPqYr^<$zb8S_I7+2cL_1wkoSblJ=th+@tI=bYCJjdAT%
z2c?_k+`WCnlgdE7AK+i`;H}Cr`Sogl&d9
zRAvDLE$#p0(|4w6cBQJ`d8l=}>)dJH$<)W*qT<`4Nl?7kOlPA!1oSqZs6XbrVXQp~
z7mjXwSER(m5%y5Ttwu|e|BKukjjt-ruvHm790h~E0i1o7RfvH97J+;;#LDqq%Z36#
z4awuiz8Gb5+Uz<(Yw`sgn1!Up-QSWZB%E4b&X>a#VM0GqUV4bVZ**VJKffVqWOVo>
zt426!!GbCMlaJ95Tv47T$6yA+!b4AOgACZ>Zj?0)xO1(Hg9Y|bT(@~?lU4Xw-Tg{;
zg3XB03}5
zvL2<4*Ch7oVgohFyc~Gt3PZ=(x4t2Af&d~e%2M~2NzA_WpjsKhpgweLd!e|Y&L!R=
z^`|WH1HKY;F{x|LT8~0#iAnz>S^WWMh@2F78P1Y;YP~>>!^dmDm*W%DI~IT=A!hMP
zBxkrlVLs52iiq<8hqtI3&nT8W1jzzcM}@I?1-F(C
zdxpMMla8`^T5Ycy^cwb!jEeHzWr>L5urDzx2qA~y;O|U)ku}Mg`4I#+u2;7Rv(BoE
zA_lat8Gd~MUol)qs}YD^75s`8cxGIICld*^aHo3pZAlt(K(D8|L7*Hwl1*wqM}ZhL
zSIBPWqiuf1rTgI>wcYy2Fir?tcYT*fyckRxbGrl9%eVqP9P=eMGJW8Yf2+
zqy!-Q7-i9U_h`$ZQE3jH%0AS0c?Z!VPPb;2^#b#pC^fJ)}Q
z?@o+N+*BZQamC~gSztJf+zqWQm!P@@)4mlh`N`~?79vxGn(ncVrs%K)DT+Yw>+71i
zs{_Nx8!dddPEygbnyzTaQgY6(ot}84_#6xcS1pCp2zB3ywyYqAV*Bh=1mrYIHW^Ne
zLg5FXwoh+*z8csOIxo-?ewx=
zpsQQd0O^sWvs=0)0$Wg56kkciN&Y0AD@LO&w&k%n0J>^NxIT}*DlPJ}>p-lPgXXx=
zmz=Z@zm;Woq`HwTJeu^3cD2k|MzD2O=opQGwx|X)>@n-ulbKY(no6gBt|K#)74z*c%C|@1{j_k=oBY!Xp!QAlq
zJ$-_)d1%!sy);OhCN^8AxkQBFYB-7^)&ig#CED>WtTOrh1chhiBp+lI{
zJ+IQ@gE1?G&t2B2MKwde4h4DPcJ2$qItFuZxD^CjZgBqyAR1i{4V#yFI^($WmGN|j
zm-e+{jhyI7pX=J}Sb{oPltUxGxyraD%EB4|1K!Mby&_{4X>=4_^!Wo=xzM+Uu~_||
zqD_-o{BtPhwy)14?*KTo)EsRpLGiY}Nz=y?o!mENmDkyFbRMLi$+ovGxvz#H_LoI3
z0TIWmaUHS*iBa=@6f9b&^xzzHO~-DA?12N814S$Iwvb8dkkdtcBZoK4Ppxt!b*j<*FvNuqzdzh9QTfEl$OWYA?TAm
zXw$_rAdXvkUZq#Q6f1Uqa)zPK9Pa9%oh93&^0C~pWh}vImk6{sC;+TI4Ull`h@%lU
zBLsmE3(PnQ74W@tJ@ZTG{TPU_&@H`3Om5*Ot}w5k-kpyVV_8TXu)N=XL)fdsIVxiT
zwr>_jWX+!^`beniD(l2YkWxqlGContAwS2&
zl7`zz>m79fUbPfJN?l*rSBOl?-}8sICsk`|7P6w&L2UYCKIViECHVtD!fTbTXDSsk
z0I(t#Y+p3~7rm1v@?$oE8%tf-QFYXKHJC4W4sx;Z{5K@@oDx5&URox@i=`KYE#_AT
z9#kUIL0i=e#D?)42x&Vi12pR2kc&)4^2k35Jw~r)F2sw>5~V
z`S*QY%f>s9BRK~^E&qP;zk!r{1wB@Jn{jw11wWH#gk9HK0rZJ6PV#;-j^N5a(pa-+
ze)ac_`KFvs`VVtaW*^D1LXpKS-C*2M#;>#YolSHNMkqN61UDCPnHCqKXUq*`?|r5$
z>=%AsrN!~!{&A#iQ$-H^a0_u}Bxm@Ix~S
z^hvl9`NeZEwxkzJh3B)O=M*=Mca|!pK$zgq$c6`eFNFxTDuJh;X(G;HfSH03Civ$D
zfu-YW89(FVz-_@aME;ouaEGhht%t_l_J=Mm1)Q!GPQfAseDdP;cDwof4?agZK9`y@
z3oJPl^hPanWglP3zQ{@nIsbRmaLe(4uRmR1pw?yphr<7aA#r~_bwLk3djZbpA9HT)
z>i;(=W>lB1f~;T4<;7Zm-zof1n1T#Zk<iz3d5yYfPyM|M`QRjkmk0T(6s53A(PZ1GRbi>0a6Q^iM|)v*|QD
zYK9NS5H|}M;0J%FxB9On-gG|fBPgVYVlzA8#~1%iZ|Fqjz-^Qh7h?TCVP;?2g6xLz
z4t$py4S4JRywbnZP9<(v`~op=!*umGL=z~9Ana1*$d5UqL&IR)y0-y*?d2Tj|2teF
zbk5Yekg#0jzWRf&Od@uIaS2Bu;%gccpEK-=@l%R_To||_RRm9t`x98u-a%KwweEY{I8}Ev_917
z%cqBdA^*Q}<$7FXSEQW#J++cL4v&gfhd}a5K8I{|uf%B2yN-O$5~0kdxn#jd?yb(W
z-;_jd3c)5@nmdb6jZ7n>9Pd8|x=W>1=G25bQ&kM*c>FZ($4HPB^?ek?*M@UPg}1l{Kp
zoOS;*?7wOoAprc>DN!f-UuC|WIMU~LHJmFW_vv;%M8rOJVPk&5M9);+IhK_)@mVxm
zu3_uj6*r3#SpQ+7_31@6FjO$%mwpESjJ4M1C-4z-B7c0cwBujLuFz5pK4h1|X4|nK
ze$`5l8UJyt?9Q?#X6a{u=3*PR=OaP)*Hy(AWrwLCc0{A>u$e6j*fZb+{(80|t9ke-
z5eD(cASC`Bs^~Kk4Mzh
z!3>oG=Fjs6ZGOrUZrd+JgOQvZ{}oTbyJ
zv^Ha_it)8;E}=^l&R_QEn78D~$Q$&HYl7`Zw8u@&xJ1Akz&{s0m1SyAD8
z#>mQvZ&s7|yqka$dy}1xF(P#aWp`Y%Y_>V^1eBe>Mq{PTJPY@75FdSw-;p2AsKey$
z#{hOA#z6R?XCxDPv%o~2@FT#ljYh6Ku9&6d4u53jY%DHrJVP-*VWBVK&E(sfvD4?(
z&L)F5TyLmyyQl-gYpk0BF(RVTx9nEdLbzW+BlLmxP=;
zneRrICu`HH74!3xL`M$9z2SP@T7$Lh`{6khDry&rycQLUc0CIU6_pG>(%$9)#Bo`t
zXCp=%u}YDQVFXgzV*dVG=1vPcDWST)g{$be4oeo*icd=HA4i+7yW=4aTR}@)F^PB|
zV^Z3fNL80OXy{S~4o-Iqnl^0AzvoD_zYG4RxvN7)>od4G`xdnhHZ=3AI9J|Q_?Z3s
zR{>N~@6)K{L`8Df#&7}s%PaX#ZbvmBI2%wg_A$E(RH1x=U%X-r967!z=!2k~$~8`7
zM~T>NOao7y71;28uz7a6^K{jRp6=`zY^ylFHMY#xkTZ@vtU05H_o!%S~
z)_5wSWo0XUDNr1S;d5P#ok=AB^oA9{F4id^bCzv)mAZFOV8Vg*g8@nk4el9I!VkXx
zV0jwCeh!8!bQ7E?d==5JNMZ8r6LIVF?q4?1mO*U%hEQ*s)-DRjTJ`{?F%Ae)-wBkp
z9(n@cte^|`7G>=8&JhAE#eZJO?C&@((rTmU9I3O5gKcR4F6pC7O
za)mrkzp(_9Xtx4yUuMOQqKBH&E_N{SC==V#}
z+`x&nm@g;7PNAP1e1!M+P&?w?wOAm+0dDQX-F0l3jGu3hHeQa_j{ktwIJ-7tZ4`C<
z<4u1x;j>>f&#=?c4cHD~@UvfUKmi=A<__YV(?_@eJ^QPLnu*^KTL@o3dU@SRKT8Lw
zjP+g1;^JSr9JbNLdy$+yF=C%E*Wq&$1}=F^E@&a`UqQ6rWaV!LPw$asD!gfKwJoM&
zi(8yNAKQGzpM4D*0w#tr;AZlC^n~-%tJx+9?4%NgA54=r?z*eh_{ODWLzee7WZQnd
zTbFgeH)LInT-j);s!DuGAsJ&RktR3F!#Qu|`%~)#}b?fUoC9gbc&cW%Cp
zC~gVN7O`Wk&Mh&QAb2&O!_Hw6mQ{1c2FrF4d#}yOXcqAlHSbBWfY@37Gh&p@adW`z
zw2m7Pa?l^kAk`3V@9y#G0ac8TFF(=73)0&0m_t-un^AW9qnXf*9kT3sm5vO%(VTS2
z0lxVWp>ggIgmj<0RDTio6B&u2^ZNmz_rt(~pm2Eyy%Agu@pdHqIP>$FPoO>U8aaF)
z+9cMpc>B{%7tQfO1(xUu>ci{TF{b?Oc)qn89P+4vPEZO_I0EM0_V}F$^|}te9I7(~
z93G>QZVvuJeZMvf!dR33&Mfo3$3sq5fq2BG*Go_tbbHw^kwX9LglXM{cOL-QtYJxx
zw1#z$Sy>D$_mE!{8Wd2mh_^>5xfcY2Q-mmZ!#JLg0BgDa-t6-Sk)9XcP;fxz&20|e
z@4x!d($rB5wcd&Ns`g%ldhI)JFjB+z+TVzRzDWO{#
z%h&lZ@-YPZ*A3du07?cBDmYK8ux8EQusZ#sr4u+*e;*H3J7xtrfLnu=G)=3T>Uwh2
zP28!T+i!8onE}wSnulK-dH(Uo3%&KysBOeR2WsC&6BBwxyuC2Q^zqfK{Ef?L*D2`p
zG%DR;Tu)>3d&ryXk=y7-^v>EHH-23SD>x@S@E2=w6
zGeUJ&S(|oN|0p$!Y&)k#<%H66zgVExz=Ft7YQw&Y?%y2g54`5x?d3Yogyv4r9MGNx
zXiWYMnXuKE^!b!sy$9h9ZnnT_=kSF{ZmTXx0%2&D;m1
z*1)|X%6+vp=^liwWFPNAPr7(UAZuCtBq8H(PSgMR{SiDymk7mdag%UQyC7RJ0I|;)
z82ZCRm;yAT-FVyU^r0QknQAj?DwI#2#D(EJm@_kAmJt>4Wg09L0gprd;i!Ycygm)w7;pNfH3oYAo)t35g5?$#dp9Z
zwpZ-+rtSO{f@j;9KWD_)#DkwZ-3)b~ptP@_e0TiOczMwDPt0t42Ar`usnLT-dDKGB
zrQG<6&!WPelft?KO9QJ$UmEM`8AJM)**?E=H+8PP8T7@8=NuO%uZ&xAqJ~od|44oTnJIUBfHUKwiJyNLA~{tF
z!#*shOE5Oh!GW!BIs=-KufAhUp8Oz`rE`)Fm^O+B_j0|y8W>m9S~b3bx+srEdJoHK
zUHfI~LEC>J4XjVCzdFXPHO(_TmoY5JAcn2#V@PkQb01+hd4`ojW`n(I)G9bC$eG0F
zn}k^nT`p_pD8K;QzMX4*Y^8R|NByQHOX~>cIB&v~Zfl7Xov?`AmgkK!zpouS)6)=Y
zHj?%}kjqr9aqP;3-9c`%m%vFZbQLLuxlIxjGSM};R5$v-PISKf`@^JnlJHFutAyF*
z8&?8{LSA7XUOOQ9f=%3lw%pz=>r$u)c-pr5WAc^N2HyvKHzEhM`kwW17dAifG!4QG
zhCuybrPlSS*p|^Ma&a7^D)j-5l;C(R#_pvm_+*z9s0NUv1}IDtvVF^zIrJp);`(?h
zRfIXNEsx)?Y0gPeoG2@HmP!QZL5o)&-UDQ7oH%I|UCqvCiovmaF*$qhN~zElADy4j
zt$GzeW4GVieqDKHQik&Ew@6Jd;)EH$K1?FT6wbwjN;EqNKnzd9*({KA7xvH-sf)D0
zMsV0pTXPv{ioOw!;I2ijnF{|9HOU@xh&J_5!K{qcM5|;MuF*3S6L|NxYalioNt<3V
zJ^K{*@j^dJ1gpGV5j(j
zn#zYBc6^v&mOz{e6>h}Xqo`2AUDM7RBGKqpIsHt|z^*>!B_xhC!&xr&84eTwbJ4Xl
zi2p{hUK+%~miQKZFU0cL33jV&%QtV;F|Vfo_OYvEkOzySW?&KP!Z@rF!VbCe!TS&c
zO75qXt?4kdpm9|N-UBwygd7D&Pw9>K1C3~7;j)BN26bJs&}Z?K0?
z%d3fY`O!U?{2>frMt`F_Ay$ez){(V{G0Df|YNzYRr2Dl)02Km@l06QA(o<=c0-Re6
zD@zzsLH&}$kc2+vDfn;59eLfKZX?I9*H6VgOCbKz?WzOp+Wi@TQyQnezU-&$0MtHNp7a~?$P+CtF!T6*
z(gzD^klQf@&F1bB5SY@5mm3nsnfcNhK*AvJhmcESNVTp|N$}e+!_$956mRIxEWbXN
zaDJb3a?efo8R3xml9H^ps3*ekfomL+;8()3Yyl3PztZ=@g2e)vXXp4?$<(s<~-jIQ3>jd6WDDJ7>Q
z$JJjFO-x@1CJyc;{Ub-G$+W{lzGj9BoKK6ZaCNQSsyh3G3f!a5ND}^z*<9>bs!HQu
zx32jZOTWl0f*5L2fBi7i$FYdp>*K;Zy;suJ8u#BQnF+YXLRMJT-*woDdfYy))9~-;
zTU@}xXzm(^tqn+XNJ+27Av7PDM1c*)x8B!vADx@WtG@@&Mr@cT!4(O
z@DLQoM87B#P+_J};=$F2ZtXTdqsAdEP+Iz-4?@I@cy0>P)wBwfqeAzqL_Wpom32qw
z?Djb&T-A$@%5}4Je5#umw`UX1pFg#N370)Mx#KIQz*(IazSe>@Frp6%S{8;5SCZ=x
z4)M~{b4vtx%cc|hS3o|H5$8bcp-lHknY7m0zk*<(YavdBBq{%18f5kSdcowHKij9e
z`V&jjuOSr#AyR;o<;|R08_mVOHSea1;=FvoXH4J>kmy{y;Q)t$
zE(+zI^&7JLUG1)U&2aE{qh;r|VFnH^r1^w=AjrH+CG&Va&U%s3kqQoj#fg%S$arV)
z9^vEhFv!bhcf>L`MMpJlN6&IFM;AuH56AL0V21CPvPA-JUGN4nech?*4N>%2kRWaw
z64Ab`+)YOA2nn{y%sC4T`03Y}g24eG-)&wnIXmFY$R>BuY>OGVSD?~G8WG3&x4mz%
z=hXcgUqV+3y^$%bQVDwGedS_nq(d=y-Yiz4`X_AwYkRIvqSV4K4-7t2pwz9HPQVCH
zT>~i>^7@s9;KNfs4B-!q3z~61)l(reL&l*h&lMkRA{@|3&7E6TZ$zCd0xPN{mc}bg
zG&)xFE5e?gEF)3OaoHVp>_Kf>Kk~U(Q@aH;2+#iyOJ5z<y$?i`4;
z5`v&~2_hmT9U}w;5u`hmm^2d7jGnY~cZ0y_0oy+B0T~G#4a>+Hc5}vA3L`O*{U^|l
z{6mW;jxz&k@ff%1yjeh$af30rPQq3JYb7rasK*|r0LU06xIU%Fr6l|oAmXKpd${Aa
zDA|WxFv5M%ZN1CByMXMB5)(^F8EAwuvSgXyNWHFQt>ce~R2?HOjd5GU1b)wqT1O0}
z^)bjzU!Blc$si7Vc}=0lR5K{X6NBQ`lY&^w{bcGR1d)k%q$x
zCsg+z=*7vewv8*qskk4Gq4pNB8iuh&rOOyMX?7d~`>Fj~D>A#ZQ!MbdM74jp^MG+3
zL5-4-?;~YE0B{0=?qqph8@opS1hhz|qarygi?6Icvk|k)EkP%HfJT)LvcGME`Fw1(
zZFRX!d5s|Q41R=$ug;k~HEMyS;+CSR5Xwkw=18Doym2c%_78yZRKteR;uWqjxnR4N
zTeYvZ-NNUlu2HpgfO9Q?AmOZQ%Nfpal$dA^bkZu5ncEbd8Ma?T>00Gg>t|7`(}NSM
z?YFgo_kbhpe^=NQ{nC;+MH4q2t%W3e>3BvLTk{Tvxq*c`OLQWxeLvsbs3O_$*q=sD
zGJ*E~I&&v)q+y!U7M-yLK*yL@cFeXckBS=tW^ksz{N_0c{?udx1#p_!ZTPJQ;E@P5
zSvJvQMXR|DR&+FS^O;EiFqr7d*;W#^=-_*T7jZ9BZeqcp>GZgf6}#21QmKLGsYhGEag9pJ!g7Iej+4;6i>R7-(7D!Anz~;nSoo-v9?*fn4v@|*J
zKiXY=*Tm?2qfEOsU4D9_2i#P;=ct!O!1XM;f}RT60@IbVlc3#X-!$duXbbJxE7=?h
z#r6xw3jsaMP1<7j!AsaRy8T=pN25pi{pfy9EqH{m3nnZEkYcI_}!U#ukm7kubLn
zsfnXX-L${FDtyqcliy{l>(?(a4o;c8f^})-lPLcV$feY~;6Bi*&>yK42fd1PUyvOJ
zJtlGF?BTGL%gu`b=|qc=e!c6(+IXxC5*VQkM6xP_NWnJB1ek*NcZfpR?9{ty34V-T
zuZOZk#;5+XfPKexh&b0TY+#zAb<#Y|wnha^;BC!n7qMmU>nW!GQ+sLrw79w`B=V{@8_QD$CFr)^*_Zs+U-vbVB8OiOaIkkP!N$eYZ
zD~Zz3TK99J5b6dRd_-!H=){3Cm5AuC%Rce`gByKfX>oDiWtwpIy>Ywvo3{X6Wb)Wy
ztq}=3DP{+;&=KVBaMO}y1+Ue607k{^r(zx~yfe;fK=TE_ENWRCy{}B1PAK
zoHiS4E@8jDQ?k1H@`(89LuEG|ww?`%KJ9V7M_a+f?~_SB4(KX$Xddnviyl5YGFD^z
zo`hGphWJnxZ}^;`C|gAJ3{nXKzWt*wz+$Y+N*9tiKb*O$(D}hCwY1}jol;cp6~P~B
z&0jgr1bM4w|Fm9F1#FSIw>}d_5lkqHayApwq|7g!0W-Zayr&aHeM@6;5zibrQc<6O
zRJV#H#5Y)+0I_dIJ&p!j`B)T$=WynnPFdFHcb4x)QlBXL5686>Hc1xfzfyNIWJY7^
zt6*y_m1(F9!O??9!A2bYA)@Ae-L0*wk=6yJfNMDQAiDp%(!HrEqxeOc%aYV?aW7%Q
zS#x-fHBPl=vr_CM4sfBSL(Srt3QW(sl}r}k7|H|HJ-4P_?cl@LLkI|(`<~}oh3#cHn&$b!e|w|aHQ}W*>4yv41&YQ+O>6-qe_xn
zb6v}D>uaG;KG9k~VHWX18%QB#A8^0`^ZD&5Q@7KR$SOsRhlmEsc;>$p)?4BkHfoUF
zg;6}}kM;=@qpZ+sT$RdY&dtsw5>1g4b6lywC**@i%COaurSZpZfR{r=0#(AD@eXh)
zuJKkEpN-=DS4c0cGJa`pxGfzn8s*^gr_L`C12y;{zV6sC=)s+G5+^b`1;Bl)xGN29RDQXz51W
z;=N
zwb4HFxI1n`!KB})NY2Bpgg$fkTya)c+UIoZ5JnZ2xK;q1nW!1`fmef
znlIlU9}a^8DR1p@llPH-2T@1!w_PHp=IFd0xgL~h(Ryu9DvBo{TASm6ZBc=~G+tW&
zh)8fP$3Q`R<;IJ8#tN4e_`wxK_Df%@pw!xltoXigXt3gx5^o?oDyqlgeXqprG1cB5
zi(vx4)2U5M?f0A?U0d@LA15UG&qT*}BPpXx)G77_3+B3Cc)jT>Ov%zHb;)w)bF1HB
zeUfii(hqooQ-@ZcDUkH%Z_8&x>p
zsch1e%P7R0@QtVNB^F7Rdc!!zK2EN~S#yiGN$@-y|6S@xvyx$u&D(FVx(~U~tu@5C
z;gn#;sNs54)$VX>#K7T3h1MUDYTeCv8)Y$r_||}vaAiC-s4p+z{7>Gv@#8`PX9SuW
z(O!-B1kjI{RLz&gclJ}!kZ^!}zxF@!y(`(G3*(U@pKi!}(Jy~bKmtP>iz$c!Jze$l
z!zkwyljom)1F!`OZcoZIrE|RSweJj%e=QOz!LVci`92pQ-#1pY0E+!Wz&3>OeU9?6
z@}1TV1UK9iq^3NI$i^8Fr;GpH_qzcC&B!RJe?x0n12Wj5*K~XZO~Y2Jw+M+3glS+m
zSxAo7I4Nmh)5sgVAu*}=@sNk7C>@4(cExX~=g`t7r^1nWyeqWGErN3xt}SSX+<_v+
zwRHHlW&t>pIx&9(r`;nA;fDpSK0sp`;y<3)A^s&k5h#&wZj@-ZU0=pC?iG@6nwoEZ
zz{!-dt$G0}56?&9Gi@Mw>&G-gv^xOb_jQ6ki6JLeQE?ZK!l9z99|G}v^f@WIsNL)oQ2K6{#Xm_e~D;Jv2=i$vaMG0N(9
zDU*4(()MKMT+9(1l0_K~>Y4Vz+~=Fhmk
zQ?SQZR5`?%@Na8)w)f6_TegzoM9jyOQ9H``53Ap}JjW#R7~jY>mm3UTIxVhpX5Twk
zq@0jE9P4}j<8Mx0#^Lkc@&ElY&f~@XuH`rMgL|(}PQh@eT?1$XXf@=BJiLd#Y{*}w
zZ9W`dVAecnH??@;Rn<*Q>Upu9exyF)@ro%F5c}MZw*tY_KO8$hrCQ=z`5OE+Eg;
zmP0hcV)QgI_#F#nR|wl!N4U?j46qx{DF2=mc#tl&s(JM=gyGFrQ(&$ZAeihc7F{#D
zh^GKO%|qV@O#1fSWnluBWO
zNokudNW)?US4!lLdw`Bw8zoBsQ2k+#HtTQ-pqCR0h0%})%(CRseKw!mcyr}1jD~U`
zd$(T(Dkb>@C9F4BA$2_0gZQ>txiV#*?|RCRsS^C9+9(Qw+*EM!lo+oJ;_jTCu5$(P
z218L4^T>^~$Q}O6L8eviGF~mwn-VNPU$)>UtL_qptEw|On;r=Wk_bU9gp=LFfW2g4Nw`2&;7S
z?u-M?Pm0;OF<_Vy7N`dO`ApaZb}D-iAG<8p%>8$Jd1k`i4~e}rZIcTW4>bdHD5pO=
z6|U$nYp!8ABk!-)rQ_b~I!-w-{Rhfbu>VC;Le+^^}Y=F%Kj+_PGyS
zi;H*83rqd6aQW{n!O`ss?_cNgp~s84iyKAkER9Ua0m`a+39$O~yQ4+<0Db(U&P576
zU|zMV;eq_?>AHI8x@8EBi2e5c=Y7RUe?Or8+kN=+8%E}aJs>kZV&t#=jByyDa;f(Z
z_RB)id@?o}R&mY8*}382==;hd(Uc?`?kusF1^S|1Zu_a)K!*x(JJoCRm~JcBk5ONH
z)`73}G@z3(hQ;u4>k#$i7mtvWq{^9}fs~VahzbxOwAKS}P}<
zyu@-7b!$t
z3UDI~z9ZMuFl}kegLgNM@2jg1o9-NJ(*QuhY96L3e$nbOP8b&qZOu?(NB<5SEZ0MC
zKz{tdAv>VgA3ndz1^y;xg?^}X424)bpw%pA+B`w_+;?dYSZebI~w;A2i;b{xSibn
zeP2i3R>KDIA1Fo=vR}!73)TUUh6j}osxY5VfHlnU6g^gstaKJ{`$)Mh!9;*~({WMh
zi)v>bF}O^e_=C8JY&aF}*+n7+UnPT!JBU1j9q9_zv>|6FI53c00ze@TF&echMrwue^*_^z%jR0eqxvpt)June&mLnO(D>kQC-RZfdGrBDBMpy
zTu>DP2ZV-Orm@Js*(Lc8R1C~LK9vM=Q(j{M-XTBMHVwe*V5|2i<#1cyyY1=n5ev
zB)u4INQKzigxyo?k?`-t5sU@8pc*Z{y!H)kIgACGzo3|YRHbm?Kk!b_odQz+8UP^u
zf<@6n*5B3}V=0=x=t0BpccS`a->u_dD01VVk7oeBm$r_sUDYB!c4d2Td^ZnEaDOL_
z!r|^4_?h~Fd?yg=(Vs!Ir^RYoIdlOkxO6J~57aQxmD`6>m4
z^Iab~Vh8=0O1QgH6S9pR@)PXWf@ZA|%>=z7Yor865dVVSoRiRs^|uu%0b3L25>3u<
zd_EA3!%LdS{6u9TM@~2I0tm8Tnvi#~CV3F$J_3ZtUH1@O%dzMaIOCT|bq(g~0di$X
zH6c%YBb(;$VbGKQJ5U8K%~k4toDoT&2M?yhm5^)X(yGwoD^tlZ$aumJc5U+^b#_c9w6#u>q
z=H|Y&a%mHGe6va)8Lr$fRqcj6v7E$X)?)MSyT?)N2}Ba2m^xVSR+d9p4Bw_wA0fX%
zr$br3Q*(cLJ)(jed5TYrxd4<{A5IaeM7XF1&!=}%d6XXt#8-gS?X4M)7V|fh&Oy^g
zd`2{}exns2Imu67f6DR%*u@9yNzmxjQ+Nbhb{BzV_3k8_-K`izE*#5w0Le6*;-#;b
zzLa|JK;hHrk-sZ=I^~0+{E1+XR%-mQc{oyw@4eVjdS_r0ja!P@gWZW)#MMmF3!X;u
zPb|)emfiDbEot0oXamdU-3Nx?A5C7EuYUHCq0R01@bKa9mOBd}?nqNx)mbX$+gRCA
z*CLRVz>`p_ExFvCyb6%Yhsy+&_Tx975g8!`N=@rc2Ls90OAbwehps*I*$!K8eGmy}
z@Lt%LyxNtnM#AGBJ?gnPc$3K{DYl7Ey-wGE`$1PprchosDYk_hQTf}qof2uIPl6=4
zzI?ATE{(yRA+BrJ5L7@l{uE(%aHq(E`PGyp9;GTNmwFVkFjb^!QR8_*`p0_)i4jR`NA$$O7sUCMnR%khi(dD3!}tY_h^?`N(;lo
zq=mMAv){kYb})qpxab9A(XUol?wY;(!#PD$heE;oo|GXZzMEVa_o5H1+Il<_}t`4>92Z
ziG^SH>S9@NU%IbZSzd5|>M1Lm6Ku1(*bdBf$}lQ0c>etY0O}Ji0V?pfljbX659&B1
zURSDeVXZ9laQM|82YT{&dtQ}U44g>UVFKoUf7m2599ZlENO;Y6)t273F&(bD3sXOq
zWW(yFts`QDG1RDyb)VR}CWV%zyK1d%4Yqha)0cXjfghk^F`J#wU%1nj=s0q=U(z|O
z-JdWkf^}e?0PvC%M(1RB=1}_4mmdcWY18eGs@oE;g}D7bPV}^U46XGKg_JP2Uoyt7
zCRmlbE8S1*@KooOsdpVfBJD3q74-N6;GQ=R0mlb34y6=y(+yQ0Bdo0h$kC)K9c0JO
z_Q~G|fp*A8co^fZA-oH{AUm{6{3SUsU76r24ah!+M%{bIi`mx={idDQk_qztjVuDG
zGuQH3dB*Q$67Yj$6>jy#@AVL5X;MD5Fat`i-qPq%vo*`IGig6kGp2`yyC4xFV0KNR
zbY-B-W_FUa!4QHYM6;bC{{vA8w-4JmpCV~&;7vK9b7Ul%%ZKs$Aj0$rf_PQJu!_&6
zKgLX8VP}p)9Mq&#UVMs_T`+2lC$AqkeRqAT3L^u<&ZR_b0PMgf&nV=wCz7oi{;z(>|osSzj4pfCi;D_h4+y!
zqDK$S=^f6MJOjCd@$_`{4oN?(Z%ll%sTkV$>*YXDVA_pIRpk2h@@%H|(gscsGxBzh
z%;mNOyVC`uPtOCq@n1#^{`F$C?{=T9&c~B
z7uDs+sO#@)8DAQdw~tsA?8-9TQ}#APCwz_=dIez
zvh4R)PMKCc$(n^jbVv55co~MB1{aBf)dDrgSN)qx$0daGu)GU1($I`~6_}zAz
zikaIs7E<(Z1NHrn21Gpm_qYHCU_FL4=*S1YL46QRpg{+Uur^38uHr&W{+hF=O}&L4
z2Y*7d+~DTf^2(qdO3c2dl=v8V6e7$e&i2oT7I{LB#$OQ+M>iTIuazEE{i=|w`sWW2
z)XT{CVS{iCxV1L#TVuAQs2shGz@rM8APg7wN3dk@6iy6VDvZPTWwwM7tB?URZ;q>eds7M@g7bRR`Q1VKld*
z`)U=M&+4OJ;zsY83vRo#InEvT_spT;1v(h688nTh&VpyEUbo-k;LPj7^Qt(~2dL61
zFJY#AC5}H83Y|2IZ<{3^6MYSP9R1!!Ta=vzr0eEfock(q9U{oZ1m%T}rH?YDKc9A~
zdVzbR`5(v?u@F2>QrtYfnaP`ADV_GD4tTO2gz9`Cpzf@j3ZUNwNX3Gx;0T$a^Vxe#qdF=${T8dO*gVO&=J-#9*!fGzJ0BEuq9czh#f2B
z9c>uE!<1T)Z+%AK2uy+6ejKU+wS~^>ZNQO~G|tVAz473jN7Hv1j~-5~)i>5P_|YhT
zzALcRtq}8fwE%<M`>WFCdRLFglY-nyI`Bm=0RJBvzRE;2
zw8l
z=Lb}YSXJl@l46s;Up#3n&U9>ZIunA!RRWp$`66ZZnZH3ot9An^xNO}}l>jPHwI2N9
zQ{nDZiu73eOc~EfY9?`je71jHu2B8b{ZgX~2VfNK;`XA+W(6)m
z=FktOj}E&9S~|cN>d`uB-;tPaAE1HC7m!oCjwCtw4U}ukjKqhgJ42xRu{n*vV4Rhc
z*cfiJ3%ckpCSbFrJJSyz5tA7PQ<;Oie*Bi%&cwG9$BW$A8ItFC_tv?y@-%|*OBuYc}qIE&MCPd23>^qksC$(JjkZWHe*
zAt*fIw_*use32!N_^q{!SZE?iJ~0`UMH2@wIPlVNNYdl~vm^vPPAw!_UJbr7cuGV+
zH{c2QM2+_@Y?+51D^nWx_bun}fF~3lZ18^)y7z2qbA=#}Z$MYupNP8w;R@IDA^zf2
z>cy5b>Urmj(+?wmAH|QoVjaM*35SF0bun!{|;E;t@fkM!zATTJt{wip4wmbmo_4!
zS@ntKvlKPnJ_{Z6mB3p=FV*HL?YhZ8_h^hNK6>HNOOff0>oM&>quyF8^o<1DWCxrm
zlXNEKTl#P2@-QOA&Z;S4+8}4m!P9SN(*Ag%%5ge<`VpwMzY!vo12|rqK2n3nPZs#iw-N*B;^Ql5-YC$&fNfg@c|`n^tLO-oKRY^
zP7UrveA`PDIpI?)y6SJ8r+ups&ik^Yd8(ZRCyYrm+&YWxTw5)99(;zOKCO%6O74Ha
zm3}0El;tkrt_bc()b4+Y8Ee@e;;#cBhC;Hf_mmK|N+-aS6axJdL;=-9BT)rLCqoGG
z4=eX(N7sEDj;pm)wVFlKl!N!YK&i?;pgSDl1}qM2FM>WgG_|nm-F;p@h+z<7Sd)RM`G9r
zj#Js|D8>i3;wu?y5;FgGndSb)yWjCf%!PF54sD1thsXf_9l$vWjr{adl!N|r-tFHR
zVNCmVaM1^;$K3qeENn{$rOWo8I`x4xsJ#VXvjS3fUxou&M|7GSfZv*Av@sLAaIv^D
zC18r8SP~lX9eimPD>ZSM6^~_fPK@gM2RBKn^7LKp>|qYzlL;28y3i9~z6IS(-r%LIgUp_^IRGf(vruz%{F=_6qNY-)cj@B`aDs*69Zmu%
zMwVQRA>PN5phORH;YS25FHHE{h%5BT7B%sjMs-uzMN`FN6HDb{B)|`EA@euZi!X`N
zm>}mvGm?7isyo-Tzofk@m0Z(j3?9DMUlBVE;=xnqn_Ku}SWT_PkkzReKrtm~POJe*
zZPAcHN^n`T#;19U9x3vkgXz1;%ijW``f%K8rK$g9-ry-j)p^q{(cj(TF%`%ArR*31
zFsnxk3rdf;?NLbZk%*sVwjpRu7qs~=mfL2vS{Q%}U!&b%J&FBMkY-DFbF}N4#vgc7
zZGGsXuBQcO*mrQf26v`Fh@IQ2NXOwYJDGaM3mKavJ!QPcA3H=}neGFy!}kvHq|0>Z
zxpn0`)hmE#I-oxPjMI^1C{}jh#Dbi=Ksn3oK5zMf0rlp}DCD+A1gGA#6h5He#wO4MUMRk${AJ9_4^!m2z`Mwmg9%UrMc6)=;&z8C~|y7
z#uux?do)b6)kR>aOi{
z-4*~=Ph2SS1*$~(>k0-xic8thyL%8U6;Uocu6|1p!tWr(J*kfv0`=_jfFaV?n
zJS)1wY1FGiBFhhT0Z7Vc+dmFF8gi>qES}fbT02hUvO`7*i8{>(559Bh1Y$MtT^L1C
z0ox&L9&|NuILMCsET4!!^7>U^?eQd5RGFnA;MxJ3v2Uj#m2Lqgxw!tD2Kf~>?9zIgB5|E
zkc}qs38%{ESrvhJHUAK9Y3&Xy{vnoL?;v%8_I`Oh>xd(85|LBvWlUz)fLFDN+=45
z9=%r)g4PzSx+AkEn?uJ#bh1$e`HD`V>=}8?9PDvJ?#cx2Dc)y~LzaNjA#JDs45TlE
zw0lOP@nuCRJl_yY_#*Q0-IE>lJC@n2W7e{HcS@v8-bE3tSb|5bRwNyMfy;UlxS=8=
zPM@d;0mC<>Ewl&>O>&)Up;rKm3B%EM=YH!J}CEKV4n^g8Afm5)smq9eHedRjQfd3b@G?ZwhQz}C81ycu8;
zfdQ7=;-5~qdkoit*lv4poYRKSCM0$K^@fHx#pQ3zen^13*w^lU5)rVcWj2-D
z{M%{a6{6$D^WV4_oQEB8}p*f!*smX+>6#4gGzlW0~lL;Y&R&B~d8c
zVxQ)L%;K-=x1Lae49$C9tN>bPeD6leVgD3qVpEbTn
z4DyqkbxTXlO5J_<_;TjEAtOKkZ=Y`wo$}S{GQ_esfww&Hw2{1;q_l0xH7>0<{URZ_u
z79V;avTl|BGyX~v3sps(;qLqtiN9<_wL0R=O!u9xUk$9>3I^Br4C3y=_Yo3-@AYt3
zki1RUGtN~u_^inq_nsYC6qGmVsSGkq^p1t-qA&7Q+g(~b!(gOD>SE%pn~;$Zu|SEY
zKLVcrffQ0p&He|jILcgWC|z(Xht{~~O@|QiA)T1cH;V8X-Y8rGS@Ke042-{bSbu;i
zdq~#@2)Xm>{|{o(P;`y(uNqn;z&p#$EiT->KO`On;ms#CZHE`_-d8(nDl-=>&Vj3N
z4fl+=C8(07`MAE;*DCwSCCj5`QS+LMcJor>tjQtwAAKnycyhexaH=n7wSuSao5s?_
z`KLv`Qr-b<@#Y41UV74iItW{AImj`1Zjyz0jnlcA%FC^C%CM~;=SNv>kB(8sLQuMp
zkD2iwX^vMF3((w1IjR1-g~_&N(S8X|x_fC(Oj>Q86+-JUmXy)%qGj*wc8afz
z0atMGU3Vrm?z?}?Ys}t`wzRXEqQ|>CEFlxP2bL;9>jBQpz8CyiZhz9^_d^55JDT-P}{aW7HD+o1A1$-C_@tWe>
zeRpC&`cyV}pc^2kQeibV7&09qR{zUk%(dSfRxtP;m@WIbJZp;e5n9c*X#&woWk$VAX71o
z(iGS9fH_MiGq5y|Geh$(pdq==Rf66jdmQ_^;P{m3mgkLC9XuQ(Tj9%n8P!}rHKCfz
zBk{~wwr7T6I$!EC9s5`4o}DH^lwgYt!Csb8$5i&))g%*i+7k?7^^GNwOuAY()v-&S
z=l(=^Kf#S%-gx_m3q9ltn!m5ghd2z!y36~3e#SrIVzAiPu_01I9YZhzy^rM&U(GR{
z*iXa&E01GSd{0T+{mgL|Qq5N3UXJ?>qZGQh^E8o@;n!;JcX_jePaKwQ_zy$>@^3eW
zk;u_Cfuw>y56wf0)ld$UMt7R;h(
zqM8foNgKS7&hUQ^Rs!bh&*g|xqpcdb+t}GSztr5T2XRn{$x47i5>8J5!X29yjtYqG
zq6p|#8;N$Qj*|vvf?z;4vjfOx-bb)gz&Wxrlk%lj6APUEa{*r7(8~c3i){#XwP={<
zUzvQoPOv-pWF1Hq*Btr~CBt~e4pfIFFIY!_t)6)4IxB=t+Rd|9Yn<&b1@XT)@{b!$
zm-$2@-S!?lpv9M%0enCLb&*G)B{H_~HqqGlZd{fdB_z)IQkNk)m$2kRQp4KKBARSV
zxZG(jxTq{owAH5gm{WRA$TJ~+Bc^?{@6T@1feZRD5{#9D-76b+dX~7sySo>A;F1y7J)J
zAY66hr{t2;*@s=vn}CRkLytRbrogblyK!9h?rK=8PYG2Act^qd5BOIJ_m|mXu*y4X
zV8~|*(o;8x_1dUs7xOYW+xttQF`ve^!mr;kBUrC;6jTy2RKU8@JNt(qR98cWyMmoM
zdgPC2pJ%oqo`$TKLAWy8#wvo!^sT@D%N1S1O$cA4LNjHvx_`nSthm*y&>r5-$9hIV
z#&@aUgm)ATYTp&$?y;)qlHAfYKvA;J)BFB#jWijxYn9E-OI&iFVzzxpu-(kvS-@>w
zd#%7KIUyHGOP2EFNroFOr9nIpa0_)zK5EMLhM?LYx0&6R#p-H--ur2KJsF1V%^)!Wf<0{Ij%Tv7fhIKbB}
zH}GJ0fW$~qRmA4Xc~kuFyXwh}zbmar2>#k#vGV&>#;0gI#BTh^f1p{!+DIMr4J^u%
zecGt-eoAFQSqFtq9Tn&0Acte|-sHw4*%jT%wa|T-MS-l>Go1685?rDRQabt3|5dQw
zDKsdw`){9KMR0TQTR%i^UNnvkExW2{h{W+ZItxmwKa3~R+D-^V(pqP~ci@;MOX`s9
z{tU$bsJ|$EhbUw9eW!3RW%R8@7CN`GQJHhAf+n?Mahf-p=j#lRj7>dlOxuYz=;jD%
zNiP39YrW|io9*%UgL_?2xt)uPU7$Dl+S>rBD|fo1is>m6s3F{FTmpD;k9RAx;5v3
zMpwQ)(7gGcP>pB?u~AO6efX~4b58vJJeD+rHIzD%z->qa1W6vLHTf7*q_Y7F
zQ;O#sOns-c^!TlS{gd7bK>qkhe?roJD^+q4@CG2UKKG|X3INJ
zC}kCWKB;GwbL^^3~z59x&n9yB#_}&#n*PH
z2S**bK348{D>>CRUpjp6kPN=*@VuOIK;^FrC}svPz9_bM-_ZD1+(w`EzD@BrrM7st
zSwB)=$^DmSQQ{JTY(Xc=M7noItqd|j`i1z+U*&8=7-{M7bX62$jKOT31-RKM`AVC;
zi6aw9=(^t4HSMM3j5Evk5Yb5raxZ@xsQa!Q&bK%cOf1*}_xGmi8fNTzz$F
zg+0Q}i>L`o5g!v*XIVarqF{fwon@1J}A3G?84
z(ZNKEJz`{Q+(Z8%47hEBKCNk-l4L5VudDk~lE0LaDKG9ur`*qp;??To9WdpT
z$nrMJP74j@^yOF&{)FQ|5tUHX7i)+wC{(B7y^h8Itx9OE%zi3MK>byv(w{N&<)^bT
zA2a6ZZ_i_!_{zjREzHf#BCOI5sel&7h4`%~j=$6aR
z)oAY3AhLr@qX``ssS1__m>;QlKc^;bWTavty@0fbN$mS;k{$h$FE33En&jb2189?N2VBL#m`aAoIq#-TLiA8&`IUfHS@
zf)qtx?atF2%wZ6Qdm^&Krgsyo+917b4RDM#>dT4d(UWO`#rG+A2Iy~gHzvsGwQLtj
zUsKC?Da3VAR%L$k4JsZa60jr8q?{^S82vSMo3oqRm~OnR5RAhgNay^FCmG
z@|hRJFdwj9!4>*9j5v9mOO>wHuWlo>(D7gOhQ>I=TH>O9hnpo!g3mHZ2AOZF`D|X@!
z@uv-y^bx&^2j=mEhPa>6{fEdkW%79t(^DP=>oJ@7(HAK`4|V}lBOkHs-pKfg@vki7
zRcRYqk69dbpF(cmO*VhpkA=Ti7#@=C6`l3|GvY&DPUN8nWOsfM=O?+sr+f$584vx$
zq4oJaLEKz%$bB9n{2cg#qzRtUV~=mq{F9kNfQ*@QxMJp6S&-iW@;I|r*{giQb5kx+
zp33Rd+hltIPXM?|h9^%+nJ&Q*?mA#JiQ@jBhT(b9k(xanAykymGLwu$EECDS+A$
z7BDN&Hd%Zyxd6}Txf|_}P}Jygw3sT3b3kyGJon<kQ;5LN`5$B-V{;I7_H$kW
zEo3LYIh<1qK@6^zIDbg)He<>9K>(>-8TPp8Cg7GkxQ7i7nzpO~mCNd>^9ryF<~Z``
zs9ejYSgt>HZ1j*@=@E{~Wwe7tx9Sw{p4z3fwnZ++|45jjo6@5+g`-wizQ5~x;e=dI
zv;s)<8EaNTmF*Uju|T%OCjNXqUD9Z_>Zt`35Npp*ue8DIF%
zTY&Jc*^^q+>~yW`-9QUqt{pP*o?}9Z_bvJ%@AlZ5>TDgq_Yf5CA6j(%x!M()7K{4i|Zm8&tcUTrS|7rpVREFwXvz~
zR8A{((#S6iYctVR?_C5W4g3_BdVg9ekXR?$)HT-Aw=dn_XPPYllW31NyO?>#(I
zkBx)N7=IMe)hO9v%O5V?Dqw7k4!;k;j?-1DoVfwg^*0=+FM4!!<{V4eWrgOh*qMdB
zql`Me7m;wm7>})+s5A;LG&#ULsY-ou4cpU1mzOLsQRZ!q?nB)BI|p#}XzCkZI#y+1
z&U??MV~6qg4Zz6@j{!OJ+|7lv)!}_vs~ZWm^^9K<{Qp|0v8P|=_Vxg`hKIlW@s;X8
z_^a`Hrl5ci`zjZ-pk4y^(cwj4)cg$QUK5UMcLB=xUtuLI7r*{-b)F_Rqv+1f3#QC!Aq_TkjI=xdWRbcu=_>cA@D2i`yy;Y|q
z*2rHaSlDWyPnL_0MZRQO?-ZAD<6y)~+!pxY{9CvC?i(;UfV+ImRRDy#S^uLJ?E>e{
z;7Z#5+eJO{a++lexo$Gjk)ut%(jWb{dLX=h?jp`CZw*x^{@Uw^slp~~4RB1s=^t!Q
z1R7KnYWopN1W?hoLqC3gsgr=+nBkVZ9ikZ&tMG}1ojL+FNnZK@dgy(YG+G!(ztsr5hfZ;RP5iOdy>Or5tS_U^tZ{s|1utP!)7X3`zQroW)??9vXi58-
z(B;JOEcRiXP=ry_qpS~Lv-HyV86G(>=)GR}Rcs)qCC)(lh$h^y6hFpX9p_sIwrp`Wh
z3%cs59}5dAeb@=Bj2yYi{XiPMv7F3AEk=bI-k)cAhlVEsW@tfFfc}X|l!C1Lx{K-2
zlZgt!{4bkNGIvFQtkkeBN#y%iF~#bK-E#vdw_aO1xumVQ!yE52g~cEr_3%U!SG`tr
zR0oU(x?0Fa+Vl$@exlcD*PBb(oCv9Vb17;HbDB3B3}Kt*H{79DR)20Ka_N%YjI{`q
z(s&^!MN8zE}NgUtSp-BbR=)$Mzwi7gG-*UxKdgm~8frB;D$qSfPXh+x>JhKRV9g
z9LMvj5%KKkh+9E44SImHaSU)vsu5z46>ZP%BOpH-6L3AZv1AL1`rt`gR^W4cff>~h
zC_5CX4ywD2uZY6~vpVlknqyGdAAoP@Hzgu$ZmUrscx{QU)oxwKt@uW=nf}+MS>%>R
z+F){PA(b{^SD4t`wez7^C2QFi_#s?K^L+de$FI8cv#Czx^wQmYv?^f_uv^kQR9#z{
zkMEXR<{Gc-|DdR$IZ0lB5nB`8^A086cQQaHT@bsP@|?7~Ped;*bIWjW|5R&9^24xO
zhar&i2Kfv@y<{S(MH|uwpJy)E?FvL)R87jr`vXp1
z$GF8n2UtBcZ#O6k*zUKzV6y}C9@O@I1YQjDgtL{gwfB-PX7aq8~l9@IdZ$k
zy}J#JWL0W48DN{UTz~U!HTCq!s6LF=i8E!E?;+11y{#LFCDGqdtHJ)!_#|cs-2$v#
z5wt97rpG@uXO&;86$ZO)97?UJXbbVZBEsJ+OWQ=*eM!E2dz;O0cfG7vyLQvkAJKxD
zJDmb-W=nPEDqY%?&VXU4ebqvg4z{S(q}=!JOH_ILy%YMhx315{-QL@#l5A>jZuZ_&
z-yP>3Q2EWdX-7AhwW$Zzl`K$t)9`*}+j~`@0z^Z!`->VT%+_iYdaB?al4N+~Iw
zG8K_h5RnE)cSzURP!yy~Kw3(=L7D+0rE~NM0qId=z?kp(yx-q{{Bbt6v*$d|eP8z#
z$MwbMBWJ8MDp3E!fRD55@uxq?tUpGX2fn$#FakSxcc%1>N~UBbvFFBPMX?9J!koE*
z48ex0m%uy#7YK}XB_6NKS&e}RKxC4lm|F_VlfNXJAe<8*cPm_fjwgHV|K~`(Q5yOj
z5cx9a5zJoU7B;sw`j(cCUD3y=w(Hoa%Sx17&@g^~c?q$KRUF-?;9A(hFQ4zuUivyE
zj|#@ruVj7a?D)_T8vyYB`DkMH$|uxh&rjZ#C}d0%Xj@LCwTuWliRk(KZ7y9_=RfNJ
z&MfXZHFo23wEDapK!?Uz`o>#mXJ&lS<5YiAvdXHZA!gtV1i8oonKmQQ4qPb~)ZceP
zHvbX%9cynv#*AQe79YlP=A3q?@U@I)Go=EVL(wnoRinH%0djL+<`~|$C*rg@!+!fk
zg4&OMGKG^@l>EPnOl!JR0mz&6HpycZH2kqnmK?mH9&UeAGJCB0bFeS{ki?pmi$Vwkn
z{=T)e`;@MRjQi8EJ4lebRqEQG`?H&#X|ImgAR4keJ
z(|duERfC@TeCgUjIXOoO4VNq5)8JdM6a?Bd=qnZ4U>0T2*Er;Mu-Dw2z)7$9H
zoq#ttYPmdS@sEg7g=9p9WAM6F^n!KtJVieJ`FA>2ipf9S`dN`VHtDd$HMq)YzH>Re
zbWUbr=UhY6GyP|DtFyAcYX)04l?9|iA@zYjnzQ1f1*5)Em?Wm{%kK&BSbO;M#I!vm
zu7Mr$xPOe1W1xD@qyp>*-V8*}zioLaV-EuY-;l8K$-ZtPY2xOV?ATOftAU&IO%9~(
zRsbeUTm`~JyJA!b!NmB^KGt#(lCTueE7DQr`N-gXOvXO)axJtY_8@b-a*z<@NCXl4
zYQdK5c94Apzqg<=;7>PGO<5b!;6`h2>gmjH<)|>{`=|<*iCrnbEuB*8f0Gn5ZSM(vbrEB_%P1y
z=2nzxHOW+JF#jyg^ab;sY0ut9(VB#7xbA62a#|>(W{Vq8SWb(Q;YnKnZ48J8x3=u$
zwkJxB<6A&VV^6reEw9hh)3d)IhabUI6a%iu0cIA*f6OeISbk1b-K_etu`j&MH*NvJaeJNp
zuG-~-MAM%`h0&;bCgQ{6`&O5}K(*{d$r=Bid_D(UX}nop7o?*jEmN&{s#HJeqrL{I
zgCnC=f$FW(jlqvrCA0jDa+XQcoJC+zsy3l}yC?Kh7OL)v+80qCBrn^UXPUM(L9
zzxW39cXY;9<9q$}iDK3ehB@z(`~<#bj$aHrO62iVL=24`K_Vn$Z{n=(Pr|GPa8i3K~2#!h}EW(x~<
zO>@ZDSgWdzCE@u;b#sJ0d@0m(wzHUe12`(n7yiT9buB@&{(9up|)$1tFHODt9YT|
zLhmtW3y+HnI*FO&D2za1hdDQ>KSG4T9xC5eN`hNAn^us$Fwj3%7YKdQ+8wulHamTh
za@XQd36jo*tzj4rR7eNP??p0-&a}3+-S#%t0a+ZH6b~vhbky1LR4$mCUv9NN(44*Z
zB9ntlnVj@LjINWceO;vcnvrDYIoCeWzVOt@1wuAss~&`LcFGv
zUnPdvY<}-d-CpfQKL1_#rkx9$O$dOI1ljO6abkfVl~K8m^Y_
z>hzG`sCBl~$w(=KG?4>7#hH
zXyYba@5Rrhz5~5+Uv7td<$btPFgTq*`ePtBOBj-C_xkECPP>bX!XcfEf^BwDAN+WOEEUxixdu3Gs;$*NpH7Hdqx0YWxsq!~Sv_j2zo=OBf
zac}n@kr`84z~K_m!7Exrm9GNvFt;ygTHOvMwx;7&)ivA_WuC=;8Tp`4aBTAgXes9(
z5i}%;@g$XCaTcJ|n|@w^6G3d8XR9Z!T-QUKz@gws#Vx|^aSZ(-(pY$_7jbvtyX)C3
zY`B2Ca^#mvh`JK3wp`M4E}99xjRmz%`x@59=>>8XNg+ai2O$}okI_264*$`%9h1vPjO*@ueu_8|q(c8_0b
zvXLsgb~2nYZfAu5fsP_UXEW!WA0WM)l?=suOSK|KqkV+oT|LGgOqjr4qHRGqMxdCya+K(z(
z^Wj;NUVAzu{v|GQ#qD!DZTr!Aclmox+82{I>U*Y|W(#H?6urBdnfjHYq##_DXi|+*
z>E;pYbNfS_jONjKu=g!*IPI>E|4fQ|&g}=T0x$zT8}r|KNx}C%-6Ew^{{fZ+ulzt`
z-ar^&gYSjLVC;C2s>yoLon;eh)i*A$d6HR#v!2Iw7c<1i9q;>Cj!6GtA#D`QxAI^I
ztGN}XT|L9h6uMJ%N-YgX)jS}Zue?Xq>09!P7~K8iGT5&y)mNeK>1P(i3>Wd`{<%6IlgrrH^3Zw2BgpjC=P9G7<7jLIx*kM4Z`5Fe+`
zJyT0J*u4jJ60D+)mXi;-7}hKrDIk5eU>W?!mBdJ^f)I2d7{pjJBD&V|Ryu8PTLIQ0mi_
z-n_wG$JNC8lO#Olel`U-EPKnC7@rOW|08+{RLRBSaNjjpen#MquCOEFu1Mio!URiI
zT2nOD{#z`kNS70;J6)A1tIUrCWPIX|tN(%=Y1wY5RIa6dhAL&#EI#p#u$HiI
z{&paK$X?6g&EEzi7Dy=88FAfj$u4*o@r9YCoL+J&G}hLa7{ysiQg&g5ox~-&V=A%s
zM~JU=sZ_>M*wVuJs?`LO3#P^9tf8-aE0^U#Wa^=YQ9<$^^XG73ZBenZZHq$QcCN>F`I(&20N9`!}Dk#Pibc=5F(BdZfyAIAqkwT~f{
zD}Jm@oW^?S+-vO#w|Rau+)<97$UHDDM$V+2hr1ml-{xsclU=QDc-T`xp>`C0%bbWk
z=JtR-hXHb93gcNqXpvzlm@M53;uFzZr^Wg$Av*B;GhnOOg_d=$-Rwv>%a590jT?LA
zuCB(sqrg;|vkk%3eeJY=KhuWA%NAhqY~EyqAQ*}`Ha55G#w
zw@+2
z%-3M#ncWx|qXCIpmOvFAsdoM&qB9#Vwx8F_4~WU;8M3|t9g@C%TGkyG+bCYCBG66y
z9TnfxDDdV@cc<~|xr?)=ZEL^q!L+E%iD@o60Af%bCp@x;uc%`M=gAxt3L!<0{6oa%}YnHZFcro)%L#6jOc$K(atG@BIh
z+}^ti-+vJu8jTZrN~QLi8|jIQeJH?jQMjR19v>H2nzkekEeL_t{l)NJ@(fNZ4e22*8Ugx$ape@Z~0&wwm
z#vO!&8x`$vhE<#T7y!t1>|+m~f?~lKgMv1$JGc*4x>zxIk^g6}6UCy|s-UBGgyzas
zpvKZ3Lidlv)v@lG-8`hKo{$K?;>Rn>v*%Yov*D4r3HDi&`*Zh(0_TMyR_^b!%H+{J
z-tRM;hd3ictj7TV=ded-MHc6VR{ycnf~D7B&Jjc%9}K#`dNy2Bk7yTuuQ#Ld#Y0kd
zU{8Uz<0;tnHCYge4vr4v_V)GjK+MeLa;fuGP7GJ914#^L{#8vQubxMU&~WYPGFN}$
zNVQ+loah(uFd=)IU?4S=_xrDoZ~GxYhLkwT!@k939$Br@MxD8FKzT4xNuswbr}kv;yBr&#ezqCFALt50@4o
z%9niCsc;8c3fLr=7O^UU!P7gSX2c_1G_~U!+RA&!I>?FKqC0;pk@=I7k<#{fzN-0o
zqoF3fIiPR}l(SMD*FCuv6I-GbY5T_a59(_GcjV#4`ZgNyVbdnC#9|?d#;E!w<&NYA
z6zoBhQ%i`)v0AZUf=NI7KO(QPA;Zrd1E&<^V?e}))rG}Py#huXfX~*n0k>UsdnEgQ
zYkdpPAd3Bf3&gxV?;_m8+2p~kwws48lgg(wB`06jnn=E;cuUL0-sYO_=dn)qE3u~m+xKuWt3W9LFJpiwrz~N`N213$uJ!|Qf*GtY7Iy3Q!
z=5{Kge~WMkZo0?RcbO4oAlX=~QzYPKu^)rGu%h%^8@42;Dy^sTA_Y$NpTQkADnA@YNJbRq_3erBdtX+c4{zKs6K9Fi;zuoO>YP!@So8((o=}tyEIs_+wL2J
z*Z1{Zf#wERu1BK_Cl?Hxrd+Ki_V%HpkBkGq{s|hvS(a4y?sp}qQTBQ~Su7Os+f%K6
zTcfdmA&T?-JtQXZg`BT4h*lj30`jIK!M9sQk62Hey!27dR*hFY!%cZ32KTFExUD>-
z$^Hm@kce3AT}@`EljlHf_%uy_Dc!g4EhzW$0?{em$7!!ZLZl!dzxg9)FP8`0LdWsR
zJB&Kar3%#)5pqIL%c^DrzDHE&slR_UQ*Zb-1Zb4OSwQelBK90tdDNoXhJmH#^{vK+
zUGA(sv~4h|sQmHi&5KyY;G*v8kgGW9$AWEN`4Be0Yp9f%G|CEw-zo+0q1?2#wq_S6
z%Dq;SegLS+ZvREt3S=L2WQFxb@lF%icY2qXj}rHjB_1YEY`^()o7*)yh9t*;D2|;p
zP3mi}Wt$c|Gka
zoaZt#I=N}|tvBd`!yL8hCQ{7d(fJOYDw?=^?g&dfYiyP1R&|09i1CMhZboBJ1x#%(
zgiX-b2=0?v4Y30GX{n4lNa;0m>XpP5F_aF0dxFt?+J3}9hBi4$+I5`lUZoBoSdV1
zYBf6PWyfq%zh?k8HT)kT{47n92~T<_4D417x<@1a5wU?+av+SZ?Nm^P_)~c3rFCj^
zljV4iB*lWt^tz}JM^vY)dpkFekL56a+dSghQ+8a{jR}U
z${8-Z_%*Xa>N7W8NOtxc7!?2TxmL367+tV$pI`9DWVyC-?iuR-2
zDFTD{?Jk~EL0d6B?W4@!-sUAu^zvO4IANzQE?F+7dPiv{HVp8z?NVk|n&V!BZB~ZO
zF8mlx@U#`51Ni;1iOYaTgJPps6*i>{CV=;palL{}FbkYZIH+sm>-*ToqTa*ha
z2=6_fF;JIry)3xQVsd%!_2K;I-aa(4m(2hPVNhoT|s#${B?V>tpagUPQ3j97Q
zaS*22tQ;ER)UkHc>kUp0=HEEz;0_-fvRjWz_SePEEH2tDkaxa4X@>}w?+0Fw;t40a
zRZT#kilESA!vee0o~&N*R-d$J_U)dgGchW*-y9(?uS7fiTs89dp!Y<
z*OL9K?x-;!#!wk~5Y1KXMPxN303bSCz%x2Jfq1<-RPeL9J_Tp6OMt+w)@z+Te36qd
z1YnVx)BH*6Tu*nh;ka^QG)^wEKzE%}*1IQj^gW=n@dCoL>jaN$+Lv)8lHD@Uz~6B;
z77Ij{A7cXj77q>jIl~xkDc_-@86g*rAo6II8}c9h!ScgWket}yj|ITIkc*|dVTa12
zqU3z8)oORH^Y*!XXn))b%f-Cn{a2Q*!PHTY%NOi_kTa2hMVNyn04s{&L#$ScH>{iN
z3nk6P69$-HnczFD*M?FrV~K~Z=N@#@y;XBl*3SQ_hxS`j*U?=Fr65{&jW=+|dWWa}
z%Rt`^et`G?TAjZa(hwG2h(Yazuh~|6Bs#j!ZeNh+nrgFr1D)s5Aff~Oz5J``j;9Vf
z`_gKfj`;C+C$auj0Af(C#NVDf?@jo)uIbc6c`JSYu|smkbC1DVPqT&*iD-n^AG+O5
z*_7MOKFi>2yx3nWL65=2X0S^QG79xO>oyXqee?lCj)XA!ZC7WKYqqw(S)yF%nh*dc
zx8I44C&HenAzLI1xf~vzgVSQ?L|0}CuAV`CC+bXk#kYUG1)goEyK;aRQ-1-9KVecq
z$f}q<(u=Hpm(@ro7i|`QCL2+bDNRr#A3z!9Dbo@TFN
zgt-Rl-Uux&*-qpA++5KRNRw{kD#3G3FQoJ1%+7;>wzx#S!M^-uVjvf>@0BTGXvR0U
z*DX9iVxYzK?W%Pw_-tH;@5#Ak^9)T}W&cQQ>2&>t(V;O-TMn*JJ;V&tUf@#dfKv7{
zkgmzcsI?dUHPT*jO3?XcmR~l+VeDf+!8>q;B$@b5Oa5ntR?E>yXcxu?X+uOx3DUoG
z6@FkddLEyCdH2GgA^Bb1qC(cP$=k^f2SF5ORSLm0Pg%DiT0sw&B5MQq7EeNYi0<*}
z&9R$jA%K=6!Tdq{%x;`KV2eWZRHU`5#(ICd=Y}#?Bjh}KU~8tBYNM5{CYDx}|ND)L
zb5koq`oIexl45ZCE2=vR5pgWzbpux&tpBO{T|eG3E6TgdOMFW2|AV;6M5(cdNbEf6
zggZ5O^p!W>o+Ra{E{{ML*~!0r9{|2TmIKo)+tG^+maX~kbi@MvFXE{4+7Ai!H~8!a
zEuX^lcGJiVL~MF{6
zavE3@K=08?VLf)=$-&q(CzpRjLl>j&&K9BM&Ia38*+g(KxB(VfjDuivX6lHO(gg=|j?+@)+lX&IcCil|e`P;EprAS!Ezsd%zIUBwqyIMy9AA{()%$LoOwx(Iki0)O
z8+WS=Fx6K2%C-6F4~GO-V7y5V(HrCj6?r+)gWeL@OCFlMazT;chg1@cbimT%%+F|$
zJuM+2G4#1@ZMvbdsCcf3;TdNbY(NxJu88s$!Hz&=95;=N*-U=DRVlECuetd4a1
z+V36xs{a7+FEMdOD(tE*Y<)azpI-x|Zn%gVZ(f(84Mp|f-4;^lj37_W*K+w9IQ=#n
zfhSo;Zq^q~M$4YU!>mride9_rhuGPz?z_0rRcwxXU{229j=V?eeZO~qgwJvo8E7_;
z_xLxUs2=@}^_scnIb7?2TPW?18hvs0)!Ux~h>H
zQzEXGLC<$)ULK2-uMU<7y-towy-|HJ3vH{7$Z+-7WemmAM`xZn*&%^wtI+A@ZF%&`m?i6tBfg9W+gOZ6Y*mJR32;r)^BVp;lliFR+fo{s6R(T`VY9Ad
z6^*>t4nq);j#0gxIyNcw&OMu%u^pD8$HQ8V{x=u7qGRQC+&OqrzVGm`TxWXu0%OnWaGQrX8p=q14KgN@WFxB_pmOCu{+(=Yvoo{j(4pf-RVDkRz
zE}|5OM)so4St~McbG+w{@yULBlbKl6lw{!a@D;5Rt{8KojH_Iswp&Gi)$2*FrcHjY
z$Q+?!e)PL({oziTL}xE8V^1U!N%!)dU9Ei8*~ZHVQoN
z$6q@K6!x#7)Fs=P!f-{_qFK}Y`2Ma5Ki4;V=30~&BlUfd=egrEAv2}7B}ChKU>6NnPr&t{}DMihVuKZ
zQr+p_$uA*Or0$E#B6BpU@i7p1B%Nrt!IX(XV@I!ZyyC2o(hKJtV{4MRiN9zttQ2nL3F5_Y$RiZi8+TQJ
zC&O)(XVY)9EhZm5^A#%p@K=I9w)5tf)#QOc;Em1_6SwT+={h*{=2
zIxy*L*J`z)T{!aPu-EC5;q`}ErE{K2&k4kf>LYI5q0!N(z&91-6A%&`w<<^Mp3H-R
zyAMx=SU}gL2Adp4q$O`t^s~1Kc4*9A`WLl}yyY7!WK?7US68+Od8H|
zd>UiY72-Dy9T6)sJ;6n&+3D+KZ$5`p0C6W1*EyK;&v+oH(4ls5&Q{$e*T+rl!uF|p
zhqD2N+FxnaPf)q2NFvpugjWD9`Q2Wy8~*-#PRijJ_pwx-0W4UG=_%CVDhM!kM>B(M
z4jJsZZqztHl?z#eTQSTMHgaMMvZmq%5$%>|3|PGpb?}k070JWFoeT_CNvHbEfr9$PylrYp13cI5U-SR&qG?slTgC#bkMthaqGK^wK1
z+kZ>-6JEUa`YWRHkf#HmmZoMk8UmH{)1=CF-~kO6AOGNn-1M_Jrp`ifMkW0BnV*{D
zoVo&TZX`{P+BN01G(Gig_bDr5Fn|2_riL0d8uz?azHqaS<#g#D_>xgCSb3$AmQ1de
zlV7u2FE#o%L
zC0c=lYy28NflF`Q;}
zd>iNb!Rmv1>GL$s!XX)mqKCs=KCuZm
zwah^Ea<`9&6VBN(#2#|Bq`eVLV=;ZTl&7T)AbI`s5dD}Mr$Z$r9O4QN8$?jM{QQL}
zJN7#(;@B>*dMaJAkC27VOZ%
zVL3M}I(7z;UNJg-{Y9yxoqhZ=-CS$|AfQDvTVffmD4C5A
zKO%;6c=ENGSJO;G=&AGi9&Y_=pCC2tpVjoM1>&e))xqm7X0rqu7Y>TG-MEzIVAgzUONA1MbLR(z=UC*_?|RlQoX@t%kd
z-SXE+yYcK0ALH|V)hklJ_VuSzd#~7BrU01OC)Pc0=ceC@c@hP*=jni|I#EZQ`^U?@
zZJW7aDM>)WlJH)eK#j6mh0i~h*hrYf*r5naz}Z;hr&68(X2Xl834Q@dronQpUn=Fw
zB~e_t$Xe0m41aOpnC_4;5e
zy19G2zl+E@W#LGDIV}eAy-3aGg0G}2iI2D1cpk}MO=f!2B{Wcv3R(~Cr0U8OR5B;<
zE$WIqU!-GX;)6wryXy+nElzGNxd2Fv9ss`neJRMFmR;9{NV$;MbPI*kfgKRD?XPW7
zyzy&PL_4<=(S=Bq)2Rns3
zz)vDE5$YCpam1Ld=t|({_XB3%kL0!L}|S1C%r0FU@dC_BA`Q-dnlq@oN#!
z8T^~X{9O=2VhKZqf9;Yj>^H`c>+_L_?z-s)7ng;=zy6VQZ+||TLaNj+^j}kA4Dbx>
zSl?#dd^}|Q3=+D0zk%4*MRdQSg4^JL?uW7ncsE}So(Z*qvGI!cj>3bx`cvGT(sqQvD=MTl)!(qGn!r4%o6{z5HzUQi5=Mea(#)uX6qU
z^p*&NX0hLU_0#m6wvSwz7jYbRh4DOAllM^J-G2T$eZ!~8rDu5ECyJ$W(@4Q`{n*P>
zCE%d@?D-sYeAowR#Sy%ZQ|uamErm@{F4x+27K+|)_}>O#wU#~4Pq=-E@m&A3xI2FX
zMDF*?6tPgw3}vQ)Z*4Bdabz8QfhZ=-_5|6QbjxP&=73?G+1jet-2FW^l1_qsOYs+Z
zKm2yF->$=9;(y^}co#T%q?c1ud6MLG)0L&VgS+Uraz~Ha1-Y%kmlXNOI-%4-J*FZg
zK-K`GhGLDu%*@PE02tDJ@kIb9zmufx?*l|@7G0A9k8Ltk+RP1W)jA{Tr0)xm)$EEj
zt7_w!N1eA=6-BcfvpVSg7>`=T%yj#T2Jq^Ys8gj78D!tih>nTmsOt4+Zx_ln+P$Wg
z@@MPRo&_fDNgrC$1+XHPuK?Z{!!yA5$yDx|RcA<`A{u>&I*}LepDYgjoHp%n&gBkp
zerRweYj6grC}xUq2Xl@3>JI|I
z_2B_8vRuaQzdOB2MtkqZ>%h4FTAQJ5OTGMq`ET_n<6K_VIBL0~mP%fN-6nG%Cmi|y
z5iYt6s*1B%jU2s=(>06#Qr|lMk*%ehewEvr%aBG>x`*H1nMMo}6kI6p#jQ*y^{5Yy
z(3aRd5|1j8|CVQ8dv=IK-={l!qivt(ZP$}`|0U`U=JNI4)
z@~zym@p$@&cG%G})AUlreWNY`HRy)OIjcrKmveHTu7~fA0Yo>_>u8g8-s`Yl(XSJ#
z;1Eg8P)!Be#|q1fPp=~Se`Jf0`YitTk2{LaPdrt8mKkI$N~yda*glB=58L>CeCRyw
zm`$<0c)dL3Ma?TJITeAn9F!2G9_~M$y}XRTd&?AKb@OgM1OkFstDq9OMFYP^#~1Jp
zX6Zmh@C8`qPS5YHp|gEm!Nwwez!C=w!dJ@PGgLR=6o4Q4j$vo*Ui0Bx>PM@dp0dit
zEDY+eDYx!*Nxnkgu@ipu`^ev3Nvnqyh@8J@%&V_nkNlCt$w)&)gH_W<*5geQ
zqV@bFWY42MF0>b7@Kjzr;6oO>-gMU7l|2sp8gZRW;O?<=doWD)-PM!5(OfuRJ;om_
za_4{(^`NyZp-{v^r5$^9s^Cd+=dxZ?By0_`cMW6%O(Gau?_@o|nU!|t`I+=kjhpt*
zmoBJ0s!LG&wb)5^!S1m5PMnLKJG64TmIEz{oc`1O@+4+?{~YylG`ed8mo~QfbDwz=
zmIfO}U;qF$G@J6Q4+Y~h6^%Z-x*2My6W3E{(m$t={6JIVw<`7hz7N4Gv7d$-liT@3
zGH(tr1F#tC9-elT$lS#j=VqM
z>`z|1)$EKSA)gU-4WA^n7v$m5^FNbB;#allmrPatU5``$)JL2VIcVko-(Vc3l5CvUM$~`8^sVsU#38kk)hMAgDqh2M*+J+R!XY+%zV|7}J~L6Q&KI
zt~~lE>_lqb4eKG@`}*@cH0-QM8i`?;Txg~4?eJ)IVaqe^!JPA?4^yRY-DCBdaOzh=
zxDwDT8k>VsBtKeZe^rx4HgT9KqxksuFbB5b#ZQ**fqrvw`d3LD>t{prVc4G#ipJOP
zcaNP=_}H+{0Shs$EN&OXK=#;3W}%;n(d7P_84EJV#xGJx0x9N~AKj}LKmFB)JMLL$
zWsh|s)4DL55<${I-AtHv>ywNAA=di3wO|JCS+Xb+?pvbn?eEFX%H|@WyNDdtle6Gj
zZM3@Am-O~IYG3TLCspe6Z$W>`QZfPq2!&hW*ASLW)q;OSWN>A+n+=~7we#k8mpL25
zbSFjg=sUehH`NMW{_WrCraP_d6?p0OXI09!8If7Zl}qpNE%t2&HkOaRg@;-}^pJYI9KCc0X?XT)T98!E%`e{)=Fyq406i%gbfd14
z30G;1n=TuffOmH;Ek`LX6eD}RZhlY@m=
zL!-1zq{sbK*r^9g<}cZULh||gVvTaaK(+cHZ+(F~ISR){mlC;Ltm6s`>rcr3>$ZFM
zP(V%2kAH9}CKw5gUkLQfcAk9QMkn$`YV7co_Di$kkf>CoGL_*?E1?T3!q_OuLOJZq
zw-5NuX{cq*HdiI8=2*!96jQ*ky?Pb|^s%S+SF$Nr;5n6AVE=p9G6p*WkL+U;Z({61
zRZXb25UG6NQvsi+o~ZYXm`lH(z0)pYlnbT`4;^TXj33J_Wo;%Ub-Tg4?yn|>GLd90
zTc?6>XA1XYfE`t#>vNGbe^#TvETGdYs`~79)6XlT{38*3Qe7U7erIS|`KeX3-{~!_
z+cH40W>gg*-d~BOsKL(!l3Vh6W+S~J0z|;uuy^GtlzVQ6^8g+ZB^+;Je4k<9VF$J|
zZ#7*AD!Y9wBI^{~QS0~H)OR&HTnazpWp6JzwZc)V>&F&aNM^zv1dX(h5gEyhD)9QE
z8se=^80)%saG&;B4gBbxApi}3Sq01-=Nz!uUo$y8S+6qs0W^!8JNfKE>#N`Dx;kds
z?BbclMZSv7yU!+Ah5s-iH>1dq4SKvmK}40AnQ4*7N0TXnn5BE`c#WZ==O>MjHaZ(
zSR#PkFtiytbQM0)
ze}BXD7k#ezz@)qL1u~VJfre!gr4C3>>{SOr8u#o-U|bY`vvT|LRI8=h$%`jGaCM!!
zjkd^!)R*yC@8JlWmb4PgYl}AA@CdXJ!wG(Vodksk*=M~Qc5)+9NRNLqCHA=U$#k^$
z3ODo>xFYN&-TON25p5i=hMxyKoJ+E9YAec7*CCG5kTs&Ux~zL>Aj-~eApS7h_*}wk
zNfz6*V|)9U`<(lVM4j9bnQ>X`eu)||0x8+-7>i_5B|p2@k+Av>KiogROqe1*I@||e
zz50tF_ZEZzXEL>-(y|yXz3kzYbUJyu_|iBI@Z2@DCUPuZvT21US>{CYXb*SYf$wtmZN||rZ%2F6s?c=g$uuly^s|2nM{+kHIMYY
zm+t?H!#cMD@Qe=Bm+OjcLhCB_i262N(O!QnFkeHHTmx!nwu{7Wvaz}^5FB<8-j2MS
zs3Fnrm?um3T`$`E({PPSU}s;5O@5UTlGW8lMbZ8MjCvWs!gz)Ium1Tvg#m|t-9-8E
z69UwMXgz~DBarz6oJ3cYT%EwPUaACmw8A|O0K{xunY*F&fn*T4=55ty;NcQQI^Isy
zV&xPQ%B~#N>Ie8ot2CJ3#kSRbg@-&O|A?OFB~h_=5?G@V{?-(5l)3~CI%P-&ru0)q
zHq3MQGBfq$OPGo%H?G=xvv!`|NH8WIhj-mw&56fSeMAq%!S|;2NZ;c4ku4!Ac8$L5
ze+Yp^RirQq%vDBx4Eot7n455!+wlr|cQx(<7HS3F{qG?!s=5P2%H3V9Cwp15r~o_u
z4}v8g#g%q7-z*F}IB+RfY`P;d*>=^)IUDmWZH#(+rHv@qc*qKj}C0H>26Rw*z=
z=7WyiSv`xym*eJ4@SA=%YRAHQ*KohBN<2m6{rdwevD6Atv+Hj833kBO%DV5RP-?
zbZ~?l2$$a&shnp*CM|e_(ssm589woGX;`K{X1oS}&8)rq0%~`q2^(5w#BJpn{w=;Y
zQQz{SF_3bP`PRxKvELGjch@sKXjtq>IZlKslKGSA#&_+my{O2P{EV91n47_zQvZm;
zvg-=>$}3+(&8H-JbVK0QujYfgiZ6U+sqfOP^1eYfhd?r>yVgJ4b@|ykgGLpfkC%V$
z?VShnBhLQ%Bm?JVpQa|bR!g#U&OKJi=_P%TJHyv(+`e;d#&i7|IFRxpRAVaWYXFhh
zN_WvT#nm5KX}2Cp<{rL1k}h^)*kiP!vWw>?5(p;hBr-QhVHSFM-}8_!)*xB(p%gWP
zF1YXu1{?9?Q80%u0A@j&f{atFjwvGn*n<$kPVLrrH43abowEQl#N#IYt5=wjOyVZQ
zarp}8d!tv5U?%fN@(gcVAhCG*q~*SZ;Unc0rP#nCl?uN><=VLipVht9=&GwdKWu|$;aQIZnDjiJ
zJ_%=$np9a8gv<_TETtwHGdjTOg#+>mP?CO<*EIi#bS5N|r$t?UBpV9TLxc}_U+_LK
z@S!N^r(kVl9Vp*=PC?x(6V&p(YeZef`Z9Y2fRxsuGN8SZ4}y+j&!OwTLY}r
zc$1fxa;e!`iWSmSg7&}*y<(79TW2?4(
zR5F@NO^o+TKGXh*G^Gk#&Xb^0ESsT*V}|9-04U{Mw&aG$-U1hBTq3qM`9Gl0IOu(f
zm0(mO<{;+((R9^OP5)7Qgn~$jf`Y_UK%_xXdcz_`kVd4tyI~^)Bq!Y^B@&|>Mo7nK
zq@+Qbkps5<-mm9<-*fnD=P<@T_jAAZKKHrLQ+F)UNu+6dF<%a;ecm;pP!r}-7@xC!
zZ`;FV@V@?vtYc~*JMy!|_ZZgrqWd#4cCEm1Y{pK$CBLu$?pcXpiQ3)+mVd7yCSP4v
z1E?hQ-z)bBw3+Ng*X6GGO=#a3;BOb=tlc#yuH3VPymlmrv>{b04mfdabApm>!^fup
z&?rJcDqX(bG$_m67UU>OzAyUuSJ9?vB4_M$-3{or_J~(RP&78zPc;>Gk-ZFNP#4a=d^`YIka=JbH5EqAUYBo>M7^okYsOWofFZ2wrfw^
zaeUj|?xtgFOOVfuO|Ht^+??K-)Zkyg`fFwEwcHr;6dLe{b#!ye9hj^M4O{r7ci2oP
z#RcCRVtwb%>oWg}p|eg!#_#h;ftaG0{OjZ5!t<&FUvC&VRp}m=?i+oihY!scs2Oy2
zqGQfSXU>azP&Jlp7?PiDpNcNFt|A+Ijj%Z^h&L)O;kLfoan&5E)MQzhI~_&z0y0Wa
z^I^6w?LUt(s9+Ig0mX{1{myO`W#zxX`(2gcoFSm~IM5cI_Mi*4W28(ZZnxrNk15BC
zhpzT0$!sE^FqUeOzTb=qUL^}Zy)Dk?_n5xA>qc|)x6swU3N|6(gCb5n%W(=@@n|Tx
z>s0f-vTnC;W~)KA3nX1K@rU}C#SK7HSpDoT)>DpQh&kh=5!Hiw1Ds-S*XOT)A8Poe
z8w%Fjj|g3jU$wqCf4%8|_-{9zgPrqW^Zo
zJsseObwDI-1CjJ=F&e@=)^TaHxI-ES1V}BUtKnp2m@WgKQ3#)R#1sKZC&WV#>nX2J
z$a6aPK%eC8OkPv3W>Z_UV~7lJ&EQ?Rsp9k7sh>uIi{`B#xaKpsMI}n6BihrpkgsWr
zo+iI4D$WCkxy1z*d?D#&N(Y!ZWl5}=wXd5wAgp76%zvAsGJv)lY8BveJp^!UO`@`2
zh~aaN7~t+Svo!W)G>}6})BDox`IBkX*d+>O9%8{f1#ciPI_Q}UH8~>oKlWt7O
zr}Xo$_`(A>G`Vq^JD(y8(|fi}Lk{NG)%PY#>b4c6iB9RU=g$p4_lk|rHVX{=2P(cw
zx|`N%G?D$z6AvRhI1D8)c(JwLPZJ1j;mLnvZcPbO@>ZnXJT__frdY1dFsoe8nAx!<
zla2rKm<75FPS-?ARJo)#F2Oq`zpuG;WPbz>rx{kJR5|RtbQEK?Zl<>nJrpO@0Lk2V
z!3t0=A8o${-G>4dK3J>hH@}fr23Ea;z&s_TiOdQ6Ft%UV+~ALnrQ_DG5T(qZCUfmJ
zRm*(nl&Da4zc68qJ6<*B@XfLIxhbaT7qD1(p6^JvV3XYB5LWoc+0)sSZfM%pzM=O<
z`M9R6XSp8b&;a@Xm9-IH9Np`>_@kt*N$)#k3H&hZ$3A+k72s&VGsa9d3``t;bIP2hu9|t$hdUD+~1?>b?E|FB2#k-+KUP
zRgxbdYU*bddh_bB<5#tOm+zcWM~H2v&Pc}=@j)oK46I%B+w%c|c9G4R#(~;JsIl>1
zt98{1-JqYnL<0CDS>%dk0E|UtpTULnx0v?c-ty%l}XP}YMeKPw{++u(Wym8
zA2MQ<-1x`X$1e{=vIt79yDpla3bZ*n2U(Ln8e;*L{~T7-8u&cttr%Z}`h}~g?Aaz~
zyYk0hLK~c3txKh=`Y_B-=Yqb-<|9#npKu~##XXmH8`0DO3W&3jp`JvLHZ?7m{k-9x;y3ZP~
zT^ZlxVOG@D^b)={?*RS3JP@>LYUT5B=I){~ezwk%&DDQ-M`E*akpecwr|D6d
zvpDWurP;4vIlSd%?g@w_Ep9)Qq%-Lne!yzivIT7xrgwZ@G>#GpL$56+1@J#Nj*S9BsMHgI5
z95)PO`Oq~;oH&!BUoBbuL_~a!IC}VaE9WeSCY}I+0mN98m0s!#1l_iawZUWa+xW7=
z=N&HBvY-TdD*(tgAFUvvXxAPyzx*RW+Gst1**i1jFIo2%D{Ts8(=CDg#T{S-aCeyu
zV^)?rP_$*`kJuBHuE|0Yd>%w7kobEb3jE9X1%nM+zXSfH;}9Qj(zb4uR_0ou`j=cy
zhztCI-I5J@;%#NzkXT9B?weJ)8Tga1QmuDVq0}Z)vdsD`%v$uvYF3a5u0Su$bGqce$yL_OPowuwB_*<(`Qz{`5g*=z{*4S^}H0uI(jj
zLTTx(k(U=>yw8TD1I!jEj^05n5aHk&{>)`bR7f4|j`keY@cILx7R>y95cbXW>UdR9
zWerqNO>eVLeFU-N`3iQ&Q7}@U`$vIG)Pv*`D(Aq{VjZ&p>jS_)*RTxN``m+>C2Xujp01TA-2c}
z6c3I(PL?nB>3vuC9}3@(UK6LTwB$x4@(+@DvidmaB2r@ppIpxze3p#X$+%k}5b+TD
zAv-ji?F2VN{dbjlt)}+!4Eh}%M&MCl!QSqIi7Nf$Nqz}du9+mgODXkwhd$ZVvgx3A
z1<;=4@_jf_;Co!xwh0SUEUGDDyimyWew;4p#FO&7Z>Ic!*Nsn+K$L1a
z|M*E=p`UXhT=HEFTr~UW1C^yt`gzA_xp}K)vS!^B?Dz4iF2AUrg3w@_j!-Q9AW6e=
zkdr*L9>dFqPv@{tt4}HhXPDoGe~xKhI))Y`F@^e^BfDtEqg1HAxiQiAKH>P8v?Wcm
z^6L)^#16PRPR|-x{t|PnA1w(KfcQ1yW1MA(wkTh<|Jw);ny%YGfUWD-2y+zquG6#s
zJa=>^T>!@&W^qynGCC0dZP$1iMv2X^?|^S$vOMN~w&PEo&(0jJlL{iwX=I~2)Ugrc
z^qjX`U(H^;9T1AENgO*q{0cW#nHBwYLE{cTS{)#B%|7KSx6=Td)uyq76M=#9UQb$8
zDZvAtCe^r+qF}RfiR>F3hZ@n$(!6WXOM!s9rGC0VCVc&!GJNu@tH6EJ@vF=OiX+H{
zIQ*>`%`b+g82G0DtrbI3EVMl>!ABs-jfam+<$jc3
z$+M}-Qd-+XO4B#!-a2V
z1awWr%+UOVS2!KB2fEBstMyaed9}-#J;7YPh}=&|X>?|?h7YXGowgX#dTM>)hfVqn
zHd|H}G2b?x}|vqOVj(Cv{fZHU#qyi;e0AMAh3By}(Nn^(^*te*j+YRTT(N0kx&zgH6U`Z}&+4VTjB4`zLP
zwqLd(@3ANT*LpT{J6N{mn}~csj-tCt<1?h+lx~j
z@{P){+8%{^c!&T%@a$sM;#ys36x`-m1hOKIBpja&H_j%<@nV#4+Stg_1;5wWNT*GY
zNo3%0PHIz&P_?8;a88meJLu(?@|G^?;;%qEMY~=!3q!4=?osmVQmCKTf<>;Y_Z;tU
zPfMUfUX-zE)+(hl4f1@oh>&4qkCC6%WmHjZ|Mt$WR(wEMJ+fM^M3++$*dgo#S6l84
zuVv5H_g)=juL#`HvjN{~d0Xa}=0B5)&ozaIXwu#(6u*-*H!{Q!^1fW7+8<(`rq=uM
z%g>IVW8=FPDCFdEg^omubuFU-jh_4a>u+nQ7sp`@nptym9yd4X5(Jb7Zh_xVJ)Q2X
zvW$R@E)ll~T))8yOu|^Ok$9GkU*``Zah*~y>L!>rF`I-Ea)NK#`ObfqMUhO!rTVZbrG
z`QyjDbRV^x$;vk6hWG3eg$ZJXR~eJA`qsvU>GF+c#4;U~qo6N+AI&IY%F9}L`pVAi
z4rmiBaz9Dv;tTK|^P01nr}#Skrv!A}}r19{-5gUQNXp$To0
z``YsE#$FVn}wS%4vJd(RCLmUBWb$FpV;e~s_?83seRG88@>WrYfSxJanJX2Ho5
z&|}B~;kK}!b?a(gb8Tj>uef^XB=a5UK>A<%@i)acZ$G#}ITF3zHcp5)MC2Z$`F^R!
zdr2heXP=H`)BHkVxkW?Vc^VEO%zq6YW$?aMcolf@Y_TTL5q@77eFUQ;lysfF&@2F>
z&LV|1tHqSB!&{+cj4x(-Rj^zKHIS}+9C+Mq)-aF@K?=5LKpg|tbJnFd->{f}b-X$b
zcf6O{O3#i$st-yjT|a^SF|27r7VW@U{gex>RJZ>CqV7i`bz=*ls#2kCOoDwosAH2U
zU_I@W%aT!+m|sjx+;B$E9-x!N4ocmG-eceG=Yi`(hpzHEpho~defFd)o92Z8nO7{o
zlw7Gz-*L?Q+hZ>tylczs$|M-xOeFIqLT!TiSD^x
zxOUG9{$K}n9r^2LTnKMdHZR)}G7-gcV6XCQ%O#6nJATip4qOS{
zFFTUei+*tKk1ccL4Bd1AB4b>Sj@Lz@E{&(nZub8-*BXh&6rXV`^(AyTfD4c2j
zd+wp}jy2vV6WZwrn4>R6m!HAGu&FF|`2Agpsm36Ny`lsr4^nRQc^J9wDE}m4@VI@%
zGm2<9VpV=T%4(xxJ>np#O$+bnQqibV)B0Ycd^Quj_xM`X@7AP)0MK(HBUapInfu)K
z-_{TzjK&hOrY(ChRdT2FCFlxO$&k4$VakmprgaB|5-RdQ@`q_+aQ2CvY+?8D6v7c1I@YAKCYm$|s&g?Ki
zdj-dzMT52d{wmj+i%rqwYjsUr1%+9h!fmOT*8#eKYJzaU4Pe#pfgZj3+)U!^?pW@J
zC~vM3wiJ9GvesX8nG;bfKr?V;qt(Q>S6B5^G#~Tp)60)L43t{4ex|(o&(M|}aHWjj
z=hLkAj;5Fr!Yz(+!&jJ+ZUU2Dm>$z1P3^+B;A5$}dM9=Vxr;xwAH7Q2)DMA($~OVk$#QnhKL8Tc1_YeB*k
z3zg%DCi$B54a$Y}2t#e*wA@UR@>mvIhQNdAI6QQoo*2SGVn6om*AcU86{F5eG${>+;N
z^Q8=&Y51}QwnLx9gf$|Wk14d5)0w{czWon$bt}JJ;p;6(n6>gZ+ngfx|uqb=TX*=Dinza%`YB5dDrZX3DBuf5x;ah8x)90jCo9
zfv4IhKd&+VR2)m`HtXX$^_2c3C7u|Gd(2
zrG5YA?iy#e<2?hf>QyRq5P_{P-q2dRdhp!U^=C=u^tj?k^u5YQ&q$4kL1GlJ^On{`
zu^*k7-M{{t+I!1oOuq;S7|ViJ^?R&sjy}Np4T9d$+pgQvN{}GG(J3pn#V?rYq5$T1
zjS(`W1-1rYXxqPjLwlQ-FQN1(N90@_dd;J?5J!!L^4MH)WX>^#@4s>`wjsTAeg`rz
zi+SElY9_xUrsc--*g!Q3_dfRD&<_y0$64y2R48uz#
zzO^ro%aq2G#ztyBj-ajT}C2Q*m>d`InH*s
z!IQegR3mFl8(@#0T!JMtwcU=&dAzL&mi=GkZ;jC8(qBt1;A(y~J$7G|gmaqVV7EV4
z6L=x;oGT{fRQf!(g>q`wn6q)V$n=%$E^kY{dE~8a;m=!7v@7bLlgvm)Se}(@hvqgH
zBLBvO82r>yhxeie;+L6h~IC0ap@Gr@H6SfoeWr&=-v>q{WnR+ctXYV1~6EAG4pbqn}%OcV?hIvf5Uw3HG<_Rm;`E?
z4FH&+7DLxH_^q9X1^A8b65TJTvY0jm?&w`+MQY{f^2>30HtM>Y5O6Tz=(kC~r2Nspd$-d^DtEl3_=*yv5l4%L_wF(S)i+0q
zcDvIQwcq=n!13V>aksNAv!*w4fZr0vJvc=yXeyUA=OU;0iZ55ffkDG9rpkSrR_Jb?
zHYW~s2`g}eaN)}dH~ijXEW>epnEK^}h(7{H5tooRA~xfl<>Rtrm#Ajmr~^i(!xHDd
zj?0B55`zMHlL{0wyu4`4ykS7_%Mlh4Di`z_HVLjDE``qu9L2j2;6hhK_!M8u6Zrat
zA|cDBb1h+M7TYe@RPZi=lge#g6d&vY!0G#wFPW=wB=`!HjsBcjvYNg*<6H-n%3AiBBiC3d-aoY%L`NjdV6yRdFbtrZYjs?|X;PuK$nfx^
z^kwMR+H{2>pRD}g_mz)ULb{i^byY6%qNIWsZ99fBP_2#;g`HDFDE5K0Up>u!rBLLo
z4MA?x5qHmbr2!+_z5k|n=G$db)}3m|M>a&AL1+Y|h50Q9q}Li5wo)nz;h46SM*{e5
zd*fN-227D6?vKim;W*Up1!=Uqzpy1(SRgOJUHP<;c@k?v+O@oi?(pG0hUlRDesig7pT6LMRu#
zR#&AAygD(9dd&Ewz8WDU9(SVm_nn*5CU|xwQ@bU58NgA6nU7JB$Lf0TU;v|L${V#IzkH|@A2NqO6ql;w`F&YkO)ou(EPx58n{Y(*G<0dSPT{?)&nW96x>oKb
zB~Jk}#;`+yP9QN`FHu5Rv7YUpjBZNb9TB@tO&S-NY6dx$*G01^!vGcDo)88##9Ns2
z*V0|hM7gQVBV)u;mVcAB{&hxg7aWW-TVlbvVtzGEg6a5ARj3q5KNcob^oyuA@y~Dv
zdBxUer&KakIrkB_X$ub6tnQp}56jh`qQ7@oXdF#m`X_EIUA@Qn8e%yPzpVAn`+56A
zBvMMhBcL+l(%!KvKK?eSX2PvM*dTu{Bnr^B<~o{KAw(Y`+vns0q$Jr-ep`((U5eX%f!DmI8(+w#iDyKvVQj_z;m2y8Zli3&&{0Y
zkGGL@JdIzOHEqEZ=9!Gm%LwjTa2Q91_r40a^;W8~M|L6Yl6Og1N8!`MVPx}g_N%0g
z@n3^!hQv5OL^9OKFkr3@xvGn@`VaKA`4{=b%cPmNhfPiCF2f$(O+Pmh6|P5=EH@Z2
z&nZa@pykt-h9x^_OR=73T{{VFFr~_?F6Y%Hig~{oiPj8;-L}ma1UsJ72U=-=lnx<$
z>gm_K%4|Ib)EN4OG>5SA-#emCg%_c7n_T%CBcjjq?%wq3XBZaKDiXEo7u^w8%h24o
z59r%!P-si&pOszRL;nYOW!v_tnJD1frK=j)$UT
zCxwqG-!F-{B(eq||irF62EB5EH1k886
zFDm13`oaf_epG-CHbNagn
zq|~W^V~$qY^^cHdC}7jwNY%H8+DhxI3@I{9yQ_;ZfqWwFcqlB8%5|LjLHsW?5yWqy
zxe&!D8Su}OXFr8xL#tPL(TXI_!UIziQk60>0e!{ed7A4$rdCE5P!)Y0#_q!X8+6in
z-;(KTJIhUOkaM^bov~pvZT3tAC_LYfJDiDIBIX8hC8VF4z1@U%)N?5~-^TDr
z!^-kww(u%ziD2)wX!2dS;x_zN!~&s`G^P}$HXrud$MR2O^m~8b4-$omd~L*isOMYQ
z6xS$1cC=Sx9o1?@d>+e%K?&|$nwQG`b&JLMj^E*`yVt4YsgY(9C#mSi9iAftZAOqyS?_i0Ut;C$c6J)OV=JPZ_(A5FNl-z+
zh7-_U8}ArpS}L3^ih|FFrubsKae(ub?3UW|B48$DWwOpS0GQ@22_>vFU741FUQCO}
zt|swqKjL0K<@O0y76N|*3Q;3e1fW4=n+|2ddJul&AQM>!I^}bkwyAuU;bZo!cSXH(
zDk#@(*Emu#-7+jNJ;6Z)_}mJ!Ydj_jX7tX1=S~1rlSO3NH&$^AVjX1oZfS
z?_lI}gDLNLld?9_wG;FSte+9HJm+&&k-xm_D~_^Sr4x>!_7eLB3n~W?v|xf~kL1ju
zR|vi!QIu+f2{&DLJ%t$Jg8nqse%Vi8A*@}6aVR=ye-`UwL$TIkA725v^EjCksNR1eurGGxNEnRF;hysOCAzhWDeMjg19HL-RB8&`0gDM?l&u5f4;~4r;<|eZX
z%*g)-$*sujd$LSXpF{~!pUT6axYkQp;qIf|Ks7hod?U*NNd@$q_qUjTw6hcF0+h$y
z-))ZqSjhk;Chwma3_E^L^(N~VoMG^Y<5PnB`>nk5R^1jSCN@9_`b8B3vngg@=2i_c
zql@$pqTh@RV8a5?)Ai2+G7?6x1ftCHZz9TX{`@h3F5fJ6FxA7loSH|zrpo7eyk)Wm
zR*aY5i{xuC-2%T^I?KuR$O4iIP~XY3$UO~sc#m^)ZCmE%SU@SY@Z^aMt7j>et;5yU
z$9#{#I`PM|!NlBFC$jQ*VZHM6j3QF=Y2#w6Zm(K~_}W1kpmFa*YE?-ZA)*;BOGgA)
z7D`fVN%RLbAqUZuY78k3si15{5cZ-IUa8%A2!L{o`PkuQK6Txr$&iXX1Ro#*PMg
zj8`+mtPSa7G1J$-{H;i+$4m(elU*wTF-yp?ohIfn0(+ZbaZ`c(W7n9J(_#tPiZ{pE
z>ANzw+b=cj+5QAjHLPdgZ-5xjIJZYtiI<6vzda+#IvT7$e^C|S9J+pby$Lv@O+rIs
zf|;Wi@V*+EoLdiY^!z5-)x?j)PhQO5kh)^;z0#gP0{Roj|3LMIfBiN+3A-n90Nsgn
zY2pTAFLH$`V|i)8#x)k9wEcbSC`w!4?!aZ@ySb$}(E&C)b{IVMLiKZeGYRV@GETaK
zdMpSRPy7&vyK)ZtD*po~!BQrQbm+7j0Z-hoUME
zJK+)80RMJ>3>wTaDquGL)+h7J#o_JJyVlK=(-%DaFYg>OOIa54bU8uwMx0apEYyA$
zm;BwIzJ7tNUVDB;?}R;2vi^xmhWFtyyP;%7$QPGH7eRsxo-P^H@PPjn7bC*sFn?vEjZGR$&0e}KH?r|KO<$P)ky#F*LpTPBMJU*02204
z;1?&xGDOO_+zb9L*~$OqfFrj$Q$`Js7kPZYScjID2^1kU({LgY!(0{N2q@(0ljGtHyqdc93~EXR$bvs&3xygsHiiXD9zM
z&6|O3UkUiMwMw*?Mc3N!4#`qL4L0IpRi#sD*PiB=L}aRCDSt3W=ECsc`M3oxkW#O$xGSi@$X9bSR+v#UJ!7+10bv@5-~dS*U)CHMTye~rn#?*m&26?7!Z
zdi`8#nnGqp)0?xi$Kq~j;`U6;ZxPCmo5drZ4!c=$D>4-9hN%oO62#6jRM)R7E-UUh`JTuyqk`77kFMy&
zhc0x<2yLu!zo|2ByTKPT!`L{y&};8+xP)!Sens1WOiCZSZp4-S31BBT`&=D$Whz4c
zDum3~sA$wAFrz-YPBc`2Tq+<_1?q1t9k89H^{U6bf0;WAQj}&S=IBBhCHDa!Yndxd3MdB=vSM=kH9
zt-GcOa%lA3wQ}bfX6^0!5Qbk(JgoJF%a&Zwo%@Xd6W^C6`!6JP#i-$rFyhnhor0+=
z%C%a)_V>KLbu7ITB6!d{juAyu))qCHrw8S90alGIZQg&1
zpVQ_Oh=HNLb7kK2X}B_-ZkFn2v%dAn>DFofZ}4p|-*d&O8uZ+u2KKUeNf(_XKVk4m
zFKF|xfeKB+{NxXrAG*Hn24Bc2j)b%(
z{4-5cuhsnQ9Mc=|_vFs%kU!DB3?<(TYSc0fL;_iB=0Wt028i-d{bpODn_xtgMwgiW
z2QpMWhSUxlT3zMldD_Iu_sIEdSFt;$$mNp!*nQV-^jJIOk-s-VBLD|Xd4tlh!>7P<
z<%1)UyU*)de<-*=Tg>P(Ntu(&_5Oy}-ZiB9HPvYK8gU|tUpm^FUKc@Xxl0P52@E@^
z<#ZS|p$p3dUoB?CUxd4h=WCq>jgsGi-Ms~uSPK1nY|Nsv2@jgU4Y|&>{0^ZWJb}JC
zl3WI|eHFy0>zyH1e#yJ{iaYx~;b`Uw0XlfblUvtE5nJ!rQ2t%E^toj!)5$Q$g9Wp;
zc^Q%*AI)6iywHJ0w(*jW5wFzaT;n^Wi^-KE$Q{adKXeI+2*S{iKPc;LDR=xz`Fm(5
z-f&a>WzfF($KLTKa$=HWmD8LXY}TaA=W9h9GPISMuQUc@E(r;>MBO0$`3k+tA|oN(
zyUpmkr=r{@c1CXHpOx_mtrU9c6y!ufK~56xx?0d7^%Dp7_
zm|0OeU_U`07yLlNs`E?E
zw9;pCX61N8K)KuZ+i0!0mcQFI3fX?mbbb@-<41EuqC92!hUFq+D_%W0#;*{+*l=-E
zgc`c^;xzRpc-CmLY0&T(M{`>oxi6&b7L&c{9|+60eP|%~e8P2tpqqBFBk-qd>ynk?
z_pBz2zOmPZr{=W+E#C=Lx>9xe`@>(sCjzV1L`T{C=%ah90zHQmSTjFK;9?Bl-SJ2o
z+mvTqYtSH?+Avr7R`jSs%t3g(O+~t0t6M#+Qro&!S|x8lD52scxpoXvG!7@0qWS43
z3=j&T#I`ETX)&>8v7f!kgi1@58nh0GOoU^c)6S3RINnfwh`LZxAL!AFwmB(gNtZU)
z$J8^0mHCK@y|;%tp0^e17{!y55QshlI7}ood0qYY;=&tKaTf7ieY3BEsXe!VC2T9(;ww=Z_yl`%n>p~sTZ{0yF@ahO5aqZh;`!Q;dH#
zgF6k|UL7ejxb8Dy=Ot^K!TT>hTu4sgZhyVo5|RGNCDOb%!SkzZWOavQ;Am7ueOIHD
zHKu9e*Nk&=#StRepN&;xLE%x%qQcq2r&s@hKJT7TCR6X2Xv)<9Xgt%uQH6Vk_PLkm
zjh27F(-jR())&hYnWcLG=g`6!xW&TF4~d4XRsaO_ioPLra&KU_0xkaGL%(>rBKD^XB|K>*Bq
zq>G1D7=~{{iBQG>E{(g5{erqVrS;$0|Gy|aeub$-q
z=pVpOY|7NR*<#^jJO%vU6u{-KFkWeWRB?kUg9W}o|Eo@ds_GYW-v0dWW2mAL|Hbuy
zmsr0v^zkt0NeJI@C0|VI4_e#-yu;qTxDXqD)Z4`mQ)1yJ>`~8`Z^@	e8{!T!57$
zQ^c(~FQ)TPSk0ByEagrwpUzc{N4V-gZ~4v178H0a3J$F5r0csMzqWpt&Ur06UkGop
zVHY|#xN+19xUPX&^>pM|TTABkbQcZy-&X6*i6DrfM=O-b;HZ-zdC<*s+R;lP9^-V<
zE6*Pcmv@+NT<675ft0VS1SQX(2GYheFg3>zb##NCt3O$OMAoKarz)JRzrO}N*l3G5
zA*ePReVLsv=CX$grp22nZ~X`s|h|Ut-2S$vbwhzQmw7^Nrw);2I)*3ho|HPiT>zWZe|6aa+B+
zt!>J*&e9aK13<^zdcoK8gE)FVy%prrMu)Hundgq9I$IJyP5r6LV$-8}QSHtg;HtqB
z_`6H8aT^Ud2?b{N*Y9~O9eo4vA4NB&b}4j?SMulPtG&=;J3``wz?W_ZxK5yfoSiZG
zKH6vVCE433k+^4oZ}c#+RQ;-DnATy}Tug~sy1ubVS0O?#U=;M&|R=pVdAQ
z_?s1d>znyzcJk)rGN0YVbI2;qS%kAX0|d_={|CC4$qD@fEFZi}E2tLV!T?#AsZ=+V
zcuTrlVU%Hw9sdr*NE7r5q)Ot+Lwf?w$sr41^oZ{UiJF-=tRstTKwTAEI#b?+XTn%n
z?ySD8uwEb)y4|i}wfPVjHQ09`z8XLuk;oqN477|$xCa;^E}aM9!yr_IF$iBZW+vk4
zq)3^~pJ&TS`Vje8hwtH4B@#+>0g0qP%(-YpPT%aswafz>#oa&Uq#Z*5?(RJF+2RO|
zO?(cBGii5U1~gX`_rX_{7}t2+qDm4ev>~SmifU6>SG{>3zFH7ni8z(}hd*eJZUMkJ
zN?`I&*B$v6oH7Byqb331;1M}G&;lBHY<8UH;Y!<_o;R)T5Oj-QFEhg=f6!Y_eO^3+fC4x)8SkI$LIJ7WEn_=
zGLGiYDIHNV@(Ig*e9&oqGV;3c|6zpYyU~t!vkV76pD`P$iNy5Pu<4)&1Zm2igjVg@
z4_-8>f=F1MWLN+#c&RH(sw-7uV$da;a~y~XyW4n{WZ^oA&E35cw!5)m
zLg05*a|2nZ={8VEP=Jgmwlbzj*`b;njcRM)W?;0W&VG-44k=|(G22|g9f=Aixet?|
zLxD{`oIwpy_)6S|aJvRhB0|{a3$=x)A$HMWd#OjOcZAvotX0Nsi}L}pTgd>rz^|wJ
z1W!Ak#AD2L1uL31+9JKz;6|!F!dm%MHw@k54*(1pM(FJG(0z9B)eG*tMzrDbHA=+s
z2ZEUr{3$-?ok0%kgIbVe=wC!vx_84cN_eO5)
zqKu`MS5ppTpHRTmP@>{nBIIleG)oRNuf?EcB)p)C;>$=9?C6uWvyXLj96lC-UoYK&N;m
z0@{}lv6q+^2REtUN!5tA7sMFE&bDPp>>d>_Uwh=-3=$(X^O+#}C7>z{G>HiH-U5*6
z&H!Z-9DIC=GHjX*_}xQ2%}_{c-*OK(4B{>k?3WBH-j$(w{Pi*$tSG}EMKYH{1r_QM
zJG)XPb3H24z!vHB0XIw@dMb+a<-rymOD|Nf#vXG2pl{x)_2)V@DW@as*#mgtYuyPC
zbozJz8-59tq{W<}N@~JEIsTpGz%_eICOn2|gV|%`8Dk$7koBTn*N8V|JZNNr&-9<=
z*O3&_F8uf`uY+U|`^yz5rgKr*Ap#1CZ~Dd*129a87>!w-3P_Br#CK)LEu#$wU&YBP
zJQ^hvT9c{rGC8H~{KAI3=msnlEQeAk#P)8{{URd`^$QihZlwb8IEwLmxMnsoh=9@=
zqN)&|;a5KxPagDadd>iRS;228b7@Jx{jAz66vh0`6tw$_?WFB7K}s5`-aXkrCO5ci
z2rKss5-J~!cKxt8qPB+UuuZeQsJJ8qw}p20-1g3fvlbPN*H=DCm`&P)EAo=iuUh=h
zsiww_xmVEG5sMOA2SoIL^L!`*vSf$tB2hltdpG%$bRBDD7X8-ySfEp7F5}p(-K!_5
z)lY;Gi;Y?%!rgAQzhhrF1?iAvowi#K1lHhMwwAVKs7?9giEDsRAZQqqh(-e9V9?c>{}AUP^5W9*
zo<`f#JA0^?=usDjPhSca31Qp7@U|qEh6Xm0O;dWu+eG>4?H1oZBrYneW>4D=xr_RP
z@>`G>JAN^y5Iaq|Eyw0Je`!*(yn5Ht&RH+k*yySGSWT*lPu
zDYSZlI|E#U-klhFF&tLUa|TaUadqA38HG6l06~^K+ot#nKJvHn9qXrC^jwb~IHDV?
z5vDRU_N@xryBaq+zk0w;{_HQOq`w#pC(r@?Us`SkQ4~n1|4^S|J%)QroGq&-<#s?Y
zCj}LVn^?g^T>6I$To_DuR`zBsdH-IS{`R={iC6aL`&w^LQqnZ*YQYzK95AMcj7qQB
z7v}}$muzRHQuo2P=?DYO0FQ;!>LFitsGGECSJQg~&8%d5s(cD~=(9Vr!3de}D2Fff
zV$bBvixyxX#T)xa^s4yYD!S_n3_tRl03zIJnqFZ4F&x^bWa?>iM@BNlJxub(1|O9ZsS81|2~IV61*aHz+p
zqRAVK?p+?`qcpK2%r0D#?jTKzp{SQv7Tphkh$CAZDFM-Eae1s4UMen^X3~nvF@&_9dzxRjz5;%RKjoa`1Yv{r0U5*@w{jPrT%bee{3!P$ot*YTTV-$X;fZdd9%B*`En#B>U6^5;+zb|-6nP?6P~
zj@ec%h>PUloBWOy35_)?8^YA}Tnq38nr?(|T%F=S>Qm`=WE)F{jW^w5rzpNqht#y+
zbLz7*otaA`!jntC+Lot6(%3xT{)7+BDXV$)T-dkJsSBg_&S~w3ub;G{%1`(a^$?%7
zVhuNc)HTxO=a$v{5=+VDI{tr{`pSSPw`lF5L`hLZkQfxCrMm{?P|~7+fPm5>-3Sbb
zh|*mGgVHD>of6WGba!_%O!;j*=idAM9hmpsv-etSKhMg{)q1X;vZs!y4>O=#Q5A25
zc5o#;JQXxW9|HuX`G%LdvJx}jB=eRRI?Pzj+|@Sa_NqGBVJ8HdBM{pWb51Q7*@%7h
z_3EorDb?x7PjYKMy#%4|U}`AQzFf^4ruaR*_${BpEsO(NYL#l+ck
z7P5yDwpW&q-a=R%=*GyYSpD05?;RAa2g*_-g_^~V>3ilWH&A}>hRW!eRPF7D*k5+A
zCR(yfNhfaxh$lwkO{2*I~>Wk)&C%0q03e7}3Dj^E-dlIm~e7smS
zk{9}%?53Z7;w$$fDu{PQ7NRDt7mG1GQH=7uUy^R?OiWH1+6&DXcYa$`Iw~xrqDzT_
zkUbqjim6)|FPrp*%;Zc%R8T>sc@9>OAqx#rfG{RQU0g5-hx$f
z`}eDlC!*MCp)1;ipFWt=#d(A5uBG#{@e&QGvnphjBW;u8jaN6);6AqM5vY>y`8#Ik
zu;Qqos!~%7%Yn>HOo?3trMgSUXFfYRSbt4Q$>#l~2jvik74uCMYk@^bd;2aibh9dD
z0PFrLo>;xk9J=dsQivC)!9b-dwQTX|*$*kaSQ~;17~tk+9qb=q4#gzfE@brr+xijn
zSB&UC3~WDeQ!}UCgFnmqaG*&c1?UvB>a7MvsKQWST1NzM)xXnyqW7YevfVoucm00j
z!CHD@ak}J(l_^N9EM=v#f+;Mj%PF~PK*ZM5bS&@d`(C?2;}Xy3DSa9TxKkJAI^~m@
z9Jmf*)s$ZUT_Lb6~U@5x)eNPUOTw6VmE4E`dA)jJKj
z6tB{sv0*@(p$27U%gZbi=|RmoD~}<6D_WF(yeCzx=Pj1VNot5W0ioI86}GJEttll5
zsoX8tW=d|QwKR}MO2mpoVb`w(hzvPP=G7J=mSR^q2nD51l)M}<9Xq}ArW}MIf5Ar^
z!tdP-L7Sguk}*m|oi%)$*m?oH7RFnbH0iRwG9q(2in~T`w@-CYt-{kHuycz8k4~UT
zS{vVyGl}V`L8N*nqGA-`*Pwe?~@Elrg%um
zz9-9A0QKpt+_j^_;7l^;^%~J1oF=lvjsw_o!~cpBXUSAoowzguq`bw&GYL(cT8K}v
zHh8M*tj=2;kd~-;CK(&N`t`j)IoiniL*2V9goZFv)W-jelC^K|o%C3iDQi=$Vbk&7
z=kfE=79h3Q?HusE1M!@pZ#eVgzzdR)DvKE~gm?`&*w78w1g$p8z=zqOMYpLB{&^+VjVX5MEXKB-kSeWJ<7wc>E{C((c>*MAC({UxrQ~ZnMxR
zc?`$!lg?%EeMR7bmmXx${g;WQR
z8ecBQ^_ghb?P*31x{$&Uw0}aHS^q3-J8qOWPev=0sWD45YrY$Fqbr6FWzWQ$5oEkU
zz;g)h43wn_Sy$!Y-^o>ym_5p9b<2FYOUsI{Fejd+vqOeMqRg(89V~iNcz3R87JapxhschRsjtDCd9oO5Rqg~NHOamVG5a;Re;1k
zIoU?ytdE!iZnE%A+6nA^L|Xd_r^A!w;*$a~80ew5P~eo0O&)!_>`-S0KkN!QEv{NL
zJ^uqiyW>Lot?jU%)}jD|u`mMd}_Tf_TRZ2pvGn>XqZN>L`dmQQ{&VfmmrwVkPZ}(FKo~Np
zQ@g*_ykMWC9Zll7&&RSlNY$``aW;kca_q*0XM}9aQCHk+oIK~MUSi+GZRXO`~U=0qhkk0HbbhGrZOf~EolDm;5OK?4Xx0=RSy
zqv_dM_vmI(x_E`8&^gLve*$XAm{du*JvD?YqeDECIOwgs#91a0k(NU|-i$9dJx1eO
z%}W$OvyFi(i__C;U*I
zXl`P~0!1KqW#QwoZ_PSL`&;GeS#u|y3M3!U=Mc>ZaL=^nTviS8dVIpQ@B(%sl6^)s
zd`0iR#mBHWk(}XlU!H%xdu@a)6{0|v7Dic4kW3=>enuh*ZJ%vdwyZlNeim+xxow)9Q*JVj+K9b<%7X~#oatLJHyX)EXD}uACxwxu41@)`E?aT-+
z6@jYZ&-qEensUCBevf$R{MIZi$~0cj4Z4@L5&9-Ik|o@NY(2jyJ?7rkrn?BH5d-2q
zCyy9Jj*J5y#$Z8be(~zrBGx
zH0aHi(DTPIPk(v?Mxn*=V7Ff1#9EDTIUjG2jmDuygBD&x{-{_?RKH!_=%-_N%H(%y
z-}%Mo$`T*G!xryFFT*yzf??+5F2&0*tVr}}d$*N?wvcM(*4;+w8QY7>YN932Ku
zoPNgR6PM7b8gYGUb{+qAtX3Xv0bckanf2EJ-M&C659go4XW6ySK;$5e_^{d_|jJA*g0fm=>#3f(0Gf6z5pI&8LY^#t(
z_?_D%W!`|h%__e50IyB@tmbO$z#*EzC=PqHSt5EXa(+%VN|T&@4L>coU(6FfKpMT&
z-zXOBPlN1e9UCb1V^?adiz1Fbn6Ar*ez?^YmcO~U^~5N9e!*?=^MK)XKSR@xNGSTI
zmxWi>S@OZ_8*E6o3+u+{Whwt2f-bs0kjBr%%ce0F@jr7VQ+GYj`Ho?a`d+!bU_)=7
zm!SmB%ko9gsuwRp{3l0Ges(I6bs$h{cClI56oPA}sP1N%X#4~p9!Zp=HPg)ReDZcxWAkC*0GEBp1wur|
zClE94Kiu%37FmE+LYAU6`))e^?9h|qAkd?H^e^JPr{7!7j@{&e2=L2iT%J{Z_o6ctvyF4x!
z-&dWH0YuqLv&(K1uWZi|YjyCcM*d>|1{&~sPTiDa<$8}f~?!_9hY%2wD
z1)HeS$`C<#j2&$RjTCZUb{iv!aAsehHI;6aD4RSM@{|%oH&K~9>
z0VmldczWT58?3>-j3vktqJc?!-2?HNaqO>yLhBYu6S=O65Fk!Y`Zp#v#74RcGa-_g
zyqJq&JQ`({DityQoh+6Eg4Drl;iYP$9#O6XtB;%RJZ$tjka`l()W4D-myKdrOJ+z4
z{bxfs$C4ZP>Pa2`KsYZN2Yi@1mGyG3_djB6J>Ih|iL{lYB@NshzQrtHI6LnXvEsZ1
zCR+2ro9*6#kU_pbK2w8
z4EwtRF%dUsSV~Y`b+*$b189XbTzr^BasUA9bL#I2&@z%B0Z;Gj+uVZN%^v%!H)g7X
zuT9h?^BREC%#nJq$94hQY=AAL?!ZqqP?QDOuS9V&a}hfl)Lk&T{R
zRi6ED5<6#TpE8DOUFEsjS$R$Ei}sYopAVO1Kjl^ifhghF@kGBAVkEO)Tw^w5sHX4A
z+YSz;oi`x(beJaRrTc`}M-Iu9ruznO=-$4fK52L8YYM40+53{VqN#7Jwi~YA#e)t^
zHQbgOprMnb_4GdVYg|AmCRu*3+JA)sQ*#M=n4Vc!#XfvCoyfWZ24}52j?bOR-kUs+
z3037NBKZU1kj9r0($-#DcJKj#6>*xT4%xQ>{1u{rX*9%vF)<+cnP`jeI%kdv
z@cLmnESYk&Hz&}8_`VAX?bOGq!1cjSOD1*Q=K4~e(~FT)YO?2{AhVHDiydvPH{H=k
zY>Ha@8=d(}JJQb0-^u_Az{+=k$j>C8XcTZv8VX=Cjp<+uAPZ{V;=pI;Rj^)T48{lG
zvfM`0*!|<1Q8iZ*XiL=R@+*`CwCi*QlEi7tm%b!C3S6uCFf{}ZBj*6Ji)rGJP7Un<
zVakzAO}}-;C4fA;ESds_(}r7HjY3W#GOi#HLry}yo(l2UqgcfdLFje-w}L=`Me04j
zz@{9YHiR%vj+QlO$)<}IxbXe!;XR6l8-NG(jBcVnEmY0w;%>3ag|9xjA#{={_pnpe
zL4Pp(&K3T43eoFw%lH9|?V^#yRl<;i%(Sx;K)kLlm@Z43XkglOB{l&2aIltf1$2vp
z&~Gjt@>!1c2f^SVff^ZO$8jc}YeY+o99`-m%Rh~$Xz4~2-v9EBzA`&1o$7ZcFcPJh
zNt$cR&Ui+{!l8F=UF#Bed8GhNH
zg_?24NjQ?2U~E!%r4Y921<(n+#D?i$_&i8c97ll)MKJ9K^ZRtYiCn~OAYh*Sr~m8IA0-tec3u9;#c6!Hf!ijw69S=C-TjoAR|5Eb
z|1q$o`0jno+=0dZAMI$PLoozBb|VS62NA~)pkBGrLI+KU_-F-+NLYsYah#gY@s(!K
zpLVR9<~w~CJj|eZE@E1|;cMj?QWoJpu8d-O%Q)&$$rA3)j?&*G?ws(PqIY`ibABbD
zq|=lE*`ne1%k;!3uDL^MDQCp`8U4)>gt0kl7;mv@bs8ZrclC=*9o0v=-R%txe5R+-
z4%)XuT!#X~DTeV`wqRj|R)N%kx0fOMnf&A0tO|4)L^K3n0IMahcC06H5>wFq{w|
zvpCy;Z#$AM#JX~{Q&scBXT?xklg7OYwkw_1og_8HUkT($XE;H`mLV;Xjxo|UlZ6OP
z0`XT8U6=L*tPNsE!~J@f%mn^yq=>{6hR+^uUp9@mhvSBzNkPVMNERD
zne)XUL5i|(;($Ng5VDGSl`k#eS8cz@4_mNP-67Uwi5TGy|FNZ)9DJdpB=?#rC@#wI
zigW-10MJ~Sx~I&H9~fRkL?zn2@|^A-Epi+PTCx&~v#c^7C{gODil*9bsYQ%tbo3yo
zaEu5_4Yram*HOkHyeU1uw9IiGpLYk(*iSJ@Qjzz$Zq4R_MAGIXm}sA1o_uY2!r}$I
zN%{&_d)v^T{|TVlT|W9F8vbWcp;Z+9LuQYJ*D(Xq`p@5q#B@nqH0E#%L>YvUXRaUQ
zMt@9t4ZnB1o%#k6uJiNOPn*FjKQ8?J=YT;!DK$htdA@K{@Zb$@*Df}xL&gX9A+O|n
zO#CWDw_Q_)yM+5SQFw;D8F7WEDn(Q4l9uaS)*4|7g>yz$5k%?hHF13u9>_^04QL-bW2B%E_l5-lteH~}|M$VpFOp$9BF?+bt#gX0fKkLo<(De4}1-!~<}q|4`xL7G7f
z6}??ImbX?&=AN<;dDrIpkX`4lSNmIVk>kQe=hVe^#`!pIM#o#Qi>t
zOA}>|xz^2x*)_I(Vk^VK1rNX77G4@UR^JT|o6p=&-Kgomcj1MdT1kb_uRiY;T^>$_
zbRAw(9^5x@KT54Rq&X8j;dFR)w>x;EB@pMM|9Ik`Ad+j$SdQzzvWPmF*QK8XE`trd
zpJjp}LWU61c~gd*ib6c6?eBIhhaS7q&R=`Vw+fG$f9ugY>{yE#=-x-NDZQ;i&`4`7
zu^R)I&j#*cthjz{I)#7T%NNL0Bn54r??3C4{*E}jvuBvyhXQ+lAol^>!&Wjg)kh6A
zK8DHi^WC;8$-y*7Zr1&Q3=56buwztw|3K~~_RjKSy4VmbI8H5}<$hW)obfXMWn!GcJ5D2}YGEoU
zMXFs#-ja7HCHl`Rr6KtT(fC#ERyA3_9%<(tcF*4jXZ*D-Klz
z?x%E+8GFGy7g8nNL#~MCvi}O_(!+QPVl)nh9D{s<>j!Pdp;zkP;ITg%J=s-yGf%#C
z#4%%UnYg*~#yXDnX-X*c!UjJrd~4Cah!s@%X-0@H@;z{L%t-Iad#d5
zv1i3U!N2zpgux8CdoVZOs@q;UwU+_LEsyRJ_pHn+NtoqD$5N)a4kvVR+3gkk=$M}*{zKnh%x1%-8%wQ&a}MWs?=E~I
z4Ho)l7%*b>pz~gv;YK2RnXnndDf=ztoUYomx$WibHIKY4x&%cnQn6J>(8*bF{I>l!
zIfjCopabke@gz5fd(_{0Rb_UfhCDK1^yNPlbgg4LG{mK{v3e)Z~dEFPAtSpn3LwZLY83H)n@DU3XO557~s{nzaWn
z4s<=o4EX@$p6+(qtK^bNEC#_NLNqIfX^OtT&&v2>$TmCYqPY<7x58%Xt=kgB#X722
zH+$^GVGNw#o%iwucrCKtbl_9WshR^W=m-uekoU7)3_FAQ5frxd`d>iqjp2Eibc1TC%JG?Zm4!-cM2^tlX}io8y*|MO97K!K
ze7zcwKhc_Yl2_6T)L`%H$;%#$#~YzDwG&rDX1sH81Oy6h%EaQ=F+&3
zVafnsG{bc@kc~(i6=>z#p-iXTrn}}O@?vmZQs3xTNZLN_;Pg~k<^jIiAsLZ
zS}70t>DL$yO{G9eiS3<#5F5h>`Ja^!d`OmSYMkpW7mHf#dR6x9^FUjDj%o(rAjar?
zo_=Or)LR;2*OTDCarSQ@gy%mbQnKW0r8cUn)_Kc*#~Qv**qLSWt`B1M1SS5PI_~Qx24_
z-5$jR;=TTPAudtvC#LJ5{E%g+`NgPVf!3lCsKvI9gncZ}^N7hwNRL$I@9C1k?fTPR
zWY6S$wcZG=5dKzq0$<@cZfy)yMuI7&>o-L9ub
z(&J%E<>+r3ygO~oTgeReT^P>nofndW>tUxGeL07`i4Zc7j_D6>y(Ny4#;TAL#03eM
zmKa&u>4*6UM~3RX*j=1IfUodjSW`Kc`{E-Tw=6LYyHcdnEsdaTvQua2Iiu{d>fbk0
zJ?izJV+7-~?jEv5&RRtK-Aw}2JkRXx02g=pbC@C}yY6;i1uj4R(){mpEhe|8UcRc0
z?>!=lZwptvE6qlsG!xbSzMMbU#Iw
z0GF%=a({Kq&Q8$aC%;Ef*<3Uy>H^wvxtSb4F88d-D@>UfYk@FjbHuTQ5rf~D+;|YX
z34wo$!(smW_Q5_9qoj8TR1<
z?v{pBvQ80^22dJeoDx`JR9Xrv?5y1s$CeQB^QY{;hZ5A9`naT}TN&$|1Vxe4P&!h=
zY9eLXhYWV-IhelC!H}tXe?R*JiKe`<$!uv62RprdM3?~D3l8En(OIoNIuf=Pe;<4=
zJ!rZGrQSK_J}YYH^^c&$y`?M6ZOn_tH%H-*Zt#CKBg4uvaNAd^&CLgEhJUp|Qb
z@<9QIY;lOwQcCm-PLRvT@#Bq`CkA>!4*XO}>g*{{roq2k@Z!zC?`%AXvB}!24;nug
zL||jVZslRwahE2PEv5=<5rF+bVicCF_lvEz3Ip~m;g58wuA--`E
zoX1EIr1{24%;n|I;AA)_Cz{7X${UlcUQ^z*eJ<9Sg{$rX2lx0==HSg>jj@u_ndp|k
zXB@n{h-D*goq7iRIg#+)ca0cD8faDCr5G|FGKCUTa-bCc{v+6u#)UQ}*5A#Y-o)4v
zAXgv$N3KNbRkKT$o+%H}fu-raJOc*|I}$ASgR2KRg2R;VDKMs@4teXfQSV17JY^-k
zE$?bt2h!m?#~p9j?1uLMIpvRs@01%%PY+*y^(O9y220=?*em}_@v!+TS>V+}@@vlo
z_6aYSNa?8cS0(JcqEuJBW3R(E|E~OBC1sFS&Gw9ylac;!tALsS(eW=Sw$q&1LbysG-9|!rylkhh5veNdi`SqKg)--ZB6qp}ieF6CN8$I(`_X2eZ-HBX
zL-^Y)t7V(7#G0ayFAq}lKVu*ac8*{zR*AiM?><)c5m@`BH4(umWb$UK1dH@D(dVyILPRvE%Z{$BF?2tE!m0WlhGB
zKT)I4CfY^56sn@!;47~YH#QZbB-P>L*T5Ei63Y6|nB8nmm0RzP^DO_nq0hqp`xv;z
zPrd~VcSV`rGsXQ?#J}fE{6W|}Y7R*8Uy1nF)^t$b*l5}7Vk7=*i+w)<1j@TrY5;nKRMiBu5`_9SuS=
z_P@F(x-@pa%r8YD`ni-0+-diwHZTK&53ZmU2Hl>EDOM%)8oHN@_IzNYGl*u!QNBWU
zNAx>reXZGRFA{H4LVF86tyj#JxX93G$WU*@Xjog>UM|2~zx57R;=DQFbgW2-kf+g`meEN9@Uua(8UufniOO5vfqv%
zbDY~de`(g>;C2zRcKxee9k?LPmdh&xl$!t}6{pm{FR1gMLAUww#>elk<^VV$ZIm^=
zt<9hDl#EW5<|w1^&Fl44lnFHM{R^%B?E~wWl#zD_Lux%)dp^DXqQCint*L&>AfB}9
zz=ai0@A>i)-!?N9siNzwMrLW#y_4fvq;s`J*=(iKA=^dmuRb`KubkxZ+
z(ByNzmY0yd{SN6u#mE9v)=t@_q8j7XTW2!S*tSz*(3-GV9VZ~<*AO8_T-Iskjg$Wi
zmqO~FewiNlnz9mqt=L5I-kcR7?J`3^2yswzb9OQ#x7T#bY)%sNboUa$<~gxA(jna{
z&12n9VO9v#{o7QXpkP&!Faw&%VG&(cOGfWKo<%SV*)=hF!8aq+*HNbpXK4-jAY5;8
zIa4F|u{DS>6i3$_J%l^jesi&K2Un36xIqH-_Kk)uOEUNeYOfGmB?a}KxnX$_!JB7hx(-*zu|iB%Gp2x*a!0kaK(q)pmXGj_CSQQ6W=
zjg`ps#&W5Vmlj;_UP-VOYI>|}a(W_RGzRAzL6Md1Vj6WP;fo>%d$QiS1DX%4_knnB
zZ+!QI3@>XC@{Y#7elx8Jzoa%_JRid?--kbck@>c*`>Wme%avnHhE&$a0~>iiROT!AW%8CPlQKv}A3Fw9w~@O~Lg#
zi>l_9F{?!H=|#(aFrRjEYCP)S&@feKtJheBhDauT5Z*jFuO5zhy!=L)aN3h!qdFo^
zeEZyq$j^lSL&=jIsI6_zJp3oTS=Np!W^v1o(*45zoWXuQus+YaY=mgW9C&!LX8u|6
zlggvnZpA|jd)8jrv;JV
zE!19FH59E``RqG6Mnos5d5Pv^ex_S+Zu%~EN9?N1?m85G|8+^Vw>_-4`FDO*7DNH*QC!ZPIhyA0On
zky%rhFzJ@h^UD{>TS-*R-VM3Y$?w|w_tKg5@tdCkznq72{N%OYIib&A^rc*tbBV}k
zEX3}dCETyiFI9~#8sqeX&E_X~J=+G5iS(9Rx~qDSdRg%7IV%Unz3704;YYVqLq!$}
z+D!ATaSC>i(a0cmmerVZp!m)pq^~zX^)H0dBRZr>Ie)%lCUtRXAN*b-JkR-mEH06=
z5Ykz6V4eT!^J(aR%W8*Sw+%RC0Z&l>3*EuL|Ajoy!hjf3B&%R|k{K~6;0My&qb$BW
zLZ05AMux+yG%pxC)jmv?Q3nNhZ&eKFl|vsOp8f_1YDlDUk!4uus1E$|Fr5qRaB2h9
z3don$KT~Ist`#eKr$?7BdgWiDR)H!XxCU+8
zv5Fhc5Hq{_%(6V%^3jS+8u{-487%i9W-%`!f85Al1*^>U2jUhoaBO{Ycd_xtCMqQ4
z1dK@=R|~VTATo=8%ZRtITRgTHk=2P1Tl2S;)LnbkKDFiX&E?08_4v*Z!0CwbAAcad
zeCE0r&yuU|R`m1{lUrjHdGb%+ca`@ecpQieO
zBQ|0L#DvYpPIXM5w896f&IK(a4-SOU$0w!Le;~{5u&D{qe}^w=?s4-=`1(l08q{j!
zBfT4X0k+)@j;ef%$uR&VgLM|?zihnx^Of!svUEw{E1J#*54Xs{mi+xQd=goFae`Yu
zB3&Ba#XFR0pX#rH1%VElEsaF=GDY$^c6auo@a!_rHPLG~0)LtllZaA9>%QluX<)gT
z26F1T+$C)1^{PA_P0nPCuO%v_-Qf}ZV?k<7t)=GDxHUj9qyBr3;QIo<#aU~$`rpM>KhsYHjd~l@gWOyS
zl%Sr~Y+u|99`W*7uK>NvucFDWQf_N3z1>7^bmlsWaTIMVG}_Wj9iD14J3G``qqPt3
z@Gblu5I*-ZBD0G5INW+oFdRCPqnn|xIacb&xANv9LsmS$CE?lE`2*Q`)9ahBB)j6q
z1uiMg_z3nT0x>g?Q6|KDn$CGDBWuA|ap(C;8?*Fhf{1$DtpUjqZ1$bw4Kz91EBG(@
zY>Nb2yixf}B)NZ~42+UuE
zVruZ06*)ADg9JcSXvYoJ0l)%KMc^s_8cM`LjIF^%h8FttlJqE#
zasGj*21m6NheEHPKdArG(95#9=814^AvKsh4m0tIW-=K4{q0`c`j;_EpTb$@jm36j}Yv
z%%s>*QdDO!QT+k$!@WNcBj>=V1OstKy@vOV*Ey828Hl=4N5vzf#@@pMi}R%Y^5X(T>7@o=-GUNarP{{A
z@}!Ao#mJ`$oPc2
z`EjV@fw`ToM!kG)ES-hF%!^B4`912J!e0WYXAV|+cbG!n)6^L#iX!Ykb)aCnJ0wYG
zaWe4NaR<)%95`HvQjX!fo=bK%aI1L$_^r#Mq!YO*qzi7Zq}nXI#zGcp*XoU@sVEDc
z==e;R?fKMLIELl<|ABnI7zVES(ckt1ZG2S7c9f`%TRPuPXEWWeK5wpQm&}Eoj~#=l
z$T@l)gO8(0ijIvqTGTgGPJTP-S4`vLzy#LXXxO^)!$14gTBO%sMw4;B^(o#o{XAYw
ze9K`wYk$L+M5z!N@`xDB@;JTRky`%}EtD1}*ows~NYz2Co4EYH8yN8y0<-}W5TeSG
z7;|~sUIGl8f6WuA0I21*HICy+JHhtW!>}hYbFqOM8HtI
z^`seH174nOlJ|d%Gz{}J{`{FfeqG&PPx@vB1!c)vteKladn%d5ZpLFutdthkJkJUC
z=QpU7PkK*;hvG*wA}xOwyT*VX
zru|KCO}IQ_&VG=|E6z$iN)mdxO&EhkQ?`
z#&CBIR>skk_^Nkp$(*qke)%$;*%i^>;b31W8)$shuwO*x@4U)j_*n5=Uul>RqfsDa
zQD4$>ue{Ak*7kXJcd?!Xe(iM0M^p;XA}8$U#eAtd-7JAAf$r(Lv~`)5kB%3?dqlujVH}U%A%p(dgn&
zmbP}AhzgVG<|vH+cd3s%{%-K*>nF}-%U2qKK_9#^B{a;A6_~NcA-@(3CLOK&Q)158_Fo>>DATuf8I_uAd3>a2(L9M@4!E4t6WHe|5d2mcg40)1{ceEV!
zX?$c5^3-6(JQAdrph?GVwts5giOp6xhMI0b#u*9TzwhARsNAX+tCJ{_#~#
z&42>ZSu{z!e^3Zi)1UQgt;$`ilji3JnL2ocyTpi*LHr-a0sJbvaR{fO>%bW#aAoo@EHnP(fZ(~fG)F*qm1Ir(1MWPzagAY+po#$^
zo=NtAtib3%36uiu?my}GF|`~0^iL)KZGvM^a>AT33D$heNtr$nV*`_Ns%`jh@OpnjfeAZCic?ca$v*q@z^^#$pr#SdY9g
z`FI)6x>}Y3s0$V>0;J9}i5FG2({Pvhcu2HITu{{fj|E_2*$ba*`XH!f;7Sg$O~C}t
z9VRUxC69#k$JvR@2EI(-6Rt=<;zy8ZZZdm@jE+=DR8Mr}a5=>S2_XlMW)n5S@gUQR
zsN5b~SKw$Iod`O|Q9d19jXJ!4gwg2@ye&s|
zVH)5J8jEH*F>v%j%#b#S9W}Gt#K31V*!N#nUb7yv3gl*2hfiGg@c^AK-vM7Mqg{(3
zsBRW+8!47%@p2~@?qba_zWon`Rp2Y3OEr;aP7Db5^Q~CT<3G6;HqR_jq`q0vl1MD(e>?7>gUE&^wZfLaGbTi$3hw
zNg`fdMlLTG6gX;2hEUR7;gxS<`KnD2NLZ;rv&^2$K_|uk_>pCk_dO4k~usTMqoWr(Hl-Ayk?w
z3#gc>04kM-E|X{3gzw1Qfgpwpx|RkbxMPodH>{
zG9JQH={dN@bh1bAQO-GlTq=N|t{6X?XuU8Jmd-CV5Ns6k!9A-AwsH1ToM0`nA%q+K
zf8M%THBmY9Sm#JEn7|JbzG?&(vKYVb0-CpQ;7M@D%%?>iWD@Eny*QS21pOU;Lbw9N
z{pvx-kZz#A-_hC3ip&*m+RbgqD8<}wqKz);If^4A_M@dqFqI
zn|If5<96IYc^F~z`)l;yRd<_m1^V~z+*k+goGdI-%Zc1mI;Tmm$TZWk9Q2WqUj6PQ
z_{2{Dv}Isxf1T^au(x5uTIBNfNl)o@c)bwnDW^yoDSMVO)#ptgr_s~n`{jI@(7iUV+gVeG^zLtA3iI~Xrx<+<
zHVH=vd?k$qi{Q;O{wr2q*1!Del3MN<$;Mb*s|ez;UzX_RGm#vQd=d7jyZmx#FHwo~
zI6vh*rE|>P3|fsMY@C&hfFl%eIK5*AYYgt+C#n&>|95GpgTCVQ-Eo=~T^rKxK<)g%
z_C)aon(t@QsUh@u*RPW@xL(rVYG_yMN1zZUA9co!^9Ljp-|Qe6esR{YA|frac;u97
zUl_EF&m>cw_3yVa*Fr}5|3EIkUn&jD#J}ZM=Np*8ELV*w@bkR+2h6iSFTv`CV9=&6
z5>YocY6aO6OAMNX@{K6&$&W@ca&x}4`?-cY(;wX^{?V}F9%HMg(>eFF+~#({Q2?g!
zxlge->}O(uuBoM8TaLlY7xaXBFM$3nmAN>2*nCOsbRpj_?+Jb}csx)cH_!}4a)s;|
z9jbMh-sHha`Q9CLsDDaRU`v!(WSQ6Mz<0O0g2`Byhl8|>zO6#D=}~--8Grj=lF~nM
zFlD$I{JklS|4m$9DqG-TB5KL;#_WL1VnrRIKlRs?TmeymOJ77xrhUL7DRtBIv#zi4
zQDtwb-tJ85X4GsyRAkr@^v)1XK5S15K%ifbijGjEIojtrK_5Yq9n9$WDSSu>Meb`~
zT{JiuKxzwChX<{x$P*sDA%P$ScCQH1X*F=g5*%;iNOaK;#hT!gRZl_`YS6Hc^{+J}
za!bYb@2NidR4~pE#mkWYqPuhB)lvnUmcnsaa~y^Nc^?2s4AS#6=AV%V-$lUTdqsA%
zlP|_mPP31{RLi+$f4?vWU0}~5$E2>j2BGlZ{91L-t>glG7^QVs_3pcJFpmkGv}Gyc
zpKSYv*V_IF
ziXC??;=ol8d4AX~18<$$R?G1f9KNGwW0@@dRb*LGkwLp=cJ;Hjg(m^Y;%ylJ_i$NB
zFQ37}aWP)t*fFt|@nz*2P8Z1&-GvU4uQwIRySx@L$lVN1WQ&461}rYYuY#8wfVD8y
zVrBS|tX>{PADrTgf8qR^Q|&+tCGEyR`MF-0w0XqXdT-My_j$>FD2jpC`)#Z2Q(67>
zyycRm@owiQPiGwJ0k(eY#74;xt*Xc9+J3e8i(bX=CE5&T!Sp-l9z)W(>pxvz^6lho
zJf4|SX@0sMPLW$19Z>j||C&s7XO=v{7k9YUqdR!r7TN+4KkIbzNk1CVU%@+B8Jr8S
zG1{2wTbnO4nCX8*{c#!=Ez%+V{Hm|}jf<>Yai1Zi*?d=w36if}(9ZA?IoqNbUFG}m
z0s!7!&r7E23u|)8p9Gzi3}GDyw++bXw6flxj!*pt
zFcEsX;qasVBammQ;ZNmtrW0g#6MOLz7jBnftdLZE;SC4=XO^dN<|YRq3XpVrVLd#X
zwB|+FxS%s~;m$8(wE!crb9$aI8WdlBC4x};8H?rKE|u2HBkPmMn$;ZmY7Y3te#{eKl-nKc>B@#(BVqfY1K3x;{yE
zQx{d7ogT~fR}hO=w`+>cO{cR5%HGBeHC7BnWY--e#^rleJ@%mL@m)~1w94B1oPH+n
zP$;|dN}u4J$!PFv#YeGc36>uAkHR@SVo5r&)<_VYBD7SaeQ*ko@aKwp+UVM#MlP}v
zIjOo;s`>k)#W@$tdd-&4j|wNXxmHfG$!C21U`S%032k1^?OSUgZliT9i>t&RCSv;^v@d+D1<7LQ$o)%}H<_lA;LGOukQ0m7(XD6II*~Eax(K{h
z&3BBP>>NdPIg{s-0^VYku>~|==CH-H&>YeOnC^Yo!gd7!(^(EAiWLtnVZcodLU_a^
zi<6-HY}+}!`96$*_iQ)LK)wTWC;>xa6_z^T14#f$G(k~yd>0o;cr(8*_kof(M&yN4
zYAyL-0my_w_?;#&alK>C+A+z1A6!9tm>wS=0IhnB2sBLo1JN)1)eEnW7y!fELpR|A
zdFRnck30;<)R_v&_#H2Cr09nXaJ%OiF4Z#HHa10_`c$bFw|>A}9~Tszn<@pb21zwj
zznx9Mjdt15Q4l`5^#{`5c$2ghQO1X1Yq&E~&$p!Z$>^t$!CN)E4`s}=427V|4nHsL
ztpst5@oDv^YkCxEo2q#Y^J{i$cUyH+)2!l58dtm#&5jf1%1Gix^gIO;f74KEJIL8t
zWTlvONLDnTr-Un5=T|^hjRb34PeA_>hLwTym(P9~R_AwkcS&+efu{5DI3{Jr3$d^t
zX8+oLqT*ZN_oAe87bevhxvj4z*~lbf@f_O+`dTnHZ^VRn&L}7t!=Gs+k@migDiRkz
zeP)hR3@p}^R!Hi>nHY`2jwCGO%=IT4``{@F>@D;3Z0fb@t;J9dGT1}ALWzES)1wQ9
z0iL$v3y<#0s2W`UHTtLa+
z1<72Gd-)x4rpn;fHeKV(U-}!~5W-QxuPgmOs@^)RsXzSxKVx(Xf`SZ&fP#diG;E5J
zN~fqGASo?KkC2cK5s=uBk`fgVknWQ1?#|J%&EI){<8ys~|L_M~*V!(1_B!|dyr1{u
zDf&l$fahl*cprQj-mZF;WO4RYp~#fr*H9f7OXrz_pS{27Cq|t@(5tTrou2C0e{@*_
zKJ^J}7Ibvm9jz|0J3Sfm7Ou#UORvbpC_~xy*LA=Ahh*Qs?7l4VLDAs<&YIHN@1K?T
z+wdo{%1bE9i(1p`iI{~ZyjJ!N=?K>+U*9ZlnMzEgJ`J^7Nw(e35)
z8W+73+GlMsT3((DF%1QI6KOZ?{7$&gM?)BEk)_73^4#Mm5FmW+lZd%bd?AN0FccU9@*{{eDQme%%h8uE_>{(>*l>iZ1c45t*|5BuXAdau^)
zL9JU9ep^sMsVWXNzYkXKPjA*TO#B27PM33WxqAodt#B5n1=6by$-JqNAN@G>3r+K1Aqbq?a`Ih^@leq@RTIpl_ksd}SG`;FD
z_I2VH3xqggq4;uW6aBNk)VzUX^yH=JG|Scvr*cqW<5(*XT~W7a1@Rvdf24yK!eZU=
z**7yeP2Pe>t5SIg_^41wKV#IKoG;@7_9TU+$)t*-A#JXSKNX1~6pM-yK_sMIt
z+0Ef1iy?y66lRgX#Cy+qT9=-ai`qd9n(a
zeIwIXl}iB5*hCwterXIbtqXn$RAi7BT{F)B^DPUHvYY~#BRF3Fe>kBNQ4CdG@`W0K
z>VT*cFC?27w~n?0>=(Yx&TQ3BzrE%4r_#0*=8GHZaYbs9Iak|2fw^uuoL5n
zVn7LXPID@;g@DRer@|r&n=3CwvU9>InJmf;NtJ*h=mEulg~|T`+gecA&D|(UpyOb$
zJe-Jp60KUYQ(RuZ`0Z^m6u>>x8bWvn1k^h(fYkC2
z`tDG-8_-Q;7a+A<0AhT|l-YTroHZw=507pXWr25kBq;YRsO%_@pwbs+hw3jQ{&bVOe)GkNO7YHk<9w-EcPf(Mz_
z$o2j?V8CX4K*hMDaMNzI%6t&?Xi0H$^g%0L2e=rA%l%%yIE8Wz_JTLuPF-%c6SxL#q*x;!d)
z4>wp-9tS=Ck6ug90rx6H(s2YI!3M~R&Sh0i{N(1VsmGNA^1qfM{Vo$te>(TkivQ@V
zdGCf}*zl!w33n^m`SW=DgYJDIYK!Wo((3A?><9o(^naaszwLZOxBPhAuizgAe58{!8U`@$?AQ=aHixrl+`*vfIS9
zjqH~>PnEj$GUqAnb928cUBZLKH841p9bruOjXc^0_I}OR1xEau8~Ka2V6
zy2mVr&gsyGsCxxI=N9t>P;#9l#$|)28!*aOEfPcL4Y&a<9JrZfZY?sNh4$&i^M3A&
zam1zee_GWm#RN}k+kmuBpa4HW6gpEIdQog%#(qfickMb@k#
zZ)u-&fRfkPwVa>{w=QwW{q_%QoD`1v;#6))ql}Uf@5B&&kKg+>?x59PD!DiK+yr+K2v+ZNUD67uOb+VGCOPpepIt66bv#*~;Z*G5X1Zkv#fQ
zVDN1KMGjv^_F1=X{+8#sZ)~Fdd*$S+V^cMJo13aZpoM>X{xDBiz=Q@;M=m)&*BG)VCEpaU~}=FTzU9;T0^a$L^2mrgBx)UMzp)?z&H(E7Z3@
zOP>5-z>a6bsSS)}`3JOkiD!_#z<-%1FbT!tSjeBjjfUSBc3;NXWaukH~YbIx4w{j
zIA_gKu2^hx7)}fxQgJs@y+UzCVFnp|xExV!;qpv&GZ@(D+i%mQ)Qs1}2HZEEm44b;tkyO;BA}oTW+}fFh5o$;4I&SAH^99ql
zoMW4dpIe)I6gu{=5+1}`-z%1d)7y|Nvj)#xE)Z6(hI|5tgNd%axkJ7llVreLDk2)h
zxLoEvM9=#4&P9qPG|Fc{q}f{Mv3);01mI7$YKgCkBI1Rv2~Df3kCmd{m`2=qb#vI!
zUEbhKvFdlk+>m6ZmoHAKiR)?EYoi2UgGTTDbp<7S5@I0(QPvRRE0}H9z<^`A(Xh-t
zT)rK-I{L*pD`IbH_D!bHFEMiAm^NW-V#ioonnOYYLhD^LnbN^2nl>ZL7>x5a2oNwh
z-T0|^3-s>N1N!WZdY|mXfJWzHFXldx{V$4lFIZQm;~Eo#WCr*%t+DSHg?7Xh-~LEZs>kGE>O6&aPY3WXgS9F~in&I_CoQTfYNF(H
zA2$syyOS6jF)#~D6FV!bb(URkqP*Gs=ha}szpk1gyFVQ_^%_zA(ed~_+>j}z)rxRS
z=M3zZy3}Fm>ADS?Io22&p?EaU0O8`EJN>Yi16MK!T~?mRPAe`v%w|ude;r9rqRJSZ
zCp!BC5N=NpHu`yZ2?89X1Ul8b$`ePTj=;6mmtl8QC%1<|^z?(p7jH*BG7;tXz2Mp)
z>6EXVR5AFAIpW_i*xyxaFZ$iF>ZC2UHZr;zjK*!rv
zN~&C`km$koF$3MWhh)U;G+O;@%BQ{fSbuIp8-j5cG(~C#=)5#Jm*H=EZ|nY+N;PYy
z`X3PM)zr6b-K8?wWT3mMnizbyVAiOs$j*23%91dlLm2mHpmTRHQI?UYS&XDAdijLQ
zVa)BBczCnDZ^G91n`=rex&bU5;zK{us_~%L?-dKW8SyKuxsKA_!WI;5yO&fZoek8h
z+FJJ5(%yZD^I5B2t^PVOhX01Jj-~YGe;wf6OzR)(5rnRrsOt#pS(CqmWD$b2NhLRZ-NCIlzr!}^aP*}M?A54cKh$Z+nBenyrC~wtp?B4mFZ{mlEqeecX*m!yD+bun*-AIOO*u%;MriJ_U8}a}h4x9~4V+ny_`?=&zJP
zI;)b;5V?a%>#gYial414s6(cEd-MpM>polzYK6zeJ-1ChG8dMc^uV0GEyg2=T~G|4
zVxikE#a^!=+`$8u)`$>K<6c6R!EA$`$D-hFHb_)H+-R1erUuB^_zx6Mka|WX`nUg8$n3j)sd!TNSiE0h&
zKa~7=#2`Zeo03r-|2O?o3j;*50@kt={S^QtyOA|wDUgola8LJ7V7TIXK8SVMp^UaR
z5bzd%vR9G~z)?E&4%2df{rqkB~=o4Lt
zVHTAo09RauD%r3&By#cB{KO3@Df|$2TVJrx8{YEq$D23I%WIq47kX(CR@yNNc>yqH
zT1E>j#ypiQ3qwlsFqx9pCnhhD`8i?Oo^-(Vz5`hGniVQB{eD$+B>Cv)1#)_SE@y*#
zdNNF*97yH!L3;zpEsfF6|E`oFDs$EgkbPgpP_wW!EZ&W(w3qz<`5KNiVT2(#guvQ&
zS}%c}i_d%6(lY&ENY%CKB#85n?rN=$kHzu+pE|y0-%p44MT;V{G*x@KI>4{j0tWF5
zc7`&KU4n5wa;BP?Zx1F+J@}#7@nBPd{cl3UPf%V@k9^QHH#ZDA&Hd;WP++-EQ_qbY
zZ=l0z=by)jv$(u@&(@-Zn0{j3>6Ze1CFm>YO*@KN-ilR9veSQ%&rPt#gzAn{y|7x!
z^wOdm8GybQk$pi4G!G22Ih{qf>?WdQ^4xT;UKLLXgacFhn)zypnDff^`QHsewMv-aruSi&hsh?i|XQ}sh30Z
zy6pui&CDr_B|ax73Zwr(KCVK=VMjS<*&Zx7Rt<1*r1fH-{RZWF0mt4MkwG7Od2!(r
z^(sY5aMIqQCtn>ZK18K|1%u(AbXaPLv0sO4+`B>cdbVl+pyK757ujsY(6Rr-V+d4s
zri_jX)W)9Q$51TOq4W8`Ri#qR+=IApA9M7(Y({$mX!XpNhd;lJh+#9&knEbj9AE$0
z`t#jOQ}f(?5BZNCQE?x9KyC)@@OAx(%h1Fqi(Q&wLbbfkWcrB$uQwrT%Jv#Vl*<;_
zU=Bzl~MaNCfKa@uf0i3%kl$0~?OPyz86-7tacB8k3}b>k=jdq^?T(si(VhzpWah&lWe|Hdo?E80V)dt-rGM9d#*ji
z6`gV|gy*;ffHdz@qCi;E*7c=X>1@BOlKYwiPLZ6++8JgOi+a?7^SQ#@^uID@z}Eb=
zO!OqHh7DDG6D!GdOX#}vGU!;k_G{%nh!Wt|0^*wc>*ap1iFUAHltmW5?z(+1_EXB@
zfuD9O5I)8Am9B}3xKie8*oJ%YJ$xhUG8G_Kv*flm)_9NjrdyO-BYgQ4sqI1Q!I9)%
zD|Sc1Q!(NqdmZAcAyPg}lyu?p`dw8Yr@!)5UK~|^m5lp0N5nhyB@JL=hJyvky9}jJ
zB}}r3%;$2@Gp_8h$0nXCxfJ1=cDTL;D0v{=C1)DaCZ3{SUF#
z)9f42w0`j5IBXyq5TdA&m;O&h@gMp|b@E?RK9`Jym31cX4PEd1un?@
zkuq9DeD}dmN`qEp9IQ}8md&;oeI^K}1F7802$>-t$Oz|8*gDq_={8};;9B2Ck)4(j
z;4xMp-;CY#w+k}FXgPAPUS&_ihB>P3@&tuCFNp1QAF`Q!hMs(cEPknTT>s;-IU&s
z0KGZMa)k->zaY#Um!Jh}$w2nZWdPfSu@+k#^%#>wGA{TP%B`mpmSjG06&kE2!;TAC
zpi=Wce6vDT$r7FbA`yLGrK=RvVT8~?IxTD_=#k($#8|A*aW2Co0d(?(E>YfBkBJwL
zC1FYvT$vqXiS)^f2w_h*kem`a1c^GvPwc9`6|;M6q(zix$vsTeqKZx=VblVc)MHc`$*#feOv!1vR$aq1mVqa2VURIr?C7I4!yEsNoVdE+#H}
za!oBv{w7wu{lObOYNK5~RTwQ2Lu{Oy?3zw}!2BLVCf>Wc7f+qKT@H;PmSl)~+`uWR
zn5iLOg`uGK{HTxA9)TSpVYSXbv9>ZMy
z1DPZMO<=}fVRE;0nDEwEHRcR=qyz~QEsGN^2r|I+S5~+n#OR~EX>p|Q>uP~N0ovtN;
z@o_m1_$i9eES`wd=<|vz_<2IdB78T`a?Dpy7LP`rhdHp;RWvWJgz0HlXQ$A9cb$1t
z+cx{a*7Ef34qkHDy+qP@xa2|atvx|S%@Ho+l0Ctf)4ueCDsiEP%jT|exc$X1$f|Fcd^^ZU
z-z(vuEcszwDM$DO2sW1`FpbbwgSOIa7wQ<7&9OjO-*0_i<;B_EDEa
zRxJEMo>Q}Qb#|hhd7NU6WWyY&5JiZAK&V+y=sKn`2U_{~rW-YFW-5mCNBHe~pIQ2B
zATd@(A9Cv*8^Jrg$0lm%JkgX?Zcm~${Q&V!zCf^XGx_z!Un7bczu~8ry$ot0Bc%OL
z`a#icl4#M;Yy)6f3%IQVOebid!d>t-&}8g>0FD(a+x$E^&=-~Su*Bwhu@Zlz$%mO3
znIJmq@A+$nIxH$ADjc_Lr_B)e{D-lz1d6O8Dw9DkEZ3<+9h$xq;a7P6qI-rEMjFO5
zB_S_YKszZu^eWE>o{u1rb6M03Z=ilh$Lx9CAlP`wNpRfqKw`CXF+NPsT~1V(IzI?f
zT;k9(a3Ym>J`mj1hbV!#qKK>Xgv$I}8#9{qJLHF^zmI$(=JPw`KHyP6b
z%H7Bc=>}#Z0fCWslD{ojz)j#D-P;+DK0;qN0`Ir=AY2_R#Fac?jJF|g+u04+!4q+!
z)Ode)V(3IBU!z@|=uc~*K05%pkS^8KM<#Cz>G^X5``23j-G$U@JAt=Ssnv)A6fs%wt7}SV)Y+FlfZ1S%Dk{N;nC4!7GY>z9&
z-M%d5U{bCGDH6>4Mx*(+KCNn)JTPCHvd!-Lo+aU?YVRshZu#BMh428kAD+d>^hU|2
zZ31teq_2~1r);HIOIOqDnnp=++6(YskB>p!0?deia$6r`h^HXU894_w&~Pj|!dGNb
zwuD~?`|784ws9z0?A462!!`W;`=n3)6?J_2dXf=9FJD0!~#@1ww5L&t(hGVn`XWp^?
zq&T60taB$nd}5L3XFSG!RNu?IGD!50JUECcHI;P7l6sjqNMShi@KUPwaowL<^WR4b
zK9X&ES*kvgR+D3>CIqqpL%tosl4OZAk3+_b-ILSO=6w8)EGX60BodEO=
zXlSUeEx~96?usQult0&)muOIYTXbFK+}|!{R~BXJbw)9nF4YM;**E3&G1ENw*3s}B
zP!hPgcD#*bp1aj?O7an`WUKzqgmcW8{6g|Zhb!N+4qVY^y73Aq>l$nY5;$K+#Fmtp
zXTywd5>_}xsR2z`NN-8~T+si2zPX)lk>_KTv%y@G3@xq3kXh0#Eu3PAErPe?zX4Q}
zeX5`x_$Yt(`qfk11AJ=j{Xg?jZ|tMhj)i{=?RH-2PnYUI7P)l%y;uVW9L*W8j2#V4
z*>n>U1|2Vj&J~n1BHMLZ6un3~5-1BZ$`g
zR`s>VGPJ0t2RxUhVsZN9M0;D^9oC*m`b(5u-(pg1IJqnoHa&A_M4
zoUe_|?(LM<_TqmoUVUUKd3014K>y+~u!^>7nl0LNuAYOkU47n}R~7sRi1%~Wzx>$Z
zv;AfiWr$EmET9{H*H>U;Y!&Ey4Kp0&^sOC-H!lOVO1?e3hF@|0)+pBAAhDqEjyS$r
z6&1P!OJLSNNtZce->$@wo%@@rCRvG=TzzS{sXT+%;Ih5&>VJ+qzl>LX^5`hV-
z7-GPE3xu$CkE`5Lz=)Dd9G>m}IQ_o_Wbe_iNwZ0O+iuJVn7kt36{Yl0x=%zUD>nsO
z2F{E<8z;w0D*%)fx{NgP+xb3$lIw1kK-8^%({Xo`WHR*ZgBH50EhT-0*74oyoMq)Z
zm7Z-vjktA^o4O(mX{b~@+*u~wa7lTi{YIh4H(Mzv-UlSteb?0cZT-K4T15QsoG;BU
zmbUaW_#*2nK3@vaZk`$LI?>Vb{*KO>pdhB+ZP$brY`&DTqph>i)|lxPs&y~Cl5s6?
zNa}BWjITvG#zt~(8=WgJgv!W?mYbAE)2{0pO#pK*5`QE;4OHQwti9$DHNJ(OV9~fW
z*gASvyOO+^g*Bb>+?pB;%~UNTT|WgaWr_Q+YyYW1n55i_^Wx&2jA6S-28BBEHSH#cPsged+Sq|Ev~9?P(CS~^ga2I
zduWgQNSJDSvXu<3A^zPeZdmvZXR&}|MGqVUoqaA$?IQmHkG`lizqlQG_2AAqD!#D4
z$UO+BkuXi5JXzN3n5u_u9>PzBay8dk4d{Y5-xU*9Y|1W9^6C$b5DVYEcO)w%OAh)b
zqr2O4mA);|2_cSmyw|c0d?ilzK`$Zrj_+i4srF3nuY+%RZWy&tdW6q4G&q0pbpoBz
zRFts2$5i4x|1`G5`abROY-#B^Y9S3YA=V)}2$0L71EFQfP=5tqiDCb{=Q>ksLmgVS
z7Q%BJsurKgL^^W{-k32vcdKxHr$yqf;6Vk!rF=}c96XK`@@c|jI1`F!Qn&WPSQPt5
zps#Gl==b_Gxe18wKw8$o7TQ@CWZT@rYBCh;N<$XW7ev#q!~6Dp{FeW>G^j*?vpwW#
z$W;X=iYt3ycYdAJX|{1uMJ`>7^DW(lUCS0PGfj4Y2Ux?BwH7MH{R7&rI;G`NW4U_o
zrMGeL_iND$suxg~i!X^7a)Ud<-tLTziown7@&(kK9x+;jDvbri>?xduqAqsYv)6`f
z^ZX!rGpsed_j6bufBUX{)$#y;^Fzt*H{Bv!7oraS$uNIsON}k<$?wMq3D?=`-IrEm
zLT(*V?{-^Ca{FEI=LPQ2Z|z61Czk9Zjg+4Ss8iaN<=oB(pikcz@dXjq>j3_Ho}JQ>
zh*mPrKx*Cw&Z07B&~fmERGrZdG6#Xq6>vzSDKS?{e{|#V**yQ%v)V(y7v5EcBvT9{
z!gGkj-YWW7+bjjhg)Lc5%J@~uh98+IblAYV>)(r`h)xtxV&G4?N-oy2p?c4YL(zxa
z>!p>95JT-3wr6)#;D7wVIK(eVNll)e8?}}f|H~|3_DU``WtkCh)Qxhbdk)BCV3yf<
zAsTI5nSR~_#P%(YQ1&%&Im>r{xO4k7X`Mg>swmTj`ARTsuP`HMeD3i71c)B>bDv=V
zwy>$l0Ou+`N$&wj)pEmfFNZ8T#FCD|p7oF4muc_@PXO0i=D@X#=ePUnH{!Xc38|_;#nT
zwNnuEAU)@UDd(@wRu(>Nxx{ApxPx|q{I@EkYaFFo_X0V|1ksZBHhe$@lbF>wnRZdx
znYT0JqQcSAkN#+mFGCnFyFp7&r-xwp6X634vD!7&-
z0)78iLoD+Xwepib$)x|BUT!kC(7UnMm=dY)TXf*hV{#!QDs2IjNSPBs0GksI1LEr3yN-i$tn7)6I0u
zMQi!{L*M1T${V6flSg<+fmx`&d>GnUpkpkhsruQ#0xg|fB9flZ=}w-RCI&Rs94&&+
zA0I4Pc&!h%XECgij`sP?mX5NO(^y}xZ`b$x6|$j~j~^3w^eSZ$^Kyswo(^u(P8Ol~
z8aXdSt5cW)>4E$D&iWDp0&Z%58CN;@o$bXDvCzU$7|FYvaQ#jr-%UFrN@;4kJ1-)R
zu3Ot5IGx(!Yy6qceVXCry?fd2ONi?>*VXOmg5(~$c?^Tw=bsx@Ui|I+r5e;luTOPY
z`F8@D7SkAiC3q!E7<@&J/nHxywXED|*vhF2uM{7&+C^lG!R>ue!|mX4UMB!Jn2
zn#JJ7v+MGkj(3R#eqUHgbsm3Xk+tx&mZkF8j#nYEHMpO;o=*l6>LH)LS+l%#rhDbL
z0g)SwZTJz>5g#?mA^k*P?!hNc@cd_30mliwYEyy3lIauH+`PL(aTL`iw=H?es(Jy9
zAr-M|Kzm#sR0wSzL$VTyA1PPphhBf2?A+xb@VexUP69t&ZL#pf%ZPY(lLPAo)8_pE
zb{bO%j%TnvJ_rBRBwtfhH7CLL=O5+I2G$k!m9CyJfe`B8>{?C5!
zKj7t;T?QYSx)`vf1l{0yyWL_YbcXbo?d9SivK3f{XpE=dMT1
z{({4T6|-<{MW)`|60NvL9`N_zjRO5~P@n9!fSSr)T&q0rX_XWy
zzvm`S=l6A{E6RWAkmPNU@*7L-F~uOe7bee1uF#lz;`8_g&5z#V-eBS8tDb)zsR>a=
z=g)M!D^$5EHn*CZD|A+VbWiq#W!ftwz07iFGX`A5d>#jr%U}0Wk_(v8g31l_J&aw2
zlEk7gm6Pg8f$=VaorwS5`^UdOw!bSh?w2}bs+yi7SnfJgaVzBRxV3Vo?
zbhF7bw`IC;hrY4j2Qisv14`b|J6+SXeG0g@3;Kt@9G(9p@6un{dPW)!Ir&On30Fj!
zUa{i2D47)ZrB1m|%>K^-$#$o6-mgI|ryheI%iyr3S>LwiK=!A8
zzHorQa3b7D3JLLj0w7kAcPB4@DN9&HBjui|;4Cv=Asw58%&gBA=eu
zef2C`e7XEXQ>fJ&c5r_mIpEd7zG^tnSk3(1@BP8{vQx8ZWaMdSXr}0puSU&#QKQ*5
zfk7d>c(`N=T1m_9`A_A1C!Glmx_mW7cINdEm;z;Xhlp(8P3$PWUmX@HL_4V2f^
z_Vjrk+AZJi^Upcs*>>zR#_m#3B)A31PuC_P6u`vkvq9Q6l%w>&D*!1BSwmD{Nm{-*+?|Hzle9~X;4
z2Yrq6q4@m8t3!s%!GT@BLXV3<(&fJoJ0PRXyE#h(!^&e+0x!NXbF5*qy021xx`JUP
zp$47Jdmv8_fYmF!u1KrqI>ylVoL2)sf8UN#n6-^VZT}kSq{Y;}@qbjTT)zYPH9|0z$7cV5@?FiNCna3MP
z3vM&;-zdKO;MeDa_Jl_y)7E5CFv9<`Axsjj-L3(Gaa?=DG>t0c7ul44u}troOE?=sR~BxKj-~^xJtM#GRa{u3ed*C(NS+-dy4M7
zWv0ehJH7uIGtOTX}z
z&#N@Rea6LbZm`DaJm2r|r#-h=OzXepd1V-;JXmZfswwNhB2TaPCS&^R*Py?iz?aRI
z#jWvg1=`Uof9*y?c&kS|RB(#t7vLc(hdqlrVe!3lC1<;jF?vdP>K!#GaG5b^QSK#j
zZIk@%0<~NQIj<+Ya1|%0lyI6d{`czLt2)qW@2kNtQy|$DX7KVd^UmV@gwJWi`F6qd
zd0K}^PhNlFO38kN(48yw5Y`y;)^Yy80U4nR?%VMd4wr^*Po9@ocYrPXQ|GvqNe3tJdZ4=L&G)%)TGMqR|ht#p)
zV%cfh0#Ea1J&o_}gN_!~I^&bnTEyGe_IWz>7UI#jDJi%)Z%hOvegF(tCqwU<{}lV4
z?Py(ja*nnQ!E6jh^UrmZuIgPGesM>O`;VZ@JHXrQ%{;M@XM@Sm+PLMY(C6;CAqoZt
zRi*gZjNsS$hQAV2wHvu(-}CkG#1?KU8T_j27h{czxk2ghYUi{R;@P8o{&As>s>7QU
ztbO;dO`6P`e3WvJS%ii-Q$UiXUiXndSY6`njyBfL#5(wOxbsEiaOucCaO*)EqJ7b?ePNl`UcAuG#^9eL2&!;A>s89yeyTbQfl&fX{h^h
zzXU#cj~}N<)R3wdUnVpX8UGM7
zMWeM?$8RH->wpKRBs_=xYC!wJq6@}|p_*L>On=G@J6Ljz&aqNZDUcxz3_g2*eS0c^
zv5>wS>=7KKWc{_bkukAVW+{
zmt=x?4m|s-Im7w{kavk%hDQUQvAguxnn!qa{q=1GLq*c{9-FVMtU4ZPMU$?#!`Z92
zZ@5a67bB(GysJG(J^wznQT)FD3taK~o_|B=I!ykiKCVu)&2)1A^xb*bm7iz-%ky4r
zN9)bsm()6}uib!$0!MTyCdS2q*%9PW%Zwb$1){b|l=fdYJ{Ec2Md!E|vo&7zB@NqI
zSkI?-p8C$(9S&a(dciGy@0~MY$4}Mq7&*yBMA-9?^_Y6b^CV043CD;cTRzQRk#+MV
zS(A6KA7{HV()=u16Y<2cTYSh+!)leVm7LZ#lvLKQmnhPhP<)KKS8s!8#A~xQaWAuv
z9*~Vj(M-6`9Rt6V*Oe@i^alf}b1biUas*EdA3-l7@Np$zaUHsG(8_-O;_dQS1)}W3
zh9Cn~V&Lv7^xSaoq6IZ6cA7TncV=2}@fm`uR8FkHYi^FOu^rkUxE&8lN{ANH0IxR`
zDg0IW3CWU2Oi$NyPwR|}_uX{A1cQ!i@_|{mX9lo$>o2_8%zgq>vtnQ-;*2^yHuMpWO;j5+7dh1DzISo
zqyH@>;GLyEH~S1+TliTpSUT^B7+eKi0`26?z6q9!66N27<8dAW5bDg{`qj;$_
z!iPOCfV;;B0-C56cy`dt2OT)Z{I)Mp!cI?t=hrb|pAQMPhDSz6$E6c)PIH#;)@mLS
zlp7cPX1cYH;;&AAoNz~hKsk1W^QO@sPR9Wn%2TZ1o=V04I6fw-%R^7+OiVr*FJu_A
zOKNp)wNMw+J|uR2!aem~Sy8n}>@aLeatDh=oj$>qthdika!QWk1pSwu**6o*Wt&Og
zofG-&{vsm{;d9dg`&s*v9WK&hrT6)!=#V|AO@Pa|{!cH|s?;V_|C~Rw7(*k0P%g+RIqub@;kh{XeaX8o9;MkKTv}01BV9g>sZ?f&+TaJ)z>q6N$
ze6=;%L%2F3-e^u1u6}e1A+YM8s&l6~a7iToT4gU>{{hLMSlXC+x(^LS9fHgG>u*tS
zoFmTwecry2
z^7$=vGy>tSrT9b}6$MPndGVZWw71NE7e`-Y@RNj@=$g99hiML%_j2|L3aJJ0v#Q*D
ztAz}b%4Uy<0H70;M|bY29;wb|eB>^UoOodw1r|m@ADL9(ynw$R5M`|7U3!QiAAt^M
zonfdoXcsse$_gGnvvWAY$X;ZJJe5X+$0`r1L%u
zEUi73Ndqaa20tUDc7%DEGu|)x
zeHWC#qdAKZ?jKG);*cd2{pxH<2cw+}BcDj->PL{@aPhR;urS%u_qPTAsQND{NNp5T
z6Ty8s6B(Gyq2RfTWO@L~gA7-hEj_-d`MYtn!!ff86Th&lJY4ueWuzeg^>mNju@o}s
zUhKDhB<+-uHMo4m3#szG9*Cr5tOB$5{9ar;WkDPsSAib}n2XG!C9Kl_Bai5HI0#k}
z{VgfonFC3B;l$F-4+j!Vw#_#_QXtik~W>?7AfY3HhI~xaf?M6T#I?fNNzd0)M@
zL9a4C<0#5E=g@5|kj^L@Dk~{uM=C3^C_K;GG4_4ou|*irdj4>C?DK-_<)_Ez*^1=z
z_hJrWTw=J6zu9ZE>E5R`5jDf6yF9g!D0`En;YY@#8qnk%u$$<=I306Of+WdU!JMuK
z)Xhp&pgtE5$>tQ$cyFSX_up~5Gt1xDNC4L<7NKI#0H%xR5tQZ${Rl?pZw`tJs83z{
zM&9(gC9v}M6fx-&UavRnSlkBljCw$yD@7mK>)kI!r`*Q`eJ+lX%G~Jg
zGMJa6-z7UQRIC{Tr`ojQYODz6_TFIu)ggDL-;P&3<7D4@g}EmfLx^u+h~H=_ssJ7N
z&jH*Yta2kAt7j#FGHkIwO7ikfi>GAED`u0F{W-BygIfKn-!U_)XTGCewX><6R8`n<
z^{X5c-L02m3(==pS6b(>%gL=IVY-z+hQ)Ug%`9=%!}?>o1@ROw3&elD#UI>>vbF}U
z8LBfmXu4umIBZpZIU=TR%rI!sZiNk4w>Fg1fd@KQ6Z|^-^gBLr`Ge=A7Ed@%`u5>Y
z?K7M7^r(PJJJ6ozC?!o3f45NGO8uqwRs#g#Ko>mEMm~UPU}wTslwC;9v5aA@3#MNP
z(cS8}J1k6go=v>Wn#8)wu++SXHtg#(af8th+)85G=@Uzt$zyU
z4b`r?`cO$u{b*i9_l)bCFArfBTYr&Es)5ToIQw%&`(;}LQ+AshyQjoY>kI4@Uh}i%
zi@Ilji`5*Ed%qCNknx8uynNR9O0Z-`?D{czdtP((h)Rs!FV3J@2=oMFq5h&>;tvJn
zWcN5Pz~f}`_YNX|Q{N@rIQ7&d&hKFX(cR>=3ss#uPiAq*Ur#lakfgbjmHC%P(|9+%
zTnw9H|1F_?=Jvl*a_PDdE;A&uEh$WQE`a@8?^T0PU{g~g<{9Q?&TH>??9~{HVb`FN
z!yn7?ZW@g)XnOG)LDR-Rb7>`$Eq=E0HAO9Qw%i(sDJ5cftIm5Bx`f)7V84OIXFk9`
z^{ian%>Z?cen#p~qjFq6cT>3?M$DQ1Lfl5U?KGdpi1_}EMtmJdR
z)}Lv}-=~t>QvKZmy#oMCh4VNX-P3A)!1}SQwLBJtDL8dpP59bgIeVs7fa%&krbHWw
zst#GkW_#N1+zx9myX(5%LgUy5mWomZL+sJMp6X46YX^5fIxV6}Y(9IFCcZ_u+gmuX
z)lyC0=Asnaa!H)aHqbWJf5Of=Kx|P2&U?V?m1y;4El^Ll8?t#}NQ~nAhSRl3{FI*#
zpQuZV_nJ?!_Na~&$8|??JJv@PlXFcBa2-KUK}|2n!1oq*M)bUL;YGM+wPDzneJJCQ;HnSzW7IlzdztfR$Isww@nfRS$Y;!_|>1TrQ
zB7L?2LX$Iq^QwqYc#3HIiKX@sBxrT?5a$H7>M$YJ?Di%Ee4TvvZV
zt~l88t*5{i@FG@1%30O7a+DI^Ke8*ctvRxT8GUx9blk-~JQ>
zu2mSk0Y?cpblbgek*YAIkf73_QBnS1gESP|YLqhUt6-7Sa)%ly-}02cRP)M2PI3Mn
zA24;)JT_~_+YB5QtYpcmE&d5aQd4ia#UXTTAPcLNfiVCuKrCyaBYBNtdn`aY)Dzu4
zxNxl~UxjSEPwgdgv&(3Dg%yo2-5g5^6Z^eChoQpnl~cPAm+pn?mnGtUB11WM?-&R#
z(5klEFc-(g!5xQ@6MY%JA$AE@De5%F}tnX}Iu*)oSCeV-86k6P?*^Dql
z{Tl;gs|VacHYP{+(hxOm^#zHGU`(*TnAnZ@i3OJcy7OU3_G{O))HHlnCNEKQS#0vx
zOVIdj@nR<`Ns)tnX8791cfGt-ox(aLzINAFd{wHtYExCHT`CJumh~KSg%(rPy(iL+
z)ke}gP6zW_9(Pm#@|0nM*ZRC+)<+nUi>0Qi-g7YaDIy2x=k=Rt7Cu=&EQI74Q+tK@
zwrw6s%ovzUdroPdKQrx}hU3%|<<Qufk`do7+xWEO
zO!C#A+P)Op&}!8LdBDV9Lspn4tf__9WM;M9O!a_~(w|nnjx;D5tf-N-w?8N4m4~xT
z7Oi<}Uz%M!NYQqyR)c@|o|TOzw3e(?({bb&9(M#*p~pznr#UBIOi_6v9E(Q>QzV*=
z`U{)MH0c>prtX{UT^^TDQOF0KEB96$1Ml_rHcsE=klw=
zID2JWU)XoGQHc8_cZVco6>7j$%|Ly-GUu`Pj!KfG&&i__y+_NN(%&HIZft(Y)d~WW
z_A1nz_wa3U)rcIUX3eCXH
zoe3NH&v7xZSLhKhHDU!Z4Q^%e@h_-4EaTc_qGQui;H
z7%$C?v$ab{iH|yJ4R15o4NeA(_!3D@y%NJ6GhV?!v3l%$1l_34aP>2yRsC#>JFVy}ltD3q)rci)&xO5HI
zDxkD`!5E3Xzp}(@ywpFG|5Nyl!v+7Q8}=T!=|Xj{Y1RYDF0|r}^4
zjoC=-H|?cfbwTr&Q;S{S0BWQsQfl`BE^I(zw$CBm1MOmpNRU>;JP4p#MmQ4}!7Vxz
zY{4F|^G!ew0Z-{hN?`tALl`
zmZtw=HyR9~f-INtUUzFz$2|FkqtWXc>q#oXA$&FpG@kCI
zqwRQF)i3-TwLP-6*cN4k<&x=L?E1Ll4^yP?s=x{gbwnW;2+osj{F-#mErJC#_G|CN
zBq`RjsYwl`GZzSBA|y)u9^0#7lOEDl(ltcPpRGniZ#h9Mayx6-yq|6fA&DKi04-B#
zJpg|u>wjf2vu!9>o?C4C%)!CQ(_LWf1xjZ1+4|S7pRRz`65a_vW4-;^V5UzqFK@}m
zZ(<7VfEWL2J0^h5$aa%`{OjVjmWs@~=kfb=!c(!jhOLTch2nWFkkcNwhgH^!rH&Wr=hf7{`068_crPE{cbc?Dli9(e
zKZTygKTqtH@>_rXqusOr$ZsVFeR#^Wy*On!a^@pUjquLj``+Fac#-8?XF}J$O527`#`ZUmYs$Ix^dlanBwKctEcc40_M0Si@
z1Y|iES+yAkwG;bbJLx7C+Oqg`HYTGuvz?1eO5j@SgtlP}x3+%?6E%&aJH2NDne4ePBRx!!?A&V0CFGa+YoU4H
zR)yGw9|bxTlt23|Oq2uVk*Zs9qbz=A237g4mx^$Js
z`1}N1kF~=HwP&%m+$e-9AKuOuJ2BII)p>i2Gnb#)%ggm27E3>F&7eJq0%Y4J%s6^S
zRV!3#gq2@@XtI0vO#-a$q39Gnts~P`1{1~&4&K??(-sV
zhvLg1S%H)9>h;#Q(T#mrF_cg+N#K>Kqd6JoTKFds5t|2^qFJ8Yz1=r?y`!y{SK~8t
z<2${KIt;VNos>JgjVnCU2pxp}p|-eiOd71e{U4yUuLDi{1O~vc
zW+k>AMSHTn<_5M|IdVX~ThoccRGYiTGCAozK00+P=efc6uFul0T?UT#-gzefxww8)
zN+r&&Pd8X?Gm;b={qpU%I@PtZx;ZOjW~+wS@b6ih#yMOA8}v~%Kc2@q?|Y~XVLElr
z8ONSRmVAUJ_E3^uF@eT5o|e9S*0Z*DtVG|pZ`JaB?Uaozn}+!_$mCj0j~m&JJ$
z<;Gp!RpJHvEvlsbp2|)SozCT!(Iq;qijTJX^YX^{R`AE0Z9+OTe`7lRH#0@m1XbjK
zZn;ZAO1yjc?2aq9{=>Lv$LhKZ=hOgZ<#+AE1tv0=%L=i9R*J>J4-9S=&1IgD-3rxj
zI0mB9<81F`04PGdF;XqKZuY0pSSz50P0e3+6TrC~O@5~WeGMaJ$dkKHTOO_d=uhzb|8b$*#O!eq
zLz8XM7YqXTsy({L9)XxIDS5spg|iKSWECoZ3Jy&@0>y(~*Dup+oq)W}N`4NNfjkyz
zDM*aiaS-QF(;6_7>OXN`y=B@5+lyZq<3pmYZw%{DMsYd+d@ms%phHRbgNFLx$I=4O
zn@{Ppp?w;~5e
z2V~&sY#P{6@F%sCt~;RDx!3BXrWb(mImVQ-8B*_!+yTvA+mP7TO!di?XvK)r?@AuV
zRfPmWW6?8#8sD$&TRw%)^%lq`E=3raeLY)^_3XS!)gjRWUCm)46ZrbB2p06yGde`+
z6SMVeu=ZzqAZ-byxUK&3;pGSk-=SL}uMB;!lVwsX@YK+*pWIFIhBH(%u%dO3RN(6$
zy@iWn`p}G
zid+R6jn{(GU{hQUwNc$40AjS$?;BLlEXWu7FWx7$6Nz7A?OtErd=o1w%jKc<^7QJC
zza|1*i+OVP36pUi0=r3gIR>}M5M8vm<4{pJFI6i6A2WM=BvXbSvfLSw=H2))IdfZ}?v2U#YmUg*;R*dwz6e;uapz
zx*6`Z9n(4$`N+x4e#>XHf|g^4#)qL1-y5ChLBl3l2n=u;4}cJE?5;eqKLg*v(qpW;
zc^GTP`83ivV{ZJW7x^5oM!^s2?Rsi+6LXXDFJib9@ng^*o(sG@GJn{c-Fade%t(4KraCfEDO$0osPt
z!uQVQpb%m<&IDCdAsq){8M2{
zA1h&+~+-&Z|Tg_ZhMk#au(E-!USAQ9lVwKtgJe2NEO<-6da1{ac)0~k&
zo~n-d)H(vUYern1&aYPaIlbT)>lNiEa(h=@f|6|%@!?TOz(C@c0n@Qu~ci5jFqnOo*u0NKn1?!A?Yt2
z%87|snj7l43L55P66FCF>QFwET%GhXXWm31#Hl=PkVW}q3_q&-WX&HDV?53}*A
z(PTYiX!zk>Bz8jaDfvO?S~cA6b)_O{lmK75C&`BJT=n6!s;qutg{Tn+W^?B1(wQLG
zZo3!EQe>(%!AVl~<8QBKu?w@9$&Gvg(jav=(xW@$Pbk|S#6)FCO~F0S3P|P#9MPMT
z2fuewUEY;-c=amfAA@r~xR?)FV&xvA)-v9(!1jC^
z%(Bn6<3|IaN>|Z1&2`|f7gFV4Z9%7vz{FjZY(69=LY^wk-lR^{0+=VLThvuUk{&$&
zQL|bZpt{n=lzrs{ZV0U
zZL&QEn{&K~!e@%n`HlE(Jh(pcej6E7vQkrOA~(E)Rf#Ao#2mV|f#9JM%v1e>Vgnf%)8a
zmoyya?_AdA_mi!`>Rf$@P|Z_|6Ji>3Vy0=UB%}d#bM%qJz{uyfb?~Vtn1`e*wU|KD
zs^J!q!?z;I#U&3Nr*@e_qvMqp&8nmfVEVVu`0;-VYXcPcKSmeoGmEB*O&t;jUmP%k
zUyTGrGq=jYXVU`nLf0|%^TFNM8ZXjvf(hZ|Y}2Ci@h#2tElwN9
zdx4#(^@?V0)*X`DiK27!H901OZ{?@J4dkcn5+bWss2f4!w{x%pZ@2hpw0LLg{S!vn_gGf?@_bK+_zC;lQ>fD!uc3{EKz?e?mhnY!puT@x0?S(%8Q1>&I2X=}wO{0CmtZX@q6
zNRj?_p6Bx_(^;Phu|ECqambsBx${?42S%8wx!bO4S-*`E8X<;y5aYerpu}#q(RyN2
zbbhkcVmUlYfxjySSueEbUhYs26Tm@@*BPXOq
z1IdXb169X1W8f&wP9REb=QU#tLgaKm>|y3=k@3Q)>1Wp~?(#RRu?QS#!nQ*?-uxJ6
zdN-@Q+j`*Lh+Di}>p0vGy#
zgKPsnXVn`Q8$M-TVRH@~0}5{xGbgOm?Jo!p1jkR`{>Xj@dSmc_{Ly70486#iFie$j
z?nb%=u-5}xQEu;4c1ow(R9i#-d1uIAdYLDOXkm3s!oUB^330&i
z$W+%u&K9bHAz9n@E&<5iHb8froHL7&uFi0kGzY-Nj4B}mMmVE?4}F^T8}!DxY=~G7
zyeo$Ke_v%$>-RA|C~}FPlqUV}*Wb6A_x;>-2R_sT}3j)
z0~BJPwE%zMCtX{^|L-gsG32N4q@cf`Ly)Q8r`Y@G?nxhD%HW;<
z@3(meH@nn@fYmXT-%)s4B<)xIxZWPX>wK)D_A0-*-hA`w4tsY1vES$ugJx#>V>E`uEIs@oNqD
zzDG**|1JPgBsdf;%upn0&RW0;6gXfL-v`5{7zm!2OBEe(O05LHCmo(O38s(NQR8C4
zcQ=Y}+TQtG)#ZN7V!Qr4l~@?=;rsDJ#p}SM?HPF54wTLT;k{Pey`sF)a20a)81{eoJ>>C8&(24|pAq!RmUSDJr3OCJwPR!3B@@nSjV7
z33*80gN57CGddz`Y5}hDOrFKu+)lis(Im^1QGNm|OR+$u{FjMo|Dq3U`h9d07xMip
zT;$#A4%V~gJ{BRzS81dp{H#x#RVV7;H1Op-AlvPpgWmFXd7@FX&645O)S3AGl=scs
zeJXj}J@?@cW1E=|`MXODs@$5^;c&u@iI)$#q<%D;8&@YapJDA@9JBVk
z^`i$Rja`9s@!*Z#B{CMZdjM6pyJMt?L^n^<*736d6l!sW~7u914PafJ#jxv1|$H}7yVAnpCp-Z%?
z@tVlidE%|lj{1dc0yXMDd<5+d41H4Xo-PCKvgK$XNbIIOF`3x=7uA5_X^i6YlXb*T
zL_8eR6mV(h>_49xL(IFr(RVh75jMTm{Qx6blmEm<**BtlAU6HN=)m7f`))YaVh83D
z)zsCCpC@I2r%(^nSl+>INdESMtCjspNkz8avzI%r#KM0bKN-_rO>|A&Qn
zJ~(3l>EdmZ*u8o$$dg(0xyH*nWQ9q<_{efI=u{e}p
z77JInR%-l&So+Ikcfw(4f3w+>?^AG|t>A3Tdu2;C8A)87XLOhtyW9_~k9ic~99%*6
zxa)jun8Li6w`-Ukfs;Gb<}TsttT`j=u|J0?6u9<93uwVeImDF_{2_0u0z
z*F1dA_W%9?Zxr%S4>4Pa5(Q+=kTX-tM_y(3Hh!^AY#`1PO`{O$O65PD5te3iO13?E
zK5M+=Si5_%BZ20f3}3^^lMEISPnD_A
z7S_Y(2aNrfW*;(TOOym3oX1x^94ia5b^AQl&&T%Mv?^xL?+cgLVU>$;VIzL*@WWZb
zAupP5MfRZOhJx=%w>&4#%A(@Kf*tE%<%?9ODj#Le9^mPBCEh~AQAJI6lNY7@wA
z<(U^|%Xa?h((uJQGr#xXWJ3ZbOA!e9m`92*$N$MSDMGtHwYizD9
zCN`=y1IUEyfL;BqoBhA3u%i60S-U9bI7d&1#HVOygfDj+mb%0Htx*nilD6?g&lYX*NQM<@%6gOemxzKKI2zNmPqau;Wj^xEUE
z(xwltkWBq4&h7ZwHc#@(AG(?#*&5i#Tv(}#05C)fP{shQhH#+!KVBDK
zTFbsFe7i2Me#TPZ2p#}r{H$ao*T!*UW#G|uxe!(D|2_9sFh{jhJm&0`
z`}RgXkVh-gvvO<$oe-}e2fJ_#(*udqyWa25z%DH}qeAB*=!Kl#!E{3o)UNT$n*!*_
zv*1-yY8L5MX7=3_Gsw~I=`*8x0^BV@qO__&kNKEA9hv?d-m#b%o^QDqx6e|hLhy62ybe6luM
zj5{ti&E7*i9?)?iIF{(JqBF&G5qon=kX>L)foB9~xnN>{QDxYx7BxBptNkuXMoAJ4
zB?nNx_$d}3-^VFg&Bfki0q>+HDj7
zxK-LqOteF5P4kl>kSSmkoY_w%kGt5q&%Cn~mKPwv+Hy>-5{|o`tZPaQ#pa^5fiGsK
zc8^j>7vmrZsVb8|o*V)D=o%O5biiJ~v|X1DOlj(aLqwCaJp;^^B3bn(qYYUGgiVFM
z(C(4fCwu|nfb*#M-C+M=E(anCr39&VCdxE;{sq;1|9Gbf<12(09m_2I55U}NCM!7a
zTmhMZ`zg9vMd4>jAPJKtRw>4lW+iR+f9}LJMk(DK`7lVQfD)z^
zoMRH^+y*m{jke_3NNnIlI%6VbgbR%`v8?}$zj%jQXmu&#!%AVOTZ{WDKIWnFh*yn-
zshR0Q)3?}O>dzYTJj_fiR>9c`mlOlZ4xM45#P4vIKn6gr`EAznRQv9GUq>`w)NhVG
zq1HH?+d!YNk6!bqcD4RZR#H^Yp-=HFgVOa$&9n!v|rZrRNi1d`k
zM!)EU>;7{Y-_>Wo%M`f)wNYLMFtYWr*+FfIci%Fa#TjLO)sNFA@71Sb)vckSE{syB<|5s~2!HN!8gZvi9~#rPLG1
z3IYJwR8qxg35I|Tm-wx=&xWQ;^x0V79P7$?JNWum@);w4-;L8Zh_BkzIX4E%J1Q?2
zbNsX**RYT0R!E^MX1Dt~e3H9*MHB_xs;|CneqlrVRN{w_&)$B|pt`J)6-1$yo}S=O
z46fyV(rH2K#opq1c>BnxvE{J;M(Y3|%D_Ijefx*4&VWn8>s;BZJ#UeZY70Bt*7kyO
z4~@>E4-x3AE5|79k4BPTcwe`;7N_n^kvM`Ef-
zn_|0FndwaDN*4E)fciIVmPV6bEhmjp5@)jH@tZ;4r<-g-4uE{yOC~Eq+(AYY_
zwBavk7O0kpOhw0sLA_V2oQn)Ie{3EC+SXBr^R86qqym`iNLk1{;~D6{Zz6)#iId<-&!V;
zSfn6Lp>YTThqD4sH(<~myu1Lrn?9;d3^NDoS*rGu>cLR!epD}W5?32D!P;p
zWt%qrI7$%=Q>Jj&Hx`_TXbT^<0JTxQA`QaG!`oq0BQAOI^Ye}zp`CMz`?-F=3@%Yu
z>!Yf{?(D7HU~!!}%XqX3us*>ksVsZd!dc*zF?!?Q-oRIHb0VvqfAaq4uN-5ZKCr;{
zYM%zU6s#=$=WU9{={)rtFs1>dnEPkRi}wEgmRgA3Rmlp39weUeCra)W!BpFCn9yvZz7+MwF#7m7$2NnN|Nx?{aOtKbQ
zbfkKIzW(HsZqcXNgU%qjuMSDFL$enD63frigSG
z3ow_w!=)(Ug>e`;d48LnfUq^L?>ygl!m(6kaMK$zxcM7GPP*TXcf#_FvY*h5c57lf
z^V19L-5y2d#khD2Od}PN^NJVAZa=L5IRB#CB)hg2^6Z4@_FFC^sjj$S_Lb@EVprmm
z`@YWG0f)NK2F44>kRl7z{Q4|PLN`
z(bC!3C6oWkO6E$^r_-A%N`!4duy$m@uiL?GZ|>oL^(t*$@t(ldYjZ}L)k8!m60p@=
z9ji;5(fa$qs(k+|ok^SgRAK0;U_pz~(R6q80E$L_AoX;TtjkFCzvjm|6h$c^(uwvDax
z&8!XEZ!30AQI}6$mYg8B^Tw;fhRv^IFRk2BP{tVV^l8Kt#-K&sHaJwc@d(lCT_&f3
z1wVXO0t{&xpQ&8n6%~twxWQ)^hfVz?MjQb>1@V?p^UVvxdFQba_!QW
zj^f6fU0-LNUFc-lnp`2kQIELhgkW1^{ZTVS4EpB`fbXYAOhE%^19g7kg?FpDDnzDm
zeoueE+}A(IbB;Gg#Fa9W?{Ey;tnDJyxp;k~c8+z><)C-rspr&MG7E3M{0}f6wh;Ij
z6T}RXV28Wsn`L2bD#t2vtCnH6^%_RxVZ5`IlQYF2rPA4-68!|`cpQG!BG%$iM;j~D
z9d)uq1Dt5n58atGt={39$Vq;uG}%=y7imYs4fc50iHF)xE01tU|k-@&*;KtR(%
zO=Cg21Ia_+6Z@4$d~;nxco+Y{Gkd8d*igev@A4vbOt^dxBjB|}uGyk4SUnHW56z}(
zUBK70RqDnnO3STY^JQKgyYInI8?O4Q_XmFtW#o`-DA*D@PL4`-4h*@aJkOGZP9{?6PAnKmio+$%-oQzr)0i!*>1-
zIYYuFmN*7#cpNZ(WlQ=q3)#}$%=9rb!8qr80}Vx6g}lANg3DyWHVwc`zRN0yZ0}!j
zg`^LY^Q&>~uhC^T0P5?VZ_c)@D>rrPmd|i8xA_ZjaluOTbBbyO;)dElj|k0n+$D16
zR4~o8#O(nJS{nYv?4r#NN;FNnwM}H`NRYvszRobA15ZE#=A|gqWC-E9z(xjsekM$-6-K}kD*iMzj<;o%*X1fX5{~8
zcN;f+$)CYLT?H1Leq&c@F!0y&Lak;aeAfkl5~u>ACodx}AAMdOPPK#s-4KVbHigc9
zj9CeREkaLD|AKm=s)+zx&3%@_W{
zjxA3@kllm7=gnL;VT&RI^Xk~xd9qor3~!)JC&*tc
z`qaMspc4Q_lN&idTc^k@;H;RjOV_O?psJN&!=t1i7#e}>eK43I<{+|;^MYh$VTFA=
z25jlMu+pef_eV{d8>wCn0u;i`oh_sDx9W4^ZC%=$IY-;lK8iDXeSdRN2v1apWksxR
zj%O*{JE=wLpM;;;5zE2X3I2zfNmLmnCJsDz)c9j}pJqOb^!my~g_o=3@p`@f`eCq=
zWmzXw#V!%`&RbxeWo6V19F$dj;-?VAacJn1VznDfM(eam|7z3Q0aZVK(ibtU%4O?g
z>%pwVn4X{wx{{YR!ZqZbS+<_N+N4xXSdnGqb
zVo-kfCdBzmd3X1;VcE5f>EHjTaf^kZP9vTbWsJ#)qan>
z`UnC10hK*OK8qW2%bxv|`c~>|p^wDSUEOs5gk~uT_jGF%@<#XD^~m4ajEZvr6`Mdm
z@?e~qLpPr%{CE?UK~B#BP^Cp5-EsN(ezn^@BA07F_G-Sv5WJ;m4_1p8xfh$PQWzAJ
zwNV2mci-&yhqqp2jiS)h2Rwnc$g2=_2s2kdJ~way@NPr(k(-q;8?jL?(dqP?n9=U?FyM3o63)lRLYH4XN*=McSRkc)7ek2}4G{crwWB}nRa5e#eN8eZYL3iNQXWLnNlr(H!hqk-!W@`uslVTP8ebP8%43-j{$2x(A_KdRewpi^ydj^Cx19T40N*4cHNbdi(Zi#UDg7_fbgbBT$C&
zO*@Lo;0Gt&1Jbl|XyFa3Xoz~brwkVuoIm}{bqc?bCrdgtd*zpD9ClKSu?<{shp
z^X#|5pgmyRhc!j*7u#USbpV>nU8*XK5yU{VYAQP9Usv$^ExXuqzDSFDUB)2b8y|{`
zbbdzn(&owm4%fDT39|xr+ZEBW@zMuhKzU-hEji9Rm$`P%81B|Oy0D$mg;o#x%Swm!GR%Y(kymDtf40|Z9Qu_anP0!P*BT2fnL!#%E=(=@C2hSe()aq_h1oi<&)tHBK>>Qz`&0t$
zFqD1;N#-}CJn3~Kd;2Wa!}NXX=NHNG_mvl>dQ&_v_54;%#rDImqBae^i`6y0*1Och
zC9zq`p@a4+=?;S;uT2_H;8DosY~E_g?%>*8Bqj85{fFPwTFs<^;~M;Y{z1Z`vi({x
zIc1s$J@pjx%E-!|M;WsrqS-shaB8Z;YNR-Ir8VtcaaqmC!8tDntk>dD&*71o0@mp)
z(dp}Qb5l|oL6y0|hR&zD)064W!|Hc@C__v3CqfvbG2500`C<;ixURpTNVii3Q!2OK
zMt4Q?%^hG!4u09EH7~~VIW{C))3UEIPcEivj}3qdLeeD|=O0k|GUHB;2&RHP_wp2*
zmG_dneK(NWy*YYyMn+@?k}?IQ=TompLS3siSN#6GwLD<8gKM(mF`OkT>}(HQm3J;H
zcEZ3xTXzhGd=3uO=q0d~hk+}bT?beCmj8kxIPM#lMfCmdUdx<){6OHnL5IrfI2U6F
zISnWFtIsnT7deXlZ{T$2{;mhTP
z)4Y|^=*nW!a4JyW0JJ%|x7@cD?~gdoZs*r8)}4z#x%K3ZxO#G!ft_jj2DK2UdnB&(
zfIs%il~#81Yjb8(7O9HS_2PbE+gefyU@c;)5MrgCzyx18h^_t2JCic-%{1lB=T{#G
z9QcE*rY+_^Y+F40TxcOsqQY5jgEc*>9Gcm9P;@p%K+LE2WacQNEk5(Q!o&#fQ*F!(
zu%-Gc*rarY)$-6)2gC4=$$F`=0ULjT_-;N2O0|{T8;|Cyq^fV_CNLEfpHOHsRCyEA
zD`chn_sfy_Zf%=gC>xF4gI%`;b(3ltV5=9e0k;3v)SgFd@)3f)5hMB|#h2we{|+mS
zlm7#|PXZ5qF?9*>uO~u8l@)h^p%P&ILU#RggNmxAQ#a3h<41$9B_aOkw#^No6nn`p
z7iISwLF-5TlVnidT4YgTVpfx>|I~{7@%q>ID8VN;uSh3cHchw`G%3|8$0TH2Ua4U~
z^qt0~E6Pq3bG%!qKGh~&!ASNx@zUfXu7A`t8L98{&SYInK|p06qL7(A5CY=Gk64=1S{N`){n_W8WT<~a=>m)E%-D}(0fZZnyJu+>W
zfv95nFFXw|J>mP~%%D8PQ;Su;c!PxluKZ0}=R<7uPZ-CTn5gR`w3(f7;bXSEskko*
z($mOYf!}ismPtKx=Yw#)l}nl`HET%|wMSF?a~G9|jZ2W)Xv3i#R2%i79f3);n?yC*
zcGb^GWdh2%a!pRG+Btc~>vE*H;G%!Vt%fvrfd(^tgg~*tRE2q)hDvFrfk2`3=D@i~
z{D4-bm0oHt(<(E7X1<3dl6oOOSVQ1;GiZVn3jc|qzxt6qcDdmGo;nvXi8F!NvWcra
zH<0i=#MLtxb_qRCT`$BUEsh97xj)z6b+q~KiuH{VhK9A6_RQ%wEjR))Ledqi}gkUsIM53$omI~Bk&Dy%$-Qsopvbcf!BMj5Z
zerHK*tIIs*;e7)(y`;N+i%wRX2Uvmg-w1khf(VB7S9jy9TC}i!qTVYSvi$1CSb@b4
z#WS}Uu=wUgh@Vk)XM;oOQ*oAap+@Pe^CNsu{!jA=Bx#OCEGSDEg22tXW|qo6%7S*R^0C
zr>KZ`dO6YFR-7sUIExA#Vc-b*xHw#=trGl&SeS)U-~|{~G5e$&^F4N`v>?TTngmAt
za=cs%>b~d37s~evo-NUyk%v{a%By$pKW`DM*gk445Ad7PeY3gOCd_*s=w61{SFl6%
zMilgy#UjiFf&vXkc&?UEwSMk_3zoJ|IybMct7YgXXo!7%?_NV+f{Lz7=6P54m_=)Q
z>X?x#ia=CF*T;&)deQu5ELt+@P_~(wiB#eJXSe&;T!)4)cw{?SnXtKOoQu`Zgm~P(Kj&Mf=89u5p7;@Nt0~m6RQ;&V;>O7ww=3@_
zG+l*YY0>TIR|9VBwW_qa*YDiNnd{V3^GjlIXAXB)4<2gS2ac^Fyt<`m_2mT05KB#>S?L^H-hJ%#HXV
zw+_LD^{darILiDzbfXfFxQ&MkDs*Rf;=f@fW(Sgw4c#P^|Crja?gVCy?OGJAn@V5N
zH0*Q|jrw-F{})8Bzbf8XT^!)$Wp;r)lAku
z(Q5Vp=usSdu*GCBZS-om#eU{zQ1NxpJ0`2+Y&!jpn>4jcUpDcNwIJxvUUA%S*?vW@
zDmsLitLGxT@?%*O7=d5K&pKop;i4+t(&pEuHp}Yvp*MVe84~XFB0Yfp#*Ajw|(|^x9=r`g^s^2k=IoeU{G#ta|pu
z{2gEV(Y9BI(J`+*Z)c73)>N4Zbvn+m3o^cL0%qO8VcjZHDDZD4!lJfWda**EuNG&ak40m&wT5`E1<`SpO
zRmCautlc%BhEu33U}rC2HSFbBw4aOfddN#NUH!K2UX
z4I+S~pUA2WaO
zBh0w3*PACHezJ|*2xjtEJ-17cOK?}ZtY(qqiLd|$=*nv9B2mS|X9R5Q0S0H4N3Cb$
znG_3Fed`c{o5HICd?dC1L)2S%MfrViphJmLBT9n|NOyM(inO$XgrrDGcMc)lAR&!(
ziAYNf-8yu4DmnDP4D-3~_jm7F_YYt#IGp$Fy`TLAU=sZ2KM-{zJp9I3b3VGsFm=V@
z+-QWs?Vr8-n?mML;j#MgticJ2Iz(FNw}jb|J?N_?wwxzaV~pJ%IyzI8*ze-cwf4*8
zi^U9q3@ms;hZykP`nM#?I(q){jw&)y^YZb%U8)}xb|vIB`BpLVky(K?RF9{CEf{El
zo7Ym%=7{a2BiO_DzV3)#{Uz3?2=^Aqr`U@>LJi#CqDyqi%mk+Zr?kB)-56x@>1u-SB(4>m?r&$oJyfupbYr8Z*x-731}&Qla8eN(f%&tGdo<&KqB9t|iL>4A+mlSRbg
z+V}3~wC}8O{1B$`Fm=s`G%nj9@|BC*kICepiOM}vTX$6+geKwf%A03CLyU9crJZTb
zXo}#(U?-cQsIybG=)GW}Ky#!-cT!Y#L4RFzW_9^LX)72Ro!_3zm8(K7En70OI%Or5
z;t3be-_QbzKoJ!EcEM6y|DDe<7;UyF_C3xS*mNMvLrTYt{!O$9tsdw$mpu`ah@O4gxyVx
z64s$2DFeo7#*eD=g-U~Gp}?lZhR=Vf$GrI@`PX~|e<{^9^s%VwVr`5p=M3MrZvF7V
zTk=*JJ>AUm57(4SD|f_Ob$zGgfwrhaB>k3ch*AOqaCGLwHbJ8c+tpYzWGe7=jh3rE
zboemst~|+kvGW*@^(brcI>k(bU4uN#e}=*x`&i(WbF@NcMGwY}w!iitYi6tU@Xt9mq3QnZ~CF4+5l>!Dt)9d+)wuB^2)K
zm(mu%nQ#YS#YJt7vM&1zdlXE%RMvFnv&BRI{=v9q#;j0G6Mf3?JEy^SRGV20VHKz;
zo=U!JnYzWyYmW)2tqZPv1i|v58T(wB1eST8W9
z*7k63^7upU+8XO1)lYXE*OaK`ZTJ$$wfm$z8%C`mY}u%-wWHbIDS3c$#`|YhhSy8L
zyq~+9fl5ySw86zA_aHxNq33nsV}&PvPP0iwgz}9z`~QI`
zy692*+k}1h0h^hLd=V!JTlBWgxg;*H&r?-$Ls^~iioGqs4))c$Nuxg2Bb#9GQLlRfj5?VEVF~0>Z;ya4I4mzuW
z*P9P4&l!nsv##OJevf`LC#uX^T9D;Rx|$!@0KqS$H*~1{a5dvtf5$W_Xye74DE(AN
zXWV9C7?&(3W&=wB%9&`%NC@%Ya8r09`tYC}D(u;Vpm;=*_L+NJ`@GOrVxu-@Q%*29
zb%H}{CZpSnIVa*#%IWI|vY{rsG=PnOlp5mo4O4C`NKcq%yJ#c)o)hmJjwPbsMnnaR
z(HS0XZq^Y?Bw`;$e~{9|OFtO->5W~Kxybx2n7
zvG;g-nrO$Na5fzE>u2(dOVP-W>Td&`9_fdO-ij359RUvTvw=NEA+1F!E)A6(t14TuZDplJVmjs(myzU6c2(y5{vMP>BCy)9)$o75^
zEauCtak^l#m5K#g%f?j2ZSdmF(D`tnOr^s_$@R5xy9dRVg65A?VWM6dxR3Dg^m&@_rCmWP_Yb|FR-KLWm9F
ziTUJ7@2f3gO9M@Wa$Bf}Fc0sft;d2ef6k~e6nvtPY-hZIa?yQq+ZQ-vA4E#(H
z*XVYeY;p$m_CUDM6ifb2*UR{4Ql4$pb3^|ehIm5s^knXc#v77R5fx=|8;~cC)O4*A
zn?I*rID%e9SbnVU9k=a!Ts}5<^fWxy(gTo7JhI*@hz%A;vDBh+wj`pxAmqklTPUU<
zX?m?02e0flRa&`NYkt>fD{ag8JYf3J^j7QhtNXa~QqpkdAy+?46)_v3h#_vX_CuJyR~T3uEUSQj-xC}|3&Q>|I{C|7;}J#5fB
zAk?WSlK8Y1r2Qc4vmXs5jw)kVXv)amNc0qFRGTeH-HL%F$B`M>)8NGWUx`M_cC*G=
z-_IUFM+ylC^C;aKJ+FYSx>xPj=mmP+x#NFnBWgIakxDWq^qmoc(2OJ$Fa61V?G|W<
zBg%90c0>x>G)Wq7({|4l$hJz|Tlb&>UHQ$v&|{uzat`caJ>ek}CjK3Y=wzZuUpgJllnbt^~dsLAN6b2USB)Z~!^VV*3O8Kq*%Mu3m?_W{7XCBx`
z0<|hI`EsP~x(GJY+1OQGLsZ$1M1de^dH4nm1+mPhenxHd@X=3h?L
zb{%)tSW?s<{0Y8j8yY{-U@XbTTz5UM_4}1xvV%cXm8w&0k7yb_^E)&hEZ^GigNNpe
z0`$_be8)A;8BdwkOM0F>6=RdV(1DV;0EaQE#pngqj87H}C(4js$14&o`LtncEn(B&
zoJ)6qucmhbZ5Tx7Y`MhBzTbF5GAVCjUgJKEI`tj_Y+OzbhrQa_0)O8d|VZ4
zxi-t&TV=S)=A&S2O<*Qa0r78nZ-WoOgDS;eQZ+j0=dt_`(~-OYS6e{}O39@wZ?XpzItno)w
zs?1-LAE2vf&q3R4N&ZJ$qq>p8!b$Jyeis+8q-8uSpDZZb_?^~H@3?^|d)zTLsX(|E
z3Nm;GHh#cGDEC4XgzN6cED5Zo`_9NTOXv+tf5Wly#w8weD8nku?{%Tp9j;3;_APM`
zK10d`(E~}I?Uc~l2~bTGsshJVdsLbTgaUZCbw^xi@j%ngf_HO3E~I>|yM|goaobPt
zj|T|4J!&gI-pLG(%DU2C+l3=x-T0Gs0Kdj^B$@N}8TfqpgsugrdVx`_`@ItLN|Bk{
za_(!3MZ(xyr&6~_;)F2@Yj|l8zAyZ#i+?T*av|%Js&}1Rr8Rdh2ktdTsuwKIziQQh
zKRz&Cj}gze$lsH(qhE;gO*J1?->n_+U95hg4CTQ(VO8GCCV{C>#StCBj2JGI2eMcV
z+lTVnY=?l2fn7n(3o|`w+7EkbH2&>EH+9MVR)$JQyxZhrpBJv!7b*;G8p_A_e~_O8w#(l)-h
zRJvB+z5I4;85pc@)Dtumg#iAa+xN-e`AMobMv4egPxax;sE_V2Ja06y2#OGi}B*9ScGWgMg+NOqM+whOJ2-3
z@6e~x>+jN45UcjL&qM_;i#4ZqO!`<4y~I{Vro%Y#E;zPqhoDPo
z+qD_Rzz4ku{HdiIzo}kj@W7w?rm~a|{|HgcvHNhFSwughzAeiwIE=0lClu%vGkj*G
zc^U78UdISu$y<}h_Rq%`z08R{SSxTlUjJ!$6t(HH*r47qw-1Ls_C=V-C>K?!i+>-q
zWR9d{P0sl-KCYqKE!2%;IQIJ@Hf!%&CNIm+d-JQJ)sSvQQbxx$ZEr=iZSbhUdgD+i
zA7Et25!*Lt#wfs_?#2Gf8Nz7OINrw0xu=n6D@ZLOa>hQ$T
ze!1qA=dNoBv-WJ(&f3PGD0K55>1kkCAj{A
z!h%zY2*2nJ0h1IyHOp};Od`RqgG^`*Eis2KzYAJT%KI%ymYcyrR_k;;J$?bF4g53%
z-6&iK2SSl`s>pLVDkG)z>X{6v>#?M-T@r>h2g9q+3u
z0UI73uUV`(rtV_5I>zrai@MOwT+6?fgP?mL=xqf~+Tl^O?5nbct%QUIKes316O)lM
zy^oc0wz_3hEy;Ai-TBbpFI~@#0}{Gr7xun!6!hS!NV(*>L12T)
zy5b@IX}tNv%W6d+#e7-uXA59I<;C;iwf~7ds4g!N{FK9PIxRQ}lk|3rv(!iI=9@s2
zIc*mW#yCh`vuBns|CG%nvs=(!?=}a;IzhIT$=1rMLLqIzuP}G^2P{|*)RY$5pu$SVC?x<(s
zA&hXXbp8EiSh6xVYN?FdraCLLIt|H^Alsdqe5m_dh!wA?D7h>{;2P7&Zt
zV2LcxIQnDfU_@9#hoyv>ToqP?TsP^0AJyEVOYaNgp-4_eQ)M=`bMrV@QO+N34fQuB
z*p8HQW9$&TspVMajL`6GJwaB)aU;4z&F^}-J?|AwU^5ffyP}k`4iM+9^(S^$VIa(a
z`uflNkYYN~vi;GTTCD%8b6CTfZ&hN+_E<1r+Jq?Y0Qx`t$upn604UgZ`uf9J=|D@u
zB@KLv?!deu=;x=@524fU1IgYrA6Dtv@x*2S|omL;1ci?4yyh`R*=a4tWAUW3O$GhW`sNtcHRIk4HIco%>edW@&OrJTV6-Af(YujQS&zsBnWXn422b*XE
z?%^BxaU4Ss6xZdFY5s$PO{d1}`1+>$S^4f)UoBh4pVUq?kVr=^HY`*2|DeUqY`Q*K
zUiuGI+6LFJK9tHaLo6Pyts_6VVyS^kZi%r*!owO}7*X1TXDFYoh%ZS}O=^rXzHgFN
zho0>){TzLum{&{hy!24V=-0uS7FDT{Zl!j1+Tr|35cDaLAD`WeH}S{N!^%T{j$;7g
zBmns8)XJzzWUx#0;(&>SINfvBYCH6*aAHg@`CXa=XkL+BdOKnkk
zZUcK1p4A#T(^vu^rRoBHy^UJjDo6m1-c!zHARm859`fFP>7@yOL8V{5XRPg4%+-Zu
zXtR)v%1C_W{txu)I6Un~FLle`YDxsuDU}`F9*sTazM?26q~|NZ2%+C1`!=GEsY|ek
zWR(2rR?$R`|C4}25xfYeAHk_=zu!H0dp4IptYL@;BQj@{*Hk
zS!>E^v#~k!#WKZXrbJQNqpCs=b3(n6atSG!<`YEq|7-Wy19&KdV;KdIF5O84f6a*7
zgXo3^vcD8Kr%tZX8aX{D`*D(xxnt`z{!oguD+)UC^-blQzL%w(CE3RO_u6AZRc^JM
zzniBIf&fA`{y$X8R#GhFr$o4{+SdK61L=W^_UWD0tcDS8BU4#j(fIz%w9&UD{kzd4
zJK0xe@!N3|=n#$G41!!TRT@aT2B-h1Q0w4WVh5uG$kA{4OXYK3Pdq8nhr6e=;CRou
zB~>&Z!npwO|BXM$e%24wUAQcJZu3VtSf}d?$;)v+#6-9PrTSPqJ+bp?Ht45oIAL#
z)3N(?{Kk60uY22@q@e79<9(8HLgo(w1!J`|Bq+Kc(f{lu1?j@MMbUY{`&b=JsNKGn
z{2;4;!NmC%=9wFe8v-qWEild@wzQ8EU|R@!%PYI0S+OhwgWV=t_P5TGE29mn-QGO;
zv)5n4J&{#{%Sz|+nN+u&?n6#Vf8V+j;-w7)T3#qT5J^G&F9omRS_6i94{hljN~$AV
zvM@Qee&4f$FEh7}OejrqL4WHSqea(1o}a5sZ9#n^cP~{gIsLXl!D468x5W^{+w5*Y
z{+C(0{eOYJ-TdNsAu?&N@s}GS@ZOk9S-v#~(g2^kKtoQaICC(rs
z(5XD-sreH}?kwov=EaeJ7i#7&(odn82LZPqfjqqOU-i7*JE_tkg1{E42vnKqZiiFD
zvOZs+z=_jCU$!MO;Y|VhgG#@>Jg~#j9+hBPJyNADBy;R35Qv&=-haC41{9YkdL}rt
z&SVc$6fU1>E&Q;S(08ngDVIhP6t@bxON{=2WZpKfVy}|Jly}{n(K>^@yM2lL}pij0z1N$6OX<
z40`kkIo1bkfxyQeTZpHDmQ7ApGbU!J#4Yx0)ws2h0Pq)L<fh
zsj~$$znoZ4txB#qmfC)+P`iEcCJ6XM2#wj%A>0OIs9d%NPNTY>prD(Kc_Oa@En$4e
zfAw#UJ-Z{U-Byk5Q?T`DgCE8zEQe4Ohjurq_6Fn#QDV=?{KEuHiHh`Va?(`fjW6?P
zUL~$%I&OJ40@{4n5}5r}roQw;P)FTOw^S_`JhJh*tV|rq9&Uwx&5pcj$`WMO
z;}U!USv`>kv|vQdvLYoF3_+=Qx&DQ~=FpnBmj|BXWdFG5{gkwwZn@)OIuuASagsOA@;TG3f)OHcvumu_R-1}
z1p1KHO_7y^sEeRenm>l0sYy1Q5=I=BMvb86S^=e_47q_}q8YY>+RpD-jOD!L61Q4+f~
zoDp90-?w!rqUBNHI`^5dPlq}8>}ZWn&!2N*;`U23!|oQp(py9n#(nzSGIeUhUcE5#
z`r=Z>EMtdQZ6{THJ@<+4DnWdY=a8qw$TFYW$T~xU)==ejH5Wseq*zSR9-J|leJSvN
z{AhqcmzGT3CvEe4#!idMB;qAgJm6)nrp~dg$)_}d0d!|!S{S?uc?rzRv-LskIJ!4x
ztl`Q5HqDMZ7jLf|zhdWZBxPw?$Vv9&HHMkyroBaCp+!HcspCtD2D+!G0sQNIe%oDk
z-pl8LDKj>l`-TU}(;`+#fG`?ALMMYujZ|6-$MAf_~}SO2|~_mtSnb-Bdr
zotnghtbMjESceV!TGhSkVnHp|6dv$f@>15oCKvwMK+!q?p>g;p2(wqI;6?wgtPk6O
zUOo6MWF44yqI&0{FtoE#xx)zPqwR1)*VtG-?#guod;bZ%uQ7NGT*rxDaJJ!)U>20^
zrb^E`CF*8iItMV@{prUL@0_ymIgu4Xumd;)%Vtm*-!Y5qB`r*ELSvguYE7=2Q0t$x
z`(0vG>+GG_RVOY5I_<5WuLniGe$kBM)Cff7<=RE@{5*D!yiGaZLKDgr5karqwH*!L1?|TIvXU(YjobcLz`@
z$Kgl=KJLADScc%aIlfKUlXp_hLH2y_`PN>^sIM&*UhwS_Msk*lZS`i;XhU;s
zx={Ms4*5T8iN-)`jC{k@+vvZw*XPSbL+ea1F_it5|xfN$Ij%lp2;;8uc8Y2`MiAZ;wn?8Uz!Y^
zuU$37H`S1g*wXY|U{W8FXCL^puvOk0U?fp~n*|a11QT7)P{Qj+*%DDs&l{Q*$38_{
zd$iE!{V`gGh&&0Hml2n7noKrik+lT@)C2|Vizh0QC3rrq3|Aawb~s~uxuUV+0IZ*X
z4-X{V5+HVz_Bl>L{(1^XUwnGdXsPd$!lZj~!UXwTLaDmMkJnPvxQ@6BZ(hmoFJf7d
z5#AKEigyjQ+?M<-Sz{_RFD=a{=ZC7V
z!03huDUN0(JW4;8FYf*mczLhXkE%psL3&kJWubds;w)Qg5b^1&&E=oWX`5&n7khvD4eRhnvHjMNfzi4)L{0ZeO~x@Ncd{Jk%1vi-=e!>C=d
z6yk&8<0S+k+~3k#*{uJ;X`HFVLsI?&L7H=|u{nH-3$}0QeaASr;}d7PZ?~_@?h6|M
zm?UmvuKvs!t&(X@=g~tV?xxOkQP!4Xt#CoznTI*YC)@^B(BR)
zhK^@EJ(Kj03=En9+fN2HzJw)^vA6|=a5{6!b;zg+P75d94-SvNi!8&VsgDlzL~cdy
zO9S6-CoMNzuN3q!5~tVk=IBY2MSkTY=u9Y1&pryBr2mvDEb+b-(p%_ROF3>2qUcC3KgG&jXg^m{oUUW+SBe4T+J++1HW*<@@$)(xbnJZjgL
z(e7Z9Su`I6r$}4pKU&(bcBeAms?r)~thfc-iighH2ZC9VKG9HHXq>w!gj^oH@{E7?
zqtle>JLN%1R{V3Uu0FYCvi_*MTHvgj7lqMP`4D7rY*YLAQIS$HMtN$^B!^}1or8D0
z#mwcuC?2+^-oU?#pk*!HX!{yRTv*|2@)WKBuY^OZ&K-YGfO
zIHajRf;Bqu&wmt*%kX=nTF+g>Ix)gW0
zHz~`bp-K2AH6F_EuHM>D6gYIf@PK?@Ck=k?YrC}`Dyki0M)ZsNPQ3F|roj|>Q*+B3
zFD$k4=&$`<3l)do)l}X+`LC-IYFBnbRdK9R+KeRs$0eJVp^Zs!-oegqHh4&A!
zOk{(0dn?Wwvj8quj61~q_S0G;u+2?>DgS;T2~N=s=>2|qrzwyN-;V9l3ajlikS7Mb
zEqwNQy}pDsF+4xNEE1=g`pZYXnodfO*iaBZj={eDt@g_xKy7BytC!x;q3l#O-%@ZV
z)jmm{r`~Fs4ikBHHhgCg0^=<}8aA(@P4heK=zPp?%4(VGzqCM0*CSpe^_~)fUO*O>
zVDnhHsULu6=Y;Af62<_l(K;#}4`-XBYe3cV9-4?ADjo(iFMWg^eF
z!xhK3c9uNM2KCMS6ieWc^U(xc`F@MlBcNM~`?vH%q=|0Fu__8U`Tjbfey}k}?*+($
z9GDL{7A6RXU@g$@W5@0NZkbaOUp0b3c=75$)k3#xS762=tILymrU$;eu5BC5INeeZ
zjTGz6@Imf$d8!&L45_>G(bwLvueHysN|qk`$Zr!IWA+eby$u1Q(0w;%j3EdA-0U(Z
zMqJ!akkR|&dIT16yJd4j;~M^kwF6>5uIefFl^wJ*O&nUL&F-)&d8sc;m?dWtnxNXj
zu8YU!4}%m|sQze4ZfApTu|wA;DB4ntW#)EMX5x-XII_8f|;yY;(oP;!_$M=&RU|9!I1>FjB)e4G+t&)6DDkk_aWs_9MLi
z+1>~3k3o>Ch-dGbW46~LQ^#34W4G1~!-V}(rJf#L2r@>GJcgde-k^HJ_e#x6v+oTL
z{QOAYj!6gkKtEFKhq(vL?{O@G2|P|u6&|YLam0dfBl~btWhQX<8S06ESgg=3b`MAA
z;`o*2i~m4Q1bR}3|8F=m0MhUz3tcxSsz$$q(DUOfL+-WeRtAXMTUxOOwvrqEc!{}^LcNDat*5_1
zHiuc#{Dl-iMnnhv4yVc_YYxlMN$Wl#vBn5W?@$
z;R+z2)n)twN}z+2rd&d?Rrt&g<;}ur_H&cwLUY;R5g38ZxI-{XMKnN;)pVsn^IF5V
z@Pd9c*nI5mir<0bH!p`bsGar7Ax>rCB<^N-u@oX2aQu>ggfYu9#V8@2^J?F7f2J1h
zeX_&(w=2-bW=V#0;d_U;Wo)1Q%VLcd?RLw#-pSfpRdzpv6f_ZbWJ#`fbrB;~pP}Fp
z7vt=lhDGHY>R&!@-!1qkV&GM<0cUkr;qB$Ctn0ti?+Yde@UzR=$qxGB#lIPkMwb_s
zm7J*jZ9k}2XPk{lr!1^Vz({SGefuFQD{>u+!rL@olGvGlG|X&oB}oJa-mB4nNlA9?n;Y{W%Az}HlJgf^WuWQcbrW5c3QW|$
zHbg0&scdA1EO(oe%UZf@Rg+4pJV;D7z9qH)loQ7?to2XW$UFQ7cS8uD;O}p@tibm!
zPRa#50fzzb=_`@$&4Y>ZqXVsfPCG#aA4h*(m$fn7dIQqc!@j>>L;n{BgMx64TuIg2(#w
zcE&j5|7ass_HTdf4JylP0NGlDoUX;(9?PAA8q?7K@=_
z#J@Z6_5Uv3&UrwtGo6P4+Gv=R@0^^^wbPs|n;UU4%KUxalb7&z-#Qkx$T{qJTTtH*
z?tuAuZI7PBp~F;*@TM-^X|WV*BOrsa{Y(@Tu@X|wr2o{Pz6ry56kAXM3HG|1n#piN!INjK>5=Ve)318Wv8cS6|p-P
z!tfDW{YPy~ZZDeI(?0N&xwjG-%B&;dAcLJSUo3ZqroG(&(nShfQ
zMEuLXIGbvE#6YuX{5h%M?K{js!vW7WIFT}|etD1p1cGc2628_UkkcTx^k{UohV9sc
zvVq5OA#su&cAD}U+;_U9e=UNVM>cHD?hk<%=Xl}{xm+N6k#Zt=idy-4#;@L~2=^Oh
zaVo4cFZ>J5xLXkyPghq@hiQ7-PU!Sc=gQ?NiYNgm`89ab?9q#2j4CoHvd9ZOI%R6I
zVn6@7FYJTPYe3fPEq3=-gQrN&e(Z|Adn)6H%_#+T1#l%p3_{5cs361`GEY)DzTMPQ
zou5tl2dWmY_*jC_jqL)+Nb%j?RXxmp=jStGf9;L8YK9
zwc33Z_OTkOG-gZF
z^2KdJ(+@n_kyW;!2ZkM3^UBlR9K`NjJ~HjZG&$I8f$}nHBBdc@d2lmjI?)c-YR%L#
znm#*(g_KyFHk#wdu>x@uV9-TKOM3t_CTJrkSB-1EybHh65y?Rs#oOtsbexF1w}378
z=l$agIrI*Z8o8$Ews0+f5W?`MKmI%6O$Ck*sQqh$0(r}@u-|Wx2cy^r7vgnFGgU3v
zhND{O)Hmtoedhpc_*@o|yYf?}{rs##obV6)LZ`VY3SfGgi{WR(g%4`JX@!?7Dv)_A
zNJtJnQ*i)oUp)rLifU;@CZ2|0ssnkD@q(lAWlWZq3FYgxLXfe#h${%7f#!jJlG8fu
zUxO4FBZKQ)yln8Jy>pHk{ZilUwWM@uH@=)KOrd9p)Kl>C2e9e<@%xYo*hVG1p0Ta0
zboDfWzmcoNw5jPNEqJQDL99b$sNlwQ&YAc72jEKeo1=K@j>E
zpU8q&ILz#sjXIb`X`n
zv8uQO#gvQYTC^UlN58{@4!wEP%>yB`N3GN!5Sd+)6-q2Q*T%@NDTp33Zp~boFGOAM
zprXzYTPiVF+(3V12jjD|{Ya+l-L*+Z&OE0wRrW}`5B4M;EUG1x?llswt@K~MWmMQ-
zLUp3DD|1hVUR%eG*T?ZDBp(+P(iR%fS3E%DqupA@0{;W8bJY2RMv;x5QReDI!T>*z
zvD^Yc3oY}8i3Go%_+hx>gBJ-`L7|C{t_l^bWa999PGqb?6NMiB`3H%_RN$-?gK&MN
z*h3+CkQSdQwTDEezTq~=k^ubTmxS?Sst-}Q2oKVDp0Qc(`OC<5FxT}i3FTrWSg
zCJ#o!B0C;!%5n5CK5cw2qcm}B)zBCzPstqdvI3#!D#elNt~MgZBF)@}RW`SglJ
z3y^9soCEBm`&1{f_YQN!)?2@gFWxo@We9gx^Lh_o*oO3X54=2Uus=|(*}LMGffS|u
zN}?Uz$A{T+;9=XvY-Wn9*-Wh^S1va
zCe7H`O)vCaxB1>r6g2UN+CRc+RTISVn`s5kjZVu3nR8o}@2~#lq(qFtm&||Pm%{Dk
zSg!q=tp&p5DU8bFWZ%Kh|7`1|yOq6DOYD%y9(AXsZLbguP~P%yhg1j+&?qtGhqqO5
z`o1Nkca>8DK^-ay+!YSf6i7ZwG1CZaDnPh`CkpD#kI-l>xfcP7oGgkAOd34ak}oU>c$42dpSVcSd~9xb+ms-(!W$#R
zc;vv*rn_)&dLdEGGSXP57^~W_C9q_BJv$lv5ETX>p?wI_wZPY?(&~P;mWjq614S`|
z1|}^D&yub89#Yhse{E(4zjaJqO-j6~i-92D-Mqu+5k
z|K#vwrKjtzd7*Cl2*%st2+awe3*PxiSIWcan{4E$z)Z;AcFU#5Z2E7
zbUABBnZb2b6>6;E3WdTqa_Ih4Z?K|@(JZJkgVq^&^22GEZDaXfn)(dwPRtj77lSW%
zexp1_KF{TnWw-Duovgk}Zo-*r)nUGHA$fe*bOUt?ienSDc!(u>1T0oB&w|^(2R@m!K!tC18d+ll!YsblsSlsDdvL6kK{CP1P^?Sz?hE#$?io2TxzC!g?8uO;n
z)_Q6@8V#E~)_3zRN@8&h2;82|)(^s!L#!1?j+W`$Uu`36G|7xw&pKG>L#B650e6hl
zOdV+}pX$dY)NiY4aJ3+w;upTX#Gf%;1X?zG_7ZED=9qR62SF4Wi$M3-$
zo1L2BqDA$ROhzk88<})GPu{Yo&n|6GZ2#6BA)x&lb&G(ZuOW=`6xtYQ?o+aC>hM(f
zv-^cW);9$Zqt)Q(&&N`(+JQ52qbl9dCe4)l9H`U!=Yl5oBy7w#U##V(0EKn*!YCzk
zw&KcdfH`(mrLx+%`pHe(-SY0^*U_Qx&`8JUiRQhCdM}q85-<9E!Wlh9X}ue=9j*n!
zGVldO_kYv(1IWhq4v~^Df8$;$$dQ2hmdUdRNV}dvh1KKN59*beA~r}EVWlAMT=M#6
zyyf{704;$4ln4vRqW<>l8@i+zfVx_GFi-Hc=^0a=^k&|#_J?j1@j)LFejBH~YE0To
zgoc`toDm+^Qy*O+_x4WpkwX|ZwPL=3<&sRWqmy9bx!xqJT{pM-=v(DC;98d;ej6w4
zzZ}H!>_HV~W7)YNFeSud*2llO$iE6tISzp$wSqS%}-2Vtv`ZywPOsVtZ%F%}?-75Ymx-E58ka6@W6ILP-7!fe?*^26bu@#
z{hynX73$63U>aXpYYsHM_Kts09?t^@p8*g-N-V@*f%*OI4#|}$5VHQ8O`d92yp^;0
zv>;f%F~8eWBjSx2nOl!&cTugvys_pA%?M|Ikizi2lAlx_#3{U5(;F69?oC$C=Bsui
z%Vb*$lP{Do-me?ji4-(0K6LSvwrJI;e%Vp+{B;;1+wL)C>r@0ob+0|rH}C9^}o{N#D3)t
zt{RRW__-y?;}NXNjPWJm#xLDJf7v*iD;ech8#qGzu3OZ;ChbHKo~3m0C~j3;X+F^)
zu5fY+ERWsQ9Alr&isamUEXZojOWB+leteAxi1&SPdzE
zNOX<&55VeF3psDQfFaiju_h;1fulOSpDbqwqLthW5ej?>odoEYhX?EB_nwrh`?bir
zx3@XDVL~H>(}k7N`21jaiv!5=eK%4C@acIPMyUnlR!}03wRGw-bF>Gr(8ZqKz;$__M{EoYV?o$XCKGPMYH(8C~TikWM+A2537~
z^-7)sS)g{Km+1T%oQR@ifQ`1xaWCw$|NmiG-PWnTmzB~FG6^G`gGg~19zlF@P!mE>
z@A6$*>$Q-l_9LGP${j$z=Y3#S4gj1y2_X3sntCgPEy&%!W6d=Hb=&uT>56fdZRi7#
z!nq<+;7`o(f
z)#>S2Q2$Swc`rdQ<9oPy@vNuRHbyNFuJ79XV3#3aCJ#?Mk~#dx^&hA@zLa4+L&|(D
z9;2b#Hj5WXNZ;8z1l$CI+MDI>*B6pNNs>^hCJfiGdy-iVkNha){fMI)8?BP#448f$qOcb!yVhztb8`6zo(%EYcGK8XuT?#+^he?Wwu3N4@WKm7$`s>
z>i8iN<1L}f6IbFQ%th_~ORXS1bR(=BpWM9t!y6kF94+D1!<+WHZp^euMU~aZxiRfl
zZ6cIJPZ$2Qxe8J{>PS}1;=J+P#C|Tt_~le9PVNxVw@iydszEKn(jfXz=UQnH@hd`_
z+n`DkZLzlv@epHBruWr4Gl}6+h?HX|Vw+ULO$z-C@d?HNfHG5CK`0U!*GqW=WSCA&?#y%xey-$O5Q%2c2~XoqXcS|9dVT-qvxhWMNUx3A(qBNxHMwVuq&A6xgXpasp*DM+ooAd3FTQoseh
zBv&P_0rRM~+!yFKXV1O%IDZ{Me<`M$$)ib;mxtJ^
z-XyC&i@SD4jcpZt#zN{-r-vAsl#r_(q3&}Rntph-GY+FYv)>Fj-Qpz!H!SXF?WXF~
z#prJg;GtKPl+r)+1NgN66&8JRVkJU}?7j|qE5u)rR&beqgQY4V+$M~q^@5{#C|7@1
z+^?1%{|)MDz7y$P&q;JVWGgf6GXHw2@fvcqa^EV+Sk5?m9u>y!w?R4tWHkTyE(0D6
zdFoAXzYmawxOTQ_oY%fg{JGeC=Y7Wh^U=_qShMPXAb<5cl3K_Av6dG9kG0fBeg0>!
z8_^|nRrgK)vzx2CNBBab2c`m7ZWCEmq$ax+!oE21!MY8oL|OQW&q8>X6McaxwOdtW
zV!H?!7e`RMf)lzQXtkyH38nTC{y?x}{o~;trWX8I3zF{-&$Dn=@*6>Ayg%02ujKD5
z9-r@!uRd8Ah>~yTs`>aX8Ow+i6eFZr*
z&+c?^Iqin=GgkkopeFEZjtq%>AqgOf-|0FLdgTnZMHrxhY&V(gSj}e>V6MOj3?!@-Nx+;NnlC+=Vg6pZ8m@F*FV7)f-Miz*n?|>`>-ISL>LgB
z1&N{#rkEBzsaLc
zQ6Cca7L`($W!tsjbXiU1R2xvCT0R=h@A1Prutxsift>5Z^ug7naRiDL)|*6qm_3vP
zb1Z<|W>RAX{f>Ccz68!IJBE5xm~NxXKD^SC937VNC|Q5`{8vG1)J-*diZX!gKTw{P
zo$8y4p0Q)V0g?`cfX9&L^_K~neCg>quhy}U(eQ;jtYsI$;Vab2D9kcKE%APL6s-J*J
ziZ!hp~`=!Frd0I+z)C`So?cv>d_sVcU@H%Ya$!
zS1H78cVWe@hv{nV66m;C)&^K`X9&_Yn}Zd
zSPAp!zNAasw;fBQcJ}{p_1AGthTs1A$QO=f*!A_Kj%-y>~(q92vMEU)-U40*X>c}{Zgld$c3{iXrtH+-uxQ~;o?FLwTZ<5QYY0*IE;*>kiS=lJDXloHZTLdD*kC0nrScx
ze#8^aWQAuEl|PPVS&5K+E;L8PuIWs&+lr>fO;3S;qdUH)6NP=M34sDc--$YjGk+n|
zw54d7qo!8rB=gTX6)C04Bl}pdT!4q>B@1>b#&ZrYs1eJ@F*&-zU1V}c@4<0V{_c6~
z+&#{fD}P8KOG(C@s1)2l)lLO5VjTC3SBbcA3cE~J9k<~2oAFw){>t#9@`WY_G$1M{
zU62c>MY|t+vTf*lw*dewSLu#Y+xtI!dUxi#wFDjuI6R@VvlE0Man1RQ
zDW7(S2z^htItKeF^xv}m<|YEQ-6zr+ex7J5TMsQYz0W(=CWGiYm+s;o|NAywvj*3F
zRvG&(bG3TuTG+~xNfLKjG?o}|-gcyM2s8gi(-kpCtzQ;WH(qd4)yb!2ovZ$+QmZ-c
z?E7p%JP`0B*
zjGtWMU^taN5TRT8;K71)_L5y;-HKppwZFBLzOhvRkKl4V;d|dW=pXi*uvxF)#Fy5g
zQI@uB%~4Zr@p(87v-CNVCcsi((1#AG%EF>o=t&8<6*&`li}u%wpDf8cO`;hSSaOM}
z?tvWlyOtY=k^iI>{fukyoSy6})U_uHQ!7
zZ=~<$iWkOJlj#cDCf(qEZcTsK9lgz@+gGAReRb(8fWMGOFGxswMd_V(&%L`&eD(ri
z^xfB9aAPt7_qPW`AwC!qMq|dY!T%|`=Ya)M{R~&aW*_k@TfNM7EVyFdfof1r(49LP
zQ9`BoY09DrMo6Dvj#3u5EB}!&8ygVB?izJT^wYI;a0M&WdB)g2cpgFF!3iKU}syzGt<5U6k_Oj-R3;J%SpQ`qA}{
z2m(Jxl86QF_r~3*$+VqiKOat3&GxKzivj=
z?4SC&0n>5g5M@Tc%}M46MWuoTc`uAhY0dBDm1&aqH*r(94a|ybSjBjjX5#>HJ^K$
zDxCM0r7Zye&1k(`&#Vf^Ox{iXSFLX#=*u3NG9}CZ%&HT2zwLx0yCudKaF(LKCCMh%
zJ#1Gm6oTO-A8we48qT|e5cz4NYka#-w1~)A>{&)3q$l7~LQWW6E3R_6S33fdMj1(2
z42wQLG+ZJLVdRe>25g?}yAmX=CWc?gSfZ3A&4)LO4^t9?PjCl{68vpM$eIAzw=a0T
zVb#U=>s8BRreh_1%rQ2{?vgOEXzujL{&WVXa&u~CqB|g2GI*bSBGhu+Dj{q{KF!!a
zEz>F_?cyZk8SOK>FBlrmpOfYho7c@qx_60S-QKEmDt$DWkn4Go?Nj~0waGwmh>
zw*BhHa>5Mx80^>a&`HH;1i01brN`3)J88}(mM?LZPW^r}j_H%nDVBRf1|ATNRQ@#&AL{gg#~DM+l%h&gQ+EQ(~TI
z8s6jXNriPj5`xin)IbRSoEbFDvgOAPHh^(CPI>P34bY0`2P4HuO
zoopM`Ly*jjui|q@GhAwUthg6Kk)(Yf^4pZZ22LZldu0$@voxoV1nRQiEIa82_UdH*
z8$c=bd}CjGa(MF_aOz($D7!VXK_MGM>TJ;D*Wh_Xev0TfG0M#XM4v=F_;c5Y0h0)M1kmU?pw4=Xpz
z-?YQB`!K%3gJJkwnii2x}U{k1(4h)E-Ywu@Y3I?|05n1AGmb-y_40V5IXN@~33Ks8X
zJW8)xP)5nI>n6Vg+tb@NQ7*gO?~2-(OGFi~({Q_&!sjsV>NvxO^vtXT*4RsUxBx-E+#fT
zw(rHlYLw@Pje+@gnuMnBz`eCb6;Lr$SgmbPZsYC6CfwO8`Z&T(oJ2xFpPY;(O<0ec
z6@C8r6gQ3nW{sJ=-z5P`h=%peaAew${fo1kn$GO$3W;qdO&eng%&Rzm0yDKoj9f!2
z9s$t~GiiCE*-EI!?o}F~X5s|CACGSG
z!82rcdO1p&Z0~+1IZA2hHNC#i%Jn#MTQw%CK}VP4tFc5$(Hmo*kJ-0Bg?02ji@OnJ
z_M$d@?9|0{(oCKSQjEyIW7(~Ek)-1{v=jEqBvYC15$zVq8{z%Ah_hfB7aP?rY3)c&
zSY_5XPg&P7@#|WtoA=SF^2*TqxczpOTdYWOij8Mjf`L+^aby>2-FF?zm0Rf`4D9EyfMN87L;TBEW;sxDiidY@XWUzju5d
z+U@^Y+rPfQw&8Fr%BL#^_ql>6q-73m;#k?Q#m5+(0qQK!%>~m2VuRwQga$U+7nKat
zybn>=X*@=c-rEo1;15yiqu}B|HYm4thJA6^DuE%sZK$NrQ8^sT8wvGi;9DlpVu4xk
zIj)c`Jhkle#}ELJDms=E?RNXEXRhFgoSnXjT>45S$D?sQ(D3agtaV#;
z1DW-;eyY~#2UWGi7M&OMKHnbbj3eCcQ1itt+;SU=j_AQ$r)sS2LXkh+m@1XSOY%!-
zi(X>-&7&qaiDhiR%N%gS*=UrRb|^|jzenjA#~)4NU2?sRVm
zWyEp(_G?G36{^i#s^I!`%`CO)cNZ~h;=U<`-jqbG?gg4xr*QjR@y?*3hI9?+G;2b3T5}?cuee#6P$q|4U-i6&`r|?W5P&Kg?I#bkbTqEjuM~O!pR_O|VKxw2jBr
zU19Tapq+1@aZ`wq;3*_X8*Ul*~I|;1iE(e4+
z->g-Ihx}6h+#GgRhdnaLzmrN@7V=%h?DfFdJ>IJX=F~pKGtU4vtur>nRG=tXcwwj-
zmY)+NbZQ>VgBjrl2r~UNuE0xuLj2X-wovg)RYs1fGH&MUb5e4umVu7^l_@;R%FJ$K
zGFc#%a>3{2#a36^oox7PmiQ0R4)6`GCSK;}I|0DD%K%-dq}Y!6SxlKHDkq;9U=Qc9
zR6XXvzT=oSdZupFQ3L5UWj19cZNK#SY?tTfVC24k>!(e13Vl_cnKnsc0mHmCMM<9;
zJHEhqO+&u)_9}umWby_n_Rdugf#5ht&OrIgiS`)-Av*!=){jI31e{K&PhS-OfuRKy
z-^pSjK@a-?7C``E@Nos<`5;Ka(1ey;VplI$Kb2wtn-qXsQ)vP$pxE@|ySd1@0w}PE
zG*HZqJ<6-@
z=t3vA`)e(eKOg_twIMxkUd}K@UK4^DKAQL-M;2n295Qh=%j6xN#h%DYQ{8X#rJRlo
zegQrCgc!N#y#)}gEDdpUYa&VxRH)CYr+?#+fPBNIj>9RKllYLZQhO;-7{hX#n0)<_Y@utD@2exgxDNkrvPvDB
zzw42oe^m$?kC9%@OnjN7z|7`|BHRQ`=U=uws{Gw_Mq
znHm&JXtVraPOH?9GYT#{pcgCFZNv>I)UQnxAwJgimN4S-oi_2N&j<9lA({#9^YJrH
zbZ~*VA6ncg$>%R34PA^BK3v(BdnYvG1=1+7OMjuuYiUF2BwJ0_dh$e1ChvJ5PbKqp
zHoFm_6kgPz82Oy@(~s#omw#;mmsm-+$3yJ_Zj-m-M50P__nb?f%HFgUmfNS)Kw@LB
zQ{du*EKO>WIW)_sV~_94o(W0mc+^2QNHXE4n21bix*#+n0$7=bd7-Ur>i0jMm-xr8
zppl7V1S2)?{aDxg{V&6p%(^pD<|wy!BZnz`Mlr*QF2S$gU;JooQkts=vC~8I2&sgI
zGQ1&wjuVYXt?(rmVGlo<&M7A_%LA_j1%}mE61qWf1E&uULM4D3~~e?=w^T+3SKB
zA{jOQQ}XfWPDzrPGE3(}pO2Tc{zB2YAT$0nQ%waXhrn|iaQu+gjXEtfME5Hbq=mjM
zY31@<&sJZPZMk=Yj;@{75?Xa&+0`WZQ`*yn*9BXO0P5m%(PK$clsOXN?5~to=4O9f
z+w(-^ow&PSJ!0{f79%(4MCr`F_Yajvo!N4DJ-mMh;mniB?Y(mQRWN|vHry)7mF(!x
zY4*_>tM0wL^<1Oob}xnN5iqxXP8OW55br02PEeveCyF4VbK|cWo9?Zli^kN}jMPGp
zgRS1I>RW#)hNNs=0J-nnF7QD$%xm#8NBR?e-sp>Mz8u9h`^
z%+Rvd^84ms0&VVqoZ=p+EdFsZO@`YOl=K~X#YXD^MB^Qqb>S3)-J8T$e{_DGO5rJx
zA1+6NW}iV%4~MiXL7{y)Ay7()_{z*HKeM*>d0$+*<%%O)yawzKNyUEtLf-M?JLzA~
zhjo`S>15pR0T|EQO0jP?QJ}#DEBWGn;ib=Z>tDaF;_~OI3_tfs{!xu@OL(-dQOuwJ
z<^t`wcv>XP(rflZQpKhlwr)J8t~erWb*gHeYpGV$ul>$N($_~rLo=VE>BN?8P_Nl4
z1{8Bied7@gbqr)0qNg>Xtl^Kb_yVWx*X7>PfHl92>dIHsD$Ga$bGxr=SUQ0?(1fGH
zNXa`ew{I;adV0JY_Pvqaz7-V(=RRAHaP17>1@x;oP*JvG>#1@QE&EbVX6S`a=X{>B
zhc>&{?>jzgdL}MWH}hu_d&Y07L)LQ%&D@WsR~rwSXSY(FFvhKJ<7sc7+s*V?%=pmm
z08b=5p!u@$F{-cZ;Yi=U^DVsmuc$h|+?_o5t}!^El}O@`qb2P=^Zu6m+21sK(aYE>Q^{(>Bf!1`$(&@f(r|~eN%E2r**@i
zFw`TFwIJZ!t)b9uqSqspGAV*Y{#aSQlS?gUY9;qz{@#LVlUUfdrT7IjJLhZ8+V}=R
zud%&LzlEb8k{|3+)Yc7dN!T#!0LP}vguGi1OfU|CPDm!G8+8YAza%>dTu9eR-S1bv
zLiZLx;QDxhv6AmqP|Nc5<^VT=B0#Z-tu{vV+)9Ox^RTh3q2U)&3MIfDb1PC1;$wp{
zb1n@yL24I{)$v)g!NMlKm|poXK7OslV0i8gSvEQE#6tvdMyXO86&`+@m%}5NPK9i<
zK`G-8G{Hb@5NkZySkaO-;#L{Qu=1}1fAYVD7dxGFwo^j|nw^3p$cqd(e~5m~B85b7
zfIYIXbNhm26GaJ)cfuoW>-J6X4ANGC+DQ2G|4UN?QnlB0B0a+fKgX04K(f0LHwjSg
zRHClWfiwBoRpJ$}K;6}cqUr-cgDS=}KV&;rR8lEtBu+zjmzUf
zz%R{uSt)CvV4nra89OM{x^%(=ztBN6J3P4%`#5)c(RJuYpA5!ok=uReVZa=b@xPhs
z=gAsZ__^~8wDEv
z%wrh2!hX}<{DXUNLA%ir;VA97SqA-d~ssZfSrcdzyO0x7rHEC9NuzbEi
z|HMj_+`P7*RI4uba%reo{o5>SjkAxeo3D~wk2uV2aJYQUsv$3y>2hEgQ|FGJAYYOOjK#SUU+B-g0
zE|OT~NNwMjM5ADL)1i_34?CXPq?^CInWx2;$KhD=8@I$M7NMos&?HDTQB=C9RYwBd
zZr>0+b>(Ud2IGaGP-_B9MZaX=K|lMnl;|n?icyeJK{(BD+yXb>6Mnp0p!Wir+C7iF
ztm#^zlnYN>&%Zv(QFmEXG~v(g0d+-gR8!mlBVaJ0I{uk@kjlTP0JN@*A$rGFhRJ`wyIDPWIijgDjaeT1vD`I!uJ%`T!3&_Z)c4;P4f)K+JiIzCbRrwPG#UDlmY&q0Hp
zSOL6P#3W5>!}R@MSrPDsC(aqmiQcGp#+Un*BJ_JJe(IX92)5
zu2qL+vqg602CNje0r}yXm5DiomBYWJuQqst
zy7-3LL!R~M4b#-{&`iudhf+>S)+UYI-X`%X^#ab?nDi*53g3Jv|9o
zl7V~*h)3p@e-U)XM3}<7A5N0C7T*Xnk?ig*)b?KEty(wwd?UOBrKgfdMcR<)WEiJ-
zC#s7~uyQu9=w1!_7m{|7C}81}a5uDY>64ay!mX|r^!q?S1N*rv|bC7%FcBa@58Tayi1wAVEQ1TDW7Hc$O
zbznyvsFc5e#>T0&gGIjz+IE6wJ||vNKGWAmzz>}i7>7=CoQoS)pPgGiGe)SWMFnE^
z3)mkfnb+mDO#GyGaX%ZLl*iGBY7}sE@tb;Z?;B0YtEXp-{-ADtZ!Q{RMz56(L*$Xj*t2s&b9s=*TvYC~*FyKCHEwUb*zoHB
zNE_i%_MpkVXrKuZIgWW!8uzrlD)aWRR(ShRDC^TsQs$c;QmDc2gx;2-!dW?b&t*r3
zS;e~pA3lG72}r{}&(r}IsFf)}GAgdz(yuiSHjn+dG$eu!NS#PbOv^0PYm
zgsYNj#GuPiv#)Qf?uGl3tQ!qgr3^l~V!u+1uXdj^(_M7Zh`V+=W0Q(v1=wxwM=Nqa
z1_@5>?;=t6?5O8-1Wp#L}>l)c_-FIc7$+Dk;0MlJE@AUyJ8Yr&M{*mU9QsoRfG8v~bUcqb9g3`56nHgmLQ6
zK_eYKU?J0Px3Y82zJ=!2K#Ht67rtIbIV$I=j3b2B^YX^us;uTrtCH%9_EiC~&cYDv
zEpzojF=B5|Z?=b$1%-}dyg6b=FX*-uSCz<05Js=!JY4Nfsem-8*2X%0c&fTL5zb&8e$}Jz(bx7a7wgCg%=Xso!G+?{RVu
zi#O|exa9yEEW7iZ}<(3
zWqXdk*5~0MjEwy_+b4BQ_ew4QE@d^LAyC5ooLHfg9CE8$gd&B82tON-6%;xtM3CGu
zs0&!mQI1OM_KMtT-_0|Mn6XMIHc)l~Gp&>xx-feU1sc;!P*^HH_&5(nD~%pJ&;2Jt
zQm*h)p_bF1uDp@qcPyX%1gimaAh=>Sx!iepw%g43$ha+XTktkJyp72
zRAOph`D*2Dw^zNn)zQt9%YkpyIkpNDTx^9q7Sbm`3r#y-h%kw{zerc6{fX;pOURR(
zA*8~W?LV2yC@jg<%p&GJqNu@xRWM-BXq34wqg;_2%zPjfcm`%RV({WvV^ZXtacv^&
z$+H4}-%Aw$TLZ2+zMpZL(D>4bGTI|v&){|-GdHOUi|{|Kvxo13o@IzACK_U88iHKB
ztz0rYD>cG!_IkcoYK?!ep!vzyB?Yv;_7Oas`Yk&pbNgHAWL1o^MeDxI0BRP49b49{
z|MnYn)>s4af=Qven3{NsFA=dLK%BZ&1+{FZdfc=YGkD`K
zG|y(y8VsU73S@@-l?x`@+R~^Mu2=$OZBN#a=5LS
zR+Gdr>ug2S_m|T*>*`gzT$zRQM&^Eb0Cj_YOSy9Rt5KIAf2zTz-0J#YXdQe*>0m@h
z_oGCD3^plyVC|m#=YKLqNh_NfY^EFk?~kfof~ZZlYQ+8)igfnW2D1$SI8kT}!{a5K
zDqmm*Wv*L`*}jbTv{fLdR?=s0-C2rhRoq($o@|(;Pfdp;&!I~?PGu-xr4y%
zb-Q+LCu>%h-0avn4)j0Hbg-4W|07zB*An8Rj5bkg|GPv8l@}Y{TD3~%hr?t(
z7!WqSzZhT_3<#Kdfb#;&rt)vulwXSM?5PY!{j&R=96UYpr@m#l8AYGJ@DcYZxO=$6
zjsLdSQ`-99ZZxRD8<_bMGXK_Xf}-*lvg%0Rr8f`q{rBb5VByvX%*(e;Fs(-afAV&(
ztFUi%@ipd8HxT0g2tVR-#QB*LEnsL?gQIn7B`KFOc7-jBm?b{kC>%EH>=I{mp<5ALoPd#5CTlZXtDnE&Iy`hNLXks3rb=bK^2l2YoN226
zS$MdNNq6S+>ou4ag?G|dPY?chEX_uE5c0|00Z58v)q1F=Tx7ugl3-7=4!M}}z
z3v&DHp0{Yt?e;O>B%@l>N%V$_POlSDEB`k6+2M8w?wqYhZLn2=$!Gjm91m7i4l(*$
z1cqAq-(7}ZOJGPfTDC6aI6O%xFxo^4Rn$qJ8E;c?dH#2_V1?mGgYL6hBT`)Y6`le=
zV0JeO`K@C&wpVVY?Qw5r_hhUok*hclR$dgfE?(V=8aq%7@9JW^z?ntWJ9OG#eBD#n
zLT37p*n?LxZ*WWAe(BEp&IdK_4$jVh)sREiD)aZftZ_swaTio%|5J_jL}p53JiE5R
z8gi}W@G$?|hrbXXr73|q*|2)2@!vxHQxh$pyY22<>x0HNc>U7~q332>gX_-8wy>>b
zH;ZNOPFJMsH0O4?dWQdYZCwcm+wzheb)bOv1H(8ae`v^O&Fya^El899(ZCR;sZzkT
zr*OSbVG4|u`=262)mtoUg)iirg|33*{a*!x?2nJGEErQ#_WGYK;Pg^V%`vPNrfeYh
zbN)|WB6c~c=}Y@+PV{CHGl#N)9~={L#y)Ao|6r?6G}Hu{UU-
z>@Bk)4YoObf^s$a+6yLct^Z#g1`ZX^NxiDN5;rD)#{V~<^zmS;#aiyyO-RD6`={C}
z)2>c*94+|~H*@0&FUJJ;N!M%p(4RpwUO@>%%VmQPXkac;5O{a_@41cKJ`DU44kqu0s`@dOWagt;g_$!HVe?-<2chnd5*W2LPe~hCIml*lFYY0zba$kt`4X-
z!d+ncVL6u){pDo|OJ`BIh-Xbn%@x|IeHTU08baQh&Ch3^C%@3?LQ7rZNz|4hbb;u!
z1)KGIMD}dwMS(s`^c0Q?+v_v3?Xy4ZXXkh-={1<15Iv^sru(+38YxMt
zxcyT%n9~Dwv$W4u1-9I*ihZS$oEk4^-?rbdV8Qa-w@BpXN(ZB;Bqu`
zrvPPnq6ySTet${1nF}IU2MeBxRqM_c6x6HeARS0ZC-tepyZN>XsVXy%np+s!LR)mJ
z(2O6tr=5j3+zO4ooF2SS;PxVY#(tJe1UK1ft~Y7;VxWWTXa_|v0Xd<&M
zwNbya1(OIg33N599R>)PqWX}By6GyKuRCG8#}%{o`QSXjFB<&fJ%8yh^eZQ5Gk50o
z#f>ulnI$x5qvngh&<~X*c-NuYt{2?Vl0oQI{+}AhLkpLxqg0mu-DzmV&fS{ri>Y;M
zB0&41ndGf4r}QfqT7Cc_h19$@$
z1dqp-K2tS8=ZtCw$hfy{C*zdD6y@X$ZTqBz>keIk{4u48jK)4#^op;(1(D5un?>L9
z1X30cN}
zV61Qvp1ylvxO3r|0=^6~^l_?a?tcuT+AV{-xFiSPPO(qu5adwY-g<}j5}9cGEsML`
z!+}}KG()ZZHpKc9t*q!cSKk%}Z~&a{)GcTrP{unZeJJTE2p+^@)+-@H!ZL`Swqo=x
z^8XEtIYLlwtZ0#%H^HxtI6@^i#x^e_U3p}<+xb*n?om>i-}kb11RtMdTBAHj^yJVr
zSLH?rd^-@_Y-p4##oDeaH_o5D4sOCc$lA|?a4a88VR0P;{zQbYYTeteQIDROM3Jsz
z`48Nesd%Qc+>^jbxQy920ZDnu-F~E8@{UT0QzCSG<0G2=PIlzI^^@^z{w3rB0bhX%
zzdzYj4|3YzDVs3?2BmN11-b+-m^fF)wA^1u?q}Wch_oQ8B_n)la(PL<2NU|JF2u;o
z_1e;=*ZZ7s-`o@HrG$5qRHz7%_|>J?%Q|9D&n*0ff)~;LMAz}SpM_3B8Ig%++ST_z
z;jgwt*tL)&y!q5E(hfY3b_*>6>F%O@k8r+uUW+^XC0@n4)tH%29CIlQ)*+g(Uzjg4
z9z!b5{#f=o@vAKqmF&}~37&F$aJ2D0xWhf<#9PUP7oDJsxZ4BY;&ABLh{m${xf<)0
z$y4x6-muAfuoHF(w6$E0G!2DLvOHx?>I*0MPFEAQCfn^OLp>%J#2WlQ_^myer@}=j
zDx7T&%^n8CP8L^d2U%HcA}`FqzRZe0Q1Eatg%vBxiJ{Kbf
zS@SZGhp^M#EhnQsoB6t|4MpB;maf7u1+Cu+it|tRB0j&8boSRsiSt5r+mJVnI&Nmz
zKV&Af+^1c=#HQIRqH%*cR%%2GUev*hLS1C5_aM4Xf3R3tQBU7+USN{;0&zG&|%?zdvb
zJT6XB->L!L>+d%2K5uSJp9XMeJ(E%<=Z)cCJG=GUAH1R!qwoD-oa>
zApG7zQwDl;P|pKRkh{!MXax#OTlEwvK>reI2pCOKdhnJA*A&a8${3}FIPgjhi0Cv<
zE-G5251KykKlShNB1pFarEAww%R}o5S4(@=3TM+BE0a}^O4`~aUG#k=#iz#nV-Z1<
zCodYnjaeSa&56WVk3~=};7qDh>cTHs#fg8L;V3w5`tUWEM2LWkJVi3Q?8wLM3x2^K
z*vnP9;~~xSz>E5Q8fU?D-Q>M|Z>EXw=IH~yV{$~9tDIiOxiWg9UFM&jQ4hbYb6e`C
zI_gko&O^MM<#INC-pADQn-1K68463{X8BUm6HqJp@Dys79*at?BVL+K8N@U*Lv}j>
zUFSjte?GYN@@r2DV_vnfs#0Vo=E^9Nkh$Yelju^pihs-Hpa&E1rK&+w6yf%1)4380&*?Z+uXJ3Eui=7VJ>7KEP~g17{hX|5q(;>HULUNk
zz9oDjd310Uf8{UaDh5*U^YBgkoiSqmqy+sL%;2%F*i(6`O)jZy@EV>u~Y
z<~_NSq6nsq*_oPjK=*)@4vF`_Sk||`Al#VuV}BE@MSW~L+Sj9
zGS)NCYfi2|ew;nc?~%x=Mz8x*Ae6}Hc-Gs)*m|4I&*NUl&TLjk#({w3i?;_f4KjYM
ziTcE7zGEw6)b^D349xKsl^DAmk9y5H1iF@^>f**yB^EfbO_-fjQGtUf*23#Qm8);B
zERkBl{HZ4^~yv8q-`Tk&twZ8ve_Ca
z5cgE^W>Z$b~RNhw(v#;wZA*;-tDuWzFi8HUCqsmO3g!F3*`Mx8TGMe>3!`
z1*4hh$bLnx*fy&wnC=2Lf1<5;2vb^edTsV<=wB!XaCc2SkKfcRSUmD#A{gAozeO*O
zI!x()PB*AsKeAs^@ZRmxCrwG(*cSFn%T3Lq5OsXN0eq8x=K_I}K~f6@m2M=vrBh|=
z3&zLG!pZysVbpa4ptJG7gL(9*N>HchiuhcCvoPy5VY7}Nv59w?0zAI@z*PXZL*DnV
zDQgju9NC;PW>!1Ld6pMm_!0W~XXPTvEw!>cnb`UCFJ-KjwH3KC`=1X(TkyYqpy}Ti
zkhu}dJb4#ajP?Y)cqf`l$@(Fz{NebS($fj-`tFK=(u-t**0^
ziUT^LxzXaXo}LBgX3_VRV9oSW1bFvY`C^F16qJd2Oi|PyYF*ad@efAUI00&@6Sl7P
z-2QX8=7i9n*A&=~HP$)N$VTE4pLX2v!qbkFvT)9XtO~(Q!bsl^NEhL=LK`mv052Pk
zPRvYsGjeiotrRo!37{`tSdC*dsB)R7rzrHF+~+8R%I9&_C*`jrtz4!s`$?7e4nRYB
zb&OYpUx#lc8`X>69(n_LZZv1?8H>FuE&g~H@WI((Y0k4>+O_nD9dKz$ej}9Tw#6v7
zlQ{tZ!;tpFyI4^)H)%3~yXg6>J6?kY%_@J{LpN}9*Z7;ez^=#ct)j2YU66=s!&eB!_WK_%cMHk{4gciuM`ZQuL8?ZG+XGPiONaDD0_cBg`bv~3ax?-w{0u<<
zCk~JtWDbaCo8>_@T4A%RKkv3Hmk-2R-9Q+{Z;s}PJnzC60N2ljm8{kbs9
zksn%y!tMUZ#-}xuwIu^Dmeu&|Bamzg0EVz}N5Y;#s`m#jh$;YXmwSF8CU+WIQ42;O
z0$%t0RZ{kBD7&F>G)e8C{q&h>eZp_A%`+;9M>3)a~6!_!t52YD#Oqghudf38Dw
z{U_EhSjX{CpzBXfsFQ1c_AOpW>`-6v|AgVMec+@M5`|T^ZdgFmjtezOj;K+*r#Z)
z$HiGSWzCyF0RW9%MM#DPRy?>v1Vw<~DibRp%lV7{&it5cqP|XT(QyLs0NkOidpMM?
z;&92QGX>UCCJ8-uLqr3Ji_?W{^c-N>EJw`V#5%wcw-mM+&!T0Imr$2+N9Txrm}SUoBY(CpV5(Tg3vdw(T%UcQs+SkpRy&@eck
zQLB2l{w;c}sB5v3dz~UsYw@m>j+>hb%tt0yK^J))dU`Ff<1Cl9@r=60v7ijJ#9hXEtzN~Q7^_ay^Y#kh>wpK#9Q>v3o{*aYPm
zkz-=*XrS%->lRHnS1FNWezjcAirOF4Z5>^o)ZRFKiJpA2K^jSxflOn`bL8vrkF12
zcJbV{suw*CTcj&0Qsmp1MtG#wGaZ3EWLPWKU!_^Flg_pyeotogFnvP!j!gY}2U=px
z+FI0>w@AXc1EK{y!vy*CAe*D-nhjucl2EP56v}r$-NGM=iE}SOfkm9DmT1~r7Y^Ca
z5Ue8?Kkto$XWQJJ6|D-GduAEy-1mB(!SYtQky%Z_rs7ak97
zM62sKONd=x-zfdH^bESo01cBmk1(Qf%cK-fQrR2<57(|QEh|
ze%O8+m70k~^A32)>%_iROJys6r0O*9+2j4n->$S!lf^vu-QL
z3lq;S2Kb+6AC!f&ORe#aXWqA}n0P3=jaRWdz4>i(63bqEp86a+Zz#u^kht^pL!Xdg
z(B*oGR;77(Ji!5he(F1(xLUXM_Bt>{!YoDKt3OZz>Ck45VE51^fZE5?6kqa#PP&q3
zvCJ`4CJX_c)aX^W7w^o6)O457+#OM`c{yrFHjf=oOE|<*WJN1*m)-Du2HI(Hr_lj;
zNVe?2^-ssQ6rWKmT^C}3G?f&By%=bIqeS(q@N7^aQs6S&-zpV5Eyag;wxx}gU|;=n
zeq|%;Xz@Dny39GZH;1SQIgWGbtIM@?Aut06x%
z!l`$IZj;hd^h6yRMH0Fp_l^p@`bGS)%I3OyThfidZR8^VyQ}hHR>$Y2)9*dQvvlD^
z^Kx4*`BT`Ispv%0#RNh^n^7-MQdu)xR<^xh;+ZCnqF1TldZ$;5rfZkO+iG8RDK$Qu
zkfQb%5}NwBg;!-hTAa?{uwFb4aPALK<>!U5qbAuiNZ0nJphfHB-|Kg=t!p7@+So)o
zNQl22Pt(Gd+{o`GU=HgV6HrI*AkmnXE!*V&k$0$)^t&#MwM=<#
z{aQ?Hwmj8cr;`I6I&|*`)bG*-@>|mIyu;EMp4GDn!F>lii+4H6v4y8&yU4JL3WG4x
zf1y*Ko$JCd1QR5)Q9jNJOwS)Wt<=YX)nBo>x0U|WBDbIqu%lCAIaM#1*aTR8
zkdm{x<;MA)8BS6{AxBF9c0EHRv2Mr+a7x~&YRJKEpWT92WUx@Fj(+&Ncw56n{r3B%ac(fcXf
z)Vy2%{*ERxwHs<52Sk-$oPm$`mw_IPIwjPvPRm~o7|4Pxf?M}O$;dKd3F#y;Ni779L~w!CkPj~^@`eh^&D3pUJ`nPd$3
zD4!9z1vHZo6Z~VV;%o?u>m?FZipUJQV{VLcRAIu*)Rg#!fOR}6;_hB>XVkHGF=PLJ
zeR+h7zb~qF+D+6Kki?=q(tR;?wv)I5dQ3j;nL(7+h-@`(zwZ@V<$0
z67__W!q-WbbJ7|y>)>~Z8qqtc;k%w<+wnalSvIrq+_K-;vMou0*wSb&4#*+sNa`9=
zxX9p(Ce^<-s{NHRTRHCYHC%Xq?2Md&O5T&6*osW9`N#3Y`y4~31ua`wnX@#noPQ=o
zUD&%f1@6h~jWaOyU>z|u6AOUWVA3bhO#0uZj<{2_skrZ)i7cOIgv+^6=VQK{&ni1g
zdfZX~s;;l*t*242_M6#M<(J@dIW7QF>v=kurqds1(TqjO)VX0ol_fRAQ2M_%UN6Y=O^*%QsXCx)cYbCYPtxx$4mE(4^oV#SF-&DpT}VA2bn-X=X1xDc#l}BPJK1&
zl|0ywA}nG9&xC3jWh+~6!GgN@Z~cwPCtgE8<%Ty)Tqhi~tQE(l9Yct=z+~P567Ekn
zBf62$cga_Y3vZ(YwF&w$3m+3Rk`(r@gsSs2SxLKmWpHVK-=MQ|gCPQbThsKaByQ~2
zXKz^q{=GI0dz!i72f(yCW1^wxd@SaXTB_i$eUF0<)*k~?7()BKvZ)@$B1NbJ>}BzY
zxS?R(B1zb81j#SZc-=U9Tl@G9A5mBo!xgAGSovdpCOrO4n*GC8QmqF~Yx|8W;SvH5
zyD#RS-BI2n-X=^nqG*+Qh?t4=$Cl1P$i`RhgJ@c=G0V2r=?CWOmsSHl9oHKz<5Ysu
zj-EKJZb{?FFhjoh>bYUd_Z+>7W!Y&1wAX|!PoHvTk|pMEC#ZmK%Jj3)+|~S=3C|(H
zv)qNFL-8XoxQ}VH!{&;*6R3`tmuk%sb+4eqt5qBAQ%C^UKWk5BYunK#hLW_&GK8-k
zUq~9;y2puXdq&T?Z%>v<+%bRqe&TFmoao~EwSGG&*M)nW>-k4kb)*OogO;Jcf&S
zQ-Zx{^}d}UM|%JoEBi}N8k>u;*JE=8<>vN1!R{EK`CYr)<%ZQ9pEzYce`P0#!Xm@q
zoLzU}wddOWeZE3+8J6P989Y%CzvQzqq1~V;hy?;r02`*1BxpA9?AMp$4RW>BbCe;e
z>+n21_(r*|!3ey0bv70-K#4x9niLC(d7LeAky8{RHw#UuH`oFGX?y{U$r9*z_
z*OLyQpOxmF$kw?DA1Z<5o**1rl@k{Zs+HRV#qwOWGtuPuZ<7Gwn8aT~qxZ4Jyr;?9
zFZ^54*2Ag0H2O8@rHY3wQ{C0vbF}NSa$gh*j6pGs5>8j7XxW`5e#otwKxiG=P;j?+
zl%B&ROR5iS$$}Ia-wVNV;(;>>*Qa)t*Wp4*j%@ygF8wqZNZF(aC}Uzf;r#%s%~~v)H^%jhV*|S4!)f;A?!Ea2Ws;oQS-Q8luBXatLYT;BHf-b
zmdJZ~I#4#RNNd5E&B|x8khc*A~=J9f_Z*>WI_DaZ-
z#h)uJZ<&(`EwZC-|T
zyoJAoe>h{9%p+?Yyk3e^kF_afrBR#blt8z9dLw0&q
zxd+NiP$*UhG-1MK{bLIp90!HU+5fLlxrt%laVss~kU^Ic16@K8ouN$skJeG6dt#loFE1hX+jqC5^H82lTf2b7U
z$2(8gKZ5K#Ht;rK##}l~La^j-a~%AASr96CB79B>3jjO}F_mXOqP|wu=_UZuvLrxS
zR`a;I)4wNG;NFPI`XgDmQqccL)nCU&wZ(hD@C*&YAkvZw3JTI)gQ#?eD2;%CNVmig
z0!lZCq@aX^NOyM%NOw0w4=^+5S?An)-}ia`-ydc(v)9_|_s#9w8}t6htlol?x7Cr$FQ55JQI}l8>zxSjLwzfB%ixbb>;Q-0b
zz7Z(wwU{apYE318;IVC<3qjf|I-xJgqC1^sL+0C}*ROhaB}fQZA49!PL_LpWNf^9`
z7bP?a1y_E|$<)^Y1jnXt1oJyO9#`M6jwVg|pnL5^ZrysywrB6vRLT?3d1!86RJp;+
zw#f{Wmeg;{B7I2WJ1F`#fN7I*)M8JTOq+PV2blAz&Y{>4*ExPLhK#FZ!^S_^%gosh
z-&c)65oO=>&~fJGGsvTt^pL=*a9KqNVXe#=H14O%wYNjoJ1~(H
z;J&U7OxoF&(8PUq*gF?DPhv)L8}YNvVQnmyWWLmNgJUd}R56wO{A1jnA~FB)VV(}|
zD3(^}*KS$`w@*Y5fr6a4|KD?ZYvjhRpNv6^2L{o5(WO%rKaDT_x<28+WM==)eF6q{
zx*n-xSqkbefvuVZ{>W_n7amg0(#~UnfuZsnhG0s$ry3Z#@?qn{)^RpWzs;)UR{|SWQDIDk1HIYA
zO4GS-Eqjcd5Fn-|r<#r69-%mx@m=Z(liiK|k}6ncbJyrc4%t9~oAPH+h&olJc?Tc&
z0i7VsTS_m7%=_Z_-mSO+<}W#s8e#%g0=sAnc&{!I?R!gtovD0f0-dH<;iO5b();gO
zOvoT_y+xV%v{p$)5gqVtE9^jjM&F1DEPEd4Zc(ejmuk0%5ik5OHqPn_MAM
zn`w_bE(;n+FtaFhzDBG7n!Zi3`7UZq{={u0Jd>&g+0pAAb1>_+WFOLPjRCIGHnAUJ;=)Cm(@Rjx9+zB2tRvp
z`f30^>FelK98e_DwNy2-ueSo9{lP+R*H<#{1@AVYNtO9pV(|Q-o7@Vzj%|tFsT8;S
z*-tjh;7~IMf$}Ft7vzDa1XieLD|-!Uu3gtPQRo*xjr@M<{H?NmomZR68ueWB&@zZh
z6GuKBI*~A>Vxf@t$a&57*9Y4j6!vQOL*x#2H2Wi`!ViV>ACR$FFFB=bVxtTCHMU@&
z3Em+5^uuw^@nUG)mm#0O8KrOopN}}ucBsBi`E>Fe7$V#Q3h~S$xm%C#QHOe&F>NkHD@@)IT!fEMw&DUwtI@ENLGQauB(PCv<)fd=SmH$vnWmpj0Rs)y(w%7Z<
zAA9wNw~Sq%*Y%t1c>at%R*l59pNI9#;zFL1v?a+GYg_-ZGA-TI8i!0o${WvjH)zOt
z`~xxJydA+9=-~iNVzS+z9H@WgyJR(`L9|2Ytdc$-j0K39-r1QH1-)_;X-RqdPpqX*
zWi4O0Qbka7{8;w*wXYylAGpvR?4ZP&<(t)?inENaWut;@7#(W5D6~*P4K_C!xNIFt
z`#bPRM%aJzJ%6qRPE-Mq^>{BT=vBtC#>LST+I#h9R*>nhL%;&uV(E@LF}Cw@&9Now
zvHkKxOey>{wD(iGy+GDN2Gxh(4ErAt`+YZ5wk<^Hr|@ogM15lxg+HGief+6W!$8kF
zW2Zl_a%1A;(3x*>sTp+TKYr)nielR*yH~!daohf?*~bBca38BMOmzEsYI#89Cpg4M
z>qLw#-kKPN4Bt0htfsnT9K{KX3UF-f09fU@R?C}6hmD4FkQOqLfJ+Z@u2GznE5_V3
zxRg~8r$w|$
z$p{$xkHLw~X54v$u>7@AzNRZT=G|YUVgfxK(jW6|K9mVB?!K?bEKpzOBgY)JGn}<{
zM2OZz5(KY}K;OmfUei=KTM1W9aBR2>av=YTBrGxyY=N<2y6us{dqWV}oQlef@(a4QY{JyPiRo_At^fhYD?e_0zR|L3
z{E%o5TPHCF#*>rViY8$!A$;tb8mg2_nV_fdU!zFf7~EQed=_QVJ{i`zMCGd=fgs=J
z!{z?1!sTr%wVlNmVj4hj_ay@@oriLG-IM8F3@CCs&{;0cDE8Gx)d3YLF>N;sOU-Q6
z!HXG7k==E%-+^J!+iU)VTzpXf=P@w#<+#hotNh&_nVEm_i5U3@uCZ>=0WZrwpu5%1
ze+S;E^XvZi<8cd52IAKlvkbtf@(0s`9Q8nM#?r=JC<;!+#OmLf-j=xC{E{w6@ds|Q
zw#A}6h}I!Xb+{YAY#2aWDh6KTOwr`H6VCr)|Bn_amG4;GDlqhi^XIkh40XGf6N5ZZ
z#^2C(UZ&Hi_5j*J#(EL-aZP{?q|c&hcodi)!d`ON^c`d-LfRhm4qIr0mfK=iqCsDW
zn;!VgpLN8X_4f(uSIZSn3T#t!KX4&dxIqm0QlmI4(JG=43!FfrUpdggIqY%v8+^PI
z=W`HwLAL`OVrY)WSH`i3jqB5xoA(p3OnlnnD0%TroW*5Z6qh$G*HpmZuk<
zYkP^wAmSNn>+@MU=X7~VvHR)E{_YP*hlz$Y#sa9!u)utEOIuPngL4h_
z1AzZ;3*Qghf+lblc<=0~fQ&;DhvNANBpl*FG_1}E>6S=?sMs+4yZ}fUkE-
z&9=>99?m1ypZ*`iQ7g+N0I+$;t!{OV4-lP^#m#`*W+yGe5QXvp%*xtqAh}NK%m`?<
zLjTS)VY{QaDr_kF;BzZWqsh6FG2;jd*hw3#%C=KZzuJ+>gQi~MM^wEBN3HCCmD9%>
zR2P(a-@Zdne$6qdtJmzTAlvIJ7idz}dA=$V0j?f*COKB_^+D83H#nR%CI|J#0bJHc(MX%N#IJS?#s`
z11Uc`9p66zx)p*#2Ma@#%h}tI?4dk*cx!FXSX`dR^GNx9W_eoX*LM^05@MJ5AfUGtwi1<10fMD3EgS>@_cqenIeTByJ0PTRoLxP&Gjyz*V6?ISm*{kb%bCEg{~(kE@D>>E+W*q~g5
z+ay2DYp@n(6WbpAc*?TS?X*(<17S`PZ)N#!80l^N-tXey^eCWD-|pyX?7Z_>
z022lFeveE>2t<+Oba*qHC^D{W0nhb%6vqKC(+Q9>PgWX*>Q`RQ!YeIDFxS!XIB>?^
za<8}h1n>LG6;{{a-@Q>=@9s$LyOqc(j0DOZ*Eb8ZuyQeyCxuFHL-kP0BoI56uhuxR
z)aN)$W_64f{Rj-+I8+FXVxRqL@)NVJiSqDEexCopNvH|wV!b;ptsxVXN3bgce$m{oZG`a>1NRpziR52GM~R4l(q`7TBB
z;8&ygJWFO!E%DaHqkBb9+9!>GRf!n?tEWFFgg1GvpC8?F7s7})yRT#=U9U;VwcO2>
z)4g?gHDwInYfMaTbr)a9`QGE`Sf*?y=KZxJNaReW60*=PZxh%pP7uI8JSH|UietTL
z5tBMf$g!p_CFmEI-0ljr*am}Evq4`edinxlx=uuFobds@}g&wK8qCr#Ep
zhVe#(z{rPkh>y((`uT+3CsW}(o0y$K?5fXdEga%3$M=UKMin^Bt0Kt?r;f}LCIiVW
zC|O^1JMWDJre_8Op8NT(Z5S3{wR&XabaR-LQlg@X%)@h{DLCI}j}&C%QFLdCbg;6c
zo3k=-SgIKvO=r5=zl
z!cV&~fb%-qYc+tFx<5Xfw>+DuT3vR_tOrm8s-pO97Qs`q0SudLD`Bc@%{I8HaxKWT
zekJ$`xq1d->ferp2f^v35SGO~Rgx97;6R3i2Po{T76(pmU!pJVyi<^Bee9Bi%?j_nz2D~=x#
zUe&E5eqICBhI>1Z(^AX5fmoc#i~?%ty{Cl^Yl@eAIf#hJiAd)+8UqvVBjVXGop$9R
z3lG=ei@ip~(!V|5Uy)LM1RB{z&`|sN_ixBS8`QH&Gf8toIdL=@F7%$J2o}kVc19OK
z@HmDK`T$rs5;-Sx=dTC(mD$zESi&@U6c!GMl9A6+7UT!e8*w`oU}vQv4bp9^k#
zTvexhOw_X&l}u!DQ$7F!j~vswYYK+%6OWwj?+-BsNJ#KK?w=1LS`L!98`OvV0FwsA
z_k1ylj&Ek9YqQ^^CJ`(vjGov~^xNHvp|Bx@_qa}BYtuBGGZe)TDJ6XLQkl=~*^BXP
zZrxFY%F?rEfv{8v`VD~PKl?HuAA-k;h_L;qVOhkY%$G)pNcR`lPWq3>g`W72^xfe@EJbt_`;bY!Xf#uAPp|%>v
z-)OcEliRB<;R-UezK>AONb7c_7u$+|pxw&BL-H#NhxA@lTl{NcUhc4l-oc)_0*8&v
zm=MB4v->`2)Wy;@r?z3>-x%(&z5!S&n83M^E)Z}UuZbkHeOlFqcigr{1s(BX=kn55!E?a0gQV#{^pVfZ7|)gw5@rOd0SpWk
zz*;?!kd;V~4IyB)T)x)CC(~CN7hVuJlAAm*Z~4^{a&Y)$>nXc-*W&{>H?wD4I8X6z
zzkv92`pO{*yU0-wTOu7~SkX^H_qtjtChH2Gx&PeuiA=f6xcWlI^1(F^!9*gmgJRH=
zXhXvGfkWPV|2p4?s2=3jT3ArAF9O-~I?P~tWFv$90s-#7R-GaQq7B8IW9T~D8VeHRcppBWUu#!A5Iejv-(6Y}&{
zQD*IggX>keA}k}Ze4d#85|q=7VfvA|7VX#SPJ(t2Fp)U@J86h?hz{mwsp>!+d2@mK
zhG(-!CmJyRL*F6}GXG$1T_mIZLo&O*_d32*o$&04a=)AcaiTJmc
zs(G1uoaG}RCyZZcDWvM&fq#nTN}Y~!ZtNeq-a4Uz)Gf}Japd3xh_}$o_pPYu`_MYx
zyYc7(ar<~SO(f2qnFu{0
z>{yxuiEXH_#|9c7{b~M|vgldIa~XaypRw}eem$Rja@Z%Pt^2#c`BLQ$^x8=NMO4QM
zwnAIN-B`bHU3>7?`MVpsCIo?>LOvy?>Zd)U!@rZu)Ub5i(to213l(;5srupf8=lu*
zcIwFL2>W8Y=6iy@GLyqkmTRh~>3(?O+3_nss9xG6%CGsdoJi36K&4xGD5SVtm$CtuhAJ_YK)`2u)SU8#8ZyAAV0f)$>;c@_FN!abfXtyF&l87n~2r5=L3j_
z?JwFEVNa*L^H;?K)W0&Sjmb+`VnCn`42lQl+sU?D4NVX@ZfxV50EjxlA&^IPvfi@u
z7r#+!!AAc7DHjXS7z6c#tOn4Q(Pb0x=+o0>lMA9i9{9>q8##%}8vOI!c3Tf3<<9&k
z!h^NF;Y49WY+15=gxqpL3jUP%rnEXUno&y|yRQ13IytZprM+ky)MpS8MuW+b5w;sc
z30_zsyM~h-);}#SPTeTzCrLP3ksQkr?Nz-h(|X{a5xO!+L&H49B7_CrfR?>yYd_zj
z!cW#a|NsGxx$Il!s0g~`CQacL;MxdITu`dY#yH$R
zG;6R=h^AYmK6mTu-WsMp%Or-2&He)k+g0UH9po-~h+#RuVrgRe-E;74g=N;KbRaPcwS5+5^PDO3TeDkGp4RA78ZDN)L{)Jdbp+xFY%U
zqFl6OCdC-;?U^&p)LO
z?N1`IKkPZ2I+J1Ga;O%cNWN~_JA#9v5`V2&!VS~#tekMU1E~vKU@(I62HbWY-vlo(
zDP@s3%=o_tWYQt$FO`y~k>nKvQ<(AppM0e++Ovqzoc{MwlPe{a_SAzF0z6lA^{Ia-d@33q7xdDzvBMM`
zD9Lmv^)&OEHl5!5lndA60CrurQwCFTWNAiu+$y|}tm#l`*fYwAH`#TbRaAIm5l!4G
zGdD8XBAefKYIm6w@2~t1q)5i&HQMoT9BqFscy|ta3$LNI0i`W>`KV+aE8mNd_>1%e
zSlAUW2)I=qxfw$vmYMv*(A48A>l^AN$bTTZ)je8d6O>@;mV3OBLO6LNtPi{`%W1{e
zS+4}E!7T;-_8$=pyjX&HrOjYUiq|zp4$QDg{V0XI)#?71SouBaj`IjKd~h28LqXsD
z2L+*<3T18k7yMZm0*_)-lC`N541lD_XgotsZ=$HdMcLQ^JhPFX!1?{l^B;({7WU^`
zrj$kfi%Hssn+RqGa7CPde|^j+o}tYq@9zq3_jHr@G_v06JBjmie{^Sz3m?uW-QL|zIHm4JRv514I~}?5PsS=@3U@wJ$g?!@RAm2
z8z{oQw&F6^E{{UAptzCe*)Z!42LC^$K$`HBo__~h^jMKJ>$5%?O$e1*;HG+T^fCc_
ztTD20Hr&KICbdD^B>&@8ILt8S-PN;=o()934Yaj_^xvZh3;&91bX^|4y$al{_KX7l
z4BMAYU^^q>S4}RX?RikCiQnj9-Una-QU^xTK=5jk^t7gb<1>m=AWly|q8bkIi4_B4
z(6}PxwKoUWBn8~hJ5{o%Y-C-&6NJ*q1ebg=fGi?@KBq@nmUG4F=@1`%8{4nTY{E#+
zE2oa7Yt7UVQ>4(F{`0^Gp3{bPmrL9wQ`>e2PVXk(_(j7+a;QFh7*@pe4rKO>?-}>l
zEU)Uxyjja^+J@5oGVU)@-0!K`kR__1q2q?Y7j`-6ekY;nYR0=(Q@sGYf;&JG&mF!NYeTwg=S0
zeW~qTYU4oJKsT2*-)PCccg;k=IBy?46xJ^0&m0;CGK&0y(t%r%zazVs9)bMxcaQ<(
z?<3@7ToBO>H(b+$M8!Mi#e~&=Z?5|G?hmp3VabvUpR`^W
zK9dG45|;~y4u`1VT~~(P;{?q3_{L=(ZnUm%F&*q{T{bbvPnTf=1=$b&R77e$;&f~D
z;;Vt5AFjHDMK59NAsc^Hye5qpS@zdCmM(`t7AdY0Q?Z8hc=oHdH~VrST74YS5T;XA
z@*&d*mTHAaET32D-i1FV^vV5W(a&LrRi-q*$iCS)!^!Rsg(`h#Okx#SH>Y{oUm7m`
zns(ps-VLw+fD8zopJ{i(QR_i)wK*2ddcfuFkjBoSwUm@iT{C)^Lp}|K^1z3
zjRzLH5BW30HmTY0je-=!q&5SneskTfvzY%EE0kimRWU_7m4Vo+(Cvg}h=gp59li_j
zu?%dgKLehI=Wn()-un^KXG31lNtwI0jp)dJR`Is$U*}~!1(|K#gXAH?atekXJ7-6r
zL_q=XhfUI7Wm57+XH|tvv<6B6Iklz`#*Pf@1mN_nSBy$*{QdeESNTp0Uu_)r&&S=U
znO7gi)dG>CXnyh@c;LA7(!Tw1=8^2!C5_?p7L
zq8#Nq;S@5&=oiSwR`bRKDk`0&FAqMq9M6jT@NII{psB+yOd}~|GFDTqq_x%9NTq92
z|Md2_rcc0^3*f}=85Sy8Z3yy4*H!Ul+v+a++@8~lZe57~=&PF*4XQf2x+o>M9emDl
z)m#LD2LxU|LlC9*T^YVw5$6JUr+pqxvFzT7a_0rrmG(l&+;j=(?NYl@K>K~+X?b53
zStGbTc6(?AK@wALyWb?I^62>;=;&d{TZ*m$AwH3d#lsw@jKd?#k=Hm|R?A@uL>Y8g%F
zQJNXQ9By)?bq%8?PHO8_AdvQw^6YnP^j-)-`C5%L_ONn8
z#l>OfQenU2hQ*fylkBE+ADO68gv!^_Kz-S($(BB!qpS;%y3(Rqmv0WJ^I#}qEEOvD
zGp=)?rp-j_Cd$w0rN*oKXyV)s)nv3>6FUQMeT=S%|c6?e6d17BK|?M|kz}`Egz@8_Uejm3Il)
zH3fa=YmIaF(##k{$_CDRK<{h-M+~=<6aQ=gW9_Ysxm%2+ak8J#zlcs127N~PGqr;g
z_p*Qm4NJ+gE$Y1-vDZwlaXzFSup5VZfYs6^JOSkj2cTHK>~p9KdE|c2%9b40ci)G+
zuGf2x-1z4^J?}O}m`>8U#1kAHmGOi!I@Zmcr@(98qFXBoS^AUpjqY6Szwid51qnpF
zmyjTpnW0Q7-cB?m%hkJN9x68axVTAh@=HOEC3n!FXGfD_*_uJT*p*M~Ei%&N7F
zjVCI4W0m$YYcD4cSAPAjkWaSVa;DO{A6X$;PEth39uN5$X(f_N?a`N*sJFf!)Aw(X
z3&>0*@-nc?BJ(94r|hErLnHs!5w|Bl7Y28~&BeVY-52E()H=28jUbsQNIZ7gFa~3&
zOvJH_K6OSrZ*ow>(J1O3mcxH3t8$@ld6qxTn1>6Z59+@!^}R;Q(SpOWAN@$p|_?sLNmch
z>y+9%*`+++wJGR&JQ@Bl{cb|A%D`DU{AEw~yMFzhGBoA&GbC9{_<=9^${d_=glX#2
z%6JK-ZZfyGi%GFE54{s))^c7Rat%vDh29%?f4lut{%|p66mvg5r6N4@LjPQ1mB0tX
zl|FI88@|NsPw7ixOo!G!#xo$A+OqTE<$sVc=r-4w^~m(y!}Ixr5TnSrw6kBSr1D%}
zcafVL^Xp~d-{lr3UpDuYJ_>)KuPX7Ym-U=5hkA?2y5F?=sPi+H7CY!KJSB9cDiMPD
zy_1~B$QO_4B<=SRkRM*YF7bmYguaUO6O&G8xU##-d}(DkW1jz@dC42S?cYCX5SnwN
zjOGni<$h>Nu@fKP!sQ8Om#E?gf
zWF46`w&p_BsGU+Pl_w$zmA2RfhgYcPkUx3V}vrlQ?8g
zx+LNb09zjk)D5!%lqoD80nBrsSlzNo)eyI=3CLA`A~1AS|JNTJ5SJvU?t8S%8tHb`1cABewctuLB
zYUMSWKUHS+H$64|Ip0~v>#X2wcn5q|A4~FVjmd7+cwr$kCC^r2fAYZNR3U%vj_56w
z=P%;E1l;@n-V;Asxx~LthdQu#M?OfcrZls1m!Q}_G!O&day9i^5twS`6<8sXHDiLEn)1CcDc=^MqYw
z-pze?VcXOs`N4krQs6p?Q};T$vNw)t(|?muUv?
za!eQ53mEg1^3(&u(eK5P@T3o7bf<5&dm3}Ea)$~I95~THkHq)pemF_7y3QJXWM!sH-rm9}
zgVuh_#kGuuK;54Dk!QTOdub#GI>3YYI`7GXaJ%`_j{J
zFQU@bmn>gNr}pNJ%0lvakNhK1QW2A?P}If8Rw}uaO7m
zq3qU(7L7R!pHTe}nY%BLXKP}VokQ5oBK~jJ4~=VXmt9
zV6ud-)m>!JegrTY>4upsK@Cih{{RKv@tEWWHIpKQ$jCF$p(^&xjf=Tr7pX
z)NoWD@Kw3?
z7g8FS?rkQKbH++rT^CyHn!UgKEiIZ~b=;m=`Lu@1^7C)k8(S+C%ApVGg}V($b2-Pi
zbLG9JUmjqLIGb+
zY^hLYlqp$#DU)Sig-s5MIj>+sm)~Svg0y@_c3rOOS$@eFJYx_*3+X#=ZvFmkqmj%u|&L+NrZI&G+t@X
zj9*h-^U|84v$=S^;*N_7KYK#FtLZ(H%01mAgVGb9ECuy++b+3V&)wQW2?-$_4X5!>=bhUsVU(5THM??dOY
zyzTq;J;{vB6Ogr5k|J+;`<)pZ@%sTtcle2<J<6%T&CW
z?-da1b_NVJNkL*cCH1V61cF-=x1Gn6whu@YP0CH_Y>)0i{rg-;8P|MG4M0xpWmk|s
zM-5Zkk9)cPvL>`YB(ZL!#&b?OVoWhoqmXC6P8kAsWJ&Me&*qhxz8^p(l;eTUWdWd)
zDH-mA?pmKHxo6`oNlfg74~`{{(O(%}vUq2VR6}sD(vX5mwnUjQ>nCiKeJQx<2?wTP
zzS|iLPCybr_l)#18`8a?SAbLc4Y6wKQtaZJzk}V$!?E2}3n^WTS>Skz?ahI@Lzu`Q
zLKPHkZ9gFV(cVI>bfI*^YKpi_`7z)5_^Zr3clOB%c3j}gPm}_G={pWZmX-g2CIJ?s
z7L*21!vuQhRs$F|@)ymNm^h*RB|$8kBgzoH$YhNt>icUr9|adHYt!aBr)Y}gh>D-E
zZ6$=*64I5meDr>kJHz5hbkg<0P4X$b0OzcL7j;g~{R3^igbgYvgKBOhZt#^R4!)VE
zd@k>0G=G|z$nyv%CE3S*u08q6kT|LDecU*ib!;{HALPUl_({gFha`rVQ%0aWrZX|Q
zL*mU`*aF+GZ9q{TSxI|MPBtDMZ!ht!Jz2;bClYgoV_Qc-uO8Pnwx@a1cA5GdTGc1<hjIY`|pw^Rig=%fbjQtIqAn)qBZC
z@gLlKHe|b1HU_7?Ntkn);3YzMsqIOm&n!Y2FVRJ5pZqgn=A8O56
zp47S$NSAH>XpPIgp<=wmQB#d7WpewtK2-iC`|XY#Ja?uYJ~+J5@P-xWQK?rm6jodI
zc}t(>C>1DMPoOCZ@3=9&DDSJGXL%cY2BF6N)_0dIU)>J#@Cy+)3b$ed#Nj7{*LC%0cGm$)Z^w
zvNXsiFVMobhS62){rUaZ>!y*>qfj_WGqW!v@_Sj34Bd9}EJ2hlh$&9xS%+9A4V%1%
z5o~$96}*1claEo&@2&B|@m=F4Ei_PyXH?xXKIx$EB0=d;FrVV!
zrg0nsf7E}vZ-evVu{^u|j{rIg{0={)_z*-q$UF5V>v?ZB{sX1?krqs;7!c?vUo|R~
zp=XRImtqb>9@H|u(hk>}uJ#^b^w({DlkVn_G4c)~(76HIIO;Kg7=L$aU570uLcW(w
zoBa-z9)1DgdTf@$;;tbJ#C+n8_}vWc^*Z8fy+$O!uOC1aUAxAyMAfQ0za@61@D$kX
zr=Rxr&4GxNTRbkHD#`|`oX^fFc1SL)2-EM{hh@F{GVecU-M53S^9k3UhUG!{BD)Ny
zofXN$K@Q=_wBd5t0iSw9sXhwEG4rOarShf^(!4-C>Sp;suRqR^vd
zi$LlkX0&;K?WkED-?Y6VDA38gFYB
zm6!50Z?fW*8J&|l&$lY`Gx6&`ebeHN;bB-3%*qi(f*rDFx#e@CmhZd*>0QO4vdRU=sfg_eROn5MvD)5CX+Gc4e8VgD+&tv#d&?}YIga2jMR
zwJ)I_W(AxbeTwyJxQIV~a@p-jt@h5rGC|MVzcao#oLW_btxup-5l5dt4%ioalv89r
zz2n#o3H@rG`|9a;+n41tGqc}%@c8ccP$}k;6olgx1-3%WbZK6{jmw>0!(}qe2d_aQ
z>c%RuwQ-=hi_PI2Y=}8QZ{Mc56_j1q^N!$g&}&m02ET3G6l5=V{f|T18|AJ132j;T
zxyCBS!2eX~6PPOGWO?3;l_nl>-jX%9s*u+PFYs;$2ag!68Zr?~T^xpoD^5IVJ3G|{
zTcVk~@B%x)NNn0Nmzthloyy)JGnE}y&vA_Bj}wSPZ$l&&V`2E1pQZfRDk#MC+tHB2#@qZvKFn;82OWeIhLDuS!=QsU^CkOTGN~h=}}cq1^>~-q?-b1
zzGiig>3MM+}KX)f)qnJ}h~d7J|^%9e;MEy?S$_TE}(
z4^|be%5w5|XB=|a;eZoHwH665F>cqP}iD#A>^3(9LG;qHccil_K
z*-Or=ePVm}93u$Uxeu_d~P7*yAjX
zvM!zy<`@10;W*{Kl*|%rUonnfz($;7%g$#U2-1|R?7VqTrBJ&P2-E84GV#2qsm%-P
zDIY~oeqW_EMH-dC)mHn`)CMvcapg<0kYfH}l8T=uHQG@Y{W
z+#5|Es5$T=t+|yr>J@(A>h9N=a_)&@$$E2~$Os?S~7Z!Z8saZBACK^)UHY
zyeMvz)Jaj2O`CMervEBhcw)b0#So=)pznOOG$SI}7w74CLh0dsUe?dAa(P8?ed#R!|3MOM>8cA6>oh)!XG<{7}>I#mAm>~x`neM
zH$daTw&mI%G2Q*>a3mSA{DlR#s!4yfs-+v_@%IT@ID5|cds1h7x72~$iyN6PwK=Tf
zqCB@gub;x~
zw$;<_46m6p%27qvf&71-4)DRXS+fT3kTr2EH#RM6FH-+qYgGd`^iRxiHaYHZ&L6Xi;XF;y
zO%UH57BK+XSC#J4f{Y7t{$OoR%w&Mu1mB|VPD3cqH(YG}|K54)u7vs40SLNX>iYLi
zz(pf%S*S-fod+tb*4;-iUqWPYi*5DjN9Z?s2CKjB(hX47<^9jOBtEnV0}LVr`6uUN
zra=B|3l^tkc?l^)D_*)g8AbHIMZ|vy&43jB=uhS=2rz>V1k7j-lk&Vu@k__!FI#Y-
zanT#?-q#~jOnh7?XorVhX{Tk3`_WdP+r2-lT&6
zh8S`VS+?}iC-{Lz9!6GAyeIq=|Dra=tkQk>yxX^HtyECY+JeXH#`xO*$LPe__^IEI
z+X}At!Gcr!0^EkKn`PiRUX9K`9$nZUZ#FQUy*b%ZPf@SZv*K|8l9WHOAj%@s9Puq-
zRKFp?Jj2(W(@E-#U8`#g&XyyEQ-v=ETGvf_h)r}%pDBtx`MaI%u}Tlk
zlt8hGM-*k$AgzpXKM)KZ>F*esw9M?lkNm?1Ewz=453l|6k60(phQA$h$6QRd+^dk;
z0}ng-feOTh*Bl&x?G?`dT@gN?+|{Ihbxnw!ozg_`ZH2iAPgEYq^W^M}gXjCdC6g#z
zqTH@_A1hq{IpQfRNpWL*KE!NXMdxls413Zwi-@li=65q8c7)>fPBZVsj|um}70|n_
z62;??EWpRCHp1u}Jm(WCt;=k;G;s3%rN~KM3G>m5>vZAMyL4`e8B3NQ;B95Iv@04t
zWu#eDzLJyLHp^xyB2#ohyR-82w}e!^dWY%mlmu5r!^FyG{MiU~W~O5Dt+(A)juY*A
z((Xw6RY^-_@~m86MWBBUR!Cs-B(nmuej9JJv>l;15#dtQ?)Tg53XS&aRUH)dY#KW}
zp(7gUvZ`up_t*TYIA1K%PrEStU$ag?LYIYo2pF^FfEUBc2be78;HoR`4&P}Z|Q
zQoj}ErYNi?m_NIUcX!`)_tOevq4|Fk{5ZCTx*
zSjy^>?{XL|+wUaH#ug-KRJo;{UY9-VHyNgzA}Atha9Lpj(&5vjo
zG@Un%hYNS~`T4<*;Dgw&1mE+mof|%qUrx3VR=}0Pwk3I^qXx?A3cQat|96WSD?b0!yhQaf0Pc5
z97v1O-{?xWY<&A~pZRleZ-GqWM_Ng(QRmXdA4KwhD|g#zqO$qN33uiq@Bl>7m>=Am
z*Eo10C?*;Ungag!9Z=gcTW`kB(Cdo5{=aM5j%o7q2Yv{=aArtgXNN3jKG62L)_YJm
zV&J^KRI}-Tc(*g?f%(ShF&Lrq*3C!pQlT7W_Rp|DD(|
zx07qz^M;$HE0*-PIy#+0J)_&OhFpHhBl`(x+bQ_24Xy?IaaWn1h(~DFxI>(*RDtlB
z=ix`}+#hy5tCpI*c+yYgr`hHY%X1k2f#lCEU#o(HG~+^dA>fDGb@EkHVpGS)R#fP9
z13VQ1fvvzDx8Uw#=+DH7Cmk%Wb+V?y%^vSb@Er7L)m(e`0r(HsPJ)dR*kkE5W0W+v
zfM*OCag4_JV-C3dawm01PP6f`Gk+LJ9G4;FSG(XSi)(k6lO5AMH+R_&THstw7$?ta
zA5MagjS<1jxZV%YABePMJXOYZt8Xyn7f)F;-4sCUx>tRe@*|;|<8t{`@8Ob9?Y$ar+U>f|t
zd7bcOJFHMZe!~A{^8MZ)At2oiLjh@#kcJTg0s_)Xh;)~PATb09
z=|-u6lytXrjF3jUyBX<#ZSUXX=lgp7{v2$3V)t|IbFOop>xyxe@ZQ^zy8=1P&FajX
z@U+A~7R42bBbBSi^1N5<{jm&u!ZMirkQVpSgN~)Q3ORwDtvHh1q~m#bgc0o`xejK_
z{8qO{+PU=-_Z}cYqF#{QA1QYM1|Tl)G+5FpHeB_ygcI;)w}GT@%x~hAh!m1mepDOc`i_g+RtZ|F84_sn(E@X
z_0BPR&$d`G&sCTDmG-5-e%2{o)!@C6KWfbP`>4*oa=;UYQMr_y~~7pE8e^oL^it?Mtp1QkW+GNG$B
zR)z=eR=x+?zQ*6k(sfpq+z>EPk5-D&fD&`swn)Ejj4Xrpg1QScKV>QCLSKic<*%OtLw(K7IC_$Ok_uU!$lW5GVzG$6|iT!m*PU9M7qZB{;
zlb_v*@!5!Ki3wU}hW&OzDAZ_5e(QC^2fv~3st594!&~ymaU5y4X1?mdWQu#v
z;;uDS84l>j3J$|(z8t6FCJooLdx66f=)BYldoBzi{sVea2iTe2tALTzrO-#o@`Q`0
zpX+h_@jU+6`~!1T+Hy~^rI!M7T2ev4J>RI@FP+yo^31_}2nIw+3;j#?T^!u0biN41
zA}OniwcB4RlMx>oi?XszKTf-$P86^puHubTBn}bjC$h-Qe>*Ae2V0~)N*ttm0wHw>
zE;gHVr#iX01z-Ikg`OWi#bGj^%-1#1X|h27NrVgpGd>?>xH}X(^c%2NnA^9<8m)A|
z6Nc1R{JmEPB1D{3U&dG_$0y@{KceH#M%%v9m)(-GpY&_8Rc~e^VvF@c-6fZ;0Wbk4
z?c6680pBEz6^sb*vnoKwze+*PwtjIp?a}@lqE3%3&1~)SV?97*6N-GYb{tmXSW$(f
zywpc}mI?{n#FIJ+xEjR&HH1pOhSq*oE#kceoS^qQH=;1S4!Fv|&arqjKNrK136m|?)c?Y})NW$JNFXr1*H{t)a4b{3M;X%prqA|Am=0&lw&XsL
zT8#}c(rMCJ`rmPcwn+3;TM)Aa)vNMT^zL2G5Ok}*j_Vw6B_%B30?Pto4+--+3J4~i9ME9Q~t@`Yhd>353r)>GiDX!^30f_&CXzK!IH#S;Tq1hC8ye>louqQYc5i=YqEQTF7;#*>jn-Cds$%h)Mgf?BPnr&BkeluZ888)X`i$+VQJ;L7yc!pUnRiR%Qi;M|cXk=M9Dvq(#EV6-wJy(t
z$Jh|!iAQ)fxgffe2|#tNMHMqD-)H8gtXCVTf`?yxMioCeftz$BMMcuN_)M^M7>0Tc
z0PKCOMM*cbHHF(x4R0o^YkAgR6(omFkTwW>o*Algz%NACT>T4&#w%D%j(1?mLDXgg1OR{S?a(}
zllvghNkzi?4_i$9#wGdQb*_=5-*Xq)U*^;Ucc33V%7VL(7=%j(JY%*Rv~{vyeL9W9
zQWHEGf}1}VLLCN2-@B=RLj7^SAKRJ&3pMlp;|oh6s4Je7-$*xr($_iOscfD=9oKID
zhyX8jD(xp@0$W-A2EUU5H-U=9Q!&-20p0p{JR|g$5$KmaFLUsC`jg~}s1>u39uO&9
z5JQnXD4M_`KU=SVKR5eZ+k6e!+q=R4{QP6OYJj0&(Dzt|-q7+;Em<2ajE8C@QLNP1Qx6p#X3qpFzht75-INPp-q&{Q3
zd-6r<;AZ6DK85{O$09M7Nb!OGya{Txx)@vtdhZKUo;aC%b-}-(yBJp6_*f^ED{(sS
zs>D*tXyS_4Ra0vIa(W0j4hYjV>64w|-3-1Sg7l<@zgT1qrGIdB6mYKy+fWWRKbFM}
zQ=Vqi^&3wpzSFBF5M`l*$Yndr;-^Fa(!Z=3w2>;)MJC}ouxp-BpJ^BkEnyDM&WFtDF^G6(fY-_(RxVg?yQ8rSmcM)#|)b4CI?
zxY`<`6z7%|UG_d4fMg+2x#65~&(CeX5l}zC@shDB{69d}1UjEV*?HzH@V(8FngJzb
z+9<}jNE$WT;w+F7x2kJ(3uxfy+P5%?9{F%#zCQuveQ~}b=^DU5+a@zV#Up
zzW5xeWx&v$OTl+BVBY(@c>9#Rott|=x+iXuc@6jry#INp`SDyGLs
zt2#YoZ@ltj(Dq=cnnr5iX66V7ikes52JXS_yi@$_75q9U?)h%m(dk!YpP>)S-JX{b
z6r2}FZp5AG=ja{T{Mb7!m*41uh-SvK+k-`Nc9RAy8KeKQ1LY6|w(bAc2anp}
zsm+-z;A%5~yu9}d8aKyzKC*^SBpG0^>4dYhZ0vv-cod?8qSAgs{cKo^L&|N
zLQ&99x1kAj7m%dc~PR4-e$Mue*%>k}v@nQ^0khHwwK(l+__5br9AKQ|Y6_-f$L
z@9iWl%m>SU@~)iUX(3&m62zF*ZH85|bX3cz$qucB2kQ?&byuO+?0rG0hT@`hv5
z7T;v&C;3*b2_I9t`}%Hdo;e*Io(9={tvWeuO>4LV7qpV0Xu`*}8k=f5kqY(`CO-x`
z?f%HL|I7zH@K+tjx&MRsBcb%Y5#Uj6cOta&;=F0{fBZwP@P~oTTJ^;9N6?HIh9Xo6
zQJ+I+PMW#<{himhS99;=6$u|(z5m)8zgd+x^ufXAG(Y9GrDAHy95pTijtl2hO=E6s
zxdTRFa0kwff@Ku$WlVfUw9=Sh6uuvJcQtiaHsq`=FE))nhd%2qQ)$=F0_yqxAZR}|
zZ!hEFkbiAMhnneKOoo18#P+?0=h;1r@UWSco_Q_2fsv(D$M=EcdK9u~+>tyqtN!E`
z91cMkwo5T-M|TjlgwTZ9PAm`@5I&4MR9ZqGqW!;cVn%hK{#U94d)4aY{H;O7a}b2O
zZ4FQ?*vZS=2l_@)@b>xEbse+oUcE;9C-85`w!+NT3E_3
zBgn#rR5srnQ5D)Im%h+@`x>^u=)oBTCtdcQZ^7uFvW|g=zev5y48??z`jZJjds659
zC7`_YUKP?7f;NNz<>EPDL;bWLczzk=Sf-shC;4+U-h9vDszL=e;MEPZP+X@)XJ361A^>9Lr`wQi;&1Mb?4~Y%2#lRY)Bl
zh#lFEB8!LyzSE*S)7-Erl=pv!3ha5BS{S=@yaBID1J2ScqAubhpU!mJYyRZDy~~#A
zvivVL+)y@LuhLgN6%ub9{sh@h9Z1Oo6l)5(9AhBnXf8|wXF!G-o{GdjPWb#E$aD_H
z-9~0dI&w;W@X7XBnmbV4|L<>fbrCjy!DCguL>kbqYY06R#w5P34uL?%0+njEH@
zAh>plN%4+(qb00*FmP=f==^q-!*+uL6?uzn?3zSSf*92+{l$0R2#6fq0BTrTCsi9n
z@y7i)*umHVe13ofwx5lz23~h;5g*Jd^{LSjUeM#%ch#Z}_)%
z;Q!VFd=%0U(KG(Fld^-{3~90+UWWI1lfiY}kAsrQFyqh1hmYQFJ;>)*uVMeGTO9uU
z)P_FmIk9?4biAlD>iW#;H{7CFH#v;xNzl7@&~AW%XYZeBQgQ{@)q9`x)F*1P^!=@V
zNU$-mqxKOeE1=7+gYPV_pPp|~-}qfL2I~?$kNj$$=5#JcfMg7kv&R4yX&t!zP@r?8
zTv)&6&{Pxqg_E(bkQ+}x%i4;
z2u02>H(VQ7BhHt)(-x;5^$mGjp%Y8E_g^m2N5?A>jBEB*1Qfb5bX&5If5~nK3!~1E
zIioUD4O}DdGN62rqwSzx6b^C+k$Dq?@JDubQCJ8RTs%E_>M|>x`F1#*VBJ+O;R6Fh
z%GHlM@2M9wZpFxK>~M6(j1K+y%iqxdKG~mXNN8
z7mIv60?v#VC(Z@jJF$0-w=f5ra1fZ8`vVbpvf7UpJBOC0#wa;S>u$k(x;Rr#gCf3)
zcdA&K)9K1+dhSB?0DP=-eg|1J-w;8@_kEJBfJJ&~)D^GYQeY9Eva3;g>1F5rsW##w
zCY4|_>a+86?AnxMJEN`q^(#Jqq=uqz5*Vmm;B^Z~QsLEwDt{yF}G({Nc_pFuIBf$g$k>3^WTmKA1B`q8mx
zYMn<`+M8rCa*P4Ih|%$A4BP60eTH%+&bSm-OZ*FEP<@<74;#Nf&RYw_bqx&-uaHa4
zA1?>hoWdl)qiIoOYc1sY_+kz?9)i7@BU+!-a~yr|9mV7392~RB`QeqYDx>R4&DW;{
zEZV0Gu4aY|{@t5*EB1GgKLO)oHNF`i`tCmwHLVA&U`EUvihHUSgQfyS)TRI(v0ny7
zCY=2@nKCa&suSWlf0bcsIX_@=@R9WL4L-j$bV@erdd?%=-44FJv0Hp!lOm)(ES9wL
z=29EU-3eDhC~a_7g$FRR*PcUS3(^*uBL5hgm`EsQeh1XHD?b+4`?CAlJW4V8NU}3R
z^VOTTY=H5uBl=ph?$coy4ZYwe^K`xQe~yq?&(Cm?<6RKa@&^1?Wb~$WeM@UiB#o5m
zU1-(($x8Ri-j~O3eX+#38M>|R3YmLo91P0;lnflm-K^YsnT^Mlgr#s1I^3TXJDprY
z%INC@rHFjSjCAxo5AGbB^Sm8!O76~z=qg$IzIisByVZ3!|AITY@<>Z>?q
zeos{V5eEWczx|d_T1q5Bo=YiTu|HX2{G(9qowl`=-hy6q)|47J>YX6+@4aHs606Ki
z2TRazWBm?BL{y4K=BmK4Cxp&Fy3QuRfsAT`QbxMg~`W-h#5NHPJf(%+B1O
zgZ%*gBcp*C_gym(RzWBjS=DPR=Z4|F+o
z5s)r2ETqwZJKvEZqbc@|t^CxBG4aSZIfya>0M(K4Fi*5i-7sM=EEEiDhm7yF{H2#-
z{^qOVWWw^d4?+_l2SjbO1{@=qMk4ZJazeImfCafa9Etrn&GzH_QV>THUo@Fw<>S(P
zwRf*p%ktGp3tuF?d$Edr&K2Cj?JKQuz86X?6&_vQzq_PWee0hhr1F48iI0!R5Eq-^
zaoXdsSF&$)N-H><5Bzzn4cL;k2ah4OqFwT0?!mI`=7>tCI=6pIfTBKIsQN(`J7(ek
zF99oGPmSti)uuEP`|NMx{865lU}Kj<&xtQ)&%Ior)($NrZ@W~{AB>G`G5=PK@{{ky
z{ePVwCCf$r3Q92xEhgJh-HJz1Q{4=)GW?qDw1b7y#uhtP-x8G`J!_77sZ{#grQ(KU
zDXR7>$FfkGJQ+t&W^c>mj5u+M(%BJ28=CGn5;ey{-xN_$e%Cp1F+Q(xvw%?TWug7M
z0f##+4OO_h;V$~*%h+DW;a^
zRxVZaVD46Se0hy*1*z0;EL#=%OYFwDC_NxV!#~sQslAO7>g7Qy`@YkKV?ws1gr?}6
zO5iUmEf3u&O%i|&X+fIG-tWK&6J}M!iW$zmIh81h{wPvG!0obhDK?N?bh0}J^bF?y
zrFEHg`3t?Z_wnx$=*H+W<1Z1~^^`9_zNi#>oIKo{suf}9fjHr)7=uC@+s=`Z3y9?J
zXP&(?ZGU9HPlL(qk)VUwUKZ#F*oOJb$?Z5s(qI)lm>W!q(C${3e0D;VKjz?OnY2S4
z8pcQLc7qp@u%+F&wDy+=L*2DoSuX&_P>v8hZU`OmH%a4V*DQ#LXP`eCDzsn`N3kzL
z&^Q&yqx*ubtK#?6`;4Tk&K1D`I?e;zF|ZaY?!9}u6)QIbKnp+t%`5quU==(ui2G(K
zSPHX4b`-@Qte1=YAkixa18sp1jZnNVl+n>YS{7SfnwQ325sKuja91;*MR>7DZEn34
zu*2auI?WYTpJz3-#@d&Z(S1ouwW*a{tXytVU`Vb~1oDklJr{2X=&(Z>><5h5pp^Ih
z7N+Y_;j}e&(?G{8%r{LnhG)8d^Otdt$lSI$q6nKrT+^n<pg>fbHL@;0@TV;^KwzzEFn2>_%)c613osJ)$&OE(mFrwFM-#gK|LVB`;
zwU1XMK%=Rlwo^Hdj$K->=yM83vugcTF>F22whXhjvu3Ip#r6B~c25g-^k6mnVvA2w1*6VRV!!Z~IJkDda+K%X
z9vYC!;XBlwx%2$V3Z8suj!ZY%QH8X=qPprg=LKQ9Clz`fW=C@{io`*w0)#zavVDQb
z*&duR;YZqgQFwwkf)Vpu_rhzR&YOm{0qt*+Jo`+a#!TnX835vur-ms_E^2-)TC#!!
zsAS6yaN{ubNIgmP$StUQyEKUL9$cQ}kY8>3;k`f4UnGgTO
zkHuG(T(NNK#?b4r8=-FzdW$!*or26b1^uuEMr&$??V1Zyr+h
z-f^wCNG$|D{3?0p&Rrcow9(F1qEKu?{)vJR=XNvt!I+)iK_OQsU
zXuB-~Kl>xtJR{RaY-%mV{EG-kAr7mkCY7{Srt9jL{{dLZ3KJ~VqDw*2^!nClK>uSP
z_Q(E7*-iR~kKE@U`0T*m$r=}XL5qXhV}Uj$VW+=+$4r@$johFBGO_5}pfnvIgDkF;Q>dN|qVPh$&uGAs+f2+?*nD!$MNDU4I-
z+6JqqvFBsD5Xe5;p84vN9X2i?h|%5S^d6Gl69xAD2O6gaz(TWx-g_d&WdpCJpe(XS
zDo|!!2hbeiG_KD|yD=U!p9daJ{Sx4DuMo5dsr`FAzC|M5wMJn&T4DYr$th5(|7mOt
zW#CX{i&<1}LRp7m=d)Mjn%s>~#;fY@1s@*X&@L8bJ2=QzY^#ata=bLyO2AXWXCYvV
zilzo4mZkmK7K6ZO%Hv1xV;d}WMRu#lgyvWd-kPc^ijq(>v&gMs&|DY&uZNhFCfvmx
zW`||-v=N2YIHVCj!a)Z&a9Ict^Ob|s@A2iwQK1#ppJ1FqsGrs0l@S}eJ6=cbfyCU9
zZ$-FndHbq6jDgK^IqFau9gD2JFIQ%ao3kf&b)TbF%|OPST#mzCSa5k>gW!XKh>d=B
zTH3uBPXKZVlO|A^s3-4&+L@56qRxSZ`OF1JrE4JD8UG)cT=<^dg-+gR(QE%96g)6@%43{e~;khK3wWk3P?2$GvCOllE5cUd*_UCA8$O8kz5XaW{TV?%~1`
zl`jsBM~R`|UPIM=xpOnPmY?~mB8ig1g2GYDZwL=!uvxfoK2{aA`L__vrt
z_4`jRU?@#mES1n7fNDjyv)EnVzsG_-U1h?fM)W8kXOjaAEX;Ao46$U=&OF7804A17
zaly220WV&TGjCNr7jR_HH6v0@yvdfE=V8hFw|V8oGvb8;GsVw-vi#=7--`le?FWHz
zA56Q%onmyMVc3kTERzwx(`a-5KEY*2(B~3RDNlS*n66m31VG~i5QG;`)EBC}(spdP
zq+PCtp)SWGjn6+&?UOooDeiv!Virll_#TIx3lu{ziq9;lf`91=
z8*>J0Y_N$&Bg1tVq~{wY)B@@E0a|x5rmD?J3Q;#yl#HjbzcZEcuInxCrgan0ul}m=
ze(EQCv7*#O*MUkzKGvl}+HX~6`F7yjrUtEydKX_OLvLJa@PA$;$M;f~2WQ!TqIzod
zs&PD^2UyYxUobrri62?S=C22U0AC;sIVNH9BPlXj&-uXtzbGCK1|a__dh3I<1-&i`
zF339`(cm4MDbaDH#%2f~0fXk37`N
zapZO)t8#cMSYOdz^C3a;Yj)cX_f9lfs^S(?)6+yiNKy^vj}kgxZ8%q2hxL+0V%Qoq
zSXBFN7Ul9iaNkExX?#mlnWs-9(6CY92xI5CF5fOUQrf4D{kB~j45$Y0=(RC5=UN%l
zkd8Ke+>);pBKv-!qOvoNFG}nm^YlWJ8T<+Nxtw$5u?sk28juqI<&k$@7v2lV!vM6v
z#(zo&+R22~i4V=4&oj!1bYQJ9BEPbNM1vDK_?u%$)}{eAN)jder5%29Tne%B@8~)o
zk8x(bYHV&@KR4&i1m^KChDNo&R^3DHF6BCpGLk4}%HQ+E37d3^4nP5FRzr?9idv*U
z*c<3K){X;PQb?;6;#>RpQ8(eU)n7C+d$&eH)qC73n26-*DBNe2{Se5(v?%cfG)9aK8
zic^zAdm3v{8Nb%w5!-Au^5N7eD%kyzZ08s=o+MCOnh1JMdsn-6UKii>-Bvx!{cF+MW7S^y{9fF?5mRr>Dto+D5AmsqsdD+GZS$M?U}T^q&cdgdNTV9R*G
zgk(SzuiM3;cnVQ`69W-00O!)wbl@ph_B-WF%f!8*NAIM0a27iaHhu-M)2S5HP_}7}
zyy)ZuQ)O#z4TXA
zqw$sG+zhvXG@Z+Bm$WM2@?@LvNFW5?7&L&GrpSHs5j};W(OurlLrG-%4KDuz{LhHx
z6aWHUn|TPH$7(QnQ4k>OfVKy{r9SCeHV%Gf!(;EfCct9OsgeV1c0>l~TJYA_?u-Nfa{oQW5G|slx)9)Flqw|4N
zGVs`R$%}>>sNQF+@
z|3FcOfI{}799w*MYj5doqtpnIx9VB#{%4%Zpo7(NRZgSAAitQ6V;@%SH0JZu29&s5
z8Ck|gX@$)&3P?1q4l~^%*T||)G*9BAL|bxY&NSv32u?rpSzTA<_&N?PbfbS?8#ua{
zsRizZp%l^Oop$EoizPF_m`wZg-(qnc$}v5d^$vuhpW&(%wnz7S{1O~M0_0XjtRv+B
zV)WyFB_80Dk!cl+7BwDJZ3k&!rp*yLXUr(eIP-{3+~dk$BDrf+Zk%v4L)1&3$Qk8k
z`Kl}$6+73=E>7(ONjnnV-k^KhnSxFP4F;N?c!B)ATIjYiVQ3yLL8Og*@*fEPy@OyS
zKr^F1|D17%c^1RGgvq#(elvJ1(sw&=NY-Be4DzeT$ZGQy*X%4S=Iqj|^VScO@s0mS
zXSKKST$2eDmUzjz7F{p!xVQJlP>vzJYmNLDpFd$ojgxGj<%=&_?V|;4tI|K0`P{yy
zJXG(f~Web;M^
zIY_XoXFN2A3z@mGU*Wx!O*^ryPns_w^SK@Eh*U&fn8gpzjqg
z%h>it=zh@1fI%-$Zi6(UAAHyCp>ugKwqosm{)AtT>t*8=|C4*{whfUp=`Gmx%-QMstef@>}0hT!zE^Ibu3{8T4bv7y(_sFo%~fUG%-
z{kcO~ehShP@o}T7he&!9vJoF~A_H;zIl8wj(3-g0Oplw!v7sQXDo+M7(&Az;r<|@5
zf6~|z%Ph;wQ>xQ2o(6I3oR{u`)EmJzPiSor@Hii|i{hAv<3BYK_nVLqi1b%=RwkgK(xvlX_Xz&!6wq%Em^PyNLJTH5vP@kSvmSwRYUQu5TC^I-Y%ToO`~&zm!K;?>Zpw=+J!rFR~l
ze*Y3BoxCw++EF4`LQGe}YAimzBCM`+6!mU-jW+_6b)0q-af2;JoqVBqo(4t(xkw1+=fiKS5r*)A^Yo4qDUPR=EP+W
zbD^I46a@q
zjOuZ>CD~Qg@9_pY4_SXq3a9|Jq?SvzOGyCTU<3#pQ3aH-iM{9CSW6TmWdX&Q+xJd?
z({3+-e(H25x*j$3)O28N4Xu5!FNU{lv<^Qg-oQuEKsV##%;BwM-3u%NzXVvmFb=CS
z+@88}B>9SujK92jrVQ78lbqOeJx19xbtBw|Zfn@D{{$w=nJqbCS3O?bi$~(zG$Mgg
zh#)(@n{0uvi)drPrYW3fwNl8OkE(V!a`2N;d_{sS(8izmk%=_hI~AGFTu
z&0cBv{RLe#bCRQ$va5}DM1t519$lMK?u5@R9@U!BT^F1CW2H)HEN!yvETQh}uFY*<
zx(gkOnCHOs1AyH60k~yq=|=xtD_Jhz#p&m(8{ws;QDIequJ8-mgcs!sA4<|5DM-*<
zFN+qU^B!`XRE?MR1giJIVKDA<%I94$xRo)SX-6Cl3&r{TM>Gh}M&}hyWo^
z2acS;?}TErn85ZcX@KN^Gre#L$vasTVg!rA!|!jqC+#i%9laa*wf&
zE<#G~#P6j7w9~i5yUFka)S7v2MlJhE=3^`#EOYdF)cdeHis4&CA+tt^u1yWpiL9@#
zR)X*+E%^K$Dauw@mF{%{oX)Gd$QEYJBZIJ~EoQvAUDq20yka?MYqa@zzE3g`1uW^P
ztcyz}ClJUk$l;}l(EglFP0gIHXk`uJqLQN5cF;5f(h1T3Kvsf_bOz|c4pJC1GE^%<
zd)Dhj(M9;&WrTnujeavljj>LIxAs+wE}WQ@R7k};T@~l+&FhcRMn-F;XwsNA+H=vs
zg47HjyV-XZ7&)?rfP+KWNGFP#u6K0fY;g|Gi+|ccSJxhsQ($V`H+rkq97J<}My9_v
zQsQS8I12k_TfNf{@EPJK$b!KLZ3s?)0y^z#23cINjC6xDmd_bYtnt==Z1foHkzmi@
z>iK2E{#K?56ualdPU*B&NBX!-^;vT7ka|XKlj`dDp3|+jEb6JARuPTAfrE70wd!wk
z5|rP0H0I&t`JW(GltSuR09mPel_#@J&g|xt%Dmul_s)}eu#~%rg9-+Z_4G+Nopg`C
zqm;hMN9{V`H;<4Re(q%R2c4}Q_8-Vd^@^lwgk>P&CfbKmnQy7JTJpiGp9=UBb6Y&3
z!2DDtdc5sY<-mdH#1O0~@l%TAjLcjPR<`sC?pTNG(h=Kzbc>-m-A1NI3{1mRj?t_z
z;EKT-iyM1j*s{N;bPK2HPnLLqvfLS9w+jk`L%&U7%WipK9@}G^4g1QAtN}dRCiSu{
z5=pA!1y|pz+s(omRa2SfG3(*IV(57hjv5G|a2JKg&K@|+F0ogki!F;#z39`RJ@hMf
z=h*3XcExq)#U)0*)*@huFt5Oo6eMXnyY4Y@gxaee0nkzYRYCCOS>$CwYkyVB4t$}D
z6&6^wa|zk3(!P|l62|ZXbOMoa8*k<1t&1w^^Y9v5oX>Fs!OS7Ab`S&yQJ|n@)aYOV
zo_OR_!0L!dXQqK6X>oRT(V-~KkRTDxNNZ=y1>(j{`b1ceIZ5*5N;N8g8eNDXLAkbe
z0tr-ate2y4+*e9b#4q8lQSu(Yny&^Q;myG>_g@Y&rOO&rH#l${@|ms{5~fUfs!k}F
zbLH?Q?2)H&?O22!%qFlt1aQ&GPBN(NIME_99uBr|by0D9JT*3IaBAnx@F8!3nirc$
z=slkNb^>1$NqDy3hpvNs6$2aloUe$bP5f{SpD&XNGGap|;XrB|+ZVU2R(ZRO{U-;W
zif%=Sib6MgMo)#LUgno36}`|eS?~5w2|@0~m*w>$Lf-N((iq-Dr~YXsy8)uf`a(6^
zlrvq4A4rL80s-+|kHu%@&7&Z0tnlRt9OGx8?%iOy7=%lf*eYu+#Uql(elc+7x(|R>
zvWHGS6WAs+DwcjegbsrEZeBA4wra!&pN*J}c-9|2vbNTJU3tu^{kU?ACFL?QR=YzR
zyYMsB@5HPiyNyUL`ZtNewF($MveXnbHIwWD>tQN`~!;s
z2oot3>P4n~i%d$ICrz#HYGEsO{WVQLS)Y)nDzgqagsq8j{B|Y1yd?yAs!_ioYZ=N)C-Y(pyv$Bg7Z-8U``a72^r8PU&=+21+*ebUm!P1{KB$&g49=$;if6a~EEHZq{
z^h}C-5V9d3!9Y_m-<4;+x%oNOZN3sFM?d(=RcJu!H9J>NF0@CwkbwZ#SRuA$OpLU>
zL?GNtt6TVO`1CkCisvh_5d5jB$g}mB_c-!oOmDI*wA*o*3;(+Cb+axB-4^q6T>5=oU6kL;u|Erxu#`EiftQ#bFIh&o
z@)W-p3on+NU6BG!J%O6EWtigQJ(&%8n%_<}358bY^8*ntXu!3s{6U&^Iz(*x
z00^LFLUBYC11g?VpK%^q!c#*cDgo=c8N8mVVO5FT_xEw?!ij5u5RQs5B_7_J^BjAI
zVP8%9H!I)f@K5G^xiD?dIq*&MI=|Lk!>@`S{dls{lI7VoV2`bDwk%@J2&%NAC{n}#
zsK(KR(C{mmj5RrE+;oEd`*}6dhKn}NnfxAWmaae6aQupO^Ravpek^7JLU$D(48sf1JO9`h#T6=FFRbj!TA6?VZ4Z+W_+hBojg$
zI2S%!45hE|+d#4WP{ENwHfWf1s1e$rHtg*9Qh3
zanejAS=7fOQ{lKVzwvfnmD!;#bstN>vqN&j%!BHWg-UN-^(#pqZU#%n(+&bH0lEjB
z(=KF9cRQPfpZ~aJ<*mEIouj5UvHB!deF3WuI{Mf&#n09LQ_iHMXPfc8D_n5nk3DGZ
zzC~wNfj?|c(PmFfzRlkFrgO9^zLBIiWRFv<0efw{J>|>3b=kt-u{xM4$5npyfLQzI
z_@^|H+U8jZFyRxR@v+ReXKbTER?JLG
z_pk8MI_IBiyW2XPpY9O}mGfAyKNoEMp`r~McjFKHlj_eLgYizZyI{XpSaJLpm{0CE
zHF4Cy4sPVW$ry@}$G?6kIIH9&V@*6R5AuNM`p>CPJrOj78q(c8fo+U}ds|r(2~7^}
zyhmdzeyKlW4+l|DgXK#fe5liFem%TBlFattUC{S_kO-v+p1!V7x6EtyWFwNTw+!>xqF4A1a8!fqmB4`aeZ{u9
zppX2~7*whe8@DM{|H%}!yDTrrshnv>lKEcakusQy`WUQX1T-HCooq3Ypg5C_q{3StiV;gW_$1M;BnSbD>*!d4cFJSCO
zU}}a~Rj=k^4(??MYOV_3jC%UUSKr(Q1D%pRuKb}}g8wH-6_o3&*}_cPIXJhCzi-u|
z(?&mTArBS^n(3@<3WYd=A1V|%eaPl|H`Ubmy;LP{6^D&!EAb(#wU#`83of7mGZqxe
zJ6gKVE2;XXeeQbZ;=GyOGS9(&_BYBQ^X3z}9cqn!cL)v7H)x)2Iu${BkL5YYNy((W
zu^nXD361NEnL8*G8Wy21d^d-=i3OndAs8d#8;U(>_~v2`NZ*1T
z&K`v3Zn$MS`yU-k2H>AF(6ZZC*P+wH<_O@L9k=oe(${TQFjD|Bs2!v3RYd}?QpH74
z{IDOGbM;3TNd)wCq0ILuSnnY2evoO?{@m3;xD9P1l7yiQ^hZyMU>PqUq&9~28hZKsrl07jQs9u)u
zmO^#ARf5Wsp9BwJPT@Vez3{Y*+iSb#*kK9C_uXH~%_tzoh5!SY-sq-ZzJJeYpoGd5
zr~Go;C!f-q?@~XaVuL#Sp3mJF@Ij)}FIo_O2IAKXYlVP%C%A(v0q?Ac%or7X-;2n{
z5T4s_4FD<}*OU^OS{>06hn5*)kh^C_N2XxG6~p)pRDAgOT&L!($d%I#k$3WqD$=`t
zo5&;&89mgEcG~m=9BUX1ug#O>qWS&NXid?g72A$=>w&
z^se9Aelmw}7dIB@Z)5}j&~Hj>Xfp-8K$O>F$rTpQuRgX*GvTq0jbvT32WJNw(d)UU
zGG=F*Ls3GT)*|ZO>??x37-sYz!Y*queb(JhPPuKP&sIzcATkcCk|KOywjM>zb(3=5
zdHfe~`JxHwHEHY=#M7FA+u{Azc$Ue_Ffl*2Tk+UTo}WM`M@8aoEnaNVo*GE+Czs5=rYfznsH{lYd
z)m8vtn7zTX;ZawpW-KMzt}~ZzlsdGbAkk-ri+ch&_@6)t0dNUGsh`N))Wjq%*L3L;c4yC<
zIBv4>uIy4=qcrQ8+vS0-7iiET%MK_CKEqevivT*3=J6O7B-dto_|pKUb9~iM(+wi#nbQu8+C9RplAQ<;wjr5n-FRh0e;-x5aL~7(zM2MkU%ab)O69ZouA0
zV9F&6{lg;Dnw1UFS3}jCS=P6;92m2O81;9Gb~m#SY=M5?lZmF7(g8FXSmr`H*OOVF
z!i=LvHU;C3`QKA~&-VJs*=k4FtsapjPo0H6iM^`iMVYG!E>F4rDZDkE%~6#LGEO#U
zzxuoW@z@_BcoRTz$VxgXw@}I5{pXtUshi*Wu`{o7V)sSj2dUi-Dsa~3d4@r1{(^ny
zI%@o9?|W{G>yWv&<-3?v=D083<2386dD~FRAlv{}WH0O5S2@b*>mjk@w>yyn!&N^_
zRU2(shd0}q#UNDSAMHUDryL#usl3D5wVj#c5*HLARJ!<2r
z%Nz#BgXtyo>?F{Dm2aR|JxciYErxXM^XAMT;sR-+8rOuP#8(nY>ZGbPJ|bQltrCgn0n;FgGz>@hB7uvJTVI25##T`g>IXQ9e>}PopjR_0$icY{w}m
z*X!(s=wC^QiI(Lcv&qJOEd6z(FU^^(rNgC3b@u`e80gnS85r@w&*!B_GrfqtV;-++
zGkd_O>ip8zhi5zT0C70L={px&?vvWhOipgMSn7A@_T8f7^5f34!nD)&@`}JpKf9B)
z`)7{EbfLef&NJ8R#mUM7xIQtW*>{$gCRt?fWq5>VkMmq)d+}
z3hB5uWVSyyez)8!(k;?`TsHCvXc}N~SCz!sz9eq!AT2K$d%6NviT5OmDSnrc@~&OyidGTPS>X%MHR|lF
zojNX_X<+(xBH+UAXPaS5(a-D=^856+ducAEngmX=0e#DJ`m)9+Q$}{X;_%KTK^0`S
z)lU=!Izxsxi2vxW+;-J(6t?IUZ4e|gKw0_!Xgce-Cf`5Yj~pP~J)}FOV_?uQqy?lU
zL|S^32nZ5V5(1+;q`Q%n5RmQ^snMh6dA`4M&Oh)Myas!A-=Day_cg43Nr(#9rfmc1
zKkQm0j)xhy!yl53vH;o0==qs~JyjZS>13ZuR+j)25PCyxAPW$^hjicrmuhsHvhAb5
zf2vg*SVqeLr*`X()1?aDg13kY-*{kFDK0O+I(B6YG#*I2W@|zqZfHWg<;3Y)y8Nn}
z&tOZz>m;%7;~~BpSFNZQ#iQkKJE;Tc8l3Qy0E9Cx2~}^|ho5cW6k*VpP-8+c+tg4U
zfo`r`6Zv6b0Mr}-xD6tt&l&k=Ha_Q7{jTbOR>G#@!x7|i(x*Nf=+CE+o+-Ij!zTQ%
zLL!77Y;3gKu`?GA+lJ3#fRO|n_PsJ65kSn==XHrM$TguVE&INJkh*t%2>aT&i_QJ>xu(#G(`Hp(H^(3E5EqC|KU8KN
ziMh6ip=+5O?;sjq`cA&*eG^U4<5P~qx1KxVzw`J=l=dT-<9Zi_P0rl$HXl`>LX@Fuu^
zPP^@Ghin#I_*?NE7=?-v(_G3eum@Eb1V&yVL0l+`EpQ}Udci3cM3n)2(I@N8MEI{eIdYGm^RAR*sIjBJYpw@@^(kBrQLq
zC6&FK1gUOy0+Hb7FYj#r%po5A1G$v1k*a5F(wG#bR4qxbi%KSs_swfDenz}~nBdIl
zf5XeHEp+<8ALN|&Vro#@uP9i(8wbRFF9smP3lM2*O^ELJPckR5auj#UaAD-Vx!{Z(
zB{kDCm9LN8ugX;m#RfmY#01TsC(sB*;HY57w-1S2Sg99*$rKFavu6WbrwilL$AlX=
zq^x;V(g)vrA_$@D`G~rz&jPEdn-&BXaOpNy_UtJJ%EUz;n`OqJbs(hjUZ?b`Qp8L=
zE@`j$rT%NC%lr5Dn%s8tzQgA)23;b5d9NXLx)yN%%J*$zDyy(7d@IR?WHmt}oCe{t
z=|VSNsKNV*mv-}#SN}j@vttUG;cwSd@#X(Oe3_SGnf%_)w?gMNs8OE{SRAww`hy78pG`G+X+duOx2aB~vxVJc
z$&^MxQ|mD%9yzv)+<-jqcL5hzoA|2MP^#nD{8u)cY!k_AR;ZH^ccx
zk(<)@jdNvd{57?CKW&woK{X$`Q>3tG)}{O#!4!<@RV{`Of?Y!WzL~SM8G@;G@CjGF
zB$RVL8YoG>HzpLL7U%k=oI3GlH=@sVr}R7ez2jLw^lp&)eN8G`e-f%0NOetC|K8d@
z#ct|-=8auFtg9FR725EM46N%S1U9cN_7<|kPifEuFV+!JUAW>CA8%Fqj+FPzP8AUD
z#q1u#l;2gvCwXf*yKNKl?TEvy6GvpcstCCVfA?8ieM&JHr3r33>ng1{cYqQ9DUofk
z84DtVi#)VKZJ8)wsM7UnqTzCfY?e^_-%mJt#^f1}bU@1sqzAQZe|v
zlm7ha*$S-}Lz3+Ra|D@%kVUx2%h``JbIZU9ekz~gw?b2B+}w3=JAYsMP#?sLlHHm(
zVsPJFixkx=-={IW4J^R1`YLVzUa{gcV{~Xh-~(ge~vIIz~Rc+d0;u2gt0^NZ_rAm5!2R?u;7`l5I~YhYPA;gr3{I|_3shdIQ9
z<_u=_^}$Xj#nFSKquOU~XX)8-V3F8-DX&xdMdxTPa<3m)pIr?+RKh*;4}$BNcB3`~
zNK^$Fy=R4X>xD-~?9SMp3EnXB?i7AwByq!4aKQD}w2zZ_!>yV>6A&Wh`t$(x>IZUJPl8dk#`qPQ*^fQl31yF;^)f1p5vt
zi*uckk>6~}tZr;HlrI(jqPR{8f};@xaE?=64c8i2wd3ry$J1io#Mami*!454Cb=!T
z-A)+8v%mA{zhD~y*{jUejrsJkF7fr7ZD0Brb1C^sxEK=>GSFd#3jXeh_vtsbTcZ+f
z)L8w0>7r=&I2+h?3F7pA?hlzgIFN439qT_Ivt%+r);O@054KM|e8O&R-0XUVD^Rf4izO{E%~>)cr8?{)^f9#HZ8VjKY?9f+CFRhu!MbpMZp>gCy-|
z*QX8=8612ZZCK5|InNe(h|jTFT6N5>+ZYOQ$P3f
zaKY-JdcTd>!x97kfl}Z%+j#TJ-H><_&^(cGM#!~31o8W@UDH3*I*T_S
zEk{{}PB_?V60SvSPCMQSiiVBQG}@aTA4Y}yIDT1
z=L^dQQ(a40toKdcnF%3n{utJ?qb6S7)HIII+Xi=WczMahMH^E-c{i@SoOCSfsre>6
zPIw{SMdo}AlZ}AIE}=!Qdy$(qPwG?emlo+BN)S0+jMXEu``03hWKjmR7(+o&Z_)e%
z0P#J6Q*WafL+EmT+NV|b2uvs#Hj<)1Vg|I;WyZ}iXXQqAcC$xDoNoemd
zOj!8klI3?Ob^yI%9xMJ{=z{|w<*#i;**z@n5K_dW=w|>{xSg%tU60})5~7T!G=$Z=
z5?~;35?n6DfZ|)~+EK*c6O{=eX813eS*`BpqG)037isaFVG$ndoJd8Hrm4cv(YM7u
z(ea<3j@ZqC?#Qya3%E2rwpJ5f_T>YP0|h2=TX_mvP*#
zt_vEBDn1n}5N_sq)#rcmzwiHWm8XiC-Me^t0?AJb*6TC}%Jh`5UC9_73;_C;{qA!W5uK$Ko&uLgpVR;>GfRY{5osu`!4y3usXX={I2?@qK!T1$1tO9%)3k6
z|B*GUmH%uI5=VeAE?;RE>4r{@$U+!E+5>T=S-sz8UYJ1-mp_jXI&sz1zc
z$=TJtVQj`}2ZR+;<5>`_TxL&wFS2P0azv`b1nB*f0qHPh+?{39BH5rP1lL64E!^H;
z5B>H}6pan-%*d4kX>KR+Y=kXVktCYL$%IbXxaw3~MKX5;pxySz@!!pDfB~I$+g8)<
zZmHt?gyLkmrp175LIY6#y9HaK3#@2IJUwh3~$<@rKCDmg-CH0b#E6!X}<3N
z1=Rhz_BAr-J>6E&=8+HiLou$}^iIc3S|P3I@yMjhvh9#dvlM1M9a}?v*iR3Fxa<^u
zu%BCvXl&O@T~_%oG;i3!gOihDTTm1?O&mNBxpk#-Iv0(m`Afd~nGv(c@;O~)#bLT*7
zPM^*wml1p6B+%ozW&;uM9D4q8F;Dxjpk4uCR)e3^;>*y2TaYJVop_d;9w-kCg|(*D
zgHU*~!Bikm6F$j%_KZ7`nyjqT8cJXUCYShm!M<5fOU-h!
z^3{A{sMOK}Etn(|h|s|~DmDk-?o@1pwFjXJZeZ_yeaup#^E!OI3%MYDJe{^sc}01D
z9kCnash%3}UJ96J6|D~a>MK}T{N(1QSUcJIJLYbP0V!39?m;XhX`U>9Cii};aJ++VCqc=?91#vVH7aj{5txEM6SY6w`moJ-Yqw?E;J&3V`;x?$8QGbz&PF{IAt;yK+2
zcn^l`o`smg!%CTOK%T4AI{W3`D<#Y4C?MZ4%SKntJ+AxfU!G6@CjZ;eZ1rV4?lMLaUtTXA4g_Y6-|iV)t(*bYH`;_3Q%HXlz_74bfSOnkqk5gf
zf<22Lax1P^lTur1Tg~taza+k9{K#({X?7%2`rgjjOJ#f-J&!=@11*Szm@!-v<*|4n
z^ZwnN8F2vuzYXI}>^kw)RCb9&DrF67IS;i1gHdX}dN&KC3IcZ?wRV+q3hQ?zH~oB9
zP3%Zvro?v{efKimMvUYt#@yq9_WFnPAs#yRUY9NQeMfl{np0vBisaq3i`<$!O4@)d
zT5Rndl@`PCP_Cz#=RGp=T_2~->dvaFoSoT4#!ofaKg>ip5`JW1XDY)5%NMY%jMdMgv6&E&^oJDWD@#{;XtAp_^w0{G;Seb73vD_DF&NRpn
za9JqPLI7zqsmeTR5cXjEq1C9@`Wjk=#cVoGtig;M2<7czv$lI`!&T%bby+k?mGVYt
zk4DySWGhSuEU-0dEZ7byf4)U9dlFw=y=RtIMpmt?UtFi0yt~1{?q{$PGfP9{m3tG
zLYHK!Hpc(>2hYje(A3I11d|5~4NbS#)ps;BfA0);5jalB|0+qRtU~*S1*rta_SgBQ
zCEn7eRxY;QwQzlfi?lxk=vApYsG3~g#DkX&iF}{lA4zW*|0pm5?~-dW#oQU~SR}}6
zYZC=}+w@bpr@e{HB=>)P-INOJN4lk(314P8j69@Xw%h_s^bKN_O1R%itZ{Fm|6Y|A
zC`c{1$4pM#GXUAwjpl2@Il9O)33#Qt=elIMTySScXg?Eg^1$$sxA0RbthEbhf!6^~
zgi@!z8B1p|F7v;daIRL$}8OE&E%LLal(V^Z}d?fGnL2)Q}_x;;2nZ
za-ovH_~l^tVs(b#XcI4k954p4nC9PaMT2x&Ai_C>_>$F8HjAP!zMTU2YU=Xb@&EcT
zs9qp^QWQjYkdc&Q!zCL}3EHHMDG>l(0x@P-SiJUT2vgkP5+!IlVTo%oM7W-2aH;R|
z&TMVGH1h&bs7o?E%Jh0RTkuE0vHc+qYG>L-x8!?=CS~9jUy@C3k2Ce-YK(GWv;4b@
zXRB&_Oeg&;X-@pOVvo60M&b8agY&zK%eR19X1BeIaPLT3Tp<;UzyO!8SDv+DCH8Cn
z8-=WrXH35!uu#oYKgqSthm|yjhMy`mL7|QFy%REcZ`C|_9XHoS
z%XMS)SLzY5vlUa&3$y`e!UB1jGR-K~+qk|^O>auTGu`kwjMZMc2iyR1hmZv^__A$I
zgjcmwol>ZMHklGcn$vkmG~ZRl709`?Z2Sr%MEX^=OZ@*Wk#MClmF33E*Uaw7;45ns
z8&Yu8pa$i)QQwGOR-(E{6;<hDQi_j`6FO?HoV@Sw
zf~!(@YPN+tIZd{gLc4%K*n(}OJY~v&vZRT6P5B+yp?vvUOHsL8Z
z51C|wD%*j7nFDAKG#+USbqS1h)tRC>9HHr#T)iY==2$3(4HaZ?->CGvL#~#9;h5=B
zPyRVk-u#ghK9NyubDBqkSXFRBJBdcY;)aUjtHnilylw<@7M_Qm33GYO``fu}FGx1D
zY3}fI8TwZc!?c_p^1)g`9J$!;-p5z*6g~BNR9HrsmPP6uT|i6&#wWf+MY0
zi3HpqfP-cmj&=<3{Zy)lO5KbvhT3=dY_7H;rv_lLom9+JrvhJ>jG|mw+a(<-RTXC8
zdA)3WCl3pDY;@yz)sIAqBf@xX=kc`=sP
z-Q%F2M&stL5i*qa@~m}nk8e1Cy*?cmIY3*Co;+R`u13GEZe9aw5j%^8tv*qKfzQAk
z;OZ=QWaRylABW!IaZDdlJXUjp;iZXJ;dSj+Sl{4Vr(^l-M^et#8cxquSz?^^6{+-z
zLog;ul*~3kDqs63iofeYI+8S(I!%pHx4-qs#`-R3YZ8q|<5Gxrpm
zbFbtKHjZSC-_YV-O)-1`*Cd#<^30XPP@Yb|>fgxdAOxdK}KC`fgRHW`IihP(+GJP5h3TxB@7|UaK{(@m~hjDqxY}0r?^&
zFJ75Lb027qC*DQh>pYNZ-K-Pi0Bq5es42i-u=)(BCG-mQeWc6pAwIi7D!`H5PT~`=
zQ4P9RYYcDClGr`bY;|eA(=C{!_=6FlgwVwaO6jGVDm4uIn`9vX*^N(~C~czEKk|AA
z9Gvg^P7-z4u6M`d%d&qK#W9tK&~DZ~)o_&!DPGQ1VgAXt+x#IWH*KcNRQz0}CS^E&(t=0KPLDPw-;vl?
zUSukS-o5TCfWQm~JqZo{IC7f-dYWVTBXO_FUk4kZfU9a@rO1egqzue|Z3D<$>7<~S
zBQmPQ44c+9GZj15qSkEjcF-*g@$~8-g~+j8jkV8bax*2{A7I4|zA6z<67$)&GZY`&
zSwC_EYffV6!j`1{i7Pp}XgB!SdC!(Q5aDnw^FNY@+)D9VeMF{tz*D`(l)z0KU
zc18|buuFx+$h)d6#NS}0p^AK`2N4Tu_`Jwd
zDL6#k5^i%^e6@hWKqi^N2oLpX+~RnTQn}u`RX?z{bpqrSin(O85{#7a_@lla$v*Sc(LLz%>ylwDIuE
zL4x(E#6z}VN6??@*1mGx$UKG34-Yf)WLa<7l73uo-}fDQ&tpB@IOUhN%zTlkC3M-3
ziF4PqQNFbNj+9}3fl0=Bb2Ua6PY1e!#)3d5$_2-R(wBgx2o2oQ&O5z{1v?1YqLAQGhI`{zo(o><3B)5vU(UVCm(NrS)Bn5OHi@I
zi?~nYh7#+sYzx0(!YFo+vzK+t=W29lj?)`R1B}z=HyR$8w!z)AMKGnTXS_nI3_i^6
zW5Tp-Y$AiP6@J4&tpYe+ra{ET3dtA@y_KZKJ0fN017eEgynVC=21}Ek)5yF{FsG)<
z1arHN*w^1o&<);StUFIte1@-$_woJ)O)B;;Gw&#^>(L$#9Ib>LO@%-+5K#wPfP!c5
zXe016>isJ(7?$sNz`>_zc)7b($q+|NgBr1ceZw~=-kO^axl$wvt=B0r*)b1>NW?wm
z$(8Wwi)15R-~D>ibdZo!>HOhefAIwr*pXeYA%x6
z-}F|rvDF~_XKmB>MB50$hc}cSA}bK!45aH?FM-krJ9Nlepp5Qh?qw1uw0^&<%4y5m
z3e?cOqfDqB;~WZ!nD?_iwmZj+`O>`}ODWJIHz%)w#*1=&drR}~CWueMHF^Q%e2xAmbc=du?yrGgW0j
z0(?r0h6IV7cYDojv^f~6)J&Oq!X?UZJ2bA4DQlqaMhKbS_7c*XHkiatoLNH(}PG}ge6!EgJ5
z67+jfRGTu6nAlyBWR2|&$nXcq1I@#;v;PWuPTDx`i)K>`{SE&q#)1VN`*%(F4I4Ju_Z$eaLHjKaYOEgq}&TZ=$^G>UrBV{oYB7zIR%CnuXM4q5sPda%3sv
zTPl4LMO+-u<;nKx?>AzcChX*2M!B3DcFfVwa@4lAOgV@DuB_kZ
zqaosXPmVLeNya7Tg-xInkn}UY1I-95$00vX@aItnKy&0;{YNJHYs4<5d&=F=-z5`C
zy*{>(5nmR1En^?qH?MPRvWlzlo=$0~_xMF|S*sjOd|3Fy!B9Elyq*+eC;K+W$RM(cY
zaS?`{=dEMV&>CVRI!;ur$#$}SeIY3}n*>X5DW{^zvC+bTAT-VqgEi=a%8ZaP(}SCIgBw)GbHN4~2~B5aoqP|a
z{v#6~-u}#ry13x&)!E|8;?EYfoOE>=;jPEXUmTZJ&NohBX#C#*ByS8*F;_=-)#4ye
zaXKnz=KSAePLM1erYZNTt_Zs0^!jOzFp@oHe7B6n1JVS&r#$ZiA1ZJF
zJkqlPiS+5djKPVxo%QrQC=!IjSaVEc-wkLGBmtdIbXP;y5gYR4IjUzv0_j}^(V84j
zo-{Lc_w!dv9c}p;_Vbm#=K!U3B_FG48?*{UV`ZT8$(OksU^FCrI-_Ifa%HrM2Km3(
zL8OdQ%WWIX00X1++P@Sqpe>o-Apn9($@$KSruX`=g`HYXd}!(893NBgcs
zHnPhf6u%wg-u)-QbAJpZeZMski&mX0&E_6DX%jmh7QK1i?BxuQ;U}4
z!tOIbAvXk}j8^){u|fF~EaYc^Vv3C1gm!l=g8RCfe0pV{`QRisI#+P(u`aEcvNWlr
z39+v3F7pfa9e>{m^{UJ}uCSYJg1!Je1(2ntb&?~2{6)^sRec-(K$NXQi%;a0^&^fr
z*mg<9j!cs$l;gQ*`Af7HBQkiN1W5vYgu0w*Df$z1HutbDWr{hQ97yh;KZQXd)Y{^HHuZKD{V%xaD0~dfq|)$R|!}
zCXh<8%B83n0Cti&m{a{a_5wT(eQLdw|WE-*!rhen65YF&6NAFe!lV
zHQUf5D9^1Ul763qme_`fd{<8eF#C<_&gn^vo@1`rW#r;Kp)`}!lL%~Oik~_@JnQd)
z7?Hx1u1NR4en1pOETQ@T+V+Nmu{>NEavU}sozX#5o##q%Q_6Ty(R%1ivV0`=bM!)5HD{gUC(xiKcg1T%Ww-RNtd9No%0mwBg^9SXuQ>Xrz;_GvVS%>cT
zXS07*AaR!yQ}rd9u%#2~$M}WZvY|81t=S5v6?As_j)q15KzC}nF{_^zsWMr}`8A(W
z661O&V(?9VAre7E0vu{+7?d(~lMB#=JC3ob1J`kN51PEbsj2I`+X+><$%_1N;sz@(
z@U}M-ldI?w9QKLs@HvP((G5e2f@@(%rt3nB6B}#yoSk%0^+z_^UQNI2TP)y>K7=i_
zmY_r)5T~?6>^w`zNVh$Qovx2U(R;;wce=NUA33ciF+rD{A(%|bdl78K<_=iN23A|I
z6s-IAhnI>^On|~QTOWPCdrM%cAoVL%_PMP;0mvhDVg!roQXYs+#WUO)SoNKt%>h$n
z(-Etj+GB>W8Ofg}y5Rxp%BGK@cQ_lMMxm;+;G;VI+$`9Pm1*fXZwOiq&?H~p0f)-x
ze&$vFDFpiVPR#zYD&>FF7F!WB(e>T$n)8gB`n7Lh7B8P!D%U0EeoN?H1Rb2{vSpr@
zvmlE~@NdxL_ud6pn6K@XYknWtJt
z%>SHaX=t`i6&P3RJ#IE)%nu~F5Jz3f^7mWry!|zuZz^{3eSSoI?s&B$CXbF-5hK95
z-LqYpwjwrRX}+`5-KrUK$r?as)Vwpt*ltSezd1LLn<&)&j4VpT7odVQKfjpdx12f@P@Z=_$~Vr9^~_{tA;{;F!YuPl
z-rkY)+10epYq73~ZuJyBkSTeGX~G}=uUK-#i1xmd-%t%XN;KMQIxKO
z9FK@E|Gt?Y{Mg?|+UmMLv-QL3x4&q?E&9JhAE`aDu(q|=4Wsq_OA^)U_^V#)>C}pq
zk~>bnkL_zYrBC{SnK+wMKoin_8Loy!sXdXtK3%^tJt$gbZ%J@h)KVu)H7ME%<}$qnRzW
zH$RDGXjQ+B36mOB$5t&biJZR3QSe)G}1GP#X{E$>#6>kSaST
zqnF}6_LlhXX1*mhy4UN7h;aJ2Y=)2y$9KACfXqTffbgSdI8u9DQ^3>=2qGSYy!(de
zHxSE?U%a$i-^+Ht{Gm3T{4t
z{IbT$J#MLsjSi@B;lbp}_ljo9*D(2Pp3g;zc$7%GnUo64#&`FeS*|
zL3W%QL%&LD`|?1MHlyi2cwY)~w$gQ>_gk=79v02ql`k;>TQwtY*U!Rg%$5a27B1S}
zrT5$*7Eb)_Ni6TMp^>IakSv8w1YHiHEI+VaeQSGq*A~2e`I^`_nA}2WW_b}xq5B?x
z$i-g=OKtG6T2Bu43K=`^78CG4lsd!UqRp`sRspk5;&MgczSjuy$NdMIjMe*(_wvN~
z_~lvc_AM}R)B*kVaKJ(uy{<$50*bnZ7x;7w6^p=>Jm^Wu_CL^q)8$`}CSr?W02-{)
zt7Rc^Q$6%>$SyKWOLc>PZS#n6-5sTa%N0d(uWma4omB#+1-fOjnU`piwsRHfQ`wE;
zj|xI4v6raettGM&hsDH_MERd_6){XqOsa3ZEb-X>c;JJJA4Qi(l$F2qPGov3TnX0B
zYqh&R+(I(+KydE4T-VpI7CJg3i^l{ePHaWh#QTfg9T^`srI@62@;bM8fn#DI(1)rl
zetB^L-V}_4eH)l54(od`k2^U-*DI91B5cN$i#PA>GEm@7(KaS32$9|jQzT+n6)iZ{
zoIYU7i)+M9NNzS?N%$g((IQk+&Bxm$3f$GUn}mLz6%j^lK}-}ShCi!urYi%
zZKA|@Y~B_SmyIw1Sr;TKKP8pEjRqx+N-cYs$_I8PgJ$j2{O*dEZYRN98$U#s4`SK@
zD8vA4@cQMHq6d^hAOrf{jC&mZ<2G;#S_w?jAfdMiXnJ+{ZT8EsgtH{n+&Dr(&ZA58
z;?MyDgFUt{zE~ZkY^Qf-v#&^tems5X75nJrRD-PX@!|1NVYDyj3*YV7$p}M3Y+;u5
z57I>i)2;N*Z{tVSqSufbuK1`gK-ixW(x;zjqx6`}RwnSQ;YXS`UB5@^xwVBI`JJVu
z(d6VC-5NG15R}Z
z#`FmKd+5;q73$T!29h5Fd_H>&y`DW}T+_EJH49uFi4u}n2&)#KNf(Z#3cSC6F&1XB
zk3#SQOD}`dwyQu?!UhTC-nrRX#pt(7-c0!P>yC?xEAqisX?u7WYl$|NFo98a-(@r+9l*NXzUQp-%W)t$hPRYXVLC-w-%eRuX>
ziF=M4O4y8bm?8(8b@;z)i+%4Wlsg6Wnm8kY8Uv|ym*xU>Jc*|8eN9b5G-eaPF7jN2
zAa};*j@y6{RFnGX58u?!)H^w8KoA+?ZDVw70}M*nAx%S+jC;E$7M#B90m41kZ&a)_
z!FA+{Sm3#8N{}Vt_y6=vw;y^XqDK}b84RU~U=*Q=_v
z3t3C>J+Vn=QKUM9BSsRT^f<1TFb8&{S!}59HZjZuTXH8w!6x~7|02hh#3A
zut-J+JIWPlDIrkpt(Lydc}8&ZI0*+<+=0cq#P5SEs%LK=g4oeC
zO-%7K_5ASE16O2v|3!p+p{@pWL|JB%Ep_HnV_$)F}IaB@#mOKLR}Lg%QObrAdG4>U&gbL%>!B?-jzysHNmDF%OuB>A+gSo6cJalJR@
zO#``E;|4YoUtLT!oRONXgs)iCmi^aVBy!6D6TU*rPi@n@+IsckpvtLW{3et7mPz|m#ii=U+7B6)
z5%$rmvRY+D!t9~D((ET53&X>!40J>2%nIA)Z<-BXZ=RZsl0OM?KTpAqA8#2W<2DWp
z+QF>(t5OJ3pQm;1->M3T#?|k9Az{R>Qg`j5(%h39ir9Esx#7$Wxw(jxmKq%55%}mV
z4B~#V$^ZZoibNum@$eZ$20%xO|AUo$
zYGN(G-z-R+?|gALP@tkIkQtx4!xV8IJ!5^67F>w|`hzk478I$|5vDbLEUuBq*3=MH
zm=JHP_$q#z2M=u&y#CGP_1pktX?Aqbr1xfOk;$gthvockKjoJ(;>xbYka^wcd3{vI
zGP*2;V>DG-&P%GwQ*ZFUnIp-MRW{V)tu>;1c|kd?G6$2`&dedS=|h>RkMRd-7B*@Y
zK3ivY#uz=*C6@XXbB@mfBXGtkb9ie?HSl+I0wu)bVCPXR?T@{Wi!4h3FKl9
z`zlGAnA`K_T_NLPmt(pif7zqHvBmb~ONuKR8E>1x_gMB6x+2waU*ReW4-)#x{l{4*
zs3H7>R6EJQ6;HuB(v>6$J^-Q^2Vy1fSzD`&;ve7b#pnhQ?o%-iq`iB;$2`;hx~iB!
zZU5Y+5|d%l`ORt|-ezdhjZ>Wm{Noj4FfYh}UwJ*J^Z+;!p5oA9L%ywj037890{=i%
zG?B}keVuzJ@1ZSEvNvV225G^L18Vn~?oWNMh^6k>6>Y1&WvY+nxBI)JdUG
z0m@g)3w~rt?ri%iI*HzCr77l;kM;R*de=*r)qV?kZ(HbHHtId`b?*)PKmy%*)%bGc
z&lJVxYk1)1k#kra_&8jBCG>Y&zZ$_ZGZ3yb5TVA)t*G#HwKIEW8uO)i`%eDLRHpdz
zVs}DZ)n@m(N$*nH!3FkA@-Ch~gNQx=hpQyYmYCkXe!ZJPH}1=k4i_leOW5WVdu|@`
z-T~N*r88_D{J`YEF&3n8k-ycYy&pTbVNfXrhPcgAOT3L@lRi05H3%7i49n~s0?;=6
z6~NAQ2zl6CU9`0ap>N)r_sR6^%Bj;3DE;w6dnxkClG_NfD&**}Bsi<%Ham|FauqYr
z;1&jqGVvKUWcS|URSO8_JM2Wf?38A6Z%9c9B`hGvlOvlAfpP{rz)&2Lhg}s)756WG
zi4#5B_(`n;3-n`(Om#0Fq~v~+GPP<+CyXJhYoI7afb+I!*j;6p>z>?aqp&Nk%P9a#
zZl?HV8ctTc`nIc`&O*GqK12l4Pq?deoPJ~^nMrK?$4%fOx2B>-QAjqUN?E1{Hc&2u}6V2
z+4*N-2(4KvKCF59<)zU*h1ga4snHPyQgAOWbRpvs!j^ULWllb^L*XY9;|XO%}i=wu9$7-u{P`j$QEzvBv7ry8lJ
z&kmGzy?bm9Y$bb7zQon!DfXuvj6WmGuz~)YdKf}B0$ZOl7Htiv})L@a1Qkn
zfS)hhXc3)9B2cUYiL4I@xKo92cgLyR*PV{a!^*VaKU)U!KPWCE`v>?Px$|jfoLdGh
zGHTvr+uUgY0Ttz^&o(4#Hb}yPgp#^Dc`^sC7Lzr9Z9l%r^|K-3S6}}Js)%vb#T6AL
zDoUEsyq7yw=?g~jLqAXl6LpqWpb(nPDj&y)F29yypEfV{bWUmJkh;P9&7x;d#jfL<
zg4a_mYK8hI7Mh-&Mn-oEJ)=%4L$w{gR4S_M_mrc)%66j3$`fF|AQF^{`D%Zjz6@?EB5mJA|3d#cpWkcLKOOr>Q%7
zToYp;*ng%qblTbN$IC{FncDyYYsQgU>Ls3`gE%qt6T(n7;TEaI%6sz*3_de*?__>h
zP%`L)19D_Y=_ngo2*Nb@7{M!JzZxQqz)yT9ggfOK=p7h&l97m2HoqgfFgSyuNwVE{
zH3q8-?on-5X=?g(q4E#ZnOpCA@LB|=X}))v%qqRY%^ViJD?#cnR(tE618#(dh$ih%
zT;!g=@%{hT|slHf8#kBK0Wpud<(drCmDuswuYD<{$O-(TV{LS=wQZB^ikZGU_H`R
z6wl)NE+7fH`uSTR&hOss2CWPb5s$%fX{9pQFR+i_#rQnIVB-OAj|RdhLBGC2McBYK
z2a1tMTo|~~fsWxASis8?fCi>jUt1XU432>sJf<_P_@Ocil
zaohIx^%D%iwUcv2T6$Vp*Ty)U?UkUs|0kpA(eb0bqT*6?q5BKE)xiYe4X-0!DiZPU
zAZcx;J3#WP$G}B5JSW`BnOhG*U8nv7DT-@&(y#TU<_j)v9eyW=Et{eBW7%r?-(cJ{
z12i0p_)ZxDki)9lTIjwa!Ba%q=@KC7R{qs0jtj`q4B2$1d@SSZC9%*g^12I|mkQke
z=$I8jFt)8fFczU_QriocCsD^%#jyCo^h0b^;vsfql{797nl*++@4wz0wZjgh1mvhA{?m^PFJ$;
z``s_VNfTX_K`W7c(|uF=j(qGvUWNr_W8B0`y#A9YWOQH>RZPbIoJ+Q
zoecxW6mj=H%PM0?Z2?Ii=^cx3o1#n`>Qt`jtW({;VEuwU_Tzisd!CT!zJrYfr&aTbM2a(9$yM~yyB_&
z1ZjE{gx%<1xrZgXLFFcKUcdP4cr8bi2ULZVS}YXWX8TutQn*XbK?Z_91d{~G`@U$WJEb41dN=#>33>0T!H@P4Jo2X~DJgbRC0!DhIW2inR$GEs)o?40&)=kN@w*T2es?*l<2*ig
zh@n~u!7n94?j7Bnemz+~>E35}>aFF}?*rDVPw>18W!Lqawy)#&!ykWEn;kM&o;qpZ
z#CO;ri%jk))bch#@S%HU5IqwMT^k1fKyhduRF}q-oYIzLw3Xep>YUp?688+FN$V`^
zvGkc{pa`U`!sm9b@Z|mRcbvqw^L7w@>qX}&8gdO7ci&p+FqRb-(x^tkg
zhK3Gz75;wt!#Icaw_R*M3xEcv`komOn*Ud}YVUwF`j{=ptOXf01
ztK4u;ueMO`ymL2}JkYrp+SvtK7Ct4}9Ml%E$b|%X%zD@in1m*H1Idj`F~Qy2`6c7!
z-fGG#Nz<%pL~jys*>LIWt?p4`$7Sp|fwAVY*rLy&kBvuD{D@(inNy@#1SRJP_88(7sLZ5Q?TU>+
zCh<;NAg?iFQ51b+b@kwHq8WJD^flQGi_DC@MWXmJ2{^+VN)+r&vJf_i0O%>}xoeMh
zUlU&)^ek4!Wx8Hshi=z5MQXQXo0iz72@Wmf6Htom6qwmdRazgB)6YDNLb!+j;({hz
zO@=0)a}OC97aebPU|LrE)KQy!GNv&^y&
zJ+q1PL^BDx7JPPMnZcK(A(w`W-Z45@#u@;4O85Znn}g>mOIoX(Loq{Ug26dIBx@GG
z1B5P1!zj7A)NCg1H3dR}*Zej&=3vzQE|1Ddhd#eLLkV1}kOK1K8XUd3nD_u8ZIE?a
zs6*~nijvOv#7!B3FLGTtgRp=uk?P&!)GZ(s{Za+e-iYk$FQ(gcTC#)Q@*7Uik8@oV
zXe!2R7?VvX`c)7q*YV)we-SDj5AF?tJ_>d@iGz><#eEzU`NN_v=I5Ji_PSH?Gm$u!
znwqZ;Z<6ib)Dv_sHyOIFfZPl&W1LUKByJ&Aa5hx@9d%G21pi{~W8yvRm*H-I{cX&5
zO(7w{lWnZ=Y-9fWeG1v9c?oBEW!qaEvb8A*tG+Na0nZ(s@0Mv;pFgC3RQ1Hgj9vL^
z>KYcFh6E#guwN2pf6LTA``)TB{rDBU-{+>4a68anKUrG;qpX6>a!n47bzj7d5sTL*
zFl(2fXD7}%2i8;Jm>uC8L7>hy7Lwb;-`vDyqH&M7doF(H5b23vA1;kcJ;4zADb^7p
zH2@2K3kpdippvp#&>*hIV0apr!@?V|l}QikK22&x!SrJ~uOyDfr@OIcljc=k5`2vH
zk-*2g-%JC&U_X33d=NK7_8tbZUvK&)Oql<51pZ=DAmH~sg$|3SxYwI?`HW_Q$SAb;EFr9--h{OcBXM0#5GmQ;m?v=+qr`PV>+2C9UBUOzL942H(dv1K5)~1{5e#WW|isw10=}4v-+6f
zJ)ty^-NN_^-U*3eMEob6z{6d}4N*L_{rYh17E`C80+r4d>941QvfTa&2w
zEHc?X=AsMu8ER!b-ez@W0ALs~&GW$PtGYdx5N~J_ijw&9QGZh#dD3gPjm^DE`4sM=
zZXZ4b4UY~$jFwyr)TAeOaF_HJR!(fsm`~;{^^OeO;*9#)Isu+l*>TMoYyH05{#gv?
zmpxi6rPkd1S}JL+*RJB+z3$>Skrs9znJ^MgGL|%dA=8u<_)t#ylj#a-wNVR{$HHqJ
z$@_zg@CIy!B0A4}VP>=Z?6Rjm(Ek(0XFA?pSL9shEj^3C1t
zAin&AJyb9NIT2*AaMM!g-j9stTD4tH+@*)*lioSm7V7ZWYxR!SK&
z-QUJ(ri1ApH;PRVxZl0
ztUe5PHTXfyc?e+QncUroGt86JNY?n79UU@IRZ-(S=A)SK*BV_~!@)$on~$_FT{RMv
zEnVsgkIQ7qlm|Y@chV;rD&Ni%MGCJClZaeC@lK3gqKNxZJXydWuD(f8vvI(^*I>*ip36EjESSQw<*k3n38c?Y(
zRE2{XYug8TYTWi)>^r>HtB+>=3o)h7-aYx$ydlAi^IC`imWYNOiVKUwQcY8ZFJr%;yy4q+KA9FcgSD=Xi_%`Fo(ocN>0r@O*cEw9}_h?Z%9WQndC
z474!+(X^>wvclYpbe3gZH>!j>d*O6bK8*z1Jg>Wg)98N@SukuLGO00oC;ls*j=i@lJym;*+w}giHX}A6nI&%i+`P5@7
z5V2I;!nf=lxM{doIy0daYNAq$c%p{m51|-uSTa%leh=lEZQwVv2p+}xT|Daf&hIv8
z3#ej`IQij10rDB*5=O=gdh^%5eZCxNVqur1!xt+pV=~xKE=i}Fu@bW6rD9TO2)@MD
zomPdLH%A;#@iKboU<>SqvthXV@vr_uRjF8mYpms{u2zYm?r7nOrqm8a{!;Q!U{DrMH3Lw(Gya|9w$6<9Sj9hUot{3tg18LMn#n1?u0#{>{N~maMSL0r8#xFSPys
zFEqbe;$gT|s#wkuseRl252Y!FrM;Eks$zRQVHVz=-C@^)t
zHYTa#acAj)bDqm|4y-dEo*TsFh5U(
zi9?Fn*|#`L6AFj&3|ZfC-f9q1w~X1NRr-Pcw*>>Gm4GKX%SRcqrEpuyiy4GSh;Q{zCY&g&lI(ciRHE
z`HR8+(MsU?6Z>M01-0tlF-p>kx4qbu+bkDM04q|wOZ3S_2-gh0Rq*c-O?f;7
zSRHoW3aGR;dNED5;a3-X9w;sI2-t+I|CsMPtHSSBK`&BErew}OsdeSLEFOT0!rLkt
zDRGah>qe@J5?en2PT5$ge%Ol(R7A^NY!k}*=X01!4c%YJ_#a*VeUNC_94MP$)0y+V
z|J{XFiGHSvPj6EV{;`Fvz!{JU!_7Q7)-hKjRMjV7(E#=V&w7VN%;FX5)Hc?uj$7C!
zyJ{Xk*|S^molbm~@H>C<=2qP&vkBce>vWQAgA(G}jTdeppdc=cU3<)<4Ql4p#K$E5cEl_Ijmgy!_n*A;#)@{nGdD>vnV
z3uqkHWh#ny1+6@b0qbg+pe`6C95;bFB{E3;f9#C%StwEz$Nj2ZIsYHo0gJz1q%@&i
zbBy^veNe)%m=Ql{EA$`ZToCU1@PuT*r?-cr|2O-D;U5_&tC^15{0Tqq@A(^a`%FFF
za2)^qjP7y9QM70Am+$A*qF#dAGBp>&X8kuI96rjr%Z&j<`keirqS4KH7I`7!6xRPI
zy1HKrI>7J2rgJi@;DfyI3$?{C^k{
zX1+x{qE;QlSpQ0!4U5j!)w0yOB*KtgH*5v6)D%MReY)7C3pxFdms-xuj9iihcOot{
zbx8X3OQ4g8^`T(XG|UD@^)zq{J>7SN1lfM!qtF!<-epZkYAdWv+uC_?m6Z
zJDUx6^0@W>LJF+KEiYW8*5co8z6Vok5Gg%OxeyNK^D@keN-g|<34OtFog;^4@yc!!
zYCj^JB9nV^;a9oQr0xr_3zmDDJIU8|>TO=^#@K#buME#AydObuCH`Wt$*AwM`MA2m9hq`#m&qtyV8E`8AEWC5JoHtU8}
zGMuGVxXwC4z9QOguFs=Fa?wOsBa;-54?3`P5J(tq2tVyyV1vq
zPd4Jz{69Me-dcId+nQEm0t^dY0K*c4-Q`Nc@633^28`=}@6qDP1#>jP9}ek;t_Yyf
zxQFSpWb>c>d|86M?bn%5Sceeb-V;XBSTl=Pi?|-rcg7y;D72cRCz)q;`>$!
zV$2Z76M4n(jq)*cqg+3puYSH0%jvWF3
z6xFPcz*|1lZ;Dh=-?vmHJcCDYr)fmYMtL$esSYw98nD{5c&G}Fxkq8caE(&LNj^mM
z^_~1+kvw7p$TZE9005oY2BZ+4jLe0g;GPe54o1f9e<;MnP?vV)&I+rB(;Jd{%!c|!
zMY?3Ya5C*x8A}|z0MGnn%=-c6kb?NO{Mmlx#mRHM-?ZX;Teg{(fhUHA{dDBZ?cOWH
zU@L}p%Tu*R4tmEVkBkS>DaWy#-=lQuT3KHsLR8peP7;^gCS}j8I_H6E5hzRj?z*wW
z_%-6a`~6FfJ@Hm3sYC1=?@B|=%(PtPSM1MYvU?tUEX@;20|$Dy3kunFjouNPgmb0e
zFV~=y*VcwXc)t2!6La^DAUE$Uoq6F6+!$=wzYgbg*4Ik6mj+*9Wvc}&N9;CNYx
z-MWr$(;=9brqGb7zOb?tXCF^aab6+fT!LTxXpw1UxNUQvDd!@+uLO1pN}MP%fr(@J$ey+B}1bYR}n
zuU>3{efd+5puU5UANpDB0SuUtl94En^fzJ$|E3eCgV)mforfmk!4TXN1FXv3E`Aue
zr)bOG3(GTa*!nkReWKK>lSbxpLlws?`rvA}sK|fAWmmZEK^TPw=sNqKpf1-M&y#F<
zO55XG(3WgXR4+ZeL^O-?@7)8})P9O<^7hG8>RfKDH4(t%ZHT*X#KIB(7PTS$uvqQz
zzt0M+v}u-HN@U51^8NYW6CjB1qg^_!DKx}qUyA+P8U0IZ^NcY~{pD9T*O6Aqw
zxmy5Z(70GJ>N+X-(#JV92L3dGrvLVqmX3mQ+P|s)P6so#3M7xsbn)Y-Qg%0i`-EPg
zBNJ*sk)Ob?buY^A%O9o#nI{*@z-Q(}kuGL=^+#}HyHsuiP-m3B>2B|IomEWZt@&VAaLwe1ia502{|iNNRnhPtj@7pb
z76s>i6%@Tm1yK&+_RH~wu!v%{Ykt|tL=|j`K^bo~duRsa7k9IX?I<(F?;c=dj>y#M
zRrg?^6P5pc?Sj2Vh&`*yR35sU{ihMZE}tmcL{W?j8z9Yd{)asthz2i?7dWZNEp0EM
z2XQ!!i;E+>%u&BH#hnsLIiUWzs_0m5?vhl6s7__hJoA24
zD$Q@oZLHH(714LaP*1ZHK4CGaCT1y}YrbcXPvR9nk`$>H&VBV|ctDfXNjUZW!0g36
zTWOD{hxdfSR}NC@ZzewO>^sDVt4&=f_acwP4^m28;u6;~!W;f9to(&;XxJebr3^v5
zQrV7Nn9SXiuWiTEcXmaJ;^#v?hpBqWOb<*Nz+CMHIs)dFP2F0~2l`_gd*mmbv?X-I
zwN?@MsEcCwCNl)Lt-W^E^>!aMn^3LOs_?QFs4Ee`Wp)!^^hd-o-vOrRDAke9N$}jN
zr*sZhq`JD|a!`!4(N)+RcCz_T
z5FViE=`z>F>8OqMu?2MY)n}$qf5ILr$I6Pi8sq&yeEafAfRYlUzrn2|>k(JJ*oSO3
zvB^37;>;9viY5|ryZZS=Qxxh@ILi6rNX@Y)li^Ol<2<^Ro^~qt-ythft0Z*LSB_uz
z_JX}1wX?e=kNOBp;t*@GZ-ECZRv#`JoJr6AXh`n-`+qbRpP_bpH^1HD9!i!u-OO^0
zaOw)rSt&X2DBXkKrw!I)hn-Pr8X^B3zC}1B;Lm7*#=b*B=qOCkyP-C(Di|JY+M{!S
zh~zj7U;x6{09fk=vF(P+Lz7%ebi_HmHj0hOQ+dzm9*`-(zN}}O>9Y?#6}x8mgL4Cz
zfm~l4>VEm_`wB&?-%+n-u7~9`m)Qq+^;7PJVHff`nVytLP|Yg@U2@{xQA6?H1-z==
ziV`|K$~A2Ju!XR=!6CEv-)1m;rqpj
zDn+becoPzO6^UoX_3{Cm<~g***t)0WFLCQj&EWsYiTI{atLU}UR}f%q*!kFH*YbFX-0S7VmTOftt5J67i}#Drn5+U@7f9+g#N4e|evW<-
zrvI~p@L}`83dD(zGpjdlgaCsyjf5iDCWOYCN@H9AfTRn(xX|?3$DVQy3Y4!CeL}-i
z^#AQ+;GDGk{76fplYoWJKF`CnGW&Lox}kW`5LnU33Dz3#1HiER!HE4HDb#A$S6@~v
z$B(b9)2s2b=An;R)y^=FTIHow9MrnM{GnS#x&Gs+1<*mju7UH2KMnrnA5%4YoMgKJ
zFf901T3Q5VuNQT8Ge_1?8&TgFK60uX5;E$YfLU-8J}$G
zf7W2(oka+DGw!qHs=Kf1Oics=XjKfvN~4^^o&M$$W6oB_KV5)gV+7=q?qBA+icOtA
zAG%l~2JZwosR`3hK8v9JyqP>ju2o(`SvS=F&Q@qH^6tFaM2V;O<2+rht0-loM{Wu<
zpW7Q04cJ@mWkbU2!U}?qYtWQOQ%uuwC
zoX_Lj>GUMtdh2^&;#6lv7npw>78K{nsRN)b)kAhjV&&F9-7FatbdtVe7js6dPVAUE
zC3ot*m)!nXN=tw-v+oe1c)rj+`alEXiGj^27q(4
zbe*0myxxZgl6x)HVF&<|ky4PmeUPV8AIp5v^{PI(r=!omla(95WT+Jdy#C5y=F`>0
z3#_Xhv3FC__wUeo`%c+SPoYdnG5WH=cc@XC)(X+;K0!2MYs%H6dJQuOX|m&Kyz{Xi
zN#VltuL#@7;ceVbv{6P*KUew)!i?+weX-D{a6@tSK}d(Ybl>rN0-zMpH+K!QqB0zrMYx;;xo^W@|pt
z2|AdiX3RPgzhv(^h_~Gn_rdoO^=3XPPLPhGtG7!dlvWTEhPcf+%q>8bMGDQQ4DB&h
zhZaAa(I4M@{JETprbu11DX@--=alAAjiQ)gy+@H#2$50f*AqhgS0LXKiY$oj{oz$6
z^47i^Dx+*hNqs^vHDZxEy+E@-IBx7iQP6VWF6SOLY--{M&TV!mnN6PEjlfG>7^;mF
zNNx9F7$t~yJJ?2&VRZL$B8GjgJ~06VHctd`Jw1b8bVHef;?wd!u1H^$`X5!LW>M49
zbRyH;afwRuP={4O#Iope(8uhkM`9NVaTZN_%=_GxLf#v1s`bOg*pA?S{9kFDRku;H
z_x74jmyj}nGs4hhES-^VAMDh3$Ry=8-iK0rko>;v)91ZmDt8}AM*yn6b;z2ZlL3=<
z~RtN09tYS&G*w1MgAhR+@ic-
zj=r~}jzX1?U4A2kw1B7|E4@a2y_+no>5v-A>U(7as|3Sn6VcW|!ngDnok9ANimvsL
zaA<{G%FHQue!NynP8)?`|K}-jRj)9GK7r4X_(rEujcM@YDLbKcBq=1;E}jM_AH|f8
z2t!moZ$b2$@tFA;N^1e92Ml0Nur;zL(HQUSe&rR;@Iy}d52gO&fp*M4`e3oqKD#OB
zxp>4T0es(l7%s`&Z}H;7Ya^OfqXW}GkddxdOo>qdurl$#z@K{`@OlP*g2*3NrbR$p
z_>ybWx#XD+?vnqmpB{HY*%UcVZ)P!hG9BxOKE0`b?eo67@D;sj39i
zAyxo+CI9N8X!i)5F6~vyv+tg*Hq85=eixs^dpEQS@8Cwf)JkzL4S$;R!yTpTUiI%1
zi1Edz^R=W-)$yoJVbK$(ktA!#ccRk-A6#P4>;t|LueOLe4u3({ft~T5lstp3BTbHb
zt|Z&b8Obv)kNB#7!Mcm!Qj(f24PjH099aWXGtOB?RuB
z1s>r$|G~ojh(m>r^$u!0w`d(nHISDyCV5}XWH{kcEq2oA7?v~aL)Sy&L)Mf=B8S-O
zw@+}d6db*(hV{CG*tzzlCTMgNZybc?(ZlQ{)d>>B{&3+_wd;~DltYpps7tdcUTb)V
zZ&?e!0tD_s%{H)P#7pl)>R__IV$zdyst
z8b}TKF5(CzbxulSKD;J$wxC_H&Xtxi{OOuwN1Q=v#QTZ`*@O3s?PkK&_j#jU5>yA7
zaPHYSI5NVXUC6)%+51`!L&#G}F?bBoWhRld97&)>(?RADEZ@wnKVhz_llj+O
zo(xQo>Tpo$f|U6hvh$~HP5eHD1E!%O0h`qKZ?Vn`DY2xEsXsy|T=w@)L8-h@#VeGe
z*B4X%LS4Q|?de^fT3={5Sqzr%|8WZkiM8tecgNXp2G&{F-O_0Cq=A(#XTs&9i8~*w
zOS-JfKa_7_j9KQfQ&S}3G8@+o%Q>r4!M|xlj)u1AH+_3SH%V#2pke2o`y5kpgSaX=
z1-zjxBj{iea$im$3k@*qHW}?B=uX;zOiHOqg0DYy80&%Cr2B?x7SKoOQVvBSKg6G$
z5w?&EG2(QENq_C+%ZY*j;$mJ)xE8K)O~LAx)%R~n59cP%GWQVV7NG>+<^fN+;@vEb1%Z$AnA;DEokK+JCZ3Ucz!Qq!0{cTjISiPF;_Q
z`&bxSx|2jogr5FGhEH?<57R5h!!+|Hcnie|CwT+t*4(ca(LhnFVxEIVL~Yw}3{-R;
z{XVl&Ej05pkF_3tOd75)n4iDNVJjhSpd0eWyO>a_aw#SK`)z%h+16`TM)+=R_*EyO4Bq{Z4T!rryMeEAINZlCf9zbcGL6L%OxTD!RO8m}!_
z5{56(r%qtA^!CZk)LgXU*U(tcoTcV~!^}~p;`cEwsqPeAgqthBMsXNW=poXta*5#8
z(OR3phfB>w3rPp)EJ(aUVoz0Q=#cud22Nk&o#LWz(t2jDLCKDQ0ye`LMRr^u$*Z{HMOIs%UMINN}YLlD;%4hQxoCI-~f;NZ89-`hvJiN%(DK9{Xx)xhwm^GDfPIlORu64N{E$S
z*sQN%w&aHuzh~8!l)+q0`Aa+Es&@mLjvK8J%|B?HO+kc67R?B&%-pC+Vtac=1m8y^
zIuuXj4Ysd-v`?ks%If%WojrZehge=ycEA3D4tAcE*JPOxKiC5yAk11kY5R0O6gJrj
zl#B`5N>p*1$W9$r4?D>K_r*SZ#d-AIm{G9tsnD+F~6l3wt
zHErWCOHayW#k&+!>5bBH9OwO!J{grXx5*9LBBk8DGRm@=>dI!57LL0$k0^)3vOdU*
zwL7NpDuo(dX%>CZ2z;IQPc`gG>Kv3A0Ka5goMQ4%_o*d}1Z8P#go&o_)W
zDDC)1S*ZGc(H$rD?L1SN{5Hwj7A=pS<$Y~s&eyvp*Tlk5zN7Ze6EQnsMnrb0dARv*
za`f=cV7G(jVItr6D8^=&lAct~`+b=3jjwKNu69x;K{R49nAPUc~z@+-UYx;5{dMy%=^CZz5V*T>PLDBxg@QX#aoFl1I%
z#e@#=B%4iTUAubXf&OtbKBz3O+Vc6CQozsPXTVn95x$90~iG(8=~Z
zz8hLCRcq&C3=daT|3M6?OYaR*cyMO8>=oMubz*59YYUKyr*m%>1d%A<&?NZ07811u
zbq0qDPb!C?j6M8#$;<3zJH=Qksw3f@>_XeGIlin<5`Parq&+@%r6iJ#`a#7Nejm;A
zr_1Am_~=GNxzroo6LYP-Y7HAq2b$*dXhzP1c4{*t2nMgtzM)=FP22)2hw=8X$C2vr
zu-p(B6hG`(&ejNx35^?Mu$IipYk5;otf!WoB^H_#9dV3;4SDhIPqz5a-CKF@vghIX
z=}=dHS>xF9E2gl=p!RwZw=K_gHr6R;^rEWe5@$>GdzT#4laBhl(@!yiusPc+
zHqf&YScMMOGWG28T~JR_ZQF3!@;u8Qhw8yZ2>-)Yxbt_DKMe~Cuk-@3r=SDPXOx98Ds`VDqM6}mrr@)M
zp?JgH!iAPGfQ-bWK7j7UqKR{~6IfOZEvSN6;xJPKAoI8TSl^=Dop$MMQ-IO3(k}}J-k_$#;>^!A)EuF|>X-D{;dv%rT;H<^rYc801kV%vGF+Itg1A`o`JcLi2B@>c|PzQ
zR~?>u{F~x^#y}-b2_UDaiDH}=4zWYb*myM`8z0nq%q6#Xt2(Dyo3=#{5!dk4lIe)q
zqM-qY_dpH*&#P;C#&(EtBNShG3;(rtzAV~()S^?tI{C5M&Rz$ysf~5H|!an+`1#ZskRGJs8yw4M3+S-
z&Rr;W3sJv$Q2(f|3`lwt8?p_42gp4!;n#OpcR#0OJw_xW4i!_e=P0{|N=~p{Bh&Jp
z@HbTmOEdHtJNETo=t&-6ijiZAGY3@XNff7V!Kcy7m2~ai8f%9c=bAa7>Yw4{olS6W
z?=3%0I&-@Ln_rzhd(LmgT)&Fg`z=>^=TJ3e`uBM&%3AI7=a^jy))OQmj&QCqRv^-
zvj!_t`$mDN)5YOC?{fw!=fD8{=B4ZZHsGlY{D=OXajo0ZjF^308LHxebgatLw@L-9
zvm&+dug%0%%~P1$h@)psJJ~{+3&#z6!g^EWr9cP7MfjFG#!pdhwoqc*UY!^+P9r>k
zTt7;ht3lM@NP68+P2&Z@d0bDf+nQ_bv!tE#u#%b7+yQK!EHy#KIDK|>5AJu^X0FC9
zqlNAfpa145nsDb^{ejc%nafk>&8TL+c^WI}682Ezp_TQ{Ho4Q91h8=pZKzL%3!}D%yIHuRWdzs|!)3IaP;1vY?!_{3j_&-%nx_WX?@#XshYz=WAq
z0p4cC;O%7Bx8hkIzdh@a+s}RbzszrnvY11p?w}S;+yYx9uzj69zef<}r^|
z(4qDGwO>Wo1GyJM>U*Bxh>pKKvVLL?GKnY|R~deqTaNzn#WfYA=!6;WEgL%Wfzm9v
z7k6r350ne|SSrQptVWRY{`h&+-{C-Rm@{H$$>O1Ab2Q!mhM+Xg`yjCQ?PN*gZL?t9EB>w<>nxdvO
zs;w}6XG<_y-cfe?IWBbE&6L2%O1g7hS4_bsyy(@D3HcKTJCwvbe=Xk#v@kSm(83!w
z^9;I7!zctUiGI-R?m-%R3uRS6Io_ra=a={au@{=M8Ji;|Uv9C+9qg
zM+5UAtWAK#=Yt;u!uT9)R$6e|5)jiK|Ze3mLlg}Flf2Z)9eh6cD+E9BW6TYW`-=0JO
z0|opWoI;;yDw*tOZ*8?P9@DThM#w57AHW5+*c)IUAmy07s5s_ccgQx<-`75}jyMfo
zO|W3UvWI(u*ZqRxq(FExFe|x72#3As!}HaSx@2EsVLX9C+%fuI%BV2(*(IAUdOF>g
zoTm|A*G}vgB=Fe+#@Lzml5WCodh!&d2rYT?QzRD!U{LeMw;VwLN5-}S-T+Srt<7F{
zii8&4qDocH$GdMkrTXAx^9}H|5f>eaL{x_UBgW2HnB^utCa@v5>2xG2q**K0RO9u4
zRMOLHN$JaFuXoxA1?fgQQ+aMgr3igMY7a%6l69_~j>z_tS{-OM32d;WfPrcSB>=kPH&a_ulkb6qn!7j1*f=5I
z(L^YTh?Bf6(CQMwT_KyUym9wkU<%`Rkam&4Ls8EN9?HruEO#@Rg9!ZB70vl3)q8uW@|7Z}6rDiPCUIZ`GKbugM?b#GUW7$31T9X#St>Ir}8@92|0
z$*?CTbx{t|XAA_6Ecbw9zkhjdA4(yy?MtOT=Ey#>P{<4)RD1bdFze_kHp<
zUNYF7*+R>cm-pn{e`LytjUGMFV|){iP9%Etv#{)*E4f=cLV`dH
z58o;b+sT+FlbWST|MMh`$bd(VQUA}iv`~-@Bu`%U3LPgYQ`MAtoj#SV;!+ARYmX0=
za&arF1q=QhF|Agc=$#>#B|$(m_E3a42rS41QfX!5obLFHxkML
zp)OXBO4YlFEP?k{m#NCDu|lAQN2~nzX{#2BS-A{J0O*uP03e{>KZ5WPIj5zbeWarc~uVg4Z=9{7c{5=Y5mvOBujcE2MF4
z9dja%S^)qsBsMPdXhlqXO_^dP5O>LT=T0j_!)C@#ufc%uSds8wCu9g;M`C#c*N4i*!_%f5IRVDNL0R5~pk&Lq0Kb5tXGdB;fkYVoqC&@ZF
z012y_z-)fQVBzk4?6G}AoI&NAm_|z*)MjL6B`k|f=E$^Bc~3JDNBEY$pr*
zxa*_mv~HKS@9|pv_|qGfMyF0v^~VqR)x15lp}CkqAK#QuYiN*&!heM#Q8~4R`cfn5
zPX#$f4w9X0*Vq4=_?D4nZ)H$e5`70
zVl8w`Oo~BMxs5Zo&aUmTNP8{!)-
z!d3Z-xtJs-KTs(bV?vH4kA=>IW=l9$3LyvYYrG79st8gyFQ=qx0L>j#=@?cBszk&7
z4g=R=!Ka;`NJ#8jiFv~g-$hD)x*3nmOFOxR;e>#8Kh_%uxI6mpeRu6fIUs-cn7%$(
zybJz!a(APh*H_vnGb|)g3`7n%Ue4};U@6q=2_|zyn}YAqJ{R2o>6$XpU1WYM3Gp_P
zSRqRGfeUP8*oW!!v57sK6Ne*`%wYb3JaFKo!B>oKjugv|4*NKi#@jMpHFHKy==VW`t@!>U5v#7AP;hmqt{!lphOv>20=`UYCTzM=QLlkb;$
za_sHllzBwif9GS@=erMlm0$Tg?nUcJEt0963hiE4HdIRdbyY?961XGY@c4|8BP
zTT_qlZ|s`{ITWJWr}6-q;Jm%ZT`SS@vF<@>VQP~4K_z;oh155BO`6CeG$OX;(IMey#1
zLK?v<>uM|RgLP!blgcSn{8}4?F!6biJhlxmmJmUwbrGxRJB1SelRh=nVT$0g^IK&+
z6hYorxxfbT^rXbA8d
z3L$oVIbzK2zI#$4L|>Vd)`<9&M*h4xnr`8D5S&w^3Zph04a*fw6=s+FE*-?$lMt*+
zpgG|Zy64d+kYdF($Bg+S*@rK1)_e7uO*A!!xI0pF##X*0U301->dYM0`{8
zL9BlQu9pDuqGQUEH)zQMtVYn>6op2R+)n+VW!z45uFs-@|js`XO-0g-Cw2
zQ^ty|F?8U5`W4%|P4K#AM*+pTCggS?55Ds-4U8#}sEF
z=ry_D0L9tg^y-kVGh9Z!MX#MY!Q0&X_hLwxzcfAC;>bFDMvG%Oi>xbG13&*R%nG?~
zTK=SIg{$1~;_fIj^1q{w_HL}3p+v4nq#nubwR4?jQDBbh7g?rr_7Sy?Yr|txG-V!j
zF8ma8A7sAD;=GEhFHbzdnIDHf=VfzMvt)=GA#Rvc`jddVcne{xgGrrkmL!u@wE1vTIiX6mcha4z)6b+M#CEE5vSZn+weT
zl4(47*8i*QwzqdKxs1z7*3Ea#;I5Z@-l0UP&36lT1X@%j+FgG!a7}B3E9X?pjg+^4
zAOeRUP%1J!i1HBI)M*mXR~%U5D?8kq*jgD4PgS*C5F)32Kauy|#VciobMSQZl!@Pw
zD~sU|&P!DSAgDjD#zpsc!cJt24>6906why>2VCNAor_?LyqJVYg^v<3YnVuM`Z{^j
z(;kf)A3eoTaQ`aRZQ(|%jA_LGdcI$pSvvaq&!0Q>Al`6zErp;eHrQE#fJ>Y!(2*6L
zvtL}$WLK^ra$CQkh7WfhKkufS^oQixyPB;dVXTIQwfS7&yQv5HD%L&{sN#sjz+j^HDc=QaR
z$sV{rJo4r`47`LqwFm1131lxl`&=Tc&OqdzBJ^uSDH*N-ORgAnj5s25oCj5HB)m$rI)cT}XE%KK
zjCg#|cAM+Ugo_T0tQtsWl%KE%nZv2a^PSe)H;2BA%Mxjftg5(+@lbvhr9YBpVy653
zIkbj(8_R3JX<=_K)_bO?hVy-aJ~HLsKE<$99$E8(FjtB_sopjT`ab7-Wu)!2c=Kj|
zo*ec_`n_P`2`tU)s#tYP$Y<%wxg+cUyMn|CTd{orP_MpcReJ4K^iZSrB;)XBsDp{3
zc)*9&WGZ9k$8qKsnst(Wh6dt(xyz?-)k=v&J*(+xkCY&s0q~@b$ZL&_^(cT}O
znB3FX?yFJcOK=+rQhP&XFYfM%E{c%DYcZ_5OV%gYy@5Y)WyN~PD2K^9`-b_nmK__Z
z>-LE{{$siTwrEwyjn~lrE46q=P}T!&W2R999X8(bAvEPAy~pwi6o0%qy9#sjzAf*T
zvK|`s7vft4UeK?oD4ln7-t^hm^?Yp{Sn1nf>^}>;@^02dtszOxf6$RN@Ae3);NRwc
zSw*ig0xyJt=qZLR8Tz^y*Xhdubnvo}_E`^ZI`89%8gdeDR1<+uOFqw5n_~6HXSzof
ziC?-U*+*b*M7Su%c3^{-MtIdTQ*4pR6uEY)&JcO4uSQc)9(eggzKTb*J>v+bH(8qU
z0f?NLguz4SW=^Y5L@@H|MQ`fnMa^fWY+s;a&;&0!Ge&@Kh!m1={_`3S<<+wT&wh>P
z(=PwG(|!#^ER>mQ5#z^96yl4k5O;_qqm~HCetP&K4w^x0jA%kX8GTE%!PtC4XOQQW
z@cYc5fkwLzW2Z*7d@p9%2WsT%Sg9bvJt0PJvtP|vj+hwsjdQ+pvQuS7XbHq!~Az#S87TW
zV19!>cxfgY*AbEwNi3kQcg(JB)OV%sx$rO6fD-sp11}{4bkkL$g|5Bu<5=0rhTXd&
zDr7%uj_DI@u{Of<6j=4Rl!+fXfj6}uF~2e6uTET}YJg`Pg)TI^UXcB`E1TkrFzGVo
z3j|}gZyCz`x)`VLayfsxgqaZuoPgYYkZxxwg0V!d8|fbvFUb_sJBK9KmUPIaohVH+
zp%XLZ^(VFWLk7+zSerykn)xQBz7M|U>UmIKyMQZWp|K#p7iHj5kGhlg-SB
z?iZ7l>d$aI>D4QO)#5ti2@A|>!@eJUyQ1Cu-~#jKEzQp=W@{VI;pLnq%z}t`2L9g9
zFu!L$%aeH@UkZ9BU@h-5xWpDAw3ebGfFBSjQUmr7~a$4cebdp{$BTcj-R8;OvztgRXdH
zhqIR=5zh!5aHQfp*>Q9W$Cnh~so;*%Q^aKi&CZ$^*~hFY%gQLIw&|aS9;BIkdcYYs
z(RaZd4@W4u&>siQjfcFG*gp!uLUZMi6@n?HY_=uie^Lt1V9%
z?AYbcC>9Q*zhp%qIN5efp1nJkI#g7-LMU+>w-&E;D&OT7*0?`%`jjZ=_G(Uh2^p45
zMiwxmK{Ndf(8%yia{1PC?plMan{Q(XABgFY`aMu3V8FKeqM
z2hFxHv*AN{w}u->WnrUHNJ=G}&}u>27hS~bs`KJ*1cB|*p(ePSo#+=*!+BGoe+Hzn
z4iAovvH3nOeZl3aMm=xEMV?;y+%wP@XL?8k65n~Z)${34?!J`YyNcY{SQc`Ykgeyl
z>U!TChXDJ}-O?_tz0+e`ER(tpih1SgxeAaZ8eOi99*~&@#-!OW=9QhCl@m4eVUynW
zj^jcp{6H8=>%vHOEiO{^0{7-h7%Pt3T7&MO((~1x+eJJ;hVIPEdrBZ@$2A)t)7@ax
zOuWj4*IiY*Pr`P<5(^PL9-l&Ppc4s1tw0Kl5S0AUH+qTE;jYe*wl2AnE@kS~*D|`d
zFHbJw4PkD@JWG=>OBAE%C8j*+dF-9=$D#~2lm_p-E$RS&6Um?#%NiLDg6b&7MoY!v
zrJ$I(_N0v2b)U7Uh@n1M=qmYwkJ=KFsXl^#o6>RxTH35RY<&MHKXD?wUCmL1@S5%o@jR*
zQ$wYgZzUEF7E#1FC*lAFeugFX@GHiD^h*{%6_&8j_q#sslz*Y&G;#yK;&8TcESWe)
z+J5CGP^Kk@_TqFbbt(eEdpwn&gPPVx)o7Igu6g5LWC;fOIL-X#T(-t}zU~!Nnax`mqLrIXA~tMH_Pb}@J_xC5_0fy9
zW_3CRCBjc!A_U1Dd)anRwB#SajYf4(UcA@VHM*%eL9fu8CWie3HSfx(1vpz3!N)jf
zQ6oa*F{5OXM8-Me-?%X^RqcDHs2fZAf40_iSJ@$7h+zS|SGaUty)8mNrX%g;-N>*%
zi(Bh4XmAGT2J3gmR7SqW(`c#q-4!*G2rXeBm|8zaGP?Nxu%pn&&8sOY%RQmL5h{tl
zavtf3&GR*okE;%j>*!gbN3ZhUkI9JHgLkkqOAeKAJdBJE+&Y?_&m@|~d}5Nol|d1=
zU->&@BJP6{UkQV*6g2D4pJ%$599$@vY;zsVCy;a@KsHMMecyf%4lNh8Fcs`w^>@i-
z&J%{+ZB`HIfTjM0wB@gUCsa!=QBxhlqq^S6xnfhzo_4`Aq!ac+5OJi0i-=B
z@0%b=hQU2)RQM=tFn45<&C_@37G<+R_#RxH1Q;zJ8<8E1uOGFzu3A8yER6)ZAj#Pf++~mMUnDeQP
zi!OSYQC*LXX{Zu8gbyZd2bJ-9c{e`mIWvDB!;~!FtL`}T|FL)9|5W$y1HjL5aFCs3
zk0>L`Ec+Y{D_Nz4B4m}F9gd1hHc4fiBD9H&D9YZ#9U`M+WM*&f?@RaR`(Ir5FFhXJ
zan5<3_iJCT>k>c{eoEC4#r#NMieIGKRjpR9u~yF2GgjZO&EGP=Ir{SByoUW-_BR?2FP+?Txj2O{A(H1;UiIZ_%|@z|s+j7#;i8O!#{CJ$
zRIFH5?N_SguNCnM9lsOzk>&D4P`S!v<|*yI;!SQkgC)Xaob1Z^WQ(uh2IelpNs0VV?39Yec18rYNd&o(guGnWoymJo2~P1
zH|Lt)gh2p*V!G|?d!}BycxPyF0j_mBp
zG$`5DZN_{+MU!^*U8g?t;Edw8x-r5yDtk{iE^NY;uYZcqT0llUU!VTmK0D^ORRSer
z^NPBRS6>K51Ab1&oKUER9h1~M8Cgb0nIG`6{IcnOLT$_w>*x`4H)9Nw-|Gr~
zC-DrWdN$=@+ZLN;FVzaa_#+_Ewr#}n&^P>&Zk>VOiwV35>tWtHslX1d1@^ksU99LR
zG76)E>7$ED=(|qVzv@yMG*}T`KK2}kvBeBC>$ZNv=x~Y&cZ`T+e?pTrJnqsQ)*8E4
zcDZ#kH##2oO7eBF7&`N^@qf2KV}MyC9}ivddDo}WiBaO>7PakFGon5{pFwRh){zyW
zLVM=3*p&R#OlSgq0Rl?4x75xB7si?Eb(sbAFOa^(js9i0PS*$iPvX_UHgd648~G!
zbS6hfeK)<*x4AoEGQw6=wDiWC4=T1O4;M96pWW10mWMvI_?OOSx6(?c7oQF4csAe!
zbZhV&w`D|zYhJA`k{y(Jrsv8Yjj3D@3L14rN%{XVD>U<(lGVp{CNaJ#7$u1a{|bxK
zmZX)h2@yzSpe#I~mm(Ee`fyP3-a9(1B%4MjA~s95xouk!m#ad>M5P=mX{R_GtUiqgEVun=X5W0b6|YXnar@FPvYtwqM%&r
zic%|KzG^XZh5I}EP-q>xoq|2}%)K%W4O-NZ4f+mFOX}j7%G-UlfdZ*(WZL)BV!@hj
z!RSC&Qz0V#&@UG5FVw-;u}zLQwdM|#ouZ5u)=kEZFrZz|OGCn{cbU4ln`Q5PcutF?T!!f-4hhE%Mt8~AIJH&H`Ruy~0<32U*?On3hlm&B;)zoMXGxU@WVm&>
z#`w$iFg9yqG#cky`8-i-L$5UH{ns~+t%^;5Pt8Lsto5Z7s
zse?t(vZrn{tMOnOO8+Hi8{FyAdnd~Sm2C;9UbsQwdE`+POgmW8BHzV5O{|Tt9C4CU
z*V#^_8)Y6?J#Ay$Hr^iSuu^{trR!@v6TZ<+Ft=9N7v3PtH2#AmdX7uXZxE%Y=gYa+
zBx86?87|`+im1G6A#S&o40=yU2&Z~+YtxnBK0Ae?
zBIh-;m4d5U*Q2Tpq=hP!w+H_w`Xvi@tvuSq>sgL-?IBRdV
z0?A92O7j}-ORY18Sg~0mrGz3d4XZC(Y>0`BT|Cx{2`O`u2iTMwvMTOS%J>(+rdNaN)!G{WY+HKmamg-+lh=;2l{n7Yva$P(W7MErfPpy
zPhS~`sx;JhY293MmGI{7dKFt5P(RTA0@F=lD81;5>q>e2iZmK6{)G;sky*`?oNbi;eVmC&WAhkJG3BNA0|pD5o7
zAoFq2uAPsxUN@rF@cHtP_sf(@1jhYQM4Z4`7JVL!wRHtopPRZ@`Yf5*t;Qf~DChzg
z>o2_826Jax#dVK09Wu(3+rpwykz2yxGkB{`>HhoOx=aeaee&&TXHo<
zU*z^+j&yXz0+H&^{bw}z9JOC>2R+wYEUF$e)NELOs^{V-cm{oXY4H!XLz`FWuuT8t
zW^KT$&?`b=7M{bwikM@j+$~rmRkYnL!HD(kmL)R0eb3ZHH16sr?W+>?e`!EpgQ|ck
zUlc-DHyL#7;Hlf5w2s`Zt3tS;i--LOiOHFTY@K^f_gqm!`4YK$dD$~U
zyW6PJrGx#oe*N?qCx&0qVmuvYPOCFT#~2Vji1N+-8nK$%Fe$GNLI>9wNm)d1E*;Gu
z%oAh|sXI)?ShO{S(Q>zIyiUg75q__YnX9H^vol@^wX&KcW9CZYiX5^+);k#~!?8tC
zHhs!GH&9rZ$bNJkB4fm~e*aea`eFs~z7pf{J(p@oqUUcD9^}$ahxSgMO=g%6V|=dZ
zy-{|in5n^yp%S0F^dgsi`WSOR_a`U1;WEiy!Ux|&zZ7@HjG~rs!Lg@oY77_Jt5Bu&
zP4%q>mPKg{Wn<;cJsBgFi%&D~UwKKCw|hM}Gw`QFupza^poz3*7_TaD6J15w6H@o#
zl}jB}d&u$hpN|c#6$+L_3_i#e60Ro`X4%G1GmIqrG@Z&A&Z3nKB{I{Cd$y2r7sn%f
zxVegN=Zm95n%eni6^fLihfXH`8d3?+vxKK^d@IoSV>!2G+Go4xl2FrKsz_GVbn_&t-BMwZeyv$fbQ}lh
zh(TY}Mnmt76o&Y$iM+$1{XF?Bc{HcKADJ%Mk=?F$kvQQagJqo$POLDVXWLzN$@yW@@`n0h;a&O{UJihD^k`-w@Fgol*reB_>85!@uWue)tpUkZx3!z#Z
zyLCYD+za7Uy&95h)Lo@kwGQkb32H5^Us_(F)h0Gv2R3@n6p;r#ofx&^_9r@oO;=>@
z)33ex3DvD~5TjhIBql0T`+qODT3wA!z`eB2cI3vaFJ<8Z;))XLn=#5>EmMpO{Up}G
z!G{ge&q(}*-14G!;S{v-&_$-!FuS43Zf4EsfezR92jr+-&i40UKmELgNSLmjJe3n&
zR%U?_aVwr+l8rr7!MsMbFrV-}lzlBkM)fW?C7Yl}E1FkhRw7C}=+z&}^i$r}Ikaer
zZ2d|!r@DfBvLM!j7;RA*XmZh=N=6ZnIbwh=V_#Z~ZOM^Py6-NuG#R>>g&h`d2>&UV
ztxTpd`X+*rd)2nPJGg*ut+8s|^07v~8jVlp?RvK9ypoD_PXfbgr0HIRR~L_J$nQDT
z(|Pr2Ys`~TgAX+xiAziaJzc7~J9~z|50ID$f<4Qn`7siNMIN19mphymmtGZDTh0v6
z2HGUB&Gh5Goi}J7{#b%h|Hc$P^-=~uaXQG}>g3mS`Jd_ML!XUzj0WZxMD4~%4Eet^
zTS84YL5?xHyABOk!D7j4KUgKHqK;`0rc)BrHF(1We?VhFNL28xys^sJ
zvAL7-67AW9dk4IBuZmTAG1B=cPZ;-kq3Xmnvs}I%3(5ktw|`>iD@`OTb@N7qiQ
zjv7O_zvpCy%X#dgGugb^Fjb%0`kZ!@qClu8Yl4
zuTn+bP@(gVMaL^0$~}&EVw$p!_|%C9P<}iho%N2xw>Dbel)&=3n&^c_pQ2q{uEux?
z?23JRI~gzF-PIPnHNKx5{e1Jir(DVKb&*Y{o1#`qtS#MWiXJojQs1V$;mH}^R*^SM
zq`HQ>kRLcV?(GjkBDLbe55ok?Q2U|y;J>a^FwUmLtW=-sX3p?pXa1Hn5fuD@c&N>*
zT!^JE_$-~tiG#_BDQRUqG{xVJHh*$+fswr0D
zP&W2GfdLcsRnOEyQe8WTOiNeM$C?n0PHLkthpxo=e5Ap34yI>`Q+-&AR@WH15PhQv
zSMH2ynavtNbAt!k%13f{PtP-)vOe+n>-pL|pj%sr~LdHv{)tF_
zyH1yOwI?%599nvi!jw%$)i|gLa!bLQGnh#tZGAF}qLzvSVTfpX;>Y{TPe!*0=CtfM
zvHBI#a9p*FvUOezkIvg#oIy;s@y7QTg=BBp#!>dR83vWz(N1^WZOc=i$MFBgcH0eZ
z_Miz@Q{E$8KLbJ;i(pGCDV2w4*sv#PobmLUl0yaGEMdJ9+qim)_UkM*{_s1(q8FM}
zoBg9Updp(iM!g=q=a}7$;iV|FFMEOe$*`+O3mTs=#TWZ*)n&YDJ2>dxsX1543i^h|
zhiHg%x2(4B7QDTrHm?>wn$Ugd`Y{fM_zHR(GGqEft}Ia{ZUbhmnLFHQYq|bnS(U`z
zgMFhfFe6c1*Wxr66=raH&s^xplp;lpc-+~A2Pho#?c3rx!8@~thduGx>j~(HSno^d
z*Vx-AHM1=JL3eJm-FptHaL%!<1Q_yD!FBI$C{(U{O$l6IE9bp=f%~3P3VZg#Ot(WhOw52bVb-G4^Y=l4qcSi;k^+y
z*~}Ke_`AF0%(B11?-sgRuEk+fOT4H=f&AN3-U?5su0(KkrtsOuJ&t3QM2RSwvUA1O
z+GNd=!xxI)Iiol->&C4o&ck!dy#}f%F2u4ukZ#7%%p{
z65(zJ15p?iz9WMJ!ZilsyG2YZDs{|4YxQUiKFJMJsiUt5Ti5hf?J9=Im#U&armi+T
zj)sN2bBe0Qd3_yRi^fqcp8jO&9sxQ#v`7Dss@CrEV`ww;f=lN$kCe2G@1e|$$Nw;q
z{A$Fx8&<8{Hcy+)8a(w%2|6i?Kc9;&@QCio!lSaFm9v>IxB1!=t78je?b289dOQ2o
zYx8%17;vngp}J&a^>ZkZdF+EDm48IlGi;1`5{7SHU6N?(ap<@>7Ye6{K2_C{r7lGY
z&FS@?&~VmwuqwT7Pt-{9l(>77ki7S2F>~@Hv1Tnwl%ySxw~Y29)0~r7c_{VM>ko0)
zXj84vU__Zss98XsxGx2ti^91+y2aGIAMr|6QDgiU(_z1iB8pNQGq0QzPUvz|UZ2xH
z;qv*cxK``sFPp!)x*rHP+|*pMuP59i)A#6+e60nPl||byy{*j!!(O5NB(}3UIHfCu
zu?Wma**^04ik-y2n3&0ykm*-vtC-1J)P7p3fzeAu$wF4yb0SK^M!0|e3IDy;n$1N%
z>GDi$Aw^~Hel3+?t1!%|yocPDDM60h&8yveW(!}G5P#wpr>n(s_qHYw2A;Z0oCYc7G_3be=U5(o#4NKov
zbIge1`^u`1*vSP;uYWPuqQr_@URzQfVSE*H>CU+R#S^l!M$d0??&M7NxXUON={KH0
zyvy_Bfa)(*W`Bw@N<9#~XV(#2mJD%n&4~JC>7AKeGGi!_FFa}6>Yn$?1CsEYPciFH
z+tEH`m9aQ;V;Fy}xeea&LCv79+CqD1T;V?(*-gv*Cou;x220cwvNOj2aLThm2Q?$C
zIPHNxEtER2fNrErpc#eyM<>!%%!~vK
z+=w-QW^IL}g;gfgawf1;S@0c-z`JD9-BUjq=@CIIbI>-bvG#b4Mp^-;ubG#|uc>4loeklV{4%Jd-=rUN
z#Ov#4P$hRYw~oA#8Wl_ip6
zOwlBf`8Y05p1o*h3eRanXcXSHTiVs43Xs^n@^Nc%$W$xo>cdJyrDCG7$fa;eq
zp^e2Y%Jodr&Ya*0c>3tH?d>PX#(X)oq?i?i4N6UWULPy1tIR_UOA_YE)V}~`4ayFuq
zNUeI2JXG^*)g6W6UG@0GVDR)n;IO~(VkT*#$c|l;*RbJ}y#9%}qGZG7-1XhWFHanr
zQ=0?a{8H^mU3r`Uc?JLdv&wUcj)zkJJeoI^XhK9}u1aa{cJc5ZaC;Lj!Xjle)9Dbeix
zCV{~YdAGhQe^8!YOZycUR$-LPXY={>dLUI@cWu&M{%Twv@1D5EnckhFHqZY3tco>v
zsZj98z1#kMs{WoPwkqZMy}2wa{&meV0^e$ai8$BA32|0g^>4|{cy0xZzrlH%gvl<#
z_Dc+rUaDt-gPFsJOnq6P+Kze;8Z`JmyrP+lCbw^9_Viw#TtQ)@4rlMPxm1j5MrWgV
zWH!ku)qA32f^u`j`tC;@w7hhGe!QS_OR`mtKUT5W`o^fP^0muGZj)C+bU-J4f`T*U
z@|RXI!uQAAb*rK}AGzE;?#+<6DO-WdJ7FIOOAoWoZ|P)G>BLK>mJ+vTl?aWf#>k0l
zuj&rRrT%opxP(@@`i!M!yg(rp(Z$4I6V(N@C=;WwzZnV~>&Xo>tQ|8qv{u>7INb0l
z0H;sOI&_5G?bXU>B;0Rw$z8TPf>wd8IE%YMfHE>{By90emhQdIpAHU29}&wJ!pD|d
zsYuG|+HRZsAM-w~lf9V6vLV|(A(GPd`48C+jnucs6>~okWc#faQSuRjNu8-amoWM4jWchY7dVZQ;N{$^K-iK
zhFn)U-{o4|>`Sh1boNs2TsLGv?hd|F;;+WAbDwAC4c!z%ZA92IhkA3PWDS+e*)Ja{8R@oI
zqtYh)*}jJ=>5Hpgv~z5W^~V@qolk^cmZX%B4tun(kRvZH<|%-mO=B6-IUd)3vhN#-
z#p?^1X4fv6bJy59+8=Wt`jw*b^G^S3TKvF*IOgz#B*s`6=c5wPj?SDi4llb*<|?C2
zwV#52BR@XGnd0IW_a##|vEc+Cs-xStvDF&p_#5foe~5MeWG46841{#sBXTDomE#B
zY#@omA4y^A4JUlm`xhfgt07%#x;u0{&5_Dd<+B`%y9%mW`^MFZ?YHzzgN-zG!gVM0
ziiryxv?0lYhUV5HTF+(9zWjhuIVpVHRSK`~jVi%soz&-~w)5q{yw*L&>N?p`K1BSa
zH*ud$Mk1)Wg+-6n>!V!moW|!;?Ar84wCy0Q>nid>gg3#hCF2%4sf#QXHyJ14-v!Vr
zQ)nVz9(~2E<+tg``b~^T!CberHj?vX)-Y0@LVJ++eh%HgM#e?o${r(@wRnAzqJeCNrs8|rp=vPH>ruBUzKi{!hMbOpGKB-n
zlX>MvwdA1pK9aK4uBdMlPt9&^Wq5T=sE-S$s#3{t#rFR~`Tg6sGG~W14!N<6M=_0L
z8f~Q=mNv)R_vG4&>L}MsW+vD25m`$H3t)o+)rMl@mU!$O~Y$vqmoZ;9>!`Uy-Yq%U1
zi!bjPKv~(^JGIq+oeJUL=m@KxejWOb%wU4I)bJCN;|uNcNH;eabbV74Y2(=#^-3#)-!h7Flt+%)aVq?=*}0
z$$S)_Sf1#NOB<*;;Spr-(GuK@Qpx;CbQXT+LQy_{^-@pKRw-dIDN4)hzQZryISZ|>
z?=L)-MODil_T)ERWAsn;8X$zB2!bXW1;P)FNB2IXowZeOi3(hMKyT
z%%q;x(qQxLrlJ>xv1q?xUqnFYzTVZk)UVr3Y^|GtgpiG^TF+Q5R_hHLgB;SW@^uKy
z&v{7uvm2LKaTD*4KGGVP|y;r!K-
zJg&}bPXrgI*3jj1#dEeCy{k<#Oo0w)XWF2(b^GLtPFnT!$mfPq{XMZE<3CZtHfbJG
zR!5CNjuTQ8@4c;1Hpjd%&
z`@cUU7Dv%%En2p-{qJXXTFH>3+Ig`%3PVnT&awVF#+PXAak*t2>fP%H=eJXLK3YfTIegJv{ELG@c9ox{(^D2F5&A!cbIFDZmwrg7YxkrR
z){jIHed8$dDHEK|D(o&hKV_W5h~CMUpIcAu|8^A0EB|6HXp!{_x8=l~C(hZSMji8C
z>%l9v`DOZjlwEE-~RU#f_w@kWt-zear0>Y-0cvxqVLve>Azb-5(}1C
zU*IE&quWiK!!h|9A-ay8w%-N0lp7|FSViTdp2MJtCXm2g)O2{NJLc5ROB761+^U<4
zk38;wMI`#wvM+Uzm-N9rDox6nq^pyrVtIwA!F_OYmfu~O>zCpB%=*&@;^AzTk9Zp^
z5f83dYe96Op_qTyaSAu9;PfsvT*ZbIddR;eF6{}ku;S5CF3%UVa1h)$7e%znTWv)7
z3$^NXC8yIIX=GYN}Cd@ktJ8~kZCz2<
zx-fs^9P_~RDfWPn+R`!9Nq)--mA+wlMf`EV^&vO
zQHDcx;&C^MkRFp(9SThQz0+GsIOEs_IX|CM*Q>wVg1*j}&3mTy@~Qtkol}`mkxg3u
zC#A1AhE<8-tJp|r?69o}CfeED`g*^1lnn3m@`aV6|Mksk_7#VhA7l-+(ByBImt`2U
z1;x}HKJaIn_hjvsYB@>)9i?S<)sX7}^~8}AAzgnv4n^!e2Z|^!q2St0)WkKW|8||n
z?egZX-NtuLb>FI8S4iLV;&8^R+q(VA`*r$)$xK%(Td#lAu&M-CP%)K(>R3X$vw3Kn
zbb4fs{0noh%>z9dr)1=gj^mOcH@cGEEWH~)Q=VVv6v*WUF`
z&1)aOMnR>*zUA-@L=4WIH5Yj^@-ySum0Ke^7c4Y9Z4-olyBp?Y{<)lbxO>y4Lby|^
ze3pL!b#hJnDdaaQH(&;D%-?yAEs2J)%sf$*f
z3wpadjRlRMsK+l%Urp{oH^$Qc`ztwN7YgP`s#Yt0J2jKAVG>0gn{g>a2|TUST|UTf
zJ@$MpWc}1vyLgWryP-bcznG<@BAlxQVehN(4VR4Fo5y|_5Lk|`pXtO)XGa>y2RTJo
z^%DNY@MjoFy-C0SPw+*pszV`T{iwgvdd9u%w)cn+YRh5&^;cZw4s%a6td_%)YX~Dd
zUoL7?^_ST*K4;TjqnmH)6D|K;%H{D$<_GnY>xG6jsD+vc9-Wn5gf
ze2bI1mJTOeHtqPrJEiJy${X?sRI8&C|EB!@i0Famb~=lNA!DPzqKH?`SLxOI-ak~Q7rrwGuW1ct+uHW2W_uAPc>ZH@F
zM`xciM0A{2V!Aq%^o}##TW%uu*=rM7L*aWBChjbcs{QxK)s=^z+y1PbpjOB-_~7pK
zcVXK?#T_nJcs{+a6_w2ubg*$hYrT7vq5g{7YgD6Rf0A$d;PoGFmDAd%4<5W|Zh0j5
zjC5&k{dh%!VDj5_GX|qB-%;Q8iuUl*a`|^EA(4AL6?Z8}*K)QdOm7!{Qa9A0c^4_d
zYrftT(p$Q)v^C8WD%Mlx_{r^B-Adtq?e>kDC3A4E?PPj>@iuBFe9Ptdh}$2JTlSml
zeq5uzVtx5e_o~>+9T9Fy%o{QHqhaqNJHs|y(1oNT2c)UG?!rCZe
zzz@F)d0XTBpV1-TG6h@o6mjWAg>%}Q`;Xo|{N_Z>ccvC=&*!If3$UYhtX>I^&HJ=<
zTy9)bb~)CFf3bl!vF92B!tP$`sBT_a;yqd`vc+TY_k|LsE-5e`n>Z3&J~xHpBTyUQ
z{49TtFemfAZWuL^a=|tB)NZ;$4O!9h<*@jTt<*J?{G{LmD|+nSA0QM+RV;0&?leea
z)cnGxHx1T#c&|>H{aSb{!-KbPP1%THXQppa8eeNa9r+tIoW6KP-V+rqfAR^0l*A>h
zMl0pSnSU|6cO4PqyYDNCN@SrPxo}&S;A@<}>5|E{Ih&Z@ER^Tj>+$lU~Hg_QYjkj}$
zzpusxRwX0M>53S6F*Vz`Q^u+Ldi|QigL~|=w?F+icc3})SrMJG8@#Vq+u`16^~Q9C
zpO2Ve%ky#k(*tO#@GYmVy|o7W==*xp(Us55Vt;!E0qL?UH(v$WH4bcX|JUk=94Isl
zChK)$s1MqCFLYzq{cad}tGiq-E4ZMx$ew_UwP?_H5wNbPQTKmwonxf+lCTaQC|?RNR%xyH85dCc!VAL_ng*3aJ&+#2G<
zcc7m?;`>a~Uh4``9juUVHN!IZTbIo%H&1UpaX_6`aEOG{1ny*cWHf!}wN6iEG=`$F
zT3Ki=`M&1_=M}FXJ+0gSWEj&A`!x+UFU8_wgIg$sHO?rarV~YsH);Eud!Pm3?_YeG
zlYSRb==61Y`MZ99#qMj2#WsGZxeECT?zGl(EZjAk;p=t7^BOIy>!^x%b`IS)zqVYe
z?5t>V|V>(tB
zjXKYrwx-C{b*Dy2_Wp*PYMk?57UI}#0VzX{I?kEy7Ad2I;UgV_$=$rZW6FOXpZ8^J
zOD=QtNi2JR<9c&xq+pGC0BN~s?vbGSR+7%}&bO2PM2oB?G#3z>daUucH0nwu96N2^
zyu06Ou_1-)nrgQttSqNJ6OHe!QR4luONfP=6RihMWEkHvUoB>f(yL0px-(K0sD`%s
z*$Z+!u_(_UFh6l~X3X7>`(B7*5h`j-y(o}6VH6$udeg3w;F2$_MWFQTJXq>lvO;r_
z&PG-}4^|5QHjGXwv3%+Q#<>azf<&M=?6dR!)5zRGuWa@kC<78bo=ZFdep86Y41(4
zBPsv)XgR&Q>-T=nBM42~&t1NQrbvIEdzSZp&50@#oc?IN_4gw=%QoX9Bi2HG9I>Os
zO8+<4=IpJxHL~}+-~av%8nd4b)aZMlxpryDc+VQ@!4jR(1Wvllc&jwSzpL=g!Ln`C
zQqg)#_0FRfZCspgXxlC;p7gX+8>0NO!^(&+6J!yd!x~QB$h7ng`nsj7*
z(Xw`7aI@Iohb_^EVK^kD!7F@JZIqnyE(GK;VE>x
zYYM%MZw1cskJ_hi82#ukxEFHmeK@JX9RFjWl!EiC!Cx{6Xg^=fFO?K5C#q`IqoK0f
zm4bTXv}ZgnH!LeeoR4U4|IFMDcHxP1FPwW#+8yFh^jW&^?~_3+?3Wh|G|8{M)?4&1
zhVNxQSDN@gJPig#%>C*zG6s6cuH}Cxxu>O1e7iMt&~T3+v(uj|{?4%q
zlBPSWt+sR-yKRo7%A=_B#tZ)N3Dj0P(jI~;^vUoE&D~0!%();dkhC*NbGkqp$oH$u
z`5EYdF4?939sJrmsjnX9)-ip&+%)|gHPQ5te&ZbGBmMFwuh*lV$o_uzvvs?Z!e?Q5*pRx$;pi{f%Nwbs|GWlQoIC(j|tLAOxmPS)t+$~oM>J=|&WzgKJIVro9Vc)ki
zjZhNrq(7Yg0+}sr=v4fBSD|
zk<{6x?1&5AyWRY+^1N9bDk4rlY;DpKUJJ<}oB^QL&Abc*R>4{}!im$$T+L!|$nrg6-7O
z^u&J>nQX#tyB71`*$F(B*ndV3cYFI=A^IjmO{~4mO!Qw@Mfzmn*!KzgB`8gsTJQJq
zrqz!s88^Y16W`M?b;YAq#97RAdw9i2pb_?-tyDv?`g?a2qos9pwcRx3W=MXAYRF`M
z5Q?GfWM{kiYWjHXCmGQ-ciNfMx=|8iLnZDeA%escQ;C+f@6fqFZ>-HBX6+YT=oSRV
z%%X|7DKi|%fX?Mbe?RtaAB^wnN_lrpuQTbZipi*{sIW(y?K_ITP0hT_kKda7%F{&p
z(HXZC+imKQhk6))-;)fl;2B?Gb|ZDTk>m}!lkDMK_yq$IPOC6ZNkCI8Qs
z1bx(+&om}-X*4t?tAJbWG#OnM3{2?Se#E2lR3v+!T(2dKyL_?7=Er}IP(N}%s_HJ=
ztWzWQM^410_8o01X}@)*h`5Q)*o$Wss*ZARzdcmnFrhl?bWiz!3=2`EP2_RAZ_z!)
zS&W$XyE8Fsb`sJx-X55$TfS08+Ul6I*dB=v;KK0bBX^7lQd)^O^#a(Ip!CAU}?
zDeUqhnNHu)=#|C@|3WiH=@s?Yn4q7(so3N*NfOd&r5w~3PfDhAIC_CWW
zM%~bk_t#8B4`}|;r!8>4LNqPmKhBEfM;STW3vTZ&70XgF5`L>=TtaHiX&och)oWK>
zsPyK~!8V*1l)-DA{wX4IgzIUWPITB`d*dum#m+0bp
zo9wnt?feWwpaYpqV|Gh~mBTJ*P#GOO*UVWZswuvtV7B6KIJ{fW*PWsbPkFl@lwZ^5
zuRC9an~AVFAp3)s=AYwBYg&#}_R&XvMCjNH`qTCk7>$H<>Wy2beBI_9xkWf|W4H-%
zZZ7)W{&!zS1g>vCIFC!7qi1>LcY_)GF(iBak)%Z_(OY7pdV-gq26G}$Ws7pNHacMI
zG!6CZ8~CMs$>*J4?p=
zXRe8f#)hb!;cBiLJix^`?}+7;FDSX;5NR8M(NfjB6ImD-x|xGn`-N*Vl`<4G3>L>W
z)zxyfe5;s3LEHWGS{mH>J{1_3`P^e19|ZKyESqEY`PN!eoLGKK%B({NAU
zvfw}j`e3K{7{hy`OG~n3UkQDY`lZ=R6-wtS?RO^3emYH@N$c}>>^^JWZZ9JJ!CKan
zak+h7#G2CHhK6_<+umZO(NMmDa7twJJ8MQJ%?+RV3{?F0mW`WxwiDNqU|bf>S>`6w
zi^q0via2eFQ;o%P(DvypinihCREuPk)bmj?f(_<@L}o{}sJD#218#8+_co#lS#f|7
z?mDLOWXF?ujn=(Ivka#$KfZRcr9H!Xaay0Idv3Gg%e@V90+HpIrqmz}Ujn+h=KEwc
zlB_Y9mWXA$o7e1)((I!vVZW$0(6&Iw3a;S5_aoYvj+R
zRr2u@@58(C_`GSNS%P%#n)RU|{28KISelk;ck$(a(6No|$gV?M)lbmnmaA?ut6#U2
zsCz87WA-1)P$}%=+blWBx1digcPx8VYl-cQ2PmR9m9sBjFfk7&t>=%cro2I
z9%*;bZJ7~@Y7KESpp7o_P)NT(#s?hVw}nqmKdU196gUei%(wL(|wFo(L1snya13`Z|w{O@%}
z{X|*S_zJUpSM!ex`pW)XLCR)tuTz(QYpaLwSnF%t@F%gM%v@E*
zjEiS}dk~rI8968t-M(bnJ8>6|J2>$L207v$&FSaRCcW+<{NSt=oR!pP&h)ptc?*Xw
zb;__3wMLaims&Na#Hmc;4>J1l`6$rcU&+yGr%L1XwcIXX%)Q)Kn!$&9?Y$zV5)W$7
z`Fki|)s-hT^C|IYM7}k!(p-(62@Wgi;eNWqy~?#63Kas%dGopab10WOC#!Z5o2}T3
zia*4=ZPZ)eS$-*@cxAl`7ZxF|T76&gaaqC5d?OT0)!=uk;i_sgh4C;7?P@|b=idd2
zW9v;+OfhL@MrZRH1q!C9zJ_a@`hy0%i!INM>s0Rq#L>OowTG#gC3q*r#%P&cdpd*j
zS4|YlDY#}5$oSi+C04QqBgQQivR?B@I;t7ARsM=_GB466a{!8UUYf6IZwPG=AHt76yGDbg5PWwPIb^g9Q
z3|kRigycnJQ`K>w%jwy%GF!k?g*J4=@tD)yes<=+nEhERc
zT}yMGk=@%UT3{9xTAQ~ie(gkL71hPOl+H*InhHDBuI`Rprhdk!ekMDY?;VXVyV_oQ
zSm?j9HQ)J(G=bB%-0La7sq`zEVPbysCCAd3IvTv5jN-yJ1B~`@vP2R@il+HAUd@$f5%CLtWc3i&*4c+9DYoF
z{@nf(ak=gR0yjwl4OgrlRp4H5FhKaT6>m*u^_K@Oz>gOC`qVK)04!~DEAp;?Fq8%^zJLX=ApPCnuO4c(hT9*U!-b?mO2fsMGaJcqSsoR_6>zg^a
z)Y$^Z>rc8wb}sS|mU~{>@Eb&%nnvkxz2vsHN+LXrppIOtzt1Gtpi92erc=nyQl@Q=
zX9W=clnYVB;CcirPMaZUi=|4+FRF=XLZS%
z?o+HXO8Y|ZiiW5~&Y{?O^Sr~qtXS~FZY5~xsFl#i{Qj7pj5;<;`1}kH?U_e?4zzEu
zE*yKPWAwP__L$2T+mq>7Z7!iWq9<*8EUG?kYXx5o+1j%cI}q|y_wKflW)>#czJ4?`
zPCvpZk1ww>E}?ZM8)64v_c>eJB*RjJx*s^>&rDUAousXY#0>D?Do-TXPAV
z|K*5@r4e!Cz+TSK^0wzzb!6XnZ*TCF7qR73b&7?B`1o=!+6jq6*KV#44?mbXZNws)
zd}WzT)c7T^$QY-qgmR!z9m{b4MdDVuEy-caT}`De5xLrr2?()A`(YVq_L6!Albdvj
zPTlDq>krb<6<4z*1+3a@pW<~R8tLg#EJ|f~B}r6AmdFy9EH{Y$U%j6t)#JB;&PUPm
zPkNl_WZHTjJQvDeU|Ewc-uop>
zuluQ548yxbpRs6l2@cPIA0o~HRJnCW-TuWqyM(@=5=`acD{5!3v-xu9?jCiBIVSZU
zJ1bg!-78^M-gk4io1Uc%`qL%k2V7#+2JOlvCoC|S@M<0&3*C|z@QiGx0Qy>^qNNIfN#%(5}q
z9?1Am^Q6k56xrGyR0X(=Mn(b0##JkL1YJc)A>r6M`B)l4_m#@Vaa#@>Q8!_{D{5vw
zFEYOE%WW-30V!vyJ6K2sSTgSM9nAPoO?_}^A!6SqSo~rt&C?*>;x`=RPHBxR0fDe6@|b0)r7q
zrx5v~%XGRH_bF}t9N50aFLc!8fPu9Wl6T`^;$)Fi(as4)!-8JSu-ERVk?Ap6B`6C|mdF&3o+%W|FdN;C-1shO(vr{Zh(`k;om6^;Eex0UX
zVYfuDiLP!ij!$R$Mir%?NUw)%&yr`0Tf8*IolN&Kkljzxu%BMJ=~Jsm9kD;sOH%mj
z9I>(ML`|^)maOwj!Pjk7N3kRA9Xbnr_CmV5rI~cz`x1=|cY&OctCl17?Tn}-GcAJ0
zXvv}}_uGD3uQo<>AL-ibuSVFR2l;D8@{eavM5{?;Ma~VsL0MBwHd|WyVwDssE+}`S
zs!Lw(H%Sr?T?QRKInsP3V?63nHIy?olI1YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@
z0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VK
zfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5
zV8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM
z7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*
z1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd
z0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwA
zz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEj
zFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r
z3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@
z0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VK
zfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5
zV8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM
z7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*
z1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd
z0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwA
zz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEj
zFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r
z3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@
z0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VK
zfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5
zV8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM
z7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*
z1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd
z0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwA
zz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEj
zFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r
z3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@
z0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VK
zfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5
zV8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM
z7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*
z1`HT5V8DO@0|pEjFkrxd0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFkrxd
o0RsjM7%*VKfB^#r3>YwAz<>b*1`HT5V8DO@0|pEjFks*h1gz~y-T(jq

literal 0
HcmV?d00001

diff --git a/Notebooks/gp_data.gpf b/Notebooks/gp_data.gpf
new file mode 100644
index 0000000000000000000000000000000000000000..26714f47a488a5da2c500130a13a950b2adf11b2
GIT binary patch
literal 29249
zcmajocRbbq|37{*qEczlP@0O$$UGb#kF9e
zduNZ9zR&l&_x*VN9?w_5&-tU~`DDY5d`%7FH+a
zO)RZVhy+aBC)ZN2-Xo6`s*Yf}c;*jgVovHed&q5n2?a~gVh@1G{O-B$BCxGm=2
z<95Yuquboo{A-i=R}a1Hc0kxkXs_)_E7Sj|A^SAku3i1pK){Kg>$Yy)x>diK$AAA>
z&1dVj=bG*W6F$EC9{+iyA~Wx%)2_H1IS0Jhdh}W?fjm6?fylnFHjNxk)*ZHu#&zK-Z=G7rA*kq
zr;yMdT$#`W^>c>@9r)=EBc5#Y$sx1{H+I(33_EeQt4f~kyTvz?&>mcOg~gG#Z##JX
zgnC~MF1du=OD41j7ba7ArDZ?cwHJraad{U>Xb&z>zV5;rDYomC3v8Jv_MFfj+}vp!
zZ7|7B%Kv@jApOPyk;4btQS0GGueD93JP!^MJhSzy6`{RCf
z!Qe)g`&fNM;yr&R0tX3h8DHMUQHc#K=cCH`oNJwhXb*0*OziBK#(I|1lkaNTpO%ei
z|K~DLfrR7^ERLSTc1MEdn(RN5gJ=)#VO7`Ov^{kw(}Hu~{Y)sY?qi1t?MXqoi1vSu
z>uPkE-_w4IPc6@ZHx{p5xOjO!qCL0;{5Hp=a%))bUQET+J2eG}_TYZ_*lB$JQO$Du
zZBI_zzM}}y9$a#(%)F3UY^SSAs+Q_R>LY*y%)pO4vbeXL$n8XQ&vks
z@^C3SdN|R}YibG4r>MUDHpQw2(H>kk#e1#Ba;LJV_D2aULW;PxG#Z|bt-0&9GH
zTN1{8$*o7=Ai>=~vru#Rq((wuw^A<42`WboG4iQFvvht^rh&jZ
z=*8ZbRng2qv<&PVw&v
z?ZHKykmQ>bABh%ZBa8jx+X<{+L9|2f@c2)J_TWUs>~=|Xz2-UaMt9ZAuPzQJvr)Z!
z!FdgP?s_70(1F)K@M@l2R2rf^xHHAtR>l0Gyn5jLBu>jc{{9Kk9^AfosS#(i*>26{
z+YvtcnTYn_61JRDcQj$UH{Ru~n=-Qy?ZMfPd~@{kiN8DAgNt9d&wt)UwyO-pcez)J
z5I9J1FH5%c?ztRFl14q)qE=mnU|y{HX1{;pUy5iCPVg5&(awVo{6n!!<@J{;5bgiC
zD5N}I;=m8LzdPE4+dp@eTe}C_@h`Jp*5_M^z(K-(M@ZIw^F}|m%RDZqeDHo1qCL1e
zZ9B2E-fXwgrmrm6kl80v9$dWom!|p$e|NM87dJ|8V)`St3%h(p(wx~BfP)05`*^>M
z;tRI3zq>K|k#Q}eJ-AI5Buwf<*zSf{f2ZWT5=47&HHX!H%wpT_{?aF$D`Ad3GKnXX!^N1FqG}I6W6T>jm{vn2Um48y{9vX
z?N)}nDb9DvCA9zFaYnYDTz0S^nC%n}jB~sHw206i+|k`WuWG~DPQUzVMDfcELi;~1
zmAvx~j*E*7CDNg5D-0%lMldhN%hKEhO9`SqxD*YS{;WuXXb(;;af!l$c(!vqrnl6+I2O?!T-qiXg}a39exzDXX-rA?DA_37JT*|8tjkO=yPG^RVg#C+fLVIuy=1mpfl0u2I1NYM`w{G5g
z*qAvv3MkYN+Jk!{C#|l)%nLZk)`QJ^XU?f0vmiw-`?d_iar?x${5KxiJ@E!J5Ul)@iO
zXbnP?Sun=@!J`^L$n7s
zRc?!BdoSC$=^kv@jhNS|ln1xoqDo2p2iqy7ZWKEA{2ih_xXGf9my1PS@#Yie<Hka4POJHJ-C2hlD$Fwp*#m($W+0
z4nliyB1Y#`a>NJc1;*F4w(44-Z5N^azW+Yz$o%M(?!%-0?r0D0)e=upG=c5%>+^11
z3F#r=Apbm%8i~eg?xFAzY!_Hpl)GV9C!syK3j<;qwaog-BzU}kl@QKb$Nb1RtMaZU
zLVIvNdyTK;{KJ8ls2R3wqGB_1-u?f2a6unOFNppZH|nagW{_4hp*^?`b#0N0%=$qc
zNN|wg!A({+Qr7*(cGFhx8$W7nGXVz)F8kE!kjw$L^R+4ap;6OBXb*0>-X{eC{#UGi
zf`bGPZfKZe$YegYGg8=>BlWt8fP)10uysH@{$J`9Z@=FD{zg5a{ipQ*JX(kw|CJ$4
z!mr4y_&ql3H#H)d&n*&_idF)Jg!bUhRCGw*9X{y5pNLG6+@6|CX#eND+fD=y>>k$g
zk9y$bc3E!jRmdT<2N%tsCfoflZq=jPT60P=2<^e$@n5u<`Nb1&d{FPs%j8-0mN|s>
z;7lxn4y*n35ZZ&g
z5uK{MehAx*jIS}yvu-4`2RCYZ_J-_#^b_iVg9H!m;^wC=RsZ6a=-sG!{Huw8g9P`b
z*=pU|{~t$ta9&F*gGHJ13-k~2lysZzQ_B_t4ia4Ggu-tB-+yTcc=qd
zv`{to;plb(4iem=a{sp@n0|W1opP_ZU(54*I|k%*KXek>gUbk7X?Ok~4t%MzN9+AJ
zU4-`F4xhJO#n1E;+CyH`STXn3$4)|fa1z>2=H)Z{rLc}=x0Q_I5x7y_)8vo8X(qG>
zCwY^{ilL
zj%huDdZ(nWj&zz^NoWtwHR)B1lFgt4|7n7z&xV>ZLVIutHeJR&li4n;Rm$k3W(lD^
zIN>!He4712c>RQWlXq$~6kn_-vHo5qm}1fN+pY`6T1lQ!I{Yl
zPLX>U%yZzI*Ni#&BeI*&9$dGmaG0@Z5X*hCd4wkG_Ym5H(@B=^;WvEFa`j0oOTL@;
z654}Xc$s^u*)f3S;^$2_m~*<1&>mds43XPSk8ZJCZU0Tz6vJLZdvI6$>(2DmEk=`j
z1Fj4?md5j`)|;iYrMn32!BwX6t#_JsgXh4TPOALmr`bhl4=%H_U8TzH0n2Sq9lls;
zMHitxxb*9ZuR{Evv7AQdmc3%0U4-`F0#u%9DQtg<+{`lL$L`D`&`<4-akB(IbP?Kv
z6WE#bruAMJ&w=mVde(7Nb{C;NIK!>om+Ld4{_1EC&g9kXq#LW=vs}-rC;DgOx(GN(
za3VX!w4zqUq0g>cl?&c~CeTlCkhDvEG|YRbdjijaf3a04e`9190S5{7))o($ICOsU
zUmfki)vvM|8kw2Ga>o~C?_9aAlYoN+=b}2^Qq?^THD`(CdB^7R{3-q4Zx{8p659XS
zw|0<-oKD3(#u+>Z-Xq@fqvk*hp*^_6>*X9j`De1+JE>p47jJ4IwEy!uu8S1U(BJH;
zn9Xt#mfuWte47dF!9AN{<2EEKhvmFQiylAt+DK>*?!gN8tG=7^kdpF-*Ll;w@cg|i
zGgO9!G!WW@8-7jEfA8=Do&)c9X36=Tzv~I@!CBOq9@*km_*X}JaMG)t?52$T!g6xA
zuivgzts~$d!6}~h7I<*G_^*!k;F{!jcI;kI%5o1ie#Nfvt|8zc!5JUZN;;EX#&W5y
zrjGZ7YYFYa@mH4Tzf-6{3oghhZdUuq^Kor!zQo+9BeaL(dTiE!<~YQOs@4$NgS)iSp!dw#
zYL;7o!b
zs?T!wirMby>J9!1tLq5u!EOI&I~zZ(LwBCd50}YqCorFTH^vA`nspM|gR^VsIU+Kv
zp69?HcImGV-^=VjDGzS_+tG`ae*WFj9-PAaq@ha94Xk>%&B^Lg*KPt15}c&gY&qYz
zjVu?IR^E&+_7K{`&xzdaAL@+1(Zq5IoIQ>|^m_^I!Ofn$B(P#*Gs|tXf9ohRvX9XI
z&-197JXHN+=q1#`a*oy$I*(ZP5ZZ(LeS3$9ZbA#n_I9~6wDvQBbvW-hGF45YgU}w_
z+xr2x1+TX99C#D8>9wMX?S%H=uAbV`sJ7uN%dKwwe*fv&c0zk_`MUA<>_@h-T%J&W
zoc64CLVIveygQ7icuj@jgO(a3xl^wTpV$Zl^%_$mOH@3GKnPnF=MlZ|LCl6Y6a(
zTr~US?H)pVaAraNX_EsxP=o3ut@7Gn0?u%#oVu@QJE1+evw2hOY=k;_4!rnK*Ok(n
z+6e8zk&vF8BxAO_Z@2DOwdPksdvM?PS+>@MuwBO;y-O>kn7`|%Jh(^RNgLY*yIB2v
zw11ey9{v_WdvGFYQrmPlvYlGlZkMs`O@#K~Cf#~zI{DGx9qqww^1n95v+@6S;K9w^
zup>)Mshc&vSVvCzmZ$~-?IFQQISPF-Kf`vBf-grJ{i-Fj2N${R#M!tH-N@*e<)g;M
z6}-B~N4^dr1I2{);2ge86V(~f!*k%bFD#I_SXe-453Y2R?L(bSY}Yp_!^Zhz9-%!r
zQ|C3F=q}ssIh19xxBN4qJ-FG!4(`2F@pngia0?;>N}fsgvc~uPs_KgsDTxFeB)Ej9
z?H11r*-k?L>hnp-(S-KkT(vlXm+rD1pKfiAglQI`J-F6ohQ=c4y@-E#y`bx@LIUfc
zDn94I&-E3A_TZ)+oU(-TZP0-a8}sGnZqEurdvF5fy)(YZ_VMb`j`rXxz7JgdZp?PY
z$E#e5lqv~0NN{U9<4-)h&31EoKHao9SxIOQZj}4B(4o<6cWL*MipH!;Li<1af+BMF
zwQ@|=SGLQFN-2?uEGD!Em-li(*|kaiNItSUZkb;uZ+>hFD%OZIe+NkWKQ5Kncny!p
zSUl*!``({$U1CWRp*^@=SF%U^GGn_Cse1-hN$&~m!CjHQQzUSm?Y@`YH3{_!BD4pW
zdFY7B&!>NPv>X=nZpr7C%!GrtmQPWW~WYB@n
zS6KR9v>=^;g9PWZD%^X0c0aEkxYg@2oQ^I_C$tAQcD|tEjY_urQ5cfB!Rj5MJ-EVX
z`LQP?zoF6lW-Ts{P2$x>5_MjS&|5@%aGmzV|A^wC1OGXG@;tW>aftTdlsv>f#jRw!
z4HL8~Hijo5+Joa*z8!0z%y!*zTJ}5k#v*L&Q=<_LX5xBL<`e(fpa)vZh1+pZ{AglG@W
zEO~S4rQCj=1OGU!`iP!;38Fo??Q*}KwQgg(>NloW-n^(lvE;F@&W!mOsU`w0#bJUDHW(+;*y?0S<%G-T{6NG9MQ!L4)9;})!EyYKCn
zIvRsM659Xoyo+u+cn>@~*UMUmY1^|-n@J}V+Jozv8?&k_sTZjgo$L@#$|0~0uCI?T
zy{&N;(f*GsLP0xp+LpTvI`Ae)(PC9rDxy8OGYt!6W^C+5!6U13Zd@tj)#VIq+PUat
z8KONnC80Nm3)Kc4crn|ZLEXcu5beR;I~K2g(o-YJK;nFqCM2xepR_?M0z*UtJ@QBsWXc=&J(f<{)c`y
zAlieoa(#Ma-jhKG9vmcia34Occb}xscAO(7qa~D@5jaS2MH(4zk4dwg<3dRt(ZUu)
zdvG1Th2F0DUA*x@Kc~)(F`c-y7118typanA-q|ru=INE3jx?U1JtF1wA>UR+dvM}M
zyoD6!{KNgvui7-8fAqbti1y&R#txPBDC``pM>*PqTmHadjhX%b?ZAWU$=kO^MxE`{
zZN87#Yu1jSJtVjsq37H6D>_*H1P4jGM`;Df`Nse4z(c)vN-8q5b=b}*woyv*TnB>o
zkl?B{Rlampx3l}%e)33ma|fdRpYv`7x_Uw4r?1DqxSDFmZ5^#ho$}zW&mADW4(%wl
z+~L`}O^pPOn?C+%z4e?Lq)z$&y^cfE+h6JHZyj{tch3HPx~07e(H`8EvYH6h$!s?+
zV6>aFNEMRQW{mX(6JeI6PvQf_rpAM)-;2^<83JvU<9?^_$N-g;5T~$Y*Ud5UX(y|ui
zi1y$<4qrW)L{{+}_#0gxRCdiOL$v>MTsNWzHRb`qDm5&(>gBX9@uU(&dvNlVGe&Ib
zsARc}3(MxqYnLF}|2eMP(UTWZL&>##mMc24$Y*(TF`_-V+_Pefhcdr6gmFPeED(IC
zSXzu|4=&|gX^vB55zEcm?D%$sOEIE7xX31xy#gn)S?=A4nR7+Hd_lAaS6FBsERyhv
zkmsA+^6lL%n_~Ju`
zGQYL55beQP)d*UJ9Q(v_qoz8J{_L8AXb(=-#86_BOe&hY{0%hwe-+voEf
z_!Una)!xQbBie)O6xpGxlAgd#8{=5+8=gD$+hKs%)$K0=q_Tb#rT*jT<;X`0tkl-M}gNslQPaEd&gyn{R
zBM0^?^&oJN;9U8H&XsI_%5oX;>vrf$btBq?+x|^t+(wXVS8)skb<>c{u
zI}q)`UH1$!NjMlV=>F%e*NSvm7WrKDkVM?0eZpMDmhXI^$=M325?x%LlE
z!eZ|2i1y&RBhod})`YO!b-US_@l)Fo?ZGuW@>?B>WV_(1Cs@y<4bdLluceQ#HVp}7
z)qBVPDXj3pS44YoGdG=HsH_!A{#@7i_+Wk}y2$s2e{Myz2X~~TThHHc(1AZFc)PMf
zzZKCQT(R9MQ++$O>$Q3upw!rcXbNR5beQv8P>W-+-JL)!XJLm
z{L+PJ5AMYLT;E^+;Sy!jXNRSJVg~bb6xxF`G>m#Ni_WWuO9ERE?ZJir
zG#*#!Iam*zqNcH<&dO#)dvMP>?L<~E_h*3ikl-M}gL`q)**cgxUZ6c>)C%DTMyqQP
zI7o2jUNQzID_Ydky^R$j}i>+iL*`M&7~M0;>b
z-jd@@nR?(Lql5QZg&d4Svm_mx}7OpD0E!{ZuSE
ztM7Iokmt{Ny6xeLd_lAa=cVRQpUbQtILKqA=1v2eMTqurel7F!Adi{*NI-kYZD&P}
ze&H4(+JnpN9DOX2c|QrXhYTNE9WT4N0MQ;C_w}NQx0w5KKzqmx!?u0Dx%r6p;6fsL
z93z?gWI%gJF3~^z;Y1#yJ-CHof&0n7^b;H;cyI%IV>qARuiWf%Ap-Z;TQf(Lg`qG#cdm_Y}A*E6RD_M9vP
z4iel@*}VISacuW^+We>en=%pY!D)=C&Z&6EcD62OubZzeMzjYvdTi123Cw*te01)w
z-5^$npr0!|MbA0UuSK*6S2Jbo>6-V04t#`O%bp`^>k#e1HO3g%I>oYG+suls(-Z0u
z?ZGK-IN;|0FZIAdf(KU^>6NEV*!2`d#qlhqCIk)=+?1JEG(s|j|G)Dtv3M*KQJced!&>di
zj$I5Vv6wfVpF^ZBsb
zp^qPB5^#{aO>GF%DAY)cTW}q
z2MKP)qq||Q6>JxfB`04~pMz)*uJ)tvbOUA`U|f*kAi;xMn058gH)b86J!Jd%=Kc>_
z`3M{&xb|VVJD`&7h7}x+aSNXc+C#2U^qkCp
zw3g8R&(Dc+2vTtzEA=n+-utwwSJe~~+Jg)7^qyqQIF%PK#d-vS5Y(G$6XiBwA4O>Y
zr=LaS-H)!sXy*OQ;2qt9@xe(mNfej&*2
z!9jut=e*F{bY;6^3rEho
zbfc2c9^7FQ>9R5V+3x3ruy^5V)r9uoR{9-yJxuEFj`rZzM(pv~_a=llFEG9ebB$AT
z-_;Uukl^lYk^5ny{C7uta7R{I@0uAG%&K>lD{0p*+CacTg46kWI{wJ?7c4iIv#YeI
zq?XX$jroKO2j=rN4h%UUbU@@kpSW>g*grmRgP-}ljWO4B=Z@s#)34b!sbz~A4if7*
zv&Tpc+nw6qQMpeIFBrQrv0|$_Hj!TX@@TdO4n7&-n>USvU-hj^p16^N(}%AJTNuc}
zRom>!FAs3ABn6HU5RDvT?Oa{|E?O=OXt|s287C)kCo)#XReEdn~c`fXeJiXw@
z8!deCL4nxLQ(AbE-!7TQN?Lg5{C6kQHV@`B3!@!7%(d|M-snZsE@@#|6g5Qez7}33
zfAi{xr&_pkZRXysQCfI>LfZb=94%axT6^E{s}{D7;fh}n=3;L3{vAk?i%Y+z-}2bX
z#q*Yv$vcF#ai3bwMX@>B_#U8#3b%yb
zey)vYuNZ@R6SVQoQ>8OskI=@W1dg=$?9#$zs&PN&sc7N$>DgNa1+{QrPJ^U0Gw#}*
zU!|Tr)x_stwIAuYHkhCD#2haxYvOr}i#NZl<=|Oq8`R}2IkD!b#+h}T
z`F`(LP7`uw#x>P&XsieGb=C=)+7K;#{zE|c>`_`+H(L1I31%IJ@QbKEKgq$y17{rh
z*K)AG_y>*G<2g9-VbG*YIU2aomvrAY=io8L+uH^>TG;TW$tJ#)S~ybrQN8;PEqr3C
zNPgE5Eo_#N960;>U>;kp;JR6qiyKTLl`YnC@vbkA`NSOtb5g!2(Fx?@4cDY!6{m9X
z%UuSmW>ybo)_ldBFlL_OH%jcGZK)6HimPyk%FdCf1EScyl51btZRe
zs(G6xzWHrt3jU#qM|*1}Z4%MKDU00}%^0qU1tx09_k2{x!)D))D_O6Bcg$bfvaS+Hm&1o;8fhI<E28e=~l
zyV#_LAvX_=UHRp$8irJQdgbA$MQV6^VdP_JXH~qtCb;_e235RoU7ym@8>)DDY{|T^
zY&Bf(e526jiyDrUeQO%COdVg!Qr;XcuYsl3znL?CzXqP7uyX$R+Zwp~o9J`xUFuja
zBcwcajVg}5tt;OsrixSS`y-ocRB*O~z*3I~DtOeW`7hsZQ^Ag#M;=||qk>PH#Uvg*
zu8LPRt0bCQsp2&g)y6cMtKym8no3=_sp8x#3tF_9@7FvzVYBJV!3@zHUmUPj6+<@c
zZn!DT^dHiB|L9pOgH*9q^pMi)SJkkb=!ve={%ZKv^TT5O#|`B92RGBFT~)`Bs+>vN&PA)^At43TiZ9i1i&<3W=hNyq
zcCx9}LRaQ_apAO)YoI!wAb!VDo_U@~q@@dLH>qRI6M5BlM`++s0ld~+NdsTGdrNPR
zgE|(NYW-CDnJQj(?|_x7>0l0ca^rO-sNx|~sT)UsQNeZds|Ltp6`VOG%}vTy1>5J>
zK5Hmb!Cn?KKE3#*ioN?dr3GWu@cGkg8Y5<@VZjMsBl)>%*mdjKr?1LX@rMt`lta#`
z;05{P?hQ9k!Mpf<-3ygeaQEb{q(^xwICe#MVX>|n=Egm#@Z6z>-Gu^jU!POMj|}|y
zANs1{X*KIR#ZuL9?K=CLi(1&3xb)m{tg4Q~HG;+*a8bv#BAo2jI~rKteZKnEVhy}X
z##34Kmj>3m^f33`E)FmIXZa4uL~(F{iXvz;pMHt*V)zfg552-`RO;;O?*ePNB?sd+xZxPOVfq>nDd&*_D2UKweXodp#k@1<~(R9Fy)7r`@iFmFph%PE^#yRg))d-Y>3+U#ZF%|Lo-8vW9%C-(?(Z
zDC<)5CVns{wHH?}V6FqIB&7cORSvdxGq^Y@n7JPI)WsunO>COeJ!1uP-6~CTKUcDy
zi`QI?_u3u7#n-*dJ{eYWvDx^xs--`PAtL%N(__U*J56
zFt5SXKYs1W@LFxGH0P_a!(<)Yx#83Co3c9ig8X>PLRB3s_0pu9vxS{g=9KsSdZ>fx
z6qz^Bv7}B1zfJC6x_k)2ME8DdEYiU@f6o54`ZpJANfqhv<#F*{`R$j+F#YxkG<`Yj
z9v6Qtz48A1SuVcuEIY>K6&Ih1*Sqj)iZ(B+`Mzc(wQ%u|@x^y;nsG7Td7YlUTevv<
zo1;Y%a~&PJ;*OM%8W$I$%@ywzxj6d%lsowfTs-ciwSI;i7ylYvD=$;V?z7h*Fk
z)Qq|Kss6-h?OHC*`(8b3cN-UvtPt&zW9GZ7c7#&mFlJw*u=;q;cP`#sILTKpgNyB^
zEXpy>AI#OtT-gQ1T&!V{)D=Ju~c^Hr{l!<<2X{EfwBjC$ch2JAFOgG%En=AS;ffpIxB(ozK0((-teV+JuL@aUt*C|TCx2KmUT-khg+`l<
zx7WgI7H(6XycoTN8iRb8d=9_Ccjh{srOl{r
ziNS37lC;f0S`&NMx+=9W*9S<|i)*~EDly~VW9D_|90#A5_4lf|sDVXWL&wfC(7?Ux
z>!yTF*T61C_NML3^&RrftFx=x?y6(R-|CB_3RbJ*M-|Qn_in3WYxfD)zL%?Gctv^H
HP5%D@Y(6VQ

literal 0
HcmV?d00001

diff --git a/Notebooks/gp_params.gpf b/Notebooks/gp_params.gpf
new file mode 100644
index 0000000000000000000000000000000000000000..15248d9aaa9b457af0a2b336857f3ae028592378
GIT binary patch
literal 4016
zcmcgv-ES0C6z?bfqEHHyk3yZ&dyBcqs~7m_Qw`drGduU*IrrT2
z`<>r8bEoN}huiDa-+~zAy{TE|+02S>{`KMM)ExCpYU@n!ju|&=IrFIu_3^3g0`+K~
z17@0hXil+oowJ*p^q=AA>!+fixYhTvwg=?X52ymj-AR%EAx&wn{r%S
z-zhCb%gNkJk!jwR*gGbs#eI?CJ;Y~L7B2w}0*?e9)n`q6MilwcXeP9E$2QEsbZlx7
z9hg4rI;I^EgSpH$n5~=4M`MG0aIH&d&a}~7DzO_Mx%-mbhh{7`$+FBtBMcqnyNT;D
zTx$DS$ICN=n6?`R7@;hB5jc*8$7*q@7nszN>yNJ85s#konD2z1&WMUQZbDQ*x+dfC
z%Mu72MickMq!@&QLo()_=&H1guUR36c()zq-9k!tJeJCb7EXB{EeO8F*QrG%SiD&+
z!MhO@5EUG0$c~Cq@dIggqLJ616q=@;{R{upWuh(+nRILZL6@%G9~egjCh>GCO3I-k
zZ;Ej*`v`}4|Jq|#uvR-`Tw1A5%3ib}FKBT56?Hz|jtKf{lR#*Er(xoQnF#}A2aX18
zrXaLXL(hgL(WAQpdU&T~LIeZJ+JX;PTtJMR49%F985B}6^)hCTAwZs=O8A8iO(oPV
zvwAxLBm-`XGdA;m^rnemA_xsys;CZauod%wcPGY=a@_y;$$TGNR~7!HW+5Fy
zWz
z^F}Q6?fnVI`vu>IREzCd<}4FM=_hY?J=5{jd+HZ)Yyl0t<$@eOZ%g&*C}%n|)Rtj}
z_thvx7PDspkUEATg{G+J)Xc%v1tVs}AoO62_QSy{0fpzGpKnE|A}2yUK$qYJ-eMb(
zaxNm3?}>DMMnw8pKhbhez>!jV^!+czcXxWa$A=$@AAk6&cl`0iJx`9$6vl4+@!R9Y
zLknY1hW0*PIx{^s(s;Vzv)_%ekKg?Dlkb1(9v3KDFkF;G$U7|67&0tNZ}vTm>)-#2-|~Nn-|`Cl9wC0q
z80F=4@Qdcl_-zE#as{YeDJcn-365h_TFNSf_UnL67jdwu12Y?_A4w%nDr@ihYvRUm
z<2+X=-u}j1{N-%@*Q$%zJc|6q&Gr(?No=mt@<7PwvP^B}h{rcL;s#SugAr$YuCczZ
zj<+QxBx-Xv?Y;^>x<4ghD7&x9i5!4-z5|sK%X&ZpEDEY%NX1ma{qW~6mY#h3`D-e;
ziW)7vIkK35xK%wKi>@pE?vj4T%X9niLFrZQIr(cUw;gY>Y891gp@jSk*?IlDc`(>rIfdqdmZdQVMN1#G*kjoE#rv9VcuX?HS}<_Ry!Yk_SMxz
ziEteTawpJWx^?CF>T1x#+sn-f_U|uOvLflKRm;BO>k0cLDw}q!t)c9Oc*i+x=C5F{
z>Z-3t{0z%U>{VQuq>WT0Dl1PeEyv%&i(jJ%Rc86FNG
zUgn&P>VY-0=utkDO(|BRQl-eLoLZrif5Is>2(#+8j#`#i)ey`B{p)9RzfiR<+94@-
GVd`(-Bu|e3

literal 0
HcmV?d00001

diff --git a/Notebooks/model/gp_data.gpf b/Notebooks/model/gp_data.gpf
new file mode 100644
index 0000000000000000000000000000000000000000..32324c6a368c248f78ae17769398f1593d89015e
GIT binary patch
literal 167690
zcmagncUTljv_E_W1k9)iM$BRY6Gnt%PM8B`4CIVR#)v3EF@XtD5Wxsy!T{=^f~Z6h
zBn!htGNPCOeS3F3!|$HDytn_@@3YVL=Q-8YY|l)0RrP*_(@)#{w;dheWNNp|-qFm)
z-c{Sd-O0kRZ}!X?a&27y-6RlYRh={R$6a`P`?lV`iywHHTjm?BPEr+tt#1D*Q4>Tk>}1V5
zzjzU#yC1Q&gYy1+j9Zs^YuEfnAyAKQv-*DRHJ4%-r?_;M=XjA2s7KeBq8rmb_A29g
zXe9uOXjS_;e8g_2~AFRjHeP&JXr(S}q^3T`cqKm%jJy^+*iVqYLWlmM!%3kva5b
zpSJH8<%)rNbe)y|#Ex6Vx^IdJ4r@9}fcn~+e>O4HzB17IwfG=Y@AS<;mk1j%P>*hY
zMQPFMC=YlUZtt>lSP>7~8Q$TbdgXf|P;d6{CWiFwRojg0on;PvT6BYa!aX5Sk1oNW
zq5T49N5+jDm*D@@QwY?fyO};wS@P0>aTSU4bv||w0rlwWYy<8(U$BR?WY@^u`a+q%
z)Zb=a?;~QM9-Zfs(Sbj@+sPdIzT+Cdm~iKvdURpG^a9rnwQbc=kM8Z0U1q1R+AuD(
zkI9tV+}{g2Omqr!TpD$&tr_RtW%8gyKg2*ix*0Lwp07)1-GiYWmlpJr0QKl5I@_yE
zyw$p+9-XP0ja$382G7x9M{CHbV?p*KX18L5I8~Ks~yQCv_VSFSCZY
z=z_ZVc@kOwjCrqqT>4r9)T2{8uCc^+Zi_>Y4ii1PHhq#l1b(rS)kEiB6mU=6AOUok
z=%)SDKi6{*ThHX;qH4u%QlK8)u-;v!-%Muftsh|{-)6KFs7H6<~8H@7rr=P){{L_!2L1N#a4}udo+=Ct0o-dyO>IVdUTl+ow}wU
zwSxNtd|tfnSi{5fpgrJ6kmnyEP>=3ao5XF^T)&{hJTmrV537elpdQ_`-0sun-LPa_
z!xbezXJa8ykM8osKRgXz*0~R#^5XU&AyEIR_@7M#?VY2Y25n{Cw8w_m6L|ul9-ZXl
zu+rN$tUIF<_FNn<0P5HNyNO`<9<5ci4wi8Can;o4mjyiR7q>abC$6s)0QKm;D5QAz
zn$zOY^B+cUcL@^!_2>@l{XOBeBI^!y{%)vaE&%G$y^LS)s{74C)=sRKrePFaHckw@MDB3g
z7KeU}&G2!9`-*{jbPtwQZuHBukkvz%ojfdW#%3{4k1lIaZQzXp)~!?<@iEL&1k|Hj
zUX#1h9W0y`n}kCFYF%|&Q>i0>e0Ec4qLGB1zQgtCi;p0ZUUGk8Q?vplywgzKl;qQ
z&Ifdu=rYeIdG}3YonYCdtG;8)fO>RIH&r$*Xfy+BAL+^icFD5-@$pw(nKe}a)T2B0
zl>hC?gBFMWj7?d)C%OWl9$iI$mjXpgb6Guf@{{$(mapTkyTqd_30$GoKgS$0M(`?5
zMPsU_cq;KB0Ro^Noo8>UM)&0*b-y+vwy+}|1X=uTzEY!1lZve+@B`8FYXCL3VO2jT*g1pty{?l>IVP2l|hAz!HR?Gtvl+`O*D9UZ9kuFr~EdP
zAx*zZ0Uai~j(USl*1u$3ql;MoV^t|okIpoHYVUDHW-z-l0T25n<8XcNKB7{f
z9^IGljn7l_S{(YAoV(5)(@KGQbo^lkH{48FXJ+qtU-^D1P>)Vg`*iYoGuEB=vRUI1
zTnf|&pZ{m$Lu$jkfD8Vtd;RRVg`R&YP>(KF>Mg#phIP>iw^JAHECuSj{k!p@hn8yf
zW&_r}Q`6lRyrvYWN7s1a;B((l)^$>Pu|wx!2~dx2f#ZoKSNEEMyw{h|1s^MTcpgTt
zidxWh*(abL-RaWlZ+us`IP@3Jw7Kk^UJTTu8=U0X*LfW4u9}IbeK9Qt>d{HmKUiFp
zXPs@Et^F>`6$AC?c3R2Zck9i%;?vh}=|mI(_2~S5>p88+HkI`Y9$(pOzom2Yihz1_
zS*k{-=eIM1KPMgX%<_dibQSvF&dwJX0rluoKBWf5Hk!&D`fhh4`d!l~2I|pm&|bMD
zK+X(qhJ*%K?=4;AMwh9C{vk3?>1i2t1lD-_2?9Cz3L*m-@0S`
zzmN}|ROV&aU;4itdaU>H(!tr|&aYw5Xk9v}
zSqjvnGk==ZW&WUpGKYSna_>D!O(j4*x}onk8(ot3W1QOOQ@8fKD*@`!l`iX+c`rPG
zai?QqR%x6o0qW6xJ@?2fe0Em{c#?2`V#y&JzTqcbE?eud8O0-!I4s+9-Wa}GCX{FP3F)q-IuDN
z7*q<>qw8Pr>}{Uwb;b?QaSI)Bu@tCB*L9k2$II=a8D}@uap#b0r9eHpwjmz7;uTn@
zIx_JDJSYX~(M5X4#5+v7&(y21ap-SgUkcQt3vgBXczg9D7_=>K;!58P9`=j%*|Xbq
z-AaIZbejy9j!m_XmpSx%e&|`fTw4OvqchiA^Sa#kIpb_z*x%eUy#%O7=h3`3Cgf=X
z<9t>ey)PPA0@R~BG%#V)mD=+0?f9~>~pY8pi2&hLFFYcyn
zx#Eq?p^rbg?wyx?5m1k=+3?u@<^Jy&XWV%))Ga6i>d|f3xZwR@tyIRj|4uI7D^~>6
zqnnmv6WP5fg>fGo8%BK=6$16>I!%bZkh6$AKEBGCMev{ys7JSW=ly;GikVEk6NQ$A3SF89)PPosMu8E2*-N%S9A2GpZ_Y4hRC
z_v5*(I_lABI)()*PRe7PV(MbI>hooQ4ilYOQuf4Y^{fjk68*``Ed%P&1vI&7RzApQ
z>Uj)YQra|70Mw(4T@oGlF0_Dgx_^SlJkl=%>d}q$?zP80un@H8x?0rkso~*ySG}Te
zcWZhHP>(Kak>{7FokcQ-zB1Jy53EaodUVou-?RfK6f>^j^v~Fo?j=Ayy3zZiUpn;u
z#JE|T{FfU}Dh2A%b?va$>)ww~(5JHvzgvSq<^}n;R^*420rltvmIm);|O?p*&qN54Piq4R!HD!e1bPqhZpkJ0CWWZ}_$S+hbYXiMwrQzi;FN_2{l{Z0Mh{r^TU9xvR9z)29rmN0(Oo
z+W%uAAC{?~nDs@wLRNSF=b>_G4+KCxx~*qT7Pf^lnM2?E(SYzNUj)GTf1v;j>J86c
zImfz5zZUkkm?i}3v7X_o@Vxe4S!bZ%TYsaK5U592d&pW0O9ar~s5ns~k;vNHtM{k5
zcTWj{dUR5i@O~>Ew>b0_!z)WYUU1`rh)1{ZYSwS(oZnJzp1(fJz>alMa|V_q
zjurtrOmusm&yWt}vCc=~d@q$nBA_1KORYSUm;u~#+`s*Ti4GGzx*;wVCptT_uBlI<
zTks_jpuaB$;)R-&rRFwIZM%o$|7u*OFAlOgk6%zVSYys~D(9cXRNw+7sJY
z*UdA1K=L0EP>=3vm`D1Zr(#IEJ!tl}zI<8T)x}=NH@z1D_2{Z6)%I=b#EtLx>o6N_
zr%m&(5drn+a>oy9ud>hXEi!N7^ecP_9_X^*GVw^7_U9pcfIzc8M?
zOw77o+g7V8trP?G_&m-iYU{OgT2kitp4S}En&&JA>e1D7ZhHIKj&-xgWE{EjQ3TYZ
zYqMfn&yx?N&~5tDKJP~s@vuJ+KWk8Xa#{$~qw~`48esRe#i3t5>|I@gqY$V^C;E0h
zdDP%?Sv~5gM>k-$b;ZU_teY}AB`0#R5YS_E9$c+{P^=bJ0y|Zio
zaapX}Y&kpIpob8sN2hi+`$*rm70mIedBn`$GgAoE<2ZqtTNX|3J+=ZgQZ6e!=y;Zg
z{nD{;a)Nd|eFzNh3VV%^i9N?MNEBA_1KN6Wyu=4~rw{es756kYK~WGw>f
z(b;(~=*}Bf2~$E6?j?_WCG*lavu7C*BA_1K$)2vArp;?{=+R-KM|XDW>}_?%tm`^(
zP8Y})0Xj@{DK&3ZhdQod=&vYOmxrYPSWdok#)ak_I|I(
zjk};8$1h#k7_jkl6zljUKBEpS5(D+Lo^T1!^1a)^~G((Ks~x`uDe}VrnNZqr>4&EuJ0)Z>d{^8Z&vu@BkOMNiHW>5
zR1DOkTXFA+{-oU29rfrACtsPr;yvrGPPg;CJzfmxFwu<(S00)Bj&&z4PEio+iGg}_
zJH{``nD+nlC-#eSpPrEw3&lV^x`b+-11S&LdN;y8bpO*&4Ai63m>0ZSdwC^@m5o(z
zkN(KRdXnzXEVSZ8Ks~xQqa>5Yo@jCC=U1kUUT{|g)T1jal56M7{r`abV`c}w3Ryd`UYCCDe4ZW_0Xj@{UD}K=o^ii*M?E@Gb={0!uUU80(|Dkpmk7{dqU+nx
zcjc@SDbvn57vooL`z-?M(M|Dc{e7LN9MJbEPe5;Q4G|h+gdtl1K(dN
zbLi(s9{eUZLITv|`~dsoylqPA6^v7hd)IdJA_-8BF4wB0pH!z3j=nnHWAvRInU6UY
zo$tVnqo)49`=;DD;;e99x05XneG&g@;Ex;$P>*i0)%O17=@qhi=q_ig^c$}(1?ti5
zFM8}UaTV)aE6Zp7>bbwe
zzvmD0UhkoYCl4wI>e0-Ph2L}%IemK
zt@Y^mwgRX}_p5Bz+X@Gf%%Ly$*qM7kr4pz|CuifgqG4YVFcUF|o)O$R8R(^ZINOykgsVV(dswd#D8J(P>=oQ?ezA4@HA|n|kVs
zcz7Q29}RJgluChmbot}nEp1*Pk~#F#3nb6a-jf3L=+<2i|2eddb+_MZ3haHPKs~xC
zRqtOW4riU$-E*^&S4n|-bfx(^^#g|rnRd?4X*)q-tQ4q6R}r%!b-W=0zWl4${s7Dt*FLT3HZkz<}k9pqMTwR5m7eYO{Ufb+S
zqQXkxOGDJPlL0j{pZnyo?y}elpdQ@`rHB4Qc7BpM^c_Fe*#7jY0P4}r-!{29;$Sh{
zOPZ&+IX+e9Yl~*AniO0P)T68Ywx-+Sg)I)f|B&m4hdwC>>i>K0R1VX}IwA
z_GP90z=i^*Uayg}9}34;0QKl{Jv+UcF+ZPi&d%K;x-PE(>d^(SHvgOtg{?a3(OvNV
zZR@DTwlna~(?+pN1)#%3_t;(Iz{>vbnR*8IV6>>qtsK`{
z9-hA!{%LtVzes?3bSKlN_jPT+B)hVG_P#1iFnAkEQiNm
zc@AQr9={JNOdh;`%%Kex3@Bfe$t&D#+xQcfO>Q%+6Wh}6D2XOtq>l+=dPdBqjPH8qvDZrBIEX2
zTG&{&mjLzX^4psPoqm3Yal00FQjKj81NG=sovswTeQ|?v4HxDdIKUSJ_2>#JcD1O?KMNw)1U5;i4_GB|tqouZf>8&9J)yNvFCuzVk|z)xFAF
zQt*7dy(&{mX1A
zP>&8K4J^M9askY9Bc3D;;`8wQ*)9vaE8u>oQjgASk>f>0agfZRH%oizQ;{wP>d`%o
z-tHGM`~>4>P1vM5*MYkZ5|1ui+;Pp8;r?)Pddko?XT>r|IP0_JKt29`zxQO`l2Ow<7*}*bDZ%%8
zIZ%%-zH-me%R`+R*WRI%X;N%CP>=53sge-mHoF-2$V%(xm&9_Q9^IFIp4*Of-^sXB
zv)5cV*w1=Fq+D`DFzOb(5Kw}0^-p{HMYBw_tBbZr}c-9
zIU&(fpdOzi7<{_Ji@3zPE$b4xyu2U<>d}RDRPB?!lx=5Lr^r2>S4x3;bSYge{I^fC
zfvwtdMh6$>@$kHZllvfvrUa-*w=8a5P0k-{nL~fF`fk@?ff%SqcX_G9Su0!C3GOJ`
z4dR|7Q;#nC!O9Ga&8<7?(M{-jMW@$8)~UEmIu>gr26UMC{LeCK*VxOuS@&SsE#o-u
zc`^0qvZQJSV`j3h(M2iK-d7CN)A$%UX4bmPtH|<40J-T_t%hb1S
zX>sVwo;hr~HdO@FW549aPn$QlAM563*H5eC=J!*NZq}v4p=xTZJLcbZnbR~8P><*R
z*eHWFF5J2RhJ$1Ej8)(9u$^<9_<=oli-3A`3Ui&_S#te?4)fXE`s{^vBA_1K#<~mP
z3NKmrCdY98SrZXZk1nU6}+%cUZq9$nNG
zllaL^tvl+`scS5kPp|yH9eQ*MOK;5@RKvRH<9&;lzvk8%`rBSibUFGRfB#6g0=V@=
zR8}G3;dwakQaor|jR2@ecX#rOlH9Zwhu*?qU2gMJ0Z@`i9=g+tLuyXn69Dz-
z7WeOIlw)owbLd^|#&)y2ECA}!#eBU#BUx(BxJJ(#wy~$V`Rc@@JH7qYnSE0&7#H&3
zXuGTa0-zqRXO&-y9mHj<8=R`2+?`vWfqHbBZJYDoi!H#Br~m6=G@pmZH}Xd5X}7X6
zpdQCBm0TGives>J=wEhyf7a+x8BmYTG&JRkuYMw7na_0f-U?vz}o@sJG4Ai6BCy2e*+}4tDy-w>{
zD5i>mdUVV6+zzNzv-R{$mqFYmZd@1f=-lmho>97G0Wo{`MQvLllGR=AU3dE+H{_Cf
zbX^kLtT#+*ap;>3+byo#D+cP(B~~n)GAXxpM?Jc-US3<~9c5kc3B$#LTVgyCPKV~^T~8ysTYidUTilrzMD4ijCZ&Cu7)maIEB^PS`f_gs*AbWU2okHoKG
z-MEYAI)`!VSy7K}?f1O)-ZmECVQe^Za%ipWJkIg`W@W>Z0QKnV9Bsx%>a;lY=rGZv
z8`E!qPWb}X9gRCV@Isvg&|#u`pL<+u@=6QH9@O1#)Z}VedsiKI9khjePC`ApeT`#0
zx^ex24s+d?9zMsrOM!ZHLl32Hf3TT#nfYO{Ted}o|_qq9^
zbBja2e1=%
z>+pPaf7W@YIPGv$lK}PTazcC}vb$SAj|I0D#zv&d`sbnZx6(0*VxS(~@lg^FqoFMh
zy=Ijp??@~+K8tvCKkbhce^qVWQIBr+US9aC|EHZ;ude&tfhB=rK!=Gg+w_+2{om%Y
z<3rco*>}hb9)D
zJ>h2Sj(T(&CQ4@}a_hg~abe>AG|?^2yWun>-W=MuIoiYKcB;(N{qf(?dB>%vT>swU
z(94I~))r}s0r$s5SG`$()pBm#7~CK8TC+!1LSHdZkFJxPx#orx)`ev?2hHy+2I|q>
zIk6ybzz^0HB*Z_OK9c)=OFX*MRTH=V{AdnyUF(mJT`T2bI|u$)pA}pz0P4~0>m=Xy
z*q#=Lez4%st%1h{Ks~y9()SZOg|M#c3cZoe1~U?zs4&y&X93uHSfkObrj)>HFo?)XMvOpdRN9O1e&#G^GnM0pecvt22A3jiz?zOve#2anDRvq=|
zG9yigDc)u4ISg*M?xd6t=rGY$bXY&msPZsVZ^OW@?e>4*1NG?S5*8n_9~8j2x$pbD
zxVxqds7KdlXC~jw{xlR!SNvmQR3h^c-yYsg+#&$#(H)v<^z~Y&3o?iP=gxUs)w~2i
zJvt-#qI;_qE;Fuqa*z7rD*~V%-Ii0`&QISK!MI@a(W7R>34nTZFW(GMowxC3tB!hf
z$CXaM@)z7;+~j@X(}F(>039Z}vASsiR_9_FcM^i{4jC>4>d~d9?C2O+@Pu*A!}F~@
z<_Lj$bPa2dWoA8p$~d>i+yK=wu3v~p_q>)jWW|K%FszvO;%THm56@o-|6AfU?)phR
zUSE8xKizBp{+Z07-}BzJU7HmGpdOv&B!L0!h-aLJx6)e!t{(Mx{VXkPo`1xbbt4Y%
zKcCGx>d_7OT>tLf&6eZCcAmekFky|M0H{Yd%XVplk@+pAojngd-k!dJyAMV@y5JSU
z#7Ryuj2kvb`n9gM45&wU;8ECH1FO66?)kEA{tX2@Z0Ap&N5N6MGN2xvv{%muT~lIZ
z4t?U)azVm;Ze2Cv(HZspvEqPXJmW$|Gi!Tt>y=QC&eZfkv#(u3tB!hfUEX}#e}3{y
z#+?obOS0sy*XS_Og>{(f_oh=i81&!N*zVj19v+{2t=U2Qk!3(VI=)nIzuUVUnL{5E
zyRSyKcNtJGb5$yO!G2kcYwtDH;1su>BlYNbt_yG5Dt=^KK(i!eXxB2J9_Po692RQs
zzr5x6u$^~CM7wS6R0hA7h}
zRW%RmeKQ%o(Ee5_P>)VYbJ67Bp)X|){qa*f=Qix-)&(FQU18&t!&`eMFmCQA`4gX)
zmIC$Yu4b(4Wb!P9an%Z63d^~A)T8Tc_pxwsQ7)vtn>2F32LTV;`Mluc39qD5pdMYZ
z%GMCkiXxdq-&MIwhrQf7Cyf6W3Sq+R<{jF#*^K)-bwSCR=u)5_pUZ5m9OxeMyO?p`
z{unn0bMv^VN9SapwrkzY62_IC95Z4t=cvc~yLxGShXYRBI`e<~1v8-ANWt%`r9eHp
zYz@`g!$Sp(dz$oVdb_)&Ks~z0ZYMeyR)1ogII()D)1y+L9$jVZ@`UVJ?0Hy|sI>Ff
z<5Hj=-8|J@c^NbE*m{+s;1$-TKs~yV9tCP9@7}|e7pCiGKdInhzgTsyj!&7))gvC=
z-0nMUl@xPj4t=h>ru>%vr9eG8<&7_`+n5$It}$-Xl9lBpKs`ExwOxHxllhQ-TfJ`W
zu__+cv#@s!YPeMb)T6s^+7M>8sZ8e3uR5eN;9@`tP>=5W!}=8oSBn_eRXa+Hzqtgc
zM>qAO`{zn-J|fn^{5et8`By#n{{!*pG(sm<7Az9LO!X%<#yf;EUpOeZi;tB193vjx
zoo%)%6>4IcLw`SD^ZD$V0-zq$
zK9excBr4kGdK~wj3gXde9?j~rb9&2pz~eJI-9uxfvIwY0x8=Hmag&XRsrQiYwf4Xa
zZk{Re=*p&To4DVaJw8+AshzX9c}vuz+uG)EzVDactbJm-demx&)ld?Wb1k|Iu
zb9KewOWfZ*I?VNxCr?gj76J9>*3R0rR5OOpxG7_lI?v$dDN>K_h0pJVF**{)nJg7N
z>d3vHgnD$}D_1pJbL&T7`!EIXw@ge35(D+7JmxxEVnWe$#{2#47fiurOA}wN9`)$t1{wBti(}oYdmXDTbMKd-9$j^%
zMn=1hRZP8sc3RQ%-->{GbS5>mxgsxaUc!OdeQmVLWIpL^*!19b5}+QP*__B_`#ib%
zG=ClDr9OK$n68!p_2>paj0qJqRxobu>{C*|0}`Mfo!XoZv-(LZ8P{xaQ~gDh1gJ+B
zcP6&2*{mwYecu?-_VFhPP>;^8QGIn|8tY6iP2ADFofN1?r!FTNl(emysrR*Cpo;A*
zDNv8&lTWu>dFkar)_G*=)}P9k0QKlh&Kf!?^r?n{sRdiyHQ(^?JbX-?^Xw`2+>m-4
z-&)uAS?0RRN|{4HbWg&RSwF=SAyr93x>Nb`8+%ihxH1}KF#MoM~O#w
zK<&bYpIkf9VO}4*rK0ClF;I`r(`L9=C69GRyDT*N>4<@PoPRWF>+eqePFF(AwlN*=
zBm^oV
zpdOvuflV%5cUH*SiS;I3*$Fy3x#J@qor#>#K6(UO4;?0Ybn_ZhgXOq+Vps=rRFUl`
zV^=Yt!$fCyukCoNvur!}Rcq;Jd5D2}bi40)3MISPcIKV*i`1VW2I|qhw%l)j+rI*g
zrZ1P8->BtbJ0I2WSJ*I71k|Go@SQYvwVqVw(4)gdk51!@cjCo$62@(Q*mSbjcOjs|
zL^o^Hi_#C*Sof)`$?qd++&VSHqbtf=^?U?3UK-nn`7?fIk1vrzpdQ`Z*{7a8`ypW5
zypkE6xBCl$dUT~fZ{A)uL&!LOF4zFB1Xv=tAzeIqp#{WL&w1YN~Lh2&hLlXl$mBPwxW8%|5Y5)X7
z{nOCJ(fN$CzxR2d`f5
zPRf7wBZqOZ?R;{xxc7-tk1qP0@^7ypWze~=`Wa{4mi~F|{&d7E?)MM%=uQruInwEA
zsm!4dob>IX!x{-tk8W-^Z-&~T&lH^``$`Dx`soA1%BLmt5^rKM4|6e?^hC_
z9zUnY_iq@a?C=CcJ|_(eufCAwo@HOA8*!fx*{6D`jJM=|m(2_F8lf%*bgJV_UoM>W
zShhcU<2J?54jmK&_2~5Ctv>vk63e)^M;0tN?k@)F(M{i~%4@#!fN^Ve#@MNy=8c@a~76>`@>;?c=f4>;=i!HIEiw`I@jc0mNxqw_v+
zI^eB=1DtGEG2n=6G7tOnUk#%&vBmi`q?5thlwt?{}!GWSi`QTYZ`|PFP8Z<^*N5KxpCCg
z<9(u&x^|jtd$c(8qgQ`UUBaykM?JbPif#*Qj#A-iSpVL6_j%aPv4?iA`Y@h5f5f9Z
z-(O?wXoD7qekYh28gc8vQjcy#WT27KHrDypOsjNO5CQe*9vd{>)jny_(wt`KCs$%JTLJa`-?2I|q}XPJIZHg4Tfk8WnHw8H{B)_LFB5
z$L2SzJ9%YE!MCs6_*UZ4r8y4!we5d7K0(R{mG#{5QIGDI<&t?d_VDMfmkLu#nY5*DgvfsmC`FY$6`r
zkbN#QqV-wlvs$;bx>^L(qq7gwT9SU3b?f}I&a4q|>lqV|Zv1AE$JSNmOgoMBQs+(P
z?h8|o&b9Nhej2{!P`^Rv+KWXsJUqS|BMR1@-zNa-@j3I{3F@m(#aqZ6dez{*#(gFW
zfO>T2ZVhg(f5EzAY=O7T;eqPEw^qc
z@#vhc9hfN}$hsfx8w?z>#Xvodf4Ne7eZqNhAu5w9NxO49>@1w
zt1!15bC-3IRr%w;7jXBl|JKDs7wdQRtZxSE+AOk*C^;+!>d|$6y=b;7*Dv+acQ)sq
zd?M@D{eMDC1Gwu8_2_C>D;1t~Y;owHC06(^=e{RXk8Y#M*z@~Wvrcg6$?A4bxZlOZ
zqucpr?7sBDtaEN_pdBB|JwGBI-KgH0YY%=lgOJ4J#~x0%WXCyUW#_n*T_T_!o&Jq*
zO{Xg@4m~i>4=(fQsxJ!HTh*3JKw{#j371h_vYx}Jm9-YjiGX?>k7?IUORvd_
zb#40l%J(l90`=(nn_swaz>alR2kiLyn%v(f@i^Y}s^9SrAI_P<@P%p$tGV?w@cf1P
zRwesy6a)3>He9a^@ON!-=wIr)#qQv~pHYua65!gTxRrH^{#OPKIV%S0(RpMX+$FDI
z22*=R*%)xo53!!pZU|51u7lL0%i5iA?LgNShrS`D=g{qGVxS&f?EDME7HhIDM@x6<
zh+1wvB;wIE_1$tVx6xGAPOLZST=d19t`eXg-QkGU;dP_gdV7ryrJo(btuIA9y5+xn
z?vz(&UF7Wv>)UhJUFy-@l{+OYjyHwEUsL(|cZ57_=isjD%Qkfu0`=%>t}W9&7Te;`
z9~ta+>DEdPh}dkM4Qa
zz{S^irhpDJHp*(G+krBm{=fT}d|1O<`ZF$rbv^9!3umq>1M1P4y}LbPT3a)w-T`~7
zFZTwQ0rmeqH{`>$%Zgdz3bvl*$Q`-g+m-?K=+yVzs~q&Sbw@oq{*=i_^L$y?x5h($
z_BB4B!$hYVUH$sjwbmW==z>qhe9aDJ-IMy0-MjAQ13FA};a?98-t1`#k=o;5S%v5D
z@cf;#@(eQE$p`AurEdM~7qp|rq3;&c=6cXJK2VSD-aD)4F&9~yCPKIy+5_J1_gcoy`9W`4C|AV3f%%*7b(R1LV8%0r$tmdT;83f1UL-ll3R|
z3pz~d+@G4rz3pVdxIRs*muTdb0y<2r=TbGzMcv1WakDxcKBBOI57eWxy_G-h$P|0n
zKK82e!C7x)e%&vlswVDvBK7Dx=(?Dz);Y=?`uR_1zuQ;C2kOxsRP4Tc+&b4*9rftm
zylywfzhO7ybbj_(Ti&4z&|#u`Hne&9xdC3SI_l9~9@WwP?U=)i)9UGY^!k7@K!=I$
zYu)XRv*r9-b=0Hlv-svWiN`U<%~D<^-8;Sv&|#u`p?7-WMsD3g?0-x{4NsxtRPMcH
z#H0IixTfnPaRlS4It=c+_fQ#7k4}Es;(3ouZ@>$){vUd$mdJees*h#O-^+k{ba$Qw
zj=bj*=K3KUrkFp5mFL2RU3|-AK1^fWlWp93I@F`{942(%RS+k0
z==J!G>-+Gz_xKTyP9O;@J0Smzacee59T?7yho&A~w4=1NpEVESqu14_uP@_aJ-45E
zMe9#;pU1?b)9>?aQl`oanM1$Fb&_qS2_L9O_h)oqM&Xf{jI*BLv>|31AE-ySV4aeN
zHMhPg*1^2sV5%nHix1SJ3p0!xoOn8^RYyHK+rf)<-;PaY+^o~R2F7HT0y<1|8roAd
zKgGRi)lrYmc;%D1I_uvtE>zy%Oa4SDpuvh)_Aa}2q79#0_ve3lbejxstU5R?1B#st;`UpJWd6B&jN~%E45&wU{@}?ii%m0S
z4!!8)OE*O=0Z@;wA-KRMZR~r--I)+%zMcC%Pdz%}uOsU`+hn!ss7JSGSKo_AvsriL
z%!!!pXSj8n{?^4rSF)q@)0~?hn0ijnu3k2MEdc7#tytr_YpH)Wd{%Q$*C`i4XomEAT1pdOt?U5w7{
z?S)Xh-RSqI(n20O?Mb8Gm~)@E)T8^edS|?NY>~{N@3n12m<{)Rf_ikX>sODw)S;Mh
zOG-w+ztg6Sdq3X)^!R&h!BIid3L)!yWf|JO74w05bQcHszP$9{6I1U`{ioe--1|JK
z$NN%y^amGT_9$Uo@aG;SNxzcz8Qi=&>d^)E
z{w~h&ZgJ@KEI+F+_A3SI(dDJ{>lRkCF6h~YJEa>-fqHan^S>o@Sk0HU6YB+Djh#8=
zC?BXt_pRf&9$lXC!O7~QM-B*NzD{yiGKha?H&Pib{4*iKnlh>WN`8U*~v$_1I|5ffiu(&_w{Z5M4
zGDG=5JwAU}vgXjHqbr1r%i7twLv$1$s7E)%t?TBEu|mkY8!U!>xmf`(r9iJ=a@Y%LnSwnFo}Aj81Ib
zQIF0yLick~PwqL<-{ZsVQo6>lT@@eDVWL~zej(3$JL^I&iSO22DFf=!8Q;C#sC|zc
zFV;EZr!v1-R`1}R(W!xXL
zX?NULyQM;)9$j1cJHxWerSR?eb-j01H8LN6y>p~_A2Cpm&S!I9m5bxbWe&Z*r{|9f
zZk#{$=ydO#+ot8pI%{nQ$+^p7pdMY}y8EAPua!e{#AgRtH0>Tuly(m>d`IT
zx>zGVrNyB~hlw8D=CZ^yCsiwC_0Xjb@8#~gK?3M7(M30mcJH``b@TVcl+HLJ0qSwx
z?2&!-k32odx}AsG>wV_lTSh&)V4Lox8)I1KQ@7~z*Ktyy9>-@jCi2y#aje_kv}s#q
z2PsgGuE(XtC2ryh(Al)I-;~cqvi^C};r-{6uO&b|x>YAMHrDj4lsWVpYQldvD@cKQ
zbW0v@jWrm`y2tB=u5!O30qW5$su-nxb8{tVrhfJ-9iGL*dVVW?yG`ZhDN>Iv>xg5g
zZF^cA`T;p7`?u%DGfrH1nbMGgi9$nMTp$dkntebCFInF0S
z4Ai5W>?5BYCuZII!In+Kg2X^Qx*uk5<0mw+?m+1Dx}8I~aZkkK_|F4BrzYz5tb#{s
zAu0DCR`KxoioH%HOdKZy>d`qY6`OTZZ*k~1|ISrg&OP6x9>=$CvAVwS=>Jm>-GbBg
zWyySQeh2aB2EB~#9;3n5>w7!>Zod>EP>=4-n^~1Vhp}#LnXYeSgb=7l*I|doz09Gk
zi@38oBGr8`u~1cmBW<95m)3Ttvl+`HOFrbnDLZ#ZGUG<
z*Kp&n(P83veXGtY!vr^5chsZHOHqEUJ4`
zTmtpz2E6bNxxJ(kCSSSV!};fXS-)m1^^HB`$IX8y9-UTgRjq|yi$m|_!Mh)rB?juz
zT^+ncC$>H7#xzfwKm3Ons7Kd5NZYPmVTG)nSTDHmD8u@B5}+PkN9E%i-Ji2A_e-Dk
zGfqf=dUR3b(EawlgsOlpx1Y3XDJh
z&sGjr`J?OK=(RZXzwf*Y{17Px>akw*v1vvxm00I|$8x@^Knm2On>OO-tM=S`Re0QbhvH44tc!`ecR1ak9H>V(rk{ze2KU|?tb^G>IIM%l9&X+v@#v-v
za2#GSl64yCijNdtmjm_av~pt3-~PpYzxjI}FuOfUJQBF59H>VZS){1%@tk{KO4_Bm
zHkkq*y7?Y@1Dj4tfO>RarmnqKd!WUkcblty>%24f{fu~YFVp*sTgA~z1K;BdUTt$nxEb3!@9)a{D{3uxXS)4L&1#??-EDVWg#p}ixBe5huX1&)mihTB!!{n(s|M=P&9>LnQXSdi
z(7S(YcwK5%4b-E1)V8jVcV?Na9=gyQ8P}^KtAToSV=V`(bv9;Q*_Q0X5`HyMkFHDL
zM~A!L`AogZ`8P|y_Nf8t(G@)S^3x=Mb#cW@QfIBK0qW6NJ?~oIV?66N&oDcu?NI~N
zqZ<%#xAV6*rA#}WzYp-gc&!GgN7p@a@A~hXSeKmkqW#2m)j&PEoo=TFsB`ON&5Vnx
z**jOv!}DMqb?~(9j!K{&-PGMD0_!zf9D2pDhCwg-R08$r?tb9ETd4I(Ru5f>Yw@wK
zrj;IeUnRNcRRZ+d|#%VX-r<_dZ&yHE+}Fwx!p@MBtE$6UsBQ8*!nf
zD?T3i2rp-ze;Ac0mHDf1|KbVrYM>sSgI`rv@sk{xL!X_$e4xUmYM>rn^PIW6y@w?+
z?(z5Z-sh96fqHaVftHp{`y&~bpj>agw7eRqN9TQP%y#{>aK@e3l$CDuvl^(!&*|Fe
zu<6kutW$fT{=HXGHBgVvY~X^n?+!+RT(=zwx=;ABx>kA`kL1FufqMKNl6>_38V^aD
z%%Sf+eagJ2oTDCHn2Bm;?3xV5b#P9&k-*I_p&nhv`Ez}Wud(&6jH%f_>Q*&Sk51V9
zyiH~MRHmNm^au9VkE?-tbQgMTn7%pS9pgr}lO~VVsRruN9lNzZ<3pRb@Ya4?NA*e`ldZx7LbR1VamyD?$)sI;d~We$D(r3__@b>%=k-Y+oR
z>#}>1TpZ&J^7n|(H%Wndbg??7?VHv;VqEsjS52d~3h8GM|ldr#)jXXf&K6;@RN_2|k}mW+07bD44d+Xk%Ax32=~
z(OJvwym&J@ka5vVtyj1otpe)N%|4&7dRX2`#{C$4S7}sK6;O}P>8ZX!p#BM1(=;>s
zmr=RQ>t2DH>F=w6dUS8S*7C2643IhWdt+kW=G0UH^>`oiz_S6DgR1=)$Gfkk>)O5=
zs7Gf!q&P@-`C-QGo+7diQmY2)@jmTu`w=O2DhC;N+34bsb|b5SdUP3w$_89(zn^ha
zqo;4q<=%@!Jv!xE!v|SE_F&wRy{i1VbE|=RbXD4S+iLl{Fz)Ra#rB3=JE=#fweq4_
z+~QpjEKsl7uOyOr<@nKIy*pI{_2`^~3p{tX*(r1Ay-z;MaaE}X>d}Sei0e1Lv}@H-
zk8bKAqqS2O+A?m}ZoPbduWCStiEjDli5S}McO6zd
z=Uh<*)Z={nz9Yq-e`vMts7H4-XHr@z_Z~*9gNggoM7O9e&=-ZOlRe<|rqRZ`)IoMvnx~F?Trfm+Y0_xG#+&MUOa2soA3^&edcQ#*koDNp5
zmwdVFF7@b2V(i}NE4DcF9|qMatyoY6)T3+me4miay-yMM$NZVn+dp$m6;O{ZDR<=S
zU;jUjdUVl^H9d!fvGsndDcKFmtps$K=t^`)MJ_wCR%!d1hwW@v@9I>UQUTPX
zb9}N|+5c#ZLw_hm^S)+K1yGN!)~;aV$n&hbk@stRrD+9FkIz##b>FIYpIi3;>tMz|
zjtMTFQ~}hZ8=2vz>aWGRo)gv$OOvkv>T#a;w5?yo9wnAcJ#?7p(QUGQSH8R}ThIFP
z?ELdr$^jiFy7oidVMab%4;?0T3zPii%U`k1@hk~M)<$VM3pfXQQNGNjy65pfM`_j}tx
z=PpZzNq~BE9yi?wSe9GJ`UQ`#)^TgBZzcDhLgLY>8F)I*Sj;-}J)f>le;@|x(cR75
zX#Ham>xP-`zWCFaTbGe|bkh%=30GReI=>qR!>0}u1NG?4J}h!qer5sbhH=^}3#xc{
zeEWqf1%BMRY1E_Z@cUVk=Fb*~UbSvY^_I^E6|Fn!(V6T~ZeJiam$eh?
zO$^we{OuCAUc%qHnCO1*P0?C8l69kh^c&Q3lMtv!XXjAwF!wdv&I>sQmptt)1nSW}
zdbrd!k$cZ8whuGRt;TIE_da3j(QUBrk=?o20=BsLTzjQo&7+QbbQ6B}^&OPl;?URJ
zRp<5R#^IvFL^mbm|D)`_#n)Z>2dj4FY8bl-WF5$ysKo-)oZ67*Kzhb
z?e1l{*$7;!L%XEw1dH4I!qxC+5?B9>dUOsgi#~i`+wRc2+Ft9F!L2`|9@nY*8BHE&
zqQ$zgT1W0DarOGCM>nOssb$W1*1agw44>0f0o0?Lbv*Runl?jm|FE6f&T-Xc4HZDW
z*!A7u*td~&T~1BWoG+*V>d`f&NL5;7v#x7D4V$huntcfL09|IC|m>*{~Ijves7xR`2nk)OK=s7JT?
z;o?c#xN|LWJTU%gN?Xxq3b+27_U#%4H8{-SxW9If~u_pdQ_^>=PS|by(N1w6kZ`
zDsJ62@#wT$QXQ9RurA1Dq7`<1<%*b)90b|57R9>hcqhPF``QoP{du4$X4@
z(aN2tK|Q($s!oe1tFdl?iEuz{pK_oc-O)KSvhQs+gq^+#NiN;%c-TMdBRdzjvPXa{ox`
zG67JJ&b`a(=eI_6?5Ib#Maj(k;n#iQal!r-B;J!gb(K43@^4;@=oY=4@^*ULK6u@!
zhx5qakvw!h!@
zpdQ`p;9lnGc7{-Gy>Ece%oHBxI~=ZK8rMSz)T6s!>1Vy{QM*Gwcuhq&b?!V&>d{TL
z@OOD%$GQ{J({s8ua{J1ON4Lyy$DC^sM&fp2K6Dt-qth+3${4-g1WZ#JRNr|e^Ez_q
z(RmDTdoslBfY_nO*U^a1bgQA+)PTc``+odxad5f-I&zKYs$M(`Gw;w*kNMhn%)KNOq%b&I3??sk7V2g
zKs~yLJ2poj^l@g~TGil~VRizb9^JZ8<_CK{y9nVwhPe&R&*b6t+bXxEC}E!fs7LoW
zqWYrDpnGD6ev?YP`*R%uQ2)>K90B+aIqx`myibRYdUW~Hz8Viq{TU}{HvTquF1LUB
zZ(fZ5JkR0sz0~iNT=6|J@3LS_vDklJ=NRGPDg^4$-BV~gxP4Zb*r8upAGf;IPYBeb>t8Y^Zr>91=yruI8E&{L26`{~Iw3zljfdk>aOG6D9&ZIeJ-XCskL<5JjTJle
z2U~t`4+s|k_2}k?8m96ly=B~$1$8~wbN{#0qq9D@I9)q7o^dgazCT;K3xIlbGj2A!
zI<9yJhG#E+j_+B=!*=ouJ>TW2a{DETM|W{-s@u}+M6p9J&krcK>cI!<(Up%_lagkZ
z%(!<4N185uQ3lkb8yH&@HF-cPs7GgL
z`qs+%Ttj?-
zz+#{t-NcaIvYR7w#rdeC9-U+FteeZ6-!pFY{JNK`))xahjCj8`{&`d?e%lAeeF`bg
z)>bG6>d~2B9w)tXW**~?&6sX!{-+42$IqiPv15jZ_0MNqrt5vVoV+5S9$mkL=~ech
zSSOJ^-+J@2BA^~!;+A=h{1*jGK6#@77i4~y0QKnj-6NkQyA;BayE*f-xpNosI=EaL
z(V8tK0P4~Gt_i+qbfQS?(7$$Hv1PV_0H{ZIv}k0fC(DZ&x8$kC__y~3Ks~yq*vNfb
zyO%KTh0C8m$BG3&J^l{o+iGnXRmwX5lLGJM@?2dp;?V`_$v&?SE@kpHG<}@%^UIf(RyxTyd?ylFl-}g3dAvfHc
z-ih0L{BiA?0WCtH9^L1guji+RwmbB3y|Ro%L8jSpLvO1k~ert~U8}D0iZWY3E^~
ztp6cT5m1l)t2=pi+XN@pZFUpPZ44Fx_2{Nw$kLj_XI*%}()%MbL_j@0=h8X3p~eHs
znRf23mNgmwT?EvldvJe1sr_ZvX|DNtCtb1}82?|e0+u~2_PE78N6~s?HE{3tXmQ?C
ze-vgcQZ5JTG2iZS0`p-@E5r`H?1-Dni_
zn{}!LhZgH;^S^u)=Uo{wy5i1c?mRH!(Op*y_DxvX?$8(IY;rnsk*n)YJi4BbGS%9+
zdhz&rjLVg@R;z_n0`=&Me>{l(CaeUl=HVs2_Vr?Kx9iR8TRGhRP2$mY8O(dUWqOs^
zp^uCbJ)AYR3aH2Dlt(nzEN(r-y0RR(vGr0_Ks~ze%H}N#!>S+O
zLxL)SdVF8YrkI{i>Rc^$=oMx}ZP81w1nSY9+7T%Wz&cAk9r=)oN}wLyNw=@Pv(B*Y
zL9Yzy^IIx`dUSV>F4ediQ4MYq#?#(dl<=^f0m(fc{jTNC+a(@d?*f6>{EzJpy-T#+
z+HDRMKs`G3ql+gln_L4{7yI2X3FeFQM)V0{W&E(Euq#oVeNcV!Dc^y0I(TPH>fAnu=-L8`U+a_}7%A&)F
z@9X)eN*4Hzt`(09_Afb}muktKw?sX<=0wAy>=mrb@88cw&an!p$Mqq}F59#AShG$=
zb=mimp;bUVx-iq_Hk-J0C)hrWjVcSL@2=y{rz9So@(I`RkK$M-9X2w+^?4Ogk8Wv9
z7PuGGf?Du{I}xeLJj{1VP_<3Pi+ip{JUX*Y6C!n5+8ugdUh1l6w=02qbOtkgj_bOy
zE^1NhjqjH$fqHar@)RTFU$M?gVyljtLnTm;?qSH0gFm;_iTj7`M28VQIxi`H+w(oF
zJFxqHe(3Q^K!*|C%s(-a(I;8g>znh?_wtoMJ-WBIJ}a%|&M!VbGOFmzt{NV;b8xpO
z4XvXqfO>Rt$%Oki5G1*?ZtY!1(WS?f;xwT&W1EyTvbK=o0g&F6+=(Fy9<_?pl8(h5$
z;&B~y#@=8W?8YPoYGs7KdhU89}ek#$m4gDvkQl>_zY)~|cA
z`N5wWrk(!5Qk@?>EeGoVneVBAXNli0S*5W~tpV%1-WMM3
zuj1jj>^w9*D&;eGA0+;t`JNj1U^?$m!q#?&9vw#X=uREJd3DT0*4+!WoYT9GJID2J
zUX195NY(nteySF?6Z5T2n=QYXyAIT&Guu1kO|(Djl%Ci;0q)!n>d`%V+q!&%Nj0p0
za^mF4>xJUH->Pm*9lN6ns7E*K!o_#ZD(w#ajddO`th}m#dUTl|wq2|eREhJUn^Ung
zR6ef?s7LoQxS!+iJFFYtwxrxaz8a`Uw?|3ghNCv?oJ{z>fG~$?)w`+zoj3;k=dTu`GkX77z|}*mpJBG>5t^?}P
zozd44E^ihvZqK!&x!<^Y3Dl#r9+^EO&$(kqJ-SsYu{E6(Sl2fptntZ{IzWdJ-8$z?
z+ox~&OgqtGq^{|0(d6r9xLx}*4H`}H`TxJ>R+YaO7&i21hfpSm=%wM^{LZ<*pI
zdwfDYP>=5XtWA5~x|A|5w!1^!0&>zs~7u-M~9FKs~y75oxo!niVsyaYR!Oy2Jg$uLpKz-L?S>HLG%KfO>R2kM#C!om~hX{f72d=FXkM{zdJomU+Gs57JJzh-PbnA)&uqEJbET7E@?^<
zJM@zE^-H>Pb?vA}XS!#^v9CK485c9O#HL!a9;io`^1*p~e0T!m?!LI9aMYw8s7LqU
zUV>rV#CXP;?hfNgLs!S!w$l9)#D1H?=Bmd4DioE7#6G#-
z8i}`=bwEAdcSjk$T9dQ!lGvetS8W#ij;q&5J-T;sT}-Y
zuzx+TUNSc^<*qyN=oH=OYmLme5S9XjgKy$W5p^Ow|N#tl_Cq07ky-0o1Jt7{-sCto=ytn9uRYfP#AxFhpdMYftMU_b{uh_wW2Ui&
ztIJ3|x+4;uUhmq$=0k@OJ-TNrm+Q9Ju+Bpv(CGm;kB1H;I`i3;<34I1fNe%cMg;YE
z#l!x2J=>^ti>oI>J-WnYJLca_7+!kM5LbV9u;Q`#~bT
z`yrS4T;1ir*I(XB&*$mHN}wKH|2J0em;X11p0{?lq5-!rl6rL4yZIR^G@FR?p{r54
zQ&tIrqTEMzinWZxq-KzlV(H*?;Yxe7p9XsmL8N?hNxigb>cgAj+T06G_
z&|yR;C<E-26NB
z=z{WoKXyH0B+iGf(=+Sfvzsb`dR$lHcq&9;b_?rl!Uau%x|Q7dxBt_l+p^Jj=RPyG
zo%5To9AA?CpXby6)1&LWa%0_!YsO%BwYK$}YzYtBX{H>XKp
zuiM70Q~ldsjOe1+S`^bfaTOJ-UXVnSLKnu&%<2H|o7-
zC7{EIE_~f=%R$_A$M#{|G5@$|5Vy{edUSGa*-BF1I(F2fbGP)}x-6J=WxGn9!@E`i
zI*jNH%+xOCX0pyle^3vD6IDPxI_Z0Uj!t8Y;YW|8V&M?3F5BPh5ua#3{eiFws7JTI
zU-7huT>sEvM28VQx~h?b)*Mb}U6H|p%D&w9I&>Iu9jBeu5zT)2th0F2ef7Kp-1kW0
z(amTsjQaC{bzACI1nu}%1=Qm@Kp(^0Ch$?mQIg(fJn^|ADKlGmFz}Fwm|9>d_TFmRoe~pb>Q2-Di*1FA)#(
zeXSj*c)q0^s7E&`^4m=V?*9QD#*qt^#=qz8yVRrm^K9d0we75{oTHfVaep~bkIv*$
zK5ucamyJTnAaH9zSv-#0w$
zpOVel-B+r)dMw1Flicp~(%@{nLq9=fxZaDba-ja7c_|S@zIf3s`!egIj%_>E>vcI$
zk1mCmGAKHnb)KWPeE)I39H_^2{%X)P;Y14S__NBw+OCuX_2?!oIHNr(jdeErG$$DE
zEeGn+<-gEyvO2`NWD_Zq(d)SN_{5|8v?bW|4!1uX#}T8sPGzO0eK}B%&crLl+xf5|
zNRR5WRQr3D*pHCds6L>31yGN!d*sUVlKa{n`enDW4h-b#(o>I4XNSwynhC56%zWG|
zFT?F0ARb*ypa=Zs>LFnsjO$DLxvR-n0QKl*jaIDxW?|H!qaNKE$wR-vhjpovj@x5~
zQ~)}R=rpZXt&SgT%;XET`nk1Su>z<^=e51k*Zispe1PnN$Rc+F&8`ZqcaZK
z3thN+GsL6QxfeA2ko~a^9rfte>Mr5;FgeAz^^73d}tK(ja-z`%{`ZgvClNy
z%e$_YgL8O2OwKL`i+-yI+J{%bKl9~6*c7SPUn2Jv7n$=JC27j
z&ev8-YFxK+p#GovPww1+x`QSgJOkk1jGudk9_5SMX&9Jz&g_r~s7E(XZO?!`bN$5*
z{f-GA4HSlR-(!hKH&L>;=#slP<2vmgIl`CQuSGpNH`}?zccnZTw^ZJJP|gh@P>;^1
zcVpuFk#3BWdp=C-?s6eekM7TmUFlPnUFpzKk1p|<>%^YJE--Fn%EO#sxRi|+QatHeGSdS^zj!+jdW?Vb56E%Z9K
z|ABgRacjH#&4hM`z9C}ei9g);9_rD#Dkzlu8?w%*d5+={l?tF9-H^|Z>z#Ub?5Icg
z#zH+g4f7s5$$6bF)+EoBLjOdgo+
z+cwvNHWk*{XML5FGN=IR(FwGcy)K=!51t1rwhixe1OBRvwfyhIP*QZ-#YE;_5FEkIum}
zc+WQO{fX_vIBbgZl64P+Ks~yB`cE#I{Wj>(QIAgBFz#;pL^fZ3`h#&Uy4*QMfAeBQ
zcQ9bU^7Z>!H`V^)?GZDDKs~x`{C@GOZmdghkvr3NLI~8O%XFFS_WArixO98fyn~g2
z;(nHzUX#_$76SF?Mo&E#9l~8dbQmYtT=2<%!qqb%9^HJeEt?9s{;3CUI$AOzo`+5~
z@s^3*0wGY3?mMsFx~}Wm9eQ*a(WCoNd1l(w;jFXxb2CfSPYCERqH{m8ChOK<*4_0D
zSbnXAJ5Qc?bd$H{gM1g(-8x;E)l*vt)T7fp_vYvL1Ou4)WS4C|SC0VuH@Vtu(Q0nL
zJ@x2To{YbG!KU4zfAyyCfI)^LpdQ_y?3HW3pJd&PCsVJ*oe%-_=!93c469i5zc`bo
zhF`ZtKs`FQa?$vR(X6w`YFjMfFN7JyquW_#y+dQE0Su3N>82f3&cpus#LPK)Ta~*G
z#G@;Bjjnt}|_4{?LzBnJc${f8#x@CNz9-Zf5FPXRLtaDBJ
zF;ML~AE-z7yQzNO#xZO=(P2dY&p804Ff6gRQe02gEecYo@Z8J?bQsaahP-aP^@nZe
z($(>+e0RX
zxcFg|BI|5MwbuKalmYeV4lMTY-95no>g*O5W*y8GU&o_UH_Y*C;{)~RqDIJt87Z|p
z^!Zy}EdRd_h8|I_J857xcf7vv+uz0aseH`=poUEoyKX^Cz}$8z;ws7H5g;DC_4
z|JFZj=VG(k6Q||5@0G-(vs0KYf1mrm#n)q;H2B-6CrSdK9$kH`@1_l7S*P1CUbJ_T
z0I2_G9=aHEoYW@#tyy_4z>kKlS`eAStp(
z(#%-~aNnZlvE!fy9`^6!#qO
zt!U4OPTMEJa{b(5pdOu?U*q1p+N?|WdD1H`wg{+4_w0pJ-M*2moBpzJeD=g5pdOv4
z@*c+{dL29J(QSTybkPB0)}1a`oYQ)<5YS;nr{s0iF>@K~UYdr4K5r-h>e0Q|{aw^a
zgLQGYl3f<}Ee7h*T@W1HvX^^*zB4=KYvPZ_#6&czz6El&3Rncce+`-LtlSO
z`Pb3?e4rkk#j_~CGit26J8;75-;ek}J-TgbS3GLuSy!Xi)NODPAE-w+yywW!J31XZ
z>d`e%PTFiSpLMsShTR>zNC4OIm`^czw4)tY=aPDKvu;Gr
zEUs^N=+R+BkM8$`96vtyd4#XWI8{=jZvarcUA>m{tKIsL*s^{W7=N0%Uc{Nh?E>jw4ft)#q^dw&v-&hmrI*osDd=oR=pH}ORg
z565M0+_((^zGXl?y8D0c^XM=-Y{?kWe|Q;Ck1n#0)1ZL(_I&7?`eYoP=vNBVqf0y9
z>Xewox=wp~^KR*s0`=$ye9~CD_+7`2dUUk|v*x5Eux<Zo}cHNh6gF
z#N&zmLx+(%E!n&~9?My`Aa4}}wAnltjb6oj=4kNni=JMBu2?rR*@A-P8)>A%EkIr4MZ;$xrhZ!di
zr~Eh9aP>clM`tg+p{V~$bFk#C8_;b>x!8N{8(v}+o7OZK|MObpx}qo{H`+2Zr_mu-dtT<>d~b*>;gFJ$v96zr2kYw8BmX|LFHAC
zzUF?6yR38CBIaEgP>=48gu$RcTK1%>LaFBvEFHj3}b69Dz-q9%?Vm*AAjxZk;hmGQmXXjoxGA@U4
zBdwQ419$!d_2_QS>h$7lw@k*_bh$ohMu-5YM<)#VbLiZ$c-W)=LpiQ6M(mBx$5vbP
z=jwYBkItd@iHy(v62%Vvs(n%suBZ7xJ${eeB<*%fKl&ZFzDZ-J$(@fpbSu2~pR2Sg
z0qW6>HIFEBJQOQ-=$ABl-n02o4AkTIr
zpaoK)%|#*}=KJv3wDJA=5}+R4;Tf*YcV*s+9s2DtRyx9;#Xvo}JC@e1$|-S->k_fS
zTROBDs7H72jpnbLtJ~X&`PSr*<8M4%4Ai4@P(NlUTo=vc%LrZAYetV^pdQ_Hk8W!d
zg>1fbqX7wbx0M3*=suQBs=?RD5DPJ$HA7-^b9s0js<(WUn=Z)*>e00-&O11!f4f7U
zRCP31A+ZdoN2haA_E__UXmLJtiOwNaXS~XQdUUViQ);}Mc#McEm?)6fj
z9^Fyx-suh=8H`&!?^*p=6Ry5B@#w78{5ETR%VON}o1J1cq_}x0;?Y^@PxG28n+;bU
zC4N(M{3!O4S9?w#k}3e|(cL(t)M6Um?$96h{W*Hta3N5SPA_m%|GJ}D;(X}(OgQ6H
zyFm!lqbqqjLAYx$>l_lIrrS6QfqHZUx-YUF9>}^CgL@afcqs(x(Uo)-+DvH6VcKaG
zlHk+ts}QJ1=N^9ctwY3n#%YDC{`TK01nSW}x$Jg#@09{@b0}Ex=(_@b0H{Z|cG{LLi+-^A
zz)K@OSdp90A|BnSm|y%?DncgTgXu1ga|a55dUP*}x15QW7BJ3J)85IO`<+TXI;H*A
z4QI>qpsSkltKn(6JRBGK)*WpQyZAsox~+Ww67PyEu|q#(t<~JQ+`KUL=qj%joo%_D
z!8na4t5vo^|S_afp=e^$hcauhx*bleA+*#S5
z`@KngM-KhKW)m0B7u@q4;{VN^w9+}Vo%?^F{-6D~Tz%%h{d0KsRb#237BJt@SM#6s
zGY|sx9Xa$0q?yz43g
z>Z$9j?IW>md<|ebw>|lpwl!J=)OY02n=ib*=4F`(sQ)+T!MD3$GOZk_|9^GV|C^h9
z=jH5Pm$?0LfAeDeH@C3MQqL-da-bevu?erFiTj=z)it-*(TRK>j>|9AxVMqLgg`x>
zr_ndBaof(xrDBJE`s$CJgnR)|k4}HzmrF91?fK9}hFl7CdM5ztaXqxF-TEZ~g{<>E
z+$Hpmoe-#}&H~=MB)$`g+uJ{VZQ97;{<_p{@1`!}ioH@C%Aa^A|m6+r#J
zx$2JxR)#IE0P6qEDc$~TZ*5iq)c>2?>G00AyI(m_PhG_2gdX~}6+FBSz3wSqlgbbR
z_2|mKy_ORkB>vwAAV{~k~
zopJnEf`sO|LZBX9X`qk7gt%7Ay{`T$t!*)JT**?R3yb!2I
zSFWz-qj{Ni23j*e?oSZ__2}dk70R>f5+SigYnY#vkcat_G&eo(u|WXTqnoKZ=pO{@r;u!sY-j-M*!5Lv-o~3^2M6Bj2kvZ*FyR`AE-w+
zJH7vK8Fkj>zB*to&8HB_G
zinbO3_2?X?MoL^Cn8rA@*pFIE?}&hUbdB?8MQN+EPN`E;%3JPx3H9hs3U7y~d`e;R
zp~HwCT~f~3s#5`(jNAA4`qhh_xX;bMc`>3pA+43@H8h)X5z{138=e&b_2?{S!!!NQ
znGk5~l38>48V|>FjMM1iltv*?k8X|Ky{hNyv&0U4k8@MkyVePTdUOLf>7*}`$OH?1
z#pVVGD$mM@fO>SVHutP`2x1-YWbKVtoTDDy4{6_vm3vOJ-V!Ix8{c)WBYd^Y_DY-=cq@Qs{MP2?2srX--F}(j*Oov0_xEbhmXN?G`M>kDPS$R!Vh}fa`yJ6WIs1J7u)y?(Vls1k|Iud_LjYD~T{B
zpQd>a$?bbZKs~yZ;qyw)+rMJmm_@$^nCuq;_2?AyAF6bk#beyUwF|}-aQkeiN9VFu
z;(V<`9E`NR5^2@Yz{Behn0nk`ET5ZSA|9Q-r{f8ukOZ+qKX~i&h-Pm-P>(LVk8o4c
zwIs&PY3NnlxQ7qaqgzt(KD+p4GUJM;*J|r4^MQJFp&mH{9Wz+xYOwE8%eOM19^J1c
zZXfn}B{KQ6muwzk%B|O@9$jiciG|UwcsOSDS@N`MISW;22h)T2uc_i|o5FNJZx-BXoUsq=w)bW75c`VD`Z2{#|!KA>~8gopWz
zRF{tavw;uPqkFwLNU6{uUhL4XJJIQw#0ox8k8WAG_l3}>uNn8SYHd&scg`~P=rS54
z26{XVW8BpBx()|a_&_~6b;&PwNlwohcebVA;yZ5r3-##olGT)}8v_{kEO+~|{_Dzs
zdUOhrb+e`xKZOs!ru?ih{=~y^ksBX3qcx-is7IHR@ydOA(PObge{c1T_=iR%Ks~y<
zd(RY{cYegUwbvgxdiN*+>d}qbXV+(7^aIA}cbVmK=~6LJk8XzP8BzYzdyG>azH(^y
z8O1<7y4A6MgDiI6XWXZ5cAi!MnN&4!-)A*WR{+tJ@FjGr|?8n)0&0Mw(K
zy!gpy(c#04n|B~1a7q~WJdSvDhpNAS{4@O^<9>MV@R;^q0Mw(i=+mUw>V1H5!<&8|
z-Pa@l>e1<3oU(97mI>p=Ef=Eg1K(Rp
zfO>S5XA6hP1saJR`YB_ZSB$nV0qW6>c)I>x+-TP2zItgORZ$Goqf4`YHuHpyA(Ias
zM)c_1y~gi5vygQ?HV5xIXHd+|GyIbmBf4kPGCt4a_S<8>FmBwsd|k@RBA^~!b0^h>
z(YHHx)T8_PqrqhKUe@XKlm9%jXAz*oh|Wav*gdm}`)QiETV0`{45&x9Cr+mNe!hX&p|AYz>FLCMFQ6Ws{Krl@XPa5K_+m|B
z`5bOvB=P9VoDY0;UA+$))@j{5%&kwvd{^(?HvSgKts5mCowP%4_aAKrVu#*DF(PIN
zckVXz=u&)rc62Ra-FSnn4_)f)}`S?AYc`u(&AH=e|!Gf6t)iI~nWk5YT9rLZ*$4)bVt)VNEhR0X&uzz!XRkYF3X0Ts7I%+cfZF20qY*0Rk4cZ_MK6W
z?w~=ycCRSbZF!tNH!idYs7E(#$p6;#al`bm5}YBs)!Up#|b&rUo(N9Xw;Qf}k+
z%b>$Jvuw@-KKD6IJ-V3_0$n|GSm!cXGk4s5t{w~VxK2PqK4Q#4Zags$M#+g=me_LN
zgQ!Qh=~vI$5!`+md_6|vb9#3yxqVC2qucrONZYL-)^$JSw%yl&TTe?oI;Bl1UDG%>
zHC`f5=2|Te^F4d;PI0nbF;I{0;fMV-rE%>JeUFiY7c8kP0_xF;)-O3P{h4(ok|y2D
zO}Wo8;?eCfO+9Ab#X#In%xAJ^(|f0;LZBYqCHWVs`eRsk>$Xa^j6)$%k4`po+5-1A
z9XsmLJ$SRTE?_(B?!Ube)cmFZ&|yTk=;){o-?y;Nc5iOxlH>xQ9$iFq_27z425>;j
zv+a&s84t%L^pAFS+VVo69-Y67z0>uh?GC+vw5&v*uLVFox`C#JGjcYw&OY;8`C0!0
zpdQ`Q6V}ImTNuENPH*PC*&^a$KGns;nnPw30QKmewN}{sSx~zg%^V6?z`Oy81=!$16O>J~xog**kRS&~_pdQ`TQB7~I
z9%G$>f_ESOpnRYn-ARX0GMBAcm;ZCz^po!SKs~xa?-wkW-E9E-q|{TAHU#o;Jg=Pi
zAq*a02-IVJ2Hwx!8{Ev>9r}=Q^X~~(6aw|=uJJ%km#gQ2ug8cEBYM2=_U!e^-^iAA
z4+bw#u|HV|=rE$Y;5uLF^nKQ)AAL|~^`;Q0M>kF`qt)N7V@EwY*RQ%JH=I~!nR#!&
zMR_5h!-#Hx?;1xru09Hm2gduG){iylTm;mki=KVynPwpCR-~UWS~I8!s7Dvo(yh~k
zORQUVZ|{TsUPVAXy1_>iTz_%@N6|)U3p%~b6t_2fS+69yfMTE?U5nMYH&t=%4t?%}
z0bQ=v7X$U^o+NEvui?!)-W8pV8@rVN_4qyuNC=2pcAa%mD&;RG%qs!v(f#z^dg<34
z)&=WW#rM`M0qXJpD9H7u=-46F?QBdo*tnwvs7IIjx1Iow2gZv=!}`Q=^I6oRd!cKn
zqhrG68#q#PWTaUMP>*iS>CwH~>{)kUeQQ}7?!Ge*eSeReErqF
z%Iq&tD+B7$d5=ACxrX~(L5FetnfY#q50?S;=pt@3^t9pLpZI!=vUZvaY`J}I)T7f;
zERYJm$2zae-n&KI`c~@EO*(zWc`Nt31M^@+hY>xx3vv4c?)b9q<=56HsZwQt4kNnX
zlB10WT;YCqXvVHq{UYRHzK^#XejHv>1k|G&VwNe`$Gy+cVH{yM-nf>#zfg}Z;`^Y7
zU36Htu;_~2Htu^5_2^Ez9_CL7W?hN=qK8Fe3W0ibFPn8t$DC%}x42!+Z=(u;dUURi
z5&;Q&SvLZbfA-2O0_xFS89&!CjQhW>_#k=TFQQUBKBf?sE)Zk8$jv*?WI`lmYeVPS&e-RpmaX@%0!_h>E)$`CbOp
zqboK)H#Iq{V@EwYzqX-$og!IRoZmdPkXt8?4kNl8*y{Hrm36inqs^1o^MQJF_IiBx
zhwoW;{^Fg%d(QBIdUWMBvrgp8>|@5IIm7dL)lxoCkIq{&QhhjAr)}87gI#|wi52_8
z@it#NeJ=&-(Y-W!EUo*q-J$Oh=D#SSz7(iOr*ZF$+7S;!aXxhWJP!YnDK7=;(e3px
z-BI<(h;goiUv%1ASPImm3rz28H~*w@hmLx5C2i90B#xOdZg-^ZuHT|kK!*`s&lhGY
z7M7-vQFAlubybGgqr*tuMp?toEej8c9r_?=^Wtwa%K#ll%(w1l*h4!HRD)B2R$i
zF^w6^$2IVBWCha)MxV;{Q
zTWVADfqHZmZwO65Y2p`9-Y;=A0L{Z+A_{-?)VR1bMt_Dbki+XED`Kx
zU6`J&e4a}lP>*ii27&kOiS|ssXZ~vq^QIL5_2{fj%nm7Ao(D(0k*%HO^2Gkf8Rrs>
zK@o$A#;^R5*F_2}Hp7yj^eaA2JIYM+$Sqnsli-AwbZ4_a+i9scbc4=uNPJd)T1l%I%+t->kY9(
zFO>3D*O4y+>d`e%-oO5!(N)I9<^rbJO`9M9ol#1Q@?i+3~?R?j7BTq(?57eWZU~H0cH{&+rcs+>*Q_sdq+
zEw{bDS=Xo(s7KeZPCjggD45CTK55HV_Zy`^J-Wzsb}pS|!Wma^Pi2!sY$;HW?pxdG
zd_8s6<+!OmmH$!-)T2uZd|sWa@{-BdSg|PnL}3X~k4|}mvxV8*HxM}eX2#k=0T0Ks
zX0458J~vN9Jvt|8AOG!c(PD=_Sp9-VLR2A8k4|dApk1a?u^l?<(aqer`ioK@)+w7S
z+1Rfx1auhD^-`bL`K)dXlh0|`sxdvedXChi+c95T+2t+kx}U0>+?ZMb)T4V6Do7|U
ziG>9-?2I;b74UFeJhVM)FWxEOo|F7fk8X#L$tOv#c(FrY(&cXT`zHlJJ-RuqKQzBR
zeFr@)YWojbox?-Nn`qEvIiGvpK|H#PQ{F4fZfHx33xIlbJEN>#Cw_`#-1Q~8TIJmNHq@i*mH5WT2i|~9?06TxFJJ6q
z?yDqT)F=V!(YXbw^y(KDA$I6%9w$Fv5?BJ%qZ_PhFEr^F$vC;>q)M63B|ts8$*%%O
zM#r))Z{}8&#ZyXwdURukU&*Yt<}vx=Yn1wmE|&uJ=oEX^>>jNa-Jzo%T}Da3M8hpn
zaQ)D!Ge#r0`aplj^-y-6zd>s$pu>pn&x-@f9-|_~4*ix(+vnM7mjU(Y9FMz(*xh-}
zxUKU0ovj1PfO>T4W77mvCEhSDMBi_bZb=zXk8WAjyekX0@EE7&|J)#!`~FEix?$(a
z@7<7zg#FWF-o_N%6Z>JSOdBKGN`QKF;W?XjWUIawJM<;;rkk~!NQ`0Jg39wU=Asgy9-Vx&?4VhGv5f0dFjf9VUI|c-E}{Cv
z?O6}md{PLk2xO&ahqjUZh?BZ>n
zBzEXWeAD+cInT{!5sxmtpK|Q=8L5oBYpWFYomR^`#QWnBGT
z;?V^+FAehUo58q6Yh@l^>(A98ARb-ie9eH#hMA0;l=52P4!53&dUQLBj?cK#B^zq)
zWSO`&hl>4=xE;CqsbxStx-+j;FDA~<6Fc-j-bs#~pH>FcqZ1|<^mpD=%s8cikzW_2
zbB=g)0U;&ow!2y9+xPdc!SA`c6~yCnpfwpzEq|i9`|IESVSF}KAz>OJ-QLs9_@I$ip_@(
zBYJf5v7RPlv(uS&p6z>kSHCGDK!*|Cj;yY!?%G+5>+)6hdB`&%P>*i5{f%A+XXb!g
z(AiGzqF^3g_dEItd5?|=fckUJ|M}y?neN8Y3d^&_4*f-`BI&RHsYgaUxxxnQqPs72nbsSF*n%b*-NO
z&|yTkHN(_*k0a~S$CSKW>ni~2(XF~)Zqn0{Z6`X6=+UWb<{tSvk#$dM92Z{p=IY7)
z&5IFT_bE?r&0W_%o;WUx#@{iKz9#_c(TOJNRY>Wu{d?wp&N$IS0Mw(K;IFM0?vl!k
z=S?TWlx_>T`wQ{tCOw_pwoNMomg>*+kWMP&VLQJS&UG5C%?Iky3DW!LeSMuScIfxs
z>#QX+nX9KtJi3J~_eT5NXI;?yNAHVT%Yb@xz3#VWUYOS2PRuuU&Eb}GPd-qO?rQR)
z6*n)YK~+%vg2W+3;`W{j+v_|sNdVNNJ1M*G=Z=_ku|xlDc$RH)y#T03SLj!G#pF?D
zhmLx5msgB8iQ1UKxGq@{2dcUH@aQn2iP>*iThgHqzHfAyT
zOz)iP+^8l5>d|ffrJNl(i*@(awtn-OAOz~s>38#moi$l7^{hmu+m!b9o}T!%$g#T+
zs7Lqk!;f<-HFLxcz1G!*ZvA@;fqHb6BYGy!jn8J>(|*rO77Y~w^|(*tw#p`Jvy<)Z
z#C#*QpT!@XBn0ZwElGN_?UZURlkfUyTi4Eug+M*-L%F)z;M`d5IT7Z;xM5hgxY_AK
zpdOuqMuB4Odv0CuY?A?F7S@P;?^HjP5jR9YJvz_jYhOOOTqbttB@-_!JX0$I>e1=F
z^ICLpXd&ZP^1LS1br%8k=n7L}?A!W$fYD1fU%Ym%iii1Bd+6yGa`hRgN0(8pHQ%f(
zPwdc348K+u!s7$==uVF4DmS*Vka0l*!(;B}_&`0nUxT(tJZdcB&b})7oteP+gF?R=mfU3ay|y{CB>!SRz%eFAK)#d(tx_LgJ?
zaOXY}k1oq^SgL7Jq1d7S)>C5W(qI8lkIrWEEVsRU8dqx1H6
z*btJG2_N;0d!LS}7W>}zo2&N1ql-+b8ZV!o
z$~fMo)#|^FarGdGN9Vgoa_f%$X)qvhLYIo6p<7sfmydd^19I-f
zh*VQy>u1-DqW4`1&#*H!z@mbH+0ihn<
zg9CGReQsg%T?x56TH(0}s7Kc=pj_+G%C}5DbQsa2TRLD#PICfRXZ!ECV7x8yWY!Bl
zS0CkXUX18I3ce?v_Kfb(QI9Ut?rhUu5$mc$rro_LSq|thqWdE`^V*GZZRK7
zXcYnV=!|Q>uWd?t1xtHRtZg*;`ws80(#!cNmZBwzm2&hN*e`ve!c&z^TfBY>a
zRN84z+LKhOXGw#!hjwY$L_!r2lvlz+T!l
zg#Z51iRte~JUa0XEn}zocUyGSqg&IUUHY)~EtX5^FxGv-hH^lMiEiG}+dn09LRoGX
zchV^lGyg30=)QALbQu>M08_=1Z{9bAa=)qEKYRUC9#D^N%f18eRL(U!^oEJ)S!bkw6u%Mwhw*E^Wy;;p&WOSba?
z9VWW@KI?o|tFzsmms8$N4dw&&=vEjP6t2j>!m4L*>urZVANW8$x}3#6szw*t$CDfX
z>FD@Ze4rj(U4wLP?QTD~_5A3;ugvEdk7sIq_Qny9_&_~6v*ICFCup9NJM&SAS);46^f5`{x(S6xt_w=RKUY7eJ
zF*5>YUR3JQnYk}r=aJw5H(pIS0P|&XZ?yE;2e$_TpdMX_x4OQmmA%}d&vH9yUz#TX
z>d_ThSobwtVaIX}>4&vfeiH!o=(36`h4CY7SkBUMx%Y%#LZBX9KdbMn{^(n=oSS#7
zySFZL-5?&_wP|xs>fg3((NT|1nm1u`zg28^qR`f>&_oF6FwynuzFNe02W8~OaMFWY^!;dWiPTnN;o^9_AJYTc=p9rfsBOS^A*|Np2Lx_bUg|6@Wxhly_S
z_WpLe{n+&;CUD(?6NJn-ssHWK9pCNX*CCqis&|E~6ub}u_4u5q^(R+@9}#R9a3)=_
zuu=fjqtpH}{jiyf1uVW&A7qyxfnYqvwt%4KoXB`ia6}7-ZZuwaV}<_E%RK1dUO*W^bZ)K&vrZ0
zUfnm}!UgKljjy~s>+K4*8#-!@!RyXkpdMYs&S_Tfr?TCLW!pCVVb(vQ9^E6Ik}=1$
zEnw#TAHUvtRm#uD@b-=V*6jp9Jvud&Rma?Zo68;gbFwj}Cd_=|)T3LqJmyHNe$Dl$
zqaIz;`>=P{da&L3kjRR#T>?OdiEhcG1uG;vY?o{{;z`UoW?pIH(Vg4g`CgZKY-im&
z_|fba0-zpU==qoTHg#va>LAy4G93X>kIqD}hBN8AISkFT+u;(D&cWlde*KQ}Td6#t
z9^J%6J59?qEaVQoN|#@ARz&iEdUWbNWe(AE*lvMW?u4)#%>2;Aqx8lmY}egcO)x!90Mw(qE?wEl@FClcmK>h7khzbf9^D|*O>HN7vfa7<
z9g_!G3xIlb8^gn{XGNKV4R`O!+=vwU@i~87%UQ@gKcgO-J&0~xHi{3_ql;UvJ%3?1+x_Y%
z5Z2%40n7gntYNdZyd$wykVOC}1KxUqG;?aHe2pi|So$WGCH&%1`%=-@F(QQ+DGkdus
z+hytW@)l%qfqHb&3nUJ=?aX1r9nb3M?Jc{qdPPz_p#jx%k0g+qWFLg6J6Cucyni0%Z_?%s6
z(4%W#HO;8)Lbl79;(6fR9X{apnCRRBI<^`)iR}jMs{8%23m>RQH_~|C(Wgyj@TsqF
znA(UR-%#SxU!|!sg?G?L>!(
z9^LS0y8&}wv0bT=e%PJ%%z8He>SCfhbLqkXlmF{HV7<=Ek9eetDu8-)Rprl;L;JD!
zZ*hlc)0yR5pdMYqu2wE4QZtwlJ9nhCORfBTjMQ>Cc;zae8MpMmJ-Q)>UO9dE((KU3
zw_RslpT!62(WzCeowKNs?Yivkd33af0H{Z|s^*kZZ)W^7*1>GIT-?ya{M}NIuI!!Z
z*kRFg(_CESl?p2mJJSb=S4^odVVfz~Ks-k9xKBtdfYmOUpUrs!_R<}1geo!)(
z*F*QDbZ6r@Cmv9b?#28`h0pZa?(7Qvgalh=zI)=)-7gPJT)l-&mYQS%kiU5{dJov?h8A~dGdUQd*H@xrt(62>D
zJ-SvE#UEYfUu3y$K1WucQDdGr{i}^lxgrEmV6a1?tfyrwWI<2cKZM6a)9kuQ*bm{_ptPDzJ~*XxF>l
zQI;!;kFZXPmIC$Y&i{IBu*LWg%Y{ePKInW(3e=-ho7C~$mP#j=5T
zD7*PPZtsVI&Pqau+7b>Pms{Rje)rxW0qW6R3qL%>Fkr9Tp+C~@;_3`H&)mE^N2$qS>`?@5MkpI^Nr-@y@9Zta|RfyT-W2i-CG{
zhPIwLE4Q$n)~1n|%IUVw0r=s7JS>TR@)({bq-LW^Vnt#ZeNV9^KdVemz=uwuhrT
zSM2@Ku}ogK>_(*1mL>^MkM2$%uKUtX%?|yZ){|!14v+%%=-k!)cZ^eO*-?*<|27~v
z%5%58omg*}!|HRd45fe$6Ww!|^*c7!j^)<>iVWLkCk5)!`JXvrz2q#r-rB1+Te&V$
zpdQ`3z*UbUz1S{OT2-9sF9quVzDKWw@FPiGcthE4yUK-rOQWPfJ-T~s*B18nV(;H8
zeYbr*Z%TmrzwgnR?>Dn$19^AtAYrzJ%L|8E4j#|?&!t=H{6#=Ly32&hLFx=dSAS8FS;hi=Np2`PQWLZBX9((>*eV?VOp-OM9vG_*xPJ-Y1Mo8SEL
zu!Su>>rZ*lU&q0Ex0khjoDeJq>e2l;Hl)7&`DTY+>E+U>kG^7{9^Ifvcjpe=$#!G(
zRkPZh7X$U^auQ`$$=sG5_2^oy7WF-JlkMitS{q<=Rt)Gc(cO42NcH-^jtlPJxZ|_(
zV$Xp`;0QJNHY}YHfms`(CVxS(~;!t1J$;`R~e!G1W%Nz?h
zxPL!Vk9{kN6an?=o2#KG0_xF;TkYO$_=xRH2MxELl*hd9
zCm!7(eU9nMRBPC1u;`#tmnshKpMy);B#Tc1pdMY~i{K5N|1XDr$d4t4eUb%0J-YQv
zU)gQQY_5my%I@jEj<_-F)e(2s;3G05H
zWZrWTkM8lGpUZ7NS;P0;`X`?BE8t)|AGx%%dXp^x>e0R3Y`?Po`DTZH!rkZjJD&@H
zdUQtnYIN$)vR&od)Lo2L(Vqx^D|ZbZ-^0>s`+H6c*ZA2-KtN8@;BD#WgF?E>%sfyIUe}Z_1Gko607N
zfO>R^zjsKTgPR?C_x=}+PnwE=dUO^NXU~a;*)Htc$=lL{BA_0f_|&1ZhkCNz)rgg<
znRi4${om(OQuwj?p{LPEw$ln!;dQd4SzaxAIEl1tLM*K`B?RLt
zTFM>z&R^Z!S8IuZdUU2my6xLA`-j_O=7dLBWlj?V_2`zD_E~q&nC*mhLEN^B#Xvne
z?(fv-y*4d7>d~3=rzNXxV7r}fTg|_GKn&dXkCUnT
zbssUH!$eoT(M0{jFt+QrWV}QzRSeYs9mg(#mu^>Q%=}{sgT6g$Te?FiKOa6xwjHg<
zNq~BE+~xHZ>%KHQ^w<4Ezu2sh0QG;Ln~LF{TmBD87b|%^>ZnJzdxq05i?8f@Qw@@y
zigrl=9VWW8iteA6y=S|k@Lk)+=u3clbYo3V4G8*X3D-A#w*Ki^B5&`V)R3%r6$wy}
zZfi<+*FI;P9r|7>Nj3vJOMrTGqE@PYlV-5plb~Kf<-H|9J-T-aF=ApdMYppY`3%
zlC9#j;fyC-=!6dUTlR(RDw1qlk0UndNF!UtR9LPz2~O(J2>2-7A~m
z&T>!Rd~+1)h=6)@Q<{3dd0u>i<<|GS>0@?X2-KtN6X1UP={;sX)t=lL-7d>GxPR+y
zOE;EX76A3=wr>8c?zvQDpy}(xgJx}TkU4XBT)bMxxNVg
zJc`wj-MGSX9w);6mK+lR_2^DJ?S6Crawr^0@Nm@W`I>|6d{?<$(J#+{C(9a3srp_Atx7AZGfF5|8eBmDHiy_%_RpRNIr*
zFGm2>qnjPo+AeXy-4-47=$7i7$UL#@9?NA^_E@_nNdV|D(G}O{eX4U!V7be!@9Pxb
z5dih*l&pWfu#0-Ya-TZJds{^bfO>Qh)9tmLs~@r4QeGEbqh&&%9$kN4ueUljiQp0+
z_+dp>wcNXo?*D0ZFELP$uI8Q1`#&{Ly0YsYmD8m;Ug9
zdUV@=AAQj&EuG~mLXD5l$mIj|=yKu@x%o`XU^$bOW*^Ul@qv1D&$PYf6o_81oWpwc
zxcU3}Ks~zbmE(-LiLY3$|FO=c_C|c59-T~oWoGn>%oZK>=%lCZ;-;r(DRk)3J$x?F
zSg`O7%axmX?EcP-m%;5Z(OEgG4y(?7%W|{Fbs4>J86T)eS6*h(TIpU6v>IXW(v)+D
zgXjHSyR;@5^Sp<8bZt##Gd3R0l{@tFL$)^TSSbMN(T$4SG{AFX9?Kn$Jh!B3r+`_{
z=6`#1e%qg2ygeqrMMph4&A`syFMhJ!k)!wSbo3GcI!ttDs>93+3g5Bnp~IxEVvSDe
z?$`pByLNfdrUN$wfDRMuHRjh8Ryw_J(NT}?P@J;XWc?2;H>51gGLj;VVQd)3RsC+uD_&lUgG#YETL`eV`1dmrTvef?lV
zhsZYqpdQ_rdZz(n-HTYx>8#f%(_#TokH2#U7_A>LaX~T5osy;O`u0@-)T66@_-hVjk*x1$L9=%S0>Zbe2r!&WYA_ad-Y*;f@2P>-&0a=MRhSp^hM-}c9Ru84#6
z_WinIeTNzMLOr_TuVdX3=5XZ>{i@cl2c29Y1nSXg&df{Nf0YYq`>o$k5|_&Txyiv<
zy_omf)T7(9XudQPVrPcfjwL^mkw!tyRm|9adW
z(`bpTxchT4P>*gxprg_OWj@QLbCc74w2}bz=;r>o>V9qu+gXIFze<@Q0qW6#rKOUL
z8GnrJ!>ovo)$FiG0@S0+e57+}>KFmbEx0)R@b#qdTYY!Aop^X%hcR?Vw{@S5+TT$tR{nYo@3kM7C*F;5M*%UG_Dc?XAS_002f;?YICJv5-HT*`84D;e=l-0R-Y57ID@0`=&Ed+k~HQcEIt=tTzaa|Z`XfqHa3
zr)OmJ{KIyCLOn8T-b;acbjMd2e${$V$*O0{S-NnRnhdB%Cz`v?Bu2t^3)PR9%{7t%
z_1MqDt@g>C(NR^bda$|m);uQ}P>)Wqedge@UA53BK^V+G$CY~r%|nOId&z)$?8oxe
zEw$>$J+a)O7mN-cJSbfT)T0|2Umx}P4Kp9`zj~Mf{k`KfJ5&Po=+tIr-V?Rrv7E^-
zr?2DwNP&8E`**D#TY5nPveThjXHHggu-@PW?N@8}mjLzXESioPpY$)2JM@z1{Fwzj
zF;I_Arlr&*+E>MLg3n|8xsRCdBjV8om)$zPxulxqj4Lu+FP{_x_2>+X`=wrc%&yn|
z&bXt|o5Vmpx@C20=`pG7dUic_4Cc%c1NG=acb_qP(vDp(%3evoeIGGUkNxBXSLQmK
z1;|+YXPFZmZrCUS>d^&cgiZ0e$MjqNcm6OZ|LlH#@<$O+kNp7sEmBPNxa@i(hn|nw
zG(im1qsz_k-%`K25)$KlZgba_aj@QlOW+b4BL?cxZL1B=I;~nIcj$GaTD2BF76bKi
zXTa05^lq+)Zd$yPy;7POs7JS@f4AChQW>jWqIvtC_g{&DdUPKwx7e<%lCoUyXN9+~
z=ZS%Obm!OF_icz`xAUPlXV`Y;dyIN?nSVmIPiCI`<9=a=U$`K-eOdz4qqBfziGH3U
zxHo87Vmsz@iq7%+nxFpPWk5Z;@oHh4)r$mjhu*~EhPWa_2GsxkT~!0eG$yY5Z7zdo
zhqQr?2jb*DxW3NW^|=(NN07Sq9Xj!^HMsDm$8f)azUc)Z_L+M%-nW^aarG
zM|JF})aL#4i)rc-db|p#NB34MdhVCX4|0cI^OuFb|Kcj39-Z~8+8^J-3Ss^J$lZZK
zm*oC~shV~D{z{-8-Ij5kKFqbNkUR9N<{U2S;9CjQqbqGSz$n&~d7l2S9_F%`fk(zg
zR|56uwhvja+@Q{OPAi;mpHHa->d_T7{`}leS;DFpe)(2Zui{Fe9$o3zsbj)}nSQ0D
zozZX4HGHmS`iBya?#$f=X|=bE<;HLPnzo0zUQv%O^Vplk;`B|M82
z#&T9$jYrAitAKiRE~-ywDqB^s+@RYtp9L3I0rlu6pV0Cvdctm}QNrw2JZ<|e00ty~O|8xoo&}y1j3_atQ~Ir;pDD
z<)ve)fqHcQpW;P3TfdS!^cPQ;{d}Ta4b-D+N?CVi`jZTnyW{+-V_i}eP>(KKbIh_O
zS!_3>dzVfpzg7YD=wj9Fe&+S6;Vt+4^?Z&sGEV=+vzH#-7lABX{T{
zdL5a%dg$JNtyxi2Sp(Fg3$k2p>$sX-
z4;?0YbjEE`=ko>ECi$
z?r6p0)~_^cfqHZvZHwdAe#mCIQ=W$d!V7DFdUQYIY)aQL*QMV)spjc185}$=-s&ea
zVQdXhkJrKY+xm8=$7RbM`X^3>zmmJv0QKmqbO#?A-650Z4zIJ!%==Rf)Z=wgwQ)#6
zbVEjqj(T)=mC`oV>$2UP^85y$!_|Ne6CGI9j2inOKj>%vE{7_h9$nVY(tdlpX0Y6uYx6aG(H(cQ2Z-^XhCOO_iu
zGs>HS_)kdW_-%f*N8X&s1r}_98eVp(oBBL6p
zN7pTEN`98*3%Nu8quBEL#dp;}J-V$gOat}OU$Pvt49w>lf@+{1KiBIEbes<@%wV~T
z`&F7=R#yY{=uA)Em>73BmE~MMxf+|-Rs;1o?sF7(=+D+Z9F}|7bN-|&!fK!%-Oi4t
zg5Sk#*MIMoy)!kdfqHaF1s-|&A09*G*Cx|nSF1UAJbS-dJo5OyN}wKHG3T7|#eMhX
z4*f{))iH%bD}j1+Gu%g7+`bUcavQ(5g6=*M*%b3^LU<(+o3C~|dx&bzha`>w3!;CVP3B;Xu1mIC$YbPi6rrhLg>?$8g6PO8~I
zLJHKQ8}@rvmp9D#V%#3H|4QSrvv?Aq9$i_TSNLVU-7KfQ-9Gn$o)oA@_o!sWzWGIV
zAPC=i=Rx-m9ISU<(=6UTR|?dl8#eH@Wl%`7L!a}a!`rYlDNv8Dccn(+lLu^<>})kv
zKT!(Qqf5xyZFTB2+nu#qzt%Wb3e@9sQ_i-^nXb&ZU2Gp_jM3*N+aTsV5Ra~#Z=sP-
zg)Pgek6D_(RwPdTVM%co#mC=`0lqSf1*I9X5i*_;BdE(Ixt@YUqPR$N|
zn>tQW8S~tfdUTtE1}993X1ftPbvFAhW#$hd9^ISx-<|zq*zS~iUYjWkWk5Z;@Z9SS
zJ5AZH=#-lA1z#CZk1ljn#Jm!yM^~x+(4+r18@WS2
z%JKPv?>@|Rmw0qX4W}erNMgJFzg`WTbGs6#N2guvHSMmL?LvO88I|&?5~xS_<@DN_
zRp;4m?wG_C%QUs&8RV&w>-ZRs7GfPbTxALs%D2i
zzHa2({HbL_K&PcxbKU(}3|KGiW^
z2Gpa&cA~>Xhlw8DkUfnvOKw}s>!Fi%Q|n}STL$Pb(RG;?wPa@?+r9o6)JYb>yiX(^
z`+1D-@UZaHQMMa)vi8lAD>9%S-RB?vyOoZx-T2qnAD?5s->JuOQfoi%u6J{>h8JJL
zZv2SIknd-ksg}7u!7`v8oqAsQy(^cR9eS-ahrE9Knd>0&=!~3yfbDg*GxU^Q__{;}
z)T7g~Yj<|hMYbz=&~&pW)Bl5dbQ9;!_UsvM4f~IY?VY8?9BgOr0p-V!lr!_35RdN9
zE6sv8%y~eE`SU_f)?i-=P>;@C)l$`ITFZ`lbp6&k&N!mNcKb{;{q324Pv|hw<;1MF
z*~pBC#r9#UPTPAs{ECFRU;5u3-DWMP1>bQ!f{lN}wK{Uqi;3@ly8jH2)n{cTTkus7JT-lcdJ1
zqYeB@cO0D%DwLm(0hfOUJ2Ah*sYmy8LTg(?W_}HHm>Iq*b6rMO0`=%RbZ%UGrnF^8
zJ-Q=9d2P46V7pu1?|+_KSPAGb(Rr`POEZaNyZ8R*#SJ?unR(OxxBvUxR04m@`$_`+
z*iLtP|J)h&l|VhZ&f4+Ua@^Q1W8GKfK$l9O{_k^rF&GA49h+s$cGE{xYr)@R;33I=M4)caIJZ%SaJ)<7oCF%4p
zyHB&-xvc}=TWCsvdUWUe6&Tnu^G{$M%+XC^X%A*zD(cal(4Vgrz#Ny9yFV7BE_f;T
zS6?jq_|ZZN)T8Tm+N=4Y?a14PrIxJY
z0*;{f{jL(KqR`Tlkxw~6*
z)T5JhIyp>}W6yHm25GpuGyPl9VWP8;>{>RFSyvC+hq?5av*&3)F;I^#{o2U~*Z#0w
z(TA6l?=$0)sYll?uLnmX%8^wM9VU8o-0K+u2kyGDoXpa7p{Fi0@AAL8nCODcwhD}E
zkFi|h@P?^7+KYjDbSgiOKG>RaishVh?Z@Ub<4LGTH}ci^fN=AZu&`mZ&U?)o4j#{F
zr|15bhlM~rx&^&g%zI#VRPNA=vP199oW=BeB_7?931vCe`#o4rD%vMhsu2M7=ze~^
z=saEd9Ltp$Sy#A+3V?caUEf}q*1Ev2MMph4uNBNo*li&!_s8j_%H+8MK!=I$*Yxk3
zI%Kikt0YZj&0RvE{_lHq5wu;fdFby)L6DlV@I>J)zP#@Ebza>sFBAjy=$@pVAN1Tl
zQ0~yTtDH8Ym#rA6$8n}@oLg%p8eL(z9SL(>gPD05sYhp^`qa3#D1_xMZTM>YEL;rK
zqnqhv*01x{n=JRyuh&q^EHO}zZeZ~h&z}4!mMiu1va$Or2I|rAXK(p!Hs@B0j(T*l
zv$Eb?9(;%8ZXLJszscP1qQgWN{Hrjw!TBD`MXG9yTzZa~ubFssPilIbw~mSjm&V89
zXMr_xU*EqpA*6>Cs7LogX7qgB>t=^Oa93je!9~n^I>e*fxgbTQr}sU1J#?|pb$|IB
zkplJT+*&0IjK{X@s7E)V`yzYO6%SeUlnb-njf$jz4invJ58uxDN^e*$A!ASF0cJc9
z_2@cW%uk*$qLAeZimp7a(2)W4=uAFzcD~^Cj^&C(yU&L(ST+PFi
zDhn!^`NWAw*R_pvrzVdANR{T))J1%d`?otj#*DOOem@Y8uG7oGjW#`B${qT*Lt1@G
z+9w6-(FM2nOPjGRi{%b38cNOvIx>gdVJ21TvL<0?b0KdGv-a)3*F}P;o8+AeBv-EP>)X6
zA^Z92wefO?e!}%7!eL{X_cFwz)9QNE{`UIjdgw}dWvUGmr9eHpj^nb7CaOPU)tj5q
zbTMGE6sSixEobW!e2n&Y1i@ou7@ylc=Y(|9#RgrbIknR>?8u}@j20;wpH$0U)k-P;V&?+DH8$p=$xts
zcs)=~gRXy~X3R6rlh<9Mdq>ibnWv3<{9HGkyZG_L)8}%BKJ!poC#CKZpdOuD*IC=9
zbjfD9gbr@O+j=qMr-?@w>vFgITah&#fy&}0oe_DCI$)*k>pdMX^
zGai4GJm0ZgqVuWyIn_d-9-Xz7&4fdD3s^4shgGHB8zE4S?%XKvxXf}s%ayf0@VkGk
z5U59YZQ2B31+yL~?ic3cH}k%o>nj54@pINXzVzmy_aEU{7j?ti+aGh#xpp?vwuu!1
z_2}y2hDzVG&5=9w=j^K@+a-yBdi**he^Vy|;-aTiz
z!7C2F-pP!^rykvd>BF^uyvSs^-pBfDgcXW_dUUB;#s)f_*!6-lb&5SoML<0|UXDOp
zDt*MNcT2}LhCf3L)T4XXu;{gZ?|2B>GsscTx%s&M(VTZ|FLQrQJ-V~2OdlPxeIR$}
z!(H|F0-D-zq**{%9a)ByGEw7
zoM)`)Ql5<%sK?J)jCkRJ3u7~&`vL948&7gMxPN87%E6`6L_j^dnRUNkFPCM>9r~0@
z$_pQ;GJg-ms5etEy?AG$Bxr?t1;1
zN~LRTmo-7M;qp}>P>*h}`xA{}E(NT51GC)QHMt6bdUX1`UaSg!Qo?f6{Ij>`t`h?F
z=;B7}YOGpR$Z|@hd0TSd3W0ibxyr8TKV}y~yOcGL{RgxN77$TMX2rbACMUP4$CvmYWdCa~NmJ
ze6ESd&$Z69D~~)L@LBFoPp_E?%(@EHqw6efryU(2hU&{o$4Y|U$$eehRlE<(b1>?0
zo|Ebg{_b{d%H$4x4B-D{gzdvj>ld|%2
zclnmU^h?C;F?rJ-9ZMJ|1?tgt`?f(za;XZ|Ya|z}Evc3JQQ`CUskz92dUTiK-YTgH
z#Bzsz(B`i{y$WSOJvzUnqkAgZ
zzGle2a!nw%Oj-;CAH#)`MniNQjk9^K#X!B(wszc5eRTLoNRA_VFcxq#q6m7J-}{Vwr}
z+(f%i_x{ugfO@hZZ0eqOMBm=W8)IOKvDs8{4x>6cf(HxmQ(YyRgy;lJ_ity*Cn
z%-Z6n{%`g$^Yam}$Q9mtuvxpW7^tW2^~TcfLjs-v)_XNhxOR)V2&iw#p+|>_UXe@r
zZ0i1C1+)Ixzq*);oL7Qstl2zfJq_ajtD|0#(~$J(yM|e36&)sZzAsefMQKSncwDCZ
zihekkd4EKGOAftbip}84E&`xlk=wZ@rKC+NAE;O4GTMZ6+PjYr)c;pUy&|VxZM$F4
zjSuKB6}cqd81BAK0-&C{f#x4HS~LBv@p#VAYuJ9>fcbtWz9onLB7c1CU1q*}>J_>0
zWh?a8CW?T1>XgQQJG13;4Pd>hQ5)u(Ok~!JB)%nw{=`_L$-_U0fO_gCj+(V-N$>Z7
zPFQa_%5tg*sBg)kFC23yZU16sode?kj$3NJp5gYG-%Dqoe9b&>rCyPH_IBQqK;}G9
zPp`XJ2Xm#F=Q1nixiIyL+z3wFCHf&Epk9%?zqgCTvU0D^{eN}TD{^~gbbYj=
zo)73S6}h3+0lTI=VdixwUXjx^jo;mPKmgQJ_xSWix1?UoJXHVAW5pFm>j*y)P~Vb6
zKfWsU_2g_3P_M`tyVPFxX6EOk{=Yiv6}d|tIgNED%>0A@>S8K#7H3v9)?H%W_Y<$k
z1*Ls{edUc9s8{5Y^ace^WY*iIp1Pun{ujn;3INYTkn*v{JxqTh>RWQ?9S6<&GB<*$
zN4z3;zIu|%-C{9NPu<~<2czql^=q(R+`IG&HKtzz^({H{YhB`oeP`w~re2Zz`POM}
zN(F%`LjgYm#C6a)42z5v^Y+4;8a>}zY7byta}F7xXC9_{bFp50(tcBP3Kz&ONea^e;mqVEG;?yg0s>RRx`FH07^@`lZLW3THY93Ip
z$j#U-6sP{-0rk|qhdEw-+vag_|27(RG#NdG57f8h(Cg1P&%4u!57hrxN4+9t87
zk4he(!&Kz_kA1O@$>IU^irl-5Df6eq@_>3pF5cUIKuI7Es8{6X_3`qZ)Q%6-Q@3Qs
z##yPs0>JZ7z3)@uW@epb>RWQ?uiaH~6~{2^0u!&ueKl}sdvhYQ-V5>6U0Q6AaPL7b
z2kZGvP01f6;{o+8IrNsi4PI;WctE`(cR$4ZSwT7vs8{5S0$aNt59I;%id@W_^YJyl
zJfL2YTfXPo*ym0>pk9&dJM(2ncL@)ur*3tcuXy{`Lcrsxd^2$2m2^H(-;zUL0Lj)hZR8me|6L=
za_OHhw;H>q0?=V9a(+*?e2;5a0n{sUTQ6wt=j|>B>J>Sz-XrJf!^(krMNZ4`wx@bg
z1yE1jpEWm>qs^p%=V9UKaV}{+`9OV34*hG@0YN*~GyU+1SL6;^_Z&PhfDhCwa-*k*
z?dxiq2{N2aOryvwzD92c<=M}T%f)shkl^x2zT4i?^w
zUXeS#c}a1>I4+>WROGI$og0}omJ8HVXMBI8N%Evz4jvbqn-!{M+FYQ%C5JvR=b=H0
zCKssxua5fvuMYkHUv5p-o16PSR{++*R8+6WE>D*mv0R{@I*mzF9JCrFfXB1Iy@pdX
ziVxJcip*4Xgb0Cj>2|^oQ&<6a)S@l
zx8%^98;L`gJ>>)Sirmh*+2M9FK2Wd7rMDkcU)Nm#)GKn~tyD4uaeSbjx;IZhJoAh5
z;^6+7{Vu3id&2|jTXN`MdW>#7%Jh4sUZLBp`(erx9#H?E9r23XwePyBI?OsuFVX!=
zMQ&aGcV%xM9#F5y1!!EgnmLvS)Km9b^Fi;85#<~_o~m)b?yud$1?pRJ==%lf4&Azh
z3)CxeOA~c{q9<~JdPS~5Yumfz+6tgvk<;I>_1T5|3ZPz*oAG^E%(?4apq{#QRWSW6
zvz|R37i-r6brY5{zi)|e$)OLie4~_kkPp=VS4X`fH%@JinQ|6$efd`xQ<1YAJ#*Jd
zH$G5LonGrr4*o+Q0q);j`yGAEVwm4Y#JA+oe>=M>B9w8|D{^-u_YC}Yn+Mb@aQ!>2?#XO*%y1R3?E?*mw3wT@xu1Zv0z^r>neM=7g
ztiadBo@#ucUXioZ@Ll(-7ayosoUDIisFBXN#9IAG2D(cJ9%%=+h}e0MxhS
z(66piNhsk7fcpRHsQ0Z~@wZFRrG1ySdt6$1$)b&gl7;f(RvwouR6LpgAGx^ol4&Z7
zTc5aO(e0#u3bVCIPW0XdKLyZ!$z0b-LIL#Ax~iW3mU*?Pk)>^sD1gMR{V&{PmdtG&
zR<_)edBnSJNv>C)ha%vWnYsy?SNZkrQ|wo(ioy5RMaLU9A_!AC*1Iy7dG&gyu5HRa
z0gRfMaw^GH0J8K2+V53_5In$UzJ|95`c3@#btm)hU|#FHQ#XeB_l|d-I>e(v1PQ}c
zmlQFt4l&~{xa&Vz#B|9v{5{0us2IlP_C71gXwFk5r|*gC#IW@-u^&IE;gahg0eDY1-`(ng0P3!HIJtj^0Gu^-Q)7k*VEUuA
zk?9;h_-ThEixT`|C;xe?A{ZpFDIRq8qb>>OKfIV7ge2wb7h7w4Vsxy%G^cwj-#8SxolwJIMRtM%4aWQ|cNfPs@$H#Y2#Tg!KA0K}_$dm`^NzR6wba;@u
z`%$rekLFAeH}o}#ZelLw
zB^>p{E2sI8>AT=`|Dk+v^*lBBNqZgy%=Xj2DPq1_+I#gLmBodI!zH~6nSYn2+=
zPb;{9*>>B`VNHz{@Y7K=`+Zdfygl(nqpz?6VhiH-t7cb#*>2Z(<@gE+IBK)nC9ncA
zo}RUsb*cjHq{L(`a;SjUz4W#PuC4&J4yoI-`sqN}y}pjs6h>OJQ6G$Cop=mx9wI
zai4y`&d%dj=bimg0+{C8?NcT_ErFs-0*URl5;#3!XTyuIQt9?0$z*HL=eOp_J2Nvmu
zdS#kC@cvTx_NgDU#E
zP`~z~@##n9&^JxHV}f@DEIE=ju>GY97^LlVZRFJou$#8WVORvyzESDtAfW?8g8NsK8CE)z~h4gTn63E|EH~O=%7`Wd`H#KH{
z5*N(ciPKL_WNw}RW&126r|JM6gp>&X6n@}=%V6V*ronvB`x7|!;cOoCxZW;q>zi_@
z%vxLs*5y#=`{RCQw{n=f@zk=lIu*eG7`^=C73LORuglEFtvopXxT39t4Hxe6CL8Vx
zzZa|g-dF4-kvwOJbjE1Jlh5IQ8#SProP2aflQZZ@$bBI{8}LxX+-7TV7lOR
zb$v7F#UCN8Dm{93W3CW>+D@N-szwO?d|q51uFP~bJ>9$opIxt-jlWW|^
z&EGEq{jqPoufG?FS140c7V`zr>B|kRR}BJqXymM4;Ta=S|rnW{Jj-{BD2x
zi$L7%sl~V_LRe6lJ!T=Zgx%Y~;EcCXLRfm{QcYeM^J+Dt
zKH4+iJ0;wtiwy;02z{sCe-g9Apkv#xVf_~{Qv&(9yee>%!2CD$FZP8=VByOT7rVcf
zK#uFfq~Wy^xTi7v#MB{DuqjVYS34|)FClAORA0$J>f-RhUA+>*dbuy3%`5?__xZ7n
z&ACd*cWex?&!~h)`lF_`QmcZ+HDYX&ky_Qoo$
zD9;o@zz*}?>dg1#hsTffmfmNk@_b)o`-7RPy|!fLN*!iOpHsskPYi!7g_{ME9dDQ^
z#8OYHHa%pfz8blsA>_Ea4El`He;}A7gZ=xv-srNdIWOK#`YCdhf&10aqb|&ptEs25
z3wts{fc9#q^zM|*w8P})g2RWIp|m#-wcay}>0NMN%`
zO6O-m63A1#d8pG0W{R(U&O^jnVy4SYT$ez;2>5r~+YMocx?-w3>YTa1g}JX<8olEQ
zb3OU#*db@Pmk36F7+$T$+;4^a*?RV&uL#ylx)ORbNSF`;XGap^UCjT
zvgn4EDIa{>53BLL$A<%U6S~@k^5Lgzl9T7A6Q`c+*0^agEKX+Tr)-j`Nu=+B-t$>~v?Yv%a$|
z+GmMi)~==SBv=H?j(>_dX3Y$RU#nzPdAKTLSSf~$mByT0BQYG$+_!yCFJ`IN
z{q+@N(?y_FB`);7-<+Si84NDJD1vVLy@oZqGF@6v)I3h!#S8`N)+WEsq~&aT&9=5g
zO9Tv>4tuS*M+%9ind8p)h#q{F4_%he8ufYwbDz4{
z;PBiL&AIDLzvHGic%afQ;d$r2Jn;IOHmx$A3mMtL(|a?IWZDn9?Gwn{Cw@(h`Chn|
z3n6zrw=7_`%Px*nkNLxur~ObRlk*ZTtRLJ($t|A?2DyDx<5n|ExYhrky52k-%D8}H=aGsqr7zw0^P
z?!3qI9N)jrL&(fM_x-uH^E%Ih7iC9iFz&wls0_ABr?yHCc4F%@{-p9+O{7*5xHa(6
z_V@wJ!y*2~N~F|HDYm-$?xchF@8%m)R2q;dqh(L<_4_w^&7HL$OU^6&)kgTW($%22
zZ-{XjbJWZ&kRlQK=6F4hU=((C5BLA1!g#T7TjUwc!_(Qcl0Dc8W9a;p#(a*zm>bFE
z&iHM%YS>5P1=Ib}6ST(EWVF|DF%=@Sa6}*mpTH#wtfzcDn
zd(UQ(;nr>UT_cysu&awVYQTgHy>o`z+4%K`wjWWK%gHcLKujnA^SWVmeUkYzGK~Il
zn2LWy25R&=r4@)b=C7emr<0+myh~&53ooqD%A%F*G`y!8zye6eMl{p@r`Asy^u
zB$uxdU_b%o@}Xc&1~>|+i+;s89G7;w#_B89nOnDREtz7#wsriXnwS@yFrmE`#`==h
zcw|$_U6iIe;V_|s=X}DB*OSt}n6Pqh|4&0@7TCLAyrT9V&*wV^i{4}YLf~Armf5|c
zD0Ss|NFW-|vtaSf`5jpI(o&pHgyGi*UJCc5V0|igM&;R_Y6g_YCTqmc#g+KQ{??8M
zS#U`2c6T^RP)(hBy5M6rK8H4sXTRxUfn(Apdx^Q-Fue4RxSMV__%`eqyp7hxKgxE#
zFT!(Rm4C@L-Ek(Uq}Jp<=0S?vU5zzQ`H^ZGH|HUb$P6Z)yclv=oCP|yDlRIokm|10
zPVL&mgpBn^IMTREZs&1o`O?iyI62XJTOU_nc=}5l=yD(u(syl3UpTV^q
zZe0#uObF~%*{tG=&wX@wnzkAfUJnM%vEIb^hldL$qZj_7L)W|$(-F90HvUdWawv@s
zyGfd&$FI}j@>)vgP0TB$$qmNe4DdS1WE6%!Kx$Hnh#`v&@{>@%ep8@Tf`<{$%m_eY*3`nfQ
zxWccM-;9_)_geGUcMPcTDN-txV!@p)qXp;8F;DnmqGE%e18L3@lPjexkaa7!7;Q$0
zuUVb%Lqjm`N9gO{LMr{C&Fjv{L^GlIsq}-Y`!m?)XrTEf9s3sA^Ciq>nLtWZTvlsD
zhp#Tyj`>)RLqg3+4z8xWsxUNE-i!IZT|}>R0|N>lZg}HV$G|+$X>u>(BwIJP30KR3
z)KQs&dGM;;kGD;017Iw0@+S9k4djTnBhn+7kKI6`S
z#y@O>D`%LnS0rS-@fNNg*j;<|23GtFAg(-`2ORl9pDJ|~$u|vzZ0Vf9Mu)=SXcoKA(owCi^i@%RcEXm1fFgrGkO
zjyLf2y)WZj--n+IE%fcdxo;V8VYZR#yN3+WG!reX@%UfdGf_XFrOkkEL;HL^6&Vmt
zsbs5(Ghppg0Tn|YTm@Mc#=DG72bbV8l-AV@co^1Gc^y|kK52XB+vD}+yPhh)GL{LR
zm*7z?zV4A4=~c&(68~Lghl$cpeD3Z)OZ+|$^HRIe`q-5$NXt>P62$khV%`E%TU-T-
zSmB+Nl}-cd@NLn)6ExV+HW_q&6%AOH}c#b10o7%egH5(VzN
z_}#T|r@;K&Ss8baQ9yh7E<;nJ|HVb{MwWLT1qfU`dC+)y3mJ5Uu13t!r-0>zUC(3}
z1@;u_eGcrK!Oi1~53z-)K%k1WUu1?X6$sQ7IM5xikqQ>e{pjb_sn8>|Vo5+KQo#=V
zpice5IJoz={)jvcm~OIX9&ejLuLVD&?_yj}UcTY&G0YdWD8H>1Q)pm*I6GJobz>IF5^_=^vDuV3bk!Z_#W)pgf`
z3?2cdPoj`g^I<_QD}_P@M)W6dJ{8PA)$X1=j-MBSsrRCCCGOF{^L=`XV+9TPCGM5X
z&&D|S#kEX*0}Y(iruG=`q(Q2nlVB<44Q@^w-oH48BZyzpyv;9YQ0SbZ>@R?Q#?My^S}bba5CI|Z~dHXLxwx)`8wMoDbUY~)c=F|SYd(L_pojp(cCktQ(8+0f$6l>
z7D(~Ddr|px0`^y;exIli!4Y_#2;Y;2hZOkgE-Lgan*v@vN)jsgxnA|r@p0;>0KfYE
zMa-WwC`LB7nA?MWt|aD*J{%b~>A3Kjj?iG0+u7#$Wpw!RG|8UlB=$A$+wQPH3f-eV
z)4YlUbO`6&ymTU%27PZ{N&Lb-zU+Xs*7~aqg$0u!%afQ0!tx)4YH1>t9
z`yNeC&FO|Wma7iNrk&i
z2!5#1@4k`=otJNyY{K|-c)D3;AD$2TF@w}f3dX&h`WH)U=x~U-BkVtY@yE{(CVUU2
zL(TPt&p+Y&Ch)7nO|b*Gf}|mHAEJ!upnCpXssw)j(m_hDt<4P1o^I$i$M{3woi|?9
z)uwc?+T3Tb49}@ACSm!Z;Y_&fTby_2D-+gDZP}wZhIPl1wHAZBS%R|UoUFf1`)<(<)6YNOX+lZ!3(uYRNYPMYcjry{5R@R!Eqr;k-Uy|L=?X&2{n@a*
zp6~UX3O3AtT^4c2fDLU}(H7o7{3rb{|Hv6iu4tW_U{?eculsGS?-eP@H
zU>7lP#j+d9;#(gF@UvkHsm^hJIramdbFFQcaiL8Aa$>-FF1$}UCoYr6g%M$jnD_t}
z98U%F6rSt(hpeL`HC#py?3J!RYqq)<_LwExL~8Yd&*(@6*{K&EW`4=&N$Umbk#AR7
zlwR1{`jkApxDN_Djcawy`rxpp(|uLnKDh8p_Il!zKB%nwD7eY87aX!fV%+Sxz?VEC
z|8X%F61+NZ4m)yTx9*`uo^yLZ-&-k@%jJT0d}+B)%M4!MDan5FnhONxH`63dA8MH<_77an$mzc`|t)iTj+OOI0F6oQFDN8mOwfZyT
zCeaE+r*zT_`!jFF1*_8WbvHCq!sZ<4fn~FA?AJbvR^BGA`+XvNU~I(;{hOy^lZm5tP6PVr?3=omHqtD
z{4g%&>Hb~m8n1B0((zK_xC0ZyGmRA0iR)_Y`t{tq|Zuof6a>az0K
zQh8}xIz0FuVqCO{4$0nq-s`bnLSWyE1;xuSZaCi=uUE08gS!2z&(4ZWI9}IVut^8|
z!v0wjm8Y2SSoe2zBj&%O2gUTX-!frouS_7flL;b`N%A38Ovt}=a;zHj-&;XRG@9n0qxBbHWFRZki)W-lG|MjLC6kP3)FbJG;0sE-CCex@`7i?aqDP@TD
z0D&>H+ju3V@H}6bm$tu|1|Pe1Xis9X9{*LRFTNi0#4{3@%T3YA6sp81K`jxt;rQI!`Ja~Bzj{@Yj#LDI!WRM|0rF-*}q4La1w_W)pD6M)mz4ACI(`QK^alf^NXo}@ylP~#~Vr09)l-J?wIqrnxOqzx+AR~%YbxaaXr8l0nw
zWu8r>!J&H;^%3kRzJ9tZW#tzd9P1WySu;!nQ{%x0^@4QppIWd0<3GGeh*Um>`{vf~KNGlKXhNDIA;+mN7{sZmt7VN{4nxt0u;9Ok1
zz{YUN3zYiV^ufZuo(UK2ZDjHo|Cy725xH)G^N-K`8NWH$Uo8nXvBp)eLh%>+HkBxi
z9$EY06!ydIqB^BEW8Z+lqn(o0%Gl@lTwYvz5$oX=Nr{_MS6QI4WB2f-S17TiqOEp}
z%L0*tl}~Tw;yFcOS*tu`VjsNLFee`8N4nE7!%
z873^Ao8339zyO2Y=I1}-Id#VOvG2-CI;=ZN5i!GaO8Pz9-kDk%N;PR+mc^USZ&Z>Q=>7T*mR~NU<m|&mBL^b~4eUuKh
z?`kOIbi?~kuQ#-!b=t62qX~N)`3OtQ){8IhhFW!Yp#9cv$b#Y}gL`N2X+h}5?xWqX
zzR3EmU2Zol8TYLJrOttq3(ZxpiepkZ%hi2rO*DXRASCs{#DOx?SF)CMwgLwmi
z)0=H}2Vh=Nxa#4(+lRQ&E->lhWy}TPHkSI6EnIN-W1Kfu0Bp1x9^!ZHs#Ckxmr)TFJwI2Amv@@{VvfN61&Ph|
zT$svVcwNVn1E*!Xvu7XRK=(u0)*s6--;}2A*@G5s*I&)8W=vuJDmHiiG+NSaRLpOF
zJH-BnCofUgx1)thXy>$jr632a7aU@BRdV3K8SA$8FaNP(jb_cA#f8rj#=K<>T&V1J
z|5Q1GmQFwByQblFkiD(jLy_u%le5#p>K}7K;Pwp<7dNyBYkyQGgO;q8RZhx^${a{I
zW1Jg1pDz>1_a*sH?@UR4WGlXNy%uFmvRKHbn5Pq%u;BT%N6Kt?m~(J{
zoE;nH6kL~yz$P(Y#{QB8hNPQljbI1nsr-muJOPBEfCy?P?
zyy|-*6OL&3&=%pjP9W)MSJ>-0*xxy^h~Lo<=a*F>YLBQh*zTywoR8Ppvxv`V`)OQB
z=jy*Wf^*N@Oo8R+@LbOp%t||p^`?8NeV?Nx69zd-a@Qy6uu@xo&3Aks%x!WNy{>eq
zN?0j>SPid7qn+K4TX;?dUO5)sO^3BA%kA@#U-iMu+Dqsi9THbr43DPJfxLxO@FyD2
zVJFkI&d6W->>})fw(|{&RkhS<&SfaNEuMawx_DfrI09bBr+`oLbg!%bx)XU(SY5Z_c2Zs(^4G
z&fm{2F=di)F8|;7Qh%L5%X^gYoKw>+h4pWGkg%}QTsoY5UKQ?smIg=G_Bt+Djw`Ci
zR?4P-r@}6o*hNh-$m_^mwm%8yDg>_iReOFl_Peq>ND0@m|J9P5Jc#^{R_{Nz
zrzmhL=19)$NSsUlMaSGl<@b>H^(I>EpwK$Zb0_Lv-NpFVSGd=23a{g-@ojSFRc7#<
z&#f`RUj
zuxx$U&V7$&u%-Ty(oI_`YzT>rm)%T-`bnwFfBdM><#tER7FYh(21cZ{AZ2t%Rh&z(
z<_vmH-EX8xP$4P(>7F~2NRMow(ZReFU^dz7+LCY%RXw^;3wcEZ>b_XONW|5yT}I`G
zGJIr+yhWDe>>@!vb+EIa^w@xq8MDhRKPm3@4
zg!!MIJI60Th63vr5Bn!C7t2IGX6C9T%Q>-QHU_6Ma(-K2o;8M~jy
zuTntnv%*y*9Q?x#g1qyezM=quBxkAF8DA-I>46DD4*Pg#uPW_~#XcH4Am5{Q5c{hV
z^W<0TqJVm-(t)SxBnY+mA}hI^1i!?;Tu^?}1+$LND~_|7K?`!oe9@^yl<+!Zn+kg=-Fy;i_-&v37i41TM0?e{>F@Hvvx<$FwmLy{^3a?)ftvTNaR{x%BGeYEuakUzMktMQfSDGJ1aekNx1M<02%aC
zUBj8)ov?ExF*)!@2lQmbDi1M_CjQ<){=-
zWB>NB?YnvASjS586uor6ge#gBy;5p|WT<9cc)6g81XW>qtjiBcAi{Gf{E#sTR@axM
z+fH;rg($rzca0<@I?N^?hV)vzmtAKFjo!l
zS6IESeJusxp+WgeIpo`^-Mp%feey)pkZY-UU&u@!`4f7S3`kNP^`dQL|TMl40Sv%gw}mGFugaUB`g>7zK{OM?3NN
z-%={ZvG4y=fu$S29;x^>hc|g3KfrPS=3dtt3RIh#=kgz*K%sUP_UC#S1C@x
zIAQB4GK^OAZ%=!O;JK+7{Z!x!P+p8V9X0_PM05H$M77Nzvk`{he~ajx>IcmJ*jG?1TFT~k&$gHBm@Z%59;
z>$g!b;N%q=C|*+
zcijnT7gtW4_uI=tXS)3Ea)~+zrA;YO1yA-AlkYS(SEH7StGCXFPylBF{
z$_6vr(9l&4U6@Y=xF-<2+~k=`YXM7a)%$@kqkP?-);i{l4Jzivmh}
zsM8JOWVp~1d3t!V6V|UD*H;MX#QW)uqcEf6AMzi1c{JRy0}fj4*;n(X{U6#$$n>ui
zXor3ixmyBwe!5j1(^=3*0_JdH;x)WZdXelZ`ZhA$PL6jTdXBsjxx$Z2SY%k^*!ZKf
zl?=whb+)D+$UCXY>pF**Y1Rrr^ovZ
ze|La;q4vsKr#m3)ii&p$#&L_Rdi7G|7ZbQ*gPj+@PCJ->PqKWi)d}o_Mdf;%D6pBd
z?GYKT%S~0&Z%Wu-5>&R>8B~YyBHaGLMU2CI{`U^2JL2c{s8UWfxC8iCF4o-1Y==%k
z7e2aMJGdM-|97UlwLr_5lG>%%
z7Krv6rM_I#26;*v$rSw=e6(0oCFD{Y)L(eS^)8yhiw()Hp7b_IF*jT7IJ+J6>-|m{
zFKUO~$qtWPAGX8S-9pt;Px148B+YZXrvr+kZ4Mrs+X)|3==p26cfv~>@A7%3onSZe
z+410!PKZ3UOuQ8D*M%!hSH5@egwtlzq|%yB&>9qVZPg;dn#&sZ&YdHHSg@&P5XSX~
zQK`ph7#|3HGdP`HD@=mk_`cC|JKI4vc#Sg$U!Qh+bg(sE$4(jD$L)%3FjRVUyzE0O
z$in9_p@w#Fd*p29$?byi+(%0NMZasDiawi!J3KIrIg
zS{D%bBFv*>Xfp{6_KSq1ZzF-+lbdDl@%`S^-D{KA(Fq&nf4)4lqz#%D(0+g2*9r~^
zZ5Eu`7U+)EY+Yj70uR;K{22V!3I9Ip6Y_wbrx2!F4P^EAYQk&Raumg)4iG
zROx?jg}Xa#_tW{?;bV$QRipv_{jATqJD+!g)aPoZXn!X(Z?;m=Ti*rcZ29@Ls2M!_
zwK>yqx(h6B9Nr#mNdhYw*D&9wB*;7QMAx>H1X`K7j-T-QFEex-Dg1-`Co%!M6~{3T
zub+S99{#_Y%MK6
zh2Hd%AQJKuOhmKpNMb!y^KQWdJTFH}k9=#X#XXNo!POddB#>YDeozzl9Mb3io>=^y
z1UVZPJTYu}TcM}=n+xt+R8sj$*Ar~C}A8sAk2x;0ym
z3I~?WE!|pAg?Y74RAgglAXpWleHmBK_ZB}~$K}I)5`Oy=ZJ1y2F26&{E5_GHIq4M}
zj;p*^@OI?Putn
zyebMj6)Exd)4{(NV(z;L>+KWCW_y$|&n>=Tq%+}#{faZKRvR#X=UMNfRTWN!TC>_)
ztFKcb{L@9z9Q>Lszg^5Ak_r+ZmgtFM{(N(3elEux_qJ|S6}VyEw(4YFni=M8(RoP<
z3vy>Lo;Q0-J{kG1f3Z7nV^So}HCzsvkBm;^`@Cg5-}DC7{d2oRu13({NA`(M!7$9n
z4sSH?2*JI!Amy^dNmSe)GLp>0`CMfwJz^B=gb~TW9@j$hKlDrIiiI7+I?y+LdQfx*
zOZe9XueTwABW2@trU(TNlVaLQ?=>a
z)+8G2disTbAvC%+sBk%bo$Rh}IEUMt^wa$Y@_zN?
z6l^VN(D~%0W;{RgANSeQWN?3G=rm=%{{9(EG2dMk8^VAMuP8xD$V2aSOg=!bM850I
zGP*v_BX$H$2c5l7g+W(`oe8^e#rBd-y*Ad{3Q;*b-S9p;QCgjU(hlp+HHUV67NbD(
zzGF6ju>M`eHxcVPhYnF3<>QuEFA*4>oI!r%hV`civtdENQnRjy?_TYTTTHK23P6tUJ5&HHQ*stsk(9*~29<@~P!!qn^MqgR&
z!@&D@et((x^j_p!mxqPuY0%(ILDs}RoZC$;p)*GFsnB4|(m9If$dYy|Q(5c>@UGY5
zPAo^>_>GBP3XKf4TVx{WSP$pq9hv1FO#|W7Nj2+tG~_|7&iv9pgX2!3^W2b^v}*%v
zSl^5e$Mn;^Zmy<-Ufc_-`SEz)pEOPpPocq|qe-DQk7w|zbKQ}tOd9+*Hf*})_3at<
z6&**WtL7okt8?=jB~k3JZD)#n!E={e@vd?AbL=bbIk>|x3@w6I{q8$=d}uk2?gb<~
zzZ(|rm|cwgz{1WG6DrXjQ6F61roU*q(@xX1IYYWqI?eE(vF$-3S@SZ@;O
ztUo#Ihx6`W{q+eZSifHL&1Cv9FfYEGrOm$!Ew4{}-72$>4Los8M*1ae5PO&T+E#@F
z;i;O@#U32+On+=dEx@@(TE+o4oL3piRo>Px;r_#8k%8tnao*Ey^w!b#I~(eMO6ZH=
zys2bYuv&F7T9M{GaV^SXLwe@V0sC?u%?T_eY8MIzIjCLA`AR(#pYbYIbQmiZ_Zp*l=z%I
zk?|!1Et#UD-c34pgJ$Dslu>3kbUn`SwnLuG`Pmya-IlTc;YxS&sA`Lioma|k~!lu^sC5u_u
zU#|%~v}iN-`}gs_eU*fJ%T=bCtubf`swZ5_gZwH2b+s(w3~%B5_KMcmT-?ukec;~n
zR}m~A&-L>Dj6CP>Fd)Cu6Zg75ZP6(8*xtJ?%TET6wW{8$4v|te!zap+3iz-D2ex4bL{+*-G~GI
zS$kH}f#ubfDR~Has+Y!R&CaF6g~1OSuHV7)q99e;JrMb5n(M8m!g2Y^caBSa9Uay`
zFK;?gP6uv&z>|a6Pa&|6=YD|l8|;(+#k^-v#$zARfx!1EtDDRsaGsnJ6)0f^c4nK}_^5O7o_9Z4HJ~<#<^9*?^@j{eq$b<7X
z-@Ws|0P<{>SE)`5vmnEMoBk4M7KjZ61)Jmiy&?UHON}}U7$XlTyg1Jy@Whu{yYGA9
zp7>vk^gb@08p*&_4n9Cd)&=D|^gfpK$ekNqyuM)DK@|Y{C63>9k0v
zR0dePb=r2_N4{kr^KrZj@`yH-%{q(mF7#^pJrkVweB;_PgHdWYy2@ccgO>pVp-y$T
zS!m57a=vs)!wgn%r7R8=;q{-Lzoi}L=KX?s5iXf@Fs07hX1I?5eruQZo8x{_ZGzn4
zV~#AKc&h3&88YGgksIGKR?%TnN=*Ci9~zKTjIU@k(!lb7Q|rw~G;p^Tf3f=l_IX0Y
zI?oyYFOr->&;G)As;x3_t?fPwIT(1g=2SB3@mh
z(GBFRTt)u#xSx4vRY0m~HypaiEA(+?H?%tsNnYLF4ROx|XC22qL~rwbjL|b_ZK`py70!6Eg9XQ5XV2T3inL>_cL$TB9FpKe@H1{I}@5->wlOO!#%c>
z{O;<==NCEPZpf;`^C`dS!J=JkVD9?SD2IEUe^Nqg`hKwCc(JLzmIw#*#RHvm4LJZu
zW*`0P%>j2sfB)z(=9QmlvR4!+sRq7cj2f1P$+`BwCSC4NY3!EF0(hVkimQWm^B$tRtUmU9a}wPdG$#q%+uc%?nQ
z@ATWZyR&cL{%z`^-?6`N{(kB)i(J8hq|p%{zj8Kg*Szq~LyQAgwl+%I9pb?G)dm+A
z-sgb8#pA6z#JF%TXL4T3l^#%>I;9tD)C0}OMO;TOaN(d%KpTGy7xv{W4^+wGg14DZ
zb~N%L((gabl)?FY)|aTUfnF}C+76YT7w&;0t7AI0ZSH~cO$BrrU*uUP&lU_z?g5vh
z#%nlv$Q#Jk{FKzv1BS1(XGz^e{$zpF!p`q~@MN<_-Fb(>I}(p&l~lLIoEvs)B6u~NKIpr0lg4&#@<0Vvj<`y{BCk|?}3{ScPlQ?>49~c
znHRT<<8^!B_R1+1uUG5(KTj%pVZ7Zr_0G3m2#FCI(4gb{zaTVO)!Pfc{eH$LfA+#_
z>D?O>7`?F6Bf&#cu@@Fp8!27!#RcEfSw}4}AIchX-hF}kzsMcfQss}xB?4$a8x*7~}7FY;b_MvB|I@HtR8vE@jNDe`5+
zzw&HC-b&kb5#!r292hLWmyvvu3u`Wx@A(zUg$q;F%XPB3ko^15nv!ZR=qkT6Q~kjO
zjXuMj`rVPZbLtgUK`|kKn8;}f9Ka
z#DUeN?q8Q&;DEt3&g~%+4ty_|Oq0gF@&(ICR{}}h@cVW{tz66udRi*Rp2KrgSluH#
z9r;;&nN0PY$P3C_x~cBvFE$ADkB9O1&Y(!B+Dl*L5lwiLJ3dQt;M;Y#rRC??pt15B
zNe}nx2{iaoI1z*KpFrc`=%%#nZt(N4yI`Tsfe#`@%e|dBpm`}*y9oJQ&FuXRvtG=g
ze?o!Ob`l5VZyXQv72?9l>CBNRVJzSWRGye}8FE0AqI7@?%dZUgm|8WW}7}id**ix9M
zCRXliZ9Rn+_h*0huR6qrzO{K7FCEwr@tL+$4)^-2KOD7;!22pMlDi+c&aQ4ZrWqnL-k$<@i=^k9L6_;!?KI~f-ydrhWK2&agPOU%~fjon5PiParV={whiORsVl>$6}ES6xHK4fhUT>G&mKo_^P6$n8@)3tI2VtZ=SnLFc`&(`S(PL*UaZF0pC&
zd1MGLQZkLgx?ySOt7IuQ#5=wly|fqiGRn72MF!5GKucY)VH+Fw5YKbHFy4M|OL$A(
zg3l}SY;>|c2l`%z3+>?|56q!8N68IQepY{xCmXyZ9;-TC#LxN1!5UY@MF+Lh_MtAp
z=C*5`3U@Ym)6eWx#Gf-B?dXt3KAGSAQ|TL4vSEFy31cPl#X6~7!eblQpj$C{Cr*tG
zFC*I~MI!NY+8FYj(nFov=s-PLm$0@atZE7CS;9(|u!g0o|9@7ogmo)n
z#Y$MK5>}~%^(kRxN?4N;R-=S}B)
zf2|)0D@Vebk+51MtP=?lOkDYZk(4g|JQ`tWXGR6T+&5upS|-L>kg!G|tPTk40>X-buofV!0to4ULdu_z
z<|m}~3F&-73ZIa+C#32L>3Kp*o{)woq}~bXc0x*>Ktd{=kUl4*%n507LTa3l4kx6*
z32ARas+*ABCZx0pX=?%r>1slXnvj+zq?i9MB&3!J>0?65m_S0Rn2;VOq=X4+U_$D*
z?634MA;n8b>k?AA|1DulNYfHhvxIakAq7iFyAo2Zg!C#QrAkPn5>lsx^eBOZv?w7J
zN=SeHlk)s4%}GdY64IH36eb~UNk~-^(vyUgBq0q+NIeqhkiYRm8|ttSN{?6Xs{TI*
CbchT9

literal 0
HcmV?d00001

diff --git a/Notebooks/model/gp_params.gpf b/Notebooks/model/gp_params.gpf
index e310c774253d7ded055f7956182cf49e7441e329..5464f448253199cfb5e4bdecaf298ade5c71047f 100644
GIT binary patch
delta 1345
zcmdlW|H@Rifo1A_DF!g8oubiWsF$5ul$V+VrHZ2sVv(2|#l@I7LV`N}a7^qxu-TL;
zl|{}JuZGEs*yh;m(lV1j5moGPuQxz6jHAxsMY>f{Fh{e)?MWf)_SLpJ1U-!SwMaY9
zL27D_;y!_7hh*)gQ?=G+I7}&-k~E21Yx5Fz8Adt$4x4;}BbEIEm$A6CdGzF8Tn3v{
zI9VBm)iB)#R>;D&^UrtZK9Iu6OW2*6vKS^?@P;YJb4{kMCinf$=(dDQ!=KuPYIf$;mzpH4&-QcI$K<8DE+p9VX{NaL2lo@784yJ
zMMQWxnK~RYUZjSzFidbbRQh(6@&{{&wtVxSW<1Ug32U6zeB0UvOSX`>-3{|gP}XjA
zzwChc1tbpi3y8wu7i5JI85S8u8KtpPGImU!#G#}J)`#$yGwT4g_T6EUVVZn{
zdz*qL69YpJYjH+qTFI0wBOoUuurtFj%M!#2&eC9-ypE@n$$@FIC2tFpG}Gk$y#7qV
zOp^ups%$|zvmAg#YAY~`K$$ZUlsU6vK;lV2q8Lk-fXPli&X?>g15|{Zsk6j@0>Eqq
a5(jz_MB(rvT;b$&ek*>kdRQ7N)dK*sW7V+$

delta 337
zcmaE5xVnNnF8eilH2Edxp~-VayVx(!OPc6gD>6Ai#9(rq
z*cv8g#>qV5+Y|&C85nw4i!(CQN~UB<0y!Chof(E%3LsW+7C+XYYlhfO{t
zq0hv`IQg@LKa&;XWEaUQC6MMUbs&-2IwfdI+myyBi5UsCQ?i^v;+{aFc=AP7VGbC7
z@^8sxS!SRxNM$NWrACH$#@`J4ERbMEb{6yGjr@}AP?5FruP0-Z3Y|ZDLbX
z$xO}4XzANTb33UiH}ARXriPYwv52iqcWwK==RD^;^Co`NZ#}%{@?8GU^}PGq-Cub*
zLc^aUpx9hA(_9)cV_u0RBEQ63XmL8cN14maWAN{nodcISmpa27ZaIasN}P^9f80L1
zsLWDQWG*O;C^Q$DXIV;0oetl`f_XFMrpjk09uJ!i=Y#G)IMcGwQW}wGE(LZzIYpN8
zoN+}k2M4TO9q#luGM)*-I2}ETY=y;(q?m=ag0k7>k`nVG;FnWknK7@Zw5-H7qYREa
z+;OAR;R$NtmY1E$+A8PBPI=BX&I!)2X5i;6AcNawUz=h{lS+Qrdn
ziF5q;@z4A({P3UT5oON2wL%AviSr63m}fd2UDIr3rL$*RGA)J0PDdvj{0~IwV#|qw
ze;28Lhv47QP754&xD^Rx$Jj?Sq%DsGNW!#kj&0q>EW
zi%OjUDEwFETWzpZcZcOrUn!w*KqsFkU>6
zJ1!H}_y29vn<-)}jJ_8S^ZP5=;9>Cm%}*6P?s%ZqaPsOtH?jYPn~RHJKK9c`pE`Uh
zP-CstCzl@$)T-i^jQB6CXIFLhc}c9NIcE%mb9cvDTZX}W@n5|bZ*GM3_HmcSz`6E-
zzissdc_J6D`{4AkK+P-o%8>Q2FX%{H)eIrWYm;xk0b|(ZS^xR~&b4QU6o$e2-G7{W
zxH>~Z^ORUa|vJ01-)wD8aH(XjJXdl
z?*A6dx6gNOS_1p_hg`V68OETmHY~pZ^7+qkpDpldJzv!GG|carTbTbCoQwU!d}R(i
z`)|)o-3#lLj@KWV33Rl}&4=wUMml^;t6*Qv-ioD9vpbNd&OK|6sSe}36-*WsMC@WiMb
zSZCj@{N)skJUwjn8JMpM-E{gX*dIIc{J{kGPvB
zH;^OfZ${tG0N-zhzuWd2jMlhuU-`lMMWg++pr7>1=w}BAoSN&lOauP0pBqjF!E^TF
ztlpk5{tGgd7zg#kawHRZaa8)T_SHI~(+S_2=>fb70@;yu>%h3BCJod#69_PY?Jm
zQpiyoKk`dqkJdRw+XNl!)McHM;n|-1-T@C`kCTh8tp_^A{m*y?!g_8*=!rc7w>?XC
zLIhXzThZ(?C@PQ|
z9i7V-I~{Jti^R}5rx=P&n8RxX4Jl!!l+L-^AIq@XN;2J;H@Z29??62Yq4K0sFaRkt$s
z_Zhv4O;|I`ts<@~3*0yM+T!=tvHg9-iWf_|wm5L#*OOe&E#l``%8uL)o3`Pw9}D?U
z0}ou-mHjFnZ~L%;V)*ezCaG&$MrYfVqQGRfd6W2gvhRW2s#|{S9r_&
z>CRs-Nrq
z@5o8=Td`U60eRAT|f8Nb!)o8~*NqIvO+18Qk3clVl$i*k6KHEF{
z^E8P^bXS)9YDy2s%ayF#iH9E_uw{kf@2mX4Q~FiJI%$_{-PygbH%!`LdtTbvZ>_Xj
z&k0PpW#GO7mmfCzA3v~v_A2I{y3#N0_&OFo#q1ZpGFZ|LuuB|^Jz3(|l7DY_5pA2*gKW)*2P5IrTnFf*^#y9eXB2c
zu%~Z%<{ew+$$Bpk7V>04jWb{L1dds*A^JRf|x5oY6$A_ioT;EaH&5yz1N#76l
zk+|(!%T`YBRPtV&H_O?wxM}ix{>(4!J*TD3&Kg!M+VOj;L*o4RxeW8dDsT4VS>ae-
zEVYN@neW`XN_?9$S+_5r9bFLOt?=?@pMu*>sH|k3LB(%P4}FZ~{j2hhcWOBMKJ(_e
z^wqQ2vEYn<_D-L!@b2TvA7dIkfOBc5wL}@uBm&okZW_
z`(z8Z*Iqv7m7K;!A2j8s25v7Gzi_S{E=hZQP*1K|L?QR*_UyLVD{u5?IK97?54sa`
z_@@mGTw8f#+nDT!nP`JjTAF!{sKfuB%5&>?2UJ%uW*5h{B{KUc@$1j{Uh#`z$aZHF
zuNnh{k7jbgC3JEl_ph$#WnMIqiyWShU$1}uRDoYpLZ>8Cd7QWLE?C$i3_%Ul0M-=
z?f4rjm|fstHt{N9&Oe#az9lzam$(L;RQzI@9q}H)<^BPzMyNAuGDoxYJ)`h8BJ4A^
zoaU{9Z|yToL;vZ;ggG@Wifcc%!7q@bnq`0IIBh%2QO^b7heD3Ffl}X%Nu1$^p
zE}IaKw323S6^^s-1unex&ii#-L;MEw7T7jzKKQqAXHzov>Ant-N7?_hFxU6bDtl)r
ze}9yrKMZN%=uh>{62D&?ImXMrCVX}r1)POh+!A;?u>IhtCiLI@+&85jT0gF#-wk0>
zk3@;n?vcC|`DXC#;(Xa#TzFY?c>`y{ocG4_bm4CeQ=}a?r*Pr78@)f}2ZUf>G;$3O
zf*k}tMTrd0RYXbuJ(R)Ig<+pd=dI|Mn)C01anMgv$olC*=OEkzWz}UTfhR
zUNFMBUC7rG%KP?%-}MC6SKw}chI8S@SCrj~ApeK}JJ(O;i+I*9UOs+2iAM@L-P0My
z=f$b$XICv}xs0DcsfT|f7jaZOppj!(eNe-MS>6D=5%(Df6po`g!syt+vc&HdBMT6}
zjYhUm*!4qtHasvtN$l@oWT=j>i3x9O+h<_tc0~qODSizP=0$lQG|KxxsT%8I7>4n5
zwVxYZ@(>-Ar`#y}>tMyN&8Yfj{am|{Bf=!_jSfXWI+jU!RemP==Z#X{eMY%IB~I#j
zM(J-du#XPHZ=0mNLac)ajS{yjMoI5Gou0%~)pcf&_p&;p!~yJ#bW4>!
zaNkC`Kpx?anx=3AzT^*xLq)8V_nxxD6w+VWE6X7L0dU9keKb~$WVcwC-O1i)-%0~R
zy8)h3f0OcuIBD-G2C45bB_GsZ@=x@qU`79uk*!sJC;2NmRvM%oLSvb5YnNYVP+iyk
z2XO!#MR@khBe_kI-yLO#O}agi{}hwlzoUaa08iAbO~pf!I@h4=eUR{1=e8<-n@mz~
z;3M3*4bG!kKyS21fF55cC-9Z>8eF)D@XP}LrjhW#^BHRY^%zA@mml}7r1&$q?1y;Y
zQO~fB@-P)YZ85HW!oBwbek3o-)i2f+&oYkVl;11<5GS~w>v)sg523&&<}b$g)jIeC
zwkKK(uN8Im^+__%Z*1gtk@r^)b1es?u
zpucLu155+V8z(EjAGvr^E$wj+2$#jO>5sz3l
zR>&#(D^Zq1QkaGbFodBapO50$HgfPE#4&~A2>sPe;V*MmtG*{n@_(e3+YzvEt_eTh
zsNy-J8THs$2Y!nQK9b44W)K(ltIUSJ0e|C|=p&YbJksB%@pfUhW7(>&PFMSSp?aaC
zTR66N+nZf|2)46(n$VtuDvzlCG6DT3u5&ZD3;Z@FtNTPKw~M}W_YlT~`%X+?vXO*-
zOyJWe1M#ZA3h
zF7;^=@5iOy0qQ=anQslUZdE>5*RVc%nPeS-{)+ks>Wc)-nr2dUImT5t@Vz+n
zSLn6}Ri540p|5~`K)7Q7A8Sy+
zVbc36vZJiyu?%quH_3bta-!UAgoo-EpudvmRR02YlK93-djf6}57pN?46eS5`bn&>
zS#c6q=yRpK)PFqahvX;NM}wZ^$2br9jOsl0U*N~MFH7}*&@YglWH%hau87w?qf2jz
z1LT{KSj#3|_<^dm~EB#ULcO<@gUxV@|Q9rMrqqxKS
z%|1PDh%WV=NIyi$*`neR`cm|7@*lv1a3eg>UK-6STmT=W4}BW?4cy1%vmUQ_{+`lj
zIraa_uH`YV_(J?4kD&ddRh&Y6l09*KkKSLAAEVs6)I8{c`=DQ!^6P#g?^j025Aun`
zMfKefk9bdnI72^kBmOGhAwS@}%THol{z867_z}*sk2K!j&u>(I1pO!JCG!U1qU3^p
z6zPR3|7uY7foHTc_?e6cJzvqimgJFspyMFpNzYf(o_gO;@q+RL&Jr(`x8WW@@)EvC
zAL1TyOVRTH*+b$%{-y5SlqUdxl>exHZ$$pkH%q;Aeq?9l3w|%_64_1H2iM7eey01T
zp06mck$)0B)C=yLGH&CfKJQRIi*?4B;-c&f
z@l5(r9g_Ko@)V6qFR-Jux4I8P{K@>S`yJX3-XGvT@Lw5ss=mPe{yzL$h`%1E=+6NZ
zuQ9StKwm(5q5NP68SjcO$VGCHUrYVF
zI0gTsdm-s1@zw9cv`#o6|MfavXlL*zS!YRJWzS9ey`174^?-bZeD3J)cPLNLyc~_P
zF9
z;-&-6P|xJPIMt`V5!yTE{#g_ba^e
zb^A*^^!JA-UxOY8RQKt9n)L4&m;YlP0zZ{>R9{j~{-Nh9ibLE7^@HdTeOj0JP<~MH
zPxZ*I>JV4?0Pw_fFrxpzqVgN`@shssAE<+puYuv`wE6nyv|X&D?*GJCgAdS>y^^a}
z!ErR7LQ9z$zbuCD)ZEQw
tW$;}f72m{(q!Gt*WKl;JbyoC0&6rJ&SVS!&CR_&?F9<^ccz

diff --git a/Notebooks/model/u_scaler.pkl b/Notebooks/model/u_scaler.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..a43e22a50d543972acb045d720829aa87d419d77
GIT binary patch
literal 344
zcmZ8d!AiqG5bbJPih=+1%_dG^X+XC|^K1T7YK;TFPP
zUq^f$pF;CvVdE)oaqc;M-22>lzqPGKu&?h^&XgchajEiF
zQu4au%uaE&Y_}U=pP}#jSKpPI;aLWQ)x>QNKOcX7e98X9+ZZbwdb&Q5V!Ry>YfS9^
ch3x%TbLsE<=p$D;$pu31kQ|?oBP;^)13txxng9R*

literal 0
HcmV?d00001

diff --git a/Notebooks/model/x_scaler.pkl b/Notebooks/model/x_scaler.pkl
index 12f5ef06b02b4d5f4a4992b7a08759a1b2e8eb10..ee199f3677b1221036c9f8f8db8c543e53407889 100644
GIT binary patch
delta 128
zcmeyx{EK;m1EV0iB+FolzM8V)rx=

delta 128
zcmeyx{EK;m1Ecwhd7rLUFLrWZ0D%K$4j#%n-%XeT4g|c*Y58i>m6Z?h^5O`rf
I`8uOA07W7*e*gdg

diff --git a/Notebooks/model/y_scaler.pkl b/Notebooks/model/y_scaler.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..f2a412d3b16cfff76da412d6715689db3e3f11e2
GIT binary patch
literal 344
zcmZ8dF;2rk5cEM3B8Wm71QH(z%?S_%1w~M(u;Kz9a5~!?Y+;|RyEBRlBvM2q(so&1
z!4D9>;UQo<6o@HS+S%C|?Y^|$Cd_Go$L28ssTI#Ph<5lSlwdlNak_RW1D
z6VSA#lQ})p5L-c(m$byb5>t@2&|pNY1i1|Nl`t~RlZr6_6*sxr#cnERLi$D!9;hPC
zOCDqzcv>VjmRifQN)j4^Oc|?-z*b4vZiIw8D%?oc`20-xZqTI+py^xchYo@1Gx|5mhaAOnsW5XfNv5_R-+4`O$y*
XK>WT-Jb^ZGrU*Ny{QQESQQ`9+;f07j

literal 0
HcmV?d00001

diff --git a/Notebooks/sim_1500.png b/Notebooks/sim_1500.png
new file mode 100644
index 0000000000000000000000000000000000000000..3d0c8ab6e8068205b0e0ab96036641e0c6ebbe30
GIT binary patch
literal 15461
zcmeHucTm&qwO2O;z-FBnBYArz^K1f=(3XrTxS
z0@6DK5D@~>A@qF$-n;jA=g!Xlv9mk7voi!S-=~~&o^w8@J>M7iwNz-SSg1%yNN82>
zDZxod&Pb7vkUlv}0lq2CQlA3|ONh!=EB(lA#
zO1E^qQck^4g7Y@HPx7Fux?&8lVIXss=b(-xYs9teX_+~A$}9{v^)6D$*{RJ(&s0S
z+T|g1Cy!8m6l|v}?9fP^Jc9qe#>DWEelkoLh2|O
z>3xNZQMrYH9M1Zn00iY@1q28`mx=O~6vR4UvtJHQ=r8UWy+r0d^^VqBrEz6h-Bhbo
zd~i^s4b$Wq^%N+k8K#k9sTSm-AXRF)j-9~zVDDnBa69Z9&}*vgH;6LFyheURBHg)W
z;*g1~&?=RdyJ1ccE-vMk7tl3drCL^Kwo(fcnaBv;;F?Lwa8LaU8m-(i09`YkHan*0
z8LhWa8fSx+am_>`2^LDal~UU;k=~Tmm$@pVkqu0XNf)41$}N;s`^PN9EQIviwoP7K
zkFAuxIj-#{VdS`Go*}D6xdJahH$pDx>-5n<*X~c3eS3k_Z@{T2?KDZxGX`GQR&KF@
zx&x5$S5j=1`=YpVlUU0-~7*tB0%?#_kwa8g@v!Nyb`4_@K&
zB~6EPslx>B!Q`pNDcOvN=Y(;eP`&IhG&hzUD+pbCFYd#s8q@xksDdUP3)uJAz`uiV
zCZ$0mLfaPRD!6+%HJl%|E%+7|3N0~<2sox6KEn(dpI}ZTsUkyQ>9B>^5bW0iwi=i#
z^e=2QHDdXUqw=k*w&VQ^Ga7I-+&Kht?TzelYY~7#eLw+B9$csD3RJ
z)fkz|d0=A+qO6EjHM;5K$d9YA^s|Kw`!t
zv)zg69e|-RsNNY=ucD6HEL=@pN3AR*{WZA=e&z+LmlLi=i>1iR$zdF(_+>^oh%Wq*
zQeoBDN(V#lp?XoM-h;TMeO2?jY70z&FELl9)!mGMqeQrG_3A!>qu4;nv4Syu%fejP
z@b$WMsqoxbm{VQIj?vOF$M@{WF>Y0(mAK}L!kBAuu};B$Tp915n8=UR(nL=3`qo#+
z4b?@MHoSqWDHoY>UX10MF~O~)dIbtnHioPwSR42r-QHj={r<5sE})83fepIxa!`+F`xpjc5JY@K7u4D7-H8f%}EWhI*t(BVbjLIspu(BbO?`a(^2E(F~TrmLQ=zZ8~;Ls9($}HY5b+B8N+!>3Ha-;MWG7!4<79lm2gybI4GeUY*f^lZjGjRW{Fgtv_@p738K8Hl
zLfZXH)%96+91Ldp7uyT#q?RcU4(rRezIGsI<&e%`0*y#>0Ir
ztQECYV+JLO{sSSP$X(;t8VX%gSiLr4mG0ocHS$lU`KDOY{4?Uw;4XuBWyTQ2Iin;qSq?H5c6ZBubHEO^I80
zS?q7C*r>v9p;ig!mTAZDdmr^QRYHR8pe28K2QSUA7aw^Sp&KdlZ|^;f77y=lK`trGg%MVs~&z3NC4
z@l_sI3RmV;EwzOiq!i_^WVlQX>fZ(~;dn%0W$#u?F~!$P-wwM74Gy!TDPO5Vdy|~;T^<
zcoG9NITqnn?)i-tOH0!HoL)QjhW77rUv45Pd@qm&>L#J1UFy2+8cLgd9?pM3<%6S1
zg-CWt+n79MIjXC!k)Lu;3Ybz%hE&~E;x-IM_^B-%A-&0}<+-%TOd)ha)^CU+x>j)m
z2r?F)M6op5zV``Bnra5b44$x`#xHQe{=vbU?mso+`3>QVa9taW*GgBsv9l@yfyhzs
zkr6%#S5VZVwq2Rp=?XN=!of%$gf#C3828Vv)Q)d&MMpfxoYYOC218S
z@`5DAfBmc6@xjLOItPS;#=I*;zsrH(Z0{#LiWO7
z0jvAZZx$n^)+FN|eVVC89npcCSL^pDRth(KwB**5h@Z>U`mNEN-Pe;HOS|SxjA7hx
zHC^5Eqm@+yQy=a&Hg_6%zir12Y5d~i$J}*?mAxjqlK{{t(y+{?h1?*+z^BoZT5
z7xs2m=&@hkTzxC&bCaabZ|CPyS+~v3gx9Xh0
zc7yuc0Ri%_5l?8?q+TCxk43j}_~mz|Z}qARS+^jeH0&}c5zAH*Varw;h0XW$ZtGuf
zhR}5&LM@kXML#DLLgI`{2V}5&Qm+S?P!mvMaT*7qp~E
zgTb#5m%xqWS1jT$%eobkfe^z&=@k+uyrxnEb|w;-OugTCDpJoyoGM2_YX~LB7kp7e
z7d8YUyfhu9^
z_KVlG)4u5$n0y}pZ1l;oxYeVZNk|!*a1dM^|6}>6lZM
zh{GU%>#Ix6meKO9)o!z+{^vRYd0#q&8op(!#wN-jcy+Qgrl+5CQsB~$4{q3|xKZ?F
zY0ic*nc^Cb_ZxgRdsIFxm3AbVNQgR(iX9Q!6xUlWXs;fw1f>I!xW~;0tbJyZ{#`u_
zo*Xqwj5#(Fwg1Q0*tZf+EcEi5e-T&P?9EshGAl+g7ygUc1?=ey~*(G`HR%
zWV`vR=TX4cfX3UKVI6`sullrPogxG2+v)ufM4O)L3On9l>u!*4FzNo}eoV`}k#noS
z89z}YNhJJ@3Wvo3VU5k_$D2p~Yo9euAd&X=_EH2~C@J$ztFsdr#0Lx}>B^mOpd7En
zbLVsO3TM*%ev{&ehdh^HW-}Wp>0H@8b+j#+rSY~23B5}4u-027*%<@7a6`)qXz(U}
zh(7pgv|LPrsjpqd$}TRHejR*D@r5;H#paDl@p%E;WU@Xu)y-AaKR8H
zl0jk2R$=3k@8+*t(H!#3;`SGTQOxwHaGEUmRE^lMZjZZnXU)1a9C{LMU~zFVQQU#C
zTk%-#&T~4G59t%&P_(SAxv3fXacgay^Q+DDE~Awm3%%kp3G2GAtwX=U%<
zhtT`uAR4JM2n46ezk%lO{QSO*54Avtb#--#)=4IeSk$c?u}Q9w844za5JtKK@7}os
zaj9Lq+jqe5dD3r1es6nO9gyoY9meDhY&^MA4@5S`#_9-!I3=4aN&4?qUYSK4C@o+&KnC$srg@C=)
zqx}_0&3`a}dXa!V4+TOa{nKvw9bn4o3|&=?6s*O|m19ra*u7i{)6Zk!k4MYxoc0WP
zf=&}@J8?$-huEQpBgD_nWEDL<2HB8uzs?Ew1zm7M7j*3@tL
z^Uq|LF6Wx%L9yLmxx`@_=?bZJ+oRN91Uq*D=H9WkwoX=@A|mgV=WI<5MRlz{^QkJw
zM~4ej4ME9WHNZfNf#%-?zzryp-5#+`w@KfhcG>YC4c}u
zNA0rV3Gel)anGoK0ZX6S8>~_@X=ib8@>gyF>C5W*xJ>aMCb}m+AO73t#Y^H}IVO)>
z8_Cgvx9}pe|ML}!6B7bnRs?tqI>iH5MggPp!FieKe=bySbjgxR?f!`MIoh2!z^nkP
z@jh5LJAr$a%{G441)6tQ)JN#)&nyCUCA#M~))Ikdq38~bx~
zNQsW^)6pJ&_ormTNO@g-eOh~ayST!NrsPC<`|^eB8t=STCYS1VCP`ABw!<6_IM~sJ
zg@x(^AGVU&Pbx3%-NPlqf&Lqa**07JSY!SE?+(S|UG3`{iP(=1K1eNo{6K`ft*tHp
z{jn*VKaLTA`aDS{iZD7<-wL$-8}V4jTpA`k3W>1cvu;IlbTF@222`g6oUJRCl#=L1
z3mcAn3#(_S!f9Ds0rvIgcRU6zW$Dv=8d2A}1Gmd+f&12+m)l<|8v(9`S<3ZtwA}g^
zmY`O>)cu;NL&5#!Do&z_Brp1GbV^>5aD3PYH#Gd3S5)6l{E$+zVZXn>BMpGkd%0pL
zI6qBh$Jyvs?CzAD`WDXW{6$Aw{xk6tDLMJ2;b=?f_osOdQ~x#Pw190xqQAFE
zND)ht_meO?T2J@{wAuUTTia>?LCnJDB-trXsipvm5IrMc(WT5XO7^#u;HMwwvow=i
zUthUXz1l>bJRl8XiNf0Tb{l*|-FiD;=j|83r`K!Fr%AeS5WSvlDnh>xb9A^b3Q#Re
zE43X2dDaR$pSnvrCB{}OiUK0Reo=OPS#H3=x`WtFl3f&dYL0--2frJR13^5LB7UHG
zuk%#3GY_OUGBvfv+btt(95Gwy8Phl1NVQ^reV$A3LuC1U1kfoN)!nNNuD+&PHCl(bxr!>18v2->#{>Ns?E$q12uf*yPH#mlDS*we!npUg@NEG9
zDHZldy4QCaj#G(ok1GzV-~24_aL=uoR?>CY;(5>a?^vRT1koU&KU?ARyyCIX@46k+
z!uq{Mo3?Rq8btizH!4R0rxj&(FvGOGZ8*3&9<6vJr7gd85d=~e-x5Xs9{lulK+j+e
zEfnxVU8oKPcBpWOgqIZ4eymk$(Z?1AACs^Iv%=LBBas%^t-rnA(MbuQ#q9LvSrq)e
z?Nd4p0owCcEc9iUfrzidX}-j=?3{8$^Q*Pl>749$Pw39(JaCxhZ7)gNX9AJFe+L@mN1D}61F`!qo$|Hdm9
zq{x*8F(x@T{H}N`9Gi^Jxes=Z$=tRDIV{&>l43q#sMH05y3!*GT@t^9!kffIGG^33
z8Dz$7NaQ5e1Ph9GyVxA8BwWpybc)2;^sC#4tB;>5X{5>fdCoKNg9#NO?q_pPlR%YA
zFOl}8uCtY>-ife*Hb`Xm3d#19VzEt)H-8az&*F1Y3sKUVUtDG2s;=1Of8rH9see5t}12=8z5IVW+Bz
z%6{v6iy1Uh?HXze4=(GM`s{S&E1$@vYliKANueJ;&nnB<8tqc=d_ZulD`))EHAr=7
zIV&}ToV(ISSR27Zuc{d*Jk87PCqL;V4Bq*0x3OZV>4pNS-x6uJB7N0VT0z3#vr`9{
z*|pWmy1G@=T+-Imi(XxAc3sQ~XEnNU+L*}fTKk#oy0=h#xb1qlwOSH=YpUM$#JKso
zzFsLHJ?&$_+mghoyQCnMV}jH-qvRQ#>lm(UK9gPfXC+9nMh@+*MQ2C*r>!B=ns4a(
z^Q~dA+j52LH<8tu2-n$2VRxGiY00~h?WT%bx~l5>fy!z*{o)@Zh)SI#=kqkDgV<6*
zNgf|bK6AH
zLqHB+pYLgDA*S3JWEMWfC60y?ZLK@?l(I|r7u(A@L{8f+1*uh&&(wv&(hvD-Ch$Ng
zpXON{KVJJIXosK6Rb}S0qYmI#qGhSMWgEM?$=gB8Khmo7*>|d5D&-%3Sb8Q(L55m_
zf{q_yeF`(z?8I%lyPicl6n=dc`5~(PStNa6aethu=AWetl0|I+RZn`>&1dg$@*=Ez
zss23a?0gGJFrzatOC@JDJK#$3N^1dy#`S2Ig0-FDbfS@2-A32Cxn(06P#pf@VV`-p!Sw=>KM$vBH|QR@
zksoYkgPDYB!(x#q_jCAS2b2C}+(MH9UOvSlK}TSPRUC0<*-JRnyKM%jF|mV_$U!W`
zT~Z#a=YR?^4n_-DrxMLTrl)4b=2mMk>1rq^HiWXN+|G4>Ih>W3)e{()3@#tl+XwBT
zOgs;r4eku?Cb^@drhfHtUyMGC7>LexCMO^qANg1hmaKj1ZcG#rwz>yM8ciitd8-QR
zB(q^iYv6?Tg$M)-L71{p@r;#qCKz5~r3~@WXQTA~Y&+j{-43p}8Jya$@8_AWBiMu<
zz$~F6B*P4eXKBuCMQ8v7=LdD~(}HHVGMzyss=ZC~Blqc}-YXzc00=
zRC)XI-ysb8fP9mD`^;Su&`k1#q5Eg5d$3P}i8*6zUOZT)Tz}F}C|PRrC12_9$nHRi
zWOvKqVjwUC3&7s{O1iOOtW{{#Z^8VubK|KuV}mKoW8>ShP|o*YwAwJ*m7yZDc?JQ%
zgk5K6db%cyjQQW5=i0x#S>5ad?jIQH3JCe%BG2M%%uhk>h-ArZ*!J>$$hU<}G9vc{
zHM<+r&lSHti`?jbez@K7EYk0Hh>4c~0s&X`exbHILMg@QEy0z=I2gcGO$)}Ix;r;gUys`Z{`(=P$kye+}C~E-*MJ
zwe}b&#B8b;PA47c_k@=a!Wy1naoPtp8Q5QG79RrPyme#i4aK+Qtj*68FgJ5LP7N=!
z@aN&qG|{jue?OA?@tS{_StJ9PhskNkdJVxq%?K16onQlIE4(3R^;>$d*q$l)r@5-;
z)JO)>TX42rYy?6ZFwbUAL9n|s^GQ1up2Pnrk(|}C4a{z&v~6rn^NYvagn6ABN=});
zqq9RM3FNG0w!~17oQc`-9{vwp$aG{VcZ5b(O@%|~fe`DqfoZ~j>!C0tMEUUgMKCsM
z2a=6BQ%~(NE|pTtZ8IOt35B!5W&iNCE$qqvigU_;BK_!0`rbvyD)tlvBMm!Mv;q~q
z!dbr+lO!4RP3uz`EnA%6IRB4_waoQ$8n6vRpy7s3Piu$v
z^Z?dff~eDv#4=Hu*D(0P)xPwm`u%u}OwQ6N+QR)371+BJIT`uCm~witjr%&-Im8TJ
zHO(NNmMT7@l2H(IHk>weJ}p!s05|SF9YU#}5_<>!{153BThT#S4nM1q)=9rR2=Q@0
zp#vNxFxigzAFunT|A369fFaq`p|eEEuZCmVopA_ATR{m>f{D^9x@w9}TV8L}2)*@>
z`^ho%CV3yYNiAISo+g)CQ>s3A`fIFeD?laEh{OBd;(gE4qcY}ybk;V7lymo$&OhOfBovf`37m*)f&b(amp(q-KY_2ZXi}tBe>7&1rUOXZ^D?G*&zO_@LX7
ztmiprxI>}H_-oANQ&_X_JU*bOVL8)4AWsR9klUbHs&UE5izz>U3g5bp+m2F;JcP|`
zi`htv8Kr8%<6k`=fDRgwpUx+{cP?;8cG$(7%rEq$n;xVIG)w@JfTj-RW
z?$?>F-#3qz$NfyUAR;5T9qn)<@gjiTVH}*%W~o+Gj&S*r=OwwL>gjOQol~BT6hZhZ
z?Car4J$$$wn(X|H-IE8Q7c&@h>Z1pRXlaQcp3vIz0>ss;I}NPP_oQu4MWdYP?Y8e<)D;|l^u*Qe6
zHS94QtVIK@y;KtV;h>+?7L7`aLMmWUNah5%uL4&k+0g~>f^u$R-9GinqAsB~0mpe9
z+#SSG_=!SdEWck*)!r7M_*+yj5yiviS3s{wfGW9&q#lxaKJEtKACZPupB{I&XhAMX
z6njmOdyQLEUx|YO6nv;eL*hw({ccNk2#5x|m6YtLiOm+7(O7L86V|@$X1BIR1_SI}
zRw7^QUjSbW(7KSCV9~FF#=9J@fvi!i?9kY&kJpz*%493=fxU9-fI&|YD3q{c`oL
z4Pmef_tut1GII;Xeu}Wg?S@J^Y7m)h79wY%-`+xO)6P{*P=r!8%kNluslO?oEDa^z
zFo6eVo&hE&yF$}&EdS~fL??^c`QD#LTHlh$vr{R82oM@hx}belnoDpZHPBQ2TO5Ty
z1Ca%Ol(3O*vGmY;=3FzaYUiom=HQb=Aa|p~-Db_F0;aQ)&2d+%LUivijieATFGk#|C}l=CZ5UcA7G9uoMEAK&(e?CDo3(_sw~bdodjF`;{5}S
z+zD908tn0r(7}4bYPRAf=X>@SPK`NkvfOSJEo5EgFTYg06oWb@M1!4SDyNfmWz-Xz
zcITUa*EHjcn%TXuCSG8!k>x2zypb<1OlQX8KF#A2EkP;|ELzN>XS-ym
zwC2lD
zJjko|@L*;I>nTF8<3lLT!8uM-5PnLQ$!3XBu*dXkogyXT)hGAq>RH_DJEdBYZJf_L
zgr29#gXl5yCh?*RINHMrpBn%l4z{a6hz%V4>NI@<(0J=_r|43V9(2qKyh8Q9^RSbo
z_v)=->jWac$eW)60V3f%K={FmwKm13&rHoNFTz=4WFr3{NT)*)kmDgZ-t+(fP1B*A
z{6v5e{ewTUw6v>b>DFHNKssH$XYWn001Ciuak{Yh&U%OI`d7nuYw5>tC&)ap!6)0E
zHefR=^YTJLy!`%-#i&^I93!E_j7IWWT*_%`Js8POJ=-P}bO=gXb39YKbZj1f$?dSE
zcylSC3h%1&o-_^H%i_)czTzkE>1en3z~_<(S(Fr4%>bU930qiWlaQ6-#WC(qzqw+z
zNX4D=g6K#x3$2%im(&M7KIj;V2^FI%oSB+$VC@nWI!Aq
zFStC6p7Y!MMM}w;GC@&kEJ>JH!F|7@e%SXqlY!Zl#~{rofFr^IKl0IlHo$N2dzG!Y
zUYrD%D%=o|LZ>LVKQuGp84A-W4HBqdZF0QXj2aEHd-5xB!&6_LlH=@iHnN%(I&H<&
z!vl_hi)r3uyu798(wphg3=GSDyLXHs?@{I>r4{t#GLP+^JV{T#rNpS~fv1?L5ek}o
zx-cQ@ckul=E{v&kSE7D{9Z20oKNF>95{mga-TXZJYwV2#%qtr$!slz(Yo%&NFtmQU
zWo|_*dyKcETjwLAS+{a+KA27nf3&4#-70)kTA@-Hp8R
z9q2e>NPzx%=GNaz8mcf_Aq2ZUD}XNzB}eiDDgymG(&{Vd%|2xHMZ(2m8gFtb5wuv5
zRahZfB%P(@R{)c!*YwRvlk!)es7u?t7;QSfc`=DN{gfkqHM%!=tZk}kO&-8{Cpv5O
z14fw#{?ON^C~x`vo6Igm(>YxU1IQhVg`%C3UZNi>{pbhRooKp^;MdRZ!YU;R^_rCkzM;72QbTazrM84j
zadYe&ArO)Cb5W4cLqc`bHX;U(=~wqry)OEQgFQyq{2bKzi1-0X>N}HmZeKMz-dRn~
zjK-OAOw<_bJy5w9q5i~I&vqkX)0E?-ORH4oaut7mV8v^k_1&ew2&WTt&ZF$_vvUO`&}2C_LbTX#$XAS(ieCUe}PEBw5V
zWXgocT-=-j^5%2%&+cvKJ7Yd*tXYd{CUkG+TQqYFcoY?88taiyNCG4
z7B2Gs@WjKF8?qnLkckR}mmhiKF5-ewy%__kZFEtE7Hg$@S-)SmYQ1i~p9y1wc|_J4
zpVed;B`D&Pa;Y!|dfy8~2p@AFU7=af*Hf*!&C^@A=A$=T*?OoyUNutLy7Mu2wXz=U
z)lLgIToVNKq0+YkE)-c+XC>({ll@r
zG*nt%7{Xn##h>G3ZfCMxomp9L7ch&NaROlC8(>Tc+$Wur20
zBR;-tI+GpXH&7hV5akoS7v68r17}MTb2c^_!^U8mDzoMVqK)fUWT_LxWwX4eDi|8q
zU9G|dQ5ke`t>&5byL(yldJLKt8nX)GPUGFK!~)f#_n&O;`)E}TrA!TDTv7YWcea`g
z@(wa9@;Yk#1rA^0Z?BeQMv}Jo>OV{1R&En`Xw;TM-a$2AU~3ovQFkcYG170?ZdCg~
z6uh1Uy@EXz`}I5;U6zD_r7Fxjbnhp9Vm8bH5FbSi?di9^6}_nCHx(X^BIiJK)MzB7
z4T)1++3IXcXr1pEEjME<{$^5~Z?|8H`MFY3sKYI8%Gh5Z{Ap=XMvJ96CaGP&Qantc
zBYN3TM>Tqp*LP6YrrUvc!BEG#7$i3!SpY6I@BRa*M-k5%J`dC4ULLfPQ-F~jvX@Y6
z&C~0c9(P96&^6X6xuLpnK-fmrDIobqfm2Ra?lX>o&+k>Z<@55A(j*J=a_mQijLjX8@v1&s#Pg5fof=T&ur;bXNOR%@lcHgyJL7hA*%^NgDvyzP1Uewmu|^sDyPVSIM(
z?JO>p%x!aoZB0a^?R?C6r-IOnSe|47#pi-_Vyt6b;Qeeg(zoKcASix7-0Idnr-_#)
z+y##?W!0`#X|0DZ&AN?Iy
zf3RS{s&pckH_0oyoF!a0|GQ6bnGGTp*3lfd*j~&E6u#mGF+4GOsH}YP=gzO{V=KwY
zf@}cwNzSoZLz>;JRCxTu^8Bbz)CmQ}E2R~`?uOh(>KgVOl&scba-TU13=Zh(-8b=G
zs*KqZ7l_Jpb~|#;Gcq%@*Z~Ddlh?$x@tfQW~F-N
zqM=dx1l6a?)#`k~nohS__5gc4D{(uYh=|G|@#1`ilKjGYyQzx0IX4GhzQqe1)qmU~uyPI$PI(;fW#_V%WDw7?+4a{-7XUS}~HDCyUe5=-1Y
zW##V$88Oa!acDthaD6?G2SEy;1^nRK|BqjQ=MjaL=qbI5MlL|t9x0_fc-Zhj=~V;oIPS{YnTn<=e<
zUW2ldL;*5xG`y^j`yO+VhsZ0OQW(ecZ$(ANcz6=I;aM_Aqo&@IJ?sqt&hm2kLcBa8vjGjqmAKo0oj{4o;%P7nvBll@o-E{@m>LPxVAXJ9k)Cf^{)vk?BNMj2rEDp
z7gum{$N~(Ve$fd-FIB&K;EkK?D%3m~5Czv;B7KzLWLrjqiQaDE=V}pl+
zo7HvFPTB7c{_rgm#XT2Js>5GD5Sia;fGVfbppLPI4@QG8B>A{gP|?3yJ15_xnGL|K?S%_>C5b$J!fwo
z+O$C%A}L#Oa>_9>4~dsVvrl_ucNy)MO-7%dEN5@#>6*`}MPB~~K1xNPaNTJ4e1+@@
z^O3m@Zt2wYQK5*V>`a)!peV}Uf^rRzhYQy}z|f#6*sP=0yuXDXf_)}xVoZ4c`6SMO8>_eF_!V9`Q_
zR(-!yjgTjFrG8QWx2qw4S~>ssyrDv5;J-fHlXHUok6*qaN-G}eEz5OO^?9#Ir6qz0
zA+H4V0!}6)&OoBpH`H;s83w2b6@f-r3@vuHI{ysfPPP>5?xKzeGZE`^^n1I02
zhG#a@b>d?<T%LiS1b5JiM6Q0V_0=O~kDK-?Y-Wr1qJ%0ag&v&VbN-hXwtPJ90Q)p__s;4
z+tX4u@Ni`(Rku^slF?A|h(@YH*EE#mn4nCIPGcu8?sSB;)fccS@^hu}u*nK=Me&bT
zIw@)JvmNgvKN_miwlQt{NOMJ*_00|-5O3DD=8=g^(4DG>D}?q>@aUp#=5%l`2TK^e
z&XuLq(%&SlWf(g67Z
z!;0u~YGE2FDXwjPM_EdOv6`I<&LwO}K!7Yt9Y#w=M^X3+Nq@1@gzV7+sUs6yW;`W$
zAqvZkYsPY56EhS`^W;rUOjX+q8qwI2f_yLkIkTKL1HV_=2op4iSy^x$z?&~etUg*w
zn`WV>bcyeguHKJ8L=~-nXJ{P;Z_*SutuJJ3MU`xssD1s6Zf1ISV^wT*x(Uw|(n;Md
zNonfXES*N`d4?EBU!hbIAp-86>*TRProI%5gdK=1-A%
z*ZmTU+%MSlo>PC(HqzhE$;?UKbQiw3cGBk*D?QdSje+~R>$UNjsY%y!Wsp^~
z5j-RMr0d)7Y{iieFif+%hx?}4d+-otF=Oc^if{T<}XmB@i)yQgZ+9-o4)S}D7X%{9K
z`k1fwxX|HgZF>Ugb6_Kz4k^MsT)rfn5K|to@ka5TXFWN(8b`J$7
zYlWnn4Xk0!f+1HkTr8gUK)x0>JK)zAn}99Y$Ia%+p?v)j{RG{i@8qpR@nJjY)v30C
zFNLvQ{&68E66%4W3qZ*{*oC3XJ!&@3ALaXs;iw^?s%b;>%Tc)e3iAcrwGV>qRU~&p
zf=K#;kIB1)Mk_@|zO@T6aY)+F5iEm^%5c7rLdnS>V|2m#o=F6HMhk8!i&?wtVOgftSRnakj?T%Qy;R(OF&S5Kgrf{}3Nx9zdl@Eog305Clu5%{|0sD}ikjl3j4$$Vc-LJUWwR+w~&i
z&2~Qcx-;8OI=lI1GZ{tkQ*;Nzt3HgP_;Q|00naj3^P*aWP!@Imb^-U5NR`N-ScdRW
z1OxDI!@eI5uOa9MzV`=o9!F;w_KrM29wNI)LJvv)5%L7tK^`Mj`XWU#D`brh
z;v6|cj;BUzZH&LzHR$g=%J&l!viVY8
z1e-7Uv<4a}_t&yYRF&pSv(YEVEv78=FPYH!TL93P`)=vyWZdA>*mk#ynn3s@8^SCA3Z!RT%YUZ
z|JMuao%R0H^L*Rto%POo-zB|MV{iLms%3(^{(bamp59-Y{$JFJ`+nREgu74fImms`
V_Vt1MTwuNLQoXa@S?{}|_b<-qxpV*k

literal 0
HcmV?d00001

diff --git a/Notebooks/x_scaler.pkl b/Notebooks/x_scaler.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..96e19c486a145bf3d4bfd2ceca75e7f90ffc20e7
GIT binary patch
literal 506
zcmZ8e&r1S96xRH)7c&Vv|#Uje0!+?>{f`moaVO&RdNoTj&Swk?$KvS5Tum7S$
zw+>yp1l>9b9XfRA)TMtwsC73ae24eVkMDi&dox$j+wXA554q}`H7MaswK=u9rBlZ-
zSzX0dA_&Mt*{ZmXIMzvnau~r{7cLJ*A-CumqiB-{^KPIDb
ztGbKk5xjC4pFR@BU@RHSQ#(fbznRQTK8;BJ;O%s)i(W&0^!4&S!;{GML#LBM^XSW`
Y@ZX2x7UhmPx#

literal 0
HcmV?d00001